

目 录

一 、	高等数学	1
	 (一) 函数、极限、连续 (二) 一元函数微分学 (三) 一元函数积分学 (四) 向量代数和空间解析几何 (五) 多元函数微分学 (六) 多元函数积分学 (六) 多元函数积分学 (七) 无穷级数 (八) 常微分方程 	
_,	线性代数	48
	(一) 行列式(二) 矩阵(三) 向量(四) 线性方程组(五) 矩阵的特征值和特征向量(六) 二次型	
三、	概率论与数理统计	60
	 (一)随机事件和概率	
四、	初等数学公式	77
	(一) 平面几何	82

一、高等数学

(一) 函数、极限、连续

考试内容	公式、定理、概念
函数和隐 函数	函数:设有两个变量 x 和 y ,变量 x 的定义域为 D ,如果对于 D 中的每一个 x 值,按照一定的法则,变量 y 有一个确定的值与之对应,则称变量 y 为变量 x 的函数,记作: $y = f(x)$
基 函 质 形 函 数 建	基本初等函数包括五类函数: 1 幂函数: $y = x^{\mu} (\mu \in R)$; 2 指数函数 $y = a^{x} (a > 0 \perp a \neq 1)$; 3 对数函数: $y = \log_{a} x (a > 0 \perp a \neq 1)$; 4 三角函数: $y = \sin x, y = \cos x, y = \tan x$ 等; 5 反三角函数: 如 $y = \arcsin x, y = \arctan x$ 等. 初等函数: 由常数 C 和基本初等函数经过有限次四则运算与有限此复合步骤所构成,并可用一个数学式子表示的函数,称为初等函数.
数与限及质的与极数定其函极极 计五方	1 $\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x_0) = f_+(x_0) = A$ 2 $\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x_0) = A + a(x)$, 其中 $\lim_{x \to x_0} a(x) = 0$ 3(保号定理) 设 $\lim_{x \to x_0} f(x) = A$, 又 $A > 0$ (或 $A < 0$), 则 \exists — $\uparrow \delta > 0$, $\exists x \in (x_0 - \delta, x_0 + \delta)$, $\exists x \neq x_0$ 时, $f(x) > 0$ (或 $f(x) < 0$)
无穷大的	设 $\lim \alpha(x) = 0$, $\lim \beta(x) = 0$

概念及其关系,的及无,的人人,不是不是一个人。

(1)若 $\lim \frac{\alpha(x)}{\beta(x)} = 0$,则 $\alpha(x)$ 是比 $\beta(x)$ 高阶的无穷小,

记为α(x)=0(β(x)).

(2)若
$$\lim \frac{\alpha(x)}{\beta(x)} = \infty$$
,则 $\alpha(x)$ 是比 $\beta(x)$ 低阶的无穷小,

(3)若
$$\lim \frac{\alpha(x)}{\beta(x)} = c(c \neq 0)$$
,则 $\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小,

(4)若
$$\lim \frac{\alpha(x)}{\beta(x)} = 1$$
,则 $\alpha(x)$ 与 $\beta(x)$ 是等价的无穷小,

记为α(x)□ β(x)

(5)若
$$\lim \frac{\alpha(x)}{\beta^k(x)} = c(c \neq 0), k > 0, 则 \alpha(x) 是 \beta(x)$$
的**k**阶无穷小

$$\begin{vmatrix}
\sin x \\
\arcsin x \\
\tan x \\
\arctan x \\
\ln(1+x) \\
e^{x} - 1
\end{vmatrix} \qquad 1 - \cos x \Box \frac{1}{2}x^{2} \\
(1+x)^{\frac{1}{n}} - 1 \Box \frac{1}{n}x$$

无穷小的性质

- (1) 有限个无穷小的代数和为无穷小
- (2) 有限个无穷小的乘积为无穷小
- (3) 无穷小乘以有界变量为无穷小

Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的无穷小的倒数为无穷大

极限的四 则运算

$$\lim f(x) = A, \lim g(x) = B.$$

(1) $\lim (f(x) \pm g(x)) = A \pm B$;

$$(2)\lim f(x)g(x) = A\square B;$$

¥ miduedu.com				
	$(3)\lim \frac{f(x)}{g(x)} = \frac{A}{B}(B \neq 0)$			
	1 (夹逼定理)设在 x_0 的邻域内,恒有 $\varphi(x) \le f(x) \le \phi(x)$,			
	且 $\lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \phi(x) = A$,则 $\lim_{x \to x_0} f(x) = A$			
	2 单调有界定理: 单调有界的数列必有极限			
	3 两个重要极限:			
极限存在	$(1)\lim_{x\to 0} \frac{\sin x}{x} = 1 \qquad (2)\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$			
的两个准则 有界准则 和来通准	重要公式: $\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} = \begin{cases} \frac{a_0}{b_0}, n = m \\ 0, n < m \end{cases}$			
則,两个	$(\infty, n > m)$			
限:	4 几个常用极限特例			
PK:	$\lim_{n \to \infty} \sqrt[n]{n} = 1, \qquad \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$			
	$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2} \qquad \lim_{x \to +\infty} \operatorname{arc} \cot x = 0,$			
	$\lim_{x \to -\infty} \operatorname{arc} \cot x = \pi \qquad \qquad \lim_{x \to -\infty} e^x = 0,$			
	$\lim_{x \to +\infty} e^x = \infty, \qquad \lim_{x \to +0^+} x^x = 1,$			
函数连续				
的概念:	连续函数在闭区间上的性质:			
函数间断	(1) (连续函数的有界性)设函数 $f(x)$ 在 $[a,b]$ 上连续,则 $f(x)$			
点的类				
型:初等	$E[a,b]$ 上有界,即∃常数 $M>0$,对任意的 $x \in [a,b]$,恒有			
函数的连 续性: 闭				
区间上连	$\left f\left(x\right) \right \leq M \ .$			

续函数的 性质

(2) (最值定理)设函数 f(x) 在 [a,b] 上连续,则在 [a,b] 上

f(x)至少取得最大值与最小值各一次,即 $\exists \xi, \eta$ 使得:

$$f(\xi) = \max_{a \le x \le b} \{f(x)\}, \quad \xi \in [a,b];$$

$$f(\eta) = \min_{a \le x \le b} \{f(x)\}, \quad \eta \in [a,b].$$

(3) (介值定理)若函数 f(x) 在 [a,b] 上连续, μ 是介于 f(a) 与

f(b)(或最大值 M 与最小值 m)之间的任一实数,则在[a,b]

上至少
$$\exists$$
一个 ξ ,使得 $f(\xi) = \mu$. $(a \le \xi \le b)$

(4) (零点定理或根的存在性定理)设函数 f(x) 在 [a,b] 上连

续,且 $f(a) \cdot f(b) < 0$,则在(a,b)内至少3一个 ξ ,使得

$$f(\xi) = 0. \quad (a < \xi < b)$$

(二) 一元函数微分学

考试内容	对应公式、定理、概念
导数和微	1导数定义: $f'(x_0) = \lim_{\square x \to 0} \frac{f(x_0 + \square x) - f(x_0)}{\square x}$ (1)
分的概念 左右导数	或 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ (2)
导数的几	2函数 $f(x)$ 在 x_0 处的左、右导数分别定义为:
何意义和	左导数:
物理意义	
	$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}, (x = x_0 + \Delta x)$

-	₩ miduedu.com			
	右导数: $f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$			
函 导 续 的 平 的 接 的 平 的 线	Th1: 函数 $f(x)$ 在 x_0 处可微 \Leftrightarrow $f(x)$ 在 x_0 处可导 Th2: 若函数 $y = f(x)$ 在点 x_0 处可导,则 $y = f(x)$ 在点 x_0 处连续,反之则不成立.即函数连续不一定可导. Th3: $f'(x_0)$ 存在 \Leftrightarrow $f'(x_0) = f'_+(x_0)$ 设函数 $f(x)$ 在 $x = x_0$ 处可导,则 $x = x_0$ 处的 公共 $x = x_0$ 处可导,则 $x = x_0$ 处可导,则 $x = x_0$ 处的 公共 $x = x_0$ 处可导,则 $x = x_0$ 处的			
导数和微力等等。	四则运算法则:设函数 $u = u(x)$, $v = v(x)$ 在点 x 可导则 (1) $(u \pm v)' = u' \pm v'$ $d(u \pm v) = du \pm dv$ (2) $(uv)' = uv' + vu'$ $d(uv) = udv + vdu$ (3) $(\frac{u}{v})' = \frac{vu' - uv'}{v^2} (v \neq 0)$ $d(\frac{u}{v}) = \frac{vdu - udv}{v^2}$ 基本导数与微分表 (1) $y = c$ (常数) $y' = 0$ $dy = 0$ (2) $y = x^{\alpha}(\alpha)$ 为实数) $y' = \alpha x^{\alpha-1}$ $dy = \alpha x^{\alpha-1} dx$ (3) $y = a^x$ $y' = a^x \ln a$ $dy = a^x \ln adx$ 特例 $(e^x)' = e^x$ $d(e^x) = e^x dx$ (4) $y' = \frac{1}{x \ln a}$ $dy = \frac{1}{x \ln a} dx$ 特例 $y = \ln x$ $(\ln x)' = \frac{1}{x}$ $d(\ln x) = \frac{1}{x} dx$ (5) $y = \sin x$ $y' = \cos x$ $d(\sin x) = \cos x dx$ (6) $y = \cos x$ $y' = -\sin x$ $d(\cos x) = -\sin x dx$ (7) $y = \tan x$ $y' = \frac{1}{\cos^2 x} = \sec^2 x$ $d(\cot x) = -\csc^2 x dx$ (8) $y = \cot x$ $y' = -\frac{1}{\sin^2 x} = -\csc^2 x$ $d(\cot x) = -\csc^2 x dx$			
	(9) $y = \sec x$ $y' = \sec x \tan x$ $d(\sec x) = \sec x \tan x dx$			

	~	miduedu.com	
	$(10) y = \csc x \qquad y'$	$=-\csc x \cot x$	$d(\csc x) = -\csc x \cot x dx$
	(10) $y = \csc x$ y' (11) $y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$	$d(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} dx$
	$(12) y = \arccos x$	$y' = -\frac{1}{\sqrt{1 - x^2}}$	$d(\arccos x) = -\frac{1}{\sqrt{1 - x^2}} dx$
	(13) $y = \arctan x$	$y' = \frac{1}{1 + x^2}$	$d(\arctan x) = \frac{1}{1+x^2} dx$
	$(14) y = \operatorname{arc} \cot x$		$d(\operatorname{arc} \cot x) = -\frac{1}{1+x^2} dx$
	(15) y = shx $(16) y = chx$	y' = chx	d(shx) = chxdx
	(16) $y = chx$	y' = shx	d(chx) = shxdx

1 反函数的运算法则: 设y = f(x)在点x的某邻域内单调连续,在点x处可导且 $f'(x) \neq 0$,则其反函数在点x所对应的

$$y$$
处可导,并且有 $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$

2 复合函数的运算法则:若 $\mu = \varphi(x)$ 在点 x 可导,而 $y = f(\mu)$ 在对应点 $\mu(\mu = \varphi(x))$ 可导,则复合函数 $y = f(\varphi(x))$ 在点 x 可导,且 $y' = f'(\mu) \cdot \varphi'(x)$

3 隐函数导数 $\frac{dy}{dx}$ 的求法一般有三种方法:

(1)方程两边对 x 求导,要记住 y 是 x 的函数,则 y 的函数是 x 的复合函数.例如 $\frac{1}{y}$, y^2 , $\ln y$, e^y 等均是 x 的复合函数.

对 x 求导应按复合函数连锁法则做.

(2)公式法.由
$$F(x,y) = 0$$
 知 $\frac{dy}{dx} = -\frac{F'_x(x,y)}{F'_v(x,y)}$,其中, $F'_x(x,y)$,

 $F'_{y}(x,y)$ 分别表示 F(x,y) 对 x 和 y 的偏导数

(3)利用微分形式不变性

高 阶 导 常用高阶导数公式

数,一阶 微分形式 的不变 性,

(1)
$$(a^x)^{(n)} = a^x \ln^n a \quad (a > 0) \quad (e^x)^{(n)} = e^x$$

$$(2) (\sin kx)^{(n)} = k^n \sin(kx + n \cdot \frac{\pi}{2})$$

(3)
$$(\cos kx)^{(n)} = k^n \cos(kx + n \cdot \frac{\pi}{2})$$

(4)
$$(x^m)^{(n)} = m(m-1)\cdots(m-n+1)x^{m-n}$$

(5)
$$(\ln x)^{(n)} = (-1)^{(n-1)} \frac{(n-1)!}{x^n}$$

(6) 莱布尼兹公式: 若
$$u(x),v(x)$$
均 n 阶可导,则

$$(uv)^{(n)} = \sum_{i=0}^{n} c_n^i u^{(i)} v^{(n-i)}$$
, $\sharp + u^{(0)} = u$, $v^{(0)} = v$

Th1(费马定理) 若函数 f(x) 满足条件:

- (1)函数 f(x) 在 x_0 的某邻域内有定义,并且在此邻域内恒有 $f(x) \le f(x_0) \stackrel{\circ}{\to} f(x) \ge f(x_0)$
- (2) f(x) 在 x_0 处可导,则有 $f'(x_0) = 0$

Th2 (罗尔定理) 设函数 f(x)满足条件:

(1)在闭区间[a,b]上连续;

(2)在(a,b)内可导,则在(a,b)内ョー个 ξ ,使 $f'(\xi)=0$

Th3 (拉格朗日中值定理) 设函数 f(x) 满足条件:

达法则,

泰勒公式

微分中值

定理,必 (1)在[
$$a$$
, b]上连续; (2)在(a , b)内可导; 则在(a , b)内ョ一个 **达法则,**

 ξ , $\oint \frac{f(b)-f(a)}{b} = f'(\xi)$

Th4 (柯西中值定理) 设函数 f(x), g(x)满足条件:

(1)在[a,b]上连续; (2)在(a,b)内可导且 f'(x), g'(x) 均存在,

且 $g'(x) \neq 0$ 则在 (a,b) 内 \exists 一个 ξ ,使 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$

洛必达法则:

法则 I $(\frac{0}{0}$ 型)设函数 f(x),g(x)满足条件:

$$\lim_{x\to x_0} f(x) = 0, \lim_{x\to x_0} g(x) = 0; \quad f(x), g(x) 在 x_0 的邻域内可导$$

(在
$$x_0$$
 处可除外)且 $g'(x) \neq 0$; $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞).则

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

法则 I' $(\frac{0}{0}$ 型)设函数 f(x),g(x)满足条件:

$$\lim_{x \to \infty} f(x) = 0, \lim_{x \to \infty} g(x) = 0; \exists \neg \uparrow X > 0, \stackrel{\text{def}}{\Rightarrow} |x| > X$$

时, f(x), g(x) 可导,且 $g'(x) \neq 0$; $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞).则

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

法则 $II(\frac{\infty}{\alpha}$ 型) 设函数 f(x),g(x) 满足条件:

$$\lim_{x \to x_0} f(x) = \infty, \lim_{x \to x_0} g(x) = \infty; \qquad f(x), g(x) 在 x_0$$
的邻域内可

导(在
$$x_0$$
 处可除外)且 $g'(x) \neq 0$; $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞).则

$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}.$$
同理法则 II' ($\frac{\infty}{\infty}$ 型)仿法则 I' 可写出

泰勒公式: 设函数 f(x) 在点 x_0 处的某邻域内具有 n+1阶导数,则对该邻域内异于 x_0 的任意点 x ,在 x_0 与 x 之间至少 y 一个 y ,使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \cdots$$

$$+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)$$

其中
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$$
 称为 $f(x)$ 在点 x_0 处的

n 阶泰勒余项.令 $x_0 = 0$,则n 阶泰勒公式

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$
.....(1)

其中
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$$
, ξ 在 0 与 x 之间.(1)式称为麦克

劳林公式

常用五种函数在 $x_0 = 0$ 处的泰勒公式

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + \frac{x^{n+1}}{(n+1)!}e^{\xi}$$

$$\sin x = x - \frac{1}{3!}x^3 + \dots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\sin(\xi + \frac{n+1}{2}\pi)$$

或
$$= x - \frac{1}{3!}x^3 + \dots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + o(x^n)$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + \frac{x^n}{n!}\cos\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\cos(\xi + \frac{n+1}{2}\pi)$$

$$\vec{x} = 1 - \frac{1}{2!}x^2 + \dots + \frac{x^n}{n!}\cos\frac{n\pi}{2} + o(x^n)$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n-1}\frac{x^n}{n} + \frac{(-1)^n x^{n+1}}{(n+1)(1+\xi)^{n+1}}$$

$$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n-1}\frac{x^n}{n} + o(x^n)$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \dots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^{n}$$

$$+ \frac{m(m-1)\cdots(m-n+1)}{(n+1)!}x^{n+1}(1+\xi)^{m-n-1} \quad \overrightarrow{\mathbb{D}}$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \dots$$

$$+ \frac{m(m-1)\cdots(m-n+1)}{n!}x^{n} + o(x^{n})$$

1函数单调性的判断:

Th1 设函数 f(x) 在 (a,b) 区间内可导,如果对 $\forall x \in (a,b)$,都有 f'(x) > 0(或 f'(x) < 0),则函数 f(x) 在 (a,b) 内是单调增加的(或单调减少)

函性别的函形性 及数绘大小数性,极数的,及,图函值化外的的,有,图函值值值的四拐近用形数和,调到数,图凸点 函描最最

Th2 (取极值的必要条件) 设函数 f(x) 在 x_0 处可导,且在 x_0 处取极值,则 $f'(x_0) = 0$.

Th3 (取极值的第一充分条件)设函数 f(x) 在 x_0 的某一邻域内可微,且 $f'(x_0) = 0$ (或 f(x) 在 x_0 处连续,但 $f'(x_0)$ 不存在。)

- (1)若当x经过 x_0 时,f'(x)由"+"变"-",则 $f(x_0)$ 为极大值:
- (2)若当x经过 x_0 时,f'(x)由"-"变"+",则 $f(x_0)$ 为极小值:
- (3)若 f'(x) 经过 $x = x_0$ 的两侧不变号,则 $f(x_0)$ 不是极值.

Th4 (取极值的第二充分条件)设 f(x) 在点 x_0 处有 $f''(x) \neq 0$,且 $f'(x_0) = 0$,则 当 $f''(x_0) < 0$ 时, $f(x_0)$ 为极大值;

当
$$f''(x_0) > 0$$
 时, $f(x_0)$ 为极小值.

注: 如果 $f''(x_0)=0$, 此方法失效.

2 渐近线的求法:

(1)水平渐近线 若 $\lim_{x\to +\infty} f(x) = b$,或 $\lim_{x\to -\infty} f(x) = b$,则 y = b

称为函数 y = f(x) 的水平渐近线.

(2)铅直渐近线 若 $\lim_{x \to x_0^-} f(x) = \infty$,或 $\lim_{x \to x_0^+} f(x) = \infty$,则 $x = x_0$

称为 v = f(x) 的铅直渐近线.

(3)斜渐近线 若
$$a = \lim_{x \to \infty} \frac{f(x)}{x}$$
, $b = \lim_{x \to \infty} [f(x) - ax]$, 则

y = ax + b 称为 y = f(x) 的斜渐近线

3函数凹凸性的判断:

Th1 (凹凸性的判别定理) 若在 $I \perp f''(x) < 0$ (或 f''(x) > 0), 则 f(x) 在 I 上是凸的(或凹的).

Th2 (拐点的判别定理 1)若在 x_0 处 f "(x) = 0,(或 f "(x) 不存在),当 x 变动经过 x_0 时, f "(x) 变号,则 (x_0 , f(x_0)) 为拐点. Th3 (拐点的判别定理 2)设 f(x) 在 x_0 点的某邻域内有三阶导数,且 f "(x) = 0, f "(x) \neq 0,则 (x_0 , f(x_0)) 为拐点

1. 弧微分: $dS = \sqrt{1 + y'^2} dx$.

弧微分, 曲率的概 念,曲率 半径

2. 曲率: 曲线 y = f(x) 在点 (x,y) 处的曲率 $k = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$

对于参数方程
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, k = \frac{\left| \varphi'(t) \psi''(t) - \varphi''(t) \psi'(t) \right|}{\left[\varphi'^2(t) + \psi'^2(t) \right]^{\frac{1}{2}}}.$$

3.曲率半径: 曲线在点 M 处的曲率 $k(k \neq 0)$ 与曲线在点 M 处的曲率半径 ρ 有如下关系: $\rho = \frac{1}{k}$.

(三) 一元函数积分学

考试内容	对应公式、定理、概念
原函数和 不的 不的 基质	基本性质 $1 \int kf(x)dx = k \int f(x)dx \qquad (k \neq 0 \text{ 为常数})$ $2 \int [f_1(x) \pm f_2(x) \pm \cdots \pm f_k(x)]dx = \int f_1(x)dx \pm \int f_2(x)dx \pm \cdots \pm \int f_k(x)dx$ $3 求导: [\int f(x)dx]' = f(x) \qquad 或微分: d \int f(x)dx = f(x)dx$ $4 \int F'(x)dx = F(x) + C \text{ 或 } \int dF(x) = F(x) + C \text{ (} C \text{ 是任意常数)}$
基本积分公式	$\int x^k dx = \frac{1}{k+1} x^{k+1} + C \qquad (k \neq -1)$ $\int \frac{1}{x^2} dx = -\frac{1}{x} + C \qquad \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$ $\int \frac{1}{x} dx = \ln x + C$ $\int a^x dx = \frac{a^x}{\ln a} + C (a > 0, a \neq 1) \qquad \int e^x dx = e^x + C$ $\int \cos x dx = \sin x + C \qquad \int \sin x dx = -\cos x + C$ $\int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + C$ $\int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$ $\int \frac{1}{\sin x} dx = \int \csc x dx = \ln \csc x - \cot x + C$ $\int \frac{1}{\cos x} dx = \int \sec x dx = \ln \sec x + \tan x + C$ $\int \sec x \tan x dx = \sec x + C \qquad \int \csc x \cot x dx = -\csc x + C$

$$\int \tan x dx = -\ln|\cos x| + C \quad \int \cot x dx = \ln|\sin x| + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C \qquad \int \frac{dx}{1 + x^2} = \arctan x + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \qquad \int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \qquad \int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

重要公式

(1)设f(x)在[-l,l]上连续,则

$$\int_{-l}^{l} f(x)dx = \int_{0}^{l} [f(x) + f(-x)]dx$$

$$= \begin{cases} 0, \text{ if } (x) \text{ 为奇函数} \\ 2\int_{0}^{l} f(x)dx, \text{ if } (x) \text{ 为偶函数} \end{cases}$$

(2) 设f(x) 是以T为周期的连续函数,a为任意实数,

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x)dx.$$

$$(3) \int_0^a \sqrt{a^2 - x^2} dx = \frac{1}{4} \pi a^2$$

$$(4)\int_{0}^{\frac{\pi}{2}}\sin^{n}xdx = \int_{0}^{\frac{\pi}{2}}\cos^{n}xdx \begin{cases} \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{1}{2} \frac{\pi}{2}, \leq n$$
为偶数
$$\frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{2}{3} \frac{\pi}{3}, \leq n$$
为奇数

$$(5) \int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_{0}^{2\pi} \sin nx \cos mx dx = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

$$\int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_{0}^{2\pi} \sin nx \cos mx dx = 0$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx dx = \int_{0}^{2\pi} \cos nx \cos mx dx = 0 = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

1. 定积分的基本性质

(1)定积分只与被积函数和积分限有关,而与积分变量无关,即 $\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(u)du = \cdots$

$$(2)\int_a^b f(x)dx = -\int_b^a f(x)dx$$

$$(3) \int_a^b dx = b - a$$

$$(4) \int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$(5)\int_{a}^{b}kf(x)dx = k\int_{a}^{b}f(x)dx(k为常数)$

定积分的 概念和基 本性质, 定积分中 值定理

$$(6) \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

(7)比较定理: 设 $f(x) \le g(x), x \in [a,b], \text{则} \int_a^b f(x) dx \le \int_a^b g(x) dx.$

推论: 1. 当 $f(x) \ge 0, x \in [a,b]$ 时, $\int_a^b f(x)dx \ge 0$;

$$2. \left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$$

(8)估值定理: 设 $m \le f(x) \le M, x \in [a,b]$,其中m,M为常数,则 $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$

(9)积分中值定理: 设f(x)在[a,b]上连续,则在[a,b]上至少 \exists 一个 ξ , 使 $\int_{a}^{b} f(x)dx = (b-a)f(\xi)$

$$f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx - \cdots$$
 平均值公式

积分上限

的函数及 其导数,

牛顿—

Th1

设函数f(x) 在[a, b]上连续, $x \in [a, b]$,则变上限积分 $F(x) = \int_{-x}^{x} f(t)dt \, dt \, dt \, dt$

莱布尼兹 公式

且有
$$F'(x) = \frac{d}{dx}F(x) = \frac{d}{dx}(\int_a^x f(t)dt) = f(x)$$

推论1 设
$$F(x) = \int_{a}^{\varphi(x)} f(t)dt$$
,则 $F'(x) = f[\varphi(x)] \Box \varphi'(x)$.

推论2
$$\left(\int_{\phi(x)}^{\varphi(x)} f(t)dt\right)_{x} = f[\varphi(x)]\varphi'(x) - f[\phi(x)]\varphi'(x)$$

推论3
$$\left(\int_{a}^{\varphi(x)} f(t)g(x)dt\right)_{x}^{'} = \left(g(x)\int_{a}^{\varphi(x)} f(t)dt\right)_{x}^{'}$$
$$= g'(x)\int_{a}^{\varphi(x)} f(t)dt + g(x)f[\varphi(x)]\varphi'(x)$$

Th2 设
$$f(x)$$
在[a,b] 上连续, $x \in [a,b]$,则
$$\int_{a}^{x} f(x)dt \mathcal{L}f(x)$$
在[a,b]上的一个原函数

Th3 牛顿- 莱布尼茨公式: 设f(x)在[a,b] 上连续, F(x)

是
$$f(x)$$
的原函数,则 $\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a)$

1 不定积分:

分部积分法: $\int udv = uv - \int vdu$ 选择 u, dv 的原则: 积分容

易者选作 dv, 求导简单者选为 u

换元积分法: 设 $\int f(u)du = F(u) + C$,

不定积分 和定积分 的换元积 分法与分 部积分法

则
$$\int f[\varphi(x)]\varphi'(x)dx = \int f[\varphi(x)]d\varphi(x)$$

2. 定积分

换元法:设函数f(x) 在 [a, b] 上连续,若 $x=\varphi(t)$ 满足:

(1) $\phi(t)$ 在 $[\alpha, \beta]$ 上连续,且 $\phi'(t) \neq 0$.

 $(2)\varphi(a) = a \cdot \varphi(\beta) = b$.并且当t在 [α , β] 上变化时,

$\psi \sim 0$ made $\psi \sim 0$ $\pm \infty$ $\psi \sim 0$	$\varphi(t)$	的值在	[a,	b]	上变化,	则
---	--------------	-----	-----	----	------	---

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt.$$

分部积分公式

设u(x), v(x) 在 [a, b] 上具有连续导函数u'(x),v'(x),则

$$\int_{b}^{a} u(x)v'(x)dx = u(x)v(x)|_{b}^{a} - \int_{b}^{a} v(x)u'(x)dx$$

3. 定积分不等式证明中常用的不等式

$$(1)a^2 + b^2 \ge 2ab$$

$$(2)a > 0, a + \frac{1}{a} \ge 2$$

(3)柯西不等式:

$$(\int_a^b f(x)g(x)dx)^2 \le \left(\int_a^b f^2(x)dx\right) \left[\left(\int_a^b g^2(x)dx\right), \right.$$
 其中 $f(x)$, $g(x)$ 在 [a, b] 上连续

1. 三角函数代换

有数函理单数分积积用理三的和理积的广和的广和的广和的

函数 $f(x)$ 含根式	所作代换	三角形示意图
$\sqrt{a^2-x^2}$	$x = a \sin t$	a x $a^2 - x^2$
$\sqrt{a^2+x^2}$	$x = a \tan t$	X X X
$\sqrt{x^2-a^2}$	$x = a \sec t$	$\sqrt{x^2-a^2}$
*		

有理函数积分

$$(1)\int \frac{A}{x-a} dx = A \ln|x-a| + C$$

$$(2)\int \frac{A}{(x-a)^n} dx = -\frac{A}{n-1} \frac{1}{(x-a)^{n-1}} + C(n \neq 1)$$

$$(3)\int \frac{dx}{(x^2 + px + q)^n} = \int \frac{dx}{[(x + \frac{p}{2})^2 + \frac{4q - p^2}{4}]^n} \xrightarrow{\stackrel{\diamondsuit x + \frac{p}{2} = u}{4q - p^2}} \int \frac{du}{(u^2 + a^2)^n}$$

$$(4)\int \frac{x+a}{(x^2+px+q)^n} dx = -\frac{1}{2(n-1)} \frac{1}{(x^2+px+q)^{n-1}} + (a-\frac{p}{2}) \int \frac{dx}{(x^2+px+q)^n}$$

$$(p^2-4q<0)$$

4. 广义积分

(1) 无穷限的广义积分(无穷积分)

设
$$f(x)$$
 连续,则
$$1.\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

$$2.\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

$$3.\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

(2) 无界函数的广义积分(瑕积分)

$$1.\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x)dx, (\stackrel{\text{de}}{=} x \to b^{-} \text{ pt}, f(x) \to \infty)$$

$$3.\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\eta \to 0^{+}} \int_{c+\eta}^{b} f(x)dx$$

$$(\stackrel{\text{th}}{=} x \to c \stackrel{\text{th}}{=} , f(x) \to \infty)$$

(四) 向量代数和空间解析几何

考试内容	对应公式、定理、概念		
1.向量: 既有大小又有方向的量,又称矢量.			
向量的数 量积和向 量积,向 量的混合 积,	1 矢量的数积(点积,内积): 矢量 \bar{a} 与 \bar{b} 的数量积 $\bar{a} \cdot \bar{b} = \bar{a} \bar{b} \cos(\bar{a}, \bar{b})$. 设 $\bar{a} = \{x_1, y_1, z_1\}$, $\bar{b} = \{x_2, y_2, z_2\}$,则 $\bar{a} \cdot \bar{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$.		

(2) $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$, 即 \vec{c} 垂直于 \vec{a} , \vec{b} 所确定的平面;

(3) \bar{a} , \bar{b} , \bar{c} 成右手系.则称矢量 \bar{c} 为矢量 \bar{a} 与 \bar{b} 的矢量积,记 $\bar{c}=\bar{a}\times\bar{b}$.

设
$$\bar{a} = \{x_1, y_1, z_1\}$$
 $\bar{b} = \{x_2, y_2, z_2\}$, 则

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \vec{k}.$$

3 混合积: 设有三个矢量 \bar{a},\bar{b},\bar{c} , 若先作 \bar{a} , \bar{b} 的叉积 $\bar{a}\times\bar{b}$,

再与 \bar{c} 作点积 $(\bar{a}\times\bar{b})\cdot\bar{c}$,则这样的数积称为矢量 \bar{a} , \bar{b} , \bar{c} 的

混合积,记为(a,b,c),即 $(a,b,c)=(\bar{a}\times\bar{b})\cdot\bar{c}$.

设
$$\vec{a} = \{x_1, y_1, z_1\}$$
, $\vec{b} = \{x_2, y_2, z_2\}$, $\vec{c} = \{x_3, y_3, z_3\}$,

则
$$(a,b,c) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

两直的两夹量表其单量向、条向角的达运位,量平件量,坐式算位方

数与方向

1向量之间的位置关系及结论

设
$$\vec{a} = \{x_1, y_1, z_1\}$$
, $\vec{b} = \{x_2, y_2, z_2\}$, $\vec{c} = \{x_3, y_3, z_3\}$

(1)
$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$$
;

(2)
$$\vec{a}//\vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$
;

余弦,

其中 x_2, y_2, z_2 之中有一个为"0",如 $x_2 = 0$,应理解为 $x_1 = 0$;

- (3) \vec{a} , \vec{b} 不共线 😂 \vec{a} 不全为零的数 λ , μ 使 $\lambda \vec{a} + \mu \vec{b} = \vec{0}$;
- (4) 矢量 \bar{a} 与 \bar{b} 的夹角,可由下式求出

$$\cos(\vec{a}^{\wedge}\vec{b}) = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}};$$

(5) \vec{a} , \vec{b} , \vec{c} 共面 \Leftrightarrow ∃不全为零的数 λ , μ , ν , 使

$$\lambda \vec{a} + \mu \vec{b} + \nu \vec{c} = \vec{0}$$
 或者 $(a,b,c) = 0$

2 单位向量: 模为 1 的向量. 向量 \bar{a} 的单位向量记作 \bar{a}^0 ,

$$\overline{a^0} = \frac{\vec{a}}{|\vec{a}|} = \left\{ \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\}.$$

3 向量的方向余弦:

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}},$$

其中 α, β, γ 为向量 \bar{a} 与各坐标轴正向的夹角.

4 单位向量的方向余弦: 显然 $\overline{a^0} = \{\cos \alpha, \cos \beta, \cos \gamma\}$,且有 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

曲面方程 和空间曲 线方程的 概念,平

1平面方程

(1)一般式方程 Ax + By + Cz + D = 0,法矢量 $\vec{n} = \{A, B, C\}$,若方程中某个坐标不出现,则平面就平行于该坐标轴,例

面直程与平线与以行的点和线方线,平面、直及、条到点的程线平面与直线及垂件平到距,方面、直线的平直,面直离

如 平面 Ax + Cz + D = 0// y 轴

(2) 平面的点法式方程 $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ $M(x_0,y_0,z_0)$ 为平面上已知点, $\vec{n}=\{A,B,C\}$ 为法矢量

(3)三点式方程
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix}$$

 $M_1(x_1,y_1,z_1)$, $M_2(x_2,y_2,z_2)$, $M_3(x_3,y_3,z_3)$ 为平面上的三个点

(4)截距式方程 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, a,b,c 分别为平面上坐标轴上

的截距,即平面通过三点

2直线方程

一般式方程(两平面交线):
$$\begin{cases} A_1x + B_1y + C_1x + D_1 = 0 & \mathbb{平} \pi \pi_1 \\ A_2x + B_2y + C_2x + D_2 = 0 & \mathbb{\Psi} \pi \pi_2 \end{cases}$$

平面 π_1 与平面 π_2 的法矢量分别为 $\overrightarrow{n_1} = \{A_1, B_1, C_1\}$,

$$\overrightarrow{n_2} = \{A_2, B_2, C_2\}$$
 , 直线的方向矢量为 $\overrightarrow{s} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$

(2)标准式方程

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$
 $M(x_0, y_0, z_0)$ 为直线上已知点,

 $\vec{s} = \{l, m, n\}$ 为直线的方向矢量

(3)两点式方程
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

其中 $M_1(x_1,y_1,z_1)$, $M_2(x_2,y_2,z_2)$ 为直线上的两点

(4)参数式方程
$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases} M(x_0, y_0, z_0)$$
 为直线上已知

点, $\vec{s} = \{l, m, n\}$ 为直线的方向矢量

3 平面间的关系

设有两个平面: 平面 π_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 平面 π_2 :

$$A_2x + B_2y + C_2z + D_2 = 0$$

(1)平面
$$\pi_1$$
 // 平面 $\pi_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

- (2) \forall $\equiv \pi_1 \perp \forall$ $\equiv \pi_2 \Leftrightarrow A_1A_2 + B_1B_2 + C_1C_2 = 0$
- (3)平面 π_1 与平面 π_2 的夹角 θ ,由下式确定

$$\cos\theta = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

4 平面与直线间关系

直线
$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

平面
$$\pi_1$$
: $A_1x + B_1y + C_1z + D_1 = 0$

(1)
$$L//\pi \Leftrightarrow Al + Bm + Cn = 0$$

(2)
$$L \perp \pi \Leftrightarrow \frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$

(3)
$$L$$
 与 π 的夹角 θ ,由下式确定
$$\sin \theta = \frac{Al + Bm + Cn}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$$

5 直线间关系

设有两直线: 直线
$$L_1$$
: $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$

直线
$$L_2$$
: $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$

(1)
$$L_1 // L_2 \Leftrightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

(2)
$$L_1 \perp L_2 \iff l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

(3)直线 L_1 与 L_2 的夹角 θ , 由下式确定

$$\cos\theta = \frac{\left|l_1 l_2 + m_1 m_2 + n_1 n_2\right|}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

6 点到平面的距离: $M(x_0, y_0, z_0)$ 到平面 $\pi: Ax + By + Cz + D = 0$ 的距离为

$$d = \frac{\left| Ax_0 + By_0 + Cz_0 + D \right|}{\sqrt{A^2 + B^2 + C^2}}$$

7 点到直线的距离: $M(x_0, y_0, z_0)$ 到直线

$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 距离为

$$d = \frac{\left| \overrightarrow{M_1 M_0} \times \overrightarrow{M_1 P} \right|}{\overrightarrow{M_1 P}} = \frac{\begin{vmatrix} i & j & k \\ x_0 - x_1 & y_0 - y_1 & z_0 - z_1 \\ l & m & n \end{vmatrix}}{\sqrt{l^2 + m^2 + n^2}}$$

球线坐柱转标转方件的旋坐旋的,是一种,为的旋坐旋的,

准线为各种形式的柱面方程的求法

(1) 准线为 Γ : $\begin{cases} f(x,y) = 0 \\ z \end{cases}$, 母线 ||z| 轴的柱面方程为 = 0

$$f(x,y)=0$$
,

准线为 Γ : $\begin{cases} \varphi(x,z) = 0 \\ y = 0 \end{cases}$, 母线 // y 轴的柱面方程为

$$\varphi(x,z)=0,$$

准线为
$$\Gamma$$
:
$$\begin{cases} \psi(y,z) = 0 \\ x = 0 \end{cases}$$
, 母线 // x 轴的柱面方程为

$$\psi(y,z)=0$$
.

(2) 准线为
$$\Gamma$$
:
$$\begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$$
, 母线的方向矢量为 $\{l,m,n\}$

的柱面方程的求法

首先,在准线上任取一点(x,y,z),则过点(x,y,z)的母线方程

为
$$\frac{X-x}{l} = \frac{Y-y}{m} = \frac{Z-z}{n}$$

其中 X,Y,Z 为母线上任一点的流动坐标,消去方程组

$$\begin{cases} f(x,y,z) = 0\\ g(x,y,z) = 0\\ \frac{X-x}{l} = \frac{Y-y}{m} = \frac{Z-z}{n} \end{cases}$$

中的x,y,z便得所求的柱面方程

常见的柱面方程

	名称	方程	图形
常用的二 次曲面方 程及其图	圆柱面	$x^2 + y^2 = R^2$	
形,空间曲线的参数方程和	椭圆柱面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	

一般方程,空间曲线在坐标面上的	双曲柱面	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	
投影曲线 方程.	抛物柱面	$x^2 = 2py, (p > 0)$	y y
		标准二次方程及	支其图形
	名称	方程	图形
	椭球面	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$ $(a,b,c 均为正数)$	z c t t t t y
	单叶双曲面	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1$ $(a,b,c 均为正数)$	x y
	双叶双曲面	$-\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = (a,b,c 均为正数)$	

	椭圆的抛物 面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz$ (a,b,p) 为正数)	x 0 y
	双曲抛物面 (又名马鞍面)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$ $(a,b,p) 均为正数)$	
	二次锥面	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 0$ (a,b,c 为正数)	z y y

(五) 多元函数微分学

考试内容	对应公式、定理、概念
多元函数	二元函数 $z = f(x, y)$ 连续,可导(两偏导存在)与可微三
的概念,	者的关系如下:
二元函数	可导 ← 可微 → 函数连续 " ← → "表示可推出
的几何意	
义,二元	用全微分定义验证一个可导函数的可微性,只需验证:
函数的极	$\lim \frac{\Delta z - f_x^{'}(x,y)\Delta x - f_y^{'}(x,y)\Delta y}{\mathbb{E}$ 是否为0
限和连续	IIII
的概念,	
有界闭区	基本原理
域上多元	

连的多偏全全在条分函质函数分分必和件数,数和,存要充,

Th1(求偏导与次序无关定理)

设z = f(x, y)的两个混合偏导数 $f_{xy}^{"}(x, y), f_{yx}^{"}(x, y)$

在区域D内连续,则有 $f_{xy}^{"}(x,y) = f_{yx}^{"}(x,y)$

Th2(可微与偏导存在的关系定理)若z = f(x, y)在P(x, y)

点处可微,则在该点处 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 必存在,且有 $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

Th3(偏导存在与可微的关系定理)

若
$$z = f(x, y)$$
的两个偏导数 $\frac{\partial \mathbf{z}}{\partial \mathbf{x}}, \frac{\partial z}{\partial y}$ 在 $P(x, y)$

上的某领域内存在,且在P(x,y)连续,

则z = f(x, y)在P(x, y)点处可微

多函函导阶数导度 人名英勒姆法 偏方和 人名英格兰 人名英格兰人姓氏英格兰人称 医克勒氏管 化二甲烷基

1 复合函数微分法

$$(1) \overset{\text{TD}}{\nabla z} = f(u, v), u = \phi(x, y), v = \phi(x, y), \text{ for } \begin{cases} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \end{cases}$$

$$(2)$$
 $\forall z = f(u, v), u = \varphi(x), v = \phi(x),$

则
$$\frac{d\mathbf{z}}{d\mathbf{x}} = \frac{\partial z}{\partial u} \frac{du}{dx} + \frac{\partial z}{\partial v} \frac{dv}{dx}$$
,称之为z的全导数

$$(3) \ddot{\boxtimes} z = f(x,u,v), u = \varphi(x,y), v = \phi(x,y),$$

$$\left\{ \begin{array}{l} \frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y} = 0 + \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y} \end{array} \right.$$

注: 复合函数一定要设中间变量,抽象函数的高阶偏导数, 其中间变量用数字 1, 2, 3······表示更简洁.

2 隐函数微分法

(1)设
$$F(x,y) = 0$$
,则 $\frac{dy}{dx} = -\frac{F'_x(x,y)}{F'_y(x,y)}$

(2)
$$F(x, y, z) = 0$$
, $\mathbb{M} \frac{\partial z}{\partial x} = -\frac{F'_x(x, y, z)}{F'_z(x, y, z)}, \frac{\partial z}{\partial y} = -\frac{F'_y(x, y, z)}{F'_z(x, y, z)}$

(3)设由方程组
$$\{F(x, y, z)=0 \text{ 确定的隐函数} y = y(x), z = z(x), G(x, y, z)=0 \}$$

则
$$\frac{dy}{dx}$$
, $\frac{dz}{dx}$ 可通过解关于 $\frac{dy}{dx}$, $\frac{dz}{dx}$ 的线性方程组

$$: \begin{cases} F'_{x} + F'_{y} \frac{dy}{dx} + F'_{z} \Box \frac{dz}{dy} = 0 \\ G'_{x} + G'_{y} \frac{dy}{dx} + G'_{z} \frac{dz}{dx} = 0 \end{cases} \Rightarrow \begin{cases} F'_{y} \frac{dy}{dx} + F'_{z} \frac{dz}{dx} = -F'_{x}, \\ G'_{y} \frac{dy}{dx} + G'_{z} \frac{dz}{dx} = -G'_{x} \end{cases}$$
 $\Re \Re$

方向导数和梯度

Th1 设 z = f(x, y) 在 $M_0(x_0, y_0)$ 处 可 微 , 则 f(x, y) 在 点 $M_0(x_0, y_0)$ 沿任意方向 $l = (\cos \alpha, \cos \beta)$ 存在方向导数且 $\frac{\partial f(x_0, y_0)}{\partial t} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0)}{\partial x} \cos \beta$

在平面上1除了用方向角表示外也可用极角表示:

 $l = (\cos \theta, \sin \theta)$, $\theta \in [0, 2\pi]$ 此时相应的方向导 粉的计算公式为 $\partial f(x_0, y_0) = \partial f(x_0, y_0)$ and $\partial f(x_0, y_0) = \partial f(x_0, y_0)$

数的计算公式为
$$\frac{\partial f(x_0, y_0)}{\partial l} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \theta + \frac{\partial f(x_0, y_0)}{\partial y} \sin \theta$$

Th2 设三元函数 u = f(x, y, z) 在 $M_0(x_0, y_0, z_0)$ 处可微,则

$$u = f(x, y, z)$$
 在点 $M_0(x_0, y_0, z_0)$ 沿任意方向

 $l = (\cos \alpha, \cos \beta, \cos \gamma)$ 存在方向导数且有

$$\frac{\partial f(x_0, y_0, z_0)}{\partial l} = \frac{\partial f(x_0, y_0, z_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0, z_0)}{\partial y} \cos \beta$$
$$+ \frac{\partial f(x_0, y_0, z_0)}{\partial z} \cos \gamma$$

梯度: z = f(x, y) 在点 M_0 的方向导数计算公式可改写成

$$\frac{\partial f(x_0, y_0)}{\partial l} = \left(\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y}\right) \square(\cos \alpha, \cos \beta)$$

$$= grad(f(x_0, y_0)) \square = |gradf(x_0, y_0)| \cos\langle grad(f(x_0, y_0), l\rangle)$$

这里向量
$$gradf(x_0, y_0) = (\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y})$$
成为

z = f(x, y) 在点 M_0 的梯度(向量)

$$\frac{\partial f(x_0, y_0)}{\partial l}$$
随 l 而变化 $l = \frac{grad(f(x_0, y_0))}{|grad(f(x_0, y_0))|}$ 即沿梯度方向时,方

向导数取最大值 $|grad f(x_0, y_0)|$

1. 曲线的切线及法平面方程

(1)曲线
$$\begin{cases} x = x(t) \\ y = y(t) \stackrel{\cdot}{\to} (x_0, y_0, z_0) \leftrightarrow t = t_0 \\ z = z(t) \end{cases}$$

处的切线方程:
$$\frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)}$$

法平面方程: $x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$

(2)空间曲线Γ的一般式方程为
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$

则在曲线 Γ 的 $P(x_0, y_0, z_0)$ 处的

切线方程:
$$\frac{x-x_0}{\frac{\partial(F,G)}{\partial(y,z)}\bigg|_p} = \frac{y-y_0}{\frac{\partial(F,G)}{\partial(z,x)}\bigg|_p} = \frac{z-z_0}{\frac{\partial(F,G)}{\partial(x,y)}\bigg|_p}$$

法线方程:

空间曲线的切线和

法平面,

曲面的切 平面和法 线,

$$\frac{\partial(F,G)}{\partial(y,z)}\bigg|_{p}(x-x_0) + \frac{\partial(F,G)}{\partial(z,x)}\bigg|_{p}(y-y_0) + \frac{\partial(F,G)}{\partial(x,y)}\bigg|_{p}(z-z_0) = 0$$

2. 空间曲面在其上某点处的切平面和法线方程

(1)设曲面 \sum 为显示方程z = f(x, y),则在 \sum 上一点 $P(x_0, y_0, z_0)$ 处的

切平面方程:
$$\frac{\partial z}{\partial x}\Big|_{p}(x-x_{0}) + \frac{\partial z}{\partial y}\Big|_{p}(y-y_{0}) - (z-z_{0}) = 0.$$

法线方程:
$$\frac{x-x_0}{\frac{\partial z}{\partial x}\Big|_p} = \frac{y-y_0}{\frac{\partial z}{\partial y}\Big|_p} = \frac{z-z_0}{-1}$$

(2)设曲面 \sum 为隐式方程F(x,y,z)=0,则在 \sum 上一点 $P(x_0,y_0,z_0)$ 的

切平面方程:
$$F'_x | (x-x_0) + F'_y |_p (y-y_0) + F'_z |_p (z-z_0) = 0$$

法线方程:
$$\frac{x-x_0}{F'_x|_p} = \frac{y-y_0}{F'_y|_p} = \frac{z-z_0}{F'_z|_p}$$

1 多元函数的极值

定义:

设函数z = f(x, y)在 $P(x_0, y_0)$ 的某邻域内有定义,若对于该邻域

内异于 $P(x_0, y_0)$ 点的任一点Q(x, y) 恒有

$$f(x,y) > f(x_0,y_0)(\vec{x} < f(x_0,y_0))$$

则称 $f(x_0,y_0)$ 为f(x,y)的极小值(极大值)

的勒多的 全值函大小二公元极件多的、数值极等的、及泰,数和 人元最最其

简单应用

二元函数

Th1(取极值的必要条件) 设z = f(x, y)在 $P(x_0, y_0)$ 点的一阶偏导数存在,且

$$P(x_0, y_0)$$
是 $z = f(x, y)$ 的极值点,则
$$\begin{cases} f_x'(x_0, y_0) = 0 \\ f_y'(x_0, y_0) = 0 \end{cases}$$

Th2(函数取极值的充分条件)

设z = f(x, y)在 $P(x_0, y_0)$ 点的某邻域内有

连续的二阶偏导数, 且 $f'_x(x_0, y_0) = 0$, $f'_y(x_0, y_0) = 0$

$$[f''_{xy}(x_0, y_0)]^2 - f''_x^2(x_0, y_0) \Box f''_y^2(x_0, y_0) < 0$$

则 $P(x_0, y_0)$ 是z = f(x, y)的一个极值点

(1)若 $f"_x^2(x_0,y_0) > 0$ (或 $f"_y^2(x_0,y_0) > 0$),则 $P(x_0,y_0)$ 为极小值点。

(2) 若 $f''_x(x_0, y_0) < 0$ (或 $f''_y(x_0, y_0) < 0$),则 $P(x_0, y_0)$ 为极大值点。

2 无条件极值

解颢程序:

- (1)求出z = f(x, y)的驻点 (x_0, y_0) ;
- (2)用Th2判别 (x_0, y_0) 是否为极值点; 是,则 $f(x_0, y_0)$ 为

z = f(x, y)的极值。

- 3条件极值(拉格朗日乘数法)
- 1) 由条件q(x, y) = 0, 求z = f(x, y)的极值

解题程序:

 $\diamondsuit F(x,y) = f(x,y) + \lambda \varphi(x,y);$

解方程组
$$\begin{cases} f'_{x}(x,y) + \lambda \varphi'_{x}(x,y) = 0 \\ f'_{y}(x,y) + \lambda \varphi'_{y}(x,y) = 0 \end{cases}$$
 求驻点 $(x_{0}, y_{0});$ $\varphi(x,y) = 0$

 $f(x_0, y_0)$ 即为f(x, y)的极值(存在的话)

2) 由条件q(x, y, z)=0, 求u = f(x, y, z)的极值。解题程序:

$$\diamondsuit F(x,y,z) + \lambda \varphi(x,y,z)$$

解方程组
$$\begin{cases} f'_{x}(x,y,z) + \lambda \varphi'_{x}(x,y,z) = 0 \\ f'_{y}(x,y,z) + \lambda \varphi'_{y}(x,y,z) = 0 \\ f'_{z}(x,y,z) + \lambda \varphi'_{z}(x,y,z) = 0 \\ \varphi(x,y,z) = 0 \end{cases}$$

若 $(x_{0,}y_{0,}z_{0})$ 为其解 $f(x_{0,}y_{0},z_{0})$ 即为f(x,y,z)的极值(若存在的话)

3)由条件 $\varphi_1(x,y,z) = 0.\varphi_2(x,y,z) = 0$ 求函数u = f(x,y,z)的极值解题程序:

令
$$F(x,y,z) = f(x,y,z) + \lambda_1 \varphi_1(x,y,z) + \lambda_2 \varphi_2(x,y,z)$$
以下仿 1),2)

(六) 多元函数积分学

考试内容	对应公式、定理、概念	
二重积分	1 二重积分:	
与三重积	$I = \iint_{\mathbb{R}} f(x, y) d\sigma = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}, $ 其中 $d = \max_{k \in \mathbb{R}} \{d_{i}\},$	
分的概	D	
念、性质、计算和应	d_i 为 $\Delta \sigma_i$ 的直径($i=1,2,\cdots n$)	
ロ昇が四 用	几何意义:	
/ī3	$\exists z = f(x,y) \ge 0, (x,y) \in D$ 时,而二重积分I表示以 $z = f(x,y)$	
	为曲项,以D为底的柱体体积。	
	2 三重积分:	
	$I= \iiint\limits_{\mathbb{D}} F(x,y,z) dv = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i,} \eta_{i,} \tau_{i}) \Delta v_{i}, 其中 d = \max_{1 \le i \le n} \left\{ d_{i} \right\},$	
	d_i 为 Δv_i 的直径($i=1,2,\cdots n$)	
	物理意义:	
	三重积分 I 表示体密度为 $\mu = f(x,y,z)$ 的空间形体 Ω 的质量。	
	3 性质(只叙述二重积分的性质,三重积分类似)	
	(1) $\iint_D kf(x, y) d\sigma = k \iint_D f(x, y) d\sigma, k$ 为常数	
	$(2) \iint_{D} [f(x,y) \pm g(x,y)] d\sigma = \iint_{D} f(x,y) d\sigma \pm g(x,y) d\sigma$	
	(3) $\iint_D f(x,y)d\sigma = \sum_{i=1}^n \iint_{D_i} f(x,y)d\sigma$,其中 D_i 为 D 的构成子域且任	
	两个子域没有重迭部分 $(i=1,2,\cdots,m)$	
	(4) $\iint_D d\sigma = A$,其中 A 为 D 的面积。	
	(5)(比较定理)	

若在D上恒有 $f(x,y) \le g(x,y)$,则 $\iint_D f(x,y)d\sigma \le \iint_D g(x,y)d\sigma$

(6)(估值定理)设M,m分别为f(x,y)在闭域D上的最大与最小值,

$$A$$
为 D 的面积,则 $mA \le \iint_D f(x,y)d\sigma \le MA$

(7)(中值定理)若f(x,y)在闭域D上连续,A为D的面积,则在D上至少 \exists 一点(ξ , η),使 $\iint_D f(x,y)d\sigma = f(\xi,\eta)A$

(8)二重积分的对称性原理

1)如果积分域D关于x轴对称,f(x,y)为y的奇偶函数,则二重积分 $\iint f(x,y)$ d σ

$$=\begin{cases} 0, f 关于y为奇函数,即 $f(x,-y) = -f(x,y) \\ 2 \iint\limits_{D_1} f(x,y) d\sigma, f 关于y为偶函数,即 $f(x,-y) = f(x,y), \end{cases}$$$$

D.为D在上半平面部分

这个性质的几何意义见图(a)、(b)

2)如果积分域D关于y轴对称,f(x,y)为x的奇偶函数,

则二重积分
$$\iint_{D} f(x,y) d\sigma$$

$$= \begin{cases} 0, f \not \to T x$$
的奇函数,即 $f(-x, y) = -f(x, y) \\ 2 \iint\limits_{D_2} f(x, y) d\sigma, f \not \to T x$ 为偶函数,即 $f(-x, y) = f(x, y)$,

D,为D在右半平面部分

3) 如果D关于原点对称,f(x,y)同时为x,y的奇偶函数,

则二重积分
$$\iint_{\Omega} f(x,y) d\sigma$$

D,为D在上半平面部分

4)如果D关于直线
$$y = x$$
对称,则 $\iint_{D} f(x,y) d\sigma = \iint_{D} f(x,y) d\sigma$

注: 注意到二重积分积分域 D 的对称性及被积函数 f(x,y) 的奇偶性,一方面可减少计算量,另一方面可避免出差错,要特别注意的是仅当积分域 D 的对称性与被积函数 f(x,y) 的奇偶性两者兼得时才能用性质 8.

1 平面曲线积分与路径无关的四个等价条件

设函数 P(x,y), Q(x,y) 在单连通区域 D 上具有一阶连续偏导

两积念及两积系公类分、计类分,式曲的性算曲的格,线关林平

数,则 $\int_{I} Pdx + Qdy$ 与路径无关

$$\Leftrightarrow \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \forall (x, y) \in D$$

⇔
$$\iint$$
 Pdx+Qdy=0,L 为一简单分段光滑封闭曲线

⇔存在函数
$$u(x,y),(x,y) \in D$$
 使 $du(x,y) = Pdx + Qdy$, 且

$$u(x, y) = \int_{(x_0, y_0)}^{(x, y)} Pdx + Qdy$$

面曲线积 分与路径 无关的条 件,

2 格林公式: 设平面上的有界闭区域 D 由分段光滑的曲线 L 围成,函数 P(x,y), Q(x,y) 在有 D 连续的一阶偏导数,则有

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint\limits_{L} P dx + Q dy$$

或者
$$\iint_{D} (\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}) dx dy = \iint_{L} P dx - Q dy$$

二元函数 全微分的 原函数, 1 高斯(Gauss)公式

设 Ω 是空间中的有界闭区域,由分块光滑的曲面所 S 围成,函数 P(x,y,z),Q(x,y,z),R(x,y,z) 在 Ω 由连续的一阶偏

导数,则

$$\iiint_{\Omega} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dV = \iint_{S} P dy dz + Q dz dx + R dx dy \quad \overrightarrow{\mathbb{D}}$$

$$\iiint_{\Omega} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dV = \iint_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS$$

这里 S 是 Ω 的整个边界的外侧(即取外法向), $\cos \alpha, \cos \beta, \cos \gamma$ 是 S 上点 (x,y,z) 处的外法向量的方向余弦.

2 斯托克斯公式

设 Γ 为分段光滑的又向闭曲线,S是以 Γ 为边界的分块光滑有向曲面, Γ 的正向与S的侧(即法向量的指向)符合右手法则,函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在包含 S的一个空间区域内有连续的一阶偏导数,则有

$$\iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\Gamma} P dx + Q dy + R dz$$

$$\left(\iint_{S} \left|\frac{\partial}{\partial x} - \frac{\partial}{\partial y} - \frac{\partial}{\partial z}\right| = \int_{\Gamma} P dx + Q dy + R dz\right) \stackrel{\text{Th}}{\Rightarrow}$$

$$\iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \cos \gamma$$

$$= \int_{S} P dx + Q dy + R dz$$

1 散度的计算公式

设 $\vec{A} = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}; P, Q, R$ 均可导,则 \vec{A}

在 P(x, y, z) 点处的散度为 $div\overline{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$

2 旋度的计算公式

设有矢量场 $\vec{A} = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$, 其中

P,Q,R 均有连续的一阶偏导数,则旋度 $rot \overline{A}$ 为:

$$rot\vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

(七) 无穷级数

考试内容	对应公式、定理、概念
常数项级	∞
数的收敛	1 级数 $\sum u_n$ 的性质:
与发散的	n=1
概念,收	(1)设 $c \neq 0$ 的常数,则 $\sum_{n=0}^{\infty} u_n$ 与 $\sum_{n=0}^{\infty} cu_n$ 有相同敛散性
敛级数的	(1) (2) (2) (3) (3) (3) (4)
和的概念	(2)设有两个数级 $\sum_{n}^{\infty}u_{n}$ 与 $\sum_{n}^{\infty}v_{n}$
级数的基	$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} v_n$
本性质与	<u> </u>
收敛的必	若 $\sum_{n=0}^{\infty} u_n = s, \sum_{n=0}^{\infty} v_n = \sigma, $ 则 $\sum_{n=0}^{\infty} (u_n \pm v_n) = s \pm \sigma.$
要条件	n=1 $n=1$ $n=1$
	若 $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 发散.
	若 $\sum_{n=1}^{\infty} u_n \sum_{n=1}^{\infty} v_n$ 均发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 敛散性不定.
	注:添加或去消有限项不影响一个级数的敛散性.
	设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则对其各项任意加括号后所得新级数仍
	收敛于原级数的和
几何级数	
与p级数	正项级数 $\sum u_n$ ($u_n \ge 0$) 的判敛法
以及他们	n=1
的收敛	(1)比较判敛法:设 $0 \le u_n \le v_n$,若
性,正项	

级数收敛 性的判别 法,

$$\sum_{n=1}^{\infty} u_n$$
收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛

 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散

(2)比较法的极限形式: 设 $\sum_{n=1}^{\infty} u_n \mathcal{D} \sum_{n=1}^{\infty} v_n$ 均为正项级数

$$1.$$
若 $0 \le A < +\infty$,且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

$$2.$$
若 $0 < A \le +\infty$,且 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 发散

两个常用的比较级数

$$i$$
)等比级数 $\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r}, |r| < 1 \\$ 发散, $|r| \ge 1$

$$ii)p-级数\sum_{n=1}^{\infty}\frac{1}{n^{p}}=\begin{cases} 收敛, p>1$$
时发散, $p\leq 1$ 时

(3)**比值判别法**(达朗贝尔准则)(适用于通项 u_n 中含有 n!

或关于 n 的若干连乘积形式)

若
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho$$

$$\begin{cases}
\rho > 1 \text{ Im }, \sum_{n=1}^{\infty} u_n \text{ 发散} \\
\rho = 1 \text{ Im }, \text{ 方法失效} \\
\rho < 1 \text{ Im }, \sum_{n=1}^{\infty} u_n \text{ 收敛}
\end{cases}$$

交错级数 与莱定理, 兹定意项级 数的绝对

1. 交错级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n, (u_n > 0)$$
 的判敛法

莱布尼兹准则: 若交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n, (u_n > 0)$ 满足条件:

1 幂级数: $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$

收敛与条	
件收敛,	

 $(1)u_n \ge u_{n+1}, (n=1,2,\dots);$ (2) $\lim u_n = 0,$

则交错级数收敛,其和 $S \le u_1$,其n项余和的绝对值 $|R_n| \le u_{n+1}$.

函数项级

收敛半径,若 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a} \right| = \rho$,则 $R = \frac{1}{2}$.

数的收敛 域与和函 数的概 念,幂级

数及其收 敛半径, 收敛区间 (指开区 间)和收 敛域,幂

级数的和

函数,

2. 函数项级数 $\sum_{n=0}^{\infty} u_n(x)$ 收敛域的求法步骤:

(1)用比值(或根值)法求 $\rho(x)$,即

$$\lim_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n(x)|}=\rho(x)(\exists \lim_{n\to\infty}\sqrt[n]{|u_n(x)|}=\rho(x));$$

(2)解不等式方程 $\rho(x)$ < 1, 求出 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛区间(a,b);

(3)考察
$$x = a($$
或 $x = b)$ 时, $\sum_{n=1}^{\infty} u_n(a)($ 或 $\sum_{n=1}^{\infty} u_n(b))$ 的敛散性

(4) 写出
$$\sum_{n=1}^{\infty} u_n(x)$$
的收敛域

幂级数在 其收敛区 间内的基 本性质, 简单幂级 数的和函 数的求 法,初等

幂级数展

开式

1幂级数的四则运算性质:

设
$$\sum_{n=0}^{\infty} a_n x^n = f(x)$$
, $\sum_{n=0}^{\infty} b_n x^n = g(x)$, 其收敛半径分别为

 $R_1, R_2, R = \min(R_1, R_2)$, 则对 $\forall x \in (-R, R)$,有

(1)
$$\sum_{n=0}^{\infty} a_n x^n \pm \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n = f(x) \pm g(x)$$
, 且在(-R, R)

内绝对收敛

$$(2) \left(\sum_{n=0}^{\infty} a_n x^n \right) \left(\sum_{n=0}^{\infty} b_n x^n \right) = \sum_{n=0}^{\infty} (a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0) x^n$$
$$= f(x) g(x)$$

(3) 设 $b_0 \neq 0$,则在x = 0的足够小邻域内

$$\frac{f(x)}{g(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n + \dots}{b_0 + b_1 x + \dots + b_n x^n + \dots} = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n + \dots$$

利用多项式的长除法可得: $C_0 = \frac{a_0}{b_0}, C_1 = \frac{a_1b_0 - a_0b_1}{b_0^2}, \dots$

2幂级数的分析性质:

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为R,则在(-R, R)内有

- (1) $\sum_{n=0}^{\infty} a_n x^n$ 的和函数f(x) 是连续的。
- (2) $\sum_{n=0}^{\infty} a_n x^n$ 可逐项微分,且 $f_x = (\sum_{n=0}^{\infty} a_n x^n)'$

$$= \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} n a_n x^{n-1}$$

(3) $\sum_{n=0}^{\infty} a_n x^n$ 可逐项积分,且 $\int_0^{\mathbf{x}} f(t) dt = \int_0^{\mathbf{x}} (\sum_{n=0}^{\infty} a_n t^n) dt$

$$= \sum_{n=0}^{\infty} (\int_{0}^{x} a_{n} t^{n} dt) = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$$

3 函数的幂级数展开

泰勒级数 设f(x) 在 $x = x_0$ 的某一邻域内具有任意阶导数,

级数:
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \cdots$$

称为f(x) 在 $x = x_0$ 处的泰勒级数。

当
$$x_0 = 0$$
时,级数化为 $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \cdots$
$$+ \frac{f^{(n)}(0)}{n!} x^n + \cdots$$

称为麦克劳林级数

Th设f(x)在 $x = x_0$ 某领域内具有任意阶导数,

则泰勒级数
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

收敛于f(x)的充分条件 $\lim_{n\to\infty} R_n(x) = 0$,

其中
$$\mathbf{R}_n(x) = \frac{1}{(n+1)!} f^{(n+1)}[x_0 + \theta(x-x_0)](x-x_0)^{n+1}, 0 < \theta < 1.$$

4常见的幂级数展开式:

$$(1)\frac{1}{1-u} = 1 + u + u^2 + \dots + u^n + \dots = \sum_{n=0}^{\infty} u^n, (-1,1)$$

$$(2)\frac{1}{1+u} = 1 - u + u^2 - \dots + (-1)^n u^n + \dots = \sum_{n=0}^{\infty} (-1)^n u^n, (-1,1)$$

(3)
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \dots + \frac{u^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{u^{n}}{n!}, (-\infty, +\infty)$$

$$(4)\sin u = u - \frac{u^3}{3!} + \dots + (-1)^n \frac{u^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}, (-\infty, +\infty)$$

$$(5)\cos u = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \dots + (-1)^n \frac{u^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n}}{(2n)!}, (-\infty, +\infty)$$

(6)
$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \dots + (-1)^n \frac{u^{n+1}}{n+1} + \dots \sum_{n=0}^{\infty} (-1)^n \frac{u^{n+1}}{n+1}, (-1,1)$$

(7)
$$(1+u)^a = 1 + au + \frac{a(a-1)}{2!}u^2 + \dots + \frac{a(a-1)\cdots(a-n+1)}{n!}u^n + \dots$$

(随 a 的不同而不同,但在(-1,1)总有意义)

函立与级利理在上叶数叶傅数克, [例级的系立,雷函儿,例级的概量, [例数], [例数],立

1设f(x)是以 2π 为周期的函数,且在 $[-\pi, \pi]$ 或 $[0,2\pi]$ 上可积,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx dx, (n = 0, 1, 2, \dots)$$

在
$$[-l,l]$$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx, (n=1,2,\cdots)$

称为f(x)的傅立叶系数

2 f(x)的傅立叶系数为系数的三角级数 $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

称为f(x)的傅立叶级数,记为f(x) $\frac{1}{2}a_0 + \sum_{n=1}^{\infty}(a_n\cos nx + b_n\sin nx)$

3设f(x)是以2l为周期的函数,且在[-l,l]上可积,则以

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

为系数的三角级数
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x)$$

称为f(x)的傅立叶级数,记为f(x) $\Box \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l}x + b_n \sin \frac{n\pi}{l}x)$.

- **3**狄里赫莱收敛定理:设函数f(x)在 $[-\pi,\pi]$ 上满足条件:
- (1)除有限个第一类间断点外都连续。
- (2) 只有有限个极值点,则f(x)的傅立叶级数在 $[-\pi, \pi]$ 上收敛,且有

	$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos x + b_n \sin nx) = \begin{cases} f(x), x \not \to f(x) $ 的连续点; $\frac{1}{2} [f(x_0 - 0) + f(x_0 + 0)], x_0 \not \to f(x) \end{cases} $ 的第一类间断点; $\frac{1}{2} [f(-\pi + 0) + f(\pi_0 + 0)], x = \pm \pi.$
函数在[0,l]上	1 f(x) 为 [0, l] 上的非周期函数,令:
的正弦级 数与余弦	$F(x) = \begin{cases} f(x), 0 \le x \le l \\ f(-x), -l \le x < 0 \end{cases} \text{ MJ } f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{l} x (\text{ $\frac{1}{2}$} \text{ $\frac{1}{2}$})$
级数.	数),其中: $a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi}{l} x dx$ (n=0, 1, 2,)
	2 f(x) 为 $[0,l]$ 上的非周期函数,令:
	$F(x) = \begin{cases} f(x), 0 \le x \le l \\ -f(-x), -l \le x < 0 \end{cases}$ 则 $F(x)$ 除 $x=0$ 外在区间 $[-\pi, \pi]$ 上
	为奇函数则 $f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{l} x$ (正弦级数), 其中:
	$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi}{l} x dx$ (n=1, 2,)

(八) 常微分方程

考试内容	对应公式、定理、概念
常微分方	1 常微分方程 含有自变量、未知函数及未知函数的某些导
程的基本	
概念,变	数的方程式称微分方程,而当未知函数是一元函数时称
量可分离	为常微分方程.
的微分方	2 可分离变量方程 $f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0$

解法: 两边同除 $g_1(y)f_2(x) \neq 0$, 得 $\frac{f_1(x)}{f_2(x)}dx + \frac{g_2(y)}{g_1(y)}dy = 0$ $\int \frac{f_1(x)}{f_2(x)}dx + \int \frac{g_2(y)}{g_1(y)}dy = C$

1 齐次方程
$$y' = f(\frac{y}{x})$$

原方程

$$\Rightarrow u + x \frac{du}{dx} = f(u) \Rightarrow \frac{du}{f(u) - u} = \frac{dx}{x} \Rightarrow \int \frac{du}{f(u) - u} = \ln x + C$$

2 可化为齐次型的方程
$$\frac{dy}{dx} = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

解法: (1)当 $c_1 = c_2 = 0$ 时

$$\frac{dy}{dx} = f\left(\frac{a_1x + b_1y}{a_2x + b_2y}\right) = f\left(\frac{a_1 + b_1\frac{y}{x}}{a_2 + b_2\frac{y}{x}}\right) = g(\frac{y}{x}) \text{ if } \exists f \in \mathcal{F}(2)$$

(2).
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0, \ \exists \ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \lambda \ \exists \ \exists \ \exists \ a_1 = b_2 = \lambda \ \exists \ \exists \ a_2 = b_2 = \lambda \ \exists \ \exists \ a_2 = b_2 = \lambda \ \exists \ \exists \ a_2 = b_2 = \lambda \ \exists \ \exists \ a_2 = b_2 = \lambda \ \exists \ a_$$

$$\frac{dy}{dx} = f\left(\frac{\lambda(a_2x + b_2y) + c_1}{a_2x + b_2y + c_2}\right) = g(a_2x + b_2y)$$

令
$$a_2x + b_2y = u$$
 ,则 $\frac{du}{dx} = a_2 + b_2f(u)$ 属于(1)

(3).
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0, c_1, c_2$$
 不全为 0 解方程组 $\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$

求交点 (α, β)

令
$$x = X + \alpha, y = Y + \beta$$
, 则原方程 $\Rightarrow \frac{dy}{dX} = \varphi(\frac{X}{Y})$ 属于 (2)

3 一阶线性方程 y'+p(x)y=q(x)

解法: 用常数变易法求

- (1)求对应齐次方程 y'+p(x)y=0 的通解 $y=Ce^{-\int p(x)dx}$
- (2)令原方程的解为 $y = C(x)e^{-\int p(x)dx}$
- (3)代入原方程整理得

$$C'(x)e^{-\int p(x)dx} = q(x) \Rightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + \tilde{C}$$

(4)原方程通解
$$y = [\int q(x)e^{\int p(x)dx}dx + \tilde{C}]e^{-\int p(x)dx}$$

4 贝努里方程
$$y'+p(x)y=q(x)y^n$$
, 其中 $n \neq 0,1$

解法: 令
$$Z = y^{1-n}$$
, 则方程 $\Rightarrow \frac{1}{1-n} \frac{dz}{dx} + p(x)z = q(x)$,

$$\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x) \text{ AF } 3$$

5 全微分方程 M(x,y)dx + N(x,y)dy = 0 为全微分方程

$$\iff \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} . \text{ii} \text{ ii} \text{ ii}$$

可的换某方降阶程微解及用变求些程阶微,分的解简量解微,的分线方性的单代的分可高方性程质结

注:这里只限于讨论二阶线性方程,其结论可推广到更高阶的方程,二阶线性方程的一般形式为

$$y'' + p(x)y' + q(x)y = f(x)$$
 (8.1) 其中 $p(x), q(x), f(x)$ 均为连续函数,当右端项 $f(x) \equiv 0$ 时,称为二阶线性齐次方程,否则称为非齐次方程

解的性质与结构(以下性质可推广到任意高阶的线性方程) 分以下几种:

 $1 若 y_1(x), y_2(x)$ 为齐次方程 y'' + p(x)y' + q(x)y = 0 (8.2)的两

构	定理
---	----

个特解,则其线性组合 $C_1y_1(x)+C_2y_2(x)$ 仍为(8.2)的解,特别地,若 $y_1(x),y_2(x)$ 线性无关 (即 $\frac{y_1(x)}{y_2(x)} \neq \lambda$ (常数)),则(8.2)的通

解为 $y(x) = C_1 y_1(x) + C_2 y_2(x)$

- 2 设 $y_1(x)$, $y_2(x)$ 为非线性方程(8.1)的两个特解,则其差 $y_1(x) y_2(x)$ 为相应齐次方程(8.2)的特解
- 3 设 $y^*(x)$ 为非齐次方程(8.1)的一个特解, y(x) 为齐次方程 (8.2)的任意特解,则其和 $y^*(x)+y(x)$ 为(8.1)的解,特别地,若 $y_1(x),y_2(x)$ 为(8.2)两个线性无关的特解,则(8.1)的通解为 $y(x)=y^*(x)+C_1y_1(x)+C_2y_2(x)$,其中 C_1,C_2 为任意常数.
- 1 二阶常系数线性齐次方程 y"+ py'+ qy = 0 (1) 其中 p,q 均为常数

解法:特征方程: $\lambda^2 + p\lambda + q = 0$

(I) 当礼,礼为相异的特征根时,方程(1)通解为

 $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$

- (II) 当 $\lambda_1 = \lambda_2$ 时,通解为 $y(x) = (C_1 + C_2 x)e^{\lambda_1 x}$
- (III) 当 $\lambda = \alpha \pm i\beta$ (复根)时,通解为

 $y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

2 n 阶常系数齐次线性方程

此种方程的一般形式为

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_n y = 0 \ (*), \ \sharp$$

 $p_i(i=1,2,\cdots,n)$ 为常数,相应的特征方程为

$$\lambda^{n} + p_1 \lambda^{(n-1)} + p_2 \lambda^{(n-2)} + \dots + p_n = 0$$

特征根与通解的关系同二阶方程的情形相类似,具体结果为:

(1)若 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 是个n相异实根,则方程(*)的通解为

二数性程二些奇微常次分高的系线方于某数性程

$$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \dots + C_n e^{\lambda_n x}$$

(2)若 $\lambda = \lambda_0$ 为特征方程的 $k(k \le n)$ 重实根,则(*)的通解中含有: $(C_1 + C_2 x + \dots + C_k x^{k-1})e^{\lambda_0 x}$

(3)若 $\alpha+i\beta$ 为特征方程的 $k(2k \le n)$ 重共轭复根,则(*)的通解中含有:

 $e^{\alpha x}[(C_1+C_2x+\cdots+C_kx^{k-1})\cos\beta x+(D_1+D_2x+\cdots+D_kx^{k-1})\sin\beta x]$ 由于我们不能求出一般的三次以上代数方程的根,也就是说对于三次以上的特征方程一般不能得到齐特征根,自然也就不能求出三阶以上常系数齐次线性微分方程的通解,能够求出的只是某些特殊情形

简阶非性程方分单的系次分欧,程方应的系次分欧,程用工数线方拉微简

1 二阶常系数线性非齐次方程 y"+ py'+ qy = f(x) (2)其中 p,q均为常数

解法: 通解的求法程序

- (1). 求对应齐次方程的通解 Y(x)
- (2). 求出(2)的特解 *y**(*x*)
- (3). 方程(2)的通解 y = Y(x) + y*(x)

方程(2)特解 $y^*(x)$ 的求法有三种: 微分算子法、常数变易法、 特定系数法.

2 形如 $x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \dots + a_{n-1} x y' + a_n y = 0$ 的方程成为欧拉方程.

二、线性代数

(一) 行列式

考试内容	对应公式、定理、概念
行列式的	行列式按行(列)展开定理
概念和基 本性质、 行列式按	(1) 设 $A = (a_{ij})_{n \times n}$,则 $a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn} = \begin{cases} A , i = j \\ 0, i \neq j \end{cases}$
行(列)展	
开定理	或 $a_{1i}A_{1j} + a_{2i}A_{2j} + \dots + a_{ni}A_{nj} = \begin{cases} A , i = j \\ 0, i \neq j \end{cases}$
	即 $AA^* = A^*A = A E$, 其中
	$A^* = \begin{pmatrix} A_{11} & A_{21} \cdots & A_{n1} \\ A_{12} & A_{22} \cdots & A_{n2} \\ \cdots & \cdots & \cdots \\ A_{1n} & A_{2n} \cdots & A_{nn} \end{pmatrix} = (A_{ji}) = (A_{jj})^T$ (2)设 $A, B \to n$ 阶方阵,则 $ AB = A B = B A = BA $
	$\left \left \left \left A \pm B \right \right = \left A \right \pm \left B \right $ 不一定成立
	$(3) kA =k^n A ,A为n阶方阵$
	(4) 设 A 为 n 阶方阵,则 $A^T \models A \mid ; A^{-1} \models A ^{-1}$ (若 A 可逆) $ A^* \models A ^{n-1}$ ($n \ge 2$)
	$ S \begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = A B , A, B为方阵, $
	$\left \underbrace{\square}_{B_{n \times n}}^{O} \stackrel{A_{m \times m}}{O} \right = (-1)^{mn} \square A \parallel B \mid.$

(6)范德蒙行列式
$$D_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \cdots & \cdots & \cdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

设 A 是 n 阶方阵, $\lambda_i(i=1,2\cdots,n)$ 是 A 的 n 个特征值,则 $|A|=\prod_{i=1}^n \lambda_i$

(二) 矩阵

考试内容	对应公式、定理、概念
矩阵的概念,矩阵的线性运算,矩阵的乘法,	矩阵: $m \times n$ 个数 a_{ij} 排成 m 行 n 列的表格 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ 称
	为矩阵,简记为 A ,或 $(a_{ij})_{m\times n}$.若 $m=n$,则称 A 是 n 阶矩阵或 n
	阶方阵. 矩阵的线性运算 1 矩阵的加法 设 $A = (a_{ij}), B = (b_{ij})$ 是两个 $m \times n$ 矩阵,则 $m \times n$
	矩阵 $C = (c_{ij}) = a_{ij} + b_{ij}$ 称为矩阵 A 与 B 的和,记为 $A + B = C$
	2 矩阵的数乘 设 $A = (a_{ij})$ 是 $m \times n$ 矩阵, k 是一个常数,则
	$m \times n$ 矩阵 (ka_{ij}) 称为数 k 与矩阵 A 的数乘,记为 kA .
	3 矩阵的乘法 设 $A = (a_{ij})$ 是 $m \times n$ 矩阵, $B = (b_{ij})$ 是 $n \times s$ 矩阵,
	那么 $m \times s$ 矩阵 $C = (c_{ij})$,其中

	miduedu.com
	$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$ 称为 A 与 B 的乘积 的乘积,记为 $C = AB$
方幂乘列阵置阵和矩的件矩阵方的,积式阵,的性阵充,阵的的地概质可要伴,的阵行矩	1 A^{T} 、 A^{*} 三 A^{*} 三 A^{*} 三 A^{T} (A^{*} 三 A^{T} (A^{*}) A^{T} = A (A^{T}) A^{T} = A (A^{T}) A^{T} = A^{T} (A^{T}) A^{T} = A^{T} + B^{T} 2)(A^{-1}) A^{-1} = A (A^{T}) A^{-1} = A^{-1} + A^{-1} + A^{T} = A^{T} A^{T} (A^{T}) A^{T} = A^{T} A^{T} (A^{T}) A^{T} = A^{T} A^{T} (A^{T}) A^{T} = A^{T} (A^{T}) A^{T} = A^{T} A^{T
矩阵的初 等	1 有关矩阵秩的结论 1) 秩 r (A) = 行秩=列秩; 2) r(A _{m×n}) ≤ min(m,n); 3) A≠0⇒r(A)≥1; 4) r(A±B) ≤ r(A)+r(B);

分块矩阵 及其运算

- 5) 初等变换不改变矩阵的秩
- 6) $r(A)+r(B)-n \le r(AB) \le \min(r(A),r(B))$, 特别若 AB=O 则 $r(A)+r(B) \le n$
- 7) 若 A^{-1} 存在 $\Rightarrow r(AB) = r(B)$; 若 B^{-1} 存在
- $\Rightarrow r(AB) = r(A);$

若
$$r(A_{max}) = n \Rightarrow r(AB) = r(B)$$
;

若
$$r(A_{m\times s}) = n \Rightarrow r(AB) = r(A)$$
;

- 8) $r(A_{max}) = n \Leftrightarrow Ax = 0$ 只有零解
- 2 分块求逆公式

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & O \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix} \qquad 这里 A, B 均为可逆方阵$$

(三) 向量

考试内容	对应公式、定理、概念
向量的概	1 有关向量组的线性表示
念,向量	(1) $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关 ⇔ 至少有一个向量可以用其余向
的线性组	量线性表示
合和线性	EVIEW4
表示,向	(2) 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关, $\alpha_1, \alpha_2, \dots, \alpha_s$, β 线性相关 $\Leftrightarrow \beta$
量的线性	可以由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 惟一线性表示.

相关与线 性无关

(3) β 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示

 \Leftrightarrow r($\alpha_1, \alpha_2, \dots, \alpha_s$) = $r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta)$

2 有关向量组的线性相关性

- (1)部分相关,整体相关;整体无关,部分无关.
- (2) ① n 个 n 维向量

 $\alpha_1, \alpha_2 \cdots \alpha_n$ 线性无关 \Leftrightarrow [$\alpha_1, \alpha_2, \cdots, \alpha_n$] $\neq 0$,

 $n \uparrow n$ 维向量 $\alpha_1, \alpha_2 \cdots \alpha_n$ 线性相关

 \Leftrightarrow [$\alpha_1, \alpha_2, \cdots, \alpha_n$] |= 0,

- ② n+1 个 n 维向量线性相关.
- ③若 $\alpha_1,\alpha_2\cdots\alpha_s$ 线性无关,则添加分量后仍线性无关;

或一组向量线性相关, 去掉某些分量后仍线性相关

向量组的 极大线性

1 有关向量组的线性表示

(1) $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关 \Leftrightarrow 至少有一个向量可以用其余向量线性表示.

无关组, 等价向量 组,向量 组的秩

(2) 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关, $\alpha_1, \alpha_2, \dots, \alpha_s$, β 线性相关 $\Leftrightarrow \beta$ 可以由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 惟一线性表示.

(3) β 可以由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示

 $\Leftrightarrow r(\alpha_1,\alpha_2,\cdots,\alpha_s) = r(\alpha_1,\alpha_2,\cdots,\alpha_s,\beta)$

向量组的 秩与矩阵 的秩之间 的关系,间 及相关概

念

1 设 $r(A_{m \times n}) = r$,则 A的秩r(A)与 A的行列向量组的线性

相关性关系为:

(1)若 $r(A_{m\times n}) = r = m$,则A的行向量组线性无关.

(2)若 $r(A_{m \times n}) = r < m$,则 A 的行向量组线性相关.

(3)若 $r(A_{m\times n})=r=n$,则A的列向量组线性无关.

¥ miduedu.com	
	(4) 若 $r(A_{m \times n}) = r < n$,则 A 的列向量组线性相关
n 维向量 空间的基 变换换, 过渡矩阵	1 基变换公式及过渡矩阵 若 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 与 $\beta_1, \beta_2, \cdots, \beta_n$ 是向量空间 V 的两组基,则基 变换公式为 $ (\beta_1, \beta_2, \cdots, \beta_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n) \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = (\alpha_1, \alpha_2, \cdots, \alpha_n) C $ 其中 C 是可逆矩阵,称为由基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 到基 $\beta_1, \beta_2, \cdots, \beta_n$ 的过渡矩阵 2 坐标变换公式 若向量 γ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 与基 $\beta_1, \beta_2, \cdots, \beta_n$ 的坐标分别是 $X = (x_1, x_2, \cdots, x_n)^T$, $Y = (y_1, y_2, \cdots, y_n)^T$ 即
	$\gamma = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = y_1\beta_1 + y_2\beta_2 + \dots + y_n\beta_n$,则向量坐标 变换公式为 $X = CY$ 或 $Y = C^{-1}X$
	其中 C 是从基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 到基 $\beta_1,\beta_2,\cdots,\beta_n$ 的过渡矩阵
向量的内 积,线性 无关向量	内积: $(\alpha, \beta) = a_1b_1 + a_2b_2 + \dots + a_nb_n = \alpha^T\beta = \beta^T\alpha$ Schmidt 正文化
组的正交 规范化方	$\ddot{\pi}_{\alpha_1,\alpha_2,\cdots,\alpha_s}$ 线性无关,则可构造 $\beta_1,\beta_2,\cdots,\beta_s$ 使其两两正 $\beta_1,\beta_2,\cdots,\beta_s$ 使其两两正 β_i 仅是 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的线性组合 $(i=1,2,\cdots,n)$,再把 β_i
法	单位化,记 $\gamma_i = \frac{\beta_i}{ \beta_i }$,则 $\gamma_1, \gamma_2, \dots, \gamma_i$ 是规范正交向量组.其中

$$\beta_{l} = \alpha_{l} ,$$

$$\beta_{2} = \alpha_{2} - \frac{(\alpha_{2}, \beta_{l})}{(\beta_{l}, \beta_{l})} \beta_{l}$$

$$\beta_{3} = \alpha_{3} - \frac{(\alpha_{3}, \beta_{l})}{(\beta_{l}, \beta_{l})} \beta_{l} - \frac{(\alpha_{3}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2}$$

$$\beta_{s} = \alpha_{s} - \frac{(\alpha_{s}, \beta_{l})}{(\beta_{l}, \beta_{l})} \beta_{l} - \frac{(\alpha_{s}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2} - \cdots - \frac{(\alpha_{s}, \beta_{s-l})}{(\beta_{s-l}, \beta_{s-l})} \beta_{s-l}$$

规范正交
基,正交
矩阵及其
性质
$$1 \text{ 正交基及规范正交基}$$
向量空间一组基中的向量如果两两正交,就称为正交基;若
正交基中每个向量都是单位向量,就称其为规范正交基

(四) 线性方程组

考试内容	对应公式、定理、概念
	1 克莱姆法则
线性方程 组的克莱 姆法则, 奇次线性	线性方程组 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$, 如果系数行列式
方程组有 非零解的	D= A ≠0,则方程组有唯一解
充分必要 条件	$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}, $ 其中 D_j 是把 D 中第 j 列元素换
	成方程组右端的常数列所得的行列式.
	2 n 阶矩阵 A 可逆 ⇔ $Ax = 0$ 只有零解. ⇔ $\forall b, Ax = b$ 总有唯

	▼ miduedu.com
	一解,一般地, $r(A_{m\times n}) = n \Leftrightarrow Ax = 0$ 只有零解.
非性有分件方的解的理线组充条性解和构	1 设 A 为 $m \times n$ 矩阵,若 $r(A_{m \times n}) = m$,则对 $Ax = b$ 而言必有 $r(A) = r(A:b) = m$,从而 $Ax = b$ 有解. 2 设 $x_1, x_2, \dots x_s$ 为 $Ax = b$ 的解,则 $k_1 x_1 + k_2 x_2 + \dots + k_s x_s$ 当 $k_1 + k_2 + \dots + k_s = 1$ 时仍为 $Ax = b$ 的解;但当 $k_1 + k_2 + \dots + k_s = 0$ 时,则为 $Ax = 0$ 的解.特别 $\frac{x_1 + x_2}{2}$ 为 $Ax = b$ 的解; $2x_3 - (x_1 + x_2)$ 为 $Ax = 0$ 的解. 3 非齐次线性方程组 $Ax = b$ 无解 $\Leftrightarrow r(A) + 1 = r(A) \Leftrightarrow b$ 不能 由 A 的列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示.
奇方基和解非性的线组解解间次程解,,线组	1 齐次方程组 $Ax = 0$ 恒有解(必有零解).当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此 $Ax = 0$ 的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是 $n - r(A)$,解空间的一组基称为齐次方程组的基础解系. 2 $\eta_1, \eta_2, \dots, \eta_t$ 是 $Ax = 0$ 的基础解系,即 (1) $\eta_1, \eta_2, \dots, \eta_t$ 是 $Ax = 0$ 的解; (2) $\eta_1, \eta_2, \dots, \eta_t$ 线性无关; (3) $Ax = 0$ 的任一解都可以由 $\eta_1, \eta_2, \dots, \eta_t$ 线性表出. $k_1\eta_1 + k_2\eta_2 + \dots + k_t\eta_t$ 是 $Ax = 0$ 的通解,其中 k_1, k_2, \dots, k_t 是任意常数.

(五) 矩阵的特征值和特征向量

考试内容	对应公式、定理、概念
矩阵的特	1 设 λ 是 A 的一个特征值,则
征值和特	$kA,aA+bE,A^2,A^m,f(A),A^T,A^{-1},A*有一个特征值分别为$

	₩ miduedu.com
征向量的 概念及性	$k\lambda,a\lambda+b,\lambda^2,\lambda^m,f(\lambda),\lambda,\lambda^{-1},\dfrac{ A }{\lambda}$,且对应特征向量相同(A^T
质,	例外).
	2 若 $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 A 的 n 个特征值,则 $\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}, \prod_{i=1}^n \lambda_i = A $
	从而 $ A $ ≠ 0 ⇔ A 没有特征值.
	3 设 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 为 A 的 s 个特征值,对应特征向量为
	$\alpha_1, \alpha_2, \cdots, \alpha_s$,若
	$\alpha = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_s \alpha_s$,则
	$A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \dots + k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} + k_{2}\lambda_{2}^{n}\alpha_{2} + \dots + k_{s}\lambda_{s}^{n}\alpha_{s}$
相似变	1 若 4 □ B ,则
换、相似	$(1) A^T \square B^T, A^{-1} \square B^{-1}, A^* \square B^*.$
矩阵的概 念及性	$(2) A = B , \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} b_{ii}, r(A) = r(B)$
质,	(3) λE − A = λE − B , 対 ∀λ 成立
	1 设 A 为 n 阶方阵,则 A 可对角化 ⇔ 对每个 k_i 重根特征值
	λ_i , $fin - r(\lambda_i E - A) = k_i$
 矩阵可相	2 设 A 可对角化,则由 $P^{-1}AP = \Lambda$, 有 $A = P\Lambda P^{-1}$,从而
似对角化	$A^n = P\Lambda^n P^{-1}$
的充分必	3 重要结论
要条件及 相似对角	(1) 若 $A \square B$, $C \square D$,则 $\begin{bmatrix} A & O \\ O & C \end{bmatrix}$ $\square \begin{bmatrix} B & O \\ O & D \end{bmatrix}$.
矩阵,	(2) 若 $A \square B$,则 $f(A) \square f(B)$, $ f(A) \square f(B) $,其中 $f(A)$ 为关
	于 n 阶方阵 A 的多项式.
	(3)若 4 为可对角化矩阵,则其非零特征值的个数(重根重复
	计算)=秩(A)
实对称矩	1 相似矩阵:设 A,B 为两个 n 阶方阵,如果存在一个可逆矩

阵的特征 值、特征 向量及相 似对角阵

阵 P,使得 $B = P^{-1}AP$ 成立,则称矩阵 A = B 相似,记为 A = B. 2 相似矩阵的性质

如果 $A \square B$ 则有

- $(1) A^T \square B^T$
- (2) A⁻¹ □ B⁻¹ (若A, B均可逆)
- (3) $A^k \square B^k(k$ 为正整数)
- (4) $|\lambda E A| = |\lambda E B|$,从而A, B有相同的特征值
- (5)|A|=|B|,从而A,B同时可逆或同时不可逆
- (6) 秩(A) = 秩(B), $|\lambda E A| = |\lambda E B|$,A、B不一定相似

(六) 二次型

考试内容	对应公式、定理、概念
	$1 n$ 个变量 x_1, x_2, \dots, x_n 的二次齐次函数 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j , 其中 a_{ij} = a_{ji} (i, j = 1, 2, \dots, n), 称$
二次型及	为 n 元二次型, 简称二次型. 若令
其矩阵表	$\begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$
示,合同	$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$,这二次型 f 可改写成矩阵
变换与合	
同矩阵,	$\begin{bmatrix} x_n \end{bmatrix} \begin{bmatrix} a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$
二次型的	向量形式 $f = x^T Ax$.其中 A 称为二次型矩阵,因为
秩	$a_{ij} = a_{ji}(i, j = 1, 2, \dots, n)$,所以二次型矩阵均为对称矩阵,且二
	次型与对称矩阵一一对应,并把矩阵 A 的秩称为二次型的
	秩.

1 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为 仅含平方项的标准型,其正负惯性指数与所选变换无关, 这就是所谓的惯性定理.

2标准形

惯性定理,二次型的标准 形和规范

形

二次型
$$f = (x_1, x_2, \dots, x_n) = x^T A x$$
 经过合同变换 $x = C y$ 化为
$$f = x^T A x = y^T C^T A C y = \sum_{i=1}^r d_i y_i^2$$
 称为

 $f(r \le n)$ 的标准形.在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由r(A的秩)唯一确定.

3 规范形

任一实二次型 f 都可经过合同变换化为规范形 $f = z_1^2 + z_2^2 + \dots + z_p^2 - z_{p+1}^2 - \dots - z_r^2$,其中r为A的秩,p为正惯性指数,r-p为负惯性指数,且规范型唯一.

用正交变 换和配方

1 设 A 正定 $\Longrightarrow kA(k>0), A^T, A^{-1}, A*$ 正定; |A|>0, A 可逆;

法化二次

 $a_{ii}>0$, $\mathbb{E}|A_{ii}|>0$

型为标准形,二次

型及其矩

2 A, B 正定 \Rightarrow A+B 正定,但 AB,BA 不一定正定

3 A 正定 $\Leftrightarrow f(x) = x^T Ax > 0, \forall x \neq 0$

⇔A 的所有特征值大于零

⇔A 的正惯性指数为 n

 \Leftrightarrow ∃可逆阵 P 使 $A = P^T P$

阵的正定 性

会存在正交矩阵 Q,使
$$Q^TAQ = Q^{-1}AQ = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

其中
$$\lambda_i > 0, i = 1, 2, \dots, n$$
. 正定 $\Longrightarrow kA(k > 0), A^T, A^{-1}, A^*$ 正定;
$$|A| > 0, \ A \ \text{可逆}; \ \ a_{ii} > 0 \ , \ \ \text{且} \ |A_{ii}| > 0$$

三、概率论与数理统计

(一) 随机事件和概率

对应概念、定理、公式
1 事件的关系与运算 (1)子事件: $A \subset B$,若 A 发生,则 B 发生. (2)相等事件: $A = B$,即 $A \subset B$,且 $B \subset A$. (3)和事件: $A \cup B$ (或 $A + B$), $A = B$ 中至少有一个发生. (4)差事件: $A - B$,A 发生但 B 不发生. (5)积事件: $A \cap B$ (或 $A B$), $A = B$ 同时发生. (6)互斥事件(互不相容): $A \cap B = \emptyset$. (7)互逆事件(对立事件): $A \cap B = \emptyset$,且 $A \cup B = \Omega$,记 $A = \overline{B}$ 或 $B = \overline{A}$ 2 运算律: (1)交换律: $A \cup B = B \cup A$, $A \cap B = B \cap A$ (2)结合律: $(A \cup B) \cup C = A \cup (B \cup C)$; $(A \cap B) \cap C = A \cap (B \cap C)$ (3)分配律: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ 3 德山摩根律: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cup B} = \overline{A} \cup \overline{B}$ 4 完全事件组: $A_1, A_2 \cdots$, A_n , 两两互斥,且和事件为必然事件,即 $A_i \cap A_j = \emptyset$,i \neq j, $\bigcup_{i=1}^n = \Omega$ 。
1概率:事件发生的可能性大小的度量,其严格定义如下:
概率 <i>P</i> ① 为定义在事件集合上的满足下面 3 个条件的函数:
(1)对任何事件 A, $P(A) \ge 0$; (2)对必然事件 Ω , $P(\Omega) = 1$;

(3)对
$$A_1$$
, A_2 ,…, A_n ,…,若 $A_iA_j = \emptyset(i \neq j)$,则 $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A)$.

2 概率的基本性质

(1)
$$P(\bar{A}) = 1 - P(A)$$
;

$$(2) P(A-B) = P(A) - P(AB);$$

$$(3) P(A \cup B) = P(A) + P(B) - P(AB)$$
;特别,

当
$$B \subset A$$
 时, $P(A-B) = P(A) - P(B)$ 且 $P(B) \leq P(A)$;

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$
$$-P(AC) + P(ABC);$$

(4)若
$$A_1, A_2, \dots, A_n$$
 两两互斥,则 $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n (P(A_i).$

3 古典型概率:实验的所有结果只有有限个, 且每个结果发生的可能性相同,其概率计算公式:

$$P(A) = \frac{\text{事件}A$$
发生的基本事件数
基本事件总数

4几何型概率:样本空间 Ω 为欧氏空间中的一个区域,

且每个样本点的出现具有等可能性,其概率计算公式:

$$P(A) = \frac{A$$
的度量(长度、面积、体积)
 Ω 的度量(长度、面积、体积)

概率的基

本公式, 事件的独 立性,独 立重复试 验 1 概率的基本公式:

(1)条件概率:

 $P(B|A) = \frac{P(AB)}{P(A)}$,表示A发生的条件下,B发生的概率

(2)全概率公式:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i), B_i B_j = \emptyset, i \neq j, \bigcup_{i=1}^{n} B_i = \Omega.$$

(3) Bayes
$$\triangle \mathbb{R}$$
: $P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum_{i=1}^{n} P(A \mid B_i)P(B_i)}, j = 1, 2, \dots, n$

注: 上述公式中事件 B, 的个数可为可列个.

(4)乘法公式:

$$P(A_1 A_2) = P(A_1)P(A_2 \mid A_1) = P(A_2)P(A_1 \mid A_2)$$

$$P(A_1 A_2 \cdots A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$

- 2事件的独立性
- (1)A 与 B 相互独立 $\Leftrightarrow P(AB) = P(A)P(B)$
- (2)A, B, C 两两独立

$$\Leftrightarrow P(AB) = P(A)P(B); P(BC) = P(B)P(C);$$

$$P(AC) = P(A)P(C);$$

(3)A, B, C 相互独立

$$\Leftrightarrow P(AB) = P(A)P(B); \qquad P(BC) = P(B)P(C);$$

$$P(AC) = P(A)P(C); \qquad P(ABC) = P(A)P(B)P(C).$$

3 独立重复试验: 将某试验独立重复 n 次,若每次实验中事件 A 发生的概率为 p,则 n 次试验中 A 发生 k 次的概率为: $P(X=k) = C_n^k p^k (1-p)^{n-k}$.

4 重要公式与结论

$$(1)P(\overline{A}) = 1 - P(A)$$

$$(2)P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$

$$-P(AC) + P(ABC)$$

$$(3)P(A-B) = P(A) - P(AB)$$

$$(4)P(A\overline{B}) = P(A) - P(AB), P(A) = P(AB) + P(A\overline{B}),$$
$$P(A \cup B) = P(A) + P(\overline{A}B) = P(AB) + P(A\overline{B}) + P(\overline{A}B)$$

(5)条件概率 P(1) B) 满足概率的所有性质,

例如:
$$P(\overline{A}_1 \mid B) = 1 - P(A_1 \mid B)$$

 $P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) - P(A_1 A_2 \mid B)$
 $P(A_1 A_2 \mid B) = P(A_1 \mid B)P(A_2 \mid A_1 B)$

(6)若
$$A_1, A_2, \dots, A_n$$
 相互独立,则 $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i)$,

$$P(\bigcup_{i=1}^{n} A_i) = \prod_{i=1}^{n} (1 - P(A_i))$$

(7)互斥、互逆与独立性之间的关系:

A与B互逆 \Rightarrow A与B互斥,但反之不成立,A与B互斥(或互逆)且均非零概率事件 \Rightarrow A与B不独立.

(8)若 $A_1, A_2, \dots, A_m, B_1, B_2, \dots, B_n$ 相互独立,则 $f(A_1, A_2, \dots, A_m)$ 与 $g(B_1, B_2, \dots, B_n)$ 也相互独立,其中 $f(\square), g(\square)$ 分别表示对相应 事件做任意事件运算后所得的事件,另外,概率为 1 (或 0) 的事件与任何事件相互独立.

(二) 随机变量及其概率分布

考试内容	对应公式、概念、定理
	1 随机变量及概率分布: 取值带有随机性的变量, 严格地说
随机变	是定义在样本空间上,取值于实数的函数称为随机变量,概
量,随机	率分布通常指分布函数或分布律
一变量的分 部函数的	2 分布函数的概念与性质
概念及其	定义: $F(x) = P(X \le x), -\infty < x < +\infty$
性质	性质: $(1) 0 \le F(x) \le 1$ $(2) F(x)$ 单调不减
	(3)右连续 $F(x+0) = F(x)$ (4) $F(-\infty) = 0, F(+\infty) = 1$
离散型随	1 离散型随机变量的概率分布
机变量的	$P(X = x_i) = p_i, i = 1, 2, \dots, n, \dots$ $p_i \ge 0, \sum_{i=1}^{\infty} p_i = 1$
概率分	$P_i = 0, \sum_{i=1}^{n} p_i = 1$
布,连续	2 连续型随机变量的概率密度
│型随机变 │ 量的概率	概率密度 $f(x)$; 非负可积,且

密度性质

 $(1) f(x) \ge 0$,

$$(2)\int_{-\infty}^{+\infty} f(x)dx = 1$$

(3) x为f(x)的连续点,则f(x) = F'(x)分布函数 $F(x) = \int_{-\infty}^{x} f(t)dt$

1 常见分布

(1) 0-1 分布:
$$P(X=k) = p^k (1-p)^{1-k}, k=0,1$$

(2) 二项分布
$$B(n,p)$$
:

$$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots, n$$

(3) Poisson 分布 $p(\lambda)$:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1, 2 \cdots$$

(4) 均匀分布 U (a, b): $f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, 其他 \end{cases}$

常见随机 变量的概 率分布, 随机变量 函数的概 率分布

(5) 正态分布 $N(\mu, \sigma^2)$:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0, -\infty < x < +\infty$$

(6)指数分布
$$E(\lambda)$$
: $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0, \lambda > 0 \\ 0, 其他 \end{cases}$

(7)几何分布
$$G(p)$$
: $P(X = k) = (1-p)^{k-1}p, 0$

(8)超几何分布

$$H(N,M,n): P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, k = 0,1,\dots,\min(n,M)$$

2 随机变量函数的概率分布

(1) 离散型: $P(X = x_1) = p_1, Y = g(X)$ 则

$$P(Y = y_j) = \sum_{g(x_i) = y_i} P(X = x_i)$$

(2)连续型: $X \sim f_X(x), Y = g(x)$ 则

$$F_{y}(y) = P(Y \le y) = P(g(X) \le y) = \int_{g(x) \le y} f_{x}(x) dx ,$$

$$f_{\scriptscriptstyle Y}(y) = F'_{\scriptscriptstyle Y}(y)$$

3 重要公式与结论

$$(1)X \sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}}, \Phi(0) = \frac{1}{2},$$

$$\Phi(-a) = P(X \le -a) = 1 - \Phi(a)$$

$$(2)X \sim N(\mu, \sigma^2) \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1) \perp P(X \leq a) = \Phi(\frac{a - \mu}{\sigma})$$

$$(3)X \sim E(\lambda) \Rightarrow P(X > s + t \mid X > s) = P(X > t)$$

$$(4)X \sim G(p) \Longrightarrow P(X = m + k \mid X > m) = P(X = k)$$

- (5)离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数.
- (6)存在既非离散也非连续型随机变量.

(三) 多维随机变量及其分布

考试内容 对应公式、概念、定理 1 二维随机变量及其联合分布 多维随机 由两个随机变量构成的随机向量(X, Y), 变量及其 联合分布为 $F(x, v) = P(X \le x, Y \le v)$ 分布,二 2二维离散型随机变量的联合概率分布、边缘分布、条件分 维离散型 随机变量 的概率分 (2) 边缘分布律 $p_{i} = \sum_{i=1}^{\infty} p_{ij}, i = 1, 2, \cdots$ 布、边缘 分布和条 $p_{\cdot,j} = \sum_{\cdot}^{\infty} p_{ij}, j = 1, 2, \cdots$ 件分布 (3) 条件分布律

	illidacaa.com
	$P\{X = x_i \mid Y = y_j\} = \frac{p_{ij}}{p_{.j}}$
	$P\{Y = y_j \mid X = x_i\} = \frac{p_{ij}}{p_{i}}$
	1 联合概率密度 $f(x,y)$:
	$(1) f(x,y) \ge 0$
二维连续 性随机变	$(2) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$
量的概率 密度、边	2 分布函数: $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$
缘概率密	3 边缘概率密度:
度和条件 密度	$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$
	4 条件概率密度: $f_{X Y}(x y) = \frac{f(x,y)}{f_Y(y)}$ $f_{Y X}(y x) = \frac{f(x,y)}{f_X(x)}$
	1 常见二维随机变量的联合分布
	(1)二维均匀分布: $(x,y) \square U(D)$, $f(x,y) = \begin{cases} \frac{1}{S(D)}, (x,y) \in D \\ 0, 其他 \end{cases}$
随机变量	(2)二维正态分布: $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$
的独立性 和不相关 性,常用	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$
二维随机变量的分布	$ \sqcup \exp \left\{ \frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\} $
	2 随机变量的独立性和相关性
	X 和 Y 的相互独立 \Leftrightarrow $F(x,y) = F_X(x)F_Y(y)$,
	$\Leftrightarrow p_{ij} = p_{i} \cdot p_{\cdot j} (离散型) \Leftrightarrow f(x,y) = f_{\chi}(x) f_{\chi}(y) (连续型)$
	X 和 Y 的相关性:相关系数 $\rho_{xy} = 0$ 时,称 X 和 Y 不相关,

		_		1 >1
否则称	X	和	Y	相关

1两个随机变量简单函数的概率分布

(1)离散型:

$$P(X = x_i, Y = y_i) = p_{ii}, Z = g(X, Y)$$
则

$$P(Z = z_k) = P\{g(X,Y) = z_k\} = \sum_{g(X,Y) = z_k} P(X = x_i, Y = y_j)$$

(2)连续型:

$$(X,Y)$$
 \Box $f(x,y),Z=g(X,Y)$ 則

$$F_z(z) = P\{g(X,Y) \le z\} = \iint_{g(x,y) \le z} f(x,y) dxdy$$
, $f_z(z) = F'_z(z)$

2 重要公式与结论

(1) 边缘密度公式:

两个及两 个以上随 机变量简 单函数的 分布

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$

$$(2) P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy$$

- (3)若(X, Y) 服从二维正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 则有
- ① $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$
- ②X与Y相互独立 $\Leftrightarrow \rho = 0$,即X与Y不相关.
- $3C_1X + C_2Y \sim N(C_1\mu_1 + C_2\mu_2, C_1^2\sigma_1^2 + C_2^2\sigma_2^2 + 2C_1C_2\sigma_1\sigma_2\rho).$
- ④X 关于 Y=y 的条件分布为:

$$N(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2), \sigma_1^2(1 - \rho^2)).$$

⑤Y 关于 X=x 的条件分布为:

$$N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2)).$$

(4)若 X 与 Y 独立,且分别服从 $N(\mu_1, \sigma_1^2), N(\mu_1, \sigma_2^2),$

则
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, 0)$$
,

$$C_1X + C_2Y \sim N(C_1\mu_1 + C_2\mu_2, C_1^2\sigma_1^2 + C_2^2\sigma_2^2).$$

(5)若 X 与 Y 相互独立, f(x)和g(x) 为连续函数,则 f(X)与g(Y) 也相互独立.

(四) 随机变量的数字特征

考试内容	对应概念、定义、定理、公式
随机变量	1 数学期望
的数学期	离散型: $P\{X = x_i\} = p_i, E(X) = \sum x_i p_i$; 连续型:
望(均	i i
値)、方差 和标准差	$X \sim f(x), E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
及其性质	
	性质:
	(1) E(C) = C, E[E(X)] = E(X)
	$(2) E(C_1X + C_2Y) = C_1E(X) + C_2E(Y)$
	(3)若 X 和 Y 独立,则 $E(XY) = E(X)E(Y)$
	$(4)\left[E(XY)\right]^2 \le E(X^2)E(Y^2)$
	2 方差: $D(X) = E[X - E(X)]^2 = E(X^2) - [E(X)]^2$
	3 标准差: $\sqrt{D(X)}$,
	4 离散型: $D(X) = \sum_{i} [x_i - E(X)]^2 p_i$
	5 连续型: $D(X) = \int_{-\infty}^{+\infty} \left[x - E(X) \right]^2 f(x) dx$
	性质:
	(1) D(C) = 0, D[E(X)] = 0, D[D(X)] = 0
	(2)X 与 Y 相互独立,则 $D(X \pm Y) = D(X) + D(Y)$
	$(3) D(C_1X + C_2) = C_1^2 D(X)$
	(4)一般有

$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}$$

(5)
$$D(X) < E(X - C)^2, C \neq E(X)$$

(6)
$$D(X) = 0 \Leftrightarrow P\{X = C\} = 1$$

系数的数 字特征 1 随机变量函数的数学期望

(1)对于函数 Y = g(x)

$$X$$
 为离散型: $P\{X = x_i\} = p_i, E(Y) = \sum_i g(x_i)p_i$; X 为连续

型:
$$X \sim f(x), E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

(2)
$$Z = g(X,Y)$$
; $(X,Y) \sim P\{X = x_i, Y = y_i\} = p_{ii}$;

$$E(Z) = \sum_{i} \sum_{i} g(x_i, y_j) p_{ij}$$

$$(X,Y) \sim f(x,y)$$
; $E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$

2 协方差
$$Cov(X,Y) = E[(X - E(X)(Y - E(Y)))]$$

3 相关系数
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
,k 阶原点矩 $E(X^k)$;

k 阶中心矩
$$E\{[X-E(X)]^k\}$$

性质:

(1)
$$Cov(X, Y) = Cov(Y, X)$$

$$(2) Cov(aX,bY) = abCov(Y,X)$$

(3)
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

$$(4) \left| \rho(X,Y) \right| \le 1$$

(5)
$$\rho(X,Y) = 1 \Leftrightarrow P(Y = aX + b) = 1,$$
 $\sharp \Rightarrow 0$
 $\rho(X,Y) = -1 \Leftrightarrow P(Y = aX + b) = 1,$ $\sharp \Rightarrow a < 0$

4 重要公式与结论

miduedu.com
(1) $D(X) = E(X^2) - E^2(X)$
(2) Cov(X,Y) = E(XY) - E(X)E(Y)
$(3) \rho(X,Y) \le 1, \underline{\mathbb{H}}$
$\rho(X,Y) = 1 \Leftrightarrow P(Y = aX + b) = 1, $ \sharp $ \Rightarrow 0 $
$\rho(X,Y) = -1 \Leftrightarrow P(Y = aX + b) = 1, $ \sharp $\div a < 0$
(4) 下面 5 个条件互为充要条件:
$\rho(X,Y) = 0$
$\Leftrightarrow Cov(X,Y) = 0$
$\Leftrightarrow E(X,Y) = E(X)E(Y)$
$\Leftrightarrow D(X+Y) = D(X) + D(Y)$
$\Leftrightarrow D(X-Y) = D(X) + D(Y)$
注: X 与 Y 独立为上述 5 个条件中任何一个成立的充分条
件,但非必要条件.

(五) 大数定律和中心极限定理

考试内容	对应概念、定理、重要公式
切比雪夫 (Cheby shev)不 等式,切 比雪夫大 数定律	1 切比雪夫不等式: $P\{ X-E(X) \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$ 或 $P\{ X-E(X) < \varepsilon\} \ge 1 - \frac{D(X)}{\varepsilon^2}$ 2 切比雪夫大数定律: 设 $X_1, X_2, \dots, X_n, \dots$ 相互独立,且 $E(X_i) = \mu, D(X_i) = \sigma^2(i = 1, 2, \dots), \text{则对于任意正数} \varepsilon \text{, } f$ $\lim_{n \to \infty} P\left\{\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right\} = 1$
伯努利大 数定律, 辛钦 (Khinc	1 伯努利大数定律 设 $X_1, X_2 \cdots, X_n, \cdots$ 相互独立,同 0-1 分布 $B(1, p)$,则对任意

	miduedu.com
hine)大 数定律	正数 ε ,有 $\lim_{n\to\infty} P\left\{\left \frac{1}{n}\sum_{i=1}^n X_i - p\right < \varepsilon\right\} = 1$
	2 辛钦大数定律 设 $X_1, X_2,, X_n,$ 相互独立同分布, $EX_i = \mu, i = 1, 2, $ 则对于 任
	意正数 ε ,有 $\lim_{n\to\infty} P\left\{\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right\} = 1$
	1 棣莫弗拉普斯定理
 隶莫弗一	设 $\eta_n \sim B(n,p)$, (即 $X_1, X_2 \cdots, X_n$,相互独立且同服从 0 -1分布
' ' ' ' '	$ \eta_n = \sum_{i=1}^n X_i $ 则有
拉普拉斯 (De	$\eta_n - \sum_{i=1}^n A_i \neq \text{KUTH}$
Movire-	$\begin{bmatrix} n-nn \end{bmatrix}$ or $1-\frac{t^2}{t}$
Laplace	$\lim_{n\to\infty} P\left\{\frac{\eta_n - np}{\sqrt{np(1-p)}} \le x\right\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$
)定理,	((1 / 1 /)
列维一林	2 列维林德伯格定理
徳伯格	设 $X_1, X_2 \cdots, X_n, \cdots$ 相互独立分布,
(Levy-	$E(X_i) = \mu, D(X_i) = \sigma^2(\sigma \neq 0)i = 1, 2, \dots,$
Undbe) 定理	則 $\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \le x\right\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

(六) 数理统计的基本概念

对应公式、概念、定理
总体:研究对象的全体,它是一个随机变量,用 X 表示
个体:组成总体的每个基本元素
简单随机样本:来自总体 X 的 n 个相互独立且与总体同分布的随机变量 $X_1, X_2 \cdots, X_n$,称为容量为 n 的

miduedu.com			
均值,样 本方差和 样本矩	简单随机样本,简称样本 统计量:设 $X_1, X_2 \cdots, X_n$,是来自总体 X 的一个样本, $g(X_1, X_2 \cdots, X_n)$)是样本的连续函数,且 $g(\mathbb{D})$ 中不含任何未知参数,则称 $g(X_1, X_2 \cdots, X_n)$ 为统计量样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 样本矩:样本 k 阶原点矩: $A_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$		
χ² 分 布, t 分 布, F 分 布, 分位 数	χ^2 分布: $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$, 其中 X_1, X_2, \dots, X_n , 相互独立,且同服从 $N(0,1)$ t 分布: $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$ 其中 $X \sim N(0,1), Y \sim \chi^2(n)$, 且 X , Y 相互独立 F 分布: $F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$, 其中 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X , Y 相互独立 分位数:若 $P(X \leq x_\alpha) = \alpha$, 则称 x_α 为 X 的 α 分位数		
正态总体 的常用样 本分布	的常用样 $(1)\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ 或 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$		

$$(4)\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

重要公式与结论

(1) 对于
$$\chi^2 \sim \chi^2(n)$$
, 有 $E(\chi^2(n)) = n, D(\chi^2(n)) = 2n$;

(2) 对于
$$T \sim t(n)$$
,有 $E(T) = 0, D(T) = \frac{n}{n-2}(n > 2)$;

(3) 对于
$$F \sim F(m,n)$$
,有

$$\frac{1}{F} \sim F(n,m), F_{a/2}(m,n) = \frac{1}{F_{1-a/2}(n,m)};$$

(4) 对于任意总体 X ,有

$$E(\bar{X}) = E(X), E(S^2) = D(X), D(\bar{X}) = \frac{D(X)}{n}$$

(七) 参数估计

考试	对应公式、概念、定理				
内容	对压石其、挑心、足基				
点估					
计的	$1\hat{\theta}$ 为 θ 的矩估计, \mathbf{g} (\mathbf{x}) 为连续函数,则 \mathbf{g} $(\hat{\theta})$ 为 \mathbf{g} (θ) 的				
概	矩估计.				
念,	전10 U ·				
估计	$2\hat{\theta}$ 为 θ 的极大似数估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的				
量与	htt. 1. 61 60 71 31				
估计	极大似然估计				
值,	$3E(\overline{X}) = E(X), E(S^2) = D(X)$, 即 \overline{X} , S^2 分别为总体				
矩估	U T & U V E				
计	E(X), $D(X)$ 的无偏估计量.				
法,	4 由大数定律易知 $ar{X}$, S^2 也分别是 $E(X)$, $D(X)$ 的一致估量.				
最大					
似然	$5 \ \ddot{\pi} \ E(\hat{\theta}) = \theta, D(\hat{\theta}) \to 0 (n \to \infty) \ \text{则} \ \hat{\theta} \ \text{为} \ \theta \ \text{的一致估计}.$				
估计					

法				
估计量的评选	1 估计量的选取标准:无偏性、有效性、相合性 $2(\hat{ heta}_1,\hat{ heta}_2)$ 为 $ heta$ 的置信度是 $1-lpha$ 的置信区间, $g(x)$ 为单调增加			
标准	`	(-1) - 2) / •	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
区间	(豆	成単调减/	レ)函数,则 $(g(\hat{ heta}_1),g(\hat{ heta}_2)$ 或	$\hat{g}(\hat{\theta}_3), g(\hat{\theta}_3)$ 为 $\mathbf{a}(\theta)$ 的置
<u> </u> 估计		, , , , , , , , , , , , , , , , , ,	7.7. (8.4. 17.6.4. 27	0 (2) (0 (1)) · · 0 () ()
的概			信度	
念	是1	$-\alpha$ 的置	言区间	
			正态总体均值与方差的]置信区间
単个	待	估参数	抽样分布	双侧置信区间
正态 总体 的均	,,	σ² 已知	$U = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \square N(0,1)$	$(\overline{X} - \mu_{\frac{\alpha}{2}}, \overline{X} + \mu_{\frac{\alpha}{2}})$ $P\{ \mu \ge \mu_{\frac{\alpha}{2}}\} = \alpha$
值 方 的 间 计 ,	μ	σ² 未知	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \square \ t(n-1)$	$(\overline{X} - t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}})$ $P\{ T \ge t_{\frac{\alpha}{2}}\} = \alpha$
计两正总的值和差的间计,个态体均差方比区估计	σ^2	<i>μ</i> 已知	$W' = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$ $\square \chi^2(n)$	$ \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi^2_{\frac{\alpha}{2}}(n)}, \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi^2_{1 - \frac{\alpha}{2}}(n)} $ $ P\{W' \ge \chi^2_{\frac{\alpha}{2}}(n)\} = $ $ P\{W' \le \chi^2_{1 - \frac{\alpha}{2}}(n)\} = \frac{\alpha}{2} $
		μ 未知	$W = \frac{(n-1)S^2}{\sigma^2} \square \chi^2 (n-1)$	$ \left(\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right) $

		$U = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\square N(0,1)$	$P\{ U \ge \mu_{\frac{\alpha}{2}}\} = \alpha$
$egin{array}{c} \mu_1 \ - \ \mu_2 \end{array}$	已知 $\sigma_1^2 = \sigma_2^2$ $= \sigma^2,$ $\theta \sigma^2$ 未知	$T = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \square t(n_1 + n_2 - 2)$ $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$(\overline{X_1} - \overline{X_2}) - t_{\frac{\alpha}{2}}(n_1 + n_2 - 2) \cdot S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$ $(\overline{X_1} - \overline{X_2}) + t_{\frac{\alpha}{2}}(n_1 + n_2 - 2) \cdot S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$ $P\{ T \ge t_{\frac{\alpha}{2}}\} = \alpha$
	$rac{\sigma_{ m l}^2}{\sigma_{ m 2}^2}$	$F = \frac{\frac{S_1^2}{\sigma_2^2}}{\frac{S_1^2}{\sigma_2^2}} \square F(n_1 - 1, n_2 - 1)$	$\left\{ \frac{1}{F_{\frac{\alpha}{2}}(n_{1}-1,n_{2}-1)} \cdot \frac{S_{1}^{2}}{S_{2}^{2}}, \\ F_{\frac{\alpha}{2}}(n_{2}-1,n_{1}-1) \cdot \frac{S_{1}^{2}}{S_{2}^{2}} \right\}$ $P\{F \geq F_{\frac{\alpha}{2}}(n_{1}-1,n_{2}-1)\} = \frac{\alpha}{2}$ $P\{\frac{1}{F} \geq F_{\frac{\alpha}{2}}(n_{2}-1,n_{1}-1)\} = \frac{\alpha}{2}$

(八) 假设检验

考试	마수 사회된			
内容	对应公式、概念、定理			
显著	1 假设检验的一般步骤			
性检	(1) 确定所要检验的基本假设 H_0 ;			
验, 假设	(2)选择检验的统计量,并要求知道其在一定条件下的分布;			

检的类误

(3)对确定的显著性水平 α ,查相应的概率分布,得临界值,从而确定否定域;

- (4)由样本计算统计量,并判断其是否落入否定域,从而对假设 H_0 作出拒绝还是接受的判断
- 2 假设检验的两类错误

统计推断是由样本推断总体,所作的结论不能保证绝对不 犯错误,而只能以较大概率来保证其可靠性.

第一类错误是否定了真实的假设,即假设本来成立,但被错误地否认了,成为"弃真",检验水平 α 就是犯第一类错误的概率的最大允许值.

第二类错误是把本来不成立的假设错误地接受了,称为"存伪".犯这类错误的大小一般用 β 表示,它的大小要视具体情况而定.

		原假设 <i>H</i> ₀	H ₀ 下的检验统计量及	H_0 的拒绝域
		110	分布	
单个	1 <	$\mu = \mu_0$ $(\sigma^2 已知)$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$ u = \left \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right \ge u_{\frac{a}{2}}$
及两	个		~ N(0,1)	
个正	正	$\mu = \mu_0$	$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$	$ t = \left \frac{\overline{x} - \mu_0}{S / \sqrt{n}} \right \ge t_{\frac{\alpha}{2}}(n-1)$
态总	态	$(\sigma^2 $ 未知 $)$	S/\sqrt{n}	$\left S/\sqrt{n} \right ^{-\frac{\alpha}{2}}$
体的	24		$\sim t(n-1)$	
均值 和方	总体	$\sigma^2 = \sigma_0^2$	$W = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma_0} \right)^2$	$w = \sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma} \right)^2 \ge \chi_{\underline{a}}^2(n)$
差的		(μ已知)	1-1 (- 0)	$\frac{2}{i=1}$ σ_0 $\frac{u}{2}$
假设			$\sim \chi^2(n)$	$\exists k \ w \leq \alpha^2 (n)$
检验				或 $w \leq \chi_{1-\frac{a}{2}}^2(n)$
		$\sigma^2 = \sigma_0^2$ (μ 未知)	$W = \frac{(n-1)S^2}{\sigma_0^2}$ $\sim \chi^2(n-1)$	$w = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \ge \chi_{\frac{a}{2}}^{2}(n-1)$ 或 $w \le \chi_{1-\frac{a}{2}}^{2}(n-1)$

		- imaacaa.com	
杰		$U = \frac{\overline{X}_1 - \overline{X}_2 - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sim N(0,1)$	$ u = \left \frac{\overline{X}_1 - \overline{X}_2 - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right \ge u_{\frac{\alpha}{2}}$
总体	$\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2 未知$ 但 $\sigma_1^2 = \sigma_2^2$)	$T = \frac{\overline{X}_1 - \overline{X}_2 - \delta}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $\sim t(n_1 + n_2 - 2)$ $S_W^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$ t = \frac{ \overline{X}_1 - \overline{X}_2 - \delta }{ S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} }$ $\geq t_{\frac{a}{2}}(n_1 + n_2 - 2)$
	$\sigma_1^2 = \sigma_2^2$ (μ_1 ,	$F = \frac{S_1^2}{S_2^2}$ $\sim F(n_1 - 1, n_2 - 1)$	$f = \frac{S_1^2}{S_2^2} \ge F_{\frac{a}{2}}(n_1 - 1, n_2 - 1)$ 或 $f \le F_{\frac{a}{2}}^{-1}(n_2 - 1, n_1 - 1)$
	μ ₂ 未 知)		

四、初等数学公式

初等代数

1. 乘法公式与因式分解

$$(1)(a\pm b)^2 = a^2 \pm 2ab + b^2$$

$$(2)(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

$$(3)a^2 - b^2 = (a-b)(a+b)$$

$$(4)(a\pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$(5)a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

$$(6)a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

2. 比例
$$(\frac{a}{b} = \frac{c}{d})$$

(1)合比定理
$$\frac{a+b}{b} = \frac{c+d}{d}$$

(2)分比定理
$$\frac{a-b}{b} = \frac{c-d}{d}$$

(3)合分比定理
$$\frac{a+b}{a-b} = \frac{c+d}{c-d}$$

(4)若
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
,则令 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = t$.于是 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f}$

(5)若v与x成正比,则v = kx(k为比例系数)

(6)若
$$y$$
与 x 成反比,则 $y = \frac{k}{x}(k$ 为比例系数)

3. 不等式

(1) 设
$$a > b > 0, n > 0$$
, 则 $a^n > b^n$

(2) 设
$$a > b > 0$$
, n 为正整数,则 $\sqrt[n]{a} > \sqrt[n]{b}$

$$(3) 设 \frac{a}{b} < \frac{c}{d}, 则 \frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

(4)非负数的算术平均值不小于其几何平均值,即

$$\frac{a+b}{2} \ge \sqrt{ab},$$

$$\frac{a+b+c}{3} \ge \sqrt[3]{abc},$$

$$\frac{a_1+a_2+a_3.....+a_n}{n} \ge \sqrt[n]{a_1a_2....a_n}$$

(5)绝对值不等式

1)
$$|a+b| \le |a| + |b|$$

2)
$$|a-b| \le |a| + |b|$$

$$|a-b| \ge |a| - |b|$$

4)-|
$$a \le a \le |a|$$

4. 二次方程 $ax^2 + bx + c = 0$

(1)根:
$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

(2) 韦达定理:
$$x_1 + x_2 = -\frac{b}{a}, x_1 x_2 = \frac{c}{a}$$

$$(3)$$
判别式 $\Delta = b^2 - 4ac$ $\begin{cases} > 0, 方程有两不等实根 \\ = 0, 方程有两相等实根 \\ < 0, 方程有两共轭虚根 \end{cases}$

5. 一元三次方程的韦达定理:

若 $x^3 + px^2 + qx + r = 0$ 的三个根分别为 x_1, x_2, x_3 ,则

$$x_1 + x_2 + x_3 = -p$$

$$x_1 \cdot x_2 + x_2 \cdot x_3 + x_3 \cdot x_1 = q$$

$$x_1 \cdot x_2 \cdot x_3 = -r$$

6. 指数

$$(1)a^m \Box a^n = a^{m+n}$$

$$(2)a^m \div a^n = a^{m-n}$$

$$(3)(a^m)^n = a^{mn}$$

$$(4)(ab)^n = a^n b^n$$

$$(5)(\frac{a}{b})^m = \frac{a^m}{b^m}$$

$$(6)a^{-m} = \frac{1}{a^m}$$

7. 对数 $\log_a N, (a > 0, a \neq 1, N > 0)$

(1)对数恒等式
$$N = a^{\log_a N}$$
,更常用 $N = e^{\ln N}$

$$(2)\log_a(MN) = \log_a M + \log_a N$$

$$(3)\log_a(\frac{M}{N}) = \log_a M - \log_a N$$

$$(4)\log_a(M^n) = n\log_a M$$

$$(5)\log_a \sqrt[n]{M} = \frac{1}{n}\log_a M$$

(6)换底公式
$$\log_a M = \frac{\log_b M}{\log_b a}$$

$$(7) \log_a 1 = 0$$

$$(8) \log_a a = 1$$

8. 数列

(1) 等差数列

设
$$a_1$$
----首项,

$$1)a_n = a_1 + (n-1)d$$

$$2)S_n = \frac{a_1 + a_n}{2}n = na_1 + \frac{n(n-1)}{2}d$$

3)设
$$a,b,c$$
成等差数列,则等差中项 $b = \frac{1}{2}(a+c)$

(2) 等比数列

设 a_1 ----首项, q----公比, a_n ----通项,则

1)通项
$$a_n = a_1 q^{n-1}$$

2)前
$$n$$
项和 $S_n = \frac{a_1(1-q^n)}{1-q} = \frac{a_1 - a_n q}{1-q}$

(3) 常用的几种数列的和

1)1+2+3+...+
$$n = \frac{1}{2}n(n+1)$$

$$(2)1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$(3)1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{1}{2}n(n+1)\right]^2$$

9. 排列、组合与二项式定理

(1) 排列

$$P_n^m = n(n-1)(n-2)\cdots[n-(m-1)]$$

(2) 全排列

$$P_n^n = n(n-1)\cdots 3\square 2\square = n!$$

(3) 组合

$$C_n^m = \frac{n(n-1)\cdots(n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

组合的性质:

$$1)C_n^m = C_n^{n-m}$$

$$2)C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$$

(4) 二项式定理

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \dots + \frac{n(n-1)\cdots[n-(k-1)]}{k!}a^{n-k}b^{k} + \dots + b^{n}$$
(一) 平面几何

1、图形面积

(1) 任意三角形

$$S = \frac{1}{2}bh = \frac{1}{2}ab\sin C = \sqrt{s(s-a)(s-b)(s-c)},$$
 $\sharp + s = \frac{1}{2}(a+b+c)$

平行四边形

$$S = bh = ab\sin\varphi$$

(2) 梯形 S=中位线×高

(3) 扇形
$$S = \frac{1}{2}rl = \frac{1}{2}r^2\theta$$

2、旋转体

(1) 圆拄

设 R----底圆半径, H----拄高, 则

- 1) 侧面积 $S_{\text{\tiny m}} = 2\pi RH$,
- 2) 全面积 $S_{\Leftrightarrow} = 2\pi R(H+R)$
- 3) 体积 $V = \pi R^2 H$

(2) 圆锥 (
$$l = \sqrt{R^2 + H^2}$$
 母线)

- 1) 侧面积 $S_{\text{\tiny ml}} = \pi R l$
- 2) 全面积 $S_{\pm} = \pi R(l+R)$
- 3) 体积 $V = \frac{1}{3}\pi R^2 H$

(3) 球

设 R----半径, d----直径,则

1) 全面积 $S_{\pm} = 4\pi R^2$

2)体积
$$V = \frac{4}{3}\pi R^3$$

(4) 球缺(球被一个平面所截而得到的部分)

1) 面积 $S = 2\pi Rh$ (不包括底面)

2) 体积
$$V = \pi h^2 (R - \frac{h}{3})$$

3. 棱拄及棱锥

设 S----底面积, H----高:

(1) 棱拄体积 V = SH

(2) 棱锥体积 $V = \frac{1}{3}SH$

(3) 正棱锥侧面积 $A = \frac{1}{2} \times 母线 \times$ 底周长

三、平面三角

1. 三角函数间的关系

(1) $\sin \alpha \csc \alpha = 1$

(3) $\tan \alpha \cot \alpha = 1$

 $(5) 1 + \tan^2 \alpha = \sec^2 \alpha$

(7) $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$

(2) $\cos \alpha \sec \alpha = 1$

(4) $\sin^2 \alpha + \cos^2 \alpha = 1$

(6) $1 + \cot^2 \alpha = \csc^2 \alpha$

(8) $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$

2 倍角三角函数

 $(1)\sin 2\alpha = 2\sin \alpha \cos \alpha$

 $(2)\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$

 $(3) \tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$

 $(4)\cot 2\alpha = \frac{1-\cot^2\alpha}{2\cot\alpha}$

$$(5)\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$$

$$(6)\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$$

3. 三角函数的和差化积与积化和差公式

$$(1)\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$(2)\sin\alpha - \sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$

$$(3)\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$(4)\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$(5)\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$$

(6)
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$(7)\cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)]$$

$$(8)\sin\alpha\sin\beta = \frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)]$$

4. 边角关系

(1) 正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
,R 为外接圆半径

(2) 余弦定理

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = c^2 + a^2 - 2ca\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

5. 反三角函数

恒等式

(1)
$$\arcsin x \pm \arcsin y = \arcsin(x\sqrt{1+y^2} \pm y\sqrt{1-x^2})$$

(2)
$$\arccos x \pm \arccos y = \arccos(xy \mp \sqrt{(1-x^2)(1-y^2)})$$

(3) $\arctan x \pm \arctan y = \arctan(\frac{x \pm y}{1 \mp xy})$

$$(4)\arcsin x + \arccos x = \frac{\pi}{2}$$

(5)
$$\arctan x + \operatorname{arc} \cot x = \frac{\pi}{2}$$