

Object detection in thermal images

STUDENT: GUSTAVO SILVA

SUPERVISOR: LUÍS CORTE-REAL (PROF. DR.) SECOND SUPERVISOR: PEDRO CARVALHO (PROF. DR.) INSITUTIONIAL RESPONSIBLE: ANDRÉ FERREIRA (ENG.)

Summary

- Context and Motivation
- 2. State of the art
 - Multimodal sensor fusion
 - 2. Analyzing the vehicle
 - 3. Analyzing people inside the vehicle
- 3. Proposed solution
 - 1. Description
 - 2. Camera setup
 - 3. Datasets
- 4. Validation
 - 1. Face/smoking detection
 - 2. Respiratory/heart rate estimation
 - 3. Emotion recognition
- 5. Work plan

Context and Motivation

Context

Objective: develop software to analyze the interior of vehicles using images captured by, but not limited to, cameras that operate in the infrared region of the electromagnetic spectrum.

The electromagnetic spectrum with sub-divided infrared spectrum.

Example of thermal image of a vehicle occupant.

Motivation

Disadvantages of RGB images:

- Require sun or artificial lighting
- Prone to variations in:
 - Light intensity
 - Color balance
 - Light direction
- Cannot detect some events:
 - Overheating objects
 - Human breath

Why monitor the vehicle interior?

- Register rule-breaking activities
- Improve passenger comfort
- Trigger an alert if a child is left alone inside
- Estimate passenger satisfaction

State of the art

Multimodal sensor fusion

EARLY FUSION

Combines the different types of imagery before passing the data to a classifier. Examples:

Weighted Fusion

Band combination

LATE FUSION

Merging the final results of multiple separate classifiers into a single stronger classifier.

- Ensemble methods
 - Bagging
 - Stacking
 - Voting
 - **Boosting**

Analyzing the vehicle

Previous attempts found in literature:

- Detect defects in vehicle components
- Measure temperature to improve passenger comfort

Defective defogger captured with a thermal camera.

Analyzing people inside the vehicle

Face detection

TRADITIONAL

Learning-based:

Viola-Jones

Low-level:

- Image segmentation according to pixel temperature
- Horizontal/vertical projection
- Curves with a head-like shape
- ...

DEEP LEARNING

- R-CNN
- Fast-R-CNN
- Faster-R-CNN
- SSD
- YOLO
- YOLOv2

Require a large dataset and no pretrained models exist for thermal images

Emotion recognition

Some datasets are available:

- IRIS Thermal/Visible Face Database
- I.Vi.T.E
- Natural Visible and Infrared facial Expression Database (NVIE)
- Kotani Thermal Facial Emotion (KTFE) dataset

They contain 3 to 6 expressions – happiness, sadness, surprise, fear, anger, disgust

Breath

Thermal cameras are able to detect temperature variations in the nasal area. Two possible ROIs:

- Nostril requires the camera to be positioned below
- Philtrum camera can be positioned in front of the face

Challenge: Trepidation and head movement. Some solutions include creating a thermal gradient map and using Median Flow on the KLT tracker.

Detecting breath in the nostril.

Heart rate

- Thermal
 - 1. Measure temperature variation in ROIs
 - Estimate rate with Fourier Transform
- RGB
 - Apply Eulerian Video Magnification or other spatiotemporal filter
 - 2. Measure color variation in ROIs
 - Estimate rate with Fourier Transform

Challenge: Handle large motions and low-resolution cameras.

Example ROIs for heart rate estimation.

Blush

Why? Identify anxiety, embarassement or deception.

How? Mainly a ROI tracking challenge – the eyes can be a reference point.

S. Yue et al. obtained 77% TPR and 60% TNR with an Argus P7225 (320x240).

Locating ROI for blush detection.

Smoking

- No previous attempts on the detection of the act of smoking.
- The peripheral of the coal burns at around **500°C**.
- Challenges:
 - False positives (e. g. sun reflection)
 - Occlusions (cigar/cigarette lowered or moved outside the window)

Thermal image of a person smoking.

Proposed solution

Proposed solution

Focus on occupants, tackling the following:

- Occupant detection (face detection)
- Emotion recognition
- Respiratory rate
- Smoking
- Heart rate

High-level architecture

Possible cameras

Model	Res.	Waveband	Temp. Range	FPS	FOV	RGB res.
Argus P7225	320x240	8 - 14μm	-40ºC 200ºC	60	24ºx18º	-
AXIS Q1922	640x480	8 - 14μm	unspecified	30	57ºx44º	-
FLIR A20M	320x240	7.5 - 13μm	-20ºC 250ºC	60	25ºx19º	-
FLIR A40M	320x240	7.5 - 13μm	-40ºC 2000ºC	60	24ºx18º	-
FLIR Lepton 25º	80x60	8 - 14μm	0ºC 120ºC	8.6	25ºx19º	-
FLIR Lepton 50º	80x60	8 - 14μm	0ºC 120ºC	8.6	51ºx38º	-
FLIR Lepton 3	160x120	8 - 14μm	0ºC 450ºC	8.8	56ºx42º	-
FLIR ONE Gen II	160x120	8 - 14μm	-20ºC 120ºC	8.7	46ºx35º	640x480
FLIR ONE	80x60	8 - 14μm	-20ºC 120ºC	8.7	50ºx38º	1440x1080
FLIR ONE Pro	160x120	8 - 14μm	-20ºC 400ºC	8.7	55ºx43º	1440x1080
FLIR SC640	640x480	7.5 - 13μm	-40ºC 1500ºC	30	45ºx34º	-
NEC R300	640x480	8 - 14μm	-40ºC 2000ºC	60	22ºx17º	-
TESTO 880-3	160x120	8 - 14μm	-20ºC 350ºC	9	32ºx24º	-

Camera setup

Camera placed in front of the occupant, aiming directly at the face.

- Advantages:
 - Accurate face detection
 - Easier emotion recognition
 - Heart rate measurement
- Disadvantages:
 - Lower robustness in respiratory pattern estimation
 - One camera required per person

Validation

Face/smoking detection

Intersection over Union (IoU)

$$IoU(B_1, B_2) = \frac{B_1 \cap B_2}{B_1 \cup B_2}$$

Average Precision

$$Average\ Precision = \frac{\textit{Number of true positives}}{\textit{Number of true positives} + \textit{Number of false positives}}$$

Mean Average Precision (mAP)

$$mAP(classes) = \frac{\sum_{c \in classes} AveragePrecision(c)}{|classes|}$$

Area Under Curve (AUC)

$$AUC(r) = \int_{0\%}^{100\%} Precision(r) * dr$$

Respiration/heart rate estimation

Mean Squared Error (MSE)

$$MSE = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n}$$

Accuracy

$$Accuracy = \frac{Predicted\ Rate}{Ground\ truth\ rate}$$

Emotion recognition

Categorical cross-entropy (H)

$$H_{y'}(y) = -\sum_{i} y'_{i} * \log(y_{i})$$

Work plan

Dissertation

Development Face detection

Validation

Tuning

Documentation

Website updating Thesis writting

Custom dataset building

Smoking detection

Heart rate estimation

Performance comparison

Provisional delivery deadline

Datasets

References

- Gade, R., & Moeslund, T. B. (2014). Thermal cameras and applications: A survey. *Machine Vision and Applications*, 25(1), 245–262. https://doi.org/10.1007/s00138-013-0570-5
- Corneanu, C. A., Simón, M. O., Cohn, J. F., & Guerrero, S. E. (2016). Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(8), 1548–1568. https://doi.org/10.1109/TPAMI.2016.2515606
- Munz, E. D. (2017). Psychotherapie in der Psychiatrie. Nervenheilkunde (Vol. 36). https://doi.org/10.1007/s13398-014-0173-7.2
- Bennett, S., Harake, T. N. El, Goubran, R., & Knoefel, F. (2017). Adaptive Eulerian Video Processing of Thermal Video: An Experimental Analysis. *IEEE Transactions on Instrumentation and Measurement*, 66(10), 2516–2524. https://doi.org/10.1109/TIM.2017.2684518