INFORMATION RECORDING MEDIUM

Patent number:

JP62028941

Publication date:

1987-02-06

Inventor:

OKAWA HIDEKI

Applicant:

TOKYO SHIBAURA ELECTRIC CO

Classification:

- international:

B41M5/26; G11B7/24; B41M5/26; G11B7/24; (IPC1-7):

B41M5/26; G11B7/24

- european:

Application number: JP19850168010 19850730 Priority number(s): JP19850168010 19850730

Report a data error here

Abstract of JP62028941

PURPOSE:To maintain the writing characteristic of the titled medium for a long period and to preserve the written information by forming one of recording films by dispersing semiconductor fine particles in a nondiffusible substance which is not diffused into the other recording film at ordinary temp. CONSTITUTION: The information recording medium is composed of a Ge-C thin film 12 coated on a substrate 11 as the first recording film and a Te-C thin film 13 coated on the film 12 as the second recording film. When the thin films 12 and 13 are laminate, a plasmapolymerized material blocks the diffusion of Ge and Te fine particles at ordinary temp. When a laser beam is irradiated on such a recording medium from the substrate 11 side, the films 12 and 13 are mixed, a single layer 15 having different reflectivity is formed and information is read by utilizing the difference in reflectivity. Besides, while a laser beam is not irradiated. the diffusion is blocked by the plasmapolymerized material, hence the shelf life of the recording medium is prolonged and the writing characteristic can be maintained for a long period.

Data supplied from the esp@cenet database - Worldwide

19日本国特許庁(JP)

⑩特許出願公開

[®] 公開特許公報(A) 昭62-28941

@Int.Cl.4

識別記号

庁内整理番号

匈公開 昭和62年(1987)2月6日

G 11 B 7/24 B 41 M 5/26 B-8421-5D 7447-2H

審査請求 未請求 発明の数 1 (全3頁)

❷発明の名称 情報記録媒体

②特 頤 昭60-168010

20出 0月 昭60(1985)7月30日

⑩発 明 者 大 川 秀 樹 川崎市幸区柳町70番地 株式会社東芝柳町工場内

⑪出 願 人 株 式 会 社 東 芝 川崎市幸区堀川町72番地

②代 理 人 弁理士 須山 佐一

明和自

- 1. 発明の名称 情報記録媒体
- 2. 特許請求の範囲
- (1)支持基体とこの支持基体上に積層形成され 互いに混合あるいは合金化することにより光学定 数の変化する少なくとも2層の異なった材質の記 録膜を有し、これらの記録膜を局部的に混合ある いは合金化することにより情報の記録を行う情報 記録媒体において、前記記録膜のうち少なくとも 1層は常温において他方の記録膜と相互拡散する ことのない非拡散物質中に半導体微粒子もしくは 金属微粒子を分散させて構成されていることを特 徴とする情報記録媒体。
- (2) 非拡散物質は、飽和炭化水素の重合物とした特許請求の範囲第1項記載の情報記録媒体。
- 3. 発明の詳細な説明

[発明の技術分野]

本発明は、支持基体上に積層された複数の記録 膜を局部的に混合あるいは合金化することにより、 情報の記録を行う情報記録媒体に関する。 [発明の技術的背景とその問題点]

近年、大容量の情報記録媒体として光ディスクが使用されているが、その1つとして支持基体に積層された2層の記録膜を局部的に混合あるいは合金化することにより情報の書込みを行うようにした光ディスクが提案されている(特願昭59-14058)。

第3図は、このような光ディスクの構造を似略 的に示す断面図である。

この光ディスクは、透明の基板1とこの基板上に設けられた記録層2とを備え、更にこの記録層2は光学的消衰係数の異なる2種の記録膜、すなわち複素屈折率 $n_1 - ik_1$ を有する第1の記録膜3および複素屈折率 $n_2 - ik_2$ を有する第2の記録膜4とから構成されている。

このような記録層2の初期反射率R:は、第4 図に示すように、基板1と第1の記録膜3との境界、第1の記録膜3と、第2の記録膜4の境界および第2の記録膜4と外界5との境界の3つの境界で生じるフレネル反射係数 r:、r2、r2の

- 1 -

- 2 -

ベクトル和で算出される。それぞれのフレネル反射係数のベクトル長とそれらの間の位相差は、第1の記録膜3および第2の記録膜4の複紫屈折率とそれらの厚さd1, d2によって主に決められる。したがって、初期反射率R1は第1と第2の記録膜3、4の材料とその厚さd1, d2を設定することにより所望する値にすることができる。

このように設定した初期反射率R:を持つ記録 暦2は第1と第2の記録膜3、4の材料の加熱されたときの相互拡散係数で決まる記録のスレッショルド値以上の強度をもったレーザピーム6でスポット照射されると、その部分の第1と第2の記録膜3、4は相互に拡散してその境界を消滅し新しい単一暦7が形成される。その結果、フレネル反射係数 r 2 は失われ、その記録を行った部分の反射率 R r は生成された単一層7の複素屈折率による境界でのフレネル反射係数 r 4 と r 5 だけのベクトル合成された値に非可逆的に変化する。

すなわち、この光ディスクの記録は上記の機構 に基づき記録層2の反射率をRiからRrに変換

- 3 -

支持基体とこの支持基体上に積層形成され互いに 混合あるいは合金化することにより光学定数の変 化する少なくとも2層の異なった材質の記録膜を 有し、これらの記録膜を局部的に混合あるいは合 金化することにより情報の記録を行う情報記録媒 体において、前記記録膜のうち少なくとも1層は 常温において他方の記録膜と相互拡散することの ない非拡散物質中に半導体微粒子もしくは金属微 粒子を分散させて構成したものである。

[発明の実施例]

以下、本発明を図面を参照しながら説明する。 第1図は本発明の一実施例を示す断面図である。 この実施例の情報記録媒体は、PMMA(ポリメチルメタクリレート)よりなる透明な基板11 と、この上に第1の記録膜として被替された厚さ 200~400 A程度のGe-C(ゲルマカーボン) 薄膜12と、さらにその上に第2の記録膜として被替された厚さ して被替された厚さ200~300 A程度のTe-C(テルルカーボン) 薄膜13とより構成されている。 することで行うものである。

ところで、このような記録暦2には、記録に要するレーザビームのスレッショルド値が低いこと、反射率R」とRrの比が大きいこと、および常温で第1と第2の記録膜3、4間に相互拡散が生じないこと、言いかえるならば、記録暦として高感度であり、読みだしの信号が大きく、しかも長期にわたって安定であることが要求される。

しかしながら、記録層の記録に要するレーザビームのスレッショルド値を低くすると、この記録 層は、常温でも拡散が生じやすくなるので、長期間の割込み特性の維持あるいは割込み後の保存に 絶えないという問題があった。

[発明の目的]

本発明は上記の事情に対処するためなされたもので、長期にわたる鸖込み特性の維持および鸖込み後の保存を可能とした光学的記録方式による情報記録媒体を提供しようとするものである。

[発明の概要]

すなわち本発明は、上記目的を達成するために、

- 4 -

このGe-C薄膜12およびTe-C薄膜13はメタンガスをプラズマ重合させたプラズマ重合物の網目構造中にGe微粒子もしくはTe做粒子が分散された薄膜で、この2つの薄膜を積屑したときプラズマ重合物が常温におけるGe微粒子とTe做粒子の拡散を阴密する作用を有する記録膜である。

このように構成された情報記録媒体に基板11 側よりレーザビーム14を照射すると、透明な基板11を透過してGe-C薄膜12、Te-C薄膜13中の半導体微粒子に熱エネルギーが与えられ、これらの層が溶融、拡散してTe-C薄膜12とGe-C薄膜13の混合が行われる。

したがってレーザビームの照射された部位は第 2図に示すように両層が混合もしくは合金化され た単一層15が形成され、この単一層15の反射 率は記録が行なわれなかった部位の反射率とは明 確に異なっているので、この反射率の相違を利用 して情報の読取りを行うことができる。

また、レーザビームが照射されない状態におい

ては、プラズマ重合物がGe- C 薄膜 1 2 中の Ge 微粒子とTe- C 薄膜 1 3 中のTe 微粒子の 拡散を阻害しているので、情報記録媒体の保存寿 命を長くし、書込み特性を長期間維持することが できる。

なお以上の実施例では、拡散を阻害する記録段としてプラズマ重合物中に半導体微粒子を分散させた薄膜を使用した情報記録媒体について説明したが、本発明はこのような実施例に限定されるものではなく、半導体微粒子にかえて金属微粒子を分散させた記録膜を使用することも可能であり、また樹脂溶液や液状樹脂中に半導体微粒子もしくは金属微粒子を塗布してフィルム化させたものを使用することも可能である。

[発明の効果]

以上説明したように本発明によれば、複数の記録膜の局部的な混合によって記録を行う情報記録媒体の少なくとも一つの記録膜を、常温時に相互拡散することのない非拡散物質中に半導体微粒子もしくは金属微粒子を分散させた構成としたので、

- 7 -

常温における記録膜間の拡散が防止されて、情報 記録媒体の保存寿命を長くし、鸖込み特性を長期 間維持することができる。

4. 図面の簡単な説明

第1図および第2図は本発明の一実施例を示す 断而図、第3図および第4図は従来の情報記録媒 体の断面図である。

11……显板(支持基体)

12 ········Ge-C薄膜(記錄膜)

13 ·······Te-C薄膜(記錄膜)

 山願人
 株式会社
 東芝

 代型人弁理士
 須 山 佐 ー

- 8 -

第 2 図

第 3 図

第 4 図