Recall: Linear System

• Recall the matrix equation of a linear system:

Person I	D Weight	: Height	ls_smoking	Life-span		[60	5.5	1]	$\lceil x_1 \rceil$	[6 <i>6</i>	6
1	60kg	5.5ft	Yes (=1)	66	60 65 55	5.0	0	$ x_2 $:	= 74	1	
2	65kg	5.0ft	No (=0)	74		L55	6.0	1	$[x_3]$	L78	3]
3	55kg	6.0ft	Yes (=1)	78			1		X	– h	
							А		\mathbf{A}	– D	

• Or, a vector equation is written as

Uniqueness of Solution for Ax = b

• The solution exists only when $\mathbf{b} \in \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

- If the solution exists for $A\mathbf{x} = \mathbf{b}$, when is it unique?
- It is unique when a_1 , a_2 , and a_3 are linearly independent.
- Infinitely many solutions exist when \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 are linearly dependent.

Linear Independence

(Practical) Definition:

• Given a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$, check if \mathbf{v}_j can be represented as a linear combination of the previous vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}\}$ for $j = 1, \dots, p$, e.g.,

$$\mathbf{v}_{j} \in \text{Span } \{\mathbf{v}_{1}, \mathbf{v}_{2}, ..., \mathbf{v}_{j-1}\} \text{ for some } j = 1, ..., p?$$

- If at least one such \mathbf{v}_j is found, then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent.
- If no such \mathbf{v}_i is found, then $\{\mathbf{v}_1, \cdots, \mathbf{v}_p\}$ is linearly independent.

Linear Independence

(Formal) Definition:

- Consider $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 \cdots + x_p\mathbf{v}_p = \mathbf{0}$.
- Obviously, one solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$,

which we call a trivial solution.

- $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly independent if this is the only solution.
- $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly dependent if this system also has other nontrivial solutions, e.g., at least one x_i being nonzero.

Two Definitions are Equivalent

- If v_1, \dots, v_p are linearly dependent, consider a nontrivial solution.
- In the solution, let's denote j as the last index such that $x_i \neq 0$.
- Then, one can write $x_j \mathbf{v}_j = -x_1 \mathbf{v}_1 \cdots x_{j-1} \mathbf{v}_{j-1}$, and safely divide it by x_i , resulting in

$$\mathbf{v}_{j} = -\frac{x_{1}}{x_{j}}\mathbf{v}_{1} - \dots - \frac{x_{j-1}}{x_{j}}\mathbf{v}_{j-1} \in \text{Span } \{\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{j-1}\}$$

which means \mathbf{v}_j can be represented as a linear combination of the previous vectors.