$$\frac{X(\mu)}{F(\mu)} = \frac{1000 - \omega^2 + 0.1 \, \omega_j}{1000 - \omega^2}$$

$f \omega \overline{f(\omega)}$	<u> </u>	3 X
1 6.23 -1×10-3-6.8×10)	5.2 × 16 3	00
5 31.4 7.2713-1.716	0,37	-140
10 62.8 -3.4×164-7.2×167;	1.7×10 ⁻³	180°
100 628 -3,5×16-4,1×18'0;	ı	1800

a)
$$5.2 \times 10^{-3}$$
 S in $6.23t$
b) 0.37 S in $(31.4t - 0.2)$

For viscons damping, 5 = const.

Since lamping is higher at high amplitudes,

there is some air (quadratic) damping
involved.

3) U=
$$L_3$$
 (1-(050) mg + $\frac{1}{2}$ k ($L_1O - Z(t)$)?

 $T = \frac{1}{2}$ L_3 m $O^2 + \frac{1}{2}$ TO^2 or grossly exaggrated

 $= \frac{1}{2}$ $Terror$ O^2 displacement in the where $Terror$ $C_3 = C_3 - C_3$ $C_4 = C_4$ $C_5 = C_4$

$$\frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{\theta}} \right) = I_{eff} \dot{\theta}$$

$$(050l=0$$

$$0l=\frac{\pi}{2},\frac{3\pi}{2}...$$

$$X(x) = \cos \frac{(9n-1)\pi}{2\ell}, \quad N=1,3,3$$

$$-\frac{E}{e} \sigma_{h}^{2} \cos(\sigma_{h} x) T_{h}(t) = -\omega_{h}^{2} \cos(\sigma_{h} x) T_{h}(t)$$

$$U_{n} = \overline{U_{n}} \int_{e}^{E} \frac{(2n-1)\pi}{2\rho} \int_{e}^{E} n_{-1} \lambda_{1} ...$$

$$X_{n}(z) = (05 \frac{(2n-1)\pi}{2\rho} \times 0)$$