Al for Society

BSc AI 2020/21

Week 4: AI Economics

Giovanni Colavizza

Topics

- 1. The economic impact of automation
- 2. A framework to think about AI economics
- 3. Predicting the automation of work
- 4. Concluding remarks
- 5. Assignment

PART 1: The economic impact of automation

Giovanni Colavizza

US unemployment

2000-2020

Civilian unemployment rate, seasonally adjusted

Click and drag within the chart to zoom in on time periods

EU unemployment

2000-2020

US Productivity

High structural unemployment, why?

Three views:

- Economic cycles
- Long-term stagnation in innovation
- "End of work" (Rifkin, 1995): not too little, but too much innovation

High structural unemployment, why?

Three views:

- Economic cycles
- Long-term stagnation in innovation
- "End of work" (Rifkin, 1995): not too little, but too much innovation

Two attitudes:

- Pessimistic: automation brings an overall reduction in employment and quality of labour, while increasing the concentration of wealth: problem of distribution.
- **Optimistic**: automation, while displacing on the short term, brings higher employment and overall wealth growth on the medium and longer term.

A historical recurrence: Luddism

The most famous historical reaction to mechanization happened in early XIX-century Britain, in the textile sector.

A historical recurrence: Luddism

Then (like now, probably), mechanization was mostly labour displacing rather than replacing, in the long term.

Far (or near?) future speculation

Limit scenarios for AI development:

- Merge of humans and machines via enhancement.
 Technology and not biology will increasingly determine capabilities. Rich get richer dynamics to skyrocket.
 - Yuval Noah Harari. 2015. Homo Deus.
- Al entities develop separately from humans. Unclear what might happen, likely obsolescence of humans.
 - Nick Bostrom. 2014. Superintelligence.
 - Max Tegmark. 2017. Life 3.0.

Q&A

PART 2: A framework to think about AI economics

Giovanni Colavizza

Al as prediction

- "PREDICTION is the process of filling in missing information. Prediction takes information you have, often called 'data', and uses it to generate information you don't have."
- Al is ostensibly good at improving predictions (i.e., reducing uncertainty) for **routine** tasks with abundant and **uniform** data generating processes.
- While this consideration still holds, AI is getting better, i.e., what falls under 'routine' and 'uniform' is expanding rapidly.

Anatomy of a decision

"Prediction facilitates decisions by reducing uncertainty, while judgment assigns value. In economists' parlance, judgment is the skill used to determine a payoff, utility, reward, or profit. The most significant implication of prediction machines is that they increase the value of judgment."

Anatomy of a decision

Tasks that focus on routine predictions are easier to automate.

Tasks that focus on judgements and complex actions are harder to automate, yet can be complemented.

- Improve predictions (e.g., image recognition)
- Automate predictions
 which were previously
 not automatable (e.g.,
 translation). I.e.,
 broaden what we
 consider 'routine'.

 Build or tap into a controlled data-generating process which can be used to make predictions (e.g., ads or sales)

 Build fully autonomous decision systems (e.g., self-driving cars)

Agrawal, Gans, Goldfarb. 2018. Prediction machines

What is the impact on jobs?

Thinking about how to redesign and automate entire processes Work flow **Tasks Decisions** Jobs

Q&A

PART 3: Predicting the automation of work

Giovanni Colavizza

Idea: use job descriptions in terms of their requirements and presence of computational bottlenecks, in order to predict how likely they are to be automated in the near future.

Approach: supervised learning.

Frey and Osborne. 2013. The future of employment,

https://www.oxfordmartin.ox.ac.uk/downloads/academic/The Future of Employment.pdf?link=mktw

Computerisation bottleneck	O*NET Variable	O*NET Description
Perception and Manipulation	Finger Dexterity	The ability to make precisely coordinated movements of the fingers of one or both hands to grasp, manipulate, or assemble very small objects.
	Manual Dexterity	The ability to quickly move your hand, your hand together with your arm, or your two hands to grasp, manipulate, or assemble objects.
	Cramped Work Space, Awkward Positions	How often does this job require working in cramped work spaces that requires getting into awkward positions?
Creative Intelligence	Originality	The ability to come up with unusual or clever ideas about a given topic or situation, or to develop creative ways to solve a problem.
	Fine Arts	Knowledge of theory and techniques required to compose, produce, and perform works of music, dance, visual arts, drama, and sculpture.
Social Intelligence	Social Perceptiveness	Being aware of others' reactions and understanding why they react as they do.
	Negotiation	Bringing others together and trying to reconcile differences.
	Persuasion	Persuading others to change their minds or behavior.
	Assisting and Caring for Others	Providing personal assistance, medical attention, emotional support, or other personal care to others such as coworkers, customers, or patients.

Frey and Osborne. 2013. The future of employment,

Frey and Osborne. 2013. The future of employment,

https://www.oxfordmartin.ox.ac.uk/downloads/academic/The Future of Employment.pdf?link=mktw

FIGURE IV. Wage and education level as a function of the probability of computerisation; note that both plots share a legend.

The current wave of automation, largely driven by AI and robotics, seems to impact low-skilled workers most and to favour high-skilled workers more.

"The balance between job conservation and technological progress therefore, to a large extent, reflects the balance of **power in society**, and how gains from technological progress are being distributed."

Same question, but different method: instead of using job requirements, consider the tasks it is made of. How automatable are they?

Approach: collective intelligence (crowdsourcing).

Nesta report. 2020. Mapping career causeways https://www.nesta.org.uk/report/mapping-career-causeways-supporting-workers-risk

Interactive maps: https://data-viz.nesta.org.uk/career-causeways/index.html

Nesta report. 2020. Mapping career causeways https://www.nesta.org.uk/report/mapping-career-causeways-supporting-workers-risk

What can machines learn?

"We find that 1) most occupations in **most industries have at least some components that are suitable for machine learning (SML)**, 2) **few if any occupations have all tasks that are SML** and 3) unleashing ML potential will require significant redesign of the task content of jobs, as SML and non-SML tasks within occupations are unbundled and rebundled.

Our findings suggest that a shift is needed in the debate about the effects of AI on work: away from the common focus on full automation of jobs and pervasive occupational replacement toward the redesign of jobs and reengineering of business processes."

Q&A

PART 4: Concluding remarks

Giovanni Colavizza

Where is AI best applied to innovate?

- map well-defined inputs to well-defined outputs
- have data or where data can be created
- have clear feedback and goals
- do not have long chains of reasoning depending on background knowledge or common sense
- do not need detailed explanations
- are tolerant to error
- do not change much over time
- do not require specialized dexterity or mobility

Example: Search

Al is best applied to tasks that:

Q

- map well-defined inputs to well-defined outputs
- have data or where data can be created
- have clear feedback and goals
- do not have long chains of reasoning depending on background knowledge or common sense
- do not need detailed explanations
- are tolerant to error
- do not change much over time
- do not require specialized dexterity or mobility

Example: Biometric authentication

- map well-defined inputs to well-defined outputs
- have data or where data can be created
- have clear feedback and goals
- do not have long chains of reasoning depending on background knowledge or common sense
- do not need detailed explanations
- are tolerant to error
- do not change much over time
- do not require specialized dexterity or mobility

Example: Uber

- map well-defined inputs to well-defined outputs
- have data or where data can be created
- have clear feedback and goals
- do not have long chains of reasoning depending on background knowledge or common sense
- do not need detailed explanations
- are tolerant to error
- do not change much over time
- do not require specialized dexterity or mobility

Example: Self-driving car

- map well-defined inputs to well-defined outputs
- have data or where data can be created
- have clear feedback and goals
- do not have long chains of reasoning depending on background knowledge or common sense
- do not need detailed explanations
- are tolerant to error
- do not change much over time
- do not require specialized dexterity or mobility

What we did not cover

- Philosophical and psychological foundations
- Sociological and historical foundations
- Anonymity and privacy
- Profiling and security
- Misinformation and disinformation
- Accountability and regulatory frameworks
- Diversity and inclusion
- Existential risk
- ...

Q&A

PART 5: Assignment

Giovanni Colavizza

Charting the debate on the automation of work

Charting the debate on the automation of work

- Goal: understand how the debate on the automation of work has or is unfolding.
- How: use news, social and online media data, find relevant debates, map what they say (top keywords, topics, sentiment).
- This is an open assignment: you will choose which data and methods to use. We provide some ideas, but you are welcome to propose your own approach.

Set-up

You will work into groups. Motivated requests to change group can be made.

Let's check the course repository for more info (assignment 4): https://github.com/Giovanni1085/UvA_AlforSociety_2021

Note: we will assume you can clone a GitHub repository, set-up a working Python environment (ideally virtual, e.g., via Conda) and work with Jupyter notebooks. If you need some pointers/help, we have included a guide to setting up your working environment in the repo.

Q&A