

Use of the Imperas reference model, RVVI, and ImperasDV for the OpenHW CV32E20 project

9 March 2022

- OpenHW DV Status and CV32E20 Collaboration
- ImperasDV Overview and Demo
- Next Steps

Imperas: OpenHW DV Status

Core	RTL Tracer	Test Bench	Reference Model Subsystem
E40P (SiLabs, Imperas, OpenHW)	Ad hoc	SystemVerilog	M*DEV (ref. model + simulator)
E40S (SiLabs, Imperas, OpenHW)	RVFI + extensions	SystemVerilog	M*DEV (ref. model + simulator)
E40X (SiLabs, Imperas, OpenHW)	RVFI + extensions	SystemVerilog	M*DEV (ref. model + simulator)
E40Pv2 (Dolphin, Imperas, OpenHW)	RVFI + extensions + RVVI-VLG (Dolphin modifying tracer to support RVFI. Imperas to adding RVFI -> RVVI-VLG)	SystemVerilog Dolphin/ OpenHW modifying existing test bench	ImperasDV (ref. model + simulator + verification IP)
Ibex (Imperas only)	RVFI (from Ibex) (Imperas added RVFI -> RVVI-VLG)	SystemVerilog or C++	ImperasDV (ref. model + simulator + verification IP)
E40X (Imperas only)	RVFI + RVVI-VLG	SystemVerilog	ImperasDV (ref. model + simulator + verification IP)

Proposed NXP, Intrinsix, Imperas, OpenHW Collaboration on CV32E20:

- Imperas would provide the reference model/simulator, plus verification IP (ImperasDV product)
- Could potentially build on Imperas internal development work on DV environment for Ibex core
 - Key pieces needing development are RTL tracer, test bench, E20 model

RISC-V Processor "Simulation" Environment

- Basic simulation environment
- Runs programs
- Directed maybe self checking tests
- Requires 'tracer' for functional coverage and file logging
- Maybe measure functional coverage

RISC-V Processor "DV" Environment (includes reference subsystem)

- Includes ref. model subsystem
 - Runs as Verification-IP
 - Passively monitors activity (piggy-back)
 - Compares in lock-step with all processor activity
- Requires 'tracer' interface from RTL
- No change to existing testbenches
- With ref. model compare can use random tests (as no need for known good result as comparing to ref. model every event)

RVVI: RISC-V Verification Interface (driven by RISC-V DV usage)

- https://github.com/riscv-verification/RVVI (Public Open Standard)
- **RVVI-VLG**
 - Verilog DUT interfaces
 - RVVI-VLG state streaming 'tracer' data
 - RVVI-VLG nets implementation dependent (Interrupts, Debug)
 - · Handles multi-hart, multi-issue, Out-of-Order

- DV Reference **RVVI-API** Model
- **RVVI-API**
 - Controls DV subsystem and reference model
 - C/C++
 - SystemVerilog

Test bench virtual peripherals **RVVI-VPI**

- RVVI-VPI (work-in-progress (Mar. 2022))
 - Virtual Peripheral Interfaces
 - timers, interrupts, debug, random, printer/uart, ...
 - Verilog and C macros & examples

RISC-V Processor "DV" Environment (using RVVI for flexibility and reuse)

- Using RVVI allows reuse of verification components
- Imperas provides source of interfaces from RVVI to verification components
 - Ref. model / DV
 - Functional coverage
 - Log file writer
- ImperasDV
 - 'works-out-of-the-box'
 - Just configure ref. model and DV capabilities

