TP 4 Digital Electronics [ELEC-H-310] Correction v1.0.1

Question 1. What are the logic equations for this circuit? Fill a Huffman table and find the corresponding state graph.

a)

Answer:

$$Y_1 = a\overline{b}y_1 + b\overline{y_2}$$

$$Y_2 = \overline{a}y_1y_2$$

$$Z = y_1y_2$$

Y_1Y_2	00	01	11	10	Z
00	00	10	10	00	0
01	00	00	00	00	0
11	01	01	00	10	1
10	00	10	10	10	0

1. a)
$$Y_{12}(a.5y_1) + 5y_2$$

$$Y_{12} = \overline{a} y_1 y_2$$

$$Z = y_1 y_2$$

	a 5							
	4172	00	61	11		10	7	
•	00	00	10	10		00	٥	
_		00	00	00	D D	٥	٥	
_	01			00	10		1	
厚	[1]	01	01	-+			O	
	10	00	10	101	10			
_	9132							

Correction

b)

Answer:

$$Y_1 = y_1 + \overline{a}y_2 + a\overline{y_2}$$

$$Y_2 = \overline{a}y_2 + \overline{a}y_1 + y_1y_2$$

$$Z = y_1\overline{y_2}$$

	(
Y_1Y_2	0	1	Z
00	00	10	0
01	11	00	0
11	11	11	0
10	11	10	1

Question 2. A door opener is controlled by a password that is controlled using two buttons a and b. We assume that the value associated to each button equals 1 when the button is pressed, 0 otherwise. The door is being opened if the output Z_1 is set to 1, which happens whenever the last button of the password is pressed. The code is the following: press and release a two times, then press and release b and finally press and release a again. Any wrong sequence sets the output a to 1, triggering the alarm. Once activated, the alarm stays active whatever the input.

Build the state graph and Huffman table for this problem.

Answer:

	00	01	11	10	Z_1	Z_2
1	1	9	9	2	0	0
2	3	9	9	2	0	0
3	3	9	9	4	0	0
4	5	9	9	4	0	0
5	5	6	9	9	0	0
6	7	6	9	9	0	0
7	7	9	9	8	0	0
8	1	9	9	8	1	0
9	9	9	9	9	0	1

	اما)	_		121	29
_	00	01	11	So		
		9	9	2	0	ð
2	3	9	9	2	0	O
3	3	9	9	4	0	0
4	5	S)	9	4	0	0
5	5	6	9	9	0	٥
5	7	6	y	9	0	0
7	7	"	9	2	() (J
2		9	9	8		0
9	3	3	>	ŋ	0	

Etat alarme

The state 9 is stable for all inputs. The retroaction loops have been omitted to keep the graph light, though

Question 3. Use a K-map to simplify the following equation:

$$f(a,b,c,d,e) = \sum_{m} (0,2,5,7,8,9,10,11,13,23,26,27,29) + \sum_{d} (3,12,15,18,19,21,22,31)$$

Answer:

∖ab	oc								E === 1 == 1 = 1
de	000	001	011	010	100	101	111	110	$F = \overline{ace} + ce + \overline{a}b\overline{c} + \overline{c}d$
00	$\begin{bmatrix} 1 \end{bmatrix}$	0	-		0	0	0	0	
01	0	1	1	1	0		1	0	
11	- -	1			- -	1	_	111	
10		0	0			-	0	[1]	

Found an error? Let us know: https://github.com/BEAMS-EE/ELECH310/issues

