NIME Proceedings Template for LaTeX

Ben Trovato*
Institute for Clarity in
Documentation
1932 Wallamaloo Lane
Wallamaloo, New Zealand
trovato@corporation.com

Lawrence P. Leipuner Brookhaven Laboratories Brookhaven National Lab P.O. Box 5000 Ileipuner@researchlabs.org G.K.M. Tobin Institute for Clarity in Documentation P.O. Box 1212 Dublin, Ohio 43017-6221 webmaster@marysville-ohio.com

Sean Fogarty
NASA Ames Research Center
Moffett Field
California 94035
fogartys@amesres.org

Lars Thørväld [‡]
The Thørväld Group
1 Thørväld Circle
Hekla, Iceland
larst@affiliation.org

Anon Nymous
Redacted
8600 Datapoint Drive
San Antonio, Texas 78229
cpalmer@prl.com

ABSTRACT

This paper provides a sample of a LaTeX document for the NIME conference series. It conforms, somewhat loosely, to the formatting guidelines for ACM SIG Proceedings. It is an alternate style which produces a tighter-looking paper and was designed in response to concerns expressed, by authors, over page-budgets. It complements the document Author's (Alternate) Guide to Preparing ACM SIG Proceedings Using LaTeX_{ϵ} and BibTeX. This source file has been written with the intention of being compiled under LaTeX_{ϵ} and BibTeX.

To make best use of this sample document, run it through LaTeX and BibTeX, and compare this source code with your compiled PDF file. A compiled PDF version is available to help you with the 'look and feel.' The paper submitted to the NIME conference must be stored in an A4-sized PDF file, so North Americans should take care not to inadvertently generate letter paper-sized PDF files. This paper template should prevent that from happening if the pdflatex program is used to generate the PDF file.

The abstract should preferably be between 100 and 200 words

Author Keywords

 ${\tt NIME, proceedings, L\!\!\!\!/T_E\!X, template}$

CCS Concepts

•Applied computing → Sound and music computing; Performing arts; •Information systems → Music retrieval:

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Copyright remains with the author(s).

NIME'20, July 21-25, 2020, Royal Birmingham Conservatoire, Birmingham City University, Birmingham, United Kingdom.

Please read the comments starting on line 140 of the nime-template.tex file to see how to create the CCS Concept Classifications!

1. INTRODUCTION

The proceedings are the records of a conference. ACM seeks to give these conference by-products a uniform, high-quality appearance. To do this, ACM has some rigid requirements for the format of the proceedings documents: there is a specified format (balanced double columns), a specified set of fonts (Arial or Helvetica and Times Roman) in certain specified sizes (for instance, 9 point for body copy).

The good news is, with only a handful of manual settings, ¹ the L^AT_EX document class file handles all of this for you.

The remainder of this document is concerned with showing, in the context of an "actual" document, the LATEX commands specifically available for denoting the structure of a proceedings paper, rather than with giving rigorous descriptions or explanations of such commands.

2. THE BODY OF THE PAPER

Typically, the body of a paper is organized into a hierarchical structure, with numbered or unnumbered headings for sections, subsections, subsections, and even smaller sections. The command \section that precedes this paragraph is part of such a hierarchy. LATEX handles the numbering and placement of these headings for you, when you use the appropriate heading commands around the titles of the headings. If you want a sub-subsection or smaller part to be unnumbered in your output, simply append an asterisk to the command name. Examples of both numbered and unnumbered headings will appear throughout the balance of this sample document.

Because the entire article is contained in the **document** environment, you can indicate the start of a new paragraph with a blank line in your input file; that is why this sentence forms a separate paragraph.

^{*}Dr. Trovato insisted his name be first.

 $^{^{\}dagger} \mathrm{The}$ secretary disavows any knowledge of this author's actions.

[‡]This author is the one who did all the really hard work.

Two of these, the \numberofauthors and \alignauthor commands, you have already used; another, \balancecolumns, will be used in your very last run of LATEX to ensure balanced column heights on the last page.

 $^{^2}$ This is the second footnote. It starts a series of three footnotes that add nothing informational, but just give an idea of how footnotes work and look. It is a wordy one, just so you see how a longish one plays out.

Table 1: Frequency of Special Characters

Non-English or Math	Frequency	Comments
Ø	1 in 1,000	For Swedish names
π	1 in 5	Common in math
\$	4 in 5	Used in business
Ψ_1^2	1 in 40,000	Unexplained usage

2.1 Type Changes and Special Characters

We have already seen several typeface changes in this sample. You can indicate italicized words or phrases in your text with the command \textit; emboldening with the command \textbf and typewriter-style (for instance, for computer code) with \texttt. But remember, you do not have to indicate typestyle changes when such changes are part of the structural elements of your article; for instance, the heading of this subsection will be in a sans serif typeface, but that is handled by the document class file. Take care with the use of the curly braces in typeface changes; they mark the beginning and end of the text that is to be in the different typeface.

You can use whatever symbols, accented characters, or non-English characters you need anywhere in your document; you can find a complete list of what is available in the LaTEX User's Guide [7].

2.2 Tables

Because tables cannot be split across pages, the best placement for them is typically the top of the page nearest their initial cite. To ensure this proper "floating" placement of tables, use the environment **table** to enclose the table's contents and the table caption. The contents of the table itself must go in the **tabular** environment, to be aligned properly in rows and columns, with the desired horizontal and vertical rules. Again, detailed instructions on **tabular** material is found in the <code>BTEX User's Guide</code>.

Immediately following this sentence is the point at which Table 1 is included in the input file; compare the placement of the table here with the table in the printed dvi output of this document.

To get correct numbering of tables, please use the **label** command inside the **table** environment and a corresponding **ref** in the text.

To set a wider table, which takes up the whole width of the page's live area, use the environment **table*** to enclose the table's contents and the table caption. As with a single-column table, this wide table will "float" to a location deemed more desirable. Immediately following this sentence is the point at which Table 2 is included in the input file; again, it is instructive to compare the placement of the table here with the table in the printed dvi output of this document.

2.3 Figures

Like tables, figures cannot be split across pages; the best placement for them is typically the top or the bottom of the page nearest their initial cite. To ensure this proper "floating" placement of figures, use the environment figure to enclose the figure and its caption. Optionally, for small figures that you want to place inline with the text, you can use the **htbp** options to **figure** to see whether there is space for placing it inline with the text.

This sample document contains examples of .pdf (Fig-

ure 1) and .jpg files to be displayable with LATEX. More details on each of these is found in the Author's Guide.

Figure 1: A sample image in PDF format.

As was the case with tables, you may want a figure that spans two columns (Figure 2). To do this, and still to ensure proper "floating" placement of tables, use the environment figure* to enclose the figure and its caption. And don't forget to end the environment with figure*, not figure!

2.4 Math Equations

You may want to display math equations in three distinct styles: inline, numbered or non-numbered display. Each of the three are discussed in the next sections.

2.4.1 Inline (In-text) Equations

A formula that appears in the running text is called an inline or in-text formula. It is produced by the **math** environment, which can be invoked with the usual **\begin**.

. .\end construction or with the short form \$. . .\$. You can use any of the symbols and structures, from α to ω , available in LaTeX[7]; this section will simply show a few examples of in-text equations in context. Notice how this equation: $\lim_{n\to\infty} x=0$, set here in in-line math style, looks slightly different when set in display style. (See next section).

2.4.2 Display Equations

A numbered display equation – one set off by vertical space from the text and centered horizontally – is produced by the **equation** environment. An unnumbered display equation is produced by the **displaymath** environment.

Again, in either environment, you can use any of the symbols and structures available in LaTeX; this section will just give a couple of examples of display equations in context. First, consider the equation, shown as an inline equation above:

$$\lim_{n \to \infty} x = 0 \tag{1}$$

Notice how it is formatted somewhat differently in the **dis-playmath** environment. Now, we'll enter an unnumbered equation:

$$\sum_{i=0}^{\infty} x + 1$$

 $^{^3}$ A third footnote, here. Let's make this a rather short one to see how it looks.

⁴A fourth, and last, footnote.

Table 2: Some Typical Commands

V 1		
Command	A Number	Comments
\alignauthor	100	Author alignment
\numberofauthors	200	Author enumeration
\table	300	For tables
\table*	400	For wider tables

Figure 2: A sample black and white graphic (.jpg format) that needs to span two columns of text.

and follow it with another numbered equation:

$$\sum_{i=0}^{\infty} x_i = \int_0^{\pi+2} f \tag{2}$$

just to demonstrate LATEX's able handling of numbering.

2.5 Theorem-like Constructs

Other common constructs that may occur in your article are the forms for logical constructs like theorems, axioms, corollaries and proofs. There are two forms, one produced by the command \newtheorem and the other by the command \newdef; perhaps the clearest and easiest way to distinguish them is to compare the two in the output of this sample document:

This uses the **theorem** environment, created by the **\newtheorem** command:

Theorem 1. Let f be continuous on [a,b]. If G is an antiderivative for f on [a,b], then

$$\int_{a}^{b} f(t)dt = G(b) - G(a).$$

The other uses the **definition** environment, created by the **\newdef** command:

Definition 1. If z is irrational, then by e^z we mean the unique number which has logarithm z:

$$\log e^z = z$$

Two lists of constructs that use one of these forms is given in the *Author's Guidelines*.

There is one other similar construct environment, which is already set up for you; i.e. you must *not* use a **\newdef** command to create it: the **proof** environment. Here is a example of its use:

PROOF. Suppose on the contrary there exists a real number L such that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

Then

$$l = \lim_{x \to c} f(x) = \lim_{x \to c} \left[gx \cdot \frac{f(x)}{g(x)} \right] = \lim_{x \to c} g(x) \cdot \lim_{x \to c} \frac{f(x)}{g(x)} = 0,$$

which contradicts our assumption that $l \neq 0$. \square

Complete rules about using these environments and using the two different creation commands are in the *Author's Guide*; please consult it for more detailed instructions. If you need to use another construct, not listed therein, which you want to have the same formatting as the Theorem or the Definition [8] shown above, use the \newtheorem or the \newdef command, respectively, to create it.

2.6 A Caveat for the TFX Expert

Because you have just been given permission to use the \newdef command to create a new form, you might think you can use TeX's \def to create a new command: Please refrain from doing this! Remember that your LaTeX source code is primarily intended to create camera-ready copy, but may be converted to other forms – e.g. HTML. If you inadvertently omit some or all of the \defs recompilation will be, to say the least, problematic.

2.7 Citations

Citations to articles [3, 5, 4, 6], conference proceedings [5] or books [8, 7] listed in the Bibliography section of your article will occur throughout the text of your article. You should use BibTeX to automatically produce this bibliography; you simply need to insert one of several citation commands with a key of the item cited in the proper location in the .tex file [7]. The key is a short reference you invent to uniquely identify each work; in this sample document, the key is the first author's surname and a word from the title. This identifying key is included with each item in the .bib file for your article.

The details of the construction of the .bib file are beyond the scope of this sample document, but more information can be found in the Author's Guide, and exhaustive details in the \cancel{BTFX} User's Guide [7] and in various online source. ⁵

This article shows only the plainest form of the citation command, using \cite. This is what is stipulated in the SIGS style specifications. No other citation format is endorsed or supported.

2.8 Blind Review

A convenient flag has been provided that will allow you to easily mask any text or reference that could be used to identify you as the author. To enable the feature, comment the line \usepackageanonymize and uncomment the \usepackage[blind]anonymize lines near the top of the file. When \usepackage[blind]anonymize is enabled, anonymized text will be blackened out and masked bibliography names and titles will be anonymised. For example, the following will cause the package to generate a blind review version of the manuscript.

% \usepackageanonymize \usepackage[blind]anonymize

The following configuration will cause the manuscript to disable masking text and produce the version of the manuscript

⁵See e.g. http://www.bibtex.org/.

for publication.
\usepackageanonymize
%\usepackage[blind]anonymize

2.8.1 Masking text

To mask text that may identify you, place the text you want to hide inside the \anonymize function. If you have enabled the blind review feature, you will not be able to read this text. Change back to the non-blind mode when you are ready to publish.

2.8.2 Masking publications

In order to mask your publications, you will need to make a copy of your personal references, using the second version with a key name adding -hidden. For example, if your reference key is myotherpublication, make a copy called myotherpublication-hidden that has text displayed how you would like it displayed in blind review mode. Wrap your reference name with the anoncite function. For example, to make \cite{mypublication} anonymous in the blind version, use the following instead.

\cite{\anoncite{mypublication}}. You will note that [1] and [2] were written by me, so in blind mode, the identifying parts will be suppressed.

2.9 Links

Links to URLs can be included using the \url command. This will generate a clickable link like this: http://www.nime2017.org.

3. CONCLUSIONS

This paragraph will end the body of this sample document. Remember that you might still have Acknowledgments or Appendices; brief samples of these follow. There is still the Bibliography to deal with; and we will make a disclaimer about that here: with the exception of the reference to the LaTeX book, the citations in this paper are to articles which have nothing to do with the present subject and are used as examples only.

4. ACKNOWLEDGMENTS

This section is optional; it is a location for you to acknowledge grants, funding, editing assistance and what have you. In the present case, for example, the authors would like to thank Gerald Murray of ACM for his help in codifying this Author's Guide and the .cls and .tex files that it describes.

5. ADDITIONAL AUTHORS

Additional authors: John Smith (The Thørväld Group, email: jsmith@affiliation.org) and Julius P. Kumquat (K. Consortium, email: jpkumquat@consortium.net).

6. REFERENCES

- [1] I. M. Author. This is one of my publications. *The journal name*, 15(5):795–825, November 1993.
- [2] I. M. Author. This is another one of my publications. *The other journal name*, 2(4):111–222, April 2010.
- [3] M. Bowman, S. K. Debray, and L. L. Peterson. Reasoning about naming systems. ACM Trans. Program. Lang. Syst., 15(5):795–825, November 1993.
- [4] J. Braams. Babel, a multilingual style-option system for use with latex's standard document styles. *TUGboat*, 12(2):291–301, June 1991.

- [5] M. Clark. Post congress tristesse. In TeX90 Conference Proceedings, pages 84–89. TeX Users Group, March 1991
- [6] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM Trans. Program. Lang. Syst., 15(5):745–770, November 1993.
- [7] L. Lamport. LaTeX User's Guide and Document Reference Manual. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.
- [8] S. Salas and E. Hille. Calculus: One and Several Variable. John Wiley and Sons, New York, 1978.

APPENDIX

A. HEADINGS IN APPENDICES

The rules about hierarchical headings discussed above for the body of the article are different in the appendices. In the **appendix** environment, the command **section** is used to indicate the start of each Appendix, with alphabetic order designation (i.e. the first is A, the second B, etc.) and a title (if you include one). So, if you need hierarchical structure within an Appendix, start with **subsection** as the highest level. Here is an outline of the body of this document in Appendix-appropriate form:

A.1 Introduction

A.2 The Body of the Paper

- A.2.1 Type Changes and Special Characters
- A.2.2 Math Equations

Inline (In-text) Equations.

Display Equations.

A.2.3 Citations

A.2.4 Tables

A.2.5 Figures

A.2.6 Theorem-like Constructs

A Caveat for the TEX Expert

A.3 Conclusions

A.4 Acknowledgments

A.5 Additional Authors

This section is inserted by LATEX; you do not insert it. You just add the names and information in the \additionalauthors command at the start of the document.

A.6 References

Generated by bibtex from your .bib file. Run latex, then bibtex, then latex twice (to resolve references) to create the .bbl file. Insert that .bbl file into the .tex source file and comment out the command \thebibliography.

B. MORE HELP FOR THE HARDY

The sig-alternate.cls file itself is chock-full of succinct and helpful comments. If you consider yourself a moderately experienced to expert user of LATEX, you may find reading it useful but please remember not to change it.