

Business intelligence

Unit 2 – Datawarehouse and OLAP

S2-2 – Datawarehouse design

•Does it ring a bell?

- Requirement analysis
 - Identify data sources
 - Identify facts and measures
- Conceptualization
 - •Eg: Entity Relationship Model

- Multidimensional modeling
- •Star, snowflake, both models,
- Methodology Kimball

- Storage management (ROLAP, MOLAP, HOLAP)
 - •Big data?
- Integration (ETL ?)design

- Integrationimplementation
- Analysis (OLAP) tools

- Multidimensional model:
 - it models an activity which is subjected to analysis (**fact**) and **dimensions** that characterize the activity.
 - Composed key
 - relevant information about the event (activity) is represented by a set of indicators (measures or fact attributes)
 - descriptive information for each dimension is represented by a set of attributes (dimension attributes).
 - Simple key

Entity relationship vs Multidimensional mode

- The Multidimensional Model and Entity Relationship have connections, but are different.
- application
 - ER is used for transaction systems
 - MM is used for data analysis
- structure
 - ER identifies and eliminates redundancy relations
 - MM usually includes denormalization
- use
 - ER queries are complex
 - MM queries are simple and efficient

Methodology for multidimensional modeling street

- We start from:
 - Knowledge about the domain (possibly CM)
 - Data Sources
 - Indicators: user queries
- Objective: resolve user queries efficiently.
 - Methods focused on logical and physical design
 - [Kimball, 96]: Methodology of 9 steps

Methodology for multidimensional modeling

- 9-step methodology [Kimball, 96]:
- 1. Select the **process**
- 2. Select the granularity
- 3. Identification and conformation of the dimensions
- 4. Selection of the facts
- 5. Storing precalculated values in fact table
- 6. Complete the dimension tables
- 7. Select the duration of the database
- 8. Control of slowly changing dimensions
- 9. Select priorities and query modes

- Step 1: Select the process
- Process: activity objective of the datawarehouse.
- A process is supported by OLTP systems.
- Start with the most important to the organization.
- Examples: diagnoses, deceased, inventory, billing, ...

- Step 2: Select the granularity
- Granularity: level of detail in which information is stored
- Each fact table and measures are defined
- Example: weekly cost of diagnoses in health centers

¿Days? ¿Weeks? The level that allows the better analysis: Fine grain ¿Test performed or cost?

- Step 3: Identification and conformation of the dimensions
- After learning the facts, the dimensions and attributes are defined
- Dimension: characterization of facts at a level of detail chosen.
- They are descriptive and are query parameters
- Hierarchies between dimension attributes

IdCenter
Cluster
Clinic
Area
City
Province
State
Country

Dimensions define the interest areas for analyzing the facts:

idPatient
Age
Risk level
Sex
Symptoms
Postal code

- Age
- Age ranges
- Sex
- Risk level
- Nacionality

Special attention is paid to time and space

- Common attributes in the time dimension:
 - Day number, month number, year number, number of weeks
 - day of the month (1 .. 31): allows comparisons on the same day in different months (sales by 1 month).
 - weekday (Monday ... Sunday)
 - month-end or Weekend indicators allows comparisons on the last day of the month or day weekend in different months.
 - quarter (1 .. 4): allows analysis of a specific quarter in different years.
 - holiday indicator: allows analysis on days adjacent to a holiday.
 - season (spring, summer, autumn, winter)
 - special event indicator (football, elections, earthquake, ...)

- Step 4: Select the facts.
- Fact: analyzed information stored in the fact table.
- Useful facts are: Numerical, additives, or in general facts that can be aggregated
 - Because normally large sets of the fact table are queried
- Select events to the granularity of information chosen
 - Cost of the treatment
 - Cost of the tests
 - Deceased status
 - Total daily detected

Facts

- Additives: they can be added in all dimensions.
 - Activity data are usually additives.
 - Eg: sales, units, money.
- Semi-Additive: they can be added only in some dimensions.
 - Intensity data are not usually additives.
 - Eg: Stock,
 - Some dimensions may be added, but not in time.
 - Eg: total existing stocks.
- Non-Additives: they can not be added in any dimension.
 - Eg: temperature, unit price, percentage, ...
 - Can be aggregated by average values
 - You can also include dummy variables (0.1) to indicate occurrence.

Fact Tables:

- Transactional: represent detailed events in space time.
 - Maximum level of exploration.
- Factless: contain no measures, only the occurrence of certain events.
 - Use to establish relations between dimensions.
 - Eg students to class attendance, negative analysis (products that are not sold).
- Snapshot: Each row is an instant of time. Describe the state of the facts in a particular moment in time. Normally includes semiadditive and non-additive.
 - They are often taken at predefined intervals.
 - Also cumulative.

- Step 5: Store precalculated values in fact table
 - Include derived attributes that may be useful (see non-additive)
 - For example: differences, decomposed values (eg numerator and denominator) or calculated (amount as the price * units)
- Step 6: Complete the dimension tables
 - Add textual descriptions to the dimensions.
 - Intuitive and understandable
- Step 7: Select of the duration of the database
 - Set date from which store data.
 - It depends on the problem: valid data, necessary data, data not available, ...

- Step 8: Control slowly changing dimensions (SCD)
 - When an attribute changes value but not the key
 - Example: change in marital status, professional category,
 - Some solutions to slowly changing dimensions:
 - Type 1: overwrite a changed dimension attribute.
 - Type 2: create a new dimension record.
 - Current value (active, valid, ...) + validity date
 - Note: Business key are repeated. Handle queries with care.
 - Type 3: establish an alternate attribute, so that both the old and the new are accessible.
 - Limited number of changes?
 - Type 4: mini-dimension (also historical table)
 - Also combinations: types 4, 5 (4+1), 6 (1+2+3), 7
- Step 9: Select the priorities and query modes (physical design)

Step 8: Control slowly changing dimensions Superior de Encoda Técnica Superior de Encoda Superior de Encoda Superior Superior de Encoda Superior Superior Superior Superior Superior Superior Superior Superior Su

TABLA DE HECHOS

MEDIDAS	PROYECTO	INVESTIGADOR
1	P1	I1
2	P2	I1
3	P3	11
4	P4	I1

TABLA DE HECHOS

MEDIDAS	PROYECTO	INVESTIGADOR
1	P1	l1
2	P2	12
3	P3	I3
4	P4	13

TABLA DE HECHOS

MEDIDAS	PROYECTO	INVESTIGADOR
1	P1	l1
2	P2	l1
3	P3	l1
4	P4	l1

TABLA DE HECHOS

MEDIDAS	PROYECTO	INVESTIGA	OR	ESTADO	
1	P1	l1		E1	1
2	P2	l1		E2]
3	P3	11		E3]
4	P4	l1		E3]

DIMENSION INVESTIGADOR

PK	BusinessKey	Nombre	Categoría	Facultad
11	Manolo	M. Campos	AYD	Informática

TIPO 1: REESCRIBIR CATEGORÍA

TIPO 2: NUEVO REGISTRO. MANTENER BK

DIMENSION INVESTIGADOR

PK	BusinessKey	Nombre	Categoría	Facultad	FECHA_INI	FECHA_FIN	VIGENTE
11	Manolo	N. Campos	AYD	Informática	2005	2009	N
12	Manolo	l. Campos	CD	Informátic	2010	2016	N
13	Manolo	M. Campos	TU	Informática	2017	-	Υ

TIPO 3: NUEVO ATRIBUTO

DIMENSION INVESTIGADOR

PK	BusinessKey	Nombre	Categoría AC	Categoría	Fac	ltad	FECHA_INI	FECHA_FIN
I1	Manolo	M. Campos	TU	CD	Info	mática	2005	2009

TIPO 5: MINIDIMENSION +OUTRIGGER

TIPO 4: MINIDIMENSION

DIMENSION INVESTIGADOR

	DIMILIA	SICIA HAAFSII	GADOR				
	PK	BusinessKey	Nombre	Facultad	FECHA		ESTADO
١	I1	Manolo	M. Campos	Informática	2005		E1
	MINID						
	PK	Categoría AC	TUAL			1	
,			Ī				

7	r ix	Categoria At
'	E1	AYD
	E2	CD
	E3	TU

Methodology: Errors / guidelines (Kimball)

- Error 1: Not to share dimensions between different fact tables.
 - Unify master files. Sex {'M', 'F'}.
- Error 2: Not to unify the facts from different fact tables
 - Although coming from different departments of the company and other computer systems. Example: retail and enterprise sale.
- Error 3: Ignore the aggregate tables and always add more hardware to address performance issues.
- Error 4: Forget the highest level of detail in the entity-relationship model.
 - Maximum detail in 3 areas: staging, relational and dimensional.
- Error 5: Mix facts of different granularity on the same fact table.
 - It is better to create tables that contain precalculated aggregates for common queries. Each granularity in a separate table.

Methodology: Errors / guidelines (Kimball)

- Error 6: Create a dimensional model to solve a particular report.
- Error 7: Adding dimensions to a fact table before setting its granularity.
 - The fact table only contains FK and measures.
 - No decompose the dimensions in the fact table.
- Error 8: Create "smart keys" to relate a dimension table to a fact table.
 - Key numbers are auto-increment (even for the time dimension)
 - Why:
 - Heterogeneous data sources keep their own primary key.
 - Changes in source applications should not affect the dw.
 - Performance (storage size and comparison speed).

TABLA DE HECHOS

MEDIDAS	PROYECTO	NVESTIGADOR
1	P1	Manolo
2	P2	Manolo
3	P3	Manolo
4	P4	Manolo

DIMENSION INVESTIGADOR

	IVILIAZION NAVESTI	GADON		
PK	BusinessKey	Nombre	Categoría	Facultad
11	Marrolo	M. Campos	AYD	Informática

Methodology: Errors / guidelines (Kimball)

- Error 9: Not to face slowly changing dimensions.
- Error 10: Splitting hierarchies and hierarchy levels into multiple dimensions.

TABLA	DE	HEC	HOS

	MEDIDAS	PROYECTO	NVESTIGADO	ÁREA
1 P		P1	I1	A1
2		P2	I1	A1
	3	P3	I1	A1
	4	P4	I1	A1

DIMENSION FACULTAD

PK	BK	Nombre Área	Depto	Departamento	Facultad	Facultad Descripción
A1	LSI	Lenguajes y Sistemas	DIS	Informática y Sistemas	FIUM	Facultad de Informática

DIMENSION INVESTIGADOR

PK	BusinessKey	Nombre	Categoría	Área
11	Manolo	M. Campos	AYD	LSI

- Error 11: Shorten the descriptions in the dimension tables with the intention of reducing the space required.
 - The dimensions are the interface that users have to browse.
 - They take up little space in relation to the facts.
- Error 12: Include text attributes in a fact table, if done with the intention of filtering or grouping.

- Date and time
 - Minidimension
 - Several time zones
- (Shrunken) Rollup dimension
- Junk dimension
- Degenerate dimension
- Bridge table
- Variable depth hierarchies
- Outrigger dimension
- Snowflake dimension (normalization)

Date and time

- (Shrunken) Rollup dimension
 - For Aggregatted fact tables

- Junk dimension
 - Fact tables with many dimensions with few values
 - Junk dimension holds cartesian product of small dimensions

- Degenerate dimension
 - Only contains the PK. Eg: episode number, order id, ...
 - Store it in the fact table (number)
 - Useful for grouping
 - Not for filtering

- Problem M-N (*-*) associations between fact and dimensions
 - Eg: admission has several discharge diagnoses
- Is this the right granularity? Solved in fact-tables!!!
 - Change granularity to diagnose? Another fact table?
- Standard solution: "Bridge table" with 2 additional tables
 - Group table: to keep association 1-* between fact and dimension
 - Bridge table between fact-table and dimension or dimension and values

Alternatives:

- String concatenation: "diag1 # diag 2" (Pathstring)
 - Text processing in query time?
- Multiple attributes in the dimension. Eg. Diagnose1: diag1, diagnose2: diag2.
 - Are they sorted? Order is important? First value? Second value?
- Limited number of attributes? -> Multiple dummy attributes: Diagno

Adm Fact Table	DimDiagnose_1
Sex_FK	PK_diagnoses
Admission_FK	Diagnoses_Text
Diag_FK	{1, "Diag1, Diag2, Diag3"}
••••	

DimDiagnose_2	DimDiagnose_3
PK_diagnoses	PK_diagnoses
Diagnose_1st	D_cancer: [Y/N]
Diagnose_2nd	D_flu: [Y/N]
Diagnose_3rd	D_arthritis: [Y/N]
Diagnose_4th	D_infarct: [Y/N]

- Variable depth hierarchies
 - Recursive queries in SQL and OLAP are limited

Tratamiento								
PK	ATC	descripcion	Padre					
1	J01AA01	Des J01AA01	J01AA					
2	J01AA02	Des J01AA02	J01AA					
3	J <mark>01AA</mark>	Des J01AA	J01A					
1	J01AB01	Des J01AB01	J01AB					
2	J01AB02	Des J01AB02	J01AB					
3	J01AB	Des J01AB	J01A					
3	J01A	Des J01A	J01					
3	J01B	Des J01B	J01					
4	J01	Desc J01	J					
5	J	Antibiotic	-					

Solutions:

- Busines decisión: Not all levels apply: "Ceuta" and "Melilla" are not "Province". Use business significative value
- Pathstring with complete path in hierarchy (same as with bridge tables)
- Slightly ragged: if range is small, force fix depth (same as with bridge tables)
- Bridge table with depth level (closure)
 - Foreing key to dimension + depth attribute

- Bridge table: additional table.
- Foreing key to dimension + depth attribute
- Combined PK

Fk_treat m	1-*
1	
2	

- I a taillielle						
PK	ATC	descripcion				
1	J01AA01	Des J01AA01				
2	J01AA02	Des J01AA02				
4	J01AA	Des J01AA				
5	J01AB01	Des J01AB01				
6	J01AB02	Des J01AB02				
7	J01AB	Des J01AB				
8	J01A	Des J01A				
9	J01B	Des J01B				
10	J01	Desc J01				
11	J	Antibiotic				

Tratamiento

Tratamiento Ciosure Hijo (PK, FK) Padre (PK) Profundidad J01AA01 J01AA 4 J01AA01 J01A 3 J01AA01 J01 2 J01AA01 1 J01AA02 J01AA 4 J01AA02 J01A 3 J01AA02 J01 2 J01AA02 1 J01AB01 J01AB 4 J01AB01 J01A 3 J01AB01 J01 2 J01AB01 J01AB02 J01AB 4 J01AB02 J01A J01AB02 J01 2 J01AB02

- Outrigger dimension
 - Exception!!
 - When a dimension has a FK to another dimension.
 - Eg.: "Registered user" and "Unregistered user"
 - "Birth date" links to "Date Dimension"

Normalization

Snowflake dimensions

- When a hierarchical relationship in a dimension table is normalized, low-cardinality attributes appear as secondary tables connected to the base dimension table by an attribute key.
- It represents hierarchical data accurately, yet a flattened denormalized dimension table contains exactly the same information as a snowflaked dimension.
- Only in big dimension tables!
- But you should avoid snowflakes because:
 - it is difficult for business users to understand and navigate snowflakes.
 - They can also negatively impact query performance.

Normalization

DIMENSIÓN ESTRUCTURA

PK	BK	Nombre Área	Depto	Departamento	Depto	Facultad	Facultad Descripción	Fac
A1	LSI	Lenguajes y Sistemas	DIS	Informática y Sistemas	[varios]	FIUM	Facultad de Informática	[varios]
A2	ISA	Informática y Automática	DIS	Informática y Sistemas	[varios]	FIUM	Facultad de Informática	[varios]

DIMENSION ÁREA PK BK Nombre Área Depto A1 LSI Lenguajes y Sistemas DIS A2 ISA Informática y Automática DIS FK DIMENSION DEPTO Depto Departamento Depto De

Depto Departamento Depto ... Facultad
DIS Informática y Sistemas [varios] FIUM

DIMENSION FACULTAD

Facultad Descripción Fac ...

FIUM Facultad de Informática [varios]

No replicated, but join needed

Normalization

- A set of conditions on table structure that improves maintenance. Normalization removes processing anomalies:
 - Update
 - Inconsistent Data
 - Addition
 - Deletion
- All attributes depend on the key, the whole key and nothing but the key.
 - 1NF Keys and no repeating groups
 - 2NF No partial dependencies
 - 3NF No transitive dependencies

1st Normal Form

- Table has a primary key
- Table has no repeating groups

A <u>multivalued attribute</u> is an attribute that may have several values for one record

A repeating group is a set of one or more multivalued attributes that are related

2nd Normal Form

No partial dependencies

No attribute depends on only some of the attributes of a concatenated key.

Order-Part

[OrderNumber | PartNumber | PartDescription]

Create a new table with PartNumber key.

3rd Normal Form

3rd Normal Form: no transitive dependencies

Transitive dependency means that a <u>non-key</u> attribute depends on another <u>non-key</u> attribute(s).

Let's suppose only one course per student.

This definition says nothing about dependencies that involve the key.

Create a new "Course" table with "Course" and "supervisor"