Análisis Matemático para Inteligencia Artificial

Verónica Pastor (vpastor@fi.uba.ar), Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Clase 1

Administrativo

TODO el material excepto las grabaciones de las clases están disponibles en nuestro repositorio de github.

Forma de evaluación:

- Entrega 1 (individual): ejercicio de la guía 1
- 2 Entrega 2 (individual): ejercicio de la guía 2
- 3 Trabajo Final (grupos de 3 integrantes)
 - Componente de programación
 - Componente de interpretación de código
 - Componente de matemática

La nota final es un promedio ponderado de las notas individuales de cada entrega. Las dos entregas individuales tienen un límite de entrega *soft*.

Los trabajos se entregan en la carpeta de drive individual compartida a cada alumno posterior a la primera clase.

Presentación de la Materia

¿Por qué estudiar Análisis Matemático?

A medida que Machine Learning se vuelve más común, y los paquetes de software se vuelven más simples de usar, uno se abstrae cada vez más de los detalles técnicos que hay detrás.

Modelo de caja negra.

Esto trae el **peligro** de desconocer las decisiones de diseño y las limitaciones de cada algoritmo.

Bibliografía Recomendada: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Published by Cambridge University Press (2020). Está disponible gratis en http://mml-book.github.io/

Motivación (I)

Operaciones vectorizadas y GPUs: Early colab!

Motivación (II)

- Regresión logística asume superposición entre clases
- K-Means asume clusters esféricos
- Árboles de decisión tienen fronteras de decisión en forma de hiperplanos
- ¿Por qué las Redes Neuronales se entrenan más rápido usando GPUs?
- ¿Por qué en las redes neuronales importa la escala y en los árboles de decisión no?
- En kNN ¿Es lo mismo maximizar producto interno que minimizar distancia euclidea?

Clase 1: Espacios Vectoriales

Empecemos considerando los vectores $u=(1,\frac{1}{2},\frac{1}{3})$ y v=(2,-1), ¿podemos sumar los vectores? $u+\alpha'=(1+2,\frac{1}{2}+-1,\frac{1}{3}+0)$ $u+\alpha'=(1+2,\frac{1}{2}+2,\frac{1}{3}+1)$ ¿qué ocurre si tomamos $\tilde{v}=(-2,1)$?

- \therefore Para definir correctamente $u \in V$ deben estar en el mismo conjunto, y es posible cambiar el sentido y tamaño del vector. Es decir, que si el espacio vectorial es \mathbb{R}^n podemos realizar estas operaciones:

 - $\mathbf{2} \ \ x \in \mathbb{R}^n, k \in \mathbb{R} \to kx \in \mathbb{R}^n$

Algunas definiciones...

Sea $\mathbb{V} \neq \emptyset$, se define una operación (o suma) a una función $+: \mathbb{V} \times \mathbb{V} \to \mathbb{V}$.

Esta operación se espera que cumpla con las siguientes propiedades:

- **1** Asociativa: $(x + y) + z = x + (y + z), \forall x, y, z \in \mathbb{V}$.
- **2** Elemento Neutro: $\forall x \in \mathbb{V}, \exists e \in \mathbb{V} \text{ tal que } x + e = e + x = x.$
- **3** Opuesto: $\forall x \in \mathbb{V}, \exists \tilde{x} \in \mathbb{V} \text{ tal que } x + \tilde{x} = \tilde{x} + x = e.$
- **Onmutativa:** $\forall x, y \in \mathbb{V}, x + y = y + x$.

Sean $\mathbb{V} \neq \emptyset$, $\mathbb{K} \neq \emptyset$, se define una operación (o producto escalar) a una función $\bullet : \mathbb{K} \times \mathbb{V} \to \mathbb{V}$. Este conjunto \mathbb{K} es generalmente \mathbb{R} o \mathbb{C} es un cuerpo de escalares.

Comentario: Un cuerpo es un conjunto con algunas operaciones sobre los elementos de éste, que se comportan como la adición, sustracción, multiplicación y división que cumplen con las propiedades que conocemos. Para no especificar el cuerpo se usa la palabra escalar.

¿Estudiar espacios vectoriales sólo sirve para vectores? Sean $p(x): 1 + \frac{1}{2}x + \frac{3}{4}x^2$ y q(x): 2 - x, ¿valen 1 y 2?

Sean
$$p(x): 1 + \frac{1}{2}x + \frac{3}{4}x^2$$
 y $q(x): 2 - x$, ¿valen 1 y 2?

$$p(x) + q(x) = (p+q)(x) = (11) + (1-1) \times + ($$

Repasemos el producto de polinomios:
$$p(x) \cdot q(x) = (k \cdot \frac{1}{2}) \times (k \cdot \frac{3}{4}) \times (k \cdot \frac{3}$$

Sean
$$A, B \in \mathbb{R}^{n \times n}$$
, ¿valen 1 y 2?

$$A : B = \begin{pmatrix} a_{n} & b_{n} & \cdots & b_{n} \\ \vdots & \ddots & \vdots \\ a_{n} & b_{n} & \cdots & a_{n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

$$A : B \in \mathbb{R}^{n \times n}$$

$$k \cdot A = \begin{pmatrix} k \cdot a_{n1} & \cdots & a_{nn} \\ k \cdot a_{n1} & \cdots & a_{nn} \end{pmatrix} \subset \mathbb{R}^{n \times n}$$

Definición de Espacio Vectorial

Diremos que $\mathcal{V} = (\mathbb{V}, +, \mathbb{K}, \bullet)$ es un espacio vectorial si \mathbb{K} y \mathbb{V} son conjuntos no vacíos y la operación + en \mathbb{V} , y la acción \bullet de \mathbb{K} en \mathbb{V} cumplen:

- + tiene elemento inverso $\forall x \in V$ $\forall x \in V$

 - tiene elemento neutro: $1 \bullet v = v, \forall v \in \mathbb{V}$ ● + es conmutativa Vxy • V x+y= サナル

 - es asociativa:

$$\alpha \underbrace{\bullet (\beta \bullet v)}_{\text{KxV}} = (\alpha \beta) \bullet v, \ \forall \alpha, \beta \in \mathbb{K}, \forall v \in \mathbb{V}$$

Subespacios Vectoriales: definición

Sea $\mathcal{V}=(\mathbb{V},+,\mathbb{K},ullet)$ un espacio vectorial, un subconjunto $S\subseteq\mathbb{V},\ S\neq\emptyset$ se dice que es un subespacio de \mathbb{V} si la suma y el producto por escalares de \mathbb{V} son una operación y una acción en S que lo convierten en un \mathbb{K} -espacio vectorial.

Condiciones necesarias y suficientes para caracterizar subespacios S es un subespacio en un \mathbb{K} -espacio vectorial sii:

- $v, w \in S \rightarrow v + w \in S$

Ejemplos de subespacios propios

Sea
$$\mathcal{V} = (\mathbb{R}^3, +, \mathbb{R}, \bullet)$$
, sea $S = \{\alpha \bullet (a, b, c), \alpha \in \mathbb{R}\}$,

¿es un subespacio vectorial?

Algunos ejemplos más ...

Sean S, T subespacios de $\mathcal{V} = (\mathbb{V}, +, \mathbb{K}, \bullet)$. Probar si también los son:

Demostremos el caso 2

$$S+T = \{v \in \mathbb{V} : v = s+t, s \in S, t \in T\} \subseteq \mathbb{V}$$

$$\emptyset \text{ of } v \in S+T? \text{ come } S, T \text{ and } S \in V \Rightarrow O_{V} \in S \neq T$$

$$\emptyset \text{ of } v \in S+T? \text{ and } v \in S+T$$

$$V_{A_{1}} = V_{A_{2}} \in S+T? \text{ and } v_{A_{1}} = V_{A_{2}} \in S \neq T$$

$$V_{A_{1}} = V_{A_{2}} \in S+T? \text{ and } v_{A_{1}} \in S \neq T$$

$$V_{A_{2}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{2}} \in S \neq T$$

$$V_{A_{1}} = V_{A_{2}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T? \text{ and } v_{A_{1}} \in S+T$$

$$V_{A_{1}} = V_{A_{1}} \in S+T$$

$$V_{A_{1}} =$$

Representación de subespacios

Definición: Sea \mathcal{V} un espacio vectorial, y $G = \{v_1, ..., v_r\} \subseteq \mathbb{V}$. Una combinación lineal de G es un elemento $v \in \mathbb{V}$ tal que $v = \sum_{i=1}^r \alpha_i \bullet v_i$, donde $\alpha_i \in \mathbb{K}$, para i = 1, ..., r.

Definición: Sea $\mathcal V$ un espacio vectorial, y $G\subseteq \mathbb V$. Se dice que G es un sistema de generadores de $\mathcal V$ si todo elemento de $\mathbb V$ es una combinación lineal de G.

Notación: $\langle G \rangle = \mathbb V$. $G=\left\{\left(\begin{smallmatrix} 2\\ 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 4\\ 1 \end{smallmatrix}\right)\right\}$ $G=\left\{\left(\begin{smallmatrix} 2\\ 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 4\\ 1 \end{smallmatrix}\right)\right\}$

Ejemplo

Sea
$$G = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 4\\3\\2 \end{pmatrix} \right\}$$
 dado un vector cualquiera $v \in \mathbb{R}^3$,

i podemos escribirlo como combinación lineal de los vectores de G?

podemos escribirio como combinación lineal de los vectores de
$$G$$
?

 $\exists a, b, c \in \mathbb{R} / \binom{n}{2} = \binom{n}{2} + b \binom{n}{2} + c \binom{n}{2}$
 $A : a + 2b + b = 0$
 $A : a + 2b + b = 0$
 $A : a + 2c : a + 2c : b + b = 2y - 3 - 2c + 2y - 2y - 2b = 2y - 3$
 $A : a + 2c : a +$

Independencia Lineal

Dentro de los conjuntos generadores, nos interesan aquellos que son mínimos (menor cantidad de elementos).

Sea $S \subseteq \mathcal{V}$ un subespacio vectorial, y sea:

- $\{v_1,...,v_n\} \subseteq \mathbb{V}$. Entonces $\langle v_1,...,v_n \rangle \subseteq S$ sii $v_i \in S, \ \forall 1 \leq i \leq n$.
- $\{v_1,...,v_n,v_{n+1}\}\subseteq \mathbb{V}$. Entonces $\langle v_1,...,v_n,v_{n+1}\rangle=\langle v_1,...,v_n\rangle$ sii $v_{n+1}\in \langle v_1,...,v_n,\rangle$

Definición: Sea \mathcal{V} un espacio vectorial, y sea $\{v_{\alpha}\}_{{\alpha}\in I}$ una familia de vectores en \mathbb{V} ; se dice que $\{v_{\alpha}\}_{{\alpha}\in I}$ es linealmente independiente (l.i.) sii

$$\sum_{\alpha \in I} k_{\alpha} \bullet v_{\alpha} = 0 \to k_{\alpha} = 0, \ \forall \alpha \in I$$

Observar:

- {0} es linealmente dependiente (l.d.)
- si $v \neq 0$, $\{v\}$ es l.i.
- si $v_1 \propto v_2$ (colineales), $\{v_1, v_2\}$ es l.d.
- si v_1, v_2 no nulos, ni proporcionales, $\{v_1, v_2\}$ es l.i.

Bases y dimensión

Definición: Sea $\mathcal V$ un espacio vectorial, un conjunto $\{v_\alpha\}_{\alpha\in I}$ se llama base de $\mathcal V$ si $\{v_\alpha\}_{\alpha\in I}$ es un conjunto linealmente independiente de $\mathbb V$ que satisface $\underline{\langle v_\alpha\rangle_{\alpha\in I}=\mathbb V}$.

Definición: Sean \mathcal{V} un espacio vectorial, $B = \{v_1, ..., v_n\}$ una base de \mathcal{V} .

Diremos que n es la dimensión de \mathcal{V} , donde $n < \infty$.

Comentario: Tener en cuenta que existen espacios vectoriales con dimensión infinita.

Pero
$$\mathbb{R}^{2}$$
:
$$E = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ consists} \qquad B_{2} = \left\{ \begin{pmatrix} 1/5 \\ 1/5 \end{pmatrix}, \begin{pmatrix} 1/5 \\ 1/5 \end{pmatrix} \right\} BON$$

$$B_{3} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} BO^{G} \qquad B_{3} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} bose$$

$$E_{1}B_{1}, B_{2}, B_{3} \quad \text{for } LI \quad + \langle E \rangle = \langle B_{1} \rangle = \langle B_{2} \rangle = \langle B_{3} \rangle =$$

Variedad lineal

Sea $\mathcal V$ un espacio vectorial, M es una variedad lineal $M\subseteq \mathbb V$ es un conjunto de la forma $M=\{s+v,\ donde\ s\in S\}$, siendo S subespacio de $\mathcal V$, y $v\in \mathbb V$.

