浙江工业大学期终考试命题稿

2020/2021 学年第 2 学期

课程名称	机械原理	使用班级	机械	
教师份数	10	学生份数		
命题人	王 晨	审核人签字		
命题总页数	页	每份试卷 需用白纸	1 大张	
AB 卷、近四年试剂	是			
试卷中一部分试题 的考试区分度?	是			
试卷考核的内容是 程目标?	是			

命题注意事项

- 一、命题稿请用 A4 纸电脑打印,或用教务处印刷的命题纸用黑色水笔书写,保持字迹清晰,页码完整。
- 二、AB 卷必须难度相当、覆盖面相同,卷面上不注明 A、B 字样,由教务处抽取其中一套作为期终考试卷。
- 三、命题稿必须经基层教学组织负责人或系主任审核签字,并在考试前两周交教务处。

浙江工业大学 2020/2021 学年

第 2 学期试卷

班级					姓名						
学号					任课教师						
题序	_		=	四	五	六	七	八	九	总评	
计分								<			
一、填空	一、填空题(每空1分,共12分)										
1. 在图示平面运动链中,若构件 1 为机架、构件 5 为原动件,则成为III级 机构;若以构件 2 为机架, 3 为原动件,则成为II级机构。											
2. 当两构件组成转动副时,其相对速度瞬心在 <u>转动中心</u> 处,当两构件组成移动副时,											
其相对速度瞬心在垂直于导路无穷远处。											
3. 串联机器的数目越多,机组的总效率越低。											
4. 在转子平衡问题中,偏心质量产生的惯性力可以用											
5. 飞轮调速时,其他条件不变,则要求的速度不均匀系数越小,飞轮转动惯量将越 <u>大</u> 。											
在满足同样的速度不均匀系数条件下,为了减小飞轮的转动惯量,应将飞轮安装在高速											
轴上。											
6. 铰链四杆机构 ABCD,已知各杆长 AB = 60mm, BC = 140mm, CD = 120mm, AD = 90mm											
以 AB 为机架得											
7. 直动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程和回程的压力角,											
可采用的措施是。											
8. 直齿锥齿轮的几何尺寸通常都以大端作为基准。											

9. 行星轮系具有__1__个自由度。

《机械原理》 二、选择答案(每空1分,共12分) 1. 两构件之间以线接触所组成的平面运动副, 称为(C) A.转动副 B. 移动副 C. 高副 2. 利用速度瞬心法对图示凸轮机构的速度进行分析时,凸轮与推杆 的速度瞬心位于(A)点。 C. C A. A B. B D. D 3. 具有转动副的机构中, 若生产阻力加大, 则摩擦圆半径将(C)。 A. 增大 B. 减少 C. 不变 D. 都有可能 4. 机械运转中,转子动平衡的条件是:回转件各不平衡质量产生的离心惯性力系的(C)。 A. 合力等千零 B. 合力偶矩等千零 C. 合力和合力偶矩均为零 D. 合力和合力偶矩均不为零 5. 平面机构的平衡问题,主要是讨论机构惯性力和惯性力矩对(C)的平衡。 A. 曲柄 B. 连杆 **K C**. 机座 6. 使用飞轮可以(B) 机械的周期性速度波动。 A. 消除 B. 减轻 C. 减轻或消除 7. 在周期性速度波动中,一个周期内机械的盈亏功累积值(C)。 A. 大于 0 B. 小手 0 8. 曲柄摇杆机构,以摇杆为原动件时机构出现死点的位置在(C)。 A. 摇杆和连杆成一直线处 B. 摇杆和机架成一直线处 C. 曲柄和连杆成一直线处 D. 曲柄和机架成一直线处 9. 与连杆机构相比, 凸轮机构的最大优点是(C)。 A. 便于润滑 B. 制造方便, 易获得较高精度 C. 可实现各种预期的运动规律 D. 从动件的行程可较大 10. 渐开线直齿圆柱齿轮传动的重合度是实际啮合线段与(B)的比值。 A. 齿距 B. 基圆齿距 C. 齿厚 D. 齿槽宽 11. 具有确定运动的差动轮系中其原动件数目(C)。 A. 至少应有 2 个 B 最多有 2 个 C.只有 2 个 D. 不受限制

A. 凸轮机构 B. 擒纵轮机构 C. 棘轮机构 D. 槽轮机构

12. 家用自行车中的"飞轮"是一种超越离合器,是一种(C)。

三、如图所示, 试计算平面机构的自由度。若

存在复合较链、局部自由度及虚约束,请指出。

并判断机构是否有确定运动(共10分)

复合铰链 C 处 (1分); 局部自由度 G 处; (1

分) 虚约束为 EF 杆及其两端的转动副 (1分)。

需约束计算 $p' = 2P_l' - 3n' = 2 \times 2 - 3 \times 1 = 1$ (可不计算)

$$F = 3n - (2P_l + P_h - p') - F' = 3 \times 8 - (2 \times 10 + 2 - 1) - 1 = 2 \quad (5 \%)$$

因原动件只有1个,小于自由度数,运动不确定。(2分)

四、在图示结构中,已知各构件的长度,构件 1 以等角速度 ω_1 逆时针方向回转。现已给出用 矢量方程图解法求解机构在图示位置时构件 5 上 E 点的速度 V_E 的速度多边形图。试分步骤写 出求解 V_E 的详细过程(包括求解时所用的矢量方程式,各矢量的方向及大小的表达式)。(共 12 分)

解:

(1)在 ADB 构成的导杆机构中,构件 2 与构件 3 组成移动副,故可由 2、3 两构件重合点间的速度关系来求解。由相对运动原理可知,重合点 B_2 及 B_3 有:

$$v_{B2}$$
 = v_{B3} + v_{B2B3} 方向 $\bot AB$ $\bot BD$ // BD 大小 $\omega_1 l_{AB}$? ? ? $\Rightarrow v_{B3} = pb_3 \cdot u$

- (2)利用速度影像法求解 V_{C3} , 这也能够得到 $V_{C4} = V_{C3}$ 。
- (3)C点和 E点为同一构件 5上的两点,这样用同一构件两点间的关系来求解 E点速度。

$$v_{E5} = v_{E4} = v_{C4} + v_{E4C4}$$

方向 水平 $\perp BD \perp EC$
大小 ? $pc_4 \cdot u$?
 $\Rightarrow v_E = pe_5 \cdot u$

五、图示的机构运动简图中,已知生产阻力Q,各转动副的摩擦圆(以细线圆表示)及滑动

摩擦角己示于图中,试:

(1)在图中画出各运动副反力的作用线及方

向;

②列出构件 2、4的力平衡方程式,并画出

力多边形。(共12分)

(1)各运动副反力作用线及方向见图

(2)构件 2 的力平衡方程式: $F_{R12} + F_{R52} + F_{R32} = 0$ 力多边形草图如图示

构件 4 的力平衡方程式: $F_{R34} + F_{R54} + Q = 0$ 力多边形草图如图示

六、在图示曲柄滑块机构中,已知 L_{AB} , L_{BC} , e长度,试用作图法确定:

(1)滑块的行程H; (2)极位夹角 θ ;

(3)机构出现最小传动角的位置及最小传动角 γ_{\min} ;

(4)如果该机构用作曲柄压力机,滑块向右运动是冲压工件的工作行程,请确定曲柄的合理转向和传力效果最好的机构瞬时位置, 并说明最大传动角 γ_{max} 的大小。(共 12 分)

解 如图 所示。

- (1) 滑块的行程 H 即滑块移动的最大距离,对应偏置曲柄滑块机构,它出现在曲柄连杆两次共线位置时。
 - (2) 机构的极位夹角 θ 为滑块处于两极限位置时, 曲柄对应所夹锐角。
 - (3) 偏置曲柄滑块机构最小传动角 γ_{min} 出现在曲柄与导路垂直的位置时。
- (4) 使滑块朝右运动是冲压工件的工作行程,工作行程曲柄的转角 φ_1 = 180° + θ ,曲柄应该逆时针方向转动。
- (5) 机构传力效果最好的瞬时位置是有效分力为最大的位置。当曲柄转至 B'、B''位置,即机构的传动角 $\gamma_{max} = 90$ °时,机构的传力效果最好。

七、在图示的凸轮机构中,已知凸轮以角速度 α 逆时针方向转动,凸轮基圆半径以 r_0 表示, 行程以h表示,压力角以 α 表示,推杆位移以s表示,a为实际廓线推程起始点, b为实际廓线推程终止点,c为实际廓线回程起始点,d为实际廓线回程终止点。ad为近休止圆弧,bc为远休止圆弧,试作图表示:

- (1) 凸轮基圆,并标注基圆半径 r_0 ;
- (2) 推杆的行程h。
- (3)图示位置的压力角 α 和位移s。(共9分)

如图示

八、己知一对标准外啮合直齿圆柱齿轮传动,m=2mm, $\alpha=20^{\circ}$,齿数 $z_1=40$, $z_2=72$ 。试求:

- ①当标准安装时,中心距a、分度圆半径 r_1 、 r_2 、顶隙c 及啮合角 α' ;
- (2)当安装中心距 a'=114mm, 啮合角 α' 、节圆半径 r_i' 、 r_j' 、及顶隙 c;
- ③当安装中心距 a'=115mm,为保证无侧隙啮合,改用一对标准斜齿圆柱齿轮传动,齿数不变,此时两个斜齿轮的螺旋角 β_1 、 β_2 各为多少?螺旋方向如何确定?(共 12 分)
 - 解: (1) 正常齿标准直齿圆柱齿轮 $h_{\bullet}^{*}=1$, $c^{*}=0.25$

当标准安装时, 两轮的中心距 $a = m(z_1 + z_2)/2 = 112$ mm

两轮的分度圆半径 $r_1 = mz_1/2 = 40 \,\mathrm{mm}, r_2 = mz_2/2 = 72 \,\mathrm{mm}$

顶隙

$$c = c^* m = 0.25m = 0.5mm$$

啮合角

$$\alpha' = \alpha = 20^{\circ}$$

(2) 当安装中心距 a'=114mm 时

由

$$a\cos\alpha = a'\cos\alpha'$$

啮合角

$$\alpha' = 22.60^{\circ}$$

节圆半径 $r_1' = r_{b1}/\cos\alpha' = 40.714$ mm, $r_2' = r_{b2}/\cos\alpha' = 73.286$ mm

顶隙 $c = a' - r_{a1} - r_{12} = (114 - 42 - 69.5) \,\text{mm} = 2.5 \,\text{mm}$

(3) 正常齿标准斜齿圆柱齿轮:
$$h_{an}^* = 1$$
, $c_n^* = 0.25$

解得

$$a = m_n(z_1 + z_2)/(2\cos\beta) = 115 \text{ mm}$$

 $\beta_1 = -\beta_2 = 13.116^\circ$, 螺旋角方向相反

九、图示轮系中,已知各轮齿数: $z_1 = 60$, $z_2 = 40$, $z_{2'} = z_3 = 20$, $z_4 = 20$, $z_5 = 40$,

 $z_{5'} = z_6 = 30$, $z_7 = 60$, $z_{6'}$ 为单头蜗杆, 旋向

如图。若轮1按图示方向转动,求传动比i,

的大小并在图中标出蜗轮7的转动方向。(共9分)

解 分析轮系:这是一个复合轮系。

周转轮系 2-2'、H(4)、1,

3(行星轮、系杆、中心轮)

$$i_{13}^{H} = \frac{n_1 - n_H}{n_3 - n_H} = -\frac{z_2}{z_1} \frac{z_3}{z_2} = -\frac{40}{60} \times \frac{20}{20} = -\frac{2}{3}$$

$$1 - \frac{n_1}{n_H} = -\frac{2}{3}, \frac{n_1}{n_H} = 1 + \frac{2}{3} = \frac{5}{3}$$
, 系杆 H 与轮 1 转向相同

定轴轮系4、5、5′、6、6′、7

$$i_{47} = \frac{n_4}{n_7} = \frac{z_5}{z_4} \frac{z_6}{z_{5'}} \frac{z_7}{z_{6'}} = \frac{40}{20} \times \frac{30}{30} \times \frac{60}{1} = 120$$

代入条件 $n_3 = 0$, $n_4 = n_H$ 得

$$i_{17} = i_{14}i_{47} = \frac{5}{3} \times 120 = 200$$
, 蜗轮 7 的转向为顺时针方向