Chilanka Regular

 $Santhosh\ Thottingal < santhosh.thottingal @gmail.com > (Swathanthra\ Malayalam\ Computing(SMC))$

Version 1.400

Contents

1	Summary	1
2	Font Metadata	1
3	Block 3.1 0000 - 00FF . 3.2 0100 - 01FF . 3.3 0200 - 02FF . 3.4 0D00 - 0DFF . 3.5 2000 - 20FF . 3.6 2200 - 22FF .	4 5 6
	3.7 2500 - 25FF	
4	Unicode Coverage	9
5	Glyphs	14
6	OpenType Features	29
7	GSUB Substitutions	20

1 Summary

Unicode characters	337
Glyphs	870
Ligature glyphs	530
Mark glyphs	2
Component glyphs	0

2 Font Metadata

Copyright	Copyright (c) 2014-2019, Santhosh Thottingal, Kavya Manohar, Swathanthra Malayalam Computing with Rese
Family	Chilanka
Subfamily	Regular
Full Name	Chilanka Regular
Version	Version 1.400
PostScrpt Name	Chilanka-Regular
Manufacturer	Swathanthra Malayalam Computing(SMC)
Designer	Santhosh Thottingal <santhosh.thottingal@gmail.com></santhosh.thottingal@gmail.com>
Description	Chilanka is Malayalam handwriting style font designed by Santhosh Thottingal. Chilanka follows the common
Vendor URL	https://smc.org.in
Designer URL	http://thottingal.in
License	This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a F.
License URL	http://scripts.sil.org/OFL

3 Block

3.1 0000 - 00FF

	000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00F
0				0	@	Р	•	р				0	À	Ð	à	ð
U	0000	0010	0020	0030	0040	0050	0060	0070	0080	0090	00A0	00B0	00C0	00D0	00E0	00F0
1			!	1	Α	Q	а	q			i	±	Á	Ŋ	á	ñ
1	0001	0011	0021	0031	0041	0051	0061	0071	0081	0091	00A1	00B1	00C1	00D1	00E1	00F1
2			•	2	В	R	b	r			¢	2	Â	Ò	â	Ò
2	0002	0012	0022	0032	0042	0052	0062	0072	0082	0092	00A2	00B2	00C2	00D2	00E2	00F2
3			#	3	C	S	С	S			£	3	Ã	Ó	ã	Ó
3	0003	0013	0023	0033	0043	0053	0063	0073	0083	0093	00A3	00B3	00C3	00D3	00E3	00F3
4			\$	4	D	Т	d	t			¤	,	Ä	Ö	ä	ô
•	0004	0014	0024	0034	0044	0054	0064	0074	0084	0094	00A4	00B4	00C4	00D4	00E4	00F4
5			%	5	Е	U	е	u			¥	μ	Å	Õ	å	õ
0	0005	0015	0025	0035	0045	0055	0065	0075	0085	0095	00A5	00B5	00C5	00D5	00E5	00F5
6			&	6	F	V	f	V			- 1		Æ	Ö	æ	Ö
U	0006	0016	0026	0036	0046	0056	0066	0076	0086	0096	00A6	00B6	00C6	00D6	00E6	00F6
7			'	7	G	W	9	w			§	•	Ç	×	Ç	÷
•	0007	0017	0027	0037	0047	0057	0067	0077	0087	0097	00A7	00B7	00C7	00D7	00E7	00F7
8			(8	Н	×	h	×			•	5	È	Ø	è	Ø
Ü	0008	0018	0028	0038	0048	0058	0068	0078	0088	0098	00A8	00B8	00C8	00D8	00E8	00F8
9)	9		λ	i	y			0	'	É	Ù	é	ù
	0009	0019	0029	0039	0049	0059	0069	0079	0089	0099	00A9	00B9	00C9	00D9	00E9	00F9
Α			*	:	J	2	j	2			a	0	Ê	Ü	ê	ú
	000A	001A	002A	003A	004A	005A	006A	007A	008A	009A	00AA	00BA	00CA	00DA	00EA	00FA
В			+	;	K		k	{			«	>>	Ë	Ü	ë	a
	000B	001B	002B	003B	004B	005B	006B	007B	008B	009B	00AB	00BB	00CB	00DB	00EB	00FB
\mathbf{C}			•	<	L	\	1				7	1/4	I	U	Ì	ü
	000C	001C	002C	003C	004C	005C	006C	007C	008C	009C	00AC	00BC	00CC	00DC	00EC	00FC
D			-	=	М]	m	}				1/2	I	ý	Í	ý
	000D	001D	002D	003D	004D	005D	006D	007D	008D	009D	00AD	00BD	00CD	00DD	00ED	00FD
E			•	>	N	٨	n	~			®	3/4	l	Þ	î	Þ
	000E	001E	002E	003E	004E	005E	006E	007E	008E	009E	00AE	00BE	00CE	00DE	00EE	00FE
F			/	?	0	-	0				-	ડે	I	ß	ï	ÿ
	000F	001F	002F	003F	004F	005F	006F	007F	008F	009F	00AF	00BF	00CF	00DF	00EF	00FF

3.2 0100 - 01FF

	010	011	012	013	014	015	016	017	018	019	01A	01B	01C	01D	01E	01F
0																
	0100	0110	0120	0130	0140	0150	0160	0170	0180	0190	01A0	01B0	01C0	01D0	01E0	01F0
1				1												
	0101	0111	0121	0131	0141	0151	0161	0171	0181	0191	01A1	01B1	01C1	01D1	01E1	01F1
2						Œ										
	0102	0112	0122	0132	0142	0152	0162	0172	0182	0192	01A2	01B2	01C2	01D2	01E2	01F2
3						œ										
	0103	0113	0123	0133	0143	0153	0163	0173	0183	0193	01A3	01B3	01C3	01D3	01E3	01F3
4																
	0104	0114	0124	0134	0144	0154 []	0164	0174	0184	0194	01A4	01B4	01C4	01D4 []	01E4	01F4
5																
	0105	0115 []	0125	0135 []	0145	0155 []	0165	0175 []	0185 []	0195 []	01A5 []	01B5 []	01C5	01D5 []	01E5	01F5 [
6	0106	0116	0126	0136	0146	0156	0166	0176	0186	0196	01A6	01B6	01C6	01D6	⊔ 01E6	⊔ 01F6
7	0107	0117	0127	0137	0147	0157	0167	0177	0187	0197	01A7	01B7	01C7	01D7	01E7	01F7
											01111					
8	0108	0118	0128	0138	0148	0158	0168	0178	0188	0198	01A8	01B8	01C8	01D8	01E8	01F8
_																
9	0109	0119	0129	0139	0149	0159	0169	0179	0189	0199	01A9	01B9	01C9	01D9	01E9	01F9
A	010A	011A	012A	013A	014A	015A	016A	017A	018A	019A	01AA	01BA	01CA	01DA	01EA	01FA
В																
В	010B	011B	012B	013B	014B	015B	016B	017B	018B	019B	01AB	01BB	01CB	01DB	01EB	01FB
\mathbf{C}																
	010C	011C	012C	013C	014C	015C	016C	017C	018C	019C	01AC	01BC	01CC	01DC	01EC	01FC
D																П
_	010D	011D	012D	013D	014D	015D	016D	017D	018D	019D	01AD	01BD	01CD	01DD	01ED	01FD
Е																
_	010E	011E	012E	013E	014E	015E	016E	017E	018E	019E	01AE	01BE	01CE	01DE	01EE	01FE
F																
	010F	011F	012F	013F	014F	015F	016F	017F	018F	019F	01AF	01BF	01CF	01DF	01EF	01FF

3.3 0200 - 02FF

	020	021	022	023	024	025	026	027	028	029	02A	02B	02C	02D	02E	02F
0																
	0200 []	0210	0220	0230	0240	0250 []	0260	0270	0280	0290	02A0	02B0	02C0	02D0	02E0	02F0
1	0201	0211	0221	0231	0241	0251	0261	0271	0281	0291	02A1	02B1	02C1	02D1	02E1	02F1
2																
۷	0202	0212	0222	0232	0242	0252	0262	0272	0282	0292	02A2	02B2	02C2	02D2	02E2	02F2
3																
	0203	0213	0223	0233	0243	0253	0263	0273	0283	0293	02A3	02B3	02C3	02D3	02E3	02F3
4	0204	0214	0224	0234	0244	0254	0264	0274	0284	0294	02A4	02B4	02C4	02D4	П 02E4	02F4
_																
5	0205	0215	0225	0235	0245	0255	0265	0275	0285	0295	02A5	02B5	02C5	02D5	02E5	02F5
6													^			
ŭ	0206	0216	0226	0236	0246	0256	0266	0276	0286	0296	02A6	02B6	02C6	02D6	02E6	02F6
7	[] 0207	[] 0217	0227	0237	[] 0247	[] 0257	[] 0267	0277	[] 0287	[] 0297	[] 02A7	[] 02B7	02C7	[] 02D7	[] 02E7	02F7
		[]	[]	[]	[]	[]	[]		0287		[]	[]	0207		[]	
8	0208	0218	0228	0238	0248	0258	0268	0278	0288	0298	02A8	02B8	02C8	02D8	02E8	02F8
9																0
J	0209	0219	0229	0239	0249	0259	0269	0279	0289	0299	02A9	02B9	02C9	02D9	02E9	02F9
A																
	020A	021A	022A	023A	024A []	025A	026A []	027A	028A	029A []	02AA []	02BA	02CA	02DA []	02EA	02FA []
В	020B	021B	022B	023B	024B	025B	026B	027B	028B	029B	02AB	02BB	02CB	02DB	02EB	02FB
\mathbf{C}														~		
C	020C	021C	022C	023C	024C	025C	026C	027C	028C	029C	02AC	02BC	02CC	02DC	02EC	02FC
D																
	020D	021D	022D	023D	024D []	025D	026D	027D	028D	029D []	02AD []	02BD	02CD	02DD []	02ED	02FD []
Ε	⊔ 020E	021E	022E	023E	024E	025E	026E	027E	028E	029E	02AE	02BE	02CE	02DE	02EE	02FE
F								0212								
r	020F	021F	022F	023F	024F	025F	026F	027F	028F	029F	02AF	02BF	02CF	02DF	02EF	02FF

$3.4 \quad 0D00 - 0DFF$

	0D0	0D1	0D2	0D3	0D4	0D5	0D6	0D7	0D8	0D9	0DA	0DB	0DC	0DD	0DE	0DF
0	ំ	ഐ	0	O	ୀ	0	88	w		0	0	0	0		П	0
U	0D00	0D10	0D20	0D30	0D40	0D50	0D60	0D70	0D80	0D90	0DA0	0DB0	0DC0	0DD0	0DE0	0DF0
1	്	0	w	C	ു		ൡ	8								
1	0D01	0D11	0D21	0D31	0D41	0D51	0D61	0D71	0D81	0D91	0DA1	0DB1	0DC1	0DD1	0DE1	0DF1
2	ಂ	ഒ	ഢ	٦	ൂ		្ព	൲								
2	0D02	0D12	0D22	0D32	0D42	0D52	0D62	0D72	0D82	0D92	0DA2	0DB2	0DC2	0DD2	0DE2	0DF2
3	O8	ഓ	ണ	ଷ	ృ		୍ଦ	9								
J	0D03	0D13	0D23	0D33	0D43	0D53	0D63	0D73	0D83	0D93	0DA3	0DB3	0DC3	0DD3	0DE3	0DF3
4		ഒൗ	ത	8	್ಫು	ኴ		ಳ								0
-	0D04	0D14	0D24	0D34	0D44	0D54	0D64	0D74	0D84	0D94	0DA4	0DB4	0DC4	0DD4	0DE4	0DF4
5	അ	ක	Q	ପ		a		ൺ								
0	0D05	0D15	0D25	0D35	0D45	0D55	0D65	0D75	0D85	0D95	0DA5	0DB5	0DC5	0DD5	0DE5	0DF5
6	ആ	ഖ	ß	S	െ	φ	0	<u>. Q</u>								0
Ü	0D06	0D16	0D26	0D36	0D46	0D56	0D66	0D76	0D86	0D96	0DA6	0DB6	0DC6	0DD6	0DE6	0DF6
7	ഇ	S	w	ഷ	േ	్ర	ڡ	ഷ								
•	0D07	0D17	0D27	0D37	0D47	0D57	0D67	0D77	0D87	0D97	0DA7	0DB7	0DC7	0DD7	0DE7	0DF7
8	ളൗ	ഘ	m	က	ൈ	w	Ω	സ്മ								
O	0D08	0D18	0D28	0D38	0D48	0D58	0D68	0D78	0D88	0D98	0DA8	0DB8	0DC8	0DD8	0DE8	0DF8
9	2	ങ	ണ	વ		൙	∞	m								0
	0D09	0D19	0D29	0D39	0D49	0D59	0D69	0D79	0D89	0D99	0DA9	0DB9	0DC9	0DD9	0DE9	0DF9
Α	୭୬	ച	പ	4	ൊ	ß	φ	ൺ								0
	0D0A	0D1A	0D2A	0D3A	0D4A	0D5A	0D6A	0D7A	0D8A	0D9A	0DAA	0DBA	0DCA	0DDA	0DEA	0DFA
В	8	ഛ	ഫ	់	ോ	ര	<u>@</u>	₩								0
	0D0B	0D1B	0D2B	0D3B	0D4B	0D5B	0D6B	0D7B	0D8B	0D9B	0DAB	0DBB	0DCB	0DDB	0DEB	0DFB
\mathbf{C}	ഌ	ജ	ബ	്	ൌ	സ	സ്ത	ф								0
	0D0C	0D1C	0D2C	0D3C	0D4C	0D5C	0D6C	0D7C	0D8C	0D9C	0DAC	0DBC	0DCC	0DDC	0DEC	0DFC
D		ഡ	ഭ	ſ	്	w	9	ൽ								0
	0D0D	0D1D	0D2D	0D3D	0D4D	0D5D	0D6D	0D7D	0D8D	0D9D	0DAD	0DBD	0DCD	0DDD	0DED	0DFD
\mathbf{E}	4	ഞ	Ω	೦೦	Ō	Qu	വ്വ	W								0
	0D0E	0D1E	0D2E	0D3E	0D4E	0D5E	0D6E	0D7E	0D8E	0D9E	0DAE	0DBE	0DCE	0DDE	0DEE	0DFE
F	ഏ	S	Ø	া	ത	• © •	αb	ab								0
	0D0F	0D1F	0D2F	0D3F	0D4F	0D5F	0D6F	0D7F	0D8F	0D9F	0DAF	0DBF	0DCF	0DDF	0DEF	0DFF

3.5 2000 - 20FF

	200	201	202	203	204	205	206	207	208	209	20A	20B	20C	20D	20E	20F
0												[] 20B0	[] 20C0			
	2000	2010	2020	2030	2040	2050	2060	2070	2080	2090	20A0	2080	20C0	20D0 []	20E0	20F0
1	2001	2011	2021	2031	2041	2051	2061	2071	2081	2091	20A1	20B1	20C1	20D1	20E1	20F1
2			•													
-	2002	2012	2022	2032	2042	2052	2062	2072	2082	2092	20A2	20B2	20C2	20D2	20E2	20F2
3	2003	2013	2023			[] 2053	2063	[] 2073	2083	2093	[] 20A3	[] 20B3	[] 20C3	[] 20D3	[] 20E3	20F3
	[]		[]	2033	2043		[]	4	[]	[]		[]	[]	[]	20E3	
4	2004	2014	2024	2034	2044	2054	2064	2074	2084	2094	20A4	20B4	20C4	20D4	20E4	20F4
5																0
0	2005	2015	2025	2035	2045	2055	2065	2075	2085	2095	20A5	20B5	20C5	20D5	20E5	20F5
6			•••													
	2006	2016	2026	2036	2046	2056	2066	2076	2086 []	2096	20A6	20B6	20C6	20D6	20E6	20F6
7	2007	2017	2027	2037	2047	2057	2067	2077	2087	2097	20A7	20B7	20C7	20D7	20E7	20F7
8																
0	2008	2018	2028	2038	2048	2058	2068	2078	2088	2098	20A8	20B8	20C8	20D8	20E8	20F8
9		,		<								₹				
	2009 []	2019	2029	2039	2049	2059 []	2069	2079	2089 []	2099	20A9 []	20B9	20C9 []	20D9 []	20E9	20F9
A	∐ 200A) 201A	U 202A	203A	[] 204A	U 205A	206A	U 207A	208A	[] 209A	U 20AA	11 20BA	U 20CA	⊔ 20DA	∐ 20EA	⊔ 20FA
В	200B	201B	202B	203B	204B	205B	206B	207B	208B	209B	20AB	20BB	20CB	20DB	20EB	20FB
$^{\rm C}$		"									€					
	200C	201C	202C	203C	204C	205C	206C	207C	208C	209C	20AC	20BC	20CC	20DC	20EC	20FC
D	2007															
	200D	201D	202D	203D	204D	205D	206D	207D	208D	209D	20AD	20BD	20CD	20DD []	20ED	20FD []
Е	200E	201E	202E	203E	204E	205E	206E	207E	208E	209E	20AE	20BE	20CE	20DE	20EE	20FE
F																
1	200F	201F	202F	203F	204F	205F	206F	207F	208F	209F	20AF	20BF	20CF	20DF	20EF	20FF

3.6 2200 - 22FF

	220	221	222	223	224	225	226	227	228	229	22A	22B	22C	22D	22E	22F
0	0			0			#	0			0	0		0	0	0
	2200	2210	2220	2230	2240	2250	2260	2270	2280	2290	22A0	22B0	22C0	22D0	22E0	22F0
1																
	2201	2211	2221	2231	2241	2251	2261	2271	2281	2291	22A1	22B1	22C1	22D1	22E1	22F1
2		-	0													
	2202	2212	2222	2232	2242	2252	2262	2272	2282	2292	22A2	22B2	22C2	22D2	22E2	
3	2203	2213	2223	2233	2243	2253	2263	2273	2283	2293	22A3	22B3	22C3	22D3	22E3	22F3
						[]	[]	0								
4	2204	2214	2224	2234	2244	2254	2264	2274	2284	2294	22A4	22B4	22C4	22D4	22E4	22F4
_		/	0													О
5	2205	2215	2225	2235	2245	2255	2265	2275	2285	2295	22A5	22B5	22C5	22D5	22E5	22F5
6			0													
U	2206	2216	2226	2236	2246	2256	2266	2276	2286	2296	22A6	22B6	22C6	22D6	22E6	22F6
7																
•	2207	2217	2227	2237	2247	2257	2267	2277	2287	2297	22A7	22B7	22C7	22D7	22E7	22F7
8					~											
	2208	2218	2228	2238	2248	2258	2268	2278	2288	2298	22A8	22B8	22C8	22D8	22E8	22F8
9																
	2209 []	2219 []	2229	2239 []	2249 []	2259 []	2269 []	22 7 9	2289 []	2299 []	22A9	22B9	22C9	22D9 []	22E9	22F9 [
Α	П 220A	221A	222A	223A	224A	225A	226A	227A	228A	229A	22AA	22BA	22CA	п 22DA	122EA	22FA
		0	0					[]								
В	220B	221B	222B	223B	224B	225B	226B	227B	228B	229B	22AB	22BB	22CB	22DB	22EB	22FB
\mathbf{C}																
	220C	221C	222C	223C	224C	225C	226C	227C	228C	229C	22AC	22BC	22CC	22DC	22EC	22FC
D																
D	220D	221D	222D	223D	224D	225D	226D	227D	228D	229D	22AD	22BD	22CD	22DD	22ED	22FD
Е		∞	0													
_	220E	221E	222E	223E	224E	225E	226E	227E	228E	229E	22AE	22BE	22CE	22DE	22EE	22FE
F																
	220F	221F	222F	223F	224F	225F	226F	227F	228F	229F	22AF	22BF	22CF	22DF	22EF	22FF

3.7 2500 - 25FF

	250	251	252	253	254	255	256	257	258	259	25A	25B	$25\mathrm{C}$	25D	25E	25F
0																
	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	25A0	25B0	25C0	25D0	25E0	25F0
1																
	2501	2511 []	2521 []	2531 []	2541 []	2551 []	2561 []	2571	2581 []	2591 []	25A1	25B1	25C1	25D1 []	25E1	25F1 []
2	2502	2512	2522	2532	2542	2552	2562	2572	2582	2592	25A2	25B2	25C2	25D2	⊔ 25E2	25F2
	П	0	0			0	0	0	[]	0		0	[]	0		
3	2503	2513	2523	2533	2543	2553	2563	2573	2583	2593	25A3	25B3	25C3	25D3	25E3	25F3
4	2504	2514	2524	2534	2544	2554	2564	2574	2584	2594	25A4	25B4	25C4	25D4	25E4	25F4
5																
Э	2505	2515	2525	2535	2545	2555	2565	2575	2585	2595	25A5	25B5	25C5	25D5	25E5	25F5
6																
U	2506	2516	2526	2536	2546	2556	2566	2576	2586	2596	25A6	25B6	25C6	25D6	25E6	25F6
7																
·	2507	2517	2527	2537	2547	2557	2567	2577	2587	2597	25A7	25B7	25C7	25D7	25E7	25F7
8																
	2508	2518	2528	2538	2548	2558	2568	2578	2588	2598	25A8	25B8	25C8	25D8	25E8	25F8
9																
	2509 []	2519 []	2529 []	2539 []	2549 []	2559 []	2569 []	2579 []	2589 []	2599 []	25A9	25B9	25C9	25D9	25E9	25F9 [
Α	U 250А	⊔ 251A	252A	⊔ 253A	⊔ 254A	255A	⊔ 256A	257A	258A	259A	⊔ 25AA	⊔ 25BA	U 25CA	⊔ 25DA	⊔ 25EA	⊔ 25FA
	250A			[]	254A									[]		
В	250B	251B	252B	253B	254B	255B	256B	257B	258B	259B	25AB	25BB	25CB	25DB	25EB	25FB
~													0			0
С	250C	251C	252C	253C	254C	255C	256C	257C	258C	259C	25AC	25BC	25CC	25DC	25EC	25FC
D													0			
ט	250D	251D	252D	253D	254D	255D	256D	257D	258D	259D	25AD	25BD	25CD	25DD	25ED	25FD
E																
ப	250E	251E	252E	253E	$254\mathrm{E}$	255E	256E	257E	258E	259E	25AE	25BE	25CE	25DE	25EE	25FE
F																
	250F	251F	252F	253F	254F	255F	256F	257F	258F	259F	25AF	25BF	25CF	25DF	25EF	25FF

4 Unicode Coverage

```
0020
            SPACE
0021
            EXCLAMATION MARK
0022
            QUOTATION MARK
0023
      #
            NUMBER SIGN
0024
      $
            DOLLAR SIGN
0025
      %
            PERCENT SIGN
0026
      &
            AMPERSAND
0027
            APOSTROPHE
0028
            LEFT PARENTHESIS
0029
            RIGHT PARENTHESIS
      )
002A
            ASTERISK
002B
      +
            PLUS SIGN
002C
            COMMA
002D
            HYPHEN-MINUS
002E
            FULL STOP
002F
            SOLIDUS
0030
      0
            DIGIT ZERO
0031
     1
            DIGIT ONE
0032
      2
            DIGIT TWO
0033
      3
            DIGIT THREE
0034
      4
            DIGIT FOUR
0035
      5
            DIGIT FIVE
0036
      6
            DIGIT SIX
0037
      7
            DIGIT SEVEN
0038
      8
            DIGIT EIGHT
0039
      9
            DIGIT NINE
003A
            COLON
003B
            SEMICOLON
     ;
003C
      <
            LESS-THAN SIGN
003D
            EQUALS SIGN
003E
            GREATER-THAN SIGN
      ?
003F
            QUESTION MARK
0040
      @
            COMMERCIAL AT
0041
      Α
            LATIN CAPITAL LETTER A
0042
      В
            LATIN CAPITAL LETTER B
      \mathsf{C}
0043
            LATIN CAPITAL LETTER C
     D
0044
            LATIN CAPITAL LETTER D
     Е
0045
            LATIN CAPITAL LETTER E
      F
0046
            LATIN CAPITAL LETTER F
0047
      G
            LATIN CAPITAL LETTER G
0048
     Н
            LATIN CAPITAL LETTER H
0049
            LATIN CAPITAL LETTER I
004A
      J
            LATIN CAPITAL LETTER J
     K
004B
            LATIN CAPITAL LETTER K
004C
      L
            LATIN CAPITAL LETTER L
004D
     Μ
            LATIN CAPITAL LETTER M
004E
      Ν
            LATIN CAPITAL LETTER N
004F
      0
            LATIN CAPITAL LETTER O
     Ρ
0050
            LATIN CAPITAL LETTER P
0051
      Q
            LATIN CAPITAL LETTER Q
0052
      R
            LATIN CAPITAL LETTER R
0053
      S
            LATIN CAPITAL LETTER S
      Т
0054
            LATIN CAPITAL LETTER T
      U
0055
            LATIN CAPITAL LETTER U
      V
0056
            LATIN CAPITAL LETTER V
0057
      W
            LATIN CAPITAL LETTER W
      X
0058
            LATIN CAPITAL LETTER X
      У
0059
            LATIN CAPITAL LETTER Y
      2
005A
            LATIN CAPITAL LETTER Z
005B
            LEFT SQUARE BRACKET
```

```
005C
            REVERSE SOLIDUS
      \
      ]
005D
            RIGHT SQUARE BRACKET
      Λ
005E
            CIRCUMFLEX ACCENT
005F
            LOW LINE
0060
            GRAVE ACCENT
0061
      \alpha
            LATIN SMALL LETTER A
0062
      b
            LATIN SMALL LETTER B
0063
            LATIN SMALL LETTER C
      C
0064
      d
            LATIN SMALL LETTER D
            LATIN SMALL LETTER E
0065
      e
0066
            LATIN SMALL LETTER F
0067
            LATIN SMALL LETTER G
0068
            LATIN SMALL LETTER H
            LATIN SMALL LETTER I
0069
     i
006A
            LATIN SMALL LETTER J
006B
      k
            LATIN SMALL LETTER K
006C
            LATIN SMALL LETTER L
006D
      m
            LATIN SMALL LETTER M
006E
            LATIN SMALL LETTER N
      n
006F
      0
            LATIN SMALL LETTER O
0070
      р
            LATIN SMALL LETTER P
0071
            LATIN SMALL LETTER Q
      q
0072
            LATIN SMALL LETTER R
0073
      S
            LATIN SMALL LETTER S
0074
            LATIN SMALL LETTER T
      t
0075
      u
            LATIN SMALL LETTER U
0076
      V
            LATIN SMALL LETTER V
0077
            LATIN SMALL LETTER W
      W
0078
            LATIN SMALL LETTER \mathbf{X}
      X
0079
            LATIN SMALL LETTER Y
      y
007A
            LATIN SMALL LETTER Z
      Z
007B
            LEFT CURLY BRACKET
007C
            VERTICAL LINE
007D
            RIGHT CURLY BRACKET
007E
            TILDE
OAO
            NO-BREAK SPACE
00A1
            INVERTED EXCLAMATION MARK
00A2
      ď
            CENT SIGN
00A3
      £
            POUND SIGN
00A4
      p
            CURRENCY SIGN
00A5
      ¥
            YEN SIGN
00A6
            BROKEN BAR
00A7
            SECTION SIGN
8A00
            DIAERESIS
00A9
      0
            COPYRIGHT SIGN
OOAA
            FEMININE ORDINAL INDICATOR
OOAB
      <<
            LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
            NOT SIGN
OOAC
OOAD
            SOFT HYPHEN
OOAE
      R
            REGISTERED SIGN
OOAF
            MACRON
00B0
            DEGREE SIGN
00B1
      \pm
            PLUS-MINUS SIGN
00B2
            SUPERSCRIPT TWO
00B3
            SUPERSCRIPT THREE
00B4
            ACUTE ACCENT
00B5
     μ
            MICRO SIGN
                    1 visible characters not mapped to glyphs
00B7
            MIDDLE DOT
00B8
            CEDILLA
00B9
            SUPERSCRIPT ONE
OOBA
            MASCULINE ORDINAL INDICATOR
```

00BB	>>	RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
00BC	1/4	VULGAR FRACTION ONE QUARTER
OOBD	1/2	VULGAR FRACTION ONE HALF
OOBE	3/4	VULGAR FRACTION THREE QUARTERS
00BF	٤	INVERTED QUESTION MARK
00C0	À	LATIN CAPITAL LETTER A WITH GRAVE
00C1	Á	LATIN CAPITAL LETTER A WITH ACUTE
00C2	Â	LATIN CAPITAL LETTER A WITH CIRCUMFLEX
00C3	Ã	LATIN CAPITAL LETTER A WITH TILDE
00C4	Ä	LATIN CAPITAL LETTER A WITH DIAERESIS
00C5	Å	LATIN CAPITAL LETTER A WITH RING ABOVE
00C6	Æ	LATIN CAPITAL LETTER AE
00C7	Ç	LATIN CAPITAL LETTER C WITH CEDILLA
00C8	È	LATIN CAPITAL LETTER E WITH GRAVE
00C9	É	LATIN CAPITAL LETTER E WITH ACUTE
OOCA	Ê	LATIN CAPITAL LETTER E WITH CIRCUMFLEX
00CB	Ë	LATIN CAPITAL LETTER E WITH DIAERESIS
OOCC	Ì	LATIN CAPITAL LETTER I WITH GRAVE
OOCD	1	LATIN CAPITAL LETTER I WITH ACUTE
OOCE	1	LATIN CAPITAL LETTER I WITH CIRCUMFLEX
OOCF	Ï	LATIN CAPITAL LETTER I WITH DIAERESIS
00D0	Ð	LATIN CAPITAL LETTER ETH
00D1	Ñ	LATIN CAPITAL LETTER N WITH TILDE
00D2	Ò	LATIN CAPITAL LETTER O WITH GRAVE
00D3	Ó	LATIN CAPITAL LETTER O WITH ACUTE
00D4	Ô	LATIN CAPITAL LETTER O WITH CIRCUMFLEX
00D5	Õ	LATIN CAPITAL LETTER O WITH TILDE
00D6	Ö	LATIN CAPITAL LETTER O WITH DIAERESIS
00D7	×	MULTIPLICATION SIGN
00D8	Ø	LATIN CAPITAL LETTER O WITH STROKE
00D9	Ù	LATIN CAPITAL LETTER U WITH GRAVE
OODA	Ú	LATIN CAPITAL LETTER U WITH ACUTE
OODB	Û	LATIN CAPITAL LETTER U WITH CIRCUMFLEX
OODC	Ü	LATIN CAPITAL LETTER U WITH DIAERESIS
OODD	ý	LATIN CAPITAL LETTER Y WITH ACUTE
OODE	Þ	LATIN CAPITAL LETTER THORN
OODF	ß	LATIN SMALL LETTER SHARP S
00E0	à	LATIN SMALL LETTER A WITH GRAVE
00E1	á	LATIN SMALL LETTER A WITH ACUTE
00E2	â	LATIN SMALL LETTER A WITH CIRCUMFLEX
00E3	ã	LATIN SMALL LETTER A WITH TILDE
00E4	ä	LATIN SMALL LETTER A WITH DIAERESIS
00E5	å	LATIN SMALL LETTER A WITH RING ABOVE
00E6	æ	LATIN SMALL LETTER AE
00E7	ç	LATIN SMALL LETTER C WITH CEDILLA
00E8	è	LATIN SMALL LETTER E WITH GRAVE
00E9	é	LATIN SMALL LETTER E WITH ACUTE
OOEA	ê	LATIN SMALL LETTER E WITH CIRCUMFLEX
00EB	ë	LATIN SMALL LETTER E WITH DIAERESIS
00EC	ì	LATIN SMALL LETTER I WITH GRAVE
00ED	Í	LATIN SMALL LETTER I WITH ACUTE
00EE	î	LATIN SMALL LETTER I WITH CIRCUMFLEX
00EF	ï	LATIN SMALL LETTER I WITH DIAERESIS
00F0	ð ≈	LATIN SMALL LETTER ETH
00F1	ñ	LATIN SMALL LETTER N WITH TILDE
00F2	Ò	LATIN SMALL LETTER O WITH GRAVE
00F3	Ó	LATIN SMALL LETTER O WITH ACUTE
00F4	ô	LATIN SMALL LETTER O WITH CIRCUMFLEX
00F5	õ	LATIN SMALL LETTER O WITH TILDE
00F6	Ö	LATIN SMALL LETTER O WITH DIAERESIS
00F7	÷	DIVISION SIGN
00F8	Ø	LATIN SMALL LETTER O WITH STROKE

```
LATIN SMALL LETTER U WITH GRAVE
00F9
     ù
OOFA
     ú
           LATIN SMALL LETTER U WITH ACUTE
00FB
     û
           LATIN SMALL LETTER U WITH CIRCUMFLEX
00FC
      ü
           LATIN SMALL LETTER U WITH DIAERESIS
OOFD
           LATIN SMALL LETTER Y WITH ACUTE
OOFE
           LATIN SMALL LETTER THORN
00FF
     ÿ
           LATIN SMALL LETTER Y WITH DIAERESIS
                   49 visible characters not mapped to glyphs
0131
           LATIN SMALL LETTER DOTLESS I
                   32 visible characters not mapped to glyphs
0152
     Œ
           LATIN CAPITAL LIGATURE OE
     œ
0153
           LATIN SMALL LIGATURE OE
                   370 visible characters not mapped to glyphs
02C6
           MODIFIER LETTER CIRCUMFLEX ACCENT
02C7
           CARON
                   20 visible characters not mapped to glyphs
02DC
           SMALL TILDE
                  1993 visible characters not mapped to glyphs
      ိ
0D00
      ೆ
0D01
0D02
     06
           MALAYALAM SIGN ANUSVARA
0D03
      08
           MALAYALAM SIGN VISARGA
0D05
           MALAYALAM LETTER A
      ന്നു
0D06
      ആ
           MALAYALAM LETTER AA
0D07
           MALAYALAM LETTER I
      ഇ
0D08
      ഈ
           MALAYALAM LETTER II
0D09
           MALAYALAM LETTER U
      ഉ
ODOA
           MALAYALAM LETTER UU
      ഊ
ODOB
           MALAYALAM LETTER VOCALIC R
      88
ODOC
           MALAYALAM LETTER VOCALIC L
      ഌ
ODOE
      4
           MALAYALAM LETTER E
ODOF
           MALAYALAM LETTER EE
      3
0D10
      ഐ
           MALAYALAM LETTER AI
0D12
      ഒ
           MALAYALAM LETTER O
0D13
      ഓ
           MALAYALAM LETTER OO
0D14
      ഒൗ
           MALAYALAM LETTER AU
0D15
           MALAYALAM LETTER KA
0D16
           MALAYALAM LETTER KHA
      ഖ
0D17
      ഗ
           MALAYALAM LETTER GA
0D18
           MALAYALAM LETTER GHA
      മി
0D19
      ങ
           MALAYALAM LETTER NGA
OD1A
           MALAYALAM LETTER CA
      91
OD1B
           MALAYALAM LETTER CHA
      ഛ
OD1C
           MALAYALAM LETTER JA
      ജ
OD1D
           MALAYALAM LETTER JHA
      സ്വ
OD1E
      ഞ
           MALAYALAM LETTER NYA
OD1F
           MALAYALAM LETTER TTA
      S
0D20
      0
           MALAYALAM LETTER TTHA
0D21
           MALAYALAM LETTER DDA
      w
0D22
      ഡ
           MALAYALAM LETTER DDHA
0D23
      ണ
           MALAYALAM LETTER NNA
0D24
           MALAYALAM LETTER TA
      ത
0D25
      Ø
           MALAYALAM LETTER THA
0D26
      ß
           MALAYALAM LETTER DA
0D27
      W
           MALAYALAM LETTER DHA
0D28
      ന
           MALAYALAM LETTER NA
0D29
      ണ
OD2A
      പ
           MALAYALAM LETTER PA
OD2B
     മ
           MALAYALAM LETTER PHA
OD2C
           MALAYALAM LETTER BA
      ബ
OD2D
           MALAYALAM LETTER BHA
      ഭ
OD2E
           MALAYALAM LETTER MA
```

```
0D2F
            MALAYALAM LETTER YA
      യ
0D30
      0
            MALAYALAM LETTER RA
0D31
      0
            MALAYALAM LETTER RRA
0D32
     PI
            MALAYALAM LETTER LA
0D33
      9
            MALAYALAM LETTER LLA
0D34
      ဖွ
            MALAYALAM LETTER LLLA
0D35
      വ
            MALAYALAM LETTER VA
0D36
            MALAYALAM LETTER SHA
     ശ
0D37
            MALAYALAM LETTER SSA
      28
0D38
     (m)
            MALAYALAM LETTER SA
0D39
      ഹ
            MALAYALAM LETTER HA
OD3A
      4
      ģ.
OD3B
OD3C
      ೆ
OD3D
            MALAYALAM SIGN AVAGRAHA
      ſ
0D3E
      ೦೦
            MALAYALAM VOWEL SIGN AA
0D3F
      ി
            MALAYALAM VOWEL SIGN I
      ീ
0D40
            MALAYALAM VOWEL SIGN II
0D41
            MALAYALAM VOWEL SIGN U
      ्र
0D42
      ್ಡು
            MALAYALAM VOWEL SIGN UU
0D43
      ൂ
            MALAYALAM VOWEL SIGN VOCALIC R
0D44
      ্ৰ্য
            MALAYALAM VOWEL SIGN VOCALIC RR
0D46
      െ
            MALAYALAM VOWEL SIGN E
0D47
      േ
            MALAYALAM VOWEL SIGN EE
0D48
            MALAYALAM VOWEL SIGN AI
      ൈ
OD4A
      ൊ
            MALAYALAM VOWEL SIGN O
OD4B
      േറ
            MALAYALAM VOWEL SIGN OO
OD4C
      ൌ
            MALAYALAM VOWEL SIGN AU
      ੱ
OD4D
            MALAYALAM SIGN VIRAMA
OD4E
OD4F
      ത്ര
0D54
      ds
0D55
      യി
0D56
      B
0D57
      ೦ಌ
           MALAYALAM AU LENGTH MARK
0D58
      B
0D59
      ക
OD5A
      മ
OD5B
      വ
OD5C
     (UU)
OD5D
      w
OD5E
      ᢙᠬ
0D5F
      ·O•
0D60
            MALAYALAM LETTER VOCALIC RR
      88
0D61
            MALAYALAM LETTER VOCALIC LL
      ൡ
0D62
            MALAYALAM VOWEL SIGN VOCALIC L
     ្អ
0D63
            MALAYALAM VOWEL SIGN VOCALIC LL
0D66
      0
            MALAYALAM DIGIT ZERO
0D67
      مے
            MALAYALAM DIGIT ONE
0D68
      \Omega
            MALAYALAM DIGIT TWO
0D69
     M
            MALAYALAM DIGIT THREE
OD6A
      φ
            MALAYALAM DIGIT FOUR
OD6B
      @
            MALAYALAM DIGIT FIVE
OD6C
      \mathfrak{M}
            MALAYALAM DIGIT SIX
OD6D
            MALAYALAM DIGIT SEVEN
      9
OD6E
      Q
            MALAYALAM DIGIT EIGHT
OD6F
      \alpha
            MALAYALAM DIGIT NINE
0D70
      \mathfrak{M}
            MALAYALAM NUMBER TEN
0D71
      \mathfrak{O}
            MALAYALAM NUMBER ONE HUNDRED
0D72
      ന്മം
            MALAYALAM NUMBER ONE THOUSAND
            MALAYALAM FRACTION ONE QUARTER
0D73
      0
0D74
      ф
            MALAYALAM FRACTION ONE HALF
```

0D7F	ا ما	MALAWALAM DDA OTTON THERE OHADTEDO
0D75	ൺ	MALAYALAM FRACTION THREE QUARTERS
0D76	ഫ	
0D77	ഷ	
0D78	൝	
0D79	m	MALAYALAM DATE MARK
OD7A	ൺ	MALAYALAM LETTER CHILLU NN
OD7B	αÓ	MALAYALAM LETTER CHILLU N
OD7C	4	MALAYALAM LETTER CHILLU RR
OD7D	ൽ	MALAYALAM LETTER CHILLU L
OD7E	νδ	MALAYALAM LETTER CHILLU LL
OD7E	ab	MALAYALAM LETTER CHILLU K
ODIT	ωυ	4012 visible characters not mapped to glyphs
2000	ı	
200C		ZERO WIDTH NON-JOINER
200D		ZERO WIDTH JOINER
	ı	3 visible characters not mapped to glyphs
2013	-	EN DASH
2014	-	EM DASH
		3 visible characters not mapped to glyphs
2018	•	LEFT SINGLE QUOTATION MARK
2019	,	RIGHT SINGLE QUOTATION MARK
201A	,	SINGLE LOW-9 QUOTATION MARK
		1 visible characters not mapped to glyphs
201C	"	LEFT DOUBLE QUOTATION MARK
201D	n	RIGHT DOUBLE QUOTATION MARK
201E		DOUBLE LOW-9 QUOTATION MARK
2012	n	3 visible characters not mapped to glyphs
2022	•	BULLET
2022		3 visible characters not mapped to glyphs
2026	ı	
2026		HORIZONTAL ELLIPSIS
0000		13 visible characters not mapped to glyphs
2039	<	SINGLE LEFT-POINTING ANGLE QUOTATION MARK
203A	>	SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
		9 visible characters not mapped to glyphs
2044	/	FRACTION SLASH
		29 visible characters not mapped to glyphs
2074	4	SUPERSCRIPT FOUR
		43 visible characters not mapped to glyphs
20AC	€	EURO SIGN
	'	12 visible characters not mapped to glyphs
20B9	₹	
	1	301 visible characters not mapped to glyphs
2212	-	MINUS SIGN
	ı	2 visible characters not mapped to glyphs
2215	/	DIVISION SLASH
2210	'	8 visible characters not mapped to glyphs
221E	∞	INFINITY
2211		41 visible characters not mapped to glyphs
22/10	l ~	
2248	≈	ALMOST EQUAL TO
0000	1 4	23 visible characters not mapped to glyphs
2260	#	NOT EQUAL TO
	ı	806 visible characters not mapped to glyphs
25CC	0	DOTTED CIRCLE

5 Glyphs

Index	Glyph	Name	Adv. Width	lsb	Class	Chars
0		.notdef	692	45	0	
1		space	560	0	1	u0020
2	!	exclam	409	96	1	u0021
3	•	quotedbl	526	76	1	u0022
4	#	numbersign	1590	100	1	u0023

T1	C11-	N	A J XX7: J±1-	1_1_	O1	O1
Index	Glyph	Name dollar	Adv. Width	lsb	Class	Chars
5 6	\$ %		1316 1237	100 100	$\begin{array}{c c} & 1 \\ & 1 \end{array}$	u0024 u0025
7	& &	percent ampersand	1289	100	1	u0025 u0026
8		quotesingle	368	76	1	u0020 u0027
9	(parenleft	721	100	1	u0027 u0028
10)	parenright	721	100	1	u0028 u0029
11	<i>/</i>	asterisk	1182	93	1	u0023 u002A
12	+	plus	1408	100	1	u002H $u002B$
13		comma	445	100	1	u002C
14	-	hyphen	783	107	1	u002D
15		period	422	101	1	u002E
16	/	slash	1039	100	1	u002F
17	0	zero	1144	100	1	u0030
18	1	one	476	100	1	u0031
19	2	two	1331	96	1	u0032
20	3	three	1181	101	1	u0033
21	4	four	1496	97	1	u0034
22	5	five	1306	99	1	u0035
23	6	six	1177	96	1	u0036
24	7	seven	1200	99	1	u0037
25	8	eight	1189	99	1	u0038
26	9	nine	1114	103	1	u0039
27	:	colon	462	103	1	u003A
28	;	semicolon	425	114	1	u003B
29	<	less	1250	99	1	u003C
30	=	equal	866	100	1	u003D
31	>	greater	1250	101	1	u003E
32	?	question	984	100	1	u003F
33	@	at	1555	100	1	u0040
34	Α	A	1370	98	1	u0041
35	В	В	1155	100	1	u0042
36	C	C	1370	101	1	u0043
37	D	D	1093	100	1	u0044
38	Е	E	1298	99	1	u0045
39	F	F	1285	96	1	u0046
40	G	G	1851	100	1	u0047
41	H	H	1110	100	1	u0048
42		I	342	100	1	u0049
43	J	J	993	102	1	u004A
44	K	K	1211	100	1	u004B
45	L	L	1267	100	1	u004C
46	M	M	1497	100	1	u004D
47	N	N	1264	99	1	u004E
48 49	O P	O P	1702 983	100	1	u004F u0050
50	Q		983 1796	100 100	1 1	u0050 u0051
50	R	Q R	1372	99	1	u0051 u0052
52	S	S	1372	100	1	u0052 u0053
53	T	$\begin{array}{c c} 3 \\ T \end{array}$	1389	100	1	u0053 $u0054$
54	ΰ	U	1370	102	1	u0054 u0055
55	V	V	1246	100	1	u0056
56	w	W	1840	100	1	u0057
57	X	X	1421	99	1	u0058
58	ý	Y	1272	100	1	u0059
59	2	Z	1473	100	1	u005A
60	[bracketleft	868	100	1	u005B
61	\	backslash	959	100	1	u005C
62	ì	bracketright	868	100	1	u005D
63	٨	asciicircum	1142	99	1	u005E
64		underscore	783	82	1	u005F
65	Ţ	grave	215	-1	1	u0060
66	a	a	1095	100	1	u0061
	l .	I.			1	

Indon	Clarele	Name	Adv. Width	lsb	Class	Chars
Index 67	Glyph	b	1199	99	Class 1	u0062
68	C	c	964	100	1	u0063
69	d	$\frac{d}{d}$	1192	101	1	u0064
70	e	e	1156	100	1	u0065
71	f	f	1106	100	1	u0066
72	9	g	1119	101	1	u0067
73	h	h	1120	100	1	u0068
74	i	i	455	100	1	u0069
75	j	j	865	100	1	u006A
76	k	k	1071	100	1	u006B
77		1	363	100	1	u006C
78	m	m	1619	99	1	u006D
79 80	n	n	1295 1209	100 100	1 1	u006E u006F
81	0	0	1199	99	1	u000F u0070
82	p q	p q	1199	102	1	u0070 u0071
83	r	r	827	100	1	u0072
84	S	S	1056	100	1	u0073
85	t	t	812	100	1	u0074
86	u	u	1114	100	1	u0075
87	V	v	975	100	1	u0076
88	w	w	1544	100	1	u0077
89	x	X	1139	100	1	u0078
90	y	у	961	50	1	u0079
91	2	Z	1173	100	1	u007A
92	{	braceleft	1096	100	1	u007B
93		bar	293	100	1	u007C
94	}	braceright	1095	100	1	u007D
95	~	asciitilde	1531	100	1	u007E
96		uni00A0	560	100	1	u00A0
97 98	i ¢	exclamdown cent	414 964	100 100	1 1	u00A1 u00A2
99	£	sterling	1272	100	1	u00A2 u00A3
100	¤	currency	1401	100	1	u00A4
101	¥	ven	1165	100	1	u00A5
102	1	brokenbar	342	100	1	u00A6
103	§	section	834	98	1	u00A7
104	•	dieresis	532	2	1	u00A8
105	0	copyright	1702	100	1	u00A9
106	a	ordfeminine	893	100	1	u00AA
107	~	guillemotleft	1430	101	1	u00AB
108	7	logicalnot	1176	100	1	u00AC
109		uni00AD	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	u00AD
110 111	® -	registered macron	1700 783	99 107	1 1	u00AE u00AF
111	0	degree	852	107	1	u00AF u00B0
113	±	plusminus	1299	100	1	u00B0 u00B1
113	2	uni00B2	597	100	1	u00B1 u00B2
115	3	uni00B3	547	100	1	u00B3
116	•	acute	215	0	1	u00B4
117	μ	mu	1228	100	1	u00B5
118	•	periodcentered	421	101	1	u00B7
119	5	cedilla	674	99	1	u00B8
120		uni00B9	309	100	1	u00B9
121	•	ordmasculine	658	100	1	u00BA
122	»	guillemotright	1527	100	1	u00BB
123	1/4	onequarter	1283	99	1	u00BC
124	½ 3/4	onehalf	1210	99	1 1	u00BD
$\frac{125}{126}$	۶/4 ا	threequarters questiondown	1725 984	101 100	$\begin{array}{c c} & 1 \\ & 1 \end{array}$	u00BE u00BF
120	À	Agrave	1370	98	1	u00C0
128	Á	Aacute	1370	98	1	u00C0 u00C1
120		1200000	1010		1	40001

Index	Glyph	Name	Adv. Width	lsb	Class	Chars
129	Â	Acircumflex	1370	98	1	u00C2
130	Ã	Atilde	1370	98	1	u00C3
131	Ä	Adieresis	1370	98	1	u00C4
132	Å	Aring	1370	98	1	u00C5
133	Æ	AE	2201	100	1	u00C6
134	Ç	Ccedilla	1370	101	1	u00C7
135	Ç	Egrave	1298	99	1	u00C8
136	É	Eacute	1298	99	1	u00C9
137	Ê	Ecircumflex	1298	99	1	u00CA
138	Ë	Edieresis	1298	99	1	u00CB
139	ì	Igrave	342	95	1	u00CC
140	li	Iacute	342	9	1	u00CD
141	<u> </u>	Icircumflex	342	-183	1	u00CE
142	Ϊ́	Idieresis	342	-91	1	u00CF
143	Ð	Eth	1093	-148	1	u00D0
143	Ñ	Ntilde	1264	99	1	u00D0 u00D1
145	Ò	Ograve	1702	100	1	u00D1 $u00D2$
146	Ó	Oacute	1702 1702	100	1	u00D2 u00D3
	Ô					u00D3 u00D4
147	Õ	Ocircumflex	1702	100	1	
148	Ö	Otilde	1702	100	1	u00D5
149		Odieresis	1702	100	1	u00D6
150	×	multiply	1076	102	1	u00D7
151	Ø	Oslash	1702	100	1	u00D8
152	Ù	Ugrave	1370	100	1	u00D9
153	Ú	Uacute	1370	100	1	u00DA
154	Û	Ucircumflex	1370	100	1	u00DB
155	Ü	Udieresis	1370	100	1	u00DC
156	ý	Yacute	1272	100	1	u00DD
157	Þ	Thorn	993	100	1	u00DE
158	ß	germandbls	1084	100	1	u00DF
159	à	agrave	1095	100	1	u00E0
160	á	aacute	1095	100	1	u00E1
161	â	acircumflex	1095	100	1	u00E2
162	ã	atilde	1095	100	1	u00E3
163	ä	adieresis	1095	100	1	u00E4
164	å	aring	1095	100	1	u00E5
165	æ	ae	1975	100	1	u00E6
166	ç	ccedilla	964	99	1	u00E7
167	è	egrave	1156	100	1	u00E8
168	é	eacute	1156	100	1	u00E9
169	ê	ecircumflex	1156	100	1	u00EA
170	ë	edieresis	1156	100	1	u00EB
171	ì	igrave	408	92	1	u00EC
172	í	iacute	455	42	1	u00ED
173	î	icircumflex	455	-129	1	u00EE
174	ï	idieresis	455	-61	1	u00EF
175	ð	eth	1149	101	1	u00F0
176	ñ	ntilde	1295	100	1	u00F1
177	Ò	ograve	1209	100	1	u00F2
178	Ó	oacute	1209	100	1	u00F3
179	ô	ocircumflex	1209	100	1	u00F4
180	õ	otilde	1209	100	1	u00F5
181	Ö	odieresis	1209	100	1	u00F6
182	÷	divide	1163	100	1	u00F7
183	Ø	oslash	1209	100	1	u00F8
184	ù	ugrave	1114	100	1	u00F9
185	ú	uacute	1114	100	1	u00FA
186	a	ucircumflex	1114	100	1	u00FB
187	ä	udieresis	1114	100	1	u00FC
188	ý	yacute	1011	100	1	u00FD
189	Þ	thorn	1088	100	1	u00FE
190	ÿ	ydieresis	1011	100	1	u00FF
	J	V	1011			· · ·

191	T 1	Q1 1	3.7	A 1 TTT- 1, 1	1.1	C1	CI
193 CE	Index	Glyph	Name	Adv. Width	lsb	Class	Chars
193							
194							
195							
196		~					
197		~	l .				
198 michandrabindu		0	l .				
199 c		٥					
200		0					
201							
202			_				
203 92 ml_ii 3133 100 1 10007 204 927 ml_iii 3133 100 1 1 10008 205 9 ml_iu 1290 1011 1 10009 206 92 ml_iu 1290 1011 1 10000 207 38 ml_r 1863 100 1 10000 208 66 ml_i 1090 99 1 10000 209 60 ml_e 2739 100 1 10000 2100 63 ml_e 2796 100 1 10000 211 640 ml_ii 4668 101 1 10010 211 640 ml_ii 4668 101 1 10010 212 64 64 64 64 64 64 64 6							
204 929 ml_ii 1290 101 1 1 10008 205 92 ml_iu 1290 101 1 1 1 10000 207 38 ml_r 1863 100 1 1 10000 208 208 ml_r 1863 100 1 10000 209 209 209 200 ml_c 2739 100 1 10000 200 210 230 ml_c 2739 100 1 10000 210 221 240 ml_ai 4068 101 1 10001 211 212 24 ml_n 1362 100 1 10001 213 224 23 ml_o 2468 100 1 10001 214 239 ml_au 2468 100 1 10001 214 239 ml_au 2468 100 1 10001 214 239 ml_au 2468 100 1 10001 214 239 239 1 10001 239 239 230 240		_				1	u0D07
206 97 ml_uu	204		ml_ii	3133	100	1	u0D08
206 92 ml un	205		ml_u	1290	101	1	u0D09
208	206		ml_uu	2454	101	1	u0D0A
200	207	8	ml_r	1863	100	1	
210		ഌ	_				
211 60		4					
212 63		B					
213 630 m oo		ഐ	<u> </u>				
214 699 m au 2468 100 1 u0D14 215 26							
215							
216							
217			l .				
218							
219			l .				
220							
221							
222 92 ch3 1841 100 1 u0D1C							
223 600 ch4 3078 100 1 u0D1D 224 600 nj 2195 100 1 u0D1E 225 s t1 1058 100 1 u0D1F 226 o t2 1201 83 1 u0D20 227 cu t3 2300 99 1 u0D21 228 cus t4 2362 100 1 u0D22 229 600 th1 1788 100 1 u0D23 230 600 th1 1788 100 1 u0D23 231 cu th2 1557 99 1 u0D25 232 a th3 1291 100 1 u0D25 233 cu th4 1589 103 1 u0D27 234 cu n1 1780 100 1 u0D28 235 601 n2 1853 100 1 u0D28 236 cal p1 1913 100 1 u0D28 237 cal p2 2113 100 1 u0D2B 238 602 p3 1990 56 1 u0D2C 239 c p4 1387 101 1 u0D2D 240 cal m1 1309 100 1 u0D2D 241 cu y1 1864 101 1 u0D2D 242 cal r3 1393 100 1 u0D31 243 o rh 1142 100 1 u0D32 244 cu r3 1393 100 1 u0D33 245 g lh 1426 100 1 u0D33 246 g zh 1260 84 1 u0D36 249 cal sh 1260 84 1 u0D36 249 cal sh 1260 84 1 u0D36 249 cal sh 1260 84 1 u0D37 250 cu s1 2301 100 1 u0D38 251 cal h1 2220 101 1 u0D38 251 cal h1 2220 101 1 u0D38 251 cal h1 2220 101 1 u0D39 250 cal c							
224 860 nj 2195 100 1 u0D1E 225 s t1 1058 100 1 u0D1F 226 o t2 1201 83 1 u0D20 227 w t3 2300 99 1 u0D21 228 ws t4 2362 100 1 u0D22 229 677 nh 2540 101 1 u0D23 230 w th1 1788 100 1 u0D23 231 w th2 1557 99 1 u0D25 232 a th3 1291 100 1 u0D26 233 w th4 1589 103 1 u0D26 233 w th4 1589 103 1 u0D26 234 rr n1 1780 100 1 u0D28 235 60 n2 1853 100 1 u0D28 236 a p1 1913 100 1 u0D2B 237 a p2 2113 100 1 u0D2B 238 a p3 1990 56 1 u0D2C 239 a p4 1387 101 1 u0D2E 240 a m1 1309 100 1 u0D2E 241 w y1 1864 101 1 u0D2F 242 a rh 1142 100 1 u0D30 243 a rh 1142 100 1 u0D31 244 e 13 1648 99 1 u0D32 245 g lh 1426 100 1 u0D35 246 g zh 249 as sh 1885 99 1 u0D36 249 as sh 1885 99 1 u0D36 249 as sh 1885 99 1 u0D36 250 rw s1 2301 100 1 u0D38 251 a h1 2220 101 1 u0D39 250 rw s1 2301 100 1 u0D38 251 a h1 2220 101 1 u0D39		l .	l .				
225 S							
226		S					
227	226	0	t2			1	u0D20
229 600	227	w	t3		99	1	u0D21
230	228	ഢ	t4	2362	100	1	u0D22
231	229	ണ	nh	2540	101	1	u0D23
232 G	230	ത	l .	1788		1	u0D24
233 w		(O					
234		ß					
235							
236			l .				
237							
238 60 p3			_				
239 6			_				
240 Ω m1 1309 100 1 u0D2E 241 ω y1 1864 101 1 u0D2F 242 φ r3 1393 100 1 u0D30 243 η rh 1142 100 1 u0D31 244 e) 13 1648 99 1 u0D32 245 Ω lh 1426 100 1 u0D33 246 Θ zh 1260 84 1 u0D34 247 Ω v1 1692 100 1 u0D35 248 ω z1 1728 100 1 u0D36 249 α sh 1885 99 1 u0D37 250 πυ s1 2301 100 1 u0D38 251 α h1 2220 101 1 u0D39			-				
241			-				
242 Ø r3 1393 100 1 u0D30 243 O rh 1142 100 1 u0D31 244 Θ 13 1648 99 1 u0D32 245 Θ lh 1426 100 1 u0D33 246 Θ zh 1260 84 1 u0D34 247 O v1 1692 100 1 u0D35 248 Ø z1 1728 100 1 u0D36 249 Δ sh 1885 99 1 u0D37 250 m s1 2301 100 1 u0D38 251 ω h1 2220 101 1 u0D39							
243 0 rh 1142 100 1 u0D31 244 e) l3 1648 99 1 u0D32 245 g lh 1426 100 1 u0D33 246 e zh 1260 84 1 u0D34 247 ω v1 1692 100 1 u0D35 248 ω z1 1728 100 1 u0D36 249 a2 sh 1885 99 1 u0D37 250 m s1 2301 100 1 u0D38 251 a0 h1 2220 101 1 u0D39			I -				
244 e l3 1648 99 1 u0D32 245 g lh 1426 100 1 u0D33 246 g zh 1260 84 1 u0D34 247 ω v1 1692 100 1 u0D35 248 ω z1 1728 100 1 u0D36 249 ω sh 1885 99 1 u0D37 250 m s1 2301 100 1 u0D38 251 ω h1 2220 101 1 u0D39							
245 § lh 1426 100 1 u0D33 246 9 zh 1260 84 1 u0D34 247 0 v1 1692 100 1 u0D35 248 0 z1 1728 100 1 u0D36 249 23 sh 1885 99 1 u0D37 250 \omega s1 2301 100 1 u0D38 251 \omega h1 2220 101 1 u0D39			l .				
246 g zh 1260 84 1 u0D34 247 ω v1 1692 100 1 u0D35 248 ω z1 1728 100 1 u0D36 249 ω sh 1885 99 1 u0D37 250 ω s1 2301 100 1 u0D38 251 ω h1 2220 101 1 u0D39	1		l .				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
248 ω z1 1728 100 1 u0D36 249 ω sh 1885 99 1 u0D37 250 ω s1 2301 100 1 u0D38 251 ω h1 2220 101 1 u0D39	1						
250 m s1 2301 100 1 u0D38 251 ω h1 2220 101 1 u0D39	248	w	z1	1728		1	u0D36
251 n h1 2220 101 1 u0D39	249	ഷ	sh	1885	99	1	u0D37
		സ	l .			1	
252 4 rh half 1496 97 1 110D3A							
-v- 11_100 01 1 00D01	252	4	rh_half	1496	97	1	u0D3A

- 1					~;	
Index	Glyph	Name	Adv. Width	lsb	Class	Chars
253	'	verticalbarvirama	0	-681	1	u0D3B
254	0	circularvirama	176	-187	1	u0D3C
255	\int	avagraha	1584	99	1	u0D3D
256	Э	a2	885	100	1	u0D3E
257	7	i1	521	-623	1	u0D3F
258	7	i2	441	-619	1	u0D40
259	2	u1	639	74	1	u0D41
260	3	u2	882	47	1	u0D42
261	Ĵ	r1	691	-326	1	u0D43
262	Ĵ	r2	635	-437	1	u0D44
263	6	e1	1367	101	1	u0D46
264	6	e2	896	98	1	u0D47
265	ൈ	ai1	2663	101	1	u0D48
266	റെ റെ	o1	2347	101	1	u0D4A
267		$\begin{array}{c} 01 \\ 02 \end{array}$	1643	99		u0D4A u0D4B
	60			l	1	
268	ഴെ	uni0D4C	2648	101	1	u0D4C
269		XX	176	-263	3	u0D4D
270	100	dotreph	0	-697	3	u0D4E
271	ക	mlpara	2106	100	1	u0D4F
272	۵	m1cil	1574	101	1	u0D54
273	Ø	y1cil	1840	100	1	u0D55
274	P	zheil	1388	100	1	u0D56
275	9	au2	1260	99	1	u0D57
276	w	arakani	2494	100	1	u0D58
277	൙	aramaa	2217	100	1	u0D59
278	ന്മ	NameMe.3418	1700	100	1	u0D5A
279	ര	orumaa	1693	100	1	u0D5B
280	സ	NameMe.3420	2319	100	1	u0D5C
281	w	muunnumaa	3079	100	1	u0D5D
282	G∿ 3000	naalumaa	2300	100	1	u0D5E
283	· O •	ml ii archaic	2442	100	1	u0D5F
284	88	ml rr	1859	102	1	u0D60
285	ൡ	ml ll	2162	100	1	u0D61
286	010	11	0	-1233	1	u0D61 $u0D62$
287	ഌ	$\begin{vmatrix} 11 \\ 12 \end{vmatrix}$	0	-1230	1	u0D62 $u0D63$
	m •		_	I	l	
288	0	ml_0	1168	100	1	u0D66
289	مے	ml_1	1736	100	1	u0D67
290	Q	ml_2	1789	100	1	u0D68
291	M	ml_3	2420	100	1	u0D69
292	φ	ml_4	1490	100	1	u0D6A
293	®	ml_5	1751	101	1	u0D6B
294	ന്ത	ml_6	2613	100	1	u0D6C
295	9	ml_7	1378	100	1	u0D6D
296	വ്വ	ml_8	1750	100	1	u0D6E
297	αþ	ml_9	2051	102	1	u0D6F
298	w	ml_10	2396	100	1	u0D70
299	Ø	ml_100	1526	100	1	u0D71
300	m-	ml_1000	2721	100	1	u0D72
301	6	kaal	2295	100	1	u0D73
302	φ	ara	2048	333	1	u0D74
303	ൺ	mukkaal	1659	100	1	u0D75
304	ملک	maakaani	2745	100	1	u0D76
305	ഷ	arakkaal	3221	100	1	u0D77
306	WZ 77.52	muntaani	3012	100	1	u0D77 u0D78
307		datemark	2161	85	1	u0D78 u0D79
	mo-			1		
308	ൺ	nhcil	2605	100	1	u0D7A
309	π	n1cil	2124	100	1	u0D7B
310	φ,	r3cil	1308	101	1	u0D7C
311	ൽ	l3cil	2043	100	1	u0D7D
312	W	lhcil	1827	70	1	u0D7E
313	al	k1cil	1752	100	1	u0D7F
314	1	ZWNJ	321	66	1	u200C
						

Index	Glyph	Name	Adv. Width	lsb	Class	Chars
315	Ť	ZWJ	321	-90	1	u200D
316	-	endash	783	107	1	u2013
317	_	emdash	1495	107	1	u2014
318	•	quoteleft	423	99	1	u2018
319	1	quoteright	422	100	1	u2019
320	1	quotesinglbase	422	100	1	u201A
321	u	quotereversed	713	99	1	u201C
322	n	quotedblright	669	100	1	u201D
323	n	quotedblbase	669	100	1	u201E
324	•	bullet	876	100	1	u2022
325	•••	ellipsis	1203	102	1	u2026
326	<	guilsinglleft	828	101	1	u2039
327	>	guilsinglright	836	101	1	u203A
328		fraction	1039	100	1	u2044
329	4	uni2074	738	100	1	u2074
330	€	Euro	2048	0	1	u20AC
331	₹	rupee	1231	102	1	u20B9
332	-	minus	783	107	1	u2212
333	/	uni2215	1039	100	1	u2215
334	∞	infinity	1561	101	1	u221E
335	*	approxequal	1531	100	1	u2248
336	#	notequal	866	100	1	u2260
337	0	uni25CC	1131	30	1	u25CC
338	l	r4	615	100	1	
339	7	y2	436	-377	1	
340	J	y2u1	726	-300	2	
341	J	y2u2	661	-312	2	
342	7	v2	588	-394	2	
343	<i>ක</i>	k1u1	1651	101	2	
344	&	k1u2	1851	100	2	
345	තු	k1r1	1642	99	2	
346	R	k1l1	1465	100	2	
347	ക്ക	k1k1	2240	99	2	
348	ക്ങ	k1k1u1	2315	100	2	
349	ക്കൂ	k1k1u2	2337	100	2	
350	ക്ത	k1k1r1	2207	100	2	
351	(20)	k1k1r3	2498	96	2	
352	ക്കൂ	k1k1r3u1	2498	97	2	
353	ക്കൂ	k1k1r3u2	2498	97	2	
354	A	k1nh	1885	18	2	
355	Re	k1nhu1	1838	-13	2	
356	AB .	k1nhu2	1603	-14	2	
357	ക്ത	k1th1	2837	100	2	
358	ക്തു	k1th1u1	2880	100	2	
359	ക്തൂ	k1th1u2	2914	100	2	
360	ക്തൃ	k1th1r1	2909	100	2	
361	&	k1r3	1924	93	2	
362	@	k1r3u1	1933	93	2	
363	കൃ	k1r3u2	1964	93	2	
364	&	k1l3	1627	122	2	
365	&	k1l3u1	1641	100	2	
366	R.	k1l3u2	1620	100	2	
367	దికి	k1sh	2564	100	2	
368	దుక్తి	k1shu1	2711	100	2	
369	ക്ഷൂ	k1shu2	2827	166	2	
370	ഖു	k2u1	1733	100	2	
371	ഖൃ	k2u2	1862	100	2	
372	ഖൃ	k2r1	1733	100	2	
373	S	k3u1	1763	100	2	
374	B	k3u2	1762	100	2	
375	ပွ	k3r1	1572	92	2	

	Index	Glyph	Name	Adv. Width	lsb	Class	Chars
	376	S	k3k3	1595	123	Class 2	Chais
	377	SS	k3k3u1	1610	138	$\frac{2}{2}$	
	378	\\ \&\\ \&\\ \\ \&\\ \\ \\ \\ \\ \\ \\ \	k3k3u2	1600	101	$\frac{1}{2}$	
	379	8	k3k3r1	1595	138	2	
	380	N3	k3th3	1687	101	2	
	381	ശു	k3th3u1	1687	101	2	
	382	ശൂ	k3th3u2	1687	101	2	
	383	ഗ്യ	k3th3r1	1640	100	2	
	384	ßN	k3th3th4	2767	100	2	
	$\frac{385}{386}$	ഷ	k3th3th4u1	2767	100	$\frac{2}{2}$	
	387	സ സ	k3th3th4u2 k3n1	$2767 \\ 2218$	100 100	$\frac{2}{2}$	
	388	m	k3n1u1	2389	100	$\frac{2}{2}$	
	389	ശ്യ	k3n1u2	2603	100	$\frac{2}{2}$	
	390	ω ₂	k3m1	1596	101	$\frac{1}{2}$	
	391	ഗ്മ	k3m1u1	1596	101	2	
	392	ശൂ	k3m1u2	1596	101	2	
	393	S	k3r3	1876	98	2	
	394	യ്യ	k3r3u1	1877	100	2	
	395	ഗ്ര	k3r3u2	1914	98	2	
	396	83	k3l3	1604	110	2	
	397	Rå	k3l3u1	1604	110	2	
	398	K.	k3l3u2	1604	110	2	
	399	ഘ	k4u1	2816	99	2	
	400	ഘൂ	k4u2	2692	99	2	
	$401 \\ 402$	ഘ	k4r1 k4r3	2692 2929	99	$\frac{2}{2}$	
	402	(60)	k4r3u1	2929 2929	100 100	$\frac{2}{2}$	
	404	@	k4r3u2	2929	100	$\frac{2}{2}$	
	405	ങ്	ngu1	1734	100	$\frac{2}{2}$	
	406	ങ്ട	ngu2	1734	100	$\frac{1}{2}$	
	407	න න	ngk1	1580	100	2	
	408	20 3	ngk1u1	1706	100	2	
	409	කු	ngk1u2	1736	100	2	
	410	8	ngk1r1	1523	100	2	
	411	ങ	ngng	2534	101	2	
	412	ങ്ങു	ngngu1	2528	101	$\frac{2}{2}$	
	413 414	ങ്ങ	ngngu2 ch1u1	$2549 \\ 1754$	101 102	$\frac{2}{2}$	
	414	<u>र्</u> च इ	ch1u2	1754 1754	102	$\frac{2}{2}$	
	416	മ ച	ch1ch1	1744	100	$\frac{2}{2}$	
	417	क्री	ch1ch1u1	1800	100	$\frac{2}{2}$	
	418	മു	ch1ch1u2	1872	100	2	
	419	<u> </u>	ch1ch2	1857	109	2	
	420	20	ch2u1	2751	102	2	
	421	മ്തു	ch2u2	2751	102	2	
	422	య్	ch2r1	2774	102	2	
	423	ജ്	ch3u1	1912	100	2	
	424	ജ്	ch3u2	1942	100	2	
	425	ജ	ch3r1	1944	100	2	
	$426 \\ 427$	ജ	ch3ch3 ch3ch3u1	$3324 \\ 3519$	100 100	$\frac{2}{2}$	
	427	മാ	ch3ch3u2	3519	100	$\frac{2}{2}$	
	428	ക്ക	ch3ch3r1	3484	101	$\frac{2}{2}$	
	430	ഇണ്ട ഇണ	ch3nj	3676	101	$\frac{2}{2}$	
	431	(Mg)	ch3r3	2314	100	$\frac{2}{2}$	
	432	&	ch3r3u1	2314	100	$\frac{2}{2}$	
	433	S	ch3r3u2	2314	100	2	
	434	<i>യു</i>	ch4u1	3078	100	2	
	435	<i>അ</i>	ch4u2	3078	100	$\frac{2}{2}$	
	436	ഞ്	nju1	2195	108	2	
_							

T1	C11-	N	A J., 337: J.L.	11.	C1	C1
Index 437	Glyph	Name nju2	Adv. Width 2360	lsb 114	Class 2	Chars
438	ഞൂ ഞ്ച	njch1	2663	100	$\frac{2}{2}$	
439	ഞ്ചു	njch1u1	2727	100	2	
440	ഞ്ചു	njch1u2	2802	100	2	
441	ഞ്ച	njch1r1	2663	100	2	
442	ഞ്ജ	njch3	2686	100	2	
443	ഞ്ജ	njch3u1	3010	100	2	
444	ഞ്ജ	njch3u2	3109	100	2	
445	ഞ്ഞ	njnj	3361	99	2	
446	ഞ്ഞു	njnju1	3477	100	2	
447	ഞ്ഞൂ	njnju2	3647	100	2	
448	કૃ	t1u1	1112	100	2	
449	\$	t1u2	1223	100	2 2	
450 451	S	$egin{array}{c} ext{t1r1} \ ext{t1t1} \end{array}$	1099 1140	100 100	$\frac{2}{2}$	
451	8	t1t1u1	1235	100	$\frac{2}{2}$	
453	S	t1t1u2	1191	100	$\frac{2}{2}$	
454	(M)	t1r3	1450	100	$\frac{2}{2}$	
454	S	t1r3u1	1450	100	$\frac{2}{2}$	
456	(S _c	t1r3u2	1450	100	$\frac{2}{2}$	
457	<i>(</i> %	t2u1	1201	83	$\frac{2}{2}$	
458	G S	t2u2	1201	83	2	
459	w	t3u1	2299	99	2	
460	ഷൂ	t3u2	2375	99	2	
461	ഡ്	t3r1	2301	99	2	
462	RH3	t3t3	2292	99	2	
463	RH3	t3t3u1	2366	99	2	
464	HY.	t3t3u2	2479	99	2	
465	RN.	t3t4	2355	100	2	
466	RN RN	t3t4u1	2355	100	2	
467	RN RN	t3t4u2	2355	100	2	
468	(U)	t3r3	2582	101	2	
469	യു	t3r3u1	2585	101	2	
470	ധൂ	t3r3u2	2632	101	2	
471	ഢ	t4u1	2362	100	2	
472	ഢൂ	t4u2	2362	100	$\frac{2}{2}$	
473 474	ശ	$\begin{array}{c} \text{t4r1} \\ \text{t4r3} \end{array}$	2362 2623	100 100	$\frac{2}{2}$	
475	യ	t4r3u1	2572	53	$\frac{2}{2}$	
476	യ്ക	t4r3u2	2627	53	2	
477	ണ	nhu1	2707	100	2	
478	ണ്ട	nhu2	2947	85	2	
479	ണ്ട	nht1	2778	100	2	
480	ണ്ടു	nht1u1	2897	100	2	
481	ണ്ടു	nht1u2	2920	100	2	
482	ജ	nht2	2390	101	2	
483	ണ്ഡ	nht3	3712	98	2	
484	ണ്യ	nht3u1	3714	100	2	
485 486	ണ്യ	nht3u2 nhnh	3852 2268	100 101	2 2	
480	#R	nhnhu1	2268	101	$\frac{2}{2}$	
488	## ##3	nhnhu2	2268	60	$\frac{2}{2}$	
489	ണൂ ബമ	nhm1	2650	100	2	
490	ണ്ടു	nhm1u1	2672	57	2	
491	ണ്ടൂ	nhm1u2	2715	57	2	
492	ത്	th1u1	1800	100	2	
493	ത്ര	th1u2	1799	100	2	
494	o	th1r1	1766	100	2	
495	ത്ത	th1th1	2876	100	2	
496 497	ത്തു	th1th1u1 th1th1u2	3067 3081	100 100	2 2	
491	ത്തൂ	0111 0111 UZ	3081	100		

Index	Glyph	Name	Adv. Width	lsb	Class	Chars
498		th1th1r1	2818	100	Class	Chais
499	ത്ത	th1th1r3	3077	99	$\frac{2}{2}$	
500	ത്തു	th1th1r3u1	3166	99	$\frac{2}{2}$	
501	ത്ത്ര	th1th1r3u2	3219	99	2	
502	ത്ഥ	th1th2	2836	100	2	
503	ത്ഥു	th1th2u1	2864	57	$\frac{2}{2}$	
504	ത്വ	th1th2u2	2864	57	2	
505	ത്വ	th1th2r1	2864	57	2	
506	ത്ന	th1n1	2380	99	2	
507	ത്ഭ	th1p4	2714	100	2	
508	ത്ള	th1p4u1	2858	100	2	
509	ത്രൂ	th1p4u2	2996	100	2	
510	ത്മ	th1m1	2502	100	2	
511	ത്മു	th1m1u1	2502	100	2	
512	ത്മൂ	th1m1u2	2502	100	2	
513	ത്മ	th1m1r1	2502	100	2	
514	@	th1r3	2157	100	2	
515	ത്ര	th1r3u1	2201	100	2	
516	ത്ര	th1r3u2	2210	100	2	
517	Ø	th1l3	1788	100	2	
518	Q	th1l3u1	1788	100	2	
519	R	th1l3u2	1788	100	2	
520	ത്സ	th1s1	3056	99	2	
521	ത്സു	th1s1u1	3056	99	2	
522	ത്യ	th1s1u2	3056	99	2	
523	ത്യ	th1s1r1	3056	99	2	
524	Q	th2u1	1557	99	2	
525	(Q)	th2u2	1557	99	2 2	
526 527	ૡૢ	th3u1 th3u2	1291 1291	100	$\frac{2}{2}$	
528	ુ ઉ	th3r1	1320	100 101	$\frac{2}{2}$	
529	S	th3th3	1219	83	$\frac{2}{2}$	
530	B	th3th3u1	1219	83	$\frac{2}{2}$	
531	લુ	th3th3u2	1219	83	2	
532	ഭൂ ദ്ധ	th3th4	2266	100	2	
533	ദ്ധ	th3th4u1	2266	100	$\frac{2}{2}$	
534	ദൂ	th3th4u2	2266	100	2	
535	G	th3r3	1630	99	2	
536	(G	th3r3u1	1711	99	2	
537	G G	th3r3u2	1637	99	2	
538	w	th4u1	1589	103	2	
539	w w	th4u2	1589	103	2	
540	က္ခ	th4r1	1692	100	2	
541	w	th4r3	2001	100	2	
542	w w	th4r3u1	2001	100	2	
543	w w	th4r3u2	2001	100	2	
544	ന്	n1u1	1847	96	2	
545	ന്ത്യ	n1u2	2037	85	2	
546	က္ခ	n1r1	1721	100	2	
547	ന്ത	n1th1	2380	100	2	
548	ന്തു	n1th1u1	2392	100	2	
549	ന്തു	n1th1u2	2498	100	2	
550	ന്ത്ര	n1th1r1	2103	100	2	
551	ന്ത്ര	n1th1r3	2455	102	2	
552	ന്ത്ര	n1th1r3u1	2459	102	2	
553	ന്ത്ര	n1th1r3u2	2459	102	2	
554	222	n1th2	2747	100	2	
555 556	സ്മ	n1th2u1	2638 2998	104 100	$\frac{2}{2}$	
556 557	സ്ക	n1th2u2 n1th2r1	2998 2747	100	$\frac{2}{2}$	
558	ന്മ	n1th3	1841	100	$\frac{2}{2}$	
000	(13	111 0110	1041	100	4	

					0.5	
Index	Glyph	Name	Adv. Width	lsb	Class	Chars
559	ന്ദ്	n1th3u1	1922	100	2	
560	ന്ദ്യ	n1th3u2	1977	100	2	
561	ന്ദ	n1th3r1	1826	100	2	
562	ന്ദ	n1th3r3	2104	100	2	
563	ന്ദ്ര	n1th3r3u1	2188	100	2	
564	ന്ദ്ര	n1th3r3u2	2212	100	2	
565	ന്ധ	n1th4	3029	100	2	
566	സു	n1th4u1	3004	100	2	
567	സൂ	n1th4u2	3004	100	2	
568	m	n1th4r3	3250	100	2	
569	സ്ത്ര	n1th4r3u1	3250	100	2	
570	സ്ത്ര	n1th4r3u2	3250	100	2	
571	m	n1n1	2612	100	2	
572 573	m	n1n1u1 n1n1u2	$2697 \\ 2847$	100 99	$\frac{2}{2}$	
574	ന്നു	n1n1u2 n1n1r1	2847 2273	100	$\frac{2}{2}$	
575	m m	n1n1r3	2924	99	$\frac{2}{2}$	
576	(m)	n1n1r3u1	3000	100	$\frac{2}{2}$	
577	(M)	n1n113u1 $n1n1r3u2$	3008	100	$\frac{2}{2}$	
578	ന്തൂ ന്മ	n1m13u2	1735	100	$\frac{2}{2}$	
579	ന്മ	n1m1u1	1889	100	$\frac{2}{2}$	
580	ന്മു	n1m1u1	1820	100	$\frac{2}{2}$	
581	ැනී (කී	n1m1r1	1735	100	$\frac{2}{2}$	
582	ത്ര	n1r3	2007	100	2	
583	<u>ගූ</u>	n1r3u1	2101	100	2	
584	ത്ര	n1r3u2	2291	100	2	
585	ි. ල්	n1rh	2108	100	2	
586	ર્ભૂ	n1rhu1	2108	100	2	
587	ന്റ	n1rhu2	2267	100	2	
588	ત્યુ	plu1	1994	100	2	
589	ريخ حلج	plul plu2	2062	112	$\frac{2}{2}$	
590	ಚ	p1r1	1913	100	$\frac{2}{2}$	
591	(실)	p1th1	1879	100	$\frac{2}{2}$	
592		p1th1u1	1941	100	2	
593	원	p1th1u2	1941	100	2	
594		plthlrl	1941	100	2	
595	정	_	1957	112	$\frac{2}{2}$	
596	었	p1n1 p1n1u1	2015	100	$\frac{2}{2}$	
597	젊	plnlul plnlu2	$\frac{2013}{2038}$	112	$\frac{2}{2}$	
598	젊	p1n1u2 p1p1	2038 1939	100	$\frac{2}{2}$	
599	~	plp1u1	2014	100	$\frac{2}{2}$	
600	ಜ್ಞ	p1p1u1 p1p1u2	1913	100	$\frac{2}{2}$	
601	ಭ್ ಬೃ	plplrl	1939	100	$\frac{2}{2}$	
602	ਹ ਮ	p1p111 p1p2	1962	126	$\frac{2}{2}$	
603	(년 (년	p1p2 p1r3	$\frac{1302}{2245}$	100	$\frac{2}{2}$	
604	ଧ	p1r3u1	2174	100	$\frac{2}{2}$	
605	J J	p1r3u2	2174	100	2	
606	8년 8년	p1l3	1926	112	2	
607	જ સ્ત્રુ	p1l3u1	1926	112	$\frac{1}{2}$	
608		p1l3u2	1926	112	2	
609	ಳ್ಳ ಇ	p2u1	2113	100	2	
610	പു പൂ	p2u1 p2u2	2113	100	$\frac{2}{2}$	
611	പ്പ	p2u2 p2r3	$\frac{2113}{2367}$	100	$\frac{2}{2}$	
612	<u>ම</u>	p2r3u1	2367	100	$\frac{2}{2}$	
613	<u>නූ</u>	p2r3u2	2367	100	$\frac{2}{2}$	
614		p2l3	2113	100	2	
615	%	p2l3u1	2113	100	$\frac{2}{2}$	
616	%	p2l3u2	2116	100	$\frac{2}{2}$	
	R R	_			$\frac{2}{2}$	
617 618	ബ്ല	p3u1 p3u2	2176 1990	100 56	$\frac{2}{2}$	
010	ബ്ല	pouz	1990	90	4	

	T 1	G1 1	37	A 1 TTT 1.1	1 1 1	01	- CI
	Index	Glyph	Name	Adv. Width	lsb	Class	Chars
	619	ബ്ബ	p3r1	1990	56	2	
	620	ള്ള	p3p3	2045	100	2	
	621	ള്യ	p3p3u1	2045	100	$\begin{array}{c c} 2 \\ 2 \end{array}$	
	622	ബ്ബ	p3p3u2	2045	100		
	623	ബ	p3r3	2376	100	2	
	624	ബ്ര	p3r3u1	2426	100	2	
	625	ബ്ല	p3r3u2	2511	100	2	
	626	M	p3l3	1990	56	2	
	627	ૹૣ	p3l3u1	1990	56	2	
	628	ജൂ	p3l3u2	1990	56	2	
	629	B	p4u1	1249	100	2	
	630	B	p4u2	1506	100	2	
	631	S	p4r1	1200	100	2	
	632	ß	p4r3	1350	100	2	
	633	Q	p4r3u1	1350	100	$\frac{2}{2}$	
	$634 \\ 635$	હુ લ	p4r3u2 m1u1	1350 1309	100 87	$\frac{2}{2}$	
	636	Q ^o C	m1u2	1309	87	$\frac{2}{2}$	
	637	Q	m1r1	1309	100	$\frac{2}{2}$	
	638	ପ୍ର ଅ	m1p1	2009	100	$\frac{2}{2}$	
	639	ന്മു	m1p1u1	2047	100	$\frac{2}{2}$	
	640	വൂ	m1p1u2	2111	100	2	
	641	വ്വ	m1p1r1	1956	100	2	
	642	(M)	m1p1r3	2248	100	2	
	643	(M	m1p1r3u1	2248	100	2	
	644) (Mg	m1p1r3u2	2248	100	2	
	645	<u> </u>	m1m1	2248	100	2	
	646	∞	m1m1u1	2321	100	2	
	647	$\alpha_{\mathbf{g}}$	m1m1u2	2341	100	2	
	648	(2)	m1r3	1620	100	2	
	649	Q	m1r3u1	1620	100	2	
	650	Q	m1r3u2	1620	100	2	
	651	8	m1l3	1509	100	2	
	652	ø.	y1u1	1864	101	2	
	653	<i>ത്</i>	y1u2	1864	101	2	
	654	88	y1k1	1835	102 12	$\frac{2}{2}$	
	655 656	88	y1k1u1	1773 1980	100	$\frac{2}{2}$	
	657	8	y1k1u2 y1k1r1	1792	100	$\frac{2}{2}$	
		88	*				
	$658 \\ 659$	8 8	y1k1k1 y1k1k1u1	1952 1968	102 100	$\begin{array}{c c} 2 \\ 2 \end{array}$	
	660	88 88	y1k1k1u1 y1k1k1u2	1871	100	$\frac{2}{2}$	
	661	88	y1ch1	1864	103	$\frac{2}{2}$	
	662	83	y1ch1u1	1931	101	$\frac{2}{2}$	
	663	8 8	y1ch1u2	2099	101	$\frac{2}{2}$	
		8	*				
	664 665	88	y1th1	1897	102	$\begin{array}{c c} 2 \\ 2 \end{array}$	
	665	8	y1th1u1	1903	121		
	666	8	y1th1u2	1843	102	2	
	667	8	y1th1r1	1864	101	2	
	668	8	ylthlthl	2353	100	2	
	669	8	y1th1th1u1	2664	99	2	
	670	@	y1th1th1u2	2230	-33	2	
	671	88	y1n1	1864	101	2	
	672	RN RN	yln1u1	1948	101	2	
	673	R	y1n1u2	2102	101	2	
	674	කි	y1p1	1915	101	2	
	675	කි්	y1p1u1	1995	101	2	
	676	කී	y1p1u2	1956	101	2	
	677	8	y1m1	1950	103	2	
	678	වුත්	y1m1u1	2111	103	2	
_							

Index	Glyph	Name	Adv. Width	lsb	Class	Chars
679	ag and a second	y1m1u2	2262	103	2	0.110.10
680	ු නි	y1m1r1	1950	103	2	
681	<u>a</u>	y1y1	1643	100	2	
682	<u> </u>	y1y1u1	1673	100	2	
683	Q	y1y1u2	1690	100	2	
684	ത	r3u1	1792	100	2	
685	ര	r3u2	2121	100	2	
686	ಲ್ಟ	l3u1	1648	99	2	
687 688	ಲ್ಟ	l3u2 l3p1	1648 1679	99 78	$\frac{2}{2}$	
689	잂	13p1u1	1679	78	$\frac{2}{2}$	
690	<u>ಟ್ಟ</u>	l3p1u2	1679	78	$\frac{2}{2}$	
691	್ಲ ಟ	1313	1655	99	2	
692	್ ಟ್ಟ	l3l3u1	1655	99	2	
693	થુ	l3l3u2	1655	99	2	
694	വു	v1u1	1692	100	2	
695	വൃ	v1u2	1692	100	2	
696	വൃ	v1r1	1710	100	2	
697	Q	v1r3	1966	100	2	
698 699	ପ୍ତ	v1r3u1 v1r3u2	1966 1966	100 100	$\frac{2}{2}$	
700	ପ୍ତ	v113u2 v1l3	1715	100	$\frac{2}{2}$	
701	S	v113 v113u1	1822	100	$\frac{2}{2}$	
702	ට ට	v1l3u2	1790	100	2	
703	ପ୍ଲ ପ୍ଲ	v1v1	1618	100	2	
704	(일 절	v1v1 v1v1u1	1985	100	$\frac{2}{2}$	
705	्र पु	v1v1u2	2166	100	2	
706	<u>න</u>	z1u1	2137	100	2	
707	ر رو	z1u2	2232	100	2	
708	\@	z1r1	2041	100	2	
709	জ্যে	z1ch1	2343	113	2	
710	জে	z1ch1u1	2343	113	2	
711 712	জী	z1ch1u2 z1n1	2343 1756	113 100	$\frac{2}{2}$	
713	& &	z1n1 z1n1u1	1756	100	$\frac{2}{2}$	
714	(%) (%)	z1n1u2	1827	100	$\frac{2}{2}$	
715	6	z1r3	2261	104	2	
716	ശ്ര	z1r3u1	2261	103	2	
717	ശ്ര	z1r3u2	2261	104	2	
718	88	z1l3	1735	94	2	
719	Kg.	z1l3u1	1796	101	2	
720	S.	z1l3u2	1780	127	2	
721 722	88	z1z1 z1z1u1	1864 1864	100 108	$\frac{2}{2}$	
723	<u>&</u>	z1z1u1 z1z1u2	1907	108	$\frac{2}{2}$	
723	<u>&</u>	z1z1u2 z1z1r1	1864	107	$\frac{2}{2}$	
724	8	shu1	1885	99	$\frac{2}{2}$	
726	చిక్ర చిక్క	shu2	1885	99	$\frac{2}{2}$	
727	्र _{स्क} स्तु	shr1	1885	99	$\frac{2}{2}$	
728	28 28	shk1	1894	99	2	
729	윮	shk1u1	1894	105	2	
730	꾫	shk1u2	1894	105	2	
731	23 23 28	shk1r1	1894	105	2	
732	25	shk1k1	1938	99	2	
733	23	shk1k1u1	2076	170	$\frac{2}{2}$	
734	28 28 0	shk1k1u2	2007	170	$\frac{2}{2}$	
735 736	289 289	shk1k1r1 sht1	2076 1929	170 100	$\frac{2}{2}$	
737	2 60 260	sht1u1	1929	100	$\frac{2}{2}$	
191	\$	DIIVIUI	1323	100		

Index	Glyph	Name	Adv. Width	lsb	Class	Chars
738		sht1u2	1929	100	2	
739	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	sht1r3	2076	170	2	
740	સ્કુ	sht2	1850	99	2	
741	સ્ટ્ર	sht2u1	1850	99	2	
742	섕	sht2u2	1850	99	2	
743	ണ്	shnh	2126	4	2	
744	88°	shnhu1	2306	112	2	
745 746	883 0	shnhu2	2569 1882	72 99	$\begin{array}{c c} 2 \\ 2 \end{array}$	
740	<u>2</u>	shp1 shp1u1	1882	99	$\frac{2}{2}$	
748	24 24	shp1u2	2005	99	$\frac{2}{2}$	
749		shp1r1	1882	99	2	
750	ഷ്ട്ട സു	slu1	2301	100	2	
751	സ്ത	s1u2	2374	100	2	
752	സ്ത്	s1r1	2301	100	2	
753	സ്ത	s1th1	2289	100	2	
754	B	s1th1u1	2289	100	2	
755	₩	s1th1u2	2289	100	2	
756	സ്ത	s1th1r1	2328	100	2	
757	സ്ത	s1th1r3	2478	100	2	
758	സ്ത്ര	s1th1r3u1	2360	100	2	
759	സ്ത്ര	s1th1r3u2	2360	100	2	
760	വാ	s1th2	3249	100	$\frac{2}{2}$	
761 762	ഡർ സർ	s1th2u1 s1th2u2	3488 3398	100 130	$\frac{2}{2}$	
763	സ്മ	s1th2r1	3249	100	$\frac{2}{2}$	
764	m m	s1n1	2285	100	2	
765	W	s1n1u1	2285	100	2	
766	Wg.	s1n1u2	2459	100	2	
767	യ	s1r3	2580	100	2	
768	യ്യ	s1r3u1	2580	100	2	
769	സ്ത്ര	s1r3u2	2580	100	2	
770 771	സ്സ	s1l3 s1l3u1	2300 2432	100 100	$\begin{array}{c c} 2 \\ 2 \end{array}$	
772	സ്സ	s113u2	2300	100	$\frac{2}{2}$	
773	RH RH	s1s1	2249	100	$\frac{2}{2}$	
774	M M	s1s1u1	2249	100	$\frac{2}{2}$	
775	Mg.	s1s1u2	2249	100	2	
776	W W	s1rhrh	2225	130	2	
777	ф ф	s1rhrhu1	2225	130	2	
778	സ്ത്	s1rhrhu2	2225	130	2	
779	എ	h1u1	2204	101	2	
780	ಸ್ತ	h1u2	2256	101	2	
781	್ತ	h1r1	2244	101	2	
782	ഹ	h1n1	2656	100	2	
783 784	ഹര	h1n1u1 h1n1u2	3076 3350	100 100	$\frac{2}{2}$	
785	ഹ്ത ഫ	h1m1u2 h1m1	2271	100	$\frac{2}{2}$	
786	ഫ്	h1m1u1	2271	101	$\frac{2}{2}$	
787	ഏ	h1m1u2	2271	101	2	
788	ഏ	h1m1r1	2271	101	2	
789	ಅ	h1r3	2522	98	2	
790	(L)	h1r3u1	2522	97	$\frac{2}{2}$	
791 792	(L) - C	h1r3u2 h1l3	2522 2220	97 101	$\frac{2}{2}$	
793	સ્ટ્રી હ	lhu1	1426	101	$\frac{2}{2}$	
794	ଷ୍ଟ ଷ୍ଟ	lhu2	1426	100	$\frac{2}{2}$	
795	्र <u>ब</u> ्ह	lhlh	2526	100	2	
796	<u>99</u>	lhlhu1	2526	100	$\frac{2}{2}$	
	4	-	2020		_	

_						011	
	dex	Glyph	Name	Adv. Width	lsb	Class	Chars
	797	<u> </u>	lhlhu2	2526	96	2	
	798	98	zhu1	1282	84	2	
	799	ලි	zhu2	1282	84	2	
	800	ල කි	zhk1k1	1585	0	2	
	801	ås.	zhk1k1u1	1587	32	2	
	802	9	zhk1k1u2	1632	52	2	
	803	ଧ୍ୟ	zhch1	1398	55	2	
	804	9	zhch1u1	1380	55	2	
	805	် <u>မွန်</u>	zhch1u2	1394	55	2	
	806	දු වි	zhv1	1424	-1	2	
	807	ල ඉද	zhv1u1	1424	-1	2	
	808		zhv1u2	1424	-1	2	
	809	ඉල් ර	rhu1	1142	100	2	
	810	ß	rhu2	1196	100	$\frac{2}{2}$	
	811	G	rhrh	1308	100	$\frac{2}{2}$	
	812	8	rhrhu1	1308	100	$\frac{2}{2}$	
	813	R	rhrhu2	1308	100	$\frac{2}{2}$	
		දී					
	814	ഖ	k2r3	2042	100	2	
	815	ല്ല	k2r3u1	2042	100	2	
	816	ലൂ	k2r3u2	2168	100	2	
	817	Q	th2r1	1557	99	2	
	818	©	th2r3	1980	100	2	
	819	S	th3l3 l4	1287	78	2	
	820	~		0	-1465	$\frac{2}{2}$	
	821 822	٥	u_sign_drop	2048	-840 -767	$\frac{2}{2}$	
	823	9	uu_sign_drop va_sign	2048 2048	439	$\frac{2}{2}$	
	824	Q Q	th2_half	1339	101	$\frac{2}{2}$	
	825		vocalic_r_sign_drop	957	100	$\frac{2}{2}$	
	826	٥	u_drop_sign_big	612	-1	$\frac{2}{2}$	
	827	ക്	k1xx	1605	100	$\frac{2}{2}$	
	828	ച് ഖ്	k2xx	1733	100	$\frac{2}{2}$	
	829	ဟိ	k3xx	1595	101	$\frac{2}{2}$	
	830	ഘ്	k4xx	2692	99	2	
	831	ങ്	ngxx	1734	100	2	
	832	ച്	ch1xx	1754	102	2	
	833	ഛ്	ch2xx	2361	102	2	
	834	ജ്	ch3xx	1841	100	2	
	835	<i>യ</i>	ch4xx	3078	100	2	
	836	ഞ്	njxx	2195	100	2	
	837	s	t1xx	1058	100	2	
	838	ŏ	t2xx	1201	83	2	
	839	ഡ്	t3xx	2300	99	2	
	840	ഢ്	t4xx	2362	100	2	
	841	ണ്	nhxx	2540	101	2	
	842	ത്	th1xx	1788	100	2	
	843	ഗ്	th2xx	1557	99	2	
	844	ദ്	th3xx	1291	100	2	
	845	ω <u>.</u>	th4xx	1589	103	2	
	846	ന്	n1xx	1780	100	2	
	847	പ്	p1xx	1913	100	2	
	848	ഹ്	p2xx	2113	100	2	
	849	ബ്	p3xx	1990	56	2	
	850	હૅ	p4xx	1387	101	2	
	851	Qĭ mĭ	m1xx	1309	100	2 2	
	852 853	<u>ම</u> ල්	y1xx	1864 1393	101	$\frac{2}{2}$	
	854	<i>ဖ</i> ဂိ	r3xx	1393	100 100	$\frac{2}{2}$	
	854 855	೧ ಲ	rhxx 13xx	1648	99	$\frac{2}{2}$	
	856	હું	lhxx	1426	100	$\frac{2}{2}$	
	857	න	zhxx	1260	84	$\frac{2}{2}$	
	001	3	LIIM	1200	04	4	

Index	Glyph	Name	Adv. Width	lsb	Class	Chars
858	വ്	v1xx	1692	100	2	
859	ശ്	z1xx	1728	100	2	
860	ഷ്	shxx	1885	99	2	
861	സ്	s1xx	2301	100	2	
862	ഹ്	h1xx	2220	101	2	
863	叅	k1s1	1679	50	2	
864	ી	ch1ch1.alt1	1818	102	2	
865	욎	ch1ch1u1.alt1	1818	102	2	
866	ચુ	ch1ch1u2.alt1	1818	102	2	
867	ഇ്	lhlh.alt1	2424	100	2	
868	ഞ്ജ	lhlhu1.alt1	2425	100	2	
869	ണ്ട	lhlhu2.alt1	2500	100	2	

6 OpenType Features

Feature	Description	Scripts	Lookup Tables
aalt	All Alternates	DFLT, mlm2, mlym	0
akhn	N/A	mlm2, mlym	2, 3, 4
blwf	N/A	mlym	10
blwf	N/A	mlm2	11
blws	N/A	mlm2, mlym	17, 19
half	N/A	mlym	12
haln	N/A	mlym	21
pref	N/A	mlm2	1
pres	N/A	mlym	15
pres	N/A	mlm2	16
pstf	N/A	mlym	13
pstf	N/A	mlm2	14
psts	N/A	mlm2, mlym	20
salt	Stylistic Alternates	DFLT, mlm2, mlym	22

7 GSUB Substitutions

Table	Feature	Substitution
0	aalt	യ(ch1ch1)→യ(ch1ch1), ച്ച(ch1ch1.alt1)
0	aalt	ଅଧ୍ $(ch1ch1u1)$ \rightarrow ଅ୍ $(ch1ch1u1)$, ଥୁ $(ch1ch1u1.alt1)$
0	aalt	യൂ $(ch1ch1u2)\rightarrow$ യൂ $(ch1ch1u2)$, ച്ച് $(ch1ch1u2.alt1)$
0	aalt	ള്ള(lhlh)→ള്ള(lhlh), ഇ(lhlh.alt1)
0	aalt	ള്ള(lhlhu1)→ള്ള(lhlhu1), ഈ(lhlhu1.alt1)
0	aalt	ള്ള(lhlhu2)→ള്ള(lhlhu2), ഈ(lhlhu2.alt1)
1	pref	$(xx) \circ (r3) \rightarrow (r4)$
2	akhn	$\Delta(k1)$ (xx) $(ZWJ) \rightarrow \Delta(k1cil)$
2	akhn	$e(13)$ " (xx) ř (ZWJ) \rightarrow ಹು $(13cil)$
2	akhn	$g(lh)$ (xx) $f(ZWJ) \rightarrow co(lhcil)$
2	akhn	$m(n1)$ (xx) $f(ZWJ) \rightarrow m(n1cil)$
2	akhn	m(nh) "(xx) ř(ZWJ)→mo(nhcil)
2	akhn	$\sigma(r3)$ (xx) $f(ZWJ) \rightarrow \sigma(r3cil)$
3	akhn	ച(ch1) "(xx) ച(ch1)→യ(ch1ch1)
3	akhn	ച $(\operatorname{ch}1)$ " (xx) ചര $(\operatorname{ch}2) \rightarrow \frac{1}{20}(\operatorname{ch}1\operatorname{ch}2)$
3	akhn	$\mathfrak{g}(ch3)$ " (xx) $\mathfrak{g}(ch3) \rightarrow \mathfrak{gg}(ch3ch3)$
3	akhn	$\mathfrak{sg}(\cosh 3)$ " (xx) $\mathfrak{so}(nj) \rightarrow \mathfrak{sgrow}(\cosh 3nj)$
3	akhn	$\square(h1)$ (xx) $\square(m1) \rightarrow \square(h1m1)$
3	akhn	anc(h1) (xx) $anc(h1n1)$
3	akhn	$box{a}(k1)_{a}(l1) \rightarrow box{a}(k1l1)$
3	akhn	$\Delta(k1)$ (xx) $\Delta(k1) \rightarrow \Delta(k1k1)$
3	akhn	\triangle (k1) "(xx) \bowtie (k1nh)
3	akhn	$\Delta(k1)$ '(xx) $\Delta(sh) \rightarrow \Delta L(k1sh)$
3	akhn	$\Delta(k1)$ (xx) $\sigma(th1) \rightarrow \Delta \sigma(k1th1)$

```
Table
             Feature
                              Substitution
  3
                              o(k3) (xx) o(k3) \rightarrow o(k3k3)
               akhn
  3
               akhn
                              \wp(k3) (xx) \wp(m1) \rightarrow \wp(k3m1)
  3
               akhn
                              \wp(k3) (xx) \wp(n1) \rightarrow \wp(k3n1)
   3
               akhn
                              \wp(k3) (xx) g(th3) \rightarrow \wp(k3th3)
  3
               akhn
                              \omega(k3) "(xx) \omega(th4) \rightarrow \omega(k3th3th4)
   3
               akhn
                              e(13) '(xx) e(13) →e(1313)
  3
               akhn
                              \mathfrak{g}(lh) (xx) \mathfrak{g}(lh) \rightarrow \mathfrak{g}(lhlh)
   3
               akhn
                              \square(m1) \square(xx) \square(m1)\rightarrow\square(m1m1)
   3
               akhn
                              \square(m1) \square(xx) \square(p1)\rightarrow\square(m1p1)
   3
               akhn
                              \mathfrak{m}(n1) (xx) \mathfrak{Q}(m1) \rightarrow \mathfrak{m}(n1m1)
   3
               akhn
                              m(n1) (xx) m(n1) \rightarrow m(n1n1)
  3
               akhn
                              \mathfrak{m}(n1) (xx) \mathfrak{o}(rh) \rightarrow \mathfrak{m}(n1rh)
   3
               akhn
                              m(n1) (xx) m(th1) \rightarrow m(n1th1)
  3
               akhn
                              m(n1) (xx) \omega(th2) \rightarrow m\omega(n1th2)
   3
               akhn
                              \mathfrak{m}(n1) (xx) \mathfrak{g}(th3) \rightarrow \mathfrak{m}(n1th3)
                              m(n1) (xx) \omega(th4) \rightarrow m\omega(n1th4)
  3
               akhn
   3
                              \mathfrak{ss}(ng) '(xx) ക(k1) \rightarrow \mathfrak{ss}(ngk1)
               akhn
  3
               akhn
                              \mathfrak{M}(ng) (xx) \mathfrak{M}(ng) \rightarrow \mathfrak{M}(ngng)
   3
               akhn
                              \mathfrak{m}(\mathrm{nh}) '(xx) \mathfrak{a}(\mathrm{m1}) \rightarrow \mathfrak{m}(\mathrm{nhm1})
  3
               akhn
                              \mathfrak{m}(nh) '(xx) \mathfrak{m}(nh) \rightarrow \mathfrak{m}(nhnh)
   3
               akhn
                              \mathfrak{m}(nh) '(xx) \mathfrak{s}(t1) \rightarrow \mathfrak{m}\mathfrak{s}(nht1)
   3
               akhn
                              \mathfrak{m}(\mathrm{nh}) '(xx) \mathfrak{o}(\mathrm{t2}) \rightarrow \mathfrak{m}(\mathrm{nht2})
   3
               akhn
                              \mathfrak{m}(\mathrm{nh}) '(xx) \mathfrak{w}(\mathrm{t3}) \rightarrow \mathfrak{m}\mathfrak{w}(\mathrm{nht3})
   3
               akhn
                              \mathfrak{m}(nj) '(xx) ച(ch1) \rightarrow \mathfrak{m}(njch1)
   3
               akhn
                              \mathfrak{so}(nj) (xx) \mathfrak{sg}(ch3) \rightarrow \mathfrak{sog}(njch3)
   3
               akhn
                              \mathfrak{m}(nj) (xx) \mathfrak{m}(nj) \rightarrow \mathfrak{m}(njnj)
   3
               akhn
                              a(p1) "(xx) m(n1) \rightarrow a(p1n1)
   3
               akhn
                              a(p1) (xx) a(p1)\rightarrowa(p1p1)
   3
               akhn
                              a(p1) '(xx) a(p2)\rightarrow a(p1p2)
   3
               akhn
                              a(p1) "(xx) m(th1) \rightarrow a(p1th1)
                              \mathbf{p}(\mathbf{p}(\mathbf{p})) '(\mathbf{x}(\mathbf{x})) ബ(\mathbf{p}(\mathbf{p}))
  3
               akhn
   3
               akhn
                              o(rh) (xx) o(rh) \rightarrow g(rhrh)
  3
               akhn
                              \mathfrak{m}(s1) (xx) \mathfrak{m}(n1) \rightarrow \mathfrak{m}(s1n1)
   3
               akhn
                              m(s1) (xx) o(rh) (xx) o(rh) \rightarrow m(s1rhrh)
  3
               akhn
                              \mathfrak{m}(s1) (xx) \mathfrak{m}(s1) \rightarrow \mathfrak{m}(s1s1)
   3
               akhn
                              m(s1) (xx) m(th1) \rightarrow m(s1th1)
  3
               akhn
                              m(s1) (xx) \omega(th2) \rightarrow m\omega(s1th2)
   3
               akhn
                              \mathfrak{s}(sh) '(xx) \mathfrak{s}(k1) \rightarrow \mathfrak{s}(shk1)
   3
               akhn
                              3(sh)(xx)  (k1)(xx)  (k1) \rightarrow 3(shk1k1)
   3
               akhn
                              3(sh)(xx) m(nh) \rightarrow 3(shnh)
   3
               akhn
                              as(sh) '(xx) പ(p1)\rightarrow as(shp1)
   3
                              s(sh) '(xx) s(t1) \rightarrow s(sht1)
               akhn
  3
               akhn
                              ده (sh) (xx) o(t2) \rightarrow c (sht2)
   3
               akhn
                              s(t1) (xx) s(t1) \rightarrow g(t1t1)
   3
               akhn
                              \omega(t3) (xx) \omega(t3) \rightarrow \omega(t3t3)
  3
               akhn
                              \omega(t3) (xx) \omega(t4) \rightarrow \omega(t3t4)
   3
               akhn
                              \mathfrak{o}(\th 1) '(xx) \mathfrak{o}(\th 1) \to \mathfrak{o}(\th 1 \th 1)
  3
               akhn
                              \infty(\text{th}1) '(xx) \infty(\text{n}1) \rightarrow \infty(\text{th}1\text{n}1)
   3
               akhn
                              \mathfrak{S}(th1) "(xx) \mathfrak{S}(p4) \rightarrow \mathfrak{S}(th1p4)
  3
               akhn
                              \varpi(\text{th1}) '(xx) \varpi(\text{s1}) \rightarrow \varpi(\text{th1s1})
   3
               akhn
                              \infty(\text{th1}) '(xx) \infty(\text{th1}) \rightarrow \infty(\text{th1th1})
  3
               akhn
                              \infty(\text{th1}) (\text{xx}) \omega(\text{th2}) \rightarrow \infty(\text{th1th2})
   3
               akhn
                              g(th3) (xx) g(th3) \rightarrow g(th3th3)
                              a(th3) (xx) \omega(th4) \rightarrow a\omega(th3th4)
  3
               akhn
   3
               akhn
                              Q(v1)(xx) Q(v1) \rightarrow Q(v1v1)
   3
               akhn
                              \omega(y1) (xx) \Delta(k1) \rightarrow \omega(y1k1)
   3
               akhn
                              \omega(y1) (xx) \Delta(k1) (xx) \Delta(k1) \rightarrow \omega(y1k1k1)
  3
               akhn
                              \otimes(v1) (xx) \simeq(m1)\rightarrow \otimes(v1m1)
   3
               akhn
                              \omega(y1) (xx) \omega(n1) \rightarrow \omega(y1n1)
   3
               akhn
                              \omega(y1) (xx) \omega(th1) \rightarrow \omega(y1th1)
   3
                              \mathfrak{D}(y1) '(xx) \mathfrak{D}(th1) '(xx) \mathfrak{D}(th1) \rightarrow \mathfrak{D}(y1th1th1)
               akhn
   3
               akhn
                              \omega(y1) (xx) \omega(y1) \rightarrow \omega(y1y1)
```

Table	Feature	Substitution
3	akhn	$\omega(z_1)$ (ch1) $\rightarrow \omega(z_1)$ (z1ch1)
3	akhn	$\omega(z1)$ " (xx) $\omega(z1)$ $\omega(z1)$
3	akhn	$\omega(z1)$ $\omega(z1)$ $\omega(z1)$ $\omega(z1)$
3	akhn	$g(zh)$ (xx) $a(k1)$ (xx) $a(k1) \rightarrow g(zhk1k1)$
3	akhn	g(zh) (xx) $g(zhv1)$
5		$\omega(y1)$ (xx) പ(p1) $\rightarrow \omega(y1p1)$
6		(x) (x) (x) (x) (x) (x) (x) (x)
7 8		$g(zh)$ $(xx) = (ch1) \rightarrow g(zhch1)$ $a(k1)$ $(xx) = m(s1) \rightarrow g(k1s1)$
9		$\Theta(13)$ (xx) $\Theta(13) \rightarrow \Theta(13)$ $\Theta(13)$ (xx) $\Theta(13) \rightarrow \Theta(13)$
10	blwf	$e(13)$ $(xx) \xrightarrow{\sim} (14)$
11	blwf	$(xx) \in (13) \xrightarrow{s} (14)$
12	half	$\mathfrak{s}(\mathrm{ch}1)$ ر ($\mathrm{ch}1$) عار (\mathrm
12	half	20 (ch2) $(xx) \rightarrow 20$ (ch2xx)
12	half	$\mathfrak{Q}(\cosh 3)$ " $(xx) \rightarrow \mathfrak{Q}$ " $(\cosh 3xx)$
12	half	$\mathfrak{w}(\operatorname{ch4})$ $(xx) \to \mathfrak{w}(\operatorname{ch4}xx)$
12	half	$\alpha \cap (h1)^{\vee}(xx) \rightarrow \alpha \cap (h1xx)$
12 12	half half	
12	half	$\mathfrak{a}(k1)$ " (xx) † $(ZWJ) \rightarrow \mathfrak{a}(k1cil)$ $\mathfrak{u}(k2)$ " $(xx) \rightarrow \mathfrak{a}(k2xx)$
12	half	$o(k3)$ "(xx) $\rightarrow o(k3x)$
12	half	$a_{\text{Q}}(\text{k4})$ "(xx) $\rightarrow a_{\text{Q}}$)"(k4xx)
12	half	$e_{l}(13)$ $(xx) \rightarrow e_{l}(13xx)$
12	half	e(13) (xx) $f(ZWJ) ightarrow constant (13cil)$
12	half	$\mathfrak{g}(\mathrm{lh})$ ଁ $(\mathrm{xx}) \rightarrow \mathfrak{g}(\mathrm{lhxx})$
12	half	$\mathfrak{g}(\mathrm{lh})$ (xx) $(\mathrm{ZWJ}) \rightarrow \omega(\mathrm{lhcil})$
12	half	$\square(m1)$ $(xx) \rightarrow \square(m1xx)$
12	half	$m(n1)$ $(xx) \rightarrow m(n1xx)$
12 12	half half	$m(n1)$ (xx) $(ZWJ) \rightarrow m(n1cil)$ $m(ng)$ $(xx) \rightarrow m(ngx)$
12	half	$m(nh)$ $(xx) \rightarrow m$ (nhx)
12	half	$\mathfrak{m}(\mathrm{nh})$ (XX) $\mathfrak{f}(\mathrm{ZWJ}) \rightarrow \mathfrak{mo}(\mathrm{nhcil})$
12	half	$\mathfrak{m}(nj)$ " $(xx) \rightarrow \mathfrak{m}(njx)$
12	half	$a(p1)$ "(xx) $\rightarrow a$ "(p1xx)
12	half	$aD(p2)$ " $(xx) \rightarrow aD$ " $(p2xx)$
12	half	ดบ $(p3)$ " $(xx) \rightarrow$ ดบ" $(p3xx)$
12	half	$G(p4)^{\vee}(xx) \rightarrow G^{\vee}(p4xx)$
12 12	half	$\sigma(r3) \lor (xx) \rightarrow \sigma(r3xx)$
12	half half	$ \begin{array}{c} \sigma(r3) \ \ (xx) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
12	half	$m(s1)$ $(xx) \rightarrow m'(s1xx)$
12	half	$as(sh)$ "(xx) $\rightarrow as(shx)$
12	half	$s(t1)$ "(xx) \rightarrow s"(t1xx)
12	half	$o(t2)$ $(xx) \rightarrow o(t2xx)$
12	half	$\omega(t3)$ $(xx) \rightarrow \omega(t3xx)$
12	half	$\omega(t4)$ $(xx) \rightarrow \omega(t4xx)$
12 12	half half	$(\text{co}(th2))^*(xx) \rightarrow \text{co}(th2xx)$
12	half	$ \begin{array}{c} \omega(\text{th2}) \ \ (xx) \rightarrow \omega'(\text{th2xx}) \\ \alpha(\text{th3}) \ \ (xx) \rightarrow \beta'(\text{th3xx}) \end{array} $
12	half	$\omega(\text{th}4)$ $(xx) \rightarrow \omega(\text{th}4xx)$
12	half	$\Omega(v1)$ $(xx) \rightarrow \Omega'(v1xx)$
12	half	$\omega(y1)$ $(xx) \rightarrow \omega(y1xx)$
12	half	$\omega(z1)$ $(xx) \rightarrow \omega(z1xx)$
12	half	$g(zh)$ $(xx) \rightarrow g(zhxx)$
13	pstf	$\sigma(r3) \lor (xx) \rightarrow \iota(r4)$
13	pstf	$(v1)^{\vee}(xx) \rightarrow (v2)$
13 14	pstf pstf	$ \begin{array}{c} \omega(y1) \ \ (xx) \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
14	pstf	$(xx) (y(1) \rightarrow y(2))$ $(xx) (y(1) \rightarrow y(2))$
15	pres	$\mathfrak{A}(\operatorname{ch3})$ $\mathfrak{A}(\operatorname{y1})$ $\mathfrak{A}(\operatorname{y2})$ $\mathfrak{A}(\operatorname{ch3r3})$
15	pres	$\mathfrak{g}(\operatorname{ch3xx}) \circ (\operatorname{r3}) \rightarrow \mathfrak{g}(\operatorname{ch3r3})$
15	pres	$\mathfrak{L}(h1)$ $\mathfrak{L}(r4) \rightarrow \mathfrak{L}(h1r3)$

Table	Feature	Substitution
15	pres	$\mathfrak{a}(\mathrm{k}1)$ $\iota(\mathrm{r}4) \rightarrow \mathfrak{a}(\mathrm{k}1\mathrm{r}3)$
15	pres	$ao(k1k1)$ $\iota(r4) \rightarrow ao(k1k1r3)$
15	pres	$\mathfrak{so}(k1k1)$ (xx) $\mathfrak{o}(r3) \rightarrow \mathfrak{so}(k1k1r3)$
15	pres	$\mathbf{a}(k1xx) \circ (r3) \rightarrow \mathbf{a}(k1r3)$
15	pres	$\wp(k3)$ $(r4) \rightarrow \wp(k3r3)$
15	pres	$\wp(k3xx) \circ (r3) \rightarrow \wp(k3r3)$
15 15	pres	മൂ $(k4)$ ($(r4)$ എ $(k4r3)$ മൂ $(k4xx)$ ര $(r3)$ എ $(k4r3)$
15	pres pres	$e'(13xx) e(13) \rightarrow e(1313)$
15	pres	$\mathbf{Q}(\mathbf{m}1) \ \iota(\mathbf{r}4) \rightarrow \mathbf{Q}(\mathbf{m}1\mathbf{r}3)$
15	pres	$\alpha(m1p1)$ ((r4) \rightarrow (\alpha(m1p1r3)
15	pres	$(m1p1)$ (xx) $o(r3) \rightarrow (m1p1r3)$
15	pres	$cm(n1n1)\ t(r4) \rightarrow cm(n1n1r3)$
15	pres	$cm(n1n1) c(xx) o(r3) \rightarrow cm(n1n1r3)$
15	pres	$rm(n1th1)\ t(r4) \to rm(n1th1r3)$
15	pres	$\operatorname{cm}(\operatorname{n1th1})$ '(xx) $\operatorname{o}(\operatorname{r3}) \rightarrow \operatorname{cm}(\operatorname{n1th1r3})$
15	pres	$\mathfrak{A}(n1th3) ((r4) \rightarrow \mathfrak{M}(n1th3r3)$
15 15	pres	$\mathfrak{S}(n1th3)$ "(xx) $\mathfrak{O}(r3) \rightarrow \mathfrak{M}(n1th3r3)$ $\mathfrak{M}(n1th4)$ $\iota(r4) \rightarrow \mathfrak{M}(n1th4r3)$
15	pres pres	$rw(n1th4) "(xx) \circ (r3) \rightarrow rw(n1th4r3)$
15	pres	$a(p1) ((r4) \rightarrow a(p1r3)$
15	pres	പ്(p1xx) ര(r3)-പ്(p1r3)
15	pres	$\mathfrak{ao}(\mathrm{p2}) \mathfrak{t}(\mathrm{r4}) \rightarrow \mathfrak{ao}(\mathrm{p2r3})$
15	pres	പ് $(p2xx)$ ത $(r3)$ \rightarrow ഫ്ര $(p2r3)$
15	pres	$\mathfrak{g}(p3)$ $\mathfrak{t}(r4)$ $\to \mathfrak{g}(p3r3)$
15	pres	ബ് $(\mathrm{p}3\mathrm{xx})$ ര $(\mathrm{r}3)$ $ ightarrow$ $(\mathrm{p}3\mathrm{r}3)$
15	pres	$\mathfrak{S}(\mathrm{p4})\ \mathfrak{t}(\mathrm{r4}) \rightarrow \mathfrak{G}(\mathrm{p4r3})$
15	pres	$\mathfrak{S}(p4xx) \circ (r3) \rightarrow \mathfrak{G}(p4r3)$
15	pres	$\mathfrak{M}(s1)$ $\iota(r4) \to \mathfrak{M}(s1r3)$
15 15	pres	$ \%(s1th1) \ \iota(r4) \rightarrow \%(s1th1r3) $ $ \%(s1th1) \ \'(xx) \ \sigma(r3) \rightarrow \%(s1th1r3) $
15	pres pres	$m(s1xx) \circ (r3) \rightarrow m(s1r3)$
15	pres	્રુક(sht1) ((r4)→ત્રુક(sht1r3)
15	pres	$\mathcal{L}(\operatorname{sht1}) (\operatorname{xx}) \circ (\operatorname{r3}) \to \mathcal{L}(\operatorname{sht1r3})$
15	pres	$s(t1) \ (t74) \rightarrow s(t1r3)$
15	pres	$s'(t1xx) \circ o(r3) \rightarrow c(t1r3)$
15	pres	$\omega(t3)$ $\iota(r4) \rightarrow \omega(t3r3)$
15	pres	$\omega(t3xx) \circ (r3) \rightarrow \omega(t3r3)$
15	pres	$\mathfrak{O}(\th 1) \ \iota(r4) \rightarrow \mathfrak{O}(\th 1r3)$
15	pres	$\mathfrak{m}(\text{th1th1}) \ (\text{r4}) \rightarrow \mathfrak{m}(\text{th1th1r3})$
15	pres	$om(th1th1)$ $v(xx)$ $o(r3) \rightarrow om(th1th1r3)$
15 15	pres	$\mathfrak{G}(\text{th1xx}) \ \mathfrak{G}(\text{r3}) \rightarrow \mathfrak{G}(\text{th1r3})$ $\mathfrak{G}(\text{th3}) \ \iota(\text{r4}) \rightarrow \mathfrak{G}(\text{th3r3})$
15	pres pres	$g(th3x) \circ g(th3r3)$ $g(th3xx) \circ g(th3r3)$
15	pres	$\omega(\text{th4}) \ (\text{tr4}) \rightarrow \omega(\text{th4r3})$
15	pres	$\alpha(v1) \ \iota(r4) \rightarrow \alpha(v1r3)$
15	pres	$Q(v1xx) \circ (r3) \rightarrow Q(v1r3)$
15	pres	$\omega(z1)$ $\iota(r4) \rightarrow \omega(z1r3)$
15	pres	$\omega(z1xx) \omega(z1r3)$
16	pres	(r4)
16	pres	$((r4) \circ \alpha(h1) \rightarrow \alpha(h1r3)$
16 16	pres	(r4) ぬ $(k1)$ →ぬ $(k1r3)(r4)$ ぬ $(k1k1)$ →ぬ $(k1k1r3)$
16	pres pres	$((r4) \omega(k3r3) \rightarrow \omega(k3r3)$
16	pres	$((14) \ \mathcal{O}(K3) \rightarrow \mathcal{O}(K313)$ $((14) \ \mathcal{O}(K3) \rightarrow \mathcal{O}(K313)$
16	pres	$(r4) \ 2(m1) \rightarrow 2(m1r3)$
16	pres	$((r4) \bowtie (m1p1) \rightarrow (m1p1r3)$
16	pres	$(r4) \text{ mm}(n1n1) \rightarrow (m)(n1n1r3)$
16	pres	$\iota(r4)$ ന്ത $(n1th1)$ \rightarrow ന്ത്ര $(n1th1r3)$
16	pres	$\iota(r4) \bowtie (n1th3) \rightarrow \bowtie (n1th3r3)$
16	pres	$(r4) \operatorname{mu}(n1th4) \rightarrow \operatorname{mu}(n1th4r3)$
16	pres	$\iota(\mathrm{r4})$ പ $(\mathrm{p1}) ightarrow$ പ്ര $(\mathrm{p1r3})$

Table	Feature	Substitution
16	pres	$((r4) \circ (p2) \rightarrow (c)(p2r3)$
16	pres	$((r4) \bowtie (p3) \rightarrow \bowtie (p3r3)$
16	pres	$(r4) \circ (p4) \rightarrow \circ (p4r3)$
16	pres	$(r4) \text{ m}(s1) \rightarrow \text{m}(s1r3)$
16	pres	$\iota(r4) \otimes (s1th1) \rightarrow (s1th1r3)$
16	pres	$(r4)$ વ્રુ $(sht1)$ \rightarrow વ્રુ $(sht1r3)$
16	pres	$(r4) s(t1) \rightarrow c(t1r3)$
16	pres	$\iota(r4) \; \omega(t3) \rightarrow \omega(t3r3)$
16	pres	$((r4) \otimes (th1) \rightarrow \otimes (th1r3)$
16	pres	$((r4) \operatorname{wm}(th1th1) \to \operatorname{wm}(th1th1r3)$
16	pres	$((r4) \circ (th3) \rightarrow \circ (th3r3)$
16 16	pres	$ \begin{array}{c} (\text{r4}) \ \omega(\text{th4}) \rightarrow \omega(\text{th4r3}) \\ (\text{r4}) \ \omega(\text{v1}) \rightarrow \omega(\text{v1r3}) \end{array} $
16	pres pres	$(r4) (2(v1) \rightarrow (2(v13))$ $(r4) (o(z1) \rightarrow (o(z1r3))$
17	blws	$\alpha(h1)(14) \rightarrow \alpha(h113)$
17	blws	$\alpha'(h1x) = (l3) \rightarrow \alpha(h1l3)$
17	blws	$\mathbf{a}(\mathbf{k}1)(\mathbf{l}4) \rightarrow \mathbf{a}(\mathbf{k}113)$
17	blws	$\mathfrak{a}(k1xx) \mathfrak{g}(k13) \rightarrow \mathfrak{g}(k113)$
17	blws	$\wp(k3)(14) \rightarrow \wp(k3l3)$
17	blws	$\wp(k3xx) \wp(l3) \rightarrow \wp(k3l3)$
17	blws	$e(13)(14) \rightarrow e(13\overline{13})$
17	blws	$\Omega(\text{m1})(\text{l4}) \rightarrow \Omega(\text{m1l3})$
17	blws	$\square(m1xx) \supseteq (l3) \rightarrow \square(m1l3)$
17	blws	$a(p1)(14) \rightarrow g(p113)$
17	blws	$a'(p1xx) e(l3) \rightarrow a(p1l3)$
17	blws	$\alpha_0(p2)(14) \rightarrow \alpha_0(p213)$
17 17	blws blws	$\alpha \circ (p2xx) = (13) \rightarrow \infty (p213)$
17	blws	
17	blws	$m(s1)$ (l4) $\rightarrow m(s13)$
17	blws	$m(s1x) = (13) \rightarrow m(s113)$
17	blws	$\varpi(\text{th1}) = (13) \times (313)$ $\varpi(\text{th1}) = (13) \times (313)$
17	blws	$\mathfrak{G}'(\text{th1xx}) \mathfrak{S}(\text{l3}) \rightarrow \mathfrak{M}(\text{th1l3})$
17	blws	$g(th3)(14) \rightarrow g(th313)$
17	blws	$\Omega(v1)(14) \rightarrow \Omega(v113)$
17	blws	ပေးလည်း မ($l3$) \rightarrow လျှ($v1l3$)
17	blws	$\omega(z1)(14) \rightarrow \omega(z113)$
17	blws	ဖ(z1xx) $\Theta(13)$ → $\wp(z113)$
18		$(14) \rightarrow (xx) \ e(13)$
20	psts	$\mathfrak{sl}(\mathrm{ch1}) \mathfrak{z}(\mathrm{u1}) \rightarrow \mathfrak{sl}(\mathrm{ch1u1})$
20	psts	$\mathfrak{s}(\mathrm{ch1})\mathfrak{z}(\mathrm{u2}) \rightarrow \mathfrak{s}(\mathrm{ch1u2})$
20	psts	$\mathfrak{S}(\operatorname{ch1ch1})$ $\mathfrak{Z}(\operatorname{u1}) \to \mathfrak{S}(\operatorname{ch1ch1u1})$
20 20	psts	$ \mathbf{\omega}(\text{ch1ch1}) \ \mathbf{\zeta}(\text{u2}) \rightarrow \mathbf{\omega}(\text{ch1ch1u2}) $ $ \mathbf{\omega}(\text{ch2}) \ \mathbf{\zeta}(\text{r1}) \rightarrow 2 \mathbf{\omega}(\text{ch2r1}) $
20	psts psts	$\begin{array}{c} 2\omega(\text{cn2}) J(\text{r1}) \rightarrow 2\omega(\text{cn2}\text{r1}) \\ 2\omega(\text{ch2}) J(\text{u1}) \rightarrow 2\omega(\text{ch2}\text{u1}) \end{array}$
20	psts	$2\omega(\text{ch2}) \ \zeta(\text{u1}) \rightarrow 2\omega(\text{ch2u1})$ $2\omega(\text{ch2}) \ \zeta(\text{u2}) \rightarrow 2\omega(\text{ch2u2})$
20	psts	$g(ch3) J(r1) \rightarrow g(ch3r1)$
20	psts	$\mathfrak{A}(\operatorname{ch3}) \mathfrak{Z}(\operatorname{u1}) \rightarrow \mathfrak{A}(\operatorname{ch3}\operatorname{u1})$
20	psts	$g(\text{ch3}) \chi(\text{u1}) \rightarrow g(\text{ch3u2})$ $g(\text{ch3}) \chi(\text{u2}) \rightarrow g(\text{ch3u2})$
20	psts	$\mathfrak{sg}(\operatorname{ch3ch3}) \mathfrak{z}(\operatorname{r1}) \to \mathfrak{sg}(\operatorname{ch3ch3r1})$
20	psts	$\mathfrak{sgg}(\operatorname{chiedhol})$ $\mathfrak{z}(\operatorname{ul}) \to \mathfrak{sgg}(\operatorname{chiedhol})$
20	psts	$\mathfrak{gog}(\mathrm{ch3ch3})$ $\mathfrak{z}(\mathrm{u2}) \rightarrow \mathfrak{gog}(\mathrm{ch3ch3u2})$
20	psts	$\mathfrak{G}(\operatorname{ch3r3}) \ \mathfrak{Z}(\operatorname{u1}) \to \mathfrak{G}(\operatorname{ch3r3u1})$
20	psts	$(\mathfrak{g}(\operatorname{ch3r3}))^{3}(\operatorname{u1}) \rightarrow (\mathfrak{g}(\operatorname{ch3r3}\operatorname{u2}))$
20	psts	$\omega(\text{ch4}) \ \zeta(\text{u1}) \rightarrow \omega(\text{ch4u1})$
20	psts	$\omega(\text{ch4}) \chi(\text{u1}) \rightarrow \omega \chi(\text{ch4u1})$ $\omega(\text{ch4}) \chi(\text{u2}) \rightarrow \omega \chi(\text{ch4u2})$
20	psts	$ \frac{w(h)}{o(h)} (h) (h) (h) (h) (h) $
20	psts	$\alpha(h1) \beta(u1) \rightarrow \alpha(h1u1)$
20	psts	$\mathfrak{so}(h1) \mathfrak{z}(u2) \rightarrow \mathfrak{so}(h1u2)$
20	psts	$a(h1m1) j(r1) \rightarrow a(h1m1r1)$
20	psts	$aa(h1m1) i(u1) \rightarrow aa(h1m1u1)$

Table	Feature	Substitution
20	psts	$aa(h1m1) \ a(u2) \rightarrow aa(h1m1u2)$
20	psts	$am(h1n1)$ $\chi(u1) \rightarrow am(h1n1u1)$
20	psts	$am(h1n1) \ z(u2) \rightarrow am(h1n1u2)$
20	psts	$\mathfrak{L}(h1r3) \ \mathfrak{Z}(u1) \rightarrow \mathfrak{L}(h1r3u1)$
20	psts	$\mathfrak{L}(h1r3) \mathfrak{Z}(u2) \rightarrow \mathfrak{L}(h1r3u2)$
20	psts	$ \begin{array}{c} \mathbf{a}(k1) \mathbf{j}(r1) \rightarrow \mathbf{b}(k1r1) \\ \mathbf{a}(k1) \mathbf{j}(r1) \rightarrow \mathbf{b}(k1r1) \end{array} $
20 20	psts	$m{a}(k1)$ $m{\zeta}(u1) ightarrow m{a}(k1u1)$ $m{a}(k1)$ $m{\zeta}(u2) ightarrow m{\omega}(k1u2)$
20	psts psts	$\mathfrak{S}(k1) \mathfrak{Z}(u2) \rightarrow \mathfrak{S}(k1u2)$ $\mathfrak{S}(k1k1) \mathfrak{Z}(r1) \rightarrow \mathfrak{S}(k1k1r1)$
20	psts	$\mathfrak{so}(k1k1) \mathfrak{z}(u1) \rightarrow \mathfrak{so}(k1k1u1)$
20	psts	$\mathfrak{so}(k1k1)$ $\mathfrak{z}(u2) \rightarrow \mathfrak{so}(k1k1u2)$
20	psts	$(m(k1k1r3))(u1) \rightarrow (m(k1k1r3u1))$
20	psts	(k1k1r3) $(k1k1r3u2)$
20	psts	
20	psts	$(k113)$ $(u2) \rightarrow (k113u2)$
20	psts	$(k1nh) \chi(u1) \rightarrow (k1nhu1)$
20	psts	$(k1nh)$ $(u2) \rightarrow (k1nhu2)$
20	psts	$\mathfrak{G}(k1r3) \mathfrak{z}(u1) \rightarrow \mathfrak{G}(k1r3u1)$
20	psts	$\mathfrak{g}(k1r3)$ $\mathfrak{z}(u2) \rightarrow \mathfrak{g}(k1r3u2)$
20	psts	$\Delta S(k1sh)$ $\chi(u1) \rightarrow \Delta S(k1shu1)$
20	psts	మ్మ $(k1sh)$ $\mathfrak{z}(u2) \rightarrow$ మ్మ $(k1shu2)$
20	psts	$am(k1th1) j(r1) \rightarrow am(k1th1r1)$
20 20	psts	ക്ത $(k1th1)$ ു $(u1)$ $ ightarrow$ ക്തു $(k1th1u1)$ ക്ത $(k1th1)$ ു $(u2)$ $ ightarrow$ ക്കു $(k1th1u2)$
20	psts psts	$\mathfrak{a}(k2) \mathfrak{z}(r1) \rightarrow \mathfrak{a}(k2r1)$
20	psts	$\mathfrak{ol}(k2) \mathfrak{z}(u1) \rightarrow \mathfrak{ol}(k2u1)$ $\mathfrak{ol}(k2) \mathfrak{z}(u1) \rightarrow \mathfrak{ol}(k2u1)$
20	psts	$\mathfrak{ol}(\mathrm{k2}) \ \mathfrak{z}(\mathrm{u2}) \rightarrow \mathfrak{ol}(\mathrm{k2u2})$
20	psts	$\mathfrak{Q}(k2r3)$ $\mathfrak{Z}(u1) \rightarrow \mathfrak{Q}(k2r3u1)$
20	psts	$\mathfrak{Q}(k2r3)$ $\mathfrak{Z}(u2) \rightarrow \mathfrak{Q}(k2r3u2)$
20	psts	$\wp(k3) \jmath(r1) \rightarrow \wp(k3r1)$
20	psts	$\wp(k3) \ \jmath(u1) \rightarrow \wp(k3u1)$
20	psts	$\wp(k3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
20	psts	$\mathcal{B}(k3k3) \mathcal{J}(r1) \rightarrow \mathcal{B}(k3k3r1)$
20	psts	$g(k3k3) \chi(u1) \rightarrow g(k3k3u1)$
20 20	psts	$g(k3k3) \chi(u2) \rightarrow g(k3k3u2)$
	psts	$g(k3 3) \chi(u1) \rightarrow g(k3 3u1)$
20	psts	$g(k3 3) g(u2) \rightarrow g(k3 3u2)$
20 20	psts	$\omega(k3m1) \chi(u1) \rightarrow \omega(k3m1u1)$
20	psts psts	$ω(k3m1)$ $χ(u2) \rightarrow ω(k3m1u2)$ $ω(k3n1)$ $χ(u1) \rightarrow ω(k3n1u1)$
20	psts	$\omega(k3n1)$ $\zeta(u1) \rightarrow \omega(k3n1u1)$ $\omega(k3n1)$ $\zeta(u2) \rightarrow \omega(k3n1u2)$
20	psts	$\omega(\text{k3r3}) \ \zeta(\text{u2}) \rightarrow \omega(\text{k3r3u1})$
20	psts	$\wp(k3r3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
20	psts	$G(\mathrm{k}3\mathrm{th}3)J(\mathrm{r}1)\!\!\rightarrow\!\!G(\mathrm{k}3\mathrm{th}3\mathrm{r}1)$
20	psts	$\alpha(k3th3)$ $\alpha(u1) \rightarrow \alpha(k3th3u1)$
20	psts	$ \omega_3(k3th3) \ \zeta(u2) \rightarrow \omega_3(k3th3u2) $
20	psts	$(3)(k3th3th4)$ $\chi(u1) \rightarrow (3)(k3th3th4u1)$
20	psts	$(3)(k3th3th4)$ (2) $\rightarrow (3)(k3th3th4u2)$
20 20	psts	aല് $(k4)$ ു $(r1) ightarrow a$ ല് $(k4r1)$
20	psts psts	$a_{\mathcal{O}}(\mathbf{k}4)$ ر $(\mathbf{u}1) \rightarrow a_{\mathcal{O}}(\mathbf{k}4\mathbf{u}1)$ $a_{\mathcal{O}}(\mathbf{k}4)$ ر $(\mathbf{u}2) \rightarrow a_{\mathcal{O}}(\mathbf{k}4\mathbf{u}2)$
20	psts	$(\omega)(k4r3) \chi(u1) \rightarrow (\omega)(k4r3u1)$
20	psts	$(\omega)(k4r3) \ \mathfrak{z}(u2) \rightarrow (\omega)(k4r3u2)$
20	psts	$\mathfrak{S}(13)$ (14) $\mathfrak{Z}(14)$ $\mathfrak{Z}(13)$ $\mathfrak{S}(13)$
20	psts	$e(13)$ (14) $e(13)$ (u2) \rightarrow ee (1313u2)
20	psts	$e(l3)$ $\chi(u1) \rightarrow e(l3u1)$
20	psts	(13) $\mathfrak{z}(\mathrm{u2}) \rightarrow \mathbf{e}(\mathrm{l3u2})$
20	psts	$\mathbb{Q}(1313) \mathcal{I}(\mathbf{u}1) \rightarrow \mathbb{Q}(1313\mathbf{u}1)$
20	psts	
20	psts	ല്ല $(13p1)$ $\chi(u1) \rightarrow$ ല്ല $(13p1u1)$
20	psts	$\mathbf{g}(\mathrm{l3p1})$ $\mathbf{z}(\mathrm{u2}) \rightarrow \mathbf{g}(\mathrm{l3p1u2})$
L	1	

Table	Feature	Substitution
20	psts	ಲ(l3xx) പ(p1)→gl(l3p1)
20	psts	$g(lh) \chi(u1) \rightarrow g(lhu1)$
20	psts	$g(lh) \ g(u2) \rightarrow g(lhu2)$
20	psts	gg(lhlh) ζ(u1)→gg(lhlhu1)
20	psts	$\mathfrak{gg}(\mathrm{lhlh})$ ൂ $(\mathrm{u2}) \rightarrow \mathfrak{gg}(\mathrm{lhlhu2})$
20	psts	$Q(m1) J(r1) \rightarrow Q(m1r1)$
20	psts	$Q(m1) \chi(u1) \rightarrow Q(m1u1)$
20	psts	$\mathbf{Q}(\mathbf{m}1) \ \mathbf{\zeta}(\mathbf{u}2) \rightarrow \mathbf{Q}(\mathbf{m}1\mathbf{u}2)$
20	psts	
20 20	psts	
20	psts $ psts$	$(2(m1p1))(11) \rightarrow (2(m1p11))$ $(2(m1p1))(11) \rightarrow (2(m1p11))$
20	psts	$(2(m1p1) \ \lambda(u1) \rightarrow (2(m1p1u1))$
20	psts	$(\mathfrak{C})(\mathfrak{m}1\mathfrak{p}1\mathfrak{r}3)$ $\mathfrak{Z}(\mathfrak{u}1) \rightarrow (\mathfrak{C})(\mathfrak{m}1\mathfrak{p}1\mathfrak{r}3\mathfrak{u}1)$
20	psts	$\mathfrak{C}(m1p1r3) \mathfrak{Z}(u2) \rightarrow \mathfrak{C}(m1p1r3u2)$
20	psts	$\mathbf{g}(\mathbf{m}1\mathbf{r}3)\ \mathbf{z}(\mathbf{u}1) \rightarrow \mathbf{g}(\mathbf{m}1\mathbf{r}3\mathbf{u}1)$
20	psts	$\mathbf{Q}(\mathbf{m}1\mathbf{r}3) \mathbf{z}(\mathbf{u}2) \rightarrow \mathbf{Q}(\mathbf{m}1\mathbf{r}3\mathbf{u}2)$
20	psts	$m(n1) j(r1) \rightarrow m(n1r1)$
20 20	psts	$m(n1) \ \zeta(u1) \rightarrow m(n1u1)$ $m(n1) \ \zeta(u2) \rightarrow m(n1u2)$
20	psts	$\alpha(n1m1) \lambda(r1) \rightarrow \alpha(n1m1r1)$
20	psts	$\alpha(n1m1) \gamma(u1) \rightarrow \alpha(n1m1u1)$
20	psts	$\alpha(n1m1)$ $\alpha(n1m1u2)$
20	psts	$cm(n1n1)J(r1) \rightarrow cm(n1n1r1)$
20	psts	$\operatorname{cm}(\operatorname{n1n1}) \ \operatorname{g}(\operatorname{u1}) \rightarrow \operatorname{cm}(\operatorname{n1n1u1})$
20	psts	
20 20	psts	$(m(n1n1r3) \chi(u1) \rightarrow (m(n1n1r3u1))$
20	psts $ psts$	$(m(n1n1r3) \ \zeta(u2) \rightarrow (m(n1n1r3u2) \ (m(n1r3) \ \zeta(u1) \rightarrow (m(n1r3u1)$
20	psts	$(n1r3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
20	psts	
20	psts	
20	psts	$ \operatorname{com}(\operatorname{n1th1}) \operatorname{j}(\operatorname{r1}) \rightarrow \operatorname{cm}(\operatorname{n1th1r1}) $
20	psts	$\operatorname{com}(\operatorname{n1th1}) \operatorname{g}(\operatorname{u1}) \rightarrow \operatorname{com}(\operatorname{n1th1u1})$
20	psts	ന്ത $(n1th1)$ ു $(u2)$ \rightarrow ന്തു $(n1th1u2)$
20	psts	$\mathfrak{m}(\mathrm{n1th1r3}) \ \chi(\mathrm{u1}) \rightarrow \mathfrak{m}(\mathrm{n1th1r3u1})$
20	psts	$\mathfrak{m}(n1th1r3) \mathfrak{z}(u2) \rightarrow \mathfrak{m}(n1th1r3u2)$
20 20	psts psts	$ \begin{array}{l} m_{\Omega}(n1th2) \ j(r1) \rightarrow m_{\Omega}(n1th2r1) \\ m_{\Omega}(n1th2) \ j(u1) \rightarrow m_{\Omega}(n1th2u1) \end{array} $
20	psts	$m_{\Sigma}(n1th2) g(u1) \rightarrow m_{\Sigma}(n1th2u1)$ $m_{\Sigma}(n1th2) g(u2) \rightarrow m_{\Sigma}(n1th2u2)$
20	psts	$\mathfrak{B}(\text{n1th3}) \mathfrak{J}(\text{r1}) \rightarrow \mathfrak{B}(\text{n1th3r1})$
20	psts	$\mathfrak{R}(n1th3) \mathfrak{z}(u1) \rightarrow \mathfrak{R}(n1th3u1)$
20	psts	ന്ദ(n1th3) $\mathfrak{z}(u2) \rightarrow \mathfrak{r}\mathfrak{g}(n1th3u2)$
20	psts	$\mathfrak{G}(\text{n1th3r3}) \ \mathfrak{z}(\text{u1}) \rightarrow \mathfrak{R}(\text{n1th3r3u1})$
20	psts	$\mathfrak{G}(n1th3r3) \mathfrak{z}(u2) \rightarrow \mathfrak{\mathfrak{G}}(n1th3r3u2)$
20 20	psts	$m_{\nu}(n1th4) \chi(u1) \rightarrow m_{\nu}(n1th4u1)$
20	psts psts	$\text{rw}(\text{n1th4}) \ \text{z}(\text{u2}) \rightarrow \text{rw}(\text{n1th4u2}) \ \text{rw}(\text{n1th4r3}) \ \text{z}(\text{u1}) \rightarrow \text{rw}(\text{n1th4r3u1})$
20	psts	$(m)(n1th4r3) 3(u1) \rightarrow (m)(n1th4r3u1)$ $(m)(n1th4r3) 3(u2) \rightarrow (m)(n1th4r3u2)$
20	psts	63(ng) $\chi(u1) \rightarrow 63(ngu1)$
20	psts	$\mathfrak{s}(\operatorname{ng}) \mathfrak{z}(\operatorname{u2}) \rightarrow \mathfrak{s}(\operatorname{ngu2})$
20	psts	$\mathfrak{B}(\operatorname{ngk1}) \mathfrak{J}(\operatorname{r1}) \rightarrow \mathfrak{B}(\operatorname{ngk1r1})$
20	psts	$\mathfrak{B}(\operatorname{ngkl})$ $\mathfrak{J}(\operatorname{ul}) \rightarrow \mathfrak{B}(\operatorname{ngklul})$
20	psts	$\mathfrak{B}(\operatorname{ngk1}) \mathfrak{z}(\operatorname{u2}) \to \mathfrak{B}(\operatorname{ngk1u2})$
20 20	psts	$\mathfrak{m}(\operatorname{ngng}) \chi(u1) \to \mathfrak{m}(\operatorname{ngngu}1)$
20	psts psts	ങ്ങ $(ngng)$ ു $(u2) \rightarrow$ ങ്ങു $(ngngu2)$ ണ (nh) ു $(u1) \rightarrow$ ണ $(nhu1)$
20	psts	$\mathfrak{m}(\mathrm{nh}) \mathfrak{z}(\mathrm{u2}) \rightarrow \mathfrak{m}(\mathrm{nhu2})$
20	psts	$\mathfrak{m}_{2}(\mathrm{nhm1}) \mathfrak{z}(\mathrm{u1}) \rightarrow \mathfrak{m}_{2}(\mathrm{nhm1}\mathrm{u1})$
20	psts	$\operatorname{ma}(\operatorname{nhm}1)$ $\mathfrak{z}(\operatorname{u2}) \rightarrow \operatorname{ma}(\operatorname{nhm}1\operatorname{u2})$
20	psts	mm(nhnh) z(u1)→mm(nhnhu1)

Table	Feature	Substitution
20	psts	$\mathfrak{M}(\mathrm{nhnh}) \mathfrak{z}(\mathrm{u2}) \rightarrow \mathfrak{M}(\mathrm{nhnhu2})$
20	psts	$\mathfrak{ms}(\mathrm{nht1})\ \mathfrak{z}(\mathrm{u1}) \! \! \to \! \mathfrak{ms}(\mathrm{nht1u1})$
20	psts	$\mathfrak{ms}(\mathrm{nht1})\mathfrak{z}(\mathrm{u2})\!\!\to\!\!\mathfrak{ms}(\mathrm{nht1u2})$
20	psts	$\mathfrak{m}\mathfrak{w}(\mathrm{nht}3)$ $\mathfrak{z}(\mathrm{u}1) \rightarrow \mathfrak{m}\mathfrak{w}(\mathrm{nht}3\mathrm{u}1)$
20	psts	$\mathfrak{m}\mathfrak{w}(\mathrm{nht}3)\ \mathfrak{z}(\mathrm{u}2) \rightarrow \mathfrak{m}\mathfrak{w}(\mathrm{nht}3\mathrm{u}2)$
20	psts	$\mathfrak{m}(\mathrm{nj}) \ \mathfrak{z}(\mathrm{u1}) \rightarrow \mathfrak{m}(\mathrm{nju1})$
20	psts	$\mathfrak{m}(nj) \mathfrak{z}(u2) \rightarrow \mathfrak{m}(nju2)$
20	psts	$\mathfrak{m}(\mathrm{njch1}) \mathfrak{J}(\mathrm{r1}) \rightarrow \mathfrak{m}(\mathrm{njch1r1})$
20	psts	$\mathfrak{m}(\mathrm{njch1}) \ \mathfrak{z}(\mathrm{u1}) \rightarrow \mathfrak{m}(\mathrm{njch1u1})$
20 20	psts $ psts$	ത്യ $(njch1)$ ു $(u2) \rightarrow$ ഞൂ $(njch1u2)$ ഞൂ $(njch3)$ ു $(u1) \rightarrow$ ഞൂ $(njch3u1)$
20	psts	$\mathfrak{sog}(njch3)$ $\mathfrak{z}(u2) \rightarrow \mathfrak{sog}(njch3u2)$
20	psts	$\mathfrak{som}(njnj) \ \mathfrak{z}(u1) \rightarrow \mathfrak{som}(njnju1)$
20	psts	ത്തെ $(njnj)$ $\mathfrak{z}(u2)$ —ത്തെ $(njnju2)$
20	psts	പ $(p1)$ ၂ $(r1)$ \rightarrow പു $(p1r1)$
20	psts	$\operatorname{al}(\mathrm{p1})$ ر $(\mathrm{u1}) \rightarrow \operatorname{al}(\mathrm{p1u1})$
20	psts	اما $(p1)$ ي $(u2) \rightarrow$ مي $(p1u2)$
20	psts	દ્વ $(p1l3)$ $\chi(u1) \rightarrow$ દ્વ $(p1l3u1)$
20	psts	દ્ધ(p1l3) રૂ(u2)→દ્ધા(p1l3u2)
20	psts	બ્ર(p1n1) ર(u1) - બ્રુ(p1n1u1)
20	psts	$_{\mathcal{H}}(p1n1)$ $_{\mathcal{I}}(u2)$ \rightarrow $_{\mathcal{H}}(p1n1u2)$
20	psts	
20	psts	
20	psts	\simeq (plp1) $\mathfrak{z}(u2)$ \rightarrow \simeq (plp1u2)
20 20	psts	$(10^{1})^{2}$ $(10^{1})^{2}$ $(10^{1})^{2}$ $(10^{1})^{2}$
20	psts	(101+1) $(11+1)$ $(11+1)$ $(11+1)$
20	psts	$\mathcal{L}(p1th1) \mathcal{L}(r1) \rightarrow \mathcal{L}(p1th1r1)$
20	psts	સ્ર(p1th1) $\mathfrak{Z}(\mathfrak{u}1) \rightarrow \mathfrak{Z}(\mathfrak{p}1th1\mathfrak{u}1)$
	psts	સુ(p1th1) રૂ(u2)→સુ(p1th1u2)
20 20	psts	$\operatorname{ad}(p2) \ \operatorname{au}(1) \rightarrow \operatorname{ad}(p2u1)$ $\operatorname{ad}(p2) \ \operatorname{au}(2) \rightarrow \operatorname{ad}(p2u2)$
20	psts $ psts$	$\mathfrak{g}(\text{p2l3}) \ \mathfrak{z}(\text{u1}) \rightarrow \mathfrak{g}(\text{p2l3u1})$
20	psts	$\mathfrak{Q}(\text{p2l3}) \mathfrak{z}(\text{u2}) \rightarrow \mathfrak{Q}(\text{p2l3u2})$
20	_	$(\omega)(p2r3) \ \chi(u1) \rightarrow (\omega)(p2r3u1)$
20	psts $ psts$	$(\mathfrak{p}2r3) \mathfrak{z}(u1) \rightarrow (\mathfrak{q}(\mathfrak{p}2r3u1))$ $(\mathfrak{p}2r3) \mathfrak{z}(u2) \rightarrow (\mathfrak{p}2r3u2)$
20	psts	$\mathfrak{S}(p210)$ $\mathfrak{g}(d2)$ $\mathfrak{I}(p311)$
20	psts	$\mathfrak{SU}(p3)$ $\mathfrak{Z}(u1) \rightarrow \mathfrak{SU}(p3u1)$
20	psts	$\mathfrak{g}_2(p3)$ $\mathfrak{z}(u2) \rightarrow \mathfrak{g}_2(p3u2)$
20	psts	$\mathfrak{A}(p3l3)$ $\mathfrak{A}(u1) \rightarrow \mathfrak{A}(p3l3u1)$
20	psts	$\mathfrak{A}(p3l3) \mathfrak{z}(u2) \rightarrow \mathfrak{A}(p3l3u2)$
20	psts	$\mathfrak{g}(p3p3)$ $\mathfrak{z}(u1) \rightarrow \mathfrak{g}(p3p3u1)$
20	psts	$\mathfrak{g}(p3p3)$ $\mathfrak{z}(u2) \rightarrow \mathfrak{g}(p3p3u2)$
20	psts	ത്ര $(p3r3)$ $\chi(u1) \rightarrow $ ത്ര $(p3r3u1)$
20	psts	$\mathfrak{M}(p3r3)$ $\mathfrak{z}(u2) \rightarrow \mathfrak{M}(p3r3u2)$
20	psts	$g(p4) J(r1) \rightarrow g(p4r1)$
20	psts	$\operatorname{G}(\mathrm{p4})$ ു $(\mathrm{u1}) \rightarrow \operatorname{g}(\mathrm{p4u1})$
20	psts	$G(p4) g(u2) \rightarrow G(p4u2)$
20	psts	$\mathfrak{G}(p4r3) \mathfrak{Z}(u1) \rightarrow \mathfrak{G}(p4r3u1)$
20	psts	$g(p4r3) \chi(u2) \rightarrow g(p4r3u2)$
20 20	psts	$\sigma(r3) \chi(u1) \rightarrow \sigma(r3u1)$ $\sigma(r3) \chi(u2) \rightarrow \sigma(r3u2)$
20	psts $ psts$	$\begin{array}{c} \sigma(\text{r3}) \ \mathfrak{z}(\text{u2}) \rightarrow \mathfrak{g}(\text{r3u2}) \\ \rho(\text{rh}) \ \mathfrak{z}(\text{u1}) \rightarrow \rho(\text{rhu1}) \end{array}$
20	psts	$\begin{array}{c} O(\Pi) \ \chi(u1) \rightarrow \chi(\Pi u1) \\ O(\Pi) \ \chi(u2) \rightarrow Q(\Pi u2) \end{array}$
20	psts	$8(\text{rhrh}) \ 2(\text{u1}) \rightarrow 8(\text{rhrhn1})$
20	psts	$\beta(\text{rhrh}) \ \beta(\text{u2}) \rightarrow \beta(\text{rhrhu2})$
20	psts	$m(s1) j(r1) \rightarrow m(s1r1)$
20	psts	$m(s1) \ i(u1) \rightarrow m(s1u1)$
20	psts	$m(s1)$ $g(u2) \rightarrow m(s1u2)$
20	psts	$\chi(s113) \chi(u1) \rightarrow \chi(s113u1)$
20	psts	$\mathfrak{P}(\mathrm{s1l3})\ \mathfrak{z}(\mathrm{u2}) \rightarrow \mathfrak{P}(\mathrm{s1l3u2})$
		الا المراجع ا

Table	Feature	Substitution
20	psts	$\mathfrak{P}(s1n1) \ \mathfrak{Z}(u1) \rightarrow \mathfrak{P}(s1n1u1)$
20	psts	$ \chi(s1n1) \chi(u2) \rightarrow \chi(s1n1u2) $
20	psts	$m(s1r3) \chi(u1) \rightarrow m(s1r3u1)$
20	psts	$(s1r3) \chi(u2) \rightarrow (s1r3u2)$
20	psts	
20	psts	$\chi(s1rhrh) \chi(u2) \rightarrow \chi(s1rhrhu2)$
20	psts	$\Re(\mathrm{s1s1}) \ \Im(\mathrm{u1}) \rightarrow \Re(\mathrm{s1s1u1})$
20	psts	$\mathfrak{R}(\mathrm{s1s1})\ \mathfrak{z}(\mathrm{u2}) \rightarrow \mathfrak{R}(\mathrm{s1s1u2})$
20	psts	$ \%(s1th1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
20	psts	$ \%(s1th1) \ \zeta(u1) \rightarrow \%(s1th1u1) $
20	psts	$ (s1th1) (u2) \rightarrow (s1th1u2) $
20	psts	$ (s1th1r3) \ z(u1) \rightarrow (s1th1r3u1) $
20	psts	$ m_{\mathbf{g}}(s1th1r3) \ \mathfrak{z}(u2) \rightarrow m_{\mathbf{g}}(s1th1r3u2) $
20	psts	$mo(\mathrm{s1th2})J(\mathrm{r1})\!\!\to\!\!mg(\mathrm{s1th2r1})$
20	psts	$ma(s1th2) \ g(u1) \rightarrow ma(s1th2u1)$
20	psts	mo(s1th2)
20	psts	$a_s(sh) g(r1) \rightarrow a_s(shr1)$
20 20	psts	as $(\sinh) \chi(u1) \rightarrow a (\sinh 1)$ as $(\sinh) \chi(u2) \rightarrow a (\sinh 2)$
20	psts psts	$3(sh1) 3(u2) \rightarrow 3(shu2)$ $3(shk1) 3(r1) \rightarrow 3(shk1r1)$
20	psts	$ \begin{array}{c} (\operatorname{shk1}) \ \ (\operatorname{shk1}) \ \ (\operatorname{shk1}) \ \ \ \end{array} $
20	psts	$\mathfrak{Z}(\operatorname{shk1}) \mathfrak{Z}(\operatorname{u2}) \rightarrow \mathfrak{Z}(\operatorname{shk1u2})$
20	psts	$3(\sinh 1 k1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
20	psts	$\frac{2}{2}(\operatorname{shk}1k1)$ $\chi(\operatorname{ul}) \rightarrow \frac{2}{2}(\operatorname{shk}1k1\operatorname{ul})$
20	psts	$3(shk1k1)$ $3(u2) \rightarrow 3(shk1k1u2)$
20	psts	$_{3}$ (shnh) $_{3}$ (u1) \rightarrow_{3} (shnhu1)
20	psts	$\mathfrak{Z}(\mathrm{shnh}) \mathfrak{Z}(\mathrm{u2}) \rightarrow \mathfrak{Z}(\mathrm{shnhu2})$
20	psts	ള്($\sinh 1$) റൂ $(r1) \rightarrow$ ള്($\sinh 1r1$)
20	psts	$_{\mathbf{g}}(\mathrm{shp1})$ ു $(\mathrm{u1}) \rightarrow _{\mathbf{g}}(\mathrm{shp1u1})$
20	psts	ين $(\sinh 1)$ ي $(u2)$ جير $(\sinh 1u2)$
20	psts	્રુ(sht1) $\chi(u1) \rightarrow$ ન્ફુ(sht1u1)
20	psts	$\mathcal{Z}(\sinh 1)$ રૂ(u2) $\rightarrow \mathcal{Z}(\sinh 1$ u2)
20	psts	ુ (sht2) રૂ(u1)→સુ(sht2u1)
20	psts	ુ (sht2) રૂ(u2)→સું (sht2u2)
20	psts	$s(t1) J(r1) \rightarrow s(t1r1)$
20	psts	$s(t1) \ \zeta(u1) \rightarrow \varsigma(t1u1)$
20	psts	$s(t1) \chi(u2) \rightarrow \varsigma(t1u2)$
20	psts	$\varsigma(t1r3) \ \zeta(u1) \rightarrow \varsigma(t1r3u1)$
20 20	psts	$\varsigma(t1r3) \ \zeta(u2) \rightarrow \varsigma(t1r3u2)$
20	psts	$\begin{array}{c} \S(t1t1) \ \zeta(u1) \rightarrow \S(t1t1u1) \\ \S(t1t1) \ \zeta(u2) \rightarrow \S(t1t1u2) \end{array}$
20	psts	$\begin{array}{c} \S(\text{t1t1}) \ \S(\text{u2}) \rightarrow \S(\text{t1t1u2}) \\ \circ(\text{t2}) \ \Im(\text{u1}) \rightarrow \Im(\text{t2u1}) \end{array}$
20	psts psts	$ \begin{array}{c} \Diamond(t2) \ \zeta(u1) \rightarrow \Diamond(t2u1) \\ \Diamond(t2) \ \zeta(u2) \rightarrow \Diamond(t2u2) \end{array} $
20	psts	$\omega(t3) \chi(t2t2) \omega(t31) \rightarrow \omega(t3r1)$
20	psts	$\omega(t3) \ \zeta(u1) \rightarrow \omega(t3u1)$
20	psts	$\omega(t3)$ $\chi(u2) \rightarrow \omega(t3u2)$
20	psts	$(\omega(t3r3))(u1) \rightarrow (\omega(t3r3u1))$
20	psts	$(\omega(t3r3) \ \zeta(u2) \rightarrow (\omega(t3r3u2))$
20	psts	$(t3t3) \ \chi(u1) \rightarrow \chi \chi(t3t3u1)$
20	psts	$(t3t3) \ \mathfrak{z}(u2) \rightarrow \mathfrak{k}(t3t3u2)$
20	psts	സ്സ(t3t4) ു(u1)→സ്സ്(t3t4u1)
20	psts	$\underset{\mathcal{U}}{\mathbb{R}}(t3t4) \ \mathfrak{z}(u2) \rightarrow \underset{\mathcal{U}}{\mathbb{R}}(t3t4u2)$
20	psts	യ $(t4)$ ၂ $(r1)$ $ ightarrow$ $(t4r1)$
20	psts	$\omega(t4) \ \chi(u1) \rightarrow \omega(t4u1)$
20	psts	(42) (42) (42)
20	psts	$(\omega(t4r3) \chi(u1) \rightarrow \omega(t4r3u1)$
20 20	psts	$(\mathfrak{w}(t4r3) \mathfrak{z}(u2) \rightarrow \mathfrak{w}(t4r3u2)$
20	psts	$\sigma(\text{th1}) J(\text{r1}) \rightarrow \sigma(\text{th1r1})$

Table	Feature	Substitution
20	psts	$\mathfrak{D}(\th1) \; \mathfrak{z}(\th1) \to \mathfrak{D}(\th1 \th1)$
20	psts	$\mathfrak{S}(\operatorname{th}1)$ $\mathfrak{z}(\operatorname{u}2) \rightarrow \mathfrak{Z}(\operatorname{th}1\operatorname{u}2)$
20	psts	$\mathfrak{g}(\text{th1l3}) \mathfrak{z}(\text{u1}) \rightarrow \mathfrak{g}(\text{th1l3u1})$
20	psts	$\mathfrak{g}(\th113) \mathfrak{z}(u2) \rightarrow \mathfrak{g}(\th113u2)$
20	psts	$\sigma_2(\text{th1m1})$ $J(\text{r1}) \rightarrow \sigma_2(\text{th1m1r1})$
20	psts	$σ_2(th1m1)$ $ζ(u1) \rightarrow σ_2(th1m1u1)$
20	psts	$m_2(th1m1)$ $g(u2) \rightarrow m_2(th1m1u2)$
20	psts	ത്ഭ $(h1p4)$ ു $(u1)$ $ ightarrow$ ത്ള $(h1p4u1)$
20	psts	ത്ഭ $(h1p4)$ ു $(u2)$ $ ightarrow$ $(h1p4u2)$
20	psts	$\mathfrak{G}(\th1r3)\ \mathfrak{z}(u1) \rightarrow \mathfrak{G}(\th1r3u1)$
20	psts	$(\text{th1r3}) (\text{u2}) \rightarrow (\text{th1r3u2})$
20	psts	$\mathfrak{m}(\text{th1s1}) \mathfrak{J}(\text{r1}) \rightarrow \mathfrak{m}(\text{th1s1r1})$
20	psts	ων(th1s1) χ(u1) → ων(th1s1u1)
20 20	psts	ത്സ $(h1s1)$ ു $(u2)$ $ o$ തു $(h1s1u2)$ തത $(h1th1)$ $(t1)$ $ o$ തത $(th1th1)$
20	psts psts	$\operatorname{com}(\operatorname{th1th1}) \mathfrak{J}(\operatorname{t1}) \to \operatorname{com}(\operatorname{th1th1})$ $\operatorname{com}(\operatorname{th1th1}) \mathfrak{J}(\operatorname{u1}) \to \operatorname{com}(\operatorname{th1th1u1})$
20	psts	$omo(th1th1)$ $g(u2) \rightarrow omo(th1th1u2)$
20	psts	$(\text{com}(\text{th1th1r3}))$ $(\text{tu1}) \rightarrow (\text{com}(\text{th1th1r3u1}))$
20	psts	$(\text{th}1\text{th}1\text{r}3)$ $(\text{tu}2)\rightarrow (\text{tm}2)$
20	psts	$\mathfrak{mo}(h1 h2)$ $\mathfrak{z}(h1 h2 h2 h2)$
20	psts	$m_{\Omega}(th1th2)$ $\chi(u1) \rightarrow m_{\Omega}(th1th2u1)$
20	psts	ത്ര $(h1 h2)$ ൂ $(u2)$ $ ightarrow$ തൂ $(h1 h2 u2)$
20	psts	$\wp(\text{th2}) \jmath(\text{r1}) \rightarrow \wp(\text{th2r1})$
20	psts	$\phi(\text{th2}) \ \chi(\text{u1}) \rightarrow \phi(\text{th2u1})$
20	psts	$\wp(\text{th}2) \ \jmath(\text{u}2) \rightarrow \wp(\text{th}2\text{u}2)$
20	psts	$g(th3) j(r1) \rightarrow g(th3r1)$
20	psts	$g(th3) \ \chi(u1) \rightarrow g(th3u1)$
20	psts	$g(th3)$ $g(u2) \rightarrow g(th3u2)$
20 20	psts	$\mathbb{G}(\text{th3r3}) \ \chi(\text{u1}) \rightarrow \mathbb{G}(\text{th3r3u1})$
20	psts	$\mathfrak{G}(\text{th3r3}) \mathfrak{z}(\text{u2}) \rightarrow \mathfrak{G}(\text{th3r3u2})$
20	psts	$g(th3th3) \chi(u1) \rightarrow g(th3th3u1)$
	psts	$g(th3th3) g(u2) \rightarrow g(th3th3u2)$
20 20	psts	$\operatorname{av}(\operatorname{th}3\operatorname{th}4)$ $\chi(\operatorname{u}1) \to \operatorname{av}(\operatorname{th}3\operatorname{th}4\operatorname{u}1)$
20	psts psts	$\omega(\text{th3th4}) \ \zeta(\text{u2}) \rightarrow \alpha \zeta(\text{th3th4u2})$ $\omega(\text{th4}) \ \zeta(\text{r1}) \rightarrow \omega(\text{th4r1})$
20	psts	$\omega(\text{th}4) \Im(\text{t1}) \rightarrow \omega(\text{th}41)$ $\omega(\text{th}4) \Im(\text{t1}) \rightarrow \omega(\text{th}41)$
20	psts	$\omega(\text{th}1)$ $\chi(\text{tl}1)$ $\chi($
20	psts	$(\text{th4r3}) \ \text{g(th4r3u1)}$
20	psts	(th4r3) $(\text{u2}) \rightarrow (\text{th4r3u2})$
20	psts	$\alpha(v1) \beta(r1) \rightarrow \alpha(v1r1)$
20	psts	Q(v1) $Q(v1u1)$ $Q(v1u1)$
20	psts	$\operatorname{QU}(v1)$ $\operatorname{Z}(u2) \rightarrow \operatorname{QU}(v1u2)$
20	psts	$Q(v1) \downarrow (v2) \rightarrow Q(v1v1)$
20	psts	$\alpha(v1) \perp (v2) \gamma(u1) \rightarrow \alpha(v1v1u1)$
20	psts	$\alpha(v1)$ ്വ $(v2)$ ൂ $(u2)$ \rightarrow വ്വൂ $(v1v1u2)$
20	psts	$\mathcal{Q}(v113) \ \mathcal{J}(u1) \rightarrow \mathcal{Q}(v1\overline{13}u1)$
20	psts	$\mathbf{Q}(v113) \mathbf{z}(u2) \rightarrow \mathbf{\ddot{q}}(v113u2)$
20	psts	$\mathbf{Q}(v1r3) \ \mathbf{\zeta}(u1) \rightarrow \mathbf{Q}(v1r3u1)$
20	psts	$\mathbf{Q}(v1r3) \mathbf{\zeta}(u2) \rightarrow \mathbf{Q}(v1r3u2)$
20	psts	$\mathfrak{Q}(v1v1) \mathfrak{Z}(u1) \rightarrow \mathfrak{Q}(v1v1u1)$
20	psts	$\mathbf{Q}(\mathbf{v}1\mathbf{v}1)\ \mathbf{z}(\mathbf{u}2) \rightarrow \mathbf{Q}(\mathbf{v}1\mathbf{v}1\mathbf{u}2)$
20	psts	$\omega(y1) \ \chi(u1) \rightarrow \omega(y1u1)$
20	psts	$\omega(y1) \ z(u2) \rightarrow \omega(y1u2)$
20	psts	$\mathbf{w}(y1) \mathbf{J}(y2) \rightarrow \mathbf{g}(y1y1)$
20	psts	$\omega(y1) J(y2) \gamma(u1) \rightarrow \underline{\omega}(y1y1u1)$
20	psts	$\omega(y1) J(y2) Z(u2) \rightarrow \underline{\omega}(y1y1u2)$
20	psts	$\mathfrak{P}(\lambda_1) \mathfrak{I}(n_1) \rightarrow \mathfrak{P}(\lambda_1)$
20	psts	$\mathfrak{P}(y1ch1) \mathfrak{Z}(u2) \rightarrow \mathfrak{P}(y1ch1u2)$
20	psts	$\mathfrak{P}(\mathbf{y}_1 \mathbf{k}_1) \mathfrak{J}(\mathbf{r}_1) \rightarrow \mathfrak{P}(\mathbf{y}_1 \mathbf{k}_1 \mathbf{r}_1)$
20	psts	$\mathfrak{P}(y1k1) \mathfrak{Z}(u1) \rightarrow \mathfrak{P}(y1k1u1)$

20 psts	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$20 \text{psts} \omega(z1) \zeta(r1) \rightarrow \omega(z1r1)$	
20 psts $\omega(z1) \chi(u1) \rightarrow \omega(z1u1)$	
psts $\omega(z1)$ $\omega(z1)$ $\omega(z1)$	
psts $ \varphi_{\mathbf{z}}(\mathbf{z}1\mathbf{ch}1) \mathbf{z}(\mathbf{u}1) \rightarrow \varphi_{\mathbf{z}}(\mathbf{z}1\mathbf{ch}1\mathbf{u}1) $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
20 psts $g(zh) \chi(u1) \rightarrow g(zhu1)$	
psts $g(zh) g(u2) \rightarrow g(zhu2)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
psts $g(zh) \rfloor (v2) (u2) \rightarrow g(zhv1u2)$	
$\begin{array}{c c} 20 & \text{psts} & g(\text{zhch1}) \ \chi(\text{u1}) \rightarrow g(\text{zhch1u1}) \end{array}$	
psts $g(zhch1) g(u2) \rightarrow g(zhch1u2)$	
20 psts $(zhk1k1) \chi(u1) \rightarrow (zhk1k1u1)$	
20 psts $g(zhk1k1) g(u2) \rightarrow g(zhk1k1u2)$	
21 haln $\phi(k1)^{\circ}(xx)^{\circ}(ZWJ) \rightarrow \phi(k1cil)$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
22 salt $\underline{\omega}(ch1ch1) \rightarrow \underline{\omega}(ch1ch1.alt1), \underline{\omega}(ch1ch1)$	
22 salt 2 2 (ch1ch1u1) \rightarrow 2 $($ ch1ch1u1.alt1), 2 (ch1ch1u1)	

Table	Feature	Substitution
22	salt	
22	salt	ള്ള(lhlh)→ള്ള(lhlh), ഇ(lhlh.alt1)
22	salt	$\mathfrak{g}(lhlhu1) \rightarrow \mathfrak{g}(lhlhu1), \mathfrak{g}(lhlhu1.alt1)$
22	salt	ളൂ്(lhlhu2)→ളൂ്(lhlhu2), ഈ്(lhlhu2.alt1)