

NPN Silicon AF Transistors

- For AF input stages and driver applications
- High current gain
- Low collector-emitter saturation voltage
- Low noise between 30 Hz and 15 kHz
- Complementary types: BC856...-BC860...(PNP)
- Pb-free (RoHS compliant) package 1)
- Qualified according AEC Q101

¹Pb-containing package may be available upon special request

Туре	Marking	Pin Configuration					Package	
BC846A	1As	1=B	2=E	3=C	-	-	-	SOT23
BC846B	1Bs	1=B	2=E	3=C	-	-	-	SOT23
BC846BW	1Bs	1=B	2=E	3=C	-	-	-	SOT323
BC847A	1Es	1=B	2=E	3=C	-	-	-	SOT23
BC847B	1Fs	1=B	2=E	3=C	-	-	-	SOT23
BC847BF*	1Fs	1=B	2=E	3=C	-	-	-	TSFP-3
BC847BL3	1F	1=B	2=E	3=C	-	-	-	TSLP-3-1
BC847BW	1Fs	1=B	2=E	3=C	-	-	-	SOT323
BC847C	1Gs	1=B	2=E	3=C	-	-	-	SOT23
BC847CW	1Gs	1=B	2=E	3=C	-	-	-	SOT323
BC848A	1Js	1=B	2=E	3=C	-	-	-	SOT23
BC848B	1Ks	1=B	2=E	3=C	-	-	-	SOT23
BC848BL3	1K	1=B	2=E	3=C	-	-	-	TSLP-3-1
BC848BW	1Ks	1=B	2=E	3=C	-	-	-	SOT323
BC848C	1Ls	1=B	2=E	3=C	-	-	-	SOT23
BC848CW	1Ls	1=B	2=E	3=C	-	-	-	SOT323
BC849B	2Bs	1=B	2=E	3=C	-	-	-	SOT23
BC849C	2Cs	1=B	2=E	3=C	-	-	-	SOT23
BC849CW	2Cs	1=B	2=E	3=C	-	-	-	SOT323
BC850B	2Fs	1=B	2=E	3=C	-	-	-	SOT23
BC850BW	2Fs	1=B	2=E	3=C	-	-	-	SOT323
BC850C	2Gs	1=B	2=E	3=C	-	-	-	SOT23
BC850CW	2Gs	1=B	2=E	3=C	-	-	-	SOT323

^{*} Not for new design

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}		V
BC846		65	
BC847, BC850		45	
BC848, BC849		30	
Collector-emitter voltage	V _{CES}		
BC846		80	
BC847, BC850		50	
BC848, BC849		30	
Collector-base voltage	V _{CBO}		
BC846		80	
BC847, BC850		50	
BC848, BC849		30	
Emitter-base voltage	V_{EBO}		
BC846		6	
BC847, BC850		6	
BC848, BC849		6	
Collector current	I _C	100	mA
Peak collector current, $t_p \le 10 \text{ ms}$	I _{CM}	200	
Total power dissipation-	P _{tot}		mW
<i>T</i> _S ≤ 71 °C, BC846-BC850		330	
<i>T</i> _S ≤ 128 °C, BC847F		250	
<i>T</i> _S ≤ 135 °C, BC847L3-BC848L3		250	
<i>T</i> _S ≤ 124 °C, BC846W-BC850W		250	
Junction temperature	T _j	150	°C
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}		K/W
BC846-BC850		≤ 240	
BC847F		≤ 90	
BC847L3-BC848L3		≤ 60	
BC846W-BC850W		≤ 105	

 $^{^{1}\}mbox{For calculation of}\,R_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified **Symbol** Unit **Parameter Values** min. typ. max. **DC Characteristics** ٧ Collector-emitter breakdown voltage $V_{(BR)CEO}$ $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0 , BC846... 65 $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0 , BC847..., BC850... 45 $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0 , BC848..., BC849... 30 Collector-base breakdown voltage $V_{(BR)CBO}$ $I_{\rm C} = 10 \, \mu \text{A}, I_{\rm F} = 0 \, , \, \text{BC846...}$ 80 $I_{\rm C}$ = 10 μ A, $I_{\rm F}$ = 0 , BC847..., BC850... 50 $I_{\rm C}$ = 10 μ A, $I_{\rm F}$ = 0 , BC848..., BC849... 30 Emitter-base breakdown voltage $V_{(BR)EBO}$ 6 $I_{\rm E} = 0$, $I_{\rm C} = 10 \, \mu A$ Collector-base cutoff current μΑ $I_{\rm CBO}$ $V_{\rm CB} = 45 \text{ V}, I_{\rm F} = 0$ 0.015 5 $V_{CB} = 30 \text{ V}, I_{E} = 0 , T_{A} = 150 \text{ °C}$ DC current gain¹⁾ h_{FE} $I_{\rm C}$ = 10 μ A, $V_{\rm CE}$ = 5 V, $h_{\rm FE}$ -grp.A 140 $I_{\rm C}$ = 10 μ A, $V_{\rm CF}$ = 5 V, $h_{\rm FF}$ -grp.B 250 480 $I_{\rm C}$ = 10 μ A, $V_{\rm CF}$ = 5 V, $h_{\rm FF}$ -grp.C $I_{\rm C}$ = 2 mA, $V_{\rm CF}$ = 5 V, $h_{\rm FF}$ -grp.A 110 180 220 $I_{\rm C}$ = 2 mA, $V_{\rm CF}$ = 5 V, $h_{\rm FE}$ -grp.B 200 290 450 $I_{\rm C}$ = 2 mA, $V_{\rm CF}$ = 5 V, $h_{\rm FF}$ -grp.C 420 520 800 Collector-emitter saturation voltage¹⁾ V_{CEsat} mV $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0.5 mA 250 90 $I_{\rm C}$ = 100 mA, $I_{\rm B}$ = 5 mA 200 600 Base emitter saturation voltage¹⁾ V_{BEsat} $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0.5 mA 700 $I_{\rm C}$ = 100 mA, $I_{\rm B}$ = 5 mA 900 Base-emitter voltage¹⁾ $V_{\mathsf{BE}(\mathsf{ON})}$ $I_{\rm C}$ = 2 mA, $V_{\rm CF}$ = 5 V 580 700 660 770 $I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 5 V

¹Pulse test: t < 300µs: D < 2%

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol		Unit			
			typ.	max.		
AC Characteristics						
Transition frequency	f _T	-	250	-	MHz	
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 5 V, f = 100 MHz						
Collector-base capacitance	C _{cb}	-	0.95	-	pF	
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$						
Emitter-base capacitance	C _{eb}	-	9	-		
$V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}$						
Short-circuit input impedance	h _{11e}				kΩ	
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.A		-	2.7	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.B		-	4.5	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.C		-	8.7	-		
Open-circuit reverse voltage transf. ratio	h _{12e}				10-4	
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.A		-	1.5	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.B		-	2	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.C		-	3	-		
Short-circuit forward current transf. ratio	h _{21e}					
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.A		-	200	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.B		-	330	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.C		-	600	-		
Open-circuit output admittance	h _{22e}				μS	
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.A		-	18	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.B		-	30	-		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, f = 1 kHz, $h_{\rm FE}$ -grp.C		-	60	-		
Noise figure	F	-	1.2	4	dB	
$I_{\rm C}$ = 200 µA, $V_{\rm CE}$ = 5 V, f = 1 kHz,						
Δf = 200 Hz, R_S = 2 k Ω , BC849, BC850						
Equivalent noise voltage	V _n	-	-	0.135	μV	
$I_{\rm C}$ = 200 µA, $V_{\rm CE}$ = 5 V, $R_{\rm S}$ = 2 k Ω ,						
f = 10 50 Hz , BC850						

DC current gain $h_{FE} = f(I_C)$

$$V_{CE} = 5 \text{ V}$$

Base-emitter saturation voltage

$$I_{\rm C} = f(V_{\rm BEsat}), h_{\rm FE} = 20$$

Collector-emitter saturation voltage

$$I_{\text{C}} = f(V_{\text{CEsat}}), h_{\text{FE}} = 20$$

Collector cutoff current $I_{CBO} = f(T_A)$

$$V_{CB} = 30 \text{ V}$$

Transition frequency $f_T = f(I_C)$ $V_{CF} = 5 \text{ V}$

Total power dissipation $P_{tot} = f(T_S)$ BC846-BC850

Collector-base capacitance $C_{cb} = f(V_{CB})$ Emitter-base capacitance $C_{eb} = f(V_{EB})$

Total power dissipation $P_{tot} = f(T_S)$ BC847BF

Total power dissipation $P_{tot} = f(T_S)$ BC847BL3/BC848BL3

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BC846/W-BC850/W

Total power dissipation $P_{tot} = f(T_S)$ BC846W-BC850W

Permissible Puls Load $R_{thJS} = f(t_p)$ BC847BF

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BC847BF

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BC847BL3, BC848BL3

Permissible Puls Load $R_{thJS} = f(t_p)$

BC847BL3, BC848BL3

Noise figure $F = f(V_{CE})$

$$I_{\text{C}} = 0.2 \text{mA}, R_{\text{S}} = 2 \text{k}\Omega$$
 , $f = 1 \text{kHz}$

Noise figure F = f(f) $I_{\rm C} = 0.2$ mA, $V_{\rm CE} = 5$ V, $R_{\rm S} = 2$ k Ω

Noise figure $F = f(I_C)$ $V_{CE} = 5V, f = 1kHz$

Noise figure $F = f(I_C)$ $V_{CF} = 5V, f = 120Hz$

Noise figure $F = f(I_C)$ $V_{CE} = 5V, f = 10kHz$

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

For board assembly information please refer to Infineon website "Packages"

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.