LUMA

1.3.0-alpha

Generated by Doxygen 1.8.11

Contents

1	Mair	n Page			1
2	Hier	archical	Index		3
	2.1	Class I	Hierarchy		3
3	Clas	s Index			5
	3.1	Class I	_ist		5
4	File	Index			7
	4.1	File Lis	st		7
5	Clas	s Docu	mentation		9
	5.1	BFLBo	dy Class F	Reference	9
		5.1.1	Detailed	Description	10
		5.1.2	Construc	tor & Destructor Documentation	10
			5.1.2.1	BFLBody(void)	10
			5.1.2.2	\sim BFLBody(void)	10
			5.1.2.3	BFLBody(PCpts *_PCpts, GridObj *g_hierarchy, size_t id)	10
		5.1.3	Member	Function Documentation	10
			5.1.3.1	computeQ(int i, int j, int k, GridObj *g)	10
			5.1.3.2	computeQ(int i, int j, GridObj *g)	11
		5.1.4	Friends A	and Related Function Documentation	11
			5.1.4.1	GridObj	11
		5.1.5	Member	Data Documentation	11
			E 1 E 1		4.4

iv CONTENTS

5.2 BFLMarker Class Reference				
	5.2.1	Detailed	Description	12
	5.2.2	Construc	ctor & Destructor Documentation	12
		5.2.2.1	BFLMarker(void)	12
		5.2.2.2	~BFLMarker(void)	12
		5.2.2.3	BFLMarker(double x, double y, double z)	12
	5.2.3	Friends A	And Related Function Documentation	12
		5.2.3.1	BFLBody	13
5.3	Body<	MarkerTy	/pe > Class Template Reference	13
	5.3.1	Detailed	Description	14
	5.3.2	Construc	ctor & Destructor Documentation	14
		5.3.2.1	Body(void)	14
		5.3.2.2	\sim Body(void)	14
		5.3.2.3	Body(GridObj *g, size_t id)	14
	5.3.3	Member	Function Documentation	14
		5.3.3.1	addMarker(double x, double y, double z)	14
		5.3.3.2	getMarkerData(double x, double y, double z)	15
		5.3.3.3	isInVoxel(double x, double y, double z, int curr_mark)	15
		5.3.3.4	isVoxelMarkerVoxel(double x, double y, double z)	15
		5.3.3.5	markerAdder(double x, double y, double z, int &curr_mark, std::vector< int > &counter)	16
	5.3.4	Member	Data Documentation	16
		5.3.4.1	_Owner	16
		5.3.4.2	closed_surface	16
		5.3.4.3	id	16
		5.3.4.4	markers	16
		5.3.4.5	spacing	16
5.4	МріМа	nager::buf	ffer_struct Struct Reference	17
	5.4.1	Detailed	Description	17
	5.4.2	Member	Data Documentation	17
		5.4.2.1	level	17

CONTENTS

		5.4.2.2	region	17
		5.4.2.3	size	17
5.5	GridOb	oj Class Re	eference	17
	5.5.1	Detailed	Description	20
	5.5.2	Construc	tor & Destructor Documentation	21
		5.5.2.1	GridObj()	21
		5.5.2.2	GridObj(int level)	21
		5.5.2.3	GridObj(int RegionNumber, GridObj &pGrid)	21
		5.5.2.4	$\label{local_size} \begin{tabular}{ll} GridObj(int level, std::vector< int > local_size, std::vector< std::vector< int > > \\ GlobalLimsInd, std::vector< std::vector< double > > GlobalLimsPos) \\ \end{tabular}$	21
		5.5.2.5	~GridObj()	21
	5.5.3	Member	Function Documentation	22
		5.5.3.1	bc_applyBfl(int i, int j, int k)	22
		5.5.3.2	bc_applyBounceBack(int label, int i, int j, int k)	22
		5.5.3.3	bc_applyExtrapolation(int label, int i, int j, int k)	22
		5.5.3.4	bc_applyNrbc(int i, int j, int k)	22
		5.5.3.5	bc_applyRegularised(int label, int i, int j, int k)	23
		5.5.3.6	bc_applySpecReflect(int label, int i, int j, int k)	23
		5.5.3.7	bc_solidSiteReset()	23
		5.5.3.8	io_fgaout()	23
		5.5.3.9	io_hdf5(double tval)	23
		5.5.3.10	io_lite(double tval, std::string Tag)	24
		5.5.3.11	io_probeOutput()	24
		5.5.3.12	io_restart(elOFlag IO_flag)	24
		5.5.3.13	io_textout(std::string output_tag)	24
		5.5.3.14	LBM_addSubGrid(int RegionNumber)	25
		5.5.3.15	LBM_boundary(int bc_type_flag)	25
		5.5.3.16	LBM_coalesce(int RegionNumber)	25
		5.5.3.17	LBM_collide()	25
		5.5.3.18	LBM_collide(int i, int j, int k, int v)	25
		5.5.3.19	LBM_explode(int RegionNumber)	26

vi

	5.5.3.20	LBM_forceGrid()	26
	5.5.3.21	LBM_init_getInletProfile()	26
	5.5.3.22	LBM_initBoundLab()	26
	5.5.3.23	LBM_initGrid()	26
	5.5.3.24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	26
	5.5.3.25	LBM_initRefinedLab(GridObj &pGrid)	27
	5.5.3.26	LBM_initRho()	27
	5.5.3.27	LBM_initSolidLab()	27
	5.5.3.28	LBM_initSubGrid(GridObj &pGrid)	27
	5.5.3.29	LBM_initVelocity()	27
	5.5.3.30	$\label{lem:lem_kbcCollide} LBM_kbcCollide (int i, int j, int k, IVector < double > \&f_new) \ \ . \ \ . \ \ . \ \ . \ \ .$	27
	5.5.3.31	LBM_macro()	28
	5.5.3.32	LBM_macro(int i, int j, int k)	28
	5.5.3.33	LBM_multi(bool ibmFlag)	28
	5.5.3.34	LBM_multi()	28
	5.5.3.35	LBM_multi_opt(int subcycle=0)	29
	5.5.3.36	LBM_resetForces()	29
	5.5.3.37	LBM_stream()	29
5.5.4	Friends A	and Related Function Documentation	29
	5.5.4.1	GridUtils	29
	5.5.4.2	MpiManager	29
	5.5.4.3	ObjectManager	29
5.5.5	Member	Data Documentation	29
	5.5.5.1	$dt \ldots \ldots \ldots \ldots \ldots$	29
	5.5.5.2	$dx \dots $	29
	5.5.5.3	dy	29
	5.5.5.4	dz	30
	5.5.5.5	K_lim	30
	5.5.5.6	LatTyp	30
	5.5.5.7	level	30

CONTENTS vii

	5.5.5.8	M_lim	30
	5.5.5.9	N_lim	30
	5.5.5.10	nu	30
	5.5.5.11	omega	30
	5.5.5.12	region_number	30
	5.5.5.13	$t \ldots \ldots \ldots \ldots$	30
	5.5.5.14	timeav_mpi_overhead	31
	5.5.5.15	timeav_timestep	31
	5.5.5.16	XInd	31
	5.5.5.17	XOrigin	31
	5.5.5.18	XPos	31
	5.5.5.19	YInd	31
	5.5.5.20	YOrigin	31
	5.5.5.21	YPos	31
	5.5.5.22	ZInd	31
	5.5.5.23	ZOrigin	31
	5.5.5.24	ZPos	32
GridUr	nits Class I	Reference	32
5.6.1	Detailed	Description	32
5.6.2	Construc	etor & Destructor Documentation	33
	5.6.2.1	GridUnits()	33
	5.6.2.2	\sim GridUnits()	33
5.6.3	Member	Function Documentation	33
	5.6.3.1	m2cm(const T meters)	33
	5.6.3.2	ulat2uphys(T ulat, GridObj *currentGrid)	33
GridUt	ils Class R	Reference	33
5.7.1	Detailed	Description	35
5.7.2	Member	Function Documentation	35
	5.7.2.1	$add(std::vector < double > a,std::vector < double > b)\;.\;\;.\;\;.\;\;.\;\;.\;\;.\;\;.\;\;.\;\;.$	35
	5.7.2.2	createOutputDirectory(std::string path_str)	36
	5.6.2 5.6.3 GridUt 5.7.1	5.5.5.9 5.5.5.10 5.5.5.11 5.5.5.12 5.5.5.13 5.5.5.15 5.5.5.16 5.5.5.17 5.5.5.18 5.5.5.19 5.5.5.20 5.5.5.21 5.5.5.22 5.5.5.23 5.5.5.24 GridUnits Class I 5.6.2 Construct 5.6.2.1 5.6.2.2 5.6.3 Member 5.6.3.1 5.6.3.2 GridUtils Class F 5.7.1 Detailed 5.7.2 Member 5.7.2.1	5.5.5.9 N_lim 5.5.5.10 nu 5.5.5.11 omega 5.5.5.12 region_number 5.5.5.13 t 5.5.5.14 timeav_mpi_overhead 5.5.5.15 timeav_timestep 5.5.5.16 XInd 5.5.5.17 XOrigin 5.5.5.18 XPos 5.5.5.19 YInd 5.5.5.20 YOrigin 5.5.5.21 YPos 5.5.5.22 ZInd 5.5.5.22 ZInd 5.5.5.23 ZOrigin 5.5.5.24 ZPos GridUnits Class Reference 5.6.1 Detailed Description 5.6.2.1 GridUnits() 5.6.2.2 ~GridUnits() 5.6.3.1 m2cm(const T meters) 5.6.3.1 m2cm(const T meters) 5.6.3.2 ulat2uphys(T ulat, GridObj +currentGrid) GridUtils Class Reference 5.7.1 Detailed Description 5.7.2 Member Function Documentation 5.7.2 Member Function Documentation

viii CONTENTS

5.7.2.3	crossprod(std::vector< double > vec1, std::vector< double > vec2)	36
5.7.2.4	dotprod(std::vector< double > vec1, std::vector< double > vec2)	36
5.7.2.5	downToLimit(NumType x, NumType limit)	37
5.7.2.6	factorial(NumType n)	37
5.7.2.7	getCoarseIndices(int fine_i, int x_start, int fine_j, int y_start, int fine_k, int z_start)	37
5.7.2.8	getFineIndices(int coarse_i, int x_start, int coarse_j, int y_start, int coarse_k, int z_start)	38
5.7.2.9	getGrid(GridObj *&Grids, int level, int region, GridObj *&ptr)	38
5.7.2.10	getOpposite(int direction)	39
5.7.2.11	getVoxInd(double x, double y, double z, GridObj *g)	39
5.7.2.12	$global_to_local(int\ i,\ int\ j,\ int\ k,\ GridObj\ *g,\ std::vector < NumType > \&locals) \ \ . \ \ .$	39
5.7.2.13	hasThisSubGrid(const GridObj &pGrid, int RegNum)	40
5.7.2.14	isOffGrid(int i, int j, int k, GridObj &g)	40
5.7.2.15	isOnRecvLayer(double pos_x, double pos_y, double pos_z)	40
5.7.2.16	isOnRecvLayer(double site_position, enum eCartesianDirection xyz, enum e← MinMax minmax)	41
5.7.2.17	isOnSenderLayer(double pos_x, double pos_y, double pos_z)	41
5.7.2.18	isOnSenderLayer(double site_position, enum eCartesianDirection xyz, enum e← MinMax minmax)	41
5.7.2.19	isOnThisRank(int gi, int gj, int gk, const GridObj &pGrid)	42
5.7.2.20	isOnThisRank(int gl, enum eCartesianDirection xyz, const GridObj &pGrid)	42
5.7.2.21	isOverlapPeriodic(int i, int j, int k, const GridObj &pGrid)	42
5.7.2.22	linspace(double min, double max, int n)	43
5.7.2.23	$local_to_global(int\ i,\ int\ j,\ int\ k,\ GridObj\ *g,\ std::vector< NumType > \&globals) .$	43
5.7.2.24	$\label{eq:matrix_multiply} \begin{array}{lllll} \text{matrix_multiply(const std::vector} < \text{std::vector} < \text{double} >> &A, \text{ const std} \\ \text{::vector} < \text{double} > &x) & \dots \\ \end{array}$	43
5.7.2.25	onespace(int min, int max)	44
5.7.2.26	stridedCopy(NumType *dest, NumType *src, size_t block, size_t offset, size_ t stride, size_t count, size_t buf_offset=0)	44
5.7.2.27	subtract(std::vector < double > a, std::vector < double > b) 	44
5.7.2.28	upToZero(NumType x)	44
5.7.2.29	vecmultiply(double scalar, std::vector< double > vec)	45
5.7.2.30	vecnorm(double vec[L_DIMS])	45

CONTENTS

		5.7.2.31	vecnorm(double val1, double val2)	45
		5.7.2.32	vecnorm(double val1, double val2, double val3)	46
		5.7.2.33	vecnorm(std::vector< double > vec)	46
		5.7.2.34	vecnorm(NumType a1, NumType a2, NumType a3)	46
		5.7.2.35	vecnorm(NumType a1, NumType a2)	47
	5.7.3	Member	Data Documentation	47
		5.7.3.1	dir_reflect	47
		5.7.3.2	logfile	47
		5.7.3.3	path_str	47
5.8	IBBody	y Class Re	eference	48
	5.8.1	Detailed	Description	49
	5.8.2	Construc	ctor & Destructor Documentation	49
		5.8.2.1	IBBody(void)	49
		5.8.2.2	\sim IBBody(void)	49
		5.8.2.3	IBBody(GridObj *g, size_t id)	49
	5.8.3	Member	Function Documentation	49
		5.8.3.1	addMarker(double x, double y, double z, bool flex_rigid)	49
		5.8.3.2	makeBody(double radius, std::vector< double > centre, bool flex_rigid, bool moving, int group)	50
		5.8.3.3	$\label{lem:makebody} $$ makeBody(std::vector < double > width_length_depth, std::vector < double > angles, std::vector < double > centre, bool flex_rigid, bool deform, int group)$	50
		5.8.3.4	makeBody(int numbermarkers, std::vector< double $>$ start_point, double fil_ \leftarrow length, std::vector< double $>$ angles, std::vector< int $>$ BCs, bool flex_rigid, bool deform, int group)	50
		5.8.3.5	makeBody(std::vector< double > width_length, double angle, std::vector< double > centre, bool flex_rigid, bool deform, int group, bool plate)	51
		5.8.3.6	makeBody(PCpts *_PCpts)	51
		5.8.3.7	markerAdder(double x, double y, double z, int &curr_mark, std::vector< int > &counter, bool flex_rigid)	51
	5.8.4	Friends A	And Related Function Documentation	52
		5.8.4.1	ObjectManager	52
	5.8.5	Member	Data Documentation	52
		5.8.5.1	BCs	52

CONTENTS

		5.8.5.2	deformable	52
		5.8.5.3	delta_rho	52
		5.8.5.4	flex_rigid	52
		5.8.5.5	flexural_rigidity	52
		5.8.5.6	groupID	52
		5.8.5.7	tension	52
5.9	IBMark	er Class F	Reference	53
	5.9.1	Detailed	Description	54
	5.9.2	Construc	ctor & Destructor Documentation	54
		5.9.2.1	IBMarker(void)	54
		5.9.2.2	~IBMarker(void)	54
		5.9.2.3	IBMarker(double xPos, double yPos, double zPos, bool flex_rigid=false)	54
	5.9.3	Friends A	And Related Function Documentation	54
		5.9.3.1	IBBody	54
		5.9.3.2	ObjectManager	54
	5.9.4	Member	Data Documentation	54
		5.9.4.1	deltaval	54
		5.9.4.2	desired_vel	55
		5.9.4.3	dilation	55
		5.9.4.4	epsilon	55
		5.9.4.5	flex_rigid	55
		5.9.4.6	fluid_vel	55
		5.9.4.7	force_xyz	55
		5.9.4.8	local_area	55
		5.9.4.9	position_old	55
5.10	IVector	< GenTyp	o > Class Template Reference	56
	5.10.1	Detailed	Description	56
	5.10.2	Construc	ctor & Destructor Documentation	56
		5.10.2.1	IVector()	56
		5.10.2.2	~IVector()	56

CONTENTS xi

		5.10.2.3	IVector(size_t size, GenTyp val)	56
	5.10.3	Member I	Function Documentation	57
		5.10.3.1	operator()(size_t i, size_t j, size_t k, size_t v, size_t j_max, size_t k_max, size_t v_max)	57
		5.10.3.2	operator()(size_t i, size_t j, size_t k, size_t j_max, size_t k_max)	57
		5.10.3.3	operator()(size_t i, size_t j, size_t j_max)	58
5.11	MpiMai	nager::laye	er_edges Struct Reference	58
	5.11.1	Detailed I	Description	58
	5.11.2	Member I	Data Documentation	58
		5.11.2.1	x	58
		5.11.2.2	Y	59
		5.11.2.3	Z	59
5.12	Marker	Class Ref	erence	59
	5.12.1	Detailed I	Description	60
	5.12.2	Construc	tor & Destructor Documentation	60
		5.12.2.1	Marker(void)	60
		5.12.2.2	~Marker(void)	60
		5.12.2.3	Marker(double x, double y, double z)	60
	5.12.3	Member I	Data Documentation	60
		5.12.3.1	position	60
		5.12.3.2	supp_i	60
		5.12.3.3	supp_j	60
		5.12.3.4	supp_k	60
		5.12.3.5	support_rank	61
5.13	Marker	Data Class	s Reference	61
	5.13.1	Detailed I	Description	61
	5.13.2	Construc	tor & Destructor Documentation	61
		5.13.2.1	MarkerData(int i, int j, int k, double x, double y, double z, int ID)	61
		5.13.2.2	MarkerData(void)	62
		5.13.2.3	~MarkerData(void)	62
	5.13.3	Member I	Data Documentation	62

xii CONTENTS

	5.13.3.1 i	62
	5.13.3.2 ID	62
	5.13.3.3 j	62
	5.13.3.4 k	62
	5.13.3.5 x	62
	5.13.3.6 y	63
	5.13.3.7 z	63
5.14 MpiMa	nager Class Reference	63
5.14.1	Detailed Description	65
5.14.2	Member Function Documentation	65
	5.14.2.1 destroyInstance()	65
	5.14.2.2 getInstance()	65
	5.14.2.3 mpi_buffer_pack(int dir, GridObj *g)	65
	5.14.2.4 mpi_buffer_size()	66
	5.14.2.5 mpi_buffer_size_recv(GridObj *&g)	66
	5.14.2.6 mpi_buffer_size_send(GridObj *&g)	66
	5.14.2.7 mpi_buffer_unpack(int dir, GridObj *g)	66
	5.14.2.8 mpi_buildCommunicators()	66
	5.14.2.9 mpi_communicate(int level, int regnum)	67
	5.14.2.10 mpi_getOpposite(int direction)	67
	5.14.2.11 mpi_gridbuild()	67
	5.14.2.12 mpi_init()	67
	5.14.2.13 mpi_updateLoadInfo()	67
	5.14.2.14 mpi_writeout_buf(std::string filename, int dir)	68
5.14.3	Member Data Documentation	68
	5.14.3.1 buffer_recv_info	68
	5.14.3.2 buffer_send_info	68
	5.14.3.3 f_buffer_recv	68
	5.14.3.4 f_buffer_send	68
	5.14.3.5 global_dims	68

CONTENTS xiii

		5.14.3.6	global_edge_ind	 68
		5.14.3.7	global_edge_pos	 68
		5.14.3.8	Grids	 68
		5.14.3.9	local_size	 69
		5.14.3.10) logout	 69
		5.14.3.11	MPI_cartlab	 69
		5.14.3.12	2 MPI_coords	 69
		5.14.3.13	B MPI_dims	 69
		5.14.3.14	4 my_rank	 69
		5.14.3.15	5 neighbour_coords	 69
		5.14.3.16	6 neighbour_rank	 69
		5.14.3.17	7 num_ranks	 70
		5.14.3.18	B p_data	 70
		5.14.3.19	9 recv_layer_pos	 70
		5.14.3.20) recv_stat	 70
		5.14.3.21	send_requests	 70
		5.14.3.22	2 send_stat	 70
		5.14.3.23	3 sender_layer_pos	 70
		5.14.3.24	4 subGrid_comm	 70
		5.14.3.25	5 world_comm	 70
5.15	Object	Manager C	Class Reference	 7
	5.15.1	Detailed I	Description	 72
	5.15.2	Member F	Function Documentation	 72
		5.15.2.1	bfl_buildBody(int body_type)	 72
		5.15.2.2	bfl_buildBody(PCpts *_PCpts)	 72
		5.15.2.3	computeLiftDrag(int i, int j, int k, GridObj *g)	 73
		5.15.2.4	destroyInstance()	 73
		5.15.2.5	getInstance()	 73
		5.15.2.6	getInstance(GridObj *g)	 73
		5.15.2.7	ibm_apply()	 73

xiv CONTENTS

		5.15.2.8	ibm_banbks(double **a, long n, int m1, int m2, double **al, unsigned long indx[], double b[])	74
		5.15.2.9	ibm_bandec(double **a, long n, int m1, int m2, double **al, unsigned long indx[], double *d)	74
		5.15.2.10	$ibm_bicgstab(std::vector < std::vector < double >> \&Amatrix, std::vector < double >> \&bVector, std::vector < double > \ε, double tolerance, int maxiterations)$	74
		5.15.2.11	ibm_buildBody(int body_type)	75
		5.15.2.12	ibm_buildBody(PCpts *_PCpts, GridObj *owner)	75
		5.15.2.13	ibm_computeForce(int ib)	75
		5.15.2.14	ibm_deltaKernel(double rad, double dilation)	75
		5.15.2.15	ibm_findEpsilon(int ib)	76
		5.15.2.16	ibm_findSupport(int ib, int m)	76
		5.15.2.17	ibm_initialise()	76
		5.15.2.18	ibm_interpol(int ib)	76
		5.15.2.19	ibm_jacowire(int ib)	77
		5.15.2.20	ibm_moveBodies()	77
		5.15.2.21	ibm_positionUpdate(int ib)	77
		5.15.2.22	ibm_positionUpdateGroup(int group)	77
		5.15.2.23	ibm_spread(int ib)	77
		5.15.2.24	io_readInCloud(PCpts *_PCpts, eObjectType objtype)	78
		5.15.2.25	io_restart(elOFlag IO_flag, int level)	78
		5.15.2.26	io_vtklBBWriter(double tval)	78
		5.15.2.27	io_writeBodyPosition(int timestep)	78
		5.15.2.28	io_writeForceOnObject(double tval)	78
		5.15.2.29	io_writeLiftDrag(int timestep)	79
	5.15.3	Friends A	nd Related Function Documentation	79
		5.15.3.1	GridObj	79
5.16	PCpts (Class Refe	erence	79
	5.16.1	Detailed I	Description	80
	5.16.2	Construct	tor & Destructor Documentation	80
		5.16.2.1	PCpts(void)	80
		5.16.2.2	~PCpts(void)	80

CONTENTS xv

		5.16.3	Member Data Documentation	80
			5.16.3.1 x	80
			5.16.3.2 y	80
			5.16.3.3 z	80
	5.17	МріМа	nager::phdf5_struct Struct Reference	80
		5.17.1	Detailed Description	81
		5.17.2	Member Data Documentation	81
			5.17.2.1 i_end	81
			5.17.2.2 i_start	81
			5.17.2.3 j_end	81
			5.17.2.4 j_start	81
			5.17.2.5 k_end	82
			5.17.2.6 k_start	82
			5.17.2.7 level	82
			5.17.2.8 region	82
			5.17.2.9 writable_data_count	82
6	File	Docume	entation	83
•		Dooum		
	6 1	DEI Do		
	6.1		dy.cpp File Reference	83
	6.2	BFLBo	dy.cpp File Reference	83 83
	6.2	BFLBo BFLMa	dy.cpp File Reference	83 83 83
	6.2 6.3 6.4	BFLMa BFLMa	dy.cpp File Reference	83 83 83 84
	6.2 6.3 6.4 6.5	BFLMa BFLMa Body.h	dy.cpp File Reference	83 83 84 84
	6.2 6.3 6.4	BFLMa BFLMa Body.h	dy.cpp File Reference	83 83 84 84
	6.2 6.3 6.4 6.5	BFLMa BFLMa Body.h	dy.cpp File Reference dy.h File Reference arker.cpp File Reference arker.h File Reference File Reference Macro Definition Documentation	83 83 84 84 84
	6.2 6.3 6.4 6.5	BFLMa BFLMa Body.h	dy.cpp File Reference	83 83 84 84
	6.2 6.3 6.4 6.5	BFLMa BFLMa Body.h	dy.cpp File Reference dy.h File Reference arker.cpp File Reference arker.h File Reference File Reference Macro Definition Documentation	83 83 84 84 84
	6.2 6.3 6.4 6.5	BFLMa BFLMa Body.h	dy.cpp File Reference dy.h File Reference arker.cpp File Reference trker.h File Reference File Reference ons.h File Reference Macro Definition Documentation 6.6.1.1 L_AX 6.6.1.2 L_AY	83 83 84 84 89
	6.2 6.3 6.4 6.5	BFLMa BFLMa Body.h	dy.cpp File Reference dy.h File Reference arker.cpp File Reference arker.h File Reference File Reference ons.h File Reference Macro Definition Documentation 6.6.1.1 L_AX 6.6.1.2 L_AY	83 83 84 84 89 89
	6.2 6.3 6.4 6.5	BFLMa BFLMa Body.h	dy.cpp File Reference dy.h File Reference arker.cpp File Reference trker.h File Reference File Reference ons.h File Reference Macro Definition Documentation 6.6.1.1 L_AX 6.6.1.2 L_AY	83 83 84 84 89 89

xvi CONTENTS

6.6.1.7	L_BFL_ON_GRID_REG	90
6.6.1.8	L_BFL_REF_LENGTH	90
6.6.1.9	L_BFL_SCALE_DIRECTION	90
6.6.1.10	L_BLOCK_MAX_X	90
6.6.1.11	L_BLOCK_MAX_Y	90
6.6.1.12	L_BLOCK_MAX_Z	90
6.6.1.13	L_BLOCK_MAX_Z	90
6.6.1.14	L_BLOCK_MIN_X	91
6.6.1.15	L_BLOCK_MIN_Y	91
6.6.1.16	L_BLOCK_MIN_Z	91
6.6.1.17	L_BLOCK_MIN_Z	91
6.6.1.18	L_BLOCK_ON_GRID_LEV	91
6.6.1.19	L_BLOCK_ON_GRID_REG	91
6.6.1.20	L_BUILD_FOR_MPI	91
6.6.1.21	L_BX	91
6.6.1.22	L_BY	91
6.6.1.23	L_BZ	91
6.6.1.24	L_BZ	92
6.6.1.25	L_CENTRE_BFL_Z	92
6.6.1.26	L_CENTRE_BFL_Z	92
6.6.1.27	L_CENTRE_IBB_Z	92
6.6.1.28	L_CENTRE_IBB_Z	92
6.6.1.29	L_CENTRE_OBJECT_Z	92
6.6.1.30	L_CENTRE_OBJECT_Z	92
6.6.1.31	L_CSMAG	92
6.6.1.32	L_DIMS	92
6.6.1.33	L_FILAMENT_END_BC	92
6.6.1.34	L_FILAMENT_START_BC	92
6.6.1.35	L_GRAVITY_DIRECTION	93
6.6.1.36	L_GRAVITY_FORCE	93

CONTENTS xvii

6.6.1.37 L_HDF5_OUTPUT	93
6.6.1.38 L_HDF_DEBUG	93
6.6.1.39 L_IB_ON_LEV	93
6.6.1.40 L_IB_ON_LEV	93
6.6.1.41 L_IB_ON_REG	93
6.6.1.42 L_IB_ON_REG	93
6.6.1.43 L_IBB_ANGLE_HORZ	93
6.6.1.44 L_IBB_ANGLE_VERT	93
6.6.1.45 L_IBB_D	94
6.6.1.46 L_IBB_D	94
6.6.1.47 L_IBB_DELTA_RHO	94
6.6.1.48 L_IBB_EI	94
6.6.1.49 L_IBB_FILAMENT_LENGTH	94
6.6.1.50 L_IBB_FILAMENT_START_X	94
6.6.1.51 L_IBB_FILAMENT_START_Y	94
6.6.1.52 L_IBB_FILAMENT_START_Z	94
6.6.1.53 L_IBB_FLEXIBLE	94
6.6.1.54 L_IBB_L	94
6.6.1.55 L_IBB_LENGTH	95
6.6.1.56 L_IBB_MOVABLE	95
6.6.1.57 L_IBB_ON_GRID_LEV	95
6.6.1.58 L_IBB_ON_GRID_REG	95
6.6.1.59 L_IBB_R	95
6.6.1.60 L_IBB_REF_LENGTH	95
6.6.1.61 L_IBB_SCALE_DIRECTION	95
6.6.1.62 L_IBB_W	95
6.6.1.63 L_IBB_X	95
6.6.1.64 L_IBB_Y	95
6.6.1.65 L_IBB_Z	96
6.6.1.66 L_INLET_ON	96

xviii CONTENTS

6.6.1.67	L_INSERT_CIRCLE_SPHERE	96
6.6.1.68	L_K	96
6.6.1.69	L_K	96
6.6.1.70	L_M	96
6.6.1.71	L_MPI_DIRS	96
6.6.1.72	L_MPI_WRITE_LOAD_BALANCE	96
6.6.1.73	L_MPI_XCORES	96
6.6.1.74	L_MPI_YCORES	96
6.6.1.75	L_MPI_ZCORES	96
6.6.1.76	$L_N\ldots\ldots\ldots\ldots$	97
6.6.1.77	L_NUM_LEVELS	97
6.6.1.78	L_NUM_MARKERS	97
6.6.1.79	L_NUM_REGIONS	97
6.6.1.80	L_NUM_VELS	97
6.6.1.81	L_OBJECT_LENGTH	97
6.6.1.82	L_OBJECT_ON_GRID_LEV	97
6.6.1.83	L_OBJECT_ON_GRID_REG	97
6.6.1.84	L_OBJECT_REF_LENGTH	97
6.6.1.85	L_OBJECT_SCALE_DIRECTION	97
6.6.1.86	L_OUT_EVERY	97
6.6.1.87	L_OUT_EVERY_FORCES	98
6.6.1.88	L_OUTLET_ON	98
6.6.1.89	L_OUTPUT_PRECISION	98
6.6.1.90	L_PHYSICAL_U	98
6.6.1.91	L_PI	98
6.6.1.92	L_PROBE_OUT_FREQ	98
6.6.1.93	L_RE	98
6.6.1.94	L_RESTART_OUT_FREQ	98
6.6.1.95	L_RHOIN	98
6.6.1.96	L_START_BFL_X	98

CONTENTS xix

6.6.1.97 L_START_BFL_Y	99
6.6.1.98 L_START_IBB_X	99
6.6.1.99 L_START_IBB_Y	99
6.6.1.100 L_START_OBJECT_X	99
6.6.1.101 L_START_OBJECT_Y	99
6.6.1.102 L_TIMESTEPS	99
6.6.1.103 L_UMAX	99
6.6.1.104 L_UREF	99
6.6.1.105 L_USE_OPTIMISED_KERNEL	99
6.6.1.106 L_UX0	99
6.6.1.107 L_UY0	00
6.6.1.108 L_UZ0	00
6.6.1.109 L_UZ0	00
6.6.1.110 L_VTK_BODY_WRITE	00
6.6.1.111 L_WALL_THICKNESS_BACK	00
6.6.1.112 L_WALL_THICKNESS_BOTTOM	00
6.6.1.113 L_WALL_THICKNESS_FRONT	00
6.6.1.114 L_WALL_THICKNESS_TOP	00
6.6.1.115 L_WALLS_ON	00
6.6.1.116 LUMA_VERSION	00
Variable Documentation	01
6.6.2.1 cNumProbes	01
6.6.2.2 cProbeLimsX	01
6.6.2.3 cProbeLimsY	01
6.6.2.4 cProbeLimsZ	01
6.6.2.5 cRefEndX	01
6.6.2.6 cRefEndY	01
6.6.2.7 cRefEndZ	01
6.6.2.8 cRefStartX	01
6.6.2.9 cRefStartY	01

6.6.2

CONTENTS

		6.6.2.10	cRefStartZ	. 101
6.7	GridOb	j.cpp File	Reference	. 101
6.8	GridOb	j.h File Re	eference	. 101
	6.8.1	Enumera	tion Type Documentation	. 102
		6.8.1.1	eBCType	. 102
		6.8.1.2	elOFlag	. 102
		6.8.1.3	eType	. 103
6.9	GridOb	oj_init_grid	s.cpp File Reference	. 103
6.10	GridOb	oj_ops_bou	undary.cpp File Reference	. 103
6.11	GridOb	oj_ops_io.c	pp File Reference	. 103
6.12	GridOb	oj_ops_lbm	n.cpp File Reference	. 104
6.13	GridOb	oj_ops_lbm	n_optimised.cpp File Reference	. 104
6.14	GridUn	its.h File F	Reference	. 104
6.15	GridUti	ls.cpp File	Reference	. 104
6.16	GridUti	ls.h File R	eference	. 104
	6.16.1	Enumera	tion Type Documentation	. 105
		6.16.1.1	eCartesianDirection	. 105
		6.16.1.2	eMinMax	. 105
6.17	hdf5lur	na.h File F	Reference	. 105
	6.17.1	Macro De	efinition Documentation	. 106
		6.17.1.1	H5_BUILT_AS_DYNAMIC_LIB	. 106
		6.17.1.2	HDF5_EXT_SZIP	. 106
		6.17.1.3	HDF5_EXT_ZLIB	. 106
	6.17.2	Enumera	tion Type Documentation	. 106
		6.17.2.1	eHdf5SlabType	. 106
	6.17.3	Function	Documentation	. 106
		6.17.3.1	hdf5_writeDataSet(hid_t &memspace, hid_t &filespace, hid_t &dataset_id, e Hdf5SlabType slab_type, int N_lim, int M_lim, int K_lim, int N_mod, int M_mod, int K_mod, GridObj *g, T *data, hid_t hdf_datatype, int TL_thickness, MpiManager ::phdf5_struct hdf_data)	t
6.18	IBBody	cpp File F	Reference	
6.19	IBBody	.h File Ret	ference	. 107

CONTENTS xxi

6.20 IBMarker.cpp File Reference
6.21 IBMarker.h File Reference
6.22 IVector.h File Reference
6.23 main_lbm.cpp File Reference
6.23.1 Function Documentation
6.23.1.1 main(int argc, char *argv[])
6.24 Marker.h File Reference
6.25 Mpi_buffer_pack.cpp File Reference
6.26 Mpi_buffer_size_recv.cpp File Reference
6.27 Mpi_buffer_size_send.cpp File Reference
6.28 Mpi_buffer_unpk.cpp File Reference
6.29 MpiManager.cpp File Reference
6.30 MpiManager.h File Reference
6.30.1 Macro Definition Documentation
6.30.1.1 range_i_left
6.30.1.2 range_i_right
6.30.1.3 range_j_down
6.30.1.4 range_j_up
6.30.1.5 range_k_back
6.30.1.6 range_k_front
6.31 ObjectManager.cpp File Reference
6.32 ObjectManager.h File Reference
6.32.1 Enumeration Type Documentation
6.32.1.1 eObjectType
6.33 ObjectManager_init_bflbody.cpp File Reference
6.34 ObjectManager_init_ibmbody.cpp File Reference
6.35 ObjectManager_ops_ibm.cpp File Reference
6.36 ObjectManager_ops_ibmflex.cpp File Reference
6.36.1 Macro Definition Documentation
6.36.1.1 SWAP

xxii CONTENTS

	6.36.1.2 SWAP	113
	6.36.1.3 TINY	113
6.37 Objec	ctManager_ops_io.cpp File Reference	113
6.38 PCpts	s.h File Reference	113
6.39 stdafx	x.cpp File Reference	114
6.39.1	1 Variable Documentation	114
	6.39.1.1 c	114
	6.39.1.2 c_opt	114
	6.39.1.3 cs	114
	6.39.1.4 w	115
6.40 stdafx	x.h File Reference	115
6.40.1	1 Macro Definition Documentation	116
	6.40.1.1 DEPRECATED	116
	6.40.1.2 L_DACTION_WRITE_OUT_FORCES	116
	6.40.1.3 L_IS_NAN	116
	6.40.1.4 LUMA_FAILED	116
	6.40.1.5 SQ	116
6.40.2	2 Variable Documentation	116
	6.40.2.1 c	116
	6.40.2.2 c_opt	116
	6.40.2.3 cs	116
	6.40.2.4 w	116
Index		117

Chapter 1

Main Page

Lattice Boltzmann @ The University of Manchester
L-U-M-A
Copyright (C) 2015, 2016 E-mail contact: info@luma.manchester.ac.uk

This software is for academic use only and not available for distribution without written consent.

2 Main Page

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Body< MarkerType >	. 13
Body < BFLMarker >	. 13
BFLBody	9
Body < IBMarker >	. 13
IBBody	48
MpiManager::buffer_struct	. 17
GridObj	. 17
GridUnits	. 32
GridUtils	. 33
MpiManager::layer_edges	. 58
Marker	. 59
BFLMarker	11
IBMarker	53
MarkerData	. 61
MpiManager	. 63
ObjectManager	. 71
PCpts	. 79
MpiManager::phdf5_struct	. 80
vector	
IVector< GenTyp >	56
IVector< double >	56
IVector < eTvpe >	56

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BFLBody	
BFL body	ć
BFLMarker	
BFL marker	11
Body< MarkerType >	
Generic body class	13
MpiManager::buffer_struct	
Structure storing buffers sizes in each direction for particular grid	17
GridObj	
Grid class	17
GridUnits	
GridUnits	32
GridUtils	
Grid utility class	33
IBBody	40
Immersed boundary body	48
Immersed boundary marker	53
IVector< GenTyp >	50
Index-collapsing vector class	56
MpiManager::layer_edges	50
Structure containing global positions of the edges of halos	58
Marker	-
Generic marker class	59
MarkerData	
	61
MpiManager	
	63
ObjectManager	
	71
PCpts	
Class to hold point cloud data	79
MpiManager::phdf5_struct	
Structure for storing halo information for HDF5	80

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

BFLBody.cpp	33
	33
	33
	34
	- 34
	34
GridObj.cpp)1
GridObj.h)1
GridObj init grids.cpp)3
GridObj_ops_boundary.cpp)3
GridObj_ops_io.cpp)3
GridObj_ops_lbm.cpp)4
GridObj_ops_lbm_optimised.cpp)4
GridUnits.h)4
GridUtils.cpp)4
GridUtils.h)4
hdf5luma.h)5
IBBody.cpp)7
IBBody.h)7
IBMarker.cpp)7
IBMarker.h)8
IVector.h)8
main_lbm.cpp)8
Marker.h)9
Mpi_buffer_pack.cpp)9
Mpi_buffer_size_recv.cpp)9
Mpi_buffer_size_send.cpp	
Mpi_buffer_unpk.cpp 10	
MpiManager.cpp	
MpiManager.h	
ObjectManager.cpp	
ObjectManager.h	
ObjectManager_init_bflbody.cpp	
ObjectManager_init_ibmbody.cpp	
ObjectManager ops ibm.cpp	12

8 File Index

ObjectManager_ops_ibmflex.cpp	12
ObjectManager_ops_io.cpp	13
PCpts.h	13
stdafx.cpp	14
stdafx.h	15

Chapter 5

Class Documentation

5.1 BFLBody Class Reference

BFL body.

#include <BFLBody.h>

Inheritance diagram for BFLBody:

Public Member Functions

• BFLBody (void)

Default constructor.

∼BFLBody (void)

Default destructor.

• BFLBody (PCpts *_PCpts, GridObj *g_hierarchy, size_t id)

Custom constructor to populate body from array of points.

Protected Member Functions

void computeQ (int i, int j, int k, GridObj *g)

Routine to compute wall distance Q.

void computeQ (int i, int j, GridObj *g)

Routine to compute wall distance Q.

Protected Attributes

std::vector< std::vector< double > > Q

Distance between adjacent lattice site and the surface of the body.

10 Class Documentation

Friends

• class GridObj

5.1.1 Detailed Description

BFL body.

A BFL body is made up of a collection of BFLMarkers.

5.1.2 Constructor & Destructor Documentation

```
5.1.2.1 BFLBody::BFLBody (void)
```

Default constructor.

```
5.1.2.2 BFLBody::∼BFLBody (void )
```

Default destructor.

```
5.1.2.3 BFLBody::BFLBody ( PCpts * _PCpts, GridObj * g_hierarchy, size_t id )
```

Custom constructor to populate body from array of points.

Parameters

_PCpts	pointer to point cloud data
g_hierarchy	pointer to grid hierarchy
id	ID of body in array of bodies.

5.1.3 Member Function Documentation

5.1.3.1 void BFLBody::computeQ(int i, int j, int k, GridObj * g) [protected]

Routine to compute wall distance Q.

Computes Q values in 3D at a given local voxel for each application of the BFL BC. Performs a line-plane intersection algorithm for every possible triangular plane constructed out of the marker in the voxel and its nearest neighbours.

Parameters

i	local i-index of BFL voxel
j	local j-index of BFL voxel
k	local k-index of BFL voxel
g	pointer to owner grid

5.1.3.2 void BFLBody::computeQ(int *i*, int *j*, **GridObj** * *g*) [protected]

Routine to compute wall distance Q.

Computes Q values in 2D at a given local voxel for each application of the BFL BC. Performs a line-line intersection algorithm for each line segment either side of the voxel marker.

Parameters

i	local i-index of BFL voxel
j	local j-index of BFL voxel
g	pointer to owner grid

5.1.4 Friends And Related Function Documentation

5.1.4.1 friend class GridObj [friend]

5.1.5 Member Data Documentation

5.1.5.1 std::vector< **std::vector**< **double**>> **BFLBody::Q** [protected]

Distance between adjacent lattice site and the surface of the body.

There are two stores of values. Store 1 is the distance on one side of the wall and store 2 the distance on the other side. One store is appended to the other in this structure.

The documentation for this class was generated from the following files:

- BFLBody.h
- BFLBody.cpp

5.2 BFLMarker Class Reference

BFL marker.

#include <BFLMarker.h>

Inheritance diagram for BFLMarker:

12 Class Documentation

Public Member Functions

• BFLMarker (void)

Default constructor.

• ∼BFLMarker (void)

Default destructor.

• BFLMarker (double x, double y, double z)

Custom constructor with position.

Friends

• class BFLBody

Additional Inherited Members

5.2.1 Detailed Description

BFL marker.

This class declaration is for a BFL Lagrange point. A collection of these points form BFL body.

5.2.2 Constructor & Destructor Documentation

```
5.2.2.1 BFLMarker::BFLMarker (void)
```

Default constructor.

5.2.2.2 BFLMarker:: \sim BFLMarker (void)

Default destructor.

5.2.2.3 BFLMarker::BFLMarker (double x, double y, double z)

Custom constructor with position.

Parameters

X	x-position of marker
у	y-position of marker
Z	z-position of marker

5.2.3 Friends And Related Function Documentation

5.2.3.1 friend class BFLBody [friend]

The documentation for this class was generated from the following files:

- · BFLMarker.h
- BFLMarker.cpp

5.3 Body < MarkerType > Class Template Reference

Generic body class.

```
#include <Body.h>
```

Public Member Functions

• Body (void)

Default Constructor.

∼Body (void)

Default destructor.

Body (GridObj *g, size_t id)

Custom constructor setting owning grid.

Protected Member Functions

• void addMarker (double x, double y, double z)

Add marker to the body.

• MarkerData * getMarkerData (double x, double y, double z)

Retrieve marker data.

void markerAdder (double x, double y, double z, int &curr_mark, std::vector< int > &counter)

Downsampling marker adding method.

bool isInVoxel (double x, double y, double z, int curr_mark)

Determines whether a point is inside another marker's support voxel.

• bool isVoxelMarkerVoxel (double x, double y, double z)

Determines whether a point is inside an existing marker's support voxel.

Protected Attributes

double spacing

Spacing of the markers in physical units.

std::vector< MarkerType > markers

Array of markers which make up the body.

· bool closed surface

Flag to specify whether or not it is a closed surface (for output)

GridObj * _Owner

Pointer to owning grid.

size_t id

ID of body in array of bodies.

14 Class Documentation

5.3.1 Detailed Description

 ${\it template}{<}{\it typename MarkerType}{>}$ ${\it class Body}{<}{\it MarkerType}{>}$

Generic body class.

Can consist of any type of Marker so templated.

5.3.2 Constructor & Destructor Documentation

```
5.3.2.1 template<typename MarkerType > Body< MarkerType >::Body ( void )
```

Default Constructor.

```
5.3.2.2 template < typename MarkerType > Body < MarkerType >::\simBody (void)
```

Default destructor.

5.3.2.3 template<typename MarkerType > Body< MarkerType >::Body (GridObj * g, size_t id)

Custom constructor setting owning grid.

Parameters

g	pointer to grid which owns this body.
id	indicates position of body in array of bodies.

5.3.3 Member Function Documentation

5.3.3.1 template<typename MarkerType > void Body< MarkerType > ::addMarker (double x, double y, double z) [protected]

Add marker to the body.

Parameters

X	global X-position of marker.
У	global Y-position of marker.
Z	global Z-position of marker.

5.3.3.2 template<typename MarkerType > MarkerData * Body< MarkerType >::getMarkerData (double x, double y, double z) [protected]

Retrieve marker data.

Return marker and voxel/primary support data associated with supplied global position.

Parameters

Х	global X-position nearest to marker to be retrieved.
У	global Y-position nearest to marker to be retrieved.
Z	global Z-position nearest to marker to be retrieved.

Returns

MarkerData marker data structure returned. If no marker found, structure is marked as invalid.

5.3.3.3 template<typename MarkerType > bool Body< MarkerType >::isInVoxel (double x, double y, double z, int curr_mark) [protected]

Determines whether a point is inside another marker's support voxel.

Parameters

X	X-position of point.
у	Y-position of point.
Z	Z-position of point.
curr_mark	ID of the marker.

Returns

true of false

5.3.3.4 template<typename MarkerType > bool Body< MarkerType >::isVoxelMarkerVoxel (double x, double y, double z) [protected]

Determines whether a point is inside an existing marker's support voxel.

X	global X-position of point.
У	global Y-position of point.
Z	global Z-position of point.

Returns

true of false

5.3.3.5 template<typename MarkerType > void Body< MarkerType >::markerAdder (double x, double y, double z, int & curr_mark, std::vector< int > & counter) [protected]

Downsampling marker adding method.

This method tries to add a marker to body at the global location given but obeys the rules of a voxel-grid filter to ensure markers are distributed such that their spacing roughly matches the background lattice.

Parameters

X	desired global X-position of new marker.
У	desired globalY-position of new marker.
Z	desired globalZ-position of new marker.
curr_mark	is a reference to the ID of last marker.
counter	is a reference to the total number of markers in the body.

5.3.4 Member Data Documentation

5.3.4.1 template<typename MarkerType> GridObj* Body< MarkerType >::_Owner [protected]

Pointer to owning grid.

5.3.4.2 template<typename MarkerType> bool Body< MarkerType>::closed_surface [protected]

Flag to specify whether or not it is a closed surface (for output)

5.3.4.3 template<typename MarkerType> size_t Body< MarkerType>::id [protected]

ID of body in array of bodies.

5.3.4.4 template<typename MarkerType> std::vector<MarkerType> Body< MarkerType>::markers [protected]

Array of markers which make up the body.

5.3.4.5 template < typename MarkerType > double Body < MarkerType >::spacing [protected]

Spacing of the markers in physical units.

The documentation for this class was generated from the following file:

Body.h

5.4 MpiManager::buffer_struct Struct Reference

Structure storing buffers sizes in each direction for particular grid.

```
#include <MpiManager.h>
```

Public Attributes

• int size [L_MPI_DIRS]

Buffer sizes for each direction.

int level

Grid level.

• int region

Region number.

5.4.1 Detailed Description

Structure storing buffers sizes in each direction for particular grid.

5.4.2 Member Data Documentation

5.4.2.1 int MpiManager::buffer_struct::level

Grid level.

5.4.2.2 int MpiManager::buffer_struct::region

Region number.

5.4.2.3 int MpiManager::buffer_struct::size[L_MPI_DIRS]

Buffer sizes for each direction.

The documentation for this struct was generated from the following file:

• MpiManager.h

5.5 GridObj Class Reference

Grid class.

#include <GridObj.h>

Public Member Functions

· GridObj ()

Default Constructor.

· GridObj (int level)

Constructor for top level grid.

• GridObj (int RegionNumber, GridObj &pGrid)

Constructor for a sub-grid.

GridObj (int level, std::vector< int > local_size, std::vector< std::vector< int > > GlobalLimsInd, std::vector< std::vector< double > > GlobalLimsPos)

MPI constructor for top level grid.

∼GridObj ()

Default Destructor.

void LBM_initVelocity ()

Method to initialise the lattice velocity.

void LBM_initRho ()

Method to initialise the lattice density.

void LBM_initGrid ()

Wrapper to initialise all L0 lattice quantities.

Method to initialise all L0 lattice quantities.

void LBM_initSubGrid (GridObj &pGrid)

Method to initialise all sub-grid quantities.

void LBM_initBoundLab ()

Method to initialise wall and object labels on L0.

• void LBM_initSolidLab ()

Method to initialise label-based solids.

void LBM_initRefinedLab (GridObj &pGrid)

Method to initialise all labels on sub-grids.

• void LBM_init_getInletProfile ()

Method to import an input profile from a file.

DEPRECATED void LBM_multi (bool ibmFlag)

LBM multi-grid kernel (DEPRECATED VERSION).

DEPRECATED void LBM_multi ()

LBM multi-grid kernel.

DEPRECATED void LBM_collide ()

Apply collision operator.

double LBM_collide (int i, int j, int k, int v)

Equilibrium calculation.

void LBM_kbcCollide (int i, int j, int k, IVector< double > &f_new)

KBC collision operator.

DEPRECATED void LBM_stream ()

Streaming operator.

• DEPRECATED void LBM macro ()

Macroscopic update.

void LBM_macro (int i, int j, int k)

Site-specific macroscopic update.

DEPRECATED void LBM boundary (int bc type flag)

Method to apply boundary conditions on lattice.

DEPRECATED void LBM_forceGrid ()

Method to compute body forces.

void LBM_resetForces ()

Method to reset body forces.

void bc_applyBounceBack (int label, int i, int j, int k)

Method to apply half-way bounce-back.

void bc_applySpecReflect (int label, int i, int j, int k)

Method to apply half-way specular reflection.

void bc applyRegularised (int label, int i, int j, int k)

Method to apply regularised velocity inlet.

void bc_applyExtrapolation (int label, int i, int j, int k)

Method to apply extrapolation outlet.

void bc_applyBfl (int i, int j, int k)

Method to apply BFL bounce-back.

• void bc_applyNrbc (int i, int j, int k)

Method to apply NRBC.

• DEPRECATED void bc_solidSiteReset ()

Helper method to set macroscopic quantities of solid sites.

DEPRECATED void LBM_explode (int RegionNumber)

Explosion operation for pushing information to finer grids.

DEPRECATED void LBM_coalesce (int RegionNumber)

Coalesce operation for pulling information from finer grids.

void LBM addSubGrid (int RegionNumber)

Wrapper method to add sub-grid to this grid.

void io_textout (std::string output_tag)

Verbose ASCII writer.

void io_fgaout ()

.fga file writer.

void io_restart (eIOFlag IO_flag)

Restart file read-writer.

void io probeOutput ()

Probe writer.

• void io_lite (double tval, std::string Tag)

ASCII dump of grid data.

• int io hdf5 (double tval)

HDF5 writer.

void LBM_multi_opt (int subcycle=0)

Optimised LBM multi-grid kernel.

Public Attributes

std::vector< int > XInd

Vector of global X indices of each site.

• std::vector < int > YInd

Vector of global Y indices of each site.

std::vector< int > ZInd

Vector of global Z indices of each site.

std::vector< double > XPos

Vector of global X positions of each site.

• std::vector< double > YPos

Vector of global Y positions of each site.

std::vector< double > ZPos

Vector of global Z positions of each site.

IVector< eType > LatTyp

Flattened 3D array of site labels.

double dx

Physical lattice X spacing.

· double dy

Physical lattice Y spacing.

double dz

Physical lattice Z spacing.

• int region_number

Region number.

int level

Level in embedded grid hierarchy.

• double dt

Physical time step size.

• int t

Number of completed iterations on this level.

• double nu

Kinematic viscosity (in lattice units)

• double omega

Relaxation frequency.

· double timeav_mpi_overhead

Time-averaged time of MPI communication.

double timeav_timestep

Time-averaged time of a timestep.

• int N lim

Local size of grid in X-direction.

• int M_lim

Local size of grid in Y-direction.

• int K_lim

Local size of grid in Z-direction.

• double XOrigin

Global position of grid left edge.

· double YOrigin

Global position of grid bottom edge.

double ZOrigin

Global position of grid front edge.

Friends

- class MpiManager
- class ObjectManager
- · class GridUtils

5.5.1 Detailed Description

Grid class.

This class represents a grid (lattice) and is capable of owning a nested hierarchy of child grids.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 GridObj::GridObj (void)

Default Constructor.

5.5.2.2 GridObj::GridObj (int level)

Constructor for top level grid.

Coarse limits are set to zero and then L0-specific initialiser called.

Parameters

	level	always should be zero astop level grid.
--	-------	---

5.5.2.3 GridObj::GridObj (int RegionNumber, GridObj & pGrid)

Constructor for a sub-grid.

Parameters

RegionNumber	ID indicating the region of nested refinement to which this sub-grid belongs.
pGrid	pointer to parent grid.

5.5.2.4 GridObj::GridObj (int level, std::vector< int > local_size, std::vector< std::vector< int > > GlobalLimsInd, std::vector< std::vector< double > > GlobalLimsPos)

MPI constructor for top level grid.

When using MPI, this constructors a local grid which represents an appropriate portion of the top-level grid as dictated by the extent of this rank.

Parameters

level	always should be zero astop level grid.
local_size	vector indicating dimensions of local grid including halo.
GlobalLimsInd	vector indicating the global indices of the edges of this local grid.
GlobalLimsPos	vector indicating the global positions of the edges of this local grid.

5.5.2.5 GridObj::~GridObj (void)

Default Destructor.

5.5.3 Member Function Documentation

5.5.3.1 void GridObj::bc_applyBfl (int i, int j, int k)

Method to apply BFL bounce-back.

Currently, assumes only 1 BFL body present on the grid.

Parameters

i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.2 void GridObj::bc_applyBounceBack (int label, int i, int j, int k)

Method to apply half-way bounce-back.

Parameters

label	current site label.
i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.3 void GridObj::bc_applyExtrapolation (int label, int i, int j, int k)

Method to apply extrapolation outlet.

Can only be applied on right-hand wall.

Parameters

label	current site label.
i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.4 void GridObj::bc_applyNrbc (int i, int j, int k)

Method to apply NRBC.

Not implemented in this version.

i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.5 void GridObj::bc_applyRegularised (int *label*, int *i*, int *j*, int *k*)

Method to apply regularised velocity inlet.

Can be applied on any wall.

Parameters

label	current site label.
i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.6 void GridObj::bc_applySpecReflect (int label, int i, int j, int k)

Method to apply half-way specular reflection.

Symmetry boundary condition for free-slip walls.

Parameters

label	current site label.
i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.7 void GridObj::bc_solidSiteReset ()

Helper method to set macroscopic quantities of solid sites.

Velocity is set to zero and density is set to initial density. Applies to eSolid and eRefinedSolid sites only.

5.5.3.8 void GridObj::io_fgaout ()

.fga file writer.

Writes the components of the macroscopic velocity of the grid at time t and call recursively for any sub-grid. Writes the data of each subgrid in a different .fga file. .fga is the ASCII file format used by Unreal Engine 4 to read the data that populates a VectorField object. It doesn't do anything if the model is not 2D or 3D. Since .fga files can only store 3D data

5.5.3.9 int GridObj::io_hdf5 (double tval)

HDF5 writer.

Useful grid quantities written out as scalar arrays. Creates one *.h5 file per grid and data is grouped into timesteps within each file. Should be used with the merge tool at post-processing to conver to sructured VTK output readable in paraview.

Parameters

tval	time value being written out.
------	-------------------------------

5.5.3.10 void GridObj::io_lite (double tval, std::string TAG)

ASCII dump of grid data.

Generic ASCII writer for each rank to write out all grid data in rows into a single, unsorted file.

Parameters

	tval		
TAG text identifier for the		text identifier for the data.	

5.5.3.11 void GridObj::io_probeOutput ()

Probe writer.

This routine writes the quantities at hte probe locations to a single file.

5.5.3.12 void GridObj::io_restart (eIOFlag IO_flag)

Restart file read-writer.

This routine writes/reads the current rank's data in the custom restart file format. If the file already exists, data is appended. IB body data are also written out but no other body information at present.

Parameters

IO_flag	flag to indicate whether a write or read
---------	--

5.5.3.13 void GridObj::io_textout (std::string output_tag)

Verbose ASCII writer.

Writes all the contents of the grid class at time t and call recursively for any sub-grids. Writes to text file "Grids.out" by default.

output_tag	text string added to top of output for identification.

5.5.3.14 void GridObj::LBM_addSubGrid (int RegionNumber)

Wrapper method to add sub-grid to this grid.

Parameters

F	RegionNumber	ID indicating the region of nested refinement to which this sub-grid belongs.
---	--------------	---

5.5.3.15 void GridObj::LBM_boundary (int bc_type_flag)

Method to apply boundary conditions on lattice.

This method will exmaine the entire lattice for sites which require a boundary condition but only apply the boundary condition requested in the bc_type_flag argument.

Parameters

ſ	bc_type_flag	Flag indicating which set of BCs to apply.	1
---	--------------	--	---

5.5.3.16 void GridObj::LBM_coalesce (int RegionNumber)

Coalesce operation for pulling information from finer grids.

Uses the algorithm of Rohde et al. 2006 to pull information from a fine grid TL to a coarse grid TL.

Parameters

RegionNumber	region number of the sub-grid.

5.5.3.17 void GridObj::LBM_collide()

Apply collision operator.

5.5.3.18 double GridObj::LBM_collide (int i, int j, int k, int v)

Equilibrium calculation.

Computes the equilibrium distribution in direction supplied at the given lattice site and returns the value.

i i-index of lattice sit		
j	j-index of lattice site.	
k k-index of lattice site		
V	lattice direction.	

Returns

equilibrium function.

```
5.5.3.19 void GridObj::LBM_explode ( int RegionNumber )
```

Explosion operation for pushing information to finer grids.

Uses the algorithm of Rohde et al. 2006 to pass information from a coarse grid TL to a fine grid TL.

Parameters

	RegionNumber	region number of the sub-grid.
--	--------------	--------------------------------

```
5.5.3.20 void GridObj::LBM_forceGrid ( )
```

Method to compute body forces.

Takes Cartesian force vector and populates forces for each lattice direction. If reset_flag is true, then resets the force vectors to zero.

```
5.5.3.21 void GridObj::LBM_init_getInletProfile ( )
```

Method to import an input profile from a file.

Input data may be over- or under-sampled but it must span the physical dimensions of the inlet otherwise the software does not known how to scale the data to fit. Inlet profile is always assumed to be oriented vertically (y-direction).

```
5.5.3.22 void GridObj::LBM_initBoundLab()
```

Method to initialise wall and object labels on L0.

The virtual wind tunnel definitions are implemented by this method.

```
5.5.3.23 void GridObj::LBM_initGrid()
```

Wrapper to initialise all L0 lattice quantities.

This method wraps the MPI-specific version. It is called by the serial build and sets the MPI-specific arguments to default values before calling the full initialiser.

```
5.5.3.24 void GridObj::LBM_initGrid ( std::vector< int > local_size, std::vector< std::vector< int >> global_edge_ind, std::vector< std::vector< double >> global_edge_pos )
```

Method to initialise all L0 lattice quantities.

Parameters

local_size	local grid size on this rank including halo.	
global_edge_ind	global indices of the rank edges.	
global_edge_pos	global positions of the rank edges.	

5.5.3.25 void GridObj::LBM_initRefinedLab (GridObj & pGrid)

Method to initialise all labels on sub-grids.

Boundary labels are set by considering parent labels on overlapping sites and then assigning child labels appropriately.

Parameters

pGrid reference to pare	ent grid.
-------------------------	-----------

5.5.3.26 void GridObj::LBM_initRho()

Method to initialise the lattice density.

5.5.3.27 void GridObj::LBM_initSolidLab()

Method to initialise label-based solids.

5.5.3.28 void GridObj::LBM_initSubGrid (GridObj & pGrid)

Method to initialise all sub-grid quantities.

Parameters

pGrid	reference to parent grid.

5.5.3.29 void GridObj::LBM_initVelocity ()

Method to initialise the lattice velocity.

Unless the L_NO_FLOW macro is defined, the initial velocity everywhere will be set to the values specified in the definitions file.

5.5.3.30 void GridObj::LBM_kbcCollide (int i, int j, int k, IVector< double > & f_new)

KBC collision operator.

Applies KBC collision operator using the KBC-N4 and KBC-D models in 3D and 2D, respectively.

Parameters

i	i-index of lattice site.
j	j-index of lattice site.
k	k-index of lattice site.
f_new	reference to the temporary, post-collision grid.

5.5.3.31 void GridObj::LBM_macro()

Macroscopic update.

Updates macroscopic quantities over the lattice. Also updates time-averaged quantities.

5.5.3.32 void GridObj::LBM_macro (int i, int j, int k)

Site-specific macroscopic update.

Overload of macroscopic quantity calculation to allow it to be applied to a single site as used by the MPI unpacking routine to update the values for the next collision step. This routine does not update the time-averaged quantities.

Parameters

i	i-index of lattice site.	
j	j-index of lattice site.	
k	k-index of lattice site.	

5.5.3.33 void GridObj::LBM_multi (bool ibmFlag)

LBM multi-grid kernel (DEPRECATED VERSION).

The LBM kernel manages the calling of all IBM and LBM methods on a given grid. In addition, this method also manages the recursive calling of the method on sub-grids and manages the framework for grid-grid interaction.

Parameters

ibmFlag flag to indicate whether this kernel is a predictor (true) or corrector (false) step when using IBM.
--

5.5.3.34 void GridObj::LBM_multi()

LBM multi-grid kernel.

The LBM kernel manages the calling of all IBM and LBM methods on a given grid. In addition, this method also manages the recursive calling of the method on sub-grids and manages the framework for grid-grid interaction.

```
5.5.3.35 void GridObj::LBM_multi_opt ( int subcycle = 0 )
```

Optimised LBM multi-grid kernel.

This kernel compresses the old kernel into a single loop in order to make it more efficient. Capabilities are current limited with this kernel with incompatible options giving unpredictable results. Use with caution.

Parameters

	subcycle	sub-cycle to be performed if called from a subgrid.
--	----------	---

```
5.5.3.36 void GridObj::LBM_resetForces ( )
```

Method to reset body forces.

Resets both Cartesian and Lattice force vectors to zero.

```
5.5.3.37 void GridObj::LBM_stream ( )
```

Streaming operator.

Currently, periodic BCs are only applied on L0. Considers site typing as well as grid location when determining viable streaming.

5.5.4 Friends And Related Function Documentation

```
5.5.4.1 friend class GridUtils [friend]
```

5.5.4.2 friend class MpiManager [friend]

5.5.4.3 friend class ObjectManager [friend]

5.5.5 Member Data Documentation

5.5.5.1 double GridObj::dt

Physical time step size.

5.5.5.2 double GridObj::dx

Physical lattice X spacing.

5.5.5.3 double GridObj::dy

Physical lattice Y spacing.

5.5.5.4 double GridObj::dz Physical lattice Z spacing. 5.5.5.5 int GridObj::K_lim Local size of grid in Z-direction. 5.5.5.6 IVector<eType> GridObj::LatTyp Flattened 3D array of site labels. 5.5.5.7 int GridObj::level Level in embedded grid hierarchy. 5.5.5.8 int GridObj::M_lim Local size of grid in Y-direction. 5.5.5.9 int GridObj::N_lim Local size of grid in X-direction. 5.5.5.10 double GridObj::nu Kinematic viscosity (in lattice units) 5.5.5.11 double GridObj::omega Relaxation frequency. 5.5.5.12 int GridObj::region_number Region number. 5.5.5.13 int GridObj::t Number of completed iterations on this level. $5.5.5.14 \quad double\ GridObj:: time av_mpi_overhead$

Time-averaged time of MPI communication.

5.5.5.15 double GridObj::timeav_timestep

Time-averaged time of a timestep.

 $\textbf{5.5.5.16} \quad \textbf{std::vector}{<} \textbf{int}{>} \textbf{GridObj::XInd}$

Vector of global X indices of each site.

5.5.5.17 double GridObj::XOrigin

Global position of grid left edge.

5.5.5.18 std::vector<double> GridObj::XPos

Vector of global X positions of each site.

5.5.5.19 std::vector<int> GridObj::YInd

Vector of global Y indices of each site.

5.5.5.20 double GridObj::YOrigin

Global position of grid bottom edge.

5.5.5.21 std::vector<double> GridObj::YPos

Vector of global Y positions of each site.

5.5.5.22 std::vector<int> GridObj::ZInd

Vector of global Z indices of each site.

5.5.5.23 double GridObj::ZOrigin

Global position of grid front edge.

```
5.5.5.24 std::vector<double> GridObj::ZPos
```

Vector of global Z positions of each site.

The documentation for this class was generated from the following files:

- GridObj.h
- GridObj.cpp
- GridObj_init_grids.cpp
- GridObj_ops_boundary.cpp
- GridObj_ops_io.cpp
- GridObj_ops_lbm.cpp
- GridObj_ops_lbm_optimised.cpp

5.6 GridUnits Class Reference

GridUnits.

```
#include <GridUnits.h>
```

Public Member Functions

- GridUnits ()
- ∼GridUnits ()

Static Public Member Functions

```
• template<typename T > static T m2cm (const T meters)
```

Convert from m to cm.

template<typename T >
 static T ulat2uphys (T ulat, GridObj *currentGrid)

Velocity in lattice units to velocity in physical units.

5.6.1 Detailed Description

GridUnits.

This class contains static methods for unit conversion (the only ones implemented are from m to cm and velocity from lattice units to m/s)

5.6.2 Constructor & Destructor Documentation

```
5.6.2.1 GridUnits::GridUnits( ) [inline]
```

5.6.2.2 GridUnits::~GridUnits() [inline]

5.6.3 Member Function Documentation

5.6.3.1 template < typename T > static T GridUnits::m2cm (const T meters) [inline], [static]

Convert from m to cm.

```
5.6.3.2 template<typename T > static T GridUnits::ulat2uphys ( T \textit{ulat}, GridObj * \textit{currentGrid} ) [inline], [static]
```

Velocity in lattice units to velocity in physical units.

Converts velocity component from lattice units to m/s. It uses the L_PHYSICAL_U introduced by the user, dx and dt. You can introduce any L_PHYSICAL_U you want, but the reference lenght (usualy the width of the domain) , the Re number and the LBM parameters will remain the same. So you will be implicitly changing the physical viscosity of your fluid when you change L_PHYSICAL_U

Parameters

ulat	Lattice velocity.
currentGrid	Pointer to the current grid.

Returns

physical velocity

The documentation for this class was generated from the following file:

· GridUnits.h

5.7 GridUtils Class Reference

Grid utility class.

#include <GridUtils.h>

Static Public Member Functions

static int createOutputDirectory (std::string path_str)

Create output directory.

static std::vector< int > onespace (int min, int max)

Creates a linearly-spaced vector of integers.

• static std::vector< double > linspace (double min, double max, int n)

Creates a linearly-spaced vector of values.

static double vecnorm (double vec[L DIMS])

Computes the L2 norm using the vector supplied.

• static double vecnorm (double val1, double val2)

Computes the L2 norm using the vector components supplied.

• static double vecnorm (double val1, double val2, double val3)

Computes the L2 norm using the vector components supplied.

static double vecnorm (std::vector< double > vec)

Computes the L2 norm using the vector supplied.

static std::vector< int > getFineIndices (int coarse_i, int x_start, int coarse_j, int y_start, int coarse_k, int z start)

Gets the indices of the fine site given the coarse site.

• static std::vector< int > getCoarseIndices (int fine_i, int x_start, int fine_j, int y_start, int fine_k, int z_start)

Gets the indices of the coarse site given the fine site.

• static double dotprod (std::vector< double > vec1, std::vector< double > vec2)

Computes the scalar product of two vectors.

• static std::vector< double > subtract (std::vector< double > a, std::vector< double > b)

Subtracts two vectors.

• static std::vector< double > add (std::vector< double > a, std::vector< double > b)

Adds two vectors.

• static std::vector< double > vecmultiply (double scalar, std::vector< double > vec)

Multiplies a scalar by a vector.

• static std::vector< double > crossprod (std::vector< double > vec1, std::vector< double > vec2)

Computes vector product.

Multiplies matrix A by vector x.

• static int getOpposite (int direction)

Gets the opposite lattice direction to the one supplied.

static void getGrid (GridObj *&Grids, int level, int region, GridObj *&ptr)

Get a pointer to a given grid in the hierarchy.

static std::vector< int > getVoxInd (double x, double y, double z, GridObj *g)

Get local voxel indices.

static bool isOverlapPeriodic (int i, int j, int k, const GridObj &pGrid)

Finds out whether halo containing i,j,k links to neighbour rank periodically.

static bool isOnThisRank (int gi, int gj, int gk, const GridObj &pGrid)

Finds out whether site with supplied index in on the current rank.

static bool isOnThisRank (int gl, enum eCartesianDirection xyz, const GridObj &pGrid)

Finds out whether global index can be found on the current rank.

• static bool hasThisSubGrid (const GridObj &pGrid, int RegNum)

Finds out whether specified refined region is on the grid provided.

static bool isOnSenderLayer (double pos x, double pos y, double pos z)

Check whether site is on an inner (sender) halo.

• static bool isOnRecvLayer (double pos_x, double pos_y, double pos_z)

Check whether site is on an outer (receiver) halo.

- static bool isOnSenderLayer (double site_position, enum eCartesianDirection xyz, enum eMinMax minmax)

 Check whether site is on an inner (sender) halo.
- static bool isOnRecvLayer (double site_position, enum eCartesianDirection xyz, enum eMinMax minmax)

 Check whether site is on an outer (receiver) halo.
- static bool isOffGrid (int i, int j, int k, GridObj &g)

Tests whether a site is on a given grid.

template<typename NumType >

static NumType vecnorm (NumType a1, NumType a2, NumType a3)

Computes the L2-norm.

template<typename NumType >

static NumType vecnorm (NumType a1, NumType a2)

Computes the L2-norm.

• template<typename NumType >

static NumType upToZero (NumType x)

Rounds a negative value up to zero.

template<typename NumType >

static NumType downToLimit (NumType x, NumType limit)

Rounds a value greater than a limit down to this value.

• template<typename NumType >

static NumType factorial (NumType n)

Computes the factorial of the supplied value.

template<typename NumType >

static void stridedCopy (NumType *dest, NumType *src, size_t block, size_t offset, size_t stride, size_t count, size_t buf_offset=0)

Performs a strided memcpy.

• template<typename NumType >

static void global_to_local (int i, int j, int k, GridObj *g, std::vector< NumType > &locals)

Maps global indices to local indices.

template<typename NumType >

static void local_to_global (int i, int j, int k, GridObj *g, std::vector< NumType > &globals)

Maps local indices to global indices.

Static Public Attributes

• static std::ofstream * logfile

Handle to output file.

static std::string path_str

Static string representing output path.

static const int dir_reflect [L_DIMS *2][L_NUM_VELS]

Array with hardcoded direction numbering for specular reflection.

5.7.1 Detailed Description

Grid utility class.

Class provides grid utilities including commonly used logical tests. This is a static class and so there is no need to instantiate it.

5.7.2 Member Function Documentation

5.7.2.1 std::vector< double > GridUtils::add (std::vector< double > a, std::vector< double > b) [static]

Adds two vectors.

Parameters

а	a vector.
b	a second vector.

Returns

vector which is a + b.

5.7.2.2 int GridUtils::createOutputDirectory (std::string path_str) [static]

Create output directory.

Compatible with both Windows and Linux. Filename and path passed as a single string. Returns 9 if the directory creation was not attempted due to not being rank 0. Returns platform specific codes for everything else.

Parameters

path_str full path and filename as strir	ng.
--	-----

Returns

indicator of status of action.

 $\textbf{5.7.2.3} \quad \textbf{std::vector} < \textbf{double} > \textbf{GridUtils::crossprod} \ (\ \textbf{std::vector} < \textbf{double} > \textbf{\textit{a}}, \ \textbf{std::vector} < \textbf{double} > \textbf{\textit{b}} \) \quad \texttt{[static]}$

Computes vector product.

Parameters

а	a vector.
b	a second vector.

Returns

a vector which is the cross product of a and b.

5.7.2.4 double GridUtils::dotprod (std::vector < double > vec1, std::vector < double > vec2) [static]

Computes the scalar product of two vectors.

vec1	a vector.
vec2	a second vector.

Returns

the dot product of the two vectors.

5.7.2.5 template < typename NumType > static NumType GridUtils::downToLimit (NumType x, NumType limit) [inline], [static]

Rounds a value greater than a limit down to this value.

If value is less than or equal to the limit, return the value unchanged.

Parameters

X	value to be rounded	
limit	value to be rounded down to	

Returns

NumType rounded value

5.7.2.6 template<typename NumType > static NumType GridUtils::factorial (NumType n) [inline], [static]

Computes the factorial of the supplied value.

If n == 0 then returns 1.

Parameters

```
n factorial
```

Returns

NumType n factorial

5.7.2.7 std::vector < int > GridUtils::getCoarseIndices (int fine_i, int x_start, int fine_j, int y_start, int fine_k, int z_start) [static]

Gets the indices of the coarse site given the fine site.

Maps the indices of a fine grid site to a corresponding coarse site on the level above.

fine←	local i-index of fine site to be mapped.
_i	
x_start	local x-index of start of refined region on the grid above.
fine←	local j-index of fine site to be mapped.
j	

Parameters

y_start	local y-index of start of refined region on the grid above.
fine⊷	local k-index of fine site to be mapped.
_k	
z_start	local z-index of start of refined region on the grid above.

Returns

local indices of the coarse grid site.

5.7.2.8 std::vector< int > GridUtils::getFineIndices (int coarse_i, int x_start, int coarse_j, int y_start, int coarse_k, int z_start) [static]

Gets the indices of the fine site given the coarse site.

Maps the indices of a coarse grid site to a corresponding fine site on the level below.

Parameters

coarse⇔	local i-index of coarse site to be mapped.
_ <i>i</i>	
x_start	local x-index of start of refined region.
coarse⊷	local j-index of coarse site to be mapped.
_j	
y_start	local y-index of start of refined region.
coarse⊷	local k-index of coarse site to be mapped.
_k	
z_start	local z-index of start of refined region.

Returns

local indices of the fine grid site.

5.7.2.9 void GridUtils::getGrid (GridObj *& Grids, int level, int region, GridObj *& ptr) [static]

Get a pointer to a given grid in the hierarchy.

Takes a NULL pointer by reference and updates it when matching grid is found in hierarchy on this rank. If grid not found, pointer is returned without change and stays NULL. Can be used to test for the existence of a grid on a rank by passing in a NULL pointer and checking if a NULL pointer is returned.

	Grids	x-position of site.
	level	y-position of site.
	region	z-position of site.
out	ptr	pointer containing address of grid in hierarchy.

5.7.2.10 int GridUtils::getOpposite (int direction) [static]

Gets the opposite lattice direction to the one supplied.

This is model independent as long as the model directions are specified such that the oppoiste direction is either one vector on or one vector back in the listing depending on whether the direction supplied is even or odd.

Parameters

irection direction to be reversed	d.
-----------------------------------	----

Returns

opposite direction in lattice model.

5.7.2.11 std::vector< int > GridUtils::getVoxInd (double x, double y, double z, GridObj * g) [static]

Get local voxel indices.

Will return the voxel indices of the nearest voxel on the lattice provided for a given point described as a position in global space. Can return global values that are not on this MPI rank. Use the GridUtils::isOnThisRank() method to check the result. This method is used as a position -> voxel converter.

Parameters

X	global x-position.
У	global y-position.
Z	global z-position.
g	lattice on which to look for nearest voxel.

Returns

vector of indices of the nearest voxel on supplied lattice level.

5.7.2.12 template<typename NumType > static void GridUtils::global_to_local (int i, int j, int k, GridObj * g, std::vector< NumType > & locals) [inline], [static]

Maps global indices to local indices.

Takes a vector container and populates it with the local indices where the supplied global site can be found on the grid supplied. If global indices are not found on the supplied grid then local index of -1 is returned.

	i	global index
	j	global index
	k	global index
	g	grid on which local indices are required
out	locals	vector container for local indices

5.7.2.13 bool GridUtils::hasThisSubGrid (const GridObj & pGrid, int RegNum) [static]

Finds out whether specified refined region is on the grid provided.

Parameters

pGrid	parent grid at appropriate level.
RegNum	region number desired.

Returns

boolean answer.

5.7.2.14 bool GridUtils::isOffGrid (int i, int j, int k, GridObj & g) [static]

Tests whether a site is on a given grid.

Parameters

i	local i-index.
j	local j-index.
k	local k-index.
g	grid on which to check.

Returns

boolean answer.

5.7.2.15 bool GridUtils::isOnRecvLayer(double pos_x, double pos_y, double pos_z) [static]

Check whether site is on an outer (receiver) halo.

Wrapper which checks every halo region of the rank for intersection with supplied site position.

Parameters

pos⊷	x-position of site.
_X	
pos⊷	y-position of site.
_y	
pos⊷	z-position of site.
_Z	

Returns

boolean answer.

5.7.2.16 bool GridUtils::isOnRecvLayer (double *site_position*, enum eCartesianDirection *dir*, enum eMinMax *maxmin*) [static]

Check whether site is on an outer (receiver) halo.

Wrapper available which checks every halo. This method only checks the halo specified by the Cartesian direction and whether it is the left/bottom/front (minimum) or right/top/back (maximum) edge of the block.

Parameters

site_position	position of site.
dir	cartesian direction.
maxmin	choice of edge in given direction.

Returns

boolean answer.

5.7.2.17 bool GridUtils::isOnSenderLayer (double pos_x, double pos_y, double pos_z) [static]

Check whether site is on an inner (sender) halo.

Wrapper which checks every halo region of the rank for intersection with supplied site position.

Parameters

pos⊷	x-position of site.
_X	
pos⊷	y-position of site.
_у	
pos⊷	z-position of site.
_Z	

Returns

boolean answer.

5.7.2.18 bool GridUtils::isOnSenderLayer (double *site_position*, enum eCartesianDirection *dir*, enum eMinMax *maxmin*) [static]

Check whether site is on an inner (sender) halo.

Wrapper available which checks every halo. This method only checks the halo specified by the Cartesian direction and whether it is the left/bottom/front (minimum) or right/top/back (maximum) edge of the block.

Parameters

site_position	position of site.
dir	cartesian direction.
maxmin	choice of edge in given direction.

Generated by Doxygen

Returns

boolean answer.

5.7.2.19 bool GridUtils::isOnThisRank (int gi, int gj, int gk, const GridObj & grid) [static]

Finds out whether site with supplied index in on the current rank.

Parameters

gi	global i-index of site.
gj	global j-index of site.
gk	global k-index of site.
grid	grid being queried.

Returns

boolean answer.

5.7.2.20 bool GridUtils::isOnThisRank (int gl, enum eCartesianDirection xyz, const GridObj & grid) [static]

Finds out whether global index can be found on the current rank.

Parameters

gl	global index (i,j or k).
xyz	cartesian direction of interest.
grid	grid being queried.

Returns

boolean answer.

5.7.2.21 bool GridUtils::isOverlapPeriodic (int *i*, int *j*, int *k*, const GridObj & *g*) [static]

Finds out whether halo containing i,j,k links to neighbour rank periodically.

Checks the receiver layer containing local site i,j,k and determines from the MPI topology information whether this layer couples to an adjacent or periodic neighbour rank. I.e. if the neighbour is physically next to the rank or whether it is actaully at the other side of the domain.

i	local i-index of recv layer site being queried.
j	local j-index of recv layer site being queried.
k	local k-index of recv layer site being queried.
g	grid on which point being queried resides.

Returns

boolean answer.

5.7.2.22 std::vector < double > GridUtils::linspace(double min, double max, int n) [static]

Creates a linearly-spaced vector of values.

Parameters

min	starting value of output vector.
max	ending point of output vector.
n	number of values in output vector.

Returns

a vector with n uniformly spaced values between min and max.

5.7.2.23 template<typename NumType > static void GridUtils::local_to_global (int i, int j, int k, GridObj * g, std::vector< NumType > & globals) [inline], [static]

Maps local indices to global indices.

Takes a vector container and populates it with the global indices of the supplied local site

Parameters

	i	local index
	j	local index
	k	local index
	g	grid on which global indices are required
out	globals	vector container for global indices

5.7.2.24 std::vector< double > GridUtils::matrix_multiply (const std::vector< std::vector< double > & $\textbf{\textit{A}}$, const std::vector< double > & $\textbf{\textit{x}}$) [static]

Multiplies matrix A by vector x.

Parameters

Α	a matrix represented as a vector or vectors.
X	a vector.

Returns

a vector which is A * x.

5.7.2.25 std::vector < int > GridUtils::onespace (int min, int max) [static]

Creates a linearly-spaced vector of integers.

Parameters

min	starting value of output vector.
max	ending point of output vector.

Returns

a vector with uniformly spaced integer values between min and max.

5.7.2.26 template<typename NumType > static void GridUtils::stridedCopy (NumType * dest, NumType * src, size_t block, size_t offset, size_t stride, size_t count, size_t buf_offset = 0) [inline], [static]

Performs a strided memcpy.

Memcpy() is designed to copy blocks of contiguous memory. Strided copy copies a pattern of contiguous blocks.

Parameters

dest	pointer to start of destination memory
src	pointer to start of source memory
block	size of contiguous block
offset	offset from the start of the soruce array
stride	number of elements between start of first block and start of second
count	number of blocks in pattern
buf_offset	offset from start of destination buffer to start writing. Default is zero if not supplied.

5.7.2.27 std:vector < double > GridUtils::subtract (<math>std:vector < double > a, std:vector < double > b) [static]

Subtracts two vectors.

Parameters

а	a vector.
b	a second vector.

Returns

a vector which is a - b.

5.7.2.28 template < typename NumType > static NumType GridUtils::upToZero (NumType x) [inline], [static]

Rounds a negative value up to zero.

If value is positive, return the value unchanged.

Parameters

x value to be rounded

Returns

NumType rounded value

5.7.2.29 std::vector< double > GridUtils::vecmultiply (double scalar, std::vector< double > vec) [static]

Multiplies a scalar by a vector.

Parameters

scalar	a scalar double.
vec	a vector double.

Returns

a vector which is a scalar multiplied by a vector.

5.7.2.30 double GridUtils::vecnorm (double vec[L_DIMS]) [static]

Computes the L2 norm using the vector supplied.

Parameters

vec	old-style C array representing a vector with the same number of number of components as the problem
	dimension

Returns

the L2 norm.

5.7.2.31 double GridUtils::vecnorm (double val1, double val2) [static]

Computes the L2 norm using the vector components supplied.

val1	first vector component.
val2	second vector component.

Returns

the L2 norm.

5.7.2.32 double GridUtils::vecnorm (double val1, double val2, double val3) [static]

Computes the L2 norm using the vector components supplied.

Parameters

val1	first vector component.
val2	second vector component.
val3	third vector component.

Returns

the L2 norm.

5.7.2.33 double GridUtils::vecnorm (std::vector < double > vec) [static]

Computes the L2 norm using the vector supplied.

Parameters

```
vec C++ std::vector.
```

Returns

the L2 norm.

5.7.2.34 template<typename NumType > static NumType GridUtils::vecnorm (NumType a1, NumType a2, NumType a3) [inline], [static]

Computes the L2-norm.

Parameters

a1	first component of the vector
a2	second component of the vector
аЗ	third component of the vector

Returns

NumType scalar quantity

Computes the L2-norm.

Parameters

a1	first component of the vector
a2	second component of the vector

Returns

NumType scalar quantity

5.7.3 Member Data Documentation

```
5.7.3.1 const int GridUtils::dir_reflect [static]
```

Initial value:

```
{1, 0, 2, 3, 7, 6, 5, 4, 8}, {1, 0, 2, 3, 4, 6, 5, 4, 8}, {0, 1, 3, 2, 6, 7, 4, 5, 8}, {0, 1, 3, 2, 6, 7, 4, 5, 8}
```

Array with hardcoded direction numbering for specular reflection.

```
5.7.3.2 std::ofstream * GridUtils::logfile [static]
```

Handle to output file.

```
5.7.3.3 std::string GridUtils::path_str [static]
```

Static string representing output path.

The documentation for this class was generated from the following files:

- · GridUtils.h
- · GridObj.cpp
- · GridUtils.cpp
- main_lbm.cpp

5.8 IBBody Class Reference

Immersed boundary body.

#include <IBBody.h>

Inheritance diagram for IBBody:

Public Member Functions

• IBBody (void)

Constructor which sets group ID to zero by default.

• ∼IBBody (void)

Default destructor.

IBBody (GridObj *g, size_t id)

Constructor which assigns the owner grid.

void addMarker (double x, double y, double z, bool flex rigid)

Method to add an IB marker to the body.

virtual void markerAdder (double x, double y, double z, int &curr_mark, std::vector< int > &counter, bool flex_rigid)

Downsampling marker adding method (overload)

void makeBody (double radius, std::vector< double > centre, bool flex_rigid, bool moving, int group)

Method to seed markers for a sphere / circle.

• void makeBody (std::vector< double > width_length_depth, std::vector< double > angles, std::vector< double > centre, bool flex_rigid, bool deform, int group)

Method to seed markers for a cuboid / rectangle.

void makeBody (int numbermarkers, std::vector< double > start_point, double fil_length, std::vector< double > angles, std::vector< int > BCs, bool flex_rigid, bool deform, int group)

Method to seed markers for a flexible filament.

• double makeBody (std::vector< double > width_length, double angle, std::vector< double > centre, bool flex_rigid, bool deform, int group, bool plate)

Method to seed markers for a 3D plate inclined from the XZ plane.

void makeBody (PCpts *_PCpts)

Method to build a body from a point cloud.

Protected Attributes

· bool flex rigid

Flag to indicate flexibility: false == rigid body; true == flexible filament.

bool deformable

Flag to indicate deformable body: false == rigid; true == deformable.

· int groupID

ID of IBbody group - position updates can be driven from a flexible body in a group.

· double delta_rho

Difference in density between fluid and solid in lattice units.

double flexural_rigidity

Young's modulus E * Second moment of area I.

• std::vector< double > tension

Tension between the current marker and its neighbour.

std::vector< int > BCs

BCs type flags (flexible bodies)

Friends

· class ObjectManager

Additional Inherited Members

5.8.1 Detailed Description

Immersed boundary body.

5.8.2 Constructor & Destructor Documentation

```
5.8.2.1 IBBody::IBBody (void)
```

Constructor which sets group ID to zero by default.

```
5.8.2.2 IBBody::∼IBBody (void )
```

Default destructor.

```
5.8.2.3 IBBody::IBBody ( GridObj * g, size_t id )
```

Constructor which assigns the owner grid.

Also sets the group ID to zero.

Parameters

g	pointer to owner grid
id	ID of body in array of bodies.

5.8.3 Member Function Documentation

5.8.3.1 void IBBody::addMarker (double x, double y, double z, bool flex_rigid)

Method to add an IB marker to the body.

Adds marker at the given position with the given moving/non-moving flag.

Parameters

X	global x-position of marker.
У	global y-position of marker.
Z	global z-position of marker.
flex_rigid	flag to indicate whether marker is movable or not.

5.8.3.2 void IBBody::makeBody (double radius, std::vector< double > centre, bool flex_rigid, bool deform, int group)

Method to seed markers for a sphere / circle.

Parameters

radius	radius of circle/sphere.
centre	position vector of circle/sphere centre.
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.

5.8.3.3 void IBBody::makeBody (std::vector< double > width_length_depth, std::vector< double > angles, std::vector< double > centre, bool flex_rigid, bool deform, int group)

Method to seed markers for a cuboid / rectangle.

Parameters

width_length_depth	principal dimensions of cuboid / rectangle.
angles	principal orientation of cuboid / rectangle w.r.t. domain axes.
centre	position vector of cuboid / rectangle centre.
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.

5.8.3.4 void IBBody::makeBody (int *nummarkers*, std::vector< double > start_point, double fil_length, std::vector< double > angles, std::vector< int > BCs, bool flex_rigid, bool deform, int group)

Method to seed markers for a flexible filament.

nummarkers	number of markers to use for filament.
start_point	3D position vector of the start of the filament.
fil_length	length of filament in physical units.
angles	two angles representing filament inclination w.r.t. domain axes (horizontal plane and vertical plane).

Parameters

BCs	vector containing start and end boundary condition types (see class definition for valid values).
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.

5.8.3.5 double IBBody::makeBody (std::vector< double > width_length, double angle, std::vector< double > centre, bool flex_rigid, bool deform, int group, bool plate)

Method to seed markers for a 3D plate inclined from the XZ plane.

Parameters

width_length	2D vector of principal dimensions of thin plate.
angle	inclination angle from horizontal.
centre	position vector of the plate centre.
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.
plate	arbitrary argument to allow overload otherwise would have the same signature as a filament builder.

5.8.3.6 void IBBody::makeBody (PCpts * _PCpts)

Method to build a body from a point cloud.

Flexibility and deformable properties taken from definitions.

Parameters

_PCpts	pointer to pointer cloud data.
--------	--------------------------------

5.8.3.7 void IBBody::markerAdder (double x, double y, double z, int & curr_mark, std::vector < int > & counter, bool flex_rigid) [virtual]

Downsampling marker adding method (overload)

This method is an overload of the method in the parent class. This version takes the flexible/rigid flag and passes it to the overloaded addMarker() method.

Parameters

X	,	desired global X-position of new marker.
У	,	desired globalY-position of new marker.
Z	,	desired globalZ-position of new marker.

Parameters

curr_mark	is a reference to the ID of last marker.
counter	is a reference to the total number of markers in the body.
flex_rigid	indicates whether markers added should form part of flexible or rigid body.

5.8.4 Friends And Related Function Documentation

5.8.4.1 friend class ObjectManager [friend]

5.8.5 Member Data Documentation

5.8.5.1 std::vector<**int**> **IBBody::BCs** [protected]

BCs type flags (flexible bodies)

5.8.5.2 bool IBBody::deformable [protected]

Flag to indicate deformable body: false == rigid; true == deformable.

5.8.5.3 double IBBody::delta_rho [protected]

Difference in density between fluid and solid in lattice units.

5.8.5.4 bool IBBody::flex_rigid [protected]

Flag to indicate flexibility: false == rigid body; true == flexible filament.

5.8.5.5 double IBBody::flexural_rigidity [protected]

Young's modulus E * Second moment of area I.

5.8.5.6 int IBBody::groupID [protected]

ID of IBbody group – position updates can be driven from a flexible body in a group.

5.8.5.7 std::vector<**double**> **IBBody::tension** [protected]

Tension between the current marker and its neighbour.

The documentation for this class was generated from the following files:

- IBBody.h
- IBBody.cpp

5.9 IBMarker Class Reference

Immersed boundary marker.

#include <IBMarker.h>

Inheritance diagram for IBMarker:

Public Member Functions

• IBMarker (void)

Default constructor.

∼IBMarker (void)

Default destructor.

• IBMarker (double xPos, double yPos, double zPos, bool flex rigid=false)

Custom constructor with position.

Protected Attributes

std::vector< double > fluid_vel

Fluid velocity interpolated from lattice nodes.

• std::vector< double > desired vel

Desired velocity at marker.

std::vector< double > force_xyz

Restorative force vector on marker.

 $\bullet \ \ \mathsf{std} :: \mathsf{vector} < \mathsf{double} > \mathsf{position_old}$

Vector containing the physical coordinates (x,y,z) of the marker at t-1. Used for moving bodies.

std::vector< double > deltaval

Value of delta function for a given support node.

· bool flex_rigid

Indication as to whether marker is part of a moving or flexible body: false == rigid/fixed; true == flexible/moving.

• double epsilon

Scaling parameter.

· double local_area

Area associated with support node in lattice units (same for all points if from same grid and regularly spaced like LBM)

· double dilation

Dilation parameter in lattice units (same in all directions for uniform Eulerian grid)

Friends

- · class ObjectManager
- class IBBody

Additional Inherited Members

5.9.1 Detailed Description

Immersed boundary marker.

This class declaration is for an immersed boundary Lagrange point. A collection of these points form an immersed boundary body.

5.9.2 Constructor & Destructor Documentation

```
5.9.2.1 IBMarker::IBMarker(void) [inline]
```

Default constructor.

```
5.9.2.2 IBMarker::∼IBMarker ( void ) [inline]
```

Default destructor.

5.9.2.3 IBMarker::IBMarker (double xPos, double yPos, double zPos, bool flex_rigid = false)

Custom constructor with position.

Parameters

xPos	x-position of marker.
yPos	y-position of marker.
zPos	z-position of marker.
flex_rigid	flag to indicate whether marker is movable or not.

5.9.3 Friends And Related Function Documentation

```
5.9.3.1 friend class IBBody [friend]
```

5.9.3.2 friend class ObjectManager [friend]

5.9.4 Member Data Documentation

5.9.4.1 std::vector<double> IBMarker::deltaval [protected]

Value of delta function for a given support node.

5.9.4.2 std::vector<**double**> **IBMarker::desired_vel** [protected] Desired velocity at marker. **5.9.4.3 double IBMarker::dilation** [protected] Dilation parameter in lattice units (same in all directions for uniform Eulerian grid) **5.9.4.4 double IBMarker::epsilon** [protected] Scaling parameter. **5.9.4.5 bool IBMarker::flex_rigid** [protected] Indication as to whether marker is part of a moving or flexible body: false == rigid/fixed; true == flexible/moving. **5.9.4.6 std::vector**<**double**> **IBMarker::fluid_vel** [protected] Fluid velocity interpolated from lattice nodes. **5.9.4.7 std::vector**<**double**> **IBMarker::force_xyz** [protected] Restorative force vector on marker. **5.9.4.8 double IBMarker::local_area** [protected] Area associated with support node in lattice units (same for all points if from same grid and regularly spaced like LBM) **5.9.4.9 std::vector**<**double**> **IBMarker::position_old** [protected]

Vector containing the physical coordinates (x,y,z) of the marker at t-1. Used for moving bodies.

The documentation for this class was generated from the following files:

- · IBMarker.h
- IBMarker.cpp

5.10 IVector < GenTyp > Class Template Reference

Index-collapsing vector class.

#include <IVector.h>

Inheritance diagram for IVector< GenTyp >:

Public Member Functions

• IVector ()

Default constructor.

∼IVector ()

Default destructor.

• IVector (size_t size, GenTyp val)

Custom constructor taking type and value.

- GenTyp & operator() (size_t i, size_t j, size_t k, size_t v, size_t j_max, size_t k_max, size_t v_max)
 4D array index flatten.
- GenTyp & operator() (size_t i, size_t j, size_t k, size_t j_max, size_t k_max)

 3D array index flatten.

GenTyp & operator() (size_t i, size_t j, size_t j_max)

2D array index flatten.

5.10.1 Detailed Description

```
template<typename GenTyp> class IVector< GenTyp>
```

Index-collapsing vector class.

This class has all the behaviour of std::vector but has a overriden operator() to allow automatic flattening of indices before returning a reference of value at indexed location. Needs to be able to accept different datatypes so templated.

5.10.2 Constructor & Destructor Documentation

```
5.10.2.1 template<typename GenTyp> IVector< GenTyp>::IVector( ) [inline]
```

Default constructor.

```
\textbf{5.10.2.2} \quad template < typename \ GenTyp > IVector < \ GenTyp > :: \sim IVector ( \ ) \quad [\texttt{inline}]
```

Default destructor.

```
5.10.2.3 template<typename GenTyp> IVector< GenTyp>::IVector ( size_t size, GenTyp val ) [inline]
```

Custom constructor taking type and value.

Parameters

size	the desired size of vector
val	the value to fill the new vector with

5.10.3 Member Function Documentation

5.10.3.1 template<typename GenTyp> GenTyp& IVector< GenTyp>::operator() (size_t i, size_t j, size_t k, size_t v, size_t j_max, size_t k_max, size_t v_max) [inline]

4D array index flatten.

Override of parentheses to auto-flatten indices to a single index.

Parameters

i	the i index
j	the j index
k	the k index
V	the index in the fourth dimension
j_max	the number of j elements
k_max	the number of k elements
v_max	the number of elements in the fourth dimension

Returns

GenTyp& a reference to the value at this position in the vector

5.10.3.2 template<typename GenTyp> GenTyp& IVector< GenTyp>::operator() (size_t i, size_t j, size_t k, size_t j_max, size_t k_max) [inline]

3D array index flatten.

Override of parentheses to auto-flatten indices to a single index.

Parameters

i	the i index
j	the j index
k	the k index
j_max	the number of j elements
k_max	the number of k elements

Returns

GenTyp& a reference to the value at this position in the vector

```
5.10.3.3 template<typename GenTyp> GenTyp& IVector< GenTyp>::operator() ( size_t i, size_t j, size_t j_max ) [inline]
```

2D array index flatten.

Parameters

i	the i index
j	the j index
j_max	the number of j elements

Returns

GenTyp& a reference to the value at this position in the vector

The documentation for this class was generated from the following file:

· IVector.h

5.11 MpiManager::layer_edges Struct Reference

Structure containing global positions of the edges of halos.

```
#include <MpiManager.h>
```

Public Attributes

• double X [4]

X limits.

• double Y [4]

Y limits.

double Z [4]

Z limits.

5.11.1 Detailed Description

Structure containing global positions of the edges of halos.

Sender (inner) and receiver (outer) parts of halo are located using the convention [left_min left_max right_min right_max] for X,Y and Z.

5.11.2 Member Data Documentation

5.11.2.1 double MpiManager::layer_edges::X[4]

X limits.

5.11.2.2 double MpiManager::layer_edges::Y[4]

Y limits.

5.11.2.3 double MpiManager::layer_edges::Z[4]

Z limits.

The documentation for this struct was generated from the following file:

• MpiManager.h

5.12 Marker Class Reference

Generic marker class.

#include <Marker.h>

Inheritance diagram for Marker:

Public Member Functions

• Marker (void)

Default constructor.

∼Marker (void)

Default destructor.

• Marker (double x, double y, double z)

Custom constructor which locates marker.

Public Attributes

std::vector< double > position

Position vector of marker location in physical units.

std::vector< int > supp_i

X-indices of lattice sites in support of this marker.

std::vector< int > supp_i

Y-indices of lattice sites in support of this marker.

std::vector< int > supp_k

Z-indices of lattice sites in support of this marker.

std::vector< int > support_rank

Array of indices indicating on which rank the given support point resides.

5.12.1 Detailed Description

Generic marker class.

5.12.2 Constructor & Destructor Documentation

```
5.12.2.1 Marker::Marker(void) [inline]
```

Default constructor.

```
5.12.2.2 Marker::~Marker(void) [inline]
```

Default destructor.

5.12.2.3 Marker::Marker (double x, double y, double z) [inline]

Custom constructor which locates marker.

Parameters

Χ	X-position of marker in physical units
У	Y-position of marker in physical units
Z	Z-position of marker in physical units

5.12.3 Member Data Documentation

5.12.3.1 std::vector<double> Marker::position

Position vector of marker location in physical units.

5.12.3.2 std::vector<int> Marker::supp_i

X-indices of lattice sites in support of this marker.

5.12.3.3 std::vector<int> Marker::supp_j

Y-indices of lattice sites in support of this marker.

5.12.3.4 std::vector<int> Marker::supp_k

Z-indices of lattice sites in support of this marker.

5.12.3.5 std::vector<int> Marker::support_rank

Array of indices indicating on which rank the given support point resides.

The documentation for this class was generated from the following file:

· Marker.h

5.13 MarkerData Class Reference

Container class to hold marker information.

```
#include <Body.h>
```

Public Member Functions

MarkerData (int i, int j, int k, double x, double y, double z, int ID)

Constructor.

• MarkerData (void)

Default Constructor.

∼MarkerData (void)

Default destructor.

Public Attributes

• int i

i-index of primary support site

int j

j-index of primary support site

int k

k-index of primary support site

int ID

Marker ID (position in array of markers)

double x

x-position of marker

double y

y-position of marker

double z

z-position of marker

5.13.1 Detailed Description

Container class to hold marker information.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 MarkerData::MarkerData (int i, int j, int k, double x, double y, double z, int ID) [inline]

Constructor.

Parameters

i	i-index of primary support site
j	j-index of primary support site
k	k-index of primary support site
Х	x-position of marker
У	y-position of marker
Z	z-position of marker
ID	marker number in a given body

5.13.2.2 MarkerData::MarkerData (void) [inline]

Default Constructor.

Initialise with invalid marker indicator which is to set the x position to NaN.

5.13.2.3 MarkerData::~MarkerData (void) [inline]

Default destructor.

5.13.3 Member Data Documentation

5.13.3.1 int MarkerData::i

i-index of primary support site

5.13.3.2 int MarkerData::ID

Marker ID (position in array of markers)

5.13.3.3 int MarkerData::j

j-index of primary support site

5.13.3.4 int MarkerData::k

k-index of primary support site

5.13.3.5 double MarkerData::x

x-position of marker

```
5.13.3.6 double MarkerData::y
```

y-position of marker

5.13.3.7 double MarkerData::z

z-position of marker

The documentation for this class was generated from the following file:

· Body.h

5.14 MpiManager Class Reference

MPI Manager class.

```
#include <MpiManager.h>
```

Classes

· struct buffer_struct

Structure storing buffers sizes in each direction for particular grid.

· struct layer edges

Structure containing global positions of the edges of halos.

struct phdf5_struct

Structure for storing halo information for HDF5.

Public Member Functions

void mpi_init ()

Initialisation routine.

void mpi_gridbuild ()

Domain decomposition.

• int mpi_buildCommunicators ()

Define writable sub-grid communicators.

void mpi_updateLoadInfo ()

Update the load balancing information stored in the MpiManager.

void mpi_buffer_pack (int dir, GridObj *g)

Method to pack the communication buffer.

void mpi_buffer_unpack (int dir, GridObj *g)

Method to unpack the communication buffer.

void mpi_buffer_size ()

Pre-calcualtion of the buffer sizes.

void mpi_buffer_size_send (GridObj *&g)

Method to pre-compute the size of the sender layer buffer.

void mpi_buffer_size_recv (GridObj *&g)

Method to pre-compute the size of the receiver layer buffer.

void mpi_writeout_buf (std::string filename, int dir)

Buffer ASCII writer.

• void mpi_communicate (int level, int regnum)

Communication routine.

int mpi_getOpposite (int direction)

Helper method to find opposite direction in MPI topology.

Static Public Member Functions

static MpiManager * getInstance ()

Instance creator.

• static void destroyInstance ()

Instance destroyer.

Public Attributes

• MPI_Comm world_comm

Global MPI communicator.

int MPI_dims [L_DIMS]

Size of MPI Cartesian topology.

• int neighbour_rank [L_MPI_DIRS]

Neighbour rank number for each direction in Cartesian topology.

• int neighbour_coords [L_DIMS][L_MPI_DIRS]

Coordinates in MPI topology of neighbour ranks.

MPI_Comm subGrid_comm [L_NUM_LEVELS *L_NUM_REGIONS]

Communicators for sub-grid / region combinations.

std::vector< phdf5_struct > p_data

Vector of structures containing halo descriptors for block writing (HDF5)

• int global_dims [3]

Global dimensions of problem coarse lattice.

std::vector< int > local_size

Dimensions of coarse lattice represented on this rank (includes inner and outer halos).

std::vector< std::vector< int > > global_edge_ind

Global indices of coarse lattice nodes represented on this rank.

std::vector< std::vector< double >> global_edge_pos

Global positions of coarse lattice nodes represented on this rank.

layer_edges sender_layer_pos

Structure containing sender layer edge positions.

layer_edges recv_layer_pos

Structure containing receiver layer edge positions.

• std::vector< std::vector< double >> f_buffer_send

Array of resizeable outgoing buffers used for data transfer.

std::vector< std::vector< double >> f_buffer_recv

Array of resizeable incoming buffers used for data transfer.

• MPI_Status recv_stat

Status structure for Receive return information.

MPI Request send requests [L MPI DIRS]

Array of request structures for handles to posted ISends.

MPI_Status send_stat [L_MPI_DIRS]

Array of statuses for each Isend.

std::vector< buffer_struct > buffer_send_info

Vectors of buffer_info structures holding sender layer size info.

std::vector< buffer_struct > buffer_recv_info

Vectors of buffer_info structures holding receiver layer size info.

Static Public Attributes

• static const int MPI_cartlab [3][26]

Cartesian unit vectors pointing to each neighbour in Cartesian topology.

· static int my_rank

Rank number.

· static int num_ranks

Total number of ranks in MPI Cartesian topology.

• static int MPI_coords [L_DIMS]

Coordinates in MPI Cartesian topolgy.

• static GridObj * Grids

Pointer to grid hierarchy.

• static std::ofstream * logout

Logfile handle.

5.14.1 Detailed Description

MPI Manager class.

Class to manage all MPI apsects of the code.

5.14.2 Member Function Documentation

```
5.14.2.1 void MpiManager::destroyInstance( ) [static]
```

Instance destroyer.

```
5.14.2.2 MpiManager * MpiManager::getInstance( ) [static]
```

Instance creator.

```
5.14.2.3 void MpiManager::mpi_buffer_pack ( int \mathit{dir}, \ \mathsf{GridObj} * \mathit{g} )
```

Method to pack the communication buffer.

Communication buffer is packed with distribution values from the supplied grid. Amount of information is dictated by the direction of the communication being prepared.

Parameters

I	dir	communication direction.
	g	grid doing the communication.

```
5.14.2.4 void MpiManager::mpi_buffer_size ( )
```

Pre-calcualtion of the buffer sizes.

Wrapper method for computing the buffer sizes for every grid on the rank, both sender and receiver. Must be called post-initialisation.

```
5.14.2.5 void MpiManager::mpi_buffer_size_recv ( GridObj *& g )
```

Method to pre-compute the size of the receiver layer buffer.

A halo consists of a receiver (outer) and sender (inner) layer. This method computes the size of the receiver layers in each communication direction (MPI directions).

Parameters

```
g grid being inspected.
```

```
5.14.2.6 void MpiManager::mpi_buffer_size_send ( GridObj *& g )
```

Method to pre-compute the size of the sender layer buffer.

A halo consists of a receiver (outer) and sender (inner) layer. This method computes the size of the sender layers in each communication direction (MPI directions).

Parameters

```
g grid being inspected.
```

```
5.14.2.7 void MpiManager::mpi_buffer_unpack ( int dir, GridObj * g )
```

Method to unpack the communication buffer.

Communication buffer is unpacked onto the supplied grid. Amount and region of unpacking is dictated by the direction of the communication taking place.

Parameters

dir	communication direction.	
g	grid doing the communication.	

5.14.2.8 int MpiManager::mpi_buildCommunicators ()

Define writable sub-grid communicators.

When using HDF5 in parallel, collective IO operations require all processes to write a non-zero amount of data to the same file. This method examines availability of sub-grid and writable data on the grid (if found) and ensures it is added to a new communicator. Must be called AFTER the grids and buffers have been initialised.

5.14.2.9 void MpiManager::mpi_communicate (int lev, int reg)

Communication routine.

This method implements the communication between grids of the same level and region across MPI processes. Each call effects communication in all valid directions for the grid of the supplied level and region.

Parameters

lev	level of grid to communicate.	
reg	region number of grid to communicate.	

5.14.2.10 int MpiManager::mpi_getOpposite (int direction)

Helper method to find opposite direction in MPI topology.

The MPI directional vectors do not necessarily correspond to the lattice model direction. The MPI directional vectors are defined separately and hence there is a separate opposite finding method.

Parameters

direction	the outgoing direction whose opposite you wish to find.
-----------	---

5.14.2.11 void MpiManager::mpi_gridbuild ()

Domain decomposition.

Method to decompose the domain and identify local grid sizes. Parameters defined here are used in GridObj construction.

5.14.2.12 void MpiManager::mpi_init()

Initialisation routine.

Method is responsible for initialising the MPI topolgy and associated data. Must be called immediately after MPI_← init().

5.14.2.13 void MpiManager::mpi_updateLoadInfo()

Update the load balancing information stored in the MpiManager.

This method is executed by all processes. Counts the ACTIVE cells on the current rank and pushes the information to the master (rank 0) which writes this information to an output file if required. Must be called after the grids have been built or will return zero.

5.14.2.14 void MpiManager::mpi_writeout_buf (std::string filename, int dir)

Buffer ASCII writer.

When verbose MPI logging is turned on this method will write out the communication buffer to an ASCII file.

5.14.3 Member Data Documentation

5.14.3.1 std::vector
buffer_struct> MpiManager::buffer_recv_info

Vectors of buffer_info structures holding receiver layer size info.

5.14.3.2 std::vector
buffer_struct> MpiManager::buffer_send_info

Vectors of buffer_info structures holding sender layer size info.

5.14.3.3 std::vector < std::vector < double > > MpiManager::f_buffer_recv

Array of resizeable incoming buffers used for data transfer.

5.14.3.4 std::vector < std::vector < double > > MpiManager::f_buffer_send

Array of resizeable outgoing buffers used for data transfer.

5.14.3.5 int MpiManager::global_dims[3]

Global dimensions of problem coarse lattice.

 $5.14.3.6 \quad std:: vector < std:: vector < int >> MpiManager:: global_edge_ind$

Global indices of coarse lattice nodes represented on this rank.

Excludes outer overlapping layer. Rows are x,y,z start and end pairs and columns are rank number.

 $5.14.3.7 \quad std:: vector < std:: vector < double > > MpiManager:: global_edge_pos$

Global positions of coarse lattice nodes represented on this rank.

Excluding outer overlapping layer. Rows are x,y,z start and end pairs and columns are rank number.

5.14.3.8 GridObj * MpiManager::Grids [static]

Pointer to grid hierarchy.

```
5.14.3.9 std::vector<int> MpiManager::local_size
```

Dimensions of coarse lattice represented on this rank (includes inner and outer halos).

```
5.14.3.10 std::ofstream * MpiManager::logout [static]
```

Logfile handle.

```
5.14.3.11 const int MpiManager::MPI_cartlab [static]
```

Initial value:

Cartesian unit vectors pointing to each neighbour in Cartesian topology.

Define 3D such that first 8 mimic the 2D ones. Opposites are simply the next or previous column in the array.

```
5.14.3.12 int MpiManager::MPI_coords [static]
```

Coordinates in MPI Cartesian topolgy.

```
5.14.3.13 int MpiManager::MPI_dims[L_DIMS]
```

Size of MPI Cartesian topology.

```
5.14.3.14 int MpiManager::my_rank [static]
```

Rank number.

```
5.14.3.15 int MpiManager::neighbour_coords[L_DIMS][L_MPI_DIRS]
```

Coordinates in MPI topology of neighbour ranks.

```
5.14.3.16 int MpiManager::neighbour_rank[L_MPI_DIRS]
```

Neighbour rank number for each direction in Cartesian topology.

5.14.3.17 int MpiManager::num_ranks [static]

Total number of ranks in MPI Cartesian topology.

5.14.3.18 std::vector<phdf5_struct> MpiManager::p_data

Vector of structures containing halo descriptors for block writing (HDF5)

5.14.3.19 layer_edges MpiManager::recv_layer_pos

Structure containing receiver layer edge positions.

5.14.3.20 MPI_Status MpiManager::recv_stat

Status structure for Receive return information.

5.14.3.21 MPI_Request MpiManager::send_requests[L_MPI_DIRS]

Array of request structures for handles to posted ISends.

5.14.3.22 MPI_Status MpiManager::send_stat[L_MPI_DIRS]

Array of statuses for each Isend.

5.14.3.23 layer_edges MpiManager::sender_layer_pos

Structure containing sender layer edge positions.

5.14.3.24 MPI_Comm MpiManager::subGrid_comm[L_NUM_LEVELS *L_NUM_REGIONS]

Communicators for sub-grid / region combinations.

5.14.3.25 MPI_Comm MpiManager::world_comm

Global MPI communicator.

The documentation for this class was generated from the following files:

- MpiManager.h
- GridObj.cpp
- main_lbm.cpp
- · Mpi buffer pack.cpp
- Mpi_buffer_size_recv.cpp
- Mpi_buffer_size_send.cpp
- Mpi_buffer_unpk.cpp
- MpiManager.cpp

5.15 ObjectManager Class Reference

Object Manager class.

```
#include <ObjectManager.h>
```

Public Member Functions

• void ibm apply ()

Perform IBM procedure.

void ibm_buildBody (int body_type)

Builds a prefab immersed boundary body.

void ibm_buildBody (PCpts *_PCpts, GridObj *owner)

Wrapper for building a body from a point cloud.

void ibm_initialise ()

Initialise the array of iBodies.

• double ibm_deltaKernel (double rad, double dilation)

Method to evaluate delta kernel at supplied location.

void ibm_interpol (int ib)

Interpolate velocity field onto markers.

void ibm spread (int ib)

Spread restorative force back onto marker support.

• void ibm_findSupport (int ib, int m)

Finds support points for iBody.

void ibm_computeForce (int ib)

Compute restorative force at each marker in a body.

• double ibm_findEpsilon (int ib)

Compute epsilon for a given iBody.

• void ibm moveBodies ()

Moves iBodies after applying IBM.

double ibm_bicgstab (std::vector< std::vector< double > &Amatrix, std::vector< double > &bVector, std
 ::vector< double > &epsilon, double tolerance, int maxiterations)

Biconjugate gradient method.

void ibm_jacowire (int ib)

Structural calculation of flexible cilia.

void ibm_positionUpdate (int ib)

Update the position of a deformable iBody.

void ibm_positionUpdateGroup (int group)

Update the position of a group of deformable iBodies.

• void ibm banbks (double **a, long n, int m1, int m2, double **al, unsigned long indx[], double b[])

Solution of a banded diagonal linear system.

• void ibm_bandec (double **a, long n, int m1, int m2, double **al, unsigned long indx[], double *d)

LU decomposition of band diagonal matrix.

void bfl buildBody (int body type)

Prefab body building routine.

void bfl_buildBody (PCpts *_PCpts)

Wrapper for building BFL body from point cloud.

void computeLiftDrag (int i, int i, int k, GridObj *g)

Compute forces on a rigid object.

void io_vtklBBWriter (double tval)

Write IB body data to VTK file.

void io_writeBodyPosition (int timestep)

Write out position of immersed boundary bodies.

void io_writeLiftDrag (int timestep)

Write out forces on the markers of immersed boundary bodies.

void io_restart (elOFlag IO_flag, int level)

Read/write IB body information to restart file.

void io_readInCloud (PCpts *_PCpts, eObjectType objtype)

Read in point cloud data.

void io_writeForceOnObject (double tval)

Write out the forces on a solid object.

Static Public Member Functions

static ObjectManager * getInstance ()

Get instance method.

• static void destroyInstance ()

Destroy instance method.

static ObjectManager * getInstance (GridObj *g)

Overloaded get instance passing in pointer to grid hierarchy.

Friends

· class GridObj

5.15.1 Detailed Description

Object Manager class.

Class to manage all objects in the domain from creation through manipulation to destruction.

5.15.2 Member Function Documentation

5.15.2.1 void ObjectManager::bfl_buildBody (int body_type)

Prefab body building routine.

Not implemented in this version.

Parameters

body_type type of prefab body to be built.

5.15.2.2 void ObjectManager::bfl_buildBody (PCpts * _PCpts)

Wrapper for building BFL body from point cloud.

Parameters

PCpts 1	pointer to point cloud data.
---------	------------------------------

5.15.2.3 void ObjectManager::computeLiftDrag (int i, int j, int k, GridObj * g)

Compute forces on a rigid object.

Uses momentum exchange to compute forces on rigid bodies. Currently working with bounce-back objects only. There is no bounding box so if we have walls in the domain they will be counted as well. Also only possible to differentiate between bodies. Lumps all bodies together identify which body this site relates to so we can differentiate.

Parameters

i	local i-index of solid site.
j	local j-index of solid site.
k	local k-index of solid site.
g	pointer to grid on which object resides.

5.15.2.4 void ObjectManager::destroyInstance() [static]

Destroy instance method.

Instance destuctor.

5.15.2.5 ObjectManager * **ObjectManager**::**getInstance()** [static]

Get instance method.

Instance creator.

5.15.2.6 ObjectManager * **ObjectManager**::getInstance (GridObj * g) [static]

Overloaded get instance passing in pointer to grid hierarchy.

Instance creator with grid hierarchy assignment.

Parameters

g pointer to grid hierarchy.

5.15.2.7 void ObjectManager::ibm_apply ()

Perform IBM procedure.

5.15.2.8 void ObjectManager::ibm_banbks (double ** a, long n, int m1, int m2, double ** al, unsigned long indx[], double b[])

Solution of a banded diagonal linear system.

Given the arrays A, AL, and INDX as returned from ibm_bandec(), and given a right-hand side vector B[1..n], solves the band diagonal linear equations AX = B. The solution vector X overwrites B. The other input arrays are not modified, and can be left in place for successive calls with different right-hand sides. (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9.

Parameters

а	array of subdiagonal and superdiagonals rows
n	size of the square matrix A
m1	number of subdiagonal rows
m2	number of superdiagonal rows
al	lower triangular matrix
indx	row permutation vector
b	right hand side vector

5.15.2.9 void ObjectManager::ibm_bandec (double ** a, long n, int m1, int m2, double ** al, unsigned long indx[], double * d)

LU decomposition of band diagonal matrix.

Given an n by n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal rows, compactly stored in the array A[1..n][1..m1+m2+1], this routine constructs an LU decomposition of a rowwise permutation of A. The upper triangular matrix replaces A, while the lower triangular matrix is returned in AL[1..n][1..m1]. INDX[1..n] is an output vector which records the row permutation effected by the partial pivoting; D is output as +/-1 depending on whether the number of row interchanges was even or odd, respectively. This routine is used in combination with ibm_banbks() to solve band-diagonal sets of equations. Once the matrix A has been decomposed, any number of right-hand sides can be solved in turn by repeated calls to ibm_banbks(). (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9.

Parameters

а	array of subdiagonal and superdiagonals rows
n	size of the square matrix A
m1	number of subdiagonal rows
m2	number of superdiagonal rows
al	lower triangular matrix
indx	row permutation vector
d	odd or even number of row interchages

5.15.2.10 double ObjectManager::ibm_bicgstab (std::vector< std::vector< double >> & Amatrix, std::vector< double > & bVector, std::vector< double > & epsilon, double tolerance, int maxiterations)

Biconjugate gradient method.

Biconjugate gradient stabilised method of solving a linear system Ax = b. Solution is performed iteratively.

Parameters

Amatrix	the A matrix in the linear system.
bVector	the b vector in the linear system.
epsilon	epsilon paramters for each marker.
tolerance	tolerance of solution.
maxiterations	maximum number of iterations.

Returns

the minimum residual achieved by the solver.

5.15.2.11 void ObjectManager::ibm_buildBody (int body_type)

Builds a prefab immersed boundary body.

Parameters

body_type	type of body to be built.
-----------	---------------------------

 $5.15.2.12 \quad \text{void ObjectManager::ibm_buildBody (} \textbf{PCpts} * _\textbf{\textit{PCpts}}, \ \textbf{GridObj} * \textbf{\textit{owner}} \)$

Wrapper for building a body from a point cloud.

Parameters

_PCpts	pointer to point cloud data.
owner	pointer to the grid on which the body is to be placed.

5.15.2.13 void ObjectManager::ibm_computeForce (int ib)

Compute restorative force at each marker in a body.

Parameters

ib iBody being operated on.

5.15.2.14 double ObjectManager::ibm_deltaKernel (double radius, double dilation)

Method to evaluate delta kernel at supplied location.

Radius and dilation must be in the same units.

Parameters

radius	location at which kernel should be evaluated.
dilation	width of kernel function.

Returns

value of kernel function.

5.15.2.15 double ObjectManager::ibm_findEpsilon (int ib)

Compute epsilon for a given iBody.

Parameters

iBody being operated on.

5.15.2.16 void ObjectManager::ibm_findSupport (int ib, int m)

Finds support points for iBody.

Support for given marker in given body is sought on the owning grid.

Parameters

ib	body under consideration.
m	marker whose support is to be found.

5.15.2.17 void ObjectManager::ibm_initialise ()

Initialise the array of iBodies.

Computes support and epsilon values.

5.15.2.18 void ObjectManager::ibm_interpol (int ib)

Interpolate velocity field onto markers.

Parameters

ib iBody being operated of	on.
------------------------------	-----

5.15.2.19 void ObjectManager::ibm_jacowire (int ib)

Structural calculation of flexible cilia.

Models the structural behaviour of a thin wire using Euler-Bernoulli beam elements. Only implemented for one simply supported end and one free end at present.

Parameters

ib index of body to which calculation is to be applied.

5.15.2.20 void ObjectManager::ibm_moveBodies ()

Moves iBodies after applying IBM.

Wrapper for relocating markers of an iBody be calling appropriate positional update routine.

5.15.2.21 void ObjectManager::ibm_positionUpdate (int ib)

Update the position of a deformable iBody.

Wrapper for applying external forcing or structural calculations to iBodies marked as deformable. Updates support on completion.

Parameters

ib index of body to which calculation is to be applied.

5.15.2.22 void ObjectManager::ibm_positionUpdateGroup (int group)

Update the position of a group of deformable iBodies.

Updates the position of a group of non-flexible moving (deformable) bodies by using the first flexible body in the group as the driver. Must be called after all previous positional update routines have been called.

Parameters

group ID to be updated.

5.15.2.23 void ObjectManager::ibm_spread (int ib)

Spread restorative force back onto marker support.

Parameters

ib iBody being operated on.

5.15.2.24 void ObjectManager::io_readInCloud (PCpts * _PCpts, eObjectType objtype)

Read in point cloud data.

Input data must be in tab separated, 3-column format in the input directory.

Parameters

_PCpts	pointer to empty point cloud data container.
objtype	type of object to be read in.

5.15.2.25 void ObjectManager::io_restart (eIOFlag IO_flag, int level)

Read/write IB body information to restart file.

Parameters

IO_flag	flag indicating write (true) or read (false).
level	level of the grid begin written/read

5.15.2.26 void ObjectManager::io_vtklBBWriter (double tval)

Write IB body data to VTK file.

Currently can only write out un-closed bodies like filaments.

Parameters

tval	time value at which the write out is being performed.

5.15.2.27 void ObjectManager::io_writeBodyPosition (int timestep)

Write out position of immersed boundary bodies.

Parameters

timestep	timestep at which the write out is being performed.
----------	---

5.15.2.28 void ObjectManager::io_writeForceOnObject (double tval)

Write out the forces on a solid object.

Writes out the forces on solid objects in the domain computed using momentum exchange. Each rank writes its own file. Output is a CSV file.

Parameters

tval time value at which write out is taking place.

5.15.2.29 void ObjectManager::io_writeLiftDrag (int timestep)

Write out forces on the markers of immersed boundary bodies.

Parameters

timestep timestep at which the write out is being performed.

5.15.3 Friends And Related Function Documentation

5.15.3.1 friend class GridObj [friend]

The documentation for this class was generated from the following files:

- · ObjectManager.h
- ObjectManager.cpp
- ObjectManager_init_bflbody.cpp
- ObjectManager_init_ibmbody.cpp
- ObjectManager_ops_ibm.cpp
- ObjectManager ops ibmflex.cpp
- ObjectManager_ops_io.cpp

5.16 PCpts Class Reference

Class to hold point cloud data.

#include <PCpts.h>

Public Member Functions

• PCpts (void)

Default constructor.

∼PCpts (void)

Default destructor.

Public Attributes

std::vector< double > x

Vector of X positions.

std::vector< double > y

Vector of Y positions.

std::vector< double > z

Vector of Z positions.

5.16.1 Detailed Description

Class to hold point cloud data.

A container class for hold the X, Y and Z positions of points in a point cloud.

5.16.2 Constructor & Destructor Documentation

```
5.16.2.1 PCpts::PCpts(void) [inline]
```

Default constructor.

```
5.16.2.2 PCpts::~PCpts(void) [inline]
```

Default destructor.

5.16.3 Member Data Documentation

 $\textbf{5.16.3.1} \quad \textbf{std::vector}{<} \textbf{double}{>} \textbf{PCpts::x}$

Vector of X positions.

5.16.3.2 std::vector<double> PCpts::y

Vector of Y positions.

5.16.3.3 std::vector<double> PCpts::z

Vector of Z positions.

The documentation for this class was generated from the following file:

• PCpts.h

5.17 MpiManager::phdf5_struct Struct Reference

Structure for storing halo information for HDF5.

#include <MpiManager.h>

Public Attributes

• int i_start

Starting i-index for writable region.

int i_end

Ending i-index for writable region.

int j_start

Starting j-index for writable region.

int j_end

Ending j-index for writable region.

int k_start

Starting k-index for writable region.

• int k_end

Ending k-index for writable region.

int level

Grid level to which these data correspond.

· int region

Region number to which these data correspond.

• unsigned int writable_data_count = 0

Writable data count.

5.17.1 Detailed Description

Structure for storing halo information for HDF5.

Structure also stores the amount of writable data on the grid.

5.17.2 Member Data Documentation

5.17.2.1 int MpiManager::phdf5_struct::i_end

Ending i-index for writable region.

5.17.2.2 int MpiManager::phdf5_struct::i_start

Starting i-index for writable region.

5.17.2.3 int MpiManager::phdf5_struct::j_end

Ending j-index for writable region.

5.17.2.4 int MpiManager::phdf5_struct::j_start

Starting j-index for writable region.

5.17.2.5 int MpiManager::phdf5_struct::k_end

Ending k-index for writable region.

5.17.2.6 int MpiManager::phdf5_struct::k_start

Starting k-index for writable region.

5.17.2.7 int MpiManager::phdf5_struct::level

Grid level to which these data correspond.

5.17.2.8 int MpiManager::phdf5_struct::region

Region number to which these data correspond.

5.17.2.9 unsigned int MpiManager::phdf5_struct::writable_data_count = 0

Writable data count.

The documentation for this struct was generated from the following file:

• MpiManager.h

Chapter 6

File Documentation

6.1 BFLBody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/BFLBody.h"
#include "../inc/MpiManager.h"
#include "../inc/PCpts.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.2 BFLBody.h File Reference

```
#include "stdafx.h"
#include "Body.h"
#include "BFLMarker.h"
```

Classes

```
• class BFLBody

BFL body.
```

6.3 BFLMarker.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/BFLMarker.h"
#include "../inc/GridUtils.h"
```

84 File Documentation

6.4 BFLMarker.h File Reference

```
#include "stdafx.h"
#include "Marker.h"
```

Classes

class BFLMarker
 BFL marker.

6.5 Body.h File Reference

```
#include "stdafx.h"
#include "GridUtils.h"
```

Classes

· class MarkerData

Container class to hold marker information.

class Body < MarkerType >
 Generic body class.

6.6 definitions.h File Reference

```
#include <time.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <iomanip>
#include <math.h>
#include <string>
#include <mpi.h>
```

Macros

```
    #define LUMA_VERSION "1.3.0-alpha"
```

LUMA version.

• #define L_MPI_WRITE_LOAD_BALANCE

Write out the load balancing information based on active cell count.

• #define L_HDF_DEBUG

Write some HDF5 debugging information.

• #define L_PI 3.14159265358979323846

PI definition.

```
    #define L_BUILD_FOR_MPI

     Enable MPI features in build.
• #define L USE OPTIMISED KERNEL
     Opt to use the optimised kernel over the traditional kernel.
• #define L_OUT_EVERY 2000
     How many timesteps before whole grid output.
• #define L OUT EVERY FORCES 100
     Specific output frequency of body forces.

    #define L OUTPUT PRECISION 5

     Precision of output (for text writers)

    #define L HDF5 OUTPUT

     HDF5 dump on output.

    #define L_PROBE_OUT_FREQ 250

     Write out frequency of probe output.

    #define L_GRAVITY_FORCE 0.0001

     Expression for the gravity force.

    #define L_GRAVITY_DIRECTION eXDirection

     Gravity direction (specify using enumeration)
• #define L_RESTART_OUT_FREQ 10000
     Frequency of write out of restart file.
• #define L CSMAG 0.07
• #define L_TIMESTEPS 10000
     Number of time steps to run simulation for.
• #define L_MPI_XCORES 2
     Number of MPI ranks to divide domain into in X direction.
• #define L_MPI_YCORES 2
• #define L MPI ZCORES 2
• #define L_DIMS 2
     Number of dimensions to the problem.
• #define L_N 20
     Number of x lattice sites.
• #define L M 10
     Number of y lattice sites.
• #define L K 1
     Number of z lattice sites.

 #define L AX 0.0

     Start of domain-x.

    #define L BX 2.0

     End of domain-x.
• #define L_AY 0.0
     Start of domain-y.
• #define L BY 1.0
     End of domain-y.

    #define L AZ 0.0

     Start of domain-z.
• #define L BZ 1.0
     End of domain-z.

    #define L PHYSICAL U 0.2

     Reference velocity of the real fluid to model [m/s].
• #define L UREF 0.04
     Reference velocity for scaling.
```

86 File Documentation

```
    #define L_UMAX L_UREF*1.5

     Max velocity of inlet profile.
• #define L UX0 0.04
     Initial/inlet x-velocity.
• #define L_UY0 0.0
     Initial/inlet y-velocity.
• #define L UZ0 0.0
     Initial/inlet z-velocity.
• #define L RHOIN 1
     Initial density.

 #define L RE 150

     Desired Reynolds number.

    #define L_IB_ON_LEV 0

      Grid level for immersed boundary object (0 if no refined regions, -1 if no IBM)

    #define L IB ON REG 0

      Grid region for immersed boundary object (0 if no refined regions, -1 if no IBM)

    #define L_VTK_BODY_WRITE

     Write out the bodies to a VTK file.
• #define L_IBB_ON_GRID_LEV L_IB_ON_LEV
     Provide grid level on which object should be added.

    #define L_IBB_ON_GRID_REG L_IB_ON_REG

     Provide grid region on which object should be added.
• #define L START IBB X 0.3
     Start X of object bounding box.
• #define L_START_IBB_Y 0.2
     Start Y of object bounding box.
• #define L CENTRE IBB Z 0.5
      Centre of object bounding box in Z direction.
• #define L_IBB_LENGTH 0.5
      The object input is scaled based on this dimension.
• #define L_IBB_SCALE_DIRECTION eXDirection
     Scale in this direction (specify as enumeration)
• #define L_IBB_REF_LENGTH 0.5
     Reference length to be used in the definition of Reynolds number.
• #define L NUM MARKERS 31
     Number of Lagrange points to use when building a prefab body (approximately)
• #define L_IBB_MOVABLE false
     Default deformable property of body to be built (whether it moves or not)

    #define L IBB FLEXIBLE false

      Whether a structural calculation needs to be performed on the body.
• #define L INSERT CIRCLE SPHERE
• #define L IBB X 0.2
     X Position of body centre.

    #define L IBB Y 0.2

      Y Position of body centre.
• #define L IBB Z 0.0
     Z Position of body centre.
• #define L_IBB_W 0.5
      Width (x) of IB body.
• #define L_IBB_L 0.5
```

Length (y) of IB body.

```
 #define L_IBB_D 0.5

     Depth (z) of IB body.
• #define L IBB R 0.05
     Radius of IB body.
• #define L_IBB_FILAMENT_LENGTH 0.5
     Length of filament.
• #define L IBB FILAMENT START X 0.2
     Start X position of the filament.
• #define L_IBB_FILAMENT_START_Y 0.5
     Start Y position of the filament.

    #define L IBB FILAMENT START Z 0.5

     Start Z position of the filament.

    #define L_IBB_ANGLE_VERT 90

     Inclination of filament in XY plane.

    #define L IBB ANGLE HORZ 0

     Inclination of filament in XZ plane.

    #define L_FILAMENT_START_BC 2

      Type of boundary condition at filament start: 0 == free; 1 = simply supported; 2 == clamped.
• #define L_FILAMENT_END_BC 0
      Type of boundary condition at filament end: 0 == free; 1 = simply supported; 2 == clamped.

    #define L_IBB_DELTA_RHO 1.0

     Difference in density (lattice units) between solid and fluid.
• #define L IBB El 2.0
     Flexural rigidity (lattice units) of filament.

    #define L_INLET_ON

      Turn on inlet boundary (assumed left-hand wall - default Do Nothing)

    #define L OUTLET ON

      Turn on outlet boundary (assumed right-hand wall – default Do Nothing)
• #define L_WALLS_ON
      Turn on no-slip walls (default is top, bottom, front, back unless L_WALLS_ON_2D is used)

    #define L WALL THICKNESS BOTTOM 1

      Thickness of walls in coarsest lattice units.
• #define L_WALL_THICKNESS_TOP 1
      Thickness of top walls in coarsest lattice units.

    #define L WALL THICKNESS FRONT 1

      Thickness of front (3D) walls in coarsest lattice units.
• #define L WALL THICKNESS BACK 1
      Thickness of back (3D) walls in coarsest lattice units.

    #define L_BLOCK_ON_GRID_LEV 0

      Provide grid level on which block should be added.
• #define L BLOCK ON GRID REG 0
     Provide grid region on which block should be added.

    #define L_BLOCK_MIN_X (L_N / 6)

     Index of start of object/wall in x-direction.

    #define L BLOCK MAX X (2 * L N / 6)

     Index of end of object/wall in x-direction.

    #define L_BLOCK_MIN_Y (1)

     Index of start of object/wall in y-direction.

    #define L BLOCK MAX Y (L M / 6)

     Index of end of object/wall in y-direction.

    #define L_BLOCK_MIN_Z (2.5 * L_K / 6)
```

Index of start of object/wall in z-direction. #define L_BLOCK_MAX_Z (3.5 * L_K / 6) Index of end of object/wall in z-direction. #define L OBJECT ON GRID LEV 0 Provide grid level on which object should be added. #define L OBJECT ON GRID REG 0 Provide grid region on which object should be added. #define L START OBJECT X 400 Index for start of object bounding box in X direction. #define L_START_OBJECT_Y 360 Index for start of object bounding box in Y direction. • #define L CENTRE OBJECT Z 24 Index for cetnre of object bounding box in Z direction. • #define L_OBJECT_LENGTH 80 The object input is scaled based on this dimension. • #define L OBJECT SCALE DIRECTION eXDirection Scale in this direction (specify as enumeration) • #define L OBJECT REF LENGTH 80 Reference length to be used in the definition of Reynolds number. #define L BFL ON GRID LEV 0 Provide grid level on which BFL body should be added. • #define L BFL ON GRID REG 0 Provide grid region on which BFL body should be added. #define L_START_BFL_X 30 Index for start of object bounding box in X direction. • #define L START BFL Y 30 Index for start of object bounding box in Y direction. #define L_CENTRE_BFL_Z 50 Index for cetnre of object bounding box in Z direction. • #define L BFL LENGTH 40 The BFL object input is scaled based on this dimension. • #define L_BFL_SCALE_DIRECTION eXDirection Scale in this direction (specify as enumeration) • #define L BFL REF LENGTH 40 Reference length to be used in the definition of Reynolds number. #define L NUM LEVELS 2 Levels of refinement (0 = coarse grid only) #define L NUM REGIONS 1 Number of refined regions (can be arbitrary if L_NUM_LEVELS = 0) #define L_IB_ON_LEV -1 Grid level for immersed boundary object (0 if no refined regions, -1 if no IBM) #define L IB ON REG -1 Grid region for immersed boundary object (0 if no refined regions, -1 if no IBM) • #define L_NUM_VELS 9 • #define L MPI DIRS 8 • #define L AZ 0 Start of domain-z. #define L_BZ 2 End of domain-z. #define L K 1 Number of z lattice sites.

```
    #define L_BLOCK_MIN_Z 0

          Index of start of object/wall in z-direction.

    #define L BLOCK MAX Z 0

          Index of end of object/wall in z-direction.

    #define L_IBB_D 0

          Depth (z) of IB body.
    • #define L CENTRE OBJECT Z 0
          Index for cetnre of object bounding box in Z direction.
    • #define L_CENTRE_BFL_Z 0
          Index for cetnre of object bounding box in Z direction.

    #define L_CENTRE_IBB_Z 0

          Centre of object bounding box in Z direction.
    • #define L UZ0 0
          Initial/inlet z-velocity.
Variables
    • static const int cNumProbes [3] = {3, 3, 3}
          Number of probes in each direction (x, y, z)
    • static const int cProbeLimsX [2] = {90, 270}
          Limits of X plane for array of probes.
    • static const int cProbeLimsY [2] = {15, 45}
          Limits of Y plane for array of probes.
    static const int cProbeLimsZ [2] = {30, 120}
          Limits of Z plane for array of probes.
    • static const int cRefStartX [L_NUM_LEVELS][L_NUM_REGIONS] = { { 1 }, { 2 } }
    • static const int cRefEndX [L_NUM_LEVELS][L_NUM_REGIONS] = { { 18 }, { 31 } }
    static const int cRefStartY [L_NUM_LEVELS][L_NUM_REGIONS] = { { 2 }, { 2 } }
    static const int cRefEndY [L_NUM_LEVELS][L_NUM_REGIONS] = { { 6 }, { 6 } }
    static int cRefStartZ [L_NUM_LEVELS][L_NUM_REGIONS] = { { 1 }, { 1 } }
    static int cRefEndZ [L_NUM_LEVELS][L_NUM_REGIONS] = { { 1 }, { 1 } }
       Macro Definition Documentation
6.6.1
6.6.1.1 #define L AX 0.0
Start of domain-x.
6.6.1.2 #define L_AY 0.0
Start of domain-y.
6.6.1.3 #define L_AZ 0.0
```

Start of domain-z.

6.6.1.4 #define L_AZ 0

Start of domain-z.

6.6.1.5 #define L_BFL_LENGTH 40

The BFL object input is scaled based on this dimension.

6.6.1.6 #define L_BFL_ON_GRID_LEV 0

Provide grid level on which BFL body should be added.

6.6.1.7 #define L_BFL_ON_GRID_REG 0

Provide grid region on which BFL body should be added.

6.6.1.8 #define L_BFL_REF_LENGTH 40

Reference length to be used in the definition of Reynolds number.

6.6.1.9 #define L_BFL_SCALE_DIRECTION eXDirection

Scale in this direction (specify as enumeration)

6.6.1.10 #define L_BLOCK_MAX_X (2 * L_N / 6)

Index of end of object/wall in x-direction.

6.6.1.11 #define L_BLOCK_MAX_Y (L_M / 6)

Index of end of object/wall in y-direction.

6.6.1.12 #define L_BLOCK_MAX_Z (3.5 * L_K / 6)

Index of end of object/wall in z-direction.

6.6.1.13 #define L_BLOCK_MAX_Z 0

Index of end of object/wall in z-direction.

6.6.1.14 #define L_BLOCK_MIN_X (L_N / 6)

Index of start of object/wall in x-direction.

6.6.1.15 #define L_BLOCK_MIN_Y (1)

Index of start of object/wall in y-direction.

6.6.1.16 #define L_BLOCK_MIN_Z (2.5 * L_K / 6)

Index of start of object/wall in z-direction.

6.6.1.17 #define L_BLOCK_MIN_Z 0

Index of start of object/wall in z-direction.

6.6.1.18 #define L_BLOCK_ON_GRID_LEV 0

Provide grid level on which block should be added.

6.6.1.19 #define L_BLOCK_ON_GRID_REG 0

Provide grid region on which block should be added.

6.6.1.20 #define L_BUILD_FOR_MPI

Enable MPI features in build.

6.6.1.21 #define L_BX 2.0

End of domain-x.

6.6.1.22 #define L_BY 1.0

End of domain-y.

6.6.1.23 #define L_BZ 1.0

End of domain-z.

6.6.1.24 #define L_BZ 2

End of domain-z.

6.6.1.25 #define L_CENTRE_BFL_Z 50

Index for cetnre of object bounding box in Z direction.

6.6.1.26 #define L_CENTRE_BFL_Z 0

Index for cetnre of object bounding box in Z direction.

6.6.1.27 #define L_CENTRE_IBB_Z 0.5

Centre of object bounding box in Z direction.

6.6.1.28 #define L_CENTRE_IBB_Z 0

Centre of object bounding box in Z direction.

6.6.1.29 #define L_CENTRE_OBJECT_Z 24

Index for cetnre of object bounding box in Z direction.

6.6.1.30 #define L_CENTRE_OBJECT_Z 0

Index for cetnre of object bounding box in Z direction.

6.6.1.31 #define L_CSMAG 0.07

6.6.1.32 #define L_DIMS 2

Number of dimensions to the problem.

6.6.1.33 #define L_FILAMENT_END_BC 0

Type of boundary condition at filament end: 0 == free; 1 = simply supported; 2 == clamped.

6.6.1.34 #define L_FILAMENT_START_BC 2

Type of boundary condition at filament start: 0 == free; 1 = simply supported; 2 == clamped.

6.6.1.35 #define L_GRAVITY_DIRECTION eXDirection

Gravity direction (specify using enumeration)

6.6.1.36 #define L_GRAVITY_FORCE 0.0001

Expression for the gravity force.

6.6.1.37 #define L_HDF5_OUTPUT

HDF5 dump on output.

6.6.1.38 #define L_HDF_DEBUG

Write some HDF5 debugging information.

6.6.1.39 #define L_IB_ON_LEV 0

Grid level for immersed boundary object (0 if no refined regions, -1 if no IBM)

6.6.1.40 #define L_IB_ON_LEV -1

Grid level for immersed boundary object (0 if no refined regions, -1 if no IBM)

6.6.1.41 #define L_IB_ON_REG 0

Grid region for immersed boundary object (0 if no refined regions, -1 if no IBM)

6.6.1.42 #define L_IB_ON_REG -1

Grid region for immersed boundary object (0 if no refined regions, -1 if no IBM)

6.6.1.43 #define L_IBB_ANGLE_HORZ 0

Inclination of filament in XZ plane.

6.6.1.44 #define L_IBB_ANGLE_VERT 90

Inclination of filament in XY plane.

```
6.6.1.45 #define L_IBB_D 0.5
Depth (z) of IB body.
6.6.1.46 #define L_IBB_D 0
Depth (z) of IB body.
6.6.1.47 #define L_IBB_DELTA_RHO 1.0
Difference in density (lattice units) between solid and fluid.
6.6.1.48 #define L_IBB_EI 2.0
Flexural rigidity (lattice units) of filament.
6.6.1.49 #define L_IBB_FILAMENT_LENGTH 0.5
Length of filament.
6.6.1.50 #define L_IBB_FILAMENT_START_X 0.2
Start X position of the filament.
6.6.1.51 #define L_IBB_FILAMENT_START_Y 0.5
Start Y position of the filament.
6.6.1.52 #define L_IBB_FILAMENT_START_Z 0.5
Start Z position of the filament.
6.6.1.53 #define L_IBB_FLEXIBLE false
Whether a structural calculation needs to be performed on the body.
6.6.1.54 #define L_IBB_L 0.5
```

Length (y) of IB body.

6.6.1.55 #define L_IBB_LENGTH 0.5

The object input is scaled based on this dimension.

6.6.1.56 #define L_IBB_MOVABLE false

Default deformable property of body to be built (whether it moves or not)

6.6.1.57 #define L_IBB_ON_GRID_LEV L_IB_ON_LEV

Provide grid level on which object should be added.

6.6.1.58 #define L_IBB_ON_GRID_REG L_IB_ON_REG

Provide grid region on which object should be added.

6.6.1.59 #define L_IBB_R 0.05

Radius of IB body.

6.6.1.60 #define L_IBB_REF_LENGTH 0.5

Reference length to be used in the definition of Reynolds number.

6.6.1.61 #define L_IBB_SCALE_DIRECTION eXDirection

Scale in this direction (specify as enumeration)

6.6.1.62 #define L_IBB_W 0.5

Width (x) of IB body.

6.6.1.63 #define L_IBB_X 0.2

X Position of body centre.

6.6.1.64 #define L_IBB_Y 0.2

Y Position of body centre.

6.6.1.65 #define L_IBB_Z 0.0

Z Position of body centre.

6.6.1.66 #define L_INLET_ON

Turn on inlet boundary (assumed left-hand wall - default Do Nothing)

6.6.1.67 #define L_INSERT_CIRCLE_SPHERE

6.6.1.68 #define L_K 1

Number of z lattice sites.

6.6.1.69 #define L_K 1

Number of z lattice sites.

6.6.1.70 #define L_M 10

Number of y lattice sites.

6.6.1.71 #define L_MPI_DIRS 8

6.6.1.72 #define L_MPI_WRITE_LOAD_BALANCE

Write out the load balancing information based on active cell count.

6.6.1.73 #define L_MPI_XCORES 2

Number of MPI ranks to divide domain into in X direction.

6.6.1.74 #define L_MPI_YCORES 2

Number of MPI ranks to divide domain into in Y direction

6.6.1.75 #define L_MPI_ZCORES 2

Number of MPI ranks to divide domain into in Z direction. Set to 1 if doing a 2D problem when using custom MPI sizes

6.6.1.76 #define L_N 20

Number of x lattice sites.

6.6.1.77 #define L_NUM_LEVELS 2

Levels of refinement (0 = coarse grid only)

6.6.1.78 #define L_NUM_MARKERS 31

Number of Lagrange points to use when building a prefab body (approximately)

6.6.1.79 #define L_NUM_REGIONS 1

Number of refined regions (can be arbitrary if L_NUM_LEVELS = 0)

6.6.1.80 #define L_NUM_VELS 9

6.6.1.81 #define L_OBJECT_LENGTH 80

The object input is scaled based on this dimension.

6.6.1.82 #define L_OBJECT_ON_GRID_LEV 0

Provide grid level on which object should be added.

6.6.1.83 #define L_OBJECT_ON_GRID_REG 0

Provide grid region on which object should be added.

6.6.1.84 #define L_OBJECT_REF_LENGTH 80

Reference length to be used in the definition of Reynolds number.

6.6.1.85 #define L_OBJECT_SCALE_DIRECTION eXDirection

Scale in this direction (specify as enumeration)

6.6.1.86 #define L_OUT_EVERY 2000

How many timesteps before whole grid output.

```
6.6.1.87 #define L_OUT_EVERY_FORCES 100
Specific output frequency of body forces.
6.6.1.88 #define L_OUTLET_ON
Turn on outlet boundary (assumed right-hand wall – default Do Nothing)
6.6.1.89 #define L_OUTPUT_PRECISION 5
Precision of output (for text writers)
6.6.1.90 #define L_PHYSICAL_U 0.2
Reference velocity of the real fluid to model [m/s].
6.6.1.91 #define L_PI 3.14159265358979323846
PI definition.
6.6.1.92 #define L_PROBE_OUT_FREQ 250
Write out frequency of probe output.
6.6.1.93 #define L_RE 150
Desired Reynolds number.
6.6.1.94 #define L_RESTART_OUT_FREQ 10000
Frequency of write out of restart file.
6.6.1.95 #define L_RHOIN 1
Initial density.
6.6.1.96 #define L_START_BFL_X 30
```

Index for start of object bounding box in X direction.

6.6.1.97 #define L_START_BFL_Y 30

Index for start of object bounding box in Y direction.

6.6.1.98 #define L_START_IBB_X 0.3

Start X of object bounding box.

6.6.1.99 #define L_START_IBB_Y 0.2

Start Y of object bounding box.

6.6.1.100 #define L_START_OBJECT_X 400

Index for start of object bounding box in X direction.

6.6.1.101 #define L_START_OBJECT_Y 360

Index for start of object bounding box in Y direction.

6.6.1.102 #define L_TIMESTEPS 10000

Number of time steps to run simulation for.

6.6.1.103 #define L_UMAX L_UREF*1.5

Max velocity of inlet profile.

6.6.1.104 #define L_UREF 0.04

Reference velocity for scaling.

6.6.1.105 #define L_USE_OPTIMISED_KERNEL

Opt to use the optimised kernel over the traditional kernel.

6.6.1.106 #define L_UX0 0.04

Initial/inlet x-velocity.

6.6.1.107 #define L_UY0 0.0 Initial/inlet y-velocity. 6.6.1.108 #define L_UZ0 0.0 Initial/inlet z-velocity. 6.6.1.109 #define L_UZ0 0 Initial/inlet z-velocity. 6.6.1.110 #define L_VTK_BODY_WRITE Write out the bodies to a VTK file. 6.6.1.111 #define L_WALL_THICKNESS_BACK 1 Thickness of back (3D) walls in coarsest lattice units. 6.6.1.112 #define L_WALL_THICKNESS_BOTTOM 1 Thickness of walls in coarsest lattice units. 6.6.1.113 #define L_WALL_THICKNESS_FRONT 1 Thickness of front (3D) walls in coarsest lattice units. 6.6.1.114 #define L_WALL_THICKNESS_TOP 1 Thickness of top walls in coarsest lattice units. 6.6.1.115 #define L_WALLS_ON Turn on no-slip walls (default is top, bottom, front, back unless L_WALLS_ON_2D is used) 6.6.1.116 #define LUMA_VERSION "1.3.0-alpha"

LUMA version.

6.6.2 Variable Documentation

```
6.6.2.1 const int cNumProbes[3] = {3, 3, 3} [static]
```

Number of probes in each direction (x, y, z)

```
6.6.2.2 const int cProbeLimsX[2] = {90, 270} [static]
```

Limits of X plane for array of probes.

```
6.6.2.3 const int cProbeLimsY[2] = {15, 45} [static]
```

Limits of Y plane for array of probes.

```
6.6.2.4 const int cProbeLimsZ[2] = {30, 120} [static]
```

Limits of Z plane for array of probes.

```
6.6.2.5 const int cRefEndX[L_NUM_LEVELS][L_NUM_REGIONS] = {{18},{31}} [static]
```

```
6.6.2.6 const int cRefEndY[L_NUM_LEVELS][L_NUM_REGIONS] = {{6},{6}} [static]
```

```
6.6.2.7 int cRefEndZ[L_NUM_LEVELS][L_NUM_REGIONS] = {{1},{1}} [static]
```

```
6.6.2.8 const int cRefStartX[L_NUM_LEVELS][L_NUM_REGIONS] = {{1}},{2}} [static]
```

```
6.6.2.9 const int cRefStartY[L_NUM_LEVELS][L_NUM_REGIONS] = {{2},{2}} [static]
```

```
6.6.2.10 int cRefStartZ[L NUM LEVELS][L NUM REGIONS] = {{1},{1}} [static]
```

6.7 GridObj.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.8 GridObj.h File Reference

```
#include "stdafx.h"
#include "IVector.h"
```

Classes

class GridObj

Grid class.

Enumerations

```
    enum eType {
        eSolid, eFluid, eRefined, eTransitionToCoarser,
        eTransitionToFiner, eBFL, eSymmetry, eInlet,
        eOutlet, eRefinedSolid, eRefinedSymmetry, eRefinedInlet }
        Lattice typing labels.
    enum eBCType {
        eBCAll, eBCSolidSymmetry, eBCInlet, eBCOutlet,
        eBCInletOutlet, eBCBFL }
        Flag for indicating which BCs to apply.
    enum eIOFlag { eWrite, eRead }
        Flag for indicating write or read action for IO methods.
```

6.8.1 Enumeration Type Documentation

6.8.1.1 enum eBCType

Flag for indicating which BCs to apply.

Enumerator

```
eBCAII Apply all BCs.
eBCSolidSymmetry Apply just solid and symmetry BCs.
eBCInlet Apply just inlet BCs.
eBCOutlet Apply just outlet BCs.
eBCInletOutlet Apply inlet and outlet BCs.
eBCBFL Apply just BFL BCs.
```

6.8.1.2 enum eIOFlag

Flag for indicating write or read action for IO methods.

Enumerator

```
eWrite Write to file.eRead Read from file.
```

```
6.8.1.3 enum eType
```

Lattice typing labels.

Enumerator

```
eSolid Rigid, solid site.
eFluid Fluid site.
eRefined Fluid site which is represented on a finer grid.
eTransitionToCoarser Fluid site coupled to a coarser grid.
eTransitionToFiner Fluid site coupled to a finer grid.
eBFL Site containing a BFL marker.
eSymmetry Symmetry boundary.
eInlet Inlet boundary.
eOutlet Outlet boundary.
eRefinedSolid Rigid, solid site represented on a finer grid.
eRefinedSymmetry Symmetry boundary represented on a finer grid.
eRefinedInlet Inlet site represented on a finer grid.
```

6.9 GridObj_init_grids.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.10 GridObj_ops_boundary.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/BFLBody.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
```

6.11 GridObj_ops_io.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
#include "../inc/hdf5luma.h"
#include "../inc/GridUnits.h"
```

6.12 GridObj_ops_lbm.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/IVector.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.13 GridObj_ops_lbm_optimised.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.14 GridUnits.h File Reference

```
#include "../inc/GridObj.h"
```

Classes

class GridUnits
 GridUnits.

6.15 GridUtils.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridUtils.h"
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
```

6.16 GridUtils.h File Reference

```
#include "stdafx.h"
#include "GridObj.h"
```

Classes

· class GridUtils

Grid utility class.

Enumerations

• enum eCartesianDirection { eXDirection, eYDirection, eZDirection }

Enumeration for directional options.

• enum eMinMax { eMinimum, eMaximum }

Enumeration for minimum and maximum.

6.16.1 Enumeration Type Documentation

6.16.1.1 enum eCartesianDirection

Enumeration for directional options.

Enumerator

```
eXDirection X-direction.eYDirection Y-direction.eZDirection Z-direction.
```

6.16.1.2 enum eMinMax

Enumeration for minimum and maximum.

Some utility methods need to know whether they should be looking at or for a maximum or minimum edge of a grid so we use this enumeration to specify.

Enumerator

```
eMinimum Minimum.eMaximum Maximum.
```

6.17 hdf5luma.h File Reference

```
#include "stdafx.h"
#include "hdf5.h"
#include "MpiManager.h"
```

Macros

- #define H5_BUILT_AS_DYNAMIC_LIB
- #define HDF5_EXT_ZLIB
- #define HDF5_EXT_SZIP

Enumerations

```
    enum eHdf5SlabType {
        eScalar, eVector, eProductVector, ePosX,
        ePosY, ePosZ }
```

Defines the type of storage arrangement of the variable in memory.

Functions

template<typename T >
 void hdf5_writeDataSet (hid_t &memspace, hid_t &filespace, hid_t &dataset_id, eHdf5SlabType slab_type, int N_lim, int M_lim, int K_lim, int N_mod, int M_mod, int K_mod, GridObj *g, T *data, hid_t hdf_datatype, int TL_thickness, MpiManager::phdf5_struct hdf_data)

Helper method to write out using HDF5.

6.17.1 Macro Definition Documentation

```
6.17.1.1 #define H5_BUILT_AS_DYNAMIC_LIB
```

```
6.17.1.2 #define HDF5_EXT_SZIP
```

6.17.1.3 #define HDF5_EXT_ZLIB

6.17.2 Enumeration Type Documentation

6.17.2.1 enum eHdf5SlabType

Defines the type of storage arrangement of the variable in memory.

The write wrapper can then extract the data from memeory and write it to an HDF5 file using a particular hyperslab selection.

Enumerator

```
    eScalar 2/3D data – One variable per grid site
    eVector 2/3D data – L_DIMS variables per grid site
    eProductVector 1D data – 3*L_DIMS-3 variables per grid site
    ePosX 1D data – Single L_dim vector per dimension
    ePosX 1D data – Single L_dim vector per dimension
    ePosZ 1D data – Single L_dim vector per dimension
```

6.17.3 Function Documentation

6.17.3.1 template<typename T > void hdf5_writeDataSet (hid_t & memspace, hid_t & filespace, hid_t & dataset_id, eHdf5SlabType slab_type, int N_lim, int M_lim, int K_lim, int N_mod, int M_mod, int K_mod, GridObj * g, T * data, hid_t hdf_datatype, int TL_thickness, MpiManager::phdf5_struct hdf_data)

Helper method to write out using HDF5.

Automatically selects the correct slab arrangement and buffers the data accordingly before writing to structured file.

Parameters

memspace	memory dataspace id.
filespace	file dataspace id.
dataset_id	dataset id.
slab_type	slab type enum.
N_lim	number of X-direction sites on the local grid.
M_lim	number of Y-direction sites on the local grid.
K_lim	number of Z-direction sites on the local grid.
N_mod	number of X-direction sites excluding TL sites.
M_mod	number of Y-direction sites excluding TL sites.
K_mod	number of Z-direction sites excluding TL sites.
g	pointer to grid which we are writing out.
data	pointer to the start of the array to be written.
hdf_datatype	HDF5 datatype being written.
TL_thickness	the thickness of the TL on this grid level in local lattice units.
hdf_data	the data structure containing information about local halos.

6.18 IBBody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/IBBody.h"
#include "../inc/IBMarker.h"
#include "../inc/PCpts.h"
#include "../inc/GridUtils.h"
#include "../inc/ObjectManager.h"
```

6.19 IBBody.h File Reference

```
#include "stdafx.h"
#include "Body.h"
```

Classes

• class IBBody

Immersed boundary body.

6.20 IBMarker.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/IBMarker.h"
#include "../inc/GridUtils.h"
```

6.21 IBMarker.h File Reference

```
#include "stdafx.h"
#include "Marker.h"
```

Classes

· class IBMarker

Immersed boundary marker.

6.22 | Vector.h File Reference

```
#include "stdafx.h"
```

Classes

class IVector < GenTyp >
 Index-collapsing vector class.

6.23 main_lbm.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
#include "../inc/PCpts.h"
```

Functions

int main (int argc, char *argv[])
 Entry point for the application.

6.23.1 Function Documentation

```
6.23.1.1 int main ( int argc, char * argv[] )
```

Entry point for the application.

6.24 Marker.h File Reference

```
#include "stdafx.h"
```

Classes

class Marker

Generic marker class.

6.25 Mpi_buffer_pack.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.26 Mpi_buffer_size_recv.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.27 Mpi_buffer_size_send.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.28 Mpi_buffer_unpk.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.29 MpiManager.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.30 MpiManager.h File Reference

```
#include "stdafx.h"
```

Classes

· class MpiManager

MPI Manager class.

• struct MpiManager::phdf5_struct

Structure for storing halo information for HDF5.

struct MpiManager::layer_edges

Structure containing global positions of the edges of halos.

• struct MpiManager::buffer_struct

Structure storing buffers sizes in each direction for particular grid.

Macros

- #define range_i_left i = 0; i < GridUtils::downToLimit((int)pow(2, g->level + 1), N_lim); i++ For loop definition for left halo.
- #define range_j_down j = 0; j < GridUtils::downToLimit((int)pow(2, g->level + 1), M_lim); j++
 For loop definition for bottom halo.
- #define range_k_front k = 0; k < GridUtils::downToLimit((int)pow(2, g->level + 1), K_lim); k++
 For loop definition for front halo.
- #define range_i_right i = GridUtils::upToZero(N_lim (int)pow(2, g->level + 1)); i < N_lim; i++
 For loop definition for right halo.
- #define range_j_up j = GridUtils::upToZero(M_lim (int)pow(2, g->level + 1)); j < M_lim; j++ For loop definition for top halo.
- #define range_k_back k = GridUtils::upToZero(K_lim (int)pow(2, g->level + 1)); k < K_lim; k++
 For loop definition for back halo.

6.30.1 Macro Definition Documentation

 $6.30.1.1 \quad \text{\#define range_i_left i = 0; i < GridUtils::downToLimit((int)pow(2, g->level + 1), N_lim); i++}$

For loop definition for left halo.

```
6.30.1.2 #define range_i_right i = GridUtils::upToZero(N_lim - (int)pow(2, g->level + 1)); i < N_lim; i++
```

For loop definition for right halo.

```
6.30.1.3 \quad \text{\#define range\_j\_down j = 0; j < GridUtils::downToLimit((int)pow(2, g->level + 1), M\_lim); j++}
```

For loop definition for bottom halo.

```
6.30.1.4 #define range_j_up j = GridUtils::upToZero(M_lim - (int)pow(2, g->level + 1)); j < M_lim; j++
```

For loop definition for top halo.

```
6.30.1.5 #define range_k_back k = GridUtils::upToZero(K_lim - (int)pow(2, g->level + 1)); k < K_lim; k++
```

For loop definition for back halo.

```
6.30.1.6 #define range_k_front k = 0; k < GridUtils::downToLimit((int))pow(2, g->level + 1), K_lim); k++
```

For loop definition for front halo.

6.31 ObjectManager.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.32 ObjectManager.h File Reference

```
#include "stdafx.h"
#include "IVector.h"
#include "IBMarker.h"
#include "IBBody.h"
#include "BFLBody.h"
```

Classes

· class ObjectManager

Object Manager class.

Enumerations

enum eObjectType { eBBBCloud, eBFLCloud, elBBCloud }
 Specifies the type of body being processed.

6.32.1 Enumeration Type Documentation

```
6.32.1.1 enum eObjectType
```

Specifies the type of body being processed.

Enumerator

```
eBBBCloud Bounce-back body.eBFLCloud BFL body.elBBCloud Immersed boundary body.
```

6.33 ObjectManager_init_bflbody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
```

6.34 ObjectManager init ibmbody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
```

6.35 ObjectManager_ops_ibm.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.36 ObjectManager_ops_ibmflex.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
```

Macros

```
    #define SWAP(a, b) {dum=(a);(a)=(b);(b)=dum;}
    Pointer swap definition.
```

#define TINY 1.0e-20

Definition of small number (could use numerics since this is C++ but nevermind)

#define SWAP(a, b) {dum=(a);(a)=(b);(b)=dum;}

Pointer swap definition.

6.36.1 Macro Definition Documentation

```
6.36.1.1 #define SWAP( a, b) {dum=(a);(a)=(b);(b)=dum;}
```

Pointer swap definition.

```
6.36.1.2 #define SWAP( a, b) {dum=(a);(a)=(b);(b)=dum;}
```

Pointer swap definition.

```
6.36.1.3 #define TINY 1.0e-20
```

Definition of small number (could use numerics since this is C++ but nevermind)

6.37 ObjectManager_ops_io.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
#include "../inc/PCpts.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
```

6.38 PCpts.h File Reference

```
#include "stdafx.h"
```

Classes

· class PCpts

Class to hold point cloud data.

6.39 stdafx.cpp File Reference

```
#include "../inc/stdafx.h"
```

Variables

```
• const int c [3][L_NUM_VELS]
```

Lattice velocities.

• const int c_opt [L_NUM_VELS][3]

Lattice velocities optimised arrangement.

• const double w [L_NUM_VELS]

Quadrature weights.

• const double cs = 1.0 / sqrt(3.0)

Lattice sound speed.

6.39.1 Variable Documentation

```
6.39.1.1 const int c[3][L_NUM_VELS]
```

Initial value:

```
=
{
    { 1, -1, 0, 0, 1, -1, 1, -1, 0 },
    { 0, 0, 1, -1, 1, -1, -1, 1, 0 },
    { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
}
```

Lattice velocities.

```
6.39.1.2 const int c_opt[L_NUM_VELS][3]
```

Initial value:

Lattice velocities optimised arrangement.

6.39.1.3 const double cs = 1.0 / sqrt(3.0)

Lattice sound speed.

6.40 stdafx.h File Reference 115

```
6.39.1.4 const double w[L_NUM_VELS]
```

Initial value:

```
= { 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 36.0, 1.0 / 36.0, 1.0 / 36.0, 1.0 / 36.0, 4.0 / 9.0 }
```

Quadrature weights.

6.40 stdafx.h File Reference

```
#include <algorithm>
#include <cmath>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <numeric>
#include <stdlib.h>
#include <cstring>
#include <stdio.h>
#include "definitions.h"
```

Macros

- #define DEPRECATED
- #define LUMA FAILED 12345

Error definition.

• #define L_IS_NAN std::isnan

Not a Number declaration (Unix)

- #define SQ(x) ((x) * (x))
- #define L_DACTION_WRITE_OUT_FORCES

Variables

```
• const int c [3][L_NUM_VELS]
```

Lattice velocities.

const int c_opt [L_NUM_VELS][3]

Lattice velocities optimised arrangement.

• const double w [L_NUM_VELS]

Quadrature weights.

· const double cs

Lattice sound speed.

6.40.1 Macro Definition Documentation 6.40.1.1 #define DEPRECATED 6.40.1.2 #define L_DACTION_WRITE_OUT_FORCES 6.40.1.3 #define L_IS_NAN std::isnan Not a Number declaration (Unix) 6.40.1.4 #define LUMA_FAILED 12345 Error definition. 6.40.1.5 #define SQ(x) ((x) * (x)) 6.40.2 Variable Documentation 6.40.2.1 const int c[3][L_NUM_VELS] Lattice velocities. 6.40.2.2 const int c_opt[L_NUM_VELS][3] Lattice velocities optimised arrangement. 6.40.2.3 const double cs Lattice sound speed. 6.40.2.4 const double w[L_NUM_VELS] Quadrature weights.

Index

_Owner	bc_applyBounceBack
Body, 16	GridObj, 22
\sim BFLBody	bc_applyExtrapolation
BFLBody, 10	GridObj, 22
\sim BFLMarker	bc_applyNrbc
BFLMarker, 12	GridObj, 22
\sim Body	bc_applyRegularised
Body, 14	GridObj, 23
\sim GridObj	bc_applySpecReflect
GridObj, 21	GridObj, 23
\sim GridUnits	bc_solidSiteReset
GridUnits, 33	GridObj, 23
∼IBBody	bfl_buildBody
IBBody, 49	ObjectManager, 72
∼IBMarker	Body
IBMarker, 54	_Owner, 16
∼IVector	\sim Body, 14
IVector, 56	addMarker, 14
~Marker	Body, 14
Marker, 60	closed_surface, 16
~MarkerData	getMarkerData, 14
MarkerData, 62	id, 16
~PCpts	isInVoxel, 15
PCpts, 80	isVoxelMarkerVoxel, 15
	markerAdder, 16
add	markers, 16
GridUtils, 35	spacing, 16
addMarker	Body< MarkerType >, 13
Body, 14	Body.h, 84
IBBody, 49	buffer_recv_info
BCs	MpiManager, 68
IBBody, 52	buffer_send_info
BFLBody, 9	MpiManager, 68
~BFLBody, 10	С
BFLBody, 10	stdafx.cpp, 114
BFLMarker, 12	stdafx.h, 116
computeQ, 10, 11	c_opt
GridObj, 11	stdafx.cpp, 114
Q, 11	stdafx.h, 116
BFLBody.cpp, 83	cNumProbes
BFLBody.h, 83	definitions.h, 101
BFLMarker, 11	cProbeLimsX
∼BFLMarker, 12	definitions.h, 101
BFLBody, 12	cProbeLimsY
BFLMarker, 12	definitions.h, 101
BFLMarker.cpp, 83	cProbeLimsZ
BFLMarker.h, 84	definitions.h, 101
bc_applyBfl	cRefEndX
GridObj, 22	definitions.h, 101
•	,

cRefEndY	L_CENTRE_OBJECT_Z, 92
definitions.h, 101	L_CSMAG, 92
cRefEndZ	L DIMS, 92
definitions.h, 101	L_FILAMENT_END_BC, 92
cRefStartX	L FILAMENT START BC, 92
definitions.h, 101	L GRAVITY DIRECTION, 92
cRefStartY	L GRAVITY FORCE, 93
definitions.h, 101	
cRefStartZ	L_HDF5_OUTPUT, 93
	L_HDF_DEBUG, 93
definitions.h, 101	L_IB_ON_LEV, 93
closed_surface	L_IB_ON_REG, 93
Body, 16	L_IBB_ANGLE_HORZ, 93
computeLiftDrag	L_IBB_ANGLE_VERT, 93
ObjectManager, 73	L_IBB_DELTA_RHO, 94
computeQ	L_IBB_EI, 94
BFLBody, 10, 11	L_IBB_FILAMENT_LENGTH, 94
createOutputDirectory	L_IBB_FILAMENT_START_X, 94
GridUtils, 36	L IBB FILAMENT START Y, 94
crossprod	L IBB FILAMENT START Z, 94
GridUtils, 36	L_IBB_FLEXIBLE, 94
CS	L IBB LENGTH, 94
stdafx.cpp, 114	L_IBB_MOVABLE, 95
stdafx.h, 116	
	L_IBB_ON_GRID_LEV, 95
DEPRECATED	L_IBB_ON_GRID_REG, 95
stdafx.h, 116	L_IBB_REF_LENGTH, 95
definitions.h, 84	L_IBB_SCALE_DIRECTION, 95
cNumProbes, 101	L_IBB_D, 93, 94
cProbeLimsX, 101	L_IBB_L, 94
cProbeLimsY, 101	L_IBB_R, 95
	L_IBB_W, 95
cProbeLimsZ, 101	L IBB X, 95
cRefEndX, 101	L IBB Y, 95
cRefEndY, 101	L IBB Z, 95
cRefEndZ, 101	L INLET ON, 96
cRefStartX, 101	L_INSERT_CIRCLE_SPHERE, 96
cRefStartY, 101	
cRefStartZ, 101	L_MPI_DIRS, 96
L_AX, 89	L_MPI_WRITE_LOAD_BALANCE, 96
L_AY, 89	L_MPI_XCORES, 96
L_AZ, 89	L_MPI_YCORES, 96
L_BFL_LENGTH, 90	L_MPI_ZCORES, 96
L BFL ON GRID LEV, 90	L_NUM_LEVELS, 97
L_BFL_ON_GRID_REG, 90	L_NUM_MARKERS, 97
L BFL REF LENGTH, 90	L_NUM_REGIONS, 97
L_BFL_SCALE_DIRECTION, 90	L NUM VELS, 97
L_BLOCK_MAX_X, 90	L_OBJECT_LENGTH, 97
L BLOCK MAX Y, 90	L OBJECT ON GRID LEV, 97
L_BLOCK_MAX_Z, 90	L OBJECT ON GRID REG, 97
	L_OBJECT_REF_LENGTH, 97
L_BLOCK_MIN_X, 90	L_OBJECT_SCALE_DIRECTION, 97
L_BLOCK_MIN_Y, 91	
L_BLOCK_MIN_Z, 91	L_OUT_EVERY_FORCES, 97
L_BLOCK_ON_GRID_LEV, 91	L_OUT_EVERY, 97
L_BLOCK_ON_GRID_REG, 91	L_OUTLET_ON, 98
L_BUILD_FOR_MPI, 91	L_OUTPUT_PRECISION, 98
L_BX, 91	L_PHYSICAL_U, 98
L_BY, 91	L_PROBE_OUT_FREQ, 98
L_BZ, 91	L_PI, 98
L_CENTRE_BFL_Z, 92	L_RESTART_OUT_FREQ, 98
L_CENTRE_IBB_Z, 92	L_RHOIN, 98
, -	/

L_RE, 98	GridObj.h, 102
L_START_BFL_X, 98	eBCInletOutlet
L_START_BFL_Y, 98	GridObj.h, 102
L_START_IBB_X, 99	eBCOutlet
L_START_IBB_Y, 99	GridObj.h, 102
L_START_OBJECT_X, 99	eBCSolidSymmetry
L_START_OBJECT_Y, 99	GridObj.h, 102
L_TIMESTEPS, 99	eBCType
L_UMAX, 99	GridObj.h, 102
L_UREF, 99	eBFLCloud
L_USE_OPTIMISED_KERNEL, 99	ObjectManager.h, 112
L_UX0, 99	eBFL
L_UY0, 99	GridObj.h, 103
L_UZ0, 100	eCartesianDirection
L_VTK_BODY_WRITE, 100	GridUtils.h, 105
L_WALL_THICKNESS_BACK, 100	eFluid
L_WALL_THICKNESS_BOTTOM, 100	GridObj.h, 103
L_WALL_THICKNESS_FRONT, 100	eHdf5SlabType
L_WALL_THICKNESS_TOP, 100	hdf5luma.h, 106
L_WALLS_ON, 100	eIBBCloud
L_K, 96	ObjectManager.h, 112
L_M, 96	elOFlag
L_N, 96	GridObj.h, 102
LUMA_VERSION, 100	elnlet
deformable	GridObj.h, 103
IBBody, 52	eMaximum
delta_rho	GridUtils.h, 105
IBBody, 52	eMinMax
deltaval	GridUtils.h, 105
IBMarker, 54	eMinimum
desired_vel	GridUtils.h, 105
IBMarker, 54	eObjectType
destroyInstance	ObjectManager.h, 112
MpiManager, 65	eOutlet
ObjectManager, 73	GridObj.h, 103
dilation	ePosX
IBMarker, 55	hdf5luma.h, 106
dir_reflect	ePosY
GridUtils, 47	hdf5luma.h, 106
dotprod	ePosZ
GridUtils, 36	hdf5luma.h, 106
downToLimit	eProductVector
GridUtils, 37	hdf5luma.h, 106
dt	eRead
GridObj, 29	GridObj.h, 102
dx	eRefined
GridObj, 29	GridObj.h, 103
dy	eRefinedInlet
GridObj, 29	GridObj.h, 103
dz	eRefinedSolid
GridObj, 29	
PPPO!	GridObj.h, 103
eBBBCloud	eRefinedSymmetry
ObjectManager.h, 112	GridObj.h, 103
eBCAII	eScalar
GridObj.h, 102	hdf5luma.h, 106
eBCBFL	eSolid
GridObj.h, 102	GridObj.h, 103
eBCInlet	eSymmetry

GridObj.h, 103	GridObj, 17
eTransitionToCoarser	\sim GridObj, 21
GridObj.h, 103	BFLBody, 11
eTransitionToFiner	bc_applyBfl, 22
GridObj.h, 103	bc_applyBounceBack, 22
еТуре	bc_applyExtrapolation, 22
GridObj.h, 102	bc_applyNrbc, 22
eVector	bc applyRegularised, 23
hdf5luma.h, 106	bc_applySpecReflect, 23
eWrite	bc solidSiteReset, 23
GridObj.h, 102	dt, 29
eXDirection	dx, 29
GridUtils.h, 105	dy, 29
eYDirection	dz, 29
GridUtils.h, 105	
eZDirection	GridObj, 21
GridUtils.h, 105	GridUtils, 29
epsilon	io_fgaout, 23
IBMarker, 55	io_hdf5, 23
ibiviarker, 55	io_lite, 24
f_buffer_recv	io_probeOutput, 24
MpiManager, 68	io_restart, 24
	io_textout, 24
f_buffer_send	K_lim, 30
MpiManager, 68	LBM_addSubGrid, 24
factorial	LBM_boundary, 25
GridUtils, 37	LBM_coalesce, 25
flex_rigid	LBM collide, 25
IBBody, 52	LBM_explode, 26
IBMarker, 55	LBM_forceGrid, 26
flexural_rigidity	LBM_init_getInletProfile, 26
IBBody, 52	LBM initBoundLab, 26
fluid_vel	LBM initGrid, 26
IBMarker, 55	LBM_initRefinedLab, 27
force_xyz	
IBMarker, 55	LBM_initRho, 27
	LBM_initSolidLab, 27
getCoarseIndices	LBM_initSubGrid, 27
GridUtils, 37	LBM_initVelocity, 27
getFineIndices	LBM_kbcCollide, 27
GridUtils, 38	LBM_macro, 28
getGrid	LBM_multi, 28
GridUtils, 38	LBM_multi_opt, 28
getInstance	LBM_resetForces, 29
MpiManager, 65	LBM_stream, 29
ObjectManager, 73	LatTyp, 30
getMarkerData	level, 30
Body, 14	M_lim, 30
getOpposite	MpiManager, 29
GridUtils, 39	N lim, 30
getVoxInd	nu, 30
_	ObjectManager, 29, 79
GridUtils, 39	omega, 30
global_dims	_
MpiManager, 68	region_number, 30
global_edge_ind	t, 30
MpiManager, 68	timeav_mpi_overhead, 30
global_edge_pos	timeav_timestep, 31
MpiManager, 68	XInd, 31
global_to_local	XOrigin, 31
GridUtils, 39	XPos, 31

YInd, 31	isOffGrid, 40
YOrigin, 31	isOnRecvLayer, 40
YPos, 31	isOnSenderLayer, 41
ZInd, 31	isOnThisRank, 42
ZOrigin, 31	isOverlapPeriodic, 42
ZPos, 31	linspace, 43
GridObj.cpp, 101	local_to_global, 43
GridObj.h, 101	logfile, 47
eBCAII, 102	matrix_multiply, 43
eBCBFL, 102	onespace, 43
eBCInlet, 102	path_str, 47
eBCInletOutlet, 102	stridedCopy, 44
eBCOutlet, 102	subtract, 44
eBCSolidSymmetry, 102	upToZero, 44
eBCType, 102	vecmultiply, 45
eBFL, 103	vecnorm, 45, 46
eFluid, 103	GridUtils.cpp, 104
elOFlag, 102	GridUtils.h, 104
eInlet, 103	eCartesianDirection, 105
eOutlet, 103	eMaximum, 105
	eMinMax, 105
eRead, 102	eMinimum, 105
eRefined, 103	eXDirection, 105
eRefinedInlet, 103	eYDirection, 105
eRefinedSolid, 103	eZDirection, 105
eRefinedSymmetry, 103	Grids
eSolid, 103	MpiManager, 68
eSymmetry, 103	groupID
eTransitionToCoarser, 103	IBBody, 52
eTransitionToFiner, 103	IBBOdy, 32
eType, 102	H5_BUILT_AS_DYNAMIC_LIB
eWrite, 102	hdf5luma.h, 106
GridObj_init_grids.cpp, 103	HDF5_EXT_SZIP
GridObj_ops_boundary.cpp, 103	hdf5luma.h, 106
GridObj_ops_io.cpp, 103	HDF5_EXT_ZLIB
GridObj_ops_lbm.cpp, 104	hdf5luma.h, 106
GridObj_ops_lbm_optimised.cpp, 104	hasThisSubGrid
GridUnits, 32	GridUtils, 40
\sim GridUnits, 33	hdf5_writeDataSet
GridUnits, 33	hdf5luma.h, 106
m2cm, 33	hdf5luma.h, 105
ulat2uphys, 33	eHdf5SlabType, 106
GridUnits.h, 104	ePosX, 106
GridUtils, 33	
add, 35	ePosY, 106
createOutputDirectory, 36	ePosZ, 106
crossprod, 36	eProductVector, 106
dir reflect, 47	eScalar, 106
dotprod, 36	eVector, 106
downToLimit, 37	H5_BUILT_AS_DYNAMIC_LIB, 106
factorial, 37	HDF5_EXT_SZIP, 106
getCoarseIndices, 37	HDF5_EXT_ZLIB, 106
getFineIndices, 38	hdf5_writeDataSet, 106
_	i
getGrid, 38	j MarkarData CO
getOpposite, 39	MarkerData, 62
getVoxInd, 39	i_end
global_to_local, 39	MpiManager::phdf5_struct, 81
GridObj, 29	i_start
hasThisSubGrid, 40	MpiManager::phdf5_struct, 81

IDDady 40	Object Manager 76
IBBody, 48	ObjectManager, 76
~IBBody, 49 addMarker, 49	ibm_interpol ObjectManager, 76
•	-
BCs, 52	ibm_jacowire
deformable, 52	ObjectManager, 76
delta_rho, 52	ibm_moveBodies
flex_rigid, 52	ObjectManager, 77
flexural_rigidity, 52	ibm_positionUpdate
groupID, 52	ObjectManager, 77
IBBody, 49	ibm_positionUpdateGroup
IBMarker, 54	ObjectManager, 77
makeBody, 50, 51	ibm_spread
markerAdder, 51	ObjectManager, 77
ObjectManager, 52	ID
tension, 52	MarkerData, 62
IBBody.cpp, 107	id
IBBody.h, 107	Body, 16
IBMarker, 53	io_fgaout
∼IBMarker, 54	GridObj, 23
deltaval, 54	io_hdf5
desired vel, 54	GridObj, 23
dilation, 55	io_lite
epsilon, 55	GridObj, 24
flex_rigid, 55	io_probeOutput
fluid_vel, 55	GridObj, 24
force_xyz, 55	io_readInCloud
IBBody, 54	ObjectManager, 78
IBMarker, 54	io_restart
local_area, 55	GridObj, 24
	ObjectManager, 78
ObjectManager, 54	io_textout
position_old, 55	GridObj, 24
IBMarker.cpp, 107	io vtkIBBWriter
IBMarker.h, 108	ObjectManager, 78
IVector	io_writeBodyPosition
~IVector, 56	ObjectManager, 78
IVector, 56	io writeForceOnObject
operator(), 57	ObjectManager, 78
IVector< GenTyp >, 56	io_writeLiftDrag
IVector.h, 108	ObjectManager, 79
ibm_apply	isInVoxel
ObjectManager, 73	Body, 15
ibm_banbks	isOffGrid
ObjectManager, 73	GridUtils, 40
ibm_bandec	isOnRecvLayer
ObjectManager, 74	GridUtils, 40
ibm_bicgstab	isOnSenderLayer
ObjectManager, 74	GridUtils, 41
ibm_buildBody	isOnThisRank
ObjectManager, 75	GridUtils, 42
ibm_computeForce	isOverlapPeriodic
ObjectManager, 75	GridUtils, 42
ibm_deltaKernel	isVoxelMarkerVoxel
ObjectManager, 75	Body, 15
ibm_findEpsilon	body, 10
ObjectManager, 76	j
ibm_findSupport	MarkerData, 62
ObjectManager, 76	j_end
ibm initialise	MpiManager::phdf5_struct, 81
	10- 1

j_start	definitions.h, 92
MpiManager::phdf5_struct, 81	L_DACTION_WRITE_OUT_FORCES
	stdafx.h, 116
k	L DIMS
MarkerData, 62	definitions.h, 92
k end	L_FILAMENT_END_BC
MpiManager::phdf5 struct, 81	definitions.h, 92
K lim	
GridObj, 30	L_FILAMENT_START_BC
k start	definitions.h, 92
_	L_GRAVITY_DIRECTION
MpiManager::phdf5_struct, 82	definitions.h, 92
L AX	L_GRAVITY_FORCE
_	definitions.h, 93
definitions.h, 89	L_HDF5_OUTPUT
L_AY	definitions.h, 93
definitions.h, 89	L_HDF_DEBUG
L_AZ	definitions.h, 93
definitions.h, 89	L_IB_ON_LEV
L_BFL_LENGTH	definitions.h, 93
definitions.h, 90	•
L_BFL_ON_GRID_LEV	L_IB_ON_REG
definitions.h, 90	definitions.h, 93
L BFL ON GRID REG	L_IBB_ANGLE_HORZ
definitions.h, 90	definitions.h, 93
L_BFL_REF_LENGTH	L_IBB_ANGLE_VERT
definitions.h, 90	definitions.h, 93
L BFL SCALE DIRECTION	L_IBB_DELTA_RHO
definitions.h, 90	definitions.h, 94
L_BLOCK_MAX_X	L_IBB_EI
	definitions.h, 94
definitions.h, 90	L_IBB_FILAMENT_LENGTH
L_BLOCK_MAX_Y	definitions.h, 94
definitions.h, 90	L IBB FILAMENT START X
L_BLOCK_MAX_Z	definitions.h, 94
definitions.h, 90	•
L_BLOCK_MIN_X	L_IBB_FILAMENT_START_Y
definitions.h, 90	definitions.h, 94
L_BLOCK_MIN_Y	L_IBB_FILAMENT_START_Z
definitions.h, 91	definitions.h, 94
L BLOCK MIN Z	L_IBB_FLEXIBLE
definitions.h, 91	definitions.h, 94
L_BLOCK_ON_GRID_LEV	L_IBB_LENGTH
definitions.h, 91	definitions.h, 94
L BLOCK ON GRID REG	L_IBB_MOVABLE
definitions.h, 91	definitions.h, 95
L BUILD FOR MPI	L IBB ON GRID LEV
	definitions.h, 95
definitions.h, 91	L_IBB_ON_GRID_REG
L_BX	
definitions.h, 91	definitions.h, 95
L_BY	L_IBB_REF_LENGTH
definitions.h, 91	definitions.h, 95
L_BZ	L_IBB_SCALE_DIRECTION
definitions.h, 91	definitions.h, 95
L_CENTRE_BFL_Z	L_IBB_D
definitions.h, 92	definitions.h, 93, 94
L_CENTRE_IBB_Z	L_IBB_L
definitions.h, 92	definitions.h, 94
L CENTRE OBJECT Z	L_IBB_R
definitions.h, 92	definitions.h, 95
L_CSMAG	L_IBB_W
L_001VII 1Q	'DD_44

definitions.h, 95	definitions.h, 98
L_IBB_X	L_RE
definitions.h, 95	definitions.h, 98
L_IBB_Y	L_START_BFL_X
definitions.h, 95	definitions.h, 98
L_IBB_Z	L_START_BFL_Y
definitions.h, 95	definitions.h, 98
L_INLET_ON	L_START_IBB_X
definitions.h, 96	definitions.h, 99
L_INSERT_CIRCLE_SPHERE	L_START_IBB_Y
definitions.h, 96	definitions.h, 99
L_IS_NAN	L_START_OBJECT_X
stdafx.h, 116	definitions.h, 99
L_MPI_DIRS	L_START_OBJECT_Y
definitions.h, 96	definitions.h, 99
L_MPI_WRITE_LOAD_BALANCE	L_TIMESTEPS
definitions.h, 96	definitions.h, 99
L_MPI_XCORES	L_UMAX
definitions.h, 96 L_MPI_YCORES	definitions.h, 99 L UREF
definitions.h, 96	definitions.h, 99
L_MPI_ZCORES	L USE OPTIMISED KERNEL
definitions.h, 96	definitions.h, 99
L NUM LEVELS	L UX0
definitions.h, 97	definitions.h, 99
L_NUM_MARKERS	L UY0
definitions.h, 97	definitions.h, 99
L NUM REGIONS	L_UZ0
definitions.h, 97	definitions.h, 100
L_NUM_VELS	L VTK BODY WRITE
definitions.h, 97	definitions.h, 100
L OBJECT LENGTH	L_WALL_THICKNESS_BACK
definitions.h, 97	definitions.h, 100
L_OBJECT_ON_GRID_LEV	L_WALL_THICKNESS_BOTTOM
definitions.h, 97	definitions.h, 100
L_OBJECT_ON_GRID_REG	L_WALL_THICKNESS_FRONT
definitions.h, 97	definitions.h, 100
L_OBJECT_REF_LENGTH	L_WALL_THICKNESS_TOP
definitions.h, 97	definitions.h, 100
L_OBJECT_SCALE_DIRECTION	L_WALLS_ON
definitions.h, 97	definitions.h, 100
L_OUT_EVERY_FORCES	L_K
definitions.h, 97	definitions.h, 96
L_OUT_EVERY	L_M
definitions.h, 97	definitions.h, 96
L_OUTLET_ON	L_N
definitions.h, 98	definitions.h, 96
L_OUTPUT_PRECISION	LBM_addSubGrid
definitions.h, 98	GridObj, 24
L_PHYSICAL_U	LBM_boundary
definitions.h, 98	GridObj, 25
L_PROBE_OUT_FREQ	LBM_coalesce
definitions.h, 98	GridObj, 25
L_PI	LBM_collide
definitions.h, 98	GridObj, 25
L_RESTART_OUT_FREQ definitions.h, 98	LBM_explode GridObj, 26
L RHOIN	LBM forceGrid
	LDW_IOIGEONG

GridObj, 26	MpiManager, 69
LBM_init_getInletProfile	MPI_dims
GridObj, 26	MpiManager, 69
LBM_initBoundLab	main
GridObj, 26	main_lbm.cpp, 108
LBM_initGrid	main_lbm.cpp, 108
GridObj, 26	main, 108
LBM_initRefinedLab	makeBody
GridObj, 27	IBBody, 50, 51
LBM_initRho	Marker, 59
GridObj, 27	∼Marker, 60
LBM_initSolidLab GridObj, 27	Marker, 60
LBM initSubGrid	position, 60
GridObj, 27	supp_i, 60
LBM_initVelocity	supp_j, 60
GridObj, 27	supp_k, 60
LBM kbcCollide	support_rank, 60
GridObj, 27	Marker.h, 109
LBM macro	markerAdder
GridObj, 28	Body, 16
LBM_multi	IBBody, 51
GridObj, 28	MarkerData, 61
LBM_multi_opt	∼MarkerData, 62
GridObj, 28	i, 62
LBM_resetForces	ID, 62
GridObj, 29	j, 62
LBM_stream	k, 62
GridObj, 29	MarkerData, 61, 62
LUMA FAILED	x, 62
stdafx.h, 116	y, 62
LUMA_VERSION	z, 63 markers
definitions.h, 100	
LatTyp	Body, 16 matrix_multiply
GridObj, 30	GridUtils, 43
level	mpi_buffer_pack
GridObj, 30	MpiManager, 65
MpiManager::buffer_struct, 17	Mpi_buffer_pack.cpp, 109
MpiManager::phdf5_struct, 82	mpi_buffer_size
linspace	MpiManager, 65
GridUtils, 43	mpi_buffer_size_recv
local_area	MpiManager, 66
IBMarker, 55	Mpi_buffer_size_recv.cpp, 109
local_size	mpi buffer size send
MpiManager, 68	MpiManager, 66
local_to_global	Mpi_buffer_size_send.cpp, 109
GridUtils, 43	mpi buffer unpack
logfile	MpiManager, 66
GridUtils, 47	Mpi_buffer_unpk.cpp, 109
logout	mpi_buildCommunicators
MpiManager, 69	MpiManager, 66
m2cm	mpi_communicate
GridUnits, 33	MpiManager, 67
M lim	mpi_getOpposite
GridObj, 30	MpiManager, 67
MPI cartlab	mpi_gridbuild
MpiManager, 69	MpiManager, 67
MPI_coords	mpi_init

MpiManager, 67	MpiManager::layer_edges, 58
mpi_updateLoadInfo	X, 58
MpiManager, 67	Y, 58
mpi_writeout_buf	Z, 59
MpiManager, 67	MpiManager::phdf5_struct, 80
MpiManager, 63	i_end, 81
buffer_recv_info, 68	i_start, 81
buffer_send_info, 68	j_end, 81
destroyInstance, 65	j_start, 81
f_buffer_recv, 68	k_end, 81
f_buffer_send, 68	k_start, 82
getInstance, 65	level, 82
global_dims, 68	region, 82
global_edge_ind, 68	writable_data_count, 82
global_edge_pos, 68	my_rank
GridObj, 29	MpiManager, 69
Grids, 68	
local size, 68	N_lim
logout, 69	GridObj, 30
MPI_cartlab, 69	neighbour_coords
MPI coords, 69	MpiManager, 69
MPI_dims, 69	neighbour_rank
mpi_buffer_pack, 65	MpiManager, 69
mpi_buffer_size, 65	nu
mpi_buffer_size_recv, 66	GridObj, 30
mpi_buffer_size_send, 66	num_ranks
• = = =	MpiManager, 69
mpi_buffer_unpack, 66	
mpi_buildCommunicators, 66	ObjectManager, 71
mpi_communicate, 67	bfl_buildBody, 72
mpi_getOpposite, 67	computeLiftDrag, 73
mpi_gridbuild, 67	destroyInstance, 73
mpi_init, 67	getInstance, 73
mpi_updateLoadInfo, 67	GridObj, 29, 79
mpi_writeout_buf, 67	IBBody, 52
my_rank, 69	IBMarker, 54
neighbour_coords, 69	ibm_apply, 73
neighbour_rank, 69	ibm_banbks, 73
num_ranks, 69	ibm_bandec, 74
p_data, 70	ibm_bicgstab, 74
recv_layer_pos, 70	ibm_buildBody, 75
recv_stat, 70	ibm_computeForce, 75
send_requests, 70	ibm_deltaKernel, 75
send_stat, 70	ibm_findEpsilon, 76
sender_layer_pos, 70	ibm_findSupport, 76
subGrid_comm, 70	ibm_initialise, 76
world_comm, 70	ibm_interpol, 76
MpiManager.cpp, 110	ibm_jacowire, 76
MpiManager.h, 110	ibm_moveBodies, 77
range_i_left, 110	ibm_positionUpdate, 77
range_i_right, 110	ibm_positionUpdateGroup, 77
range_j_down, 111	ibm_spread, 77
range_j_up, 111	io_readInCloud, 78
range_k_back, 111	io_restart, 78
range_k_front, 111	io_vtkIBBWriter, 78
MpiManager::buffer_struct, 17	io_writeBodyPosition, 78
level, 17	io_writeForceOnObject, 78
region, 17	io_writeLiftDrag, 79
size, 17	ObjectManager.cpp, 111
•	

OI: 1M	OWAR
ObjectManager.h, 111	SWAP
eBBBCloud, 112	ObjectManager_ops_ibmflex.cpp, 113
eBFLCloud, 112	send_requests
eIBBCloud, 112	MpiManager, 70
eObjectType, 112	send_stat
ObjectManager_init_bflbody.cpp, 112	MpiManager, 70
ObjectManager_init_ibmbody.cpp, 112	sender_layer_pos
ObjectManager_ops_ibm.cpp, 112	MpiManager, 70
ObjectManager_ops_ibmflex.cpp, 112	size
SWAP, 113	MpiManager::buffer_struct, 17
TINY, 113	spacing
ObjectManager_ops_io.cpp, 113	Body, 16
	SQ
omega CridObi 20	
GridObj, 30	stdafx.h, 116
onespace	stdafx.cpp, 114
GridUtils, 43	c, 114
operator()	c_opt, 114
IVector, 57	cs, 114
	w, 114
p_data	stdafx.h, 115
MpiManager, 70	c, 116
PCpts, 79	c_opt, 116
\sim PCpts, 80	cs, 116
PCpts, 80	DEPRECATED, 116
x, 80	L_DACTION_WRITE_OUT_FORCES, 116
y, 80	L IS NAN, 116
z, 80	LUMA_FAILED, 116
PCpts.h, 113	SQ, 116
path_str	
• —	w, 116
GridUtils, 47	stridedCopy
position	GridUtils, 44
Marker, 60	subGrid_comm
position_old	MpiManager, 70
IBMarker, 55	subtract
	GridUtils, 44
Q	supp_i
BFLBody, 11	Marker, 60
	supp_j
range_i_left	Marker, 60
MpiManager.h, 110	supp_k
range_i_right	Marker, 60
MpiManager.h, 110	support rank
range_j_down	Marker, 60
MpiManager.h, 111	Warter, 00
range_j_up	t
MpiManager.h, 111	GridObj, 30
range k back	TINY
MpiManager.h, 111	
range_k_front	ObjectManager_ops_ibmflex.cpp, 113
	tension
MpiManager.h, 111	IBBody, 52
recv_layer_pos	timeav_mpi_overhead
MpiManager, 70	GridObj, 30
recv_stat	timeav_timestep
MpiManager, 70	GridObj, 31
region	
MpiManager::buffer_struct, 17	ulat2uphys
MpiManager::phdf5_struct, 82	GridUnits, 33
region_number	upToZero
GridObj, 30	GridUtils, 44
-	

```
vecmultiply
    GridUtils, 45
vecnorm
    GridUtils, 45, 46
w
    stdafx.cpp, 114
    stdafx.h, 116
world comm
    MpiManager, 70
writable_data_count
    MpiManager::phdf5_struct, 82
Χ
    MpiManager::layer_edges, 58
Χ
    MarkerData, 62
    PCpts, 80
XInd
    GridObj, 31
XOrigin
    GridObj, 31
XPos
    GridObj, 31
    MpiManager::layer_edges, 58
у
    MarkerData, 62
    PCpts, 80
YInd
    GridObj, 31
YOrigin
    GridObj, 31
YPos
    GridObj, 31
Ζ
    MpiManager::layer_edges, 59
z
    MarkerData, 63
    PCpts, 80
ZInd
    GridObj, 31
ZOrigin
    GridObj, 31
ZPos
    GridObj, 31
```