MOOC Statistique pour ingénieur Thème 4 : Régression linéaire

Vidéo 2 : Le modèle linéaire et ses hypothèses

Anca Badea

Institut Mines-Télécom Mines Saint-Étienne

Sommaire

- Formalisation
- 2 Estimation / estimateurs

Et si on avait plusieurs jeux de données?

Et si on avait plusieurs jeux de données?

$$\widehat{\beta}_0 = -0, 27; \widehat{\beta}_1 = 1, 82$$

 $\widehat{\beta}_0 = 0, 84; \widehat{\beta}_1 = 1, 33$

Et si on avait plusieurs jeux de données?

$$\widehat{\beta}_0 = -0, 27; \widehat{\beta}_1 = 1, 82 \ \widehat{\beta}_0 = 0, 84; \widehat{\beta}_1 = 1, 33 \ \beta_0 = -0, 5; \beta_1 = 2$$

La modélisation précédente ne prenait pas en compte cette variabilité...

Hypothèses

- la variable expliquée Y est une v.a.r.
- la variable explicative X est une v.a.r.
- l'hypothèse :
 - en moyenne
 - et conditionnellement aux observations de la variable explicative,
 - la variable expliquée est une fonction affine de celle-ci

$$\mathbb{E}(Y|X=x)=\beta_0+\beta_1x$$

ou bien

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

simplification : X déterministe

$$\mathbb{E}(Y) = \beta_0 + \beta_1 x$$

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

Hypothèses

- l'erreur ε est une v.a.r. $\mathbb{E}(\varepsilon)=0$, $\mathbb{V}(\varepsilon)=\sigma^2$
 - σ paramètre à estimer en plus de β_0, β_1
- hypothèse supplémentaire $\boxed{arepsilon \sim \mathcal{N}(0, \sigma^2)}$

- questions:
 - comment se propage cette hypothèse?
 - quels estimateurs pour les paramètres à estimer?

Sommaire

- Formalisation
- Estimation / estimateurs

Méthodes

- moindres carrés
- maximum de vraisemblance

pour
$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, $i = 1, ..., n$
 $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ v. a. i. i. d.

conduisent aux mêmes estimations / estimateurs pour β_0, β_1

de plus

$$\mathbb{E}(Y_i) = \beta_0 + \beta_1 x_i$$

$$\mathbb{V}(Y_i) = \mathbb{V}(\varepsilon_i) = \sigma^2$$

$$Y_i \sim \mathcal{N}(\beta_0 + \beta_1 \mathbf{x}_i, \sigma^2)$$

Estimateur / estimation de σ^2

pour $\sigma^2=\mathbb{E}(\varepsilon_i^2)$ l'estimateur obtenu par la méthode du maximum de vraisemblance est l'estimateur classique de l'espérance

(i.e. la moyenne empirique)

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2$$

dont l'espérance est égale à $\mathbb{E}(\widehat{\sigma}^2) = \frac{n-2}{n}\sigma^2$

et alors on peut définir un estimateur non-biaisé de σ^2 comme

$$\widehat{\sigma}^{*2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

on utilisera la même notation pour l'estimation correspondante

Estimateurs / estimations de $\beta_0, \ \beta_1$

$$\begin{cases} \widehat{\beta}_1 = \frac{1}{ns_x^2} \sum_{i=1}^n (x_i - \overline{x}) Y_i = \sum_{i=1}^n c_i Y_i \\ \widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{x} \end{cases}$$

calculons leurs espérances

$$\mathbb{E}(\widehat{\beta}_1) = \sum_{i=1}^n c_i \mathbb{E}(Y_i) = \beta_0 \sum_{i=1}^n c_i + \beta_1 \sum_{i=1}^n c_i x_i = \beta_1$$
 en utilisant $\sum_{i=1}^n c_i = 0$ et $\sum_{i=1}^n c_i x_i = 1$
$$\mathbb{E}(\widehat{\beta}_0) = \beta_0$$

Estimateurs / estimations de $\beta_0, \ \beta_1$

leurs variances

$$\mathbb{V}(\widehat{eta}_1) = rac{\sigma^2}{\mathsf{ns}_{\mathsf{x}}^2} \qquad \mathbb{V}(\widehat{eta}_0) = \sigma^2 \left(rac{1}{\mathsf{n}} + rac{\overline{\mathsf{x}}^2}{\mathsf{ns}_{\mathsf{x}}^2}
ight)$$

$$\mathbb{C}\mathit{ov}(\widehat{eta}_0, \widehat{eta}_1) = -\sigma^2 rac{\overline{\mathsf{x}}}{\mathsf{ns}_2^2}$$

Théorème (Gauss-Markov)

Pour le modèle de régression $Y = \beta_0 + \beta_1 x + \varepsilon$ et sous les hypothèses précédentes pour ε , les estimateurs $MC \ \widehat{\beta}_0, \ \widehat{\beta}_1$ sont

- des combinaisons linéaires des Yi,
- sans biais,
- de variance minimale (comparés à tous les autres estimateurs sans biais).

Distributions

des estimateurs $\widehat{eta}_0,\ \widehat{eta}_1$

$$\widehat{\beta}_i \sim \mathcal{N}(\beta_i, \mathbb{V}(\widehat{\beta}_i))$$

$$\sigma^2 \to \widehat{\sigma}^{*2}$$

$$\mathbb{V}(\widehat{eta}_i)
ightarrow \mathsf{s}^2_{\widehat{eta}_i}$$

$$\mathbf{s}_{\widehat{\beta}_1}^2 = \tfrac{\widehat{\sigma}^{*2}}{\mathit{ns}_\chi^2}; \ \mathbf{s}_{\widehat{\beta}_0}^2 = \widehat{\sigma}^{*2} \left(\tfrac{1}{\mathit{n}} + \tfrac{\bar{\chi}^2}{\mathit{ns}_\chi^2} \right)$$

$$\boxed{\frac{\widehat{\beta}_i - \beta_i}{\mathsf{s}_{\widehat{\beta}_i}} \sim \mathcal{T}(\mathsf{n}-2)}$$

loi de Student à n-2 degrés de libertés

de l'estimateur de σ^2

$$\frac{\mathsf{n}-2}{\sigma^2}\widehat{\sigma}^{*2} \sim \chi_{\mathsf{n}-2}^2$$

loi du χ^2 à n-2 degrés de libertés

Estimations par intervalle de confiance

$$\mathbb{P}\left(-t_{lpha/2} \leq rac{\widehat{eta}_i - eta_i}{s_{\widehat{eta}_i}} \leq t_{lpha/2}
ight) = 1 - lpha$$

avec $t_{\alpha/2}$ la valeur telle que $\mathbb{P}\left(T \leq t_{\alpha/2}\right) = 1 - \alpha/2$ et T de loi de Student $\mathcal{T}(\mathsf{n}-2)$

$$oxed{ egin{aligned} egin{aligned\\ egin{aligned} egin{aligne$$

Estimations par intervalle de confiance

$$\mathbb{P}\left(\chi_1^2 \leq \frac{(n-2)\widehat{\sigma}^{*2}}{\sigma^2} \leq \chi_2^2\right) = 1 - \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ avec } \chi_1^2 \text{ et } \chi_2^2 \text{ les valeurs telles que } 1 + \alpha \text{ et } \chi_1^2 \text{ et } \chi_2^2 \text{ et } \chi_2^2 \text{ et } \chi_1^2 \text{ et } \chi_2^2 \text{ et } \chi_2^2 \text{ et } \chi_1^2 \text{ et } \chi_2^2 \text{ et } \chi_2^2$$

$$\mathbb{P}(\mathit{Z} \leq \chi_1^2) = \alpha/2$$
 et $\mathbb{P}(\mathit{Z} \leq \chi_2^2) = 1 - \alpha/2$ et Z de loi χ_{n-2}^2

$$\left| Ic_{1-\alpha}(\sigma^2) = \left[\frac{(n-2)\widehat{\sigma}^{*2}}{\chi_2^2}, \frac{(n-2)\widehat{\sigma}^{*2}}{\chi_1^2} \right] \right|$$

Sommaire

- Formalisation
- 2 Estimation / estimateurs

Exemple

mesures sur 15 alligators ¹

- le poids (en livres)
- la distance entre l'arrière de la tête à l'extrémité du nez (en pouces)
- échelle logarithmique

	X	y (:-l)		
	ln (long)	ln(poids)		
1	3,87	4,87		
2	3,61	3,93		
3	4,33	6,46		
4	3,43	3,33		
5	3,81	4,38		
6	3,83	4,70		
7	3,46	3,50		
8	3,76	4,50		
9	3,50	3,58		
10	3,58	3,64		
11	4,19	5,90		
12	3,78	4,43		
13	3,71	4,38		
14	3,73	4,42		
15	3,78	4,25		

^{1.} Mendenhall, Wackerly, Scheaffer Mathematical Statistics with Applications (1990)

$$n=15\;;\; \overline{\mathbf{x}} \approx 3,76\;;\; \overline{\mathbf{y}} \approx 4,42\;;\; \mathbf{s}_{\mathbf{x}}^2 \approx 0,06\;;\; \mathbf{s}_{\mathbf{y}}^2 \approx 0,68\;;\; \mathbb{C}\mathsf{ov}_{\mathbf{x}\mathbf{y}} \approx 0,2$$

$$\widehat{\beta}_1 = \frac{\mathbb{C}\text{ov}_{xy}}{\mathbf{s}_z^2} \approx 3,43 \; ; \quad \widehat{\beta}_0 = \overline{\mathbf{y}} - \widehat{\beta}_1 \overline{\mathbf{x}} \approx -8,48$$

$$\widehat{\sigma}^{*2} = \frac{1}{13} \sum_{i=1}^{15} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2 \approx 0,02 \; ; \; s_{\widehat{\beta}_1} \approx 0,13 \; ; \; s_{\widehat{\beta}_0} \approx 0,5$$

$$t_{0,025} = 2,16$$
; $\chi_1^2 = 5,01$; $\chi_2^2 = 24,74$

$$lc_{0,95}(\beta_0) \approx [-8, 48 - 2, 16 \times 0, 5; -8, 48 + 2, 16 \times 0, 5] \approx [-9, 56; -7, 4]$$

$$lc_{0.95}(\beta_1) \approx [3, 43 - 2, 16 \times 0, 13; 3, 43 + 2, 16 \times 0, 13] \approx [3, 15; 3, 72]$$

$$lc_{0,95}(\sigma^2) \approx \left[\frac{13 \times 0,02}{24.74}, \frac{13 \times 0,02}{5.01}\right] \approx [0,01; 0,05]$$

Variable	Coefficient	Ecart-type
Intercept	-8,48	0, 5
lnLength	3,43	0, 13

$\widehat{\sigma}^*$	ddl	R^2	R^2_{adj}
0, 12	13	0,9808	0,9794

