

	REPORT DOCUM	REPORT DOCUMENTATION PAGE				
AD-A213 041 ———		16 RESTRICTIVE MARKINGS				
AD AZ 13 041		3 DISTRIBUTION	I AVAILABILITY OF	REPORT		
		Unlimited				
TEPERRORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)				
a MANY OF PERFORMING ORGANIZATION 66 OFFICE SYMBOL (If applicable)		78 NAME OF MONITORING ORGANIZATION				
of Technology 5c ADDRESS City, State, and ZIP Code)		Office of Naval Research Code 1132 7b ADDRESS (City, State, and ZIP Code)				
Cambridge, MA 02139		800 North Quincy Street Arlington, VA 22217				
BAINAME OF FUNDING SPONSORING OPGANIZATION	8b OFFICE SYMBOL (If appreciable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
Office of Naval Research Code 1132 3c ADDRESS (City, State, and ZIP Code)		N00014-83-K-0227 10 SOURCE OF FUNDING NUMBERS				
800 North Quincy Street Arlington, VA 22217		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO.	
		<u>L</u>	<u> </u>			
Fundamental Studies of Turbulent Wall Pressure Fluctuations with Applications to Advanced Acoustic Sensor Systems						
12 PERSONAL AUTHOR(S)						
Patrick Leehev						
13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT Final FROM 1982 TO 1986 1989/7/25 5						
16 SUPPLEMENTARY NOTATION						
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)					block number)	
FELD GROUP SUB-GROUP Hydroacoustics, computational fluid dynamics,						
	•	all pressure				
19 ABSTRACT (Continue on reverse if necessary and identify by block number) Summarizes the work done under the Hydroacoustic Special Research Opportunity (SRO) in computation of turbulent boundary layer wall pressure fluctuations, analyses of boundary layer flow noise and receptivity to sound, measurements of wall pressure fluctuations and computations of structural response.						
SEP 29 1969 89 9 29 07 9						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT SS UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS		21 ABSTRACT SE Unclassi	CURITY CLASSIFICA	ATION		
22a NAME OF RESPONSIBLE INDIVIDUAL Patrick: Leehey		226 TELEPHONE ((Include Area Code) 4337	22c. OFFICI	SYMBOL	
Tallick Deeney						

Report Number: 93019-2

FUNDAMENTAL STUDIES OF TURBULENT WALL PRESSURE FLUCTUATIONS WITH APPLICATIONS TO ADVANCED ACOUSTIC SENSOR SYSTEMS

Patrick Leehey
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

25 July 1989

Final Report

Prepared For:

Office of Naval Research Code 1132 800 North Quincy Street Arlington, VA 22217 A-I

Introduction

This is the final technical report of work done under ONR contract N00014-83-K-0227, MIT OSP 93019. 93022, 94341, 95890, 95891. The work was begun on 1 November 1982 and completed on 30 April 1986. Publications, technicals reports, and theses completed under this task are indexed at the end of this report. They are referenced by author and date in the body of the report.

Computation of the Navier-Stokes Equations for Turbulent Channel Flow

The full Navier-Stokes equations were solved for turbulent channel flow using a pseudo spectral method with no closure assumption (direct simulation). Computer solutions obtained by MIT were then analyzed at the Naval Research Laboratory (NRL). Results were reported in Handler et al. (1984), Handler et al. (1985), Hanson et al. (1987), and in the thesis by Bullister (1987). Comparison were made with experiments in turbulent boundary layers for the level of RMS wall pressure and the wall pressure frequency spectrum. Good agreement was obtained for RMS pressure, but limitations on timesteps did not permit resolving high frequencies. Pressure convection speeds compared well with those obtained from cross-spectral measurements. The low wavenumber computations for the channel flow could not be compared with experimental values obtained in boundary layers as the low wavenumber components for channel flow do not vanish as the square of the wavenumber as they do for incompressible turbulent boundary layer flows. Conditional sampling of the computed wall pressure results were carried out using the variable interval time averaging (VITA) technique. Comparison of channel flow experiments was made for the fluctuating streamwise velocity component when the event consisted of a strong positive time slope of this velocity. Good agreement was obtained with experiment even though the Reynolds number, based upon channel half-width in the calculation, was only 5,000 whereas most experimental data were at much higher Reynolds number. Further exploration of conditional sampling of computated results shows considerable promise of enhancing our knowledge of turbulent shear flows. Certain conditional averages can be carried out on computational results which could be difficult, if not impossible, to carry out experimentally.

Conditional Average Measurements

Her (1986) determined experimentally the relation between high amplitude wall pressure fluctuations and flow structures in the near wall region of a zero pressure gradient boundary layer flow using conditional averaging techniques. He found that shear layer structures in the buffer region are to a high degree responsible for the generation of large positive wall pressure peaks. Significantly, he found that the pressure peak amplitude scaled linearly with velocity peak amplitude of the corresponding flow structure, indicating a dominant role is played by the turbulence-mean shear interaction in generating wall pressure.

Analytical Studies of Flow Noise

Akylas and Toplosky (1986) determined the sound radiated from a growing Tollmien-Schlichting wave. Haj Hariri and Akylas (1985a) showed that for low Mach numbers the nature of the singularity in the wavenumber-frequency spectrum of wall pressure is not influenced significantly by variation in the mean velocity profiles. Haj Hariri and Akylas (1985b) showed that the contribution of fluctuating wall shear stress at the wall to boundary layer noise is such as to remove the spectral singularity. It also contributes to the radiation, however, this contribution is small compared to the quadrupole contribution of the boundary layer proper at low Mach numbers and high Reynolds numbers typical of applications.

Low Wavenumber Wall Pressure Measurements

Gedney and Leehey (1984) carried out measurements of the low wavenumber portion of wall pressure during transition on a flat plate. A six element linear array of flush-mounted microphones was used for the measurement. Somewhat surprisingly, the results showed no significant difference between this measurement and that for a fully turbulent boundary layer.

Receptivity of a Laminar Boundary Layer to Sound Excitation

Lee (1985) carried out a finite difference computation of the excitation of a laminar boundary layer by the equivalent of a long wavelength sound wave. He used a rectangularly partitioned domain and imposed the effect of a mean pressure gradient on the outer flow boundary in his computation. His results showed that a Stokes wave developed whose decay was markedly decreased by the imposition of the mean adverse pressure gradient. However, this wave failed to convert significantly to a Tollmien-Schlichting wave. It suggested strongly that a change in body geometry is necessary to achieve the desired wavenumber conversion. Leehey et al. (1985) summarized the work at MIT on the receptivity of laminar boundary layers to various forms of external disturbances.

Structural Response to Turbulent Boundary Layer Excitation

Petri (1987) carried out a numerical computation of the response of a line-stiffened fluid-loaded elastic plate to a convecting pressure field. He demonstrated that a outer decoupler was effective in reducing the scattering of the convecting field by a line stiffener. His results also showed that the low wavenumber component of the wall pressure dominated in every case over the convective ridge component of wall pressure in the generation of structural vibration and subsequent reradiation.

Concluding Remarks

Four Ph.D. degrees and one M Sc. degree were granted at MIT directly under this program, and one Ph.D. degree was granted at the University of Michigan in conjunction with the NRL phase of the program.

LIST OF PUBLICATIONS

Haj Hariri, H. & Akylas, T.R. (1985a) "Mass flow effects on the low-wavenumber wall-pressure spectrum of a turbulent boundary layer over a compliant surface," Jour. Acous. Soc. Amer. 77, 1840.

HajHariri, H. & Akylas, T.R. (1985b) "The wall-shear stress contribution to boundary-layer noise," The Physics of Fluids 28(9), 2727.

Akylas, T.R. & Toplosky, N. (1986) "The sound field of a Tollmien-Schlichting wave," The Physics of Fluids 29(3), 685-689.

Leehey, P., Gedney, C.J., & Her, J.Y. (1984) "The Receptivity of a Laminar Boundary Layer to External Disturbances," In <u>Laminar-Turbulent Transition</u>, Proceedings of the IUTAM Symposium, Novosibirsk. USSR: Springer Verlag, Berlin, pp. 283-294.

Handler, R.A., Hansen, R.J., Sakell, L., Orszag, S.A. & Bullister, E. (1984) "Calculation of the wall pressure field in a turbulent channel flow," The Physics of Fluids 27(3), 579.

Handler, R.A., Hansen, R.J., Leighton, R.I., & Orszag, S.A. (1985) "The wavenumber-frequency spectrum of the wall pressure field computed from a numerical solution of the Navier-Stokes equations," In <u>Proceedings of the IUTAM Symposium on Aero and Hydroacoustics</u>, 261-268.

Hansen, R.J., Handler, R.A., Leighton, R.I. & Orszag, S.A. (1987) "Prediction of turbulence-induced forces on structures from full numerical solutions of the Navier-Stokes equations," Journal of Fluids and Structures 1, 431-443.

Handler, R.A., Hansen, R.J. Leighton, R.I., and Orszag, S.A. (1988) "The frequency spectrum of turbulent wall pressure fluctuations: comparison of simulations with experiments", Journal of Fluids and Structures 2, 197-199.

INDEX OF TECHNICAL REPORTS

Gedney, C. & Leehey, P. (1984) "Measurements of the Low Wavenumber Wall Pressure Spectral Density During Transition on a Flat Plate," MIT Acoustics and Vibration Laboratory Report No. 93019-1.

Her, Jen-Yuan (1986) "The relation between wall pressure and the flow field in the wall region of a turbulent boundary layer," MIT Department of Aeronautics and Astronautics FDRL Report No. 86-3.

DEGREES GRANTED

Toplosky, N. (1985) "The sound field of a Tollmien-Schlichting wave", S.M. Thesis, MIT.

Lee, Seung-Hee (1985) "The influence of pressure gradient upon the receptivity of a laminar boundary layer," Ph.D. Thesis, MIT.

Her, Jen-Yuan (1986) "The relation between wall pressure and the flow field in the wall region of a turbulent boundary layer," Ph.D. thesis, MIT.

Petri, Steven Walter (1987) "The response of line-stiffened fluid-loaded infinite elastic phates to convecting pressure fields," Ph.D. thesis, MIT.

Bullister, E. (1987) "Development and application of high order methods for the solution of the Navier-Stokes equations," Ph.D. Thesis, MIT.

Related Degree Granted:

Leighton, R I. (1986) "Investigation of burst structure in a turbulent channel flow simulation using conditional sampaling techniques," Ph.D. thesis, University of Michigan.