

Pest patrol drone

지도 교수 김원태 교수님 팀 원 이종국, 이시영, 윤영운

유해 조수 순찰 드론

□1 작품 선정 배경

작품 선정 배경 기존 기술 분석

03 현재 진행상황

02 작품 소개

작품 설명 아키텍처

04 앞으로 진행계획

작품 선정 배경

작품 선정 배경 현재 사례

분야별 피해 실태

[단위:백만원]

유해 조수별 농작물 피해 실태

유해 조수로인한 경제적 손해가 크며,

'멧돼지, 고라니'로 인한 피해가 가장 많음

동물 포획

동물 보호 단체의 반대

01 작품선정배경

전기 울타리

누전의 위험 - 심하면 사망할 수도 있음

- 접촉문제

야생동물 기피제

기피제를 뿌린 지역에만 효과가 있음

- 범위의 제한성

포획이 아닌 다른 방식

: 동물이 싫어하는 주파수를 이용하여 구역 밖으로 이동시키는 것을 목적으로 함

비 접촉식

: 직접 동물에 접촉 하지 않고 공중에서 감시하고 이벤트를 수행함

구역의 제한

: 자유로운 비행을 통해 일정 구역이 아닌 순찰이 필요한 모든 지역을 커버할 수 있음

작품 설명 아키텍처

작품 설명

작품 설명

1. 지정 구역 순찰

- TFmini는 ToF를 기반
- 이 센서는 근적외선 변조파를 방출하며, 물체와 접촉한 후 반사
- 센서는 왕복 위상차를 측정하여 비행시간을 구한 다음 탐지 물체 사이의 상대 범위를 계산

- 조명 LED 없이 실내 및 실외 조명이 약한 조건에서 작동하는 광학 흐름 카메라
- 드론의 위치 추정과 광학 흐름을 계산하는 가장 쉽고 가장 확립 된 보드

02 작품 소개

QGroundControl로 임무 비행 지정

MAVROS를 통해 Gazebo와 연결 후 비행 수행

YOLO 학습

Realsense Depth Camera D435i

1. 여러 격자(Grid)로 그림을 나눔

각각의 셀은 중앙점, 가로, 세로 의 정보를 가지고 Bounding box라는 물체가 있을만한 영역의 정보를 가짐

2. 각 셀마다의 bounding box 신뢰 지수 예측값을 구해 값을 구성

3. 각 셀마다의 확률값이 큰 bounding box를 구한다.

작품 설명

YOLO를 선택한 이유

1. 프레임이 다른 모델들 보다 높아 실시간으로 빨리 움직이는 동물들을 추적하는데 적합

2. Jetson보드는 성능이 그리 뛰어나지 않기 때문에 CNN과 같은 무거운 모델과 적합하지 않지만 YOLO은 YOLO-tiny와 같은 <mark>경량화</mark>모델이 있기 때문에 적합

ONDIA.

3. CNN모델은 지원하지 않는 SDK 노드가 많아 많은 사전 처리가 필요하지만 YOLO는 공식 노드가 있기 때문에 적용하기 쉬움

02 작품 소개

Realsense Depth Camera D435i

RGB값의 사진과 IR(적외선)값의 사진을 얻을 수 있음

Darknet_ros 와 Realsense ros 노드를 통해 이미지 값을 서로 주고 받음

작품 설명

3. 추적 및 주파수 발생

ROS

- 로봇 응용 프로그램을 개발할 때 필요한 하드웨어, 추상화, 하위 디바이스 제어, 기능 구현, 프로세스간 메시지 패싱, 패키지 관리
- 개발 환경에 필요한 라이브러리와 다양한 개발 및 디버깅 도구 제공
- ROS 원격 노드 통신

3. 추적 및 주파수 발생

추적 알고리즘 시스템 흐름도

드론 비행 함수 정의

- 전진 : forwardx(),후진 : backx()

- 상승 : up(), 하강 : down()

- 이륙 : takeoff(), 착륙 : land()

- 왼쪽 : forwardy(), 오른쪽 : backy()

HSV로 색상인식

모폴로지 연산 (opency dilate, erode 함수) 가우시안 블러(GaussianBlur 함수) 을 이용하여 노이즈 제거, 지정색 인식

imshow함수로 인식된 이미지를 화면에 나타냄

원 크기에 맞추어 드론을 비행시킴

02 작품 소개

아무것도 하지 않을 때

왼 쪽으로 이동 하였을 때

4. 일정 구역을 벗어남을 확인

- 1. GeoFence를 사용하면 차량이 비행 할 수 있거나 비행이 허용되지 않는 가상 영역을 생성
- 2. 허용 된 지역을 벗어나는 경우 취할 조치를 구성

Geofence 귀환 모드

1. 원하는 도형의 형태로 Geofence를 생성

```
        매개 변수
        기술

        RTL_TYPE
        반환 메커니즘 (경로 및 대상).

        ø : 직접 경로를 통해 집회 지점 또는 집 (둘 중 가장 가까운 곳)으로 돌아갑니다.

        1 : 직접 경로를 통해 집결 지점 또는 미션 착지 패턴 시작 지점 (둘 중 가장 가까운 지점)으로 돌아갑니다. 임무 착륙 지점이나 집결 지점이 모두 정의되지 않으 경우 지점 겨로를 통해 지수로 토해 지수로 되었다.
```

2. RTL_TYPE 파라미터를 변경하여 복귀 유형을 선택

```
} else {
    qCDebug(GeoFenceControllerLog) << "GeoFenceController::sendToVehicle";
    _geoFenceManager->sendToVehicle(_breachReturnPoint, _polygons, _circles);
    setDirty(false);
}
```

3. 선택한 도형의 정보를 드론에 전송

```
void GeoFenceController::_setReturnPointFromManager(QGeoCoordinate breachReturnPoint)
{
    _breachReturnPoint = breachReturnPoint;
    emit breachReturnPointChanged(_breachReturnPoint);
    if (_breachReturnPoint.isValid()) {
        _breachReturnAltitudeFact.setRawValue(_breachReturnPoint.altitude());
    } else {
        _breachReturnAltitudeFact.setRawValue(_breachReturnDefaultAltitude);
    }
}
```

4. breachReturnPoint로 드론을 복귀

드론 비행 제어

객체 인식 및 드론 하드웨어 제어

현재 진행 상황

드론 진행 상황

드론 모터 및 뼈대 조립

Pixhawk4에 각 센서와 전원 UART 연결

드론 진행 상황

RC 조종기로 드론 수동 비행 테스트

드론 진행 상황


```
drone@drone-desktop: ~
File Edit View Search Terminal Help
rone@drone-desktop:-$ rosrun mavros mavros_node _fcu_url:=/dev/ttyACM0:921600
cs_url:=udp://@192.168.43.206
INFO] [1620695096.493042391]: FCU URL: /dev/ttyACM0:921600
INFO] [1620695096.499808727]: serial0: device: /dev/ttyACM0 @ 921600 bps
      [1620695096.500654047]: GCS URL: udp://@192.168.43.206
       [1620695096.501300389]: udp1: Bind address: 0.0.0.0:14555
      [1620695096.501591528]: udp1: Remote address: 192.168.43.206:14550
      [1620695096.537593500]: Plugin 3dr_radio loaded
       [1620695096.542773101]: Plugin 3dr_radio initialized
       [1620695096.543322867]: Plugin actuator_control loaded
      [1620695096.551822435]: Plugin actuator_control initialized
      [1620695096.563523602]: Plugin adsb loaded
       [1620695096.572285605]: Plugin adsb initialized
       [1620695096.572763497]: Plugin altitude loaded
      [1620695096.575724709]: Plugin altitude initialized
       [1620695096.576239498]: Plugin cam_imu_sync loaded
      [1620695096.577976891]: Plugin cam_imu_sync initialized
      [1620695096.578516288]: Plugin command loaded
      [1620695096.594862779]: Plugin command initialized
       [1620695096.595230462]: Plugin companion_process_status loaded
       [1620695096.601422169]: Plugin companion_process_status initialized
      [1620695096.601783068]: Plugin debug_value loaded
       [1620695096.614222194]: Plugin debug value initialized
```


SSH 프로토콜로 드론과 PC간의 원격 통신 연결 MAVROS로 Pixhawk 값을 PC에 있는 QGroundControl에 전송

드론과 PC WIFI 연결 성공

크롤링

```
rom selenium import webdriver
 rom selenium.webdriver.common.keys import Keys
 moort time
 mport urllib.request
 friver = webdriver.Chrome(executable_path=r"D:/crowlling/selenium/chromdriver.exe")
driver.get("https://www.google.co.kr/imghp?hl-ko&tab-wi&authuser-@Bogbl")
 elem - driver.find element by name("q")
 elem.send_keys("贝田지")
elem.send_keys(Keys.RETURN)
SCROLL PAUSE TIME = 1
 ast_height = driver.execute_script("return document.body.scrollHeight")
 hile True:
   driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
   time.sleep(SCROLL PAUSE TIME)
   new height - driver.execute_script("return document.body.scrollHeight")
   if new height == last height:
          driver.find_element_by_css_selector(".mye4qd").click()
    last height - new height
images = driver.find elements by css selector(".rg i Q4LUMd")
 ount = 1
  r image in images:
       ingtrl = driver.find element by_xpath('/html/body/div[2]/c-wiz/div[3]/div[3]/div[3]/div[div[3]/div[2]/c-wiz/div[1]/div[1]/div[1]/div[2]/a/ing').get_attribute("src
       opener.addheaders=[("User-Agent", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (WHTML, like Gecko) Chrome/36.0.1941.0 Safari/537.36')]
       urllib.request.install opener(opener)
       urllib.request.urlretrieve(imgUrl, str(count) + ".jpg")
 river.close()
```

- Vscode 프로그램을 이용해 파이썬 가상환경을 만들어줌
- 구글, 네이버의 이미지를 크롤링하기 위해 selenium(Chrome 조작 framework)와 크롬 드라이버 설치
- Urllib 모듈을 이용해 웹사이트 읽어오기
- RGB이미지에서 IR(적외선) 이미지로 비전처리를 하려고 했으나 서로 다른 에너지 스펙트럼에서 작동하기 때문에 비전처리가 불가능
- 대신 학습 데이터에 RGB이미지에다가 IR이미지를 추가로 크롤링해 YOLO에 넣어 학습한다면 충분히 RGB이미지를 IR이미지로 바꾸지 않고 밤에 유해 조수인지를 판별 가능

YOLO 인식

설ᄎ

YOLO BOX 그리기

인식 진행

Region 94 Avg IOU: 8.901359, Class: 8.999695, Obj: 8.988315, No Obj: 8.003283, SR: 1.800000, .75R: 1.008000, count: 7
Region 106 Avg IOU: 0.775712, Class: 0.998779, Obj: 6.771222, No Obj: 6.000131, .5R: 1.000000, .75R: 1.000000, count: 2
Region 82 Avg IOU: 8.885177, Class: 0.998744, Obj: 0.999835, No Obj: 6.000318, .5R: 1.000000, .75R: 1.000000, count: 2
Region 94 Avg IOU: 0.786370, Class: 0.999714, Obj: 0.998853, No Obj: 0.002110, .5R: 1.000000, .75R: 1.000000, count: 3
Region 106 Avg IOU: 0.786370, Class: 0.999926, Obj: 0.603561, No Obj: 0.002135, .5R: 1.000000, .75R: 0.666667, count: 3
Region 82 Avg IOU: 0.933107, Class: 0.999936, Obj: 0.999497, No Obj: 0.00369, .5R: 1.000000, .75R: 1.000000, count: 2
Region 94 Avg IOU: 0.824036, Class: 0.968865, Obj: 0.999427, No Obj: 0.003142, .5R: 1.000000, .75R: 1.000000, count: 2
Region 106 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000000, .5R: -nan, .75R: -nan, count: 0
Region 82 Avg IOU: 0.838653, Class: 0.999897, Obj: 0.999973, No Obj: 0.003121, .5R: 1.000000, .75R: 1.000000, count: 2
Region 94 Avg IOU: 0.836653, Class: 0.999999, Obj: 0.999973, No Obj: 0.003121, .5R: 1.000000, .75R: 1.000000, count: 2
Region 106 Avg IOU: 0.806153, Class: 0.999999, Obj: 0.733113, No Obj: 0.000122, .5R: 1.000000, .75R: 1.000000, count: 1
Region 82 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000012, .5R: -nan, .75R: -nan, count: 0
Region 94 Avg IOU: 0.806153, Class: 0.999997, Obj: 0.999887, No Obj: 0.000021, .5R: 1.000000, .75R: 1.000000, count: 1
Region 106 Avg IOU: 0.802069, Class: 0.999977, Obj: 0.999887, No Obj: 0.000012, .5R: 1.000000, .75R: 1.000000, count: 1
Region 82 Avg IOU: 0.833588, Class: 0.99997, Obj: 0.999887, No Obj: 0.000012, .5R: 1.000000, .75R: 1.000000, count: 1
Region 82 Avg IOU: 0.87174, Class: 0.99907, Obj: 0.999887, No Obj: 0.000755, .5R: 1.000000, .75R: 1.000000, count: 1
Region 82 Avg IOU: 0.820609, Class: 0.99907, Obj: 0.999887, No Obj: 0.000755, .5R: 1.000000, .75R: 1.000000, count: 1
Region 94 Avg IOU: 0.820609, Class: 0.999897, Obj: 0.99887, No O

인식 확인

카메라로 테스트 진행

앞으로 진행 계획

YOLO 인식률 높이기, FPS 높이기

드론 PX4 주행

유해조수 추적 알고리즘 개발

지상국에 의해 제어하는 기술 연구

- YOLO FPS, 인식률 증가
- 드론에 jetson 보드 탑재
- PX4 자율주행 테스트
- 추적 알고리즘 개발
- 추적 비행 테스트
- LTE 통신으로 변경
- 최종 테스트

이름	학번	역할
이종국	2016136104	드론 하드웨어, 비행 제어
이시영	2018136089	jetson 보드 및 이미지 인식
윤영운	2018136078	드론 추적 알고리즘

발표를들어주세서 21시한니다 음시한다

유해 조수 순찰 드론 : Pest patrol drone