T.P. XI - Exercice d'annales

Exercice 1. Une puce se déplace sur un axe gradué. À l'instant 0, la puce se trouve sur le point d'abscisse 0. À partir de l'instant 0, la puce effectue à chaque instant, un saut vers la droite selon le protocole suivant :

- * elle effectue un saut d'une unité vers la droite avec probabilité $\frac{1}{2}$;
- * elle effectue un saut de deux unités vers la droite avec la probabilité $\frac{1}{4}$;
- * elle effectue un saut de trois unités vers la droite avec la probabilité $\frac{1}{4}$.

Les différents sauts sont supposés indépendants.

Pour tout entier $n \ge 1$, on définit les variables aléatoires suivantes :

- * X_n est égale au nombre de sauts d'une unité effectués lors des n premiers sauts;
- * Y_n est égale au nombre de sauts de deux unités effectués lors des n premiers sauts ;
- * Z_n égale au nombre de sauts de trois unités effectués lors des n premiers sauts;
- * A_n est égale à l'abscisse du point occupé par la puce à l'issue de son n^e saut.
- 1. Donner la loi de la variable aléartoire A_1 . Calculer $\mathbf{E}[A_1]$ et $\mathbf{V}(A_1)$.
- **2. a)** Justifier que $A_2(\Omega) = [2, 6]$. Montrer que la loi de A_2 est donnée par :

$$\mathbf{P}([A_2 = 2]) = \frac{1}{4}, \ \mathbf{P}([A_2 = 3]) = \frac{1}{4}, \ \mathbf{P}([A_2 = 4]) = \frac{5}{16},$$
$$\mathbf{P}([A_2 = 5]) = \frac{1}{8}, \ \mathbf{P}([A_2 = 6]) = \frac{1}{16}.$$

- **b)** Calculer $\mathbf{E}[A_2]$.
- **3. a)** Présenter dans un tableau la loi du couple (A_2, Z_2) . En déduire la loi de Z_2 ainsi que l'espérance de Z_2 .
- **b)** Calculer la covariance $Cov(A_2, Z_2)$ de A_2 et Z_2 . Les variables aléatoires A_2 et Z_2 sont-elles indépendantes?

4. On rappelle que, lorsque le module numpy.random est importé via l'instruction import numpy.random as rd, l'appel rd.randint(1, 5) simule une variable aléatoire suivant la loi discrète uniforme sur [1, 4]. Compléter le programme suivant pour qu'il simule les 100 premiers déplacements de la puce.

```
import numpy.random as rd
import numpy as np

A = np.zeros((1, 100))
for k in range(1, 101):
    t = rd.randint(1, 5)
    if t <= ...:
        A[k] = 1
    elif t == ...:
        A[k] = 2
    elif t == ...:
        A[k] = 3</pre>
print(A)
```

- **5.** Reconnaître les lois de X_n , Y_n et Z_n . Justifier que $X_n + Y_n$ suit la loi binomiale $\mathscr{B}(n, \frac{3}{4})$.
- **6. a)** Justifier la relation : $X_n + Y_n + Z_n = n$. Calculer Cov $(Z_n, X_n + Y_n)$.
- **b)** En utilisant les valeurs de $\mathbf{V}(X_n)$, $\mathbf{V}(Y_n)$ et $\mathbf{V}(X_n+Y_n)$, montrer que $\mathrm{Cov}(X_n,Y_n)=-\frac{n}{8}$.
 - c) Calculer le coefficient de corrélation linéaire $\rho(X_n, Y_n)$ de X_n et Y_n .
- **7. a)** Exprimer A_n en fonction de X_n , Y_n et Z_n . Montrer que $\mathbf{E}[A_n] = \frac{7n}{4}$.
- **b)** Exprimer A_n en fonction de X_n et Y_n . Calculer $\mathbf{V}(A_n)$ et $\mathrm{Cov}(A_n, X_n)$.
- 8. On importe le module matplotlib.pyplot via l'instruction import matplotlib.pyplot as plt. On rappelle que si

Chapitre XI - Exercice d'annales ECT 2

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ et $\mathbf{y} = (y_1, y_2, \dots, y_n)$ sont deux listes de réels de même taille, la commande $\mathsf{plt.plot}(\mathbf{x}, \mathbf{y})$ permet de tracer la ligne brisée joignant les point $M_1(x_1, y_1), M_2(x_2, y_2), \dots, M_n(x_n, y_n)$. On complète le programme de la question **4** en y ajoutant les trois commandes suivantes :

```
import matplotlib.pyplot as plt

x = np.range(1, 102)
y = np.cumsum(A)
plt.plot(x, y)
plt.show()
```

Quelle sortie graphique obtient-on?