GWAS for Ordinal Phenotypes with OrdinalGWAS.jl

OpenMendel Workshop
ASHG Annual Meeting 2020
Chris German

Motivation

Ordinal phenotypes, traits that take ordered, discrete values naturally occur in many health related studies

- Common in complex diseases where a binary status may not be suitable (stages of cancer)
- Electronic health record phenotyping algorithms often use many variables and have uncertainty when it comes to binary labeling
- Examples of ordinal outcomes:
 - Disease severity/progression (undiagnosed, pre-disease, mild, moderate, severe)
 - Disease likelihood (unlikely, possible, probable, certain)

How to conduct GWAS with ordinal traits?

1. Dichotomize the ordinal trait for case/control GWAS

Run sets of case/control GWAS and look at overlap

Exclude individuals or make arbitrary cutpoints

How to conduct GWAS with ordinal traits?

- Treat ordinal trait as linear
- Violates assumptions of linear regression is the distance between outcomes equal? control and pre-disease same as mild and moderate?

How to conduct GWAS with ordinal traits?

3. Use a model **for** ordinal data

OrdinalGWAS.jl uses an ordered multinomial model:

- Assume trait Y takes J ordinal values
- Cumulative probabilities are linked to covariates \mathbf{x}_i and SNPs \mathbf{g}_i via $\operatorname{logit}[\mathbb{P}(Y_i \leq j)] = \theta_j \mathbf{x}_i^T \boldsymbol{\beta} \mathbf{g}_i^T \boldsymbol{\beta}_{\mathbf{g}}, \quad j = 1, \dots, J-1,$
- Intercepts $\theta_1 \leq \cdots \leq \theta_{J-1}$ enforces order between categories, β and β_g are the regression coefficients of covariates and SNP(s) repspectively

Implementation

- For GWAS, we develop efficient score test (requires only null model to be fit) for testing:
 - Single SNPs
 - SNP sets (rare variants)
 - Gene-by-environment interactions
- Each test scales linearly with sample size
- Recommended practice:
 - Perform score test for genome-wide scan
 - Re-test the most significant ones using the likelihood ratio test (slower but higher power)
- Hypertension GWAS on a UK Biobank sample (~185,000 individuals and 460,000 SNPs) took 181 minutes on a standard PC

Usage

- OrdinalGWAS.jl currently works with PLINK and VCF Files
- Straightforward usage, specify the null model formula, covariate file, and genetic data file basename (no extension)

```
using OrdinalGWAS
ordinalgwas(@formula(hypertension ~ sex), "data/covariate.txt", "data/hapmap3")
```

StatsModels.TableRegressionModel{OrdinalMultinomialModel{Int64,Float64,LogitLink},Array{Float64,2}}

hypertension ~ sex

Coefficients:

	Estimate	Std.Error	t value	Pr(> t)
<pre>intercept1 2 intercept2 3 intercept3 4 sex</pre>	-1.48564	0.358891	-4.13952	<1e-4
	-0.569479	0.341044	-1.66981	0.0959
	0.429815	0.339642	1.26549	0.2066
	0.424656	0.213914	1.98517	0.0480

Usage

• OrdinalGWAS.jl produces an output file of each SNP's results

```
using CSV
results = CSV.read("ordinalgwas.pval.txt")
first(sort(results, :pval), 8) # sort and display top 8 p-values
```

8 rows × 6 columns

chr pos		snpid	maf	hwepval	pval	
	Int64	Int64	String	Float64	Float64	Float64
1	7	41152376	rs28880	0.337963	0.805237	1.30801e-6
2	6	7574576	rs1885466	0.177469	0.762069	6.53672e-6
3	3	36821790	rs4678553	0.234568	0.109467	9.66474e-6
4	1	1168108	rs11260566	0.191589	0.128568	1.21687e-5
5	4	11017683	rs16881446	0.275542	0.894275	1.80275e-5
6	23	121048059	rs1937165	0.43808	3.95961e-16	2.09895e-5
7	6	52474721	rs2073183	0.182663	0.507777	2.68445e-5
8	1	967643	rs2710875	0.324074	4.07625e-7	3.10828e-5

using MendelPlots
manhattan(results)

Usage

• Top SNPs can be selected, and rerun using LRT in OrdinalGWAS.jl to get effect size estimates

	chr	pos	snpid	maf	hwepval	effect	pval
	Int64	Int64	String	Float64	Float64	Float64	Float64
1	1	967643	rs2710875	0.324074	4.07625e-7	-0.648856	1.80505e-5
2	1	1168108	rs11260566	0.191589	0.128568	-0.915723	5.87338e-6
3	3	36821790	rs4678553	0.234568	0.109467	0.742495	1.13038e-5
4	4	11017683	rs16881446	0.275542	0.894275	-0.787058	1.11054e-5
5	5	3739190	rs12521166	0.0679012	0.186136	1.14689	4.78129e-5
6	6	7574576	rs1885466	0.177469	0.762069	0.875062	7.27235e-6
7	6	52474721	rs2073183	0.182663	0.507777	0.779079	5.06939e-5
8	7	41152376	rs28880	0.337963	0.805237	-0.814634	9.18013e-7
9	7	84223996	rs4128623	0.0787037	0.0218347	1.00222	6.5879e-5
10	23	121048059	rs1937165	0.43808	3.95961e-16	0.539231	1.97546e-5

Other Features

We go over the following features in the binder tutorial:

- Using VCF Files
- Filtering:
 - Restricting to some individuals
 - Restricting to some SNPs
- Link functions
- GxE testing
- SNP-set testing

Methods and applications of OrdinalGWAS.jl are detailed in the publication:

• German CA, Sinsheimer JS, Klimentidis YC, Zhou H, Zhou JJ. (2020) Ordered multinomial regression for genetic association analysis of ordinal phenotypes at Biobank scale. Genetic Epidemiology. 44:248-260. https://doi.org/10.1002/gepi.22276