Khasha Dehnad Recommendation Systems

Application of Recommendation Systems

Product Recommendations

Movie Recommendations

News Articles

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void
 a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

The Long Tail Curve

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

• Top 10, Most Popular, Recent Uploads

Tailored to individual users

Amazon, Netflix, ...

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Two approaches to recommender systems:
 - 1) Content-based
 - 2) Collaborative

Recommendation Systems

Content-based
 Focus on properties of items

Collaborative

Focus on the relationship between users and item

Content-based Recommender Systems

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - **Text:** Set of "important" words in document

Recommendation Systems

• Content-based: Movie Recommendation Focus on properties of items

Movie	Actor1	Actor2	Actor3	Actor4	Actor5	Actor6	Rating
Α	1			1	1		5
В	1	1	1				4
С				1	1	1	2
D		1					4

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Finding "Similar" Users

Cosine similarity measure

•
$$sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$$

• Problem: Treats missing ratings as "1egative"

1,1

1/sqrt(2),1/sqrt(2)= [0.707107, 0.707107]

Pythagorean Theorem

2,0

2/sqrt(4),0/sqrt(4) [1,0]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Apnedix

Utility Matrix: Relationship between users and items

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6	Movie 7
A	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Cosine sim:
$$sim(x,y) = \frac{\sum_{i} r_{xi} \cdot r_{yi}}{\sqrt{\sum_{i} r_{xi}^{2}} \cdot \sqrt{\sum_{i} r_{yi}^{2}}}$$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- **Cosine similarity:** 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

	l		HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0		,	•		0

sim A,B vs. A,C: 0.092 > -0.559

Notice cosine sim. is correlation when data is centered at 0

Recommendation Systems

• Content-based: Movie Recommendation Focus on properties of items

Movie	Actor1	Actor2	Actor3	Actor4	Actor5	Actor6	Rating
Α	1			1	1		5
В	1	1	1				4
С				1	1	1	2
D		1					4

Collaborative Focus on the relationship between users and item

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6	Movie 7
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3
	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6	Movie 7
Α	1			1			
В	1	1	1				
С					1	1	
D		1					1
	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6	Movie 7
А	0.666667			1.666667	-2.33333		
В	0.333333	0.333333	-0.66667				
С				-1.66667	0.333333	1.333333	
D		0					0