Char. @ low frequencies 7 -@ high frequencies Inversion Inversion.

S.MMTRINATH

ACE

In Inversion Mode,

a low frequency -> Cap, is CHAN.

a high frequency -> Cap, is Cmin.

Till Now we have green -

NMos (P-substrate)

Simillarly

PMOS

$$(n-type)$$

Substrate

$$\begin{cases}
N_0 \\
N_1
\end{cases}$$

$$\begin{cases}
N_1 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_1 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_1 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_1 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_1 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_1 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_1 \\
N_2
\end{cases}$$

$$\begin{cases}
N_2 \\
N_2
\end{cases}$$

$$\begin{cases}
N_$$

Practically a Net Fixed change (Usually Positive) May Exist in Insulater. The Positive charge has been identified with "broken covalent bonds (Or) dangling Covalent bonds" Near the Oxide- Semiconductor Interface. During therman Pormation of Sio2, Oxygen diffuses through the Oxide & Greads News 51-5102 interface to form 5102. " Si Atoms May also break away from the si Material

Tust Prior to Yeaching to form Sio2".

Surface States/Traps Problem Resgolved.

Pn + Ps - Then which pn Should be choosed Now H * V 5=0V As @ VG=00, Already device (Eo)VAC. Choose Het as is Under dep- gregion .. Ø = Ø - Ø s

$$\frac{q\sqrt{p_{N}}}{q\sqrt{p_{N}}} = \frac{1}{q\sqrt{p_{N}}} = \frac{$$

$$\therefore \phi_{HS} = \left[\phi_{H} - \left(\frac{\chi_{Si} + \frac{E_{Gi}}{2} + \phi_{fp}}{2}\right)\right]$$

Similarly for pmos - Substrate is n-type -FFN 3 4/09/2 KT 109/NOT).

Ideally for fands

Alled Flat band Condition.

Tospiode @ Vin Floot But Practical Mospiode,

in & Bands are Not Flat.

ACE

As Practically to Make Bands Flat, We Must Apply some External Voltage — Called, Flat Band Voltage (VFB).

Applied Grate Voltage of Such that

Hhere is No Band Dending in Semiconductor &

as a result, ____evo Net Space charge in this region.

ACE

In Above Case,
$$\rho_{HS} = (-)ve$$
 now to Make bands
=) $V_{FB} = (-)ve$ flat, we Ashould Apply
 $V_{G} = (-)ve$.

(150, If V6=(-)ve =) Ex Moves up in Metal -> bands Could be Flat. =) Due to VFB, Threshord Vortage Win be Hodified.

Nou Varo K Qon E= Sou da Esi

Q VG=oV it selb

get depletion gregion in p-side.

is No s.c. i.e., (-ve) charges in metal \\ => C)ve charges in

which is Flat Band Voitage.

$$\therefore Q = CV \Rightarrow V = \frac{Q}{C} = \frac{Q}{d}$$

$$\Rightarrow V = \frac{Q}{C} = \frac{Q}{d}$$

Here
$$V \longrightarrow V_{FB}$$

$$E \longrightarrow E_{OX}$$

$$A \longrightarrow Q_{OX}^{\dagger} = -Q_{OX}^{\dagger} = -Q_{OX}^{\dagger}$$

To Find VFB2 - (To Maintain Zero Charge in Substrate).

Now here
$$V \to V_{FB_2}$$

$$Q = \dot{C}V = \dot{V} = \frac{\dot{Q}'}{\dot{C}'} = \frac{\dot{Q}'}{\dot{E}}$$

$$V = \frac{\dot{Q}'}{\dot{C}} d$$

$$V = \frac{\dot{Q}'}{\dot{C}} d$$

$$V \to V_{FB_2}$$

Since,
$$Cox^{1} = \frac{Cox}{tox}$$

$$= \frac{1}{V_{FB}} = \frac{1}{C_{1}} \frac{X_{0}}{tox}$$

In GATE Exam
$$\longrightarrow$$
 98 QON is given @ Sworface of Si-SiO2)
$$: V_{FB_2} = \frac{-QON}{CON!}.$$

S.MMTRINATI

$$= V_{FB2} = \frac{-Q_{ox}'}{C_{ox}'} \cdot \frac{x_o}{t_{ox}}.$$

This is UFB due to 2nd Non Ideality.

In GIATE Exam, If No given = tox, Now

Then
$$V_{FB} = \frac{-Q'_{OX}}{C_{OX}'} \cdot \frac{X_O}{t_{OX}}$$

$$= \frac{-Q'_{OX}}{C_{OX}'}.$$

S.MMTRINATH

Hence Overall Flot Band Voltage,

$$V_{FB} = \begin{pmatrix} V_{FB} \end{pmatrix} + \begin{pmatrix} V_{FB} \end{pmatrix}$$

due to 1st due to 2nd

Non Ideality

Non Ideality

=>
$$V_{FB} = \varphi_{MS} + \left[\frac{-Q_{ox}}{C_{ox}} \left[\frac{x_o}{t_{ox}} \right] \right]$$

=) Practical,
$$V_{Th} = \sqrt{\frac{2q - \epsilon_s}{s_i} N_A (\frac{2q_F}{s_i})} + 2q_F + V_{FB}$$
.

S.MMTRINATH

Negative V_{Th} for p-type Substrak => Depletion

Node device, An (-)ve vol., Must be Applied to GATE in order to

Make Inversion charge to Zero.

Where (+)ve Gate voltage will Induce a loger "Inversion

Layer charge".

Simillously
$$\longrightarrow$$
 n-type $\int Substrate \longrightarrow$

$$V_{TP} = \left[- \left| Q_{deP}^{\dagger} \right|_{Max} - Q_{oN}^{\dagger} \right] \left[\frac{t_{oN}}{\epsilon_{oN}} \right] + \rho_{MS} - 2 \phi_{fn}.$$

$$\text{where } \left| \phi_{deP}^{\dagger} \right|_{Max} = q_{NO} \chi_{dispersion} \chi$$

Body Effect

IN IC'S

P-Hype (Buits)

If pottentials of Body and Source are Not Same - ? Body Back Bulf Effect.

Pottentially Assume

Pottentially @ Bulk of

Source are Same,

Let Initially Source
is GIND.

To Understand in Mogre detailed

As we don't Need Any Current Now (for testing) Let Orain A150 Grounded.

Now let VSB = (-)ve =) Vs-VB = (-)ve => VB Must be positive.

Up = (+)ve =) P-sub. is C+)ve => F-bias => 9 vbill

=) @ VG =OV ---

ier pottential

decreases overious

@ Vin Stope is wert have given Vin

But Now as stope+++ => to get #= 20 f

we get this @ lesses Von to get a

Threshold point => VTh ++ => VB decides

the surface charge.

ACE

Now let V_{SB} = (+) ve =) V_S-V_B = (+) ve =) V_B = (-) ve.

Now Barrier Pottentian
Spect 11 by 9188

Now to get $\psi_s = 2\phi_F$, $V_{Th} \uparrow \uparrow \uparrow$.

To do His we Must Apply large V6.

This Effect is Caned ACE Body Effect (61) Bully Effect (or) Back Effect. Hence By Including Body Effect, $V_{Th} = V_{FB} + 2\beta_F + \sqrt{24\xi_i} N_A (2\beta_F + V_{SB})$

.. To Avoid Body Effect,

We Must Make VSB=0.

Important NOTE

S.MMTRINATH

To Avoid Body Effect, we Must Select

VSB = 0 -> can be done by Shorting Source & Body.

Grandy where 8-

Hence,

Practical Mos Diode CV characteristics ->

As we know,
$$T: \frac{d^{q}}{dt} = \frac{d^{q}}{dn} \cdot \frac{d^{n}}{dt} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} \qquad \int \frac{\partial u_{l}}{\partial t} dt = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} = \frac{\partial v_{l}}{\partial t} = \frac{\partial v_{l}}{\partial t} \cdot \frac{\partial u_{l}}{\partial t} = \frac{\partial v_{l}}{\partial t} = \frac{\partial v_$$

Similarly
$$\rightarrow \frac{dn}{dt} \rightarrow Velocity \rightarrow V_d = \mu_R = \mu_n \cdot \frac{dv_H}{dn}$$
.
Since As Seen, The Transport is Drift. [No Dift., & No Recombination].
 $T = \frac{dv}{dn} \cdot \frac{dn}{dt} = C_{on} w \{V_{cns} - V_{Th} - V_{n}\}, \mu_n \frac{dv_H}{dn}$.

$$As \rightarrow I = (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \cdot \mu \cdot \frac{dV_{N}}{dx}$$

$$= I \ dN = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dN = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dN = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dN = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dN = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dN = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dN = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{GNS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N} - V_{N}) \ dV_{N}.$$

$$I \ dV = \mu_{\Lambda} (on' \ w (\ V_{MS} - V_{Th} - V_{N} - V_{N$$

$$T_{D} = T_{S} = T_{DS} = \frac{1}{2} \mu_{n} con^{3} \frac{\omega}{c} \left[V_{CNS} - V_{Th} \right] V_{DS} - \frac{V_{DS}^{2}}{2} \right].$$

$$\Rightarrow g_{n} \quad Tviode \quad Region.$$

$$V_{CNS} = V_{Th} \quad V_{CNS} = V_{Th} \quad V_{CN$$

$$V_{(DS)} < V_{Th} \longrightarrow MosffT \longrightarrow off \ Uosff$$

$$V_{(DS)} > V_{Th} \longrightarrow MosffT \longrightarrow oN$$

$$V_{(DS)} < (V_{DS})_{Sat} \longrightarrow 3I_{D}$$

$$V_{(DS)} < (V_{DS})_{Sat} \longrightarrow 3I_{D}$$

$$V_{(DS)} < (V_{(DS)})_{Sat} \longrightarrow Satisfaction \ Process \ Process \ To = \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L} \left((V_{(DS)} - V_{Th})^{2} \right) - \frac{1}{2} M_{D}(oni \frac{1}{L}$$

In Satisfacion Gragion,

$$T_{D} = \frac{1}{2} K_{n} \frac{W}{L} \left(V_{CNS} - V_{Th} \right)^{2}.$$

$$T_{D} \propto \left(V_{CNS} - V_{Th} \right)^{2}.$$

$$T_{D} \sim \left$$

$$\int_{m}^{\infty} \int_{m}^{\infty} \int_{m$$

$$\frac{g_m}{T_0} = \frac{2}{V_{GS} - V_{Th}}$$

$$\frac{g_m}{V_{GS} - V_{Th}}$$

In linears, $I_{D} = \mu_{n} cox \frac{w}{L} \left[\left(V_{lns} - V_{Th} \right) V_{los} - \frac{1}{2} V_{los}^{2} \right]. \quad ACE$

In Asahuhation Region \longrightarrow $I_D = \frac{1}{2} M_n Cox \frac{W}{L} \left(V_{CNS} - V_{Th} \right)^2.$ $= \frac{1}{2} K_n^{1} \frac{W}{L} \left(V_{CNS} - V_{T} \right)^2$ $= K_n \left(V_{CNS} - V_{T} \right)^2$ $\frac{1}{2} K_n^{1} \frac{W}{L} \longrightarrow K_n (Or) K (Or) \beta_n.$

For N-MOS -> $V_{Th} = (+)Ve$ $V_{GS} \ge V_{Th} \longrightarrow To ON$ $V_{GS} \ge V_{Th} \longrightarrow qSaturation$ $V_{OS} \ge (V_{GS} - V_{Th}) \longrightarrow QSaturation$ $V_{GS} \ge V_{Th} \longrightarrow QSaturation$ $V_{GS} \ge V_{Th} \longrightarrow QSaturation$

For
$$PMOS \rightarrow VTh = 6-1Ve$$
.
 $VSG \ge |VTh| \rightarrow TO ON$.
 $VSG \ge |VTh| \rightarrow Saturation$
 $VSD \ge (VSG - |VTh|)$
 $VSD \ge (VSG - |VTh|)$
 $VSD \le (VSG - |VTh|)$

Transfer char,

BJT
$$M^{osFET}$$
 $B \longleftrightarrow G$
 $E \longleftrightarrow S$
 $C \longleftrightarrow D$

BJT Mosfet

$$CB \iff CG$$

 $CE \iff CD$

$$V_{0} = -iR_{0}$$

$$V_{i} = -i(R) + 0 = -iR.$$

$$V_{i} = -i(R) + 0 = -iR.$$

$$V_{i} = -iR_{0}$$

$$V_{i} = -i$$

Cwownt butters.

Voltage Luplisies. Phase butters.

15 injinaonly for Mosfer

Practically, If Vostt, channel length is getting fodulated due to huge depletion force at Drain

Junction R. Bias & Gence,

@ Some Vos = Vov + DV.

Dinched off & DV is dropped here.

Now 2- Modified to L'.

:.
$$d = \frac{1}{V_A} \rightarrow channel length Modulation Parameters.$$

ID

As
$$\frac{\Delta L}{L} \propto V_{DS} \Rightarrow \frac{\Delta L}{L} = \lambda V_{DS}$$

$$= \frac{\Delta L}{L} = \frac{\lambda V_{DS}}{V_{DS}} = \frac{1}{V_{A}}$$

But As & Some portion of Sio_ is overlaped in to Source & Drain

3 capacitance

one plate is Metal, other plate Drain I sio_.

Overlapping Capacitance.

$$C_{SB_{j}} = \underbrace{E_{o} (E_{Y})_{si}}_{\omega_{dep}} \times Area$$

$$\omega_{hebe} \quad A = A + A_{boltom} + A_{boltom}$$

$$\omega_{hebe} \quad A = A_{boltom} + A_{boltom}$$

overlap =
$$\frac{\mathcal{E}_{o}\left(\mathcal{E}_{r}\right)_{sio_{2}}}{t_{or}} \times Area$$

where $A = SW \rightarrow Overlap$ Area.