

LIVE-LOAD STRESSES

IN

RAILWAY BRIDGES

WITH

FORMULAS AND TABLES

BY

GEORGE E. BEGGS, A.B., C.E.

Assistant Professor of Civil Engineering in Princeton University; Associate Member of the American Society of Civil Engineers; Member of the Society for the Promotion of Engineering Education

FIRST EDITION FIRST THOUSAND

NEW YORK

JOHN WILEY & SONS, Inc.

London: CHAPMAN & HALL, LIMITED

1916

The author wishes to acknowledge his indebtedness to the American Bridge Company for material assistance, and in particular to Mr. O. E. Hovey, Assistant Chief Engineer of this company, for his encouragement and help. The author also desires to acknowledge the valuable suggestions made in the revision of the original text by Professor F. H. Constant, of the Civil Engineering Department of Princeton. To Professor William H. Burr of Columbia University, the writer is permanently indebted for the logical and thorough instruction received from him as a student.

G. E. B.

Princeton University December, 1915.

CONTENTS

ARTICLE	Í.	Influence Lines. Definition and Use	PAGE 1
ARTICLE	II.	Sum and Rate of Variation of Ordinate-load Products between Two Diverging Lines	5
ARTICLE	III.	Sum and Rate of Variation of Ordinate-load Products for any Influence Line. Position of Loading for Maximum Live-load Stress	7
ARTICLE	IV.	Girder Bridge without Panels. General Formulas for Reactions, Shears, and Bending Moment with its Rate of Variation	13
ARTICLE	V.	General Formulas for Pier Reaction and its Rate of Variation. Illustrative Problem	23
ARTICLE	VI.	Girder Bridge with Panels. General Formulas for Live-load Stresses and their Rate of Variation. Illustrative Problem	27
ARTICLE	VII.	Through Pratt Truss. General Formulas for Liveload Stresses and their Rate of Variation. Illustrative Problems	31
ARTICLE	VIII.	Three-hinged Arch. Application of the General Method to the Calculation of Live-load Stresses	48
ARTICLE	IX.	Equivalent Uniform Loads	54
ARTICLE	Χ.	Method of Calculating Table of Load Sums and Moment Sums for any Standard Loading. Illus- trative Example	57
ARTICLE	XI.	Summary of Formulas	59
		Tables 1 to 21	67

LIVE-LOAD STRESSES

ARTICLE I.

INFLUENCE LINES. DEFINITION AND USES.

INFLUENCE lines are useful in determining the position of live load on a bridge to produce maximum effect. They offer also a convenient method of deriving general algebraic formulas for stresses and rules for maximum when the general relations between influence lines and algebraic formulas are once understood; and in the case of the more complex problems of skew bridges, arches, cantilever bridges, etc., the influence lines themselves serve as a most direct method for the determination of the maximum live-load stresses.

An influence line may be defined as a line showing the variation in any function caused by a single *unit* load as it moves across the bridge. Vertical loads only will be considered. The function may be a reaction, bending moment, shear, stress, deflection, or any quantity whatsoever at a given part of a bridge, provided that its value is a function of the position of the unit load on the bridge.

Refer to Fig. 1a. Consider the span AB, and let Z be any function at the fixed position C on the span L. If the load unity moves across the span AB and the value of Z be calculated for each position of the unit load and its value z plotted below the corresponding position of this load as an ordinate from a horizontal base line, the locus of the plotted points will be the influence line for Z. For example, if Z be the bending moment at the fixed section C in a beam of span L, the influence line will be as shown in Fig. 1b. In plotting influence lines, ordinates repre-

senting positive quantities are plotted above the base line; and negative, below. In case the influence line consists of several straight segments, it is necessary to determine the value of the ordinates only where the influence line has a change of direction; i.e., at the salient points. For example,

Fig 1.

the points A, C, and B are the salient points of the influence line in Fig. 1b.

The value of Z caused by a single load w is equal to wz, if z is the influence ordinate below w. The value of Z caused by a series of loads w_1 , w_2 , w_3 , etc., is

$$Z = w_1 z_1 + w_2 z_2 + w_3 z_3 + \ldots = \Sigma w z . . . (1)$$

where z_1 , z_2 , z_3 , etc., are the influence ordinates below the corresponding loads. It will be convenient to speak of such a quantity as wz as an *ordinate-load product*.

Formula (1) therefore may be expressed thus:

 $Z = Sum \ of \ ordinate-load \ products.$

The area between the influence line and the base line is called the *influence area*. It may be shown that the value of Z caused by a uniform load on the bridge is proportional to the area A_z of the influence line between the ordinates at the extremities of the uniform load. If the uniform load in Fig. 1a has an intensity of q per unit of length, the load in the length dx equals q dx, and the influence of this elementary load on the value of Z is zq dx, where z is the influence ordinate below q dx. Summing up for the length of the uniform load,

$$Z = q \sum_{a_1}^{a_2} z dx = q A_z \quad . \quad . \quad . \quad . \quad (2)$$

If a series of equal loads w is on the span, the value of Z is

If a series of unequal loads, w_1 , w_2 , etc., is multiplied by the corresponding ordinates of an influence line or a portion of an influence line which has a constant ordinate z, as in Fig. 1c, the value of Z is

$$Z = z(w_1 + w_2 + \ldots) = z\Sigma w = zW$$
 . . . (4)

where W equals the sum of these loads.

If a series of unequal loads is multiplied by the corresponding ordinates of an influence line or a portion of an influence line consisting of two diverging lines, as shown in Fig. 1d, the value of Z, or the sum of the ordinate load products, and the rate at which Z varies as the loading advances, are given by the two theorems that follow. The slope of a line is defined at the beginning of Art. 2.

Theorem I.

The sum of the ordinate-load products between two diverging lines equals the difference between the slopes of the two lines multiplied by the sum of the moments of the loads about the intersection of these lines.

In symbols, this is stated as

Theorem II.

The rate at which the sum of the ordinate-load products between the two diverging lines increases as the loading moves away from the intersection of these lines equals the difference between the *slopes* of the two lines multiplied by the sum of the loads.

In symbols, this is stated as

$$\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = C_a \frac{dM_a}{dx} \quad . \tag{5a}$$

The proofs of these theorems follow in the next article.

ARTICLE II.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS
BETWEEN THE TWO DIVERGING LINES.

Consider the diverging lines DAB and AC in Fig. 2. Use the following notation:

w =any vertical load.

z =ordinate below w in the angle BAC.

 $Z = \sum w_n z_n = \text{sum of ordinate-load products.}$

Fig. 2.

 $M_a = \sum w_n x_n$ = moment sum of all loads to left of Aa about A.

 $W_a = \Sigma w_n = \text{load sum of all loads to left of } Aa.$

 s_R = slope of line DA = tangent of angle which DA makes with the horizontal.

 s_L = slope of line AC = tangent of angle which AC makes with the horizontal.

$$C_a = \frac{z_n}{x_n} = (s_L - s_R) = \text{length of ordinate unit distance}$$
 from A .

Slopes are counted numerically positive when upward to the left. The sign of C_a (called the coefficient at salient point A) is, accordingly, negative when AC diverges below DA produced to the left of A. The value of C_a may be

determined graphically as $\frac{z_n}{x_n}$ or it may be figured algebraically as $(s_L - s_R)$.

Proof of Theorem I, or that $Z = C_a M_a$.

Consider the load w_n distant x_n from the salient point a. By the similar triangles AEF and AGH,

$$\frac{C_a}{1.00} = \frac{z_n}{x_n}, \text{ or } z_n = C_a x_n.$$

Therefore,

$$w_n z_n = C_a w_n x_n. \quad . \quad . \quad . \quad . \quad . \quad (A)$$

Summing up all of the ordinate-load products,

$$Z = \Sigma w_n z_n = C_a \Sigma w_n x_n = C_a M_a. \quad . \quad . \quad (5)$$

Proof of Theorem II, or that
$$\frac{dZ}{dx} = C_a W_a$$
.

From equation (A) above, the increase in the ordinateload product $w_n z_n$ for an advance dx_n of the load is

$$w_n dz_n = C_{a \cdot} w_n \cdot dx_n.$$

Summing up the increases of all the ordinate-load products and noting that dx is the same for all loads,

$$dZ = \sum w_n dz_n = C_a dx \cdot \sum w_n = C_a \cdot W_a \cdot dx.$$

Dividing by
$$dx$$
, $\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = \frac{C_a dM_a}{dx}$. (5a)

ARTICLE III.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS FOR ANY INFLUENCE LINE. POSITION OF LOADING FOR MAXIMUM LIVE-LOAD STRESS.

An influence line of a general type is shown in Fig. 3, this one in particular being for the member U_3L_4 of the

arch shown in Fig. 15. It is assumed that the ordinates at all salient points and the intervals between these points are known. Ordinates and slopes are counted positive or negative as already defined. The *slope of any segment* of the

influence line equals the ordinate at the left minus the ordinate at the right end of this segment divided by the corresponding interval. The coefficient C at any salient point equals the slope of the segment at the left minus the slope of the segment at the right of this point. The subtractions in each case are made algebraically.

It should be remembered, as has already been pointed out in Art. 2, that the value of any coefficient C may also be measured graphically from an influence line which has been drawn to scale. For example, in Fig. 3 the value of

the coefficient
$$C_2 = \frac{h_2}{x_2}$$
 and $C_4 = \frac{h_4}{x_4}$.

The algebraic calculation of the coefficients at all salient points of the influence line in Fig. 3 is given below. If it be assumed that this influence line has been drawn to scale, the signs of the numerical values of the slopes and coefficients will be as given in the parentheses.

$$s_{1} = \frac{0 - z_{2}}{l_{1}} (+) \qquad C_{1} = 0 - s_{1} (-)$$

$$s_{2} = \frac{z_{2} - z_{3}}{l_{2}} (-) \qquad C_{2} = s_{1} - s_{2} (+)$$

$$s_{3} = \frac{z_{3} - z_{4}}{l_{3}} (+) \qquad C_{3} = s_{2} - s_{3} (-)$$

$$s_{4} = \frac{z_{4} - 0}{l_{4}} (+) \qquad C_{4} = s_{3} - s_{4} (+)$$

$$C_{5} = s_{4} - 0 (+)$$

A numerical evaluation of the slopes and coefficients for this influence line is given in Fig. 15 of Art. 8, which the reader should check in order to understand completely the method of procedure. These coefficients should also be checked by the graphical method as already explained.

For example, in Fig. 15 the value of
$$C_2 = \frac{2.59}{30} = .0863$$
.

It will be noted in the algebraic calculation of the coefficients C at all salient points that each slope enters once

as positive and once as negative. Therefore the sum of all coefficients equals zero.

This formula serves as a check on the values of the coefficients which have been determined either by calculation or by graphical measurement.

The general formulas for the sum of the ordinate-load products for any influence line (viz., with several salient points such as the one shown in Fig. 3) may be arrived at by considering the two contiguous sloping sides of the influence line meeting at each salient point as two diverging lines. The entire influence line is thus made up of pairs of diverging lines (see Fig. 3) to each pair of which formula (5) may be directly applied. Thus in Fig. 3,

Ordinate-load products in
$$|\underline{dfc}| = C_1 M_1 \quad (-)$$

"" " $|\underline{cge}| = C_2 M_2 \quad (+)$

"" " $|\underline{eha}| = C_3 M_3 \quad (-)$

"" " $|\underline{akb}| = C_4 M_4 \quad (+)$

"" " $|\underline{bmd}| = C_5 M_5 \quad (+)$

The signs of the CM's are + or - according to the signs of the coefficients, for the M's are always positive. Summing up the above equations and observing that the ordinate-load products cancel one another except between the influence line fghkm and its base line fom, it follows that the sum of the ordinate-load products for the influence line, or the live-load stress, is

$$S = C_1 M_1 + C_2 M_2 + \ldots = \Sigma C M_1 \ldots (7)$$

The letter S represents in general any stress or sum of ordinate-load products for any influence line, while Z stands for the sum of ordinate-load products for any geometrical figure.

The rate at which S varies as the load advances a distance dx equals

$$\frac{dS}{dx} = \frac{d(C_1M_1)}{dx} + \frac{d(C_2M_2)}{dx} + \text{Etc.}$$

But by formula (5a) this becomes

$$\frac{dS}{dx} = C_1 W_1 + C_2 W_2 + \dots = \Sigma C W. \quad (8)$$

 W_1 , W_2 , etc., = sum of all of the loads to the left of points 1, 2, etc., respectively, whether on the span or not.

 M_1 , M_2 , etc., = moment of the same loads about points

1, 2, etc., respectively, whether on the span or not.

The above formulas (6), (7), and (8) apply equally well when the loading is headed from left to right instead of from right to left, the latter being the more usual way. In applying these formulas, however, it will save confusion not to reverse the loading, but to turn the influence line end for end, for this operation changes neither the values nor the signs of the coefficients C.

The stress $S = \Sigma CM$ is related to its derivative $\frac{dS}{dx} =$

 ΣCW in the same way that any function is related to its

derivative. Thus, if the value of $\frac{dS}{dx}$ passes through zero as

the loading advances, the stress itself may have reached any one of four conditions; namely,

- 1. Numerically maximum positive value.
- 2. "minimum " "
- 3. " maximum negative "
- 4. "minimum "" "

In practice it is desirable to find the positions of loading to satisfy the first and third conditions. This may be done by proceeding as directed below. It is assumed in stating the following rules that the live load is advancing from right to left. In case the live load advances from left to right, the wheel will be tried first to the left and

then to the right of a salient point. In other words, dx is always an increment in the same direction as the loading advances.

Rule 1.—To determine the position of loading to give a maximum positive stress, place the live load on the part of the bridge corresponding to the positive portion of the influence line. Try a wheel first immediately to the right of a salient point that has a negative coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} = \Sigma CW$ for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from + to -, a position of loading for maximum positive stress is determined.

Rule 2.—To determine the position of loading to give a numerically maximum negative stress, place the live load on that part of the bridge corresponding to the negative portion of the influence line. Try a wheel first immediately to the right of a salient point that has a positive coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} = \Sigma CW$ for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from — to +, a position of loading for numerically maximum negative stress is determined.

It will be noted that the negative coefficients C occur at those salient points where the angles of the influence line point upward, while the positive coefficients C occur at those salient points where the angles point downward.

It is unnecessary to seek a position of loading for maximum positive stress by placing a wheel successively to the right and to the left of any salient point which has a positive coefficient; for if $\frac{dS}{dx} = \Sigma CW$ be + when the wheel is to the right of this point, it would have a still larger +

value when the wheel is to the left of the point. A change, therefore, of $\frac{dS}{dx}$ from + to - would not result. Similarly, it may be shown to be unnecessary to seek a numerically maximum negative stress by trying wheels at any salient point which has a negative coefficient.

Formulas (7) and (8) are the general formulas for the solution of the sum of the ordinate-load products of an influence line and the rate of change of this sum, and are applicable to any form of influence line. They give at once a definite solution of the position of a set of loads producing maximum positive and negative stresses in any member of any truss or girder for which an influence line can be drawn and the values of such stresses. The method is particularly advantageous in the case of statically indeterminate structures, such as two-hinged and no-hinged arches, swing bridges, continuous girders, etc., where general analytical criteria for the positions of loads producing maximum stresses cannot readily be expressed and where such maximum stresses have had to be found by assuming positions of loadings and scaling the influence-line ordinates under all the loads, a laborious process and one open to much liability of mechanical inaccuracy.

In applying the present method to the simple forms of girders and trusses (viz., the statically determinate structures where the ordinates of the influence lines are readily expressible algebraically) it will generally be more convenient to transform formulas (7) and (8) in each case whereby the coefficients C may be expressed in terms of the geometric proportions of the truss or girder. This, in the following articles (4 to 7 inclusive), we shall proceed to do for the case of girder bridges (with and without panels), pier reactions, and through Pratt trusses with curved or horizontal chords. The general method will, however, be applied directly to the case of the three-hinged arch in Art. 8, which will serve as a typical example of the application of the method to any influence line.

ARTICLE IV.

GIRDER BRIDGE WITHOUT PANELS.

In Fig. 4 is shown a girder bridge without panels. The live load has advanced beyond the span, this being the

Fig. 4.

most general case. Formulas for the end reactions and for the bending moment and shear at any section will be developed. The influence line for R_1 is shown in Fig. 4a. The sum of the ordinate-load products within the shaded area *rst* equals the end reaction R_1 , which at the same time is the end shear at R_1 .

From Fig. 4a,

Ordinate-load products in $\underline{rst} = \frac{rst}{atc} = \frac{rst}{atc}$

By using formulas (4) and (5), this equation becomes

$$R_1 = \frac{1}{L} M_3 - \frac{1}{L} M_1 - W_1 = \frac{M_3 - M_1}{L} - W_1 . . (9)$$

Any value of M or W may be read directly from Table 2 for the standard loadings given in Table 1. For example, in Fig. 4, if $l_1 = 10'$, $l_2 = 30'$, and w_1 of Cooper's E50 has advanced 14' beyond the left end of the span, we have from Table 2,

At 1, 14' from
$$w_1$$
, $M_1 = 350.0^{K_1}$ $W_1 = 62.50^{K_2}$
At 2, 24' from w_1 , $M_2 = 1150.0$ $W_2 = 112.50$
At 3, 54' from w_1 , $M_3 = 5435.0$ $W_3 = 177.50$

The formula for R_2 is developed as for R_1 , the method of writing the second member of the first equation being abbreviated in a way readily understood. From the influence line in Fig. 4b, and the formulas (4) and (5),

 R_2 = Ordinate-load products in $(dvxe - \underline{dvf} + \underline{fue})$

Or

$$R_2 = W_3 - \frac{1}{L}M_3 + \frac{1}{L}M_1 = W_3 - \frac{M_3 - M_1}{L}$$
 (9a)

The sum of the reactions R_1 and R_2 as given by (9) and (9a) equals $W_3 - W_1$, or the sum of the loads on the bridge.

From the influence line in Fig. 4c and formulas (5) or (7), the equation for bending moment may be written:

M = Ordinate-load products in (| gbh - | gak + | kzh).

Or

$$M = \frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2 \quad . \quad . \quad . \quad (10)$$

Formula (10) readily follows, likewise, from the general formula (7), $S = C_1M_1 + C_2M_2 + C_3M_3 = \Sigma CM$.

For example, in the case of the bending moment at point 2 in Fig. 4,

$$C_{1} = 0 + \frac{l_{2}}{L}$$

$$C_{2} = -\frac{l_{2}}{L} - \frac{l_{1}}{L} = -1$$

$$C_{3} = \frac{l_{1}}{L} - 0$$

$$M = \frac{l_{2}}{L} M_{1} - M_{2} + \frac{l_{1}}{L} M_{3} \dots (10a)$$

Whence

Taking the derivative of M with respect to the advance dx of the loading toward the left or using formula (8) directly, the rate of variation of the bending moment is

$$\frac{dM}{dx} = \frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \qquad . \qquad . \qquad . \qquad (11)$$

All positions for maximum M may be found by trying wheels at point 2 as directed by Rule 1 of Art. 3. In applying this rule the simultaneous shifting of other wheels of the rigid loading from right to left of points 1 and 3 as a wheel is shifted from right to left of point 2, must be taken into account by substituting in formula (11) the corresponding changed values of W_1 and W_3 . It is to be remembered, as stated in Art 3, that it is entirely unnecessary to try wheels at points 1 and 3.

From the influence line in Fig. 4d, the formula for the intermediate shear S follows by applying formulas (4) and (5):

S =Ordinate-load products in

$$(\underline{mfq} - mden - \underline{ncq})$$

Or

$$S = \frac{1}{L}M_3 - W_2 - \frac{1}{L}M_1 = \frac{M_3 - M_1}{L} - W_2 \quad . \quad (12)$$

There is one more thing to be borne in mind in calculating maximum bending moments in a girder bridge without panels: it is the rule for finding the section where the absolute maximum bending moment occurs. The rule is often spoken of as the "centre of gravity rule," and may be stated as follows:

The bending moment under any given wheel becomes maximum when the centre of the span bisects the distance from the wheel in question to the centre of gravity of the loading on the span.

In the practical application of this rule, the procedure is first to find the wheel which gives maximum bending moment at the centre of the span and then to shift this wheel so that the bending moment beneath it becomes an absolute maximum according to the centre of gravity rule. For the usual standard loadings the maximum centre moment closely approximates the absolute maximum bending moment for the spans greater than 70 feet.

The proof of the centre of gravity rule follows. Refer to Fig. 5. Assume that it has been found by trial that the wheel w_n gives the maximum centre moment. The general case where load has advanced beyond the span is taken. In order to get an absolute maximum bending moment under w_n , this wheel must be shifted a certain distance from the centre. Let such position be distance y from R_1 . The sum of the loads on the span is called P_2 and equals $(W_3 - W_1)$. The centre of gravity of the loads P_2 is distance x from x_2 . The sum of the loads on the span to the left of y_n is called y_n , and their centre of gravity is at the fixed distance y_n .

Taking moments about R_2 ,

$$R_1 = \frac{P_2 \bar{x}}{L}$$

Therefore,

$$M = R_1 y - P_1 b = \frac{P_2 \overline{x}}{L} y - P_1 b.$$

In this equation for M, the only variables are \overline{x} and \underline{y} . Therefore, M will be a maximum when the product \overline{xy} is maximum. Note, however, that the sum

$$\overline{x} + y = (L - a) = \text{constant}.$$

If two variables have a constant sum, their product is maximum when the two variables are equal. Therefore, M is maximum when $\overline{x} = y$. But when $\overline{x} = y$, the distance from w_n to the centre of gravity of the loading is bisected

by the centre of the span. This proves the centre of gravity rule.

In order to apply this rule, a general expression for \overline{x} is needed.

Since $R_1 = \frac{P_2 \overline{x}}{L}$ it follows that $\overline{x} = \frac{R_1 L}{P_2}$. Substitute the value of R_1 from formula (9), and the value $(W_3 - W_1)$ for P_2 .

$$\overline{x} = \frac{M_3 - M_1 - LW_1}{W_3 - W_1} \qquad . \qquad . \qquad . \qquad (13) .$$

In the special case where the loading has not advanced beyond the left end of the span, M_1 and W_1 equal zero and \bar{x} becomes

Problems relating to a girder bridge without panels will now be given to illustrate the application of the above formulas and the use of some of the tables following the text.

Problem.—Given a 40-foot deck-girder bridge consisting of one girder per rail. Use Cooper's E50 loading. Find the maximum shear at the end, quarter point, and centre. Determine also the maximum bending moment at the quarter point and at the centre, and the absolute maximum bending moment. All values are to be given per rail.

Solution.—Table 5 following the text gives the position of Cooper's loadings for maximum end shear. This table is the result of the solution of end shears for a large number of spans. As a general rule, however, it is safe to assume that w_2 of Cooper's and similar loadings will always give the maximum end or intermediate shear when placed immediately to the right of the given section, the live load being headed toward the left. The exceptions in Table 5 to this general rule are not of prime importance, for the actual value of the shear when w_2 is used is sufficiently close to the maximum even in the exceptional cases. There is no satisfactory criterion for determining the position of loading for maximum shear in girder bridges without panels, for it is as easy to calculate the actual values of the shears for the successive positions of loading as it is to apply any criterion. In the case of bending moment, however, time is saved by using the criterion.

Maximum End Shear.

Use formula (9),
$$R_1 = \frac{M_3 - M_1}{L} - W_1$$
. Place wheel 2

of Cooper's E50 immediately to right of R_1 . Take the values of moment and load sums for Cooper's E50 from Table 2.

Maximum end shear =
$$\frac{4370 - 100}{40} - 12.5 = 94.3^{k}$$
.

Maximum Shear at Quarter Point.

Use formula (12) with w_2 at quarter point.

$$S = \frac{M_3 - M_1}{L} - W_2$$

S at
$$\frac{1}{4}$$
 point = $\frac{2838.75 - 0}{40} - 12.5 = 58.5^{k}$.

Maximum Shear at Centre.

Using formula (12) with w_2 at centre.

$$S \text{ at centre} = \frac{1600 - 0}{40} - 12.5 = 27.5^k.$$

The values for the shears are given in Kips, or thousand of pounds. A comparison of the above shears with those in Table 7 shows agreement of results.

Maximum Bending Moment at the One-Quarter Point.

First compute successive pairs of values for $\frac{dM}{dx}$ for different wheels, first placed to the right and then to the left of the quarter point. A change of sign from + to - indicates a wheel that gives a maximum. Use formula (11),

$$\frac{dM}{dx} = \frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \quad . \quad . \quad . \quad (11)$$

 w_1 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4}(112.5) + \frac{3}{4}(0) - 0 = +$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4} (112.5) + \frac{3}{4} (0) - 12.5 = +$$

 w_2 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (0) - 12.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{1}{4}(145) + \frac{3}{4}(0) - 37.5 = -$$

 w_3 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (12.5) - 37.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

 w_4 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4}(177.5) + \frac{3}{4}(37.5) - 87.5 = -$$

Accordingly, compute the value of M by formula (10) for w_2 and w_3 at quarter point.

$$M = \frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2 \quad . \quad . \quad . \quad . \quad . \quad . \quad (10)$$

M for w_2 at quarter point,

$$M = \frac{1}{4}(2838.75) + \frac{3}{4}(0) - 100 = 609.7$$
 Kip feet.

M for w_3 at quarter point,

$$M = \frac{1}{4}(3563.75) + \frac{3}{4}(37.5) - 287.5 = 631.6$$
 Kip feet.

The latter value, 631.6, is the maximum bending moment at the quarter point. A comparison of this value

with Table 11 shows agreement of results. Reference to Table 3 indicates that the correct wheel for maximum has been chosen.

Maximum Bending Moment at the Centre.

$$\frac{dM}{dx}=\frac{W_3+W_1}{2}-W_2$$
, (10a), and
$$M=\frac{M_3+M_1}{2}-M_2$$
, (11a), when $\frac{l_1}{L}=\frac{1}{2}$

 w_3 at centre,

$$\frac{dM}{dx} = \frac{128.75}{2} - 37.5 = +$$

 $\frac{dM}{dx} = \frac{128.75}{2} - 62.5 = +$

 w_4 at centre,

$$\frac{dM}{dx} = \frac{145}{2} - 62.5 = +$$

Maximum.

No maximum.

$$\frac{dM}{dx} = \frac{145}{2} - 87.5 = -$$

 w_{5} at centre,

$$\frac{dM}{dx} = \frac{145 + 12.5}{2} - 87.5 = -$$

No maximum.

$$\frac{dM}{dx} = \frac{161.25 + 12.5}{2} - 112.5 = -$$

Therefore, maximum centre moment occurs with w_4 at centre.

$$M = \frac{2838.75}{2} - 600 = 819.37$$
 Kip feet.

This value agrees with Table 11; and the position of loading, with Table 3.

Absolute Maximum Bending Moment.

Shift w_4 according to centre of gravity rule, and then recompute the value of M under this wheel by formula (10). Note that new values for l_1 , l_2 , and M_3 must be determined.

By formula (13a), when w_4 is at the centre,

$$\overline{x} = \frac{M_3}{W_3} = \frac{2838.75}{145} = 19'.58$$

Therefore for absolute maximum bending moment under

$$w_4$$
, shift loading to left $\frac{20'.00 - 19'.58}{2} = 0'.21$.

The new values of
$$l_1$$
, l_2 , and M_3 are
$$l_1 = 20.00 - 0.21 = 19.79$$
$$l_2 = 20.00 + 0.21 = 20.21$$
$$M_3 = 2838.75 + .21(145) = 2869.2$$

The absolute maximum bending moment =

$$\begin{split} M &= \frac{l_1}{L} \, M_3 + \frac{l_2}{L} \, M_1 - M_2 \\ &= \frac{19.79}{40} \, (2869.2) \, + \, 0 \, - \, 600 \, = \, 819.54 \text{ Kip feet.} \end{split}$$

It appears, therefore, that the absolute maximum bending moment is .17 Kip feet greater than the maximum centre moment. The difference is not great in this particular case, as the required shift of the loading is comparatively small. The position of loading for absolute maximum bending moment agrees with Table 4, and its value agrees with Table 7.

ARTICLE V.

PIER REACTION.

In Fig. 4e is given the influence line for the pier reaction R between two non-continuous beam spans l_1 and l_2 . From this influence line, the formulas (5) and (7) give

 $R = \text{Ordinate-load products in } (\underline{gbh} - \underline{gak} + \underline{kzh})$

Or,

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right)$$
(14)

Formula (14) may also be derived from formula (10) since the ordinates of the influence line for R bear the constant ratio $\frac{L}{l_1 l_2}$ to the corresponding influence ordinates for M, the position of the live load and the values of l_1 and l_2 remaining fixed.

Therefore,

$$R = \frac{L}{l_1 l_2} M \qquad (16)$$

Substituting the value $M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2$ from formula (10) in formula (16), the result is again formula (14).

For equal spans,

$$l_1 = l_2 = l$$
 so that $R = \frac{M_3 + M_1 - 2M_2}{l}$. (14a)

The rate of change of R for a movement dx of the loading to the left is

$$\frac{dR}{dx} = \frac{W_3}{l_1} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right)$$
 (15)

For equal spans, $l_1 = l_2 = l$, so that

$$\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l} \dots \dots (15a)$$

In the last member of formula (15) the quantity within the parentheses is the same as the expression for $\frac{dM}{dx}$ in formula (11). It follows, therefore, that the same position of loading gives maximum R and maximum M for any given values of l_1 and l_2 .

Problem.—(a) Find the maximum pier reaction per rail between two simple beam spans $l_1 = 10$ ft. and $l_2 = 30$ ft. (b) Find the maximum pier reaction between two simple beam spans, each having a length of 20 feet. Use Cooper's E50 loading.

Solution of Problem (a).

Use formula (15) to find position of loading for maximum R.

$$\frac{dR}{dx} = \frac{L}{l_1 l_2} \left(\frac{l}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right) \quad . \quad (15)$$

 w_2 at pier.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (0) - 12.5 \right) = +$$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (0) - 37.5 \right) = -$$

 w_3 at pier.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (12.5) - 37.5 \right) = +$$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (161.25) + \frac{30}{40} (12.5) - 62.5 \right) = -$$

Use formula (14) to compute the value of R.

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2.$$

 w_2 at pier.

$$R = \frac{2838.75}{30} + \frac{0}{10} - \frac{40}{10 \times 30} (100) = 81^{k}.$$

 w_3 at pier.

$$R = \frac{3563.75}{30} + \frac{37.5}{10} - \frac{40}{10 \times 30} (287.5) = 84^{k}.$$

The latter value of 84^k is the maximum pier reaction. Its value agrees with Table 14 and the position of loading agrees with Table 3.

Solution of Problem (b).

Use formulas (14a) and (15a),

$$R = \frac{M_3 + M_1 - 2M_2}{l}$$
, and $\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l}$.

 w_3 at pier.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 37.5}{20} = +$$

No maximum.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 62.5}{20} = +$$

 w_4 at pier.

$$\frac{dR}{dx} = \frac{145 + 0 - 2 \times 62.5}{20} = +$$

Maximum.

$$\frac{dR}{dx} = \frac{145 + 0 - 2 \times 87.5}{20} = -$$

 w_5 at pier.

$$\frac{dR}{dx} = \frac{145 + 12.5 - 2 \times 87.5}{20} = -$$

No maximum.

$$\frac{dR}{dx} = \frac{161.25 + 12.5 - 2 \times 112.5}{20} = -$$

Therefore, maximum pier reaction occurs when w_4 is at the pier.

$$R = \frac{2838.75 - 0 - 2 \times 600}{20} = 81.9^{k}.$$

This maximum pier reaction of 81.9^k agrees with value in Table 7 and Table 14, while the position of loading agrees with that given by Table 3.

ARTICLE VI.

GIRDER BRIDGE WITH PANELS.

In Fig. 6 is shown a girder bridge with panels. It is as-

Fig. 6.

sumed that the live load has advanced beyond the left end of the span, this being the most general case.

The formulas for R_1 and R_2 are the same as formulas (9) and (9a) for the girder without panels, if the girder bridge with panels has end floor-beams; but if this bridge has end struts with the end stringers resting on separate pedestals, the value of R_1 beneath the end of the main girder is the same as S_a , the shear in the end panel, as given by formula (17) to follow.

Inasmuch as the maximum bending moment in a beam carrying concentrated loads always occurs beneath a concentration, the maximum bending moments in the main girder of a girder bridge with panels will occur at the floor-beams. The influence line for the bending moment at the floor-beams is the same as for the bending moment in a girder bridge without panels; accordingly, formulas (10) and (11) are to be used in finding maximum bending moments at the floor-beams.

It remains to derive formulas for the maximum shears S_a in the end panel and S_b in any intermediate panel. In Fig. 6 are given the influence lines for S_a and S_b . The correctness of the ordinates is at once evident. The slopes and coefficients are calculated as explained in Arts. 2 and 3. The general formulas for S_a and S_b and their rates of variation may be written at once by use of formulas (7) and (8).

$$S_a = \frac{1}{L}M_3 + \frac{l_2}{l_1L}M_1 - \frac{1}{l_1}M_2 = \frac{1}{l_1}\left(\frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2\right)$$
(17)

$$\frac{dS_a}{dx} = \frac{1}{L}W_3 + \frac{l_2}{l_1L}W_1 - \frac{1}{l_1}W_2 = \frac{1}{l_1}\left(\frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2\right)$$
(18)

$$S_b = \frac{1}{L}M_4 - \frac{1}{p}M_3 + \frac{1}{p}M_2 - \frac{1}{L}M_1 \quad . \quad . \quad . \quad . \quad (19)$$

$$\frac{dS_b}{dx} = \frac{1}{L}W_4 - \frac{1}{p}W_3 + \frac{1}{p}W_2 - \frac{1}{L}W_1 \quad . \quad . \quad (20)$$

Formula (17) when compared with formula (10) shows that S_a is equal to the bending moment at the first intermediate floor-beam divided by the length of the first panel. Formula (18) when compared with formula (11) shows that

the same position of loading that gives maximum bending moment at the first intermediate floor-beam will also give maximum shear in the end panel.

Formulas (19) and (20) are perfectly general and will serve for any assumed series of vertical loads in any position. For the usual standard loadings and panel lengths, however, it is not necessary to advance any loads beyond an intermediate panel for maximum shear in this panel. Therefore, for practical purposes formulas (19a) and (20a)

$$S_{b} = \frac{M_{4}}{L} - \frac{M_{3}}{p} = \frac{1}{p} \left(\frac{p}{L} M_{4} - M_{3} \right) \quad . \quad (19a)$$

$$\frac{dS_{b}}{dx} = \frac{W_{4}}{L} - \frac{W_{3}}{p} = \frac{1}{p} \left(\frac{p}{L} W_{4} - W_{3} \right) \quad . \quad (20a)$$

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{\hat{W}_3}{p} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \quad . \quad (20a)$$

Illustrative Problem.—A single track through girder bridge with a floor system consisting of stringers and floorbeams, both end and intermediate, has six panels of 20 feet each. Find the maximum end reaction and the shear in panels 0 - 1, 1 - 2, and 2 - 3, using Cooper's E50 loading.

Solution.—For maximum end reaction place wheel 2 at left end. Use formula

$$R_{1} = \frac{M_{3} - M_{1}}{L} - W_{1} \qquad (9)$$

$$R_{1} = \frac{27651 - 100}{120} - 12.5 = 217.1^{k}$$

Note that the above value agrees with Table 7.

For maximum shear in panel 0-1, find critical wheel by formula (18) and then compute shear by formula (17).

Try wheel 3 at panel point 1.

$$\frac{dS_a}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) + 0 - 37.5 \right) = +$$

$$\frac{dS_a}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) - 0 - 62.5 \right) = -$$
Maximum.

Note that the position of loading agrees with Table 3. For this position of loading formula (17) gives

$$S_a = \frac{1}{20} \left(\frac{1}{6} (21895) + 0 - 287.5 \right) = 168.1^k.$$

For maximum shears in the intermediate panels, determine the position of loading by formula (20a) and the shear by formula (19a).

$$\frac{dS_b}{dx} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \quad . \quad . \quad . \quad . \quad (20a)$$

$$S_b = \frac{1}{p} \left(\frac{p}{L} M_4 - M_3 \right)$$
 (19a)

Panel 1-2. Try wheel 3 at panel point 2.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (306.25) - 37.5 \right) = +$$

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (322.50) - 62.5 \right) = -$$

$$S_b = \frac{1}{20} \left(\frac{1}{6} (15051.25) - 287.5 \right) = 111.0^k.$$

Panel 2-3. Try wheel 3 at panel point 3.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 37.5 \right) = +$$

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 62.5 \right) = -$$

$$S_b = \frac{1}{20} \left(\frac{1}{6} (9345) - 287.5 \right) = 63.5^k.$$
Maximum.

The above values for shears agree with the values given by Table 9. The wheel for maximum shear in panels of girder and truss bridges is given in Table 6.

ARTICLE VII.

THROUGH PRATT TRUSS. GENERAL FORMULAS FOR LIVE-LOAD STRESSES AND THEIR RATE OF VARIATION. ILLUSTRATIVE PROBLEMS.

The general formulas $S = \Sigma CM$ and $\frac{dS}{dx} = \Sigma CW$ may

be used to write the equations for the live-load stresses in any member of a framed structure as soon as its influence

line has been drawn and the ordinates at the salient points determined.

In Figs. 7, 8, 9, and 10 are shown all the influence lines

needed in writing the formulas for the live-load stresses in a through Pratt truss with non-parallel or parallel chords. The influence ordinate at any salient point is the calculated stress due to a one-pound load on the bridge at the panel point above this salient point. By easily discovered relations between similar triangles, the algebraic value of each stress, or influence ordinate, is expressed in terms that are most readily evaluated in any numerical problem.

The derivation of any one formula for a live-load stress is typical. Refer to Fig. 7. The stress in the lower chord member S_5 is found by taking moments about C. The influence line for S_5 is straight over each of the two intervals kp and mp. The ordinates at the salient points 1 and 4 are zero. The ordinate at salient point 3 must be found by placing a one-pound load at the lower panel point of the truss above this salient point and calculating the value of S_5 . For the unit load so placed,

Reaction at
$$A = \frac{kp}{np} = \frac{k}{n}$$

By moments about C,

$$\frac{k}{n}(mp) = S_5(v)$$

Therefore,

$$S_5 = + \frac{mkp}{nv}$$
 = Influence ordinate at 3.

The slopes of the segments of this influence line follow.

Slope of
$$ab = -\frac{mkp}{nv} \div mp = -\frac{k}{nv}$$

Slope of
$$bc = + \frac{mkp}{nv} \div kp = + \frac{m}{nv}$$

The coefficients C for use in the general formula $S = \Sigma CM$ are now found.

$$C_1 = 0 + \frac{k}{nv} = + \frac{k}{nv}$$

$$C_3 = -\frac{k}{nv} - \frac{m}{nv} = -\frac{1}{v}$$

$$C_4 = \frac{m}{nv} - 0 = +\frac{m}{nv}$$

Therefore, for the position of the live load advanced beyond the limits of the span, the general formula for S_5 is

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 + \left(\frac{k}{nv}\right) M_1.$$

However, in actual practice it is usually not necessary to advance the loading beyond the left end of the span in order to get a maximum value of S_5 . The usual formula will therefore not contain the term M_1 , since this will be zero; thus,

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad . \quad (21)$$

Inasmuch as the horizontal component of the stress S_{ϵ} in an inclined top chord member or end post equals the stress S_{ϵ} in a corresponding lower chord member, the stress S_{ϵ} in any top chord member or end post may be found by

$$S_6 = \frac{i}{p} \cdot S_5 \quad \dots \quad (22)$$

In Fig. 8 is shown the influence line for the stress S_4 in any vertical post. The influence ordinates are determined by taking moments about the intersection of the upper and lower chord members which are cut by the section. The algebraic values of these ordinates are transformed by use of easily discovered relations between similar triangles. The slopes and coefficients are then calculated in the usual way. The influence line indicates that the live load should advance into but not beyond the panel p for a maximum compression, and for this reason M_1 and M_2 equal zero for the usual case. The numerical value of

the maximum compression S₄ in a vertical post is, therefore,

$$S_4 = \left(\frac{a}{bL}\right)M_4 - \left(\frac{1}{p}\right)M_3 \quad . \quad . \quad . \quad (23)$$

The coefficients for the stress in any inclined web member are given by Fig. 9. The quantities for S_1 and S_2 are

Fig. 8.

as shown, and the quantities for S_3 are of the same algebraic form except that they are of opposite sign throughout. For the usual position of the live load advanced from the right into but not beyond the panel p for maximum stress, the moment sums M_1 and M_2 equal zero, and the numerical values of the maximum tension S_1 and S_2 and of the maximum compression S_3 are given by the following formula:

$$S_1, S_2, \text{ or } S_3 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3 \quad . \quad . \quad (24)$$

In a special case where the loading must be advanced beyond the panel p until the tension in the inclined counterweb member S_2 is balanced by the dead-load compression

Fig. 9.

in this same member, the value of M_2 is not zero, and the formula for S_2 becomes

$$S_{2} = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{3} + \left(\frac{t}{cp}\right)M_{2}$$
Or, letting $M_{c} = \left(M_{3} - \frac{b}{c}M_{2}\right)$,
$$S_{2} = \left(\frac{ta}{cbL}\right)M_{4} - \frac{t}{bp}\left(M_{3} - \frac{b}{c}M_{2}\right) = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{c}$$
(25)

Note that the coefficients of M_4 and M_c in this formula are the same as the coefficients for M_4 and M_3 in formula (24).

The influence line for the counter-tension in a vertical post is shown in Fig. 10. For the usual case, the loading advances beyond the panel but not beyond the end of the span. Therefore M_1 is equal to zero, so that

Fig. 10.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_o . . (26)$$

where K and M_o stand for the corresponding terms in the parentheses. In order that T be a maximum the live load must advance beyond the position for the maximum tension S_2 until the tension as computed by formula (25) becomes equal to the dead-load compression in this same member. For this position of the live load, the value of T is then computed by using formula (26). It may be noted that

some specifications state that only $\frac{2}{3}$ of the dead-load compression is to be counted as effective in counteracting the live-load tension in an inclined counter-web member. This specification has been observed in the problem to follow.

A review of the preceding formulas shows that all the live-load stresses may be computed by formulas (21), (22), (23), and (24), except the counter-tension in a vertical post and the tension in a floor-beam hanger. Formula (25) makes it possible to find readily by trial the position of loading for maximum counter-tension in a vertical post, and formula (26) gives the value of this tension. The maximum tension in the floor-beam hanger may be found by the use of formulas (14a) and (15a) for pier reaction between equal spans.

If the chords of the Pratt truss are parallel, there will be no counter-tension in any vertical post. Formula (21) for the stress in a horizontal chord member and formula (22) for the stress in the inclined end post remain unchanged. Formulas (23) and (24) for web stresses are simplified because a = b = depth of truss.

The formulas, therefore, for the Pratt truss with parallel chords are:

Stress in horizontal chord members =

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad . \quad (21)$$

Stress in inclined end post =
$$S_6 = \frac{i}{p} S_5$$
 (22)

Stress in vertical post =
$$S_4 = \left(\frac{1}{L}\right)M_4 - \left(\frac{1}{p}\right)M_3$$
. (29)

Stress in inclined web member =

$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_3 = \frac{t}{c}S_4 \dots$$
 (30)

One general formula will suffice for finding the position of loading for maximum chord and web stresses of a Pratt truss with either inclined or parallel chords. The formulas (21), (23), (24), (29), and (30) for these stresses are of one general form

$$S = (G) M_4 - (H) M_3 \dots (27)$$

where G and H are the corresponding coefficients of M_4

Fig. 11.

and M_3 in the preceding formulas. The rate of variation of S as the load advances is

$$\frac{dS}{dx} = GW_4 - HW_3 = H\left(\frac{G}{H}W_4 - W_3\right) . . (28)$$

When any one of the above stresses is a maximum, the value of $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero as a wheel is shifted from right to left of the salient point 3 in Figs. 7, 8, or 9.

The preceding formulas for the live-load stresses are summarized for convenient reference in Art. 11 preceding the Tables. The important dimensions and quantities in Figs. 7, 8, and 9 are summarized in Fig. 11. If a uniform live load is used, the shaded areas in Fig. 11a, b and c multiplied by the intensity of the uniform load will give the maximum live-load stresses. The algebraic value of any one of these triangular areas is conveniently expressed as the base of the triangle times ½ of the given algebraic ordinate. The lengths of the bases of the shaded areas in Figs. 11a and b may be readily determined by one of the constructions shown in Figs. 12a and 12b, which give the position of the unit load for zero stress in the members indicated. The proofs that these constructions locate neutral points are not given, for they are generally known, and are proved in numerous texts on bridges. (See Marburg's "Framed Structures and Girders," Vol. I, page 392.)

The application of the preceding formulas will now be made to the calculation of the live-load stresses in the two single track through Pratt trusses shown in Figs. 13 and 14. A convenient procedure is as follows:

- 1. Determine the lengths of all inclined members and write their values on the truss outline.
- 2. Determine the values of the intercepts a as defined by Fig. 11 and write their values on the truss outline.
- 3. Write on the truss outline the distances of the several panel points from the right end of the span.
- 4. Write down the reciprocals of the span, panel length, and lengths of vertical members.
- 5. Make a form for tabulating calculations and list members in some convenient form as is done in Figs. 13 and 14.
- 6. Calculate the numerical values of the coefficients G and H for the several members by use of the formulas already derived.
 - 7. Determine the position of the loading for maximum

stress by finding the position of loading causing $\left(\frac{G}{H}W_4 - W_3\right)$

to pass through zero, and for this position of loading select from Table 2 the corresponding values of M_4 and M_{3*} . At

the same time tabulate the length L_1 of loading causing maximum stress as this value is used in the impact formula

$$I = S \cdot \frac{300}{L_1 + 300}.$$

8. Calculate values of $S = GM_4 - HM_3$ and combine with impact and dead-load stresses. When the dead- and live-load stresses are of opposite sign, the combination is usually not algebraic but according to the particular specification that is used.

Fig. 13.

Mem.	G	Н	Wheel	M_4	M ₃	GM ₄	HM3	S	Lı	300 L ₁ +300	I	DL	Total K
EF ED GH GF IJ IH JK ML NO AC = AD BC AF BE AH BG BI CD	.00481 .00405 .00500 .00480 .00580 .00580 .00777 .01030 .00390 .00695 	.0442 .0385 .0450 .0385 .0466 .0466 .0493 .0496 .0312 .0263		46255 21531 33970 12940 23375 12940 6550 2307 63111 59095 59661	287 100 287 100 287 100 100 100 600 2694 7310 	223 87 170 62 136 75 51 24 247 410 587 670	11 13 4 13 4 13 5 5 5 5 75 192 252 46	-116 +210 - 83 +157 - 58 +123 + 70 + 46 - 19 +228 -362 +335 -339 +395 -418 + 98	169 112 143 86 117 86 60 34 200 193 194	.640 .728 .677 .777 .719 .777 .833 .898 .600 .608	$\begin{array}{c} -78 \\ +134 \\ -60 \\ +106 \\ -45 \\ +88 \\ +54 \\ +38 \\ -17 \\ \end{array}$ $\begin{array}{c} +137 \\ -217 \\ +203 \\ -206 \\ +239 \\ +240 \\ -262 \\ +86 \end{array}$	- 40 + 83 - 15 + 48 + 7 + 21 - 50 + 83 +101 -160 +154 -181 -181 -194 + 25	+427 -158 +311 +232 No counter +466 -739 +692 -701 +815 -817 -874
Post at 5	Mem. JK ML	M ₄ 22261 8865	Me 2390 687			. 00203 . 00214) +23		300 L ₁ +300 .725 .8	1 +17 +10	D.L. +3 +1	Total + 43 + 24

9. Find positions of loading for maximum counter-tensions in posts and compute values by use of formulas (25) and (26).

PROBLEM 1.

Calculation of Live-load Stresses in a Pratt Truss with Inclined Chord.

The complete data for this problem are given in Fig. 13. Items 1 to 5 of the above method of procedure need no explanation. The values of the coefficients G and H, the position of the loading for maximum stress, and the value of the maximum stress will be determined for several typical members; for example, vertical post, inclined web members, horizontal chords, end post, and inclined chords.

Vertical Post EF.

Formula

$$S_4 = \left(\frac{a}{bL}\right) M_4 - \left(\frac{1}{p}\right) M_3 \dots \dots (23)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{a}{bL} = \frac{28}{36} (.00480) = .00373$$

 $H = \frac{1}{p} = .0385$

Try w_3 at panel point 3. Use Table 2. $L_1 = 143'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00373}{.03850} (440.0) - \frac{37.5}{62.5} + \frac{+}{62.5}$$

Therefore w_3 at 3 gives a maximum.

$$S = GM_4 - HM_3 = .00373(33970) - .0385(287.5)$$

$$= 126.7 - 11.0 = 115.7^k$$
Impact factor = $\frac{300}{L_1 + 300} = \frac{300}{443} = .677$
Impact stress = .677 × 115.7 = 78.3^k.

Inclined Web Member ED.

Formula

$$S_1 = \left(\frac{ta}{cbL}\right) M_4 - \left(\frac{t}{bp}\right) M_3 \quad . \quad . \quad . \quad (24)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{41.23 \times 28}{32 \times 36} (.00480) = .00481$$

$$H = \frac{t}{bp} = \frac{41.23}{36} (.0385) = .0442$$

Try w_3 at panel point 2. Use Table 2. $L_1 = 169'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00481}{.0442}(505.0) - \frac{37.5}{\text{or}} = \frac{+}{62.5}$$

Therefore w_3 at 2 gives a maximum.

$$S = GM_4 - HM_3 = .00481(46255) - .0442(287.5)$$

= 223 - 13 = 210^k.

Impact factor =
$$\frac{300}{469}$$
 = .640

Impact stress = $.640 \times 210 = 134^k$.

Inclined Web Member ML.

Formula

Refer to Fig. 9 or Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{46.04 \times 48}{38 \times 36} (.00480) = .00777$$

$$H = \frac{t}{bp} = \frac{46.04}{36} (.0385) = .0493$$

Try w_2 at panel point 6. Use Table 2. $L_1 = 60'$.

$$\left(\frac{G}{H} W_4 - W_3\right) = \frac{.00777}{.0493} (190) - \frac{12.5}{0000} + \frac{1}{37.5} - \frac{1}{37.5}$$

Therefore w_2 at 6 gives a maximum.

$$S = GM_4 - HM_3 = .00777(6550) - .0493(100)$$

= $51 - 5 = 46^k$.
Impact factor = $\frac{300}{360} = .833$
Impact stress = $.833 \times 46 = 38^k$.

Lower Chord Member AC = AD.

Formula $S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad . \quad (21)$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{m}{nv} = \frac{1}{8} (.03125) = .00390$$

 $H = \frac{1}{v} = .0312$

Try w_4 at panel point 1. Use Table 2. $L_1 = 200'$.

Therefore w_4 at 1 gives a maximum.

$$S = GM_4 - HM_3 = .00390(63111) - .0312(600)$$

= $247 - 19 = 228^k$.
Impact factor = $\frac{300}{500} = .600$

Impact stress = $.600 \times 228 = 137^k$.

End of Post BC.

Formula $S_6 = \frac{i}{p} S_5 \dots \dots (22)$

$$S_6 = \frac{41.23}{26} (228) = 362^k$$
, and impact $= \frac{41.23}{26} (137) = 217^k$.

Lower Chord Member AH.

Formula
$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad (21)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{m}{nv} = \frac{3}{8} (.02632) = .00985$$

 $H = \frac{1}{v} = .0263$

Try w_{11} at panel point 3. Use Table 2. $L_1 = 194'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00985}{.0263}(567.5) - \frac{190}{or} = 0$$

Therefore w_{11} at 3 gives a maximum.

$$S = GM_4 - HM_3 = .00985(59661) - .0263(7310)$$

= $587 - 192 = 395^k$.
Impact stress = $\frac{300}{494} S = .607 \times 395 = 239^k$.

Top Chord Member BG.

Formula

$$S_{6} = \frac{i}{p} S_{5} \dots \dots \dots (22)$$

$$S_{6} = \frac{26.08}{26} (395) = 396^{k}.$$

$$Impact = \frac{26.08}{26} (239) = 240^{k}.$$

Counter-Tension in Post at Panel Point 5.

Formulas

$$S_{2} = \text{Stress } JK = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)\left(M_{3} - \frac{b}{c}M_{2}\right)$$
$$= \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{c} \quad . \quad . \quad . \quad (25)$$

T = tension in post. $= \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_0 \quad (26)$

Refer to Fig. 10 for definition of dimensions.

The calculation of the dead-load compression in JK is

not given, but the value is 21^k . Two-thirds of this compression, or 14^k , will be considered effective in counterbalancing the live-load tension in JK. The live load must be advanced beyond the position of maximum live-load tension in JK (i.e., w_2 at panel point 5) until S_2 , or the stress in JK, equals 14^k . This must be done by trial, S_2 being figured each time by formula (25). It is found that when 114' of loading has advanced upon the bridge, this condition is approximately satisfied. For this position of loading

$$M_4 = 22261$$

 $M_c = \left(M_3 - \frac{b}{c}M_2\right) = (2565 - 175) = 2390$
 $G = \left(\frac{ta}{cbL}\right) = \frac{46.04 \times 38}{38 \times 38} (.00480) = .00580$
 $H = \left(\frac{t}{bp}\right) = \frac{46.04}{38} (.0385) = .0466$

Therefore,

$$S_2 = .00580(22261) - .0466(2390) = 16^k.$$

This value of $S_2 = 16^k$ balances $\frac{2}{3}$ $D = -14^k$, nearly enough for practical purposes. Therefore, compute T for this position of the live load.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n}M_4 - M_3\right) = K \cdot M_o$$

$$K = \frac{2 - 0}{38 \times 26} = .00203$$

$$M_o = \frac{5}{8} (22261) - 2565 = 11340$$

$$T = .00203(11340) = 23^k$$
Impact factor = $\frac{300}{414} = .725$
Impact stress for $T = .725 \times 23 = 17^k$.

PROBLEM 2.

Live-load Stresses in a Pratt Truss with Parallel Chords.

The complete data for this problem are given in Fig. 14. Formulas (21), (29), and (30) give the values of the

coefficients G and H, which are identical for several members of any Pratt truss with parallel chords. The procedure for finding the positions of the loading and maximum stresses is exactly as in Problem 1. It should be noted that

Stress
$$FG = \text{Stress } EF \times \frac{37.54}{28}$$

"
 $HI = \text{"} GH \times \frac{37.54}{28}$

"
 $BC = \text{"} AC \times \frac{37.54}{25}$

Mem.	G H		Wheel	M4	Мз	S	
CD	. 0400	.0800	4 @ 1	3564	600	95	
EF	. 00667	.0400	3 " 3	13520	287	79	
$_{ m GH}^{ m FG}$.00667	.0400	2 " 4	6170	100	106	
HI						50	
$_{ m DE}^{ m JK}$.00894	. 0536 . 0536	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2179 \\ 21895$	$ \begin{array}{c c} 100 \\ 287 \end{array} $	14 181	
\overline{BC}						272	
AC = AD AF = BE	.00595	. 0357 . 0357	4 " 1 7 " 2	$33970 \\ 31375$	$\frac{600}{2694}$	$\frac{181}{278}$	
BG	.01785	.0357	12 " 3	34411	8385	314	

The stresses in all of the chord members may be checked by use of Table 8, and the stresses in the end post and web members may be checked by Table 9. The stress in *CD* agrees with the maximum pier reaction in Table 7. Table 3 may be used to find the position of loading for maximum chord stresses, and Table 6 gives position of loading for maximum web stresses.

ARTICLE VIII.

THREE-HINGED ARCH. APPLICATION OF THE GENERAL METHOD
TO THE CALCULATION OF LIVE-LOAD STRESSES.

The general formulas $\frac{dS}{dx} = \Sigma CW$ and $S = \Sigma CM$ may be used directly to find the position of loading and the

Fig 15.

value of the maximum live-load stress in any member of a framed structure as soon as the influence line for this member and the ordinates at all salient points have been determined. This method is applied to the calculation of maximum live-load stresses for the three-hinged arch shown in Fig. 15. Cooper's E40 loading is used.

First are drawn the influence lines for the horizontal and vertical components of the reaction at the left hinge. The vertical component V_1 is the same as for a simple span L. The horizontal component H_1 equals the bending moment at the centre of the span L divided by the depth h. The influence-line ordinates for all members are now found by drawing five Maxwell diagrams, one of which is reproduced in Fig. 16. From the influence lines for V_1 and H_1 , the value of V_1 is .8889 and H_1 is .2187 for a one-pound load at U_1 . The external loads acting on the left half of the arch are then as shown in Fig. 16a. The load line axbcya in Fig. 16b is drawn to a scale of 10'' = 1 pound, and the Maxwell diagram completed in the usual way. The scaled

TABLE A

INFLUENCE-LINE ORDINATES FOR THREE-HINGED ARCH

Members	Ordinates							
	1 lb. at U1	1 lb. at U2	1_lb. at Us	1 lb. at U4	1 lb. at U'4			
$U_0U_1 = \dots U_1U_2 = \dots U_2U_3 = \dots U_2U_3 = \dots U_2U_4 = \dots U_0L_1 = \dots U_0L_1 = \dots U_0L_0 = \dots U_0L_0 = \dots U_0L_0 = \dots U_0L_1 = \dots U_0L_0 = \dots U_0L_1 = \dots U_0L_2 = \dots U_0L_2 = \dots U_0L_2 = \dots U_0L_2 = \dots U_0L_3 = \dots U_0L_3 = \dots U_0L_3 = \dots U_0L_4 = $	403 417 378 171 295 + .221 + .217 + .164 048 692 -1.014 + .022 + .075 + .114	223 833 756 342 590 264 + .434 + .328 096 384 632 955 + .150 + .226	045 286 -1.135 513 885 740 408 + .491 145 075 253 490 775 + .342	+ .130 + .262 + .189 685 -1.180 -1.224 -1.248 -1.086 193 + .234 + .129 043 317 545	+ .201 + .477 + .757 + .548 -1.182 -1.302 -1.484 -1.674 -1.420 + .345 + .287 + .165 076 364			
$U_0L_1 = \dots $ $U_1L_2 = \dots $ $U_2L_3 = \dots$	+ .800 + .019 044	+ .441 + .878 088	+ .085 + .350 + .986	270 180 + .086	400 398 324			
$U_3L_4 = \dots $ $U_4L_5 = \dots$ $H \dots$	$ \begin{array}{r}221 \\206 \\ 0.2187 \end{array} $	$ \begin{array}{r}442 \\412 \\ 0.4375 \end{array} $	$-0.662 \\ -0.617 \\ 0.6562$	$+ .928 \\823 \\ 0.8750$	$^{+0.224}_{+0.657}$			
$V \dots Q$	0.8889 14°	0.7777 29°	0.6666 44°	0.5555 58°	0.4444 63°			

values of these stresses are the influence ordinates for a one pound load at U_1 . In an exactly similar way the influence ordinates for a unit load at U_2 , U_3 , U_4 , and U'_4 are determined. The influence lines are straight from U'_0 to

 U'_4 . Table A gives the influence ordinates for all members and also for the horizontal and vertical components of the reaction at the left hinge. The angle θ is the inclination of this reaction with the vertical.

The calculation of the live-load stresses in any one member is typical. The member U_3L_4 is taken. The influence line for this member is drawn to scale in Fig. 15 by use of the influence ordinates from Table A. The salient points occur below panel points U_3 , U_4 , and U'_4 . The distance

from U_3 to the neutral point 0 equals $\frac{.662}{.662 + .928}$ (21) = 8'.8.

Calculation of Slopes.

Slope of
$$df = 0$$

$$fg = \frac{0 - (-.662)}{68} = +.0105$$

$$gh = \frac{-.662 - (.928)}{21} = -.0758$$

$$hk = \frac{.928 - (.224)}{21} = +.0336$$

$$km = \frac{.224 - 0}{84} = +.0027$$

$$mn = 0$$

Calculation of Coefficients.

$$C_1 = 0 - (.0105) = -.0105$$

 $C_2 = .0105 - (-.0758) = +.0863$
 $C_3 = -.0758 - (.0336) = -.1094$
 $C_4 = .0336 - (.0027) = +.0309$
 $C_5 = .0027 - 0 = +.0027$

The sum of these coefficients equals zero. This agrees with formula (6) of Art. 3.

It should be remembered, as is pointed out in Art. 3, that the value of these coefficients may be measured graphically. For example, in Fig. 15 the value of C_2 is $\frac{2.59}{30} = .0863$.

By use of the formula $\frac{dS}{dx} = \Sigma CW$ and Rule 1 of Art.

3, the position of loading for maximum tension in U_3L_4 may now be determined. Try wheel 3 at U_4 with the loading advancing toward the left. Take the values of the load sums and moment sums for E40 from Table 2.

$$\frac{dS}{dx} = \Sigma CW = -.1094(30) +.309(103) +.0027(302) = +.7$$

$$\frac{dS}{dx} = \Sigma CW = -.1094(50) +.309(103) +.0027(302) = -.7$$

Therefore w_3 at U_4 gives a maximum tension in U_3L_4 , and its value is

$$S = \Sigma CM = -.1094(230) + .309(1846) + .0027(19001) = 83^{k}.$$

By use of the formula
$$\frac{dS}{dx} = \Sigma CW$$
 and Rule 2 of Art. 3,

the position of loading for maximum compression in U_3L_4 is now determined. Try wheel 2 at U_3 with the loading advancing toward the right. Note that the signs of the coefficients remain unchanged. Take the values of the load sums and moment sums for E40 from Table 2.

$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(10) = -1.3$$

$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(30) = +0.6$$

Therefore w_2 at U_3 gives a maximum negative stress, or compression, in U_3L_4 , and its value is

$$S = \Sigma CM = -.0105(7092) + .0863(80) = -.67^{k}.$$

The above values of 83^k and 67^k for maximum tension and compression in U_3L_4 may be checked by use of formula $S = qA_z$ (2), the values of q being taken from Table 16.

Tension U₃L₄ by Equivalent Uniform Load.

The area of the tension part of the influence line equals

$$A_z = 27.2$$

The influence line *ohkm* is not triangular, but a triangular influence line with intervals $l_1 = 10$ ft. and $l_2 = 45$ ft. approximates its shape closely enough for the selection of an equivalent uniform load. For $l_1 = 10'$ and $l_2 = 45'$, Table 16 gives 3.080^k as the equivalent uniform load.

Therefore,

$$S = qA_z = (3.080) (27.2) = 84^k.$$

This value checks very closely that obtained by the exact method.

Compression U_3L_4 by Equivalent Uniform Load.

Choose from Table 16 the equivalent uniform load for $l_1 = 10$ ft. and $l_2 = 65$ ft. From the influence line $A_z = 23.7$.

Therefore,

$$S = qA_z = (2.870) (23.7) = 68^k$$
.

This checks closely the value obtained by the exact method.

Calculation of other members of this arch and of some more complicated framed structures shows a close agreement between the two preceding methods. The latter method is the simpler when a table of equivalent uniform loads has been made, especially in the case of the more complex influence lines for members of swing bridges, two-hinged arches, arch ribs, etc. The method of calculating a table of equivalent uniform loads will be explained in the following article.

ARTICLE IX.

EQUIVALENT UNIFORM LOADS.

An equivalent uniform load is one which gives the same stress as does a loading which is not uniform. For any given standard loading, the equivalent uniform load is different for stresses whose influence lines differ. forms of influence lines are innumerable, a table of exact equivalent uniform loads for all stresses is impracticable. A table of equivalent uniform loads, however, for stresses whose influence lines are triangular may be used with little error in selecting equivalent uniform loads for stresses whose influence lines are not triangular. It is, therefore, sufficient for practical purposes to make tables of equivalent uniform loads for a series of triangular influence lines. It may be shown that the equivalent uniform load for any triangular influence line is dependent entirely upon the intervals l_1 and l_2 , and is independent of the ordinate h at the apex of the influence line. Consider the triangular influence line in Fig. 1b to be for any stress S. Let the ordinate below C be any value h. If q equals the equivalent uniform load covering l_1 and l_2 ,

$$S = qA_z$$
, or $q = \frac{S}{A_z}$ (A)

The area of this influence line is

$$A_z = \frac{h}{2} (l_1 + l_2) = \frac{h}{2} L \dots (B)$$

Furthermore, if the concentrated live loads have been placed so as to give the maximum pier reaction between two spans l_1 and l_2 , this same position of loading will give maximum S, if the influence line for S is a triangle with the

same intervals l_1 and l_2 . Since the influence ordinates for S are related to the influence ordinates for R as h is to unity,

$$\frac{S}{R} = \frac{h}{1.00}$$

Or

$$S = hR \qquad \dots \qquad (C)$$

Substituting the values of A_z and S from equations (B) and (C) in equation (A),

$$q = hR \div \frac{h}{2}L = \frac{2R}{L} \quad . \quad . \quad . \quad (D)$$

It appears, therefore, that q is independent of h. From formula (16) of Art. 5,

$$R = \frac{L}{l_1 l_2} M \quad . \quad . \quad . \quad . \quad . \quad . \quad (16)$$

Substituting for R in equation (D),

$$q = \frac{2R}{L} = \frac{2M}{l_1 \, l_2} \quad . \quad . \quad . \quad . \quad . \quad (31)$$

The term M is the bending moment in the span $L = l_1 + l_2$ at the point where the intervals are l_1 and l_2 .

Tables (10) to (18) inclusive have been calculated for the positions of the live load given by Table 3. The values of M were first found, then the values of R, and finally the values of the equivalent uniform loads. The three formulas that were used in succession are

$$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \quad . \quad . \quad . \quad (10)$$

An example of the use of equivalent uniform loads has already been given in Art. 8. The general formula $S=qA_z$ may be used in any case. For the special cases of bending moment in a beam and pier reaction between two simple spans, formula (31) gives

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_1 + l_2}{2}\right). \quad . \quad . \quad . \quad (33)$$

The quantities in the parentheses are the areas of the influence lines for M and R respectively.

ARTICLE X.

METHOD OF CALCULATING TABLE OF LOAD SUMS FOR ANY STANDARD LOADING. ILLUSTRATIVE EXAMPLE.

The definitions of moment sum and load sum are given at the beginning of Art. 2. It is at once evident that a table of load sums may be computed by adding the successive loads. It may be shown that the table of moment sums may also be calculated by the process of addition.

From formula (5a) of Art. 2,

$$C_a W_a = C_a \frac{dM_a}{dx}$$

Or

$$dM_a = W_a \cdot dx.$$

Expressed in words, the increase in the moment sum for an increase dx in the distance of the centre of moments from wheel 1 equals the load sum times dx. If the load sum is constant for an interval dx = 1 foot, as between concentrated loads, the increase of the moment sum for dx = 1 foot equals the corresponding load sum. If the load sum is not constant, but uniformly increasing, as when the centre of moments lies within the uniform load, the increase of the moment sum for dx = 1 foot equals the average value of the load sum for this one foot interval. The application of the foregoing principles is made clear by the following example.

Example.—Give explicit directions for the calculation of a table of load sums and moment sums at intervals of 1 foot from 0' to 400' for Cooper's E40 loading.

Solution.—Calculate the table of load sums by adding

the loads one by one, taking a sub-total for each addition. Thus, the following numbers are added:

If the final total checks $284 + 391 \times 2 = 866$, the table of load sums is correct.

Assume now that the table of load sums for E40 has been completed. The table of moment sums may now be found as directed below. The following numbers are to be added one by one, taking a sub-total for each addition:

8 - 10's5 - 30's 5 - 50's-70's-90's-103's-116's -129's -142's -152's -172's -192's -212's -232's -245's -258's -271's -284's -285 -287 289

and all odd numbers up to 865.

If the final total checks up 183,689, which is figured independently, the table of moment sums is correct.

The preceding additions may be made most satisfactorily on a recording adding machine. Table 2 was calculated in this way.

It will be noted that the table of load sums serves as a table of differences for the table of moment sums.

ARTICLE XI.

SUMMARY OF FORMULAS.

DOMINITAL OF FORMOLIS.
Art. 1.
$Z = \Sigma wz$
$Z = qA_z $
$Z = w \Sigma z \qquad (3)$
$Z = z\Sigma w = zW \dots $
Art. 2.
$Z = \Sigma w_n z_n = C_a \Sigma w_n x_n = C_a M_a \dots \dots (5)$
$\frac{dZ}{dx} = C_a W_a = \frac{d \left(C_a M_a \right)}{dx} = \frac{C_a dM_a}{dx} . . (5a)$
$\frac{dx}{dx} = \frac{C_a W_a}{dx} = \frac{1}{dx} \dots \dots$
Art. 3.
$\Sigma C = 0 $
$S = \Sigma CM \dots (7)$
dS
$\frac{dS}{dx} = \Sigma CW $
Art. 4. Girder Bridge without Panels.
End reactions.
$R_1 = \frac{M_3 - M_1}{L} - W_1 $
$R_2 = W_3 - \frac{M_3 - M_1}{L}$ (9a)
Bending moment for unequal segments l_1 and l_2 .
$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 . . . (10)$

Bending moment at centre. $l_1 = l_2 = \frac{L}{2}$

$$M = \frac{M_3 + M_1}{2} - M_2$$
 (10a)

$$\frac{dM}{dx} = \frac{W_3 + W_1}{2} - W_2 \quad . \quad . \quad . \quad . \quad (11a)$$

Shear at any section.

$$S = \frac{M_3 - M_1}{L} - W_2 \quad . \quad . \quad . \quad . \quad (12)$$

Location of centre of gravity of loading on span.

$$\overline{x} = \frac{M_3 - M_1 - LW_1}{W_3 - W_1} \qquad (13)$$

When $M_1 = 0$,

Art. 5. Pier Reaction.

For unequal spans l_1 and l_2 .

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right) (14)$$

$$\frac{dR}{dx} = \frac{W_3}{l_2} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right)$$
(15)

For equal spans l_1 and l_2 equal to l.

$$R = \frac{M_3 + M_1 - 2M_2}{l} \quad . \quad . \quad . \quad . \quad (14a)$$

$$\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l} \quad . \quad . \quad (15a)$$

Relation between R and M,

$$R = \frac{L}{l_1 l_2} M \qquad . \qquad . \qquad . \qquad (16)$$

Art. 6. Girder Bridge with Panels.

Shear in end panel; general case.

$$S_a = \frac{1}{L} M_3 + \frac{l_2}{l_1 L} M_1 - \frac{1}{l_1} M_2 = \frac{1}{l_1} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right) (17)$$

$$\frac{dS_a}{dx} = \frac{1}{L}W_3 + \frac{l_2}{l_1L}W_1 - \frac{1}{l_1}W_2 = \frac{1}{l_1}\left(\frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2\right)(18)$$

Shear in intermediate panel; general case.

$$S_b = \frac{M_4}{L} - \frac{M_3}{p} + \frac{M_2}{p} - \frac{M_1}{L} \quad . \quad . \quad (19)$$

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} + \frac{W_2}{p} - \frac{W_1}{L} \quad . \quad . \quad (20)$$

Shear in intermediate panel; usual case.

$$S = \frac{M_4}{L} - \frac{M_3}{p} = \frac{1}{p} \left(\frac{p}{L} M_4 - M_3 \right)$$
 (19a)

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \quad . \tag{20a}$$

Art. 7. Through Pratt Truss with Inclined Chord.

Stress in hanger. Use formulas (14a) and (15a). Stress in any horizontal chord member; usual case.

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad (21)$$

Compression in any inclined top chord member or end post; usual case.

$$S_6 = \left(\frac{i}{p}\right) S_5 \qquad \dots \qquad (22)$$

Compression in vertical post; usual case.

$$S_4 = \left(\frac{a}{bL}\right) M_4 - \left(\frac{1}{p}\right) M_3 \quad . \quad . \quad . \quad (23)$$

Stresses in inclined web members including counters; usual case.

$$S_1, S_2, S_3 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3 \quad . \quad . \quad (24)$$

Stress in inclined counter; special case of loading advanced beyond panel.

$$S_2 = \left(\frac{ta}{cbL}\right)M_4 - \frac{t}{bp}\left(M_3 - \frac{b}{c}M_2\right) = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_c \tag{25}$$

Counter-tension in vertical post; usual case.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_0 \quad . \quad . \quad (26)$$

Formulas (21), (23), and (24) are of the general form

$$S = GM_4 - HM_3 \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (27)$$

where the coefficients G and H may be tabulated thus:

$$\begin{array}{lll} \textit{Type of member} & ... & ... & ... & ... & ... & ... \\ \textit{Horizontal chord} & ... & ... & ... & ... & \frac{n}{nv} & & \frac{1}{v} \\ \textit{Vertical post} & ... & ... & ... & \frac{a}{bL} & & \frac{1}{p} \\ \textit{Inclined web member} & ... & ... & \frac{ta}{cbL} & & \frac{t}{bp} \end{array}$$

The rate of variation of S in formula (27) is

$$\frac{dS}{dx} = GW_4 - HW_3 = H(\frac{G}{H}W_4 - W_3) \quad . \quad . \quad (28)$$

When S in formulas (21), (23), or (24) is a maximum

$$\left(\frac{G}{H}W_4 - W_3\right)$$
 passes through zero.

Through Pratt Truss—Parallel Chords.

Stress in hanger,—use formulas (14a) and (15a)

Stress in horizontal chord =
$$S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_3$$
. (21)

" vertical post =
$$S_4 = \left(\frac{1}{L}\right) M_4 - \left(\frac{1}{p}\right) M_3$$
 . . (29)

" inclined web =
$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_3 = \frac{t}{c}S_4$$
 (30)

Stress in end post
$$= S_6 = -\frac{1}{p}S_5 \quad . \quad . \quad . \quad . \quad (22)$$

Formulas (21), (29), and (30) are of the general form

$$S = G \cdot M_4 - H \cdot M_3 \qquad . \qquad . \qquad . \qquad (27)$$

and their rate of variation is

$$\frac{dS}{dx} = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad . \quad (28)$$

G and H are the coefficients of M_4 and M_3 in equations (21), (29), and (30), respectively.

When S in formulas (21), (29), or (30) is a maximum, $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero.

Art. 9. Equivalent Uniform Loads.

$$q = \frac{2M}{l_1 l_2} = \frac{2R}{L} \dots \dots \dots (31)$$

$$M = q\left(\frac{l_1 l_2}{2}\right) \quad . \quad (32)$$

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_1 + l_2}{2}\right) \dots \dots (33)$$

INDEX TO TABLES

NO.	. I	AGE
	Five standard loadings	66
	Lengths, loads, load sums, and moment sums from 1 to 400 ft. for five standard loadings	67
3	Position of Cooper's loadings for maximum pier reaction between equal and unequal beam spans	88
	Position of Cooper's loadings for absolute maximum bending mo-	89
	ment in beam spans	
6	spans	89
	with equal panels	90
	Maximum moments, shears, and pier reactions for beam spans—Cooper's E40 and E50 loadings	91
8	Maximum moments at panel points of truss bridges—Cooper's E50 loading	94
Q	Maximum shears in panels of truss bridges. Cooper's E50 loading	97
	Maximum bending moments at 5-foot intervals of beams—Cooper's E40 loading	100
11	Maximum bending moments at 5-foot intervals of beams—Cooper's	
	E50 loading	102
	Maximum bending moments at 5-foot intervals of beams—Cooper's $E60$ loading	104
13	Maximum pier reactions for equal and unequal beam spans—Cooper's E40 loading	106
14	Maximum pier reactions for equal and unequal beam spans—	
1 ~	Cooper's E50 loading	108
19	Cooper's E60 loading	110
	Equivalent uniform loads—Cooper's E40 loading	112
	Equivalent uniform loads—Cooper's $E50$ loading	114
	Equivalent uniform loads—Cooper's $E60$ loading	116
19	Influence-line ordinates for bending moments at 5-foot intervals of beam spans	118
20	Reciprocals of influence-line ordinates for bending moments at 5-foot	
	intervals of beam spans	120
	Bending moments at 5-foot intervals of beam spans due to a unit	122

TABLE 1

STANDARD LOADINGS Loads given are for one rail.

COOPER'S E 40:

COOPER'S E 50:

COOPER'S E 60:

COMMON STANDARD-1904-PACIFIC SYSTEM

D. L. & W. R. R.:

TABLE 2

LOAD SUMS AND MOMENT SUMS FOR COOPER'S AND OTHER STANDARD LOADINGS

Note.—Load Sums and Moment Sums are given per rail in thousands of pounds and foot-pounds respectively.

Cooper's E40. 0'-50' Cooper's E40. 50'-100'

	OOI LII	5 13 10:	0 00							
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums	
0 1	w. 1	10	10	0 10 20	50 51				3780 3922 4064	
2		• •			52				4064	
3				30	53		• •		4206	
4				$\frac{40}{50}$	54 55		• •		4348 4490	
5 6			• • • •	60	56	w. 10	iò	152	4632	
7				70	57	w. 10			4784	
0	w. 2	$\dot{20}$	30	80	58				4936	
8				110	59		• •		5088	
Э		• •		110	00		• •		5000	
10	'			140	60				5240	
11				170	61				5392	
12				200	62				5544	
13	w. 3	20	50	230	63				5696	
14				280	64	w. 11	20	172	5848	
15				330	65				6020	
16				380	66				6192	
17				430	67				6364	
18	w. 4	20	70	480	68			:::	6536	
19				550	69	w. 12	20	192	6708	
20				620	70				6900	
21				690	71				7092	
$\frac{21}{22}$				760	72				7284	
$\frac{22}{23}$	w. 5	20	90	830	73				7476	
$\frac{24}{24}$				920	74	w. 13	20	212	7668	
25				1010	75				7880	
26				1100	76				8092	
27				1190	77				8304	
28				1280	78				8516	
29				1370	79	w. 14	20	232	8728	
30				1460	80				8960	
31				1550	81				9192	
32	w. 6	13	103	1640	82				9424	
33				1743	83				9656	
34				1846	84				9888	
35				1949	85				10120	
36				2052	86				10352	
37	w. 7	13	116	2155	87		::	0.45	10584	
38				2271	88	w. 15	13	245	10816	
39				2387	89				11061	
40				2503	90				11306	
41			:::	2619	91				11551	
$\frac{11}{42}$				2735	92				11796	
43	w. 8	13	129	2851	93	w. 16	13	258	12041	
44				2980	94				12299	
45				3109	95				12557	
46				3238	96				12815	
47				3367	97				13073	
48	w. 9	13	142	3496	98		- ::	071	13331	
49				3638	99	w. 17	13	271	13589	
50				3780	100				13860	
	1		1	1	11		1		1	

Cooper's E40. 100'-150' Cooper's E40. 150'-200'

Length	Wheel	Load	Load	Moment	Length	Load	Load	Moment
Length	111101		Sums	Sums			Sums	Sums
100 101 102 103 104 105 106 107 108 109	w. 18	13	284	13860 14131 14402 14673 14944 15228 15512 15796 16080 16364	150 151 152 153 154 155 156 157 158 159		366 368 370 372 374 376 378 380 382 384	29689 30056 30425 30796 31169 31544 31921 32300 32681 33064
110 111 112 113 114 115 116 117 118 119		ot	286 288 290 292 294 296 298 300 302 304	16649 16936 17225 17516 17809 18104 18401 18700 19001	160 161 162 163 164 165 166 167 168 169	ţ.	386 388 390 392 394 396 398 400 402 404	33449 33836 34225 34616 35009 35404 35801 36200 36601 37004
120 121 122 123 124 125 126 127 128 129		= 2,000 pounds per foot	306 308 310 312 314 316 318 320 322 324	19609 19916 20225 20536 20849 21164 21481 21800 22121 22444	170 171 172 173 174 175 176 177 178 179	= 2,000 pounds per foot	406 408 410 412 414 416 418 420 422 424	37409 37816 38225 38636 39049 39464 39881 40300 40721 41144
130 131 132 133 134 135 136 137 138 139		Uniform Load	326 328 330 332 334 336 338 340 342 344	22769 23096 23425 23756 24089 24424 24761 25100 25441 25784	180 181 182 183 184 185 186 187 188 189	Uniform Load	426 428 430 432 434 436 438 440 442 444	41569 41996 42425 42856 43289 43724 44161 44600 45041 45484
140 141 142 143 144 145 146 147 148 149 150			346 348 350 352 354 356 358 360 362 364 366	26129 26476 26825 27176 27529 27884 28241 28600 28961 29324 29689	190 191 192 193 194 195 196 197 198 199 200		446 448 450 452 454 456 458 460 462 464 466	45929 46376 46825 47276 47729 48184 48641 49100 49561 50024 50489

 $\frac{105761}{106424}$

Cooper's E40. 300'-350' Cooper's E40. 350'-400'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307 308 309		666 668 670 672 674 676 678 680 682 684	107089 107756 108425 109096 109769 110444 111121 111800 112481 113164	350 351 352 353 354 355 356 357 358 359		766 768 770 772 774 776 778 780 782 784	142889 143656 144425 145196 145969 146744 147521 148300 149081 149864
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328	A = 2,000 pounds per foot	686 688 690 692 694 696 698 700 702 704 706 708 710 712 714 716 718 720	113849 114536 115225 115916 116609 117304 118001 118700 119401 120104 120809 121516 122225 122936 123649 124364 125081 125800 126521	360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	1 = 2,000 pounds per foot	786 788 790 792 794 796 798 800 802 804 806 808 810 812 814 816 818 820 822	150649 151436 152225 153016 153809 154604 155401 156200 157001 157804 158609 159416 160225 161036 161849 162664 163481 164300 165121
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	Uniform Load	724 726 728 730 732 734 736 742 744 746 748 750 752 754 756 758 760 762 764 766	127244 127969 128696 129425 130156 130889 131624 132361 133100 133841 134584 135329 136076 136825 137576 138329 139084 139841 140600 141361 142124 142889	379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400	Uniform Load	824 826 828 830 832 834 836 838 840 842 844 846 848 850 852 854 856 858 860 862 864 866	165944 166769 167596 168425 169256 170089 170924 171761 172600 173441 174284 175129 175976 176825 177676 178529 179384 180241 181100 181961 182824 183689

Cooper's E50. 0'-50' Cooper's E50. 50'-100'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	12.50	12.50	00.00	50				4725.00
1				12.50	51				
$\frac{1}{2}$				25.00	52				4902.50
3				37.50	53		• • • • •		5080.00
									5257.50
4				50.00	54			: • • • • •	5435.00
5				62.50	55	- 10	10.50	100 00	5612.50
6		• • • • •		75.00	56	w. 10	12.50	190.00	5790.00
7	• • • •	05.00	07 50	87.50	57				5980.00
8	w. 2	25.00	37.50	100.00	58				6170.00
9	• • • •	• • • • •		137.50	59				6360.00
10				175.00	60				6550.00
11				212.50	61				6740.00
12				250.00	62				6930.00
13	w. 3	25.00	62.50	287.50	63				7120.00
14				350.00	64	w. 11	25.00	215.00	7310.00
15				412.50	65				7525.00
16				475.00	66				7740.00
17				537.50	67				7955.00
18	w. 4	25.00	87.50	600.00	68				8170.00
19				687.50	69	w. 12	25.00	240.00	8385.00
20				775.00	=0				
20				775.00	70				8625.00
21				862.50	71				8865.00
22		0,500	110 50	950.00	72				9105.00
23	w. 5	25.00	112.50	1037.50	73				9345.00
24				1150.00	74	w. 13	25.00	265.00	9585.00
25				1262.50	75				9850.00
26				1375.00	76				10115.00
27				1487.50	77				10380.00
28				1600.00	78				10645.00
29		• • • • •		1712.50	79	w. 14	25.00	290.00	10910.00
30				1825.00	80				11200.00
31				1937.50	81				11490.00
32	w. 6	16.25	128.75	2050.00	82				11780.00
33				2178.75	83				12070.00
34				2307.50	84				12360.00
35				2436.25	85				12650.00
36				2565.00	86				12940.00
37	w. 7	16.25	145.00	2693.75	87				13230.00
38				2838.75	88	w. 15	16.25	306.25	13520.00
39				2983.75	89				13826.25
40				3128.75	90				14132.50
41				3273.75	91				14132.30
42				3418.75	91				14745.00
42 43		16.25	161 25	3563.75		vv. 16	16.05	200 50	
	w. 8	16.25	161.25		93	w. 16	16.25	322.50	15051.25
44		• • • • •		3725.00	94				15373.75
45				3886.25	95		• • • • •		15696.25
46				4047.50	96				16018.75
47		10.05	177.50	4208.75	97				16341.25
48	w. 9	16.25		4370.00	98		10.05	000 77	16663.75
49				4547.50	99	w. 17	16.25	338.75	16986.25
50		• • • • •		4725.00	100				17325.00

Cooper's E50. 100'-150'

Cooper's E50. 150'-200'

	1					1	1	
Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100 101 102 103 104 105 106 107 108 109	w. 18	16.25	355.00	17325.00 17663.75 18002.50 18341.25 18680.00 19035.00 19390.00 19745.00 20100.00 20455.00	150 151 152 153 154 155 156 157 158 159		457.50 460.00 462.50 465.00 467.50 470.00 472.50 475.00 477.50 480.00	37111.25 37570.00 38031.25 38495.00 38961.25 39430.00 39901.25 40375.00 40851.25 41330.00
110 111 112 113 114 115 116 117 118 119		per foot	357.50 360.00 362.50 365.00 367.50 370.00 372.50 375.00 377.50 380.00	20811.25 21170.00 21531:25 21895.00 22261.25 22630.00 23001.25 23375.00 23751.25 24130.00	160 161 162 163 164 165 166 167 168 169	per foot	482.50 485.00 487.50 490.00 492.50 495.00 497.50 500.00 502.50 505.00	41811.25 42295.00 42781.25 43270.00 43761.25 44255.00 44751.25 45250.00 45751.25 46255.00
120 121 122 123 124 125 126 127 128 129		Load = $2,500$ pounds per foot	382.50 385.00 387.50 390.00 392.50 395.00 397.50 400.00 402.50 405.00	24511.25 24895.00 25281.25 25670.00 26061.25 26455.00 26851.25 27250.00 27651.25 28055.00	170 171 172 173 174 175 176 177 178 179	Load = $2,500$ pounds per foot	507.50 510.00 512.50 515.00 517.50 520.00 522.50 525.00 527.50 530.00	46761.25 47270.00 47781.25 48295.00 48811.25 49330.00 49851.25 50375.00 50901.25 51430.00
130 131 132 133 134 135 136 137 138 139		Uniform Load	407.50 410.00 412.50 415.00 417.50 420.00 422.50 425.00 427.50 430.00	28461.25 28870.00 29281.25 29695.00 30111.25 30530.00 30951.25 31375.00 31801.25 32230.00	180 181 182 183 184 185 186 187 188 189	Uniform	532.50 535.00 537.50 540.00 542.50 545.00 547.50 550.00 552.50 555.00	51961.25 52495.00 53031.25 53570.00 54111.25 54655.00 55201.25 55750.00 56301.25 56855.00
140 141 142 143 144 145 146 147 148 149 150			432.50 435.00 437.50 440.00 442.50 445.00 447.50 450.00 452.50 455.00 457.50	32661.25 33095.00 33531.25 33970.00 34411.00 34855.00 35301.25 35750.00 36201.25 36655.00 37111.25	190 191 192 193 194 195 196 197 198 199 200		557.50 560.00 562.50 565.00 567.50 570.00 572.50 575.00 577.50 580.00 582.50	57411.25 57970.00 58531.25 59095.00 59661.25 60230.00 60801.25 61375.00 61951.25 62530.00 63111.25

Cooper's E50. 200'-250' Cooper's E50. 250'-300

		(1		1	
Length	Load	Load Sums	Moment Sums	Length	Load	. Load Sums	Moment Sums
200 201 202 203 204 205 206 207 208 209		582.50 585.00 587.50 590.00 592.50 595.00 597.50 600.00 602.50 605.00	63111.25 63695.00 64281.25 64870.00 65461.25 66055.00 66651.25 67250.00 67851.25 68455.00	250 251 252 253 254 255 256 257 258 259		707.50 710.00 712.50 715.00 717.50 720.00 722.50 725.00 727.50 730.00	95361.25 96070.00 96781.25 97495.00 98211.25 98930.00 99651.25 100375.00 101101.25 101830.00
210 211 212 213 214 215 216 217 218 219	r foot	607.50 610.00 612.50 615.00 617.50 620.00 622.50 625.00 627.50 630.00	69061.25 69670.00 70281.25 70895.00 71511.25 72130.00 72751.25 73375.00 74001.25 74630.00	260 261 262 263 264 265 266 267 268 269	r foot	732.50 735.00 737.50 740.00 742.50 745.00 747.50 750.00 752.50 755.00	102561.25 103295.00 104031.25 104770.00 105511.25 106255.00 107001.25 107750.00 108501.25 109255.00
220 221 222 223 224 225 226 227 228 229	oad = $2,500$ pounds per foot	632.50 635.00 637.50 640.00 642.50 645.00 647.50 650.00 652.50 655.00	75261.25 75895.00 76531.25 77170.00 77811.25 78455.00 79101.25 79750.00 80401.25 81055.00	270 271 272 273 274 275 276 277 278 279	oad = $2,500$ pounds per foot	757.50 760.00 762.50 765.00 767.50 770.00 772.50 775.00 780.00	110011.25 110770.00 111531.25 112295.00 113061.25 113830.00 114601.25 115375.00 116151.25 116930.00
230 231 232 233 234 235 236 237 238 239	Uniform Load	657.50 660.00 662.50 665.00 667.50 670.00 672.50 675.00 677.50 680.00	81711.25 82370.00 83031.25 83695.00 84361.25 85030.00 85701.25 86375.00 87051.25 87730.00	280 281 282 283 284 285 286 287 288 289	Uniform Load	782.50 785.00 787.50 790.00 792.50 795.00 797.50 800.00 802.50 805.00	117711.25 118495.00 119281.25 120070.00 120861.25 121655.00 122451.25 123250.00 124051.25 124855.00
240 241 242 243 244 245 246 247 248 249 250		682.50 685.00 687.50 690.00 692.50 695.00 697.50 700.00 702.50 705.00 707.50	88411.25 89095.00 89781.25 90470.00 91161.25 91855.00 92551.25 93250.00 93951.25 94655.00 95361.25	290 291 292 293 294 295 296 297 298 299 300		807.50 810.00 812.50 815.00 817.50 820.00 822.50 825.00 827.50 830.00 832.50	125661.25 126470.00 127281.25 128095.00 128911.25 129730.00 130551.25 131375.00 132201.25 133030.00 133861.25

Cooper's E50. 300'-350' Cooper's E50. 350'-400'

-							
Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307 308 309		832.50 835.00 837.50 840.00 842.50 845.00 847.50 850.00 852.50 855.00	133861.25 134695.00 135531.25 136370.00 137211.25 138055.00 138901.25 139750.00 140601.25 141455.00	350 351 352 353 354 355 356 357 358 359		957.50 960.00 962.50 965.00 967.50 970.00 972.50 975.00 977.50 980.00	178611.25 179570.00 180531.25 181495.00 182461.25 183430.00 184401.25 185375.00 186351.25 187330.00
310 311 312 313 314 315 316 317 318 319	r foot	857.50 860.00 862.50 865.00 867.50 870.00 872.50 875.00 877.50 880.00	142311.25 143170.00 144031.25 144895.00 145761.25 146630.00 147501.25 148375.00 149251.25 150130.00	360 361 362 363 364 365 366 367 368 369	r foot	982.50 985.00 987.50 990.00 992.50 995.00 997.50 1000.00 1002.50 1005.00	188311.25 189295.00 190281.25 191270.00 192261.25 193255.00 194251.25 195250.00 196251.25 197255.00
320 321 322 323 324 325 326 327 328 329	correction = 2,500 pounds per foot	882.50 885.00 887.50 890.00 892.50 895.00 897.50 900.00 902.50 905.00	151011.25 151895.00 152781.25 153670.00 154561.25 155455.00 156351.25 157250.00 158151.25 159055.00	370 371 372 373 374 375 376 377 378 379	correction 2,500 pounds per foot	1007.50 1010.00 1012.50 1015.00 1017.50 1020.00 1022.50 1025.00 1027.50 1030.00	198261.25 199270.00 200281.25 201295.00 202311.25 203330.00 204351.25 205375.00 206401.25 207430.00
330 331 332 333 334 335 336 337 338 339	Uniform Load	907.50 910.00 912.50 915.00 917.50 920.00 922.50 925.00 927.50 930.00	159961.25 160870.00 161781.25 162695.00 163611.25 164530.00 165451.25 166375.00 167301.25 168230.00	380 381 382 383 384 385 386 387 388 389	Uniform Load	1032.50 1035.00 1037.50 1040.00 1042.50 1045.00 1047.50 1050.00 1052.50 1055.00	208461.25 209495.00 210531.25 211570.00 212611.25 213655.00 214701.25 215750.00 216801.25 217855.00
340 341 342 343 344 345 346 347 348 349 350		932.50 935.00 937.50 940.00 942.50 945.00 947.50 950.00 952.50 955.00 957.50	169161.25 170095.00 171031.25 171970.00 172911.25 173855.00 174801.25 175750.00 176701.25 177655.00 178611.25	390 391 392 393 394 395 396 397 398 399 400		1057.50 1060.00 1062.50 1065.00 1067.50 1070.00 1072.50 1075.00 1077.50 1080.00 1082.50	218911.25 219970.00 221031.25 222095.00 223161.25 224230.00 225301.25 226375.00 227451.25 228530.00 229611.25

Cooper's E60. 0'-50' Cooper's E60. 50'-100'

					11				
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	15.0	15.0	00.00 15.00	50 51				5670.00 5883.00
$\tilde{2}$				30.00	52				6096.00
$\bar{3}$				45.00	53				6309.00
4				60.00	54				6522.00
$\hat{\bar{5}}$				75.00	55				6735.00
6				90.00	56	w. 10	15.0	228.0	6948.00
7				105.00	57				7176.00
8	w. 2	30.0	45.0	120.00	58				7404.00
9				165.00	59				7632.00
J				100.00	00				1002.00
10				210.00	60				7860.00
11				255.00	61				8088.00
12				300.00	62				8316.00
13	w. 3	30.0	75.0	345.00	63				8544.00
14				420.00	64	w. 11	30.0	258.0	8772.00
15				495.00	65				9030.00
16				570.00	66				9288.00
17				645.00	67				9546.00
18	w. 4	30.0	105.0	720.00	68				9804.00
19				825.00	69	w. 12	30.0	288.0	10062.00
20				930.00	70				10350.00
20			• • • • •	1035.00	71				10638.00
21					72				10038.00
$\frac{22}{23}$		20.0	135.0	$1140.00 \\ 1245.00$	73				11214.00
$\frac{23}{24}$	w. 5	30.0		1380.00	74	w. 13	30.0	318.0	11502.00
$\frac{24}{25}$				1515.00	75				11820.00
26			• • • • •	1650.00	76				12138.00
27				1785.00	77				12456.00
28				1920.00	78				12774.00
29				2055.00	79	w. 14	30.0	348.0	13092.00
							00.0	010.0	
30				2190.00	80				13440.00
31				2325.00	81				13788.00
32	w. 6	19.5	154.5	2460.00	82				14136.00
33				2614.50	83				14484.00
34				2769.00	84				14832.00
35				2923.50	85				15180.00
36	<u>.</u>		::::::	3078.00	86				15528.00
37	w. 7	19.5	174.0	3232.50	87				15876.00
38				3406.50	88	w. 15	19.5	367.5	16224.00
39			• • • • •	3580.50	89			• • • • •	16591.00
40				3754.50	90				16959.00
41				3928.50	91				17326.50
42				4102.50	92				17694.00
43	w. 8	19.5	193.5	4276.50	93	w. 16	19.5	387.0	18061.50
44				4470.00	94				18448.00
45				4663.50	95				18835.50
46				4857.00	96				19222.50
47				5050.50	97				19609.50
48	w. 9	19.5	213.0	5244.00	98				19996.50
49				5457.00	99	w. 17	19.5	406.5	20383.50
50				5670.00	100				20790.00

Cooper's E60. 100'-150' Cooper's E60. 150'-200'

	1		1	1	1.		1	
Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100				20700 00	150		E40 0	44500 50
				20790.00	150		549.0	44533.50
101				21196.50	151		552.0	45084.00
102				21603.00	152		555.0	45637.50
103				22009.50	153		558.0	46194.00
104	w. 18	19.5	426.0	22416.00	154		561.0	46753.50
105				22842.00	155		564.0	47316.00
106				23268.00	156		567.0	47881.50
107				23694.00	157		570.0	48450.00
108				24120.00	158		573.0	49021.50
109			426.0	24546.00	159		576.0	49596.00
110								
110			429.0	24973.50	160		579.0	50173.50
111			432.0	25404.00	161		582.0	50754.00
112			435.0	25837.50	162		585.0	51337.50
113		-	438.0	26274.00	163		588.0	51924.00
114			441.0	26713.50	164		591.0	52513.50
115			444.0	27156.00	165		594.0	53106.00
116			447.0	27601.50	166		597.0	53701.50
117			450.0	28050.00	167		600.0	54300.00
118			453.0	28501.50	168	ot	603.0	54901.50
119			456.0	28956.00	169	<u>ŏ</u>	606.0	55506.00
	+				103	3,000 pounds per foot	000.0	00000.00
120	3,000 pounds per foot		459.0	29413.50	170	þ	609.0	56113.50
121	<u>-</u>		462.0	29874.00	171	25	612.0	56724.00
122	be		465.0	30337.50	172	ğ	615.0	57337.50
123	202		468.0	30804.00	173	no	618.0	57954.00
124	pu		471.0	31273.50	174	d	621.0	58573.50
125	E E		474.0	31746.00	175	8	624.0	59196.00
126	bd	1	477.0	32221.50	176	Q	627.0	59821.50
127	9		480.0	32700.00	177	ಣ	630.0	60450.00
128	8]	483.0	33181.50	178	H	633.0	61081.50
129		-	486.0	33666.00	179	7	636.0	61716.00
	II					Uniform Load		
130	ਰੂ		489.0	34153.50	180		639.0	62353.50
131	80		492.0	34644.00	181	- E	642.0	62994.00
132	1		495.0	35137.50	182	Ę.	645.0	63637.50
133	H		498.0	35634.00	183	n.	648.0	64284.00
134	Uniform Load		501.0	36133.50	184	0	651.0	64933.50
135	nif		504.0	36636.00	185		654.0	65586.00
136	Ü,		507.0	37141.50	186		657.0	66241.50
137			510.0	37650.00	187		660.0	66900.00
138			513.0	38161.50	188		663.0	67561.50
139			516.0	38676.00	189		666.0	68226.00
			į.					
140			519.0	39193.50	190		669.0	68893.50
141			522.0	39714.00	191		672.0	69564.00
142			525.0	40237.50	192		675.0	70237.50
143			528.0	40764.00	193		678.0	70914.00
144			531.0	41293.50	194		681.0	71593.50
145			534.0	41826.00	195		684.0	72276.00
146			537.0	42361.50	196		687.0	72961.50
147			540.0	42900.00	197		690.0	73650.00
148			543.0	43441.50	198		693.0	74341.50
149			546.0	43986.00	199		696.0	75036.00
150			549.0	44533.50	200		699.0	75733.50
			3.0.0	2 10000 1000	200		300.0	

Cooper's E60. 200'-250' Cooper's E60. 250'-300'

							000
Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200 201 202 203 204 205 206 207 208 209		699.0 702.0 705.0 708.0 711.0 714.0 717.0 720.0 723.0 726.0	75733.50 76434.00 77137.50 77844.00 78553.50 79266.00 79981.50 80700.00 81421.50 82146.00	250 251 252 253 254 255 256 257 258 259		849.0 852.0 855.0 858.0 861.0 864.0 867.0 870.0 873.0 876.0	114433.50 115284.00 116137.50 116994.00 117853.50 118716.00 119581.50 120450.00 121321.50 122196.00
210 211 212 213 214 215 216 217 218 219	r foot	729.0 732.0 735.0 738.0 741.0 744.0 750.0 753.0 756.0	82873.50 83604.00 84337.50 85074.00 85813.50 86556.00 87301.50 88050.00 88801.50 89556.00	260 261 262 263 264 265 266 267 268 269	r foot	879.0 882.0 885.0 888.0 891.0 894.0 897.0 900.0 903.0 906.0	123073.50 123954.00 124837.50 125724.00 126613.50 127506.00 128401.50 129300.00 130201.50 131106.00
220 221 222 223 224 225 226 227 228 229	oad = 3,000 pounds per foot	759.0 762.0 765.0 768.0 771.0 774.0 777.0 780.0 783.0 786.0	90313.50 91074.00 91837.50 92604.00 93373.50 94146.00 94921.50 95700.00 96481.50 97266.00	270 271 272 273 274 275 276 277 278 279	oad = 3,000 pounds per foot	909.0 912.0 915.0 918.0 921.0 924.0 927.0 930.0 933.0 936.0	132013.50 132924.00 133837.50 134754.00 135673.50 136596.00 137521.50 138450.00 139381.50 140316.00
230 231 232 233 234 235 236 237 238 239	Uniform Load	789.0 792.0 795.0 798.0 801.0 804.0 807.0 810.0 813.0 816.0	98053.50 98844.00 99637.50 100434.00 101233.50 102036.00 102841.50 103650.00 104461.50 105276.00	280 281 282 283 284 285 286 287 288 289	Uniform Load	939.0 942.0 945.0 948.0 951.0 954.0 957.0 960.0 963.0 966.0	141253.50 142194.00 143137.50 144084.00 145033.50 145986.00 146941.50 147900.00 148861.50 149826.00
240 241 242 243 244 245 246 247 248 249 250		819.0 822.0 825.0 828.0 831.0 834.0 837.0 840.0 843.0 846.0 849.0	106093.50 106914.00 107737.50 108564.00 109393.50 110226.00 111061.50 111900.00 112741.50 113586.00 114433.50	290 291 292 293 . 294 295 296 297 298 299 300		969.0 972.0 975.0 978.0 981.0 984.0 987.0 990.0 993.0 996.0	150793.50 151764.00 152737.50 153714.00 154693.50 155676.00 156661.50 157650.00 158641.50 159636.00 160633.50

Cooper's E60. 300'-350' Cooper's E60. 350'-400'

	JOOPER	. S E00.	000 -000		TEIL 15	200. 550	-100
Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307 308		999.0 1002.0 1005.0 1008.0 1011.0 1014.0 1017.0 1020.0 1023.0	160633.50 161634.00 162637.50 163644.00 164653.50 165666.00 166681.50 167700.00 168721.50	350 351 352 353 354 355 356 357 358		1149.0 1152.0 1155.0 1158.0 1161.0 1164.0 1167.0 1170.0 1173.0	214333.50 215484.00 216637.50 217794.00 218953.50 220116.00 221281.50 222450.00 233621.50
309 310 311 312 313 314 315 316 317 318	ot	1026.0 1029.0 1032.0 1035.0 1038.0 1041.0 1044.0 1047.0 1050.0 1053.0	169746.00 170773.50 171804.00 172837.50 173874.00 174913.50 175956.00 177001.50 178050.00 179101.50	359 360 361 362 363 364 365 366 367 368	ot	1176.0 1179.0 1182.0 1185.0 1188.0 1191.0 1194.0 1197.0 1200.0 1203.0	224796.00 225973.50 227154.00 228337.50 229524.00 230713.50 231906.00 233101.50 234300.00 23501.50
319 320 321 322 323 324 325 326 327 328	= 3,000 pounds per foot	1056.0 1059.0 1062.0 1065.0 1038.0 1071.0 1074.0 1077.0 1089.0 1083.0	180156.00 181213.50 182274.00 183337.50 184404.00 185473.50 186546.00 187621.50 188700.00 189781.50	369 370 371 372 373 374 375 376 377 378	= 3,000 pounds per foot	1206.0 1209.0 1212.0 1215.0 1218.0 1221.0 1224.0 1227.0 1230.0 1233.0	236706.00 237913.50 239124.00 240337.50 241554.00 242773.50 243996.00 245221.50 246450.00 247681.50
329 330 331 332 333 334 335 336 337 338 339	Uniform Load	1086.0 1089.0 1092.0 1095.0 1098.0 1101.0 1104.0 1110.0 1113.0 1116.0	190866.00 191953.50 193044.00 194137.50 195234.00 196333.50 197436.00 198541.50 199650.00 200761.50 201876.00	379 380 381 382 383 384 385 386 387 388 389	Uniform Load =	1236.0 1239.0 1242.0 1245.0 1248.0 1251.0 1257.0 1260.0 1263.0 1266.0	248916.00 250153.50 251394.00 252637.50 253884.00 255133.50 256386.00 257641.50 258900.00 260161.50
340 341 342 343 344 345 346 347 348 349 350		1119.0 11122.0 1122.0 1125.0 1128.0 1131.0 1134.0 1137.0 1140.0 1143.0 1146.0	202993.50 204114.00 205237.50 206364.00 207493.50 208626.00 209761.50 210900.00 212041.50 213186.00 214333.50	390 391 392 393 394 395 396 397 398 399 400		1266.0 1269.0 1272.0 1275.0 1278.0 1281.0 1284.0 1287.0 1290.0 1293.0 1296.0 1299.0	261426.00 262693.50 263964.00 265237.50 266514.00 267793.50 269076.00 270361.50 271650.00 272941.50 274236.00 275533.50

Common Standard 0'-50' Common Standard 50'-100'

	001121120	711 10 1111							
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0		10.5	10.5	00.00	50				F100 00
0	w. 1	12.5	12.5	00.00	50				5120.00
. 1				12.50	51				5312.50
2				25.00	52				5505.00
3				37.50	53				5697.50
4				50.00	54				5890.00
5	• • • • •			62.50	55	1		1	6082.50
6	• • • • • •			75.00	56	w. 10	12.5	205.0	6275.00
7					57				
	w. 2			87.50					6480.00
8	w. 2	27.5	40.0	100.00	58				6685.00
9				140.00	59				6890.00
10				180.00	60				7095.00
11					61				7300.00
				220.00					
12		:: ::		260.00	62				7505.00
13	w. 3	27.5	67.5	300.00	63				7710.00
14				367.50	64	w. 11	27.5	232.5	7915.00
15				435.00	65				8147.50
16				502.50	66				8380.00
17				570.00	67				8612.50
18	w. 4	27.5	95.0	637.50	68				8845.00
19			30.0	732.50	69	w. 12	27.5	260.0	9077.50
10		• • • •			00	W. 12	21.0	200.0	0011.00
20				827.50	70				9337.50
21				922.50	71				9597.50
22				1017.50	72				9857.50
$\frac{22}{23}$	w. 5	27.5	122.5	1112.50	73				10117.50
24				1235.00	74	w. 13	27.5	287.5	10377.50
$\frac{24}{25}$				1357.50	75	W. 15		1	10665.00
					76				10952.50
26				1480.00					
27				1602.50	77				11240.00
28				1725.00	78		27.5		11527.50
29				1847.50	79	w. 14	27.5	315.0	11815.00
30				1970.00	80				12130.00
31				2092.50	81				12445.00
$\frac{31}{32}$		177 5	140.0	2215.00	82				12760.00
	w. 6	17.5			83				13075.00
33				2355.00					
34				2495.00	84				13390.00
35				2635.00	85				13705.00
36				2775.00	86				14020.00
37	w. 7	17.5	157.5	2915.00	87				14335.00
38				3072.50	88	w. 15	17.5	332.5	14650.00
39				3230.00	89				14982.50
40				0005 50	00				15915 00
40				3387.50	90				15315.00
41				3545.00	91				15647.50
42				3702.50	92		::-:		15980.00
43	w. 8	17.5	175.0	3860.00	93	w. 16	17.5	350.0	16312.50
44				4035.00	94				16662.50
45				4210.00	95				17012.50
46				4385.00	96				17362.50
47				4560.00	97				17712.50
48	w. 9	17.5	192.5	4735.00	98				18062.50
49		11.0	102.0	4927.50	99	w. 17	17.5	367.5	18412.50
50				5120.00	100				18780.00
90				0120.00	100				10.00.00

Common Standard 100'-150' Common Standard 150'-200'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100 101 102 103 104 105 106 107 108 109	w. 18	17.5	385.0	18780.00 19147.50 19515.00 19882.50 20250.00 20635.00 21020.00 21405.00 21790.00 22175.00	150 151 152 153 154 155 156 157 158 159		487.5 490.0 492.5 495.0 497.5 500.0 502.5 505.0 507.5 510.0	40061.25 40550.00 41041.25 41535.00 42031.25 42530.00 43031.25 43535.00 44041.25 44550.00
110 111 112 113 114 115 116 117 118 119		per foot	387.5 390.0 392.5 395.0 397.5 400.0 402.5 405.0 407.5 410.0	22561.25 22950.00 23341.25 23735.00 24131.25 24530.00 24931.25 25335.00 25741.25 26150.00	160 161 162 163 164 165 166 167 168 169	s per foot	512.5 515.0 517.5 520.0 522.5 525.0 527.5 530.0 532.5 535.0	45061.25 45575.00 46091.25 46610.00 47131.25 47655.00 48181.25 48710.00 49241.25 49775.00
120 121 122 123 124 125 126 127 128 129		Load = $2,500$ pounds per foot	412.5 415.0 417.5 420.0 422.5 425.0 427.5 430.0 432.5 435.0	26561.25 26975.00 27391.25 27810.00 28231.25 28655.00 29081.25 29510.00 29941.25 30375.00	170 171 172 173 174 175 176 177 178 179	a Load = $2,500$ pounds per foot	537.5 540.0 542.5 545.0 547.5 550.0 552.5 555.0 557.5 560.0	50311.25 50850.00 51391.25 51935.00 52481.25 53030.00 53581.25 54135.00 54691.25 55250.00
130 131 132 133 134 135 136 137 138 139		Uniform Load	437.5 440.0 442.5 445.0 447.5 450.0 452.5 455.0 457.5 460.0	30811.25 31250.00 31691.25 32135.00 32581.25 33030.00 33481.25 33935.00 34391.25 34850.00	180 181 182 183 184 185 186 187 188	Uniform Load	562.5 565.0 567.5 570.0 572.5 575.0 577.5 580.0 582.5 585.0	55811.25 56375.00 56941.25 57510.00 58081.25 58655.00 59231.25 59810.00 60391.25 60975.00
140 141 142 143 144 145 146 147 148 149 150			462.5 465.0 467.5 470.0 472.5 475.0 477.5 480.0 482.5 485.0 487.5	35311.25 35775.00 36241.25 36710.00 37181.25 37655.00 38131.25 38610.00 39091.25 39575.00 40061.25	190 191 192 193 194 195 196 197 198 199 200		587.5 590.0 592.5 595.0 597.5 600.0 602.5 605.0 607.5 610.0 612.5	61561.25 62150.00 62741.25 63335.00 63931.25 64530.00 65131.25 65735.00 66341.25 66950.00 67561.25

Common Standard 200'-250' Common Standard 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200 201 202 203 204 205 206 207 208 209		612.5 615.0 617.5 620.0 622.5 625.0 627.5 630.0 632.5 635.0	67561.25 68175.00 68791.25 69410.00 70031.25 70655.00 71281.25 71910.00 72541.25 73175.00	250 251 252 253 254 255 256 257 258 259		737.5 740.0 742.5 745.0 747.5 750.0 752.5 755.0 757.5 760.0	101311 . 25 102050 . 00 102791 . 25 103535 . 00 104281 . 25 105030 . 00 105781 . 25 106535 . 00 107291 . 25 108050 . 00
210 211 212 213 214 215 216 217 218 219	per foot	637.5 640.0 642.5 645.0 647.5 650.0 652.5 655.0 657.5 660.0	73811.25 74450.00 75091.25 75735.00 76381.25 77030.00 77681.25 78335.00 78991.25 79650.00	260 261 262 263 264 265 266 267 268 269	per foot	762.5 765.0 767.5 770.0 772.5 775.0 777.5 780.0 782.5 785.0	108811.25 109575.00 110341.25 111110.00 111881.25 112655.00 113431.25 114210.00 114991.25 115775.00
220 221 222 223 224 225 226 227 228 229	Uniform Load $=2,500$ pounds per foot	662.5 665.0 667.5 670.0 672.5 675.0 677.5 680.0 682.5 685.0	80311.25 80975.00 81641.25 82310.00 82981.25 83655.00 84331.25 85010.00 85691.25 86375.00	270 271 272 273 274 275 276 277 278 279	Uniform Load = $2,500$ pounds per foot	787.5 790.0 792.5 795.0 797.5 800.0 802.5 805.0 807.5 810.0	116561.25 117350.00 118141.25 118935.00 119731.25 120530.00 121331.25 122135.00 122941.25 123750.00
230 231 232 233 234 235 236 237 238 239	Unifort	687.5 690.0 692.5 695.0 697.5 700.0 702.5 705.0 707.5 710.0	87061.25 87750.00 88441.25 89135.00 89831.25 90530.00 91231.25 91935.00 92641.25 93350.00	280 281 282 283 284 285 286 287 288 289	Unifor	812.5 815.0 817.5 820.0 822.5 825.0 827.5 830.0 832.5 835.0	124561.25 125375.00 126191.25 127010.00 127831.25 128655.00 129481.25 130310.00 131141.25 131975.00
240 241 242 243 244 245 246 247 248 249 250		712.5 715.0 717.5 720.0 .722.5 725.0 727.5 730.0 732.5 735.0 737.5	94061.25 94775.00 95491.25 96210.00 96931.25 97655.00 98381.25 99110.00 99841.25 100575.00 101311.25	290 291 292 293 294 295 296 297 298 299 300	(5)	837.5 840.0 842.5 845.0 847.5 850.0 852.5 855.0 857.5 860.0 862.5	132811 . 25 133650 . 00 134491 . 25 135335 . 00 136181 . 25 137030 . 00 137881 . 25 138735 . 00 139591 . 25 140450 . 00 141311 . 25

Common Standard 300'-350' . Common Standard 350'-400'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307 308 309		862.5 865.0 867.5 870.0 872.5 875.0 877.5 880.0 882.5 885.0	141311.25 142175.00 143041.25 143910.00 144781.25 145655.00 146531.25 147410.00 148291.25 149175.00	350 351 352 353 354 355 356 357 358 359	-	987.50 990.00 992.50 995.00 997.50 1000.00 1002.50 1005.00 1007.50 1010.00	187561.25 188550.00 189541.25 190535.00 191531.25 192530.00 193531.25 194535.00 195541.25 196550.00
310 311 312 313 314 315 316 317 318 319	r foot	887.5 890.0 892.5 895.0 897.5 900.0 902.5 905.0 907.5 910.0	150061.25 150950.00 151841.25 152735.00 153631.25 154530.00 155431.25 156335.00 157241.25 158150.00	360 361 362 363 364 365 366 367 368 369	r foot	1012.50 1015.00 1017.50 1020.00 1022.50 1025.00 1027.50 1030.00 1032.50 1035.00	197561.25 198575.00 199591.25 200610.00 201631.25 202655.00 203681.25 204710.00 205741.25 206775.00
320 321 322 323 324 325 326 327 328 329	Uniform Load $=2,500$ pounds per foot	912.5 915.0 917.5 920.0 922.5 925.0 927.5 930.0 932.5 985.0	159061.25 159975.00 160891.25 161810.00 162731.25 163655.00 164581.25 165510.00 166441.25 167375.00	370 371 372 373 374 375 376 377 378 379	Uniform Load = 2,500 pounds per foot	1037 .50 1040 .00 1042 .50 1045 .00 1047 .50 1050 .00 1052 .50 1055 .00 1057 .50 1060 .00	207811.25 208850.00 209891.25 210935.00 211981.25 213030.00 214081.25 215135.00 216191.25 217250.00
330 331 332 333 334 335 336 337 338 339	Uniform I	937.5 940.0 942.5 945.0 947.5 950.0 952.5 955.0 957.5 960.0	168311.25 169250.00 170191.25 171135.00 172081.25 173030.00 173981.25 174935.00 175891.25 176850.00	380 381 382 383 384 385 386 387 388 389	Uniform I	1062.50 1065.00 1067.50 1070.00 1072.50 1075.00 1077.50 1080.00 1082.50 1085.00	218311.25 219375.00 220441.25 221510.00 222581.25 223655.00 224731.25 225810.00 226891.25 227975.00
340 341 342 343 344 345 346 347 348 349 350		962.5 965.0 967.5 970.0 972.5 975.0 977.5 980.0 982.5 985.0 987.5	177811.25 178775.00 179741.25 180710.00 181681.25 182655.00 183631.25 184610.00 185591.25 186575.00 187561.25	390 391 392 393 394 395 396 397 398 399 400		1087.50 1090.00 1092.50 1095.00 1097.50 1100.00 1102.50 1105.00 1107.50 1110.00 1112.50	229061.25 230150.00 231241.25 232335.00 233431.25 234530.00 235631.25 236735.00 237841.25 238950.00 240061.25

Lackawanna 0'-50'

Lackawanna 50'-100'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	11	11.00	00.000	50				4744.000
1				11.000	51				4911.000
2				22.000	52				5078.000
3				33.000	53				5245.000
4				44.000	54	w. 10	11	178.00	5412.000
5				55.000	55				5590.000
6		• •		66.000	56				5768.000
7	w. 2	25	36.00	77.000	57				5946.000
8				113.000	58		• •	1	6124.000
9		• •		149.000	59				6302.000
9				149.000	99				0302.000
10				185.000	60				6480.000
11		• •		221.000	61	w. 11	$\overset{\cdot}{25}$	203.00	6658.000
12	w. 3	25	61.00	257.000	62				6861.000
13				318.000	63				
									7064.000
14				379.000	64				7267.000
15				440.000	65		::		7470.000
16		· · ·		501.000	66	w. 12	25	228.00	7673.000
17	w. 4	25	86.00	562.000	67				7901.000
18				648.000	68				8129.000
19				734.000	69				8357.000
20				000 000	70				0505 000
				820.000	70	10	3.	050.00	8585.000
21		· ·		906.000	71	w. 13	25	253.00	8813.000
22	w. 5	25	111.00	992.000	72				9066.000
23				1103.000	73				9319.000
24				1214.000	74	. :			9572.000
25				1325.000	75				9825.000
26				1436.000	76	w. 14	25	278.00	10078.000
27				1547.000	77				10356.000
28				1658.000	78				10634.000
29				1769.000	79				10912.000
20				1000 000	00				11100 000
30		11		1880.000	80				11190.000
31	w. 6	14	125.00	1991.000	81				11468.000
32				2116.000	82				11746.000
33				2241.000	83				12024.000
34				2366.000	84				12302.000
35				2491.000	85	w. 15	14	292.00	12580.000
36	w. 7	14	139.00	2616.000	86				12872.000
37				2755.000	87				13146.000
38				2894.000	88				13456.000
39				3033.000	89				13748.000
								-	
40				3172.000	90	w. 16	14	306.00	14040.000
41	w. 8	14	153.00	3311.000	91				14346.000
42				3464.000	92				14652.000
43				3617.000	93				14958.000
44				3770.000	94				15264.000
45				3923.000	95	w. 17	14	320.00	15570.000
46	w. 9	14	167.00	4076.000	96				15890.000
47				4243.000	97				16210.000
48				4410.000	98		4		16530.000
49				4577.000	99				16850.000
50				4744.000	100	w. 18	14	334.00	17170.000
				T(TT. UUU	IUU	W. 10	14	UU.TUU	LALAU. UNNI

Lackawanna 100'-150' Lackawanna 150'-200'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100 101 102 103 104 105 106 107 108 109	w. 18	14	334.00 334.00 336.25 338.50 340.75 343.00 345.25	17170.000 17504.000 17538.000 18172.000 18506.000 18841.125 19178.500 19518.125 19860.000 20204.125	150 151 152 153 154 155 156 157 158 159	•	437.50 439.75 442.00 444.25 446.50 448.75 451.00 453.25 455.50 457.75	36250.500 36689.125 37130.000 37573.125 38018.500 38466.125 38916.000 39368.125 39822.500 40279.125
110 111 112 113 114 115 116 117 118 119		r foot	347.50 349.75 352.00 354.25 356.50 358.75 361.00 363.25 365.50 367.75	20550.500 20899.125 21250.000 21603.125 21958.500 22316.125 22676.000 23038.125 23402.500 23769.125	160 161 162 163 164 165 166 167 168 169	r foot	460.00 462.25 464.50 466.75 469.00 471.25 473.50 475.75 478.00 480.25	40738.000 41199.125 41662.500 42128.125 42596.000 43066.125 43538.500 44013.125 44490.000 44969.125
120 121 122 123 124 125 126 127 128 129		oad = 2,250 pounds per foot	370.00 372.25 374.50 376.75 379.00 381.25 383.50 385.75 388.00 390.25	24138. 000 24509. 125 24882. 500 25258. 125 25636. 000 26016. 125 26398. 500 26783. 125 27170. 000 27559. 125	170 171 172 173 174 175 176 177 178 179	oad = 2,250 pounds per foot	482.50 484.75 487.00 489.25 491.50 493.75 496.00 498.25 500.50 502.75	45450.500 45934.125 46420.000 46908.125 47398.500 47891.125 48386.000 48883.125 49382.500 49884.125
130 131 132 133 134 135 136 137 138 139		Uniform Load	392.50 394.75 397.00 399.25 401.50 403.75 406.00 408.25 410.50 412.75	27950.500 28344.125 28740.000 29138.125 29538.500 29941.125 30346.000 30753.125 31162.500 31574.125	180 181 182 183 184 185 186 187 188 189	Uniform Load	505.00 507.25 509.50 511.75 514.00 516.25 518.50 520.75 523.00 525.25	50338.000 50894.125 51402.500 51913.125 52426.000 52941.125 53458.500 53978.125 54500.000 55024.125
140 141 142 143 144 145 146 147 148 149 150			415.00 417.25 419.50 421.75 424.00 426.25 428.50 430.75 433.00 435.25 437.50	31988.000 32404.125 32882.500 33243.125 33666.000 34091.125 34518.500 34948.125 35380.000 35814.125 36250.500	190 191 192 193 194 195 196 197 198 199 200		527.50 529.75 532.00 534.25 536.50 538.75 541.00 543.25 545.50 547.75 550.00	55550.500 56079.125 56610.000 57143.125 57678.500 58216.125 58756.000 59298.125 59842.500 60389.125 60938.000

Lackawanna 200'-250' Lackawanna 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200 201 202 203 204 205 206 207 208 209		550.00 552.25 554.50 556.75 559.00 561.25 563.50 565.75 568.00 570.25	60938.000 61489.125 62042.500 62598.125 63156.000 63716.125 64278.500 64843.125 65410.000 65979.125	250 251 252 253 254 255 256 257 258 259		662.50 664.75 667.00 669.25 671.50 673.75 676.00 678.25 680.50 682.75	91250.500 91914.125 92580.000 93248.125 93918.500 94591.125 95266.000 95943.125 96622.500 97304.125
210 211 212 213 214 215 216 217 218 219	r foot	572.50 574.75 577.00 579.25 581.50 583.75 586.00 588.25 590.50 592.75	66550.500 67124.125 67700.000 68278.125 68858.500 69441.125 70026.000 70613.125 71202.500 71794.125	260 261 262 263 264 265 266 267 268 269	r foot	685.00 687.25 689.50 691.75 694.00 696.25 698.50 700.75 703.00 705.25	97988 .000 98674 .125 99362 .500 100053 .125 100746 .000 101441 .125 102138 .500 102838 .125 103540 .000 104244 .125
220 221 222 223 224 225 226 227 228 229	oad = 2,250 pounds per foot	595.00 597.25 599.50 601.75 604.00 606.25 608.50 610.75 613.00 615.25	72388.000 72984.125 73582.500 74183.125 74786.000 75391.125 75998.500 76608.125 77220.000 77834.125	270 271 272 273 274 275 276 277 278 279	oad = 2,250 pounds per foot	707.50 709.75 712.00 714.25 716.50 718.75 721.00 723.25 725.50 727.75	105950.500 105659.125 106370.000 107083.125 107798.500 108516.125 109236.000 109958.125 110682.500 111409.125
230 231 232 233 234 235 236 237 238 239	Uniform Load	617.50 619.75 622.00 624.25 626.50 628.75 631.00 633.25 635.50 637.75	78450.500 79069.125 79690.000 80313.125 80938.500 81566.125 82196.000 82828.125 83462.500 84099.125	280 281 282 283 284 285 286 287 288 289	Uniform Load	730.00 732.25 734.50 736.75 739.00 741.25 743.50 745.75 748.00 750.25	112138.000 112869.125 113602.500 114338.125 115076.000 115816.125 116558.500 117303.125 118050.000 118799.125
240 241 242 243 244 245 246 247 248 249 250		640.00 642.25 644.50 646.75 649.00 651.25 653.50 655.75 658.00 660.25 662.50	84738.000 85379.125 86022.500 86668.125 87316.000 87966.125 88618.500 89273.125 89930.000 90589.125 91250.500	290 291 292 293 294 295 296 297 298 299 300		752.50 754.75 757.00 759.25 761.50 768.75 766.00 768.25 770.50 772.75 775.00	119550.500 120304.125 121060.000 121818.125 122578.500 123341.125 124106.000 124873.125 125642.500 126414.125 127188.000

Lackawanna 300'-350'

Lackawanna 350'-400'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307 308 309		775.00 777.25 779.50 781.75 784.00 786.25 788.50 790.75 793.00 795.25	127188.000 127964.125 128742.500 129523.125 130306.000 131091.125 131878.500 132668.125 133460.000 134254.125	350 351 352 353 354 355 356 357 358 359		887.50 889.75 892.00 894.25 896.50 898.75 901.00 903.25 905.50 907.75	168750.500 169639.125 170530.000 171423.125 172318.500 173216.125 174116.000 175018.125 175922.500 176829.125
310 311 312 313 314 315 316 317 318 319	r foot	797.50 799.75 802.00 804.25 806.50 808.75 811.00 813.25 815.50 817.75	135050.500 135849.125 136650.000 137453.125 138258.500 139066.125 139876.000 140688.125 141502.500 142319.125	360 361 362 363 364 365 366 367 368 369	r foot	910.00 912.25 914.50 916.75 919.00 921.25 923.50 925.75 928.00 930.25	177738.000 178649.125 179562.500 180478.125 181396.000 182316.125 183238.500 184163.125 185090.000 186019.125
320 321 322 323 324 325 326 327 328 329	oad = 2,250 pounds per foot	820.00 822.25 824.50 826.75 829.00 831.25 833.50 835.75 838.00 840.25	143138.000 143959.125 144782.500 145608.125 146436.000 147266.125 148098.500 148933.125 149770.000 150609.125	370 371 372 373 374 375 376 377 378 379	coad = 2,250 pounds per foot	932.50 934.75 937.00 939.25 941.50 943.75 946.00 948.25 950.50 952.75	186950.500 187884.125 188820.000 189758.125 190698.500 191641.125 192586.000 193533.125 194482.500 195434.125
330 331 332 333 334 335 336 337 338 339	Uniform Load	842.50 844.75 847.00 849.25 851.50 853.75 856.00 858.25 860.50 862.75	151450.500 152294.125 153140.000 153988.125 154838.500 155691.125 156546.000 157403.125 158262.500 159124.125	380 381 382 383 384 385 386 387 388 389	Uniform Load	955.00 957.25 959.50 961.75 964.00 966.25 968.50 970.75 973.00 975.25	196388.000 197344.125 198302.500 199263.125 200226.000 201191.125 202158.500 203128.125 204100.000 205074.125
340 341 342 343 344 345 346 347 348 349 350		865.00 867.25 869.50 871.75 874.00 876.25 878.50 880.75 883.00 885.25 887.50	159988.000 160854.125 161722.500 162593.125 163466.000 164341.125 165218.500 166098.125 166980.000 167864.125 168750.500	390 391 392 393 394 395 396 397 398 399 400		977.50 979.75 982.00 984.25 986.50 988.75 991.00 993.25 995.50 997.75 1000.00	206050.500 207029.125 208010.000 208993.125 209978.500 211956.000 212948.125 213942.500 214939.125 215938.000

TABLE 3 $\begin{tabular}{ll} Position of Cooper's Loadings for Maximum Stress \\ Shorter Segment l_1 \\ \end{tabular}$

		110	10	1,0	10	1,0	10	1,0		1,0		1,0		1,0		1.0		1 10		1,0					=
Seg	ments	-	10	15	.20	25	30	35	40	45	50	55	09	65	70	75	80	85	90	95	100	110	120	130	140
		-	_		_	_	_	_	-	-	_	_	-	-	_	_	_	-	-	-	_		-	-	-
)-260	2	2	3	3	4	4	5	5	6	7	7	8	1 -	10		1	1		1	13		15		18
)–200	2	2	3	3		4	5			7	8		-	10	l l		12			13				18
190)–150	2 2	2	3	3		4	5	5		7	8	9	1	11			12			13				
	140	2		3	3	4	4	5	5		7	8	9		11			12			13				18
	130	2	3	3	3	4	4	5	5	6	7	8	9		11			12			13				
	120	2	3	3	3	4	4	5	5	6	7	8	9	10	11			12			13		15	٠.	
	110	2	3	3	3	4	4	5	6	7	$\frac{7}{2}$	8	9		11	1					13	14		٠.	
	100	2	3	3	3	4	5	5	6	14	14	14	13	13	11					13				٠.	
	95	2	3	3	4	4	5	13	13	13	13	13	13		13				-	13		٠.		٠.,	
	90	2	3	3	4	4	5	13	13	13	13	13	13		13			12	13						
	85	2	3	3	4	4	5		13	12		13	12			12		12		. :		٠.	٠.		
_61	80	2	3	3	4	4	13	13	13	12	12	12	12	12	12	12	12								
Longer Segment l2	75	2	3	3	4		13	13	$\overline{12}$	12	12	12	12			12	٠.		٠,					٠.	
neı	70	2	3	3	4		<u>13</u>		12	12	12	12	11		11	٠.			٠.				٠.		
egr	65	2	3	3	4	- 1	12	12	12	12		11	11	11	٠.								٠.		
Ď	60	11	3	3	4	4	5		12	11	11	11	11		٠.	٠.			٠.]		
gel	55		12	12	12	-	12		12			11				٠.	٠.,			٠.					٠.
uo,	50			12	12		12	_	13	1 1	12		٠.												
I	45	2	3	12	12		12		13	13	٠.										٠.,	• •		٠ ٠	
	40	2	3	3		12			13																
	35	2	3	3	4		13	13					٠.										• •	٠.	٠.
	30	2	3	3	4		13				٠.				• •										
	25	2	$\frac{3}{4}$	3	4	4	• •								٠ - ا										
	20	2		3	4															٠٠]					٠.
	15	2	3	3		٠.					٠.						٠.		• •]		• •		٠.	
	10	2	3	٠.	٠.			٠.,	٠.			٠.	٠.		٠.				• •			• •	٠.		
	5	2	• •	٠.				٠.	٠.,							٠. ا									
-	1	3				1	- 1	1		ı	1		-	-	- 1		-			,			,	,	

GENERAL NOTES.—The table gives wheel for maximum for any stress which has a triangular influence line.

In case of two unequal segments, the live load approaches on the longer segment except where wheel is overlined, when live load approaches on shorter segment.

When both segments are each greater than 142 ft., advance load on longer segment first, and upon next segment until wheel No. 1 is within 33 feet of the far end of the latter.

TABLE 4

Position of Cooper's Loadings for Absolute Maximum Bending Moment in Girder Bridges Without Panels

S = Span in feet.

c= Distance in feet that wheel No. 1 has moved to left beyond centre of pan.

w = wheel under which absolute maximum bending moment occurs.

a =distance that w is to left from centre of span.

b = " w " right " " " "

S	. с	w	a	\boldsymbol{b}
0' to 8'.5	8′.00	2	0′.00	
8.5 " 11.1	9.25	2 3	1.25	
11.1 " 18.7	13.00		0.00	
18.7 " 27.6	14.25	3	1.25	
27.6 " 34.9	13.39	3	0.39	
34.9 " 38.7	17.06	4		0.94
38.7 " 48.6	18.21	4	0.21	
48.6 " 53.7	19.45	4	1.45	• • • •
53.7 " 58.4	74.13	13	0.13	
58.4 " 63.2	75.37	13	1.37	
63.2 " 70.00	74.07	13	0.07	

Note.—For spans greater than 70 feet, the maximum centre moment equals the absolute maximum bending moment with an error of less than one per cent.

TABLE 5

Position of Cooper's Loadings for Maximum End Shear in Girder
Bridges Without Panels

Span	Direction Load Moves	Position of Load	Location of Maximum Shear
0' to 23' 23 " 27 27 " 46 46 " 62 62 " 400	Right to left Right to left Right to left Right to left Right to left	w_2 at left end w_5 at right end w_2 at left end w_{11} at left end w_2 at left end	Left end Right end Left end Left end Left end Left end

TABLE 6

Position of Cooper's Loadings for Maximum Shear in Panels of Girder and Truss Bridges

Number of						Pa	NEL	LEN	STH :	IN F	EET				
Panels	Panel	22	23	24	25	26	27	28	29	30	31	32	33	34	35
6	0-1 1-2 2-3 3-4 4-5	4 3 2 2	4 3 2 2	4 3 2 2	4 3 2 2	4 4 3 2 2	4 4 3 2 2	4 4 3 2 2	4 4 3 2 2	4 4 3 2 2	4 4 3 3 2	5 4 3 2	5 4 3 3 2	5 4 3 3	5 4 4 3
7	0-1 1-2 2-3 3-4 4-5 5-6	3 3 3 2 2	4 3 3 2 2	4 3 3 2 2	4 3 3 2 2	4 4 3 3 2 2	4 4 3 3 2 2	4 4 3 2 2	4 4 3 3 2 2	4 4 3 3 2 2	4 4 3 3 2 2	4 4 3 3 2 2	5 4 3 2 2	2 5 4 4 3 3 2	3 2 5 4 4 3 3 2 5
8	5-0 0-1 1-2 2-3 3-4 4-5 5-6 6-7	3 3 3 2 2 2	4 3 3 2 2 2	4 3 3 2 2 2	4 3 3 2 2 2	4 4 3 3 2 2 2	4 4 3 3 3 2 2	4 4 3 3 2 2	4 4 3 3 2 2	4 4 3 3 3 2 2	4 4 4 3 2 2	4 4 4 3 3 2 2	5 4 4 3 3 2 2	5 4 4 3 3 2 2	5 4 4 3 3 2 2 5
9	0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8	3 3 3 3 2 2 2 2	4 3 3 3 3 2 2 2	4 3 3 3 2 2	4 3 3 3 2 2	4 4 3 3 3 2 2 2	4 4 3 3 2 2 2	4 4 3 3 3 2 2 2	4 4 3 3 2 2 2	4 4 3 3 2 2 2	4 4 4 3 3 2 2	4 4 3 3 2 2	4 4 4 3 3 3 2 2	5 4 4 3 3 3 2 2	5 4 4 3 3 3 2 2 5
10	0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9	3 3 3 3 2 2 1	4 3 3 3 2 2 1	4 3 3 3 2 2 1	4 3 3 3 2 2 1	4 4 3 3 2 2 2 1	4 4 3 3 2 2 2 1	4 4 3 3 3 2 2 1	4 4 3 3 3 2 2 1	4 4 3 3 3 2 2	4 4 3 3 3 2 2 2 2	4 4 4 3 3 3 2 2 2	4 4 4 3 3 3 2 2 2	5 4 4 3 3 3 2 2 2 2	5 4 4 4 3 3 2 2 2

NOTE.—Place tabulated wheel at right end of corresponding panel with locomotive advancing toward left,

TABLE 7

Maximum Moments, Shears, and Pier Reactions for Cooper's Standard Loadings

(Figures for One Rail)

			E40	-		E50						
Span	Max.	M	ax. Shea	ırs	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier		
	Moment	End	¼ Pt.	Cent.	React.	Moment	End	¼ Pt.	Cent.	React.		
10 11 12 13 14 15 16 17 18 19 20 21 22	56.3 65.7 80.0 95.0 110.0 125.0 140.0 155.0 170.0 186.6 206.3 226.0 245.7	30.0 32.7 35.0 36.9 38.6 40.0 42.5 44.7 46.7 48.4 50.0 51.4 52.7	20.0 20.9 21.7 22.3 23.6 25.0 26.3 27.4 28.3 29.2 30.0 31.4 32.7	10.0 10.9 11.7 12.3 12.9 13.3 13.7 13.8 14.0 14.0 14.5	40.0 43.7 46.7 49.2 52.2 54.7 56.9 58.8 60.7 62.9 65.6 68.0 70.2	70.4 82.1 100.0 118.8 137.5 156.3 175.0 193.8 212.5 233.3 257.2 282.5 307.1	37.5 40.9 43.8 46.2 48.2 50.0 53.1 55.9 58.3 60.5 62.5 64.3 65.9	25.0 26.1 27.1 27.9 29.5 31.3 32.9 34.3 35.4 36.5 37.5 39.2 40.9	12.5 13.6 14.6 15.4 16.2 16.6 17.1 17.3 17.4 17.5 18.1 18.8	50.0 54.5 58.4 61.6 65.2 68.3 71.1 73.5 75.9 78.6 81.9 84.9 87.6		
23	265.4 285.2 305.0 324.8 344.6 365.5 388.0 410.5 432.9 455.4 477.9 500.6 523.0 548.6 574.3 600.0	53.9 55.4 56.8 58.1 59.2 60.4 61.6 63.0 64.4 65.7 66.9 70.6 71.9 73.1	33.9 35.0 36.9 37.8 38.6 39.3 40.0 40.7 41.3 42.8 43.5 44.1 44.8 45.4	21.3	72.2 74.0 75.7 77.7 80.2 82.3 84.4 86.3 88.5 91.0 93.3 95.5 97.5 99.6 101.5 103.7	331.8 356.5 381.3 406.0 430.8 456.9 485.0 513.0 541.1 569.3 625.8 653.8 685.8 717.9 750.0	67.4 69.3 71.0 72.6 74.0 75.5 76.9 78.8 80.5 82.1 83.7 85.1 86.5 88.2 89.8 91.4	42.4 43.8 45.0 46.1 47.2 48.2 49.1 50.0 50.9 51.9 52.5 53.5 54.4 55.1 56.0 56.7	19.3 19.8 20.2 20.6 21.1 21.4 21.8 22.1 22.7 23.4 24.6 25.1 25.8 26.2 26.6	90.2 92.4 94.6 97.1 100.1 102.8 105.4 107.9 110.6 113.7 116.7 119.4 122.0 124.4 126.9 129.7		
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	623.6 655.6 684.6 713.6 771.6 800.6 829.8 858.6 887.6 918.8 950.9 983.1 1015.2 1047.4	74.3 75.4 76.8 78.4 79.4 80.6 81.7 82.8 83.8 85.0 86.1 87.2 88.4 89.3 90.5	46.0 46.8 47.5 48.9 49.5 50.1 50.7 51.4 52.1 52.8 53.5 54.1 54.8 55.4	22.3 22.6 22.9 23.2 23.4 23.7 23.9 24.2 24.5 24.9 25.2 25.5	105.9 108.0 110.0 112.1 114.3 116.5 118.6 120.7 122.7 124.8 126.8 126.8 131.0 133.3 135.6	1000.8 1037.3	107.7 109.0 110.4 111.8	57.5 58.5 59.4 60.2 61.1 61.9 62.6 63.4 64.2 65.1 66.0 66.8 67.6 69.2	27.5 27.9 28.3 28.6 29.0 29.3 29.6 29.9 30.2 30.6 31.1 31.5 31.9	132.3 135.0 137.6 140.2 142.9 145.6 148.3 150.9 153.4 156.0 158.5 161.0 163.6 166.6 169.6		

TABLE 7.—Continued

Maximum Moments, Shears, and Pier Reactions for Cooper's Standard Loadings

(Figures for One Rail)

			E40	1			E50			
Span	Max.	M	ax. Shea	ırs	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier
	Moment	End	1/4 Pt.	Cent.	React.	Moment	End	1/4 Pt.	Cent.	React.
545556575859606162636465666768697172737475767778798081828384858858868788	1497.5 1539.5 1581.5 1623.5	91.5 92.6 93.7 94.8 95.9 97.0 98.0 99.2 100.1 101.3 102.6 103.8 105.0 105.0 111.8 113.3 114.8 113.3 114.8 116.3 117.7 119.1 120.4 121.7 123.0 124.2 125.6 126.9 128.2 129.5 130.7 133.4 134.7 136.7	56.1 56.8 57.5 58.2 58.8 59.5 60.1 60.7 61.3 62.4 63.0 64.2 64.8 65.4 65.9 67.5 68.0 69.9 70.5 71.1 71.7 72.3 73.7 74.4 75.1 77.9 78.7	26.1 26.4 26.6 26.9 27.2 27.5 27.9 28.2 28.8 29.1 29.4 29.7 30.2 30.5 30.7 31.1 31.7 32.0 32.6 32.9 33.2 33.4 34.4 34.7 35.6 35.9 36.2 36.5	150.6 153.2 155.7 158.2 160.4 162.6 165.2 167.8 170.1	1351.8 1396.1 1440.5 1484.9 1529.2 1624.5 1672.9 1721.2 1769.5 1819.4 1871.9 1924.4 2081.9 2134.4 2186.6 2241.2 2292.4 2349.0 2407.3 2465.0 2523.9 2581.2 2640.4 2700.6 2820.9 2883.1 2945.4 3008.6 3074.5 3138.3 3269.9 3338.1	114 . 5 115 . 8 117 . 2 118 . 5 121 . 2 122 . 5 123 . 9 125 . 2 126 . 6 128 . 2 129 . 7 131 . 2 133 . 0 134 . 8 136 . 5 147 . 1 148 . 8 150 . 5 155 . 3 157 . 0 158 . 6 160 . 3 161 . 8 163 . 4 165 . 1 166 . 8 168 . 4	70.1 71.0 71.8 72.7 73.5 74.4 75.2 76.0 78.8 80.3 81.7 82.4 83.1 83.1 84.4 85.0 85.7 86.5 88.2 88.9 90.4 91.2 92.1 93.9 94.3 95.7 96.5	32.6 33.0 33.3 33.6 34.4 34.9 35.2 35.6 36.4 36.8 37.1 37.8 38.1 37.8 39.2 39.6 40.0 40.4 40.8 41.1 41.5 41.5 42.1 42.5 43.4 44.5 44.9 45.6	172.5 175.4 178.5 181.8 185.1 191.5 194.7 197.7 203.6 206.7 209.7 212.7 212.7 215.6 218.5 221.3 224.1 226.9 232.4 235.2 238.0 248.6 256.1 258.7 260.8 263.0 265.6 268.3 270.8 273.2
91 92 93 94 95	2723.0 2776.7 2831.5 2885.3 2939.5 2994.5	139.8 141.1 142.4 143.6	79.5 80.3 81.0 81.7 82.5 83.3	37.3 37.5 37.8 38.0 38.3	224.4 226.3 228.1 230.0	3539.3 3606.6	176.4 178.0 179.5	99.4 100.4 101.2 102.1 103.1 104.1	46.6 46.9 47.3 47.5	275.6 278.0 280.3 282.7 285.1 287.5
97	3049.0		84.2		231.8	3811.2		105.1		289.7

TABLE 7.—Continued

Maximum Moments, Shears and Pier Reactions for Cooper's Standard Loadings

(Figures for One Rail)

			E40			E50						
			1240					200				
Span	Max.	M	ax. Shea	ırs	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier		
	Moment	End	¼ Pt.	Cent.	React.	Moment	End	1/4 Pt.	Cent.	React.		
98	3106.5 3162.3 3219.9 3277.6 3335.9 3410.6 3475.2 3537.6 3600.3 3666.6 3745.3 3818.4 3886.8 4026.9 4099.0	148.8 150.0 151.2 152.4 153.7 156.1 157.3 158.5 159.6 160.8 162.0 163.2 164.4 165.5 166.7	85.0 85.8 86.6 87.3 88.1 88.8 90.3 90.9 91.7 92.4 93.2 93.2 94.6 95.3 96.0 96.8	39.1 39.4 39.6 39.9 40.1 40.4 40.6 41.1 41.3 41.6 42.0 42.2 42.5 42.8	233.6 235.4 237.2 238.9 240.6 242.4 244.2 246.0 247.8 249.6 251.4 253.1 254.8 256.5 258.2 259.9 261.6	4681.6 4773.0 4858.5 4947.7 5033.6 5123.8 5215.0	186.0 187.5 189.0 190.6 192.1 193.6 195.1 196.6 198.1 199.5 201.0 202.5 204.0 205.5 207.0 208.4	107.2 108.2 109.1 110.1 111.0 111.9 112.7 113.6 114.5 115.5 116.4 117.4 118.2 119.1 120.0 121.0	48.9 49.2 49.5 49.9 50.1 50.5 50.7 51.1 51.5 52.3 52.3 52.5 52.7 53.1 53.5	292.0 294.2 296.5 298.6 300.8 305.3 307.5 309.5 314.2 316.3 318.5 320.7 322.8 324.9		
115	4245.0 4318.8 4389.5 4463.8 4538.8 4614.1 4686.5 4762.7 4836.2 4917.4 4996.4 7062.3 9352.5	167.9 169.0 170.2 171.4 172.5 173.7 174.8 176.0 177.1 178.3 179.4 207.4 234.5 261.0	97.5 93.3 99.0 99.7 100.4 101.1 101.8 102.5 104.0 104.7 121.8 138.3 153.4	43.1 43.4 43.7 43.9 44.2 44.5 44.7 45.0 45.3 45.7 46.0 54.4 62.5 70.4	263.3 264.9 266.7 268.5 270.2 273.8 275.6 277.4 279.2 281.0 325.4 371.7	5306.2 5398.5 5486.9 5579.7 5673.5 5767.6 5858.1 5953.4 6045.2 6146.7 6245.5 8827.9	209.9 211.3 212.8 214.2 215.7 217.1 218.6 220.0 221.4 222.8 224.2 259.2 293.1 326.3	121.9 122.9 123.7 124.6 125.5 126.4 127.2 128.1 129.0 130.0 130.9 152.2 172.9 191.8	53.9 54.2 54.6 54.9 55.3 55.6 55.9 56.2 57.0 57.5 68.0 78.2	329,0 331.1 333.3 335.6 337.8 340.0 342.2 344.5 346.7 349.0 406.7 464.6 523.8		

NOTES. - Moments are given in thousand foot-pounds.

Shears are given in thousand pounds.

Pier reactions are given in thousand pounds and are for piers between two spans each equal to the tabulated span.

Panel Points

 ${\bf TABLE~8}$ ${\bf Maximum~Moments~for~Truss~Bridges-Cooper's~\it E50~for~One~Rail}$

MAXIMUM MOMENTS FOR TRUSS BRIDGES—COOPER'S E'50 FOR ONE RAIN
Moments Given in Thousands of Foot-Pounds

ls russ	t's						PANE	L LEN	GTHS				
Panels in Truss	Panel Points	8′ 0′′	8′ 6′′	9′ 0′′	9′ 6″	10′ 0′′	10′ 6″	11′0″	11′ 6″	12′ 0′′	12′ 6′′	13′ 0′′	13′ 6′
3	1	325	359	392	425	464	503	541	580	619	661	707	755
4	1 2	433 569	483 625	533 683	582 747	632 819	688 892	743 964	799 1037	859 1110	918 1189	982 1269	1046 1352
5	1 2	540 790	599 877	662 964	728 1051	794 1149	861 1255	930 1361	1001 1468	1071 1574	1140 1675	1217 1792	1298 1910
6	1 2 3	641 1008 1109	710 1115 1221	784 1228 1351	859 1347 1484	937 1466 1618	1017 1587 1767	1100 1719 1925	1186 1857 2070	1280 1997 2240	1375 2135 2407	1485 2289 2581	1600 2451 2760
7	1 2 3	731 1215 1425	812 1344 1577	896 1477 1739	984 1615 1910	1080 1758 2086	1184 1904 2269	1293 2070 2465	1411 2252 2667	1530 2441 2879	1645 2642 3100	1775 2849 3332	1906 3050 3560
8	1 2 3 4	819 1402 1716 1819	915 1553 1899 2030	1021 1709 2100 2240	1133 1872 2311 2465	1254 2061 2529 2700	1375 2273 2752 2946	1501 2490 2991 3205	1631 2708 3241 3471	1776 2933 3498 3743	1900 3165 3775 4025	2047 3405 4078 4344	2200 3649 4388 4681
9	1 2 3 4	621 1583 1997 2208	1039 1764 2215 2459	1162 1960 2451 2719	1287 2179 2700 2997	1418 2405 2986 3291	1556 2642 3276 3592	1697 2888 3570 3899		1997 3400 4194 4588	2145 3670 4532 4970	2309 3946 4887 5370	2478 4224 5242 5770
Panels in Truss	el						Pane	L LEN	GTHS				
Pan in T	Panel Points	14'0"	14' 6"	15′ 0′′	15' 6"	16' 0''	16' 6"	17' 0"	17' 6"	18' 0"	18' 6"	19' 0"	
3	1	803	850	900	952	1008	1060	1115	1170	1228	1285	1347	
4	1 2	1115 1441	1183 1529	1255 1624	1325 1721	1402 1820		1553 2030	1614 2134	1709 2240	1776 2349	1872 2465	
5	1 2	1389 2047	1480 2177	1581 2310	1680 2440				2123 3030	2242 3190	2355 3350	2477 3518	
6	1 2 3	1724 2616 2946	2792	1965 2986 3338	3175	3372		3775		2769 4194 4681	2910 4415 4948	3062 4650 5215	
7	1 2 3	2047 3263 3802	3485	3723	3958	4202	4450	4705	4958	3268 5218 6135	3434 5480 6460	3605 5748 6800	
8	1 2 3 4	2358 3900 4710 5034	4165 5040	4436 5380	4710 5720	4994 6072	5280 6430	5576 6806		3741 6180 7573 8163	3930 6487 7985 8595	4125 6805 8369 9043	
9	1 2 3 4	2651 4512 5617 6187	5993	5107 6390	5420 6790	5747 7204	6074 7620	6414 8054	3987 6755 8496 9490	4198 7108 8959 10010	4410 7463 9415 10530	4629 7830 9892 11065	

TABLE 8.—Continued

Maximum Moments for Truss Bridges—Cooper's E50 for One Rail Moments Given in Thousands of Foot-Pounds

Panei	Points	0	1	2	3	4		5	6	.7	8	-
SS						PANEL	LENGT	rhs				
Panels in Truss	Panel Points	19' 6"	20' 0''	20' 6"	21' 0"	21' 6"	22′ 0″	22' 6"	23 ′ 0″	23′ 6″	24' 0"	24' 6"
3	1	1404	1466	1527	1587	1653	1719	1788	1857	1927	1997	2066
4	1 2	1958 2581	2061 2700	2166 2821	2273 2946	2380 3074	2490 3205	2597 3338	2708 3471	2819 3607	2933 3743	3046 3883
5	1 2	2600 3685	2731 3943	2864 4144	3001 4347	3138 4555	3279 4767	3418 4978	3562 5193	3705 5415	3852 5640	3999 5865
6	1 2 3	3210 4885 5487	3362 5256 5746	3516 5501 6028	3678 5750 6321	3840 5998 6617	4008 6250 6921	4175 6501 7228	4349 6756 7538	4522 7011 7850	4700 7270 8166	4878 7525 8491
7	1 2 3	3778 6025 7140	3955 6326 7646	4130 6613 7990	4317 6914 8347	4505 7215 8710	4702 7530 9079	4897 7845 9448	5100 8173 9826	5303 8503 10207	5512 8842 10609	5721 9182 11017
8	1 2 3 4	4320 7125 8780 94,0	4525 7458 9234 9943	4727 7805 9530 10396	4939 8162 10070 10862	5150 8520 10515 11317	5373 8890 10993 11805	5592 9260 11475 12288	5829 9640 11976 12790	6061 10030 12472 13287	6300 10430 12981 13795	6540 10832 13490 14300
9	1 2 3 4	4850 8198 10372 11605	5)79 8578 10880 12172	5308 8970 11375 12735	5545 9378 11900 13310	5780 9790 12425 13880	6030 10216 12978 14472	6280 10640 13535 15068	6542 11082 14118 15684	6804 11525 14705 16300	7074 11985 15308 16930	7344 12448 15910 17560
s	. 92					Pani	EL LEN	GTHS				
Panels in Truss	Panel Points	25′ 0″	25′ 6′′	26' 0"	26' 6"	27′ 0′′	27′ 6′′	28′ 0″	28' 6"	29′ 0″	29′ 6′′	30′ 0′′
3	1	2135	2215	2289	2370	2451	2534	2616	2700	2792	2889	2986
4	1 2	3165 4025	3282 4170	3405 4344	3526 4501	3649 4681	3774 4858	3900 5034	4031 5215	4165 5398	4300 5580	4436 5768
5	1 2	4150 6093	4301 6371	4456 6552	4611 6783	4770 7017	4929 7250	5092 7492	5255 7736	5422 7984	5589 8232	5760 8482
6	1 2 3	5061 7794 8821	5245 8068 9153	5433 8352 9490	5622 8654 9828	5816 8960 10170	6010 9268 10514	6208 9580 10862	6408 9897 11208	6612 10218 11565	6817 10547 11925	7026 10880 12296
7	1 2 3	5936 9530 11444	6151 9875 11870	6373 10236 12312	$\begin{array}{c} 6595 \\ 10600 \\ 12752 \end{array}$	6823 10980 13203	7051 11357 13653	7286 11742 14112	7521 12125 14571	7762 12520 15039	8003 12918 15507	8250 13330 15984
8	1 2 3 4	6787 11244 14010 14820	7035 11655 14528 15340	7289 12080 15063 15875	7540 12508 15605 16413	7806 12950 16163 16965	8069 13392 16718 17514	8338 13850 17285 18075	8608 14308 17852 18635	8887 14780 18431 19210	9165 15250 19010 19795	9450 15730 19600 20406
9	1 2 3 4	7622 12925 16528 18205	7900 13400 17145 18850	8188 13890 17778 19515	8477 14380 18414 20180	8774 14888 19070 20870	9070 15400 19730 21557	9376 15930 20405 22260	9686 16460 21080 22955	9996 17005 21770 23678	10310 17547 22461 24405	10633 18100 23168 25170

TABLE 8.—Continued

Maximum Moments for Truss Bridges—Cooper's E50 for One Rail Moments Given in Thousands of Foot-Pounds

Panel	Points	0	1	2	3	- 1		5	6	7	- 8	9	
Panels in Truss	el el		PANEL LENGTHS										
Pan in T	Panel Points	30′ 6′′	31′ 0″	31′ 6″	32′ 0″	32′ 6″	33′ 0′′	33′ 6″	34′ 0′′	34′ 6″	35′ 0″	35′ 6″	
3	1	3080	3175	3276	3372	3471	3570	3672	3775	3877	3978	4080	
4	1	4573	4710	4852	4994	5137	5280	5428	5576	5725	5873	5923	
	2	5957	6147	6332	6516	6715	6915	7123	7331	7535	7740	7950	
5	1	5937	6113	6295	6477	6678	6849	7039	7228	7423	7617	7814	
	2	8734	8986	9241	9496	9749	10012	10291	10590	10891	11192	11495	
6	1	7238	7450	7671	7892	8120	8347	8581	8812	9050	9288	9628	
	2	11219	11558	11903	12248	12684	12979	13354	13729	14120	14510	14902	
	3	12668	13040	13418	13796	14180	14563	14952	15341	15745	16148	16654	
7	1	8501	8752	9009	9266	9536	9806	10081	10355	10637	10919	11203	
	2	13748	14165	14590	15015	15460	15885	16358	16810	17284	17758	18234	
	3	16474	16964	17466	17968	18475	18981	19508	20015	20545	21024	21606	
8	1	9740	10030	10326	10622	10931	11239	11557	11874	12200	12526	12856	
	2	16225	16720	17227	17733	18252	18770	19311	19852	20407	20961	21518	
	3	20206	20812	21432	22051	22685	23318	23960	24601	25261	25920	26585	
	4	21022	21638	22268	22898	23549	24200	24860	25531	26216	26901	27590	
9	1	10961	11288	11625	11961	12310	12658	13018	13378	13747	14116	14490	
	2	18672	19244	19832	20419	21019	21618	22239	22860	23503	24146	24795	
	3	23886	24603	25343	26083	26839	27595	28365	29135	29923	30710	31500	
	4	25943	26715	27498	28281	29096	29910	30741	31572	32431	33290	34155	

TABLE 9

MAXIMUM SHEARS FOR TRUSS BRIDGES—Cooper's E50 for One Rail Shears Given in Thousands of Pounds

Pane	ls		11	1 2		3 1	44	1 5		6	7	1 8		9
2	ssn.	-					P	ANEL I	ENGTH	s				
Dane	in Truss	Panel	8′ 0″	8′ 6″	9'0"	9' 6"	10′ 0′′	10′ 6″	11′ 0′′	11′ 6′′	12′ 0″	12′ 6″	13′ 0′′	13′ 6″
	3 4	1 2 1	40.6 7.3 54.1	42.1 8.0 56.7 25.4	43.5 8.8 59.1	44.8 9.5 61.3 28.6	46.4 10.0 63.1	47.9 11.0 65.5	49.1 11.8 67.4	50.4 12.5 69.4	51.6 13.2 71.6 34.4 7.9	53.0 13.7 73.6 35.6	54.3 14.3 75.5 36.7	55.9 14.9 77.6 37.7
	5	2 3 1 2 3	2.4 67.5 38.8	3.1 70.4 41.0	3.9 73.6 43.0	4.5 76.6 44.9	5.0 79.4 46.7	5.9 82.3 48.7	6.5 84.5 50.3	7.2 87.1 51.9	7.9 89.2 53.8	8.4 91.4 55.5 26.9 110.5	8.9 93.6 57.1	55.9 14.9 77.6 37.7 9.4 96.4 58.7 28.7 118.7 78.1 47.7
	6	1 2 3	80.1 52.7 30.2	83.5 55.3 33.5	86.9 57.9 34.0	90.1 60.5 35.6	93.6 62.9 37.4	96.9 65.5 39.0	100.1 67.8 40.8	103.1 70.1 41.9	7.9 89.2 53.8 25.9 106.7 72.1 43.4 20.2 127.5	110.5 74.2 44.9 21.1	114.3 76.3 46.3	118.7 78.1 47.7
	7	4 1 2 3 4	91.1 65.5 43.4	13.0 94.6 69.1 45.6	14.4 99.2 72.4 48.0	103.4 75.3 50.4	108.0 78.4 52.4	17.8 112.8 80.9 54.8	18.8 117 5 83.9 56.9	19.4 122.9 86.1 58.8	127.5 89.0 59.6	132.0	136.5 95.0 64.3	22.6 141.4 98.8 65.9 39.8
	8	5 1 2 3	40.6 7.3 54.1 23.5 2.4 67.5 38.8 16.3 80.2 11.5 91.1 65.5 43.4 24.1 8.5 101.9 78.2 55.8 36.4 19.5 7.4	18.0 83.5 55.3 33.5 13.0 94.6 69.1 45.6 26.0 9.6 107.6 81.7 59.0 38.5 21.3 7.9	10.7 113.6 85.2 61.9	11.7 119.3 89.1 64.5	12.8 125.4 92.5 67.4	13.8 131.0 96.0 69.6	14.9 136.4 99.8 72.3	15.5 141.9 104.1 74.4	16.1 147.2 108.4 76.8	92.0 62.0 37.4 16.9 152.3 112.6 79.5 53.7 31.7 13.8 172.0 132.9	54.3 14.3 75.5 86.7 93.6 57.1 27.8 114.3 76.3 46.3 21.9 136.5 95.0 64.3 38.6 17.7 157.4 116.7 82.2 55.3 32.8 14.5 177.6	98.8 65.9 39.8 18.4 162.9 121.0 85.0 56.7 33.9
	9	4 5 6 1 2 3 4	36.4 19.5 7.4 115.2 89.0 68.1 48.2 31.0 16.0	122.3 93.6 71.4 51.1	27.4 3.9 73.6 43.0 19.5 86.9 57.9 34.0 14.4 99.2 72.4 48.0 27.6 10.7 113.6 85.2 61.9 40.6 22.8 8.4 129.2 98.3 74.5 53.4.9	4.5 76.6 44.9 20.8 90.1 60.5 35.6 103.4 75.3 50.4 29.0 11.7 119.3 89.1 19.2 135.6 103.3 77.6 56.5 36.9 20.3	46.4 10.0 5.0 79.4 46.7 22.0 93.6 62.9 37.4 16.6 108.0 78.4 30.5 12.8 125.4 92.5 10.0 141.9 10.0 141.9 183.8 185.5	47.9 11.0 65.5 31.3 5.9 82.3 48.7 23.1 23.1 112.8 80.9 54.8 131.0 96.0 69.6 46.8 26.9 10.9 148.4 113.6 84.3	67.4 32.4 6.5 84.5 50.3 24.0 100.1 67.8 40.8 117.5 136.4 14.9 136.4 72.3 48.6 28.0 11.9 154.5 118.6 87.8	50.4 12.5 69.4 33.4 7.2 87.1 51.9 25.0 103.1 70.1 41.9 19.4 122.9 86.1 58.8 34.7 15.5 141.9 104.1 74.4 29.1 125.1 60.8 123.4 491.6 651.8	89.0 59.6 36.1 16.1 147.2 108.4 76.8 52.0 30.5 13.1 166.4 128.2 95.4 67.4	99.2 69.8	32.8 14.5 177.6 137.5 102.9 72.2 48.3	15.1 183.5 142.5 106.4 74.8
-		6	31.0 16.0	32.9 17.5	34.9	36.9 20.3	38.5	40.5 22.7	42.3 23.9	43.8 25.0	45.3 26.2	46.8 27.3	28.3	49.6 29.3
-	Panels in Truss	el					F	ANEL 1	LENGTH	s				
-	ran in 1	Panel	14' 0"	14' 6"	15′ 0″	15′ 6″	16′ 0′′	16′ 6″	17′ 0″	17′ 6′′	18′ 0′′	18' 6"	19′ 0′′	
	3 4	1 2 1	57.4 15.5 79.6	58.7 16.0 81.6	60.0 16.4 83.6	61.5 17.1 85.5 41.7 11.2 108.6 64.8	63.0 17.8 87.3	64.3 18.3 89.0	65.6 18.8 90.6 45.0 12.7 118.3 69.1	66.9 19.3 92.6	68.2 19.9 94.5 47.2	69.5 20.5 96.4	70.8 21.0 98.3	
	5	2 1 2 3 1 2	57.4 15.5 79.6 38.6 9.8 99.2 60.3 29.5 123.1 79.8	39.6 10.3 102.3 61.9	60.0 16.4 83.6 40.6 10.7 105.4 63.4 31.2 131.0	41.7 11.2 108.6 64.8	42.7 11.7 111.8 66.2	64.3 18.3 89.0 43.9 12.2 115.1 67.7 33.6 142.7 93.0	45.0 12.7 118.3 69.1	66.9 19.3 92.6 46.1 13.1 121.5 70.8	13.5 124.6 72.4	48.3 13.9 127.5 74.0	49.3 14.3 130.4 75.6	
	6	3 1 2 3	29.5 123.1 79.8 49.1	58.7 16.0 81.6 39.6 10.3 102.3 61.9 30.4 127.1 82.2 50.4	31.2 131.0 84.6 51.7	194.0	32 8 138.8 90.1 54.0	33.6 142.7 93.0 55.3	34.3 146.5 95.8 56.5	35 1 150 2 98.5 57.6	72.4 35.8 153.8 101.1 58.6	36.6 157.5 103.6 59.7	37.3 161.1 106.1 60.7	
	7	4 1 2 3	49.1 23.3 146.2 102.6 67.4	150.9	24.8 155.5 109.6 71.1	25.6 160.1 113.0 73.1	26.3 164.6 116.4 75.0	27.0 169.0 119.7 77.4	27.6 173.3 123.1 79.7	28.3 177.5 126.4 82.1	58.6 28.9 181.6 129.6 84.4	13.9 127.5 74.0 36.6 157.5 103.6 59.7 29.6 185.7 132.8 86.6 50.4 24.6 212.5 160.5 114.2 74.0	37.3 161.1 106.1 60.7 30.2 189.7 135.9 88.8 51.3	
	8	4 5 1 2 3	41.0 19.0 168.4 125.3 87.8	42.2 19.7 173.6 129.5	43.4 20 3 178.8 133.7	44.4 21.0 183.8 137.8	45.4 21.6 188.7 141.8	46.5 22.2 193.6 145.7	47.5 22.8 198.4 149.5	48.5 23.4 203.1 153.2	49.4 24.0 207.8 156.9	50.4 24.6 212.5 160.5	51.3 25.1 217.1 164.1 117.0 75.8	
	9	4 5 6 1 2 3 4 5	87.8 58.1 35.0 15.7 189.4 147.4 109.8 77.3 50.8 30.3	69.3 42.2 19.7 173.6 129.5 90.9 59.8 36.1 16.4 195.1 112.9 80.1 52.4 31.4	43.4 20 3 178.8 133.7 93.9 61.4 37.1 17.0 200.8 156.8 116.7 53.8 32.3	86.9 52.9 25.6 160.1 113.0 73.1 44.4 21.0 183.8 63.1 38.0 17.6 206.3 161.3 120.4 85.2 55.4 33.1	63.0 17.8 87.3 42.7 111.7 111.8 66.2 32.8 138.8 90.1 54.0 45.4 75.0 45.4 141.8 99.6 64.8 38.9 18.1 211.8 1211.8 76.9 121.8	55.3 27.0 169.0 119.7 77.4 46.5 22.2 193.6 145.7 102.6 66.7 39.9 18.7 217.3 170.1 127.6 90.1 58.6 94.8	95.8 56.5 27.6 173.3 123.1 79.7 47.5 22.8 198.4 149.5 105.6 68.5 40.9 19.2 222.7 174.5 131.0 92.5 60.2 35.7	35.1 150 2 98.5 57.6 28.3 177.5 126.4 82.1 48.5 23.4 203.1 153.2 108.5 70.4 41.7 19.8 228 0 178.8 134.4 94.9 61.9 36.5	84.4 49.4 24.0 207.8 156.9 111.4 72.2 42.5 20.3 233.2 183.0 137.7 97.3 63.5 37.2	114.2 74.0 43.4 20.8 238.4 187.2 141.0 99.9 65.3 38.0	21.3 243.6 191.3 144.2	
		6	30.3	31.4	32.3	33.1	33.9	34.8	35.7	36.5	37.2	38.0	38.7	1

TABLE 9.—Continued

Maximum Shears for Truss Bridges—Cooper's E50 for One Rail Shears Given in Thousands of Pounds

Panels		1	2		3 1-	4	5	6	1 7		8	9
ls						Pan	EL LEN	GTHS				
Panels in Truss	Panel	19′ 6″	20′ 0″	20′ 6′′	21′ 0″	21' 6"	22′ 0′′	22' 6"	23′ 0′′	23′ 6″	24′ 0′′	24' 6"
3	1 2	72.0 21.5	73.3 22.0	74.3 22.4 105.6	75.3 22.9	76.6 23.5	78.0 24.0	79.5 24.3 115.5 55.8 16.5	81.0 24.6	82.1 25.1	83.2 25.5	84.6 25.9 124.4
4	2 3	50.3 14.7	51.3 15.0	52.2 15.3	53.1 15.6	54.0 15.9	54.9 16.2	55.8 16.5	56.8 16.7	57.4 17.0	58.2 17.2	59.0
5	1 2 3	133.5 77.4	136.6 79.1	139.8 80.9	142.9 82.6 40.3	146.0 84.4 40.9	149.0 86.1	152.0 88.0 42.3	154.9 89.9 42.9	157.8 91.7 43 7	160.5 93.5 44.3	163.3 95.1 45.0
6	1 2 1 2 3 1 2 3 1 2 3 4	164.6 108.6 62.1	168.1 111.0 63.5	171.7 113.6 65.1	175.2 116.0 66.6	178.8 118.5 68.2	182.3 120.8 69.6	185.8 123.2 71.3	189.2 125.4 72.9	192.6 127.9 74.5	195.9 130.1 75.9	163.3 95.1 45.0 199.2 132.4
7	1 2	72.0 21.5 100.7 50.3 14.7 133.5 77.4 38.1 164.6 62.1 30.8 193.9 139.0 91.0 952.4	31.4 197.8 142.0	32.1 201.7 145.0	32.8 205.5 147.9	33.4 209.6 150.9	34.0 213.7 153.7	34.5 217.8 156.1	35.0 221.8 159.3	35.5 225.8 162.1	83.2 25.5 122.2 58.2 17.2 160.5 93.5 44.3 195.9 36.0 229.7 164.8 109.8 63.4	36.6 233.6 167.6
8	5 1 2	52.4 25.7 221.7 167.7	73.3 22.0 103.0 51.3 15.0 136.6 79.1 38.8 168.1 111.0 93.1 42.0 93.1 226.3 171.3 122.5	54.5 26.9 230.8 174.8	55.5 27.4 235.2 178.2	56.7 28.0 239.8 181.7	57.8 28.5 244.3 185.0	59.3 29.0 248.9 188.4	60.6 29.4 253.4 191.7	82.1 25.1 120.0 57.4 17.0 157.8 91.7 43.7 192.6 127.9 74.5 225.8 162.1 107.9 25.8 162.1 29.9 258.0 195.1 140.3 92.8 53.5	63.4 30.3 262.5 198.3 142.7 94.5	64.7 30.8 267.1 201.7
9	1 2 3 4 5 1 2 3 4 5 6 1 2 3 4	52.4 25.7 221.7 167.7 119.8 77.8 45.2 21.9	122.5 79.8 46.1 22.4 253.9 199.5	52.2 15.3 139.8 80.9 39.6 171.7 113.6 65.1 32.1 201.7 145.0 95.4 54.5 26.9 230.8 174.8 125.1 81.7 47.1 22.9 259.0	75.3 22.9 108.2 53.1 15.6 142.9 82.6 40.3 175.2 116.0 66.6 32.8 205.5 55.5 27.4 235.2 178.2 127.6 48.0 23.4 264.0 23.4 264.0 23.4 264.0 27.5 156.9 112.0 73.3	130.5 85.5 49.0 23.9	78.0 24.0 113.2 54.9 16.2 149.0 86.1 41.6 182.3 120.8 69.6 34.0 213.7 153.7 101.6 57.8 28.5 244.3 185.0 132.8 87.3 49.4 274.2 2215.5 163.0 116.6	152.0 88.0 42.3 185.8 123.2 71.3 34.5 217.8 156.1 103.8 59.3 29.0 248.9 1185.4 89.2 51.0 24.9 279.4 219.4 166.0 118.9	81.0 24.6 117.7 56.8 16.7 154.9 89.9 42.9 189.2 125.4 72.9 35.0 221.8 60.6 29.4 258.4 191.7 137.8 91.0 52.1 25.1 25.3	000 7	142.7 94.5 54.1 26.0	145.2 96.3 55.3 26.5
3	2 3 4 5 6	248.8 195.4 147.4 104.9 68.6 39.6	150.6 107.3 70.1	203.5 153.8 109.7 71.7 41.3	207.5 156.9 112.0 73.3	76.6 23.5 110.7 54.0 15.9 146.0 84.4 40.9 178.8 118.5 68.2 33.4 209.6 150.9 99.6 56.7 28.0 239.8 181.7 28.0 23.9 269.2 211.5 160.0 114.3 74.9	215.5 163.0 116.6 76.4	219.4 166.0 118.9 78.0	223.3 169.0 121.1 79.5 45.8	227.2 172.0 123.4 81.2 46.7	94.5 54.1 26.0 294.8 231.0 175.0 125.5 82.8 47.6	36.6 233.6 111.8 64.7 30.8 267.1 201.7 145.2 96.3 26.5 299.9 177.9 127.8 84.3 48.6
	0	39.0	40.4	41.5	42.1		43.9	44.9	1 40.0	40.7	1 41.0	40.0
Panels in Truss	Panel	25′ 0″	25′ 6″	26′ 0″	26' 6"	27' 0"	27' 6"	28' 0"	28' 6"	29′ 0″	29' 6"	30′ 0″
3	1 2	86.0 26.4	87.0 26.8	88.0	89.5	91.0	92.2 28.3 137.3	93.5 28.6 139.3	94.7 29.0 141.5	96.0	97.8 29.7 145.8	99.7 30.0
4	1 2	126.5 59.7	128.7 60.5	130.9 61.3	133.1 62.1	135.2 62.9	63.8	64 6	141.5 65.6 19.6	143.6 66.5	145.8 67.4	147.9
5	1 2	166.0	168.8	171.4	174.1 101.9	176.7 103.6	179.4 105.4	181.9	184.5	187.0	189.6	192.0 114.0
6	2 1 2 3 1 2 3 1 2 3	202.5 134.5 78.6	205.8 136.8 80.2	209.0 139.0 81.5	212.2 141.3 83.0	215.4 143.5 84.3	218.6 145.8 85.7	221.8 148.0 87.0	224.9 150.3 88.4	228.0 152.4 89.6	231.1 154.6 91.1	234.2 156.7 92.4
7	1 2	$\begin{vmatrix} 37.1 \\ 237.4 \\ 170.3 \end{vmatrix}$	37.6 241.4 173.2	38.1 245.2 175.9	38.6 249.1 178.8	39.1 252.8 181.5	39.6 256.6 184.3	40.0 260.3 187.0	40.5 264.1 189.8	41.0 267.7 192.5	41.7 271.4 195.3	42.4 275.0 197.9
	4 1 2 3 4 5	113.6 65.8 31.3	115.6 67.1 31.8	117.4 68.3 32.1	119.3 69.6 32.6	121.1 70.8 33.0	123.0 72.0 33.5	124.8 73.1 33.8	126.6 74.3 34.3	128.3 75.4 34.6	130.2 76.7 35.1	131.9 77.8 35.6
8	3	271.5 204.9 147.5	276.0 208.3 150.0	280.4 211.6 152.3	284.9 215.1 154.7	289.2 218.4 157.0	293.6 221.8 159.4	297.9 225.0 161.7	302.3 228.4 164.0	306.5 231.7 166.1	310.8 235.0 168.5	238.2 170.2
9	4 5 6 1 2 3 4	17.8 166.0 96.6 45.5 202.5 78.6 37.1 1237.4 170.3 113.6 65.8 31.3 271.5 204.9 147.5 98.0 56.4 26.9 238.8 180.8 180.8	128.7 60.5 18.1 168.8 98.3 205.8 136.8 80.2 37.6 241.4 173.2 115.6 67.1 31.8 276.0 208.3 150.0 99.8 57.4 27.3 310.0 242.8 183.8 183.8 57.4	88.0 27.2 130.9 61.3 18.4 171.4 100.1 100.1 139.0 81.5 38.1 1245.2 175.9 117.4 68.3 32.1 1280.4 27.6 315.0 246.7 138.0 14.2 17.6 18.1 24.2 17.6 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18	89.5 27.6 133.1 18.6 174.1 101.9 47.7 212.2 141.3 83.0 38.6 249.1 178.8 119.3 69.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32	91.0 28.0 135.2 62.9 176.7 103.6 48.3 215.4 143.5 84.3 39.1 252.8 181.5 70.8 33.0 289.2 2118.4 157.6 60.5 28.4 325.0 254.5 192.4 911.8 911	19.1 179.4 105.4 49.0 218.6 85.7 39.6 256.6 184.3 123.0 33.5 221.8 159.4 106.3 61.6 28.8 330.0 258.5 195.3 140.5 93.3	19.3 181.9 107.1 49.6 221.8 87.0 40.0 260.3 187.0 124.8 73.1 33.8 297.9 225.0 161.7 107.9 62.6 29.1 334.9 262.4 198.0 142.5 94.8	184.5 108.9 50.5 224.9 150.3 88.4 40.5 264.1 1189.8 126.6 74.3 34.3 302.3 228.4 164.0 109.5 63.7 266.3 200.9 144.6 96.2	29.4 143.6 66.5 19.8 187.0 110.6 51.3 2228.0 152.4 89.6 41.0 267.7 1192.5 128.3 75.4 34.6 306.5 231.7 1111.0 64.8 29.9 344.7 270.2 203.8 146.6 97.6 97.6	67.4 20.1 189.6 112.3 52.1 231.1 154.6 91.1 41.7 271.4 195.3 130.2 76.7 35.1 310.2 235.0 168.5 112.6 65.9 30.4 349.7 274.0 206.7 148.6 99.0	68.3 20.3 192.0 114.0 52.8 234.2 156.7 92.4 42.4 42.4 277.9 131.9 77.8 35.6 238.2 170.2 14.1 66.9 30.8 354.5 2277.8
	5 6	129.9 85.8 49.6	132.0 87.4 50.6	134.1 88.9 51.5	136.3 90.4 52.4	138.4 91.8 53.3	140.5 93.3 54.2	142.5 94.8 55.0	144.6 96.2 55.9	146.6 97.6 56.8	148.6 99.0 57.6	150.6 100.4 58.4

TABLE 9.—Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES—COOPER'S E50 FOR ONE RAIL Shears Given in Thousands of Pounds

Panels		1	2		3	4	5	6	1 7		8	9
Panels in Truss	- T					Pan	EL LEN	GTHS				
Pan in T	Panel	30′ 6″	31′ 0″	31′ 6″	32′ 0″	32′ 6″	33′ 0″	33′ 6″	34′ 0″	34' 6"	35′ 0″	35′ 6″
3	1 2	101.1	102.6 30.8	104.6 31.2	106.6 31.5	108.1 31.8	109.6 32.2	111.5 32.5	113.4 32.8	114.8 33.1	116.2 33.4	117.6 33.7
4	1 2 3	149.9 69.1 20.6	152.0 70.0 20.9	154.0 71.7 21.1	156.1 73.3 21.3	158.0 74.4 21.6	160.0 75.4 22.0	161.9 76.4 22.2	163.8 77.4 22.5	165.8 78.4 22.7	167.9 79.4 23.0	169.8 80.5 23.3
5	1 2	194.6 115.6	$197.1 \\ 117.3$	199.8 118.9	$202.4 \\ 120.4$	$205.0 \\ 122.0$	$207.5 \\ 123.5$	$210.1 \\ 125.0$	212.6 126.5	215.1 128.0	217.6 129.5	220.2 131.0
6	3 1 2	53.6 237.3 158.8	54.3 240.3 160.9	55.1 243.5 163.0	55.9 246.6 165.1	56.7 249.8 167.2	57.4 252.9 169.3	58.3 256.0 171.4	59.1 259.1 173.4	60.0 262.3 175.4	60.8 265.4 177.4	61.7 268.5 179.4
7	3 4 1	93.7 43.0 278.7	95.0 43.6 282.3	96.3 44.4 286.0	97.5 45.1 289.6	98.8 45.8 293.4	$100.0 \\ 46.4 \\ 297.1$	$101.3 \\ 47.2 \\ 300.9$	102.5 47.9 304.7	103.8 48.6 308.4	$105.1 \\ 49.3 \\ 312.0$	106.4 50.0 315.7
	2 3 4	200.6 133.6 79.0	203.3 135.3 80.1	205.9 137.1 81.3	208.5 138.9 82.4	$211.2 \\ 140.7 \\ 83.5$	213.8 142.5 84.5	216.4 144.3 85.6	218.9 146.0 86.6	$ \begin{array}{r} 221.5 \\ 147.9 \\ 87.7 \end{array} $	224.0 149.8 88.7	226.5 151.7 89.8
8	5 1 2	$36.1 \\ 319.3 \\ 241.4$	36.5 323.5 244.6	$37.0 \\ 327.8 \\ 247.8$	$37.5 \\ 332.0 \\ 251.0$	$ \begin{array}{c c} 38.0 \\ 337.0 \\ 254.2 \end{array} $	38.5 341.9 257.4	39.2 345.6 260.6	39.9 349.3 263.8	$40.5 \\ 353.2 \\ 266.9$	$ \begin{array}{r} 41.0 \\ 357.0 \\ 270.0 \end{array} $	41.6 360.9 273.2
	3 4 5	172.8 115.7 67.9	175.4 117.3 68.9	177.8 118.7 69.9	$180.1 \\ 120.3 \\ 70.9$	182.5 121.9 71.9	184.8 123.4 72.9	187.1 124.9 73.9	189.4 126.3 74.8	191.7 127.7 75.7	193.9 129.1 76.6	196.2 130.5 77.5
9	6 1 2	$ \begin{array}{r} 31.2 \\ 359.4 \\ 281.6 \end{array} $	31.5 364.2 285.4	$32.0 \\ 369.1 \\ 289.2$	32.5 373.9 293.0	32.9 378.7 296.8	33.3 383.5 300.5	33.8 388.5 304.3	34.3 393.5 308.0	34.7 398.4 311.8	35.1 403.3 315.5	35.5 408.3 319.2
	3 4 5	212.4 152.7 101.8	215.3 154.8 103.1	218.2 156.8 104.5	221.0 158.8 105.9	223.9 160.7 107.3	226.8 162.6 108.6	229.6 164.6 110.0	232.5 166.6 111.4	235.3 168.6 112.7	238.1 170.5 114.0	240.8 172.5 115.4
	6	59.4	60.3	61.2	62.0	62.9	63.8	64.7	65.5	66.3	67.1	67.8

TABLE 10

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E40 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT l1

		5	10	15	20	25	30	35	. 40	45	50	55	60
	250 225							10203	$11562 \\ 10515$				
	200							8364		10560			
			$\frac{2303}{2236}$								10339		
			2073						7742				11300
	150		1962					6480					10664
	140		1851					6093	6862		8450		10016
	130		1738					5703	6417	7161	7901	8635	
	120		1625					5307	5964	6658			
	110		1509					4905				7414	
01	100		1390										
2	95		1329					4290			5991	6546	
Segment	90		1264						4661	5202	5734	6263	6786
ğ	85		1200						4442	4936	5458	5958	6449
50	80		1134						4205	4690	5171	5646	6117
	75	551	1070	1573	2054	2530	3008	3489	3964	4422	4874	5320	5761
Longer	70	516	1003	1474	1923	2366	2805	3254	3706	4132	4553	4967	5378
g	65	482	931	1367	1792	2202	2602	3019	3437	3831	4221	4608	4993
3	60	453	864	1266	1649	2025	2389	2770	3155	3519	3884	4243	4597
	55	425	805	1172	1518	1856	2195	2546	2884	3214	3514	3859	
	50	397			1398			2336					
	45	367			1290			2136					
	40	335	635		1171				2160				
	35	302	570		1050								
	30	270	506				1294						
	25	235	440										
	20	200											
	15	150											
	10	100											
	5	50											
		1	1	1	1	1	1			1			

For l_1 and l_2 each > 142 ft. $M=l_1$ l_2+3800 $\frac{l_2}{L}$

TABLE 10.—Continued

Maximum Bending Moments in Girder Bridges Without Floor-Beams, Cooper's E40 Loading

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
250	18327	19675	21062	22421	23766	25084	26364	27660	30152	32591	35033	37455
225					21569							
200					19360							
175					17134							
160					15789							
150					14887							
140	10790		12395		13980							
130	10088	10857	11594		13069							
120	9380	10100	10786		12073							
110	8666	0000	9972		11226							
100	7963	8567	9150	9738		10829						
95		8182	8737	9296		10334						
90	7303		8321	8851	9352							
85	6943	7428	7917	8404	8876							
80	6582	7043	7500	7954								
75		6629	7057									
70		6197										
65	5374											

For l_1 and l_2 each > 142 ft. $M = l_1 l_2 + 3800 \frac{l_2}{L}$

TABLE 11

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S, E50 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT L

		5	10	15	20	25	30	35	40	45	50	55	60
	250.						11025						
	225.		3461				10043		13144				
	200.		3131				9052	10456		13200			
	175.		2795				8048	9288	10489				
	160.		2591				7437	8578		10798			
	150.		2453				7025	8100		10187			
			2314				6609	7617	8578			11545	
	130.	1114	2173	3227	4242	5239	6189	7129		8951			11704
	120.		2031				5760	6634	7455	8322	9181	10035	10880
	110.		1886				5325	6131	6892	7685	8478	9268	10048
4	100.		1737				4887	5618	6316	7063			
	95.		1661				4663	5363	6080	6789			
en	90.		1580				4437	5143	5826	6502	7168	7829	8482
Ĕ	85.		1500				4206	4904		6170			
Segment	80.		1418				4000		5256	5862			
∞	75.		1337				3760	4361	4955	5528	6093	6650	
er	70.		1254				3506	4068	4632	5165		6209	
ng	65.	602	1164	1709	2240	2753	3253	3774	4296	4789	5276	5760	6241
Longer	60.		1080				2986		3943	4399	4855	5304	
_	55.	531	1006	1465	1897	2320	2744	3182	3605	4017	4392	4824	
	50.	496		1364			2529	2920		3660			
	45.	459		1256				2670	3005	3336			
	40.	419		1147			2086	2401	2700				
	35.	377		1024				2134					
	30.	338		901		1386	1617						
	25.	294		778		1182							
	20.	250	466	647	820								
	15.	187	375	513									
	10.	125	250										
	5.	62											
											7		

For l_1 and l_2 each > 142 ft. $M = 1.25 \ l_1 \ l_2 + 4750 \ \frac{l_2}{L}$

TABLE 11.—Continued

Maximum Bending Moments in Girder Bridges Without Floor-Beams, Cooper's E50 Loading

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
250	22909	24594	26327	28026	29707	31355	32955	34575	37690	40739	43791	46819
225	20799	22327	23904	25439	26961	28446	29885	31347	34144	36878	39614	42327
	18674											
175	16530											
160					19736							
	14359											
140	13488											
130	12610				16336							
120					15091							
110					14033							
100	9954				12867							
95 90	000-				12280							
85		9285			$11690 \\ 11095$							
80			000									1
75				0010							i	1
70		7746						1			i .	
65	6718	10					i .				1	
50	0.10											

or l_1 and l_2 each > 142 ft. M=1.25 l_1 l_2 + 4750 $\frac{l_2}{L}$

TABLE 12

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E60 LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT l1

						SHOR	TER SEC	MENT (1				
		5	10	15	20	25	30	35	40	45	50	55	60
Segment <i>l</i> ₂	225 2 200 .75 .60 .50 .40 1 30 1 10 1	2302 2106 1909 1709 1579 1505 1421 1337 1250 1162 1070 1024 974 925 876 827 774 722 679 637 595	4547 4153 3757 3757 3354 3109 2944 2777 2263 2084 1993 1896 1800 1702 1604 11505 1397 1296 1207 1124 1038 953 856 660	6772 6184 5591 4990 4622 4375 4126 3872 3083 2945 22052 2051 1898 1637 1507 1507 1376 1229 1081 934 776 616	8969 8183 7390 66584 66095 5765 5430 55430 4034 33850 3382 2276 2096 1757 1574 1378 1181 1984	11117 10136 9146 8144 7534 7123 6707 6287 5860 5425 4980 4753 4524 4282 4042 3796 3304 3037 2784 2569 2351 2129 1908 1663 1418	13230 12052 10862 9658 8924 8430 7931 7427 6912 6390 5864 5596 5324 5047 4800 4512 4207 3903 3583 3293 3035 2771 2503 2234 1940	15305 13932 12547 11146 9720 9140 8555 7961 7357 6742 6436 6172 5885 5573 5233 4882 4529 4156 3818 3504 3204 2881 2561	17342 15773 14190 12587 11612 10956	19374 17615 15840 12958 12224 11486 10741 9986 9222 8476 8147 7802 7404 7034 6634 6198 5747 5279 4820 4392	21418 19464 17497 15509 14303 13492 12674 11851 11017 10174 9352 8987 8602 8188 7757 7312 6829 6331 5826 5270 4829	23442 21298 19139 16958 15636 14749 13854 12942 11122 10219 9820 9395 8938 8470 7451 6912 6365 5789	25474 23134 20773 18400 16950 15996 15024 14045 13056 12058 11081 10644 10178 9673 9175 8641 8068 7489 6895
					1		1	1		1	-		1

For l_1 and l_2 each > 142 ft. $M=1.5\ l_1l_2+5700\ \frac{l_2}{L}$

TABLE 12.—Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E60 LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
	27491											
	24959											
	22409											
	19836											
	18277											
	17231											
40	16186	17412	18593	19810	20970	22082	23146	24253	26312	28306	30305	32280
130	15132	16285	17390	18523	19603	20634	21619	22651	24558	26400	28250	
120	14070											
110	12998			15924								
100	11945	12851	13726	14608								
95			13105			15500						
90	10955	11725		13277								
85	10415			12606								
80	9874			11932								
75	9295											
70	8684	9295									,.	
65	8062											

For l_1 and l_2 each >142 ft. $M = 1.5 l_1 l_2 + 5700 \frac{l_2}{L}$

Values in Thousands of Pounds per Rail

					SHORT	ER SE	GMENT	l_1					
		0	5	10	15	20	25	30	35	40	45	50	5ŏ
	250	314	314	315	318	322	326	329	332	336	338	342	346
	$225\ldots$	287	287	290	294	298	301	304	306	309	312	317	321
	200	261	261	263	268	271	275	278	281	284	287	292	296
	175	234	234	236	241	244	248	251	254	258	262	266	269
	160	218	218	220	225	228	232	236	238	242	246	250	254
	150	207	207	210	214	218	222	225	229	231	234	239	244
	140	196	196	198	203	206	210	214	218	220	224	229	234
	130	185	185	187	192	196	201	203	208	210	214	219	224
	120	174	174	176	181	184	189	192	196	198	204	208	213
l_2	110	162	162	165	170	173	178	181	185	188	193	198	202
Segment	100	150	150	153	158	162	166	170	174	177	182	187	192
ne.	95	144	144	146	151	155	160	163	168	173	178	182	188
<u> </u>	90	137	137	140	146	150	154	158	163	168	174	178	183
Se	85	131	131	134	139	142	148	152	158	163	168	174	178
	80	124	124	127	133	137	142	146	153	158	163	168	174
Longer	75	118	118	122	126	130	135	140	146	152	158	162	167
on	70	110	110	114	120	124	128	134	139	146	150	156	162
H	65	104	104	107	112	118	122	126	133	139	144	149	155
	60	98	98	101	106	110	115	119	125	131	137	142	148
	55	93	93	95	99	103	108	113	118	125	130	134	141
	50	87	87	90	94	98	102	108	114	118	124	129	
	• 45	82	82	85	90	93	98	102	109	114	118		
	40	75	75	79	84	88	92	98	102	108			
	35	69	69	74	78	82	87	92	98				
	30	63	63	67	72	77	82	86				<i>:</i>	
	25	57	57	62	66	71	76						
	20	50	50	56	60	66							
	15	40	40	50	55								
	10	30	30	40									
	5	20	20		,						٠		

For l_1 and l_2 each >142 ft. $R=L+\frac{3800}{l_1}$

TABLE 13.—Continued

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E40 Loading

Values in Thousands of Pounds per Rail SHORTER SEGMENT Is

		60	65	70	75	80	85	90	95	100	110	120	130	140
	250	350	356	359	365	370	374	379	382	387	395	402	410	417
	225	326	330	334	340	345	350	354	358	362	370	377	385	392
	200	300	305	309	314	320	324	329	333	337	345	352	359	367
	175	274	279	284	290	294	300	303	308	312	319	327	334	342
23	160	258	264	269	274	280	284	289	293	297	305	312	320	328
+2	150	248	254	259	264	269	274	278	282	287	295	302	310	318
er	140	238	242	249	253	259	264	270	273	277	284	292	299	308
Segment	130	229	233	239	243	250	254	258	262	267	274	282	290	
Se	120	218	222	228	233	239	242	248	253	257	265	272		
	110	207	212	218	223	230	234	238	243	247	255			
ge	100	197	202	208	214	219	224	229	233	238				
Longer	95	192	198	203	208	214	219	223	229					
7	90	188	194	198	203	209	214	218						
	85	183	189	194	198	204	209							
	80	178	184	188	194	199								
	75	173	178	183	188									
	70	166	171	178										
	65	160	165								• • •			
	60	153										• • •		

For l_1 and l_2 each > 142 ft. $R = L + \frac{3800}{l_1}$

TABLE 14 $\begin{tabular}{ll} Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's \\ \hline \it E50 Loading \end{tabular}$

Values in Thousands of Pounds per Rail
Shorter Segment I₁

	,	,						-		,		(,
		0	5	10	15	20	25	30	35	40	45	50	55
	250	392	392	394	398	403	407	411	415	420	423	428	432
	225	359	359	362	367	372	376	380	383	386	390	396	401
	200	326	326	329	335	339	344	347	351	355	359	365	370
	175	293	293	295	301	305	310	314	318	323	327	332	336
	160	273	273	275	281	285	290	295	298	302	307	313	318
	150	259	259	262	267	272	277	281	286	289	293	299	305
	140	245	245	248	254	258	263	268	273	275	280	286	293
	130	231	231	234	240	245	251	254	260	262	268	274	280
	120	217	217	220	226	230	236	240	245	248	255	260	266
	110	202	202	206	212	216	222	226	231	235	241	247	253
2	100	187	187	191	197	202	208	212	218	221	227	234	240
nt	95	180	180	183	189	194	200	204	210	216	222	228	235
ne	90	171	171	175	182	187	192	197	204	210	218	223	229
Segment	85	164	164	168	174	178	185	190	198	204	210	217	223
$\tilde{\mathbf{x}}$	80	155	155	159	166	171	177	183	191	197	204	210	217
	75	147	147	152	158	163	169	175	183	190	197	203	209
Longer	70	138	138	143	150	155	160	167	174	182	188	195	202
Q	65	130	130	134	140	147	152	158	166	174	180	186	194
\vdash	60	123	123	126	132	137	144	149	156	164	171	178	185
	55	116	116	119	124	129	135	141	148	156	162	168	176
	50	109	109	112	118	122	128	135	142	148	155	161	
	45	102	102	106	112	116	122	128	136	142	148		
	40	94	94	99	105	110	115	122	128	135			
	35	86	86	92	98	103	109	115	122				
	30	79	79	84	90	96	102	108					
	25	71	71	77	83	89	95						
	20	63	63	70	75	82							
	15	50	50	62	69								
	10	38	38	50				,					
	5	25	25									1	
			1		1	1			1				

For l_1 and l_2 each >142 ft. $R=1.25~L+\frac{4750}{l_1}$

TABLE 14.—Continued

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E50 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	85	90	95	100	110	120	130	140
250	437	445	449	456	463	468	474	478	484	494	502	512	521
225	407	413	418	425	431	437	442	448	452	462	471	481	490
200	375	381	386	393	400	405	411	416	421	431	440	449	459
175	343	349	355	362	368	375	379	385	390	399	409	418	427
160	323	330	336	343	350	355	361	366	371	381	390	400	410
150	310	317	324	330	336	343	348	353	359	369	378	387	397
140	298	303	311	316	324	330	337	341	346	355	.365	374	385
130	286	291	299	304	312	317	323	328	334	343	352	362	
120	272	278	285	291	299	303	310	316	321	331	340		
110	259	265	273	279	287	292	298	304	309	319			
100	246	253	260	267	274	280	286	291	296				
95	240	247	254	260	267	274	279	286					
90	235	242	248	254	261	268	273						
85	229	236	242	248	255	261							
80	223	230	235	242	249	1							
75	216	222	229	235									
70	208	214	222										
65	200	206											
60	191												

For l_1 and l_2 each >142 ft. $R=1.25~L+\frac{4750}{l_1}$

TABLE 15

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E60 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

		0	5	10	15	20	25	30	35	40	45	50	55
	250	470	470	473	478	484	488	493	498	504	508	514	518
	$225 \dots$	431	431	434	440	446	451	456	460	463	468	475	481
	200	391	391	395	402	407	413	417	421	426	431	438	444
	175	352	352	354	361	366	372	377	382	388	392	398	403
	160	328	328	330	337	342	348	354	358	362	368	376	382
	150	311	311	314	320	326	332	337	343	347	352	359	366
	140	294	294	298	305	310	316	322	328	330	336	343	352
	130	277	277	281	288	294	301	305	312	314	322	329	336
	120	260	260	264	271	276	283	288	294	298	306	312	319
	110	242	242	247	254	259	266	271	277	282	289	296	304
61	100	224	224	229	236	242	250	254	262	265	272	281	288
t 12	95	216	216	220	227	233	240	245	252	259	266	274	282
- Pu	90	205	205	210	218	224	230	236	245	252	262	268	275
Segment	85	197	197	202	209	214	222	228	238	245	252	260	268
50	80	186	186	191	199	205	212	220	229	236	245	252	260
ŭ	75	176	176	182	190	196	203	210	220	228	236	244	251
Longer	70	166	166	172	180	186	192	200	209	218	226	234	242
26	65	156	156	161	168	176	182	190	199	209	216	223	233
Q	60	148	148	151	158	164	173	179	187	197	205	214	222
\vdash	55	139	139	143	149	155	162	169	178	187	194	202	211
	50	131	131	134	142	146	154	.162	170	178	186	193	
	45	122	122	127	134	139	146	154	163	170	178		
	40	113	113	119	126	132	138	146	154	162	1.0		
	35	103	103	110	118	124	131	138	146	1			
	30	95	95	101	108	115	122	130					
	25	85	85	92	100	107	114	1					
	$\begin{vmatrix} 20 \\ 20 \\ \ldots \end{vmatrix}$	76	76	84	90	98							
		60	60	74	83								
	15		46		00								
	10	46		60									
	5	30	30										
						1	-			-			-

For l_1 and l_2 each >142 ft. $R=1.5~L+\frac{5760}{l_1}$

TABLE 15.—Continued

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E60 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	85	90	95	100	110	120	130	140
250	524	534	539	547	556	562	569	574	581	593	602	614	625
225	488	496	502	510	517	524	530	538	542	554	565	577	588
200	450	457	463	472	480	486	493	499	505	517	528	539	551
175	412	419	426	434	442	450	455	462	468	479	491	502	512
160	388	396	403	412	420	426	433	439	445	457	468	480	492
150	372	380	389	396	403	412	418	424	431	443	454	464	476
140	358	364	373	379	389	396	404	409	415	426	438	449	462
130	343	349	359	365	374	380	388	394	401	412	422	434	
120	326	334	342	349	359	364	372	379	385	397	408		
110	311	318	328	335	344	350	358	365	371	383			
100	295	304	312	320	329	336	343	349	356				
95	288	296	305	312	320	329	335	343					
90	282	290	298	305	313	322	328						
85	275	283	290	298	306	313							
80	268	276	282	290	299								
75	259	266	275	282									
70	250	257	266										
65	240	247											
60	229												

For l_1 and l_2 each >142 ft. $R=1.5~L+\frac{5700}{l_1}$

 ${\bf TABLE~16}$ Equivalent Uniform Loads for Cooper's $\it E40$ Loading

Values in Pounds per Lineal Foot per Rail

250					S	HORTE	R SEG	MENT	<i>l</i> ₁ .					
225.			0	5	10	15	20	25	30	35	40	45	50	55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Segment	225. 200. 175. 160. 150. 140. 130. 120. 110. 100. 95. 90. 85. 80. 75. 70. 65. 60. 55.	2500 2550 2610 2680 2730 2760 2800 2800 2940 3020 3050 3050 3110 3140 3140 3190 3270 3370	2450 2540 2540 2610 2630 2670 2770 2770 2810 2850 2890 2920 2940 2940 2940 3020 3090	2430 2460 2550 2550 2620 2670 2710 2740 2810 2810 2820 2820 2870 2870 2870 2870 2870 287	2410 2450 2540 2550 2590 2620 2650 2770 2770 2780 2780 2780 2780 2810 2810 2810 2820 2820 2820	2380 24300 2510 2550 2580 2610 2640 2690 2720 2720 2740 2750 2760 2760 2760	25 2370 24400 24400 25540 25580 2660 2670 2680 2710 2700 2700 2700 2700 2700	2350 2380 2480 24420 25200 2520 25400 2520 2630 2630 2670 2670 2670 2670 2670 2670 2670 267	2330 2360 2390 2420 2450 2460 2510 2530 2550 2660 2660 2660 2660 2660 2660	2310 2340 2370 2420 2420 2430 2450 2470 2500 2530 2560 2620 2640 2650 2650 2630 2630 2630 2630	2300 2320 2350 2380 24400 2420 2430 2450 2460 2510 2570 2580 2620 2620 2620 2620 2600	2290 2310 2340 2360 2380 2400 2420 2430 2450 2500 2550 2570 2580 2600 2600 2690 2590 2590	2270 2300 2320 2340 2370 2380 2400 2420 2430 2460 2500 2550 2550 2580 2580 2580 2580 258
	I	55	3370 3490 3630 3770 3960 4200 4540 5000 5336 6000	3090 3180 3260 3350 3450 3610 3770 4000 4000	2930 3000 3080 3180 3260 3380 3520 4000 4000	2840 2910 2980 3060 3120 3200 3320 3450 3650	2760 2800 2870 2930 3010 3060 3150 3280	2700 2740 2780 2840 2900 2960 3020	2660 2700 2740 2780 2840 2880	2650 2670 2710 2740 2790	2620 2630 2670 2700	2600 2600 2640	2560 2580	2550

For l_1 and l_2 each >142 ft. $q=\left(2.0+\frac{7600}{l_1L}\right)1000$

TABLE 16.—Continued

Equivalent Uniform Loads for Cooper's E40 Loading

Values in Pounds per Lineal Foot per Rail

	1	1	1	1			1	1	1	1		1	
	60	65	70	75	80	85	90	95	100	110	120	130	140
$250\ldots$	2260	2260	2250	2250	2240	2230	2220	2220	2210	2200	2180	2160	2140
$225\ldots$													
200	2310	2300	2290	2290	2280	2280	2270	2260	2250	2230	2200	2180	2160
175	2340	2320	2320	2320	2310	2300	2290	2280	2270	2240	2210	2200	2180
160	2350	2340	2340	2340	2330	2320	2310	2300	2280	2260	2230	2210	2180
150	2370	2350	2360	2350	2340	2340	2330	2300	2300	2270	2240	2220	2190
140	2380	2380	2370	2360	2360	2350	2340	2320	2310	2280	2250	2220	2200
130	2400	2390	2390	2380	2380	2370	2350	2340	2330	2290	2260	2230	
120	2420	2410	2410	2400	2400	2370	2370	2350	2340	2300	2270		
110	2440	2420	2420	2420	2420	2400	2390	2380	2350	2320			
$100\ldots$	2460	2460	2450	2440	2440	2420	2410	2390	2380				
95	2500	2480	2460	2460	2450	2440	2420	2400					
90	2510	2500	2480	2460	2460	2450	2430						
85	2530	2510	2500	2490	2470	2460							
80	2550	2540	2520	2500	2490								
75	2560	2540	2530	2510									
70													
$65\ldots\ldots$													
60													
	(

For
$$l_1$$
 and l_2 each >142 ft. $q = \left(2.0 + \frac{7600}{l_1 L}\right) 1000$

TABLE 17

EQUIVALENT UNIFORM LOADS FOR COOPER'S E50 LOADING

Values in Pounds per Lineal Foot per Rail

				Si	HORTE	R SEGI	MENT	l_1					
		0	5	10	15	20	25	30	35	40	45	50	55
	250												2840
	225	3190	3120	3080	3060	3040	3000	2980	2950	2920	2900	2890	2870
	200	3265	3180	3130	3110	3080	3050	3020	2990	2960	2940	2920	2900
	175												2930
	160	3410	3290	3240	3210	3170	3140	3100	3060	3020	3000	2980	2960
	150	3455	3340	3270	3240	3210	3170	3130	3080	3040	3020	3000	2980
	140	3505	3380	3305	3275	3230	3195	3150	3110	3064	3040	3018	3000
	130	3560	3420	3340	3310	3260	3225	3175	3135	3085	3060	3039	3020
	120	3620	3460	3385	3350	3295	3255	3200	3160	3106	3080	3060	3040
12	110	3680	3510	3430	3385	3330	3285	3225	3185	3133	3105	3083	3065
t	100	3750	3560	3470	3425	3360	3320	3260	3210	3158	3140	3117	3095
Segment	95	3780	3600	3500	3445	3375	3340	3275	3225	3200	3175	3153	3130
E	90	3810	3610	3510	3455	3395	3350	3290	3265	3237	3210	3186	3165
è	85	3850	3650	3530	3470	3405	3370	3300	3295	3266	3225	3210	3185
	80	3885	3650	3545	3480	3415	3385	3335	3315	3284	3255	3232	3210
eg.	75												3225
Longer	70	3945	3680	3585	3510	3435	3380	3340	3320	3308	3280	3252	3225
ĭ	65	3990	3700	3580	3505	3445	3375	3335	3325	3305	3270	3246	3220
	60	4085	3780	3595	3515	3435	3375	3315	3300	3286	3260	3237	3215
	55	4215	3860	3660	3550	3450	3380	3325	3305	3277	3245	3194	3190
	50	4360	3970	3750	3635	3495	3425	3370	3335	3293	3250	3219	
	45	4540											
	40	4715	4190	3975	3825	3660	3550	3475	3430	3375			
	35	4945	4310	4080	3900	3760	3630	3545	3485				
	30	5255											
	25	5680	4710	4400	4150	3935	3780						
	20	6250	5000	4660	4315	4100							
	15	6670	5000	5000	4560								
	10	7500	5000	5000									
	5	10000	5000	• • • •	• • • •							• • • •	
								,	0 = 0	- \			

For l_1 and l_2 each >142 ft. $q = \left(2.5 + \frac{9500}{l_1 L}\right) 1000$

TABLE 17.—Continued

Equivalent Uniform Loads for Cooper's E50 Loading

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	85	90	95	100	110	120	130	140
250	2830	2820	2810	2810	2800	2790	2780	2770	2760	2750	2720	2700	2680
225	2860	2850	2840	2840	2830	2820	2810	2800	2780	2770	2730	2710	2690
200	2890	2870	2860	2860	2850	2850	2840	2820	2810	2790	2750	2720	2700
175	2920	2900	2900	2900	2890	2880	2860	2850	2840	2800	2760	2750	2720
160	2940	2930	2920	2920	2910	2900	2890	2870	2850	2820	2790	2760	2730
150	2960	2940	2950	2940	2930	2920	2910	2880	2870	2840	2800	2770	2740
140	2980	2965	2960	2950	2950	2940	2920	2900	2890	2850	2810	2775	2750
130	3000	2985	2985	2975	2970	2955	2940	2920	2905	2860	2820	2785	
120	3020	3005	3005	2995	2995	2960	2960	2940	2920	2880	2835		
110	3045	3030	3030	3020	3015	3000	2985	2965	2940	2895			
100	3080	3065	3060	3050	3045	3030	3010	2985	2965		l		
95	3115	3095	3075	3065	3060	3050	3020	3001					
90	3140	3120	3100	3080	3075	3060	3035						
85	3160	3140	3120	3105	3090	3070							
80	3185	3165	3145	3125	3110								
75	3200	3180	3155	3140									
70	3200	3180	3160										
$65\ldots\ldots$	3200	3180											
60	3190												

For l_1 and l_2 each >142 ft. $q = \left(2.5 + \frac{9500}{l_1 L}\right) 1000$

TABLE 18 ${\bf Equivalent~Uniform~Loads~for~Cooper's~\it E60~Loading}$

Values in Pounds per Lineal Foot per Rail
SHORTER SEGMENT 11

		0	5	10	15	20	25	30	35	40	45	50	55
	250						3550						
	225						3600						
	$200\ldots$						3660						
	175						3730						
	160						3770						
	150						3800						
	140						3840						
	130						3850						
	120						3910						
	110						3950						
31	100						3980						
	95						4010						
Segment	90						4020						
Ē.	85						4040						
50	80						4070						
	75	4700	4400	4280	4200	4120	4060	4010	4000	3960	3940	3900	3870
Longer	70	4730	4420	4310	4210	4130	4060	4010	3980	3970	3940	3900	3870
Ē	65						4060						
3	60						4060						
	55						4060						
	50						4120						
	45						4180						
	40						4260						
	35						4360						
	30						4440						
	25						4540						
	20												
	15	8000	6000	6000	5470								
		9000											
	$5 \dots$	12000	6000										

For l_1 and l_2 each >142 ft. $q = \left(3.0 + \frac{11400}{l_1 L}\right) 1000$

TABLE 18.—Continued

Equivalent Uniform Loads for Cooper's E60 Loading

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT l1

	1	1		1	I	1		i			1	1	
	60	65	70	75	80	85	90	95	100	110	120	130	140
250	2400	2200	2270	2270	2260	2250	3340	3390	2210	3300	3260	3240	3990
225													
200													
175													
160		3520											
150													
140													
130	3600	3590	3580	3570	3560	3550	3550	3500	3490	3430	3380	3350	
120	3620	3610	3600	3590	3590	3550	3550	3530	3500	3460	3410		
110	3650	3640	3640	3630	3620	3600	3590	3560	3530	3480			
100													
95													
90													
85													
80													
<u>75</u>													
70													
$65\ldots\ldots$													
60	3830											,	

For l_1 and l_2 each > 142 ft. $q = \left(3.0 + \frac{11400}{l_1 L}\right) 1000$

TABLE 19

Influence-Line Ordinates for M for Girder Bridges Without Floorbeams

Values of $rac{l_1 l_2}{L}$

			01	TORTE	· DEGI	dent (-					
	5	10	15	20	25	30	35	40	45	50	55	60
250	4.90 4.889 4.889 4.889 4.889 4.889 4.769 4.76 4.774 4.71 4.69 4.67 4.64 4.58 4.55 4.50 4.44 4.71 4.29 4.17 4.29 4.17 4.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5	9.62 9.52 9.52 9.52 9.52 9.52 9.52 9.52 9.52 9.54 9.55 9.34 9.29 9.29 9.29 9.29 9.55 9.50	14.06 13.97 13.83 13.70 13.64 13.55 13.44 13.33 13.19 13.05 12.95 12.76 12.63 12.50 11.79 11.53 11.25 10.91 10.00 9.38 8.58 7.50	18.4 17.9 17.8 17.6 17.5 17.3 17.2 16.9 16.7 16.5 16.4 16.2 11.3 13.9 11.3 13.9 12.0 11.1 10.0	22.52.22.21.99 (21.55.21.22.1.6.71.22.1.6.71.6.71.6.71.6.71.6	26.5 26.1 25.6 25.3 25.3 25.3 22.4 24.4 24.0 23.1 22.8 21.5 20.5 21.0 20.5 21.5	30.3 20.9 29.22 29.2 228.7 28.4 4 28.0 0 27.6 25.9 25.6 25.2 24.8 3 23.9 23.4 4 20.6 19.7 17.5	33.9 33.3 32.6 31.6 31.1 30.6 31.1 30.6 29.3 28.6 28.1 27.7 26.1 25.5 24.8 22.2 21.2 20.0	37.66.8 35.83.52.34.7 34.13.33.44.32.7 31.13.06.6 30.00.29.44.26.6 224.8.22.7.4	41.0 40.0 38.9 38.0 37.6 36.8 36.1 35.3 4.4 33.3 32.8 30.0 29.2 28.3 26.2 25.0	44.2 43.1 42.0 40.3 39.5 38.6 35.5 34.8 34.1 32.6 31.8 30.8 29.8 27.5	47. 4 46. 1 44. 64. 3. 7 42. 9 42. 0 41. 0. 0 38. 7 37. 5 36. 7 37. 5 36. 1 33. 3 33. 3 32. 4 31. 2 30. 0

TABLE 19.—Continued

Influence-Line Ordinates for M for Girder Bridges Without Floorbeams

Values of $rac{l_1 l_2}{L}$

	65	70	75	80	85	90	95	100	110	120	130	140
250	51.5	54.6	57.5	60.6	63.3	66.2	69.0	71.4	76.3	81.3	85.5	89.3
225	50.5	53.2	56.2	58.8	61.7	64.1	66.7	69.4	73.5	78.1	82.0	86.2
200	49.0	51.8	54.6	57.1	59.5	62.1	64.5	66.8	70.9	75.2	78.7	82.0
175	47.2	50.0	52.4	54.9	57.1	59.5	61.7	63.7	67.6	71.4	74.6	78.1
160	46.1	48.5	51.0	53.2	55.6	57.5	59.5	61.7	64.9	68.5	71.4	74.6
150	45.2	47.6	50.0	52.1	54.3	56.2	58.1	59.9	63.3	66.7	69.4	72.5
140	44.4	46.7	49.0	51.0	52.9	54.6	56.5	58.5	61.7	64.9	67.6	70.0
130	43.3	45.5	47.6	49.5	51.6	53.2	55.0	56.5	59.5	62.5	65.0	
120	42.2	44.3	46.3	48.1	49.8	51.5	53.2	54.6	57.5	60.0		
110	40.8	42.7	44.6	46.3	48.1	49.5	51.0	52.4	55.0	1		
100												
95	38.6	40.3	42.0	43.5	44.8	46.3	47.5					
90												
85												
80	35.8	37.3	38.7	40.0								
75	34.8	36.2	37.5									
70	33.8	35.0										
65	32.5											

TABLE 20

Reciprocals of Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{L}{l_1 l_2}$

										1			
		5	10	15	20	25	30	35	40	45	50	55	60
										. 0262			
										.0266			
6	200	.205	.105	.0716	.0550	.0450	.0383	.0335	.0300	.0272	.0250	.0232	.0217
	175	.206	. 106	.0723	.0558	.0457	.0390	.0342	.0307	.0279	.0257	.0238	.0224
										.0284			
	150	.207	. 107	.0733	.0567	.0466	.0400	.0352	.0317	.0288	.0266	.0248	.0233
	140	.207	. 107	.0738	.0571	.0472	.0405	.0357	.0321	.0293	.0271	.0253	.0238
	130	.208	. 108	.0744	.0577	.0477	.0410	. 0363	.0327	.0299	.0277	.0259	.0244
1	120	.208	. 108	.0750	.0583	. 0483	.0417	.0369	.0333	.0306	.0283	.0265	.0250
	110	. 209	.109	.0758	.0591	.0491	.0424	.0376	.0341	.0314	.0291	.0273	.0258
Segment	100	.210	.110	.0766	.0600	.0500	.0433	.0386	.0350	.0322	.0300	.0282	.0267
ig	95	.211	.111	.0772	.0605	.0505	.0438	.0391	.0355	.0327	.0305	.0287	.0272
g	90	.211	.111	.0778	.0611	.0511	.0444	.0397	.0361	.0333	.0311	.0293	.0277
Se	85	.212	.112	.0784	.0618	. 0517	.0451	. 0403	.0368	.0340	.0318	.0299	.0284
H	80	.213	.113	.0792	.0625	.0525	.0458	.0411	.0375	.0347	.0325	.0307	.0292
ge	75	.213	.113	.0800	.0633	.0533	.0466	.0419	.0383	.0356	.0333	.0315	.0300
Longer										.0365			
긔	65	.215	.115	.0820	.0654	.0554	.0487	.0440	.0404	.0376	.0353	.0336	.0321
	60	.217	.117	.0833	.0666	.0567	.0500	.0452	.0417	.0388	.0366	.0348	.0333
										.0404			
										.0422			
										.0444			
	9	. 100											

TABLE 20.—Continued

Reciprocals of Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{L}{l_1 l_2}$

	65	70	75	80	85	90	95	100	110	120	130	140
		.0183										
		.0188										
		.0193										
		.0200										
		.0206										
		.0210										
		.0214										
		.0220										
		.0226										
		.0234										
		.0243										
		.0248										
		.0254										
		.0261										
		.0268										
		.0276										
		.0286										
65	.0307											

TABLE 21

BENDING MOMENTS IN BEAMS DUE TO UNIFORM LOAD OF 1 POUND PER LINEAL FOOT

Values in Foot-pounds

Values equal $\frac{l_1l_2}{2}$ = Area of Influence Line for M

Cirr	ORTE	- CI-	 T33.700	7

	5	10	15	20	25	30	35	40	45	50	55	60
250	625	1250	1875	2500	3125						6875	750
	562.5		1687.5								6187.5	
	500		1500		2500							600
	437.5		1312.5		2187.5		3062.5					525
	400		1200		2000							480
	375		1125		1875							450
	350	700			1750							420
	325	650	975		1625							390
	300	600	900		1500							360
	275	550	825		1375			2200				330
100	250	500	750		1250			2000				300
95	237.5	475	712.5				1662.5					28
90	225	450	675		1125			1800				270
95 90 85		425	637.5								2337.5	
80	200	400	600					1600				240
75	187.5	375	562.5	750			1312.5					22
1	175	350	525	700	875			1400				210
65		325	487.5	650	812.5		1137.5				1787.5	
	150	300	450	600	750			1200				180
55		275	412.5	550	687.5	825					1512.5	
	125	250	375	500	625	750		1000				
45		225	337.5	450	562.5	675	787.5		1012.5			
40		200	300	400	500	600		800				
35		175	262.5	350	437.5	525	612.5					
30		150	225	300	375	450						
25		125	187.5	250	312.5							
20		100	150	200								
15		75	112.5									
10		50										
5	12.5											

TABLE 21.—Continued

Bending Moments in Beams Due to Uniform Load of 1 Pound per Lineal Foot

Values in Foot-pounds

Values equal $\frac{l_1 l_2}{2}$ = Area of Influence Line for M

_												
	65	70	75	80	85	90	95	100	110	120	130	140
250	8125	8750	9375	10000	10625.	11250	11875	12500	13750	15000	16250	17500
	7312.5			9000	000-0					13500		
-00	6500		7500	8000	8500	9000	9500			12000		
	5687.5				7437.5				000	10500		
			$\frac{6000}{5625}$	6400 6000	6800 6375	$\frac{7200}{6750}$	7600 7125	8000 7500	8800 8250	0000	10400	10500
			5250	5600	5950	6300		7000		0000		
			4875	5200	5525	5850		6500				3000
		4200	4500	4800	5100	5400	5700	6000				
110	3575	3850	4125	4400	4675	4950		5500				
			3750	4000	4250	4500		5000				
			3562.5	3800	4037.5		4512.5					
	$2925 \\ 2762.5$		3375	$\frac{3600}{3400}$	$\frac{3825}{3612.5}$	4050						
80			3000	3200								
75	2437.5			3200								
		2450										
65	2112.5											

200 mm

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

MAR 16 1934	
APR 3 1939	
APR 8 1947	
3FOO ORF	
-9,	
	LD 21-100m-7,'33

337856

74265 B+

UNIVERSITY OF CALIFORNIA LIBRARY

