Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Standar	d '	V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} -3 \\ -2 \\ 5 \end{bmatrix}$].

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.

Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, and $\begin{bmatrix} -3\\-2\\5 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Standar	d V	$\sqrt{2}$.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} -3 \\ -2 \\ 5 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

$\begin{array}{c} {\bf MASTERY~QUIZ~DAY~9} \\ {\bf Version~4} \end{array}$

Math 237 – Linear Algebra Fall 2017

		Mark:							
Standard	d V2.								
Determine if	$\begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix} $ can $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	be writte	en as a linear combination of the vectors	$\begin{bmatrix} 5 \\ 2 \\ -3 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

|--|

Name:	
J#:	Dr. Clontz
Date:	

$\begin{array}{c} \textbf{MASTERY QUIZ DAY 9} \\ \textbf{Version 5} \end{array}$

Math 237 – Linear Algebra Fall 2017

Standard V2.		Mark:							
Determine if	$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} $ can	be writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

 ${\bf Additional\ Notes/Marks}$

Math 237 – Linear Algebra Fall 2017

Version 6

Standard V2.		Mark:								
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	