

B.TECH SECOND YEAR

ACADEMIC YEAR: 2022-2023

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO:

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. BHOOPENDRA PACHAURI

EMAIL-ID : Bhoopendra.pachauri@jaipur.manipal.edu

PROPOSED DATE OF DELIVERY:

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality,

SESSION OUTCOME

"KNOWLEDGE OF DIFFERENT TYPES OF GRAPHS"

ASSIGNMENT

OUIZ

MID TERM EXAMINATION -I & II

END TERM EXAMINATION

ASSESSMENT CRITERIA'S

Simple graphs — special cases

Wheels: W_n, obtained by adding additional vertex to Cn and connecting all vertices to this new vertex by new edges.

Representation Example: W3, W4

Complete graph K_n

- Let n ≥ 3
- The complete graph K_nis
 the graph with n vertices
 and every pair of
 vertices is joined by an
 edge.
- The figure represents K₅

Bipartite graphs

- A bipartite graph G is
 a graph such that
 V(G) = V(G₁) ∪ V(G₂)
 |V(G₁)| = m, |V(G₂)| = n
 V(G₁) ∩V(G₂) = Ø
 - No edges exist between any two vertices in the same subset V(G_k), k = 1,2

Complete bipartite graph K_{m,n}

A bipartite graph is the complete bipartite graph K_{mn}if every vertex in V(G₁) is joined to a vertex in V(G₂) and conversely,

$$|V(G_1)| = m$$

 $|V(G_2)| = n$

REMARK

Maximum Number Of Edges-

- 1. Any bipartite graph consisting of "n" vertices can have at most $1/4 n^2$ edges.
- 2. Minimum possible number of edges in a bipartite graph on "n" vertices= $1/4 n^2$

Regular graph

A graph, in which all vertices are of **equal degree**, is called a **regular graph**. If the degree of each vertex is *r*, then the graph is called a regular **graph of degree** *r*.

Exercises

- N1: Show that each $K_{m,n}$ is bipartite.
- N2: Show that each Q_n is bipartite.
- N3(*): Show that a graph is bipartite if and only if it has no odd cycles.
- N4: Which generalized Petersen graphs G(n,k) are bipartite?

Connected graphs

A graph is connected if every pair of vertices can be connected by a path.

Each connected subgraph of a non-connected graph G is called a component of G

2 connected components