Digital Image Processing (CSE 478) Lecture 18: Filter Banks and Wavelets

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Today's Lecture

- 2D DWT
- Multi scale DWT

Multi resolution processing

Wavelet is an approach for Multi Resolution Processing

General one-stage two-channel filter bank transform

- Analysis filters l_a , h_a need not be the 2-point averaging/difference filters
- Any pair of low/high pass finite impulse response filters will do

Analysis filter bank:

- $\chi \rightarrow X = (X_l, X_h)$
- Where, $X_{l} = D(x * l_{a}); X_{h} = D(x * h_{a})$

Synthesis filter bank:

•
$$x' = l_s * U(\mathbf{X_l}) + h_s * U(\mathbf{X_h})$$

Any analysis/synthesis filters could be used as long as x' is perfect reconstruction of x (delay of m indices is allowed)

Discrete Wavelet Transform (DWT)

Example:
$$\mathbf{x} = (a, b, c, d)$$
; $l_a = \left(\frac{1}{2}, \frac{1}{2}, 0, 0\right)$ and $h_a = \left(\frac{1}{2}, -\frac{1}{2}, 0, 0\right)$
$$\mathbf{x} * l_a = \frac{1}{2}(a + d, b + a, c + b, d + c), \text{ ext. periodically}$$

$$\mathbf{x} * \mathbf{h}_a = \frac{1}{2}(a - d, b - a, c - b, d - c), \text{ ext. periodically}$$

Truncating and Downsampling

$$X_{\ell} = \frac{1}{2}(a+d,c+b) \quad X_{h} = \frac{1}{2}(a-d,c-b)$$

• The DWT of x is

$$X = \frac{1}{2}(a+d, c+b, a-d, c-b)$$

Discrete Wavelet Transform (DWT)

Matrix view of DWT

$$\mathbf{X} = W_4^a \mathbf{x},$$

$$X = \frac{1}{2}(a+d, c+b, a-d, c-b)$$

$$W_4^a = rac{1}{2} egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \ 1 & 0 & 0 & -1 \ 0 & -1 & 1 & 0 \end{pmatrix}$$

Inverse Discrete Wavelet Transform (IDWT)

Example:
$$\mathbf{X} = (A, B, C, D)$$
; $l_s = (1,0,0,1)$ and $h_s = (1,0,0,-1)$

• Up-sampling:
$$U(\mathbf{X}_{\ell}) = (A, 0, B, 0), \ U(\mathbf{X}_{h}) = (C, 0, D, 0)$$

Convolving with synthesis filters

$$U(\mathbf{X}_{\ell}) * \ell_{s} = (A, B, B, A)$$

$$U(\mathbf{X}_{h}) * \mathbf{h}_{s} = (C, -D, D, -C)$$

• IDFT of **X** is

$$x = (A + C, B - D, B + D, A - C)$$

Inverse Discrete Wavelet Transform (IDWT)

Matrix view of IDWT

$$\mathbf{x} = W_4^s \mathbf{X},$$

$$x = (A + C, B - D, B + D, A - C)$$

$$W_4^s = egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & -1 \ 0 & 1 & 0 & 1 \ 1 & 0 & -1 & 0 \end{pmatrix}$$

Verify
$$W_4^s \cdot W_4^a = I$$

- Let A be a M×N grayscale image
- The one stage, 2D-DWT is the linear mapping given by:

$$\mathcal{W}_a^1(A) = W_M^a A (W_N^a)^T$$

• W_M and W_N are M×M and N×N analysis matrices determined by (l_a, h_a)

Transform each column of A and then transform each row of resulting matrix

• The inverse one stage transform is given by:

$$\mathcal{W}_s^1(\hat{A}) = W_M^s \hat{A}(W_N^s)^T$$

• W_M and W_N are M×M and N×N synthesis matrices determined by (l_S, h_S)

 Transform each column of A and then transform each row of resulting matrix

$$\mathcal{W}_a^1(A) = W_M^a A (W_N^a)^T$$

Four components

	Low	High
Low	LL (approximation)	HL (horizontal details)
High	LH (vertical details)	HH (diagonal details)

```
im=rgb2gray(imread('color_pencil.jpg'));
[LL,LH,HL,HH]=dwt2(im,'haar');

figure, subplot(2,2,1);imshow(LL,[]);title('LL band of image');
subplot(2,2,2);imshow(LH,[]);title('LH band of image');
subplot(2,2,3);imshow(HL,[]);title('HL band of image');
subplot(2,2,4);imshow(HH,[]);title('HH band of image');
```


LL band of image

HL band of image

LH band of image

HH band of image

Courtesy: Michigan state university

Courtesy: Michigan state university

DWT applications: edge detection

DWT applications: edge detection

DWT applications: edge detection

DWT applications: compression

DWT applications: watermarking

Figure 2: (a) Host Image (left), (b) Watermarked Image (right).

Figure 3: The 256 bit embedded watermark.

DWT applications: analysis

Noisy Image

Denoised Image

Re look: Multi scale-DWT

Multi scale-DWT

• Suppose we reconstruct the signal from \mathbf{X}_l only

$$\mathsf{IDWT}(\mathbf{X}_{\ell}||\mathbf{0}) = \alpha_{\mathbf{1}}(\mathbf{x}) \in \mathbb{C}^{N}$$

- $\alpha_1(x)$ is the stage one approximation of x
- Signal reconstruction from detail coefficients:

$$\mathsf{IDWT}(\mathbf{0}||\mathbf{X}_h) = \delta_1(\mathbf{x}) \in \mathbb{C}^N$$

- $\delta_1(x)$ is the stage one approximation of x
- Stage 1 representation of signal:

$$x = \alpha_1(x) + \delta_1(x)$$

Multi scale-DWT

• At each stage, the sequence of detail representations $\delta_1(\mathbf{x}), \delta_2(\mathbf{x}), \dots, \delta_{m-1}(\mathbf{x})$ is extended by one term, $\delta_m(\mathbf{x})$

stage 1:
$$\mathbf{x} = \alpha_1(\mathbf{x}) + \delta_1(\mathbf{x})$$

stage 2: $\mathbf{x} = \alpha_2(\mathbf{x}) + \delta_2(\mathbf{x}) + \delta_1(\mathbf{x})$
stage 3: $\mathbf{x} = \alpha_3(\mathbf{x}) + \delta_3(\mathbf{x}) + \delta_2(\mathbf{x}) + \delta_1(\mathbf{x})$

stage m: $\mathbf{x} = \alpha_m(\mathbf{x}) + \delta_m(\mathbf{x}) + \delta_{m-1}(\mathbf{x}) + \cdots + \delta_1(\mathbf{x})$

Let me invert the notations!

Multiscale representation of a signal

α	6										9
δ_0	0										7
	2										3
δ_1	2	_									5
	1	_	1	-1	0	0	0	0	0	0	6
δ_2	-1	1	0	0	1	-1	0	0	0	0	10
2	-2	$\frac{1}{2}$	0	0	0	0	1	-1	0	0	2
	-2		0	0	0	0	0	0	1	-1	6

9	7	3	5	6	10	2	6
8	4	8	4	1	-1	-2	-2

$lpha_0$	6									
δ_0	0									
	2	1	1	-1	0	0	0	0	0	0
δ_1	2	2	0	0	1	-1	0	0	0	0
	1		0	0	0	0	1	0	0	0
δ_2	-1		0	0	0	0	0	1	0	0
2	-2		0	0	0	0	0	0	1	0
	-2		0	0	0	0	0	0	0	1

1	1	0	0	0	0	0	0	9
0	0	1	1	0	0	0	0	7
0	0	0	0	1	1	0	0	3
0	0	0	0	0	0	1	1	5
1	-1	0	0	0	0	0	0	6
0	0	1	-1	0	0	0	0	10
0	0	0	0	1	-1	0	0	2
0	0	0	0	0	0	1	-1	6
	0 0 0 1 0	0 0 0 0 0 1 -1 0 0 0 0 0	0 0 1 0 0 0 0 0 0 1 -1 0 0 0 1 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0	0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 1	0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 -1 -1	0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0	0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 -1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 -1 0 0 0

x_0	6																				9				
D_0	0												7												
D_1	2		1	1	1	-1	-1	0	0	0	0		3												
	2	_	1 2	1	0	0	0	0	1	1	-1	-1		5											
D_2	1	_			1	1	1	1	1	1	1	1	1	1	1	1	-1	0	0	0	0	0	0		6
	-1															1	0	0	1	-1	0	0	0	0	
	-2				0	0	0	0	1	-1	0	0		2											
	-2			0	0	0	0	0	0	1	-1	$\Big] \Big[$	6												

α_0	6		1	1	1	1	1	1	1	1	1	Ç	
δ_0	0		8	1	1	1	1	-1	-1	-1	-1	7	
δ_1	2		1	1	1	-1	-1	0	0	0	0	(1)	
	2	_	4	0	0	0	0	1	1	-1	-1	6 0	
	1	_	1	1	1	-1	0	0	0	0	0	0	6
δ_2	δ ₂ -1				1	0	0	1	-1	0	0	0	0
	-2		2	0	0	0	0	1	-1	0	0	2	
	-2			0	0	0	0	0	0	1	-1	6	

Multi scale- Haar Basis

$$\psi(x) \equiv \begin{cases} 1 & 0 \le x < \frac{1}{2} \\ -1 & \frac{1}{2} < x \le 1 \\ 0 & \text{otherwise} \end{cases} \qquad \psi_{jk}(x) \equiv \psi\left(2^{j} x - k\right)$$

$$j \text{ is non negative integer and } 0 \le k \le 2^{j} - 1$$

Two stage transform

$$\mathcal{W}_2^a = \begin{pmatrix} W_{N/2}^a & 0 \\ 0 & \mathbf{I}_{N/2} \end{pmatrix} W_N^a$$

An r stage DWT is obtained by iteration:

$$\mathcal{W}_r^{\mathsf{a}} = \begin{pmatrix} W_{N/2^{r-1}}^{\mathsf{a}} & 0 \\ 0 & \mathbf{I}_{N(1-1/2^{r-1})} \end{pmatrix} \dots \begin{pmatrix} W_{N/2}^{\mathsf{a}} & 0 \\ 0 & \mathbf{I}_{N/2} \end{pmatrix} W_N^{\mathsf{a}}$$

The inverse DWT is governed by the matrix

$$\mathcal{W}_r^s = \mathcal{W}_N^s \begin{pmatrix} \mathcal{W}_{N/2}^s & 0 \\ 0 & \mathbf{I}_{N/2} \end{pmatrix} \dots \begin{pmatrix} \mathcal{W}_{N/2^{r-1}}^s & 0 \\ 0 & \mathbf{I}_{N(1-1/2^{r-1})} \end{pmatrix}$$