



#### Feature extraction

Robert Haase

With material from

Johannes Müller, PoL TU Dresden

Marcelo Zoccoler, PoL, TU Dresden

Benoit Lombardot, Scientific Computing Facility, MPI CBG

#### Feature extraction



- Feature extraction is a late processing step in image analysis.
- It can be used for images, or segmented/labelled images



#### Feature extraction



- A feature is a countable or measurable property of an image or object.
- Goal of feature extraction is finding a minimal set of features to describe an object well enough to differentiate it from other objects.

#### Intensity based

- Mean intensity
- Standard deviation
- Total intensity
- Textures

#### Shape based /spatial

- Area / Volume
- Roundness
- Solidity
- Circularity / Sphericity
- Elongation
- Centroid
- Bounding box

#### Spatio-temporal

- Displacement,
- Speed,
- Acceleration

#### Topological

Number of neighbors

#### Others

- Overlap
- Colocalization

#### Mixed features

- Center of mass
- Local minima / maxima
- Distance to neighbors
- Average intensity in neighborhood



### Intensity based features



- Min / max
- Median
- Mean
- Mode
- Variance
- Standard deviation

- Can be derived from pixel values
- Don't take spatial relationship of pixels into account
- See also:
  - descriptive statistics
  - histogram









Count: 65024 Mean: 103.301 StdDev: 57.991 Min: 29 Max: 248 Mode: 53 (1663)



Count: 783 Mean: 141.308 StdDev: 61.876 Min: 44 Max: 243 Mode: 236 (9)



Count: 1056 Mean: 49.016 StdDev: 12.685 Min: 34 Max: 122 Mode: 45 (120)

#### Center of mass







- Relative position in an image weighted by pixel intensities
  - x, y ... pixel coordinates
  - w ... image width
  - h ... image height
  - μ ... mean intensity
  - g<sub>x,y</sub> ... pixel grey value
  - $x_m$ ,  $y_m$  ... center of mass coordinates

$$\mu = \frac{1}{wh} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} g_{x,y}$$

$$x_m = \frac{1}{wh\mu} \sum_{v=0}^{h-1} \sum_{x=0}^{w-1} x \ g_{x,y}$$

$$y_m = \sum_{wh\mu} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} y \ g_{x,y}$$

"sum intensity"
"total intensity"



$$x_m = 1/7 (1.0 + 1.1 + 2.2 + 2.1 + 1.2) = 1.3$$

$$y_m = 1/7 (1.2 + 1.2 + 2.3 + 2.2 + 1.3) = 2.4$$

### Center of geometry / centroid



- Relative position in an image weighted by pixel intensities
- Special case of center of mass for binary images
  - x, y ... pixel coordinates
  - w ... image width
  - h ... image height
  - μ ... mean intensity
  - $g_{x,v}$  ... pixel grey value, integer in range [0;1]
  - $x_m$ ,  $y_m$  ... center of mass coordinates

$$\mu = \frac{1}{wh} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} g_{x,y}$$

$$x_m = \frac{1}{wh\mu} \sum_{v=0}^{h-1} \sum_{x=0}^{w-1} x \ g_{x,y}$$

$$y_m = \sum_{wh\mu} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} y \, g_{x,y}$$

Number of white pixels



$$x_m = 1/5 (1.0 + 1.1 + 1.2 + 1.1 + 1.2) = 1.2$$

$$y_m = 1/5 (1.2 + 1.2 + 1.3 + 1.2 + 1.3) = 2.4$$

#### Perimeter



- Length of the outline around an object
- Depends on the actual implementation

|     | 0 | 1 | 2 | 3 | 4 X |
|-----|---|---|---|---|-----|
| 0   | 0 | 0 | 0 | 0 | 0   |
| 1   | 0 | 0 | 0 | 0 | 0   |
| 2   | 1 | 1 | 1 | 0 | 0   |
| 3   | 0 | 1 | 1 | 0 | 0   |
| 4 y | 0 | 0 | 0 | 0 | 0   |



#### Feret's diameter



- Feret's diameter describes the maximum distance between any two points of an outline.
- The minimum caliper ("Minimum Feret") describes the shortest distance, the object would fit through.
- Feret and Minimum Feret do not need to be perpendicular to each other!



## Fit ellipse



- For every object, find the optimal ellipse simplifying the object.
- Major axis ... long diameter
- Minor axis ... short diameter
- Major and minor axis are perpendicular to each other









• The aspect ratio describes the elongation of an object.

AR = major / minor



















$$solidity = \frac{A}{A_{convexHull}}$$

### Roundness and circularity

PoL
Physics of Life
TU Dresden

- The definition of a circle leads us to measurements of circularity and roundness.
- In case you use these measures, define them correctly. They are not standardized!

Diameter

d

Circumference

 $C = \pi d$ 

Area

$$A = \frac{\pi d^2}{4}$$



$$roundness = \frac{4 * A}{\pi \; major^2}$$

$$circularity = \frac{4\pi * A}{perimeter^2}$$

Roundness = 1 Circularity = 1

Roundness ≈ 1 Circularity ≈ 1 Roundness < 1 Circularity < 1

### Roundness and circularity



### Feature extraction in Python



In Python: from skimage import measure

#### https://scikit-image.org/docs/stable/api/skimage.measure.html

| <pre>skimage.measure.blur_effect (image[, h_size,])</pre>     | Compute a metric that indicates the strength of blur in an image (0 for no blur, 1 for maximal blur). |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| <pre>skimage.measure.euler_number (image[,])</pre>            | Calculate the Euler characteristic in binary image.                                                   |
| <pre>skimage.measure.find_contours (image[,])</pre>           | Find iso-valued contours in a 2D array for a given level value.                                       |
| <pre>skimage.measure.grid_points_in_poly (shape, verts)</pre> | Test whether points on a specified grid are inside a polygon.                                         |
| <pre>skimage.measure.inertia_tensor (image[, mu])</pre>       | Compute the inertia tensor of the input image.                                                        |
| skimage.measure.inertia_tensor_eigvals (image)                | Compute the eigenvalues of the inertia tensor of the image.                                           |
| <pre>skimage.measure.label (label_image[,])</pre>             | Label connected regions of an integer array.                                                          |
| skimage.measure.regionprops (label_image[,])                  | Measure properties of labeled image regions.                                                          |
| skimage.measure.regionprops_table(label_image)                | Compute image properties and return them as a pandas-compatible table.                                |

area : int

Number of pixels of the region.

area\_bbox : int

Number of pixels of bounding box.

area\_convex : int

Number of pixels of convex hull image, which is the smallest convex polygon that

area\_filled : int

Number of pixels of the region will all the holes filled in. Describes the area of the i

axis\_major\_length : float

The length of the major axis of the ellipse that has the same normalized second ce the region.

axis\_minor\_length : float

The length of the minor axis of the ellipse that has the same normalized second ce the region.

@haesleinhuepf

### Exploring neighborhood relationships between cells



- Study how many neighbors objects have.
- How likely is it that an object with 3 neighbors is a cell?



### Neighborhood-based label filters



• Filter out objects which have an unreasonable number of neighbors



#### Neighborhood-based label filters



• Filter labeled objects using Measure Labels and Label Filters in Napari.



# Label neighbor filters in napari









# SimpleITK



Recommended for 3D-measurements, based on the SimpleITK-project







# SimpleITK



• Many Napari plugins for feature extraction can also be called from Python

|   | label | maximum | mean       | median | minimum | sigma     | sum      | variance   | bbox_0 | bbox_1 |
|---|-------|---------|------------|--------|---------|-----------|----------|------------|--------|--------|
| 0 | 1     | 224.0   | 137.526132 | 136.0  | 112.0   | 13.360739 | 157880.0 | 178.509343 | 0      | 0      |
| 1 | 2     | 232.0   | 193.014354 | 200.0  | 128.0   | 28.559077 | 80680.0  | 815.620897 | 11     | 0      |
| 2 | 3     | 224.0   | 179.846995 | 184.0  | 128.0   | 21.328889 | 32912.0  | 454.921516 | 53     | 0      |
| 3 | 4     | 248.0   | 207.082171 | 216.0  | 120.0   | 27.772832 | 133568.0 | 771.330194 | 95     | 0      |
| 4 | 5     | 248.0   | 223.146402 | 232.0  | 128.0   | 30.246515 | 89928.0  | 914.851647 | 144    | 0      |
| 5 | 6     | 248.0   | 214.906725 | 224.0  | 128.0   | 26.386796 | 99072.0  | 696.263020 | 238    | 0      |
| 6 | 7     | 248.0   | 211.565891 | 224.0  | 136.0   | 30.197236 | 54584.0  | 911.873073 | 189    | 7      |
| 7 | 8     | 200.0   | 166.171429 | 168.0  | 136.0   | 16.466894 | 11632.0  | 271.158592 | 133    | 17     |





# Exploring features in Napari



 Select table rows and view corresponding object in 2D/3D space







# Exploring features in Napari



 Double-click on table column to retrieve a parametric map image







## Exercise: Quantiative measurements



• Use the given feature extraction notebook to apply some basic statistics to measurements

dataframe = pd.DataFrame(statistics)

```
# analyse objects
properties = measure.regionprops(label image, intensity image=image)
statistics = {
    'area':
                  [p.area
                                        for p in properties],
                  [p.mean_intensity
```

'major axis': [p.major axis length for p in properties]

for p in properties],

| 429<br>183 | <b>mean</b> 191.440559 | major_axis<br>34.779230                          | aspect_ratio                                                                                              |
|------------|------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|            | 191.440559             | 34.779230                                        | 2 2222 42                                                                                                 |
| 183        |                        |                                                  | 2.088249                                                                                                  |
|            | 179.846995             | 20.950530                                        | 1.782168                                                                                                  |
| 658        | 205.604863             | 30.198484                                        | 1.067734                                                                                                  |
| 433        | 217.515012             | 24.508791                                        | 1.061942                                                                                                  |
| 472        | 213.033898             | 31.084766                                        | 1.579415                                                                                                  |
|            |                        |                                                  |                                                                                                           |
| 213        | 184.525822             | 18.753879                                        | 1.296143                                                                                                  |
| 79         | 184.810127             | 18.287489                                        | 3.173540                                                                                                  |
| 88         | 182.727273             | 21.673692                                        | 4.021193                                                                                                  |
| 52         | 189.538462             | 14.335104                                        | 2.839825                                                                                                  |
|            | 470.00000              | 16.925660                                        | 4.417297                                                                                                  |
|            | 213<br>79<br>88<br>52  | 213 184.525822<br>79 184.810127<br>88 182.727273 | 213 184.525822 18.753879<br>79 184.810127 18.287489<br>88 182.727273 21.673692<br>52 189.538462 14.335104 |

62 rows × 4 columns

· How many objects are in it? · How large is the largest object? • What are mean and standard deviation of the intensity in the image? · What are mean and standard deviation of the area of the segmented objects?





# Exercise: Parametric maps



• Produce a parametric map representing 'elongation' in Napari.







#### Summary

filtered = filters.gaussian(image, sigma=5)





bg\_subtracted = morphology.white\_tophat(image, footprint=footprint)

Top-hat filtering removes the background

Thresholding binarizes the image

```
threshold = filters.threshold_otsu(image)
```

Connected-components analysis groups pixels to objects

```
labels = measure.label(binary)
```

Feature extraction allows descriptive statistics

measurements = measure.regionprops\_table(labels, properties=properties)