AP Calculus AB AP Classroom: 4.3 - 4.4

October 23, 2024

Brayden Price All final solutions are \boxed{boxed}

List of Questions

Question	1.												 							page 2	2
Question	2 .																			page 2	2
Question	3.												 							page 3	3
Question	4.																			page 4	1
Question	5.																			page 5	5
Question	6.																			page 6	;
Question	7.												 							page 6	3
Question	8.												 							page 6	3
Question	9.												 							page 6	3
Question	10																			page 6	;
Question	11												 							page 6	3
Question	12																			page 6)
Question	13																			page 6)
Question	14												 							page (;

Question 1

x	$\int f(x)$	$\int f'(x)$	g(x)	g'(x)
1	6	4	2	5
2 3	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}$ at x = 2.

Solution: Given that g(1) = 2, the point of tangency on the graph of $y = g^{-1}$ is the point (2,1). (since g^{-1} is an inverse of g, g(2) = 1.)

We now want to find the derivative at the point of tangency:

To find $[g^{-1}]'(2)$, we must use the rule for derivatives of inverses:

$$[g^{-1}]'(x) = \frac{1}{g'(g^{-1}(x))}$$
$$[g^{-1}]'(2) = \frac{1}{g'(g^{-1}(2))}$$
$$= \frac{1}{g'(1)}$$
$$= \frac{1}{5}$$

Now, we just need to use the point (2,1) and the derivative at that point to write the tangent line:

$$y-1=\frac{1}{5}(x-2)$$

Question 2

A student attempted to confirm that the function f defined by $f(x) = \frac{x^2 + x - 6}{x^2 - 7x + 10}$ is continuous at x = 2 In which step, if any, does an error first appear?

Step 1:

$$f(x) = \frac{x^2 + x - 6}{x^2 - 7x + 10} = \frac{(x - 2)(x + 3)}{(x - 2)(x - 5)}$$

Step 2:

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x+3}{x-5} = \frac{2+3}{2-5} = -\frac{5}{3}$$

Brayden Price

Step 3:

$$f(2) = \frac{2+3}{2-5} = -\frac{5}{3}$$

Step 4:

 $\lim_{x\to 2} f(x) = f(2)$, so f is continuous at x=2.

Solution: During Step 3, we made a little bit of a mistake. While in the limit in Step 2, we can simplify the rational definition of f(x), when finding the actual value (or lack thereof) of f(2), we **cannot** do this.

Even though f is actually undefined at x=2 (removable discontinuity / hole), we incorrectly said it was equal to $\frac{-5}{3}$, and therefore incorrectly stated f as continuous at x=2.

Question 3

Two particles move along the x-axis with velocities given by $v_1(t) = -3t^2 + 8t + 5$ and $v_2(t) = \sin t$ for time $t \ge 0$. At what time t do the two particles have equal acceleration?

Solution:

To find acceleration from give velocity equations, we must take the derivative of the velocity functions to find two new acceleration equations

$$a_1(t) = \frac{d}{dx} (v_1(t))$$
$$= \frac{d}{dx} (-3t^2 + 8t + 5)$$
$$= -6t + 8$$

$$a_2(t) = \frac{d}{dx} (v_2(t))$$
$$= \frac{d}{dx} (\sin t)$$
$$= \cos t$$

Now, we need to find the time t where $a_1(t) = a_2(t)$

$$a_1(t) = a_2(t)$$
$$-6t + 8 = \cos t$$

Since this is a calculator required question, just use your calculator to find the intersection of the line and the cosine function. (Make sure your calculator is in radian mode.)

 $t \approx 1.2866$

Question 4

Ship A is traveling due west toward Lighthouse Rock at a speed of 15 kilometers per hour (km/hr). Ship B is traveling due north away from Lighthouse rock at a speed of 10 km/hr. Let x be the distance between Ship A and Lighthouse Rock at time t, and let y be the distance between Ship B and Lighthouse Rock at time t, as shown in the figure above.

Solution:

Equation (Pythagorean Theorem) of situation: $c^2 = y^2 + x^2$ Find: $\frac{dc}{dt}$ When: x = 4 km and y = 3 km Other Rates: $\frac{dx}{dt} = -15\frac{\text{km}}{\text{hr}}$ and $\frac{dy}{dt} = 10\frac{\text{km}}{\text{hr}}$ c is the hypotenuse / distance between Ship B and Ship A. Using Pythagorean Theorem: $c = \sqrt{4^2 + 3^2} = 5$

Find derivative of equation:

$$\frac{dc}{dt} \cdot 2c = \frac{dy}{dt} \cdot 2y + \frac{dx}{dt} \cdot 2x$$

Solve for $\frac{dc}{dt}$:

$$\frac{dc}{dt} = \frac{\frac{dy}{dt} \cdot 2y + \frac{dx}{dt} \cdot 2x}{2c}$$

Plug in knowns and solve:

$$\frac{dc}{dt} = \frac{10 \cdot 2(3) - 15 \cdot 2(4)}{2(5)} = \frac{60 - 120}{10} = -\frac{60}{10} = \boxed{-6\frac{\text{km}}{\text{hr}}}$$

Question 5

Consider the curve give by $y^2 = 2 + xy$

Let x and y be functions of time t that are related by the equation $y^2 = 2 + xy$. At time t = 5, the value of y is 3 and dy/dt = 6. Find the value of dx/dt at time t = 5.

Solution: Find x at y = 3 (will be needed later):

$$(3)^2 = 2 + 3x$$
$$9 - 2 = 3x$$
$$\frac{7}{3} = x$$

Take derivative of given curve and then solve for dx/dt:

$$2y \cdot \frac{dy}{dt} = x \cdot \frac{dy}{dt} + y \cdot \frac{dx}{dt}$$
$$\frac{2y \cdot \frac{dy}{dt} - x \cdot \frac{dy}{dt}}{y} = \frac{dx}{dt}$$

Plug in knowns and simplify:

$$\frac{2(3)\cdot 6 - \frac{7}{3}\cdot 6}{3} = \frac{36 - 14}{3} = \boxed{\frac{22}{3} = \frac{dx}{dt}}$$

- Question 6
- Question 7
- Question 8
- Question 9
- Question 10
- Question 11
- Question 12
- Question 13
- Question 14