Spatial Perception by Object-Aware Visual Scene Representation

Chung-Yeon Lee^{1,2}, Hyundo Lee¹, Injune Hwang¹, Byoung-Tak Zhang^{1,2}

Seoul National University¹, Surromind Robotics²

Motivation

- Visual SLAM based on geometric representations is good, except some bad conditions of the environment.
- Lack of reliable descriptions → Fail to relocalization
- Using object labels to augment the scene representation

Visual Perception Framework

Semantically-Augmented Scene Representation

$$\mathbb{L}_{f} := \left\{ \langle l, \omega \rangle \, | \, l \in L_{f}, \, \omega = \gamma | P_{f}^{l} | \right\}$$

$$\cup \left\{ \langle v, \omega \rangle \, | \, v \in B_{f}, \, \omega = \eta_{v} | P_{f}^{v} | \right\},$$

$$(1)$$

Improved Similarity Measure of Descriptors

$$dist(p,q) := \delta_{pq} \cdot ||p,q||_{n},$$

$$\delta_{pq} := \begin{cases} 1 & \text{if } l_{p} = l_{q} \\ \xi & o.w. \end{cases}$$
(2)

Efficient Selection Algorithm for Keyframe Candidates

$$C_f^1 := \begin{cases} \langle k, n \rangle \mid k \in KF, L_f \cap L_k \neq \emptyset \\ n = |L_f \cap L_k| \end{cases}$$

$$(3)$$

$$C_f^2 := \left\{ k \mid \langle k, m \rangle \in C_f^1, \ m > \alpha \cdot \max_{\langle k, n \rangle \in C_f^1} (n) \right\} \tag{4}$$

$$C_{f}^{3} := \left\{ \begin{cases} \langle k, a \rangle \, | \, k_{c} \in C_{f}^{2}, \, k = \underset{k_{c'}}{argmax} (\|\mathbb{L}_{f}, \mathbb{L}_{k_{c'}}\|_{1}) \\ a = \sum_{k_{c'}} \|\mathbb{L}_{f}, \mathbb{L}_{k_{c'}}\|_{1} \end{cases} \right\}$$

$$C_f := \left\{ k \mid \langle k, b \rangle \in C_f^3, \ b > \beta \cdot \max_{\langle k, a \rangle \in C_f^3} (a) \right\}$$
 (6)

Experimental Results

Evaluation Procedure

- Success rates of the relocalization task with its distance errors of the estimated positions are evaluated.
- RGBD image sequences and labels from ScanNet dataset (Dai et al. 2019) are used as input frames for VSLAM.

Relocalization Performance

Robustness over Trajectory Length

Effects related to the Number of Objects

Efficiency of the Keyframe Candidate Selection

- Single keyframe (66.18%, average 1.89) remained after the whole selection process performed on initial keyframes.
- The number of keyframes decreased by 99.36%, 2.18%, and 0.93% from the total number of keyframes detected in each scene, throughout three steps of the algorithm.

Evaluation on Real Environment

Conclusion

- Add-on feature augmentation module that fuses geometric representations with corresponding semantic representations
- Evaluated using a mobile robot platform in real world and a large-scale indoor 3D photo-realistic dataset

