COMP 4462 Data Visualization Tutorial

CHEN Chang PAN Ziqi

Friday 15 November, 2024

Outline

- Exercise review (in-class exercise 2, 3, and 4)
- Tips for midterm 2 (coverage, question types, cheatsheet)
- Quick review
- Q&A

In-class exercise 2

Question 1

Figure 1. Cryptocurrency visualization shows the \$6.4 billion poured into initial coin offerings (ICOs -- represented by each circle) since 2014.

How would you modify this visualization if you were asked to present the <u>ICOs</u> occurring <u>each</u> day (Figure 1 shows <u>Jan 14 - 18</u>) in <u>a static graph</u>?

Note: Feel free to redesign the entire visualization but **keep the types of data shown**.

Present at least two design alternatives with drawings and text descriptions explaining your visual encodings (and interactions if any).

Question 1 grading scheme and answers

Grading scheme: 2 alternatives, 2.5 points each

Specifically,

ICO: each cryptocurrency usually has only one initial coin offering

Daily: not monthly; not accumulative

• **Time span**: from Jan 2014 to Aug 2018, more than 4 years

Static: need overview; no tedious interaction (e.g., a view per day)

• Continent: encoding for continents (e.g., colors, stacked bars, ...)

Data-ink rate

Question 1 grading scheme and answers

Grading scheme: 2 alternatives, 2.5 points each

Candidate answers:

- Stacked bar chart: x-axis showing the days and bars (color-continent & length-amount) showing individual ICOs.
- Calendar view: inside each cell are the circles of the corresponding day.

Question 2

Figure 2. Napoleon's troops moved to and retreated from Moscow.

- Modify this map to show the political leaning (<u>supporting France</u> <u>vs. supporting Russia</u>) of the <u>countries and regions</u>.
- 2) Design a visualization (based on Figure 2) to encode the length of travel time and number of soldiers to show the progress of the war and the turning point(s).

Question 2 grading scheme and answers

1) (2.5 points) Choropleth map on the base map with color showing the political leaning (color hue corresponding to the representative hue of France and Russia; may use saturation to show the strength of leaning).

- 2) (2.5 points) Use reasonable visual channels to encode the length of travel time and number of soldiers respectively, directly on each line segment.
 - *Candidate designs:
 - Color saturation/the elevation on the z-axis for duration
 - Line thickness for the number of soldiers

In-class exercise 3

Open-ended question

Task: During the COVID-19 pandemic, many European Union (EU) <u>countries</u> launched vaccination visualizations to help <u>monitor the vaccination progress</u> and update policies accordingly.

Data: Given <u>two datasets</u> from Kaggle (COVID-19 world vaccination progress + country profile), illustrate all or a subset of the data (at least four attributes of your choice). The data was <u>high-dimensional</u>.

Please design such <u>a visualization</u> for EU.

- 1) Demonstrate your design (sketches/diagrams + text descriptions)
- 2) Clarify the "What", "Why", and "How" (Munzner's Nested Model of Vis Design).

Open-ended answer

- 1) Correlation and similarity analysis on high-dimensional data;
 - The data items are the **EU countries**;
- *Candidate designs/methods: Scatter plot matrix, Parallel coordinates, Dimensionality reduction (PCA, t-SNE, MDS, ...), etc.
- 2) What: types and attributes of shown data;
- Why: the <u>tasks</u> that can be performed with your visualization(s) to help understand vaccination situations and inform vaccination policies in EU countries;
 - How: your proposed **idioms** and interactions.

In-class exercise 4

Question 1

Question 1 answers

1) Identify the **topics** involved in Elon Musk and Yann LeCun's social media feud and the topical evolution **over time**.

Text mining technique: text clustering and topic modeling.

*Candidate design: Theme river (+ word cloud) to show topic evolution.

2) Compare the public's <u>sentiments</u> towards Elon Musk's and Yann LeCun's posts and the sentiment changes, if any, <u>over time</u>.

Text mining technique: sentiment analysis.

*Candidate design: Line/bar/heatmap to show the temporal change of sentiment.

Question 1 answers

3) Analyze who, Elon Musk or Yann LeCun, initiated <u>each topical thread</u>, how they <u>referred to</u> each other's posts, and how they engaged (@) external sources during their debates.

Text mining technique: entity and relation extraction.

*Candidate design: Node-link diagram to show the connectivity.

Tips for midterm 2

Coverage

The content will cover all lectures and labs up to November 18, with an **emphasis** on materials taught **after Midterm 1**.

- Lecture notes and recordings
- Tutorial notebooks
- In-class exercises (may facilitate your preparation)

Question types

The question types include multiple choice, analysis, problem-solving, and design, the same as before.

- Multiple choice
- Analysis
- Problem-solving
- Design

Cheatsheet

Note that each student can bring **one** additional A4-sized self-prepared **cheatsheet** (new in Midterm 2).

Quick review

Review - Data types (NOIR)

Categorical:

- Nominal categorized
- Ordinal categorized + ranked

• Quantitative:

- Interval categorized + ranked + evenly spaced
- Ratio categorized + ranked + evenly spaced + has a natural zero

Review - Idiom (Visual Encoding) Design

- Visual encoding composition: mark + visual channel
- Mark: point/line/area/... [attribute of] item
- Visual channel: attribute value

Review - Idiom (Visual Encoding) Design

- Visual encoding composition: mark + visual channel
- Mark: point/line/area/... [attribute of] item
- Visual channel: attribute value
 - Expressiveness types
 - Effectiveness ranks: separability, popout, scalability
 - Encoding with multiple visual channel: Integral/Separable
- Visual encoding grouping

- Gestalt Principles
- Tufte's Principles of How to Achieve Graphical Excellence
- Tamara Munzner's Rules of Thumb

- Gestalt Principles:
 - Proximity, Similarity, Connectedness, Enclosure, Continuity,
 Common fate, Symmetry, Closure, and Figure and ground
- Tufte's Principles of How to Achieve Graphical Excellence
- Tamara Munzner's Rules of Thumb

- Gestalt Principles
- Tufte's Principles of How to Achieve Graphical Excellence:
 - Graphical integrity (Lie factor, Consistent scale, and Present data in context), Data-ink ratio, and Chart junk avoidance
- Tamara Munzner's Rules of Thumb

- Gestalt Principles
- Tufte's Principles of How to Achieve Graphical Excellence
- Tamara Munzner's Rules of Thumb:
 - No unjustified 3D, No unjustified 2D, Eyes beat memory, Resolution over immersion, Visualization mantra (*Overview first, zoom and filter, details on demand*), Function first form next, Responsiveness is required, ...

Review - Multivariate data visualization

- Multivariate Data: high dimensionality, interested in correlations between various attributes
- Visualization Techniques:
 - Geometric Projection:
 - Plots: Scatter plot, Scatter plot matrix, Parallel coordinates, ...
 - Concept: Visual clutter reduction
 - Layout Density
 - Hierarchical Display
 - Iconography (Glyph)
- Dimensionality Reduction:
 - o PCA, t-SNE, MDS

Review - Text visualization

- Text Mining Techniques:
 - Information extraction, Text summarization, Opinion mining and sentiment analysis, Text clustering, and Text classification
- Text visualization designs:
 - Word level: Word clouds (of all kinds), ...
 - Document level: Typography, Treemap, Fingerprinting, ...
 - Corpus level:
 - Topic, Sentiment: Heatmap, Scatter plot
 - Trend: Theme river, Area graph, Line graph
 - Discourse: Node-link diagram
 - Relation: Bubble chart, Pixel graph

Review - Graph visualization

- Graph Encoding Idioms:
 - Node-link layout:
 - General graph (of different variations)
 - Parallel layout: Sankey diagram
 - Tree
 - o Enclosure (nested) layout:
 - Treemap: Slice-and-dice layout, Squarifed layout, Voronoi, Radial
 - Division (layered) layout:
 - Layered diagrams, Sunburst diagram
 - Matrix layout
 - 3D layout

Review - Graph visualization

Visual Clutter Reduction:

- Visual clutter: excess items (or their representation or organization) lead to a degradation of performance at some task.
- Reduction approaches:
 - Edge-centric: Edge bundles, Confluent drawings, Hierarchical trees
 - Node-centric: Limitations of node clustering
 - Appearance-centric: Sampling, Filtering, Clustering, Changing point size/opacity
 - Space-centric
- Interactions and Navigation:
 - Select, Zoom and Pan, Filter (Dynamic query controls, Magic lens), Animation

Review - Validation and evaluation

Validation Approaches

Q&A now

Midterm 2

Next Friday 22 Nov (80 min)

Reminder:

- During the lecture in the regular classroom
- In-person, paper-based, close-book, close-note
- One additional A4-sized self-prepared cheatsheet
- Bring your student ID card, (color) pens, pencils, erasers, rulers, etc.