Direct Proofs Example

The arithmetic/geometric mean inequality

Definition: The arithmetic mean of two real numbers a and b is (a+b)/2.

Definition: The geometric mean of two positive real numbers a and b is $\sqrt(ab)$.

Proposition: If a and b are positive real numbers, then the geometric mean of a and b is less than or equal to their arithmetic mean.

Proposition: If a and b are positive real numbers, then the geometric mean of a and b is less than or equal to their arithmetic mean.

Proposition: If a and b are positive real numbers, then:

$$\sqrt(ab) \leq \frac{(a+b)}{2}$$

Problem Solving Phase

Isolating the needed lemma

Lemma: If a and b are positive, and $a \le b$, then $\sqrt{a} \le \sqrt{b}$ where \sqrt{x} denotes the positive square root of x.

The proof

Proposition: If a and b are positive real numbers, then:

$$\sqrt(ab) \leq \frac{(a+b)}{2}$$

Proof:

We know that $(a-b)^2 \ge 0$. Therefore $a^2+b^2-2ab \ge 0$ and so $a^2+b^2 \ge 2ab$. Add 2ab to both sides to obtain $a^2+2ab+b^2 \ge 4ab$ so $(a+b)^2 \ge 4ab$. Both sides of this inequality are positive, since the left side is a square the right side is a product of positive numbers. Now apply the lemma to take the square root of both sides to obtain

$$(a+b) \geq 2\sqrt{ab}$$
.

Dividing both sides by 2 yields the desired result.