ECO-PTM Output

April 16, 2024

Xiaochun Wang, DWR Delta Modeling Section

DISCLAIMER

Hands-on Exercise Materials Should ONLY BE USED FOR TRAINING

ECO-PTM model for this class is the same one used for applications

Goals of these exercises

Neutrally buoyant/position oriented particles:

- Graph results
- Make tables of results
- Export tables to Excel

Salmon particles:

Understand each column

ECO-PTM Output Includes:

• Entrainment into SWP, CVP facilities (smelt larvae)

Survival through the Delta (salmon smolt)

SWP: State Water Project

CVP: Federal Central Valley Project

Neutrally buoyant position oriented particles (smelt larvae):

PTM_GROUP output:

Instantaneous percentage of particles in channel/reservoir groups

FLUX output:

cumulative percentage of particles passing specified locations

Salmon Smolt SACRAMENTO **Insertion location** Migration Routes Freeport Sutter **Sacramento** Slough River **Delta** Cross Channel **Steamboat** Slough Georgiana Slough Contra Costa Canal **Chipps** STOCKTON Island **Exiting the Delta** SACRAMENTO - SAN JOAQUIN DELTA South Bay Aqueduct Delta Mendota Canal California Aquedu

Salmon particles (salmon smolt):

- Route specific survival
- Combined survival
- Ratio to each route

Note: model to simulate salmon migration from the San Joaquin River is being developed and calibrated.

ECO-PTM Hands-On: NP Output

Goal: Navigate to the output folder from the NP (Delta smelt larvae) folder


```
Step 1: open file explorer
```

```
Step 2: find NP study folder delta \rightarrow dsm2 \rightarrow studies \rightarrow historical\_ECO-PTM \rightarrow np
```

Step 3: open the output folder

ECO-PTM Hands-On: NP Output

Goal: Open DSS output file in HEC-DSSVue

Neutrally Buoyant Particles (Delta smelt larvae)

Step 1: find DSS output file (HEC-DSS data base) icon should look like this

icon should look like this high if HEC-DSSvue installed

Step 2: double click on the DSS output file

HEC-DSS Database Overview

D-Part F-Part E-Part **B-Part C-Part** Date Study Time Output Type of Name Range Interval **Output** Name Part C Number Part E Part B Part D / range Part F Part A 1 PTMV8.2.2 DIVERSION_AG FLUX 14Mar2011 - 22Aug2011 HIST_V822 15MIN HIST_V822 FLUX 2 PTMV8.2.2 EXPORT CVP 14Mar2011 - 22Aug2011 15MIN 3 PTMV8.2.2 FLUX EXPORT SWP 14Mar2011 - 22Aug2011 15MIN HIST V822 4 PTMV8.2.2 FRANKS PTM GROUP 14Mar2011 - 22Aug2011 HIST V822 15MIN 5 PTMV8.2.2 GS PTM_GROUP 14Mar2011 - 22Aug2011 15MIN HIST_V822 6 PTMV8.2.2 GS FLUX FLUX 14Mar2011 - 22Aug2011 HIST_V822 15MIN 7 PTMV8.2.2 PASS RIO FLUX 14Mar2011 - 22Aug2011 15MIN HIST V822 8 PTMV8.2.2 FLUX PAST CHIPPS 14Mar2011 - 22Aug2011 HIST V822 15MIN 9 PTMV8.2.2 FLUX 14Mar2011 - 22Aug2011 PAST MTZ 15MIN HIST V822 HIST V822 10 PTMV8.2.2 RIO PTM_GROUP 14Mar2011 - 22Aug2011 15MIN

HEC-DSSVue Software package for viewing HEC-DSS data

ECO-PTM Output: Examples for Class

ECO-PTM DSS Output: view a table

Step 1: single click on

row will become highlighted

Step 2: click on the table button a table will pop up

Flux at SWP Export Location (% particles)

	•	<u> </u>
		EXPORT_SWP
Ordinate	Date / Time	FLUX
Row #		HIST_V822
2019	05 Apr 11, 00:30	5.5000
2020	05 Apr 11, 00:45	5.5000
2021	05 Apr 11, 01:00	5.5000
2022	05 Apr 11, 01:15	5.5000
2023	05 Apr 11, 01:30	5.5000
2024	05 Apr 11, 01:45	5.5000
2025	05 Apr 11, 02:00	5.5000
2026	05 Apr 11, 02:15	5.5000
2027	05 Apr 11, 02:30	5.5000
2028	05 Apr 11, 02:45	5.5000
2029	05 Apr 11, 03:00	5.5000
2030	05 Apr 11, 03:15	5.5000
2031	05 Apr 11, 03:30	5.5000
2032	05 Apr 11, 03:45	5.5000

ECO-PTM DSS Output: Graph

Step 1: click on the graph button

Graph window pops up

ECO-PTM DSS Output: export to Excel

Step 1: click on the Excel export button

Excel workbook pops up

Flux at SWP Export Location (% particles)

4	Α	В		С
1	Α			PTMV8.2.2
2	В			EXPORT_SWP
3	С			FLUX
4	Е			
5	F			HIST_V822
6	Units			PERCENT
7	Type			INST-CUM
8	Row # 1	15Mar2011	0000	0.0000
9	1000 # 2	15Mar2011	0015	0.0000
10	3	15Mar2011	0030	0.0000
11	4	15Mar2011	0045	0.0000
12	5	15Mar2011	0100	0.0000
13	6	15Mar2011	0115	0.0000
14	7	15Mar2011	0130	0.0000
15	8	15Mar2011	0145	0.0000
16	9	15Mar2011	0200	0.0000
17	10	15Mar2011	0215	0.0000
18	11	15Mar2011	0230	0.0000
19	12	15Mar2011	0245	0.0000
20	13	15Mar2011	0300	0.0000

ECO-PTM Output

Homework: repeat for WHOLE PTM_GROUP

ECO-PTM Output: DSS File

Number	Part A	Part B	Part C
1	PTMV8.2.2	DIVERSION_AG	FLUX
2	PTMV8.2.2	_	FLUX
3	PTMV8.2.2	EXPORT_SWP	FLUX

13 PTMV8.2.2 SUT PTM_GROUP 14 PTMV8.2.2 SUT_FLUX FLUX 15 PTMV8.2.2 WHOLE PTM_GROUP

FLUX at SWP Export Location (% particles)

PTM_GROUP Output for the entire Delta (% particles)

ECO-PTM: Comparing NP & SP Output

ECO-PTM Hands-On: SP output


```
Step 1: open file explorer
```

```
Step 2: find SP study folder

delta → dsm2 → studies

→historical ECO-PTM → sp
```

Step 3: open the output folder

Step 4: double click on CSV file to open in Excel

Salmon Particles (Excel output survival only)

```
hist_v822.pof

ptm_echo_hist_v822.inp

survival_3-25-2011.csv
```


ECO-PTM Output: Salmon Survival

Particle insertion date

Ratio of particles to Sutter SI.,
Steamboat SI.,
and in Sac R.

Ratio of particles to Georgiana SI., Delta Cross Channel, and in Sac R.

Route Specific Survival

All routes combined survival

Cloud Computing 3 Fish **Species** Insertion Locations 1000's of **ECO-PTM** runs Flow Conditions Management **Actions**

How to use Cloud Computing is not covered in this Intro class

ECO-PTM: Take Home Points

3 Fish Species
Delta Smelt Larvae
Longfin Smelt Larvae
Chinook Salmon Smolts

Acknowledgements

- Ryan Reeves
- Bill McLaughlin
- Jacob McQuirk
- Tara Smith
- Kevin Clark
- Robert Trang
- Mohammed (Shahid) Anwar
- Kevin Reece
- Prabhjot (Nicky) Sandhu
- Steve Lindley's team in NOAA Fisheries

Special thanks to Jamie Anderson!

Questions? Please type them into Teams chat

Include slide # if possible

Xiaochun Wang (Xiaochun.Wang@water.ca.gov)

EXTRA SLIDES

ECO-PTM Output: Trace File

Insertion Salmon Smolt location **Migration Routes** Freeport Sutter Slough **Delta** Cross **Steamboat** Channel Slough Georgiana Slough **Chipps Island** stockton **Exiting the Delta** ACRAMENTO - SAN JOAQUIN DELTA South Bay Aqueduct

ECO-PTM Output

Salmon Particles:

- Route specific survival
- Combined survival
- Ratio to each route

Note: model to simulate salmon migration from the San Joaquin River is being developed and calibrated.