Практичне завдання № 2 ДИСКРЕТНИЙ КАНАЛ ПЕРЕДАВАННЯ ІНФОРМАЦІЇ

2.1. Для трійкового стаціонарного каналу без пам'яті та без витирання ймовірності $p(x_i, y_k)$ сумісного виникнення символу x_i на вході каналу та символу y_k — на його виході для різних варіантів наведені у другому стовпчику табл. 2.1. Знайти середню кількість I(Y; X) інформації, що переноситься одним символом, швидкість V передачі інформації через канал та пропускну здатність C каналу. Значення швидкості $v_0 = 1/\tau$ передачі символів через канал наведені у третьому стовпчику табл. 2.1. Отримані результати подати у вигляді такої таблиці

_	1 2	
I(Y;X)	V	C

Таблиця 2.1

Dagis	D(V V)	1 аолиця 2.1.
Варіант	P (X, Y)	$v_0 = 1/\tau$
	0.068 0.076 0.056	
1	0.028 0.034 0.038	800
	0.266 0.196 0.238	
	0.105 0.005 0.39	
2	0.312 0.084 0.004	1900
	0.001 0.078 0.021	
	0.065 0.029 0.006	
3	0.03 0.325 0.145	400
	0.116 0.024 0.26	
	0.081 0.007 0.012	
4	0.012 0.081 0.007	900
	0.056 0.096 0.648	
	0.059 0.039 0.002	
5	0.012 0.354 0.234	2300
	0.117 0.006 0.177	
	0.032 0.017 0.051	
6	0.153 0.096 0.051	900
	0.102 0.306 0.192	
	0.08 0.054 0.066	
7	0.165 0.2 0.135	600
	0.081 0.099 0.12	
	0.056 0.344 0.4	
8	0.05 0.007 0.043	900
	0.043 0.05 0.007	
	0.624 0.008 0.168	
9	0.021 0.078 0.001	700
	0.001 0.021 0.078	
	0.28 0.015 0.205	
10	0.164 0.224 0.012	1100
	0.003 0.041 0.056	2200
	0.000 0.011 0.000	<u> </u>

	0.056 0.273 0.371	
11	0.053 0.008 0.039	400
	0.078 0.106 0.016	
	0.686 0.007 0.007	
12	0.001 0.098 0.001	1300
	0.002 0.002 0.196	
	0.014 0.017 0.069	
13	0.345 0.07 0.085	600
	0.068 0.276 0.056	
	0.474 0.048 0.078	
14	0.013 0.079 0.008	2200
	0.024 0.039 0.237	
	0.186 0.012 0.002	
15	0.007 0.651 0.042	1400
	0.006 0.001 0.093	
	0.055 0.019 0.026	
16	0.026 0.055 0.019	1900
	0.152 0.208 0.44	

2.2. Розрахувати пропускну здатність С двійкового стаціонарного симетричного за входом каналу без пам'яті із витиранням. Необхідні для розрахунку параметри (ймовірності правильного приймання двійкового символу — p, ймовірності помилки при передачі символу через канал — q та ймовірність витирання символу — p_b , а також швидкість передачі символів через канал — $v_0 = 1/\tau$) для різних варіантів наведені у табл. 2.2.

Таблиця 2.2.

Варіант	p	q	p_b	v_0	Варіант	p	q	p_b	v_0
1	0.83	0.09	0.08	200	9	0.9	0.05	0.05	1700
2	0.82	0.14	0.04	1000	10	0.93	0.02	0.05	1400
3	0.84	0.1	0.06	1500	11	0.87	0.04	0.09	1500
4	0.9	0.04	0.06	1900	12	0.84	0.12	0.04	500
5	0.84	0.07	0.09	300	13	0.84	0.06	0.1	1200
6	0.95	0.02	0.03	100	14	0.89	0.03	0.08	100
7	0.83	0.04	0.13	2400	15	0.96	0.01	0.03	1700
8	0.92	0.04	0.04	700	16	0.95	0.02	0.03	300

2.3. Знайти чисельним методом пропускну здатність двійкового стаціонарного несиметричного каналу без пам'яті та без витирання з матрицею перехідних ймовірностей $P(Y \mid X)$, наведеною в табл. 2.3. Середня тривалість кожного символу на виході джерела становить $\tau = 10^{-3}$ сек.

Таблиця 2.3.

Варіант	$\mathbf{P}(Y \mid X)$	Варіант	$\mathbf{P}(Y \mid X)$
1	0.78 0.22	9	0.88 0.12
	0.39 0.61	9	0.16 0.84
2	0.94 0.06	10	0.59 0.41
Δ	0.08 0.92	10	0.48 0.52
3	0.52 0.48	11	0.72 0.28
	0.01 0.99	11	0.11 0.89
4	0.83 0.17	12	0.57 0.43
	0.11 0.89	12	0.03 0.97
5	0.6 0.4	13	0.71 0.29
	0.38 0.62	13	0.01 0.99
6	0.82 0.18	14	0.62 0.38
	0.46 0.54	14	0.27 0.73
7	0.87 0.13	15	0.58 0.42
	0.44 0.56	13	0.36 0.64
8	0.66 0.34	16	0.8 0.2
	0.19 0.81	10	0.38 0.62