to investigate the electrochemical details when the cell was set to be scanned at 0.1 mV/s within the voltage window of 0.01-3.00 V (vs. Li/Li⁺). The patterns are consistent with the CV results from other reports on Fe₃O₄-C composites [13,15-19]. Two cathodic peaks at voltage potentials of 0.97 and 0.68 V are observed in the first cathodic scan, while they disappeared in the following scans, which is due to the irreversible formation of a solid electrolyte interface (SEI) and the decomposition of electrolyte [13,15-19]. In subsequent cycles, the cathodic peak shifts to 0.83 V and tends to be stable, indicating the high Coulombic efficiency and the stable and good reversibility of the sample. In the anodic scans, two small peaks at 1.62 and 1.88 V are recorded. These cathodic and anodic peaks correspond to the electrochemical reduction/ oxidation (Fe₃O₄ ↔ Fe) reactions accompanying Lithium ion insertion (lithiation) and extraction (delithiation) [13,15-19].

Fig. 5(b) presents the charge/discharge profiles of the Fe_3O_4 @C nanospheres in the 1st, 2nd, 10th, 20th, 30th, 40th, and 50th cycles at a current density of 924 mA/g. The first discharge capacity is 1528 mA h/g, but the first charge capacity is 1096 mA h/g, leading to a relatively low Coulombic efficiency of 71.7%. The relatively low initial Coulombic efficiency may be caused by the irreversible capacity loss, including inevitable formation of SEI and decomposition of electrolyte, which are common to most anode materials [9–24]. This characteristic also agrees well with the CV result that the cathodic peaks are present in the first scan while absent afterward. The discharge voltage plateau at \sim 0.84 V in the first cycle is different

from those of other cycles at \sim 1.0 V, further indicating that irreversible reactions occurred in the first cycle. In the second cycle, the Coulombic efficiency increases to 94.2% and a discharge capacity of 1087 mA h/g is achieved (as shown in Fig. 5(c)), which is higher than the theoretical value for Fe₃O₄ (924 mA h/g). Similar results have been reported for many other transition metal oxides [35,36]. It is reported that the reaction of oxygen-containing functional groups on carbon with lithium ions can also contribute to the lithium storage capacity [20,11]. Besides, the reversible decomposition of the electrolyte with the formation of SEI and extra lithium ion adsorption/desorption on the SEI while cycling may lead to the high experimental lithium storage capacity, as well [4]. Note that the charge curve is a sloping curve with no obvious voltage platform, owing to the large surface area induced during the former discharge process which could widen the reaction site energy range for intercalation compounds, [37,38] or the amorphous character of the active materials itself [39].

The comparative cycling performance between the Fe_3O_4 @C nanospheres and commercial Fe_3O_4 nanoparticles at a current density of 924 mA/g is illustrated in Fig. 5(c). Apparently, the Fe_3O_4 @C sample demonstrates a much better cyclic retention than the commercial Fe_3O_4 nanoparticles, with a high reversible capacity of 811 mA h/g after 20 cycles and 784 mA h/g even after 50 cycles. Furthermore, their Coulombic efficiency is maintained at ~99% after the 12th cycle. For the commercial Fe_3O_4 nanoparticles with average diameter of about 20 nm, their capacity fades very rapidly during the

Fig. 4 – (a) TGA curve, (b) Raman spectrum, (c) nitrogen adsorption-desorption isotherms and (d) pore size distribution curve of the Fe₃O₄@C nanospheres, inset of (d) magnification of pore size distribution between 0.5 and 2.0 nm.