KNOWLEDGE GRAPH-BASED SYSTEM FOR TECHNICAL DOCUMENT RETRIEVAL A DEDUCTIVE REASONING-FOCUSED EXPLORATION

PhD student: Matthias SESBOÜÉ
Directed by Cecilia ZANNI-MERK
Supervised by Nicolas DELESTRE and Jean-Philippe
KOTOWICZ

September 5, 2024

OCTION CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 00000 00000 00000

TABLE OF CONTENTS

- 1 Introduction
- 2 Application context
- 3 Evaluation setup
- 4 Knowledge Graph-Based System (KGBS)
- **6** Contributions
- **6** KG-based Information Retrieval
- **7** CONCLUSION AND FUTURE WORKS

Knowledge Graph-based System for Technical Document Retrieval

A deductive reasoning-focused exploration

- Research objective: Leveraging domain knowledge to enhance Information Retrieval in a technical context.
- Traceparts employment partially financed by ANRT as part of a CIFRE research project in collaboration with the Litis lab.
- Began on March 15th 2021.

TRACEPARTS

INTRODUCTION

One of the world's leading CAD-content platforms for Engineering, Industrial Equipment and Machine Design. The CAD-content platform traceparts.com provides access to over 1.8 thousand supplier-certified product catalogues with 2D drawings, 3D CAD models and product datasheets.

- Technical content aimed at an engineering audience from multiple industries
- Content available in 25 languages
- Users can search using:
 - A full text search
 - A list of catalogues
 - Different classifications

Product Content Everywhere"

CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR. CONCLUSION 0000 00000 00000 00000

Corpus

- Over 1.1 million document families
- Over 127.8 millions individual documents
- 25 languages
- Documents' texts contain average 50 characters and 7 words
- Over 210 thousand tags, amongst which:
 - Over 2.5 thousand suppliers and manufacturers
 - Over 1.9 thousand catalogues
 - Over 208 thousand categories

Some text content examples are:

- DIN 912
- The P01 to P08 pumps are designed to pump lubricating fluids (oil, diesel oil, etc.). Their flow rate is from 1 to 24 L / min; maximum working pressure 10 bar.

USER SEARCHES

User text searches:

- Are composed of domain-specific keywords, notations, identifiers, and acronyms.
- Contain on average 13 characters separated into 2 words.
- Can come in any language

The most common searches are:

- motor
- din 912
- ball valve

Traceparts search challenges come from:

- Short multilingual texts
- Technical texts with many synonyms, acronyms, homonyms, and notations
- A large and heterogeneous corpus
- Multiple engineering domains coverage
- High recall but low precision

Knowledge Graph (Hogan et. al. 2021): a knowledge graph is a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent relations between these entities. Ontology (Hogan et. al. 2021): In the context of computing, an ontology is then a concrete, formal representation of what terms mean within the scope in which they are used (e.g., a given domain).

In our work, we consider an ontology a particular component of a Knowledge Graph

CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSIO

OUR APPROACH BASED ON A KNOWLEDGE GRAPH

FIGURE: Text-based vs concept-based search.

ON CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 00000 00000 00000

EVALUATION CORPUS CONSTRUCTION

FIGURE: Experiments Protocol.

EVALUATION METRICS

- Mean Average Precision at k (MAP@k):
 - A sliding (or growing) precision window, averaged over a set of query examples.
 - Ranges from 0 to 1 (1 is the best value).
 - Gives information about the amount and positions of positive results in the k first ones.
- Binary Mean at k (BM@k):
 - Binary average over a set of query examples.
 - Ranges from 0 to 1 (1 is the best value).
 - Provides information about the amount of queries with a positive result in the k first ones.
 - Does not give any detail on the positive result position.

TEXT-BASED SYSTEM (BASELINE) RESULTS

	Text-based system (baseline)		
$@k\downarrow$	MAP@k	BM@k	
@5	0.061	0.114	
$\mathbf{@25}$	0.064	0.148	
@50	0.064	0.157	
@100	0.064	0.161	
$\mathbf{@350}$	0.064	0.164	

Table: Text-based system (baseline) results for different k values.

KNOWLEDGE ACQUISITION

FIGURE: KGBS: Knowledge acquisition

KNOWLEDGE GRAPH

FIGURE: KGBS: Knowledge Graph

ON CONTEXT EVALUATION **KG-based system** Contributions KG-based IR Conclusion
00000 0000 00000 00000

KNOWLEDGE CONSUMPTION

FIGURE: KGBS: knowledge consumption

KNOWLEDGE GRAPH-BASED SYSTEM ARCHITECTURE

FIGURE: KGBS architecture

CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 00000 00000 00000

Ontology Learning Applied Framework (OLAF)

FIGURE: KGBS architecture: OLAF

Information Retrieval ontology

FIGURE: KGBS architecture: IR ontology

Context Evaluation KG-based system Contributions KG-based IR Conclusion

KG-BASED INFORMATION RETRIEVAL

FIGURE: KGBS architecture: Industrial experiments

N CONTEXT EVALUATION KG-BASED SYSTEM **CONTRIBUTIONS** KG-BASED IR CONCLUSION 0000 00000 00000

IN THIS PRESENTATION

FIGURE: This presentation KGBS architecture components focus

TRACEPARTS KNOWLEDGE GRAPH

FIGURE: Traceparts Knowledge Graph

CONCEPT-BASED SYSTEM

CONCEPT-BASED SYSTEM RESULTS

			<u> </u>		
	Text-k system (k		Concept-based system		
$@\mathbf{k}\downarrow$	MAP@k	BM@k	MAP@k	BM@k	
@5	0.061	0.114	0.152	0.243	
$\mathbf{@25}$	0.064	0.148	0.159	0.334	
@50	0.064	0.157	0.160	0.371	
@100	0.064	0.161	0.161	0.403	
$\mathbf{@350}$	0.064	0.164	0.161	0.429	

Table: Text and concept-based systems results for different k values.

KG-BASED SYSTEM WITH IMPLICIT KNOWLEDGE

FIGURE KC based exeten with implicit knowledge

KG-BASED SYSTEM WITH IMPLICIT KNOWLEDGE RESULTS

	Text-based system (baseline)		Concept-based system		KG-based system with search history	
@k ↓	MAP@k	BM@k	MAP@k	BM@k	MAP@k	BM@k
@5	0.061	0.114	0.152	0.243	0.115	0.291
@25	0.064	0.148	0.159	0.334	0.122	0.471
@50	0.064	0.157	0.160	0.371	0.123	0.552
@100	0.064	0.161	0.161	0.403	0.123	0.624
@350	0.064	0.164	0.161	0.429	0.124	0.715

TABLE: Text, concept, and KG-based systems results for different k values.

CONCLUSION

We have:

- Explored a Knowledge Graph-Based System (KGBS) architecture
- Detailed each KGBS containers and activities
- Explored a real-world use case moving from a text-based to a KG-based Information Retrieval (IR) System.
- Introduce and compared 3 IR systems:
 - A text-based IR system
 - A concept-based IR system
 - A KG-based IR system

KG-based systems for IR on a multilingual corpus of technical documents show promising results overcoming the text-based approaches limitations.

FUTURE WORKS

- KGBS architecture:
 - Implement an end-to-end Knowledge Graph-Based System architecture use case.
 - Further explore the modularity of the architecture
- Knowledge Graph-based Information Retrieval system:
 - Expand the Knowledge Graph
 - Enhance the concept matching task
 - Expand the approach to other domains

CONTRIBUTIONS

Main contributions:

- Ontology Learning Applied Framework (OLAF)
- An OWL Information Retrieval ontology
- Knowledge Graph-based Information Retrieval systems

Satellite contributions

- A unifying definition of Knowledge Graph
- An architecture for Knowledge Graph-Based Systems

SCIENTIFIC PRODUCTIONS

Peer-reviewed international conference papers:

- An operational architecture for knowledge graph-based systems. Proceedings of the 26th International Conference KES2022.
- (with Marion Schaeffer) Olaf: An ontology learning applied framework. Proceedings of the 27th International Conference KES2023.

Open-source software library (with Marion Schaeffer):

 Ontology Learning Applied Framework Python library implementation:

https://wikit-ai.github.io/olaf/

THANK YOU!

Thank you for your time and attention.

I am now ready to answer to any questions.

Conclusion 00000

Perspectives: Knowledge Graph

FIGURE: Extended semantic search example.

CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 00000 00000 00000

SEMANTIC WEB KNOWLEDGE GRAPH

An approach focusing on OWL.

- An Information Retrieval ontology.
- Push knowledge closer to the data.
- Model domain knowledge as linked sets of taxonomies.

NTRODUCTION CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 0000 00000 00000 00000

Knowledge modelling

FIGURE: "C-box" knowledge modelling approach

TION CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 00000 00000 00000

Information Retrieval Ontology

Competency questions:

- CQ1 What are the categories in the user search?
- CQ2 What are the documents relevant to a search?
- CQ3 What categories are enabled to refine the search?

7 classes:

- Candidate Document subclass of Document
- Selected Category and Enabled Category subclasses of Category
- Search Context subclass of Search

6 Object properties:

- categorises inverse of categorised By
- has Search Category subproperty of enables Category
- has Direct Subcategory subproperty of has Subcategory

PIZZA ONTOLOGY

Pizza ontology:

- Well-knowledge ontology built to introduce RDF/RDFS/OWL with examples (and even SHACL)
- Simple ontology with class hierarchies of:
 - Pizzas (has topping, has base)
 - Pizza bases
 - Pizza Toppings
- We use the Pizza ontology for demonstration in interest of time constraints

Conclusion

N CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 00000 00000 00000

PIZZA ONTOLOGY KNOWLEDGE GRAPH

FIGURE: Pizza ontology Knowledge Graph

OWL REASONING-BASED INFORMATION RETRIEVAL

FIGURE: OWL reasoning-based Information Retrieval process.

ON CONTEXT EVALUATION KG-BASED SYSTEM CONTRIBUTIONS KG-BASED IR CONCLUSION 00000 00000 00000

ONTOLOGY LEARNING APPLIED FRAMEWORK

FIGURE: OLAF modules.

KG-BASED IR: QUANTITATIVE RESULTS

		<i></i>
	No results	Less than 400 results (non empty)
Text-based system (baseline)	64.48%	35.44%
Concept-based system	11.43%	88.36%
KG-based system with search history	$\boldsymbol{8.10\%}$	51.59%

Table: Comparing all search systems results set corpus.