

DATA SHEET [PRELIMINARY] NVIDIA Jetson TX1 System-on-Module

Description

The NVIDIA[®] Jetson TX1 is a system-on-module (SoM) solution for visual computing applications. It combines the latest NVIDIA Maxwell GPU architecture with an ARM[®] Cortex[®] -A57 MPCore (Quad-Core) CPU cluster to deliver the performance and power efficiency required by industry-leading visual computing applications for next generation products.

Designed for use in power-limited environments, the Jetson TX1 SoM integrates:

- Advanced 3D graphics, video and image processing.
- Parallel computing, computer vision and machine learning capabilities.
- 32-bit and 64-bit operating capability.

The combination of exceptional performance and power efficiency, integrated capabilities, rich I/O, and small-size enable new classes of products while reducing complexity in system integration. The Jetson TX1 is ideal for many applications, including:

- Intelligent Video Analytics (IVA)
- Drones
- Robotics
- Gaming Devices
- Virtual Reality (VR)
- Augmented Reality (AR)
- Portable Medical Devices

Ordering Information

Part Number	Description
900-82180-0001-000	Jetson TX1 System-on-Module

IVIDIA.			
Description Jetson TX1 System-on-Module			
Maxwell GPU			
256-core GPU End-to-end lossless compression Tile Caching OpenGL [®] 4.5 OpenGL ES 3.1 Vulkan [™] 1.0 CUDA [®] 7.0 GPGPU Android [™] Extension Pack (AEP)			
OpenGL ES Shader Performance (up to) GFLOPS (fp16)	1024 [◊]		
CPU Subsystem			
ARM® Cortex® -A57 MPCore (Quad-Core) Processor with NEON Technology. Operating Frequency per Core (up to)	1.73GHz [‡]		
L1 Cache: 48KB L1 instruction cache (I-cache) per core; 32KB	L1 data cache (D-cache) per core L2 Unified Cache: 2MB		
HD Video & JPEG			
Decode			
H.265: Main10 H.265: Main H.264: Baseline, Main, High, Stereo SEI (half-res) H.264: MVC Stereo (per view) WEBM VP9 WEBM VP8 VC-1: Simple, Main, Advanced MPEG-2: Main	2160p 60fps 1080p 240fps 2160p 60fps 1080p 240fps 2160p 60fps 1080p 240fps 2160p 30fps 1080p 120fps 2160p 60fps 1080p 240fps 2160p 60fps 1080p 240fps 1080p 120fps 1080i 240fps 1080p 120fps 1080i 240fps 2160p 60fps 1080p 240fps		
Encode			
H.265 (I and P frames) H.264: Baseline, Main, High H.264: MVC Stereo (per view) WEBM VP8	2160p 30fps 1080p 120fps 2160p 30fps 1080p 120fps 1440p 30fps 1080p 60fps 2160p 30fps 1080p 120fps		
JPEG (Decode & Encode)	600 MP/sec		
Audio Subsystem			
Dedicated programmable audio processor ARM Cortex A9 wit PDM Receiver: 3 x (Stereo) or 6 x (Mono)	h NEON operating at up to 844MHz Digital Audio Mixer: 10-in/5-out (up to 8 channels per stream) 3 x I2S Stereo I/O		
Display Controller Subsystem			
Two independent display controllers with support for DSI with V	ESA link compression (VESA DSC), HDMI, and eDP		
Captive Panel			
MIPI-DSI (1.5Gbps/lane) Uncompressed: 24bpp VESA DSC Compression: 12bpp	Support for Single v4 or Dual v4 links		
eDP 1.4 (HBR2 5.4Gbps) 24bpp			
External Display			
HDMI 2.0 (6Gbps) 24bpp	4096x2160 at 60Hz		
Imaging System			
Dedicated RAW to YUV processing engines process up to 1200Mpix/s supports up to 128MP sensor			
MIPI CSI 2.0 up to 1.5Gbps (per lane) Support for x4 and x2 configurations (up to 3 x4-lane or 6 x2-lane cameras)			
Clocks			
System clock: 38.4 MHz Sleep clock: 32.768 KHz Dynamic clock scaling and clock source selection			
Boot Sources			
eMMC and USB (recovery mode)			

Description	Jetson TX1 System-on-Module		
Security			
Secure memory with video protection region for protection of intermediate results Configurable secure DRAM regions for code and data protection Hardware acceleration for AES 128/192/256 encryption and decryption to be used for secure boot and multimedia Digital Rights Management (DRM) Hardware acceleration for AES CMAC, SHA-1 and SHA-256 algorithms 2048-bit RSA HW for PKC boot HW Random number generator (RNG) SP800-90 TrustZone technology support for DRAM, peripherals Dedicated HDCP HW			
Memory	Memory		
Dual Channel Secure External Memory Access Using TrustZon	e Technology System MMU		
Memory Type	4ch x 16-bit LPDDR4		
Maximum Memory Bus Frequency (up to) ^{††}	1600MHz		
Memory Capacity	4GB		
Storage			
eMMC 5.1 Flash Storage			
Bus Width	8-bit		
Maximum Bus Frequency	200 MHz (HS400)		
Storage Capacity	16 GB		
Connectivity			
WiFi			
Radio type	IEEE 802.11ac 2x2		
Maximum transfer rate	800 Mbps		
Bluetooth			
Version level	4.0		
Maximum transfer rate	24Mbps		
LAN			
10/100/1000 BASE-T Ethernet			
Peripheral Interfaces*			
XHCI host controller with integrated PHY: 2 x USB 3.0, 3 x USB 2.0 USB 3.0 device controller with integrated PHY EHCI controller with embedded hub for USB 2.0 5-lane PCIe: one x1 and one x4 controllers SATA (1 port) 2 x SD/MMC controllers (supporting eMMC 5.1, SD 4.0, SDHOST 4.0 and SDIO 3.0) 3 x UART 3 x SPI 4 x I ² C 4 x I2S: support I ² S, RJM, LJM, PCM, TDM (multi-slot mode) GPIOs			
Temperature Specification $^{\Delta}$			
Storage Temperature Range	-25C – 80C		
Operation:			
SoC Junction Temperature Range	-25C – 105C		
Thermal Transfer Plate Surface Range	Thermal Transfer Plate Surface Range -25C – 80C**		
Power Requirements			
aximum Total Module Power 6.5 – 15 W**			
Applications			
Embedded (Intelligent Video Analytics, Drones, Robotics, etc.), A	Embedded (Intelligent Video Analytics, Drones, Robotics, etc.), Automotive Research, Clamshells, Gaming, Internet TV, and more		

- See Table 2 for Guaranteed GPU operation across supported temperature range.

 See Table 3 for Guaranteed CPU operating frequency across supported temperature range.
- †† Dependent on board layout. Refer to Interface Design Guide for layout guidelines.
- * Refer to the Interface Design Guide and Technical Reference Manual to determine which peripheral interface options can be simultaneously exposed.
- $^{\boldsymbol{\Delta}}$ $\,$ Preliminary pending characterization.
- ** Refer to the Product Design Guide and Thermal Design Guide for evaluating product power and thermal solution requirements

Revision History

Version	Date	Description
v0.9	AUG, 2015	Initial Release
v0.91	FEB, 2016	Updated CPU operating frequency. Added Use Case Models. Updated Package Drawing and Dimensions: updated weight to include TTP base and top plate weight, changed MAX TTP height from 6.0 ± 0.25 to 6.25, corrected connector pin dimensions.

Table of Contents

1.0	Module Overview	7
	1.1 Tegra X1 SoC	۶
	1.2 Memory	
	1.3 Storage	
	1.4 Connectivity	
	1.5 Networking	
	1.6 Power	
	1.7 Thermal Transfer Plate	
	1.8 Board-to-board Connector	
	1.9 WiFi/BT Antenna Connector	
2.0	Power and System Management	12
	2.1 Use Case Models	12
	2.2 Power Rails	13
	2.2.1 VDD_IN	13
	2.2.2 VDD_RTC	
	2.2.3 IO Rail Voltages	
	2.3 Power Sequencing	
	2.3.1 Power Up	
	2.3.2 Power Down	
	2.4 Power States	
	2.4.1 ON State	
	2.4.2 OFF State	
	2.4.3 SLEEP State	
	2.5 Thermal Management	
	2.6 Clocks	
	2.7 WiFi Power States	
	2.7.1 STA Mode	
	2.7.2 P2P Group-owner Powersave States	
	2.8 Bluetooth Power States	
	2.9 Ethernet	18
3.0	Interface and Signal Descriptions	19
	3.1 SD/eMMC Controller	
	3.2 Serial ATA (SATA) Controller	
	3.3 Display Interfaces	
	3.3.1 MIPI Display Serial Interface (DSI)	
	3.3.2 High-Definition Multimedia Interface (HDMI) and DisplayPort (DP) Interfaces	
	3.3.3 Embedded DisplayPort (eDP) Interface	
	3.4 Audio Interfaces	
	3.5 USB Interfaces	
	3.6 PCI Express (PCIe) Interface	
	3.7 Serial Peripheral Interface	
	3.8 Inter-Chip Communication (I2C) Controller	
	3.9 UART Controller	
	3.10 Video Input Interfaces	29
	3.10.1 MIPI Camera Serial Interface (CSI)	
	3.10.2 Camera / VI (Video Input)	
	3.11 Miscellaneous Interfaces	
	3.11.1 Debug	
	3.11.2 Pulse Width/Frequency Modulation (PWFM)	31

4.0 Pin Definitions	32
4.1 Power-on Reset Behavior	33 34
5.0 Electrical Specification	43
5.1 Absolute Maximum Ratings	43 44 45
6.0 Package and Thermal Specification	46
6.1 Thermal Characteristics	

1.0 Module Overview

The Jetson TX1 System-on-Module (SoM) incorporates the following components and interfaces:

- NVIDIA Tegra X1 SoC
 - NVIDIA Maxwell GPU
 - Quad-core ARM Cortex-A57 CPU
- LPDDR4 memory
- eMMC 5.1 storage
- 802.11ac 2x2 WiFi
- Gigabit Ethernet
- PMIC
- Thermal Transfer Plate (TTP) (primary thermal interface)
- 400-pin board-to-board connector (exposes both high-speed and low-speed industry standard I/O)
- WiFi/BT antenna connectors

Table 1 Manufacturers and Part Numbers for 3rd Party Components Integrated on the Jetson TX1 Module

Component	Manufacturer	Part Number
WiFi 802.11ac Client/BT	Broadcom Corp.	BCM4354
Ethernet Controller 10/100/1000 Mbps	Realtek Semiconductor Corp.	RTL8153
Power Management IC (PMIC)	Maxim Integrated	MAX77620
400 pin Board-to-board connector	Samtec	REF-186137-03 [*]

[♦] Mating connector for OEM carrier board is REF-186138-01.

Refer to the manufacturer's documentation for specific component details and specifications. All features supported by a 3rd party component may not be enabled on the Jetson TX1 module.

Figure 1 Jetson TX1 Block Diagram - General Application

1.1 Tegra X1 SoC

The NVIDIA Tegra® X1 series SoC couples the latest NVIDIA Maxwell™ GPU architecture with an ARM®v8 CPU cluster to deliver high performance and power efficiency. The Maxwell GPU implements a number of architectural enhancements designed to extract maximum performance per watt consumed. Designed for use in power-limited environments, Tegra X1 processors enable industry-leading visual computing capabilities, 32-bit and 64-bit operating capability, and integrate advanced multi-function audio, video and image processing pipelines that exceed performance targets for next generation SFF devices.

Refer to the *Tegra X1* (SoC) *Data Sheet* for details and specifications.

Figure 2 Tegra X1 SoC Block Diagram

1.2 Memory

On-board 4GB of LPDDR4, over a 4 channel x 16-bit interface. The maximum frequency is 1600MHz. The theoretical peak memory bandwidth is 25.6 GB/s.

1.3 Storage

On-board 16GB of eMMC 5.1 flash storage. The theoretical peak bandwidth is 400 MB/s

1.4 Connectivity

WiFi/Bluetooth integrated on the Jetson TX1 module supports:

- WiFi Ready
 - 2x2 MIMO
 - Transfer speeds up to 800 Mbps
 - Backwards compatible with legacy 802.11b/g/a/n devices
- Bluetooth Ready
 - Bluetooth 4.0 ready (can connect to Bluetooth 4.0 enabled devices)
 - HIDP
 - Audio A2DP (advanced audio distribution profile)
 - RFKILL

See Table 1 for list of manufacturers and part numbers for 3rd party components integrated on the Jetson TX1 module.

1.5 Networking

The Ethernet controller on the Jetson TX1 supports:

- 10/100/1000 Mbps Gigabit Ethernet
- IEEE 802.3u Media Access Controller (MAC)
- Embedded memory

See Table 1 for list of manufacturers and part numbers for 3rd party components integrated on the Jetson TX1 module.

1.6 Power

Power is provided by a single DC input, and supplied to the devices on board through a power management IC (PMIC) and dedicated voltage regulators. More details can be found in Section 2.0

1.7 Thermal Transfer Plate

Jetson TX1 is provided with a thermal transfer plate (TTP) to simplify integration with a system-level thermal solution. The TTP mechanically isolates the Jetson TX1 board and components from external mechanical forces, standardizes the thermal and mechanical interface, and allows for a modular system design.

Refer to the Jetson TX1 Thermal Design Guide for system-level thermal and mechanical requirements.

1.8 Board-to-board Connector

The primary interface to Jetson TX1 is via a 400-pin board-to-board connector. This connector exposes both high-speed and low-speed industry standard I/O. Refer to Section 4.0 of this document for the individual pin descriptions and mapping.

See the **NVIDIA Jetson TX1 OEM Product Design Guide** for details on integrating the TX1 module and mating connector into product designs.

1.9 WiFi/BT Antenna Connector

Male I-PEX antenna connectors for WiFi and BT are located on the module. These support antennas with the following characteristics:

- 2x Female I-PEX connector
- Dual-band (x2)
- 2.4 GHz and 5 GHz frequency bands
- 50 Ω impedance

2.0 Power and System Management

The Jetson TX1 module was designed with ease of system integration in mind. It operates from a single power source (VDD_IN) with all internal module voltages and IO voltages generated from this input. An optional back up battery can be attached to the VDD_RTC module input (this will maintain the on system RTC, when VDD_IN is not present).

The Jetson TX1 module is required to be powered on and off in a known sequence. Sequencing is determined through a set of control signals; the signal CARRIER_PWR_ON is provided so that the carrier board is powered on using this signal after the Jetson TX1 is fully powered.

2.1 Use Case Models

The Jetson TX1 module can be used in a wide variety of applications requiring varying performance metrics. To accommodate these varying conditions, Tegra SoC frequencies and voltages are actively managed by Tegra Power and Thermal Management Software and influenced by workload. The following use case models were used to detail CPU and GPU performance; models were selected to demonstrate a varied range of operating time. Note that the operating frequencies for CPU and GPU may have different maximum limits in each model.

Use Case Models (UCM):

- UCM #1
 - Operating time per day up to maximum specification: 20% (remaining time is spent in a SLEEP or OFF state)
- UCM #2
 - Operating time per day up to maximum specification: 100%

Table 2 TM670D (UCM#1, UCM#2) Guaranteed GPU Operations

Use Case Model	Guaranteed GPU Operations: GFLOPS (FP16)		
Use Case Wodel	T _J <= 70C	T _J <= 90C	T _J <= 105C
UCM: 1	1024	1024	942
UCM: 2	1024	1024	942

 T_J = SoC Junction Temperature

Table 3 TM670D (UCM #1, UCM #2) Guaranteed CPU Operating Frequency

Use Case Model	Guaranteed CPU Operating Frequency		
	T _J <= 70C	T _J <= 90C	T _J <= 105C
UCM: 1	1.73GHz	1.63GHz	1.55GHz
UCM: 2	1.68GHz	1.55GHz	1.47GHz

 T_J = SoC Junction Temperature

2.2 Power Rails

2.2.1 VDD_IN

VDD_IN must be supplied by the carrier board that the Jetson TX1 is designed to connect to. It must meet the required electrical specifications detailed in Section 5.

2.2.2 VDD RTC

A back up battery can be connected to this input. It is used to maintain the JETSON TX1 RTC when VDD_IN is not present. This pin is connected directly to the onboard PMIC. When a backup cell is connected to the PMIC, the RTC will retain its contents and also can be configured to charge the backup cell.

The following backup cells may be attached to this pin:

- Super Capacitor (gold cap, double layer electrolytic)
- Standard capacitors (tantalum)
- Rechargeable Lithium Manganese cells

The backup cells must provide a voltage in the range 2.5V to 3.5V. These will be charged with a constant current (CC), constant voltage (CV) charger that can be configured between 2.5V and 3.5V CV output and 50uA to 800uA CC.

2.2.3 IO Rail Voltages

All of the signals on the Jetson TX1 interfaces are referenced to on-module voltage rails. No IO voltage is required to be supplied to the module. See the **Jetson TX1 OEM Product Design Guide** for details of connecting to each of the interfaces.

2.3 Power Sequencing

The following sections provide an overview of the power sequencing steps between the carrier board and Jetson TX1 module. Refer to the *Jetson TX1 OEM Product Design Guide* for system level details on the application of power, power sequencing and monitoring. The Jetson TX1 module and the product carrier board must be power sequenced properly to avoid potential damage to components on either the module or the carrier board system.

2.3.1 Power Up

During power up, the carrier board must wait until the signal CARRIER_PWR_ON is asserted from the Jetson TX1 before enabling its power. Jetson TX1 will de-assert the RESET_OUT# signal to enable the complete system to boot.

Figure 3 Power Up Sequence

2.3.2 Power Down

On receiving a Shutdown request the Jetson TX1 will assert the RESET_OUT# signal, allowing the carrier board to put any components into a known state. The CARRIER_PWR_ON signal will then be de-asserted to indicate to the carrier board to power down. The carrier board must disable its power at this point; the Jetson TX1 module will then disable its power and shut down.

Figure 4 Power Down Sequence

2.4 Power States

The Jetson TX1 module operates in 3 main power modes: OFF, ON and SLEEP. The module transitions between these states are based on various events from hardware or software. Figure 5 shows the transitions between these states.

Figure 5 Power State Diagram

2.4.1 ON State

The ON power state is entered from either OFF or SLEEP states. In this state the Jetson TX1 module is fully functional and will operate normally. An ON event has to occur for a transition between OFF and ON states. The only ON EVENT currently used is a low to high transition on the POWER_BTN# pin. This must occur with VDD_IN connected to a power rail, and VIN_PWR_BAD# is asserted (at a logic1). The VIN_PWR_BAD# control is the carrier board indication to the Jetson TX1 module that the VDD_VIN power is good. The Carrier board should assert this high only when VIN has reached its required voltage level and is stable. This prevents the Jetson TX1 module from powering up until the VIN power is stable.

NOTE: The Jetson TX1 module does include an Auto-Power-On option; a system input (i.e., CHARGER_PRSNT#) that could enable the module to power on if assertedFor more information on available signals and broader system usage, see the **Jetson TX1 OEM Product Design Guide**.

When in the ON power state, Jetson TX1 has various design features to minimize the power when possible. These include such items as:

- Advanced Power Management IC (PMIC)
- On system Power Gating
- Advanced on chip Clock Gating
- Dynamic Voltage and Frequency Scaling (DVFS)
- Always on logic used to wake the system based on either a timer event or an external trigger (e.g., key press).
- Low power DRAM (LPDDR4)

2.4.2 OFF State

The OFF state is the default state when the system is not powered. It can only be entered from the ON state, through an OFF event. OFF Events are listed in the table below.

Table 4 OFF State Events

Event	Details	Preconditions
Power Button (10 second Press)	Keeping POWER_BTN# low for 7 seconds will power down the Jetson TX1	In ON State
SW Shutdown	SW will initiate	ON state, SW operational
Thermal Shutdown	If the internal temperature of Jetson TX1 reaches an unsafe temperature, the HW is designed to initiate a shutdown	Any power state
Voltage Brown out	A voltage monitor circuit is implemented on the Jetson TX1 module to indicate if the main DC input rail, VDD_IN, "droops" below an acceptable level. If VDD_IN drops below 5V, the HW initiates throttling the Tegra clocks to reduce power consumption.	Any power state

2.4.3 SLEEP State

The Sleep state can only be entered from the ON state. This state allows the Jetson TX1 to quickly resume to an operational state without performing a full boot sequence. In this state Jetson TX1 operates in low power with enough circuitry powered to allow the device to resume and re-enter the ON state. During this state the output signals from Jetson TX1 are maintained at their logic level prior to entering the state (i.e. they do not change to a 0V level).

The SLEEP state can only be entered directly by SW. For example, operating within an OS, with no operations active for a certain time can trigger the OS to initiate a transition to the SLEEP state.

To Exit the SLEEP state a WAKE event must occur. WAKE events can occur from within the Jetson TX1 or from external devices through various pins on the JETSON TX1 connector. A full list is given in the table below.

Table 5 SLEEP State Events

Event	Details	
RTC WAKE up	Timers within Jetson TX1 can be programmed, on SLEEP entry. When these expire they will create a WAKE event to exit the SLEEP state.	
Thermal Condition	If the JETSON TX1 internal temperature exceeds programmed hot and cold limits the system will be force to wake up, so it can report and take appropriate action (shut down for example)	
Low VDD_IN	If VDD_IN voltage drops below 6V then the system can be woken up to initiate a graceful shutdown.	
USB VBUS detection	If VBUS is applied to the system (USB cable attached) then the device can be configured Wake and enumerate	
SD Card detect	The Card detect pin may be configured to enable the system to wake.	
On Jetson TX1 WIFI Wake	Wifi can be configured to Wake up the system	
On Jetson TX1 Bluetooth Wake	Bluetooth events can also trigger a system Wake	
Jetson TX1 connector Interface WAKE signal	There are 16 signals on the Jetson TX1 connector. These are listed in the table below.	

Table 6 Programmable Interface Wake Event

Event	Jetson TX1 Pin Assigned	Wake #
Audio Interrupt	GPIO20_AUD_INT	4
External BT Wake Request to AP	GPIO13_BT_WAKE_AP	10
External WiFi Wake Request to AP	GPIO10_WIFI_WAKE_AP	11
Modem to AP Ready	GPIO17_MDM2AP_READY	14
Modem Coldboot Alert	GPIO18_MDM_COLDBOOT	15
HDMI CEC	HDMI_CEC	19
GPIO Exapander 0 Interrupt	GPIO_EXP0_INT	21
Power Button On	POWER_BTN#	24
Charging Interrupt	CHARGING#	26
Sleep Request from Carrier Board	SLEEP#	27
Ambient/Proximity Interrupt	GPIO8_ALS_PROX_INT	32
HDMI Hot Plug Detect	DP1_HPD	53
Battery Low Warning	BATLOW#	57
Primary Modem Wake Request to AP	GPIO16_MDM_WAKE_AP	61
Touch Controller Interrupt	GPIO6_TOUCH_INT	62
Motion Sensor Interrupt	GPIO9_MOTION_INT	63

2.5 Thermal Management

Jetson TX1 is designed to operate under various workloads, and environmental conditions. It has been designed so that an active or passive heat sinking solution can be attached. The module contains various methods through hardware and software to limit the internal temperature to within operating limits. More details can be found in the Thermal design guide.

2.6 Clocks

The Jetson TX1 module requires no external clocks for operation, all system clocks are generated within the module. This includes a low power 32.768 kHz clock for real-time operation.

The following clocks are provided by the Jetson TX1 module for use with the peripheral interfaces: AUDIO_MCLK, TOUCH_CLK, SPI0_CLK, SPI1_CLK, SPI2_CLK, CAM0_MCLK, CAM1_MCLK.

2.7 WiFi Power States

Jetson TX1 integrates a 5G WiFi 802.11ac Client. The following power states are available

2.7.1 STA Mode

PM0

No power save, always on.

PM1

Legacy 802.11 powersave. STA must indicate to the AP that it is entering into powersave by setting the PM bit in a data packet. Upon acknowledgement from the AP it can go into powersave. STA must wake up periodically (at period=DTIM) to check AID in the TIM map. If AID is set, STA will use a PS-Poll packet to fetch buffered packets (one PS-Poll per buffered packet). This is an inefficient mechanism as the traffic will tend to be bursty.

PM2

Vendor implementation. In PM2 mode, whenever there is a traffic (either Tx or Rx), the DUT will come out of powersave and remain there until packet exchanges have ceased for a minimum idle period (typically 200ms). When there is traffic, PM2 will operate nearly as well as PM0 mode, with almost no PS related latency. When there is no traffic, PM2 will be similar to PM1 powersave.

2.7.2 P2P Group-owner Powersave States

Opportunistic power save (OPS)

OPS allows the P2P Group Owner to save power when all associated clients are in a sleep state. P2P Power Management protocol defines an availability period "CTWindow" (Client Traffic Window), during which a P2P Group Owner is present. P2P Clients are allowed to transmit during CTWindow period. If at the end of the CTWindow all associated P2P Clients are in a sleep state, the P2P Group Owner is permitted to sleep until the next Beacon time. However, if any P2P Client remains in active mode at the end of the CTWindow the P2P Group Owner must remain awake until the next Beacon time.

To change OPS mode:

Use the wpa_cli utility to issue the command "p2p_set ctwindow <value>"

Where 'value' is CTwindow in ms

Use the wpa_cli utility to issue the command "p2p set opps <value>"

Where 'value' 1/0 enables/disables OPS respectively (this must be issued every time the CTwindow is changed in order to be reflected in the firmware)

Notice-of-Absence

NoA is similar to the Opportunistic Power Save protocol. For NoA, GO defines absence periods with a signaling element included in Beacon frames and Probe Responses containing

To configure NoA:

Use the wpa_cli ulility to issue the command "p2p_set noa <count, start, duration>"

Where duration is the length of each absence period, start time is the start time of the first absence period (after the current beacon frame), and count is the number of absence periods to schedule during the current NoA.

2.8 Bluetooth Power States

The integrated a Bluetooth controller includes the following power states:

Active

This is the default state. No power savings.

LP

This is the power saving state. The BT chip will go into low power mode, and will wake on traffic.

To change the mode: Assert/deassert the ext_wake GPIO to put the chip in Active or LP mode.

The BT controller also includes a wake-on-BT function. When it receives data, the chip will assert Host_wake GPIO. The AP, depending on its state, can treat it as a wake interrupt or info GPIO.

2.9 Ethernet

The Ethernet device used on the Jetson TX1 module contains many power saving features. Refer to the device datasheet for more details.

3.0 Interface and Signal Descriptions

3.1 SD/eMMC Controller

Standard	Notes
SD Specifications Part A2 SD Host Controller Standard Specification Version 4.00	
SD Specifications Part 1 Physical Layer Specification Version 4.00	
SD Specifications Part E1 SDIO Specification Version 4.00	Support for SD 4.0 Specification without UHS-II
Embedded Multimedia Card (e•MMC), Electrical Standard 5.1	

The SecureDigital (SD)/Embedded MultiMediaCard (eMMC) controller is capable of interfacing to SD/eSD, SDIO cards, and eMMC devices. It has a direct memory interface and is capable of initiating data transfers between memory and external card. The SD/eMMC controller supports 2 different bus protocols: SD and eMMC bus protocol for eMMC. It has an APB Slave interface to access configuration registers. To access the iRAM for Micro Boot, the SD/eMMC controller relies on the AHB redirection arbiter in the Memory Controller.

Features:

- Supports of 8-bit data interface for eMMC/eSD cards
- Supports 4-bit data interface for SD cards
- Allows card to interrupt host in 1-bit, 4-bit, 8-bit SD modes.
- Supports Read wait Control, Suspend/Resume operation for SDIO cards
- Supports FIFO overrun and underrun condition by stopping SD clock
- Supports addressing larger capacity SD 3.0 or SD-XC cards up to 2 TB.

Jetson TX1 provides two instances of this controller: The SDCARD interface is intended for supporting an SD Card socket & the SDIO interface is available to support various compatible peripherals, such as a secondary Wi-Fi/BT controller. The SD/SDIO controllers support Default and High Speed modes as well as the High and Low voltage ranges.

Table 7 SD/MMC Controller I/O Capabilities

Controller	Bus Width	Supported Voltages (V)	I/O bus clock (MHz)	Maximum Bandwidth (MBps)	Notes
SDCARD	4	3.3, 1.8	208	104	
SDIO	4	3.3, 1.8	208	104	

Table 8 SD/SDIO Signal Descriptions

Signal Name	Туре	Description
SDCARD_CLK, SDIO_CLK	Output	SD/SDIO/MMC Clock
SDCARD_CMD, SDIO_CMD	Bidirectional	SD/SDIO/MMC Command
SDCARD_DAT[3:0], SDIO_DAT[3:0]	Bidirectional	SD/SDIO/MMC Data bus
SDCARD_WP	Input	SD Write Protect
SDCARD_CD#	Input	SD Card Detect

3.2 Serial ATA (SATA) Controller

Standard	Notes
Serial ATA Revision 3.1	Including all errata, ENC, and TP, except DHU (direct head unload)
Serial ATA Advanced Host Controller Interface (AHCI) Specification, Rev 1.3.1	

The SATA controller enables a control path from Jetson TX1 to an external SATA device. A SSD / HDD / ODD drive can be connected. Controller can support the maximum throughput of a Gen 2 drive.

Features:

- Port multiplier support
 - Command based switching (CBS)
- Supported Cables and connectors
 - Standard internal connector
 - Internal micro connector
 - Internal slimline connector
 - mSATA connector
 - BGA SSD interface
 - Not supported: External connector (eSATA), USM, Internal LIF-SATA

See the **Jetson TX1 OEM Product Design Guide** for supported USB 3.0/PCIe/SATA configurations and connection examples.

Table 9 SATA Signal Descriptions

Signal Name	Туре	Description
SATA_RX+/-	Input	Receive data, differential analog input
SATA_TX+/-	Output	Transmit data, differential analog output

3.3 Display Interfaces

The Jetson TX1 Display Controller Complex integrates two MIPI-DSI interfaces and two Serial Output Resources (SOR) to collect pixels from the output of the display pipeline, format/encode them to desired format, and then streams to various output devices. The SOR consists of several individual resources which can be used to interface with different display devices such as HDMI, DP or eDP.

3.3.1 MIPI Display Serial Interface (DSI)

The Display Serial Interface (DSI) is a serial bit-stream replacement for the parallel MIPI DPI and DBI display interface standards. DSI reduces package pin-count and I/O power consumption. DSI support enables both display controllers to connect to an external display(s) with a MIPI DSI receiver. The DSI transfers pixel data from the internal display controller to an external third-party LCD module.

Features:

- PHY Layer
 - Start / End of Transmission. Other out-of-band signaling
 - Per DSI interface: 1 Clock Lane; up to 4 Data Lanes
 - Supports link configuration 1x4, 2x4

- Supports dual link operation in 2x4 configurations for asymmetrical/symmetrical split in both left-right side or oddeven group split schemes.
- DSC link compression
- Maximum link rate 1.5Gbps as per MIPI D-PHY 1.1v version
- Maximum 10MHz LP receive rate
- Lane Management Layer with Distributor
- Protocol Layer with Packet Constructor
- Supports MIPI DSI 1.0.1v version mandatory features
- Command Mode (One-shot) with Host and/or display controller as master
- Clocks
 - Bit Clock : Serial data stream bit-rate clock
 - Byte Clock : Lane Management Layer Byte-rate clock
 - Application Clock: Protocol Layer Byte-rate clock.
- Error Detection / Correction
 - ECC generation for packet Headers
 - Checksum generation for Long Packets
- Error recovery
- High Speed Transmit timer
- Low Power Receive timer
- Turnaround Acknowledge Timeout

Table 10 DSI Signal Descriptions

Name	Туре	Description
DSI_0_CLK_N, DSI_0_CLK_P DSI_2_CLK_N, DSI_2_CLK_P	Output	Differential output clock for up to two 1x4 DSI interfaces
DSI_0_D[1:0]_N, DSI_0_D[1:0]_P DSI_1_D[1:0]_N, DSI_1_D[1:0]_P DSI_2_D[1:0]_N, DSI_2_D[1:0]_P DSI_3_D[1:0]_N, DSI_3_D[1:0]_P	Bidirectional	Differential data lanes for DSI interfaces. DSI_0_D[1:0] & DSI_1_D[1:0] are associated with DSI_0_CLK. DSI_2_D[1:0] & DSI_3_D[1:0] are associated with DSI_2_CLK

3.3.2 High-Definition Multimedia Interface (HDMI) and DisplayPort (DP) Interfaces

Standard	Notes
High-Definition Multimedia Interface (HDMI) Specification, version 2.0	> 340MHz pixel clock Scrambling support Clock/4 support (1/40 bit-rate clock)
High-bandwidth Digital Content Protection (HDCP) System Specification, version 2.2	
High-bandwidth Digital Content Protection (HDCP) System Specification, version 1.3	

The HDMI and DP interfaces share the same set of interface pins. A new transport mode was introduced in HDMI 2.0 to enable link clock frequencies greater than 340MHz and up to 600MHz.

Features:

- On-chip HDCP key storage, no external Secure ROM required
- Support for both HDCP 1.3 and HDCP 2.2

HDMI

- HDMI 2.0 mode (3.4Gbps < data rate <= 6Gbps)
- HDMI 1.4 mode (data rate<=3.4Gbps)
- Multi-channel audio from HDA controller, up to 8 channels 192kHz 24-bit.
- Vendor Specific Info-frame (VSI) packet transmission
- 24-bit RGB and 24-bit YUV444 (HDMI) pixel formats
- Transition Minimized Differential Signaling (TMDS) functional up to 340MHz pixel clock rate

Table 11 HDMI Signal Descriptions

Signal Name	Туре	Description
DP1_TX3+ DP1_TX3-	Output	HDMI Differential Clock. AC coupling & pull-downs (with disble) required on Carrier board.
DP1_TX[2:0]+ DP1_TX[2:0]-	Output	HDMI/DP Differential Data. AC coupling & pull-downs (with disble) required on Carrier board. DP1_TX0 = HDMI TXD2 DP1_TX1 = HDMI TXD1 DP1_TX2 = HDMI TXD0
DP1_HPD	Input	Interrupt. Used for Hot Plug detection. Level shifter required as this pad is not 5V tolerant
HDMI_CEC	Bidirectional	Consumer Electronics Control (CEC) one-wire serial bus. NVIDIA provides low level CEC APIs (read/write). These are not supported in earlier Android releases. For additional CEC support, 3rd party libraries need to be made available.
DP1_AUX_CH+ (DDC_SCL)	Output	DDC Serial Clock. Level shifter required; pad is not 5V tolerant.
DP1_AUX_CH- (DDC_SDA)	Bidirectional	DDC Serial Data. Level shifter required; pad is not 5V tolerant.

Table 12 DP Signal Descriptions

Signal Name	Туре	Description
DP1_TX[3:0]+ DP1_TX[3:0]-	Output	DP Differential Lanes. AC coupling required on Carrier board.
DP1_HPD	Input	Interrupt. Used for Hot Plug detection.
DP1_AUX_CH+ DP1_AUX_CH-	Bidirectional	DP auxiliary channel. AC coupling required on Carrier board.

3.3.3 Embedded DisplayPort (eDP) Interface

Standard	Notes
Embedded DisplayPort 1.4	Supported eDP 1.4 features: Additional link rates Enhanced framing Power sequencing Reduced aux timing Reduced main voltage swing

eDP is a mixed-signal interface consisting of 4 differential serial output lanes and 1 PLL. This PLL is used to generate a high frequency bit-clock from an input pixel clock enabling the ability to handle 10-bit parallel data per lane at the pixel rate for the desired mode. Embedded DisplayPort (eDP) modes (1.6GHz for RBR, 2.16GHz, 2.43GHz, 2.7GHz for HBR, 3.42GHz, 4.32GHz and 5.4GHz for HBR2).

NOTE:

eDP has been tested according to DP1.2b PHY CTS even though eDPv1.4 supports lower swing voltages and additional intermediate bit rates. This means the following nominal voltage levels (400mV, 600mV, 800mV, 1200mV) and data rates (RBR, HBR2) are tested. This interface can be tuned to drive lower voltage swings below 400mV and can be programmed to other intermediate bit rates as per the requirements of the panel and the system designer.

The eDP block collects pixels from the output of the display pipeline, formats/encodes them to the eDP format, and then streams them to various output devices. It drives local panels only (does not support an external DP port), includes a small test pattern generator and CRC generator.

Table 13 eDP Signal Descriptions

Signal Name	Туре	Description
DP0_TX[3:0]+ DP0_TX[3:0]-	Output	eDP Differential lanes
DP0_HPD	Input	eDP hot-plug detect
DP0_AUX_CH+ DP0_AUX_CH-	Bidirectional	eDP Auxiliary channel

3.4 Audio Interfaces

The I2S controller transports streaming audio data between system memory and an audio codec. The I2S controller supports I²S format, Left-justified Mode format, Right-justified Mode format, and DSP mode format, as defined in the Philips inter-IC-sound (I²S) bus specification.

The I2S and PCM (master and slave modes) interfaces support clock rates up to 24.5760MHz.

The I2S controller supports point-to-point serial interfaces for the I²S digital audio streams. I²S-compatible products, such as compact disc players, digital audio tape devices, digital sound processors, and those with digital TV sound may be directly connected to the I²S controller. The controller also supports the PCM and telephony mode of data-transfer. Pulse-Code-Modulation (PCM) is a standard method used to digitize audio (particularly voice) patterns for transmission over digital communication channels. The Telephony mode is used to transmit and receive data to and from an external mono CODEC in a slot-based scheme of time-division multiplexing (TDM). The I2S controller supports bidirectional audio streams and can operate in half-duplex or full-duplex mode.

Features:

- Basic I2S modes to be supported (I2S, RJM, LJM and DSP) in both Master and Slave modes.
- PCM mode with short (one-bit-clock wide) and long-fsync (two bit-clocks wide) in both master and slave modes.
- NW-mode with independent slot-selection for both Tx and Rx
- TDM mode with flexibility in number of slots and slot(s) selection.

- Capability to drive-out a High-z outside the prescribed slot for transmission
- Flow control for the external input/output stream.

Table 14 I2S Signal Descriptions

Signal Name	Туре	Description
12S[3:0]_LRCK	Bidirectional	Frame Sync/Word Select. Supports I2S/PCM audio. Interface can be master or slave
I2S[3:0]_CLK	Bidirectional	Serial Clock/Bit Clock. Supports I2S/PCM audio. Interface can be master or slave
I2S[3:0]_SDIN	Input	Data In. Supports I2S/PCM audio. Interface can be master or slave.
I2S[3:0]_SDOUT	Bidirectional	Data Out. Supports I2S/PCM audio. Interface can be master or slave.

3.5 USB Interfaces

Standard	Notes
Universal Serial Bus Specification Revision 3.0	Refer to specification for related interface timing details.
Universal Serial Bus Specification Revision 2.0	USB Battery Charging Specification, version 1.0; including Data Contact Detect protocol Modes: Host and Device Speeds: Low, Full, and High Refer to specification for related interface timing details.
Enhanced Host Controller Interface Specification for Universal Serial Bus revision 1.0	Refer to specification for related interface timing details.

See the *Jetson TX1 OEM Product Design Guide* for supported USB 3.0/PCle/SATA configurations and connection examples.

Table 15 USB Signals

Signal (Pin Name if different)	Туре	Description
USB[2:0]_D-	Analog	USB Data Negative (USB 2.0 interfaces)
USB[2:0]_D+	Analog	USB Data Positive (USB 2.0 interfaces)
USB_SS1_RX-	Input	USB 3.0 #1: Receive Data Negative input
USB_SS1_RX+	Input	USB 3.0 #11: Receive Data Positive input
USB_SS1_TX-	Output	USB 3.0 #1: Transmit Data Negative output
USB_SS1_TX+	Output	USB 3.0 #1: Transmit Data Positive output
USB_SS2_RX- (PEX1_RX- or PEX3_RX-)	Input	USB 3.0 #2 options: Receive Data Negative input
USB_SS2_RX+ (PEX1_RX+ or PEX3_RX+)	Input	USB 3.0 #2 options: Receive Data Positive input
USB_SS2_TX- (PEX1_TX- or PEX3_TX-)	Output	USB 3.0 #2 options: Transmit Data Negative output
USB_SS2_TX+ (PEX1_TX+ or PEX3_TX+)	Output	USB 3.0 #2 options: Transmit Data Positive output
USB_SS3_RX- (SATA_RX-)	Input	USB 3.0 #3 option: Receive Data Negative input
USB_SS3_RX+ (SATA_RX+)	Input	USB 3.0 #3 option: Receive Data Positive input
USB_SS3_TX- (SATA_TX-)	Output	USB 3.0 #3 option: Transmit Data Negative output
USB_SS3_TX+ (SATA_TX+)	Output	USB 3.0 #3 option: Transmit Data Positive output

Note: USB_SS0 interface is not available at the connector; it is used for the Gigabit Ethernet controller on Jetson TX1.

3.6 PCI Express (PCIe) Interface

Standard	Notes
PCI Express Base Specification Revision 2.0	Jetson TX1 meets the timing requirements for the Gen2 (5.0 GT/s) data rates. Refer to specification for complete interface timing details. Although NVIDIA validates that the Jetson TX1 design complies with the PCIe specification, PCIe software support may be limited.

Jetson TX1 integrates a x5 lane PCle bridge to enable a control path from Jetson TX1 to external PCle devices. Two PCle Gen2 controllers (one x4, one x1) support connections to one or two endpoints.

See the *Jetson TX1 OEM Product Design Guide* for supported USB 3.0/PCle/SATA configurations and connection examples.

Table 16 PCle Signal Descriptions

Signal Function (Pin Name)	Туре	Description
PEX_WAKE#	Input	PCI Express Wake This signal is used as the PCI Express defined WAKE# signal. When asserted by a PCI Express device, it is a request that system power be restored. No interrupt or other consequences result from the assertion of this signal.
PCle Controller #0		
PEX0_REFCLK+/-	Output	Differential Reference Clocks. PEX0_REFCLK is associated with PCle Controller #0.
PEX2_RX+/- (Lane 3) PEX_RFU_RX+/- (Lane 2) USB_SS1_RX+/- (Lane 1) PEX0_RX+/- (Lane 0)	Input	Differential Receive Data Lanes, associated with PCle Controller #0.
PEX2_TX+/- (Lane 3) PEX_RFU_TX+/- (Lane 2) USB_SS1_TX+/- (Lane 1) PEX0_TX+/- (Lane 0)	Output	Differential Transmit Data Lanes, associated with PCIe Controller #0.
PEX0_CLKREQ#	Bidirectional	PCI Express Reference Clock Request This signal is used by a PCI Express device to indicate it needs the PEX_REFCLKP and PEX_REFCLKN to actively drive reference clock. PEX0_CLKREQ# is associated with PCIe Controller #0.
PEX0_RST# Output		PCI Express Reset This signal provides a reset signal to all the PCI Express links. It must be asserted 100 ms after the power to the PCI Express slots has stabilized. PEX0_RST# is associated with PCIe Controller #0.
PCIe Controller #1		
PEX1_REFCLK+/-	Output	Differential Reference Clocks. PEX1_REFCLK is associated with PCIe Controller #1.
PEX1_RX+/-	Input	Differential Receive Data Lane, associated with PCIe Controller #1.
PEX1_TX+/-	Output	Differential Transmit Data Lane, associated with PCle Controller #1.
PEX1_CLKREQ#	Bidirectional	PCI Express Reference Clock Request This signal is used by a PCI Express device to indicate it needs the PEX_REFCLKP and PEX_REFCLKN to actively drive reference clock. PEX0_CLKREQ# is associated with PCIe Controller #1.
PEX1_RST#	Output	PCI Express Reset This signal provides a reset signal to all the PCI Express links. It must be asserted 100 ms after the power to the PCI Express slots has stabilized. PEX0_RST# is associated with PCIe Controller #1.

3.7 Serial Peripheral Interface

The SPI controllers operate up to 65 Mbps in master mode and 45 Mbps in slave mode. It allows a duplex, synchronous, serial communication between the controller and external peripheral devices. It consists of 4 signals, SS_N (Chip select), SCK (clock), MOSI (Master data out and Slave data in) and MISO (Slave data out and master data in). The data is transferred on MOSI or MISO based on the data transfer direction on every SCK edge. The receiver always receives the data on the other edge of SCK.

Features:

- Independent RX FIFO and TX FIFO.
- Software controlled bit-length supports packet sizes of 1 to 32 bits.
- Packed mode support for bit-length of 7 (8-bit packet size) and 15 (16-bit packet size).
- SS_N can be selected to be controlled by software, or it can be generated automatically by the hardware on packet boundaries.
- Receive compare mode (controller listens for a specified pattern on the incoming data before receiving the data in the FIFO).
- Simultaneous receive and transmit supported
- Supports Master mode. Slave mode has not been validated

Table 17 SPI Signal Descriptions

Signal Name	Туре	Description	
SPI[2:1]_CS[1:0]# SPI0_CS0_N		Chip Select options for SPI[2:1]: Depending on pin multiplexing, there may be one or more chip select options for each SPI interface. Multiple available chip selects can be used to differentiate between two or more SPI slave devices	
SPI[2:0]_MISO	Bidirectional	Master In / Slave Out.	
SPI[2:0]_MOSI	Bidirectional	Master Out / Slave In.	
SPI[2:0]_CLK	Bidirectional	Serial Clock: Clock phase and polarity is programmable.	

Figure 6 SPI Master Timing Diagram

Table 18 SPI Master Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
Fsck	SPIx_SCK clock frequency			65	MHz
Psck	SPIx_SCK period	1/Fsck			ns
t _{CH}	SPIx_SCK high time	50%Psck -10%		50%Psck +10%	ns
t _{CL}	SPIx_SCK low time	50%Psck -10%		50%Psck +10%	ns
t _{CRT}	SPIx_SCK rise time (slew rate)	0.1			V/ns
t _{CFT}	SPIx_SCK fall time (slew rate)	0.1			V/ns
t _{SU}	SPIx_MOSI setup to SPIx_SCK rising edge	2			ns
t _{HD}	SPIx_MOSI hold from SPIx_SCK rising edge	3			ns
t _{CSS}	SPIx_CSx_N setup time	2			ns
t _{CSH}	SPIx_CSx_N hold time	3			ns
t _{CS}	SPIx_CSx_N high time	10			ns

Note: Polarity of SCLK is programmable. Data can be driven or input relative to either the rising edge (shown above) or falling edge.

Figure 7 SPI Slave Timing Diagram

Table 19 SPI Slave Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
t _{SCP}	SPIx_SCK period	2*(t _{SDD} + t _{MSU} 1)			ns
t _{SCH}	SPIx_SCK high time	t _{SDD} + t _{MSU} ¹			ns
t _{SCL}	SPIx_SCK low time	t _{SDD} + t _{MSU} ¹			ns
t _{SCSU}	SPIx_CSx_n setup time	1			t _{SCP}
t _{SCSH}	SPIx_CSx_n high time	1			t _{SCP}
t _{SCCS}	SPIx_SCK rising edge to SPIx_CSx_n rising edge	1		1	t _{SCP}
t _{SDSU}	SPIx_MOSI setup to SPIx_SCK rising edge	1		1	ns
t _{SDH}	SPIx_MOSI hold from SPIx_SCK rising edge	2		11	ns
t _{SDD}	SPIx_MISO delay from SPIx_SCLK falling edge (ALT1²)	3.5		16	ns
t _{SDD}	SPIx_MISO delay from SPIx_SCLK falling edge (ALT2²)	3		13	ns
t _{SDD}	SPIx_MISO delay from SPIx_SCLK falling edge (ALT3²)	4		17	ns

^{1.} $\,t_{MSU}$ is the setup time required by the external master

^{2.} ALT1/2/3 refers to the position of the SPI pins in the Signal Pinout Multiplexing tables in Section 3.1, *Signal List and Multiplexing Functions*.

Note: Polarity of SCLK is programmable. Data can be driven or input relative to either the rising edge (shown above) or falling edge.

3.8 Inter-Chip Communication (I2C) Controller

Standard	Notes
NXP inter-IC-bus (I ² C) specification	

The I2C controller implements an I²C-bus specification compliant I2C master and a slave controller. The I2C controller supports multiple masters and slaves in: Standard-mode (up to 100Kbit/s), Fast-mode (up to 400 Kbit/s), Fast-mode plus (Fm+, up to 1Mbit/s) and High-speed mode (up to 3.4Mbit/s) of operations. A general purpose I2C controller allows system expansion for I2C-based devices, such as AM/FM radio, remote LCD display, serial ADC/DAC, and serial EPROMs, as defined in the NXP inter-IC-bus (I²C) specification. The I2C bus supports serial device communications to multiple devices. The I2C controller handles bus mastership with arbitration, clock source negotiation, speed negotiation for standard and fast devices, and 7-bit and 10-bit slave address support according to the I2C protocol and supports master and slave mode of operation.

Table 20 I2C Usage

Interface (Balls) name	Target Application	On-Jetson TX1 Termination
I2C_GP0_CLK/DAT	Various	1KΩ on Jetson TX1 to 1.8V
I2C_GP1_CLK/DAT	Power Monitors	1KΩ on Jetson TX1 to 3.3V
I2C_PM_CLK/DAT	Camera	1KΩ on Jetson TX1 to 1.8V
I2C_CAM_CLK/DAT	Camera & Camera related functions	1KΩ on Jetson TX1 to 1.8V
DP1_AUX_CH+/- (see note)	Display: HDMI/DP (DDC)	None
DP0_AUX_CH+/- (see note)	Display: eDP	None

Note: See Display section for additional information for DP[1:0]_AUX_CH+/-

Table 21 I2C Signal Descriptions

Signal Name	Туре	Description
I2C_GP[1:0]_CLK I2C_PM_CLK I2C_CAM_CLK	Bidirectional	Serial Clock for I2C interfaces.
I2C_GP[1:0]_DAT I2C_PM_DAT I2C_CAM_DAT	Bidirectional	Serial Data for I2C interfaces.

3.9 UART Controller

UART controller provides serial data synchronization and data conversion (parallel-to-serial and serial-to-parallel) for both receiver and transmitter sections. Synchronization for serial data stream is accomplished by adding start and stop bits to the transmit data to form a data character. Data integrity is accomplished by attaching a parity bit to the data character. The parity bit can be checked by the receiver for any transmission bit errors.

Features:

- Synchronization for the serial data stream with start and stop bits to transmit data and form a data character
- Supports both 16450- and 16550-compatible modes. Default mode is 16450
- Device clock up to 200MHz, baud rate of 12.5Mbits/second
- Data integrity by attaching parity bit to the data character
- Support for word lengths from five to eight bits, an optional parity bit and one or two stop bits
- Support for modem control inputs

- DMA capability for both TX and RX
- 8-bit x 36 deep TX FIFO
- 11-bit x 36 deep RX FIFO. 3 bits of 11 bits per entry will log the RX errors in FIFO mode (break, framing and parity errors as bits 10,9,8 of FIFO entry)
- Auto sense baud detection
- Timeout interrupts to indicate if the incoming stream stopped
- Priority interrupts mechanism
- Flow control support on RTS and CTS
- Internal loopback
- SIR encoding/decoding (3/16 or 4/16 baud pulse widths to transmit bit zero)

Table 22 UART Signal Descriptions

Function	Туре	Description
UART[2:0]_TX	Output	UART Transmit
UART[2:0]_RX	Input	UART Receive
UART[2:0]_CTS#	Input	UART Clear-to-send
UART[2:0]_RTS#	Output	UART Request-to-send

3.10 Video Input Interfaces

3.10.1 MIPI Camera Serial Interface (CSI)

Standard	Notes
MIPI CSI 2.0 Receiver specification	
MIPI D-PHY® v1.2 Physical Layer specification	

The Jetson TX1 module incorporates three MIPI CSI x4 blocks supporting a variety of device types and camera configurations. The Camera Serial Interface (CSI) is based on MIPI CSI 2.0 standard specification and implements the CSI receiver which receives data from an external camera module with a CSI transmitter.

Features:

- Supported camera configurations:
 - 1 x4: single camera with a 4 lane sensor using any one of three MIPI x4 blocks.
 - 2 x4: stereo pair with 4 lanes for each camera using any pair of three MIPI x4 blocks.
 - 2 x2: dual camera mode, breaking up any MIPI x4 block to two x2 sub blocks; can support up to 6 camera streams simultaneously.
- Supported input data formats:
 - RGB: RGB888, RGB666, RGB565, RGB555, RGB444
 - YUV: YUV422-8b, YUV420-8b (legacy), YUV420-8b, YUV444-8b
 - RAW: RAW6, RAW7, RAW8, RAW10, RAW12, RAW14
 - DPCM: user definedUser defined: JPEG8
 - Embedded: Embedded control information

- Supports single-shot mode
- Physical Interface (MIPI D-PHY) Modes of Operation
 - High Speed Mode High speed differential signaling up to 1.5Gbps; burst transmission for low power
 - Low Power Control Single-ended 1.2V CMOS level. Low speed signaling for handshaking.
 - Low Power Escape -Low speed signaling for data, used for escape command entry only. 20Mbps

If the two streams come from a single source, then the streams are separated using a filter indexed on different virtual channel numbers or data types. In case of separation using data types, the normal data type is separated from the embedded data type. Since there are only two pixel parsers, virtual channel and embedded data capability cannot be used at the same time.

Table 23 CSI Signal Descriptions

Signal Name	Туре	Description
CSI_[5:0]_CLK_N CSI_[5:0]_CLK_P	Input	Differential CSI clock
CSI_[5:0]_D[1:0]_N CSI_[5:0]_D[1:0]_P	Input	Differential CSI data lanes. Each data pair can be associated with a different camera, or CSI_[1:0]_D[1:0], CSI_[3:2]_D[1:0], CSI_[5:4]_D[1:0] can be used to interface with quadlane cameras.

3.10.2 Camera / VI (Video Input)

The Video Input (VI) block receives data from the CSI receiver and prepares it for presentation to system memory or the dedicated image signal processor (ISP) execution resources. The VI block provides formatting for RGB, YCbCr, and raw Bayer data in support of a number of camera user models. These models include single and multi-camera systems, which may have up to six active streams. The input streams are obtained from MIPI compliant CMOS sensor camera modules.

Table 24 Camera Clock & Control Signal Descriptions

Signal Name	Туре	Description	
I2C_CAM_CLK	Bidirectional	See I2C section	
I2C_CAM_DAT	Bidirectional	See I2C section	
CAM[1:0]_MCLK Output Video Input Master clocks for primary & secondary cameras			
GPIO1_CAM1_PWR# GPIO0_CAM0_PWR#	Bidirectional	Camera Power Control signals: Connect to powerdown pins on camera(s). Available for use as general purpose I/Os.	
GPIO5_CAM_FLASH_EN	Output	Camera Flash Enable: Connect to enable of flash circuit. Available for use as general purpose I/O.	
GPIO3_CAM1_RST# GPIO2_CAM0_RST#	Output	Camera Resets: Used for camera module resets. If AutoFocus Enable is required, GPIO3_CAM1_RST# to AF_EN pin on camera module & use GPIO2_CAM0_RST# as common reset line. Available for use as general purpose I/Os.	

3.11 Miscellaneous Interfaces

3.11.1 Debug

Jetson TX1 has an optional JTAG interface that can be used for SCAN testing or for communicating with either integrated CPU.

Table 25 Debug Signal Descriptions

Signal Name	Туре	Description
JTAG_RTCK	Output	Return Test Clock
JTAG_TCK	Input	Test Clock
JTAG_TDI	Input	Test Data In
JTAG_TDO	Output	Test Data Out
JTAG_TMS	Input	Test Mode Select
JTAG_TRST#	Input	Test Reset

3.11.2 Pulse Width/Frequency Modulation (PWFM)

The Pulse Width Frequency Modulator (PWFM) is a frequency divider with a varying pulse width. The PWFM runs off a device clock programmed in the Clock and Reset controller, and can be any frequency up to the device clock maximum speed of 48MHz. The PWFM gets divided by 256 before being subdivided based on a programmable value. Two PWM signals are available on Jetson TX1 pins. One is intended for LCD contrast and brightness control and another for fan speed control.

Table 26 PWFM Signal Descriptions

Signal Name	Туре	Description
LCD0_BKLT_PWM FAN_PWM	Output	LCD Backlight (PM3_PWM0) and FAN (PM3_PWM3) Pulse Width Frequency Modulation Signals. These output a frequency divided down from the device clock source and output a pulse of programmed width.

4.0 Pin Definitions

Jetson TX1 has pins that are multi-purpose digital I/O pads (MPIO). Each MPIO can be configured to act as a GPIO or it can be assigned for use by a particular I/O controller. Though each MPIO has up to 5 functions (GPIO function and up to 4 SFIO functions), a given MPIO can only act as a single function at a given point in time. The functions for each pin on Jetson TX1 is fixed to a single SFIO function or as a GPIO. The different MPIO pins share a similar structure, but there are several varieties of such pads. The varieties are designed to minimize the number of on-board components (such as level shifters or pull-up resistors) required in Jetson TX1 designs.

Jetson TX1 employs the following MPIO pads:

- ST (standard) pads are the most common pads on the chip. They are used for typical General Purpose I/O.
- DD (dual-driver) pads are similar to the ST pads. A DD pad can tolerate its I/O pin being pulled up to 3.3V (regardless of supply voltage) as long as the pad's output-driver is set to open-drain mode. There are special power-sequencing considerations when using this functionality.

NOTE: The output of DD pads cannot be pulled High during deep-power-down (DPD).

- CZ (controlled output impedance) pads are optimized for use in applications requiring tightly controlled output impedance. They are similar to ST pads except for changes in the drive strength circuitry and in the weak pull-ups/downs. CZ pads are included on the VDDIO_SDMMC1 and VDDIO_SDDMC3 power rails. Each of those rails also includes a pair of CZ_COMP pads. Circuitry within Jetson TX1 continually matches the output impedance of the CZ pads to the on-board pull-up/-down resistors attached to the CZ_COMP pads.
- LV_CZ (low voltage controlled impedance) pads are similar to CZ pads but are optimized for use with a 1.2V supply voltage (and signaling level). They support a 1.8V supply voltage (and signaling level) as a secondary mode. Jetson TX1 uses LV_CZ pads for SPI interfaces operating at 1.8V.
- DP_AUX pad is used as an Auxiliary control channel for the Display Port which needs differential signaling. Because the same I/O block is used for the Display Port and HDMI to ensure the control path to the display interface is minimized, the DP_AUX pads can operate in open-drain mode so that HDMI's control path (i.e., DDC interface which needs I2C) can also be used in the same pad.

Table 27 MPIO Pad Types

Pad Details	Pad Type					
Pad Details	ST	CZ	DD	LV_CZ	ST_EMMC	
IO rail voltage	1.8V	1.8V/3.3V	1.8V	1.8V	1.8V	
Input Buffer	Schmitt & CMOS	Schmitt & CMOS	Schmitt & CMOS	Schmitt & CMOS	Schmitt & CMOS	
Output Buffer	Push-pull	Push-pull	Push-pull & Open Drain	Push-pull	Push-pull	
IO Voltage tolerance	1.8V	VDDIO	Open Drain: 3.3V Otherwise:VDDIO	1.8V	1.8V	
Nominal Pull strength	100kΩ	18kΩ (PU)	100kΩ	15kΩ	15kΩ	
"Slew Rate" control	No	2-bits up/down	No	2-bits up/down	3 bits up/down	
Drive strength control	5-bits up/down	7-bits up/down	5-bits up/down	5-bits up/down	5 bits up/down	
Per Pad Control						
PUPD	✓	✓	✓	✓	✓	
Tristate_control	✓	✓	✓	✓	✓	
DPD_PARKING_CONTROL	✓	✓	✓	✓	✓	
E_INPUT	✓	✓	✓	✓	✓	

Pad Details	Pad Type					
Pad Details	ST	CZ	DD	LV_CZ	ST_EMMC	
E_LPDR	✓		✓			
E_OD	✓		✓			
E_IO_HV			✓			
E_HSM		✓				
SCHMT	✓	✓	✓	✓	✓	
DRV_TYPE[1:0]		✓		✓		

Each MPIO pad consists of:

- An output driver with tristate capability, drive strength controls and push-pull mode, open-drain mode, or both
- An input receiver with either schmitt mode, CMOS mode, or both
- A weak pull-up and a weak pull-down

MPIO pads are partitioned into multiple "pad control groups" with controls being configured for the group. During normal operation, these per-pad controls are driven by the pinmux controller registers. During deep sleep, the PMC bypasses and then resets the pinmux controller registers. Software reprograms these registers as necessary after returning from deep sleep.

Refer to the Tegra X1 (SoC) Technical Reference Manual for more information on modifying pad controls.

4.1 Power-on Reset Behavior

Each MPIO pad has a deterministic power-on reset (PoR) state. The particular reset state for each pad is chosen to minimize the need of on-board components like pull-up resistors in a Jetson TX1-based system. For example, the on-chip weak pull-ups are enabled during PoR for pads which are usually used to drive active-low chip selects.

The following list is a simplified description of the Jetson TX1 boot process focusing on those aspects which relate to the MPIO pins.

- 1. System-level hardware executes the power-up sequence. This sequence ends when system-level hardware releases SYS_RESET_N.
- 2. The boot ROM begins executing and programs the on-chip I/O controllers to access the secondary boot device.
- 3. The boot ROM fetches the Boot Configuration Table (BCT) and boot loader from the secondary boot device.
- 4. If the BCT and boot loader are fetched successfully, the boot ROM transfers control to the boot loader.
- 5. Otherwise, the boot ROM enters USB recovery mode.

4.2 Deep Sleep Behavior

Deep Sleep is an ultra-low-power standby state in which the Jetson TX1 maintains much of its I/O state while most of the chip is powered off. The following lists offer a simplified description of the deep sleep entry and exit concentrating on those aspects which relate to the MPIO pads. During deep sleep most of the pads are put in a state called Deep Power Down (DPD). The sequence for entering to DPD is same across pads. Specific variations are there in some pads in terms of type of features that are available in DPD.

NOTE: The output of DD pads cannot be pulled High during deep-power-down (DPD).

OD pads do NOT retain their output during DPD. OD pads should NOT be configured as GPIOs in a platform where they are expected to hold a value during DPD.

ALL MPIO pads do NOT have identical behavior during deep sleep. They differ with regard to:

- Input buffer behavior during deep sleep
 - Forcibly disabled OR
 - Enabled for use as a "GPIO wake event" OR
 - Enabled for some other purpose (e.g., a "clock request" pin)
- Output buffer behavior during deep sleep
 - Maintain a static programmable (0, 1, or tristate) constant value OR
 - Capable of changing state (i.e., dynamic while the chip is still in deep sleep)
- Weak pull-up/pull-down behavior during deep sleep
 - Forcibly disabled OR
 - Can be configured
- Pads that do not enter deep sleep
 - Some of the pads whose outputs are dynamic during deep sleep are of special type and they do not enter deep sleep (e.g., pads that are associated with PMC logic do not enter deep sleep, pads that are associated with JTAG do not enter into deep sleep any time.

Figure 8 DPD Wait Times

4.3 GPIO Controller

The Jetson TX1 has multiple dedicated GPIOs. Each GPIO can be individually configurable as Output/Input/Interrupt sources with level/edge controls.

4.4 Pin Assignments

	Α	В	С	D	E	F	G	Н
	VDD_IN	VDD_IN	VDD_IN	RSVD	FORCE_RECOV#	AUDIO_MCLK	I2S0_SDIN	I2S0_LRCLK
	VDD_IN	VDD_IN	VDD_IN	RSVD	SLEEP#	GPIO19_AUD_RST	I2S0_CLK	I2S0_SDOUT
	GND	GND	GND	RSVD	SPI0_CLK	SPI0_CS0#	GND	GPIO20_AUD_INT
	GND	GND	GND	RSVD	SPI0_MISO	SPI0_MOSI	RSVD	RSVD
	RSVD	RSVD	RSVD	RSVD	I2S3_SDIN	I2S3_LRCLK	I2S2_CLK	I2S2_LRCLK
	I2C_PM_CLK	I2C_PM_DAT	I2C_CAM_CLK	I2C_CAM_DAT	I2S3_CLK	I2S3_SDOUT	I2S2_SDIN	I2S2_SDOUT
	CHARGING#	CARRIER_STBY#	BATLOW#	GPIO5_CAM_FLASH_EN	RSVD	GPIO1_CAM1_PWR#	GPIO4_CAM_STROBE	GPIO3_CAM1_RST#
	GPIO14_AP_WAKE_MDM	VIN_PWR_BAD#	RSVD	RSVD	RSVD	CAM1_MCLK	GPIO0_CAM0_PWR#	GPIO2_CAM0_RST#
	GPIO15_AP2MDM_READY	GPIO17_MDM2AP_READY	RSVD	UART1_TX	UART1_RTS#	CAM0_MCLK	UART3_CTS#	UART3_RX
	GPIO16_MDM_WAKE_AP	GPIO18_MDM_COLDBOOT	RSVD	UART1_RX	UART1_CTS#	GND	UART3_RTS#	UART3_TX
	RSVD	JTAG_TCK	RSVD	RSVD	RSVD	RSVD	UART0_RTS#	UARTO_CTS#
	JTAG_TMS	JTAG_TDI	RSVD	RSVD	RSVD	RSVD	UART0_RX	UART0_TX
	JTAG_TDO	JTAG_GP0	RSVD	I2S1_LRCLK	SPI1_CS1#	SPI1_MOSI	SPI1_CLK	GPIO8_ALS_PROX_INT
	JTAG_RTCK	GND	I2S1_SDIN	I2S1_SDOUT	SPI1_CS0#	SPI1_MISO	GPIO9_MOTION_INT	SPI2_CLK
	UART2_CTS#	UART2_RX	I2S1_CLK	I2C_GP0_DAT	I2C_GP0_CLK	GND	SPI2_MOSI	SPI2_MISO
	UART2_RTS#	UART2_TX	FAN_PWM	RSVD	RSVD	SPI2_CS1#	SPI2_CS0#	SDCARD_PWR_EN
	USB0_EN_OC#	FAN_TACH	RSVD	RSVD	RSVD	SDCARD_CD#	GND	SDCARD_D1
	USB1_EN_OC#	RSVD	RSVD	RSVD	RSVD	SDCARD_D3	SDCARD_CLK	SDCARD_D0
	RSVD	GPIO11_AP_WAKE_BT	RSVD	RSVD	GND	SDCARD_D2	SDCARD_CMD	GND
	I2C_GP1_DAT	GPIO10_WIFI_WAKE_AP	RSVD	GND	CSI5_D1-	SDCARD_WP	GND	CSI4_D1-
	I2C_GP1_CLK	GPIO12_BT_EN	GND	CSI5_CLK-	CSI5_D1+	GND	CSI4_CLK-	CSI4_D1+
	GPIO_EXP1_INT	GPIO13_BT_WAKE_AP	CSI5_D0-	CSI5_CLK+	GND	CSI4_D0-	CSI4_CLK+	GND
	GPIO_EXP0_INT	GPIO7_TOUCH_RST	CSI5_D0+	GND	CSI3_D1-	CSI4_D0+	GND	CSI2_D1-
	RSVD	TOUCH_CLK	GND	CSI3_CLK-	CSI3_D1+	GND	CSI2_CLK-	CSI2_D1+
	LCD_TE	GPIO6_TOUCH_INT	CSI3_D0-	CSI3_CLK+	GND	CSI2_D0-	CSI2_CLK+	GND
	RSVD	LCD_VDD_EN	CSI3_D0+	GND	CSI1_D1-	CSI2_D0+	GND	CSIO_D1-
	RSVD	LCD0_BKLT_PWM	GND	CSI1_CLK-	CSI1_D1+	GND	CSIO_CLK-	CSI0_D1+
	GND	LCD_BKLT_EN	CSI1_D0-	CSI1_CLK+	GND	CSI0_D0-	CSIO_CLK+	GND
	SDIO_RST#	SDIO_CMD	CSI1_D0+	GND	DSI3_D1+	CSI0_D0+	GND	DSI2_D1+
	SDIO_D3	SDIO_CLK	GND	RSVD	DSI3_D1-	GND	DSI2_CLK+	DSI2_D1-
	SDIO_D2	GND	DSI3_D0+	RSVD	GND	DSI2_D0+	DSI2_CLK-	GND
	SDIO_D1	SDIO_D0	DSI3_D0-	GND	DSI1_D1+	DSI2_D0-	GND	DSI0_D1+
	DP1_HPD	HDMI_CEC	GND	RSVD	DSI1_D1-	GND	DSIO_CLK+	DSI0_D1-
	DP1_AUX_CH-	DP0_AUX_CH-	DSI1_D0+	RSVD	GND	DSI0_D0+	DSI0_CLK-	GND
				GND			GND	
	DP1_AUX_CH+ USB0_OTG_ID	DP0_AUX_CH+ DP0_HPD	DSI1_D0- GND	GND DP1_TX2-	DP1_TX3+	DSI0_D0- GND	GND DP0_TX2-	DP0_TX3+
				DP1_TX2+			DP0_TX2+	
	GND	USB0_VBUS_DET	DP1_TX1-		GND	DP0_TX1-		GND DD0 TV0
	USB1_D+	GND	DP1_TX1+	GND DEV BELL TV	DP1_TX0-	DP0_TX1+	GND	DP0_TX0-
	USB1_D-	USB0_D+	GND DEVA TV	PEX_RFU_TX+	DP1_TX0+	GND	PEX_RFU_RX+	DP0_TX0+
	GND	USB0_D-	PEX2_TX+	PEX_RFU_TX-	GND DEVA TV	PEX2_RX+	PEX_RFU_RX-	GND
	RSVD	GND	PEX2_TX-	GND	PEX1_TX+	PEX2_RX-	GND	PEX1_RX+
	RSVD	USB2_D+	GND	USB_SS1_TX+	PEX1_TX-	GND	USB_SS1_RX+	PEX1_RX-
	GND	USB2_D-	USB_SS0_TX+	USB_SS1_TX-	GND	USB_SS0_RX+	USB_SS1_RX-	GND
	PEX0_REFCLK+	GND	USB_SS0_TX-	GND	PEX0_TX+	USB_SS0_RX-	GND	PEX0_RX+
	PEX0_REFCLK-	PEX1_REFCLK+	GND	SATA_TX+	PEX0_TX-	GND	SATA_RX+	PEX0_RX-
	RESET_OUT#	PEX1_REFCLK-	RSVD	SATA_TX-	GND	GBE_LINK1000#	SATA_RX-	GND
	RESET_IN#	GND	PEX1_CLKREQ#	RSVD	GBE_LINK_ACT#	GBE_MDI1+	GND	GBE_MDI3+
	CARRIER_PWR_ON	RSVD	PEX0_CLKREQ#	PEX_WAKE#	GBE_MDI0+	GBE_MDI1-	GBE_MDI2+	GBE_MDI3-
	CHARGER_PRSNT#	RSVD	PEX0_RST#	RSVD	GBE_MDI0-	GND	GBE_MDI2-	GND
)	VDD_RTC	POWER_BTN#	RSVD	RSVD	PEX1_RST#	GBE_LINK100#	GND	RSVD

4.5 Pin Descriptions

In the following table, pins are categorized by functional block.

Table 28 Pin List

IUDIO	Table 28 Pin List							
Pin#	Jetson TX1 Pin Name	Usage/Description	Direction	Pin Type	Pin Type Code			
Display	,							
B34	DP0_AUX_CH-	Display Port 0 Auxiliary Channel-	Bidir	AC-Coupled on Carrier Board	DP_AUX			
B35	DP0_AUX_CH+	Display Port 0 Auxiliary Channel+	Bidir	AC-Coupled on Carrier Board	DP_AUX			
B36	DP0_HPD	Display Port 0 Hot Plug Detect	Input	CMOS - 1.8V	ST			
H38	DP0_TX0-	Display Port 0 Data Lane 0-	Output	AC-Coupled on Carrier Board	DP			
H39	DP0_TX0+	Display Port 0 Data Lane 0+	Output	AC-Coupled on Carrier Board	DP			
F37	DP0_TX1-	Display Port 0 Data Lane 1-	Output	AC-Coupled on Carrier Board	DP			
F38	DP0_TX1+	Display Port 0 Data Lane 1+	Output	AC-Coupled on Carrier Board	DP			
G36	DP0_TX2-	Display Port 0 Data Lane 2-	Output	AC-Coupled on Carrier Board	DP			
G37	DP0_TX2+	Display Port 0 Data Lane 2+	Output	AC-Coupled on Carrier Board	DP			
H35	DP0_TX3-	Display Port 0 Data Lane 3-	Output	AC-Coupled on Carrier Board	DP			
H36	DP0_TX3+	Display Port 0 Data Lane 3+	Output	AC-Coupled on Carrier Board	DP			
A34	DP1_AUX_CH-	Display Port 1 Aux- or HDMI DDC SDA	Bidir	AC-Coupled on Carrier Board	DP_AUX			
A35	DP1_AUX_CH+	Display Port 1 Aux+ or HDMI DDC SCL	Bidir	AC-Coupled on Carrier Board	DP_AUX			
A33	DP1_HPD	Display Port 1 Hot Plug Detect	Input	CMOS - 1.8V	ST			
E38	DP1_TX0-	DisplayPort 1 Lane 0- / HDMI Lane 2-	Output	AC-Coupled on Carrier Board	DP			
E39	DP1_TX0+	DisplayPort 1 Lane 0+ / HDMI Lane 2+	Output	AC-Coupled on Carrier Board	DP			
C37	DP1_TX1-	DisplayPort 1 Lane 1- / HDMI Lane 1-	Output	AC-Coupled on Carrier Board	DP			
C38	DP1_TX1+	DisplayPort 1 Lane 1+ / HDMI Lane 1+	Output	AC-Coupled on Carrier Board	DP			
D36	DP1_TX2-	DisplayPort 1 Lane 2- / HDMI Lane 0-	Output	AC-Coupled on Carrier Board	DP			
D37	DP1_TX2+	DisplayPort 1 Lane 2+ / HDMI Lane 0+	Output	AC-Coupled on Carrier Board	DP			
E35	DP1_TX3-	DisplayPort 1 Lane 3- / HDMI Clk Lane-	Output	AC-Coupled on Carrier Board	DP			
E36	DP1_TX3+	DisplayPort 1 Lane 3+ / HDMI Clk Lane+	Output	AC-Coupled on Carrier Board	DP			
G34	DSI0_CLK-	Display, DSI 0 Clock-	Output	MIPI D-PHY	DPHY			
G33	DSI0_CLK+	Display, DSI 0 Clock+	Output	MIPI D-PHY	DPHY			
F35	DSI0_D0-	Display, DSI 0 Data 0-	Output	MIPI D-PHY	DPHY			
F34	DSI0_D0+	Display, DSI 0 Data 0+	Output	MIPI D-PHY	DPHY			
H33	DSI0_D1-	Display, DSI 0 Data 1-	Output	MIPI D-PHY	DPHY			
H32	DSI0_D1+	Display, DSI 0 Data 1+	Output	MIPI D-PHY	DPHY			
C35	DSI1_D0-	Display, DSI 1 Data 2-	Output	MIPI D-PHY	DPHY			
C34	DSI1_D0+	Display, DSI 1 Data 2+	Output	MIPI D-PHY	DPHY			
E33	DSI1_D1-	Display, DSI 1 Data 3-	Output	MIPI D-PHY	DPHY			
E32	DSI1_D1+	Display, DSI 1 Data 3+	Output	MIPI D-PHY	DPHY			
G31	DSI2_CLK-	Display DSI 2 Clock-	Output	MIPI D-PHY	DPHY			
G30	DSI2_CLK+	Display DSI 2 Clock+	Output	MIPI D-PHY	DPHY			
F32	DSI2_D0-	Display, DSI 2 Data 0-	Output	MIPI D-PHY	DPHY			
F31	DSI2_D0+	Display, DSI 2 Data 0+	Output	MIPI D-PHY	DPHY			
H30	DSI2_D1-	Display, DSI 2 Data 1-	Output	MIPI D-PHY	DPHY			
H29	DSI2_D1+	Display, DSI 2 Data 1+	Output	MIPI D-PHY	DPHY			
C32	DSI3_D0-	Display, DSI 3 Data 2-	Output	MIPI D-PHY	DPHY			
C31	DSI3_D0+	Display, DSI 3 Data 2+	Output	MIPI D-PHY	DPHY			
E30	DSI3_D1-	Display, DSI 3 Data 3-	Output	MIPI D-PHY	DPHY			

Pin#	Jetson TX1 Pin Name	Usage/Description	Direction	Pin Type	Pin Type Code
E29	DSI3_D1+	Display, DSI 3 Data 3+	Output	MIPI D-PHY	DPHY
B19	GPIO11/AP_WAKE_BT	LCD Enable	Output	CMOS - 1.8V	ST
B33	HDMI_CEC	HDMI CEC	Bidir	Open Drain, 1.8V	DD
B28	LCD_BKLT_EN	Display Backlight Enable	Output	CMOS - 1.8V	ST
A25	LCD_TE	Display Tearing Effect	Input	CMOS - 1.8V	ST
B26	LCD_VDD_EN	Display Reset	Output	CMOS - 1.8V	ST
B27	LCD0_BKLT_PWM	Display Backlight PWM	Output	CMOS - 1.8V	ST
Camera	a a				_
F9	CAM0_MCLK	Camera 0 Reference Clock	Output	CMOS - 1.8V	ST
F8	CAM1_MCLK	Camera 1 Reference Clock	Output	CMOS - 1.8V	ST
G27	CSI0_CLK-	Camera, CSI 0 Clock-	Input	MIPI D-PHY	DPHY
G28	CSI0_CLK+	Camera, CSI 0 Clock+	Input	MIPI D-PHY	DPHY
F28	CSI0_D0-	Camera, CSI 0 Data 0-	Input	MIPI D-PHY	DPHY
F29	CSI0_D0+	Camera, CSI 0 Data 0+	Input	MIPI D-PHY	DPHY
H26	CSI0_D1-	Camera, CSI 0 Data 1-	Input	MIPI D-PHY	DPHY
H27	CSI0_D1+	Camera, CSI 0 Data 1+	Input	MIPI D-PHY	DPHY
D27	CSI1_CLK-	Camera, CSI 1 Clock-	Input	MIPI D-PHY	DPHY
D28	CSI1_CLK+	Camera, CSI 1 Clock+	Input	MIPI D-PHY	DPHY
C28	CSI1_D0-	Camera, CSI 1 Data 0-	Input	MIPI D-PHY	DPHY
C29	CSI1_D0+	Camera, CSI 1 Data 0+	Input	MIPI D-PHY	DPHY
E26	CSI1_D1-	Camera, CSI 1 Data 1-	Input	MIPI D-PHY	DPHY
E27	CSI1_D1+	Camera, CSI 1 Data 1+	Input	MIPI D-PHY	DPHY
G24	CSI2_CLK-	Camera, CSI 2 Clock-	Input	MIPI D-PHY	DPHY
G25	CSI2_CLK+	Camera, CSI 2 Clock+	Input	MIPI D-PHY	DPHY
F25	CSI2_D0-	Camera, CSI 2 Data 0-	Input	MIPI D-PHY	DPHY
F26	CSI2_D0+	Camera, CSI 2 Data 0+	Input	MIPI D-PHY	DPHY
H23	CSI2_D1-	Camera, CSI 2 Data 1-	Input	MIPI D-PHY	DPHY
H24	CSI2_D1+	Camera, CSI 2 Data 1+	Input	MIPI D-PHY	DPHY
D24	CSI3_CLK-	Camera, CSI 3 Clock-	Input	MIPI D-PHY	DPHY
D25	CSI3_CLK+	Camera, CSI 3 Clock+	Input	MIPI D-PHY	DPHY
C25	CSI3_D0-	Camera, CSI 3 Data 0-	Input	MIPI D-PHY	DPHY
C26	CSI3_D0+	Camera, CSI 3 Data 0+	Input	MIPI D-PHY	DPHY
E23	CSI3_D1-	Camera, CSI 3 Data 1-	Input	MIPI D-PHY	DPHY
E24	CSI3_D1+	Camera, CSI 3 Data 1+	Input	MIPI D-PHY	DPHY
G21	CSI4_CLK-	Camera, CSI 4 Clock-	Input	MIPI D-PHY	DPHY
G22	CSI4_CLK+	Camera CSI 4 Clock+	Input	MIPI D-PHY	DPHY
F22	CSI4_D0-	Camera, CSI 4 Clock-	Input	MIPI D-PHY	DPHY
F23	CSI4_D0+	Camera, CSI 4 Clock+	Input	MIPI D-PHY	DPHY
H20	CSI4_D1-	Camera, CSI 4 Data 1-	Input	MIPI D-PHY	DPHY
H21	CSI4_D1+	Camera, CSI 4 Data 1+	Input	MIPI D-PHY	DPHY
D21	CSI5_CLK-	Camera, CSI 5 Clock-	Input	MIPI D-PHY	DPHY
D22	CSI5_CLK+	Camera, CSI 5 Clock+	Input	MIPI D-PHY	DPHY
C22	CSI5_D0-	Camera, CSI 5 Data 0-	Input	MIPI D-PHY	DPHY
C23	CSI5_D0+	Camera, CSI 5 Data 0+	Input	MIPI D-PHY	DPHY
E20	CSI5_D1-	Camera, CSI 5 Data 1-	Input	MIPI D-PHY	DPHY
E21	CSI5_D1+	Camera, CSI 5 Data 1+	Input	MIPI D-PHY	DPHY
G8	GPIO0/CAM0_PWR#	Camera 1 Powerdown	Output	CMOS - 1.8V	ST

Pin#	Jetson TX1 Pin Name	Usage/Description	Direction	Pin Type	Pin Type Code
F7	GPIO1/CAM1_PWR#	Camera 1 Powerdown	Output	CMOS - 1.8V	ST
H8	GPIO2/CAM0_RST#	Camera Reset	Output	CMOS - 1.8V	ST
H7	GPIO3/CAM1_RST#	Camera Autofocus Enable	Output	CMOS – 1.8V	ST
G7	GPIO4/CAM_STROBE	Camera 1 Strobe	Output	CMOS – 1.8V	ST
D7	GPIO5/CAM_FLASH_EN	Camera Flash Enable	Output	CMOS – 1.8V	ST
C6	I2C_CAM_CLK	Camera I2C Clock	Bidir	Open Drain – 1.8V	DD
D6	I2C_CAM_DAT	Camera I2C Data	Bidir	Open Drain – 1.8V	DD
Audio					-
F1	AUDIO_MCLK	Audio Codec Master Clock	Output	CMOS – 1.8V	ST
F2	GPIO19/AUD_RST	Audio Codec Reset	Output	CMOS – 1.8V	ST
НЗ	GPIO20/AUD_INT	Audio Codec Interrupt	Input	CMOS – 1.8V	ST
G2	I2S0_CLK	Digital Audio Port 1 Clock	Bidir	CMOS - 1.8V	CZ
H1	I2S0_LRCLK	I2S Audio Port 0 Field Select	Bidir	CMOS - 1.8V	CZ
G1	I2S0_SDIN	Digital Audio Port 1 Data In	Input	CMOS - 1.8V	CZ
H2	I2S0_SDOUT	I2S Audio Port 0 Data Out	Bidir	CMOS - 1.8V	CZ
C15	I2S1_CLK	I2S Audio Port 1 Clock	Bidir	CMOS - 1.8V	CZ
D13	I2S1_LRCLK	I2S Audio Port 1 Field Select	Bidir	CMOS - 1.8V	CZ
C14	I2S1_SDIN	I2S Audio Port 1 Data In	Input	CMOS – 1.8V	CZ
D14	I2S1_SDOUT	I2S Audio Port 1 Data Out	Bidir	CMOS – 1.8V	CZ
G5	I2S2_CLK	Digital Audio Port 3 Clock	Bidir	CMOS - 1.8V	ST
H5	I2S2_LRCLK	I2S Audio Port 2 Field Select	Bidir	CMOS - 1.8V	ST
G6	I2S2_SDIN	Digital Audio Port 3 Data In	Input	CMOS – 1.8V	ST
H6	I2S2_SDOUT	I2S Audio Port 2 Data Out	Bidir	CMOS – 1.8V	ST
E6	I2S3_CLK	I2S Audio Port 3 Clock	Bidir	CMOS – 1.8V	ST
F5	I2S3_LRCLK	I2S Audio Port 3 Field Select	Bidir	CMOS – 1.8V	ST
E5	I2S3_SDIN	I2S Audio Port 3 Data In	Input	CMOS – 1.8V	ST
F6	I2S3_SDOUT	I2S Audio Port 3 Data Out	Bidir	CMOS – 1.8V	ST
G13	SPI1_CLK	SPI 1 Clock	Bidir	CMOS – 1.8V	LV-CZ
E14	SPI1_CS0#	SPI 1 Chip Select 0	Bidir	CMOS – 1.8V	LV-CZ
E13	SPI1_CS1#	SPI 1 Chip Select 1	Bidir	CMOS – 1.8V	LV-CZ
F14	SPI1_MISO	SPI 1 MISO	Bidir	CMOS – 1.8V	LV-CZ
F13	SPI1_MOSI	SPI 1 MOSI	Bidir	CMOS – 1.8V	LV-CZ
WiFi/B1	Г				_
B20	GPIO10/WIFI_WAKE_AP	WiFi 2 Wake AP (Jetson TX1)	Input	CMOS - 1.8V	ST
B21	GPIO12/BT_EN	BT 2 Enable	Output	CMOS – 1.8V	ST
B22	GPIO13/BT_WAKE_AP	BT 2 Wake AP (Jetson TX1)	Input	CMOS – 1.8V	ST
E50	PEX1_RST#	PCIe 1 Reset	Output	Open Drain 3.3V, Pull-up on Jetson TX1	DD
A15	UART2_CTS#	UART 2 Clear to Send	Input	CMOS - 1.8V	ST
A16	UART2_RTS#	UART 2 Request to Send	Output	CMOS – 1.8V	ST
B15	UART2_RX	UART 2 Receive	Input	CMOS – 1.8V	ST
B16	UART2_TX	UART 2 Transmit	Output	CMOS – 1.8V	ST
B43	USB2_D-	USB 2.0, Port 2 Data+	Bidir	USB PHY	USB
B42	USB2_D+	USB 2.0, Port 2 Data+	Bidir	USB PHY	USB
LAN					
E47	GBE_LINK_ACT#	GbE RJ45 connector Link ACT LED0	Output	CMOS – 3.3V tolerant	LAN_3V3
F50	GBE_LINK100#	GbE RJ45 connector Link 100 LED1	Output	CMOS – 3.3V Tolerant	LAN_3V3
F46	GBE_LINK1000#	GbE RJ45 connector Link 1000 LED2	Output	CMOS – 3.3V Tolerant	LAN_3V3
-	-	***	1	1	

Pin#	Jetson TX1 Pin Name	Usage/Description	Direction	Pin Type	Pin Type Code
E49	GBE_MDI0-	GbE Transformer Data 0-	Bidir	MDI	MDI
E48	GBE_MDI0+	GbE Transformer Data 0+	Bidir	MDI	MDI
F48	GBE_MDI1-	GbE Transformer Data 1-	Bidir	MDI	MDI
F47	GBE_MDI1+	GbE Transformer Data 1+	Bidir	MDI	MDI
G49	GBE_MDI2-	GbE Transformer Data 2-	Bidir	MDI	MDI
G48	GBE_MDI2+	GbE Transformer Data 2+	Bidir	MDI	MDI
H48	GBE_MDI3-	GbE Transformer Data 3-	Bidir	MDI	MDI
H47	GBE_MDI3+	GbE Transformer Data 3+	Bidir	MDI	MDI
Modem					-
A8	GPIO14/AP_WAKE_MODEM	AP (Jetson TX1) Wake Modem	Output	CMOS – 1.8V	CZ
A9	GPIO15/AP2MDM_READY	AP (Jetson TX1) to Modem Ready	Input	CMOS – 1.8V	ST
A10	GPIO16/MODEM_WAKE_AP	Modem Wake AP	Input	CMOS – 1.8V	ST
В9	GPIO17/MDM2AP_READY	Modem to AP (Jetson TX1) Ready	Input	CMOS - 1.8V	CZ
B10	GPIO18/MODEM_COLDBOOT	Modem Coldboot	Input	CMOS – 1.8V	CZ
SDIO			-		-
B30	SDIO_CLK	SDIO Clock	Output	CMOS – 1.8V	CZ
B29	SDIO_CMD	SDIO Command	Bidir	CMOS - 1.8V	CZ
B32	SDIO_D0	SDIO Data 0	Bidir	CMOS – 1.8V	CZ
A32	SDIO_D1	SDIO Data 1	Bidir	CMOS – 1.8V	CZ
A31	SDIO_D2	SDIO Data 2	Bidir	CMOS – 1.8V	CZ
A30	SDIO_D3	SDIO Data 3	Bidir	CMOS – 1.8V	CZ
A29	SDIO_RST#	SDIO Reset	Output	CMOS – 1.8V	ST
SD Care	d				
F17	SDCARD_CD#	SD Card Card Detect	Input	CMOS – 1.8V	ST
G18	SDCARD_CLK	SD Card Clock	Output	CMOS - 3.3/1.8V	CZ
G19	SDCARD_CMD	SD Card Command	Bidir	CMOS - 3.3/1.8V	CZ
H18	SDCARD_D0	SD Card Data 0	Bidir	CMOS - 3.3V/1.8V	CZ
H17	SDCARD_D1	SD Card Data 1	Bidir	CMOS - 3.3V/1.8V	CZ
F19	SDCARD_D2	SD Card Data 2	Bidir	CMOS - 3.3/1.8V	CZ
F18	SDCARD_D3	SD Card Data 3	Bidir	CMOS - 3.3/1.8V	CZ
H16	SDCARD_PWR_EN	SD Card power switch Enable	Output	CMOS - 1.8V	ST
F20	SDCARD_WP	SD Card Write Protect	Input	CMOS - 1.8V	ST
USB 2.0)				
B40	USB0_D-	Micro USB Data-	Bidir	USB PHY	USB
B39	USB0_D+	Micro USB Data+	Bidir	USB PHY	USB
A17	USB0_EN_OC#	Micro USB VBUS Enable 0	Bidir	Open Drain – 3.3V	DD
A18	USB1_EN_OC#	USB 3.0 Type A, USB Enable 1	Bidir	Open Drain – 3.3V	DD
A36	USB0_OTG_ID	USB0 ID / VBUS EN	Input	Analog	USB
B37	USB0_VBUS_DET	USB0 VBUS	Input	USB VBUS, 5V	USB
A39	USB1_D-	USB 2.0, Port 1 Data+	Bidir	USB PHY	USB
PCIe/US	SB 3.0/SATA				
A44	PEX0_REFCLK+	PCIe Reference Clock 0+	Output	PCIe PHY	
A45	PEX0_REFCLK-	PCIe Reference Clock 0-	Output	PCIe PHY	
B45	PEX1_REFCLK+	PCIe Reference Clock 1+	Output	PCIe PHY	
B46	PEX1_REFCLK-	PCIe Reference Clock 1-	Output	PCIe PHY	
C40	PEX2_TX+	PCIe Lane 2 Transmit+	Output	PCIe PHY, AC-Coupled on Carrier Board	
C41	PEX2_TX-	PCIe Lane 2 Transmit -	Output	PCIe PHY, AC-Coupled on Carrier Board	

	TVIDIA.								
Pin#	Jetson TX1 Pin Name	Usage/Description	Direction	Pin Type	Pin Type Code				
C47	PEX1_CLKREQ#	PCIE 1 Clock Request	Bidir	Open Drain 3.3V, Pull-up on Jetson TX1					
C48	PEX0_CLKREQ#	PCIE 0 Clock Request	Bidir	Open Drain 3.3V, Pull-up on Jetson TX1					
C49	PEX0_RST#	PCIe Reset 0	Output	Open Drain 3.3V, Pull-up on Jetson TX1					
D39	PEX_RFU_TX+	PCIe Lane RFU Transmit+	Output	PCIe PHY, AC-Coupled on Carrier Board					
D40	PEX_RFU_TX-	PCIe Lane RFU Transmit-	Output	PCIe PHY, AC-Coupled on Carrier Board					
D48	PEX_WAKE*	PCIe Wake	Input	Open Drain 3.3V, Pull-up on Jetson TX1					
E41	PEX1_TX+	PCIe Lane 1 Transmit+	Output	PCIe PHY, AC-Coupled on Carrier Board					
E42	PEX1_TX-	PCIe Lane 1 Transmit -	Output	PCIe PHY, AC-Coupled on Carrier Board					
E44	PEX0_TX+	PCIe Lane 0 Transmit+	Output	PCIe PHY, AC-Coupled on Carrier Board					
E45	PEX0_TX-	PCIe Lane 0 Transmit-	Output	PCIe PHY, AC-Coupled on Carrier Board					
F40	PEX2_RX+	PCIe Lane 2 Receive+	Input	PCIe PHY, AC-Coupled on Carrier Board					
F41	PEX2_RX-	PCIe Lane 2 Receive-	Input	PCIe PHY, AC-Coupled on Carrier Board					
G39	PEX_RFU_RX+	PCIe Lane RFU Receive+	Input	PCIe PHY, AC-Coupled on Carrier Board					
G40	PEX_RFU_RX-	PCIe Lane RFU Receive+	Input	PCIe PHY, AC-Coupled on Carrier Board					
H41	PEX1_RX+	PCIe Lane 1 Receive+	Input	PCIe PHY, AC-Coupled on Carrier Board					
H42	PEX1_RX-	PCIe Lane 1 Receive-	Input	PCIe PHY, AC-Coupled on Carrier Board					
H44	PEX0_RX+	PCIe Lane 0 Receive+	Input	PCIe PHY, AC-Coupled on Carrier Board					
H45	PEX0_RX-	PCIe Lane 0 Receive+	Input	PCIe PHY, AC-Coupled on Carrier Board					
D42	USB_SS1_TX+	USB 3.0 #1 or PCIe Lane 3 Transmit+	Output	USB SS PHY, AC-Coupled on Carrier Board					
D43	USB_SS1_TX-	USB 3.0 #1 or PCIe Lane 3 Transmit-	Output	USB SS PHY, AC-Coupled on Carrier Board					
G42	USB_SS1_RX+	USB 3.0 #1 or PCle Lane 3 Receive+	Input	USB SS PHY, AC-Coupled (off Jetson TX1)					
G43	USB_SS1_RX-	USB 3.0 #1 or PCle Lane 3 Receive-	Input	USB SS PHY, AC-Coupled (off Jetson TX1)					
D45	SATA_TX+	SATA Transmit+	Output	SATA PHY, AC-Coupled on Carrier Board					
D46	SATA_TX-	SATA Transmit-	Output	SATA PHY, AC-Coupled on Carrier Board					
G45	SATA_RX+	SATA Receive+	Input	SATA PHY, AC-Coupled on Carrier Board					
G46	SATA_RX-	SATA Receive-	Input	SATA PHY, AC-Coupled on Carrier Board					
C43	USB_SS0_TX+	USB 3.0 #0 Transmit+ (PCIe Lane 5)	Output	USB SS PHY, AC-Coupled on Carrier Board					
C44	USB_SS0_TX-	USB 3.0 #0 Transmit- (PCIe Lane 5)	Output	USB SS PHY, AC-Coupled on Carrier Board					
F43	USB_SS0_RX+	USB 3.0 #0 Receive + (PCIe Lane 5)	Input	USB SS PHY, AC-Coupled (off Jetson TX1)					
F44	USB_SS0_RX-	USB 3.0 #0 Receive - (PCIe Lane 5)	Input	USB SS PHY, AC-Coupled (off Jetson TX1)					
Touch/	SPI		•		-				
B25	GPIO6/TOUCH_INT	Touch Interrupt	Input	CMOS - 1.8V	ST				
B23	GPIO7/TOUCH_RST	Touch Reset	Output	CMOS - 1.8V	ST				
E3	SPI0_CLK	SPI 0 Clock	Bidir	CMOS - 1.8V	LV-CZ				
F3	SPI0_CS0#	SPI 0 Chip Select 0	Bidir	CMOS - 1.8V	LV-CZ				
E4	SPI0_MISO	SPI 0 MISO	Bidir	CMOS - 1.8V	LV-CZ				
F4	SPI0_MOSI	SPI 0 MOSI	Bidir	CMOS - 1.8V	LV-CZ				
H14	SPI2_CLK	SPI 2 Clock	Bidir	CMOS - 1.8V	CZ				
G16	SPI2_CS0#	SPI 2 Chip Select 0	Bidir	CMOS - 1.8V	cz				
F16	SPI2_CS1#	SPI 2 Chip Select 1	Bidir	CMOS - 1.8V	CZ				
H15	SPI2_MISO	SPI 2 MISO	Bidir	CMOS – 1.8V	CZ				
G15	SPI2_MOSI	SPI 2 MOSI	Bidir	CMOS – 1.8V	CZ				
B24	TOUCH_CLK	Touch Clock	Output	CMOS – 1.8V	ST				
Serial I	Port		-		-				
E10	UART1_CTS#	UART 1 Receive	Input	CMOS - 1.8V	ST				
E9	UART1_RTS#	UART 1 Transmit	Output	CMOS – 1.8V	ST				
D10	UART1_RX	UART 1 Receive	Input	CMOS - 1.8V	ST				
	1	1	I	i .					

		T	1	I	Pin Type		
Pin #	Jetson TX1 Pin Name	Usage/Description	Direction	Pin Type	Code		
D9	UART1_TX	UART 1 Transmit	Output	CMOS – 1.8V	ST		
12C							
E15	I2C_GP0_CLK	General I2C Bus #0 Clock	Bidir	Open Drain – 1.8V	DD		
D15	I2C_GP0_DAT	General I2C Bus #1 Data	Bidir	Open Drain – 1.8V	DD		
A21	I2C_GP1_CLK	General I2C Bus #1 Clock	Bidir	Open Drain – 3.3V	DD		
A20	I2C_GP1_DAT	General I2C Bus #1 Data	Bidir	Open Drain – 3.3V	DD		
A6	I2C_PM_CLK	PM I2C Bus Clock	Bidir	Open Drain – 1.8V	DD		
B6	I2C_PM_DAT	PM I2C Bus Data	Bidir	Open Drain – 1.8V	DD		
Fan			-		-		
C16	FAN_PWM	Fan PWM	Output	CMOS - 1.8V	ST		
B17	FAN_TACH	Fan Tach	Input	CMOS - 1.8V	CZ		
Sensor							
H13	GPIO8/ALS_PROX_INT	Proximity sensor Interrupt	Input	CMOS - 1.8V	ST		
G14	GPIO9/MOTION_INT	ICM20628 Gyro/Accel	Input	CMOS - 1.8V	ST		
System	1						
C7	BATLOW#	GPIO – Low Battery	Input	CMOS - 1.8V	ST		
A48	CARRIER_PWR_ON	Carrier Power On	Output	CMOS - 1.8V	-		
B7	CARRIER_STBY#	SOC Power Request	Output	CMOS - 1.8V	ST		
A49	CHARGER_PRSNT#	PMIC AC OK	Input	Open Drain, 1.8V	PMIC		
A7	CHARGING#	Charger Interrupt	Input	CMOS - 1.8V	ST		
E1	FORCE_RECOV#	Force Recovery strap pin	Input	CMOS - 1.8V	ST		
B50	POWER_BTN#	Power on	Input	Open Drain, 1.8V	ST		
A47	RESET_IN#	System Reset Input	Input	Open Drain, 1.8V	JT_RST		
A46	RESET_OUT#	System Reset Output from PMIC	Output	CMOS - 1.8V	PMIC		
E2	SLEEP*	Sleep input	Input	Open Drain, 1.8V	ST		
B8	VIN_PWR_BAD#	Input Power Bad	Input	CMOS - VDD_IN	-		
C7	BATLOW#	GPIO – Low Battery	Input	CMOS - 1.8V	ST		
GPIO			-		<u> </u>		
A23	GPIO_EXP0_INT	GPIO expander 0 Interrupt	Input	CMOS - 1.8V	CZ		
A22	GPIO_EXP1_INT	GPIO Expander 1 Interrupt	Input	CMOS – 1.8V	ST		
Debug		<u>!</u>	L		<u> </u>		
B13	JTAG_GP0	JTAG Test Reset	Input	CMOS – 1.8V	JT_RST		
A14	JTAG_RTCLK	JTAG Return Clock	Output	CMOS – 1.8V	JT_RST		
B11	JTAG_TCLK	JTAG Test Clock	Input	CMOS – 1.8V	JT_RST		
B12	JTAG_TDI	JTAG Test Data In	Input	CMOS – 1.8V	JT_RST		
A13	JTAG_TDO	JTAG Test Data Out	Output	CMOS – 1.8V	ST		
A12	JTAG_TMS	JTAG Test Mode Select		CMOS - 1.8V	JT_RST		
H11	UART0_CTS#	UART 0 Clear to Send		CMOS – 1.8V	ST		
G11	UART0_RTS#	UART 1 Return to Send	-	CMOS – 1.8V	ST		
G12		UART 1 Receive	Input	CMOS – 1.8V	ST		
	UARTO TX	UART 0 Transmit	<u> </u>				
H11 G11	UART0_CTS#	UART 0 Clear to Send UART 1 Return to Send	Input Input Input Input	CMOS – 1.8V CMOS – 1.8V	ST ST		
H12	UART0_TX	UART 0 Transmit	Output	CMOS – 1.8V	ST		

Table 29 Power Pin List

VDD_IN	Pins
Main VDD Input (5.5-19.6V)	A1, A2, B1, B2, C1, C2
VDD_RTC	Pins
PMIC Real Time Clock power	A50

Table 30 Ground Pin List

GND	Pins
	A3, A4, A28, A37, A40, A43, B3, B4, B14, B31, B38, B41, B44, C3, C4, C21, C24, C27, C30, C33, C36, C39, C42, C45, D20, D23, D26, D29, D32, D35, D38, D41, D44, E19, E22, E25, E28, E31, E34, E37, E40, E43, E46, F10, F15, F21, F24, F27, F30, F33, F36, F39, F42, F45, F49, G3, G17, G20, G23, G26, G29, G32, G35, G38, G41, G44, G47, G50, H19, H22, H25, H28, H31, H34, H37, H40, H43, H46, H49, B47

Table 31 Reserved Pin List

Reserved	Pins
	A5, A11, A19, A24, A26, A27, A41, A42, B5, B18, B48, B49, C5, C8, C9, C10, C11, C12, C13, C17, C18, C19, C20, C46, C50, D1, D2, D3, D4, D5, D8, D11, D12, D16, D17, D18, D19, D30, D31, D33, D34, D47, D49, D50, E7, E8, E11, E12, E16, E17, E18, F11, F12, G4, G9, G10, H4, H9, H10, H50

5.0 Electrical Specification

5.1 Absolute Maximum Ratings

The absolute maximum ratings describe stress conditions. These parameters do not set minimum and maximum operating conditions that will be tolerated over extended periods of time. If the device is exposed to these parameters for extended periods of time, no guarantee is made and device reliability may be affected. It is not recommended to operate the Jetson TX1 module under these conditions, recommended operating conditions are provided in the following section.

WARNING: Exceeding the listed conditions may damage and/or affect long-term reliability of the part.

The Jetson TX1 module should never be subjected to conditions exceeding absolute maximum ratings.

Table 32 Absolute Maximum Ratings [TBD - Pending Characterization]

Symbol	Parameter	Min	Max	Unit	Notes
VDD _{MAX}	VDD_IN	-0.5	30	V	
VDD _{MAX}	VDD_RTC	-0.3	6.0	V	
IDD _{MAX}	VDD_IN Imax		3	Α	
	Voltage applied to any Pin of type DP_AUX	-0.5	1.98	V	
	Voltage applied to any Pin of type ST			V	1.8
	Voltage applied to any Pin of type DP			V	
	Voltage applied to any Pin of type DPHY			V	
	Voltage applied to any Pin of type DD			V	1.8
	Voltage applied to any Pin of type CZ			V	1.8/3.3
VM_PIN	Voltage applied to any Pin of type LV_CZ			V	1.8
	Voltage applied to any Pin of type USB			V	
	Voltage applied to any Pin of type LAN3V3			V	3.3
	Voltage applied to any Pin of type MDI			V	
	Voltage applied to any Pin of type PCIe			V	
	Voltage applied to any Pin of type PMIC			V	1.8
	Voltage applied to any Pin of type JT_RST			V	1.8
T _{TTP}	Temperature Thermal transfer Plate	-25	80	°C	
T _{STG} ‡	Storage Temperature	-25	80	°C	
P _{CONT}	Maximum allowable constant (static) pressure during operation			psi	
e _{MAX}	Maximum strain during system assembly or operation			uε	

[‡] Preliminary pending characterization

5.2 Recommended Operating Conditions

The parameters listed in following table are specific to a temperature range and operating voltage. Operating the Jetson TX1 module beyond these parameters is not recommended. Exceeding these conditions for extended periods may adversely affect device reliability.

Table 33 Recommended Operating Conditions [TBD – Pending Characterization]

Symbol	Parameter	Min	Мах	Unit	Notes
	VDD_IN	5.5	19.6	V	
	VDD_RTC	2.5	3.5	V	
	Voltage applied to any Pin of type DP_AUX			V	
	Voltage applied to any Pin of type ST			V	
	Voltage applied to any Pin of type DP			V	
	Voltage applied to any Pin of type DPHY			V	
	Voltage applied to any Pin of type DD			VV	
VDD _{DC}	Voltage applied to any Pin of type CZ			V	
50	Voltage applied to any Pin of type LV_CZ			V	
	Voltage applied to any Pin of type USB			V	
	Voltage applied to any Pin of type LAN3V3			V	
	Voltage applied to any Pin of type MDI			V	
	Voltage applied to any Pin of type PCIe			V	
	Voltage applied to any Pin of type PMIC			V	
	Voltage applied to any Pin of type JT_RST			V	
T _{operating} ‡	Ambient temperature operating temperature range	-25	80	°C	

[‡] Preliminary pending characterization

5.3 Digital Logic Characteristics

Voltages less than the minimum stated value can be interpreted as an undefined state or logic level low which may result in unreliable operation. Voltages exceeding the maximum value can damage and/or adversely affect device reliability.

Table 34. Digital I/O Characteristics – [TBD – Pending Characterization]

Pad Type	Symbol	Parameter	Min	Max	Unit	Notes
ST	V _{IL} V _{IH} V _{OL} V _{OH}	Input Low Voltage Input High Voltage Output Low Voltage (I _{OL} = 1mA) Output High Voltage (I _{OH} 1mA)	-0.5 0.75 x VDD 0.85 x VDD	0.25 x VDD 0.5 + VDD 0.15 x VDD	V	
DD	V _{IL} V _{IH} V _{OL} V _{OH}	Input Low Voltage Input High Voltage Output Low Voltage (I _{OL} = 1mA) Output High Voltage (I _{OH} 1mA)	-0.5 0.75 x VDD 0.85 x VDD	0.25 x VDD 3.63 0.15 x VDD	٧	
LV_CZ	V _{IL} V _{IH} V _{OL} V _{OH}	Input Low Voltage Input High Voltage Output Low Voltage (I _{OL} = 1mA) Output High Voltage (I _{OH} 1mA)	-0.5 0.75 x VDD 0.85 x VDD	0.25 x VDD 0.5 + VDD 0.15 x VDD	V	
CZ	V _{IL} V _{IH} V _{OL} V _{OH}	Input Low Voltage Input High Voltage Output Low Voltage (I _{OL} = 1mA) Output High Voltage (I _{OH} 1mA)	-0.5 0.75 x VDD 0.85 x VDD	0.25 x VDD 0.5 + VDD 0.15 x VDD	٧	

6.0 Package and Thermal Specification

6.1 Thermal Characteristics

Jetson TX1 was designed to be modular from both a functionality standpoint as well as a thermal standpoint. While it integrates several individual components the primary Jetson TX1 thermal interface is via a single Thermal Transfer Plate (TTP) that covers the top side. The TTP simplifies thermal design and integration with the system-level thermal solution. See the *Jetson TX1 Thermal Design Guide* for complete details on the thermal evaluation and design process using Jetson TX1.

6.2 Package Drawing and Dimensions

Figure 9 Jetson TX1 Package Outline with Dimensions

NOTES

- 1. All dimensions are in millimeters unless otherwise specified.
- 2. Tolerances are: .X ± .25, .XX ± .13, Angles ± 1°
- 3. Calculated Mass: 75 ±2% Grams
- 4. Thermal transfer plate and bottom stiffener finish: Clear Chemfilm per MIL-C-5541-E Class 3

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation ("NVIDIA") does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either express or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

HDM

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB

OpenCL

 $\mbox{\sc OpenCL}$ is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, and Tegra are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2014 - 2016 NVIDIA Corporation. All rights reserved

