# STA 237 NOTES

Author

Hao Hua He

# Contents

| C | hapt                               | er: 1  | Week 1                                       | 4         |  |
|---|------------------------------------|--------|----------------------------------------------|-----------|--|
| 1 | Lec                                | 1: Ou  | tcomes, Events. and Probability              | 4         |  |
|   | 1.1                                | Introd | uction                                       | 4         |  |
|   | 1.2                                | Proba  | bility Function                              | 5         |  |
|   |                                    | 1.2.1  | Definition                                   | 5         |  |
|   |                                    | 1.2.2  | Calculating by Counting                      | 5         |  |
|   |                                    | 1.2.3  | Product of sample space                      | 5         |  |
|   |                                    | 1.2.4  | Permutation and Combination                  | 5         |  |
| 2 | Lec                                | 2: Co  | nditional Probability and Independence       | 6         |  |
|   | 2.1                                | Condi  | tional Probability                           | 6         |  |
|   |                                    | 2.1.1  | Law of Total Probability                     | 6         |  |
|   |                                    | 2.1.2  | Baye's Rule                                  | 6         |  |
|   | 2.2                                | Indepe | endence                                      | 7         |  |
|   |                                    | 2.2.1  | Definition                                   | 7         |  |
|   |                                    | 2.2.2  | Implications                                 | 7         |  |
|   |                                    |        | •                                            |           |  |
| C | Chapt                              | er: 2  | Week 2                                       | 8         |  |
| 3 | Lec                                |        | screte Random Variables                      | 8         |  |
|   | 3.1                                |        | te Random Variables                          | 8         |  |
|   | 3.2                                |        | bility mass function                         | 8         |  |
|   | 3.3                                | Cumu   | lative distribution function                 | 8         |  |
|   | 3.4                                | Berno  | ulli distribution                            | 8         |  |
| 4 | Lec 4: Continuous Random Variables |        |                                              |           |  |
|   | 4.1                                | Prope  | rty of cumulative distribution functions     | 10        |  |
|   | 4.2                                | Quant  | ile, Percentile, and Median                  | 10        |  |
|   |                                    | 4.2.1  | Quantile function for continuous vs discrete | 11        |  |
|   | 4.3                                | Comm   | non Continuous Distributions                 | 11        |  |
|   |                                    | 4.3.1  | Uniform distribution                         | 11        |  |
|   |                                    | 4.3.2  | Exponential Distribution                     | 11        |  |
|   |                                    | 4.3.3  | Gamma Distribution                           | 12        |  |
|   |                                    | 4.3.4  | Normal Distribution                          | 12        |  |
| C | hapt                               | er: 3  | Week3                                        | 12        |  |
| 5 | Lec                                | 5: Ex  | pectation and Variance                       | <b>12</b> |  |
|   | 5.1                                | Expec  | tation                                       | 12        |  |
|   |                                    | 5.1.1  | Expectration of DRV                          | 12        |  |
|   |                                    | 5.1.2  | Expectation of CRV                           | 13        |  |
|   | 5.2                                | _      | nce                                          | 13        |  |
| C | hapt                               | er: 4  | Summation of Definitions and theorems        | 14        |  |

| 6 | Definitions | 14 |
|---|-------------|----|
| 7 | Theorems    | 14 |

# Chapter 1: Week 1

# 1 Lec 1: Outcomes, Events. and Probability

## 1.1 Introduction

Definitions

- 1. Probability
  - (a) numeric value of certainty/uncertainty
- 2. (Random) Experiment
  - (a) mechanism/phenomenon that results in random or unpredictable outcomes
- 3. Sample Space
  - (a) Set of all outcomes from an experiment
  - (b) denoted  $\Omega$
- 4. Event
  - (a) Subset of Sample Space
  - (b) Relations between events
    - i. INtersect
    - ii. Union
    - iii. Complement

**Example 1.1.** Neither A not B is denoted  $(A \cup B)^c \Rightarrow A^c \cap B^c$ 

**Theorem 1.2. De Morgan's Law** sates for any events A and B

1. 
$$(A \cup B)^c = A^c \cap B^c$$

$$2. \ (A \cap B)^c = A^c \cup B^c$$

**Example 1.3.** Exactly one of A and B is denoted as

$$A \cup B \cap (A \cup B)^c = A \cup B \cap (A^c \cup B^c)$$

More Definitions:

- 1. Disjoint(mutually exclusive)
  - (a)  $A \cap B = \emptyset$
- 2. A implies B
  - (a)  $A \subset B$
  - (b)  $A \cap B = A$

# 1.2 Probability Function

### 1.2.1 Definition

**Definition 1.4.** Probability func P defined on a <u>finite</u> sample space  $\Omega$  assigns each event  $A \in \Omega$  a number P(A) s.t.

- 1.  $P(A) \ge 0$
- 2.  $P(\Omega) = 1$
- 3.  $P(A \cup B) = P(A) + P(B)$ 
  - (a) if A and B disjoint.

where P(A) is the probability that event A occurs.

### 1.2.2 Calculating by Counting

Calculating by counting only applies when

- 1. All outcomes of  $\Omega$  are equally likely
  - (a)  $\Omega$  is finite

Then,

$$P(A) = \frac{\text{number of outcomes belonging to } A}{\text{Total number of outcomes in } \Omega}$$

### 1.2.3 Product of sample space

In general, given sample spaces  $\Omega_1$  and  $\Omega_2$ , we have

$$\Omega = \omega_1 \times \omega_2 = \{(\omega_1, \omega_2) : \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\}$$

#### 1.2.4 Permutation and Combination

Permutations and combinations are ways of grouping elements of a set into a subset, where permutations are ordered and combinations are unordered.

**Theorem 1.5.** The number of possible permutations of size n from N objects

$${}_{N}P_{n} = \frac{N!}{(N-n)!}$$

**Theorem 1.6.** The number of possible combinations of size n from N objects

$$\binom{N}{n} = \frac{N!}{(N-n)!}$$

5

# 2 Lec 2: Conditional Probability and Independence

# 2.1 Conditional Probability

Conditional probability of an event A given event C is, for any C with P(C) > 0,

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

or alternatively, with the multiplication rule

$$P(A \cap C) = P(A|C) \cdot P(C)$$

### 2.1.1 Law of Total Probability

Suppose events  $C_1, \ldots, C_2$  are disjoint s.t.  $C \cup \cdots \cup C_m = \Omega$ , for any arbitrary A,

$$P(A) = \sum_{i=1}^{m} [P(A|C_i)P(C_i)]$$

Thus,

$$P(C_i|A) = \frac{P(C_i) \cap A}{P(A)}$$
$$= \frac{P(A|C_i)P(C_i)}{\sum_{i=1}^{m} [P(A|C_i)P(C_i)]}$$

## 2.1.2 Baye's Rule

Suppose  $C_1, \ldots, C_m$  are disjoing s.t.  $C \cup \cdots \cup C_m = \Omega$ , the conditional probability of  $C_i$  given any arbitrary A is

$$P(C_i|A) = \frac{P(A|C_i) \cdot P(C_i)}{\sum_{i=1}^{m} [P(A|C_i)P(C_i)]}$$

# 2.2 Independence

## 2.2.1 Definition

**Definition 2.1.** Events A and B are independent if

$$P(A|B) = P(A)$$

That is to say that B occurring or not does not change the probability of A

#### 2.2.2 Implications

- 1. Suppose A and B with P(A|B) = P(A)
  - (a) Complements

i. 
$$P(A^c|B) = P(A^c)$$

(b) Mulplication Rule

i. 
$$P(A \cap B) = P(A)P(B)$$

(c) Mutal Property

i. 
$$P(B|A) = P(B)$$

To show that A and B are independent, one of the following must be proved, otherwise A and B are dependent.

$$P(A^c|B) = P(A^c) \iff$$
  
 $P(A \cap B) = P(A)P(B) \iff$   
 $P(A|B) = P(B)$ 

# Chapter 2: Week 2

## 3 Lec 3: Discrete Random Variables

#### 3.1 Discrete Random Variables

Let  $\Omega$  be a sample space. A **random variable** X is a function that maps  $\Omega$  on to a real number  $(\mathbb{R})$ 

**Definition 3.1.** When a  $random\ variable\ X$  takes a countable number of values, it is called a **discrete random variable** 

## 3.2 Probability mass function

**Definition 3.2.** The **probability mass function** p of a discrete random variable X is the function

$$p: \mathbb{R} \to [0,1]$$

defined by

$$p(k) = P(X = k)$$

for 
$$-\infty < k < \infty$$

The probability mass function uniquely defines the behaviour of a random variable.

### 3.3 Cumulative distribution function

**Definition 3.3.** The cumulative distribution function, or distribution function F of a random variable X is the function

$$F: \mathbb{R} \to [0,1]$$

defined by

$$F(A) = P(X \le a)$$

for 
$$-\infty < a < \infty$$

## 3.4 Bernoulli distribution

A disc

# 4 Lec 4: Continuous Random Variables

**Definition 4.1.** A random variable X is **continuous** if for some function

$$f: \mathbb{R} \to \mathbb{R}$$

and any numbers a and b with  $a \leq b$ ,

$$P(a \le X \le b) = \int_a^b f(x)dx$$

. Note: the function has to satisfy

- 1.  $f(x) \ge 0$  for all x and
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$

We call this function f the **probability density fuction** of X and the value(s) of f(x) is the **probability density** of X at x

- 1. f(x) is **not** probability
- 2. Both a pmf and pdf uniquely defines a random variable, but a pmf maps to [0,1] and a pdf to [0,1)
- 3. f(x) can be interpreted as a relative measure of likelihood around X

**Definition 4.2.** The **cumulative distribution function of** F of a random variable X is the function

$$F: \mathbb{R} \to [0,1]$$

defined by

$$F(x) = P(X \le a)$$

for 
$$-\infty < a < \infty$$

Note: the definition of cdf is the same for both discrete and continuous random variables

# 4.1 Property of cumulative distribution functions

A continuous random variable's cdf



Any cdfs are

- 1. Non-decreasing
- 2. Right continuous and
- 3. (Approaching) 0 on the left end and to 1 on the right end

# 4.2 Quantile, Percentile, and Median

**Definition 4.3.** Let X be a random variable with cumulative distribution function F. Then the **quantile function** of X is the function  $F^{-1}$  defined by

$$F^{-1}(t) = \min(x : F(x) \ge t)$$

for 0 < t < 1

#### 4.2.1 Quantile function for continuous vs discrete

### A continuous random variable's cdf





## 4.3 Common Continuous Distributions

#### 4.3.1 Uniform distribution

**Definition 4.4.** A continuous random variable has a **unitiorm distribution** on interval  $[\alpha, \beta]$  if its probability density funtion f is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x \le \beta \\ 0 & otherwise \end{cases}$$
 (1)

#### 4.3.2 Exponential Distribution

**Definition 4.5.** A continuous random variable has an **exponential distribution** with parameter  $\lambda, \lambda > 0$  if its probability density function f is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}$$
 (2)

Exponential random variables are often used to model time until the next event in a Poisson process.  $\lambda$  is the expected rate of events.

#### Memoryless Property of Exponential Random Variables

#### 4.3.3 Gamma Distribution

**Definition 4.6.** A continuous random variable has a **gamma distribution** with parameters  $\alpha$  and  $\beta$  with  $\alpha > 0$  and  $\beta > 0$  it its propability density f is given by

$$f(x) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha - 1} e^{-\lambda x} \text{ for } x > 0$$
(3)

We denote this distribution  $Gamma(\alpha, \beta)$ 

#### 4.3.4 Normal Distribution

**Definition 4.7.** A continuous random variable has a **normal distribution** with parameter  $\mu$  and  $\sigma^2$  with  $\sigma^2 > 0$  it its probability density function f is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\}$$
 (4)

Normal distribution, or Gaussian distribution, ins central in probability theory and statistics.

It is often used to model observational errors.

Normal distributions have a symettric shape around its centre.

 $\mu$  controls the center of the distribution (location) while the  $\sigma$  controls the spread of the distribution (shape)

**Definition 4.8.** A normal distribution with  $\mu = 0$  and  $\sigma^2 = 1$  is called the **standard** normal distribution.

We often denote a srandard normal random variable by Z, Z N(0,1) is its pdf with  $\phi$ , and its cdf with  $\Phi$ 

# Chapter 3: Week3

# 5 Lec 5: Expectation and Variance

#### 5.1 Expectation

#### 5.1.1 Expectration of DRV

**Definition 5.1.** The expectation of DRV X taking values  $x_1, \ldots, x_2$  with probability mass function p is given by

$$E[X] = \sum_{i \in \{1,2,\dots\}} x_i p(x_i)$$

# 5.1.2 Expectation of CRV

**Definition 5.2.** The **Expectation** of a CRV X with pdf f is given by

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

# 5.2 Variance

**Definition 5.3.** The **Variance** of a random variable X is the number defined by

$$Var(X)x = E[(X - E[X])^2]$$

# Chapter 4: Summation of Definitions and theorems

# 6 Definitions

#### 1. Event

- (a) Subset of Sample Space
- (b) Relation between events
  - i. Intersect
    - A. denoted  $A \cap B$
  - ii. Union
    - A. denoted  $A \cup B$
  - iii. Complement
    - A. denoted  $A^c$

#### 2. Event

(a) Subset of sample space

## 3. (Random) Experiment

(a) Mechanism/Phenomenon that results in random or unpredictable outcomes

## 4. Probability

(a) Numeric Value of certainty/uncertainty

#### 5. Sample Space

- (a) Set of all possible outcomes (from experiment)
- (b) Denoted  $\Omega$

# 7 Theorems