Морфемная сегменатция

Гусев Илья

Московский физико-технический институт

Москва, 2018

Содержание

- Морфемная сегментация
 - Задача
 - Morfessor
 - Другие подходы

Задача морфемной сегментации

- По слову нужно получить его разбиение на морфемы.
- Мотивация обработка редких и не встретившихся в обучющей выборке слов для раличных задач NLP.
- Разбиение на морфемы можно использовать вместо BPE (byte pair encoding), морфемы обычно имеют какой-то смысл.

Отступление: byte pair encoding

- Считаем самую частотную пару символов одним символом
- Повторяем, пока все не будут встречаться по одному разу или пока за каждым символом < N терминалов
- Мотивация сильно уменьшаем размер словаря по сравнению с word-level, но при этом это лучше, чем char-level в некоторых случаях

Пример:

- aaabdaaabac
- ZabdZabac
- ZYdZYac
- XdXac

Задача морфемной сегментации

Примеры

забытье забы*ть*е
статичный стат*ич*н*ый
учитель уч*и*тель
скрыться скры*ть*ся
тысячами тысяч*ами
подержаться по*держ*а*ть*ся

Data likelihood 1

$$W$$
 - слова, $w \in W$ A - анализы слов, $a \in A$, $a = \phi(w; \theta)$, $a = (m_1, ..., m_n)$ D_W - обучающая выборка, $|W| = N$, $\#_W$ - границы между словами (для анлиза сложных слов) θ - параметры модели $\Phi(w) = \{a : \phi^{-1}(a) = w\}$
$$\theta_{map} = \operatorname*{argmax}_{\theta} p(\theta|D_W) = \operatorname*{argmax}_{\theta} p(\theta)p(D_W|\theta)$$

$$L(\theta, D_W) = \log p(\theta) - \log p(D_W|\theta)$$

$$\log p(D_W|\theta) = \sum_{j=1}^N \log p(W = w_j|\theta) = \sum_{j=1}^N \log \sum_{a \in \Phi(w_j)} p(A = a|\theta)$$

Y - скрытая переменная, сопоставляющая $\forall w_i o \Phi(w_i), Y = (y_1, \dots, y_N)$

$$\log p(D_W|\theta, Y) = \sum_{j=1}^{N} \log p(y_j|\theta) = \sum_{j=1}^{N} \log p(m_{j_1} \dots m_{j_{|Y_j|}}, \#_w|\theta)$$

$$\log p(D_W|\theta, Y) = \sum_{i=1}^{N} (\log p(\#_W|\theta) + \sum_{i=1}^{|y_j|} \log p(m_{ji}|\theta))$$

Prior

$$p(\theta) = p(L)$$

Рассматриваем только такие m_i : $p(m_i|\theta)>0$

$$p(L) = p(\mu) * p(properties(m_1), ..., properties(m_{\mu})) * \mu!$$

Ниже m_i рассматривается как последовательность неделимых элементов (букв, спец. символов), поэтому мы обозначим её как σ_i

$$p(\sigma_i) = p(L = |\sigma_i|) \prod_{j=1}^{|\sigma_i|} p(C = \sigma_j)$$

Кроме того, можно включить prior по количеству использований различных сегментов: $p(m_i|\theta) = \tau_i/(N+\nu)$.

Обучение

- Foward-backward аналогично HMM (вариация EM-алгоритма)
- Global Viterbi аналогично HMM
- Local Viterbi
- Recursive Baseline (жадный поиск)

$$y_j^{(t)} = \underset{y_j \in Y_j}{\operatorname{argmin}} \{ \underset{\theta}{\min} L(\theta, Y^{t-1}, D_w) \}$$
$$\theta^{(t)} = \underset{\theta}{\operatorname{argmin}} L(\theta, Y^t, D_w)$$

Метрика

$$precision = \frac{number\ of\ correct\ boundaries\ found}{total\ number\ of\ boundaries\ found}$$

$$recall = \frac{number\ of\ correct\ boundaries\ found}{total\ number\ of\ correct\ boundaries}$$

$$F = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

Для английского примерно 0.77 в unsupervised и 0.86 в semi-supervised

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ ト タ Q (~

Другие подходы

- MORSE
- Seq2seq

Полезные ссылки І

- Morfessor 2.0: Toolkit for statistical morphological segmentation
- https://www.aclweb.org/anthology/E14-2006
- MORSE: Semantic-ally Drive-n MORpheme SEgment-er https://arxiv.org/abs/1702.02212
 - Morphological Segmentation with Sequence to Sequence Neural Network
 - http://www.dialog-21.ru/media/4287/arefyevnv.pdf
 - Use of morphology in distributional word embedding models: Russian language case
 - http://www.dialog-21.ru/media/4260/sadov_kutuzov.pdf

Полезные ссылки II

- Morphessor 2.0 demo
 https://asr.aalto.fi/morfessordemo/
- Morphessor 2.0
 https://github.com/aalto-speech/morfessor
- morpheme_seq2seq
 https://github.com/kpopov94/morpheme_seq2seq
- XMorphy
 https://github.com/alesapin/XMorphy