Overview of shinyChromosomeR

Yiming Yu and Wen Yao 2019-06-03

Contents

1 Introduction	1
2 Creation of single-genome plot using shinyChromosomeR	2
2.1 Essential steps to create a non-circular single genome plot	2
2.1.1 Read in the genome dataset	2
2.1.2 Read in other input datasets to be displayed along all chromosomes of the input genome	2
2.1.3 Make the plot using the single_genome_plot function	2
2.2 Create different types of single genome plot using shinyChromosome	3
2.2.1 Plot line	3
2.2.2 Plot point + line	4
2.2.3 Plot bar	5
2.2.4 Plot heatmap_discrete	6
2.2.5 Plot ideogram	7
2.2.5 Plot bar + vertical_line	9
3 Create two genomes plot using shinyChromosomeR	9
3.1 Essential steps to create a non-circular two-genomes plot	9
3.1.1 Read in the genome dataset aligned along the horizontal axis	10
3.1.2 Read in the genome dataset aligned along the vertical axis	10
3.1.3 Read in the main dataset	10
3.1.4 Make the plot using the two_genomes_plot function	11
3.2 Create different types of two-genomes plot using shinyChromosome	11
3.2.1 Plot rect_discrete	11
3.2.2 Plot segment	12
4 Session Information	14

1 Introduction

shinyChromosome is an Shiny application for interactive creation of non-circular plots of whole genomes within the web browser. shinyChromosome is deployed at http://150.109.59.144:3838/shinyChromosome/, http://shinychromosome.ncpgr.cn/ and https://yimingyu.shinyapps.io/shinychromosome/, for online use.

shinyChromosomeR wraps the core script of shinyChromosome as an R package, allowing the creation of non-circular whole genome diagram from the R command line.

In this vignette, we will rely on several simple, illustrative example datasets to demonstrate the usage of **shinyChromosomeR**.

To use the **shinyChromosomeR** package, we need to load it into R first.

library(shinyChromosomeR)

2 Creation of single-genome plot using shinyChromosomeR

2.1 Essential steps to create a non-circular single genome plot

To create a non-circular single genome plot, we need a dataset to define the genome used in the single genome plot and the other 1-10 datasets to be displayed along all the chromosomes of the genome.

2.1.1 Read in the genome dataset

The genome dataset is compulsory and defines the frame of a non-circular plot. The genome dataset is basically a text file with 2 columns. The 1st column is the chromosome ID. The 2nd column is the chromosome length. The detailed format of the genome data is illustrated in the 'Input data format' menu (Under the 'Help' menu) of the shinyChromosome application (http://150.109.59.144:3838/shinyChromosome/).

2.1.2 Read in other input datasets to be displayed along all chromosomes of the input genome

One or more datasets could be then read into R, which would be displayed along all chromosomes of the genome dataset in Step 2.1.1. These datasets can be used to create different types of plot, including 'point', 'line', 'bar', 'rect_gradual', 'rect_discrete', 'heatmap_gradual', 'heatmap_discrete', 'text', 'segment', 'vertical_line', 'horizontal_line' and 'ideogram'. Please check the 'Input data format' menu (Under the 'Help' menu) of the shinyChromosome application (http://150.109.59.144:3838/shinyChromosome/) for more details.

2.1.3 Make the plot using the single_genome_plot function

After all the input datasets has been prepared and read into R, we can call the single_genome_plot function to make the plot. By default, different datasets in step 2.1.2 would be displayed in different tracks. We can set the track of each dataset using the layer_index parameter. We also need to set the plot type for each dataset in step 2.1.2.

Figure 1: Plot point using single_genome_plot.

```
single_genome_plot(data.chr=data.chr, data.track=data.track, plot_type="point")
## Warning: Removed 4 rows containing missing values (geom_point).
```

2.2 Create different types of single genome plot using shinyChromosome

2.2.1 Plot line

```
data.chr <- read.table(system.file("examples/single_genome/genome_data.txt",</pre>
                                     package="shinyChromosomeR"),
                        header=TRUE, as.is=TRUE, sep="\t")
head(data.chr, 2)
##
     chr
             size
       1 43268879
## 1
       2 35930381
data.track.file <- system.file("examples/single_genome/line.txt",</pre>
                                 package="shinyChromosomeR")
data.track.file
## [1] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/line.txt"
data.track <- lapply(data.track.file, function(x){</pre>
   dt <- read.table(x, header=TRUE, as.is=TRUE, sep="\t")</pre>
   return(dt)
})
dim(data.track[[1]])
## [1] 1619
head(data.track[[1]], 2)
     chr position value
##
                0 0.0428
## 1
           565000 0.0522
single_genome_plot(data.chr=data.chr, data.track=data.track, plot_type="line")
```


Figure 2: Plot line using single_genome_plot.

Warning: Removed 4 rows containing missing values (geom_point).

```
2.2.2 Plot point + line
data.chr <- read.table(system.file("examples/single_genome/genome_data.txt",</pre>
                                    package="shinyChromosomeR"),
                        header=TRUE, as.is=TRUE, sep="\t")
head(data.chr)
     chr
             size
## 1
       1 43268879
## 2
       2 35930381
       3 36406689
       4 35278225
       5 29894789
## 5
       6 31246789
data.track.file <- c(system.file("examples/single_genome/point.txt", package="shinyChromosomeR"),</pre>
                      system.file("examples/single_genome/line.txt", package="shinyChromosomeR"))
data.track.file
## [1] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/point.txt"
## [2] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/line.txt"
data.track <- lapply(data.track.file, function(x){</pre>
   dt <- read.table(x, header=TRUE, as.is=TRUE, sep="\t")</pre>
   return(dt)
})
dim(data.track[[1]])
## [1] 10000
head(data.track[[1]], 2)
     chr position value color
##
## 1
           202360 0.315
           213775 1.113
## 2
       1
```


Figure 3: Plot point + line using single_genome_plot.

```
dim(data.track[[2]])
## [1] 1619
               3
head(data.track[[2]], 2)
     chr position value
## 1
       1
                0 0.0428
           565000 0.0522
single_genome_plot(data.chr=data.chr, data.track=data.track, plot_type=c("point", "line"))
## Warning: Removed 8 rows containing missing values (geom_point).
2.2.3 Plot bar
data.chr <- read.table(system.file("examples/single_genome/genome_data.txt",</pre>
                                    package="shinyChromosomeR"),
                        header=TRUE, as.is=TRUE, sep="\t")
head(data.chr, 2)
##
     chr
             size
       1 43268879
## 1
       2 35930381
data.track.file <- system.file("examples/single_genome/bar.txt",</pre>
                                 package="shinyChromosomeR")
data.track.file
## [1] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/bar.txt"
data.track <- lapply(data.track.file, function(x){</pre>
   dt <- read.table(x, header=TRUE, as.is=TRUE, sep="\t")</pre>
  return(dt)
```


Figure 4: Plot bar using single_genome_plot.

```
})
dim(data.track[[1]])
## [1] 1619
head(data.track[[1]], 2)
     Chr start
                  stop value
## 1
       1
              0 565000 0.5923
       1 565000 599000 0.6701
single_genome_plot(data.chr=data.chr, data.track=data.track, plot_type="bar")
## Warning: Removed 4 rows containing missing values (geom_point).
2.2.4 Plot heatmap_discrete
data.chr <- read.table(system.file("examples/single_genome/genome_data.txt",</pre>
                                    package="shinyChromosomeR"),
                        header=TRUE, as.is=TRUE, sep="\t")
head(data.chr, 2)
##
     chr
             size
## 1
       1 43268879
       2 35930381
data.track.file <- system.file("examples/single_genome/heatmap_discrete.txt",</pre>
                                 package="shinyChromosomeR")
data.track.file
## [1] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/heatmap_discrete.txt"
data.track <- lapply(data.track.file, function(x){</pre>
   dt <- read.table(x, header=TRUE, as.is=TRUE, sep="\t")</pre>
   return(dt)
})
dim(data.track[[1]])
## [1] 1200
```


Figure 5: Plot discrete heatmap using single_genome_plot.

```
head(data.track[[1]], 2)
     chr start
                   stop val1 val2 val3 val4 val5 val6
              0 631164
## 1
                           a
                                      С
                                                     b
                                е
       1 631165 1749192
                                b
                                      С
single_genome_plot(data.chr=data.chr, data.track=data.track,
                   plot_type="heatmap_discrete", chr_plotype=2,
                   margin_layer=0.01)
## Warning: Removed 576 rows containing missing values (geom_point).
2.2.5 Plot ideogram
data.chr <- read.table(system.file("examples/single_genome/genome_data.txt",</pre>
                                   package="shinyChromosomeR"),
                       header=TRUE, as.is=TRUE, sep="\t")
head(data.chr, 2)
     chr
##
             size
     1 43268879
## 1
## 2
     2 35930381
```


Figure 6: Plot ideogram using single_genome_plot.

```
data.track.file <- system.file("examples/single_genome/ideogram.txt",</pre>
                                 package="shinyChromosomeR")
data.track.file
## [1] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/ideogram.txt"
data.track <- lapply(data.track.file, function(x){</pre>
   dt <- read.table(x, header=TRUE, as.is=TRUE, sep="\t")</pre>
   return(dt)
})
dim(data.track[[1]])
## [1] 573 5
head(data.track[[1]], 2)
                   end value1 value2
##
     chr start
              1 399271 p36.33 gneg
       1 399271 937418 p36.32 gpos25
single_genome_plot(data.chr=data.chr, data.track=data.track,
                   plot_type="ideogram", chr_plotype=2,
                   margin_layer=0.01)
```

2.2.5 Plot bar + vertical_line

```
data.chr <- read.table(system.file("examples/single_genome/genome_data.txt",</pre>
                                    package="shinyChromosomeR"),
                        header=TRUE, as.is=TRUE, sep="\t")
head(data.chr, 2)
##
     chr
             size
## 1
       1 43268879
## 2
       2 35930381
data.track.file <- c(system.file("examples/single_genome/bar.txt", package="shinyChromosomeR"),</pre>
                      system.file("examples/single_genome/vertical_line.txt", package="shinyChromosomeR"
data.track.file
## [1] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/bar.txt"
## [2] "D:/software/MRO-3.5.0/library/shinyChromosomeR/examples/single_genome/vertical_line.txt"
data.track <- lapply(data.track.file, function(x){</pre>
   dt <- read.table(x, header=TRUE, as.is=TRUE, sep="\t")</pre>
   return(dt)
})
dim(data.track[[1]])
## [1] 1619
head(data.track[[1]], 2)
     Chr start
                  stop value
              0 565000 0.5923
       1 565000 599000 0.6701
dim(data.track[[2]])
## [1] 13 2
head(data.track[[2]], 2)
     chr position
## 1
       1
       1 43268879
## 2
single_genome_plot(data.chr=data.chr, data.track=data.track,
                   plot_type=c("bar", "vertical_line"), chr_plotype=1,
                   margin_layer=0.01, layer_index=c(1, 1),
                   col_type=c(2, 2), color_cus=c("gold", "grey50"))
```

Warning: Removed 4 rows containing missing values (geom_point).

The user can tune the appearance of the generated plot by setting the values of diverse parameters of the single_genome_plot function.

3 Create two genomes plot using shinyChromosomeR

3.1 Essential steps to create a non-circular two-genomes plot

To create a non-circular two genomes plot, we need three datasets. The first dataset defines the genome aligned along the horizontal axis. The second dataset defines the genome aligned along the vertical axis. The third dataset is the main dataset used to create the two genomes plot.

Figure 7: Plot bar + vertical line using single_genome_plot.

3.1.1 Read in the genome dataset aligned along the horizontal axis

The format of the genome dataset should be the same as the genome dataset illustrated in section 2.1.1.

3.1.2 Read in the genome dataset aligned along the vertical axis

The format of the genome dataset should be the same as the genome dataset illustrated in section 2.1.1.

```
## chr size
## 1 Chr01 41185095
## 2 Chr02 34608401
```

3.1.3 Read in the main dataset

Figure 8: Output figure of example7.

```
header=TRUE, as.is=TRUE, sep="\t")
head(data.2geno.plot, 2)

## chrX posX chrY posY color
## 1 1 0 Chr01 412394 21.041
## 2 5 26841000 Chr05 26330003 38.726
```

3.1.4 Make the plot using the two_genomes_plot function

3.2 Create different types of two-genomes plot using shinyChromosome

3.2.1 Plot rect_discrete

```
head(data.chr1, 2)
##
     chr
             size
## 1
       1 43268879
## 2
     2 35930381
data.chr2 <- read.table(system.file("examples/two_genome/genome2_data.txt",</pre>
                                     package="shinyChromosomeR"),
                         header=TRUE, as.is=TRUE, sep="\t")
head(data.chr2, 2)
##
       chr
               size
## 1 Chr01 41185095
## 2 Chr02 34608401
data.2geno.plot <- read.table(system.file("examples/two genome/rect discrete.txt",</pre>
                                           package="shinyChromosomeR"),
                               header=TRUE, as.is=TRUE, sep="\t")
head(data.2geno.plot, 2)
##
     chrX
            startX
                       stopX chrY
                                     \operatorname{start} Y
                                                stopY color
        2 11000001 12000000 Chr06 12000001 13000000
## 1
        1 26000001 27000000 Chr02 6000001 7000000
two_genomes_plot(data.chr1=data.chr1, data.chr2=data.chr2,
                  data.2geno.plot=data.2geno.plot, plot_type="rect_discrete",
                  theme_sty="theme6", vertical=1, horizontal=1)
3.2.2 Plot segment
data.chr1 <- read.table(system.file("examples/two genome/genome1 data.txt",</pre>
                                     package="shinyChromosomeR"),
                         header=TRUE, as.is=TRUE, sep="\t")
head(data.chr1, 2)
##
     chr
             size
## 1
       1 43268879
## 2
       2 35930381
data.chr2 <- read.table(system.file("examples/two_genome/genome2_data.txt",</pre>
                                     package="shinyChromosomeR"),
                         header=TRUE, as.is=TRUE, sep="\t")
head(data.chr2, 2)
##
       chr
               size
## 1 Chr01 41185095
## 2 Chr02 34608401
data.2geno.plot <- read.table(system.file("examples/two_genome/segment.txt",</pre>
                                           package="shinyChromosomeR"),
                               header=TRUE, as.is=TRUE, sep="\t")
head(data.2geno.plot, 2)
     chrX startX
                    stopX chrY startY
                                            stopY
## 1
       1 3571629 3648277 Chr01 3631006 3707623
      10 8626250 8630087 Chr10 8061782 8065621
```


Figure 9: Output figure of example8.

Figure 10: Output figure of example8.

4 Session Information

The version number of R and packages loaded for generating the vignette were:

sessionInfo()

```
## R version 3.5.0 (2018-04-23)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 17134)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936
## [2] LC_CTYPE=Chinese (Simplified)_China.936
## [3] LC_MONETARY=Chinese (Simplified)_China.936
```

```
## [4] LC_NUMERIC=C
## [5] LC_TIME=Chinese (Simplified)_China.936
## attached base packages:
                graphics grDevices utils
## [1] stats
                                               datasets methods
                                                                   base
##
## other attached packages:
## [1] shinyChromosomeR_1.0.0 ggthemes_3.4.0
                                                     RColorBrewer_1.1-2
## [4] ggplot2_2.2.1.9000
                              plyr_1.8.4
                                                     RevoUtils_11.0.0
## [7] RevoUtilsMath_11.0.0
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.18
                         knitr_1.19
                                            magrittr_1.5
## [4] munsell_0.4.3
                          colorspace_1.3-2 rlang_0.2.0.9001
## [7] highr_0.6
                          stringr_1.2.0
                                            tools_3.5.0
## [10] grid_3.5.0
                          gtable_0.2.0
                                            withr_2.1.2
## [13] htmltools_0.3.6
                          assertthat_0.2.0 yaml_2.1.16
## [16] lazyeval_0.2.1
                          rprojroot_1.3-2
                                            digest_0.6.15
## [19] tibble_1.4.2
                          reshape2_1.4.3
                                            evaluate_0.10.1
## [22] rmarkdown_1.8
                          labeling_0.3
                                            stringi_1.1.6
                                            scales_0.5.0.9000
## [25] compiler_3.5.0
                          pillar_1.2.1
## [28] backports_1.1.2
```