Econ 722 - Advanced Econometrics IV, Part II

Francis J. DiTraglia

University of Pennsylvania

Lecture #1 – AIC-type Information Criteria

Kullback-Leibler Divergence

Bias of Maximized Sample Log-Likelihood

Review of Asymptotics for Mis-specified MLE

Deriving AIC and TIC

Corrected AIC (AIC_c)

Kullback-Leibler (KL) Divergence

Motivation

How well does a given density f(y) approximate an unknown true density g(y)? Use this to select between parametric models.

Definition

$$\mathsf{KL}(g;f) = \underbrace{\mathbb{E}_G\left[\log\left\{\frac{g(Y)}{f(Y)}\right\}\right]}_{\mathsf{True\ density\ on\ top}} = \underbrace{\mathbb{E}_G\left[\log g(Y)\right]}_{\mathsf{Depends\ only\ on\ truth}} - \underbrace{\mathbb{E}_G\left[\log f(Y)\right]}_{\mathsf{Expected\ log-likelihood}}$$

Properties

- Not symmetric: $KL(g; f) \neq KL(f; g)$
- ▶ By Jensen's Inequality: $KL(g; f) \ge 0$ (strict iff g = f a.e.)

KL Divergence and Mis-specified MLE

Pseudo-true Parameter Value θ_0

$$\widehat{\theta}_{\mathit{MLE}} \overset{p}{\to} \theta_0 \equiv \operatorname*{arg\,min}_{\theta \in \Theta} \mathsf{KL}(g; f_\theta) = \operatorname*{arg\,max}_{\theta \in \Theta} \mathbb{E}_G[\log f(Y|\theta)]$$

What if f_{θ} is correctly specified?

If $g = f_{\theta}$ for some θ then $KL(g; f_{\theta})$ is minimized at zero.

Goal: Compare Mis-specified Models

$$\mathbb{E}_G [\log f(Y|\theta_0)]$$
 versus $\mathbb{E}_G [\log h(Y|\gamma_0)]$

where θ_0 is the pseudo-true parameter value for f_θ and γ_0 is the pseudo-true parameter value for h_γ .

How to Estimate Expected Log Likelihood?

For simplicity: $Y_1, \ldots, Y_n \sim \text{ iid } g(y)$

Unbiased but Infeasible

$$\mathbb{E}_{G}\left[\frac{1}{T}\ell(\theta_{0})\right] = \mathbb{E}_{G}\left[\frac{1}{T}\sum_{t=1}^{T}\log f(Y_{t}|\theta_{0})\right] = \mathbb{E}_{G}\left[\log f(Y|\theta_{0})\right]$$

Biased but Feasible

 $T^{-1}\ell(\widehat{\theta}_{MLE})$ is a biased estimator of $\mathbb{E}_G[\log f(Y|\theta_0)]$.

Intuition for the Bias

 $T^{-1}\ell(\widehat{\theta}_{MLE}) > T^{-1}\ell(\theta_0)$ unless $\widehat{\theta}_{MLE} = \theta_0$. Maximized sample log-like. is an overly optimistic estimator of expected log-like.

What to do about this bias?

- General-purpose asymptotic approximation of "degree of over-optimism" of maximized sample log-likelihood.
 - Takeuchi's Information Criterion (TIC)
 - Akaike's Information Criterion (AIC)
- 2. Problem-specific finite sample approach, assuming $g \in f_{\theta}$.
 - ► Corrected AIC (AIC_c) of Hurvich and Tsai (1989)

Tradeoffs

TIC is most general and makes weakest assumptions, but requires very large T to work well. AIC is a good approximation to TIC that requires less data. Both AIC and TIC perform poorly when T is small relative to the number of parameters, hence AIC_C.

Recall: Asymptotics for Mis-specified ML Estimation

Model $f(y|\theta)$, pseudo-true parameter θ_0 . For simplicity $Y_1, \ldots, Y_T \sim \text{ iid } g(y)$.

Fundamental Expansion

$$\sqrt{T}(\widehat{\theta} - \theta_0) = J^{-1}\left(\sqrt{T}\,\overline{U}_T\right) + o_p(1)$$

$$J = -\mathbb{E}_G \left[\frac{\partial \log f(Y|\theta_0)}{\partial \theta \partial \theta'} \right], \quad \bar{U}_T = \frac{1}{T} \sum_{t=1}^{I} \frac{\partial \log f(Y_t|\theta_0)}{\partial \theta}$$

Central Limit Theorem

$$\sqrt{T}\bar{U}_T \to_d U \sim N_p(0,K), \quad K = \operatorname{Var}_G \left[\frac{\partial \log f(Y|\theta_0)}{\partial \theta} \right]$$

$$\sqrt{T}(\widehat{\theta}-\theta_0)
ightarrow_d J^{-1}U \sim N_p(0,J^{-1}KJ^{-1})$$

Information Matrix Equality

If
$$g = f_{\theta}$$
 for some $\theta \in \Theta$ then $K = J \implies \mathsf{AVAR}(\widehat{\theta}) = J^{-1}$

Bias Relative to Infeasible Plug-in Estimator

Definition of Bias Term B

$$B = \underbrace{\frac{1}{T}\ell(\widehat{\theta})}_{\text{feasible overly-optimistic}} - \underbrace{\int g(y)\log f(y|\widehat{\theta}) \ dy}_{\text{uses data only once infeas. not overly-optimistic}}$$

Question to Answer

On average, over the sampling distribution of $\widehat{\theta}$, how large is B? AIC and TIC construct an asymptotic approximation of $\mathbb{E}[B]$.

Derivation of AIC/TIC

Step 1: Taylor Expansion

$$B = \bar{Z}_T + (\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) + o_p(T^{-1})$$

$$\bar{Z}_T = \frac{1}{T}\sum_{t=1}^T \{\log f(Y_t|\theta_0) - \mathbb{E}_G[\log f(Y|\theta_0)]\}$$

Step 2:
$$\mathbb{E}[\bar{Z}_T] = 0$$

$$\mathbb{E}[B] \approx \mathbb{E}\left[(\widehat{\theta} - \theta_0)' J(\widehat{\theta} - \theta_0) \right]$$

Step 3:
$$\sqrt{T}(\widehat{\theta} - \theta_0) \rightarrow_d J^{-1}U$$

$$T(\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) \rightarrow_d U'J^{-1}U$$

Derivation of AIC/TIC Continued...

Step 3:
$$\sqrt{T}(\widehat{\theta} - \theta_0) \to_d J^{-1}U$$

$$T(\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) \to_d U'J^{-1}U$$

Step 4:
$$U \sim N_p(0, K)$$

$$\mathbb{E}[B] \approx \frac{1}{T} \mathbb{E}[U'J^{-1}U] = \frac{1}{T} \text{tr} \left\{ J^{-1}K \right\}$$

Final Result:

 $T^{-1} {\rm tr} \left\{ J^{-1} K \right\}$ is an asymp. unbiased estimator of the over-optimism of $T^{-1} \ell(\widehat{\theta})$ relative to $\int g(y) \log f(y|\widehat{\theta}) \ dy$.

TIC and AIC

Takeuchi's Information Criterion

Multiply by
$$2T$$
, estimate $J, K \Rightarrow \mathsf{TIC} = 2\left[\ell(\widehat{\theta}) - \mathsf{tr}\left\{\widehat{J}^{-1}\widehat{K}\right\}\right]$

Akaike's Information Criterion

If
$$g = f_{ heta}$$
 then $J = K \Rightarrow \operatorname{tr}\left\{J^{-1}K\right\} = p \Rightarrow \mathsf{AIC} = 2\left[\ell(\widehat{ heta}) - p\right]$

Contrasting AIC and TIC

Technically, AIC requires that all models under consideration are at least correctly specified while TIC doesn't. But $J^{-1}K$ is hard to estimate, and if a model is badly mis-specified, $\ell(\widehat{\theta})$ dominates.

Corrected AIC (AIC_c) – Hurvich & Tsai (1989)

Idea Behind AIC

Asymptotic approximation used for AIC/TIC works poorly if p is too large relative to T. Try exact, finite-sample approach instead.

Assumption: True DGP

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathit{N}(\mathbf{0}, \sigma_0^2 \mathbf{I}_T), \quad \textit{k} \; \mathsf{Regressors}$$

Can Show That

$$\mathit{KL}(g,f) = rac{T}{2} \left[rac{\sigma_0^2}{\sigma_1^2} - \log \left(rac{\sigma_0^2}{\sigma_1^2}
ight) - 1
ight] + \left(rac{1}{2\sigma_1^2}
ight) (eta_0 - eta_1)' \mathbf{X}' \mathbf{X} (eta_0 - eta_1)$$

Where f is a normal regression model with parameters (β_1, σ_1^2) that might not be the true parameters.

But how can we use this?

$$\mathit{KL}(g,f) = rac{T}{2} \left[rac{\sigma_0^2}{\sigma_1^2} - \log \left(rac{\sigma_0^2}{\sigma_1^2}
ight) - 1
ight] + \left(rac{1}{2\sigma_1^2}
ight) (eta_0 - eta_1)' \mathbf{X}' \mathbf{X} (eta_0 - eta_1)$$

- 1. Would need to know (β_1, σ_1^2) for candidate model.
 - Easy: just use MLE $(\widehat{\boldsymbol{\beta}}_1, \widehat{\sigma}_1^2)$
- 2. Would need to know (β_0, σ_0^2) for true model.
 - ▶ Very hard! The whole problem is that we don't know these!

Hurvich & Tsai (1989) Assume:

- Every candidate model is at least correctly specified
- ▶ Implies any candidate estimator $(\widehat{\beta}, \widehat{\sigma}^2)$ is consistent for truth.

Deriving the Corrected AIC

Since $(\widehat{\beta}, \widehat{\sigma}^2)$ are random, look at $\mathbb{E}[\widehat{KL}]$, where

$$\widehat{\mathit{KL}} = \frac{\mathit{T}}{2} \left[\frac{\sigma_0^2}{\widehat{\sigma}^2} - \log \left(\frac{\sigma_0^2}{\widehat{\sigma}^2} \right) - 1 \right] + \left(\frac{1}{2\widehat{\sigma}^2} \right) (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)' \mathbf{X}' \mathbf{X} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

Finite-sample theory for correctly spec. normal regression model:

$$\mathbb{E}\left[\widehat{\mathit{KL}}\right] = \frac{T}{2} \left\{ \frac{T+k}{T-k-2} - \log(\sigma_0^2) + \mathbb{E}[\log \widehat{\sigma}^2] - 1 \right\}$$

Eliminate constants and scaling, unbiased estimator of $\mathbb{E}[\log \widehat{\sigma}^2]$:

$$AIC_c = \log \widehat{\sigma}^2 + \frac{T+k}{T-k-2}$$

a finite-sample unbiased estimator of KL for model comparison