MtIntosh

MR 73
FM/AM TUNER

SERVICE INFORMATION

STARTING WITH SERIAL NO. 10T01

FM TUNER SECTION

USEABLE SENSITIVITY

Better than 2.5 μ V (IHF useable sensitivity)

SIGNAL TO NOISE RATIO

Better than 70dB

HARMONIC DISTORTION

Mono, less than 0.3%. Stereo, less

than 0.7%.

FREQUENCY RESPONSE

Flat from 20Hz to 20kHz with standard de-emphasis and 19kHz pilot filter

CAPTURE RATIO

Better than 1.5dB

SPURIOUS REJECTION

90dB or greater

IMAGE REJECTION

75dB or greater (at 100MHz)

STEREO SEPARATION

Better than 35dB at 1kHz.

SCA FILTER

Better than 50 dB rejection from 67kHz to 74KHz

AM TUNER SECTION

SENSITIVITY

Better than $12\mu V$ at $1000\,\mathrm{kHz}$ (using external antenna input)

onoornar anoonna anpa

SIGNAL TO NOISE RATIO

Better than 55dB

HARMONIC DISTORTION

Less than 1% at 30% modulation

FREQUENCY RESPONSE

Down 6dB at 5kHz

SELECTIVITY

-30dB at 10kHz

IMAGE REJECTION

60dB or greater at 1000kHz

GENERAL

OUTPUT LEVEL

Fixed output, 2.5 volts Variable output, 0 to 2.5 volts POWER REQUIREMENTS

117 volts AC 50-60Hz, 20 watts

MPX PRINTED CIRCUIT BOARD 044-072

!

ĩ

1

- 1. Unless otherwise specified: Resistance values are in ohms, 1/4 watt, and 10% tolerance; capacitance values smaller than 1 are in microfarads (μF); capacitance values greater than 1 are in picofarads (pF); inductors are in microhenries (μH).
- 2. Printed circuit board components are outlined on the schematics by dotted lines. The circled numbers around the dotted lines correspond to the numbers on the PC Board layouts.
- 3. The heavy lines on the schematics denote the primary signal path.
- 4. The terminal numbering of rotary switches is for reference only.
- 5. All voltages indicated on the schematics are measured under the following conditions:
 - a. Use of an 11 megohm input impedance VTVM.
 - b. All voltages +10% with respect to chassis ground.
 - c. No signal at input or antenna terminals.
 - d. AC input at 117 volts, 50/60 Hz.
 - e. Front panel controls at:

Tuning indicator 100	MHz (no signal)	Mode	AM (to measure AM section)
Volume	Fully CW		Stereo (to measure FM section)
H. F. Filter	Out	Muting Adj.	MAX
Mutina	Out	Panel Lights	Bright

- 6. In units with Serial No's below 15T33: R434 is not used.
- 7. In units with Serial No's below 15T74: R112 is 3.3k; R20 and C33 are used; R15 is connected as shown by dotted lines and center terminal of AM sensitivity switch (S2) is connected to ground as shown by dotted line.
- 8. In units with Serial No's from 24T00 to 33T50: Cl09 and Cl13 are not used; Rl06 is 680Ω and XF-2 is McIntosh Part No. 044-045A.
- 9. In units with Serial No's below 33T50: R105 is l0k; R107 & R113 are l00 Ω l0%; C4 is l.2pF and L5 is l.2 μ H.
- 10. In units with Serial No's below 27T84: R21 is not used.
- 11. In units with Serial No's below 33T50: R329 is not used; R307 is 200k; there is no connection from R307 to Pin 12 of MPX PC board and Pin 14 of MPX PC board is connected to the arm of R307 only.
- 12. In units with Serial No's below 33T50, PC board 043-975 is used. It connects the collector of Q402 and Q403 as shown by dotted line.

MIXER & LOCAL OSCILLATOR PC BOARD 044-038

IF PRINTED CIRCUIT BOARD 043-973

AM PRINTED CIRCUIT BOARD 044-071

LAMP AND METER REPLACEMENT

- To Replace Panel Lights 1. Remove bottom cover.
- To Replace Dial Panel Lights 1. Remove knobs & front panel.
- To Replace Stereo Light 1. Remove dust cover.

- To Replace Multipath Light 1. Remove knobs & front panel.
- To Replace Meters
- Remove knobs & front panel. Remove dial panel screws. Tilt forward dial panel sliding off pointer.
 - Loosen meter screws & remove.

L302 T30| L303

MR 73 ALIGNMENT INSTRUCTIONS

All McIntosh tuners are carefully aligned and tested at the factory using the finest avaiable test equipment. All McIntosh tuners will meet their published specifications when shipped from the factory.

After extensive operation, or servicing, it may be desirable to realign the tuner circuits for best performance. The charts below give complete information on the circuit realignment procedure for the MR 73.

The test equipment listed (or its equivalent) is necessary to properly align an MR 73. The accuracy of the alignment will be directly related to the accuracy and calibration of the test equipment used.

If the necessary test equipment is not available, alignment should not be attempted. For additional information, contact Customer Service Department, McIntosh Laboratory In., 2 Chambers Street, Binghamton, New York 13903 (telephone 607-723-3512).

Alignment should be done in the following order: AM-FM-MPX

TEST EQUIPMENT REQUIRED

- FM Signal Generator (Measurements 188 or equivalent)
- AM Signal Generator (Measurements 65B or equivalent) ?
- VIVM (RCA WV96C)

3,

- Multiplex Generator (Radiometer SMG1) ÷
- 10.7MHz Generator (preferably crystal controlled) ν̈́
- Oscilloscope (Hewlett-Packard 120B or equivalent) 9
- Harmonic Distortion Analyzer (Hewlett-Packard 333A or equivalent)

AM ALIGNMENT

	TUNER		SIGNAL CENEBATOR	901		4011014			
STEP			SIGNAL GENERA	¥0.		MUICALOR	ADJUST	TEST LIMITS	REMARKS
;	~	FREQ.	COUPLING	MODULATION	TYPE	CONNECTED TO			
_	600kHz	1,55kHz	Through ex- ternal .01 μF capacitor to junction of C202 and Tμ	CW	VTVM	Pin 11 on AM circuit board.	Top (pri) & bottom (sec) cores of T201, T202, and T203.	Maximum possible positive voltage	Connect stator of OSC. Tuning capacitor (CIB) to ground with a jumper wire to make AM local oscillator inoperative. As the tuner output increases, attenuate generator output to keep voltage at VIVM below 0.5 volt.
2	600kHz	600kHz	Through a 200pF capa- ritor to ant. terminals. Antenna switch in loop antenna position.	см	Запе	Same	L201 (oscil- lator coil.)	Same	Same as step 1 except remove jumper from osc. section. Use a large signal from the signal generator because there is no direct connection from the generator to the loop antenna.
က	1400kHz	1400kHz	Same	Same	Same	Same	C26 (oscil- lator trim- mer)	Same	Repeat steps 2 & 3 until dial calibration is accurate.
4	600kHz	600kHz	Same	Ѕате	Same	Same	L9(AM an- tenna trim- ming coil) & T4 (AM-RF)	Same	Same as step 2 except adjust generator so that output signal is just above the noise level.
5	1 400kHz	1,400кнг	Same	Same	Same	Same	C20 (AM an- tenna trim- mer) & C25 (AM RF trim- mer).	Same	Repeat steps $\mu \approx 5$ until output is as high as possible.
9	600кнг	600kHz	Throw ina to to ina!	Same	Same	Same	T3 (external AM antenna transformer)	Same	Reduce output of signal generator to a very low level to hold voltage at VTVM below 0.5 volt.
7	1400 кна	11,00kHz	Same	Same	Same	Same	C33 (exter- nal) AM antenna transformer trimmer)	Same	Same
	1000kHz	1000kHz	Same	30% @ 400нг	Distor- tion	L or R output		With a distor be performed:	With a distortion analyzer, the following measurements can be performed:
α	70.1				Analyzer			1. With a for 0.8 will compodulate	With a lmV input signal adjust "AM Level" control (R49) for 0.8 volts of audio output at tape-outputs. This will correspond to 2.5 volts audio output for a 100% modulated signal.
0								2. With a filter signal	With a lmV input signal, harmonic distortion, whistle filter attenuation at 10kHz modulating frequency and signal to noise ratio may be measured.
				,				3. IHFM ser to nois the abs lamps,	IHFM sensitivity of 20 microvolts for - 20dB of signal to noise ratio. (this measurement is only possible in the absence of man-made interference, as fluorescent lamps, etc.

FM ALIGNMENT

	REMARKS	Top (pri- optimum Connect scope for IF response display. Synchry) and synchry lied the signal generator output to a content (see about 10.7 low level such that the DC voltage at ordary) and IP #1 is about -0.5 volts.
	TEST LIMITS	Optimum symetry about 10.7 MHz and 10.7MHz.±
ADJUST		Top (pri. Optimus rary) and symetry bottom (see about 10.0 ondary) Eng 2 10./Miz.t
INDICATOR	CONNECTED TO	
=	TYPE	Oscil- TP # 1 loscope
TOR	MODULATION	FM ±200kHz swoep at 60 Hx rate
SIGNAL GENERATOR	COUPLING	TO TP-3
	FREQ.	Foint of 10. (WHz no inter- ference or signal
TUNER	SETTING	Foint of no inter- ference or signal
	STEP	_

•						. a s s c L e s	a as sncies.	. as moles.	no les.
Connect scope for IF response display Hold the signal generator output to a low level such that the DC voltage at TP #1 is about -0.5 volts.				it Stops 4 and 5 until dial	Steps 4 and 5 until s align reduce tris d the voltage at TP4 ss.	Same. Repeat Steps 4 and 5 until dial is accurate. As the circuit align reduce this input 2 wolts or less. Same. Repeat Steps 6 and 7 until TP #1 is as high as possible at both alignment frequencies.	Same. Repeat Steps 4 and 5 until dial is accurate. As the circuts align reduce this input signal to hold the voltage at TP#1 to-2 volts or less. Same. Repeat Steps 6 and 7 until TP #1 is high as possible at both alignment freque botton core for minimum distortion. Should be less than 0.3%.	Same. Repeat Steps 4 and 5 until dial is accurate. As the circuits align reduce this input signal to hold the voltage at TP#1 to-2 volts or less. Same. Repeat Steps 6 and 7 until TP #1 is high as possible at both alignment frequency. Reply 1 MV Luph: signal, Adjust TLO1 bottom core for minimmy distortion. Should be less than 0.3%. Redinst very slightly (less than 1/8 diust very slightly (less than 1/8 diustners scoms necessary, recheck step # 1.	Same. Repeat Steps 4 and 5 until dial is accurate. As the circuts align reduce this input signal to hold the voltage at TP#1 to-2 volts or less. Same. Repeat Steps 6 and 7 until TP #1 is high as possible at both alignment freque thigh as possible at both alignment freque thigh as possible at both alignment freque the core for minimum distortion. Reading very slightly (less than 1/8 thun) T2 top and bottom cores for minimum distortion. If further adding which in Step #1. Apply 5 µV input signal, Place front atom muting switch in "IN" position. Apply 5 µV input signal, Place front Adjust R307 muting control from CCW position until the andie output drops 2 dB. Return muting switch in "Ont"
				Same. Repeat is accurate.	Same. Repeat Stors a secondate. As the circuits a signal to hold the 2 volts or less.	Same. Repeat is a conrate. As the circuit signal to hold 2 volts or lead or l			
	Maximur possible negative voltage Adi. for		Maximum negative voltage	Maximum negative voltage Same	Maximum nogative voltage Samo Samo		Maximum nogative voltage Samo Same Same	Maximum nogative voltage Same Same Same Adj. for minimum distortion Adj. for	Maximum nogative voltage Same Same Same distortion Adj. for minimum distortion Adj. for minimum distortion quistortion
ADJUST Top (pri- mary) and bottom (sec- ondary) cores of T2	T101 primary bottom core T101	on cond	Oscillator Trimmer, Cli	Oscillator Trimer, Cllt Oscillator Coil, L7	Oscillator Cll. Oscillator Coil, L7 Mixer-Trimmer, RF Trimmer, RF Trimmer & Antenner & Trimmer & Trimmer Coil, C6, C2	Oscillator Coll, Coll, L7 Mixer-Trim- mer, RF Trimmer & Trimmer R Trimmer R Trimmer R Trimmer R Trimmer Antonna- Trimmer Trimm	Oscillator Maximum Oscillator notage Cli Nixer-Trim- Same mer, RF Trimmer & Antenna- Trimmer & Antenna- Cll, C6, C2 Mixer, RF Same and antenna tuning cores L6, L2, L1 L01 primary Adj. for bottom core, minimum distorti	Opcillator Coll Coll Coll, L7 Mixer-Frim- mer, RF Trimmer & Antenna- Trimmer R Trimmer R Trimmer L Trimmer R Trimmer L Trimmer L Trimmer L Trimmer R Trimmer	Oscillator Coll Coll, L7 Mixer-Trimmer, R. Antonna- Trimmer, R.F. and antenna tuning cores tuning cores tuning cores to L6, L2, L1 TIO1 primary Dottom core. T2 top and antenna tuning cores tuning cores to L6, L2, L1 TIO1 primary bottom core. R307 muting cores bottom core.
CONNECTED TO TP # 1	Pin 6 of Tl01 through 1 meg. resistor. TP #2		VIVM connected to TP# 1 and scope connected to L or R andio output				P# 1	P# 1	t p# 1
'PE 	VTVM P	,	VIVM connectand scope con L or R andi	VIVM connectand scope of L or R andi	VrVM connectand scope of Lor Randi	VrVM connectand scope of L or R andi	VTVM connected to Tand scope connected Lor Randio output Same Same Same Harmonic Distortion Analyzer connected to Lor Routput.	Same Same Same Same Same Same Same Same	Same Same Same Same Same Same Same Same
MODULATION FM ±200kHz sweep at 60 Hz rate	CW Same		400Hz 75kHz deviation	400Hz 75kHz deviation Same	40042 75kHz deviation Same Same	40042 75kH2 deviation Same Same	40042 Geviation Same Same	4400 Hz 75 kHz deviation Same Same Same 77 kHz 77 kHz	LOOHZ JERN Geviation Same Same Same Same 75kHz, deviation 775kHz, deviation
OUPLING P-3	Same		300 ohm antenna terminals w/wmatching		ohm nna inals atching ork	ohm ana inals atching ork	ohm nna inals atching ork	ohm nna inals arching ork	ohm nna inals arching ork
FREQ.	10. TMEZ SE		Εz	12	EZ Z	2	Z N	2 E	
SETTING Point of no inter- for signal	Зате Зате		105Mile						

MULTIPLEX DECODER ALIGNMENT

TYPE CONNECTED TO	CONNECTED TO	TYPE CONNECTED TO Mississee	1. COUPLING MODULATION TYPE CONNECTED TO
T. ON D 011+111+ [1303 and Mirimin		T 00 D 0+ 1300 000 Min in	- F
-VIVE 1 or i orepre 130h and minimum	-VIVM L or R output L303 and Minimum	-VIVE to or a output hood and minimum isola in the man	-VTVM L or K output L303 and Minimum 1309 and Minimum
(SCA adj.)	Ulon @ Olking Just Capper @ (SCA adj.) L or R	(SCA adj.) L or R	Ulon @ Olking Just Capper @ (SCA adj.) L or R
output	output	or %	
		matching network	matching
		signal W/* matching	signal W/* matching
Jack	tion @ 67kEz	// tion @ 6/kHz	// tion @ 6/kHz
M A T A T	tion @ 67kEz	tion @ 6/kEz	Joon allowing (Paris Deviation approx. 1000 microvolts signal W** matching network
	tion @ 67kHz	terminals W/ tion @ 6/kHz approx. 1000 microvolts signal W/*	
		Jour antenna terminals W/ approx. 1000 microvolts signal W/* matching	

N	90MHz	Same	Same	Same		This step is an overall sensitivity check. Reduce input signal to the point where total noise and distortion reads 3% (-30d8). The input signal will then be the maximum usable
						OLVED GEOGRAPH OF ECON CIRCL

=

MULTIPLEX DECODER ALIGNMENT

TUNER			SIGNAL GENERATOR	OR	=	INDICATOR	13114	2110011 1331	
SETTING		FREQ.	COUPLING	MODULATION	TYPE	CONNECTED TO	Apjusi	LESI LIMIIS	KEMAKKU
100MFz 10	10	100МН2	300% antenna terminals W/ approx. 1000 microvolts signal W/* matching	75kHz Devia- tion @ 67kHz	AC_VTVM	L or R output Jack	L303 and L304 (SCA adj.)	Minimum output @ L or R output jack.	Adjust for minimum output with 67kHz modulation.
100MHz 10)i	TOOMHZ	Same	19kHz stereo pilot	AC-VTVM or oscil- loscope W/very low cap.	m301, pin 2 or 3.	L302 (19kHz) phase adj.) & T301 (19 kHz doubler)	Adjust for maximum AC voltage	Adjust for Decrease pilot level, if necessary, so that 19kHz maximum AC circuits do not limit or saturate.
Samo	to ro	Same	Same	Same	Same	T302, Pinl or 2.	m302 (Pri) & Adj. for bottom (Sec) maximum AC tuning slugs voltage	Adj. for maximum AC voltage	Decrease pilot level so that 19kHz and 38kHz circuits do not limit. Mode switch must be in stereo position.
Same	ကို	Same	Same	1kHz (100% modulation) L or R colly, pilot level normal and on.	Samo	l or R output jack	T302, Bottom 35dB (Sec.) tun- sepen fing slug. or mc Also adj. R4.24.	35dB seperation or more	First, set R424 to MAX resistance. Modulate left channel and measure right channel output. Adjust T302 bottom - tuning slug (Sec.) for minimum right channel output. for maximum separation. Then adjust R424 for maximum separation. Repeat the adjustment of T302 bottom and R424 until maximum separation is obtained. Then, reverse channels and measure left channel separation. For this adjustment and easurement, no test lead should be connected to TP#2.
100MFz	7	loomhz	Same	1kHz (100% modulation) L or R only, pilot on	AC-VTVM	L or R output jack		Less than 25mV volts of resi- dual	Adjust "FM-Level" control (R307) for 2.5 volts of audio output at fixed output jacks. Then, turn off the modulation and measure the residual of the 19kHz and 38kHz frequencies.

* ANTENNA MATCHING NETWORK

Note 1: If signal generator has other than 50 ohm internal impedance, use a resistor of 150 ohms less internal generator impodance.

REPLACEMENT PARTS

All parts not listed are common items obtainable from radio parts jobbers.

Replacement parts may be obtained when ordered by PART NUMBER from:

McIntosh Laboratory, Inc. Customer Service Department 2 Chambers Street Binghamton, New York 13903 (telephone 607-723-3512)

`	CAP	ACITORS		
Symbol Number		cription		Part Number
C23	Mylar	22µF	200V	064-087
C24	Mylar	.lµF	250V	064-086
C111	Elect.	100μF	150	066-127
C210	Tant. Elect.	1.5μF	35V	066-092
C218	Elect.	100µF	15V	066-127
C301	Mylar	.22µF	50 V	064-068
C305	Elect.	100μF	15V	066-127
C308	Elect.	100μF	150	066-127
C313	Mylar	·lμF	250V	064-067
C315	Mylar	.22µF	250V	064-068
C402,403	Elect.	10μF	20V	066-149
C406,407	Elect.	22μF	20V	066-148
C410,411	Elect.	6.8µF	35V	066-146
C413	Mylar	.22µF	250V	064-068
C414	Elect.	5/300/1 250/60/	50/1000 60/25	066 - 145
	D	IODES		
Dl	Ge. signal di	ode		070-003
D101,102	Ge. signal di	ode		070-003
D103,104	Ge. signal di	ode		070-003
D105,106	Si. signal di	ode		070-022
D201	Ge. signal di	ode		070-003
D202,203	Ge. signal di	ode		070-003
D301	Bias diode			070-046
D302,303	Si. signal di	ode		070-022
D304	Si. signal di	ode		070-022
D305,306	Ge. signal di	ode		070-003
D307,308	Ge. signal di	ode		070-003
D401	Zener diode l	6v		070-048
D402,403	Si. rectifier			070-031
D404	Si. rectifier			070-031
		FUSES		
F200	Fuse	.5A \$1o	-Blo	089-020

	CHOKES	
L1	FM antenna coil	122-069
L2	FM RF coil	122-070
L3	Choke 1.2µH	122-011
L4	Choke .47µH	122-010
L5	Choke 2.5µH	122-033
L6	FM mixer coil	122-071
L7	FM local oscillator coil	122-072
L8	AM Loop antenna	122-074
L9	AM antenna trimming coil	122-073
L10	Choke 2.5µH	122-033
L101,102	Choke 75µH	122-013
L201	AM oscillator coil	122-066
L202	Choke 100MH	122-004
L301	Choke 1mH	122-065
L302	Filter coil (19kHz phase)	
L303,304	Filter coil (SCA)	122-079
	TRANSISTORS	
Q1,2	Si. junction F.E.T.	132-049
Q3	Si. junction F.E.T.	132-049
Q4	Si. NPN transistor	132-015
Q5	Si. M.O.S. F.E.T.	132-064
Q201	Si. junction F.E.T.	132-049
Q202	Si. M.O.S. F.E.T.	132-064
Q203	Si. NPN transistor	132-041
Q204,205		132-061
Q301	Si. NPN transistor	1 32-057
Q302	Si. NPN transistor	132-052
Q303,304	Si. NPN transistor	1 32-057
Q305	Si. NPN transistor	132-057
Q306	Si. NPN transistor	132-042
Q400,401	Si. PNP transistor	132-056
Q402,403	Si. NPN transistor	132-041
Q404,405	Si. NPN transistor	132-052
Q406	Si. NPN transistor	132-072
Q407	Si. NPN transistor	132-041
	POTENTIOMETERS	
R221	AM level control	134-177
R244	Volume control	134-217
R307	Muting control	134-216
R309	FM level control	134 - 197
R424	Separation adjust	134-212
R435	Meter adjust	134-197

				MR 7
			RESISTORS	
		R428	Wirewound 47Ω 5W	139-045
CHOKES		R429	Wirewound 2Ω 5W	139-005
Mantenna coil	122 - 069	R430	Wirewound 2.7Ω 1W	139-002
M RF coil	122-070		SWITCHES	
hoke 1.2µH	122-011	S1	Antenna selector	148-019
hoke .47μH	122 - 010	\$2	AM sensitivity	148-023
hoke 2.5μΗ	122-033	\$3	Mode selector	146-135
M mixer coil	122-071	\$301	Muting switch	146-136
M local oscillator coil	122-072	\$302	H.F. filter switch	146-136
M Loop antenna	122-074	S401	Dial scale intensity	148-023
M antenna trimming coil	122-073	3 701	TRANSFORMERS	
hoke 2.5µH	122-033	Ti	Balun	043-226
noke 75µH	122-013	T2	FM IF transformer	162-042
1 oscillator coil	122-066		AM antenna matching trans.	162-042
hoke 100MH	122-004	T3	AM RF transformer	162-043
hoke lmH	122-065			
ilter coil (19kHz phase)		T101	FM discriminator	162-036
ilter coil (SCA)	122-079	T201	AM IF transformer	162-038
TRANSISTORS		T202	AM IF transformer	162-038
i. junction F.E.T.	1 32 - 049	T203	AM IF transformer	162-038
i. junction F.E.T.	132-049	T301	RF transformer (19kHz)	162-031
i. NPN transistor	132-015	T302	RF transformer (38kHz)	162-039
. M.O.S. F.E.T.	132-064	T401	Power transformer	043-865
. junction F.E.T.	132-049		TUBES	
-	132-049	V1	6ни6	165-025
i. M.O.S. F.E.T. i. NPN transistor			INTEGRATED CIRCUITS	
	132-041	101,2	Integrated circuit	133-002
i. M.O.S. F.E.T.	132-061		METERS	
i. NPN transistor	132-057	MI	Signal strength meter	124-005
i. NPN transistor	132-052	M301	Tuning Meter	124-006
i. NPN transistor	132-057		CRYSTAL FILTERS	
i. NPN transistor	132-057	XF-1	Crystal filter	044-045
i. NPN transistor	132-042	XF-2	Crystal filter	044-045
i. PNP transistor	132-056		LAMPS	
i. NPN transistor	132-041		#1847 (meter lamp)	058-008
i. NPN transistor	132-052		#1866 (front panel)	058-014
i. NPN transistor	132-072		#1828 (MPX lamp)	058-027
i. NPN transistor	132-041		Festoon lamp (dial glass)	058-032
POTENTIOMETERS			FRONT PANEL & TRIM	
1 level control	134-177		Front panel	043 - 971
olume control	134-217		Front panel end caps	018-120
uting control	134-216		Tuning knob	043-272
M level control	134-197		Volume control knob	043-253
Separation adjust	134-212		Mode selector knob	043-253
Meter adjust	134-197		Muting knob	043-253

MR 73

H.F. Muti Shel

> Mour Hard FM d

> > Dia

Shel

Point Dia Fuse AC ; Ship

> Aud LDR

Pla:

MR 73 SCHEMATI

M	R	7	3	
_	_			•

H.F. filter knob	043-253
Muting adj. knob	090-010
MOUNTING SYSTEM	
Shelf bracket (right)	043-592
Shelf bracket (left)	043-593
Mounting template #100	038-179
Hardware package	043-446
MISCELLANEOUS ITEMS	
FM dipole antenna	170-033
Dial glass	044-079
Pointer	043-876
Dial cord (complete)	043-891
Fuseholder	178-001
AC power cord	170-021
Shipping carton	043-988
Owners manual	038-448
Plastic feet	017-041
Push terminal (antenna)	074-032
Audio cable (6')	170-015
LDR network	144-013

FM-RF AMPLIFIER MODIFICATION

MODEL: MR73 FM/AM Tuner

PURPOSE OF MODIFICATION: To decrease power dissipation in transistor Q2

WHAT UNITS ARE AFFECTED: Serial No. 10T01 to 27T84 Only.

WHEN MODIFICATION SHOULD BE MADE: When the customer complains that FM sensitivity has decreased or FM tuner has become noisy.

McINTOSH MODIFICATION KIT NO.: 044-175

PARTS REQUIRED: (Supplied in Kit)

QUANTITY	PART NUMBER	DESCRIPTION
1	132-049	FET transistor UBS USE 132.097@
1	136 - 396	220Ω 10% 1/4W resistor

PROCEDURE: (Refer to the diagram on reverse side)

- Step 1 Remove bottom cover and bottom cover of RF front end.
- Step 2 Replace transistor Q2. Be sure leads are of same length and have same positioning as used on original transistor.
- Step 3 Counting from the front of the tuner, locate the fourth feed-thru capacitor on the left side of the RF front end. Remove the red lead and connect it to the unused second feed-thru capacitor. Remove the 220Ω 10% 1/4W resistor (R2) connecting between feed-thru capacitors 3 and 4, and connect this resistor between feed-thru capacitors 2 and 3. Connect the new 220Ω 10% 1/4W resistor (R21) between feed-thru capacitors 2 and 4.
- Step 4 Replace both covers.
- Step 5 Check performance of tuner. Perform alignment steps 6 and 7 as in Service Manual if necessary to meet performance specifications. To perform alignment remove the cover from the top of the RF front end.

(over)

FRONT OF UNIT

BOTTOM VIEW

SERVICE BULLETIN

AM NOISE REDUCTION MODIFICATION

MODEL: MR 73 FM/AM Tuner

PURPOSE OF MODIFICATION: To improve AM signal to noise ratio.

WHAT UNITS ARE AFFECTED: Serial No. 10T01 to 35T90 Only.

WHEN MODIFICATION SHOULD BE MADE: When customer complains that AM is noisy on local stations or that sensitivity is poor.

McINTOSH MODIFICATION KIT NO .: No kit.

PARTS REQUIRED:

QUANTITY	PART NUMBER	DESCRIPTION
1	061-043	.01uF +80-20% Disc capacitor

PROCEDURE:

- Step 1 Remove Multiplex-AM top and bottom covers. Remove capacitors C204 and C208 on AM PC board. See service manual for exact location.
- Step 2 Remove bottom cover of RF front end. Connect the .01 μ F disc capacitor across R17, a 270 Ω 1/4W resistor. (One end of R17 is connected to Q5). Replace covers.
- Step 3 Check performance. If dial calibration is off at high end of the band, perform AM alignment steps 3, 5, and 7 as in service manual. The top cover of the RF front end is removed for access to the alignment trimmers.