Devoir à la maison n°10 : corrigé

SOLUTION 1.

- 1. a. L'application f^{n-1} n'étant pas constamment nulle, il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Soit $(\lambda_0, \ldots, \lambda_{n-1}) \in \mathbb{R}^n$ tel que

$$\sum_{i=0}^{n-1} \lambda_i f^i(x) = 0$$

On montre alors que $\lambda_i = 0$ pour tout $i \in [0, n-1]$ par récurrence.

Initialisation: En composant par f^{n-1} , on obtient

$$\sum_{i=0}^{n-1} \lambda_i f^{n-1+i}(x) = 0_E$$

Or pour $i \ge 1$, $n-1+i \ge n$ donc $f^{n-1+i}(x)=0$. On en déduit que $\lambda_0 f^{n-1}(x)=0$. Comme $f^{n-1}(x)\ne 0$, $\lambda_0=0$.

Hérédité : Supposons qu'il existe $k \in [0, n-2]$ tel que $\lambda_i = 0$ pour tout $i \in [0, k]$. On a alors

$$\sum_{i=k+1}^{n-1} \lambda_i f^i(x) = 0$$

En composant par f^{n-k-2} , on obtient ensuite

$$\sum_{i=k+1}^{n-1} \lambda_i f^{n-k-2+i}(x) = 0$$

Or pour $i\geqslant k+2$, $n-k-2+i\geqslant n$ donc $\lambda_i=0$. Il reste finalement $\lambda_{k+1}f^{n-1}(x)=0$ puis $\lambda_{k+1}=0$ puisque $f^{n-1}(x)\neq 0$.

Conclusion : Par récurrence, $\lambda_i = 0$ pour tout $i \in [0, n-1]$.

Par conséquent, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est libre. Puisqu'elle comporte n éléments et que $n = \dim E$, c'est une base de E.

- $\textbf{2.} \quad \textbf{a.} \ \text{La famille } (f^{n-1}(x), f^{n-2}(x), \ldots, f^{n-k}(x)) \text{ est une sous-famille de la famille libre } (f^{n-1}(x), f^{n-2}(x), \ldots, f(x), x). \\ \text{Elle est donc également libre. On en déduit dim } F_k = k.$
 - **b.** Pour $1 \leqslant i \leqslant k$, $f^k(f^{n-i}(x)) = f^{n+k-i}(x) = 0$ car $n+k-i \geqslant n$ et donc $f^{n-i}(x) \in \text{Ker } f^k$. Comme $(f^{n-i}(x))_{1 \leqslant i \leqslant k}$ engendre F_k , $F_k \subset \text{Ker } f^k$. Donc $\dim \text{Ker } f^k \geqslant \dim F_k = k$.

Pour $1 \leqslant i \leqslant n-k$, $f^{n-i}(x) \in \operatorname{Im} f^k$ car $n-i \geqslant k$. Comme $(f^{n-i}(x))_{1 \leqslant i \leqslant n-k}$ engendre F_{n-k} , $F_{n-k} \subset \operatorname{Im} f^k$. D'où dim $\operatorname{Im} f^k \geqslant \dim F_{n-k} = n-k$. Par le théorème du rang, on a donc dim $\operatorname{Ker} f^k = n-\dim \operatorname{Im} f^k \leqslant k$. On en déduit que dim $\operatorname{Ker} f^k = k = \dim F_k$ et, comme $F_k \subset \operatorname{Ker} f^k$, $F_k = \operatorname{Ker} f^k$.

Quitte à remplacer k par n-k, on a également $F_k \subset \operatorname{Im} f^{n-k}$. Et comme $f^k \circ f^{n-k} = \mathbf{0}$, on a aussi $\operatorname{Im} f^{n-k} \subset \operatorname{Ker} f^k$. On en déduit que $F_k = \operatorname{Ker} f^k = \operatorname{Im} f^{n-k}$.

- c. On a $F_k = \operatorname{Im} f^{n-k}$ d'après la question précédente. Donc $f(F_k) = \operatorname{Im} f^{n-k+1} \subset \operatorname{Im} f^{n-k} = F_k$. F_k est donc stable par f.
- **3. a.** On considère $A = \{k \in \mathbb{N}^* \mid \tilde{f}^k = \tilde{\mathbf{0}}\}$. A est une partie non vide de \mathbb{N}^* puisque $\mathfrak{n} \in A$. Elle admet donc un plus petit élément $\mathfrak{p} \geqslant 1$. Si $\mathfrak{p} = 1$, alors $\mathfrak{p} 1 = 0$ mais $\tilde{f}^{\mathfrak{p}-1} = \mathrm{Id}_F \neq \tilde{\mathbf{0}}$ car $F \neq \{0_E\}$. Si $\mathfrak{p} \geqslant 2$, alors $\mathfrak{p} 1 \in \mathbb{N}^*$ et on ne peut avoir $\tilde{f}^{\mathfrak{p}-1} = \tilde{\mathbf{0}}$ sinon $\mathfrak{p} 1 \in A$, ce qui contredit la minimalité de \mathfrak{p} . On a donc dans tous les cas $\tilde{f}^{\mathfrak{p}-1} \neq \tilde{\mathbf{0}}$ et $\tilde{f}^{\mathfrak{p}} = \tilde{\mathbf{0}}$.
 - **b.** On prouve comme à la question **1.b** que la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$ est libre. Comme $k = \dim F$ et que la famille précédente est de cardinal p, on en déduit $p \leqslant k$. Ainsi $\tilde{f}^k = \tilde{\mathbf{0}}$.
 - **c.** La question précédente prouve que $F \subset \operatorname{Ker} f^k$. Or on a vu à la question **2.b** que dim $\operatorname{Ker} f^k = k$. Comme $\dim F = k$, on a donc $F = \operatorname{Ker} f^k$.

d. On vient de voir que tous les sous-espaces stables de dimension k avec $1 \le k \le n-1$ était de la forme Ker f^k . Réciproquement, on a vu à la question 2 que les sous-espaces Ker f^k avec $1 \le k \le n-1$ étaient stables par f. Il reste à remarquer que le seul sous-espace de dimension 0 i.e. le sous-espace nul et que le seul sous-espace de dimension n i.e. E tout entier sont évidemment stables par f. Enfin, comme $f^0 = Id_E$ et $f^n = \mathbf{0}$, on a $\{0\} = \operatorname{Ker} f^0$ et $E = \operatorname{Ker} f^n$.

Les sous-espaces stables par f sont donc exactement les sous-espaces Ker f^k avec $0 \leqslant k \leqslant n$.

4. a. La famille $(x, f(x), \ldots, f^{n-2}(x), f^{n-1}(x))$ étant une base de E, il existe un unique n-uplet $(\alpha_0, \ldots, \alpha_{n-1})$ de réels tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

Ce sont les coordonnées de g(x) dans la base $(x, f(x), \dots, f^{n-2}(x), f^{n-1}(x))$.

b. Si g commute avec f, g commute avec f^i pour $0 \le i \le n-1$. Par conséquent,

$$g\left(f^i(x)\right) = f^i(g(x)) = \sum_{k=0}^{n-1} \alpha_k f^{k+i}(x) = \left(\sum_{k=0}^{n-1} \alpha_k f^k\right) \left(f^i(x)\right)$$

On en déduit que les endomorphismes g et $\sum_{k=0}^{n-1} \alpha_k f^k$ coı̈ncident sur la base $(x, f(x), \dots, f^{n-2}(x), f^{n-1}(x))$.

Ceci prouve que

$$g = \sum_{k=0}^{n-1} \alpha_k f^k = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1}$$

c. Notons $\mathcal C$ le sous-espace vectoriel de $\mathcal L(E)$ engendré par la famille $(\mathrm{Id}_E,f,\ldots,f^{n-1})$ et $\mathcal C'$ l'ensemble des endomorphismes commutant avec f. La question précédente montre que $\mathcal C'\subset \mathcal C$. Mais comme toute puissance de f commute avec f, il est clair que $\mathcal C\subset \mathcal C'$. Ainsi $\mathcal C=\mathcal C'$. Comme la famille $(x,f(x),\ldots,f^{n-2}(x),f^{n-1}(x))$ est une famille libre de E, a fortiori la famille $(\mathrm{Id}_E,f,\ldots,f^{n-1})$ est une famille libre de $\mathcal L(E)$. On en déduit que $\dim \mathcal C=n$.