Exercice 1.

On considère la fonction factorielle n! définie par $n! = 1 \times 2 \times \cdots \times n$ si n > 0 et 0! = 1.

- a. Donner une définition récursive de la fonction mathématiques factorielle(n).
- b. Ecrire une fonction Python fact(n) qui implémente cette définition.
- c. Dessiner l'arbre d'appels correspondant au calcul de fact(4).

Exercice 2.

La méthode du paysan russe est un très vieil algorithme de multiplication de deux nombres entiers déjà décrit sur un papyrus égyptien rédigé autour de 1650 avant J.-C. Il s'agissait de la principale méthode de multiplication en Europe avant l'introduction des chiffres arabes.

Cet algorithme repose sur les relations :

$$x \times y = \begin{cases} 0 & \text{si } x = 0\\ (x//2) \times (2y) & \text{si } x \text{ est pair}\\ (x//2) \times (2y) + y & \text{si } x \text{ est impair} \end{cases}$$

Ecrire une fonction récursive $multiplication_russe(x,y)$ qui calcul le produit de x et y en utilisant la méthode du paysan russe.

Exercice 3.

On considère la suite u_n définie par la relation de récurrence suivante, où a et b sont des réels quelconques :

$$u_n = \begin{cases} a & \text{si } n = 0\\ b & \text{si } n = 1\\ 3u_{n-1} + 2u_{n-2} + 5 & \text{si } n \ge 2 \end{cases}$$

Ecrire une fonction suite(n, a, b) qui renvoie le n-ème terme de cette suite pour des valeurs a et b données en paramètres.

Exercice 4.

Ecrire une fonction récursive boucle(i,k) qui affiche les entiers entre i et k. Par exemple, boucle(1,4) doit afficher 1 2 3 4.

Exercice 5.

Ecrire une fonction récursive nombre_de_chiffres(n) qui prend un entier positif ou nul n en argument et renvoie son nombre de chiffres. Par exemple, nombre_de_chiffres(12345) doit renvoyer 5.

Exercice 6.

En vous inspirant de l'exercice précédent, écrire une fonction récursive nombre_de_bits_1(n) qui prend un entier positif ou nul et renvoie le nombre de bits valant 1 dans la représentation binaire de n. Par exemple nombre_de_bits_1(255) doit renvoyer 8.

Remarque: cette fonction est utile dans de nombreux algorithmes bas niveau et porte le nom de **popcount** dans la litérature (de l'anglais *population count*). Elle est souvent implée dans les unité arithmétiques et logiques des processeurs sur des entiers de taille fixe (32 ou 64 bits).

Exercice 7.

Écrire une fonction récursive appartient(v, t, i) prenant en paramètres une valeur v, un tableau t et un entier i et renvoyant True si v apparaît dans t entre l'indice i (inclus) et len(t) (exclu), et False sinon. Dans un premier temps on supposera que i est toujours compris entre i et len(t), puis on utilisera l'instruction assert pour restreindre les appels à la fonction appartient(v, t, i).

Exercice 8.

La courbe de Koch est une fractale imaginé par le mathématicien suédois Niels Fabian Helge von Koch en 1904.

On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante :

- On divise le segment de droite en trois segments de longueurs égales.
- On construit un triangle équilatéral sans base au-dessus du morceau central.

On répète ce processus n fois, n est appelé l'ordre.

Ecrire une fonction koch(n,1) qui dessine avec Turtle une courbe de Koch d'ordre n à partir d'un segment de longeur 1.