САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики — процессов управления

А. П. ИВАНОВ ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ

Методические указания

Санкт-Петербург 2013

ГЛАВА 1. АЛГЕБРАИЧЕСКОЕ ИНТЕРПОЛИРОВА-НИЕ.

§1. Полином Лагранжа

Пусть на отрезке $[a,b] \subset \mathbb{R}$ рассматривается функция $f(\cdot)$ и пусть известны её значения в (n+1) различных узлах x_0, x_1, \ldots, x_n , принадлежащих [a,b]. Возьмём многочлен степени n

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n.$$
(1.1)

Коэффициенты a_i выбираем так, чтобы совпадали значения $f(\cdot)$ и $P_n(\cdot)$ в узлах интерполирования $\{x_i\}$:

$$P_n(x_i) = f(x_i), \qquad i = 0, 1, 2, \dots, n.$$
 (1.2)

Эти равенства дают квадратную систему линейных алгебраических уравнений относительно неизвестных $\{a_i\}$, причём определитель её суть определитель Вандермонда, что гарантирует существование и единственность решения СЛАУ (1.2).

Искомый интерполяционный полином может быть представлен в виде

$$P_n(x) = L_n(x) = \sum_{i=0}^n l_i(x) f(x_i) = \sum_{i=0}^n \frac{\omega_{n+1}(x)}{(x - x_i)\omega'_{n+1}(x_i)} f(x_i). \quad (1.3)$$

Многочлены $\{l_k(x)\}$ называют множителями Лагранжа

$$l_k(x) = \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)} = \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)},$$

где $\omega_{n+1}(x) = (x-x_0)(x-x_1)\dots(x-x_n)$, а формулу (1.3) формулой Лагранжа для интерполяционного многочлена $L_n(x)$. Полином $L_n(\cdot)$ часто называют просто полиномом Лагранжа.

§2. Погрешность метода. Остаточный член формулы Лагранжа

Представление величины $r_n(x) = f(x) - L_n(x)$ в заданной точ-

ке $x=x^*\in [a,b]$ на классе функций $f(\cdot)\in\mathbb{C}^{n+1}[a,b]$ можно получить в виде

$$r_n(x^*) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot \omega_{n+1}(x^*), \quad \xi \in (a,b).$$
 (2.1)

Будем называть равенство (2.1) формулой Лагранжа для остатка интерполирования или методической погрешностью интерполирования.

§3. Выбор узлов интерполирования

Рассмотрим множество Φ_n всевозможных функций $f(\cdot)$, которые (n+1) раз непрерывно дифференцируемы на [a,b] и производная которых порядка (n+1) ограничена по модулю числом M_{n+1} : $|f^{(n+1)(x)}| \leq M_{n+1}$, $x \in [a,b]$. В этом классе функций остаток интерполирования (методическая погрешность интерполирования) имеет оценку:

$$|r_n(x)| \le \frac{M_{n+1}}{(n+1)!} |x - x_0| |x - x_1| \dots |x - x_n|.$$
 (3.1)

Она является mочной и достигается в том случае, когда $f(\cdot)$ есть многочлен степени n+1 вида

$$f(x) = \frac{M_{n+1}}{(n+1)!}x^{n+1} + a_1x^n + a_2x^{n-1} + \dots$$

Задача 1. Функция $f(\cdot)$ задана таблично, \hat{x} – не табличное значение аргумента, в котором необходимо приблизить функцию $f(\cdot)$ при помощи интерполяционного многочлена степени n, взяв за узлы любые табличные значения аргумента $x_{i_0}, x_{i_1}, \ldots, x_{i_n}$.

Множитель $\frac{M}{(n+1)!}$ не зависит от выбора узлов. Поэтому при фиксированном значении \hat{x} необходимо выбрать $\{x_{i_k}\}$ так, чтобы произведение

$$|\hat{x} - x_{i_0}| |\hat{x} - x_{i_1}| \dots |\hat{x} - x_{i_n}|$$

имело наименьшее значение. Очевидно, что для этого набор $\{x_{i_k}\}_{k=0}^n$ следует выбирать из условий:

$$x_{i_0} = \min_{i} |\hat{x} - x_i|; \quad x_{i_1} = \min_{i \neq i_0} |\hat{x} - x_i|; \dots, \quad x_{i_n} = \min_{i \neq i_0, i_1, \dots, i_{n-1}} |\hat{x} - x_i|.$$

Задача 2. Выбрать узлы x_0, x_1, \ldots, x_n на [a, b] так, чтобы правая часть оценки (3.1) принимала минимальное значение.

Если считать [a,b]=[-1,1], то учитывая свойства полиномов Чебышева можно утверждать, что $\omega_{n+1}(x)=\bar{T}_{n+1}(x)=\frac{1}{2^n}T_{n+1}(x)$. В общем же случае $[a,b]\neq [-1,1]$ достаточно сделать преобразование $[a,b]\to [-1,1]$ и получим искомые узлы $\{x_i\}$ в виде:

$$x_i = \frac{1}{2} \left[(b - a) \cos \frac{(2i + 1)}{2(n+1)} \pi + (b+a) \right], \quad i = \overline{0, n}.$$
 (3.2)

При таком выборе узлов оценка (3.1) для методической погрешности принимает вид:

$$|f(x) - L_n(x)| \le \frac{M_{n+1}(b-a)^{n+1}}{2^{2n+1}(n+1)!}.$$

Очевидно, что использование указанной оценки весьма затруднительно, поэтому важен вопрос: как ведёт себя последовательность интерполяционных полиномов для заданной функции при увеличении числа узлов интерполирования.

§4. О сходимости интерполяционного процесса

Решив задачу интерполирования по заданному числу узлов на интервале [a,b], мы должны ответить на вопрос: как ведёт себя последовательность интерполяционных полиномов при неограниченном возрастании числа узлов на [a,b]? Будет ли (и если будет, то при каких условиях) иметь место свойство:

$$r_n(x_*,f) = f(x_*) - L_n(x_*,f) \to 0$$
 при $n \to \infty$?

Поскольку ответ на поставленный вопрос зависит в том числе и от свойств функции $f(\cdot)$, обозначаем здесь полином Лагранжа через $L_n(x,f)$, чтобы подчеркнуть указанное обстоятельство.

Уточним задачу. Рассмотрим бесконечную треугольную таблицу узлов, расположенных на [a,b]:

$$X = \left\{ \begin{array}{cccc} x_1^1 & & & \\ x_1^2 & x_2^2 & & \\ \cdots & \cdots & \cdots & \cdots \\ x_1^n & x_2^n & \cdots & x_n^n \\ \cdots & \cdots & \cdots & \cdots \end{array} \right\}. \tag{4.1}$$

Определение 4.1. Построение интерполяционных полиномов $L_n(x, f)$ по таблице (4.1) для функции $f(\cdot)$ будем называть *интерполяционным процессом* (для экономии места – ИП).

Определение 4.2. Если для $\hat{x} \in [a,b]$ имеет место: $r_n(\hat{x},f) \to 0$ при $n \to \infty$, то говорят, что ИП для $f(\cdot)$ по таблице (4.1) сходится в точке \hat{x} .

Определение 4.3. Если сходимость ИП имеет место для всех $x \in [a,b]$, то говорят, что ИП сходится для $f(\cdot)$ на [a,b].

Определение 4.4. Если $r_n(x,f) \to 0$ при $n \to \infty$ равномерно на [a,b], то говорят о равномерной сходимости ИП к $f(\cdot)$ на [a,b].

Замечание 4.1. Некоторые факты.

- Для любой непрерывной на [a,b] функции $f(\cdot)$ можно выбрать узлы (4.1) так, что интерполяционный процесс будет равномерно на [a,b] сходиться к этой функции. В основе утверждения теорема Вейерштрасса о приближении функций полиномами.
- (т. Фабера) Для любой таблицы (4.1) существует непрерывная функция, для которой интерполяционный процесс не является равномерно сходящимся.
- Для целой функции интерполяционный процесс по любой таблице (4.1) равномерно на [a,b] сходится к ней.

Пример Бернштейна. Для f(x) = |x|, $x \in [-1,1]$ интерполяционный процесс по равноотстоящим узлам не сходится ни в одной точке, кроме точек -1,0,1 (при этом -1 и +1 считаются узлами интерполирования).

Рассмотрим несколько примеров построения интерполяционного полинома и оценки методической погрешности.

Пример 4.1. С какой методической погрешностью можно найти значение $\sin \frac{\pi}{4}$, имея таблицу:

x	0	$\pi/6$	$\pi/2$
f(x)	0	1/2	1

Установим связь между параметрами задачи и параметрами, использованными при рассмотрении вопроса о построении интерполяционного полинома Лагранжа:

$$f(x) = \sin x$$
, $n = 2$, $a = 0$, $b = \pi/2$, $M_3 = 1$.

$$\left| r_n \left(\frac{\pi}{4} \right) \right| = \left| \sin \frac{\pi}{4} - L_2 \left(\frac{\pi}{4} \right) \right| \le \frac{1}{3!} \left| \left(\frac{\pi}{4} - 0 \right) \left(\frac{\pi}{4} - \frac{\pi}{6} \right) \left(\frac{\pi}{4} - \frac{\pi}{2} \right) \right| =$$

$$= \frac{1}{6} \left(\frac{\pi}{4} \right)^2 \cdot \frac{\pi}{12} \approx \frac{1}{6} \cdot \frac{10}{16} \cdot \frac{1}{4} \approx \frac{1}{37},$$

т.е. относительная погрешность вычисления указанного значения с помощью полинома Лагранжа составляет $\approx 3\%$.

Пример 4.2. Построить полином Лагранжа по таблице:

$$L_2(x) = \frac{(x-2)(x-3)}{(-2)(-3)} \cdot 1 + \frac{x(x-3)}{2(-1)} \cdot 3 + \frac{x(x-2)}{3 \cdot 1} \cdot 2 =$$
$$= -\frac{2}{3}x^2 + \frac{7}{3}x + 1.$$

Пример 4.3. Построить полином Лагранжа по таблице:

x	0	2	3	5
$\int f(x)$	1	3	2	5

$$L_3(x) = \frac{(x-2)(x-3)(x-5)}{(-2)(-3)(-5)} \cdot 1 + \frac{x(x-3)(x-5)}{2(-1)(-3)} \cdot 3 + \frac{x(x-2)(x-5)}{3 \cdot 1 \cdot (-2)} \cdot 2 + \frac{x(x-2)(x-3)}{5 \cdot 3 \cdot 2} \cdot 5 = \frac{3}{10}x^3 - \frac{13}{6}x^2 + \frac{62}{15}x + 1.$$

Примеры 4.2 и 4.3 показывают, что при добавлении узла в таблицу приходится заново проделывать всю работу. Этот недостаток может быть устранен при записи интерполяционного полинома в иной форме, известной как полином Ньютона.

ЛИТЕРАТУРА

- 1. *Н. Бахвалов, Н. Жидков, Г. Кобельков.* Численные методы. М.: Изд. Физматлит, 2000.
- 2. $B.\,M.\,Bержбицкий.$ Численные методы. Линейная алгебра и нелинейные уравнения. М.: Изд. Высшая школа , 2000.
- 3. Γ . H. Bоробъёва, A. H. \mathcal{A} анилова. Практикум по вычислительной математике. M.: Изд. Высшая школа, 1990.