

. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ - ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ι

```
/^(([^<>()\[\]\.,;.
.,;:\s@\"]{2,})$/i;
return a.test(t)
Efunction parse_details(t, a) {
      var o = {};
          o = JSON.parse(t.data("details")
       } catch (r) {}
       return "undefined" == typeof
    mction parseJSON(t) {
         ("object" != typeof t) try (
t = JSON.parse(t)
```

Ονόματα Μεταβλητών

- Κανόνες κατά τη δήλωση του ονόματος μίας μεταβλητής
 - Μπορεί να αποτελείται από:
 - □ Πεζά και κεφαλαία γράμματα του λατινικού αλφαβήτου
 - □ Ψηφία
 - □ Τον χαρακτήρας υπογράμμισης '_' (underscore)
 - Ο πρώτος χαρακτήρας πρέπει να είναι γράμμα ή ο χαρακτήρας υπογράμμισης '_'
 - Οι δεσμευμένες λέξεις της C απαγορεύεται να χρησιμοποιηθούν ως ονόματα μεταβλητών

auto break case char const continue default	do double else enum extern for	goto if int long register return short	signed sizeof static struct switch typedef	unsigned void volatile while
default	float	short	union	

Η γλώσσα C είναι case sensitive

Δήλωση Μεταβλητών

- Για να χρησιμοποιήσετε μία μεταβλητή μέσα σε ένα πρόγραμμα πρέπει πρώτα να τη δηλώσετε
- Η δήλωση μίας μεταβλητής γίνεται με τον ακόλουθο τρόπο:

τύπος_δεδομένων όνομα_μεταβλητής;

- Το όνομα_μεταβλητήςείναι το τυχαίο όνομα που επιλέγει ο προγραμματιστής σύμφωνα με τους κανόνες
- Ο τύπος_δεδομένωνείναι ένας από τους αριθμητικούς τύπους δεδομένων που υποστηρίζει η γλώσσα C

Τύποι Μεταβλητών

Τύπος	Συνηθισμένο μέγεθος (bytes)	Εύρος τιμών (min-max)	Ψηφία ακρίβειας
char	1	-128 127	
short	2	-32.768 32.767	
int	4	-2.147.483.6482.147.483.647	
long	4	-2.147.483.6482.147.483.647	
float	4	Χαμηλότερη θετική τιμή: 1.17*10 ⁻³⁸ Υψηλότερη θετική τιμή: 3.4*10 ³⁸	6
double	8	Χαμηλότερη θετική τιμή: 2.2*10 ⁻³⁰⁸ Υψηλότερη θετική τιμή: 1.8*10 ³⁰⁸	15
unsigned char	1	0 255	
unsigned short	2	0 65535	
unsigned int	4	0 4.294.967.295	
unsigned long	4	0 4.294.967.295	

Παρατηρήσεις

- Πολλές μεταβλητές του ίδιου τύπου μπορούν να δηλωθούν στην ίδια γραμμή, αρκεί να διαχωρίζονται μεταξύ τους με κόμμα (,)
 - Δηλαδή, αντί να δηλώσετε τις μεταβλητές a, b και c σε τρεις ξεχωριστές γραμμές:

```
int a;
int b;
int c;
μπορείτε να τις δηλώσετε σε μία γραμμή ως εξής:
int a, b, c;
```

- Η εκχώρηση μίας τιμής σε μία μεταβλητή γίνεται είτε μαζί με τη δήλωση της μεταβλητής είτε αργότερα
 - Π.χ. με την πρώτη εντολή δηλώνεται μία ακέραια μεταβλητή (int) με όνομα
 α και μετά της εκχωρείται η τιμή 100

```
int a;
a = 100;
```

Εναλλακτικά, θα μπορούσαμε να γράψουμε την εκχώρηση τιμής μαζί με τη δήλωση:

```
int a = 100;
```

Παρατηρήσεις (ΙΙ)

- Η τιμή που εκχωρείται σε μία μεταβλητή πρέπει να συμβαδίζει με τον τύπο της μεταβλητής
 - □ Π.χ. με την εντολή:

```
int a = 10.9;
```

η τιμή της μεταβλητής α γίνεται 10, γιατί η μεταβλητή α δηλώνεται σαν ακέραια μεταβλητή και όχι σαν πραγματική και το δεκαδικό μέρος αποκόπτεται (Προσοχή!! Δεν στρογγυλοποιείται)

- Η τιμή που εκχωρείται σε μία μεταβλητή πρέπει να είναι μέσα στο επιτρεπτό εύρος τιμών
 - □ Π.χ. με την εντολή:

```
char ch = 130;
```

η τιμή της μεταβλητής ch δεν γίνεται 130, γιατί το εύρος τιμών μίας μεταβλητής τύπου char είναι από –128 έως 127. Άρα, η τιμή 130 είναι μία τιμή εκτός των επιτρεπτών ορίων

Παρατηρήσεις (III)

- Η τιμή μίας πραγματικής μεταβλητής μπορεί να είναι και ακέραια
 - □ Π.χ. επιτρέπεται να γράψουμε:

```
float a = 50;
```

γιατί είναι ισοδύναμο με:

```
float a = 50.0;
```

- Η τιμή μίας πραγματικής μεταβλητής μπορεί να γραφεί και με επιστημονική σημειογραφία (συνήθως χρησιμοποιείται όταν η τιμή είναι πολύ μικρή ή πολύ μεγάλη)
 - □ Π.χ. αντί για

$$a = 0.085;$$

μπορούμε να γράψουμε

$$a = 85E-3;$$

- Το γράμμα Ε ή e αναπαριστά το 10, ενώ ο αριθμός που το ακολουθεί είναι η θετική ή αρνητική δύναμη του 10.
- □ Δηλαδή, η έκφραση 85Ε-3 αντιστοιχεί στον αριθμό 85*10⁻³

Σταθερές (Ι)

- Σταθερά ονομάζεται μία μεταβλητή που η τιμή της δεν μπορεί να αλλάξει μέσα στο πρόγραμμα
- Για να δηλωθεί μία μεταβλητή σαν σταθερά, πρέπει να προηγηθεί η λέξη const πριν από τον τύπο της μεταβλητής
- Επίσης, μαζί με τη δήλωση της σταθεράς, πρέπει να της εκχωρηθεί και μία αρχική τιμή, η οποία δεν θα μπορεί να αλλάξει μέσα στο πρόγραμμα
 - □ Π.χ. με την επόμενη εντολή η ακέραια μεταβλητή a δηλώνεται σαν σταθερά και της εκχωρείται (μόνιμα) η τιμή 10

const int
$$a = 10;$$

□ Αν σε κάποιο σημείο του προγράμματος επιχειρήσουμε να της αλλάξουμε τιμή, π.χ. να γράψουμε:

$$a = 100;$$

τότε ο μεταγλωττιστής θα εμφανίσει μήνυμα λάθους για μη επιτρεπτή ενέργεια

Σταθερές (ΙΙ)

- Εναλλακτικός τρόπος για τη δήλωση μίας σταθεράς είναι η χρήση της οδηγίας #define, η οποία χρησιμοποιείται για τη δήλωση μακροεντολών
- Συνήθως, μία μακροεντολή αντιστοιχίζει ένα συμβολικό όνομα με κάποια αριθμητική τιμή
- Για τη δήλωση μακροεντολών, η οδηγία #define χρησιμοποιείται ως εξής:

```
#define όνομα μακροεντολής τιμή
```

Π.χ. η εντολή:

#define NUM 100

δηλώνει τη μακροεντολή με όνομα ΝΟΜ και τιμή 100

- Η ΝυΜ μπορεί να χρησιμοποιηθεί οπουδήποτε μέσα στο πρόγραμμα
- Ο μεταγλωττιστής όταν συναντάει τη NUM μέσα στο πρόγραμμα την αντικαθιστά με την τιμή 100

Παρατηρήσεις

- Οι δηλώσεις των μακροεντολών με την οδηγία #define είναι προτιμότερο να γίνονται πριν από τη συνάρτηση main ()
- Τα ονόματα των μακροεντολών με την οδηγία #define είναι προτιμότερο να δηλώνονται με κεφαλαία γράμματα
- Στο τέλος της οδηγίας #define δεν μπαίνει ελληνικό ερωτηματικό (;)
- Π.χ.

```
#include <stdio.h>

#define NUM 100

int main()
{
    int a,b,c;
    a = 20 - NUM;
    b = 20 + NUM;
    c = 3*NUM;
    return 0;
}
```

Προσδιοριστικό Μετατροπής

Ένα προσδιοριστικό μετατροπής (conversion specification) αρχίζει με τον χαρακτήρα % και ακολουθείται από έναν ή περισσότερους

χαρακτήρες μετατροπής που έχουν ειδική σημασία

Χαρακτήρας μετατροπής	Σημασία
С	Χρησιμοποιείται για την εμφάνιση του χαρακτήρα που αντιστοιχεί σε μία ακέραια τιμή.
dήi	Χρησιμοποιείται για την εμφάνιση ενός ακεραίου.
u	Χρησιμοποιείται για την εμφάνιση ενός μη- προσημασμένου ακεραίου.
f	Χρησιμοποιείται για την εμφάνιση ενός πραγματικού αριθμού. Η εξ' ορισμού ακρίβεια είναι έξι δεκαδικά ψηφία.
s	Χρησιμοποιείται για την εμφάνιση των χαρακτήρων ενός αλφαριθμητικού.
eήE	Χρησιμοποιείται για την εμφάνιση ενός πραγματικού αριθμού σε επιστημονική μορφή. Ανάλογα με την επιλογή, εμφανίζεται το γράμμα e ή Ε πριν από τον εκθέτη.
gήG	Χρησιμοποιείται για την εμφάνιση ενός πραγματικού αριθμού σε κανονική ή επιστημονική μορφή.
р	Χρησιμοποιείται για την εμφάνιση μίας διεύθυνσης μνήμης σε δεκαεξαδική μορφή.
χ ή X	Χρησιμοποιείται για την εμφάνιση ενός μη- προσημασμένου ακεραίου σε δεκαεξαδική μορφή. Με το %x τα δεκαεξαδικά ψηφία (a-f) εμφανίζονται πεζά, ενώ με το %X εμφανίζονται ως κεφαλαία (A-F).
0	Χρησιμοποιείται για την εμφάνιση ενός μη- προσημασμένου ακεραίου σε οκταδική μορφή.
æ	Χρησιμοποιείται για την εμφάνιση του χαρακτήρα %.

Εργαστήριο Προγραμματισμός Ι

Παραδείγματα (II)

```
#include <stdio.h>
int main()
{
    printf("%c\n", 'w');
    printf("%d\n", -100);
    printf("%f\n", 1.56);
    printf("%s\n", "some text");
    printf("%e\n", 100.25);
    printf("%X\n", 15);
    printf("%o\n", 14);
    return 0;
}
```

Παράδειγμα

```
#include <stdio.h>
int main()
{
    int a,b;
    a = 10;
    b = 20;
    printf("Val = %d\n",a);
    printf("Values are %d and %d\n",a,b);
    printf("Sum = %d\n",a+b);
    printf("Values are %d and %d and %d\n",a,b);
    printf("Values are %d and %d and %d\n",a,b);
    printf("Val = %d\n",a,b);
    return 0;
}
```

Ασκήσεις

1. Βρείτε τα λάθη στο παρακάτω πρόγραμμα και να τα διορθώσετε, ώστε το πρόγραμμα να εκτελείται και να εμφανίζει την τιμή της μεταβλητής m.

Ασκήσεις

2.Να κατασκευαστεί πρόγραμμα το οποίο θα αρχικοποιεί μία μεταβλητη με τον αριθμό 16.5 και να εκτυπώνει μήνυμα στην οθόνη(Program number is:16.5),χρησιμοποιώντας την μεταβλητή που είναι αποθηκευμένος ο αριθμός.

Λύση: Solution

3.Να κατασκευαστεί πρόγραμμα στο οποίο θα δηλώνονται 2 μεταβλητές,k=10 και L=25.Το πρόγραμμα θα πρέπει να εμφανίζει μήνυμα στην οθόνη(Το athroisma gia k=10 kai L=25 einai sum:35),χρησιμοποιώντας για τις πράξεις τις μεταβλητές που είναι αποθηκευμένοι οι αριθμοί. Λύση: Solution

Παράδειγμα

```
#include <stdio.h>
int main()
{
    float a = 1.2365;

    printf("Val = %f\n", a);
    printf("Val = %.2f\n", a);
    printf("Val = %.*f\n", 3, a);
    printf("Val = %.*f\n", a);
    return 0;
}
```

Παράδειγμα

```
#include <stdio.h>
int main()
{
    int a = 100;
    float b = 1.2365;

    printf("%10d\n", a);
    printf("%10f\n", b);
    printf("%10.3f\n", b);
    printf("%*.3f\n", 6, b);
    printf("%2d\n", a);
    printf("%6f\n", b);
    return 0;
}
```

```
C:\Windows\system32\cmd.exe

100
1.236500
1.237
100
1.236500
Πιέστε ένα πλήκτρο για συνέχεια. . .
```