

Data Structure

(Java programming)

Chapter 03.

Contents

String

Binary Recursion

Practice

String

String

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Method Summary Methods	
char	charAt(int_index) Returns the char value at the specified index.
int	<pre>codePointAt(int index) Returns the character (Unicode code point) at the specified index.</pre>
int	<pre>codePointBefore(int index) Returns the character (Unicode code point) before the specified index.</pre>
int	<pre>codePointCount(int beginindex, int endindex) Returns the number of Unicode code points in the specified text range of this String.</pre>
int	compareTo(String anotherString) Compares two strings lexicographically.
int	compareTol gnoreCase(String str) Compares two strings lexicographically, ignoring case differences.
String	concat(String str) Concatenates the specified string to the end of this string.
boolean	contains(CharSequence s) Returns true if and only if this string contains the specified sequence of charvalues.
boolean	contentEquals(CharSequence cs) Compares this string to the specified CharSequence.
boolean	<pre>contentEquals(StringBuffer sb) Compares this string to the specified StringBuffer.</pre>
static String	copyYa I ueOf (char[] data) Returns a String that represents the character sequence in the array specified.
static String	copyYalueOf(char[] data, int offset, int count) Returns a String that represents the character sequence in the array specified.
boolean	endsVith(String suffix) Tests if this string ends with the specified suffix.
boolean	equals(0bject an0bject) Compares this string to the specified object.

String

```
的多为共和型加州
public class StringTest {
   public static void main(String[] args) {
      String msg = "Hello Smart Computing Laboratory";
      String word = "datastructure";
      System.out.println("Character at index 1 is " + msg.charAt(1));
         System.out.println("Length of msg is " + msg.length());
      if(word.equals("datastructure")) {
                                              2260/MEOKY" 2011. 3/2 elyst.
      String subMsg = msg.substring(0, 4);
                                                              Character at index 1 is e
                                                              Length of msg is 32
      System.out.println("Substring of msg is " + subMsg);
                                                              String word is same with "datastructure"
                         & HAN BOILEY - SHIM EHMSEL
      int num = 10;
                                                              Substring of msg is Hell
      String strNum = String.valueOf(num);
                                                             Value "num" is Integer
                                                             Value "strNum" is String
      System.out.println("Value \"num\" is Integer");
                                                              Length of strNum is 2
      System.out.println("Value \"strNum\" is String");
      System.out.println("Length of strNum is " + strNum.length());
```


Binary Recursion

Binary Recursion

Base case: n=1

 Binary recursion occurs whenever there are two recursive calls for each non-base case

E.g., adding all the numbers in an integer array A using binary recursion

```
E.g.) sum(1, 2, 3, 4, 5, 6, 7, 8)
                                                             \rightarrow sum(1, 2, 3, 4) + sum(5, 6, 7, 8)
Algorithm BinarySum (A, i, n):
Input: array A and int i and n
                                                             \rightarrow { sum(1, 2) + sum(3, 4) } +
Output: sum of n int in A starting at i
                                                                 \{ sum(5, 6) + sum(7, 8) \}
    if n = 1 then
                       29人以间部的外流
       return A[i]
                                                             → ...
   else
                                                                                      世紀世代
       return BinarySum (A, i, \lceil n/2 \rceil) + BinarySum (A, i + \lceil n/2 \rceil, n/2)
                                       \vec{i} = 0 , n = 8
```

[Visual trace of BinarySum(A, 0, 8)]

Binary Recursion

```
22 = 10 - 21 31 ...
public class BinaryTest {
    public static int BinarySum(int[] arr, int i, int n) {
        if (n == 1) { \( \mathre{n} \) \( \mathre{n} \) \( \mathre{n} \)
             return arr[i];
        else {
             return BinarySum(arr, i, n/2) + BinarySum(arr, i+n/2, n/2);
    public static void main(String[] args) {
        int[] array = {1,2,3,4,5,6,7,8};
        System.out.println(BinarySum(array, 0, 8));
                                                       of the 10 plan is it.
```

th

$$+BS(arr, i+\frac{n}{2}+1, \frac{n}{2})$$
 34

Practice

Practice - 1

Linear Recursive Algorithm을 이용하여 문자열에 포함 된 'm'의 수를 계산하시오

String str = "my mom loves me!"

Algorithm StringCounter(s, i)

Input: String s, Integer i

Output: the number of characters in string

```
if i = s.length then
```

and length tim? of the solution?

0 23 n

if s[i] = 'm' then return 1

else return 0

else

if s[i] = 'm' then return 1 + StringCounter(s, i+1) **else return** 0 + StringCounter(s, i+1)

과제

MAN WHENTER THEN THE

과제1.

Practice1을 자신만의 알고리즘을 이용하여 만들어 보시오 ~~~~~~

조건1. Linear Recursive Algorithm을 사용할 것

조건2. 문자열로 "my mom loves me!"를 사용할 것

조건3. Practice1과 다른 방법을 이용할 것 만 생생하지?

과제2.

Binary Recursive Algorithm을 이용하여 문자열에 포함 된 'm'의 수를 계산하시오

조건1. Binary Recursive Algorithm을 사용할 것 조건2. 문자열로 "my mom loves me!"를 사용할 것

제출기한 : 2017/03/26(일) 24:00까지

SLMKNIN ONLY

Submission

e-mail: 2017kudatastructure@gmail.com

Attach methods:

- Create zip file (java project folder)
- 2. Modify the file names : ID_name_datastructure[Classcode].dat ex) 201173378_이명재_datastructure[2403-1].dat
- 3. e-mail title : datastructure_name_chapter ex) datastructure_최수용_chapter2[2404-1]

Classcode

2403-1 [A-1반] 2403-2 [A-2

2404-1 [**B-1**반] (2404-2 [**B-2**반

2405 [C반]