# Improved Classical Cryptanalysis of SIKE in Practice

Craig Costello Patrick Longa Michael Naehrig Joost Renes Fernando Virdia

PKC 2020

- Supersingular Isogeny Key Encapsulation (SIKE)
  - → https://sike.org/
- ▶ Round-2 candidate in NIST standardization

- Supersingular Isogeny Key Encapsulation (SIKE)
  - → https://sike.org/
- ▶ Round-2 candidate in NIST standardization
- Cryptanalysis important, recent works include:

- Supersingular Isogeny Key Encapsulation (SIKE)
  - ⇒ https://sike.org/
- ▶ Round-2 candidate in NIST standardization
- Cryptanalysis important, recent works include:
  - (1) Classical cryptanalysis by Adj et al.<sup>1</sup>
  - (2) Quantum cryptanalysis by Jaques, Schanck and Schrottenloher<sup>23</sup>

<sup>1</sup>canadians.

<sup>&</sup>lt;sup>2</sup>IS19.

<sup>3</sup> IS20.

- Supersingular Isogeny Key Encapsulation (SIKE)
  - ⇒ https://sike.org/
- ▶ Round-2 candidate in NIST standardization
- Cryptanalysis important, recent works include:
  - (1) Classical cryptanalysis by Adj et al.<sup>1</sup>
  - (2) Quantum cryptanalysis by Jaques, Schanck and Schrottenloher<sup>23</sup>
- ▶ **Today:** Further analysis of *classical* attacks on *SIKE*

<sup>&</sup>lt;sup>1</sup>canadians.

<sup>&</sup>lt;sup>2</sup>IS19.

<sup>3</sup>IS20



Isom. classes of supersingular curves /  $\mathbb{F}_{p^2}$ 

- (1) All classes of curves form a connected graph
- (2)  $\approx p/12$  nodes, each has  $\ell + 1$  outgoing isogenies for prime  $\ell$



















#### **Brute-force**

Time:  $O(1 \cdot 2^{e_2-1})$ 

Mem: *O*(1)

























A set  $S = \{0, ..., N-1\}$  and functions  $h_0, h_1 : S \to T$ 

### MitM problem

Find  $x, y \in S$  such that  $h_0(x) = h_1(y)$ 

<sup>4</sup>vOW99.

A set  $S = \{0, ..., N-1\}$  and functions  $h_0, h_1 : S \to T$ 

### MitM problem

Find  $x, y \in S$  such that  $h_0(x) = h_1(y)$ 

▶ Define a family  $\{f_n\}_{n\in\mathbb{N}}$  of functions

$$f_n: S^* \to S^*, \quad S^* = S \times \{0, 1\}$$
  
 $(z, b) \mapsto g_n(h_b(z))$ 

► The  $\{g_n\}_{n\in\mathbb{N}}$  are "random" (e. g. SHA-3 domain sep. n)

<sup>4</sup>vOW99.

A set  $S = \{0, ..., N-1\}$  and functions  $h_0, h_1 : S \to T$ 

### MitM problem

Find  $x, y \in S$  such that  $h_0(x) = h_1(y)$ 

▶ Define a family  $\{f_n\}_{n\in\mathbb{N}}$  of functions

$$f_n: S^* \to S^*$$
,  $S^* = S \times \{0,1\}$   
 $(z,b) \mapsto g_n(h_b(z))$ 

- ► The  $\{g_n\}_{n\in\mathbb{N}}$  are "random" (e. g. SHA-3 domain sep. n)
- For every *n* have a golden collision  $f_n(x, 0) = f_n(y, 1)$

<sup>4</sup>vOW99.

A set  $S = \{0, ..., N-1\}$  and functions  $h_0, h_1 : S \to T$ 

### MitM problem

Find  $x, y \in S$  such that  $h_0(x) = h_1(y)$ 

▶ Define a family  $\{f_n\}_{n\in\mathbb{N}}$  of functions

$$f_n: S^* \to S^*$$
,  $S^* = S \times \{0, 1\}$   
 $(z, b) \mapsto g_n(h_b(z))$ 

- ► The  $\{g_n\}_{n\in\mathbb{N}}$  are "random" (e. g. SHA-3 domain sep. n)
- For every *n* have a golden collision  $f_n(x,0) = f_n(y,1)$
- ▶ But for every n have many other collisions ( $\approx N/2$ )

<sup>4</sup>vOW99.

A set  $S = \{0, ..., N-1\}$  and functions  $h_0, h_1 : S \to T$ 

### MitM problem

Find  $x, y \in S$  such that  $h_0(x) = h_1(y)$ 

▶ Define a family  $\{f_n\}_{n\in\mathbb{N}}$  of functions

$$f_n: S^* \to S^*$$
,  $S^* = S \times \{0, 1\}$   
 $(z, b) \mapsto g_n(h_b(z))$ 

- ► The  $\{g_n\}_{n\in\mathbb{N}}$  are "random" (e. g. SHA-3 domain sep. n)
- For every *n* have a golden collision  $f_n(x, 0) = f_n(y, 1)$
- ▶ But for every n have many other collisions ( $\approx N/2$ )

 $\implies$  MitM reduces to golden collision search in any of the  $f_n$ 

<sup>4</sup>vOW99.

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

The algorithm on a set  $S^*$  of size N and memory size w;

1. Define distinguishedness property for  $\theta = \sqrt{w/N} \in (0,1]$ 

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

- 1. Define distinguishedness property for  $\theta = \sqrt{w/N} \in (0,1]$
- 2. Randomly sample  $z \in S^*$

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

- 1. Define distinguishedness property for  $\theta = \sqrt{w/N} \in (0,1]$
- 2. Randomly sample  $z \in S^*$
- 3. Compute  $f_n(z)$ ,  $f_n(f_n(z))$ , ... until distinguished

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

- 1. Define distinguishedness property for  $\theta = \sqrt{w/N} \in (0,1]$
- 2. Randomly sample  $z \in S^*$
- 3. Compute  $f_n(z)$ ,  $f_n(f_n(z))$ , ... until distinguished
- 4. If new, store in memory and goto 2

### van Oorschot-Wiener

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

The algorithm on a set  $S^*$  of size N and memory size w;

- 1. Define distinguishedness property for  $\theta = \sqrt{w/N} \in (0,1]$
- 2. Randomly sample  $z \in S^*$
- 3. Compute  $f_n(z)$ ,  $f_n(f_n(z))$ , ... until distinguished
- 4. If new, store in memory and goto 2
- 5. If not new, check for golden collision. If not, store and goto 2

### van Oorschot-Wiener

#### Golden collision search

Given  $f_n$  (for fixed n) find the golden collision

The algorithm on a set  $S^*$  of size N and memory size w;

- 1. Define distinguishedness property for  $\theta = \sqrt{w/N} \in (0,1]$
- 2. Randomly sample  $z \in S^*$
- 3. Compute  $f_n(z)$ ,  $f_n(f_n(z))$ , ... until distinguished
- 4. If new, store in memory and goto 2
- 5. If not new, check for golden collision. If not, store and goto 2
- 6. If found 10w distinguished points, try next n

The set 
$$S=\{0,\ldots,\sqrt{2^{e_2}}-1\}$$
 and (family of) random functions 
$$f_n:z\in S^*\mapsto \text{AES-CBC}_n(j(E_i/\langle P_i+[z]Q_i\rangle))$$

The set 
$$S=\{0,\ldots,\sqrt{2^{e_2}}-1\}$$
 and (family of) random functions 
$$f_n:z\in S^*\mapsto \text{AES-CBC}_n(j(E_i/\langle P_i+[z]Q_i\rangle))$$

The set 
$$S = \{0, \dots, \sqrt{2^{e_2}} - 1\}$$
 and (family of) random functions 
$$f_n : z \in S^* \mapsto \text{AES-CBC}_n(j(E_i/\langle P_i + [z]Q_i\rangle))$$
$$= \text{"Start from } E_i,$$

The set 
$$S = \{0, \dots, \sqrt{2^{e_2}} - 1\}$$
 and (family of) random functions 
$$f_n : z \in S^* \mapsto \text{AES-CBC}_n(j(E_i/\langle P_i + [z]Q_i\rangle))$$

$$= \text{"Start from } E_i,$$

$$\text{compute isogeny walk corresponding to } z,$$

```
The set S=\{0,\ldots,\sqrt{2^{e_2}}-1\} and (family of) random functions f_n:z\in S^*\mapsto \mathrm{AES\text{-}CBC}_n(j(E_i/\langle P_i+[z]Q_i\rangle)) =\text{``Start from }E_i\text{'}, \text{compute isogeny walk corresponding to }z\text{'}, \text{apply AES with key }n\text{ to }j\text{-invariant.''}
```

```
The set S=\{0,\ldots,\sqrt{2^{e_2}}-1\} and (family of) random functions f_n:z\in S^*\mapsto \mathrm{AES\text{-}CBC}_n(j(E_i/\langle P_i+[z]Q_i\rangle)) =\text{"Start from }E_i, compute isogeny walk corresponding to z, apply AES with key n to j-invariant."
```

(Here  $E_0$  is the *starting curve* and  $E_1$  the *public key*.)

|         |          |       | $\log \#Queries \text{ to } f_n$ |  |  |
|---------|----------|-------|----------------------------------|--|--|
| $e_2$   | $\log w$ | Exp.  |                                  |  |  |
| <u></u> | 10g w    | SIDH  |                                  |  |  |
| 32      | 9        | 23.20 |                                  |  |  |
| 36      | 10       | 25.70 |                                  |  |  |
| 40      | 11       | 28.20 |                                  |  |  |
| 44      | 13       | 30.20 |                                  |  |  |
|         |          |       |                                  |  |  |

 $<sup>^{5}</sup>$  canadians.

|       |          | $\log \#Queries$ to $f_n$ |             |  |  |
|-------|----------|---------------------------|-------------|--|--|
| $e_2$ | $\log w$ | Exp.                      | [canadians] |  |  |
|       | log w    | SIDH                      | SIDH        |  |  |
| 32    | 9        | 23.20                     | 24.38       |  |  |
| 36    | 10       | 25.70                     | 27.25       |  |  |
| 40    | 11       | 28.20                     | 29.01       |  |  |
| 44    | 13       | 30.20                     | 30.91       |  |  |
|       |          |                           |             |  |  |

 $<sup>^{5}</sup>$  canadians.

|                       |          |       | $\log \#Queries$ to $f_n$ |       |  |  |  |
|-----------------------|----------|-------|---------------------------|-------|--|--|--|
| 00                    | $\log w$ | Exp.  | [canadians]               | Ours  |  |  |  |
| <i>e</i> <sub>2</sub> | log w    | SIDH  | SIDH                      | SIDH  |  |  |  |
| 32                    | 9        | 23.20 | 24.38                     | 23.29 |  |  |  |
| 36                    | 10       | 25.70 | 27.25                     | 25.74 |  |  |  |
| 40                    | 11       | 28.20 | 29.01                     | 28.33 |  |  |  |
| 44                    | 13       | 30.20 | 30.91                     | 30.37 |  |  |  |
|                       |          |       |                           |       |  |  |  |

 $<sup>^{5}</sup>$  canadians.

SIKE parameter choices + Equivalence classes

 $\implies$  *N* decreases by factor 6

|       |          | $\log \#Queries \text{ to } f_n$ |             |       |  |  |  |
|-------|----------|----------------------------------|-------------|-------|--|--|--|
| 60    | $\log w$ | Exp.                             | [canadians] | Ours  |  |  |  |
| $e_2$ |          | SIDH                             | SIDH        | SIDH  |  |  |  |
| 32    | 9        | 23.20                            | 24.38       | 23.29 |  |  |  |
| 36    | 10       | 25.70                            | 27.25       | 25.74 |  |  |  |
| 40    | 11       | 28.20                            | 29.01       | 28.33 |  |  |  |
| 44    | 13       | 30.20                            | 30.91       | 30.37 |  |  |  |
|       |          |                                  |             |       |  |  |  |

 $<sup>^{5}</sup>$  canadians.

SIKE parameter choices + Equivalence classes

 $\implies$  *N* decreases by factor 6

|       |          |       | $\log \# Queries \text{ to } f_n$ |             |       |  |
|-------|----------|-------|-----------------------------------|-------------|-------|--|
| $e_2$ | $\log w$ | Exp.  |                                   | [canadians] | Ours  |  |
|       | log w    | SIDH  | SIKE                              | SIDH        | SIDH  |  |
| 32    | 9        | 23.20 | 19.32                             | 24.38       | 23.29 |  |
| 36    | 10       | 25.70 | 21.82                             | 27.25       | 25.74 |  |
| 40    | 11       | 28.20 | 24.32                             | 29.01       | 28.33 |  |
| 44    | 13       | 30.20 | 26.32                             | 30.91       | 30.37 |  |
|       |          |       |                                   |             |       |  |

<sup>&</sup>lt;sup>5</sup>canadians.

SIKE parameter choices + Equivalence classes

 $\implies$  *N* decreases by factor 6

|       |          |       | $\log \# \mathbf{Queries}$ to $f_n$ |             |       |       |  |
|-------|----------|-------|-------------------------------------|-------------|-------|-------|--|
| 00    | $\log w$ | Exp.  |                                     | [canadians] | Οι    | ırs   |  |
| $e_2$ |          | SIDH  | SIKE                                | SIDH        | SIDH  | SIKE  |  |
| 32    | 9        | 23.20 | 19.32                               | 24.38       | 23.29 | 19.58 |  |
| 36    | 10       | 25.70 | 21.82                               | 27.25       | 25.74 | 21.89 |  |
| 40    | 11       | 28.20 | 24.32                               | 29.01       | 28.33 | 24.40 |  |
| 44    | 13       | 30.20 | 26.32                               | 30.91       | 30.37 | 26.42 |  |
|       |          |       |                                     |             |       |       |  |

 $<sup>^{5}</sup>$  canadians.

SIKE parameter choices + Equivalence classes

 $\implies N$  decreases by factor 6

|                |          |       | $\log \# \mathbf{Queries}$ to $f_n$ |             |       |       |  |  |
|----------------|----------|-------|-------------------------------------|-------------|-------|-------|--|--|
| e <sub>2</sub> | $\log w$ | Ex    | æp.                                 | [canadians] | Oı    | ars   |  |  |
| 6 <u>2</u> 10g | log w    | SIDH  | SIKE                                | SIDH        | SIDH  | SIKE  |  |  |
| 32             | 9        | 23.20 | 19.32                               | 24.38       | 23.29 | 19.58 |  |  |
| 36             | 10       | 25.70 | 21.82                               | 27.25       | 25.74 | 21.89 |  |  |
| 40             | 11       | 28.20 | 24.32                               | 29.01       | 28.33 | 24.40 |  |  |
| 44             | 13       | 30.20 | 26.32                               | 30.91       | 30.37 | 26.42 |  |  |
| 56             | 17       | 37.20 | 33.32                               | _           | _     | 33.38 |  |  |

 $<sup>^{5}</sup>$  canadians.

- ▶ C library building on SIKE submission
  - ⇒ Fast arithmetic
  - $\implies$  Speed-up oracle queries  $f_n$

- C library building on SIKE submission
  - → Fast arithmetic
  - $\implies$  Speed-up oracle queries  $f_n$
- $\triangleright$  Naïve setup: single instance with access to memory of size w
  - → No significant overhead

- C library building on SIKE submission
  - → Fast arithmetic
  - $\implies$  Speed-up oracle queries  $f_n$
- ightharpoonup Naïve setup: single instance with access to memory of size w
  - → No significant overhead
- ▶ Real setup: *m* instances with shared memory of size *w* 
  - $\implies$  Complexity  $O(2^{3(e_2-4)/4}/(m\sqrt{w}))$

- C library building on SIKE submission
  - → Fast arithmetic
  - $\implies$  Speed-up oracle queries  $f_n$
- ▶ Naïve setup: single instance with access to memory of size *w* 
  - → No significant overhead
- ▶ Real setup: *m* instances with shared memory of size *w* 
  - $\implies$  Complexity  $O(2^{3(e_2-4)/4}/(m\sqrt{w}))$
  - → Number of memory accesses becomes bottleneck

- C library building on SIKE submission
  - → Fast arithmetic
  - $\implies$  Speed-up oracle queries  $f_n$
- ▶ Naïve setup: single instance with access to memory of size *w* 
  - → No significant overhead
- ▶ Real setup: *m* instances with shared memory of size *w* 
  - $\implies$  Complexity  $O(2^{3(e_2-4)/4}/(m\sqrt{w}))$
  - ⇒ Number of memory accesses becomes bottleneck
  - $\implies$  Have to synchronize n across instances

- C library building on SIKE submission
  - → Fast arithmetic
  - $\implies$  Speed-up oracle queries  $f_n$
- ▶ Naïve setup: single instance with access to memory of size *w* 
  - → No significant overhead
- ▶ Real setup: *m* instances with shared memory of size *w* 
  - $\implies$  Complexity  $O(2^{3(e_2-4)/4}/(m\sqrt{w}))$
  - ⇒ Number of memory accesses becomes bottleneck
  - $\implies$  Have to synchronize n across instances
  - ⇒ We built only *multi-core*, steps towards true *distributed*

- C library building on SIKE submission
  - ⇒ Fast arithmetic
  - $\implies$  Speed-up oracle queries  $f_n$
- ▶ Naïve setup: single instance with access to memory of size *w* 
  - → No significant overhead
- ▶ Real setup: *m* instances with shared memory of size *w* 
  - $\implies$  Complexity  $O(2^{3(e_2-4)/4}/(m\sqrt{w}))$
  - ⇒ Number of memory accesses becomes bottleneck
  - $\implies$  Have to synchronize n across instances
  - ⇒ We built only *multi-core*, steps towards true *distributed*
  - ⇒ Instances have (small) *local memory*, use this

### Parallelized van Oorschot-Wiener



<sup>&</sup>lt;sup>6</sup>Experiments run on 2x Intel(R) Xeon(R) E5-2690 v4 at 2.60 GHz with 14 cores each

### Collision checking

- $(z,\overline{z},d)$   $z \bullet$
- $(y, \overline{z}, e)$

*y* •

- $\bullet \bar{z}$
- ullet  $\overline{z}$









#### Collision checking

$$(z, \overline{z}, d) \quad z \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \overline{z}$$

$$(y, \overline{z}, e) \qquad y \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \overline{z}$$

Additional assumption: can store all intermediate points locally

$$(z,\overline{z},d)$$
  $z \bullet \bullet \bullet \cdots \bullet \overline{z}$   $(y,\overline{z},e)$   $y \bullet \cdots \bullet \overline{z}$ 

#### Collision checking

$$(z, \overline{z}, d) \quad z \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \overline{z}$$

$$(y, \overline{z}, e) \qquad y \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \overline{z}$$

Additional assumption: can store all intermediate points locally

$$(z,\overline{z},d)$$
  $z \bullet \bullet \bullet \cdots \bullet \overline{z}$   $(y,\overline{z},e)$   $y \bullet f_n \bullet \overline{z}$ 

### Collision checking

$$(z, \overline{z}, d) \quad z \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \cdots \qquad \stackrel{f_n}{\longrightarrow} \stackrel{\overline{z}}{\longrightarrow} \overline{z}$$

$$(y, \overline{z}, e) \qquad y \stackrel{f_n}{\longrightarrow} \stackrel{\cdots}{\longrightarrow} \stackrel{\overline{z}}{\longrightarrow} \overline{z}$$

Additional assumption: can store all intermediate points locally

$$(z,\overline{z},d) \quad z \bullet \qquad \bullet \qquad \bullet \qquad \cdots \qquad \bullet \ \overline{z}$$

$$(y,\overline{z},e) \qquad \qquad y \bullet \xrightarrow{f_n} \qquad \cdots \qquad \bullet \xrightarrow{f_n} \bullet \ \overline{z}$$

#### Collision checking

$$(z, \overline{z}, d) \quad z \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \stackrel{f_n}{\longrightarrow} \cdots \qquad \stackrel{f_n}{\longrightarrow} \stackrel{\overline{z}}{\longrightarrow} \overline{z}$$

$$(y, \overline{z}, e) \qquad y \stackrel{f_n}{\longrightarrow} \stackrel{\cdots}{\longrightarrow} \overline{z}$$

**Additional assumption:** can store *t* intermediate points locally

$$(z,\overline{z},d)$$
  $z \bullet \bullet \bullet \cdots \bullet \overline{z}$ 

$$(y,\overline{z},e)$$
  $y \bullet f_n \bullet \cdots \bullet f_n \bullet \overline{z}$ 







ightharpoonup Fix precomputation depth  $\Delta$  (could vary per device)



- Fix precomputation depth  $\Delta$  (could vary per device)
- ▶ Isogenies of degree  $2^{2(e_2-1)-\Delta}$
- ► Table size of  $2 \cdot 3 \cdot 2^{\Delta}$  elements in  $\mathbb{F}_{p^2}$



- Fix precomputation depth  $\Delta$  (could vary per device)
- ▶ Isogenies of degree  $2^{2(e_2-1)-\Delta}$
- ► Table size of  $2 \cdot 3 \cdot 2^{\Delta}$  elements in  $\mathbb{F}_{p^2}$
- ► Make sure to store the right basis of  $2^{e_2-\Delta}$ -torsion..

### Other optimizations

- ► Multi-target attacks
- ► Compressing distinguished points "leading bits are zero"

### Thanks!

