Review of Statistical TheoryPart 2

Dragos Ailoae

dailoae@gradcenter.cuny.edu

Advanced Economics and Business Statistics ECON-4400w - Spring 2022

> Brooklyn College Feb 9, 2022

Review of Statistical Theory

- 1. The probability framework for statistical inference
- 2. Estimation
- 3. Testing
- 4. Confidence Intervals

The probability framework for statistical inference

- a) Random variable, distribution
- b) Moments of a distribution (mean, variance, standard deviation, covariance, correlation)
- c) Conditional distributions and conditional means
- d) Distribution of a sample of data drawn randomly from a population: $Y_1,...,Y_n$

Sampling

https://imgur.com/gallery/hfBzEWM

(d) Distribution of a sample of data drawn randomly from a population: $Y_1,...,Y_n$

Population

• The group or collection of all possible entities of interest (school districts). We will think of populations as infinitely large

We will assume simple random sampling

• Choose an individual (district, entity) at random from the population

Randomness and data

- Prior to sample selection, the value of *Y* is random because the individual selected is random
- Once the individual is selected and the value of *Y* is observed, then *Y* is just a number not random
- The data set is $(Y_1, Y_2, ..., Y_n)$, where Y_i = value of Y for the ith individual (district, entity) sampled

Distribution of $Y_1, ..., Y_n$ under simple random sampling

- Because individuals #1 and #2 are selected at random, the value of Y_1 has no information content for Y_2 . Thus:
 - Y_1 and Y_2 are *independently distributed*
 - Y_1 and Y_2 come from the same distribution, that is, Y_1 , Y_2 are *identically distributed*
 - That is, under simple random sampling, Y_1 and Y_2 are independently and identically distributed (*i.i.d.*).
 - More generally, under simple random sampling, $\{Y_i\}$, i = 1, ..., n, are i.i.d.

This framework allows rigorous statistical inferences about moments of population distributions using a sample of data from that population...

- 1. The probability framework for statistical inference
- 2. Estimation
- 3. Testing
- 4. Confidence Intervals

Estimation

 \bar{Y} is the natural estimator of the mean. But:

- a) What are the properties of \bar{Y} ?
- b) Why should we use \bar{Y} rather than some other estimator?
 - Y_1 (the first observation)
 - maybe unequal weights not simple average
 - median $(Y_1, ..., Y_n)$

The starting point is the sampling distribution of \bar{Y} ...

Sampling and Estimators

In this illustration, Y and Y are both centered around μ_Y , but the dispersion differs.

(a) The sampling distribution of \bar{Y}

 \bar{Y} is a random variable, and its properties are determined by the *sampling distribution* of \bar{Y}

- The individuals in the sample are drawn at random.
- Thus the values of $(Y_1, ..., Y_n)$ are random
- Thus functions of $(Y_1, ..., Y_n)$, such as \bar{Y} , are random: had a different sample been drawn, they would have taken on a different value
- The distribution of \bar{Y} over different possible samples of size n is called the *sampling distribution* of \bar{Y} .
- The mean and variance of \bar{Y} are the mean and variance of its sampling distribution, $E(\bar{Y})$ and $var(\bar{Y})$.
- The concept of the sampling distribution underpins all of econometrics.

The mean and variance of the sampling distribution of \bar{Y} (1 of 3)

• General case – that is, for Y_i i.i.d. from any distribution

• mean:
$$E(\overline{Y}) = E(\frac{1}{n} \sum_{i=1}^{n} Y_i) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \mu_Y = \mu_Y$$

• Variance:
$$\operatorname{var}(\overline{Y}) = E[\overline{Y} - E(\overline{Y})]^{2}$$

$$= E[\overline{Y} - \mu_{Y}]^{2}$$

$$= E\left[\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) - \mu_{Y}\right]^{2}$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(Y_{i} - \mu_{Y})\right]^{2}$$

The mean and variance of the sampling distribution of $ar{Y}$ (2 of 3)

so
$$\operatorname{var}(\overline{Y}) = E \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_Y) \right]^2$$

$$= E \left\{ \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_Y) \right] \times \left[\frac{1}{n} \sum_{j=1}^{n} (Y_j - \mu_Y) \right] \right\}$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} E \left[(Y_i - \mu_Y)(Y_j - \mu_Y) \right]$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(Y_i, Y_j)$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sigma_Y^2$$

$$= \frac{\sigma_Y^2}{n}$$

The mean and variance of the sampling distribution of \bar{Y} (3 of 3)

$$E(\overline{Y}) = \mu_{Y}$$

$$\operatorname{var}(\overline{Y}) = \frac{\sigma_Y^2}{n}$$

Implications:

- 1. \bar{Y} is an *unbiased* estimator of μ_Y (that is, $E(\bar{Y}) = \mu_Y$)
- 2. $var(\bar{Y})$ is inversely proportional to n
 - 1. the spread of the sampling distribution is proportional to $1/\sqrt{n}$
 - 2. Thus the sampling uncertainty associated with \overline{Y} is proportional to $1/\sqrt{n}$ (larger samples, less uncertainty, but square-root law)

Things we want to know about the sampling distribution:

- What is the mean of \bar{Y} ?
 - If $E(\bar{Y}) = \mu$, then \bar{Y} is an **unbiased** estimator of μ
- What is the variance of \bar{Y} ?
 - How does $var(\bar{Y})$ depend on n (famous 1/n formula)
- Does \bar{Y} become close to μ when n is large?
 - Law of large numbers: \bar{Y} is a **consistent** estimator of μ
- $\bar{Y} \mu$ appears bell shaped for *n* large...is this generally true?
 - In fact, $\bar{Y} \mu$ is approximately normally distributed for *n* large (Central Limit Theorem)

The sampling distribution of \bar{Y} when n is large

For small sample sizes, the distribution of \bar{Y} is complicated, but if n is large, the sampling distribution is simple!

- 1. As *n* increases, the distribution of \bar{Y} becomes more tightly centered around μ_Y (the *Law of Large Numbers*)
- 2. Moreover, the distribution of $\bar{Y} \mu_Y$ becomes normal (the *Central Limit Theorem*)

The Law of Large Numbers:

An estimator is *consistent* if the probability that its falls within an interval of the true population value tends to one as the sample size increases.

If $(Y_1,...,Y_n)$ are i.i.d. and $\sigma_Y^2 < \infty$, then \overline{Y} is a consistent estimator of μ_Y , that is,

$$\Pr[|\bar{Y} - \mu_v| < \mu] \to 1 \text{ as } n \to \infty$$

which can be written, $\overline{Y} \xrightarrow{p} \mu_{Y}$

(" $\overline{Y} \xrightarrow{p} \mu_Y$ " means " \overline{Y} converges in probability to μ_Y ").

(the math: as $n \to \infty$, $var(\overline{Y}) = \frac{\sigma_Y^2}{n} \to 0$, which implies that

$$\Pr[|\overline{Y} - \mu_{Y}| < \varepsilon] \rightarrow 1.)$$

The Central Limit Theorem (CLT) (1 of 3)

If $(Y_1, ..., Y_n)$ are i.i.d. and $0 < \sigma_Y^2 < \infty$, then when n is large the distribution of \overline{Y} is well approximated by a normal distribution.

- \bar{Y} is approximately distributed $N(\mu_Y, \frac{\sigma_Y^2}{n})$ ("normal distribution with mean μ_Y and variance σ_Y^2/n ")
 - $-\sqrt{n} (\bar{Y} \mu_Y)/\sigma_Y$ is approximately distributed N(0, 1) (standard normal)
- That is, "standardized" $\overline{Y} = \frac{\overline{Y} E(\overline{Y})}{\sqrt{\text{var}(\overline{Y})}} = \frac{\overline{Y} \mu_Y}{\sigma_Y / \sqrt{n}}$ is approximately distributed as N(0, 1)
- The larger is n, the better is the approximation.

Summary: The Sampling Distribution of \bar{Y}

For $Y_1, ..., Y_n$ i.i.d. with $0 < \sigma_Y^2 < \infty$,

- The exact (finite sample) sampling distribution of \overline{Y} has mean μ_Y (" \overline{Y} is an unbiased estimator of μ_Y ") and variance σ_Y^2/n
- Other than its mean and variance, the exact distribution of \bar{Y} is complicated and depends on the distribution of Y (the population distribution)
- When *n* is large, the sampling distribution simplifies:

$$- \bar{Y} \xrightarrow{p} \mu Y$$
 (Law of large numbers)

$$-\frac{\overline{Y} - E(\overline{Y})}{\sqrt{\text{var}(\overline{Y})}} \text{ is approximately } N(0,1)$$
 (CLT)

The Central Limit Theorem (CLT) (2 of 3)

Sampling distribution of \bar{Y} when Y is Bernoulli, p = 0.78:

(b) n = 5

(d) n = 100

The Central Limit Theorem (CLT) (3 of 3)

Same example: sampling distribution of $\frac{Y - E(Y)}{\sqrt{\text{var}(\overline{Y})}}$

Standardized value of sample average (a) n=2

Standardized value of sample average

(b) n = 5

0.0

Standardized value of sample average

1.0 2.0

Standardized value of sample average

(d) n = 100

(c) n = 25

0.10

0.05

(b) Why Use \bar{Y} To Estimate μ_Y ?

- \bar{Y} is unbiased: $E(\bar{Y}) = \mu_Y$
- \bar{Y} is consistent: $\bar{Y} \to \mu_Y$
- \bar{Y} has a smaller variance than all other *linear unbiased* estimators:

consider the estimator,
$$\hat{\mu}_Y = \frac{1}{n} \sum_{i=1}^n a_i Y_i$$
, where $\{a_i\}$ are such that $\hat{\mu}_Y$ is unbiased; then $\text{var}(\bar{Y}) \leq \text{var}(\hat{\mu}_Y)$ (proof: SW, Ch. 17)

• \bar{Y} isn't the only estimator of μ_Y – can you think of a time you might want to use the median instead