EE419/519 Homework Assignment #3 (v2)

Due November 17, 2024

1. Consider the following Boost converter with V_d =12V, L=100 μ H, R=1 Ω , D=0.5, T_s =40 μ s. The diode has a forward voltage drop of 0.8V when conducting. The capacitor C is sufficiently large so that the output ripple is negligible.

- i. In PSS, $i_L(0)=0.1+mod(BilkentID,10)/10$. Find the output voltage V_o . Note that the inductor current follows an exponential curve: $i_L(t)=i_{Lfinal}+(i_{Linitial}-i_{Lfinal})e^{-t/\tau}$ rather than a linear ramp.
- ii. Find the value of the load resistance R_L by finding the average value of the diode current.
- iii. Find the peak-to-peak ripple at the output if the capacitor, C, has an ESR of 0.01Ω .
- 2. A flyback converter has V_d =200V, D=0.05+mod(BilkentID,5)/20, T_s =40 μ s. The transformer has L_M =1200 μ H, L_L =100 μ H, and N_1/N_2 =2+mod(BilkentID,5).
 - a. Find the output voltage if Δ_2 =0.7.
 - b. Find the Zener diode voltage of the snubber network if Δ_1 =0.02.
 - c. Find the power dissipated in the snubber network.
 - d. Find the value of the output load resistance.