

Modulhandbuch

Master

Technische Kybernetik und Systemtheorie

Studienordnungsversion: 2021

gültig für das Wintersemester 2022/23

Erstellt am: 20. Dezember 2022

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Präsident der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhb-28569

Inhaltsverzeichnis

Name des Moduls/Fachs			3.FS 4. VSPV				Ab- schluss	LP
Pflichtbereich							FP	10
Dynamische Prozessoptimierung	2 1 1						PL	5
Nichtlineare Regelungssysteme 1	2 1 1						PL	5
Wahlbereich Mathematische Systemtheorie							FP	5
Mathematische Systemtheorie differentiell- algebraischer Gleichungen	2 1 0						PL 30min	5
Modellprädiktive Regelung	2 1 0						PL 30min	5
Modellreduktion	2 1 0						PL 30min	5
Adaptive Regelung		2 1 0					PL 30min	5
Zeitreihenanalyse		2 1 0					PL 30min	5
Wahlbereich Vertiefung							FP	20
Discrete Event Systems Mathematische Systemtheorie differentiell- algebraischer Gleichungen	220						PL 30min	5 5
Modellprädiktive Regelung	2 1 0						PL 30min	5
Multivariate Statistik	4 2 0						PL 30min	10
Adaptive Regelung		2 1 0					PL 30min	5
Adaptive und strukturvariable Regelungsysteme		2 1 1					PL	5
Diagnose- und Vorhersagesysteme		2 1 0					PL 30min	5
Fuzzy-Control		2 1 1					PL	5
Hierarchische Steuerungssysteme		2 1 1					PL	5
Nichtlineare Regelungssysteme 2		2 1 1					PL	5
Spezielle Themen der Systemtheorie		2 1 0					PL 30min	5
Zeitreihenanalyse		2 1 0					PL 30min	5
Wahlbereich Erweiterung							FP	15
							FP	0
Elektrodynamik							FP	15
Numerische Feldberechnung	2 2 0						PL	5
Theoretische Elektrotechnik 1	2 2 0						PL	5
Technische Elektrodynamik		2 2 0					PL 30min	5
Theoretische Elektrotechnik 2		2 2 0					PL	5
Mobile Robotik							FP	15
Kognitive Robotik	2 1 1						PL	5
Lernen in kognitiven Systemen	2 1 1						PL	5
Mensch-Maschine-Interaktion		2 1 1					PL	5
Robotvision		2 1 1					PL	5
Verteiltparametrische und stochastische Sy	steme	е					FP	15
Partielle Differentialgleichungen und Halbgruppen	4 2 0						PL 30min	10
Stochastische Analysis	2 1 0						PL 30min	5
Funktionalanalysis		4 2 0					PL 30min	10
Large Networks & Random Graphs		2 1 0					PL 30min	5
Mathematische Systemtheorie differentiell- algebraischer Gleichungen	2 1 0						PL 30min	
Numerik partieller Differentialgleichungen		2 1 0					PL 30min	5
Spektraltheorie für gewöhnliche Differentialgleichungen Stochastische Prozesse		210					PL 30min	5 10
Zeitreihenanalyse		210					PL 30min	
		3					_ 55//////	~

Optimization-based Control		FP	15
Modellprädiktive Regelung	2 1 0	PL 30min	5
Multivariate Statistik	4 2 0	PL 30min	10
Numerik optimaler Steuerungen	2 1 0	PL 30min	5
Spieltheorie	2 1 0	PL 30min	5
Globale Optimierung	4 2 0	PL 30min	10
Kombinatorische Optimierung	4 2 0	PL 30min	10
Variationsrechnung und optimale Steuerung	4 2 0	PL 30min	10
Vektoroptimierung	4 2 0	PL 30min	10
Thermo- und Fluiddynamik		FP	15
Angewandte Wärmeübertragung	2 2 0	PL	5
Strömungsmechanik 1	2 2 0	PL 90min	5
Angewandte Thermo- und Fluiddynamik	2 2 0	PL 90min	5
Numerische Strömungsmechanik	2 2 0	PL 90min	5
Strömungsmechanik 2	2 2 0	PL 90min	5
Wärmestrahlung	2 2 0	PL 90min	5
Wahlbereich Ergänzung		FP	5
Angewandte Wärmeübertragung	2 2 0	PL	5
Data-Driven Optimization for Machine Learning	2 2 0	PL	5
Applications Discrete Event Systems	2 2 0	PL	5
Kognitive Robotik		PL	5
Lernen in kognitiven Systemen		PL	5
Mathematische Systemtheorie differentiell-		PL 30min	5
algebraischer Gleichungen			Ü
Modellprädiktive Regelung		PL 30min	5
Multivariate Statistik		PL 30min	
Numerik optimaler Steuerungen		PL 30min	5
Numerische Feldberechnung		PL	5
Partielle Differentialgleichungen und Halbgruppen		PL 30min	10
Spieltheorie		PL 30min	5
Stochastische Analysis		PL 30min	5
Strömungsmechanik 1		PL 90min	5
Theoretische Elektrotechnik 1		PL	5
Adaptive Regelung	2 1 0	PL 30min	5
Adaptive und strukturvariable Regelungsysteme	2 1 1	PL	5
Angewandte Thermo- und Fluiddynamik	2 2 0	PL 90min	5
Diagnose- und Vorhersagesysteme	2 1 0	PL 30min	5
Funktionalanalysis	4 2 0	PL 30min	10
Fuzzy-Control	2 1 1	PL	5
Globale Optimierung	4 2 0	PL 30min	10
Hierarchische Steuerungssysteme	2 1 1	PL	5
Kombinatorische Optimierung	4 2 0	PL 30min	10
Large Networks & Random Graphs	2 1 0	PL 30min	5
Mathematische Systemtheorie unendlich dimensionaler Systeme		PL 30min	5
Nichtlineare Regelungssysteme 2		PL as i	5
Numerik partieller Differentialgleichungen		PL 30min	5
Numerische Strömungsmechanik		PL 90min	5
Spektraltheorie für gewöhnliche Differentialgleichungen	2 1 0	PL 30min	5
Spezielle Themen der Systemtheorie	2 1 0	PL 30min	5
Stochastische Prozesse	4 2 0	PL 30min	10

Strömungsmechanik 2	2 2 0			PL 90min	5
Technische Elektrodynamik	2 2 0			PL 30min	5
Theoretische Elektrotechnik 2	2 2 0			PL	5
Variationsrechnung und optimale Steuerung	4 2 0			PL 30min	10
Vektoroptimierung	4 2 0			PL 30min	10
Wärmestrahlung	2 2 0			PL 90min	5
Zeitreihenanalyse	2 1 0			PL 30min	5
Schlüsselqualifikation				FP	5
Hauptseminar TKS MSc	90 h O			SL	3
Abschlussarbeit				FP	30
Masterarbeit mit Kolloquium		900 h		PL	30

Modul: Dynamische Prozessoptimierung

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Pflichtkennz.: Pflichtmodul Turnus: Sommersemester

Modulnummer: 200006 Prüfungsnummer:220426

Modulverantwortlich: Prof. Dr. Pu Li

Leistungspu	nkte: 5	;		W	orkl	oad	l (h):15	50		Α	nte	il Se	elbs	tstu	ıdiu	ım (h):1	05			S	WS	:4.0)			
Fakultät für I	nform	atik	und A	uton	natis	sier	ung)												F	acl	nge	biet	:22	12			
SWS nach	1.F	S	2.F	S	3	.FS	3	4	.FS	3	5	5.F	S	6	S.FS	3	7	.FS	3	8	3.FS	S	9	.FS	3	1	0.F	S
Fach-	v s	Р	V S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	2 1	1																										

Lernergebnisse / Kompetenzen

Die Studierenden können

- die Grundlagen, Problemstellungen und Methoden der dynamischen Prozessoptimierung klassifizieren,
- Methoden und Werkzeuge anwenden,
- unterschiedliche Problemstellungen und mathematische Herleitungen analysieren und generieren
- optimale Steuerungen berechnen sowie
- Anwendungsfälle für industrielle Prozesse analysieren, entwickeln und bewerten

Die Studierenden haben in der Vorlesung Problemformulierungen für dynamische, unbeschränkte, steuerungsund zustandsbeschränkte Optimierungsaufgabenstellungen unter verschiedenen Zielstellungen erfahren. Sie
nehmen indirekte und direkte Verfahren zur Lösung der Problemstellungen wahr. In den Übungen wurden sie
durch akademische, niedrigdimensionale Beispiele angesprochen und können an der Aufbereitung zur Lösung
höherdimensionaler Probleme Anteil nehmen. Im Praktikum stuften sie typische Zielstellungen, beschränkte,
teilweise praxisorientierte Probleme ein, Sie können diese unter Verwendung vorhandener Optimierungssoftware
numerisch lösen und Ergebnisse richtig einschätzen. Sie können dynamische Optimierungsprobleme erarbeiten,
sie implementieren und die Ergebnisse evaluieren.

Vorkenntnisse

Grundlagen der Mathematik, Physik, Elektrotechnik; Regelungs- und Systemtechnik, Statische Prozessoptimierung

Inhalt

Indirekte Verfahren

- Variationsverfahren, Optimalitätsbedingungen
- Das Maximum-Prinzip
- Dynamische Programmierung
- Riccati-Optimal-Regler

Direkte Verfahren

- Methoden zur Diskretisierung, Orthogonale Kollokation
- Lösung mit nichtlinearen Programmierungsverfahren
- Simultane und Sequentielle Verfahren

Anwendungsbeispiele

- Prozesse in der Luft- und Raumfahrtindustrie
- Prozesse in der Chemieindustrie
- Prozesse in der Wasserbewirtschaftung

Praktikum (2 Verusche: DynPO-1: Numerische Lösung von Optimalsteuerungsaufgaben, DynPO-2:

Programmierung und numerische Lösung von Optimalsteuerungsproblemen

mittels Standardsoftware)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsentation, Vorlesungsskript, Tafelanschrieb, Praktikum im PC-Pool

Literatur

D. G. Luenberger. Introduction to Dynamic Systems. Wiley. 1979

- A. C. Chiang. Elements of Dynamic Optimization. McGraw-Hill. 1992
- D. P. Bertsekas. Dynamic Programming and Stochastic Control. Academic Press. 1976
- M. Athans, P. Falb. Optimal Control. McGraw-Hill. 1966
- A. E. Bryson, Y.-C. Ho. Applied Optimal Control. Taylor & Francis. 1975
- O. Föllinger. Optimale Regelung und Steuerung. Oldenbourg. 1994
- R. F. Stengel. Optimal Control and Estimation. Dover Publications. 1994
- J. Macki. Introduction to Optimal Control Theory. Springer. 1998
- D. G. Hull. Optimal Control Theory for Applications. Springer. 2003
- M. Papageorgiou, M. Leibold, M. Buss. Optimierung. 4. Auflage. http://dx.doi.org/10.1007/978-3-662-46936-1 (Campus-Lizenz TU Ilmenu)

Detailangaben zum Abschluss

Das Modul Dynamische Prozessoptimierung mit der Prüfungsnummer 220426 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200635)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200636)

Details zum Abschluss Teilleistung 2:

Testat für Praktikum. Praktikum umfasst zwei Versuche.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2022

Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Technische Kybernetik und Systemtheorie 2021

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Modul: Nichtlineare Regelungssysteme 1

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Pflichtkennz.: Pflichtmodul Turnus: Sommersemester

Modulnummer: 200022 Prüfungsnummer:220436

Modulverantwortlich: Prof. Dr. Johann Reger

Leistungspu	nkte	e: 5				W	ork	load	d (h):15	50		Α	ntei	il Se	elbs	ststu	ıdiu	ım (h):′	105			S	ws	:4.0)		
Fakultät für I	nfo	rma	atik	und	Αι	uton	nati	sieı	ันทยุ)												F	acl	hge	biet	:22	13		
SWS nach	1	ı.F	S	2	.F	S	3	3.F	S	_	l.F	S	5	5.FS	S	6	3.F	S	7	.FS	3	8	3.F	S	ć).F	S	10.	FS
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	Р
semester	2	1	1																										

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, die Existenz und Eindeutigkeit von Lösungen nichtlinearer dynamischer Systemmodelle zu untersuchen.
- Die Studierenden können typische nichtlineare Phänomene wie z.B. Grenzzyklen oder endliche Entweichzeit einordnen und analysieren.
- Die Studierenden können Eigenschaften von nichtlinearen Systemen zweiter Ordnung in der Phasenebene analysieren und beurteilen.
 - Die Studierenden können die Stabilität von Ruhelagen nichtlinearer Systeme überprüfen und beurteilen.
- Für die Klasse der Euler-Lagrange-Systeme können die Studierenden Betriebspunkt- und Folgeregelungen entwerfen.
 - Die Studierenden können adaptive Regelungen mit Hilfe der Lyapunov-Theorie entwerfen.
 - Die Studierenden können Regelungen zur Verbesserung des Einzugsbereichs entwerfen.
- Die Studierenden können Übungsaufgaben in Kleingruppen in Vorbereitung der Lehrveranstaltung gemeisam lösen.
- Die Studierenden können einfache Regelungsprobleme lösen und diese im Team am Versuchsstand implementieren.
- Die gemeinsamen Beobachtungen bei der Versuchsdurchführung können im Team diskutiert, beurteilt und interpretiert werden.

Vorkenntnisse

Regelungstechnische Grundlagen linearer Systeme im Zustandsraum (z.B. RST 2)

Inhalt

- Mathematische Grundlagen
- Nichtlineare dynamische Systeme als Anfangswertproblem
- Existenz und Eindeutigkeitsfragen
- Stabilitätsuntersuchung in der Phasenebene
- Stabilitätsbegriff und Stabilitätsanalyse nach Lyapunov
- Reglerentwurf mit Hilfe der Lyapunov-Theorie

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folie Tafel

https://moodle2.tu-ilmenau.de/enrol/index.php?id=2580

Literatur

- Khalil, H., Nonlinear Systems, Prentice Hall, 1996
- Slotine, J.-J., Li, W., Applied Nonlinear Control, Prentice Hall, 1991
- Sontag, E., Mathematical Control Theory, Springer, 1998
- Spong, M., Hutchinson, S., Vidyasagar, M., Robot Modeling and Control, Wiley, 2005
- Vidyasagar, M., Nonlinear Systems Analysis, SIAM, 2002

Detailangaben zum Abschluss

Das Modul Nichtlineare Regelungssysteme 1 mit der Prüfungsnummer 220436 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 120 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200661)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200662)

Details zum Abschluss Teilleistung 2:

Testat auf 2 bestandene Praktikaversuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Mechatronik 2022

Master Technische Kybernetik und Systemtheorie 2021

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Modul: Mathematische Systemtheorie differentiell-algebraischer Gleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200429 Prüfungsnummer:2400781

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkt	e: 5				W	ork	load	d (h):15	50		A	ntei	I Se	elbs	tstu	ıdiu	m (h):1	16			S	ws	:3.0)			
Fakultät für I	Mat	ther	nati	k ur	d I	Nati	urw	isse	ens	cha	fter	1										F	acl	nge	biet	:24	16			
SWS nach		1.F	S	2	.FS	S	3	3.FS	S	_	1.F	S	5	.FS	3	6	S.FS	S	7	.FS		8	3.FS	S	ć).FS	S	1	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	2	1	0																											

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung grundlegende Kenntnisse der Theorie differentiell-algebraischer Gleichungen (DAE). Der Schwerpunkt liegt auf dem linearen Fall (z.B. Beziehung zwischen Matrixpolynomen und Systembeschreibung, Charakterisierung von Lösungen, Normalformen). Sie verstehen die im Vergleich zu gewöhnlichen Differentialgleichungen zusätzlichen Schwierigkeiten in Theorie, Systemtheorie (z.B. Steuerbarkeit und Beobachtbarkeit) und Numerik. Nach den Übungen können die Studierenden typische Aussagen im Themengebiet der Vorlesung beweisen oder kennen numerische Lösungsverfahren und können diese auf konkrete Beispiele anwenden.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra sowie in gewöhnlichen Differentialgleichungen

Inhalt

Differentiell-algebraische Gleichungen sind eine Erweiterung gewöhnlicher Differentialgleichungen um algebraische Nebenbedingungen: Modellierung, Regularität und Index, semi-explizite Form, konsistente Anfangswerte. Schwerpunktmäßig wird der lineare Fall (verschiedene Typen von Matrizenbüschlen und korrespondierende Lösungen, Matrizenpolynome und deren Eigenschaften, Normalformen. Steuerbarkeit und Beobachtbarkeit. Feedback-Form) behandelt und ggf. ein Einblick in numerische Lösungsverfahren gewährt.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Matthias Gerdts: Optimal Control of ODEs and DAEs (Kapitel 4), De Gruyter: Graduate, 2012.

Ernst Hairer und Gerhard Wanner: Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, Springer: Computational Mathematics, 2. Auflage, 1996.

Peter Kunkel und Volker Mehrmann: Differential-algebraic equations: analysis and numerical solution, European Mathematical Society, 2. Auflage, 2006.

Karl Strehmel, Helmut Podhaisky und Rüdiger Weiner: Numerik gewöhnlicher Differentialgleichungen - Nichtsteife, steife und differential-algebraische Gleichungen, Springer Spektrum: Studium, 2. Auflage, 2012.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Modellprädiktive Regelung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200416 Prüfungsnummer:2400768

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte: 5			W	orkl	oad	(h):15	0		A	ntei	Se	elbs	tstu	ıdiu	ım (h):1	16			S	WS	:3.0)		
Fakultät für I	Mather	nati	k und l	Nati	urwi	sse	nso	cha	ften	ı										F	ach	gel	biet	:24	13		
SWS nach	1.F	S	2.F	S	3	s.FS	3	4	.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8	.FS	3	9).FS	S	10	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	S P
semester	2 1	0																									

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung die grundlegenden Begriffe, Resultate und Beweisideen der modellprädiktiven Regelung. Sie besitzen die Fähigkeit, die allgemeinen Resultate auf Spezialfälle anzuwenden. Sie können konkrete Anwendungsbeispiele analysieren. Sie wissen, wie modellprädiktive Verfahren rechentechnisch realisiert werden können.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra

Inhalt

Optimierungsbasierte Verfahren der mathematischen Systemtheorie, insbesondere Verfahren der modellprädiktiven Regelung, mit dem Ziel eine Zustandsrückführung für zeitdiskrete (oder zeitkontinuierliche) Systeme mit mehreren Ein- und Ausgangsgrößen unter Berücksichtigung von Steuer- und Zustandsbeschränkungen zu entwerfen: dynamische Programmierung, (relaxierte) Lyapunov-Ungleichung, asymptotische Stabilität und rekursive Zulässigkeit, Zeitdiskrete und zeitkontinuierliche Systemdynamik.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Lars Grüne und Jürgen Pannek: Model Predictive Control - Theory and Algorithms, Springer: Communications and Control Engineering, 2. Auflage, 2017.

Basil Kouvaritakis and M. Cannon: Model Predictive Control - Classical, Robust and Stochastic, Springer: Advanced Textbooks in Control and Signal Processing, 1. Auflage, 2016.

James B. Rawlings, David Q. Mayne und Moritz M. Diehl: Model Predictive Control: Theory, Computation, and Design, Nob Hill Publishing, 2. Auflage, 2017.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Modellreduktion

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: ganzjährig

Modulnummer: 201092 Prüfungsnummer: 2400868

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		A	ntei	Se	elbs	tstu	ıdiu	ım (h):1	16			S١	NS:	3.0)		
Fakultät für I	Mather	nati	k und l	Nati	urwi	sse	nso	cha	ften	ı										Fa	ach	gek	oiet:	24	16		
SWS nach	1.F	S	2.F	S	3	s.FS	;	4	l.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8	FS		9	.FS	3	10	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	S P
semester	2 1	0																									

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung die grundlegenden Techniken der Modellreduktion. Sie besitzen die Fähigkeit, die allgemeinen Resultate auf Spezialfälle anzuwenden. Sie können konkrete Anwendungsbeispiele analysieren. Sie wissen, wie Modellreduktionsverfahren rechentechnisch realisiert werden können.

Vorkenntnisse

Inhalt

Modellreduktionsverfahren der mathematischen Systemtheorie, insbesondere balanciertes Abschneiden, Frequenzbereichs-Interpolationsverfahren, Krylovraum-Verfahren und Hauptraummethoden Numerische Verfahren zur Lösung hochdimensionaler Lyapunov- und Riccatigleichungen, insbesondere Smith-, ADI- und Newton-Kleinman-Verfahren

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Beamer

Literatur

- . Antoulas, Athanasios C. (2005). Approximation of Large-Scale Dynamical Systems. SIAM.
- . Benner, Peter; Fassbender, Heike (2014), "Model Order Reduction: Techniques and Tools" (PDF), Encyclopedia of Systems and Contro
- . Antoulas, A. C.; Sorensen, D. C.; Gugercin, S. (2001), "A survey of model reduction methods for large-scale systems" (PDF), Structured matrices in mathematics, computer science, and engineering, I (Boulder, CO, 1999), Contemporary Mathematics, vol. 280, Providence, RI: American Mathematical Society, pp. 193-219,
- . Benner, Peter; Cohen, Albert; Ohlberger, Mario; Willcox, Karen (2017). Model Reduction and Approximation: Theory and Algorithms. SIAM Publications

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Modul: Adaptive Regelung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200430 Prüfungsnummer:2400782

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5			W	orklo	ad (r	1):15	0		A	ntei	l Se	elbs	tstuc	liu	m (h):	116		S	WS:	3.0)		
Fakultät für I	Mathen	natil	k und	Nati	urwis	sens	cha	ften										Fa	chge	biet	24	16		
SWS nach	1.F	S	2.F	S	3.	FS	4	.FS	3	5	5.FS	3	6	.FS		7.F	S	8.	FS	9	.FS	3	10.1	-s
Fach-	v s	Р	v s	Р	V	SP	V	S	Р	٧	S	Р	٧	SI	Ы	v s	Р	V 5	S P	V	S	Р	v s	Р
semester			2 1	0																				

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen und kennen die grundlegenden Ideen verschiedener adaptiver Regler. Die Studierenden haben durch die Vorlesung die Kompetenz typische Beweise zu analysieren und können durch die Übungen die Beweisideen zum Beweis ähnlicher Aussagen anwenden. Die Studierenden können die in der Vorlesung vorgestellten Regler hinsichtlich ihrer Stärken und Schwächen analysieren.

Vorkenntnisse

Gewöhnliche Differentialgleichungen, mathematische Systemtheorie

Inhalt

Existenz, Eindeutigkeit und Lösbarkeit nichtlinearer gewöhnlicher Differentialgleichungen. Verschiedene adaptive Regler (konventionell, \lambda- und Funnel) für skalare Systeme. Charakterisierungen von strukturellen Systemeigenschaften multivariabler Systeme: Relativgrad, Nulldynamik. Verschiedene adaptive Regler (konventionell, \lambda- und Funnel) für multivariable Systeme. Folgeregelung. Regler für Systemklassen mit höherem Relativgrad. Adaptive Identifikation von Systemen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel

Literatur

keine Angabe möglich

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Zeitreihenanalyse

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200452 Prüfungsnummer:2400804

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):1	16			S	ws	:3.0)		
Fakultät für I	Mather	mati	k und	Nat	urwi	sse	nso	cha	ften	1										F	ach	gel	biet	:24	12		
SWS nach	1.F	S	2.F	S	3	.FS	;	4	l.FS	3	5	5.FS	3	6	6.F	S	7	.FS	;	8	.FS	;	9	.FS	3	10.	FS
Fach-	v s	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V S	P
semester			2 1	0																				-			-

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und den sie begleitenden Übungen in der Lage, Zeitreihendaten im Rahmen der behandelten Modellklassen zu modellieren, zu analysieren und vorherzusagen.

Vorkenntnisse

Maßtheorie & Stochastik oder Stochastik, besser Stochastische Prozesse

Inhalt

Stationäre Prozesse und ihre Vorhersage, Schätzung von Erwartungswert und Kovarianz, ARMA-Prozesse, Spektralanalyse, Zustandsraummodelle und Kalman-Filter, Finanzzeitreihen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Brockwell, P. J. and Davis, R. A. (2006). Time Series: Theory and Methods, 2nd edn, Springer-Verlag, New York

Hannan, E. J. (1983). Time Series Analysis, Chapman and Hall International, London.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods, Oxford University Press, Oxford

Franke, J., Härdle, W. and Hafner, C. M. (2004). Statistics of Financial Markets, Springer-Verlag, Berlin.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Discrete Event Systems

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200089 Prüfungsnummer:2200751

Modulverantwortlich: Prof. Dr. Yuri Shardt

Leistungspu	nkte	e: 5				W	orkl	oac	d (h):15	50		Α	ntei	il Se	elbs	tstu	ıdiu	m (h):1	05			S	WS	:4.0)			
Fakultät für I	nfo	oformatik und Automatisierung 1.FS 2.FS 3.FS 4.FS																				F	acl	hge	biet	:22	11			
SWS nach	1	l.F	S	2	.FS	S	3	.FS	3	_	l.FS	3	5	5.F	S	6	S.FS	S	7	.FS	3	8	3.F	S	ć).F	S	1	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	2	2	0																											

Lernergebnisse / Kompetenzen

By the end of this course, students should be able to describe and analyze important properties of discrete-event systems in the form of automata; to design simple supervisors for typical closed-loop system specifications; and to reduce the complexity of the design task, using modular and decentralized as well as hierarchical design methods. Furthermore, the students should have learnt how to develop and implement solutions that require the analysis and control of automata for real-world problems. They should have learnt to constructively take criticism and implement comments and suggestions from their instructors and fellow students.

Vorkenntnisse

Foundational knowledge in mathematics and control theory

Inhalt

The course will cover:

- · Features of event-driven processes
- · Formal languages and automata
- · Automaton features
- · The concept of supervisory control
- · Controllability and blocking of automata
- · Minimally restrictive supervisor design · Modular and decentralized approaches
- · Hierarchical design procedures

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Presentations, Course notes, and Whiteboard lectures, online according to the regulations of TU Ilmenau, Moodle

Literatur

- · C. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, Springer, 2008.
- · F. Puente Le?on, U. Kiencke, Ereignisdiskrete Systeme: Modellierung und Steuerung verteilter Systeme, Oldenbourg, 2013.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

 Written take-home examination according to the regulations in §6a PStO-AB Duration: 240 minutes

Technical Requirements: Exam-Moodle https://intranet.tu-ilmenau.de/site/vpsl-pand/SitePages/Handreichungen_Arbeitshilfen.aspx

verwendet in folgenden Studiengängen:

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2021

Master Research in Computer & Systems Engineering 2016

Master Research in Computer & Systems Engineering 2021

Mathematische Systemtheorie differentiell-algebraischer Modul: Gleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache:Deutsch Turnus:Sommersemester

Pflichtkennz.:Wahlmodul

Modulnummer: 200429 Prüfungsnummer:2400781

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5			W	orkl	oad (h):	150)		Ante	eil S	elbs	ststu	ıdiu	ım (h):1	16			S	WS	:3.0)		
Fakultät für I	Mather	nati	k und l	Nati	urwi	ssen	sch	naft	en										F	ach	nge	biet	:24	16		
SWS nach	1.F	S	2.F	S	3	.FS		4.	FS		5.F	S	(6.F	3	7	.FS	;	8	.FS	3	9	.FS	3	10.	FS
Fach-	V S	Р	V S	Р	V	SP	1	V :	SP	,	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	VS	P
semester	2 1	0																					•		·	

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung grundlegende Kenntnisse der Theorie differentiell-algebraischer Gleichungen (DAE). Der Schwerpunkt liegt auf dem linearen Fall (z.B. Beziehung zwischen Matrixpolynomen und Systembeschreibung, Charakterisierung von Lösungen, Normalformen). Sie verstehen die im Vergleich zu gewöhnlichen Differentialgleichungen zusätzlichen Schwierigkeiten in Theorie, Systemtheorie (z.B. Steuerbarkeit und Beobachtbarkeit) und Numerik. Nach den Übungen können die Studierenden typische Aussagen im Themengebiet der Vorlesung beweisen oder kennen numerische Lösungsverfahren und können diese auf konkrete Beispiele anwenden.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra sowie in gewöhnlichen Differentialgleichungen

Differentiell-algebraische Gleichungen sind eine Erweiterung gewöhnlicher Differentialgleichungen um algebraische Nebenbedingungen: Modellierung, Regularität und Index, semi-explizite Form, konsistente Anfangswerte. Schwerpunktmäßig wird der lineare Fall (verschiedene Typen von Matrizenbüschlen und korrespondierende Lösungen, Matrizenpolynome und deren Eigenschaften, Normalformen. Steuerbarkeit und Beobachtbarkeit. Feedback-Form) behandelt und ggf. ein Einblick in numerische Lösungsverfahren gewährt.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Matthias Gerdts: Optimal Control of ODEs and DAEs (Kapitel 4), De Gruyter: Graduate, 2012.

Ernst Hairer und Gerhard Wanner: Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, Springer: Computational Mathematics, 2. Auflage, 1996.

Peter Kunkel und Volker Mehrmann: Differential-algebraic equations: analysis and numerical solution, European Mathematical Society, 2. Auflage, 2006.

Karl Strehmel, Helmut Podhaisky und Rüdiger Weiner: Numerik gewöhnlicher Differentialgleichungen -Nichtsteife, steife und differential-algebraische Gleichungen, Springer Spektrum: Studium, 2. Auflage, 2012.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Modellprädiktive Regelung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200416 Prüfungsnummer: 2400768

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte: 5	5		W	orklo	ad (r):15	0		Aı	nteil	Se	elbs	tstud	iun	n (h):1	116		S	WS:	3.0			
Fakultät für I	Mathe	mati	k und l	Vatı	urwis	sens	chaf	ften										Fa	chge	biet:	241	3		
SWS nach	1.F	S	2.F	S	3.	FS	4	.FS		5	.FS	;	6	.FS	T	7.F	3	8.1	-S	9	.FS	;	10.F	-S
Fach-	v s	Р	v s	Р	V	S P	V	S	Р	٧	S	Р	٧	SF	•	v s	Р	VS	3 P	V	S	Р	v s	Р
semester	2 1	0																						

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung die grundlegenden Begriffe, Resultate und Beweisideen der modellprädiktiven Regelung. Sie besitzen die Fähigkeit, die allgemeinen Resultate auf Spezialfälle anzuwenden. Sie können konkrete Anwendungsbeispiele analysieren. Sie wissen, wie modellprädiktive Verfahren rechentechnisch realisiert werden können.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra

Inhalt

Optimierungsbasierte Verfahren der mathematischen Systemtheorie, insbesondere Verfahren der modellprädiktiven Regelung, mit dem Ziel eine Zustandsrückführung für zeitdiskrete (oder zeitkontinuierliche) Systeme mit mehreren Ein- und Ausgangsgrößen unter Berücksichtigung von Steuer- und Zustandsbeschränkungen zu entwerfen: dynamische Programmierung, (relaxierte) Lyapunov-Ungleichung, asymptotische Stabilität und rekursive Zulässigkeit, Zeitdiskrete und zeitkontinuierliche Systemdynamik.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Lars Grüne und Jürgen Pannek: Model Predictive Control - Theory and Algorithms, Springer: Communications and Control Engineering, 2. Auflage, 2017.

Basil Kouvaritakis and M. Cannon: Model Predictive Control - Classical, Robust and Stochastic, Springer: Advanced Textbooks in Control and Signal Processing, 1. Auflage, 2016.

James B. Rawlings, David Q. Mayne und Moritz M. Diehl: Model Predictive Control: Theory, Computation, and Design, Nob Hill Publishing, 2. Auflage, 2017.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Multivariate Statistik

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200453 Prüfungsnummer:2400805

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte: 1	0		W	orkl	oad	(h):30	00		A	ntei	Se	elbs	tstu	ıdiu	ım (h):2	32			SI	WS	:6.0)		
Fakultät für I	Mather	nati	k und l	Nat	urwi	sse	nso	cha	ften	l										F	ach	gel	oiet	:24	12		
SWS nach	1.F	S	2.F	5	5.FS	3	6	S.FS	3	7	.FS		8	.FS	,	9	.FS	3	10	FS							
Fach-	V S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S P
semester	4 2	0																									

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, erhobene Daten im Rahmen eines geeigneten statistischen Modellszu analysieren und sind ebenso in der Lage z.B das Modell der linearen Regresseion, und die Qualität dieser Modellierung kritisch zu prüfen.

Vorkenntnisse

Maßtheorie & Stochastik oder Stochastik

Inhalt

Kovarianzanalyse, lineare und nichtlineare Regression, gemischte Effekte, verallgemeinerte lineare Modelle, Klassifikation, funktionale Datenanalyse

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1982). Multivariate analysis, Academic Press, London.

Rao, C. R., Toutenburg, H., Shalabh and Heumann, C. (2008). Linear Models and Generalizations - Least Squares and Alternatives, 3rd edn, Springer, Berlin.

Sengupta, D. and Jammalamadaka, S. R. (2003). Linear Models - An Integrated Approach, number 6 in Series on Multivariate Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore.

Weisberg, S. (1980). Applied Linear Regression, John Wiley & Sons, New York.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Adaptive Regelung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200430 Prüfungsnummer:2400782

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5	5		W	orkl	oac	l (h):15	0		Α	ntei	I Se	elbs	tstu	ıdiu	m (l	า):1′	16		S	WS	:3.0)		
Fakultät für N	Mathe	mati	k und	d Nat	urw	isse	nse	chat	ften	l										Fac	chge	biet	:24	16		
SWS nach	1.F	S	2.	FS	3	3.FS	3	4	.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	ç).F	S	10	.FS
Fach-	v s	Р	>	S P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	ΡV	v s	Р	٧	S	Р	V :	S P
semester	,		2	1 0																						

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen und kennen die grundlegenden Ideen verschiedener adaptiver Regler. Die Studierenden haben durch die Vorlesung die Kompetenz typische Beweise zu analysieren und können durch die Übungen die Beweisideen zum Beweis ähnlicher Aussagen anwenden. Die Studierenden können die in der Vorlesung vorgestellten Regler hinsichtlich ihrer Stärken und Schwächen analysieren.

Vorkenntnisse

Gewöhnliche Differentialgleichungen, mathematische Systemtheorie

Inhalt

Existenz, Eindeutigkeit und Lösbarkeit nichtlinearer gewöhnlicher Differentialgleichungen. Verschiedene adaptive Regler (konventionell, \lambda- und Funnel) für skalare Systeme. Charakterisierungen von strukturellen Systemeigenschaften multivariabler Systeme: Relativgrad, Nulldynamik. Verschiedene adaptive Regler (konventionell, \lambda- und Funnel) für multivariable Systeme. Folgeregelung. Regler für Systemklassen mit höherem Relativgrad. Adaptive Identifikation von Systemen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel

Literatur

keine Angabe möglich

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Adaptive und strukturvariable Regelungsysteme

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200024 Prüfungsnummer:220438

Modulverantwortlich: Prof. Dr. Johann Reger

Leistungspu	nkte	e: 5				W	ork	loa	d (h):15	50		Α	ntei	il Se	elbs	ststu	udiu	m (h):′	05			S	WS	:4.0)		
Fakultät für I	nfo	rma	atik	unc	λL	uton	nati	sie	ันทยุ	9												F	acl	hge	biet	:22	13		
SWS nach	ir Informatik und Automatisierung 1.FS 2.FS 3.FS 4.FS														S	6	3.F	S	7	.FS	3	8	3.F	S	ć).F	S	10.	FS
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	S P
semester				2	1	1																							

Lernergebnisse / Kompetenzen

Nach erfolgreichem Abschluss des Moduls:

- Kennen die Studierenden unterschiedliche Systemklassen, die für nichtlineare und schaltende Systeme betrachtet werden
 - Kennen die Studierenden verschiedene Stabilitätskonzepte für solche Systemklassen
- Kennen die Studierenden Stabilitätskriterien für die unterschiedlichen Systemklassen und können diese anwenden.
- Kennen die Studierenden unterschiedliche Verfahren zum Entwurf adaptiver und strukturvariabler Regelungen und sind in der Lage diese anzuwenden.
- Sind die Studierenden in der Lage typische Softwarewerkzeuge zur Analyse und zum Entwurf von adaptiven Regelkreisen zu verwenden (Praktikum).
- - Die Studierenden können Übungsaufgaben in Kleingruppen in Vorbereitung der Lehrveranstaltung gemeisam lösen.
- - Die Studierenden können einfache Regelungsprobleme lösen und diese im Team am Versuchsstand implementieren.
- Die gemeinsamen Beobachtungen bei der Versuchsdurchführung können im Team diskutiert, beurteilt und interpretiert werden.

Können die Studierenden adaptive und strukturvariable Regler auf gängigen Plattformen implementieren (Praktikum).

Vorkenntnisse

Regelungstechnische Grundlagen linearer Systeme im Zustandsraum (z.B. RST 2); Grundkenntnisse nichtlinearer Systemen vorteilhaft

Inhalt

- Lineare Systeme in Rückkopplung mit speicherfreier Nichtlinearität (Modellierung, Analyse, nichtlinearer Standardregelkreis, Lur'e System, absolute Stabilität)
- Stabilitätskriterien im Frequenzbereich (KYP-Lemma, Passivität, Popov-Kriterium, Kreiskriterium, Harmonische Balance)
 - Stabilität schaltender Systeme
 - Strukturvariable Reglungsverfahren (Sliding-Mode Control, Gain-Scheduling)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folie, Tafel

https://moodle2.tu-ilmenau.de/enrol/index.php?id=3079

Literatur

- 1. Geschaltete Systeme
 - Daniel Liberzon. Switching in Systems and Control. Birkhäuser, Boston, 2003.
 - Mikael Johansson. Piecewise Linear Control Systems. Springer-Verlag, Berlin, Heidelberg, 2003.
 - R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King. Stability Criteria for Switched and Hybrid Systems.

SIAM Review, 49(4):545-592, 2007 (URL) (Wissenschaftlicher Aufsatz, kein Lehrbuch. also nur für Leute, die es genau wissen wollen!)

- 2. Stabilität linearer Systeme (Stabilitätstheorie)
 - W. J. Rugh. Linear System Theory. 2. Edition. Prentice Hall, Upper Saddle River, New Jersey, 1996.
- 3. Nichtlineare Systeme (Stabilitätstheorie und klassische Methoden im Frequenzbereich)
 - Ch. Desoer, M. Vidyasagar. Feedback Systems: Input-Output Properties, Academic Press, London, 1975.
 - M. Vidyasagar. Nonlinear Systems Analysis. 2. Edition. Prentice Hall, Englewood Cliffs, New Jersey, 1993.
 - H. K. Khalil. Nonlinear Systems. 3. Edition. Prentice Hall, Upper Saddle River, New Jersey, 2002.
 - O. Föllinger. Nichtlineare Regelungssysteme 1. 7. Edition. Oldenbourg, München, 1993.
 - O. Föllinger. Nichtlineare Regelungssysteme 2. 7. Edition. Oldenbourg, München, 1993.
- 4. Adaptive Systeme
- P. A. Ioannou, J. Sun. Robust Adaptive Control, Prentice Hall, 1996. (re-print by Dover Publications) 5. Sliding-Mode Control
- Y. Shtessel, C. Edwards, L. Fridman, A. Levant. Sliding Mode Control and Observation. Birkhäuser, Basel, 2013. (intro)

Detailangaben zum Abschluss

Das Modul Adaptive und strukturvariable Regelungsysteme mit der Prüfungsnummer 220438 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200665)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200666)

Details zum Abschluss Teilleistung 2: Testat auf 2 berstandene Versuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Technische Kybernetik und Systemtheorie 2021

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Modul: Diagnose- und Vorhersagesysteme

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200092 Prüfungsnummer:2200756

Modulverantwortlich: Prof. Dr. Thomas Rauschenbach

Leistungspu	nkte: 5	W	orkload (h):150	Anteil Se	elbststudiu	ım (h):116	S	WS:3.0	
Fakultät für I	nformatik	und Auton	natisierun)				Fachge	biet:2211	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester		2 1 0								

Lernergebnisse / Kompetenzen

Die Studierenden erkennen Zusammenhänge zu den Lehrveranstaltungen, die sich mit den Grundlagen der Modellbildung beschäftigen. Nach der Vorlesung können sie die Verfahren für die Diagnose hinsichtlich der Nutzung von statistischen Daten, linguistischen Informationen sowie von Modellen klassifizieren. Bezüglich der Eignung für die Vorhersage können die Studierenden deterministische und stochastische Modellansätze vergleichen. Nach den Übungen sin die Studierenden zur Arbeit am Computer unter Verwendung moderner Simulationssysteme, wie z.B. MATLAB/Simulink fähig. Die Studierenden sind infolge dieser Übungen in der Lage, technische Systeme hinsichtlich der Diagnosemöglichkeiten zu bewerten und eigenständig Lösungen für Diagnoseaufgaben zu erarbeiten. Sie sind weiterhin in der Lage Systeme und Zeitreihen hinsichtlich ihrer Vorhersagbarkeit zu analysieren. Sie können evaluieren, welche systemtechnischen Methoden für Vorhersagen mit unterschiedlichen Zeithorizonten geeignet sind. Durch die Kombination von Methoden der Diagnose und Vorhersage können die Studierenden Lösungsansätze für Aufgaben auf dem Gebiet der prädiktiven Diagnose generieren. Die Studierenden können in den Übungen in Gruppen arbeiten, sind fähig, die Lösungsansätze zu diskutieren und gemeinsam umzusetzen. Bei der Vorstellung der Ergebnisse haben die Gruppen gelernt, sich gegenseitige wertschätzende Rückmeldungen zu geben.

Vorkenntnisse

Inhalt

Diagnose

- Auswertung von Signalen und Zuständen
- · Verwendung von Systemmodellen
- Berechnung von Kennwerten
- · Klassifikationsverfahren
- Modellreferenzverfahren
- Wissensbasierte Verfahren

Vorhersage

- Vorhersagbarkeit
- Prognoseprozess
- · Primärdatenaufbereitung
- Vorhersage mit deterministischen Signalmodellen
- · Vorhersage mit stochastischen Signalmodellen
- Musterbasierte Vorhersage
- Konnektionistische Verfahren zur Vorhersage

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Skript, Video, Vorführungen, Rechnerübungen

Literatur

Brockwell, P. J. Davis, R. A.: Introduction to Time Series and Forecasting. New York: Springer-Verlag, 1996 Isermann, Rolf: Uberwachung und Fehlerdiagnose. VDI Verlag, 1994

Janacek, Gareth; Swift, Louise: Time series: Forecasting, Simulation, Applications. New York, London, Toronto, Sydney, Tokyo, Singapore: Ellis Horwood, 1993

Romberg, T. [u. a.]: Signal processing for industrial diagnostics. Wiley, 1996

Schlittgen, Rainer: Angewandte Zeitreihenanalyse. Munchen, Wien: Oldenbourg Wissenschaftsverlag, 2001

Schlittgen, Rainer;Streitberg,Bernd H.J.: Zeitreihenanalyse. 9. Auflage. Munchen, Wien, Oldenbourg

Wissenschaftsverlag, 2001

Wernstedt, Jurgen: Experimentelle Prozessanalyse. 1. Auflage. Berlin: Verlag Technik, 1989

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Wenn eine Präsenzprüfung nicht möglich ist, wird die Prüfung mittels MS-Teams durchgeführt.

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Modul: Fuzzy-Control

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200093 Prüfungsnummer:220461

Modulverantwortlich: Dr. Aouss Gabash

Leistungspu	nkte: 5			W	orklo	ad (ł	າ):1	50		Α	nte	il Se	elbs	tstu	ıdiu	ım (h):10)5		,	SW	S:4.	0		
Fakultät für I	nform	atik	und Aเ	uton	natisi	erun	g												Fa	achg	ebie	et:22	211		
SWS nach	1.F	S	S	5	5.F	S	6	3.F	3	7	.FS		8.	FS		9.F	S	10	.FS						
Fach-	v s	Р	v s	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	۰ V	S	Р	V :	SP		
semester			2 1	1																					

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu fuzzy-basierten Systemen. Sie sind in der Lage, spezielle Fuzzy-Systeme für regelungstechnische Anwendungen (Fuzzy-Controller) zu entwerfen.

Methodenkompetenz: Die Studierenden sind in der Lage, problemangepasste Fuzzy-Komponenten (Zugehörigkeitsfunktionen, Operatoren etc.) auszuwählen und zu parametrisieren. Sie können unterschiedliche Arten von Fuzzy-Controllern entwerfen und durch Parametereinstellungen regelungstechnische Vorgaben realisieren (Überschwingen, Einschwingzeit, etc.). Sie kennen verschiedene Methoden der nichtlinearen Optimierung wie Evolutionsstrategie und heuristische Suche und können damit Fuzzy-Controller an Prozesse anpassen.

Systemkompetenz: Die Studierenden verstehen die grundsätzliche Herangehensweise beim Entwurf von wissensbasierten Systemen in regelungstechnischen Anwendungen wie z.B. Fuzzy Controller sowie die Auswirkungen einzelner Systemkomponenten auf die Arbeitsweise der Regler.

Sozialkompetenz: Die Studierenden könnnen Lösungen zum Entwurf von Fuzzy-Controllern durch Bearbeiten von Übungsaufgabensowohl im Dialog mit dem Lehrenden als auch eigenständig erarbeiten und haben damit ihr theoretisch erworbenes Wissen vertieft. Sie nehmen Kritik an und wissen Anmerkungen zu beherzigen.

Im Praktikum werden gezielt folgende Kompetenzen erworben:

Die Studierenden sind in der Lage, Fuzzy-Controller zu entwerfen und am Prozess einzusetzen. Sie beherrschen den Umgang mit Werkzeugen zum Entwurf von Fuzzy-Systemen.

Vorkenntnisse

Vorlesung Technische Informatik, Vorlesung Regelungs- und Systemtechnik 1, Vorlesung Systemidentifikation

Inhalt

- Grundlagen der Fuzzy-Theorie
- Module eines Fuzzy-Systems
- Kennlinien und Kennflächen von Fuzzy-Systemen
- optimaler Entwurf von Fuzzy-Steuerungen und Regelungen
- adaptive Fuzzy-Konzepte
- Beispiele aus Technik
- verwendetes Tool: Fuzzy Logic Toolbox für MATLAB.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafelanschrieb, Overhead-Präsentation, Powerpoint-Präsentationen, Vorlesungsskript, online-Vorlesungen (Videos)

Literatur

Fuzzy Logik, Neuronale Netze und Evolutionäre Algorithmen Shaker Verlag, Aachen 2005.

Kiendl H.: Fuzzy Control methodenorientiert, Oldenbourg, München 1997.

Schöneburg E., Heinzmann F., Fedderson S.: Genetische Algorithmen und Evolutionsstrategien, Addison-Wesley, 1994.

Rechenberg I.: Evolutionsstrategie '94, frommann-holzboog, 1994

Detailangaben zum Abschluss

Das Modul Fuzzy-Control mit der Prüfungsnummer 220461 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 60 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200757)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200758)

Details zum Abschluss Teilleistung 2: Testat für Praktikum

Für die Praktikumsdurchführung werden die Kenntnisse aus Vorlesung und Übung benötigt.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Bei coronabedingten Einschränkungen wird die Klausur online durchgeführt.

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Mechatronik 2022

Modul: Hierarchische Steuerungssysteme

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200009 Prüfungsnummer:220427

Modulverantwortlich: Prof. Dr. Pu Li

Leistungspu	nkte: 5	5		W	'orkl	oad	l (h):15	0		Α	nte	il Se	elbs	tstu	ıdiu	m (l	า):1()5		S	WS	:4.0)		
Fakultät für I	nform	atik	und A	utor	nati	sier	ung	3												Fac	chge	biet	:22	12		
SWS nach	1.F	5	5.F	S	6	S.FS	3	7	.FS		8.F	S	6).F	S	10	.FS									
Fach-	v s	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	P	v s	Р	٧	S	Р	V :	S P
semester			2 1	1																						

Lernergebnisse / Kompetenzen

Die Studierenden können Steuerungsaufgaben für hochdimensionale Systeme analysieren und entwickeln. Sie klassifizieren Zerlegungs- und Koordinationsprinzipien. Auf der Grundlage der nichtlinearen Optimierung und des Optimalsteuerungsentwurfs sind sie in Lage, Steuerungssysteme zu zerlegen, Optimierungs- und Optimalsteuerungsprobleme zu formulieren und mittels hierarchischer Methoden zu lösen, d. h. die Steuerungen zu entwerfen. Die Studierenden beschreiben die Grundbegriffe der mehrkriteriellen Optimierung, deren Aufgabenstellung und Lösungsmethoden.

Die Studierenden haben im Praktikum Grundfertigkeiten beim Umgang mit hierarchischen Steuerungsstrukturen, Zerlegungs- und Koordinationsprinzipien für stationäre und dynamische Prozesse erworben. Sie sind in der Lage, hierarchische Steuerungsprobleme zu erarbeiten, zu implementieren, unter Verwendung vorhandener Optimierungssoftware numerisch zu lösen und die Ergebnisse zu evaluieren.

Vorkenntnisse

Regelungs- und Systemtechnik 1 + 2, Statische Prozessoptimierung, Dynamische Prozessoptimierung

Inhalt

Hierarchische Optimierung statischer und dynamischer Systeme: Zerlegung und Beschreibung hierarchisch strukturierter Systeme; Koordinationsmethoden für statische Mehrebenenstrukturen; Möglichkeiten des Einsatzes statischer Hierarchiemethoden:

Hierarchische Optimierung großer dynamischer Systeme; Wechselwirkungsbalance- Methode und Wechselwirkungsvorhersage- Methode für lineare und nichtlineare Systeme; Trajektorienzerlegung. Verteilte Optimierung.

Prinzipien der mehrkriteriellen Entscheidungsfindung:

Mehrkriterieller Charakter von Entscheidungsproblemen; Steuermenge, Zielmenge, Kompromissmenge; Ein- und Mehrzieloptimierung; Verfahren zur Bestimmung der Kompromissmenge und von optimal effizienten Lösungen. Praktikum (2 Versuche: HSS-1: Mehrebenen-Optimierung stationärer Prozesse; HSS-2: Dynamische hierarchische Optimierung)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Video on Demand, Moodle-Kurs, Webex-Veranstaltungen, Folien, Skripte

Literatur

- K. Reinisch. Kybernetische Grundlagen und Beschreibung kontinuierlicher Systeme. Verlag Technik. 1977
- W: Findeisen. Hierarchische Steuerungssysteme. Verlag Technik. 1974
- M. Papageorgiou. Optimierung, Oldenbourg Verlag, München, 2006
- M. G. Singh. Dynamical hierarchical control. North Holland Publishing Company. Amsterdam. 1977
- M. G. Singh, A. Titli. Systems: Decomposition optimization and control. Pergamon Press. Oxford. 1978
- K. Reinisch. Hierarchische und dezentrale Steuerungssysteme. In: E. Philippow (Hrsg.). Taschenbuch Elektrotechnik. Bd. 2. Verlag Technik. 1987
- J. Ester: Systemanalyse und mehrkriterielle Entscheidung. Verlag Technik. 1987

Detailangaben zum Abschluss

Das Modul Hierarchische Steuerungssysteme mit der Prüfungsnummer 220427 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200639)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200640)

Details zum Abschluss Teilleistung 2:

Testat für Praktikum; Praktikum umfasst zwei Versuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Prüfungsgespräch (mündliche Abschlussleistung) in Distanz nach §6a PStO-AB

Dauer: 30 Minuten

Technische Voraussetzung: webex (Webcam + Mikrofon)

verwendet in folgenden Studiengängen:

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Modul: Nichtlineare Regelungssysteme 2

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200023 Prüfungsnummer:220437

Modulverantwortlich: Prof. Dr. Johann Reger

Leistungspu	nkte:	: 5			W	ork	oad	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (l	า):10)5		S	WS	:4.0)		
Fakultät für I	nfor	matik	und	JΑι	uton	nati	sier	ันทรู)												Fac	chge	biet	:22	13		
SWS nach	1.	FS	3	4	l.FS	3	5	5.FS	3	6	.FS	3	7	.FS		8.F	S	9	.FS	S	10	.FS					
Fach-	٧	S P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SI	۰ د	v s	Р	٧	S	Р	V	S P
semester			2	1	1																-						

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, nichtlineare Systemmodelle aus der Mechatronik in eine PCHD-Darstellung zu bringen.
 - Die Studierenden wissen das Konzept Passivität für den Zustandsreglerentwurf einzusetzen.
- Die Studierenden beherrschen die wichtigsten Backstepping-Regelungsverfahren, können diese verallgemeinern und für Anwendungen problemorientiert anpassen.
- Die Studierenden können die Bedingungen bei der exakten Linearisierung überprüfen und das Konzept zum Entwurf von Betriebspunktregelungen einsetzen.
- Die Studierenden haben die Fähigkeit, das Konzept Flachheit beim Vorsteuerungsentwurf und bei Folgeregelungen zu nutzen.
 - Die Studierenden können lokale Beobachter für nichtlineare flache Systeme entwerfen.
 - Die Studierenden sind in der Lage, nichtlineare Entkopplungsregler zu berechnen.
- Die Studierenden können Übungsaufgaben in Kleingruppen in Vorbereitung der Lehrveranstaltung gemeisam lösen.
- Die Studierenden können einfache Regelungsprobleme lösen und diese im Team am Versuchsstand implementieren.
- Die gemeinsamen Beobachtungen bei der Versuchsdurchführung können im Team diskutiert, beurteilt und interpretiert werden.

Vorkenntnisse

Regelungstechnische Grundlagen linearer Systeme im Zustandsraum (z.B. RST 2)

Inhalt

- Dissipativität und Passivität
- Backstepping-Regelungen
- Exakte Eingangs-Zustandslinearisierung (SISO)
- Exakte Eingangs-Ausgangslinearisierung (SISO)
- Regelungsentwurf
- · Folgeregelung mit Beobachter

• Exakte Linearisierung (MIMO) und Entkopplung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folie, Tafel

https://moodle2.tu-ilmenau.de/enrol/index.php?id=3080

Literatur

- Isidori, A., Nonlinear Control Systems, Band 1, Springer, 2001
- Khalil, H., Nonlinear Systems, Prentice Hall, 1996
- Krstic, M., Kanellakopoulus, I., Kokotovic, P., Nonlinear and Adaptive Control Design, Wiley, 1995
- Marino, R., Tomei, P., Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall, 1995
- Slotine, J.-J., Li, W., Applied Nonlinear Control, Prentice Hall, 1991

Detailangaben zum Abschluss

Das Modul Nichtlineare Regelungssysteme 2 mit der Prüfungsnummer 220437 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200663)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200664)

Details zum Abschluss Teilleistung 2:

Testat auf 2 brstandene Praktikumsversuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Mechatronik 2022

Master Technische Kybernetik und Systemtheorie 2021

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Modul: Spezielle Themen der Systemtheorie

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200461 Prüfungsnummer: 2400813

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5			W	orkloa	d (h):15	50		Aı	ntei	il Se	elbs	tstu	ıdiu	m (h):1	16			S١	NS:	3.0				
Fakultät für N	Mather	nati	k und l											F	acho	geb	oiet:	241	16								
SWS nach	1.F	3	5	5.F	S	6	.FS	S	7	.FS		8	.FS		9.	FS	;	10	.FS	;							
Fach-	v s	Р	v s	Р	v s	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	VS	S	Р		
semester			2 1	0																							

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung Konzepte und Methoden der Adaptiven und Modellprädiktiven Regelung. Sie besitzen Kenntnisse grundlegender Steuerungstechniken und Regler und wissen, wie diese in typischen Anwendungsfeldern eingesetzt werden. Sie sind nach den Übungen befähigt, die o. g. Kenntnisse in einfachen typischen Anwendungsbeispielen einzusetzen.

Vorkenntnisse

Systemtheorie I

Inhalt

Adaptive Regelung, Modellprädiktive Regelung, Lypunov-Stabilität, Modellreduktion, Nulldynamik

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien

Literatur

keine Angabe möglich

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Zeitreihenanalyse

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200452 Prüfungsnummer:2400804

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte	e: 5				W	ork	loa	d (h):15	50		Α	ntei	il Se	elbs	ststu	udiu	m (h):1	16			S	WS	:3.0)		
Fakultät für I	Иat	her	nati	k u	nd I	Nati	urw	isse	enso	cha	fter	1										F	acl	hge	biet	:24	12		
SWS nach	Mathematik und Naturwissenschaften 1.FS 2.FS 3.FS 4.FS V S P V S P V S P V S P														S	6	3.F	S	7	'.FS	3	8	3.F	S	ć).F	S	10.	FS
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	S P
semester				2	1	0																							

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und den sie begleitenden Übungen in der Lage, Zeitreihendaten im Rahmen der behandelten Modellklassen zu modellieren, zu analysieren und vorherzusagen.

Vorkenntnisse

Maßtheorie & Stochastik oder Stochastik, besser Stochastische Prozesse

Inhalt

Stationäre Prozesse und ihre Vorhersage, Schätzung von Erwartungswert und Kovarianz, ARMA-Prozesse, Spektralanalyse, Zustandsraummodelle und Kalman-Filter, Finanzzeitreihen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Brockwell, P. J. and Davis, R. A. (2006). Time Series: Theory and Methods, 2nd edn, Springer-Verlag, New York

Hannan, E. J. (1983). Time Series Analysis, Chapman and Hall International, London.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods, Oxford University Press, Oxford

Franke, J., Härdle, W. and Hafner, C. M. (2004). Statistics of Financial Markets, Springer-Verlag, Berlin.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Numerische Feldberechnung

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Deutsch Pflichtkennz.:Wahlmodul Turnus:Sommersemester

Modulnummer: 200541 Prüfungsnummer:210492

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspu	nkt	e: 5			W	ork/	kload	d (h):150		Ar	ntei	il Se	elbs	tst	udiu	ım (h):1	05			S	WS	:4.0)			
Fakultät für I	akultät für Elektrotechnik und Informationstechnik																			F	ach	ıge	biet	:21	17			
SWS nach	1.50 2.50 2.50 4.50														S.F	S	7	.FS	3	8	3.FS	3	ć).F	S	1	0.F	S
Fach-	V	S	Р	V 5	S P	V	S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	=ach-																											

Lernergebnisse / Kompetenzen

Fachkompetenz:

Nach der Veranstaltung sind die Studierenden in der Lage, naturwissenschaftliches und angewandtes Grundlagenwissens der Informationsverarbeitung in Bezug auf die Numerische Feldberechnung zu erklären sowie daraus eine systematische Dokumentation abzuleiten.

Methodenkompetenz:

Die Studierenden sind nach dem Besuch der Vorlesung in der Lage, Methoden der numerischen Feldberechnung anzuwenden und zur komplexen Modellbildung einzusetzen.

Systemkompetenz:

Studierende sind nach Abschluss in der Lage, die numerischen Verfahren in einem systematischen Überblick zusammenzufassen.

Nach Abschluss der Lehrveranstaltung verfügen sie über vertiefendes Überblickwissen und können Wissen aus thematisch angrenzenden Fachgebieten zuordnen.

Sozialkompetenz:

Nach dem Besuch eines rechnergestützten Seminars verfügen die Studierenden über eine prozessorientierte Vorgehensweise und können unter Zeit- und Kostengesichtspunkten die richtige Entscheidung treffen. Nach Abschluss des Modules können die Studierenden ihre praktischen Fähigkeiten und Fertig-keiten in Bezug auf die Feldberechnung einschätzen und haben gelernt, teamorientiert zu handeln.

Vorkenntnisse

Theoretische Elektrotechnik 1 und 2

Inhalt

Mathematische und physikalische Feldmodellierung; Numerische Methoden und Algorithmen zur Berechnung elektromagnetischer Felder; Elektromagnetisches "Computer Aided Design", Preprocessing; Postprocessing (Kapazitäten, Induktivitäten, Kräfte); Software für Feldberechnungen; Lösung einfacher Feldaufgaben mit vorhandener Software Einführung in das elektromagnetische CAD zum Entwurf von elektromagnetischen Geräten; Probleme der elektromagnetischen Verträglichkeit; Kopplung elektromagnetischer Felder mit mechanischer Bewegung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folien, Arbeitsblätter, computergestützte Übungen

Literatur

- [1] Binns, K.; Lawrenson, P.J.; Trowbridge, C.W.: The analytical and numerical solution of electric and magnetic fields. John Wiley & Sons, Chinchester, 1992
- [2] Harrington, R.F.: Field computation by moment methods. IEEE Press, Piscataway, 1993
- [3] Sadiku, M.N.O.: Numerical Techniques in Electromagnetics. CRC Press, Boca Raton, 2001
- [4] Humphries, St.: Finite-element methods for electromagnetics, CRC Press, 1997

Detailangaben zum Abschluss

Das Modul Numerische Feldberechnung mit der Prüfungsnummer 210492 schließt mit folgenden Leistungen ab:

- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 40% (Prüfungsnummer: 2100880)
- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 60% (Prüfungsnummer: 2100881)

Details zum Abschluss Teilleistung 1: schriftlicher Hausbeleg mit Abschlusspräsentation, Angebot ausschließlich im Sommersemester

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Biomedizinische Technik 2021 Master Elektrotechnik und Informationstechnik 2021 Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Theoretische Elektrotechnik 1

Modulabschluss: Prüfungsleistung schriftlich 180 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200538 Prüfungsnummer:2100877

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspu	nkte	e: 5				W	ork	loa	d (h):15	50		Α	ntei	il Se	elbs	ststu	ıdiu	ım (h):′	105			S	ws	:4.0)		
Fakultät für I	Ξleŀ	ktro	tech	nnik	un	d Ir	nfor	ma	tion	ste	chn	ik										F	acl	hge	biet	:21	17		
SWS nach															S	6	6.F	S	7	7.F	3	8	3.F	S	ć).F	S	10.	FS
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V S	Р
semester	2	2	0																										

Lernergebnisse / Kompetenzen

Absolventen der Lehrveranstaltung, bestehend aus Vorlesung und dazu gehörigen Übungen:

- besitzen Kenntnisse über die grundlegenden Gesetzmäßigkeiten statischer und stationärer elektromagnetischer Felder
- . sind informiert über die Lösung der Laplace- und Poisson-Differentialgleichungen im Falle konstanter Randbedingungen
- . besitzen Kenntnisse über die Integralparameter Kapazität, Widerstand und Induktivität
- . können Energie und Kräfte dieser Feldtypen berechnen

Fachkompetenz:

Studierende haben naturwissenschaftliches und angewandtes Grundlagenwissen und können insbesondere das angewandte Grundlagenwissen einbinden.

Methodenkompetenz:

Studierende sind in der Lage, Methoden systematisch zu trainieren

Sie können sich Fachwissens systematisch erschließen und es nutzen.

Sie beherrschen Methoden zur systematischen Behandlung von Ingenieurproblemen.

Systemkompetenz:

Studierende sind zu fachübergreifendem systemorientiertem Denken befähigt, haben ihre Kreativität trainiert.

Sozialkompetenz:

Studierende besitzen ein ausgeprägtes Lern- und Abstraktionsvermögen, sind flexibel bei der Lösung gestellter Aufgaben. Sie können aktiv kommunizieren, sind zur Arbeit im Team befähigt. Sie sind in der Lage, ihre Ergebnisse zu präsentieren und besitzen Durchsetzungsvermögen.

Vorkenntnisse

Mathematik, Experimentalphysik, Allgemeine Elektrotechnik

Inhalt

Grundlegende Gesetzmäßigkeiten elektromagnetischer Felder: Maxwellsche Gleichungen, Elektrostatisches Feld für gegebene Ladungsverteilungen: Lösung der Laplace- und Poisson-DGL, Feldprobleme mit konstanten Randbedingungen, Integralparameter, Energie und Kräfte; Stationäres elektrisches Strömungsfeld; Stationäres Magnetfeld: Vektorpotential, Biot-Savart-Gesetz

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

https://moodle2.tu-ilmenau.de/course/view.php?id=3504

Gedrucktes Vorlesungsskript zur Lehrveranstaltung, gedruckte Aufgabensammlung (auch im Internet verfügbar)

Literatur

Uhlmann, F. H.: Vorlesungsskript zur Theoretischen Elektrotechnik, Teil I/TU Ilmenau

Lehner, G.: Elektromagnetische Feldtheorie, Springer-Verlag, Berlin/Heidelberg/New York, 2006

Simonyi, K.: Theoretische Elektrotechnik, 10. Aufl. Johann Ambrosius Barth, 1999

Henke, H.: Elektromagnetische Felder. Theorie und Anwendung , Springer-Verlag, Berlin/Heidelberg/New York, 2002

Wunsch, G.; Schulz, H.-G.: Elektromagnetische Felder, Verlag Technik Berlin, 1989 Philippow, E.: Grundlagen der Elektrotechnik, 9. Aufl., Verlag Technik, Berlin, 1992

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2021 Bachelor Mathematik 2021 Diplom Elektrotechnik und Informationstechnik 2021 Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Technische Elektrodynamik

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200536 Prüfungsnummer:2100875

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspunkte: 5					Workload (h):150							Anteil Selbststudium (h):105									SWS:4.0								
Fakultät für Elektrotechnik und Informationstechnik															Fachgebiet:2117														
SWS nach Fach- semester	1.FS			2.FS			3.FS			4.FS		5.FS		6.FS		7.FS		8.FS		9.FS		10.FS							
	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	Р
				2	2	0																							

Lernergebnisse / Kompetenzen

1. Fachkompetenz:

Nach der Veranstaltung verfügen die Studierenden über Kenntnisse zu elektrodynamischen, insbesondere relativistischen Sachverhalten und sind befähigt, die Grundgleichungen zur elektrodynamischen Feldberechnung wiederzugeben

2. Methodenkompetenz:

Die Studierenden sind nach dem Besuch der Vorlesung in der Lage, Methoden zur systematischen Behandlung von elektromagnetischen Feldproblemen unter Berücksichtigung ingenieurtechnischer Aspekte zu analysieren. Die Studierenden können nach Abschluss des Moduls das notwendige Fachwissen zur systematischen Erschließung der technischen Elektrodynamik selbständig ableiten.

3. Systemkompetenz:

Nach Abschluss des Modules können die Studierenden fachübergreifend system- und feldorientiertes Denken zielgerichtet kombinieren.

4. Sozialkompetenz:

Nach der Lehrveranstaltung haben die Studierenden ihre in der Vorlesung erworbenen Kenntnisse anhand praxisnaher Beispiele gefestigt und sind in der Lage, mit Fachkollegen kompetent themenbezogen zu kommunizieren.

Vorkenntnisse

Theoretische Elektrotechnik, physikalisches Grundverständnis

Inhalt

- . Zeitabhängige Feldprobleme:
 - o vollständige Maxwell-Gleichungen, Wellenlösungen und

charakteristische Phänomene

- . Relativistische Betrachtung der Elektrodynamik:
 - o Lorentztransformation
 - o Vierervektoren und Feldtensor
 - o Anwendung der Lorentztransformation auf Maxwell-Gleichungen
 - o Berechnungen zur relativistischen Elektrodynamik
- Elektromagnetische Kräfte

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafelanschrieb

Literatur

[1] Sommerfeld, A. Vorlesungen zur Theoretischen Physik, Band III Elektrodynamik, Verlag Harri Deutsch

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Mathematik 2021
Bachelor Mechatronik 2021
Diplom Elektrotechnik und Informationstechnik 2017
Master Elektrotechnik und Informationstechnik 2021
Master Mathematik und Wirtschaftsmathematik 2022
Master Technische Kybernetik und Systemtheorie 2021

Modul: Theoretische Elektrotechnik 2

Modulabschluss: Prüfungsleistung schriftlich 180 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200537 Prüfungsnummer:2100876

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspu	nkt	e: 5				W	orkl	oad	d (h):15	50		Aı	nte	il Se	elbs	tstu	ıdiu	m (h):1	05			S	ws	:4.0)			\Box
Fakultät für I	für Elektrotechnik und Informationstechnik											ik										F	acl	nge	biet	:21	17			
SWS nach		1.F	S	2	2.F	S	3	3.FS	S	4	l.FS	3	5	5.F	S	6	6.F	3	7	'.FS	3	8	3.FS	S	ć	.F	S	1().F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester				2	2	0																								

Lernergebnisse / Kompetenzen

Absolventen der Lehrveranstaltung, bestehend aus Vorlesung und dazu gehörigen Übungen:

- besitzen Kenntnisse über quasistationäre und rasch veränderliche elektromagnetische Felder
- sind informiert über Probleme der Strom- und Feldverdrängung und
- besitzen grundsätzliche Kenntnisse über die Ausbreitung von Wellen auf Leitungen und im freien Raum

Vorkenntnisse

Theoretische Elektrotechnik 1

Inhalt

Quasistationäres Feld: Verallgemeinertes Induktionsgesetz, Felddiffusion: Lösung der Diffusionsgleichung, Fluss- und Stromverdrängung, Skineffekt; Geführte Wellen auf homogenen Leitungen: Leitungsgleichungen und ihre Wellenlösungen, Übertragungseigenschaften; Rasch veränderliches elektromagnetisches Feld: Wellengleichungen, ebene Wellen, Lösung der vollständigen Mawellschen Gleichungen: retardierte Potentiale, Wellenabstrahlung/Leistung

Poynting-Satz

Elementarstrom- und Mengentheorie des Magnetismus, Energie und Kräfte, Induktivität

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Vorlesungsskript zur Lehrveranstaltung, Folien, Aufgabensammlung (auch im Internet verfügbar) https://moodle2.tu-ilmenau.de/course/view.php?id=3016

Literatur

Uhlmann, F. H.: Vorlesungsskripte zur Theoretischen Elektrotechnik, Teile I und II/TU Ilmenau

Lehner, G.: Elektromagnetische Feldtheorie, Springer-Verlag, Berlin/Heidelberg/New York, 2006

Simonyi, K.: Theoretische Elektrotechnik, 10. Aufl. Johann Ambrosius Barth, 1999

Henke, H.: Elektromagnetische Felder. Theorie und Anwendung , Springer-Verlag, Berlin/Heidelberg/New York, 2002

Wunsch, G.; Schulz, H.-G.: Elektromagnetische Felder, Verlag Technik Berlin, 1989 Philippow, E.: Grundlagen der Elektrotechnik, 9. Aufl., Verlag Technik, Berlin, 1992

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2021 Bachelor Mathematik 2021 Diplom Elektrotechnik und Informationstechnik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Kognitive Robotik

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200083 Prüfungsnummer:220453

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspu	nkte:	5		,	Νc	orklo	ad	(h)):15	0		Aı	ntei	l Se	elbs	tstu	ıdiu	ım (ł	า):10)5		;	SWS	S:4.	0			
Fakultät für I	kultät für Informatik und Automatisierung																				Fa	achg	ebie	et:22	233			
SWS nach	4.50 0.50 0.50 4.50														6	S.FS	3	7	.FS		8.	FS		9.F	S	10).FS	
Fach-	V ;	S P	٧	SF	>	٧	SI	5	٧	S	Р	٧	S	Р	٧	S	Р	V	S	Р	V	S F	۰ V	S	Р	V	SF	כ
semester	2	1 1																										

Lernergebnisse / Kompetenzen

Nach Absolvierung des Moduls "Kognitive Robotik" verfügen die Studenten über die Begrifflichkeiten und das Methodenspektrum der Kognitiven Robotik. Sie haben übergreifende Ansätze zur Konzeption und der Realisierung von Robotik-Komponenten aus der Sicht von Sensorik, Aktorik und kognitiver Informationsverarbeitung verstanden. Sie kennen Techniken der Umgebungswahrnehmung und der lokalen und globalen Navigation von Kognitiven Robotern in komplexer realer Einsatzumgebung. Die Studierenden sind in der Lage, Fragestellungen aus dem o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte für unterschiedliche Fragestellungen der Service- und Assistenzrobotik zu entwerfen und umzusetzen, sowie bestehende Lösungskonzepte zu bewerten. Vor- und Nachteile der Komponenten und Verfahren im Kontext praktischer Anwendungen sind den Studierenden bekannt. Mit den Python-Implementierungen (Teilleistung 2) verfügen die Studierenden über praktische Verfahren bei der Implementierung von Navigationsalgorithmen für die Robotik. Nach intensiven Diskussionen während der Übungen und zur Auswertung der Python-Implementierung können die Studierenden Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Pflichtmodul "Neuroinformatik und Maschinelles Lernen"

Inhalt

Die Lehrveranstaltung vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung von Verfahren der Roboternavigation sowie zur Informations- und Wissensverarbeitung in Kognitiven Robotern. Sie vermittelt Faktenwissen, begriffliches und algorithmisches Wissen aus folgenden Themenkomplexen:

- Begriffsdefinitionen (Kognitive Robotik, Servicerobotik, Assistenzrobotik), Anwendungsbeispiele und Einsatzgebiete
 - Basiskomponenten Kognitiver Roboter
- Sensorik und Aktuatorik: aktive und passive / interne und externe Sensoren; Antriebskonzepte und Artikulationstechniken
- Basisoperation zur Roboternavigation: Lokale Navigation und Hindernisvermeidung incl. Bewegungssteuerung (VFH, VFH+, DWA); Anbindung an die Motorsteuerung; Arten der Umgebungsmodellierung und -kartierung; probabilistische Selbstlokalisation (Bayes-Filter, Partikel-Filter, MCL); Simulataneous Localization and Mapping (SLAM) Techniken (online SLAM, Full SLAM); Pfadplanung (Dijkstra, A*, D*, E*, Rapidly-Exploring Random Trees (RRTs)
 - Steuerarchitekturen nach Art der Problemdekomposition und der Ablaufsteuerung
- Leistungsbewertung und Benchmarking Kognitiver Roboter (Metriken und Gütemaße, Gestaltung von Funktionstests)
 - Aktuelle Entwicklungen der Service- und Assistenzrobotik mit Zuordnung der vermittelten Verfahren
- Ethische, soziale und rechtliche Aspekte beim Einsatz von Robotern im Allgemeinen sowie beim Einsatz in der Häuslichkeit und in der Pflege im Speziellen

Im Rahmen der Teilleistung 2 werden die behandelten methodischen und algorithmischen Grundlagen der Roboternavigation (Erzeugung einer Occupancy Grid Maps, Pfadplanung (Dijkstra und A* Algorithmus), Selbstlokalisation mittels Partikelfilter) durch die Studierenden selbst softwaretechnisch umgesetzt und im

Rahmen eines vorgefertigten Python-Frameworks implementiert.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Lectures on demand mit Erläuterungsvideos zu Vorlesungs-, Übungs- und Praktikumsinhalten, Übungsaufgaben, Videos, Python Apps, studentische Demo-Programme, e-Learning mittels "Jupyter Notebook", Moodle-Kurs

Literatur

- Hertzberg, J., Lingemann, K., Nüchter: A. Mobile Roboter; Springer Vieweg 2012
- Siciliano, B., Khatib: O. Springer Handbook of Robotics, Springer 2016
- Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, MIT Press 2005
- Siegwart, R., Nourbakhsh, I. R.: Introduction to Autonomous Mobile Robots, MIT Press 2004

Detailangaben zum Abschluss

Das Modul Kognitive Robotik mit der Prüfungsnummer 220453 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200739)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200740)

Details zum Abschluss Teilleistung 2: eigenständige Python-Implementierungen von Navigationslesitungen

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Biomedizinische Technik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Biomedizinische Technik 2021

Bachelor Informatik 2013

Bachelor Informatik 2021

Bachelor Ingenieurinformatik 2013

Bachelor Ingenieurinformatik 2021

Master Elektrotechnik und Informationstechnik 2021

Master Informatik 2013

Master Mechatronik 2017

Master Mechatronik 2022

Modul: Lernen in kognitiven Systemen

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200085 Prüfungsnummer:220455

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspu	nkte	e: 5				W	ork	load	d (h):15	50		Α	ntei	Se	elbs	tstu	ıdiu	m (ł	า):10	5		S	WS	:4.0)		
Fakultät für I	Ität für Informatik und Automatisierung																					Fac	hge	biet	:22	33		
SWS nach	1 50 2 50 2 50 4 50 5															6	.FS	3	7	.FS		8.F	S	ç).F	S	10	.FS
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	· /	S	Р	٧	S	Р	V	S P
semester	2	1	1																									

Lernergebnisse / Kompetenzen

Im Wahlmodul "Lernen in Kognitiven Systemen" haben die Studierenden aufbauend auf den Modulen "Neuroinformatik und Maschinelles Lernen" und "Deep Learning für Computer Vision" die konzeptionellen, methodischen und algorithmischen Grundlagen des Maschinellen Lernens zum Erwerb komplexer Verhaltensleistungen in kognitiven Systemen (Autonome Systeme, Roboter, Prozessteuerungen, Spiele) durch Lernen aus Erfahrungen verstanden. Sie verfügen über Kenntnisse zur grundsätzlichen Herangehensweise dieser Form des Wissenserwerbs und zur Generierung von handlungsorientiertem Wissen aus Beobachtungen und Erfahrungen. Die Studierenden haben sich die wesentlichen Konzepte, Lösungsansätze sowie Modellierungs- und Implementierungstechniken beim Einsatz von Verfahren des Reinforcement Learnings und dessen Spielarten angeeignet. Sie sind in der Lage, praxisorientierte Fragestellungen aus dem o. g. Problemkreis zu analysieren, durch Anwendung des behandelten Methodenspektrums auf Fragestellungen aus den behandelten Bereichen neue Lösungskonzepte zu entwerfen und algorithmisch umzusetzen sowie bestehende Lösungen zu bewerten. Vor- und Nachteile der Komponenten und Verfahren im Kontext praktischer Anwendungen sind den Studierenden bekannt. Nach intensiven Diskussionen während der Übungen und zur Auswertung der Python-Implementierung (Teilleistung 2) können die Studierenden Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Pflichtmodul "Neuroinformatik und Maschinelles Lernen", Wahlmodul "Deep Learning für Computer Vision"

Inhalt

Das Modul vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung neuronaler und probabilistischer Techniken des Erwerbs von Handlungswissen durch Lernen aus evaluativ bewerteten Erfahrungsbeispielen. Sie vermittelt sowohl Faktenwissen, begriffliches und algorithmisches Wissen aus folgenden Themenkomplexen:

- Begriffliche Grundlagen: Verhalten; Agent; Zweck und Bedeutung von Lernprozessen; Stability-Plasticity Dilemma; Exploration-Exploitation Dilemma
- Reinforcement Learning (RL): Grundidee des RL; General RL-Task; Schwache und starke RL-Verfahren, RL als Markov Decision Process (MDP); Basiskomponenten eines RL-Agenten; Value/Action-Value Iteration und das Bellman´sche Optimalitätsprinzip; Q-Learning, Boltzmann-Aktionsauswahl; SARSA-Learning; On-policy und off-policy Verfahren; Eligibility Traces; RL und teilweise Beobachtbarkeit; Lösungsansätze zur Behandlung von POMDP
- Neuronale Umsetzung von RL-Agenten: Value Approximation am Beispiel TD-Gammon; NFQ-Verfahren; ADHDP-Verfahren; Grundidee von Policy Search Algorithmen
- Deep Reinforcement Learning (DRL) als Form des End-to-End Learnings: Atari Deep RL; AlphaGo; DeepControl
 - · Learning Classifier Systems (LCS)
- Multi-Agenten Systeme (MAS); Motivation und Arten von Multi-Agentensystemen; Konzepte zur Koordinierung von Agenten; Koordination mittels W-Lernen
 - Exemplarische Software-Implementierungen von RL-Verfahren für Navigationsaufgaben, Spiele,

Prozesssteuerungen (Teilleistung 2)

Im Rahmen der Teilleistung 2 sollen in C++ oder Python eigene Plugins zur Anwendung des Reinforcement Learnings am Beispiel der Roboternavigation im Simulator erstellt und experimentell untersucht werden.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Übungsaufgaben, Videos, Python Apps, studentische Demo-Programme, e-Learning mittels "Jupyter Notebook"

Literatur

- Sutton, R., Barto, A. Reinforcement Learning An Introduction. MIT Press 1998 / 2018 http://incompleteideas.net/book/RLbook2018.pdf)
- Alpaydin, Ethem. Maschinelles Lernen, Oldenbourg Verlag, 2008 Bishop, Chr. Neural Networks for Patter Rec ognition, Oxford Press 1997

Detailangaben zum Abschluss

Das Modul Lernen in kognitiven Systemen mit der Prüfungsnummer 220455 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200743)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200744)

Details zum Abschluss Teilleistung 2: eigene C++ oder Python-Implementierungen und Übungsaufgaben

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Biomedizinische Technik 2021

Master Informatik 2013 Master Informatik 2021

Master Ingenieurinformatik 2021

Modul: Mensch-Maschine-Interaktion

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200086 Prüfungsnummer:220456

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspu	nkte:	5			W	orkl	oad	d (h):15	50		Aı	ntei	Se	elbs	tstu	ıdiu	m (ł	า):10	5		S	WS	:4.0)		
Fakultät für I	tät für Informatik und Automatisierung																				Fac	hge	biet	:22	33		
SWS nach	1 5 2 5 2 5 4 5 6														6	.FS	3	7	.FS		8.F	S	9	.FS	S	10	.FS
Fach-	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	۷ ر	/ S	Р	٧	S	Р	V	S P
semester			2	1	1																						

Lernergebnisse / Kompetenzen

Im Modul "Mensch-Maschine-Interaktion" haben sich die Studierenden die Begrifflichkeiten und das Methodenspektrum der Mensch-Maschine Interaktion unter Realwelt-Bedingungen angeeignet. Sie beherrschen wichtige Basisoperationen zur (vorrangig visuellen) Wahrnehmung von Menschen und zur Erkennung von deren Intentionen und Zuständen und kennen Techniken zur nutzeradaptiven Dialogführung. Die Studierenden sind in der Lage, Fragestellungen aus dem o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte für unterschiedliche Fragestellungen der Service- und Assistenzrobotik zu entwerfen und umzusetzen, sowie bestehende Lösungskonzepte zu bewerten. Vor- und Nachteile der Komponenten und Verfahren im Kontext praktischer Anwendungen sind den Studierenden bekannt. Nach intensiven Diskussionen während der Übungen und zur Auswertung der Python-Implementierung können die Studierenden Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Pflichtmodul "Neuroinformatik und Maschinelles Lernen" und Wahlmodul "Deep Learning für Computer Vision"

Inhali

Das Modul vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung von Verfahren der Interaktion zwischen Mensch und Maschine (mit Fokus auf vision-basierten Verfahren sowie dem Einsatz auf Robotersystemen) sowie zur erforderlichen Informations- und Wissensverarbeitung. Sie ergänzt das parallel laufende Modul "Robotvision", das sich um Aspekte der Roboternavigation kümmert, um wichtige Erkennungsverfahren der Mensch-Roboter Interaktion (HRI). Das Modul vermittelt das dazu notwendige Faktenwissen sowie begriffliches, methodisches und algorithmisches Wissen aus den folgenden Kernbereichen:

- A Ausgewählte Basisoperationen für viele Erkennungsverfahren
 - Basisoperationen der MMI im Rahmen eines Mustererkennungsprozesses
- Leistungsbewertung von Klassifikatoren: Gütemaße; Crossvalidation-Technik; Bewertung von binären Klassifikatoren, Gütemaß ROC/Precision Recall Kurven, usw.
- Bildaufbereitung und Bildanalyse: Beleuchtungs-/ Histogrammausgleich; Auflösungspyramiden; Lineare Subspace Methoden (HKA / PCA); Gabor-Wavelet-Funktionen (Gaborfilter) zur effizienten Bildbeschreibung;
 - Bewegungsanalyse in Videosequenzen
 - Techniken zur Repräsentation von Zeit: Dynamic Time Warping, Hidden Markov Modelle (HMMs)
- Bayes Filtering als probabilistische Zustandsschätzer: Grundidee, Markov-Annahme, Grundprinzip des rekursiven Bayes-Filters, Bewegungs- und Sensormodell, Arten der Beliefrepräsentation in Bayes Filtern; Partikel Filter
- B Wichtige Verfahren zur Erkennung von Nutzerzustand & Nutzerintention
 - Vision-basierte Nutzerdetektion, Nutzertracking, Nutzeridentifikation
 - · Zeigeposen- und Gestenerkennung
 - Erkennung von Mimik (Emotionen, Stress) und Interaktionsinteresse + aktuelle Entwicklungen
- Multimodale Dialogsysteme: Bestandteile von Dialogsystemen; Besonderheiten multimodaler Dialogsysteme

- C Anwendungsbeispiele für Assistenzfunktionen in öffentlicher & privater Umgebung
 - Soziale Assistenzroboter für die Gesundheitsassistenz
 - Robotische Bewegungsassistenz am Beispiel Reha
- D Gastvorlesung zur sprachbasierten MMI und zu Hidden Markov Modellen sowie deren Einsatz in der Spracherkennung, Unterschriftserkennung und Gestenerkennung

Im Rahmen der Teilleistung 2 werden ausgewählte methodische und algorithmische Grundlagen der MMI durch die Studierenden selbst softwaretechnisch umgesetzt und durch kleine Programmbeispiele vertieft. Neben den Programmbeispielen werden etische, soziale und rechtliche Aspekte beim Einsatz von Techniken der videobasierten Mensch-Maschine-Interaktion im Allgemeinen sowie wesentliche datenschutzrechtliche Randbedingungen diskutiert. Als Programmiersprache wird Python verwendet. Für Verfahren des Maschinellen Lernens wird die scikit-Learn Toolbox verwendet.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Übungsaufgaben, Videos, Python Apps, e-Learning mittels "Jupyter Notebook", Moodle-Kurs

Link zum Moodle-Kurs

https://moodle2.tu-ilmenau.de/course/view.php?id=3745

Literatur

- Schenk, J, Rigoll, G. Mensch-Maschine-Kommunikation: Grundlagen von sprach- und bildbasierten Benutzerschnittstellen, Springer 2010
- Li, S und Jain, A.: Handbook of Face Recognition, 2004
- Bishop, Ch.: Pattern Recognition and Machine Learning, Springer 2006
- Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction: Foundations and Applications, Studies in fuzziness and soft computing 207, Springer, 2006
- Maltoni, D., et al.: Biometric Fusion, Handbook of Fingerprint Recognition, Kapitel 7, Springer, 2009

Detailangaben zum Abschluss

Das Modul Mensch-Maschine-Interaktion mit der Prüfungsnummer 220456 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200745)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200746)

Details zum Abschluss Teilleistung 2:

eigene Python-Implementierungen von vorgegebenen Algorithmen und Übungsaufgaben

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Biomedizinische Technik 2021

Master Informatik 2013

Master Informatik 2021

Master Ingenieurinformatik 2021

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Mechatronik 2017

Master Mechatronik 2022

Master Medientechnologie 2017

Master Optische Systemtechnik/Optronik 2017

Modul: Robotvision

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200087 Prüfungsnummer:220457

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspu	nkte: 5	5		W	orkl	oad	l (h):15	0		Α	nte	il Se	elbs	tstu	ıdiu	m (l	า):1()5		S	WS	:4.0)		
Fakultät für I	tät für Informatik und Automatisierung																			Fac	chge	biet	:22	33		
SWS nach	1 5 2 5 2 5 4 5														S.FS	3	7	.FS		8.F	S	ç).F	S	10	.FS
Fach-	v s	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Ρ,	v s	Р	٧	S	Р	V :	S P
semester			2 1	1																						

Lernergebnisse / Kompetenzen

Im Modul "Robotvision" haben die Studierenden die Begrifflichkeiten und das Methodenspektrum des Maschinellen Sehens mit Fokus in der mobilen Robotik kennen gelernt. Sie haben das Paradigma der handlungsorientierten Wahrnehmung - insbesondere zur visuellen Roboternavigation in natürlicher Umwelt verstanden. Sie beherrschen wichtige Basisoperationen für die visuelle Wahrnehmung der Umgebung (Tiefe, Bewegung, Hindernisse, Freiraum, Räumlichkeiten, eigene Position in der Welt) und können Handlungskonsequenzen aus der visuellen Wahrnehmung der Umgebung ableiten. Sie haben Techniken der vision-basierten Umgebungswahrnehmung und der lokalen und globalen Navigation von Kognitiven Robotern in komplexer realer Einsatzumgebung kennen gelernt.

Die Studierenden sind in der Lage, Fragestellungen aus dem o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte für unterschiedliche Fragestellungen der Service- und Assistenzrobotik zu entwerfen und umzusetzen, sowie bestehende Lösungskonzepte zu bewerten. Vor- und Nachteile der Komponenten und Verfahren im Kontext praktischer Anwendungen sind den Studierenden bekannt. Nach intensiven Diskussionen während der Übungen und zur Auswertung des Praktikums (Teilleistung 2) können die Studierenden Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Kognitive Robotik

Inhalt

Das Modul vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung von Verfahren der vision-basierten Roboternavigation sowie zur erforderlichen Informations- und Wissensverarbeitung. Es vermittelt sowohl Faktenwissen, begriffliches und algorithmisches Wissen aus folgenden Themenkomplexen:

- Basisoperationen d. Roboternavigation
- Neuronale Basisoperationen der visuo-motorischen Verarbeitung der neuronale Instruktionssatz: funktionelle und topografische Abbildungen (u.a. log-polare Abbildung), Auflösungspyramiden, neuronale Felddynamik, ortsvariante Informationsverarbeitung
 - Basisoperationen & Technologien für die visuelle Umgebungswahrnehmung:
 - Detektoren & Deskriptoren für Interest-Points in 2D-Bildern
 - · Bewegungssehen und optischer Fluss
 - Tiefenwahrnehmung, Tiefenkameras (RGB-D Kameras)
 - Detektoren & Deskriptoren für Tiefenbilder (3D-Bilder)
 - Visuelle Odometrie
 - Vision-basierte Roboternavigation
 - Hindernisvermeidung (u.a. flussbasiert, Untergrund-Segmentierung)
 - · Mapping und Selbstlokalisation
 - Visuelles SLAM (Simultaneous Localization and Map Building inkl. ORB-SLAM)
 - Innovative Entwicklungen (z.B. Semantisches Labeln)
 - Exemplarische Software-Implementierungen von Basisoperationen

Im Rahmen des Praktikums werden die behandelten methodischen und algorithmischen Grundlagen der visionbasierten Roboternavigation durch die Studierenden selbst softwaretechnisch umgesetzt und im Rahmen eines vorgefertigten Robotersimulations-Frameworks implementiert (Teilleistung 2).

Link zum Moodle-Kurs

https://moodle2.tu-ilmenau.de/course/view.php?id=3744

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Übungsaufgaben, Videos, Python Apps, e-Learning mittels "Jupyter Notebook", Moodle-Kurs

Link zum Moodle-Kurs

https://moodle2.tu-ilmenau.de/course/view.php?id=3744

Literatur

- Hertzberg, J., Lingemann, K., Nüchter, A.: Mobile Roboter, Springer 2012
- Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots. MIT Press 2004
- Jähne, B. Digitale Bildverarbeitung. Springer Verlag 2005
- Bradsky, G., Kaehler, A. Learning OpenCV: Computer Vision with OpenCV Library
- Siciliano, B., Khatib: O. Springer Handbook of Robotics, Springer 2016
- Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, MIT Press 2005

Detailangaben zum Abschluss

Das Modul Robotvision mit der Prüfungsnummer 220457 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200747)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200748)

Details zum Abschluss Teilleistung 2:

Erfolgreiche Implementierung von zwei vorgegebenen Navigationsalgorithmen im vorhandenen Navigationsframe Simulator

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Biomedizinische Technik 2021

Master Informatik 2013

Master Informatik 2021

Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Mechatronik 2022

Master Optische Systemtechnik/Optronik 2017

Modul: Partielle Differentialgleichungen und Halbgruppen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200423 Prüfungsnummer:2400775

Modulverantwortlich: Prof. Dr. Carsten Trunk

Leistungspu	nkte	e: 10	0			W	orkl	oad	d (h):30	00		Α	nte	il Se	elbs	tstu	ıdiu	ım (h):2	232			S	WS	:6.0)			
Fakultät für I	kultät für Mathematik und Naturwissenschaften																					F	acl	hge	biet	:24	19			
SWS nach	1 50 2 50 2 50 4 50														S	6	S.FS	S	7	.FS	3	8	3.F	S	ć).F	S	1	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	4	2	0																											

Lernergebnisse / Kompetenzen

Nach der Vorlesung können die Studenten verschiedene Probleme der klassischen Mathematik aus einem allgemeineren Standpunkt betrachten, ihre grundlegenden Gesetzmäßigkeiten besser zu erkennen und das Gemeinsame aufzudecken. Sie sind befähigt, die in der Vorlesung vermittelte Theorie zur Lösung konkreter Probleme der reinen und der angewandten Mathematik zu verwenden. Nach den Übungen können die Studierenden die aus der Vorlesung bekannten Methoden selbständig zur Analyse und Lösung von konkreten Problemen anwenden. Nach intensiven Diskussionen und Gruppenarbeit während der Übungen können die Studenten Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Analysis

Inhalt

Halbgruppenzugang zur Behandlung partieller Differentialgleichungen. Satz von Hille-Yosida, abstraktes Cauchy-Prpblem, Spektrum, Störungstheorie, ggf. Bezug zur unendlichdimensionalen Systemtheorie

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Skripte, Übungsaufgaben

Literatur

K.-J. Engel, R. Nagel: One-parameter semigroups for linear evolution equations, Springer.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Stochastische Analysis

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200451 Prüfungsnummer:2400803

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		A	ntei	Se	elbs	tstu	ıdiu	m (h):11	6		S	WS	:3.0)		
Fakultät für I	at für Mathematik und Naturwissenschaften Fachge															hge	biet	:24	12							
SWS nach																10.	FS									
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	۷	/ S	Р	٧	S	Р	V S	Р
semester	2 1	0																								

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen den Itô-Kalkül, können mit stochastischen Differentialgleichungen umgehen und beides für Anwendungen nutzen.

Vorkenntnisse

Stochastische Prozesse

Inhalt

Itô-Integral, Itô-Formel, stochastische Differentialgleichungen und ihre Anwendungen (u. a. Bewertung von Optionen)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Klenke, A. (2006). Wahrscheinlichkeitstheorie, Springer, Berlin.

Korn, R. and Korn, E. (1999). Optionsbewertung und Portfolio-Optimierung, vieweg, Braunschweig. McKean, H. P. (1969). Stochastic Integrals, Academic Press, New York.

Steele, J. M. (2001). Stochastic Calculus and Financial Applications, Applications of Mathematics, Springer, New York

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Funktionalanalysis

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200414 Prüfungsnummer:2400766

Modulverantwortlich: Prof. Dr. Carsten Trunk

Leistungspu	nkte: 1	0		V	Vor	kloa	d (h):30	00		Α	ntei	il Se	elbs	tstu	ıdiu	m (l	າ):2:	32		S	WS	:6.0)		
Fakultät für N	r Mathematik und Naturwissenschaften																			Fac	chge	biet	:24	19		
SWS nach	1.F	S	2	.FS		3.F	S	4	l.FS	3	5	5.FS	S	6	S.FS	3	7	.FS		8.F	S	ç).F	S	10	.FS
Fach-	v s	Р	٧	S P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	۰ ر	v s	Р	٧	S	Р	V :	SP
semester			4	2 0																						

Lernergebnisse / Kompetenzen

Nach der Vorlesung können die Studenten verschiedene Probleme der klassischen Mathematik vom allgemeineren Standpunkt aus zu betrachten, ihre grundlegenden Gesetzmäßigkeiten besser zu erkennen und das Gemeinsame aufzudecken. Probleme, die ihren Lösungsmethoden ähnlich, aber ihren konkreten Inhalten nach verschieden sind, lassen sich mit der Funktionalanalysis einheitlich behandeln. Die so aufgebaute allgemeine Theorie lässt sich dann mit Erfolg zur Lösung konkreter Probleme, nicht nur der reinen, sondern auch der angewandten Mathematik heranziehen. Nach intensiven Diskussionen und Gruppenarbeit während der Übungen können die Studenten Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Grundlagen der Analysis, Angewandte Analysis

Inhalt

Banach-und Hilberträume, die 5 großen Hauptsätze der Funktionalanalysis (Hahn-Banach, Banach-Steinhaus, Banach, abgeschlossenes Bild und Graph). Selbstadjungierte Operatoren und Anwendungen auf partielle Differentialgleichungen der mathematischen Physik. Spektraltheorie. Spektralsatz.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Skripte, Übungsaufgaben

Literatur

Rudin, W.: Functional Analysis. Mc-Graw-Hill, New York 1991.

Werner, D.: Funktionalanalysis, Springer.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Large Networks & Random Graphs

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200439 Prüfungsnummer:2400791

Modulverantwortlich: Prof. Dr. Yury Person

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):11	6		S	WS	:3.0)		
Fakultät für N	für Mathematik und Naturwissenschaften																			Fac	hge	biet	:24	1D		
SWS nach	1 50 2 50 2 50 4 50 5 50 6 50 7 50																8.F	S	6).F	S	10.	FS			
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	٧ ر	/ S	Р	٧	S	Р	V S	P
semester			2 1	0																						

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung verschiedene Modelle zufälliger Graphen, deren Anwendungsmöglichkeiten sowie Vor- und Nachteile. Sie sind u.a. durch die Übungen in der Lage, für ein Anwendungsproblem ein passendes Modell auszuwählen, dieses methodisch zu untersuchen und Algorithmen darauf anzuwenden und zu entwickeln. Sie sind ebenso befähigt, aktuelle Forschungsarbeiten zu lesen und die Ergebnisse zu präsentieren, zu besprechen und zu reflektieren.

Vorkenntnisse

Analysis I&II, Diskrete Stochastik

Inhalt

Modelle zufälliger Graphen und deren wichtigste Eigenschaften wie Schwellenwertfunktionen, Algorithmen,...

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Aufgaben

Literatur

- B. Bollobás: Random Graphs, 2nd edition; Cambridge University Press, 2001
- A. Frieze, M. Karonski: Introduction to Random Graphs; Cambridge University Press, 2015
- S. Janson, T. Luczak, A. Rucinski: Random Graphs; Wiley, 2000.

Aktuelle Forschungspublikationen.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Mathematische Systemtheorie differentiell-algebraischer Gleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Wahlmodul Turnus:Sommersemester

Modulnummer: 200429 Prüfungsnummer:2400781

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte:	5				W	orkl	oad	d (h):15	50		A	ntei	il Se	elbs	tstı	udiu	m (h):1	16			S	WS	:3.0)			
Fakultät für N	akultät für Mathematik und Naturwissenschaften																					F	acl	nge	biet	:24	16			
SWS nach	1 5 2 5 2 5 4 5 6														S	6	6.F	S	7	.FS	3	8	3.F	S	Ś).F	S	1	0.F	S
Fach-	V	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	2	1	0																											

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung grundlegende Kenntnisse der Theorie differentiell-algebraischer Gleichungen (DAE). Der Schwerpunkt liegt auf dem linearen Fall (z.B. Beziehung zwischen Matrixpolynomen und Systembeschreibung, Charakterisierung von Lösungen, Normalformen). Sie verstehen die im Vergleich zu gewöhnlichen Differentialgleichungen zusätzlichen Schwierigkeiten in Theorie, Systemtheorie (z.B. Steuerbarkeit und Beobachtbarkeit) und Numerik. Nach den Übungen können die Studierenden typische Aussagen im Themengebiet der Vorlesung beweisen oder kennen numerische Lösungsverfahren und können diese auf konkrete Beispiele anwenden.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra sowie in gewöhnlichen Differentialgleichungen

Inhalt

Differentiell-algebraische Gleichungen sind eine Erweiterung gewöhnlicher Differentialgleichungen um algebraische Nebenbedingungen: Modellierung, Regularität und Index, semi-explizite Form, konsistente Anfangswerte. Schwerpunktmäßig wird der lineare Fall (verschiedene Typen von Matrizenbüschlen und korrespondierende Lösungen, Matrizenpolynome und deren Eigenschaften, Normalformen. Steuerbarkeit und Beobachtbarkeit. Feedback-Form) behandelt und ggf. ein Einblick in numerische Lösungsverfahren gewährt.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Matthias Gerdts: Optimal Control of ODEs and DAEs (Kapitel 4), De Gruyter: Graduate, 2012.

Ernst Hairer und Gerhard Wanner: Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, Springer: Computational Mathematics, 2. Auflage, 1996.

Peter Kunkel und Volker Mehrmann: Differential-algebraic equations: analysis and numerical solution, European Mathematical Society, 2. Auflage, 2006.

Karl Strehmel, Helmut Podhaisky und Rüdiger Weiner: Numerik gewöhnlicher Differentialgleichungen - Nichtsteife, steife und differential-algebraische Gleichungen, Springer Spektrum: Studium, 2. Auflage, 2012.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Numerik partieller Differentialgleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200417 Prüfungsnummer:2400769

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	ım (h):1	16			SW	/S:3	.0		
Fakultät für N	für Mathematik und Naturwissenschaften																			Fa	achg	jebi	et:2	41A		
SWS nach	1 50 2 50 2 50 4 50 5 50 6 50 7 50																8	FS		9.1	S	10	FS			
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	۱ د	/ S	Р	VS	S P
semester			2 1	0																						

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung grundlegende Begriffe, Resultate und Beweisideen der Theorie numerischer Lösungsverfahren für elliptische Differentialgleichungen sowie deren Erweiterung auf parabolische Probleme. Sie wissen, wie diese allgemeinen Resultate auf konkrete Beispiele angewandt und auf dem Rechner umgesetzt werden. Nach den Übungen sind sie in der Lage, die aus der Vorlesung bekannten numerischen Methoden auf konkrete Beispiele mit Rechnerunterstützung anzuwenden.

Vorkenntnisse

Grundlagen der Analysis und linearen Algebra sowie in der Theorie und Numerik gewöhnlicher Differentialgleichungen.

Grundkenntnisse in numerischer Mathematik, insbesondere bzgl. numerischer Methoden für gewöhnliche Differentialgleichungen, lineare Algebra.

Inhalt

Numerische Verfahren zur Lösung elliptischer und parabolischer Differentialgleichungen: Finite Differenzen, Finite Elemente (z.B. Galerkin-Methode), Linienmethode. Ergänzt um die theoretischen Grundlagen wie die Variationsformulierung sowie die numerische Analyse, z.B. in Bezug auf Diskretisierungsfehler. Zudem werden Modellierungsaspekte angesprochen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Hackbusch, Wolfgang: Theorie und Numerik elliptischer Differentialgleichungen, Springer Spektrum: Lehrbuch, 2017.

Stig Larsson und Vidar Thomee: Partielle Differentialgleichungen und numerische Methoden, Springer, 2005. Claus-Dieter Munz und Thomas Westermann: Numerische Behandlung gewöhnlicher und partieller Differentialgleichungen - Ein anwendungsorientiertes Lehrbuch für Ingenieure, Springer, 4. Auflage, 2019. Walter Zulehner: Numerische Mathematik - Eine Einführung anhand von Differentialgleichungsproblemen. Band 1: Stationäre Probleme/Band 2: Instationäre Probleme, Birkhäuser: Mathematik Kompakt, 2008/2011.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Spektraltheorie für gewöhnliche Differentialgleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200422 Prüfungsnummer: 2400774

Modulverantwortlich: Prof. Dr. Carsten Trunk

Leistungspu	nkte:	5			W	orkl	oad	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	ım (l	n):1	16		S	WS	:3.0)		
Fakultät für I	t für Mathematik und Naturwissenschaften																				Fa	chge	biet	:24	19		
SWS nach	1.F	5	5.FS	3	6	S.FS	3	7	.FS		8.1	S	ć).F	S	10	.FS										
Fach-	VS	P	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	S P	٧	S	Р	V :	S P
semester			2	1	0																						

Lernergebnisse / Kompetenzen

Die Studierenden wissen, wie Methoden der Operatortheorie zur Analyse und Lösung der Sturm-Liouville-Differentialgleichung verwendet werden können. Nach der Vorlesung können die Studenten diese Theorie in der mathematischen Physik (Quantenmechanik) anwenden. Die Studierenden haben vertiefte Kenntnisse der Erweiterungstheorie symmetrischer Operatoren. Nach intensiven Diskussionen und Gruppenarbeit während der Übungen können die Studenten Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an

Vorkenntnisse

Analysis

Inhalt

Gegenstand der Vorlesung sind Aspekte der Theorie der Sturm-Liouville-Differentialgleichung. Dabei stehen Methoden der Operatortheorie, insbesondere der Spektraltheorie, im Vordergrund. Es werden Anwendungen der Theorie in der Quantenmechanik (insbesondere Schrödingergleichung) behandelt.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Skripte, Übungsaufgaben

Literatur

- J. Weidmann: Lineare Operatoren in Hilberträumen, Teil II: Anwendungen, Teubner.
- G. Teschl: MathematicalMethods in Quantum Mechanics, AMS.

Detailangaben zum Abschluss

 $alternative\ Abschluss form\ aufgrund\ verordneter\ Coronama \&nahmen\ inkl.\ technischer\ Voraussetzungen$

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Stochastische Prozesse

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200450 Prüfungsnummer:2400802

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte: 1	0		W	orkl	oad	(h):30	00		A	ntei	l Se	elbs	tstu	ıdiu	m (n):23	2		S	WS	:6.0)		
Fakultät für N	Mather	l										Fac	hge	biet	:24	12										
SWS nach	akultät für Mathematik und Naturwissenschaften WS nach 1.FS 2.FS 3.FS 4.FS															3	7	.FS		8.F	S	6).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	۱ د	/ S	Р	٧	S	Р	V S	Р
semester			4 2	0														-								

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und den sie begleitenden Übungen in der Lage, stochastische Prozesse im Rahmen der behandelten Modellklassen geeignet zu modellieren und das stochastische Verhalten dieser Modelle zu analysieren.

Vorkenntnisse

Maßtheorie & Stochastik

Inhalt

Grundlagen, Poisson-Prozess, Gaußsche Prozesse, Martingale, Markovprozesse, Brownsche Bewegung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Durrett, R. (1996). Probability: Theory and Examples, 2nd edn, Wadsworth Publishing Company, Belmont, CA.

Klenke, A. (2006). Wahrscheinlichkeitstheorie, 3rd edn, Springer, Berlin.

Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn, Springer, New York.

Durrett, R. (1999). Essentials of Stochastic Processes, Springer, New York.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Zeitreihenanalyse

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200452 Prüfungsnummer:2400804

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):1	16			S	ws	:3.0)		
Fakultät für I	Mather										F	ach	gel	biet	:24	12											
SWS nach	ukultät für Mathematik und Naturwissenschaften WS nach 1.FS 2.FS 3.FS 4.FS															S	7	.FS	;	8	.FS	;	9	.FS	3	10.	FS
Fach-	v s	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V S	P
semester			2 1	0																				-			-

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und den sie begleitenden Übungen in der Lage, Zeitreihendaten im Rahmen der behandelten Modellklassen zu modellieren, zu analysieren und vorherzusagen.

Vorkenntnisse

Maßtheorie & Stochastik oder Stochastik, besser Stochastische Prozesse

Inhalt

Stationäre Prozesse und ihre Vorhersage, Schätzung von Erwartungswert und Kovarianz, ARMA-Prozesse, Spektralanalyse, Zustandsraummodelle und Kalman-Filter, Finanzzeitreihen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Brockwell, P. J. and Davis, R. A. (2006). Time Series: Theory and Methods, 2nd edn, Springer-Verlag, New York

Hannan, E. J. (1983). Time Series Analysis, Chapman and Hall International, London.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods, Oxford University Press, Oxford

Franke, J., Härdle, W. and Hafner, C. M. (2004). Statistics of Financial Markets, Springer-Verlag, Berlin.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Modellprädiktive Regelung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200416 Prüfungsnummer:2400768

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkt	e: 5				W	orkl	oad	d (h):15	50		Α	ntei	il Se	elbs	tstu	udiu	ım (h):1	16			S	WS	:3.0)			
Fakultät für I	akultät für Mathematik und Naturwissenschaften																					F	acl	hge	biet	:24	13			
SWS nach	Fakultat für Mathematik und Naturwissenschaften SWS nach 1.FS 2.FS 3.FS 4.FS														S	6	S.FS	S	7	.FS	3	8	3.F	S	ć).F	S	1	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	ach-																													

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung die grundlegenden Begriffe, Resultate und Beweisideen der modellprädiktiven Regelung. Sie besitzen die Fähigkeit, die allgemeinen Resultate auf Spezialfälle anzuwenden. Sie können konkrete Anwendungsbeispiele analysieren. Sie wissen, wie modellprädiktive Verfahren rechentechnisch realisiert werden können.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra

Inhalt

Optimierungsbasierte Verfahren der mathematischen Systemtheorie, insbesondere Verfahren der modellprädiktiven Regelung, mit dem Ziel eine Zustandsrückführung für zeitdiskrete (oder zeitkontinuierliche) Systeme mit mehreren Ein- und Ausgangsgrößen unter Berücksichtigung von Steuer- und Zustandsbeschränkungen zu entwerfen: dynamische Programmierung, (relaxierte) Lyapunov-Ungleichung, asymptotische Stabilität und rekursive Zulässigkeit, Zeitdiskrete und zeitkontinuierliche Systemdynamik.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Lars Grüne und Jürgen Pannek: Model Predictive Control - Theory and Algorithms, Springer: Communications and Control Engineering, 2. Auflage, 2017.

Basil Kouvaritakis and M. Cannon: Model Predictive Control - Classical, Robust and Stochastic, Springer: Advanced Textbooks in Control and Signal Processing, 1. Auflage, 2016.

James B. Rawlings, David Q. Mayne und Moritz M. Diehl: Model Predictive Control: Theory, Computation, and Design, Nob Hill Publishing, 2. Auflage, 2017.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Multivariate Statistik

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200453 Prüfungsnummer:2400805

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte:	10		W	orkl	oad	l (h):30	00		Aı	ntei	Se	elbs	tstu	ıdiu	m (n):23	2		S	WS	:6.0)		
Fakultät für I	Mathe										Fac	hge	biet	:24	12											
SWS nach	ukultät für Mathematik und Naturwissenschaften WS nach 1.FS 2.FS 3.FS 4.FS															3	7	.FS		8.F	S	6).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	y V	' S	Р	٧	S	Р	V S	Р
semester	4 2	0																-							-	

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, erhobene Daten im Rahmen eines geeigneten statistischen Modellszu analysieren und sind ebenso in der Lage z.B das Modell der linearen Regresseion, und die Qualität dieser Modellierung kritisch zu prüfen.

Vorkenntnisse

Maßtheorie & Stochastik oder Stochastik

Inhalt

Kovarianzanalyse, lineare und nichtlineare Regression, gemischte Effekte, verallgemeinerte lineare Modelle, Klassifikation, funktionale Datenanalyse

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1982). Multivariate analysis, Academic Press, London.

Rao, C. R., Toutenburg, H., Shalabh and Heumann, C. (2008). Linear Models and Generalizations - Least Squares and Alternatives, 3rd edn, Springer, Berlin.

Sengupta, D. and Jammalamadaka, S. R. (2003). Linear Models - An Integrated Approach, number 6 in Series on Multivariate Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore.

Weisberg, S. (1980). Applied Linear Regression, John Wiley & Sons, New York.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Numerik optimaler Steuerungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200418 Prüfungsnummer:2400770

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte: 5			W	orkl	oad	(h):15	0		A	ntei	Se	elbs	tstu	ıdiu	ım (h):1	16			S	WS	:3.0)		
Fakultät für I	Mather	ı										F	ach	gel	biet	:24	13										
SWS nach	kultät für Mathematik und Naturwissenschaften VS nach 1.FS 2.FS 3.FS 4.FS															3	7	.FS		8	.FS	3	9).FS	S	10	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	S P
semester	2 1	0																									

Lernergebnisse / Kompetenzen

Die Studierenden besitzen nach der Vorlesung Kenntnisse der grundlegenden Begriffe und Konzepte der Numerik optimaler Steuerungen. Sie können nach den Übungen entsprechende Verfahren auf Spezialfälle sowie das numerische Lösen von Anwendungsproblemen am Rechner anwenden.

Vorkenntnisse

Inhalt

Numerische Verfahren zur Lösung optimaler Steuerungsprobleme: Diskretisierung, Schießverfahren, Zusammenspiel mit Differentialgleichungslösern und Optimierungsverfahren.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Walter Alt, Christopher Schneider und Martin Seydenschwanz: EAGLE-STARTHILFE Optimale Steuerung: Theorie und numerische Verfahren, EAGLE, 1. Auflage, 2013.

Matthias Gerdts: Optimal Control of ODEs and DAEs (Kapitel 5), De Gruyter: Graduate, 2012.

Pablo Pedregal: Optimization and Approximation (Kapitel 8), Springer: UNITEXT 108, 2017.

James B. Rawlings, David Q. Mayne und Moritz M. Diehl: Model Predictive Control: Theory, Computation, and Design (Kapitel 8), Nob Hill Publishing, 2. Auflage, 2017.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Spieltheorie

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200443 Prüfungsnummer:2400795

Modulverantwortlich: Prof. Dr. Matthias Kriesell

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		A	ntei	Se	elbs	tstu	ıdiu	m (h):11	6		S	WS	:3.0)		
Fakultät für I	Mather	ı										Fac	hge	biet	:24	11										
SWS nach	kultät für Mathematik und Naturwissenschaften VS nach 1.FS 2.FS 3.FS 4.FS															3	7	.FS		8.F	S	ć).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	٧ ر	/ S	Р	٧	S	Р	V S	Р
semester	2 1	0																								

Lernergebnisse / Kompetenzen

Die Studierenden besitzen nach der Vorlesung vertiefte Kenntnisse der Grundbegriffe der nichtkooperativen und der Grundbegriffe der kooperativen Spieltheorie. Sie kennen den Zusammenhang zwischen den abstrakten Konzepten der Spieltheorie und interaktiven Entscheidungsproblemen aus Ökonomie und Informatik, können diesen beschreiben und erläutern. Nach den Übungen sind die Studierenden fähig, einfache konkrete Beispiele mit spieltheoretischen Methoden zu beschreiben und zu analysieren..

Vorkenntnisse

Analysis I/II, Stochastik, (Lineare) Optimierung

Inhalt

Die Spieltheorie ist ein noch junger Zweig der Mathematik, die ihren Ursprung 1944 in dem Buch "The Theory of Games and Economic Behavior" von John von Neumann und Oskar Morgenstern hat, auch wenn die Wurzeln bis ins 19. Jahrhundert zurückreichen. Die Disziplin findet unter anderem ihre Anwendung in der Ökonomie, Soziologie, Politik, Biologie sowie Informatik, und es treten spieltheoretische Problemstellungen in nahezu jedem Lebensbereich auf. Ziel der Vorlesung ist es, die Teilnehmer mit den grundlegenden Konzepten und Lösungsansätzen der Spieltheorie vertraut zu machen. Der Schwerpunkt liegt dabei auf der nichtkooperativen Spieltheorie, es werden jedoch auch Elemente der kooperativen Spieltheorie behandelt. Inhalt: Normalformspiele, Spiele in extensiver Form, Spiele mit unvollkommener Information, Koalitionsspiele.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folien, Skript, Tafel

Literatur

Die einschlägigen Lehrbücher von Osborne und Rubinstein, Myerson, sowie Nisan, Roughgarden, Tardos und Vazirani.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Modul: Globale Optimierung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200449 Prüfungsnummer:2400801

Modulverantwortlich: Prof. Dr. Gabriele Eichfelder

Leistungspu	nkte: 1	0		W	orklo	ad (r	1):30	00		Α	ntei	l Se	elbs	tstuc	liu	m (h):2	232		S	WS:	6.0)		
Fakultät für I	Mathen	k und										Fa	chge	biet	24	15								
SWS nach	1.F	3	5	5.FS	3	6	.FS		7.F	S	8.	FS	9	.FS	3	10.1	-s							
Fach-	V S	Р	v s	Р	V	S P	V	S	Р	٧	S	Р	٧	SI	Р	v s	Р	V	S P	V	S	Р	v s	Р
semester			4 2	0																				

Lernergebnisse / Kompetenzen

Die Studierenden können nach Vorlesung und Übung die Relevanz der in Grundlagenveranstaltungen der Optimierung vermittelten Kenntnisse der konvexen Optimierung für die (nichtkonvexe) Globale Optimierung, aber auch die fundamentalen Unterschiede hinsichtlich der untersuchten Problemstellungen erkennen. Durch die Vorlesung lernten sie die grundlegenden Techniken der globalen Optimierung (z.B. Relaxierungen sowie Branch&Bound-Strategien) und Hilfswerkzeuge (z.B. Intervallarithmetik) kennen und verstehen diese einschließlich der zu Grunde liegenden mathematischen Beweise. Darüberhinaus können die aus den theoretischen Grundlagen abgeleiteten Verfahren von den Studierenden motiviert, klassifiziert und miteinander in Bezug gesetzt werden. Diese erlangten Kenntnisse wurden von den Studierenden in den Übungen angewendet. Sie können zum Beispiel weitere theoretische Resultate herleiten sowie vorgegebene konkrete globale Optimierungsprobleme und Testbeispiele bearbeiten und mit Hilfe von mathematischer Software implementieren und schließlich auch lösen. Hierbei erkennen sie verschiedene Lösungsstrategien und -ansätze, können eigenständig mathematische Umformulierungen vollziehen und die Ergebnisse analysieren sowie bewerteen. Die im Rahmen dieser Vorlesung erlangten Kenntnisse und Fähigkeiten bilden somit den Grundstein für eine weitere Beschäftigung im Rahmen von Abschlussarbeiten oder auch Forschungsprojekten im besagten Forschungsgebiet. Weiterhin sind die Studierenden mit den erworbenen Kompetenzen in die Lage versetzt, im weiteren Verlauf ihrer beruflichen Praxis Lösungsansätze und -strategien für dort auftretende Globale Optimierungsprobleme, gegebenenfalls auch im Team zusammen mit Spezialisten anderer involvierter Fachbereiche, zu entwickeln und erfolgreich zu implementieren, sowie die erhaltenen Resultate im Berufsumfeld mit dem nötigen Fachwissen kompetent zu vertreten. Sie sind befähigt Anmerkungen zu beachten und Kritik zu würdigen.

Vorkenntnisse

Grundvorlesung Optimierung

Inhalt

Theorie und numerische Verfahren der kontinuierlichen nichtkonvexen Optimierung sowie der gemischtganzzahligen nichtlinearen Optimierung, Zusammenhänge kombinatorische und kontinuierliche Optimierung wie kopositive Optimierung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Oliver Sein, Gründzüge der globalen Optimierung, Springer, 2018.

Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, Jim Luedtke, and Ashutosh Mahajan. Mixed-Integer Nonlinear Optimization. Acta Numerica 22:1-131, 2013.

Aktuelle Arbeiten

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Modul: Kombinatorische Optimierung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200435 Prüfungsnummer:2400787

Modulverantwortlich: Prof. Dr. Matthias Kriesell

Leistungspu	nkte: 10)		W	orkl	oad	l (h):30	00		Α	ntei	I S	elbs	tstu	ıdiu	m (h):23	2		S	WS	:6.0)		
Fakultät für N	Mathem	l										Fac	hge	biet	:24	11										
SWS nach	akultät für Mathematik und Naturwissenschaften WS nach 1.FS 2.FS 3.FS 4.FS															3	7	.FS		8.F	S	ć).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	۱ د	/ S	Р	٧	S	Р	V S	Р
semester			4 2	0																						

Lernergebnisse / Kompetenzen

Nach der Vorlesung könne die Studierenden typische Probleme der Kombinatorischen Optimierung und Verfahren zu deren Lösung benennen, wissen dieses zusammenzufassen. Sie sind anhand der in der Vorlesung vorgestellten Beispiele für Fragen der Berechnungskomplexität sensibilisiert und sind fähig, typische Probleme hinsichtlich ihrer Berechnungskomplexität einzuordnen. Nach den Übungen können die Studierenden einerseits die o. g. Kenntnisse und Methoden zur Lösung von Beispielaufgaben anwenden, andererseits können sie kombinatorische Sachverhalte beweisen.

Vorkenntnisse

Lineare Algebra I/II sowie Graphen & Algorithmen

Inhalt

Grundlagen der Kombinatorischen Optimierung. Ausgewählte Probleme.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel

Literatur

Das Lehrbuch von Korte-Vygen

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Variationsrechnung und optimale Steuerung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200415 Prüfungsnummer: 2400767

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte: 10	W	orkload (h):300	Anteil S	elbststudiu	ım (h):232	S	WS:6.0	
Fakultät für I	Mathema	ik und Nat	urwissens	chaften				Fachge	biet:2413	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester		4 2 0								

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung grundlegende Begriffe, Resultate und Beweisideen der Variationsrechnung und der Theorie der optimalen Steuerung. Insbesondere beherrschen sie das Bang-Bang-Prinzip und kennen das Maximumprinzip. Sie sind nach den Übungen fähig, die allgemeinen Resultate auf Spezialfälle anzuwenden.

Zudem kennen die Studentinnen und Studenten Querbezüge zur (nichtlinearen) Optimierung.

Vorkenntnisse

Grundlagen der Analysis und linearen Algebra sowie die Theorie gewöhnlicher Differentialgleichungen

Inhalt

Variationsprobleme und deren analytische Lösung mit Hilfe der Euler-Lagrange-Gleichung sowie ggf. der Weierstrass-Erdmannschen Eckenbedingung und die notwendige Bedingung von Legendre.

Modellierung und Formulierung optimaler Steuerungsprobleme (insbesondere Zeitoptimalität). Charakterisierung der zulässigen Menge für lineare autonome Differentialgleichungssysteme (insbesondere Bang-Bang-Prinzip) und Maximumprinzip sowie dessen Anwendung.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Hansjörg Kielhöfer: Variationsrechnung - Eine Einführung in die Theorie einer unabhängigen Variablen mit Beispielen und Aufgaben, Vieweg+Teubner: Studium, 1. Auflage, 2010.

Jack Macki und Aaron Strauss: Introduction to Optimal Control Theory, Springer: Undergraduate Texts in Mathematics, 1982.

Heinz Schättler und Urszula Ledzewicz: Geometric Optimal Control - Theory, Methods and Examples, Springer: Interdisciplinary Applied Mathematics 38, 1. Auflage, 2012.

Suresh P. Sethi: Optimal Control Theory - Applications to Management Science and Economics, Springer, 3. Auflage, 2019.

John L. Troutman: Variational Calculus and Optimal Control - Optimization with Elementary Convexity, Springer: Undergraduate Texts in Mathematics, 2. Auflage, 1996.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Vektoroptimierung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200447 Prüfungsnummer:2400799

Modulverantwortlich: Prof. Dr. Gabriele Eichfelder

Leistungspu	nkte: 1	0		W	orklo	ad (r	1):30	00		Α	ntei	l Se	elbs	tstuc	liu	m (h):2	232		S	WS:	6.0)		
Fakultät für I	Mathen	k und										Fa	chge	biet	24	15								
SWS nach	1.F	3	5	5.FS	3	6	.FS		7.F	S	8.	FS	9	.FS	3	10.1	-s							
Fach-	V S	Р	v s	Р	V	S P	V	S	Р	٧	S	Р	٧	SI	Р	v s	Р	V	S P	V	S	Р	v s	Р
semester			4 2	0																				

Lernergebnisse / Kompetenzen

Die Studierenden erkannten in der Vorlesung und Übung die grundlegenden Unterschiede und die sich daraus ableitenden zusätzlichen Herausforderungen der hier betrachteten Problemstellungen bezüglich der Dimension des Bildraumes und der zugrundeliegenden Halbordnungen im Vergleich zu den üblicherweise in Grundlagenvorlesungen der Optimierung untersuchten Optimierungsproblemen. Jedoch ist ihnen auch bewusst, dass sich diese neuen Problemstellungen unter geeigneten Bedingungen durch gewisse Techniken (Skalarisierungen) auf die bisher betrachteten und bekannten zurückführen lassen. Durch die Vorlesung beherrschen sie die grundlegenden Begriffe und Methoden sowie die fundamentalen Resultate (einschließlich Beweisideen) der Vektor- und Mengenoptimierung. Weiterhin können die verschiedenen Resultate durch die Studierenden klassifiziert und miteinander hinsichtlich ihrer Bedeutung (etwa lineare und nichtlineare Skalarisierungen) kategorisiert werden. Basierend hierauf sind sie in der Lage, die aus den theoretischen Grundlagen abgeleiteten und vorgestellten Verfahren zu verstehen und ihre Besonderheiten zu erfassen. Weiterhin sind sie befähigt, die allgemeinen Resultate auf (praktisch) relevante Spezialfälle anzuwenden und somit die allgemeinen Resultate der Vektoroptimierung zum Lösen konkreter Praxisprobleme anzuwenden. Diese Erkenntnisse wurden in den Übungen von den Studierenden angewendet, um weitere mathematische Resultate aus dem Bereich der Vektor- und Mengenoptimierung zu erhalten sowie die Arbeitsweise der behandelten Verfahren durch mathematische Software bei vorgegebenen Testinstanzen oder praktischen Anwendungsproblemen vergleichend zu untersuchen und die erhaltenen Ergebnisse zu analysieren. Somit gelingt es ihnen nun unter anderem die Existenz von alternativen Lösungsstrategien zu erkennen bzw. das mögliche Versagen von behandelten Ansätzen und damit deren Grenzen abzuschätzen. Sie können durch die Übungen Anmerkungen beachten und Kritik würdigen. Die im Rahmen dieser Veranstaltung erlangten Kenntnisse befähigen die Studierenden zur einer tiefergehenden Beschäftigung mit Fragestellungen der Vektorund Mengenoptimierung, etwa im Rahmen von Abschlussarbeiten oder Forschungsprojekten. Durch die hohe praktische Relevanz der untersuchten Problemstellungen sind sie darüberhinaus in die Lage versetzt, in ihrer beruflichen Praxis multikriterielle Problemstellungen gegebenenfalls in Zusammenarbeit mit Spezialisten anderer Fachrichtungen zu lokalisieren sowie Lösungsansätze und -strategien für die daraus resultierenden multikriteriellen Optimierungsprobleme zu entwickeln und erfolgreich umzusetzen.

Vorkenntnisse

Grundvorlesung Optimierung

Inhalt

Optimierungsprobleme mit vektorwertiger oder mengenwertiger Zielfunktion, Optimalitätsbegriffe, Charakterisierung optimaler Lösungen mittels linearer und nichtlinearer Skalarisierungen, Optimalitätsbedingungen, Numerische Verfahren, Anwendungen, Spezialfall multikriterielle Optimierung, Behandlung von Unsicherheiten mittels robuster Zugänge

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

M. Ehrgott, Multicriteria Optimization 2nd Edition (Springer, Berlin, 2005).

G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization (Springer, Berlin, 2008).

J. Jahn, Vector Optimization: Theory, Applications, and Extensions 2nd Edition (Springer, Berlin, 2010).

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Angewandte Wärmeübertragung

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200278 Prüfungsnummer:2300732

Modulverantwortlich: Prof. Dr. Christian Cierpka

Leistungspu	nkte	e: 5				W	ork	load	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (h):1	105			S	WS	:4.0)			
Fakultät für I	kultät für Maschinenbau																					F	acl	hge	biet	:23	46			
SWS nach	1	l.F	S	2	:.F	S	3	3.F	S	_	l.F	S	5	5.FS	3	6	6.F	S	7	.FS	3	8	3.F	S	6).F	S	1	0.F	S
Fach-	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	2	2	0																											

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung Angewandte Wärmeübertragung gab den Studierenden nach dem Erwerb von Grundkenntnissen in den Lehrveranstaltungen Technische Thermodynamik 1 und Strömungsmechanik 1 tiefere Einblicke in das ingenieurstechnische Grundlagenfach der Wärmeübertragung. Als Lernergebnisse erkennen die Studierenden die fundamentalen physikalischen Mechanismen der Wärmeübertragung in Form von Wärmeleitung, Wärmekonvektion und Wärmestrahlung und verstehen die grundlegende wissenschaftliche Vorgehensweise zur Berechnung der dadurch übertragenen Wärmeströme. Sie können folgern, dass die Methodik des Wärmewiderstands, die Methodik des thermischen Ersatzschalbilds und die Methodik der systematischen Kennzahlenbildung von zentraler Bedeutung für die erfolgreiche ingenieustechnische Analyse von gekoppelten Wärmeübertragungsproblemen sind. Die Studierenden sind in der Lage, diese Methodik gezielt zur Lösung von ausgesuchten Problemstellungen der Ingenieurtechnik anzuwenden. Die Studierenden können dabei fachspezifische mathematische Methoden benutzen, um instationäre Wärmetransportvorgänge zu analysieren und zu bewerten sowie die Gesetzmäßigkeiten der Wärmeübertragung bei freier und erzwungener Konvektion zu untersuchen und zu interpretieren. Des Weiteren sind die Studierenden in der Lage, die Wärmeübertragung bei Phasenwechsel (Verdamfung und Kondensation) zuzuordnen. Nach der wöchentlichen Übung könnedie Studierenden eigenständig und in der Gruppe komplexe anwendungsorientierte Aufgaben lösen, die erzielten Ergebnisse interpretieren und diese auf physikalische Plausibilität durch methodische Entwicklung von geeigneten Lösungsansätzen und Bewertung der den Lösungsansätzen zugrunde liegenden physikalischen Annahmen prüfen. Die Studierenden haben zudem ein tiefes Verständnis in den theoretischen und mathematischen Grundlagen und sind bei erfolgreicher Teilnahme hierdurch an die Anforderungen an ein eventuelles anschließendes Promotionsstudium vorbereitet. Hierdurch entwickelten die Studierenden nicht nur Fachkompetenz, sondern auch Kompetenzen in den Feldern wissenschaftliches Arbeiten und wissenschaftliche Präsentation.

Vorkenntnisse

Technische Thermodynamik 1 / Strömungsmechanik 1

Inhali

Die Inhalte orientieren sich an Forschungsprojekten des Fachgebiets Technische Thermodynamik und umfassen die Punkte:

- -Mechanismen der Wärmeübertragung in Form von Wärmeleitung, Wärmekonvektion und Wärmestrahlung sowie die grundlegenden Gesetze zur Berechnung der Wärmströme in Form des Fourierschen Gesetzes, des Newtonschen Kühlungsgesetzes und des Stefan-Boltzmann-Gesetzes mit Beispielen und Anwendungen.
 -Analyse von stationären Wärmeleitungsprozessen mittels der Methodik der Wärmewiderstände und der Methodik des thermischen Ersatzschaltbilds sowie von instationären Wärmeleitungsprozessen mittels der Methodik der lumped capacitance method und den mathematisch/analytischen Methoden zur Lösung partieller Differentialgleichungen mit Beispielen und Anwendungen.
- -Analyse von Wärmeübertragungsprozessen bei erzwungener und freier Konvektion bei laminar und turbulenter Strömung mittels der Methodik der Grenzschichttheorie mit Beispielen und Anwendungen,
- -Analyse von Wärmeübertragungsprozessen bei Phasenwechsel mittels der Methodik des Behältersiedens und der Methodik der Filmkondensation mit Beispielen und Anwendungen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Projektor, Moodle

Literatur

Wärme- und Stoffübertragung, H. Baehr, K. Stephan, Springer-Verlag, Berlin (1996)Fundamentals of Heat and Mass Transfer, F. Incropera, D. DeWitt, J. Wiley & Sons, New York (2002)Freie Konvektion und Wärmeübertragung, U. Müller, P. Ehrhard, CF Müller-Verlag, Heidelberg (1999)VDI-Wärmeatlas, VDI-Verlag Düsseldorf (CD-ROM)Zusatzmaterial auf Moodle

Detailangaben zum Abschluss

Als Hilfsmittel für die schriftliche Prüfung dürfen die Studierenden ein selbständig erstelltes Formelblatt sowie die auf Moodle hinterlegten Arbeitsblätter in gebundener Form benutzen.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022 Master Maschinenbau 2022

Master Regenerative Energietechnik 2022

Modul: Strömungsmechanik 1

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200283 Prüfungsnummer:2300739

Modulverantwortlich: Prof. Dr. Jörg Schumacher

Leistungspu	tungspunkte: 5 Workload (h):150 ultät für Maschinenbau															elbs	tstu	ıdiu	ım (l	ո)։1	05			S	WS	:4.0)		
Fakultät für I	ultät für Maschinenbau																					F	ach	igel	biet	:23	47		
SWS nach	1 50 2 50 2 50 4 50															6	6.F	S	7	.FS	;	8	.FS	3	9	.FS	S	10	.FS
Fach-	S nach 1.FS 2.FS 3.FS 4.FS															٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V :	S P
semester	2	2	0																										

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung einen Überblick über die Grundlagen und Konzepte der Strömungsmechanik mit Anwendungen für die Ingenieurwissenschaften. Dabei können sie auch ihre Vorkenntnisse aus der physikalischen Grundausbildung reproduzieren. Durch die Übungen sind sie befähigt, die Problemstellung in den wöchentlich empfohlenen Übungsaufgaben zu kategorisieren, mögliche Lösungswege der Übungsaufgaben zu diskutieren und haben die Fahigkeit erlangt, die Herangehensewiese ihrer Mitkommilitonen zu würdigen. Sie können die in der Vorlesung vermittelten Kenntnisse und mathematischen Methoden anwenden, um die Aufgaben zu lösen, die einfache analytisch lösbare Beispiele aus der Strömungsmechanik umfassen. Mit den Übungen haben die Studierenden auch die vermittelten Vorlesungsinhalte wiederholt und vertieft.

Vorkenntnisse

Physikalische Grundlagen und mathematische Fähigkeiten aus dem Grundstudium Ingenieurwissenschaften, z. B. Mathematik 1 bis 3 für Ingenieure

Inhalt

Erhaltungssätze für Masse, Impuls und Energie, Hydrostatik, Dimensions- und Ähnlichkeitsanalyse, Bernoulligleichung, Impulssatz, Rohrströmung, Gasdynamik, Grenzschichttheorie

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Beamer Präsentation, Handouts

Literatur

Kuhlmann, Strömungsmechanik, Pearson; Schlichting, Grenzschicht-Theorie, Springer; White, Fluid Mechanics, McGraw-Hill

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Bachelor Fahrzeugtechnik 2021

Bachelor Maschinenbau 2021

Bachelor Mathematik 2021

Diplom Maschinenbau 2021

Master Mathematik und Wirtschaftsmathematik 2022

Master Mechatronik 2022

Modul: Angewandte Thermo- und Fluiddynamik

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200281 Prüfungsnummer:2300736

Modulverantwortlich: Prof. Dr. Christian Cierpka

Leistungspunkte: 5					Workload (h):150						Anteil Selbststudium (h):105										SWS:4.0							
Fakultät für Maschinenbau																				Fachgebiet:2346								
SWS nach Fach-	1.FS		2.FS		3.FS		4.FS			5.FS			6.FS		7.FS		8.FS		9.FS		10.FS							
	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V \$	S P	
semester			2 2	0																								

Lernergebnisse / Kompetenzen

Nach erfolgreichem Abschluss der Lehrveranstaltung Angewandte Thermofluiddynamik haben die Studierenden einen tieferen Einblick in zwei Spezialgebiet der Thermofluiddynamik, nämlich den Strömungen mit freier Grenzfläche (Teil 1) und den Zweiphasenströmung (Teil 2). Sie erkennen die Wichtigkeit dieser beiden Spezialgebiete für die Analyse von natürlichen und industriellen Strömungstransportprozessen. Sie verstehen die physikalische Bedeutung der neuen Begriffe und der neu auftretenden Kennzahlen. Nach erfolgreiche Teilnahme sind die Studierenden in der Lage, in der Natur auftretende und technisch relevante Problemstellungen in diesen beiden Fachbereichen ingenieursmäßig zu analysieren und beherrschen die physikalische und mathematische Modellbildung. Sie können die problemspezifischen Kennzahlen bilden und physikalisch interpretieren. Sie verwenden die mathematische Beschreibung sicher und wählen analytische Lösungsansätze gezielt aus. Sie sind ferner in der Lage die erzielten Lösungen zu diskutieren und auf ihre Plausibilität prüfen zu können. In der Vorlesung werden zudem Fachkompetenzen im Bezug zu aktuellen Forschungsprojekte des Instituts für Thermo- und Fluiddynamik vermittelt.

In der wöchentlichen Übung lösen die Studierenden eigenständig und in der Gruppe komplexe anwendungsorientierte Aufgaben. Sie sind nach Abschluss in der Lage die erzielten Ergebnisse zu interpretieren und diese auf physikalische Plausibilität durch methodische Entwicklung von geeigneten Lösungsansätzen und Bewertung der den Lösungsansätzen zugrunde liegenden physikalischen Annahmen zu überprüfen. Die Studierenden haben vertiefte Kenntnisse in den theoretischen und mathematischen Grundlagen und werden bei erfolgreicher Teilnahme an die Anforderungen an ein eventuelles anschließendes Promotionsstudium vorbereitet. Hierdurch entwickeln die Studierenden nicht nur Fachkompetenz, sondern auch Kompetenzen in den Feldern wissenschaftliches Arbeiten, wissenschaftliche Dokumentation und wissenschaftliche Präsentation.

Vorkenntnisse

Strömungsmechanikhöhere Ingenieursmathematik

Inhalt

Inhalt

Teil 1: Blöcke 0 – 3 (Prof. Dr. Karcher)

Teil 1 untergliedert sich in vier Blöcke mit Vorlesungen (V) und zughörigen Übungen (Ü).

Block 0: Thermodynamische Grundlagen- Hauptsätze der Thermodynamik mit Anwendungen

- Entropie und Exergie mit Anwendungen
- Gibbssche Energie und thermodynamische Potentiale mit Anwendungen

Block 1: Geothermische Anwendungen der Thermofluiddynamik

- Grundlagen der Geothermie
- Anwendung Wärmepumpenprozess
- Anwendung Auslegung von Erdwärmekollektoren
- Anwendung Stirling-Prozess

Block 2: Thermofluiddynamische Anwendungen zur Meerwasserentsalzung

- Grundlagen zum Thema Wasser
- Thermofluiddynamik von Verdunstungs- und Verdampfungsprozessen
- Beispiele zu Verdunstungs- und Verdampfungsverfahren
- Beispiele zu Membranverfahren (Umkehrosmose, Destillation, Ionenkraft)

- Anwendung Trink- und Brauchwassergewinnung auf Passagierschiffen

Block 3: Thermofluiddynamik von Freien Grenzflächen

- Oberflächenspannung und Kapillarität
- Messmethoden zur Bestimmung der Oberflächenspannung
- Steighöhen in Kapillaren und Tropfen- und Blasenbildung
- Einführung in die Differenzial-Geometrie
- Anwendungen der Young-Laplace-Gleichung
- Begriff der Kapillarlänge und Kapillarzeit und Kennzahlenbildung
- Einführung in die lineare Stabilitätsanalyse dynamischer Systeme
- Begriffe der Wellenmechanik
- Elektromagnetische Kontrolle von Flüssigmetallströmungen mit freier Grenzfläche

Teil 2: Zweiphasenströmungen (PD. Dr. Boeck)

- Charakterisierung von Zweiphasenströmungen
- Strömungsformen und Strömungskarten von Flüssigkeits-Gas-Strömungen
- Druckverluste in ein- und zweiphasiger Rohrströmung
- Kelvin-Helmholtz-Instabilität
- Rayleigh-Taylor-Instabilität
- Blasenoszillation und Kavitationserscheinungen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafelanschrift, Beamer für Farbbilder und Präsentationen, E-learning über Moodle

Literatur

Teil 1

J. Zierep: Grundzüge der Strömungslehre, G. Braun Verlag, Karlsruhe

L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics Vol. 6: Fluid Mechanics, Butterworth-Heinemann

P. A. Davison: An Introduction to Magnetohydrodynamics, Cambride University Press

D. Langbein: Capillary surfaces, Springer-Verlag, Heidelberg

A. Frohn, N. Roth: Dynamics of droplets, Springer, Heidelberg

Teil 2

C. E. Brennen: Fundamentals of Multiphase flow. Cambridge University Press (2005)

R. Clift, J. R. Grace, M. E. Weber: Bubbles, drops and particles. Dover Publications (2005)

L. Gary Leal: Advanced Transport Phenomena. Cambridge University Press (2012)

Van P. Carey: Liquid-vapor phase change phenomena. CRC Press (2007)

F. Mayinger: Strömung und Wärmeübertragung in Gas-Flüssigkeitsgemischen. Springer (1982)

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Mechatronik 2017

Master Mechatronik 2022

Master Regenerative Energietechnik 2022

Modul: Numerische Strömungsmechanik

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200285 Prüfungsnummer:2300741

Modulverantwortlich: Prof. Dr. Jörg Schumacher

Leistungspunkte: 5					Workload (h):150						Anteil Selbststudium (h):105										SWS:4.0							
Fakultät für Maschinenbau											Fa									acł	achgebiet:2347							
SWS nach Fach-	1.FS		2.FS		3.FS		4.FS			5.FS			6.FS		7.FS		8.FS		9.FS		10.FS							
	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V \$	S P	
semester			2 2	0																								

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung mit den Grundlagen, Methoden und Algorithmen für die numerische Lösung der strömungsmechanischen Gleichungen für technische Anwendungen vertraut. Sie können auch Vorkenntnisse aus der Strömungsmechanik 1 und zu partiellen Differentialgleichungen reproduzieren. Anhand von ein- und zweidimensionalen Modellgleichungen können sie Diskretisierungsverfahren entwickeln und deren mathematische Eigenschaften untersuchen. Darauf aufbauend sind die Studierenden in der Lage einfache Methoden zu formulieren und

und Algorithmen für zweidimensionale Strömungsprobleme zu vergleichen. Außerdem können sie Möglichkeiten zur Behandlung komplexer Geometrien und dreidimensionaler Strömungen skizzieren. Nach den Übungen können sie mit der kommerziellen Software Ansys/Fluent anhand von konkreten Strömungsgeometrien umgehen. Sie sind in der Lage, die Aufgabenstellung in ein Berechnungsmodell zu übertragen und das Verhalten der berechneten Strömung qualitativ anhand von Stromlinienbildern, Vektordarstellungen sowie ggf. Animationen zu analysieren. Die Studierenden sind mit moderner Technik vertraut, indem jeder Student gelernt hat, die per Beamerprojektion gezeigten Einstellungen, Bearbeitungsschritte und Ergebnisse zu beachten und am eigenen Rechner nachzuvollziehen. Die Studierenden sind abschließend darin geschult, die einfachen Algorithmen für Modellgleichungen und zweidimensionale Strömungsprobleme praktisch anhand von vobereiteten Quellcodes in einer höheren Programmiersprache zu erproben. Am Ende der Vorlesung haben die Studierenden eine Übersicht über Standardmethoden und Algorithmen zur Diskretisierung und Lösung der strömungsmechanischen Gleichungen und kennen deren Eigenschaften und Beschränkungen. Weiterhin sind sie in der Lage, die Grundfunktionen der Software Ansys/Fluent zu nutzen.

Vorkenntnisse

Strömungsmechanik 1

Inhalt

Grundgleichungen, Eigenschaften und Klassifikation partieller Differentialgleichungen der Kontinuumsmechanik, Aufstellung und Analyse von Finiten Differenzenverfahren für einfache partielle Differentialgleichungen, Iterative Lösung linearer Gleichungssysteme, Finite Differenzenverfahren für zweidimensionale inkompressible Strömungen, Finite Volumenverfahren

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Powerpoint

Literatur

Ferziger & Peric, Computational Methods for Fluid Dynamics, Springer; Zikanov, Essential Computational Fluid Dynamics, Wiley

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Master Maschinenbau 2017 Master Maschinenbau 2022

Modul: Strömungsmechanik 2

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200311 Prüfungsnummer:2300777

Modulverantwortlich: Prof. Dr. Jörg Schumacher

Leistungspu	1.50 2.50 2.50 4.50														tstu	ıdiu	ım (h):1	05			S	WS	:4.0)		
Fakultät für I	kultät für Maschinenbau																			F	act	nge	biet	:23	47		
SWS nach	1 50 2 50 2 50 4 50														6.F	S	7	.FS	3	8	3.FS	3	ć).F	S	10.	FS
Fach-	v s	Р	v s	Р	V	SI	5	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	VS	S P
semester			2 2	0																							

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung Kenntnisse über Mechanik turbulenter Strömungen mit Anwendungen in Natur und Technik. Dabei können sie auch ihre Vorkenntnisse aus der Strömungsmechanik 1 reproduzieren. Durch die Übungen sind sie befähigt, die Problemstellung in den wöchentlich gestellten Übungsaufgaben zu kategorisieren, mögliche Lösungswege der Übungsaufgaben zu diskutieren und haben die Fahigkeit erlangt, die Herangehensewiese ihrer Mitkommilitonen zu würdigen. Sie können die in der Vorlesung vermittelten Kenntnisse und Methoden anwenden, um die Aufgaben zu lösen, die analytisch lösbare Beispiele aus dem Problembereich der hydrodynamischen Turbulenz umfassen. Mit den Übungen auf der Basis von wöchentlich empfohlenen Übungsaufgaben haben die Studierenden auch die vermittelten Vorlesungsinhalte gefestigt und wiederholt.

Vorkenntnisse

Strömungsmechanik 1

Inhalt

Wirbeltransport, Homogene isotrope Turbulenz, Korrelationen und statistische Momente turbulenter Strömungsfelder, Reynoldssche Gleichungen, Turbulente Grenzschichten und Scherströmungen, Turbulente Konvektion

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Beamer Präsentation, Handouts

Literatur

Davidson, Turbulence, Cambridge University Press; Pope, Turbulent Flows, Cambridge University Press; Rotta, Turbulente Strömungen, Teubner

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Master Maschinenbau 2022

Master Mathematik und Wirtschaftsmathematik 2022

Master Mechatronik 2017 Master Mechatronik 2022

Modul: Wärmestrahlung

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200287 Prüfungsnummer:2300743

Modulverantwortlich: Prof. Dr. Claus Wagner

Leistungspu	1 50 2 50 2 50 4 50														tstu	ıdiu	m (l	า):1	05		5	SWS	6:4.0)		
Fakultät für N	ıkultät für Maschinenbau																			Fa	chge	ebie	t:23	49		
SWS nach	1 50 2 50 2 50 4 50													6	S.FS	3	7	.FS		8.	FS		9.F	S	10	.FS
Fach-	v s	Р	٧	S P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S P	٧	S	Р	V	S F
semester	,		2	2 0																						

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung grundlegende und erweiterte Kenntnisse des Wärmetransports durch Strahlung. Sie können diese Kenntnisse auf technische Strahlungsprobleme anwenden und sind in der Lage, technologische Prozesse der Strahlungserwärmung zu entwickeln oder zu optimieren. In den Übungen wurden die Studierenden mit der Berechnung dieser Prozesse vertraut gemacht. Sie sind im Umgang mit Infrarotmesstechnik (Pyrometer, Infrarotkameras) geschult und haben gelernt, diese Messgeräte in der Praxis sachgerecht anzuwenden. Sie können Anmerkungen beachten und Kritik ihrer Mentoren annehmen sowie diese auch konstruktiv umsetzen.

Vorkenntnisse

Physikalische Grundlagen und mathematische Fähigkeiten aus der gymnasialen Oberstufe

Inhalt

- Grundlagen der elektromagnetischen Strahlung
- Grundlagen des Strahlungsaustausches
- Spezielle Probleme der Wärmeübertragung durch Strahlung
- Grundlagen und Methoden der Infrarotmesstechnik
- Praktische Anwendung der Infrarotmesstechnik
- Grundlagen der Strahlungserwärmung
- Technische Strahler
- · Ingenieurtechnische Anwendungen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Das Modul Wärmestrahlung wird nicht in elektronischer Form angeboten.

- · Tafel, Kreide
- Overhead-Projektor
- Beamer
- · Demonstrationsversuche

Literatur

- Frank P. Incropera, David P. DeWitt. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Inc.
- A.F. Mills: Heat Transfer, Prentice Hall Inc., Upper Saddle River (1999).
- H. D. Baehr, K. Stephan. Wärme- und Stoffübertragung. Springer, Vieweg Verlag.
- R. Siegel, J.R. Howell, J. Lohrengel. Wärmeübertragung durch Strahlung, Springer-Verlag, Berlin (1988).
- C. Kramer, A. Mühlbauer. Praxishandbuch Thermoprozesstechnik, Vulkan-Verlag, Essen (2002).
- VDI-Gesellschaft. VDI-Wärmeatlas. Springer Berlin Heidelberg.
- IMPAC GmbH. Pyrometerhandbuch Berührungslose Temperaturmessung (Firmenschrift). Impressum Copyright IMPAC Infrared GmbH 2004.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Master Maschinenbau 2017 Master Maschinenbau 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Angewandte Wärmeübertragung

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200278 Prüfungsnummer:2300732

Modulverantwortlich: Prof. Dr. Christian Cierpka

Leistungspu	nkte	e: 5				W	orkl	oad	d (h):15	50		A	ntei	l Se	elbs	ststı	udiu	m (h):′	105			S	WS	:4.0)			
Fakultät für I	akultät für Maschinenbau																					F	acl	hge	bie	:23	46			
SWS nach	1 5 2 5 2 5 4 5 6														3	6	3.F	S	7	.FS	3	8	3.F	S	().F	S	10).F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	s	Р
semester	2	2	0																											

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung Angewandte Wärmeübertragung gab den Studierenden nach dem Erwerb von Grundkenntnissen in den Lehrveranstaltungen Technische Thermodynamik 1 und Strömungsmechanik 1 tiefere Einblicke in das ingenieurstechnische Grundlagenfach der Wärmeübertragung. Als Lernergebnisse erkennen die Studierenden die fundamentalen physikalischen Mechanismen der Wärmeübertragung in Form von Wärmeleitung, Wärmekonvektion und Wärmestrahlung und verstehen die grundlegende wissenschaftliche Vorgehensweise zur Berechnung der dadurch übertragenen Wärmeströme. Sie können folgern, dass die Methodik des Wärmewiderstands, die Methodik des thermischen Ersatzschalbilds und die Methodik der systematischen Kennzahlenbildung von zentraler Bedeutung für die erfolgreiche ingenieustechnische Analyse von gekoppelten Wärmeübertragungsproblemen sind. Die Studierenden sind in der Lage, diese Methodik gezielt zur Lösung von ausgesuchten Problemstellungen der Ingenieurtechnik anzuwenden. Die Studierenden können dabei fachspezifische mathematische Methoden benutzen, um instationäre Wärmetransportvorgänge zu analysieren und zu bewerten sowie die Gesetzmäßigkeiten der Wärmeübertragung bei freier und erzwungener Konvektion zu untersuchen und zu interpretieren. Des Weiteren sind die Studierenden in der Lage, die Wärmeübertragung bei Phasenwechsel (Verdamfung und Kondensation) zuzuordnen. Nach der wöchentlichen Übung könnedie Studierenden eigenständig und in der Gruppe komplexe anwendungsorientierte Aufgaben lösen, die erzielten Ergebnisse interpretieren und diese auf physikalische Plausibilität durch methodische Entwicklung von geeigneten Lösungsansätzen und Bewertung der den Lösungsansätzen zugrunde liegenden physikalischen Annahmen prüfen. Die Studierenden haben zudem ein tiefes Verständnis in den theoretischen und mathematischen Grundlagen und sind bei erfolgreicher Teilnahme hierdurch an die Anforderungen an ein eventuelles anschließendes Promotionsstudium vorbereitet. Hierdurch entwickelten die Studierenden nicht nur Fachkompetenz, sondern auch Kompetenzen in den Feldern wissenschaftliches Arbeiten und wissenschaftliche Präsentation.

Vorkenntnisse

Technische Thermodynamik 1 / Strömungsmechanik 1

Inhali

Die Inhalte orientieren sich an Forschungsprojekten des Fachgebiets Technische Thermodynamik und umfassen die Punkte:

- -Mechanismen der Wärmeübertragung in Form von Wärmeleitung, Wärmekonvektion und Wärmestrahlung sowie die grundlegenden Gesetze zur Berechnung der Wärmströme in Form des Fourierschen Gesetzes, des Newtonschen Kühlungsgesetzes und des Stefan-Boltzmann-Gesetzes mit Beispielen und Anwendungen.
 -Analyse von stationären Wärmeleitungsprozessen mittels der Methodik der Wärmewiderstände und der Methodik des thermischen Ersatzschaltbilds sowie von instationären Wärmeleitungsprozessen mittels der Methodik der lumped capacitance method und den mathematisch/analytischen Methoden zur Lösung partieller Differentialgleichungen mit Beispielen und Anwendungen.
- -Analyse von Wärmeübertragungsprozessen bei erzwungener und freier Konvektion bei laminar und turbulenter Strömung mittels der Methodik der Grenzschichttheorie mit Beispielen und Anwendungen,
- -Analyse von Wärmeübertragungsprozessen bei Phasenwechsel mittels der Methodik des Behältersiedens und der Methodik der Filmkondensation mit Beispielen und Anwendungen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Projektor, Moodle

Literatur

Wärme- und Stoffübertragung, H. Baehr, K. Stephan, Springer-Verlag, Berlin (1996)Fundamentals of Heat and Mass Transfer, F. Incropera, D. DeWitt, J. Wiley & Sons, New York (2002)Freie Konvektion und Wärmeübertragung, U. Müller, P. Ehrhard, CF Müller-Verlag, Heidelberg (1999)VDI-Wärmeatlas, VDI-Verlag Düsseldorf (CD-ROM)Zusatzmaterial auf Moodle

Detailangaben zum Abschluss

Als Hilfsmittel für die schriftliche Prüfung dürfen die Studierenden ein selbständig erstelltes Formelblatt sowie die auf Moodle hinterlegten Arbeitsblätter in gebundener Form benutzen.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022

Master Maschinenbau 2022

Master Regenerative Energietechnik 2022

Modul: Data-Driven Optimization for Machine Learning Applications

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200135 Prüfungsnummer:220491

Modulverantwortlich: Prof. Dr. Pu Li

Leistungspu	nkte	: 5				W	ork	load	d (h):15	50		Aı	nte	l Se	elbs	tstu	ıdiu	ım (l	h):1	05			S	ws	:4.0)			
Fakultät für I	kultät für Informatik und Automatisierung																					F	ach	igel	biet	:22	12			
SWS nach	1 50 2 50 2 50 4 50													5.F	3	6	S.FS	3	7	.FS		8	.FS	3	9	.FS	3	10).F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р
semester	2	2	0																											

Lernergebnisse / Kompetenzen

The students know and can explain

- basic model-driven, model-driven data-augumented, and data-driven optimization
- numerical linear algebra methods for machine learning
- · convexity and regularization of functions
- non-negative matrix factorization and application
- modern mathematical optimization algorithms for pattern recognition and classification
- modern mathematical optimization algorithms for neural-network-based modeling.

They can implement

- · optimization algorithms for linear and nonlinear regressions
- quadratic programming methods for support vector machines
- · optimization algorithms for non-negative matrix factorization, pattern recognition, and applications
- and evaluate various optimization algorithms for neural network-based modeling and applications

The students learn the theory, models, methods, and algorithms of the corresponding subjects in the lectures. In the exercises, they are activated to solve example tasks. In project tasks, they analyze, solve, and evaluate programming problems.

Vorkenntnisse

BSc level. Basic linear algebra and computer programming skills are advantageous.

Inhalt

- 1. Introduction Motivation, Data-driven versus Model-driven appraach, importance of data-driven optimization; overview of optimization problems arising in machine learning applications;
- 2. Preiminaries linear algebra; convex sets convex functions; gradient, sub-gradient, hessian matrix;
- 3. Programming basics (Python, R, Matlab); data loading and preprocessing;
- 4. Unconstrained optimization for machine learning: regularization-meaning and relevance; regression problems; neural networks and back-propagation of errors; optimization methods for deep learning;
- 5. Uncostrained Optimiztion Algorithms; 5A: First-order algorithms gradient descent, accelerated gradient descent, stochastic gradient descent, conjugate gradient methods, coordinate descent; R and Python implementations; sub-gradient methods (optional); 5B. Second-order algorithms: The Newton Method; quasi-Newton methods; LBFGS; R and Python implementations;
- 6. Constrained Optimization Methods for Machine Learning the interior point method; face-recongintion with supprot vector machine using Python, Scikit-Learn and OpenCV; Matrix factorization methods for pattern recognition- SVD, PCA, non-negative matrix factorization (NMF); Matlab and Python Scikit-Learn implementations; Proximal-Point Algorithms: proximal gradient methods; alternating direction of multupliers
- 7. Bayesian Optimization methods for Machine Learning;
- 8. Optimization algorithms in Deep Learning Tools TensorFlow, Kerays, pyTorch

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Lecture Slides, PC Pools, Machine Learning Tools and Libraries

Literatur

Bottou, Léon; Curtis Frank E., Nocedal, Jorge: Optimization Methods for Large-Scale Machine Learning. SIAM Review, 60(2), 223-

311.

Emrouznejad, Ali (ed.): Big Data Optimization: Recent developments and challenges. Volume 18, Studies in Big Data Series, Springer,

2016.

Geron, Aurelien: Hands-on machine learning with scikit-learn, Keras & TensorFlow, 2nd Ed. O'Reilly,

2019. Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron: Deep Learning. The MIT Press,

2017.

Detailangaben zum Abschluss

Das Modul Data-Driven Optimization for Machine Learning Applications mit der Prüfungsnummer 220491 schließt mit folgenden Leistungen ab:

- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 30% (Prüfungsnummer: 2200829)
- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 70% (Prüfungsnummer: 2200830)

Details zum Abschluss Teilleistung 1:

Programmieraufgaben als Hausbeleg

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Research in Computer & Systems Engineering 2016

Master Research in Computer & Systems Engineering 2021

Modul: Discrete Event Systems

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200089 Prüfungsnummer:2200751

Modulverantwortlich: Prof. Dr. Yuri Shardt

Leistungspu	nkte	: 5			W	orkl	oac	d (h):15	0		A	ntei	I Se	elbs	tstu	ıdiu	m (l	า):1)5		5	SWS	6:4.0)			
Fakultät für I	akultät für Informatik und Automatisierung																				Fa	chge	ebie	t:22	11			
SWS nach	1 50 2 50 2 50 4 50														6	S.FS	3	7	.FS		8.	FS		9.F	S	10	.FS	;
Fach-	٧	S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V :	SP	٧	S	Р	٧	s	P
semester	2	2	0																									

Lernergebnisse / Kompetenzen

By the end of this course, students should be able to describe and analyze important properties of discrete-event systems in the form of automata; to design simple supervisors for typical closed-loop system specifications; and to reduce the complexity of the design task, using modular and decentralized as well as hierarchical design methods. Furthermore, the students should have learnt how to develop and implement solutions that require the analysis and control of automata for real-world problems. They should have learnt to constructively take criticism and implement comments and suggestions from their instructors and fellow students.

Vorkenntnisse

Foundational knowledge in mathematics and control theory

Inhalt

The course will cover:

- · Features of event-driven processes
- · Formal languages and automata
- · Automaton features
- · The concept of supervisory control
- · Controllability and blocking of automata
- · Minimally restrictive supervisor design · Modular and decentralized approaches
- · Hierarchical design procedures

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Presentations, Course notes, and Whiteboard lectures, online according to the regulations of TU Ilmenau, Moodle

Literatur

- · C. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, Springer, 2008.
- · F. Puente Le?on, U. Kiencke, Ereignisdiskrete Systeme: Modellierung und Steuerung verteilter Systeme, Oldenbourg, 2013.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

 Written take-home examination according to the regulations in §6a PStO-AB Duration: 240 minutes Technical Requirements: Exam-Moodle https://intranet.tu-ilmenau.de/site/vpsl-pand/SitePages/Handreichungen_Arbeitshilfen.aspx

verwendet in folgenden Studiengängen:

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2014 Master Ingenieurinformatik 2021

Master Research in Computer & Systems Engineering 2016

Master Research in Computer & Systems Engineering 2021

Modul: Kognitive Robotik

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200083 Prüfungsnummer:220453

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	0		A	ntei	Se	elbs	tstu	ıdiu	ım (h):1)5			S١	NS:	4.0)		
Fakultät für I	kultät für Informatik und Automatisierung																			F	ach	gek	oiet:	22	33		
SWS nach	1 50 2 50 2 50 4 50														S.FS	3	7	.FS		8	.FS		9	.FS	3	10	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	S P
semester	2 1	1																									

Lernergebnisse / Kompetenzen

Nach Absolvierung des Moduls "Kognitive Robotik" verfügen die Studenten über die Begrifflichkeiten und das Methodenspektrum der Kognitiven Robotik. Sie haben übergreifende Ansätze zur Konzeption und der Realisierung von Robotik-Komponenten aus der Sicht von Sensorik, Aktorik und kognitiver Informationsverarbeitung verstanden. Sie kennen Techniken der Umgebungswahrnehmung und der lokalen und globalen Navigation von Kognitiven Robotern in komplexer realer Einsatzumgebung. Die Studierenden sind in der Lage, Fragestellungen aus dem o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte für unterschiedliche Fragestellungen der Service- und Assistenzrobotik zu entwerfen und umzusetzen, sowie bestehende Lösungskonzepte zu bewerten. Vor- und Nachteile der Komponenten und Verfahren im Kontext praktischer Anwendungen sind den Studierenden bekannt. Mit den Python-Implementierungen (Teilleistung 2) verfügen die Studierenden über praktische Verfahren bei der Implementierung von Navigationsalgorithmen für die Robotik. Nach intensiven Diskussionen während der Übungen und zur Auswertung der Python-Implementierung können die Studierenden Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Pflichtmodul "Neuroinformatik und Maschinelles Lernen"

Inhalt

Die Lehrveranstaltung vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung von Verfahren der Roboternavigation sowie zur Informations- und Wissensverarbeitung in Kognitiven Robotern. Sie vermittelt Faktenwissen, begriffliches und algorithmisches Wissen aus folgenden Themenkomplexen:

- Begriffsdefinitionen (Kognitive Robotik, Servicerobotik, Assistenzrobotik), Anwendungsbeispiele und Einsatzgebiete
 - Basiskomponenten Kognitiver Roboter
- Sensorik und Aktuatorik: aktive und passive / interne und externe Sensoren; Antriebskonzepte und Artikulationstechniken
- Basisoperation zur Roboternavigation: Lokale Navigation und Hindernisvermeidung incl. Bewegungssteuerung (VFH, VFH+, DWA); Anbindung an die Motorsteuerung; Arten der Umgebungsmodellierung und -kartierung; probabilistische Selbstlokalisation (Bayes-Filter, Partikel-Filter, MCL); Simulataneous Localization and Mapping (SLAM) Techniken (online SLAM, Full SLAM); Pfadplanung (Dijkstra, A*, D*, E*, Rapidly-Exploring Random Trees (RRTs)
 - Steuerarchitekturen nach Art der Problemdekomposition und der Ablaufsteuerung
- Leistungsbewertung und Benchmarking Kognitiver Roboter (Metriken und Gütemaße, Gestaltung von Funktionstests)
 - Aktuelle Entwicklungen der Service- und Assistenzrobotik mit Zuordnung der vermittelten Verfahren
- Ethische, soziale und rechtliche Aspekte beim Einsatz von Robotern im Allgemeinen sowie beim Einsatz in der Häuslichkeit und in der Pflege im Speziellen

Im Rahmen der Teilleistung 2 werden die behandelten methodischen und algorithmischen Grundlagen der Roboternavigation (Erzeugung einer Occupancy Grid Maps, Pfadplanung (Dijkstra und A* Algorithmus), Selbstlokalisation mittels Partikelfilter) durch die Studierenden selbst softwaretechnisch umgesetzt und im

Rahmen eines vorgefertigten Python-Frameworks implementiert.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Lectures on demand mit Erläuterungsvideos zu Vorlesungs-, Übungs- und Praktikumsinhalten, Übungsaufgaben, Videos, Python Apps, studentische Demo-Programme, e-Learning mittels "Jupyter Notebook", Moodle-Kurs

Literatur

- Hertzberg, J., Lingemann, K., Nüchter: A. Mobile Roboter; Springer Vieweg 2012
- Siciliano, B., Khatib: O. Springer Handbook of Robotics, Springer 2016
- Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, MIT Press 2005
- Siegwart, R., Nourbakhsh, I. R.: Introduction to Autonomous Mobile Robots, MIT Press 2004

Detailangaben zum Abschluss

Das Modul Kognitive Robotik mit der Prüfungsnummer 220453 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200739)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200740)

Details zum Abschluss Teilleistung 2: eigenständige Python-Implementierungen von Navigationslesitungen

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Biomedizinische Technik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Biomedizinische Technik 2021

Bachelor Informatik 2013

Bachelor Informatik 2021

Bachelor Ingenieurinformatik 2013

Bachelor Ingenieurinformatik 2021

Master Elektrotechnik und Informationstechnik 2021

Master Informatik 2013

Master Mechatronik 2017

Master Mechatronik 2022

Modul: Lernen in kognitiven Systemen

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200085 Prüfungsnummer:220455

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspu	nkte	e: 5				W	ork	load	d (h):15	50		Α	ntei	Se	elbs	tstu	ıdiu	m (ł	า):10	5		S	WS	:4.0)		
Fakultät für I	kultät für Informatik und Automatisierung																					Fac	hge	biet	:22	33		
SWS nach	1 50 2 50 2 50 4 50														3	6	.FS	3	7	.FS		8.F	S	ç).F	S	10	.FS
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	· /	S	Р	٧	S	Р	V	S P
semester	2	1	1																									

Lernergebnisse / Kompetenzen

Im Wahlmodul "Lernen in Kognitiven Systemen" haben die Studierenden aufbauend auf den Modulen "Neuroinformatik und Maschinelles Lernen" und "Deep Learning für Computer Vision" die konzeptionellen, methodischen und algorithmischen Grundlagen des Maschinellen Lernens zum Erwerb komplexer Verhaltensleistungen in kognitiven Systemen (Autonome Systeme, Roboter, Prozessteuerungen, Spiele) durch Lernen aus Erfahrungen verstanden. Sie verfügen über Kenntnisse zur grundsätzlichen Herangehensweise dieser Form des Wissenserwerbs und zur Generierung von handlungsorientiertem Wissen aus Beobachtungen und Erfahrungen. Die Studierenden haben sich die wesentlichen Konzepte, Lösungsansätze sowie Modellierungs- und Implementierungstechniken beim Einsatz von Verfahren des Reinforcement Learnings und dessen Spielarten angeeignet. Sie sind in der Lage, praxisorientierte Fragestellungen aus dem o. g. Problemkreis zu analysieren, durch Anwendung des behandelten Methodenspektrums auf Fragestellungen aus den behandelten Bereichen neue Lösungskonzepte zu entwerfen und algorithmisch umzusetzen sowie bestehende Lösungen zu bewerten. Vor- und Nachteile der Komponenten und Verfahren im Kontext praktischer Anwendungen sind den Studierenden bekannt. Nach intensiven Diskussionen während der Übungen und zur Auswertung der Python-Implementierung (Teilleistung 2) können die Studierenden Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Pflichtmodul "Neuroinformatik und Maschinelles Lernen", Wahlmodul "Deep Learning für Computer Vision"

Inhalt

Das Modul vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung neuronaler und probabilistischer Techniken des Erwerbs von Handlungswissen durch Lernen aus evaluativ bewerteten Erfahrungsbeispielen. Sie vermittelt sowohl Faktenwissen, begriffliches und algorithmisches Wissen aus folgenden Themenkomplexen:

- Begriffliche Grundlagen: Verhalten; Agent; Zweck und Bedeutung von Lernprozessen; Stability-Plasticity Dilemma; Exploration-Exploitation Dilemma
- Reinforcement Learning (RL): Grundidee des RL; General RL-Task; Schwache und starke RL-Verfahren, RL als Markov Decision Process (MDP); Basiskomponenten eines RL-Agenten; Value/Action-Value Iteration und das Bellman´sche Optimalitätsprinzip; Q-Learning, Boltzmann-Aktionsauswahl; SARSA-Learning; On-policy und off-policy Verfahren; Eligibility Traces; RL und teilweise Beobachtbarkeit; Lösungsansätze zur Behandlung von POMDP
- Neuronale Umsetzung von RL-Agenten: Value Approximation am Beispiel TD-Gammon; NFQ-Verfahren; ADHDP-Verfahren; Grundidee von Policy Search Algorithmen
- Deep Reinforcement Learning (DRL) als Form des End-to-End Learnings: Atari Deep RL; AlphaGo; DeepControl
 - · Learning Classifier Systems (LCS)
- Multi-Agenten Systeme (MAS); Motivation und Arten von Multi-Agentensystemen; Konzepte zur Koordinierung von Agenten; Koordination mittels W-Lernen
 - Exemplarische Software-Implementierungen von RL-Verfahren für Navigationsaufgaben, Spiele,

Prozesssteuerungen (Teilleistung 2)

Im Rahmen der Teilleistung 2 sollen in C++ oder Python eigene Plugins zur Anwendung des Reinforcement Learnings am Beispiel der Roboternavigation im Simulator erstellt und experimentell untersucht werden.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Übungsaufgaben, Videos, Python Apps, studentische Demo-Programme, e-Learning mittels "Jupyter Notebook"

Literatur

- Sutton, R., Barto, A. Reinforcement Learning An Introduction. MIT Press 1998 / 2018 http://incompleteideas.net/book/RLbook/2018.pdf)
- Alpaydin, Ethem. Maschinelles Lernen, Oldenbourg Verlag, 2008 Bishop, Chr. Neural Networks for Patter Rec ognition, Oxford Press 1997

Detailangaben zum Abschluss

Das Modul Lernen in kognitiven Systemen mit der Prüfungsnummer 220455 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200743)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200744)

Details zum Abschluss Teilleistung 2: eigene C++ oder Python-Implementierungen und Übungsaufgaben

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Biomedizinische Technik 2021

Master Informatik 2013 Master Informatik 2021

Master Ingenieurinformatik 2021

Mathematische Systemtheorie differentiell-algebraischer Modul: Gleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache:Deutsch Turnus:Sommersemester

Pflichtkennz.:Wahlmodul

Modulnummer: 200429 Prüfungsnummer:2400781

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5			W	orkl	oac	l (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (h):1	16			S	ws	:3.0)			
Fakultät für I	akultät für Mathematik und Naturwissenschaften																			F	acl	nge	biet	:24	16			
SWS nach	1 50 2 50 2 50 4 50														6.F	3	7	.FS	;	8	3.FS	S	ć).F	3	10	.FS	3
Fach-	v s	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	s	Р
semester	2 1	0															·											

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung grundlegende Kenntnisse der Theorie differentiell-algebraischer Gleichungen (DAE). Der Schwerpunkt liegt auf dem linearen Fall (z.B. Beziehung zwischen Matrixpolynomen und Systembeschreibung, Charakterisierung von Lösungen, Normalformen). Sie verstehen die im Vergleich zu gewöhnlichen Differentialgleichungen zusätzlichen Schwierigkeiten in Theorie, Systemtheorie (z.B. Steuerbarkeit und Beobachtbarkeit) und Numerik. Nach den Übungen können die Studierenden typische Aussagen im Themengebiet der Vorlesung beweisen oder kennen numerische Lösungsverfahren und können diese auf konkrete Beispiele anwenden.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra sowie in gewöhnlichen Differentialgleichungen

Differentiell-algebraische Gleichungen sind eine Erweiterung gewöhnlicher Differentialgleichungen um algebraische Nebenbedingungen: Modellierung, Regularität und Index, semi-explizite Form, konsistente Anfangswerte. Schwerpunktmäßig wird der lineare Fall (verschiedene Typen von Matrizenbüschlen und korrespondierende Lösungen, Matrizenpolynome und deren Eigenschaften, Normalformen. Steuerbarkeit und Beobachtbarkeit. Feedback-Form) behandelt und ggf. ein Einblick in numerische Lösungsverfahren gewährt.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Matthias Gerdts: Optimal Control of ODEs and DAEs (Kapitel 4), De Gruyter: Graduate, 2012.

Ernst Hairer und Gerhard Wanner: Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, Springer: Computational Mathematics, 2. Auflage, 1996.

Peter Kunkel und Volker Mehrmann: Differential-algebraic equations: analysis and numerical solution, European Mathematical Society, 2. Auflage, 2006.

Karl Strehmel, Helmut Podhaisky und Rüdiger Weiner: Numerik gewöhnlicher Differentialgleichungen -Nichtsteife, steife und differential-algebraische Gleichungen, Springer Spektrum: Studium, 2. Auflage, 2012.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Modellprädiktive Regelung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200416 Prüfungsnummer: 2400768

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte	: 5			W	orkl	oad	d (h):15	50		Α	ntei	I Se	elbs	tstu	ıdiu	m (l	า):1	16		S	SWS	3:3.0)			\exists
Fakultät für I	akultät für Mathematik und Naturwissenschaften																				Fa	chge	bie	t:24	13			
SWS nach	1 50 2 50 2 50 4 50														6	S.FS	3	7	.FS		8.	FS	(9.F	S	10	.FS	,
Fach-	٧	S	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S P	٧	s	Р	V	SF	>
semester	2	1	0																									

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung die grundlegenden Begriffe, Resultate und Beweisideen der modellprädiktiven Regelung. Sie besitzen die Fähigkeit, die allgemeinen Resultate auf Spezialfälle anzuwenden. Sie können konkrete Anwendungsbeispiele analysieren. Sie wissen, wie modellprädiktive Verfahren rechentechnisch realisiert werden können.

Vorkenntnisse

Grundkenntnisse Analysis und lineare Algebra

Inhalt

Optimierungsbasierte Verfahren der mathematischen Systemtheorie, insbesondere Verfahren der modellprädiktiven Regelung, mit dem Ziel eine Zustandsrückführung für zeitdiskrete (oder zeitkontinuierliche) Systeme mit mehreren Ein- und Ausgangsgrößen unter Berücksichtigung von Steuer- und Zustandsbeschränkungen zu entwerfen: dynamische Programmierung, (relaxierte) Lyapunov-Ungleichung, asymptotische Stabilität und rekursive Zulässigkeit, Zeitdiskrete und zeitkontinuierliche Systemdynamik.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Lars Grüne und Jürgen Pannek: Model Predictive Control - Theory and Algorithms, Springer: Communications and Control Engineering, 2. Auflage, 2017.

Basil Kouvaritakis and M. Cannon: Model Predictive Control - Classical, Robust and Stochastic, Springer: Advanced Textbooks in Control and Signal Processing, 1. Auflage, 2016.

James B. Rawlings, David Q. Mayne und Moritz M. Diehl: Model Predictive Control: Theory, Computation, and Design, Nob Hill Publishing, 2. Auflage, 2017.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Multivariate Statistik

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200453 Prüfungsnummer:2400805

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	Ität für Mathematik und Naturwissenschaften															ıdiu	m (n):23	2		S	WS	:6.0)		
Fakultät für I	kultät für Mathematik und Naturwissenschaften																			Fac	hge	biet	:24	12		
SWS nach	1 50 2 50 2 50 4 50															3	7	.FS		8.F	S	6).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	y V	' S	Р	٧	S	Р	V S	Р
semester	4 2	0																-							-	

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, erhobene Daten im Rahmen eines geeigneten statistischen Modellszu analysieren und sind ebenso in der Lage z.B das Modell der linearen Regresseion, und die Qualität dieser Modellierung kritisch zu prüfen.

Vorkenntnisse

Maßtheorie & Stochastik oder Stochastik

Inhalt

Kovarianzanalyse, lineare und nichtlineare Regression, gemischte Effekte, verallgemeinerte lineare Modelle, Klassifikation, funktionale Datenanalyse

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1982). Multivariate analysis, Academic Press, London.

Rao, C. R., Toutenburg, H., Shalabh and Heumann, C. (2008). Linear Models and Generalizations - Least Squares and Alternatives, 3rd edn, Springer, Berlin.

Sengupta, D. and Jammalamadaka, S. R. (2003). Linear Models - An Integrated Approach, number 6 in Series on Multivariate Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore.

Weisberg, S. (1980). Applied Linear Regression, John Wiley & Sons, New York.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Numerik optimaler Steuerungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200418 Prüfungsnummer:2400770

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte	: 5			W	orkl	oad	d (h):15	50		Α	ntei	I Se	elbs	tstu	ıdiu	m (l	า):1	16		S	SWS	3:3.0)			\exists
Fakultät für I	akultät für Mathematik und Naturwissenschaften																				Fa	chge	bie	t:24	13			
SWS nach	1 50 2 50 2 50 4 50														6	S.FS	3	7	.FS		8.	FS	(9.F	S	10	.FS	,
Fach-	٧	S	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S P	٧	s	Р	V	SF	>
semester	2	1	0																									

Lernergebnisse / Kompetenzen

Die Studierenden besitzen nach der Vorlesung Kenntnisse der grundlegenden Begriffe und Konzepte der Numerik optimaler Steuerungen. Sie können nach den Übungen entsprechende Verfahren auf Spezialfälle sowie das numerische Lösen von Anwendungsproblemen am Rechner anwenden.

Vorkenntnisse

Inhalt

Numerische Verfahren zur Lösung optimaler Steuerungsprobleme: Diskretisierung, Schießverfahren, Zusammenspiel mit Differentialgleichungslösern und Optimierungsverfahren.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Walter Alt, Christopher Schneider und Martin Seydenschwanz: EAGLE-STARTHILFE Optimale Steuerung: Theorie und numerische Verfahren, EAGLE, 1. Auflage, 2013.

Matthias Gerdts: Optimal Control of ODEs and DAEs (Kapitel 5), De Gruyter: Graduate, 2012.

Pablo Pedregal: Optimization and Approximation (Kapitel 8), Springer: UNITEXT 108, 2017.

James B. Rawlings, David Q. Mayne und Moritz M. Diehl: Model Predictive Control: Theory, Computation, and Design (Kapitel 8), Nob Hill Publishing, 2. Auflage, 2017.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Numerische Feldberechnung

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200541 Prüfungsnummer:210492

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspu	nkte	e: 5				W	orkl	oad	d (h):15	50		Α	nte	il Se	elbs	tstu	ıdiu	ım (h):1	105			S	WS	:4.()			
Fakultät für I	kultät für Elektrotechnik und Informationstechnik																					F	acl	nge	biet	:21	17			
SWS nach	1 50 2 50 2 50 4 50														S	6	6.F	3	7	'.F	3	8	3.FS	S	ć).F	S	1().F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester	2	V S P V S P V S P V S																												

Lernergebnisse / Kompetenzen

Fachkompetenz:

Nach der Veranstaltung sind die Studierenden in der Lage, naturwissenschaftliches und angewandtes Grundlagenwissens der Informationsverarbeitung in Bezug auf die Numerische Feldberechnung zu erklären sowie daraus eine systematische Dokumentation abzuleiten.

Methodenkompetenz:

Die Studierenden sind nach dem Besuch der Vorlesung in der Lage, Methoden der numerischen Feldberechnung anzuwenden und zur komplexen Modellbildung einzusetzen.

Systemkompetenz:

Studierende sind nach Abschluss in der Lage, die numerischen Verfahren in einem systematischen Überblick zusammenzufassen.

Nach Abschluss der Lehrveranstaltung verfügen sie über vertiefendes Überblickwissen und können Wissen aus thematisch angrenzenden Fachgebieten zuordnen.

Sozialkompetenz:

Nach dem Besuch eines rechnergestützten Seminars verfügen die Studierenden über eine prozessorientierte Vorgehensweise und können unter Zeit- und Kostengesichtspunkten die richtige Entscheidung treffen. Nach Abschluss des Modules können die Studierenden ihre praktischen Fähigkeiten und Fertig-keiten in Bezug auf die Feldberechnung einschätzen und haben gelernt, teamorientiert zu handeln.

Vorkenntnisse

Theoretische Elektrotechnik 1 und 2

Inhalt

Mathematische und physikalische Feldmodellierung; Numerische Methoden und Algorithmen zur Berechnung elektromagnetischer Felder; Elektromagnetisches "Computer Aided Design", Preprocessing; Postprocessing (Kapazitäten, Induktivitäten, Kräfte); Software für Feldberechnungen; Lösung einfacher Feldaufgaben mit vorhandener Software Einführung in das elektromagnetische CAD zum Entwurf von elektromagnetischen Geräten; Probleme der elektromagnetischen Verträglichkeit; Kopplung elektromagnetischer Felder mit mechanischer Bewegung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folien, Arbeitsblätter, computergestützte Übungen

Literatur

- [1] Binns, K.; Lawrenson, P.J.; Trowbridge, C.W.: The analytical and numerical solution of electric and magnetic fields. John Wiley & Sons, Chinchester, 1992
- [2] Harrington, R.F.: Field computation by moment methods. IEEE Press, Piscataway, 1993
- [3] Sadiku, M.N.O.: Numerical Techniques in Electromagnetics. CRC Press, Boca Raton, 2001
- [4] Humphries, St.: Finite-element methods for electromagnetics, CRC Press, 1997

Detailangaben zum Abschluss

Das Modul Numerische Feldberechnung mit der Prüfungsnummer 210492 schließt mit folgenden

Leistungen ab:

- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 40% (Prüfungsnummer: 2100880)
- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 60% (Prüfungsnummer: 2100881)

Details zum Abschluss Teilleistung 1: schriftlicher Hausbeleg mit Abschlusspräsentation, Angebot ausschließlich im Sommersemester

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Biomedizinische Technik 2021

Master Elektrotechnik und Informationstechnik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Partielle Differentialgleichungen und Halbgruppen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200423 Prüfungsnummer:2400775

Modulverantwortlich: Prof. Dr. Carsten Trunk

Leistungspu	nkte: 1	0		W	orkl	oad	(h):30	0		A	ntei	Se	elbs	tstu	ıdiu	ım (h):2	32			SV	VS:	6.0			
Fakultät für I	Mather	nati	k und l	Nat	urwi	sse	nso	cha	ften	ı										F	ach	geb	iet:	241	9		
SWS nach	1.F	S	2.F	S	3	s.FS	3	4	.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8	.FS		9.	FS		10.	FS
Fach-	V S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V :	SI	>	v s	Р
semester	4 2	0																									

Lernergebnisse / Kompetenzen

Nach der Vorlesung können die Studenten verschiedene Probleme der klassischen Mathematik aus einem allgemeineren Standpunkt betrachten, ihre grundlegenden Gesetzmäßigkeiten besser zu erkennen und das Gemeinsame aufzudecken. Sie sind befähigt, die in der Vorlesung vermittelte Theorie zur Lösung konkreter Probleme der reinen und der angewandten Mathematik zu verwenden. Nach den Übungen können die Studierenden die aus der Vorlesung bekannten Methoden selbständig zur Analyse und Lösung von konkreten Problemen anwenden. Nach intensiven Diskussionen und Gruppenarbeit während der Übungen können die Studenten Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Analysis

Inhalt

Halbgruppenzugang zur Behandlung partieller Differentialgleichungen. Satz von Hille-Yosida, abstraktes Cauchy-Prpblem, Spektrum, Störungstheorie, ggf. Bezug zur unendlichdimensionalen Systemtheorie

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Skripte, Übungsaufgaben

Literatur

K.-J. Engel, R. Nagel: One-parameter semigroups for linear evolution equations, Springer.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Spieltheorie

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200443 Prüfungsnummer:2400795

Modulverantwortlich: Prof. Dr. Matthias Kriesell

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		A	ntei	Se	elbs	tstu	ıdiu	m (h):11	6		S	WS	:3.0)		
Fakultät für I	Mather	nati	k und l	Nat	urwi	sse	nso	cha	ften	ı										Fac	hge	biet	:24	11		
SWS nach	1.F	S	2.F	S	3	s.FS	;	4	l.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	ć).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	٧ ر	/ S	Р	٧	S	Р	V S	Р
semester	2 1	0																								

Lernergebnisse / Kompetenzen

Die Studierenden besitzen nach der Vorlesung vertiefte Kenntnisse der Grundbegriffe der nichtkooperativen und der Grundbegriffe der kooperativen Spieltheorie. Sie kennen den Zusammenhang zwischen den abstrakten Konzepten der Spieltheorie und interaktiven Entscheidungsproblemen aus Ökonomie und Informatik, können diesen beschreiben und erläutern. Nach den Übungen sind die Studierenden fähig, einfache konkrete Beispiele mit spieltheoretischen Methoden zu beschreiben und zu analysieren..

Vorkenntnisse

Analysis I/II, Stochastik, (Lineare) Optimierung

Inhalt

Die Spieltheorie ist ein noch junger Zweig der Mathematik, die ihren Ursprung 1944 in dem Buch "The Theory of Games and Economic Behavior" von John von Neumann und Oskar Morgenstern hat, auch wenn die Wurzeln bis ins 19. Jahrhundert zurückreichen. Die Disziplin findet unter anderem ihre Anwendung in der Ökonomie, Soziologie, Politik, Biologie sowie Informatik, und es treten spieltheoretische Problemstellungen in nahezu jedem Lebensbereich auf. Ziel der Vorlesung ist es, die Teilnehmer mit den grundlegenden Konzepten und Lösungsansätzen der Spieltheorie vertraut zu machen. Der Schwerpunkt liegt dabei auf der nichtkooperativen Spieltheorie, es werden jedoch auch Elemente der kooperativen Spieltheorie behandelt. Inhalt: Normalformspiele, Spiele in extensiver Form, Spiele mit unvollkommener Information, Koalitionsspiele.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folien, Skript, Tafel

Literatur

Die einschlägigen Lehrbücher von Osborne und Rubinstein, Myerson, sowie Nisan, Roughgarden, Tardos und Vazirani.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Stochastische Analysis

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200451 Prüfungsnummer:2400803

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte:	5		W	ork/	load	d (h):15	50		A	ntei	Se	elbs	tstu	ıdiu	m (h):11	6		S	WS	:3.0)		
Fakultät für I	Mathe	emat	ik und	Nat	urw	isse	enso	cha	ften	1										Fac	hge	biet	:24	12		
SWS nach	1.1	-s	2.F	S	3	3.FS	3	_	l.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	6).F	S	10.	FS
Fach-	VS	S P	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	١ ١	/ S	Р	٧	S	Р	V S	Р
semester	2 1	0																							-	

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen den Itô-Kalkül, können mit stochastischen Differentialgleichungen umgehen und beides für Anwendungen nutzen.

Vorkenntnisse

Stochastische Prozesse

Inhalt

Itô-Integral, Itô-Formel, stochastische Differentialgleichungen und ihre Anwendungen (u. a. Bewertung von Optionen)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Klenke, A. (2006). Wahrscheinlichkeitstheorie, Springer, Berlin.

Korn, R. and Korn, E. (1999). Optionsbewertung und Portfolio-Optimierung, vieweg, Braunschweig. McKean, H. P. (1969). Stochastic Integrals, Academic Press, New York.

Steele, J. M. (2001). Stochastic Calculus and Financial Applications, Applications of Mathematics, Springer, New York

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Strömungsmechanik 1

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200283 Prüfungsnummer:2300739

Modulverantwortlich: Prof. Dr. Jörg Schumacher

Leistungspu	nkte	e: 5				W	orkl	oad	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	ım (l	า):1()5		S	WS	:4.0)		
Fakultät für I	Mas	chi	nen	bau	ı																	Fa	chge	biet	:23	47		
SWS nach	1	.F	S	2	.FS	3	3	3.FS	S	4	l.F	3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	6).F	S	10	.FS
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	P	v s	Р	٧	S	Р	V :	S P
semester	2	2	0																									

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung einen Überblick über die Grundlagen und Konzepte der Strömungsmechanik mit Anwendungen für die Ingenieurwissenschaften. Dabei können sie auch ihre Vorkenntnisse aus der physikalischen Grundausbildung reproduzieren. Durch die Übungen sind sie befähigt, die Problemstellung in den wöchentlich empfohlenen Übungsaufgaben zu kategorisieren, mögliche Lösungswege der Übungsaufgaben zu diskutieren und haben die Fahigkeit erlangt, die Herangehensewiese ihrer Mitkommilitonen zu würdigen. Sie können die in der Vorlesung vermittelten Kenntnisse und mathematischen Methoden anwenden, um die Aufgaben zu lösen, die einfache analytisch lösbare Beispiele aus der Strömungsmechanik umfassen. Mit den Übungen haben die Studierenden auch die vermittelten Vorlesungsinhalte wiederholt und vertieft.

Vorkenntnisse

Physikalische Grundlagen und mathematische Fähigkeiten aus dem Grundstudium Ingenieurwissenschaften, z. B. Mathematik 1 bis 3 für Ingenieure

Inhalt

Erhaltungssätze für Masse, Impuls und Energie, Hydrostatik, Dimensions- und Ähnlichkeitsanalyse, Bernoulligleichung, Impulssatz, Rohrströmung, Gasdynamik, Grenzschichttheorie

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Beamer Präsentation, Handouts

Literatur

Kuhlmann, Strömungsmechanik, Pearson; Schlichting, Grenzschicht-Theorie, Springer; White, Fluid Mechanics, McGraw-Hill

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Bachelor Fahrzeugtechnik 2021

Bachelor Maschinenbau 2021

Bachelor Mathematik 2021

Diplom Maschinenbau 2021

Master Mathematik und Wirtschaftsmathematik 2022

Master Mechatronik 2022

Modul: Theoretische Elektrotechnik 1

Modulabschluss: Prüfungsleistung schriftlich 180 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200538 Prüfungsnummer:2100877

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspu	für Elektrotechnik und Informationstechni													ntei	il Se	elbs	ststu	udiu	m (h):′	105			S	ws	:4.0)		
Fakultät für I	Ξleŀ	ktro	tech	nnik	un	d Ir	nfor	mat	ion	ste	chn	ik										F	acl	hge	biet	:21	17		
SWS nach	1	.F	S	2	.FS	S	3	3.F	3	_	1.F	S	5	5.FS	S	6	3.F	S	7	.F	3	8	3.F	S	ç).F	S	10.	FS
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	Р
semester	2	2	0																										

Lernergebnisse / Kompetenzen

Absolventen der Lehrveranstaltung, bestehend aus Vorlesung und dazu gehörigen Übungen:

- . besitzen Kenntnisse über die grundlegenden Gesetzmäßigkeiten statischer und stationärer elektromagnetischer Felder
- . sind informiert über die Lösung der Laplace- und Poisson-Differentialgleichungen im Falle konstanter Randbedingungen
- . besitzen Kenntnisse über die Integralparameter Kapazität, Widerstand und Induktivität
- . können Energie und Kräfte dieser Feldtypen berechnen

Fachkompetenz:

Studierende haben naturwissenschaftliches und angewandtes Grundlagenwissen und können insbesondere das angewandte Grundlagenwissen einbinden.

Methodenkompetenz:

Studierende sind in der Lage, Methoden systematisch zu trainieren

Sie können sich Fachwissens systematisch erschließen und es nutzen.

Sie beherrschen Methoden zur systematischen Behandlung von Ingenieurproblemen.

Systemkompetenz:

Studierende sind zu fachübergreifendem systemorientiertem Denken befähigt, haben ihre Kreativität trainiert.

Sozialkompetenz:

Studierende besitzen ein ausgeprägtes Lern- und Abstraktionsvermögen, sind flexibel bei der Lösung gestellter Aufgaben. Sie können aktiv kommunizieren, sind zur Arbeit im Team befähigt. Sie sind in der Lage, ihre Ergebnisse zu präsentieren und besitzen Durchsetzungsvermögen.

Vorkenntnisse

Mathematik, Experimentalphysik, Allgemeine Elektrotechnik

Inhalt

Grundlegende Gesetzmäßigkeiten elektromagnetischer Felder: Maxwellsche Gleichungen, Elektrostatisches Feld für gegebene Ladungsverteilungen: Lösung der Laplace- und Poisson-DGL, Feldprobleme mit konstanten Randbedingungen, Integralparameter, Energie und Kräfte; Stationäres elektrisches Strömungsfeld; Stationäres Magnetfeld: Vektorpotential, Biot-Savart-Gesetz

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

https://moodle2.tu-ilmenau.de/course/view.php?id=3504

Gedrucktes Vorlesungsskript zur Lehrveranstaltung, gedruckte Aufgabensammlung (auch im Internet verfügbar)

Literatui

Uhlmann, F. H.: Vorlesungsskript zur Theoretischen Elektrotechnik, Teil I/TU Ilmenau

Lehner, G.: Elektromagnetische Feldtheorie, Springer-Verlag, Berlin/Heidelberg/New York, 2006

Simonyi, K.: Theoretische Elektrotechnik, 10. Aufl. Johann Ambrosius Barth, 1999

Henke, H.: Elektromagnetische Felder. Theorie und Anwendung , Springer-Verlag, Berlin/Heidelberg/New York, 2002

Wunsch, G.; Schulz, H.-G.: Elektromagnetische Felder, Verlag Technik Berlin, 1989 Philippow, E.: Grundlagen der Elektrotechnik, 9. Aufl., Verlag Technik, Berlin, 1992

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2021 Bachelor Mathematik 2021 Diplom Elektrotechnik und Informationstechnik 2021 Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Adaptive Regelung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200430 Prüfungsnummer:2400782

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5	5		W	'orkl	oac	d (h):15	0		Α	ntei	il Se	elbs	tstu	ıdiu	m (l	า):1	16		S	WS	:3.0)		
Fakultät für N	Mathe	mati	k und	d Nat	urwi	sse	enso	cha	ften	l										Fac	chge	biet	:24	16		
SWS nach	1.F	S	2.	FS	3	s.FS	3	4	.FS	3	5	5.FS	S	6	S.FS	3	7	.FS		8.F	S	ç).F	S	10	.FS
Fach-	v s	Р	>	SP	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	P	v s	Р	٧	S	Р	V :	S P
semester			2	1 0																						

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen und kennen die grundlegenden Ideen verschiedener adaptiver Regler. Die Studierenden haben durch die Vorlesung die Kompetenz typische Beweise zu analysieren und können durch die Übungen die Beweisideen zum Beweis ähnlicher Aussagen anwenden. Die Studierenden können die in der Vorlesung vorgestellten Regler hinsichtlich ihrer Stärken und Schwächen analysieren.

Vorkenntnisse

Gewöhnliche Differentialgleichungen, mathematische Systemtheorie

Inhalt

Existenz, Eindeutigkeit und Lösbarkeit nichtlinearer gewöhnlicher Differentialgleichungen. Verschiedene adaptive Regler (konventionell, \lambda- und Funnel) für skalare Systeme. Charakterisierungen von strukturellen Systemeigenschaften multivariabler Systeme: Relativgrad, Nulldynamik. Verschiedene adaptive Regler (konventionell, \lambda- und Funnel) für multivariable Systeme. Folgeregelung. Regler für Systemklassen mit höherem Relativgrad. Adaptive Identifikation von Systemen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel

Literatur

keine Angabe möglich

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Adaptive und strukturvariable Regelungsysteme

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200024 Prüfungsnummer:220438

Modulverantwortlich: Prof. Dr. Johann Reger

Leistungspu	nkte	e: 5				W	ork	loa	d (h):15	50		Α	ntei	il Se	elbs	ststu	udiu	ım (h):′	105			S	WS	:4.0)			
Fakultät für I	nfo	rma	atik	unc	lΑι	uton	nati	sie	ันทรู)												F	ac	hge	biet	:22	13			
SWS nach	1	ı.F	S	2	2.F	S	3	3.F	S	_	l.F	S	5	5.FS	S	6	3.F	S	7	.FS	S	8	3.F	S	ç).F	S	1().F	S
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester				2	1	1																								

Lernergebnisse / Kompetenzen

Nach erfolgreichem Abschluss des Moduls:

- Kennen die Studierenden unterschiedliche Systemklassen, die für nichtlineare und schaltende Systeme betrachtet werden
 - Kennen die Studierenden verschiedene Stabilitätskonzepte für solche Systemklassen
- Kennen die Studierenden Stabilitätskriterien für die unterschiedlichen Systemklassen und können diese anwenden.
- Kennen die Studierenden unterschiedliche Verfahren zum Entwurf adaptiver und strukturvariabler Regelungen und sind in der Lage diese anzuwenden.
- Sind die Studierenden in der Lage typische Softwarewerkzeuge zur Analyse und zum Entwurf von adaptiven Regelkreisen zu verwenden (Praktikum).
- - Die Studierenden können Übungsaufgaben in Kleingruppen in Vorbereitung der Lehrveranstaltung gemeisam lösen.
- - Die Studierenden können einfache Regelungsprobleme lösen und diese im Team am Versuchsstand implementieren.
- Die gemeinsamen Beobachtungen bei der Versuchsdurchführung können im Team diskutiert, beurteilt und interpretiert werden.

Können die Studierenden adaptive und strukturvariable Regler auf gängigen Plattformen implementieren (Praktikum).

Vorkenntnisse

Regelungstechnische Grundlagen linearer Systeme im Zustandsraum (z.B. RST 2); Grundkenntnisse nichtlinearer Systemen vorteilhaft

Inhalt

- Lineare Systeme in Rückkopplung mit speicherfreier Nichtlinearität (Modellierung, Analyse, nichtlinearer Standardregelkreis, Lur'e System, absolute Stabilität)
- Stabilitätskriterien im Frequenzbereich (KYP-Lemma, Passivität, Popov-Kriterium, Kreiskriterium, Harmonische Balance)
 - Stabilität schaltender Systeme
 - Strukturvariable Reglungsverfahren (Sliding-Mode Control, Gain-Scheduling)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folie, Tafel

https://moodle2.tu-ilmenau.de/enrol/index.php?id=3079

Literatur

- 1. Geschaltete Systeme
 - Daniel Liberzon. Switching in Systems and Control. Birkhäuser, Boston, 2003.
 - Mikael Johansson. Piecewise Linear Control Systems. Springer-Verlag, Berlin, Heidelberg, 2003.
 - R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King. Stability Criteria for Switched and Hybrid Systems.

SIAM Review, 49(4):545-592, 2007 (URL) (Wissenschaftlicher Aufsatz, kein Lehrbuch. also nur für Leute, die es genau wissen wollen!)

- 2. Stabilität linearer Systeme (Stabilitätstheorie)
 - W. J. Rugh. Linear System Theory. 2. Edition. Prentice Hall, Upper Saddle River, New Jersey, 1996.
- 3. Nichtlineare Systeme (Stabilitätstheorie und klassische Methoden im Frequenzbereich)
 - Ch. Desoer, M. Vidyasagar. Feedback Systems: Input-Output Properties, Academic Press, London, 1975.
 - M. Vidyasagar. Nonlinear Systems Analysis. 2. Edition. Prentice Hall, Englewood Cliffs, New Jersey, 1993.
 - H. K. Khalil. Nonlinear Systems. 3. Edition. Prentice Hall, Upper Saddle River, New Jersey, 2002.
 - O. Föllinger. Nichtlineare Regelungssysteme 1. 7. Edition. Oldenbourg, München, 1993.
 - O. Föllinger. Nichtlineare Regelungssysteme 2. 7. Edition. Oldenbourg, München, 1993.
- 4. Adaptive Systeme
- P. A. Ioannou, J. Sun. Robust Adaptive Control, Prentice Hall, 1996. (re-print by Dover Publications) 5. Sliding-Mode Control
- Y. Shtessel, C. Edwards, L. Fridman, A. Levant. Sliding Mode Control and Observation. Birkhäuser, Basel, 2013. (intro)

Detailangaben zum Abschluss

Das Modul Adaptive und strukturvariable Regelungsysteme mit der Prüfungsnummer 220438 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200665)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200666)

Details zum Abschluss Teilleistung 2: Testat auf 2 berstandene Versuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Technische Kybernetik und Systemtheorie 2021

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Modul: Angewandte Thermo- und Fluiddynamik

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200281 Prüfungsnummer:2300736

Modulverantwortlich: Prof. Dr. Christian Cierpka

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		Α	ntei	I S	elbs	tstu	ıdiu	m (h):1	05			S	WS	:4.0)		
Fakultät für I	Maschir	nen	bau																	F	acł	nge	biet	:23	46		
SWS nach	1.FS	S	2.F	S	3	.FS		4	l.F	3	5	5.FS	3	6	6.F	S	7	.FS	;	8	.FS	3	ç).F	S	10	.FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V \$	S P
semester			2 2	0																							

Lernergebnisse / Kompetenzen

Nach erfolgreichem Abschluss der Lehrveranstaltung Angewandte Thermofluiddynamik haben die Studierenden einen tieferen Einblick in zwei Spezialgebiet der Thermofluiddynamik, nämlich den Strömungen mit freier Grenzfläche (Teil 1) und den Zweiphasenströmung (Teil 2). Sie erkennen die Wichtigkeit dieser beiden Spezialgebiete für die Analyse von natürlichen und industriellen Strömungstransportprozessen. Sie verstehen die physikalische Bedeutung der neuen Begriffe und der neu auftretenden Kennzahlen. Nach erfolgreiche Teilnahme sind die Studierenden in der Lage, in der Natur auftretende und technisch relevante Problemstellungen in diesen beiden Fachbereichen ingenieursmäßig zu analysieren und beherrschen die physikalische und mathematische Modellbildung. Sie können die problemspezifischen Kennzahlen bilden und physikalisch interpretieren. Sie verwenden die mathematische Beschreibung sicher und wählen analytische Lösungsansätze gezielt aus. Sie sind ferner in der Lage die erzielten Lösungen zu diskutieren und auf ihre Plausibilität prüfen zu können. In der Vorlesung werden zudem Fachkompetenzen im Bezug zu aktuellen Forschungsprojekte des Instituts für Thermo- und Fluiddynamik vermittelt.

In der wöchentlichen Übung lösen die Studierenden eigenständig und in der Gruppe komplexe anwendungsorientierte Aufgaben. Sie sind nach Abschluss in der Lage die erzielten Ergebnisse zu interpretieren und diese auf physikalische Plausibilität durch methodische Entwicklung von geeigneten Lösungsansätzen und Bewertung der den Lösungsansätzen zugrunde liegenden physikalischen Annahmen zu überprüfen. Die Studierenden haben vertiefte Kenntnisse in den theoretischen und mathematischen Grundlagen und werden bei erfolgreicher Teilnahme an die Anforderungen an ein eventuelles anschließendes Promotionsstudium vorbereitet. Hierdurch entwickeln die Studierenden nicht nur Fachkompetenz, sondern auch Kompetenzen in den Feldern wissenschaftliches Arbeiten, wissenschaftliche Dokumentation und wissenschaftliche Präsentation.

Vorkenntnisse

Strömungsmechanikhöhere Ingenieursmathematik

Inhalt

Inhalt

Teil 1: Blöcke 0 – 3 (Prof. Dr. Karcher)

Teil 1 untergliedert sich in vier Blöcke mit Vorlesungen (V) und zughörigen Übungen (Ü).

Block 0: Thermodynamische Grundlagen- Hauptsätze der Thermodynamik mit Anwendungen

- Entropie und Exergie mit Anwendungen
- Gibbssche Energie und thermodynamische Potentiale mit Anwendungen

Block 1: Geothermische Anwendungen der Thermofluiddynamik

- Grundlagen der Geothermie
- Anwendung Wärmepumpenprozess
- Anwendung Auslegung von Erdwärmekollektoren
- Anwendung Stirling-Prozess

Block 2: Thermofluiddynamische Anwendungen zur Meerwasserentsalzung

- Grundlagen zum Thema Wasser
- Thermofluiddynamik von Verdunstungs- und Verdampfungsprozessen
- Beispiele zu Verdunstungs- und Verdampfungsverfahren
- Beispiele zu Membranverfahren (Umkehrosmose, Destillation, Ionenkraft)

- Anwendung Trink- und Brauchwassergewinnung auf Passagierschiffen

Block 3: Thermofluiddynamik von Freien Grenzflächen

- Oberflächenspannung und Kapillarität
- Messmethoden zur Bestimmung der Oberflächenspannung
- Steighöhen in Kapillaren und Tropfen- und Blasenbildung
- Einführung in die Differenzial-Geometrie
- Anwendungen der Young-Laplace-Gleichung
- Begriff der Kapillarlänge und Kapillarzeit und Kennzahlenbildung
- Einführung in die lineare Stabilitätsanalyse dynamischer Systeme
- Begriffe der Wellenmechanik
- Elektromagnetische Kontrolle von Flüssigmetallströmungen mit freier Grenzfläche

Teil 2: Zweiphasenströmungen (PD. Dr. Boeck)

- Charakterisierung von Zweiphasenströmungen
- Strömungsformen und Strömungskarten von Flüssigkeits-Gas-Strömungen
- Druckverluste in ein- und zweiphasiger Rohrströmung
- Kelvin-Helmholtz-Instabilität
- Rayleigh-Taylor-Instabilität
- Blasenoszillation und Kavitationserscheinungen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafelanschrift, Beamer für Farbbilder und Präsentationen, E-learning über Moodle

Literatur

Teil 1

- J. Zierep: Grundzüge der Strömungslehre, G. Braun Verlag, Karlsruhe
- L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics Vol. 6: Fluid Mechanics, Butterworth-Heinemann
- P. A. Davison: An Introduction to Magnetohydrodynamics, Cambride University Press
- D. Langbein: Capillary surfaces, Springer-Verlag, Heidelberg
- A. Frohn, N. Roth: Dynamics of droplets, Springer, Heidelberg

Teil 2

- C. E. Brennen: Fundamentals of Multiphase flow. Cambridge University Press (2005)
- R. Clift, J. R. Grace, M. E. Weber: Bubbles, drops and particles. Dover Publications (2005)
- L. Gary Leal: Advanced Transport Phenomena. Cambridge University Press (2012)
- Van P. Carey: Liquid-vapor phase change phenomena. CRC Press (2007)
- F. Mayinger: Strömung und Wärmeübertragung in Gas-Flüssigkeitsgemischen. Springer (1982)

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Mechatronik 2017

Master Mechatronik 2022

Master Regenerative Energietechnik 2022

Modul: Diagnose- und Vorhersagesysteme

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200092 Prüfungsnummer:2200756

Modulverantwortlich: Prof. Dr. Thomas Rauschenbach

Leistungspu	nkte: 5			W	orklo	ad (I	า):15	50		Α	ntei	l Se	elbs	tstud	uib	m (h):	116		S	ws	:3.0)		
Fakultät für I	ultät für Informatik und Automatisierung																Fa	chge	biet	:22	11			
SWS nach	1.F	S	2.F	S	3.	FS		1.F	S	5	5.FS	3	6	.FS		7.F	S	8.	FS	9	.FS	3	10.1	-s
Fach-	V S	Р	v s	Р	V	S P	V	S	Р	٧	S	Р	٧	S	Р	v s	Р	V :	SP	V	S	Р	v s	Р
semester			2 1	0												·								

Lernergebnisse / Kompetenzen

Die Studierenden erkennen Zusammenhänge zu den Lehrveranstaltungen, die sich mit den Grundlagen der Modellbildung beschäftigen. Nach der Vorlesung können sie die Verfahren für die Diagnose hinsichtlich der Nutzung von statistischen Daten, linguistischen Informationen sowie von Modellen klassifizieren. Bezüglich der Eignung für die Vorhersage können die Studierenden deterministische und stochastische Modellansätze vergleichen. Nach den Übungen sin die Studierenden zur Arbeit am Computer unter Verwendung moderner Simulationssysteme, wie z.B. MATLAB/Simulink fähig. Die Studierenden sind infolge dieser Übungen in der Lage, technische Systeme hinsichtlich der Diagnosemöglichkeiten zu bewerten und eigenständig Lösungen für Diagnoseaufgaben zu erarbeiten. Sie sind weiterhin in der Lage Systeme und Zeitreihen hinsichtlich ihrer Vorhersagbarkeit zu analysieren. Sie können evaluieren, welche systemtechnischen Methoden für Vorhersagen mit unterschiedlichen Zeithorizonten geeignet sind. Durch die Kombination von Methoden der Diagnose und Vorhersage können die Studierenden Lösungsansätze für Aufgaben auf dem Gebiet der prädiktiven Diagnose generieren. Die Studierenden können in den Übungen in Gruppen arbeiten, sind fähig, die Lösungsansätze zu diskutieren und gemeinsam umzusetzen. Bei der Vorstellung der Ergebnisse haben die Gruppen gelernt, sich gegenseitige wertschätzende Rückmeldungen zu geben.

Vorkenntnisse

Inhalt

Diagnose

- Auswertung von Signalen und Zuständen
- · Verwendung von Systemmodellen
- Berechnung von Kennwerten
- · Klassifikationsverfahren
- Modellreferenzverfahren
- Wissensbasierte Verfahren

Vorhersage

- Vorhersagbarkeit
- Prognoseprozess
- · Primärdatenaufbereitung
- Vorhersage mit deterministischen Signalmodellen
- Vorhersage mit stochastischen Signalmodellen
- Musterbasierte Vorhersage
- Konnektionistische Verfahren zur Vorhersage

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Skript, Video, Vorführungen, Rechnerübungen

Literatur

Brockwell, P. J. Davis, R. A.: Introduction to Time Series and Forecasting. New York: Springer-Verlag, 1996 Isermann, Rolf: Uberwachung und Fehlerdiagnose. VDI Verlag, 1994

Janacek, Gareth; Swift, Louise: Time series: Forecasting, Simulation, Applications. New York, London, Toronto, Sydney, Tokyo, Singapore: Ellis Horwood, 1993

Romberg, T. [u. a.]: Signal processing for industrial diagnostics. Wiley, 1996

Schlittgen, Rainer: Angewandte Zeitreihenanalyse. Munchen, Wien: Oldenbourg Wissenschaftsverlag, 2001

Schlittgen, Rainer;Streitberg,Bernd H.J.: Zeitreihenanalyse. 9. Auflage. Munchen, Wien, Oldenbourg

Wissenschaftsverlag, 2001

Wernstedt, Jurgen: Experimentelle Prozessanalyse. 1. Auflage. Berlin: Verlag Technik, 1989

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Wenn eine Präsenzprüfung nicht möglich ist, wird die Prüfung mittels MS-Teams durchgeführt.

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Modul: Funktionalanalysis

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200414 Prüfungsnummer:2400766

Modulverantwortlich: Prof. Dr. Carsten Trunk

Leistungspu	nkte: 10)		W	orkl	oad	(h):30	00		Α	ntei	l Se	elbs	tstu	ıdiu	ım (h):2	32			S۷	VS:	6.0			
Fakultät für I	Mathen	nati	k und l	Nat	urwi	sse	nso	cha	ften	l										Fa	ach	geb	iet:	241	19		
SWS nach	1.FS	3	2.F	S	3	s.FS	3	4	l.FS	3	5	5.FS	3	6	6.F	S	7	.FS		8	FS		9.	FS	3	10	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Ρ	٧	s	Р	V	S P
semester			4 2	0																							

Lernergebnisse / Kompetenzen

Nach der Vorlesung können die Studenten verschiedene Probleme der klassischen Mathematik vom allgemeineren Standpunkt aus zu betrachten, ihre grundlegenden Gesetzmäßigkeiten besser zu erkennen und das Gemeinsame aufzudecken. Probleme, die ihren Lösungsmethoden ähnlich, aber ihren konkreten Inhalten nach verschieden sind, lassen sich mit der Funktionalanalysis einheitlich behandeln. Die so aufgebaute allgemeine Theorie lässt sich dann mit Erfolg zur Lösung konkreter Probleme, nicht nur der reinen, sondern auch der angewandten Mathematik heranziehen. Nach intensiven Diskussionen und Gruppenarbeit während der Übungen können die Studenten Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an.

Vorkenntnisse

Grundlagen der Analysis, Angewandte Analysis

Inhalt

Banach-und Hilberträume, die 5 großen Hauptsätze der Funktionalanalysis (Hahn-Banach, Banach-Steinhaus, Banach, abgeschlossenes Bild und Graph). Selbstadjungierte Operatoren und Anwendungen auf partielle Differentialgleichungen der mathematischen Physik. Spektraltheorie. Spektralsatz.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Skripte, Übungsaufgaben

Literatur

Rudin, W.: Functional Analysis. Mc-Graw-Hill, New York 1991.

Werner, D.: Funktionalanalysis, Springer.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Master Mathematik und Wirtschaftsmathematik 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Fuzzy-Control

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200093 Prüfungsnummer:220461

Modulverantwortlich: Dr. Aouss Gabash

Leistungspu	nkte: 5			W	orklo	ad (h	າ):1ຄ	50		Α	nte	il Se	elbs	tstu	ıdiu	ım (h):10)5		S	WS:	:4.0)		
Fakultät für I	ıltät für Informatik und Automatisierung																		Fa	chge	biet:	:22	11		
SWS nach	1.F	S	2.F	S	5	5.F	S	6	3.F	3	7	.FS		8.F	S	9	.FS	3	10	.FS					
Fach-	v s	Р	V S	Р	VS	P	٧	S	Р	٧	S	Р	٧	S	Р	٧	SI	>	V S	P	V	S	Р	V	S P
semester			2 1	1																					

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu fuzzy-basierten Systemen. Sie sind in der Lage, spezielle Fuzzy-Systeme für regelungstechnische Anwendungen (Fuzzy-Controller) zu entwerfen.

Methodenkompetenz: Die Studierenden sind in der Lage, problemangepasste Fuzzy-Komponenten (Zugehörigkeitsfunktionen, Operatoren etc.) auszuwählen und zu parametrisieren. Sie können unterschiedliche Arten von Fuzzy-Controllern entwerfen und durch Parametereinstellungen regelungstechnische Vorgaben realisieren (Überschwingen, Einschwingzeit, etc.). Sie kennen verschiedene Methoden der nichtlinearen Optimierung wie Evolutionsstrategie und heuristische Suche und können damit Fuzzy-Controller an Prozesse anpassen.

Systemkompetenz: Die Studierenden verstehen die grundsätzliche Herangehensweise beim Entwurf von wissensbasierten Systemen in regelungstechnischen Anwendungen wie z.B. Fuzzy Controller sowie die Auswirkungen einzelner Systemkomponenten auf die Arbeitsweise der Regler.

Sozialkompetenz: Die Studierenden könnnen Lösungen zum Entwurf von Fuzzy-Controllern durch Bearbeiten von Übungsaufgabensowohl im Dialog mit dem Lehrenden als auch eigenständig erarbeiten und haben damit ihr theoretisch erworbenes Wissen vertieft. Sie nehmen Kritik an und wissen Anmerkungen zu beherzigen.

Im Praktikum werden gezielt folgende Kompetenzen erworben:

Die Studierenden sind in der Lage, Fuzzy-Controller zu entwerfen und am Prozess einzusetzen. Sie beherrschen den Umgang mit Werkzeugen zum Entwurf von Fuzzy-Systemen.

Vorkenntnisse

Vorlesung Technische Informatik, Vorlesung Regelungs- und Systemtechnik 1, Vorlesung Systemidentifikation

Inhalt

- Grundlagen der Fuzzy-Theorie
- Module eines Fuzzy-Systems
- Kennlinien und Kennflächen von Fuzzy-Systemen
- optimaler Entwurf von Fuzzy-Steuerungen und Regelungen
- adaptive Fuzzy-Konzepte
- Beispiele aus Technik
- verwendetes Tool: Fuzzy Logic Toolbox für MATLAB.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafelanschrieb, Overhead-Präsentation, Powerpoint-Präsentationen, Vorlesungsskript, online-Vorlesungen (Videos)

Literatur

Fuzzy Logik, Neuronale Netze und Evolutionäre Algorithmen Shaker Verlag, Aachen 2005.

Kiendl H.: Fuzzy Control methodenorientiert, Oldenbourg, München 1997.

Schöneburg E., Heinzmann F., Fedderson S.: Genetische Algorithmen und Evolutionsstrategien, Addison-Wesley, 1994.

Rechenberg I.: Evolutionsstrategie '94, frommann-holzboog, 1994

Detailangaben zum Abschluss

Das Modul Fuzzy-Control mit der Prüfungsnummer 220461 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 60 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200757)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200758)

Details zum Abschluss Teilleistung 2: Testat für Praktikum

Für die Praktikumsdurchführung werden die Kenntnisse aus Vorlesung und Übung benötigt.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Bei coronabedingten Einschränkungen wird die Klausur online durchgeführt.

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Mechatronik 2022

Modul: Globale Optimierung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200449 Prüfungsnummer:2400801

Modulverantwortlich: Prof. Dr. Gabriele Eichfelder

Leistungspu	nkte: 1	0		W	orklo	ad (r	1):30	00		Α	ntei	l Se	elbs	tstuc	liu	m (h):2	232		S	WS:	6.0)		
Fakultät für I	ät für Mathematik und Naturwissenschaften																	Fa	chge	biet	24	15		
SWS nach	1.F	S	2.F	S	3.	FS	4	l.FS	3	5	5.FS	3	6	.FS		7.F	S	8.	FS	9	.FS	3	10.1	-s
Fach-	V S	Р	v s	Р	V	S P	V	S	Р	٧	S	Р	٧	SI	Р	v s	Р	V	S P	V	S	Р	v s	Р
semester			4 2	0																				

Lernergebnisse / Kompetenzen

Die Studierenden können nach Vorlesung und Übung die Relevanz der in Grundlagenveranstaltungen der Optimierung vermittelten Kenntnisse der konvexen Optimierung für die (nichtkonvexe) Globale Optimierung, aber auch die fundamentalen Unterschiede hinsichtlich der untersuchten Problemstellungen erkennen. Durch die Vorlesung lernten sie die grundlegenden Techniken der globalen Optimierung (z.B. Relaxierungen sowie Branch&Bound-Strategien) und Hilfswerkzeuge (z.B. Intervallarithmetik) kennen und verstehen diese einschließlich der zu Grunde liegenden mathematischen Beweise. Darüberhinaus können die aus den theoretischen Grundlagen abgeleiteten Verfahren von den Studierenden motiviert, klassifiziert und miteinander in Bezug gesetzt werden. Diese erlangten Kenntnisse wurden von den Studierenden in den Übungen angewendet. Sie können zum Beispiel weitere theoretische Resultate herleiten sowie vorgegebene konkrete globale Optimierungsprobleme und Testbeispiele bearbeiten und mit Hilfe von mathematischer Software implementieren und schließlich auch lösen. Hierbei erkennen sie verschiedene Lösungsstrategien und -ansätze, können eigenständig mathematische Umformulierungen vollziehen und die Ergebnisse analysieren sowie bewerteen. Die im Rahmen dieser Vorlesung erlangten Kenntnisse und Fähigkeiten bilden somit den Grundstein für eine weitere Beschäftigung im Rahmen von Abschlussarbeiten oder auch Forschungsprojekten im besagten Forschungsgebiet. Weiterhin sind die Studierenden mit den erworbenen Kompetenzen in die Lage versetzt, im weiteren Verlauf ihrer beruflichen Praxis Lösungsansätze und -strategien für dort auftretende Globale Optimierungsprobleme, gegebenenfalls auch im Team zusammen mit Spezialisten anderer involvierter Fachbereiche, zu entwickeln und erfolgreich zu implementieren, sowie die erhaltenen Resultate im Berufsumfeld mit dem nötigen Fachwissen kompetent zu vertreten. Sie sind befähigt Anmerkungen zu beachten und Kritik zu würdigen.

Vorkenntnisse

Grundvorlesung Optimierung

Inhalt

Theorie und numerische Verfahren der kontinuierlichen nichtkonvexen Optimierung sowie der gemischtganzzahligen nichtlinearen Optimierung, Zusammenhänge kombinatorische und kontinuierliche Optimierung wie kopositive Optimierung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Oliver Sein, Gründzüge der globalen Optimierung, Springer, 2018.

Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, Jim Luedtke, and Ashutosh Mahajan. Mixed-Integer Nonlinear Optimization. Acta Numerica 22:1-131, 2013.

Aktuelle Arbeiten

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Modul: Hierarchische Steuerungssysteme

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200009 Prüfungsnummer:220427

Modulverantwortlich: Prof. Dr. Pu Li

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):1	05			S	WS	:4.0)		
Fakultät für I	ultät für Informatik und Automatisierung																			F	act	nge	biet	:22	12		
SWS nach	1 50 2 50 2 50 4 50 5															S	7	.FS	;	8	3.FS	3	ç).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	VS	3 P
semester			2 1	1																							

Lernergebnisse / Kompetenzen

Die Studierenden können Steuerungsaufgaben für hochdimensionale Systeme analysieren und entwickeln. Sie klassifizieren Zerlegungs- und Koordinationsprinzipien. Auf der Grundlage der nichtlinearen Optimierung und des Optimalsteuerungsentwurfs sind sie in Lage, Steuerungssysteme zu zerlegen, Optimierungs- und Optimalsteuerungsprobleme zu formulieren und mittels hierarchischer Methoden zu lösen, d. h. die Steuerungen zu entwerfen. Die Studierenden beschreiben die Grundbegriffe der mehrkriteriellen Optimierung, deren Aufgabenstellung und Lösungsmethoden.

Die Studierenden haben im Praktikum Grundfertigkeiten beim Umgang mit hierarchischen Steuerungsstrukturen, Zerlegungs- und Koordinationsprinzipien für stationäre und dynamische Prozesse erworben. Sie sind in der Lage, hierarchische Steuerungsprobleme zu erarbeiten, zu implementieren, unter Verwendung vorhandener Optimierungssoftware numerisch zu lösen und die Ergebnisse zu evaluieren.

Vorkenntnisse

Regelungs- und Systemtechnik 1 + 2, Statische Prozessoptimierung, Dynamische Prozessoptimierung

Inhalt

Hierarchische Optimierung statischer und dynamischer Systeme: Zerlegung und Beschreibung hierarchisch strukturierter Systeme; Koordinationsmethoden für statische Mehrebenenstrukturen; Möglichkeiten des Einsatzes statischer Hierarchiemethoden:

Hierarchische Optimierung großer dynamischer Systeme; Wechselwirkungsbalance- Methode und Wechselwirkungsvorhersage- Methode für lineare und nichtlineare Systeme; Trajektorienzerlegung. Verteilte Optimierung.

Prinzipien der mehrkriteriellen Entscheidungsfindung:

Mehrkriterieller Charakter von Entscheidungsproblemen; Steuermenge, Zielmenge, Kompromissmenge; Ein- und Mehrzieloptimierung; Verfahren zur Bestimmung der Kompromissmenge und von optimal effizienten Lösungen. Praktikum (2 Versuche: HSS-1: Mehrebenen-Optimierung stationärer Prozesse; HSS-2: Dynamische hierarchische Optimierung)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Video on Demand, Moodle-Kurs, Webex-Veranstaltungen, Folien, Skripte

Literatur

- K. Reinisch. Kybernetische Grundlagen und Beschreibung kontinuierlicher Systeme. Verlag Technik. 1977
- W: Findeisen. Hierarchische Steuerungssysteme. Verlag Technik. 1974
- M. Papageorgiou. Optimierung, Oldenbourg Verlag, München, 2006
- M. G. Singh. Dynamical hierarchical control. North Holland Publishing Company. Amsterdam. 1977
- M. G. Singh, A. Titli. Systems: Decomposition optimization and control. Pergamon Press. Oxford. 1978
- K. Reinisch. Hierarchische und dezentrale Steuerungssysteme. In: E. Philippow (Hrsg.). Taschenbuch Elektrotechnik. Bd. 2. Verlag Technik. 1987
- J. Ester: Systemanalyse und mehrkriterielle Entscheidung. Verlag Technik. 1987

Detailangaben zum Abschluss

Das Modul Hierarchische Steuerungssysteme mit der Prüfungsnummer 220427 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200639)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200640)

Details zum Abschluss Teilleistung 2:

Testat für Praktikum; Praktikum umfasst zwei Versuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Prüfungsgespräch (mündliche Abschlussleistung) in Distanz nach §6a PStO-AB

Dauer: 30 Minuten

Technische Voraussetzung: webex (Webcam + Mikrofon)

verwendet in folgenden Studiengängen:

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Modul: Kombinatorische Optimierung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200435 Prüfungsnummer:2400787

Modulverantwortlich: Prof. Dr. Matthias Kriesell

Leistungspu	nkte: 10)		W	orkl	oad	l (h):30	00		Α	ntei	I S	elbs	tstu	ıdiu	m (h):23	2		S	WS	:6.0)		
Fakultät für N	ultät für Mathematik und Naturwissenschaften																			Fac	hge	biet	:24	11		
SWS nach	1 5 2 5 2 5 4 5 5 5 6															3	7	.FS		8.F	S	ć).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	۱ د	/ S	Р	٧	S	Р	V S	Р
semester			4 2	0																						

Lernergebnisse / Kompetenzen

Nach der Vorlesung könne die Studierenden typische Probleme der Kombinatorischen Optimierung und Verfahren zu deren Lösung benennen, wissen dieses zusammenzufassen. Sie sind anhand der in der Vorlesung vorgestellten Beispiele für Fragen der Berechnungskomplexität sensibilisiert und sind fähig, typische Probleme hinsichtlich ihrer Berechnungskomplexität einzuordnen. Nach den Übungen können die Studierenden einerseits die o. g. Kenntnisse und Methoden zur Lösung von Beispielaufgaben anwenden, andererseits können sie kombinatorische Sachverhalte beweisen.

Vorkenntnisse

Lineare Algebra I/II sowie Graphen & Algorithmen

Inhalt

Grundlagen der Kombinatorischen Optimierung. Ausgewählte Probleme.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel

Literatur

Das Lehrbuch von Korte-Vygen

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Large Networks & Random Graphs

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200439 Prüfungsnummer:2400791

Modulverantwortlich: Prof. Dr. Yury Person

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (h):1	16			S	WS	:3.0)		
Fakultät für I	ıltät für Mathematik und Naturwissenschaften																			F	ach	gel	biet	:24	1D		
SWS nach	1.F	5	5.FS	3	6	6.F	S	7	.FS	;	8	.FS	;	9	.FS	S	10.	FS									
Fach-	V S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	VS	S P
semester			2 1	0																							-

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung verschiedene Modelle zufälliger Graphen, deren Anwendungsmöglichkeiten sowie Vor- und Nachteile. Sie sind u.a. durch die Übungen in der Lage, für ein Anwendungsproblem ein passendes Modell auszuwählen, dieses methodisch zu untersuchen und Algorithmen darauf anzuwenden und zu entwickeln. Sie sind ebenso befähigt, aktuelle Forschungsarbeiten zu lesen und die Ergebnisse zu präsentieren, zu besprechen und zu reflektieren.

Vorkenntnisse

Analysis I&II, Diskrete Stochastik

Inhalt

Modelle zufälliger Graphen und deren wichtigste Eigenschaften wie Schwellenwertfunktionen, Algorithmen,...

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Aufgaben

Literatur

- B. Bollobás: Random Graphs, 2nd edition; Cambridge University Press, 2001
- A. Frieze, M. Karonski: Introduction to Random Graphs; Cambridge University Press, 2015
- S. Janson, T. Luczak, A. Rucinski: Random Graphs; Wiley, 2000.

Aktuelle Forschungspublikationen.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Mathematische Systemtheorie unendlich dimensionaler Systeme

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200427 Prüfungsnummer:2400779

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5			W	orkl	oac	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (h):1	16			S	WS	:3.0)			
Fakultät für I	cultät für Mathematik und Naturwissenschaften																			F	act	nge	biet	:24	16			
SWS nach	1.F	S	5	5.FS	3	6	6.F	3	7	.FS	;	8	3.FS	3	ć).F	3	10	.FS	;								
Fach-	V S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	SI	Р
semester			2 1	0													·											

Lernergebnisse / Kompetenzen

Die Studierenden können nach der Vorlesung beschreiben, wie grundlegende systemtheoretische Grundbegriffe (z. B. Stabilität) auf den unendlich dimensionalen Fall übertragen werden. Sie kennen operatortheoretische Grundkonzepte, wie z. B. stark stetiger Halbgruppen. Die Studierenden können nach den Übungen erläutern, wie diese Konzepte auf Port-Hamiltonsche Systeme Anwendung finden.

Vorkenntnisse

Analysis, lineare Algebra, Funktionalanalysis, Grundkenntnisse der mathematischen Systemtheorie

Inhalt

Beherrschung der grundlegenden Begriffe der unendlich dimensionalen mathematischen Systemtheorie sowie der für ihr Verständnis notwendigen operatortheoretischen Grundlagen; Fähigkeit, die allgemeinen Resultate auf Spezialfälle anzuwenden; Anwendung auf Port-Hamiltonsche Systeme.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

A. Bensoussan, G. Da Prato, M.C. Delfour und S. Mitter: Representation and Control of Infinite Dimensional Systems, Birkhäuser: Systems & Control: Foundations & Applications, 2007.

Ruth F. Curtain und Hans Zwart: An Introduction to Infinite-Dimensional Linear Systems Theory, Springer: Texts in Applied Mathematics. 1995.

Birgit Jacob und Hans Zwart: Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Birkhäuser: Operator Theory: Advances and Applications 223, 1. Auflage, 2012.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Nichtlineare Regelungssysteme 2

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200023 Prüfungsnummer:220437

Modulverantwortlich: Prof. Dr. Johann Reger

Leistungspu	nkte:	: 5			W	ork	oad	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (l	า):10)5		S	WS	:4.0)		
Fakultät für I	kultät für Informatik und Automatisierung																				Fac	chge	biet	:22	13		
SWS nach	1 5 2 5 2 5 4 5 6															.FS	3	7	.FS		8.F	S	9	.FS	S	10	.FS
Fach-	٧	S P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SI	۰ د	v s	Р	٧	S	Р	V	S P
semester			2	1	1																-						

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, nichtlineare Systemmodelle aus der Mechatronik in eine PCHD-Darstellung zu bringen.
 - Die Studierenden wissen das Konzept Passivität für den Zustandsreglerentwurf einzusetzen.
- Die Studierenden beherrschen die wichtigsten Backstepping-Regelungsverfahren, können diese verallgemeinern und für Anwendungen problemorientiert anpassen.
- Die Studierenden können die Bedingungen bei der exakten Linearisierung überprüfen und das Konzept zum Entwurf von Betriebspunktregelungen einsetzen.
- Die Studierenden haben die Fähigkeit, das Konzept Flachheit beim Vorsteuerungsentwurf und bei Folgeregelungen zu nutzen.
 - Die Studierenden können lokale Beobachter für nichtlineare flache Systeme entwerfen.
 - Die Studierenden sind in der Lage, nichtlineare Entkopplungsregler zu berechnen.
- Die Studierenden können Übungsaufgaben in Kleingruppen in Vorbereitung der Lehrveranstaltung gemeisam lösen.
- Die Studierenden können einfache Regelungsprobleme lösen und diese im Team am Versuchsstand implementieren.
- Die gemeinsamen Beobachtungen bei der Versuchsdurchführung können im Team diskutiert, beurteilt und interpretiert werden.

Vorkenntnisse

Regelungstechnische Grundlagen linearer Systeme im Zustandsraum (z.B. RST 2)

Inhalt

- Dissipativität und Passivität
- Backstepping-Regelungen
- Exakte Eingangs-Zustandslinearisierung (SISO)
- Exakte Eingangs-Ausgangslinearisierung (SISO)
- Regelungsentwurf
- · Folgeregelung mit Beobachter

• Exakte Linearisierung (MIMO) und Entkopplung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folie, Tafel

https://moodle2.tu-ilmenau.de/enrol/index.php?id=3080

Literatur

- Isidori, A., Nonlinear Control Systems, Band 1, Springer, 2001
- Khalil, H., Nonlinear Systems, Prentice Hall, 1996
- Krstic, M., Kanellakopoulus, I., Kokotovic, P., Nonlinear and Adaptive Control Design, Wiley, 1995
- Marino, R., Tomei, P., Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall, 1995
- Slotine, J.-J., Li, W., Applied Nonlinear Control, Prentice Hall, 1991

Detailangaben zum Abschluss

Das Modul Nichtlineare Regelungssysteme 2 mit der Prüfungsnummer 220437 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200663)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200664)

Details zum Abschluss Teilleistung 2:

Testat auf 2 brstandene Praktikumsversuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Elektrotechnik und Informationstechnik 2021

Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Mechatronik 2022

Master Technische Kybernetik und Systemtheorie 2021

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Modul: Numerik partieller Differentialgleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200417 Prüfungsnummer:2400769

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte:	5			W	orkl	oad	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	ım (l	n):1	16		S	WS	:3.0)		
Fakultät für I	Ität für Mathematik und Naturwissenschaften																				Fa	chge	biet	:24	1A		
SWS nach	1.F	-S	3.FS	S	4	l.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8.1	-S	9).F	S	10	.FS				
Fach-	V S	P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	S P	٧	S	Р	V :	S P
semester			2	1	0																						

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung grundlegende Begriffe, Resultate und Beweisideen der Theorie numerischer Lösungsverfahren für elliptische Differentialgleichungen sowie deren Erweiterung auf parabolische Probleme. Sie wissen, wie diese allgemeinen Resultate auf konkrete Beispiele angewandt und auf dem Rechner umgesetzt werden. Nach den Übungen sind sie in der Lage, die aus der Vorlesung bekannten numerischen Methoden auf konkrete Beispiele mit Rechnerunterstützung anzuwenden.

Vorkenntnisse

Grundlagen der Analysis und linearen Algebra sowie in der Theorie und Numerik gewöhnlicher Differentialgleichungen.

Grundkenntnisse in numerischer Mathematik, insbesondere bzgl. numerischer Methoden für gewöhnliche Differentialgleichungen, lineare Algebra.

Inhalt

Numerische Verfahren zur Lösung elliptischer und parabolischer Differentialgleichungen: Finite Differenzen, Finite Elemente (z.B. Galerkin-Methode), Linienmethode. Ergänzt um die theoretischen Grundlagen wie die Variationsformulierung sowie die numerische Analyse, z.B. in Bezug auf Diskretisierungsfehler. Zudem werden Modellierungsaspekte angesprochen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Hackbusch, Wolfgang: Theorie und Numerik elliptischer Differentialgleichungen, Springer Spektrum: Lehrbuch, 2017.

Stig Larsson und Vidar Thomee: Partielle Differentialgleichungen und numerische Methoden, Springer, 2005. Claus-Dieter Munz und Thomas Westermann: Numerische Behandlung gewöhnlicher und partieller Differentialgleichungen - Ein anwendungsorientiertes Lehrbuch für Ingenieure, Springer, 4. Auflage, 2019. Walter Zulehner: Numerische Mathematik - Eine Einführung anhand von Differentialgleichungsproblemen. Band 1: Stationäre Probleme/Band 2: Instationäre Probleme, Birkhäuser: Mathematik Kompakt, 2008/2011.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Numerische Strömungsmechanik

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200285 Prüfungsnummer:2300741

Modulverantwortlich: Prof. Dr. Jörg Schumacher

Leistungspu	nkte: 8	5		W	orkl	oac	l (h):15	50		Aı	ntei	l Se	elbs	tstu	ıdiu	ım (l	n):10	05		S	WS	:4.0)		
Fakultät für I	ultät für Maschinenbau																			Fa	chge	biet	:23	47		
SWS nach	1.F	5	.FS	3	6	.FS	3	7	.FS		8.	FS	9	.FS	S	10	.FS									
Fach-	v s	Р	VS	S P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S	Р	V	S P	V	S	Р	V	S P
semester	-		2 2	2 0																						

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung mit den Grundlagen, Methoden und Algorithmen für die numerische Lösung der strömungsmechanischen Gleichungen für technische Anwendungen vertraut. Sie können auch Vorkenntnisse aus der Strömungsmechanik 1 und zu partiellen Differentialgleichungen reproduzieren. Anhand von ein- und zweidimensionalen Modellgleichungen können sie Diskretisierungsverfahren entwickeln und deren mathematische Eigenschaften untersuchen. Darauf aufbauend sind die Studierenden in der Lage einfache Methoden zu formulieren und

und Algorithmen für zweidimensionale Strömungsprobleme zu vergleichen. Außerdem können sie Möglichkeiten zur Behandlung komplexer Geometrien und dreidimensionaler Strömungen skizzieren. Nach den Übungen können sie mit der kommerziellen Software Ansys/Fluent anhand von konkreten Strömungsgeometrien umgehen. Sie sind in der Lage, die Aufgabenstellung in ein Berechnungsmodell zu übertragen und das Verhalten der berechneten Strömung qualitativ anhand von Stromlinienbildern, Vektordarstellungen sowie ggf. Animationen zu analysieren. Die Studierenden sind mit moderner Technik vertraut, indem jeder Student gelernt hat, die per Beamerprojektion gezeigten Einstellungen, Bearbeitungsschritte und Ergebnisse zu beachten und am eigenen Rechner nachzuvollziehen. Die Studierenden sind abschließend darin geschult, die einfachen Algorithmen für Modellgleichungen und zweidimensionale Strömungsprobleme praktisch anhand von vobereiteten Quellcodes in einer höheren Programmiersprache zu erproben. Am Ende der Vorlesung haben die Studierenden eine Übersicht über Standardmethoden und Algorithmen zur Diskretisierung und Lösung der strömungsmechanischen Gleichungen und kennen deren Eigenschaften und Beschränkungen. Weiterhin sind sie in der Lage, die Grundfunktionen der Software Ansys/Fluent zu nutzen.

Vorkenntnisse

Strömungsmechanik 1

Inhalt

Grundgleichungen, Eigenschaften und Klassifikation partieller Differentialgleichungen der Kontinuumsmechanik, Aufstellung und Analyse von Finiten Differenzenverfahren für einfache partielle Differentialgleichungen, Iterative Lösung linearer Gleichungssysteme, Finite Differenzenverfahren für zweidimensionale inkompressible Strömungen, Finite Volumenverfahren

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Powerpoint

Literatui

Ferziger & Peric, Computational Methods for Fluid Dynamics, Springer; Zikanov, Essential Computational Fluid Dynamics, Wiley

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Master Maschinenbau 2017 Master Maschinenbau 2022

Modul: Spektraltheorie für gewöhnliche Differentialgleichungen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200422 Prüfungsnummer:2400774

Modulverantwortlich: Prof. Dr. Carsten Trunk

Leistungspu	nkte: 5	5		W	orkl	oac	d (h):15	0		Α	ntei	il Se	elbs	tstu	ıdiu	ım (l	า):1	16		S	WS	:3.0)		
Fakultät für N	Mathe	l										Fac	chge	biet	:24	19										
SWS nach	1.F	S	2.	FS	3	3	4	.FS	3	5	5.FS	S	6	S.FS	3	7	.FS		8.F	S	ç).F	S	10	.FS	
Fach-	v s	Р	V 5	S P	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	P	v s	Р	٧	S	Р	V	SF
semester			2	1 0																						

Lernergebnisse / Kompetenzen

Die Studierenden wissen, wie Methoden der Operatortheorie zur Analyse und Lösung der Sturm-Liouville-Differentialgleichung verwendet werden können. Nach der Vorlesung können die Studenten diese Theorie in der mathematischen Physik (Quantenmechanik) anwenden. Die Studierenden haben vertiefte Kenntnisse der Erweiterungstheorie symmetrischer Operatoren. Nach intensiven Diskussionen und Gruppenarbeit während der Übungen können die Studenten Leistungen ihrer Mitkommilitonen richtig einschätzen und würdigen. Sie berücksichtigen Kritik, beherzigen Anmerkungen und nehmen Hinweise an

Vorkenntnisse

Analysis

Inhalt

Gegenstand der Vorlesung sind Aspekte der Theorie der Sturm-Liouville-Differentialgleichung. Dabei stehen Methoden der Operatortheorie, insbesondere der Spektraltheorie, im Vordergrund. Es werden Anwendungen der Theorie in der Quantenmechanik (insbesondere Schrödingergleichung) behandelt.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Skripte, Übungsaufgaben

Literatur

- J. Weidmann: Lineare Operatoren in Hilberträumen, Teil II: Anwendungen, Teubner.
- G. Teschl: MathematicalMethods in Quantum Mechanics, AMS.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Spezielle Themen der Systemtheorie

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200461 Prüfungsnummer: 2400813

Modulverantwortlich: Prof. Dr. Timo Reis

Leistungspu	nkte: 5			W	orklo	ad (r	1):15	0		A	ntei	l Se	elbs	tstuc	liu	m (h):	116		S	WS:	3.0)		
Fakultät für I	at für Mathematik und Naturwissenschaften																	Fa	chge	biet	24	16		
SWS nach	1.F	S	2.F	S	3.	FS	4	.FS	3	5	5.FS	3	6	.FS		7.F	S	8.	FS	9	.FS	3	10.1	-s
Fach-	v s	Р	v s	Р	V	SP	V	S	Р	٧	S	Р	٧	SI	Ы	v s	Р	V 5	S P	V	S	Р	v s	Р
semester			2 1	0																				

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung Konzepte und Methoden der Adaptiven und Modellprädiktiven Regelung. Sie besitzen Kenntnisse grundlegender Steuerungstechniken und Regler und wissen, wie diese in typischen Anwendungsfeldern eingesetzt werden. Sie sind nach den Übungen befähigt, die o. g. Kenntnisse in einfachen typischen Anwendungsbeispielen einzusetzen.

Vorkenntnisse

Systemtheorie I

Inhalt

Adaptive Regelung, Modellprädiktive Regelung, Lypunov-Stabilität, Modellreduktion, Nulldynamik

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien

Literatur

keine Angabe möglich

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Stochastische Prozesse

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200450 Prüfungsnummer:2400802

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte: 1	0		W	orkl	oad	(h):30	00		A	ntei	l Se	elbs	tstu	ıdiu	m (n):23	2		S	WS	:6.0)		
Fakultät für N	cultät für Mathematik und Naturwissenschaften																			Fac	hge	biet	:24	12		
SWS nach	1 50 2 50 4 50 5 50 6 50															7	.FS		8.F	S	6).F	S	10.	FS	
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	۱ د	/ S	Р	٧	S	Р	V S	Р
semester			4 2	0														-								

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und den sie begleitenden Übungen in der Lage, stochastische Prozesse im Rahmen der behandelten Modellklassen geeignet zu modellieren und das stochastische Verhalten dieser Modelle zu analysieren.

Vorkenntnisse

Maßtheorie & Stochastik

Inhalt

Grundlagen, Poisson-Prozess, Gaußsche Prozesse, Martingale, Markovprozesse, Brownsche Bewegung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Durrett, R. (1996). Probability: Theory and Examples, 2nd edn, Wadsworth Publishing Company, Belmont, CA.

Klenke, A. (2006). Wahrscheinlichkeitstheorie, 3rd edn, Springer, Berlin.

Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn, Springer, New York.

Durrett, R. (1999). Essentials of Stochastic Processes, Springer, New York.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Strömungsmechanik 2

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200311 Prüfungsnummer:2300777

Modulverantwortlich: Prof. Dr. Jörg Schumacher

Leistungspu	nkte	: 5				W	ork	load	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (l	h):1	05			S	WS	:4.0)		
Fakultät für I	kultät für Maschinenbau																					F	ach	igel	biet	:23	47		
SWS nach	1 50 2 50 2 50 4 50 5															6	6.F	S	7	.FS	;	8	.FS	3	9	.FS	S	10	.FS
Fach-	V	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S P
semester				2	2	0																							

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung Kenntnisse über Mechanik turbulenter Strömungen mit Anwendungen in Natur und Technik. Dabei können sie auch ihre Vorkenntnisse aus der Strömungsmechanik 1 reproduzieren. Durch die Übungen sind sie befähigt, die Problemstellung in den wöchentlich gestellten Übungsaufgaben zu kategorisieren, mögliche Lösungswege der Übungsaufgaben zu diskutieren und haben die Fahigkeit erlangt, die Herangehensewiese ihrer Mitkommilitonen zu würdigen. Sie können die in der Vorlesung vermittelten Kenntnisse und Methoden anwenden, um die Aufgaben zu lösen, die analytisch lösbare Beispiele aus dem Problembereich der hydrodynamischen Turbulenz umfassen. Mit den Übungen auf der Basis von wöchentlich empfohlenen Übungsaufgaben haben die Studierenden auch die vermittelten Vorlesungsinhalte gefestigt und wiederholt.

Vorkenntnisse

Strömungsmechanik 1

Inhalt

Wirbeltransport, Homogene isotrope Turbulenz, Korrelationen und statistische Momente turbulenter Strömungsfelder, Reynoldssche Gleichungen, Turbulente Grenzschichten und Scherströmungen, Turbulente Konvektion

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Beamer Präsentation, Handouts

Literatur

Davidson, Turbulence, Cambridge University Press; Pope, Turbulent Flows, Cambridge University Press; Rotta, Turbulente Strömungen, Teubner

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Master Maschinenbau 2022

Master Mathematik und Wirtschaftsmathematik 2022

Master Mechatronik 2017 Master Mechatronik 2022

Modul: Technische Elektrodynamik

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200536 Prüfungsnummer:2100875

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspu	nkte: 5			W	orkl	oad (h)	:15	0		Α	ntei	l Se	elbs	ststu	ıdiu	m (h):1	05			S	WS	:4.0)		
Fakultät für I	Elektro	tech	nnik un	nd Ir	nforr	natio	ns	stec	chni	k										F	act	nge	biet	:21	17		
SWS nach	1.F	S	2.F	S	3	.FS		4	.FS	3	5	5.FS	3	6	3.F	S	7	.FS	;	8	3.FS	3	ç).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	VS	S P				
semester			2 2	0		-												-									-

Lernergebnisse / Kompetenzen

1. Fachkompetenz:

Nach der Veranstaltung verfügen die Studierenden über Kenntnisse zu elektrodynamischen, insbesondere relativistischen Sachverhalten und sind befähigt, die Grundgleichungen zur elektrodynamischen Feldberechnung wiederzugeben

2. Methodenkompetenz:

Die Studierenden sind nach dem Besuch der Vorlesung in der Lage, Methoden zur systematischen Behandlung von elektromagnetischen Feldproblemen unter Berücksichtigung ingenieurtechnischer Aspekte zu analysieren. Die Studierenden können nach Abschluss des Moduls das notwendige Fachwissen zur systematischen Erschließung der technischen Elektrodynamik selbständig ableiten.

3. Systemkompetenz:

Nach Abschluss des Modules können die Studierenden fachübergreifend system- und feldorientiertes Denken zielgerichtet kombinieren.

4. Sozialkompetenz:

Nach der Lehrveranstaltung haben die Studierenden ihre in der Vorlesung erworbenen Kenntnisse anhand praxisnaher Beispiele gefestigt und sind in der Lage, mit Fachkollegen kompetent themenbezogen zu kommunizieren.

Vorkenntnisse

Theoretische Elektrotechnik, physikalisches Grundverständnis

Inhalt

- . Zeitabhängige Feldprobleme:
 - o vollständige Maxwell-Gleichungen, Wellenlösungen und

charakteristische Phänomene

- . Relativistische Betrachtung der Elektrodynamik:
 - o Lorentztransformation
 - o Vierervektoren und Feldtensor
 - o Anwendung der Lorentztransformation auf Maxwell-Gleichungen
 - o Berechnungen zur relativistischen Elektrodynamik
- Elektromagnetische Kräfte

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafelanschrieb

Literatur

[1] Sommerfeld, A. Vorlesungen zur Theoretischen Physik, Band III Elektrodynamik, Verlag Harri Deutsch

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Mathematik 2021
Bachelor Mechatronik 2021
Diplom Elektrotechnik und Informationstechnik 2017
Master Elektrotechnik und Informationstechnik 2021
Master Mathematik und Wirtschaftsmathematik 2022
Master Technische Kybernetik und Systemtheorie 2021

Modul: Theoretische Elektrotechnik 2

Modulabschluss: Prüfungsleistung schriftlich 180 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200537 Prüfungsnummer:2100876

Modulverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspu	nkt	e: 5				W	orkl	oad	d (h):15	50		Aı	nte	il Se	elbs	tstu	ıdiu	ım (h):1	05			S	WS	:4.0)			
Fakultät für I	Ξle	ktro	tech	nnik	k un	d Ir	ıforı	mat	ion	ste	chni	ik										F	acl	nge	biet	:21	17			
SWS nach		1.F	S	2	2.F	S	3	3.FS	S	4	.FS	3	5	5.F	S	6	6.F	3	7	'.FS	3	8	3.FS	S	ć).F	S	1().F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester				2	2	0																							-	

Lernergebnisse / Kompetenzen

Absolventen der Lehrveranstaltung, bestehend aus Vorlesung und dazu gehörigen Übungen:

- besitzen Kenntnisse über quasistationäre und rasch veränderliche elektromagnetische Felder
- sind informiert über Probleme der Strom- und Feldverdrängung und
- besitzen grundsätzliche Kenntnisse über die Ausbreitung von Wellen auf Leitungen und im freien Raum

Vorkenntnisse

Theoretische Elektrotechnik 1

Inhalt

Quasistationäres Feld: Verallgemeinertes Induktionsgesetz, Felddiffusion: Lösung der Diffusionsgleichung, Fluss- und Stromverdrängung, Skineffekt; Geführte Wellen auf homogenen Leitungen: Leitungsgleichungen und ihre Wellenlösungen, Übertragungseigenschaften; Rasch veränderliches elektromagnetisches Feld: Wellengleichungen, ebene Wellen, Lösung der vollständigen Mawellschen Gleichungen: retardierte Potentiale, Wellenabstrahlung/Leistung

Poynting-Satz

Elementarstrom- und Mengentheorie des Magnetismus, Energie und Kräfte, Induktivität

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Vorlesungsskript zur Lehrveranstaltung, Folien, Aufgabensammlung (auch im Internet verfügbar) https://moodle2.tu-ilmenau.de/course/view.php?id=3016

Literatur

Uhlmann, F. H.: Vorlesungsskripte zur Theoretischen Elektrotechnik , Teile I und II/TU Ilmenau

Lehner, G.: Elektromagnetische Feldtheorie, Springer-Verlag, Berlin/Heidelberg/New York, 2006

Simonyi, K.: Theoretische Elektrotechnik, 10. Aufl. Johann Ambrosius Barth, 1999

Henke, H.: Elektromagnetische Felder. Theorie und Anwendung , Springer-Verlag, Berlin/Heidelberg/New York, 2002

Wunsch, G.; Schulz, H.-G.: Elektromagnetische Felder, Verlag Technik Berlin, 1989 Philippow, E.: Grundlagen der Elektrotechnik, 9. Aufl., Verlag Technik, Berlin, 1992

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2021 Bachelor Mathematik 2021 Diplom Elektrotechnik und Informationstechnik 2021 Master Mathematik und Wirtschaftsmathematik 2022

Modul: Variationsrechnung und optimale Steuerung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200415 Prüfungsnummer: 2400767

Modulverantwortlich: Prof. Dr. Karl Worthmann

Leistungspu	nkte:	10			W	orkl	oac	d (h):30	00		A	ntei	l Se	elbs	tstu	ıdiu	ım (l	າ):23	2		S	WS	:6.0)		
Fakultät für I	Mathe	mati	k un	d N	latu	ırwi	sse	enso	cha	ften	1										Fac	hge	biet	:24	13		
SWS nach	1.F	S	2.	.FS	;	3	s.FS	3	4	l.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	9).F	S	10	.FS
Fach-	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	SF	V	' S	Р	٧	S	Р	٧	S P
semester			4	2	0																						

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung grundlegende Begriffe, Resultate und Beweisideen der Variationsrechnung und der Theorie der optimalen Steuerung. Insbesondere beherrschen sie das Bang-Bang-Prinzip und kennen das Maximumprinzip. Sie sind nach den Übungen fähig, die allgemeinen Resultate auf Spezialfälle anzuwenden.

Zudem kennen die Studentinnen und Studenten Querbezüge zur (nichtlinearen) Optimierung.

Vorkenntnisse

Grundlagen der Analysis und linearen Algebra sowie die Theorie gewöhnlicher Differentialgleichungen

Inhalt

Variationsprobleme und deren analytische Lösung mit Hilfe der Euler-Lagrange-Gleichung sowie ggf. der Weierstrass-Erdmannschen Eckenbedingung und die notwendige Bedingung von Legendre.

Modellierung und Formulierung optimaler Steuerungsprobleme (insbesondere Zeitoptimalität). Charakterisierung der zulässigen Menge für lineare autonome Differentialgleichungssysteme (insbesondere Bang-Bang-Prinzip) und Maximumprinzip sowie dessen Anwendung.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

Hansjörg Kielhöfer: Variationsrechnung - Eine Einführung in die Theorie einer unabhängigen Variablen mit Beispielen und Aufgaben, Vieweg+Teubner: Studium, 1. Auflage, 2010.

Jack Macki und Aaron Strauss: Introduction to Optimal Control Theory, Springer: Undergraduate Texts in Mathematics, 1982.

Heinz Schättler und Urszula Ledzewicz: Geometric Optimal Control - Theory, Methods and Examples, Springer: Interdisciplinary Applied Mathematics 38, 1. Auflage, 2012.

Suresh P. Sethi: Optimal Control Theory - Applications to Management Science and Economics, Springer, 3. Auflage, 2019.

John L. Troutman: Variational Calculus and Optimal Control - Optimization with Elementary Convexity, Springer: Undergraduate Texts in Mathematics, 2. Auflage, 1996.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Vektoroptimierung

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200447 Prüfungsnummer:2400799

Modulverantwortlich: Prof. Dr. Gabriele Eichfelder

Leistungspu	nkte: 1	0		W	orklo	ad (r	1):30	00		A	ntei	l Se	elbs	tstud	iu	m (h):2	232		S	WS:	6.0)		
Fakultät für I	Mather	natil	k und	Nati	urwis	sens	cha	ften										Fa	chge	biet	24	15		
SWS nach	1.F	S	2.F	S	3.	FS	4	l.FS	3	5	5.FS	3	6	.FS		7.F	3	8.1	FS	9	.FS	3	10.F	-S
Fach-	V S	Р	v s	Р	V	S P	٧	S	Р	٧	S	Р	٧	SF	7	V S	Р	VS	S P	V	S	Р	v s	Р
semester			4 2	0																			•	

Lernergebnisse / Kompetenzen

Die Studierenden erkannten in der Vorlesung und Übung die grundlegenden Unterschiede und die sich daraus ableitenden zusätzlichen Herausforderungen der hier betrachteten Problemstellungen bezüglich der Dimension des Bildraumes und der zugrundeliegenden Halbordnungen im Vergleich zu den üblicherweise in Grundlagenvorlesungen der Optimierung untersuchten Optimierungsproblemen. Jedoch ist ihnen auch bewusst, dass sich diese neuen Problemstellungen unter geeigneten Bedingungen durch gewisse Techniken (Skalarisierungen) auf die bisher betrachteten und bekannten zurückführen lassen. Durch die Vorlesung beherrschen sie die grundlegenden Begriffe und Methoden sowie die fundamentalen Resultate (einschließlich Beweisideen) der Vektor- und Mengenoptimierung. Weiterhin können die verschiedenen Resultate durch die Studierenden klassifiziert und miteinander hinsichtlich ihrer Bedeutung (etwa lineare und nichtlineare Skalarisierungen) kategorisiert werden. Basierend hierauf sind sie in der Lage, die aus den theoretischen Grundlagen abgeleiteten und vorgestellten Verfahren zu verstehen und ihre Besonderheiten zu erfassen. Weiterhin sind sie befähigt, die allgemeinen Resultate auf (praktisch) relevante Spezialfälle anzuwenden und somit die allgemeinen Resultate der Vektoroptimierung zum Lösen konkreter Praxisprobleme anzuwenden. Diese Erkenntnisse wurden in den Übungen von den Studierenden angewendet, um weitere mathematische Resultate aus dem Bereich der Vektor- und Mengenoptimierung zu erhalten sowie die Arbeitsweise der behandelten Verfahren durch mathematische Software bei vorgegebenen Testinstanzen oder praktischen Anwendungsproblemen vergleichend zu untersuchen und die erhaltenen Ergebnisse zu analysieren. Somit gelingt es ihnen nun unter anderem die Existenz von alternativen Lösungsstrategien zu erkennen bzw. das mögliche Versagen von behandelten Ansätzen und damit deren Grenzen abzuschätzen. Sie können durch die Übungen Anmerkungen beachten und Kritik würdigen. Die im Rahmen dieser Veranstaltung erlangten Kenntnisse befähigen die Studierenden zur einer tiefergehenden Beschäftigung mit Fragestellungen der Vektorund Mengenoptimierung, etwa im Rahmen von Abschlussarbeiten oder Forschungsprojekten. Durch die hohe praktische Relevanz der untersuchten Problemstellungen sind sie darüberhinaus in die Lage versetzt, in ihrer beruflichen Praxis multikriterielle Problemstellungen gegebenenfalls in Zusammenarbeit mit Spezialisten anderer Fachrichtungen zu lokalisieren sowie Lösungsansätze und -strategien für die daraus resultierenden multikriteriellen Optimierungsprobleme zu entwickeln und erfolgreich umzusetzen.

Vorkenntnisse

Grundvorlesung Optimierung

Inhalt

Optimierungsprobleme mit vektorwertiger oder mengenwertiger Zielfunktion, Optimalitätsbegriffe, Charakterisierung optimaler Lösungen mittels linearer und nichtlinearer Skalarisierungen, Optimalitätsbedingungen, Numerische Verfahren, Anwendungen, Spezialfall multikriterielle Optimierung, Behandlung von Unsicherheiten mittels robuster Zugänge

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Arbeitsblätter

Literatur

M. Ehrgott, Multicriteria Optimization 2nd Edition (Springer, Berlin, 2005).

G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization (Springer, Berlin, 2008).

J. Jahn, Vector Optimization: Theory, Applications, and Extensions 2nd Edition (Springer, Berlin, 2010).

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Modul: Wärmestrahlung

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200287 Prüfungsnummer:2300743

Modulverantwortlich: Prof. Dr. Claus Wagner

Leistungspu	nkte:	5		٧	Voi	rkloa	ıd (h):15	50		Α	ntei	il Se	elbs	tstu	ıdiu	ım (l	า):1()5		S	WS	:4.0)		
Fakultät für N	Masch	ninen	bau	l																Fa	chge	biet	:23	49		
SWS nach	1.F	S	2	.FS	3.F	S	4	l.F	3	5	5.FS	S	6	S.FS	3	7	.FS		8.F	S	6).F	S	10	.FS	
Fach-	v s	Р	٧	SF	١ ١	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	P	v s	Р	٧	S	Р	V :	S P
semester			2	2 0																						

Lernergebnisse / Kompetenzen

Die Studierenden haben nach der Vorlesung grundlegende und erweiterte Kenntnisse des Wärmetransports durch Strahlung. Sie können diese Kenntnisse auf technische Strahlungsprobleme anwenden und sind in der Lage, technologische Prozesse der Strahlungserwärmung zu entwickeln oder zu optimieren. In den Übungen wurden die Studierenden mit der Berechnung dieser Prozesse vertraut gemacht. Sie sind im Umgang mit Infrarotmesstechnik (Pyrometer, Infrarotkameras) geschult und haben gelernt, diese Messgeräte in der Praxis sachgerecht anzuwenden. Sie können Anmerkungen beachten und Kritik ihrer Mentoren annehmen sowie diese auch konstruktiv umsetzen.

Vorkenntnisse

Physikalische Grundlagen und mathematische Fähigkeiten aus der gymnasialen Oberstufe

Inhalt

- Grundlagen der elektromagnetischen Strahlung
- Grundlagen des Strahlungsaustausches
- Spezielle Probleme der Wärmeübertragung durch Strahlung
- Grundlagen und Methoden der Infrarotmesstechnik
- Praktische Anwendung der Infrarotmesstechnik
- Grundlagen der Strahlungserwärmung
- Technische Strahler
- · Ingenieurtechnische Anwendungen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Das Modul Wärmestrahlung wird nicht in elektronischer Form angeboten.

- · Tafel, Kreide
- Overhead-Projektor
- Beamer
- · Demonstrationsversuche

Literatur

- Frank P. Incropera, David P. DeWitt. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Inc.
- A.F. Mills: Heat Transfer, Prentice Hall Inc., Upper Saddle River (1999).
- H. D. Baehr, K. Stephan. Wärme- und Stoffübertragung. Springer, Vieweg Verlag.
- R. Siegel, J.R. Howell, J. Lohrengel. Wärmeübertragung durch Strahlung, Springer-Verlag, Berlin (1988).
- C. Kramer, A. Mühlbauer. Praxishandbuch Thermoprozesstechnik, Vulkan-Verlag, Essen (2002).
- VDI-Gesellschaft. VDI-Wärmeatlas. Springer Berlin Heidelberg.
- IMPAC GmbH. Pyrometerhandbuch Berührungslose Temperaturmessung (Firmenschrift). Impressum Copyright IMPAC Infrared GmbH 2004.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB.

verwendet in folgenden Studiengängen:

Master Maschinenbau 2017 Master Maschinenbau 2022 Master Technische Kybernetik und Systemtheorie 2021

Modul: Zeitreihenanalyse

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200452 Prüfungsnummer:2400804

Modulverantwortlich: Prof. Dr. Thomas Hotz

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):1	16			SV	/S:3	.0		
Fakultät für I	Mather	nati	k und	Nat	urwi	sse	nso	cha	ften	l										Fa	achç	geb	iet:2	412		
SWS nach	1.F	S	2.F	S	3	s.FS	3	4	l.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8	.FS		9.1	-s	10.	.FS
Fach-	V S	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S I	۰ ر	v s	S P	VS	S P
semester			2 1	0														•								-

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und den sie begleitenden Übungen in der Lage, Zeitreihendaten im Rahmen der behandelten Modellklassen zu modellieren, zu analysieren und vorherzusagen.

Vorkenntnisse

Maßtheorie & Stochastik oder Stochastik, besser Stochastische Prozesse

Inhali

Stationäre Prozesse und ihre Vorhersage, Schätzung von Erwartungswert und Kovarianz, ARMA-Prozesse, Spektralanalyse, Zustandsraummodelle und Kalman-Filter, Finanzzeitreihen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Skript, Aufgaben, Software

Literatur

Brockwell, P. J. and Davis, R. A. (2006). Time Series: Theory and Methods, 2nd edn, Springer-Verlag, New York

Hannan, E. J. (1983). Time Series Analysis, Chapman and Hall International, London.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods, Oxford University Press, Oxford

Franke, J., Härdle, W. and Hafner, C. M. (2004). Statistics of Financial Markets, Springer-Verlag, Berlin.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Abschlussleistung in Distanz entsprechend §6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Informatik 2021

Master Informatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Hauptseminar TKS MSc

Modulabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte

Sprache:Deutsch/Englisch Pflichtkennz.:Wahlmodul Turnus:ganzjährig

Modulnummer: 200732 Prüfungsnummer:2200844

Modulverantwortlich: Silke Eberhardt-Schmidt

Leistungspu	nkte	: 3				W	ork	load	d (h):90)		A	ntei	il Se	elbs	tstu	ıdiu	m (h):9	90			S	WS	:0.0)			
Fakultät für I	nfo	ma	atik	und	ΙΑι	ıton	nati	sier	ันทรู)												F	acl	nge	biet	:22	00			
SWS nach	1	.F	S	2	2.F	S	3	3.FS	3	4	l.F	S	5	5.FS	S	6	6.F	S	7	.FS	3	8	3.F	S	Ĝ).F	S	10	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester					90 h	0																								

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, wissenschaftlich-technische Literatur zu recherchieren und auszuwerten. Sie können ein neues, weiterführendes Verfahren oder einen Anwendungsfall eigenständig erfassen und bewerten. Sie besitzen die Fähigkeit, ein wissenschaftliches Thema schriftlich und mündlich angemessen zu präsentieren.

Vorkenntnisse

Inhalt

Es werden aktuelle Forschungsthemen zu ausgewählten Problemen der Automatisierungstechnik, Prozessoptimierung, Regelungstechnik und Systemtheorie erarbeitet, zusammengefasst und mit dem Stand der Forschung in Beziehung gesetzt.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Literatur

Die Literatur ist selbständig zu recherchieren.

Detailangaben zum Abschluss

Selbstständige wissenschaftliche Arbeit im Umfang von 90 Stunden inkl. Abschlussvortrag und Diskussion

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Masterarbeit mit Kolloquium

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Deutsch/Englisch Pflichtkennz.:Pflichtmodul Turnus:ganzjährig

Fachnummer: 201053 Prüfungsnummer:99000

Fachverantwortlich: Silke Eberhardt-Schmidt

Leistungspu	nkt	e: 3	0			W	orkl	oac	d (h):90	00		Α	nte	il Se	elbs	tstu	ıdiu	ım (h):9	900			S	ws	:0.0)			
Fakultät für I	ür Informatik und Automatisierung h 1.FS 2.FS 3.FS 4.FS																					F	acl	hge	biet	:22				
SWS nach		1.F	S	2	2.F	S	3	.FS	3	_	l.F	3	5	5.F	S	6	S.FS	S	7	.FS	3	8	3.F	S	9).F	S	1	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester								900 h																						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, eine konkrete wissenschaftliche Problemstellung aus dem fortgeschrittenen Bereich der Technischen Kybernetikund Systemtheorie unter Anleitung zu bearbeiten, durch Anwendung der im Studium erworbenen Methodenkompetenz selbstständig zu lösen und die Ergebnisse gemäß wissenschaftlicher Standards fachlich fundiert zu dokumentieren. Die Studierenden können die Erkenntnisse ihrer Arbeit bewerten und in den Stand der Forschung einordnen. Gegenüber einem Fachpublikum können sie ihre Vorgehensweise motivieren, damit erreichte Ergebnisse und Erkenntnisseangemessen präsentieren sowie in einer abschließenden Diskussion verteidigen.

Vorkenntnisse

Inhalt

Es wird eine konkrete wissenschaftliche Aufgabenstellung bearbeitet, welche auf die im Master erworbenen Kompetenzen zurückgreift. Im Kolloquium werden die dabei erzielten Resultate in einer Abschlusspräsentation verteidigt

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Literatur

Themenspezifische Literatur wird zu Beginn der Arbeit vom Betreuer benannt bzw. ist selbstständig zu recherchieren.

Empfohlen wird außerdem Literatur zu wissenschaftlichem Arbeiten, Literaturrecherche (beispielsweise Angebote der Bibliothek) und Präsentationstechniken.

Detailangaben zum Abschluss

- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 80% (Prüfungsnummer: 99001)
- Kolloquium Prüfungsleistung mit einer Wichtung von 20% (Prüfungsnummer: 99002)

Details zum Abschluss Teilleistung 1:

Selbstständige schriftliche wissenschaftliche Arbeit, Umfang 720 h innerhalb von 6 Monaten Details zum Abschluss Teilleistung 2:

Gesamtdauer des Kolloquiuma max. 60 min; Vortrag max. 30 min

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It.

K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)

Inhaltsverzeichnis