Teste de hipóteses para proporção populacional p

Métodos Estatísticos

Introdução

Em **estimação** o objetivo é "estimar" o valor <u>desconhecido</u> de um parâmetro, por exemplo, da proporção p de "indivíduos" em uma população com determinada característica ou da média μ de uma variável X.

A estimativa é baseada em uma amostra casual simples de tamanho n.

Entretanto, se o objetivo for saber se a estimativa pontual observada na amostra dá ou não suporte a uma conjectura sobre o valor de parâmetro, trata-se de **testar hipóteses**.

Estimação

Teste de Hipóteses

Qual é a probabilidade de "cara" no lançamento de uma moeda?

A moeda é honesta ou é desequilibrada?

Qual é a taxa média de glicose em mulheres com mais de 60 anos?

A taxa média de glicose em mulheres com mais de 60 anos é superior a 100 mg/ml?

Qual é a proporção de moradores do *RJ*, com idades entre 15 e 50 anos, que contraíram a dengue em 2016?

Pelo menos 2% dos moradores do *RJ*, com idades entre 15 e 50 anos, contraíram a dengue em 2016?

O que é uma hipótese?

• É uma conjectura sobre um parâmetro populacional.

Por exemplo, a proporção *p* é um parâmetro populacional.

• A hipótese deve ser estabelecida antes da análise.

Eu acredito que a proporção de pessoas com dengue neste ano, no Estado de São Paulo, com idades entre 15 e 50 anos é maior que 1%.

Exemplo 1: Queremos avaliar se uma moeda é honesta.

Ou seja, queremos testar a

contra a

hipótese nula H_0 : a moeda é honesta

hipótese alternativa H_1 : a moeda não é honesta

Em linguagem estatística, essas hipóteses podem ser reescritas como:

$$H_0$$
: $p = 0.5$

$$H_1$$
: $p \neq 0.5$

com *p* sendo a probabilidade de "cara" da moeda.

Obs.: Nesse caso, dizemos que a hipótese alternativa é bilateral.

Hipóteses

⇒ Como estabelecer as hipóteses estatísticas do teste?

No caso especial de teste de hipóteses sobre o parâmetro *p*, temos:

Hipótese nula: afirmação sobre p, em geral, ligada a um valor de referência, ou a uma especificação padrão ou histórica.

Hipótese alternativa: afirmação sobre *p* que **suspeitamos** seja verdadeira.

Se observarmos 30 caras em 50 lançamentos independentes da moeda, implicando $\hat{p}_{obs} = 0.60$, o que podemos concluir?

E se observarmos 20 caras ($\hat{p}_{obs} = 0.40$)? ou 10 caras ($\hat{p}_{obs} = 0.20$)? ou 45 caras ($\hat{p}_{obs} = 0.90$)?

Podemos considerar uma **regra de decisão**, como por exemplo,

"Se, em 50 lançamentos da moeda, observarmos

$$\hat{p} \le 0.35 \text{ ou } \hat{p} \ge 0.65$$

então, rejeitamos a hipótese nula H_0 de que a moeda seja honesta; caso contrário, não rejeitamos a hipótese H_0 ."

Testar uma hipótese estatística é estabelecer uma regra que nos permita, com base na informação de uma amostra, decidir pela rejeição ou não de H_0 .

No exemplo, segundo a regra de decisão, o conjunto de valores de \hat{p} que levam à rejeição da hipótese nula H_0 é $\{\hat{p}:\hat{p}\leq 0,35 \text{ ou } \hat{p}\geq 0,65\}$, o qual denominamos de região crítica (RC) ou região de rejeição de H_0 , ou seja,

$$RC = \{\hat{p} : \hat{p} \le 0.35 \text{ ou } \hat{p} \ge 0.65\}$$
: região de rejeição

$$RC^{c} = \{\hat{p}: 0.35 < \hat{p} < 0.65\}$$
: região de não rejeição de H_{0}

Regra de decisão (teste)

No exemplo da moeda, suponha que observemos 30 caras, isto é, $\hat{p}_{obs} = 0.6$.

$$\hat{p}_{obs} \notin RC \Rightarrow \text{Não rejeitamos } H_0$$

Agora suponha que observemos 10 caras, isto é, $\hat{p}_{obs} = 0.20$.

Valor observado na amostra

$$\hat{p}_{obs} \in RC \Rightarrow \mathsf{Rejeitamos}\ H_0$$

Regra de decisão (teste):

$$\hat{p}_{obs} \in RC \implies \text{rejeitamos } H_0$$
 $\hat{p}_{obs} \notin RC \implies \text{não rejeitamos } H_0$

Será que nossa conclusão está correta?

Ao decidir pela rejeição ou não da hipótese nula H_0 , podemos cometer dois tipos de erro.

Erros

Erro tipo I: Rejeitar H_0 quando H_0 é verdadeira

(afirmar que a moeda não é honesta quando, na verdade, ela é).

Erro tipo II: Não rejeitar H_0 quando H_0 é falsa

(afirmar que a moeda é honesta quando, na verdade, ela é desequilibrada).

Exemplo: Uma pessoa está sendo julgada.

Como pela lei uma pessoa é inocente até que se prove o contrário, as hipóteses são:

 H_0 : A pessoa é inocente.

 H_1 : A pessoa é culpada.

- Erro I: A pessoa é condenada apesar de ser inocente.
- Erro II: A pessoa é absolvida apesar de ser culpada.

Naturalmente, a Justiça procura reduzir a possibilidade de ocorrer o Erro I, pois entende-se que é mais grave condenar inocentes do que absolver criminosos.

Probabilidades de erros

 $P(\text{erro I}) = P(\text{rejeitar } H_0, \text{ sendo } H_0 \text{ verdadeira}) * = \alpha$ $\alpha : \text{nível de significância do teste}$ $P(\text{erro II}) = P(\text{não rejeitar } H_0, \text{ sendo } H_0 \text{ falsa}) * = \beta$ $1 - \beta : \text{poder do teste}$

Se tomarmos α muito pequeno, β será grande, e vice-versa.

Em geral, só podemos controlar um dos erros.

* Nota

Na literatura estatística, $P(\text{rejeitar } H_0, \text{ sendo } H_0 \text{ verdadeira})$ é representada, também, por:

 $P(\text{rejeitar } H_0 \mid H_0 \text{ \'e verdadeira})$

ou $P(\text{rejeitar } H_0; H_0)$ ou ainda $P_{H_0}(\text{rejeitar } H_0)$.

Analogamente, para

 $P(\text{não rejeitar } H_0, \text{ sendo } H_0 \text{ falsa})$

usa-se também $P(\text{não rejeitar } H_0 \mid H_1 \text{ é verdadeira})$ ou $P(\text{não rejeitar } H_0; H_1)$ ou $P_{H_1}(\text{não rejeitar } H_0)$.

No exemplo da moeda,

$$H_0$$
: $p = 0.5$

$$H_1$$
: $p \neq 0.5$

$$RC = \{ \hat{p} : \hat{p} \le 0.35 \text{ ou } \hat{p} \ge 0.65 \}$$

 $\alpha = P(\text{erro I}) = P(\text{rejeitar } H_0, \text{ sendo } H_0 \text{ verdadeira })$

$$= P(\hat{p} \in RC, \text{ sendo } p = 0.5) = P(\hat{p} \le 0.35 \text{ ou } \hat{p} \ge 0.65, \text{ sendo } p = 0.5)$$

⇒ Como calcular essa probabilidade?

Resultado 4: Teorema Limite Central (TLC)

Seja X uma v. a. que tem média μ e variância σ^2 .

Para amostras X_1 , X_2 , ..., X_n , retiradas ao acaso e com reposição de X, a distribuição de probabilidade da média amostral \overline{X} aproxima-se, <u>para n grande</u>, de uma distribuição normal, com média μ e variância σ^2/n , ou seja,

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, para n grande, aproximadamente.

No caso da proporção, o estimador para p é $\hat{p} = X$, cuja amostra é retirada de $X \sim Bernoulli(p)$, com $E(X) = \mu = p$ e $Var(X) = \sigma^2 = p(1-p)$.

Então,
$$\hat{p} \sim N(p, \frac{p(1-p)}{n}), \text{ quando } n \text{ \'e grande}$$

Assim, sob H_0 (p = 0.5),

$$\hat{p} \sim N(0,5; \frac{0,5 \times 0,5}{50})$$
, aprox. $\Rightarrow Z = \frac{\hat{p} - 0,5}{\sqrt{0,25/50}} \sim N(0;1)$, aprox.

Portanto, nesse caso,

$$\alpha = P(\hat{p} \le 0.35 \text{ ou } \hat{p} \ge 0.65, \text{ sendo } p = 0.5)$$

$$\cong P(Z \le \frac{0,35 - 0,5}{\sqrt{0,25/50}}) + P(Z \ge \frac{0,65 - 0,5}{\sqrt{0,25/50}})$$

$$= P(Z \le -2,12) + P(Z \ge 2,12) = 2 \times P(Z \ge 2,12)$$

$$= 2 \times (1 - 0,983) = 2 \times 0,017$$

$$= 0,034.$$

Se alterarmos a regra de decisão para

$$RC = \{ \hat{p} : \hat{p} \le 0.30 \text{ ou } \hat{p} \ge 0.70 \}$$

o que acontece com o nível de significância do teste α (probabilidade de erro tipo I)?

Regiões críticas e níveis de significância α

RC	α
$\{\hat{p}: \hat{p} \le 0.40 \text{ ou } \hat{p} \ge 0.60\}$	0,1586
$\{\hat{p}: \hat{p} \le 0.35 \text{ ou } \hat{p} \ge 0.65\}$	0,0340
$\{\hat{p}: \hat{p} \le 0.30 \text{ ou } \hat{p} \ge 0.70\}$	0,0048

Considerando $RC = \{\hat{p} : \hat{p} \le 0.35 \text{ ou } \hat{p} \ge 0.65\}$

	Verdadeiro valor de p						
Decisão	$p = 0,5 (H_0 \text{ é verd.})$	$p \neq 0,5$ (H_1 é verd.)					
Não rejeitar H_0	Decisão correta	Erro II					
	1 - α = 0,966	$oldsymbol{eta}$					
Rejeitar H ₀	Erro I	Decisão correta					
	$\alpha = 0.034$	1 - β					

Até agora, o procedimento foi escolher $RC \Rightarrow$ determinar α

Alternativamente, podemos fixar $\alpha \Rightarrow$ determinar RC

Os valores de nível de significância α , usualmente adotados, são entre 1% e 10%.

Determinação da região crítica

Exemplo 2: Suponha que um medicamento existente no mercado produza o efeito desejado em 60% dos casos nos quais é aplicado.

Um laboratório produz um **novo medicamento** e afirma que ele é melhor do que o existente.

Objetivo: Verificar, estatisticamente, se a afirmação do laboratório é verdadeira.

 \Rightarrow Aplicou-se o novo medicamento em n = 50 pacientes.

Seja *p* a probabilidade do novo medicamento ser eficaz ou a proporção populacional de pacientes para os quais o novo medicamento é eficaz.

(1) Hipóteses estatísticas:

$$H_0$$
: $p = 0.6$
 H_1 : $p > 0.6$

que correspondem a

 H_0 : o novo medicamento é similar ao existente

 H_1 : o novo medicamento é melhor, mais eficaz

- (2) Fixemos o nível de significância em 5% (α = 0,05).
- (3) A região crítica deve ter a forma:

$$RC = \{\hat{p} \ge a\} \implies \text{Como obter o valor } a$$
?

O valor de a deve ser tal que

$$P(\text{erro I}) = P(\hat{p} \in RC, \text{ sendo } p = 0.6) = P(\hat{p} \ge a, \text{ sendo } p = 0.6) = \alpha$$

$$\Rightarrow 0.05 = P(\hat{p} \ge a, \text{ sendo } p = 0.6) \cong P(Z \ge \sqrt{\frac{a - 0.6}{50}})$$

Pela tabela, para A(z)=0,95, temos z =1,64, ou seja,

$$\frac{a-0.6}{\sqrt{0.24/50}} = 1.64 \Rightarrow a = 0.6 + 1.64 \sqrt{0.24/50} \approx 0.714.$$

Portanto, $RC = \{ \hat{p} \ge 0.714 \}$.

Suponha que em 38 dos 50 pacientes o novo medicamento foi eficaz, ou seja, $\hat{p}_{obs} = 0.76$.

 $\hat{p}_{obs} \in RC \Rightarrow H_0$ é rejeitada, isto é, concluímos ao nível de significância de 5 % que há evidências de que o novo medicamento é mais eficaz.

Resumo

- (0) Definir o parâmetro *p* de interesse no problema.
- (1) Estabelecer as hipóteses estatísticas:

 H_0 : $p = p_0$ contra uma das alternativas

$$H_1: p \neq p_0$$
, $H_1: p > p_0$ ou $H_1: p < p_0$. $\downarrow \downarrow$

bilateral unilateral unilateral

- (2) Escolher um **nível de significância** α .
- (3) Determinar a região crítica RC da forma

$$\{\hat{p} \le a_1, \hat{p} \ge a_2\}, \{\hat{p} \ge a\}, \{\hat{p} \le a\},$$

respectivamente às hipóteses alternativas.

(4) Selecionar uma **amostra** casual simples e determinar a proporção \hat{p}_{obs} de "indivíduos" na amostra portadores do atributo desejado.

(5) **Decidir**, usando a evidência \hat{p}_{obs} , ao nível de significância α , e **concluir**.

$$\hat{p}_{obs} \in RC \implies \text{rejeitamos } H_0$$
 $\hat{p}_{obs} \notin RC \implies \text{não rejeitamos } H_0$

	Segunda decimal de z									0 2 2	
		O	1	2	3	4	5	6	7	8	9
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
	0.7	0.7580	0.7611	0.7642		0.7704	0.7734	0.7764	0.7794		0.7852
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212		0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
7	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
de	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	
Ĕ	1.3	0.9032	0.9049	0.9066		0.9099	0.9115	0.9131		0.9162	0.9177
.≘	1.4	0.9192	0.9207		0.9236	0.9251	0.9265	0.9279		0.9306	0.9319
decimal	1.5	0.9332	0.9345	0.9357		0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
primeira	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608		0.9625	0.9633
<u>e</u>	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686		0.9699	0.9706
⊒.	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
d	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808		0.9817
B	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
تع	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881		0.9887	0.9890
.≅	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
inteira	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931		0.9934	0.9936
-=	2.5 2.6	0.9938 0.9953	0.9940 0.9955	0.9941 0.9956	0.9943 0.9957	0.9945 0.9959	0.9946 0.9960	0.9948 0.9961	0.9949	0.9951 0.9963	0.9952
arte	2.7	0.9965	0.9966	0.9967		0.9969	0.9970	0.9961		0.9963	0.9964 0.9974
ਯ	2.7	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9971	0.9972	0.9980	0.9981
ک	2.9	0.9974	0.9973	0.9982		0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
	3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.9	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
		_						_	_	_	