# Exercice 1 : Section d'un PAVÉ

ABCDEFGH est un pavé droit que l'on a coupé par un plan parallèle à l'arête [GH]. Les dimensions sont indiquées sur la figure.

#### 1) Etude de la section :

- a) Quelle est la nature de cette section ?
- b) Sans calcul, uniquement par construction, dessiner cette section en vraie grandeur.
- Calculer les dimensions de cette section.

# 7 cm

#### 2) Etude des solides obtenus :

- Ouelle est la nature des deux solides obtenus ?
- b) Calculer le volume de ces deux solides.

## Exercice 2: Section d'un CYLINDRE

Un tronc d'arbre est assimilé à un cylindre de révolution de hauteur 1,6 m et de rayon du disque de base de 30 cm.

# 1) Calculer le volume de ce cylindre.

# 2) $1^{er}$ cas: On coupe ce tronc perpendiculairement à son axe:

- a) Quelle est la nature de la section ? Calculer l'aire de cette section. La dessiner à l'échelle 1/10.
- b) Pour fabriquer des plateaux circulaires, on scie ainsi des cylindres d'épaisseur 6 cm (et de rayon du disque de base de 30 cm) :
  - → Combien de plateaux peut-on découper dans ce tronc ?
  - → Calculer le volume de bois utilisé pour un plateau, et le volume de bois restant.



# 3) <u>2ème cas</u>: On coupe ce tronc parallèlement à son axe en passant par l'axe:

Quelle est la nature de la section ? Calculer l'aire de cette section. La dessiner à l'échelle 1/50. Quelle est la nature des deux solides obtenus.

# 4) 3<sup>ème</sup> cas: On coupe ce tronc parallèlement à son axe:

Pour réaliser un bac à fleurs, on coupe le tronc parallèlement à son axe, de façon à ce que la profondeur du bac soit de 40 cm.

Quelle est la nature de cette section ? Calculer ses dimensions.

# **Exercice 3: Section d'une PYRAMIDE**

SABCD est une pyramide de base le rectangle ABCD et de hauteur SA. On donne:

$$SA = 8 \text{ cm}$$
;  $AB = 5 \text{ cm}$  et  $BC = 3 \text{ cm}$ .

## 1) Calculer le volume de cette pyramide.

# 2) Etude de la section :

On coupe cette pyramide par un plan parallèle à la base passant par le

point A' tel que SA' = 
$$\frac{1}{2}$$
 SA.

Quelle est la nature de cette section ?

Calculer ses dimensions.

#### 3) Etude des solides obtenus :

- a) Ouelle est la nature des deux solides obtenus ?
- b) Calculer le volume de la pyramide SA'B'C'D' (En utilisant deux méthodes).



#### Exercice 4:

Un flacon de parfum a la forme d'une pyramide régulière à base carrée.

ABCD est un carré de 3 cm de côté et les points E,F,G et H sont dans un plan parallèle à la base ABCD.

On donne: SO = 10 cm et SO' = 4 cm.

- 1) Calculer le volume du flacon complet.
- 2) Calculer le volume du bouchon.
- 3) Calculer alors le volume du réservoir.



#### Exercice 5:

Sur la figure ci-contre, les bases des deux pyramides sont parallèles et les longueurs sont en cm.

On sait que ABC est un triangle rectangle en A, avec AB = 4 cm et AC = 3 cm.

- 1) Calculer  $\frac{SA'}{SA}$ . Que représente ce quotient ?
- 2) Calculer le périmètre du triangle ABC et en déduire celui du triangle A'B'C'.
- 3) Calculer l'aire du triangle ABC et en déduire celle du triangle A'B'C'.
- 4) Calculer le volume de la pyramide SABC et en déduire celle de la pyramide SA'B'C'.



#### **Exercice 6: Section d'un CONE**

Sur la figure ci-contre, les bases des deux cônes sont parallèles. Le rayon du disque de centre A' est de 3 cm. On donne SA' = 8 cm et SA = 12 cm.

- 1) Calculer le volume du petit cône.
- 2) Calculer  $\frac{SA}{SA'}$ . Que représente ce quotient ?
- 3) Calculer le volume du grand cône.



#### **Exercice 7: Le SABLIER**

Les deux cônes  $C_1$  et  $C_2$  (de révolution ) sont opposés par le sommet S.

On donne:  

$$(BI)$$
 //  $(KA)$   
 $(AB)$  et  $(KI)$  sécantes en  $S$ .  
 $SA = 7.5$  cm;  $KS = 6$  cm  
et  $SI = 4$  cm.



- 1) Calculer KA.
- 2) Calculer le volume  $V_2$  du cône  $C_2$ .
- 3) Le cône  $C_1$  est une réduction du cône  $C_2$ . Calculer l'échelle de réduction. Calculer le volume  $V_1$  du cône  $C_1$ .
- 4) Le cône  $C_1$  est rempli de sable : il se vide dans le cône  $C_2$  : calculer le pourcentage de remplissage du cône  $C_2$ .

