Penalized Least Squares with LASSO and SCAD

San-Teng Huang, Shang-Chien Ho, Hsing-Cheng Pan

National Dong Hwa University

2019/01/04

Outline

Introduction

LASSO

SCAD

Simulation

Conclusion

Introduction

■ Consider multiple linear model:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + ... + \beta_{p-1}X_{ip-1} + \varepsilon_{i} , i = 1, 2, ..., n$$
(1)

where $\boldsymbol{\beta}$ is $p \times 1$ vector, \mathbf{X} is $n \times p$ matrix, and ε_i *i.i.d* with mean 0, variance σ^2 , for i = 1, ..., n.

Assume only some parameters are non-zero. the true $\boldsymbol{\beta_0} = (\beta_{01}, \beta_{02}, ..., \beta_{0p}) = (\boldsymbol{\beta_{01}^T}, \boldsymbol{\beta_{02}^T}) = (\boldsymbol{\beta_{01}^T}, \boldsymbol{0})$

Introduction 00

the true
$$\boldsymbol{\beta_0} = (\beta_{01}, \beta_{02}, ..., \beta_{0p}) = (\beta_{01}^T, \beta_{02}^T) = (\beta_{01}^T, \mathbf{0})$$

The LASSO : ℓ_1 penalty

- Tibshirani (1996) introduced the LASSO: least absolute shrinkage and selection operator.
- $\blacksquare \mathsf{LASSO}$ coefficients are the solutions to the ℓ_1 optimization problem :

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{\rho} x_{ij} \beta_j)^2 \quad s.t. ||\beta||_1 \le t$$
 (2)

$$\Leftrightarrow \min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (3)

where $||\beta||_1 = \sum_{j=1}^p |\beta_j|$

λ (or t) as a tuning parameter

■ The constraint :

$$\sum_{j=1}^{p} |\beta_j| \le t$$
 or $\lambda \sum_{j=1}^{p} |\beta_j|$

- If $\lambda = 0$, then it means no shrinkage. (hence is the OLS solutions.)
- Large enough λ (or small enough t) will set some coefficients exactly equal to 0.

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{i=1}^{p} x_{ij}\beta_j)^2 \quad \text{s.t.} ||\beta||_2 \le t$$

$$\Leftrightarrow \min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

where
$$||eta||_2 = \sqrt{\sum_{j=1}^p eta_j^2}$$

Estimation picture for (a) the lasso and (b) ridge regression

(a) Example in which the lasso estimate falls in an octant different from the overall least squares estimate; (b) overhead view

Consider model:

$$Y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{10} X_{i10} + \varepsilon_i$$
, $i = 1, 2, ..., 100$

where $\mathbf{X} \sim MVN(0, \Sigma)$, Σ be covariance matrix with for j, k = 1, ..., 10, $j \neq k$, $Var(X_j) = 1$, $Cov(X_j, X_k) = 0.5$ and $\varepsilon_i \sim N(0, 3^2)$, i = 1, ..., 100. the true $\boldsymbol{\beta_0} = (3, 1.5, 2, -7, 15, 0, 0, 0, 0, 0)$

• With 100 replication, count the number of estimated value greater than 10^{-3} . The parameter λ choosed by 10-fold cross validation.

	01.0	I	1.000/	
	OLS		$LASSO(\lambda = 0.2636)$	
	bias(sd)	count(%)	bias(sd)	count(%)
$\beta_1 = 3$	0.0400(0.44)	1	-0.1529(0.42)	1
$\beta_2 = 1.5$	0.0307(0.45)	1	-0.1655(0.42)	1
$\beta_3 = 2$	0.0474(0.43)	1	-0.1435(0.42)	1
$\beta_4 = 7$	-0.0495(0.40)	1	0.3294(0.39)	1
$eta_5=15$	0.0623(0.47)	1	-0.1395(0.45)	1
$\beta_6 = 0$	-0.0102(0.45)	1	0.0272(0.25)	0.59
$\beta_7 = 0$	0.0028(0.39)	0.99	0.0547(0.22)	0.54
$\beta_8 = 0$	-0.0636(0.43)	1	0.0215(0.25)	0.55
$eta_9=0$	0.0180(0.44)	1	0.0744(0.25)	0.61
$\beta_{10}=0$	-0.0678(0.39)	1	0.0045(0.21)	0.58

Penalized Least Squares

■ To minimize

$$Q(\beta) = \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + n \sum_{j=1}^{p} p_{\lambda}(|\beta_j|)$$
 (4)

where $p_{\lambda}(|\beta|)$ is a penalty function.

■ The penalized least squares estimator is

$$\hat{\pmb{\beta}} = \arg\min_{\pmb{\beta}} Q(\pmb{\beta})$$

SCAD 00000 **LASSO**(L_1 -penalty):

$$p_{\lambda}(|\beta|) = \lambda |\beta|$$

SCAD 00000

Smoothly Clipped Absolute Deviation (SCAD):

$$p_{\lambda}(|eta|) = egin{cases} \lambda |eta| &, |eta| \leq \lambda \ -(rac{|eta|^2 - 2a\lambda |eta| + \lambda^2}{2(a-1)}), \lambda < |eta| \leq a\lambda \ rac{(a+1)\lambda^2}{2} &, |eta| > a\lambda \end{cases}$$

where a = 3.7

beta

0 beta

What is good penalty function?

- Unbiasedness: The estimator is nearly unbiased when the true unknown parameter is large to avoid modeling bias.
- Sparsity: The estimator is a thresholding rule, which sets small estimated coefficients to zero.
- Continuity: The estimator is continuous in data x to avoid instability in model prediction.

	Unbiasedness	Sparsity	Continuity
L_1 -penalty(LASSO)	no	yes	yes
L_2 -penalty(ridge regression)	no	no	yes
SCAD	yes	yes	yes

Conti. Example

Consider model:

$$Y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{10} X_{i10} + \varepsilon_i$$
, $i = 1, 2, ..., 100$

where $\mathbf{X} \sim MVN(0, \Sigma)$, Σ be covariance matrix with for $j, k = 1, ..., 10, j \neq k, Var(X_i) = 1, Cov(X_i, X_k) = 0.5$ and $\varepsilon_i \sim N(0, 3^2)$, i = 1, ..., 100. the true $\beta_0 = (3, 1.5, 2, -7, 15, 0, 0, 0, 0, 0)$

 With 100 replication, count the number of estimated value greater than 10^{-3} . The parameter λ choosed by 10-fold cross validation.

	CCAD(1.4660/	
	$SCAD\big(\lambda = 0.3792\big)$		$LASSO\big(\lambda = 0.2636\big)$	
	bias(sd)	count(%)	bias(sd)	count(%)
$\beta_1 = 3$	0.0415(0.42)	1	-0.1529(0.42)	1
$\beta_2 = 1.5$	-0.0394(0.52)	1	-0.1655(0.42)	1
$\beta_3 = 2$	0.0390(0.43)	1	-0.1435(0.42)	1
$\beta_4 = 7$	-0.0571(0.38)	1	0.3294(0.39)	1
$eta_5=15$	0.0740(0.46)	1	-0.1395(0.45)	1
$\beta_6 = 0$	-0.0230(0.23)	0.46	0.0272(0.25)	0.59
$\beta_7 = 0$	0.0053(0.17)	0.36	0.0547(0.22)	0.54
$\beta_8 = 0$	-0.0303(0.21)	0.44	0.0215(0.25)	0.55
$\beta_9 = 0$	0.0218(0.19)	0.48	0.0744(0.25)	0.61
$\beta_{10}=0$	-0.0279(0.16)	0.39	0.0045(0.21)	0.58

	SCAD		LASSO	
$\lambda = 0.7585$	bias(sd)	count(%)	bias(sd)	count(%)
$\beta_1 = 3$	0.1655(0.50)	1	-0.4177(0.44)	1
$\beta_2 = 1.5$	-0.4698(0.57)	0.97	-0.4319(0.42)	1
$\beta_3 = 2$	-0.2262(0.64)	1	-0.4000(0.44)	1
$\beta_4 = 7$	0.0947(0.38)	1	1.1121(0.40)	1
$eta_5=15$	0.2376(0.46)	1	-0.4214(0.46)	1
$\beta_6 = 0$	0.0018(0.05)	0.18	0.0357(0.10)	0.26
$\beta_7 = 0$	0.0148(0.06)	0.14	0.0462(0.12)	0.23
$\beta_8 = 0$	0.0083(0.06)	0.12	0.0396(0.12)	0.19
$\beta_9 = 0$	0.0186(0.07)	0.15	0.0616(0.15)	0.27
$\beta_{10} = 0$	0.0035(0.04)	0.09	0.0163(0.07)	0.18

Variable selection via penalized least squares.

	Unbiasedness	Sparsity	Continuity
L_1 -penalty(LASSO)	no	yes	yes
L_2 -penalty(ridge regression)	no	no	yes
SCAD	yes	yes	yes