1/12

#### FIGURE 1. Field of invention.

#### FIR filter



#### IIR filter





2/12

#### Other Application (Combination, sequential logic minimization)



#### FIR/IIR filter equation

$$Y(z) = X(z) [c(0) + c(1) Z^{-1} + c(2) Z^{-2} + c(3) Z^{-2} + .... + c(n) Z^{-n}]$$
 ....FIR Eq

$$Y(z) = X(z) \frac{[c(0) + c(1) Z^{-1} + c(2) Z^{-2} + c(3) Z^{-2} + ..... + c(n) Z^{-n}]}{[1 - (b(1) Z^{-1} + b(2) Z^{-2} + b(3) Z^{-2} + ..... + b(m) Z^{-m})]} ....IIR Eq$$

where X(z)-input signal,  $Z^{-1} * X(z)$  - delayed signal by one delay, Y(z)-output signal c(0), c(1), c(2)......c(n), b(1), b(2).....b(m) are integer coefficients values.

# FIGURE 2. Bit Serial Elements/components <u>Unit Delay</u>



#### Full adder



#### Full subtractor



#### Serial adder



#### Serial subtractor





#### Delay

input Frame size = X bits (e.g input is 1010101 or X=7 bits)

To store X bit frame, number of T element used is X or 7 in present case



### FIGURE 3. Explanation about components used Unit Delay



Input frame Input pattern (0101011) is coming serially at x(nT) pin at clock rate specified on clock pin

#### Full adder (FA) / Full subtractor (FS)

Truth table - Full adder

binary addition/subtraction components is realized using following truth table

|   |   |     |   | •   |   |   |     |   |    |
|---|---|-----|---|-----|---|---|-----|---|----|
| Α | В | Cin | Z | Со  | Α | В | Cin | Z | Со |
| 0 | Ó | 0   | 0 | 0   | 0 | 0 | 0   | 0 | 0  |
| 0 | 0 | l   | 1 | 0   | 0 | 0 | 1   | i | ī  |
| 0 | 1 | 0   | 1 | 0   | 0 | 1 | 0   | i | ì  |
| 0 | i | 1   | 0 | . 1 | 0 | 1 | i   | 0 | 1  |
| 1 | 0 | 0   | 1 | 0   | l | 0 | 0   | 1 | 0  |
| 1 | 0 | 1   | 0 | 1   | 1 | 0 | 1   | 0 | 0  |
| ı | i | 0   | 0 | 1   | 1 | i | 0   | 0 | 0  |
| 1 | i | 1   | 1 | 1   | 1 | 1 | ì   | i | l  |

Truth table - Full Subtractor

#### Serial Adder(SA) / Subtractor (SS)





FIGURE 4. Bit Serial Implementation of FIR Filter

#### Implementation 1



# Realization of coefficient using share-able multiplier (coeff. = 3.11)



## Implementation 2



6/12

FIGURE 5. Example FIR Filter



FIGURE 6. An Existing Minimization Technique



Begin: Using the property of symmetrical coefficient

7/12

FIGURE 7. The "Existing Implementation" of the Coefficient Block [A]



FIGURE 8. Generalized structures for "Existing Methods & minimizations"



B) Flip-flop (T) are not sharable Approx. Number of flip-flops – number of coeff \* (max. coefficient size/2)

FIGURE 9. Minimization (Already applied as patent)



FIGURE 10. Generalized structure "Minimization already applied as patent"



Approx. Number of serial adders = (number of coefficient max coeff size /2) Number of flip-flops(I) = Size of maximum coefficient

10/12





12/12

FIGURE 13. MSBs of the Parallel output are directly available BIT3 .Block (A) . S3 Block (B) Bjock (B) LBlock (B) Critical path P1 Block (D) T(4) T(3) T(2) T(1) Te(1) To Shift Register MSBs of the result can be got from here. for LSBs