概率统计课程目录

第一章 概率论的基本概念 第二章 随机变量及其分布 第三章 多维随机变量及其分布 第四章 随机变量的数字特征 第五章 大数定律及中心极限定理

第六章 样本及抽样分布 第七章 参数估计 第八章 假设检验

课程总知识结构图 概率论与数理统计 基础 概率论 数理统计 应用 概率定义 抽样分布 随机变量 统计推断 数字特征 参数估计 一维情形 多维情形 假设检验

第一章知识结构图 基本概念与运算 (随机试验,事件,样本空间 频率与概率 频率定义 概率的统计定义 概率的公理化定义 古典概率 全概率公式与贝叶斯公式 条件概率 独立性

概率的定义 🖈 概率的性质 🖈 古典概率的计算

条件概率
$$P(A|B) = \frac{P(AB)}{P(B)}, P(B) > 0$$

乘法公式
$$P(AB) = P(A|B) \cdot P(B)$$

全概率公式
$$P(A) = \sum_{i=1}^{n} P(B_i) \cdot P(A|B_i), B_1, \dots, B_n$$
是S的划分。

贝叶斯公式
$$P(B_i|A) = \frac{P(B_i) \cdot P(A|B_i)}{\sum_{j=1}^{n} P(B_j) \cdot P(A|B_j)}$$

独立性
$$P(AB) = P(A) \cdot P(B)$$

1. 设 $A \, \cup \, B \, \cup \, C$ 为 随 机 事 件 , 已 知 事 件 $A \, \cup \, C \, \subseteq \, F$, 且 $P(AB) = \frac{1}{2}$, $P(C) = \frac{1}{3}$, 则

$$P(AB \mid \overline{C}) = \underline{\cdots \cdots \cdots \cdots }_{\circ} \leftarrow$$

例。从以往的资料分析得知,在出口罐头导致索赔的事件中,有50%是质量问题;有30%是数量短缺问题;有20%是产品包装问题. 又知在质量问题的争议中,经过协商解决的占40%;在数量短缺问题的争议中,经过协商解决的占60%;在产品包装问题的争议中,经过协商解决的占75%. 如果在发生的索赔事件中,经过协商解决了,问这一事件不属于质量问题的概率是多少?

离散型随机变量

连续型随机变量

分布函数 $F(x) = P(X \le x)$

概率的累加

$$F(x) = \sum_{x_k \le x} p_k$$

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

右连续

连续

概率分布

分布律:
$$\sum p_k = 1$$
 $X \mid x_1 \mid x_2 \mid \cdots \mid x_k$ $p_k \mid p_1 \mid p_2 \mid \cdots \mid p_k$

概率密度: $\int_{-\infty}^{+\infty} f(t)dt = 1$

概率1的分 布

概率计算

$$P(x_1 < X \le x_2) = \sum_{x_1 < x_k \le x_2} p_k \qquad P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$

= $F(x_2) - F(x_1)$ = $F(x_2) - F(x_1)$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t)dt$$

$$= F(x_2) - F(x_1)$$

离散型随机变量

连续型随机变量

见 (2) B(n,p)

$$P(X=k) = C_n^k p^k (1-p)^{n-k}$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \not\equiv \not\equiv \end{cases}$$

3)
$$P(\lambda)$$
或 $\pi(\lambda)$

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

1) U(a,b)

$$P(X=k) = p^{k}(1-p)^{1-k}$$
 $f(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & \sharp$

2) 指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \cancel{\cancel{1}} \cancel{\cancel{2}} \end{cases}$$

3) $N(\mu, \sigma^2)$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

$$Y = g(X)$$

X的分布律 \longrightarrow Y的分布律

$$f_X(x) \rightarrow f_Y(y) = F_Y'(y)$$

2. 设随机变量 X 的概率密度函数是 $f_X(x) = \frac{a}{4+x^2}, -\infty < x < +\infty$,则

3. 若 $X \sim N(1, \sigma^2)$,且P(0 < X < 2) = 0.9544,则 $P(X < 0) = \dots$ 。

五. (本题 10 分) 设随机变量 $X \sim N(0,2^2)$ 。问题: (1) 写出X 的概率密度函数; (2) 随

机变量 $Y = X^2 + 2$ 的密度函数. \leftarrow

(X,Y)离散型 (X,Y)连续型 联合分布律 联合概率密度 联合分布函数 (X,Y) $P(X=x_i,Y=y_i)=p_{ij}$ 整体 F(x,y)f(x,y)边缘分布函数 边缘分布律 边缘概率密度 $F_{X}(x) = \lim_{y \to \infty} F(x, y) \quad P(X = x_{i}) = \sum_{j=1}^{\infty} p_{ij} = p_{i}.$ $F_{Y}(y) = \lim_{x \to \infty} F(x, y) \quad P(Y = y_{j}) = \sum_{i=1}^{\infty} p_{ij} = p_{i,j}$ (X,Y) $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$ 个体 $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$ X与Y对 $\forall x, y$ $P(X=x_i,Y=y_i)$ $f(x,y) = f_X(x)f_Y(y)$ 独立 $F(x,y) = F_X(x)F_Y(y) = P(X = x_i)P(Y = y_i)$ 概率 $P\{(X,Y) \in G\} = \sum_{G} p_{ij} \qquad P\{(X,Y) \in G\} = \iint_{G} f(x,y) dx dy$ 计算

和的分布

$$Z=X+Y$$

离散型
$$P\{Z=z_k\}=\sum_i P\{X=x_i,Y=z_k-x_i\}=\sum_j P\{X=z_k-y_j,Y=y_j\}$$

连续型
$$f_{z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

X,Y独立 卷积公式

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z - x) dx = \int_{-\infty}^{+\infty} f_{X}(z - y) f_{Y}(y) dy$$

 $M = \max(X, Y)$ 及 $N = \min(X, Y)$ 的分布

设X,Y是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$

求: $M = \max(X, Y)$ 及 $N = \min(X, Y)$ 的分布函数

1) $M = \max(X, Y)$ 的分布函数

$$F_M(z) = P(M \le z) = F_X(z) \cdot F_Y(z)$$

2) $N = \min(X, Y)$ 分布函数

$$F_N(z) = P(N \le z) = 1 - P(N > z)$$
$$= 1 - [1 - F_V(z)] \cdot [1 - F_V(z)]$$

七. (本题 12 分)设二维随机变量(X,Y)的联合密度函数为 \leftarrow

$$f(x,y) = \begin{cases} kxy & 0 < y < x < 1 \\ 0 & \cancel{\exists} \stackrel{\sim}{\to} \end{cases} , \ \leftarrow$$

其中k为常数。问题: (1) 求常数k的值; (2) 求X与Y的边缘概率密度函数; (3) 求条件概率密度函数; (4) X与Y是否相互独立? \leftarrow

分布函数法练习

设 (X, Y) 的密度为:

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{其他} \end{cases}$$

$$\mathbf{F}_{Z}(z) = P\{2X + Y \le z\}$$

$$= \iint_{2x+y \le z} f(x,y) dx dy$$

$$= \iint_{GD} e^{-(x+y)} dx dy$$

$$= \begin{cases} \int_{0}^{z/2} dx \int_{0}^{z-2x} e^{-(x+y)} dy = e^{-z} - 2e^{-\frac{z}{2}} + 1, & z > 0, \\ 0, & z \le 0. \end{cases}$$

$$F_{Z}(z) = \begin{cases} \int_{0}^{z/2} dx \int_{0}^{z-2x} e^{-(x+y)} dy = e^{-z} - 2e^{-\frac{z}{2}} + 1, & z > 0, \\ 0, & z \leq 0. \end{cases}$$

$$F_{Z}(z) = \begin{cases} e^{-z} - 2e^{-\frac{z}{2}} + 1, & z > 0, \\ 0, & z \leq 0. \end{cases}$$

$$f_{z}(z) = \begin{cases} e^{-\frac{z}{2}} - e^{-z}, & z > 0, \\ 0, & z \leq 0. \end{cases}$$

六. (本题 7 分) ←

设随机变量X与Y相互独立,它们的概率密度函数分别为 \leftarrow

$$f_X(x) = \begin{cases} \frac{1}{2}, & 0 < x < 2 \\ 0, & \text{ i.e. } 1 \end{cases} \quad \text{i.e. } 1 + \sum_{y \in Y} f_Y(y) = \begin{cases} e^{-y}, & y \ge 0 \\ 0, & \text{ i.e. } \end{cases} \quad \text{i.e. } 1 + \sum_{y \in Y} f_Y(y) = \begin{cases} e^{-y}, & y \ge 0 \\ 0, & \text{ i.e. } \end{cases}$$

求Z = 2X + Y的概率密度函数。←

第四章知识结构图

$$f(x,y) = 3x, \quad 0 \le x \le 1, \ 0 \le y \le x$$

求: 1) (X,Y) 的边缘密度函数,并判断X与Y是否相互独立

2)
$$P\{X+2Y>1\}$$

- Z = X + Y 的概率密度
- 4) 求 D(X)

$$f(x,y) = 3x, \quad 0 \le x \le 1, \ 0 \le y \le x$$

求: 1) (X,Y) 的边缘密度函数,并判断X与Y是否相互独立

解: (1)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_0^x 3x dy = 3x^2$$
, $0 \le x \le 1$ (2分)。

$$f_y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \int_{y}^{1} 3x dx = \frac{3}{2} (1-y^2), \quad 0 \le y \le 1 \quad (1 \text{ }\%). \quad (1 \text{ }\%)$$

由于 $f(x,y) \neq f_X(x) f_Y(y)$,因此X 与 Y不独立(1分)。

$$f(x,y) = 3x, \quad 0 \le x \le 1, \ 0 \le y \le x$$

求: 1) (X,Y) 的边缘密度函数,并判断X与Y是否相互独立

解: (1)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_0^x 3x dy = 3x^2$$
, $0 \le x \le 1$ (2分)。

$$f_y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \int_{y}^{1} 3x dx = \frac{3}{2} (1-y^2), \quad 0 \le y \le 1 \quad (1 \text{ }\%). \quad (1 \text{ }\%)$$

由于 $f(x,y) \neq f_X(x) f_Y(y)$,因此X 与 Y不独立(1分)。

$$f(x,y) = 3x, \quad 0 \le x \le 1, \ 0 \le y \le x$$

求: 1) (X,Y) 的边缘密度函数,并判断X与Y是否相互独立

2)
$$P\{X+2Y>1\}$$

(2)
$$P\{X+2Y>1\} = \iint_{\substack{0 \le x \le 1 \\ 0 \le y \le x \\ x+2y>1}} 3x dx dy = \int_{\frac{1}{3}}^{1} dx \int_{\frac{1-x}{2}}^{x} 3x dy = \frac{3}{2} \int_{\frac{1}{3}}^{1} (3x^2 - x) dx = \frac{7}{9}$$

$$f(x,y) = 3x, \quad 0 \le x \le 1, \ 0 \le y \le x$$

3)
$$Z = X + Y$$
 的概率密度

(3) 当
$$0 \le z \le 1$$
时, $f_z(z) = \int_{\frac{z}{2}}^{z} 3x dx = \frac{9}{8}z^2 \in \mathbb{R}$

当
$$1 < z \le 2$$
时, $f_z(z) = \int_{\frac{z}{2}}^{1} 3x dx = \frac{3}{2} \left(1 - \frac{z^2}{4} \right)$

$$f(x,y) = 3x, \quad 0 \le x \le 1, \ 0 \le y \le x$$

- 3) Z = X + Y 的概率密度
- 4) 求 D(X)

(4)
$$EX = \iint_{\substack{0 \le x \le 1 \\ 0 \le y \le x}} x \cdot 3x dx dy = \int_0^1 3x^2 dx \int_0^x dy = \int_0^1 3x^3 dx = \frac{3}{4} k$$

$$EX^{2} = \iint_{\substack{0 \le x \le 1 \\ 0 \le y \le x}} x^{2} \cdot 3x dx dy = \int_{0}^{1} 3x^{3} dx \int_{0}^{x} dy = \int_{0}^{1} 3x^{4} dx = \frac{3}{5}$$

因此,
$$DX = EX^2 - (EX)^2 = \frac{3}{80}$$

练习2、设 $X_1,X_2,...X_5$ 独立同分布,且其方差存在,记 $M=X_1+X_2+X_3$, $N=X_3+X_4+X_5$ 则 M与N的相关系数为().

(A) 4/5 (B) 1/25 (C) 1/3 (D) 1/15

2、(本题10分)在一次集会上,n个人把他们的帽子放到房间的中央混合在一起,而后每人随机地选取一顶。 拿到自己帽子的人数是一个随机变量,记作X, 计算X的数学期望和方差

解:记 $X_i=1$,如果第i个人拿到自己的帽子; $X_i=0$,如果第i个人没有拿到自己的帽子。

则有·
$$X = X_1 + X_2 + \cdots + X_n$$
。 φ

显然
$$P(X_i=1)=\frac{1}{n}$$
,因此 $EX_i=\frac{1}{n}$,这样就有 $EX=1$ 。。

另外,
$$DX_i = \frac{n-1}{n^2}$$
。 φ

$$X E X_i X_j = P(X_i = 1, X_j = 1) = P(X_j = 1) P(X_i = 1 | X_j = 1) = \frac{1}{n(n-1)}$$

因此
$$\operatorname{cov}(X_i, X_j) = EX_i X_j - EX_i EX_j = \frac{1}{n^2 (n-1)}$$
 。 \mathcal{E}

$$DX = \frac{n-1}{n} + 2\binom{n}{2} \frac{1}{n^2(n-1)} = 1$$
 of

第五章知识结构图

定理1 (切比晓夫大数定律)(Chebyshev 大数定律)

设随机变量 $X_1, \cdots X_n$ · · · 相互独立,且具有相同的数学期望及方差, $EX_k = \mu, DX_k = \sigma^2, k = 1, 2, \cdots$

则
$$\frac{1}{n}\sum_{k=1}^{n}X_{k} \xrightarrow{P} \mu$$
 即对任意的 $\varepsilon > 0$ 有

$$\lim_{n\to\infty} P\{|\frac{1}{n}\sum_{k=1}^n X_k - \mu| < \varepsilon\} = 1,$$

或
$$\lim_{n\to\infty} P\{|\frac{1}{n}\sum_{k=1}^n X_k - \mu| \geq \varepsilon\} = 0.$$

二、中心极限定理

§2中心极限定理

定理1(独立同分布的中心极限定理)(林德贝格-莱维)

设 X_1, \dots, X_n, \dots 独立同分布的随机变量 序列,且

$$EX_{k} = \mu, DX_{k} = \sigma^{2} \neq 0, (k = 1, 2, \dots)$$

$$\sum_{k=1}^{n} X_k$$
 近似 $N(n\mu, n\sigma^2)$ $\sum_{k=1}^{n} X_k - n\mu$ 近似 $N(0,1)$

$$\frac{\sum_{k=1}^{n} X_{k} - n\mu}{\sqrt{n}\sigma}$$
的分布函数 $Fn(x)$ 的极限是 $\Phi(x)$.

$$\lim_{n\to\infty} P\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}} \le x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt = \Phi(x).$$

2. 设每发炮弹命中 不少于 5 发的概率				
	i id ar it t	10 11 11	T I II	

第六章----第八章知识结构图 数理统计 抽样分布 统计推断 假设检验 常用的 四个重 参数估计 正态总体 统计量 要分布 均值的 方差的 点估计 区间估计 检验 检验 正态总体的 样本均值与 方差的分布 方差 矩 极大 均值 (重要统计量 单个 估 似然 的区 的区 的分布) 总体 计 估计 间估 间估 法 法 计 计

一常用的统计量

名称	统计量	观察值
样本均值	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
样本方差	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$
样本标准差	$S = \sqrt{S^2}$	$s = \sqrt{s^2}$
样本k阶原点矩	$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$	$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$
样本 k 阶中心矩	$B_k = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^k$	$b_k = \frac{1}{n} \sum_{i=1}^n \left(x_i - \overline{x} \right)^k$

二、常用统计量的分布

1) 2 2 - 分布

设 $(X_1,\cdots X_n)$ 为来自于正态总体N(0,1)的样本,

则称统计量: $\chi^2 = X_1^2 + \cdots + X_n^2$

记为 $\chi^2 \sim \chi^2(n)$

- 2) $X \sim N(0,1)$, $Y \sim \chi^2(n)$, X, Y独立,则称随机变量 $t = \frac{X}{\sqrt{Y_n}} \qquad t \sim t(n).$
- 3) $F 分 布 若 X \sim \chi^{2}(n_{1}), Y \sim \chi^{2}(n_{2}), X, Y 独立,$ $F = \frac{X/n_{1}}{Y/n_{2}} F \sim F(n_{1}, n_{2}).$

4) 正态总体的样本均值与样本方差的分布:

设 X_1, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 分别是样本均值与样本方差,则有:

(1)
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n});$$
 $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1),$ (2) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1);$

$$(3) \quad \frac{X-\mu}{S/\sqrt{n}} \sim t(n-1)$$

$$A_k = \mu_k, \quad k = 1, \dots, l, \dots$$
$$= f_k(\theta_1, \theta_2 \dots \theta_l),$$

得到包含l个未知参数 $\theta_1, \theta_2 \cdots \theta_l$ 的方程组

$$\begin{cases} A_1 = f_1(\theta_1, \theta_2, \dots, \theta_l) \\ A_2 = f_2(\theta_1, \theta_2, \dots, \theta_l) \end{cases}$$

$$\left[A_k = f_k \left(\theta_1, \theta_2, \cdots, \theta_l \right) \right]$$

从中解出 $\hat{\theta}_1, \hat{\theta}_2 \cdots \hat{\theta}_l$

极大似然法求估计量的步骤: (一般情况下)

1) 构造似然函数 $L(\theta)$:

$$L(\theta) = \prod_{i=1}^{n} P(x_i)$$
 (离散型), $L(\theta) = \prod_{i=1}^{n} f(x_i)$ (连续型);

2) 取对数: $\ln L(\theta)$;

$$3) \diamondsuit \frac{d \ln L}{d\theta} = 0;$$

4) 解似然方程得 θ 的极大似然估计量 $\hat{\theta}$.

区间估计 $X \sim N(\mu, \sigma^2)$, 对 μ, σ^2 进行区间估计

未知参数

统计量

置信区间

 $\mu(\sigma^2$ 已知)

$$\frac{\bar{X} - \mu}{\sigma / n} \backsim N(0,1)$$

$$\left(\bar{X}\pm\frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}}\right)$$

 μ (σ^2 未知)

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \backsim t(n-1)$$

$$\left(\bar{X}\pm\frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) \left[\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)} \right]$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \left(\sqrt{\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}}, \sqrt{\frac{(n-1)S^2}{\chi_{\frac{1-\alpha}{2}}^2(n-1)}} \right)$$

假设检验

 $X \sim N(\mu, \sigma^2)$, 对 μ, σ^2 进行假设检验

 X_1X_2, \dots, X_n x_1x_2, \dots, x_n 显著性水平 α ,

	原假设 H。	备择假设H	检验统计量	★拒绝域
1)µ的检验	$\mu = \mu_0$	$\mu \neq \mu_0$	$X - \mu_0$	$ig Uig >z_{lpha/2}$
♂为已知		$\mu > \mu_0$	$U = \frac{X - \mu_0}{\sigma / \sqrt{n}}$	$U > z_{\alpha}$
	$\mu \geq \mu_0$	$\mu < \mu_0$	~ N(0,1)	$U < -z_{\alpha}$
2) μ的检验	$\mu = \mu_0$	$\mu \neq \mu_0$	$\overline{X} - \mu_0$	$ t > t_{\alpha/2}(n-1)$
σ²为未知	$\mu \leq \mu_0$	$\mu > \mu_0$	$t = \frac{X - \mu_0}{S / \sqrt{n}}$	$t > t_{\alpha}(n-1)$
	$\mu \geq \mu_0$	$\mu < \mu_0$	$\sim t(n-1)$	$t < -t_{\alpha}(n-1)$
	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	$\chi^2 > \chi^2_{\alpha/2}(n-1)$ 或
$3)\sigma^2$ 的检验		2 2 2	$\chi^2 = \frac{(r^2 - r)^2}{\sigma_0^2}$	$\chi^2 < \chi^2_{1-\alpha/2}(n-1)$
		$\sigma^2 > \sigma_0^2$	$\sim \chi^2(n-1)$	$\chi^2 > \chi_\alpha^2(n-1)$
	$\sigma' \geq \sigma_0^2$	$\sigma^2 < \sigma_0^2$	λ (" -)	$\chi^2 < \chi_{1-\alpha}^2(n-1)$

2、设总体X的概率密度函数为 $f(x) = (\theta+1)x^{\theta}$, 0 < x < 1

其中 θ>-1 是未知参数

 x_1, x_2, \dots, x_n 是来自这个总体的一组观测值。求:

- (1) 求未知参数 θ 的矩估计值
- (2) 求未知参数 θ 的极大似然估计值

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x \cdot (\theta + 1) x^{\theta} dx = \frac{\theta + 1}{\theta + 2}$$

$$\overline{X} = \frac{\theta + 1}{\theta + 2}$$

$$\hat{\theta} = \frac{2\bar{X} - 1}{1 - \bar{X}}.$$

设总体
$$X$$
密度 $f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$ $\theta > -1$ 未知,求 θ 的极大似然估计。

解:

 x_1, x_2, \dots, x_n 为样本值。

$$L(\theta) = \begin{cases} \prod_{i=1}^{n} (\theta+1) x_i^{\theta} = (\theta+1)^n (x_1 x_2 \cdots x_n)^{\theta}, & 0 < x_i < 1, \\ i = 1, 2, \cdots, n. \end{cases}$$
 其他

 $0 < x_i < 1, i = 1, 2, \dots, n$ 时,

$$\ln L(\theta) = n \ln(\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i$$

设总体
$$X$$
密度 $f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$

 $\theta > -1$ 未知,求 θ 的极大似然估计。

$$\ln L(\theta) = n \ln(\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i$$

$$\frac{d}{d\theta} \ln L(\theta) = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \ln x_i = 0$$

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln x_i} - 1$$
 极大似然估计值;

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_{i}} - 1$$
 极大似然估计量;

3. 设 X_1, X_2, \cdots, X_n 是来自正态总体的一个样本,在如下四个统计量。

$$X_1 + X_2$$
, $X_1 - X_2 + X_3$, $\frac{X_1}{2} + \frac{X_2}{3} + \frac{X_3}{6}$, $\frac{X_1 + X_2 + \dots + X_n}{n}|_{\psi}$

中,可以作为均值的无偏估计量的统计量的个数是·····。

(A) 1

(B) 3₽

(C) 2

(D) 4

4. · 若 X_1, X_2, \dots, X_n 是来自正<u>态总体 $X \sim N(0,1)$ 的一个样本, \overline{X} 与 S^2 分别表示样本均值,与样本方差,则有 \dots 。 。</u>

(A) $n\overline{X} \sim N(0,1)$

(B) $\overline{X} \sim N(0,1)$

(c)
$$\frac{\overline{X}}{S} \sim t(n-1)$$

(D)
$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n) \, \varphi$$

 $H_0: \mu = \mu_0$,那么在显著性水平 0.01 下,下列结论成立的是·······。

(A) 必须接受 H₀ ₽

(B) 可能接受也可能拒绝 H_0 。

(C) 必须拒绝 H₀ +

(D) 不接受也不拒绝 H_0 。

L

四.(本题 12分)运动员在一段时期内的运动呈正态分布。一个跳远运动员在一周的运动测试中取得如下成绩(单位:米)。

· · · · · · · 6. 5 · · · · 6. 4 · · · · 6. 8 · · · · 6. 3 · · · · 6. 3 · · · · 6. 6 · · · · 6. 7 · · · · 6. 2 · · · · 6. 7 。 ↓

均值和方差分别记作 μ 和 σ^2 。 \downarrow

问题: (1) 求均值 μ 的置信区间,置信度为 0.95; ₽

- (2) 是否可以认为这名运动员的平均成绩达到 μ_0 = 6.1? 显著性水平 α = 0.05; μ
- (3) 是否可以认为这名运动员的平均成绩 $\mu \le 6.1$? 显著性水平 $\alpha = 0.05$ 。 +

1. 设某人打靶, 脱靶的概率为0.4 现独立地进行了6次射击, 以X表示击中的次数, 则E(X), D(X)

分别为

- A 3.6和1.44
 - B 2.4 和1.44 C 0.6 和1.44
- D 0.4 和1.44
- 2. 设 X_1, X_2, X_3, X_4 是来自正态总体N(0,1)的一个样本,

X 服从 χ^2 分布.

A
$$a = \frac{1}{2}$$
, $b = \frac{1}{5}$, $c = \frac{1}{10}$

$$c \ a = \frac{1}{2}, b = 0, c = \frac{1}{10}$$

B
$$a = 0$$
, $b = \frac{1}{5}$, $c = \frac{1}{10}$

D
$$a = \frac{1}{2}$$
, $b = \frac{1}{5}$, $c = 0$

3. 设随机变量 X 服从正态分布 N(1,1),已知 $z_{0.025}=1.96$,则常数 $P\{X \le 2.96\}=$

A 0.95

В 0.975 С 0.025

D 0.005

4. 设总体 $X \sim B(2, p)$, 待估参数 0 , 样本值为 <math>2, 2, 0, 0, 1, 1, 则参数 p 的极大似然估计中,

似然函数L(p)=____

A $2p^{3}(1-p)^{3}$ B $p^{3}(1-p)^{3}$ C $4p^{6}(1-p)^{6}$ D $p^{6}(1-p)^{6}$

5. 设随机变量 X, Y 相互独立, $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,

则X-Y+1服从的分布为

A $N(\mu_1 - \mu_2 + 1, \sigma_1^2 + \sigma_2^2)$ B $N(\mu_1 - \mu_2 + 1, \sigma_1^2 - \sigma_2^2)$

C $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

D $N(\mu_1 - \mu_2 + 1, \sigma_1^2 - \sigma_2^2 + 1)$

- 6. 设随机变量 X,Y 独立同分布,则 U=X-Y,V=X+Y 一定满足 A 协方差不为零 B 相互独立 C 相关系数不为零 D 相关系数为零
- 7. 设随机变量 X 服从指数分布,其概率密度函数是 f(x) 则下列能成为 X 的概率密度函数的是

A
$$g_1(x) = \begin{cases} f(x), & x > 0 \\ f(-|x|), & x \le 0 \end{cases}$$

B
$$g_2(x) = \begin{cases} f(x), & x > 0 \\ f(-x), & x \le 0 \end{cases}$$

$$C \ g_3(x) = \begin{cases} 0.5f(x), & x > 0 \\ 0.5f(-|x|), & x \le 0 \end{cases} \qquad D \ g_4(x) = \begin{cases} 0.5f(x), & x > 0 \\ 0.5f(-x), & x \le 0 \end{cases}$$

D
$$g_4(x) = \begin{cases} 0.5f(x), & x > 0 \\ 0.5f(-x), & x \le 0 \end{cases}$$

8. 设对正态总体的数学期望 μ 进行假设检验,如果在显著性水平 0.05 之下接受零假设 H_0 : $\mu = \mu_0$,那

么在显著性水平0.01下,下列结论成立的是。

A 必须接受 H_{o}

B 可能接受也可能拒绝 H_0

C 必须拒绝 H_0

D 不接受也不拒绝 H_0

- 3. 设随机变量 X 的方差存在,且 $D(X) \neq 0$,若 $P\{Y = -0.6X 0.7\} = 1$,则 $\rho_{XY} =$ _______
- **4.** 设 X_1, X_2, \dots, X_n 是来自正态总体 X 的样本, $E(X) = \mu$, $D(X) = \sigma^2 > 0$, 要使 $Y = k_1 (X_1 \mu)^2 + k_2 (X_2 \mu)^2 + \dots + k_n (X_n \mu)^2$ 为 σ^2 的无偏估计,则常数 k_1, k_2, \dots, k_n 满足

1.	. 随机抽取某种炮弹9发做试验, 往	导炮口速度的样本标准差 $s=11(m/s)$,	设炮口速度服从正态分布,
	求这种炮弹的炮口速度的标准差。	的置信度为0.95的置信区间。解题过程	呈中请回答以下问题:
	(参考数据: z _{0.025} = 1.96, z _{0.05} =	$\chi_{0.975}^2(8) = 2.180, \chi_{0.025}^2(8) = 2.180$	17.535)

(1)	5出统计量及分布
-----	----------

- (2) σ 的置信度为 $1-\alpha$ 的置信区间公式为______
- (3) σ 的置信度为0.95 的置信区间是(代入数据,不用具体计算)______
- **2.** 设总体 $X \sim U(0,\theta)$,未知参数 $\theta > 0$,样本值为 2, 2.5, 2, 1.5, 2.1, 1.9 ,求参数 θ 的矩估计值和极大似然估计值。解题过程中请回答以下问题:
 - (1) 参数 θ 的矩估计量为_____
 - (2) 参数 θ 的矩估计值为_____
 - (3) 样本的似然函数为_____
 - (4) 参数 θ 的极大似然估计值为_____

四.(13 分)设二维随机变量(X, Y)在以(0, 1), (1, 0), (1, 1)为顶点的三角形区域D上服从均匀分布,试求:

- (1) Z = X + Y 的概率密度函数;
- (2) D(X+Y).

五. (14分) 设二维随机变量的概率密度函数为

试求:

- (1) 边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$, 并判断 X 和 Y 的独立性;
- (2) 条件概率密度函数 $f_{X|Y}(x|1)$;
- (3) 概率 $P\{X+Y>1\}$.

六. (6分) 设总体 X 服从 (0-1) 分布,分布律为 $P\{X=k\}=p^k\left(1-p\right)^{1-k}$,k=0,1, X_1,X_2,\cdots,X_n 为来自总体的简单随机样本, $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$, $S_n^2=\frac{1}{n}\sum_{i=1}^n \left(X_i-\overline{X}\right)^2$,证明: $T=\left(\overline{X}\right)^2-\frac{1}{n-1}S_n^2$ 为 p^2 的无偏估计.

七. (5分) 设A 为随机事件,证明: $P(A)P(\overline{A}) \leq \frac{1}{4}$.

1. 从一副扑克牌四个花色的 52 张牌中随机抽取两张牌,则取到的两张恰是不同花色且最大点数为 7 的概率是·········。

(A) 0 e

(B) σ^4

(c) $2\sigma^4 \approx$

(D) $3\sigma^4$

 $2 \cdot X_1, \cdots X_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的样本,

$$\hat{\sigma} = \frac{1}{k} \sum_{i=1}^{n-1} |X_{i+1} - X_i|$$
 为总体参数 σ 的无偏估计量

求k

4. 设随机变量 X 的分布函数是 $F(x) = 0.3\Phi(x) + 0.7\Phi(\frac{x-2}{3})$, 其中 $\Phi(x)$ 是标准正态分布的分

已知
$$a_n = \sum_{k=0}^n \frac{n^k}{k!} e^{-n}$$
,用中心极限定理,结合泊松分布,计算 $\lim_{n \to +\infty} a_n$

从数字1-9中依次随机抽取5个数字组成一个五位数,以X记这个五位数的各位数字之和。

- (1) 若抽取是有放回的, 计算X的数学期望与方差;
- (2) 若抽取是无放回的, 计算X的数学期望与方差。

(D) 以上三者均有可能↩

(C) 变短↩

3. 设 X_1, X_2 是任意两个相互独立的连续型随机变量,它们的概率密度函数分别是 $f_1(x)$ 和 $f_2(x)$,

分布函数分别是 $F_1(x)$ 和 $F_2(x)$,则有 \dots 。 \leftarrow

- (A)· $f_1(x) + f_2(x)$ 必为某一随机变量的概率密度函数←
- (B) $f_1(x) f_2(x)$ 必为某一随机变量的概率密度函数 → ϕ
- (C)·· $F_1(x) + F_2(x)$ 必为某一随机变量的分布函数 \rightarrow ··· \leftarrow
- (D) $F_1(x)F_2(x)$ 必为某一随机变量的分布函数←
- **4.** 设随机变量 X 与 Y 不相关,则以下说法错误的是____。 ←

(A)
$$D(X+Y) = D(X) + D(Y) \in$$

(B)
$$D(X-Y) = D(X) + D(Y) = 0$$

(C)
$$D(XY) = D(X)D(Y) \Leftrightarrow \Box$$

(D)
$$E(XY) = E(X)E(Y) \in$$

5. 设 X_1, X_2, \dots, X_n 是来自总体 X 的样本, $E(X) = \mu 与 D(X) = \sigma^2$ 均未知, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 是样本

. . 4

均值,则下列说法正确的是·____。↩

(A)
$$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\mu)$$
 是统计量 \triangleleft

(B)
$$\frac{X_1 + X_2}{2}$$
 是 μ 的无偏估计 \triangleleft

(C)
$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$$
 是 σ^{2} 的无偏估计 φ

(D)
$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})$$
 是 σ 的无偏估计 \leftarrow

6. 设随机变量 X 与 Y 相互独立,且都服从区间·[0,2]·上的均匀分布,则 $P(X^2 + Y^2 \le 1) = _____。$

$$(A) \cdot \frac{\pi}{4} \to \to \to (B) \cdot \cdot \cdot \frac{\pi}{8} \to \to (C) \cdot \frac{\pi}{16} \cdot \cdot \to \to (D) \cdot \frac{1}{4} \leftarrow$$

$$(A) \cdot \frac{1}{4}e^{-1} \cdot \rightarrow \rightarrow (B) \cdot \frac{1}{2}e^{-1} \cdot \rightarrow \rightarrow (C) \rightarrow e^{-1} \rightarrow \cdots \rightarrow (D) \cdot 1 - e^{-1} \leftarrow$$

8. 设 X_1, \dots, X_n 是来自总体X 的容量为n 的简单随机样本,已知 $E(X^k) = \mu_k$,则根据大数定律,

_____依概率收敛于 μ_k 。 \leftarrow

$$(A) \cdot \frac{1}{n} \sum_{i=1}^{n} X_i \rightarrow \to (B) \cdot \frac{1}{n} \sum_{i=1}^{n} X_i^k \rightarrow \to (C) \cdot \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \rightarrow (D) \cdot \frac{1}{n-1} \sum_{i=1}^{n} X_i^k - \mu_k \leftarrow (D) \cdot$$

$$P(AB \mid \overline{C}) = \underline{\cdots \cdots \cdots \cdots }_{\circ} \leftarrow$$

4. 设随机变量 X 的分布函数是 $F(x) = 0.3\Phi(x) + 0.7\Phi(\frac{x-2}{3})$, 其中 $\Phi(x)$ 是标准正态分布的分

布函数,则有E(X)= \dots 。 \leftarrow

三. (本题 8 [♣](Ctrl) ▼

某超市里成套出售某品牌玻璃杯,每套 6 个杯子装在一个盒子里。已知每套杯子中有 0 个、1 个、2 个残次品的概率分别是 0.7, 0.2, 0.1。假设顾客挑选时会随机拿 1 套玻璃杯,打开盒子后任意取出其中 3 个杯子来查验。若发现被查验的杯子中有残次品,则放弃购买,若没发现残次品,则会购买整套玻璃杯。试求: ←

- (1)→顾客挑选后会购买整套玻璃杯的概率; ←
- (2)→已知顾客挑选后购买了整套玻璃杯,那么他回家后发现该套杯子中有2个残次品的概率有多大? ↩

+

四. (本题 15 分) 🗸

设二维随机变量(
$$X,Y$$
)的联合概率密度为 $f(x,y) = \begin{cases} 4xe^{-2y}, & 0 < x < 1, y > 0 \\ 0, &$ 其它

(1)· 求边缘概率密度 $f_X(x)$, $f_Y(y)$; ···(2)· 判断 X与 Y是否相互独立,并说明原因; · \hookleftarrow

(3)· 计算 D(3X-2Y); · · · · · · · · · · (4)· 求条件概率密度 $f_{X|Y}(x|y)$ 。 \leftarrow

五. (本题 12 分) ←

设 $X \sim N(\mu, \sigma^2)$, $Y \sim N(\mu, \sigma^2)$, $\sigma > 0$, 已知X = Y相互独立,且Z = X - Y,试求: \leftarrow

- (1)··Z的概率密度函数 $f_Z(z)$; · ←
- (2)· 设 Z_1, \cdots, Z_n 是来自总体 Z 的样本, z_1, \cdots, z_n 是样本值,试根据这一样本,求 σ^2 的矩估计量 $\hat{\sigma}_{\rm M}^2$ 和极大似然估计量 $\hat{\sigma}_{\rm L}^2$; \leftarrow
- (3) 请验证: 极大似然估计量 $\hat{\sigma}_L^2$ 是不是 σ^2 的无偏估计量? \leftarrow

六. (本题 7 分) ←

设随机变量 X 与 Y 相互独立,它们的概率密度函数分别为↩

$$f_X(x) = \begin{cases} \frac{1}{2}, & 0 < x < 2 \\ 0, & \text{ 其他} \end{cases} \quad \text{$\Rightarrow $f_Y(y) = \begin{cases} e^{-y}, & y \ge 0 \\ 0, & \text{ 其他} \end{cases}}$$

求Z = 2X + Y的概率密度函数。←

七. (本题 10 分) 4

已知某种材料的抗压强度 $X\sim N(\mu,\sigma^2)$,现随机抽取 16 个由该种材料制成的样品进行抗压试验,

测得样本均值为475,样本标准差为32。↩

- (1)→求这种材料平均抗压强度 μ 的置信度为0.95的置信区间。 \leftarrow
- (2)→若抗压强度不小于 500 (即 μ ≥ 500) 为合格,是否可以认为这种材料合格? (显著性水平 α = 0.05) \vdash

可能用到的数据: $t_{0.1}(15) = 1.3406$, $t_{0.1}(16) = 1.3368$, $t_{0.05}(15) = 1.7531$, $t_{0.05}(16) = 1.7459$, \leftarrow

$$t_{0.025}(15) = 2.1315$$
, $t_{0.025}(16) = 2.1199$