УЛК 576.895.122

УСТОЙЧИВОСТЬ ЦЕРКАРИЙ DIPLOSTOMUM SPATHACEUM, RUD., 1819 К УЛЬТРАФИОЛЕТОВОМУ ИЗЛУЧЕНИЮ

М. И. Власенко

Всесоюзный институт экспериментальной ветеринарии, Москва

Приведены результаты лабораторных опытов по выяснению чувствительности к УФ-облучению возбудителей диплостомоза рыб — церкарий D. spathaceum. Rud., 1819. Установлены летальные и сублетальные дозы УФ-радиации. Рекомендовано использование УФ-излучения для профилактики диплостомоза молоди рыб на водо-источниках с низким коэффициентом поглощения.

Для подсчета церкарий D. spathaceum предложена счетная камера, которая может быть использована для подсчета других церкарий.

Установки с ультрафиолетовым излучением уже нашли применение в практике коммунальных хозяйств некоторых городов нашей страны для обеззараживания питьевой воды. Борьба с болезнями рыб путем использования ульрафиолетового излучения, имеющего ряд преимуществ по сравнению с другими методами и средствами, является весьма перспективной. Возможность использования УФ-излучения в ихтиопатологии, например в борьбе с биссусом икры, эмпирически доказана рядом отечественных исследователей (Садов и Коханская, 1961, 1963; Астахова, 1965; Коханская, 1967; Власенко, 1967; Астахова и Мартино, 1968).

Задача настоящей работы — изучить возможности использования $У\Phi$ -излучения для профилактики диплостомоза молоди рыб путем обеззараживания воды, поступающей в инкубационные цеха рыбоводных предприятий, от возбудителей этого заболевания — церкарий Diplostomum spathaceum, Rud., 1819.

МАТЕРИАЛ И МЕТОДИКА

В качестве источника УФ-радиации были использованы бактерицидные лампы типа БУВ-15, бактерицидный поток которых характеризуется в основном (80%) лучами длиной волны 2537 Å. Лампы в количестве 1—3 в изготовленном облучателе включали в сеть через стабилизатор. Интенсивность ультрафиолетового излучения (облученность) в каждом опыте измеряли ультрафиолетметром.

Облучение церкарий проводили при температуре $20-24^{\circ}$ в изготовленной из органического стекла кювете размером $20 \times 12.5 \times 2.5$ см. Количество облучаемой взвеси церкарий составляло 50 мл, толщина облучаемого слоя — 2 мм. Кювету с облучаемой взвесью церкарий располагали на расстоянии 50 см от лампы, под прямым углом к ее оси. В процессе облучения взвесь перемешивали покачиванием кюветы. Каждую порцию взвеси облучали до полного обеззараживающего эффекта, при этом после дозированного облучения брали пробы в количестве 2-3 мл для определения результата облучения.

В качестве продуцента церкарий D. spathaceum использовали моллюсков $Limnaea\ stagnalis$, которых для определения зараженности поштучно помещали в чашки Koxa или широкогорлые плоскодонные колбы с неболь-

Таблица 1 Облучение церкарий D. spathaceum

	Облученность	Исходное количество	Количест	во живых морф	н ихээгически нө УФ-дозой в	еизмененных це мквт·сек./см²	ркарий в 1 мл	взвеси после о	блучения	Количество живы: церкарий к концу облучения в конт-
Дата опыта	Е (в мквт см²)	церкарий в 1 мл	65400	130800	196200	261600	327000	392400	457800	облучения в конт- роле (в 1 мл)
12 VI 1967	109	10	10	5	3	2	0	_	_	10
	77.3	10	10	9	6	2	0	-	_	10
18 VI 1968	77.3	10 -	10	9	5	2	1	0	_	10
	77.3	10	9	8	5	2	0		_	10
	77.3	10	9	8	6	2	1	0	_	10
	109	25	25	24	4	3	0	<u> </u>	-	25
40 1711 4007	102	26	25	22	13	2	1	0	<u> </u>	26
12 VII 1967	109	26	26	24	14	5	0	_	<u> </u>	26
	109	55	55	43	31	14	5	0	_	55
	109	40	40	38	21	16	6	2	0	40
13 VII 1967	109	40	39	38	29	27	6	1	0	40

шим количеством воды комнатной температуры. Через несколько минут из зараженных моллюсков наблюдался массовый выход церкарий в воду. Таких моллюсков отсаживали в кристаллизатор с водопроводной или аэрированной дистиллированной водой для получения необходимой концентрации церкарий. Экспериментальным путем установлено, что сроки жизни церкарий в водопроводной и аэрированной дистиллированной воде практически одинаковы.

Для учета исходной концентрации и результатов облучения церкарий наиболее удобным приспособлением оказалась специально выполненная из тонкостенного (1 мм) органического стекла счетная камера размером $112 \times 90 \times 5$ мм, емкостью 50 мл. Подсчет церкарий в камере проводили при боковом освещении на темном фоне с помощью 8-кратной ручной лупы. Редкие и незначительные периодические перемещения церкарий по вертикали не помешали подсчету. Описанная счетная камера с успехом может быть использована для подсчета других церкарий, имеющих выраженную позу покоя.

Коэффициент сопротивляемости — один из показателей устойчивости церкарий к УФ-облучению и бактерицидный поток, необходимый для обеззараживания расчетного количества воды, т. е. данные, позволяющие произвести расчет материальных затрат на профилактику диплостомоза в условиях рыбоводного предприятия, определяли по формулам Соколова (Соколов, 1964).

СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ

По определению устойчивости церкарий *D. spathaceum* к УФ-радиации поставлено 18 опытов, в которых проведено 112 облучений. Рабочая концентрация церкарий в опытах была от 10 до 100 экз. в 1 мл воды. Результаты опытов представлены в табл. 1 и 2. В связи с тем, что исходные концентрации церкарий в опытах резко различались, статистической обра-

Таблица 2 Облучение церкарий *D. spathaceum* с исходной концентрацией 100 экз. в 1 мл воды

Дата опыта и статистические	Облучен- ность <i>Е</i>	Количество живых морфологически неизмененных церкарий в 1 мл взвеси после облучения УФ-дозой (мквт-сек./см²)							Количество жи- вых церкарий к концу облуче- ния в контроле (в 1 мл)
показатели	(в мквт/см²)	65400	130800	196200	261600	327000	392400	4 57800	Колич вых ц концу ния в ния в
24 VI 1968 { 25 VI 1968 18 VIII 1968 {	84.6 84.6 84.6 221.0 221.0	92 89 89 90 95 94 93	77 77 78 79 84 77 77	63 55 58 57 72 63 59	44 38 45 54 44 50 46	23 20 28 35 34 22 25	2 3 4 3 3 4 4	0 0 0 0 0 0	100 100 100 100 100 100 100
Сумма Средняя арифмет ческая Среднее квадратно отклонение. Достоверность раз личия Степень обеззара живания Коэффициент сопр	$\begin{array}{c} \mathbf{M}^-\\ \cdot M\\ \text{oe}\\ \cdot \mathbf{G}\\ \text{oe}\\ \cdot \mathbf{I}_{M_0-M_1}\\ \text{oe}\\ \cdot \frac{P}{P_0}\\ \text{oo-}\\ \end{array}$	91.7 2.43 9.2 0.917 750000	549 78.4 2.57 13.5 0.784	427 61 5.68 7.0 0.610		187 25.7 6.0 6.3 0.257	22 3.1 0.69 8.7 0.031	0 0 0 0 0 0	

ботке подвергнуты только результаты их облучения при концентрации 100 экз./мл. Обработка опытных данных указывает на статистическую достоверность полученных результатов.

Наблюдения показали, что под влиянием УФ-радиации фурки хвоста у церкарий скручиваются и иногда отпадают. Затем весь хвост отваливается, церкария теряет способность держаться в толще воды, опускается на дно сосуда и вскоре погибает. Из данных табл. 1 и 2 видно, что при концентрации церкарий 10 экз./мл DL_{50} составляет около 200 000, а DL_{100} — около 330 000 мквт \times ×сек./см². С увеличением концентрации церкарий эти дозы, естественно, возрастают: при концентрации 100 экз./мл DL_{50} составляет около 230 000, а $DL_{100} - 450\,000$ мквтimes imes сек./см². Коэффициент сопротивляемости церкарий, рассчитанный по средним арифметическим результатам облучения одинаковыми УФдозами, колебался от 113 000 до 750 000 мквт⋅сек./см².

Кроме опытов по установлению чувствительности церкарий к УФ-радиации, в лабораторных условиях была проведена серия опытов по заражению рыб церкариями, подвергнутыми УФ-облучению в сублетальных дозах. Указанные опыты проводили на сеголетках карпа, верховки и 12-иглой колюшки. В табл. 3 приведены результаты опытов с сеголетками верховки как объектами более чувствительными к заражению.

Из данных табл. З видно, что при исходной концентрации церкарий 100 экз./мл доза УФ-радиации, при которой церкарии теряют способность к заражению рыб, составляет около $300\,000$ мквт \times \times сек./см², что на $\frac{1}{3}$ ниже DL_{100} при той же концентрации церкарий.

spathaceum, облученными УФ-лучами в сублетальных дозах Ď. Заражение сеголетков верховки церкариями

									,					
I									Результаты заражения	аражен	яя			
			Побощов ион				10	ОПЫТ				контроль	оль	
	Пата опъта	доза облуче- ния <i>Е</i> (в	центрация	Задано церкарий			остало	осталось живых	· · ·			остало	осталось живых	
		MKBT.CeK./CM2	церкарии (экз./мл)	na i pbiony	всего	погибло рыб	всего	в том чис- ле зара- женных	интенсивность заражения (в среднем)	всего рыб	погибло	всего	в том чис- ле зара- женных	интенсивность заражения (в среднем)
ų.	13 VII 1967	196000	120	} 09	10	00	100	6 6 7	$\begin{array}{c} 2-2 & (2) \\ 1-1 & (1) \end{array}$	10	8 7	6	6 2	10—12 (11) 2.—12 (5.3)
) 2007 11125 10	188000	75	75	100	00	99	00	00	5	0	9	0	9—23 (15.2)
	Z1 Y 111 1967	251000	75	75	99	0	10	00	00	2	>	2		(101)
	29 VIII 1967	275000	100	100	25	00	52 22	3 1	$\frac{1}{1-2} \frac{(1)}{(1.3)}$	22	13 9	7	7	44-90 (67) 40-77 (58)
423	1 IX 1967	277000	100	100	80 	0 0	20	0	1 0	50	62	18	18	4—28 (12.3)

Гибель верховок в контроле происходила в первые четыре часа после заражения от острого церкариоза.

ОБСУЖДЕНИЕ

Проведенными опытами подтверждена биологическая закономерность, заключающаяся в том, что результат облучения УФ-лучами не зависит от величины облученности, а зависит от дозы УФ-облучения, т. е. произведения облученности на время облучения (EI). Это особенно наглядно видно из опытов по облучению церкарий при концентрации 100 экз./мл (табл. 2).

Математическая обработка опытных данных указывает на статистическую достоверность полученного результата. Вместе с тем проведенные расчеты показывают, что с увеличением дозы $\mathbf{y}\Phi$ -облучения коэффициент сопротивляемости (К) церкарий D. spathaceum имеет тенденцию к уменьшению, при этом разница между конечными величинами настолько велика. что по ним невозможно найти средний показатель \mathbf{K} .

Причины этого факта недостаточно ясны. По-видимому, процесс отмирания церкарий как многоклеточных организмов под влиянием УФ-лучей происходит по другим законам, нежели отмирание бактерий и других одноклеточных организмов, для которых была выведена формула расчета коэффициента сопротивляемости. Это затрудняет проведение расчетов экономической целесообразности применения УФ-излучения для профилактики диплостомоза.

Сравнение летальных доз и коэффициента сопротивляемости церкарий D. spathaceum и бактерий Escherichia coli ($K\!=\!2500\,$ мквт·сек./см²), Aeromonas punctata и Pseudomonas fluorescens ($K\!=\!1000\!-\!1200\,$ мквт·сек./см²) показывает, что церкарии D. spathaceum обладают высокой устойчивостью к УФ-радиации.

Учитывая, что на рыбоводных предприятиях используется неосветленная вода, как правило с высоким коэффициентом поглощения (α), а церкарии обладают высокой устойчивостью к УФ-облучению, затраты на профилактику диплостомоза будут очень велики. Так, стоимость электрической энергии, необходимой для обеззараживания 1 м³ воды с α , равным 0.5 см $^{-1}$, до степени обеззараживания 0.001 (т. е. наличие 1 живой церкарии на 1000 исходных) при найденном наибольшем К (750 000) составит 72 коп. (в установке с непогруженными лампами БУВ—60П). При подращивании 1 млн шт. мальков радужной форели в течение 60 дней требуется, согласно существующим нормам, около 29 000 м³ воды. Материальные затраты только на использованную электрическую энергию, необходимую для обеззараживания такого количества воды, составят около 20 тыс. рублей.

выводы

- 1. Процесс отмирания церкарий *Diplostomum spathaceum*, Rud., 1819, под влиянием ультрафиолетовых лучей происходит по другим закономерностям, нежели отмирание бактерий и других одноклеточных организмов, что, по-видимому, связано с более высокой их организацией.
- 2. Сублетальная доза УФ-излучения, при которой облученные церкарии теряют способность к заражению рыб, составляет $\frac{2}{3}$ части летальной дозы для этих организмов.
- 3. Ультрафиолетовое излучение может быть рекомендовано для производственного испытания при профилактике диплостомоза молоди высокоценных пород рыб лишь на водоисточниках с низким коэффициентом поглощения воды.

Литература

- Астахова Т. В. 1965. Опыт борьбы с грибковым заболеванием икры осетровых. Рыбное хоз., 3:20—21.
- Астахова Т. В. и Мартино К. В. 1968. Меры борьбы с грибковым заболеванием икры осетровых на рыбоводных заводах. Вопр. ихтиол. VIII, 2 (49): 332—341.

Власенко М.И. 1967. Об использовании ультрафиолетового излучения в ихтионатологии. В сб.: Всесоюзная конференция молодых специалистов по прудовому рыбоводству (тезисы докладов) 22—24 марта 1967. М.: 1—7. Коханская Е.М. 1967. Инкубирование икры костистых рыб в прикрепленном состоянии. Рыбоводство и рыболовство, 1:15—16. Садов И.А. и Коханская Е.М. 1961. Инкубирование икры осетровых рыб. Тр. инст. морфологии животных им. Северцова АН СССР, 37:20—23. Садов И.А. и Коханская Е.М. 1963. Лоточный инкубатор для икры осетровых рыб. Рыб. хоз., 6:23—27. Соколов В.Ф. 1964. Обеззараживание воды бактерицидными лучами. М.:110—117 и 134—143.

RESISTANCE OF CERCARIA OF DIPLOSTOMUM SPATHACEUM TO ULTRA-VIOLET IRRADIATION

M. I. Vlassenko

SUMMARY

The paper contains results of laboratory experiments on the resistance of cercaria of *Diplostomum spathaceum* to ultra-violet irradiation. Lethal and sublethal doses were established. Expenses were calculated for irradiation of young trouts during the desinfection of water by ultra-violet rays. The ultraviolet irradiation treatment was recommended as a protective measure against diplostomosis in youngs of valuable species of fishes.