Limiti notevoli esponenziali	Limiti notevali trigonometrici	Derivate di funzioni:	
1) $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$ $\lim_{n \to +\infty} n^2 sen \frac{1}{n^2}$	$=1$ 1) $\lim_{x\to 0} \frac{senx}{x} = 1$	D : costante $k \to 0$	$D:\arccos x \to -\frac{1}{\sqrt{1-x^2}}$
2) $\lim_{x \to 0} \left(1 + \frac{1}{x}\right)^x = e \qquad \lim_{x \to 0} \sqrt[x]{1 + x} =$		$D: x^n \to nx^{n-1}$	$D: arctg \ x \to \frac{1}{1+x^2}$
3) $\lim_{x \to +\infty} \left(\frac{1 + \frac{a}{x}}{x} \right)^x = e^a$	$3)\lim_{x\to 0} \frac{tgx}{x} = 1$	$D: \sqrt{x} \to \frac{1}{2\sqrt{x}}$	$D: \operatorname{arccotg} x \to -\frac{1}{1+x^2}$
4) $\lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^{nx} = e^{na}$	$4)\lim_{x\to 0} \frac{tgax}{bx} = \frac{a}{b}$	$D: \sqrt[n]{x^m} \to \frac{m}{n\sqrt[n]{x^{n-m}}}$	$D: a^x \to a^x \log_e a$
	$5)\lim_{x\to 0} \frac{1-\cos x}{x} = 0$	$D: sen x \to cos x$	$D: e^x \to e^x$
$\lim_{x \to -\infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$	6) $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$	$D:\cos x \to -senx$	$D: \log_a x \to \frac{1}{x} \log_a e$
$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^{a}$	$7) \lim_{x \to 0} \frac{arcsenx}{x} = 1$	$D: tgx \to \frac{1}{\cos^2 x}$	$D: \ln x \to \frac{1}{x}$
7) $\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e$ 8) $\lim_{x \to 0} \frac{\lg_c(1+x)}{x} = 1$	$8)\lim_{x\to 0} \frac{arcsen\ ax}{bx} = \frac{a}{b}$	$D: \cot gx \to -\frac{1}{sen^2x}$	$D: x^x \to x^x(\log x + 1)$
	9) $\lim_{x \to \infty} \frac{arctg x}{x} = 1$	$D: \operatorname{arcsen} x \to \frac{1}{\sqrt{1-x^2}}$	$D: \operatorname{arctg} f(x) \to \frac{1}{1 + \left[f(x)^{2} \right]} \cdot f'(x)$
9) $\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$ $\lim_{x\to 0} \frac{e^x - 1}{x}$	$10) \lim_{x \to 0} \frac{arctg \ ax}{bx} = \frac{a}{b}$	$D: [f(x)]^m \to m[f(x)]^{m-1} \cdot f'(x)$	$D: \operatorname{arccotg} f(x) \to -\frac{1}{1+ f(x) ^2} \cdot f'(x)$
$10)\lim_{x\to 0} \frac{(1+x)^a - 1}{x} = a$ $(1+x)^a - 1$	$11) \lim_{x \to 0} \frac{x - senx}{x^3} = \frac{1}{6}$	$D: \sqrt{f(x)} \to \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$	$D: e^{f(x)} \to e^{f(x)} \cdot f'(x)$
11) $\lim_{x \to 0} \frac{(1+x)^{\alpha}-1}{\alpha x} = 1$ 12) $\lim_{x \to 0} \frac{x}{x} = 0 \alpha > 0$ 13) $\lim_{x \to 0} \frac{x}{x} = 0 \alpha > 0$ 14) $\lim_{x \to 0} \frac{x}{x^{2}} = +\infty$. $\pi > 1$	$(12)\lim_{x\to 0}\frac{x-arctgx}{x^3}=\frac{1}{3}$	$D: \sqrt[n]{[f(x)]^m} \to \frac{mf'(x)}{n!^n[[f(x)]^{n-m}}$	$D: a^{f(x)} \to a^{f(x)} \cdot f'(x) \cdot \log_a e$
	Altri limiti notevoli $\lim_{n \to \infty} \frac{n^{\alpha}}{a^{n}} = 0 \lim_{n \to \infty} \frac{n! \cdot a^{n}}{n!} = 0$	$D: sen f(x) \to \cos f(x) \cdot f'(x)$	$D: \log f(x) \to \frac{1}{f(x)} \cdot f'(x)$
	$\lim_{n \to +\infty} \frac{a^n}{n!} = 0 \lim_{n \to +\infty} \frac{a^n}{n^n} = 0$	$D: \cos f(x) \to -senf(x) \cdot f'(x)$	$D: \log_a f(x) \to \frac{1}{f(x)} \cdot f^{(x)} \cdot \log_a e$
se:	$\lim_{n \to +\infty} \left(1 + \frac{3}{n^2 + n^4}\right)^{\frac{1}{3}} = e$	$D: tg \ f(x) \to \frac{1}{\cos^{2} f(x)} \cdot f'(x)$	$D: [f(x)]^{g(x)} \to [f(x)]^{(x)}.$ $\left[g'(x)\log f(x) + g(x) \cdot \frac{f'(x)}{f(x)}\right]$
$\lim_{x \to \pm \infty} \frac{x^n + bx^{n-1} + c}{x^a + bx^{a-1} + c} n > a = \pm \infty$ $n = a = \text{rapp.coeff.}$ $n < a = 0$	$\lim_{n\to+\infty} \left(1 + \frac{1}{n^2 + n^4}\right)$	$D: \cot g f(x) \to \frac{1}{sen^2 f(x)} \cdot f'(x)$	$D: [f(g(x))] \to f'[g(x_i) \cdot g'(x)]$
$+\infty$ - ∞ razz. o mcd $0\cdot\infty$ tranforms in sevice o in 0/0 capevolgende 0^0 , ∞^0 ; $1^{\pm\infty}$ $\lim_{x\to\infty} f(x)^{g(x)} = \lim_{x\to\infty} g(x)\log_x f(x)$	Criterio del rapporto: $\lim_{n\to\infty} \frac{a_n + 1}{a_n} = \frac{1}{n} < 1 a_n \to 0$ $\frac{1}{n} = \frac{1}{n} = $	$D: arcsen f(x) \to \frac{1}{\sqrt{1 - (x/x)^2}} \cdot f'(x)$	$D: [f(x)\cdot g(x)] \to f'(x)\cdot g(x) + f(x)\cdot g'(x)$
	Teorema della media aritmetica: se la successione an ammette limite allora	Diagram f(x)	$D: \left[\frac{f(x)}{g(x)}\right] \to \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$
esempi $\eta/\omega = 0$ $\eta/0 = \infty$ $\omega/n = \omega$ $0/n = 0$ $\omega/0 = \omega$ $\omega/0 = \omega$ (stessa potenza).	$\lim_{n\to\infty} \frac{a_1+a_2+a_n}{n} = \lim_{n\to\infty} a_n$ Teorema della media geometrica: $\lim_{n\to\infty} \sqrt[q]{a_1+a_2+a_n} = \lim_{n\to\infty} a_n$	FUNZIONI FRATTE: $N \ge D$: divido il numeratore per il denominatore $\int \frac{f(x)}{g(x)} dx$ $Q(x) = \text{quoziente } R(x) = \text{resto} \qquad g(x) = \text{divisore}$	$\begin{pmatrix} x \\ x \end{pmatrix} = \int Q(x) dx + \int \frac{R(x)}{G(x)} dx dx$ ove
REGOLA DE L'HOPITAL: la regola de l'Hopital si applica nelle forme colo o 0/0 0-co capovolgere $+\infty-\infty$ MCD o razionalizzaziono Taholta può essere utile récinilarre alle identità: $f-g=f\left(1-\frac{g}{g}\right)=g\left(\frac{1}{g}-1\right)$		Q(1) = quantente $K(x)$ = resto $g(1)$ = unsure $K \sim D$: \mathbb{R}^2 expose $X \sim D$ is lisogona scomporre il denominatore con $\mathbb{C}(n)$ corrispondenta del grado più alto dell'incognitic \mathbb{R}^2 expo $\Delta = 0$ 1) Scompongo il denominatore facende ma potenza negativa (-2) \mathbb{R}^2 il numeratore contiene la X uso i (come nel 1 2 caso) \mathbb{R}^2 (and \mathbb{R}^2 caso $\Delta < 0$ 1) Riconduco l'integrale alla Forma	n) e separare l'integrale plo diventare quadrato di binomic e lo elevo ad
se il limite si presenta nelle forme $0^{\circ}, \infty^{\circ}, 1^{z=}$ si ricorre all' identità: $f^{g}=e^{g \cdot \log_{z}f}$		2) Se il numeratore contiene la x (es. $\int_{-\infty}^{px+q} \frac{px+q}{ax^2+bx+c}$	^{dx}) allora lo trasformo per farlo diventare co

Perivate di funzioni:	1
D: costante $k \to 0$	$D: \arccos x \rightarrow -\frac{1}{\sqrt{1-x^2}}$
$D: x^n \to nx^{n-1}$	D: $\arccos x \to -\frac{1}{\sqrt{1-x^2}}$ D: $\arctan x \to \frac{1}{1+x^2}$
$D: \sqrt{x} \to \frac{1}{2\sqrt{x}}$	$D: \operatorname{arccotg} x \to -\frac{1}{1+x^2}$
$D: \sqrt[n]{x^m} \to \frac{m}{n\sqrt[n]{x^{n-m}}}$	$D: a^x \to a^x \log_e a$
$D: sen x \to cos x$	$D: e^x \to e^x$
$D:\cos x \to -senx$	$D: \log_a x \to \frac{1}{x} \log_a e$
$D: tgx \to \frac{1}{\cos^2 x}$	$D: \ln x \to \frac{1}{x}$
$D: \cot gx \to -\frac{1}{sen^2x}$	$D: x^x \to x^x (\log x + 1)$
$D: \operatorname{arcsen} X \to \frac{1}{\sqrt{1-x^2}}$	$D: \operatorname{arctg} f(x) \to \frac{1}{1 + \left[f(x)^2\right]} \cdot f'(x)$
$D: [f(x)]^m \to m[f(x)]^{m-1} \cdot f'(x)$	$D: \operatorname{arccotg} f(x) \to -\frac{1}{1+ f(x) ^2} \cdot f'(x)$
$D: \sqrt{f(x)} \to \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$	$D: e^{f(x)} \to e^{f(x)} \cdot f'(x)$
$D: \sqrt[n]{[f(x)]^m} \to \frac{mf'(x)}{n\sqrt[n]{[f(x)]^{n-m}}}$	$D: \mathbf{a}^{f(x)} \to a^{f(x)} \cdot f'(x) \cdot \log_a e$
$D: sen f(x) \to \cos f(x) \cdot f'(x)$	$D: \log f(x) \to \frac{1}{f(x)} \cdot f'(x)$
$D: \cos f(x) \to -senf(x) \cdot f'(x)$	$D: \log_a f(x) \to \frac{1}{f(x)} \cdot f^{(x)} \cdot \log_a e$
$D: tg \ f(x) \to \frac{1}{\cos^{2t} f(x)} \cdot f'(x)$	$D: [f(x)]^{g(x)} \to [f(x)]^{(x)}.$ $\left[g'(x)\log f(x) + g(x)\frac{f'(x)}{f(x)}\right]$
$D: \cot g f(x) \to \frac{1}{sen^2 f(x)} \cdot f'(x)$	$D: [f(g(x))] \to f'[g(x)] \cdot g'(x)$
$D: arcsen f(x) \to \frac{1}{\sqrt{1 - [f(x)]^2}} \cdot f'(x)$	$D: [f(x)\cdot g(x)] \to f'(x)\cdot g(x) + f(x)\cdot g'(x)$
$D:\arccos f(x) \to -\frac{1}{\sqrt{1-[f(x)]^2}} \cdot f'(x)$	$D: \left[\frac{f(x)}{g(x)}\right] \to \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x)\right]^2}$
NZIONI FRATTE: D : divido il numeratore per il denominatore $\int \frac{f}{g}$	$\frac{f(x)}{f(x)} = \int Q(x) dx + \int \frac{R(x)}{G(x)} dx$ d ove

2) Se il numeratore confiene la x (es. $\left|\frac{px+q}{ax^2+bx+c}\right|^{dx}$) allora lo trasformo per farlo diventare come f'(x)I'(x)

 $\frac{px + q}{ax^2 + bx + c} = \frac{\frac{p}{2a}\left(2ax + \frac{2aq}{p}\right)}{ax^2 + bx + c} = \frac{p}{2a}\left[\frac{2ax + b + \frac{2aq}{p} - b}{ax^2 + bx + c}\right]$

Tab. 1.1 integrali notevoli immedi	$(7)\int \frac{1}{sen^2x} dx = -\frac{1}{tex} + C$
$1) \int x^k dx = \frac{x^{k+1}}{k+1} + C$	-8
$2) \int e^x dx = e^x + C$	$8)\int \frac{1}{\sqrt{1-x^2}} dx = arcsenx + C$
$3) \int \frac{1}{x} dx = \log x + C$	$9) \int \frac{1}{1+x^2} dx = arctgx + C$
$4) \int \cos x dx = senx + C$	$10) \int \frac{1}{\sqrt{1+x^2}} dx = \log(x + \sqrt{1+x^2}) + C$
$5) \int senx dx = -\cos x + C$	$\frac{\sqrt{1+x^2}}{11}\int \frac{1}{\sqrt{x^2-1}} dx = \log(x+\sqrt{x^2-1}) + C$
$6) \int \frac{1}{\cos^2 x} dx = tgx + C$	$\frac{1}{12} \int \frac{1}{1-x^2} dx = \frac{1}{2} \log \frac{1+x}{1-x} + C$
Tab 1.2 Integrazione con la prin	na regola di sostituzione:
$1) \int f(x)^{\alpha} \cdot f'(x) \ dx = \frac{1}{\alpha + 1}$	
$2) \int \frac{f'(x)}{f(x)} dx = \log f(x) + C$	
$3) \int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + C$	
$4) \int \cos f(x) \cdot f'(x) dx = senf$	f(x)+C
$5) \int senf(x) \cdot f'(x) dx = -\cos x$	f(x)+C
$6) \int \frac{f'(x)}{\cos^2 f(x)} dx = tgf(x) +$	С
$7) \int \frac{f'(x)}{\sqrt{1 - f^2(x)}} dx = \arcsin$	
$8) \int \frac{f'(x)}{1 + f^2(x)} dx = arctgf(x)$)+ <i>C</i>
$9)\int \frac{f'(x)}{\sqrt{1+f^2(x)}} dx = \log(f(x) + \frac{1}{2})$	$\sqrt{1+f^2(x)}+C$
$10) \int \frac{f'(x)}{\sqrt{f^2(x)-1}} dx = \log(f(x) + \frac{1}{2})$	$+\sqrt{f^2(x)-1}+C$
$ 11 \int \frac{f'(x)}{1 - f^2(x)} dx = \frac{1}{2} \log \frac{1}{1}.$	$\frac{+f(x)}{f(x)}+C$
Integrazione per parti:	
$\int f'(x) \cdot g(x) \ dx = f$	$f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$
Casi notevoli dell'applicazione della pi	rima regola di sostituzione pag. 284
$1) \int \frac{1}{tgx} dx = \log \operatorname{senx} + C$	
$2) \int \frac{1}{senx} dx = \log \left \lg \frac{x}{2} \right + C$	
$3)\int \frac{1}{\cos x} dx = \log \left \frac{1 + \operatorname{tg} \frac{x}{2}}{1 - \operatorname{tg} \frac{x}{2}} \right + C$	
$4) \int tg \times dx = -\log \cos x + 6$	С

orm	ula di Taylor con resio di Fedito
f(x)	$= \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$
f(x)	$= f(x_0) + f'(x_0)(x - x_0) + f''(x_0) \cdot \frac{(x - x_0)^2}{2!} + \dots$
	$+ f''(x_0) \cdot \frac{(x-x_0)^n}{n!} + o((x-x_0)^n)$
Svilu	opi :
	$= 1 + x + \frac{x^2}{2} + + \frac{x^n}{n!} + o(x^n)$
2)se	$2nx = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$
3)c	$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \cdot \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$
	$og(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + o(x^n)$
	$\frac{1}{+x} = 1 - x + x^2 - \dots + (-1)^n \cdot x^n + o(x^n)$
	$\frac{1}{1+x} = 1 - \frac{x}{2} + \frac{3}{8}x^2 + \dots + (-1)^n \cdot \frac{(2n-1)!}{(2n)!} \cdot x^n + o(x^n)$
7)√	$\overline{x+1} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \dots (-1)^{n+1} \cdot \frac{(2n-3)!}{(2n)!} \cdot x'' + o(x)$
8)-	$\frac{1}{+x^2} = 1 - x^2 + x^4 - \dots + (-1)^n \cdot x^{2n} + o(x^{2n+1})$
9)-	$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3}{8}x^4 + \dots + \frac{(2n-1)!}{(2n)!} \cdot x^{2n} + o(x^{2n+1})$
10)	$\frac{1}{\sqrt{1-x}} = 1 + \frac{x}{2} + \frac{3}{8}x^2 + \dots + \frac{(2n-1)!!}{(2n)!!} \cdot x^n + o(x^n)$
11)	$arctgx = x - \frac{x^3}{2} + \frac{x^5}{5} - \dots + (-1)^n \cdot \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$
12)	$arcsenx = x + \frac{x^3}{6} + \frac{3}{40}x^3 + \dots + \frac{(2n-1)!}{(2n)!} \cdot \frac{x^{2n+1}}{(2n+1)} + o(x^2)$ $arccosx = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3}{40}x^3 - \dots - \frac{(2n-1)!}{(2n)!} \cdot \frac{x^{2n+1}}{(2n+1)} + o(x^2)$
13) 8	$\arccos x = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3}{40}x^5 - \dots - \frac{(2n-1)!}{(2n)!} \cdot \frac{x^{2n-1}}{(2n+1)} + o(x^2)$
14)	$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{7}{315}x^7 + o(x^8)$
Fatt	oriali: 3!=6; 4!=24; 5!=120; 6!=720
_	

Formula di Taylor con resto di Peano

Prima formula di sostituzione: $\int f(\phi(x)) \cdot \phi'(x) dx = \left[\int f(t) dt \right]_{t=\phi(x)}$

PER SOSITUZIONE
Nell applicare la formula di satituaione
può astre utile un artificio memonico:
può stare utile un artificio memonico:
più distata la martificio memonico:
più distata a con qui nell'integrando e di con φ Sostituire la x con $f\left(x\right) = t$ $x \rightarrow \varphi\left(t\right)$ $dx \rightarrow \left(\varphi\left(t\right)\right)^{*} dt$

INTERGRALE DEFINITO
Sia f(x) una funzione continua in (a, b) si dice
integrale definito della funzione e si indica con: $\int_{a}^{b} f(x)dx = F(b) - F(a),$

L' integrale rappresenta l'area della parte di piat racchiusa tra la curva e l'intervallo (a , b). Se l'area sta sopra l'asse delle x è positiva , se sta sotto è negativa.