L1 Mathématiques Analyse 1

Université de Brest

Feuille 5

Fonctions convexes

Questions de cours.

- 1. Donner la définition d'une fonction convexe.
- 2. Donner la définition d'une fonction concave.

Exercice 1. Soit $f: I \longrightarrow \mathbb{R}$ une fonction convexe et $\lambda_1, \ldots, \lambda_n \in [0; 1]$ tels que $\sum_{i=1}^n \lambda_i = 1$. Montrer que pour tout $x_1, \ldots, x_n \in I$,

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \le \sum_{i=1}^n \lambda_i f(x_i)$$
.

Exercice 2. Soit $x, y \in \mathbb{R}$ tels que 0 < x < y.

- 1. Montrer que $x < \frac{y-x}{\ln(y) \ln(x)} < y$.
- 2. Montrer que pour tout $\lambda \in]0$; 1[, $\lambda \ln(x) + (1-\lambda) \ln(y) \le \ln(\lambda x + (1-\lambda)y)$. Que peut-on conclure?
- 3. Soit $p, q \in \mathbb{R}_+$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer que pour tout $a, b \in \mathbb{R}_+^*$, $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$.
- 4. Soit $n\in\mathbb{N}^*$ et $x_1,\dots,\,x_n\in\mathbb{R}_+^*$. Montrer l'inégalité arithmético-géométrique

$$\sqrt[n]{x_1 \cdots x_n} \le \frac{x_1 + \ldots + x_n}{n} .$$

Exercice 3. Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction convexe et $g: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction convexe et croissante. Démontrer que $g \circ f$ est convexe.

Exercice 4. Soient $f: I \longrightarrow \mathbb{R}$ une fonction dérivable et $a, b, c \in I$ tels que a < b < c.

- 1. Déterminer $t \in [0; 1]$ tel que b = (1 t)a + tc.
- 2. On suppose que f est convexe. Montrer que $f(b) \le \frac{c-b}{c-a} f(a) + \frac{b-a}{c-a} f(c)$.
- 3. Si f est convexe, montrer que $\frac{f(b)-f(a)}{b-a} \le \frac{f(c)-f(a)}{c-a} \le \frac{f(c)-f(b)}{c-b}$.
- 4. Montrer que si l'une des inégalités de la question 3 est vérifiée, alors f est convexe.
- 5. Montrer que si f est convexe, alors la fonction f' est croissante.

6. Montrer que si la fonction dérivée f' est croissante, alors la fonction f est convexe. Indication: Pour $x, y \in I$ tels que x < y, étudier la fonction $g: [0; 1] \longrightarrow \mathbb{R}$ définie par $g(\lambda) = \lambda f(x) + (1 - \lambda) f(y) - f(\lambda x + (1 - \lambda)y)$.

Exercice 5. Soit $f: I \longrightarrow \mathbb{R}$ une fonction convexe et strictement croissante.

- 1. Étudier la convexité de $f^{-1}:f(I)\longrightarrow I$.
- 2. Déterminer l'ensemble des fonctions $f:\mathbb{R} \longrightarrow \mathbb{R}$ convexe et strictement croissante telle que $f^{-1}:\mathbb{R} \longrightarrow \mathbb{R}$ est aussi convexe.

Exercice 6. Déterminer les intervalles où les fonctions suivantes sont convexes (resp. concaves) :

1. $f: x \longmapsto \cos(x)$

3. $f: x \longmapsto e^{x^2-x}$

2. $f: x \longmapsto e^{2x-\cos(x)}$

4. $f: x \longmapsto x \ln(x)$

Exercice 7. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = 2x^3 + 3x^2 - 12x + 2$. On note $I \subseteq \mathbb{R}$ le plus grand intervalle contenant 2 sur lequel f est injective.

- 1. Trouver les intervalles sur lesquels la fonction f est convexe ou concave.
- 2. Déterminer I. Calculer f(2) et $(f^{-1})'(6)$.

Exercice 8. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction convexe et majorée. Montrer que f est constante.

Exercice 9. Soit f une fonction convexe sur l'intervalle bornée a; b. Montrer que f est minorée.

Exercice 10. Soit $A \subset \mathbb{R}^2$ une partie de \mathbb{R}^2 . On dit que A est *convexe* si elle vérifie

$$\forall (x, y) \in A \times A, \ \forall t \in [0; 1], \ tx + (1 - t)y \in A$$
.

- 1. Montrer que le carré $[0; 1] \times [0; 1]$ est convexe.
- 2. Montrer que le disque unité $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ est convexe.
- 3. Montrer qu'une fonction $f:\mathbb{R}\longrightarrow\mathbb{R}$ est convexe si et seulement si son épigraphe

$$\{(x, y) \in \mathbb{R}^2 : y \ge f(x)\}$$

est une partie convexe de \mathbb{R}^2 .