Identidades logarítmicas

En matemáticas, hay muchas identidades logarítmicas.

Índice

Identidades algebraicas

Con operaciones simples

Cancelación de exponentes

Cambio de base

Consecuencias

Identidades triviales

Identidades de cálculo

Límites

Derivadas de funciones logarítmicas Integrales de funciones logarítmicas

Véase también

Referencias

Enlaces externos

Identidades algebraicas

Con operaciones simples

Los logaritmos se utilizan generalmente para hacer más simples las operaciones. Por ejemplo, se pueden multiplicar dos números utilizando una tabla de logaritmos y sumando.

$$\log_b(xy) = \log_b(x) + \log_b(y)$$
 porque $b^x \cdot b^y = b^{x+y}$

$$\log_b\left(rac{x}{y}
ight) = \log_b(x) - \log_b(y)$$
 porque $rac{b^x}{b^y} = b^{x-y}$

$$\log_b(x^y) = y \log_b(x)$$
 porque $(b^x)^y = b^{xy}$

$$\log_b(\sqrt[y]{x}) = rac{\log_b(x)}{y}$$
 porque $\sqrt[y]{b^x} = b^{x/y}$

Cancelación de exponentes

Los logaritmos y exponenciales (antilogaritmos) con la misma base se cancelan.

$$b^{\log_b(x)} = x$$
 porque $\operatorname{antilog}_b(\log_b(x)) = x$

$$\log_b(b^x) = x$$
 porque $\log_b(\operatorname{antilog}_b(x)) = x$

Cambio de base

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Esta identidad se requiere para evaluar logaritmos con calculadoras. La mayoría de las calculadoras sólo pueden procesar ln y \log_{10} , pero no por ejemplo \log_2 . Para encontrar $\log_2(3)$, basta calcular $\log_{10}(3)$ / $\log_{10}(2)$ (ó bien $\ln(3)/\ln(2)$, que da idéntico resultado).

Demostración

A partir de un logaritmo tal que:

$$y = \log_a b \to a^y = b$$

Tomando \log_c en ambos lados de la segunda ecuación:

$$\log_c a^y = \log_c b$$

Se despeja y:

$$y\log_c a = \log_c b$$

$$y = \frac{\log_c b}{\log_c a}$$

Finalmente, como $y = \log_a b$:

$$\log_a b = \frac{\log_c b}{\log_a a}$$

Consecuencias

Esta fórmula tiene varias consecuencias:

$$\log_a b = rac{1}{\log_b a}$$

$$\log_{a^n} b = rac{1}{n} \log_a b$$

$$a^{\log_b c} = c^{\log_b a}$$

Identidades triviales

$$\log_b 1 = 0$$
 porque $b^0 = 1$

$$\log_b b = 1$$
 porque $b^1 = b$

Identidades de cálculo

Límites

$$\lim_{x o 0^+} \log_a x = -\infty \quad ext{si } a > 1$$

$$\lim_{x o 0^+} \log_a x = \infty \quad ext{si } a < 1$$

$$\lim_{x o \infty} \log_a x = \infty \quad ext{si } a > 1$$

$$\lim_{x \to \infty} \log_a x = -\infty \quad \text{si } a < 1$$

$$\lim_{x\to 0^+} x^b \log_a x = 0$$

$$\lim_{x o\infty}rac{1}{x^b}\log_a x=0$$

El último límite se resume frecuentemente diciendo "los logaritmos crecen más lentamente que cualquier potencia o raíz de x".

Derivadas de funciones logarítmicas

$$rac{d}{dx}\log_a x = rac{d}{dx}rac{\ln x}{\ln a} = rac{1}{x\ln a} = rac{\log_a e}{x}$$

Integrales de funciones logarítmicas

$$\int \log_a x \, dx = x (\log_a x - \log_a e) + C$$

Para recordar integrales más grandes, es conveniente definir:

$$x^{[n]} := x^n (\log(x) - H_n)$$

Donde H_n es el *n*-ésimo <u>número armónico</u>. Así, las primeras serían:

$$egin{aligned} x^{[0]} &= \log x \ x^{[1]} &= x \log(x) - x \ x^{[2]} &= x^2 \log(x) - rac{3}{2} \ x^2 \ x^{[3]} &= x^3 \log(x) - rac{11}{6} \ x^3 \end{aligned}$$

Entonces,

$$rac{d}{dx} \, x^{[n]} = n \, x^{[n-1]} \ \int x^{[n]} \, dx = rac{x^{[n+1]}}{n+1} + C$$

Véase también

Identidades trigonométricas

Referencias

Enlaces externos

- Simmons, Bruce (2011). <u>«Logarithm» (http://www.mathwords.com/l/logarithm.htm)</u>. <u>Mathwords</u> (en inglés).
- Weisstein, Eric W. «Identidades logarítmicas» (http://mathworld.wolfram.com/Logarithm.html).
 Weisstein, Eric W, ed. *MathWorld* (en inglés). Wolfram Research.

Obtenido de «https://es.wikipedia.org/w/index.php?title=Identidades logarítmicas&oldid=120189343»

Esta página se editó por última vez el 11 oct 2019 a las 09:42.

El texto está disponible bajo la <u>Licencia Creative Commons Atribución Compartir Igual 3.0</u>; pueden aplicarse cláusulas adicionales. Al usar este sitio, usted acepta nuestros <u>términos de uso</u> y nuestra <u>política de privacidad</u>. Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro.