

A/0

-3-

-4-

A/0

-2-

Soru 8: Aşağıdaki şekilde T tipi flip floplardan oluşan 4 adet kaydedici ve 4 bitlik ortak yola bilgi aktarımını sağlayan düzenek mevcuttur. Yoldaki bilginin kaydedicilere yüklenebilmesi için kaydedicilerin T uçlarına uygulanması gereken lojik ifade ne olur?

- a) T= (Hedef decoderinin ilgili çıkışı).((Yoldaki Bilgi) ⊕ Q)
- b) T= (Hedef decoderinin ilgili çıkışı).((Yoldaki Bilgi) ⊗ Q)
- c) T= (Hedef decoderinin ilgili çıkışı).(Yoldaki Bilgi)
- d) T= (Hedef decoderinin ilgili çıkışı).(Yoldaki Bilgi)'

Soruda istenen, T tipi Flip Floplara yükleme özelliğinin kazandırılmasıdır.

q	Q LG=00	01	11	10	T LG=00	01	11	10
0	0	0	1	0	0	0	1	0
1	1	1	1	0	0	0	0	1

T=q'.L.G+q.LG'=L(G⊕q)

L:Hedef decoderinin ilgili çıkışıdır.

G:Yoldaki bilgidir.

q: Flip flobun çıkışı olan Q dur.

Soru 9: Aşağıdaki devrede T₀ flip flobunun yerine D tipi flip flop kullanmak istersek D₀ ın uyarma işlevi ne olur?

a)
$$D_0 = q_1 \oplus q_0$$
 b) $D_0 = q_1 \cdot q_0$ c) $D_0 = q_1 + q_0$ d) $D_0 = q_1 \otimes q_0$

Soru 10: D tipi flip floplardan oluşan 2 bitlik bir kaydediciye (q_1q_0) 'M' sinyali ile 1 azaltma işlevi kazandırmak istiyoruz. Yüksek anlamlı bitin uyarma işlevi ne olur?

a)
$$D_1 = q_1 \otimes M$$
 b) $D_1 = q_1 \oplus (q_0.M)$
c) $D_1 = M(q_1 + q_0)$ d) $D_1 = M.q_1.q_0$

$q_1 q_0$	Q_1Q_0 / D_1D_0 M=0 M=1			
0 0	00	11		
0 1	01	00		
11	11	10		
10	10	01		

M q ₁ q ₀	0	1
00	0	1
01	0	0
11	1	1
10	1	0

$$\begin{split} &D_1 = q_1 q_0 + M' q_1 + M q_1' q_0' \\ &D_1 = q_1 (M' + q_0) + M q_1' q_0' \\ &D_1 = q_1 (M q_0')' + M q_0' q_1' \\ &D_1 = (M q_0') \oplus q_1 \end{split}$$