Ecuación Hiperbólica

Curso: Métodos Numéricos y Programacion III

Prof. Rosa Luz Medina Aguilar Facultad de Ciencias Matemáticas.

Universidad Nacional Mayor de San Marcos

Universidad del Perú. Decana de América

Introducción

 Las ecuaciones en derivadas parciales hiperbólicas son aquellas que, dada la expresión general:

$$Au_{xx}+Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu+G=0$$
cumplen $\Delta=B^2-AC>0$.

- El ejemplo característico de un problema hiperbólico es la ecuación de ondas.
- Describe la propagación de una variedad de ondas, como las ondas sonoras, las ondas de luz y las ondas en el agua.
- Es importante en varios campos como la acústica, el electromagnetismo, la mecánica cuántica y la dinámica de fluidos. con numerosas aplicaciones en Física e Ingeniería.

Introducción

Una de las descripciones más simples es la dada por

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, \quad t \ge 0$$

 $u(0,t) = u(L,t) = 0, t > 0;$
 $u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$

donde α es un número real en el que intervienen constantes físicas, f(x) y g(x) son funciones reales.

 Dependiendo del tipo de diferencias finitas que utilicemos para aproximar las parciales segundas de la ecuación, obtendremos dos tipos de métodos numéricos: Métodos explícitos
 Métodos implícitos

Introducción

La información que tenemos disponible

E.P. Computación Científica

Aplicamos diferencias centrales sobre u_{tt} y u_{xx} .

$$\frac{u(x,t+k)-2u(x,t)+u(x,t-k)}{k^2}-\alpha^2\frac{u(x+h,t)-2u(x,t)+u(x-h,t)}{h^2}=0$$

Evaluando la expresión anterior en los puntos (x_i, t_j) ,

$$i = 1, 2, ..., nx - 1, j = 1, ..., nt - 1,$$

$$\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{k^2}-\alpha^2\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{h^2}=0$$

Luego

$$u_{i,j+1} - 2u_{i,j} + u_{i,j-1} - rac{k^2 lpha^2}{h^2} \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j}
ight) = 0$$

Si llamamos $\lambda = \frac{k\alpha}{h}$, y llevamos los términos del instante temporal superior a la izquierda:

$$u_{i,j+1} = \left(2 - 2\lambda^2
ight)u_{i,j} + \lambda^2\left(u_{i+1,j} + u_{i-1,j}
ight) - u_{i,j-1}$$

Fijando el índice j y variando el índice $i, i = 1, \ldots, nx - 1$, obtenemos la expresión matricial del método

$$u^{(j+1)} = Au^{(j)} - u^{(j-1)}, \quad j = 1, \dots, nt - 1$$

donde

$$A = \begin{pmatrix} 2 \left(1 - \lambda^2 \right) & \lambda^2 & \cdots & 0 \\ \lambda^2 & 2 \left(1 - \lambda^2 \right) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 2 \left(1 - \lambda^2 \right) \end{pmatrix},$$

$$u^{(j+1)} = \begin{pmatrix} u_{1,j+1} \\ u_{2,j+1} \\ \vdots \\ u_{nx-1,j+1} \end{pmatrix}, u^{(j)} = \begin{pmatrix} u_{1,j} \\ u_{2,j} \\ \vdots \\ u_{nx-1,j} \end{pmatrix}, u^{(j-1)} = \begin{pmatrix} u_{1,j-1} \\ u_{2,j-1} \\ \vdots \\ u_{nx-1,j-1} \end{pmatrix}$$

¿Cómo calculamos $u^{(1)}$, es decir, $u_{i,1}, i=1,2,\ldots,nx-1$?

¿Cómo calculamos $u^{(1)}$, es decir, $u_{i,1}, i=1,2,\ldots,nx-1$? Utilizando el desarrollo de Taylor hasta orden 2

$$u(x,0+k)pprox u(x,0) + u_t(x,0)k + u_{tt}(x,0)rac{k^2}{2}$$
 $u(x,0+k)pprox f(x) + kg(x) + rac{k^2}{2}lpha^2 u_{xx}(x,0)$ $f(x) + kg(x) + rac{k^2}{2}lpha^2 f''(x),$

si
$$f''(x) pprox rac{f(x+h)-2f(x)+f(x-h)}{h^2}$$
, evaluando en x_i , resulta $u_{i,1} = \left(1-\lambda^2\right)f\left(x_i\right) + rac{\lambda^2}{2}\left(f\left(x_{i+1}\right)+f\left(x_{i-1}\right)\right) + kg\left(x_i\right),$ $i=1,2,\ldots,nx-1$ aproximación de orden 2, $O\left(k^2+h^2\right)$.

Calculamos la solución en el instante t_{j+1} a partir de las soluciones en los instantes t_j y t_{j1} , directamente, sin resolver ningún sistema.

Caracteristicas

- ullet El orden de convergencia es $O\left(k^2+h^2
 ight)$ (depende de como calculamos $u^{(1)}$
- El esquema es consistente
- Es estable cuando $\lambda < 1$,

Ejemplo

$$egin{aligned} u_{tt}(x,t) - 4u_{xx}(x,t) &= 0, \quad 0 \leq x \leq 1, \quad t \geq 0 \ u(0,t) &= u(1,t) = 0, t > 0; \ u(x,0) &= \sin \pi x, u_t(x,0) = 0; \, x \in [0,1] \end{aligned}$$

Solución exacta: $u(x,t) = \sin \pi x \cos 2\pi t$

Buscamos la solución aproximada en $T_{
m m\acute{a}x}=0.5$ mediante el método explícito con:

- (a) h = 0.1, k = 0.05
- (b) h = 0.1, k = 0.1.

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, t \ge 0, \ u(0,t) = u(L,t) = 0, t > 0; \ u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$$

ullet Aproximamos u_{tt} mediante una diferencia central

$$u_{tt}\left(x_{i},t_{j}
ight)
ightarrowrac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{k^{2}}.$$

ullet Aproximamos u_{xx} mediante la media entre la diferencia central en t_{j+1}

$$\frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2}$$

ullet y la diferencia central en t_{j-1}

$$\frac{u_{i+1,j-1}-2u_{i,j-1}+u_{i-1,j-1}}{h^2}.$$

• El esquema en diferencias que se obtiene es el siguiente:

$$u_{i,j+1}-2u_{i,j}+u_{i,j-1}=\frac{\lambda^2}{2}\left[(u_{i+1,j+1}-2u_{i,j+1}+u_{i-1,j+1})\right.\\ \left.+(u_{i+1,j-1}-2u_{i,j-1}+u_{i-1,j-1})\right],$$
 para $i=1,2,\ldots,nx-1,j=1,2,\ldots,nt-1,$ con $\lambda=\frac{\alpha k}{L}$

 Llevando a la izquierda las variables correspondientes al instante más alto

$$egin{aligned} \left(1\!+\!\lambda^2
ight)u_{i,j+1}\!-\!rac{\lambda^2}{2}(u_{i+1,j+1}\!+\!u_{i-1,j+1})\!=\! \ &2u_{i,j}\!+\!rac{\lambda^2}{2}\left(u_{i+1,j-1}\!+\!u_{i-1,j-1}
ight)\!-\!\left(1+\lambda^2
ight)u_{i,j-1}, \end{aligned}$$

para
$$i=1,2,\dots,nx-1, j=1,2,\dots,nt-1$$
 ,

Fijando j y escribiendo todas las ecuaciones para $i=1,2,\ldots,nx-1$, obtenemos la expresión matricial del método

$$Au^{(j+1)} = 2u^{(j)} + Bu^{(j-1)}, \quad j = 1, 2, \dots, nt-1$$

donde

$$A = \begin{pmatrix} 1 + \lambda^2 & -\lambda^2/2 & 0 & \cdots & 0 & 0 \\ -\lambda^2/2 & 1 + \lambda^2 & -\lambda^2/2 & \cdots & 0 & 0 \\ 0 & -\lambda^2/2 & 1 + \lambda^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 + \lambda^2 & -\lambda^2/2 \\ 0 & 0 & 0 & \cdots & -\lambda^2/2 & 1 + \lambda^2 \end{pmatrix}$$

$$u^{(j)} = \left(egin{array}{c} u_{1,j} \ u_{2,j} \ dots \ u_{nx-1,j} \end{array}
ight), u^{(0)} = \left(egin{array}{c} u_{1,0} \ u_{2,0} \ dots \ u_{nx-1,0} \end{array}
ight), u^{(1)} = \left(egin{array}{c} u_{1,1} \ u_{2,1} \ dots \ u_{nx-1,1} \end{array}
ight)$$

$$B = \begin{pmatrix} -(1+\lambda^2) & \lambda^2/2 & 0 & \cdots & 0 & 0 \\ \lambda^2/2 & -(1+\lambda^2) & \lambda^2/2 & \cdots & 0 & 0 \\ 0 & \lambda^2/2 & -(1+\lambda^2) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -(1+\lambda^2) & \lambda^2/2 \\ 0 & 0 & 0 & \cdots & \lambda^2/2 & -(1+\lambda^2) \end{pmatrix}$$

Caracteristicas

- ullet El orden de convergencia es $O\left(k^2+h^2
 ight)$,(depende de como calculamos $u^{(1)}$.
- No necesita condiciones de convergencia

Ejemplo

$$egin{aligned} u_{tt}(x,t) - 4u_{xx}(x,t) &= 0, \quad 0 \leq x \leq 1, \quad t \geq 0 \ u(0,t) &= u(1,t) = 0, t > 0; \ u(x,0) &= \sin \pi x, \ u_t(x,0) &= 0 \ x \in [0,1] \end{aligned}$$

Solución exacta: $u(x,t) = \sin \pi x \cos 2\pi t$

Buscamos la solución aproximada en $T_{
m m\acute{a}x}=0,\!5$ mediante el método implícito con:

$$h = 0.1, k = 0.01.$$