Geometric constraints

<u>(1)</u>	Created	@March 20, 2022 1:10 PM
2	Property	
Back	grounds	
Conc	clusion	
Intro		
1	Monocular I	Depth Prediction
	Problem	1
	Work in	the paper
Relat	ted Work	
1	Monocular d	lepth prediction
	Surface	Normal
Work	Σ.	
Ī	nain archite	cture
I	High-order (Geometric Constraints
	Surface	Normal
	Virtual I	Normal
	Robustn	ess to Depth Noise
	Virtual I	Normal Loss (VNL)
	Pixel-wi	ise Depth Supervision
Expe	riments	
I	Dataset	
	Гraining Mo	del
I	Results	
1	Ablation Stu	idies
	Effectiv	eness
	Samples	
I	Recover from	m Estimated Depth
	Point Cl	oud
	Surface	Normal

link:

WF https://openaccess.thecvf.com/content_ICCV_2019/papers/Yin_Enforcing_Geometric_Constraints_of_Virtual_Normal _for_Depth_Prediction_ICCV_2019_paper.pdf

Backgrounds

- high-order 3D geometric constraints is important
 - o design a loss term
 - enforce geometric constraints(virtual normal) by randomly sampled 3 points in 3D space
 - accuracy improved
 - byproduct
 - can recover good structures of point cloud & surface normal, directly from depth
 - no training process for new-sub models
- TEST
 - NYU Depth-V2
 - KITTI

Conclusion

SOTA(2019)

- VNL, a long-range geometric constraints
 - not only extract from neighbor, but the whole
 - robustness
 - accuracy
 - simple

Intro

Monocular Depth Prediction

• object ← → single monocular camera

Problem

- Endeavous are made by using **local** geometric constraints
 - In common cameras, they can be fluctuated
 - Extracted from neighbor, so not the whole picture of the scene

Work in the paper

virtual normal

- reconstruct 3D **point cloud** from **estimated** depth map
 - \circ RGB pixel (2D) \rightarrow 3D
- from point cloud generated, randomly select 3 points with large distance → *virtual plane*, defined by *virtual normal(VN)*
- How much does VN differ from real one can be used to loss metrics

Related Work

Monocular depth prediction

- most early work focus on Pixel-Wise (or Point-Wise), using very deep neural network
 - active work
 - passive work
- CRF(continuous conditional random field) focus extract information from neighbor, which is Pair-Wise
- High-order method

Surface Normal

Work

main architecture

main pipeline of the structure

- Pixel-Wise supervision like others, producing D_{pred}
- ullet With VN, do Geometric Constraints supervision from D_{pred} , producing reconstructed point cloud P_{pred}
- Under GT VN, GT depth, producing D_{gt} and P_{gt}

High-order Geometric Constraints

Surface Normal

• calculate method: (local method)

https://www.researchgate.net/publication/221070884_Comparison_of_surface_normal_estimation_methodsfor_range _sensing_applications

- accuracy is influenced by sampling methods, which is less robust
- common camera is less accurate

Virtual Normal

- 2D pixel $p_i(u_i,v_i) o 3$ D point $P_i(x_i,y_i,z_i)$
- projection formula:

$$z_i = d_i, x_i = rac{d_i(u_i - u_0)}{f_x}, y_i = rac{d_i(v_i - v_0)}{f_y}$$

 d_i is the depth, f_x, f_y is focal depth along x,y axis

- Sample method: (randomly select N groups, each has 3 points)
 - the 3 are non-linear, which can be represented to a plane
 - lpha,eta is hyperparameter ($lpha=120\degree,eta=30\degree$)

$$\{\alpha \geq \angle(\overrightarrow{P_AP_B},\overrightarrow{P_AP_C} \geq \beta, \alpha \geq \angle(\overrightarrow{P_BP_C},\overrightarrow{P_BP_A} \geq \beta,)\}$$

- long-range restriction
 - heta=0.6m is hyperparameter

$$\{||\overrightarrow{P_kP_m}||>\theta, k, m\in group\}$$

normal vector

$$\mathbf{n_i} = rac{\overrightarrow{P_{Ai}P_{Ci}} imes \overrightarrow{P_{Ai}P_{Bi}}}{||\overrightarrow{P_{Ai}P_{Ci}} imes \overrightarrow{P_{Ai}P_{Bi}}||}$$

Robustness to Depth Noise

- The difference between ${f n'}$ produced by noise and original ${f n}$ is small

geometric demonstration, math demonstration is valid too.

 local method only focuses on low-order characteristics, however, VN notices high-order ones

Virtual Normal Loss (VNL)

· naive method

$$\mathscr{L}_{VN} = rac{1}{N}(\Sigma_{i=0}^{N}||\mathbf{n_i}^{pred} - \mathbf{n_i}^{gt}||)$$

Pixel-wise Depth Supervision

• combine with VNL and weighted cross-entropy loss (WCEL)

$$\mathscr{L} = \mathscr{L}_{WCE} + \lambda \mathscr{L}_{VN}$$

 $\circ~\lambda=5$ is a trade-off parameter

Experiments

Dataset

- NYU-V2
 - indoor dataset
- KITTI
 - outdoor dataset

Training Model

- pre-trained ResNet-101 on ImageNet as backbone
 - $\circ~$ base lpha=0.0001, with a decaying
 - batch size=8
 - 10 epochs (NYU-large, KITTI)
 - 40 epochs (NYU-Small)
 - more in paper...

Results

Indoor result compared with DORN(SOTA)

Outdoor result compared with with/out VNL

Table 1. Results on NYUD-V2. Our method outperforms other state-of-the-art methods over all evaluation metrics.

Method	rel	log10	rms	$oldsymbol{\delta_1}$	$\boldsymbol{\delta_2}$	δ_3	
Method	Lo	wer is bet	ter	Higher is better			
Saxena et al. [35]	0.349	-	1.214	0.447	0.745	0.897	
Karsch <i>et al</i> . [20]	0.349	0.131	1.21	-	-	-	
Liu <i>et al</i> . [29]	0.335	0.127	1.06	-	-	-	
Ladicky et al. [23]	-	-	-	0.542	0.829	0.941	
Li <i>et al</i> . [25]	0.232	0.094	0.821	0.621	0.886	0.968	
Roy et al. [32]	0.187	0.078	0.744	-	-	-	
Liu <i>et al</i> . [28]	0.213	0.087	0.759	0.650	0.906	0.974	
Wang <i>et al</i> . [38]	0.220	0.094	0.745	0.605	0.890	0.970	
Eigen et al. [7]	0.158	-	0.641	0.769	0.950	0.988	
Chakrabarti [3]	0.149	-	0.620	0.806	0.958	0.987	
Li <i>et al</i> . [26]	0.143	0.063	0.635	0.788	0.958	0.991	
Laina <i>et al</i> . [24]	0.127	0.055	0.573	0.811	0.953	0.988	
DORN [12]	0.115	0.051	0.509	0.828	0.965	0.992	
Ours	0.108	0.048	0.416	0.875	0.976	0.994	

Result on NYU-V2

Table 2. Results on KITTI. Our method outperforms other methods over all evaluation metrics except rms.

Method	δ_1	$oldsymbol{\delta_2}$	δ_3	rel	rms	rms (log)	
Method	Hig	gher is be	tter	Lower is better			
Make3D [35]	0.601	0.820	0.926	0.280	8.734	0.361	
Eigen et al. [8]	0.692	0.899	0.967	0.190	7.156	0.270	
Liu et al. [28]	0.647	0.882	0.961	0.114	4.935	0.206	
Semi. [22]	0.862	0.960	0.986	0.113	4.621	0.189	
Guo et al. [14]	0.902	0.969	0.986	0.090	3.258	0.168	
DORN [12]	0.932	0.984	0.994	0.072	2.727	0.120	
Ours	0.938	0.990	0.998	0.072	3.258	0.117	

Results on KITTI

Ablation Studies

Effectiveness

shown above

Samples

more is better

Recover from Estimated Depth

Point Cloud

Surface Normal