# MONETARY NON-NEUTRALITY IN A MULTI-SECTOR MENU COST MODEL

NAKAMURA & STEINSSON (2010)

Discussion ECON 210C - Paula Donaldson

#### TIME VS. STATE-DEPENDENT PRICING MODELS

- Time-dependent pricing models assume the frequency of price changes is constant over time  $\to$  Calvo pricing
- State-dependent pricing models assume the frequency of price changes is a function of the state of the economy → Menu cost models

#### Menu Cost Models

- In menu cost models firms face a fixed cost of changing prices
- Firms that change prices are not chosen randomly
- The decision to change prices is based on the expected benefits of doing so, which depend on the state of the economy
- This leads to a potentially more flexible response of prices to changes in economic conditions

#### MONETARY NON-NEUTRALITY: CALVO VS. MENU COST MODELS

- Calvo pricing can generate relatively large and persistent MNN
- Golosov & Lucas (07) argue that monetary non-neutrality with menu cost models is small and transient
- Nakamura & Steinsson (10):

"...assess whether the implications of highly stylized menu cost models hold up in a richer, more realistic setting"

# MONETARY NON-NEUTRALITY IN A MULTI-SECTOR MENU COST MODEL - NAKAMURA & STEINSSON (10)

- Central role of nominal rigidities as a source of monetary non-neutrality
- State-dependent pricing models appear more realistic than time-dependent pricing models
- but, if they generate too little monetary non-neutrality
- Should we still rely on nominal rigidities to explain the effects of monetary policy?
- NS (10) argue that a more realistic menu cost model is able to generate monetary non-neutrality in accordance with empirical evidence

#### MULTI-SECTOR MENU COST MODEL - KEY INGREDIENTS

Based on empirical evidence, they extend the benchmark menu cost model in the following ways:

- 1. Heterogeneity across sectors in the frequency and size of price changes
- 2. Intermediate inputs used in production (roundabout production)

The model introduces (1) heterogeneous nominal rigidities and a (2) "macro" real rigidity

#### **KEY FINDINGS**

- The model generates output fluctuations in response to nominal shocks in line with empirical evidence (Shapiro & Watson 1988):
  - Nominal shocks account for 23% of the US business cycle
  - In Golosov & Lucas (07) this share is 2%
- This different degree of monetary non-neutrality is explained by:
  - Heterogeneity in the frequency of price changes
  - The presence of intermediate inputs in production

# HOW DO SECTORAL HETEROGENEITY AND INTERMEDIATE INPUTS AFFECT NON-NEUTRALITY?

Some intuition before we jump into the full model

- 1. Sectoral heterogeneity:
  - Amplification occurs if MNN is a convex function of the frequency of price changes
  - Jensen's inequality: the average of a convex function is greater than the function evaluated at the average, f(E[x]) ≤ E[f(x)]
- 2. Intermediate inputs give raise to strategic complementarities in price setting
  - Strategic complementarities arise when the optimal price of one firm depends on the prices set by other firms
  - Firm changing price right after a shock, changes price by less because the prices of many of its inputs haven't changed yet
  - This leads to a more sluggish response of prices to shocks
  - Strategic complementarities are a source of real rigidities. Juan will real rigidities in detail tomorrow.

#### MODEL - HOUSEHOLDS AND CENTRAL BANK

- Households maximize discounted expected utility subject to a sequence of budget constraints
- They consume a continuum of differentiated products indexed by z.

$$c_t(z) = \left(\frac{\rho_t(z)}{P_t}\right)^{-\theta} C_t$$

Optimamlity conditions for the household problem are:

$$\begin{split} D_{t,T} &= \beta^{T-t} \left(\frac{C_T}{C_t}\right)^{-\gamma} \frac{P_t}{P_T} \\ \frac{W_t}{P_t} &= \omega L_t^{\psi} C_t^{\gamma} & \to W_t = \omega P_t C_t \end{split}$$

Monetary authority targets a path for the nominal value-added output

$$\log S_t = \mu + \log S_{t-1} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2), \qquad S_t = P_t C_t$$

#### **MODEL - FIRMS**

 Continuum of firms indexed by z that belong to one of J sectors and produce a differentiated variety.

$$y_t(z) = A_t(z)L_t(z)^{1-s_m}M_t(z)^{s_m}$$

 $A_t(z)$ : productivity,  $M_t(z)$ : index of intermediate inputs,  $s_m$ : share of intermediates in production

• The index of intermediate products is given by:

$$M_t(z) = \left(\int_0^1 m_t(z, z')^{\frac{\theta - 1}{\theta}} dz'\right)^{\frac{\theta}{\theta - 1}}$$

- $m_t(z, z')$ : quantity of intermediate input z' used in the production of good z
- Roundabout production: all products serve as inputs and final output
- Strategic complementarities: arises as a result of roundabout + price rigidity

#### **MODEL - FIRMS - PROFIT MAXIMIZATION**

$$\begin{aligned} \max \mathbb{E}_t \sum_{\tau=0}^{\infty} D_t t + \tau \Pi_{t+\tau}(z) \quad \text{s.t.} \\ y_t(z) &= A_t(z) L_t(z)^{1-s_m} M_t(z)^{s_m} \\ y_t(z) &= Y_t \left(\frac{p_t(z)}{P_t}\right)^{-\theta} \quad \text{where} \quad Y_t = C_t + \int_0^1 M_t(z) dz \\ \Pi_{t+\tau}(z) &= p_t(z) y_t(z) - W_t L_t(z) - P_t M_t(z) - \chi_j W_t I_t(z) - P_t U \end{aligned}$$

- $\chi_j$ : units of labor a firm in sector j must pay to change price
- The law of motion of firm-level productivity is given by:

$$\log A_t(z) = \rho \log A_{t-1}(z) + \epsilon_t(z), \qquad \epsilon_t(z) \sim \mathcal{N}(0, \sigma_{\epsilon, j}^2)$$

#### **MODEL - FIRMS - RECURSIVE FORMULATION**

- State-space of the firm's problem is infinite-dimensional
- Need to keep track of entire distribution of prices and productivity
- Assume firms form expectations about prices as a function of limited number of moments
- Firms perceive that

$$\frac{P_t}{P_{t-1}} = \Gamma\left(\frac{S_t}{P_{t-1}}\right)$$

- They use the function  $\Gamma$  to form expectations about the price level
- Bellman Equation

$$V\left(A_{t}(z), \frac{p_{t-1}(z)}{P_{t}}, \frac{S_{t}}{P_{t}}\right) = \max_{p-t(z)} \left\{ \Pi_{t}^{R}(z) + \mathbb{E}_{t}\left[D_{t,t+1}^{R}V\left(A_{t+1}, \frac{p_{t}(z)}{P_{t+1}}, \frac{S_{t+1}}{P_{t+1}}\right)\right] \right\}$$

# calibration of menu costs and $\sigma_{e,j}$

 Calibrate menu cost and variance of idiosyncratic shocks to match frequency and size of price changes in the data

|                                  | Menu cost model                  |                                                    |                                    |                                         |  |
|----------------------------------|----------------------------------|----------------------------------------------------|------------------------------------|-----------------------------------------|--|
|                                  | $s_m = 0$                        |                                                    | $s_m = 0.7$                        |                                         |  |
|                                  | $\Delta p \cos t \times 10^{-2}$ | ${\overset{\sigma_{\varepsilon}}{\times}} 10^{-2}$ | $\Delta p \cos t$ $\times 10^{-2}$ | $\sigma_{\varepsilon}$ $\times 10^{-2}$ |  |
|                                  |                                  | Pan                                                | Panel A: Six-sector model          |                                         |  |
| Vehicle fuel, used cars          | 0.004                            | 5.00                                               | 0.001                              | 5.10                                    |  |
| Transp. goods, utilities, travel | 0.309                            | 6.90                                               | 0.087                              | 6.85                                    |  |
| Unprocessed food                 | 0.667                            | 9.10                                               | 0.194                              | 9.20                                    |  |
| Processed food, other goods      | 0.331                            | 5.70                                               | 0.091                              | 5.70                                    |  |
| Services (excl. travel)          | 0.165                            | 3.90                                               | 0.046                              | 4.05                                    |  |
| Hh. furn., apparel, rec. goods   | 0.271                            | 5.46                                               | 0.070                              | 5.40                                    |  |
|                                  |                                  | Pane                                               | l B: Nine-sect                     | or model                                |  |
| Vehicle fuel, used cars          | 0.004                            | 5.30                                               | 0.002                              | 5.40                                    |  |
| Transp. goods, utilities, travel | 0.307                            | 6.90                                               | 0.091                              | 7.00                                    |  |
| Unprocessed food                 | 0.667                            | 9.00                                               | 0.185                              | 9.00                                    |  |
| Services (1)                     | 0.059                            | 2.40                                               | 0.019                              | 2.65                                    |  |
| Processed food, other goods      | 0.340                            | 5.80                                               | 0.093                              | 5.70                                    |  |
| Services (2)                     | 0.137                            | 3.50                                               | 0.035                              | 3.45                                    |  |
| Services (3)                     | 0.156                            | 3.80                                               | 0.042                              | 3.90                                    |  |
| Hh. furn., apparel, rec. goods   | 0.306                            | 5.80                                               | 0.076                              | 5.40                                    |  |
| Services (4)                     | 0.340                            | 6.50                                               | 0.083                              | 6.39                                    |  |

Table III

• Why are calibrated menu costs smaller in the model with intermediates?

# RESULTS - w/o intermediates

- Monetary non-neutrality is higher in the multi-sector models
- Var(C<sub>t</sub>) is the variance of real value-added output

HETEROGENEITY AND MONETARY NON-NEUTRALITY

|                           | Menu cost model |                     | CalvoPlus model |             |
|---------------------------|-----------------|---------------------|-----------------|-------------|
|                           | $s_m = 0$       | $s_m = 0.7$         | $s_m = 0$       | $s_m = 0.7$ |
| Monet                     | ary non-neu     | trality: $Var(C_t)$ | )               |             |
| One-sector model (mean)   | 0.055           | 0.182               | 0.173           | 0.461       |
| Six-sector model          | 0.136           | 0.470               | 0.458           | 1.492       |
| Nine-sector model         | 0.143           | 0.576               | 0.495           | 1.563       |
| Fourteen-sector model     | 0.188           | 0.627               | 0.520           | 1.709       |
| One-sector model (median) | 0.261           | 0.658               | 0.625           | 1.480       |

### RESULTS - w/o intermediates

- Monetary non-neutrality depends on both size of menu costs and variance of idiosyncratic shocks
- y axis: monetary non-neutrality
- X axis: size of menu costs (higher menu costs as you move towards the origin)
- Each solid line corresponds to different values of the variance of idiosyncratic shocks (darker line, higher σ)



Table VII

## RESULTS - w/o intermediates

- Amplification depends on:
  - 1. Heterogeneity in the frequency of price changes
  - 2. The overall level of the frequency of price changes

|     | Two-sector models |         | One-sector models |       | Amp.       |        |
|-----|-------------------|---------|-------------------|-------|------------|--------|
|     | Freq. 1           | Freq. 2 | $Var(C_t)$        | Freq. | $Var(C_t)$ | factor |
| (1) | 0.10              | 0.20    | 0.1194            | 0.15  | 0.1050     | 1.137  |
| (2) | 0.20              | 0.30    | 0.0395            | 0.25  | 0.0360     | 1.098  |
| (3) | 0.30              | 0.40    | 0.0154            | 0.35  | 0.0152     | 1.014  |
| (4) | 0.40              | 0.50    | 0.0060            | 0.45  | 0.0059     | 1.010  |
| (5) | 0.10              | 0.30    | 0.0889            | 0.20  | 0.0620     | 1.433  |
| (6) | 0.10              | 0.40    | 0.0702            | 0.25  | 0.0360     | 1.949  |

Table VII

### **RESULTS** - with intermediates

Firms marginal costs directly depend on pricing decisions of other firms

$$MC_t(z) = \frac{\omega S_t^{1-s_m} P_t^{s_m}}{A_t(z)}$$

- Strategic complementarities are a source of real rigidities → more later
- A high frequency firm changes price less because low frequency firms haven't yet adjusted
- This leads to a more sluggish response of prices to shocks and greater non-neutrality
- This amplification channel is independent of the heterogeneity in frequency of price changes

### **RESULTS** - with intermediates

 Monetary non-neutrality increases with the share of intermediate inputs in production

|     | Interm.          | Frequency of price change |       |  |
|-----|------------------|---------------------------|-------|--|
|     | input share      | 21.1%                     | 8.7%  |  |
|     | Monetary non-net | itrality: $Var(C_t)$      |       |  |
| (1) | 0.00             | 0.055                     | 0.261 |  |
| (2) | 0.50             | 0.109                     | 0.443 |  |
| (3) | 0.60             | 0.133                     | 0.518 |  |
| (4) | 0.70             | 0.182                     | 0.658 |  |
| (5) | 0.80             | 0.276                     | 0.844 |  |
| (6) | 0.90             | 0.471                     | 1.346 |  |

Table VI

Roundabout production increases monetary non-neutrality even with J = 1.
 (See Table VI)

#### SECTORAL COMOVEMENT

- Intermediate inputs are crucial to generate positive sectoral comovement
- Without them, large differences in relative prices across low and high frequency sectors generates negative comovement
- Demand flows from the high frequency sector to the low frequency sector in response to a positive nominal shock
- Negative sectoral comovement is at odds with the empirical evidence



# CONCLUSION: CAN MENU COSTS GENERATE SIZABLE MONETARY NON-NEUTRALITY?

TABLE X Nominal Rigidities and the Business Cycle

|                                      | $\begin{array}{c} \operatorname{Var}(C_t) \\ (10^{-4}) \end{array}$ | Frac. tot. |
|--------------------------------------|---------------------------------------------------------------------|------------|
| HP-filtered U.S. GDP 1947–2005       | 2.72                                                                | 100        |
| Multisector model with $s_m = 0.7$   | 0.63                                                                | 23         |
| Multisector model with $s_m = 0$     | 0.19                                                                | 7          |
| Single-sector model with $s_m = 0.7$ | 0.18                                                                | 7          |
| Single-sector model with $s_m = 0$   | 0.05                                                                | 2          |

Notes. This table reports the variance of HP-filtered U.S. real GDP for 1947–2005 as well as estimates of the variance of real value-added output for the single-sector and fourteen-sector versions of our menu cost model for two values of the intermediate input share (s<sub>m</sub>). It also reports the fraction of the variance of HP-filtered U.S. real GDP accounted for by each of these models.

#### Table VIII

 Combination of heterogeneous nominal rigidities and sticky intermediates (real rigidity) can generate sizable monetary non-neutrality