Neutralização

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1	1 Os ácidos e as bases											
	1.1	Os ácidos e as bases em solução em água										
	1.2	Os ácidos e bases fortes e fracos										
	1.3	A neutralização										

2 A análise volumétrica

[FALAR DE ÁCIDOS QUE SE DECOMPÕE EM GASES: H2CO3, H2SO3, H2S2O3]

1 Os ácidos e as bases

Os primeiros químicos aplicavam o termo *ácido* a substâncias que tinham sabor azedo acentuado. O vinagre, por exemplo, contém ácido acético, $\mathrm{CH_3COOH}$. As soluções em água das substâncias que eram chamadas de *bases* ou **álcalis** eram reconhecidas pelo gosto de sabão. Felizmente, existem maneiras menos perigosas de reconhecer ácidos e bases. Os ácidos e as bases, por exemplo, mudam a cor de certos corantes conhecidos como indicadores. Um dos indicadores mais conhecidos é o tornassol, um corante vegetal obtido de um líquen. Soluções de ácidos em água deixam o tornassol vermelho, e as soluções de bases em água o deixam azul. Um instrumento eletrônico conhecido como *medidor de pH* permite identificar rapidamente uma solução como ácida ou básica:

- Uma leitura de pH abaixo de 7 (pH < 7) é característica de uma solução ácida.
- Uma leitura acima de 7 (pH > 7) é característica de uma solução básica.

1.1 Os ácidos e as bases em solução em água

Os químicos debateram os conceitos de acidez e basicidade por muitos anos antes que definições precisas aparecessem. Dentre as primeiras definições úteis estava a que foi proposta pelo químico sueco Svante Arrhenius, por volta de 1884. Ele definiu um *ácido* como um composto que contém hidrogênio e reage com a água para formar íons hidrogênio. Uma base foi definida como um composto que gera íons hidróxido em água. Os compostos que atendem a estas definições são chamados de **ácidos e bases de Arrhenius**. O HCl, por exemplo, é um ácido de Arrhenius, porque libera um íon hidrogênio, H⁺ (um próton), quando se dissolve em água. O CH₄ não é um ácido de Arrhenius, porque não libera íons hidrogênio em água. O hidróxido de sódio é uma base de Arrhenius, porque íons OH⁻ passam para a solução quando ele se dissolve. A amônia também é uma base de Arrhenius, porque produz íons OH⁻ por reação com a água:

$$NH_3(aq) + H_2O(1) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

O metal sódio produz íons OH⁻ quando reage com a água, mas não é considerado uma base de Arrhenius, porque é um elemento, e não um composto, como requer a definição.

O problema com as definições de Arrhenius é que se referem a um solvente particular, a água. Quando os químicos estudaram solventes diferentes da água, como a amônia líquida, encontraram algumas substâncias que mostraram o mesmo padrão de comportamento ácido-base. Um avanço importante no entendimento do conceito de ácidos e bases aconteceu em 1923, quando dois químicos trabalhando independentemente, Thomas Lowry, na Inglaterra, e Johannes Brønsted, na Dinamarca, tiveram a mesma ideia. Sua contribuição foi compreender que o processo fundamental, responsável pelas propriedades de ácidos e bases, era a transferência de um próton (um íon hidrogênio) de uma substância para outra. A **definição de Brønsted-Lowry** para ácidos e bases é a seguinte:

- Um ácido é um doador de prótons.
- Uma base é um aceitador de prótons.

Essas substâncias são chamadas de *ácidos e bases de Brønsted* ou, simplesmente, *ácidos e bases*, porque a definição de Brønsted-Lowry é comumente aceita hoje em dia e é a que usaremos neste curso.

Quando uma molécula de um ácido se dissolve em água, ela transfere um íon hidrogênio, H^+ , para uma molécula de água e forma um íon hidrônio, H_3O^+ . Assim, quando o cloreto de hidrogênio, HCl, se dissolve em água, libera um íon hidrogênio, e a solução resultante contém íons hidrônio e íons cloreto:

$$HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

Note que, como H_2O aceita o íon hidrogênio para formar H_3O^+ , a água está agindo como uma base de Brønsted.

Como identificar um ácido a partir de sua fórmula? Um ácido de Brønsted contém um átomo de hidrogênio ácido, que pode ser liberado como próton. Um átomo de hidrogênio ácido muitas vezes é escrito como o primeiro elemento na fórmula molecular dos ácidos

ATENÇÃO No sistema de Arrhenius, o hidróxido de sódio é uma base. Do ponto de vista de Brønsted, porém, ele apenas fornece uma base, OH⁻. Os químicos muitas vezes voltam-se para a definição de Arrhenius, menos geral.

1.2 Os ácidos e bases fortes e fracos

1.3 A neutralização

2 A análise volumétrica

Uma das técnicas de laboratório mais comuns de determinação da concentração de um soluto é a **titulação**. As titulações normalmente são **titulações ácido-base**, nas quais um ácido reage com uma base. As titulações são muito usadas no controle da pureza

^{*}Contato: gabriel.braun@pensi.com.br, (21) 99848-4949

da água, na determinação da composição do sangue e no controle de qualidade das indústrias de alimentos.

Em uma titulação, uma solução é adicionada gradativamente a outra, até a reação se completar. Um volume conhecido da solução a ser analisada, que é chamada de analito, é transferido para um frasco. Então, uma solução de concentração conhecida de reagente é vertida no frasco por uma bureta até que todo o analito tenha reagido. A solução contida na bureta é chamada de titulante, e a diferença das leituras dos volumes inicial e final na bureta dá o volume de titulante utilizado. A determinação da concentração ou

Problemas

PROBLEMA 1

Considere os compostos: NH₃, HBr, KOH, H₂SO₃ e Ca(OH)₂.

Assinale a alternativa com o caráter ácido-base de cada composto, respectivamente.

- A ácido; ácido; base; base; base.
- B base; base; ácido; ácido; base.
- c base; ácido; ácido; base; base.
- **D** base; ácido; base; ácido; base.
- **E** base; base; ácido; ácido.

PROBLEMA 2

Considere os compostos: H_2SeO_4 , $CH_3CH_2NH_2$, HCOOH, CsOH e HIO_4 .

Assinale a alternativa com o caráter ácido-base de cada composto, respectivamente.

- A ácido; ácido; ácido; base; base.
- B base; ácido; ácido; ácido; base.
- c base; ácido; ácido; base; ácido.
- **D** base; base; ácido; ácido; ácido.
- E ácido; base; ácido; base; ácido.

PROBLEMA 3

Considere os óxidos: BaO, SO₃, As₂O₃, Bi₂O₃.

Assinale a alternativa com o caráter ácido-base de cada óxido, respectivamente.

- A básico; anfotérico; ácido; anfotérico.
- **B** ácido; básico; anfotérico; anfotérico.
- c básico; ácido; anfotérico; anfotérico.
- D ácido; anfotérico; básico; anfotérico.
- E anfotérico; ácido; anfotérico; básico.

PROBLEMA 4

Considere os óxidos: SO₂, CaO, P₄O₁₀, Al₂O₃.

Assinale a alternativa com o caráter ácido-base de cada óxido, respectivamente.

- A ácido; anfotérico; ácido; básico.
- B anfotérico; ácido; básico; ácido.
- c ácido; básico; ácido; anfotérico.
- D básico; ácido; acido; anfotérico.
- E anfotérico; ácido; ácido; básico.

PROBLEMA 5

Um técnico preparou uma solução de um composto em água, mas esqueceu de rotulá-la. A solução permaneceu incolor após a adição de fenoftaleína, e tem baixa condutividade comparada com uma solução padrão de NaCl.

Assinale a alternativa com um possível composto na solução.

- A HCl
- в кон
- **c** Glicose

- D CH₃COOH
- E NH₃

PROBLEMA 6

Um técnico preparou uma solução de um composto em água, mas esqueceu de rotulá-la. A solução ficou rosa após a adição de fenoftaleína, e conduz tanta eletricidade quanto uma solução padrão de NaCl.

Assinale a alternativa com um possível composto na solução.

- A HNO₃
- **B** NaOH
- c CH₃OH

- **D** HCOOH
- E CH₃NH₃

PROBLEMA 7

Considere as reações.

- 1. $NH_4I(aq) + H_2O(1) \longrightarrow NH_3(aq) + H_3O^+(aq) + I^-(aq)$
- 2. $NH_4I(s) \longrightarrow NH_3(g) + HI(g)$
- 3. $CH_3COOH(aq) + NH_3(aq) \longrightarrow CH_3CONH_2(aq) + H_2O(l)$
- 4. $NH_4I(am) + KHNH_2(am) \longrightarrow KI(am) + 2NH_3(1)$

Assinale a alternativa que relaciona as reações ácido-base de Brønsted-Lowry.

- A 1 e 2
- **B** 1 e 4
- **c** 2 e 4

- **D** 1, 2 e 4
- **E** 1, 2, 3 e 4

Considere as reações.

- 1. $KOH(aq) + CH_3I(aq) \longrightarrow CH_3OH(aq) + KI(aq)$
- $2. \ AgNO_{3}(aq) + HCl(aq) \longrightarrow AgCl(s) + HNO_{3}(aq) \\$
- 3. $2 \text{ NaHCO}_3(am) + 2 \text{ NH}_3(l) \longrightarrow \text{Na}_2\text{CO}_3(s) + (\text{NH}_4)_2\text{CO}_3(am)$
- 4. $H_2S(aq) + Na_2S(s) \longrightarrow 2 NaHS(aq)$

Assinale a alternativa que relaciona as reações ácido-base de Brønsted-Lowry.

- A 3
- B 4
- **C** 3 e 4

- **D** 1, 3 e 4
- **E** 2, 3 e 4

PROBLEMA 9

Assinale a alternativa com a base conjugada de OH⁻.

- $\mathbf{A} \quad \mathbf{O}^{2-}$
- B OH-
- C H₂O

- **D** H₃O⁺
- \mathbf{E} H_2O_2

PROBLEMA 10

Assinale a alternativa com o ácido conjugado de HPO₄²⁻.

- A PO₄³-
- **B** HPO₄^{2−}
- **c** H₂PO₄

- D H₃PO₄
- $\mathbf{E} \quad \mathrm{H_4PO_4}^+$

PROBLEMA 11

Assinale a alternativa com a base conjugada de NH₃.

- \mathbf{A} NH²⁻
- $B NH_2^-$
- C NH₄

- \mathbf{D} $\mathrm{NH_4}^+$
- \mathbf{E} N_2H_4

PROBLEMA 12

Assinale a alternativa com o ácido conjugado de H₂SO₃.

- A SO_3^{2-}
- B HSO₃
- c H₂SO₃

- $D H_3SO_3^+$
- $\mathbf{E} \quad \mathbf{H}_2 \mathbf{S}_2 \mathbf{O}_3$

PROBLEMA 13

Considere os compostos: NH₃, BF₃, Ag⁺, F⁻, H⁻.

Assinale a alternativa com o caráter ácido-base de Lewis de cada composto, respectivamente.

- A base; base; ácido; ácido; base.
- **B** ácido; base; ácido; base; base.
- c base; ácido; ácido; base; base.
- D ácido; ácido; base; base; base.
- **E** base; ácido; base; base; ácido.

PROBLEMA 14

Considere os compostos: SO₂, I⁻, CH₃S⁻, NH₂⁻, NO₂.

Assinale a alternativa com o caráter ácido-base de Lewis de cada composto, respectivamente.

- A ácido; base; base; ácido; base.
- B base; base; base; ácido; ácido.
- c base; ácido; ácido; base; base.
- D ácido; base; base; ácido.
- E base; ácido; base; base; ácido.

PROBLEMA 15

Uma alíquota de 15 mL de uma solução de HCl foi titulada com 13,3 mL de KOH 0,015 mol \cdot L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de HCl.

- **A** $0.02 \, \text{mol} \, \text{L}^{-1}$
- **B** $0.031 \, \text{mol} \, \text{L}^{-1}$
- c 0,047 mol L⁻¹

- **D** $0.073 \, \text{mol} \, L^{-1}$
- **E** $0,11 \, \text{mol} \, L^{-1}$

PROBLEMA 16

Uma alíquota de 15 mL de uma solução de NaOH foi titulada com 17,4 mL de KOH 0,23 mol \cdot L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de NaOH.

- **A** $0.091 \, \text{mol} \, \text{L}^{-1}$
- **B** $0.12 \, \text{mol} \, \text{L}^{-1}$
- $c = 0.16 \, \text{mol} \, L^{-1}$

- **D** $0,21 \, \text{mol} \, L^{-1}$
- **E** $0,27 \, \text{mol} \, \text{L}^{-1}$

PROBLEMA 17

Uma alíquota de 25 mL de uma solução de $Ca(OH)_2$ foi titulada com 12 mL de $HClO_4$ 0,15 mol·L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de $Ca(OH)_2$.

- \mathbf{A} 24 mmol \mathbf{L}^{-1}
- \mathbf{B} 36 mmol \mathbf{L}^{-1}
- \mathbf{C} 54 mmol \mathbf{L}^{-1}

- \mathbf{D} 82 mmol L⁻¹
- \mathbf{E} 120 mmol L⁻¹

PROBLEMA 18

Uma alíquota de 25 mL de uma solução do ácido oxálico, $H_2C_2O_4$, foi titulada com 30 mL de NaOH 0,3 mol·L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de ácido oxálico.

- **A** $0.18 \, \text{mol} \, \text{L}^{-1}$
- **B** $0.24 \, \text{mol} \, \text{L}^{-1}$
- $0.33 \, \text{mol} \, \text{L}^{-1}$

- **D** $0,44 \, \text{mol} \, \text{L}^{-1}$
- **E** $0,60 \, \text{mol} \, \text{L}^{-1}$

Uma amostra de 9,7 g de hidróxido de bário foi dissolvida e diluída até a marca de 250 mL em um balão volumétrico. Foram necessários 11,56 mL dessa solução para titular 25 mL de uma solução de ácido nítrico.

Assinale a alternativa que mais se aproxima da concentração da solução de HNO₃.

A $0,21 \, \text{mol} \, L^{-1}$

 ${\bf B}$ 0,28 mol L⁻¹

D 40 cm

 $D = 0.50 \, \text{mol} \, L^{-1}$

 $E = 0.67 \, \text{mol} \, L^{-1}$

PROBLEMA 20

Um alíquota de $10\,\text{mL}$ de uma solução $3\,\text{mol}\cdot\text{L}-1$ de KOH foi transferida para um balão volumétrico de $250\,\text{mL}$ e diluída até a marca. Foram necessários $38,5\,\text{mL}$ da solução diluída para titular $10\,\text{mL}$ de uma solução de ácido fosfórico, H_3PO_4 .

Assinale a alternativa que mais se aproxima da concentração da solução de H_3PO_4 .

A $0.088 \, \text{mol} \, \text{L}^{-1}$

B $0.12 \, \text{mol} \, \text{L}^{-1}$

 \mathbf{c} 0,16 mol L⁻¹

c $0.37 \, \text{mol} \, \text{L}^{-1}$

D 0,21 mol L^{-1}

 ${f E}$ 0,28 mol L $^{-1}$

PROBLEMA 21

Uma solução de ácido clorídrico foi preparada colocando-se 10 mL do ácido concentrado em um balão volumétrico de 1 L e adicionando-se água até a marca. Outra solução foi preparada colocando-se 0,832 g de carbonato de sódio anidro em um balão volumétrico de 100 mL e adicionando-se água até a marca. Então, 25 mL desta última solução de carbonato foram pipetados para outro balão e titulados com o ácido diluído. O ponto estequiométrico foi atingido quando 31,25 mL do ácido foram adicionados.

Assinale a alternativa que mais se aproxima da concentração da solução de ácido clorídrico concentrado.

 \mathbf{A} 4.4 mol L⁻¹

B $6.2 \, \text{mol} \, \text{L}^{-1}$

c 8,9 mol L⁻¹

D 13 mol L⁻¹

 \mathbf{E} 18 mol L⁻¹

PROBLEMA 22

O enxofre é uma impureza indesejável no carvão e no petróleo usados como combustível. A percentagem em massa de enxofre em um combustível pode ser determinada pela queima do combustível em oxigênio e dissolução em água do SO_3 produzido para formar ácido sulfúrico diluído. Em um experimento, 8,54 g de um combustível foram queimados, e o ácido sulfúrico resultante foi titulado com 17,54 mL de uma solução 0,1 mol L^{-1} de NaOH.

Assinale a alternativa que mais se aproxima da fração mássica de enxofre no combustível.

A 0,20%

B 0,25%

c 0,33%

D 0,43 %

E 0,55%

PROBLEMA 23

Uma amostra de 3,25 g de um ácido foi diluída em água e titulada com 68,8 mL de uma solução 0,75 mol $\rm L^{-1}$ de NaOH.

Assinale a alternativa que mais se aproxima da massa molar do ácido.

 $\mathbf{A} \quad 11 \,\mathrm{g} \,\mathrm{mol}^{-1}$

 \mathbf{B} 17 g mol⁻¹

 \mathbf{C} 26 g mol⁻¹

 \mathbf{D} 40 g mol⁻¹

 \mathbf{E} 63 g mol⁻¹

PROBLEMA 24

Uma amostra de 0,204 g de um ácido diprótico foi diluída em água e titulada com 29 mL de uma solução 0,115 mol L $^{-1}$ de NaOH.

Assinale a alternativa que mais se aproxima da massa molar do ácido.

 $\mathbf{A} \quad 47 \,\mathrm{g} \,\mathrm{mol}^{-1}$

 \mathbf{B} 75 g mol⁻¹

 $120 \,\mathrm{g} \,\mathrm{mol}^{-1}$

 \mathbf{D} 200 g mol⁻¹

 \mathbf{E} 320 g mol⁻¹

PROBLEMA 25

Uma amostra de 125 mg de carbonato foi dissolvida em 50 mL de HCl 0,1 mol $\rm L^{-1}$. O excesso de ácido foi retrotilulado com 25 mL de NaOH 0,1 mol $\rm L^{-1}$.

Assinale a alternativa com a fórmula unitária do carbonato.

A Na₂CO₃

B MgCO₃

c K₂CO₃

D CaCO₃

E BaCO₃

PROBLEMA 26

Um frasco de 500 mL de uma solução de ácido sulfúrico foi analisada tomando uma alíquota de 100 mL e adicionando 50 mL de uma solução 0,2 mol $\rm L^{-1}$ de NaOH. O excesso de base foi retrotitulado com 12 mL de HCl 0,1 mol $\rm L^{-1}$.

 ${f A}$ 12 mmol ${f L}^{-1}$

 \mathbf{B} 19 mmol \mathbf{L}^{-1}

 \mathbf{C} 29 mmol L⁻¹

 \mathbf{D} 44 mmol L⁻¹

 \mathbf{E} 67 mmol \mathbf{L}^{-1}

PROBLEMA 27

Uma alíquota de $30\,\mathrm{mL}$ de uma solução $0,1\,\mathrm{mol}\,\mathrm{L}^{-1}$ de $\mathrm{Mg}(\mathrm{NO}_3)_2$ foi titulada com EDTA $0,05\,\mathrm{mol}\,\mathrm{L}^{-1}$.

Assinale a alternativa que mais se aproxima do volume da solução de EDTA necessário para atingir o ponto estequiométrico.

A 60 mL

B 93 mL

c 150 mL

D 230 mL

E 350 mL

PROBLEMA 28

Os cátions zinco em uma amostra de 0,7 g talco foi titulado com 22 mL de EDTA 0,016 mol $\rm L^{-1}$

Assinale a alternativa que mais se aproxima da fração mássica de zinco no talco.

A 2,5 %

B 3,3%

c 4,3 %

D 5,6%

E 7,3%

Problemas cumulativos

PROBLEMA 29

Apresente a equação balanceada para as reações.

- a. $CO_2(g) + H_2O(1) \longrightarrow$
- b. $SO_3(g) + H_2O(l) \longrightarrow$
- $c. \ P_4O_{10}(s) + H_2O(l) \longrightarrow$
- d. $BaO(s) + H_2O(l) \longrightarrow$
- e. $\text{Li}_2O(s) + \text{H}_2O(l) \longrightarrow$

PROBLEMA 30

Apresente a equação balanceada para as reações.

- a. $NaOH(aq) + HCl(aq) \longrightarrow$
- b. $NH_4Cl(aq) + KOH(aq) \longrightarrow$
- c. $NaHCO_3(aq) + HBr(aq) \longrightarrow$
- d. $Na_2SO_3(aq) + HCl(aq) \longrightarrow$
- e. $Na_2S_2O_3(aq) + HCl(aq) \longrightarrow$

PROBLEMA 31

Considere os ácidos: H_2SO_4 , $C_6H_5NH_3^+$, $H_2PO_4^-$, HCOOH e $NH_2NH_3^+$

- a. **Apresente** o equilíbrio de transferência de prótons dos ácidos com água.
- b. **Identifique** os pares ácido-base conjugados na transferência de prótons dos ácidos com água.

PROBLEMA 32

Considere as bases: CN⁻, NH₂NH₂, CO₃²⁻, HPO₄²⁻ e CO(NH₂)₂

- a. Apresente o equilíbrio de transferência de prótons das bases com água.
- b. **Identifique** os pares ácido-base conjugados na transferência de prótons das bases com água.

PROBLEMA 33

Apresente a estrutura de Lewis do produto das reações.

- a. $PF_5(g) + F^-(g) \longrightarrow$
- b. $Cl^{-}(g) + SO_2(g) \longrightarrow$

PROBLEMA 34

Apresente a estrutura de Lewis do produto das reações.

- a. $BrF_3(g) + F^-(g) \longrightarrow$
- b. $Cl^{-}(g) + FeCl_{3}(g) \longrightarrow$

PROBLEMA 35

Um ácido diprótico desconhecido é composto de carbono, hidrogênio e oxigênio. Quando uma amostra de 10 g do ácido é queimada, são formados 4,03 g de água e 9,79 g de dióxido de carbono.

Em outro experimento, uma amostra de $0,09\,\mathrm{g}$ do ácido foi dissolvida em $30\,\mathrm{mL}$ de água e titulada com $50\,\mathrm{mL}$ de uma solução $0,04\,\mathrm{mol}\,\mathrm{L}^{-1}$ de NaOH.

- a. Determine a fórmula empírica do ácido.
- b. **Determine** a massa molar do ácido.
- c. Determine a fórmula molecular do ácido.

PROBLEMA 36

O ácido cítrico é composto de carbono, hidrogênio e oxigênio e tem massa molar $192\,\mathrm{g}\,\mathrm{mol}^{-1}$. Quando uma amostra de 3,84 g do ácido é queimada, são formados 1,44 g de água e 5,28 g de dióxido de carbono.

Em outro experimento, uma amostra de 0,25 g de ácido cítrico foi dissolvida em 25 mL de água e titulada com 39 mL de uma solução 0,1 mol $\rm L^{-1}$ de KOH.

- a. Determine a fórmula molecular do ácido cítrico.
- b. Determine o número de hidrogênios ionizáveis na molécula de ácido cítrico.

PROBLEMA 37

Uma substância desconhecida é composta de carbono, hidrogênio, oxigênio e nitrogênio. Quando uma amostra de 1,77 g dessa substância é queimada, são formados 1,35 g de água e 2,64 g de dióxido de carbono.

Em outro experimento, todo nitrogênio de uma amostra de 0,885 g da substância foi convertido em amônia e dissolvido em 50 mL de água. Foram necessários 15 mL de uma solução 0,5 mol $\rm L^{-1}$ de $\rm H_2SO_4$ para titular a solução de amônia.

Determine a fórmula empírica da substância

PROBLEMA 38

Uma substância desconhecida é composta de carbono, hidrogênio, oxigênio e nitrogênio. Quando uma amostra de 1,57 g dessa substância é queimada, são formados 0,31 g de água e 2,13 g de dióxido de carbono.

Em outro experimento, todo nitrogênio de uma amostra de 1,03 g da substância foi convertido em amônia e dissolvido em 50 mL de água. Foram necessários 27 mL de uma solução 0,5 mol $\rm L^{-1}$ de HCl para titular a solução de amônia.

Determine a fórmula empírica da substância

PROBLEMA 39

Um frasco contendo $1\,L$ de uma solução de NaOH $0,15\,\text{mol}\,L^{-1}$ não foi protegido do ar após a padronização e absorveu $528\,\text{mg}$ de CO_2 . Uma alíquota de $100\,\text{mL}$ dessa solução foi titulada com uma solução $1\,\text{mol}\,L^{-1}$ de HCl.

- a. Apresente a reação de absorção do CO₂ pela solução.
- b. Determine o volume da solução de HCl utilizado.

Um frasco contendo $500\,\mathrm{L}$ de uma solução de NaOH 0,1 mol L^{-1} não foi protegido do ar após a padronização e absorveu 616 mg de CO_2 . Foram necessários $50\,\mathrm{mL}$ dessa solução para titular $100\,\mathrm{mL}$ de uma solução de ácido acético.

- a. **Determine** a concentração da solução de ácido acético
- b. Determine o erro relativo na determinação da concentração se a absorção de CO₂ não for considerada.

PROBLEMA 41

Uma amostra de 700 mg de farinha de trigo foi analisada pelo método Kjeldahl. Neste método, a amostra é decomposta em meio de ácido sulfúrico concentrado a quente para converter o nitrogênio das proteínas em íons amônio. A amônia formada pela adição de uma base concentrada após a digestão com $\rm H^2SO^4$ foi destilada em 25 mL de uma solução 0,05 mol dm $^{-3}$ de HCl. O excesso de HCl foi retrotitulado com 5 mL de uma solução 0,05 mol · L-1 de NaOH. O nitrogênio representa 20% da massa das proteínas do trigo.

- a. Apresente a reação que ocorre entre a amônia e o ácido clorídrico.
- b. **Determine** fração de proteína na farinha.

PROBLEMA 42

O *Index Merck* indica que 10 mg de guanidina, CH_5N_3 , pode ser administrada para cada quilograma de peso corporal no tratamento da miastenia grave. O nitrogênio em uma amostra de quatro tabletes, que pesou um total de 7,5 g, foi convertido em amônia, seguida por destilação em 100 mL de uma solução 0,175 mol L^{-1} em HCl. O excesso de ácido foi retrotitulado com 12 mL de uma solução 0,1 mol L^{-1} em hidróxido de sódio.

Determine o número de tabletes que representam uma dose apropriada para um paciente de 70 kg.

PROBLEMA 43

O ingrediente ativo na Antabuse, uma droga usada no tratamento de alcoolismo crônico, é o dissulfeto de tetraetiltiuram, $C_{10}H_{20}N_2S_4$. O enxofre em 600 mg de uma amostra para preparação de Antabuse foi oxidado a SO_2 , o qual foi absorvido em H_2O_2 para gerar H_2SO_4 . O ácido foi titulado com 20 mL de hidróxido de sódio $0.04\,\mathrm{molL}^{-1}$.

Determine a fração mássica do princípio ativo na preparação.

PROBLEMA 44

Foi borbulhado ar em CNTP a $30\,L\,\text{min}^{-1}$ por uma solução com $75\,\text{mL}$ de uma solução a 1% de peróxido de hidrogênio. O H_2O_2 converte o SO_2 do ar em ácido sulfúrico. Após dez minutos o H_2SO_4 foi titulado com $10\,\text{mL}$ de uma solução $0,002\,\text{mol}\,L^{-1}$ em hidróxido de sódio

Determine a concentração de SO₂ no ar em partes por milhão.

PROBLEMA 45

O teor de formaldeído, HCHO, em um pesticida foi determinado pela pesagem de 0,3 g de uma amostra líquida em um frasco contendo $50\,\text{mL}$ de NaOH 0,1 mol L $^{-1}$ e $50\,\text{mL}$ de H $_2\text{O}_2$ a 3%. Por aquecimento, ocorre a reação:

 $HCHO\left(aq\right) + H_2O_2(aq) + OH^-(aq) \longrightarrow HCOO^-(aq) + 2\,H_2O\left(l\right)$

Após esfriar, o excesso de base foi titulado com 24 mL de $\rm H_2SO_4$ 0,05 mol $\rm L^{-1}$.

Determine a fração mássica de formaldeído na amostra.

PROBLEMA 46

Uma amostra de 200 mg de dimetilftalato, $C_{10}H_{10}O_4$, é colocada em refluxo com 50 mL de NaOH 0,1 mol L^{-1} para hidrolisar os grupos éster:

$$C_{10}H_{10}O_4(aq) + 2OH^-(aq) \longrightarrow C_8H_4O_4^{2-}(aq) + 2CH_3OH(aq)$$

Após o final da reação, o excesso de base foi retrotitulado com $32\,\mathrm{mL}$ de HCl $0,1\,\mathrm{mol}\,\mathrm{L}^{-1}$.

Determine a pureza da amostra de dimetilftalato.

PROBLEMA 47

Uma mistura sólida é composta de carbonato de sódio e bicarbonato de sódio. Uma amostra de 20 g foi diluída a 200 mL em um balão volumétrico. Uma alíquota de 20 mL da solução foi titulada com 60 mL de uma solução aquosa 0,5 mol $\rm L^{-1}$ de ácido clorídrico.

Determine a fração mássica de carbonato de sódio na amostra.

PROBLEMA 48

Uma amostra de 1,2 g de uma mistura contendo $(NH_4)_2SO_4$, NH_4NO_3 e substâncias inertes foi diluída a 200 mL em um balão volumétrico. Um alíquota de 50 mL foi alcalinizada com base forte e a amônia liberada foi destilada e coletada em 30 mL de $HCl\ 0,1\ mol\ L^{-1}$. O excesso de ácido foi retrotitulado com $10\ mL$ de $NaOH\ 0,1\ mol\ L^{-1}$.

Em outro experimento, uma alíquota de 25 mL foi tratada com liga de Dervada, reduzindo os íons ${\rm NO_3}^-$ a ${\rm NH_4}^+$, e alcalinizada com base forte. A amônia liberada foi destilada e coletada em 30 mL da mesma solução de HCl, sendo o excesso de ácido retrotilulado com 15 mL da base.

- a. **Determine** a fração mássica de (NH₄)₂SO₄ na mistura.
- b. **Determine** a fração mássica de NH₃NO₃ na mistura.

PROBLEMA 49

A mistura de $50\,\text{mL}$ uma solução $0,1\,\text{mol}\,\text{L}^{-1}$ de HCl com $50\,\text{mL}$ de uma solução de NaOH de mesma concentração em um calorímetro adiabático aumenta a temperatura da solução em $0,685\,^{\circ}\text{C}$.

Em outro experimento, $10\,\mathrm{mL}$ de uma solução $3\,\mathrm{mol}\,\mathrm{L}^{-1}$ de HNO $_3$ são adicionados em $1\,\mathrm{L}$ de KOH $0,1\,\mathrm{mol}\,\mathrm{L}^{-1}$ em $25\,^\circ\mathrm{C}$.

- a. **Determine** a entalpia de neutralização.
- b. Determine a variação de temperatura no segundo experimento.

PROBLEMA 50

Uma amostra de 50 g de uma solução 4% em hidróxido de sódio é misturada com 50 g de uma solução 1,82% em ácido clorídrico em um calorímetro adiabático a 20 °C. A temperatura da solução aumenta para 23,4 °C. Em seguida, 70 g de uma solução 3,5% em ácido sulfúrico são adicionados à solução.

Determine a temperatura final da solução.

Uma alíquota de uma solução $0.1 \text{ mol } L^{-1}$ de ácido clorídrico foi titulada com uma solução $1 \text{ mol } L^{-1}$ de hidróxido de sódio, NaOH. A condutividade da solução foi monitorada ao longo da reação.

- a. Apresente a equação iônica para a reação de titulação.
- b. **Determine** o volume de hidróxido de sódio necessário para atingir o ponto de equivalência.
- c. **Identifique** os íons responsáveis pela condutividade da solução ao longo da titulação.
- d. **Explique** porque a condutividade da solução é maior após a adição de 5 mL de base do que após a adição de 15 mL de base.

PROBLEMA 52

Uma alíquota de 100 mL de uma solução de ácido sulfúrico foi titulada com uma solução 1 mol L⁻¹ de hidróxido de potássio, KOH. A condutividade da solução foi monitorada ao longo da reação.

- a. Apresente a equação iônica para a reação de titulação.
- b. **Determine** a concentração da solução de ácido sulfúrico.

Gabarito

Problemas

1.	D	2.	E	3.	C	4.	C	5.	D	6.	В
7.	D	8.	C	9.	A	10.	C	11.	В	12.	D
13.	C	14.	D	15.	A	16.	E	17.	В	18.	A
19.	A	20.	D	21.	D	22.	C	23.	E	24.	C
25.	В	26.	D	27.	Α	28.	В				

- **Problemas cumulativos 29.** a. $CO_2(g) + H_2O(1) \longrightarrow H_2CO_3(aq)$ b. $SO_3(g) + H_2O(1) \longrightarrow H_2SO_4(aq)$ c. $P_4O_{10}(s) + 6H_2O(1) \longrightarrow 4H_3PO_4(aq)$ d. $BaO(s) + H_2O(1) \longrightarrow Ba(OH)_2(aq)$ e. $\text{Li}_2\text{O}(s) + \text{H}_2\text{O}(1) \longrightarrow 2 \text{LiOH}(aq)$ a. $NaOH(aq) + HCl(aq) \longrightarrow NaCl(aq) + H_2O(l)$ $b. \ \ NH_{4}Cl\left(aq\right) + KOH\left(aq\right) \longrightarrow NH_{3}(g) + KCl\left(aq\right) + H_{2}O\left(l\right)$ $\text{c. } \operatorname{NaHCO_3}(aq) + \operatorname{HBr}\left(aq\right) \longrightarrow \operatorname{NaBr}\left(aq\right) + \operatorname{CO_2}(g) + \operatorname{H_2O}\left(l\right)$ $d. \ \ Na_2SO_3(aq) + 2\,HCl\,(aq) \longrightarrow 2\,NaCl\,(aq) + SO_2(g) + H_2O\,(l)$ e. $Na_2S_2O_3(aq) + 2HCl(aq) \longrightarrow 2NaCl(aq) + SO_2(g) + S(s) +$ $H_2O(1)$ a. $H_2SO_4(aq) + H_2O(1) \rightleftharpoons HSO_4^-(aq) + H_3O^+(aq)$ b. $C_6H_5NH_3^+(aq) + H_2O(1) \rightleftharpoons C_6H_5NH_2(aq) + H_3O^+(aq)$ c. $H_2PO_4^-(aq) + H_2O(l) \Longrightarrow H_2PO_4^{2-}(aq) + H_3O^+(aq)$ d. $HCOOH(aq) + H_2O(1) \Longrightarrow HCOO^-(aq) + H_3O^+(aq)$ e. $NH_2NH_3^+(aq) + H_2O(1) \Longrightarrow NH_2NH_2(aq) + H_3O^+(aq)$ 32. a. $CN^{-}(aq) + H_2O(1) \Longrightarrow HCN(aq) + OH^{-}(aq)$ b. $NH_2NH_2(aq) + H_2O(l) \Longrightarrow NH_2NH_3^+(aq) + OH^-(aq)$ c. $CO_3^{2-}(aq) + H_2O(1) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$ d. $HPO_4^{2-}(aq) + H_2O(l) \rightleftharpoons HPO_4^{-}(aq) + OH^{-}(aq)$ e. $CO(NH_2)_2(aq) + H_2O(1) \rightleftharpoons NH_2CONH_3^+(aq) + OH^-(aq)$ 33. a. PF₆ b. SO₂Cl⁻ a. BrF₄ 34. b. FeCl₄ a. CH₂O b. $90 \,\mathrm{g} \,\mathrm{mol}^{-1}$ c. C₂H₂O₄ 36. a. $C_6H_8O_7$ b. 3
- 37. C₂H₅NO
- 38. C₇H₅N₃O₆
- a. $CO_2(g) + NaOH(aq) \longrightarrow NaHCO_3(aq)$
 - b. 13,8 mL
- a. $36 \, \text{mmol} \, \text{L}^{-1}$
 - b. 39%
- a. $NH_3(aq) + HCl(aq) \longrightarrow NH_4Cl(aq)$
 - b. 10%
- 42. -
- **43.** 10%
- 44. -
- **45.** 4%
- **46.** 85%
- **47**. 45%
- 48. a. 22%
 - b. 26%

- **49.** a. $13,7 \text{ cal mol}^{-1}$
 - b. $28\,^{\circ}C$
- **50.** 24 ° C
- $\textbf{51.} \quad a. \ \ H_3O^+(aq) + OH^-(aq) \longrightarrow 2\,H_2O\left(l\right)$

 - c. Antes do ponto de equivalência, $\rm Na^+, Cl^-$ e $\rm H^+.$ No ponto de equivalência, $\rm Na^+$ e $\rm Cl^-.$ Após o ponto de equivalência, $\rm Na^+$, $H_3^-O^+eCl^-$.
- $\begin{array}{ll} \textbf{52.} & a. & H_3O^+(aq) + OH^-(aq) \longrightarrow 2\,H_2O\left(l\right) \\ & b. & 75\,\text{mmol}\,L^{-1} \end{array}$