Representation Theory and its Applications in Physics

June 5, 2024

Presented by

Max Varverakis (mvarvera@calpoly.edu)

Outline:

- 1. Introduction to Representation Theory
- 2. Examples in Physics
- 3. The Braid Group
- 4. Physical Applications of the Braid Group

Definition of a Representation

Definition

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

The Braid Group

Definition

Introduction to Representation Theory

00000000000000

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

The Braid Group

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(g) is an operator on the V.

Definition of a Representation

Definition

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

The Braid Group

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(g) is an operator on the V.

Remark

If V is finite-dimensional with basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, then X can be realized as an $n \times n$ matrix.

$$X(gh) = X(g)X(h), \quad \forall g, h \in G$$

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

Introduction to Representation Theory

0000000000000

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

1. X(e) = I, where e is the identity element of the group and I is the identity operator.

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \forall g, h \in G.$$

The Braid Group

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

- 1. X(e) = I, where e is the identity element of the group and I is the identity operator.
- **2.** In the matrix presentation of X, X(g) is invertible for all $g \in G$.

Trivial Representation of a Group

Introduction to Representation Theory

0000000000000

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Example: The Trivial Representation

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

Introduction to Representation Theory

0000000000000

The trivial representation is always one-dimensional.

Example: The Trivial Representation

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

Introduction to Representation Theory

00000000000000

- The trivial representation is always one-dimensional.
- For groups with more than one element, the trivial representation is not injective, so we call it a degenerate representation.

The Braid Group

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

Introduction to Representation Theory

00000000000000

- The trivial representation is always one-dimensional.
- For groups with more than one element, the trivial representation is not injective, so we call it a degenerate representation.

The Braid Group

If a representation is injective, then it is a *faithful representation*.

Introduction to Representation Theory

00000000000000

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

00000000000000

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

00000000000000

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Example: A Faithful Representation of S_n

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

00000000000000

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The defining representation of S_n is *n*-dimensional.

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

00000000000000

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- The defining representation of S_n is *n*-dimensional.
- This representation is faithful.

Example: Representation of Continuous Rotation Group

The Braid Group

Representations also work for continuous groups!

Introduction to Representation Theory

00000000000000

Representations also work for continuous groups!

Introduction to Representation Theory

00000000000000

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Example: Representation of Continuous Rotation Group

Representations also work for continuous groups!

Introduction to Representation Theory 00000000000000

> Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Example: Representation of Continuous Rotation Group

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

00000000000000

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

00000000000000

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Example: Representation of Continuous Rotation Group

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of G on V_2 with¹

$$X(\phi)\mathbf{e}_1 = \mathbf{e}_1 \cdot \cos \phi + \mathbf{e}_2 \cdot \sin \phi$$

$$X(\phi)\mathbf{e}_2 = -\mathbf{e}_1 \cdot \sin \phi + \mathbf{e}_2 \cdot \cos \phi$$

 $^{{}^{1}\}mathbf{e}_{1}$ and \mathbf{e}_{2} are orthonormal basis vectors of V_{2} .

Example: Representation of Continuous Rotation Group

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of G on V_2 with¹

$$\begin{array}{l} X(\phi)\mathbf{e}_1 = \mathbf{e}_1 \cdot \cos\phi + \mathbf{e}_2 \cdot \sin\phi \\ X(\phi)\mathbf{e}_2 = -\mathbf{e}_1 \cdot \sin\phi + \mathbf{e}_2 \cdot \cos\phi \end{array} \} \implies \boxed{X(\phi) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}}$$

 $^{{}^{1}\}mathbf{e}_{1}$ and \mathbf{e}_{2} are orthonormal basis vectors of V_{2} .

Thoughts

Introduction to Representation Theory

○○○○○●○○○○○○

► Can you think of other ways to represent 2D rotations?

Introduction to Representation Theory

○○○○○●○○○○○○

- ► Can you think of other ways to represent 2D rotations?
- ▶ What about $e^{i\phi}$ parameterization?

- ► Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?

- Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?
- Are certain representations equivalent?

- ► Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?
- Are certain representations equivalent?
- What does it mean for representations to be equivalent? Unique?

The Braid Group

Introduction to Representation Theory

- ► Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?
- Are certain representations equivalent?
- What does it mean for representations to be equivalent? Unique?

Question

How do we classify representations of a group?

Equivalent Representations

Definition

Two representations are equivalent if they are related by a similarity transformation.

The Braid Group

Introduction to Representation Theory

00000000000000

Two representations are equivalent if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent Representations

Definition

Introduction to Representation Theory

00000000000000

Two representations are equivalent if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Introduction to Representation Theory

00000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

Introduction to Representation Theory

00000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $q \in G$ and X is a representation of G, then the character of X(q) is $\chi(q) = \operatorname{tr}(X(q))$.

Introduction to Representation Theory

00000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $g \in G$ and X is a representation of G, then the character of X(g) is $\chi(g) = \operatorname{tr}(X(g))$.

If two representations have the same character for all $q \in G$, then they are equivalent.

Introduction to Representation Theory

00000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $g \in G$ and X is a representation of G, then the character of X(g) is $\chi(g) = \operatorname{tr}(X(g))$.

- If two representations have the same character for all $q \in G$, then they are equivalent.
- We can use characters to classify representations.

Decomposing Representations

Definition

A representation X(G) on V is irreducible if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

The Braid Group

Decomposing Representations

Definition

A representation X(G) on V is irreducible if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

Introduction to Representation Theory 00000000000000

> A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

Irreducible representations are the building blocks of all representations.

Decomposing Representations

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

- Irreducible representations are the building blocks of all representations.
- A reducible representation can be decomposed into a direct sum of irreducible representations.

Decomposing Representations

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

- Irreducible representations are the building blocks of all representations.
- A reducible representation can be decomposed into a direct sum of irreducible representations.
- The decomposition of a representation into irreducibles is unique up to equivalence.

The Braid Group

Introduction to Representation Theory

000000000000000

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

The Braid Group

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Invariance of e+

Introduction to Representation Theory

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}\left(\mp\mathbf{e}_{1}+i\mathbf{e}_{2}
ight)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}$.

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by e_1 (or e_2) is *not* invariant under rotations!

Invariance of e+

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}\left(\mp\mathbf{e}_{1}+i\mathbf{e}_{2}
ight)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}.$

Decomposition of X

The span of each \mathbf{e}_{\perp} is an X-invariant subspace of V_2 . In this basis, we rewrite X as a direct sum of the 1D irreducible representations3:

The Braid Group

$$X(\phi) = \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}.$$

³1-dimensional representations are always irreducible!

Introduction to Representation Theory

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

Schur's Lemmas (pt. 1)

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

Introduction to Representation Theory

> Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

Proof (sketch)

1. The kernel of T is invariant under X(G).

Schur's Lemmas (pt. 1)

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).

Schur's Lemmas (pt. 1)

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}.$

Introduction to Representation Theory

000000000000000

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}.$
- **4.** By the rank-nullity theorem, conclude that *T* is either the zero map or invertible.

Schur's Lemma's (pt. 2)

Lemma

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

Schur's Lemma's (pt. 2)

Lemma

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

Proof (sketch)

1. Consider λ to be an eigenvalue of T.

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.

Introduction to Representation Theory

00000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.
- **4.** By previous lemma, $T \lambda I = 0 \implies T = \lambda I$.

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

Proof (sketch)

1. Fix $h \in G$.

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element h was arbitrary, so $X(q) = \lambda_q I$ for all $q \in G$.

Consequence of Schur's Lemmas

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element h was arbitrary, so $X(q) = \lambda_q I$ for all $q \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element h was arbitrary, so $X(q) = \lambda_q I$ for all $q \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.
- 6. One-dimensional representations are irreducible.

A Note About Irreducibility

A Note About Irreducibility

Introduction to Representation Theory

00000000000000

▶ Irreducible representations are the building blocks of all representations.

00000000000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

00000000000000

- - Irreducible representations are the building blocks of all representations.
 - Irreducible representations can be combined/modified to create new representations, such as:

The Braid Group

Direct sums

00000000000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products

A Note About Irreducibility

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products
- Complex conjugation⁴

00000000000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products
- Complex conjugation⁴
- Similarity transforms

⁴If the representation matrices have entries in ℂ.

A Note About Irreducibility

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

The Braid Group

- Direct sums
- Tensor products
- Complex conjugation⁴
- Similarity transforms

How does this help in physics?

Irreducible representations can describe symmetries of physical systems with remarkably fundamental implications.

⁴If the representation matrices have entries in ℂ.

2 Examples in Physics

1. The quantum state of a system is described by a vector in a complex Hilbert space.

1. The quantum state of a system is described by a vector in a complex Hilbert space.

The Braid Group

2. The corresponding vectors are often called *state vectors*.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

Preliminaries: Physics Conventions

Introduction to Representation Theory

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

The Braid Group

4. The Hermitian conjugate or adjoint of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 4. The Hermitian conjugate or adjoint of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.
- **5.** Operators that are self-adjoint are called *Hermitian*.

Preliminaries: Dirac notation

Preliminaries: Dirac notation

▶ Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.

▶ Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.

The Braid Group

▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.

Preliminaries: Dirac notation

Introduction to Representation Theory

- ▶ Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- \blacktriangleright A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- A bra is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- \blacktriangleright A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- \blacktriangleright A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

The Braid Group

Inner product: $\langle \phi | \psi \rangle$

- ▶ Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- \blacktriangleright A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- A bra is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- Outer product: $|\phi\rangle\langle\psi|$

- ▶ Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- \blacktriangleright A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- Inner product: $\langle \phi | \psi \rangle$
- Outer product: $|\phi\rangle\langle\psi|$
- The action of an operator A on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.

Preliminaries: Dirac notation

Introduction to Representation Theory

- ▶ Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- \blacktriangleright A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- Outer product: $|\phi\rangle\langle\psi|$
- The action of an operator A on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.
- Equivalent ways to write the same thing:

$$\langle \mathbf{A}^{\dagger} \phi | \psi \rangle = \langle \phi | \mathbf{A} | \psi \rangle = \langle \phi | \mathbf{A} \psi \rangle.$$

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{|1\rangle, |2\rangle, |3\rangle, \dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $|\psi\rangle$ to be written as a linear combination of the basis vectors:

The Braid Group

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

Definition

Introduction to Representation Theory

Let $\{|1\rangle, |2\rangle, |3\rangle, \dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $|\psi\rangle$ to be written as a linear combination of the basis vectors:

The Braid Group

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{|1\rangle, |2\rangle, |3\rangle, \dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $|\psi\rangle$ to be written as a linear combination of the basis vectors:

The Braid Group

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Definition

For a continuous basis labelled by $|x\rangle$ where x is a continuous parameter, the wavefunction $\psi(x)$ is the projection: $\langle x|\psi\rangle=\psi(x)$.

The Braid Group

Let *R* denote the familiar rotation matrix representation from before.

The Braid Group

Let *R* denote the familiar rotation matrix representation from before.

Definition

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Properties of 2D Rotations

Let R denote the familiar rotation matrix representation from before.

Definition

Introduction to Representation Theory

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Let R denote the familiar rotation matrix representation from before.

Definition

Introduction to Representation Theory

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

The Braid Group

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

The Braid Group

Let *R* denote the familiar rotation matrix representation from before.

Definition

Introduction to Representation Theory

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

This special property is summarized by noting det $R(\phi) = 1$ for all $\phi \in [0, 2\pi)$.

Definition

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

⁵For all intents and purposes, SO(2) is *R* from before.

The SO(2) Group

Definition

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

Properties of SO(2):

Definition

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

Properties of SO(2):

▶ The periodicity condition $R(\phi + 2\pi) = R(\phi)$ is satisfied.

⁵For all intents and purposes, SO(2) is *R* from before.

The SO(2) Group

Definition

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

Properties of SO(2):

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- ▶ The *identity element* is R(0) = I.

⁵For all intents and purposes, SO(2) is *R* from before.

Definition

Introduction to Representation Theory

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

Properties of SO(2):

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- ▶ The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

⁵For all intents and purposes, SO(2) is *R* from before.

Definition

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

Properties of SO(2):

- ▶ The periodicity condition $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.
- \triangleright SO(2) is *reducible* (earlier example with \mathbf{e}_{+}).

⁵For all intents and purposes, SO(2) is *R* from before.

 \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.

ililesilliai notations

- ▶ Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ► This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

Infinitesimal Rotations

- ▶ Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ► This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ► This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

• Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.

⁶The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

Infinitesimal Rotations

- ▶ Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ► This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- ▶ With R(0) = I boundary condition: $R(\phi) = e^{-i\phi J}$.

⁶The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

Infinitesimal Rotations

- Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- ▶ Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- ▶ With R(0) = I boundary condition: $|R(\phi)| = e^{-i\phi J}|$.
- We call J the *generator* of SO(2) rotations.

⁶The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

Introduction to Representation Theory

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

Introduction to Representation Theory

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

Introduction to Representation Theory

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$
$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

$$= \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}.$$

Process to obtaining irreducibles:

Process to obtaining irreducibles:

1. Let U be any representation of SO(2).

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

Introduction to Representation Theory

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

Process to obtaining irreducibles:

Introduction to Representation Theory

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

The Braid Group

3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.

Process to obtaining irreducibles:

Introduction to Representation Theory

- **1.** Let U be any representation of SO(2).
- 2. Same argument as before: $U(\phi) = e^{-iJ\phi}$, where J is not necessarily the same as before.

- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$J\ket{m}=m\ket{m}, \ U(\phi)\ket{m}=e^{-iJ\phi}\ket{m}=e^{-im\phi}\ket{m}.$$

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- 2. Same argument as before: $U(\phi) = e^{-iJ\phi}$, where J is not necessarily the same as before.

The Braid Group

- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$J\ket{m}=m\ket{m}, \ U(\phi)\ket{m}=e^{-iJ\phi}\ket{m}=e^{-im\phi}\ket{m}.$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

- 1. Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.
- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$egin{aligned} J\left|m
ight
angle &= m\left|m
ight
angle \,, \ U(\phi)\left|m
ight
angle &= e^{-iJ\phi}\left|m
ight
angle &= e^{-im\phi}\left|m
ight
angle \,. \end{aligned}$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Theorem

The single-valued irreducible representations of SO(2) are defined as

$$U^m(\phi) = e^{-im\phi}, \ \forall \ m \in \mathbb{Z}.$$

Generalization to 3 Spatial Dimensions

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

The Braid Group

Rotations in a plane are isomorphic to SO(2): $R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}}$ for some generator $J_{\mathbf{n}}$.

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

- Rotations in a plane are isomorphic to SO(2): $R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}}$ for some generator $J_{\mathbf{n}}$.
- The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_{\mathbf{n}} = n_x J_x + n_y J_y + n_z J_z$.

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

The Braid Group

- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_{\mathbf{n}} = n_{x}J_{x} + n_{y}J_{y} + n_{z}J_{z}$.

Consequence: Any rotation in Euclidean 3-space can be written in terms of the generators:

$$R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}} = e^{-i\theta(n_x J_x + n_y J_y + n_z J_z)} = e^{-i\theta \mathbf{n} \cdot \mathbf{J}}.$$

Generalization to 3 Spatial Dimensions

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

The Braid Group

- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_{\mathbf{n}} = n_x J_x + n_y J_y + n_z J_z$.

Consequence: Any rotation in Euclidean 3-space can be written in terms of the generators:

$$R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}} = e^{-i\theta(n_x J_x + n_y J_y + n_z J_z)} = e^{-i\theta \mathbf{n} \cdot \mathbf{J}}.$$

Definition

The special orthogonal group in three dimensions, denoted SO(3), is the group of all 3×3 orthogonal matrices with determinant equal to +1. SO(3) rotations are generated by the components of the Hermitian generator $\mathbf{J} = [J_x, J_y, J_z]^{\top}$.

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

The Braid Group

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labelled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j.$

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

The Braid Group

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j$.

Consequences:

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

The Braid Group

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m = -i, -i + 1, \ldots, i - 1, j.$

Consequences:

▶ One can obtain the explicit form of **J** and subsequently its components J_x , J_y , J_z . These are precisely the angular momentum operators in quantum mechanics.

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

The Braid Group

Theorem

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j$.

Consequences:

- ▶ One can obtain the explicit form of **J** and subsequently its components J_x , J_y , J_z . These are precisely the angular momentum operators in quantum mechanics.
- ▶ The eigenvalues of $J^2 = \mathbf{J} \cdot \mathbf{J}$ and J_z are j(j+1) and m, respectively⁷. In quantum physics, these eigenvalues correspond to the observable total angular momentum and its z-component.

⁷Typically, the *z*-axis is chosen as the standard axis.

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

The Braid Group

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m = -i, -i + 1, \ldots, i - 1, j.$

Consequences:

- ▶ One can obtain the explicit form of **J** and subsequently its components J_x , J_y , J_z . These are precisely the angular momentum operators in quantum mechanics.
- ▶ The eigenvalues of $J^2 = \mathbf{J} \cdot \mathbf{J}$ and J_2 are j(j+1) and m, respectively⁷. In quantum physics, these eigenvalues correspond to the observable total angular momentum and its z-component.
- ► This generalizes to other types of angular momentum, such as *spin angular momentum!*

⁷Typically, the *z*-axis is chosen as the standard axis.

Connection to Quantum Mechanics: Punchline

Connection to Quantum Mechanics: Punchline

Discretization of Angular Momentum for Free

Introduction to Representation Theory

Arguably the most defining characteristic of quantum mechanics is that classically measurable quantities become discretized (quantized) when observed on the quantum scale. Without any physical motivation, the irreducible representations of SO(3) gave it to us for free!

Discretization of Angular Momentum for Free

Arguably the most defining characteristic of quantum mechanics is that classically measurable quantities become discretized (quantized) when observed on the quantum scale. Without any physical motivation, the irreducible representations of SO(3) gave it to us for free!

The Braid Group

But that's not all folks!

Introduction to Representation Theory

1. The *commutator* of two operators A and B is defined as [A, B] = AB - BA.

Introduction to Representation Theory

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The Hamiltonian operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

The Braid Group

Theorem (Ehrenfest)

Introduction to Representation Theory

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

The Braid Group

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

Introduction to Representation Theory

1. Any system with radial symmetry is invariant under SO(3) rotations, so $[\hat{H}, \mathbf{J}] = 0$.

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

The Braid Group

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

Introduction to Representation Theory

- **1.** Any system with radial symmetry is invariant under SO(3) rotations, so $[\hat{H}, \mathbf{J}] = 0$.
- 2. Conservation of angular momentum is a direct result of the radial symmetry of the system.

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

Introduction to Representation Theory

- **1.** Any system with radial symmetry is invariant under SO(3) rotations, so $[\hat{H}, \mathbf{J}] = 0$.
- 2. Conservation of angular momentum is a direct result of the radial symmetry of the system.
- 3. Similar arguments can be made for the continuous group of translations in space, leading to the conservation of linear momentum for translationally invariant systems.

Introduction to Representation Theory

1. The j = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

Introduction to Representation Theory

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

The Braid Group

2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:

Introduction to Representation Theory

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

- 2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:
 - Clebsch-Gordan coefficients

Introduction to Representation Theory

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

- 2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:
 - Clebsch-Gordan coefficients
 - singlet versus triplet states

Introduction to Representation Theory

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

- 2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:
 - Clebsch-Gordan coefficients
 - singlet versus triplet states
 - the Pauli exclusion principle

Introduction to Representation Theory

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

The Braid Group

- 2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:
 - Clebsch-Gordan coefficients
 - singlet versus triplet states
 - the Pauli exclusion principle

This is the tip of the iceberg!

Introduction to Representation Theory

The Braid Group

Definition

The *configuration space* of *n* ordered distinct points in the complex plane \mathbb{C} is defined as $M_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; z_i \neq z_i, \forall i \neq j\}.$

The Braid Group

000000000

Definition

The *configuration space* of *n* ordered distinct points in the complex plane \mathbb{C} is defined as $M_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; z_i \neq z_i, \forall i \neq j\}.$

The Braid Group

▶ Note that $(z_1, z_2, z_3, \dots, z_n)$ and $(z_2, z_1, z_3, \dots, z_n)$ are distinct configurations in M_n .

Definition

The configuration space of n ordered distinct points in the complex plane $\mathbb C$ is defined as $M_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; z_i \neq z_i, \forall i \neq j\}.$

- ▶ Note that $(z_1, z_2, z_3, \dots, z_n)$ and $(z_2, z_1, z_3, \dots, z_n)$ are distinct configurations in M_n .
- A braid β is a loop⁸ in M_0 and can be thought of as a configuration that evolves over time:

$$eta: [0,1] o M_n$$

$$t \mapsto eta(t) = (eta_1(t), eta_2(t), \dots, eta_n(t)),$$

Definition

The *configuration space* of *n* ordered distinct points in the complex plane \mathbb{C} is defined as $M_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; z_i \neq z_i, \forall i \neq j\}.$

- ▶ Note that $(z_1, z_2, z_3, \dots, z_n)$ and $(z_2, z_1, z_3, \dots, z_n)$ are distinct configurations in M_n .
- ▶ A braid β is a loop⁸ in M_0 and can be thought of as a configuration that evolves over time:

$$eta: [0,1] o M_n$$

$$t \mapsto eta(t) = (eta_1(t), eta_2(t), \dots, eta_n(t)),$$

The Braid Group

Definition

The braid group B_n is the (fundamental) group of all complex-valued n-tuples (M_n) up to homotopy.

⁸The topological formalisms that define the braid group are omitted for times sake.

000000000

Visualization of Braids

► Each path traced out by a point in the configuration space is a *strand*.

- ► Each path traced out by a point in the configuration space is a *strand*.
- The number of strands of a braid is equal to the number of points in each tuple in the configuration space.

- ► Each path traced out by a point in the configuration space is a *strand*.
- The number of strands of a braid is equal to the number of points in each tuple in the configuration space.
- We can think of a braid on n strands as the motion of n distinct points in the complex plane over a normalized time interval.

- ► Each path traced out by a point in the configuration space is a *strand*.
- The number of strands of a braid is equal to the number of points in each tuple in the configuration space.
- We can think of a braid on n strands as the motion of n distinct points in the complex plane over a normalized time interval.
- Each trajectory is a strand, and the braid is the collection of all strands.

- ► Each path traced out by a point in the configuration space is a *strand*.
- The number of strands of a braid is equal to the number of points in each tuple in the configuration space.
- We can think of a braid on n strands as the motion of n distinct points in the complex plane over a normalized time interval.
- ► Each trajectory is a strand, and the braid is the collection of all strands.
- ► A braid is defined up to *homotopy*.

Introduction to Representation Theory

- ► Each path traced out by a point in the configuration space is a *strand*.
- The number of strands of a braid is equal to the number of points in each tuple in the configuration space.
- ▶ We can think of a braid on *n* strands as the motion of *n* distinct points in the complex plane over a normalized time interval.
- Each trajectory is a strand, and the braid is the collection of all strands.
- ► A braid is defined up to *homotopy*.
- ▶ Visualized in $\mathbb{C} \times [0, 1]$.

- ► Each path traced out by a point in the configuration space is a *strand*.
- ► The number of strands of a braid is equal to the number of points in each tuple in the configuration space.
- ▶ We can think of a braid on *n* strands as the motion of *n* distinct points in the complex plane over a normalized time interval.
- ► Each trajectory is a strand, and the braid is the collection of all strands.
- ► A braid is defined up to *homotopy*.
- ▶ Visualized in $\mathbb{C} \times [0, 1]$.

Braid on 5 strands.

Standard Generators

▶ Every braid can be decomposed into a finite product of *standard generators* that permute adjacent points.

The Braid Group

000000000

Every braid can be decomposed into a finite product of standard generators that permute adjacent points.

The Braid Group

▶ The standard generators of B_n are defined as $\{\sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$, in which:

Standard Generators

- ▶ Every braid can be decomposed into a finite product of *standard generators* that permute adjacent points.
- ▶ The standard generators of B_n are defined as $\{\sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$, in which:

Standard Generators

- Every braid can be decomposed into a finite product of standard generators that permute adjacent points.
- ▶ The standard generators of B_n are defined as $\{\sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$, in which:

The Braid Group

▶ The <u>degree</u> of a braid $\beta \in B_n$ is the sum of the powers of the standard generators in the decomposition of β .

Definition

Introduction to Representation Theory

The braid group on n strands, denoted B_n , is generated by the standard generators that follow the *braid relations*, summarized below:

$$B_n = \left\langle \sigma_1, \ldots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i, \ |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \end{array} \right\rangle.$$

Alternative Description of B_n

Definition

The braid group on n strands, denoted B_n , is generated by the standard generators that follow the *braid relations*, summarized below:

Examples in Physics

$$B_n = \left\langle \sigma_1, \ldots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i, \ |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \end{array} \right\rangle.$$

Comment: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ is known as the *Yang-Baxter equation*, visualized below:

0000000000

One-Dimensional Representations of the Braid Group

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

The Braid Group

000000000

$$p_{ heta}: B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_j \mapsto e^{i heta}.$

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

The Braid Group

000000000

$$p_{ heta}: B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_i \mapsto e^{i heta}.$

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

The Braid Group

$$p_{ heta}: \mathcal{B}_n o \mathbb{C}_{|z|=1} \ \sigma_j \mapsto e^{i heta}.$$

$$p_{\theta}(\sigma_1\sigma_2\sigma_1^{-1}\sigma_2) = p_{\theta}(\sigma_1)p_{\theta}(\sigma_2)p_{\theta}(\sigma_1^{-1})p_{\theta}(\sigma_2)$$

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

The Braid Group

$$p_{ heta}: B_n
ightarrow \mathbb{C}_{|z|=1} \ \sigma_i \mapsto oldsymbol{e}^{i heta}.$$

$$\begin{aligned} p_{\theta}(\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}) &= p_{\theta}(\sigma_{1})p_{\theta}(\sigma_{2})p_{\theta}(\sigma_{1}^{-1})p_{\theta}(\sigma_{2}) \\ &= e^{i\theta_{1}}e^{i\theta_{2}}e^{-i\theta_{1}}e^{i\theta_{2}} \end{aligned}$$

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

$$p_{ heta}:B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_j\mapsto e^{i heta}.$

$$\begin{aligned} p_{\theta}(\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}) &= p_{\theta}(\sigma_{1})p_{\theta}(\sigma_{2})p_{\theta}(\sigma_{1}^{-1})p_{\theta}(\sigma_{2}) \\ &= e^{i\theta_{1}}e^{i\theta_{2}}e^{-i\theta_{1}}e^{i\theta_{2}} \\ &= e^{i(\theta_{1}-\theta_{1}+\theta_{2}+\theta_{2})} \end{aligned}$$

Examples in Physics

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

$$p_{ heta}: B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_j \mapsto e^{i heta}.$

$$egin{aligned} p_{ heta}(\sigma_1\sigma_2{\sigma_1}^{-1}\sigma_2) &= p_{ heta}(\sigma_1)p_{ heta}(\sigma_2)p_{ heta}(\sigma_1^{-1})p_{ heta}(\sigma_2) \ &= e^{i heta_1}e^{i heta_2}e^{-i heta_1}e^{i heta_2} \ &= e^{i(heta_1- heta_1+ heta_2+ heta_2)} \ &= e^{i\cdot 2 heta_2} = p_{ heta}(\sigma_2^2) \end{aligned}$$

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

$$p_{ heta}: \mathcal{B}_n
ightarrow \mathbb{C}_{|z|=1} \ \sigma_i \mapsto oldsymbol{e}^{i heta}.$$

These representations are *abelian*:

$$\begin{aligned} p_{\theta}(\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}) &= p_{\theta}(\sigma_{1})p_{\theta}(\sigma_{2})p_{\theta}(\sigma_{1}^{-1})p_{\theta}(\sigma_{2}) \\ &= e^{i\theta_{1}}e^{i\theta_{2}}e^{-i\theta_{1}}e^{i\theta_{2}} \\ &= e^{i(\theta_{1}-\theta_{1}+\theta_{2}+\theta_{2})} \\ &= e^{i\cdot 2\theta_{2}} &= p_{\theta}(\sigma_{2}^{2}) \end{aligned}$$

Hence, for any $\beta \in B_n$ with degree k:

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

$$p_{ heta}:B_{n}
ightarrow\mathbb{C}_{|z|=1}$$
 $\sigma_{i}\mapsto e^{i heta}.$

These representations are *abelian*:

$$egin{aligned} p_{ heta}(\sigma_1\sigma_2\sigma_1^{-1}\sigma_2) &= p_{ heta}(\sigma_1)p_{ heta}(\sigma_2)p_{ heta}(\sigma_1^{-1})p_{ heta}(\sigma_2) \ &= e^{i heta_1}e^{i heta_2}e^{-i heta_1}e^{i heta_2} \ &= e^{i(heta_1- heta_1+ heta_2+ heta_2)} \ &= e^{i\cdot2 heta_2} = p_{ heta}(\sigma_2^2) \end{aligned}$$

Hence, for any $\beta \in B_n$ with degree k:

$$p_{\theta}(\beta) = p_{\theta}(\sigma_1^{m_1}\sigma_2^{m_2}\cdots\sigma_{n-1}^{m_{n-1}}) = e^{i\theta(m_1+m_2+\cdots+m_{n-1})} = e^{ik\theta}.$$

0000000000

The Burau Representation

Define the matrix
$$U = \begin{bmatrix} 1 - t & t \\ 1 & 0 \end{bmatrix}$$
, where t is a free parameter.

Define the matrix
$$U = \begin{bmatrix} 1 - t & t \\ 1 & 0 \end{bmatrix}$$
, where t is a free parameter.

Definition

Introduction to Representation Theory

The Burau representation of the braid group B_n is defined on the standard generators:

$$\psi_n: \mathcal{B}_n \to \mathrm{GL}_n(\mathbb{Z}[t, t^{-1}])$$

$$\sigma_i \mapsto \begin{bmatrix} I_{i-1} & 0 & 0 \\ 0 & U & 0 \\ 0 & 0 & I_{n-i-1} \end{bmatrix}.$$

The Braid Group

Define the matrix $U = \begin{bmatrix} 1 - t & t \\ 1 & 0 \end{bmatrix}$, where t is a free parameter.

Definition

Introduction to Representation Theory

The Burau representation of the braid group B_n is defined on the standard generators:

$$\psi_n: \mathcal{B}_n \to \mathrm{GL}_n(\mathbb{Z}[t, t^{-1}])$$

$$\sigma_i \mapsto \begin{bmatrix} I_{i-1} & 0 & 0 \\ 0 & U & 0 \\ 0 & 0 & I_{n-i-1} \end{bmatrix}.$$

The Braid Group

The Burau representation satisfies the braid relations:

$$\psi_n(\sigma_i)\psi_n(\sigma_j) = \psi_n(\sigma_j)\psi_n(\sigma_i) \text{ for } |i-j| > 1,$$

$$\psi_n(\sigma_i)\psi_n(\sigma_{i+1})\psi_n(\sigma_i) = \psi_n(\sigma_{i+1})\psi_n(\sigma_i)\psi_n(\sigma_{i+1}) \text{ for } i \in \{1, \dots, n-2\}.$$

0000000000

0000000000

The Burau Representation is Reducible

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1-t&t\\1&0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1-t+t\\1\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix}$$

The Burau Representation is Reducible

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t & t\\1 & 0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t+t\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

Block structure of
$$\psi_n(\sigma_i) \implies \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
 is invariant under $\psi_n(\sigma_i) \ \forall \ i = 1, 2, \dots, n-1$

The Braid Group

The Burau Representation is Reducible

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t & t\\1 & 0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t+t\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

Block structure of
$$\psi_n(\sigma_i) \implies \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
 is invariant under $\psi_n(\sigma_i) \ \forall \ i = 1, 2, \dots, n-1$
$$\implies \psi_n(\beta)\mathbf{1} = \mathbf{1} \ \forall \ \beta \in B_n \quad (\text{span}\{\mathbf{1}\} \text{ is } \psi_n\text{-invariant})$$

The Burau Representation is Reducible

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1-t&t\\1&0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1-t+t\\1\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix}$$

Block structure of
$$\psi_n(\sigma_i) \implies \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
 is invariant under $\psi_n(\sigma_i) \ \forall \ i = 1, 2, \dots, n-1$

$$\implies \psi_n(\beta)\mathbf{1} = \mathbf{1} \ \forall \ \beta \in B_n \quad \text{(span}\{\mathbf{1}\} \text{ is } \psi_n\text{-invariant)}$$

⇒ Burau representation is reducible!

0000000000

Unitary Representation of the Braid Group

0000000000

Unitary Representation of the Braid Group

Definition

A matrix $M \in GL_n(\mathbb{C})$ is *unitary* if $M^{\dagger} = M^{-1}$.

Unitary Representation of the Braid Group

Definition

Introduction to Representation Theory

A matrix $M \in GL_n(\mathbb{C})$ is unitary if $M^{\dagger} = M^{-1}$.

▶ The reduced Burau representation on B_n is an (n-1)-dimensional representation of the braid group.

The Braid Group

000000000

Definition

Introduction to Representation Theory

A matrix $M \in GL_n(\mathbb{C})$ is *unitary* if $M^{\dagger} = M^{-1}$.

▶ The reduced Burau representation on B_n is an (n-1)-dimensional representation of the braid group.

The Braid Group

Unitary representations of B_n can be constructed from the reduced Burau representation.

Unitary Representation of the Braid Group

Definition

A matrix $M \in GL_n(\mathbb{C})$ is *unitary* if $M^{\dagger} = M^{-1}$.

- ▶ The *reduced Burau representation* on B_n is an (n-1)-dimensional representation of the braid group.
- \blacktriangleright Unitary representations of B_n can be constructed from the reduced Burau representation.

Definition

Define the unitary representation $\mathcal{U}: B_3 \to U(2)$ by

$$egin{aligned} \mathcal{U}(\sigma_1) &= rac{1}{2}e^{-irac{\pi}{6}} egin{bmatrix} \sqrt{3}\,e^{i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} & 1 \ 1 & -\sqrt{3}\,e^{-i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} \end{bmatrix} \ \mathcal{U}(\sigma_2) &= rac{1}{2}e^{-irac{\pi}{6}} egin{bmatrix} -\sqrt{3}\,e^{-i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} & 1 \ 1 & \sqrt{3}\,e^{i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} \end{bmatrix} \end{aligned}$$

The Braid Group

000000000

000000000

Nonabelian Characteristics of the Unitary Representation

Observations:

000000000

Observations:

1. $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.

Observations:

Introduction to Representation Theory

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Observations:

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Consequence: σ_1^2 and σ_2^2 are not the identity braid, which is in contrast to the permutation group where transpositions are involutory.

The Braid Group

Observations:

Introduction to Representation Theory

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Consequence: σ_1^2 and σ_2^2 are not the identity braid, which is in contrast to the permutation group where transpositions are involutory.

The Braid Group

Question

What are the physical implications of this nonabelian unitary representation?

Observations:

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Consequence: σ_1^2 and σ_2^2 are not the identity braid, which is in contrast to the permutation group where transpositions are involutory.

The Braid Group

Question

What are the physical implications of this nonabelian unitary representation?

Answer: Unitary matrices preserve inner products, so the unitary representations of the braid group can act on a quantum system by braiding particles!

4 Physical Applications of the Braid Group

(Abelian) Braiding Action on a Quantum System

(Abelian) Braiding Action on a Quantum System

1D Representation: Let $p_{\theta}: B_n \to \mathbb{C}$ be defined by $\sigma_i \mapsto e^{i\theta}$ for some θ , for all j.

(Abelian) Braiding Action on a Quantum System

1D Representation: Let $p_{\theta}: B_n \to \mathbb{C}$ be defined by $\sigma_i \mapsto e^{i\theta}$ for some θ , for all j.

Quantum system: Some wavefunction $\psi(r_1, \ldots, r_n)$ describing the identical particles fixed at nondegenerate positions r_1, r_2, \ldots, r_n .

The Braid Group

(Abelian) Braiding Action on a Quantum System

1D Representation: Let $p_{\theta}: B_n \to \mathbb{C}$ be defined by $\sigma_i \mapsto e^{i\theta}$ for some θ , for all j.

Quantum system: Some wavefunction $\psi(r_1, \ldots, r_n)$ describing the identical particles fixed at nondegenerate positions r_1, r_2, \ldots, r_n .

The Braid Group

Braiding action: For any degree-k braid $\beta \in B_n$, we have

$$\psi(r_{1'}, r_{2'}, \ldots, r_{n'}) = p_{\theta}(\beta) \, \psi(r_1, r_2, \ldots, r_n) = \underbrace{e^{ik\theta}}_{\substack{\text{phase} \\ \text{shift}}} \psi(r_1, r_2, \ldots, r_n),$$

(Nonabelian) Braiding Action on a Quantum System

2D Representation: Consider the 2×2 unitary representation \mathcal{U} from before.

Introduction to Representation Theory

(Nonabelian) Braiding Action on a Quantum System

2D Representation: Consider the 2 \times 2 unitary representation \mathcal{U} from before.

Quantum system: A degenerate set of two quantum states with orthonormal basis $\psi_1(r_1, r_2, r_3)$ and $\psi_2(r_1, r_2, r_3)$. Shorthand: $|1\rangle$ and $|2\rangle$.

(Nonabelian) Braiding Action on a Quantum System

2D Representation: Consider the 2 \times 2 unitary representation \mathcal{U} from before.

Quantum system: A degenerate set of two quantum states with orthonormal basis $\psi_1(r_1, r_2, r_3)$ and $\psi_2(r_1, r_2, r_3)$. Shorthand: $|1\rangle$ and $|2\rangle$.

Braiding action: The transformed basis states due to the action of σ_1 are

$$\begin{split} |1'\rangle &= \mathcal{U}(\sigma_1)_{1,1} \, |1\rangle + \mathcal{U}(\sigma_1)_{1,2} \, |2\rangle = \frac{1}{2} e^{-i\frac{\pi}{6}} \left(\sqrt{3} \, e^{i \operatorname{\mathsf{arctan}}\left(\frac{1}{\sqrt{2}}\right)} \, |1\rangle + |2\rangle \right), \\ |2'\rangle &= \mathcal{U}(\sigma_1)_{2,1} \, |1\rangle + \mathcal{U}(\sigma_1)_{2,2} \, |2\rangle = \frac{1}{2} e^{-i\frac{\pi}{6}} \left(|1\rangle - \sqrt{3} \, e^{-i \operatorname{\mathsf{arctan}}\left(\frac{1}{\sqrt{2}}\right)} \, |2\rangle \right). \end{split}$$

2D Representation: Consider the 2 \times 2 unitary representation \mathcal{U} from before.

Quantum system: A degenerate set of two quantum states with orthonormal basis $\psi_1(r_1, r_2, r_3)$ and $\psi_2(r_1, r_2, r_3)$. Shorthand: $|1\rangle$ and $|2\rangle$.

Braiding action: The transformed basis states due to the action of σ_1 are

$$\begin{split} |1'\rangle &= \mathcal{U}(\sigma_1)_{1,1} \, |1\rangle + \mathcal{U}(\sigma_1)_{1,2} \, |2\rangle = \frac{1}{2} e^{-i\frac{\pi}{6}} \left(\sqrt{3} \, e^{i \, \mathsf{arctan}\left(\frac{1}{\sqrt{2}}\right)} \, |1\rangle + |2\rangle \right), \\ |2'\rangle &= \mathcal{U}(\sigma_1)_{2,1} \, |1\rangle + \mathcal{U}(\sigma_1)_{2,2} \, |2\rangle = \frac{1}{2} e^{-i\frac{\pi}{6}} \left(|1\rangle - \sqrt{3} \, e^{-i \, \mathsf{arctan}\left(\frac{1}{\sqrt{2}}\right)} \, |2\rangle \right). \end{split}$$

Remark

The action of a nonabelian braid group representation on a quantum system leads to *nontrivial rotations* in the many-particle Hilbert space that describes the quantum system⁹.

⁹Nayak et al., 2008, Non-abelian anyons and topological quantum computation, *Reviews of Modern Physics*

Definition

Particles that obey the braid group permutation rules are known as *anyons*.

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).

Definition

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

Definition

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

The Braid Group

► Two types of anyons:

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

- ► Two types of anyons:
 - 1. Abelian anyons: The braid group representation is abelian.

Definition

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

- ► Two types of anyons:
 - 1. Abelian anyons: The braid group representation is abelian.
 - 2. Nonabelian anyons: The braid group representation is nonabelian.

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

- ► Two types of anyons:
 - 1. Abelian anyons: The braid group representation is abelian.
 - 2. Nonabelian anyons: The braid group representation is nonabelian.
- Edge cases: bosons and fermions.

Nontrivial Braiding Effects in 1D Representations

Nontrivial Braiding Effects in 1D Representations

Recall: A braid is only well-defined if all particle trajectories are known.

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

Introduction to Representation Theory

1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.

Nontrivial Braiding Effects in 1D Representations

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

Trajectory A

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

Trajectory A

The Braid Group

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- This is a consequence of the so-called nontrivial braiding effects of the braid group.

Trajectory A

The Braid Group

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

1D representation:

$$\sigma_1 \mapsto e^{i\theta}$$
 $\sigma_2 \sigma_1 \sigma_2 \mapsto e^{3i}$

Trajectory A

The Braid Group

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

1D representation:

$$\left. egin{aligned} \sigma_1 \mapsto & \mathbf{e}^{i heta} \ \sigma_2 \sigma_1 \sigma_2 \mapsto & \mathbf{e}^{3i heta} \end{aligned}
ight\}
eq & ext{if } heta
otin \pi_{\mathbb{Z}}$$

Trajectory A

The Braid Group

Consider two identical non-interacting anyons with positions $\mathbf{r}_1=(x_1,y_1)$ and $\mathbf{r}_2=(x_2,y_2)$ in a harmonic potential. Let $\phi=\arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi}=\frac{d\phi}{dt}$.

Consider two identical non-interacting anyons with positions $\mathbf{r}_1=(x_1,y_1)$ and $\mathbf{r}_2=(x_2,y_2)$ in a harmonic potential. Let $\phi=\arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi}=\frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2}m\omega^{2}(\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2})$$

A Physicists Approach to Anyons (Lagrangian)

Examples in Physics

Consider two identical non-interacting anyons with positions $\mathbf{r}_1 = (x_1, y_1)$ and $\mathbf{r}_2 = (x_2, y_2)$ in a harmonic potential. Let $\phi = \arctan\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi} = \frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2} m \omega^{2} (\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2})$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

Consider two identical non-interacting anyons with positions $\mathbf{r}_1 = (x_1, y_1)$ and $\mathbf{r}_2 = (x_2, y_2)$ in a harmonic potential. Let $\phi = \arctan\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi} = \frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2} m \omega^{2} (\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2})$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

Classical Kinetic Energy: $T = \frac{1}{2}m(\dot{\mathbf{r}}_1^2 + \dot{\mathbf{r}}_2^2)$

Consider two identical non-interacting anyons with positions $\mathbf{r}_1=(x_1,y_1)$ and $\mathbf{r}_2=(x_2,y_2)$ in a harmonic potential. Let $\phi=\arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi}=\frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{2} m \omega^2 (\mathbf{r}_1^2 + \mathbf{r}_2^2)$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

Classical Kinetic Energy: $T = \frac{1}{2}m(\dot{\mathbf{r}}_1^2 + \dot{\mathbf{r}}_2^2)$

Lagrangian:

$$\mathcal{L}\left(r_{1}, r_{2}, \dot{\mathbf{r}}_{1}, \dot{\mathbf{r}}_{2}, \dot{\phi}\right) = T + \mathcal{L}_{int} - V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2}m\left(\dot{\mathbf{r}}_{1}^{2} + \dot{\mathbf{r}}_{2}^{2}\right) + \hbar\alpha\dot{\phi} - \frac{1}{2}m\omega^{2}\left(\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2}\right)$$

Consider two identical non-interacting anyons with positions $\mathbf{r}_1 = (x_1, y_1)$ and $\mathbf{r}_2 = (x_2, y_2)$ in a harmonic potential. Let $\phi = \arctan\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi} = \frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{2} m \omega^2 (\mathbf{r}_1^2 + \mathbf{r}_2^2)$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

Classical Kinetic Energy: $T = \frac{1}{2}m(\dot{\mathbf{r}}_1^2 + \dot{\mathbf{r}}_2^2)$

Lagrangian:

$$\mathcal{L}\left(r_{1},r_{2},\dot{\mathbf{r}}_{1},\dot{\mathbf{r}}_{2},\dot{\phi}
ight) = \mathcal{T} + \mathcal{L}_{int} - V(\mathbf{r}_{1},\mathbf{r}_{2}) = \frac{1}{2}m\left(\dot{\mathbf{r}}_{1}^{2} + \dot{\mathbf{r}}_{2}^{2}\right) + \hbar\alpha\dot{\phi} - \frac{1}{2}m\omega^{2}\left(\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2}\right)$$

Generalize to *N* **anyons:** Let $\phi_{ij} = \arctan\left(\frac{y_j - y_i}{x_i - x_i}\right)$,

$$\mathcal{L} = \sum_{i=1}^{N} \frac{m}{2} \dot{\mathbf{r}}_{i}^{2} + \hbar \alpha \sum_{i < i}^{N} \dot{\phi}_{ij} - \frac{m\omega^{2}}{2} \sum_{i=1}^{N} \mathbf{r}_{i}^{2}$$

A Physicists Approach to Anyons (Hamiltonian)

Rewrite
$$N$$
-anyon \mathcal{L} :

Introduction to Representation Theory

$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(-y_{ij} \hat{\mathbf{x}} + x_{ij} \hat{\mathbf{y}} \right)}{r_{ij}^2}$$

A Physicists Approach to Anyons (Hamiltonian)

Rewrite
$$N$$
-anyon \mathcal{L} :

$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(-y_{ij} \hat{\mathbf{x}} + \mathbf{x}_{ij} \hat{\mathbf{y}} \right)}{r_{ij}^2}$$

$$\mathbf{A}_{i}(\mathbf{r}_{i}) = \alpha \sum_{j \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^{2}} = \alpha \sum_{j \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^{2}}$$

Rewrite
$$N$$
-anyon \mathcal{L} :

Introduction to Representation Theory

$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(-y_{ij} \hat{\mathbf{x}} + x_{ij} \hat{\mathbf{y}} \right)}{r_{ij}^2}$$

$$\mathbf{A}_{i}(\mathbf{r}_{i}) = \alpha \sum_{i \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^{2}} = \alpha \sum_{i \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^{2}}$$

$$\mathcal{H}_{i} = \frac{1}{2m} \left(\mathbf{p}_{i} - \mathbf{A}_{i}(\mathbf{r}_{i}) \right)^{2} + \frac{m\omega^{2}}{2} r_{i}^{2}$$
canonical momentum

Introduction to Representation Theory

Rewrite *N*-anyon
$$\mathcal{L}$$
:
$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{(-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}})}{r_{ij}^2}$$

Gauge potential:
$$\mathbf{A}_{i}(\mathbf{r}_{i}) = \alpha \sum_{i \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^{2}} = \alpha \sum_{i \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^{2}}$$

i-th anyon Hamiltonian:
$$\mathcal{H}_i = \frac{1}{2m} \left(\mathbf{p}_i - \mathbf{A}_i(\mathbf{r}_i) \right)^2 + \frac{m\omega^2}{2} r_i^2$$

N-anyon Hamiltonian:
$$\mathcal{H} = \frac{1}{2m} \sum_{i=1}^{N} (\mathbf{p}_i - \mathbf{A}_i(\mathbf{r}_i))^2 + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2$$

A Physicists Approach to Anyons (Hamiltonian)

Rewrite
$$N$$
-anyon \mathcal{L} :

$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(-y_{ij} \hat{\mathbf{x}} + x_{ij} \hat{\mathbf{y}} \right)}{r_{ij}^2}$$

$$\mathbf{A}_{i}(\mathbf{r}_{i}) = \alpha \sum_{i \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^{2}} = \alpha \sum_{i \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^{2}}$$

$$\mathcal{H}_i = rac{1}{2m} (\mathbf{p}_i - \mathbf{A}_i(\mathbf{r}_i))^2 + rac{m\omega^2}{2} r_i^2$$

$$\mathcal{H} = rac{1}{2m}\sum_{i=1}^{N}\left(\mathbf{p}_{i}-\mathbf{A}_{i}(\mathbf{r}_{i})
ight)^{2} + rac{m\omega^{2}}{2}\sum_{i=1}^{N}r_{i}^{2}$$

$$\mathcal{H} = \boxed{\frac{1}{2m} \sum_{i=1}^{N} p_i^2 + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2 - \frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2} + \frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}}$$

$$\mathcal{H} = \frac{1}{2m} \sum_{i=1}^{N} \rho_i^2 + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2 - \frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2} + \frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}$$

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} p_i^2}_{\text{Mechanical momentum}} + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2 - \frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2} + \frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}$$

Introduction to Representation Theory

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} p_i^2}_{\text{Mechanical momentum}} + \underbrace{\frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2}_{\text{Harmonic potential}} - \underbrace{\frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2}}_{\text{Harmonic potential}} + \underbrace{\frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}}_{\text{Harmonic potential}}$$

Interpreting the N-anyon Hamiltonian

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} p_i^2}_{\text{Mechanical momentum}} + \underbrace{\frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2}_{\text{Harmonic potential}} - \underbrace{\frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2} + \frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ij}}{r_{ij}^2 r_{ik}^2}$$

The Braid Group

Interpreting the N-anyon Hamiltonian

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} \rho_{i}^{2}}_{\text{Mechanical momentum}} + \underbrace{\frac{m\omega^{2}}{2} \sum_{i=1}^{N} r_{i}^{2}}_{\text{Potential}} - \underbrace{\frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^{2}}}_{\text{Relative angular momentum}} + \underbrace{\frac{\alpha^{2}}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}^{*}}{r_{ij}^{2} r_{ik}^{2}}}_{\text{Interaction}}$$

Nontrivial braiding effects emerge from the *long-range interaction* term when $N \geq 3$.

The Braid Group

Nontrivial braiding effects emerge from the *long-range interaction* term when N > 3.

$$\mathbf{N} = \mathbf{2}: \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\i,k\neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2}$$

Nontrivial braiding effects emerge from the *long-range interaction* term when N > 3.

$$\mathbf{N} = \mathbf{2} \colon \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\ i \neq -i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

Nontrivial braiding effects emerge from the *long-range interaction* term when $N \ge 3$.

$$\mathbf{N} = \mathbf{2} : \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\ k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\k \neq i}}^{3} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ik}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2} + \frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

Nontrivial braiding effects emerge from the *long-range interaction* term when N > 3.

$$\mathbf{N} = \mathbf{2}: \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\ k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\j,k\neq i}}^3 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\underbrace{\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2}}_{\text{Coulomb-like interaction}} + \frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

Nontrivial braiding effects emerge from the *long-range interaction* term when N > 3.

$$\mathbf{N} = \mathbf{2} : \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\ k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\j,k \neq i}}^3 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\underbrace{\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2}}_{\text{Coulomb-like interaction}} + \underbrace{\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

Nontrivial braiding effects emerge from the *long-range interaction* term when N > 3.

$$\mathbf{N} = \mathbf{2}: \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\ k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\j,k \neq i}}^3 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\underbrace{\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2}}_{\text{Coulomb-like interaction}} + \underbrace{\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

Question

Why is this useful?

The Braid Group

Physical Implications of Nontrivial Braiding Effects

Physical Implications of Nontrivial Braiding Effects

Introduction to Representation Theory

► The fractional quantum Hall effect is a physical manifestation of anyonic braiding in 2D electron systems (fractional charge, fractional statistics).

Introduction to Representation Theory

► The fractional quantum Hall effect is a physical manifestation of anyonic braiding in 2D electron systems (fractional charge, fractional statistics).

The Braid Group

Depending on the specific representation of the braid group, one can define topological properties of different flavors of anyons. The corresponding combination (fusion) rules can be used to describe the behavior of anyonic systems.

Physical Implications of Nontrivial Braiding Effects

► The fractional quantum Hall effect is a physical manifestation of anyonic braiding in 2D electron systems (fractional charge, fractional statistics).

- Depending on the specific representation of the braid group, one can define topological properties of different flavors of anyons. The corresponding combination (fusion) rules can be used to describe the behavior of anyonic systems.
- Certain nonabelian anyons (defined by specific fusion rules) are alleged to enable fault-tolerant quantum computers, and is an ongoing area of research.

Summary

Main Takeaways:

Main Takeaways:

1. Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

Introduction to Representation Theory

Main Takeaways:

1. Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

The Braid Group

2. Unitary representations of the braid group can act on (2 + 1)-dimensional quantum systems, resulting in anyons.

Main Takeaways:

1. Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

- 2. Unitary representations of the braid group can act on (2 + 1)-dimensional quantum systems, resulting in anyons.
- 3. Anyons exhibit fractional statistics in contrast to the boson/fermion dichotomy.

Introduction to Representation Theory

Main Takeaways:

 Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

- 2. Unitary representations of the braid group can act on (2 + 1)-dimensional quantum systems, resulting in anyons.
- 3. Anyons exhibit fractional statistics in contrast to the boson/fermion dichotomy.
- 4. The nontrivial braiding effects of anyons results in useful physical properties that can be exploited for various physical applications.

Introduction to Representation Theory

Main Takeaways:

 Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

The Braid Group

- 2. Unitary representations of the braid group can act on (2 + 1)-dimensional quantum systems, resulting in anyons.
- 3. Anyons exhibit fractional statistics in contrast to the boson/fermion dichotomy.
- 4. The nontrivial braiding effects of anyons results in useful physical properties that can be exploited for various physical applications.

Thank you for your attention!

SO(3) Calculations (pt. 1)

The state $|\phi\rangle$ can be decomposed into a linear combination of the eigenvectors of *J*:

$$|\phi\rangle = \left(\sum_{m} |m\rangle \langle m|\right) |\phi\rangle = \sum_{m} \langle m|\phi\rangle |m\rangle,$$

where

$$\langle m|\phi\rangle = \langle m|U(\phi)|\mathcal{O}\rangle = \langle U^{\dagger}(\phi)m|\mathcal{O}\rangle = \langle e^{im\phi}m|\mathcal{O}\rangle = e^{-im\phi}\langle m|\mathcal{O}\rangle$$

is the projection of $|\phi\rangle$ onto the eigenvector $|m\rangle$ of J. Thus.

$$\begin{split} J|\phi\rangle &= \sum_{m} e^{-im\phi} J|m\rangle = \sum_{m} m e^{-im\phi} |m\rangle = \sum_{m} i \frac{\partial}{\partial \phi} \left(e^{-im\phi} |m\rangle \right) = i \frac{\partial}{\partial \phi} |\phi\rangle \\ &\Longrightarrow \langle \phi|J|\psi\rangle = \langle J^{\dagger}\phi|\psi\rangle = -i \frac{\partial}{\partial \phi} \langle \phi|\psi\rangle = -i \frac{\partial}{\partial \phi} \psi(\phi). \end{split}$$

SO(3) Calculations (pt. 2)

$$\phi = \arctan\left(\frac{y}{x}\right)$$

$$\implies \frac{\partial}{\partial \phi} = (\mathbf{r} \times \nabla) \cdot \mathbf{e}_z \implies J = -i\frac{\partial}{\partial \phi} = -i(\mathbf{r} \times \nabla) \cdot \mathbf{e}_z = \frac{1}{\hbar}\hat{\mathcal{L}}_z \implies \hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$$

$$\hat{\mathbf{p}} = -i\nabla \implies \hat{\mathcal{L}}_z = x\hat{p}_y - y\hat{p}_x$$

$$\hat{\mathcal{H}} = \frac{\hat{\mathbf{p}}^2}{2m} + \hat{V}(\mathbf{r}), \quad [V(\mathbf{r}), \hat{\mathcal{L}}_z] = 0, \quad [\hat{\mathbf{p}}^2, \hat{\mathcal{L}}_z] = 0 \implies [\hat{\mathcal{H}}, \hat{\mathcal{L}}_z] = 0,$$

where the last line easily generalizes to $\hat{\mathbf{L}}$.

Lie Algebra

$$J^{2} |j\rangle = (J_{-}J_{+} + J_{z} + J_{z}^{2}) |j\rangle = (0 + j + j^{2}) |j\rangle = j(j + 1) |j\rangle,$$

$$J^{2} |j, m\rangle = j(j + 1) |j, m\rangle,$$

$$J_{z} |j, m\rangle = m |j, m\rangle,$$

$$J_{\pm} |j, m\rangle = \sqrt{j(j + 1) - m(m \pm 1)} |j, m \pm 1\rangle.$$