CS 228 : Logic in Computer Science

Krishna. S

Recap

Signatures, Formulae over signatures, Structure for a signature

- \triangleright $\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$
 - ► For any assignment α , $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff for every $a, b \in u(\mathcal{A})$, $\mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$

- \triangleright $\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$
 - ► For any assignment α , $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff for every $a, b \in u(\mathcal{A})$, $\mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$
 - ► There is an assignment α which satisfies $\mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)$

What about Y and Z, they are not bound.

Assignment alpha is taking care of that.

- \triangleright $\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$
 - ► For any assignment α , $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff for every $a, b \in u(\mathcal{A})$, $\mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$
 - ► There is an assignment α which satisfies $\mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)$
 - ▶ There is no assignment α which satisfies $\exists x \forall y (E(x,y))$
- $\mathcal{W} = abaaa$

- $ightharpoonup \mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$
 - For any assignment $\alpha, \mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff for every $a, b \in u(\mathcal{A}), \mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$
 - ► There is an assignment α which satisfies $\mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)$
 - ▶ There is no assignment α which satisfies $\exists x \forall y (E(x,y))$
- $\mathcal{W} = abaaa$
 - There is an assignment α for which $\mathcal{W} \models_{\alpha} (Q_a(x) \land Q_a(y) \land S(x,y))$ consecutive a's

Q_a(X) means a at position X, and same for Y.

- $ightharpoonup \mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$
 - For any assignment $\alpha, \mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff for every $a, b \in u(\mathcal{A}), \mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$
 - ► There is an assignment α which satisfies $\mathcal{G} \models_{\alpha} \exists x (E(x,y) \land E(x,z) \land y \neq z)$
 - ▶ There is no assignment α which satisfies $\exists x \forall y (E(x,y))$
- $\mathcal{W} = abaaa$
 - ► There is an assignment α for which $\mathcal{W} \models_{\alpha} (Q_a(x) \wedge Q_a(y) \wedge S(x,y))$
 - ► There is no assignment α which satisfies $\exists x \exists y (Q_b(x) \land Q_b(y) \land x \neq y)$

no two b's are there.

Satisfiability, Validity and Equivalence

▶ A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$

Satisfiability, Validity and Equivalence

- A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula φ over a signature τ is said to be valid iff for every τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$

Satisfiability, Validity and Equivalence

- ▶ A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula φ over a signature τ is said to be valid iff for every τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- Formulae $\varphi(x_1, \ldots, x_n)$ and $\psi(x_1, \ldots, x_n)$ are equivalent denoted $\varphi \equiv \psi$ iff for every \mathcal{A} and α , $\mathcal{A} \models_{\alpha} \varphi$ iff $\mathcal{A} \models_{\alpha} \psi$

Equisatisfiability

Let
$$\varphi_1(x) = \forall y R(x, y)$$
 and $\varphi_2 = \exists x \forall y R(x, y)$.

- ▶ It is clear that whenever $\mathcal{A} \models \varphi_2$, one can find an assignment α such that $\mathcal{A} \models_{\alpha} \varphi_1(x)$.
- ▶ Likewise, if $\mathcal{A} \models_{\alpha} \varphi_1(x)$, then $\mathcal{A} \models_{\varphi_2}$.
- ▶ Thus, $\varphi_1(x)$, φ_2 are equisatisfiable.

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \, \alpha_1(x) = \alpha_2(x), \, \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$

For a formula φ and assignments α_1 and α_2 such that for every $x \in \mathit{free}(\varphi), \, \alpha_1(x) = \alpha_2(x), \, \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

- ▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$
- ► Consider two assignments α_1, α_2 such that $\alpha_1(y) = \alpha_2(y) = \alpha(say)$

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \, \alpha_1(x) = \alpha_2(x), \, \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

- ▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$
- ► Consider two assignments α_1 , α_2 such that $\alpha_1(y) = \alpha_2(y) = \alpha(say)$
- ▶ Evaluate for all $a, b \in u(A)$, $R(a, \alpha) \rightarrow P(b)$

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \, \alpha_1(x) = \alpha_2(x), \, \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

- ▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$
- ► Consider two assignments α_1 , α_2 such that $\alpha_1(y) = \alpha_2(y) = \alpha(say)$
- ▶ Evaluate for all $a, b \in u(A)$, $R(a, \alpha) \rightarrow P(b)$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

For a sentence φ , and any two assignments α_1 and α_2 , $\mathcal{A} \models_{\alpha_1} \varphi$ iff $\mathcal{A} \models_{\alpha_2} \varphi$

For a sentence φ , and any two assignments α_1 and α_2 , $\mathcal{A} \models_{\alpha_1} \varphi$ iff $\mathcal{A} \models_{\alpha_2} \varphi$

No free variables!

Check Satisfiability

Let τ be a signature with a single unary relation P. Consider the structure $A = (U_A = \{0, 1\}, P^A = \{1\})$.

Let
$$\varphi = \forall x_1 \forall x_2 \dots \forall x_n (P(x_1) \rightarrow (P(x_2) \rightarrow (P(x_3) \dots \rightarrow (P(x_n) \rightarrow P(x_1))) \dots)))$$
.

Does $A \models \varphi$?

Check Satisfiability

Let $\varphi(y) = \exists x (E(x,y) \land \neg (y=x) \land \forall z [E(z,y) \to z=x])$ over the signature τ containing a binary relation E. Is $\varphi(y)$ satisfiable under some graph structure?

No it is not satisfiable.