Дисциплина	Лабораторная	ФИО
Математические основы	Nº3	Александра Миличевич
защиты информации и		
информационной		
безопасности		

Цель работы

Познакомится с способом шифрования гаммирование

Задание

1. Реализовать алгоритм шифрования гаммированием конечной гаммой

Выполнение лабораторной работы

Шифрование гаммированием (одноразовый блокнот) на русском языке

Этот код реализует шифрование гаммированием для русского языка, также известное как шифрование с использованием одноразового блокнота.

Функция gamming_cipher_encrypt_ru(text, gamma)

Эта функция выполняет шифрование текста с помощью гаммирования.

- Вход:
 - text: Строка текст для шифрования (русский язык).
 - gamma: Строка гамма (ключ) для шифрования (русский язык).
- Выход: Строка зашифрованный текст (русский язык).

```
import random

def gamming_cipher_encrypt(text, gamma):

...

Budgver rexcr c wconsissemene meroga mebposanema rannwoposanemen (ogropasosumi блокнот).
Args:

text (str): Texcr для шефорозания.

gamma (str): Conyadinan ranne (scre).

Returns:

str: Zaumehposanemai Texcr.

...

text x text.apper() # | Pudoshum macra x бартныму регистру

gamma or gamma (symma) poper() # | Pudoshum ranne x бартныму регистру

cipher_text = " # Candone nycynuc capoy dam sanadpodimensor mecna

cipher_text = " # Candone nycynuc capoy dam sanadpodimensor mecna

for text (then, gamma chair in legitext, gamma) # | Hebepopyonen no cuedinoma mecna u sanne

if 'A' os text_chair o 'Z' and 'A' os gamma_chair os 'Z'! # | Pudoshum necna u sanne

for text_chair_code = ord(gamma_chair) - ord('A') # | Ranyamou macradol and cuedinom zenom

encrypted_chair_code = (text_chair_ood ext ord('A') # | Ranyamou macradol and cuedinom zenom

encrypted_chair_code = (text_chair_ood ext ord('A')) # | Ranyamou macradol cuedinom zenom

encrypted_chair_code = (text_chair_ood ext ord('A')) # | Ranyamou macradol cuedinom zenom

encrypted_chair_sole = (text_chair_ood ext ord('A')) # | Ranyamou macradolo undo cuedinom zenom

encrypted_chair_sole = (text_chair_ood ext ord('A')) # | Ranyamou macradolo undo cuedinom zenom

encrypted_chair_sole = (text_chair_ood ext ord('A')) # | Ranyamou macradolou exteno cuedino macradolou no cuedinom zenom

encrypted_chair_sole = (text_chair_ood extenor zenoma) zenoma zenoma cuedinoma cuedinom zenoma cuedinoma zenoma zen
```

Figure 1: функция гаммирования

Логика работы:

- 1. Приводит текст и гамму к верхнему регистру.
- 2. Создает пустую строку для хранения зашифрованного текста.
- 3. Определяет русский алфавит и его длину.
- 4. Перебирает символы текста и гаммы параллельно.
- 5. Для русских букв:
 - Вычисляет индексы букв в алфавите.
 - Складывает индексы, берет остаток от деления на длину алфавита для получения индекса зашифрованного символа.
 - Добавляет зашифрованный символ в результирующую строку.
- 6. Для остальных символов:
 - Добавляет их в результирующую строку без изменений.

Функция generate_gamma_ru(length)

Эта функция генерирует случайную гамму заданной длины.

- **Bxog:** length: Целое число длина гаммы.
- Выход: Строка случайная гамма (русский язык).

Figure 2: функция generate_gamma

Логика работы:

- 1. Определяет русский алфавит.
- 2. Генерирует случайную строку заданной длины из символов русского алфавита.

```
# Пример использования:

text = "ПРИВЕТ" # Исходный текст

gamma = generate_gamma(len(text)) # Генерируем гамму той же длины, что и текст

encrypted_text = gamming_cipher_encrypt(text, gamma) # Шифруем текст

print(f"Исходный текст: {text}") # Выводим исходный текст

print(f"Замиа; {gamma}") # Выводим гамму

print(f"Замифрованный текст: {encrypted_text}") # Выводим зашифрованный текст

Исходный текст: ПРИВЕТ

Гамма: FIIIVR

Зашифрованный текст: ПРИВЕТ
```

Пример использования

- 1. Задается исходный текст: ПРИВЕТ.
- 2. Генерируется случайная гамма той же длины.
- 3. Выполняется шифрование текста с использованием гаммы.
- 4. Выводится исходный текст, гамма и зашифрованный текст.

Важные замечания

- Для максимальной безопасности, гамма должна быть действительно случайной и использоваться только один раз для каждого сообщения.
- Этот код предназначен только для текста на русском языке.
- Шифрование гаммированием является одним из самых надежных методов шифрования при условии правильного использования.

Выводы

Программно реализовано шифрование гаммированием.