101 zadań specjalnie dla wspaniałej Danieli

Od lokalnego dostawcy ryżu

Wszystkiego najlepszego! Osiemnastka już, wchodzisz w świat dorosłych. Życzę Ci, więc dużo szczęścia, zdrowia, wiele zadanek, zabawy, dalszych sukcesów. Żebyś nie pogubiła się w tym porąbanym świecie, i zawsze zmierzała do osiągnięcia Twoich celów. Żeby żadne zadanko nie przestraszyło Cię, obyś mogła przezwyciężyć wszystkie przeszkody w swoim życiu. Poza tym, życzę Ci też żebyś mogła cieszyć się z każdego momentu w twoim życiu. Obyś mogła (prawie) zawsze bawić się i spędzać chwile z najbliższymi dla Ciebie. Wszystkiego najlepszego!

Przygotowałem Ci taki mały prezencik składający z 101 zadanek. Próbowałem rozłożyć te zadanka po równo tematami, ale jak to z liczbą pierwszą, trudne to było zadanie. Zadanka są różne w skali trudności, ale raczej wybrałem te trudniejsze zadanka, i nie są w jakikolwiek sposób posortowane trudnościowo, więc nie ma potrzeby robienia zadań po kolei. Jak będziesz miała jakieś pytania do zadań czy treści to skontaktuj się z lokalnym dostawcą ryżu, on z chęcią Ci pomoże. Mam nadzieję, że nie wybrałem niemożliwych lub nieprzyjemnych zadań, oby Ci się spodobały. Miłego zadankowania!

PS Moje ulubione zadanka to:

15, 20, 28, 30, 32, 33, 50, 64, 66, 71, 72, 79, 84.

Jak zadanka są mało widoczne/książka została zniszczona lub została zgubiona to odsyłam do linku: (możesz od razu zapisać) https://www.overleaf.com/project/63c171a169f8821ed726d5a1

Zadanie 1. Oznaczmy p(n) jako największy dzielnik pierwszy liczby n. Wykazać, że istnieje nieskończenie wiele dodatnich liczb całkowitych, że

$$p(n) < p(n+1) < p(n+2).$$

Zadanie 2. Dana jest liczba pierwsza p > 2. Udowodnij, że wszystkie liczby w postaci $\pm 1 \pm 2 \pm \ldots \pm \frac{p-1}{2}$ reprezentują każdą niezerową resztę modulo p tyle samo razy.

Zadanie 3. Niech r i s będą dodatnimi liczbami całkowitymi. Zdefinujmy $a_0 = 0$, $a_1 = 1$ oraz $a_n = ra_{n-1} + sa_{n-2}$ dla $n \geqslant 2$. Niech $f_n = a_1a_2\ldots a_n$. Udowodnij, że $\frac{f_n}{f_kf_{n-k}}$ jest liczbą całkowitą dla każdego n i k takie, że 0 < k < n.

Zadanie 4. Niech f będzie wielomianem z całkowitymi współczynnikami oraz niech $a_0=0$ i $a_n=f(a_{n-1})$ dla każdego $n\geqslant 1$. Wykaż, że $\gcd(a_m,a_n)=a_{\gcd(m,n)}$ dla dodatnich liczb całkowitych m i n.

Zadanie 5. Niech $f(x) \in \mathbb{Q}[x]$, że $f(n) \in \mathbb{Z}$ dla każdego $n \in \mathbb{Z}$. Udowodnij, że dla dowolnych liczb całkowitych m, n liczba

$$lcm[1, 2, \dots, deg(f)] \cdot \frac{f(m) - f(n)}{m - n}$$

jest liczbą całkowitą.

Zadanie 6. Niech $x_n = \binom{2n}{n}$ dla każdego $n \in \mathbb{Z}_+$. Wykazać, że istnieje nieskończenie wiele par skończonych zbiorów A i B dodatnich liczb całkowitych, że $A \cap B = \emptyset$ oraz

$$\frac{\prod_{i \in A} x_i}{\prod_{j \in B} x_j} = 2^{18}.$$

Zadanie 7. Wykazać, że dla każdego n istnieje wielomian $f(x) \in \mathbb{Z}[x]$ i $\deg(f) \leq n$ takie, że 2^n dzieli f(x) dla każdej liczby całkowitej parzystej, a 2^n dzieli f(x) - 1 dla każdej liczby całkowitej nieparzystej

Zadanie 8. Udowodnij, że dla każdego c > 0 istnieje nieskończenie wiele dodatnich liczb całkowitych n takie, że największy dzielnik pierwszy liczby $n^2 + 1$ jest większy od cn.

Zadanie 9. Niech $m, n \in \mathbb{Z}_+$. Dowieść, że reszty z dzielenia liczb $1^n, 2^n, \ldots, m^n$ modulo m są parami różne wtedy i tylko wtedy, gdy m jest bezkwadratowe oraz n jest względnie pierwsze z $\varphi(m)$.

Zadanie 10. Dana jest liczba całkowita a>1. Niech $\mathbb P$ oznacza zbiór liczb pierwszych. Udowodnij, że funkcja $f:\mathbb P\to\mathbb N$, dla każdej liczby pierwszej $p:f(p)=\frac{p-1}{ord_p(a)}$ jest nieograniczona.

 $Uwaga. \ ord_p(a)$ oznacza rząd liczby $a \mod p$.

Zadanie 11. Udowodnij, że dla każdej liczby pierwszej p istnieje liczba pierwsza q taka, że $q \nmid n^p - p$ dla każdego $n \geqslant 1$.

Zadanie 12. Dana jest liczba całkowita a > 1. Wykazać, że istnieje nieskończenie wiele n takich, że największy dzielnik pierwszy liczby $a^n - 1$ jest większy od $n \log_a n$.

Zadanie 13. Niech p będzie liczbą pierwszą większą od 2. Dowieść, że istnieje dodatnia liczba całkowita $k \leq p-1$, która jest pierwiastkiem pierwotnym (generatorem) modulo p i jest względnie pierwsza z p-1.

Zadanie 14. Udowodnij, że istnieje nieskończenie wiele dodatnich liczb całkowitych n takich, że

$$s(n) + s(n^2) = s(n^3).$$

Zadanie 15. Niech $f(x) \in \mathbb{Z}[x]$ oraz a_n to ściśle rosnący ciąg dodatnich liczb całkowitych takie, że $a_n \leqslant f(n)$ dla każdego n. Dowieść, że zbiór liczb pierwszych dzielących co najmniej jeden element z ciągu (a_n) jest nieskończony.

Zadanie 16. Niech $a \in \mathbb{Z}_+$ jest bezkwadratowa. Wówczas a jest nieresztą kwadratową modulo p dla nieskończenie wielu liczb pierwszych p.

Zadanie 17. Wykazać, że dla dowolnej liczby pierwszej p > 2, najmniejsza niereszta kwadratowa modulo p jest mniejsza niż $1 + \sqrt{p}$.

Zadanie 18. Niech $p \equiv -1 \pmod{8}$ będzie liczbą pierwszą oraz m, n dodatnimi liczbami całkowitymi takie, że $\sqrt{p} > \frac{m}{n}$. Dowieść, że

$$\sqrt{p} > \frac{m}{n} + \frac{1}{mn}.$$

Zadanie 19. Wykazać, że ciąg $\{d((n^2+1)^2)\}_{n\geqslant 1}$ nie będzie nigdy monotoniczna od pewnego momentu.

 $Uwaqa.\ d(k)$ oznacza liczba dodatnich dzielników k.

Zadanie 20. Dowieść, że $\sigma(n)\varphi(n) < n^2$ dla każdego n, ale istnieje dodatnia stała c taka, że $\sigma(n)\varphi(n) \geqslant cn^2$ dla każdego n.

 $\sigma(n)$ - suma dodatnich dzielników liczby n,a φ - funkcja Eulera.

Zadanie 21. Udowodnić, że dla każdej dodatniej liczby n,

$$\frac{\sigma(n!)}{n!} \geqslant \sum_{k=1}^{n} \frac{1}{k}.$$

Zadanie 22. Niech X będzie niepustym zbiorem dodatnich liczb całkowitych, który spełnia implikację

$$x \in X \Longrightarrow 4x \in X \land |\sqrt{x}| \in X.$$

Wykaż, że X zawiera wszystkie dodatnie liczby całkowite.

Zadanie 23. Jakie dodatnie liczby całkowite mogą być zapisane w postaci

$$a^2 + b^2 + c^2 + c,$$

gdzie a, b, c są liczbami całkowitymi?

Zadanie 24. Udowodnij, że dowolna dodatnia liczba wymierna może być zapisana jako suma 3 dodatnich wymiernych sześcianów.

Zadanie 25. Pokaż, że każda liczba całkowita większa od 1 może być zapisana jako suma dwóch bezkwadratowych dodatnich liczb całkowitych.

Zadanie 26. Dowieść, że każda liczba całkowita może być wyrażona jako $a^2 + b^2 - c^2$, gdzie a, b, c są liczbami całkowitymi.

Zadanie 27. Udowodnij, że dla każdej liczby pierwszej $p \ge 5$,

$$p^3 \mid {3p \choose p} - 3.$$

Zadanie 28. Wykazać, że dla każdej liczby pierwszej p > 2, istnieje liczba całkowita g taka, że 1 < g < p oraz g jest pierwiastkiem pierwotnym (generatorem) modulo p^n dla każdego n.

 $\mathit{Hint}.$ Jeżeligjest generatorem modulo p i p^2 to jest generatorem modulo $p^n.$

Zadanie 29. Udowodnij, że dla każdej liczby pierwszej $p \in (n, \frac{4n}{3})$

$$p \mid \sum_{j=0}^{n} \binom{n}{j}^4$$
.

Zadanie 30. Dowieść, że n jest liczbą pierwszą wtedy i tylko wtedy, gdy

$$\lim_{r \to \infty} \lim_{s \to \infty} \lim_{t \to \infty} \sum_{u=0}^{s} \left(1 - \left(\cos \frac{(u!)^r \pi}{n} \right)^{2t} \right) = n.$$

Uwaga. Wydaje się trudne, ale jest triv.

Zadanie 31. Dana jest liczba pierwsza p. Hubert i Wach grają w grę. Hubert najpierw zapisuje dodatnią liczbę X na tablicy i daje ciąg (a_n) dodatnich liczb całkowitych Wachowi. Wach teraz wykonuje serię ruchów. W n-tym ruchu zamienia liczbę Y na jedno z liczby $Y + a_n$ lub

 $Y \cdot a_n$. Gdy w pewnym momencie Wach uzyska liczbę podzielną przez p to wygrywa dużo hajsu. Czy Wach może być bogatym niezależnie od wyborów Huberta, jeżeli p=2137?

Zadanie 32. Zbiór nieujemnych liczb całkowitych podzielono na skończoną liczbę nieskończonych ciągów arytmetycznych parami rozłącznych z różnicami r_1, r_2, \ldots, r_n . Wówczas

$$\frac{1}{r_1} + \frac{1}{r_2} + \ldots + \frac{1}{r_n} = 1.$$

Zadanie 33. Zbiór nieujemnych liczb całkowitych podzielono na skończoną liczbę nieskończonych ciągów arytmetycznych parami rozłącznych z różnicami r_1, r_2, \ldots, r_n oraz pierwszymi wyrazami a_1, a_2, \ldots, a_n . Wówczas

$$\frac{a_1}{r_1} + \frac{a_2}{r_2} + \ldots + \frac{a_n}{r_n} = \frac{n-1}{2}.$$

Zadanie 34. Dla dowolnych liczb zespolonych a_1, a_2, \ldots, a_n zachodzi tożsamość

$$\left(\sum_{i=1}^{n} a_{i}\right)^{n} - \sum_{i=1}^{n} \left(\sum_{j \neq i} a_{j}\right)^{n} + \sum_{1 \leq i < j \leq n} \left(\sum_{k \neq i, j} a_{k}\right)^{n} - \ldots + (-1)^{n-1} \sum_{i=1}^{n} a_{i}^{n} = n! \prod_{i=1}^{n} a_{i}.$$

Zadanie 35. Załóżmy, że $(a_n)_{n\geqslant 1}$ to liniowo rekurencyjny ciąg liczby całkowitych (tzn. istnieją liczby całkowite k i x_1, x_2, \ldots, x_k takie, że $a_{n+k} = x_1 a_{n+k-1} + x_2 a_{n+k-2} + \ldots + x_k a_n$ dla każdego n) spełniający $n \mid a_n$ dla każdej dodatniej liczby cąłkowitej n. Udowodnić, że $\left(\frac{a_n}{n}\right)$ jest także liniowo rekurencyjnym ciągiem.

Zadanie 36. Zbiór A dodatnich liczb całkowitych ma własność, że dla pewnych dodatnich liczb całkowitych b_i i c_i zbiory b_iA+c_i $(1 \le i \le n)$

są rozłączne podzbiory zbioru A. Dowieść, że

$$\sum_{i=1}^{n} \frac{1}{b_i} \leqslant 1.$$

Uwaga. Zbiór $b_iA + c_i$ oznacza $\{b_ia + c_i | a \in A\}$.

Zadanie 37. Dowieść, że zachodzi tożsamość

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^{n+1} = \frac{n(n+1)!}{2}.$$

Zadanie 38. Udowodnić, że dla dowolnej liczby rzeczywistej a zachodzi tożsamość

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (a-k)^n = n!.$$

Zadanie 39. Dane są dodatnie liczby rzeczywiste x,y,z takie, że xyz=1. Wykaż, że

$$\sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \leqslant \sqrt{2}(x+y+z).$$

Zadanie 40. Dane są liczby rzeczywiste $x,y,z\geqslant 0$ takie, że xy+yz+zx+xyz=4. Udowodnij, że

$$x + y + z \geqslant 3$$
.

Zadanie 41. Oblicz

$$\sup_{n\geqslant 1} \left(\min_{p,q\in\mathbb{N},\ p+q=n} |p-q\sqrt{3}| \right).$$

Zadanie 42. Niech x to liczba niewymierna oraz

$$f(t) = \min(\{t\}, \{1 - t\}).$$

Udowodnij, że dla dowolnego $\varepsilon > 0$, istnieje dodatnia liczba całkowita n taka, że $f(n^2x) < \varepsilon$.

 $Uwaga.~\{a\}$ oznacza część ułamkowa liczby a.

Zadanie 43. Dane są dodatnie liczby rzeczywiste a,b,c. Udowodnij, że

$$\frac{a}{b(a+b)} + \frac{b}{c(b+c)} + \frac{c}{a(c+a)} \geqslant \frac{3}{2\sqrt[3]{abc}}.$$

Zadanie 44. Wykaż, że

$$\sum_{n=1}^{\infty} \frac{s(n)}{n(n+1)} = \frac{10}{9} \ln 10.$$

 $Uwaqa. \ s(n)$ to suma cyfr liczby n w systemie dziesiątkowym.

Zadanie 45. Dany jest ciąg liczb rzeczywistych (x_n) z $x_1^2 = 1$. Udowodnij, że dla każdej dodatniej liczby całkowitej $n \ge 2$ zachodzi:

$$\sum_{i|n} \sum_{j|n} \frac{x_i x_j}{\operatorname{lcm}(i,j)} \geqslant \prod_{p \in \mathbb{P}, p|n} \left(1 - \frac{1}{p}\right).$$

Zadanie 46. Zbiór dodatnich liczb całkowitych podzielono na n rozłączych nieskończonych ciągów arytmetycznych S_1, S_2, \ldots, S_n z odpowiednio różnicami r_1, r_2, \ldots, r_n . Udowodnić, że istnieje dokładnie jeden indeks $1 \leq i \leq n$ taki, że

$$\frac{1}{r_i} \prod_{i=1}^n r_j \in S_i.$$

Zadanie 47. Niech a, b, c będą liczbami całkowitymi, nie wszystkie równe zero oraz $|a|, |b|, |c| < 10^6$. Udowodnić, że

$$\left| a + b\sqrt{2} + c\sqrt{3} \right| < \frac{1}{10^{21}}.$$

Zadanie 48. Niech a,b,c będą liczbami całkowitymi, nie wszystkie równe 0. Pokazać, że

$$\frac{1}{4a^2 + 3b^2 + 2c^2} \leqslant |\sqrt[3]{4}a + \sqrt[3]{2}b + c|.$$

Zadanie 49. Znaleźć wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ takie, że dla każdego $x, y \in \mathbb{R}$ spełniona jest równość

$$f(x^2) + f(2y^2) = (f(x+y) + f(y))(f(x-y) + f(y)).$$

Zadanie 50. Dane są liczby rzeczywiste a_1, a_2, \ldots, a_n . Udowodnij, że

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_i a_j}{1 + |i - j|} \geqslant 0.$$

Zadanie 51. Niech (a_n) będzie ściśle rosnącym ciągem dodatnich liczb całkowitych taki, że $gcd(a_i, a_j) = 1$ oraz $a_{i+2} - a_{i+1} > a_{i+1} - a_i$. Udowodnij, że szereg

$$\sum_{i=1}^{\infty} \frac{1}{a_i}$$

jest zbieżny

Zadanie 52. Dla dodatnich liczb rzeczywistych a, b, c spełniających a + b + c = abc spełniona jest nierówność

$$\sqrt{a^2 + b^2} + \sqrt{b^2 + c^2} + \sqrt{c^2 + a^2} + 3\sqrt{6} \leqslant \sqrt{8}abc.$$

Zadanie 53. Wykaż, że liczba podzbiorów n-elementowych zbioru $\{1, 2, \dots, 2n\}$, które suma jest wielokrotnością n jest równa

$$\frac{(-1)^n}{n} \cdot \sum_{d \mid n} (-1)^d \varphi\left(\frac{n}{d}\right) \binom{2d}{d}.$$

Zadanie 54. Niech $A \subset \mathbb{Z}_n$ zawiera co najwyżej $\frac{\ln n}{1.7}$ elementów. Udowodnij, że istnieje niezerowa liczba całkowita r taka, że

$$\left| \sum_{s \in A} e^{\frac{2i\pi}{n}sr} \right| \geqslant \frac{|A|}{2}.$$

Zadanie 55. Niech $(a_n)_{n\geqslant 1}$ będzie rosnącym ciągem dodatnich liczb całkowitych taki, że $a_{n+1}-a_n\leqslant 2023$ dla każdego n. Wykazać, że istnieje nieskończenie wiele par (i,j), że i< j oraz $a_i\mid a_j$.

Zadanie 56. Udowodnij, że dla dowolnych n^2 liczb całkowitych, można ustawić w macierzy $n \times n$ tak, że jej wyznacznik będzie podzielny przez $n^{\lfloor \frac{n-1}{2} \rfloor}$.

Zadanie 57. Dowieść, że dla każdego $N \in \mathbb{N}$ istnieje k, że co najmniej N liczb pierwszych, które można zapisać w postaci $T^2 + k$ dla pewnego T całkowitego. Spróbuj to uogólnić dla dowolnego wielomianu f(T).

Zadanie 58. Grupa wzajemnej pomocy zawiera n matematyków. Spośród dowolnych 3 znajdziemy dwóch, którzy się nie wymienili zadankami. Gdy podzielimy w dowolny sposób matematyków na 2 zespoły, znajdziemy 2 zdolnych matematyków, którzy są w tym samym zespole i wymienili się zadankami. Wykaż, że istnieje samotny matematyk, który wymienił się zadanka z co najwyżej $\frac{2n}{5}$ matematyków.

Zadanie 59. Czy istnieje 3-regularny graf taki, że długość każdego cyklu to co najmniej 18?

 $Uwaga.\ k$ -regularny graf to graf z wierzchołkami o stopnik.

Zadanie 60. W grafie G, dla każdego wierzchołka v istnieją co najwyżej 2k wierzchołków odległe o 3. Udowodnnij, że dla dowolnego wierzchołka u, istnieją co najwyżej k(k+1) wierzchołków odległe o 4. Uwaga. Odległość od wierzchołka to długość najkrótszej ścieżki powiedzy wierzchołkami.

Zadanie 61. Pewien kult ma 42 członków. Załóżmy, że spośród dowolnych 31 członków znajdziemy matematyka i niematematyka, którzy sekretnie się znają. Dowieść, że istnieją 12 rozłącznych par, gdzie każda para zawiera jednego matematyka i jednego niematematyka, którzy się sekretnie się znają.

Zadanie 62. Na płaszczyźnie wyróżniono 7 punktów. Narysowano okręgi, które przechodzą przez 4 punkty wyróżnione. Jaka jest maksymalna liczba okręgów, które mogą być narysowane?

Zadanie 63. Dana jest liczba całkowita $n \ge 2$ oraz tablica z n rzędami i 2n kolumnami. Połowa pól tablicy jest pokolorowana na czerwono. Wykazać, że dla każdego całkowitego k, $1 < k \le \lfloor \frac{n}{2} \rfloor + 1$, istnieje k rzędów takie, że tablica o wyymiarach $k \times 2n$ (złożona z tych rzędów) ma co najmniej

$$\frac{k!(n-2k+2)}{(n-k+1)(n-k+2)\dots(n-1)}$$

kolumn, które zawierają tylko czerwone pola.

Zadanie 64. Na stole leży ogromny stos kart. Na każdej karcie zapisano jedną liczbę z $1, 2, \ldots n$. Wiadomo, że suma wszystkich liczb zapisanych na tych kartkach jest równa $k \cdot n!$ dla pewnego k. Pokaż, że jest możliwe ułożenie tych kart na k stosików, w taki sposób, że suma liczb na każdym stosiku jest równa n!.

Zadanie 65. Niech k, m, n będą liczbami całkowitymi takimi, że $1 < n \le m-1 \le k$. Znaleźć największy podzbiór S zbioru $\{1, 2, \ldots, k\}$ taki, że żadne n różnych elementów z S nie sumuje się do m.

Zadanie 66. Niech S będzie skończonym zbiorem punktów w przestrzeni. Niech S_x, S_y, S_z będą zbiory rzutów punktów S na odpowiednio płaszczyzny yz, zx, xy. Wykazać, że

$$|S|^2 \leqslant |S_x| \cdot |S_y| \cdot |S_z|.$$

Zadanie 67. 2500 królów szachowych położono na 100×100 szachownicy tak, że żaden król nie atakuje innych króli (żadne 2 pola na których są króle nie mogą mieć wspólny wierzchołek) oraz w każdym rzędzie i w każdej kolumnie są dokładnie 25 króli. Ile jest możliwych

takich ustawień? (Dwa ustawienia różniące się tylko rotacją/symetrią są zaliczane jako różne).

Zadanie 68. W każde pole macierzy $2^n \times n$ wpisano 1 lub -1 w taki sposób, że każdy rząd jest różny. Niektóre liczby w macierzy zamieniono na 0. Udowodnij, że istnieje niepusty podzbiór rzędów zmienionej macierzy taki, że suma ich jest równa wektorowi zerowemu. **Zadanie 69.** Niech $n \geq 3$ będzie nieparzystą liczbą całkowitą. *Daniela* pokolorowała pola tablicy $n \times n$ na różowo i czarno. Mówimy, że ciąg pól S_1, S_2, \ldots, S_m jest drogq, gdy wszystkie pola są tego samego koloru oraz S_i i S_{i+1} mają wspólną krawędź dla $i \in \{1, 2, \ldots, m-1\}$, oraz żadne inne pola w ciągu nie dzielą się wspólną krawędzią. Dowieść, że jeżeli białe i czarne pola stanowią po jednej drodze, to jedna z tych dróg musi zaczynać się lub kończyć na środku tablicy.

Zadanie 70. Dana jest dodatnia liczba całkowita n. Znajdź najmniejszą dodatnią liczbę całkowitą k taką, że można pokolorować k pól w $2n \times 2n$ szachownicy, że istnieje jednoznaczny podział szachownicy na 1×2 i 2×1 domina tak, że żadne 2 pokolorowane pola nie zawierały się w jednym dominie.

Zadanie 71. Niech graf G będzie turniejem (graf pełny skierowany). Wówczas albo istnieje cykl Hamiltona lub można podzielić graf na mniejsze niepuste turnieje G_1 i G_2 takie, że każda krawędź $G_1 - G_2$ jest skierowana z G_1 do G_2 .

Zadanie 72. Na konferencji siedzi n glupców wokół okręgu, niektórzy są prawdomówni, a niektórzy lubią kłamać. Każda osoba mówi czy po jego prawej to kłamca czy nie. Prawdomówni zawsze powiedzą prawdę, a kłamcy mogą albo skłamać, albo powiedzieć prawdę. Nasz cel jest znalezienie **jednej** osoby, która na pewno jest prawdomówna. Pokaż, że jeżeli liczba kłamców jest co najwyżej $2\sqrt{n}-3$, to zawsze możemy

uzyskać nasz cel.

Zadanie 73. Na okręgu C leżą różne punkty A_1, A_2, \ldots, A_n , a wewnątrz C znajdują się punkty B_1, B_2, \ldots, B_n tak, że żadne dwa $A_1B_1, A_2B_2, \ldots, A_nB_n$ nie przecinają się. Zielona żabka może przeskoczyć z A_r do A_s jeżeli odcinek A_rA_s nie przecina żaden z odcinków A_tB_t ($t \neq r, s$). Udowodnij, że po pewnej liczbie skoków zielona żabka może przeskoczyć z dowolnego A_u do A_v .

Zadanie 74. Niech n to dodatnia liczba całkowita. W każdym polu tablicy $2n-1\times 2n-1$ jest strzałka albo w górę, dół, lewo lub prawo. Śmieszny pająk siedzi na jednej z tych pól. W jednym ruchu, pajączek przechodzi w kierunku strzałki, na którym stoi. Wtedy pająk przechodzi na pole sąsiednie lub wychodzi z tablicy. Później strzałka na polu, którym pająk opuścił, obraca się o 90° zgodnie ze wskazówkami zegara. Dowieść, że śmieszny pająk może wyjść z tej strasznej tablicy w co najwyżej $2^{3n-1}(n-1)!-3$ ruchach.

Zadanie 75. Dany jest trójkąt ABC i spodki wysokości D, E, F opuszczone z odpowiednio A, B, C. Niech X, Y, Z będą odpowiednio środkami odcinków AD, BE, CF. Udowodnij, że prostopadła z D na YZ, z E na XZ, z F na XY przecinają się w jednym punkcie.

Zadanie 76. Dany jest trójkąt ABC, w którym AC + BC = 3AB. Okrąg o środku I wpisany w trójkąt ABC jest styczny do boków BC i CA odpowiednio w punktach D i E. Niech K i L będą punktami symetrycznymi odpowiednio do punktów D i E względem punktu I. Udowodnij, że punkty A, B, K i L leżą na jednym okręgu.

Zadanie 77. Dany jest różnoboczny trójkąt ABC z środkiem okręgu opisanego O i wpisanego I. Niech H, K, L to spodki wysokości trójkąta ABC opuszczone odpowiednio z punktów A, B, C. Niech A_0, B_0, C_0 to odpowiednio środki wysokości AH, BK, CL. Okrąg wpisany w trójkąt

ABC jest styczny do boków BC, CA, AB odpowiednio w punktach D, E, F. Wykazać, że proste A_0D, B_0E, C_0F oraz OI są współpękowe. **Zadanie 78.** Dany jest różnoboczny trójkąt ABC (AB < AC). Punkt D to spodek dwusiecznej kąta BAC. Prosta ℓ prostopadła do AD przecina BA, AC, CB odpowiednio w punktach X, Y, Z. Niech $L \neq A$ to przecięcie okręgów opisanych na trójkątach ADZ oraz ABC. Prosta AL przecina ℓ w K. Proste BK i CK przecinają ponownie okrąg opisany na ABC odpowiednio w punktach Q i P. Wykaż, że prosta łącząca środki okręgów opisanych na trójkątach BXQ i CYP jest stały niezależnie od wybory prostej ℓ .

Zadanie 79. Punkt P leży wewnątrz trójkąta ABC. Niech D, E, F będą odpowiednio rzutami prostokątnymi punktu P na proste BC, CA, AB. Niech O będzie środkiem okręgu opisanego na trójkącie DEF, zaś r jego promieniem. Dowieść, że:

$$[ABC] \geqslant 3r\sqrt{3r^2 - OP^2}.$$

Uwaga. [F] oznacza pole figury F.

Zadanie 80. Dane jest okrąg ω i punkt Z. Niech AB i CD to dowolne cięciwy przechodzące przez Z. Punkt X to przecięcie prostych AC i BD, a Y to przecięcie AD oraz BC. Dowieść, że wszystkie okręgi o średnicy XY są współosiowe.

Zadanie 81. W trójkącie ABC punkty O, I i H to odpowiednio środek okręgu opisanego, wpisanego oraz ortocentrum. Pokazać, że $OI \leqslant OH$.

Zadanie 82. W trójkącie ABC, prosta l jest styczna do okręgu opisanego ω . Proste l_a , l_b i l_c są obrazami prostej l w symetrii względem boków BC, CA i AB odpowiednio. Pokazać, że proste l_a , l_b i l_c ograniczają trójkat, którego okrąg opisany jest styczny do ω .

Zadanie 83. Dany jest trójkąt ostrokątny ABC z środkiem okręgu opisanego O i ortocentrum H. Niech proste OH i OA przecinają okrąg opisany na BOC ponownie odpowiednio w P oraz K. Załóżmy, że P i O leżą po tej samej stronie prostej BC. Dowieść, że PB + PC = PK. Zadanie 84. Dany jest równoległobok ABCD oraz punkt F leżący na odcinku CD. Punkty O_1 , O_2 i O_3 są środkami okręgów opisanych na trójkątach ABF, BCF i ADF. Dowieść, że ortocentrum trójkąta $O_1O_2O_3$ leży na prostej AB.

Zadanie 85. Dany jest trójkąt różnoboczny ABC z okręgiem opisanym ω . Styczne do ω w punktach B i C przecinają się w punkcie P. Niech AP przecina BC w K oraz M to środek BC. Niech X będzie punktem na AC taki, że AB jest styczny do okręgu opisanego na BXC. Prosta BX przecina AM w punkcie T. Prosta przez C równoległa do AM przecina TK w punkcie V. Udowodnić, że AV jest styczne do ω .

Zadanie 86. Na okręgu opisanym na trójkącie ABC leży punkt P. Proste AP i BC przecinają się w D oraz T jest odbiciem punktu D względem środka odcinka BC. Prosta AT przecina okrąg PDT ponownie w G. Okrąg opisany na AGP przecina AB i AC ponownie w E i F odpowiednio. Proste EF i GP przecinają się w punkcie Q. Wykaż, że AQ jest równoległe do BC.

Zadanie 87. Dany jest trójkąt ostrokątny ABC $(AB \neq AC)$ oraz spodki wysokości D, E, F opuszczone odpowiednio z A, B, C. Punkt P leży na DE tak, że $AP \perp AB$ i Q leży na DF tak, że $AQ \perp AC$. Proste PQ i BC przecinają się w punkcie T. Udowodnij, że $\lessdot MAT = 90^\circ$, gdzie M to środek odcinka BC.

Zadanie 88. Niech I będzie środkiem okręgu wpisanego w trójkąt ABC, zaś AD średnicą okręgu opisanego na tym trójkącie. Punkty E i F leżą na półprostych BA i CA odpowiednio, przy czym długości BE

i CF są równe połowie obwodu trójkąta ABC. Pokazać, że $EF \perp DI$.

Zadanie 89. Pokaż, że trzy styczne do paraboli tworzą trójkąt, którego okrąg opisany zawiera ognisko, a otrocentrum leży na kierownicy paraboli **Zadanie 90.** Niech ABC będzie trójkątem równobocznym, a punkty M i N środkami AB i AC, odpowiednio. Niech P będzie punktem leżącym po tej samej stronie prostej AB co punkt C, zaś punkt Q leży na prostej BN oraz

$$\triangleleft PBA = \triangleleft QMC = \frac{\triangleleft PAB}{2}.$$

Wykazać, że $PQ \parallel AC$.

Zadanie 91. Dany jest czworokąt ABCD, w którego można wpisać okrąg. Okrąg ω jest styczny do boków AB i BC oraz przecina przekątną AC w punktach P i Q. Dowieść, że istnieje okrąg styczny do CD i DA oraz przechodzący przez punkty P i Q.

Zadanie 92. Dany jest czworokąt ABCD opisany na okręgu. Okrąg ω jest styczny do AC i BD odpowiednio w punktach X i Y oraz przecina okrąg opisany w punktach P oraz Q. Prosta XY przecina proste BC i DA w punktach R i S. Pokaż, że P,Q,R,S leżą na jednym okręgu.

Zadanie 93. Dana jest elipsa o ogniskach F_1 i F_2 . Niech X i Y to punkty leżące na tej elipsie. Proste F_1X i F_2Y przecinają się w punkcie P, a proste F_1Y i F_2X przecinają się w punkcie Q. Udowodnij, że w czworokąt XPYQ można wpisać okrąg.

Zadanie 94. Dane są 2 okręgi rozłączne oraz jeden okrąg (ω_1) jest wewnątrz drugiego (ω_2) . Udowodnij, że ogniska elips stycznych zewnętrznie do ω_2 i stycznych wewnętrznie do ω_1 leżą na jednym okręgu.

Zadanie 95. Dany jest trójkąt ABC i punkt P na okręgu opisanym na tym trójkącie. Niech P_a, P_b, P_c będą odbiciami punktu P względem

odpowiednio boków BC, CA, AB. Pokazać, że P_a, P_b i P_c są współliniowe z ortocentrum trójkąta ABC.

Zadanie 96. W trójkącie ostrokątnym ABC (BC > CA), punkty H i O to odpowiednio ortocentrum i środek okręgu opisanego. Punkt F jest spodkiem wysokości opuszczonej z punktu C. Prosta prostopadła do prostej OF przechodząca przez punkt F, przecina prosta AC w punkcie P. Pokazać, że $\lhd FHP = \lhd BAC$.

Zadanie 97. Dany jest trójkąt ABC, gdzie BC > AB > CA. Punkty B_1 i C_1 leżą na AC i AB. odcinki BB_1 i CC_1 przecinają się w punkcie G. Niech (BB_1C) przecina ponownie AB w X, a (BCC_1) przecina BB_1 ponownie w P. Styczna przez G do (BGC) przecina CP w Y. Okrąg (GYC) przecina BG ponownie w Z oraz proste B_1Y i XG przecinają się w punkcie T. Udowodnij, że jeżeli $\sphericalangle XC_1G = \sphericalangle XB_1G$, to $TC_1B = \sphericalangle TCZ$.

Uwaga. (XYZ) oznacza okrąg opisany na trójkącie XYZ.

Zadanie 98. Niech punkty D, E, F leżą odpowiednio na BC, CA, AB. Niech D', E', F' będą odpowiednio odbiciami punktów D, E, F względem środków boków BC, CA, AB. Udowodnij, że pole trójkątów DEF oraz D'E'F' sa równe.

Zadanie 99. Okrąg wpisany ω w trójkącie ABC jest styczny do boków BC,CA,AB odpowiednio w punktach D,E,F. Niech H oznacza ortocentrum trójkąta DEF oraz wysokość DH przecina ω ponownie w P i EF przecina BC w punkcie L. Okrąg opisany na BPC przecina ω ponownie w X. Wykaż, że L,D,H,X są współokręgowe.

Zadanie 100. W równoległoboku ABCD z kątem ostrym przy A, punkt N leży na odcinku AD oraz punkt M leży na CN w taki sposób, że AB = BM = CM. Punkt K to odbicie punktu N względem prostej MD. Prosta MK przecina odcinek AD w punkcie L. Niech P będzie

przecięcie okręgów opisanych na AMD i CNK oraz A i P są po tej samej stronie prostej MK. Dowieść, że $\sphericalangle CPM = \sphericalangle DPL$.

Zadanie 101. Dany jest trójkąt ostrokątny ABC. Wysokości tego trójkąta przecinają się w punkcie H. Okrąg o średnicy AH przecina okrąg opisany na trójkącie ABC w punktach A i K. Prosta KH przecina odcinek BC w punkcie M. Wykazać, że punkt M jest środkiem odcinka BC.