Lesson 10: Schrödinger equation in three dimensions

Clara E. Alonso Alonso

May 3, 2012

Introduction	2
	. 3
	. 4
Particle in a three-dimensional box	5
	. 6
	. 7
	. 8
	. 9
	10
Spherical symmetric potentials	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
Angular momentum	37

Bibliography																		4 ⊿	•																									
																		 																							٠	٠.	 4	4
																																											4	
																																											4	
																		 								 																	 4	•
																 		 								 																	 4	(
																		 								 																	 3	Ć
																		 								 																	 3	8

Introduction 2 / 46

Let's assume $V(\vec{r}) = V_x(x) + V_y(y) + V_z(z)$

T. I. Schrödinger equation

$$\left[-\frac{\hbar^2}{2m} \, \nabla^2 \, + V_x(x) \, + \, V_y(y) \, + \, V_z(z) \right] \Psi(\vec{r}) \, = \, E \Psi(\vec{r})$$

We search for solutions of type

$$\Psi(\vec{r}) = X(x) Y(y) Z(z)$$

Separation of variables, Schrodinger Eq. is linear and homogeneous in $\Psi(\vec{r})$

$$\begin{split} -\frac{\hbar^2}{2m} \left[Y Z \frac{d^2 X}{dx^2} + X Z \frac{d^2 Y}{dy^2} + X Y \frac{d^2 Z}{dz^2} \right] + Y Z V_x(x) X + X Z V_y(y) Y + X Y V_z(z) Z = E \ X Y Z \\ -\frac{\hbar^2}{2m} \left[\frac{1}{X} \frac{d^2 X}{dx^2} + \frac{1}{Y} \frac{d^2 Y}{dy^2} + \frac{1}{Z} \frac{d^2 Z}{dz^2} \right] + V_x(x) + V_y(y) \ + V_z(z) = E \end{split}$$

3 / 46

Assume that we vary only $x \rightarrow$

$$-rac{\hbar^2}{2m}rac{1}{X}rac{d^2X}{dx^2} \,+\, V_x(x) \quad o \; {
m does \; not \; vary \; because}$$

$$-\frac{\hbar^2}{2m} \left[\frac{1}{Y} \frac{d^2 Y}{dy^2} + \frac{1}{Z} \frac{d^2 Z}{dz^2} \right] + V_y(y) + V_z(z) - E$$

does not vary $\qquad \rightarrow \qquad - rac{\hbar^2}{2m} rac{1}{X} rac{d^2 X}{dx^2} \ + \ V_x(x) \ = \ E_x \quad {
m constant}$

analogously
$$\quad \rightarrow \quad -\frac{\hbar^2}{2m}\frac{1}{Y}\frac{d^2Y}{dy^2} \,+\, V_y(y) \,=\, E_y \quad {\rm constant}$$

$$-rac{\hbar^2}{2m}rac{1}{Z}rac{d^2Z}{dz^2}\,+\,V_z(z)\,=\,E_z\,\,$$
 constant

where $E_x + E_y + E_z = E$

We have to solve three one-dimensional Schrödinger equations

Let's consider a box with edges 2a, 2b and 2c origin centered

Potential that describes the particle confined in such a box

-a < x < a ; $V_x(x) = \infty$ $|x| \ge a$

 $V_y(y) = 0$ -b < y < b ; $V_y(y) = \infty$ $|x| \ge a$ $V_z(z) = 0$ -c < z < c ; $V_z(z) = \infty$ $|z| \ge c$

The solutions are obtained right away since the equations and boundary conditions are the ones of the 1D infinite

$$X(x) = \frac{1}{\sqrt{a}} \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \frac{n_x \pi x}{2a} \; ; \; E_x = \frac{\pi^2 \hbar^2}{8ma^2} n_x^2$$

6 / 46

$$Y(y) = \frac{1}{\sqrt{b}} \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \frac{n_y \pi y}{2b} \; ; \quad E_y = \frac{\pi^2 \hbar^2}{8mb^2} n_y^2$$

$$Z(z) = \frac{1}{\sqrt{c}} \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \frac{n_z \pi y}{2c} \; ; \quad E_z = \frac{\pi^2 \hbar^2}{8mc^2} n_z^2$$

 $n_x, n_y, n_z = 1, 2, 3 \cdots$

 \cos (\sin) are related with odd (even) n

$$\Psi_{n_x,n_y,n_z}(x,y,z) = X_{n_x}(x)Y_{n_y}(y)Z_{n_z}(z)$$

$$E = \frac{\pi^2 \hbar^2}{8m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right)$$

Ground state $\,n_x\,=\,n_y\,=\,n_z\,=\,1\,$

Figure: $\Psi_{1,1}$ $\Psi_{2,1}$ $\Psi_{2,2}$ 2D square box

8 / 46

2D: Constant probability density surface. (a) and (b) rectangular box, states Ψ_{11} and Ψ_{21} . (c) y (d) square box, degenerate states Ψ_{21} and Ψ_{12} . (e) superposition of Ψ_{21} and Ψ_{12}

Degeneracy in the 3D box

Let's assume a = b

$$E = \frac{\pi^2 \hbar^2}{8m} \left(\frac{n_x^2 + n_y^2}{a^2} + \frac{n_z^2}{c^2} \right)$$

 Ψ_{121} and Ψ_{211} have the same energy and different wave functions \to there's double **degeneracy**. In general, two states (n_1,n_2,n_3) and (n_2,n_1,n_3) are degenerate. The probability density of one of the states becomes the one of the other changing (x,y) to (y,-x), i.e., under a rotation of angle $\frac{\pi}{2}$ around the z-axis

This degeneracy clearly comes from the **symmetry** of the system (this is its origin almost always). When this is not the case, we call it **accidental** degeneracy

10 / 46

Spherical symmetric potentials

11 / 46

$$V(\vec{r}) = V(r)$$

Appropriate coordinates \rightarrow **spherical** ones

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

$$\vec{\nabla} = \vec{u}_r \frac{\partial}{\partial r} + \vec{u}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} + \vec{u}_\theta \frac{1}{r} \frac{\partial}{\partial \theta}$$
 in this order

$$\vec{u}_r \, = \, \sin\theta\cos\phi\,\vec{\mathrm{i}} \, + \, \sin\theta\sin\phi\,\vec{j} \, + \, \cos\theta\,\vec{k}$$

$$\vec{u}_{\phi} = -\sin\phi\,\vec{\imath} + \cos\phi\,\vec{j}$$

 $\vec{u}_{\theta} = \cos\theta\cos\phi\,\vec{\imath} + \cos\theta\sin\phi\,\vec{j} - \sin\theta\,\vec{k}$

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

Schrödinger Eq.

$$-\frac{\hbar^2}{2\mu} \bigtriangledown^2 \ \Psi(\vec{r}) \ + \ V(r) \Psi(\vec{r}) \ = \ E \ \Psi(\vec{r})$$

13 / 46

Angular momentum operator

$$\begin{split} \vec{L} &= \vec{r} \times \vec{p} \quad \rightarrow \quad -i\hbar \, \vec{r} \times \vec{\nabla} \\ L_x &= -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right) \\ L_y &= -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right) \\ L_z &= -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) = -i\hbar \frac{\partial}{\partial \phi} \end{split}$$

$$L^{2} = L_{x}^{2} + L_{y}^{2} + L_{z}^{2}$$

$$= -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

$$= \hbar^{2} r^{2} \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) - \nabla^{2} \right]$$

$$[L_i, x_j] = i\hbar \epsilon_{ijk} x_k$$
$$[L_i, p_j] = i\hbar \epsilon_{ijk} p_k$$
$$[L_i, L_j] = i\hbar \epsilon_{ijk} L_k$$

Levi-Civita tensor

$$\epsilon_{ijk} \ = \ \begin{cases} \ 1 & \text{if ijk even permutation of 123} \\ \ -1 & \text{if ijk odd permutation of 123} \\ \ 0 & \text{if in ijk there are repeated indexes} \end{cases}$$

15 / 46

$$\left[L^2, \, \vec{L}\right] \, = \, 0$$

Example

$$\begin{bmatrix} L^2, L_x \end{bmatrix} = \begin{bmatrix} L_y^2, L_x \end{bmatrix} + \begin{bmatrix} L_z^2, L_x \end{bmatrix}$$

$$= L_y \begin{bmatrix} L_y, L_x \end{bmatrix} + \begin{bmatrix} L_y, L_x \end{bmatrix} L_y + L_z [L_z, L_x] + [L_z, L_x] L_z$$

$$= -i\hbar L_y L_z - i\hbar L_z L_y + i\hbar L_z L_y + i\hbar L_y L_z$$

$$= 0$$

If $\left[\vec{L},\,T
ight] \,=\,0 \quad o \, \vec{L} \;\; {
m is \, constant \, of \, motion}$

$$T = \frac{p^2}{2\mu} = \frac{L^2}{2\mu r^2} - \frac{\hbar^2}{2\mu r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

 $\left[L^2,\ \vec{L}
ight] \ = \ 0,$ the rest of $\ T$ acts only on r

$$\left[\vec{L},\,T\right]\,=\,0\quad \rightarrow\, \left[\vec{L},\,H\right]\,=\,0\quad \rightarrow\, \left[L^2,\,H\right]\,=\,0$$

Moreover

$$\begin{split} \frac{\partial \vec{L}}{\partial t} &= 0 \quad ; \quad \frac{\partial L^2}{\partial t} = 0 \\ \rightarrow \quad \frac{d < \vec{L} >}{dt} &= 0 \quad ; \quad \frac{d < L^2 >}{dt} = 0 \end{split}$$

for central forces $\ \vec{L}$ and $\ L^2$ are constants of motion

17 / 46

We can find a set of simultaneous eigenfunctions of $H,~L^2~$ and $~L_z~$: $~\Psi_{\lambda}(\vec{r})$

$$\begin{split} H \, \Psi_{\lambda}(\vec{r}) \, &= \, E \, \Psi_{\lambda}(\vec{r}) \\ L^2 \, \Psi_{\lambda}(\vec{r}) \, &= \, \lambda \hbar^2 \, \Psi_{\lambda}(\vec{r}) \\ L_z \, \Psi_{\lambda}(\vec{r}) \, &= \, m \hbar \, \Psi_{\lambda}(\vec{r}) \\ \left[- \, \frac{\hbar^2}{2 \mu r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \, + \, \frac{L^2}{2 \mu r^2} \, + \, V(r) \right] \, \Psi_{\lambda}(\vec{r}) \, = \, E \, \Psi_{\lambda}(\vec{r}) \end{split}$$

We factorize $\ \Psi_{\lambda}(\vec{r}) = R(r) \ Y_{\lambda}(\theta,\phi)$

We get

$$L_z Y_{\lambda}(\theta, \phi) = m\hbar Y_{\lambda}(\theta, \phi)$$
$$L^2 Y_{\lambda}(\theta, \phi) = \lambda \hbar^2 Y_{\lambda}(\theta, \phi)$$

$$\left[-\frac{\hbar^2}{2\mu r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) + \frac{\lambda \hbar^2}{2\mu r^2} + V(r) \right] R(r) = E R(r)$$

With $R(r) = \frac{u(r)}{r}$

$$-\frac{\hbar^2}{2\mu}\frac{d^2u(r)}{dr^2} + \left[\frac{\lambda\hbar^2}{2\mu r^2} + V(r)\right]u(r) = E u(r)$$
 (1)

analogous to Schrödinger Eq. in one dim. adding V(r) the term $\frac{\lambda\hbar^2}{2\mu r^2}$ (centrifugal potential)

- \blacksquare (1) is different from Eq. in Cartesian coordinates since $r\,\geq\,0$
- $\blacksquare \ \Psi_{\lambda}(\vec{r}) \ \ \text{finite} \ \to \quad u(0) \ = \ 0 \qquad (\Psi_{\lambda}(\vec{r}) \ = \ \frac{u(r)}{r} \ Y_{\lambda}(\theta,\phi))$
- \blacksquare In order to get $\,u(r)\,$ we need $\,V(r)\,$

19 / 46

lacktriangledown In order to get $\,Y_{\lambda}(heta,\phi)\,\,\,\,\,\,\, o\,\,\,\,$ we do not need V(r), it does not appear in Eqs. which determine it

*** Obtaining
$$Y_{\lambda}(\theta,\phi)$$

$$L^{2} Y_{\lambda}(\theta,\phi) = \lambda \hbar^{2} Y_{\lambda}(\theta,\phi)$$

$$L_{z} Y_{\lambda}(\theta,\phi) = m \hbar Y_{\lambda}(\theta,\phi)$$

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) \right]$$

$$= -\hbar^{2} \left[-\frac{L_{z}^{2}}{\hbar^{2} \sin^{2}\theta} + \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) \right]$$

$$\left[\frac{m^{2}\hbar^{2}}{\sin^{2}\theta} - \frac{\hbar^{2}}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) \right] Y_{\lambda}(\theta,\phi) = \lambda \hbar^{2} Y_{\lambda}(\theta,\phi)$$

21 / 46

Separation of variables $Y_{\lambda}(\theta,\phi) = \Theta(\theta) \Phi(\phi)$

$$\left[\frac{m^2}{\sin^2 \theta} - \frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta}\right)\right] \Theta(\theta) = \lambda \Theta(\theta)$$
 (2)

$$-i\hbar \frac{d\Phi}{d\phi} = m\hbar \Phi \tag{3}$$

*** Obtaining $\Phi(\phi)$ from (3)

$$\Phi_m(\phi) = e^{im\phi}$$

with the condition $~\Phi(\phi) \, = \, \Phi(\phi \, + \, 2\pi) \,$ (single-valued)

$$e^{i2\pi m} = 1 \rightarrow m = 0, \pm 1, \pm 2 \cdots$$

 $m \,$ is the magnetic quantum number

Eigenvalues of $L_z \quad o \quad 0, \pm \hbar, \pm 2\hbar \cdot \cdot \cdot$

23 / 46

*** Obtaining $\Theta(\theta)$ from (2)

Change $t = \cos \theta$

$$\Theta(\theta) = F(t)$$

$$\frac{d}{d\theta} = \frac{dt}{d\theta} \frac{d}{dt} = -\sqrt{1 - t^2} \frac{d}{dt}$$

(2)
$$\rightarrow \frac{d}{dt} \left[(1-t^2) \frac{dF}{dt} \right] - \frac{m^2}{1-t^2} F + \lambda F = 0$$

associated Legendre differential equation

 \blacksquare (a) for m=0

$$\frac{d}{dt}\left[(1-t^2)\frac{dF(t)}{dt}\right] + \lambda F(t) = 0 \tag{4}$$

If we make the change $t \rightleftharpoons -t$ in (4)

$$\frac{d}{dt}\left[(1-t^2)\frac{dF(-t)}{dt}\right] + \lambda F(-t) = 0 \tag{5}$$

 ${\cal F}(-t)$ is solution of the associated Legendre differential equation if $\,{\cal F}(t)\,$ is

The operator applied to F(t) in (4) is linear \rightarrow the combinations

$$F_e = F(t) + F(-t)$$
 (even in t) and

$$F_o = F(t) - F(-t)$$
 (odd in t)

are solutions of the associated Legendre differential equation

25 / 46

Look for F even or odd in t (since there are such solutions)

$$t \rightleftharpoons -t \rightarrow \theta \rightleftharpoons \pi - \theta$$

(The change $\,t\,
ightleftharpoons\,-t\,$ is equivalent to making a reflection about the plane $\,xy\,$ $\,\to\,$ change $\,z\,
ightleftharpoons\,-t\,$)

The **regular** solution (it is not ∞) of (4) can be expanded in power series

$$F(t) = \sum_{k=0}^{\infty} a_k t^k$$

By a method analogous to that used in the harmonic oscillator

$$\frac{a_{k+2}}{a_k} = \frac{k(k+1) - \lambda}{(k+2)(k+1)}$$
 recurrence relation

 $a_0 \, \neq \, 0 \quad ; \quad a_1 \, = \, 0 \quad \quad k \ \, \text{even, even series in} \, t \label{eq:a0}$

 $a_1 \neq 0 \;\; ; \;\; a_0 = 0 \quad \; k \; {\rm odd, \, odd \, series \, in} \; t$

If the series does not cut

$$\lim_{k \to \infty} \frac{a_{k+2}}{a_k} = \frac{k}{k+2} \to 1$$

Convergence criterion

$$R = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} t \right| < 1$$

For $|t|=1 \ \Rightarrow R=1 \Rightarrow$ the series does not converge if the series does not cut

We cut the series for k=l (integer ≥ 0) \to polynomial (l even \Rightarrow even polynomial; l odd \Rightarrow odd polynomial)

27 / 46

$$a_{l+2} = 0$$

$$\lambda = l(l+1)$$

Eigenvalues of $L^2 \ \rightarrow \ l(l+1) \ \hbar^2$

$$l = 0, 1, 2, \cdots$$

$$\lambda = 0, 2, 6, \cdots$$

Solution of (4) $\,\to\,$ Legendre polynomial $\,P_l(t)$

They can be obtained from Rodrigues formula

$$P_l(t) = \frac{1}{2^l l!} \left(\frac{d}{dt}\right)^l (t^2 - 1)^l$$

Legendre polynomials

$$P_{O}(x) = 1$$

$$P_{1}(x) = x$$

$$P_{2}(x) = \frac{1}{2}(3x^{2} - 1)$$

$$P_{3}(x) = \frac{1}{2}(5x^{3} - 3x)$$

$$P_{4}(x) = \frac{1}{8}(35x^{4} - 30x^{2} + 3)$$

$$P_{5}(x) = \frac{1}{8}(63x^{5} - 70x^{3} + 15x)$$

$$P_{6}(x) = \frac{1}{16}(231x^{6} - 315x^{4} + 105x^{2} - 5)$$

$$P_{7}(x) = \frac{1}{16}(429x^{7} - 693x^{5} + 315x^{3} - 35x)$$

$$P_{8}(x) = \frac{1}{128}(6435x^{8} - 12012x^{6} + 6930x^{4} - 1260x^{2} + 35)$$
(13)

29 / 46

$$\blacksquare$$
 (b) $m \neq 0$

$$F(t) \rightarrow P_l^m(t) = (1 - t^2)^{\frac{|m|}{2}} \frac{d^{|m|} P_l(t)}{dt^{|m|}}$$

 $|m| \leq l \ \ \text{integer} \quad \ m \ = \ -l, -l+1, \cdots, l-1, l$

 ${\cal P}_l^m(t)$ associated Legendre function

$$Y_{lm}(\theta,\phi) = \mathcal{N}\Phi_m(\phi)\Theta_l^m(\theta)$$
 spherical harmonics

$$1 = \int d\tau |\Psi(\vec{r})|^2 = \int_0^\infty dr \, r^2 |R(r)|^2 \int_0^\pi d\theta \sin\theta \int_0^{2\pi} d\phi |Y_{lm}|^2$$

We impose $\int_{0}^{\infty}\,dr\,r^{2}\left|R(r)\right|^{2}=1\,$ and

$$\int_0^{\pi} d\theta \sin \theta \int_0^{2\pi} d\phi |Y_{lm}|^2 = 1$$

 $d\tau = dr r d\theta r \sin\theta d\phi = r^2 \sin\theta dr d\theta d\phi = r^2 dr d\Omega$

31 / 46

spherical harmonics $Y_l^m = Y_{lm}$

$$\begin{split} Y_0^0 = \sqrt{\frac{1}{4\pi}} & \quad Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos(\theta) & \quad Y_2^0 = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1) \\ Y_1^1 = -\sqrt{\frac{3}{8\pi}} \sin\theta \, e^{\mathrm{i}\phi} & \quad Y_2^1 = -\sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta \, e^{\mathrm{i}\phi} \\ Y_1^{-1} = \sqrt{\frac{3}{8\pi}} \sin\theta \, e^{-\mathrm{i}\phi} & \quad Y_2^{-1} = \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta \, e^{-\mathrm{i}\phi} \\ Y_2^{-2} = \sqrt{\frac{15}{32\pi}} \sin^2\theta \, e^{-2\mathrm{i}\phi} \\ Y_2^{-2} = \sqrt{\frac{15}{32\pi}} \sin^2\theta \, e^{-2\mathrm{i}\phi} \end{split}$$

 Y_{lm} are simultaneous eigenfunctions of L^2 and $L_z.$ They are an orthonormal set

$$\int \,d\Omega\,Y_{lm}^*\,Y_{l'm'}\,=\,\delta_{ll'}\,\delta_{mm'}$$

$$m \ge 0$$
 $Y_{lm}(\theta, \phi) = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} (-1)^m e^{im\phi} P_l^m(\cos\theta)$

$$m < 0$$
 $Y_{lm}(\theta, \phi) = (-1)^m Y_{l-m}^*(\theta, \phi)$

35 / 46

Reflection about the origin

$$ec{r}
ightarrow - ec{r} \, \left\{ egin{array}{l} \phi
ightarrow \phi + \pi \ heta
ightarrow \pi - heta \end{array}
ight.$$

$$e^{im\phi} \rightarrow (-)^m e^{im\phi} \qquad (e^{im\pi} = (-)^m)$$

$$P_l^m(\cos\theta) \rightarrow (-)^{l-m} P_l^m(\cos\theta)$$

$$Y_{lm}
ightarrow (-)^l Y_{lm} \qquad {\sf PARITY}
ightarrow (-)^l$$

Angular momentum \to any vector operator \vec{J} whose components satisfy the commutation relations: $[J_i,\ J_j]=i\hbar\ \epsilon_{ijk}\ J_k$

We define ladder operators from its $J_x \;$ and $J_y \;$ components

$$J_{+} = J_{x} + i J_{y}$$
; $J_{-} = J_{x} - i J_{y}$
 $(J_{+})^{\dagger} = J_{-}$

$$[J_z, J_+] = \hbar J_+ \; ; \; [J_z, J_-] = -\hbar J_- \; ; \; [J_+, J_-] = 2 \, \hbar J_z$$
 (6)

From $[J^2, \vec{J}] = 0 \rightarrow [J^2, J_+] = [J^2, J_-] = [J^2, J_z] = 0$

 ${\cal J}^2 \,$ can be written

$$J^2 = \frac{1}{2} \left[J_+ J_- \, + \, J_- J_+ \right] \, + \, J_z^2$$

38 / 46

From (6)

$$J_{-}J + = J^{2} - J_{z}(J_{z} + \hbar) \tag{7}$$

$$J_{+}J_{-} = J^{2} - J_{z}(J_{z} - \hbar) \tag{8}$$

If we call $\mid j \; m > \,$ a normalized state such that

$$J^{2} \mid j m > = j(j+1) \hbar^{2} \mid j m >$$
 $J_{z} \mid j m > = m \hbar \mid j m >$

(7) ⇒

$$J_{-}J_{+} \mid j m > = \hbar^{2} [j(j+1) - m(m+1)] \mid j m >$$

= $\hbar^{2} (j-m)(j+m+1) \mid j m >$

(8) ⇒

$$J_{+}J_{-} \mid j m > = \hbar^{2} \left[j(j+1) - m(m-1) \right] \mid j m >$$

= $\hbar^{2} \left(j + m \right) (j - m + 1) \mid j m >$

Since $(J_-)^\dagger = J_+$ and $(J_+)^\dagger = J_-$, the squares of the norms of $J_+ \mid j \ m >$ and $J_- \mid j \ m >$ are $< j \ m \mid J_- J_+ \mid j \ m > = \ (j - m)(j + m + 1) \ \hbar^2 < j \ m \mid j \ m >$ $< j \ m \mid J_+ J_- \mid j \ m > = \ (j + m)(j - m + 1) \ \hbar^2 < j \ m \mid j \ m >$

and must be ≥ 0 $(j \geq 0)$

$$(j-m)(j+m+1) \ge 0$$
; $(j+m)(j-m+1) \ge 0$

40 / 46

*
$$(j-m) \ge 0$$
 ; $(j+m+1) \ge 0$ or $\to \leftarrow (j-m) \le 0$; $(j+m+1) \le 0$

and

$$\begin{array}{l} * \ (j+m) \ \geq \ 0 \ ; \ (j-m+1) \ \geq \ 0 \\ \\ \rightarrow \leftarrow \quad (j+m) \ \leq \ 0 \ ; \ (j-m+1) \ \leq \ 0 \\ \Downarrow \end{array}$$

$$-j \le m \le j \tag{9}$$

Zero norm \rightarrow zero vector

$$J_{+} \mid j \mid m > = 0 \iff (j - m)(j + m + 1) = 0$$

$$J_{-} \mid j \mid m > = 0 \iff (j+m)(j-m+1) = 0$$

From (9)

$$J_+ \mid j \mid m > = 0 \iff m = j$$

 $J_- \mid j \mid m > = 0 \iff m = -j$

If $m \neq j$

$$J^2 J_+ \mid j m > = J_+ J^2 \mid j m > = j (j + 1)\hbar^2 J_+ \mid j m >$$

If $m \neq -j$

$$J^2 J_- \mid j m > = J_- J^2 \mid j m > = j (j + 1)\hbar^2 J_- \mid j m >$$

Moreover

$$[J_z, J_+] = \hbar J_+ \Rightarrow J_z J_+ = J_+(J_z + \hbar)$$

42 / 46

Then

$$J_z \ [J_+ \ | \ j \ m >] \ = \ J_+(J_z \ + \ \hbar) \ | \ j \ m > = \ (m+1)\hbar \, [J_+ \ | \ j \ m >]$$

On the other hand $\; [J_z,\; J_-] \; = \; -\hbar \; J_- \; \Rightarrow \; J_z \; J_- \; = \; J_-(J_z \; - \; \hbar)$ Then

$$J_z [J_- \mid j m >] = J_-(J_z - \hbar) \mid j m > = (m-1)\hbar [J_- \mid j m >]$$

All this leads to

 $-j \le m \le j$

$$\blacksquare \text{ for } m = j \Rightarrow J_+ \mid j j > = 0$$

$$\blacksquare \text{ for } m \neq j \ \Rightarrow \ J_+ \mid j \, m > \propto \mid j \, m \, + \, 1 >$$

Norm of

$$J_{+} \mid j \mid m > \rightarrow \hbar \sqrt{(j-m)(j+m+1)} = \hbar \sqrt{j(j+1) - m(m+1)}$$

 $\blacksquare \text{ If } m = -j \Rightarrow J_- \mid j - j > = 0$

 $\blacksquare \text{ If } m \neq -j \Rightarrow J_- \mid j m > \propto \mid j m - 1 >$

Norm of

$$J_{-} \mid j m > \rightarrow \hbar \sqrt{(j+m)(j-m+1)} = \hbar \sqrt{j(j+1)-m(m-1)}$$

We set the phases so that

$$J_{+} \mid j \mid m > = \hbar \sqrt{j(j+1) - m(m+1)} \mid j \mid m+1 > 0$$

$$J_{-} \mid j \mid m > \ = \ \hbar \sqrt{j(j+1) - m(m-1)} \mid j \mid m-1 > \$$

From a state $\mid j \mid m>$ can be obtained, by successive application of J_+ and J_- , the others, to have the 2j+1 compatible with j

44 / 46

Bibliography 45 / 46

- [1] A.P.French and E.F. Taylor, "Introducción a la Física Cuántica"
- [2] S. Gasiorowicz, "Quantum Physics", ed. John Wiley, 2003, Apéndice B
- [3] D.J. Griffiths, "Introduction to Quantum Mechanics", ed. Pearson Education Inc., 2005
- [4] D. Park, "Introduction to the Quantum Theory", ed. McGraw-Hill, 1992
- [5] J.S. Townsend, "A Modern Approach to Quantum Mechanics", ed. University Science Books, 2000
- [6] R. Eisberg and R. Resnick, "Física cuántica", Ed. Limusa, 2004
- [7] C. Sánchez del Río, "Física cuántica", Ed. Pirámide, 2003