A/B testing for a landing page - regression with covariates ¶

mahshidxyz (http://www.github.com/mahshidxyz)

July 2020

This study will investigate the results of an A/B test in which a new landing page is tested for an e-commerce website. Unit of diversion is user-id. Conversion was measured for logged in users and each user was supposed to be tested once. The experiment has been run in three countries (CA, UK, US) with different sampling sizes. The experiment duration was about 3 weeks.

I first checked the quality of the data and invariants. User-ids that have experienced both landing pages due to double bucketing were removed. I made sure that control and treatment group sizes were even at both global and country levels. To assess the significance of the observed differences between the conversion rates a z-test for proportion was done. To control for the effect of covariate (country of users) on conversion, a logistic regression model with treatment and country variables was built. Including the covariates in the model may produce a more reliable estimate of the treatment effect, controlling for other factors. The results show that treatment, user location, and their interaction does not have a significant effect on the conversion rate (p-value of log likelihood ratio tests > 0.05). In other words, variations in these predictors are not able to explain the variation in conversion.

Data Import, cleaning, quality check

In [1]:

import math
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
import statsmodels.api as sm

```
In [2]: # importing the data
        df = pd.read csv('landing page test.csv')
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 294478 entries, 0 to 294477
        Data columns (total 6 columns):
             Column
                           Non-Null Count
         #
                                            Dtype
                           294478 non-null int64
            user id
            timestamp
                           294478 non-null object
         2
            country
                           294478 non-null object
             group
                           294478 non-null object
         4
            landing page 294478 non-null object
             converted
                           294478 non-null int64
        dtypes: int64(2), object(4)
        memory usage: 13.5+ MB
In [3]: # quality check
        df.group.unique(), df.landing_page.unique()
Out[3]: (array(['control', 'treatment'], dtype=object),
         array(['old page', 'new page'], dtype=object))
In [4]: # quality check
        df.country.unique()
Out[4]: array(['US', 'CA', 'UK'], dtype=object)
In [5]: # quality check for wrong assignments
        print(len(df.query("group == 'treatment' and landing page == 'old page'")))
        print(len(df.query("group == 'control' and landing page == 'new page'")))
        1965
        1928
```

```
In [6]: # total conversion count
                                 df.groupby('converted')['user id'].count()
   Out[6]: converted
                                                 259241
                                                    35237
                               Name: user id, dtype: int64
   In [7]: # number of unique user-ids who converted is less than the total convrsion count
                                df[df['converted']==1]['user id'].nunique()
   Out[7]: 35173
   In [8]: # the duplicates only apear twice in the dataset
                                 df.groupby('user id').size().sort values(ascending=False).head()
   Out[8]: user id
                                809993
                                                                  2
                                                                  2
                                800362
                                                                  2
                                800351
                                755787
                                                                  2
                                633243
                                                                  2
                               dtype: int64
   In [9]: # I will drop the rows with mistmatched landing page types and group types
                                df = df[((df['group']=='control') & (df['landing_page']=='old_page')) | ((df['group']=='treatment') & (df['landing_page']=='old_page'] | (df['group']=='treatment') & (df['landing_page']=='treatment'] | (df['group']=='treatment') & (df['landing_page']=='treatment'] | (df['group']=='treatment') | (df['gr
In [10]: # new size of dataset
                                 len(df)
Out[10]: 290585
In [11]: # check for duplicated user ids
                                len(df) - df.user id.nunique()
Out[11]: 1
```

```
In [12]: # there is still 1 duplicate
df[df.user_id.duplicated(keep=False)]
```

Out[12]:

	user_id	timestamp	country	group	landing_page	converted
1899	773192	2017-01-09 05:37:58.781806	US	treatment	new_page	0
2893	773192	2017-01-14 02:55:59.590927	US	treatment	new_page	0

Sanity check: Invariants

Out[14]: country group

,	0 - 1	
CA	control	7198
	treatment	7301
UK	control	36360
	treatment	36106
US	control	101716
	treatment	101903

dtype: int64

```
In [15]: # check if CA proportion is ok
    p = len(df[(df['country']=='CA') & (df['group'] == 'control')])/len(df[df['country']=='CA'])
    n_CA = len(df[df['country']=='CA'])
    # std for a binomial prob of 0.5 with n_CA samples
    SD = math.sqrt(0.5*0.5/n_CA)
    if p > 0.5 + SD * 1.96 or p < 0.5 - SD * 1.96:
        print ('prob of being in control group in CA is significantly different from 0.5')
    else:
        print ('We are good! p = {}, 95% CI for 0.5 is [{}, {}]'.format(p, 0.5 - SD * 1.96, 0.5 + SD * 1.96))</pre>
```

We are good! p = 0.49644803089868267, 95% CI for 0.5 is [0.4918612623233678, 0.5081387376766322]

Sanity check: Trends over time

```
In [16]: df['date'] = pd.to_datetime(df['timestamp']) # returns datetime
df['date'] = df['date'].dt.date
df.head()
```

Out[16]:

	user_id	timestamp	country	group	landing_page	converted	date
	851104	2017-01-21 22:11:48.556739	US	control	old_page	0	2017-01-21
	1 804228	2017-01-12 08:01:45.159739	US	control	old_page	0	2017-01-12
:	2 661590	2017-01-11 16:55:06.154213	US	treatment	new_page	0	2017-01-11
;	3 853541	2017-01-08 18:28:03.143765	US	treatment	new_page	0	2017-01-08
	4 864975	2017-01-21 01:52:26.210827	US	control	old_page	1	2017-01-21

Out[17]:

	date	group	total	converted	conversion
0	2017-01-02	control	2859	359	0.125568
1	2017-01-02	treatment	2853	342	0.119874
2	2017-01-03	control	6590	750	0.113809
3	2017-01-03	treatment	6618	753	0.113781
4	2017-01-04	control	6578	802	0.121922

In [18]: # no particular entry stands out. we are good.
first and last day are not full probably since this was run in 3 countries with different time zone
df_time.pivot(index='date', columns='group')

Out[18]:

	total		converte	ed	conversion		
group	control	treatment	control	treatment	control	treatment	
date							
2017-01-02	2859	2853	359	342	0.125568	0.119874	
2017-01-03	6590	6618	750	753	0.113809	0.113781	
2017-01-04	6578	6541	802	763	0.121922	0.116649	
2017-01-05	6427	6505	792	748	0.123230	0.114988	
2017-01-06	6606	6747	762	833	0.115350	0.123462	
2017-01-07	6604	6609	799	768	0.120987	0.116205	
2017-01-08	6687	6700	795	809	0.118887	0.120746	
2017-01-09	6628	6615	793	781	0.119644	0.118065	
2017-01-10	6654	6696	751	846	0.112864	0.126344	
2017-01-11	6688	6673	795	768	0.118870	0.115091	
2017-01-12	6522	6637	796	812	0.122048	0.122344	
2017-01-13	6552	6508	766	724	0.116911	0.111248	
2017-01-14	6548	6599	830	787	0.126756	0.119260	
2017-01-15	6714	6549	809	743	0.120494	0.113452	
2017-01-16	6591	6545	803	780	0.121833	0.119175	
2017-01-17	6617	6538	813	832	0.122865	0.127256	
2017-01-18	6482	6603	809	824	0.124807	0.124792	
2017-01-19	6578	6552	789	768	0.119945	0.117216	
2017-01-20	6534	6679	753	786	0.115243	0.117682	
2017-01-21	6749	6560	850	759	0.125945	0.115701	
2017-01-22	6596	6669	786	787	0.119163	0.118009	

	total		converte	ed	conversion		
group	control	treatment	control	treatment	control	treatment	
date							
2017-01-23	6716	6633	844	803	0.125670	0.121061	
2017-01-24	3754	3681	443	448	0.118007	0.121706	

Test result summary

```
In [19]: # summarize the data
df_summary = df.groupby('group')['converted'].agg({'count','sum','mean'}).reset_index()
df_summary.rename(columns = {'count':'n_total', 'sum':'n_converted', 'mean':'conversion'}, inplace=True)
df_summary = df_summary[['group', 'n_total', 'n_converted', 'conversion']]
df_summary
```

Out[19]:

	group	n_total	n_converted	conversion
0	control	145274	17489	0.120386
1	treatment	145310	17264	0.118808

A/B test result analysis: z-test for proportion

The difference between the conversion rate in the control and treatment groups looks trivial (0.120 vs 0.118) and the control group actually had a higher conversion rate. To assess the significance of the results I will do a z-test for proportion, in which:

$$p_{pool} = \frac{p_1 n_1 + p_2 n_2}{n_1 + n_2}$$

$$SE = \sqrt{p_{pool} (1 - p_{pool}) (\frac{1}{n_1} + \frac{1}{n_2})}$$

$$z = \frac{p_1 - p_2}{SE}$$

Based on this test (one-sided), there is no significant difference between the two groups' conversions.

```
In [20]: | n control convert = float(df summary.loc[df summary['group']=='control', 'n converted'])
         n control total = float(df summary.loc[df summary['group']=='control', 'n total'])
         n treatment convert = float(df summary.loc[df summary['group']=='treatment', 'n converted'])
         n treatment total = float(df summary.loc[df summary['group']=='treatment', 'n total'])
         ## 1 sided
         z score, p value = sm.stats.proportions ztest([n control convert, n treatment convert], [n control total, n treat
         print('Test results for an alternative hypothesis that p-control > p-treatment:')
         print('z-score= {}, p-value= {}'.format(z score, p value))
         print()
         ## 2-sided for using in a future comparison
         z score, p value = sm.stats.proportions ztest([n control convert, n treatment convert], [n control total, n treat
         print('Note that if we were interested in a two-sided test (alternative hypothesis p-control <> p-treatment), we
         print('z-score= {}, p-value= {}'.format(z score, p value))
         print('We will see the same p-value of the 2-sided test later in the regression model.')
         Test results for an alternative hypothesis that p-control > p-treatment:
         z-score= 1.3109241984234394, p-value= 0.09494168724097551
         Note that if we were interested in a two-sided test (alternative hypothesis p-control <> p-treatment), we would
         have gotton:
```

A/B test result analysis: Regression

z-score= 1.3109241984234394, p-value= 0.18988337448195103

We will see the same p-value of the 2-sided test later in the regression model.

Out[21]:

	use	er_id	timestamp	landing_page	converted	date	group_control	group_treatment	country_CA	country_UK	country_US
_	0 851	1104	2017-01-21 22:11:48.556739	old_page	0	2017- 01-21	1	0	0	0	1
	1 804	4228	2017-01-12 08:01:45.159739	old_page	0	2017- 01-12	1	0	0	0	1
	2 661	1590	2017-01-11 16:55:06.154213	new_page	0	2017- 01-11	0	1	0	0	1
	3 853	3541	2017-01-08 18:28:03.143765	new_page	0	2017- 01-08	0	1	0	0	1
	4 864	4975	2017-01-21 01:52:26.210827	old_page	1	2017- 01-21	1	0	0	0	1

In [22]: # I will exclude one of them in the regression # each country column is a linear function of the other two df2.drop('group_control', axis = 1, inplace = True) df2.rename(columns={'group_treatment' : 'treatment'}, inplace = True) df2.head()

Out[22]:

	user_id	timestamp	landing_page	converted	date	treatment	country_CA	country_UK	country_US
0	851104	2017-01-21 22:11:48.556739	old_page	0	2017-01-21	0	0	0	1
1	804228	2017-01-12 08:01:45.159739	old_page	0	2017-01-12	0	0	0	1
2	661590	2017-01-11 16:55:06.154213	new_page	0	2017-01-11	1	0	0	1
3	853541	2017-01-08 18:28:03.143765	new_page	0	2017-01-08	1	0	0	1
4	864975	2017-01-21 01:52:26.210827	old_page	1	2017-01-21	0	0	0	1

In [23]: # model with treatment as the single variable, note that the LLR p-value is same as the p-value of the 2-sided to
model = sm.Logit.from_formula('converted ~ treatment', data = df2).fit()
model.summary()

Optimization terminated successfully.

Current function value: 0.366118

Iterations 6

Out[23]:

Logit Regression Results

Dep. Variable: converted No. Observations: 290584 Model: Logit **Df Residuals:** 290582 Method: Df Model: MLE 1 **Date:** Tue, 28 Jul 2020 Pseudo R-squ.: 8.077e-06 Time: 01:40:34 Log-Likelihood: -1.0639e+05 True **LL-Null:** -1.0639e+05 converged: **Covariance Type:** LLR p-value: nonrobust 0.1899

 coef
 std err
 z
 P>|z|
 [0.025
 0.975]

 Intercept
 -1.9888
 0.008
 -246.669
 0.000
 -2.005
 -1.973

 treatment
 -0.0150
 0.011
 -1.311
 0.190
 -0.037
 0.007

Optimization terminated successfully.

Current function value: 0.366109

Iterations 6

Out[24]:

Logit Regression Results

Dep. Variable: converted No. Observations: 290584 Logit **Df Residuals:** 290578 Model: **Df Model:** Method: MLE 5 **Date:** Tue, 28 Jul 2020 Pseudo R-squ.: 3.482e-05 Time: 01:40:36 Log-Likelihood: -1.0639e+05 converged: True **LL-Null:** -1.0639e+05 **Covariance Type:** LLR p-value: nonrobust 0.1920

coef std err [0.025 0.975] z P>|z| **Intercept** -2.0040 0.036 -55.008 0.000 -2.075 -1.933 treatment -0.0674 0.052 -1.297 0.195 -0.169 0.034 country_UK 0.0118 0.040 0.296 0.767 -0.066 0.090 country US 0.0175 0.038 0.465 0.642 -0.056 0.091 treatment:country_UK 0.0783 0.057 1.378 0.168 -0.033 0.190 treatment:country_US 0.0469 0.054 0.872 0.383 -0.059 0.152