

Handling Categorical Features

Handling Categorical Features

- So far, all features in our datasets have been numeric, because models in scikitlearn only take numeric features
- For many applications, we may have categorical features (discrete features)
- Examples of categorical features: brand of a product, education level, gender, ...
- Sample data (adult incomes in the US):

	age	workclass	education	gender	hours-per-week	occupation	income
0	39	State-gov	Bachelors	Male	40	Adm-clerical	<=50K
1	50	Self-emp-not-inc	Bachelors	Male	13	Exec-managerial	<=50K
2	38	Private	HS-grad	Male	40	Handlers-cleaners	<=50K
3	53	Private	11th	Male	40	Handlers-cleaners	<=50K

- By far the most common way to represent categorical variables is using the one-hot-encoding or one-out-of-V encoding, also known as dummy variables
- A categorical variable is replaced with one or more new features that can have values 0 and 1
- We can represent any number of categories (in a categorical variable) by introducing one new feature per category
- Let's say for the workclass feature in our sample data we have possible values of "Government Employee", "Private Employee", and "Self Employed"

- To encode these three possible values, we create three new features called, "Government Employee", "Private Employee", and "Self Employed"
- A feature is 1 if workclass for this person has the corresponding value and 0 otherwise
- So, exactly one of these three features will be 1 for each data point
- This is why this method is called one-hot or one-out-of-N encoding
- When we use this data to develop our models, we would drop the original workclass feature and only keep the dummy(0-1) features

• To encode these three possible values, we create three new features called, "Government Employee", "Private Employee", and "Self Employed"

workclass	Government Employee	Private Employee	Self Employed	
Government Employee	1 vikinem long	0	0	
Private Employee	0	1	0	
Self Employed	0	0	1	

- We can use pandas to encode our categorical features
- get_dummies function in pandas automatically transforms all categorical features
- Before encoding, it is always a good idea to check the categories of categorical features

• Be carful to separate target variable before encoding your features

Make sure to encode the whole data before splitting to train and test

sets

```
income=pd.read_csv('Adults_Income.csv')
```

2 income.head()

	age	workclass	occupation	hours-per-week	income
0	20	Private	Sales	44	<=50K
1	31	Private	Sales	38	>50K
2	24	Private	Tech-support	50	<=50K
3	43	Private	Tech-support	40	>50K
4	30	Private	Sales	40	<=50K

• .

```
income['workclass'].value_counts()
Private
                 1986
Self-emp-inc
               180
Federal-gov
                   51
Name: workclass, dtype: int64
    income['occupation'].value_counts()
Sales
                 1742
Tech-support
                 475
Name: occupation, dtype: int64
```

•

```
1 X, y=income.iloc[:,:-1],income.iloc[:,-1]
```

```
1 X_dummies=pd.get_dummies(X)
```

2 X_dummies.head()

	age	hours-per-week	workclass_ Federal-gov	workclass_ Private	workclass_ Self-emp-inc	occupation_ Sales	occupation_ Tech-support
0	20	44	0	1	0	1	0
1	31	38	0	1	0	1	0
2	24	50	0	1	0	0	1
3	43	40	0	1	0	0	1
4	30	40	0	1	0	1	0

```
from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model selection import train test split
In [10]: X train, X test, y train, y test=train test split(X income dummies,y income, random state=0)
         knn=KNeighborsClassifier(n_neighbors=11)
         knn.fit(X train, y train)
Out[19]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                    metric_params=None, n_jobs=None, n_neighbors=11, p=2,
                    weights='uniform')
In [20]:
         print('knn on train {:.2%}'.format(knn.score(X train,y train)))
         print('knn on test {:.2%}'.format(knn.score(X test,y test)))
         knn on train 76.71%
         knn on test 73.15%
```

- Making predictions:
 - We have to pass the data in the same structure that we used to train our model, and that is X_dummies structure

```
# Predictions
# intial features structure:
# age --workclass --voccupation **hours-per-week
# p1=[25,'private','Tech-support',30]
```

```
# X_dummies structure
# age, hours-per-week, workclass_ Federal-gov, workclass_ Private ,workclass_ Self-emp-inc ,occupation_ Sales, occupation_ Tech-s
p1=[25,30,0,1,0,0,1]
```

```
knn.predict([p1])
array([' <=50K'], dtype=object)</pre>
```

Numbers Can Encode Categoricals

- Sometimes you might have integer values for a feature, while that feature is actually a discrete variable
- For instance data about a product type might have been collated like:
 - book: 1
 - CD: 2
 - Pen: 3
- In these situations, we have to first change the data type to string, then use get_dummies function to encode the feature, otherwise python would treat that feature as a numeric feature

Numbers Can Encode Categoricals

Prodcut Type	Prodcut Colour
3	blue
1	red
2	red
1	blue
	3

Lundquist College of Business

Numbers Can Encode Categoricals

•

pd.get_dummies(demo_df)

	Prodcut Type	Prodcut Colour_blue	Prodcut Colour_red
0	3	1	0
1	1	0	1
2	2	0	1
3	1	1	0

Numbers Can Encode Categoricals

```
demo_df['Prodcut Type']=demo_df['Prodcut Type'].astype(str)

pd.get_dummies(demo_df)
```

	Prodcut Type_1	Prodcut Type_2	Prodcut Type_3	Prodcut Colour_blue	Prodcut Colour_red
0	0	0	1	1	0
1	1	0	0	0	1
2	0	1	0	0	1
3	1	0	0	1	0

Lundquist College of Business

One-Hot-Encoding (WestRoxbury_categorical data)

house=pd.read_csv('WestRoxbury_categorical.csv')
house.head()

	TOTAL VALUE	LOT SQFT	YR BUILT	GROSS AREA	LIVING AREA	FLOORS	ROOMS	BEDROOMS	FULL BATH	HALF BATH	KITCHEN	FIREPLACE	REMODEL
0	344.2	9965	1880	2436	1352	2.0	6	3	1	1	1	No	No
1	412.6	6590	1945	3108	1976	2.0	10	4	2	1	1	No	Yes_Recently
2	330.1	7500	1890	2294	1371	2.0	8	4	1	1	1	No	No
3	498.6	13773	1957	5032	2608	1.0	9	5	1	1	1	Yes	No
4	331.5	5000	1910	2370	1438	2.0	7	3	2	0	1	No	No

Lundquist College of Business

One-Hot-Encoding (WestRoxbury_categorical data)

```
X,y=house.iloc[:,1:],house['TOTAL VALUE ']
```

X_dummies=pd.get_dummies(X)

X_dummies.head()

1	0
	U
0	0
1	0
1	0
1	0
	1 0 1 1

One-Hot-Encoding (WestRoxbury_categorical data)

```
X_train, X_test, y_train, y_test=train_test_split(X_dummies,y,random_state=0)

from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(X_train,y_train)
print('reg acc on train: {:.3f}'.format(lr.score(X_train,y_train)))
print('reg acc on test: {:.3f}'.format(lr.score(X_test,y_test)))

reg acc on train: 0.818
reg acc on test: 0.802
```

One-Hot-Encoding (WestRoxbury_categorical data)

smpl1=X_test.iloc[:4]
smpl1

:		LOT SQFT	YR BUILT	GROSS AREA	LIVING AREA	FLOORS	ROOMS	BEDROOMS	FULL BATH	HALF BATH	KITCHEN	FIREPLACE_No	FIREPLACE_Yes	REMODEL_No	REMODEL_Yes
	1519	4026	1940	2520	1047	1.0	6	3	1	1	1	0	1	1	(
	3457	7000	1848	6235	3446	2.0	12	5	3	0	1	0	1	1	(
	895	4615	1956	2304	1306	1.5	6	3	1	1	1	0	1	1	C
	5423	5000	1930	1930	1273	2.0	7	3	1	0	1	0	1	1	(

lr.predict(smpl1)

: array([304.37214016, 639.19502363, 337.12378227, 327.2775603])