Importance Sampling and Variance Reduction

Mark M. Fredrickson (mfredric@umich.edu)

Computational Methods in Statistics and Data Science (Stats 406)

AR Reject Rates

Recall two different candidate distributions in order to sample from a truncated standard Normal on [0,1].

- Standard uniform rejected about 15% of the candidates.
- The density g(y) = (2/3)(2-y) rejected about 4%

Could we do even better and reject 0%?

Changing variables

The reason we usually need collections of X is that we want to estimate:

$$\mathsf{E}(h(X)) = \int_{-\infty}^{\infty} h(x)f(x) \, dx$$

Remember the trick we used for integrating arbitrary functions:

$$\int_{-\infty}^{\infty} h(x)f(x) dx = \int_{-\infty}^{\infty} h(x)f(x)\frac{g(x)}{g(x)} dx = \mathbb{E}\left(h(Y)\frac{f(Y)}{g(Y)}\right)$$

for random variable Y with density g(y).

Example: Tail probabilities

Using our rejection techniques is difficult to estimate tail probabilities

$$P(X \ge x)$$

since we get relatively few random samples from the tail.

Ex.: For
$$Z \sim N(0,1)$$
, what is $P(Z \ge 4.5) = E(I(Z \ge 4.5))$?

- > k <- 100000
- > sum(rnorm(k) >= 4.5)
- [1] 1

Using a shifted exponential

Consider instead drawing from Y = 4.5 + Exp(1) so that

$$g(y) = \exp(-(y-4.5)), \quad y > 4.5$$

$$\mathsf{E}\left(I(Z \geq 4.5)\right) = \mathsf{E}\left(\frac{I(Y \geq 4.5)\phi(Y)}{g(Y)}\right) = \mathsf{E}\left(\frac{\phi(Y)}{g(Y)}\right)$$

- > ys <- rexp(k) + 4.5
- > ratios \leftarrow dnorm(ys) / (dexp(ys 4.5))
- > mean(ratios)
- [1] 3.416e-06
- > (truep <- pnorm(4.5, lower.tail = FALSE))</pre>
- [1] 3.398e-06

Variances

Recall, we prefer estimators that are efficient (have lower variance).

Variance of the MC estimator (true, not estimated):

Estimated variance of the importance sampling version:

Terminology

We call using Monte Carlo to estimate E(h(Y)f(Y)/g(Y)) as importance sampling.

- We call the distribution of Y the "envelope."
- The density of Y, g(y), is the "importance function."
- We call the ratio f(Y)/g(Y) the "importance weights."

Note: The importance weights f(Y)/g(y) are very similar to the ratios we computed for the accept-rejection algorithm.

Picking Envelope Distribution

Recall that we had the strict requirement for accept-reject sampling:

$$\frac{f(x)}{c g(x)} \le 1$$
, for some $c > 0$ and all x

While this restriction is not placed on importance sampling, we can get into trouble when the ratio f(x)/g(x) can get very large (e. g., f has "fatter tails" than g).

In particular, we need the importance sampling estimator to have finite variance for the law of large numbers and the CLT to hold.

$$E_Y\left(h(Y)^2 \frac{f(Y)^2}{g(Y)^2}\right) = \int_{-\infty}^{\infty} h(y)^2 \frac{f(y)^2}{g(y)^2} g(y) \, dy = E_X\left(h(X)^2 \frac{f(X)}{g(X)}\right) < \infty$$

8

Example: Targeting the Cauchy distribution with the Normal

Cauchy from Normal

```
Let C \sim \text{Cauchy}(0). Let's estimate P(C \ge 2):

> k \leftarrow 1000000 \text{ # one million samples}

> ys \leftarrow rnorm(k)

> iweights \leftarrow dcauchy(ys) / dnorm(ys)

> estimates \leftarrow cumsum(iweights * (ys >= 2)) / (1:k)
```

Plotting estimate vs. number of samples

Avoiding degenerate envelopes

Importance sampling for the Cauchy distribution will always be difficult due to the "fat tails".

Specifically, if the quantity

$$h(x)\frac{fx}{gx} < c$$
, for some c

then you should be ok.

The cases we'll consider in this class will be safe, but keep this in mind when using this a final project, e.g.

Efficiency of our estimators

Suppose we need to estimate $\theta = E(h(X))$ and we have identified two distributions that we can sample from:

$$\mathsf{E}(h(X)) = \mathsf{E}\left(h(Y)\frac{f(Y)}{g(Y)}\right) = \mathsf{E}\left(h(W)\frac{f(W)}{d(W)}\right)$$

(where g is the PDF of Y and d is the PDF of W). How do we pick one or the other to use?

Notice that in large samples:

$$\hat{ heta}_1 \sim N\left(heta, \mathsf{Var}\left(\hat{ heta}_1
ight)
ight), \quad \hat{ heta}_2 \sim N\left(heta, \mathsf{Var}\left(\hat{ heta}_2
ight)
ight)$$

They only differ in the variance terms!

Variance terms

Recall that for IID data, the variance of the sample mean is

$$\operatorname{Var}\left(\hat{\theta}_{1}\right) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}h(Y_{i})\frac{f(Y_{i})}{g(Y_{i})}\right) = \frac{1}{n}\operatorname{Var}\left(h(Y)\frac{f(Y)}{g(Y)}\right)$$

$$\operatorname{Var}\left(h(Y)\frac{f(Y)}{g(Y)}\right) = \operatorname{E}\left(h(Y)^{2}\frac{f(Y)^{2}}{g(Y)^{2}}\right) - \left[\operatorname{E}\left(h(Y)\frac{f(Y)}{g(Y)}\right)\right]^{2}$$

$$= \int h(y)^{2}\frac{f(y)^{2}}{g(y)^{2}}g(y)\,dy - \theta^{2}$$

Further decomposing variance

Notice that for any function $t(x)^2 = |t(x)| |t(x)|$.

$$\operatorname{Var}\left(h(Y)\frac{f(Y)}{g(Y)}\right) = \int h(y)^{2} \frac{f(y)^{2}}{g(y)^{2}} g(y) \, dy - \theta^{2}
= \int |h(y)||f(y)| \frac{|h(y)||f(y)|}{g(y)} \, dy - \theta^{2}
= \int |h(y)|f(y) \frac{|h(y)|f(y)}{g(y)} \, dy - \theta^{2}$$

Picking a g(y) to minimize variance

Observe that that because |h(x)|f(x) > 0, the following is a proper density:

$$g(y) = \frac{|h(y)|f(y)}{\int_{-\infty}^{\infty} |h(y)|f(y) \, dy}$$

$$\operatorname{Var}\left(h(Y)\frac{f(Y)}{g(Y)}\right) = \int |h(y)|f(y)\frac{|h(y)|f(y)}{g(y)} \, dy - \theta^2$$

$$= \int |h(y)|f(y) \left[\int |h(y)|f(y) \, dy\right] \, dy - \theta^2$$

$$= \left[\int |h(y)|f(y) \, dy\right] \left[\int |h(y)|f(y) \, dy\right] - \theta^2$$

$$= \left[\int |h(y)|f(y) \, dy\right]^2 - \theta^2$$

and if h(y) > 0 for all y where f(y) > 0, then the variance would be zero!

Using minimum variance g

So we should pick

$$g(y) = \frac{|h(y)|f(y)}{\int_{-\infty}^{\infty} |h(y)|f(y) \, dy}$$

Why is this not helpful? We would need to know $\int |h(x)|f(x) dx$, effectively θ .

Why is this helpful? We can try to pick $g(y) \approx c |h(y)| f(y)$

Example: Truncated Normal

Again, we'll consider the truncated Normal distribution $Z \mid 0 \le Z \le 1$, $Z \sim N(0,1)$.

Specifically, we want to estimate E(X). We could pick many bounded distributions on (0,1). Which would be best?

- Uniform(0,1)
- Beta(1.5, 1)
- Quadratic: $g(x) = (3/2)(2x x^2)$

Goal: we want a density $\propto |x|\phi(x)$.

Graphing |h(x)|f(x)/g(x)

Using Beta(1.5, 1) and the Quadratic Density

```
> tn <- function(x) { dnorm(x) / (pnorm(1) - pnorm(0))}</pre>
> k <- 10000
> yg <- qx(runif(k))</pre>
> iwg <- tn(yg) / gx(yg) ## h(y) f(y) / g(y)
> mean(vg * iwg)
[1] 0.4597
> vr <- rbeta(k, 1.5, 1)
> iwr \leftarrow tn(yr) / dbeta(yr, 1.5, 1)
> mean(vr * iwr)
[1] 0.4587
```

Comparing Variance

```
> varg <- var(yg * iwg) # variance of single h(Y) f(Y) / g(Y) term
> varr <- var(yr * iwr)</pre>
Percentage decrease in variance:
> (varr - varg) / varr
[1] 0.9526
Relative CI width:
> diff(t.test(yg * iwg)$conf.int) / diff(t.test(yr * iwr)$conf.int)
[1] 0.2177
```

Importance Sampling Resampling

Generating samples

So far, we have been computing expectations. What if we need samples? (E.g., for evaluating estimators or hypothesis tests.)

Using importance sampling re-sampling (ISRS) we use the importance weights to pick samples.

Generate m samples Y_i . Pick a number J between 1 and m with probability

$$\frac{1}{m}\frac{f(Y_i)}{g(Y_i)}, \quad i=1,\ldots,m$$

and set $X = Y_J$ (notice: all Y are random and J is random).

Proof

The distribution of Y_J is the same as X. We need to show $P(Y_J \le t) = P(X \le x)$. How can the event $\{Y_J \le t\}$ occur?

$$\Pr(Y_{J} \leq t) = P([J = 1, Y_{1} \leq t] \text{ or } [J = 2, Y_{2} \leq t] \text{ or } \ldots) \qquad (\text{def. } Y_{J})$$

$$= \sum_{i=1}^{m} \Pr(Y_{i} \leq t, J = i) \qquad (\text{disjoint events})$$

$$= \sum_{i=1}^{m} \int_{-\infty}^{t} \frac{1}{m} \frac{f(y)}{g(y)} g(y) \, dy \qquad (\text{joint dist. } Y_{i}, J)$$

$$= \int_{-\infty}^{t} f(y) \, dy = \Pr(X \leq t) \qquad f \text{ is density of } X$$

Normalizing the weights

Problem: the weights $m^{-1}f(Y_i)/g(Y_i)$ may not be less than 1 and may not sum to 1.

We can normalize them as:

$$\omega_{i} = \frac{m^{-1}f(Y_{i})/g(Y_{i})}{\sum_{i=1}^{m} m^{-1}f(Y_{i})/g(Y_{i})}$$

The resulting Y_J will not have exactly the same distribution as X, but when m is large, the difference can be very small. This bias is the tradeoff for accepting all samples.

Example: Drawing from a truncated distribution of Z

[1] 4.646

An example that can't be directly estimated using importance sampling alone:

$$\mathsf{median}(Z \,|\, Z \geq 4.5)$$

We'll use the Exp(1) samples and their importance weights to estimate the conditional mean.

```
> ys <- rexp(k) + 4.5
> imp_weights <- dnorm(ys) / (dexp(ys - 4.5))
> omega <- imp_weights / sum(imp_weights) ## the 1/m term gets canceled
> xs <- sample(ys, replace = TRUE, prob = omega)
> median(xs)
```

Conclusion: Standard Normal tails go to zero really fast! 50% of all Z larger than 4.5 are within .15 of 4.5.

25

Densities Known to a Constant

Unnomralized Densities

Recall from importance sampling re-sampling we used normalized weights:

$$\omega_i = \frac{f(Y_i)/g(Y_i)}{\sum_{j=1}^n f(Y_j)/g(Y_j)}$$

Suppose did not actually know f, but only knew

$$f^*(x) \propto f(x)$$
 i.e., $f(x) = cf^*(x)$, s. t. $\int_{-\infty}^{\infty} f^*(x) dx = c$

Notice that the weights would not change:

$$\omega_i = \frac{f(Y_i)/g(Y_i)}{\sum_{j=1}^n f(Y_j)/g(Y_j)} = \frac{cf^*(Y_i)/g(Y_i)}{\sum_{j=1}^n cf^*(Y_j)/g(Y_j)} = \frac{f^*(Y_i)/g(Y_i)}{\sum_{j=1}^n f^*(Y_j)/g(Y_j)}$$

Implication: we can use ISRS to draw from f^* (essentially, we'll estimate c).

Using ISRS

Previously we saw IRSR for **generating samples**. Here we will use if for **Monte Carlo estimation**. For regular IS, we computed:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} h(Y_i) \frac{f(Y_i)}{g(Y_i)}$$

for ISRS, we use

$$\tilde{\theta} = \sum_{i=1}^{n} h(Y_i) \omega_i = \frac{1}{n} \sum_{i=1}^{n} h(Y_i) (n\omega_i)$$

Example: "Rabbit" distribution

$$f(x) \propto \exp(-x^2/2) \left[\sin(6x)^2 + 3\cos(x)^2 \sin(4x)^2 + 1 \right] = f^*(x), \quad -\infty < x < \infty$$

Estimating the variance of the rabbit distribution

Since the distribution is symmetric about 0, the mean is clearly 0, so the variance is:

$$Var(X) = E(X^2)$$

Using a standard normal as the envelope:

```
> k <- 10000
> ys <- rnorm(k)
> as <- fstar(ys) / dnorm(ys)
> omegas <- as / sum(as)
> reweighted_ys2 <- ys^2 * (k * omegas)
> mean(reweighted_ys2)
[1] 0.387
```

Rabbit distribution: Plotting |h(x)|f(x)

While achieving a variance of zero is probably impossible, we can tune our envelope by making it as close to |h(x)|f(x) as possible.

Recall our goal of estimating $Var(X) = E(X^2)$ for the "rabbit distribution".

A few choices

$\chi^2(3)$ and Mixture of truncated Normals and Exponential

Candidate 1 is a χ^2 on 3 degrees of freedom.

Candidate two is a mixture of truncated Normals and an Exponential:

$$\begin{split} &0.15\ \textit{N}_{[0,\infty)}\left(\frac{2}{5},\frac{1}{8^2}\right) + 0.28\ \textit{N}_{[0,\infty)}\left(\frac{4}{5},\frac{3^2}{16^2}\right) + \\ &0.28\ \textit{N}_{[0,\infty)}\left(\frac{5}{4},\frac{3^2}{16^2}\right) + 0.08\ \textit{N}_{[0,\infty)}\left(\frac{9}{5},\frac{5^2}{32^2}\right) + \\ &0.21\ \text{Exp}\left(\frac{1}{2}\right) \end{split}$$

Mixture (unormalized) Density

```
function(x) {
    0.15 * (x >= 0) * dnorm(x, mean = 2/5, sd = 1/8) +
    0.28 * (x >= 0) * dnorm(x, mean = 4/5, sd = 3/16) +
    0.28 * (x >= 0) * dnorm(x, mean = 5/4, sd = 3/16) +
    0.08 * (x >= 0) * dnorm(x, mean = 9/5, sd = 5/32) +
    0.21 * dexp(x, 1/2)
}
```

Validating Mixture Sampler

χ^2 estimator

```
> chi3 <- rchisq(k, df = 3)
> chi3_ratios <- fstar(chi3) / dchisq(chi3, df = 3)
> chi3_omegas <- chi3_ratios / sum(chi3_ratios)
> chi3_x2 <- chi3^2 * (k * chi3_omegas) #
> (chi3_est <- mean(chi3_x2))
[1] 0.3904</pre>
```

Mixture estimator

```
> mixs <- rmix(k)
> mixs_ratios <- fstar(mixs) / dmix_star(mixs)
> mixs_omegas <- mixs_ratios / sum(mixs_ratios)
> mixs_x2 <- mixs^2 * (k * mixs_omegas)
> (mixs_est <- mean(mixs_x2))
[1] 0.3893</pre>
```

Stacking up the variances

We've already seen method using a reweighted standard Normal.

```
> var(reweighted_ys2)
[1] 0.05506
```

> var(chi3_x2)

[1] 0.2351

> var(mixs_x2)

[1] 0.01227

So the *Normal* envelope beats the χ^2 envelope, but the mixture beats both.

Other Variance Reduction

Techniques

Additional techniques

Importance sampling is a very powerful tool, but it is not the only method of reducing the variance of estimates.

We will briefly look at three others:

- Antithetic variables
- Control variates
- Stratified sampling

Antithetic variables

So far, we have been generating, **independent**, **identically distributed** collections of random variables.

With antithetic variables, we introduce dependence in way to decrease the variance of the estimator.

The trick is to find a way to generate the dependence in a very particular way.

Thinking more about dependence and variance

Suppose we have an estimator for θ that is a sample mean of T_i : $\hat{\theta} = m^{-1} \sum_{i=1}^m T_i$ (e.g., $T_i = h(Y_i)f(Y_i)/g(Y_i)$.

The variance of this estimator is

$$\mathsf{Var}(\hat{ heta}) = rac{1}{m^2} \left[\sum_{i=1}^m \mathit{Var}(T_i) + \sum_{i
eq j} \mathsf{Cov}(T_i, T_j)
ight]$$

When T_i is independent of T_j is the covariance term is zero.

What if we could generate negatively correlated T_i and T_j ?

Example: Uniform random variables

Suppose that we are going to use the inversion method to generate a variable X for which we want to estimate E(X).

You proved that U'=1-U has the same distribution as $U\sim U(0,1)$ and

$$Cov(U, U') = E(U(1-U)) - (1/4) = E(U) - E(U^2) - 1/4 = 1/4 - 1/3 = -1/12$$

Since Q_X (the quantile function for X) is **monotonic**, $Q_X(U)$ and $Q_X(1-U)$ are also **negatively correlated**.

Example continued

Suppose we have

$$f(x) = \frac{x^2}{9\theta^3}, \quad 0 \le x \le 3\theta$$

For $\theta = 1/3$, let's estimate the mean (which we can compute as 3/4):

$$f(x) = 3x^2 \Rightarrow F(t) = t^3 \Rightarrow Q(p) = p^{1/3}$$

In order to reduce the variance, we'll use the following identity:

$$\hat{ heta} = rac{1}{m} \left[\sum_{i=1}^{m/2} Q(U_i) + \sum_{i=1}^{m/2} Q(1-U_i)
ight] = rac{1}{m/2} \sum_{i=1}^{m/2} (Q(U_i) + Q(1-U_i))/2$$

IID solution

```
> iids <- runif(10000)^(1/3)
> mean(iids)
[1] 0.7518
> (est_var_iid <- var(iids) / 10000)
[1] 3.721e-06</pre>
```

Antithetic variables

To keep the sample size the same, let's only generate 5000 uniforms, then supplement those with 5000 copies of 1-U.

```
> tmp <- runif(5000)
> antis <- (tmp^(1/3) + (1 - tmp)^(1/3)) / 2
> mean(antis)
[1] 0.7499
> (est_var_anti <- var(antis) / 5000)
[1] 4.76e-07</pre>
```

Percent variance reduction

```
> 1 - (est_var_anti / est_var_iid)
[1] 0.8721
```

An 86% reduction in variance (and we only had to generate 1/2 as many random variables).

Note: it is not always obvious how to generate the antithetic variable pairs, but when you can, they are a very powerful tool.

Control variates

Consider the following

- Want to estimate $\theta = E(g(X))$
- Happen to know $\mu = \mathsf{E}(f(X))$
- and know $Cov(g(X), f(X)) \neq 0$ (i.e., g(X) and f(X) are correlated).

We could consider an estimator (of a single observation) of the form:

$$\hat{\theta}_c = g(X_1) + c(f(X_1) - \mu)$$

Observe that

$$E(\hat{\theta}_c) = \theta + c(\mu - \mu) = \theta$$
 (unbiased)

Variance

What is the variance of $\hat{\theta}_c$?

$$\mathsf{Var}(\hat{\theta}_c) = \mathsf{Var}(g(X_1)) + c^2 \mathsf{Var}(f(X_1)) + 2c \mathsf{Cov}(g(X_1), f(X_1))$$

We can minimize this function by picking

$$c = -\frac{\mathsf{Cov}(g(X), f(X))}{\mathsf{Var}(f(X))}$$

We call Y = f(X) the control variate. Antithetic variables are a special case.

We don't have time for an example, but see sec. 5.5 of SCR.

Stratified Sampling

As we have seen, it can be very useful to closely approximate the function |h(x)|f(x) in picking an envelope distribution for importance sampling.

To target regions of |h(x)|f(x),

- break up the integral into k regions, such that $A_i \cap A_j = \emptyset$ and $\bigcup A_i = (-\infty, \infty)$ (the A_i are disjoint).
- Estimate $E(I(X \in A_i)h(X))$ using m_i samples $(\hat{\theta}_i)$
- Combine the estimates:

$$\hat{\theta}_k = \frac{1}{\sum_{i=1}^k m_i} \sum_{i=1}^k m_i \hat{\theta}_i$$

If the variances of the individual portions are smaller than $Var(\hat{\theta})$ on average, the overall variance will be smaller for $\hat{\theta}_k$ than $\hat{\theta}$.

Summary

- Importance sampling is a very flexible technique that is used widely.
- The key is picking a good envelope distribution that matches |h(x)|f(x)
- Control variates are a very powerful approach when possible, but requires more knowledge of the problem.
- These are often combined in practice.
- Stratified estimation is also relatively easy to implement and complements importance sampling.