INTRODUCTION TO THE CELL © 2018 Pearson Education Ltd.

Introduction

- Our understanding of nature often goes hand in hand with the invention and refinement of instruments that extend our senses.
 - In 1665, Hooke used a crude microscope to examine a piece of bark from an oak tree. Hooke compared the structures he saw to "little rooms" cellulae in Latin—and the term "cell" stuck.
 - Leeuwenhoek used more refined lenses to describe living cells from blood, sperm, and ponds.
- Since the days of Hooke and Leeuwenhoek, improved microscopes and techniques have vastly expanded our view of the cell.

© 2018 Pearson Education L

Microscopes reveal the world of the cell

- The **light microscope** can display living cells.
- The greater magnification and resolution of scanning and transmission electron microscopes reveal the ultrastructure of cells.
 - Magnification is the increase in an object's image size compared with its actual size.
 - Resolution is a measure of the clarity of an image.
 In other words, it is the ability of an instrument to show two nearby objects as separate.

2018 Pearson Education L

Most cells are tiny

- As an object increases in volume, its surface area also increases, but not at the same rate → great biological significance for two reasons:
 - The volume of a cell determines the amount of chemical activity it carries out per unit of time.
 - The surface area of a cell determines the amount of substances that can enter it from the outside environment, and the amount of waste products that can exit to the environment.

		333
Total volume	27 units ³	27 units ³
Total surface area	54 units ²	162 units ²
Surface-to- volume ratio	2	6

Prokaryotic cells are structurally simpler than eukaryotic cells

- All cells are classified as either prokaryotic or eukaryotic
- All cells have a plasma membrane, DNA, ribosomes, and cytosol.

- A **prokaryotic** cell does not typically have membraneenclosed internal compartments; in particular, it does not have a nucleus. - Bacteria & archaea - Genetic material (DNA) of eukaryotic cells is contained in a special membrane-enclosed compartment called the *nucleus*. Eukaryotic cells also contain other membrane-enclosed compartments in which specific chemical reactions occur.

- Protists, plants, fungi, and animals

- All cells share certain characteristics. Every cell is enclosed by a membrane that regulates the passage of materials between the cell and its surroundings.
- Single-celled microorganisms bacteria (singular, bacterium) and archaea (singular, archaean)—are prokaryotic.
- All other forms of life, including plants and animals, are composed of eukaryotic cells.

Eukaryotic cells are partitioned into functional compartments

- Membrane-enclosed organelles compartmentalize a cell's activities.
- The organelles and other structures of eukaryotic cells can be organized into four basic functional groups:
 - The nucleus and ribosomes carry out the genetic control of the cell.
 - Organelles involved in the manufacture, distribution, and breakdown of molecules include the endoplasmic reticulum, Golgi apparatus, lysosomes, vacuoles, and peroxisomes.

© 2018 Pearson Education I

Eukaryotic cells are partitioned into functional compartments

- 3. Mitochondria in all cells and chloroplasts in plant cells function in energy processing.
- Structural support, movement, and communication between cells are the functions of the cytoskeleton, plasma membrane, and plant cell wall.

Checkpoint question Identify the structures in the plant cell that are not present in the animal cell.

© 2018 Pearson Education Ltd

Many organelles are connected in the endomembrane system

- Many of the membranes within a eukaryotic cell are part of the **endomembrane system**.
- Many of these organelles interact in the
 - synthesis,
 - distribution,
 - storage, and
 - export of molecules.

2018 Pearson Education Lts

Mitochondria harvest chemical energy from food

- Mitochondria are organelles that carry out cellular respiration in nearly all eukaryotic cells.
- · Mitochondria have two internal compartments.
 - 1. The intermembrane space is the narrow region between the inner and outer membranes.
 - The mitochondrial matrix contains the mitochondrial DNA, ribosomes, and many enzymes that catalyze some of the reactions of cellular respiration.

Checkpoint question What is cellular respiration?

© 2018 Pearson Education L

Chloroplasts convert solar energy to chemical energy

- Photosynthesis is the conversion of light energy from the sun to the chemical energy of sugar molecules.
- **Chloroplasts** are the photosynthesizing organelles of plants and algae.

© 2018 Pearson Education Ltd.

Mitochondria and chloroplasts evolved by endosymbiosis

 The endosymbiont theory states that mitochondria and chloroplasts were formerly small prokaryotes that began living within larger cells.

Checkpoint question All eukaryotes have mitochondria, but not all have chloroplasts. What is the evolutionary explanation?

© 2018 Pearson Education Ltd

The cell's internal skeleton helps organize its structure and activities

- The cytoskeleton includes microfilaments, intermediate filaments, and microtubules. Their functions include
 - · maintenance of cell shape,
 - · anchorage and movement of organelles,
 - · amoeboid movement,
 - · muscle contraction.

Extracellular Matrix (ECM) Glycoprotein complex with long polysaccharide Collagen fiber Connecting glycoprotein Integrin Plasma membrane Microfilaments of cytoskeleton

Review: Eukaryotic cell structures can be grouped on the basis of four main functions

- Eukaryotic cell structures can be grouped on the basis of four functions:
 - 1. genetic control,
 - manufacturing, distribution, and breakdown of materials,
 - 3. energy processing, and
 - 4. structural support, movement, and intercellular communication.

© 2018 Pearson Education Ltd.

Membranes are fluid mosaics of lipids and proteins with many functions

- Biologists use the fluid mosaic model to describe a membrane's structure—diverse protein molecules suspended in a fluid phospholipid bilayer.
- The plasma membrane exhibits selective permeability.
- · The proteins perform various functions.

© 2018 Pearson Education L

Plasma membrane carbohydrates are recognition sites

- Membrane carbohydrates are usually short, branched chains of fewer than 15 sugar units. Most are covalently bonded to proteins, which are thereby glycoproteins.
- The carbohydrates on the extracellular side of the plasma membrane vary from species to species, among individuals of the same species, and even from one cell type to another in a single individual. The diversity of the molecules and their location on the cell's surface enable membrane carbohydrates to function as markers that distinguish one cell from another.
 - E.g. the four human blood types designated A, B, AB, and O reflect variation in the carbohydrate part of glycoproteins on the surface of red blood cells.

EVOLUTION CONNECTION: The spontaneous formation of membranes was a critical step in the origin of life

- Phospholipids spontaneously self-assemble into simple membranes.
- The formation of membrane-enclosed collections of molecules was a critical step in the evolution of the first cells.

Checkpoint question In the origin of a cell, why would the formation of a simple lipid bilayer membrane not be sufficient?

What else would have to be part of such a membrane?

Water-filled bubble made of phospholipids

© 2018 Pearson Education L

Membrane structure results in selective permeability

- Control of the cell's internal composition is very significant.
- Membrane determines what substances enter or leave a cell or organelle.
 - The processes of passive transport do not require any input of outside energy to drive them (no metabolic energy).
 - The processes of active transport require the input of chemical energy from an outside source (metabolic energy).

Passive transport is diffusion across a membrane with no energy investment

- Diffusion is the tendency of particles to spread out evenly in an available space.
- Diffusion across a cell membrane does not require energy, so it is called passive transport.

Osmosis is the diffusion of water across a membrane

- The diffusion of water across a selectively permeable membrane is called osmosis.
- If a membrane, permeable to water but not to a solute, separates two solutions with different concentrations of solute, water will cross the membrane, moving down its own concentration gradient, until the solute concentration on both sides is equal.

© 2018 Pearson Education L

Water balance between cells and their surroundings is crucial to organisms

- Tonicity is a term that describes the ability of a surrounding solution to cause a cell to gain or lose water.
- Cells shrink in a hypertonic solution.
- · Cells swell in a hypotonic solution.
- In isotonic solutions, animal cells are normal, but plant cells are flaccid.

© 2018 Pearson Education Ltd

Transport proteins can facilitate diffusion across membranes

- Hydrophobic substances easily diffuse across a cell membrane.
- However, polar or charged substances do not easily cross cell membranes.
- Instead, polar or charged substances move across membranes with the help of specific transport proteins, called facilitated diffusion, which
 - · does not require energy and
 - · relies on the concentration gradient.

© 2018 Pearson Education Ltd

Transport proteins can facilitate diffusion across membranes

- Transport proteins help specific substances diffuse across the membrane down their concentration gradients and thus requires no input of energy.
- The very rapid diffusion of water into and out of certain cells is made possible by a protein channel called an aquaporin.

Transport protein

Cells expend energy in the active transport of a solute

- In active transport, a cell must expend energy to move a solute against its concentration gradient.
- The energy molecule ATP supplies the energy for most active transport.

Exocytosis and endocytosis transport large molecules across membranes

- A cell uses two mechanisms to move large molecules across membranes.
 - 1. **Exocytosis** is used to export bulky molecules, such as proteins or polysaccharides.
 - 2. **Endocytosis** is used to take in large molecules.
- In both cases, material to be transported is packaged within a vesicle that fuses with the membrane.

2018 Pearson Education L

