FORMULARIO DI FISICA 2

Per segnalare errori scrivimi alla mail emannele, urso@studenti, unipd.it oppure correggi tu stesso usando il file sorgente in La Te_X su GitHub cercando Baelish. Buona fortuna per l'esame!

							db	
NOME:		· Potenziale scalare V	· Conduttori in equilibrio	· Campo elettrico E generato		$dP = J(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau$ (95)		
COGNOME: MATRICOLA:		$V(\mathbf{r}) = \frac{U(\mathbf{r})}{q_0}$ (28)		$\mathbf{E} = \frac{qd \left(2\cos(\theta)\mathbf{u}_r + \sin(\theta)\mathbf{u}_\theta\right)}{4\pi\varepsilon r^3}$	(71)			(120
■ FONDAMENTALI		$V(B) - V(A) = -\int_{-B}^{B} \mathbf{E} \cdot d\mathbf{r}$ (29)	$\mathbf{E} = 0$ (52)	· Momento torcente		$R_{eq} = \sum_{i=1} R_i$ (96)		limensi
· Teorema (divergenza)			- il potenziale è costante	$\mathbf{M} = \mathbf{a} \times q \mathbf{E}(x, y, z)$	(72)	In parallelo	$\sin(a) = qBR$	
$\int_{\Sigma} \mathbf{F} \cdot d\mathbf{\Sigma} = \int_{\tau} \nabla \cdot \mathbf{F} d\tau$	(1)	i E	$\Delta V = 0 \tag{5.3}$			$R_{eq} = \left(\sum_{i=1}^{n} \frac{1}{R_i}\right)^{-1}$ (97)		(121)
· Teorema (Stokes)		$U = \frac{1}{2} \int_{\mathbb{R}^3} \rho(\mathbf{r}) V(\mathbf{r}) d\tau \qquad (31)$	Le cariche si distribuiscono sempre su sumerfici, mai all'interno	$\mathbf{M} = \mathbf{p} \times \mathbf{E}$	(73)	· Generatore reale	$d \equiv \frac{2\pi R}{}$	(199
$\oint_{\mathcal{X}} \mathbf{F} \cdot d\mathbf{s} = \int_{\Sigma} \nabla \times \mathbf{F} d\Sigma$	(2)	$U = \frac{1}{-\varepsilon_0} \int \mathbf{E}^2 d\tau$ (32)		. Lavoro per ruotarlo $c^{ heta_{\ell}}$		$\Delta V = V_0 - r_i I$ (98)		
Teorema (Gradiente)		di Poisson		$W = \int_{\theta_1}^{\infty} M d\theta$ So E uniformo	(74)	. Leggi di Kirchhoff Legge dei nodi	■ INDUZIONE Coefficienti mutua induzione	ē
$\phi_2 - \phi_1 = \int_{\gamma} \nabla \phi \cdot d\mathbf{s}$	(3)	$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$ (33)		$W = pE[\cos(\theta_i) - \cos(\theta_f)]$	(75)	$\sum_{k=0}^{N} I_{k} = 0 {99}$		(123
· Flusso di un campo		E e V di particolari distribuzioni	$C = \frac{Q}{\Lambda V} \tag{55}$	Frequenza dipolo oscillante		Legge delle maglie	· Flusso generato da 1 attraverso 2	verso
$\Phi_{\Sigma}(\mathbf{E}) = \oint_{\Sigma} \mathbf{E} \cdot d\Sigma$	(4)	Carica puntiforme $\mathbf{E} = \frac{q}{\sqrt{q}} \mathbf{u}_r \qquad (34)$		Se E costante e unitorme $\frac{1}{1} \sqrt{pE}$	(92)	$\sum_{k=0}^{N} \Delta V_k = 0 \qquad (100)$	$\Phi_{1,2}=NB_1\Sigma_2$	(124
· Equazioni di Maxwell Nel vuoto:			geometrica.	$V = \frac{1}{2\pi} \sqrt{\frac{I}{I}}$	(a)	■ MAGNETOSTATICA	· Induttanza Φ autoflusso	
$\nabla \cdot \mathbf{E} = \frac{\rho}{c}$	(2)	uniformemente		· Energia del dipolo $U = -\mathbf{D} \cdot \mathbf{E}$	(22)	orentz		(125
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial \mathbf{B}}$	(9)	16 r < R	$C = \frac{\varepsilon_0 \Sigma}{d}$ (56)			$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$ (101) • Prima legge di Lanlace		
$\nabla \cdot \mathbf{B} = 0$	9 6	$\mathbf{E}(r) = \begin{cases} 4\pi \varepsilon_0 R & \text{occ} \\ \frac{Q}{Q} & \text{se } r \ge R \end{cases}$ (36)	Sferico	$\mathbf{F} = \nabla \left(\mathbf{p} \cdot \mathbf{E} \right)$	(78)	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{\rho} \oint \frac{d\mathbf{s} \times \mathbf{u}_r}{\sigma}$ (102)	$L = \mu_0 \frac{N^2}{\ell} \Sigma = \mu_0 n^2 \ell \Sigma$	(126
$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	(8)	$(\rho(3R^2-r^2))$ D	$C = 4\pi \varepsilon_0 \frac{Rr}{R - r}$ (57)	· Energia pot. tra due dipoli				
$\oint_{\Sigma} \mathbf{E} \cdot d\mathbf{\Sigma} = \frac{Q_{int}}{\varepsilon_n}$	(6)	$V(r) = \begin{cases} \frac{6\varepsilon_0}{Q} & \text{serr} > R \\ \frac{Q}{Q} & \text{serr} > R \end{cases}$ (37)		$U = \frac{[\mathbf{p}_1 \cdot \mathbf{p}_2 - 3(\mathbf{p}_1 \mathbf{u}_r)(\mathbf{p}_2 \cdot \mathbf{u}_r)]}{4\pi \varepsilon_0 r^3}$	(62)	_	$L = \frac{\mu_0 N^2 \pi a}{2\pi} \ln \left(\frac{R + b}{R} \right)$	(127
$\oint_{\mathbf{E}} \cdot d\mathbf{s} = -\frac{d\Phi(\mathbf{B})}{\mathbf{\Phi}(\mathbf{B})}$	(10)	rico	$C = \frac{2\pi c_0 \alpha}{\ln \frac{R}{\tau}}$ (58)	Forza tra dipoli				
$\int_{\Gamma} \mathbf{E} = \mathbf{E} \cdot \mathbf{d}t$ $\oint \mathbf{B} \cdot d\mathbf{\Sigma} = 0$	(E)	(0 ser <r< td=""><td></td><td>Dipoli concordi = F repulsiva $3p_1p_2$</td><td>(0)</td><td>Seconda legge di Laplace $\mathbf{F} = \int I(d\mathbf{s} \times d\mathbf{B})$ (105)</td><td>$\Phi = -L \frac{dI}{dt}$</td><td>(128</td></r<>		Dipoli concordi = F repulsiva $3p_1p_2$	(0)	Seconda legge di Laplace $\mathbf{F} = \int I(d\mathbf{s} \times d\mathbf{B})$ (105)	$\Phi = -L \frac{dI}{dt}$	(128
$\oint_{\mathbb{R}} \mathbf{B} \cdot d\mathbf{s} = n \sigma I_{-n - n} + n \sigma_{\sigma_n} \frac{d\Phi_E}{d\Phi_E}$	(12)	se r \geq R	$C_{eq} = \left(\sum_{i=1}^{n} \frac{1}{C_i}\right)$ (59)	$\mathbf{r} = \frac{4\pi \varepsilon_0 r^4}{4\pi \varepsilon_0 r^4} \mathbf{u}_r$	(08)	IZNE		
Jr — Forcone Port dt Nei mezzi:	î	se r < R		■ DIELETTRICI		viene indicata la direzione, il verso dipen- de dalla corrente I)	$\varepsilon = -\frac{d\Phi(\mathbf{B})}{dt} = -L \frac{dI}{dt}$	(129
$\nabla \cdot \mathbf{D} = \rho_{libere}$	(13)	$V(r) = \begin{cases} \frac{Q}{Q} & \text{se } r \ge R \\ \frac{4\pi\epsilon_0 r}{} & \text{se } r \ge R \end{cases}$ (39)	$C_{eq} = \sum_{i=1}^{n} C_i \tag{60}$	· Campo elettrico in un dielettrico	00			
$\nabla \times \mathbf{H} = \mathbf{J}_{C,lib} + \frac{\partial \mathbf{D}}{\partial t}$	(14)	Filo infinito con carica uniforme λ	Con dielettrico	-4 -4 -4	(10)	$\mathbf{B}(z) = \frac{r_{c0z}}{2(z^2 + r^2)^{3/2}}\mathbf{u}_z \qquad (106)$	$I = \frac{\mathcal{E}_i}{P_i} = -\frac{\mathrm{d}\Phi(\mathbf{B})}{P_{i,1}}$	(130
$\oint_{\Sigma} \mathbf{D} \cdot d\mathbf{\Sigma} = Q_{int,lib}$	(12)	$\mathbf{E}(r) = \frac{\lambda}{2\pi\varepsilon_0 r} \mathbf{u}_r \qquad (40)$	$C_{diel} = k_e C_0 \tag{61}$		(00)	File indefinite $\mathbf{B}(x) = \frac{\mu_0 I}{\mathbf{n}}.$ (107)		
$\oint_{\Gamma} \mathbf{H} \cdot d\mathbf{s} = I_{conc,lib} + \frac{d\Phi_D}{dt}$	(16)	$V(r) = \frac{\lambda}{9\pi c} \ln \left(\frac{r_0}{r} \right) \qquad (41)$		$r = \frac{1}{d\tau}$	(82)	S		ppia):
Discontinuità dei campi		Piano Σ infinito con carica uniforme	$U = \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$ (62)	•	(60)	$\mathbf{B}(r) = \frac{\mu_0 I a}{100} \mathbf{u}_{\phi} \qquad (108)$	$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1$	(131
Generali A D = 0	5	$\mathbf{E} = \frac{\sigma}{2\varepsilon_0} \mathbf{u}_n \qquad (42)$		$\mathbf{r} = c_0 \chi_E \mathbf{r}_k = c_0 (\kappa - 1) \mathbf{r}_k$	(00)			
$\Delta B_{\perp} = 0$ $\Delta E_{\parallel} = 0$	(1)	$V(x) = \frac{\sigma}{2}(x - x_0) \qquad (43)$	$RQ'(t) + \frac{Q(t)}{C} = V \qquad (63)$		zata	$\mathbf{B} = \mu_0 \frac{N}{\tilde{\alpha}} I \qquad (109)$	$U_L = \frac{1}{2}LI^2$	(132
$\Delta D_{\perp} = \sigma_L$	(19)	forme (sull'asse		$\sigma_p = \mathbf{P} \cdot \mathbf{u}_n = \frac{1}{k} \sigma_l$	(84)		In un circuito (conta una volta ogr	volta
$\Delta E_{\perp} = \frac{\sigma}{\varepsilon_0}$	(20)	$\mathbf{E}(x) = \frac{\lambda Rx}{2 - (1 - \frac{1}{2} \cos x)} \mathbf{u}_x \qquad (44)$			zata	$\mathbf{B}(r) = \frac{\mu_0 NI}{2\pi r} \mathbf{u}_{\phi} \qquad (110)$		e e
$\Delta H_{\parallel} = \mathbf{K}_c \times \mathbf{u}_n $	(21)		Scarica		(80)	Piano infinito su xy, con K \mathbf{u}_x densità lineare di corrente	$U = \frac{1}{2} \sum_{i=1}^{2} (L_i I_i^2 + \sum_{j=1}^{2} M_{i,j} I_i I_j)$ $i \neq j$	$i \neq j$
In spotest di imearita $D_{1,\parallel} D_{2,\parallel}$	000	$V(x) = \frac{1}{2\varepsilon_0\sqrt{x^2 + R^2}}$ (45)		. Spostantento efettroo $\mathbf{D}=\varepsilon_0\mathbf{E}_k+\mathbf{P}=\varepsilon_0k\mathbf{E}_k=\varepsilon_0\mathbf{E}_0$	(98)	$\mathbf{B} = \frac{\mu_0 \mathbf{K}}{2} \mathbf{u}_y \qquad (111)$		(133
k ₁ = k ₂	(22)	1 1.	Condensatore pieno Condensatore riempito di materiale di	■ CORRENTI		· Effetto Hall		
Se $\sigma_L = 0$ $\delta_1 \cdot E_1 = \delta_2 \cdot E_2$	(0.0)	$\mathbf{E}(x) = \frac{1}{2\epsilon_0} \left(1 - \frac{1}{\sqrt{1 + \frac{R^2}{x^2}}}\right) \mathbf{u}_x$ (40)				onda, b //B, b⊥I, n ce	$Q(t) = \frac{\Psi(0) - \Psi(t)}{R}$	(134
Rifrazione linee di B	(24)	$V(x) = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + R^2} - x \right) \qquad (47)$. Rowa fro le amenture	$W_{gen} = \int_{t_*}^{t_2} V dq(t) = 2U_E$	(87)	$V_H = \frac{1}{n q b}$ (112)	· Circuito RL in DC L. si onnone alle variazioni di I smorzan	Ismo
$\frac{\tan(\theta_2)}{\tan(\theta_1)} = \frac{\mu_2}{u_1}$	(24)	Disco carico uniformemente $(x \gt\gt R)$	$F = \frac{Q^2}{2} \partial_y \left(\frac{1}{z} \right)$ (67)			· Forza di Ampere Corr. equiversa = for. attrattiva	dole Appena inizia a circolare corrente	ante
■ ELETTROSTATICA		$\mathbf{E}(x) = \frac{\sigma}{2\varepsilon_0} \frac{\kappa}{x^2} \mathbf{u}_x \qquad (48)$	Z (C) Condensatore piano	$\mathbf{J} = nq\mathbf{v} = \frac{Nq\mathbf{v}}{\tau}$	(88)	$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2 L}{d}$ (113)	$I(t) = \frac{V_0}{R}(1 - e^{-\frac{R}{L}t})$	(135
· Forza di Coulomb		$V(x) = \frac{\sigma}{4\varepsilon_0} \frac{R^2}{x}$ (49)				e vettore A		0
$\mathbf{F} = \frac{q_1 q_2}{4 \pi \varepsilon_0 r^2} \mathbf{u}_{1,2}$	(25)	mig		$I = \frac{dq(t)}{dt} = \int_{\Sigma} \mathbf{J} \cdot d\Sigma$	(88)		$I(t) = I_0 e^{-\frac{R}{L}t}$	(136
Definizione campo elettrico		$\mathbf{E}(r) = \begin{cases} 0 & \text{se } r < \mathbf{R} \\ \frac{Q}{se \ r > \mathbf{R}} \end{cases}$ (50)	■ DIPOLO ELETTRICO · Momento di dinolo	· Leggi di Ohm		$\mathbf{A}(\mathbf{r}_1) = \frac{r_0}{4\pi} \int \frac{\sqrt{\epsilon_2}}{r_{2,1}} d\tau_2 \qquad (115)$ Invarianza di Games	Circuiti con barra mobile (b lunghez za barra)	(b hun
$\mathbf{E} = \frac{\mathbf{F}(\mathbf{r}_0)}{q_0}$	(26)	se r < R		$V = RI$ $R = \int \frac{\rho}{\rho} dl$	(6)	$\mathbf{A}' = \mathbf{A} + \nabla \Psi$ (116)		(137
· En. potenziale due cariche		$V(r) = \begin{cases} \frac{Q}{2\pi\varepsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \end{cases}$ (51)	· Potenziale del dipolo		(92)	Gauge di Coulomb $\nabla \cdot \mathbf{A} = 0$ (117)		
$U = \frac{1}{4\pi\epsilon_0 r_{1,2}} + c$	(27)	■ CONDUTIORI	$V(r) = \frac{T^{\alpha} \cos \alpha}{4\pi \varepsilon_0 r^2} = \frac{r}{4\pi \varepsilon_0 r^2}$ (70)	$\rho = \frac{1}{\sigma}$	(63)	$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{j} \tag{118}$	$I(t) = \frac{DOO(t)}{R}$	

| Dens. LINEARE di corrente sulla
SUPERFICIE | $K_m = M \times u_r$ (159) | $\mathbf{M} = M\mathbf{u}_z$ $\mathbf{K}_{\mathbf{m}} = K_m \mathbf{u}_\phi$ | Dens. SUPERFICIALE corrente | MAGNETIZZATA
$J_m = \nabla \times M$ (160) | | $\oint \mathbf{M} \cdot d\mathbf{l} = I_{m,c} \qquad (161)$ | ERFICIALE com | 1100 | I = I _{m,c}
SUPERFICIALE con
A | ERFICIALE con | $1 = I_{m,c}$
SUPERFICIALE con
A
H
$= I_{f,c}$
of m_2 . | ERFICIALE con | :
ERFICIALE con
P ² dr
dr
Histoni | :
ERPICIALE con
S ² dr
illomi | :
ERPICIALE con
g ² dr
ilforni | $\begin{split} \oint \mathbf{M} \cdot \mathbf{d} = I_{m,c} & \qquad (161) \\ \cdot \mathbf{Dens.} \mathbf{SUPERFICIALE} \mathbf{corrente} \\ \mathbf{LIBERA} \\ \mathbf{j}_1 \neq \omega_3 \\ \mathbf{j}_2 = \nabla \mathbf{v} + \mathbf{H} & \qquad (162) \\ \oint \mathbf{H} \cdot \mathbf{d} = I_{Lc} & \qquad (164) \\ \mathbf{Energia \ di \ B} & \qquad (164) \\ U_B = \frac{1}{2} \int_{\mathbb{R}^3} \mathbf{F} \cdot \mathbf{d} \cdot \mathbf{r} & \qquad (166) \\ \mathbf{con \ N} \mathbf{circuti \ fillionni} & \qquad (166) \\ U_B = \frac{1}{2} \sum_{i=1}^{N} I_i \phi_i & \qquad (167) \\ U_B = \frac{1}{2} \sum_{i=1}^{N} I_i \phi_i & \qquad (167) \\ \mathbf{con \ N} \mathbf{circuti \ fillionni} & \qquad (167) \\ \mathbf{con \ N} \mathbf{circuti \ fillionni} & \qquad (167) \\ \mathbf{con \ Curum \ NECUmpter \ Basis} & \qquad (167) \\ \mathbf{con \ Curum \ RLC} & \qquad (167) \\ con \ $ | FICIALE con mi impedenze in se gegled dei resistori | FICIALE com | FICIALE con mi mi mpedenze in se gole dei resistori | FICIALE commission in segole del resistor $\int\limits_{-\omega C}^{\infty} \int\limits_{-\omega C}^{\infty} \int_{-\omega C}^{\infty}$ | FICIALE commission in semi-section of $\frac{1}{\sqrt{c}}$ | FICIALE commission in semi-section of the properties of the prope | mi impedenze in se sgole dei resistori $\int\limits_{\omega C}^{1}\int\limits_{0}^{2}\frac{1}{\omega C}$ $\int\limits_{0}^{1}\frac{1}{\omega C}$ $\int\limits_{0}^{1}\frac{1}{\omega C}$ | FICIALE commission in segment of the sequence in segment of the sequence of t | FICIALE commpacters in semi-
mpedenze in semi-
mpedenze in semi-
posición del resistorio $\frac{1}{\omega C}$ | FICIALE commission in semi-
mpedenze in semi-
mpedenze in semi-
$\frac{1}{\sqrt{C}}$ $\frac{1}{\sqrt{C}}$ $\frac{1}$ | FICIALE commpedenze in semple derived the resistorial $\frac{1}{\omega C}$ | mi i mpedenze in se geole del resistori $\frac{1}{\omega C}$) $\frac{1}{\omega C}$; smorzato sinte $\frac{1}{2L}$ $\frac{1}{2L}$ $\frac{1}{2L}$ $\frac{1}{2}$ | FICIALE commpacters in semi-
mpedenze in semi-
posición del resistorio $\frac{1}{\omega G}$ $\frac{1}{$ | mi impedenze in se mpedenze in se $\frac{1}{\sqrt{C}}$ $\frac{1}{C$ | mi impedenze in se sgole dei resistori $\frac{1}{\omega C}$) $\frac{1}{\omega C}$ | mi impedenze in se segole del resistori $\frac{1}{\omega C}$) $\frac{1}{\omega C}$; smorzato sinke $\frac{2L}{4}$ $\frac{2L}{2}$ $\frac{2L}$ | FICIALE commposed
mpsedenze in sempredenze in semp | FICIALE comming the constant of the constant | FICIALE commpedenze in segole dei resistori $\frac{1}{\omega C}$) $\frac{1}{2}$ smorzato sinde $\frac{1}{2}$ $$ | mi impedenze in se sgole del resistori $\frac{1}{\omega C}$) $\frac{1}{\omega C}$ $\frac{1}{2L}$ $\frac{1}{2L}$ $\frac{1}{2L}$ $\frac{1}{2}$ | minimpedenze in se sgole del resistori $\frac{1}{\omega C}$) $\frac{1}{\omega C} \frac{1}{\sqrt{c}} = 0$ $\frac{1}{2L} \frac{R}{2} = \frac{1}{2}$ $= \frac$ | mi mpedenze in se sgole del resistori $\frac{1}{\omega C}$) $\frac{1}{\omega C}$ $\frac{1}{2}$ \frac | mi i mipedenze in se segole del resistori del con ante $\frac{1}{\omega C}$) $\frac{1}{\omega C}$ $\frac{1}{2}$ $\frac{1}{R}$ $\frac{1}$ | FICIALE commpted
minimpedanze in sempredanze in sempredanze in sempredanze in sempredanze in sempredanze in sempredanze is sempredanze in s |
|---|----------------------------------|--|--|--|---------------------------------------|---|---|--------------------------------------|--|----------------------|--|-------------------------|--|---|--|--|--|---|---|---|--|---|--|---
--|---
---	---	--
--	--	--
--	---	---

Lavoro fornito per muovere la barra	$W = \frac{(Bbv(t))^2}{R}$ (139)	arra
 | (130) | (151) | · Energia pot. tra due dipoli
 | $U = -\mathbf{m}_1 \cdot \mathbf{B}_2 = -\mathbf{m}_2 \cdot \mathbf{B}_1 \tag{152}$ | B è il campo magnetico generato dall'altro dipolo | Forza tra dipoli
$F(\mathbf{r}) = \frac{3\mu_0}{(\mathbf{m}_1 \cdot \mathbf{u}_r) \mathbf{m}_2 + (\mathbf{m}_2 \cdot \mathbf{u}_r) \mathbf{m}_1 + \dots + $
 | | (153) | ■ MAGNETISMO | tico nella materia
 | $D = \mu_0(\mathbf{M} + \mathbf{n}) $ (154)
$\mathbf{R} = k \cdot \mathbf{R}_0 = (1 \pm \sqrt{-1})\mathbf{R}_0 $ (155) | M ene | (156)
 | (00x) | $M = \frac{\lambda_{max}}{(\lambda_m + 1)\mu_0}$ NOTA: Attento al segno: lo sfasamento |
| . Moto ciclotrone
Raggio | $R = \frac{mv}{cD}$ (119) | qB
Periodo | $T = \frac{2\pi m}{aB} \tag{120}$ | Angolo deflessione elica (v 2 dimensioni) | $\sin(\theta) = \frac{qBR}{mw}$ (121) | | $d = \frac{\tan(\theta)}{\tan(\theta)}$ | ■ INDUZIONE | • Coefficienti mutua induzione $\Phi_{\alpha,\alpha} = ML$ (193) | rato da 1 attraverse | $\Phi_{1,2} = NB_1\Sigma_2 \qquad (124)$ | · Induttanza | $\Phi(\mathbf{B}) = IL$ (125) | Solenoide ideale | $L = \mu_0 \frac{N^2}{\ell} \Sigma = \mu_0 n^2 \ell \Sigma \qquad (126)$ | Toroide | $L = \frac{\mu_0 N^2 \pi a}{2\pi} \ln \left(\frac{R+b}{R} \right) \qquad (127)$ | · Fem autoindotta | $\Phi = -L \frac{dt}{dt}$ (128) | | $\varepsilon = -\frac{1}{dt} = -L\frac{1}{dt}$ (129) | æ | $I = \frac{\dot{R}}{R} = -\frac{\dot{R}}{Rdt}$ (130) | · Energia dell'induttanza
Mutua (solo una volta ogni coppia): | $U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1$ (131)
 | Interna | $U_L = \frac{1}{2}LI^2$ (132) | In un circuito (conta una volta ogni induttanza ed una ogni coppia)
 | $U = \frac{1}{4} \sum_{i=1}^{N} (T_i J^2 + \sum_{i=1}^{N} M_i J_i J_i)$ $i \neq i$ | $C = \frac{2}{2} \sum_{i=1}^{L} (\frac{L_i t_i}{L_i} + \sum_{j=1}^{L} \frac{L_i t_j J_i t_j J_j}{L_i t_j J_i t_j J_j}) (133)$ | · Legge di Felici
 | $Q(t) = \frac{\Phi(0) - \Phi(t)}{R}$ (134) | Circuito RL in DC | L si oppone alle variazioni di 1 smorzan-dole Annona inizia a circolore corrente | $I(+) = \frac{V_0}{1}(1 - e^{-\frac{R}{R}t}) $ (135)
 | iene aperto | $I(t) = Lee^{-\frac{Rt}{4}} \tag{136}$ | arra mobile (b lun
 | za barra)
F.e.m. indotta | $\varepsilon(t) = -Bbv(t)$ (137) |
| Potenza conduttore ohmico | (94) | (92) | į | (96) | (26) | | (86) | Leggi di Kirchhoff
Legge dei nodi | (66) | | (100) | k=0
■ MAGNETOSTATICA | | (101) | Prima legge di Laplace
$\mathbf{B}(\mathbf{r}) \equiv \frac{\mu_0 I}{\pi} \int_0^{\infty} \frac{d\mathbf{s} \times \mathbf{u}_r}{\mathbf{r}}$ (102) | | _ | ce | (105) | B di corpi notevoli (ATTENZIONE:
viene indicata la direzione, il verso dipen- | | $\mathbf{B}(z) = \frac{\mu_0 I r^2}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z \qquad (106)$ | | (107) | Asse the tunge 2a $\mathbf{B}(r) \equiv \frac{\mu_0 I a}{r_0} \qquad (108)$
 | | (109) |
 | ; | y, con K u _x densta | (111)
 | b spessore sonda, b // B, b \perp I, n car/vol | (112) | Forza di Ampere
Corr. equiversa = for. attrattiva | (113)
 | Potenziale vettore A | (114) | $\mathbf{A}(\mathbf{r}_1) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(\mathbf{r}_2)}{r_{2,1}} d\tau_2 \qquad (115)$
 | | $\mathbf{A}' = \mathbf{A} + \nabla \Psi$ (116)
Gausse di Coulomb |

Massimi secondari $m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\}$	1 111/111	(220) $\delta = \frac{2m + 1}{2N} \pi \rightarrow \sin \theta = \frac{2m + 1}{2N} \frac{\lambda}{d}$ (238)	$I_{SEC} = \frac{I_0}{(\sin \frac{\pi d \sin \theta}{10})^2}$ (221)		(222) $\delta = \frac{2m}{N}\pi \rightarrow \sin\theta = \frac{m\lambda}{Nd}$ (240)		Separazione angoiare (distanza angoiare tra min. e max. adiacente)	(224) $\Delta \theta \approx \frac{1}{N} \frac{\lambda}{d \cos \theta}$ (242)		$\frac{(225)}{\lambda} = \frac{\delta \lambda}{\lambda} = \frac{1}{Nn}$ (243)	(226) · Diffrazione		$I(\theta) = I_0 \left(\frac{\frac{\lambda}{\pi a \sin \theta}}{\frac{\lambda}{\lambda}} \right) \qquad (244)$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0 \tag{245}$	(228) sin $\theta = \frac{2m+1}{2m} \frac{\lambda}{\lambda}$ (246)	ļ	$\left(\frac{\pi(2m+1)}{2}\right)^2$ Minimi $m \in \mathbb{Z} - \{0\}$	$n \in \mathbb{Z}$ $\sin \theta = \frac{m\lambda}{}$ (248))) a $I_{MIN} = 0$		zovrapposizione di dinazione e merie- renza, l'intensità è il prodotto dei due (231) effetti	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\lambda} \right) \sin(\frac{N \pi d \sin \theta}{\lambda}) \right)^2$	(232) $-\langle -\rangle = \sqrt{\frac{\pi a \sin \theta}{\lambda}} \sin(\frac{\pi d \sin \theta}{\lambda})$ (250)	(233) Dispersione	$D = \frac{d\theta}{d\lambda} = \frac{m}{d\cos\theta_m} \qquad (251)$	· Fattore molt. di inclinazione (234)	$f(\theta) = \frac{1 + \cos \theta}{2} \tag{252}$	(235) Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$ (253)	(236) Luce polarizzata (Legge di Malus)	(237) $I = I_0 \cos^2(\theta)$ (254)	$\int \frac{1}{(x^2 + r^2)^{3/2}} dx = \frac{x}{r^2 \sqrt{r^2 + x^2}} $ (271)	ì	$\int \frac{1}{\sqrt{x^2 + \tau^2}} dx = \sqrt{r^2 + x^2} $ (272)	(268) $\int \frac{x}{(x^2 + r^2)^{3/2}} dx = -\frac{1}{\sqrt{r^2 + x^2}}$ (273)	
· Interferenza generica Onda risultante	one is a ((fra enter)	$f(\mathbf{r}, t) = Ae^{i(\kappa r_1 - \omega_1 + \alpha)}$ (5)	$A = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos \delta}$		$\delta = \alpha_2 - \alpha_1 = (\Phi_2 - \Phi_1 + k(r_2 - r_1)$ Intensità	$I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_1 \cos \alpha_1 + A_2 \cos \alpha_2}$	Massimi	$\delta = 2n\pi$ Minimi	+ 1)π	· Condizione di Fraunhofer	$\theta = \frac{\Delta y}{L}$		· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$	Costruttiva $r_2 - r_1 = n\lambda \Rightarrow \sin \theta = n - n \in \mathbb{Z}$	d Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \rightarrow \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$		Interf. riflessione su lastra sottile (n indice rifr., t spessore lastra)	$\delta = \frac{2\pi}{\lambda} \frac{2nt}{\cos \theta_t}$	Massimi $m \in \mathbb{N}$ 2m+1.	$t = \frac{1}{4n} \lambda \cos \theta_t$ Minimi on ϵN		2n Interferenza N fenditure	$\delta = \frac{2\pi}{\sqrt{4}} d\sin \theta$	A Intensità	$I(\theta) = I_0 \left(\frac{\sin(N_2^{\delta})}{\sin\frac{\delta}{2}} \right)^2$		$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	$I_{MAX} = N^2 I_0$	· Attrito viscoso Ecnazione differenziale	$v' + \frac{v}{v} = K$	Soluzione	$v(t) = k\tau (1 - e^{-\frac{t}{\tau}})$	
zione	$n = \frac{c}{v} = \sqrt{k_e k_m}$ (198)	· Legge di Snell-Cartesio	$n_1 \sin \theta_1 = n_2 \sin \theta_2 \tag{199}$	· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_i}$ $R = \frac{P_r}{P_i} = \frac{I_r}{I_i}$ (200)	$t = \frac{E_t}{E_i} \qquad T = \frac{P_t}{P_i} = \frac{I_t}{I_i} \qquad (201)$	Raggio RIFLESSO polarizzato	$r_{\sigma} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}$ (202)	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{\tan(\theta_t + \theta_i)}$ (203)	$R_{\sigma} = r_{\sigma}^{2} \qquad R_{\pi} = r_{\pi}^{2} \qquad (204)$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2n_t \cos \theta_t}{n_t \cos \theta_t + n_t \cos \theta_t}$ (205)	$t_{pi} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i} \qquad (206)$	$T_{\sigma} = 1 - R_{\sigma}$ $T_{\pi} = 1 - R_{\pi}$ (207)		$R = \frac{1}{2} (R_{\sigma} + R_{\pi}) I = \frac{1}{2} (I_{\sigma} + I_{\pi}) (208)$ Incidenza normale $(\cos \theta_i ? \cos \theta_i = 1)$	$r = \frac{n_i - n_t}{n_i + n_t} $ (209)	$R = \left(\frac{n_t - n_t}{n_s + n_s}\right)^2 \qquad (210)$	$t = \frac{2n_i}{m + m}$ (211)	$T = \frac{4n_{\ell}n_{\ell}}{\ell_{\ell-1} - \sqrt{2}}$ (212)	$(n_i + n_t)^-$ Angolo di Brewster (il raggio riffesso non ba rodar rarallela)	$\theta_i + \theta_t = \frac{\pi}{2} \rightarrow \theta_B = \theta_i = \arctan \frac{n_t}{n_i}$ (213)	(28,)	T = 1 - R (215)	Superficie ASSORBENTE	$p = \frac{I_i}{v} \tag{216}$	$n \equiv \frac{I_t + I_t + I_T}{}$ (217)	polarizzazione	$\beta_R = \frac{P_R^a - P_R^x}{P_R^a + P_R^x}$ (218)	$\beta_{TT} \equiv \frac{P_T^{\sigma} - P_T^{\pi}}{P_T^{\sigma} - P_T^{\pi}}$ (219)	$P_T^a + P_T^{\pi}$	■ INTERFERENZA e DIFFRAZIO- NE		$F = \nabla W = -\nabla U$ (261) . Moto circolare unif accelerate	. Moto circolare unit. accelerato $v = \omega r \tag{262} \label{eq:262}$	$a = \frac{v^2}{r} = \omega^2 r \tag{263}$	
Effetto Joule	$\langle P_R \rangle = \frac{V_0}{2B}$ (180)	nedia totale	$\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$ (181)	, V e I efficace	$V_{eff} = \frac{\sqrt{2}}{2}V_0$ $I_{eff} = \frac{\sqrt{2}}{2}I_0$ (182)	CAMPO EM e OTTICA	Campi in un'onda EM (Nel vuoto $v = c$)	$E(x, t) = E_0 \cos(kx - \omega t)$ (183)	$B(x, t) = \frac{E_0}{v} \cos(kx - \omega t)$ (184)	$\omega = kv$ $k = \frac{2\pi}{\lambda}$ $\lambda = \frac{v}{\nu}$	Vettore di Poynting	$\mathbf{S} = \frac{1}{n_o} \mathbf{E} \times \mathbf{B} \tag{185}$	ro Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$ (186)	Potenza		L'intensità varia in base alla scelta di Σ Equazioni di continuità Teorema di Pomrino	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial \mathbf{u}} = 0$ (188)	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0 \qquad (189)$	Densità di en. campo EM	(H :	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} d\tau$ (191) Densità di quantità di moto	$\mathbf{g} = \frac{\mathbf{S}}{2}$ (192)	o Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}} \tag{193}$	Oscillazione del dipolo	$I(r, \theta) = \frac{I_0}{r^2} \sin^2(\theta)$ (194)	$P = \int \int I(r, \theta) dr d\theta = \frac{8}{3}\pi I_0 \qquad (195)$	nda	$v^{*} = \frac{1}{k_e \varepsilon_0 k_m \mu_0}$ (196)	$c^2 = \frac{1}{\varepsilon_0 \mu_0}$ (197)	UNITÀ DI MISURA	$H = \frac{Wb}{A} = Tm^2 = \frac{m^*kg}{A^2s^2}$ (255)	$Ω = \frac{V}{A} = \frac{V^2}{W} = \frac{m^2 kg}{A^2 s^3}$ (256)		/ W m240

 $\int \sin^3 ax dx = -\frac{3a \cos ax}{4a} + \frac{\cos 3ax}{12}$ (275)

(266) $\int \frac{1}{\sqrt{x^2 + r^2}} dx = \ln \sqrt{x^2 + r^2} + x \quad (270)$ (265) $\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$ (269)

> $x(t) = A\sin(\omega t + \varphi)$ Soluzione

> > (260)

. Momento torcente $M = \mathbf{r} \times \mathbf{F} = I\alpha$ ■ FISICA 1

. Moto armonico Equazione differenziale $x'' + \omega^2 x = 0$

oriali . Identità geometriche $ (282) \sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta \ (288) $ $ (283) \cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta \ (289) $ $ (284) \cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta \ (289) $	$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$ $\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$ (290) $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$ (286) $\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$ (291)	$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$ $\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$ (292)	Cilindriches $\frac{\partial f}{\partial r} \mathbf{r} + \frac{\partial f}{r} \frac{\partial \theta}{\partial z} + \frac{\partial f}{\partial z}$	$\text{Divergenza} \; (\nabla \cdot \mathbf{F} =) \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial x} + \frac{\partial F_z}{\partial z} \frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi} \frac{1}{r} \frac{\partial (rF_r)}{r} + \frac{1}{r} \frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$ \begin{pmatrix} \frac{1}{r} \frac{\partial F_c}{\partial \phi} - \frac{\partial F_c}{\partial \phi} \\ \frac{\partial F_c}{\partial \phi} - \frac{\partial F_c}{\partial \phi} \end{pmatrix} $ $ \begin{pmatrix} \frac{\partial F_c}{\partial \phi} - \frac{\partial F_c}{\partial \phi} \\ \frac{\partial F_c}{\partial \phi} - \frac{\partial F_c}{\partial \phi} \end{pmatrix} $
. Identifa vettoriali $\nabla\cdot(\nabla\times\mathbf{A})=0$ $\nabla\times(\nabla f)=0$ $\nabla\times(\nabla f)=0$ $\nabla\cdot(f\mathbf{A}=f\nabla\cdot\mathbf{A}+\mathbf{A}\cdot\nabla f$		$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{J}$	Sferiche $\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial F_\theta \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta}$	$\frac{1}{r \sin \theta} \left(\frac{\partial F_{\phi} \sin \theta}{\partial \theta} - \frac{\partial F_{\phi}}{\partial \theta} \right) \\ \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_{r}}{\partial \theta} - \frac{\partial (rF_{\phi})}{\partial r} \right) \\ \frac{1}{r} \left(\frac{\partial (rF_{\phi})}{\partial r} - \frac{\partial F_{r}}{\partial \theta} \right)$
Soluzioni $ Se \; \Delta > 0 $ $ y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} $ $ Se \; \Delta = 0 $	$\begin{split} y(t) &= c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t} \\ \text{Se } \Delta &< 0 \\ y(t) &= c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) \end{aligned} \tag{281}$	$\operatorname{con}\alpha = Re(\lambda) \operatorname{e}\beta = Im(\lambda)$	Cratesiane $\frac{\text{Cartesiane}}{\partial x}$ $\frac{\partial f}{\partial x} \times + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$=) \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$ \begin{pmatrix} \partial F_z & \partial F_y \\ \partial y & \partial z \\ \partial F_z & \partial F_z \\ \partial F_z & \partial F_z \\ \partial F_y & \partial F_z \\ \end{pmatrix} $
Form generaled it primo ordine Solum Form generale Solum $(2\pi)^{-1}$ (276) $g(t) = h(t)$ Solum $g(t) = h(t)$ (276) $g(t)$ Solum $g(t) = \frac{1}{2} e^{-s} G(t) = \frac{1}{2} e^{-s} G($	ordine omo-	$\lambda_{1/2} \in \mathbb{C}$ sono le soluzioni dell'equazione con associata	Gradiente (∇f =)	Divergenza ($\nabla \cdot \mathbf{F} =$	Rotore ($\nabla \times \mathbf{F} =$)