#### **SVM**

14 March 2023

Sumit Kumar Yaday

Department of Management Studies Indian Institute of Technology, Roorkee



# Recap and Today

- SVM
- More of SVM

# Support Vector Machine - Introduction

- Supervised Learning Algorithm for Classification
- Given N training points in which  $n_1$  are of type A,  $n_2$  are of type B, draw the **best** line(plane)
- To begin with, assume that the training points are linearly separable



### Which is the best line?



#### Which is the best line?



What makes us think it is the green line? Can we make the ideas a bit more precise?

#### **Notations**

Let the data-set be denoted as -

| S.No | $X_1$                  | $X_2$                  | Y (+1 or -1) |
|------|------------------------|------------------------|--------------|
| 1    | <i>x</i> <sub>11</sub> | <i>X</i> <sub>12</sub> | +1           |
| 2    | <i>x</i> <sub>21</sub> | X22                    | -1           |
| 3    | X31                    | X32                    | -1           |
|      |                        |                        |              |
|      |                        |                        |              |
|      |                        |                        |              |
| N    | X <sub>N1</sub>        | X <sub>N2</sub>        | +1           |

#### **Notations**

Let the data-set be denoted as -

| S.No | $X_1$                  | $X_2$           | Y (+1 or -1) |
|------|------------------------|-----------------|--------------|
| 1    | <i>x</i> <sub>11</sub> | X <sub>12</sub> | +1           |
| 2    | <i>x</i> <sub>21</sub> | X22             | -1           |
| 3    | <i>X</i> 31            | X32             | -1           |
|      |                        |                 |              |
|      |                        |                 |              |
|      |                        |                 |              |
| N    | X <sub>N1</sub>        | X <sub>N2</sub> | +1           |

Let the equation of the line be  $w_1x_1 + w_2x_2 + b = 0$ We need to determine  $w_1$ ,  $w_2$  and b

### Obtaining $w_1$ , $w_2$ and b

- Arbitratily choose  $w_1$ ,  $w_2$  and b such that  $w_1x_{i1} + w_2x_{i2} + b > 0$  whenever  $y_i = +1$   $w_1x_{i1} + w_2x_{i2} + b < 0$  whenever  $y_i = -1$
- Simply put, for all points,  $y_i(w_1x_{i1} + w_2x_{i2} + b) > 0$
- Criteria Consider a line. Find the distance of the line from all the training examples (or points). Look at the minimum of all these distances.

We are interested in the line for which this minimum distance is as large as possible.

$$\bullet \max_{(w_1, w_2, b)} \left( \min_{i = \{1, 2, \dots, N\}} \frac{|w_1 x_{i1} + w_2 x_{i2} + b|}{\sqrt{w_1^2 + w_2^2}} \right)$$

 The max in the equation in maximize and min in the equation is minimum



The optimization problem thus becomes -

$$\max_{(w_1,w_2,b)} \left( \min_{i=\{1,2,...,N\}} \frac{|w_1 x_{i1} + w_2 x_{i2} + b|}{\sqrt{w_1^2 + w_2^2}} \right)$$

The **max** in the equation in **maximize** and **min** in the equation is **minimum** 

subject to the following **N** constraints -  $y_i(w_1x_{i1} + w_2x_{i2} + b) > 0$ 

The optimization problem thus becomes -

$$\max_{(w_1, w_2, b)} \left( \frac{1}{\sqrt{w_1^2 + w_2^2}} \left[ \min_{i = \{1, 2, \dots, N\}} (|w_1 x_{i1} + w_2 x_{i2} + b|) \right] \right)$$

subject to the following  ${f N}$  constraints -

$$y_i(w_1x_{i1}+w_2x_{i2}+b)>0$$

The optimization problem thus becomes -

$$\max_{(w_1,w_2,b)} \left( \frac{1}{\sqrt{w_1^2 + w_2^2}} \left[ \min_{i=\{1,2,....,N\}} (|w_1 x_{i1} + w_2 x_{i2} + b|) \right] \right)$$

subject to the following  ${f N}$  constraints -

$$y_i(w_1x_{i1}+w_2x_{i2}+b)>0$$

As scaling all  $w_1$ ,  $w_2$  and b by the same factor (non-zero) doesn't change the line (or hyperplane), we will choose  $w_1$ ,  $w_2$  and b such that -

$$\min_{i=\{1,2,\ldots,N\}}(|w_1x_{i1}+w_2x_{i2}+b|)=1$$
  
The **min** in the above equation is **minimum**



The optimization problem thus becomes -

$$\max_{(w_1, w_2, b)} \left( \frac{1}{\sqrt{w_1^2 + w_2^2}} \right)$$

subject to the following 2N constraints -

$$y_i(w_1x_{i1}+w_2x_{i2}+b)>0$$

$$\min_{i=\{1,2,...,N\}}(|w_1x_{i1}+w_2x_{i2}+b|)=1$$

The optimization problem thus becomes -

$$\min_{\substack{(w_1,w_2,b)}} \left(\frac{w_1^2+w_2^2}{2}\right)$$
 subject to the following **2N** constraints -

$$y_i(w_1x_{i1}+w_2x_{i2}+b)>0$$

$$\min_{i=\{1,2,...,N\}} (|w_1 x_{i1} + w_2 x_{i2} + b|) = 1$$

The optimization problem thus becomes -

$$\min_{(w_1,w_2,b)} \left(\frac{w_1^2+w_2^2}{2}\right)$$
 subject to the following **2N** constraints -

$$y_i(w_1x_{i1}+w_2x_{i2}+b)>0$$

$$\min_{i=\{1,2,\ldots,N\}}(|w_1x_{i1}+w_2x_{i2}+b|)=1$$

$$\min_{i=\{1,2,...,N\}} (|w_1x_{i1} + w_2x_{i2} + b|) = 1 \text{ implies -} |w_1x_{i1} + w_2x_{i2} + b| >= 1 \quad \forall i = \{1,2,...,N\} \text{ or }$$

$$|y_i(w_1x_{i1} + w_2x_{i2} + b)| >= 1$$
  $\forall i = \{1, 2, ..., N\}$  or  $y_i(w_1x_{i1} + w_2x_{i2} + b) >= 1$   $\forall i = \{1, 2, ..., N\}$  The implies condition is not both ways, but still it can be replaced in this problem because ??

The implies condition can be replaced in this problem because ?? After some algebra, the optimization problem becomes -

$$\min_{(w_1,w_2,b)} \left(\frac{w_1^2+w_2^2}{2}\right)$$
 subject to the following **N** constraints -

$$y_i(w_1x_{i1} + w_2x_{i2} + b) >= 1$$
  $\forall i = \{1, 2, ..., N\}$ 

Consider the following two optimizaion problems -

$$\begin{array}{l} \min \limits_{(w_1,w_2,b)} \left(\frac{w_1^2+w_2^2}{2}\right) \\ \text{subject to the following $\bf N$ constraints -} \end{array}$$

$$y_i(w_1x_{i1} + w_2x_{i2} + b) >= 1$$
  $\forall i = \{1, 2, ..., N\}$ 

$$\min_{(w_1,w_2,b)} \left(\frac{w_1^2+w_2^2}{2}\right) - \sum_{i=1}^N \alpha_i (y_i(w_1x_{i1}+w_2x_{i2}+b)-1)$$
 subject to no constraints, only the fact that all  $\alpha_i$ 's are either zero or positive

Which of these two optimization problems has a lower value?



$$\min_{\substack{(w_1,w_2,b)}} \left(\frac{w_1^2+w_2^2}{2}\right)$$
 subject to the following **N** constraints -

$$y_i(w_1x_{i1} + w_2x_{i2} + b) >= 1$$
  $\forall i = \{1, 2, ..., N\}$ 

$$\min_{(w_1,w_2,b)} \left(\frac{w_1^2+w_2^2}{2}\right) - \sum_{i=1}^N \alpha_i (y_i(w_1x_{i1}+w_2x_{i2}+b)-1)$$
 subject to no constraints, only the fact that all  $\alpha_i$ 's are either zero or positive

Let us say that the optimization problem in blue box is optimal for  $w_1 = w_1^*$ ,  $w_2 = w_2^*$  and  $b = b^*$ . The value of the optimization problem in red box is lower at these values. Thus, the one in the red box may have a further lower optimal value. Now, let us keep playing with putting different values of  $\alpha_i$ 's.

Let us keep playing with putting different values of  $\alpha_i$ 's and try to solve the following optimization problem.

$$\max_{\alpha_i} \left[ \min_{(w_1,w_2,b)} \left( \frac{w_1^2 + w_2^2}{2} \right) - \sum_{i=1}^N \alpha_i (y_i (w_1 x_{i1} + w_2 x_{i2} + b) - 1) \right]$$
 subject to the constraint that all  $\alpha_i$ 's are either zero or positive

The following can be shown, with some difficulty (we will not be looking at the proof of this). Refer KKT conditions.

- The value of the optimization problem above will be the same as the value of the optimization problem in the blue box in the previous slide
- The optimal value will be attained for  $w_1 = w_1^*, w_2 = w_2^*$  and  $b = b^*$



$$\max_{\alpha_i} \left[ \min_{(w_1, w_2, b)} \left( \frac{w_1^2 + w_2^2}{2} \right) - \sum_{i=1}^{N} \alpha_i (y_i (w_1 x_{i1} + w_2 x_{i2} + b) - 1) \right]$$
subject to the constraint that all  $\alpha_i$ 's are either zero or positive

The inner optimization problem can be solved like a usual minimization problem with no constraints. We take partial derivative with respect to  $w_1$ ,  $w_2$  and b to get the following:

• 
$$w_1 = \sum_{i=1}^n \alpha_i y_i x_{i1}$$
 and  $w_2 = \sum_{i=1}^n \alpha_i y_i x_{i2}$ 

$$\bullet \sum_{i=1}^n \alpha_i y_i = 0$$

Only the training points for which  $\alpha_i$  is non-zero contribute in deciding the value of  $w_1$  and  $w_2$ . These points are called support vectors.

#### The new optimization problem

On substituting the conditions,  $w_1$ ,  $w_2$  and b disappear from the inner optimization problem.

$$\max_{\alpha_i} \left[ \sum_{i=1}^n \alpha_i - \frac{1}{2} \left( \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j (x_{i1} x_{j1} + x_{i2} x_{j2}) \right) \right]$$

subject to the following N+1 constraints that

$$\alpha_i >= 0$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

## The non-separable cases - Kernel Trick

$$\max_{\alpha_i} \left[ \sum_{i=1}^n \alpha_i - \frac{1}{2} \left( \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j (\vec{x_i}.\vec{x_j}) \right) \right]$$

subject to the following N+1 constraints that

$$\alpha_i >= 0$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Thinking of the points as vectors.

Thank you for your attention