Merge the Tools!

In this task , you would be given a string S of length N . You have to divide this string into N/K equal parts thus each part contains exactly K elements.

Let us consider the string thus obtained in part i as T_i . For each string T_i thus obtained you have to make a modified string such that each character that occurs in T_i occurs exactly once in the modified string.

Suppose the first occurence of ch_1 was before the first occurence of ch_2 in T_i . Then ch_1 should occur before ch_2 in the modified string of T_i too. Output N/K lines each containing the modified string for the corresponding chunk T_i .

Input Format

First line consists of the string S.

Second line consists of K denoting the length of each of the N/K parts.

Output Format

N/K lines denoting the modified string corresponding to each chunk of string.

Constraints

$$1 < N < 10^4$$

$$1 \le K \le N$$

It is guaranteed that $oldsymbol{N}$ is divisible by $oldsymbol{K}$.

Here N denotes the length of the string S.

Sample Input

AABCAAADA 3

Sample Output

AB CA AD

Explanation

The string S is broken into equal parts of length S each making (" AAB", " CAA", " ADA").

Each of these strings are modified according to the algorithm mentioned in the statement

making (" AB", " CA", " AD") and then each of these modified strings is printed in seperate lines.