Errata às Edições de Março e Julho de 2006 do Livro Um Curso de Geometria Analítica e Álgebra Linear

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

28 de novembro de 2006

Exemplo 5.27./5.25. Considere os vetores $V_1 = (-1, 1, 0, -3)$ e $V_2 = (-3, 3, 2, -1)$ linearmente independentes de \mathbb{R}^4 . Vamos encontrar vetores V_3 e V_4 tais que $\{V_1, V_2, V_3, V_4\}$ formam uma base de \mathbb{R}^4 . Escalonando a matriz cujas linhas são os vetores V_1 e V_2 ,

$$A = \begin{bmatrix} -1 & 1 & 0 & -3 \\ -3 & 3 & 2 & -1 \end{bmatrix}, \text{ obtemos } R = \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

Vamos inserir linhas que são vetores da base canônica na matriz R até conseguir uma matriz 4×4 triangular superior com os elementos da diagonal diferentes de zero. Neste caso acrescentando as linhas $V_3 = [\ 0\ 1\ 0\ 0\]$ e $V_4 = [\ 0\ 0\ 0\ 1\]$ em posições adequadas obtemos a matriz

$$\bar{R} = \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Vamos verificar que V_1 , V_2 , V_3 e V_4 são L.I.

$$x_1V_1 + x_2V_2 + x_3V_3 + x_4V_4 = \bar{0}$$

é equivalente ao sistema linear

$$CX = \bar{0}, \quad \text{em que } C = [\ V_1\ V_2\ V_3\ V_4\].$$

Mas como $\det(\bar{R}) \neq 0$, então $\det(C) \neq 0$, pois \bar{R} pode ser obtida de C^t aplicando-se operações elementares. Logo $\{V_1, V_2, V_3, V_4\}$ é L.I. Como a dimensão do \mathbb{R}^4 é igual a 4, então $\{V_1, V_2, V_3, V_4\}$ é uma base de \mathbb{R}^4 .

Solução do Exercício 5.2.9 (c)

Dados $V_1 = (-3, 5, 2, 1)$ e $V_2 = (1, -2, -1, 2)$ encontre vetores V_3 e V_4 que complete junto com V_1 e V_2 uma base do \mathbb{R}^4 .

Escalonando a matriz cujas linhas são V_1 e V_2 ,

$$A = \left[\begin{array}{rrrr} -3 & 5 & 2 & 1 \\ 1 & -2 & -1 & 2 \end{array} \right],$$

obtemos

$$R = \left[\begin{array}{cccc} 1 & 0 & 1 & -12 \\ 0 & 1 & 1 & -7 \end{array} \right]$$

Acrescentando as linhas $V_3 = [0010] e V_4 = [0001]$:

$$\bar{R} = \left[\begin{array}{cccc} 1 & 0 & 1 & -12 \\ 0 & 1 & 1 & -7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Vamos verificar que V_1, V_2, V_3 e V_4 são L.I.

$$x_1V_1 + x_2V_2 + x_3V_3 + x_4V_4 = \bar{0}$$

é equivalente ao sistema $CX=\bar{0}$, em que $C=[V_1\ V_2\ V_3\ V_4]$. Mas como $\det(\bar{R})\neq 0$ então $\det(C)\neq 0$, pois \bar{R} pode ser obtida de C^t aplicando-se operações elementares. Logo $\{V_1,V_2,V_3,V_4\}$ é L.I. Como a dimensão do \mathbb{R}^4 é igual a 4, então V_1,V_2,V_3,V_4 formam uma base $\det\mathbb{R}^4$.