Molecular Structure, Bonding, Properties, and Functionality*

Fall 2004, AMS-691 Section 2 Topics in Applied Mathematics

Introduction to Computational Structural Biology and Drug Design

Meeting 03, 09/08/04, Topics 1 and 2

Robert C. Rizzo

*Adopted from http://web.uccs.edu/chemistry and other online sources

9/08/04 Robert C. Rizzo, Ph Story Brook Univers

Bohr's planetary model of the atom: electrons orbit the nucleus only in specific quantized states (energy levels, orbitals)

$$\Delta E_{\text{Hydrogen atom}} = -Rhc \left(\frac{1}{n^2_{\text{final}}} - \frac{1}{n^2_{\text{initial}}} \right)$$
Robert C. Riuze, PhD

Standing waves: quantized energy levels

Quantum mechanical model: Electrons behave like particle and waves

Heisenberg (1901-1976)

It is impossible to know simultaneously both the exact momentum and exact location of an electron.

Can only determine the **probability** of finding an electron within a given region of space.

Schrödinger (1887-1961)

Wave functions (Ψ) describe the standing wave for the electron around an atom.

 Ψ^2 is the probability of finding an electron in a given region of space and describes the orbital within which an electron exists

8/04 Robert C. Ri Steam Break

Schrödinger's wave functions (orbitals) are described by 4 quantum numbers

- (2) angular momentum quantum number, *l* determines: shape (type) of orbital (subshell)

9/08/04

Schrödinger's wave functions (orbitals) are described by 4 quantum numbers

- (3) magnetic quantum number, m_l determines: orientation of orbital $m_l = 0, \pm 1, \pm 2... \pm l$
- (4) spin quantum number, m_s two spin states: up or down (quantized) $m_s = + \frac{1}{2}, -\frac{1}{2}$

S

08/04 Robert C. Rizzo, PhD Story Brook University

Atomic orbital representations (size, shape, orientation) s orbitals p orbitals p orbitals Refer C. Rizer, PhD Story Broad University 15

Organic chemistry - originally: derived from living *organ*isms (not minerals) - 1828 Wöhler: NH₄+ OCN ammonium cyanate (inorganic) - compounds containing C, H, O, N, S, P, etc.

Organic molecule representations (each line is a covalent bond, 2 e⁻) Structural formula condensed formula bond-line formula H H H H H H CH₃CH₂CH₂CH₂CH₃ H H OH H CH₃CH₂CHCH₃ OH H O H CH₃CH₂CHCH₃ OH H O H CH₃CH₂CHCH₃ OH CH₃COCH₃ (CH₃)₂CO

Robert C. Rizzo, PhD Stony Brook University

	Resonance structures							
-two or	-two or more equivalent Lewis structures							
	remain in fixed positions, actrons arranged differently							
HCO ₂ -	delocalized electrons $\begin{bmatrix} H - \bigcirc & & \\ & &$							
	•actual species is an average of the two (resonance hybrid)							
9/08/04	Robert C. Rizzo, PhD 21 Story Brook University							

Alkanes CH₄ (CH₄) methane (natural gas, swamp gas) CH₃-CH₃ (C₂H₆) ethane CH₃-CH₂-CH₃ (C₃H₈) propane CH₃CH₂CH₂CH₃ (C₄H₁₀) butane CH₃CH₂CH₂CH₂CH₃ (C₅H₁₂) pentane

Alkanes: Nomenclature, alkyl groups CH₃— methyl CH₃—CH₂— ethyl CH₃—CH₂—CH₂— propyl CH₃—CH—CH₃ isopropyl CH₃CH₂CH₂CH₂— butyl CH₃CH₂CHCH₃ sec-butyl

Trigonal planar =
$$sp^2$$

120°

H

The contraction of the point of th

Triple bonding

H—C=C—H linear =
$$sp$$
 2π bonds

H
 30804

Robert C. Rizzo, PhD
Shory Block University

Triple bond = 1σ bond + 2π bonds

Physical Properties: ketones

- more polar than ethers or alcohols
- more soluble than ethers
- less soluble than alcohols (H-bond acceptor only)

9/08/04 Robert C. Rizzo, PhI Stony Brook University

Functional groups: Carboxylic acids

Physical Properties: Carboxylic acids CH₃—H CH₃—CH₂—OH CH₃—OH b.p. 49° 78° 118° stronger H-bond acceptor Stronger H-bond acceptor RCO₂H R = C₁-C₃ miscible with H₂O C₄-C₁₀ increasingly less soluble H-bonded dimer in neat acids ROSO4 ROBERT C-RUSA, PhD Characterists ROBERT C-RUSA, PhD

Experimentally observed properties are a function of molecular makeup and structure					
•Func. groups can be:	•Solutes (molecule) in solvent (water) —solubility —free energy of solvation/hydration —octanol/water partition coeff.				
-acidic (lose H) -basic (gain H)	•Drugs (chemotherapeutics) –affinity				
•Pure liquids properties -boiling point -density -heat of vaporization	-potency-specificity-binding energy-ADME				
	tobert C. Rizzo, PhD 53 tony Brook University				

	" S	, brob	CI CICS	Porc	ncy exan	ipic)
		-16	Nº C			
		к	N, N N	>		
no.	\mathbb{R}^1	R ²	\mathbb{R}^3	IC_{50}^{α}	cu. ΔG _{exptl}	
N01	Me	Et	Н	0.125	-9.42	
N02	Me	Et	2-Me	0.17	-9.24	
N03	Me	Et	2-Cl	0.15	-9.31	
N04 N05	Me	Et Et	3-Me 3-Cl	0.76	-8.35 >-8.19	
N05 N06	Me	Et	4-Me	>1.0	>-8.19 -7.81	
N00 N07	H	Et	4-ace H	0.44	-8.67	
Nos Nos	H	Et	4-Me	0.035	-10.17	
N09	Ĥ	Et	4-Cl	0.095	-9.58	
N10	H	e-Pr	4-Me	0.084	-9.65	
N11	Me	c-Pr	4-Me	>1.0	>-8.19	
N12	Me	Pr	H	0.45	-8.66	
N13	Me	t-Bu	H	11.0	-6.77	
N14	Me	COCH ₃	H	15.3	-6.57	
N15	Me	Et	4-Et	0.11	-9.49	
N16	Me	CH_2SCH_3	H	0.85	-8.28	
N17 N18	H	c-Pr c-Pr	4-CH ₂ OH 4-CN	3.0 1.25	-7.54 -8.05	
N18 N19	Me		4-CN H		-8.05 -7.56	
N19 N20	H	CH ₂ CH ₂ F	H	2.9 0.45	-7.56 -8.66	
N20		C-PT	n	0.40	-8.06	

Conclusions

- The atomic world behaves quantum mechanically. For our purposes we represent molecules classically.
- Atoms may gain or lose electrons and can "share" electrons to create a bond. Chemists represent a covalent bond by drawing a line between the two atoms (H, C, O, N, S, P, etc.) and double, triple bonds are possible
- 3D arrangement of atoms (functional groups) have known properties.
- Many experimental measurements can be understood in terms of the presence or absence of specific types of functionality (solubility, b.p.).

Robert C. Rizzo, PhD Stony Brook University

• Hydrogen bonds are critically important (a competing process).

•			
•			
•			
•			
•			
•			