Markov Chain

Azmain Biswas

April 2023

Contents

1	Intr	roduction	2
2	Mar	rkov Chain	3
	2.1	Difinition	3
	2.2	Homogeneous Markov Chain	3

Chapter 1

Introduction

Chapter 2

Markov Chain

2.1 Difinition

Definition 2.1.1 (Markov Chain). A discrete time stochastic process $\{X_n, n = 1, 2, 3, ...\}$ is defined to be *Discrete Time Markov Chain* or simply *Markov Chain* if it takes value the state space S, and for every $n \geq 0$ it satisfy the property

$$\mathbf{P}(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \mathbf{P}(X_{n+1} = j | X_n = i)$$
(2.1)

Unless otherwise mentioned we take the state space **S** to be $\{0,1,2,3,\dots\}$. If $X_n=i$ we say that the process is in *i*th state at time n. In the definition eq. (2.1) may be interpreted as for Markov Chain, the conditional distribution of any future state X_{n+1} , given the past states X_0, X_1, \dots, X_{n-1} and the present state X_n , is independent of the past and only depend on the present state. This property is called *Markovian Property*. In other word for markov chain predicting the future we only need information about the present state.

2.2 Homogeneous Markov Chain

Definition 2.2.1 (Homogeneous Markov Chain). We say a markov chain $\{X_n, n \ge 0\}$ is homogeneous if $\mathbf{P}(X_{n+1} = j | X_n = i) = \mathbf{P}(X_2 = j | X_1 = i) \ \forall n > 0$.

The quantity $\mathbf{P}(X_{n+1}=j|X_n=i)$ is called the transition probability from state i to state j. For homogeneous Markov Chain we can specify the transition probabilities $\mathbf{P}(X_{n+1}=j|X_n=i)$ by a sequence of value $p_{x,y}=\mathbf{P}(X_{n+1}=y|X_n=x)$