2.5 hr written exam

Answer ALL questions. Section A carries 40% of the total marks and Section B carries 60%. The relative weights attached to each question are as follows: A1 (8), A2 (9), A3 (9), A4 (6), A5 (8), B1 (30), B2 (30). The numbers in square brackets indicate the relative weight attached to each part of the question.

- Unless otherwise indicated, in all questions $\{\epsilon_t\}$ denotes a sequence of uncorrelated zero-mean random variables with constant variance σ^2 , i.e. $\{\epsilon_t\} \sim WN(0, \sigma^2)$, where $WN(0, \sigma^2)$ denotes white noise.
- The 97.5^{th} percentile point of the standard Normal distribution is 1.96.
- The transpose of a vector or matrix \mathbf{A} is denoted by \mathbf{A}^{\top} .
- Wold's formula gives the autocovariance function of the stationary process $X_t = \sum_{j=0}^{\infty} b_j \epsilon_{t-j}$ as $\gamma(k) = \sigma^2 \sum_{j=0}^{\infty} b_j b_{j+k}$.
- If $|\lambda| < 1$, then $\sum_{j=0}^{\infty} \lambda^j = \frac{1}{1-\lambda}$.

Section A

A1 (a) Give an analytical mathematical expression for each of the following models using the backshift operator (for example, model AR(1) should be written as $(1 - \phi B)X_t = \epsilon_t$):

i)
$$ARMA(1,2)$$
 [1]

ii) SARMA
$$(0,1) \times (1,0)_4$$
 [2]

iii) SARIMA
$$(0, 1, 1) \times (1, 1, 1)_6$$
 [2]

(b) We are given the following models:

i)
$$X_t = -\frac{1}{16}X_{t-4} + \epsilon_t + \epsilon_{t-2}$$

ii)
$$X_t = \frac{1}{2} + X_{t-1} + \epsilon_t - \frac{3}{2} \epsilon_{t-4}$$

For each of i), ii), determine whether the model is stationary or not, and whether it is invertible or not. Explain your answers. [3]

- (a)
- (b) i) Stationary; not invertible.
 - ii) Not stationary; not invertible.
- **A2** You are given the following stationary ARMA(1,1) model:

$$X_t = \phi X_{t-1} + \epsilon_t - \theta \epsilon_{t-1}$$
, $|\phi| < 1$,

- (a) Re-express this model as a $MA(\infty)$ one. [3]
- (b) Using your answer in (a) and Wold's formula or otherwise, calculate $\gamma(4)$. What is the exact value of $\gamma(4)$ when $\theta = \phi$? [3]
- (c) You are given that $\phi > 0$. Are the following ACF and PACF plots consistent with this ARMA model? Explain your answer. [3]

- (a)
- (b) When $\phi = \theta$, we have that $\gamma(4) = 0$.
- (c) No, they are not.

A3 Consider the following MA(2)-model:

$$Y_t = \epsilon_t - \theta \epsilon_{t-1} + \frac{1}{2} \epsilon_{t-2}$$

Data from this model have provided the following estimates of the autocorrelation function:

and the estimate of the autocovariance $\hat{\gamma}(1) = 0.75$.

- (a) Use the above sample information to estimate θ with the *method* of moments. Note that the model is required to be invertible. [3]
- (b) Find now an estimate of the variance of the white noise σ^2 , again with the method of moments. [3]
- (c) Find the lag 1 and 2 sample partial autocorrelations. [3]
- (a) $\hat{\theta} = -\frac{1}{2}$

- (b) $\hat{\sigma}^2 = 1$
- (c) $\hat{\phi}_{11} = 0.5$; $\hat{\phi}_{22} = 0.27$
- **A4** A statistician wants to fit an ARMA model to a given time series. The empirical autocorrelation and partial autocorrelation functions of the time series are as shown in the following plots:

- a) Based on the above figures, suggest an ARMA model for this time series. Explain why both plots are consistent with the model you have suggested. [4]
- (b) Looking at these plots, is there any evidence for existence of complex roots in any of the characteristic polynomials of the model? [2]
- (a) $SAR(2)_4$
- (b) Yes.
- **A5** (a) Consider the following stationary AR(1) model:

$$Y_t = 1 + \phi Y_{t-1} + \epsilon_t \ , \quad |\phi| < 1$$

Find the variance of Y_t .

[2]

(b) Consider an arbitrary stationary process (X_t) , with mean μ_X , variance σ_X^2 and autocorrelation function $\rho_X(k)$, $k \geq 0$. Given the observations X_1, X_2, \ldots, X_T , the sample mean $\overline{X} = \sum_{i=1}^T X_i/T$ is obtained as an estimate of μ_X .

i) Show that the variance of the estimator \overline{X} is equal to:

$$\frac{\sigma_X^2}{T} \cdot \left(1 + 2\sum_{k=1}^{T-1} (1 - \frac{k}{T})\rho_X(k)\right)$$

[4]

- ii) How does the variance of the above formula contrast with the one corresponding to *independent* observations? [2]
- (a) $\sigma^2/(1-\phi^2)$.
- (b) i)
 - ii) The difference is term $\frac{\sigma_X^2}{T} \cdot \left(2\sum_{k=1}^{T-1} (1-\frac{k}{T})\rho_X(k)\right)$

B1 In the UK, many sea birds rely on small fish called sandeels for their food. Let M_t and N_t denote respectively the population sizes of sea birds and sandeels (in tens of thousands), at the beginning of year t, and let Y_t denote a corresponding survey-based estimate of the sea bird population. Suppose that these quantities are related via the equations:

$$Y_t = M_t + \epsilon_t$$

$$M_t = -7 + 0.7M_{t-1} + 0.1N_{t-1} + h_t$$

$$N_t = 70 - 2M_{t-1} + 0.5N_{t-1} + z_t ,$$

where (ϵ_t) , (h_t) and (z_t) are independent white noise sequences with variances σ_{ϵ}^2 , σ_h^2 and σ_z^2 respectively.

- (a) You are given that both M_t and N_t are stationary processes. Calculate the long term average population sizes of the sea birds and the sandeels. [4]
- (b) Define $\mathbf{S}_t = (1, M_t, N_t)^{\top}$. Show that the system can be described by the two equations

$$Y_t = \mathbf{B}^{\top} \mathbf{S}_t + \epsilon_t \mathbf{S}_t = \mathbf{C} \mathbf{S}_{t-1} + \mathbf{H}_t ,$$

where **B** is a vector, **C** is a matrix and (\mathbf{H}_t) is an uncorrelated sequence of random vectors with mean **0** and variance-covariance matrix **V**. Give the values of **B**, **C** and **V**. [5]

- (c) The Kalman Filter specifies that, if $\hat{\mathbf{S}}_{t|t-\ell}$ is the best estimator of \mathbf{S}_t based on the observed Y's up to time $t-\ell$, and $\mathbf{P}_{t|t-\ell}$ is the covariance matrix of the associated forecast error, then we have that $\hat{\mathbf{S}}_{t|t-1} = \mathbf{C} \, \hat{\mathbf{S}}_{t-1|t-1}$ and $\mathbf{P}_{t|t-1} = \mathbf{C} \, \mathbf{P}_{t-1|t-1} \mathbf{C}^{\top} + \mathbf{V}$.
 - Suppose that at the start of year zero we have $\hat{\mathbf{S}}_{0|0} = (1, 8, 60)^{\top}$, with $\mathbf{P}_{0|0} = 2\mathbf{V}$. Suppose also that $\sigma_{\epsilon}^2 = 1$, $\sigma_h^2 = 1$ and $\sigma_z^2 = 25$. Use the Kalman Filter to forecast the population sizes of both sea birds and sandeels one year later, and give the covariance matrix of the associated forecast errors.
- (d) The Kalman Filter also gives that

$$\hat{\mathbf{S}}_{t|t} = \hat{\mathbf{S}}_{t|t-1} + \mathbf{P}_{t|t-1} \mathbf{B} (Y_t - \mathbf{B}^\top \hat{\mathbf{S}}_{t|t-1}) / f_t$$

and $\mathbf{P}_{t|t} = \mathbf{P}_{t|t-1} - \mathbf{P}_{t|t-1} \mathbf{B} \mathbf{B}^\top \mathbf{P}_{t|t-1} / f_t$,
where $f_t = \mathbf{B}^\top \mathbf{P}_{t|t-1} \mathbf{B} + \sigma_{\epsilon}^2$.

Subsequently, the survey-based estimate of sea bird population becomes available: $Y_1 = 5$. You are also given that $f_1 = 3.48$ and $\mathbf{P}_{1|0} \mathbf{B} = (0, 2.48, -0.3)^{\top}$.

- i) Use this information to calculate a new estimate of S_1 , along with its error covariance matrix. [5]
- ii) Give also an estimate of $M_1+0.1N_1$ together with its variance. [3]
- (e) Notice that N_t can be written as $(1 0.5B)^{-1} [70 2M_{t-1} + z_t]$, where B is the backshift operator. Without attempting any series expansions, use this to show that M_t can be written as

$$M_t = 3.5 + 1.2M_{t-1} - 0.55M_{t-2} + \lambda_t + \xi_{t-1}$$

where (λ_t) and (ξ_t) are white noise sequences that can be constructed from (h_t) and (z_t) .

- i) Give the variances of (λ_t) and (ξ_t) in terms of σ_h^2 and σ_z^2 . [5]
- ii) Which ARMA model does the M_t process correspond to? Explain your answer. [3]
- (a) $\mu_M = 10, \, \mu_N = 100.$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} , \quad \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ -7 & 0.7 & 0.1 \\ 70 & -2 & 0.5 \end{pmatrix}$$

and

$$\mathbf{V} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \sigma_h^2 & 0 \\ 0 & 0 & \sigma_z^2 \end{array} \right)$$

(c)

$$\hat{\mathbf{S}}_{1|0} = \begin{pmatrix} 1\\4.6\\84 \end{pmatrix}$$

$$\mathbf{P}_{1|0} = \left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & 2.48 & -0.3\\ 0 & -0.3 & 45.5 \end{array}\right)$$

Turn Over

(d) i)

$$\hat{\mathbf{S}}_{1|1} = \left(\begin{array}{c} 1\\4.89\\83.97 \end{array}\right)$$

$$\mathbf{P}_{1|1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0.71 & -0.09 \\ 0 & -0.09 & 45.47 \end{pmatrix}$$

- ii) Estimate of $M_1 + 0.1N_1$ is 13.29; variance is 1.15.
- (e) i)
 - ii) ARMA(2,1)
- **B2** The monthly sales of a retail shop in thousands of pounds are modeled according to a SARMA $(0,2)\times(1,0)_4$ process of the form

$$(1 - \frac{1}{4}B^4)X_t = \frac{150}{2} + (1 - \frac{1}{2}B - \frac{1}{4}B^2)\epsilon_t$$

where $\epsilon_t \sim WN(0, \sigma^2)$ with $\sigma^2 = 2$.

- (a) Calculate the long term average sales $\mathbb{E}[X_t]$ and the long term variance $\text{Var}[X_t]$.
- (b) The table below shows the observations for the last 6 months of available data, and all corresponding estimated residuals except for the one for the last day:

Month	Sales	Residuals (e_t)
1	99	-1
2	103	4
3	97	-3
4	100	4
5	96	-2
6	104	

- i) Calculate the missing residual at time T=6 and show that it is equal to $\frac{13}{4}$. [3]
- ii) Produce forecasts for times T = 7 and T = 8. [4]
- iii) Give a general expression for the forecasts at times t = 9 + 4k, for all $k \ge 0$. [3]

- (c) Derive in detail the variance for the error of the estimate for time T=8 and calculate a 95% prediction interval. [5]
- (d) The practitioner carrying out this study used the BIC criterion to choose an appropriate model. For the SARMA $(0,2)\times(1,0)_4$ model BIC was found to be 205, whereas for SARMA $(0,3)\times(1,0)_4$ it was found to be 207. The size of the data was 240. You are reminded of the following expressions for BIC and AIC from the textbook:

BIC: $T \log(s_e^2) + k \log T$ AIC: $T \log(s_e^2) + 2k$

- i) Define all involved terms in the above given expressions for AIC and BIC. Did the practitioner make the correct decision to choose $SARMA(0,2) \times (1,0)_4$ over $SARMA(0,3) \times (1,0)_4$ according to the BIC criterion? [3]
- ii) Would the decision be the same if the AIC criterion was used instead? Explain your answer. [4]
- (e) Assume that in some other scenario, one claims that the ϵ_t process appearing in the definition of the model is not white noise, but it is in fact such that $\nabla \epsilon_t$ is a stationary ARMA(1,1) process. Determine which model would the (X_t) process correspond to in such a case.
- (a) $\mu = 100$; var = 42/15.
- (b) i)
 - ii)

$$\hat{X}_{T+2} = 99.1875$$

iii)

$$\hat{X}_{9+4k} = 100 - \frac{1}{4^k}$$

 $var = \frac{5}{2}$

- (d) i) Practitioner made a correct choice.
 - ii) More complex model would be preferred.
- (e) X_t is now SARIMA $(1, 1, 3) \times (1, 0, 0)_4$.