MATH 6320

Theory of Functions of a Real Variable Fall 2024

First name:	Last name:	Points:

Assignment 1, due Thursday, August 29, 11:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let X be an uncountable set. Let M denote the collection of subsets containing each $E \subset X$ such that E is at most countable (including $E = \emptyset$) or $E^c \equiv X \setminus E$ is at most countable. Is M a σ -algebra?

Problem 2

Let X be a measurable space, Y a set and consider a map $f: X \to Y$. Show that

$$\mathcal{M} := \{ E \subset Y : f^{-1}(E) \text{ is a measurable subset of } X \}$$

defines a σ -algebra of subsets of Y.

Problem 3

Let \mathcal{M} be a σ -algebra on a set X. Show that if \mathcal{M} is not finite, then it is not countably infinite.

Hint: Assuming $\mathcal M$ is at most countable, then for each $x\in X$, consider $B_x=\cap_{E\in\mathcal M:x\in E}E$, the "smallest" element in $\mathcal M$ containing x. Show that for any $\{x,y\}\subset X$, either $B_x=B_y$ or $B_x\cap B_y=\emptyset$. Next, observe that for each $E\in\mathcal M$, $E=\cup_{x\in E}B_x$. Use this to argue that if $\mathcal M$ is infinite, then so is $\beta=\{B_x:x\in X\}$. Choose $\{x_1,x_2,\ldots\}\subset X$ such that $A_j\equiv B_{x_j}$ forms a mutually disjoint sequence $\{A_1,A_2,\ldots\}$ of non-empty sets in $\mathcal M$. Next, consider the map $\mathfrak i:\{0,1\}^\mathbb N\to\mathcal M$, $\mathfrak i(\mathfrak a)=\cup_{j:\mathfrak a_j=1}A_j$ that associates with a binary sequence the corresponding union from the sequence of sets. Why is $\mathfrak i$ one-to-one? You may then quote that the set of binary sequences is uncountable.