9101 Assignment 1 Haojin Guo z5216214

Question1

You are given an array A of n distinct positive integers. (a) Design an algorithm which decides in time $O(n^2 \log n)$ (in the worst case) if there exist four distinct integers m, s, k, p in A such that $m^2 + s = k + p^2$ (b) Solve the same problem but with an algorithm which runs in the expected time of $O(n^2)$.

Solution:

a)

Step (i): Create an array B, and then calculate the square value of each element i in the array A, and then add the value i^2 to the new array B. (The time complexity in this step is O(n)).

Step (ii): Create an array B, by iterating through the array A and B, we can get the value of $i + j^2$ ($i \neq j$), and then put the set ($i + j^2$, i, j) value into the array C. (The time complexity in this step is $O(n^2)$).

Step(iii): Sort the array C, using Merge Sort, which costs $O(n^2 \log n^2) = O(2n^2 \log n) = O(n^2 \log n)$

Step(iv): Using binary search to check the array C.

If exists three first elements of in three different tuples, and then there exist four distinct integers m, s, k, p such that $m^2 + s = k + p^2$.

If exists two first elements of in two different tuples, and meanwhile, $i_1 \neq j_1 \neq i_2 \neq j_2$, then there exist four distinct integers m, s, k, p such that $m^2 + s = k + p^2$.

Otherwise, there are no target integers.

(The cost in this step is $O(n^2 \log n)$)

Therefore, the total cost = $O(n^2 log n) + O(n^2 log n) + O(n^2) + O(n) = O(n^2 log n)$

b)

In order to shorten the expected time complexity, it is need to create a hash table to

make sure the search time complexity is O(1).

Step (i): Same to the step(i) in (a) above, which cost O(n).

Step (ii): Create an array B, b iterating through the array A and B, we can get the value of $i + j^2$ ($i \neq j$), then put the set ($i + j^2$, i, j) value into the array C, and construct a hash table with the key is ($i + j^2$, i, j) and the corresponding result is 0 for the first time. And then each time a new ($i + j^2$, i, j) (where $i \neq j$) is obtained, it is required to search in the hash table, if it exists in the map, it means that the array A has the target integers, otherwise it does not exist. (The time complexity in this step is $O(n^2)$)

Therefore, the total cost = $O(n^2) + O(n) = O(n^2)$