DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE-ETC F/6 13/10 EXPERIMENTAL UNSTEADY AND MEAN LOADS ON A CP PROPELLER BLADE ON-ETC(U) OCT 76 R J BOSWELL, J J NELKA , S B DENNY DTNSRDC-76-0125 AD-A034 804 UNCLASSIFIED NL 1 of 4 AD A034804

ADA 034804

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER 2. GOVT ACCESSION NO. DTNSRDC 76-0125 TYPE OF REPORT & PERIOD COVERED EXPERIMENTAL UNSTEADY AND MEAN LOADS ON A CP Final rept., PROPELLER BLADE ON A MODEL OF THE FF-1088 PERFORMING ORG. REPORT NUMBER FOR SIMULATED MODES OF OPERATION, B. CONTRACT OR GRANT NUMBER(*) Robert J Boswell, John.J./Nelka Stephen B./Denny PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS David W. Taylor Naval Ship Research and Development Center (See reverse side) Bethesda, Maryland 20084 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Sea Systems Command (0331G) Energy Conversion & Explosive Devices Div. Washington, D.C. 20362 347 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) SS. (of this report) Naval Ship Engineering Center (6148) UNCLASSIFIED Propeller, Shafting & Bearing Branch 15. DECLASSIFICATION DOWNGRADING Prince Georges Plaza Hyattsville, Maryland 20782 16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) KEY WORDS (Continue on reverse side if necessary and identify by block number) Marine Propeller Model Experiments Propeller Strength Controllable-Pitch Propeller USS BARBEY (FF-1088) Loads Maneuvering Unsteady Loads Propulsion 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Experiments are described in which the mean and unsteady loads were measured on a single blade of a model of the controllable-pitch propeller on the FF-1088. The experiments were conducted behind a model of the FF-1088 hull under steady ahead operation, hull pitching motions, simulated crash ahead maneuvers, and simulated crash astern maneuvers. The (Continued on reverse side)

DD , FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

387682

(Block 10)

Task Area SSL24001 Task 19977 Work Unit 1-1544-296

(Alock 20 continued)

experimental techniques are outlined and the dynamometer and data analysis system described.

The results show that the circumferential variation of all measured components of blade loading is primarily a once-per-revolution variation, with maximum and minimum values occurring near the angular positions in which the spindle axis is horizontal.

For sinusoidal pitching of the model hull with amplitude of 2 deg and frequency of 0.8 Hz, the peak-to-peak circumferential variation of measured forces and moments increased by a minimum of 50 percent over the values without hull pitching.

For simulated operation during a crash ahead or crash astern maneuver, the circumferential variation of measured forces and moments varied approximately as the product of ship speed and propeller rotational speed, and was a function of propeller pitch. At no time during the simulated crash ahead or crash astern maneuvers were the circumferential variations of loads as large as during steady ahead operation.

For steady ahead operation, circumferential variation of loading determined from the model experiments agreed fairly well with full-scale data, but was substantially larger than the theoretically calculated values.

TABLE OF CONTENTS

							,	Page
ABSTRACT								1
ADMINISTRATIVE INFORMATION								1
INTRODUCTION							•	2
BACKGROUND							•	3
EXPERIMENTAL TECHNIQUE								11
FACILITY AND DYNAMOMETRY								11
CALIBRATION								14
EXPERIMENTAL CONDITIONS AND PROCEDURES			Sam					17
DATA ACQUISITION AND ANALYSIS								24
ACCURACY								29
EXPERIMENTAL RESULTS								30
CENTRIFUGAL LOADS								30
INFLUENCE OF DYNAMOMETER BOAT								30
STEADY AHEAD OPERATION								34
HULL PITCH								36
CRASH AHEAD AND CRASH ASTERN MANEUVERS								39
CORRELATION WITH FULL-SCALE DATA AND THEORY	•							45
SUMMARY AND CONCLUSIONS								50
ACKNOWLEDGMENTS								52
APPENDIX A - DETAILS OF WAKES								135
APPENDIX B - DETAILED EXPERIMENTAL RESULTS.								257
REFERENCES				•				330

LIST OF FIGURES

		Page	2
1	-	Components of Blade Loading	
2	-	DTNSRDC Model Propeller 4402A	
3	-	Geometries of Model of Propeller on FF-1088; DTNSRDC Model Propeller 4402A	
4	-	Ship and Model Particulars	
5	-	Experimental Arrangement of Hull and Dynamometer Boat	
6	-	Strain-Gaged Blade Flexures in Hub	
7	-	Arrangement of Flexures in Hub 60	
8	-	Experimental Deceleration and Acceleration Conditions 61	
9	-	Correlation of Theory and Experiment for Centrifugal Spindle Torque	
10	-	Correlation of Theory and Experiment for Centrifugal Force	
11	-	Circumferential Distribution of Wake in Propeller Disk	
12	-	Harmonic Amplitudes of Wake Velocities	
13	-	Open-Water Characteristics of DTNSRDC Model Propeller 4402	
14	-	Influence of Extraneous Signals on Measured Loads 74	
15	-	Experimental Data Showing Extraneous Higher Harmonics 80	
16	-	Variation of Experimental Loads with Angular Position for Steady Ahead Operation	
17	-	Harmonic Content of Experimental Loads for Steady Ahead Operation	
18	-	Variation of Components of Blade Loading with Hull Pitch Angle V	
19		Variation of Loads with Angular Position for	

							Page
20	-	Harmonic Content of $F_{\mathbf{x}}$ for Quasi-Steady Crash Ahead		•		•	101
21	-	Variation of Loads with Angular Position for Quasi- Steady Crash Astern					103
22	-	Harmonic Content of $\mathbf{F}_{\mathbf{X}}$ for Quasi-Steady Crash Astern .					109
23	-	Taylor Wake Fractions during Simulated Crash Ahead and Crash Astern Maneuvers					111
24	-	Variation of (F) sin ϕ/\overline{F}_{xSP} with nV sin ϕ for Quasi-Steady Crash Ahead and Crash Astern					113
25	-	Comparison of Time-Average Values per Revolution and Peak Values of Various Components of Blade Loading for Quasi-Steady and Unsteady Simulated Crash Ahead	•			٠	114
26	•	Comparison of Time-Average Values per Revolution and Peak Values of Various Components of Blade Loading for Quasi-Steady and Unsteady Simulated Crash Astern	•		•	•	120
27	-	Variation of Bending Moment with Blade Angular Position Measured on the Full-Scale Propeller for Six Individual Revolutions			•	•	126
28	-	Harmonic Content of Blade Bending Moment on the Full-Scale Propeller for Six Individual Revolutions					127
29	-	Variation of Bending Moment at 40-Percent Radius with Blade Angular Position, Comparison of Model and Full-Scale Data					129
30	-	Harmonic Content of Bending Moment at 40-Percent Radius - Comparison of Model Data, Full-Scale Data and Theory					130
31	-	Variation of Bending Moment at 40-Percent Radius with Blade Angular Position, Comparison of Model Data with Theory					132
32	-	Variation of Bending Moment at 40-Percent Radius with Blade Angular Position, Theoretical Prediction with and without Downstream					
		Body	•	•	•		133
22	_	Wake Harmonics				140	136

		Page
34	-	Harmonics of Loads for Quasi-Steady Crash Ahead 258
35	-	Harmonics of Loads for Quasi-Steady Crash Astern 272
		LIST OF TABLES
1	-	Characteristics of Propeller Corresponding to DTNSRDC Model Propeller 4402
2	-	Characteristics of Propeller on FF-1088
3	-	Calibration Matrix
4	-	Predicted Full-Scale Steady Ahead Powering Conditions from Various Sources
5	-	Model Experimental Conditions
6	-	Full-Scale Conditions Simulated by Model Experiment 20
7	-	Time-Average Loads for Steady Ahead Operation near the Self-Propulsion Point
8	-	Characteristics of Propeller Corresponding to DTNSRDC Model Propeller 4496
9	-	Wake without Dynamometer Boat
10	-	Wake with Dynamometer Boat
11	-	Experimental Loads near Self-Propulsion Point, V = 3.33 M/SEC, n = 17.65 REV/SEC, (P/D) 0.7 = 1.06
		0.7
12-16	-	Experimental Loads during Quasi-Steady Crash Forward for Various Values of V, n, and (P/D) 0.7
17-20	-	Experimental Loads during Quasi-Steady Crash Astern for Various Values of V, n, and
		$(P/D)_{0,7}$

NOTATION

A _E	Expanded area, $Z_{r_h}^R$ cdr
A ₀	Propeller disc area, #D ² /4
A _r	Fourier cosine coefficients of radial component of wake velocity
A _t	Fourier cosine coefficient of tangential component of wake velocity
A _x	Fourier cosine coefficient of longitudinal component of wake velocity
Br	Fourier sine coefficient of radial component of wake velocity
^B t	Fourier sine coefficients of tangential component of wake velocity
B _x	Fourier sine coefficients of longitudinal component of wake velocity
c _{i,j}	Elements of calibration matrix
C _{Th}	Thrust loading coefficient, $T/[(\rho/2)V_A^2A_0]$
c	Blade section chord length
D	Propeller diameter
(F) _n	nth harmonic amplitude of F
F _{x,y,z}	Force components on blade in x,y,z directions
f _M	Camber of propeller blade section
J	Advance coefficient, J=V _A /nD
J _T	Effective advance coefficient based on thrust identity
Q ^L	Effective advance coefficient based on torque identity
J _V	Ship speed advance coefficient, J=V/nD
K _F x,y,z K _M x,y,z	Force coefficient, $F_{x,y,z}/(\rho n^2 D^4)$ Moment coefficient, $M_{x,y,z}/(\rho n^2 D^5)$

KQ	Torque coefficient, Q/(pn ² D ⁵)
к _{sc}	Centrifugal blade spindle torque coefficient, $M_{Z_0}/(\rho_p n^2 D^5)$
K _T	Thrust coefficient, T/(pn ² D ⁴)
M _{x,y,z}	Moment components about x,y,z axes from loading on one blade
(M) _n	nth harmonic amplitude of M
n	Propeller revolutions per unit time
P	Propeller blade section pitch
Q	Time average propeller torque arising from loading on all blades, $-Z\overline{M}_{\mathbf{x}}$
R	Radius of propeller
R _n	Reynolds number, c _{0.7} V _R */v
r	Radial coordinate from propeller axis
S	Skew back of propeller blade section measured from the spindle axis to the midchord point of the blade section, positive towards trailing edge
Т	Time average thrust of propeller, positive forward, $\overline{ZF}_{\mathbf{x}}$
t	Maximum thickness of propeller blade section
v	Model speed
V _A	Propeller speed of advance
V _R *	Vector sum of speed of advance and rotational velocity at the 0.7 radius, $\left[V_A^2 + (0.7\pi n^{D})^2\right]^{1/2}$
V _r (r, θ _W)	Radial component of wake velocity, positive towards hub
V _t (r, θ _W)	Tangential component of wake velocity, positive counterclockwise looking upstream

V _x (r, θ _W)	Longitudinal component of wake velocity, positive forward
w _Q	Taylor wake fraction determined from torque identity
w _T	Taylor wake fraction determined from thrust identity
x,y,z	Coordinate axes
z	Number of blades
z _R	Rake of propeller blade section measured from the propeller plane to the generator line. Positive aft
β*	Advance angle at 0.7 radius, $\tan^{-1} \frac{[V_x (r=0.7)]}{0.7\pi nD}$
θ	Angular coordinate used to define location of blade and variation of loads, from vertical upward positive clockwise looking upstream, $\theta = -\theta_W$
θs	Skew angle measured from spindle axis to projection of blade section midchord into propeller plane, positive toward trailing edge
θW	Angular coordinate of wake velocity, from upward vertical positive counterclockwise looking upstream, θ_{W} = -0
λ	Ship to model linear scale ratio
ν	Kinematic viscosity of water
ρ	Mass density of water
° _P	Mass density of propeller blade
•	Pitch angle of propeller blade section, tan^{-1} [P/(πxD)]
(, M) n	nth harmonic phase angles of F,M based on a cosine
	series, $(F,M)=(\overline{F},M) + \sum_{n=1}^{N} (F,M)_n \cos(n\theta-(\phi_{F,M})_n)$
ψ	Pitch angle of hull

Subscripts

A Applied values of loads

C Arising from centrifugal loading

CW Value in calm water

h Value at hub radius

I . Indicated values of loads before calibration matrix is

applied

M Model value

MAX , Maximum value at any blade angular position

MES Value at model conditions derived from measurements on

full-scale ship .

n Value of nth harmonic

S Ship value

SP Value at self-propulsion point

x,y,z Component in x,y,z direction

0.4 Value at r=0.4R

0.7 Value at r=0.7R

Superscripts

Time average value per revolution

Unsteady value

Rate of change with time

ABSTRACT

Experiments are described in which the mean and unsteady loads were measured on a single blade of a model of the controllable-pitch propeller on the FF-1088. The experiments were conducted behind a model of the FF-1088 hull under steady ahead operation, hull pitching motions, simulated crash ahead maneuvers, and simulated crash astern maneuvers. The experimental techniques are outlined and the dynamometer and data analysis system described.

The results show that the circumferential variation of all measured components of blade loading is primarily a onceper-revolution variation, with maximum and minimum values occurring near the angular positions in which the spindle axis is horizontal.

For sinusoidal pitching of the model hull with amplitude of 2 deg and frequency of 0.8 Hz, the peak-to-peak circumferential variation of measured forces and moments increased by a minimum of 50 percent over the values without hull pitching.

For simulated operation during a crash ahead or crash astern maneuver, the circumferential variation of measured forces and moments varied approximately as the product of ship speed and propeller rotational speed, and was a function of propeller pitch. At no time during the simulated crash ahead or crash astern maneuvers were the circumferential variations of loads as large as during steady ahead operation.

For steady ahead operation, circumferential variation of loading determined from the model experiments agreed fairly well with full-scale data, but was substantially larger than the theoretically calculated values.

ADMINISTRATIVE INFORMATION

The work reported herein was funded by the Naval Sea Systems Command (NAVSEA 033) Task Area SSL24001, Task 19977. The work was performed under David W. Taylor Naval Ship Research and Development Center (DTNSRDC), Work Unit 1-1544-296.

The International System (SI) of units is used in the present report. The equivalent English units are shown in parentheses following the SI units in cases in which this will facilitate understanding and allow direct comparison with previous reports.

INTRODUCTION

Major naval ships powered with marine gas turbines and using controllable-pitch (CP) propellers for thrust reversal are currently being added to the Fleet. Additional ships with gas turbine and CP propeller installations are planned for future Fleet application.

Accordingly, the Navy has been conducting a research and development (R&D) program to establish the technology for producing reliable CP propellers with delivered power in the range of 26,000 to 30,000 kW (35,000 to 40,000 hp). As part of this program, CP propellers were installed on the USS PATTERSON (FF-1061) and USS BARBEY (FF-1088) with delivered power of 26,100 kW (35,000 hp). These installations were intended to demonstrate that CP propellers in this range of power had adequate reliability for application to ships with gas turbine prime movers.

Because of the structural failure of the crank rings to which the blades of the CP propeller on the FF-1088 were bolted, R&D efforts were intensified. The program undertaken at DTNSRDC included:

- 1. Blade Loading of CP Propellers
- a. Model measurement and theoretical prediction of blade loading on CP propellers.
- b. Model and full-scale wake measurements and theoretical predictions of wake.
- c. Full-scale measurements of forces, pressures, and strains in $\ensuremath{\mathsf{CP}}$ propeller components.
- 2. Structural Design of CP Propeller Blade Attachments.
- 3. Development of Materials for CP Propeller Systems.

The current report presents the results of work conducted under Section la of the CP Propeller Research and Development Program, i.e., model measurement and theoretical prediction of blade loading of CP propellers. Work under the other sections of this program will be reported separately.

Most of the information contained in the current report has already been published. The current report contains all that information as well as additional details on the experimental data and the pertinent full-scale conditions of the FF-1088.

BACKGROUND

Extreme care must be taken to design the blades and pitch-changing mechanisms of high power CP propellers so that they possess adequate strength including consideration of yield and fatigue stresses. This requires an accurate estimate of the maximum time-average and alternating loads under all operating conditions. High time-average and alternating loads occur at steady full-power ahead conditions and during high-speed maneuvers including full-power crash astern, full-power crash ahead, and full-power turns. In addition, the influence of the seaway may substantially increase the time-average and alternating loads. At present there appears to be no confirmed technique whereby the pertinent loads can be predicted to the desired accuracy. Schwanecke and Wereldsma² reviewed the factors affecting blade loading for propellers in general, and Rusetskiy³ and Hawdon et al. discussed some of the factors peculiar to blade loading CP propellers.

¹Boswell, R.J. et al., "Experimental Determination of Mean and Unsteady Loads on a Model CP Propeller Blade for Various Simulated Loads of Ship Operation," Transactions of the Eleventh ONR Symposium on Naval Hydrodynamics, Government Printing Office (1976). A complete listing of references is given on pages 330--332.

²Schwanecke, H. and R. Wereldsma, "Strength of Propellers Considering Steady and Unsteady Shaft and Blade Forces, Stationary and Nonstationary Environmental Conditions," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2B, Vol. 2 (1972).

³Rusetskiy, A.A., "Hydrodynamics of Controllable Pitch Propellers," Shipbuilding Publishing House, Leningrad (1968).

Hawdon, L. et al., "The Analysis of Controllable-Pitch Propeller Characteristics at Off-Design Conditions," Transactions of the Institute of Marine Engineers, Vol. 88 (1976).

Near the self-propulsion point in calm water, the time-average loads can probably be calculated with reasonable accuracy. However, even at these conditions, the variation of loads with blade angular position apparently cannot be calculated with high accuracy. Various techniques, including quasi-steady procedures, stripwise unsteady procedures, and methods based on unsteady lifting surface theory, have been proposed for calculating the unsteady loading arising from the circumferential variation in the inflow velocity. 5--8 However, all of these procedures require knowledge of the flow patterns (wake profile) in the propeller disk. In current practice, the wake profile is measured in the plane of the propeller behind the model hull with the propeller removed. For high-speed displacement ships of the type under consideration in this report, these results are usually extrapolated to full scale without making allowance for (1) the change in Reynolds number and the corresponding reduction in relative boundary layer thickness and (2) the effect of the propeller suction on the boundary layer and thereby the wake pattern in the propeller disk.

Existing measurements which give information on unsteady blade loading include:

 Measurements of strain on the blades of the model propellers or full-scale propellers. However, some calculations and assumptions are

Van Gent, W., "Unsteady Lifting Surface Theory for Ship Screws: Derivation and Numerical Treatment of Integral Equation," Journal of Ship Research, Vol. 19, No. 4, pp. 243--253 (Dec 1975).

Schwanecke, H., "Comparative Calculations on Unsteady Propeller Blade Forces," Proceedings of the Fourteenth International Towing Tank Conferference, Report of the Propeller Committee, Appendix 2c, vol. 2 (1972).

⁷Breslin, J.P., "Propeller Excitation Theory," Proceedings of the Fourteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2c, Vol. 2 (1972).

⁸Boswell, R.J. and M.L. Miller, "Unsteady Propeller Loading-Measurement, Correlation with Theory, and Parametric Study," NSRDC Report 2625 (Oct 1968).

required to convert measured strains into loads. Published data of this have been summarized by Meyne. 9

- 2. Measurement of bearing (shaft) forces and moments on model propellers operating in wakes generated by model hulls or wire grid screens. However, this gives information on only some components of blade loading and on only those harmonics of shaft rotational speed corresponding to nZ-1, nZ, and nZ+1, where n is an integer and Z is the number of blades. Measurements of this nature have been conducted by many investigators. 7,10
- 3. Measurements of forces and moments on individual blades of model propellers operating in wakes generated by model hulls or wire grid screens. Measurements behind model hulls have been made by Huse¹¹ and Blaurock,¹² measurements behind screens have been made by Hawdon et al.,⁴ measurements in inclined flow have been made by Albrecht and Suhrbier¹³ and by Bednarzik,¹⁴ and measurements on partially submerged propellers have been made by Dobay.¹⁵

⁹Meyne, K., "Propeller Manufacture-Propeller Materials-Propeller Strength," International Shipbuilding Progress, Vol. 2, No. 247, pp. 77--102 (Mar 1975).

¹⁰Wereldsma, R., "Comparative Tests on Vibratory Propeller Forces," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2a, Vol. 2 (1972).

Huse, E., "An Experimental Investigation of the Dynamic Forces and Moments on One Blade of a Ship Propeller," Proceedings of the Symposium on Testing Techniques in Ship Cavitation Research, The Norwegian Ship Model Experimental Tank, Trondheim, Norway (May--Jun 1967).

¹²Blaurock, J., "Propeller Blade Loading in Nonuniform Flow," The Society of Naval Architects and Marine Engineers, Propellers 75 Symposium, (Jul 1975).

¹³Albrecht, K. and K.R. Suhbrier, "Investigation of the Fluctuating Blade Forces of a Cavitating Propeller in Oblique Flow," International Shipbuilding Progress, Vol. 22, No. 248, pp. 132--147 (Apr 1975).

¹⁴Bednarzik, R., "Untersuchung uber die Belastungs-schwankungen am Einzelflugel schrag angestromter Proper," Schiffbauforschung, Vol. 8, No. 1/2, pp. 57--80 (1968).

¹⁵Dobay, G.F., "Time-Dependent Blade-Load Measurements on a Screw-Propeller," presented to the Sixteenth American Towing Tank Conference, (Aug 1971).

Experiments in wakes generated by screens are advantageous for evaluating the ability of a procedure to calculate the loading for a given wake since for this case, the propeller apparently does not influence the wake pattern. Although some good correlation has apparently been obtained between analytical predictions and unsteady bearing forces measured behind wire grid screens, 7,8 correlation has been rather inconsistent between analytically predicted unsteady blade loads, or resulting strains, and measured blade loads, or strains. 10,16

The mechanism by which the seaway influences the mean and unsteady blade loads is complex. Factors include the increased mean propeller loading due to increased hull resistance and the increased unsteady loading resulting from the influence of the free surface and modification of the flow patterns into the propeller disk. This flow pattern is influenced (1) by direct trochoidal velocities from the ocean waves, (2) by relative velocities of the propeller due to ship motions, and (3) by modification of the hull wake pattern due to the seaway and ship motions. Procedures for calculating the loads in a seaway are much less refined than for steady operation in calm water. Tasaki¹⁷ gives a good review of the mechanisms and procedures for predicting the effect of the seaway on bearing forces which, in principle, also applies to unsteady loading on an individual blade. Keil et al. ¹⁸ and Watanabe et al. ¹⁹ present strain measurements on the blades of full-scale propellers in both calm and rough seas.

Apparently no rational analytical procedures are available for accurately calculating the time-average loads per revolution or the unsteady

Wereldsma, R., "Last Remarks on the Comparative Model Tests on Vibratory Propeller Forces," Proceedings of the Fourteenth International Towing Tank Conference, Vol. 3, pp. 421--426 (1975).

Tasaki, R., "Propulsion Factors and Fluctuating Propeller Loads in Waves," Proceedings of the Fourteenth International Towing Tank Conference, Vol. 4, pp. 224--236 (1975).

¹⁸Keil, H.G. et al., "Stresses in the Blades of a Cargo Ship Propeller," Journal of Hydronautics, Vol. 6, No. 1 (Jan 1972).

Watanabe, K. et al., "Propeller Stress Measurements on the Container Ship HAKONE MARU," Shipbuilding Research Association of Japan (1973).

loads including variation with blade angular position during crash ahead or crash astern maneuvers. These loads may depend on many factors including the time rate of change of propeller pitch P (for CP propellers), time rate of change of rotational speed n, time rate of change of ship speed V, propeller blade section stall, cavitation, ventilation, flow separation from the hull, and large interactions between the propeller and the hull. Some of these factors are discussed and considered by Hawdon et al. For crash astern maneuvers, a CP propeller has negative pitch P and develops negative thrust for forward speed, i.e., it decelerates the flow into the propeller, and this may tend to increase the time-average and time-dependent interaction between the propeller and the hull.

For turns, the factors affecting the time-average loads per revolution and the unsteady loads are somewhat the same as those affecting the loads under crash ahead and crash astern conditions except that for turns, there is a relatively large drift angle of the flow into the propeller. This drift angle tends to increase the circumferential nonuniformity of the flow into the propeller, thereby increasing the unsteady loading. However, this circumferential nonuniformity of the inflow tends to be offset by the lower values of ship speed and propeller rotational speed in turns compared to steady ahead operation.

The authors know of no experimental measurements of time-average loads and circumferential variation of loads with blade angular position on CP propellers behind a hull under a wide range of operating conditions. An experimental program was therefore undertaken to measure the six components of loading (Figure 1)* on a model CP propeller operating behind a model hull, namely, a model of the FF-1088. The experimental conditions included (1) steady ahead operation near the self-propulsion point, (2) steady ahead operation near the self-propulsion point with forced dynamic pitching of the model hull, (3) simulated crash ahead operation, and (4) simulated crash

^{*}Main text figures are presented following the section on acknowledgments.

astern operation. Results for the steady ahead operation were correlated with predictions based on unsteady lifting surface theory as developed by Tsakonas et al., 20 with the quasi-steady method of McCarthy, 21 and with strains measured on the full-scale propeller of the FF-1088.

The model propeller used in these experiments was DTNSRDC Propeller 4402; see Figure 2 and Table 1. Its geometry was nearly identical to that of the FF-1088 propeller; see Figure 3 and Table 2. The only differences between the two propeller designs are (1) the radial distributions of camber and pitch between the 70-percent radius and the tip and (2) the blade leading edge radii; see Tables 1 and 2. It was judged that these two propellers would have approximately the same loading under the same operating conditions. Therefore, no corrections were made for the difference in their geometries.

The hull of the FF-1088 was represented by DTNSRDC Model Hull 4989; see Figure 4.

Tsakonas, S. et al., "An Exact Linear Lifting Surface Theory for Marine Propeller in a Nonuniform Flow Field," Journal of Ship Research, Vol. 17, No. 4 (Dec 1974).

²¹McCarthy, J.H. "On the Calculation of Thrust and Torque Fluctuations of Propellers in Nonuniform Wake Flow," David Taylor Model Basin Report 1533 (Oct 1961).

TABLE 1 - CHARACTERISTICS OF PROPELLER CORRESPONDING TO DTNSRDC MODEL PROPELLER 4402

Diameter: 4.572 m (15.0 ft)

Rotation: Right Hand Number of Blades: 5

Maximum Rotational Speed (Rated):

25.13 rad/sec (240 rev/min)

Full Power (Rated):

26,100 kW (35,000 hp)

Speed at Full Power:

14.5 m/sec (28.1 knots)

Expanded Area Ratio: 0.83

Blade Thickness Fraction: 0.059 Section Meanline: NACA 65 Section Thickness Distribution:

NACA 16 (Modified) 1

Design Advance Coefficient J: 0.767

Design Advance Angle B*:

0.3356 rad (19.23 deg)

Design Thrust Loading Coefficient C_{Th} : 0.706

c/D	P/D	s/n ³	z _R /D	t/D	f _M /c
0.1853	1.008	0.0185	0	0.0437	0.0243
0.2482	1.044	0.0248	0	0.0328	0.0302
0.3111	1.067	0.0311	0	0.0250	0.0280
0.3740	1.072	0.0374	0	0.0187	0.0240
0.4369	1.0612	0.0437	0	0.0131	0.01912
0.4760	1.0252	0.0476	0	0.0089	0.01402
0.4600		0.0460	0	0.0061	0.00822
0.4587		0.0459	0	0.0051	0.00422
0.3400	0.8782	0.0340	0	0.0040	0.0000
	0.1853 0.2482 0.3111 0.3740 0.4369 0.4760 0.4600 0.4587	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

¹ Smaller leading edge radii than propeller on FF-1088.

²Different than for propeller on FF-1088.

 $^{^3}$ The spindle axis is the propeller reference line and passes through 40-percent chord for all radii.

TABLE 2 - CHARACTERISTICS OF PROPELLER ON FF-1088 (Corresponds to DTNSRDC Model Propeller 4402A)

Diameter: 4.572 m (15.0 ft)
Rotation: Right Hand
Number of Blades: 5
Maximum Rotational Speed (Rated):
25.13 rad/sec (240 rev/min)
Full Power (Rated):
26,100 kW (35,000 hp)

Speed at Full Power: 14.46 m/sec (28.1 knots)

Expanded Area Ratio: 0.83

Blade Thickness Fraction: 0.059
Section Meanline: NACA 65
Section Thickness Distribution:
NACA 16 (Modified)

Design Advance Coefficient J: 0.767 Design Advance Angle 8*:

0.3356 rad (19.23 deg) Design Thrust Loading Coefficient C_{Th} : 0.706

×	c/D	P/D	S/D ¹	z _R /D	t/D	f _M /c
0.30	0.1853	1.008	0.0185	0	0.0437	0.0243
0.40	0.2482	1.044	0.0248	0	0.0328	0.0302
0.50	0.3111	1.067	0.0311	0	0.0250	0.0280
0.60	0.3740	1.072	0.0374	0	0.0187	0.0240
0.70	0.4369	1.056	0.0437	0	0.0131	0.0197
0.80	0.4760	1.018	0.0476	0	0.0089	0.0152
0.90	0.4600	0.956	0.0460	0	0.0061	0.0097
0.95	0.4587	0.911	0.0459	0	0.0051	0.0056
1.00	0.3400	0.861	0.0340	0	0.0040	0.0000

¹The spindle axis is the propeller reference line and passes through 40-percent chord for all radii.

EXPERIMENTAL TECHNIQUE

FACILITY AND DYNAMOMETRY

All experiments were conducted on DTNSRDC Carriage I. The propeller was located in its proper position relative to the model hull but was isolated from the hull and driven from downstream (see Figure 5).

This downstream drive system was necessary in order to obtain the required characteristics of the system for measuring unsteady loading. The general criteria for the design of an unsteady force measuring system are:

- The support structure of the force measuring system should be soft mounted and possess a large mass to eliminate transmission of extraneous vibration to the system.
- 2. The natural frequency of the system should be well above the highest frequency of the quantities to be measured (to avoid phase shift and amplification of the signal).
- 3. The system response in the force magnitude range should be sufficiently large to be measurable (sensitivity).
- 4. The system should be free of interaction, that is, each measuring element should respond only to that force or moment which it is intended to measure.

These four major aims are not complementary. The high natural frequency requires a stiff, rigid system whereas high sensitivity requires an elastic, soft system. The necessary compromise results in some interaction between the force-measuring elements.

Criterion 1 dictated that a massive flywheel be used, and Criterion 2 dictated that this flywheel be connected to the sensing elements (located inside the propeller hub) by a short thick shaft. Therefore, because of the geometry of the hull and shafting of the configuration under evaluation, it was not feasible to achieve both these criteria with an upstream drive system from inside the model hull. Criteria 1 and 2 controlled the the minimum allowable beam and draft of the downstream body and the maximum allowable clearance from the bow of the downstream body to the propeller.

Although the downstream body may exert some influence on the flow into the propeller, that location was considered necessary in order to meet these measuring criteria. The influence of the downstream body on the flow into the propeller is discussed in the section on experimental results.

The drive and mounting system was basically the same as that used in the DTNSRDC BASS dynamometer which has been described by Brandau. 22 Utilized from this dynamometer were the propeller (tail) shaft, drive shaft with flywheel, belt-type (quiet) transmission, and sliprings. Power to rotate the propeller was supplied by a d-c permanent-magnet servomotor capable of delivering up to 45 N-m of torque. This motor was selected for its ability to control and hold the shaft revolution rate over the wide range of propeller torque loadings required for some of the experimental conditions. Mounted on the propeller shaft was a digital encoder that generated electrical pulses as a function of shaft angular position. Two types of pulses were generated: a single pulse per revolution and a multipulse per revolution (90 equally spaced pulses for the current experiment). The single pulse was syncronized with the reference line of the instrumented propeller blade. The pulses generated by this encoder are accurate to within 0.01 deg.

The downstream body which housed the drive system was basically that used by Dobay 15 but modified to allow deeper submergence and an inclined shaft angle. Both the body housing the drive system (the drive system was soft mounted to this body) and the model hull were rigidly attached to a pitch-heave oscillator which, in turn, was rigidly mounted on the towing carriage. This arrangement enabled the model hull and the drive system to be dynamically pitched together while maintaining independent support from one another.

The sensing elements were flexures to which were bonded highsensitivity, semiconductor strain-gage bridges. The design of these flexures has been described by Dobay. ¹⁵ There were three flexures, each

²²Brandau, J.H., "Static and Dynamic Calibration of Propeller Model Fluctuating Force Balances," David Taylor Model Basin Report 2350 (Mar 1967); see also Technologia Naval, Vol. 1, pp. 48--74 (Jan 1968).

of which measured two components of blade loading. Flexure 1 measured components F_x and M_y , Flexure 2 measured components F_y and M_z , and Flexure 3 measured components F_z and M_z (Figures 1 and 6). An arrangement of three separate flexures rather than one to measure all components of blade loading was adopted because it appeared to result in higher natural frequencies (Criterion 1), higher sensitivities (Criterion 3) and lower interactions (Criterion 4) than would have resulted had a single flexure been used.

The flexures were mounted inside a propeller hub which was specifically designed for these experiments (Figure 7). Only one flexure could be mounted at a time, because of space limitations, and this necessitated duplicate runs, as discussed later in the section on experimental conditions and procedures.

The strain-gage bridges were excited by a common d-c voltage source, transmitted through the sliprings on the propeller shaft. The constant-current excitation used by Dobay^{15} was not employed in the present experiment because it appeared to be too sensitive to temperature.

The voltage output from the flexures (due to blade loading) was transmitted through the sliprings to individual amplifiers (NEFF 119-121). These amplifiers utilized field effect transistors to produce an extremely high input-impedance (100 M Ω , minimum). This high impedance essentially eliminated slipring noise to the amplifier. The voltage signals were transferred across the sliprings in the presence of only a small amount of noise-producing current. The amplifiers used here had zero-phase shift qualities in the d-c-20 kHz range. They were chopper-stabilized to enable both the steady and unsteady signals to be recorded simultaneously. This signal-conditioning system was essentially the same as that used by Dobay. 15

The signals were then digitized and analyzed by using a Model 70 Interdata Digital Computer, and were then stored in digital form on a nine-track magnetic tape. The on-line analysis of the data is discussed in the section on data acquisition and analysis.

CALIBRATION

Prior to the experiment, each flexure was statically calibrated in air to establish flexure sensitivities, interactions, and linearity over the loading range of interest. These calibrations were conducted with the flexures mounted in the propeller hub which was connected to the flywheel and drive assembly as in the experiment. Each flexure was subjected to independently controlled forces in the axial, transverse, and radial directions (i.e., F_x , F_y , and F_z , respectively) and to independently controlled moments about the axial, transverse, and radial directions (i.e., M_x , M_y , and M_z , respectively); see Figure 1.

The static calibration showed that all flexures had a linear response over the load range of interest. Table 3 shows the interaction matrix. These calibrations indicated that all flexures had good sensitivity except F_z whose sensitivity was lower than desirable. The interactions were small except for the effect of M_z on F_z . The rather poor characteristics of the F_z flexure is not considered a serious shortcoming since F_z arises primarily from centrifugal loading and can be analytically calculated. In addition, no significant variation of F_z with blade angular position is anticipated. Flexure 3, which measured F_z and F_z was further evaluated by correlation of air-spin experiments with analytically calculated results, as discussed later. The interactions were taken into consideration during data analysis.

The flexures used in this experiment had been dynamically calibrated by Dobay 15 to determine the frequency range over which unsteady forces and moments could be reliably measured. In this procedure, an electromagnetic shaker in air was used to apply a relatively constant, maximum amplitude, variable-frequency force or moment-excitation in all six-componer directions to all six flexure elements. The force or moment amplitude imposed by the shaker was monitored through an extremely lightweight, strain-gaged single flexure element. The measured lowest natural frequencies of the three flexures in air were as follows:

		Frequency (Hz)	Mode
Flexure	1	550	M
Flexure	2	450	M
Flexure	3	282	Mz

TABLE 3 - CALIBRATION MATRIX

	0.0652	0.0017	-0.0003	0.0292	-0.0531	-0.0212	
	-0.0025	0.0680	-0.0001	0.0398	0.0434	0.0363	
	0.0002	0.0018	0.0203	0.0319	-0.0027	-0.3363	
Calibration Matrix = [C, ,] =	0.0005	0.0009	0.0004	1.6853	-0.0080	0.0920	
F 6 7	-0.0018	-0.0026	0.0013	-0.0460	1.6605	0.0478	
	-0.0002	0.0002	0.0000	0.0035	0.0035	1.1666	
where							
F X	X A		x, I,	Fy, Fz are	$x_{\rm I}$, $F_{\rm J}$, $F_{\rm Z}$ are indicated forces in volts.	orces in vo	lts.
Fy	FyA		\mathbf{x}_{1} ,	M, M, are	$^{ m M}_{ m X_I}$, $^{ m M}_{ m Y_I}$, $^{ m M}_{ m Z_I}$ are indicated moments in volts	oments in v	olts
F Z	н 2 А		F _X , F	Fy, Fare	$egin{array}{lll} F_A, & F_Z \end{array}$ are applied forces in Newtons.	ces in Newt	ons.
x X	× _A	· (c _{1, j})		X, M, M are app	are applied moments in Newton-	ents in New	ton-
M N N I	M. y. A.		C ₁ , j	for j=1,2,3	$C_{i,j}$ for j=1,2,3 are in volts/Newton.	/Newton.	
M Z Z	M A A		C1, j	for j=4,5,6	C _{i,j} for j=4,5,6 are in volts/Newton-meters.	/Newton-met	ers.
	1						

The measured amplification factor (ratio of output amplitude to input amplitude) and phase shift for all three flexures was as follows:

Frequency Range (Hz)	0 to 60	60 to 120
Phase Shift (rad)	$0 \text{ to } 8.7 \text{x} 10^{-4}$	8.7×10^{-4} to 2.6×10^{-3}
Phase Shift (deg)	0 to 0.05	0.05 to 0.15
Amplification Factor	1.00	1.00 to 1.05

After the experimental apparatus was completely assembled with propeller blades and attached in place under the towing carriage, the effect of submergence in water on flexure lowest natural frequency was checked. This check consisted of striking the blade a sharp, light blow and recording the response of Flexure 1 (the $F_{\rm x}$, $M_{\rm y}$ flexure). The measured response indicated that the lowest natural frequency of the flexure was approximately 250 Hz or approximately 0.45 times its value in air. Similar measurements were not made for the other two flexures but it was assumed that their natural frequencies in water were also approximately 0.45 times the measured values in air. Based on this assumption, the natural frequencies in water are:

Flexure	i	250	Hz
Flexure	2	202	Hz
Flexure	3	127	Hz

The highest propeller rotational speed during the experiment was 110.9 rad/sec (17.65 rev/sec). Thus, the flexures had a "true" dynamic response (determined in air) up to at least the third harmonic of shaft rotation and no greater than 5 percent amplification up to the sixth harmonic of shaft rotation. Assuming that the lowest natural frequency of each flexure in water was 0.45 times its measured value in air, the lowest natural frequencies of Flexures 1, 2, and 3 were respectively greater than 14, 11, and 7 times the highest propeller rotational speed used during the experiments. As discussed in the section on experimental results, extraneous signals appeared in the unfiltered experimental data at frequencies close to the deduced natural frequency of each flexure in water.

The propeller shaft drive and soft-mount support system were dynamically loaded in the vertical, longitudinal, and transverse directions to obtain the systems lowest natural frequencies. The natural frequencies of the system in air were found to be:

Mode	Natural Frequency (Hz)
Vertical bending	12.25
Horizontal bending	6.0
Axial	4.6

The support system had a low resonant range; however, the soft-mount system was specifically designed to prevent towing-carriage oscillation (with the resonance at 100 to 200 Hz) from being transmitted to the blade flexures. Based on the measured resonance, it is concluded that the soft-mount system should successfully meet this objective. Although some resonances were close to the propeller rotational speed for some experimental conditions, it was considered more desirable to isolate the system from towing-carriage vibration. Therefore, the soft mount system was considered to be satisfactory.

EXPERIMENTAL CONDITIONS AND PROCEDURES

Experiments were conducted at several conditions including steady ahead operation, simulated pitching of the hull, simulated crash ahead (acceleration), and simulated crash astern (deceleration). All conditions were run with the model hull rigidly attached to its support, with no freedom to sink or trim.

The steady ahead condition is defined in Tables 4-7. The simulated full-scale speed for this condition was slightly higher than the speed at full power measured during standardization trials (see Table 4), but the propeller rotational speed was the same as that measured at full power during standardization trials. Model self-propulsion data (not corrected for wind drag at zero true wind) tend to agree with the standardization data; see Table 4. If the standardization data are correct, then the

TABLE 4 - PREDICTED FULL-SCALE STEADY AHEAD POWERING CONDITIONS FROM VARIOUS SOURCES

							2	1 (64.3)		
	m/sec	V m/sec (knots)	n rad/sec	(rev/min)	N x 10 ⁻⁶	$(16 \times 10^{-5}) \times 10^{-6} \times 10^{-5}) \times \times \times 10^{-4}$	x 10-6	x 10 ⁻⁶ x 10 ⁻⁵)	kw x 10 ⁻⁴	(hp × 10 ⁻⁴)
Model Experiments in	14.7	14.7 (28.6)	25.1	240	1.14	(2.57)	0.97	(7.13)	2.44	(3.27)
Present Study Standardization Trials	16.6	(78.1)	25.1	(240)	1.13	(2.55)	1.04	(7.66)	2.61	(3.50)
Model Data	14.5	(28.2)	25.1	(240)	1.19	(2.67)	1.04	(7.66)	2.61	(3.50)
Full-Scale Blade	13.3	(25.8)	23.8	(227)	1.10	(2.48)	1.33	(6.80)	3.15	(4.23)
Stress Trials ³										
-										
*Corrected for influence of dynamomenter boat.	ence of dy	namomenter	r boat.							
No correction for full-		wind drag	scale wind drag at zero true wind.	ue wind.						
³ Conducted by C.J. Noonan and G.P. Antonides, DTNSRDC Code 1962.	oonan and	G.P. Antor	lides, DTNS	RDC Code 19	62.					

TABLE 5 - MODEL EXPERIMENTAL CONDITIONS

	Condition No.	m/sec	V (knots)	rad/sec	(rev/sec)	J _v	P/D	(ψ-ψ _{CW}) deg	m/sec ²	(knots/sec)	t-t ₍
Self-Propulsion	1	3.33	(6.50)	110.9	(17.65)	0.80	1.06	0	0	(0)	N/A
Quasi-Steady	2	3.33	(6.50)	110.9	(17.65)	0.80	1.06	-2	0	(0)	N/A
Hull Pitch	3	3.33	(6.50)	110.9	(17.65)	0.80	1.06	-1	0	(0)	N/A
	4	3.33	(6.50)	110.9	(17.65)	0.80	1.06	+1	0	(0)	N/A
	5	3.33	(6.50)	110.9	(17.65)	0.80	1.06	+2	0	(0)	N/A
Unsteady Hull Pitch	6	3.33	(6.50)	110.9	(17.65)	0.80	1.06	variable ²	0	(0)	N/A
Quasi-Steady	7	0.33	(0.64)	39.3	(6.26)	0.22	1.39	0	0	(0)	N/A
Crash Forward	8	0.81	(1.59)	58.7	(9.35)	0.37	1.39	0	0	(0)	N/A
	9	1.46	(2.85)	70.3	(11.19)	0.56	1.39	0	0	(0)	N/A
	10	2.26	(4.41)	75.8	(12.07)	0.80	1.39	0	0	(0)	N/A
	11	3.10	(6.05)	84.2	(13.40)	0.99	1.39	0	0	(0)	N/A
Unsteady Crash	12	0.331	(0.64)	39.3	(6.26)	0.22	1.39	0	+0.191	(0.10)	4.
Forward	13	0.81	$(1.59)^{1}$	58.7	(9.35)	0.37	1.39	0	+0.231	(0.12)1	9.
	14	1.461	$(2.85)^{1}$	70.3	(11.19)	0.56	1.39	0	+0.331	(0.17)	13.
	15	2.261	(4.41)	75.8	(12.07)	0.80	1.39	0	+0.331	(0.17) 1	18.
	16	3.10 ¹	(6.05)1	84.2	(13.40)	0.99	1.39	0	+0.01	(0.01)	31.
Quasi-Steady	17	3.33	(6.50)	110.9	(17.65)	0.80	1.06	0	0	(0)	N/A
Crash Astern	18	2.57	(5.03)	109.5	(17.43)	0.63	0.61	0	0	(0)	N/A
	19	1.67	(3.26)	104.2	(16.59)	0.43	0.14	0	0	(0)	N/A
	20	0.74	(1.44)	42.5	(6.77)	0.46	-0.67	0	0	(0)	N/A
	21	0.17	(0.34)	48.0	(7.64)	0.10	-0.67	0	0	(0)	N/A
Unsteady Crash Astern	22	3.331	(6.50) ¹	110.9	(17.65)	0.80	1.06	0	0.001	(0.00)	0
ASCELII	23	2.571	$(5.03)^{1}$	109.5	(17.43)	0.63	0.61	0	-0.321	(-0.16) ¹	9.
	24	1.671	(3.26)	104.2	(16.59)	0.43	0.14	0	-0.431	(-0,22)1	13.
	25	0.741	(1.44)	42.5	(6.77)	0.46	-0.67	0	-0.321	(-0.16) ¹	18.
	26	0.17	(0.34)1	48.0	(7.64)	0.10	-0.67	0	-0.181	(-0.09)1	22.

 $^{^{1}\}mathrm{Varies}$ with time (Figure 8); value shown is at time of interest.

 $^{^2\}mathrm{Sinusoidal}$ with amplitude equal to 2.0 deg, frequency equal to 0.8 Hz.

TABLE 6 - FULL-SCALE CONDITIONS SIMULATED BY MODEL EXPERIMENTS

Self-Fropulsion 1 14.7 28.6 25.10 4.00 0.80 1.06 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Condition No.	m/sec	V (knots)	n rad/sec	(rev/sec)	λr	G/A	(ψ−ψ _{CW}) deg	m/sec ² v	(knots/sec)	sec
1	Self-Propulsion	1	14.7	28.6	25.10	4.00	08.0	1.06	0	0.	0-	N/A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Quasi-Steady Hull	2	14.7	28.6	25.10	7.00	08.0	1.06	-2			
4 14.7 28.6 25.10 4.00 0.80 1.06 +1 b 6 14.7 28.6 25.10 4.00 0.80 1.06 +2 7 1.6 2.8 8.90 1.42 0.22 1.39 0 8 3.6 7.0 13.29 2.12 0.37 1.39 0 10 10.0 13.29 2.12 0.37 1.39 0 4 11 13.7 26.7 19.56 3.03 0.99 1.39 0 40.13 ¹ 11 13.7 26.7 19.06 3.03 0.99 1.39 0 40.13 ¹ 11 13.7 26.7 19.06 3.03 0.99 1.39 0 40.13 ¹ 12 1.6 1.26 19.56 3.03 0.99 1.39 0 40.13 ¹ 13.7 26.7 19.06 3.03 0.99 1.39 0 40.31 ¹	Pitch	3	14.7	28.6	25.10	7.00	08.0	1.06	7			_
5 14.7 28.6 25.10 4.00 0.80 1.06 +2 8 14.7 28.6 25.10 4.00 0.80 1.06 vartable ² 8 3.6 7.0 13.29 2.12 1.39 0.0 9 6.4 12.6 13.91 2.53 0.56 1.39 0.0 10 10.0 19.5 17.16 2.73 0.80 1.39 0.0 11 13.7 26.7 19.06 3.03 0.99 1.39 0.0 40.13 ¹ (0.10) ¹ 15 16.4 12.6 13.29 2.12 0.37 1.39 0.0 40.13 ¹ (0.10) ¹ 15 16.4 12.6 13.29 2.12 0.35 1.39 0.0 40.13 ¹ (0.10) ¹ 15 16.4 12.6 13.29 2.12 0.35 1.39 0.0 40.13 ¹ (0.10) ¹ 15 16.4 12.6 13.29 2.12 0.35 1.39 0.0 40.13 ¹ (0.10) ¹ 16 13.7 26.7 19.06 3.03 0.99 1.39 0.0 40.13 ¹ (0.10) ¹ 16 13.7 26.7 19.06 3.03 0.40 0.60 0.00 17 14.7 28.6 25.10 4.00 0.80 1.06 0.0 0.00 18 11.4 22.2 24.78 3.94 0.63 0.61 0.0 0.00 20 3.3 6.4 9.62 1.53 0.40 0.63 0.61 0.0 0.00 1.01 21 22.2 24.78 3.94 0.63 0.61 0.0 0.00 1.01 22 14.7 28.6 25.10 4.00 0.80 1.06 0.00 1.01 23 11.4 22.2 24.78 3.94 0.63 0.61 0.00 1.01 24 7.4 14.4 23.59 3.76 0.43 0.44 0.63 0.61 0.00 1.01 25 3.3 6.4 9.62 1.53 0.46 0.05 0.00 1.01 26 0.8 1.5 10.86 1.73 0.10 0.00 0.00 1.01 27 14.4 23.59 3.76 0.43 0.14 0.00 1.01 28 3.3 6.4 9.62 1.53 0.46 0.05 0.00 1.01 29 0.8 1.5 10.86 1.73 0.10 0.00 1.01 20 0.8 1.5 0.00 1.00 0.00 1.00 0.00 1.00		7	14.7	28.6	25.10	7.00	08.0	1.06	7			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	14.7	28.6	25.10	4.00	08.0	1.06	+2			
1.6 2.8 8.90 1.42 0.22 1.39 0 8 3.6 7.0 13.29 2.12 0.37 1.39 0 10 10.0 19.5 17.16 2.73 0.80 1.39 0 11 13.7 26.7 19.06 3.03 0.99 1.39 0 0 0 12 1.6 2.8 8.90 1.42 0.22 1.39 0 0 0 13 3.6 7.0 13.29 2.12 0.37 1.39 0 0 0 14 6.4 12.6 13.29 2.12 0.37 1.39 0 0 0 15 10.0 19.5 17.16 2.73 0.80 1.39 0 0 0 16 13.7 26.7 19.06 3.03 0.99 1.39 0 0 0 17 14.7 28.6 25.10 4.00 0.80 1.06 0 0 18 11.4 22.2 24.78 3.94 0.63 0.61 0 20 3.3 6.4 9.62 1.53 0.46 -0.67 0 21 0.8 1.5 10.86 1.73 0.10 0.067 0.001 22 14.7 28.6 25.10 4.00 0.80 1.06 0 0.001 23 11.4 22.2 24.78 3.94 0.63 0.61 0 0.001 24 7.4 14.4 23.59 3.76 0.43 0.14 0 0.001 25 3.3 6.4 9.62 1.53 0.46 -0.67 0 0.001 26 0.8 1.5 10.86 1.73 0.10 0.057 0 0.011 27 11.4 22.2 24.78 3.94 0.63 0.61 0 0.001 28 3.3 6.4 9.62 1.53 0.46 -0.67 0 0.001 29 0.8 1.5 10.86 1.73 0.10 0.057 0.011 20 0.8 1.5 0.86 1.73 0.14 0 0.001 20 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 0.001 0.001 20 0.001 0.001 0.001 0.001 0.001 0.001 0.001 20 0.001 0.	Unsteady Hull Pitch	9	14.7	28.6	25.10	4.00	08.0	1.06	variable ²			
8 3.6 7.0 13.29 2.12 0.37 1.39 0	Quasi-Steady Crash	7	1.6	2.8	8.90	1.42	0.22	1.39	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Forward	80	3.6	7.0	13.29	2.12	0.37	1.39	0			
10 10.0 19.5 17.16 2.73 0.80 1.39 0 \bullet \bullet 11 13.7 26.7 19.06 3.03 0.99 1.39 0 \bullet \bullet 12 1.6 2.81 8.90 1.42 0.22 1.39 0 \bullet \bullet \bullet 13 3.6 1 7.0 1 13.29 2.12 0.37 1.39 0 \bullet \bullet \bullet 14 6.4 1 12.6 1 15.91 2.53 0.36 1.39 0 \bullet		6	4.9	12.6	15.91	2.53	0.56	1.39	0			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10	10.0	19.5	17.16	2.73	08.0	1.39	0	•	•	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	13.7	26.7	19.06	3.03	0.99	1.39	0	. 0	0	N/A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Unsteady Crash	12	1.61	2.81	8.90	1.42	0.22	1.39	0	+0.191	(0.10)	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Forward	13	3.61	7.01	13.29	2.12	0.37	1.39	0	+0.23	(0.12)	05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	6.4	12.61	15.91	2.53	0.56	1.39	0	+0.33	(0.17)	09
16 13.71 26.71 19.06 3.03 0.99 1.39 0 $+0.01^{1}$ $(0.01)^{1}$ 17 14.7 28.6 25.10 4.00 0.80 1.06 0 0 0 18 11.4 22.2 24.78 3.94 0.63 0.61 0 0 20 3.3 6.4 9.62 1.53 0.46 -0.67 0 0 21 0.8 1.5 10.86 1.73 0.10 -0.67 0 0 0 22 14.7^{1} 28.6^{1} 25.10 4.00 0.80 1.06 0 0.00^{1} 0.00^{1} 23 11.4^{2} 22.2^{2} 24.78 3.94 0.63 0.61 0 -0.32^{1} -0.16^{1} 25 3.3^{1} 6.4^{1} 9.62 1.53 0.46 -0.67 0 -0.32^{1} -0.16^{1} 26 0.8^{1} 10.86 1.73 0.10 -0.03^{1} -0.09^{1}		1.5	10.01	19.51	17.16	2.73	08.0	1.39	0	+0.33	(0.17)	80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	13.71	26.71	19.06	3.03	66.0	1.39	0	+0.01	(0.01)	140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Quasi-Steady Crash	17	14.7	28.6	25.10	7.00	08.0	1.06	0	0.	0	N/A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Astern	18	11.4	22.2	24.78	3.94	0.63	0.61	0	_		_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19	7.4	14.4	23.59	3.76	0.43	0.14	0			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20	3.3	9.9	9.62	1.53	97.0	-0.67	0	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21	8.0	1.5	10.86	1.73	0.10	-0.67	0	. 0	0	N/A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Unsteady Crash Astern	22	14.71	28.61	25.10	4.00	08.0	1.06	0	0.001	0.001	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		23	11.41	22.2	24.78	3.94	0.63	0.61	0	-0.32	-0.161	07
3.3^{1} 6.4^{1} 9.62 1.53 0.46 -0.67 0 -0.32^{1} -0.16^{1} 0.8^{1} 1.5^{1} 10.86 1.73 0.10 -0.67 0 -0.18^{1} -0.09^{1} 1		24	7.41	14.41	23.59	3.76	0.43	0.14	0	-0.43	-0.22	09
0.81 1.51 10.86 1.73 0.10 -0.67 0 -0.18 ¹ -0.09 ¹		25	3.3	6.4	9.62	1.53	97.0	-0.67	0	-0.32	-0.16	80
		26	0.81	1.51	10.86	1.73	0.10	-0.67	0	-0.181	-0.091	100

Varies with time (Figure 8); value shown is at time of interest.

²Sinusoidal with amplitude equal to 2.0 deg, frequency equal to 0.8 Hz.

TABLE 7 - TIME-AVERAGE LOADS FOR STEADY AHEAD OPERATION NEAR THE SELF-PROPULSION POINT

 $V \approx 3.33 \text{ m/sec} = 10.92 \text{ ft/sec}$ n = 110.9 rad/sec = 17.65 rev/sec $J_V = 0.80$ P/D = 1.06

$$\overline{K}_{F_{X}}$$
 = 0.0321 \overline{F}_{X} = 30.0 N = 6.74 lb
 $\overline{K}_{F_{Y}}$ = 0.0213 \overline{F}_{Y} = 19.9 N = 4.48 lb
 $\overline{K}_{M_{X}}$ =-0.0059 \overline{M}_{X} =-1.29 N-m =-11.42 in-lb
 $\overline{K}_{M_{Y}}$ = 0.0118 \overline{M}_{Y} = 2.59 N-m = 22.94 in-lb
 $\overline{K}_{M_{Z}}$ =-0.0006 \overline{M}_{Z} =-0.13 N-m = -1.15 in-lb
 $\overline{K}_{M_{A}}$ = 0.0069 \overline{M}_{H} = 1.51 N-m = 13.37 in-lb
 $\overline{K}_{M_{A}}$ = 0.0050 $\overline{M}_{0.4}$ = 1.10 N-m = 9.74 in-lb

steady ahead condition run during the present study represents a slightly "overpropelled" condition. However, the thrust and propeller rotational speed determined from the present experiment were in good agreement with the standardization data; although the scaled torque and power were lower on the model experiment. This is not a serious shortcoming since the net bending moment on the blade at steady ahead operation is controlled predominantly by the bending moment arising from thrust.

The trim and draft at this speed was determined by setting the specified still water trim (even keel) and draft (4.65 m (15.27 ft) full-scale equivalent), attaching the model to the carriage so that it was free to trim and sink, running at the specified speed, and locking the model at this equilibrium trim and draft.

Runs simulating hull pitching were conducted at the same conditions as the steady ahead run, except that the hull pitch was varied. Two types of runs were conducted: (1) quasi-steady simulation in which the hull pitch angle ψ was set at various fixed position and (2) unsteady simulation in which ψ was varied sinusoidally with time. For the quasi-steady simulation, runs were conducted at five different values of ψ , from 2-deg bow up from the calm water equilibrium ψ ($\psi=\psi_{CW}$) to 2-deg bow down from ψ_{CW} (Tables 5 and 6). For the unsteady pitch simulation, the value of ψ was varied sinusoidally about ψ_{CW} with an amplitude of 2 deg and a frequency of 0.8 Hz. The selected scaled amplitude and frequency were within the predicted response characteristics of the FF-1088. All runs were conducted in calm water; therefore, the response of the hull to the seaway was simulated but the seaway was not simulated.

Crash ahead runs were conducted by using the still-in-the-water point as the initial condition. Trim and displacement were fixed at the values corresponding to the self-propulsion condition (Condition 1 of Table 5). Two types of runs were conducted: (1) quasi-steady runs in which all quantities including model speed V, rotational speed n, and propeller pitch P were held constant $(\dot{V}=\dot{n}=\dot{P}=0)$ and (2) unsteady runs in which V was varied with time but n and P were held constant $(\dot{V}>0$, $\dot{n}=\dot{P}=0$). For the quasi-steady simulation,

runs were conducted at five different combinations of V, n, and P. The conditions for each run represent the conditions at one instant of time during a "true" crash ahead in which V, n, and P vary with time. Thus, one "true" crash ahead run is represented by five steady runs which do not simulate the time rate of change of V, n, and P. For the unsteady simulation, runs were conducted at the same five combinations of fixed n and P as used for the quaso-steady simulation, and V was varied with time (the same variation was used for each run) representing an acceleration of the model hull (Figure 8). For each of these runs, data are of interest only near that value of V which occurred concurrently with the fixed values of n and P during the "true" crash ahead (V +0, n+0, P+0). Thus, one "true" crash ahead run is represented by five runs which simulate the proper time rate of change of V but not the proper time rate of change of n and P. The quasi-steady and unsteady crash ahead simulations were for the same conditions, the only difference being that V=0 for the quasisteady simulation whereas V>0 for the unsteady simulation. In general, P varied with time during a "true" crash ahead run; however, for the crash ahead run under simulation here, P was constant throughout the portion of the run simulated.

Crash astern runs were conducted by using the self-propulsion condition (Condition 1 in Table 5) as the initial condition. Both quasi-steady $(\dot{V}=\dot{n}=\dot{P}=0)$ and unsteady $(\dot{V}<0$, $\dot{n}=P=0)$ runs were conducted (Table 5 and Figure 8) to simulate one "true" crash astern $(\dot{V}\neq0$, $\dot{n}\neq0$, $\dot{P}\neq0$) condition by procedures similar to those described for the crash ahead condition. Unlike the crash ahead simulation, the value of propeller pitch P varied through the portion of "true" crash astern under simulation.

For the unsteady crash ahead and crash astern runs, the carriage speed was manually varied with time in a carefully controlled manner. This was achieved with the aid of an inked pen on a two-dimensional Cartesian plotter. In one direction, the pen was controlled so that it moved linearly with time, and in the orthogonal direction, it was controlled so that it varied with the instantaneous carriage speed. When a crash ahead or crash astern maneuver was to be executed, the switch moving the pen with time was turned on and the carriage operator manually varied the carriage speed so that the inked pen followed a prescribed velocity versus time curve.

As discussed earlier, each of the three load-sensing flexures measured only two components of blade loading. Therefore, each of the experimental conditions described in Table 5 was run with each of the three blade loading flexures.

The blade pitch was set by using a template. In order to change either the blade pitch or the flexure, the propeller had to be removed from the drive system.

Supplemental experiments were conducted to assess the influence of the downstream dynamometer boat on the flow in the propeller plane. These supplemental experiments consisted of (1) wake surveys in the propeller plane at the self-propulsion point (Condition 1 in Table 5) with and without the downstream body, (2) measurement of time-average thrust and torque using a transmission dynamometer in the model hull near the self-propulsion point with and without the downstream body, and (3) measurement of the six components of blade loading at P/D=1.06 over a range of advance coefficient J with the downstream body at zero shaft angle but without the upstream ship model. The supplemental experiment on wake surveys yielded a direct measure of the change in volume mean velocity through the propeller disk attributable to the downstream body. The change in effective velocity through the propeller disk was deduced from Supplemental Experiments (2) and (3) by thrust and torque identity between similar conditions with and without the downstream body.

Some air spin experiments were conducted with the $\mathbf{F_z}$, $\mathbf{M_z}$ flexure over a range of pitch settings in order (1) to isolate the centrifugal loading in the $\mathbf{F_z}$ and $\mathbf{M_z}$ directions and (2) to evaluate the reliability of the results with this flexure by correlation with analytically calculated centrifugal loading.

DATA ACQUISITION AND ANALYSIS

Data were collected, stored, and analyzed on-line by using a Model 70 Interdata Digital Computer. A special-purpose computer program was written with options for analyzing each of the three basic types of runs: (1) steady ahead, (2) dynamic hull pitching, and (3) unsteady crash-ahead or crash-astern. These types of runs have already been discussed in detail.

The program allowed the propeller blade force and moment data to be sampled and stored on magnetic tape as a function of shaft position. Sampling was triggered by external pulses generated by a digital encoder mounted on the propeller shaft, as discussed earlier. Pulses were generated as a function of shaft angular position; hence, the sampling of blade force and moment data was related to shaft position. There were two outputs from the shaft encoder; a single pulse per revolution and multipulse (90 pulses per revolution for the current experiments).

When the experimental condition was achieved, the computer operator initiated the data collection cycle. The program "waited" for the occurrence of the first following pulse of the 90 pulses; data were then sampled for all channels through an analog-to-digital converter and stored in computer memory. This process was repeated for 180 pulses, or two shaft revolutions. At the same time, the program "read" two frequency counters into core memory which measured model velocity V and propeller rotational speed n. V and n were measured by counting the pulses from geared wheels attached to the towing carriage drive system and to the propeller shaft, respectively. The V and n were averaged over two shaft revolutions. Thus, there was an average V and n corresponding to each pair of two consecutive revolutions.

After two revolutions of data were sampled and stored in core memory, the data were transmitted from core to a nine-track digital tape recorder. The transfer time was small and no pulses were missed during the transfer. The data collect cycle proceeded continuously until the operator disengaged the computer. The sampling procedure was the same for all types of experimental conditions, and at the completion of an experimental run, all data were stored on magnetic tape and were available for analysis immediately or at any later time. For that analysis, the computer operator selected the appropriate option of the program depending on the type of run, i.e., (1) steady ahead, (2) dynamic hull pitching, or (3) unsteady crash ahead or crash astern.

The appropriate calibration factors were stored in the computer and considered in the analysis. However, since only two of the six components of blade loading were measured during a given run, the interactions between

the various loading components could not be considered during the on-line analysis. The interactions were taken into account later after measurements were completed with all three flexures for a given condition.

For the steady ahead condition, blade force and moment data at each 4-deg increment of blade angular position were averaged over the number of cycles recorded (usually over more than 200 cycles). Spurious data not related to shaft position are averaged out by this method. A harmonic analysis was then performed on the average wave forms of the blade loading components. This gave the amplitude and phase of the first 16 harmonics.

For the dynamic pitch runs, the hull pitch angle ψ varied sinusoidally with a frequency of 0.8 Hz. A position potentiometer translated bow vertical displacement into hull pitch angle, and thus was read into the computer in the same manner as blade loading components. During dynamic pitching, the shaft rotated independent of the pitch oscillator. During a single propeller revolution, 90 pitch positions were measured. Thus, to correlate pitch angle position and revolution, an average pitch must be taken over each revolution.

The 16 dynamic pitch angle positions selected for analysis were characterized by pitch angle ψ and the sign of the time rate of change of pitch angle $\dot{\psi}$. The computer calculated an average ψ and sign of $\dot{\psi}$ corresponding to each propeller revolution. Based on these calculated average values of ψ and sign of $\dot{\psi}$, each propeller revolution was either placed in a suitable hull pitch angle category or discarded if its average ψ fell outside the tolerance band of all the 16 specified values of ψ . Several passes down the towing tank were required in order to obtain a sufficient number of samples. After all the data had been sorted based on $(\psi$, sign of $\dot{\psi}$), and tolerance, the cycles for each combination of $(\psi$, sign of $\dot{\psi}$) were analyzed in exactly the same manner as the data for the steady ahead condition at fixed ψ .

For unsteady crash ahead and crash astern runs, the model speed V varied with time t. During a crash ahead or crash astern run, data, including a measure of V, were sampled and stored in the same manner as for the steady ahead runs.

Five values of V were specified for analysis. For each crash ahead or crash astern run and for each specified V, the computer selected the propeller revolution which had the average value of measured V nearest to the specified V. However, because only one revolution at each specified velocity was obtained for a single crash ahead or crash astern run, each such run was repeated from three to five times. This yielded three to five revolutions at each specified velocity. All the cycles for each specified V were then analyzed in exactly the same manner as the data for the steady ahead conditions.

Thus the on-line analysis system yielded average wave forms and harmonic analysis of the average wave forms for steady ahead conditions, for specified conditions of $(\psi$, sign of $\dot{\psi})$ during the dynamic pitch cycle, and for specified velocities V during the crash ahead or crash astern operation. However, these on-line results are preliminary because:

- 1. They do not consider the interactions between the various load components. These interactions were determined during the static calibration of the flexures.
- 2. They include the complete measured signals with no filtering. As discussed in the section on experimental results, some extraneous signals near the natural frequency of the flexure being used appeared to be superimposed on the signals generated by blade loading.

Final analyses were conducted after completion of the experiment to consider interactions and to filter out extraneous high frequency noise. These analyses were conducted by using a CDC 6700 Computer. For each condition, the average wave form for each of the six loading components was multiplied by the inverse of the calibration matrix given in Table 2.

$$\begin{bmatrix} \mathbf{F}_{\mathbf{x}\mathbf{A}} \\ \mathbf{F}_{\mathbf{y}\mathbf{A}} \\ \mathbf{F}_{\mathbf{z}\mathbf{A}} \\ \mathbf{F}_{\mathbf{z}\mathbf{A}} \\ \mathbf{M}_{\mathbf{x}\mathbf{A}} \\ \mathbf{M}_{\mathbf{y}\mathbf{A}} \\ \mathbf{M}_{\mathbf{y}\mathbf{A}} \\ \mathbf{M}_{\mathbf{z}\mathbf{A}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{\mathbf{x}\mathbf{I}} \\ \mathbf{F}_{\mathbf{y}\mathbf{I}} \\ \mathbf{F}_{\mathbf{z}\mathbf{I}} \\ \mathbf{M}_{\mathbf{x}\mathbf{I}} \\ \mathbf{M}_{\mathbf{y}\mathbf{I}} \\ \mathbf{M}_{\mathbf{y}\mathbf{I}} \\ \mathbf{M}_{\mathbf{z}\mathbf{I}} \end{bmatrix} -1$$

This matrix multiplication was performed at 0.07-rad (4-deg) increments of blade angular position. A harmonic analysis was then performed on the signals corrected for the interactions. Based on a harmonic analysis of the wake in the propeller plane, it was judged that there should be no significant loading of hydrodynamic origin at frequencies above ten times shaft frequency. Therefore, the wave form was then reconstructed by using the first ten harmonics of shaft frequency, except for the spindle torque M which used the first five harmonics of shaft frequency. This reconstruction using only the first ten (or five) harmonics had the same effect as filtering out all frequencies above ten (or five) times shaft frequency.

From the known values of F_x , F_y , M_x and M_y , the values of the bending moment normal to the nose-tail line at the blade root (the 0.289 radius) and at the 0.4 radius were calculated. For the calculation about the 0.4 radius, it was assumed that the loading between the blade root and the 0.4 radius accounted for 3 percent of the moments about the shaft centerline. These bending moments were calculated at every 4 deg of blade angular position, harmonically analyzed, and the wave form reconstructed by using the first 10 harmonics of blade angular position in exactly the same manner as was used for the other components of blade loading.

Plots of the data were generated by the CDC computer system using a Calcomp Plotter.

ACCURACY

During experiments for steady ahead operation $\dot{V}=0$, the model speed V and rotational speed n could be controlled to within accuracies of ± 0.005 M/sec and ± 0.01 rev/sec, respectively. For the unsteady crash ahead and crash astern maneuvers $(\dot{V}\neq 0)$, the average of the three to five values of V and n during the unsteady runs for which data are presented was generally within ± 0.01 M/sec and ± 0.05 rev/sec, respectively, of the target values.

For runs with fixed hull pitch angle ψ , $(\dot{\psi}=0)$, the value of ψ could be controlled to within 0.005 deg. For dynamic pitch runs $\dot{\psi}\neq0$, the selection of a propeller revolution at a specified ψ necessitated a tolerance of 0.1 deg to ψ ; however, the average value of ψ during the unsteady runs for which data are presented was generally within 0.02 deg of the target ψ .

The forces F_x and F_y and moments M_x , M_y , and M_z were accurate to within (plus or minus) the following variations:

	F [N]	F _{MAX}	M N-m	M _{MAX}
Steady ahead $\dot{v}=0$, $\dot{\psi}=0$	1.0	1.5	0.04	0.06
Dynamic pitch V=0, ψ≠0	1.5	2.0	0.06	0.08
Crash ahead v>0, v=0	2.0	2.5	0.08	0.10
Crash astern v⊂0, v=0	2.0	2.5	0.08	0.10

The values are somewhat more accurate for the steady ahead runs than for the time-dependent runs, because the experimental conditions could be controlled more precisely for the steady runs and the measured forces and moments were averaged over many more revolutions of the propeller. The time-average values per revolution (based on 90 samples

per revolution) are slightly more accurate than the maximum values (based on one sample per revolution) which took into account the variation with blade angular position. Further, the peak values may have been slightly influenced by the dynamic response of the flexures, as discussed in the section on calibration.

The measured values of \mathbf{F}_z were substantially less accurate than the other components of blade loading and these results are not presented as explained in the following section.

EXPERIMENTAL RESULTS

CENTRIFUGAL LOADS

The results of the air-spin experiments with the F_z , M_z flexure were compared with calculated values of F_z and M_z by using the method of Boswell. Boswell. Previous measurements of spindle torque by Boswell et al. and by Hawdon et al. have correlated well with values calculated by this procedure. Figures 9 and 10 show the correlation for M_z and F_z , respectively. M_z correlated fairly well except at $P/D\approx-0.67$, but the correlation for F_z was rather poor. This poor correlation for F_z , combined with the large interaction effect of M_z on F_z and the low natural frequency of this flexure, casts doubt on the reliability of the measured values of F_z . In addition, the experimental values of F_z in water were rather inconsistent. Since F_z arises primarily from centrifugal loading, no experimental results are presented for F_z in water.

INFLUENCE OF DYNAMOMETER BOAT

The results of the wake surveys with and without the downstream body (dynamometer boat) are presented in Figures 11 and 12, and in Appendix A.

²³Boswell, R.J., "A Method of Calculating the Spindle Torque of a Controllable-Pitch Propeller at Design Conditions," David Taylor Model Basin Report 1529 (Aug 1961).

²⁴Boswell, R.J. et al., "Experimental Spindle Torque and Open-Water Performance of Two Skewed Controllable-Pitch Propellers," DTNSRDC Report 4753 (Dec 1975).

These data indicate that the downstream body had only a small effect on the circumferential and radial variation in the flow and only a small effect on the harmonic content of the flow. However, they also indicate that the downstream body reduced the volume mean velocity through the propeller disk by approximately 12 percent. This reduction in mean flow due to the downstream body was confirmed by values deducted from thrust and torque identity between model experimental values with and without the downstream body in place. The values of reduction in effective velocity deduced in this manner are as follows:

- 1. A reduction of 10 to 14 percent from measurement of mean thrust and torque using a transmission dynamometer inside the model hull at the self-propulsion point (Condition 1 in Table 5) with and without the downstream body in place.
- 2. A reduction of 10 to 14 percent from mean thrust and torque deduced from the blade loading experiments at the self-propulsion point (condition 1 in Table 5) and thrust and torque measured during a previous self-propulsion model experiment.
- 3. A reduction of 9 to 12 percent from mean thrust and torque coefficients deduced from blade loading experiments at P/D=1.06 over a range of advance coefficient J with the downstream body at zero shaft angle with no upstream hull, and thrust and torque coefficient determined by previous open-water experiments (Figure 13).

Based on these results it was concluded that the downstream body reduced the mean velocity into the propeller by 12 percent at the self-propulsion condition. It was assumed that this 12-percent reduction occurred at all conditions at which experiments were conducted. Therefore, the time-average value per revolution of each loading component was corrected for the effect of the downstream body as follows: From the measured blade thrust $(\overline{\mathbf{F}}_{\mathbf{x}})$ and blade torque $(\overline{\mathbf{M}}_{\mathbf{x}})$, an effective advance coefficient J based on thrust identity (J $_{\mathbf{T}}$) and torque identity (J $_{\mathbf{Q}}$) was deduced from the open-water data (Figure 13). These

values were multiplied by (1/0.88) to obtain corrected values of J_T and J_Q , i.e., without the downstream body. The corrected values of \overline{F}_x and \overline{M}_x were obtained from the open-water data at the corrected advance coefficients J_T and J_Q , respectively. It is assumed that the downstream body did not affect the radial center of thrust \overline{F}_x and tangential force \overline{F}_y . Therefore,

 \overline{M}_y corrected = $(\overline{F}_x \text{ corrected}/\overline{F}_x \text{ measured}) \overline{M}_y$ measured \overline{F}_y corrected = $(\overline{M}_x \text{ corrected}/\overline{M}_x \text{ measured}) \overline{F}_y$ measured

The spindle torque (\overline{M}_2) was corrected by the same procedure as used for \overline{F}_x and \overline{M}_x , except that the centrifugal and hydrodynamic components of spindle torque were separated so that the correction was applied only to the hydrodynamic component. Centrifugal spindle torque was determined by air spin experiments, as discussed previously. The open-water hydrodynamic spindle torque data used for these corrections were those reported by Denny and Stevens 25 on DTNSRDC Model Propeller 4496. These data were presented over a range of pitch ratio P/D and advance coefficient J. The geometry of Propeller 4496 is nearly identical to that of the propeller on the FF-1088. The only differences between the two propeller designs are the chordwise distributions of camber and thickness, the radial distributions of camber and pitch, and the chord length and skewback between the 90-percent radius and the tip; see Tables 2 and 8. It was judged that these two propellers would have approximately the same spindle torque at the same advance coefficients and pitch ratios.

In addition to the correction to hydrodynamic spindle torque for mean advance coefficient, the centrifugal spindle torque was corrected for the difference in density between the aluminum model propeller and a nickel-aluminum-bronze full-scale propeller. Since centrifugal spindle

Denny, S.B. and H.G. Stephens, "Blade Spindle Moment on Controllable-Pitch Propellers," NSRDC Departmental Report SPD-011-14 (Jul 1974).

TABLE 8 - CHARACTERISTICS OF PROPELLER CORRESPONDING TO DTNSRDC MODEL PROPELLER 4496

Diameter: 4.572 m (15.0 ft)
Rotation: Right hand
Number of Blades: 5
Maximum Rotational Speed (Rated):
25.13 rad/sec (240 rev/min)
Full Power (Rated):
26,100 kW (35,000 hp)
Speed at Full Power:
14.5 m/sec (28.1 knots)

Expanded Area Ratio: 0.83

Blade Thickness Fraction: 0.059 Section Meanline: NACA a=0.8¹ Section Thickness Distribution:

NACA 66 (Modified) 1
Design Advance Coefficient J: 0.767
Design Advance Angle B*:
0.3356 rad (19.23 deg)
Design Thrust Loading Coefficient,
C_{Th}: 0.706

x	c/D	$(P/D)^{1}$	$(P/D)^1$ S/D^2		t/D	$(f_{M}/c)^{1}$	
0.30	0.1853	0.998	0.0185	0	0.0437	0.0189	
0.40	0.2482	1.070	0.0248	0	0.0328	0.0197	
0.50	0.3111	1.104	0.0311	0	0.0250	0.0190	
0.60	0.3740	1.102	0.0374	0	0.0187	0.0168	
0.70	0.4369	1.078	0.0437	0	0.0131	0.0128	
0.80	0.4760	1.035	0.0476	0	0.0089	0.0105	
0.90	0.4600	0.979	0.0460	0	0.0061	0.0098	
0.95	0.42281	0.944	0.04231	0	0.0051	0.0099	
1.00	0.1500	0.906	0.01501	0	0.0040	0.0100	

¹ Different than for propeller on FF-1088.

 $^{^2{\}rm The\ spindle\ axis}$ is the propeller reference line and passes through the 40-percent chord for all radii.

torque is directly proportional to the density of the material, this correction factor is simply $(\rho_{\rm NI-AL-BR})/(\rho_{\rm AL})$. The time-average spindle torque per revolution presented in this report is the sum of the hydrodynamic spindle torque corrected for the downstream body and the centrifugal spindle torque which corresponds to nickel-aluminum-bronze propeller blades.

No correction for the effect of the downstream dynamometer boat was made to the measured circumferential variation of the loading components. Calculations made by the methods of Tsakonas et al. 20 and McCarthy 21 indicated that the influence of the downstream body may reduce the peak-to-peak circumferential variation of the loads by approximately 10 percent of the uncorrected unsteady loading. However, these methods did not agree well with the experimental results, as discussed in the section on correlation with full-scale data and theory.

STEADY AHEAD OPERATION

For operation near the self-propulsion point (Condition 1 in Table 5), Figure 14 presents the variation of the various components of blade loading with blade angular position and Figure 15 presents the amplitude of the first 25 harmonics of the various components of blade loading. For the harmonic amplitude and phases, the variation of $\mathbf{F}_{\mathbf{x}}$ with blade angular position is represented as:

$$F_{\mathbf{x}}(\theta) = \overline{F}_{\mathbf{x}} + \sum_{n=1}^{N} (F_{\mathbf{x}})_{n} \cos (n\theta - (\phi_{\mathbf{F}\mathbf{x}})_{n})$$

where \overline{F}_{x} = circumferential average value of F_{x}

 $(F_x)_n$ = amplitude of the nth harmonic of F_x

θ = angular position in disk, positive clockwise from the vertical upward looking upstream

The reference line on the blade is the radial line through midchord at the hub radius. $(\phi_{Fx})_n$ = phase angle of nth harmonic of F_x . A similar representation is used for all components of blade loading.

Based on the dynamic calibration, as discussed in the section on calibration, it was judged that for all loading components the data are valid for the first 10 harmonics, except M which was judged to be valid for the first 5 harmonics. Therefore, all data and analysis except Figures 14 and 15 are based on reconstructed signals using 5 harmonics for M and 10 harmonics for other loading components. The circles shown on Figure 14 indicate unfiltered values determined from the experiment; each represents the average value at the indicated blade angular position for over 200 propeller revolutions. The lines are the signals reconstructed from the first 10 harmonics. Figure 14 indicates that the variation of the signal with blade angular position is adequately represented by the number of harmonics retained. Figures 14 and 15 show that there was a resonance in the F signal near the fourteenth harmonic. This corresponded to (14) \times (17.65 Hz) = 247 Hz which is near the natural frequency of this flexure in water, as discussed in the section on calibration.

The variation of all measured loading components with blade angular position for Condition 1 in Table 5 is shown in Figure 16 and in Appendix B. Figure 17 and Appendix B present the amplitude and phases of the harmonics of these loading components. The values for each loading component are presented as decimal fractions of the time-average value of the corresponding loading component. These average values are presented in Table 7. These data indicate that the extreme values for all loading components occurred near θ =90 and 270 deg and that the variation was predominantly a once-per-revolution variation. This suggests that the tangential component of the wake is the primary driving force.

For F_x and M_y , the largest measured force and moment components, the maximum values were approximately 1.38 times the time-average values; the range of values with blade angular position, i.e., the maximum value minus the minimum value (double amplitude) was approximately 0.80 times the time-average value. For F_y and M_y , the maximum values and range of values with blade angular position were somewhat smaller fractions of

the respective time-average values. For $\rm M_Z$, the maximum value and range of values with blade angular position were much greater fractions of its time average. This large fractional variation in $\rm M_Z$ occurs because $\rm M_Z$ was very small at the self-propulsion point (the blade is designed with its area balanced forward and aft the spindle axis at the self-propulsion point).

HULL PITCH

Figure 18 presents the variation of the peak values and time-average values per revolution of the various components of blade loading with hull pitch angle Ψ for both quasi-steady simulation (time rate of change of hull pitch angle $\dot{\Psi}=0$) and unsteady simulation ($\dot{\Psi}\neq0$). These data show that except for spindle torque M_z , the time-average value per revolution of each loading component remains within 4 percent of its value corresponding to self-propulsion in calm water. This holds true for both quasi-steady simulation ($\dot{\Psi}=0$) and unsteady simulation ($\dot{\Psi}\neq0$). The time-average spindle torque per revolution \overline{M}_z varied as much as 20 percent from its calm-water value ($\Psi=\Psi_{CW}$). This large percentage variation occurred because \overline{M}_z was very small at $\Psi=\Psi_{CW}$ as discussed earlier.

Data at each specified value of hull pitch angle ψ for the quasisteady runs were recorded and averaged for a minimum of 200 propeller revolutions whereas data for the dynamic pitching runs at each specified ψ represented an average of from 10 to 35 propeller revolutions. As discussed earlier, the selection of a propeller revolution at a specified ψ during the dynamic pitch runs necessitated a tolerance of 0.1 deg to ψ ; however, the average value of ψ during unsteady runs for which data are presented was generally within 0.02 deg of the target ψ . Therefore, the differences between the results for the quasi-steady and unsteady simulations, including the time-average values per revolution, was significantly larger than any errors which may have arisen from inaccuracies in setting the experimental conditions.

For quasi-steady simulation, the absolute value of the time-average value per revolution of all loading components, except spindle torque ${\tt M}_{\tt Z}$, decreased slightly for stern down and increased slightly for stern up. This suggests that the effective speed of advance of the propeller increases slightly for the stern-down condition and decreases slightly for the stern-up condition. This appears reasonable since for stern-up the propeller tends to be further into the boundary layer of the hull.

For dynamic simulation, the absolute value of the time-average value per revolution of all loading components, except spindle torque M_Z, increased slightly for stern-down and decreased slightly for stern-up. Comparison of the time or location during the cycle of hull pitch angle ψ at which the largest time average loads occurred for quasi-steady and unsteady simulations shows a lag of approximately 0.65 sec, or 0.5 cycles, between the motion of the hull and the flow into the propeller resulting from this motion. This time lag is the period required for a particle of fluid to move approximately one-third the length of the hull.

There was a significant difference between the peak values for the quasi-steady simulation and the unsteady simulation. For the quasi-steady simulation, the variation of the peak values with hull pitch angle ψ followed the same trend as the variation of time-average values per revolution. These quasi-steady results indicated that for $\psi-\psi_{CW}$ up to 2 deg, the maximum increase in the peak value of any loading component above the corresponding value for $\psi=\psi_{CW}$ was 4 percent. For the dynamic simulation, however, the maximum value of the peak loads increased as much as 20 percent above the corresponding value for steady ahead at a fixed hull pitch $\psi=\psi_{CW}$.

The dynamic simulation exhibited a dramatically different trend of peak load with ψ than indicated by the quasi-steady simulation. For the dynamic simulation, the largest value of the peak loading occurred near $\psi=\psi_{CW}$ as the hull passed from the stern-up to the

stern-down position of the cycle, and the smallest value of peak loading occurred near $\psi=\psi_{CW}$ as the hull passed from the stern-down to the stern-up position of the cycle.

This difference in the unsteady loading between the quasi-steady and unsteady simulations is apparently due to an additional relative velocity component arising from the motion of the hull during dynamic pitching. As the hull passes through $\Psi=\Psi_{CW}$, the vertical velocity of the hull (and propeller) is a maximum. As the hull goes from stern-up to stern-down through $\Psi=\Psi_{CW}$, the upward velocity component relative to the propeller in the plane of the propeller tends to increase above the values at fixed hull pitch at $\Psi=\Psi_{CW}$. This tends to increase the amplitude of the first harmonic of the tangential velocity, and thereby increase the unsteady loading (and increase the peak loading). The maximum vertical velocity of the propeller for sinusoidal pitching with $(\Psi_{MAX}-\Psi_{CW})=2.0$ deg and frequency = 0.8 Hz is approximately 0.086 m/sec. This is equivalent to an additional tangential velocity ratio (V_{CW}) of 0.025. For Ψ fixed at $\Psi=\Psi_{CW}$, $((V_{CW})_1/V)=0.155$ (see Figure 12 and Appendix A). Therefore

$$\frac{((v_t)_1/v)_{MAX, \psi \neq 0}}{((v_t)_1/v)_{\psi=0, \psi=\psi_{CW}}} = \frac{0.155 + 0.025}{0.155} = 1.16$$

This maximum occurs at the same position during the dynamic pitch cycle as the maximum measured loads. The measured increase in unsteady loads arising from dynamic pitching was somewhat larger than this calculated increase in tangential velocity, for example:

$$\frac{(F_{X_{MAX}} - \overline{F}_{X}) \dot{\psi} \neq 0, \psi = \psi_{CW}}{(F_{X_{MAX}} - \overline{F}_{X}) \dot{\psi} = 0, \psi = \psi_{CW}} = \frac{0.57}{0.38} = 1.50$$

However, on the basis of two-dimensional quasi-steady theory, the increase unsteady loading should be approximately proportional to the increase in tangential velocity.

The unsteady loading is important from consideration of fatigue of the propeller blades and hub mechanism. Since a ship may operate for an extended period in a seaway, the effect of the ship motions, such as dynamic hull pitching, on unsteady blade loads is significant. The difference between the peak load and the time-average load per revolution is a measure of the unsteady loading. With this difference as a measure of the unsteady loading, the quasi-steady simulation indicates that for hull pitch angles Ψ up to 2 deg, each unsteady loading component increases by not more than 5 percent above its corresponding value for $\psi=\psi_{CM}$. By contrast, the dynamic simulation showed that unsteady loading components are increased by at least 50 percent above their corresponding values for $\psi=\psi_{CV}$. This indicates that the quasi-steady simulation is completely inadequate for estimating the effect of the seaway on unsteady loading. This also shows that the effect of the ship motions can dramatically increase the unsteady loading on the blades. Therefore, the effect of the ship motions due to operation in a seaway should be considered in any analysis of blade loading and in any fatigue analysis of the propeller blades or hub mechanism.

CRASH AHEAD AND CRASH ASTERN MANEUVERS

Figures 19 and 20 and Appendix B present the variation of components of blade loading with blade angular position along with the corresponding harmonic amplitudes and phases for the quasi-steady simulated crash-ahead

condition $\dot{V}=\dot{P}=\dot{n}=0$. Figures 21 and 22 and Appendix B present similar results for the quasi-steady simulated crash-astern conditions $\dot{V}=\dot{n}=\dot{P}=0$. The values for each loading component are presented as decimal fractions of the time-average values of the corresponding loading component at the self-propulsion condition (Condition 1 of Table 5). These time-average values are presented in Table 7.

Figure 23 presents the Taylor wake fraction based on thrust $1-w_{\widetilde{T}}$ and the Taylor wake fraction based on torque $1-w_{\widetilde{Q}}$ as derived from the measured values of \overline{F}_x and \overline{M}_x and the open-water characteristics of the propeller (Figure 13). These data indicate a substantial variation in $1-w_{\widetilde{T}}$ and $1-w_{\widetilde{Q}}$ during the simulated crash ahead and crash astern maneuvers. During the crash-ahead maneuver, $1-w_{\widetilde{T}}$ and $1-w_{\widetilde{Q}}$ were respectively larger and smaller than their values near the self-propulsion point. For the crash astern maneuver, both $1-w_{\widetilde{T}}$ and $1-w_{\widetilde{Q}}$ initially decreased with decreasing speed and then increased dramatically as speed was further reduced. At the lowest experimental speed during simulated crash astern (V=0.17 m/sec), both $1-w_{\widetilde{T}}$ and $1-w_{\widetilde{Q}}$ were greater than 2.5.

These indicated values of 1-w_T and 1-w_Q are subject to significant inaccuracies in the initial portion of the simulated crash forward and in the final portion of the crash astern (dashed lines in Figure 23). These inaccuracies arise because the thrust and torque, which are measured on only one blade, are small in these regions, $(\overline{F} \leq 15 \text{N}, \overline{H} \leq 0.5 \text{N-m}).$

Figure 19 shows that for almost all measured loading components, the maximum time-average values per revolution and the peak values, including variation with blade angular position, occurred at the third experimental condition (V=1.46 m/sec, n=11.19 rev/sec, P/D=1.39) during the crashahead maneuver. For M $_{\rm y}$, which is the largest moment component, the peak value and the maximum time-average value per revolution were respectively 1.51 and 1.35 times the time-average value at the self-propulsion point. For the other loading components, except spindle torque M $_{\rm s}$, the peak

value and the maximum time-average value per revolution were respectively in the range 1.35--1.60 and 1.20--1.45 times the corresponding time-average value at the self-propulsion point. For spindle torque $\rm M_{_{\rm Z}}$, the peak value and the maximum time-average value per revolution were respectively 5.6 and 4.8 times the time-average value at the self-propulsion point. These represent large increases for $\rm M_{_{\rm Z}}$ because $\rm \overline{M}_{_{\rm Z}}$ was quite small at the self-propulsion point, as already discussed.

Results for the crash astern maneuver show that, except for spindle torque, the maximum time-average load per revolution and the peak load, including variation with blade angular position, occurred at the initial (steady ahead) condition.

Higher loads than those shown in Figures 19 and 21 could, of course, be developed during crash ahead or crash astern maneuvers, depending on values of \dot{V} , \dot{n} , and \dot{P} .

For all loading components, the variation with blade angular position tended to be dominated by the first harmonic for all conditions throughout the simulated crash ahead and crash astern maneuvers. For all conditions at which there was significant variation in loading with blade angular position, the maximum and minimum values occurred near θ =90 or 270 deg. This suggests that the variation in loading with blade angular position is produced primarily by the circumferential variation of the tangential velocity in the propeller plane (see Figures 11 and 12). For the crash ahead simulation, in which pitch P was constant throughout, the angular variation of each loading component retained basically the same shape independent of speed and advance coefficient. By contrast, for the crash astern simulation, in which P/D changed from +1.06 to -0.67 for the different simulated conditions, the circumferential variation of each loading component changed shape substantially for different simulated combinations of speed, advance coefficient, and pitch ratio.

For both crash ahead and crash astern simulations, there was a dramatic reduction in the circumferential variation of all measured

loading components with decreasing speed V and decreasing rotational speed n. Previous data have shown that for a given propeller in a given flow field, the circumferential variation in the loading varies approximately as the product of ship speed V and rotational speed n; see Wereldsma. Figure 24 presents some "typical" results in a form which allows evaluation of how closely the measured unsteady loading varies with nV. The ordinate is $(F_x)_1$ sin ϕ which is the portion of the first harmonic in phase with the tangential velocity. This measure of the unsteady loading was selected because it may be positive or negative depending on ϕ . The abscissa is nV sin $\phi_{0.7}$. The term sin $\phi_{0.7}$ is intended to correct for the difference in pitch for the various runs, since the tangential component of the first harmonic of the wake $(V_t)_1$ is the primary forcing function, and the component of $(V_t)_1$ normal to the blade is $(V_t)_1$ sin $\phi_{0.7}$; see Wereldsma.

The data shown in Figure 24 indicate that the unsteady loading $(\mathbf{F_x})_1$ sin ϕ was approximately proportional to nV sin $\phi_{0.7}$. The results for the crash ahead simulation, with P/D=1.39, were consistently somewhat higher than those for the crash astern simulation, and they followed a linear variation with nV sin $\phi_{0.7}$ somewhat more closely than did the results for the crash astern simulation.

The reason for the systematic difference between the crash ahead data and crash astern data in Figure 24 is not clear; however, it may have resulted from one or more of the following:

1. The difference in the time-average loading between the crash ahead and crash astern conditions. Thrust loading coefficient \overline{c}_{Th} is a measure of this time-average loading. For crash ahead simulation, the algebraic value of \overline{c}_{Th} is much larger than it is for crash astern. This tends to increase the axial induced velocities and increase the spacing of the downstream vortex sheets for a given value of nV sin $^{\Phi}_{0.7}$. This would tend to reduce the influence of the shed vorticity and thereby increase the net unsteady loading.

Wereldsma, T., "Tendencies of Marine Propeller Shaft Excitations," International Shipbuilding Progress, Vol. 19, No. 218 (Oct 1972).

- 2. The effect of the action of the propeller on the wake pattern in the propeller disk. During a portion of the crash astern maneuver, the propeller generates negative thrust so that the time-average induced velocity is upstream. This may interact with the flow over the hull and thereby influence the circumferential mean and circumferential variation of the flow pattern. As discussed previously, the time-average loading indicated that 1-w and 1-w varied substantially over the simulated crash ahead and crash astern maneuvers (see Figure 23). However, if $V(1-w_T)$ rather than V is used as the reference velocity, the trends shown in Figure 24 would not change substantially.
- 3. Failure of the factor $\sin \phi_{0.7}$ to properly account for the difference in propeller pitch over the range of (P/D)_{0.7} from +1.39 to -0.67. As nominal pitch is changed over this range, the radial distribution of pitch changes dramatically.
- 4. Experimental accuracy. For nV sin $\phi_{0.7}^{<2.0}$ m/sec², the measured unsteady loading is quite small; therefore, these results are not nearly as accurate as the results for higher values of nV sin $\phi_{0.7}^{<}$.

The trends shown in Figure 24 for $(F_x)_1$ are typical of the trends of all measured loading components when plotted versus nV times the appropriate function of pitch as presented by Wereldsma. Even though there is some scatter, the data follow the nV law quite well considering the wide range of advance coefficient J and pitch ratio P/D covered.

Figure 25 presents the variation of the time-average values per revolution and peak values of the various components of blade loading for both quasi-steady simulated crash ahead ($\dot{V}=\dot{n}=\dot{P}=0$) and unsteady simulated crash ahead ($\dot{V}>0$, $\dot{n}=\dot{P}=0$). Figure 26 gives similar data for quasi-steady and unsteady simulated crash astern runs.

There was only a small variation in the measured loading components between the quasi-steady simulated crash ahead and the unsteady simulated crash ahead. Except for spindle torque, the largest variation between the results from two types of simulation expressed on a decimal fraction of the corresponding time-average value at the self-propulsion point was 0.05 for the peak values and 0.03 for the time-average value per revolution. For most cases, the variation was much smaller. In fact, the variation in the results between the two types of simulation appeared to be almost random. This suggests that these deviations are some measure of the experimental accuracy and do not represent any systematic trends arising from the difference in \dot{V} between the two types of simulation.

For the crash astern runs, the variation in loads between the quasi-steady simulation and the unsteady simulation was not great, but it was somewhat larger than the variation for the crash ahead simulations. Except for spindle torque, the largest variation between the results for the two types of simulation was approximately 0.20 times the time-average steady-ahead value for the peak load and 0.15 times the time-average steady-ahead value for the mean load. For most cases, the variation was much smaller. The magnitude of most loading components was larger for the unsteady simulation for time t>13.6 sec (V<1.67 m/sec) and larger for the quasi-steady simulation for t=9.05 sec (V=2.57 m/sec).

Data for the quasi-steady simulation were recorded and averaged for a minimum of 200 propeller revolutions whereas data presented for the unsteady runs represent an average of only three revolutions for crash ahead simulation and five revolutions for crash astern simulation. Further, the steady experimental conditions which were set during the quasi-steady simulation allow the values of V and n to be controlled more precisely than during the unsteady runs; however, the average of the three to five values of V and n during the unsteady runs for which data are presented was generally within 1 percent of the target values.

Therefore, for crash astern the differences between the results for the quasi-steady simulation and the unsteady simulation was significantly greater than the errors arising from inaccuracies in setting the experimental results. It is concluded that there was a small

influence of \dot{V} on the measured loads at a given combination of V, n, and P. However, this difference did not affect the peak loads that occurred during a crash astern maneuver.

CORRELATION WITH FULL-SCALE DATA AND THEORY

For operation near the self-propulsion point (Condition 1 in Table 5), correlation was made between the model experimental results obtained in the present investigation, bending moments deduced from strains measured on the corresponding full-scale propeller, and analytical calculations.

From the experimental values of F_x , F_y , M_x , and M_y , the bending moment can be calculated about any radial station $r_o < r_h$ and about any axis normal to the radial direction. However, in calculating bending moments about $r_o > r_h$, an adjustment must be made to allow for the contribution of the loading in the region $r_o > r > r_h$. In calculating the bending moment about the 0.4 radius $M_{0.4}$ from experimental values of F_x , F_y , M_x , and M_y , it was estimated that for all harmonics including the time-average values, 3 percent of M_x and M_y was contributed by the loading in the region 0.4R>r> r_h .

The full-scale strains used for correlation were measured* at the midchord position of the 40-percent radius on the face of the propeller under steady ahead operation. The full-scale operating condition corresponds approximately, but not precisely, to the Froude scaled steady ahead condition on the model; see Table 4.

The correlation is based on the bending moment vector parallel to the nose-tail line at the 40-percent radius at conditions corresponding to Condition 1 in Table 5. Radial stresses for the trial data were deducted from strains by using the appropriate values of Young's modulus and Poisson's ratio. The bending moment vector parallel to the nose-tail line was deduced from the stress by assuming that the blade behaves structurally as a cantilever beam.

The full-scale measurements were conducted by C.J. Noonan and G.P. Antonides of DTNSRDC Code 1962. The details of this full scale trial will be reported in a future DTNSRDC report.

The time-average bending moment deduced from the full-scale data was corrected for the difference between the scaled thrust and torque measured during the full-scale trial and the thrust and torque measured on the model. With this correction, the time-average bending moment determined from the full-scale data is 1.02 times the value determined from the model experiment.

The unsteady bending moment determined from the full-scale data was adjusted to the model conditions by using

$$M_{MES} = (M_S/\lambda^4) [V_M n_M \rho_M / (V_S n_S \rho_S)]$$

Here subscripts M refer to model values, subscript S refers to ship values, M_{MES} is the equivalent bending moment at the model conditions as deduced from the ship data, and λ is the linear scale ratio $L_{\rm S}/L_{\rm M}$. This adjustment assumes that the unsteady loading varies linearly with nV; see Wereldsma. Since the ship conditions are near the Froude scaled model conditions, this adjustment is small except for the factor λ^4 .

The time-average bending moment from the full-scale data was determined* from analysis of records of many propeller revolutions. The variation of the full-scale bending moment with blade angular position was determined from analysis of 37 consecutive propeller revolutions. Six of these revolutions were selected for detailed analysis: the two with the largest peak-to-peak variation, the two with the smallest peak-to-peak variation, and the two with the mean peak-to-peak variation. These six revolutions were harmonically analyzed and reconstructed by using the first ten harmonics; see Figures 27 and 28. The results from these six revolutions were averaged to obtain an effective variation of full-scale blade bending moment with blade angular position for comparison with model data.

Figures 29 and 30 present the variation with blade angular position and the first ten harmonics, respectively, of $^{\rm M}_{0.4}$ from the model data and from the full-scale ship data. All data are nondimensionalized

^{*}By C.J. Noonan, DTNSRDC Code 1962.

on the same quantity, i.e., the time-average bending moment determined from the model experiments. This comparison indicated reasonable agreement of model and full-scale results for peak-to-peak values and for the first harmonic.

Theoretical calculations were made by using the method of Tsakonas, Jacobs, and Ali²⁰ (which is based on unsteady lifting surface theory) and the method of McCarthy, ²¹ a quasi-steady technique which utilizes the open-water characteristics of the propeller. These calculations were made for Condition 1 in Table 5 using the symmetric part* of the wake measured in the plane of the propeller both with and without the downstream dynamometer boat in place (Figures 11 and 12 and Appendix A). The difference in the calculated results with and without the dynamometer boat is a measure of the effect of the dynamometer boat on the circumferential variation of the unsteady loads.

For the method of Tsakonas et al., ²⁰ calculations were conducted for the first ten harmonics of the wake. These calculations were made by using the computer program developed by Davidson Laboratory including refinements made in December 1975. The "normal" components of wake harmonics, as required by this method, were defined as the wake harmonics normal to the chord line of the blade section at the local radius rather than normal to the advance angle at the local radius as recommended by Tsakonas, Breslin, and Miller. ²⁷. With the wake harmonics resolved normal to the blade chord, this method apparently considers both the unsteady flow parallel to the resultant inflow and the unsteady flow normal to the resultant inflow.

^{*}Although the model hull and dynamometer boat were intended to be symmetric about a vertical plane containing the propeller axis, the measured wakes were not perfectly symmetrical; see Appendix A. The measured asymmetrical part of the wake apparently arises from inaccuracies in construction of the model hull, alignment of the model in the towing basin, and in the wake measurements. Calculations (unreported) were in slightly worse agreement with experimental results when the complete wake was used rather than only the symmetric part of the wake.

Tsakonas, S. et al., "Correlation and Application of an Unsteady Flow Theory for Propeller Forces," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 75, pp. 158-193 (1967).

The quasi-steady calculations are based on the circumferential variation of the wakes measured at the 0.71 radial station except that the narrow velocity defects behind the struts at approximately $\theta_{\rm w}=25$ and 335 deg are not considered. Since these defects are narrow relative to the blade width, it is judged that they should have only a slight influence on the circumferential variation of blade loading. It is assumed that the radial centers of the unsteady thrust and tangential force are the same as the radial centers of the respective mean values.

Figures 30-32 present the variation with blade angular position and the first ten harmonics of $M_{0.4}$ from the model experiment and analytical calculations. All data are nondimensionalized on the same quantity, i.e., the time-average bending moment determined from the model experiments. This comparison indicated that the experimental results were considerably higher than the calculated results. For other components of blade loading F_x , F_y , M_x , and M_y , the circumferential variation in the model experimental results was larger than the values calculated by the two indicated procedures by approximately the same ratio as shown for $M_{0.4}$. These comparisons are not shown.

In previous investigations, experimentally determined unsteady forces and moments on a single blade of various propellers in inclined flow have been compared with forces and moments calculated by a quasisteady procedure similar to that described by McCarthy. These experimental loads were obtained by direct measurement of unsteady forces and moments on a single blade (References 13 and 14) or were deduced from measured steady transverse forces and moments along axes fixed relative to the flow, i.e., not rotating with the propeller (Reference 28). References 13, 14, and 28 all show that for noncavitating conditions, the experimental unsteady blade loading was from 1.7 to 2.0 times as large as the values calculated by the quasi-steady method. This agrees with the results of the present investigation; see Figure 31.

²⁸Gutsche, F., "Untersuchung von Schiffsschrauben in schrager Anstromung," Schiffbauforschung, Vol. 3, No. 3/4 (1964).

The reason for the large discrepancy between the experimental and calculated results is not clear. Some possibilities are as follows:

- 1. Inaccuracies in theoretical results. The unsteady lifting surface procedure of Tsakonas et al. 20 is based on linearized theory which considers the harmonic content of the longitudinal and tangential components of the wake. It is possible that nonlinear effects or the significant radial component of the wake may influence the circumferential variation of the loading. In addition, there may be inaccuracies in the numerical evaluation of the theory. The quasi-steady procedure of McCarthy 21 is exceedingly simple and should give reasonable results, especially for the first harmonic which has a low reduced frequency. However, this method does not consider any possible effects of the circumferential variation of the radial component of inflow velocity.
- 2. Interaction between the propeller and the hull may increase the circumferential nonuniformity of the flow into the propeller from the values measured without the propeller in place. (Both sets of calculations are based on the wake measured in the plane of the propeller with propeller removed.) The experimental data show that the maximum and minimum loading occurs near θ =90 and 270 deg. This implies that the dominant influence of the wake is the tangential velocity. Therefore, if the effect of the propeller on the wake pattern is the reason for the large discrepancy between theory and experiment, the propeller must increase the upsweep angle between the flow and the propeller shaft from approximately 10 deg without the propeller to approximately 20 deg with it.
- 3. Other interactions between the propeller and the nearby surfaces which are not considered in the calculations based on the measured wake distribution.
- 4. Inaccuracies in the measured wake. This is unlikely since the tangential component of the wake indicates that the flow is approximately parallel to the stern.

5. Error in the experimental results. This appears unlikely in view of the reasonably good agreement between model experiments and full-scale experiments conducted entirely independently. In addition, previous experimental results in which the dominant component of wake was the tangential yielded results which were substantially larger than calculated by quasi-steady procedures. 13,14,28

SUMMARY AND CONCLUSIONS

Experiments were described in which the mean and unsteady loads were measured on a single blade of a model of the CP propeller on the FF-1088. The experiments were conducted behind a model of the FF-1088 hull under steady ahead operation, hull pitching motions, simulated crash ahead maneuvers, and simulated crash astern maneuvers. The discussion of experimental techniques included a description of the dynamometer and data analysis system. The results are summarized as follows:

- The circumferential variation of all measured components of blade loading is primarily a first harmonic, with maximum and minimum values occurring near the blade angular position at which the blade spindle axis is horizontal.
 - 2. For steady ahead operation:
 - a. The maximum values and the peak-to-peak circumferential variations for measured forces and bending moments were up to approximately 1.38 and 0.80, respectively, the time average values.
 - b. The model results for circumferential variation of bending moments about the nose-tail line of the 0.4 radius agreed fairly well with loads deduced from strain measurements on the full-scale propeller, but they were larger than theoretically calculated values.
 - 3. For simulated hull pitch (maximum pitch angle of 2 deg):
 - a. The maximum value of measured forces and bending moments increased over the corresponding values without hull pitch by 4 percent for quasi-steady simulation and by 20 percent for unsteady simulation with pitching frequency equal to 0.8 Hz.

- b. The peak-to-peak circumferential variation of the measured forces and bending moments increased over the corresponding values without hull pitch by approximately 5 percent for quasi-steady simulation and by 50 percent or more for unsteady simulation with pitching frequency equal to 0.8 Hz. Therefore, any quasi-steady simulation of ship motions is completely inadequate for estimating the effect of ship motions on unsteady propeller blade loading.
- 4. For the simulated crash ahead maneuver:
- a. The dominant first harmonic of the measured forces and bending moments varied in a nearly linear manner with the product of ship speed and propeller rotational speed.
- b. The acceleration of the hull did not have a significant effect on the measured loads. Therefore, propeller blade loading during a crash ahead maneuver can be adequately estimated by quasisteady experiments.
- c. The maximum time-average values of measured forces and bending moments per revolution were in the range of 1.20 to 1.45 of the time-average values at the self-propulsion point.
- d. The peak values of measured forces and bending moments were in the range of 1.35 to 1.60 of the time-average values at the self-propulsion point.
- e. The Taylor wake fractions deduced from the time-average thrust and torque per revolution varied substantially from the values at the self-propulsion point.
- 5. For the simulated crash astern maneuver:
- a. The first harmonic of the measured forces and bending moments varied approximately linearly with the product of ship speed and propeller rotational speed and was a function of propeller pitch.
- b. The decleration of the hull altered the peak value of a given component of loading at a given condition by up to 20 percent of the

time-average value at the self-propulsion point; however, this did not alter the peak load occurring at any time during the maneuver. Therefore, propeller blade loading during a crash astern maneuver can be adequately estimated from quasi-steady experiments.

- c. The largest time-average loads per revolution and the peak loads including circumferential variation occurred at the initiation of the maneuver; i.e., loads during the crash astern maneuver did not exceed the loads at the self-propulsion point.
- d. The Taylor wake fractions deduced from the time-average thrust and torque per revolution varied substantially from the values at the self-propulsion point.

ACKNOWLEDGMENTS

The authors are indebted to many members of the staff of the David W. Taylor Naval Ship Research and Development Center. Special appreciation is extended to Mr. Stephen Callanen for adaptation and design of the experimental apparatus, to Mr. Arthur Block for development of the on-line data analysis system, to Mr. John Gordon for development of electronic and mechanical systems for the experiment, to Mr. Robert Roddy for conducting the wake surveys, to Mr. Kenneth Remmers for conducting supporting self-propulsion experiments, to Mr. Richard Kader for assistance in conducting the experiments and data analysis, and to Messrs. Charles Crockett and Jack Diskin for assistance in data analysis and analytical calculations.

Figure 1- Components of Blade Loading

Figure 2- DTIISRDC Model Propeller 4402A

Figure 3- Geometries of Model of Propeller on FF-1088; DTNSRDC Model Propeller 4402A

Ship	6M 415.3 ft 6.486M 21.28 ft	17M 46.5 ft 0.727M 2.385 ft	57M 15.0 ft 0.234M 0.769 ft	Kg(S.W.) 4000 tons (S.W.) 532.4 Kg(F.W.) 0.524 tons (F.W.)
	Length at Waterline 126.6M	Beam 14.17M	Draft 4.57M	Displacement 4.064×10 ⁶ kg(S.W.)

Figure 4 - Ship and Model Particulars

Figure 5- Experimental Arrangement of Hull and Dynamometer Boat

Figure 5a- Overall View

Figure 5b- Closeup of Propeller

Figure 6- Strain-Gaged Blade Flexures in Hub

Figure 7- Arrangement of Flexures in Hub

Figure 8 - Experimental Deceleration and Acceleration Conditions

Figure 9 - Correlation of Theory and Experiment for Centrifugal Spindle Torque

Figure 10 - Correlation of Theory and Experiment for Centrifugal Force

Figure 11- Circumferential Distribution of Wake in Propeller Disk

Figure 11a- 51 Percent Radius

Figure 11b- 71 Percent Radius

Figure 11c- 91 Percent Radius

Figure 11d- 108 Percent Radius

Figure 12- Harmonic Amplitudes of Wake Velocities

Figure 12a- 51 Percent Radius

Figure 12b- 71 Percent Radius

Figure 12c- 91 Percent Radius

Figure 12d- 108 Percent Radius

Figure 13- Open Water Characteristics of DTNSRDC Model Propeller 4402

Figure 13a- Thrust Coefficient

Figure 13b- Torque Coefficient

Figure 14- Influence of Extraneous Signals on Measured Loads

Figure 15 - Experimental Data Showing Extraneous Higher Harmonics

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 13/10 EXPERIMENTAL UNSTEADY AND MEAN LOADS ON A CP PROPELLER BLADE ON--ETC(U) AD-A034 804 OCT 76 R J BOSWELL, J J NELKA , S B DENNY DTNSRDC-76-0125 UNCLASSIFIED NL 20F4 AD A034804

Figure 18 - Variation of Components of Blade Loading with Hull Pitch Angle ψ

V(M/sec) n(rev/sec) (P/D)_{0.7} 1.39 1.39 1.39 315 6.26 9.35 11.19 12.07 13.40 Figure 19 - Variation of Loads with Angular Position for Quasi-Steady Crash Ahead 270 0.33 1.46 2.26 3.10 0.81 225 90 45 1.4 1.2 8.0 9.0 0.4 0.2 1.6 1.0 F_x/F_{xSP}

360

ANGULAR POSITION, θ (DEG)

Figure 19a - F_x

Figure 22b - Phases

Figure 23 - Taylor Wake Fractions during Simulated Crash Ahead and Crash Astern Maneuvers

4

Figure 23a - Crash Ahead

Figure 24- Variation of (F), $\sin \phi/F_{\rm XSP}$ with nV $\sin \phi$ for Quasi-Steady Crash Anead and Crash Astern

Figure 25 - Comparison of Time-Average Values per Revolution and Peak Values of Various Components of Blade Loading for Quasi-Steady and Unsteady Simulated Crash Ahead

Figure 25a - F_x

Figure 26 - Comparison of Time-Average Values per Revolution and Peak Values of Various Components of Blade Loading for Quasi-Steady and Unsteady Simulated Crash Astern

Figure 26a - F_x

Figure 26d - My

Figure 26e - M_h

Figure 27 - Variation of Bending Moment with Blade Angular Position Measured on the Full-Scale Propeller for Six Individual Revolutions

Figure 28 - Harmonic Content of Blade Bending Moment on the Full-Scale Propeller for Six Individual Revolutions

Figure 28a - Amplitudes

Figure 29- Variation of Bending Moment at 40 Percent Radius with Blade Angular Position, Comparison of Model Data and Scale Data

Figure 30- Harmonic Content of Bending Moment at 40 Percent Radius-Comparison of Model Data, Full Scale Data

Figure 30a- Amplitudes

Figure 31- Variation of Bending Moment at 40 Percent Radius With Blade Angular Position-Comparison of Model Data with Theory

Figure 32 - Variation of Bending Moment at 40 Percent Radius With Blade Angular Position-Theoretical Prediction With and Without Downstream Body

APPENDIX A

DETAILS OF WAKES

Figure 33 and Tables 9 and 10 present the wake data measured in the plane of the propeller, both with and without the downstream dynamometer boat. The data presented in Figure 33 are similar to those in Figure 12 except that here wake harmonics are given at even radial stations whereas the data of Figure 12 are only for the radial stations at which the wake was measured. The data at even radial stations were obtained by extrapolation and interpolation of the measured data. The wake data presented in Tables 9 and 10 are tabulated values of the data presented graphically in Figures 11, 12, and 33.

²⁹Cheng, H.M., "Analysis of Wake Survey of Ship Models - Computer Program AML Problem No. 840-219F," David Taylor Model Basin Report 1804 (Mar 1964).

Figure 33 - Wake Harmonics

Figure 33 (Continued)

FIGURE 33 - WAKE MARMONICS/CONTINUED)

Figure 33 (Continued)

		034 80 ASSIFI	OCI	PERIMEN	ITAL UN	STEADY	AND ME	SEARCH AN LOAD	DS ON A	CP PR	ENT CE-	-ETC R BLADE	F/6 13, ONE	/10 TC(U)
		3 of 4 AD AO34804												
***************************************											ATH ATH	NÏH MH	nīn nin	
11	ĪH	aîn mii				î.În			jiin jiin		IIII			
							aīu atu			Hill	iiiii	iiiii iiiii	nīn min	
ı	ĪH	1111		ATH ATH	1111	aīu		-	Michigan					1111
	Nijitaliloo.	Man	Malfallary	1	Michigan					Management		No.		Management

TABLE 9 - WAKE WITHOUT DYNAMOMETER BOAT

TABLE 9a - MEASURED DATA

r/R = 0.512

V,V	.105	.098	920.	.062	270.	.032	.017	.001	015	7.047	061	075	091	160	760	101	101	103	112	124	060	050	030	021	019	016
V,1V	+20.	760.	.128	.142	.152	.153	.156	.168	.156	.154	.143	.128	.107	.103	.100	260.	.100	.110	.149	.178	.107	002	021	065	.012	.018
>× >	. 02	0.	.03		1.051	0.	. 25	.06	.05	.05	.05	.04	J	.04	.04	.04	.04	.04	70	97	3	3	σ	3	546.	~
»	07	14	M	39	47.	. 55	63.	71.	.64	95.	03.	11.	21.	23.	25.	.62	31.	33.	37.	39.	41.	43.	45.	47.	349.6	53.
٧,٧	013	023	033	071	077	079	077	071	060	124	131	119	112	085	062	035	008	.015	040.	.061	.081	260.	.118	.119	.118	.113
N, V	.011	008	012	+50	+960	043	029	033	101	202	198	155	135	125	145	163	170	171	166	154	137	115	045	021	.030	.052
>x >	.926	2	2	2	C	3	3	-	-	w	0	.04	.03	.03	.04	· 0 ·	.05	.04	.04	.04	.03	.02	.02	.02	0 2	.02
*	1.0			;	9			2	;	.9		1.	2	2	;	.9			02.	;	26.	38.	.99	74.	191.0	

	٧,٧	.145	.115	.092	.065	.003	029	060	111	129	134	-:113	113	082	101	111	113	098	087	064	063
	V,1V	.075	.123	.140	.153	.152	.157	.145	.102	.135	.155	.184	.184	.0 22	039	.001	920.	.033	.032	023	020
	×× >	.995	.993	1.000	1.008	1.015	1.011	1.011	1.010	.993	.991	.931	906.	.864	.930	616.	.973	-962	.950	.972	.968
	e e	202.0	226.3	237.9	549.9	273.9	285.9	298.0	322.0	330.0	332.3	333.9	334.0	336.0	338.0	340.2	342.0	344.1	346.0	358.1	358.8
	V, V	188	98	.21	.22	.07	.22	.38	.29	.28	.25	110	187	091	108	040	169	116	133	156	154
	^ ^,^																				
r/R = 0.711	\ \ \ \ \			1.007		1	. 578.	4	1	2	1.022	5	6	1		0		1.016	1.118		666.
	9	5.9			. 8	21.9	3.	25.8	27.8	28.4	30.0		8	58.2	2			130.4		178.0	130.1

	r/R = 0.910						
° °	V _x V	V,V	N'^	» θ	\ \ \ \ \ \	٧,٠٧	۸٬۷
	.982		9	.98	.00	.034	9
	-		60	. 76	0	.052	.156
	~	021	660*-	02.	.00	.071	.150
	-		0	10.	6	.089	.142
:	~	~	0	18.	66	.104	.131
	.00	M	112	26.	.00	.118	.119
20.5	1.026	026	114	234.8	1.002	.130	
	.02	2	-	50.	• 00	•150	
:	0	3	-	58.	.01	.157	
.0	_	2	110	.99	.019	.161	.031
	91	S	4	74.	.02	.165	-
	98	9	125	83.	.03	.163	-
	99	C	2	91.	.03	.159	3
	ന	00	-	07.	.02	.142	-
3	C.	0	0	15.	.02	.128	
	.00	2	4	23.	. 32	.138	11
	.31	134	C	27.	.02	260.	-
•	.02	135	0	29.	.02	160.	-
2	C	137	01	31.	.03	860.	2
	.01	132	03	33.	.02	.121	3
	.30	127	n,	35.	. 32	.183	R.
90	.00	121	07	37.	83	.116	-1
14.	00	-	0	39.	87	0	-
22.	o	0	0	41.	.03	• 002	-
30.	יט	œ	C	43.	.03	670.	-
	o	+10.−	.131	45.	2	.364	112
54.	O.	4	u	47.	. 32	.065	0
62.		2	u	55.	.00	240.	9
70.	.00	0	T)	59.	-	.020	6
78.	.01	-1	W.	59.	6	.027	9

r/R = 1.082

N'N	0	0	t	.135	.120	0	9	07	16	2	0	0	01	3	9	00	11	12	2	3	M	135	0	∞	130	3	3	m	5	119	
N,1V	.023	C	0	.082	760.	.136	.114	.120	.125	.134	.132	.133	.131	.128	.121	.109	\$60.	. 184	.080	.069	.075	.113	.194	109	C	.036	.043	.040	.029	+00·	
> × ×	.00	00	.99	66		.00	.00	00	.01	99	.00	-	.03	.01	.02	.01	.00	66	9	98	.00	0 1	t	38	98	.00	0 0	0	9.8	0	
φ [*]	90.	98.	14.	22.	230.6	38.	46.	. 45	63.	71.	71.	.61	87.	. 56	03.	11.	19.	23.	25.	29.	31.	33.	35.	37.	39.	41.	43.	47.	. 55	.65	
۸٬۷	2		-	118	-	111	-	-	-	4	3	3	11	60	06	1	0	01	00	0	2	.046	U	C	-	2	t	0	0	1	0
N'1	3	n	13	C	119	L	0	2		M		00	-	117	133	131	t	148	152	149	149		139	121	-	9	382	w		014	0
/x /v	38	0	0	.00	1.012	96	-	37	0	00	00	00	96	0	~	0	8	00	38	0	0	0	0	C	0	5	00	.00	-4	.01	.00
0		2.	6	.0	21.7	3.	;	5	5.	8	6	-	6	5.	3.	3	1.	6	1.	1.	5	3	01.	18.	56.	34.	45.	58.	9	74.	5

TABLE 96 – INTERPOLATED VALUES OF $\mathbf{v_x}/\mathbf{v}$

.830	.836	.883	.922	.952	.972	.985	. 986	16.
. 805	.812	.873	. 921	.956	626.	186.	.986	176.
.783	261.	.863	.919	096.	.985	. 988	.986	86.
.771	.780	.857	.917	.961	.988	066.	066.	.98
.767	.776	. 854	.915	.960	686.	.995	166.	66.
•695	0	.823	.911	476.	•	1.006	1.001	.99
.639	.657	.801	.910	986.	•	1.018	1.006	66.
.717	3	.837	.919	616.	1.015	1.020	1.016	
1.145	1.130	1.020	146.	606.	•	.980	1.023	1.02
1.299	~	1.071	. 933	.858	.847	656.	1.026	0
.431	.456	.652	161.	.893	.938	868.	.870	
.424	5	.705	.882	.987	1.019	806.	.854	. 87
.935	.5	.983	1.011	1.024	1.023	.993	.975	.97
1.039	1.040	1.042	1.039	1.034	1.024	1.007	.993	96.
1.033	3	1.038	1.038	1.033	1.025	1.009	666.	36.
1.028	2	1.035	1.036	1.033	1.026	1.012	866.	36.
1.021	1.023	1.031	1.035	1.033	1.027	1.013	866.	.98
1.015	-	1.028	1.034	1.034	1.027	1.012	266.	.9
1.017	-	1.030	1.035	1.035	1.028	1.012	966.	.96
1.022	2	1.033	1.038	1.036	1.029	1.013	966.	86.
1.028	2	1.038	1.041	1.038	1.030	1.013	966.	.9
1.035	m	1.042	1.043	1.040	1.031	1.014	266.	.98
1.040	1.041	1.045	1.045	1.041	1.031	1.015	666.	96.
1.038	m	1.044	1.044	1.041	1.032	1.016	1000	0

TABLE 9b - (Continued)

ow o	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
	•	0.		1.043	.04	.03	-	1.003	6
	•	.03		1.042	*O.	m	-	1.006	966.
			+			m	2	1.010	
		.04	t	t	.03	m	2	1.014	1.007
	•	5	.04	.04	.03	.03	2	1.018	1.012
	•	9	.05	4	.04	.03	2	1.022	
	•	~	.06	0.	.04	.03	m	1.024	1.015
	1.087	1.085	9	.05	+	m	m	1.024	
	•	0	.07		· 0 4	.03	03		-
	•	00	.06	.05	.04	3	02	1.022	1.010
	•	a	.36	.05	.04	.03	.02		.00
	•	-	.06	0.	· 0 4	3	02	0	.00
	•	0	.05	.05	.04	.03	2		1.003
	•	9	.05	0	· 0 ·	03	2	•	.00
	•	.05	5	.04	03	.03	.02		1.001
	•	5	.05	· 04	.03	.03	-	•	.00
100.0	1.053	1.052	1.048	1.043	1.036	1.028	1.017	1.008	1.000
	•	in	.04	10.	M	.02	.01	•	1.000
05.	1.056	1.055	1.049		.03	.02	-	1.007	0
	•	.05			M	2	-	-	866.
10.	.05	5	· 0 4		.03	.02	0	166.	6
15.	· 04	.04	1.046			.02	0	.991	8
115.0	1.046	•	1.045	-	m	.02	9	.987	8
117.5	• 04	1.048	• 0 4		1.031	.02	1.000	686.	8

TABLE 9b - (Continued)

9 3	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
20.0	1.051	0.	1.045	1.038	3	1.019	0	. 993	066
22.5	1.053	1.052	1.045	1.037	1.028	1.018	0	966.	.993
25.0	1.051	0	1.043	1.035	1.027	1.018	0	266.	.993
27.5	1.047	0	1.040	1.034	1.026	1.017		166.	766.
30.0	1.044	1.043	1.038	1.032	1.025	1.017		166.	766
32.5	1.039	1.039	1.036	1.031	1.025	1.017	0	. 266.	666.
35.0	1.035		1.033	1.030	1.025	1.018	0	266.	666.
37.5	1.031	0	1.031	1.029	1.025	1.018	0	266.	166.
0.04	1.026	0.	1.028	1.028	1.024	1.018	0	866.	266.
45.5	1.020		1.025	1.026	1.024	1.019	0	266.	.991
45.0	1.016	0.	1.023	1.025	1.024	1.019	0	166.	166.
47.5	1.013	.01	2	1.024	1.023	0.	00	166.	.991
50.0	1.011	1.012	1.020	1.023	1.023	1.018	.00	166.	.993
55.5	1.010	.01	1.019	1.022	1.022		0	166.	766
55.0	1.011	.01	1.019	1.022	1.021	1.017	0	866.	966.
57.5	1.014	0	-	1.021	1.021	0	0	666.	666.
60.0	1.018		1.021	1.021	1.020	1.016	1.006	1.001	1.002
65.5	1.023	1.023	1.023	1.022	1.019	0	0	1.003	1.004
65.0	1.030	1.030	1.026	1.022	1.018	1.014	0	1.005	1.006
67.5	1.039	0	1.030	1.023	1.017	1.013	1.009	1.007	1.008
20.07	1.049	1.048	1.035	1.025	1.017	1.012	0	1.009	1.009
72.5	1.059	0.	+	1.026	1.017	1.010	-	1.010	1.010
75.0	1.067	1.065	1.044	1.028	1.016		-	1.010	1.010
77.5	1.071	1.058	1.145	1.027	1.015	1.008	1.009	1.010	1.010

TABLE 9b - (Continued)

1.0	0							1.005				866.	966.	966.	966.	166.	866.	666.	1.000			0	1.002	1.002
6.0	-4	0	0	.00	.00		.00	0	.00	.00	.00	9		9	9	9	666.	.00	0	0	.00	C	1.002	.00
0.8	.00	.00	.00	.00	. 00	.00	.00	0	. 00	.00	9	9	9	9	6	6	9	9		9	9	0	.00	0.
7.0	.00	.00	0	.00	9	9	0	9	9	9	9	6	9	9	9	6	.993	0	766	9	9	9	666.	1.001
9.0	.01	.01	.01	.00	.00	.00	. 00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 00	.00	.01	.01	1.014	.01
0.5	1.027	1.026	1.024	1.023	1.022	1.023					0.	0	0.			0		0.	1.033	0.			1.040	1.043
0.4			1.045	1.045	1.045	4	1.049	5	5	1.156	5	12	.35	9	.16	.16	1.366	.06	.07	.07	1.373	1	1.377	1.080
0.3	~	~	-		~	1.079		æ	σ	1.094	6	9		1.101			1.112		1.117		1.120		1.125	1.127
r/R = 0.289	0	0.	1.076	0.		1.083	0.	1.092		1.099	-	1.103	1.104	.1	1.110	-	1.118		1.123	. 1	1.126	1.128	1.130	1.133
9	80.	82.	85.	87.	.06	92.	95.	97.	.00	02.	05.	07.	10.	12.	15.	17.	20.	22.	25.	27.	30.	32.	235.0	37.

TABLE 9b - (Continued)

1.0	.00	.00	.00	.00	.00	.00	.00	1.011	.01	.01	.01	.01	.01	.01	.01	.02	.02	.02	.03	.03	.03	.03	.02	.02
6.0	.00	.00	.00	.00	.00	.00	.00	1.012	.01	.01	.01	.02	.02	.02	.02	.02	.02	.03	.03	.03	.03	.03	.02	. 02
0.8	.00	.00	.00	.00	.00	.00	.01	1.012	.01	.01	.01	.02	.02	.02	.02	.02	.02	. 32	.02	.02	.02	.02	.02	.02
0.7	.00	.00	.00	.00	.00	.01	.01	1.013	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01
9.0	.01	.02	.02	.02	.02	.02	.02	1.025	.02	.03	.03	.03	.03	.03	.03	.03	.03	.03	.03	.02	.02	.02	.02	.02
9.0	.04	.05	.05	.05	.05	.04	.04	1.045	.05	. 05	.06	. 06	.06	.06	.06	.06	.06	.06	• 06	• 06	.06	.06	.05	.05
0.4	00	0 8	9	9	.08	.07	.06	1.073	.08	.09	.10	.10	.11	.11	.11	.12	.12	.11	.11	.11	.11	.10	0	.10
0.3	3		+	4		-	0	1.109	2	m	5	9		8	8			0		00	00	~		0
r/R = 0.289	1.138	1.145	1.150	1.148	1.133	1.117	7	1.113	-		1.157	1.170	1.181	1.187	1.191	1.195	1.196	1.198	1.197	1.194	1.189	1.183	1.177	1.171
» _θ	40	42.	45.	47.	50.	52.	55.	257.5	.09	62.	65.	67.	70.	72.	75.	77.	80.	82.	95.	87.	90.	95.	95.	.16

o o	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
.00	.16	.15	.19	0	.02	.01	.02	2	2
02.	.15		60.	0.	.02	.01	.32	.02	.02
305.0	1.146	1.140	1.091	1.054	1.029	1.015	1.020	1.024	1.023
07.	.13	1.133	.08	0.	.02	.01	.32	.02	.02
10.	.13		.08		.02	.01	.02	.02	.02
12.	.12	1.120	.08		.02	.01	.02	.02	.02
15.	.11	-	.07		.02	.01	.32	.02	.02
17.	1.113	.10	.07	-	.02	.01	. 02	.02	.01
50.	.11	-	.37	0.	.02	.01	.02	.02	.01
25.	.13	.13	.08	0.	.02	.00	. 12	. 02	.01
25.	.16	IL	.09	0	.01	.00	.01	. 32	. 01
27.	.17	10	.09	0.	.01	66	.01	.02	.01
30.	.18	00	.10	0	.00	9	91	.02	-
32.	.23	.22	.12		.00	8	.01	. 02	.02
35.	.62	8	.28	0.	M	00	8	.02	8
37.	1	.23	.13		~	-	in	m	t
40.	-	2	8	. 937	9	1	+	3	10
45.	9	0	2	.821	0	9	.01	.03	3
45.	W	~	2	. 873	-	2	.00	.02	.02
47.	656.	956.	t	. 936	+	S	0	2	1.020
20.	8	0	5	946.	+	S	9	.01	.01
25.	S	+	3	.938	+	3	9	-	0
55.	0	0	-1	. 928	+	9	9	.00	0
57.	.863	.867	9	.924	+	0	8	6	0

TABLE $9c - INTERPOLATED VALUES OF V_T/V$

m ₀	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
0.0	.157	.148	~	.019	.01	026	0	-	0.1
-	.120	.112	S	2000	2	0	01	00	0
4	.087	.081	3	005	.02	-	02	.01	.01
-	.082	.075	N	011	.03	0	03	.02	.03
	.043	.038	0	027	4	0	.03	.03	0
-	076	0	5	9+0	m	0	03	.03	10
	216	205	12		.02	005	2	+	0
	280	2	4	059	00	0	02	04	
	272	.2	.13		-	0	0	.03	40
	.195	-	90	022	90	920	01	02	03
25.0	.295	.267	640.	100	178	188	052	.018	.002
	413	t	29	•	9	-	5	.16	16
	340	M	54	182	13	108	11	1.0	01
	214	2	~	•	-	960	0 8	.08	98
	143	-	12	117	10	0	.08	.08	.08
	095		.10	109	-	106	60	.08	.08
•	093	760	10	114	-	113	0	60.	60.
•	118	119	N	125	12	118	0	9	10
•	117	118	.12	128	.12	-:	.11	.10	.10
•	115	116	N	131	M	129	.11	10	11
•	120	121	M	136	2	133	12	-	1
•	129	130	m		4	137	.12	11	.12
•	139	140	+	146	-	140	N	.12	2
57.5	147	148	150	150	148	143	m	N	2

TABLE 9c - (Continued)

1.0	.13	134	.13	2	139	.13	t	.14	.14	4	.13	.13	3	3	3	.13	130	2	C	2	S	-4	-	-
6.0	129	131		135	135	-	136	-	7	-			132	-	7	128		124	-	120	118	116		109
0.8	m	M	3	t	t	t	.14	t	+	.14	.14	4	3	.13	.13	13	132	.13	S	.12	2	3	.11	-
0.7	t	t	5	5	.15	5	5	5	5	.15	5	.15	.15	.15	5	t	147	t	142	140	137	m	131	127
9.0	5	5	.15	5	. 16	9	.16	9	9	.16	9	9	.16	16	.16	15	158	5	S	.15	14	t	.14	3
0.5	in	15	16	.16	0	S	.16	.17	. 17	.17	17	.17	.17	.17	.17	17		.16	166	164	161	15	155	152
0.4	155	160	.16	.16	.17	.17	.17	176	.17	.17	180	.18	.18	.18	.18	.18	181	.18	179	177	175	173	171	168
0.3	S	.16	.16	.17	.17	.17	.18	.18	.18	.18	.18	.18	.18	.19	.19	.13	193	.13	.19	.19	.19	.19	.18	186
r/R = 0.289	155	162	168	173	176	178	180	182	184	187	188	189	190	192	193	194	195	195	195	194	193	192	190	188
o o o		2	5	7	0	2	5	7.	.0	2.	5	1	0	2	5	7	100.0	02.	05.	07.	10.	12.	5	17.

TABLE 9c - (Continued)

r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	0.9	1.0
,				1		100		
105	0	165	t	135	N	-	105	0
183	8	162	t	~	-	0	101	0
180	17	159	142	~	11	.10		0
178	~	iv	13	12	11	60		
175	1	152	1	7	.10	0.0	-	00
173	~	148	.12	1	10	. 08	0	60
170	9	144	. 12	10	.09	.08		0 8
168	165	140	12	10	σ	-	0	081
165	9	3	11	0 9	0 8	.07	0	0 7
162	5	3	10	.09	07	.06	0	~
158	5	2	100	08	.07	. 10	-	06
155	3	2	0 9	œ	.06	.05	O	90
151	t	111	09	-	.06	.05	0	0.5
148	14	-	œ	.06	.05	0.	0	S
144	14	0	08	.06	.04	10.		70
140	13	0	.07	.05	.04	03	0	70
135	13	9	9	70	.03	.02	0	0.3
130	12	8	. 06	03	02	.02		. 03
124	11	00	5	03	.02	01	-	. 82
117	11	~	4	02	.01	0 1	0	. 0 2
109	105	068	039	018	006	003	006	-
101	9	9	M	0.1	00	00		000
093	8	5	2	00	00	01	0	002
082	078	1	-	00	0.1	-	. 013	00

TABLE 9c - (Continued)

1.0	.010	.016	.022	.027	.033	.038	**0.	640.	.055	090.	.066	.071	920.	.081	.086	060.	*60	660.	.103	.107	.110	.114	.118	.121
6.0	.019	.025	.031	.037	. 042	840.	.053	.059	.065	.071	.077	.083	.088	. 093	860.	.103	.108	.112	.116	.120	.124	.128	.131	.135
8.0	.023	.029	.036	.041	240.	.053	650.	. 165	.071	920.	.082	.088	.093	660.	.104	.109	.113	.118	.122	.126	.130	.134	.137	.141
0.7	.022	.028	.035	.041	240.	.053	650.	.065	020.	920.	.081	.087	-092	160.	.103	.108	.112	.117	.121	.125	.129	.133	.136	.140
9.0	.011	.018	.025	.033	.039	940.	.052	.058	.065	.071	.077	.083	.088	760.	.100	.105	.110	.115	.120	.124	.129	.133	.137	.140
0.5	007	.001	600.	.017	.025	.032	.039	940.	. 053	.060	.067	+20.	.081	.087	.093	660.	.105	.111	.116	.121	.126	.131	.135	.139
0.4	034	024	015	006	.003	.012	.020	.028	.036	.045	.053	.061	690.	920.	.083	060.	160.	.103	•109	.115	.121	.126	.132	.137
0.3	•	•		•	025	•	•	+00.	.014	.024	.034	550.	.053	.062	0.00	.078	.085	260.	660.	.106	.113	.120	.127	.133
r/R = 0.289	072	061	0.	0.	028	0.	0	0000	0	.022	.032	0	.051	.060	.068	.076	.084	.091	960.	.105	.112	.120	.126	.133
o o				. •				197.5	-				-				-				-	N.	10	

TABLE 9c - (Continued)

θ _m r/R = 0.289 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 240.0 .138 .149 .144 .144 .147 .149 .127 .149 .127 .147 .141 .127 .149 .150 .149 .127 .141 .127 .149 .150 .149 .150 .149 .150 .149 .150 .										
0.0 .138 .141 .143 .144 .145 .146 .147 .146 .147 .144 .153 .147 .144 .153 .147 .144 .153 .147 .144	θ _w	11	0.3	0.4	0.5	9.0	0.7	0.8	0.9	1.0
7.5 142 143 146 147 146 147 141 <td>.0</td> <td>.138</td> <td>.139</td> <td>.141</td> <td>.143</td> <td>.144</td> <td>.143</td> <td>.144</td> <td>.138</td> <td>.124</td>	.0	.138	.139	.141	.143	.144	.143	.144	.138	.124
75.0 147 .147 .149 .150 .149 .150 .144 .150 .144 .150 .144 .150 .144 .150 .153 .153 .151 .153 .147 .144 .152 .152 .153 .153 .151 .153 .151 .153 .150 .147 .158 .157 .158 .153 .156 .153 .156 .153 .156 .153 .156 .153 .156 .153 .156 .153 .156 .153 .156 .157 .156 .157 .156 .157 .156 .156 .157 .156	0	.142	.143	.145	.146	.147	.146	.147	.141	.127
7.5 .152 .153 .153 .153 .154 .153 .154 .153 .154 .153 .154 .155 .153 .156 .153 .156 .158 .156 .158 .156 .158 .156 .158	2	.147	147	.149	.150	.149	.148	.150	.144	.130
16.0 .159 .158 .157 .159 .158 .156 .159 .158 .159 .159 .159 .159 .159 .159 .159 .159 .159 .159 .159 .151 .159 .150 .157 .150 .157 .150 .157 .150 .157 .150 .157 .157 .150 .157 .157 .157 .157 .157 .157 .157 .150 .157 .150 .157 .150 .157 .150 .157 .160 .160 .160 .157 .157 .150 .157 .160 <td< td=""><td></td><td>.152</td><td>.152</td><td>.153</td><td>.153</td><td>.152</td><td>.151</td><td>.153</td><td>.147</td><td>.133</td></td<>		.152	.152	.153	.153	.152	.151	.153	.147	.133
12.5 .167 .163 .160 .159 .158 .153 17.6 .173 .168 .163 .161 .157 .160 .157 17.6 .173 .169 .165 .161 .167 .167 .167 .157 10.0 .176 .175 .170 .166 .163 .161 .165 .161 .165 .167 .168 .166 .167 .167 .167 .167 .167 .168 .166 .167 .168 .166 .166 .167 .169 .166 .167 .169 .169 .167 .169 <t< td=""><td>50.</td><td>.160</td><td>.159</td><td>.158</td><td>.157</td><td>.155</td><td>.153</td><td>.156</td><td>.150</td><td>.135</td></t<>	50.	.160	.159	.158	.157	.155	.153	.156	.150	.135
55.0 .174 .173 .168 .163 .160 .157 .160 .157 57.5 .176 .175 .169 .165 .161 .159 .162 .157 50.0 .176 .175 .170 .166 .163 .161 .165 .167 .169 .169 .169 .169 .169 .169 .160 .169 .160 <	2	.167	.167	.163	.160	.158	.155	.158	.153	.138
57.5 .176 .175 .169 .165 .161 .159 .162 .157 52.5 .176 .175 .170 .166 .162 .160 .164 .159 .169 .159 .169 .159 .169 .159 .169 .159 .169 .159 .169 .159 .160 .169 .160 .160 .169	52	.174	.173	.168	.163	.160	.157	.160	.155	.140
52.5 .176 .175 .170 .166 .162 .160 .164 .159 52.5 .176 .170 .166 .163 .161 .165 .160	24	.176	.175	.169	.165	.161	.159	.162	.157	.142
52.5 .176 .175 .171 .166 .163 .161 .165 .160 57.5 .173 .167 .167 .166 .162 .166 .161 57.5 .173 .168 .164 .162 .166 .162 .161 70.0 .182 .181 .174 .168 .164 .162 .167 .164 72.5 .184 .183 .175 .168 .164 .162 .168 .166 .165 .168 .166 .167 .163 .166 .166 .167 .163 .163 .167 .163 <td< td=""><td>.00</td><td>.176</td><td>.175</td><td>.170</td><td>.166</td><td>.162</td><td>.160</td><td>.164</td><td>.159</td><td>.144</td></td<>	.00	.176	.175	.170	.166	.162	.160	.164	.159	.144
55.0 .177 .175 .171 .167 .166 .161 57.5 .179 .173 .168 .164 .162 .166 .162 70.0 .181 .174 .168 .167 .167 .167 .167 72.5 .184 .183 .175 .169 .164 .162 .168 .166 .165 .166 <t< td=""><td>55</td><td>.176</td><td>.175</td><td>.170</td><td>.166</td><td>.163</td><td>.161</td><td>.165</td><td>.160</td><td>.145</td></t<>	55	.176	.175	.170	.166	.163	.161	.165	.160	.145
57.5 .179 .173 .168 .164 .162 .166 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .167 .168 .166 .167 .168 .168 .168 .168 .168 .168 .168 .168 .168 .168 .168 .168 .168 .169	50	.177	.175	.171	.167	.164	.162	.166	.161	.147
70.0 .182 .184 .174 .168 .165 .167 .164 72.5 .184 .183 .175 .169 .164 .162 .168 .165 75.0 .184 .183 .175 .168 .164 .162 .168 .168 .166 .166 .166 .168 .168 .166 .168 .166 .166 .166 .166 .167 .165 .166 .166 .167 .165 .166 .166 .166 .166 .166 .166 .166 .166 .166 .166 .166 .167 .165 .166 .167 .167 .163 .166 .167 .163 .166 .167 .163 .166 .167 <	57	.179	.179	.173	.168	.164	.162	.166	.162	.149
72.5 .184 .183 .175 .169 .164 .162 .168 .165 .166 .167 .167 .167 .167 .167 .167	.0	.182	.181	.174	.168	.165	.162	.167	.164	.150
75.0 .184 .183 .175 .168 .166 .166 .166 .166 .166 .166 .166 .166 .166 .166 .166 .167 .166 .166 .167 .166 .167 .166 .167 .166 .167 .166 .166 .167 .165 .166 .167 .167 .167 .167 .167	72.	.184	.183	.175	.169	.164	.162	.168	.165	.152
77.5 .184 .183 .174 .167 .163 .161 .168 .166 80.0 .183 .182 .173 .166 .161 .157 .165 .167 .165 .167 .165 .166 .167 .166 .166 .166 .166 .166 .166 .166 .166 .166 .163	15.	.184	.183	.175	.168	.164	.162	.168	.166	.152
80.0 .183 .182 .173 .166 .162 .160 .167 .165 82.5 .182 .181 .172 .165 .161 .159 .166 .164 85.0 .181 .171 .164 .159 .158 .165 .165 .164 87.5 .180 .173 .169 .162 .158 .163 .163 .163 .163 .160 90.0 .178 .177 .166 .158 .153 .151 .160 .159 97.6 .177 .175 .164 .152 .150 .147 .154	77.	.184	.183	.174	.167	.163	.161	.168	.166	.152
82.5 .182 .181 .172 .165 .161 .159 .166 .164 .164 .159 .181 .186 .164 .168 .181 .180 .171 .180 .159 .158 .165 .163 .163 .165 .180 .173 .169 .160 .156 .156 .156 .163 .156 .160 .178 .177 .178 .156 .158 .151 .151 .160 .159 .157 .177 .175 .164 .155 .150 .149 .157 .157 .157 .157 .157 .157 .157 .157	30.	.183	.182	.173	.166	.162	.160	.167	.165	.152
85.0 .181 .180 .171 .164 .159 .158 .165 .163 .163 .163 .163 .163 .163 .162 .163 .162 .163 .162 .162 .160 .162 .160 .150 .160 .159 92.5 .177 .175 .166 .159 .151 .160 .159 95.0 .177 .175 .161 .152 .147 .146 .155 .154	82.	.182	.181	.172	.165	.161	.159	.166	.164	.151
87.5 .186 .159 .162 .158 .155 .163 .162 90.0 .180 .178 .169 .160 .155 .154 .162 .160 92.5 .178 .177 .166 .158 .153 .151 .160 .159 95.0 .177 .175 .164 .155 .157 .157 .157 97.5 .175 .173 .161 .152 .147 .146 .155 .154	85	.181	.180	.171	.164	.159	.158	.165	.163	.150
90.0 .180 .178 .168 .160 .155 .154 .162 .160 .159 .177 .166 .158 .153 .151 .160 .159 .157 .177 .175 .154 .155 .150 .149 .157 .157 .157 .157 .157 .157 .157 .157	87.	.180	.173	.169	.162	.158	.156	.163	.152	.149
92.5 .178 .177 .166 .158 .153 .151 .160 .159 95.0 .177 .175 .164 .155 .150 .149 .157 .157 97.5 .175 .161 .152 .147 .146 .155 .154	90	.180	.178	.168	.160	.155	.154	.162	.160	.148
95.0 .177 .175 .164 .155 .150 .149 .157 .157 .157 .157 .157 .157 .157 .154 .154 .154 .154 .154	92.	.178	.177	.166	.158	.153	.151	.160	.159	.147
451. \$11. 173 .161 .152 .147 .146 .155 .154	95	.177	.175	.164	.155	.150	.149	.157	.157	.145
	16	.175	.173	.161	.152	.147	.146	.155	.154	.144

			-	TABLE 9c - (Continued)	Continued)				
om of	r/R = 0.289	0.3	0.4	0.5	9.0	7:0	0.8	6.0	1.0
•	.183	.180	162	.149	.142	.139	.150	.152	.142
2	.193	.190	.164	.146	.135	.132	.146	.149	.139
5	.202	.198	.166	.143	.129	.124	.141	.146	.137
7.	.209	.204	.166	.138	.122	.117	.135	.142	.134
	.211	.235	.164	.134	.116	.110	.130	.138	.130
2	.209	.203	.150	.129	.110	.105	.125	.134	.126
2	.199	.194	.153	.123	.106	.101	.121	.129	.121
	.182	.177	.142	.118	.103	660.	.117	.123	.115
0	.155	.152	.128	.112	.102	660.	.113	.117	.109
25	.120	.119	.111	.106	.103	.103	.111	.111	.101
5	920.	.078	.091	.100	.106	.108	.108	.103	.093
7.	.021	.026	996.	960.	.113	.119	.109	860.	.085
30.	039	030	.341	.092	.124	.135	.115	960.	.080
32.	095	082	.022	260.	.143	.161	.131	.107	.092
35.	.232	.224	.164	.125	.106	.108	.148	.177	.189
37.	.710	.673	.383	.170	.032	030	.062	.088	.032
0	.486	.467	.310	.181	.078	.003	051	067	045
24	.115	.111	.080	.056	.039	.030	.030	.033	.038
5	108	103	051	024	900.	.031	.054	.063	.059
14	041	0+0	0	007	.010	.027	0.5	.065	• 059
50.	2000	+ + 0 .	.025	.015	.013	.019	240.	.061	• 056
52	960.	060.	640.	.021	.008	.008	.037	.053	.051
355.0	.128	.123	.062	.022	0000	005	.025	.043	.043
57.	.158	.149	.075	. 023	038	017	.014	.032	.032

TABLE 9d - INTERPOLATED VALUES OF V_r/V

м _θ	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
0.0	060.	.084	.034	008	-	u	077	-2.089	-
5.5	.106	860.	.038	9	0	0	. a		
2.0	.104	260.	.033	.0	. 05	æ	90	- 195	501
7.5	.078	.071	.014	032	066	090	093	100	-1113
	940.	0+0.	007			יט	0	107	117
5.21	.035	.029	020		œ	0	0	-1111	119
	.034	.027	326		or	-	-	-	118
	.030	.023	032			w	11	-	-
•	011	015	640		60	.10	1	-	
	• 020	-	-	90	.09	111	-		: :
25.0	.020	_	0	0	11	13	12		
	121	-	127	13	- ▶	13	12		1 1
	131	130	-	12	12	12	12		1
	960	160	105		_	12	.12	-	12
	920		091		111	11	111	-	12
	060	062			.10	1	11	-	11
	052	•	073		. 09	10	10	-	-
	048	•	069		~	10	60	-	10
	770	•	+90	.07	~	(T)	0	-	60
	041	•	060		~	0 8	38	0	. 0
	039		057	• 06		0 8	0.8		700
55.5	039	0.00-	054			076	07	072	072
•	038	•		.06	-	9	90		0.0
	036	037	870			0.6		-	90

TABLE 9d - (Continued)

0.1	·	+0	03	02	01	00	00	900. 4	.01	.01	.02	.03	.03	*0.	*0 •	.05	.05	.06	.07	.07	.08	.08	60.	•
0.0	04	04		0.	0.	010	0	+000	0	.01	0	0	0	0	10.	0	.05	.06	0	0	.08	0	60.	
0.8	S	+	m	69	2	-	.00	000	00	01	-	02	33	3	970	5	0.5	9	9	-	~	æ	9	(
0.7	S	t	*	2	2	2	.01	005	00	00	01	02	02	3	t	4	5	9	9	7	1	8	8	(
9.0			.04	.03	02	2	-		00	00	0.1	-	02	02	03	10	04	in	S	9	90	~	-	3
0.5	050	t	.03	.03	2	C	-	011	.00	.00	00	0	-	-	N	02	m	3	4	3	S	5	W	1
0.4	4	03	.03	. 33	2	N	01	012	.00	0	00	.00	00	0	0	10	-	-	2	2	03	3	3	
0.3	034	M	.02	C	N	-	-	013	01	01	-	01	01	01	01	0	0	00	0 0	0	0	0	C	
r/R = 0.289	033	036	0	023	020	017	C	013	3	0		C	()	015	0	9	C	0.	0	C	0	0	.005	
m ₀			.:		-			77.5	-				-				00	~	05	07.	10	0	15	

TABLE 9d - (Continued)

Ø*	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
120.0	600.	.013	.043	.067	80	5	6	.101	.103
122.5	.011	0	240.	.071	9	0	0	• 105	.107
125.0	.014	.018	.050	.075	760.	10	0	.109	.112
	.018	0	.054	620.	9	-	-	.114	.117
130.0	.021	0	0	.083	0	-	-	•119	.121
	.023	0	090.	.086	0	-	2	.123	.125
135.0	.025	0	.063	060.	0	2	2	.126	.128
	.027	0	.166	.093	-	2	N	.129	.132
40	620.	0	.068	960.	11	2	M	.133	.136
	.031	0	.071	860.	11	3	m	-	.140
	.034	0	0	.101	2	3	m	.140	.144
	.036	0	.075	.103	2	3	+	-	.147
1	.038	0	0	.166	2	4	+	.146	.150
	040	0	610.	.108	2	4	+	.149	.152
	.041	.045	.081	.109	3	4	1,4	.151	.155
	.042	0	0	.111	3	4	15	.153	.156
160.0	.045	0	0	.112	3	t	5	.154	.158
	-042	240.	.084	.113	3	S	15	.156	.159
	.042	+	.084	.114	3	S	5	.157	.161
167.5	. 042	240.	.085	.115	~	5	in	.158	.162
	.042	t	0	.115	3	5	5	.159	.163
172.5	- 045	10	C	.116	~	5	5	.161	.165
	.042	4	.085	.116	.139	.154	.158	162	.166
177.5	.043	240.	.086	.116	.139	.155	5	.162	.166

TABLE 9d - (Continued)

o w	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
	.043	240.	8	.116	.139	.155	.159	.162	.166
82.	.042	240.	.086	.116	.139	.155	.158	.162	.165
85.	.042	240.	.085	.116	.139	.154	.158	160	.164
87.	.041	.045	.085	.116	.139	.154	.156	.159	.163
190.0	.041	940.	.085	.115	.138	.153	.155	.158	.162
92.	.041	.046	.084	.114	.137	.152	.154	.157	.161
195.0	040.	.045	.083	.113	.135	.150	.153	.155	.159
97.	.039	140.	.081	.111	.133	.148	.151	.154	.158
.00	.038	.043	.080	.109	.131	.146	.149	.152	.156
02.	.037	240.	.078	.107	.129	.143	.147	.150	.154
05.	.036	0+0.	920.	.105	.127	.141	.144	.148	.152
07.	.034	.038	720.	.103	.124	.139	.142	.145	.149
10.	.032	.036	.072	.100	.122	.136	.139	. 143	.147
12.	.030	.034	.069	860.	.119	.133	.136	.140	.144
15.	120.	.032	.067	960.	.116	.130	.133	.136	.141
17.	.025	.029	.364	.092	.113	.127	.129	.132	.137
20.	.022	.026	.061	.089	.110	.123	.126	.129	.133
22.	.020	.024	.058	.086	.106	.120	.122	.125	.130
25.	.618	.022	.055	.082	.102	.116	.118	.121	.126
27.	.016	.020	.052	620.	860.	.111	.114	.117	.122
30.	.014	.019	.050	.075	760.	.107	.110	.113	.117
32.	.013	.016	940.	.071	680.	.102	.105	•109	.113
35.	.011	.014	. 343	. 067	.085	160.	.101	.104	.108
237.5	.008	.012	040.	.062	.080	260.	960.	660.	.104

TABLE 9d ~ (Continued)

1.0	000	660.	***	.088	.083	0	07	0	90	0.5	1047	0	-	.027	-	-	10	0	005	0.1	01	N	03	M	
0.9	-	. 0		•	0	-	U	9	w	70	0	0	0 2		0 1	0	0		- 000	01	02	N	~	•	4
8.0	O	, a	5		-	9	9	S	3	70	03	0.3	02	01	01	0 0	00	00	014	02	NI	M	m		10
0.7	780	0	9 1	•	-	9	5	S	3	M	m	02	02	01	0	0 0	00	01	020	N	033	0+0	t	053	059
9.0		-	- (D	S	ID.	3	3	~	3	N	02	-			0	-	_	022	01	m	0+0	t		5
0.5	S	u	1	•	4	m	3	M	N	0	-	01	8	0	0	0	-	017	021	N	031	3	041	4	050
0.4	1	~	, (U	N	C	.018	-	-	-	0	0	0	0	0	0	-	-1	018	2	2	2	m	m	3
0.3	0	0	C	0	.001	031	003	+000-	+000-	+000-	005	900	007	0	010	011	011	012	013	014	015	016	018	019	020
r/R = 0.289	900.	.003	-		•	100	•	006	900-	900-	•	007	008	600	•	011	•	011	012	013	0	015	2	017	018
θ*	40	42.	45.	1.7	:	200	24.	22		9	. 79	65.	. 19	70.	72.	15.	11.	80.	282.5	62			26.		. 76

TABLE 9d ~ (Continued)

1.0	5	05	06	07	08	08	0	10	10	11	11	12	12	13	14	10	12	12	12	11	11	11	10	10
0.9		0	9	1	8	.08	0 92	• 0 9	0	. 10	.11	.11	.11	.12	.15	.11	.11	-	.11	0	• 0 9	σ	9	. 08
0.8	5	9	~	-	80	80	093	60.	0	.10	-	.11	2	2	.13	-	-1	-	0	9	00	1	.07	~
0.7	9	1	.07	8	08	9	960	.10	0	.11	-	.12	2	3	9	9	-	0	•00	1	.06	9	•06	9
9.0	9	9	~	~	80	.08	060	.09	60	.10	10	.11	.11	.12	9	. 10	-	9	.06	2	+0.	+	~	m
0.5	5	S	0	• 06	~	-	079	.08	8	.09	9	.09	9	9	. 10	.11	-	• 06	3	-	.01	-	-	0
6.4	-\$	t	04	S	in	9	063	9	90	.97	07	0.7	90	90	t	.13	12	03	-4	02	02	-	2	S
0.3	N	.02	02	.03	03	.04		+	+ O ·	.04	+0.	.04	.02	.02	.19	.17	3	0	1	0.7	0	05	05	9
r/R = 0.289	020	023	026	030	034		040	045	043	045	041	0.	024	023	196	174	139	.003	.077	.085	190.	.058	650.	020.
03	00	02.	05.	07.	10.	12.	315.0	17.	20.	22.	25.	27.	30.	32.	35.	37.	.0+	45	.5	17.	50.	52.	. 52	57.

TABLE 9e – HARMONICS OF V_{χ}/V

r/R	= ().2	89

n	$(A_x)_n/V$	(B _x) _n /V	$(V_x)_n/V$	$(\phi_{\mathbf{x}}^*)_{\mathbf{n}}$
0	1.3555	0.0000	0.0000	0.0
1	0527	0725	.0896	216.0
2	0805	0259	.0845	252.2
3	0509	0374	.0632	233.7
4	0279	0173	.0328	238.1
5	0205	0215	.0297	223.7
6	0153	0127	.0199	230.2
7	0187	0010	.0187	267.0
8	.0015	.0099	.0100	8.7
9	.0099	.0166	.0193	30.8
10	.0097	.0141	.0171	34.4
11	.0092	.0132	.0161	35.0
12	.0144	.0012	.0145	85.4
13	.0139	0111	.0178	128.6
14	.0103	0186	.0213	151.0
15	.0083	0231	.0246	160.2
16	.0076	0318	.0327	166.6

n	(A _x) _n /V	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^*)_{\mathbf{n}}$
0	1.0534	0.0000	0.0000	0.0
1	0511	0681	.0852	216.9
2	0781	0246	.0819	252.5
3	0493	0353	.0606	234.4
4	0271	0165	.0318	238.6
5	0199	0204	.0285	224.3
6	0145	0121	.0189	230.3
7	0174	0009	.0174	267.2
8	.0018	•0095	.0096	10.9
9	.0098	.0159	.0187	31.7
10	.0095	.0136	.0166	35.0
11	.0090	.0128	.0156	35.0
12	.0139	.0014	.0140	84.2
13	.0132	0102	.0167	127.8
14	.0096	0175	.0199	151.1
15	.0077	0218	.0231	160.5
16	.0070	0301	.0309	167.0

1		_	0	A
r/	ĸ	-	u	.4

n	$(A_x)_n/V$	(B _x) _n /V	(V _x) _n /V	$(\phi_{x}^*)_n$
0	1.0364	0.0000	0.0000	0.0
1	0375	0338	.0504	228.0
2	0588	0143	.0605	256.3
3	0362	0183	.0405	243.2
4	0205	0104	.0229	243.1
5	0144	0117	.0185	230.8
6	0084	0068	.0108	231.1
7	0074	.0001	.0074	270.8
8	.0042	.0062	.0075	33.8
9	.0091	.0103	.0138	41.4
10	.0082	.0093	.0124	41.5
11	.0067	.0095	.0116	35.3
12	.0095	.0031	.0100	72.1
13	.0076	0037	.0085	115.9
14	.0042	0083	.0093	153.0
15	.0025	0115	.0118	167.6
16	.0019	0171	.0172	173.6

n	(A _x) _n /V	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^{\star})_{\mathbf{n}}$
0	1.0229	0.0000	0.0000	0.0
1	0259	0090	.0275	250.8
2	0426	0069	.0432	260.8
3	0257	0059	.0263	257.0
L	0143	3057	.0154	248.5
5	0094	0050	.0107	241.9
6	0036	0027	.0044	233.2
6 7	0001	.0008	.0008	353.3
8	.0058	.0038	.0069	56.9
9	.0182	.0060	.0102	53.8
10	.0068	.0058	.0090	49.7
11	.0047	.0067	.0082	35.4
12	.0056	.0038	.0068	55.5
13	.0030	.3007	.0031	77.6
14	0001	0019	.0019	182.6
15	0015	0042	.0044	200.0
16	0019	0075	.0079	194.3

 R	_	0	0

n	(A _x) _n /V	(B _x) _n /V	(V _x) _n /V	$(\phi_{x}^*)_{n}$
0	1.0129	0.0000	0.0000	0.0
1	0166	.0061	.0177	290.1
2	0296	0023	. 0297	265.6
3	0177	.0017	.0177	275.6
4	0087	0024	.0090	254.4
5	0051	0004	.0051	265.9
6	.0001	.0003	.0003	16.4
7	.0046	.0013	.0047	74.2
8	.0067	.0021	.0071	72.4
9	.0072	.0030	.0078	67.4
10	.0055	.0032	.0064	59.5
11	.0030	.0043	.0053	34.8
12	.0022	.0037	.0043	30.3
13	0007	.0028	.0029	346.4
14	0033	.0017	.0037	296.9
15	0044	.0003	.0044	273.5
16	0046	0017	.0049	250.3

n	(A _x) _n /V	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^*)_{\mathbf{n}}$
0	1.0065	0.0000	0.0000	0.0
1	0094	.0116	.0149	321.0
2	0198	0006	.0198	268.3
3	0122	.0047	.0131	291.2
4	0035	0007	.0036	259.2
5	0014	.0023	.0027	328.3
	.0025	.0021	.0033	50.1
6	.0065	.0015	.0067	76.8
8	.0069	.0013	.0070	79.7
9	.0061	.0013	.0062	78.2
10	.0042	.0015	.0044	69.7
11	.0015	.0025	.0029	31.8
12	0008	.0027	.0028	344.2
13	0034	.0028	.0044	309.8
14	0053	.0024	.0058	294.2
15	0062	.0017	.0064	285.7
16	0061	.0008	.0062	277.6

1/11 0.0	r/	R	=	0	8
----------	----	---	---	---	---

n	$(A_x)_n/V$	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^{\star})_{\mathbf{n}}$
0	1.0064	0.0000	0.0000	0.0
1	0030	.0004	.0031	276.8
2	0137	0038	.0142	254.6
3	0105	0009	.0106	264.9
4	.0022	0018	.0028	129.8
5	.0023	.0013	.0026	59.5
6	.0029	.0020	.0036	55.6
7	.0041	.0013	.0043	72.7
8	.0065	.0022	.0069	71.3
9	.0045	.0019	.0049	67.5
10	.0025	.0015	.0029	58.4
11	.0001	.0012	.0012	4.5
12	0034	0006	.0034	260.5
13	0049	0019	.0053	249.0
14	0059	0028	.0065	244.4
15	0064	0024	.0069	249.3
16	0059	0034	.0068	240.2

n	$(A_x)_n/V$	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^{\star})_{\mathbf{n}}$
0	1.0047	0.0000	0.0000	0.0
1	0011	0077	.0078	188.3
2	0098	0061	.0115	238.2
3	0092	0041	.0101	246.2
4	.0054	0019	.0057	109.2
5	.0043	.0013	.0045	72.7
6	.0035	.0021	.0041	59.6
7	.0022	.0012	.0025	60.3
8	.0051	.0021	.0055	68.1
9	.0033	.0018	.0038	61.0
10	.0014	.0009	.0017	56.3
11	0007	.0002	.0007	289.1
12	0051	0023	.0056	245.5
13	0059	0042	.0072	234.5
14	0059	0052	.0079	228.5
15	0062	0047	.0078	233.2
16	0055	0054	.0076	225.6

r/R = 1.0

n	(A _x) _n /V	(B _x) _n /V	(V _x) _n /V	$(\phi_{x}^*)_{n}$
0	1.0007	0.0000	0.0000	0.0
1	0039	0109	.0115	199.7
2	0080	0070	.0106	229.1
3	0079	0036	.0087	245.2
4	.0059	0006	.0060	95.4
5	.0045	.0027	.0052	59.0
6	.0044	.0024	.0051	61.4
7	.0012	.0015	.0019	39.2
8	.0028	.0006	.0028	78.2
9	.0024	.0008	.0025	70.7
10	.0010	0005	.0011	115.9
11	0007	0006	•0009	231.3
12	0060	0023	.0064	248.8
13	0063	0035	.0072	241.0
14	0055	0042	•0069	232.8
15	0057	0043	.0072	233.1
16	0050	0044	•0066	228.9

TABLE 9f – HARMONICS OF V_t/V

r/R = 0.28

n	$(A_t)_n/V$	(B _t) ₀ /V	$(V_t)_n/V$	$(\phi_1^{\bullet})_n$
0	0089	0.0000	0.0000	0.0
1	.0484	1984	.2042	166.3
2	0035	0141	.0145	194.0
3	.0109	0203	.0231	151.7
4	.0055	0132	.0143	157.2
5	.0113	0140	.0180	141.0
6	.0120	0080	.0144	123.6
7	.0112	0077	.0136	124.4
8	.0051	0038	.0063	126.9
9	0031	.0011	.0033	290.1
10	0078	.0071	.0106	312.3
11	0073	.0117	.0138	328.1
12	0003	.0158	.0158	358.8
13	.0102	.0165	.0194	31.6
14	.0215	.0147	.0260	55.7
15	.0291	.0109	.0311	69.5
16	.0327	.0077	.0336	76.8
	r/R = 0.3			
n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_{\mathbf{t}}^*)_n$
0	0086	0.0000	0.0000	0.0
1	.0453	1970	.2021	167.0
S	0033	0136	.0140	193.6
3	.0103	0195	.0221	152.0
4	.0053	0127	.0137	157.3
5	.0107	0134	.0171	141.3
	.0113	0075	.0135	123.5
7	.0105	0070	.0126	123.7
8	.0047	0032	.0056	124.2
9	0030	.0016	.0034	
10	0075	.0072	.0104	313.9 328.4
11	0070	.0114	.0133	358.4
12	0004	.0150	.0150	31.4
13	.0095	.0156	.0182	55.9
14	.0202	.0137	.0244	70.0
15		0.4.0.0		
16	.0275	.0100 .0069	.0292	77.4

	r/R = 0.4			
n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_t^{\bullet})_n$
0	0061	0.0000	0.0000	0.0
1	.0207	1852	.1863	173.6
2	0016	0099	.0100	189.1
3	.0057	0129	.0141	156.1
4	.0034	0083	.0090	157.6
5	.0055	0081	.0098	145.5
6	.0057	0035	.0067	121.8
7	.0649	0018	.0052	109.9
8	.0016	.0016	.0022	45.3
9	0025	.0047	.0053	331.8
10	0048	.0075	.0089	327.5
11	0045	.0085	.0096	332.3
12	0011	.0091	.0091	353.2
13	.0043	.0079	.0090	28.5
14	.0102	.0057	.0116	60.8
15	.0145	.0028	.0148	79.0
16	.0170	.0009	.0170	86.9
	r/R = 0.5			
n	$(A_t)_n/V$	(B _t) _n /V	$(V_t)_n/V$	$(\phi_t^*)_n$
0	0031	0.0000	0.0000	0.0
1	.0026	1750	.1750	179.1
2	0003	0073	.0073	182.3
3	.0023	0078	.0081	163.6
4	.0019	0047	.0051	157.7
5	.0017	0040	.0043	156.5
6	.0015	0006	.0017	112.2
7	.0008	.0019	.0020	22.5
8	0006	.0047	.0047	353.3
9	0020	.0064	.0067	342.8
10	0026	.0072	.0077	339.8
11	0025	.0059	.0064	337.3
12	0014	.0043	.0045	342.2
13	.0006	.0019	.0020	17.5
15	.0050	0004 0025	.0029	97.9
16	.0067	0035	•0056	116.5
10	.0007	-• 0035	.0075	117.5

	r/R = 0.6			
n	$(A_t)_n/V$	(B _t) _n /V	(V _t) ₀ /V	$(\phi_t^{\bullet})_n$
0	.0004	0.0000	0.0000	0.0
1	0090	1664	.1667	183.1
2	.0005	0060	.0060	174.9
3	.0001	0041	.0041	179.2
	.0009	0020	.0022	156.0
5	0007	0011	.0013	215.3
6	0012	.0012	.0017	316.5
7	0018	.0039	.0043	335.6
8	0018	.0062	.0064	344.0
9	0015	.0069	.0071	347.7
10	0011	.0062	.0063	350.4
11	0010	.0036	.0037	344.8
12	0C13	.0007	.0015	297.1
13	0015	0023	.0028	214.0
14	0016	0046	.0048	199.0
15	0010	0060	.0061	189.6
16	0001	0062	.0062	180.6
	r/R = 0.7			
n	$(A_t)_n/V$	(B _t) _n /V	(V _t) _n /V	$(\phi_t^*)_n$
0	.0044	0.0000	0.0000	0.0
1	0140	1595	.1601	185.0
2	.0009	0059	.0060	171.1
3	0610	0018	.0021	208.4
4	.0003	0001	.0003	112.2
5	0019	.0007	.0020	289.7
6	0024	.0020	.0031	310.0
7	0028	.0044	.0052	327.4
8	0020	.0060	.0063	341.3
9	0010	.0061	.0061	350.4
10	0000	.0046	.0046	359.7
11	.0000	.0015	.0015	•6
12	0009	0017	.0020	207.4
13	0022	0048	.0052	204.4
14	0033	0058	.0075	205.6
15	0036 0032	0077 0074	.0085	205.2

R		

n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_t^*)_n$
0	.0136	0.0000	0.0000	0.0
1	0081	1553	.1555	183.0
2	.0002	0081	.0081	178.6
3	.0001	0017	.0017	176.6
4	.0003	.0007	.0008	25.5
5	0008	.0007	.0010	312.8
	0013	.0011	.0017	312.1
6	0012	.0020	.0024	328.6
8	0006	.0027	.0028	347.0
9	0006	.0026	.0027	346.5
10	.0001	.0013	.0013	6.3
11	.0003	0006	.0006	155.4
12	.0003	0026	.0026	173.5
13	.0000	0047	.0047	179.4
14	.0001	0061	.0061	178.8
15	0001	0054	.0064	180.6
16	0000	0053	•0058	180.4

n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_t^*)_n$
0	.0149	0.0000	0.0000	0.0
1	0036	1507	•1507	181.4
2	.0002	0096	.0096	178.6
3	.0007	0018	.0019	158.3
4	.0004	.0011	.0012	18.0
5	.0000	.0005	•0005	6.1
6	0003	.0003	.0004	314.3
7	0000	.0002	.0002	356.1
8	.0004	.0004	.0006	41.5
9	0001	.0002	.0002	
10	.0003	0008	.0009	318.8
11	.0004	0018	.0019	160.5
12	.0011	0030		166.7
13	.0014		.0031	160.1
		0044	.0046	162.2
14	.0021	0054	.0058	158.5
15	.0021	0053	.0057	158.4
16	.0019	0046	.0049	157.5

TABLE 9f - (Continued)

_	/D	=	1	0
10	n	-	- 1	.U

n	$(A_t)_n/V$	(B _t) _n /V	(V _t) _n /V	$(\phi_t^*)_n$
0	.0072	0.0000	0.0000	0.0
1	0015	1455	.1455	180.6
2	.0012	0101	.0102	173.4
3	.0006	0017	.0018	161.4
4	.0003	.0012	.0713	14.0
5	.0003	.0001	.0003	74.2
6	.0003	0004	.0005	144.0
7	.0006	0007	.0010	138.4
8	.0009	0006	.0011	126.1
9	.0005	0011	.0011	156.4
10	.0005	0015	.0017	163.2
11	.0006	0022	.0023	164.7
12	.0013	3030	.0032	155.9
13	.0016	0041	.0044	158.4
14	.0021	0048	.0052	156.0
15	.0022	0346	.0051	154.0
16	.0020	0039	.0044	153.5

TABLE $9g - HARMONICS OF V_r/V$

	r/R = 0.289			
n	$(A_r)_n/V$	$(B_r)_n/V$	(V _r) _n /V	$(\phi_r^*)_n$
0	.0012	0.0000	0.0000	0.0
1	0264	0002	.0264	269.6
2	.0225	0016	.0225	94.0
3	.0155	.0035	.0159	77.1
4	.0209	.0041	.0213	78.8
5	.0225	.0045	.0230	78.6
6	.0175	.0052	.0183	73.3
7	.0136	.0041	.0142	73.2
8	.0094	.0023	.0097	76.2
9	.0064	0002	.0064	92.0
10	.0023	0019	.0030	130.0
11	0011	0044	.0046	194.1
12	0037	0072	.0081	207.6
13	0052	0080	.0096	213.0
14	0050	0063	.0080	218.1
15	0049	0037	.0062	232.9
16	0041	0001	.0041	268.6
	r/R = 0.3			
n	$(A_r)_n/V$	(B _r) _n /V	(V _r) _n /V	$(\phi_r^*)_n$
0	.0019	0.0000	0.0000	0.0
1	0311	.0001	.0311	270.1
2	.0219	0016	.0220	94.3
3	.0155	.0032	.0158	78.5
4	.0205	.0038	.0208	79.5
5	.0219	.0042	.0223	79.2
6	.0171	.0049	.0177	74.1
7	.0132	.0038	.0138	74.1
8	.0092	.0021	.0094	77.1
9	.0062	0003	.0062	92.8
10	.0022	0019	.0029	130.6
11	0010	0043	.0044	193.8
12	0036	0069	.0077	207.7
13	0050	0077	•0092	212.9
14	0047	0061	.0077	218.0
15	0047	0036	.0059	232.5
16	0039	0001	.0039	267.9

	r/R ≈ 0.4			
n	(A _r) _n /V	(B _r) _n /V	(V _r) _n /V	$(\phi_r^*)_n$
0	.0075	0.0000	0.0000	0.0
	0691	.0023	.0691	271.9
2	.0171	0021	.0172	96.9
2 3	.0155	.0001	.0155	89.6
4	.0173	.0010	.0173	86.6
5	.0171	.0014	.0172	85.4
5	.0134	.0018	.0135	82.3
7	.0103	.0012	.0104	83.1
8	.0072	.0004	.0072	86.5
9	.0045	0010	.0046	101.8
10	.0015	0016	.0023	135.8
11	0006	0030	.0030	191.3
12	0023	0043	.0049	208.3
13	0030	0048	.0057	211.7
14	0028	0039	.0048	216.0
15	0026	0025	.0136	226.7
16	0021	0005	.0022	256.8
	r/R = 0.5			
n	$(A_r)_n/V$	(B _r) _n /V	(V _r) _n /V	$(\phi_r^*)_n$
0	.0123	0.0000	0.0000	0.0
1	0995	.0038	.0996	272.2
2	.0126	0023	.0128	100.2
3	.0149	0021	.0150	97.8
4	.0146	0009	.0146	93.6
5	.0133	0006	.0133	92.4
6	.0104	0003	.0104	91.6
7	.0079	0005	.0079	93.8
8	.0055	0007	.0056	97.5
9	.0032	0014	.0035	113.0
10	.0011	0014	.0018	141.6
11	0003	0020	.0020	187.5
12	0013	002+	.0327	209.0
13	0015	0027	.0330	209.0
14	0013	0022	.0026	211.5
15	0011	0016	.0019	213.9
16	0008	0007	.0011	260.1

r/	R	=	0	6

n	(A _r) _n /V	(B _r) _n /V	(V _r) _n /V	$(\phi_r^*)_n$
0	.0161	0.0000	0.0000	0.0
1	1222	.0048	•1223	272.2
2	.0084	0023	.0087	105.0
2	.0137	0033	.0141	103.6
4	.0123	0021	.0125	99.5
5	.0104	0016	.0105	98.9
6	.0081	0015	.0082	100.4
7	.0059	0015	.0061	
8	.0041	0014		104.5
9	.0022	0016	.0043	108.8
10	.0008	0012	.0027	125.2
11	0001		.0014	147.2
		0012	.0012	182.6
12	000€	0011	.0012	208.8
13	0005	0012	.0013	201.2
14	0003	0010	.0011	196.5
15	.0000	0009	.0009	179.4
16	.0002	0007	.0008	166.9

n	(A _r) _n /V	(B _r) _n /V	(V _r) _n /V	$(\phi_r^*)_n$
0	.0190	0.0000	0.0000	0.0
1	1373	÷0051	.1374	272.1
2	.0045	0020	.0050	114.0
3	.0120	0037	.0125	107.2
4	.0105	0024	.0108	102.8
5	.0084	0018	.0086	102.1
6	.0065	0018	.0067	105.2
7	.0044	0018	.0048	111.8
8	.0030	0016	.0034	118.0
8	.0015	0015	.0021	135.4
10	.0006	0010	.0011	151.3
11	.0000	0008	.0008	178.7
12	0002	0004	.0005	
13	.0001	0004	.0004	200.8
14	.0003	0004		167.8
15	.0006	0005	•0005	139.8
16	.0007	0006	.0010	129.5

	r/R = 0.8			
n	(A _r) _n /V	(B _r) _n /V	(V _r) _n /V	$(\phi_r^*)_n$
0	.0208	0.0000	0.0000	0.0
1	1400	.0047	.1401	271.9
2	.0012	0014	.0018	139.6
3	.0091	0026	.0394	105.9
4	.0094	0012	•0095	97.0
5	.0079	0003	.0079	92.1
6	.0062	0004	.0062	93.2
7	.0038	0006	.0038	99.3
8	.0024	0010	.0026	111.7
9	.0015	0012	.0019	127.3
10	.0008	0010	.0012	141.7
11	.0001	0010	.0010	173.9
12	0001	0010	.0010	185.2
13	0003	0008	.0009	201.2
14	.0000	0005	.0005	177.9
15	.0001	0004	.0004	161.8
16	.0005	0001	.0005	105.5
	r/R = 0.9			
n	(A _r) _n /V	(B _r) _n /V	$(V_r)_n/V$	$(\phi_r^*)_n$
0	.0220	0.0003	0.0000	0.0
1	1435	.0039	.1436	271.6
2	0021	0009	.0023	247.5
3	.0066	0017	.0068	104.2
4	.0084	0005	.0084	93.4
5	.0073	.0006	.0073	85.0
6	.0055	.0006	.0055	83.8
7	.0029	.0002	.0029	86.7
8	.0016	0004	.0017	104.8
9	.0019	0007	.0012	123.9
10	.0005	0007	.0008	141.9
11	0002	0009	.0009	192.4
12	0001	0011	.0011	187.5
13	0004	0009	.0010	204.1
14	.0001	0006	.0006	170.2
15	.0002	0003	.0004	149.3
16	.0006	.0001	.0006	79.7

.0001

.0004

149.3

16

.0002

r/R = 1.0

n	$(A_r)_n/V$	$(B_r)_n/V$	(V _r) _n /V	$(\phi_r^*)_n$
0	.0227	0.0000	0.0000	0.0
1	1488	.0027	.1488	271.0
2	0054	0005	.0054	265.0
3	.0046	0011	.0048	103.5
4	.0073	0005	.0073	94.3
5	.0062	.0008	.0063	82.7
6	.0041	.0009	.0042	77.6
7	.0018	.0005	.0018	75.5
8	.0004	0000	.0004	94.7
9	0002	0001	.0002	242.6
10	0003	0000	.0003	260.3
11	0009	0004	.0010	246.1
12	0003	0007	.0007	205.3
13	0001	0005	.0005	189.9
14	.0007	0005	.0009	129.3
15	.0009	0002	.0009	103.5
16	.0011	0000	.0011	90.3

TABLE 10 - WAKE WITH DYNAMOMETER BOAT

TABLE 10a - MEASURED DATA

	N, V	\\\ \^\	o o o	\ \ \ \ \ \ \ \	٧,٧	۸٬۷
*	.013	3	80.	9	.013	8
	.006	t	86.	9	.031	.080
	011	059	92.	0	640.	1
	0	8	. 40	9	.085	.070
	007	084	16.	0	.113	S
	.003	083	228.1	.893	.137	.041
	016	087	. 04	0	.156	.022
	105	0	52.	0	.172	0
	214	3	63.	2	.175	2
	184	5	75.	-	.173	t
	138	4	88.	-	.165	066
	102	126	12.	-1	.127	0
_	0	-	24.	2	.103	-
	105	+	32.	0	.123	2
~	112	0	33.	0	.149	2
	135	8	35.	8	.177	134
	149	0	35.	5	.180	
	156	03	38.	5	.179	147
•	157	-	39.	t	+10.	
	153	0	41.	8	010	
	138	C	43.	3	017	t
	120	0	.94	-	-6.000	m
	960	9	47.	8	.017	
	- 045	~	.64	8	.024	3
	034	-	53.	8	.030	028
_	022	~	58.	~	. 923	

N'N	.088	9	.102	.107	.109	.108	0	9	00	.069	5	3	0	2	t	07	-	2	3	S	5	135	-	-1	-1	-	9	1	9	
N'3	860			~	1	.007	7	O	9	-	3	3	3	t	4	~	-	0	a	0	t	~	-	+		-	01	0	.01	
^×^ ∧	-	1	8	1	1	.877	0	0	9	1	1	00	~	8	9	9	9	9	9	0	∞	9	3	σ	t	+	m		J	
o w	38.	46.	24.	62.	70.	178.3	. 46	02.	18.	26.	34.	45.	58.	68.	78.	88.	.90	14.	25.	30.	32.	34.	36.	38.	+0.	45.	46.	50.	24.	
٨,٧	1	1	1	088	9	0	113	112	2	3	3	2	2	2	4	5	t	t	t	2	-	084	0	S	03	2	0	2	9	1
V, v						052								0		-									163	162	158	153	128	113
^× ^×	t	85	85	85	9	.861	9	-	-	8	0	88	79	M	19	96	91	-	91	-	0	0	90	0	0	0	0	0	9	9
o w	5.					7.8		0	2	3	9	8		2.		.9	8.		2	2		•	.9	2.	8.		9	02.	2.	30.

V,/V	0	C	0	9	8	4	2	-	0	0	024	0.5	.07	0 8	10	11	12	.13	.14	.14	14	1 8	12	12	.13	-	. C	, c			000
V,1V	(.03	90	8	.109	t	5	0	0	6	.169	16	0	15	15	1	12	11	10	0	60	17	0	.03	70	90	U U	1	, ~	-	4
^ × ×	9	87	00	9	9	0	O	-	93	93	.934	92	92	32	32	92	93	92	93	93	~	92	88	55	8	-	0	O	O	0	•
o w	68.	80.	92.	04.	16.	39.	46.	51.	57.	63.	269.9	82.	87.	. 76	66	06.	11.	16.	20.	24.	28.	32.	35.	37.	40	43.	48	50	200	30	
٧,٧	0	2		3		~	3	3	3	UI	153	t	3	13	12	10	9	∞	0	03	02	00	00	-	03	0	5	0	1	∞	
N,v	0	01	W.	02	CI	0	C	90	UI	9	058	0	1	œ	9	C	-	-	2	2	3	2	CI	-1	-4	()	9	8	~	0	1
N× N	89	9	6	-	91	93	93	89	77	90	.901	06	06	06	89	06	06	06	06	92	31	36	36		90	80	06	89	88	89	1
o w			2.	9	1	0		:	+	8	32.3	. 9	0	į.	8	2.	9	0	9	8		0	9	5	08.	14.	20.	26.	32.	38.	

	N'N	•	. 110	.115	.080	.061	.038	.012	069	085	103	1119	6111	1	- 149	151	154	156	176	150	124	200	+21.	12/	124	
	V, _t V		6113	740.	.103	.128	.142	.152	.152	.143	.135	121	101.	260.	190.	.083	.384	.089	.137	.181	7.70		250	677.	0.000	
	>/×/	200	2000	.695	.896	.894	.897	.898	.886	.881	.876	873	0.00		. 581	.881	.885	.882	.766	.696	2	000	0000	6.00.	. 355	
	3	197 1.	100	139.5	231.4	243.6	2555.2	267.6	297.4	303.1	309.2	315.1	327.1	1000	5.626	330.6	330.9	333.0	334.9	336.9	338.8	31.2 2	100	0.000	360.0	
	V, V	124	127	124	123	0 1 4	001.	971.	1.150	-154	151	149	147	119	103	280		690.	210.	.038	.061	.080	.115	.118	.117	
	N,1V	0.000	026	042	10.0	181	1011	101.	600-	180	083	087	192	121	135	143	611	201.	261	142	128	108	047	019	600	
r/R = 1.082	^×^	.856	.879	9	.835	969	766	0000	200.	.000	.881	.881	618.	.873	.876	. 881	4 00	900	060.	168.	768.	.896	.893	.902	768.	
	o s		10.0	17.8	21.2	23.1	1.00	1.00	20.00	29.1	59.4	31.1	32.9	6.44	50.8	26.92	, , ,	0.20	40.76	8.40	116.4	128.6	160.5	172.6	84.6	

TABLE 10b – INTERPOLATED VALUES OF $\mathbf{v_x/v}$

· *	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
0.0	049.	249.	607.	.763	.809	.846	.881	968.	
	.632	.643	602.	.767	.815	.852	.881	*89	.887
5.0	.626	.635	502.	.770	.819	.856	.882	. 892	.887
	665.	.610	169.	.764	.819	.859	.885	. 896	.890
	.566	.578	.578	.760	.823	.867	.891	006.	768.
2	175.	.561	.670	.759	.826	.873	468.	+06·	.905
3	.487	.504	119.	.755	.838	.891	.903	806.	.910
	264.	.509	9+9.	.756	.838	.892	.910	.916	.911
	.771	.757	.743	.739	.756	+61.	.890	. 938	.929
2	.587	.590	.617	.651	.691	.738	.830	.859	.817
5	.378	.403	.595	.734	.820	.852	062.	.750	.742
27.5	.702	.713	.801	. 863	.901	.913	.875	.857	.865
	.871	.873	.890	.902	.911	.916	.919	.914	006.
2	.845	648.	.875	.894	106.	.912	606.	- 902	.891
5	.862	.864	.883	168.	906.	.910	.910	+06.	.891
1.	.867	.859	.885	. 897	906.	.910	.911	906.	.892
	.863	.865	.883	. 896	.905	.910	.913	106.	.892
3.	.864	.856	.883	.896	.905	.910	.913	206.	. 892
5.	.864	.856	.884	.897	.905	606.	.911	• 905	,890
	.858	.850	.881	968.	.905	606.	806.	106.	. 888
0	.857	.850	.879	.894	+06.	806.	606.	.903	.890
2.	658.	.862	.879	. 893	.902	806.	.911	206.	*88
	.858	.850	.877	.891	.901	206.	.911	.908	968.
57.5	.859	.861	.878	.891	.901	206.	.911	806.	.897

TABLE 10b ~ (Continued)

· · ·	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
50.0	. 867	.869	.883	468.	.902	206.	.911	806.	868.
62.5	.874	.876	.887	168.	.903	206.	.911	. 908	868.
55.0	.882	.884	.893	006.	.905	806.	.911	806.	006.
	. 893	.893	.898	.903	906.	806.	.912	.910	.902
	-902	.902	.903	. 905	906.	806.	.914	. 913	· 904
	.910	.910	206.	906.	906.	806.	.916	. 917	.907
	.917	.916	.910	906.	.905	206.	. 918	.919	.910
77.5	.922	.921	.912	106.	.905	206.	. 919	.921	.912
	. 919	.918	.912	706.	906.	206.	.917	.919	.910
	918	.918	.912	.908	206.	806.	.915	.916	606.
	. 923	.922	.914	. 910	106.	806.	.915	.916	606.
	. 934	.932	.919	.911	906.	206.	.919	. 921	.913
	446.	.941	.923	.911	.905	.905	.922	. 926	.916
	946.	.943	.923	.910	+06 .	+06 .	.922	.928	.918
	. 931	.929	.914	. 905	.901	.903	.922	.927	.917
	806	106.	.901	668.	668.	+06	.920	. 925	.916
0.00	.881	.881	.886	.892	868.	906.	.918	.922	. 913
	.855	.857	.873	.886	168.	906.	.916	.918	.910
	.842	148.	.865	.882	.896	-905	.913	. 914	806.
	.846	.848	.868	. 883	968.	+06	.910	.910	.905
10.0	. 853	.855	.872	. 886	968.	-902	906.	906.	.901
12.5	. 862	.864	.878	. 888	968.	006.	.901	006.	868.
15.0	.876	.877	.885	.891	.895	888.	868.	.897	968.
17.5	. 889	.889	.891	. 893	468.	968.	898	888	168.

TABLE 10b - (Continued)

8	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
20.0	968.	.895	ത	. 892	The state of	.893	a	006.	868.
	895	1	(T)	. 891	m	The same	3	668.	868.
25.0	.884	-	88	.889	m	T	0	968.	968.
27.5	.871	-	88	. 886	CT.	m	0	.892	.893
30.0	.861	10	87	.884	T.	CT.	8	.886	9
	. 865	.867	87	. 882	1	m	00	. 883	8
35.0	. 882	0	88	. 881	m	m	8	.887	9
	668	C	88	.880			8	. 892	$\boldsymbol{\sigma}$
6.0.0	006	(88	.878			8	. 893	9
	888	1	0	.876	~	~	8	068.	9
45.0	.872	.872	.872	.873	.875	.878	.882	.886	068.
	.857	· LC	86	.870	~	8	8	. 886	8
	148	+	n	. 868	~	9	8	. 885	8
2	.834	~	u	.866	~	œ	8	.886	8
2	.831	- M	S	. 865	~	a co	8	.887	9
2	. 840	1 -7	L	.864	~	œ	8	.888	9
60.0	852	. 10	S	. 864	~		8	.890	9
2	.863	· vo	o	. 865	O	~	8	. 892	σ
2	.866	· C	w	. 866	O		æ	.893	σ
	. 869	0	O	.868	-	-	8	. 893	888.
	.867	9	•	. 869	_	~	œ	.892	9
2	.864	C	•	.870	_	-	8	.889	968.
2	.861	.851	9	.869	~	~	œ	. 885	9
	.857		w	.869	.873	.877	~	.882	.889
	١								

TABLE 10b - (Continued)

· · ·	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
180.0	.856	.857	9	9	~	~	-	.879	.887
	.858	.859	9	9	~	1	1	.878	. 886
	. 863	.863	9	9	9	1	1	.879	.888
	.871	.871	9	9	9	9	~	.880	.891
190.0	.883	.882	.872	. 866	.864	.866	.872	.881	. 893
	. 895	.893	1	9	9	9	~	.883	468.
	968.	.893	1	9	9	9	1	.884	.894
	.889	.883	~	9	9	9	~	. 886	. 893
	.882	.881	9	9	9	9	~	.887	.892
	.875	.874	9	9	9	9	1	.889	.893
	.876	.874	9	9	9	9	8	. 890	.893
	.887	.885	1	9	9	9	8	068.	*88
	006.		8	9	9	9	8	. 890	768 .
	.915	.912	8	~	9	9	8	.891	468.
	.930	.927	9	~	9	9	80	.891	.895
	246.	m	0	8	1	9	80	. 892	.895
	246.	.943	-	8	~	9	8	.893	968.
	.951	4	-	8	1	~	8	. 895	168.
	956.	.951	-	9	~	1	8	968.	888.
	996.	0	2	6	~	1	80	868.	006.
	. 982	1	3	9	~	~	80	668.	.901
	866.	.992	3	0	~	~	00	.901	.902
	1.008	1.001	4	0	8	1	6	- 902	.903
-	. 00	0.	4	206.	.883	~	.893	706	+06.

1.0	+06.		.905	.907	.911	.915	.921	.926	.925	.923	.922	.923	.924	.922	.921	.918	.916	.915	.914	.914	.914	.915	.915	.915
6.0	906.	906 •	806.	. 911	.915	.921	. 929	. 935	.934	.931	. 930	. 932	.934	. 933	. 930	.928	• 925	. 923	.923	.923	.925	. 927	.928	.929
0.8	9	9	9	0	0	0	-	.917	-	-	-	-	2	2	-	-	-	-	-	-1	-	-	-	-
0.7	~	8	æ	8	æ	~	~	.878	~	Ø	œ	œ	8	σ	σ	σ	o	σ	σ	σ	5	G	σ	O
9.0	80	8	8	80	8	80	80	.886	80	6	9	6	9	6	9	6	0	0	0	0	9	9	6	6
0.5	806.	606.	606.	.910	.911	. 912	.916	.919	.922	.924	. 925	. 925	.925	. 924	.923	. 922	. 922	. 922	. 922	. 921	. 921	. 921	.920	. 920
0.4	.945	.942	.943	.945	.950	956.	996.	.975	116.	176.	916.	.973	.971	896.	196.	.962	096.	.958	856.	.958	.958	.958	656.	.958
0.3	.996	.987		666.	1.004		1.037	5	1.056		1.047	t	1.037	3	1.023	-	1.012	0	1.008	0	-	-	-	1.013
r/R = 0.289	1.003	6	366.	1.001	1.011	1.025	1.046	1.064	1.066			0.	0.	1.038	1.030	.0	1.018		1.014	.01	-	.01	1.020	2
θ *	.04	42.	45.	47.	50.	52.	55.	257.5	60.	62.	65.	67.	70.	72.	75.	77.	80.	82.	85.	87.	90.	95.	95.	97.

TABLE 10b - (Continued)

	1.0	.914	.913	.912	.912		-	806.	0	-	.914	-	-	-	.921	1	1	8	2	-	0	9	8	.874	~
	6.0					.931																			
	0.8	-	-	-	2	.922	2	2	2	2	2	3	~	2	-	9	9	9	9	~	~	~	~	~	
	0.7	9	9	89	6	068.	9	89	9	89	0	0	90	0	~	4	17	3	m	3	3	3	4	4	t
	9.0	6	9	9	6	968.	9	9	0	0	0	0	0	0	00	00	5	2	~	6	0	-	-	-	.810
	0.5	. 919	. 919	. 918	. 918	. 918	. 919	. 921	. 923	. 924	. 924	.920	.915	.910	. 911	.916	169.	.631	769.	.753	622.	.785	.781	.774	.768
	0.4	5	S	S	5	196.	5	5	5	9	5	t	2	2	9	2	8	~	0	0	5	10	t	2	-
/	0.3	1.012	1.011	1.010	1.011	1.011	1.011	1.010	1.010	-	1.004	~	t	+	1.032	C	3	8	9	5	2	2	0	~	9
	r/R = 0.289			•		1.019	•		•			•	876.	956.	•	1.461	.415	.256	. 487	.652	.717	.722	.701	029.	.653
	03	00	02.	05.	07.	310.0	12.	15.	17.	20.	22.	25.	27.	30.	32.	35.	37.	40.	42.	45.	47.	50.	52.	55.	57.

TABLE $10c - INTERPOLATED VALUES OF <math>V_t/V$

**	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
0.0	.178		.382	.020	+1	M	0	.012	01
	.172		1	-	2	4	-	000	0
	.161		9	00	2	t	2	010	00
2.5	.129	.123	640.	002	035	048	028	015	013
	960.		2	01	4	5	m	021	019
2	.092	a	2	2	4	0.5	m	024	3
15.0	650.	0	-	01	.03	3	.02		039
	037	3	-	0	0	00	.00	0	3
	131	12	0.5	-	01	03	00	0	02
	016	02	8	11	-	8	m	0	0
3	088	60	1	-	-	18	04	600.	03
1.	183	8	17	.15	.14	2	.08	0	~
	129	12	2	11	10	10	.09	0	0.8
2.	061	10	8	0	0	9	~		9
	046	10	1	9	0	0	07	062	~
7.	045	4	.07	• 0 9	. 10	0	8		8
0	038	0	~	0	-	-	8	075	8
2.	036	t	90	0	2	2	9		6
	042	t	.08	. 11	2	2	.09	0	9
1.	048	0.5	9	-	2	3	0		104
		.05	9	N	~	3	.10	660	110
2.	060	9	0	2	m	t	-	104	-
	166	.07	0	3	4	t	119	7	118
7.	070	~	110	134	147	1	2	113	122

1.0	125	-129	-132	134	135	136	_	136	•	•	135	134	133	131	-129	127		123	121	110			-114	110	•
6.0	116			124	125	126	126	126	126	-	-		124			-	-	-	-	-		•	-	103	-
0.8	· (V	12	.13	14.)	P)	13	13		.13	.13	m	.13	.13	.13	m	.13	~	.12	N	12	~		4 .	-	-
0.7	151	154	157	159	160	161		164				162	_			158		154	151	149		271-	24.	140	137
9.0	U	u	un	w	ın	.16	w	164	vD.	O	LD.	.16	VD.	·O	.16	C	•16	10	.15	10	.15		•	•	141
0.5	138	141	-	-	148	-	7	153	7	7	7	-	156	-	155	-	154	7.	7	7	146	143	200	667.	136
0.4	113	117	120	123	126	129	130	131	135	135	136	137	138	138	138	139	139	139	138	136	133	129		4 .	121
0.3	077	081	085	060	760	960	260	260	100	104	107	109	110	110	112	113	115	116	116	114	111	107	103	•	260
r/R = 0.289	073	076	081	085	089	092	093	093	096	-100	103	105	106	107	108	110	111	113	113	1111	108	104	100	200	- 1935
03	0.09	~		٠.	-	٠.	٠.	٠.	٠.	٠.	٠.	٠.	-	٠	:.	-	• .	200	50	•	10	12.	15.	17	

TABLE 10c - (Continued)

0	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
	-	O	-	~	~	. 1.3		760	0
	200			0) M	2	1 10	091	G
	080	0		-125	0	12	O	- 088	0
127.6	980-		110	121	124	120	095	084	091
•	086	0.8	0	117	-	.11	.09	080	8
	082	. 08	10	. 11	11	.11	.08		80
	0	.07	.09	7	-	10	. 38		.07
	0	-	39	. 10	10	.10	.07		~
	0	.06	.08	.09	10	.09	.07		90
	0.	90	.08	.09	0 9	0 8	.06	•	9
	0	.05	.07	.08	0.8	.08	.06	•	90
	0	.05	.07	.07	.08	.07	.05		05
-	051	0.5	9	~	.07	07	.04	042	.05
	0	.04	.06	.06	.06	.06	+0.	•	10.
	0	.04	.05	.06	.06	.05	.03	•	3
	0	.03	+0.	.05	.05	.05	.03	•	03
' -	0	02	03	70.	10.	40.	02	•	2
	017	.01	.03	.04	70	.03	.02	•	0
	C	0.1	2	.03	.03	m	.01	•	-
	0	00	01	2	S	02	0.0	002	-
	0	.00	01	-	01	01	00	+00.	0
	0	00	000	-	0.1	0	00	.011	00
	.012	-	0 0	+000-	0	00	0.1	.017	8
	. 921	92	-	C	0 0	00	02	.024	-

1.0	.018	.024		.038		.051	• 056	.062	.067	.072	.077	.082	.087	.092	260.	.102	.106	.111	.115	.119	.124	.128	.132	.136
6.0	.030	.036	.042	640.	.054	.060	990.	.072	.077	.082	.088	.093	860.	.103	.107	.112	.117	.121	.125	.130	.134	.138	.141	.145
0.8	.027	.033	.039	.045	.051	.057	.063	690.	.074	.080	.085	060.	.095	.100	.105	.110	.114	.118	.122	.127	.131	.135	.139	.142
0.7	.011	.017	.024	.030	.036	-045	.048	.054	.060	990.	.072	.077	.082	.087	260.	260.	.101	.105	.109	.113	.118	.122	.126	•129
9.0	600.	.016	.023	.030	.036	.043	.050	.057	.063	0.00	920.	.082	.087	.093	860.	.103	.108	.112	.116	.121	.126	.130	.134	.137
0.5	.011	.019	.027	.034	.042	640.	.057	.065	.073	.081	.088	760.	.101	.106	.112	.118	.123	.129	.134	.139	.143	.147	.151	.155
0.4	.018	.026	.035	770.	.053	.062	.071	.080	060.	660.	.107	.115	.121	.128	.134	.141	.148	.154	.161	.166	.170	.174	.178	.183
0.3	.029	.038	640.	650.	690.	.080	.091	.102	.113	.124	.134	.142	.150	.158	.165	.173	.181	.190	197	.203	.207	.210	.214	.221
r/R = 0.289	.030	040.	.051	.061	.072	.082	.093	.105	.116	.127	.137	.146	.154	.162	.169	.177	.186	.194	.202	.208	.211	.214	.219	•226
9						3				2	10			2		:							235.0	

TABLE 10c - (Continued)

9	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
40.	m	.229	.188	.159	.140	.131	.145	.148	.139
42.	4	.238	.195	.163	.143	.134	.148	.152	.143
45.	3	.244	.199	. 167	.146	.136	.151	.155	.147
47.	w	.248	.203	.170	.149	.139	.153	.158	.149
250.0	.257	.251	.206	.173	.152	.142	.156	.160	.152
52.	w	.253	.208	.175	.154	.144	.158	.162	.154
55.	S	.252	.209	.177	.156	.146	.159	.164	.156
57.	w	.251	.209	.177	.157	.148	.161	.165	.158
60.	w	.252	.209	.178	.158	.149	.161	.166	.160
62.	S	.252	.210	.178	.158	.149	.162	.167	.161
65.	S	.254	.210	.178	.158	.149	.162	.168	.162
67.	9	.255	.211	.178	.157	.148	.162	.168	.164
70.	W	.256	.211	.178	.157	.148	.162	.169	.165
72.	O	.256	.210	.177	.156	.148	.162	.169	.166
75.	9	.255	.210	.177	.156	.147	.162	.169	.167
77.	O	.254	.209	.175	.155	.146	.161	.169	.167
80.	w	.254	.208	.174	.153	.145	.160	.169	.167
82.	w	.252	.206	.173	.152	.144	.159	.168	.167
85.	S	.251	.204	.171	.150	.142	.157	.166	.166
87.	w	672.	.202	.169	.148	.140	.155	.164	.165
90.	T.	.245	.199	.166	.145	.137	.152	.161	.163
92.	7	.241	.196	.163	.142	.135	.149	.158	.161
95.	-3	.237	.192	.159	.139	.132	.146	.156	.158
97.	.239	233	.188	.156	.136	.128	.143	.153	.155

TABLE 10c - (Continued)

8	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
.00	-	.229	.184	.152	.132	.124	.139	.149	.152
02.	-	.225	.180	. 148	.128	.120	.136	.146	.148
05.	.227	.221	.176	.143	.123	.116	.131	. 145	.144
	.223	.218	.172	.139	.118	.111	.126	.137	.140
10	.220	.214	.168	.134	.113	.105	.121	.131	.135
12.	.214	.208	.152	.128	.108	.100	.116	.126	.130
15.	.202	.195	.152	.120	.101	• 0 9 5	.110	.121	.124
7	.193	.188	.144	.114	960.	680.	.104	.114	.118
20.	.184	.178	.138	.109	.091	.084	160.	.106	.110
22.	.178	.173	.134	.106	.088	.081	.091	660.	.103
25.	.187	.182	.136	.103	.082	.073	.082	160.	960.
27.	-	.162	.127	.101	.084	920.	.084	060.	.092
30.	.185	.180	.137	.109	960.	260.	.137	.149	.127
	.088	060.	.112	.128	.139	.145	.152	. 144	.118
35.	.212	.211	.196	171.	.136	.093	007	032	.028
	1	.711	.430	.212	• 056	038	061	038	.030
40	.327	.310	.173	.073	600.	017	.038	.050	.007
42.	031	031	028	020	007	.012	250.	990.	.063
	0	020	018	011	.001	.016	110.	.062	.067
47.	620.	720.	.039	.016	.007	.010	040.	.058	.060
50.	.136	.129	690.	.028	900.	.001	.035	.052	240.
52.	.178	.168	060.	.034	.002	008	.030	• 045	.031
355.0	.203	.192	.101	.036	+000	018	.023	.037	.018
57.	.203	.191	860.	.031	010	025	.012	.026	600.

TABLE 10d: INTERPOLATED VALUES OF V_r/V

30	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
		M	0	2	S	1	8	102	114
		N	0	3	10	.07	60.	0	-1
		01	++	t	9	0.8	9	+1	-4
7.5	.020	01	021	052	077	760	.10	117	123
		-4	3	9	9	-	-	2	2
2		0	3	~	0	2	2	.12	2
10	0	0.1	3	.08	11	3	.13	13	2
1.		0	+	.07	0	2	~	~	3
		-	. 05	. 38	.10	.12	.13	.13	.12
2		05	~	. 10	.11	.12	.13	13	13
		11	3	.14	.15	.15	13	3	15
		14	t	t	.14	5	15	5	15
.0		2	.12	. 13	.13	.14	.15	.15	.15
2		11	-	.12	13	3	t	5	5
5		0	-	.12	.12	.13	14	. 14	.14
1.		9	0	-	.12	.13	.13	4	4
		60	.10	.11	2	2	3	3	m
3.		0.8	9	. 10	.11	2	3	3	m
5		00	.09	. 10	.11	.11	.12	2	.12
1.		8	9	101	0	11.	2	2	-
0		8	9	9	0	0	-	-	-
5.		00	8	9	60	.10	0	0	0
5		00	∞	8	9	9	0	0	σ
7.	075	076	080	084	087	9	095	095	091

TABLE 10d - (Continued)

φ _w	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
60.0	070	~	1	1	80	8	8		0
2	067	90	~	~	~	0.7	0.8		~
2	064	.06	9	• 06	~	07	~		9
7	061	05	9	9	• 0 9	9	90	0	90.
	056	.05	5	.05	2	.05	90	.0	.05
2	051	0.5	2	5	5	.05	5		* 0 •
5	640	10	t	t	+	0.4	* 0 •	0.	~
7	8+0	4	+	+0.	+0.	.03	.03		.03
	940	70	4	.03	2	03	03	0.	.02
2	540	1	.03	.03	2	.02	.02	0.	.02
85.0	740	043	034	028	023	0		019	
7	043	4	.03	.02	-	01	.01	0.	.00
	043	70	. 32	-	-1	00	.00		.00
2	043	0	2	-	.00	00	00	•	00
5	043	0	.02	.01	0	0	00		00
7	043	4	.02	.00	0	01	00	0	0
	042	0	.01	0	01	01	-	C	01
2	042	03	.01	0	01	02	01	0	02
5	0+0	03	.01	00	02	02	02	0	02
7.	038	M	.00	01	2	M	02		3
	037	~	0	01	M	M	03	0	04
	036	3	0	2	m	t	03	0	t
115.0	035	3	0	2	t	4	40		0
	035	m	0	2	+	5	4		5

TABLE 10d - (Continued)

1.0	0.5	9	90	~	07	1	00	0	00	9	9	9	9	0	0	10	0	0	-	0	-	-4	-1	-
0.9	S	10	0	0	-	1	-	07	8	00	00	9	9	9	9	09	0	0	.102	0	0	0	0	C
8.0	10	5	90	0	~	07	~	0.8	00	00	00	9	9	9	0.9	09	0	0	-1	0	0	0	0	0
0.7	S	9	90	1	07	07	00	0 8	08	09	9	60	9	0	0	0	0	0	.107	0	0	0	0	0
9.0	+	5	10	0	90	90	~	07	-	0.8	08	08	08	00	9	60	6	9	960.	9	9	9	9	9
0.5	03	M	03	t	04	t	05	05	in	5	0	96	0	9	1	07	1	~	C	~	~	~	1	~
0.4	0 0	0	0.1	-	2	2	C	CI	2	2	3	3	3	+	t	+	1	t	.346	t	t	t	S	5
0.3	20	02	02	-1	01	01	01	0.1	01	01	0	00	0	00	00	0	00	0.0	2000	00	0.1	0.1	01	CI
r/R = 0.289	1	3	2	CI		-4	C	a	2	-	+-1	0	0	0	0	0	00	00	.002	0	0	00	**	44
θ _w	20.	22.	25.	27.	30.	32.	35.	370	.04	45.	45.	147	20.	55.	55.	57.	.09	62.	165.0	67.	70.	72.	75.	77.

TABLE 10d - (Continued)

θ*	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
	.018	.022	.054	.078	960.	.107	.106	.107	.111
	.017	.021	.053	.078	960.	101.	.106	101.	.111
	.016	.020	.153	.078	960.	.107	.105	.106	.111
	.014	.018	.051	.077	960.	.107	-	.105	.110
190.0	.011	.015	640.	.076	.095	.106	.103	.104	.110
	200.	.012	240.	720.	760.	.105	-	.103	.109
	€00€	.013	946.	.073	.092	.104	.100	.101	.108
	•006	.013	• 045	.072	.091	.102	0	660.	.106
	2000	.011	• 0 45	.071	.089	.100	960.	160.	.104
	200.	.011	770.	690.	.087	260.	0	+60.	.102
	•00€	.010	.042	.067	.085	• 0 95	0	260.	.100
	.003	200.	040.	.065	.082	.093	0	.089	160.
	0000	+00.	.037	• 062	.080	060.	.086	.087	.095
	003	.001	.034	650.	.077	.087	.083	.084	.092
	007	002	.031	• 056	+20.	.084	.080	.081	.089
	010	006	.027	.053	.071	.081	.077	.078	.086
	013	600	.024	.050	.068	.078	.073	.074	.083
	016	•	.021	940.	*90	+20.	690.	0.00	620.
	019	015	.018	. 043	.061	.071	.065	990.	920.
	022	018	.014	.039	.057	.067	.061	.062	.072
	026	•	.011	.036	.053	.063	.057	.058	.068
	029	025	2000	.032	640.	.059	.053	• 0 54	.064
	032	028	+000	.028	• 045	.054	9 7 0 .	640.	.059
	033	030	.001	.024	040.	640.	.043	770.	.055

TABLE 10d - (Continued)

*** *** 0.5 0.6 0.7 0.8 0.9 1.0 *** *** *** 0.5 0.5 0.6 0.7 0.8 0.9 1.0 ***										
0340310102 .010 .035 .044 .037 .039 .034 .035 .034 .035 .034 .035 .034 .035 .035 .035 .035 .035 .035 .035 .035		$r/R\approx 0.289$	0.3	0.4	0.5	9.0	0.7	0.8		1.0
5 035 036 .036 .036 .037 .034 .036 037 034 .015 .016 .020 .027 .012 .013 .012 .013 .012 .013 .012 .013 .012 .013 .012 .013 .013 .014 .	0		0	0	2	~	4	03	03	0
036 033 018 .012 .025 .033 .026 .023 .026 .023	5		0.	00	-	~	03	03	03	40
5 037 034 011 .007 .020 .021 .015 .018 .018 .018 .018 .018 .018 .018 .019 .011 .011 .018 .018 .018 .018 .018 .018 .018 .019 .011 .019 .011 .019 .018 <td< td=""><td>0</td><td>•</td><td></td><td>00</td><td>01</td><td>2</td><td>03</td><td>02</td><td>02</td><td>.\$</td></td<>	0	•		00	01	2	03	02	02	.\$
038 035 014 .003 .015 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .017 .018	2			01	00	02	02	02	02	03
5 039 036 016 001 .019 .016 019 .019 .016 019 .018	0	•	~	.01	00	0.1	02	0.1	01	03
0.039 036 019 004 .004 005 008 008 009 009 001 001 001 001 001 001 001 001 002 001	2		m	01	.00	00	01	01	0.1	02
5 038 037 0122 014 001 010	0	•	3	.01	.00	00	0.1	0.0	00	02
039037024014017012016012017010014014017014014017014017014017014014014017014017013013018014	2	•		.02	.01	.00	00	00	00	01
5 040 017 018 017 017 017 017 017 017 017 017 017 017 017 017 017 017 017 017 017 017 017 019 0	0		0	.02	.01	.00	.00	.00	.00	01
041 041 014 017 018 018 018 018 018 018 018 018 018 011 011 -	2	•	03	02	01	.01	.00	01	00	00
5 042 034 028 029 026 030 019 019 6 043 042 029 026 036 025 019 7 044 043 040 037 034 033 036 035 8 045 043 041 046 039 039 039 039 9 046 046 046 046 046 039 039 039 10 048 046 046 046 050 046 039 10 051 051 051 051 051 053 053 053 10 053 054 056 057 057 059	0		.04	.03	02	.01	.01	0.1	01	00
0 043 037 034 034 036 036 036 037 034 034 037 034 037 034 036 036 036 037 034 034 036 039 0	2		0	.03	.02	.02	.02	02	01	00
5 044 043 034 034 035 036 039 0	0		O	.33	.03	.02	.02	.03	.02	01
0 045 044 046 046 046 046 046 046 046 046 046 046 057 053 054 054 054 054 054 053 053 053 053 053 053 053 053 053 053 053 053 059 0	5		0	0	03	.03	03	03	03	0.1
504604604604604604605705004603705303705405505705505705505	0	•	0	0.	.04	+0.	.03	10	03	02
0 048 050 051 051 057 053 053 054 5 051 054 055 057 058 063 059 059 059 059 059 059 059 059 059 059 059 059 059 059 059 059 059 059 071 059 071 059 071 059 071 059 077 059 077 059 084 084 086 089 <td>2</td> <td>•</td> <td>t</td> <td></td> <td>0</td> <td>*0 •</td> <td>.04</td> <td>05</td> <td>50.</td> <td>03</td>	2	•	t		0	* 0 •	.04	05	50.	03
505105405505705806305505904 005305405706006206406906505 005505606106506907507507705 005605706406907307508608105 005705806707307808108608307 005805907007808408709508907 5060061073082089093098086088	0		4	0	05	.05	.05	.05	.05	03
005305405706006206406906506506506506506506506506806907507105 05505706406907307508008108608307 06705805907808408709208907 06006107308909807506908907	2	•	5	0.	S	.05	• 05	90	0.5	0
505505605106506806907507105 005605706406907307508007706 505705806707307808108608307 005805907007808408709208907 506006107308208909309808	0	•	5	.0	• 06	.06	• 10 6	90	• 06	0.5
005605706406907307508007706 505705806707307808108608307 005805907007808408709208907 506006107308208909309808	2	•	5		.06	.06	.06	~	.07	0.5
505705806707307808108608307 005805907007808408709208907 506006107308208909309809608	0		05	0.	.06	.07	.07	.08	.07	90
005805907007808408709208907 506006107308208909309809608	2	•	0.5	0	07	.07	.08	08	. 08	07
060061073082089093098096	0	•	.05	0.	.07	.08	.08	99	.08	~
	2	•	0.	3	. 08	.08	60.	60.	• 0 9	

TABLE 10d - (Continued)

8	r/R = 0.289	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
0.00	061	063	0	086	760	660	104	102	091
2	062	064	078	060	860	104	109	107	760
5	063	065	0	500.	103	109	114	112	103
-	064	066	C	160	107	114	119	118	110
10.0	067	690	087	101	111	119	124	123	116
2.	0.00-	073	060	104	115	123	129	129	122
5	075	077	0	108	119	126	133	133	128
7	080	082	0	111	122	129	136	137	133
0	083	085	-4	114	125	132	138	140	138
2.	081	084	-	116	128	136	140	142	141
5	071	+200	0	117	131	140	142	143	143
1.	055	059	0	115	134	145	145	146	146
	063	066	093	116	135	150	164	168	163
2.	060	190	0	119	139	155	169	173	167
5	145	144	-	131	127	125	120	127	148
1	251	245	-1	153	126	111	114	121	131
	067	068	082	195	106	116	129	134	129
2.	• 075	.057	0	940	085	111	121	126	127
2	560.	.087	.021	032	072	660	107	113	120
	690.	.062	\circ	031	063	087	960	105	
	040.	.036	0	030	056	077	060	103	
2.	.029	.025	002	027	050	070	087	102	117
5	.029	.026	000	024	2.0	067	085	101	•
1.	.033	.030	.001	025	048	068	085	101	115

TABLE 10e – HARMONICS OF V_x/V

r/R	= 0	.289
-----	-----	------

n	$(A_x)_n/V$	(B _x) _n /V	(V _x) _n /V	$(\phi_{x}^*)_{n}$
0	.8831	0.0000	0.0000	0.0
1	0644	0778	.1010	219.6
2	1185	0177	.1198	261.5
3	0563	0143	.0581	255.8
4	0410	0179	.0448	246.4
5	0263	0011	.0264	267.7
6	0124	.0072	.0144	300.1
7	.0012	0010	.0016	129.4
8	.0263	0014	.0263	93.1
9	.0237	.0062	.0245	75.3
10	.0225	.0081	.0239	70.1
11	.0283	.0017	.0284	86.6
12	.0194	0039	.0197	101.5
13	.0118	0022	.0120	100.8
14	0011	0122	.0122	185.0
15	-0044	0198	.0203	167.5
16	0116	0136	.0179	220.4

n	(A _x) _n /V	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^{\bullet})_{\mathbf{n}}$
0	.8823	0.0000	0.0000	0.0
1	0619	0732	.0959	220.2
2	1142	0167	.1154	261.7
3	0546	0134	.0563	256.2
4	0398	0169	.0432	247.0
5	0255	0009	.0255	267.9
	0118	.0068	.0136	300.1
6	.0012	0009	.0015	125.4
8	.0254	0013	.0255	92.9
9	.0231	.0059	.0239	75.6
10	.0219	.0078	.0233	70.5
11	.0273	.0015	.0273	86.6
12	.0187	0037	.0190	101.1
13	.0112	0021	.0114	100.6
14	0012	0115	.0116	185.8
15	.0038	0187	.0191	168.5
16	0114	0129	.0172	221.2

- 1	0	=	-	
11	n	-	U.	4

n	(A _x) _n /V	(B _x) _n /V	$(V_x)_n/V$	$(\phi_{\mathbf{x}}^{\bullet})_{\mathbf{n}}$
0	.8766	0.0000	0.0000	0.0
1	0416	0375	.0560	227.9
2	0797	0091	.0802	263.5
2	0404	0064	.0409	261.0
4	0293	0091	.0307	252.8
5	0185	.0002	.0185	270.7
6	0068	.0040	.0079	300.3
7	.0014	.0003	.0014	79.7
	.0185	0002	.0185	90.7
8	.0183	.0038	.0187	78.3
10	.0173	.0048	.0180	74.6
11	.0187	.0010	.0187	87.1
12	.0131	0015	.0132	96.7
13	.0065	0011	.0366	99.7
14	0020	0064	.0067	197.7
15	0008	0100	.0101	184.8
16	0096	0078	.0123	230.9

n	(A _x) _n /V	(B _x) _n /V	$(V_x)_n/V$	$(\phi_{\mathbf{x}}^{\bullet})_{\mathbf{n}}$
0	.8746	0.0000	0.0000	0.0
	0249	0116	.0274	245.1
1	0526	0037	.0527	266.0
2	0286	0013	.0287	267.3
	0202	0033	.0205	260.9
4	0126	.0013	.0127	275.6
5	0030	.0020	.0036	303.8
6	.0019	.0012	.0022	56.6
7	.0131	.0006	.0131	87.2
8		.0023	.0143	80.9
	.0141	.0025	.0135	79.3
10		.0005	.0119	87.7
11	.0119	0001	.0084	90.9
12	.0084		.0027	100.6
13	.0027	0005		
14	0029	0027	.0040	226.5
15	0043	0037	.0057	229.0
16	0082	0039	.0091	244.5

r/	R	=	0	6
٠,	* *		•	. •

n	$(A_x)_n/V$	$(B_x)_n/V$	(V _x) _n /V	$(\phi_{\mathbf{x}}^{\bullet})_{\mathbf{n}}$
0	.8761	0.0000	0.0000	0.0
1	0118	.0046	.0127	291.4
2	0330	0003	.0330	269.4
3	0192	.0018	.0193	275.2
4	0126	.0006	.0126	272.7
5	0080	.0021	.0082	285.0
6	0003	.0009	.0009	339.8
7	.0026	.0020	.0033	51.9
8	.0091	.0012	.0091	82.3
9	.0107	.0014	.0107	82.7
10	.0097	.0010	•0098	84.3
11	.0068	.0002	.0069	88.4
12	.0045	.0006	.0045	82.8
13	0003	0003	.0004	231.2
14	0037	0006	.0037	260.9
15	0065	.0001	.0065	271.3
16	0072	0013	.0073	259.6

n	(A _x) _n /V	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^{\bullet})_{\mathbf{n}}$
0	.8812	0.0000	0.0000	0.0
1	0024	.0110	.0113	347.6
3	0208	.0009	.0208	272.4
3	0121	.0029	.0125	283.3
4	0063	.0024	.0068	290.9
5	0044	.0029	.0053	303.0
6	.0011	.0006	.0013	60.2
7	.0037	.0027	.0046	53.3
8	.0065	.0016	.0067	76.5
9	.0078	.0011	.0079	82.2
10	.0068	.0002	.0068	88.6
11	.0036	.0001	.0036	88.7
12	.0014	.0006	.0016	68.7
13	0025	0004	.0026	261.1
14	0045	.0000	.0045	270.5
15	0075	.0016	.0077	282.3
16	0067	0001	.0067	269.6

	r/R = 0.8			
n	$(A_x)_n/V$	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^*)_{\mathbf{n}}$
0	.8971	0.0000	0.0000	0.0
1	.0058	0007	.0058	96.5
2	0211	0023	.0212	263.9
3	0083	.0004	.0083	272.4
	0015	.0008	.0017	299.3
5	0627	.0041	.0049	326.9
5 6	.0002	.0024	.0024	3.7
7	.0062	.0038	.0072	58.3
8	.0064	.0016	.0066	75.6
9	.0058	.0022	.0062	69.4
10	.0042	.0006	.0043	82.5
11	.0032	.0002	.0032	85.6
12	0004	0012	.0013	200.9
13	0035	0017	.0039	244.3
14	0 (50	0027	.0057	241.7
15	0061	0017	.0063	254.7
16	0065	0013	.0066	258.8
	r/R = 0.9			
n	$(A_x)_n/V$	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^*)_{\mathbf{n}}$
0	.9034	0.0000	0.0000	0.0
1	.0059	0070	.0092	140.2
2	0196	0035	.0199	259.8
3	0053	0011	.0054	258.5
4	.0019	0001	.0019	94.4
5	0009	.0040	.0041	346.9
7	.0002	.0031	.0031	3.9
8	.0068	•0033	.0078	61.2
9	.0061	.0015	.0062	76.1
10	.0043	.0025	.0049	59.7
11	.0025	.0008	.0026	71.1
12	0021	.0004 0018	.0025 .0027	80.6
13	0044	0019		229.5
14	0(60	0019	.0048 .0070	246.2
15	0057	0030	.0065	238.9 242.0
16	0068	0016	.0070	256.6
			• 0070	2 20.0

r/R = 1.0

n	$(A_x)_n/V$	(B _x) _n /V	(V _x) _n /V	$(\phi_{\mathbf{x}}^*)_n$
0	.8984	0.0000	0.0000	. 0.0
1	0029	0061	.0068	205.0
2	0151	0024	.0153	260.8
3	0032	0010	.0034	252.2
4	.0038	0002	.0038	93.1
5	.0009	.0025	.0027	19.7
6	.0016	.0023	.0028	34.4
7	.0054	.0024	.0059	65.9
8	.0053	.0012	.0054	77.6
9	.0032	.0018	.0037	60.5
10	.0014	.0009	.0017	57.4
11	.0012	.0006	.0013	64.2
12	0034	0009	.0036	254.8
13	0052	0003	.0053	259.9
14	0073	0022	.0076	253.5
15	0067	0019	.0070	254.2
16	0077	0008	.0077	264.0

TABLE 10f – HARMONICS OF V_t/V

1/	R	=	0.28	9

n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_t^*)_n$
0	.0730	0.0000	0.0000	0.0
1	.0254	1921	.1938	172.5
2	0020	0048	.0052	202.4
3	.0137	0163	.0213	139.8
4	.0086	0145	.0168	149.3
5	.0129	0127	.0181	134.4
6	.0098	0054	.0112	119.0
7	.0088	0003	.0088	91.9
8	.0052	.0061	.0080	40.3
9	.0048	.0133	.0142	19.9
10	.0024	.0157	.0158	8.6
11	.0017	.0160	.0161	6.1
12	.0032	.0150	.0153	12.1
13	.0065	.0110	.0128	30.6
14	.0077	.0048	.0090	58.1
15	.0106	0004	.0106	92.3
16	.0119	0051	.0130	113.1

n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_{t}^{*})_{n}$
0	.0685	0.0000	0.0000	0.0
1	.0234	1909	.1923	173.0
2	0019	0047	.0050	201.7
3	.0130	0157	.0203	140.4
4	.0081	0139	.0161	149.7
5	.0122	0121	.0172	134.8
6	.0093	0051	.0106	118.7
7	.0083	0000	.0083	90.3
A	.0049	.0062	.0079	38.4
8	.0046	.0131	.0139	19.2
10	.0022	.0153	.0155	8.3
11	.0016	.0156	.0156	5.9
12	.0030	.0144	.0147	11.8
13	.0061	.0105	.0121	30.2
14	.0072	.0043	.0084	59.0
15	.0100	0008	.0100	94.4
16	.0113	0053	.0125	115.2

r/	R	=	0.	4

n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_t^*)_n$
0	.0340	0.0000	0.0000	0.0
1	.0076	1803	.1804	177.6
2	0010	0040	.0041	194.2
3	.0068	0108	.0128	147.7
4	.0045	0092	.0102	153.8
5	.0065	0074	.0098	138.8
6	.0050	0022	.0054	113.9
6	.0045	.0019	.0049	67.8
8	.0025	.0063	.0068	21.9
9	.0024	.0112	.0114	12.2
10	.0011	.0124	.0124	5.3
11	.0007	.0117	.0117	3.5
12	.0015	.0098	.0099	8.6
13	.0031	.0061	.0068	26.7
14	.0038	.0009	.0039	76.9
15	.0053	0034	.0063	123.1
16	.0062	0069	.0092	138.1

n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_{\mathfrak{t}}^*)_{\mathfrak{n}}$
0	.0100	0.0000	0.0000	0.0
1	0039	1708	.1709	181.3
2	0004	0034	.0034	186.1
3	.0023	0065	.0069	160.4
4	.0018	0050	.0053	160.3
5	.0022	0036	.0042	148.9
6	.0017	.0000	.0017	89.8
7	.0017	.0030	.0034	29.0
8	.0008	.0060	.0060	7.3
9	.0008	.0090	.0091	5.0
10	.0003	.0093	.0094	2.0
11	.0001	.0081	0081	.5
12	.0003	.0057	.0057	3.5
13	.0008	.0024	.0025	18.8
14	.0013	0018	.0022	145.3
15	.0017	0052	.0055	161.6
16	.0023	1076	.0079	163.3

r/F	1 = 0.6			
n	$(A_t)_n/V$	(B _t) _n /V	$(V_t)_n/V$	$(\phi_t^*)_n$
0	0034	0.0000	0.0000	0.0
1	0112	1626	.1630	183.9
2	.0001	0028	.0028	178.0
3	0006	0028	.0029	191.4
4	.0000	0015	.0015	179.5
5	0008	0006	.0010	230.8
6	0005	.0015	.0016	341.0
7	0003	.0034	.0034	354.8
8	0004	.0051	.0052	355.0
9	0003	•0066	.0067	357.5
10	0002	.0063	.0063	358.1
11	0003	.0047	.0047	355.8
12	0004	.0021	.0021	350.2
13	0006	0007	.0009	223.4
14	0004	0038	.0039	186.0
15	0006	0062	.0062	185.5
16	0004	0075	.0075	182.9
r/F	R = 0.7			
n	$(A_t)_n/V$	(B _t) _n /V	$(V_t)_n/V$	$(\phi_t^*)_n$
0	0062	0.0000	0.0000	0.0
1	0142	1556	.1562	185.2
2	.0004	0024	.0024	171.3
3	0018	.0002	.0018	276.5
4	0009	.0014	.0017	328.7
5	0023	. 7015	.0027	303.5
5 6 7	0017	.0024	.0029	324.2
7	0014	.0031	.0034	335.7
8	0011	.0038	.0039	344.0
9	0009	.0041	.0041	348.2
10	0005	.0032	.0032	351.5
11	0005	.0014	.0015	339.4
12	0007	0009	.0011	216.7
13	0013	0030	.0033	202.6

-.0051

-.0063

-.0065

193.2

195.5

195.4

.0052

.0066

.0067

-.0012 -.0018 -.0018

14

15

16

	r/R = 0.8			
n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_i)_n/V$	$(\phi_t^*)_n$
0	.0141	0.0000	0.0000	0.0
1	0107	1473	.1477	184.2
2	.0006	0002	.0006	109.3
3	.0001	.0036	.0036	. 8
4	.0001	.0043	.0043	.7
5	0015	.0029	.0032	333.1
6	0011	.0022	.0025	333.4
7	0011	.0012	.0016	318.5
8	0007	.0007	.0010	315.1
9	0005	0003	.0006	236.2
10	0001	0017	.0017	184.7
11	0003	0033	.0033	185.0
12	0001	0046	.0046	181.4
13	0004	0056	.0057	184.6
14	0604	0060	.0060	184.0
15	0010	0052	.0053	190.6
16	0012	0037	.0039	198.5
	r/R = 0.9			
n	$(A_t)_n/V$	(B _t) _n /V	$(V_t)_n/V$	$(\phi_{t}^{\star})_{n}$
0	.0224	0.0000	0.0000	0.0
1	0070	1446	.1448	182.8
2	.0003	0013	.0013	165.7
3	.0009	.0046	.0047	10.9
4	.0003	.0055	.0055	3.4
5	0009	.0032	.0033	344.1
6	0008	.0019	.0021	337.7
7	0008	.0001	.0008	276.0
8	0006	0006	.0008	223.2
9	0003	0020	.0021	188.1
10	0601	0035	.0035	182.2
11	0002	0048	.0048	179.5
12		0055	.0355	179.7
13		0059	.0059	180.3
14		0055	.0055	185.4
15		0040	.0040	201.2
16	0007	0019	.0020	201.2

r/R = 1.0

n	$(A_t)_n/V$	$(B_t)_n/V$	$(V_t)_n/V$	$(\phi_t^*)_n$
0	.0158	0.0000	0.0000	0.0
1	0037	1481	.1482	181.4
2	0004	0060	.0061	183.9
2	.0003	.0030	.0030	6.5
4	0002	.0048	.0049	357.1
5	0008	.0023	.0024	341.1
6	0009	.0015	.0017	329.3
7	0007	0000	.0007	267.7
8	0008	.0002	.0008	281.4
9	0004	0007	.0008	207.6
10	0005	0017	.0018	195.5
11	0003	0027	.0027	186.0
12	0003	0031	.0031	185.1
13	.0000	0036	.0036	179.5
14	0002	0035	.0035	183.0
15	0001	0027	.0027	182.5
16	0005	0015	.0016	198.2

TABLE $10g - HARMONICS OF V_r/V$

	r/R = 0.289			
n	$(A_r)_n/V$	(B _r) _n /V	$(V_r)_n/V$	$(\phi_r^*)_n$
0	0333	0.0000	0.0000	0.0
1	0231	0026	.0233	263.7
2	.0258	0030	.0260	96.6
3	.0159	0033	.0163	101.7
4	.0244	.0001	.0244	89.7
5	.0189	.0000	.0189	90.0
6	.0133	.0020	.0134	81.5
7	.0093	.0008	.0094	85.3
8	.0057	0014	.0059	103.7
9	.0013	0013	.0018	135.0
10	0021	0020	.0029	227.0
11	0058	0036	.0068	238.3
12	0069	0037	.0078	241.4
13	0094	0053	.0108	240.6
14	0078	0044	.0089	240.5
15	0089	0027	.0093	253.0
16	0058	0009	.0058	260.8
	r/R = 0.3			
n	$(A_r)_n/V$	(B _r) _n /V	$(V_r)_n/V$	$(\phi_r^*)_n$
0	0323	0.0000	0.0000	0.0
1	0273	0021	.0274	265.6
5	.0253	0030	.0254	96.8
3	.0160	0033	.0164	101.7
4	.0238	0000	.0238	90.1
5	.0186	0001	.0186	90.5
6	.0131	.0017	.0132	82.6
7	.0092	.0006	.0092	86.4
8	.0056	0014	.0058	104.2
9	.0013	0013	.0019	133.8
10	0019	0019	.0027	225.0
11	0055	0035	.0065	237.8
12	0066	0036	.0075	241.2
13	0(89	0051	.0103	240.6
14	0074	0042	.0085	240.6
15	0085	0026	.0089	252.8
16	0055	0009	.0056	260.5

	r/R = 0.4			
n	$(A_r)_n/V$	$(B_r)_n/V$	(V _r) _n /V	$(\phi_r^{\bullet})_n$
0	0244	0.0000	0.0000	0.0
1	0616	.0017	.0616	271.6
2	.0207	0028	.0209	97.8
3	.0168	0033	.0171	101.3
4	.0194	0013	.0195	93.8
5	.0154	0013	.0155	94.8
6	.0112	0004	.0112	92.1
7	.0082	0009	.0082	96.1
8	.0051	0017	.0054	107.9
9	.0020	0015	.0025	128.0
10	0007	0017	.0019	201.8
11	0032	0025	.0040	232.0
12	0042	0025	.0049	238.8
13	0056	0032	.0064	239.9
14	0047	0027	.0054	240.7
15	0051	0018	.0054	250.7
16	0032	0007	.0033	257.7
	r/R = 0.5			
n	$(A_r)_n/V$	$(B_r)_n/V$	(V _r) _n /V	$(\phi_r^*)_n$
0	0188	0.0000	0.0000	0.0
1	0888	.0046	.0889	273.0
5	.0165	0026	.0168	99.1
3	.0169	0033	.0172	101.2
4	.0159	0022	.0161	97.9
5	.0129	0021	.0131	99.1
- 6	.0095	0018	.0097	100.8
7	.0071	0019	.0074	104.6
8	.0046	0018	.0049	111.5
9	.0022	0017	.0028	126.9
10	.0001	0015	.0015	175.0
11	0015	0017	.0023	220.2
12	0023	0017	.0029	234.1
13	0030	0018	.0035	238.5
14	0026	0015	.0030	241.1
15	0024	0011	.0027	246.1
16	0015	0005	.0015	250.9

r/	$R \approx 0.6$			
n	$(A_r)_n/V$	$(B_r)_n/V$	(V _r) _n /V	$(\phi_r^*)_n$
0	0155	0.0000	0.0000	0.0
1	1090	.0066	.1092	273.5
2	.0129	0024	.0131	100.4
3	.0165	0033	.0168	101.3
4	.0134	0027	.0136	101.5
5	.0109	0024	.0112	102.7
6	.0081	0025	.0085	107.3
7	.0060	0023	.0065	111.2
8	.0039	0018	.0043	115.1
9	.0022	0017	.0028	128.6
10	.0006	3014	.0015	157.9
11	0004	0012	.0013	197.0
12	0011	0011	.0015	224.1
13	0012	0008	.0015	234.6
14	0011	0006	.0013	242.9
15	000€	0005	.0008	227.1
16	0002	0003	.0003	206.9
	r/R = 0.7			
n	$(A_r)_n/V$	$(B_r)_n/V$	(V _r) _n /V	$(\phi_r^*)_n$
0	0145	0.0000	0.0000	0.0
1	1221	.0077	.1224	273.6
2	.0097	0020	.0099	102.0
3	.0154	0032	.0158	101.7
4	.0117	0028	.0121	103.6
5	.0095	0024	.0098	104.4
6	.0058	0025	.0073	110.1
7	.0049	0024	.0054	115.6
8	.0032	0018	.0036	119.1
9	.0018	0017	.0025	133.7
10	.0006	7012	.0013	154.9
11	.0001	0009	.0009	172.6 205.7
12	0004	0008	.0008	214.6
1.3	0002	0003	.0004	260.2
14	0002	0000 0001	.0005	106.2
15	.0005	0001	.0007	100.3
16	• 0007	0001	• 0001	100.0

1/	R = 0.8			
n	$(A_r)_n/V$	$(B_r)_n/V$	(V _r) _n /V	$(\phi_r^*)_n$
0	0195	0.0000	0.0000	0.0
1	1238	.0084	.1241	273.9
2	.0082	0017	.0084	101.7
3	.0136	0034	.0140	104.2
4	.0118	0025	.0121	102.4
5	.0089	0019	.0091	101.8
5	.0058	0012	.0059	101.2
7	.0033	0016	.0037	115.1
8	.0023	0017	.0028	126.7
9	.0007	0017	.0019	156.9
10	0000	0011	.0011	182.2
11	0003	0011	.0011	193.5
12	0003	1009	.0010	200.3
13	0003	0005	.0006	213.0
14	0000	.0000	.0000	326.9
15	.0006	.0001	.0006	81.4
16	.0010	.0001	.0010	81.7
r	/R = 0.9			
		/D \ A/	(V.) (V.)	14*1
n	(A _r) _n /V	(B _r) _n /V	$(V_r)_n/V$	$(\phi_r^*)_n$
0	0201	0.0000 .	0.0000	0.0
1	1265	.0073	.1267	273.3
2	.0049	0012	.0050	104.2
3	.0116	0030	.0120	104.3
4	.0115	0020	.0117	99.8
5	.0084	0012	.0085	98.3
6	.0050	0002	.0050	92.5
7	.0024	0009	.0026	109.4
8	.0015	0014	.0020	132.4
9	0000	0014	.0014	181.2
10	0007	0009	.0011	219.7
11	0008	0010	.0013	219.1
12	0007	0009	.0011	218.2
13	0007	0005	.0009	232.6
11.	- 0002	2002	0002	276 4

.0002

.0004

.0009

276.1

60.8

74.1

.0000

.0002

.0003

14

15

16

-.0002

.0003

.0009

TABLE 10g ~ (Continued)

.1	D	=	1	0
1/	n	-	- 1	.U

n	(A _r) _n /V	$(B_r)_n/V$	$(V_r)_n/V$	$(\phi_r^*)_n$
0	0153	0.0000	0.0000	0.0
1	1312	.0041	.1312	271.8
2	0007	0006	.0009	229.3
3	.0096	0017	.0097	99.9
4	.0105	0010	.0106	95.5
5	.0079	0006	.0079	94.1
6	.0044	.0002	.0044	87.9
7	.0023	0003	.0023	97.8
8	.0008	0007	.0011	130.5
9	0004	0008	.0009	209.1
10	0014	0004	.0015	253.0
11	0015	0006	.0016	248.8
12	0014	0005	.0015	249.9
13	0013	0003	.0013	255.8
14	009	.0000	.0009	272.0
15	0001	. 3002	.0002	320.8
16	.0004	.0002	.0005	66.5

APPENDIX B

DETAILED EXPERIMENTAL RESULTS

Figures 34 and 35 and Tables 11-20 present the measured experimental loads, including variation with blade angular position and harmonic analyses, for steady ahead operation near the self-propulsion point, quasi-steady crash forward, and quasi-steady crash astern. The data presented in Figures 34 and 35 are similar to those presented earlier, except that here all measured components of blade loading are given whereas Figures 22 and 24 were restricted to the one component $F_{\rm x}$. The loads presented in Tables 11-20 are tabulated values of the data presented graphically in Figures 14-17, Figures 19-22, and Figures 34 and 35.

TABLE 11 – EXPERIMENTAL LOADS NEAR SELF PROPULSION POINT, V = 3.33 M/SEC, n = 17.65 REV/SEC, $(P/D)_{0.7} = 1.06$

TABLE 11a - UNFILTERED DATA

M _{0.4} /M _{0.4}	.015	.135	.207	.170	.190	. 923	.026	.124	.194	.215	.190	.134	.131	.175	.231	.259	.250	.223	.213	.236	.275	.303	. 312	.308	.302	.303	. 326	.335	.336	1.3312	.312
M _h /M _h	.025	.120	.194	.146	060.	. 922	. 022	. 108	.177	197	.185	.146	.145	.189	.240	.262	. 258	. 233	.220	.240	. 273	.299	.308	.308	. 303	.310	.326	. 331	. 332	1, 3269	.309
M2/1M21	1	36	.337	171	274	010	53	285	266	041	160	206	239	020	007	28	108	10	87	75	117	90	181	94	99	98	85	96	16	42F1	86
M _v /M _v	.005	1	.202	.176	.895	16	0	.009	.194	.251	.232	.198	.200	.254	.317	144.	.324	.277	.257	.272	.310	.347	.351	.339	.329	.328	.340	.352	672.	1.334R	.311
Mx/IMx	479.	.132	.146	. 044	.054	940.	140.	1.091	1,105	. 972	.102	.191	1.093	1.122	.142	.141	.172	1.182	.175	.192	.205	.211	1.22€	.249	.253	.270	.286	275.	.282	-1.2875	. 241
F _V /F	.06	.10	.13	. 34	.03	. 02	. 12	. 46	. 119	. 0.	90.	.19	.10	.12	. 1 4	-	17	.17	.16	.17	.19	.29	.20	.22	.22	.23	.25	2.2	.24	1.2461	. 23
F _x /F _x	.024	. 097	.201	.165	.110	200	166.	. 079	.131	.258	.259	.251	.255	.316	. 377	.398	.380	. 327	.301	.309	.340	.379	.386	.377	.368	. 3EE	. 373	.382	.377	36	. 338
θ (deg)	0	.1	æ	12	16	0.2	3.5	28	32	36	07	11	6.3	25	3.5	6.0	20	6.	25	76	0.4	.t a	8.8	00	40	C	-	0	-	116	C

M _{0.4} /M _{0.4}	.309	.309	.302	.290	.272	.251	.231	. 221	.218	161.	.173	.138	60	.085	.059	.057	.020	980	116	918	406	9	61	26	9.0	68	51	.7428	5	02
M,/Mh	305	. 302	. 293	.208	. 262	.241	.222	.203	.195	.178	.159	.126	•	.074	.057	. 042	. 008	696	33	07	92	94	49	15	83	58	7	.7314	-	93
$M_z/ \overline{M}_z $	655	7566	769	32	14	57	36	. 146		.268	.347	. 42	.51	. 59	.64	Q.	. 75	. 79	. 82	.93	.00	.03	.06	.1.	.11	.14	.19	-2.2422	.26	2.25
M,/M	.295	.287	.281	.263	.252	.231	.206	.191	.178	.165	.146	.111	2	.051	770.	.030	~	-	2	4	n	Š	7	2	5	3	8	.7227	~	-
Mx/IMx	.28	-1.2857	. 27	.25	.23	1.218	.205	. 192	.169	.149	.130	. 104	-	.056	.037	.019	.986	61	28	05	83	51	S	90	74	55	35	7192	-	6932
F,/F,	.237	. 231	.219	.205	.187	.171	.157	.141	.120	.103	. 082	.059		.922	.002	15	61	M	0	82	56	4	28	6	65	4 8	34	.7229	11	96
F _× /F̄ _×	. 316	303	102	.280	. 262	241	.215	196	.181	.169	.146	.115	96	.062	. 044	.026	932	17	907	1.	199	50	25	91	55	31	16	.7076	92	0699.
θ (deg)	12+	120	132	136	140	144	148	152	156	160	164	168	172	176	180	184	1 88	192	136	200	204	208	212	216	220	224	224	232	236	240

M _{0.4} /M _{0.4}	80	55	43	35	26	615	66	35	4	.5958	609	1.8	617	19	623	944	676	713	19	7.3	33	95	69	31	10	66	.139	940	.015	2
M_h/\overline{M}_h	.6725	4 3	38	28	20	13	93	87	8	9765.	12	27	32	641	13	72	705	0 4	35	10	59	32	5	24	54	.016	050	. 059	. 139	.025
Mz/IMz	86.	2.329	. 359	2.328	. 295	. 321	.359	.330	2.308	-2.3327	. 359	.309	2.268	2.242	. 255	2.185	.018	.210	154	.607	20	2	.366	33	.728	0 +	n	75	77	t
M,/M	.6557	-	3	8	2	2	-	9	2	.5791	9	-	+	575	575	M	9	667	10	0	0	~	9	0	0	362	.010	000	970	3
$M_{x}/ \overline{M}_{x} $	29	3	65	635	23	-	95	0	10	6272	67	17	58	11	58	75	20	34	. 011	82	. 983	85	-	. 963	.034	.128	126	.162	.184	. 074
F _V /F _v	a	S	1.6677	5			-	3	3	.6600	0	(3)	0	5	0	1776.	w	a	.02	10	. 12	• 02	S	80	. 0.3	.10	1.1076	.12	.14	• 06
F _x /F̄ _x	.6418	1-	3	E 03	205	588	577	5.02	645	. 5625	. 573	576	E 70	295	195	580	609	658	733	SE1	841	\$ 2E	5	817	000	077	N,	0	366	t
θ (deg)	244	248	252	256	260	264	268	272	276	240	264	288	202	956	300	304	30.4	312	316	320	324	328	335	336	340	2772	354	352	356	360

TABLE 11b - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M₂)

M _{0.4} /M _{0.4}	.11	.123	.118	.106	960.	760.	.102	.118	.138	.157	.172	.182	.138	.194	.291	.212	.224	.238	.251	.282	.271	.281	.291	.302	.314	. 323	.330	.332	1.3307	. 325	.319
M _h /M _h	.115	121	.112	160.	.085	.080	.087	. 104	127	. 150	.170	.185	.196	.205	. 213	. 223	. 733	.244	.254	. 263	. 271	. 280	.290	. 301	. 313	323	. 129	. 331	1.3291	. 322	. 314
$M_z/ \overline{M}_z $.3059	74	20	43	47	4 4 5	411	13	340	302	266	235	209	91	178	70	19	159	52	04	21	92	24	05	53	121	.197	. 279	3551	.452	39
M,/M	. 196	.11	.118	.107	.092	.083	.088	.107	.140	.180	.220	.253	.277	062.	.296	.298	.299	.301	. 30F	.311	.319	.327	.335	.343	.350	.355	.356	.354	1.3473	.336	.324
Mx/IMx	.142	1,118	.088	1.061	1.045	. 1142	.050	.063	1.076	1.086	.090	1.093	1.097	1.195	1.119	.136	.154	1,170	1.182	1,189	.196	.203	1.214	. 229	.246	.261	.273	1.279	1.28	. 278	.274
F _V /F̄ _v		. 10	.08	.05	.03	.03	.03	.05	.06	.08	90.	. 10	.11	.12	.13	.14	.15	.17	.18	.18	.19	.19	.20	.21	.22	.23	.2.	.25	1.2439	.24	.23
F/×	.097	.116	.115	. 100	. 081	. 068	. 871	. 093	. 134	.185	.239	.287	. 322	. 343	. 351	.350	.344	. 339	. 337	. 339	. 344	.352	.362	.371	.378	.382	. 382	.377	1.3679	.354	.338
θ (gab)		1	α																							0	0	-	112	-	2

M _{0.4} /M _{0.4}	. 312	.315	.297	.288	.275	.259	.240	.220	.200	.181	.153	.145	123	.098	.070	.039	.008	980	456	929	90	881	24	35	797	2	51	*	.7199	0 5
Mh/Mh	. 306	.298	.289	. 279	.265	.248	.229	.208	.188	.169	.151	.132	1.1	. 085	.058	.027	. 997	68	41	17	94	69	42	4	28	62	0 4	23	. 7093	95
Mz/IMz	0	7	œ	C	~	.00	.05	.13	.20	.2.	. 33	. 40	. 48	. 55	1.62	.69	1.76	.82	. 93	.94	.93	.03	. 07	.10	.13	.15	. 18	.20	-2.2285	2.25
M,/M	.311	.258	.285	.272	.258	.242	.223	.203	.183	.163	.143	.124	03	.080	.053	.023	392	61	32	90	82	50	35	10	2	61	a	19	.7030	4
M×/IM×	.270	.266	.260	. 251	.237	19	1.197	. 175	.154	.135	.118	. 100	080	950.	1.028	666.	0	7 7	22	01	10	55	28	98	6 9	42	21	10	6.6979	6
F _V /F _V	.231	.224	.216	.206	.194	.17	.158	.137	.116	.097	.080	.163	45	.025	.002	577	352	28	90	86	67	47	24	99	14	61	29	17	6+0.	91
F _x /F̄ _x	.322	.307	. 291	.276	. 260	. 242	.222	.201	.179	. 158	.138	.118	960	0072	110.	.013	. 980	076	917	888	363	839	816	791	766	17	4	16	.6803	1
θ (deg)	0	CI	M	M	1	T		4.	5	4	9	4	1	1-	D	•	00	5	9	-	0	0	-	-	N	2	0	M)	236	t

M _{0.4} /M _{0.4}	33	668	17	27	12	613	601	603	.6064	96	603	66	599	698	630	+9	705	747	781	13	815	20	27	45	79	927	34	040.	85	.113
M_h/\overline{M}_h	6619.	61	41	22	90	20	16	97	.6020	05	0 8	10	616	630	655	91	732	773	90	631	7 +	51	50	876	907	951	.002	52	. 092	.115
$M_z/ \overline{M}_z $.272	2.294	.316	2.337	.356	.372	. 383	2.386	-2.3817	.365	2.336	2,292	2.233	2.155	2.060	1.946	.814	1.665	.501	. 324	.137	. 944	50	.558	73	200	4	995	11	305
M _V /M̄ _v	.6719	55	37	20	90	265	46	96	.5981	97	F93	585	11	276	587	13	652	669	46	785	812	28	837	4 8	869	0.5	952	.007	58	.096
M _x / M _x	17	. 562	43	.623	50	294	591	20	6110	.632	60	16	37	86	. A 39	91	36	67	83	86	80	75	79	666.	.032	. 873	.113	141	.151	.142
F _V /F _v	-	680	99	51	3	23	20	27	9	71	90	47	794	44	94	42	982	.012	. 128	.133	. 128	.021	.019	. 129	.042	.068	. n 96	-	.129	.124
ILL	O	632	615	59ª	584	574	825	571	-	574	570	563	556	556	795	589	629	680	734	781	818	17	56	68	88	19	62	.012	61	. 097
(deg)	244	842	252	256	260	264	268	272	276	280	284	288	292	962	300	304	308	312	316	320	722	328	332	336	340	344	348	352	356	360

(φ _V) (deg)	92.8	-27.4	-57.3	-88.2	34.5	36.8	27.4	-5.0	-64.2	125.6	135.4	131.1	167.9	164.6	171.1	145.4	-95.5	- 104.1	-118.9	-151.9	160.0	137.0	72.9
N N	.3737	.0192	.0133	7100.	1441	.0175	.0127	6100.	.0027	.0034	.0188	.0304	.0230	.0155	.0060	• 0 0 26	9000.	. 0012	.0018	. 0017	.0015	.0012	. 0008
, (φ _x) (deg)	8.76-	106.7	22.4	104.0	156.5	123.7	127.4	119.7	113.1	66.5	11.2	-37.0	-47.1	-59.0	-90.8	-84.0	81.6	7.94	34.2	7.3	-16.9	-19.1	8.8
(M ×)																							
(φ') (deg)	80.0	-92.0	166.1	16.8	-18.3	-48.3	-33.2	-34.7	.54.7	90.0	1.0.1	0.851	156.4	20.00	90.00	0.121	1.04	29.3	43.9	71.5	45.7	75.8	54.4
(,) FT ,																		•	•	•			•
$(\phi_{\chi})_n$	91.4	9.64-	5.50	-37.7	32.8	63.0	L1./	1.0	15.7	78.7	15.7	72.1	6.8.3	74.0	30.5	, M	79.2	9 2 6	20.0	20.00	1.62	41.4	9.10
(x)																							-
c	- 2	m -	* un	Φ		00	10		12	13	14	15	16	1.	18	13	20	2.5	22	25	200	1 6	,

(400)	(ded)	9.46		3.	11.	1.	. 9		8.4	8	•	8	8	30		10		C		0	39	39	20	29	146.7	13	
(M _{0.4})	M _{0.4}	"	8	9	æ	M)	80	-	.0125	-	0	-	1		0	0	_	0	-	-	0	0	0	0	0	0	
(4)	(ded)			32.	-48.2	2	i	2	9.6		6	M	69	2	.05	.65		.00	. 8	00	.62	36.	99	. 59	141.0		
(M _h)	ığ'	.3403	9690	. 9251	. 9071	. 0018	.0105	.0123	.0118	. 0103	0600.	.0036	. 0071	. 0154	. 0245	. 0190	. 9127	. 30 ta	. 0025	. 1006	. 1015	. 0026	. 9023	. 0022	.0014	.0005	
$(\phi_z)_n$	(deg)	· ·		1	25.		0	10	18.5			11		-10.				23	42	~	.1	0	t	.1	0	32.3	
(M ₂)	M	2002	2917	1 27 1	0080	-	5450	4620	1650	1150	0194	0100	8020	1030	9670	10824	.07.21	. 9478	1256	. 0163	.0570	1352	1286	1622	.1950	1222	
	c		٠, د		, -	, 11	n u		•	0	-		12	13	1	1 2	1 2	- 1		0	200	2.	22	23	24	35	***

TABLE 12 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH FORWARD AT V = 0.33 M/SEC, n = 6.26 REV/SEC, (P/D)_{0.7} = 1.39

TABLE 12a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M_z)

M _{0.4} /M _{0.4} SP	T.	0.0	07	98	705	700	96	0.5	9969	00	9	10	709	1.0	60	707	707	9	10	708	0 9	60	60	60	9 0	9 6	60	6	60	60	60
M _h /M̄ _{hSP}	93	2	10	10	50	92	00	99	.6012	03	9	0	10	10	10	60	60	9	-	10	=	2	2	12	0	=	=	=	=	17	01
$M_z/ \overline{M}_{z_{SP}} $.075	.078	. 979	.07	.076	. 173	.071	.058	2.056.	.065	.064	.063	. 062	. 852	.061	. 160	.059	.057	. 056	.054	. 052	.050	.047	. 045	. 043	040	.037	. 134	.030	.025	.019
M _V /M _{SP}	70	86	95	97	93	2	82	29	.5797	82	85	88	9	89	4	84	82	91	80	80	81	81	81	83	83	83	8	ta	84	78	83
M _x / M̄ _{sp}	n	53	50	4	t	63	53	55	5575	58	50	63	59	F 9	69	61	62	9	9	67	68	69	69	69	0.0	66	9 4	62	29	62	63
F _V /F _{VSP}	52	0	1	5	t	t	t	6	0977	E	5	w.	3	N	-	0	0	0	-		C	M	~	N	-	O	a	0	0	0	1
ILL.	.5046	17	24	26	224	513	515	513	13	214	517	610	520	£ 20	F18	£ 17	515	514	513	513	513	514	514	516	1	518	510	518	10	16	15
θ	0	,	20	12	16	20	54	28	32	36	07	tt	43	55	2	60	19	63	7.2	92	80	364	0.0	20	90	C	-	-	112	-	~

M _{0.4} /M _{0.4} SP	98	9	0.8	0.8	0	90	05	702	700	16	959	.6931	91	5	37	8 5		7 8	674	11	667	65	.6517	in	5	10	t.		t	
M _h /M _{hSP}	0	10	10	10	.6102	00	10	0	0	11	99	. 5963	27	00	94	33	91	30	20	83	80	38	15	1	-	Q	69	99	.0	29
M,/M	2.0132	2.0060	1.9980	1.9896	1.9917	σ	1.9627	9	a	1.9374	9	1.9222.	1.9148	9	a.	0	1.8937	1.8739	1.8543	1.8543	a	1.8342	a	1.8157	1.8077	1.9000	-	1.7919	1-	1.7854
M,/M	2	81	8 0	90	80	79	79	7.	75	73	7.1	.5702	68	66	49	62	59	56	53	4	48	97	t L	4 1	37	78	3	N	52	24
M / M SP	5648	5664	5677	5684	5681	5672	5657	2639	5623	5610	5604	5604	5611	5623	5637	5650	5657	5656	5645	5623	5608	1655	5582	5543	+699*-	5611	5625	-,5636	5635	5623
F _V /F _{SP}	9687.	.4416	434	74	9547.	57	45		6771.	6777.	. 4453	464	. 4481	.4503	.4527	1557	0.2570	. 583	6857.	. 4588	+ 25 · ·	675-	578	-1585	165	. 4611	. 4629	5797.	+694	9597.
F /F SP	51	513	12	511	511	510	605	508	905	504	503	.5015	2 00	4 98	907	707	91	489	460	תפר	28	480	118	76	73	13	67	19	29	£1
θ	124	N	~	M	4	3	4	45	n	w	C	168		-	a	a	(T)	O	O.		-	0	-	-	2	0	N	3	3	4

M _{0.4} /M _{0.4} sp	8	636	33	623	2	623	£21	619	8	617	615	613	610	608	606	604	603	601	7	591	584	~	572	573	0	t	5	0	t	.6856
M _h /M _{SP}	50	2	50	52	00	548	546	545	. 5443	543	7	540	38	536	3	533	532	2	1	524	6	5	4	0	2	2	4	t	30	~
M _z / M̄ _{SP}	. 783	.742	.791	. 779	.778	.775	. 77 4	.770	1.7684	.767	.767	.770	.775	. 783	.794	. 8118	.826	.847	.871	. 895	. 922	. 948	.973	966.	. 017	950.	.050	.062	.070	970
M,/M	23	20	18	16	13	7	6	90	.5077	07	505	503	91	667	96	98	38	37	4	488	9	9.0	1	80	7	7	34	0	9	0
$M_{x}/ \overline{M}_{x} $	9	22	55	10	25	51	51	0	-6493	4	247	547	-1	545	+3	541	38	538	33	33	5	-	4	9	33	4	C	3	4	0
F _V /F _{VSP}	73	W	B	u	w	u	171	R		S	u.	S	w	U.	S	S	1	1	3		1	1			10	w	n	in	.4541	10
F /F SP	-	O	-		~,	C	-		. 4501	C	a	1 -	w.	1		ויור	tc	412	MI	(X)	10	1	C:	-1	-	C)	0	466	.0	705
θ	544	5 1.2	252	992	260	792	263	272	276	0 0 0	284	288	262	296	300	701	308	312	316	320	324	328	332	316	340	344	8 7 8	355	356	360

TABLE 12b - HARMONIC CONTENT OF SIGNALS

(φ') (deg)	105. 77.55 77.77 33. 42.77 14. 14.	
Mysp	0165 0116 0116 0118 0169 0159	
(φ _x) _n (deg)	152.3 158.6 137.0 107.6 107.6 107.6 107.6	(\$0.4), (deg) 118.33 1.06.00 1.00 1.00 1.00 1.00 1.00 1.00 1
(M _x)		(M _{0.4}) _n M _{0.4} SP 01.74 01.36 01.97 00.52 00.52
(φ ^ν) (deg)	-107.7 84.5 22.5 -18.1 -37.9 -96.7 -11.2 -611.2	(45) 107 (deg) 107 7 7 7 8 9 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1
Fy.	00000000000000000000000000000000000000	(M _h) M _{hSP} 94.04 00031 00055 00055
(φ _x) (φ _g)	101.0 744.0 744.0 611.1 33.3 6.6 6.6	(ϕ_2) (deg) 53.6 -17.0 -190.8 -132.9 -127.3
(x)	0398 01105 01105 0105 0105 0105 0103 0103	$(M_{2})_{n}$ $1 \frac{1}{2} \frac{1}$
c	40m4mares	c 40m4mareact

TABLE 13 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH FORWARD AT V = 0.81 M/SEC, n = 9.35 REV/SEC, $(P/D)_{0.7} = 1.39$

TABLE 13a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M,)

	Taki	A 158 - SIGNAL	ABLE 134 - SIGNALS RECONSTRUCTED FROM FIRST LEN HARMONICS (FIVETOF M	LE LINOW LINOS	IEN HARMONICS	(Live lor M _Z)	
θ	F /F xSP	F _V /F _{vSP}	$M_{x}/ \overline{M}_{x_{SP}} $	M,/M	$M_z/ \overline{M}_{SP} $	M _h /M _{hSP}	M _{0.4} /M _{0.4} SP
0	.029	S	. 167	.154	0	. 209	.395
4	.033	5	.169	.157	19	.212	. 388
60	. 037	59	1.172	.160	.20	.214	.391
12	. 041	61	1.176	.163	. 22	. 218	.394
16	570 .	63	1.179	.167	.23	. 222	.398
20	640.	65	1.183	171	.24	.226	404.
72	. 053	29	.187	.176	S	31	604.
28	130.	69	1.190	.180	.26	.235	.414
32	. 060	70	1.192	.183	.27	.238	. 418
36	. 062	71	1.194	.186	28	. 241	.421
07	.063	12	1,195	.187	. 29	.242	. 423
1.1	.064	72	1.195	.188	. 30	. 243	424.
4 7	. 065	72	1.195	.188	. 30	.243	424.
25	. 065	71	1.195	.188	. 31	.243	.424
0	.064	10	1,195	.188	. 31	. 243	.424
60	. Det	69	1.194	.187	. 32	.243	424.
49	.063	9	1.194	.187	. 32	.243	424.
6 4	. 063	29	1.194	.187	.32	. 244	.425
7.5	. 963	99	1,194	.188	. 32	.245	.427
76	.064	99	1,195	.199	0.	247	.430
8.0	.066	99	1.107	.192	. 32	.249	. 433
70	.070	29	1,199	.196	.31	.252	.437
6.3	.074	53	1.200	.199	. 31	.255	.440
25	.079	69	1.202	.203	. 30	.258	. 443
96	7 0 0 .	70	1.203	.207	.29	. 261	.445
0	. 9 . 7	10	1.204	.210	2	. 262	144.
-	.089	20	1.204	.212	.27	. 263	.448
C	. 030	10	1.204	.212	. 26	.264	.450
-	680.	20	1.204	.212	3	. 265	.450
116	1.0867	1696		1.2116	4.2309	1,2651	1.4518
~	. 0 8 3	69	1.204	.210	-	69	.452

		dS ×	dS,	ds.	dS:	0.4, 0.4 _{SP}
•	.9685 -1	-1.2042	1.2081	4.1970	1.2645	1.4525
•		.2037	1.2058	4.1789	1.2635	1.4519
•		.2026	1.2032	4.1601	1.2619	1.4504
•		.2011	1.2004	+ 1407	1.2596	1.4491
•		.1991	1.1973	4.1210	1.2578	1.4452
•		.1969	1.1940	4. 1009	1,2541	1.4418
•		.1947	1.1906	4.0905	1.2510	1.4382
•		.1924	1.1871	+• 11600	1.2478	1.4345
•		.1900	1.1834	4.0393	1.2444	1.4304
•		.1875	1.1794	4.0185	1.2406	1. +259
•		.1849	1.1750	3.9975	1.2364	1.4207
•		.1820	1.1701	3.9762	1.2318	1.4150
•		.1790	1.1647	3.9547	1.2267	1.4086
•		.1760	1.1588	3.9329	1, 2213	1.4019
•		.1730	1.1528	3.9106	1.2158	1.3950
•		.1701	1,1466	3.8879	1,2103	1.3881
•		.1671	1,1403	3.8547	1.2047	1.3812
•		.1638	1,1338	3.8412	1.1938	1.3740
•		.1599	1.1272	3.8174	1.1926	1.3604
•		.1554	1,1202	3.7934	1.1858	1.3582
•		. 1502	1.1128	3.7695	1.1786	1.3495
•		.1445	1.1052	1942.5	1.1711	1.3406
•		.1387	1.0975	3.7234	1,1636	1.3317
•		.1331	1.0899	1.7019	1.1565	1,3232
•		.1277	1.0828	3.6820	1.1498	1.3152
•		.1226	1.0763	3.6642	1.1435	1.3078
•		.1177	1.0703	3.6488	1.1375	1.3007
•		.1128	1.0647	3,6364	1, 1315	1.2935
•		.1078	1.0593	3.6273	1.1254	1.2461
•		.1028	1,0541	3.6216	1.1193	1.2785

M _{0.4} /M _{0.4} SP	.271	.264	.258	.255	. 253	.253	.25+	.256	.25	.262	.256	.270	+72.	.279	.283	.287	.290	.292	.295	.298	.303	.311	.321	.332	.345	.357	.367	.375	.381	1.3853
M_h/\overline{M}_{hSP}	.113	. 108	. 103	. 100	. 099	. 199	. 101	.102	1, 1051	. 107	. 110	.113	.117	.121	.124	.128	. 139	.133	135	138	142	.148	.156	.165	.175	.185	.194	. 200	.205	60
MZ/IMZSP	619.	.621	.627	9:9.	.648	.664	.692	.702	3.7250	.748	.773	198	.824	.849	.875	.900	766.	.948	.971	766.	.016	0 37	.058	.078	160	115	133	150	165	8
M,/M	670.	4	041	.038	.037	.037	.039	.041	1.0439	940.	640.	.052	.056	.059	.063	.067	.071	.075	.078	. 983	.088	760.	.102	.111	.121	.130	.138	.145	.150	.154
M_x/\overline{M}_{SP}	.098	166.	.031	.089	.089	.089	060.	1.092	-1.1933	1.095	. 1997	1.100	.103	1.106	1.109	.111	1,113	1.114	1.114	.116	1.116	.122	1.127	1.134	.141	1.148	.155	.161	1.164	.167
Fy/Fysp	0.5	03	02	02	02	03	10	90	1206.	60	11	12	014	16	18	20	22	24	25	26	2 8	30	33	36	40	F	40	51	24	5
F _x /F _{xSP}	31	28	26	2	23	24	32	27	6626.	32	34	37	67	63	97	03	24	8	63	67	72	18	98	92	66	.007	.014	~	. 0 25	. 029
θ	772	248	252	256	260	264	268	272	276	280	284	268	292	296	300	101	308	312	316	320	324	328	332	336	340	344	348	352	356	360

TABLE 13b - HARMONIC CONTENT OF SIGNALS

(^Δ φ)	(ded)	91.6	-20.5	24.0	77.6	-109.2	-71.9	-61.6	-71.5	-70.7	-109.2														
(M _v)	Mysp	.0815	.0167	.0024	.0938	.0005	.0026	.0015	+00L.	9000.	.0006														
(φ) (φ)	(ded)	-95.9	177.7	-63.0	6.64-	170.7	118.1	106.3	121.5	85.3	28.3		(404)	(1900)	(fian)	7.56	-14.8	36.6	81.7	-1.0	-62.3	-P3.1	7.99-	-72.3	-143.0
(M _x)	M _{×SP}	.0555	.0119	.000	. 0033	.0011	. 0013	.0015	-000.	.000.	.0018		(M _{0.4})		IVIO.4SP	.0937	.0208	.0025	.0037	.0019	.0030	.0025	. 9013	£000·	. 0009
(φ)	(deg)	85.3	6	-175.3	95.5	-67.5	-84.8	-48.2	-30.7	-56.2	-126.2		(4)	(1901)	(figh)	4.10	-11.9	39.5	82.7	-5.0	-64.4	-78.0	-66.8	-80.3	-140.5
(F _v)	F, VSP	.0323	. 9083	. 0012	. 0032	6000 .	. 0005	. 9010	.0003	.0003	7600.		(M _h)		dS _h	. 0743	.0165	. 0019	. 9036	. 9011	7000.	.0019	6000.	. 9008	. 9998
(φ')	(deg)	49.1	-24.2	20.6	76.3	-162.8	-78.6	-25.0	127.6	1.40-	0.68-		(\$\phi_2)	(deal)	(neh)	63.5	-59.0	-147.0	62.2	-19.9	-160.6	-1.0.5	-163.7	-15 9.3	-: 46.9
(F _x)	as s	.0757	.0132	.0024	.0042	.0118	7206.	. 0010	.0003	.0005	.0006		(M ₂)	12	dS _{Z,M}	.3346	.0436	.0181	. 0 051	. 0013	1000.	. 0139	.0152	.012	. 9103
(=		N	M	,	rv.	9	^	«	o	10			_		-	2	m	t	ın	9	1	9	σ	1.0

TABLE 14 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH FORWARD AT V = 1.46 M/SEC, n = 11.19 REV/SEC, $(P/D)_{0.7} = 1.39$

TABLE 14a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M,)

θ	F /F	F /F	M/M	M	W/W	M./M.	Mos/Mos
	dS _× ×	ASA A	dS _x x	A VSP	dS ₂	dS _u	dS+.0 +.0
0	.230	.236	.452	.341	. 15	.413	.582
,	. 246	. 248	.468	.359	.23	. 431	.603
•	. 260	.25	1.482	.375	.29	744.	.622
12	1.2733	1.2667	-1.4945	1.3893	5.3536	1.4627	1.6397
16	.284	.274	1.507	. 402	.40	.477	.656
20	762.	.282	1.510	. 414	. 45	. 491	.673
76	. 304	.290	1.532	. 427	. 49	905.	169.
28	. 315	.299	.546	0440	.52	.521	.710
32	.326	. 398	.550	757.	. 54	.536	.728
30	.336	.317	1.571	. 468	.56	. 551	944.
07	.346	. 125	1.582	. 480	.58	. 564	.762
+ +	. 354	.331	.590	.491	. 58	£75	.775
t.	.360	.335	1.596	. 498	.58	. 583	.785
52	.363	.330	1.599	.502	.58	.587	.791
99	. 364	.334	1.599	.504	.5.	.589	164.
60	. 363	.331	. 597	.503	. 55	.588	.794
75	.361	.326	1.593	.501	.53	. 585	.792
6.0	.360	. 321	1.530	667.	.51	. 583	.789
72	.369	. 716	1.583	867·	. 48	. 580	.785
3.6	. 363	. 313	1.578	667.	.46	. 578	.782
8.0	.367	.310	743.	.501	. 44	.576	.780
† a	.373	.307	1.570	.503	. 41	.575	.778
88	.379	. 30	1.567	.506	.39	+15.	.776
20	. 383	.303	.564	.508	. 17	. 573	.77.
96	. 384	.300	1.561	.508	.35	.571	.772
-	. 382	.296	.558	. 505	. 33	.569	.770
0	. 377	.291	1.554	.501	. 31	.566	.767
0	. 369	.287	. 551	. 495	. 20	. 563	.705
112	.360	. 282	1.547	.489	.25	.559	.753
-	.351	.278	.544	. 483	.24	.556	.761
CI	345	.77.	. 541	474	. 21	. 553	.758

M _{0.4} /M _{0.4} SP	755	751	146	738	730	720	711	701	691	631	670	629	9+9	632	619	.634	.590	.576	.563	.550	.536	.522	.507	267.	.478	.465	404.	+	.434	26
M _h /M̄ _{hSP}	.549	.545	Gts.	. 534	.526	. > 18	.510	.501	. 493	. 484	.475	.464	. 453	. 441	.429	.416	707.	. 393	.382	.371	. 36.0	. 348	.335	. 322	.310	. 299	.283	.280	.272	1.2655
$M_z/ \overline{M}_z $.182	.147	.119	.068	026	.982	.937	893	. 850	.809	770	.732	605	.659	.623	.587	.550	.511	.472	. 431	.339	. 349	.310	.273	.242	.215	. 195	4.1823	175	75
$M_{\nu}/\overline{M}_{SP}$.473	.469	. 463	.456	.440	044.	.431	.421	.411	.401	.391	.380	.369	.357	.344	.331	.317	.305	.293	.281	.270	.258	.246	.235	.223	.213	.203	1.1953	.188	.182
$M_{x}/ \overline{M}_{x_{SP}} $.537	1,533	. 52ª	1.522	.516	1.509	.503	1.497	.491	1.484	.476	.467	1.456	1.445	1.435	.425	1.416	1.408	. 401	1.394	. 385	375	.364	.352	1.340	.329	1.319	1.31	. 303	.296
Fy/FySP	.271	.267	.263	.258	.254	.249	.7 4.4	.239	35	.229	.223	. 215	.208	.199	.190	.183	.177	.172	.158	.164	.159	.152	.143	.133	.123	.114	. 156		9	160
F _x /F _{xSP}	336	330	324	318	311	303	294	284	274	264	254	243	232	221	208	196	183	171	159	149	138	128	116	108	960	089	181	1.0735	7 30	061
θ	N	N	M	M.		1	. 3	u.	5	9	9	4	1	1-	00	0	9	0	0	=	0	0	-	-	2	01	01	232	M	1

M _{0.4} /M _{0.4} SP	419	.414	604.	107.	.497	604.	. 413	.417	1.4205	.422	.421	.419	.417	.415	.415	.+16	.418	. 421	424.	.428	.431	. 436	.443	454.	694.	.488	.511	.535	.553	.582
M _h /M _{hSP}	. 259	.254	. 2F0	.248	.248	.250	. 253	.256	1.2584	.259	.258	.256	. 255	. 254	.255	. 258	.262	.267	.271	.276	.200	. 285	.293	. 303	.316	. 333	. 352	.373	.394	. 413
$M_z/ \overline{M}_{zSP} $.181	.191	.205	.219	.234	.247	.257	. 264	4.2583	.269	. 258	.266	.266	.268	.275	.289	.310	.340	975.	. 428	.495	.550	.621	.697	. 776	. 857	934	.017	.093	.165
M _v /M _{vSP}	.176	.172	.169	.168	.169	.171	.174	.177	1.1811	.183	.183	.183	.182	.181	.131	.184	.188	.193	.199	.20€	.212	.219	.226	.236	.248	.264	.282	.301	. 322	.341
$M_{x}/ \overline{M}_{x_{SP}} $.230	.286	.282	.280	.280	1.280	.282	1.283	-1.2838	1.282	1.280	1.278	.277	1.278	1.282	.289	1.297	1.305	1,313	.320	1.325	1.331	1.339	672.	1,362	.378	.397	.416	1.435	1.452
FVF	.087	.034	.082	. 0 A 1	.081	.3 81	. 083	.084	1.0853	. 185	.084	.032	.082	. 883	.037	760.	.102	.112	.121	.129	.135	.141	.168	.155	.165	.177	.192	.297	. 222	.236
F _x /F̄ _{xSP}	1987	.053	. 051	.050	050.	. 052	750.	150.	1.0590	. 061	.061	. 061	. 061	. 062	. 1165	.069	. 075	.083	. 002	. 101	.109	. 118	.127	.136	. 1 48	.162	. 178	.195	. 213	.230
θ	576	348	252	552	260	792	268	272	275	2 8 0	284	288	202	206	300	304	3118	312	316	320	154	323	332	336	340	344	34.9	352	35.6	360

TABLE 14b - HARMONIC CONTENT OF SIGNALS

(φ) (φ)	6 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
M _{vSP}	. 00138 . 0059 . 0009 . 00020 . 0032	
$(\phi_{\chi})_n$	1103 1103 1103 1103 1103 1106 1106 1106	(φ _{0,4}), (deg) 93.7 89.0 121.7 104.7 -40.9 -33.1 24.0 26.6
$(M_x)_n$	1571 00237 0037 0006 0006 0035	(M _{0.4}) M _{0.4} SP 2023 0187 0227 0071 0033 0021
$(\phi_{\mathbf{v}})^{u}$	880 1115 177 177 177 189 189 189 189 189 189 189 189 189 189	(\$\rightarrow{\phi}_n\$) (deg) 91.5 1102.0 -47.4 -53.9 23.9 23.9
(F _V)	**************************************	(M _h) M _{h SP} 1765 0171 0171 0015 0016 0017
(φ _x)	125 125 125 125 125 125 125 125 125 125	(6 ₂) (deg) 5.8.77 3.75.2 3.75.2 1.5.3.1 2.9.0 1.9.1
F _x)	.1686 .0057 .0078 .0015 .0015 .0023	(M _z) (M _z sp) 0.9346 0.713 0.295 0.110 0.0110
c	H0W400K&00	- 40.W400v8000

TABLE 15 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH FORWARD AT $V=2.26~M/SEC,~n=12.07~REV/SEC,~(P/D)_{0.7}=1.39$

TABLE 15a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M_z)

M _{0.4} /M _{0.4} SP	.363	.397	.424	9440	.464	.481	1.5007	.521	.543	.564	.582	964.	.604	.609	.610	.610	609.	.609	. 603	.698	.606	.604	.602	.593	.537	565.	.593	166.	.589	.584	.579
M_h/\overline{M}_{hSP}	.249	.278	. 302	.320	.335	.349	1,3650	. 382	. 400	. 419	.434	.445	. 452	. 455	.456	. 456	.456	.456	.457	.457	. 457	.455	. 453	.450	. 447	777.	. 441	. 438	.434	.430	. 424
$M_z/ \overline{M}_{SP} $. 582	.691	.790	.879	.956	. 021	5.0749	.116	.147	.107	.179	.182	.180	.171	.159	.143	.124	. 102	.079	. 05E	. 929	.001	.973	.942	.910	.876	. 840	. 802	.762	719	.674
$M_{\nu}/\bar{M}_{\nu_{SP}}$.181	.211	.234	.251	.264	.274	1.2858	.298	.314	.329	.344	.3EF	.363	.368	.371	.374	.379	.386	.394	207.	-07.	.410	604.	707.	.398	.391	.384	.378	.373	.367	.360
$M_{x}/ \overline{M}_{xSP} $.366	. 392	.411	. 427	077.	. 453	-1.4697	.487	1.506	1.523	1,536	.546	1.550	.551	1.548	115.	1.540	1.535	1.530	1.524	1.519	. 514	1.511	1.508	1.506	.504	.502	1.499	164.	005.	187.
Fy/Fysp	.209	. 231	.246	.257	.26 €	.273	1.2831	.295	.308	.321	.332	.339	. 341	. 341	.338	.334	.331	.327	.324	.321	.317	.313	.309	.305	.302	.299	.296	.292	. 288	. 284	.270
F _x /F̄ _{SP}	.114	.141	.162	.177	.186	. 103	1.2008	.210	.221	.23-	. 246	. 2FD	.263	.268	.272	.278	. 286	.297	. 310	.323	. 333	330	.338	. 332	. 323	.313	. 303	. 293	.285	. 277	. 269
θ	0	1	c O	12	16	20	24	28	32	36	07	11	87	55	96	6.0	79	6.8	12	92	80	78	a	20	96	0	C	0	-	116	N

M _{0.4} /M _{0.4} SP	.57	.561	.550	.537	.523	.509	.493	6.4.	.462	977.	627.	. 411	.392	.372	.352	.331	.310	162.	.272	.254	.236	.218	.199	.179	.159	. 141	.124	.103	.095	180
M _h /M _{hSP}	.416	. 409	. 398	. 786	. 374	.361	.347	. 333	19	.304	.289	.273	.257	.239	. 221	.202	.184	.167	. 151	.136	. 120	. 104	.087	.069	.051	.034	19	.006	9	9446.
M _z /M _{sp}	.626	.575	. 523	. 468	.412	. 153	.294	.234	73	.112	.051	990	.930	.870	.810	.751	.692	.634	.576	.519	. 462	.407	. 353	. 301	.251	.205	.163	.125		26
M,/M	.351	.340	.327	. 312	.297	.281	.266	.250	35	.219	.202	.184	.166	.147	.128	.110	.092	.075	.059	.044	.029	. 814	866	81	9	64	34	21	.9109	-
M _x /M _{SP}	.478	471	.464	.455	.446	.435	. 423	.411	98	. 386	1.373	.360	1.345	.330	.313	.296	.279	1.264	.250	.236	.222	1.286	.189	. 170	1.151	.133	.117	.104	-1.0939	18
Fy/Fysp	.272	.266	.258	.251	.242	.232	.222	. 211	201	.190	.179	.168	.156	.143	.129	.115	. 102	.091	.080	.070	.050	.048	.134	.018	.002	986	372	61	.9530	46
F _x /F _{SP}	. 259	.247	.234	.219	. 202	. 186	.170	.154	39	. 122	. 106	. 088	.070	.052	. 033	. 015	96	83	68	54	07	56	12	97	82	19	53	17	.8321	24
θ	124	128	132	136	140	144	148	152	156	160	164	168	172	176	180	184	188	192	196	200	204	208	212	216	220	722	822	232	236	240

M _{0.4} /M _{0.4SP}	.073	.053	.054	1947	.944	740.	.047	.052	.057	1.0604	.001	.059	.057	. 858	. 963	. 074	060.	.108	.126	.141	151	.157	162	.170	.185	.219	.243	.282	.323	.363
M _h /M _{hSP}	75	99	58	52	6	40	20	35	59	.0622	963	962	61	55	196	73	76	.013	.031	.047	.058	. 066	072	.080	166.	.115	.144	.179	.215	.249
M_/MZSP	. 94	. 02	.01	.00	.00	.00	. 00	.01	. 01	1.0711	70.	.06	.08	.10	.14	.18	. 22	. 23	. 35	. 43	.52	. 62	.72	.84	.96	.03	. 21	34	46	a O
M,/M	03	86	80	25	72	872	74	879	84	.6881	890	90	883	989	893	206	16	935	956	75	91	.003	12	.021	.034	.053	.079	.111	.146	181
$M_{x}/ \overline{M}_{SP} $.075	.067	. 058	1.051	970.	770.	.045	1.048	1.052	-1.0543	.054	1.053	1.053	1.056	1.065	1.081	. 102	1.125	.147	.165	1.177	. 185	1.191	.190	1,213	.236	1,265	.300	.334	.366
Fy/FySP	2070.	34	2	22	1 8	16	917	20	323	.0261	26	926	26	929	937	951	071	160	•n17	.037	.051	.050	O	.073	780.	. 101	.125	.153	.182	.203
F _x /F _{xSP}	17	11	90	802	799	798	199	803	607	.8121	814	815	8 15	816	8 20	830	845	865	889	912	932	376	096	971	983	.000	23	. 051	. 983	. 114
θ.	244	248	252	952	260	264	892	272	276	240	284	288	262	362	300	304	308	312	416	320	324	328	332	336	340	344	343	352	356	360

TABLE 15b - HARMONIC CONTENT OF SIGNALS

(o o	(deg)	96.5	50.4	60.7	65.4		127.0		40.02	40.	25.0	• 67													
(M,)	Mysp	.2794	.0126	6400	6900	. 0032	7111	0000	2700	4000		2706 •													
(φ)	(deg)	-95.1	-140.4	-75.5	-41.7	39.1	-95.6	-130.3	-145.4	9160.9	152.6		(001)	(dea)	in the second se	89.6	99.0	106.5	112.7	54.3	61.5	66.1	36.3	22.7	-11.5
(M _x)	M _{xSP}	.2490	.0357	.0132	.0070	.0021	.0000	. 0000	. 005	. 0156	2500		(M _{0.4})	N.	dS+0	. 2963	. 0241	. 1105	.0106	. 0011	.0025	.0054	. 0058	.0051	.0026
υ(^φ)	(deg)	6.08	33.9	\$4.1	137.0	128.1	116.6	55.4	39.9	30.4	-15.7		(4)	(deg)		5.76	52.1	101.9	109.3	64.8	45.4	64.0	35.8	25.6	-10.9
(F _v)	F ySP	. 2073	.0317	. 0070	.0038	. 020".	. 0027	. 0054	2706.	.0056	. 0031			Z Z											
(φ')	(geb)	84.2	4.8.5	-1.4	25.0	2.55	140.7	113.7	38.1	47.5	65.0		(ϕ_z)	(deg)	4.1	0	20.00	5000	25.7	-5.7	23.8	57.6	24.0	3.8	-10.0
(x)	as ×	.2627	. 0078	. 9080	. 9080	. 0043	. 0053	.0031	2730.	.0058	.0023		(M ₂)	MZCP	1.0061	10001	9507.	00.00	. 0 55.5	1900.	. 0 091	. 0233	.0295	.0191	.0105
c		(2	~	t	10	0		œ	6	19			c			u ~	, .	, ,	۸,	0		00	σ	10

TABLE 16 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH FORWARD AT $V=3.10~M/SEC,~n=13.40~REV/SEC,~(P/D)_{0.7}=1.39$

TABLE 16a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M₂)

M _{0.4} /M _{0.4} sp	.270	.301	.321	.332	.340	.349	.361	.377	.393	1040	.418	.424	.427	. 431	.436	444	.454	.456	.479	.489	664.	.503	.518	.528	.537	.544	.547	.546	1.5401	.530	.518
M _h /M _{hSP}	.163	.191	. 207	.215	. 221	. 228	38	. 252	.266	. 280	.290	.297	. 301	.305	.311	. 319	. 329	.340	. 351	.361	.370	.378	.386	.394	. 401	- 407	407 ·	. 406	1.3906	89	00
$M_z/ \overline{M}_{SP} $.185	202.	.411	. 498	.567	.622	.654	. 595	.719	.738	.754	.768	. 782	.796	.810	. 822	. 832	.830	048.	.834	. 920	.797	.754	.722	.672	.613	. 548	.477	4.4016	. 323	12
M,/M	.149	.181	.211	.209	.211	.211	.212	.217	.226	.235	.245	.253	.261	.270	.261	166.	.315	.336	.355	.373	.387	.397	707.	. 41 8	.413	.415	.415	. 411	1.4030	.391	.376
$M_x/ \overline{M}_{x_{SP}} $.240	.263	1.275	1.281	.286	1.294	.306	1.723	. 342	1.350	1.373	. 382	1.387	.349	.331	. 392	761.	.396	1, 399	.402	907.	.413	. 421	1.429	. 438	. 443	777.	074.	-1.4322	. 421	.411
F _V /F	.137	.162	.175	.180	179	.177	.179	.186	.196	.210	.222	.233	.241	.245	.248	676.	1250	.252	.255	.269	.265	.271	.278	. 285	.290	.293	.291	.286	27	.268	.257
F _x /F _{xSP}	.098	.127	.145	. 151	.150	. 147	.145	. 147	.154	.163	.173	.182	.153	205	.221	.241	.264	.290	.314	. 335	.351	. 361	73E7	.369	.370	. 369	.366	. 359	1.349;	.335	.318
θ	0	1	a	12	16	20	5.5	28	32	30	0.7	11	co t	55	95	6.0	44	8 4	7.5	76	9.0	t u	α •	0.0	90	-	-		112	•	

M _{0.4} /M _{0.4} SP	.506	264.	. 477	664.	.438	. 412	.383	.354	.324	16	.272	.248	.222	.194	.153	.130	960.	.053	034	.007	81	22	28	86	68	0 1	1	35	.7744	25
Mh/Mhsp	.365	. 353	. 338	.321	. 301	. 277	.250	. 222	.195	170	. 146	.124	. 109	.075	.045	.016	85	56	30	90	8	62	38	12	86	69	37	17	7001.	3
M _z /{M _z sp	.160	.076	. 992	.906	. 819	.730	.639	.545	.450	.353	. 255	.156	.057	.959	.863	.770	.580	. 594	.511	. 433	. 356	.286	.218	.152	. BA9	. 028	. 97.1	. 915	1.8527	. 814
M,/M	.360	.342	.324	.304	.281	.255	.227	.197	.167	40	.114	. 191	.069	.045	.020	366	595	933	90	879	55	32	00	8	29	34	11	91	.6757	13
M _x /IM _{xSP}	. 400	.390	•	.362	1.342	. 318	.290	.261	.234	. 209	.186	.163	00	.110	. 170	.046	.013	.984	0	0	M	2	9	N	-	-	1	9	7487	2
FV/F	976.	.235	.223	.208	.189	.166	.141	.115	.080	67	940.	.025	+00·	080	953	25	4 97	12	52	36	23	11	0	81	61	60	20	32	.6866	72
F /F	.299	.280	.259	.237	.213	.187	.157	.126	. 0 95	67	. 041	. 016	. 99€	716	951	925	197	966	841	815	702	10	45	2	01	77	5	36	.6212	0
θ	C	2	~	M	4	3	-3	W.	S	W	4	4	1-	-	00	W	0	0	O	0	0	0	-	-	2	2	2	3	236	1

M _{0.4} /M _{0.4} SP	17	723	502	88	675	.6685	669	672	11	682	83	683	68F	93	711	741	80	823	65	66	924	42	958	980	.012	.057	12	.170	. 225	.270
M _h /M _{hSP}	.6706	6454.	.6347	. 6234	.6116	.6050	694	607	612	617	.6187	613	620	.6277	949	672	710	752	.7934	328	. 8545	. 8737	7068.	.9106	.9392	. 9782	1.0257	076	1.1245	1,1636
$M_z/ \overline{M}_z $.770	.731	.697		.649	1.6761	.630	.631	. 641	.660	.688	. 726	. 775	.836	.910	166.	.099	.216	871 ·	101.	•	.822	.000	.183	.368	.550	726	.893	. 047	185
M,/M	.6401	.6359	.6218	.6081	.5963	.5889	.5868	.5898	268	209	909	609	.6105	615	829	650	683	124	767	806	838	.8630	882	.9020	425	361	.006	950	.105	.149
M _x /IM _{xSP}	7163	669	9	665	652	6458	719	. 648	652	655	655	959	656	.656	688	2	.770	2	869	910	0	15	g	666.	.024	.066	-	.161	1.205	2
F _V /F _{SP}	4	5	£ 31	617	503	066 = .	97	665	603	0	00	0 03	12	629	5 38	668	60	757	200	48	3 81	0	320	335	54	82	.018	0	.102	.137
F _x /F̄ _{xSP}	26	9	1,4	10	055	1245.	539	542	548	555	960	795	566	570	581	602	634	675	720	764	112	332	855	875	9 B	29	968	.012	830	. 198
θ				117		736	.0		1	~	a	-	~	•	-	-	-	-	-	NI.	0		N	m			-	11		10

TABLE 16b - HARMONIC CONTENT OF SIGNALS

(o o o	(ded)	87.0	-20.1	-15.6	23.5	59. B	82.9	84.6	47.0	31.1	-3.3														
(M _V)	Mysp	.3986	.0383	.0355	.0157	2500.	. 0078	6500.	.0080	.9873	.0067														
(φ)	(deg)	6.36-	176.0	172.9	27.9	24.8	-22.0	-128.9	-154.4	-160.3	142.9		100	140.4'n	(deg)	88.5	-7.7	7.4	57.7	4.46	63.2	50.8	26.7	10.1	-30.5
(M _x)	M _x Sp	.3933	.0558	.0307	. 0032	.0028	.0003	.0095	.0107	-0072	.0093		(M)	0.4,0	M _{0.4SP}	6624.	.0515	.0302	.0113	.0039	. 0049	.0070	7600.	.0041	. 908 0
(φ)	(deg)	81.3	-5.9	-14.7	-105.0	173.7	112.5	67.1	40.6	46.1	-20.9		(4)	, u, u,	(deg)	47.2	-9.1	-3.4	45.1	9.16	72.4	6.55	28.8	14.7	-27.9
(F _V)	YSP	.3408	. 0478	.0338	.0034	. 0012	. 0017	.0093	.0107	. 0073	.0063		(M.)	u, u	Mhsp	.3924	. 1465	. 0292	.0078	.0024	. 0037	.0063	. 0087	.0072	. 0073
(φ')	(deb)	8.50	-31.1	-27.2	6.7	39.8	34.46	105.0	56.1	38.9	8.0		(4)	u, z,	(deg)	71.0	38.9	2.1	-4.5	25.6	2.49	33.5	20.1	-4.3	-3.1
(F _x)	as _x	.3943	. 0335	.0411	.0187	.00050	.0075	.0057	2400.	.0070	.0000		(W)	1,Z,W	WZSP	1.6405	.2166	.1078	1670.	. 0 52 0	.0219	.0280	6070.	00000	. 0232
	c	1	~	~	t	r,	9	1	*	6	10					1	2		t	S	0	1	•	6	10

TABLE 17 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH ASTERN AT V = 2.57 M/SEC, n = 17.43 REV/SEC, $(P/D)_{0.7} = 0.61$

TABLE 17a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M₂)

M, M	0.4 U.4 SP	9	3	9	In	300	307	328	350	395	454	-	. 4425	2	415	80	387	382	382	384	384	331	375	0	4	362	OI	+	10	m	0	+
W W	dS _u	10	19	69	57	51	6.0	84	20	09	95	16	.5215	12	96	78	65	59	58	58	53	53	45	38	32	59	29	29	50	26	20	14
M/M	dS,	. 89	10	.00	• 06	.10	4	~	σ	.21	.22	.24	-3.2658	.29	. 33	.39	.46	. 55	.65	.75	. 96	. 95	9.06	.14	. 22	0.27	.31	0.34	0.36	.36	-10.3694	. 36
M.		7	73	63	51	œ	53	8	8	7.1	0.7	28	.5330	23	90	86	71	61	57	54	50	45	38	31	27	25	27	27	26	21	1 4	07
M.//M	AS* *	20	3	00	8	13	72	85	11	FF	77	10	5202	24	21	14	60	90	11	16	19	17	110	99	-	6	9	65	62	4603	56	-
F./F.		Œ	.4781	9	3	.4283	C	3	-	0	-1	-	· 5 984			S.	O	00	8	a	8	~	S		2	-		0	m	2967.	9	4.874
F_/F_	dS,	70	00	2	15	22	BE	18	62	90	67	75	. 5825	715	257	538	22	512	506	93	00	96	90	10	€1	81	61	1 0	1	11	53	53
θ		0	1	8	12	16	20	72	28	32	16	67	*	67	25	56	60	79	8.8	22	92	. 08	34	an an	95	96	(23		0	112	-	~

Mh/Mhsp Mo.4/Mo.4sp	.349	.347	.348	.349	.350	875.	345	.315	327	.320	.317	.316	.3720 .3154	.312	.306	162.	3 .286	1 .274	.256	.260	3 .256	252. 1	942.	.235	1221	.207	.194	1 .145	181.	181
Mz/IMzsp M	.3702		. 3883	4774		. 4630	9564.	0.5281	. 5577	0.5 4 20	2665.0	.6081	0.5088	0.6018	1.5886	.5711	1.5514	0.5314	0.5126	1.4959	0.4813	3.4682	0.4552	0.4402	0.4211	0.3957	1.3624	0.3201	0.2685	2000
M _V /M _{SP}	.4020	.3999	5007.	.4020	.4019	.3984	.3910	.3813	.3718	.3649	.3614	.3605	.3598	.3566	.3493	.3388	.3248	.3126	.3035	.2982	.2951	.2914	.2843	.2726	.2571	.2406	.2265	.2173	.2135	21.20
Mx/IMxSP	4457	4410	4385	4384	4.3	4408	44.05	4 181	4342	4303	4279	4277	4295	4317	4324	4302	4249	4175	4097	4034	3995	3976	3964	-, 3939	3891	3817	3728	3640	3569	7524
F,/F	.4822	. 4780	852+*	6524.	.4775	2617.	6647.	062+	770	0524.	.4743	.4753	1777	. 4801	.4810	.4793	64240	.4687	. 4623	. 4573	. 4543	.4530	.4523	.4505	1944.	. 4408	336	. 4265	. 207	1. 157
F _x /F _{xSP}	.4462	.4430	.4430	. 4441	. 4435	1624.	430	.4194	404	004	. 3963	395	.3947	391	.3846	.3730	359	346	.3361	. 3303	. 3271	. 323						.247.		
. 0	124	128	No	~	071	3	-3	L	5	4	O	9	241	-	B.	80	0	σ	0	0	•	-	-	-	~		~		3	-

M _{0.4} /M _{0.4} SP		00	~	9	39	1	9	T.	6	7	90	55	0	6	23	139	163	34	223	100	548	7	226	212	209	220	+	7	.3021	13
M_h/\overline{M}_{hSP}	2	2	2	1	7	3	5	0	9	8	27	11	36	174	173	86	12	9 1	6	92	311	90	292	80	1	8	7	3	.36+6	2
$M_z/ \overline{M}_{SP} $	0.14	06	9.99	9.92	8	7	-	50	3.65	61	9.58	5	3.58	4	4	9.37	31	5	7	9.07	6	8.9	3.8	8.8	8.7	1	3.7	80	-8.8458	α.
M,/M	2	a	m	-1	5	-	181	186	192	193	8	176	161	0	151	~	7	234	-	5	305	0	288	-	275	*	310	33.8	.3623	7
$M_{x}/ \overline{M}_{x_{SP}} $	3493	347	a	2	0	337	M	.339	342	344	343	.337	329	.319	. 314	.316	.327		6	.389	707	9	37	-	36	96	10	410	•	20
FV/F	.4142	.4124	-1105	.4043	190.	9507	. 4068	7984.	.4131	.4150	. 4137	. + 0 86	6007	.3940	,3915	.3966	.4102	.4307	. 4537	0727	.4875	.4923	0067	. 4843	9627.	2627	. 4832	2887	. 4927	9687.
F _x /F _{xSP}	0	36	a	218	-2084	201	10	204	.2087	210	204	192	178	167	.1681	-	w	C	.292	3233	.3392	.3407	. 3330	24	23	33	53	77	3966	5707.
. 0						264				-			-	-	-	-	-	2	9	0.0	70	-	~	-	- 1	-1	- 4	1.0	· L	60

TABLE 17b - HARMONIC CONTENT OF SIGNALS

(φ) (deg)			•	•	•																	
M, SP	.1369	.0102	.0140	.0166	.0000	.0058	.0131	.0136	. 0137													
(φ _x) (deg)	7.68-	-88- -63-1	81.0	84.3	73.5	131.4	-166.5	-161.4	-152.9		(40.4)	(ded)	5.83	48.3	1 29 . 4	-164.5	-136.4	-151.9	19.1	11.5	6.5	-7.4
(M _x)	.0723	. 0199	.0156	.0128	. 0072	.0014	. 0093	.0089	. 0097		(M _{0.4})	M _{0.4SP}	. 1162	.0251	.0105	. 9074	.0105	.0050	.0050	.0121	.0134	.0125
(φ) (φ)	. 76.5	-142.8	-105.1	8.76-	-92.8	1-27.7	10.2	15.2	24.3		(g)	(deg)	86.4	51.9	161.9	-145.2	-130.0	-135.7	6.5	11.3	1001	10.5
(,) T, , S, V, S, P, P, S, P,	.0648	0255	. 0219	.0162	. 0033	.9024	.0089	0600.	6206.		(M _h)	Mhsp	.1253	. 9271	. 9196	.0104	. 3136	.0066	. 0051	.0129	. 3138	.0131
(φ _x)	34.6	-167.2	-138.2	-131.1	-127.2	-16.3	11.3	12.4	-10.5		(φ')	(deg)	-9.3	-11.4	78.5	-107.6	-86.0	-80.5	64.3	35.3	19.7	-2.0
(x)	.1503	.0319	.0175	.0204	.0112	.0055	.0127	.0129	.0139		(M ₂)	Mzsp	.8486	.1058	.0172	.0603	.0819	.0218	.0391	6650.	.0528	. 3255
c	+1	N M	t	r.	9	1	α	r	10			=	1	2	3	L	s.	Q	7	89	6	10

TABLE 18 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH ASTERN AT $V=1.67~M/SEC,~n=16.59~REV/SEC,~(P/D)_{0.7}=0.14$

TABLE 18a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M₂)

M _{0.4} /M _{0.4} SP	506	1.8	532	6 3	247	542	531	518	508	503	513	5069	510	512	511	.510	503	511	515	520	225	521	510	603	.5113	505	505	.512	518	521	516
M_h/\overline{M}_{hSP}	01	12	.527	38	545.	.538	27	. 515	70	99	93	5012	70	05	.505	93	. F02	. 503	.507	11	. 514	14	10	. 50+	6	964.	1698	504	510	13	10
$M_z/ \widetilde{M}_{zSP} $.293	.337	. 382	.427	.470	.511	.543	.585	.517	.648	.678	-9.7090	9.740	3.774	9.811	9.850	9.891	3.933	9.975	10.014	10.049	10.078	9.103	10,113	10,117	10,111	10.097	3.076	10.050	10.019	9.987
M,/M	53	61	472	8	485	81	73	62	453	14	97+		450	50	149	1447	445	445	47	51	757	1	. 453	1 1 3	43	1	071	1	49	663	53
$M_{\star}/ \overline{M}_{\star_{SP}} $	-	11	70	199	97	130	01	0.5	209	210	210	2093	208	208	210	.213	217	219	. 221	21	19	210	17	217	218	026	222	223	23	223	23
F _V /F _{SP}	24	232	224	1.8	214	213	21.	217	0	221	221	220	213	218	219	20	222	22.	224	23	221	210	218	217	13	10	5	21	21	21	22
F _x /F _x SP	.2€	271	1.2.	282	285	283	1.2.	.269	261	952	253	יו	253	. 253	250	372	.222	.238	237	239	242	177	545	177	540	235	223	231	233	,238	2+4
θ	0	1	•									1 1														-	C		-	-1	2

M _{0.4} /M _{0.4} SP	5	067	478	t	-	498	.520	.541	31	. 558	. 551	.539	526	.517	. 515	. 518	.524	.529	.529	224	.517	11	.507	.508	.512	9	10	.515	5101	. 503
M _h /M _{hSP}	-	0	0	. 473	.479	767.	1	. 533		250	244	532	519	510	203	605	515	520	520	517	511	403	501	206	506	500	511	200	5044	64
Mz/Mzsp	955	926	8 2 9	977	9,359	9.845	3.834	827	9.821	3.815	9.908	8.00	9.700	9.777	9.762	3.745	9.72	3.709	691	9.674	4.657	3.541	9.626	9.611	. 536	9.579	.561	9.539	-9.5155	9.48
M,/M	9	*1	434	127	t	4	.458	473	2	487	483	514.	+65	.457	454.	954	097	494	465	194	1460	456	453	757	456	144	10	7.61	4583	. 45
M _x /IM _{xSP}	. 225	7	. 229	2	. 233	.234	.234	.233	1	.235	0	.242	. 246	.249	. 252	.252	55	. 251	.250	10	.250	.250	.250	50	.250	t	. 240	t		248
FVFVSP	224	α	231	34	9	237	236	235	735	3	241	246	20	258	2	254	264	5	263	50	264	265	9	26	26	260	26	200		260
F /F SP	216	250	-	248	246	247	249	253	256	261	261	0	255	251	248	242	549	252	256	1	258	258	258	25	25	262	264	266		. 265
θ																														540

M _{0.4} /M _{0.4SP}	ō	0	505	50		511	500	505	500	50	516	527		7 1	2 12	2 2 2	522	211	10		E 2 3	3 4 5		556	5 15	. 16	2	200	501	5061	
M _h /M _{hSP}	O	19	167	0	. 502	203	503		501	503	2	52	535	540	539	2 40	4	506		505	i i	5 3 1		540	1	0	1 16	1 6		5012	1
M _z /M _{zsp}	1	t.	~		M)	~	2	9.2	3.2	9.2	~	9.2	2	2	9.2	9.10	-	-	9.16	-	3.14	9.1	9.13	-	3.14	1			9.2	-9.2939	
M,/M	0 3	i	011	52	157	45	10	45	67.	97.	47	47	187	491	167.	6403	472	463	453	468	697.	481	491	967.	6492	-482	691	181	1631	4534	
$M_{x}/ \overline{M}_{sp} $		3	1	3	.24		.240	240	.230	.237	. 234	.230	5	7	.224	9	0	.234	227	.238	237	5	.232		6	6	0	1	. 224	2185	
F VF	9	7692.	269	a)	192	1	7	5.	99	t	9	5.0	50	252		256	-	5	268	0	0	266		a	9	. 1	C	250	0	070	
F /F SP		2637	2		2	2	2.	.2	2	2	2	3	2	3	2	5	10	2	S	5	2600	2	2	• 50	. 50	. 50	.29	.27	2695	. 26	
θ	2+1	543	252	256	260	792	268	2:2	576	2 8 0	28+	200	292	296	300	404	303	112	316	320	324	328	332	3 40	340	772	343	355	356	160	

TABLE 18b - HARMONIC CONTENT OF SIGNALS

	(\delta)	(ded)	122.8	145,3	1.3	-174.7	-105.2	64.0	-32.0	1.	-60.1	-46.8													
	(M)	Mysp	.0105	5600.	. 1843	.0021	. 0053	. 003A	.0029	.0085	.0000	0600.			•										
	(×φ)	(deg)	2.07	146.7	78.2	92.4	64.2	25.1	18.6	166.2	123.9	139.7	(φ _{0.4}) _n	(deg)	142.9	155.6	16.2	170.2	-91.1	65.9	P.84-	-2.5	-43.7	0.78-	
	(W)	M×SP	.0193	. 0019	.0051	.003€	.0028	. 0002	.0019	.0016	.00020	. 0025	(M _{0.4})	M _{0.4SP}	.0051	. 9039	.0067	7 7 00 0	. 1067	. 00047	.0042	.0117	. 9900	.0126	
	(φ')	(deb)	-107.1	-32.4	-104.0	8.36-	-112.8	105.7	-166.6	1.3	-63.4	-31.2	(م) ا	(deg)	146.3	151.6	8.5	178.0	9.96-	63.8	-57.8	-1,3	9.75-	-53.2	
	(F _v)	as,	. 0272	. 9928	6500.	. 0042	. 0036	. 0006	. 4009	.0023	. 1014	. 0025	(M _h)	MhSP	. 0058	. 0100	6500.	. 8037	.0067	. 0047	. 0037	. 0113	. 0014	. 0119	
	υ (×)	(ded)	125.9	131.1	-65.0	-58.5	-135.9	63.1	22.6	5.6	-62.0	-18.6	(φ ₂)	(deb)	-5.8.3-	-36.3	24.6	-124.9	-73.5	2.50-	-2.3	20.0	-16.8	16.9	
. !	(F _x)	AS SP	.0222	.007€	.0028	. 0 019	.0036	. 0 017	.0030	.0033	.0035	. 0047	(M ₂)	Mzsp	.4201	. 1015	.0 295	.0212	.0296	.0212	.0203	.0201	.0117	.0063	
	(-	1	2	*	t	S	9		80	o,	10			-	2	3	t	ın	9	1	•	0	10	

TABLE 19 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH ASTERN AT $V=0.74~M/SEC,~n=6.77~REV/SEC,~(P/D)_{0.7}=-0.67$

TABLE 19a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M.)

					COLUMN IN A STATE OF THE STATE	(Zm. 101 311)	
0	F _× /F _{×SP}	FVF	Mx/IMxSP	M,/M	M _z /M _z sp	M _h /M̄ _{hSP}	M _{0.4} /M _{0.4} SP
0	33	60	2	45	.615	73	63
t	0	19	295	944.	.604	474	65
90	50	t.	8	448	2.502	.475	19
12	0 404	-	51	449	2.582	17	7.0
15	10	35	7 4	51	.574	79	73
20	11	30	68	52	2.569	. 481	16
54	4115	26	63	152	2.567	.481	77
28	10	23	.260	51	2.567	80	77
32	07	22	5 8	40	.571	.478	276
36	4041	.1215	2572	4463	-2.5773	4754	2750
07	01	21	57	43	.584	73	73
11	60	23	60	5	. 591	471	271
to	96	24	61	441	. 598	7 0	270
25	66	27	79	41	2.604	.470	270
96	0	30	67	42	2.608	074.	6.0
60	0.	33	71	177	.611	0440	10
94	O	36	74	0+	611	68	65
66	36	33	17	438	.609	.466	89
12	92	41	70	35	2.505	. 463	4
76	00	43	80	32	.601	. 461	259
60	10	1	291	~	2.595	.458	12
40	. 385	4.5	81	28	.589	25	25
88	a	97	82	27	. 583	96	99
65	83	40	C	27	.577	50	55
96	.343	20	47	26	571	10	53
-	82	24	91	4	2.565	25	10
-	81	58	95	454	2.558	51	00
0	. 381	61	00	12	2.551	51	1
112	.383	79	70	56	.543	10	10
-	86	99	0 8	3.1	.533	10	00
2	.391	8	10	5	.522	9	9

M _{0.4} /M _{0.4} sp	.263	27	.276	.281	.284	.294	.233	283	202	283	5	37	2888	.290	06	291	93	.296	0 0	.306	.314	22	29	336	0	345	4	39	34	27
M_h/\overline{M}_{hSP}	4742	83	167	764	9	667.	492	687	4 8	87	88	6	4935	96	86	0	. 504	60	17	.527	.539	64	69	. 568	73	25	73	~	6 0	50
$M_z/ \overline{M}_{SP} $	· s	.495		. 46	· t	. 433		7.4		.399	2.398	· F	2.404	.410	2.416	2.4	.427	. 431	.432		.426	2.419	.411	2.4	.391	2.381	.372	.3	2.357	•
M,/M	3	4523	857	62	97	.461	459	456	45	.455	96	66	4623	65	19	470	74	29	86	9	906	16	525	32	36	36	34	5295	22	13
M _x / M _{sp}	-	44	.31	.31	8	0	σ	29	29	.28	. 28	0	2887	0	S	0	.30	-	. 31	0	.33	m	.34	3431	3437	t	3407	.33	3	~
F _v /F _{vSP}	.1686	.1685	.1678	.1668	.1654	.1635	.1614	.1592	.1574	.1562	.1562	.1575	.1601	.1639	.1684	.1732	.1783	.1832	.1881	.1928	.1971	. 2009	.2039	.2057	.2064	.2062	*505*	9702.	.2045	.2055
F _x /F̄ _{xSP}	.358	+64.	604.	.412	.413	4115	604.	10	· t			.413	4165	.419	. 422	.425	.429	. 434	. 441	674.	.458	197.	.474	624.	. 481	81	.478	4736	. 467	.459
θ	0	C	m	3	1	4	t	5	S	9	9	9	172	-	0	(D	8	9	O	0	0	0	7	-	2	N	2	M	3	3

Mo./Mo.	ds or Sp	3	-	.301	.293	286	281	277	275	.273	.270	258	256	252	259	255	251	246	243	.248	.238	238	.239	.242	247	-	2	90	-	2	2636
M, M,		+046	529₽	5197	5107	. 503	649	161	487	484	.480	. 477	474	470	994.	.461	457		447	. 443	075	4406	4426	4468	. 452	4586	497.	.468	.471	.472	4736
M,/IM,											"	2		'	'	-	-	-2.4413	-	-		n.	41	4	w	w.	9	w	9	-2.6262	•
M/M		5	4951	4860	4778	47 08	0594	4603	4565	4531	0644	4468	4436	4402	4365	4324	4279	4231	4184	4145	4121	4118	4139	4182	4241	4305	4363	4407	4435	4458	6577
M _x //M _x	-	1000	1410	3445	3481	3507	3520	3519	3503	3481	3457	3437	3426	3423	3429	3441	3454	3464	3469	3462	3445	3418	3381	3339	3295	3252	3210	3169	3126	3078	3022
F /F	-		.2108	.2143	.2177	.2203	. 2217	.2219	. 2210	.2194	.2176	.2159	.2147	27175	.2142	.2148	.2155	.2160	.2160	.2151	.2130	.2097	.2053	.2001	. 1944	.1887	.1831	1776	.1723	.1668	•1609
F /F	5 1 27 -		233		26	.420		10	17.	03	007.	30	305	.302	a:	. 384	.380	3753	.370	00		. 363	0	-	.377	41	.391	.396	_	01	03
0	244	0	0 1	252	256	260	26+	268	272	576	280	504	200	202	962	300	30%	308	312	316	320	355	828	288	536	34.0	344	34.8	352	356	S6 U

TABLE 19b - HARMONIC CONTENT OF SIGNALS

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \frac{(M_X)_n}{ M_{\times SP} } \qquad \frac{(\phi_X)_n}{(\deg)} $ $ 0.36.7 \qquad 78.1$ $ 0.114.7 \qquad 50.8$ $ 0.013.7 \qquad -17.6$ $ 0.07.5 \qquad -17.6$	(M _{0.4}) _n (\$\phi_0.4\$) _n (\$\phi_0.4\$) _n (\$\phi_0.4\$) _s (\$\phi_0.7\$) = 158.7 0.251 - 104.7 0.075 - 158.5 0.057 - 151.9 0.057 - 151.9 0.057 - 151.9 0.051 - 151.9
(F _V) _n (φ _V) _n F _{VSP} (deg) 00.05 -102.4 01.52 -130.7 00.18 -69.8 00.18 -69.8 00.19 -74.0 00.05 -106.5 00.05 -106.5	(M _h) M _h 0346 0346 33.8 0273 1120 175.5 0084 1092 167.5 0018 103.5 0016 1046 0017 146.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(M_{Z_{SP}}) \qquad (\phi_2)_{A_{ZSP}} \qquad (deg)_{A_{ZSP}} \qquad (deg)_{A_{ZSP$
c 40mannores	- HNW. + WO K & M &

TABLE 20 – EXPERIMENTAL LOADS DURING QUASI-STEADY CRASH ASTERN AT $V = 0.17 \text{ M/SEC}, n = 7.64 \text{ REV/SEC}, (P/D)_{0.7} = -0.67$

TABLE 20a - SIGNALS RECONSTRUCTED FROM FIRST TEN HARMONICS (Five for M_j)

M _{0.4} /M _{0.4} S	3215	333	355 ₽		77	33			379	374	40	19	356		343	440	339	37.5	339	3+0	341	41	342	343	343	3.3	343	3424	341	340	340
M, M, SP	9	565	20	4	in	63	19	. 99	PER!	10	689.	.626	619.	.613	60	. 606	. 605	605	.605	606	607	00	609	610	611	610	609	6035	-09	505	£ 03
$M_z/ \overline{M}_{SP} $. 46	. 513	.558	4.6	4.659	.695	4.741	4.787	4.933	4.878	4.324	4.968	5.011	5.051	.088	5.121	5.149	5.172	5.189	5.211	5.299	5.212	5.212	5.211	5.209	5.207	5.206	-5.2063	5.207	5.210	5.214
M _v /M _{vSP}	90	532	555	573	85	591	205	88	81	572	53	555	247	.542	.53P	536	535	53E	536	537	38	8	35	539	240	539	£39	5380	536	535	533
$M_x/ \overline{M}_{SP} $	90	10	23	34	42	45	43	3.8	30	. 422	17	14	416	416	19	422	23	23	21	4	17	16	15	16	16	17	417	4168	415	414	t
F _V /F _{VSP}	15	19	25	30	*	1	33	228	222	215	211	207	50	90	207	9 8	208	10	206	700	02	200	00	200	00	200	01	. 2012	01	00	0.1
F _x /F̄ _{xSP}	-	3		0	ř-	1.		1	9		,	4	~	2	3	~	.42	.42	3	2	3	3	2	2	2	2	2		2	3	20
θ	0	,	a)	12	16	20	36	28	32	36	6,	1,	0.1	23	95	6.0	44	6.8	72	76	80	79	4 0	95	96	0	C	100	-	-	2

M _{0.4} /M _{0.4} SP	33	39	3.3	.338	33	43	37	.336	.336	0	36	.336	36	36	36	.335	.333	32	31	33	.330	29	.329	27	. 325	. 323	21	.320	•	S.
M _h /M _{hSP}	2	.601	€01	600	. 600	666.	. 598	163.	. 596	35	165.	165.	. 53+	. 593	265	.590	. 588	36	34	3	. 581	80	8	16	. 573	7.0	. 568	99	1.5661	9
$M_2/ \overline{M}_{SP} $.21	5.22	. 22	5.22	5.21	5.20	. 19	5.18	. 16	5.14	.13	5.11	5.09	.07	.05	. 04	. 02	.01	•	•	. 96	9	-	. 89	. 86	. 8	4.8		-4.7510	. 72
M,/M	2	531	.531	.530	.530	5	.528	.527	.526	5	5	25	7	524	23	521	20	8	516	. 115	.514	12	11	.508	.506	70	02	01	6003	11
Mx/IMxSP	14	414	.416	18	-	22	. 423	424.	.424	4247	. 424	.424	5	26	28	T	31	0	22	٥.	32	N	32	33	. 435	37	0	0440	4412	41
FVFySP	01	20	205	208	11	7 4	216	218	220	221	22	223	25	229	231	233	236	38	239	67	42	43	245	243	51	54	56	3	.2598	63
F _x /F̄ _{xSP}	1	1.1	3	. 41	.41	.41	4.	.41	.41	7	. 41	41	. 41	.41	-	41	07.	4.	40	34.	04.	1	4.	. 30	. 30	3	. 39	.30	3942	.3
θ	•	-	1	~	-	-	-1	44	14		·	.0		1	(I)	a	0	O	O	-	-	-	-	-	0	C	0	14	236	-1

M _{0.4} /M _{0.4} sp	0	.321	22	.321	320	.319	318	319	CI	324	.329	. 333	.336	.337	.315	331	325	316	305	33	281	270	261	99	256	260	27.9	285	2	321
M_h/\overline{M}_{SP}	.567	.567	195.	.566	.564	.562	. 561	. 562	9	.569	274	579	83	584	82	76	.567	. 555	41	26	10	96	82	474.	473	.479	6	.512	33	. 566
$M_z/ \overline{M}_{sp} $		5	9	9	5	9	9	4.6	-4.6464	4.6	9	4.5	r.	4.5	4.4	4	4.3	~	4.3	4.2	2	4.2	4.2	2	4.2	+ . 3	3	~	+	4.4
M _v /M _{sp}	.502	02	.502	0.1	664.	98	97	9.8	5013	.505	.509	.513	.516	.517	.515	11	03	167.	82	68	54	41	30	23	21	.426	3 8	154	81	.506
$M_{x}/ \overline{M}_{x} $	17	0	074.	62	.439	38	38	.437	4358	36	36	36	36	35	. 433	30	25	21	16	11	- 407	03	66	95	.390	9	94	. 185	390	.399
FyFysp	6 0	261	61	62	62	52	62	61	. 2513	60	60	60	59	58	56	75	51	17	1,1	41	30	36	34	30	25	221	16	213	13	215
F_x/\bar{F}_{SP}	55	.39€	105 .	.395	705 .	.393	. 393	. 30-	3970	004.	704.	107.	604.	63+.	. 408	50+·	00	.393	.384	. 374	.363	.351	15	.335	34	.339	03	.367	8	10
θ	244	548	252	256	260	192	268	272	576	boc	284	288	202	962	100	304	308	312	316	320	327	328	132	33€	240	771	872	152	356	36.0

TABLE 20b - HARMONIC CONTENT OF SIGNALS

	0224 - 76.5 0218 - 88.4 0154 - 91.6 0088 - 101.4 0025 - 115.6 0010 - 63.8 0011 - 72.5	
	.0059 -69.5 .0063 -87.8 .0063 -87.8 .0029 -54.1 .0036 -40.1	$(M_{0.4})_{n} (\phi_{0.4})_{n}$ $M_{0.4SP} (deg)$ $01183 - 78 \cdot 9$ $01141 - 75 \cdot 5$ $01181 - 75 \cdot 5$ $01176 - 85 \cdot 9$ $01115 - 01 \cdot 11$ $01015 - 148 \cdot 6$ $01018 - 74 \cdot 6$
	.0040 112.4 .0023 107.0 .9034 98.1 .0025 114.5 .0020 141.0 .0017 -163.2 .0017 -163.2	$(M_h)_h (\phi_h)_h (\phi_h)_h (deg)_h (deg$
	0185 -80.6 0185 -91.1 0133 -92.1 0072 -99.6 0024 -111.9 0011 -104.4	$\begin{array}{c c} (M_2) & (\phi_2) \\ \hline \overline{M}_{SP} & (deg) \\ +272 & -49.2 \\ 1081 & -37.0 \\ 0592 & -45.7 \\ 0191 & -109.1 \\ 0245 & 170.1 \\ 0315 & 69.0 \\ 0315 & 69.0 \\ 0157 & 23.5 \\ 0159 & 60.9 \\ 0157 & 72.2 \\ \end{array}$
c +101	* 4 5 5 6 7 6 7 6 7	c 40k400k005

REFERENCES

- 1. Boswell, R.J. et al., "Experimental Determination of Mean and Unsteady Loads on a Model CP Propeller Blade for Various Simulated Modes of Ship Operation," Transactions of the Eleventh ONR Symposium on Naval Hydrodynamics, Government Printing Office (1976).
- 2. Schwanecke, H. and R. Wereldsma, "Strength of Propellers Considering Steady and Unsteady Shaft and Blade Forces, Stationary and Nonstationary Environmental Conditions," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2b, Vol. 2 (1972).
- 3. Rusetskiy, A.A., "Hydrodynamics of Controllable Pitch Propellers," Shipbuilding Publishing House, Leningrad (1968).
- 4. Hawdon, L. et al., "The Analysis of Controllable-Pitch Propeller Characteristics at Off-Design Conditions," Transactions of the Institute of Marine Engineers, Vol. 88 (1976).
- 5. van Gent, W., "Unsteady Lifting Surface Theory for Ship Screws: Deviation and Numerical Treament of Integral Equations," Journal of Ship Research, Vol. 19, No. 4, pp. 243--253 (Dec 1975).
- 6. Schwanecke, H., "Comparative Calculations on Unsteady Propeller Blade Forces," Proceedings of the Fourteenth International Towing Tank Conference, Vol. 3, pp. 357-397 (1975).
- 7. Breslin, J.P., "Propeller Excitation Theory," Proceedings of the Fourteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2c, Vol. 2 (1972).
- 8. Boswell, R.J. and M.L. Miller, "Unsteady Propeller Loading-Measurement, Correlation with Theory, and Parametric Study," NSRDC Report 2625 (Oct 1968).
- 9. Meyne, K., "Propeller Manufacture-Propeller Materials-Propeller Strength," International Shipbuilding Progress, Vol. 22, No. 247, pp. 77--102 (Mar 1975).

- 10. Wereldsma, R., "Comparative Tests on Vibratory Propeller Forces," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2a, Vol. 2 (1972).
- 11. Huse, E., "An Experimental Investigation of the Dynamic Forces and Moments on One Blade of a Ship Propeller," Proceedings of the Symposium on Testing Techniques in Ship Cavitation Research, The Norwegian Ship Model Experimental Tank, Trondheim, Norway (May-Jun 1967).
- 12. Blaurock, J., "Propeller Blade Loading in Nonuniform Flow," The Society of Naval Architects and Marine Engineers, Propellers 75 Symposium (Jul 1975).
- 13. Albrecht, K. and K.R. Suhrbier, "Investigation of the Fluctuating Blade Forces of a Cavitating Propeller in Oblique Flow," International Shipbuilding Progress, Vol. 22, No. 248, pp. 132--147 (Apr 1975).
- 14. Bednarzik, R., "Untersuchung uber die Belastungs-schwankungen am Einzelflugel schrag angestromter Propeller," Schiffbauforschung, Vol. 8, No. 1/2, pp. 57--80 (1969).
- 15. Dobay, G.F., "Time-Dependent Blade-Load Measurements on a Screw-Propeller," Presented to the Sixteenth American Towing Tank Conference (Aug 1971).
- 16. Wereldsma, R., "Last Remarks on the Comparative Model Tests on Vibratory Propeller Forces," Proceedings of the Fourteenth International Towing Tank Conference, Vol. 3, pp. 421-426 (1975).
- 17. Tasaki, R., "Propulsion Factors and Fluctuating Propeller Loads in Waves," Proceedings of the Fourteenth International Towing Tank Conference, Vol. 4, pp. 224--236 (1975).
- 18. Keil, H.G. et al., "Stresses in the Blades of a Cargo Ship Propeller," Journal of Hydronautics, Vol. 6, No. 1 (Jan 1972).

- 19. Watanabe, K. et al., "Propeller Stress Measurements on the Container Ship HAKONE MARU," Shipbuilding Research Association of Japan (1973).
- 20. Tsakonas, S. et al., "An Exact Linear Lifting Surface Theory for Marine Propeller in a Nonuniform Flow Field," Journal of Ship Research, Vol. 17, No. 4 (Dec 1974).
- 21. McCarthy, J.H., "On the Calculation of Thrust and Torque Fluctuations of Propellers in Nonuniform Wake Flow," David W. Taylor Model Basin Report 1533 (Oct 1961).
- 22. Brandau, J.H., "Static and Dynamic Calibration of Propeller Model Fluctuating Force Balances," David Taylor Model Basin Report 2350 (Mar 1967); see also Technologia Naval, Vol. 1, pp. 48--74 (Jan 1968).
- 23. Boswell, R.J., "A Method of Calculating the Spindle Torque of a Controllable-Pitch Propeller at Design Conditions," David Taylor Model Basin Report 1529 (Aug 1961).
- 24. Boswell, R.J. et al., "Experimental Spindle Torque and Open-Water Performance of Two Skewed Controllable-Pitch Propellers," DTNSRDC Report 4753 (Dec 1975).
- 25. Denny, S.B. and H.G. Stephens, "Blade Spindle Moment on Controllable-Pitch Propellers," NSRDC Departmental Report SPD-011-14 (Jul 1974).
- 26. Wereldsma, R., "Tendencies of Marine Propeller Shaft Excitations," International Shipbuilding Progress, Vol. 19, No. 218 (Oct 1972).
- 27. Tsakonas, S. et al., "Correlation and Application of an Unsteady Flow Theory for Propeller Forces," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 75, pp. 158--193 (1967).
- 28. Gutsche, F., "Untersuchung von Schiffsschrauben in schrager Anstromung," Schiffbauforschung, Vol. 3, No. 3/4 (1964).
- 29. Cheng, H.M., "Analysis of Wake Survey of Ship Models-Computer Program AML Problem No. 840--219F," David Taylor Model Basin Report 1804 (Mar 1964).

INITIAL DISTRIBUTION

Copies		Copies	
1	ARMY CHIEF OF RES & DEV	copies	1 NAVSEA 08
	man on the contract of		1 PMS-378
1	ARMY ENGR R&D LAB		1 PMS-380
			1 PMS-381
2	CHONR		1 PMS-383
	1 Code 438		1 PMS-389
			1 PMS-391
1	NRL		1 PMS-392
			1 PMS-393
4	ONR BOSTON		1 PMS-397
			1 PMS-399
4	ONR CHICAGO		
		1	FAC 032C
4	ONR LONDON, ENGLAND		
		1	NAVSHIPYD/PTSMH
4	ONR PASADENA		
		1	NAVSHIPYD/PHILA
2	USNA		
	1 LIB	1	NAVSHIPYD/NORVA
	1 JOHNSON		
		1	NAVSHIPYD/CHASN
1	NAVPGSCOL LIB		
		1	NAVSHIPYD/LBEACH
1	NROTC & NAVADMINU, MIT		
		1	NAVSHIPYD/MARE
1	NADC		
		1	NAVSHIPYD/BREM
4	NAVUSEACEN		
	1 1311 LIB	1	NAVSHIPD/PEARL
	1 6005/FABULA, SAN DIEGO		
	1 13111 LIB	18	NAVSEC
	1 2501/HOYT, PASADENA		2 SEC 6334B
			1 SEC 6100
1	NWC		1 SEC 6101A
			1 SEC 6101D
41	NAVSEA		1 SEC 6110
	2 NAVSEA 09G32		1 SEC 6114H
	20 NAVSEA 033		1 SEC 6120
	1 NAVSEA 034		1 SEC 6136
	1 NAVSEA 03412		1 SEC 6140
	I NAVSEA 037		1 SEC 6140B
	1 NAVSEA 037Z		2 SEC 6144
	05/15		

Copies		Copies	
	1 SEC 6144G	4	CIT
	1 SEC 6145B		1 AERO LIB
	2 SEC 6148		1 ACOSTA
	1 SEC 6600 NORVA		1 PLESSET
	1 350 0000 NORVA		1 WU
12	DDC		1 40
12	DDC	1	CATHOLIC
	DUCTAND /KI EDANOEE	1	CATHOLIC U
1	BUSTAND/KLEBANOFF		COLORADO CHATE ULA DEPENDA
		1	COLORADO STATE U/ALBERTSON
1	HQS COGARD		
		1	U CONNECTICUT/SCOTTRON
1	LC/SCI & TECH DIV		
		1	CORNELL U/SEARS
7	MARAD		
	1 DIV SHIP DES	1	FLORIDA ATLANTIC U OE LIB
	1 COORD RES		
	1 NACHTSHEIM	3	HARVARD U
	1 SCHUBERT		1 MCKAY LIB
	1 FALLS		1 BIRKHOFF
	1 DASHNAW		1 CARRIER
	1 HAMMER		
	THUUNGK	2	U HAWAII/BRETSCHNEIDER
2	MMA	-	U HAWATTY DRUTTSCHIVETDER
-	1 LIB	1	U ILLINOIS/ROBERTSON
	1 MARITIME RES CEN		O ILLINOIS/ ROBERTSON
	I HARITIME RES CEN	3	II TOUA
2	NACA CETE	3	U IOWA
.2	NASA STIF		1 ROUSE
	1 DIR RES		1 IHR/KENNEDY
			1 IHR/LANDWEBER
1	NSF ENGR DIV LIB		
		2	JOHNS HOPKINS U
1	DOT LIB		1 PHILLIPS
			1 INST COOP RES
1	U BRIDGEPORT/URAM		
		1	U KANSAS CIV ENGR LIB
1	U CAL BERKELEY/DEPT NAME		
		1	KANSAS ST U ENGR EXP/
1	U CAL NAME/WEHAUSEN		NESMITH
1	U CAL SAN DIEGO/ELLIS	1	LEHIGH U FRITZ ENGR LAB
			LIB
2	UC SCRIPPS		
	1 POLLACK	1	LONG ISLAND U/PRICE
	1 SILVERMAN		
	. OID THUM		

Copies		Copies	
1	U MARYLAND/GLEN MARTIN INST	1	STANFORD U/ASHLEY
8	MIT	1	STANFORD RES INST LIB
	1 OCEAN ENGR/LIB		
	1 OCEAN ENGR/KERWIN	3	SIT DAVIDSON LAB
	1 OCEAN ENGR/LEEHEY		1 LIB
	1 OCEAN ENGR/LEWIS		1 BRESLIN
	1 OCEAN ENGR/LYON		1 TSAKONAS
	1 OCEAN ENGR/MANDEL		
	1 OCEAN ENGR/NEWMAN	1	TEXAS U ARL LIB
	1 PARSONS LAB/IPPEN		
		1	UTAH STATE U/JEPPSON
6	U MICHIGAN		
	I NAME LIB	1	U WASHINGTON APL LIB
	1 NAME/COUCH		
	1 NAME/HAMMITT	2	WEBB INST
	1 NAME/OGILVIE		1 LEWIS
	1 NAME/NOWACKI		1 WARD
	1 WILLOW RUN LABS		
		1	WHOI OCEAN ENGR DEPT
4	U MINNESOTA SAFHL		
	1 KILLEN	1	WPI ALDEN HYDR LAB LIB
	1 SCHIEBE		
	1 SONG	1	ASME/RES COMM INFO
	1 WETZEL		
		1	ASNE
2	STATE U MARITIME COLL		
	1 ENGR DEPT	1	SNAME
	1 INST MATH SCI		
		1	AERO JET-GENERAL/BECKWITH
1	NOTRE DAME ENGR LIB		
		1	AVCO LYCOMING
4	PENN STATE U ARL		
	1 LIB	1	BAKER MANUFACTURING
	1 HENDERSON		
	1 TSUCHIMA	2	BATH IRON WORKS CORP
	1 PARKIN		1 HANSEN
	DRIVERSON WARELON		1 FFG PROJECT OFFICE
1	PRINCETON U/MELLOR		Demit Burn carpy in /pp 1 ucc
	DENGGEL A ED /DEDE MATU	1	BETHLEHEM STEEL NY/DE LUCE
1	RENSSELAER/DEPT MATH		DETENDED CARRY CONTROLLS
,	ST TOUNG II	1	BETHLEHEM STEEL SPARROWS
1	ST JOHNS U	2	PIPP JOUNCON CO
2	CLIDI	2	BIRD-JOHNSON CO
2	SWRI		1 CASE
	1 APPLIED MECH REVIEW 1 ABRAMSON		1 RIDLEY
	1 ADKARIOUN		

Copies		Copies	
1	BOEING ADV MAR SYS DIV	2	DOUGLAS AIRCRAFT
			1 HESS
2	BOLT BERANEK AND NEWMAN		1 SMITH
	i BROWN		
	1 JACKSON	1	NATIONAL STEEL & SHIPBLDG
1	BREWER ENGR LAB	1	NEWPORT NEWS SHIPBLDG LIB
1	CAMBRIDGE ACOUS/JUNGER	1	NIELSEN ENGR/SPANGLER
1	CORNELL AERO LAB/RITTER	1	OCEANICS/KAPLAN
	CORNELL AERO LAB, KITTER	•	OCEANICS/ KAI LAN
1	EASTERN RES GROUP	1	NAR SPACE/UJIHARA
1	ESSO DES DIV	· 1	PROPULSION DYNAMICS, INC
1	FRIEDE & GOLDMAN/MICHEL	1	K.E. SCHOENHERR
	any nun comun		
2	GEN DYN CONVAIR 1 PARKIN	1	GEORGE G. SHARP
	1 ASW-MARINE SCIENCES	1	SPERRY SYS MGMT LIB/
	I ASW-HARTNE SCIENCES		SHAPIRO
1	GEN DYN ELEC BOAT/		Dilli Tito
	BOATWRIGHT	1	SUN SHIPBUILDING/PAVLIK
2	GIBBS & COX	1	ROBERT TAGGART
	I TECH LIB		
	1 OLSON	1	TETRA TECH PASADENA/
1	GRUMMAN AEROSPACE/CARL		CHAPKIS
1	GROTHAN AEROSPACE, CARL	1	TRACOR
3	HYDRONAUTICS		THION
	1 DUNNE	1	UA HAMILTON STANDARD/
	1 SCHERER		CORNELL
	1 LIBRARY		
			CENTER DISTRIBUTION
1	INGALLS SHIPBUILDING		
	THEM BOD DEBRUCE ANAL	Copies	Code
1	INST FOR DEFENSE ANAL	1	11 Ellsworth
1	ITEK VIDYA	1	1102.1 Nakonechny 15 Cummins
	TIER VIDIA	1	1509 Pollard
1	LITTON INDUSTRIES	i	152 Wermter
		i	1524 Lin
1	LOCKHEED M&S/WAID	1	1524 Hecker
		1	1524 Day
2	MARINE VIBRATION ASSOC	1	1524 Remmers
	1 BRADSHOW	1	1524 Gordon
	1 VASSILOPOULIS		

```
Copies
         Code
         1524
  1
                Roddy
         1532
                Dobay
  1
         1532L
  10
                Denny
         154
  1
                Morgan
  1
         1544
                Cumming
  30
         1544
                Boswell
         156
  1
                Hagen
         1556
                Santore
  1
         1556
                Ne1ka
  10
         172
                Krenzke
         1720.6 Rockwell
   1
                Sevik
         19
         1962
                Zaloumis
         1962
                Noonan
         1962
                Antonides
         2723
                Spargo
         2731
                Moken
  1
         2814
                Czyryca
         5214.1 Reports Distribution
  30
  1
         5221
                Library (C)
         5222
                Library (A)
```

- and the second of the second o
- en de la companya de la co