COMS W4701: Artificial Intelligence

Lecture 2: Search Problems

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

- Search problem formulation
- State space graphs and search trees

- Uninformed search: DFS, BFS, UCS
- Informed search: Greedy, A*

Search heuristics: Admissibility, design

Problem-Solving Agents

- Goal-based agent that defines goals as a set of world states—descriptions of the task environment at the current time
- Assume our environments are observable, discrete, deterministic, static
 - Percepts are trivial, since we see entire environment
 - Action results always known, go from one state to another state
- We will find an action sequence that will result in a state sequence to a goal state
- This is the agent's solution to a search problem

Search Problems

- State space S: Set of descriptions of the agent and environment
- Actions: (Finite) set of available actions in a state
 - Ex: $Actions(s_1) = \{a_1, a_2, a_3\}$
- Transition model: Mapping from (state, action) to a new state
 - Ex: $Result(s_1, a_1) = s_2$
- Action costs: Numerical cost for a (state, action, new state) transition
 - Ex: $Cost(s_1, a_1, s_2) = 10$
- Goal test (for goal states)
 - Ex: $IsGoal(s_1) = False$, $IsGoal(s_2) = True$

Example: Grid World Path Finding

- State space: Current coordinates of the rabbit
 - $S = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 4\}$
- Actions: $Actions((x, y)) = \{Up, Down, Left, Right\}$
- Costs: $Cost(s, a, s') = 1, \forall s, a, s'$

- Transition model: $Result((x,y), Up) = (x,y+1), Result((x,y), Down) = \cdots$
 - Should also account for walls and boundaries, e.g. Result((0,0), Left) = (0,0)
- Goal test: In((3,3))?

Multiple Carrots?

What has changed about the problem?

Location of rabbit, Booleans indicating carrots eaten?

Transition model

Update both rabbit location as well as carrot Boolean if locations match

Goal test

Are all carrots eaten? Are all Boolean indicators True?

Search Problem Example: *n*-puzzle

- State:
- Action:
- Action cost:
- Goal test:

More Search Problem Examples

- Route-finding (e.g., vehicle navigation), robot navigation in the real world
- Touring problems (traveling salesperson)
- Layout and assembly sequencing problems

• Mathematical puzzles and proofs: Infinitely large state spaces!

- Knuth's conjecture (1964): Starting with the number 4, use a combination of factorial, floor, and sqrt operations to reach any other desired integer
- States: All nonnegative integers

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Vertices are states; edges are actions
 - Each state occurs only once!
- Paths are sequences of actions/states
- A solution is a path from initial to goal state
- We can rarely build this full graph in memory—it can be very large or infinite

Search Trees

- Need a systematic way of performing search over a state space graph
- Search tree: Nodes are states, edges are actions; root is initial state

- Unlike state space graph, states can occur more than once
- Each node corresponds to a unique path from initial state

State Space Graphs vs. Search Trees

General Search Ideas

- From current node, expand and consider all possible actions
- Generate successor nodes for each resultant state according to transition function
 - Each node should track its corresponding state, parent, prior action, and total cost so far
- Successors are added to a frontier of possible next nodes to expand
- Frontier forms a boundary between explored and unexplored parts of tree

Implementation Details

- What does expansion of children nodes entail?
- Find new state using transition function; store parent, action, and new *cumulative* cost
- How to select a node to expand from the frontier?
- **Best-first search**: Use an **evaluation function** f(n) assigning each node a priority
- Uninformed search: f(n) has no knowledge about how close a state is to goal
- What to do with states appearing more than once in search tree?
- Idea: Keep track of all reached states and costs in a lookup table
- A reached state should only be reconsidered if we find a cheaper path to it!

Best-First Search

```
function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
  node \leftarrow Node(State=problem.Initial)
  frontier \leftarrow a priority queue ordered by f, with node as an element
  reached \leftarrow a lookup table, with one entry with key problem. INITIAL and value node
  while not IS-EMPTY(frontier) do
     node \leftarrow Pop(frontier)
     if problem.Is-GOAL(node.STATE) then return node
     for each child in EXPAND(problem, node) do
       s \leftarrow child.STATE
       if s is not in reached or child.PATH-COST < reached[s].PATH-COST then
         reached[s] \leftarrow child
         add child to frontier
  return failure
function EXPAND(problem, node) yields nodes
  s \leftarrow node.STATE
  for each action in problem. ACTIONS(s) do
     s' \leftarrow problem.RESULT(s, action)
     cost \leftarrow node.PATH-COST + problem.ACTION-COST(s, action, s')
     yield Node(State=s', Parent=node, Action=action, Path-Cost=cost)
```

Depth-First Search

- Idea: Expand a deepest node first, implement frontier as a stack (LIFO)
- Behavior: Frontier expands toward tree leaves
- Early goal test can be done when adding to rather than popping from frontier

DFS Properties

- Time complexity: How many nodes to explore in the worst case? $O(b^m)$
- Space complexity: How many frontier nodes to keep in memory? O(bm)
- Completeness: Guaranteed to find solution? Not if state space is infinite
- Optimality: Solution guaranteed to be lowest cost? No, only returns first solution

- *b* is the *branching factor*
- *m* is the *maximum depth*
- Total nodes: $O(1+b+b^2+\cdots+b^m)$

Breadth-First Search

- Idea: Expand a shallowest node first, implement frontier as a queue (FIFO)
- Behavior: Frontier expands layer by layer starting from tree root
- Only need to consider first (shallowest) encounter of a state
- Early goal test can be done when adding to rather than popping from frontier

BFS Properties

- Time complexity: How many nodes to explore in the worst case? $O(b^d)$
- Space complexity: How many frontier nodes to keep in memory? $O(b^d)$
- Completeness: Guaranteed to find solution? If solution exists, yes!
- Optimality? Solution guaranteed to be lowest cost? Only if costs are uniform

- d is depth of the shallowest solution
- May be significantly smaller than m
- Max frontier size is $O(b^d)$

BFS vs DFS

Improving DFS and BFS

- Depth-limited DFS: Prevent DFS from going past a set depth l
- Time complexity $O(b^l)$, space complexity O(bl)
- Best if we know diameter of state space and check for short cycles
- Iterative-deepening: Iteratively do depth-limited search with increasing l: try l=0, then l=1, ...
- Ends when l reaches d (depth of shallowest solution)
- Time complexity $O(b^d)$, space complexity O(bd)
- Why is wasted effort in upper levels of search tree not a concern?

Uniform-Cost Search (Dijkstra)

- Idea: Expand node that least increases total cost, implement frontier as priority queue
- Evaluation function f(n) is the total path cost so far
- States may be added and replaced multiple times!
- Goal test must be done when popping from frontier, not when adding in

BFS vs UCS

UCS Properties

- Let C^* be the cost of optimal solution
- Let ϵ be lower bound on all possible costs

• $1 + C^*/\epsilon$ is the max depth to traverse before finding optimal solution

Time and space complexity: $O(b^{1+C^*/\epsilon})$

UCS is both complete and optimal

Informed (Heuristic) Search

- Oftentimes we have additional, domain-specific heuristics that tell us how close a state is to a goal
- Heuristic function h(n): Estimated cost of cheapest path from state at node n to a goal state
- Often come from relaxed problems, precomputed subproblem solutions, or learning from experience

Example: Euclidean or Manhattan distance on a map

Greedy Best-First Search

- Idea: Expand node that appears closest to goal according to heuristic function
- Evaluation function is the heuristic function! f(n) = h(n)
- Again implement frontier using priority queue

Greedy Search Properties

- Performance depends entirely on usefulness of heuristic function
- Best case: Go straight toward the goal
- Worst case: Like a badly misguided DFS
- Complete in finite state spaces
- No guarantee of optimality since true costs are never considered

A* Search

- Idea: From a given node, estimate the best path that continues to the goal
- f(n) = g(n) + h(n): Sum of path cost to n and estimated cost from n to goal
- Benefits of both UCS and greedy best-first search

A* vs UCS vs BFS

- BFS expands search tree by increasing depth
- UCS expands acc. to increasing g-cost
- Contours are "circular" around start state, if normalized by path costs
- A* expands acc. to increasing g + h cost
- If heuristic is good, expanded states should show preference toward goal

A* Examples

When is A* Optimal?

- What is the problem here?
- Heuristic along optimal path overestimated the true cost!
- Good heuristics should be optimistic—never overestimate true costs

Admissible Heuristics

- A heuristic h is admissible if $0 \le h(n) \le h^*(n)$ where $h^*(n)$ is true cost from n to goal
- Most heuristics derived from relaxed problems are admissible
- Same state space graph, but with added edges
- With fewer constraints or restrictions, problems are easier to solve
- Example: Euclidean distances

Example: 8-Puzzle

Start State

Goal State

Misplaced Tiles Heuristic

• h(n) = number of misplaced tiles, not including blank

Relaxed problem: Any tile can be correctly replaced with just one move

Admissible because misplaced tiles will always require at least one move

Manhattan Distance Heuristic

• h(n) = sum of Manhattan distances between current tile positions and goal positions

$$h(start) = 18$$

- Relaxed problem: Multiple tiles can simultaneously occupy same space
- Admissible because misplaced tiles will always require at least number of moves equal to Manhattan distance

Heuristic Domination

- For any node n, Manhattan distance heuristic $h_2(n)$ > misplaced tiles heuristic $h_1(n)$
- h_2 dominates h_1 if $h_2(n) \ge h_1(n)$ for all n
- A* search using h_2 will be more efficient and never expand more nodes than h_1
- h_2 reflects true costs more accurately
- Suppose we have collection of admissible heuristics h_1, h_2, \dots, h_m
- The composite heuristic $h(n) = \max\{h_1(n), ..., h_m(n)\}$ is admissible and dominates all other heuristics!

Completeness and Optimality of A*

- A* is complete (same reason as greedy, UCS, BFS)
- If heuristic function is admissible, A* is also optimal!
- Proof by contradiction:
- Assume A* returns a suboptimal solution with cost $C > C^*$
- Then there exists some unexpanded node n on optimal path

- Since n was not expanded, $f(n) > C^*$
- However, $f(n) = g(n) + h(n) = g^*(n) + h(n) \le g^*(n) + h^*(n) = C^*$ Contradiction!

By definition

Since *n* is on optimal path

Since *h* is admissible

By definition

Satisficing Solutions

- Like BFS or UCS, A* may suffer computationally intractable memory requirements
- Idea: Trade off admissibility for more accurate heuristics to reduce computation
- Return satisficing solutions—suboptimal, but "good enough"
- Weighted A* search: $f(n) = g(n) + \alpha h(n)$
- We can choose to place higher weight α on the heuristic
- Generalizes A* ($\alpha = 1$), UCS ($\alpha = 0$), and greedy best-first ($\alpha = \infty$)
- Suboptimality: If optimal solution has cost C^* , weighted A* solution may cost up to αC^*

Memory-Bounded Search

- We can also consider A* variants that are more memory-efficient
- Beam search: Limit frontier size by discarding worst nodes past a given limit
- Alternatively, discard nodes with scores much smaller than best one
- Iterative-deepening A* (IDA*): Repeatedly run A* with increasing depth limit
- Nodes with higher f-cost than limit are treated as leaves
- Increment depth limit by smallest f-cost of "leaves" from previous iteration
- IDA* worst case: Each node has different f-cost, num iterations equal to num states

Summary

- Objective of search problems is to find action/state sequence to reach a goal state
- Represented by state space graphs; search algorithms follow a tree structure
- Uninformed search: No usage of information indicating closeness to goal
- Examples: Depth-first, breadth-first, depth-limited, iterative deepening, uniform-cost
- Generally suffer from lack of completeness or intractable memory usage
- Informed search: Domain-specific heuristics guide search toward goal
- Greedy best-first and A* search use a heuristic function to evaluate frontier nodes
- Optimal if heuristics are admissible: good, optimistic estimates of true costs