Les problèmes et les données Exemples : Test d'adéquation du chi-deux Test d'indépendance du chi-deux

Tests d'adéquation et d'indépendance du Chi-deux

Frédérique Leblanc

Problèmes:

- Tester l'adéquation entre la loi d'une variable qualitative ou quantitative discrète X et une loi cible donnée
- 2 Tester l'indépendance entre deux variables X et Y qualitatives ou quantitatives discrètes

Données:

- **1** Un échantillon de taille n de $X: x_1, ..., x_n$
- ② Deux échantillons de X et de Y appariés et de même taille n : $(x_1, y_1), ..., (x_n, y_n)$

dans le fichier titanic.csv

- **1** X la classe (à trois modalités $\{m_1, m_2, m_3\} = \{1, 2, 3\}$) suit-elle la loi cible définie par (p_1^*, p_2^*, p_3^*) ? On pourrait tester par exemple une répartition uniforme avec $(p_1^*, p_2^*, p_3^*) = (1/3, 1/3, 1/3)$
- ② X la classe (à valeurs dans $\{m_1, m_2, m_3\} = \{1, 2, 3\}$) et Y la survie (à valeurs dans $\{\tilde{m}_1, \tilde{m}_2\} = \{0, 1\}$) sont elles indépendantes ?

Exemple 1 : Répartition observée de pclass, et deux repartitions théoriques (rouge et vert)

Exemple 2 : Répartitions observées de pclass selon survived

rép. obs. de la classe (noire:1ère;rouge:scde;vert:3ième) selon la survie

Modèle : $X_1,...,X_n$ échantillon de la variable X à valeurs dans $\{m_1,m_2,...,m_q\}$

Notations:

- $(p_1, ..., p_q) = (P(X = m_1), ..., P(X = m_q))$ loi de proba de X inconnue
- N_k : nombre de variables parmi $X_1, ..., X_n$ qui prennent la modalité m_k .
- Effectifs observés : n_k réalisation de N_k pour l'échantillon observé $x_1, ..., x_n$.
- Probabilités théoriques : $(p_1^*,...,p_q^*)$ connues
- Effectifs attendus (ou théoriques) : $n_k^* = np_k^*$ effectif attendu de la modalité m_k si la loi de X est $(p_1^*, p_2^*, ..., p_q^*)$.

Les hypothèses du test d'adéquation

$$\mathcal{H}_0$$
: X suit la loi $(p_1^*, p_2^*, ..., p_q^*)$

$$\mathcal{H}_1$$
: X ne suit pas la loi $(p_1^*, p_2^*, ..., p_q^*)$

ou de façon équivalente

$$\mathcal{H}_0: (p_1, p_2, ..., p_q) = (p_1^*, p_2^*, ..., p_q^*)$$

$$\mathcal{H}_1:(p_1,p_2,...,p_q) \neq (p_1^*,p_2^*,...,p_q^*)$$

ou encore

$$\mathcal{H}_0: \delta^2 = 0$$
 $\mathcal{H}_1: \delta^2 > 0$

avec
$$\delta^2 = \sum_{k=1}^q (np_k - np_k^*)^2/(np_k^*)$$

- Conditions d'application de ce test : $np_k^* \ge 5$
- Estimateur de p_k : N_k
- Statistique de test : Estimateur de δ^2 : D^2 défini par

$$D^2 = \sum_{k=1}^{q} \frac{(N_k - np_k^*)^2}{np_k^*}.$$

- Loi de la statistique de test si $np_k^* \ge 5$: Sous \mathcal{H}_0 la loi de D^2 est un \mathcal{X}_{q-1}^2
- Rejet de \mathcal{H}_0 au seuil α : $\{D^2 > z_{q-1,1-\alpha}\}$
- **p-valeur** : $P(D^2 > D_{calc}^2) = 1 F(D_{calc}^2)$ où F est la Fdr d'une loi du \mathcal{X}_{q-1}^2

En pratique :

Soit les données sont présentées avec le tableau des effectifs, soit on dispose des données brutes et on le construit à l'aide de la fonction table() de R. On peut décrire les calculs à l'aide du tableau :

modalités	m_1	 m_k	 m_q	total
eff. obs.	n_1	 n _k	 n _q	n
prob. théo.	p_1^*	 p_k^*	 p_q^*	1
eff. att.	np_1^*	 np_k^*	 np_q^*	n
contrib d^2	$\frac{(n_1 - np_1^*)^2}{np_1^*}$	 $\frac{(n_k - np_k^*)^2}{np_k^*}$	 $\frac{(n_q - np_q^*)^2}{np_q^*}$	D_{calc}^2

puis on calcule la p-valeur : $\alpha^* = P(D^2 > D_{calc}^2)$

Exemple 1 : Adéquation à la loi uniforme dans les données titanic.csv de la variable class à valeurs dans $\{1,2,3\}$?

$$\mathcal{H}_0: (p_1, p_2, p_3) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$
 $\mathcal{H}_1: (p_1, p_2, p_3) \neq \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

mod.	1	2	3	total
eff. obs.	284	261	501	1046
pr. théo.	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
eff. att.	$\frac{1046}{3} = 348,67$	$\frac{1046}{3} = 348,67$	$\frac{1046}{3} = 348,67$	1046
cont. d^2	$\frac{(284 - 348,67)^2}{348,67}$	$\frac{(261 - 348,67)^2}{348,67}$	$\frac{(501 - 348,67)^2}{348,67}$	100, 59

p-valeur : $P_{\mathcal{H}_0}(D^2>100,59)\approx 0$ La répartition de la classe n'est donc clairement pas uniforme **Exercice**: Adéquation à la loi $\{1/4, 1/4, 1/2\}$ dans les données titanic.csv de la variable class à valeurs dans $\{1, 2, 3\}$?

$$\mathcal{H}_0: (p_1, p_2, p_3) = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$$
 $\mathcal{H}_1: (p_1, p_2, p_3) \neq \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$

On obtient dans ce cas une p-valeur de 23,9%

Conclusion littérale : A moins de prendre un risque de se tromper supérieur à 23,9% on ne peut pas refuser \mathcal{H}_0 (la répartition de la classe est donc bien $\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)$).

Retrouver ce résultat avec la fonction $TEST - \mathcal{X}^2GOF$ de la calculatrice

Remarques:

- On peut étendre ce test au variables quantitatives continues en remplaçant m_k par la classe C_k lorsque l'ensemble des valeurs de X est partitionné en q classes.
 Dans ce cas la loi de D² est toujours un X² mais à q 1 r degrés de liberté avec r=nombre de paramètres estimés dans la loi cible proposée décrite par (p₁*,..., p_q*).
 On peut ainsi tester l'adéquation d'une variable continue X a une loi normale ayant r paramètres inconnus.
- Si l'un des effectifs théoriques < 5 on regroupera deux (ou plusieurs) modalités consécutives ou deux ou plusieurs classes dans le cas continu.

Modèle: $(X_1, Y_1), ..., (X_n, Y_n)$, échantillon aléatoire d'un couple de variables aléatoires X et Y à valeurs dans $\mathcal{X} = \{m_1, ..., m_q\}$ et $\mathcal{Y} = \{\tilde{m}_1, ..., \tilde{m}_p\}$.

Notations:

- N_{ij} la var. aléa. : nb. de (X_k, Y_k) de (X_1, Y_1), (X_n, Y_n) qui prennent les modali tés (m_i, \tilde{m}_j) .
- N_k : nb de X_i qui prennent la modalité m_k

$$N_{k.} = \sum_{j=1}^{p} N_{kj}$$

• $N_{.k}$: nb de Y_i qui prennent la modalité \tilde{m}_k

$$N_{.k} = \sum_{i=1}^{q} N_{ik}$$

Données : Soit on a les données brutes soit directement les données en effectifs présentées dans un tableau appelé *Tableau de contingence*

	Y	$ ilde{m}_1$	 \tilde{m}_{i}	 \tilde{m}_p	Total
X					
m_1		n ₁₁	 n_{1j}	 n_{1p}	<i>n</i> _{1.}
:					
m _i		n _{i1}	 n _{ij}	 n _{ip}	n _i .
:					
m_q		n_{q1}	 n _{qj}	 n _{qp}	n_{q} .
Total		n _{.1}	 $n_{.j}$	 n _{.p}	$n_{\cdot \cdot} = n$

Indépendance entre X et Y est par def.:

$$P(X = m_i, Y = \tilde{m}_j) = P(X = m_i)P(X = \tilde{m}_j),$$
 pour tout (i, j)

On veut tester

 $\mathcal{H}_0: X$ et Y indépendantes $\mathcal{H}_1: X$ et Y non indépendantes

On peut de façon équivalente définir \mathcal{H}_0 : $\delta^2=0$ avec

$$\delta^{2} = n \cdot \sum_{i,j} \frac{(P(X = m_{i}, Y = \tilde{m}_{j}) - P(X = m_{i})P(X = \tilde{m}_{j}))^{2}}{P(X = m_{i})P(X = \tilde{m}_{j})}.$$

On peut donc ramener le problème à un test sur le paramètre δ^2 soit :

$$\mathcal{H}_0: \delta^2 = 0$$
 contre $\mathcal{H}_1: \delta^2 > 0$.

- Conditions d'application de ce test : $n_{i.}n_{.j}/n \ge 5$ pour tout (i,j)
- Estimateur de $P(X = m_i)$: $N_{i.}/n$
- Estimateur de $P(Y = \tilde{m}_j) : N_{.j}/n$
- Statistique de test : D^2 Estimateur de δ^2 défini par

$$D^2 = \sum_{i,j} \frac{\left(N_{ij} - \frac{N_{i.}N_{.j}}{n}\right)^2}{\frac{N_{i.}N_{.j}}{n}}.$$

- Loi de la statistique de test sous \mathcal{H}_0 si $n_{i.}n_{.j}/n \geq 5$: D^2 suit une loi du $\mathcal{X}^2_{(p-1)(q-1)}$
- Rejet de \mathcal{H}_0 au seuil α : $\{D^2 > z_{(p-1)(q-1),1-\alpha}\}$
- **p-valeur** : $P(D^2 > D_{calc}^2) = 1 F(D_{calc}^2)$ où F est la Fdr d'une loi du $\mathcal{X}_{(p-1)(q-1)}^2$

En pratique:

Soit les données sont présentées avec le tableau de contingence, soit on dispose des données brutes et on le construit à l'aide de la fonction table() de R. On peut décrire les calculs à l'aide du tableau de contingence qui donne **les effectifs observés** $n_{i,j}$ et du tableau des **effectifs attendus** contenant les $n_{.i}n_{j.}/n$ On calcule ensuite les pq termes de contribution au calcul D^2 en construisant le tableau à double entrées des **contributions** et qui contient en ligne i et colonne j:

$$\frac{\left(n_{ij}-\frac{n_{i.}n_{.j}}{n}\right)^2}{\frac{n_{i.}n_{.j}}{n}}$$

Exemple 2 : Indépendance entre la classe occupée par le passager pclass (variable X à valeurs dans $\{1,2,3\}$) et l'indicatrice de sa survie survived (variable Y à valeurs dans $\{"no","yes"\}$)?

 $\mathcal{H}_0: X$ et Y indépendantes $\mathcal{H}_1: X$ et Y non indépendantes tableau de contingence : obtenu par la commande R table(titanic\$pclass,titanic\$survived) effectifs observés

Y	no	yes	Total
X			
1	103	181	284
2	146	115	261
3	370	131	501
Total	619	427	1046

effectifs attendus

Y	no	yes	Total
X			
1	168,07	115,93	284
2	154, 45	106,55	261
3	296, 48	204,52	501
Total	619	427	1046

Statistique de test et p-valeur:

$$D_{calc}^2 = 107,5;$$
 $P_{\mathcal{H}_0}(D^2 > D_{calc}^2) = 4,5 \cdot 10^{-24}$

Conclusion : On conclut que Survie et Classe sont dépendantes avec un très faible risque de se tromper $(>4,5\cdot 10^{-24})$

