TABLE 5.2

 BJT Transistor Amplifiers Including the Effect of R_s and R_L

DC-UII_CHOIT | | 1_202... | 20211 | 1100Hy DOC PHILLI... | 20171 DE 1.pul

Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o
R_{R_B}	$\frac{-(R_L \ R_C)}{r_e}$	$R_B \ eta r_e$	R_C
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	Including r_o : $-\frac{(R_L R_C r_o)}{r_e}$	$R_B \ eta r_e$	$R_C \ r_o$
$\begin{array}{c c} V_{CC} \\ R_1 \\ R_2 \\ R_E \\ R_L \end{array}$	$\frac{-(R_L \ R_C)}{r_e}$	$R_1 \ R_2\ \beta r_e$	R_C
	Including r_o : $\frac{-(R_L R_C r_o)}{r_e}$	$R_1 R_2 \beta r_e$	$R_C \ r_o$
R_1	≅ 1	$R_E' = R_L R_E$ $R_1 R_2 \beta(r_e + R_E')$	$R'_{s} = R_{s} \ R_{1} \ R_{2}$ $R_{E} \ \left(\frac{R'_{s}}{\beta} + r_{e} \right)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\cong 1$	$R_1 \ R_2 \ \beta(r_e + R_E')$	$R_E \ \left(\frac{R_s'}{\beta} + r_e \right)$
	$-(R_I R_C)$	$R_{\nu} \ _{r_{-}}$	R_C

TABLE 4.1

BJT Bias Configurations

Type	Configuration	Pertinent Equations		
Fixed-bias	R_B R_C	$I_B = \frac{V_{CC} - V_{BE}}{R_B}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $V_{CE} = V_{CC} - I_C R_C$		
Emitter-bias	R_B R_C R_B R_C	$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $R_i = (\beta + 1)R_E$ $V_{CE} = V_{CC} - I_C(R_C + R_E)$		
Voltage-divider bias	$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & &$	EXACT: $R_{\text{Th}} = R_1 R_2, E_{\text{Th}} = \frac{R_2 V_{CC}}{R_1 + R_2}$ APPROXIMATE: $\beta R_E \ge 10 R_2$ $I_B = \frac{E_{\text{Th}} - V_{BE}}{R_{\text{Th}} + (\beta + 1) R_E}$ $I_C = \beta I_B, I_E = (\beta + 1) I_B$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$ $I_C = V_{CC} - I_C (R_C + R_E)$ $I_C = V_{CC} - I_C (R_C + R_E)$ $I_C = V_{CC} - I_C (R_C + R_E)$		

Câu 1:

- Hiểu củng Miller sinh là do tự kí sinh:

- Một trở tháng gan liên chữa đấu vào và đầu là của mạch
khuếch đại đảo với hệ số kất Ao bị giản xuống bối hệ số 1 Ao
khuếch đại đào với hệ số kất Ao bị giản xuống bối hệ số 1 Ao
nếu nhià từ đầu vào Sử giản thổ tháng này (do tring điện đượ)
đạl Miller effect.

8.4.1 Đáp ứng tần số cao của mạch KĐ dùng BJT

- Các tụ điện ảnh hưởng tới đáp ứng tần số cao
 - Tụ điện ký sinh của BJT: C_{be}, C_{bc}, C_{ce}
 - Tụ điện nối dây: C_{W_i}, C_{W_o}

8.4 Hiệu ứng Miller và ảnh hưởng của điện dung Miller

- Đối với các bộ KĐ đảo
 - Điện dung ở cửa vào và cửa ra tăng lên
 - Do điện dung giữa cửa vào và cửa ra của linh kiện
 - Do hệ số KĐ của bộ KĐ

8.4 Hiệu ứng Miller và ảnh hưởng của điện dung Miller

Điện dung Miller đầu vào

$$C_{M_i} = (1 - A_v)C_f$$

 $C_{\scriptscriptstyle f}$:Điện dung hồi tiếp

8.4 Hiệu ứng Miller và ảnh hưởng của điện dung Miller

Điện dung Miller đầu ra

- Phân tích mạch KĐ có hồi tiếp
 - Xác đinh loại hồi tiếp
 - Tính các tham số của mạch không có hồi tiếp

$$A, \beta, Z_i, Z_o$$

- Tính các tham số của mạch khi có hồi tiếp

$$A_f, Z_{if}, Z_{of}$$

Hồi tiếp nối tiếp điện áp

 V_f điện áp phản hồi nối tiếp với nguồn tín hiệu

$$A = \frac{V_o}{V_i} = -g_m R_L$$

$$R_L = R_D \| R_o \| (R_1 + R_2)$$

$$\beta = \frac{V_f}{V_o} = \frac{-R_2}{R_1 + R_2}$$

· Hồi tiếp song song điện áp

$$A = \frac{V_o}{V_i} \approx -g_m R_D R_S$$
$$\beta = \frac{I_f}{V_o} = \frac{-1}{R_F}$$

$$A_{f} = \frac{V_{o}}{I_{s}} = \frac{A}{1 + \beta A} = \frac{-g_{m}R_{D}R_{S}R_{F}}{R + g_{m}R_{D}R_{S}}$$

$$A_{vf} = \frac{V_o}{V_s} = \frac{V_o}{I_s} \frac{I_s}{V_s} = \frac{-g_m R_D R_F}{R_F + g_m R_D R_S}$$

Hồi tiếp nối tiếp dòng điện

Hồi tiếp nối tiếp dòng điện

$$A = \frac{I_o}{V_i} = \frac{-\beta I_b}{\beta I_b r_e} = -\frac{1}{r_e}$$
$$\beta = \frac{V_f}{I_o} = \frac{-I_o R_E}{I_o} = -R_E$$

$$A_f = \frac{I_o}{V_s} = \frac{A}{1 + \beta A} = -\frac{1}{r_e + R_E}$$

$$A_{vf} = \frac{V_o}{V_s} = \frac{I_o R_o}{V_s} = A_f R_C = -\frac{R_C}{r_e + R_E}$$

Hồi tiếp song song dòng điện

9.3 Ảnh hưởng của hồi tiếp đến các thông số của mạch KĐ

		Nối tiếp điện áp	Song song điện áp	Nối tiếp dòng điện	Song song dòng điện
HSKĐ không có hồi tiếp	A	$\frac{V_o}{V_i}$	$\frac{V_o}{I_i}$	$\frac{I_o}{V_i}$	$\frac{I_o}{I_i}$
HS hồi tiếp	β	$\frac{V_f}{V_o}$	$\frac{I_f}{V_o}$	$\frac{V_f}{I_o}$	$\frac{I_f}{I_o}$
HSKĐ khi có hồi tiếp	A_f	$\frac{V_o}{V_s}$	$\frac{V_o}{I_s}$	$\frac{I_o}{V_s}$	$\frac{I_o}{I_s}$

AC

Dòng điện $I_{\scriptscriptstyle C}: \quad 0 \to V_{\scriptscriptstyle CC}/R_{\scriptscriptstyle C}$

Điện áp $V_{\rm CE}: 0 \rightarrow V_{\rm CC}$

- Công suất vào
 - công suất 1 chiều $P_i(dc) = V_{CC}I_{C_0}$
- · Công suất ra
 - công suất xoay chiều trên tải

$$P_{o}(ac) = V_{CE}(rms)I_{C}(rms) = I_{C}^{2}(rms)R_{C} = \frac{V_{CE}^{2}(rms)}{R_{C}}$$

$$P_{o}(ac) = \frac{V_{CE}(p)I_{C}(p)}{2} = \frac{I_{C}^{2}(p)}{2}R_{C} = \frac{V_{CE}^{2}(p)}{2R_{C}}$$

$$P_{o}(ac) = \frac{V_{CE}(p-p)I_{C}(p-p)}{8} = \frac{I_{C}^{2}(p-p)}{8}R_{C} = \frac{V_{CE}^{2}(p-p)}{8R_{C}}$$

Hiệu suất

$$\eta = \frac{P_o(ac)}{P_o(dc)} \times 100\%$$

Hiệu suất cực đại

$$\eta_{\text{max}} = \frac{P_{o \text{ max}}(ac)}{P_{i \text{ max}}(dc)} \times 100\% = \frac{V_{CC}^2/8R_C}{V_{CC}^2/2R_C} \times 100\% = \frac{25\%}{25\%}$$

- Ví dụ
 - Tính công suất vào, công suất ra, và hiệu suất khi $I_B(p) = 10mA$

10.2.2 KĐCS đơn chế độ A tải ghép b/áp

- Dùng ghép biến áp
 - Tăng hiệu suất
 - Hỗ trợ việc phối hợp trở kháng

10.2.2 KĐCS đơn chế độ A tải ghép b/áp

Dùng ghép biến áp

* Đường tải 1 chiều song song với trục tung

$$P_o(ac) = \frac{\left(V_{CE_{\text{max}}} - V_{CE_{\text{min}}}\right)\left(I_{C_{\text{max}}} - I_{C_{\text{min}}}\right)}{8}$$

$$P_i(dc) = V_{CC}I_{C_o}$$

=> Hiệu suất cực đại là 50%

$$\eta = 50 \left(\frac{V_{CE_{\text{max}}} - V_{CE_{\text{min}}}}{V_{CE_{\text{max}}} + V_{CE_{\text{min}}}} \right) \%$$

- Để thu được cả chu kỳ tín hiệu đầu ra cần sử dụng 2 transistor, mỗi transistor được sử dụng ở mỗi nửa chu kỳ khác nhau của tín hiệu
- 1 phần của mạch đẩy tín hiệu lên cao trong ½ chu kỳ, 1 phần khác của mạch kéo tín hiệu xuống thấp trong ½ chu kỳ còn lại => mạch "đẩy kéo"

Công suất nguồn cung cấp

$$P_{i}(dc) = V_{CC}I_{dc} = V_{CC}\left(\frac{2}{\pi}I(p)\right)$$

Công suất đầu ra xoay chiều

$$P(ac) = \frac{V_L^2(p)}{2R_L}$$
 $P(ac) = \frac{V_L^2(rms)}{R_L} = \frac{V_L^2(p-p)}{8R_L}$

Hiệu suất

$$\eta = \frac{P_o(ac)}{P_i(dc)} \times 100\% = \frac{\pi}{4} \frac{V_L(p)}{V_{CC}} \times 100\% \quad \eta_{\text{max}} = \frac{\pi}{4} \times 100\% = 78,5\%$$

Công suất tổn hao trên transistor

$$P_{2Q} = P_i(dc) - P_o(ac) \qquad P_Q = P_{2Q}/2$$

- Mắc bộ KĐ đẩy kéo với tải sử dụng
 - 2 nguồn cung cấp DC
 - 1 nguồn cung cấp DC

- Mạch KĐ chế độ B phải dùng ít nhất 2 transistor cùng loại hoặc khác loại
- Khi cần tăng c/suất ra, thường dùng 2 transistor ở mỗi vế mắc kiểu Darlington
- Khi tầng KĐCS dùng 2 transistor cùng loại thì tầng kích phải là tầng đảo pha để cấp 2 tín hiệu ngược pha

10.3.2 Mạch KĐCS đẩy kéo ghép biến áp

10.3.3 Mạch KĐCS bù đôi xứng

10.3.3 Mạch KĐCS bù đối xứng

- Dùng các transistor Darlington
 - Dòng điện đầu ra cao hơn
 - Trở kháng ra thấp hơn

10.3.4 Mạch đẩy kéo giả bù

· Tăng c/suất ra; thông dụng nhất

