An Introduction to Quantum Mechanics for Quantum Computing

Practical Quantum Computing using Qiskit and IBMQ

Jothishwaran C.A.

Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee

September 24, 2020

Outline

Introduction

Applications of Quantum Mechanics The Classical Approach

Waves and Particles

Interference
The mysterious electron
Quantum Mechanical Interference

The Nuts and Bolts of Quantum Mechanics

The mathematical framework Quantum Dynamics

Measurement and Uncertainties

Measuring a Quantum state

What is the use of Quantum Mechanics?

- Quantum Mechanics (also referred to as Quantum Physics or Quantum theory) is a physical framework that was originally developed to explain atomic and subatomic and related phenomena. It was formally developed almost a hundred years ago and was very successful in its initial objective.
- ▶ In addition to the aforementioned phenomena, quantum mechanics was successful in explaining the following phenomena:
 - Electrical Conductivity (metals, insulators and semiconductors)
 - Magnetism
 - ► The structure of stars (Chandrashekhar's mass limit)
 - ► Nuclear radiation and related phenomena¹
 - Laser (proposed theoretically and then constructed)
 - ► Antimatter (first predicted theoretically and then observed)
- In addition to the above quantum physics is now accepted as an essential ingredient for describing the physical reality of this universe.

¹Some phenomena were predicted before observation. $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle$

Of Springs and Masses: the classical approach

Consider the spring and mass system shown below. For simplicity, gravity is not being considered and the spring is taken to be massless.

Figure 1: The Spring-Mass system, [Source: The Feynman Lectures on Physics, https://www.feynmanlectures.caltech.edu]

► The complete behaviour of this system can be described using the following quantity:

$$H(p,x) = \frac{p^2}{2m} + \frac{1}{2}kx^2 \tag{1}$$

where x is the displacement of the mass from the mean position "0", k is the spring constant and $p=mv=m\frac{\mathrm{d}x}{\mathrm{d}t}$, is the momentum of the mass.

Hamilton's way

- ▶ The first part of H(p,x) defined in (1) is called the kinetic energy of the mass and the second part is referred to as the potential energy.
- ▶ The quantity H(p, x) is therefore the total energy of the spring-mass system. It is possible to use this quantity and define the values x and p for all time if their values is known at only one point in time.
- ► This approach was introduced in the 1830's by the Irish mathematician, William Rowan Hamilton. This approach is known as Hamiltonian mechanics.
- ▶ The quantity H(p, x) is formally referred to as the "Hamiltonian" of the spring-mass system. x is referred to as a coordinate and p is known as the momentum conjugate to x.
- ▶ The value of (x, p) at any point of time specifies the state of the system
- ► The Hamiltonian approach to solving problems can be generalized and used for studying such as electrical circuits, heat engines and even the stock market!

The Interference of Waves

▶ It is a known fact that waves of water interfere with each other. Light was also shown to possess this same property by Thomas Young in 1801 through his double-slit experiment.

Figure 2: The interference of waves, [Source: The Feynman Lectures on Physics, https://www.feynmanlectures.caltech.edu]

- ▶ the resultant intensity at the absorber is equal to the square sum of the amplitudes of the waves arriving from both the slits at the point on the absorber.
- As shown is the above figure, as the detector is moved along the the absorber, an interference pattern is observed.

Playing with Bullets

Particles unlike waves do not show any interference behaviour. Young's experiment when performed with particles (bullets from a gun) shows the following result.

Figure 3: The absence of interference with particle, [Source: The Feynman Lectures on Physics, https://www.feynmanlectures.caltech.edu]

- ► The probability of a bullet hitting a point on the backstop (absorber) is equal to the sum of the probabilities of the bullet hitting the point after having passed through either one of the slits.
- This was one of the chief distinguishing factors between waves and particles.

Particle Interference?

▶ In 1927, Davison and Germer showed that electrons can show interference behaviour too.

Figure 4: The interference of electrons, [Source: The Feynman Lectures on Physics, https://www.feynmanlectures.caltech.edu]

- ► This would imply that electrons, which were understood to be particle up until that point had wave-like properties too.
- ► This led to the concept of Wave-Particle duality and it was accepted that all particles have wave nature and vice versa.
- ▶ The waves associated with particles like electrons were referred to as matter waves as opposed to conventional waves that carried energy through a medium (or vacuum).

Observing Matter Waves

Any attempt to observe the matter waves of electrons seemed to destroy the interference patterns implying that the matter waves themselves were being destroyed.

Figure 5: The interference of electrons, [Source: The Feynman Lectures on Physics, https://www.feynmanlectures.caltech.edu]

- ► This behaviour of matter waves was a very curious one and it was impossible to describe it using any previously available classical theory.
- Quantum Mechanics allowed for an interpretation of this phenomena.

The Quantum picture

- ► Classically, waves interfere due to the fact that the same wave passed through both the slits and interferes at the absorber.
- ► Similarly, the same matter wave passes through both the slits in the case of electrons and interfere at the absorber.
- ► This means that the same electron is travelling through both the slits simultaneously and this leads to the interference pattern.
- ► The probability of an electron reaching a point on the screen was the square of the sum of the amplitude of the waves from the individual slits.
- Any attempt to observe this simultaneous passage of electrons actually destroys the matter wave and the electron passes through only one of the slits, like the bullets.
- ▶ The matter wave is thus considered to have collapsed.

Observables and states

- ▶ In case of the classical spring-mass system shown in figure [1] it is possible to measure the values of x and p at any time. The state is said to be deterministically known.
- As seen before, preforming measurements on a quantum particle seems to be destroy the matter wave associated with it.
- A different approach was therefore required to represent the state of quantum particles.
- ▶ In quantum mechanics, quantities such as x and p that can be measured in a classical situation are referred to as observables and are represented by operators.
- Operators corresponding to observables are denoted by adding a hat (^) to the variable.
- The position (coordinate) operator is therefore represented as \hat{x} and the momentum operator is given by \hat{p}

States and Observable values

▶ The state of the quantum particle is represented by a vector $|\psi\rangle$ in a *Hilbert space*, and the value of the observable \hat{x} can be mathematically calculated as

$$\hat{\mathbf{x}} | \psi \rangle = \mathbf{x} | \psi \rangle$$

In mathematics this expression is referred to as an eigenvalue expression.

- ► Therefore an operator of this form can be used to represent the position of the electron in the interference experiment shown in figure [4].
- ► However as seen before, the electron passes through both slits simultaneously, this means the above equation will not have a unique value.
- In such cases, one can no longer meaningfully talk about the precise value of x but only the average (expectation) value of the observable that is given by:

$$\langle \mathbf{x} \rangle \; = \; \langle \psi | \hat{\mathbf{x}} | \psi \rangle$$

Hermitian operators and the Hamiltonian

The expectation values of the observable has to be a real value, this condition implies that the operator corresponding to an observable is self-adjoint or Hermitian. An operator \hat{A} is hermitian if:

$$\hat{A} = \hat{A}^{\dagger}$$

- ▶ The Hamiltonian for a classical system sometimes was its energy and is therefore a measurable quantity. Therefore, it is possible to define is a quantum operator also called the Hamiltonian (\hat{H}) .
- ► The quantum Hamiltonian can be used to specify the state of a quantum particle for all time provided the state is known at one instant of time.
- ▶ It is to be noted that even if the state is precisely known, the value of an observable may still not have a precise value.
- ▶ Mathematically, the fact that an observable can simultaneously have different values is represented by linear combinations of the quantum state.

Linear superposition

Let $|x_1\rangle$ and $|x_2\rangle$ represent that state of the electron passing through slits 1 and 2 in figure [4]. The state of the electron passing through the two slits is given by.

$$|\psi\rangle = a|x_1\rangle + b|x_2\rangle$$

The superposition coefficients are referred to as the amplitudes and are in general complex numbers.

- ► This state vector needs to be *normalized* for meaningfully obtaining expectation values.
- ► The square of the absolute value of the amplitude gives the probability of the electron to be seen passing through each slit in an experiment similar to figure [5].
- ► Therefore a state where the probability of observing the electron at each slit is equal is given by:

$$|\psi\rangle = \frac{1}{\sqrt{2}}|x_1\rangle + \frac{1}{\sqrt{2}}|x_2\rangle$$

Hamilton's way: The Quantum version

- As mentioned before, the Hamiltonian can be used to specify the state of a particle/system at any point in time.
- There are many ways of representing this property of \hat{H} , the most famous version is the Schrödinger equation.

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi\rangle = \hat{H} |\psi\rangle \tag{2}$$

- ► This equation is exactly equivalent to the wave equation of the associated matter wave. Therefore the above equation is also referred to as Schrödinger wave equation.
- ▶ The matter wave is now mathematically represented by the wave function which is case of one dimensional single particle systems can be defined as $\psi(x) \equiv \langle x|\psi\rangle$

Unitary operators

 \blacktriangleright Solving the Schrödinger equation will show that the time evolution of the state $|\psi\rangle$ is also given by an operator

$$|\psi(t)\rangle = \hat{U}(t;t_0)|\psi(t_0)\rangle$$
 (3)

here, t_0 is usually taken as the initial instant of time.

▶ This operator is a unitary operator:

$$\hat{U}^{\dagger}\hat{U} = I$$

where I is the identity operator.

- While the Hermitian operators corresponding to observables were mathematical representation of physical quantities, the unitary operators corresponding to time evolution denote a physical transformation of the state.
- Any change in the state of a quantum system is given by a unitary transformation. This includes quantum gates too.

Quantum reality: The Measurement Postulate

- Any state that is a superposition of the basis states when measured with respect to that basis will result in an outcome that is one of the basis states.
- ► The occurrence of the each of the basis states is totally random and is dependent on the amplitudes. Therefore for a normalized state given by:

$$|\psi\rangle = a|x_1\rangle + b|x_2\rangle$$

► Therefore, a position measurement will give the outcomes x_1 with probability $|a|^2$ and x_2 with probability $|b|^2$ and:

$$\left|a\right|^2 + \left|b\right|^2 = 1$$

the expectation value of the position measurement will be given by $\langle x \rangle = |a|^2 x_1 + |b|^2 x_2$

Measurement errors in Quantum Mechanics

▶ If a particle is in a quantum state $|\psi\rangle = \sum_i a_i |x_i\rangle$, normalization condition dictates that,

$$\sum_{i} |a_i|^2 = 1$$

this state describes that the particle if its position is measured, maybe found in any one of the position coordinates x_i with probability $|a_i|^2$.

► The outcome of a position measurement may be treated as a random variable. It is therefore possible to define the variance of this distribution as

$$\Delta x^{2} \equiv \langle x^{2} \rangle - \langle x \rangle^{2} = \sum_{i} |a_{i}|^{2} x_{i}^{2} - \left(\sum_{i} |a_{i}|^{2} x_{i} \right)^{2}$$

the the standard deviation, which is the square root of the above quantity is known as the error or uncertainty in the position of the particle Δx .

The Uncertainty Principle

- ▶ The uncertainty in the momentum of a particle is also defined as Δp .
- Heisenberg established that in quantum mechanics, the product of the uncertainties in position and momentum are related to each other as,

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$

the above relation is known as the Uncertainty principle and is the a direct consequence of the quantum behaviour of particles.

➤ Since the uncertainties are treated as measurement errors in a quantity, the principle is said to imply that the values of position and momentum of the a particle cannot be simultaneously measured with precision (zero error).

The physicality of $|x\rangle$ and $|p\rangle$

- As per the previous definitions, a particle in the state $|x\rangle$ implies that the particle is at position x. The uncertainty in position of this particle 0.
- This implies that for such a particle, the uncertainty in momentum Δp is infinitely large. This is a physically meaningless outcome for a measurement.
- ▶ Due to this consequence of the uncertainty principle, a quantum particle is never in a precisely defined quantum state, either $|x\rangle$ or $|p\rangle$.
- ▶ The inherent variations in the state of a quantum system is referred to as quantum fluctuation and is a fundamental trait of all quantum systems.
- ► These fluctuations are the source of randomness in quantum mechanics.
- ▶ Despite being physically unrealistic, the position states nonetheless form a basis that can describe any physical system.

