import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

٦.										
] •		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
	0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
	1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
	2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
	3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
	4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
	1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
	1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
	1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
	1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
	1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

Out[46]

```
In [47]: #taking selected columns from dataset
df=df[['age_in_days','km']]
df
```

\sim		F 4 - 7 7	
()	ΗТ	14/	
•	u	T /	

	age_in_days	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
1533	3712	115280
1534	3835	112000
1535	2223	60457
1536	2557	80750
1537	1766	54276

```
In [48]: #Renamin columns for easier process(OPTIONAL)
df.columns=['age_in_days','km']
df
```

Out[48]:		age_in_days	km
	0	882	25000
	1	1186	32500
	2	4658	142228
	3	2739	160000
	4	3074	106880
	1533	3712	115280
	1534	3835	112000
	1535	2223	60457
	1536	2557	80750
	1537	1766	54276

```
In [49]: ► df.head(10)
```

Out[49]:		age_in_days	km
	0	882	25000
	1	1186	32500
	2	4658	142228
	3	2739	160000
	4	3074	106880
	5	3623	70225
	6	731	11600
	7	1521	49076
	8	4049	76000
	9	3653	89000

In []: ▶ ###step 3: Exploring to data scatter-pltting the data


```
    df.describe()

In [51]:
    Out[51]:
                     age_in_days
                                          km
               count 1538.000000
                                   1538.000000
                     1650.980494
                                  53396.011704
               mean
                     1289.522278
                                  40046.830723
                min
                      366.000000
                                   1232.000000
                25%
                      670.000000
                                  20006.250000
                50%
                     1035.000000
                                  39031.000000
                     2616.000000
                                  79667.750000
                max 4658.000000 235000.000000

    df.info()
In [52]:
              <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 1538 entries, 0 to 1537
              Data columns (total 2 columns):
                                 Non-Null Count Dtype
                   Column
                   age in days 1538 non-null
                                                  int64
                                 1538 non-null
                   km
                                                  int64
              dtypes: int64(2)
              memory usage: 24.2 KB
           ₩ ##step 4:Data cleaning-Eliminating Nan/missing values
In [53]:
```

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_7796\2729279820.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method="ffill",inplace=True)

Out[54]:

	age_in_days	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
1533	3712	115280
1534	3835	112000
1535	2223	60457
1536	2557	80750
1537	1766	54276

1538 rows × 2 columns

step 5:Training our model

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_7796\49978593.py:6: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

Out[55]:

	age_in_days	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
1533	3712	115280
1534	3835	112000
1535	2223	60457
1536	2557	80750
1537	1766	54276

```
In [56]: #Splitting the data into training and testing data
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.6740218819186333

###step 6:Exploring our results

```
In [57]: #Data scatter to predict the values
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```


r2 Score: 0.6740218819186333

###step 7:Working with the smaller dataset

In [65]: #selecting the first 500 rows df500=df[:][:400] df500

Out[65]:

	age_in_days	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
395	366	18818
396	821	10800
397	578	32057
398	1035	69900
399	3258	155000

In [66]: In sns.lmplot(x="age_in_days",y="km",data=df500,order=1,ci=None)
plt.show()


```
In [67]: ► df500.fillna(method='ffill',inplace=True)
df500
```

Out[67]:	age_in_days	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
•••		
395	366	18818
396	821	10800
397	578	32057
398	1035	69900
399	3258	155000

400 rows × 2 columns

regression: 0.7722892542047648

r2 Score: 0.7722892542047648

conclusion:

the dataset we have taken is acceptable.but, maybe it cannot be a best fit .