Lecture Summary: Rank and Dimension Using Gaussian Elimination

Source: Lec35.pdf

Key Points

• Overview:

- Gaussian elimination can be used to compute the rank and dimension of a vector space or subspace and to find a basis.
- This process is systematic and avoids ad-hoc methods, providing a clear algorithmic approach.

• Row Method:

- Steps:

- 1. Arrange the spanning set vectors as rows of a matrix.
- 2. Perform row reduction to bring the matrix to row echelon form.
- 3. Count the number of non-zero rows:
 - * This is the dimension of the subspace.
 - * The non-zero rows form a basis for the subspace.

- Example: Subspace W in \mathbb{R}^3 spanned by $\{(1,0,1),(-2,-3,1),(3,3,0)\}$:

1. Matrix:

$$\begin{bmatrix} 1 & 0 & 1 \\ -2 & -3 & 1 \\ 3 & 3 & 0 \end{bmatrix}.$$

2. Row reduction yields:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

- 3. Dimension = 2 (two non-zero rows).
- 4. Basis: $\{(1,0,1),(0,1,-1)\}.$

• Column Method:

- Steps:

- 1. Arrange the spanning set vectors as columns of a matrix.
- 2. Perform row reduction to row echelon form.
- 3. Identify pivot columns (columns with leading ones).
- 4. The original vectors corresponding to pivot columns form a basis.
- Example: Subspace W in \mathbb{R}^3 spanned by $\{(1,0,1),(-2,-3,1),(3,3,0)\}$:
 - 1. Matrix:

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & -3 & 3 \\ 1 & 1 & 0 \end{bmatrix}.$$

2. Row reduction yields:

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

- 3. Pivot columns: 1 and 2.
- 4. Basis: $\{(1,0,1),(-2,-3,1)\}.$
- Comparison of Methods:
 - Row Method:
 - * Provides a basis directly from the rows of the row-reduced matrix.
 - * The basis vectors may not belong to the original spanning set.
 - Column Method:
 - * Provides a basis directly from the original spanning set.
 - * Useful when you need the basis to be composed of specific original vectors.

Simplified Explanation

Example 1: Row Method in \mathbb{R}^4 Given vectors $\{(1, -2, 0, 4), (3, 1, 1, 0), (-1, -5, -1, 8), (3, 8, 2, -12)\}$:

• Row reduction:

$$\begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- Dimension = 2.
- Basis: $\{(1, -2, 0, 4), (0, 1, -1, 2)\}.$

Example 2: Column Method in \mathbb{R}^4 Given the same vectors:

• Column matrix:

$$\begin{bmatrix} 1 & 3 & -1 & 3 \\ -2 & 1 & -5 & 8 \\ 0 & 1 & 2 & -12 \\ 4 & 0 & 8 & -12 \end{bmatrix}.$$

- Pivot columns: 1 and 2.
- Basis: $\{(1, -2, 0, 4), (3, 1, 1, 0)\}.$

Conclusion

In this lecture, we:

- Explored two algorithmic methods for computing rank and dimension using Gaussian elimination.
- Compared the row method (basis from row-reduced matrix rows) and the column method (basis from original spanning set vectors).
- Highlighted examples in \mathbb{R}^3 and \mathbb{R}^4 to illustrate both methods.

Gaussian elimination provides a versatile approach for basis and dimension computation, adaptable to various applications.

2