

Transposition de l'index génomique de la méthodologie Agilent/SurePrint G3 vers Affymetrix/Oncoscan CNV : comparaison d'outils bioinformatiques

Elie Bordron

Stage au sein du département de Biopathologie, unité de pathologie moléculaire

Co-encadrement par:

Élodie Darbo, PhD, Ingénieure de recherche Claire Larmonier, PhD, Ingénieure biologiste

Environnement de stage

Introduction - traitement des lésions tumorales

Unité d'anatomocytopathologie

Tumeur

- Extraction de la tumeur
- Fixation en formol
- Inclusion en paraffine

https://www.berkeley.edu/

Un caryotype anormal: cellule normale (à gauche) et cancéreuse (à droite, cancer de la vessie). Caryotypes obtenus avec la technique de FISH

Introduction - traitement des lésions tumorales

Unité d'anatomocytopathologie

Tumeur

Tumeur fixée (FFPE)

- Extraction de la tumeur
- Fixation en formol
- Inclusion en paraffine

ADN extrait du bloc

- Forage dans le bloc FFPE
- Extraction de l'ADN

Utilisation dans différentes techniques

Introduction - CGH

Principe de l'Hybridation génomique comparative (CGH)

ADN extrait du bloc

- Fragmentation
- Marquage par biotine ou fluorochrome

Puce à ADN

Hybridation sur un support

Scanner de puce à ADN

Quantification du signal

Introduction - CGH

Principe de l'Hybridation génomique comparative (CGH)

Signal de l'échantillon

Signal de référence

 Comparaison avec le signal d'un ADN de référence

- Calcul des Log2 Ratios Relatifs (LRR)
- Alignement des LRR selon leur position génomique pour analyser les anomalies de continuité

Données de CGH - Log2 Relative Ratio

Données de CGH - B Allele Frequency (BAF)

Calcul de la fréquence de l'allèle B (B Allele Frequency, BAF)

Signal de référence

Introduction - échantillons GIST

- GIST: Tumeur stromale gastro-intestinale
- L'Index Génomique a un intérêt dans le pronostic de l'évolution des GISTs

CROCE, 2018, Modern Pathology

Introduction - Calcul de l'Index Génomique

```
GI = (nombre d'altérations)<sup>2</sup> / (nombre de chromosomes altérés) GI = 7<sup>2</sup> / 7 GI = 7
```

- L'index génomique est une mesure du niveau d'altération du génome
- Ce score est défini sur la technologie Agilent/ SurePrint G3

Problématique

- GIST: Tumeur stromale gastro-intestinale
- L'Index Génomique, défini sur la technologie Agilent, a un intérêt dans le pronostic de l'évolution des GISTs
- La technologie Affymetrix/Oncoscan CNV est plus résolutive qu' Agilent
- Peut-on transposer l'Index Génomique de la méthodologie Agilent vers Oncoscan?
- Des outils bioinformatiques peuvent traiter les données OncoScan
- Comparaison de ces outils sur des GISTs

CROCE, 2018, Modern Pathology

Aperçu des outils

outil	input	Pré-traitement	normalisation	segmentation	calling	altérations	autre
oncoscanR	segments	oui	non	non	non	bras	scores
rCGH	sondes	oui	oui	CBS	oui	segments	GUI
CGHcall	sondes	oui	deux	CBS	Modèle de mélange	segments	non
ASCAT	sondes	non	non	ASPCF	ASCAT	segments	estimation ploïdie et cellularité

Les quatre outils déterminent les altérations, mais pas de la même manière. La comparaison va montrer ce que cela implique.

Pipeline typique: segmentation

Pipeline typique :Calling ou estimation du nombre de copies

Outil: OncoscanR

- Input: segments altérés
- Conversion en altérations de bras chromosomiques

fichier

Outil: rCGH

Outil: ASCAT

Corrélations

Distribution des valeurs

Courbes ROC

Conclusion

outil	corrélation	distribution	Courbes ROC	Autre fonctionnalité	
oncoscanR	×	×	✓	✓	
rCGH	✓	✓	✓	×	
CGHcall	✓	✓	✓	×	
ASCAT	✓	✓	✓	✓	

Conclusion

- Le nombre d'échantillons utilisés ne permet pas de choisir un outil pour répondre à la problématique.
- CGHcall, rCGH et ASCAT présentent un intérêt mais pas OncoscanR

Interaction Bioinformatique - Biologie

- Intégration dans l'unité de pathologie moléculaire
- Suivi des échantillons de leur réception à l'analyse
- Compréhension des préoccupations des biologistes
- Vulgarisation des outils étudiés
- Participation à la formation dispensée par Affymetrix

Merci pour votre attention

Références

- Les figures ont été créées à l'aide de BioRender et appDiagrams.net
- [1] CROCE, Sabrina, DUCOULOMBIER, Agnes, RIBEIRO, Agnes, et al. Genome profiling is an efficient tool to avoid the STUMP classification of uterine smooth muscle lesions: a comprehensive array-genomic hybridization analysis of 77 tumors. *Modern pathology*, 2018, vol. 31, no 5, p. 816-828.