COMS 4111 Intro to DB HW3 - Part 2 Normalization

Jing Qian (jq2282)

ASSIGNED: October 18th, 2018 DUE: November 15th, 2018

Q2.1

Write answers here.

- a All the non-trivial functional dependencies in the closure that have only one attribute on the right side are: $B \to C, C \to A, B \to A$.
- $\,b\,$ The minimal key of R is B.

Q2.2

Write answers here.

- a All the non-trivial functional dependencies in the closure that have only one attribute on the right ride are: $AB \to D, BD \to C, CD \to A, AD \to B, AB \to C, BD \to A, AD \to C, CD \to B$.
- b The minimal keys of S are AB, or BD, or AD, or CD.

Q2.3

Write answers here. The keys in iowa are date, store, vendor no, itemno, invoice line no.

Q2.4

Write answers here. For simplicity, we represent every attribute with one letter:

addree = A, bottle_volumn_ml = B, category = C, category_name = D, city = E, county = F, county_number = G, date = H, im_desc = I, invoice_line_no = J, itemno = K, name = L, pack = M, sale_bottles = N, sale_dollars = O, sale_gallons = P, sale_liters = Q, state_bottle_cost = R, state_bottle_retail = S, store = T, store_location_address = U, store_location_city = V, store_location_zip = W, vendor_name = X, vendor_no = Y, vendor_no = Z, store_location = α .

So the functional dependencies could be represented as: T -> AEFGLUVWZ α , Y -> X, C -> D, K -> BCIRS, HKJTY -> MNOPQ.

And we could get the minimum cover: $F_{min} = \{T -> A, T -> E, T -> F, T -> G, T -> L, T -> U, T -> V, T -> W, T -> Z, T -> <math>\alpha$, Y -> X, C -> D, K -> B, K -> C, K -> I, K -> R, K -> S, HKJTY -> M, HKJTY -> N, HKJTY -> O, HKJTY -> P, HKJTY -> Q\.

Then we do the composition as following:

Applying 'Y -> X': 'YX', 'ABCDEFGHIJKLMNOPQRSTUVWYZ α '.

Applying 'C -> D': 'YX', 'CD', 'ABCEFGHIJKLMNOPQRSTUVWYZ α '.

Applying 'T -> AEFGLUVWZ α ': 'YX', 'CD', 'AEFGLTUVWZ α ', 'BCHIJKMNOPQRSTY'.

Applying 'K -> BCIRS': 'YX', 'CD', 'AEFGLTUVWZα', 'BCIKRS', 'HJKMNOPQTY'.

Check the F_{min} , all functional dependencies are covered and no redundancy. So this is the 3NF decomposition for the table: 'YX', 'CD', 'AEFGLTUVWZ α ', 'BCIKRS', 'HJKMNOPQTY'. Write in the name of attributes:

[vendor name, vendor no].

[category, category_name].

[addree, city, county, county_number, name, store, store_location_address, store_location_city, store location_zip, zipcode, store location].

[bottle volumn ml, category, im desc, itemno, state bottle cost, state bottle retail].

[date, invoice_line_no, itemno, pack, sale_bottles, sale_dollars, sale_gallons, sale_liters, store, vendor_no].

Q2.5

Write answers here. Yes, my schema is free of redundancies and anomalies. All the subrelations have been confirmed without redundancies. Moreover, it is a 3NF decomposition and there are no lost joins (original relation could be recovered from the join of the sub-relations) or lost dependencies (checked with F_{min}). So there is no anomalies.

Q2.6

Write answers here. No, I can't. Because function dependencies are about relationship between attributes, hence they could not be used to constrain the value of one certain column.

$\mathbf{Q2.7}$

Write answers here.

a There is only one vendor_name value for itemno number '3326' in the iowa dataset.

b	Yes, it should be. Because the same product should have the same vendor. The relationship between item and vendor should be one to many.	
	5	