Elektronika - Laboratórium Gyakorlat-

Jegyzőkönyv

11. gyakorlat

2023. november 27.

Elméleti összefoglaló

Miután az előző heti laborokon megismerkedtünk azzal, hogy a hálózatban bőségesen megtalálható áramot, hogyan kell átalakítani egyenárammá, ami számunkra jobban felhasználható, most azt fogjuk ezen a héten vizsgálni, hogy mire is tudjuk felhasználni. Az egyik fő felhasználása az elektronikai berendezéseknek, áramköröknek, hogy valamilyen folyamatot elvégezzenek, azt valamilyen "rendezői elv", szabály szerint elvégezzék. Ehhez szükség van egy logikai vezérlésre, aminek az alapkövét fogjuk ezen a héten vizsgálni.

Az eddigi tanulmányunk alapján látjuk, hogy léteznek feszültségeink, amiket multiméterrel megtudtunk mérni és továbbá aktív komponensekkel tudtuk változtatni, hogy az ezekhez tartozó töltések mozogjanak-e. Most az **alapvető matematikai műveletek** bevezetésével, a **műveleti erősítőkkel** ennél összetettebb viselkedést is eltudunk majd érni.

A műveleti erősítő, egy olyan alkatrész, ami más logikai és fizikai bemenetekkel rendelkezik. Logikai szempontból két bemenete és egy kimenete van, ahol egy egyszerű képlet szerint viselkedik: $V_{ki} = A_{gen} \cdot (V_{egyenes} - V_{fordított})$

A valós/fizikai áramköri ábrán viszont látszódik, hogy van két plusz bemenete, ami az "általa elérhető" feszültség pozitív és negatív polaritásban. Ez képzi a felső határát annak, hogy mekkora feszültségre tud a műveleti erősítő erősíteni, másszóval a legnagyobb V_{ki} amit ki tud adni. Ideális esetben a A_{gen} nagysága végtelen, viszont a valóságban ez $|V_{gen}|$ -vel egyenlő.

A műveleti erősítők működése két üzemmódban elterjedt: nyílthurok és zárthurok működésben. A húrok itt azt jelenti, hogy a V_{ki} kimenet valamilyen módon össze van kötve a $V_{fordított}$ bemenettel. Ha ez a zárthurok teljesül, akkor kényszerszerűen (ha képes rá) a műveleti erősítő akkora feszültséget fog teremteni, hogy a $V_{fordított} = V_{egyenes}$ egyenlőség igaz legyen.

Az ideális műveleti erősítőnek a két bemenete között **NEM** folyik áram. Továbbá a műveleti erősítő nem csak pozitív feszültséget tud kiadni. Ezt a két tulajdonságot ki fogjuk használni a következő áramkörökben.

Ezt a tudást felvértezve azzal, hogy ismerjük a feszültségosztó áramkörök működését már eléggé összetett áramköröket tudunk összerakni. Az első ilyen az invertáló és nem invertáló erősítő áramkör. A koncepció itt az, hogy van egy adott bemeneti feszültségünk V_{be} és ezt egy tetszőleges β szorosra tudjuk erősíteni két (három) ellenállás segítségével. A nem invertáló erősítőnél a bemeneti feszültség az egyenes lábon fekszik és az érték meghatározásához a következő képletet használjuk: $\beta = \frac{R_1}{R_1 + R_2}$, amiből látszik, hogy 1-nél kisebb erősítésre nem képes. Az invertáló erősítésnél a bemenet a fordított lábra van kötve és ez a képlet írja le: $\beta = -\frac{R_2}{R_2}$. Nevéből adódóan látszik, hogy

a bemenet a fordított lábra van kötve és ez a képlet írja le: $\beta = -\frac{R_2}{R_1}$. Nevéből adódóan látszik, hogy ez megfordítja az áram irányát, ami általában nem egy probléma.

A szuperpozíció tétel segítségével, ha több bemenetet is kapcsolunk ezekre az áramkörökre, akkor a kimenet összeadás (nem invertáló bemenet) és kivonás (invertáló bemenet) műveletet elvégzésére képes. Diódák bevezetésével meg logaritmikus és exponenciális műveleteket lehet elvégezni.

Feladatok

1. Feladat

Készítsen 11-szeres erősítésű erősítőt (lásd alábbi ábra), legyen $R_1=10k\Omega$, $R_3=0$, R_2 értékét pedig számítsa ki! Legalább 15 mérési pont felhasználásával ábrázolja az $U_{ki}(U_{be})$ függvényt! Az ábrákon jól látható legyen, hogy mely tartományban működnek helyesen az erősítők. Az erősítés értékét egyenes illesztésével határozza meg!

Adatok

$$R_1 = 10000\Omega$$
$$R_3 = 0\Omega$$

R₂ számítása

A nem invertáló erősító képletének ($\beta = \frac{R_1}{R_1 + R_2}$) felhasználásával történik.

$$V_{be} = V_{ki} \cdot \beta = V_{ki} \cdot \frac{R_1 + R_2}{R_1 + R_2} = V_{ki} \cdot \frac{10000\Omega}{10000\Omega + R_2}$$

Az erősítés miatt tudjuk, hogy:

$$V_{ki} = V_{be} \cdot \beta = \frac{1V}{11} = \frac{1}{11}V$$

$$\frac{1}{11}V = \frac{10000\Omega}{10000\Omega + R_2}$$

$$\frac{10000\Omega + R_2}{11} = 10000\Omega$$

$$10000\Omega + R_2 = 111000\Omega$$

$$R_2 = 100000\Omega = 100k\Omega$$

Áramkör

	Bemeneti feszültség (V)	Erősítő feszültsége (V)
1	1.3170	10.8900
2	1.0310	10.8800
3	0.9040	10.0500
4	0.8200	8.8400
5	0.6660	7.1400
6	0.5270	5.7100
7	0.4120	4.4500
8	0.3530	3.8500
9	-0.0540	-0.5250
10	-0.1940	-2.0700
11	-0.5000	-5.5000
12	-0.7070	-7.6300
13	-0.8040	-8.6900
14	-1.0980	-9.3500
15	-1.3270	-9.3500

Elektronika lab. gyak.

2. Feladat

Készítsen -4,7-szeres erősítésű (fordító) erősítőt (lásd alábbi ábra), legyen $R_1=10k\Omega$, $R_3=0$, R_2 értékét pedig számítsa ki! Legalább 15 mérési pont felhasználásával ábrázolja az $U_{ki}(U_{be})$ függvényt! Az ábrákon jól látható legyen, hogy mely tartományban működnek helyesen az erősítők. Az erősítés értékét egyenes illesztésével határozza meg!

Adatok

$$R_2 = 10000\Omega$$
$$R_3 = 0\Omega$$

R₂ kiszámítása

Az invertáló erősító képletének ($\beta = -\frac{R_2}{R_1}$) felhasználásával történik.

$$V_{be} = V_{ki} \cdot \beta = -V_{ki} \cdot \frac{R_2}{R_1} = -V_{ki} \cdot \frac{R_2}{10000\Omega}$$

Az erősítés miatt tudjuk, hogy:

$$V_{ki} = -V_{be} \cdot 4.7 = -1V \cdot 4.7 = -4.7V$$

$$-4.7V = \frac{R_2}{10000\Omega}$$

$$R_2 = 47000\Omega = 47k\Omega$$

Áramkör

	Bemeneti feszültség (V)	Erősítő feszültsége (V)
1	-2.8260	10.7300
2	-2.1880	10.1800
3	-1.8130	8.5100
4	-1.5410	7.1900
5	-1.0200	4.8100
6	-0.7150	3.3300
7	-0.3390	1.5100
8	-0.0500	0.0296
9	0.3290	-1.1100
10	0.7240	-3.3300
11	1.0150	-4.7700
12	1.4090	-6.6000
13	1.7110	-7.9400
14	1.9970	-9.2400
15	2.4330	-9.3400

3. Feladat

Készítsen (-1)-szeres erősítésű összegző erősítőt (lásd alábbi ábra) és mérje meg az $U_{ki}(U_{be,1},U_{be,2})$ függvényt! Legyen $R_2=10k\Omega,\,R_3=0$, a többi ellenállás értékét számítsa ki! Legalább 25 mérést végezzen! U_{ki} értékét $U_{be,2}-U_{be,1}$ függvényében ábrázolja!

Adatok

$$\begin{array}{c} R_1 = 10000\Omega \\ R_3 = 0\Omega \end{array}$$

R₁₁ és R₁₂ számítása

Az invertáló erősítő képlete ($\beta_{\chi} = -\frac{R_2}{R_{1\chi}}$) alapján állapíthatók meg.

$$V_{ki} = (-V_1\beta_1 - V_2\beta_2) = -V_1 \cdot \frac{10000\Omega}{R_{11}} - V_2 \cdot \frac{10000\Omega}{R_{12}}$$
$$-1 = -\frac{10000\Omega}{R_{11}} = -\frac{10000\Omega}{R_{12}}$$
$$R_{11} = 10000\Omega$$
$$R_{12} = 10000\Omega$$

Áramkör

	Bemeneti feszültség 1 (V)	Bemeneti feszültség 2 (V)	Erősítő feszültsége (V)
1	-5.5800	-5.2900	10.7900
2	-5.0800	-5.0700	10.2200
3	-4.0600	-4.0100	8.1400
4	-3.0400	-3.0200	6.1100
5	-2.0410	-2.0890	4.1500
6	-0.9600	-0.9700	1.9520
7	-0.0013	0.0010	0.0020
8	1	1.0710	-2.0790
9	2.0750	2.1170	-4.1900
10	3.0850	3.1120	-6.2300
11	4.0700	4.0200	-8.1500
12	5.0900	5.0100	-9.2700
13	5.1100	-5.0600	-0.0070
14	7.0500	-7.0700	0.0860
15	-5.1400	5.0700	0.0280
16	-3.0600	3.0300	0.0010
17	-1.0060	-3.0400	4.0900
18	5.1500	-3.0400	-2.0700
19	5.1500	2.0800	-7.2600
20	-6.0600	2.0800	3.9700
21	3.5600	-2.3000	-1.2000
22	8.4200	1.8300	-9.2700
23	8.4200	-3.3900	-5
24	-4.9200	-3.3900	8.3700
25	7.0800	-2.9900	-4.0800

4. Feladat

Készítsen 1-szeres erősítésű különbségképző erősítőt (lásd alábbi ábra) és mérje meg az $U_{ki}(U_{be,1},U_{be,2})$ függvényt! Legyen $R_2=10k\Omega$, a többi ellenállás értékét számítsa ki! Mindkét esetben legalább 25 mérést végezzen! U_{ki} értékét $U_{be,2}-U_{be,1}$ függvényében ábrázolja!

Adatok

$$R_1 = 10000\Omega$$

R₁, R₃ és R₄ kiszámítása

Az invertáló erősító képletének ($\beta = -\frac{R_2}{R_1}$) felhasználásával történik.

Jelen esetben $\beta=1$, ami azt jelenti, hogy $R_2=R_1=10k\Omega$, illetve $R_3=R_4$, ez utóbbi tetszőleges értéket vehet fel, a megoldáshoz $1k\Omega$ -t használtunk.

Áramkör

	Bemeneti feszültség 1 (V)	Bemeneti feszültség 2 (V)	Erősítő feszültsége (V)
1	10.2300	-0.0030	10.3000
2	4.9800	-0.0030	5.0200
3	0.0014	-0.0030	0.0050
4	-4.9600	-0.0030	-5
5	-10.2700	-0.0030	-9.3200
6	0.0015	10	-9.2700
7	0.0015	5.0500	-5.1000
8	0.0015	-0.0140	0.0180
9	0.0015	-5.0500	5.1200
10	0.0015	-10.1400	10.2600
11	-10.2700	-10.1300	-0.0890
12	-5.1900	-5.1800	0.0130
13	0.0080	0.0015	0.0070
14	4.9600	4.9800	-0.0450
15	10.2200	10.0900	0.0880
16	2.5300	6.9500	-4.4800
17	2.5300	-5.6700	8.2800
18	4	-5.6700	9.7900
19	4	1.5800	2.4500
20	-7.6700	1.5800	-9.2700
21	-7.6700	-10.1300	2.5300
22	-2.4700	-10.1300	7.7700
23	-2.4700	4.0700	-6.6000
24	3.5900	4.0700	-0.4990
25	3.5900	-6.0100	9.6900

5. Feladat

Készítsen exponenciális és logaritmikus erősítőt (lásd alábbi ábrák), és vegye fel a karakterisztikáját! R_1 , illetve R_2 értéke $10k\Omega$ legyen! Abrázolja a mért értékeket és a linearizált karakterisztikákat is!

 U_{ki}

logaritmikus erősítő

Áramkörök/Mérések

	Bemeneti feszültség (V)	Erősítő feszültsége (V)
1	0.4210	-0.3920
2	0.4570	-1.0170
3	0.4750	-1.5650
4	0.5090	-3.3200
5	0.5330	-5.5800
6	0.5510	-8.0100
7	0.5600	-9.1800
8	0.6000	-9.2700
9	0.7000	-9.2700

	Bemeneti feszültség (V)	Erősítő feszültsége (V)
1	0.0160	-0.3140
2	0.0318	-0.3340
3	0.0450	-0.3480
4	0.0510	-0.3510
5	0.0808	-0.3660
6	0.1010	-0.3730
7	0.1970	-0.3950
8	0.2930	-0.4090
9	0.3960	-0.4200
10	0.6020	-0.4360
11	0.7900	-0.4460
12	1.0060	-0.4560
13	2.0660	-0.4870
14	4.0500	-0.5180
15	7.0400	-0.5440
16	10.2300	-0.5620

logaritmikus erősítő áramkör

Elektronika lab. gyak.

6. Feladat

Határozza meg az erősítőt jellemző bemenőáramokat és az offset feszültséget (lásd az alábbi ábrán).

Első kapcsolás

A bemenet földelve van, így virtuális földet hoz létre az erősítő eltolva a V_{offset} -el.

$$\begin{split} V_{egyenes} &= 0V \text{ (f\"{o}ld)} \\ V_{ford\~{i}tott} &= V_{kimenet} = 0V + V_{offset} \text{ (virtu\'{a}lis f\"{o}ld)} \\ V_{offset} &= V_{kimenet} = -0.01 mV \end{split}$$

Második kapcsolás

$$\begin{split} V_{egyenes} &= 0V \text{ (f\"{o}ld)} \\ V_{ford\~{i}tott} &= 0V + V_{offset} + I_{offset} \cdot R_2 \text{ (virtu\'{a}lis f\"{o}ld)} \\ V_{kimenet} &= 33mV \\ V_{R_2} &= 32,7mV \\ V_{offset} &= V_{kimenet} - V_{R_2} = 0,3mV \end{split}$$

Harmadik kapcsolás

$$\begin{split} V_{egyenes} &= 0V \text{ (f\"{o}ld)} \\ V_{ford\~{i}tott} &= 0V + V_{offset} - I_{offset} \cdot R_2 \text{ (virtu\'{a}lis f\"{o}ld)} \\ V_{kimenet} &= 29mV \\ V_{R_2} &= 28,7mV \\ V_{offset} &= V_{kimenet} - V_{R_2} = 0,3mV \end{split}$$