Tingle Vember

For any integer X: X^X = 0 and X^0 = X. XOR is commutative and associative; order closen & matter. Itsetigy: Ean the array once and XOR all elements into a running variable. Every number that appears twice cancel out (2^a = 0). - Only the number that appears once remains in the end. Why it meets the requirements: Ferrar time: gre par over nums. - E sontant space: only one accumulate, variable. - World with negative: XOR grenates on bit patterns; right above in the continuation.
You any enteger X: X X = O and X D = X. XOR is commutative and associative: order aloen to matter. Ittetizg: Scan the array once and XOR all elements ento a running variable. Every number that appears twice cancels out (2° a = 0). Only the number that appears once remains in the end. Why it meets the requirements:
Scan the array once and XOR all elements ento a runming variable. Every number that appears twice cancels out (2° a = 0). Only the number that appears once remains in the end. Why it meets the requirements:
Scan the array once and XOR all elements ento a runming variable. Every number that appears twice cancels out (2° a = 0). Only the number that appears once remains in the end. Why it meets the requirements:
Scan the array once and XOR all elements ento a runming variable. Every number that appears twice cancels out (2° a = 0). Only the number that appears once remains in the end. Why it meets the requirements:
The orange once and XOK all elements ento a runming variable. Every number that appears twice cancels out (2° a = 0). Only the number that appears once remains in the end. Why it neets the requirements:
The orange once and XOK all elements ento a runming variable. Every number that appears twice cancels out (2° a = 0). Only the number that appears once remains in the end. Why it neets the requirements:
Why it needs the requirements:
Why it needs the requirements:
Why it needs the requirements:
Why it meets the ugeirements: - Ferica time: one pass over mums. - Comstant yace. only one accumulates variable. - World with negative: XOR grenates on bit patterns; sign doesn't mate.
- Ferrar time: gre pars over nums Comtant space. only one accumulator variable World with negative: XOR operates on bit patterns; sign doesn't mate
· Comtant pace. enh ene accumulater varioble. · World with negative: XOR grantes en bit potterns; sign deem in mate
· World with negative: XOR grenates on bit patterns; non doesn't mate
VINDS BOWN INEQUINE; NOT GREADED IN IN JOHN WHITE I MAIN