

CS_188_Fa...

CS 188 Fall 2018

Introduction to Artificial Intelligence

Written HW 6

Due: Monday 10/15/2018 at 11:59pm (submit via Gradescope).

Leave self assessment boxes blank for this due date.

Self assessment due: Monday 10/22/2018 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download a PDF copy of your submission from Gradescope – be sure to delete any extra title pages that Gradescope attaches). For each subpart where your original answer was correct, write "correct." Otherwise, write and explain the correct answer. Do not leave any boxes empty.

If you did not submit the homework (or skipped some questions) but wish to receive credit for the self-assessment, we ask that you first complete the homework without looking at the solutions, and then perform the self-assessment afterwards.

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually

Submission: Your submission should be a PDF that matches this template. Each page of the PDF should align with the corresponding page of the template (page 1 has name/collaborators, question 1 begins on page 2, etc.). **Do not reorder, split, combine, or add extra pages.** The intention is that you print out the template, write on the page in pen/pencil, and then scan or take pictures of the pages to make your submission. You may also fill out this template digitally (e.g. using a tablet.)

First name	
Last name	
SID	
Collaborators	

Q1. Probability

- (a) For the following questions, you will be given a set of probability tables and a set of conditional independence assumptions. Given these tables and independence assumptions, write an expression for the requested probability tables. Keep in mind that your expressions cannot contain any probabilities other than the given probability tables. If it is not possible, mark "Not possible."
 - (i) Using probability tables $P(A), P(A \mid C), P(B \mid C), P(C \mid A, B)$ and no conditional independence assumptions, write an expression to calculate the table $P(A, B \mid C)$.

$P(A B \mid C) =$	O Not possible

(ii) Using probability tables P(A), $P(A \mid C)$, $P(B \mid A)$, $P(C \mid A, B)$ and no conditional independence assumptions, write an expression to calculate the table $P(B \mid A, C)$.

P(C A,B)P(B A)/P(A C)	market American
$P(R \mid A \mid C) = \frac{1(c A, b 1(c A), c A)}{1(c A, b 1(c A), c A)}$	O Not possible.

 $\textbf{(iii)} \ \ \text{Using probability tables} \ \ \mathbf{P(A\mid B)}, \mathbf{P(B)}, \mathbf{P(B\mid A, C)}, \mathbf{P(C\mid A)} \ \ \text{and conditional independence assumption}$ tion $A \perp \!\!\!\perp B$, write an expression to calculate the table P(C).

$$\mathbf{P}(\mathbf{C}) = \frac{\sum_{A} P(C|A) \sum_{B} P(A|B)P(B)}{\bigcap_{B} \text{Not possible.}}$$

(iv) Using probability tables $P(A \mid B, C), P(B), P(B \mid A, C), P(C \mid B, A)$ and conditional independence assumption $A \perp\!\!\!\perp B \mid C$, write an expression for P(A, B, C).

$$P(A|B,C) = \frac{P(A|B,C) * P(B|C) = P(A,B|C)}{P(A|B,C) * P(B|C) = P(A,B|C)}$$
Not possible.

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct ar

- (b) For each of the following equations, select the minimal set of conditional independence assumptions necessary for the equation to be true.
 - $\textbf{(i)} \ \ \mathbf{P}(\mathbf{A},\mathbf{C}) = \mathbf{P}(\mathbf{A} \mid \mathbf{B}) \ \mathbf{P}(\mathbf{C})$

 - $\square A \perp \!\!\!\perp C \mid B$

- $\square B \perp\!\!\!\perp C$
- $\Box \quad B \perp \!\!\! \perp C \mid A$
- ☐ No independence assumptions needed.
- (ii) $P(A \mid B, C) = \frac{P(A) \cdot P(B \mid A) \cdot P(C \mid A)}{P(B \mid C) \cdot P(C)}$
 - \square $A \perp \!\!\! \perp B$

 - \square $A \perp \!\!\! \perp C$
 - \Box $A \perp\!\!\!\perp C \mid B$

- P(A, C) * P(B|A)

 - ☐ No independence assumptions needed.

(iii) $\mathbf{P}(\mathbf{A}, \mathbf{B}) = \sum_{\mathbf{c}} \mathbf{P}(\mathbf{A} \mid \mathbf{B}, \mathbf{c}) \ \mathbf{P}(\mathbf{B} \mid \mathbf{c}) \ \mathbf{P}(\mathbf{c})$ $ \Box A \perp \!\!\!\perp B \\ \Box A \perp \!\!\!\perp B \mid C \\ \Box A \perp \!\!\!\perp C \mid B $	$\begin{array}{c c} \square & B \perp \!\!\!\perp C \\ \square & B \perp \!\!\!\perp C \mid A \\ \hline \square & \text{No independence assumptions needed.} \end{array}$
(iv) $P(A, B \mid C, D) = P(A \mid C, D) P(B \mid A, C, D)$	
Self assessment If correct, write "correct" in the box.	Otherwise, write and explain the correct answer.
(c) (i) Mark all expressions that are equal to $P(A \mid B)$, $ \begin{array}{c c} $	
 (ii) Mark all expressions that are equal to P(A, B, C) □ P(A C) P(C B) P(B) □ P(A) P(B) P(C A, B) □ P(C) P(A C) P(B C) □ P(A) P(C A) P(B C) 	P), given that $\mathbf{A} \perp \!\!\! \perp \mathbf{B}$. $P(A) P(B \mid A) P(C \mid A, B)$ $P(A, C) P(B \mid A, C)$ None of the provided options.
(iii) Mark all expressions that are equal to $P(A, B C)$ $P(A C) P(B C)$ $P(A C) P(B C)$ $P(A B) P(B C)$ $P(A B) P(B C)$ $P(C A B) P(B C)$ $P(C A B)$ Self assessment If correct, write "correct" in the box. (a)	$ \Box \frac{\sum_{e} P(A,B,e)}{P(C)} $ $ \Box \frac{P(C,A B) P(B)}{F(C)} $ $ \Box \text{ None of the provided options.} $

Q2. Bayes' Nets: Representation

Assume we are given the following ten Bayes' nets, labeled $\mathbf{G_1}$ to $\mathbf{G_{10}};$

Assume we are also given the following three Bayes' nets, labeled ${\bf B}_1$ to ${\bf B}_3$:

(continued on next page)

\Box G ₁	\square G ₂	\square G ₃	\square G ₄	☐ G ₅
\square $\mathbf{G_6}$ \square None of	f the above.	\square G ₈	☐ G ₉	\Box G_{10}
Self assessmer	nt If correct, write "correct"	in the box. Otherwise, w	rite and explain the cor	rect answer.
	that a joint distribution ces' nets that are guarante			es' net ${f B_2}$. Mark a
\square G ₁	\square G ₂	\square G ₃	\square G ₄	\square G ₅
\Box G_6	\Box G_7	\Box \Box \Box	\Box G_9	□ G ₁₀
☐ None of	the above.			
Self assessmer	nt If correct, write "correct"	in the box. Otherwise, w	rite and explain the cor.	rect answer.
Il of the following \square $\mathbf{G_1}$ \square $\mathbf{G_6}$	that a joint distribution ag Bayes' nets that are guant G_2 G_7 the above.			Bayes' net B ₃ . M G ₅ G ₁₀
ll of the following G_1 G_6 G_6	g Bayes' nets that are guaranteed G_2	aranteed to be able to \square $\mathbf{G_3}$ \square $\mathbf{G_8}$	represent d ₃ . G ₄	☐ G ₅ ☐ G ₁₀
ll of the followin G1 G6 None of Sclf assessmen	g Bayes' nets that are guaranteed of G2 G7 I the above. at If correct, write "correct"	aranteed to be able to \square	represent d ₃ G ₄ G ₉ rite and explain the cor	G_5 G_{10} rect answer.
ll of the following G1 G6 None of Self assessment Assume we know B3. Mark all of the self assessment of the self a	g Bayes' nets that are guaranteed of G2 G7 I the above. at If correct, write "correct" that a joint distribution the following Bayes' nets to	aranteed to be able to □ G ₃ □ G ₈ ' in the box. Otherwise, we d ₄ (over A, B, C) can that are guaranteed to	represent d ₂ G ₄ G ₉ cite and explain the cor be represented by Ba be able to represent d	G_{10} rect answer. yes' nots B_1 , B_2 ,
Il of the following G1 G6 None of Self assessment Assume we know G3. Mark all of the G1	g Bayes' nets that are guaranteed of G2 G7 The above. It if correct, write "correct" that a joint distribution the following Bayes' nets to G2	aranteed to be able to \square	represent d ₂ G ₉ rite and explain the cor be represented by Ba be able to represent d G ₄	G_5 G_{10} rect answer.
Il of the following G1 G6 None of Self assessment assume we know B3. Mark all of t G1 G6	g Bayes' nets that are guaranteed of G2 G7 I the above. at If correct, write "correct" that a joint distribution the following Bayes' nets to	aranteed to be able to □ G ₃ □ G ₈ ' in the box. Otherwise, we d ₄ (over A, B, C) can that are guaranteed to	represent d ₂ G ₄ G ₉ cite and explain the cor be represented by Ba be able to represent d	G_{10} rect answer. yes' nots B_1 , B_2 ,
Assume we know B3. Mark all of the G6 G1 None of G1 Sclf assessment Assume we know B3. Mark all of the G4 G6 None of	g Bayes' nets that are guaranteed of G2 G7 I the above. Int. If correct, write "correct" that a joint distribution the following Bayes' nets to G2 G7	aranteed to be able to \square	represent d ₂ G ₉ Given G ₉ Fite and explain the correspondence of the correspondenc	G_{10} rect answer. yes' nets B_1 , B_2 , G_{10}
Assume we know B3. Mark all of the G6 G1 None of G1 Sclf assessment Assume we know B3. Mark all of the G4 G6 None of	g Bayes' nets that are guants of G2 G7 The above. It is correct, write "correct" that a joint distribution the following Bayes' nets to G2 G7 G the above.	aranteed to be able to \square	represent d ₂ G ₉ Given G ₉ Fite and explain the correspondence of the correspondenc	G_{10} rect answer. yes' nets B_1 , B_2 , G_{10}