Obliczanie wektora {P}

$$[P] = \int_{S} \alpha\{N\}t_{ot} dS = \sum_{i=1}^{n_{pc}} f(pc_i) w_i \det[J]$$

$$[P] = P_{pc1} + P_{pc2}$$

рс	ksi	eta	N1	N2	N3	N4	
1	-1	0,5773	0,2113	0	0	0,7886	
2	-1	-0,5773	0,7886	0	0	0,2113	

ID	1	2	3	4
X	0	0,025	0,025	0
У	0	0	0,025	0,025

$$\det[J] = \frac{L}{2} = 0.0125$$

$$t_{ot} = 1200C$$

Agregacja 2d

ID4		ID3
	Układ lokalny	
ID1		ID2

	1
1	P1
2	P2
3	Р3
4	P4

	ID1
ID1	3
ID2	8
ID3	9
ID4	4

Wektor P lokalny

Przepis na agregacje w przestrzeni 2d

Agregacja 2d

Wektor P globalny

Wektor P lokalny

Przepis na agregacje w przestrzeni 2d