

Machine Intelligence Module-5 Neuro Genetic Systems

Dr. Arti Arya

Department of Computer Science

artiarya@pes.edu

+080-66186629 Extn 6629

Neuro Genetic Systems: Introduction

- ☐ Neuro-Genetic Systems are a combination of artificial neural networks and genetic algorithms.
- ☐ Two such hybrid systems are
- 1. Neuro-Genetic System for weight determination of multi layer feed forward networks.
- □ 2. A technique that artificially evolves neural network topologies using Genetic Algorithms.

- Weights are usually determined through backpropagation learning method.
- ➤ In backpropagation of errors the interconnection weights are randomly initialized during network design.
- > Recall how with backpropagation, network tries to optimize the weights.
- ➤ During training, the actual output is compared with the actual output and the error, if any, is backpropagated for adjustments of interconnection weights.
- The error is calculated as

$$E = \frac{1}{2} \sum_{i} (TO_i - O_i)^2,$$

where TO_i is the target output and O_i is the actual output at the i^{th} output unit.

During training, the actual output is compared with the actual output and the error, if any, is backpropagated for adjustments of interconnection weights.

> The error is calculated as

$$E = \frac{1}{2} \sum_{i} (TO_i - O_i)^2,$$

where TO_i is the target output and O_i is the actual output at the i^{th} output unit.

 x_i : Input neurons

 y_i : Hidden neurons

zk : Output neurons

v_{ij}: Input hidden layer weights

w_{jk}: Output hidden layer weights

- ➤ During backpropagation of the error, the network adjusts its weights to return better results in the next iteration.
- ➤ This error back propagation follows a gradient descent rule and therefore is vulnerable to the problem of settling down at local minima.
- ➤ Another limitation of the gradient descent technique is that it is slow since the number of iterations needed to properly train the network is usually considerably high.

- Consider a single hidden layer network having
 - m+n+r number of nodes.
 - Total no. of interconnecting weights in the network would be (mn+rn)
- Represent each weight by a gene, so a chromosome will be having

(mn+rn) number of genes.

- Structure of gene: $d_1d_2d_3d_4d_5$ (representing an interconnection weight)
 - Where d's are digits
 - d_1 is used to determine the sign
 - $d_2d_3d_4d_5$, the interconnection weights '+' or '-' depending on whether d_1 is even or odd.
- The magnitude is obtained by dividing $d_2d_3d_4d_5$ by 100
- A chromosome is then a linear array of (m+r) nx5 digits.

- Consider a 2-3-1 multi-layer network.
- The weights between the input layer and the hidden layer are w_{11} w_{12} w_{13} w_{21} w_{22} and w_{23} .
- And between the hidden layer and the output layer are v_{11} v_{21} v_{31} .
- Therefore a chromosome for this network corresponds to an arrangement of weights as given by:

 w_{22}

 In the present case, the chromosome is an array of (2+1) x 3 x 5 = 45 digits.

- For instance, let 143459076543210765430456713509246809478562589 be a chromosome.
- The mapping between the chromosome, weights and interconnections as shown below

14345	90765	43210	76543	04567	13509	24680	94785	62589
-43.45	-07.65	+32.10	-65.43	+45.67	-35.09	+46.80	-47.85	+25.89
iviz	11/12/ _{11/2}	IUU2 _{FIRS}	127	W ₂		ie _{nsi}	iv _{are}	$ u_{1[3]}$

- The initial population consists of a set of randomly generated chromosomes.
- PES UNIVERSITY ONLINE
- Fitness is measured in terms of the error term $E = \frac{1}{2} \sum_i (TO_i AO_i)^2$.
- In order to compute the error, a chromosome is mapped to its corresponding BPN net.
- The network is then tested by applying the input of a test pair and computing the actual output for the said input.
- This actual output when compared with the target output in $E = \frac{1}{2}\sum_i (TO_i AO_i)^2$ gives the error for that training pair .

- The same is computed for every training pair and the average is considered for fitness calculation.
- Since the aim is to minimize the error whereas A is a maximization process, we cannot directly use the error E as fitness measure.
- An obvious way is to take the reciprocal of E as the fitness

$$F = \frac{1}{E}$$

- the rest of the process is usual GA.
- It may be noted that the GA based learning of multilayer nets does not involve any backpropagation of error.
- The journey towards the *minimum error multilayer network* is now controlled by the GA instead of the backpropagation learning method process.

THANK YOU

Dr. Arti Arya

Department of Computer Science

artiarya@pes.edu

+91 9972032451 Extn 029