Context-Free Grammars CSE 211 (Theory of Computation)

Tanjeem Azwad Zaman

Adjunct Lecturer
Department of Computer Science and Engineering
Bangladesh University of Engineering & Technology

Adapted from slides by

Dr. Muhammad Masroor Ali & Dr. Atif Hasan Rahman

A CFG for palindromes

- $P \rightarrow \epsilon$
- P → 0
- P → 1
- $P \rightarrow 0P0$
- P → 1P1

Formal definition of a Context-Free Grammar

- A *context-free grammar* is a 4-tuple (V, Σ, R, S) or (V, T, P, S), where
 - V is a finite set called the variables
 - \bullet \bullet or T is a finite set, disjoint from V, called the **terminals**
 - R or P is a finite set of rules or productions, with each rule being a variable and a string of variables and terminals

variable \rightarrow string of variables and terminals

- $S \in V$ is the **start variable**
 - The variable in the first rule if not explicitly mentioned

Formal definition of a Context-Free Grammar

Context-free grammar for the palindromes

$$G_{pal} = \{ \{P\}, \{0,1\}, R, P\}$$

- {P} is the set of variables
- (0,1) is the set of terminals
- R is the set of rules
 - $P \rightarrow \epsilon$
 - P → 0
 - P → 1
 - $P \rightarrow 0P0$
 - P → 1P1
- P is the start variable

CFG - an example

- A CFG that represents a simplification of expressions in a typical programming language
 - Restricted to the operators + and *
 - Identifiers (letters followed by zero or more letters and digits) allow only the letters a and b and the digits 0 and 1
 - We need two variables in this grammar
 - E represents expressions.
 - It is the start symbol
 - Represents the language of expressions we are defining
 - I represents identifiers
 - Its language is actually regular
 - It is the language of the regular expression

$$(a+b)(a+b+0+1)^*$$

CFG - an example

Figure 5.2: A context-free grammar for simple expressions

CSE 211

Derivation using a CFG

- The sequence of substitutions to obtain a string is called a derivation
- The symbol ⇒ is used to denote *yields* or *derives*
- * is used to denote zero or more steps
- The inference that a*(a+b00) is in the language of variable E

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow$$

$$a * (E) \Rightarrow a * (E + E) \Rightarrow a * (I + E) \Rightarrow a * (a + E) \Rightarrow$$

$$a * (a + I) \Rightarrow a * (a + I0) \Rightarrow a * (a + I00) \Rightarrow a * (a + b00)$$

Leftmost and Rightmost Derivations

Leftmost derivation

 At each step we replace the leftmost variable by one of its production bodies

Rightmost derivation

 At each step we replace the rightmost variable by one of its production bodies

Leftmost Derivation

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} I * E \underset{lm}{\Rightarrow} a * E \underset{lm}{\Rightarrow}$$

$$a * (E) \underset{lm}{\Rightarrow} a * (E + E) \underset{lm}{\Rightarrow} a * (I + E) \underset{lm}{\Rightarrow} a * (a + E) \underset{lm}{\Rightarrow}$$

$$a * (a + I) \underset{lm}{\Rightarrow} a * (a + I0) \underset{lm}{\Rightarrow} a * (a + I00) \underset{lm}{\Rightarrow} a * (a + b00)$$

We can also summarize the leftmost derivation by saying $E \underset{lm}{\overset{*}{\Rightarrow}} a*(a+b00)$, or express several steps of the derivation by expressions such as $E*E \underset{lm}{\overset{*}{\Rightarrow}} a*(E)$.

Rightmost Derivation

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow} E * (E) \underset{rm}{\Rightarrow} E * (E + E) \underset{rm}{\Rightarrow}$$

$$E * (E + I) \underset{rm}{\Rightarrow} E * (E + I0) \underset{rm}{\Rightarrow} E * (E + I00) \underset{rm}{\Rightarrow} E * (E + b00) \underset{rm}{\Rightarrow}$$

$$E * (I + b00) \underset{rm}{\Rightarrow} E * (a + b00) \underset{rm}{\Rightarrow} I * (a + b00) \underset{rm}{\Rightarrow} a * (a + b00)$$

This derivation allows us to conclude $E \underset{rm}{\overset{*}{\Rightarrow}} a*(a+b00)$. \square

Language of a grammar

If G = (V, Σ, R, S) is a CFG, the *language* of G denoted L(G) is the set of terminal strings that have derivations from the start symbol

The *language of the grammar* is $\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$.

 If a language L is the language of some context-free grammar, then L is said to be a context-free language or CFL

Parse Trees

- Let $G = (V, \Sigma, R, S)$ be a CFG, the **parse trees** for G are trees with following conditions
 - Each interior node is labeled by a variable in V
 - lacktriangledown Each leaf is labeled by either a variable, a terminal, or ϵ
 - However, if the leaf is labeled ϵ then it must be the only child of its parent
 - If an interior node is labeled A, and its children are labeled

$$X_1, X_2 \dots X_k$$

respectively, from the left, then $A \to X_1 X_2 \dots X_k$ is a rule in R.

• Note that the only time one of the X's can be ϵ is if that is the label of the only child, and $A \to \epsilon$ is a rule of G

Parse Tree - example

Figure 5.4: A parse tree showing the derivation of I + E from E

Parse Tree - example

Figure 5.5: A parse tree showing the derivation $P \stackrel{*}{\Rightarrow} 0110$

Yield of a Parse Tree

- If we look at the leaves of any parse tree and concatenate them from the left, we get a string, called the *yield* of the tree
- Of special importance are those parse trees such that
 - The yield is a terminal string, That is, all leaves are labeled either with a terminal or with ϵ
 - The root is labeled by the start symbol
- These are the parse trees whose yields are strings in the language of the underlying grammar
- The language of a grammar is the set of yields of those parse trees having the start symbol at the root and a terminal string as yield

Parse Tree - example

Figure 5.6: Parse tree showing a*(a+b00) is in the language of our expression grammar

Inference, Derivations, and Parse Trees

- The following are equivalent
 - Recursive inference is a body to head process to infer membership of a string in a language
- 1. The recursive inference procedure determines that terminal string w is in the language of variable A.
- $2. A \stackrel{*}{\Rightarrow} w.$
- 3. $A \stackrel{*}{\Rightarrow} w$.
- 4. $A \stackrel{*}{\Rightarrow} w$.
- 5. There is a parse tree with root A and yield w.

Inference, Derivations, and Parse Trees

Proofs use induction

Figure 5.7: Proving the equivalence of certain statements about grammars

• Design a CFG, for the alphabet $\Sigma = \{0,1\},$ for the language

```
\{w|w \text{ contains at least three 1s}\}
```

- 100101
- 01100101
- 1111
- 00101000

CFG for the language {w|w contains at least three 1s}

- CFG for the language {w|w contains at least three 1s}
- Three 1s separated, preceded, followed by any string

- CFG for the language {w|w contains at least three 1s}
- Three 1s separated, preceded, followed by any string
 - $\bullet \ \ S \rightarrow X1X1X1X$

- CFG for the language {w|w contains at least three 1s}
- Three 1s separated, preceded, followed by any string
 - $S \rightarrow X1X1X1X$
- Xs need to generate any string over $\Sigma = \{0, 1\}$

- CFG for the language {w|w contains at least three 1s}
- Three 1s separated, preceded, followed by any string
 - $S \rightarrow X1X1X1X$
- Xs need to generate any string over $\Sigma = \{0, 1\}$
 - $X \rightarrow 0X|1X|\epsilon$

- Designing CFGs require creativity
- Some techniques are helpful
 - Some CFLs are the union of simpler CFLs. Construct a grammar for each piece and combine them with a rule like

$$S \to S_1 |S_2| \cdots |S_k|$$

- If the CFL happens to be regular and if you can construct a DFA, it can be easily converted to a CFG
 - Make a variable R_i for each state q_i in the DFA
 - Add the rule $R_i \to aR_i$ if $\delta(q_i, a) = q_i$ is a transition
 - Add the rule $R_i \rightarrow \epsilon$ if q_i is an accept state

Exercise

 Design a DFA for the language {w|w contains at least three 1s} and convert it to CFG