Assignment 1

Due Date: January 23rd, 11:59pm Please Show Your Work and Circle Your Final Answer Submit as a single document

Question 1: Envelope Theorem

Consider a constrained optimization problem:

$$x^*(\theta) = \arg\max_{x \in X(\theta)} f(x, \theta), \quad V(\theta) = \max_{x \in X(\theta)} f(x, \theta)$$

where $X(\theta) = \{x \in \mathbb{R}^n | g_j(x) \le \theta_j\}.$

- (a) Derive the envelope theorem, computing $\frac{\partial V(\theta)}{\partial \theta_j}$ for each $j \in \{1, \dots, m\}$.
- (b) Interpret your answer in (a), especially regarding KKT multipliers.
- (c) Apply the result to consumer maximization. Define $f(x, \theta)$, constraints g_j , and interpret θ and KKT multipliers.

Question 2: Topkis' Theorem (Single-Dimension)

- (a) Provide a full proof of Topkis' theorem using the approach from class.
- (b) Analyze when $q^*(\theta)$ is nondecreasing for a monopolist with inverse demand p(q) and cost $c(q, \theta)$.
- (c) For a firm minimizing costs with production $f(k, \phi l) = q$, find conditions where optimal k^* is weakly increasing/decreasing in ϕ .

Question 3: Topkis' Theorem (Multi-Dimensional)

- (a) Interpret the assumption $\frac{\partial^2 f}{\partial l \partial k} < 0$.
- (b) Analyze how optimal labor choice changes as wage w increases.

Question 4: Putting it All Together

- (a) For utility $u(x, y, z) = x^{1/2}y^{1/2} + z$, show optimum T equals 0 or W.
- (b) For $u(x, y, z) = x^{\alpha}y^{\alpha} + z$, derive T in terms of prices and W.
- (c) For $u(x, y, z) = x^{\alpha}y^{\beta} + h(z)$, show T is weakly increasing in W.

Solution 1:

(a)

Using the envelope theorem on the optimization problem:

$$V(\theta) = \frac{\max}{x \in \mathcal{X}} f(x, \theta)$$
 where $X(\theta) = \{x \in \mathbb{R}^n | g_j(x) \le \theta_j\}$

Proof.
$$\frac{\partial v}{\partial \theta_{j}} = \frac{\partial f(x^{*}(\theta), \theta_{j})}{\partial \theta_{j}} + \sum_{j=1}^{m} \frac{\partial f}{\partial x_{j}} \frac{\partial x^{*}(\theta_{j})}{\partial \theta_{j}} = \frac{\partial f}{\partial \theta_{j}} + \sum_{j=1}^{m} \lambda \frac{\partial X(\theta_{j})}{\partial x_{j}} \cdot \frac{\partial x^{*}(\theta)}{\partial \theta_{j}}$$
$$\sum_{j=1}^{m} \lambda \frac{\partial X(\theta_{j})}{\partial x_{j}} \cdot \frac{\partial x^{*}(\theta)}{\partial \theta_{j}} = \sum_{j=1}^{m} \frac{\partial X(\theta)}{\partial (x_{j})} \cdot \Delta x_{j} + \frac{\partial X(\theta)}{\partial \theta_{j}} \cdot \Delta \theta_{j}$$

Now, we can apply the following:

$$\frac{1}{\Delta\theta_{j}} \cdot \left[\sum_{j=1}^{m} \frac{\partial X(\theta)}{\partial x_{j}} \Delta x_{j} + \frac{\partial X(\theta_{j})}{\partial \theta_{j}} \right]$$
$$\sum_{j=1}^{m} \frac{\partial X(\theta)}{\partial x_{j}} \frac{\Delta x_{j}}{\Delta\theta_{j}} + \frac{\partial X(\theta)}{\partial \theta_{j}}$$

Finally, we can yield an end result:

$$\frac{V(\theta)}{\partial \theta_j} = \frac{\partial f}{\partial \theta_j} + \lambda \left[-\frac{\partial X(\theta)}{\partial \theta_j} \right]$$

This is the result since, at the max, $x^* = 0$ thus eliminating the first term in the summation and leaving the derivative of the constraint with respect to θ_j .

(b)