The Birth of MEMS

History of MEMS

• https://nanohub.org/resources/26536/download/History of MEMS Presentation.pdf

Kulite semiconductors

- https://kulite.com/about/
- Anthony David Kurtz, founder and chief executive officer of Kulite Semiconductor

https://nap.nationalacademies.org/read/1 3338/chapter/29

His PhD thesis was titled "Mechanical properties of a newly promising element—silicon"

The very first IC

April 25, 1961 R. N. NOYCE 2,981,877 SEMICONDUCTOR DEVICE-AND-LEAD STRUCTURE

Filed July 30, 1959

3 Sheets-Sheet 2

https://www.edn.com/noyce-receives-1st-ic-patent-april-25-1961/

MEMS are desirable due to...

- Small sensors interfere less with the environment they are measuring than larger devices.
- Reduced cost due to batch production and miniaturization
- Better performance, e.g., Silicon piezoresistor is better than metals
- Greater complexity/functionality
- Low power consumption
- Small footprint at system level
- Redundancy

Inkjet printheads

Two key mechanisms

Inside a Canon's thermal printhead

6,000 nozzles on a chip with an area measuring a mere 20 mm x 16 mm, roughly the size of a thumbprint

Print Head with Enlarged View of Nozzle Configuration

https://global.canon/en/technology/support06.html

Teardown

Channels etched in silicon - SEM view

(Source: Epson PrecisionCare Printhead with MicroTFP Inkjet Dies, System Plus Consulting, 2019).

Small and large heater after organic layer removed SEM view

(Source: HP746 HDNA lokjet Die from HP report, System Plos Consulting, 2019)

6.26 H (weaponstable) read retrievalue.

(C2019) precipionship in transmissione

https://www.yolegroup.com/strategy-insights/inkjet-printhead-the-industry-is-driving-a-new-momentum/

Epson's piezo printhead

 $\underline{\text{https://corporate.epson/en/technology/search-by-products/printer-inkjet/micro-piezo.html}}$

Piezo MEMS based printheads market

Inkjet printheads applications and technologies segmentation

https://medias.yolegroup.com/uploads/2019/08/Yole YD19038 Inkjet-Printheads-Dispensing-Technologies-Market-Landscape-2019 flyer.pdf

Comparison between inkjet & EHD printing

COMPARISON INKJET VS. EHD

Standard Inkjet

push from inside of nozzleenergy created inside PH mostly lost

Scrona EHD Inkjet

pull from outside of nozzle energy directly focused inside liquid

Uses **MEMS-based** micro-fabricated printhead technology

https://www.linkedin.com/posts/scrona standard-inkjet-activates-a-pushing-force-activity-7115717620728819712-fsJK/

Scrona holds the world record for the smallest ever printed color photo. This image fits on the cross section of a strain of human hair.

Remember, Feynman's challenge of writing small!

Printing functional materials

- Thermochromic Inks: These are temperature-sensitive inks that change color when the ambient temperature increases beyond a pre-designated value. They come in many colors like shades of neon, blue, purple, etc.
 Common applications include labels, print advertising, fabrics, biomarkers, and sensors.
- **Photochromic Inks:** These inks temporarily change color when exposed to UV light. Similar to thermochromic inks, these photochromic inks also come in several colors. They can be seen in light-sensitive eyewear solutions, body patches to detect exposure to sunlight, and clothing.
- **Hydrochromic Inks:** These inks change color when they interact with or get immersed in water. Typical applications include packaging solutions, moisture indicators, decorative umbrellas, and clothing.

Micro Thermal Inkjet for Fuel Injection

• https://microsys.ust.hk/abstract/inkjet_fuel.htm

Thank You