Exact Exchange in Density Functional Theory

S. Sharma, J. K. Dewhurst and C. Ambrosch-Draxl

Institut für Physik Karl-Franzens-Universität Graz Universitätsplatz 5 A-8010 Graz, Austria

19th January 2005

Many-body theory involves solving for functions in 3N coordinates: $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$

Density functional theory (DFT) requires solving for functions in 3 coordinates: $n(\mathbf{r})$

Many-body theory involves solving for functions in 3N coordinates: $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$

Density functional theory (DFT) requires solving for functions in 3 coordinates: $n(\mathbf{r})$

Hohenberg-Kohn Theorems (1964)

- **1** External potential $v(\mathbf{r})$ is uniquely determined by $n(\mathbf{r})$
- 2 The variational principle holds

$$E_0 = E_{v_0}[n_0] < E_{v_0}[n]$$

$$E_{v_0}[n] = F[n] + \int d\mathbf{r} \ v_0(\mathbf{r}) n(\mathbf{r})$$

Hohenberg-Kohn Theorems (1964)

- ① External potential $v(\mathbf{r})$ is uniquely determined by $n(\mathbf{r})$
- The variational principle holds

$$E_0 = E_{v_0}[n_0] < E_{v_0}[n]$$

$$E_{v_0}[n] = F[n] + \int d\mathbf{r} \ v_0(\mathbf{r}) n(\mathbf{r})$$

Hohenberg-Kohn Theorems (1964)

- ① External potential $v(\mathbf{r})$ is uniquely determined by $n(\mathbf{r})$
- The variational principle holds

$$E_0 = E_{v_0}[n_0] < E_{v_0}[n]$$

$$E_{v_0}[n] = F[n] + \int d\mathbf{r} \ v_0(\mathbf{r}) n(\mathbf{r})$$

DFT is an exact theory for interacting systems in the ground state

Find set of auxilliary single particle orbitals such that

$$\left[-\frac{1}{2}\nabla^2 + v_{\mathsf{s}}(\mathbf{r})\right]\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

and

$$n(\mathbf{r}) = \sum_{i}^{\text{occ}} |\phi_i(\mathbf{r})|^2.$$

lf

$$F[n] = T_{\mathsf{s}}[n] + \frac{1}{2} \int d\mathbf{r} \ d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|r - r'|} + E_{\mathsf{xc}}[n]$$

Find set of auxilliary single particle orbitals such that

$$\left[-\frac{1}{2} \nabla^2 + v_{\mathsf{s}}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$

and

$$n(\mathbf{r}) = \sum_{i}^{\text{occ}} |\phi_i(\mathbf{r})|^2.$$

lf

$$F[n] = T_{\mathsf{s}}[n] + \frac{1}{2} \int d\mathbf{r} \ d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|r - r'|} + E_{\mathsf{xc}}[n]$$

Then

$$v_{\mathsf{s}}[n](\mathbf{r}) = v(\mathbf{r}) + \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{\mathsf{xc}}[n](\mathbf{r})$$

where

$$v_{\mathsf{xc}}[n](\mathbf{r}) = \frac{\delta E_{\mathsf{xc}}[n]}{\delta n(\mathbf{r})}.$$

Many sins hidden in $E_{xc}[n]$

Then

$$v_{\mathsf{s}}[n](\mathbf{r}) = v(\mathbf{r}) + \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{\mathsf{xc}}[n](\mathbf{r})$$

where

$$v_{\mathsf{xc}}[n](\mathbf{r}) = \frac{\delta E_{\mathsf{xc}}[n]}{\delta n(\mathbf{r})}.$$

Many sins hidden in $E_{xc}[n]$!

First generation: Local density approximation (LDA)

$$E_{\mathsf{xc}}^{\mathsf{LDA}}[n] = \int d\mathbf{r} \ n(\mathbf{r}) e_{\mathsf{xc}}^{\mathsf{unif}}(n(\mathbf{r}))$$

Second generation: Generalised gradient approximations

$$E_{\mathsf{xc}}^{\mathsf{GGA}}[n] = \int d\mathbf{r} \ f(n(\mathbf{r}), \nabla n(\mathbf{r}))$$

$$E_{\text{xc}}^{\text{Meta-GGA}}[n] = \int d\mathbf{r} \ g(n(\mathbf{r}), \nabla n(\mathbf{r}), \tau(\mathbf{r}))$$

First generation: Local density approximation (LDA)

$$E_{\mathsf{xc}}^{\mathsf{LDA}}[n] = \int d\mathbf{r} \ n(\mathbf{r}) e_{\mathsf{xc}}^{\mathsf{unif}}(n(\mathbf{r}))$$

Second generation: Generalised gradient approximations

$$E_{\mathsf{xc}}^{\mathsf{GGA}}[n] = \int d\mathbf{r} \ f(n(\mathbf{r}), \nabla n(\mathbf{r}))$$

$$E_{\mathsf{xc}}^{\mathsf{Meta-GGA}}[n] = \int d\mathbf{r} \ g(n(\mathbf{r}), \nabla n(\mathbf{r}), \tau(\mathbf{r}))$$

First generation: Local density approximation (LDA)

$$E_{\mathsf{xc}}^{\mathsf{LDA}}[n] = \int d\mathbf{r} \ n(\mathbf{r}) e_{\mathsf{xc}}^{\mathsf{unif}}(n(\mathbf{r}))$$

Second generation: Generalised gradient approximations

$$E_{\mathsf{xc}}^{\mathsf{GGA}}[n] = \int d\mathbf{r} \ f(n(\mathbf{r}), \nabla n(\mathbf{r}))$$

$$E_{\mathsf{xc}}^{\mathsf{Meta-GGA}}[n] = \int d\mathbf{r} \ g(n(\mathbf{r}), \nabla n(\mathbf{r}), \tau(\mathbf{r}))$$

Density functional theory Kohn-Sham equations Exchange-correlation functionals Practicalities

Exchange-correlation functionals

Development of new functionals leads not only to improved accuracy but also correct qualitative features

Third generation: Exact exchange (EXX)

Neglect correlation and use the Hartree-Fock exchange energy

$$E_{\mathsf{x}}[n] = -\frac{1}{2} \sum_{i,j}^{\mathsf{occ}} \int d\mathbf{r} \ d\mathbf{r}' \frac{\phi_i^*(\mathbf{r}) \phi_j^*(\mathbf{r}') \phi_j(\mathbf{r}) \phi_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

To solve the Kohn-Sham system we require

$$v_{\mathsf{x}}[n](\mathbf{r}) = \frac{\delta E_{\mathsf{x}}[n]}{\delta n(\mathbf{r})}$$

Third generation: Exact exchange (EXX)

Neglect correlation and use the Hartree-Fock exchange energy

$$E_{\mathsf{x}}[n] = -\frac{1}{2} \sum_{i,j}^{\mathsf{occ}} \int d\mathbf{r} \ d\mathbf{r}' \frac{\phi_i^*(\mathbf{r}) \phi_j^*(\mathbf{r}') \phi_j(\mathbf{r}) \phi_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

To solve the Kohn-Sham system we require

$$v_{\mathsf{x}}[n](\mathbf{r}) = \frac{\delta E_{\mathsf{x}}[n]}{\delta n(\mathbf{r})}$$

Using the functional derivative chain rule:

$$v_{\mathbf{x}}[n](\mathbf{r}) = \sum_{i}^{\mathsf{occ}} \int d\mathbf{r} \ d\mathbf{r}'' \left[\frac{\delta E_{\mathbf{x}}}{\delta \phi_{i}(\mathbf{r}'')} \frac{\delta \phi_{i}(\mathbf{r}'')}{\delta v_{\mathbf{s}}(\mathbf{r}')} + \frac{\delta E_{\mathbf{x}}}{\delta \phi_{i}^{*}(\mathbf{r}'')} \frac{\delta \phi_{i}^{*}(\mathbf{r}'')}{\delta v_{\mathbf{s}}(\mathbf{r}')} \right] \frac{\delta v_{\mathbf{s}}(\mathbf{r}')}{\delta n(\mathbf{r})}$$

$$= \int d\mathbf{r}' \left[\sum_{i}^{\mathsf{occ}} \sum_{j}^{\mathsf{unocc}} \langle \phi_{i} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j} \rangle \frac{\phi_{j}^{*}(\mathbf{r}') \phi_{i}(\mathbf{r}')}{\epsilon_{i} - \epsilon_{j}} + \mathsf{c.c.} \right] \frac{\delta v_{\mathbf{s}}(\mathbf{r}')}{\delta n(\mathbf{r})},$$

where

$$\langle \phi_{i\mathbf{k}} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j\mathbf{k}} \rangle = \sum_{l\mathbf{k}'}^{\mathsf{occ}} w_{\mathbf{k}'} \int d\mathbf{r} \ d\mathbf{r}' \frac{\phi_{i\mathbf{k}}^*(\mathbf{r}) \phi_{l\mathbf{k}'}(\mathbf{r}) \phi_{l\mathbf{k}'}^*(\mathbf{r}') \phi_{j\mathbf{k}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}.$$

Using the linear-response operator

$$\chi(\mathbf{r}, \mathbf{r}') \equiv \frac{\delta n(\mathbf{r})}{\delta v_{s}(\mathbf{r}')}$$

$$= \sum_{i}^{\text{occ}} \sum_{j}^{\text{unocc}} \frac{\phi_{i}^{*}(\mathbf{r})\phi_{j}(\mathbf{r})\phi_{j}^{*}(\mathbf{r}')\phi_{i}(\mathbf{r}')}{\epsilon_{i} - \epsilon_{j}} + \text{c.c.}$$

we have

$$\frac{\delta v_{\mathsf{s}}(\mathbf{r}')}{\delta n(\mathbf{r})} = \tilde{\chi}^{-1}(\mathbf{r}, \mathbf{r}').$$

basis

- Hartree-Fock
- a mean-field theory
- an attempt to solve the quasi-particle equation
- a parameterised correction to LDA
- easy to implement

- Hartree-Fock
- a mean-field theory
- an attempt to solve the quasi-particle equation
- a parameterised correction to LDA
- easy to implement

- Hartree-Fock
- a mean-field theory
- an attempt to solve the quasi-particle equation
- a parameterised correction to LDA
- easy to implement

- Hartree-Fock
- a mean-field theory
- an attempt to solve the quasi-particle equation
- a parameterised correction to LDA
- easy to implement

- Hartree-Fock
- a mean-field theory
- an attempt to solve the quasi-particle equation
- a parameterised correction to LDA
- easy to implement

Pseudopotentials (PP)

- atomic core is frozen and represented by a non-local potential
- does not react properly to the solid state environment: no relaxation of core states
- planewaves are used as the basis

Pseudopotentials (PP)

- atomic core is frozen and represented by a non-local potential
- does not react properly to the solid state environment: no relaxation of core states
- planewaves are used as the basis

Pseudopotentials (PP)

- atomic core is frozen and represented by a non-local potential
- does not react properly to the solid state environment: no relaxation of core states
- planewaves are used as the basis

Atomic sphere approximation (ASA)

- includes core orbitals
- potential is spherically symmetric
- muffin-tins are space-filling

Atomic sphere approximation (ASA)

- includes core orbitals
- potential is spherically symmetric
- muffin-tins are space-filling

Atomic sphere approximation (ASA)

- includes core orbitals
- potential is spherically symmetric
- muffin-tins are space-filling

- includes core orbitals
- potential is fully described
- space divided into muffin-tin and interstitial regions
- most precise method available

- includes core orbitals
- potential is fully described
- space divided into muffin-tin and interstitial regions
- most precise method available

- includes core orbitals
- potential is fully described
- space divided into muffin-tin and interstitial regions
- most precise method available

- includes core orbitals
- potential is fully described
- space divided into muffin-tin and interstitial regions
- most precise method available

- includes core orbitals
- potential is fully described
- space divided into muffin-tin and interstitial regions
- most precise method available

Basis set

An efficient basis set is required so that the response

$$\chi(\mathbf{r}, \mathbf{r}') \equiv \frac{\delta n(\mathbf{r})}{\delta v_{\mathsf{s}}(\mathbf{r}')}$$

can be inverted

Basis set should not contain constant functions

response

Basis set

An efficient basis set is required so that the response

$$\chi(\mathbf{r}, \mathbf{r}') \equiv \frac{\delta n(\mathbf{r})}{\delta v_{s}(\mathbf{r}')}$$

can be inverted

Basis set should not contain constant functions

response

Choose the overlap densities

$$\rho_{\alpha}(\mathbf{r}) \equiv \phi_{i\mathbf{k}}^{*}(\mathbf{r})\phi_{j\mathbf{k}}(\mathbf{r}),$$

and complex conjugates, where $\alpha \equiv (i\mathbf{k}, j\mathbf{k})$.

Diagonalise

$$O_{\alpha\beta} \equiv \int d\mathbf{r} \; \rho_{\alpha}^*(\mathbf{r}) \rho_{\beta}(\mathbf{r}),$$

and eliminate eigenvectors with small eigenvalues

Choose the overlap densities

$$\rho_{\alpha}(\mathbf{r}) \equiv \phi_{i\mathbf{k}}^*(\mathbf{r})\phi_{j\mathbf{k}}(\mathbf{r}),$$

and complex conjugates, where $\alpha \equiv (i\mathbf{k}, j\mathbf{k})$.

Diagonalise

$$O_{lphaeta} \equiv \int d{f r} \;
ho_lpha^*({f r})
ho_eta({f r}),$$

and eliminate eigenvectors with small eigenvalues.

Find transformation matrix C such that if

$$ilde{
ho}_{lpha}(\mathbf{r}) = \sum_{eta} C^{lpha}_{eta} \sum_{\gamma} v^{eta}_{\gamma}
ho_{\gamma}(\mathbf{r})$$

then

$$\int d\mathbf{r} \; \tilde{\rho}_{\alpha}^*(\mathbf{r}) \tilde{\rho}_{\beta}(\mathbf{r}) = \delta_{\alpha\beta}.$$

The matrix equation

$$CC^{\dagger} = \left(v^{\dagger}Ov\right)^{-1}$$

is solved by Cholesky decomposition.

Find transformation matrix C such that if

$$ilde{
ho}_{lpha}(\mathbf{r}) = \sum_{eta} C^{lpha}_{eta} \sum_{\gamma} v^{eta}_{\gamma}
ho_{\gamma}(\mathbf{r})$$

then

$$\int d\mathbf{r} \; \tilde{\rho}_{\alpha}^*(\mathbf{r}) \tilde{\rho}_{\beta}(\mathbf{r}) = \delta_{\alpha\beta}.$$

The matrix equation

$$CC^{\dagger} = \left(v^{\dagger}Ov\right)^{-1}$$

is solved by Cholesky decomposition.

By construction $\int d{\bf r} \ \tilde{\rho}_{\alpha}({\bf r}) = 0$, so $\{\tilde{\rho}_{\alpha}\}$ form an ideal basis for inversion of χ

NL Lastly, given $\mathbf{q} \equiv \mathbf{k} - \mathbf{k}'$, the long range coulomb term of the NL matrix elements

$$\langle \phi_{i\mathbf{k}} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j\mathbf{k}} \rangle_{\mathsf{LR}} = \sum_{l\mathbf{q}}^{\mathsf{occ}} w_{\mathbf{q}} \frac{4\pi\Omega}{q^2} \rho_{il}^*(\mathbf{q}) \rho_{lj}(\mathbf{q}),$$

where $\rho_{il}(\mathbf{q})$ and $\rho_{lj}(\mathbf{q})$ are the pseudo-charge densities.

Poor convergence with respect to the number of q-points.

Approximate it by an integral over a sphere of volume equivalent to that of the BZ

$$\langle \phi_{i\mathbf{k}} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j\mathbf{k}} \rangle_{\mathsf{LR}} \simeq 2 \left(\frac{6\Omega^5}{\pi} \right)^{1/3} \sum_{l\mathbf{q}}^{\mathsf{occ}} w_{\mathbf{q}} \rho_{il}^*(\mathbf{q}) \rho_{lj}(\mathbf{q}).$$

NL matrix elements Lastly, given $\mathbf{q} \equiv \mathbf{k} - \mathbf{k}'$, the long range coulomb term of the

$$\langle \phi_{i\mathbf{k}} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j\mathbf{k}} \rangle_{\mathsf{LR}} = \sum_{l\mathbf{q}}^{\mathsf{occ}} w_{\mathbf{q}} \frac{4\pi\Omega}{q^2} \rho_{il}^*(\mathbf{q}) \rho_{lj}(\mathbf{q}),$$

where $\rho_{il}(\mathbf{q})$ and $\rho_{lj}(\mathbf{q})$ are the pseudo-charge densities.

Poor convergence with respect to the number of q-points.

Approximate it by an integral over a sphere of volume equivalent to that of the BZ

$$\langle \phi_{i\mathbf{k}} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j\mathbf{k}} \rangle_{\mathsf{LR}} \simeq 2 \left(\frac{6\Omega^5}{\pi} \right)^{1/3} \sum_{l\mathbf{q}}^{\mathsf{occ}} w_{\mathbf{q}} \rho_{il}^*(\mathbf{q}) \rho_{lj}(\mathbf{q}).$$

NL matrix elements Lastly, given $\mathbf{q} \equiv \mathbf{k} - \mathbf{k}'$, the long range coulomb term of the

$$\langle \phi_{i\mathbf{k}} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j\mathbf{k}} \rangle_{\mathsf{LR}} = \sum_{l\mathbf{q}}^{\mathsf{occ}} w_{\mathbf{q}} \frac{4\pi\Omega}{q^2} \rho_{il}^*(\mathbf{q}) \rho_{lj}(\mathbf{q}),$$

where $\rho_{il}(\mathbf{q})$ and $\rho_{lj}(\mathbf{q})$ are the pseudo-charge densities.

Poor convergence with respect to the number of q-points.

Approximate it by an integral over a sphere of volume equivalent to that of the BZ

$$\langle \phi_{i\mathbf{k}} | \hat{v}_{\mathbf{x}}^{\mathsf{NL}} | \phi_{j\mathbf{k}} \rangle_{\mathsf{LR}} \simeq 2 \left(\frac{6\Omega^5}{\pi} \right)^{1/3} \sum_{l\mathbf{q}}^{\mathsf{occ}} w_{\mathbf{q}} \rho_{il}^*(\mathbf{q}) \rho_{lj}(\mathbf{q}).$$

Applications

EXX Applied to

- Magnetic metals
- Semiconductors and insulators

Magnetic metals: introduction to the problem

Magnetic moment in Bohr magneton

Compound	FP-LDA	Experiment
FeAI	0.71	0.0

- **1** P. Mohn et al. Phys. Rev. Lett. 87 196401 (2001): LDA+U
- 2 Petukhov et al. Phys. Rev. B 67 153106 (2003): LDA+U+DMFT

Magnetic metals: introduction to the problem

Magnetic moment in Bohr magneton

Compound	FP-LDA	Experiment
FeAI	0.71	0.0

- **1** P. Mohn et al. Phys. Rev. Lett. 87 196401 (2001): LDA+U
- Petukhov et al. Phys. Rev. B 67 153106 (2003): LDA+U+DMFT

Magnetic metals: stringent tests for EXX

Magnetic moment in Bohr magneton

Compound	FP-LDA	FP-EXX	Experiment
FeAI	0.71	0.0	0.0
Ni_3Ga	0.79	?	0.0
Ni ₃ Al	0.70	?	0.23

http://arxiv.org/abs/cond-mat/0501258

Magnetic metals: FeAl, Ni₃Ga and Ni₃Al

Magnetic moment in Bohr magneton

Compound	FP-LDA	FP-EXX	Experiment
FeAl	0.71	0.0	0.0
Ni_3Ga	0.79	0.0	0.0
Ni ₃ Al	0.70	0.20	0.23

http://arxiv.org/abs/cond-mat/0501258

$$E_g = A - I = (E_{N+1} - E_N) - (E_N - E_{N-1})$$

$$E_g = \frac{\delta E}{\delta n^+} - \frac{\delta E}{\delta n^-}$$

$$E[n] = T[n] + U_{\mathsf{s}}[n] + E_{\mathsf{xc}}[n]$$

$$E_g = \left(\frac{\delta T}{\delta n^+} - \frac{\delta T}{\delta n^-}\right) + \left(\frac{\delta v_{xc}}{\delta n^+} - \frac{\delta v_{xc}}{\delta n^-}\right)$$

$$E_g = E_g^{\mathsf{KS}} + \Delta_{\mathsf{xc}}$$

$$E_g = A - I = (E_{N+1} - E_N) - (E_N - E_{N-1})$$

$$E_g = \frac{\delta E}{\delta n^+} - \frac{\delta E}{\delta n^-}$$

$$E[n] = T[n] + U_{\mathsf{s}}[n] + E_{\mathsf{xc}}[n]$$

$$E_g = \left(\frac{\delta T}{\delta n^+} - \frac{\delta T}{\delta n^-}\right) + \left(\frac{\delta v_{xc}}{\delta n^+} - \frac{\delta v_{xc}}{\delta n^-}\right)$$

$$E_g = E_g^{\mathsf{KS}} + \Delta_{\mathsf{xc}}$$

$$E_g = A - I = (E_{N+1} - E_N) - (E_N - E_{N-1})$$

$$E_g = \frac{\delta E}{\delta n^+} - \frac{\delta E}{\delta n^-}$$

$$E[n] = T[n] + U_{\mathsf{s}}[n] + E_{\mathsf{xc}}[n]$$

$$E_g = \left(\frac{\delta T}{\delta n^+} - \frac{\delta T}{\delta n^-}\right) + \left(\frac{\delta v_{xc}}{\delta n^+} - \frac{\delta v_{xc}}{\delta n^-}\right)$$

$$E_g = E_g^{\rm KS} + \Delta_{\rm xc}$$

$$E_g = A - I = (E_{N+1} - E_N) - (E_N - E_{N-1})$$

$$E_g = \frac{\delta E}{\delta n^+} - \frac{\delta E}{\delta n^-}$$

$$E[n] = T[n] + U_{\mathsf{s}}[n] + E_{\mathsf{xc}}[n]$$

$$E_g = \left(\frac{\delta T}{\delta n^+} - \frac{\delta T}{\delta n^-}\right) + \left(\frac{\delta v_{\mathsf{xc}}}{\delta n^+} - \frac{\delta v_{\mathsf{xc}}}{\delta n^-}\right)$$

$$E_g = E_g^{\mathsf{KS}} + \Delta_{\mathsf{xc}}$$

$$E_g = A - I = (E_{N+1} - E_N) - (E_N - E_{N-1})$$

$$E_g = \frac{\delta E}{\delta n^+} - \frac{\delta E}{\delta n^-}$$

$$E[n] = T[n] + U_s[n] + E_{xc}[n]$$

$$E_g = (\frac{\delta T}{\delta n^+} - \frac{\delta T}{\delta n^-}) + (\frac{\delta v_{xc}}{\delta n^+} - \frac{\delta v_{xc}}{\delta n^-})$$

$$E_g = E_g^{\text{KS}} + \Delta_{xc}$$

Semiconductors and insulators: d-band position

Semiconductors and insulators: d-band position

Semiconductors and insulators: d-band position

http://arxiv.org/abs/cond-mat/0501353

- EXX within an all electron full potential method is implemented within EXC!TING code. Right now this is the only FP code to be able to do EXX.
- A new and one of the most optimal basis is proposed for calculating and inverting the response. This basis may be useful for future TD-DFT and GW calculations.
- Magnetic metals: Asymmetry in exchange potential is very important to get the correct ground-state.
- Semiconductors and insulators: Core-valence interaction is crucial for correct treatment of the EXX.
- Solution
 Lack of Asymmetry and/or core-valence interaction could lead to spurious agreement with experiments.

- EXX within an all electron full potential method is implemented within EXC!TING code. Right now this is the only FP code to be able to do EXX.
- A new and one of the most optimal basis is proposed for calculating and inverting the response. This basis may be useful for future TD-DFT and GW calculations.
- Magnetic metals: Asymmetry in exchange potential is very important to get the correct ground-state.
- Semiconductors and insulators: Core-valence interaction is crucial for correct treatment of the EXX.
- Solution
 Lack of Asymmetry and/or core-valence interaction could lead to spurious agreement with experiments.

- EXX within an all electron full potential method is implemented within EXC!TING code. Right now this is the only FP code to be able to do EXX.
- A new and one of the most optimal basis is proposed for calculating and inverting the response. This basis may be useful for future TD-DFT and GW calculations.
- Magnetic metals: Asymmetry in exchange potential is very important to get the correct ground-state.
- Semiconductors and insulators: Core-valence interaction is crucial for correct treatment of the EXX.
- Solution
 Lack of Asymmetry and/or core-valence interaction could lead to spurious agreement with experiments.

- EXX within an all electron full potential method is implemented within EXC!TING code. Right now this is the only FP code to be able to do EXX.
- A new and one of the most optimal basis is proposed for calculating and inverting the response. This basis may be useful for future TD-DFT and GW calculations.
- Magnetic metals: Asymmetry in exchange potential is very important to get the correct ground-state.
- Semiconductors and insulators: Core-valence interaction is crucial for correct treatment of the EXX.
- Lack of Asymmetry and/or core-valence interaction could lead to spurious agreement with experiments.

- EXX within an all electron full potential method is implemented within EXC!TING code. Right now this is the only FP code to be able to do EXX.
- A new and one of the most optimal basis is proposed for calculating and inverting the response. This basis may be useful for future TD-DFT and GW calculations.
- Magnetic metals: Asymmetry in exchange potential is very important to get the correct ground-state.
- Semiconductors and insulators: Core-valence interaction is crucial for correct treatment of the EXX.
- Lack of Asymmetry and/or core-valence interaction could lead to spurious agreement with experiments.

Outlook

- **1** EXX can be generalised to handle non-collinear magnetism (derivatives w.r.t. $n_{\sigma\sigma'}(\mathbf{r})$).
- Future inclusion of exact correlation may be possible (multiconfiguration approach or adiabatic fluctuation dissipation)

Outlook

- **1 EXX** can be generalised to handle non-collinear magnetism (derivatives w.r.t. $n_{\sigma\sigma'}(\mathbf{r})$).
- Future inclusion of exact correlation may be possible (multiconfiguration approach or adiabatic fluctuation dissipation)

Acknowledgements

Prof. P. Mohn

Magnetic metals work done in collaboration with Dr. C. Persson.

Austrian Science Fund (project P16227)

EXCITING network funded by the EU (HPRN-CT-2002-00317)

Code available at:

http://physik.kfunigraz.ac.at/~kde/secret_garden/exciting.html