

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Course Name:	Elements of Electrical and Electronics Engineering	Semester:	I/II
Date of Performance:		Batch No:	G3
Faculty Name:	Milind Marathe	Roll No:	16010421063
Faculty Sign & Date:		Grade/Mark s:	/ 25

Experiment No: 3

Title: Theyenin's Theorem & Norton's Theorem.

Aim and Objective of the Experiment:

- To Verify for Thevenin's Theorem for the circuit
- To Verify Norton Theorem for the Circuit.

COs to be achieved:

CO1: Analyze resistive networks excited by DC sources using various network theorems. .

(A Constituent College of Somaiya Vidyavihar University)

Task 3: Circuit Diagram to measure Rth=RN:

Stepwise-Procedure:

Thevenin's Theorm

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Set V1, V2 and measure open circuit voltage V_{Th} across load terminals A and B.
- 3. Replace all voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 4. Draw Thevenin's equivalent circuit and determine the value of load current from it.
- 5. Verify the results theoretically.

Norton's Theorem

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Set the voltages V_1 , V_2
- 3. Remove the load resistance and measure the short circuit current I_{SC} through A and B terminals.
- 4. Replace all the voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 5. Draw Norton's equivalent circuit and determine the value of load current.
- 6. Verify the results theoretically

Observation Table:					
	I_{RL}				
Practical value	0.23A				
Theoretical value	0.23A				

	Vth	Rth (Ω)	Isc (I _N)	I _{rl} Thevenin	Irl ΩNorton
Practical value	30.8	31.858	0.967A	0.23A	0.234A
Theoretical value	30.805	31.857	0.9669A	0.2336A	0.2343A

(A Constituent College of Somaiya Vidyavihar University)

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

(A Constituent College of Somaiya Vidyavihar University)

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Conclusion:

In this experiment we understand the use of Thevenin and Norton's theorem to get the value of I_{RL} in the circuit.

Signature of faculty in-charge with Date: