

DIRECT DETECTION OF EXOPLANETS USING TUNABLE KERNEL-NULLING

Vincent Foriel^{1,*}, Frantz Martinache¹, David Mary¹

- ¹ Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
- vincent.foriel@oca.eu

In a nutshell

This poster present a thesis that aim to enhance nulling interferometry for exoplanet detection using a four-telescope architecture named Kernel-Nuller. By integrating 14 active phase shifters, we aim to mitigate phase aberrations caused by manufacturing defects. An algorithm is developed to optimize device performance, validated through simulations and lab experiments. A second step consists in analyzing intensity distributions produced by Kernel-Nuller and applying statistical tests and machine learning to extract valuable information. This poster present the preliminary results.

Nulling interferometry ~ On the VLTI

This technique consist in taking advantage of the angular separation and the coherence properties of the light to destroy the star light and combine the planet light in the

same process. Our approach enhance this principle by introducing « Kernels » which combine the light from 3 telescopes [1] or more to be less sensitive to low order phase aberrations and asymmetries [2] the output to better constrain the planet position.

Figure 2: Concept of nulling. The signals are placed in phase opposition to destroy the on-axis source and let pass the light from nearby objects

Figure 3: Transmission map of one of the Kernels obtained using the 4 telescopes of the **VLTI**. The transmission zones and blind bands are directly derived from the telescopes position. By rotating the baseline, we can get a -0.2 modulated signal from which we can precisely constrain the planet position. (cf. "Parallactic diversity" block)

Thermo-optic phase shifter \strace{1}{2}

Coming from telecom technologies, the thermo-optic phase shifters consist in heating a fiber core using an electrode to increase the optical index and then induce an artificial OPD. Thanks to the compactness of such systems, the heat transfer is fast enough to have response time of about 1 ms. These shifters have been designed to work optimally at $\lambda =$ $1.65 \ \mu m$

Figure 4: Scheme of thermo-optic phase shifter

Active optical components

The idea of our architecture is to combine the nulling interferometry with the phase shifter technologies to make an active optical component that can be calibrated to compensate the phase aberration induced by the manufacturing defects.

Figure 5: Picture of the waffle that contain several prototype architectures of Kernel-Nuller. The overall component size is comparable to a 1 cent coin.

Calibration algorithm G

To find the best phase shifts to introduce, I proposed an algorithm inspired from dichotomy and gradient descent that accepts or rejects steps in the parameter space according to the bright (M_1) and dark asymmetry (M_2) metrics. B and Dare respectively the bright and darks output intensities.

$$M_1 = B$$

$$M_2 = |D_1 - D_2| + |D_3 - D_4| + |D_5 - D_6|$$

Figure 6: phase and amplitude of the 4 input signals on the 6 dark outputs before (top) and after (bottom) the calibration process

Distribution analysis

In presence of unavoidable input phase aberrations, the system is not able to perfectly cancel the star light. By performing many observations, we obtain some intensity distribution intensity at the kernels output.

Figure 7: Evolution of kernel distribution spread according to the input phase aberrations.

The presence of an exoplanet in the field of view result in a shift of the distribution. The more the planet will be bright, the more the shift will be pronounced. In practice, both distribution are almost indistinguishable. We then test several estimators (Fig. 11) to retrieve the true value of the signal and then estimate the probability of detection.

Figure 8: Intensity distribution obtained on a kernel output (with an extremely bright planet to clearly show the distribution shift)

CNIS P₁₂ P13 4x4 Nuller Figure 1: Scheme of our Kernel-Nulling architecture

Parallactic diversity

On-sky contribution

By weighting the kernel transmission map by the output intensity and integrating it over the parallactic angle, we can dress a map of the source of input light. By cumulating the 3 maps, one can constrain precisely which part of the sky contributed the most to the data we have. Thus, this process reveal the approximative object location, spreaded by the input phase aberrations.

Figure 10: Repartition of on-sky contributions and cumulation of these maps to reveal the object location.

Discussions & prospects

These promising results are mitigated by the persistent sensibility to high order phase aberration. A contrast of 10^{-6} require an **AO** correction that bring phase aberrations below $\lambda/100$ RMS. Also, three of the main prospects will consist to deeply investigate which is the best estimator, make these simulations chromatic and confirm these results on a test bed.

Figure 11: ROC test to compare the detection performance of different estimators according to the probability of false alarm.

References

- 1. Cvetojevic, N. et al. "3-beam self-calibrated Kernel nulling photonic interferometer" (2022). Preprint at http://arxiv.org/abs/2206.04977.
- 2. Martinache, Frantz, et Michael J. Ireland. "Kernel-Nulling for a Robust Direct Interferometric Detection of Extrasolar Planets". Astronomy & Astrophysics 619 (2018): A87. https://doi.org/10.1051/0004-6361/201832847.

Acknowledgment \$\infty\$

Thanks to Romain Laugier for his many wise advices, to Nick Cvetojevic for his help to introduce me to the subject and Margaux Abello for the help on the presentations. This thesis is made possible by the PHOTONICS project of the PEPR ORIGINS and Thales Alenia Space

Glossary ____

AO: Adaptative Optics

OPD: Optical Path Difference

RMS: Root Mean Square

ROC: Receiver operating characteristic

VLTI: Very Large Telescope Interferometer