# **DDR2 Unbuffered SDRAM MODULE**

# 240pin Unbuffered Module based on 2Gb A-die 64/72-bit Non-ECC/ECC

68FBGA with Lead-Free and Halogen-Free (RoHS compliant)

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

- 1. For updates or additional information about Samsung products, contact your nearest Samsung office.
- 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

<sup>\*</sup> Samsung Electronics reserves the right to change products or specification without notice.



# **Table of Contents**

| 1.0 DDR2 Unbuffered DIMM Ordering Information                         | 4  |
|-----------------------------------------------------------------------|----|
| 2.0 Features                                                          | 4  |
| 3.0 Address Configuration                                             | 4  |
| 4.0 x64 DIMM Pin Configurations (Front side/Back side)                | 5  |
| 5.0 x72 DIMM Pin Configurations (Front side/Back side)                | 6  |
| 6.0 Pin Description                                                   | 6  |
| 7.0 Input/Output Function Description                                 | 7  |
| 8.0 Functional Block Diagram :                                        | 8  |
| 8.1 4GB, 512Mx64 Module - M378T5263AZ(H)3                             | 8  |
| 8.2 4GB, 512Mx72 ECC Module - M391T5263AZ(H)3                         | 9  |
| 9.0 Absolute Maximum DC Ratings                                       |    |
| 10.0 AC & DC Operating Conditions                                     | 10 |
| 10.1 Recommended DC Operating Conditions (SSTL - 1.8)                 | 10 |
| 10.2 Operating Temperature Condition                                  | 11 |
| 10.3 Input DC Logic Level                                             | 11 |
| 10.4 Input AC Logic Level                                             | 11 |
| 10.5 AC Input Test Conditions                                         | 11 |
| 11.0 IDD Specification Parameters Definition                          | 12 |
| 12.0 Operating Current Table:                                         | 13 |
| 12.1 M378T5263AZ(H)3 : 4GB(256Mx8 *16) Module                         | 13 |
| 12.2 M391T5263AZ(H)3 : 4GB(256Mx8 *18) ECC Module                     | 13 |
| 13.0 Input/Output Capacitance                                         | 14 |
| 14.0 Electrical Characteristics & AC Timing for DDR2-800/667/533      | 14 |
| 14.1 Refresh Parameters by Device Density                             | 14 |
| 14.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin | 14 |
| 14.3 Timing parameters by speed grade (DDR2-800 and DDR2-667)         |    |
| 14.4 Timing parameters by speed grade (DDR2-533)                      |    |
| 15 0 Physical Dimensions :                                            | 19 |



# **Revision History**

| Revision | Month    | Year | History                                              |  |  |
|----------|----------|------|------------------------------------------------------|--|--|
| 1.0      | December | 2007 | - Initial Release                                    |  |  |
| 1.1      | July     | 2008 | - Applied JEDEC update(JESD79-2E) on AC timing table |  |  |



# 1.0 DDR2 Unbuffered DIMM Ordering Information

| Part Number                      | Density Organization Component Composition |                               | Number of Rank        | Height |      |  |  |  |  |
|----------------------------------|--------------------------------------------|-------------------------------|-----------------------|--------|------|--|--|--|--|
| x64 Non ECC                      |                                            |                               |                       |        |      |  |  |  |  |
| M378T5263AZ(H)3-CE7/F7/E6/D5 4GB |                                            | 512Mx64 256Mx8(K4T2G084QA)*16 |                       | 2      | 30mm |  |  |  |  |
| x72 ECC                          |                                            |                               |                       |        |      |  |  |  |  |
| M391T5263AZ(H)3-CE7/F7/E6/D5 4GE |                                            | 512Mx72                       | 256Mx8(K4T2G084QA)*18 | 2      | 30mm |  |  |  |  |

#### Note:

- 1. "Z" of Part number(12th digit) stands for Lead-Free products.
- 2. "H" of Part number(12th digit) stands for Lead-Free, Halogen-Free, and RoHS compliant products.
- 3. "3" of Part number(13th digit) stands for Dummy Pad PCB products.

### 2.0 Features

· Performance range

|             | E7 (DDR2-800) | F7 (DDR2-800) | E6 (DDR2-667) | D5 (DDR2-533) | Unit |
|-------------|---------------|---------------|---------------|---------------|------|
| Speed@CL3   | 400           | -             | 400           | 400           | Mbps |
| Speed@CL4   | 533           | 533           | 533           | 533           | Mbps |
| Speed@CL5   | 800           | 667           | 667           | 533           | Mbps |
| Speed@CL6   | -             | 800           | -             | -             | Mbps |
| CL-tRCD-tRP | 5-5-5         | 6-6-6         | 5-5-5         | 4-4-4         | CK   |

- JEDEC standard V<sub>DD</sub> = 1.8V ± 0.1V Power Supply
- $V_{DDQ} = 1.8V \pm 0.1V$
- 267MHz f<sub>CK</sub> for 533Mb/sec/pin, 333MHz f<sub>CK</sub> for 667Mb/sec/pin, 400MHz f<sub>CK</sub> for 800Mb/sec/pin
- 8 Banks
- Posted CAS
- Programmable CAS Latency: 3, 4, 5, 6
- Programmable Additive Latency: 0, 1, 2, 3, 4, 5
- Write Latency(WL) = Read Latency(RL) -1
- Burst Length: 4, 8(Interleave/Nibble sequential)
- · Programmable Sequential / Interleave Burst Mode
- Bi-directional Differential Data-Strobe (Single-ended data-strobe is an optional feature)
- · Off-Chip Driver(OCD) Impedance Adjustment
- On Die Termination with selectable values(50/75/150 ohms or disable)
- Average Refresh Period 7.8us at lower than a  $T_{CASE}$  85°C, 3.9us at 85°C <  $T_{CASE} \le 95$  °C
  - Support High Temperature Self-Refresh rate enable feature
- · Package: 68ball FBGA 128Mx8
- · All of base components are Lead-Free, Halogen-Free, and RoHS compliant

Note: For detailed DDR2 SDRAM operation, please refer to Samsung's Device operation & Timing diagram.

# 3.0 Address Configuration

| Organization             | Row Address | Column Address | Bank Address | Auto Precharge |
|--------------------------|-------------|----------------|--------------|----------------|
| 256Mx8(2Gb) based Module | A0-A14      | A0-A9          | BA0-BA2      | A10            |



# 4.0 x64 DIMM Pin Configurations (Front side/Back side)

| Pin | Front     | Pin | Back     | Pin | Front     | Pin | Back      | Pin | Front          | Pin | Back           | Pin | Front                 | Pin | Back            |
|-----|-----------|-----|----------|-----|-----------|-----|-----------|-----|----------------|-----|----------------|-----|-----------------------|-----|-----------------|
| 1   | $V_{REF}$ | 121 | $V_{SS}$ | 31  | DQ19      | 151 | $V_{SS}$  | 61  | A4             | 181 | $V_{DDQ}$      | 91  | $V_{SS}$              | 211 | DM5             |
| 2   | $V_{SS}$  | 122 | DQ4      | 32  | $V_{SS}$  | 152 | DQ28      | 62  | $V_{DDQ}$      | 182 | A3             | 92  | DQS5                  | 212 | NC              |
| 3   | DQ0       | 123 | DQ5      | 33  | DQ24      | 153 | DQ29      | 63  | A2             | 183 | A1             | 93  | DQS5                  | 213 | V <sub>SS</sub> |
| 4   | DQ1       | 124 | $V_{SS}$ | 34  | DQ25      | 154 | $V_{SS}$  | 64  | $V_{DD}$       | 184 | $V_{DD}$       | 94  | $V_{SS}$              | 214 | DQ46            |
| 5   | $V_{SS}$  | 125 | DM0      | 35  | $V_{SS}$  | 155 | DM3       |     | KI             | EY  |                | 95  | DQ42                  | 215 | DQ47            |
| 6   | DQS0      | 126 | NC       | 36  | DQS3      | 156 | NC        | 65  | $V_{SS}$       | 185 | CK0            | 96  | DQ43                  | 216 | V <sub>SS</sub> |
| 7   | DQS0      | 127 | $V_{SS}$ | 37  | DQS3      | 157 | $V_{SS}$  | 66  | $V_{SS}$       | 186 | CK0            | 97  | $V_{SS}$              | 217 | DQ52            |
| 8   | $V_{SS}$  | 128 | DQ6      | 38  | $V_{SS}$  | 158 | DQ30      | 67  | $V_{DD}$       | 187 | $V_{DD}$       | 98  | DQ48                  | 218 | DQ53            |
| 9   | DQ2       | 129 | DQ7      | 39  | DQ26      | 159 | DQ31      | 68  | NC             | 188 | A0             | 99  | DQ49                  | 219 | V <sub>SS</sub> |
| 10  | DQ3       | 130 | $V_{SS}$ | 40  | DQ27      | 160 | $V_{SS}$  | 69  | $V_{DD}$       | 189 | $V_{DD}$       | 100 | $V_{SS}$              | 220 | CK2             |
| 11  | $V_{SS}$  | 131 | DQ12     | 41  | $V_{SS}$  | 161 | NC        | 70  | A10/AP         | 190 | BA1            | 101 | SA2                   | 221 | CK2             |
| 12  | DQ8       | 132 | DQ13     | 42  | NC        | 162 | NC        | 71  | BA0            | 191 | $V_{DDQ}$      | 102 | NC, TEST <sup>1</sup> | 222 | $V_{SS}$        |
| 13  | DQ9       | 133 | $V_{SS}$ | 43  | NC        | 163 | $V_{SS}$  | 72  | $V_{DDQ}$      | 192 | RAS            | 103 | $V_{SS}$              | 223 | DM6             |
| 14  | $V_{SS}$  | 134 | DM1      | 44  | $V_{SS}$  | 164 | NC        | 73  | WE             | 193 | <del>S</del> 0 | 104 | DQS6                  | 224 | NC              |
| 15  | DQS1      | 135 | NC       | 45  | NC        | 165 | NC        | 74  | CAS            | 194 | $V_{DDQ}$      | 105 | DQS6                  | 225 | V <sub>SS</sub> |
| 16  | DQS1      | 136 | $V_{SS}$ | 46  | NC        | 166 | $V_{SS}$  | 75  | $V_{DDQ}$      | 195 | ODT0           | 106 | $V_{SS}$              | 226 | DQ54            |
| 17  | $V_{SS}$  | 137 | CK1      | 47  | $V_{SS}$  | 167 | NC        | 76  | <del>S</del> 1 | 196 | A13            | 107 | DQ50                  | 227 | DQ55            |
| 18  | NC        | 138 | CK1      | 48  | NC        | 168 | NC        | 77  | ODT1           | 197 | $V_{DD}$       | 108 | DQ51                  | 228 | $V_{SS}$        |
| 19  | NC        | 139 | $V_{SS}$ | 49  | NC        | 169 | $V_{SS}$  | 78  | $V_{DDQ}$      | 198 | $V_{SS}$       | 109 | $V_{SS}$              | 229 | DQ60            |
| 20  | $V_{SS}$  | 140 | DQ14     | 50  | $V_{SS}$  | 170 | $V_{DDQ}$ | 79  | $V_{SS}$       | 199 | DQ36           | 110 | DQ56                  | 230 | DQ61            |
| 21  | DQ10      | 141 | DQ15     | 51  | $V_{DDQ}$ | 171 | CKE1      | 80  | DQ32           | 200 | DQ37           | 111 | DQ57                  | 231 | $V_{SS}$        |
| 22  | DQ11      | 142 | $V_{SS}$ | 52  | CKE0      | 172 | $V_{DD}$  | 81  | DQ33           | 201 | $V_{SS}$       | 112 | $V_{SS}$              | 232 | DM7             |
| 23  | $V_{SS}$  | 143 | DQ20     | 53  | $V_{DD}$  | 173 | NC        | 82  | $V_{SS}$       | 202 | DM4            | 113 | DQS7                  | 233 | NC              |
| 24  | DQ16      | 144 | DQ21     | 54  | NC        | 174 | A14       | 83  | DQS4           | 203 | NC             | 114 | DQS7                  | 234 | V <sub>SS</sub> |
| 25  | DQ17      | 145 | $V_{SS}$ | 55  | NC        | 175 | $V_{DDQ}$ | 84  | DQS4           | 204 | $V_{SS}$       | 115 | $V_{SS}$              | 235 | DQ62            |
| 26  | $V_{SS}$  | 146 | DM2      | 56  | $V_{DDQ}$ | 176 | A12       | 85  | $V_{SS}$       | 205 | DQ38           | 116 | DQ58                  | 236 | DQ63            |
| 27  | DQS2      | 147 | NC       | 57  | A11       | 177 | A9        | 86  | DQ34           | 206 | DQ39           | 117 | DQ59                  | 237 | $V_{SS}$        |
| 28  | DQS2      | 148 | $V_{SS}$ | 58  | A7        | 178 | $V_{DD}$  | 87  | DQ35           | 207 | $V_{SS}$       | 118 | $V_{SS}$              | 238 | $V_{\rm DDSPD}$ |
| 29  | $V_{SS}$  | 149 | DQ22     | 59  | $V_{DD}$  | 179 | A8        | 88  | $V_{SS}$       | 208 | DQ44           | 119 | SDA                   | 239 | SA0             |
| 30  | DQ18      | 150 | DQ23     | 60  | A5        | 180 | A6        | 89  | DQ40           | 209 | DQ45           | 120 | SCL                   | 240 | SA1             |
|     |           |     |          |     |           |     |           | 90  | DQ41           | 210 | $V_{SS}$       |     |                       |     |                 |

NC = No Connect, RFU = Reserved for Future Use

<sup>1.</sup> The TEST pin is reserved for bus analysis tools and is not connected on standard memory module products (DIMMs.)

# 5.0 x72 DIMM Pin Configurations (Front side/Back side)

| Pin | Front     | Pin | Back     | Pin | Front     | Pin | Back      | Pin | Front           | Pin | Back           | Pin | Front                 | Pin | Back        |
|-----|-----------|-----|----------|-----|-----------|-----|-----------|-----|-----------------|-----|----------------|-----|-----------------------|-----|-------------|
| 1   | $V_{REF}$ | 121 | $V_{SS}$ | 31  | DQ19      | 151 | $V_{SS}$  | 61  | A4              | 181 | $V_{DDQ}$      | 91  | $V_{SS}$              | 211 | DM5         |
| 2   | $V_{SS}$  | 122 | DQ4      | 32  | $V_{SS}$  | 152 | DQ28      | 62  | $V_{DDQ}$       | 182 | A3             | 92  | DQS5                  | 212 | NC          |
| 3   | DQ0       | 123 | DQ5      | 33  | DQ24      | 153 | DQ29      | 63  | A2              | 183 | A1             | 93  | DQS5                  | 213 | $V_{SS}$    |
| 4   | DQ1       | 124 | $V_{SS}$ | 34  | DQ25      | 154 | $V_{SS}$  | 64  | $V_{DD}$        | 184 | $V_{DD}$       | 94  | $V_{SS}$              | 214 | DQ46        |
| 5   | $V_{SS}$  | 125 | DM0      | 35  | $V_{SS}$  | 155 | DM3       |     | KI              | ΕΥ  |                | 95  | DQ42                  | 215 | DQ47        |
| 6   | DQS0      | 126 | NC       | 36  | DQS3      | 156 | NC        | 65  | V <sub>SS</sub> | 185 | CK0            | 96  | DQ43                  | 216 | $V_{SS}$    |
| 7   | DQS0      | 127 | $V_{SS}$ | 37  | DQS3      | 157 | $V_{SS}$  | 66  | $V_{SS}$        | 186 | CK0            | 97  | $V_{SS}$              | 217 | DQ52        |
| 8   | $V_{SS}$  | 128 | DQ6      | 38  | $V_{SS}$  | 158 | DQ30      | 67  | $V_{DD}$        | 187 | $V_{DD}$       | 98  | DQ48                  | 218 | DQ53        |
| 9   | DQ2       | 129 | DQ7      | 39  | DQ26      | 159 | DQ31      | 68  | NC              | 188 | A0             | 99  | DQ49                  | 219 | $V_{SS}$    |
| 10  | DQ3       | 130 | $V_{SS}$ | 40  | DQ27      | 160 | $V_{SS}$  | 69  | $V_{DD}$        | 189 | $V_{DD}$       | 100 | $V_{SS}$              | 220 | CK2         |
| 11  | $V_{SS}$  | 131 | DQ12     | 41  | $V_{SS}$  | 161 | CB4       | 70  | A10/AP          | 190 | BA1            | 101 | SA2                   | 221 | CK2         |
| 12  | DQ8       | 132 | DQ13     | 42  | CB0       | 162 | CB5       | 71  | BA0             | 191 | $V_{DDQ}$      | 102 | NC, TEST <sup>1</sup> | 222 | $V_{SS}$    |
| 13  | DQ9       | 133 | $V_{SS}$ | 43  | CB1       | 163 | $V_{SS}$  | 72  | $V_{DDQ}$       | 192 | RAS            | 103 | $V_{SS}$              | 223 | DM6         |
| 14  | $V_{SS}$  | 134 | DM1      | 44  | $V_{SS}$  | 164 | DM8       | 73  | WE              | 193 | <del>S</del> 0 | 104 | DQS6                  | 224 | NC          |
| 15  | DQS1      | 135 | NC       | 45  | DQS8      | 165 | NC        | 74  | CAS             | 194 | $V_{DDQ}$      | 105 | DQS6                  | 225 | $V_{SS}$    |
| 16  | DQS1      | 136 | $V_{SS}$ | 46  | DQS8      | 166 | $V_{SS}$  | 75  | $V_{DDQ}$       | 195 | ODT0           | 106 | $V_{SS}$              | 226 | DQ54        |
| 17  | $V_{SS}$  | 137 | CK1      | 47  | $V_{SS}$  | 167 | CB6       | 76  | <del>S</del> 1  | 196 | A13            | 107 | DQ50                  | 227 | DQ55        |
| 18  | NC        | 138 | CK1      | 48  | CB2       | 168 | CB7       | 77  | ODT1            | 197 | $V_{DD}$       | 108 | DQ51                  | 228 | $V_{SS}$    |
| 19  | NC        | 139 | $V_{SS}$ | 49  | CB3       | 169 | $V_{SS}$  | 78  | $V_{DDQ}$       | 198 | $V_{SS}$       | 109 | $V_{SS}$              | 229 | DQ60        |
| 20  | $V_{SS}$  | 140 | DQ14     | 50  | $V_{SS}$  | 170 | $V_{DDQ}$ | 79  | $V_{SS}$        | 199 | DQ36           | 110 | DQ56                  | 230 | DQ61        |
| 21  | DQ10      | 141 | DQ15     | 51  | $V_{DDQ}$ | 171 | CKE1      | 80  | DQ32            | 200 | DQ37           | 111 | DQ57                  | 231 | $V_{SS}$    |
| 22  | DQ11      | 142 | $V_{SS}$ | 52  | CKE0      | 172 | $V_{DD}$  | 81  | DQ33            | 201 | $V_{SS}$       | 112 | $V_{SS}$              | 232 | DM7         |
| 23  | $V_{SS}$  | 143 | DQ20     | 53  | $V_{DD}$  | 173 | NC        | 82  | $V_{SS}$        | 202 | DM4            | 113 | DQS7                  | 233 | NC          |
| 24  | DQ16      | 144 | DQ21     | 54  | NC        | 174 | A14       | 83  | DQS4            | 203 | NC             | 114 | DQS7                  | 234 | $V_{SS}$    |
| 25  | DQ17      | 145 | $V_{SS}$ | 55  | NC        | 175 | $V_{DDQ}$ | 84  | DQS4            | 204 | $V_{SS}$       | 115 | $V_{SS}$              | 235 | DQ62        |
| 26  | $V_{SS}$  | 146 | DM2      | 56  | $V_{DDQ}$ | 176 | A12       | 85  | $V_{SS}$        | 205 | DQ38           | 116 | DQ58                  | 236 | DQ63        |
| 27  | DQS2      | 147 | NC       | 57  | A11       | 177 | A9        | 86  | DQ34            | 206 | DQ39           | 117 | DQ59                  | 237 | $V_{SS}$    |
| 28  | DQS2      | 148 | $V_{SS}$ | 58  | A7        | 178 | $V_{DD}$  | 87  | DQ35            | 207 | $V_{SS}$       | 118 | $V_{SS}$              | 238 | $V_{DDSPD}$ |
| 29  | $V_{SS}$  | 149 | DQ22     | 59  | $V_{DD}$  | 179 | A8        | 88  | $V_{SS}$        | 208 | DQ44           | 119 | SDA                   | 239 | SA0         |
| 30  | DQ18      | 150 | DQ23     | 60  | A5        | 180 | A6        | 89  | DQ40            | 209 | DQ45           | 120 | SCL                   | 240 | SA1         |
|     |           |     |          |     |           |     |           | 90  | DQ41            | 210 | $V_{SS}$       |     |                       |     |             |

NC = No Connect, RFU = Reserved for Future Use

# 6.0 Pin Description

| Pin Name                       | Description                          | Pin Name           | Description                                                |
|--------------------------------|--------------------------------------|--------------------|------------------------------------------------------------|
| A0-A14                         | DDR2 SDRAM address bus               | CK0, CK1, CK2      | DDR2 SDRAM clocks (positive line of differential pair)     |
| BA0-BA2                        | DDR2 SDRAM bank select               | CK0, CK1, CK2      | DDR2 SDRAM clocks (negative line of differential pair)     |
| RAS                            | DDR2 SDRAM row address strobe        | SCL                | I <sup>2</sup> C serial bus clock for EEPROM               |
| CAS                            | DDR2 SDRAM column address strobe     | SDA                | I <sup>2</sup> C serial bus data line for EEPROM           |
| WE                             | DDR2 SDRAM wirte enable              | SA0-SA2            | I <sup>2</sup> C serial address select for EEPROM          |
| <del>S</del> 0, <del>S</del> 1 | DIMM Rank Select Lines               | V <sub>DD</sub> *  | DDR2 SDRAM core power supply                               |
| CKE0,CKE1                      | DDR2 SDRAM clock enable lines        | V <sub>DDQ</sub> * | DDR2 SDRAM I/O Driver power supply                         |
| ODT0, ODT1                     | On-die termination control lines     | $V_{REF}$          | DDR2 SDRAM I/O reference supply                            |
| DQ0 - DQ63                     | DIMM memory data bus                 | V <sub>SS</sub>    | Power supply return (ground)                               |
| CB0 - CB7                      | DIMM ECC check bits                  | V <sub>DDSPD</sub> | Serial EEPROM positive power supply                        |
| DQS0 - DQS8                    | DDR2 SDRAM data strobes              | NC                 | Spare Pins(no connect)                                     |
| DM(0-8)                        | DDR2 SDRAM data masks                | RESET              | Not used on UDIMM                                          |
| DQS0-DQS8                      | DDR2 SDRAM differential data strobes | TEST               | Used by memory bus analysis tools (unused on memory DIMMs) |

<sup>\*</sup>The  $\mathrm{V}_{\mathrm{DD}}$  and  $\mathrm{V}_{\mathrm{DDQ}}$  pins are tied to the single power-plane on PCB.



<sup>1.</sup> The TEST pin is reserved for bus analysis tools and is not connected on standard memory module products (DIMMs.)

# 7.0 Input/Output Function Description

| Symbol                              | Туре   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|-------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <u>CK</u> 0- <u>CK</u> 2<br>CK0-CK2 | Input  | CK and $\overline{\text{CK}}$ are differential clock inputs. All the SDRAM addr/cntl inputs are sampled on the crossing of positive edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of crossing)                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| CKE0-CKE1                           | Input  | Activates the SDRAM CK signal when high and deactivates the CK Signal When low. By deactivating the clocks, CKE low initiates the Powe Down mode, or the Self-Refresh mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| <u>\$</u> 0- <u>\$</u> 1            | Input  | Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disbled, new command are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| RAS, CAS, WE                        | Input  | RAS, CAS, and WE (ALONG WITH CS) define the command being entered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ODT0-ODT1                           | Input  | When high, termination resistance is enabled for all DQ, $\overline{DQ}$ and DM pins, assuming the function is enabled in the Extended Mode Register Set (EMRS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| V <sub>REF</sub>                    | Supply | Reference voltage for SSTL 18 inputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| V <sub>DDQ</sub>                    | Supply | Power supply for the DDR II SDRAM output buffers to provide improved noise immunity. For all current DDR2 unbuffered DIMM designs, $V_{\text{DDQ}}$ shares the same power plane as $V_{\text{DD}}$ pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| BA0-BA2                             | Input  | Selects which SDRAM BANK of four is activated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| A0-A14                              | Input  | During a Bank Activate command cycle, Address input defines the row address (RA0-RA14)  During a Read or Write command cycle, Address input defines the colum address, In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0-BA2 defines the bank to be precharged. If AP is low, autoprecharge is disbled. During a precharge command cycle, AP is used in conjunction with BA0-BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0-BA2. If AP is low, BA0, BA1, BA2 are used to define which bank to precharge. |  |  |  |  |  |
| DQ0-DQ63<br>CB0-CB7                 | In/Out | Data and Check Bit Input/Output pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| DM0-DM8                             | Input  | DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading.                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| V <sub>DD</sub> ,V <sub>SS</sub>    | Supply | Power and ground for DDR2 SDRAM input buffers, and core logic. $V_{DD}$ and $V_{DDQ}$ pins are tied to $V_{DD}/V_{DDQ}$ planes on these modules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| DQS0-DQS8<br>DQS0-DQS8              | In/Out | Data strobe for input and output data. For Rawcards using x16 orginized DRAMs DQ0-7 connect to the LDQS pin of the DRAMs and DQ8-17 connect to the UDQS pin of the DRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| SA0-SA2                             | Input  | These signals and tied at the system planar to either $V_{SS}$ or $V_{DD}$ to configure the serial SPD EERPOM address range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| SDA                                 | In/Out | This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to $V_{DD}$ to act as a pullup on the system board.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |



# 8.0 Functional Block Diagram:

### 8.1 4GB, 512Mx64 Module - M378T5263AZ(H)3





ODT0

ODT1

ODT: DDR2 SDRAMs D0 - D7

→ ODT : DDR2 SDRAMs D8 - D15

2. BAx, Ax,  $\overline{RAS}$ ,  $\overline{CAS}$ ,  $\overline{WE}$  resistors : 7.5 Ohms  $\pm$  5%.

### 8.2 4GB, 512Mx72 ECC Module - M391T5263AZ(H)3

(Populated as 2 rank of x8 DDR2 SDRAMs)



# 9.0 Absolute Maximum DC Ratings

| Symbol                            | Parameter                                                   | Rating          | Units | Notes |
|-----------------------------------|-------------------------------------------------------------|-----------------|-------|-------|
| $V_{DD}$                          | Voltage on V <sub>DD</sub> pin relative to V <sub>SS</sub>  | - 1.0 V ~ 2.3 V | V     | 1     |
| $V_{\mathrm{DDQ}}$                | Voltage on V <sub>DDQ</sub> pin relative to V <sub>SS</sub> | - 0.5 V ~ 2.3 V | V     | 1     |
| V <sub>DDL</sub>                  | Voltage on V <sub>DDL</sub> pin relative to V <sub>SS</sub> | - 0.5 V ~ 2.3 V | V     | 1     |
| V <sub>IN,</sub> V <sub>OUT</sub> | Voltage on any pin relative to V <sub>SS</sub>              | - 0.5 V ~ 2.3 V | V     | 1     |
| T <sub>STG</sub>                  | Storage Temperature                                         | -55 to +100     | °C    | 1, 2  |

#### Note:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.

# 10.0 AC & DC Operating Conditions

### 10.1 Recommended DC Operating Conditions (SSTL - 1.8)

| Symbol             | Parameter                 |                        | Rating                | Units                  | Notes |       |
|--------------------|---------------------------|------------------------|-----------------------|------------------------|-------|-------|
|                    |                           | Min.                   | Тур.                  | Max.                   | Onits | Notes |
| $V_{DD}$           | Supply Voltage            | 1.7                    | 1.8                   | 1.9                    | V     |       |
| $V_{\mathrm{DDL}}$ | Supply Voltage for DLL    | 1.7                    | 1.8                   | 1.9                    | V     | 4     |
| $V_{\mathrm{DDQ}}$ | Supply Voltage for Output | 1.7                    | 1.8                   | 1.9                    | V     | 4     |
| $V_{REF}$          | Input Reference Voltage   | 0.49*V <sub>DDQ</sub>  | 0.50*V <sub>DDQ</sub> | 0.51*V <sub>DDQ</sub>  | mV    | 1,2   |
| V <sub>TT</sub>    | Termination Voltage       | V <sub>REF</sub> -0.04 | $V_{REF}$             | V <sub>REF</sub> +0.04 | V     | 3     |

Note: There is no specific device  $V_{DD}$  supply voltage requirement for SSTL-1.8 compliance. However under all conditions  $V_{DDQ}$  must be less than or equal to  $V_{DD}$ .

- 2. Peak to peak AC noise on  $V_{REF}$  may not exceed +/-2%  $V_{REF}(DC)$ .
- 3.  $V_{TT}$  of transmitting device must track  $V_{REF}$  of receiving device.
- 4. AC parameters are measured with  $V_{DD}$ ,  $V_{DDQ}$  and  $V_{DDL}$  tied together.

<sup>1.</sup> The value of V<sub>REF</sub> may be selected by the user to provide optimum noise margin in the system. Typically the value of V<sub>REF</sub> is expected to be about 0.5 x V<sub>DDQ</sub> of the transmitting device and V<sub>REF</sub> is expected to track variations in V<sub>DDQ</sub>.

### 10.2 Operating Temperature Condition

| Symbol            | Parameter             | Rating  | Units | Notes |  |
|-------------------|-----------------------|---------|-------|-------|--|
| T <sub>OPER</sub> | Operating Temperature | 0 to 95 | °C    | 1, 2  |  |

#### Note:

- 1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51.2 standard.
- 2. At 85 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period (tREFI=3.9 us) is required, and to enter to self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.

### 10.3 Input DC Logic Level

| Symbol               | Parameter           | Min.                     | Max.                     | Units | Notes |
|----------------------|---------------------|--------------------------|--------------------------|-------|-------|
| V <sub>IH</sub> (DC) | DC input logic high | V <sub>REF</sub> + 0.125 | V <sub>DDQ</sub> + 0.3   | V     |       |
| V <sub>IL</sub> (DC) | DC input logic low  | - 0.3                    | V <sub>REF</sub> - 0.125 | V     |       |

### 10.4 Input AC Logic Level

| Symbol               | Parameter           | DDR                      | 2-533                    | DDR2-667,                | DDR2-800                 | Units | Notes |
|----------------------|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|-------|
| Зушьог               | Parameter           | Min.                     | Max.                     | Min. Max.                |                          | Onits | Notes |
| V <sub>IH</sub> (AC) | AC input logic high | V <sub>REF</sub> + 0.250 | -                        | V <sub>REF</sub> + 0.200 |                          | V     |       |
| V <sub>IL</sub> (AC) | AC input logic low  | -                        | V <sub>REF</sub> - 0.250 |                          | V <sub>REF</sub> - 0.200 | V     |       |

### 10.5 AC Input Test Conditions

| Symbol                  | Condition                               | Value                  | Units | Notes |
|-------------------------|-----------------------------------------|------------------------|-------|-------|
| $V_{REF}$               | Input reference voltage                 | 0.5 * V <sub>DDQ</sub> | V     | 1     |
| V <sub>SWING(MAX)</sub> | Input signal maximum peak to peak swing | 1.0                    | V     | 1     |
| SLEW                    | Input signal minimum slew rate          | 1.0                    | V/ns  | 2, 3  |

### Notes:

- 1. Input waveform timing is referenced to the input signal crossing through the  $V_{IH/IL}(AC)$  level applied to the device under test.
- 2. The input signal minimum slew rate is to be maintained over the range from  $V_{REF}$  to  $V_{IH}(AC)$  min for rising edges and the range from  $V_{REF}$  to  $V_{IL}(AC)$  max for falling edges as shown in the below figure.
- AC timings are referenced with input waveforms switching from V<sub>IL</sub>(AC) to V<sub>IH</sub>(AC) on the positive transitions and V<sub>IH</sub>(AC) to V<sub>IL</sub>(AC) on the negative transitions.



< AC Input Test Signal Waveform >

# **11.0 IDD Specification Parameters Definition** (IDD values are for full operating range of Voltage and Temperature)

| Symbol | Proposed Conditions                                                                                                                                                                                                                                                                      |                                                                           | Units | Note |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|------|
| IDD0   | Operating one bank active-precharge current; tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, CS Address bus inputs are SWITCHING; Data bus inputs are SWITCHING                                                                                                        | s is HIGH between valid commands;                                         | mA    |      |
| IDD1   | Operating one bank active-read-precharge current; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDT), tRCD(IDD); CKE is HIGH, CS is HIGH between valid commands; Address became as IDD4W                                                                          | DD), tRAS = tRASmin(IDD), tRCD = us inputs are SWITCHING; Data pattern is | mA    |      |
| IDD2P  | Precharge power-down current; All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bu FLOATING                                                                                                                                                                          | s inputs are STABLE; Data bus inputs are                                  | mA    |      |
| IDD2Q  | Precharge quiet standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH; Other control and bus inputs are FLOATING                                                                                                                                                      | d address bus inputs are STABLE; Data                                     | mA    |      |
| IDD2N  | Precharge standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH; Other control an Data bus inputs are SWITCHING                                                                                                                                                       | d address bus inputs are SWITCHING;                                       | mA    |      |
| IDDAD  | Active power-down current;                                                                                                                                                                                                                                                               | Fast PDN Exit MRS(12) = 0mA                                               | mA    |      |
| IDD3P  | All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING                                                                                                                                                                | Slow PDN Exit MRS(12) = 1mA                                               | mA    |      |
| IDD3N  | Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); Commands; Other control and address bus inputs are SWITCHING; Data b                                                                                                                        |                                                                           | mA    |      |
| IDD4W  | Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address buare SWITCHING                                                                                              |                                                                           | mA    |      |
| IDD4R  | Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDE max(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid comm ING; Data pattern is same as IDD4W                                                                            |                                                                           | mA    |      |
| IDD5B  | Burst auto refresh current;<br>tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIC<br>Other control and address bus inputs are SWITCHING; Data bus inputs are                                                                                                        |                                                                           | mA    |      |
| IDDA   | Self refresh current;                                                                                                                                                                                                                                                                    | Normal                                                                    | mA    |      |
| IDD6   | CK and $\overline{\text{CK}}$ at 0V; CKE $\leq$ 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING                                                                                                                                                    | Low Power                                                                 | mA    |      |
| IDD7   | Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCE(IDD), tRRD = tRRD(IDD), tFAW = tFAW(IDD), tRCD = 1*tCK(IDD); CK mands; Address bus inputs are STABLE during DESELECTS; Data pattern page for detailed timing conditions | mA                                                                        |       |      |



# 12.0 Operating Current Table :

# 12.1 M378T5263AZ(H)3: 4GB(256Mx8 \*16) Module

 $(TA=0^{\circ}C, V_{DD}=1.9V)$ 

| Symbol  | 800@CL=5 | 800@CL6 | 667@CL=5 | 533@CL=4 | Units | Notes |
|---------|----------|---------|----------|----------|-------|-------|
| Symbol  | CE7      | CF7     | CE6      | CD5      | Units | Notes |
| IDD0    | 1,240    | 1,240   | 1,160    | 1,080    | mA    |       |
| IDD1    | 1,440    | 1,440   | 1,320    | 1,240    | mA    |       |
| IDD2P   | 240      | 240     | 240      | 240      | mA    |       |
| IDD2Q   | 880      | 880     | 800      | 720      | mA    |       |
| IDD2N   | 960      | 960     | 880      | 800      | mA    |       |
| IDD3P-F | 800      | 800     | 640      | 640      | mA    |       |
| IDD3P-S | 288      | 288     | 288      | 288      | mA    |       |
| IDD3N   | 1,120    | 1,120   | 1,000    | 920      | mA    |       |
| IDD4W   | 1,840    | 1,840   | 1,640    | 1,440    | mA    |       |
| IDD4R   | 2,080    | 2,080   | 1,800    | 1,600    | mA    |       |
| IDD5    | 2,720    | 2,720   | 2,520    | 2,400    | mA    |       |
| IDD6    | 240      | 240     | 240      | 240      | mA    |       |
| IDD7    | 3,280    | 3,280   | 3,000    | 2,720    | mA    |       |

<sup>\*</sup> Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.

## 12.2 M391T5263AZ(H)3: 4GB(256Mx8 \*18) ECC Module

 $(TA=0^{\circ}C, V_{DD}=1.9V)$ 

| Symbol  | 800@CL=5 | 800@CL=6 | 667@CL=5 | 533@CL=4 | Units  | Notes |
|---------|----------|----------|----------|----------|--------|-------|
| Symbol  | CE7      | CF7      | CE6      | CD5      | Ullits | Notes |
| IDD0    | 1,395    | 1,395    | 1,305    | 1,215    | mA     |       |
| IDD1    | 1,620    | 1,620    | 1,485    | 1,395    | mA     |       |
| IDD2P   | 270      | 270      | 270      | 270      | mA     |       |
| IDD2Q   | 990      | 990      | 900      | 810      | mA     |       |
| IDD2N   | 1,080    | 1,080    | 990      | 900      | mA     |       |
| IDD3P-F | 900      | 900      | 720      | 720      | mA     |       |
| IDD3P-S | 324      | 324      | 324      | 324      | mA     |       |
| IDD3N   | 1,260    | 1,260    | 1,125    | 1,035    | mA     |       |
| IDD4W   | 2,070    | 2,070    | 1,845    | 1,620    | mA     |       |
| IDD4R   | 2,340    | 2,340    | 2,025    | 1,800    | mA     |       |
| IDD5    | 3,060    | 3,060    | 2,835    | 2,700    | mA     |       |
| IDD6    | 270      | 270      | 270      | 270      | mA     |       |
| IDD7    | 3,690    | 3,690    | 3,375    | 3,060    | mA     |       |

<sup>\*</sup> Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.



# 13.0 Input/Output Capacitance

 $(V_{DD}=1.8V, V_{DDQ}=1.8V, T_A=25^{\circ}C)$ 

| Parameter                                  |                 | Min     | Max      |       |
|--------------------------------------------|-----------------|---------|----------|-------|
| Non-ECC                                    | Symbol          | M378T52 | 63AZ(H)3 | Units |
|                                            | CCK0            | -       | 26       |       |
| Input capacitance, CK and CK               | CCK1            | -       | 28       |       |
|                                            | CCK2            | -       | 28       | pF    |
| Input capacitance, CKE and CS              | CI <sub>1</sub> | -       | 42       |       |
| Input capacitance, Addr, RAS, CAS, WE      | Cl <sub>2</sub> | -       | 42       |       |
| Input/output capacitance, DQ, DM, DQS, DQS | CIO             | -       | 10       |       |
| ECC                                        |                 | M391T52 | 63AZ(H)3 | Units |
|                                            | CCK0            | -       | 28       |       |
| Input capacitance, CK and CK               | CCK1            | -       | 28       |       |
|                                            | CCK2            | -       | 28       | pF    |
| Input capacitance, CKE and CS              | CI <sub>1</sub> | -       | 44       |       |
| Input capacitance, Addr, RAS, CAS, WE      | CI <sub>2</sub> | -       | 44       |       |
| Input/output capacitance, DQ, DM, DQS, DQS | CIO             | -       | 10       |       |

Note: DM is internally loaded to match DQ and DQS identically.

# 14.0 Electrical Characteristics & AC Timing for DDR2-800/667/533

 $(0 \text{ °C} \le T_{\text{OPER}} \le 95 \text{ °C}; V_{\text{DDQ}} = 1.8V \pm 0.1V; V_{\text{DD}} = 1.8V \pm 0.1V)$ 

## 14.1 Refresh Parameters by Device Density

| Parameter                              | Symbol |                                                                          | 256Mb | 512Mb | 1Gb   | 2Gb | 4Gb   | Units |
|----------------------------------------|--------|--------------------------------------------------------------------------|-------|-------|-------|-----|-------|-------|
| Refresh to active/Refresh command time | tRFC   |                                                                          | 75    | 105   | 127.5 | 195 | 327.5 | ns    |
| Average periodic refresh interval      | tREFI  | $0  ^{\circ}\text{C} \le \text{T}_{\text{CASE}} \le 85 ^{\circ}\text{C}$ | 7.8   | 7.8   | 7.8   | 7.8 | 7.8   | μS    |
| Average periodic refresh interval      | IKEFI  | 85 °C < T <sub>CASE</sub> ≤ 95°C                                         | 3.9   | 3.9   | 3.9   | 3.9 | 3.9   | μS    |

# 14.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin

| Speed                | DDR2- | 300(E7) | DDR2- | 800(F7)  | DDR2- | 667(E6)   | DDR2- | 533(D5)   |    |
|----------------------|-------|---------|-------|----------|-------|-----------|-------|-----------|----|
| Bin(CL - tRCD - tRP) | 5 - 9 | 5 - 5   | 6 -   | 6 - 6- 6 |       | 5 - 5 - 5 |       | 4 - 4 - 4 |    |
| Parameter            | min   | max     | min   | max      | min   | max       | min   | max       |    |
| tCK, CL=3            | 5     | 8       | -     | -        | 5     | 8         | 5     | 8         | ns |
| tCK, CL=4            | 3.75  | 8       | 3.75  | 8        | 3.75  | 8         | 3.75  | 8         | ns |
| tCK, CL=5            | 2.5   | 8       | 3     | 8        | 3     | 8         | 3.75  | 8         | ns |
| tCK, CL=6            | -     | -       | 2.5   | 8        | -     | -         | -     | -         | ns |
| tRCD                 | 12.5  | -       | 15    | -        | 15    | -         | 15    | -         | ns |
| tRP                  | 12.5  | ı       | 15    | -        | 15    | -         | 15    | -         | ns |
| tRC                  | 57.5  | 1       | 60    | -        | 60    | -         | 60    | -         | ns |
| tRAS                 | 45    | 70000   | 45    | 70000    | 45    | 70000     | 45    | 70000     | ns |



# 14.3 Timing parameters by speed grade (DDR2-800 and DDR2-667)

(Refer to notes for informations related to this table at the component datasheet)

| Parameter                                                      | Symbol    | DDR                        | 2-800    | DDR                        | 2-667    | Units    | Notes          |
|----------------------------------------------------------------|-----------|----------------------------|----------|----------------------------|----------|----------|----------------|
| Parameter                                                      | Symbol    | min                        | max      | min                        | max      | Units    | Notes          |
| DQ output access time from CK/CK                               | tAC       | -400                       | 400      | -450                       | 450      | ps       | 40             |
| DQS output access time from CK/CK                              | tDQSCK    | -350                       | 350      | -400                       | 400      | ps       | 40             |
| Average clock HIGH pulse width                                 | tCH(avg)  | 0.48                       | 0.52     | 0.48                       | 0.52     | tCK(avg) | 35,36          |
| Average clock LOW pulse width                                  | tCL(avg)  | 0.48                       | 0.52     | 0.48                       | 0.52     | tCK(avg) | 35,36          |
| CK half pulse period                                           | tHP       | Min(tCL(abs),<br>tCH(abs)) | х        | Min(tCL(abs),<br>tCH(abs)) | х        | ps       | 37             |
| Average clock period                                           | tCK(avg)  | 2500                       | 8000     | 3000                       | 8000     | ps       | 35,36          |
| DQ and DM input hold time                                      | tDH(base) | 125                        | х        | 175                        | Х        | ps       | 6,7,8,21,28,31 |
| DQ and DM input setup time                                     | tDS(base) | 50                         | х        | 100                        | х        | ps       | 6,7,8,20,28,31 |
| Control & Address input pulse width for each input             | tIPW      | 0.6                        | х        | 0.6                        | Х        | tCK(avg) |                |
| DQ and DM input pulse width for each input                     | tDIPW     | 0.35                       | х        | 0.35                       | Х        | tCK(avg) |                |
| Data-out high-impedance time from CK/CK                        | tHZ       | х                          | tAC(max) | Х                          | tAC(max) | ps       | 18,40          |
| DQS/DQS low-impedance time from CK/CK                          | tLZ(DQS)  | tAC(min)                   | tAC(max) | tAC(min)                   | tAC(max) | ps       | 18,40          |
| DQ low-impedance time from CK/CK                               | tLZ(DQ)   | 2* tAC(min)                | tAC(max) | 2* tAC(min)                | tAC(max) | ps       | 18,40          |
| DQS-DQ skew for DQS and associated DQ signals                  | tDQSQ     | Х                          | 200      | х                          | 240      | ps       | 13             |
| DQ hold skew factor                                            | tQHS      | х                          | 300      | Х                          | 340      | ps       | 38             |
| DQ/DQS output hold time from DQS                               | tQH       | tHP - tQHS                 | х        | tHP - tQHS                 | Х        | ps       | 39             |
| DQS latching rising transitions to associated clock edges      | tDQSS     | - 0.25                     | 0.25     | -0.25                      | 0.25     | tCK(avg) | 30             |
| DQS input HIGH pulse width                                     | tDQSH     | 0.35                       | Х        | 0.35                       | Х        | tCK(avg) |                |
| DQS input LOW pulse width                                      | tDQSL     | 0.35                       | х        | 0.35                       | Х        | tCK(avg) |                |
| DQS falling edge to CK setup time                              | tDSS      | 0.2                        | Х        | 0.2                        | Х        | tCK(avg) | 30             |
| DQS falling edge hold time from CK                             | tDSH      | 0.2                        | х        | 0.2                        | Х        | tCK(avg) | 30             |
| Mode register set command cycle time                           | tMRD      | 2                          | х        | 2                          | Х        | nCK      |                |
| MRS command to ODT update delay                                | tMOD      | 0                          | 12       | 0                          | 12       | ns       | 32             |
| Write postamble                                                | tWPST     | 0.4                        | 0.6      | 0.4                        | 0.6      | tCK(avg) | 10             |
| Write preamble                                                 | tWPRE     | 0.35                       | х        | 0.35                       | х        | tCK(avg) |                |
| Address and control input hold time                            | tIH(base) | 250                        | х        | 275                        | х        | ps       | 5,7,9,23,29    |
| Address and control input setup time                           | tlS(base) | 175                        | Х        | 200                        | х        | ps       | 5,7,9,22,29    |
| Read preamble                                                  | tRPRE     | 0.9                        | 1.1      | 0.9                        | 1.1      | tCK(avg) | 19,41          |
| Read postamble                                                 | tRPST     | 0.4                        | 0.6      | 0.4                        | 0.6      | tCK(avg) | 19,42          |
| Activate to activate command period for 1KB page size products | tRRD      | 7.5                        | х        | 7.5                        | х        | ns       | 4,32           |
| Activate to activate command period for 2KB page size products | tRRD      | 10                         | Х        | 10                         | Х        | ns       | 4,32           |

| D                                                                 | 0      | DDR                  | 2-800                       | DDR                  | 2-667                       | Unito |          |
|-------------------------------------------------------------------|--------|----------------------|-----------------------------|----------------------|-----------------------------|-------|----------|
| Parameter                                                         | Symbol | min                  | max                         | min                  | max                         | Units | Notes    |
| Four Activate Window for 1KB page size products                   | tFAW   | 35                   | х                           | 37.5                 | х                           | ns    | 32       |
| Four Activate Window for 2KB page size products                   | tFAW   | 45                   | х                           | 50                   | х                           | ns    | 32       |
| CAS to CAS command delay                                          | tCCD   | 2                    | х                           | 2                    | х                           | nCK   |          |
| Write recovery time                                               | tWR    | 15                   | х                           | 15                   | х                           | ns    | 32       |
| Auto precharge write recovery + precharge time                    | tDAL   | WR + tnRP            | х                           | WR + tnRP            | х                           | nCK   | 33       |
| Internal write to read command delay                              | tWTR   | 7.5                  | х                           | 7.5                  | х                           | ns    | 24,32    |
| Internal read to precharge command delay                          | tRTP   | 7.5                  | х                           | 7.5                  | х                           | ns    | 3,32     |
| Exit self refresh to a non-read command                           | tXSNR  | tRFC + 10            | х                           | tRFC + 10            | х                           | ns    | 32       |
| Exit self refresh to a read command                               | tXSRD  | 200                  | х                           | 200                  | Х                           | nCK   |          |
| Exit precharge power down to any command                          | tXP    | 2                    | х                           | 2                    | х                           | nCK   |          |
| Exit active power down to read command                            | tXARD  | 2                    | х                           | 2                    | х                           | nCK   | 1        |
| Exit active power down to read command (slow exit, lower power)   | tXARDS | 8 - AL               | х                           | 7 - AL               | х                           | nCK   | 1,2      |
| CKE minimum pulse width (HIGH and LOW pulse width)                | tCKE   | 3                    | х                           | 3                    | х                           | nCK   | 27       |
| ODT turn-on delay                                                 | tAOND  | 2                    | 2                           | 2                    | 2                           | nCK   | 16       |
| ODT turn-on                                                       | tAON   | tAC(min)             | tAC(max)+0.7                | tAC(min)             | tAC(max)+0.7                | ns    | 6,16,40  |
| ODT turn-on (Power-Down mode)                                     | tAONPD | tAC(min)+2           | 2*tCK(avg)<br>+tAC(max)+1   | tAC(min)+2           | 2*tCK(avg)<br>+tAC(max)+1   | ns    |          |
| ODT turn-off delay                                                | tAOFD  | 2.5                  | 2.5                         | 2.5                  | 2.5                         | nCK   | 17,45    |
| ODT turn-off                                                      | tAOF   | tAC(min)             | tAC(max)+0.6                | tAC(min)             | tAC(max)+0.6                | ns    | 17,43,45 |
| ODT turn-off (Power-Down mode)                                    | tAOFPD | tAC(min)+2           | 2.5*tCK(avg)<br>+tAC(max)+1 | tAC(min)+2           | 2.5*tCK(avg)<br>+tAC(max)+1 | ns    |          |
| ODT to power down entry latency                                   | tANPD  | 3                    | х                           | 3                    | х                           | nCK   |          |
| ODT power down exit latency                                       | tAXPD  | 8                    | х                           | 8                    | х                           | nCK   |          |
| OCD drive mode output delay                                       | tOIT   | 0                    | 12                          | 0                    | 12                          | ns    | 32       |
| Minimum time clocks remains ON after CKE asynchronously drops LOW | tDelay | tIS+tCK(avg)<br>+tIH | x                           | tlS+tCK(avg)<br>+tlH | х                           | ns    | 15       |

# 14.4 Timing parameters by speed grade (DDR2-533)

(Refer to notes for informations related to this table at the component datasheet)

| 2                                                          | 0          | DDR2          | -533     |       | Notes       |
|------------------------------------------------------------|------------|---------------|----------|-------|-------------|
| Parameter                                                  | Symbol     | min           | max      | Units | Notes       |
| DQ output access time from CK/CK                           | tAC        | -500          | 500      | ps    |             |
| DQS output access time from CK/CK                          | tDQSCK     | -450          | 450      | ps    |             |
| CK HIGH pulse width                                        | tCH        | 0.45          | 0.55     | tCK   |             |
| CK LOW pulse width                                         | tCL        | 0.45          | 0.55     | tCK   |             |
| CK half pulse period                                       | tHP        | Min(tCL, tCH) | х        | ps    | 11,12       |
| Clock cycle time, CL=x                                     | tCK        | 3750          | 8000     | ps    | 15          |
| DQ and DM input hold time (differential strobe)            | tDH(base)  | 225           | х        | ps    | 6,7,8,21,28 |
| DQ and DM input setup time (differential strobe)           | tDS(base)  | 100           | х        | ps    | 6,7,8,20,28 |
| DQ and DM input hold time (single-ended strobe)            | tDH1(base) | -25           | х        | ps    | 6,7,8,26    |
| DQ and DM input setup time (single-ended strobe)           | tDS1(base) | -25           | х        | ps    | 6,7,8,25    |
| Control & Address input pulse width for each input         | tIPW       | 0.6           | х        | tCK   |             |
| DQ and DM input pulse width for each input                 | tDIPW      | 0.35          | х        | tCK   |             |
| Data-out high-impedance time from CK/CK                    | tHZ        | х             | tAC(max) | ps    | 18          |
| DQS(/DQS) low-impedance time from CK/CK                    | tLZ(DQS)   | tAC(min)      | tAC(max) | ps    | 18          |
| DQ low-impedance time from CK/CK                           | tLZ(DQ)    | 2* tAC(min)   | tAC(max) | ps    | 18          |
| DQS-DQ skew for DQS and associated DQ signals              | tDQSQ      | х             | 300      | ps    | 13          |
| DQ hold skew factor                                        | tQHS       | х             | 400      | ps    | 12          |
| DQ/DQS output hold time from DQS                           | tQH        | tHP - tQHS    | х        | ps    |             |
| DQS latching rising transitions to associated clock edges  | tDQSS      | -0.25         | 0.25     | tCK   |             |
| DQS input HIGH pulse width                                 | tDQSH      | 0.35          | х        | tCK   |             |
| DQS input LOW pulse width                                  | tDQSL      | 0.35          | х        | tCK   |             |
| DQS falling edge to CK setup time                          | tDSS       | 0.2           | х        | tCK   |             |
| DQS falling edge hold time from CK                         | tDSH       | 0.2           | х        | tCK   |             |
| Mode register set command cycle time                       | tMRD       | 2             | х        | tCK   |             |
| MRS command to ODT update delay                            | tMOD       | 0             | 12       | ns    |             |
| Write postamble                                            | tWPST      | 0.4           | 0.6      | tCK   | 10          |
| Write preamble                                             | tWPRE      | 0.35          | х        | tCK   |             |
| Address and control input hold time                        | tIH(base)  | 375           | х        | ps    | 5,7,9,23    |
| Address and control input setup time                       | tIS(base)  | 250           | Х        | ps    | 5,7,9,22    |
| Read preamble                                              | tRPRE      | 0.9           | 1.1      | tCK   | 19          |
| Read postamble                                             | tRPST      | 0.4           | 0.6      | tCK   | 19          |
| Active to active command period for 1KB page size products | tRRD       | 7.5           | Х        | ns    | 4           |
| Active to active command period for 2KB page size products | tRRD       | 10            | х        | ns    | 4           |

| Parameter                                                         | Symbol | DDR2-533    |                       | Haita | N     |
|-------------------------------------------------------------------|--------|-------------|-----------------------|-------|-------|
|                                                                   |        | min         | max                   | Units | Notes |
| Four Activate Window for 1KB page size products                   | tFAW   | 37.5        | х                     | ns    |       |
| Four Activate Window for 2KB page size products                   | tFAW   | 50          | х                     | ns    |       |
| CAS to CAS command delay                                          | tCCD   | 2           | х                     | tCK   |       |
| Write recovery time                                               | tWR    | 15          | х                     | ns    |       |
| Auto precharge write recovery + precharge time                    | tDAL   | WR+tRP      | х                     | tCK   | 14    |
| Internal write to read command delay                              | tWTR   | 7.5         | х                     | ns    | 24    |
| Internal read to precharge command delay                          | tRTP   | 7.5         | х                     | ns    | 3     |
| Exit self refresh to a non-read command                           | tXSNR  | tRFC + 10   | х                     | ns    |       |
| Exit self refresh to a read command                               | tXSRD  | 200         | х                     | tCK   |       |
| Exit precharge power down to any non-read command                 | tXP    | 2           | х                     | tCK   |       |
| Exit active power down to read command                            | tXARD  | 2           | х                     | tCK   | 1     |
| Exit active power down to read command (slow exit, lower power)   | tXARDS | 6 - AL      | х                     | tCK   | 1,2   |
| CKE minimum pulse width (HIGH and LOW pulse width)                | tCKE   | 3           | х                     | tCK   | 27    |
| ODT turn-on delay                                                 | tAOND  | 2           | 2                     | tCK   | 16    |
| ODT turn-on                                                       | tAON   | tAC(min)    | tAC(max)+1            | ns    | 16    |
| ODT turn-on (Power-Down mode)                                     | tAONPD | tAC(min)+2  | 2tCK+<br>tAC(max)+1   | ns    |       |
| ODT turn-off delay                                                | tAOFD  | 2.5         | 2.5                   | tCK   | 17,44 |
| ODT tum-off                                                       | tAOF   | tAC(min)    | tAC(max)<br>+ 0.6     | ns    | 17,44 |
| ODT turn-off (Power-Down mode)                                    | tAOFPD | tAC(min)+2  | 2.5tCK+<br>tAC(max)+1 | ns    |       |
| ODT to power down entry latency                                   | tANPD  | 3           | х                     | tCK   |       |
| ODT power down exit latency                                       | tAXPD  | 8           | х                     | tCK   |       |
| OCD drive mode output delay                                       | tOIT   | 0           | 12                    | ns    | 32    |
| Minimum time clocks remains ON after CKE asynchronously drops LOW | tDelay | tIS+tCK+tIH | х                     | ns    | 15    |

# 15.0 Physical Dimensions:

# 256Mbx8 based 512Mx64(x72) Module(2 Rank)

# - M378(91)T5263AZ(H)3









The used device is 256M x8 DDR2 SDRAM, FBGA. DDR2 SDRAM Part NO : K4T2G084QA