Lecture 27 - Relación entre f, f', f''

Nota 1 (Test de la segunda derivada). 1. Si f'(c) = 0 y f'' < 0, entonces f tiene un máximo local en x = c.

2. Si f'(c) = 0 y f'' > 0, entonces f tiene un mínimo local en x = c.

Ejemplo 1. Utilice el test de la segunda derivada para ubicar los valores extremos de $y = x^3 - 12x$.

Ejemplo 2. Encuentre intervalos crecientes y decrecientes, valores extremos, intervalos de concavidad hacia arriba y hacia abajo y puntos de inflexión. Luego, haga un bosquejo de la gráfica de la función para $f(x) = x^4 - 4x^3 + 12$.

Ejemplo 3. Utilice el gráfico para estimar cuándo f'(x) y f''(x) con negativas, cero o positivas.

Figure 1:

Ejemplo 4. Utilice el siguiente gráfico de f'(x) para determinar, para f, máximos y mínimos locales, cuándo la función crece o disminuye, puntos de inflexión, e intervalos de concavidad hacia arriba y abajo. Realice un bosquejo de f(x).

Figure 2:

Ejemplo 5. f es una función continua en [0,4]. Realice un bosquejo del gráfico con la siguiente información.

х	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Figure 3: