The LUA-PHYSICAL library

$Version\ 0.1$

Thomas Jenni

September 3, 2018

Abstract

lua-physical is a pure Lua library which provides functions and object for doing computation with physical quantities. This package provides a standard set of units of the SI and the imperial system. It is possible to give a number a mesurement uncertainty.

is also integrated and is calculated by gaussian error propagation. The package includes some $\,$

Contents

1	Introduction	2
2	Basic usage	2
3	Supported Units	4

1 Introduction

The author of this package is a teacher at the Kantonsschule Zug, Switzerland, a high-school. The main use of this package is to write physics problem sets and integrate the calculation directly into the luatex-file. The package is now in use for more than two years and a lot of bugs have been found and crushed. Nevertheless it could be possible that some bugs are still there, living uncovered. Therefore I recommend not to use this library productively in industry or science. If one does so, it's the responsability of the user to check results for plausability. If the user finds some bugs, please report them on github.com or directly to the author.

E-Mail: thomas.jenni(at)ksz.ch

2 Basic usage

Since this package is pure lua library one has to require it explicitly by calling require("physical"). For printing results the siunitx package is used. It's recommended to define a shortcut like \q or \Qty to convert the lua quantity object to a siunitx expression. An example preamble is shown in the following.

```
basic preamble
      \usepackage{siunitx}
2
3
      % configure siunitx
4
      \sisetup{
        output-decimal-marker = {.},
        per-mode = symbol,
        separate-uncertainty = false,
        add-decimal-zero = true,
        exponent-product = \cdot,
10
        round-mode = off
11
      % load lua-physical
13
14
      \begin{luacode*}
        physical = require("physical")
15
16
      \end{luacode*}
17
      % shortcut for printing physical quantities
18
19
      \mbox{\ensuremath{newcommand} \{\q}[1]{\%}
        \directlua{tex.print(physical.Quantity.tosiunitx(#1,"
20
               scientific-notation=fixed, exponent-to-prefix=false"))}%
21
      }
```

Given the preamble one can use now units in lua code and insert results in the latex code.

3 Supported Units

There are a few

Unit	Symbol	Definition	
number	_1	The number one.	
percent %	_percent	1e-2*_1	
permille ‰	_permille	1e-3*_1	
parts-per-million	_ppm	1e-6*_1	
parts-per-billion	_ppb	1e-9*_1	
parts-per-trillion	_ppt	1e-12*_1	
parts-per-quadrillion	_ppq	1e-15*_1	
decibel	_dB	_1	

Table 1: Dimensionless units

Quantity	Unit	Symbol	Dimension	Definition	
length	meter	_m	L	The distance light travels in vacuum during 1/299 792 458 second.	
mass	kilogram	_kg	M	The mass of the international protoype of the kilogram.	
time	second	_s	Т	Is 9 192 631 770 times the period of the radiation from the transition between the two hyperfine levels of the ground state of caesium-133.	
electric current	ampere	_A	I	Is the constant current which, if maintained in two straight parallel conductors of infinte length, of negligible circular crosss-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to $2 \cdot 10^{-7}$ N/m.	
thermody- namic temperature	kelvin	_K	Θ	Is the fraction 1/273.16 of the thermodynamic temper- ature of the triple point of water.	
amount of substance	mole	_mol	N	Amount of substance that contains as many particles as there are atoms in 0.012 kg of carbon-12.	
luminous intensity	candela	_cd	J	the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequenc $540 \cdot 10^{12}$ Hz and has a radiant intensity in that direction of $(1/683)$ W/sr	

Table 2: Base units of the International System of Units (SI) $\,$

Quantity	Unit	Symbol	Dimension	Definition
plane angle	radian	_rad	1	_1
solid angle	steradian	_sr	1	_rad^2
frequency	hertz	_Hz	T^{-1}	1/_s
force	newton	_N	MLT^{-2}	_kg * _m / _s^2
pressure	pascal	_Pa	$ML^{-1}T^{-2}$	_N/_m^2
energy	joule	_J	ML^2T^{-2}	_N * _m
power	watt	_W	ML^2T^{-3}	_J/_s
electric charge	coulomb	_C	TI	_A * _s
electric potential difference	volt	_V	$ML^2T^{-3}I^{-1}$	_J / _C
capacitance	farad	_F	$L^{-2}M^{-1}T^4I^2$	_C/_V
electric resis- tance	ohm	_Ohm	$L^2MT^{-3}I^{-2}$	_V/_A
electric conduc- tance	siemens	_S	$L^{-2}M^{-1}T^3I^2$	_A/_V
magnetic flux	weber	_Wb	$L^2MT^{-2}I^{-1}$	_V*_s
magnetic flux density	tesla	_T	$MT^{-2}I^{-2}$	_V*_s
inductance	henry	_H	$L^2MT^{-2}I^{-2}$	_Wb/_A
Celsius temperature	degree Celsius	_degC	Θ	_K
luminous flux	lumen	_lm	J	_cd * _sr
illuminance	lux	_lux	$L^{-2}J$	_lm/_m^2
activity	becquerel	_Bq	T^{-1}	1/_s
absorbed dose	gray	_Gy	L^2T^{-2}	_J/_kg
dose equivalent	sievert	_Sv	L^2T^{-2}	_J/_kg
catalytic activity	katal	_kat	$T^{-1}N$	_mol/_s

Table 3: Derived units of the International System of Units (SI)