ESTIMATING SEED DISPERSAL DISTANCE OF JOSHUA TREES THROUGH PARENTAGE ANALYSIS

SEAN BERGAN

PLANTS, THE MOJAVE DESERT, AND CLIMATE CHANGE

- Global warming poses a threat to plant species
- Climate change is especially severe in deserts (IPCC 2022)
- Need for some land in the Mojave desert land to be repurposed into solar and wind farms (Parker et al 2018)

JOSHUA TREES (YUCCA BREVIFOLIA, YUCCA JAEGERIANA)

Keystone species of the Mojave desert

Range has been impacted by climate change (Cole et al 2011, Barrows and Murphy-Mariscal 2012)

Urgent to understand the future range of Joshua trees

Photo: Chuck Abbe 2007

SEED DISPERSAL DISTANCE (SDD)

- Significant to determining future range of plants
 - Can the plant range outrun pressures of climate change? (Corlett and Wescott 2013)
- Distance between a parent and its offspring
- Wind vs animal dispersal

FIGURE 1. The dispersion of caches around Joshua tree 5 (large circle). Closed circles represent primary caches; open circles represent empty primary caches; triangles represent secondary caches made from the emptied primary caches. Units are in metres.

(Vander Wall et al 2006)

THE LITERATURE ON Y. BREVIFOLIA SDD

SDD in *Y. brevifolia* was measured using radioactively marked seeds (Vander Wall et al 2006)

Mean dispersal distance of 30 ± 16.8 m

Mainly distributed by seed caching rodents, not through wind dispersal (Vander Wall et al 2006, Waitman et al 2012)

Discovered some secondary caches

HOW TO BUILD ON THIS

- Difficult to find secondary and tertiary caches, potentially leading to underestimates of SDD (Vander Wall et al 2006)
- Tracking seeds alone makes it difficult to find effective SDD (Gelmi-Candusso et al 2019)

GENETIC METHODS

- Microsatellite data
 - Areas where nucleotide patterns repeat
 - Highly variable regions of the genome
 - Loci for Joshua trees have been characterized (Flatz et al 2012)
- Pedigree reconstruction
 - Using genetic data to infer parental relationships
 - FRANz (Almudevar et al 2003)

Coordinates of sampled Joshua trees (n=716) in Tikaboo Valley, Nevada

DATA COLLECTION

Microsatellite data with coordinates provided by the Smith lab

Parent-offspring pairs were inferred through FRANz (Almudevar 2003)

How will this differ from SDD characterized in the literature?

Sample group	Median Distance	Mean Distance	Max Distance	Min Distance
Cyclical relationship distance (m)	147.11	639.07 ± 1690.91	8778.65	3.48
Viable relationship distance (m)	159.25	829.83 ± 2113.98	13433.5	0

Table demonstrating distances between viable (n = 186) and biologically impossible/cyclical (n = 52) parent-offspring pairs.

SOME DUBIOUS RESULTS

Some inferred parental relationships were cyclical (n = 52), which is biologically impossible

Not significantly different from the other parent-offspring pairs (two-sample t(100.04) = -0.68, p = 0.49)

Map of parent-offspring pairs of Joshua trees (n=186) in Tikaboo Valley, Nevada.

POTENTIAL LONG-DISTANCE DISPERSAL (LDD)

Mean distance = 856 m

Median distance = 159 m

Significantly greater than the 30.0 m average from Vander Wall et al (2006) (one-sample t(185) = 5.16, p < 0.05)

Possible long-distance dispersal (LDD) events were observed (as far as 13 km)

Distribution of Joshua tree parent-offspring pair distances (n=186) in Tikaboo Valley, Nevada.

POTENTIAL LONG-DISTANCE DISPERSAL (LDD)

Mean distance = 856 m

Median distance = 159 m

Significantly greater than the 30.0 m average from Vander Wall et al (2006) (one-sample t(185) = 5.16, p < 0.05)

Possible long-distance dispersal (LDD) events were observed (as far as 13 km)

SOME CONSIDERATIONS

- No distinguishing between maternal and paternal parentage
 - Not likely the cause of LDD events (Marr et al 2000).
- Dubious parent-offspring pairs call to question the validity of the remaining results

FURTHER ANALYSIS

- Alternative pedigree reconstruction software COLONY (Jones and Wang 2010; Wang 2012)
- Comparative analysis of Y. brevifolia, Y. jaegeriana, and their hybrids

POSSIBLE IMPLICATIONS

- If LDD is occurring, what mechanism is it through?
 - Hasn't been observed through birds (Lenz 2001)
- Projections of how the potentially greater SDD and LDD events impact future range (Corlett and Wescott 2013)

REFERENCES

Abbe, C. 2007. "Storm Rolls In Over the Mojave Desert". https://flic.kr/p/4exfFi. Used under the Creative Commons license: https://creativecommons.org/licenses/by/2.0/.

Almudevar A. 2003. A simulated annealing algorithm for maximum likelihood pedigree reconstruction. Theoretical Population Biology. 63(2):63–75. doi:https://doi.org/10.1016/S0040-5809(02)00048-5.

Corlett RT, Westcott DA. 2013. Will plant movements keep up with climate change? Trends in Ecology & Evolution. 28(8):482–488. doi:https://doi.org/10.1016/j.tree.2013.04.003.

Flatz R, Yoder J, Lee-Barnes E, Smith C. 2011. Characterization of microsatellite loci in Yucca brevifolia (Agavaceae) and cross-amplification in related species. American journal of botany. 98:e67-9. doi:10.3732/ajb.1000468.

IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., doi:10.1017/9781009325844.

Lenz LW. 2001. Seed Dispersal in Yucca Brevifolia (Agavaceae)-Present and Past, With Consideration of the Future of the Species. Aliso. 20:61–74. doi:10.5642/aliso.20012002.03.

Parker SS, Cohen BS, Moore J. 2018. Impact of solar and wind development on conservation values in the Mojave Desert. PLOS ONE. 13(12):1–16. doi:10.1371/journal.pone.0207678.

Marr D, Leebens-Mack J, Elms L, Pellmyr O. 2000. Pollen Dispersal in Yucca filamentosa (Agavaceae): The Paradox of Self-Pollination Behavior by Tegeticula yuccasella (Prodoxidae). American journal of botany. 87:670–7. doi:10.2307/2656853.

Vander Wall SB, Esque T, Haines D, Garnett M, Waitman BA. 2006. Joshua tree (Yucca brevifolia) seeds are dispersed by seed-caching rodents. Ecoscience. 13(4):539–543. doi:10.2980/1195-6860(2006)13[539:|TYBSA]2.0.CO;2.

Waitman BA, Vander Wall SB, Esque TC. 2012. Seed dispersal and seed fate in Joshua tree (Yucca brevifolia). Journal of Arid Environments. 81:1–8. doi:https://doi.org/10.1016/j.jaridenv.2011.12.012.

SPECIAL THANKS

QUESTIONS?