- 1. A, B, C and D are four different physical quantities having different dimensions. None of them is dimensionless. But we know that the equation $AD = C \ln(BD)$ holds true. Then which of the combination is **not** a meaningful quantity?
 - (1) $A^2 B^2C^2$
 - $(2) \qquad \frac{(A-C)}{D}$
 - (3) $\frac{A}{B} C$
 - $(4) \quad \frac{C}{BD} \frac{AD^2}{C}$
- **2.** A particle of mass M is moving in a circle of fixed radius R in such a way that its centripetal acceleration at time t is given by n^2R t^2 where n is a constant. The power delivered to the particle by the force acting on it, is:
 - (1) $M n^2 R^2 t$
 - (2) $M n R^2 t$
 - (3) $M n R^2 t^2$
 - (4) $\frac{1}{2} M n^2 R^2 t^2$

- . A, B, C तथा D चार भिन्न मात्राएँ हैं जिनकी विमाएं भिन्न हैं। कोई भी मात्रा विमा–रहित मात्रा नहीं हैं, लेकिन $AD = C \ln(BD)$ सत्य है। तब निम्न में से कौन **आशय–रहित** मात्रा है?
 - (1) $A^2 B^2C^2$
 - $(2) \qquad \frac{(A-C)}{D}$
 - $(3) \quad \frac{A}{B} C$
 - $(4) \quad \frac{C}{BD} \frac{AD^2}{C}$
- 2. द्रव्यमान M का एक कण निश्चित क्रिज्या R के वृत्तीय पथ पर-इस प्रकार चल रहा है कि समय 't' पर अभिकेन्द्री त्वरण $n^2 R$ t^2 द्वारा दिया जा सकता है, यहाँ 'n' अचर है। तब कण पर लग रहे बल द्वारा उसको दी गई शिक्त है:
 - (1) $M n^2 R^2 t$
 - (2) $M n R^2 t$
 - (3) $M n R^2 t^2$
 - (4) $\frac{1}{2} M n^2 R^2 t^2$

- . A, B, C અને D એ ચાર જુદા-જુદા પરિમાણ ધરાવતી જુદી-જુદી ભૌતિકરાશિઓ છે. તેમાંની કોઈપણ પરિમાણ રહિત નથી. જો AD = C ln(BD) સમીકરણ સાચું હોય તો નીચે આપેલ પૈકી કયું સંયોજન એ અર્થસભર (સાચી) રાશિ દર્શાવતું નથી ?
 - (1) $A^2 B^2C^2$
 - $(2) \qquad \frac{(A-C)}{D}$
 - $(3) \qquad \frac{A}{B} C$
 - $(4) \quad \frac{C}{BD} \frac{AD^2}{C}$
- 2. M દળ ધરાવતો કણ R જેટલી અચળ ત્રિજ્યા ધરાવતા વર્તુળાકાર માર્ગ પર એવી રીતે ગતિ કરે છે કે t સમયે તેનો કેન્દ્રગામી પ્રવેગ n^2R t^2 વડે આપી શકાય; જ્યાં n એ અચળાંક છે. તો કણ પર લાગતા બળ વડે કણને મળતો પાવર (કાર્યદક્ષતા) _______ થશે.
 - (1) $M n^2 R^2 t$
 - (2) $M n R^2 t$
 - (3) $M n R^2 t^2$
 - (4) $\frac{1}{2} M n^2 R^2 t^2$

3. Concrete mixture is made by mixing cement, stone and sand in a rotating cylindrical drum. If the drum rotates too fast, the ingredients remain stuck to the wall of the drum and proper mixing of ingredients does not take place. The maximum rotational speed of the drum in revolutions per minute(rpm) to ensure proper mixing is close to:

(Take the radius of the drum to be 1.25 m and its axle to be horizontal):

- (1) 0.4
- (2) 1.3
- (3) 8.0
- (4) 27.0

कंक्रीट मिक्सचर बनाने के लिये सीमेंट, रेत तथा रोड़ी को एक घूर्णीय बेलनाकार ड्रम में डाला जाता है। यदि ड्रम की घूर्णन-गित बहुत तेज हो तो संघटक ड्रम की दीवार से चिपके रहते हैं और मिक्सचर ठीक से नहीं बनता। यदि ड्रम की क्रिज्या 1.25 m है और इसकी धुरी क्षैतिज है, तब अच्छी तरह मिक्स होने के लिये जरूरी अधिकतम घूर्णीय-गित rpm में है:

- (1) 0.4
- (2) 1.3
- (3) 8.0
- (4) 27.0

એક ચાકગતિ કરતા નળાકારીય ડ્રમમાં સિમેન્ટ, પથ્થર અને રેતીને ભેગા કરીને કોંક્રિટ મિશ્રણ તૈયાર કરવામાં આવે છે. હવે જો ડ્રમ ખૂબ જ ઝડપથી ચાકગતિ કરે તો મિશ્રણ કરેલા તત્ત્વો ડ્રમની દિવાલને ચોંટી જાય છે અને તેમનું યોગ્ય મિશ્રણ બનાવી શકાતું નથી. તો પરિભ્રમણ પ્રતિ મિનીટ (rpm) ના પદમાં, યોગ્ય મિશ્રણ બનવા માટેની ડ્રમની મહત્તમ કોણીય ઝડપ _____ ની નજીકની હશે. (ડ્રમની ત્રિજયા 1.25 m અને તેની અક્ષ સમક્ષિતિજ છે તેમ ધારો).

- (1) 0.4
- (2) 1.3
- (3) 8.0
- (4) 27.0

4. Velocity-time graph for a body of mass 10 kg is shown in figure. Work-done on the body in first two seconds of the motion is:

- (1) 12000 J
- (2) -12000 J
- (3) -4500 J
- (4) -9300 J
- 5. In the figure shown ABC is a uniform wire. If centre of mass of wire lies vertically below

point A, then $\frac{BC}{AB}$ is close to :

- (1) 1.85
- (2) 1.37
- (3) 1.5
- (4) 3

4. 10 kg द्रव्यमान के पिंड के लिये वेग-समय ग्राफ चित्र 4. में दिया है। पिंड पर पहले 2 से. में किया गया कार्य है:

- (1) 12000 J
- (2) -12000 J
- (3) -4500 J
- (4) -9300 J
- दिये गये चित्र में तार ABC एक समान है। यदि संहति-केन्द्र बिंदु A के ऊर्ध्वाधर नीचे स्थित है, तब BC लगभग है:

- (1) 1.85
- (2) 1.37
- (3) 1.5
- (4) 3

10 kg દળ ધરાવતા પદાર્થ માટેનો વેગ–સમયનો આલેખ આકૃત્તિમાં દર્શાવેલ છે. પદાર્થ પર પ્રથમ 2 સેકન્ડમાં થતી ગતિ દરમ્યાન થતું કાર્ય ______થશે.

- (1) 12000 J
- (2) -12000 J
- (3) -4500 J
- (4) -9300 J
- આકૃત્તિમાં દર્શાવ્યા મુજબ ABC એ સમાન તાર છે. જો તારનું દ્રવ્યમાન કેન્દ્ર બિંદુ A ની બરોબર નીચે આવતું

હોય તો $\frac{\mathrm{BC}}{\mathrm{AB}}$ નું મૂલ્ય _____ ની નજીકનું થશે.

- (1) 1.85
- (2) 1.37
- (3) 1.5
- (4) 3

B HINDI SET - 03 GUJARATI

SET - 03 ENGLISH

SET - 03

- 6. An astronaut of mass m is working on a satellite orbiting the earth at a distance h from the earth's surface. The radius of the earth is R, while its mass is M. The gravitational pull F_G on the astronaut is:
 - (1) Zero since astronaut feels weightless

$$(2) \qquad 0 < F_G < \frac{GMm}{R^2}$$

$$(3) \quad \frac{GMm}{(R+h)^2} < F_G < \frac{GMm}{R^2}$$

$$(4) F_G = \frac{GMm}{(R+h)^2}$$

- 6. पृथ्वी की सतह से 'h' दूरी पर स्थित एक उपग्रह पर एक 'm' द्रव्यमान का अंतरिक्ष–यात्री काम कर रहा है। पृथ्वी का द्रव्यमान 'M' तथा त्रिज्या 'R' है। तब उस यात्री पर लग रहा गुरुत्वीय बल F_G है:
 - शून्य, क्योंिक वह यात्री भारहीनता महसूस करता है।

$$(2) 0 < F_G < \frac{GMm}{R^2}$$

$$(3) \quad \frac{GMm}{(R+h)^2} < F_G < \frac{GMm}{R^2}$$

$$(4) F_G = \frac{GMm}{(R+h)^2}$$

- . પૃથ્વીની સપાટીથી h ઊંચાઈ એ પરિભ્રમણ કરતા સેટેલાઈટમાં m દળ ધરાવતો ખગોળશાસ્ત્રી કાર્ય કરે છે. પૃથ્વીની ત્રિજ્યા R છે જ્યારે તેનું દળ M છે. ખગોળશાસ્ત્રી પર લાગતું ગુરુત્વાકર્ષી ખેંચાણ F_G ______હશે.
 - (1) શૂન્ય, કારણ કે ખગોળશાસ્ત્રી વજનરહિત સ્થિતિમાં છે.

$$(2) 0 < F_G < \frac{GMm}{R^2}$$

$$(3) \qquad \frac{GMm}{(R+h)^2} < F_G < \frac{GMm}{R^2}$$

$$(4) F_G = \frac{GMm}{(R+h)^2}$$

7. A bottle has an opening of radius a and length b. A cork of length b and radius $(a + \Delta a)$ where $(\Delta a << a)$ is compressed to fit into the opening completely (See figure). If the bulk modulus of cork is B and frictional coefficient between the bottle and cork is μ then the force needed to push the cork into the bottle is:

- (1) $(\pi \mu B \ b) \Delta a$
- (2) $(2\pi\mu B b) \Delta a$
- (3) $(\pi \mu B \ b) \ a$
- (4) $(4\pi\mu B\ b)\ \Delta a$

. एक बोतल के मुँह की त्रिज्या 'a' है तथा लम्बाई 'b' है। एक 'b' लम्बाई और ($a + \Delta a$) त्रिज्या ($\Delta a << a$) वाले कार्क को उसके मुँह में पूरी तरह ठूँस दिया गया है (चित्र देखिये)। यदि कार्क का आयतन प्रत्यास्थता गुणांक B है तथा बोतल और कार्क के बीच घर्षण-गुणांक μ है, तब कार्क को मुँह में घुसाने के लिये आवश्यक बल है :

- (1) $(\pi \mu B b) \Delta a$
- $(2) \qquad (2\pi\mu B\ b)\ \Delta a$
- (3) $(\pi \mu B b) a$
- (4) $(4\pi\mu B\ b)\ \Delta a$

એક બોટલના ગળાની ત્રિજ્યા a અને લંબાઈ b છે. આકૃત્તિમાં દર્શાવ્યા મુજબ, b લંબાઈના અને $(a + \Delta a)$ જ્યાં $(\Delta a << a)$ ની ત્રિજ્યા ધરાવતા બૂચને દબાણપૂર્વક વડે બોટલના ગળાવાળા ભાગને સંપૂર્ણ બંધ કરવામાં આવે છે. જો બૂચનો કદ સ્થિતિસ્થાપકતાઅંક B હોય અને બોટલ અને બૂચ વચ્ચેનો ઘષણાંક μ હોય તો બૂચને બોટલમાં ઘૂસાડવા જરૂરી બળ _______ થશે.

- (1) $(\pi \mu B \ b) \Delta a$
- (2) $(2\pi\mu B b) \Delta a$
- (3) $(\pi \mu B \ b) \ a$
- (4) $(4\pi\mu B\ b)\ \Delta a$

- 8. A Carnot freezer takes heat from water at 0° C inside it and rejects it to the room at a temperature of 27° C. The latent heat of ice is 336×10^{3} J kg $^{-1}$. If 5 kg of water at 0° C is converted into ice at 0° C by the freezer, then the energy consumed by the freezer is close to:
 - (1) $1.67 \times 10^5 \,\mathrm{J}$
 - (2) $1.68 \times 10^6 \text{ J}$
 - (3) $1.51 \times 10^5 \,\mathrm{J}$
 - (4) $1.71 \times 10^7 \,\mathrm{J}$

- एक कार्नोट फ्रीजर अपने अंदर 0°C पर रखे हुए जल से ऊष्मा लेकर उसे कमरे के तापमान 27°C पर निष्कासित करता है। बर्फ की गुप्त ऊष्मा 336×10³ J kg⁻¹ है। यदि फ्रीजर में रखा 0°C पर 5 kg जल, 0°C पर बर्फ में बदलता है तब फ्रीजर द्वारा खपाईं गई ऊर्जा लगभग है:
 - (1) $1.67 \times 10^5 \,\mathrm{J}$
 - (2) $1.68 \times 10^6 \text{ J}$
 - (3) $1.51 \times 10^5 \text{ J}$
 - (4) $1.71 \times 10^7 \text{ J}$

- એક કાર્નોટ રેફ્રિજરેટર પાણીમાંથી 0° C તાપમાને ઉષ્માશોષી 27° C તાપમાને રહેલા વાતાવરણમાં ફેંકે છે. બરફની લેટેન્ટ (ગુપ્ત) ઉષ્મા 336×10^3 J kg $^{-1}$ છે. જો રેફ્રિજરેટરમાં 0° C નું 5 kg પાણી 0° C બરફમાં રૂપાંતરીત કરવું હોય તો રેફ્રિજરેટરે વાપરેલ ઊર્જા _____ ની નજીકનું મૂલ્ય ધરાવશે.
 - (1) $1.67 \times 10^5 \text{ J}$
 - (2) $1.68 \times 10^6 \text{ J}$
 - (3) $1.51 \times 10^5 \,\mathrm{J}$
 - (4) $1.71 \times 10^7 \,\mathrm{J}$

Which of the following shows the correct relationship between the pressure 'P' and density ρ of an ideal gas at constant temperature?

> Р (1) О

किसी आदर्श गैस के लिये स्थिर तापमान पर उसके दाब 'P' तथा घनत्व 'ho' के बीच संबंध के लिये निम्न में से कौन-सा चित्र सही है?

નીચે આપેલ આકૃતિઓ પૈકી કઈ આકૃત્તિ અચળ તાપમાને રહેલ આદર્શ વાયું માટે દબાણ 'P' અને ધનતા ho વચ્ચેનો સાચો સંબંધ દર્શાવે છે.

- 10. In an engine the piston undergoes vertical simple harmonic motion with amplitude 7 cm. A washer rests on top of the piston and moves with it. The motor speed is slowly increased. The frequency of the piston at which the washer no longer stays in contact with the piston, is close to:
 - (1) 0.1 Hz
 - (2) 1.2 Hz
 - (3) 0.7 Hz
 - (4) 1.9 Hz
- 11. A toy-car, blowing its horn, is moving with a steady speed of 5 m/s, away from a wall. An observer, towards whom the toy car is moving, is able to hear 5 beats per second. If the velocity of sound in air is 340 m/s, the frequency of the horn of the toy car is close to:
 - (1) 680 Hz
 - (2) 510 Hz
 - (3) 340 Hz
 - (4) 170 Hz

- 10. एक इंजन का पिस्टन 7 cm आयाम की सरल-आवर्त-गित ऊर्ध्वाधर में कर रहा है। पिस्टन के ऊपर एक वाशर रखा है जो उसके साथ चलता है। मोटर की गित धीरे-धीरे बढ़ाई जाती है तो पिस्टन की आवृत्ति जिस पर वाशर पिस्टन का साथ छोड़ देता है, वह लगभग है:
 - (1) 0.1 Hz
 - (2) 1.2 Hz
 - (3) 0.7 Hz
 - (4) 1.9 Hz
- 11. एक खिलौना कार हार्न बजाती हुई 5 m/s की स्थिर गित से एक दीवार से दूर तथा एक व्यक्ति की ओर जा रही है। उस व्यक्ति को 5 बीट/सें. सुनाई देती हैं। यदि हवा में ध्विन की गित 340 m/s है, तब हार्न की आवृत्ति लगभग है:
 - (1) 680 Hz
 - (2) 510 Hz
 - (3) 340 Hz
 - (4) 170 Hz

- છે. એક એન્જિનમાં પિસ્ટન ઉર્ધ્વ દિશામાં 7 cm ના કંપવિસ્તાર સાથે SHM (સ.આ.ગ) કરે છે. પિસ્ટનની ઉપર રહેલ વૉશર તેની સાથે જ ગતિ કરે છે. પિસ્ટનને ગતિ કરાવતી મોટરની ઝડપ ધીમેથી વધારવામાં આવે છે. વૉશર પિસ્ટનની સપાટીને છોડી દે તે પિસ્ટનની જરૂરી આવૃત્તિ ______ ની નજીકનું મૂલ્ય હશે.
 - (1) 0.1 Hz
 - (2) 1.2 Hz
 - (3) 0.7 Hz
 - (4) 1.9 Hz
- 11. એક હોર્ન વગાડતી રમકડાંની કાર દિવાલ થી દૂર તરફ 5 m/s ની અચળ ઝડપથી ગતિ કરે છે. એક અવલોકનકાર, કે જેની તરફ રમકડાંની કાર ગતિ કરે છે, એક સેકન્ડમાં 5 સ્પંદ (beats) સાંભળે છે. જો હવામાં ધ્વિનિનો વેગ 340 m/s હોય તો કારના હોર્નની આવૃત્તિ ની નજીકની હશે.
 - (1) 680 Hz
 - (2) 510 Hz
 - (3) 340 Hz
 - (4) 170 Hz

- 12. Within a spherical charge distribution of charge density $\rho(r)$, N equipotential surfaces of potential V_0 , $V_0 + \Delta V$, $V_0 + 2\Delta V$, $V_0 + N\Delta V$ ($\Delta V > 0$), are drawn and have increasing radii r_0 , r_1 , r_2 ,...... r_N , respectively. If the difference in the radii of the surfaces is constant for all values of V_0 and ΔV then:
 - (1) $\rho(r) \alpha r$
 - (2) $\rho(r) = \text{constant}$
 - (3) $\rho(r) \alpha \frac{1}{r}$
 - (4) $\rho(r) \alpha \frac{1}{r^2}$

- 2. आवेश-घनत्व $\rho(r)$ के किसी गोलीय-आवेश-वितरण, के अन्दर N समिवभव-पृष्ठ, जिनकी विभव है V_0 , $V_0 + \Delta V$, $V_0 + 2\Delta V$, $V_0 + N\Delta V$ ($\Delta V > 0$), आरेखित किये गये हैं और उनकी क्रिज्याऐं क्रमशः r_0 , r_1 , r_2 ,...... r_N हैं। यदि क्रिज्याओं का अन्तराल, सभी V_0 तथा ΔV के मानों के लिये, स्थिर है तब :
 - (1) $\rho(r) \alpha r$
 - (2) $\rho(r) = 3$ चर
 - (3) $\rho(r) \alpha \frac{1}{r}$
 - (4) $\rho(r) \alpha \frac{1}{r^2}$

- . $\rho(r)$ જેટલી ગોલીય વિદ્યુતભાર વિતરણ માટે, અનુક્રમે $r_0,\ r_1,\ r_2,.....r_N$ ત્રિજયા ધરાવતી અને $V_0,\ V_0+\Delta V,\ V_0+2\Delta V,\,\ V_0+N\Delta V$ (ΔV >0) જેટલું સ્થિતિમાન ધરાવતી N સમસ્થિતિમાન સપાટી (પૃષ્ઠ) દોરવામાં આવે છે. V_0 અને ΔV ના બધાજ મૂલ્ય માટે જો સપાટીઓની ત્રિજયા વચ્ચેનો તફાવત અચળ રહેતો હોય તો _____.
 - (1) $\rho(r) \alpha r$
 - (2) $\rho(r) = અચળ$
 - (3) $\rho(r) \alpha \frac{1}{r}$
 - (4) $\rho(r) \alpha \frac{1}{r^2}$

13. Figure shows a network of capacitors where the numbers indicates capacitances in micro Farad. The value of capacitance C if the equivalent capacitance between point A and B is to be 1 μ F is :

- (1) $\frac{31}{23} \mu F$
- (2) $\frac{32}{23} \mu F$
- (3) $\frac{33}{23} \mu$ F
- (4) $\frac{34}{23} \mu F$

13. चित्र संधारित्रों का निकाय दर्शाता है, जहाँ अंक μ F में धारिता दर्शाते हैं। A व B के बीच प्रभावी धारिता $1~\mu$ F होने के लिये C की धारिता होनी चाहिये :

- (1) $\frac{31}{23} \mu F$
- (2) $\frac{32}{23} \mu F$
- (3) $\frac{33}{23} \mu F$
- (4) $\frac{34}{23} \mu F$

 આકૃત્તિમાં સંઘારકોનો બનેલું નેટવર્ક દર્શાવે છે જયાં કેપેસીટરની બાજુમાં લખેલ નંબર તે કેપેસીટરનું માઈક્રોફેરાડમાં મૂલ્ય દર્શાવે છે. જો A અને B વચ્ચેનું પરિણામી કેપેસીટન્સ (સંઘારકતા) 1 μF જોઈતું હોય તો સંઘારક C નું મૂલ્ય _____ જોઈશે.

- (1) $\frac{31}{23} \mu F$
- (2) $\frac{32}{23} \mu F$
- (3) $\frac{33}{23} \mu F$
- (4) $\frac{34}{23} \mu F$

SET - 03 ENGLISH

SET - 03

HINDI

SET - 03

- 03 GUJARATI

- 14. The resistance of an electrical toaster has a temperature dependence given by $R(T) = R_0 \left[1 + \alpha (T T_0) \right]$ in its range of operation. At $T_0 = 300$ K, R = 100 Ω and at T = 500 K, R = 120 Ω . The toaster is connected to a voltage source at 200 V and its temperature is raised at a constant rate from 300 to 500 K in 30 s. The total work done in raising the temperature is :
 - (1) $400 \ln \frac{1.5}{1.3} \text{ J}$
 - (2) $200 \ln \frac{2}{3} J$
 - (3) $400 \ln \frac{5}{6} J$
 - (4) 300 J

- 4. बिजली से चलने वाले टोस्टर के प्रतिरोध का तापमान से बदलाव $R(T) = R_0 \left[1 + \alpha (T T_0) \right]$ द्वारा दिया गया है। $T_0 = 300~\mathrm{K}$ पर $R = 100~\Omega$ है तथा $T = 500~\mathrm{K}$ पर $R = 120~\Omega$ है। टोस्टर $200~\mathrm{V}$ के स्रोत से जुड़ा है, तथा उसका तापमान $300~\mathrm{K}$ से एक समान दर पर बढ़कर $30~\mathrm{s}$ में $500~\mathrm{K}$ हो जाता है। तब इस प्रक्रम में किया गया कुल कार्य है:
 - (1) $400 \ln \frac{1.5}{1.3} \text{ J}$
 - (2) $200 \ln \frac{2}{3} J$
 - (3) $400 \ln \frac{5}{6} J$
 - (4) 300 J

- ા. એક ઈલેક્ટ્રીક ટોસ્ટરનો તેના ઉપયોગ દરમ્યાન, તાપમાન સાથેનો સંબંધ $R(T) = R_0 \left[1 + \alpha (T T_0) \right]$ વડે આપવામાં આવે છે. $T_0 = 300$ K માટે $R = 100~\Omega$ અને T = 500 K માટે $R = 120~\Omega$ છે. ટોસ્ટરને એક 200~V ના વોલ્ટેજ ઉદ્દગમ સાથે જોડી તેનું તાપમાન અચળ દરે 300~થી 500~K સુધી લઈ જવામાં આવે છે. તે માટે લાગતો સમયગાળો 30~s છે. તો તાપમાનનો વધારો કરવા માટે જરૂરી કુલ કાર્ય
 - (1) 400 $ln \frac{1.5}{1.3} J$
 - (2) 200 $ln \frac{2}{3} J$
 - (3) $400 \ln \frac{5}{6} J$
 - (4) 300 J

15. Consider a thin metallic sheet perpendicular to the plane of the paper moving with speed 'v' in a uniform magnetic field B going into the plane of the paper (See figure). If charge densities σ_1 and σ_2 are induced on the left and right surfaces, respectively, of the sheet then (ignore fringe effects):

- (1) $\sigma_1 = \epsilon_0 v B$, $\sigma_2 = -\epsilon_0 v B$
- (2) $\sigma_1 = \frac{\epsilon_0 v B}{2}$, $\sigma_2 = \frac{-\epsilon_0 v B}{2}$
- (3) $\sigma_1 = \sigma_2 = \epsilon_0 vB$
- (4) $\sigma_1 = \frac{-\epsilon_0 v B}{2}$, $\sigma_2 = \frac{\epsilon_0 v B}{2}$

15. एक पतली धातु शीट पृष्ठ के लम्बवत रखी है और चित्र में दिखाई दिशा में वेग v' से एक समान चुम्बकीय-क्षेत्र B में चल रही है। चुम्बकीय-क्षेत्र इस समतल पृष्ठ में प्रवेश कर रहा है। यदि इस शीट की बाईं और दाईं सतहों पर क्रमश: पृष्ठ-आवेश-घनत्व σ_1 तथा σ_2 प्रेरित होते हैं, तब उपांत-प्रभाव को नगण्य मानते हुए σ_1 तथा σ_2 के मान होंगे :

- (1) $\sigma_1 = \epsilon_0 v B, \sigma_2 = -\epsilon_0 v B$
- (2) $\sigma_1 = \frac{\epsilon_0 v B}{2}, \sigma_2 = \frac{-\epsilon_0 v B}{2}$
- (3) $\sigma_1 = \sigma_2 = \epsilon_0 vB$
- (4) $\sigma_1 = \frac{-\epsilon_0 v B}{2}$, $\sigma_2 = \frac{\epsilon_0 v B}{2}$

5. સમાંગી ચુંબકીય ક્ષેત્ર B માં, પુસ્તકના પેજને લંબ અને 'v' જેટલી અચળ ઝડપથી પેજની અંદર દાખલ થતી ધાતુની પાતળી તક્તિ (પૃષ્ઠ) ને ધ્યાનમાં લો. (આકૃત્તિ જુઓ) જો તેની ડાબી અને જમણી સપાટી પર અનુક્રમે σ_1 અને σ_2 જેટલી પૃષ્ઠવિદ્યુતભાર ઘનતા ઉદ્દભવે તો _____ થશે. (ફિન્જ અસર અવગણો.)

- (1) $\sigma_1 = \epsilon_0 v B, \sigma_2 = -\epsilon_0 v B$
- (2) $\sigma_1 = \frac{\epsilon_0 v B}{2}$, $\sigma_2 = \frac{-\epsilon_0 v B}{2}$
- (3) $\sigma_1 = \sigma_2 = \epsilon_0 vB$
- (4) $\sigma_1 = \frac{-\epsilon_0 v B}{2}, \ \sigma_2 = \frac{\epsilon_0 v B}{2}$

16. A fighter plane of length 20 m, wing span (distance from tip of one wing to the tip of the other wing) of 15 m and height 5 m is flying towards east over Delhi. Its speed is 240 ms⁻¹. The earth's magnetic field over Delhi is 5×10^{-5} T with the declination angle $\sim 0^{\circ}$ and dip of θ such that

 $\sin \theta = \frac{2}{3}$. If the voltage developed is V_B

between the lower and upper side of the plane and V_W between the tips of the wings then V_B and V_W are close to :

- (1) $V_B = 45 \text{ mV}$; $V_W = 120 \text{ mV}$ with right side of pilot at higher voltage
- (2) $V_B = 45 \text{ mV}$; $V_W = 120 \text{ mV}$ with left side of pilot at higher voltage
- (3) $V_B = 40 \text{ mV}$; $V_W = 135 \text{ mV}$ with right side of pilot at high voltage
- (4) $V_B = 40 \text{ mV}$; $V_W = 135 \text{ mV}$ with left side of pilot at higher voltage

- 6. एक लड़ाकू जहाज की लम्बाई $20~\mathrm{m}$, पंखों के सिरों के बीच दूरी $15~\mathrm{m}$ तथा ऊँचाई $5~\mathrm{m}$ है, और यह दिल्ली के ऊपर पूर्व–दिशा में $240~\mathrm{ms}^{-1}$ गित से उड़ रहा है। दिल्ली के ऊपर पृथ्वी का चुम्बकीय–क्षेत्र $5\times10^{-5}\mathrm{T}$ है, डिक्लिनेशन कोण $\sim\!0^\circ$ है, तथा डिप कोण θ के लिये $\sin\theta = \frac{2}{3}~\mathrm{ह} \, 1~\mathrm{u}$ पंखों के सिरों के बीच। तब:

 - (2) $V_B = 45 \ mV$; $V_W = 120 \ mV$ बायां पंख-ਜਿਹਾ^{- ve}
 - (3) $V_B = 40 \ mV$; $V_W = 135 \ mV$ दायां पंख-सिरा^{+ ve}
 - (4) $V_B \! = \! 40 \; mV \; ; \; V_W \! = \! 135 \; mV \;$ बायां पंख-सिरा^{- ve}

6. $20 \, \mathrm{m}$ લંબાઈ ધરાવતું, $15 \, \mathrm{m}$ પાંખીયાની પહોળાઈ (એક બાજુની પાંખીયાના છેડાથી બીજી બાજુના પાંખિયાના છેડા સુધી) અને $5 \, \mathrm{m}$ જેટલી ઊંચાઈ ધરાવતું એક લડાયક વિમાન દિલ્હીના પૂર્વ તરફ ઊડી રહ્યું છે. તેની ઝડપ $240 \, \mathrm{ms}^{-1}$ છે. દિલ્હી ઉપર પૃથ્વીનું ચુંબકીય ક્ષેત્રનું મૂલ્ય $5 \times 10^{-5} \, \mathrm{T}$ મેગ્નેટીક ડેક્લિનેશન $\sim 0^\circ$ અને ડીપ

- (1) $V_B = 45 \; mV$ અને $V_W =$ પાયલોટની જમણી બાજુ ઊંચા વોલ્ટેજે હોય તે રીતે 120 mV
- (2) $V_{\rm B}\!=\!45~mV;\,V_{W}\!=\!\,$ પાયલોટની ડાબી બાજુ ઊંચા વોલ્ટેજે હોય તે રીતે 120~mV
- (3) $V_B = 40 \, mV; V_W =$ પાયલોટની જમણી બાજુ ઊંચા વોલ્ટેજે હોય તે રીતે 135 mV
- (4) $V_B = 40 \ mV; \ V_{IV} =$ પાયલોટની ડાબી બાજુ ઊંચા વોલ્ટેજે હોય તે રીતે 135 mV

- 17. A conducting metal circular-wire-loop of radius r is placed perpendicular to a magnetic field which varies with time as $B = B_0 e^{-t/\tau}$, where B_0 and τ are constants, at time t = 0. If the resistance of the loop is R then the heat generated in the loop after a long time $(t \to \infty)$ is:
 - (1) $\frac{\pi^2 r^4 B_0^4}{2\tau R}$
 - (2) $\frac{\pi^2 r^4 B_0^2}{2\tau R}$
 - (3) $\frac{\pi^2 r^4 B_0^2 R}{\tau}$
 - (4) $\frac{\pi^2 r^4 B_0^2}{\tau R}$

- 17. 'r' त्रिज्या के धातु वृत्तीय-तार-लूप का पृष्ठ, $B = B_0 \mathrm{e}^{-t/\tau}$ द्वारा बदलते हुए चुम्बकीय-क्षेत्र के लम्बवत रखा है। जहाँ समय t=0 पर B_0 तथा τ अचर हैं। यदि लूप का प्रतिरोध R है, तब काफी ज्यादा समय $(t \to \infty)$ गुजरने के बाद उस लूप में पैदा हुई ऊर्जा है:
 - $(1) \qquad \frac{\pi^2 r^4 B_0^4}{2\tau R}$
 - (2) $\frac{\pi^2 r^4 B_0^2}{2\tau R}$
 - (3) $\frac{\pi^2 r^4 B_0^2 R}{\tau}$
 - (4) $\frac{\pi^2 r^4 B_0^2}{\tau R}$

- 17. એક સુવાહક ધાતુનું વર્તુળાકાર ગૂંચળું કે જેની ત્રિજ્યા r હોય તેને ચુંબકીય ક્ષેત્રને લંબરૂપે મૂકવામાં આવે છે. આ ચુંબકીય ક્ષેત્ર સમય સાથે $B=B_0 \mathrm{e}^{-t/\tau}$ પ્રમાણે બદલાય છે, જ્યાં B_0 અને $\tau t=0$ સમયે અચળાંક છે. જો ગૂંચળાનો અવરોધ R હોય તો ખૂબ જ લાંબા સમય $(t\to\infty)$ ને અંતે ગૂંચળામાં ઉત્પન્ન ઉષ્મા _____ થશે.
 - $(1) \qquad \frac{\pi^2 r^4 B_0^4}{2\tau R}$
 - (2) $\frac{\pi^2 r^4 B_0^2}{2\tau R}$
 - (3) $\frac{\pi^2 r^4 B_0^2 R}{\tau}$
 - (4) $\frac{\pi^2 r^4 B_0^2}{\tau R}$

- **18.** Consider an electromagnetic wave propagating in vacuum. Choose the correct statement :
 - (1) For an electromagnetic wave propagating in +x direction the electric field is $\overrightarrow{E} = \frac{1}{\sqrt{2}} E_{yz} (x, t) \begin{pmatrix} \hat{y} \hat{z} \end{pmatrix} \text{ and the magnetic} \text{ field} \text{ is}$ $\overrightarrow{B} = \frac{1}{\sqrt{2}} B_{yz} (x, t) \begin{pmatrix} \hat{y} + \hat{z} \end{pmatrix}$
 - (2) For an electromagnetic wave propagating in +x direction the electric field is $\overrightarrow{E} = \frac{1}{\sqrt{2}} E_{yz}(y, z, t) \begin{pmatrix} \hat{y} + \hat{z} \end{pmatrix} \text{ and}$ the magnetic field is $\overrightarrow{B} = \frac{1}{\sqrt{2}} B_{yz}(y, z, t) \begin{pmatrix} \hat{y} + \hat{z} \end{pmatrix}$
 - (3) For an electromagnetic wave propagating in +y direction the electric field is $\overrightarrow{E} = \frac{1}{\sqrt{2}} E_{yz}(x, t) \hat{y}$ and the magnetic field is $\overrightarrow{B} = \frac{1}{\sqrt{2}} B_{yz}(x, t) \hat{z}$

- व्योम में चल रही वैद्युत-चुम्बकीय तरंग के लिए सही विकल्प चुनिए।
 - (1) +x दिशा में चालित वैद्युत-चुम्बकीय तरंग के $\overrightarrow{E} = \frac{1}{\sqrt{2}} E_{yz} (x, t) \begin{pmatrix} \hat{y} \hat{z} \end{pmatrix},$ $\overrightarrow{B} = \frac{1}{\sqrt{2}} B_{yz} (x, t) \begin{pmatrix} \hat{y} + \hat{z} \end{pmatrix}$
 - (2) +x दिशा में चालित वैद्युत-चुम्बकीय तरंग के लिये $\overrightarrow{E}=\frac{1}{\sqrt{2}}\;E_{yz}(y,\;z,\;t)\binom{\hat{}}{y}+\overset{\hat{}}{z},$ $\overrightarrow{B}=\frac{1}{\sqrt{2}}\;B_{yz}(y,\;z,\;t)\binom{\hat{}}{y}+\overset{\hat{}}{z}$
 - (3) +y दिशा में चल रही वैद्युत-चुम्बकीय तरंग के लिये $\stackrel{\rightarrow}{E} = \frac{1}{\sqrt{2}} E_{yz} (x, t) \stackrel{\wedge}{y},$ $\stackrel{\rightarrow}{B} = \frac{1}{\sqrt{2}} B_{yz} (x, t) \stackrel{\hat{z}}{z}$

- શૂન્યાવકાશમાં પ્રસરતા વિદ્યુતચુંબકીય તરંગને ધ્યાનમાં લો. નીચેમાંથી સાચું વિધાન પસંદ કરો.
 - (1) +x -દિશામાં ગતિ કરતા વિદ્યુતચુંબકીય તરંગ માટે વિદ્યુત ક્ષેત્ર

$$\overrightarrow{E} = \frac{1}{\sqrt{2}} E_{yz} (x, t) \left(\stackrel{\wedge}{y} - \stackrel{\wedge}{z} \right)$$
 અને ચુંબકીય ક્ષેત્ર

$$\overrightarrow{B} = \frac{1}{\sqrt{2}} B_{yz} (x, t) \left(\stackrel{\wedge}{y} + \stackrel{\wedge}{z} \right)$$
 થશે.

(2) + x -દિશામાં ગતિ કરતા વિદ્યુતચુંબકીય તરંગ માટે વિદ્યુત ક્ષેત્ર

$$\overrightarrow{E}=rac{1}{\sqrt{2}}\,E_{yz}\left(y,\;z,\;t
ight)\!\left(\!\!\!\begin{array}{c} \wedge\\ y+z \end{array}\!\!\!\right)$$
 અને ચુંબકીય ક્ષેત્ર

$$\stackrel{\rightarrow}{B} = \frac{1}{\sqrt{2}} B_{yz} (y, z, t) \left(\stackrel{\wedge}{y} + \stackrel{\wedge}{z} \right)$$
 થશે.

(3) +y – દિશામાં ગતિ કરતા વિદ્યુતચુંબકીય તરંગ માટે વિદ્યુત ક્ષેત્ર $\overrightarrow{E}=\frac{1}{\sqrt{2}}\;E_{yz}\;(x,\;t)\; \hat{y}$ અને ચુંબકીય ક્ષેત્ર $\overrightarrow{B}=\frac{1}{\sqrt{2}}\;B_{yz}\;(x,\;t)\;\hat{z}$ થશે.

- (4) For an electromagnetic wave propagating in +y direction the electric field is $\overrightarrow{E} = \frac{1}{\sqrt{2}} E_{yz}(x, t) \hat{z}$ and the magnetic field is $\overrightarrow{B} = \frac{1}{\sqrt{2}} B_z(x, t) \hat{y}$
- 19. A hemispherical glass body of radius 10 cm and refractive index 1.5 is silvered on its curved surface. A small air bubble is 6 cm below the flat surface inside it along the axis. The position of the image of the air bubble made by the mirror is seen:

- (1) 14 cm below flat surface
- (2) 30 cm below flat surface
- (3) 20 cm below flat surface
- (4) 16 cm below flat surface

- (4) +y दिशा में चल रही वैद्युत-चुम्बकीय तरंग के लिये $\stackrel{\rightarrow}{E}=\frac{1}{\sqrt{2}}\;E_{yz}\;(x,\;t)\;\stackrel{\wedge}{z},$ $\stackrel{\rightarrow}{B}=\frac{1}{\sqrt{2}}\;B_{z}\;(x,\;t)\;\stackrel{\wedge}{y}$
- 19. एक काँच के अर्द्धगोलीय ठोस की त्रिज्या 10 cm तथा अपवर्तनांक 1.5 है। उसकी वक्रीय सतह पर चाँदी की परत चढ़ाई गई है। समतल पृष्ठ के 6 cm नीचे तथा अक्ष पर, एक सूक्ष्म हवा का बुलबुला स्थित है। तब वक्रीय-दर्पण से बन रहे बुलबुले की प्रतिबिम्ब दूरी है:

- (1) समतल सतह से 14 cm नीचे
- (2) समतल सतह से 30 cm नीचे
- (3) समतल सतह से 20 cm नीचे
- (4) समतल सतह से 16 cm नीचे

- (4) +y -દિશામાં ગતિ કરતા વિદ્યુતચુંબકીય તરંગ માટે વિદ્યુતક્ષેત્ર $\vec{E}=\frac{1}{\sqrt{2}}\;E_{yz}\;(x,\;t)\;\overset{\hat{}}{z}$ અને ચુંબકીય ક્ષેત્ર $\vec{B}=\frac{1}{\sqrt{2}}\;B_{z}\;(x,\;t)\;\overset{\hat{}}{y}$ થશે.
- 19. 10 cm ની ત્રિજ્યા ધરાવતી અને 1.5 વક્કીભવનાંક ધરાવતા ગ્લાસના એક અર્ધગોળાકાર ભાગની વક્ર સપાટી પર ચાંદીનો ઢોળ ચઢાવવામાં આવેલ છે. તેની સીધી સપાટીથી 6 cm નીચે, અર્ધગોળાકારની અંદરના ભાગમાં, એક હવાનો નાનો પરપોટો તેની અક્ષ પર રહેલ છે. અરીસા દ્વારા હવાના પરપોટાનાં પ્રતિબિંબનું સ્થાન _____ દેખાશે.

- (1) સીધી સપાટીની નીચે 14 cm અંતરે
- (2) સીધી સપાટીની નીચે 30 cm અંતરે
- (3) સીધે સપાટીની નીચે 20 cm અંતરે
- (4) સીધી સપાટીની નીચે 16 cm અંતરે

SET - 03 ENGLISH

SET - 03

HINDI

SET - 03

03 GUJARATI

- 20. Two stars are 10 light years away from the earth. They are seen through a telescope of objective diameter 30 cm. The wavelength of light is 600 nm. To see the stars just resolved by the telescope, the minimum distance between them should be $(1 \text{ light year} = 9.46 \times 10^{15} \text{m})$ of the order of:
 - $(1) 10^6 \,\mathrm{km}$
 - (2) $10^8 \, \text{km}$
 - (3) 10^{11} km
 - (4) $10^{10} \,\mathrm{km}$
- 21. A photoelectric surface is illuminated successively by monochromatic light of wavelengths λ and $\frac{\lambda}{2}$. If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that in the first case, the work function of the surface is :
 - (1) $\frac{hc}{3\lambda}$
 - (2) $\frac{hc}{2\lambda}$
 - (3) $\frac{hc}{\lambda}$
 - (4) $\frac{3 hc}{\lambda}$

- 20. दो तारे पृथ्वी से 10 प्रकाश-वर्ष की दूरी पर हैं। उनको एक टेलिस्कोप द्वारा देखा जाता है, जिसका अभिदृश्यक 30 cm व्यास का है। प्रकाश की तरंगदैर्घ्य 600 nm है। (1 प्रकाश-वर्ष = 9.46 × 10¹⁵m) है। टेलिस्कोप अगर उन तारों को लगभग विभेदित देख पा रहा है, तब उनके बीच की दूरी का order है:
 - $(1) 10^6 \text{ km}$
 - (2) 10^8 km
 - (3) 10^{11} km
 - (4) 10^{10} km
- 21. एक प्रकाश-वैद्युत सतह पर पहली बार λ तथा दूसरी बार $\frac{\lambda}{2}$ तरंगदैर्घ्य का प्रकाश डाला जाता है। यदि उत्सर्जित प्रकाश-इलेक्ट्रॉन की अधिकतम गतिज-ऊर्जा दूसरी बार में पहली बार की तिगुनी हो, तब उस सतह का कार्य-फलन है :
 - (1) $\frac{hc}{3\lambda}$
 - (2) $\frac{hc}{2\lambda}$
 - (3) $\frac{hc}{\lambda}$
 - (4) $\frac{3 hc}{\lambda}$

બે તારાઓ પૃથ્વીથી 10 પ્રકાશવર્ષ દૂર છે. તેઓને 30 cm વ્યાસ ધરાવતા ઓબજેક્ટીવ (વસ્તુ-લેન્સ) વાળા ટેલીસ્કોપથી જોવામાં આવે છે. પ્રકાશની તરંગલંબાઈ 600 nm છે. આ બે તારાને just છૂટા પડેલા (વિભેદિત થયેલા) જોવા માટે તેમની વચ્ચેનું અંતર _____ ના ક્રમનું હોવું જોઈએ.

(1 પ્રકાશ વર્ષ = 9.46×10^{15} m)

- (1) $10^6 \, \text{km}$
- (2) 10^8 km
- (3) 10^{11} km
- (4) 10^{10} km
- 21. એક ફોટોઈલેક્ટ્રીક સપાટીને વારાફતી અનુક્રમે λ અને ^λ/₂ તરંગલંબાઈ ઘરાવતા એકરંગી પ્રકાશથી પ્રકાશિત કરવામાં આવે છે. બીજા કિસ્સામાં જો ઉત્સર્જાતા ફોટોઈલેક્ટ્રોનની મહત્તમ ગતિ ઊર્જા પ્રથમ કિસ્સા કરતાં ત્રણ ગણી મળતી હોય તો સપાટીનું વર્કફંક્શન ________ થશે.
 - (1) $\frac{hc}{3\lambda}$
 - (2) $\frac{hc}{2\lambda}$
 - (3) $\frac{hc}{\lambda}$
 - (4) $\frac{3 hc}{\lambda}$

- 22. A neutron moving with a speed 'v' makes a head on collision with a stationary hydrogen atom in ground state. The minimum kinetic energy of the neutron for which inelastic collision will take place is:
 - (1) 10.2 eV
 - (2) 16.8 eV
 - (3) 12.1 eV
 - (4) 20.4 eV
- **23.** To get an output of 1 from the circuit shown in figure the input must be :

- (1) a=0, b=1, c=0
- (2) a=1, b=0, c=0
- (3) a=1, b=0, c=1
- (4) a = 0, b = 0, c = 1

- 22. गित 'v' से चलता हुआ एक न्यूट्रॉन एक स्थिर हाईड्रोजन परमाणु, जो अपनी आद्य-अवस्था में है, से सम्मुख टक्कर करता है। न्युट्रॉन की वह न्यूनतम गितज ऊर्जा बतायें जिस के होने पर यह टक्कर अप्रत्यास्थ होगी:
 - (1) 10.2 eV
 - (2) 16.8 eV
 - (3) 12.1 eV
 - (4) 20.4 eV
- 23. दिये गये परिपथ से 1 निर्गम प्राप्त करने के लिये आवश्यक निवेश होना चाहिये :

- (1) a=0, b=1, c=0
- (2) a=1, b=0, c=0
- (3) a=1, b=0, c=1
- (4) a=0, b=0, c=1

- 22. 'v' જેટલી ઝડપથી ગતિ કરતો ન્યુટ્રોન એક સ્થિર અને ધરાસ્થિતિમાં રહેલા હાઈડ્રોજન પરમાણુ સાથે સીધી અથડામણ અનુભવે છે. ન્યુટ્રોનની અસ્થિતિસ્થાપક અથડામણ થાય તે માટેની મહત્તમ ગતિઊર્જા થશે.
 - (1) 10.2 eV
 - (2) 16.8 eV
 - (3) 12.1 eV
 - (4) 20.4 eV
- 23. આકૃત્તિમાં દર્શાવેલ પરિપથ માટે આઉટપુટ 1 મળે તે માટે જરૂરી ઈનપુટ ______ થશે.

- (1) a=0, b=1, c=0
- (2) a=1, b=0, c=0
- 3) a=1, b=0, c=1
- (4) a=0, b=0, c=1

- 24. A modulated signal $C_m(t)$ has the form $C_m(t) = 30 \sin 300 \pi t + 10 (\cos 200 \pi t \cos 400 \pi t)$. The carrier frequency $f_{c'}$ the modulating frequency (message frequency) $f_{\omega'}$ and the modulation index μ are respectively given by :
 - (1) $f_c = 200 \text{ Hz}$; $f_\omega = 50 \text{ Hz}$; $\mu = \frac{1}{2}$
 - (2) $f_c = 150 \text{ Hz}$; $f_\omega = 50 \text{ Hz}$; $\mu = \frac{2}{3}$
 - (3) $f_c = 150 \text{ Hz}$; $f_\omega = 30 \text{ Hz}$; $\mu = \frac{1}{3}$
 - (4) $f_c = 200 \text{ Hz}$; $f_\omega = 30 \text{ Hz}$; $\mu = \frac{1}{2}$
- **25.** A particle of mass *m* is acted upon by a force *F* given by the empirical law $F = \frac{R}{t^2} v(t)$. If this law is to be tested experimentally by

If this law is to be tested experimentally by observing the motion starting from rest, the best way is to plot:

- (1) v(t) against t^2
- (2) $\log v(t)$ against $\frac{1}{t^2}$
- (3) $\log v(t)$ against t
- (4) $\log v(t)$ against $\frac{1}{t}$

- 24. $C_m(t) = 30 \sin 300 \pi t + 10 (\cos 200 \pi t \cos 400 \pi t)$ एक माडुलित सिग्नल को दर्शाता है। तब वाहक आवृत्ति f_c , माडुलक आवृत्ति f_ω तथा माडुलक इनडेक्स μ क्रमशः हैं :
 - (1) $f_c = 200 \text{ Hz}$; $f_\omega = 50 \text{ Hz}$; $\mu = \frac{1}{2}$
 - (2) $f_c = 150 \text{ Hz}$; $f_\omega = 50 \text{ Hz}$; $\mu = \frac{2}{3}$
 - (3) $f_c = 150 \text{ Hz}$; $f_\omega = 30 \text{ Hz}$; $\mu = \frac{1}{3}$
 - (4) $f_c = 200 \text{ Hz}$; $f_\omega = 30 \text{ Hz}$; $\mu = \frac{1}{2}$
- 25. m द्रव्यमान के कण पर F बल लग रहा है, और उसके लिये आनुभिवक सम्बंध है $F=\frac{R}{t^2}$ v(t) इस सम्बंध के सत्यापन के लिए स्थिर अवस्था से कण की गित का प्रेक्षण (Observation) कर निम्नलिखित में से कौन सा ग्राफ सर्वोत्तम होगा ?
 - (1) t^2 के विरुद्ध v(t)
 - (2) $\frac{1}{t^2}$ के विरुद्ध $\log v(t)$
 - (3) t के विरुद्ध $\log v(t)$
 - (4) $\frac{1}{t}$ के विरुद्ध $\log v(t)$

- 24. મોડ્યુલર (અધિમિશ્રિત) થયેલા સિગ્નલ $C_m(t)$ નીચે મુજબ આપી શકાય છે. $C_m(t) = 30 \sin 300 \pi t + 10$ ($\cos 200 \pi t \cos 400 \pi t$) કેરીયર આવૃત્તિ f_c , સંદેશા (મોડ્યુલેટીંગ) આવૃત્તિ $f_{\omega'}$ અને મોડ્યુલેશન અંક (index) μ , અનુક્રમે _____ વડે આપી શકાય.
 - (1) $f_c = 200 \text{ Hz}$; $f_\omega = 50 \text{ Hz}$; $\mu = \frac{1}{2}$
 - (2) $f_c = 150 \text{ Hz}$; $f_\omega = 50 \text{ Hz}$; $\mu = \frac{2}{3}$
 - (3) $f_c = 150 \text{ Hz}$; $f_\omega = 30 \text{ Hz}$; $\mu = \frac{1}{3}$
 - (4) $f_c = 200 \text{ Hz}$; $f_\omega = 30 \text{ Hz}$; $\mu = \frac{1}{2}$
- 25. m દળ ધરાવતો કણ $F = \frac{R}{t^2} v(t)$ ને અનુસરતા F બળની અસર હેઠળ છે. જો આ બળ–નિયમને પ્રાયોગિક રીતે, કણની ગતિ સ્થિર સ્થિતિમાંથી શરૂ થાય તે રીતે ચકાસવો હોય તો _____ નો ગ્રાફ એ સૌથી સારો વિકલ્પ થશે.
 - (1) v(t) विरुध्ध t^2
 - (2) $\log v(t)$ વિરુધ્ધ $\frac{1}{t^2}$
 - (3) $\log v(t)$ વિરુધ્ધ t
 - (4) $\log v(t)$ વિરુધ્ધ $\frac{1}{t}$

- 26. A thin 1 m long rod has a radius of 5 mm. A force of 50 π kN is applied at one end to determine its Young's modulus. Assume that the force is exactly known. If the least count in the measurement of all lengths is 0.01 mm, which of the following statements is **false**?
 - (1) $\frac{\Delta Y}{Y}$ gets minimum contribution from the uncertainty in the length.
 - (2) The figure of merit is the largest for the length of the rod.
 - (3) The maximum value of Y that can be determined is 10^{14} N/m².
 - (4) $\frac{\Delta Y}{Y}$ gets its maximum contribution from the uncertainty in strain.

- 26. 1 m लम्बी पतली छड़ की त्रिज्या 5 mm है। यंग माडलस निकालने के लिये इस के सिरे पर 50 πkN का बल लगाया गया। मानें कि बल बिलकुल ठीक से ज्ञात है। यदि लम्बाइयों के मापन के अल्पांश 0.01 mm हैं। तब निम्न में से कौन सा कथन गलत है?
 - (1) $\frac{\Delta Y}{Y}$ में लम्बाई की अनिश्चितता का योगदान न्यूनतम है।
 - (2) छड़ की लम्बाई के लिये दक्षतांक सबसे बड़ा है।
 - (3) Y का अधिकतम प्राप्त हो सकने वाला मान $10^{14}\,{\rm N/m^2}.$
 - (4) $\frac{\Delta Y}{Y}$ में विकृति की अनिश्चितता का योगदान अधिकतम है।

- 26. 1 m લાંબા અને 5 mm ત્રિજ્યા ધરાવતો એક પાતળો સળિયો છે. તેનો દઢ સ્થિતિસ્થાપકતા અંક (યંગ મોડ્યુલસ) શોધવા માટે તેના એક છેડા ઉપર 50 πkN જેટલું બળ લગાડવામાં આવે છે. એવું ધારો કે આ બળનું મૂલ્ય સચોટ રીતે માલૂમ છે. જો લંબાઈના બધા જ માપનમાં લઘુત્તમ માપ શક્તિ 0.01 mm હોય તો નીચે પૈકીનું કયું વિધાન ખોટું હશે ?
 - (1) લંબાઈની અચોક્કસાઈને કારણે $\frac{\Delta Y}{Y}$ માં લઘુત્તમ ફાળો આવતો હશે.
 - (2) સળિયાની લંબાઈ માટે દક્ષતાંક (figure of merit) સૌથી વધારે થશે.
 - (3) મેળવી શકાય તેવી Y ની મહત્તમ કિંમત $10^{14}\,\mathrm{N/m^2}$ થશે.
 - (4) $\frac{\Delta Y}{Y}$ માં મહત્તમ ફાળો વિકૃતિમાં રહેલ અચોક્કસાઈને કારણે હશે.

27. A galvanometer has a 50 division scale. Battery has no internal resistance. It is found that there is deflection of 40 divisions when $R = 2400 \ \Omega$. Deflection becomes 20 divisions when resistance taken from resistance box is 4900 Ω . Then we can conclude:

- (1) Resistance of galvanometer is 200 Ω .
- (2) Full scale deflection current is 2 mA.
- (3) Current sensitivity of galvanometer is $20 \mu A/division$.
- (4) Resistance required on R.B. for a deflection of 10 divisions is 9800Ω .
- **28.** To determine refractive index of glass slab using a travelling microscope, minimum number of readings required are :
 - (1) Two
 - (2) Three
 - (3) Four
 - (4) Five

27. एक गेल्वनोमीटर की स्केल 50 भागों में बंटी है। बैटरी का आंतरिक प्रतिरोध शून्य है। यदि $R = 2400~\Omega$ है तो विक्षेप = 40~ भाग है। यदि $R = 4900~\Omega$ है तो विक्षेप = 20~ भाग है। तब हम निर्धारित कर सकते हैं कि :

- (1) गेल्वनोमीटर का प्रतिरोध $200~\Omega$ है।
- (2) फुल-स्केल विक्षेप के लिये धारा 2 mA है।
- (3) गेल्वनोमीटर की धारा-संवेदनशीलता 20 μΑ प्रति भाग है।
- (4) विक्षेप = 10 भाग के लिये $R = 9800 \Omega$.
- 28. काँच की स्लैब का चल-माईक्रोस्कोप द्वारा अपवर्तनांक निकालने के लिये जरूरी पाठ्यांकों की न्यूनतम संख्या है:
 - (1) **दो**
 - (2) तीन
 - (3) चार
 - (4) पाँच

7. ગેલ્વેનોમીટરમાં 50 કાપા છે. બેટરીનો આંતરિક અવરોધ શૂન્ય છે. જ્યારે $= 2400 \, \Omega$ હોય છે ત્યારે ગેલ્વેનોમીટર માં 40 કાપા (divisions) સુધીનું આવર્તન મળે છે. જ્યારે અવરોધ પેટીમાંથી $4900 \, \Omega$ જેટલો કાઢવામાં આવે છે ત્યારે 20 divisions જેટલું આવર્તન થાય છે. તો આપણે તારણ આપી શકીએ કે _______.

- (1) ગેલ્વેનોમીટરનો અવરોધ $200~\Omega$ હશે.
- (2) પૂર્ણ-સ્કેલ આવર્તન માટે પ્રવાહ 2 mA હશે.
- (3) ગેલ્વેનો મીટરની પ્રવાહ સંવેદિતા $20~\mu\text{A}/\text{division}$ થશે.
- (4) 10 divisions જેટલું આવર્તન મેળવવા માટે અવરોધ પેટીમાં અવરોધનું મૂલ્ય 9800 Ω જોઈશે.
- 28. ટ્રાવેલીંગ માઈક્રોસ્કોપની મદદથી ગ્લાસના ચોસલાનો વક્કીભવનાંક માપવા માટે ઓછામાં ઓછા જરૂરી અવલોકનોની સંખ્યા હશે.
 - (1) બે
 - (2) ત્રણ
 - (3) ચાર
 - (4) પાંચ

A realistic graph depicting the variation of the reciprocal of input resistance in an input characteristics measurement in a commonemitter transistor configuration is:

एक ट्रांजिस्टर का common-emitter (CE) अभिविन्यास में निवेश-अभिलाक्षणिक मापन किया गया। तब निवेश-प्रतिरोध के व्युत्क्रम का निम्न में से कौन-सा ग्राफ उचित है?

એક ટ્રાન્ઝિસ્ટરના common emitter (CE) સંરચનામાં ઈનપુટ લાક્ષણિકતા માટે ઈનપુટ અવરોધના વ્યસ્તનો સૌથી વધ વાસ્તવિક ગ્રાફ

SET - 03 ENGLISH

SET - 03

HINDI

SET - 03

GUJARATI

30. The ratio (R) of output resistance r_0 , and the input resistance r_i in measurements of input and output characteristics of a transistor is typically in the range :

(1)
$$R \sim 10^2 - 10^3$$

(2)
$$R \sim 1 - 10$$

(3)
$$R \sim 0.1 - 0.01$$

(4)
$$R \sim 0.1 - 1.0$$

31. The volume of 0.1N dibasic acid sufficient to neutralize 1 g of a base that furnishes 0.04 mole of OH⁻ in aqueous solution is :

- (1) 200 mL
- (2) 400 mL
- (3) 600 mL
- (4) 800 mL

30. किसी ट्रांजिस्टर की निवेश-निर्गम अभिलाक्षणिक मापने के लिये प्रयुक्त निर्गम-प्रतिरोध (r_0) व निवेश-प्रतिरोध (r_i) के अनुपात (R) का आयाम (range) होगा?

(1)
$$R \sim 10^2 - 10^3$$

(2)
$$R \sim 1 - 10$$

(3)
$$R \sim 0.1 - 0.01$$

(4)
$$R \sim 0.1 - 1.0$$

31. 0.1N द्विक्षारीय अम्ल का आयतन क्या होगा जो 1 ग्राम क्षारक जिसके जलीय विलयन में 0.04 मोल OH - है को उदासीन करने के लिये पर्याप्त है?

- (1) 200 mL
- (2) 400 mL
- (3) 600 mL
- (4) 800 mL

30. ટ્રાન્ઝિસ્ટરની ઈનપુટ અને આઉટપુટ લાક્ષણિકતાના માપનમાં આઉટપુટ અવરોધ r_0 અને ઈનપુટ અવરોધ r_i નો ગુણોત્તર (R) _____ જેટલી રેન્જમાં હોય છે.

(1)
$$R \sim 10^2 - 10^3$$

- (2) $R \sim 1 10$
- (3) $R \sim 0.1 0.01$
- (4) $R \sim 0.1 1.0$

31. 0.1N ડાયબેઝિક એસિડનું કદ શું હશે કે જે 1 g બેઈઝના તટસ્થીકરણ કરવા માટે પર્યાપ્ત હોય કે જેના જલીય દ્રાવણમાં 0.04 મોલ OH $^-$ આવેલા છે ?

- (1) 200 mL
- (2) 400 mL
- (3) 600 mL
- (4) 800 mL

SET - 03 ENGLISH

SET - 03

HINDI

SET - 03

GUJARATI

- 32. Initially, the *root mean square (rms)* velocity of N_2 molecules at certain temperature is u. If this temperature is doubled and all the nitrogen molecules dissociate into nitrogen atoms, then the new rms velocity will be:
 - (1) u/2
 - (2) 2*u*
 - (3) 4*u*
 - (4) 14*u*
- 33. Aqueous solution of which salt will **not** contain ions with the electronic configuration $1s^22s^22p^63s^23p^6$?
 - (1) NaF
 - (2) NaCl
 - (3) KBr
 - (4) CaI₂
- **34.** The bond angle H-X-H is the greatest in the compound :
 - (1) CH₄
 - (2) NH₃
 - (3) H_2O
 - (4) PH₃

- 32. एक विशेष ताप पर प्रारम्भ में नाइट्रोजन अणुओं (N_2) का वर्ग माध्य मूल वेग u है। यदि इस ताप को दुगुना कर दिया जाय और सभी नाइट्रोजन अणु वियोजित होकर नाइट्रोजन परमाणु बन जाए तो नया वर्ग माध्य मूल वेग होगा:
 - (1) u/2
 - (2) 2*u*
 - (3) 4*u*
 - (4) 14*u*
- **33.** किस लवण के जलीय विलयन में $1s^22s^22p^63s^23p^6$ इलेक्ट्रॉनिक विन्यास के आयन **नहीं** होंगे ?
 - (1) NaF
 - (2) NaCl
 - (3) KBr
 - (4) CaI₂
- 34. किस यौगिक में H-X-H आबन्ध कोण सर्वाधिक है?
 - (1) CH₄
 - (2) NH₃
 - (3) H_2O
 - (4) PH₃

- 62. નિશ્ચિત તાપમાન પર, શરૂઆતમાં, N₂ અણુઓનો સરેરાશ વર્ગમૂળ (root mean square) (rms) વેગ u છે. જો આ તાપમાન બમણું (Doubled) કરવામાં આવે તો બધા જ નાઈટ્રોજન અણુઓનું વિયોજન નાઈટ્રોજન પરમાણુઓમાં થાય તો, પછી નવું સરેરાશ વર્ગમૂળ (rms) વેગ શું થશે ?
 - (1) u/2
 - (2) 2*u*
 - (3) 4*u*
 - (4) 14*u*
- 33. ઈલેક્ટ્રોનિક વિન્યાસ $1s^22s^22p^63s^23p^6$ ધરાવતા કયા ક્ષારનું જલીય દ્રાવણ આયનો ધરાવતાં નથી ?
 - (1) NaF
 - (2) NaCl
 - (3) KBr
 - (4) CaI₂
- 34. કયા સંયોજનમાં H-X-H બંધખૂણો સર્વાધિક છે ?
 - (1) CH₄
 - (2) NH₃
 - (3) H_2O
 - (4) PH₃

35. If 100 mole of H_2O_2 decompose at 1 bar and 300 K, the work done (kJ) by one mole of $O_2(g)$ as it expands against 1 bar pressure is:

$$2H_2O_2(1) \rightleftharpoons 2H_2O(1) + O_2(g)$$

 $(R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1})$

- (1) 62.25
- (2) 124.50
- (3) 249.00
- (4) 498.00

36. An aqueous solution of a salt MX₂ at certain temperature has a van't Hoff factor of 2. The degree of dissociation for this solution of the salt is:

- (1) 0.33
- (2) 0.50
- (3) 0.67
- (4) 0.80

37. A solid XY kept in an evacuated sealed container undergoes decomposition to form a mixture of gases X and Y at temperature T. The equilibrium pressure is 10 bar in this vessel. K_p for this reaction is:

- (1) 5
- (2) 10
- (3) 25
- (4) 100

35. यदि H_2O_2 के 100 मोल 1 bar तथा 300 K पर वियोजित हो तो 1 bar दाब के विरुद्ध 1 मोल ऑक्सीजन के विस्तारित होने पर किया हुआ कार्य (kJ में) होगा :

$$2H_2O_2(l) \rightleftharpoons 2H_2O(l) + O_2(g)$$

 $(R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1})$

- (1) 62.25
- (2) 124.50
- (3) 249.00
- (4) 498.00

36. किसी विशेष ताप पर, एक लवण MX_2 के जलीय विलयन का वान्ट ऑफ फैक्टर 2 है। लवण के इस विलयन के लिए वियोजन मात्रा होगी:

- (1) 0.33
- (2) 0.50
- (3) 0.67
- (4) 0.80

37. एक बंद (सील्ड) निर्वातित पात्र में रखा गया ठोस XY विघटित होकर ताप T पर दो गैसें X तथा Y का मिश्रण बनाता है। इस पात्र में साम्य दाब 10 bar है। इस अभिक्रिया के लिये Kn होगा:

- (1) 5
- (2) 10
- (3) 25
- (4) 100

35. જો H_2O_2 ના 100 મોલ 1 બાર (bar) અને $300~{\rm K}$ પર વિઘટીત થાય તો, 1 બાર (bar) દબાણના વિરુધ્ધ 1 મોલ $O_2(g)$ ના વિસ્તરણ થવાને લીધે થયેલ કાર્ય (kJ) શોધો.

 $2H_2O_2(l)\mathop{\rightleftharpoons} 2H_2O(l)+O_2(g)$

 $(R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1})$

- (1) 62.25
- (2) 124.50
- (3) 249.00
- (4) 498.00

36. એક નિશ્ચિત તાપમાન પર, ક્ષાર MX_2 ના જલીય દ્રાવણનો વાન્ટ-હોફ અવયવ 2 છે. તો ક્ષારના આ દ્રાવણનો વિયોજનઅંશ શોધો.

- (1) 0.33
- (2) 0.50
- (3) 0.67
- (4) 0.80

37. એક બંધ (sealed) નિર્વાતિત (evacuated) પાત્રમાં રાખવામાં આવેલ ઘન (solid) XY વિઘટીત થઈને T તાપમાને વાયુઓનું મિશ્રણ X અને Y બને છે. આ પાત્રમાં સંતુલન દબાણ $10 \, \mathrm{bar}$ (બાર) છે. આ પ્રક્રિયા માટે K_p શું છે ?

- (1) 5
- (2) 10
- (3) 25
- (4) 100

- 38. Oxidation of succinate ion produces ethylene and carbon dioxide gases. On passing 0.2 Faraday electricity through an aqueous solution of potassium succinate, the total volume of gases (at both cathode and anode) at STP (1 atm and 273 K) is:
 - (1) 2.24 L
 - (2) 4.48 L
 - (3) 6.72 L
 - (4) 8.96 L
- **39.** The rate law for the reaction below is given by the expression k [A][B]

$A + B \rightarrow Product$

If the concentration of B is increased from 0.1 to 0.3 mole, keeping the value of A at 0.1 mole, the rate constant will be:

- (1) k
- (2) k/3
- (3) 3k
- (4) 9k
- **40.** Gold numbers of some colloids are : Gelatin : 0.005 0.01, Gum Arabic : 0.15 0.25; Oleate : 0.04 1.0; Starch : 15 25. Which among these is a better protective colloid?
 - (1) Gelatin
 - (2) Gum Arabic
 - (3) Oleate
 - (4) Starch

- 3. सिक्सनेट आयन के ऑक्सीकरण से एथिलीन तथा कार्बन डाइऑक्साइड गैसें बनती हैं। पोट्टैशियम सिक्सनेट के जलीय विलयन से 0.2 फैराडे विद्युत प्रवाहित करने पर गैसों का कुल आयतन (कैथोड तथा एनोड दोनों पर) STP (1 atm तथा 273 K) पर होगा:
 - (1) 2.24 L
 - (2) 4.48 L
 - (3) 6.72 L
 - (4) 8.96 L
- 39. नीचे दी गई अभिक्रिया के लिए दर नियम k [A][B] व्यंजक से व्यक्त किया जाता है

$A + B \rightarrow 3 त्पाद$

A की सान्द्रता का मान 0.1 मोल पर रखते हुए यदि B की सान्द्रता 0.1 से बढ़ाकर 0.3 मोल कर दी जाती है तो दर स्थिरांक होगा :

- (1) *I*
- (2) k/3
- (3) 3k
- (4) 9k
- 40. कुछ कोलाइडों के स्वर्णांक हैं, जिलेटिन : 0.005 0.01, गम एरेबिक : 0.15 0.25; ओलिएट : 0.04 1.0; स्टार्च : 15 25, इनमें कौन- सा बेहतर रक्षी कोलायड होगा ?
 - (1) जिलेटिन
 - (2) गम एरेबिक
 - (3) ओलिएट
 - (4) स्टार्च

3. સક્સિનેટ આયનના ઓક્સિડેશનથી ઈથિલીન અને કાર્બન ડાયોક્સાઈડ વાયુઓ ઉત્પન્ન થાય છે. પોટેશિયમ સક્સિનેટના જલીય દ્રાવણમાં 0.2 ફેરાડે વિદ્યુતપ્રવાહ પસાર કરતા, STP પર (1 atm અને 273 K) એ વાયુનો નું કુલ કદ (કેથોડ અને એનોડ બંને પર) શોઘો.

- (1) 2.24 L
- (2) 4.48 L
- (3) 6.72 L
- (4) 8.96 L
- **39.** નીચે આપેલ પ્રક્રિયા માટેનો વેગ–નિયમ k[A][B] વ્યંજક થી વ્યક્ત (expression) કરેલ છે.

$$A + B \rightarrow નીપજ$$

A ની સાંદ્રતા 0.1 mole (મોલ) રાખીએ અને જો B ની સાંદ્રતા 0.1 થી વધારીને 0.3 મોલ કરવામાં આવે તો વેગઅચળાંક શું હશે ?

- (1) k
- (2) k/3
- (3) 3k
- (4) 9k
- 40. કેટલાક કલિલોના સ્વર્ણાંક (ગોલ્ડ નંબર) આ પ્રમાણે છે. જીલેટીન (Gelatin) : 0.005 - 0.01, ગમ અરેબિક (Gum Arabic) : 0.15 - 0.25; ઓ લિએટ (Oleate) : 0.04 - 1.0; સ્ટાર્ચ (Starch) : 15 - 25. આમાંથી કયો સૌથી વધારો સારો રક્ષિત કલિલ છે ?
 - (1) જલેટીન (Gelatin)
 - (2) ામ અરેબિક (Gum Arabic)
 - (3) ઓલિએટ (Oleate)
 - (4) સ્ટાર્ચ (Starch)

SET - 03 HINDI

SET - 03 ENGLISH

SET - 03 GUJARATI

- **41.** The following statements concern elements in the periodic table. Which of the following is true?
 - (1) All the elements in Group 17 are gases.
 - (2) The Group 13 elements are all metals.
 - (3) Elements of Group 16 have lower ionization enthalpy values compared to those of Group 15 in the corresponding periods.
 - (4) For Group 15 elements, the stability of +5 oxidation state increases down the group.
- **42.** Extraction of copper by smelting uses silica as an additive to remove :
 - (1) Cu₂S
 - (2) FeO
 - (3) FeS
 - (4) Cu₂O
- **43.** Identify the reaction which does **not** liberate hydrogen:
 - (1) Reaction of zinc with aqueous alkali.
 - (2) Electrolysis of acidified water using Pt electrodes.
 - (3) Allowing a solution of sodium in liquid ammonia to stand.
 - (4) Reaction of lithium hydride with B_2H_6 .

- 41. निम्न कथन आवर्त तालिका में उपस्थित तत्वों से सम्बंधित हैं। निम्न में से कौन-सा सत्य है?
 - (1) ग्रुप 17 में सभी तत्व गैस हैं।
 - (2) ग्रुप 13 में सभी तत्व धातु हैं।
 - (3) ग्रुप 15 के तत्वों की तुलना में संगत आवर्त के ग्रुप 16 के तत्वों में आयनन एन्थैल्पी का मान कम रहता है।
 - (4) ग्रुप 15 के तत्वों के लिए, ग्रुप में नीचे जाने पर+5 ऑक्सीकरण अवस्था का स्थायित्व बढ़ताहै।
- 42. स्मेल्टिंग द्वारा कॉपर के निष्कर्षण में सिलिका योज्य के रूप में निम्न में से किसको हटाने के लिए की जाती है ?
 - (1) Cu₂S
 - (2) FeO
 - (3) FeS
 - (4) Cu₂O
- 43. उस अभिक्रिया को बताइए जिसमें हाइड्रोजन उत्सर्जित **नहीं** होती है:
 - (1) जलीय क्षार के साथ जिंक की अभिक्रिया
 - (2) प्लेटिनम इलेक्ट्रोडों का प्रयोग करके अम्लीकृत जल का विद्युत अपघटन
 - (3) द्रव अमोनिया में सोडियम के विलयन को स्थिर होने के लिए छोड़ देना
 - (4) B_2H_6 के साथ लीथियम हाइड्राइड की अभिक्रिया

- નીચેના વિધાનો આવર્તકોષ્ટમાંના તત્ત્વોને સંબંધિત છે. નીચેનામાંથી કયું સાચું છે ?
 - (1) સમૂહ 17 માં બધા જ તત્ત્વો વાયુઓ છે.
 - (2) સમૂહ 13 માં બધા જ તત્ત્વો ધાતુઓ છે.
 - (3) આવર્તને અનુલક્ષીને સમૂહ 15 ના તત્ત્વોની તુલનામાં સમૂહ 16 ના તત્ત્વોની પ્રથમ આયનીકરણ એન્થાલ્પી ઓછી છે.
 - (4) સમૂહ 15 ના તત્ત્વો માટે, સમૂહમાં નીચે જઈએ તેમ +5 ઓક્સિડેશન અવસ્થાની સ્થિરતા વધે છે.
- 42. પ્રદ્રાવણ (smelting) દ્વારા કોપરનું નિષ્કર્ષણ કરતી વખતે ઉમેરેલ સિલિકાનો ઉપયોગ નીચેનામાંથી શું દૂર કરવા થાય છે ?
 - (1) Cu_2S
 - (2) FeO
 - (3) FeS
 - (4) Cu₂O
- પ્રક્રિયા ઓળખી બતાવો કે જેમાં હાઈડ્રોજન ઉત્સર્જન થતો નથી.
 - (1) જલીય આલ્કલીની ઝીંક સાથેની પ્રક્રિયા
 - (2) Pt ઈલેક્ટ્રોડોનો ઉપયોગ કરીને એસિડિક પાણીનું વિદ્યુતવિભાજન
 - (3) પ્રવાહી એમોનિયામાં સોડિયમના દ્રાવણને રાખીને છોડી દેવું
 - (4) B₂H₆ સાથે લિથિયમ હાઈડ્રાઈડની પ્રક્રિયા

- **44.** The commercial name for calcium oxide is:
 - (1) Milk of lime
 - (2) Slaked lime
 - (3) Limestone
 - (4) Quick lime
- 45. Assertion: Among the carbon allotropes, diamond is an insulator, whereas, graphite is a good conductor of electricity.

Reason: Hybridization of carbon in diamond and graphite are sp^3 and sp^2 , respectively.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion.
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion.
- (3) Assertion is incorrect statement, but the reason is correct.
- (4) Both assertion and reason are incorrect.
- **46.** Identify the **incorrect** statement :
 - (1) S_2 is paramagnetic like oxygen.
 - (2) Rhombic and monoclinic sulphur have S_8 molecules.
 - (3) S_8 ring has a crown shape.
 - (4) The S-S-S bond angles in the S_8 and S_6 rings are the same.

- 44. कैल्शियम ऑक्साइड का व्यावसायिक नाम है:
 - (1) मिल्क ऑफ लाइम
 - (2) स्लैक्ड लाइम
 - (3) लाइमस्टोन
 - (4) क्विक लाइम
- 45. कथन: कार्बन के अपररूपों में, डायमंड कुचालक है जब कि ग्रेफाइट एक विद्युत सुचालक है।

कारण : डायमन्ड तथा ग्रेफाइट में कार्बन का संकरण क्रमश: sp^3 तथा sp^2 है।

- (1) कथन तथा कारण दोनों सही हैं तथा कारण कथन की सही व्याख्या है।
- (2) कथन तथा कारण दोनों सही हैं परन्तु कारण, कथन की सही व्याख्या नहीं है।
- (3) कथन असत्य है परन्तु कारण सत्य है।
- (4) कथन तथा कारण दोनों ही असत्य हैं।
- 46. असत्य कथन को पहचानिए :
 - (1) ऑक्सीजन की तरह ${\bf S}_2$ अनुचुम्बकीय है।
 - (2) राम्बिक (विषमलंबाक्ष) तथा मोनोक्लीनिक सल्फर में S₈ अणु हैं।
 - (3) S_8 वलय का आकार मुकुट की तरह है।
 - (4) S_8 तथा S_6 वलयों में S-S-S आबन्ध कोण एक जैसे हैं।

- 44. કેલ્શીયમ ઓક્સાઈડનું વ્યાપારી ધોરણે નામ આપો.
 - (1) દૂધિયો ચૂનો (મિલ્ક ઓફ લાઈમ) (Milk of lime)
 - (2) ફોડેલો ચૂનો (Slaked lime)
 - (3) ચૂનાનો પથ્થર (Limestone)
 - (4) કળી ચૂનો (Quick lime)
- 45. કથન : કાર્બનના બહુરૂપોમાં, હીરો એ અવાહક છે જયારે ગ્રેફાઈટ એ વિદ્યુતના સુવાહક છે.

કારણ : હીરામાં અને ગ્રેફાઈટમાં કાર્બનનું સંકરણ અનુક્રમે sp^3 અને sp^2 છે.

- (1) કથન અને કારણ બંને સાચા છે, તથા કારણ એ કથન માટેની સાચી સમજૂતી છે.
- (2) કથન અને કારણ બંને સાચા છે, પણ કારણ એ કથન માટેની સાચી સમજૂતી નથી.
- (3) કથન એ અસત્ય વિધાન છે. પણ કારણ સત્ય છે.
- (4) કથન અને કારણ બંને અસત્ય છે.
- 46. ખોટું વિધાન શોધી બતાવો.
 - (1) S_2 એ ઓક્સિજનની માફક અનુચુંબકીય છે.
 - (2) રહોમ્બિક અને મોનોક્લિનિક સલ્ફરમાં S_8 અણુઓ છે.
 - (3) S₈ વલયનો આકાર મુગટ (ક્રાઉન) જેવો છે.
 - (4) S_8 અને S_6 વલયોમાં S-S-S બંધ ખૂણાઓ એકસરખા છે.

- **47.** Identify the correct statement :
 - (1) Iron corrodes in oxygen-free water.
 - (2) Iron corrodes more rapidly in salt water because its electrochemical potential is higher.
 - (3) Corrosion of iron can be minimized by forming a contact with another metal with a higher reduction potential.
 - (4) Corrosion of iron can be minimized by forming an impermeable barrier at its surface.
- **48.** Which of the following is an example of homoleptic complex?
 - (1) $[Co(NH_3)_6]Cl_3$
 - (2) $[Pt(NH_3)_2Cl_2]$
 - (3) $[Co(NH_3)_4Cl_2]$
 - (4) $[Co(NH_3)_5Cl]Cl_2$
- **49.** The transition metal ions responsible for color in ruby and emerald are, respectively:
 - (1) Cr^{3+} and Co^{3+}
 - (2) Co^{3+} and Cr^{3+}
 - (3) Co^{3+} and Co^{3+}
 - (4) Cr^{3+} and Cr^{3+}

- 47. सही कथन को पहचानिये:
 - (1) आयरन ऑक्सीजन-मुक्त जल में संक्षारित होता है।
 - (2) लवणीय जल में आयरन जल्दी से संक्षारित होता है क्योंकि इसका विद्युत रासायनिक विभव उच्च है।
 - (3) आयरन का संक्षारण इसको उच्च अपचयन विभव वाले धातु के सम्पर्क में लाने पर कम किया जा सकता है।
 - (4) आयरन का संक्षारण इसके सतह पर अपारगम्य अवरोध बनाकर कम किया जा सकता है।
- 48. निम्न में से कौन होमोलेप्टिक (homoleptic) संकुल का एक उदाहरण है?
 - (1) $[Co(NH_3)_6]Cl_3$
 - (2) $[Pt(NH_3)_2Cl_2]$
 - (3) $[Co(NH_3)_4Cl_2]$
 - (4) $[Co(NH_3)_5Cl]Cl_2$
- 49. रूबी एवं इमेराल्ड में जिन संक्रमण धातुओं के आयनों की उपस्थित के कारण रंग होता है, वे क्रमश: हैं:
 - (1) Cr³⁺ तथा Co³⁺
 - (2) Co³⁺ तथा Cr³⁺
 - (3) Co³⁺ तथा Co³⁺
 - (4) Cr³⁺ तथा Cr³⁺

- 47. સાચું વિધાન શોધો.
 - (1) આયર્ન (લોખંડ) ઓક્સિજન-મુક્ત પાણીમાં ક્ષારિત થાય છે.
 - (2) ક્ષારવાળા પાણીમાં આયર્ન (લોખંડ) ખૂબ જ ઝડપથી ક્ષારિત થાય છે કારણ કે તેનો વિદ્યુતરાસાયણિક પોટેન્શિયલ ઊંચો છે.
 - (3) આયર્ન (લોખંડ) નું ક્ષારણ, જ્યારે તેનો બીજી ઊંચા રીડક્ષન પોટેન્શિયલ ધરાવતી ધાતુ સાથે સંપર્ક કરતા ઓછું કરી શકાય છે.
 - (4) આયર્ન (લોખંડ) નું ક્ષારણ, તેની સપાટી પર અપારગમ્ય અવરોધ બનાવીને ઓછું કરી શકાય છે.
- 48. નીચે આપેલાઓમાંથી કયું એક હોમોલેપ્ટીક (homoleptic) સમાનીકૃત સંકીર્ણનું ઉદાહરણ છે ?
 - (1) $[Co(NH_3)_6]Cl_3$
 - $(2) \quad [Pt(NH_3)_2Cl_2]$
 - (3) $[Co(NH_3)_4Cl_2]$
 - $(4) \quad [Co(NH₃)₅Cl]Cl₂$
- 49. માણેક (Ruby) અને પન્ના (emerald) માં રંગો માટે જવાબદાર સંક્રાંતિ ધાતુ આયનો અનુક્રમે નીચેનામાંથી શોધો.
 - (1) Cr³⁺ અને Co³⁺
 - (2) Co³⁺ અને Cr³⁺
 - (3) Co³⁺ અને Co³⁺
 - (4) Cr³⁺ અને Cr³⁺

- **50.** Which one of the following substances used in dry cleaning is a better strategy to control environmental pollution?
 - (1) Tetrachloroethylene
 - (2) Carbon dioxide
 - (3) Sulphur dioxide
 - (4) Nitrogen dioxide
- **51.** Sodium extract is heated with concentrated HNO₃ before testing for halogens because:
 - (1) Silver halides are totally insoluble in nitric acid.
 - (2) Ag₂S and AgCN are soluble in acidic medium.
 - (3) S²⁻ and CN⁻, if present, are decomposed by conc. HNO₃ and hence do not interfere in the test.
 - (4) Ag reacts faster with halides in acidic medium.

- 50. ड्राईक्लीनिंग में प्रयुक्त निम्न पदार्थों में से किसका प्रयोग वातावरण प्रदूषण के नियंत्रण की बेहतर कार्य नीति है?
 - (1) टेट्राक्लोरोएथिलीन
 - (2) कार्बन डाइऑक्साइड
 - (3) सल्फर डाइऑक्साइड
 - (4) नाइट्रोजन डाइऑक्साइड
- 51. हैलोजन्स की जाँच के पहले सोडियम एक्स्ट्रैक्ट को सान्द्र HNO₃ के साथ गर्म किया जाता है क्योंकि :
 - (1) सिल्वर हैलाइड नाइट्रिक अम्ल में पूर्णरूपेण अघुलनशील हैं।
 - (2) अम्लीय माध्यम में Ag₂S तथा AgCN घुलनशील हैं।
 - (3) यदि S^{2-} तथा CN^{-} उपस्थित हैं तो सान्द्र HNO_3 से विघटित हो जाते हैं इसलिये परीक्षण में हस्तक्षेप नहीं करते।
 - (4) अम्लीय माध्यम में सिल्वर, हैलाइडों के साथ तेज अभिक्रिया करता है।

- 50. ડ્રાયક્લીનીંગમાં નીચે આપેલા પદાર્થોમાંથી કયો એકનો ઉપયોગ વાતાવરણીય પ્રદૂષણને નિયંત્રણ કરવામાં વધુ કાર્યક્ષમ છે?
 - (1) ટેટ્રાક્લોરોઈથિલિન
 - (2) કાર્બન ડાયોક્સાઈડ
 - (3) સલ્ફર ડાયોક્સાઈડ
 - (4) નાઈટ્રોજન ડાયોકસાઈડ
- 51. હેલોજનોની કસોટી કરતા પહેલા સોડિયમ અર્ક (extract) ને સાંદ્ર HNO₃ ની સાથે ગરમ કરવામાં આવે છે કારણ કે...
 - (1) સિલ્વર હેલાઈડો નાઈટ્રીક એસિડમાં સંપૂર્ણ રીતે અદ્ભાવ્ય છે.
 - (2) એસિડિક માધ્યમમાં Ag_2S અને AgCN દ્રાવ્ય થાય છે.
 - (3) જો S^{2-} અને CN^{-} હાજર હોય તો સાંદ્ર HNO_3 થી વિઘટન થાય છે. તેથી પરીક્ષણમાં (કસોટીમાં) દખલગીરી કરતાં નથી.
 - (4) એસિડિક માધ્યમમાં Ag ની પ્રક્રિયા હેલાઈડો સાથે ઝડપી થાય છે.

Bromination of cyclohexene under conditions given below yields:

- Br (1) Br
- Br (2)
- Br (3) ''/ Br
- (4)

नीचे दिये गये प्रतिबन्धों में साइक्लोहेक्सीन का ब्रोमीनेशन 52. देता है:

- Br (1) Br
- Br (2)
- Br (3) ″ Br
- (4)

સાયકલોહેકઝીનનું બ્રોમિનેશન આપેલ નીચેની પરિસ્થિતિઓમાં કઈ નીપજ આપશે ?

SET - 03 ENGLISH SET - 03

HINDI

SET - 03

GUJARATI

53. Consider the reaction sequence below:

$$\begin{array}{c}
OCH_3 \\
\hline
Succinic anhydride \\
AlCl_3
\end{array}
\xrightarrow{A} \xrightarrow{Clemmenson's} X X$$

is:

$$\begin{array}{c} \text{OH} \\ \text{H}_3\text{CO} \\ \text{(1)} \\ \end{array}$$

OCH₃ OH

(2)
OH

नीचे दी गई अभिक्रिया क्रम पर विचार कीजिए :

OCH
$$_3$$

$$\xrightarrow{\text{सिक्सिनिक एनहाइड्राइड}} A \xrightarrow{\text{क्लेमेंसन्स}} X X$$
है:

(1)
$$H_3CO$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(7)$$

$$(7)$$

$$(8)$$

$$(1)$$

$$(1)$$

53. નીચે આપેલ પ્રક્રિયાનો ક્રમ ધ્યાનમાં લો.

OCH₃

$$\frac{\text{સક્સિનિક એનહાઈડ્રાઈડ}}{\text{AICI}_3} \land \frac{\text{ક્લેમેનશન}}{\text{રિડક્ષન}} \times X$$
X શું છે ?

(1)
$$H_3CO$$
 OH OH OH OH OH

SET - 03 HINDI

SET - 03 GUJARATI

SET - 03 ENGLISH

54. Which one of the following reagents is **not** suitable for the elimination reaction?

- (1) $NaOH/H_2O$
- (2) NaOEt/EtOH
- (3) NaOH/H₂O-EtOH
- (4) NaI
- 55. The correct statement about the synthesis of erythritol $(C(CH_2OH)_4)$ used in the preparation of PETN is:
 - (1) The synthesis requires four aldol condensations between methanol and ethanol.
 - (2) The synthesis requires two aldol condensations and two Cannizzaro reactions.
 - (3) The synthesis requires three aldol condensations and one Cannizzaro reaction.
 - (4) Alpha hydrogens of ethanol and methanol are involved in this reaction.

54. विलोपन अभिक्रिया के लिए इन अभिकारकों में से कौन-सा उपयुक्त नहीं है?

- (1) NaOH/ H_2O
- (2) NaOEt/EtOH
- (3) NaOH/H₂O-EtOH
- (4) NaI
- 55. PETN के बनाने में प्रयुक्त इरीथ्रिटॉल $(C(CH_2OH)_4)$ के संश्लेषण के सम्बन्ध में सही कथन है :
 - (1) संश्लेषण में मेथेनॉल तथा एथेनॉल के बीच चार एल्डोल संघनन की आवश्यकता होती है।
 - (2) संश्लेषण में दो एल्डोल संघनन तथा दो कैनिजारो अभिक्रिया की जरूरत होती है।
 - (3) संश्लेषण में तीन एल्डोल संघनन तथा एक कैनिजारो अभिक्रिया की आवश्यकता होती है।
 - (4) इस अभिक्रिया में एथेनॉल के अल्फा हाइड्रोजन तथा मेथेनॉल भाग लेते हैं।

$$H_3CO$$
 (4)

54. નીચે આપેલામાંથી કયો પ્રક્રિયક એ વિલોપન પ્રક્રિયા માટે સુસંગત **નથી** ?

- (1) NaOH/ H_2O
- (2) NaOEt/EtOH
- (3) NaOH/H₂O-EtOH
- (4) NaI
- 55. PETN ની બનાવટમાં વપરાતો ઈરીથ્રીટોલ $(C(CH_2OH)_4)$ ના સંશ્લેષણ માટે કયું વિધાન સાચું છે?
 - (1) સંશ્લેષણ માટે મિથેનોલ અને ઈથેનોલની વચ્ચે ચાર આલ્ડોલ સંઘનનની આવશ્યકતા હોય છે.
 - (2) સંશ્લેષણમાં બે આલ્ડોલ સંઘનન અને બે કેનિઝારો પ્રક્રિયાની આવશ્યકતા છે.
 - (3) સંશ્લેષણમાં ત્રણ આલ્ડોલ સંઘનન અને એક કેનિઝારો પ્રક્રિયાની આવશ્યકતા છે.
 - (4) આ પ્રક્રિયામાં ઈથેનોલનો આલ્ફા હાઈડ્રોજન અને મિથેનોલ ભાગ લે છે.

- **56.** Fluorination of an aromatic ring is easily accomplished by treating a diazonium salt with HBF₄. Which of the following conditions is correct about this reaction?
 - (1) Only heat
 - (2) NaNO₂/Cu
 - (3) Cu₂O/H₂O
 - (4) NaF/Cu
- 57. Which of the following polymers is synthesized using a free radical polymerization technique?
 - (1) Teflon
 - (2) Terylene
 - (3) Melamine polymer
 - (4) Nylon 6,6
- **58.** The "N" which does **not** contribute to the basicity for the compound is :

ENGLISH

- (1) N 7
- (2) N 9
- (3) N 1
- (4) N 3

SET - 03

- 56. किसी एरौमैटिक वलय का फ्लुओरीकरण आसानी से संभव होता है यदि उसके डाइएजोनियम लवण को HBF₄ के साथ उपचारित किया जाय। इस अभिक्रिया के सम्बन्ध में निम्नलिखित में से कौनसी परिस्थिति उपयुक्त है?
 - (1) केवल ऊष्मा
 - (2) NaNO₂/Cu
 - (3) Cu_2O/H_2O
 - (4) NaF/Cu
- 57. निम्नलिखित में से कौन-सा बहुलक मुक्त मूलक बहुलकीकरण विधि द्वारा संश्लेषित किया जाता है?
 - टेफ्लॉन
 - (2) टैरीलीन
 - (3) मैलैमाइन बहुलक
 - (4) नायलॉन 6,6
- 58. वह "N" जो निम्न यौगिक की क्षारीय प्रवृत्ति में योगदान नहीं देता है, वह है :

- (1) N 7
- (2) N 9
- (3) N 1
- (4) N 3

- 6. કોઈ એરોમેટિક વલયનું ફ્લોરિનેશન ખૂબ જ સહેલાઈથી સંભવ હોય છે, જ્યારે તેના ડાયઝોનીયમ ક્ષારને HBF₄ સાથે પ્રક્રિયા કરવામાં આવે છે. ઉપરની પ્રક્રિયા માટે નીચેના આપેલામાંથી કઈ પરિસ્થિતિ સાચી છે?
 - (1) ફક્ત ઉષ્મા
 - (2) NaNO₂/Cu
 - (3) Cu_2O/H_2O
 - (4) NaF/Cu
- 57. નીચે આપેલામાંથી કયા બહુલકનું સંશ્લેષણ એ મુક્ત મુલક બહુલીકરણ તકનીકનો ઉપયોગ કરીને કરવામાં આવે છે
 - (1) ટેફલોન
 - (2) ટેરિલિન
 - (3) મેલેમાઈન બહુલક
 - (4) નાયલોન 6,6
- 58. "N" કે જે આપેલ સંયોજનની બેઝિકતામાં ભાગ લેતો **નથી** તે બતાવો.

- (1) N 7
- (2) N 9
- (3) N 1
- (4) N 3

SET - 03 HINDI SET - 03 GUJARATI

- **59.** Which of the following is a bactericidal antibiotic?
 - (1) Erythromycin
 - (2) Tetracycline
 - (3) Chloramphenicol
 - (4) Ofloxacin
- **60.** Observation of "Rhumann's purple" is a confirmatory test for the presence of :
 - (1) Reducing sugar
 - (2) Cupric ion
 - (3) Protein
 - (4) Starch
- 61. Let $P = \{\theta : \sin\theta \cos\theta = \sqrt{2} \cos\theta\}$ and $Q = \{\theta : \sin\theta + \cos\theta = \sqrt{2} \sin\theta\}$ be two sets. Then:
 - (1) $P \subset Q$ and $Q P \neq \phi$
 - (2) $Q \not\subset P$
 - (3) $P \not\subset Q$
 - $(4) \quad P = Q$

- 59. निम्न में से कौन-सा बैक्टीरियानाशी प्रतिजैविक है?
 - (1) एरिथ्रोमाइसीन
 - (2) टेट्रासायक्लीन
 - (3) क्लोरएम्फैनिकाल
 - (4) ऑफ्लोक्सैसीन
- 60. रुहमैन नील लोहित (पर्पल) का प्रकट होना निम्नलिखित में से किसका संपुष्टि परीक्षण है?
 - (1) अपचायक शर्करा
 - (2) क्यूपरिक आयन
 - (3) प्रोटीन
 - (4) स्टार्च (मंड)
- 61. माना $P = \{\theta : \sin\theta \cos\theta = \sqrt{2} \cos\theta\}$ तथा $Q = \{\theta : \sin\theta + \cos\theta = \sqrt{2} \sin\theta\}$ दो समुच्चय हैं, तो :
 - (1) $P \subset Q$ तथा $Q P \neq \phi$
 - (2) Q ⊄ P
 - (3) P ⊄ Q
 - $(4) \quad P = Q$

- 59. નીચેનામાંથી કયું એક બેક્ટેરિયાનાશક પ્રતિજીવીઓ (antibiotic) છે ?
 - (1) ઈરિથ્રોમાયસીન
 - (2) ટેટ્રાસાયકલીન
 - (3) ક્લોરએમ્ફ્રેનિકોલ
 - (4) ઓફ્લોક્સેસિન
- 60. ''રૂહમાન જાંબુડીયો''(પર્પલ) (Rhumann's purple) અવલોકન એ નિર્ણાયક કસોટી નીચેનામાંથી કોની હાજરી સૂચવે છે ?
 - (1) રીડ્યુસીંગ શર્કરા
 - (2) ક્યુપ્રીક આયન
 - (3) પ્રોટીન
 - (4) સ્ટાર્ચ
- 61. ધારો કે $P = \{\theta : \sin\theta \cos\theta = \sqrt{2}\cos\theta\}$ અને $Q = \{\theta : \sin\theta + \cos\theta = \sqrt{2}\sin\theta\}$ બે ગણો છે. તો :
 - (1) $P \subset Q$ અને $Q P \neq \phi$
 - (2) Q ⊄ P
 - (3) P ⊄ Q
 - (4) P = Q

62. If x is a solution of the equation,

$$\sqrt{2x+1} - \sqrt{2x-1} = 1, \left(x \ge \frac{1}{2}\right), \text{ then}$$

$$\sqrt{4x^2 - 1} \text{ is equal to :}$$

- (1) $\frac{3}{4}$
- (2) $\frac{1}{2}$
- (3) 2
- (4) $2\sqrt{2}$
- 63. Let z = 1 + ai be a complex number, a > 0, such that z^3 is a real number. Then the sum $1 + z + z^2 + \dots + z^{11}$ is equal to:
 - (1) $-1250 \sqrt{3} i$
 - (2) $1250 \sqrt{3} i$
 - (3) $1365 \sqrt{3} i$
 - (4) $-1365 \sqrt{3} i$

62. यदि समीकरण

$$\sqrt{2x+1} - \sqrt{2x-1} = 1, \left(x \ge \frac{1}{2}\right), \text{ का } x$$

एक हल है, तो $\sqrt{4x^2-1}$ बराबर है :

- (1) $\frac{3}{4}$
- (2) $\frac{1}{2}$
- (3) 2
- (4) $2\sqrt{2}$
- 63. माना z = 1 + ai, a > 0 एक ऐसी सिम्मिश्र संख्या है, कि z^3 एक वास्तिवक संख्या है, तो योग $1 + z + z^2 + \dots + z^{11}$ बराबर है :
 - (1) $-1250 \sqrt{3} i$
 - (2) $1250 \sqrt{3} i$
 - (3) $1365 \sqrt{3} i$
 - (4) $-1365 \sqrt{3} i$

62. જો સમીકરણ

$$\sqrt{2x+1} - \sqrt{2x-1} = 1, \left(x \ge \frac{1}{2}\right)$$
 નો એક
ઉકેલ x છે, તો $\sqrt{4x^2-1} =$ થાય.

- (1) $\frac{3}{4}$
- (2) $\frac{1}{2}$
- (3) 2
- (4) $2\sqrt{2}$
- 63. ધારો કે z=1+ai, a>0, એક એવી સંકર સંખ્યા છે કે જેથી z^3 વાસ્તિવિક સંખ્યા થાય. તો સરવાળો $1+z+z^2+.....+z^{11}=$ થાય.
 - (1) $-1250 \sqrt{3} i$
 - (2) $1250 \sqrt{3} i$
 - (3) $1365 \sqrt{3} i$
 - (4) $-1365 \sqrt{3} i$

64. Let A be a
$$3 \times 3$$
 matrix such that $A^2 - 5A + 7I = O$.

Statement - I:
$$A^{-1} = \frac{1}{7} (5I - A)$$
.

Statement - II: The polynomial
$$A^3-2A^2-3A+I$$
 can be

reduced to 5(A-4I).

Then:

- (1) Statement-I is true, but Statement-II is false.
- (2) Statement-I is false, but Statement-II is true.
- (3) Both the statements are true.
- (4) Both the statements are false.

65. If
$$A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$$
, then the determinant of the matrix $(A^{2016} - 2A^{2015} - A^{2014})$ is :

- (1) 2014
- (2) -175
- (3) 2016
- (4) -25

64. माना A,
$$3 \times 3$$
 का एक ऐसा आव्यूह है कि $A^2 - 5A + 7I = O$ है।

कथन - I :
$$A^{-1} = \frac{1}{7} (5I - A)$$
.

कथन - II : बहुपद $A^3 - 2A^2 - 3A + I$ को 5(A-4I) में परिवर्तित किया जा सकता है।

तो,

- (1) कथन I सत्य है लेकिन कथन II असत्य है।
- (2) कथन I असत्य है लेकिन कथन II सत्य है।
- (3) दोनों कथन सत्य हैं।
- (4) दोनों कथन असत्य हैं।

65. यदि
$$A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$$
 है, तो आव्यूह
$$(A^{2016} - 2A^{2015} - A^{2014})$$
 का सारणिक है :

- (1) 2014
- (2) -175
- (3) 2016
- (4) -25

64. ધારો કે A એક
$$3 \times 3$$
 શ્રેણિક છે કે જેથી $A^2 - 5A + 7I = O$.

વિધાન - I:
$$A^{-1} = \frac{1}{7} (5I - A)$$
.

વિધાન – II : બહુપદી $A^3 - 2A^2 - 3A + I$ ને 5(A-4I) માં રૂપાંતરિત કરી શકાય છે. તો _____.

- (1) વિધાન-I સત્ય છે, પરંતુ વિધાન-II અસત્ય છે.
- (2) વિધાન-I અસત્ય છે, પરંતુ વિધાન-II સત્ય છે.
- (3) બંને વિધાનો સત્ય છે.
- (4) બંને વિધાનો અસત્ય છે.

65. જો
$$A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$$
, તો શ્રેણિક
$$(A^{2016} - 2A^{2015} - A^{2014})$$
 નો નિશ્ચાયક _____ છે.

- (1) 2014
- (2) -175
- (3) 2016
- (4) -25

SET - 03 ENGLISH

- 66. If $\frac{n+2}{n-2}\frac{C_6}{P_2} = 11$, then n satisfies the 66. यदि $\frac{n+2}{n-2}\frac{C_6}{P_2} = 11$, है, तो n निम्न में से किस 66. $\frac{n+2}{n-2}\frac{C_6}{P_2} = 11$, तो n नीथेनाभांथी કયું સમીકરણ
 - equation:
 - $n^2 + 3n 108 = 0$
 - $n^2 + 5n 84 = 0$
 - $n^2 + 2n 80 = 0$
 - $n^2 + n 110 = 0$
- If the coefficients of x^{-2} and x^{-4} in the expansion of $\left(x^{\frac{1}{3}} + \frac{1}{2x^{\frac{1}{3}}}\right)^{18}$, (x > 0), are

m and n respectively, then $\frac{m}{n}$ is equal to:

- 182 (1)
- (2)
- 27 (4)
- Let a_1 , a_2 , a_3 ,, a_n , be in A.P. If $a_3 + a_7 + a_{11} + a_{15} = 72$, then the sum of its first 17 terms is equal to:
 - 306 (1)
 - (2)153
 - 612 (3)
 - 204 (4)

समीकरण को संतष्ट करता है?

- $n^2 + 3n 108 = 0$
- $n^2 + 5n 84 = 0$
- $n^2 + 2n 80 = 0$
- $n^2 + n 110 = 0$
- 67. यदि $\left(x^{\frac{1}{3}} + \frac{1}{2x^{\frac{1}{3}}}\right)^{18}$, (x > 0), के प्रसार में x^{-2} 67. श्रे $\left(x^{\frac{1}{3}} + \frac{1}{2x^{\frac{1}{3}}}\right)^{18}$, (x > 0) ना विस्तरणमां x^{-2}

तथा x^{-4} के गुणांक क्रमशः m तथा n हैं, तो $\frac{m}{n}$ बराबर है :

- 182
- (3)
- (4)
- माना $a_1, a_2, a_3, \dots, a_n, \dots$ एक समांतर श्रेढ़ी में हैं। यदि $a_3 + a_7 + a_{11} + a_{15} = 72$ है, तो उसके प्रथम 17 पदों का योग बराबर है :
 - 306
 - 153
 - 612
 - 204

- - $n^2 + 3n 108 = 0$

સંપોષે?

- $n^2 + 5n 84 = 0$
- $n^2 + 2n 80 = 0$
- $n^2 + n 110 = 0$

અને x^{-4} ના સહગુણકો અનુક્રમે m અને n હોય તો,

$$\frac{m}{n} =$$
_____થાય

- 182
- (3)
- (4)
- ધારો કે $a_1, a_2, a_3, \dots, a_n, \dots$ સમાંતર શ્રેણીમાં છે. જો $a_3 + a_7 + a_{11} + a_{15} = 72$, તો તેના પ્રથમ 17 પદોનો સરવાળો થાય.
 - 306
 - 153
 - 612
 - 204

SET - 03 ENGLISH **SET - 03**

69. The sum $\sum_{r=1}^{10} (r^2 + 1) \times (r!)$ is equal to : 69. योगफल $\sum_{r=1}^{10} (r^2 + 1) \times (r!)$ बराबर है : 69. $\sum_{r=1}^{10} (r^2 + 1) \times (r!) =$

- (1) (11)!
- (2) $10 \times (11!)$
- (3) $101 \times (10!)$
- (4) $11 \times (11!)$

70. $\lim_{x\to 0} \frac{(1-\cos 2x)^2}{2x \tan x - x \tan 2x}$ is:

- (2) $-\frac{1}{2}$
- (4) 2

- (2) $10 \times (11!)$
- (3) $101 \times (10!)$
- (4) $11 \times (11!)$

70. $\lim_{x\to 0} \frac{(1-\cos 2x)^2}{2x \tan x - x \tan 2x}$ बराबर है :

- (4) 2

- (1) (11)!
- (2) $10 \times (11!)$
- (3) $101 \times (10!)$
- (4) $11 \times (11!)$

70. $\lim_{x \to 0} \frac{(1 - \cos 2x)^2}{2x \tan x - x \tan 2x} = \underline{\hspace{1cm}}$

- (4) 2

SET - 03 ENGLISH SET - 03 HINDI

SET - 03

GUJARATI

Let $a, b \in \mathbb{R}$, $(a \neq 0)$. If the function f defined

$$f(x) = \begin{cases} \frac{2x^2}{a} & , & 0 \le x < 1\\ a & , & 1 \le x < \sqrt{2}\\ \frac{2b^2 - 4b}{x^3}, & \sqrt{2} \le x < \infty \end{cases}$$

is continuous in the interval $[0, \infty)$, then an ordered pair (a, b) is:

- (1) $(\sqrt{2}, 1 \sqrt{3})$
- (2) $\left(-\sqrt{2}, 1 + \sqrt{3}\right)$
- (3) $(\sqrt{2}, -1 + \sqrt{3})$
- (4) $\left(-\sqrt{2}, 1-\sqrt{3}\right)$
- Let $f(x) = \sin^4 x + \cos^4 x$. Then f is an increasing function in the interval:
 - (1) $0, \frac{\pi}{4}$
 - (2) $\left| \frac{\pi}{4}, \frac{\pi}{2} \right|$
 - (3) $\left| \frac{\pi}{2}, \frac{5\pi}{8} \right|$

71. माना $a, b \in \mathbb{R}$, $(a \neq 0)$ । यदि फलन f जो, निम्न द्वारा 71. धारो है $a, b \in \mathbb{R}$, $(a \neq 0)$. परिभाषित है:

$$f(x) = \begin{cases} \frac{2x^2}{a} & , & 0 \le x < 1 \\ a & , & 1 \le x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^3}, & \sqrt{2} \le x < \infty \end{cases}$$

अंतराल [0, ∞) में सतत है, तो एक क्रमित युग्म (a, b) है :

- (1) $(\sqrt{2}, 1 \sqrt{3})$
- (2) $\left(-\sqrt{2}, 1 + \sqrt{3}\right)$
- (3) $(\sqrt{2}, -1 + \sqrt{3})$
- (4) $\left(-\sqrt{2}, 1-\sqrt{3}\right)$
- माना $f(x) = \sin^4 x + \cos^4 x$ है, तो निम्न में से किस अंतराल में f एक वर्धमान फलन है?
 - (1) $0, \frac{\pi}{4}$
 - (2) $\frac{\pi}{4}, \frac{\pi}{2}$

જો વિધેય
$$f(x) = \begin{cases} \frac{2x^2}{a} &, & 0 \le x < 1 \\ a &, & 1 \le x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^3}, & \sqrt{2} \le x < \infty \end{cases}$$

અંતરાલ [0, ∞) માં સતત હોય, તો ક્રમયુક્ત જોડ $(a,b) = \underline{\hspace{1cm}} \vartheta.$

- (1) $(\sqrt{2}, 1 \sqrt{3})$
- (2) $\left(-\sqrt{2}, 1+\sqrt{3}\right)$
- (3) $(\sqrt{2}, -1 + \sqrt{3})$
- (4) $\left(-\sqrt{2}, 1-\sqrt{3}\right)$
- ધારો કે $f(x) = \sin^4 x + \cos^4 x$. તો નીચેનામાંથી કયા અંતરાલમાં f વધતું વિધેય છે ?
 - (1) $0, \frac{\pi}{4}$
 - (2) $\left| \frac{\pi}{4}, \frac{\pi}{2} \right|$
 - (3) $\left|\frac{\pi}{2}, \frac{5\pi}{8}\right|$

- Let C be a curve given by $y(x) = 1 + \sqrt{4x - 3}, x > \frac{3}{4}$. If P is a point on C, such that the tangent at P has slope $\frac{2}{3}$, then a point through which the normal at P passes, is:
 - (2, 3)
 - (4, -3)

 - (3, -4)
- 74. The integral $\int \frac{dx}{(1+\sqrt{x})\sqrt{x-x^2}}$ is equal 74. समाकल $\int \frac{dx}{(1+\sqrt{x})\sqrt{x-x^2}}$ बराबर है :

to:

(where C is a constant of integration.)

$$(1) \qquad -2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

$$(2) \quad -2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(3) \quad -\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(4) \qquad 2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

73. माना C एक वक्र है जो $y(x) = 1 + \sqrt{4x - 3}$, $x > \frac{3}{4}$ द्वारा प्रदत्त है। यदि C पर P एक ऐसा बिंदु है

बिंदु जिससे P पर खींचा गया अभिलंब गुज़रता है, है:

(जहाँ C एक समाकलन अचर है।)

$$(1) \quad -2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

$$(2) \qquad -2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(3) \quad -\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(4) \qquad 2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

- 73. ધારો કે એક વક C એ $y(x) = 1 + \sqrt{4x 3}$ $x>rac{3}{4}$ દ્વારા દર્શાવેલ છે. જો C પર એક એવું બિંદુ P છે िक P पर खींची गई स्पर्श रेखा की ढाल $\frac{2}{3}$ है, तो वह $\frac{2}{3}$ है शेथी (બेंद्रु P આગળના સ્પર્शકનો ઢાળ $\frac{2}{3}$ થાય, તો Pઆગળનો અભિલંબ બિંદુમાંથી પસાર થાય

 - 74. $\frac{dx}{(1+\sqrt{x})\sqrt{x-x^2}} = \underline{\hspace{1cm}}$

(જ્યાં C સંકલનનો અચળાંક છે.)

$$(1) \qquad -2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

$$(2) \qquad -2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(3) \quad -\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$(4) \qquad 2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

SET - 03 ENGLISH **SET - 03**

HINDI

SET - 03

GUJARATI

The value of the integral

$$\int_{4}^{10} \frac{\left[x^2\right] dx}{\left[x^2 - 28x + 196\right] + \left[x^2\right]}, \text{ where } [x]$$

denotes the greatest integer less than or equal to x, is:

- (1)6
- 3
- (3)
- (4)

For $x \in \mathbb{R}$, $x \neq 0$, if y(x) is a differentiable function such that

$$x \int_{1}^{x} y(t) dt = (x + 1) \int_{1}^{x} t y(t) dt, \text{ then } y(x)$$

equals:

(where C is a constant.)

- $(1) \quad \frac{C}{-e} e^{-\frac{1}{x}}$
- $(2) \qquad \frac{C}{r^2} e^{-\frac{1}{x}}$

 $\int_{0}^{10} \frac{\left[x^{2}\right] dx}{\left[x^{2}-28x+196\right]+\left[x^{2}\right]}, \text{ where } \left[x\right]$ 75. समाकल $\int_{0}^{10} \frac{\left[x^{2}\right] dx}{\left[x^{2}-28x+196\right]+\left[x^{2}\right]}, \text{ जहाँ } \left[75. \int_{0}^{10} \frac{\left[x^{2}\right] dx}{\left[x^{2}-28x+196\right]+\left[x^{2}\right]} = -\frac{10}{2}$

[x], x से कम या x के बराबर महत्तम पूर्णांक है, का मान है :

- (4)

 $x \in \mathbb{R}, x \neq 0$, के लिए, यदि y(x) एक ऐसा अवकलनीय फलन है कि

$$x \int_{1}^{x} y(t) dt = (x + 1) \int_{1}^{x} t y(t) dt$$
 है, तो $y(x)$

बराबर है :

(जहाँ C एक अचर है।)

- $(1) \quad \frac{C}{-e} e^{-\frac{1}{x}}$

જ્યાં [x] એ x થી નાના અથવા x ને સમાન તમામ પૂર્ણાંકોમાં સૌથી મોટો પૂર્ણાંક દર્શાવે છે.

- (4)

જો $x \in \mathbb{R}$, $x \neq 0$ માટે, y(x) એક વિકલનીય વિધેય છે કે જેથી $x \int_{1}^{x} y(t) dt = (x + 1) \int_{1}^{x} t y(t) dt$, તો

 $(1) \qquad \frac{C}{x} e^{-\frac{1}{x}}$

(જ્યાં C અચળ છે.)

ENGLISH SET - 03

SET - 03

HINDI

SET - 03

GUJARATI

77. The solution of the differential equation

$$\frac{dy}{dx} + \frac{y}{2} \sec x = \frac{\tan x}{2y}, \text{ where } 0 \le x < \frac{\pi}{2},$$
and $y(0) = 1$, is given by:

$$(1) y = 1 - \frac{x}{\sec x + \tan x}$$

$$(2) y^2 = 1 + \frac{x}{\sec x + \tan x}$$

$$(3) y^2 = 1 - \frac{x}{\sec x + \tan x}$$

$$(4) y = 1 + \frac{x}{\sec x + \tan x}$$

78. A ray of light is incident along a line which meets another line, 7x - y + 1 = 0, at the point (0, 1). The ray is then reflected from this point along the line, y + 2x = 1. Then the equation of the line of incidence of the ray of light is:

(1)
$$41x - 38y + 38 = 0$$

(2)
$$41x + 25y - 25 = 0$$

(3)
$$41x + 38y - 38 = 0$$

$$(4) \quad 41x - 25y + 25 = 0$$

77. अवकल समीकरण $\frac{dy}{dx} + \frac{y}{2} \sec x = \frac{\tan x}{2y}$, जहाँ | 77. विકल समीक्ष्य $\frac{dy}{dx} + \frac{y}{2} \sec x = \frac{\tan x}{2y}$, જયાં

 $0 \le x < \frac{\pi}{2}$ है तथा y(0) = 1 है, का हल है :

$$(1) \quad y = 1 - \frac{x}{\sec x + \tan x}$$

$$(2) y^2 = 1 + \frac{x}{\sec x + \tan x}$$

$$(3) y^2 = 1 - \frac{x}{\sec x + \tan x}$$

$$(4) y = 1 + \frac{x}{\sec x + \tan x}$$

78. प्रकाश की एक किरण एक रेखा की दिशा में आपितत है जो एक अन्य रेखा 7x - y + 1 = 0 को बिंदु (0,1) पर मिलती है। वह किरण फिर इस बिंदु से रेखा y + 2x = 1 की दिशा में परिवर्तित होती है, तो आपितत प्रकाश की किरण का समीकरण है:

(1)
$$41x - 38y + 38 = 0$$

$$(2) \quad 41x + 25y - 25 = 0$$

(3)
$$41x + 38y - 38 = 0$$

$$(4) \quad 41x - 25y + 25 = 0$$

- વિકલ સમીકરણ $\frac{dy}{dx} + \frac{y}{2} \sec x = \frac{\tan x}{2y}$, જયાં $0 \le x < \frac{\pi}{2}$, અને y(0) = 1, નો ઉકેલ ______
- $(1) y = 1 \frac{x}{\sec x + \tan x}$

$$(2) y^2 = 1 + \frac{x}{\sec x + \tan x}$$

(3)
$$y^2 = 1 - \frac{x}{\sec x + \tan x}$$

$$(4) y = 1 + \frac{x}{\sec x + \tan x}$$

- 78. પ્રકાશનું એક કિરણ રેખા 7x-y+1=0 પર આપાત થાય છે જે બિંદુ (0,1) આગળ મળે છે. ત્યારબાદ આ કિરણ આ બિંદુમાંથી પરાવર્તિત થઈ રેખા y+2x=1 પર રહે છે. તો આપાત કિરણનું સમીકરણ _______ છે.
 - $(1) \quad 41x 38y + 38 = 0$
 - $(2) \quad 41x + 25y 25 = 0$
 - $(3) \quad 41x + 38y 38 = 0$
 - $(4) \qquad 41x 25y + 25 = 0$

SET - 03 ENGLISH

- 79. A straight line through origin O meets the lines 3y = 10 4x and 8x + 6y + 5 = 0 at points A and B respectively. Then O divides the segment AB in the ratio:
 - (1) 2:3
 - (2) 1:2
 - (3) 4:1
 - (4) 3:4
- 80. Equation of the tangent to the circle, at the point (1, -1), whose centre is the point of intersection of the straight lines x y = 1 and 2x + y = 3 is:
 - (1) 4x + y 3 = 0
 - (2) x + 4y + 3 = 0
 - (3) 3x y 4 = 0
 - (4) x-3y-4=0
- 81. P and Q are two distinct points on the parabola, $y^2=4x$, with parameters t and t_1 respectively. If the normal at P passes through Q, then the minimum value of t_1^2 is:
 - (1) 2
 - (2) 4
 - (3) 6
 - (4) 8

- 79. मूल बिंदु O से होकर जाने वाली एक सरल रेखा रेखाओं | 3y = 10 4x तथा 8x + 6y + 5 = 0 को क्रमशः | बिंदुओं A तथा B पर मिलती हैं, तो बिंदु O रेखाखंड | AB को जिस अनुपात में विभाजित करता है, वह है:
 - (1) 2:3
 - (2) 1:2
 - (3) 4:1
 - (4) 3:4
- 80. उस वृत्त जिसका केन्द्र सरल रेखाओं x-y=1 तथा 2x+y=3 का प्रतिच्छेद बिंदु है, के बिंदु (1,-1) पर खींची गई स्पर्श रेखा का समीकरण है :
 - (1) 4x + y 3 = 0
 - (2) x + 4y + 3 = 0
 - (3) 3x y 4 = 0
 - (4) x-3y-4=0
- 81. P तथा Q परवलय $y^2 = 4x$ पर स्थित दो भिन्न बिंदु है जिनके प्राचल क्रमश: t तथा t_1 हैं। यदि P पर खींचा गया अभिलंब Q से होकर जाता है, तो t_1^2 का न्यूनतम मान है:
 - (1)
 - (2) 4
 - (3) 6
 - (4) 8

- 79. ઊગમબિંદુ O માંથી પસાર થતી એક રેખા, રેખાઓ 3y = 10 4x અને 8x + 6y + 5 = 0 ને અનુક્રમે બિંદુઓ A અને B માં મળે છે. તો O એ રેખાખંડ AB ને ______ ગુણોત્તરમાં વિભાજન કરે છે.
 - (1) 2:3
 - (2) 1:2
 - (3) 4:1
 - (4) 3:4
- **80.** જેનું કેન્દ્ર રેખાઓ x-y=1 અને 2x+y=3 નું છેદબિંદુ હોય તેવા વર્તુળને બિંદુ (1,-1) આગળના સ્પર્શકનું સમીકરણ ______ છે.
 - (1) 4x + y 3 = 0
 - (2) x + 4y + 3 = 0
 - (3) 3x y 4 = 0
 - (4) x 3y 4 = 0
- 81. P અને Q પરવલય $y^2=4x$ પર આવેલા બે ભિન્ન બિંદુઓ છે જેના પ્રાચલો અનુક્રમે t અને t_1 છે. જો P આગળનો અભિલંબ Q માંથી પસાર થતો હોય, તો t_1^2 નું ન્યૂનતમ મૂલ્ય ________ છે.
 - (1) 2
 - (2) 4
 - (3) 6
 - (4) 8

- 82. A hyperbola whose transverse axis is along the major axis of the conic, $\frac{x^2}{3} + \frac{y^2}{4} = 4$ and has vertices at the foci of this conic. If the eccentricity of the hyperbola is $\frac{3}{2}$, then which of the following points does **NOT** lie on it?
 - (1) (0, 2)
 - (2) $(\sqrt{5}, 2\sqrt{2})$
 - (3) $(\sqrt{10}, 2\sqrt{3})$
 - (4) $(5, 2\sqrt{3})$
- 83. ABC is a triangle in a plane with vertices A(2, 3, 5), B(-1, 3, 2) and C(λ , 5, μ). If the median through A is equally inclined to the coordinate axes, then the value of $(\lambda^3 + \mu^3 + 5)$ is:
 - (1) 1130
 - (2) 1348
 - (3) 676
 - (4) 1077

- एक अतिपरवलय, जिसका अनुप्रस्थ अक्ष शांकव $\frac{x^2}{3} + \frac{y^2}{4} = 4 \text{ के दीर्घ अक्ष की दिशा में है तथा}$ जिसके शीर्ष इस शांकव की नाभियों पर है। यदि अतिपरवलय की उत्केन्द्रता $\frac{3}{2}$ है, तो निम्न में से कौन सा बिंदु इस पर स्थित **नहीं** है?
 - (1) (0, 2)
 - $(2) \quad \left(\sqrt{5}, \, 2\sqrt{2}\right)$
 - (3) $(\sqrt{10}, 2\sqrt{3})$
 - (4) $(5, 2\sqrt{3})$
- 83. एक समतल में एक त्रिभुज ABC है जिसके शीर्ष A(2,3,5), B(-1,3,2) तथा $C(\lambda,5,\mu)$ हैं। यदि A से होकर जाती माध्यिका निर्देशांक अक्षों पर समान रूप से झुकी है, तो $(\lambda^3 + \mu^3 + 5)$ का मान है:
 - (1) 1130
 - (2) 1348
 - (3) 676
 - (4) 1077

- 2. એક અતિવલય જેનો મુખ્ય અક્ષ શાંકવ $\frac{x^2}{3} + \frac{y^2}{4} = 4 \text{ for } x$ માંકવ અક્ષ પર છે તથા તેના શિરોબિંદુઓ આ શાંકવની નાભિઓ પર છે. જો અતિવલયની ઉત્કેન્દ્રતા $\frac{3}{2}$ હોય, તો નીચેનામાંથી કયું બિંદુ તેના પર આવેલું નહીં હોય ?
 - (1) (0, 2)
 - (2) $\left(\sqrt{5}, 2\sqrt{2}\right)$
 - $(3) \quad \left(\sqrt{10}, \, 2\sqrt{3}\right)$
 - (4) $(5, 2\sqrt{3})$
- 83. એક સમતલમાં એક ત્રિકોણ ABC છે. જેના શિરોબિંદુઓ A(2,3,5), B(-1,3,2) અને $C(\lambda,5,\mu)$ છે. જો A માંથી નીકળતી મધ્યગા યામાક્ષા સાથે સમાન રીતે ઢળેલ છે, તો $(\lambda^3 + \mu^3 + 5)$ ની કિંમત ______ છે.
 - (1) 1130
 - (2) 1348
 - (3) 676
 - (4) 1077

- 84. The number of distinct real values of λ for which the lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+3}{\lambda^2}$
 - and $\frac{x-3}{1} = \frac{y-2}{\lambda^2} = \frac{z-1}{2}$ are

coplanar is:

- (1) 4
- (2) 1
- (3) 2
- (4) 3
- 85. Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{a} and \overrightarrow{b} respectively, then the position vector of the orthocentre of this triangle, is:
 - $(1) \quad \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}$
 - $(2) \qquad -\left(\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{2}\right)$
 - $(3) \quad \overrightarrow{0}$
 - $(4) \qquad \frac{\left(\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c} \right)}{2}$

- 84. λ के वह भिन्न वास्तविक मानों की संख्या जिनके लिए रेखाएँ $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+3}{\lambda^2}$ तथा
 - $\frac{x-3}{1} = \frac{y-2}{\lambda^2} = \frac{z-1}{2}$ समतलीय हैं, है:
 - (1) 4
 - (2) 1
 - (3) 2
 - (4) 3
- 85. माना ABC एक त्रिभुज है जिसका परिकेन्द्र P पर है। यदि बिंदुओं A, B, C तथा P के स्थिति सदिश क्रमशः $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ तथा $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ हैं, तो इस त्रिभुज के लंब केन्द्र का स्थिति सदिश है:
 - $(1) \quad \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}$
 - $(2) \qquad -\left(\frac{\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}}{2}\right)$
 - $(3) \quad \stackrel{\rightarrow}{0}$
 - $(4) \qquad \left(\frac{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c} \right)$

- 84. જેના માટે રેખાઓ $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+3}{\lambda^2}$ અને $\frac{x-3}{1} = \frac{y-2}{\lambda^2} = \frac{z-1}{2}$ સમતલીય થાય તેવી λ ની ભિન્ન વાસ્તવિક કિંમતોની સંખ્યા છે.
 - (1) 4
 - (2) 1
 - (3) 2
 - (4) 3
- - $(1) \qquad \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}$
 - $(2) \qquad -\left(\frac{\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}}{2}\right)$
 - (3) $\overset{\rightarrow}{0}$
 - $(4) \qquad \left(\frac{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}\right)$

- **86.** The mean of 5 observations is 5 and their variance is 124. If three of the observations are 1, 2 and 6; then the mean deviation from the mean of the data is:
 - (1) 2.4
 - (2) 2.8
 - (3) 2.5
 - (4) 2.6
- 87. An experiment succeeds twice as often as it fails. The probability of at least 5 successes in the six trials of this experiment is:
 - (1) $\frac{240}{729}$
 - (2) $\frac{192}{729}$
 - (3) $\frac{256}{729}$
 - (4) $\frac{496}{729}$

- 86. 5 प्रेक्षणों का माध्य 5 है तथा उनका प्रसरण 124 है। यदि उनमें से तीन प्रेक्षण 1, 2 तथा 6 हैं, तो इन आँकड़ों का माध्य से माध्य विचलन है:
 - (1) 2.4
 - (2) 2.8
 - (3) 2.5
 - (4) 2.6
- 87. एक प्रयोग के सफल होने का संयोग उसके विफल होने के संयोग का दुगुना है। इस प्रयोग के 6 परीक्षणों में से कम से कम पाँच के सफल होने की प्रायिकता है:
 - (1) $\frac{240}{729}$
 - (2) $\frac{192}{729}$
 - (3) $\frac{256}{729}$
 - (4) $\frac{496}{729}$

- 6. 5 અવલોકનોનો મધ્યક 5 અને વિચરણ 124 છે. જો તેમાંથી ત્રણ અવલોકનો 1, 2 અને 6 હોય, તો માહિતીનું મધ્યકથી સરેરાશ વિચલન ______ થાય.
 - (1) 2.4
 - (2) 2.8
 - (3) 2.5
 - (4) 2.6
- 87. એક પ્રયોગ જેટલા વખત અસફળ થાય છે તેનાથી બે ગણો સફળ થાય છે. આ પ્રયોગના છ પ્રયત્નોમાંથી ઓછામાં ઓછી 5 સફળતા મળવાની સંભાવના છે.
 - (1) $\frac{240}{729}$
 - (2) $\frac{192}{729}$
 - (3) $\frac{256}{729}$
 - $(4) \frac{496}{729}$

- 88. If A>0, B>0 and A + B = $\frac{\pi}{6}$, then the minimum value of tanA + tanB is:
 - (1) $\sqrt{3} \sqrt{2}$
 - (2) $2 \sqrt{3}$
 - (3) $4 2\sqrt{3}$
 - $(4) \qquad \frac{2}{\sqrt{3}}$
- 89. The angle of elevation of the top of a vertical tower from a point A, due east of it is 45°. The angle of elevation of the top of the same tower from a point B, due south of A is 30°. If the distance between A and B is $54\sqrt{2}$ m, then the height of the tower (in metres), is :
 - (1) $36\sqrt{3}$
 - (2) 54
 - (3) $54\sqrt{3}$
 - (4) 108

- 88. यदि A>0, B>0 तथा $A + B = \frac{\pi}{6}$ है, तो tanA + tanB का न्यूनतम मान है :
 - (1) $\sqrt{3} \sqrt{2}$
 - (2) $2 \sqrt{3}$
 - (3) $4 2\sqrt{3}$
 - $(4) \qquad \frac{2}{\sqrt{3}}$
- 89. बिंदु A से, जो एक ऊर्ध्वाधर मीनार के पूर्व की ओर है, मीनार के शीर्ष का उन्नयन कोण 45° है। बिंदु B, जो बिंदु A के दक्षिण में है, से उसी मीनार के शीर्ष का उन्नयन कोण 30° है। यदि A तथा B के बीच की दूरी 54√2 मी. है, तो मीनार की ऊँचाई (मी. में) है:
 - (1) $36\sqrt{3}$
 - (2) 54
 - (3) $54\sqrt{3}$
 - (4) 108

- 88. જો A>0, B>0 અને $A + B = \frac{\pi}{6}$ હોય, તો tanA + tanB નું ન્યૂનતમ મૂલ્ય ______ છે.
 - (1) $\sqrt{3} \sqrt{2}$
 - (2) $2 \sqrt{3}$
 - (3) $4 2\sqrt{3}$
 - $(4) \qquad \frac{2}{\sqrt{3}}$
- 89. એક શિરોલંબ ટાવરની પૂર્વ તરફના બિંદુ A થી ટાવરની ટોચનો ઉત્સેધકોણ 45° છે. બિંદુ A ની દક્ષિણે આવેલ બિંદુ B થી ટાવરની ટોચનો ઉત્સેધકોણ 30° છે. જો A અને B વચ્ચેનું અંતર 54√2 m હોય, તો ટાવરની ઊંચાઈ (મીટરમાં) ______ છે.
 - (1) $36\sqrt{3}$
 - (2) 54
 - (3) $54\sqrt{3}$
 - (4) 108

Set - 03

90. The contrapositive of the following statement,

"If the side of a square doubles, then its area increases four times", is:

- (1) If the side of a square is not doubled, then its area does not increase four times.
- (2) If the area of a square increases four times, then its side is doubled.
- (3) If the area of a square increases four times, then its side is not doubled.
- (4) If the area of a square does not increase four times, then its side is not doubled.

- o O o -

90. निम्न कथन का प्रतिधनात्मक (contrapositive) है:

''यदि किसी वर्ग की भुजा दुगुनी हो जाए, तो उसका क्षेत्रफल चार गुना बढ़ जाता है'':

- (1) यदि एक वर्ग की भुजा दुगुनी न की जाए, तो उसका क्षेत्रफल चार गुना नहीं बढ़ता।
- (2) यदि किसी वर्ग का क्षेत्रफल चार गुना बढ़ जाए, तो उसकी भुजा दुगुनी हो जाती है।
- (3) यदि किसी वर्ग का क्षेत्रफल चार गुना बढ़ जाता है, तो उसकी भुजा दुगुनी नहीं होती।
- (4) यदि किसी वर्ग का क्षेत्रफल चार गुना नहीं बढ़ता, तो उसकी भुजा दुगुनी नहीं होती।

- o O o -

- નીચેના વિધાનનું સમાનાર્થી પ્રેરણ કયું છે ?
 ''જો કોઈ ચોરસની બાજુ બમણી કરવામાં આવે, તો તેનું ક્ષેત્રફળ ચારગણું વધે.''
 - (1) જો કોઈ ચોરસની બાજુ બમણી કરવામાં ન આવે, તો તેનું ક્ષેત્રફળ ચારગણું વધશે નહિ.
 - (2) જો કોઈ ચોરસનું ક્ષેત્રફળ ચારગણું વધારવામાં આવે, તો તેની બાજુ બમણી થાય.
 - (3) જો કોઈ ચોરસનું ક્ષેત્રફળ ચારગણું વધારવામાં આવે, તો તેની બાજુ બમણી ન થાય.
 - (4) જો કોઈ ચોરસનું ક્ષેત્રફળ ચારગણું વધારવામાં ન આવે, તો તેની બાજુ બમણી ન થાય.

- o O o -

SET - 03 ENGLISH SET - 03 HINDI SET - 03 GUJARATI