Dynamic sampling pointnet notes

xyz

Feb 2018

Contents

1	Dee	p 3D Learning Notes 1
	1.1	potential solutions for over fitting
	1.2	Important improvements
	1.3	Theory
		1.3.1 bidxmap
		1.3.2 group sampling configuration
		1.3.3 Sparse voxel 3DCNN
		1.3.4 Data Augmentation
	1.4	batch size
		1.4.1 bs=27 vs bs=81 6
	1.5	feed elements
	1.6	model
	1.7	integration: matterport3d
	1.8	multi scales & mat 1083
	1.9	multi scales & mat 21826
	1.10	multi scales & scannet 12887
	1.11	integration: scannet
	1.12	Semantic segmentation expamples
		1.12.1 good: 1083, train, 0.946
		1.12.2 bad: 18737,eval 0.071
	1.13	point++
		1.13.1 scannet seg
	1.14	whole room global block & multi scales & scan $305 \dots 20$
	1.15	Sparse voxel net
		1.15.1 90000
		1.15.2 30000
	1.16	Charles Point++, fast distance sampling
		1.16.1 MODELNET40
	1.17	My point++
		1.17.1 MODELNET40

1 Deep 3D Learning Notes

1.1 potential solutions for over fitting

- \bullet data augmentation: rotation, different size scale
- data regulation: group norm
- \bullet dropout
- $\bullet\,$ combine Shape Net data

- more powerful network to learn more systematic information:
 - 1. use large global block size
 - 2. dynamic sampling
- smaller net

1.2 Important improvements

- Generate bxmh5 online. So the randomly missing part in each epoch is different. This maybe solve the info missing problem for sparse voxel 3d cnn, especially considering that block merging cannot be applied for voxel cnn. However, on line sampling can only solve missing problom of training, test missing still need some tricks to perform block merging.
- Check this: my usage of tf.gather_nd should cost a lot of memory, maybe too much!

1.3 Theory

1.3.1 bidxmap

1.3.2 group sampling configuration

$$steps = [0.1, 0.3, 0.9, 2.7] + [-6.3]$$

 $strides = [0.1, 0.2, 0.6, 1.8] + [-3.6]$
 $voxel\ size = [, 3, 4, 4, 3]$

principles:

(1) Alignment between different scales:

$$steps[i] = steps[i-1] + strides[i-1] * (k-1) (k = voxel \ size)$$

(2) Alignment between voxels on one scale:

$$strides[i]\%steps[i-1] == 0$$

Examples:

$$0.3 = 0.1 + 0.1 * 2 \Rightarrow voxel \; size = 3$$

$$0.2 = 0.1 * 2$$

$$0.9 = 0.3 + 0.2 * 3 \Rightarrow voxel \; size = 4$$

$$0.6 = 0.3 * 2$$

$$6.3 = 2.7 + 1.8 * 2$$
$$3.6 = 1.8 * 2$$

1.3.3 Sparse voxel 3DCNN

1.3.4 Data Augmentation

- (1.1) Rotate corrdinate reference: Rotate both point and voxel box Performed by rotating points after sampling and grouping. This should only be applied to point position (cascade 0). What if also to features (upper cascades).
- (1.2) Rotae point only, or rotate voxel box only.
 - a) It can be performed by rotating points before sampling and grouping.
 - b) If rotate angle is integral times of pi/2, it can be performed by rotating point indices inside the voxel.

Rotate voxel can be applied to all cascades.

- (2.1) Rotate the global block by the same angle
- (2.2) Rotate each voxel by seperate angle in each scale.

Since the features are calculated independently in each voxel, it should be fine to apply different rotatio angle for each voxel. It doesn't matter that the rotation center is voxel center or global block center. It alos doesn't matter that it rotates refference or only rotates voxel.

Sparse voxel 3D CNN

Two main obstacles for performing 3D convolution on point cloud are: (1) there are too many vacant points, (2) the position of points are not aligned. The key idea of sparse voxel is to perform 3DCONV on cascades from the second. Because the positions are actually almost aligned. At the same time, the vacant rate within a small block is acceptably large. Above all, it may be possible to do apply 3D-CONV within a small block.

Centres of blocks in cascades other than first one are actually aligned to the grid. So it is possible to perform 3d convolution directly. However, the average position of points inside these blocks are not aligned. Thus it is also maybe beneficial to utilise a transform net to align them.

On the other hand, there are many vacant points in the block. I am wondering if it is beneficial to set the features of vacant points by a T-net from around existing points.

Purpose of T-Net: fix number + align + till

There are some interesting problems for Transform net:

- Only depend on position or feature.
- Should be resolution invariant.
- If it should be constant for all channels.
- If it should be constant for all local aim blocks.

Reasons that we do not need the T-Net:

- 3d-conv can till features of the vacant points.
- If the base-points are not strictly aligned, add the position to feature map. Or get a special feature of positions within the block and then add of the main feature map.

Transform net:

$$(b, n, g_m, 3)$$

$$(b, n, g_m, c_1)$$

$$(b, n, g_m, c_2)$$

$$/$$
 (b, n, g_m, g_i) $/$

1.4 batch size

1.4.1 bs=27 vs bs=81

batch size: 9,27,81

data: xyz-color_1norm

model: 1AG

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_2048_0d5_1_fmn1-160_32-160_0d1_step_0d1_st

 $32_12\text{-}0d2_0d6\text{-}0d2_0d6$

Figure 1: bs=9

Figure 2: bs=27

1.5 feed elements

 $\begin{array}{l} {\rm epoch~num} = 100 \\ {\rm stride_0d1_step_0d1_bmap_nh5_2048_0d5_1_fmn1-160_32-32_12-0d2_0d6-0d2_0d6} \end{array}$

Figure 3: bs=81

model	batch size	data elements	acc	loss
1AG	9	xyz color	0.890	0.356
1AG	27	xyz color	0.920	0.240
3AG	27	xyz color	0.912	0.273
2A	27	xyz color	0.908	0.294
2AG	27	xyz color	0.902	0.293
1A	27	xyz color	0.883	0.351
1AG	81	xyz color	0.978	0.072
1AG	9	xyz	0.861	0.427
1AG	27	xyz	0.907	0.257
1AG	81	xyz	0.975	0.078
1A	27	xyzmid color	0.889	0.357
3AG	27	xyzmid color	0.933	0.193
2A	27	xyzmid color	0.939	0.177
2AG	27	xyzmid color	0.929	0.208
3AG	27	xyz xyzmid color	0.924	0.230
2A	27	xyz xyzmid color	0.898	0.317
2AG	27	xyz xyzmid color	0.908	0.280
1A	27	xyz xyzmid color	0.910	0.281
1AG	27	xyz xyzmid color	0.944	0.163
1AG	81	xyz xyzmid color	0.976	0.078
2A	81	xyz xyzmid color	0.942	0.173
3AG	81	xyz xyzmid color	0.949	0.147

- 1. large batch size is better
- 2. 1AG(0.92) > 3AG(0.912) > 2A(0.908) > 2AG(0.902) > 1A(883)

1AG is much better than 1A

1AG is a bit better than 3AG???

- 3. xyz-color is only a bit better than xyz
- 4. xyzmid-color is much better than xyz-color
- $5.\,$ xyzmid-color is normally much better than xyz-xyzmid-color ???

1.6 model

batch size: 50

data: xyz_midnorm_block-color_1norm

 $epoch_num = 600$

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-600_64_24-60_16_12-0d2_0d6_1d2-0d2_0d6_1d2

model	acc	loss
3A	0.909	0.248
3AG	0.913	0.231
4AG	0.912	0.232

batch size: 32

data: xyz_midnorm_block-color_1norm

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn6-2048_256_64-32_32_16-0d2_0d6_1d2-0d1_0d3_0d6

matterport3d

feed_data_elements:['xyz_midnorm_block', 'color_1norm']

feed_label_elements:['label_category', 'label_instance']

train data shape: [362 12800 6] test data shape: [384 12800 6]

 $\max \text{ epoch} = 500$

model	acc	loss
1AG	0.944/0.431	0.161/4.633
4AG	0.835/0.401	0.520/3.644

1.7 integration: matterport3d

$stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d2_0d6_1d2-0d2_0d2_0d6_1d2-0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_$							
	$17D_1LX_1pX_29h_2az$						
model	batch size batch num shuffle	lr ds	data elements	epoch-acc mean-std train/eval			

1aG	30/60	0.005 'xyz_midnorm_block', 'color_1norm', 'nxnynz		250-0.981
1DSaG	30/60	0.001-40 'xyz_midnorm_block', 'color_1norm', 'nxnynz'		300-0.914-0.775
1DSaG	30/60	0.001-40	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.914-0.775
1DSaG kp0.5	30/60	0.001-80 300-3e-4	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.942-0.842
1DSaG kp0.2	30/60	0.001-80 300-3e-4	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.928-0.797
1DSaG kp0.5	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.970-0.916
1DSaG kp0.2	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.966-0.924
1DSaG kp0.8	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.976-0.933 500-0.984-0.954
1aG	30/1083	0.003	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.947
1aG	30/1083	0.01	'xyz_midnorm_block', 'color_1norm'	200-0.783 500-0.791
1aG	30/1083	0.003/30 300-0.00012	'xyz_midnorm_block', 'color_1norm'	200-0.903 300-0.921
1bG	25/1083	0.001-30 100-3e-4 300-4e-5	'xyz_midnorm_block'	100-0.854 200-0.918 300-0.936
1bG	25/1083	0.001-30 100-3e-4 300-4e-5	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	100-0.914 200-0.957 300-0.966
1bG	25/1083	0.02	'xyz_midnorm_block', 'color_1norm'	200-0.655 300-0.718
1bG	25/1083	0.02	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.772 300-0.823
1bG	25/1083	0.001	'xyz'	200-0.772 90-0.553-0.210

4bG	25/1083	0.001-30 100-3e-4 200-1e-4 300-4e-5	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	100-0.752 200-0.816 300-0.832
2 1DSaG	30/1083	0.002-80	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.930-0.830/0.450 460-0.952-0.881/0.471
1aG	30/19755	0.001-30 50-7e-4 100-3e-4	'xyz_midnorm_block', 'color_1norm','nxnynz'	50-0.752/0.580 100-0.843/0.574 (NoShuf) 102-0.806/0.570 (Shufle)
1bG	25/19755	0.001-30	'xyz_midnorm_block', 'color_1norm','nxnynz'	38-0.719/0.587 80-0.823/0.583 (NoShuf) 81-0.782/0.587 (Shufle)
1aG	30/19755	0.02	'xyz_midnorm_block', 'color_1norm'	56-0.562
1aG	30/19755	0.02 127-0.00483	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	87-0.616 127-0.686
1bG	25/18737	0.001 N	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.682/0.509 70-0.858/0.509
1bG	25/18737	0.001 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.738/0.573 70-0.876/0.563 90-0.897 /0.561
4bG	25/18737	0.001 Y	'xyz_midnorm_block', 'nxnynz'	24-0.576/0.545
4bG	25/18737	0.001 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.594/0.569
1DSaG	30/18737	0.002-80 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	20-0.688-0.394/0.428-0.224 36-0.742/0.395
1DSaG	30/18737	0.007-80 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	20-0.725-0.453/0.435-0.206 38-0.783/0.396

- Conclusion:
 1: nxnynz helps a lot
 2: 1bG is much deeper than 1aG, why worse than 1aG
 3: learning rate is important, cannot be too large

1.8 multi scales & mat 1083

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/17D_1LX_1pX_29h_2az $stride_0d1_step_0d1_bxmh5-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_1d6_2_fmn4-480_80_24-80_20_10-12800_24-80_20_10-12800_24-80_20_10-12800_24-80_20_10-12800_24-80_20_10-12800_24-80_24-80_20_24-80_24$ bxmh5: $0d2_0d6_1d2-0d2_0d6_1d2-3A1$ model bs/bn lrelements loss epoch-pacc-cacc train/eval decay weight indrop4bG_111 20/1083 2-40 xyz_midnorm_blEck-110-0.898-0.763 color_1norm-160-0.931-0.827 nxnynz 300-0.967-0.915 4bG_444 15/1083 3-40 xyz_midnorm_blEck-60-0.729-0.614 color_1norm- $100 \hbox{-} 0.857 \hbox{-} 0.721$ nxnynz $160 \hbox{-} 0.920 \hbox{-} 0.834$ 260-0.952-0.890 300-0.958-0.913 4bG_444 15/1083 2-40 xyz_midnorm_blEck-60-0.778-0.608 color_1norm-100-0.878-0.758 nxnynz 160-0.930-0.838 260-0.957-0.901 300-0.964-0.912 4bG_144 18/1083 2-40 xyz_midnorm_blEck-60-0.786-0.637 color_1norm-100-0.876-0.767 nxnynz $160 \hbox{-} 0.926 \hbox{-} 0.820$ 260-0.959-0.885 300-0.962-0.906 20/1083 4bG_114 2-40 xyz_midnorm_blEck-60-0.772-0.611 color_1norm-100-0.874-0.764 nxnynz 160-0.926-0.851 260-0.958-0.893 /par 300-0.963-0.904 3aG_444 45/1083 2-40 xyz_midnorm_blEck-60-0.893-0.737 color_1norm-100-0.908-0.786 /par 160-0.934-0.833 nxnynz 260-0.950-0.868 /par 300-0.952-0.8822aG_144 30/1083 2-40 xyz_midnorm_blEck-60-0.890-0.754 color_1norm-100-0.922-0.820 /par 160-0.942-0.858: nxnynz 260-0.957-0.897 /par 300-0.960-0.911

1.9 multi scales & mat 21826

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

 $0d2_0d6_1d2-0d2_0d6_1d2-3A1\\ eval:\ 17D_1LX_1pX_29h_2az$

model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval	
		decay		weight		
				in drop		
4bG_114	20/1080	1-30	xyz midnorm	Е	40-0.784-0.545/0.579-0.451	
			color	N	80-0.883-0.699/0.584-0.439	
			nxnynz		140-0.925-0.795/0.575-0.429	
4bG_111	20/1080	2-30	xyz midnorm	E	40-0.737-0.489/0.587-0.412	
			color	N	80-0.836-0.614/0.582-0.411	
			nxnynz		95-0.867/0.588	
4bG_144	20/1200	2-30	xyz midnorm	Е	40-0.761-0.543/0.601-0.416	
			color	N	80-0.864-0.693/0.602-0.426	
			nxnynz		95-0.888/0.597	

Conclusion:

⁽¹⁾ Nein 114 is better than 111

1.10 multi scales & scannet 12887

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

 $0d2_0d6_1d2-0d2_0d6_1d2-3A1$

eval: test

C vai. ocse					
model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval
		decay		weight	
				in	
				drop	
2aG_144	30/420	2-30	xyz midnorm	Е	40-0.833-0.546/0.686-0.89
				N	100-0.926-0.727/0.683-0.326
3aG_144	48/260	2-30	xyz midnorm	Е	40-0.841-0.530/0.668-0.346
				N	100-0.924-0.709/0.673-0.327
					200-0.949-0.782/0.673-0.332
					300 - 0.955 - 0.802 / 0.671 - 0.330
4bG_111	22-580	2-30	xyz midnorm	Е	60-0.738-0.434/0.706-0.344
				N	100-0.796-0.506/0.699-0.315
					180-0.863-0.589/0.695-0.308
4bG_111	22-580	7-30	xyz midnorm	Е	60-0.705-0.378/0.684-0.362
				N	
4bG_144	18-700	2-30	xyz midnorm	Е	40-0.714-0.470/0.6910.433
				N	100-0.794-0.481/0.682-0.393
					160-0.849-0.582/0.676-0.362
4aG_1a4	55-220	2-30	xyz midnorm	CN	40-0.775-0.482/0.654-0.304
				N	100-0.877-0.637/0.661-0.298
					160-0.901-0.690/0.660-0.311
					220-0.908-0.707/0.655-0.334
4aG_1a4	55-220	2-30	xyz midnorm	Е	40-0.819-0.527/0.684-0.333
				N	100-0.923-0.706/0.681-0.304

Conclusion:

- (1) 3aG is much better than 4bG. Potential reasons:(a) 4bG is too wide and deep, so that needs more time to train. (b) The batch size of 4bG is too small
- (2) nein 144 seems is not better than 111
- (3)Learning rate 0.002 is better than 0.007
- (4)Loss weight CN does not help

1.11 integration: scannet

$stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-256_48_16-56_8_8-0d2_0d6_1d2-0d2_0d6_0d2_0d6_0d2_0d6_0d2_0d6_0d2-0d2_0d6_0d2_0d6_0d2-0d2_0d6_0d2_0d2_0d6_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2$								
scannet train								
model	loss: E,N,C input drop (No)	batch size batch num shuffle	lr ds	data elements	epoch-point ac-class ac train/eval			
1bG	Е	25/12887 test Y	0.001 40	xyzmid	23-0.732-0.326/0.664-0.260 25-0.746-0.340/0.669-0.273			
1bG	N	25/12887 Y	0.001 40	xyzmid	25-0.733-0.390/0.666-0.252			
1bG	С	25/12887 Y	0.001 40	xyzmid	25-0.703-0.356/0.655-0.252			
1bG	CN	25/12887 Y	0.001 40	xyzmid	25-0.681-0.366/0.611-0.237			
1DSaG	E idp9	30/12887 Y	0.003 80	xyzmid	40-0.738-0.376/0.513-0.228 90-0.832/0.496			
1bG	Е	25/13091 train_300 Y	0.002 80	xyzmid	60-0.765-0.389/0.700-0.252			
1bG	Е	25/13091 Y	0.003 80	xyzmid	10-0.646/0.689 60-0.753-0.349/0.691-0.234 100-0.833-0.480/0.672-0.261			
1bG	CN	25/13091 Y	0.002 80	xyzmid	60-0.738-0.409/0.670-0.237			
1bG	E idp9	25/13091 Y	0.003 80	xyzmid	10-0.641/0.585 16-0.646/0.633			
1DSaG	Е	30/13091 Y	0.003 80	xyzmid	40-0.794-0.456/0.420-0.154 100-0.872-0.602/0.417-0.153			
Conclusion:								
4bG	CN	25/2998- 3521 Y	0.001 40	xyzmid	142-0.726-0.445/0.625-0.242			
4bG	Е	25/2998- 3521 Y	0.001 40	xyzmid	145-0.792-0.506/0.656-0.257			

1.12 Semantic segmentation expamples

1.12.1 good: 1083, train, 0.946

```
log: log-model_1bG-gsbb_3B1-bs25-lr1-ds_30-xyz_midnorm_block-color_1norm-nxnynz-12800-mat_1083
    model: 1bG
    sampling & grouping:
    stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_1d2
    batch size: 25
    learning rate: 0.001000
    decay_epoch_step: 30
    matterport3d
    feed_data_elements:['xyz_midnorm_block', 'color_1norm', 'nxnynz']
    feed_label_elements:['label_category', 'label_instance']
    train data shape: [ 1083 12800 9]
```


 $Figure~4:~17DRP5sb8fy_1_2_a946$

Figure 5: $17DRP5sb8fy_0_25_a946$

1.12.2 bad: 18737,eval 0.071

model: 1bG

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_1d2

batch size: 25

learning rate: 0.001000 decay_epoch_step: 50

epoch 0 train IsShuffleIdx: True

epoch 0 train IsShuffleIdx: True matterport3d feed_data_elements:['xyz_midnorm_block', 'color_1norm', 'nxnynz'] feed_label_elements:['label_category', 'label_instance'] train data shape: [18737 12800 9]

 $Figure \ 6: \ qoi_r1Q_r47_rPc_rqf_2_3_a0d071 \ (raw,gt,pred,err,crt)$

1.13 point++

1.13.1 scannet seg

	each room as a block, total 40 block							
batch size batch num	lr ds	data elements	epoch-point ac-class ac train/eval/eval whole scene					
30/40	0.001	xyzmid	200-0.675/0.757-0.54/0.799-0.52					
25	0.001	xyzmid	200-0.689/0.787-0.556/0.815-0.517i					

1.14 $\,$ whole room global block & multi scales & scan 305

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

0d2_0d6_1d2-0d2_0d6_1d2-3A1 eval: 17D 1LX 1pX 29h 2az

evai: 17D_1LX_1pX_29n_2az							
model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval		
		decay		weight			
				in drop			
5bG_114	6/40	2-30	xyz midnorm	Е	100-0.805-0.645		
			color	N	200-0.865-0.708		
					300-0.880-0.773		
5aG_114	2/140	2-30	xyz midnorm	Е	100-0.802-0.619		
			color	N	200-0.873-0.694		
					300-0.895-0.784		
5aG_114	2/140	2-30	xyz midnorm	Е	100-0.807-0.687		
			color	idp5	200-0.877-0.729		
					300-0.895-0.778		

Conclusion:

⁽¹⁾ Nein 114 is better than 111

1.15 Sparse voxel net

1.15.1 90000

nh5: 90000_gs-3d6_-6d3/

bxmh5: 90000_gs-3d6_-6d3_fmn1444-6400_2400_320_32-32_16_32_48-0d1_0d3_0d9_2d7-

 $0d1_0d2_0d6_1d8-pd3-mbf-4A1$

eval: test

model	bs/bn	lr-	elements	norm in-	loss	epoch-pacc-cacc train/eval
		decay		net	weight	
				aug	in drop	
5VaG_114	16/113	1-50	xyz mid	No	Num lw	20-0.764-0.556/0.645-0.362
					dp:3N5	40-0.864-0.695/0.675-0.351
					N shuffle	100-0.935-0.842/0.682-0.380
						200-0.961-0.897/0.671-0.374
						300-0.969-0.920/0.676-0.360
5VaG_114	30/40	2-40	xyz mid	No	Num lw	20-0.605-0.443/0.577-0.381
			color		dp:466	40-0.668-0.490/0.544-0.372
					Y shuffle	100-0.795-0.581/0.653-0.384
						120-0.805-0.594/0.676-0.377
5VaG_114	30/40	2-40	xyz mid	No	Num lw	20-0.677-0.520/0.607-0.373
	,		color		dp:4N6	40-0.801-0.624/0.659-0.373
					Y shuffle	100-0.906-0.754/0.687-0.368
						120-0.911-0.776/0.692-0.421
5VaG_114	30/40	2-40	xyz mid	No	Num lw	20-0.614-0.457/0.566-0.344
	,		color		dp:N66	40-0.685-0.500/0.552-0.356
					Y shuffle	60-0.741-0.552/0.650-0.357
						80-0.770-0.564/0.649-0.392
						98-0.797-/0.675
5VaG_114	30/40	2-40	xyz mid	Mid	Num lw	100-0.746/0.649
			color		dp:555	300-0.823-0.608/0.682-0.377
					Y shuffle	·
5VaG_114	39/40	2-40	xyz mid	Mid	Num lw	40-0.839-0.649/0.656-0.353
	,		color		dp:5N5	100-0.918-0.771/0.681-0.381
					Y shuffle	,
5VaG_114	36/40	1-40	xyz mid	Mid	Num lw	40-0.833-0.655/0.628-0.329
			color		dp:NN5	100-0.916-0.772/0.682-0.339
					Y shuffle	178-0.941/0.686
5VaG_114	7/240	2-40	xyz mid	Mid	Num lw	40-0.664/0.577
	'		color	Group	dp:NN5	100-0.816-0.586
				Norm	Y shuffle	150-0.869-0.592
5VaG_114	9	2-40	xyz mid	Rotate	Num lw	40-0.787-0.620/0.662-0.401
			color	Ref	dp:NN5	100-0.907-0.755/0.699-0.410
					Y shuffle	200-0.939-0.816/0.6990.430
						300-0.950-0.845/0.691-0.430
-						

Conclusion:

Mid norm in sub block seems worse than no.

The infuence of input drop seems not obvious.

Dropout of cnn (0.5) makes the net really hard to train. Seems no good for overfitting.

Group norm is poor.

$1.15.2 \quad 30000$

1.10.2 00	000					
bxmh5:	30000	_gs-2d43	3d4_fmn1444-	-2048_1024_1	28_24-48_32_	48_27-0d1_0d4_1_2d2-
0d1_0d2_0d	l6_1d2-pd3-m	abf-4B1				
eval: test						
Void point	id deleted					
model	bs	lr-	elements	norm in-	loss	epoch-pacc-cacc train/eval
		decay		net	weight	
				aug	in drop	
5VaG_114	9	2-40	xyz mid	Rotate	Num lw	20-0.749/0.645
			color	Ref	dp:5N5	30-0.810/0.705
					Y shuffle	40-0.870/0.744
						80-0.917-0.737/0.7540.422
						120-0.929-0.765
						200-0.953-0.774
						300-0.962/0.774
				0.954-0.041 acc	histgram: [0.00	00e+00 0.000e+00 0.000e+00 0.000e+00 3.084e-
	973e-02 8.668e-0 s pre/rec/IOU: 0			90000M points	ave/std: 0.954	0.041
	/rec/IOU : 0.82					70 0 70 0 77 0 74 0 00 0 04 0 57 0 0
class_rec: -0	.00, 0.90, 0.93	, 0.96, 0.91	1, 0.94, 0.98, 0	.98, 0.95, 0.92	, 0.98, 0.96, 0	.79, 0.79, 0.77, 0.71, 0.80, 0.84, 0.57, 0.8 .97, 0.94, 0.96, 0.94, 0.97, 0.96, 0.96, 0.9
<pre>class_IOU: -0 number(K):</pre>						.78, 0.76, 0.76, 0.69, 0.78, 0.82, 0.56, 0.8 880, 631, 2163, 815, 113, 462, 432, 276
						rta,count, door,windo,showe,refri,pictu,cabi
eval[200-79]	t(d,c):[4.0 11.	6 81.8] los	ss: 22.747 acc:	0.774-0.179 acc	: histgram: [0.0	007 0.007 0.011 0.015 0.038 0.064 0.141 0.2
oval[200, 70]	t(d c):[4 0 11	6 01 01 los	5. 22 747 255.	0 772 0 179 266	· bistasam: [0 /	005 0.006 0.012 0.013 0.042 0.072 0.148 0.2
weighted clas	s pre/rec/IOU:	0.822 0.77	'2 0.703 N=28.	.290000M points		
	e/rec/IOU : 0.42			0 43 0 57 0 S	7 0 44 0 52	0.11, 0.42, 0.20, 0.07, 0.28, 0.33, 0.03,
class_rec: -0	0.00, 0.88, 0.92	2, 0.68, 0.5	2, 0.30, 0.51,	0.38, 0.55, 0.2	0, 0.36, 0.38,	0.03, 0.30, 0.06, 0.00, 0.15, 0.16, 0.00,
class_IOU: -0 number(K):						0.02, 0.22, 0.05, 0.00, 0.11, 0.13, 0.00, 222, 243, 675, 100, 16, 94, 54,
classname: un	ann, wall,floor	chair,tabl,				curta,count, door,windo,showe,refri,pictu,c
Model saved i	n file: model.c	kpt-200	20			
Conclusion	:					

1.16 Charles Point++, fast distance sampling

1.16.1 MODELNET40

config	epoch-train acc/eval acc-eval cls
	acc
batch_size=32, decay_rate=0.7, decay_step=200000,	4-0.746/0.819-0.748
learning_rate=0.001, log_dir='log', max_epoch=251,	10-0.802/0.848-0.788
model='pointnet2_cls_ssg', momentum=0.9, nor-	40-0.886/0.875-0.858
mal=False, num_gpus=2, num_point=1024, opti-	60-0.916/0.892-0.859
mizer='a dam	

1.17 My point++

After fix shuffle problem

1.17.1 MODELNET40

	merging. Rep	T -		1		
model	bs	lr	elements	norm in-	loss	epoch-pacc-cacc train/eval
		bn de-	group pos	net	weight	
		cay		aug	in drop	
3m	32	1-30	xyz-mid	mid, Ro-	E, NN5	1-0.355/0.375
	40 after	5-5	-	tate Ref		4-0.504/0.544
	epoch					10-0.603/0.640
	100					30-0.742/0.759
						50-0.798/0.804
						60-0.834/0.823
						80-0.869/0.844
						100-0.893/0.847
3m	32	1-30	xyz-mid	mid, Ro-	E, NN5	10-0.636/0.684
		7-7	-	tate Ref		50-0.851/0.826
3m	32	1-30	xyz	mid, Ro-	E, NN5	1-0.589/0.629
		5-5	_	tate Ref		2-0.648/0.680
						4-0.713/0.714
						10-0.807/0.761
						30-0.942/0.795
						60-0.982/0.804
3m	36	1-30	xyzg	Rotate	E, NN5	1-0.707/0.775
		7-7	bc	Ref	, , , , , , , , , , , , , , , , , , ,	2 - 0.744/0.804
						4-0.785/0.817
						10-0.831/0.826
						30-0.906/0.857
						60-0.967/0.852
3m	36	1-30	xyzg	Rotate	E, NN5	1-0.704/0.754
		7-7	mean	Ref	, , , , , , , , , , , , , , , , , , ,	2-0.747/0.781
						4-0.783/0.810
						10-0.839/0.835
						60-0.969/0.865
3m	36	1-30	xyzrsg	Rotate	E, NN5	10-0.844/0.830
		7-7	mean	Ref	, , , , , , , , , , , , , , , , , , ,	60-0.978/0.868
3m	36	1-30	xyzrsg,	Rotate	E, NN5	10-0.887/0.881
		7-7	nxnynz	Ref	,	60-0.985/0.890
			mean			
bxmh5·4	 096_gs3_3_fmn1	444-1024		12 0d4-0d1 0	d2-nd3-2M	2
	merging. Rep			u=_0u1_0u1_0	PGO 2111	-
3m	28	1-30	xyzg	Rotate	E, NN5	1-0.698/0.795
		7-7	mean	Ref		10-0.834/0.853
						60-0.962/0.874
3m	28	1-30	xyzg	Rotate	E, NN5	1-0.703/0.786
		7-7	bc	Ref	,	10-0.832/0.847
						60-0.957/0.867
3m	28	1-30	xyzrsg	Rotate	E, NN5	1-0.695/0.764
	= 5	7-7	mean	Ref	,,	10-0.840/0.847
						60-0.976/0.880
3m	28	1-30	xyzrsg,	Rotate	E, NN5	1-0.747/0.814
J111	20	7-7	nxnynz	Ref	2, 1110	10-0.882/0.879
	1	1 ' '	mean	1001		60-0.985/0.897

Conclusion:

⁽⁰⁾ The performance of pointnet++ based on farest distance sampling is better. The reason