

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

Offenlegungsschrift

⑪ DE 3134912 A1

⑯ Int. Cl. 3:

G01F23/22

⑯ Anmelder:

Werner Messmer GmbH & Co KG, 7760 Radolfzell, DE

⑯ Erfinder:

Schülzke, Peter, Dipl.-Ing., 7760 Radolfzell, DE

Offenlegungsschrift

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Schaltungsanordnung zur kontinuierlichen Messung des Füllstandes in einem mit Flüssigkeit zumindest teilweise gefüllten Behälter

Die Schaltungsanordnung zur kontinuierlichen Messung des Füllstandes in einem mit Flüssigkeit gefüllten Behälter, insbesondere in einem Kraftstofftank, verwendet in Reihenschaltung einen aufheizbaren, in die Flüssigkeit ein- und austaugenden Meßwiderstand und einen auch bei Minimumfüllstand in die Flüssigkeit eingetauchten Kompensationswiderstand und eine Auswertschaltung, die das zugeleitete Meßsignal und Kompensationssignal unter Differenzbildung verarbeitet. Der Strom der Konstantstromquelle für den Meßwiderstand und den Kompensationswiderstand wird über einen einstellbaren Rückkopplungskreis in begrenzter Stärke gesteuert. (31 34 912)

Fig. 1

BEST AVAILABLE COPY

Firma Werner Messmer GmbH & Co. KG.

Radolfzell am Bodensee

Schaltungsanordnung zur kontinuierlichen Messung des Füllstandes in einem mit Flüssigkeit zumindest teilweise gefüllten Behälter

P a t e n t a n s p r ü c h e :

1. Schaltungsanordnung zur kontinuierlichen Messung des Füllstandes in einem mit Flüssigkeit zumindest teilweise gefüllten Behälter, insbesondere in einem Kraftstofftank, mit einem an eine Konstantstromquelle angeschlossenen, von dieser aufheizbaren Meßwiderstand mit relativ hohem Temperaturkoeffizienten, der in die Flüssigkeit eintauchend angeordnet ist, einem ebenfalls an eine Konstantstromquelle angeschlossenen Kompensationswiderstand mit relativ hohem Temperaturkoeffizienten, der auch in die Flüssigkeit tauchend angeordnet ist, einer Auswertschaltung, die das zu geleitete Meßsignal und das Kompensationssignal unter Differenzbildung verarbeitet und eine dem jeweiligen Flüssigkeitsstand entsprechende Anzeige bewirkt, wobei der Strom durch den Meßwiderstand abhängig von der Temperatur über dem Flüssigkeitsspiegel gesteuert wird, dadurch gekennzeichnet, daß der Kompensationswiderstand (R_K) auch bei Minimumflüssigkeitsstand in Flüssigkeit tauchend angeordnet ist, daß Kompensations- und Meßwiderstand (R_M) in Reihe geschaltet und an eine gemeinsame Konstantstromquelle (ST_K) angeschlossen sind und daß ein einstellbarer Rückkopplungs-

- 2 -

kreis zwischen Eingang der Auswertschaltung (V_1) für das Kompensationssignal (U_K) und Konstantstromquelle vorhanden ist.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Kompensationswiderstand (R_K) zusätzlich an eine Temperaturanzeige (U_T) angeschlossen ist.

Patentanwälte
Dipl.-Ing. E. Föhr
Dipl.-Ing. K. Schmid
8 München 10, Elisenstr. 20

Firma Werner Messmer GmbH & Co. KG
Radolfzell am Bodensee

Schaltungsanordnung zur kontinuierlichen Messung
des Füllstandes in einem mit Flüssigkeit zumindest
teilweise gefüllten Behälter

Die Erfindung betrifft eine Schaltungsanordnung zur kontinuierlichen Messung des Füllstandes in einem mit Flüssigkeit zumindest teilweise gefüllten Behälter mit den Merkmalen des Oberbegriffs des Anspruches 1.

Im Kraftfahrzeug wird neben der Anzeige des Füllstandes des Kraftstoffbehälters zunehmend die analoge Füllstandsanzeige für Kühlwasser und Öl gewünscht. Gegenüber schaltenden, z.B. die Unterschreitung eines minimalen Füllstandes meldenden Grenzwertmeldern bieten analoge Anzeigen die Möglichkeit zur wesentlich vorausschauenderen Nachfüllung und Erkennung von Fehlern.

Analoge Füllstandsmeßeinrichtungen, die die Widerstandsänderung eines beheizten, mit hohem T_K behafteten und zwischen minimalem und maximalem Füllstand angeordneten Widerstandssensors ausnutzen, sind allgemein bekannt.

Aus den DE-OS 14 73 132, 24 55 198, 27 18 295 und den DE-AS 21 40 963 und 28 41 889 sind Anordnungen bekannt, die aus zwei Widerständen bestehen, wobei jeweils nur ein Widerstand abhängig vom Füllstand auf eine Obertemperatur gegenüber dem

ihm umgebendem Medium geheizt wird, während der zweite Widerstand zur Erfassung der Flüssigkeitstemperatur und Kompensation des Flüssigkeitsstandssignals dient. Sofern der Füllstand einer Flüssigkeit mit wechselnder Temperatur zu erfassen ist, ist ohne eine solche Kompensation nicht auszukommen, da eine resultierende Temperatur des Meßwiderstandes aus Flüssigkeitstemperatur und Ober-temperatur vorliegt. So kann z.B. eine Einwiderstandseinrichtung ohne Kompensationswiderstand den gleichen resultierenden Widerstand im Fall niederer Flüssigkeitstemperatur und niederm Füllstand, wie auch im Fall hoher Temperatur und hohen Füllstandes haben. Zur Beseitigung dieser Mehrdeutigkeit ist ein Sensor mit Kompensationswiderstand unbedingt erforderlich.

Die DE-OS 24 55 198, 14 7 3 132 und die DE-AS 21 40 963, 28 41 889 beschreiben Schaltungsanordnungen zur Bildung eines möglichst kompensierten Füllstandssignals, wobei geeignet verstärkte Signalspannungen in Relation zueinander bzw. voneinander subtrahiert werden. Bei beiden bekannten Auswertmethoden verbleibt aber eine erhebliche Temperaturabhängigkeit, insbesondere des Füllstandssignals bei niederm Niveau, also ausgetauchtem Meßfühler. Die Ursache hierfür liegt darin, daß nicht nur der Meß- und Kompensationsteil des Sensors einen temperaturabhängigen Widerstand hat, sondern daß auch der Wärmewiderstand des ausgetauchten Meßteils des Sensors temperaturabhängig ist.

In der DE-AS 28 41 889 wird eine zur Temperatur über der Flüssigkeit gegenläufige Änderung der Heiz-/Meßströme für einen Sensor beschrieben, der parallel angeordnete Widerstände aufweist. Die vorhandene Regelschaltung steuert den Strom der den Sensor speisenden Stromquelle in Abhängigkeit von der Temperatur über dem Flüssigkeitsspiegel. Die beschriebene Einflußnahme auf den Strom ist für einen Öl/Wasser-Sensor, wo aus Genauigkeitsgründen und zur Erlangung eines großen Meßeffektes z.B. ein $0,1 \text{ mm } \varnothing$ Nickel-Eisen-Draht auf ca. 100°C Obertemperatur gebracht wird, gerade verkehrt. Außerdem ist es aus Kostengründen wünschenswert, keine

extra Regelschaltung anwenden zu müssen.

Der Erfindung liegt die Aufgabe zugrunde, die Schaltungsanordnung nach der DE-AS 28 41 889 dahingehend zu verbessern, daß sie einfacher und daher billiger aufgebaut werden kann und trotzdem präziser arbeitet.

Die Erfindung löst diese Aufgabe mit den die Erfindung kennzeichnenden Merkmalen nach dem Patentanspruch 1.

Nach der Erfindung wird zweckmäßigerweise von dem mit Konstantstrom betriebenen, zweigeteilten Sensor mit Subtraktionsauswertung ausgegangen. Für eine solche Sensoranordnung ergibt sich ein temperaturabhängiger Restfehler, derart, daß das Flüssigkeitsstandssignal für niederen Flüssigkeitsstand (teilweise bzw. ganz ausgetauchter Meßwiderstand) mit wachsender Temperatur kleiner wird. Die Ursache liegt darin, daß der Wärmeleitwiderstand des ausgetauchten, von der umgebenden Luft (gasförmiges Medium) beeinflußten Meßwiderstandsteils mit wachsender Temperatur sinkt. Man muß deshalb bei hoher Umgebungstemperatur einen größeren Heizstrom, als bei tieferer Umgebungstemperatur aufwenden, um zu einer Obertemperatur zu kommen, die den gleichen ΔU_S -Effekt bei einem bestimmten Flüssigkeitsstand bringt. Kostengünstig und präzise realisierbar ist das durch eine einstellbare Rückkopplung des U_K -Signals auf den (ursprünglich konstanten) Heizstrom für den Sensor in dem Sinne, daß ein U_K -Signal entsprechend höherer Temperatur zur abgestimmten Erhöhung des Heizstromes führt, so daß sich konstante $U_a = U_S - V_K U_K$ im gesamten Temperaturbereich für gleiche Flüssigkeitsstände ergeben.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. In der Zeichnung zeigen:

Fig. 1 ein Blockschaltbild der Meßvorrichtung
und

Fig. 2 ein Schaltbild.

Die Vorrichtung zur kontinuierlichen Messung des Füllstandes in einem mit Flüssigkeit gefüllten Behälter weist einen im Behälter angeordneten Sensor S auf, der von zwei in Reihe geschalteten Widerständen R_M und R_K gebildet wird. Der Meßwiderstand R_M taucht in die Flüssigkeit ein. Dabei kann der Flüssigkeitsstand sich zwischen "max" und "min" verändern. Bei dem Flüssigkeitsstand "max" ist der Meßwiderstand R_M voll eingetaucht. Bei dem Flüssigkeitsstand "min" wird der Meßwiderstand nicht mehr von Flüssigkeit umhüllt.

Der in Reihe geschaltete Kompensationswiderstand R_K taucht ständig voll in die Flüssigkeit ein.

Ein ausgeführter Sensor S besteht aus 0,1...0,2 mm Ø Nickel- oder Nickeleisen-Widerstandsdräht. Je nach der gewünschten Impedanz und Flüssigkeitsstandcharakteristik ist eine stabförmige oder um einen Trägerkörper gewendelte Anordnung des Sensorelementes möglich.

Der Sensor S wird von einer Konstantstromquelle ST_K gespeist. Diese Konstantstromquelle liefert einen Strom i mit konstantem Wert, so lange die Temperatur der Flüssigkeit im Behälter einen gleichbleibenden Wert besitzt. Der Wert des Stromes i ist dabei unabhängig von dem Flüssigkeitsstand im Behälter.

Der Strom i besitzt einen solchen Wert, daß die Widerstände R_M und R_K , die beide einen relativ hohen Temperaturkoeffizienten besitzen, aufgeheizt werden. Für einen gebauten Öl/Wasser-Sensor erfolgt dabei eine Aufheizung auf ca. 100°C Obertemperatur gegenüber derjenigen des im Behälter bei abgesenktem Flüssigkeitsstand vorhandenen gasförmigen Medium.

- 7 -

An dem Sensor S mit dem Widerstand $R_S = R_K + R_M$ entsteht ein Meßsignal U_S , das über eine Leitung a an den positiven Eingang eines Differenzverstärkers V_1 geleitet wird.

An dem Kompensationswiderstand R_K fällt das Kompensationsignal U_K ab, welches über eine Leitung b dem Eingang eines Verstärkers V_2 zugeleitet wird. Der Ausgang dieses Verstärkers V_2 ist über eine Leitung c an den negativen Eingang des Differenzverstärkers V_1 angeschlossen.

Der Ausgang des Differenzverstärkers V_1 liefert das Anzeigesignal $U_a = U_S - V_K \times U_K$, wobei $V_K = \frac{R_S}{R_K} = \frac{R_M + R_K}{R_K}$ ist.

Um Änderungen der Temperatur der Flüssigkeit zu kompensieren, ist der Ausgang des Verstärkers V_2 über eine Leitung d an die Konstantstromquelle ST_K angeschlossen. Über diese Rückkopplung, vorzugsweise als Mitkopplung ausgebildet, wird diese Konstantstromquelle ST_K so gesteuert, daß ein U_K -Signal entsprechend höherer Temperatur der Flüssigkeit zur abgestimmten Erhöhung des Heizstromes i führt, so daß sich konstante Werte $U_a = U_S - V_K \times U_K$ im gesamten Temperaturbereich für gleiche Flüssigkeitsstände ergeben.

Die einstellbare Rückkopplung kompensiert die Temperaturabhängigkeit des Wärmewiderstandes des ausgetauchten R_M -Widerstandes zum über der Flüssigkeit befindlichen gasförmigen Medium (Luft). Das gasförmige Medium ist mehr oder weniger mit verdampfter Flüssigkeit gesättigt. Das ergibt wiederum eine Abhängigkeit des Wärmewiderstandes von der Flüssigkeit. Hieraus folgt, daß die Sensorsausgangssignale, z.B. bei Wasser und Öl, unterschiedlich sind. Zur billigen und präzisen Flüssigkeitsstandmessung sind somit unterschiedliche Grade der Rückkopplung notwendig und einstellbar.

- 8 -

Zusätzlich kann noch eine Temperaturanzeige erfolgen, wozu die Leitung b, an der das Kompensationssignal U_K auftritt, über eine Leitung e mit einem Verstärker V_3 verbunden ist, dessen Ausgang ein Temperaturanzeigesignal U_T für eine nicht dargestellte Anzeigevorrichtung liefert.

Die in Fig. 2 dargestellte, ausgeführte Schaltung setzt sich aus allgemein bekannten und leicht realisierbaren Teilschaltungen, wie Spannungsstabilisierung, Stromquelle, Verstärker, zusammen und braucht daher nicht allzu detailliert beschrieben werden. Die Konstantstromquelle ST_K nach Fig. 1 umfaßt einen Transistor T_1 und einen Operationsverstärker B_1 . Mit ihren peripheren Bauelementen ergibt sich eine präzise, geregelte Stromquelle. Der Operationsverstärker B_1 regelt auf eine präzise Speisespannung an R_1 . Über einen präzisen Widerstand R_1 ergibt sich so ein präziser Strom i , der dem Sensor S zufließt.

Die mit den Widerständen R_4 , R_5 und den Zenerdioden D_1 und D_2 kaskadierte Referenzspannungszeugung ergibt einen über weite Batteriespannungs- und Temperaturbereiche stabilen Referenzwert. Über die Spannungsteilerwiderstände R_2 , R_3 wird die Basisvorspannung für den Transistor T_1 erzeugt. Der positive Eingang des Operationsverstärkers B_1 liegt am von den Widerständen R_7 , R_6 gebildeten Spannungsteiler, der an der Referenzspannung liegt. Der negative Eingang des Operationsverstärkers B_1 wird über den Widerstand R_8 von der am Widerstand R_1 abfallenden Speisespannung gespeist. Außerdem liegt im peripheren Kreis der Widerstand R_{12} .

Der Ausgang des Operationsverstärkers B_1 ist über den Widerstand R_9 an die Basis des Transistors T_1 angeschlossen.

Über die Widerstände R_{10} und R_{11} wird die Rückkopplung des temperaturabhängigen Kompensationssignals U_K vorgenommen.

Der Operationsverstärker B_2 bildet mit seinen peripheren Baulementen einen Verstärker für das U_K - Signal. Er arbeitet mit der erforderlichen Verstärkung $V_K = \frac{R_M + R_K}{R_K}$. Das U_K -Signal

wird über den Widerstand R_{21} und den Widerstand R_{22} dem positiven Eingang zugeleitet. Der negative Eingang ist an die Widerstände R_{23} und R_{24} angeschlossen. Sein Ausgang ist mit der Basis des Transistors T_2 verbunden, dessen Emitter am Widerstand R_{25} liegt. Der Kollektor leitet das verstärkte U_K -Signal weiter an die Widerstände R_{10} , R_{11} . Durch diese Schaltungsanordnung wird eine relativ rückwirkungsfreie Ankopplung weiterer Stufen und die Rückkopplung des $V_K \times U_K$ -Signals in die Stromquelle gegen die Plus-Leitung ermöglicht.

Der Differenzverstärker wird von dem Operationsverstärker B_3 mit seinen peripheren Bauelementen gebildet. Er dient zur Gewinnung der erforderlichen Verknüpfung $U_S - V_K \times U_K$. Entsprechend $R_{29}/R_{27} = R_{28}/R_{26}$ verstärkt er das Differenzsignal, so daß das resultierende Flüssigkeitsstandssignal U_h einen großen Teil des Batteriespannungsbereiches ausnutzt.

Das Sensorsignal U_S wird über den Widerstand R_{26} dem positiven Eingang des Operationsverstärkers B_3 zugeleitet, während sein negativer Eingang über den Widerstand R_{27} an den Emitter des Transistors T_2 angeschlossen ist. Der Widerstand R_{29} ist vom negativen Eingang zum Ausgang angeschlossen.

Der Operationsverstärker B_4 bildet mit seinen peripheren Baulementen einen Verstärker, welcher die Temperaturanzeige eines bestimmten Teils des Kompensationssignals U_K in gespreizter Form erlaubt. Hierzu ist der positive Eingang über den Widerstand R_{30} an den Transistor T_2 angeschlossen. Der Widerstand R_{31} liegt gegen die negative Batteriespannungsleitung. R_{33} und R_{34} liegen am negativen Eingang des Operationsverstärkers.

- 10 -

Am Ausgang kann die Spannung U_T für die Temperaturanzeige abgenommen werden.

Die Transistoren T_3 und T_4 mit ihren peripheren Bauelementen, den Widerständen R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} und R_{20} sowie der Diode D_4 bilden einen Spannungsregler, der genaue, zur Arbeitspunkteinstellung der Verstärker notwendige Referenzspannungen erzeugt.

Der Kondensator C_1 und die Diode D_3 bilden als periphere Bauelemente mit dem Widerstand R_{12} einen Oberspannungsschutz für die Versorgungsspannung der Operationsverstärker $B_1 \dots B_4$.

Anlage Seite 11 - Stückliste -

- 11 -

S t ü c k l i s t e

R_1	10 Ω	\pm	5 %	TK 100 ppm
R_2	1,6 K Ω	"		
R_3	1,3 K Ω	"		
R_4	270 Ω	"		
R_5	620 Ω	"		
R_6	1,8 K Ω	"		
R_7	ca. 3,2 K Ω	"		
R_8	10 K Ω	"		
R_9	6,8 K Ω	"		
R_{10}	ca. 20K Ω	"		
R_{11}	ca. 700 Ω	"		
R_{12}	15 Ω	"	1 Watt Draht	
R_{13}	300 Ω	"		
R_{14}	1 K Ω	"		
R_{15}	Abgleich ca. 0,1 K Ω			
R_{16}	4,3 K Ω	\pm	1 %	
R_{17}	5,6 K Ω	"		
R_{18}	6,2 K Ω	"		
R_{19}	2,4 K Ω	"		
R_{20}	1,5 K Ω	"		
R_{21}	20 K Ω	"		
R_{22}	100 K Ω	"		
R_{23}	20 K Ω	"		

R ₂₄	100 K	Ω	\pm	1 %
R ₂₅	1 K	Ω	"	
R ₂₆	10 K	Ω	"	
R ₂₇	10 K	Ω	"	
R ₂₈	62K	Ω	"	
R ₂₉	62K	Ω	"	
R ₃₀	10K	Ω	"	
R ₃₁	51K	Ω	"	
R ₃₃	51K	Ω	"	
R ₃₄	10 K	Ω	"	

C₁ 100 μ F

D ₁	ZPD 8,2
D ₂	ZPD 5,1
D ₃	ZY 20
D ₄	ZPD 5,1

T ₁	BD 876
T ₂	BC 237
T ₃	BC 635
T ₄	BC 237

B ₁	1 LM 2902
B ₂	1 "
B ₃	1 "
B ₄	1 "

13
Leerseite

2/1

15

Nummer: 3134912
Int. Cl.³: G01F 23/22
Anmeldetag: 3. September 1981
Offenlegungstag: 17. März 1983

Fig. 1

2/2

14.

Electrical measurement of the level of liquid in a container

Patent number: DE3134912
Publication date: 1983-03-17
Inventor: SCHUELZKE PETER DIPLO ING (DE)
Applicant: MESSMER KG WERNER (DE)
Classification:
 - international: G01F23/24; G01F23/24; (IPC1-7): G01F23/22
 - european: G01F23/24C2
Application number: DE19813134912 19810903
Priority number(s): DE19813134912 19810903

Also published as:

GB2105476 (A)
 FR2512201 (A)

[Report a data error](#)

Abstract not available for DE3134912

Abstract of corresponding document: **GB2105476**

An arrangement for continuous measurement of the level of liquid in a container or tank, e.g. a fuel tank, uses the series-connection of a heatable measuring resistor RM which is generally partially immersed in the liquid, and a compensation resistor RK which is immersed in the liquid even at the minimum level thereof, and an evaluating circuit V1 which processes the incoming measurement signal and the compensation signal to form a differential signal. A constant current supply STK for the measuring resistor RM and the compensation resistor RK is controlled to a limited value via a feedback circuit, d.

Fig. 1

Data supplied from the **esp@cenet** database - Worldwide

THIS PAGE BLANK (USPTO)

Docket # 2003P13373

Applic. #

Applicant: BOLZ

Lerner Greenberg Stemer LLP
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)