Презентация о выполнении лабораторной работы №4

Построение моделей гармонических колебаний

Евсеева Дарья Олеговна

4 марта, 2022

Содержание

Прагматика выполнения	3
Цель работы	4
Задачи выполнения	5
Результаты выполнения	6
Выволы	10

Прагматика выполнения

Задачи математического моделирования являются широко распространенными, и навыки их решения могут быть очень полезны в нашей будущей профессии. Также, среда OpenModelica является одним из самых подходящих по функциональным возможностям средств для решения подобных задач, и опыт работы в ней также будет полезен.

Цель работы

Целью данной работы является построение моделей гармонических колебаний в среде OpenModelica.

Задачи выполнения

Вариант №21.

В ходе лабораторной работы было необходимо построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для трех случаев:

1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

$$\ddot{x} + 0.6x = 0$$

2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

$$\ddot{x} + 0.4\dot{x} + 0.4x = 0$$

3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

$$\ddot{x} + 0.2\dot{x} + 10x = 0.5\cos(2t)$$

На интервале $t \in [0; 51]$ (шаг 0.05) с начальными условиями $x_0 = 0.4, y_0 = 2.1$.

Результаты выполнения

В ходе работы мы выполнили все поставленные задачи, а именно получили фазовые портреты гармонического осциллятора и решения уравнения гармонического осциллятора для трех случаев:

1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

Рис. 1: График с отображением х и у в первом случае

Рис. 2: Фазовый портрет для первого случая

2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

Рис. 3: График с отображением х и у во втором случае

Рис. 4: Фазовый портрет для второго случая

3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

Рис. 5: График с отображением х и у в третьем случае

Рис. 6: Фазовый портрет для третьего случая

Выводы

В результате проделанной работы мы научились строить модели гармонических колебаний в среде OpenModelica.