Search for Supersymmetry in pp Collisions at $\sqrt{s} = 13$ TeV in the Single-Lepton Final State Using the Sum of Masses of Large-Radius Jets

A. M. Sirunyan *et al.**

(CMS Collaboration)

(Received 12 May 2017; published 13 October 2017)

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton, multiple jets, including at least one b-tagged jet, and large missing transverse momentum. The search uses a sample of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb⁻¹. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.

DOI: 10.1103/PhysRevLett.119.151802

A central goal of the physics program of the CMS experiment at the CERN LHC [1] is the search for new particles and phenomena beyond the standard model (SM), in particular, for supersymmetry (SUSY) [2–9]. During 2016, CMS recorded a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb⁻¹, significantly extending the sensitivity to the production of new heavy particles. The search described here focuses on a generically important experimental signature that is also strongly motivated by SUSY phenomenology. This signature includes a single lepton (an electron or a muon), several jets, arising from the hadronization of energetic quarks and gluons, at least one b-tagged jet, indicative of processes involving third generation quarks, and, finally, \vec{p}_T^{miss} , the missing momentum in the direction transverse to the beam. A large value of $p_T^{\text{miss}} \equiv |\vec{p}_T^{\text{miss}}|$ can arise from the production of high momentum, weakly interacting particles that escape detection. Searches for SUSY in the single-lepton final state have been performed by both ATLAS and CMS at $\sqrt{s} = 7$ and 8 TeV [10–13] and at $\sqrt{s} = 13$ TeV [14–17]. The present analysis, which introduces extended binning and other improvements, is based largely on methodologies described in detail in Ref. [16], which include the use of large-radius jets and related kinematic variables.

In models based on SUSY, new particles are introduced such that all fermionic (bosonic) degrees of freedom in the SM are paired with corresponding bosonic (fermionic)

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. degrees of freedom in the extended theory. The discovery of a Higgs boson with low mass [18-23] provides a key motivation for SUSY. Stabilizing the Higgs boson mass at a low value, without invoking extreme fine-tuning of parameters, is a major theoretical challenge, referred to as the gauge hierarchy problem [24–29]. This stabilization can be achieved in so-called natural SUSY models [30-34], in which several of the SUSY partners are constrained to be light [33]: the top squarks \tilde{t}_L and \tilde{t}_R , which have the same electroweak couplings as the left- (L-) and right- (R-)handed top quarks, respectively, the bottom squark with L-handed couplings, \tilde{b}_L , the gluino \tilde{g} ; and the Higgsinos \tilde{H} . This search targets gluino pair production, which has a relatively large cross section for a given mass, with gluino decay $\tilde{g} \to t\bar{t}\tilde{\chi}^0_1$. This process can arise from $\tilde{g} \to \tilde{t}_1\bar{t}$, where the lighter top squark mass eigenstate \tilde{t}_1 is produced either on or off mass shell. The symbol $\tilde{\chi}_1^0$ denotes the lightest neutralino, an electrically neutral mass eigenstate that is in general a mixture of the Higgsinos and electroweak gauginos. In R-parity conserving SUSY models [35,36] in which the $\tilde{\chi}_1^0$ is the lightest supersymmetric particle, the $\tilde{\chi}_1^0$ is stable and can, in principle, account for some or all of the astrophysical dark matter [37–39]. The scenario with off-mass-shell top squarks is denoted as T1tttt [40] in simplified model scenarios [41-43]. In natural SUSY models, the top squark is typically lighter than the gluino, so we also search for scenarios with on-shell top squarks, denoted as T5tttt.

Simulated event samples for SM background processes are used to determine correction factors, typically near unity, that are used in conjunction with observed event yields in control regions to determine the SM background contribution in the signal regions. The production of $t\bar{t}+jets$, W+jets, Z+jets, and QCD multijet events is simulated with the MC generator MadGraph5_AMC@NLO@NLO 2.2.2

^{*}Full author list given at the end of the article.

gluino decay $\tilde{g} \to \tilde{t}_1 \bar{t}$ with $\tilde{t}_1 \to t \tilde{\chi}_1^0$ (T5tttt model), the results are generally similar, except at low neutralino masses, where the excluded gluino mass is somewhat lower. These results extend previous gluino mass limits by about 300 GeV and are among the most stringent constraints on these simplified models of SUSY to date.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria), FNRS and FWO (Belgium), CNPq, CAPES, FAPERJ, and FAPESP (Brazil), MES (Bulgaria), Conseil Européen pour la Recherche Nucléaire (CERN, Switzerland), CAS. MoST, and NSFC (China), COLCIENCIAS (Colombia), MSES and CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER, ERC IUT, and European Regional Development Fund ERDF (Estonia). Academy of Finland, MEC, and Helsinki Institute of Physics (HIP, Finland), CEA and CNRS/ IN2P3 (France), BMBF, DFG, and HGF (Germany), GSRT (Greece), OTKA and NIH (Hungary), DAE and DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP and NRF (Republic of Korea), LAS (Lithuania), Malaysia MOE and UM (Malaysia), BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE and NSC (Poland), FCT (Portugal), JINR (Dubna), MON, RosAtom, RAS, RFBR, and RAEP (Russia), MESTD (Serbia), SEIDI and CPAN (Spain), Swiss Funding Agencies (Switzerland), Ministry of Science and Technology (MST Taipei), Thailand Center Excellence in Physics (ThEPCenter), Institute for the Promotion of Teaching Science and Technology of Thailand (IPST), Special Task Force for Activating Research (STAR), and NSTDA (Thailand), TUBITAK and TAEK (Turkey), NASU and SFFR (Ukraine), STFC (United Kingdom), DOE and NSF (U.S.).

- [1] L. Evans and P. Bryant, LHC machine, J. Instrum. 3, S08001 (2008).
- [2] P. Ramond, Dual theory for free fermions, Phys. Rev. D 3, 2415 (1971).
- [3] Yu. A. Gol'fand and E. P. Likhtman, Extension of the algebra of Poincaré group generators and violation of P invariance, JETP Lett. 13, 323 (1971).
- [4] A. Neveu and J. H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B31, 86 (1971).

- [5] D. V. Volkov and V. P. Akulov, Possible universal neutrino interaction, JETP Lett. **16**, 438 (1972).
- [6] J. Wess and B. Zumino, A lagrangian model invariant under supergauge transformations, Phys. Lett. 49B, 52 (1974).
- [7] J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys. B70, 39 (1974).
- [8] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B90, 104 (1975).
- [9] H. P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rep. **110**, 1 (1984).
- [10] ATLAS Collaboration, Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in $\sqrt{s} = 7$ TeV pp collisions using 1 fb⁻¹ of ATLAS data, Phys. Rev. D **85**, 012006 (2012); **87**, 099903(E) (2012).
- [11] ATLAS Collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at $\sqrt{s} = 8$ TeV with the ATLAS detector, J. High Energy Phys. 04 (2015) 116.
- [12] CMS Collaboration, Search for supersymmetry in pp collisions at $\sqrt{s} = 7$ TeV in events with a single lepton, jets, and missing transverse momentum, J. High Energy Phys. 08 (2011) 156.
- [13] CMS Collaboration, Search for supersymmetry in pp collisions at $\sqrt{s} = 8$ TeV in events with a single lepton, large jet multiplicity, and multiple b jets, Phys. Lett. B **733**, 328 (2014).
- [14] ATLAS Collaboration, Search for pair production of gluinos decaying via stop and sbottom in events with b-jets and large missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 94, 032003 (2016).
- [15] ATLAS Collaboration, Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector, Eur. Phys. J. C **76**, 565 (2016).
- [16] CMS Collaboration, Search for supersymmetry in pp collisions at $\sqrt{s} = 13$ TeV in the single-lepton final state using the sum of masses of large-radius jets, J. High Energy Phys. 08 (2016) 122.
- [17] CMS Collaboration, Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. D **95**, 012011 (2017).
- [18] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B **716**, 1 (2012).
- [19] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B **716**, 30 (2012).
- [20] CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV, J. High Energy Phys. 06 (2016) 081.
- [21] CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75, 212 (2015).
- [22] ATLAS Collaboration, Measurement of the Higgs boson mass from the H $\rightarrow \gamma \gamma$ and H $\rightarrow ZZ^* \rightarrow 4\ell$ channels with

PRL 119, 151802 (2017) PHYSICAL REVIEW LETTERS

13 (CIOHAS 2017)

V. Kim, St. E. Kuznetsova, St. P. Levchenko, V. Murzin, V. Oreshkim, L. Smirnov, S. V. Sulimov, J. L. Vurov, S. S. Vavilow, A. Vorodyev, S. M. Andreew, A. Dermeney, S. Gninenko, N. Golubev, A. Karmeyeu, M. Kirsamov, N. Krassikov, A. Pashenkov, D. Tilsov, A. Dermeney, S. Gninenko, N. Golubev, A. Karmeyeu, M. Kirsamov, O. N. Krassikov, A. Pashenkov, D. Tilsov, A. Dermeney, S. Gninenko, N. Golubev, A. Karmeyeu, M. Kirsamov, O. A. Stepennov, M. Hons, Side, V. Valovev, V. Valovev, M. S. Spelmov, O. S. Stepennov, M. Gravilov, M. Yandrov, V. Valovev, A. Belver, A. S. Spelmov, M. S. Spelmov, M. M. Grassikov, S. Polikampov, S. Polikampov, S. Polikampov, S. Polikampov, S. P. Stepenson, M. Kirskovs, M. M. Kirskovs, M. M. Kirskovs, M. S. Polikampov, S. P. Gilkampov, S. P. Stepenson, S. P. Stepenson, M. Kirskovs, M. Kirskovs, M. M. Stepenson, M. S. Stepenson, M. M. Kirskovs, M. Dermskov, M. S. Stepenson, M. A. Stepenson, M. S. Stepenson, M. S. Stepenson, M. A. Stepenson, M. S. Stepenson, M. S. Stepenson, M. A. Stepenson, M. S. Stepenson,