Plastic Algorithmic Skeletons

Paul Metzger

EPSRC Centre for Doctoral Training in Pervasive Parallelism

Plasticity allows parallel applications to use new opportunities for improving performance and adapting to disruptions at runtime.

Disruptions at Runtime

- Changing resource properties
- Changing program properties

adapt

Strateg

Changing data properties

Algorithmic Skeletons

Algorithmic skeletons implement common patterns

in parallel programs. Examples are:

- Map
- Reduce
- Stencil

adapt

Strateg Plastic Runtime System + Scheduler

adapt

OS + Hardware

Preliminary Results Avoiding oversubscription yields speedups for stencil computations.

App 1 App 3 App 2

Execution strategies determine:

- Hardware utilisation
- Algorithms
- Data structures

Execution Strategies Not Executing Executing a4 Applications **a**3 a2 t1 Time

Applications a1 to a2 change their execution strategies in response to disruptions at t1 to t5.

paulmetzger.info

