Clase 14.1

Prueba AP 2

La prueba consiste en solicitar al estudiante dos fórmulas de derivación de cualquier función.

Clase 14.2

Derivadas de orden superior

Recordando que si f es derivable en]a,b[, ella admite la función derivada f' = F(x). Si esta función es a su vez derivable en]a,b[, entonces también admite una función derivable; y así sucesivamente.

 $f(x) \rightarrow f'(x) = F(x)$ llamamos la primera derivada

 $F(x) \rightarrow F'(x) = f''(x) = G(x)$ llamada la segunda derivada

 $G(x) \rightarrow G'(x) = f'''(x)$ llamada la tercera derivada

Ejercicios

1. Sea $f(x) = x^4 + 3x^3$, calcular f'(x), f''(x), f'''(x), $f^{(4)}(x)$, $f^{(5)}(x)$

$$f'(x) = 4x^3 + 9x^2$$

$$f''(x) = 12x^2 + 18x$$

$$f'''(x) = 24x + 18$$

$$f^{(4)}(x) = 24$$

$$f^{(5)}(x)=0$$

2. Encontrar la n ésima derivada de las siguientes funciones:

- a. Y = senx
- b. Y = cosx
- c. $Y = e^x sen x$
- 3. Encontrar la tercera derivada de $f(x) = (\sin(x+4)^3)^2$

- 1. Encontrar la segunda derivada de y = senx.cosx
- 2. Encontrar la n ésima derivada de $v = e^{x^2}$
- 3. Encontrar la n ésima derivada de $y = \frac{1}{x}$
- 4. ¿Derivadas de hasta qué orden tiene la función $y = x^n$?

Derivadas parciales

Sea z = f(x,y,w) una función de tres variables (igual podríamos tener una función de n variables).

Definimos la derivada parcial de f respecto de x notada como $\frac{\partial f}{\partial x}$ o f'_x al siguiente límite:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y,w) - f(x,y,w)}{h}$$

De igual forma:

$$\frac{\partial f}{\partial y} = f'_y = \lim_{h \to 0} \frac{f(x, y + h, w) - f(x, y, w)}{h}$$

$$\frac{\partial f}{\partial w} = f'_{w} = \lim_{h \to 0} \frac{f(x, y, w + h) - f(x, y, w)}{h}$$

Para derivar f respecto de x se considera constantes a las variables y y w; de igual manera, para derivar f respecto de y se considera constantes a las variables x y w; finalmente para derivar f respecto de w, se considera constantes las variables x e y.

Ejemplos

1. Sea
$$f(x,y) = x^2y + y^2x + 3$$
 encontrar $\frac{\partial f}{\partial x}y \frac{\partial f}{\partial y}$

2. Calcular
$$z'_x y z'_y$$
 si $z = e^{x^2 + y^2}$

Diferencial de una función.

Sea $\frac{df}{dx} = f'(x)$ la derivada de la función respecto de la variable x. Se define la diferencial como df = f'(x)dx

EJEMPLOS PROPUESTOS

- 1. Calcular y'_x de las siguientes funciones:
 - a. $y = x \sin w$

b.
$$y = \sin(x^2 + z^2)^3$$

Clase 14.3

V APLICACIONES DE LAS DERIVADAS

Teorema de L'Hopital

Si $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ indeterminado, y existe f'(x) y existe g'(x) en x = a, entonces

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{f'(a)}{g'(a)}; si \ g'(a)\neq 0$$

Ejemplos

1. Calcular $\lim_{x\to 0} \frac{\sin 5x}{3x} = \frac{0}{0}$ indeterminado

$$\lim_{x \to 0} \frac{\sin 5x}{3x} = \lim_{x \to 0} \frac{5\cos 5x}{3} = \frac{5\cos 5.0}{3} = \frac{5}{3}$$

2. Calcular
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$

Aplicación de las derivadas a los movimientos

Clase PAE

Resolución de ejercicios

Objetivo. Encontrar las derivadas de cualquier tipo de función

Presentación de Actividad Colaborativa 2.3 (AC2.3)

Construir una tabla de derivadas de las siguientes funciones

Trabajo Autónomo 2.3 (TA2.3)

Resolver los ejercicios propuestos de la presente semana