Lecture 33, Nov. 9

Powers Modulo n

 $mod 5 in \mathbb{Z}_5$

mod 7 in \mathbb{Z}_7

mod 20 in \mathbb{Z}_{20}

- **33.1 Conjecture.** for $n \in \mathbb{Z}^+$ $2^{n-1} \mod n \iff n$ is prime. This is false
- **33.2 Theorem** (Fermat's Little Theorem). *let p be a prime then*
 - 1. for all $a \in \mathbb{Z}$ such that gcd(a, p) = 1,

$$a^{p-1} = 1 \mod p$$

2. for all $a \in \mathbb{Z}$,

$$a^p = a \mod p$$

Proof. 1. Let p be prime. Let $a \in \mathbb{Z}$ with gcd(a,p) = 1. Then a i invertible in \mathbb{Z}_p . Define $F : \mathbb{Z}_p \to \mathbb{Z}_p$, by F(x) = ax. Note that F is bijective with inverse function $G : \mathbb{Z}_p \to \mathbb{Z}_p$, given by $G(x) = a^{-1}x$. As note that F(0) = 0. So F gives a bijection $F : U_p \to U_p$. That is $F : \{1, 2, 3 \cdots, p-1\} \to \{1, 2, 3 \cdots, p-1\}$. In other words,

$$\{1, 2, 3 \cdots, p-1\} = \{1 \cdot a, 2 \cdot a, \cdots, (p-1) \cdot a\}$$

Thus

$$(1 \cdot a)(2 \cdot a) \cdots ((p-1) \cdot a) = 1 \cdot 2 \cdot 3 \cdots (p-1)$$

therefore

$$a^{p-1} = 1$$

in \mathbb{Z}_p .

2. Let p be prime. Let $a \in \mathbb{Z}$. If gcd(a, p) = 1 in so $p \mid /a$ then by 1, we have $a^{p-1} = 1$ in \mathbb{Z}_p . So we can multiply both sides by a to get

$$a^p = a$$

in \mathbb{Z}_p If $gcd(a,p) \neq 1$ so gcd(a,p) = p so $p \in a$, then $a = 0 \in \mathbb{Z}$ so $a^p = 0^p = 0 = a \in \mathbb{Z}_p$

33.3 Theorem (Euler-Fermat Theorem). Let $n \in \mathbb{Z}^+$. For all $a \in \mathbb{Z}$ with gcd(a, n) = 1,

$$a^{\varphi(n)} = 1 \mod n$$

Proof. Let $n \in \mathbb{Z}^+$. When n = 1 we have $\varphi(n) = 1$. So for $a \in \mathbb{Z}$, $a^{\varphi n} = a^1 = a$.

Suppose $n \ge 2$. Let $a \in \mathbb{Z}$ with gcd(a, n) = 1. Since gcd(a, n) = 1, we have $a \in U_n$. The function $F: U_n \to U_n$ given by F(x) = ax is bijective with inverse $G: U_n \to U_n$, given by $G(x) = a^{-1}x$. So the set U_n is equal to the set $\{ax \mid x \in U_n\}$. It follows that

$$\prod_{x \in U_n} (ax) = \prod_{x \in U_n} x$$

then

$$a^{\varphi(n)}=1$$

in U_n .

33.4 Theorem. Let G be a finite commutative group. Then for all $a \in G$,

$$a^{|G|} = 1$$

(where for a finite set S, |S| denotes the number of elements in S)

Divisibility Test in Base 10

Let $n = \sum_{i=0}^{m} d_i 10^i$ where each $d_i \in \{1, 2, \dots, 9\}$.

Noto that $2 \mid 10$, so $2^k \mid 10^k$ and $2^k \mid 10^l$ for all $l \ge k$. So

$$10^l = 0 \in \mathbb{Z}_{2^k}$$
 when $l \ge k$

So in \mathbb{Z}_{2^k} ,

$$n = \sum_{i=0}^{m} d_i 10^i = \sum_{i=0}^{k-1} d_i 10^i$$

So $2^k \mid n \iff 2^k$ divides the tailing k-digit number of n.

Similarly we have Divisibility Test for 3, 9, 11.