Edit Distance

Natalie Parde UIC CS 421

Edit Distance

Simple way to answer the question: How similar are two strings?

Minimum Edit Distance

- Minimum number of editing operations needed to transform one string into another
- Possible editing operations:
 - Insertion
 - Deletion
 - Substitution

Minimum Edit Distance

Two strings and their alignment:

Minimum Edit Distance

- If each operation has a cost of 1 (Levenshtein distance)
 - Distance between these is 5
- If substitutions cost 2

 (alternative also proposed by Levenshtein)
 - Distance between them is 8

Other Uses of Edit Distance in NLP

Evaluating Machine Translation and speech recognition

```
Spokesman confirms senior government adviser was shot

Spokesman said the senior adviser was shot dead

S I D
```

- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits

How to find the minimum edit distance?

- Search for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - Operators: insert, delete, substitute
 - Goal state: the word we're trying to get to
 - Path cost: what we want to minimize (the number of edits)

However, the search space of all edit sequences is huge!

- We can't afford to navigate naïvely
- Lots of distinct paths wind up at the same state
 - We don't have to keep track of all of them (just the shortest paths)

Formal Definition: Minimum Edit Distance

- For two strings
 - X of length *n*
 - Y of length *m*
- We define D(*i,j*) as the edit distance between X[1..*i*] and Y[1..*j*]
 - X[1..*i*] = the first *i* characters of X
- The edit distance between X and Y is thus D(n,m)

Intuition: Dynamic Programming

- Minimum edit distance can be solved using dynamic programming
 - Stores intermediate outputs in a table
 - Intuition: If some string B is in the optimal path from string A to string C, then that path must also include the optimal path from A to B
- D(n,m) is computed tabularly, combining solutions to subproblems
- Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Formal Definition: Minimum Edit Distance

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

```
For each i = 1...n

For each j = 1...m

D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; \text{ if } X(i) \neq Y(j) \\ 0; \text{ if } X(i) = Y(j) \end{cases}
```

Termination:

D(N,M) is distance

N										
0										
I										
Т										
N										
Е										
Т										
N										
Ι										
#										
	#	Е	X	Е	С	U	Т	I	0	N

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

N	9									
0	8									
Ι	7	D(<i>i</i>	<i>j</i>) = mi		i-1,j) + i i-1\					
Т	6		<i>J)</i> – IIII	D(יי, די (די ניין: i-1.i-1)	+ [2	: if S₁(i	i) ≠ S ₂ (i)	
N	5			(-(i-1,j-1)	0;	if S₁(i	$S_2(1)$	j)	
Е	4							_		
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	Ι	0	N

N	9									
0	8									
Ι	7		N: 5		D(i-1,j)					
Т	6	L	O(i,j) =		D(i,j-1) D(i-1,j-		∫ 2∙ if ¢	S.(i) ≠ 9	S (i)	
N	5			l	ט(ו דיו	-) '		$S_1(i) = S_1(i)$		
Е	4		/						207	
Т	3									
N	2									
I	1	2								
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

N	9									
0	8									
Ι	7		N: 5		D(i-1,j)					
Т	6	L	O(i,j) =		D(i,j-1) D(i-1,j-		∫ 2∙ if 9	S (i) + 9	S (i)	
N	5			Į	D(1-1,)-	1) +	Į	$S_1(i) = S_1(i)$		
Е	4							107	207	
Т	3									
N	2									
Ι	1	2	3	4	5	6	7			
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

N	9									
0	8									
Ι	7		\(i \(\)		D(i-1,j)					
Т	6	L	O(i,j) =		D(i,j-1)		2; if 9	; (i) + (S (i)	
N	5			Į	ט(ו־ד,ן־	1) +	4	$S_1(i) \neq S_1(i) = S_1(i)$		
Е	4								207	
Т	3									
N	2									
I	1	2	3	4	5	6	7	6		
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	Ι	0	N

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

Backtrace for Computing Alignments

- We know the minimum edit distance now ...but what is the alignment between the two strings?
- We can figure this out by maintaining a backtrace
 - For each new cell, remember where we came from!
 - D(i-1,j)?
 - D(i,j-1)?
 - D(i-1,j-1)?
- Once we reach the end of the table (upper right corner), we can trace backward using these pointers to figure out the alignment

N	9	48	y 9	× 10	√ 11 .	v 12	₄ 11	4 10	49	8
0	8	7	√ 8	7 9	x 10	₹ 11	4 10	49	8 -	→ 9
I	47	46	₹ 7	×8	9	1 0	49	78 -	→ 9 -	→ 10
Т	4 6	4 5	₹ 6	x 7	8	7 9	×8 -	₽9 -	→ 10 –	→ 11
N	5	44	5	7 6	₽ 7	× 8	y 9	1 0	11	₹ 10
Е	4	3	4	y 5 –	→ 6 -	* 7	48	9	√ 10 ′	49
Т	3	4	5	6	7	7 8	77	48	9	48
N	42	3	₹ 4	5 5	6	7 7	8	47	8	y 7
I	41	2	3	4	5	6	7	6	7 -	8 ◆
#	0 -	→ 1 −	→ 2 −	3 -	4 -	5 –	6	- 7 -	→ 8 -	→ 9
	#	Е	X	Е	С	U	Т	I	0	N

N	9	48	9	× 10	v 11 .	v 12	₄ 11	4 10	49	8
0	8	7	78	7 9	x 10	√ 11	4 10	49	8	→ 9
I	7	46	7 7	×8	9	1 0	49	7 8 -	→ 9 -	▶ 10
Т	4 6	φ ₅	7 6	x 7	8	y 9	8 -	₽9 -	→ 10 –	→ 11
N	5	44	5	7 6	7 7	84	y 9	1 0	11	₹ 10
Е	4	3	*4	54	→ 6	* 7	48	9	V 10	49
Т	3	4	5	4 6	7	8	77	48	9	48
N	42	3	v 4	5 /	6	y 7	8	7	8	y 7
I	100	2	3	4	5	6	7	6 -	7 -	8 ◆
#	0 -	1 -4	2 _	4 3 -	4 -	→ 5 –	6 -	- 7 -	→ 8 -	→ 9
	#	Е	X	Е	С	U	Т	I	0	N

Formal Definition: Minimum Edit Distance with Backtrace

Base conditions:

$$D(i,0) = i$$

$$D(0,j) = j$$

Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

For each
$$i = 1...n$$

For each $j = 1...m$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$

$$ptr(i,j) = \begin{cases} LEFT \\ DOWN \\ DIAG \end{cases}$$