17 -

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2559

วิชา ENE 301 Introduction to Probability and Random Processes for Engineers ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ) สอบ วันพฤหัสบดีที่ 1 ชันวาคม พ.ศ. 2559

เวลา 09:00 -12:00น.

คำสั่ง:-

- 1. ข้อสอบวิชานี้มี 7 ข้อ 8 หน้า (รวมใบปะหน้า) คะแนนรวม 160 คะแนน
- 2. <u>ไม่อนุญาต</u>ให้นำหนังสือบระกอบการเรียนเข้าห้องสอบได้
- 3. <u>อนุญาต</u>ให้นำเอกสารขนาด A4 สองแผ่นหน้าหลัง เข้าห้องสอบได้
- 4. แสดงวิธีทำลงในข้อสอบเท่านั้น
- 5. <u>อนญาต</u>นำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 6. **ไม่อนุญาต**ให้นำพจนานุกรมเข้าห้องสอบ
- 7. ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ
- 8. ขอให้นักศึกษาทุกคนโชคติในการสอบ

คำเตือน/คำแนะนำ:-

- เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้อง สอบ
- นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา
- นักศึกษาควรดูข้อสอบทั้งหมดก่อนเริ่มลงมือทำและควรอ่านคำถามให้รอบคอบก่อนเริ่มทำ การดำนวณเพื่อไม่ให้เสียเวลากับการดำนวณที่ไม่มีประโยชน์

ชื่อ-สกล	รหัสประจำตัว
รศ.ดร.วุฒิพงษ์ คำวิลัยศักดิ์ (โทร: 9067)	
้ ผู้ออกทั้อสอบ	

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(ผู้ช่วยศาสตราจารย์ ดร.สุวัฒน์ ภัทรมาลัย)

รักษาการหัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

Į

<i>a</i> i	٠ ، ، ،	el el
ชื่อ-สกุล	รงเสนโระจักตัก	เลขที่นั่งสอบ
DU-01101	ЭИМЫ ЈФО IVI д	60DHMVNUU

1. (Function of random variables) nonlinear zero-memory device สามารถที่โมเคลโดย Transmission function $g(x)=x^n$ ถ้าเราให้ $y=x^n$ pdf ของ y จะขึ้นกับว่า n เป็นเลขคู่หรือคี่ ถ้าเราพิจารณาเฉพาะ n เป็นเลขคี่ จงเขียน pdf ของ y โดยติดอยู่ในรูปของ pdf ของ x (20 คะแนน)

Solution:

2. (Vector mapping) ถ้าเราให้

$$V = 3X + 5Y$$

$$W = X + 2Y$$

โดยให้ $f_{xy}(x,y) = \frac{1}{2\pi} \exp[-\frac{1}{2}(x^2+y^2)]$ จงหา joint pdf ของ V และ W (30 คะแนน)

3. Joint pdf ของตัวแปรสุ่ม x และ y ซึ่งสามารถเขียนได้ดังนี้

$$f_{xy}(x,y) = \begin{cases} 6 \times (1-x-y), 0 \le x+y \le 1, x \ge 0, y \ge 0\\ 0, otherwise \end{cases}$$

a) จงหา marginal density function ของ x , $f_x(x)$ (10 คะแนน) Solution

b) จงหา conditional density function ของ y given x , $f_{yx}(y \mid x)$ นักศึกษาต้องบอก range ของทั้ง x และ y มาด้วย (10 คะแนน) Solution

c) Find $E(Y \mid X = x)$ (10 Azulu) Solution

สู่ ชื่อ-สกอ	รหัสประจำตัว	เลขที่นั่งสอบ
วย-สกล	งทฤบ งอง เพ ง	

4. (Moment generation function)) ถ้าให้ x เป็นตัวแปรสุ่มที่มี

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}, x = 0,1,2,....$$

a) จงหา moment generating function ของ x (10 คะแนน)

Sol:

b) ใช้ moment theorem ในการหา mean และ variance ของ x (10 คะแนน)

Sol:

		1 1
4	م م	
ชื่อ-สกล	รหสบระจาตว	เลขที่นั่งสอบ

5. (Markov Bound) ถ้าโรงงานแห่งหนึ่งผลิตตัวต้านทานซึ่งมีค่าเฉลี่ยนขนาด 1000 โอห์ม จงหาค่าขอบเขตความ น่าจะเป็นที่ค่าตัวต้านทานจะมีค่ามากกว่า 1500 โอห์ม (20 คะแนน)

		ط ما سعود
d	รหัสประจำตัว	เลขที่นั่งสอบ
ชื่อ-สกล	1 Net D 3 of 1 N 3	

6. (Mean&Variance) พิจารณาตัวแปรสุ่ม X ซึ่งมี probability density function เป็น

$$f(x) = \begin{cases} e^{-x}, x > 0\\ 0, elsewhere \end{cases}$$

(a) จงหาคำเฉลี่ยของตัวแปรสุ่ม X (5 คะแนน)

(b) จงหาค่า standard deviation ของตัวแปรสุ่ม X (5 คะแนน)

ชื่อ-สกุ	ลรหัสประจำตัวเลขที่นั่งสอบ
7.	(General Concepts) จงเติมในช่องว่างต่อไปนี้
	(a) Correlation R_{12} สำหรับตัวแปรสุ่ม $\mathrm{X1}$ และ $\mathrm{X2}$ สามารถนิยามโดย (5 คะแนน)
	$R_{12} =$
	(b) Covariance C_{12} สำหรับตัวแปรสุ่ม $X1$ และ $X2$ สามารถนิยามโดย (5 คะแนน)
	C_{12} =
	(c) Correlation coefficient $ ho_{12}$ สำหรับตัวแปรสุ่ม X1 และ X2 สามารถนิยามโดย (5 คะแนน)
	$ ho_{12}$ =
	(d) ถ้า X และ Y มี joint pdf เป็น $f_{\chi \gamma}(x,y)$ และมี marginal pdf ของ X และ Y เป็น $f_{\chi}(x)$ และ
	$f_{\gamma}(y)$ จงหา conditional probability density function ของ X เมื่อเราทราบ condition ว่า Y=y (5
	คะแนน)
	$f_X(x \mid Y = y) = \underline{\hspace{1cm}}$
	(e) ถ้าตัวแปรสุมสองตัว Uncorrelated จะจริงหรือเท็จที่ตัวแปรสุมจะ independent (5 คะแนน)
	(f) ถ้า Covariance ของตัวแปรสุ่ม X และ Y มีค่าเท่ากับ Correlation ของตัวแปรสุ่ม X และ Y จริงหรือเท็จที่
	ค่า mean ของทั้งสองตัวแปรจะต้องเป็นศูนย์ (5 คะแนน)