1a) Electric fields do objey the law of superposition. Assume we double the charge distribution, that is replace each charge of thin a charge 3g, then the electric field is duebled Enew = E + E = 2E However the energy needed to assemble his newcharge dishbuty If energy obeyed the law of superposition then when = W+ W= 2W = 2 to Seadt. As these an not equal superposition is not obeyed I is in +2 direction B using right-hand screwrule is in + o direction. H is in same direction as B, so + of direction M is in same direction to B for paramagnet so +0 direction. 1 is in mx = = + 0 x s direction = == along outside of cyclinder, no surface current morde! Jo is in VXM, ie. +. Z. direction inside eyender = increases current and hence & c) a) Paramagnetism is the alignment of the magnetic dipoles with the magnetic field. This occurs because then is a lorgue on the maynetic dipole N=mx6 which works to make in and & parallel. The magnetic dipole of the atom is a result of the election spin. In aloms with an old number of elections this is the dominant effect.

b) In diamagnetic materials on aligns to the -B direction (as apposed to B direction). This usually happens when then is an eun number of elections as the spins canal out Crauli exclusion principle).
elictions as the spins canal out CPauli exclusion principle).

b) Use Gauss's law for displacement, taking cylindrical Gaussian surfaces
for sea & D. da = Qf, enc = 0 => D=0.

Brasslb & D.da = D. 241st = 0.240. L. D = Ta &

> Br s7b & D.da = D.2Hsl= o.2Tal. ⇒ D= oa ? (same as alsch):

c) br ska
$$E = \frac{D}{E} = \frac{D}{E} = 0$$
.

br akskb $E = \frac{D}{E} = \frac{D}{E} = 0$.

br akskb $E = \frac{D}{E} = \frac{D}{E} = 0$.

br akskb $E = \frac{D}{E} = \frac{D}{E} = 0$.

br akskb $E = \frac{D}{E} = \frac{D}{E} = 0$.

D $P = P - \xi E = \xi(1+\lambda e) E - \xi E = \xi \lambda_e E = \sigma a \lambda_e \lambda_e s = \sigma a \lambda_e s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta(1+\lambda e) s = \delta(1+\lambda e) s = \delta(1+\lambda e) s$ $= \delta($

P)
$$\nabla_b = \hat{P} \cdot \hat{n} = \frac{\partial \hat{A}}{\partial x} = \frac{\partial \hat{A}}{\partial x} = \hat{S} \cdot \hat{n}$$

at s=a
$$\hat{n} = -\hat{s}$$
 (pointing out of surface).
 $T_b = T_a \chi_e$ $T_b = T_a \chi_e$
at s=b $\hat{n} = \hat{s}$

3a)

Consider a small disk at radius r with width dr.
The charge on this ring is:

dy = T(r). 2TV. dv. = 2TTkr2dr. To get lotal charge m/zgra/c/hese rings over the dish

 $Q = \int_0^R 2\pi k r^2 dr = 2\pi k \frac{R^3}{3}$

b)
$$K(r) = \sigma(r) V = kr. wr. \hat{\phi} = kwr^2 \hat{\phi}$$
 (= $\frac{dE}{dr}$)

c) dI= kwr2dr.

 \Rightarrow I= $\int kwr^2 dr = \frac{kwr^3}{3}$ is current Planing at radius r

 $M_{ng} = Ia = \frac{kwr^3}{3} 2\pi r dr = \frac{3}{3} kwr^4 dr$

d) $m = \int_{0}^{R} \frac{2}{3} kw r^{\phi} dr = \frac{2}{3} kw \left[\frac{r^{5}}{3} \right]_{0}^{2} = \frac{2}{3} kw \frac{R^{5}}{3}$ $= \frac{2kw R^{5}}{15}$