Michael Alonge | Computational Biologist

(831) 201-2788 • malonge11@gmail.com • https://github.com/malonge • michaelalonge.com

CAREER SUMMARY

I am interested in how eukaryotic genome structure influences function. As a Research Associate at Driscoll's and a Ph.D. student at JHU, I have used bioinformatics tools and developed new methods to study genome structure. I developed the widely used RagTag scaffolder which I used to scaffold a highly complete wheat genome assembly. I have worked closely with geneticists to discover natural structural variation in tomato causing important domestication and improvement phenotypes. I recently aided with the complete and near-complete assembly of a human and Arabidopsis thaliana genome, respectively.

EDUCATION

Ph.D. Candidate, Computer Science

Johns Hopkins University, Baltimore, MD Sep 2017 – Nov 2021 (expected) M.S.E. awarded August 2019 Advised by Michael Schatz

B.S., Biomolecular engineering

UC Santa Cruz, Santa Cruz, CA Sep 2009 – May 2014

SKILLS

- Genome assembly
- Comparative genomics
- Pan-genomics
- Variant discovery
- Bioinformatics

- Scientific computing
 - Python/R
 - Numpy/Scipy/Pandas
 - Grid computing
- Adobe Illustrator
- git/GitHub
- some basic molecular biology lab experience

PUBLICATIONS

Google Scholar - bit.ly/33e8ICL

Naish, **Alonge** and Wlodzimierz, et al. "The genetic and epigenetic landscape of the Arabidopsis centromeres." *bioRxiv* (2021). https://doi.org/10.1101/2021.05.30.446350

Alonge and Wang, et al. "Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato." *Cell* (2020). doi:10.1016/j.cell.2020.05.021

Alonge and Shumate, et al. "Chromosome-Scale Assembly of the Bread Wheat Genome Reveals Thousands of Additional Gene Copies." *Genetics* (2020). doi:10.1534/genetics.120.303501

Alonge, Michael, et al. "RaGOO: fast and accurate reference-guided scaffolding of draft genomes." *Genome biology* 20.1 (2019): 1-17. doi:10.1186/s13059-019-1829-6

Alonge, Michael, and Michael C. Schatz. "A master regulator of regeneration." *Science* 363.6432 (2019): 1152-1153. doi:10.1126/science.aaw6258

Nurk, Sergey, et al. "The complete sequence of a human genome." *bioRxiv* (2021). https://doi.org/10.1101/2021.05.26.445798

Pereira, Lara, et al. "Natural genetic diversity in tomato flavor genes." *Frontiers in Plant Science* 12 (2021): 914. https://doi.org/10.3389/fpls.2021.642828

Chen, Li-Yu, et al. "The bracteatus pineapple genome and domestication of clonally propagated crops." *Nature Genetics* (2019): 1-10. doi:10.1038/s41588-019-0506-8

Wenger, Aaron M., et al. "Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome." *Nature Biotechnology* (2019): 1-8. doi:10.1038/s41587-019-0217-9

Soyk, Sebastian, et al. "Duplication of a domestication locus neutralized a cryptic variant that caused a breeding barrier in tomato." *Nature Plants* (2019): 1. doi:10.1038/s41477-019-0422-z

Buti, Matteo, et al. "The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry)." *GigaScience* 7.4 (2017): 1-14. doi:10.1093/gigascience/giy010

RESEARCH

The Tomato Structural Variant Landscape

By sequencing 100 tomato varieties with long-reads, we established the first large-scale database of natural structural variants in any crop. Genome-wide, I found that breeding introgressions from wild material substantially altered the genome structure of modern

varieties. At specific loci, I used bioinformatics techniques to resolve large gene duplications underlying traits.

Genome assembly scaffolding and improvement algorithms

I developed RaGOO/RagTag, an open-source collection of software tools for scaffolding and improving modern genome assemblies. RagTag performs homology-based assembly correction, scaffolding, and patching/gap-filling. It also can merge scaffoldings from multiple genomic maps. https://github.com/malonge/RagTag

High-quality reference genome assembly

I have contributed to many human and plant reference genome assembly projects. As a member of the T2T consortium, I used the latest sequencing technologies to polish and patch the first-ever complete human reference genome. After scaffolding a highly repetitive wheat genome assembly, I analyzed pervasive gene duplications missing from the reference. I have led multiple plant genome assembly projects with a focus on the Solanum. I have recently assembled a near-complete Arabidopsis thaliana genome including all five centromeres.

TEACHING

Teaching Assistant, *Johns Hopkins*, *Computational Genomics: Sequences* **Fall 2019** I created grading rubrics and assisted CAs in grading assignments and tests. I also answered questions on an online question board and held weekly office hours. Additionally, I provided guidance for research project groups and helped grade final project oral presentations. *Course taught by Ben Langmead*, *Ph.D.*

PROFESSIONAL EXPERIENCE

Research Associate I and II: Computational Biology

Driscoll's, Watsonville CA

(I) Nov 2014 – Mar 2017 • (II) Mar 2017 – Aug 2017

I led computational biology projects with the ultimate goal of assisting breeders and molecular biologists. I especially focused on establishing reference genome assemblies to facilitate downstream genomics analyses. I also assisted with wet-lab protocols and plant phenotyping. *Supervised by Judson Ward, Ph.D.*

CONFERENCES AND CONSORTIA

Talks

The Boyce Thompson Institute Nanopore Symposium 2019, Ithaca, NY

Using ONT sequencing to resolve complex structural variants in plants

Galaxy Works "Structural Variant Detection using ONT Data" Webinar 2021, Virtual

SVs, Introgressions, and the Necessity of Crop Pan-Genomics

Posters

Intelligent Systems for Molecular Biology 2018, Chicago, IL

RaGOO: Fast reference-guided ordering and orienting of genome assembly contigs

Biological Data Sciences 2018, Cold Spring Harbor, NY

RaGOO: Fast reference-guided ordering and orienting of genome assembly contigs

Plant & Animal Genome 2019, San Diego, CA

RaGOO: Fast reference-guided ordering and orienting of genome assembly contigs

Genome Informatics 2019, Cold Spring Harbor, NY

Long-Read Sequencing Reveals the Structural Variant Landscape in Tomato

Solanaceae 2019, Jerusalem, Israel ("Best poster" awardee)

Long-Read Sequencing Reveals the Structural Variant Landscape of Tomato

Plant & Animal Genome 2020, San Diego, CA

Major impacts of widespread structural variation on gene expression and crop improvement in tomato

Solanaceae 2020, Virtual

Towards ultra-accurate and complete chromosome-scale Solanaceae reference genomes

Consortia

Telomere-to-Telomere (T2T)

June 2020 - Present

REFERENCES

Zachary Lippman, Ph.D.

Professor and HHMI Investigator, CSHL lippman@cshl.edu

Michael Schatz, Ph.D.

Bloomberg Distinguished Associate Professor of Computer Science, JHU mschatz@jhu.edu

Judson Ward, Ph.D.

Founder and CTO, Ohalo Genetics jud@ohalogenetics.com

Steven Salzberg, Ph.D.

Professor of Biomedical Engineering, Computer Science, and Biostatistics and Director of the Center for Computational Biology, JHU McKusick-Nathans Institute of Genetic Medicine, JHU School of Medicine salzberg@jhu.edu