

Dashboard > My courses > EMAT101L- Odd Semester 2021 (EB22-EB28) > 17 February - 23 February > EMAT101L End Sem Examination 2021-22

Started on Tuesday, 22 February 2022, 10:00 AM

State Finished

Completed on Tuesday, 22 February 2022, 11:30 AM

Time taken 1 hour 29 mins

Grade 25.33 out of 40.00 (**63**%)

Question 1

Incorrect

Mark 0.00 out of 2.00

Let $f:\mathbb{R}^2 o\mathbb{R}$ be differentiable at (0,0). Suppose that for $U=\left(rac{3}{5},rac{4}{5}
ight)$ and

$$V = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$$

We have $D_U f(0,0)=12$ and $\ D_V f(0,0)=-4\sqrt{2}.$

Then choose the correct option.

Select one:

$$_{\odot}$$
 a. $f_x(0,0)=92$ and $f_y(0,0)=-84$

X

 $igcup b. \ f_x(0,0)$ and $f_y(0,0)$ do not exist.

$$igcup ext{c. } f_x(0,0) = -92$$
 and $f_y(0,0) = 84$

$$igcup ext{d.} f_x(0,0) = 84$$
 and $f_y(0,0) = -92$

Your answer is incorrect.

The correct answer is: $f_x(0,0) = -92$ and $f_y(0,0) = 84$

Incorrect

2.00

Mark 0.00 out of

 $f(x)=\lim_{n o\infty}rac{(1+\sin\pi x)^n-1}{(1+\sin\pi x)^n+1}, x\in\mathbb{R}.$

Then choose the correct option.

Select one:

Let

- $\quad igcirc$ c. f(x) has jump discontinuity at $x\in \mathbb{R}.$

X

Your answer is incorrect.

The correct answer is: f(x) has jump discontinuity at $x \in \mathbb{Z}$.

Correct

Mark 2.00 out of

2.00

Let $f_1,f_2,f_3:\mathbb{R}^2 o\mathbb{R}$ defined by

$$f_1(x,y) = \left\{ egin{aligned} xy\cosrac{1}{x}, & ext{ if } x
eq 0 \ 0, & ext{ if } x=0 \end{aligned}
ight.,$$

$$f_2(x,y) = \left\{ egin{array}{l} rac{\sin(x+y)}{|x|+|y|}, & ext{ if } (x,y)
eq (0,0) \ 0, & ext{ if } (x,y)
eq (0,0) \end{array}
ight.,$$

and

$$f_3(x,y) = \left\{ egin{array}{ll} 1, & ext{if } x > 0 ext{ and } 0 < y < x^2 \ 0, & ext{otherwise}. \end{array}
ight.$$

Then choose the correct option.

Select one:

- \bigcirc a. f_1 and f_3 are continuous at (0,0).
- Ob. f_1 is discontinuous at (0,0).
- $igcup c. \ f_1 \ {
 m and} \ f_2$ are discontinuous at (0,0).
- lacksquare d. f_2 and f_3 are discontinuous at (0,0).

Your answer is correct.

The correct answer is: f_2 and f_3 are discontinuous at (0,0).

Question $\bf 4$

Correct

Mark 2.00 out of

2.00

Find the value of $\lim_{x \to 0} \frac{d}{dx} \Biggl(\int_{x+1}^{x^2+2} xt \ dt \Biggr).$

Select one:

- a. 2
- O b. $\frac{2}{3}$
- \bigcirc c. $\frac{3}{2}$

- d. ∞
- e. 0

Your answer is correct.

The correct answer is: $\frac{3}{2}$

Correct

2.00

Mark 2.00 out of

Let [x], $\{x\}$ (= x - [x]) and sgn(x) denote the greatest integer function, fractional part function and signum function, respectively.

Now, choose the correct options.

Select one or more:

$$ext{a. }\lim_{x o 0^+}\left[rac{\sin x}{x}
ight]=0$$
, $\lim_{x o 0^-}\left[rac{\sin x}{x}
ight]=0$.

4

$$\qquad \text{b. } \lim_{x \to 0^+} \Big\{ \frac{\sin x}{x} \Big\} = 1 \text{, } \lim_{x \to 0^-} \Big\{ \frac{\sin x}{x} \Big\} = 1.$$

$$\square$$
 c. $\lim_{x \to \infty} x^2 \operatorname{sgn} \cos x$ is exist.

$$\qquad \text{d.} \lim_{x \rightarrow 0^+} \sqrt{\{x\}} = 1 \text{,} \lim_{x \rightarrow 0^-} \sqrt{\{x\}} = 0.$$

Your answer is correct.

The correct answers are: $\lim_{x \to 0^+} \left[\frac{\sin x}{x} \right] = 0$, $\lim_{x \to 0^-} \left[\frac{\sin x}{x} \right] = 0$.

,
$$\lim_{x \to 0^+} \left\{ \frac{\sin x}{x} \right\} = 1$$
, $\lim_{x \to 0^-} \left\{ \frac{\sin x}{x} \right\} = 1$.

Incorrect

Mark 0.00 out of

2.00

Let $Q(\boldsymbol{x},\boldsymbol{y})$ be the Taylor's quadratic polynomial approximation of the function $f(x,y)=3\sin 2x+2\cos 3y$ near the origin. Then find the value of $\lim_{(x,y) o(1,2)}Q(x,y).$

Select one:

- \bigcirc a. 0
- \bigcirc b. -24
- \odot c. 5

×

 \bigcirc d. -20

Your answer is incorrect.

The correct answer is: -24

Correct

Mark 2.00 out of

2.00

Choose the correct options.

Select one or more:

a.
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = -\pi$$

- lacksquare b. The integral $\int_2^\infty (x^2+x+1)e^{-x}dx$ diverges.
- ${\color{red} {\mathbb Z}}$ c. The integral $\int_{-2}^2 \frac{dx}{x+1}$ diverges.

√

d.
$$\int_4^\infty rac{dx}{(x-2)(x-3)} = \ln 2$$

Your answer is correct.

The correct answers are: The integral $\int_{-2}^2 \frac{dx}{x+1}$ diverges.

,
$$\int_4^\infty rac{dx}{(x-2)(x-3)} = \ln 2$$

Incorrect

Mark 0.00 out of 2.00

A sequence $\{u_n\}$ is defined by $u_{n+2} = rac{1}{2}(u_{n+1} + u_n)$ for $n \geq 1$ and $0 < u_1 < u_2$.

Then choose the correct option.

Select one:

- \bigcirc a. The sequence $\{u_n\}$ converges to $\dfrac{3u_2-u_1}{2}$.
- b. The sequence $\{u_n\}$ converges to $\dfrac{u_1+3u_2}{2}$.
- lacksquare c. The sequence $\{u_n\}$ converges to $rac{2u_2-u_1}{3}$.

X

od. The sequence $\{u_n\}$ converges to $\dfrac{u_1+2u_2}{3}$.

Your answer is incorrect.

The correct answer is: The sequence $\{u_n\}$ converges to $\dfrac{u_1+2u_2}{3}$.

Correct

Mark 2.00 out of

2.00

Choose the correct options.

Select one or more:

a. Let f(x) be the sum of the power series $\sum_{n=0}^{\infty} a_n x^n$ on (-R,R) for R>0. If f'(x)=f(x) for all $x\in (-R,R)$ and f(0)=1 , then $a_n=rac{1}{n!}$ for all $n\in \mathbb{N}$.

- $oxed{igspace{1.5pt}{0.5pt}$ If f'(x)=f(x) for all $x\in (-R,R)$ and f(0)=1, then $a_n=rac{2}{n!}$.
- c. Let f(x) be the sum of the power series $\sum_{n=0}^{\infty} a_n x^n$ on (-R,R) for R>0. If f(x)+f(-x)=0 for all $x\in (-R,R)$, then $a_n=0$ for all even n.

Your answer is correct.

The correct answers are: Let f(x) be the sum of the power series $\sum_{n=0}^{\infty} a_n x^n$ on (-R,R) for R>0. If f'(x)=f(x) for all $x\in (-R,R)$ and f(0)=1, then $a_n=rac{1}{n!}$ for all $n\in \mathbb{N}.$

, Let f(x) be the sum of the power series $\sum_{n=0}^{\infty} a_n x^n$ on (-R,R) for R>0. If f(x)+f(-x)=0 for all $x\in (-R,R)$, then $a_n=0$ for all even n.

Correct

Mark 2.00 out of

2.00

Which among the following are NOT correct values of $\int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta$?

Select one or more:

- \square a. $\Gamma\left(\frac{3}{4},\frac{1}{4}\right)$

- c. $\frac{1}{2}\beta\left(\frac{3}{4},\frac{1}{4}\right)$ d. $\int_0^{\frac{\pi}{2}}\sin^{\frac{1}{2}}\theta\,\cos^{-\frac{1}{2}}\theta\,d\theta$

Your answer is correct.

The correct answers are: $\frac{\pi}{2}$

,
$$\Gamma\left(rac{3}{4},rac{1}{4}
ight)$$

Correct

Mark 2.00 out of

2.00

Let $f(x,y)=6\sin(2x)\cos(3y)$ and let $P=\left(\frac{\pi}{6},-\frac{\pi}{6}\right)$. Then find the direction of maximum increase.

Select one:

- \bigcirc a. along the direction $\dfrac{1}{\sqrt{2}}\hat{i} + \dfrac{1}{\sqrt{2}}\hat{j}$
- \bigcirc b. along the direction $\dfrac{1}{\sqrt{2}}\hat{i}-\dfrac{1}{\sqrt{2}}\hat{j}$
- lacksquare c. along the y-axis

√

igcup d. along the x-axis

Your answer is correct.

The correct answer is: along the y-axis

Incorrect

2.00

Mark 0.00 out of

Evaluate the double integral $\iint_R (x^2+x-1) \ dA$, where R is the region bounded by $y=x^2$ and $x=y^2$.

Select one:

$$\bigcirc \quad \text{ a.} -\frac{41}{420}$$

b.
$$-\frac{11}{420}$$

X

$$c. \frac{1}{6}$$

Your answer is incorrect.

The correct answer is: $-\frac{41}{420}$

Incorrect

Mark 0.00 out of 2.00

Let $f(x,y)=3x^2y+x^2-6x-3y-15$. Then choose the correct options.

Select one or more:

lacksquare a. The determinant of the Hessian matrix of f(x,y) at $\left(1,rac{2}{3}
ight)$ is -36.

- b. $\left(-1, -\frac{4}{3}\right)$ is a saddle point.
- $ilde{f Z}$ c. The function has exactly four critical points. f X

Your answer is incorrect.

The correct answers are: $\left(-1,-\frac{4}{3}\right)$ is a saddle point.

, The determinant of the Hessian matrix of f(x,y) at $\left(1,rac{2}{3}
ight)$ is -36.

Correct

Mark 2.00 out of 2.00

Which among the following is the correct expression for the integral $\int_0^{rac{12}{5}}\int_y^{6-rac{3}{2}y}x^2y\ dx\ dy$,

when the order of integration is reversed?

Select one:

$$\bigcirc$$
 a. $\int_0^{rac{12}{5}} \int_0^{rac{12}{5}} x^2 y \, dy \, dx$

O b.
$$\int_0^6 \int_0^{\frac{11}{5}} x^2 y \, dy \, dx$$

$$\bigcirc$$
 c. $\int_0^{rac{11}{5}} \int_0^x x^2 y \ dy \ dx + \int_{rac{11}{5}}^6 \int_0^{6-rac{3}{2}x} x^2 y \ dy \ dx$

$$lacksquare d. \int_0^{rac{12}{5}} \int_0^x x^2 y \ dy \ dx + \int_{rac{12}{5}}^6 \int_0^{4-rac{2}{3}x} x^2 y \ dy \ dx$$

√

Your answer is correct.

The correct answer is: $\int_0^{\frac{12}{5}}\int_0^x x^2y\,dy\,dx+\int_{\frac{12}{5}}^6\int_0^{4-\frac{2}{3}x}x^2y\,dy\,dx$

Correct

Mark 2.00 out of 2.00

If $\{u_n\}$ be a monotone decreasing sequence of positive real numbers and $\lim u_n = 0$. Then choose the correct options for the following series.

Select one or more:

- a. $u_1-rac{1}{2}(u_1+u_2)+rac{1}{3}(u_1+u_2+u_3)-\ldots$ is a divergent series.
- \square b. $u_1-rac{1}{2}(u_1+u_3)+rac{1}{3}(u_1+u_3+u_5)-\ldots$ is a convergent series.

4

c. $u_1-rac{1}{2}(u_1+u_2)+rac{1}{3}(u_1+u_2+u_3)-\ldots$ is a convergent series.

4

 \square d. $u_1 - \frac{1}{2}(u_1 + u_3) + \frac{1}{3}(u_1 + u_3 + u_5) - \ldots$ is a divergent series.

Your answer is correct.

The correct answers are: $u_1 - \frac{1}{2}(u_1 + u_2) + \frac{1}{3}(u_1 + u_2 + u_3) - \dots$ is a convergent series.

, $u_1-rac{1}{2}(u_1+u_3)+rac{1}{3}(u_1+u_3+u_5)-\ldots$ is a convergent series.

Question 16

Correct

Mark 2.00 out of

2.00

Consider the function $f(x)=x^{15}+100x^5-5e^{-x}.$ Then choose the correct option.

Select one:

- igcup a. f(x)=0 has two real solutions.
- lacksquare b. f(x)=0 has exactly one real solution.

 \checkmark

- $\,\,\,\,\,\,\,\,$ c. f(x)=0 has 15 real solutions.

Your answer is correct.

The correct answer is: f(x) = 0 has exactly one real solution.

Correct

2.00

Mark 2.00 out of

Let $f:\mathbb{R}^2 o\mathbb{R}$ be defined by

$$f(x,y) = \left\{ egin{aligned} 0, & ext{if } x \in \mathbb{Q}, \ y \in \mathbb{Q} \ xy, & ext{otherwise}. \end{aligned}
ight.$$

Then choose the correct option.

Select one:

a. f is continuous only on x-axis and y-axis.

√

- \bigcirc b. f is continuous only at (0,0).
- od. f is discontinuous for all (x,y) in \mathbb{R}^2 .

Your answer is correct.

The correct answer is: f is continuous only on x-axis and y-axis.

Correct

Mark 2.00 out of 2.00

Find the signed volume under the plane z=4-x-2y over the disk with equation $x^2+y^2\leq 4.$

Select one:

- igcup a. 8π
- igodot b. 2π
- \circ c. 4π
- lacksquare d. 16π

Your answer is correct.

The correct answer is: 16π

Partially correct

Mark 1.00 out of 2.00

Let $z=x^2y+xy^2$ and $x=3+t^4, y=1-t^3.$ Then choose the correct options.

Select one or more:

- $oxed{\Box}$ a. $rac{dz}{dt}\Big|_{ ext{at }t=1}=9$
- $oxed{egin{array}{ccccc} oxed{b}. rac{dz}{dt}ig|_{ ext{at }t=0}=4 \end{array}}$
- c. $\left. rac{dz}{dt}
 ight|_{ ext{at }t=1} = -27$

Your answer is partially correct.

You have correctly selected 1.

The correct answers are: $\left. rac{dz}{dt}
ight|_{{
m at}\; t=0} = 0$

,
$$\left. rac{dz}{dt}
ight|_{{
m at}\; t=1} = -27$$

Partially correct

Mark 0.33 out of 2.00

Consider the function $f(x)=rac{2x^3-x^2+9}{2(9-x^2)}$. Then choose the correct options.

Select one or more:

- $ilde{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol{oldsymbol{ol}}}}}}}}}}}}}}}$

√

- c. f has local maximum at $x=3\sqrt{3}$
- lacksquare d. f has local minimum at $x=3\sqrt{3}$.

×

lacksquare e. $x=\pm 3$ are horizontal asymptotes.

Your answer is partially correct.

You have correctly selected 1.

The correct answers are: f has local maximum at $x=3\sqrt{3}$

, f has local minimum at $x=-3\sqrt{3}$