

•

•

•

•

Cluster Analysis

Ali Ridho Barakbah

Cluster Analysis

- Variance
- Error ratio

Variance

- Digunakan untuk mengukur nilai penyebaran dari data-data hasil clustering
- Dipakai untuk data yang bertipe unsupervised
- Variance pada clustering ada 2 macam:
 - Variance within cluster
 - Variance between clusters

Good cluster

is when the members of a cluster have a high degree of similarity to each other (internal homogeneity) and are not like members of other clusters (external homogeneity)

Variance & homogeneity

internal homogeneity \rightarrow Variance within cluster (V_w)

external homogeneity \rightarrow Variance between clusters (V_b)

Ideal cluster

The ideal cluster has minimum V_w to express internal homogeneity and maximum V_b to express external homogeneity.

minimum

$$V = \frac{V_{w}}{V_{b}}$$

atau

maximum

$$V = \frac{V_b}{V_w}$$

Cluster Variance

$$v_c^2 = \frac{1}{n_c - 1} \sum_{i=1}^{n_c} \left(d_i - \overline{d}_i \right)^2$$

 v_c^2 = variance pada cluster c c = 1..k, dimana k = jumlah cluster $n_c =$ jumlah data pada cluster c $d_i =$ data ke-i pada suatu cluster $d_i =$ rata-rata dari data pada suatu cluster

Variance within cluster

$$v_{w} = \frac{1}{N-k} \sum_{i=1}^{k} (n_{i} - 1) \cdot v_{i}^{2}$$

 v_w = variance within cluster N = jumlah semua data

Variance between clusters

$$v_b = \frac{1}{k-1} \sum_{i=1}^k n_i \left(\overline{d_i} - \overline{d} \right)^2$$

$$d = \text{rata-rata dari } d_i$$

Variance dari semua cluster

$$v = \frac{v_w}{v_b}$$

Error ratio

- Dipakai jika dataset yang digunakan adalah supervised
- Biasanya digunakan untuk mengukur tingkat presisi dari metode clustering
- Rumus:

$$Error = \frac{missclassified}{jumlahdata} \times 100\%$$

Contoh sederhana

Data penyakit hipertensi

Data ke-	Umur	Kegemukan	Hipertensi labe
1	muda	gemuk	Tidak
2	muda	sangat gemuk	Tidak
3	paruh baya	gemuk	Tidak
4	paruh baya	terlalu gemuk	Ya
5	tua	terlalu gemuk	Ya

Supervised data

Contoh Hasil Clustering

Soft Computation Research Group, EEPIS-ITS

Menghitung error ratio

	Label	Kombinasi 1 C1 → Tidak C2 → Ya	Kombinasi 2 C1 → Ya C2 → Tidak
Data 1	Tidak	Tidak	Ya
Data 2	Tidak	Ya	Tidak
Data 3	Tidak	Tidak	Ya
Data 4	Ya	Ya	Tidak
Data 5	Ya	Ya	Tidak
Misclassified		1	4
Error ratio		20%	80%

Semua kemungkinan label dicoba sehingga ada n! kombinasi

Ambil error ratio yang terkecil