CS5222 Advanced Computer Architecture

Assignment 2.1: FPGA Programming

Sharadh Rajaraman A0189906L

Friday 25^{th} March 2022

B: Pipelining in HLS

Design latency: 16 194 cycles

Device utilisation:

Name	BRAM_18K	DSP48E	FF	LUT
Total	16	10	25405	30526

Floating point adders and multipliers used:

Instance	Module	BRAM_18K	DSP48E	FF	LUT
mmult_hw_fadd_32nbkb_U0	mmult_hw_fadd_32nbkb	0	2	205	390
mmult_hw_fadd_32nbkb_U1	mmult_hw_fadd_32nbkb	0	2	205	390
mmult_hw_fmul_32ncud_U2	mmult_hw_fmul_32ncud	0	3	143	321
mmult_hw_fmul_32ncud_U3	mmult_hw_fmul_32ncud	0	3	143	321
Total		0	10	732	1462

Initiation Interval achieved: 128 (target 1)

C: Increasing Pipeline Parallelism by Repartitioning Memories

Note that the target $42 \times$ speed-up could *not* be achieved; however, a speedup of $\frac{230331}{9018} = 25.5 \times$ speed-up was attempted.

Design latency: 9018 cycles

Device utilisation:

Name	BRAM_18K	DSP48E	FF	LUT
Total	12	10	41339	21024

Floating point adders and multipliers used: 32 each

D: Amortizing Iteration Latency with Batching

Previous normalised latency = $\frac{9018}{8}$ = 1127.25

Design latency with batch size 256: 149 274 cycles

Normalised latency: $\frac{149274}{256} = 583.10$ cycles

Device utilisation:

Name	BRAM_18K	DSP48E	FF	LUT
Total	524	10	234738	57036

E: Extending Batch Size with Tiling

Previous normalised latency: $\frac{149274}{256} = 583.10$ cycles

Design latency with tile size 128, and batch size $\bf 512 \colon 162\,573$ cycles

Normalised latency: $\frac{162573}{512} = 317$ cycles

F: Hardware compilation and FPGA testing on the PYNQ

FPGA accuracy: $70.36\,\%$ validation error CPU accuracy: $13.04\,\%$ validation error

FPGA speed-up: $24.13 \times$