Lecture 13

Continuous Random Variables

Text: Chapter 4

STAT 8010 Statistical Methods I September 18, 2019 Continuous Random Variables

From Discrete to Continuous Random Variables

Functions

Variance

Normal Distributions

Whitney Huang Clemson University

Variance

- From Discrete to Continuous Random Variables
- 2 Cumulative Distribution Functions

- Second State

 Expected Value and Variance

 Expected Value

 Ex
- **4** Normal Distributions

From Discrete to Continuous Random Variables

Functions

Variance

Normal Distribution

Remarks:

- pmf assigns probabilities to each possible values of a discrete distribution
- pdf describes the relative likelihood for this random variable to take on a given interval

Probability Mass Functions v.s. Probability Density Functions cont'd

Recall the properties of discrete probability mass functions (Pmfs):

• $0 \le p_X(x) \le 1$ for all possible values of x

Continuous Random Variables

From Discrete to Continuous Random Variables

Functions Distribution

Variance

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \le p_X(x) \le 1$ for all possible values of x

Continuous Random Variables

From Discrete to Continuous Random Variables

Functions

Variance

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \le p_X(x) \le 1$ for all possible values of x
- \bullet $\mathbb{P}(a \le X \le b) = \sum_{x=a}^{x=b} p_X(x)$

Continuous Random Variables

From Discrete to Continuous Random Variables

Functions

variance

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \le p_X(x) \le 1$ for all possible values of x
- \bullet $\mathbb{P}(a \le X \le b) = \sum_{x=a}^{x=b} p_X(x)$

Continuous Random Variables

From Discrete to Continuous Random Variables

Functions

variance

Variables

From Discrete to Continuous Random Variables

Functions

Variance

Normal Distribution

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \le p_X(x) \le 1$ for all possible values of x
- $\bullet \ \sum_{x} p_X(x) = 1$
- \bullet $\mathbb{P}(a \le X \le b) = \sum_{x=a}^{x=b} p_X(x)$

For continuous distributions, the properties for probability density functions (Pdfs) are similar:

• $f_X(x) \ge 0$ for all possible values of x

CLEMS#N

From Discrete to Continuous Random

Functions

Variance

Normal Distributions

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \le p_X(x) \le 1$ for all possible values of x
- \bullet $\mathbb{P}(a \le X \le b) = \sum_{x=a}^{x=b} p_X(x)$

For continuous distributions, the properties for probability density functions (Pdfs) are similar:

- $f_X(x) \ge 0$ for all possible values of x
- $\bullet \int_{-\infty}^{\infty} f_X(x) \, dx = 1$

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \le p_X(x) \le 1$ for all possible values of x
- \bullet $\mathbb{P}(a < X < b) = \sum_{x=a}^{x=b} p_X(x)$

For continuous distributions, the properties for probability density functions (Pdfs) are similar:

- $f_X(x) \ge 0$ for all possible values of x
- \bullet $\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$

Variance

Normal Distributions

- The cdf $F_X(x)$ is defined as $F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(x) dx$
- we use cdf to calculate probabilities of a continuous random variable within an interval, i.e. $\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx = \int_{-\infty}^b f_X(x) dx \int_{-\infty}^a f_X(x) dx = \boxed{F_X(b) F_X(a)}$

Remark: $\mathbb{P}(X = x) = \int_{x}^{x} f_{X}(x) dx = 0$ for all possible values of x

Cumulative Distribution Functions

Variance

Normal Distributions

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

$$\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

- $\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$
- \bullet $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

Normal Dietributione

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

- $\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$
- $\bullet \ \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$
- $\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

variance

Normal Distributions

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

$$\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

$$\bullet \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$$

$$\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\bullet \ \mathbb{E}[cX] = c\mathbb{E}[X]$$

Normal Distributions

Normal Distributions

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

$$\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

$$\bullet \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$$

$$\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\bullet \ \mathbb{E}[cX] = c\mathbb{E}[X]$$

$$\bullet \ \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

Cumulative Distribution Functions

variance

Normal Distributions

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

$$\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

$$\bullet \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$$

$$\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\bullet \ \mathbb{E}[cX] = c\mathbb{E}[X]$$

$$\bullet \ \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

•
$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \int_{-\infty}^{\infty} x^2 f_X(x) \, dx - \left(\int_{-\infty}^{\infty} x f_X(x) \, dx\right)^2$$

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

- $\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$
- $\bullet \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$
- $\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $\bullet \ \mathbb{E}[cX] = c\mathbb{E}[X]$
- $\bullet \ \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
- $\operatorname{Var}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2 = \int_{-\infty}^{\infty} x^2 f_X(x) \, dx \left(\int_{-\infty}^{\infty} x f_X(x) \, dx\right)^2$

Normal Distributions

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_X(x)$

$$\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

$$\bullet \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$$

$$\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\bullet \ \mathbb{E}[cX] = c\mathbb{E}[X]$$

$$\bullet \ \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

•
$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \int_{-\infty}^{\infty} x^2 f_X(x) \, dx - \left(\int_{-\infty}^{\infty} x f_X(x) \, dx\right)^2$$

$$\bullet \ \mathsf{Var}(X-c) = \mathsf{Var}(X)$$

Expected Value and

Normal Distributions

Let X represent the diameter in inches of a circular disk cut by a machine. Let $f_X(x) = c(4x - x^2)$ for $1 \le x \le 4$ and be 0 otherwise. Answer the following questions:

Find the value of c that makes this a valid pdf

Expected Value and

Normal Distributions

Let X represent the diameter in inches of a circular disk cut by a machine. Let $f_X(x) = c(4x - x^2)$ for $1 \le x \le 4$ and be 0 otherwise. Answer the following questions:

Find the value of c that makes this a valid pdf

- lacktriangle Find the value of c that makes this a valid pdf
- \bigcirc Find the expected value and variance of X

- lacktriangle Find the value of c that makes this a valid pdf
- \bigcirc Find the expected value and variance of X

- lacktriangle Find the value of c that makes this a valid pdf
- Find the expected value and variance of X
- What is the probability that X is within .5 inches of the expected diameter?

- lacktriangle Find the value of c that makes this a valid pdf
- Find the expected value and variance of X
- What is the probability that X is within .5 inches of the expected diameter?

- Find the value of c that makes this a valid pdf
- \bigcirc Find the expected value and variance of X
- What is the probability that X is within .5 inches of the expected diameter?
- \bigcirc Find $F_X(x)$

Normal Distribution

Characteristics of the Normal random variable: Let *X* be a Normal r.v.

• The support for $X: (-\infty, \infty)$

Continuous Random Variables

From Discrete to Continuous Random Variables

Functions

Variance

variance

Normal Distributions

Characteristics of the Normal random variable: Let *X* be a Normal r.v.

- The support for $X: (-\infty, \infty)$
- Its parameter(s) and definition(s): μ : mean and σ^2 : variance

variance

Normal Distributions

Characteristics of the Normal random variable: Let *X* be a Normal r.v.

- The support for $X: (-\infty, \infty)$
- Its parameter(s) and definition(s): μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$

- Characteristics of the Normal random variable: Let *X* be a Normal r.v.
 - The support for $X: (-\infty, \infty)$
 - Its parameter(s) and definition(s): μ : mean and σ^2 : variance
 - The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ fo $-\infty < x < \infty$
 - The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table

Characteristics of the Normal random variable: Let *X* be a Normal r.v.

- The support for $X: (-\infty, \infty)$
- Its parameter(s) and definition(s): μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ fo $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
- The expected value: $\mathbb{E}[X] = \mu$

- Characteristics of the Normal random variable: Let *X* be a Normal r.v.
 - The support for $X: (-\infty, \infty)$
 - Its parameter(s) and definition(s): μ : mean and σ^2 : variance
 - The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
 - The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
 - The expected value: $\mathbb{E}[X] = \mu$
 - The variance: $Var(X) = \sigma^2$

Normal Density Curves

 \bullet The parameter μ determines the center of the distribution

Continuous Random Variables

From Discrete to Continuous Random Variables

Functions

Variance

CLEMS#N

From Discrete to Continuous Random Variables

Cumulative Distributio Functions

Variance

- ullet The parameter μ determines the center of the distribution
- ullet The parameter σ^2 determines the spread of the distribution

Normal Density Curves

- ullet The parameter μ determines the center of the distribution
- The parameter σ^2 determines the spread of the distribution
- Also called bell-shaped distribution

Continuous Random Variables

From Discrete to Continuous Random Variables

Cumulative Distribution Functions

Expected Value and Variance

CLEMS#N UNIVERSITY

From Discrete to Continuous Random Variables

Functions

Expected Value and

Normal Distributions

• Normal random variable X with mean μ and standard deviation σ can convert to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

CLEMS N

From Discrete to Continuous Random Variables

Functions

variance

Normal Distributions

• Normal random variable X with mean μ and standard deviation σ can convert to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

• The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table

CLEMS N

From Discrete to Continuous Random Variables

Functions

variance

Normal Distributions

• Normal random variable X with mean μ and standard deviation σ can convert to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

• The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table

Normal Distributions

 Normal random variable X with mean μ and standard deviation σ can convert to standard normal Z by the following:

 $Z = \frac{X - \mu}{\tilde{z}}$

- The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table
- The probability $\mathbb{P}(a \le X \le b)$ where $X \sim N(\mu, \sigma^2)$ can be compute

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma})$$
$$= \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

Properties of Φ

Continuous Random Variables

From Discrete to Continuous Random Variables

Functions

Expected Value and Variance

Normal Distributions

• $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0

Normal Distributions

• $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0

Expected Value and

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$

Expected Value and

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$

Normal Distributions

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$
- $\mathbb{P}(Z > z) = 1 \Phi(z) = \Phi(-z)$

Variance

Normal Distributions

Let us examine Z. Find the following probabilities with respect to Z:

- \bigcirc Z is at most -1.75
- 2 Z is between -2 and 2 inclusive
- Z is less than .5

Normal Distributions

Solution.

Solution.

- $\mathbb{P}(-2 \le Z \le 2) = \Phi(2) \Phi(-2) = .9772 .0228 = .9544$

variance

Normal Distributions

Solution.

- ② $\mathbb{P}(-2 \le Z \le 2) = \Phi(2) \Phi(-2) = .9772 .0228 = .9544$

Sums of Normal Random Variables

Continuous Random Variables

From Discrete to Continuous Random Variables

-unctions

Normal Distributions

If X_i $1 \leq i \leq n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

Normal Distributions

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let
$$S_n = \sum_{i=1}^n X_i$$
 then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

Normal Distributions

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let
$$S_n = \sum_{i=1}^n X_i$$
 then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

Normal Distributions

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

- Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
- This can be applied for any integer n

Normal Distributions

Let X_1, X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k = 1, 2, and 3 respectively. Find the following distributions:

- $(2) X_1 + 2X_2 3X_3$
- $0 X_1 + 5X_3$

variance

Normal Distributions

Solution.

②
$$X_1 + 2X_2 - 3X_3 \sim N(\mu = 3 + 12 - 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$$
 ①

3
$$X_1 + 5X_3 \sim N(\mu = 3 + 45 = 48, \sigma^2 = 1^2 + 25 \times 3^2 = 226)$$

