

Rouchè-Capelli n.1	
Sist. OET. (=> S(A) = P(A,B)	
NOTAZIONE	
$V = \mathcal{L}(C_1C_m, B)$ $W = \mathcal{L}(C_1C_n)$	
h generale $\int din X/ \leq din Y$ $\int (A) \leq g(A,B)$	
PER IPOTESI Sist. DET. quindi J m-upla S=(x1xn)	
Court tarest to tarner = 1 Scrive in Johns SEMICOMPATIA	
(am) x, tamx2+tamxn=bm	
Crox+ Croxn = Ballora Bè C.L. celle Cr Cn.	
Quindi Vene V= (C1Cm, 18)	
$P(A) = P(A,B) \implies Sist. \text{ Set.}$	
$Sist. OET.$ $V=J(A,B) = Sist. OET.$ $V=J(C_1C_n,B)$	
Per ipotez 9(A) = g(A,B) quindi dim/=dim/ ma c'è B di d Bdeve essere C.L. delle Colomne.	iverso
$B = (1 \times 1 $	
\bigcirc	

$$V_{\lambda} = \ker J_{\lambda}$$
 clove $J_{\lambda} = J(u) - \lambda u$

$$V_{\Lambda} \subseteq kon$$

$$\forall V \in \mathcal{N} \quad \mathcal{J}(V) = \lambda V \quad \Rightarrow \quad \mathcal{J}(V) = 0 \quad \Rightarrow \quad \mathcal{J}(V) = 0$$

$$\mathcal{J}(V) = \lambda V \quad \Rightarrow \quad \mathcal{J}(V) = 0 \quad \Rightarrow \quad \mathcal{J}(V) = 0$$

$$\mathcal{J}(V) = \lambda V \quad \Rightarrow \quad \mathcal{J}(V) = 0 \quad \Rightarrow \quad \mathcal{J}(V) = 0$$

$$\mathcal{J}(V) = \lambda V \quad \Rightarrow \quad \mathcal{J}(V) = 0 \quad \Rightarrow \quad \mathcal{J}(V) = 0$$

$$|x| \in V_{\lambda}$$

$$Vveky \rightarrow J(v) = J(v) - \lambda v = 0$$

$$\begin{cases}
(v) - \lambda v = 0 \\
0 & \text{c.v.d}
\end{cases}$$

Immagine (DIM che è sottospazio

 $\forall w \in \mathbb{I}$ $w, \pm w_z \in \mathbb{I}$

Vwelmy, tack, a welmy!

