Algebraic Curves

David Wiedemann

Table des matières

1	Affi	ne algebraic sets	3
	1.1	Recollection on commutative algebra	3
	1.2	Polynomial rings	5
	1.3	Affine spaces and algebraic sets	5
	1.4	Ideals of a set of points and the nullstellensatz	7
	1.5	Irreducible sets	8
	1.6	Algebraic subsets of \mathbb{A}^2	9
2	Affi	ne algebraic varieties	10
	2.1	Zariski topology	10
	2.2	Regular functions and coordinate rings	11
		2.2.1 Affine case	11
\mathbf{L}	\mathbf{ist}	of Theorems	3
	2	Lemme	3
	_	Lemme	3
	3 4	Lemme	
	4 5	Theorème	4
	•	Theorème	4
	6	Theorème (Gauss Lemmma)	4
	7 1	Theorème (Euler's theorem)	5
	8		5 6
	9	Lemme	6
	9 10	Lemme	7
	10	Lemme	7
	12	Theorème (Hilbert's Nullstellensatz)	7
	13	,	8
		Theorème (Weak Nullstellensatz)	
	14	Corollaire	8

16	Proposition)
17	Theorème (Theorem name))
3	Definition (Irreducible Components))
19	Lemme)
20	Corollaire)
4	Definition (Affine algebraic variety))
5	Definition (Zariski topology))
21	Lemme)
6	Definition	L
7	Definition (New definition of irreducibility)	L
23	Lemme	L
8	Definition (Quasi-affine algebraic variety)	L
9	Definition	L
25	Lemme	2
10	Definition (Subobjects)	2
26	Lemme	2
11	Definition (Morphism)	2

Lecture 1: Introduction

Fri 25 Feb

Let K be a field, given a set of polynomials $S = \{f_1, \ldots\}$, we can consider $V(S) = \{(x_1, \ldots) \in K^n | f_i(x_1, \ldots) = 0 \forall i \}.$

Notice that if $a_1, \ldots \in K[x_1, \ldots]$ then also $\sum_i a_i(x) f_i(x) = 0$ only depends on the ideal generated by S.

If I(S) happens to be prime, we call V an algebraic variety.

1 Affine algebraic sets

1.1 Recollection on commutative algebra

All rings are commutative and with unit. Let R be a ring.

— R is an integral domain, or just domain if there are no zero divisors, ie, $\forall a,b \in R$ s.t.

$$a.b = 0 \implies a = 0 \text{ or } b = 0$$

- Any domain can be embedded into it's quotient ring.
- A proper ideal I is maximal if it's not contained in any other proper ideal
- A proper ideal I is prime if

$$\forall a, b \in R, ab \in I \implies a \in I \text{ or } b \in I$$

— A proper ideal ${\cal I}$ is radic cal if

$$a^n \in I \implies a \in I$$

— For any ideal $I \subset R$, the radical \sqrt{I} is the smallest radical ideal containing I

Lemme 1

 $I \subset R$ is maximal $\iff R/I$ is a field

Lemme 2

 $I \subset R$ is prime $\iff R/I$ is a domain

Lemme 3

 $radical \iff R/I \text{ has no nilpotent elements.}$

Given a subset $S \subset R$ we can consider the ideal generated by S

$$I(S) = \left\{ \sum_{i} a_{i} s_{i} \right\}$$

I is finitely generated if I = I(S) with S finite.

— We say that R is Noetherian $/\exists$ a chain of strictly increasing ideals. Equivalently, every ideal is finitely generated.

Theorème 4

— In fact, hilbert's basis theorem says that, if R is Noetherian, then R[x] is noetherian.

In particular $K[x_1, \ldots, x_n]$ is Noetherian

- *I* is in principal if it is generated by one element.
- A domain is called a principal ideal domain (PID) if every ideal is principal.
- $a \in R$ is irreducible if a is not a unit, nor zero and if

$$a = b.c$$

then either b or c are units.

- A pid $(a) \subset R$ is prime $\iff a$ is irreducible.
- R is a UFD if R is a domain and elements in R can be factored uniquely up to units and reordering into irreducible elements.

Theorème 5

 $R \text{ is a } UFD \implies R[x] \text{ is a } UFD$

And, if R is a PID, then R is a UFD

Theorème 6 (Gauss Lemma)

- R is a UFD and $a \in R[X]$ irreducible, then also $a \in Q(R)[X]$ is irreducible.
- Localization

Let R be a domain, if $S \subset R$ is a multiplicative subset, then the localization of R at S is defined as

$$S^{-1}R = \left\{ x \in Q(R) | x = \frac{a}{b}, b \in S \right\}$$

If M is an R-module, we have similarly

$$S^{-1}M = \left\{\frac{m}{s} | m \in M, s \in M\right\} / \left\{\frac{m}{s} = \frac{m'}{s'} \iff ms' = sm'\right\}$$

If $p \subset R$ is a prime ideal, then it's complement is a multiplicative subset and we define

$$R_p = (R \setminus p)^{-1}R$$

- There is a 1-1 correspondence between $p \subset R$ prime and ideals of R_p , furthermore R_p is a local ring
- Localization is exact, in particular, given $I \subset p$ the short exact sequence

$$o \to I \to R \to R/I \to 0$$

gets sent to

$$0 \to I_p \to R_p \to (R/I)_p \to 0$$

ie. localization commutes with taking quotients.

1.2 Polynomial rings

For $a \in \mathbb{N}^n$, we set

$$X^a = X_1^{a_1} \dots \in k[X_1, \dots]$$

Thus for any $F \in k[X_1, ..., X_n]$, we can write it as

$$F = \sum_{a \in \mathbb{N}^n} \lambda_a X^a$$

F is homogeneous or a form of degree d if the coefficients $\lambda_a = 0$ unless $a_1 + \ldots + a_n = d$.

Any F can be written uniquely as $F = F_0 + \ldots + F_d$ where F_i is a form of degree

The derivative of $F = \sum_{a \in \mathbb{N}^n} \lambda_a X^a$ with repsect to X_i is $F_{X_i} = \frac{\partial F}{\partial X_i}$. If F is a form of degree d we have

Theorème 7 (Euler's theorem)

$$\sum_{i=1}^{n} \frac{\partial F}{\partial X_i} X_i = dF$$

Lecture 2: Affine space and algebraic sets

Wed 02 Mar

1.3 Affine spaces and algebraic sets

Let k be a field.

Definition 1

For every $n \geq 0$ the affine n -space \mathbb{A}^n_k the set k^n .

In particular \mathbb{A}^0 is a point, \mathbb{A}^1 is a line, \mathbb{A}^2 the affine plane. Given a subset $S \subset k[X_1, \dots, X_n]$ of polynomials, we set

$$V(S) = \{x = (x_1, \dots, x_n) \in \mathbb{A}^n | f(x_1, \dots, x_n) = 0 \forall f \in S\}$$

If S is finite, we write $V(f_1, \ldots, f_k)$ for V(S).

If the set S is a singleton, then we call V(S) a hyperplane.

Any subset of \mathbb{A}^n V algebraic if V = V(S) for some subset of polynomials.

Lemme 8

- Let $S \subset k[X_1, ..., X_n]$ and I the ideal generated by S, then V(S) = V(I).
- Let $\{I_{\alpha}\}$ be a collection of ideals, then

$$V(\bigcup_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V(I_{\alpha})$$

- If $I \subset J$ then $V(J) \subset V(I)$
- For polynomials $f, g \in k[x_1, ..., x_n]$, then $V(f) \cup V(g) = V(f \cdot g)$ For ideals I, J ideals, then $V(I) \cup V(J) = V(I \cdot J)$ where $IJ = \{fg | f \in I, g \in J\}$
- For $a = (a_1, \ldots, a_n) \in \mathbb{A}^n, v(\{x_1 a_1, \ldots\}) = \{a\}$

Preuve

- 1. Let $h \in \sum_i f_i g_i \subset I$ with $f_i \in S$ and $x \in V(S)$, then $f_i(x) = 0 \forall i$ hence $h(x) = 0 \implies x \in V(I) \implies V(S) \subset V(I)$. Furthermore, if $x \in V(I)$, then in particular $f(x) = 0 \forall f \in S \subset I$, hence $x \in V(S)$ and $V(S) \supset V(I)$
- 2. Let $x \in V(\cup I_{\alpha})$, then for any α and $f \in I_{\alpha}$, we must have f(x) = 0, hence $x \in V(I_{\alpha}) \implies x \in \bigcap_{\alpha} V(I_{\alpha})$.

 Conversely, if $x \in \bigcap_{\alpha} V(I_{\alpha})$ and $f \in \bigcup_{\alpha} I_{\alpha}$, then $f \in I_{\alpha}$ for some α , then f(x) = 0 hence $x \in V(\bigcup_{\alpha} I_{\alpha})$

By Hilbert's basis theorem $k[x_1, \ldots, x_n]$ is Noetherian hence every ideal is finitely generated.

Corollaire 9

Every algebraic set $V \subset \mathbb{A}^n$ is of the form

$$V = V(f_1, \ldots, f_k) = V(f_1) \cap \ldots \cap V(f_k)$$

1.4 Ideals of a set of points and the nullstellensatz

Using the previous section, we have a map

$$V: \{ \text{ Ideals in } k[X_1, \dots, X_N] \} \mapsto \{ \text{ algebraic sets in } \mathbb{A}^n \}$$

Conversely, for any subset $X \subset \mathbb{A}^n$ we define

$$I(X) := \{ f \in k[X_1, \dots, X_N] | f(x) = 0 \forall x \in X \} \subset k[X_1, \dots, X_N]$$

Lemme 10

- 1. If $X \subset Y$ then $I(X) \supset I(Y)$
- 2. For $J \subset k[X_1, \dots, X_N]$ an ideal $I(V(J)) \supset J$
- 3. For $W \subset \mathbb{A}^n$ algebraic, V(I(W)) = W

Preuve

- 1. Let $f \in I(Y)$, then f vanishes on X and hence f in I(X)
- 2. $I(V(J)) = \{ f \in k[x_1, \dots, x_n] | f(x) = 0 \forall x \in V(J) \} \supset J$
- 3. By definition $V(I(X)) \supset X$ for any X. If in addition, if X = V(J) algebraic, then $V(I(X)) = V((I(V(J)))) \subset V(J) = X$

There are essentially two reasons why $I(V(J)) \supseteq J$ in general

1.
$$J = (x^n) \subset k[x] \implies V(x^n) = \{0\} \text{ and } I(\{0\}) = (x)$$

2.
$$(x^2 + 1) \subset \mathbb{R}[x]$$
 and $I(\emptyset) = \mathbb{R}[X]$

Lemme 11

For any $X \subset \mathbb{A}^n$, I(X) is a radical ideal

Preuve

If
$$f^n \in I(X)$$
 for some n , then $f(x)^n = 0$ and hence $f(x) = 0$

So the first phenomenon is related to the fact that J is not radical, the second is related to the fact that \mathbb{R} is not algebraically closed.

Theorème 12 (Hilbert's Nullstellensatz)

Let K be algebraically closed, $J \subset k[X_1, ..., X_n]$, then

$$I(V(J)) = \sqrt{J}$$

Using this, there is a one to one correspondence

 $\{ \text{ radical ideals in } k[X_1, \dots, X_n] \} \leftrightarrow \{ \text{ algebraic subsets of } \mathbb{A}^n \}$

Theorème 13 (Weak Nullstellensatz)

Let K be algebraically closed, every maximal ideal $I \subset K[X_1, ..., X_n]$ is of the form $I = \{x_1 - a_1, \dots, x_n - a_n\}$ with $a = (a_i) \in \mathbb{A}^n$

Corollaire 14

Let $I \subset K[X_1,...,X_n]$ be any ideal, then V(I) is a finite set \iff $k[X_1,\ldots,X_n]/I$ is a finite dimensional K-vector space.

In this case

$$|V(I)| \le \dim_k k[X_1, \dots, X_n]/I$$

Preuve

Let $I \subset k[X_1, ..., X_n]$ be any ideal and $P_1, ..., P_n \subset V(I)$ distinct.

We can choose (Exercise) $F_1, \ldots, F_r \in K[X_1, \ldots, X_n]$ s.t. $F_i(P_j) = \delta_{ij}$, then we write f_1, \ldots, f_r for the residues of F_1, \ldots, F_r in $K[X_1, \ldots, X_n]/I$. We claim f_1, \ldots, f_r are linearly independent.

Indeed suppose $\sum_i \lambda_i f_i = 0$, this implies $\sum_i \lambda_i F_i \in I$ hence $0 = \sum_i \lambda_i F_i(P_i)$ which implies $\lambda_j = 0$, hence the f_i are linearly independent.

It follows that $\dim_k K[X_1,\ldots,X_n]/I < \infty \implies |V(I)| < \infty$ and in this case $\dim_k K[X_1, \dots, X_n]/I \ge |V(I)|.$

Now assume V(I) is a finite set $\{P_1, \ldots, P_r\} \subset \mathbb{A}^n$ and write P_i (a_{i1}, \ldots, a_{in}) and define $F_j = \prod_{i=1}^r (X_j - a_{ij}).$

By construction $F_j \in I(V(I)) = \sqrt{I}$

 $\exists N>0 \ such \ that \ F_j^N\in I.$ Hence $f_j^N=0$ in $K[X_1,\ldots,X_n]/I$, but $f_j^N=(x_j^{Nr})+$ lower order terms .

This means that X_i^{Nr} is a K-linear combination of $\{1, \ldots, X_i^{Nr-1}\}$.

This means that X_j^s is a linear combination for any s > 0.

Hence taking products for different j's, we see that the set $\{x_1^{m_1}, \ldots, x_n^{m_n}\}$ generates $K[X_1, \ldots, X_n]/I$

Due to these theorems, we'll always suppose K is algebraically closed.

Lecture 3: Irreducible sets

Fri 11 Mar

1.5 Irreducible sets

Definition 2 (Irreducible set)

An algebraic set $V \subset \mathbb{A}^n$ is irreducible if $\forall W_1, W_2 \subset \mathbb{A}^n$ algebraic s.t. $V = W_1 \cup W_2$, then either $W_1 = V$ or $W_2 = V$

Exemple

— Let $V = \{x_1, \dots, x_n\} \subset \mathbb{A}^n$ is irreducible iff n = 1

- Let $f(X,Y) = Y(X^2 - Y), V = V(f) \subset \mathbb{A}^2$ is not irreducible by taking $W_1 = V(Y), W_2 = V(X^2 - Y)$

Proposition 16

An algebraic set V is irreducible iff I(V) is prime.

If
$$I(V)$$
 is not prime, let $F_1, F_2 \notin I(V)$ s.t. $F_1, F_2 \in I(V)$, then we can write $V = (V \cap V(F_1)) \cup (V \cap V(F_2))$.

Conversely, if $V = W_1 \cup W_2$ and $W_i \neq V$, then $I(W_i) \supsetneq I(V)$, pick $F_i \in I(W_i) \setminus I(V)$, then $F_1F_2 = I(W_1) \cap I(W_2) = I(V)$.

If $V \subset \mathbb{A}^n$ is irreducible, we can decompose it into a union of irreducible sets. The union is always finite as the polynomial ring is noetherian.

Theorème 17 (Theorem name)

Every $V \subset \mathbb{A}^n$ algebraic can be written uniquely (up to ordering) as a $union\ of\ irreducible\ sets.$

$$V = V_1 \cup \ldots \cup V_k$$

where the V_i 's are irreducible and $V_i \not\subset V_j \forall i \neq j$

Definition 3 (Irreducible Components)

The $V_1 \dots V_k$ are irreducible components of V.

Remarque

Applying I in theorem 1.9, we get

$$I(V) = I(V_1) \cap \ldots \cap I(V_k)$$

and $I(V_i)$ is the primary decomposition of I(V)

In general, it is quite difficult to find this decomposition.

For hypersurfaces, it's easy, for I(F), write $F = F_1^{\alpha_1} \cdot \ldots F_k^{\alpha_k}$, then V(F) = $V(F_1) \cup \ldots \cup V(F_k)$.

Algebraic subsets of \mathbb{A}^2 1.6

Let $F, G \in k[X, Y]$ with no common factors, then $V(F) \cap V(G)$ is a finite set of points.

Preuve

By Gauss's lemma, F, G have no common factors in k(X)[Y]. Since k(x)[Y] is a PID $\exists A, B \in k(X)$ such that

$$AF + BG = 1$$

Now there exists $C \in k[X]$ such that $AC, BC \in k[X]$.

Let $(x,y) \in V(F,G)$, then C(x) = 0 and hence there are only finitely many x's possible.

By symmetry, the same is true for the Y coordinate, hence $|V(F,G)| < \infty \square$

Using this, we can now classify all algebraic subsets of \mathbb{A}^2 .

Corollaire 20

The irreducible algebraic subsets of \mathbb{A}^2 are \mathbb{A}^2 , V(F) with F irreducible or singletons.

2 Affine algebraic varieties

Definition 4 (Affine algebraic variety)

An affine algebraic variety is an irreducible affine algebraic set.

2.1 Zariski topology

Definition 5 (Zariski topology)

The Zariksi-topology on \mathbb{A}^n is the topology whose open sets are complements of algebraic sets.

Lemme 21

This indeed defines a topology on \mathbb{A}^n

Preuve

Certainly \emptyset , \mathbb{A}^n are algebraic, hence their complements are open. Let $\{U_i\}$ be a family of open sets, ie. such that

$$U_i = \mathbb{A}^2 \setminus V(I)$$

Then

$$\bigcup U_i = \bigcup \mathbb{A}^n \setminus V(I_i) = \mathbb{A}^n \setminus \bigcap_i V(I_i) = \mathbb{A}^n \setminus V(\bigcup I)$$

Similarly, if U_1, U_2 are open, then

$$U_1 \cap U_2 = \mathbb{A}^n \setminus I(V_1 V_2)$$

is again open.

Exemple

If n = 1, then algebraically closed sets are either \mathbb{A}^n, \emptyset are finite union of points so the Zariski topology is the cofinite topology. Hence the open sets are huge.

Definition 6

For $V \subset \mathbb{A}^n$ an algebraic variety or set, the Zariski topology on V is just the subspace topology.

Definition 7 (New definition of irreducibility)

A non-empty subset V of a topological space X is irreducible if it cannot be expressed as $V = W_1 \cup W_2$ where $W_1, W_2 \subsetneq V$ are closed subsets.

Lemme 23

A non-empty open subset of an irreducible topological space is again irreducible and dense.

Furthermore, if $V \subset X$ is irreducible, then so is \overline{V}

The proof is an exercise.

Definition 8 (Quasi-affine algebraic variety)

A quasi-affine variety is an open subset of an affine variety.

Remarque

By the lemma above, quasi-affine variety are also irreducible.

2.2 Regular functions and coordinate rings

Regular functions are the natural "continuous" functions on algebraic varieties.

2.2.1 Affine case

Definition 9

Let $V \subset \mathbb{A}^n$ be an affine algebraic variety.

 $A\ map$

$$f: V \to K = \mathbb{A}^1$$

is regular if $\exists F \in k[X_1, \dots, X_n]$ such that

$$f(X) = F(X) \forall X \in V$$

The set $\Gamma(V)$ of regular functions on V is a ring with the usual pointwise multiplication and addition. and is called the coordinate ring of V.

Lemme 25

If I = I(V) for some prime, then

$$\Gamma(V) \simeq k[X_1, \dots, X_n]/I(V)$$

In particular, $\Gamma(V)$ is a domain.

Preuve

By definition, we have a surjective morphism

$$k[X_1,\ldots,X_n]\to\Gamma(V)$$

Now note that $F \in \ker \phi \iff F(X) = 0 \forall x \in V \iff F \in I(V)$

Definition 10 (Subobjects)

An affine subvariety of V is an affine variety contained in V.

Lemme 26

There is a one-to-one correspondence between V and $\Gamma(V)$ where

$$\{ \ algebraic \ subsets \ of \ V \} \leftrightarrow \{ \ radical \ ideals \ of \ \Gamma(V) \}$$

$$\{ \ algebraic \ subvarieties \ of \ V \} \leftrightarrow \{ \ prime \ ideals \ of \ \Gamma(V) \}$$

$$\{ \ points \ of \ V \} \leftrightarrow \{ \ maximal \ ideals \ of \ \Gamma(V) \}$$

The proof is again an exercise.

Definition 11 (Morphism)

A morphism $\phi: V \to W$ between affine algebraic varieties $V \subset \mathbb{A}^n, W \subset \mathbb{A}^m$ is a map such that \exists polynomials $T_1, \ldots, T_m \in k[X_1, \ldots, X_n]$ such that

$$\phi(X) = (T_1(X), \dots, T_m(X))$$

Then ϕ is an isomorphism if there exists a morphism ψ such that $\phi \circ \psi = \operatorname{Id}$ and $\psi \circ \phi = \operatorname{Id}$.

Exemple

Take $V(X^2-Y)\subset \mathbb{A}^2$ the the projection $p:V(X^2-Y)\to \mathbb{A}^1$ on the first

coordinate is an isomorphism with inverse $\psi(X)=(X,X^2)$. A non-example of a bijective map which is not an isomorphism: $\phi:\mathbb{A}^1\to V(Y^2-X^3),\ \phi(t)=(t^2,t^3).$ One can check that ϕ is bijective but not an isomorphism.