2019 G3

Ezra Guerrero Alvarez

November 21, 2021

2019 G3

2019 G3

In triangle ABC point A_1 lies on side BC and point B_1 lies on side AC. Let P and Q be points on segments AA_1 and BB_1 , respectively, such that $\overline{PQ} \parallel \overline{AB}$. Point P_1 is chosen on ray PB_1 beyond B_1 such that $\angle PP_1C = \angle BAC$. Point Q_1 is chosen on ray QA_1 beyond A_1 such that $\angle CQ_1Q = \angle CBA$. Prove that points P_1 , Q_1 , P, Q are cyclic.

We set $\triangle ABC$ as our reference triangle, with A=(1,0,0), B=(0,1,0), C=(0,0,1) and $a=\overline{\mathrm{BC}}, b=\overline{\mathrm{CA}}, c=\overline{\mathrm{AB}}$. Since $\overline{\mathrm{PQ}}\parallel \overline{\mathrm{AB}}$, we have $P=(u_1:v_1:1)Q=(u_2:v_2:1)$ where $u_1+v_1=u_2+v_2$. Now, $A_1=(0:v_1:1)$ and $B_1=(u_2:0:1)$. Let X and Y be the intersection points of $\overline{\mathrm{PB}}_1$ and $\overline{\mathrm{QA}}_1$ with side $\overline{\mathrm{AB}}$ respectively. By the angle condition, $AXCP_1$ and $BYCQ_1$ are cyclic. Also, by Reims' it suffices to show P_1Q_1XY is cyclic. By radical center, it then suffices to show $\overline{\mathrm{A}}_1\overline{\mathrm{Y}}, \overline{\mathrm{B}}_1\overline{\mathrm{X}}$ and the radical axis of (ACX), (BCY) concur. Now, using that P, B_1, X are collinear, if $X=(x_1:y_1:0)$,

$$\begin{vmatrix} u_1 & v_1 & 1 \\ u_2 & 0 & 1 \\ x_1 & y_1 & 0 \end{vmatrix} = 0,$$

which implies $x_1: y_1 = u_1 - u_2: v_1$. Thus, $X = (u_1 - u_2: v_1: 0)$. Analogously, $Y = (u_2: v_2 - v_1: 0)$. From here, via determinants we obtain

$$\overline{A_1Y}$$
: + $x(v_2 - v_1) - y(u_2) + z(v_1u_2) = 0$

$$\overline{B_1X}$$
: $-x(v_1) + y(u_1 - u_2) + z(v_1u_2) = 0$

Now we compute the equations of (ACX) and (BCY). Substituting the points A, C, X into the formula, we see that

$$-c^2(u_1 - u_2)v_1 + (v_2)\beta v_1 = 0,$$

so $\beta = \frac{c^2(u_1 - u_2)}{v_2}$. Thus,

$$(ACX)$$
: $-a^2yz - b^2zx - c^2yz + (x+y+z)\frac{c^2(u_1-u_2)}{v_2}y = 0.$

Analogously,

(ACX):
$$-a^2yz - b^2zx - c^2yz + (x+y+z)\frac{c^2(v_2-v_1)}{u_1}x = 0.$$

Subtracting these two and using $u_1 - u_2 = v_2 - v_1$, we see the radical axis of both circles is given by $v_2x - u_1y = 0$. Now,

$$\begin{vmatrix} v_2 & -u_1 & 0 \\ v_2 - v_1 & -u_2 & v_1 u_2 \\ -v_1 & u_1 - u_2 & v_1 u_2 \end{vmatrix} = \begin{vmatrix} v_2 & -u_1 & 0 \\ v_2 & -u_1 & 0 \\ -v_1 & u_1 - u_2 & v_1 u_2 \end{vmatrix} = 0,$$

1

so the three lines concur as desired.