

Validation-1-2017.pdf

alicia_madrid00

Lógica

1º Grado en Ingeniería Informática

Escuela Politécnica Superior Universidad Carlos III de Madrid

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

LÓGICA

Test de Validación 1 2018

Nombre: Grupo: NIU/NIA:

1. Compruebe que la deducción que sigue es correcta. Use cálculo con supuestos (1.5 pt)

$$p \rightarrow q \vee r$$
, $q \rightarrow s \wedge t$, $t \vee r \rightarrow \sim (q \vee r) \Rightarrow \sim p$

- 1. p→qVr
- 2. q→s∧t
- 3. $tVr \rightarrow \sim (qVr)$
- 4. p Supuesto RA
- 5. qVr MP1, 5
 - a. q Supuesto PCI b. sAt MP 2,6
 - c. t Simplificación b
 - d. tVr Adición c e. \sim (qVr) MP 2 y d
 - f. r Supuesto PC2
 - g. tVr Adición f h. $\sim (qVr)$ MP 2 y f
- 6. \sim (qVr) cierre PC
- 7. (qVr) ∧~(qVr)
- 8. ~p Cierre Supuesto RA

2. Verifique si la fórmula que sigue es válida (1.5 pt)

$$(p \land r \rightarrow s) \rightarrow ((^{\sim}s \lor t) \rightarrow ((^{\sim}p \rightarrow t) \rightarrow (r \rightarrow t)))$$

Por el TD, queda: $p \land r \rightarrow s$, ~sV t, ~p \rightarrow t, $r \Rightarrow t$

- 1. $p \land r \rightarrow s$ Premisa 1 2. $\sim s \lor t$ Premisa 2
- 3. ~p→ t Premisa 34. r Premisa 4
- 5. ~t Supuesto RA
- 6. p Modus Tollens 3,5
- 7. p \(\text{r Producto 4,6} \)
- 8. s Modus Ponens 1,7
- 9. t Silogismo Disyuntivo 2,8
- 10. t Cancelación Sup. RA. 5-9,5,9

