logistics

1. My office hours next week will be Monday 11am-2pm at Evans 1066. This may change for future weeks...

linear stuff

- 2. A 3×3 magic square is a 3×3 matrix with real entries such that the sums of each row, column and main diagonals are all the same. For example, $\begin{pmatrix} 2 & 7 & 6 \\ 9 & 5 & 1 \\ 4 & 3 & 8 \end{pmatrix}$ is a magic square. Show that the set \mathcal{M}_3 of 3×3 magic squares is a vector space.
- 3. Check that $\mathbb R$ is a vector space over $\mathbb Q$. Think about whether $\mathbb R$ has a basis, then google it.
- 4. Give an example of a nonempty subset of \mathbb{R}^2 that is closed under scalar multiplication but isn't a subspace of \mathbb{R}^2 .
- 5. Let U, W be subspaces of V. Show that the intersection $U \cap W$ is also a subspace of V. Does the union $U \cup W$ have to be a subspace?

- 6. We say that a function $f: \mathbb{R} \to \mathbb{R}$ is *periodic* if there exists some $p \in \mathbb{R}, p > 0$ such that f(x+p) = f(x) for all $x \in \mathbb{R}$. Does the set of all periodic functions form a vector space with the usual addition and scalar multiplication? What if we replace \mathbb{R} with \mathbb{Q} ?
- 7. Just like the complex numbers $\mathbb C$ are constructed by adjoining a new element i that satisfies $i^2=-1$ to the reals, the quaternions $\mathbb H$ are constructed by also adjoining j,k satisfying $j^2=k^2=-1,\,ij=-ji=k,jk=-kj=i,ki=-ik=j$.
- a) Show that ijk = -1.
- b) Check that $\mathbb H$ satisfies every field axiom except commutativity of multiplication.
- c) Meditate on what a theory of "vector spaces" over \mathbb{H} might look like, and then take Math 113, 114, 250a, and 251, not necessarily in that order. [Extra credit]