B62005Y-02 理论计算机科学基础

2017年4月22日

Solutions to Homework # 3

主讲教师:杨光 张远航 2015K8009929045

- Sipser 3.2 (d) $q_110#11$, $xq_30#11$, $x0q_3#11$, $x0#q_511$, $x0q_6#x1$, $xq_70#x1$, $q_7x0#x1$, $xq_10#x1$, $xxq_2#x1$, $xx#q_4x1$, $xx#xq_41$, $xx#x1q_{reject}$.
- **Sipser 3.8** (b) The following machine M works:

M = "On input string w:

- 1. Scan the tape and mark the first 1 which has not been marked. If no unmarked 1 is found, go to step 5. Otherwise, move the head back to the front of the tape.
- 2. Scan the tape and mark the first 0 which has not been marked. If no unmarked 0 is found, reject.
- 3. Move on to mark the next unmarked 0. If no such unmarked 0 is found, reject.
- **4.** Move the head back to the front of the tape and go to step 1.
- 5. Move the head back to the front of the tape. Scan the tape to see if there is any unmarked 0 found. If yes, reject. Otherwise, accept."
- **Sipser 4.1** (a) Yes, because M on input 0100 ends in an accept state.
 - (b) No, because M on input 011 ends in a non-accept state.
 - (c) No, because the input is not in correct form: the second component of the input is missing.
 - (d) No, because the input is not in correct form: the first component should be a regular expression but not a DFA.
 - (e) No, because M accepts ε and hence, $L(M) \neq \emptyset$.
 - (f) Yes, because L(M) = L(M).

Sipser 4.2 The problem of testing whether a DFA and a regular expression are equivalent can be expressed by the following language:

$$EQ_{\mathsf{DFA-REX}} = \{ \langle M, r \rangle \mid M \text{ is a DFA and } r \text{ is a regular expression} \}$$

and L(M) = L(r). We can prove that the language $EQ_{\mathsf{DFA-REX}}$ is decidable by constructing a TM P that decides it as follows:

P = "On input $\langle M, r \rangle$:

- 1. Convert the regular expression r into a DFA M_r by using the procedure described in Theorem 1.28.
- 2. Apply the algorithm given in Theorem 4.5 to decide whether $\langle M, M_r \rangle \in EQ_{\mathsf{DFA}}$.
- **3.** If $\langle M, M_r \rangle \in EQ_{\mathsf{DFA}}$ then accept, else reject."

Sipser 4.3 Let M_{Σ^*} be a DFA that accepts Σ^* ; then for every DFA A,

$$A \in ALL_{\mathsf{DFA}} \Leftrightarrow \langle A, M_{\Sigma^*} \rangle \in EQ_{\mathsf{DFA}}.$$

Therefore, to decide whether $A \in ALL_{\mathsf{DFA}}$, we just need to decide whether $\langle A, M_{\Sigma^*} \rangle \in EQ_{\mathsf{DFA}}$. The latter can be done by applying the proof in Theorem 4.5. Thus ALL_{DFA} is decidable.

- Sipser 4.4 Since $A_{\epsilon \mathsf{CFG}}$ is just a special case of A_{CFG} , it is possible to adapt TM S for $A_{\epsilon \mathsf{CFG}}$ as follows.
 - S = "On input (G, ε) , where G is a CFG and ε is an empty string:
 - 1. Convert G to an equivalent grammar in Chomsky normal form.
 - **2.** If " $S \to \varepsilon$ " is a production rule in Chomsky normal form, accept; if not, reject."