SPRAWOZDANIE Z LABORATORIUM MIERNICTWA ELEKTRONICZNEGO				
Numer ćwiczenia	2	Temat ćwiczenia	Narzędzia pomiarowe	
Numer grupy	2	Termin zajęć	30 marca 2016	
Skład grupy			Prowadzący	Ocena
Bartosz Rodziewicz, 226105				
Sebastian Korniewicz, 226183			Mgr inż. Krzysztof Skorupski	
Wojciech Ormaniec, 226181				

1. Cel ćwiczenia

Poznanie typowych (analogowych i cyfrowych) woltomierzy, amperomierzy i omomierzy prądu stałego oraz metod obliczania błędów pomiarów, wynikających z niedoskonałości narzędzi pomiarowych, źródeł napięcia i oporników wzorcowych.

2. Wstęp teoretyczny

Prąd stały w obwodach zachowuje się zgodnie z prawem Ohma. Wiąże ono ze sobą takie pojęcia fizyczne jak napięcie (U), natężenie (I) i rezystancję (R). Prawo to brzmi następująco:

U = R * I.

3. Spis przyrządów

- Zasilacz DC
- Woltomierz analogowy LM-3 klasa 0.5
- Amperomierz analogowy klasa 0.5
- Multimetr Meratronik V543
- Multimetr EZ Digital DM-441B
- Opornik wzorcowy RN-1 10kΩ klasa 0.02
- Opornik dekadowy DR56-16 klasa 0.05

4. Przebieg ćwiczenia

1. Pomiar napięcia na zasilaczu

W celu pomiaru napięcia ustawiliśmy zakres zasilacza prądu stałego na 6V i napięcie na 12 na wyświetlaczu. Korzystając ze wzoru nr 1 otrzymujemy równanie $X=\frac{12}{24}*6V$, co daje nam X=3V. Nie znamy niestety dokładności zasilacza, więc wiemy tylko, że wartość zmierzona powinna być w okolicy tej wartości.

a. Pomiar za pomocą woltomierza LM-3

Pierwszy pomiar wykonaliśmy woltomierzem analogowym LM-3 o klasie 0.5. Ustawiony został na zakres 7.5 V. Odczytaliśmy z niego wartość 31. Korzystając ze wzoru nr 1 $X=rac{lpha}{lpha_{max}}*x_{zakr},$ gdzie X to wartość rzeczywista, lpha to wskazanie wyświetlacza, $lpha_{max}$ to górna wartość przedziałki na wyświetlaczu, a x_{zakr} to górna granica zakresu.

Wzór nr 1

 $\Delta X = rac{k*x_{zakr}}{100}$, gdzie ΔX to wartość błędu bezwzględnego, k to klasa urządzenia, a x_{zakr} to górna granica zakresu.

Wzór nr 2 – błąd bezwzględny w miernikach analogowych otrzymujemy wartość 3.1V. Spełnia ona warunki zaokrąglania wyników, więc zaokrąglanie tutaj jest nie potrzebne.

Błąd pomiarowy bezwzględny wyliczamy korzystając ze wzoru nr 2. Otrzymujemy równanie $\Delta X = \frac{0.5 * 7.5}{100}$, co daje nam

 $\delta X = \frac{\Delta X}{X} * 100\%$, gdzie δX to błąd względny, ΔX to wartość błędu bezwzględnego, a X to wartość zmierzona.

Wzór nr 3 – błąd względny

 $\Delta X=0.0375$. Zaokrąglamy tą wartość do jednej cyfry po przecinku, ponieważ również z taką dokładnością znany jest wynik pomiaru i otrzymujemy $\Delta X=0.1$.

Błąd względny liczymy ze wzoru nr 3 - $\delta X=\frac{0.1}{3.1}*100\%$. Z tego otrzymujemy $\delta X=3.23\%$.

Ostateczny wynik napięcia na zasilaczu wynosi, więc $U=(3.1\pm0.1)~V.$

b. Pomiar za pomocą woltomierza V543

Drugi pomiar wykonaliśmy woltomierzem cyfrowym Meratronik V543. Ustawiony był na zakres 20 V, na którym jego błąd wynosi $\Delta X=0.05\%*X+0.01\%*x_{zakr}$. Na wyświetlacz otrzymaliśmy wartość X = 3.133 V. Zgodnie z zasadami zaokrąglania wyników przybliżamy wynik do X=3.14~V.

Błąd pomiarowy obliczamy korzystając z wzoru dla naszego zakresu podanego w dokumentacji (przytoczony wyżej). Wychodzi z niego, że $\Delta X=0.05\%*3.2~V+0.01\%*20~V$, z czego dostajemy $\Delta X=0.0036~V$. Zaokrąglamy to do dokładności wyniku, czyli jednego miejsca po przecinku i otrzymujemy $\Delta X=0.01~V$.

Błąd względny, ze wzoru nr 3, wychodzi $\delta X = 0.32\%$.

Ostateczny wynik pomiaru to $U=(3.14\pm0.01)~V.$

c. Pomiar za pomocą woltomierza DM-441B

Kolejny pomiar wykonany był za pomocą woltomierza cyfrowego EZ Digital DM-441B. Błąd na zakres, w którym pracował oblicza się wzorem $\Delta X=0.1\%*X+0.004$. Otrzymaliśmy wynik X=3.142~V, co zaokrąglamy do X=3.15~V.

Błąd bezwzględny obliczamy z wzoru podanego wyżej, tj. $\Delta X=0.1\%*3.2+0.004$. Wychodzi z tego, że $\Delta X=0.0072$, co zaokrąglamy do $\Delta X=0.01~V$.

W tym przypadku błąd względny (wzór nr 3) wynosi również $\delta X=0.32\%$.

Ostateczny wynik pomiaru to $U=(3.15\pm0.01)~V.$

2. Pomiar oporu na opornikach

Pomiar oporu wykonaliśmy wykorzystując dwa oporniki i dwa mierniki, co daje nam łącznie 4 pomiary.

a. Opornik wzorcowy RN-1

Opornik ten posiada z góry ustaloną wartość oporu, która wynosi $R=(10~000~\pm~2)~\Omega.$

Commented [BR1]: Policzyć blad wzgledny

i. Pomiar multimetrem V543

Wykonując pomiar multimetrem V543 otrzymaliśmy wartość $X=10.02~k\Omega$.

Błąd bezwzględny dla tego miernika, w zakresie, w jakim pracował ($x_{zakr}=100~k\Omega$) wylicza się ze wzoru $\Delta X=0.05\%*X+0.01\%*x_{zakr}$. Otrzymujemy $\Delta X=0.05\%*10~k\Omega+0.01\%*100~k\Omega$, co daje $\Delta X=0.015~k\Omega$, co należy zaokrąglić do $\Delta X=0.02~k\Omega$.

Błąd względny (wzór nr 3) wynosi $\delta X = 0.20\%$.

Ostateczny wynik pomiaru wynosi $R=(10.02\pm0.02)\,k\Omega$, co mieści się w przedziale dokładności opornika, czyli możemy uznać pomiar za udany.

ii. Pomiar multimetrem DM-441B

Pomiar multimetrem DM-441B dostarczył nam wartość $X=9.96~k\Omega$.

Błąd bezwzględny wyznaczamy z wzoru $\Delta X=0.2\%*X+0.02~k\Omega$. Otrzymujemy równanie $\Delta X=0.2\%*9.96~k\Omega+0.02~k\Omega$, co daje nam wynik $\Delta X=0.03992~k\Omega$. Zaokrąglamy to do $\Delta X=0.040~k\Omega$.

Błąd względny (wzór nr 3) wynosi $\delta X = 0.40\%$.

Ostateczny wynik pomiaru to $R=(9.96\pm0.4)~k\Omega$, co mieści się w przedziale dokładności opornika, czyli możemy uznać pomiar za udany.

b. Opornik DR56-16

Opornik ten posiada regulowany opór i został przez nas ustawiony na $R=97345~\Omega$, jest klasy 0.05 i posiada $x_{zakr}=100~k\Omega$. Daje to $R=(97345~\pm50)~\Omega$.

i. Pomiar multimetrem V543

Pomiar dał nam wynik $X = 97.39 k\Omega$.

Błąd bezwzględny liczymy ze wzoru $\Delta X=0.05\%*X+0.01\%*x_{zakr}.$ Zakres pomiaru ustawiony był na $x_{zakr}=100~k\Omega.$ Błąd wynosi $\Delta X=0.058695~k\Omega$, co zaokrąglamy do $\Delta X=0.06~k\Omega.$

Błąd względny pomiaru wynosi $\delta X = 0.06\%$.

Ostateczny wynik pomiaru wynosi $R=(97.39\pm0.06)~k\Omega$, co mieści się w przedziale dokładności opornika, czyli możemy uznać pomiar za udany.

ii. Pomiar multimetrem DM-441B

Wynik pomiaru to $X = 97.33 \ k\Omega$.

Błąd bezwzględny liczymy z $\Delta X=0.2\%*X+0.02~k\Omega$. Otrzymujemy $\Delta X=0.21466~k\Omega$, co zaokrąglamy do $\Delta X=0.21~k\Omega$.

Błąd względny otrzymujemy $\delta X=0.22\%$.

Ostateczny wynik pomiaru wynosi $R=(97.33\pm0.21)~k\Omega$, co mieści się w przedziale dokładności opornika, czyli możemy uznać pomiar za udany.

3. Pomiar natężenia prądu z wykorzystaniem zasilacza i oporników

Pomiar ten wykonany został z wykorzystaniem dwóch oporników, dwóch amperomierzy i

Zasilacz był ustawiony na napięcie bliskie 6V.

a. Opornik RN-1

Opornik ten posiada z góry ustaloną wartość oporu, która wynosi $R=(10~000~\pm~2)~\Omega$. Licząc z prawa Ohma wynik powinien być w okolicach I=0.6~mA.

i. Pomiar amperomierzem analogowym

Wartość pomiaru to X=0.6~mA.

Miernik jest klasy 0.5, $x_{zakr}=3$ mA, co daje nam błąd $\Delta X=0.015$ mA, co zaokrąglamy do $\Delta X=0.1$ mA.

Błąd względny wynosi $\delta X = 16.66\%$.

Ostateczny wynik pomiaru to $I=(0.6\pm0.1)~mA$.

Tak duży błąd jest spowodowany niedokładnością podziałki miernika. Ustaliliśmy najmniejszy możliwy zakres, a i tak błąd, który uzyskaliśmy jest dość spory.

ii. Pomiar amperomierzem DM-441B

Wynik pomiaru to X=0.6096~mA, co zaokrąglamy do X=0.61~mA.

Błąd Δ X liczymy ze wzoru $\Delta X=0.5\%*X+0.0001$. Błąd wynosi $\Delta X=0.00315~mA$, co zaokrąglamy do $\Delta X=0.01~mA$.

Błąd względny wynosi $\delta X = 1.64\%$.

Ostateczny wynik pomiaru to $I=(0.61 \pm 0.01)~mA$.

b. Opornik DR56-16

Opornik ten umożliwia ręczne ustawienie oporu i został przez nas ustawiony na $R=2000~\Omega$. Jest klasy 0.05 i posiada $x_{zakr}=100~k\Omega$. Daje to $R=(2000~\pm 50)~\Omega$. Licząc z prawa Ohma wynik powinien być w przybliżeniu I=3~mA.

i. Pomiar amperomierzem analogowym

Wynik pomiaru to $X = 3.1 \, mA$.

Klasa miernika to 0.5, $x_{zakr}=7.5~mA$. Błąd bezwzględny wynosi $\Delta X=0.0375mA$, co zaokrąglamy do $\Delta X=0.1~mA$.

Błąd względny wynosi $\delta X = 3.23\%$.

Ostateczny wynik pomiaru to $I=(3.1\pm0.1)~mA$.

ii. Pomiar amperomierzem DM-441B

Wynik pomiaru to $X=3.076\ mA$.

Błąd liczymy ze wzoru $\Delta X = 0.5\% * x + 0.001$. Wynosi on $\Delta X = 0.016~mA$.

Błąd względny wynosi $\delta X = 0.52\%$.

Ostateczny wynik pomiaru to $I=(3.076~\pm 0.016)~mA$.

5. Wnioski

- Mierniki cyfrowe są dokładniejsze, jednak trudniejsze w użyciu.
- Woltomierz podłączamy do obwodu równolegle przed i za opornikiem, który chcemy zmierzyć.
- Amperomierz wpinamy szeregowo.
- Pomiar rezystancji wykonujemy bez źródła prądu w obwodzie.
- W obwodach prądu stałego zachodzi prawo Ohma.