Custom T_EX commands

Size-adaptive math

	(x)	parantheses
	[<i>x</i>]	brackets
	x	absolute value
	$ x ^2$	absolute value squared
${}$	[x, y]	commutator
	$\langle x \rangle$	mean value

Braket Notation

	$\langle x $	bra
	$ x\rangle$	ket
{}	$\langle x y\rangle$	scalar product
{}	$ x\rangle\langle y $	ket-bra operator
\braketop(3 arguments)	$\langle x y z\rangle$	matrix element
\smallbraketop(3 arguments)	$\langle x y z\rangle$	small matrix element

Special functions

 $\delta(x)$	delta function
 $\theta(x)$	theta function
 $\exp(x)$	exponential function
 e^{x}	exponential function
 Re(x)	real part
 Im(x)	imaginary part

Named states

\	ketPsi	$ \Psi\rangle$	١
١	11001	-	/

\ katnai	145	
\ketpsi	$\ket{\psi}$	
\ketphi	arphi angle	
\ketup	$ \uparrow\rangle$	spin up
\ketdo	$ \downarrow\rangle$	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	$ g\rangle$	ground state
\kete	$ e\rangle$	excited state
\vac	vac>	vacuum
Vectors		
\vecr	r	
\vecrone	\mathbf{r}_1	
\vecrtwo	\mathbf{r}_{2}	
\vecrn	r_N	
\vecri	$\mathbf{r_i}$	
\vecrj	$\mathbf{r_{j}}$	
\vecx	x	
\vecy	y	
\vecz	Z	
\vecxi	x_i	
\vecxj	x_j	
\veck	k	
\vecq	q	
\vecp	p	
Differentiation		
	$\frac{\partial}{\partial x}$	partial differentiation

\laplace	$ abla^2$	laplace operator
Integration		
	$\int dx$	integral
\integralb(3 arguments)	$\int_{x}^{y} dz$	integral with boundaries
{}	$\int \frac{\mathrm{d}x}{y}$	integral with fraction
\intvol	$\int d^3r$	integral over r space
\intvolp	$\int d^3r'$	integral over r' space
\intvold	$\int d^3r \int d^3r'$	double integral over space
\intk	$\int d^3k$	integral over k space
\intkp	$\int d^3k'$	integral over k' space
\intkn	$\int \frac{\mathrm{d}^3 k}{(2\pi)^3}$	normalized integral over k space
\intkpn	$\int \frac{\mathrm{d}^3 k'}{(2\pi)^3}$	normalized integral over k' space
Special symbols		
\hc	h.c.	hermitian conjugate
\hamil	Ĥ	Hamilton operator
\hastobe	<u>!</u>	has to be
\eqhat	_	corresponds to, is equivalent
\id	1	identity matrix
Second quantization		
\aop	a	annihilation operator
\aopd	a^{\dagger}	creation operator
\bop	b	annihilation operator
\bopd	b^{\dagger}	creation operator
		1

\copd	c^{\dagger}	creation operator
\nop	n	number operator
\psiop	$\hat{\psi}$	field operator
\psiopd	$\hat{\psi}^{\dagger}$	
\PsiOp	Ψ̂	
\PsiOpd	$\hat{\Psi}^{\dagger}$	
Differences		
\Dx	Δx	
\Dy	Δy	
\Dt	Δt	

Figures

```
\igopt{..}{..}
\ig{..}{..}
\figopt(4 arguments)
\fig(3 arguments)
\doublefigopt(8 arguments)
\doublefig(7 arguments)
\figref{..}
```