CZ2101 Project 3 BCS3 Group 5

Presented by:

Lin Jiajun (U2021181L) Deionna Chee Rui Ping (U2021449D) Fabrianne Effendi (U2021488E)

(1) Give a recursive definition of the function P(C)

Assuming C >=
$$\max(w_i)$$
,
 $P(C) = \max(P(C), p_0 + P(C-w_0), p_1 + P(C-w_1), ..., p_{n-1} + P(C-w_{n-1}))$

Final recursive definition:

(2) Draw the subproblem graph for P(14) where n is 3 with the weights and profits given below.

(3) Give a dynamic programming algorithm to compute the maximum profit, given a knapsack of capacity C, n types of objects with weights wi and profits pi using the bottom up approach.

```
def knapsack(C, n, pi, wi):
     for (i = 0 \text{ to } C):
            P[i] = 0
     for (i = 0 \text{ to } C):
           for (j = 0 \text{ to } (n-1)):
                  if (wi[j] <= i):
                        P[i] = \max(P[i], P[i - wi[i]] + pi[i])
     return P[C]
```

(4) Code your algorithm in a programming language

```
def knapSack(C, n, price, weight):
    P = [0 \text{ for i in range}(C + 1)]
                                    P stores maximum value with
                                     knapsack capacity i
    for i in range(C + 1):
        for j in range(n):
            if (weight[j] <= i):</pre>
                P[i] = max(P[i], P[i - weight[j]] + price[j])
    print("Price at each capacity C is given by:")
    print(P)
    return P[C]
C = int(input("Enter capacity of knapsack: "))
n = int(input("Enter number of items: "))
price = list(map(int, input("Value of items: ").split()))
weight = list(map(int, input("Weight of items: ").split()))
print("Maximum profit:",knapSack(C,n,price,weight))
```

(4)(a) Show the running result of P(14) with weights and profits given in (2).

Function inputs

- price = [7,6,9]
- weight = [4,6,8]

Output

Max profit =
$$7 + 7 + 7 = 21$$

Input

Output

Price at each capacity C is given by:
[0, 0, 0, 0, 7, 7, 7, 14, 14, 14, 14, 21, 21, 21]
Maximum profit: 21

Enter capacity of knapsack: 14

Enter number of items: 3

Value of items: 7 6 9

Weight of items: 4 6 8

	0	1	2
Wi	4	6	8
рi	7	6	9

Capacity =
$$0-3$$
: Max Profit = 0

	0	1	2
Wi	4	6	8
рi	7	6	9

Output: Max Profit = 21

(4)(b) Show the running result of P(14) with weights and profits given below.

Function inputs

- price = [7,6,9]
- weight = [5,6,8]

Output

Max profit = 7 + 9 = 16

	0	1	2
Wi	5	6	8
рi	7	6	9

Input:

Enter capacity of knapsack: 14 Enter number of items: 3

Value of items: 7 6 9 Weight of items: 5 6 8

Output:

Price at each capacity C is given by:
[0, 0, 0, 0, 0, 7, 7, 7, 9, 9, 14, 14, 14, 16, 16]
Maximum profit: 16

Price at each capacity C is given by: [0, 0, 0, 0, 0, 7, 7, 7, 9, 9, 14, 14, 14, 16, 16] Maximum profit: 16

Capacity = 13-14: Max Profit = 7 + 9 = 16

	0	1	2
Wi	5	6	8
рi	7	6	9

Output: Max Profit = 16

0 1 2 w_i 4 6 8 p_i 7 6 9

Price at each capacity C is given by:
[0, 0, 0, 0, 7, 7, 7, 14, 14, 14, 14, 21, 21, 21]
Maximum profit: 21

	0	1	2
Wi	4	6	8
pi	7	6	9

Output: Max Profit = 21

Price at each capacity C is given by:
[0, 0, 0, 0, 7, 7, 7, 14, 14, 14, 14, 21, 21, 21]
Maximum profit: 21

0	1	2
5	6	8
7	6	9

Wi

pi

Price at each capacity C is given by:
[0, 0, 0, 0, 0, 7, 7, 7, 9, 9, 14, 14, 14, 16, 16]
Maximum profit: 16

	0	1	2	3
8	0	7	9	9
9	0	7	9	9
10	0	7	14	14
11	0	7	14	14
12	0	7	14	14
13	0	7	14	16
14	0	7	14	16

	0	1	2
Wi	5	6	8
pi	7	6	9

Output: Max Profit = 16

Price at each capacity C is given by:
[0, 0, 0, 0, 0, 7, 7, 7, 9, 9, 14, 14, 14, 16, 16]
Maximum profit: 16