MATH2111 Tutorial 11

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

1 Diagonalization

- 1. **Definition**. A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix. i.e. If $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D.
- 2. Theorem (The Diagonalization Theorem).
 - (a) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
 - (b) $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.
- 3. Procedures to Diagonalize a Matrix A.
 - (a) Find all the eigenvalues and the corresponding eigenvectors of A.
 - (b) Construct D from the eigenvalues in step (a) to fill all the diagonal entries in D.
 - (c) Construct P from the corresponding eigenvectors in step (a) to form the columns of P.
- 4. **Theorem**. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
- 5. **Theorem**. Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$.
 - (a) For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
 - (b) The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if
 - i. the characteristic polynomial factors completely into linear factors and
 - ii. the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k .
 - (c) If A is diagonalizable and \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets $\mathcal{B}_1, \ldots, \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n .

2 Exercises

1. Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix. Given λ and ρ are two distinct eigenvalues of A. Show that eigenspaces of λ and ρ are orthogonal. Namely, for any vectors $\mathbf{x}_1 \in \mathcal{E}_{\rho}(A)$, $\mathbf{x}_2 \in \mathcal{E}_{\lambda}(A)$, it has $\mathbf{x}_1^{\top}\mathbf{x}_2 = 0$.

- 2. Given $A \in \mathbb{R}^{n \times n}$ and its characteristic function $f(\lambda) = \lambda^2 (\lambda + 1)(\lambda 1)(3 \lambda)^{n-4}$. (1) Write down eigenvalues and their multiplicities.
- (2) What is characteristics function of matrix A + 2I?

3. Suppose
$$A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
.

(1) Find out characteristics function of A .

- (2) Determine whether A is diagonalizable.

4. Diagonalize the following matrix, if possible,

$$A = \left[\begin{array}{ccc} 4 & 0 & 1 \\ 0 & 4 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

5. Determine range of α such that the following matrix is similar to some real diagonal matrix,

$$A = \left[\begin{array}{cc} 1 & \alpha \\ \alpha & 1 \end{array} \right].$$