计算机科学与技术学院/人工智能学院 学业与发展支持中心

								第1页	(共10页)
二〇一八~	二〇一分	1.学年 第	第二学	^期 《离	散数	学 I (1	l)》模	拟考	试试题
	答	案详解	7	编题日	期: 第	7周	试卷类5	型: A	
学号				每格填 ² 一位数 ²					
题号	_	=	Ξ	四	五.	六	七	八	总分
得分									
	1	_	1 (2.4	(1) D	∃ ∧ 1.4	5.4.元口	D (.		ı. 1 ∧2
本题分数	10				ŧА ДΪ	小大糸日	. K={ <x,< td=""><td>y> y-x=</td><td>$\{1\}$,求 A^2,</td></x,<>	y> y-x=	$\{1\}$,求 A^2 ,
得 分		R^{-1}	, $ts(R)$,	\mathbb{R}^2					
解: A ² = {<3,3: R ⁻¹ = {<4,3> ts(R)={<3,4 R ² = {<3,5:	>,<5,4>} >,<4,5>							,5>}	

本题分	10	
得	分	

二、R 是集合 A 上的关系,证明 tr(R)=rt(R)

证明:①先证 tr(R)⊆rt(R)

- $:R\subseteq t(R)$
- $r(R) \subseteq rt(R)$
- $\therefore tr(R) \subseteq trt(R)$
- :t(R)(tra)
- rt(R)(tra)
- :trt(R)=rt(R)
- \therefore tr(R) \subseteq rt(R)

②再证 rt(R)⊆tr(R)

- $:R\subseteq r(R)$
- $\therefore t(R) \subseteq tr(R)$
- :rt(R) \subseteq rtr(R)
- r(R)(ref)
- $\therefore tr(R)(ref)$
- $\therefore rtr(R) = tr(R)$
- $\therefore rt(R) \subseteq tr(R)$

综上所述, tr(R)=rt(R) 成立

本题分数		10
得	分	

三、用外延法证明:

- 1) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2) 若 AUB=A∩B,则 A=B

1) 证明:

① 先证 A∩(BUC) ⊆ (A∩B) U (A∩C)

Let $a \in A \cap (BUC)$

∴ a ∈A & a∈BUC

 \therefore a \in B or a \in C

Case1: a ∈B

∴a ∈A∩B

 $a \in (A \cap B) \cup (A \cap C)$

Case2: $a \in C$

∴a ∈A∩C

 \therefore a \in (A\cap B) U (A\cap C)

By case1,case2:

 $a \in (A \cap B) \cup (A \cap C)$

∴A∩(BUC)⊆(A∩B)U(A∩C)成立

② 再证(A \cap B) U (A \cap C) \subseteq A \cap (BUC)

Let $a \in (A \cap B) \cup (A \cap C)$

 \therefore a \in A \cap B or a \in A \cap C

Case1: $a \in A \cap B$

∴a ∈A & a ∈B

∴a ∈BUC

∴a ∈A \cap (BUC)

Case2: $a \in A \cap C$

∴a ∈A & a ∈C

∴a ∈BUC

∴a ∈A∩(BUC)

By case1, case2:

 $a \in A \cap (BUC)$

∴(A∩B) U (A∩C) ⊆ A∩(BUC)成立

③ 综上所述, AN(BUC) =(ANB) U (ANC)成立

2) 证明:

- ① 先证 A⊆B
 - Let $a \in A$
 - ∴a∈AUB
- 又∵AUB=A∩B
 - ∴a∈A∩B
 - ∴a∈B
 - ∴A⊆B 成立
- ② 再证 B⊆A
 - Let a∈B
 - ∴a∈AUB
- 又::AUB=A∩B
 - ∴a∈A∩B
 - ∴a∈A
 - ∴B⊆A 成立
- ③ 综上所述, A=B 成立

本题分数		10
得	分	

四、f 和 g 都是集合 A 上的映射,证明: fUg 是 A 上的映射当 且仅当 f=g.

证明:

- ① 先证充分性
 - ∵f=g
 - ∴fUg=f or g

又:f和g都是集合A上的映射

- ::fUg是A上的映射
- ② 再证必要性

(反证法)

假设 f≠g

则ョaEA 使得

 $f(a)=b_1 \perp g(a)=b_2 \quad (b_1 \neq b_2)$

 \therefore fUg(a)=b₁ or b₂

此与fUg是A上的映射矛盾,

 \therefore f=g

综合①②, fUg 是 A 上的映射当且仅当 f=g.成立

本题分数		10	
得	分		

五、偏序<A,R>的哈斯图如下所示,求A,R,{2,4,6}的最大元、极大元、上界、上确界(最小上界)

解:

A={2,3,4,6,8,9,16,24}

R=I_AU{<3,6>,<3,9>,<2,4>,<2,6>,<2,8>,<2,16>,<2,24>,<4,8>,<4,16>,<4,24>,<6,24>,<8,16>,<8,24>}

最大元:无

极大元:4、6

上界:24

上确界: 24

本题分数		10
得	分	

六、R 和 S 是集合 A 上的等价关系,A/R ={{1,2},{3,4},{5}} A/S={{1},{2,3,4,5}}

(1) $(A/R) \cap (A/S)$ (2) U(A/R) (3) R-S (4) $A/(R \cap S)$

解:

- ③ Ø
- **4 1,2,3,4,5**}
- ⑤ R={<1,1>,<1,2>,<2,1>,<2,2>,<3,3>,<3,4>,<4,3>,<4,4>,<5,5>} S={<1,1>,<2,2>,<2,3>,<2,4>,<2,5>,<3,2>,<3,3>,<3,4>,<3,5>,<4,2>, <4,3>,<4,4>,<4,5>,<5,2>,<5,3>,<5,4>,<5,5>} R-S={<1,2>,<2,1>}

本题分数	10
得 分	

七、 $f: A \rightarrow B$,对任意 $x \in A$,令 $B_x = \{y | y \in A$ 且 $f(x) = f(y)\}$, $\Pi = \{B_x | x \in A\}$,证明 Π 是 A 的划分。

证明:

- ① 对 $\forall Bx \in \Pi$, $x \in Bx$
 - ∴Bx≠Ø
- ② :∏={B_x |x∈A} 对∀x∈A,定∃Bi, 使得 x∈ Bi ∴∪∏=∪B_x=A
- ③ (反证法)

对 $\forall B_{x1}$ 、 B_{x2} ∈ Π ($B_{x1}\neq B_{x2}$),假设 $B_{x1}\cap B_{x2}\neq\emptyset$

∴∀y∈Bx1∩Bx2

有 $f(x_1)=f(y),f(x_2)=f(y)$

 $f(x_1)=f(x_2)$

 $x_1 \in f(x_2)$

Let a∈Bx1

 $f(a) = f(x_1) = f(x_2)$

∴a∈Bx2

∴Bx1⊑ Bx2

同理, Bx2⊑ Bx1

 \therefore Bx1=Bx2

此与 Bx1≠Bx2 矛盾

∴Bx1 \cap Bx2= Ø

综合①②③, ∏是 A 的划分。

本题分	30	
得	分	

八、用斜形方法证明下列推理关系,第 2 题和第 3 题可用命题逻辑自然推理系统中的所有定理以及谓词逻辑自然推理系统中的以下两条定理:

 $\neg \exists x A(x) \mapsto \forall x \neg A(x)$ 和 $\exists x \neg A(x) \mapsto \neg \forall x A(x)$ (30 分)

- 1) AVB $\vdash \vdash \neg A \rightarrow B$
- 2) $A \land \exists x B(x) \vdash \exists x (A \land B(x))$
- 3) $\forall X(A(x) \rightarrow B) \vdash \neg \exists x A(x) \lor B$

```
(F) AA EXB(X)
                A(S)
                                                         (1. N)
                                              (2) A
                  7A (S)
                                              (1. N) (x) BXE (8)
                   B(1, 2, A, 7A+B)
                                                       B(a) (s) (af 1.3.6.7)
               7A→B(2,3, →+)
                                                      ANB(0) (2,4,1+)
           7A>B (5, B+A>B)
                                                       (+E, 2) ((x)8 (A) XE
     17) AVB
                                             P 3x(AVB(X))
     (8) 7A→B
                                              ((X)BAA) XE (I)
  (4) 10 7A -> B
              7(AUB) (S)
                                                       AAB(a) (S) (a. 6. 5. 6. 7)
                   A(S)
     137
                                                       A
                                                                 (2. N-)
                   AVB (3, V+)
                                                                 (2, 1)
                                                       B(a)
             7A (2,3,4,7+)
                                                      3xB(x)
                                                                (4, 3^{\dagger})
                                              (5)
             B (1.5, -)
    (6)
                                                      AA 3xB(x) (3.6.1+)
            AUB (6, V+)
    (7)
                                              (DAA 3xB(X)
    (8) AVB (2,7,7)
多 证明: (F)
                                              (4):
    (A(x)→B)
                                               OV (X) AXET O
              7(7 3x A(x) VB) (S)
                                                              (S) (X)ARET
               BYA(X)A7B
    (3)
                                                              UX TA(X) (2, T∃XA(X) → UX TA(X)
                                               (3)
               (TA.E) (X) AXE
                                                               TA(a) (3, 4-)
                     (3. N)
               TB
                                                                A(a)→B (4. 否定前件律)
                                               (5)
                      A(a) (s) (a £ 4.8.9)
   663
                                                           B(S)
                                               (6)
   (7)
                     A(a) → B (1, 4-)
                                                        A(a)→B (肯定后件律)
   (8)
                      B
                            (6.7.→")
                                               (8) A(a) → B (a∈1)
              B (6,8, 3-)
   19)
                                               (9) yx (A(x)→B) (1,8,4+)
   (0) TEXA(X) BU (2,6,9,7)
```