ON THE HYPERPRIOR CHOICE FOR THE GLOBAL SHRINKAGE PARAMETER IN THE HORSESHOE PRIOR

Juho Piironen, Aki Vehtari

Helsinki Institute for Information Technology, HIIT Department of Computer Science, Aalto University juho.piironen@aalto.fi

AISTATS, 2017

Introduction

- ▶ Sparse estimation: large number of parameters $\theta = (\theta_1, \dots, \theta_D)$, assume only a few are nonzero
 - Regression/classification with many candidate predictors
 - **Example dataset: Leukemia classification** D = 7129, n = 72
- Non-Bayesian approaches: LASSO, elastic net etc.
- Bayesian approach: sparsifying prior + integrate over uncertainty

Introduction

- ▶ Sparse estimation: large number of parameters $\theta = (\theta_1, \dots, \theta_D)$, assume only a few are nonzero
 - Regression/classification with many candidate predictors
 - **Example dataset: Leukemia classification** D = 7129, n = 72
- Non-Bayesian approaches: LASSO, elastic net etc.
- Bayesian approach: sparsifying prior + integrate over uncertainty
- Horseshoe prior
 - Continuous shrinkage prior
 - Computationally convenient alternative to the spike-and-slab, with similar or better performance

Introduction

- ▶ Sparse estimation: large number of parameters $\theta = (\theta_1, \dots, \theta_D)$, assume only a few are nonzero
 - Regression/classification with many candidate predictors
 - **Example dataset: Leukemia classification** D = 7129, n = 72
- Non-Bayesian approaches: LASSO, elastic net etc.
- Bayesian approach: sparsifying prior + integrate over uncertainty
- Horseshoe prior
 - Continuous shrinkage prior
 - Computationally convenient alternative to the spike-and-slab, with similar or better performance
- However:
 - Previously not clear how to encode prior assumptions about the sparsity to the model (trivial in spike-and-slab)
 - ⇒ This talk

▶ Linear regression model with many inputs $\mathbf{x} = (x_1, \dots, x_D)$

$$y_i = \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim \mathbf{N}(\mathbf{0}, \sigma^2), \quad i = 1, \dots, n,$$

▶ Linear regression model with many inputs $\mathbf{x} = (x_1, \dots, x_D)$

$$\mathbf{y}_i = \mathbf{\beta}^T \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim \mathbf{N} \big(\mathbf{0}, \sigma^2 \big), \quad i = 1, \dots, n,$$

▶ The horseshoe prior:

$$eta_j \mid \lambda_j, au \sim \mathbf{N} ig(0, \lambda_j^2 au^2 ig),$$

$$\lambda_j \sim \mathbf{C}^+ ig(0, 1 ig), \quad j = 1, \dots, D.$$

▶ Linear regression model with many inputs $\mathbf{x} = (x_1, \dots, x_D)$

$$y_i = \boldsymbol{\beta}^T \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2), \quad i = 1, \dots, n,$$

▶ The horseshoe prior:

$$eta_j \mid \lambda_j, au \sim \mathbf{N} ig(0, \lambda_j^2 au^2 ig),$$

$$\lambda_j \sim \mathbf{C}^+ ig(0, 1 ig), \quad j = 1, \dots, D.$$

- ▶ The global parameter τ shrinks all β_j towards zero
- The local parameters λ_j allow some β_j to escape the shrinkage

▶ Linear regression model with many inputs $\mathbf{x} = (x_1, \dots, x_D)$

$$y_i = \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim \mathbf{N}(0, \sigma^2), \quad i = 1, \dots, n,$$

▶ The horseshoe prior:

$$eta_j \mid \lambda_j, au \sim \mathbf{N} ig(0, \lambda_j^2 au^2 ig), \ \lambda_j \sim \mathbf{C}^+ ig(0, 1 ig), \quad j = 1, \dots, D.$$

- ▶ The global parameter τ shrinks all β_i towards zero
- ▶ The local parameters λ_i allow some β_i to escape the shrinkage

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\mathsf{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_j is the *shrinkage factor*

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\mathsf{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_i \approx 0)$ features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_j is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_i \approx 0)$ features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_i \approx 0)$ features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_i \approx 0)$ features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_i \approx 0)$ features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\mathsf{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_i \approx 0)$ features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\mathsf{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_i \approx 0)$ features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

We expect both

- relevant $(\bar{\beta}_i \approx \beta_i^{\text{ML}})$ features
- irrelevant ($\bar{\beta}_j \approx 0$) features

Small $au \Rightarrow$ more coefficients pprox 0

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j)\beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

▶ With $\lambda_j \sim \mathrm{C}^+(0,1)$, the prior for κ_j looks like:

We expect both

- relevant $(\bar{\beta}_j \approx \beta_i^{\text{ML}})$ features
- irrelevant $(\bar{\beta}_j \approx 0)$ features

Small $au \Rightarrow$ more coefficients pprox 0 How to specify prior for au?

The global shrinkage parameter au

Effective number of nonzero coefficients

$$m_{ ext{eff}} = \sum_{j=1}^{D} (1 - \kappa_j)$$

The global shrinkage parameter au

Effective number of nonzero coefficients

$$m_{\text{eff}} = \sum_{j=1}^{D} (1 - \kappa_j)$$

▶ The prior mean can be shown to be

$$\mathbf{E}[m_{\mathsf{eff}} \mid \tau, \sigma] = \frac{\tau \sigma^{-1} \sqrt{n}}{1 + \tau \sigma^{-1} \sqrt{n}} D$$

The global shrinkage parameter au

Effective number of nonzero coefficients

$$m_{\rm eff} = \sum_{j=1}^{D} (1 - \kappa_j)$$

► The prior mean can be shown to be

$$\mathbf{E}[m_{\mathsf{eff}} \mid \tau, \sigma] = \frac{\tau \sigma^{-1} \sqrt{n}}{1 + \tau \sigma^{-1} \sqrt{n}} D$$

▶ Setting $E[m_{\rm eff} \,|\, \tau, \sigma] = p_0$ (prior guess for the number of nonzero coefficients) yields for τ

$$\tau_0 = \frac{p_0}{D - p_0} \frac{\sigma}{\sqrt{n}}$$

 \Rightarrow Prior guess for τ based on our beliefs about the sparsity

Let
$$n=100, \quad \sigma=1, \quad p_0=5, \quad au_0=rac{p_0}{D-p_0}rac{\sigma}{\sqrt{n}}, \quad D=$$
 dimensionality

$$T = T_0$$

$$D = 10$$

$$0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10$$

$$D = 1000$$

$$0 \quad 5 \quad 10 \quad 15 \quad 20$$

Non-Gaussian observation models

► The reference value (reminder):

$$\tau_0 = \frac{p_0}{D - p_0} \frac{\sigma}{\sqrt{n}}$$

- ▶ The framework can be applied also to non-Gaussian observation models by deriving appropriate plug-in values for σ
 - Gaussian approximation to the likelihood
 - E.g. $\sigma = 2$ for logistic regression

Experiments

Table: Summary of the real world datasets, *D* denotes the number of predictors and *n* the dataset size.

Dataset	Туре	D	n
Ovarian	Classification	1536	54
Colon	Classification	2000	62
Prostate	Classification	5966	102
ALLAML	Classification	7129	72
Corn (4 targets)	Regression	700	80

► Models implemented and posterior inference using Stan¹.

¹http://mc-stan.org/

Ovarian cancer data (n = 54, D = 1536).

Choose τ_0 according to a prior guess $p_0 = 3$.

Ovarian cancer data
$$(n = 54, D = 1536)$$
.

Choose τ_0 according to a prior guess $p_0 = 3$.

Prior and posterior samples for τ and $m_{\rm eff}$, and absolute posterior mean coefficients $|\bar{\beta}_i|$.

Ovarian cancer data (n = 54, D = 1536).

Choose τ_0 according to a prior guess $p_0 = 3$.

Prior and posterior samples for τ and $m_{\rm eff}$, and absolute posterior mean coefficients $|\bar{\beta}_i|$.

 $au\sim N^+ig(0, au_0^2ig)$ (red) and $au\sim C^+ig(0, au_0^2ig)$ (yellow), for various p_0 transformed into au_0 (largest p_0 corresponds to $au_0=1$).

$$au\sim N^+ig(0, au_0^2ig)$$
 (red) and $au\sim C^+ig(0, au_0^2ig)$ (yellow), for various p_0 transformed into au_0 (largest p_0 corresponds to $au_0=1$).

 $au\sim N^+ig(0, au_0^2ig)$ (red) and $au\sim C^+ig(0, au_0^2ig)$ (yellow), for various p_0 transformed into au_0 (largest p_0 corresponds to $au_0=1$).

 $au\sim N^+ig(0, au_0^2ig)$ (red) and $au\sim C^+ig(0, au_0^2ig)$ (yellow), for various p_0 transformed into au_0 (largest p_0 corresponds to $au_0=1$).

 $au\sim N^+ig(0, au_0^2ig)$ (red) and $au\sim C^+ig(0, au_0^2ig)$ (yellow), for various p_0 transformed into au_0 (largest p_0 corresponds to $au_0=1$).

 $au\sim N^+ig(0, au_0^2ig)$ (red) and $au\sim C^+ig(0, au_0^2ig)$ (yellow), for various p_0 transformed into au_0 (largest p_0 corresponds to $au_0=1$).

Summary

- ▶ The global shrinkage parameter τ effectively determines the level of sparsity
- ▶ The prior for $p(\tau)$ can have a significant effect on the inference results
 - "Uninformative" $au \sim \mathrm{C}^+(0,1)$ often poor choice
- ightharpoonup Our framework allows the user to calibrate the prior for au based on the prior beliefs about the sparsity
- ► The concept of effective number of nonzero regression coefficients m_{eff} could be applied also to other shrinkage priors

Implementation

- Horseshoe prior is implemented at least in R-packages rstanarm and brms
 - ightharpoonup Both allow prior specification for the global parameter au
- Demo about the model fitting and the subsequent projective variable selection using our R-package projpred:

https://users.aalto.fi/~jtpiiron/projpred/quickstart.html