Complexity Classes and Complexity in LATEX Cheat Sheet

 $Antonis\ Antonopoulos$

Various Symbols

$\mathcal{O}\left(\cdot\right)$	\b0{}	The big O asymptotic Notation
\mathcal{C}	\C	An arbitrary Complexity Class
coC	\cC	The complement of an arbitrary Complexity Class: $coC = \{L \mid \bar{L} \in C\}$
${\mathcal F}$	\F	An arbitrary Function Complexity Class
$co\mathcal{F}$	\cF	The Complement of \mathcal{F}
$\{0, 1\}$	\zo	
$\{0,1\}^n$	\zon	The set of strings of length n produced using $\{0,1\}$ as alphabet
$\{0,1\}^*$	\zos	The set of strings produced using $\{0,1\}$ as alphabet
Σ^*	\Ss	The set of strings produced using Σ as alphabet
$\{C_n\}_{n\in\mathbb{N}}$	\Cirfam	The arbitrary family of circuits

62 Essential Complexity Classes

Deterministic & Nondeterministic Classes

$\mathbf{DTIME}[t(n)]$	$DTIME\{t(n)\}$	Languages accepted by DTMs in $\mathcal{O}\left(t(n)\right)$ time
$\mathbf{NTIME}[t(n)]$	$\TIME\{t(n)\}$	Languages accepted by NTMs in $\mathcal{O}(t(n))$ time
$\mathbf{DSPACE}[s(n)]$	$DSPACE\{t(n)\}$	Languages accepted by DTMs using $\mathcal{O}(s(n))$ space
NSPACE[s(n)]	$\NSPACE\{t(n)\}\$	Languages accepted by NTMs using $\mathcal{O}(s(n))$ space
P	\cP	Languages accepted by DTMs in poly time:
		$\mathbf{P} = \cup_{n \in \mathbb{N}} \mathbf{DTIME}[n^c]$
NP	\NP	Languages accepted by NTMs in poly time:
		$\mathbf{NP} = \cup_{n \in \mathbb{N}} \mathbf{NTIME}[n^c]$
$co\mathbf{NP}$	\cNP	The complement of NP
EXP	\EXP	Languages accepted by DTMs in exponential time:
		$\mathbf{EXP} = \mathbf{DTIME}[2^{poly(n)}]$
${f E}$	\E	Languages accepted by DTMs in exponential time
		with linear exponent: $\mathbf{E} = \mathbf{DTIME}[2^{\mathcal{O}(n)}]$
NEXP	\NEXP	Languages accepted by NTMs in exponential time:
		$\mathbf{NEXP} = \mathbf{NTIME}[2^{poly(n)}]$
${f L}$	\cL	Languages accepted by DTMs using log space:
		$\mathbf{L} = \mathbf{DSPACE}[\log n]$
NL	\NL	Languages accepted by NTMs using log space:
		$L = NSPACE[\log n]$
$co\mathbf{NL}$	\cNL	The complement of NL
\mathbf{SL}	\SL	Languages accepted by symmetric TMs using log space
PSPACE	\PSPACE	Languages accepted by DTMs using poly space:
		$\mathbf{PSPACE} = \cup_{n \in \mathbb{N}} \mathbf{DSPACE}[n^c]$
NPSPACE	\NPSPACE	Languages accepted by NTMs using poly space:
		$\mathbf{NPSPACE} = \cup_{n \in \mathbb{N}} \mathbf{NSPACE}[n^c]$
Σ_2^p	\Stwo	The second level of the Polynomial Hierarchy:
-		$\Sigma_2^p = \mathbf{NP^{NP}}$
Π_2^p	\Ptwo	The complement of the second level of the
-		Polynomial Hierarchy: $\Pi_2^p = co\mathbf{NP^{NP}}$

Θ_2^p	\Ttwo	Another notation for $\mathbf{P}^{\mathbf{NP}[\log n]}$.
$\mathbf{P^{ ilde{\mathbf{N}}}}^{\mathbf{P}[\log n]}$	\Ttwod	Languages accepted in determnistic polynomial-time using
		an NP -oracle with at most $\mathcal{O}(\log n)$ queries allowed.
Σ_k^p	$\Sp\{k\}$	The k -th level of the Polynomial Hierarchy:
70		$\Sigma_k^p = \mathbf{NP}^{\Sigma_{k-1}^p}$
Π_k^p	$\P\{k\}$	The complement of the k -th level of the Polynomial
		Hierarchy: $\Pi_k^p = co\mathbf{NP}^{\Sigma_{k-1}^p}$ P with an Σ_{k-1}^p oracle
Δ_k^p	$\Dp\{k\}$	P with an $\sum_{k=1}^{p}$ oracle
$\overrightarrow{\mathbf{PH}}$	\PH	The Polynomial Hierarchy: $\mathbf{PH} = \bigcup_{k \in \mathbb{N}} \Sigma_k^p$
\mathbf{FP}	\FP	The function analogue of P
FNP	\FNP	The function analogue of NP
TFNP	\TFNP	The total function analogue of NP
$\mathbf{FP^{NP}}^{[\log n]}$	\FTtwod	The function analogue of $\mathbf{P}^{\mathbf{NP}[\log n]}$

Randomized Classes

$\mathbf{BPTIME}[t(n)]$	\BPTIME{t(n)}	Languages accepted by PTMs with two-sided bounded error in $\mathcal{O}(t(n))$ time
$\mathbf{RTIME}[t(n)]$	$\TIME\{t(n)\}$	Languages accepted by PTMs with one-sided error in $\mathcal{O}(t(n))$ time
BPP	\BPP	Languages accepted by PTMs with two-sided bounded error in poly time: $\mathbf{BPP} = \bigcup_{n \in \mathbb{N}} \mathbf{BPTIME}[n^c]$
RP	\RP	Languages accepted by PTMs with one-sided error in poly time: $\mathbf{RP} = \bigcup_{n \in \mathbb{N}} \mathbf{RTIME}[n^c]$
$co\mathbf{RP}$	\cRP	The complement of RP
\mathbf{RL}	\RL	Languages accepted by PTMs with one-sided error using log space
ZPP	\ZPP	Languages accepted by PTMs without error in the answer, in <i>expected</i> polynomial time
PP	\PP	Languages accepted by PTMS with (unbounded) two-sided error in polynomial time

Non-Uniform Classes

$\mathbf{SIZE}[f(n)]$	$SIZE\{f(n)\}$
$\mathbf{P_{/poly}}$	\Ppoly
\mathbf{NC}^i	$\NC\{i\}$
NC	
\mathbf{AC}^i	$\AC\{i\}$
\mathbf{AC}	
\mathbf{TC}^i	\TC{i}
\mathbf{SC}^i	\SC{i}
$\mathbf{AC}^0[m]$	$\ACz\{m\}$
\mathbf{ACC}^0	\ACCz
\mathbf{RNC}	\RNC

Languages accepted by non-uniform circuit families of size f(n)Languages accepted by non-uniform circuit families of poly size

Interactive Proof Classes

IP	\IP	The class of languages having an Interactive Proof Syste
		with a probabilistic verifier.
$\mathbf{A}\mathbf{M}$	\AM	The class of Arthur-Merlin games (Interactive Proof
		Systems using public coins)
$co\mathbf{AM}$	\cAM	The complement of AM
MA	\MA	The class of Merlin-Arthur games (similar to AM , but
		now Merlin plays first)
$co\mathbf{M}\mathbf{A}$	\cMA	The complement of MA
PCP[r(n), q(n)]	$\PCP\{r(n)\}\{q(n)\}\$	The class of languages with probabilistic checkable proofs
		using $\mathcal{O}(r(n))$ random bits, and querying $\mathcal{O}(q(n))$ bits of
		the proof

Counting Classes

$\#\mathbf{P}$	\sP
$\oplus \mathbf{P}$	\oddP
\mathbf{UP}	\UP
\mathbf{FewP}	\FewP
$\operatorname{\mathbf{Mod}}_k\mathbf{P}$	\mbox{modP}

Subclass	es of T	'F'NP
PLS	\PLS	The class of function problems that are guaranteed to have
		a solution because of the lemma that "every finite directed
		acyclic graph has a sink."
\mathbf{PPP}	\PPP	The class of function problems that are guaranteed to have
		a solution because of the Pigeonhole Principle.
PPA	\PPA	The class of function problems that are guaranteed to have
		a solution because of the lemma that "all graphs of
		maximum degree 2 have an even number of leaves."
\mathbf{PPAD}	\PPAD	Same as PPA , except now the graph is directed, and we're
		asked to find either a source or a sink.

Relations & Reductions

\subseteq	\cs	The inclusion relation
\subsetneq	\cps	The <i>proper</i> inclusion relation
⊄	\cns	The non-inclusion relation
\leq_m^p	\kred	The Karp Reduction
\leq_T^p	\tred	The Cook Reduction
\leq_T^p \leq_{tt}^p	\ttred	The Truth-Table Reduction
\leq_l	\lred	The Log-Space Reduction

Common Problems

SAT	\SAT	The Satisfiability Problem
#SAT	\sSAT	The counting version of SAT
PERMANENT	\PREM	The Permanent Problem
TSP	\TSP	The Travelling Salesman Problem
GI	\GI	The Graph Isomorphism Problem
GNI	\GNI	The Graph Non-Isomorphism Problem
FACTORING	\FACT	The Problem of Factoring
HALTING PROBLEM	\HP	The Halting Problem
TQBF	\TQBF	The True Quantified Boolean Formula Problem

Quantifier Characterizations

∃+	\explus	The overwhelming majority quantifier
(Q/Q')	\qcc{Q}{Q'}	The quantifier notation of complexity classes, where
		Q and Q' are (sequences of) quantifiers

Operators on Complexity Classes

$\mathcal{N}\!\cdot\!\mathcal{C}$	$\opN{\C}$	The nondeterministic operator
$\Delta \cdot \mathcal{C}$	\opD{\C}	The difference operator $(\Delta \cdot \mathcal{C} = \mathcal{C} \cap co\mathcal{C})$
$\mathcal{BP} \cdot \mathcal{C}$	\BP{\C}	The (two-sided) bounded probabilistic operator
$\mathcal{P}\!\cdot\!\mathcal{C}$	$\protect\$	The (two-sided) probabilistic operator
$\mathcal{R} \cdot \mathcal{C}$	$\protect\$	The (one-sided) probabilistic operator
$\mathrm{Almost}\mathcal{C}$	$\Delta m{\C}$	The Almost operator:
		$Almost \mathcal{C} = \{ L \mid \Pr_{A \subseteq \{0,1\}^*} \left[L \in \mathcal{C}^A \right] = 1 \}$

Other (more rare) Classes

$\mathbf{E}\mathbf{E}$	\EE	
SUBEXP	\SUBEXP	
QuasiP	\QuasiP	
$\mathbf{EXP}_{/\mathbf{poly}}$	\EXPpoly	
$\mathtt{pseudo}_{\mathcal{C}}\mathcal{C}'$	$\pseudo{\C}{\C'}$	
S_2^p	\Sytwo	The second level of the Symmetric Hierarchy
$S_k^p \\ S_k^p$	\Syp{k}	The k -th level of the Symmetric Hierarchy

^{*}To use the Complexity commands mentioned above, you have to include the CC.tex command definitions (http://www.corelab.ntua.gr/~aanton/CC.tex).
*Many of the definitions are taken from Scott Aaronson's Complexity Zoo!