UGANDA MARTYRS UNIVERSITY, NKOZI

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

BSC II GEN AND BSC II FM END OF SEMESTER 1 EXAMINATIONS

MTC2101 CALCULUS III

YEAR 2013/2014

DATE:19th DEC 2013

TIME: 10:00am-1:00Pm

Instructions

- (i) Attempt any five questions
- (ii) Read through the paper carefully and follow instructions on the answer booklet.
- (iii) Calculators and mathematical tables may be used.
- (iii) Neat work is highly recommended.

- (1) (a) Given two vectors A and B, define the following;
 - (i) Dot product of A and B (2 marks)
 - (ii) Cross product of A and B. (2 marks)
 - (b) Prove that $A.(B \times C) = B.(C \times A) = C.(A \times B)$ (6 marks)
 - (c) If $A = 2\mathbf{i} \mathbf{j} + \mathbf{k}$, $B = \mathbf{i} 2\mathbf{j} + \mathbf{k}$ and $C = \mathbf{i} + 3\mathbf{j} 2\mathbf{k}$. Find
 - (i) |(2A+B).(A-2B)| (4 marks)
 - (ii) $(A \times B) \times C$ (5 marks)
 - (d) If $\mathbf{R} = \mathbf{x^2yi} 2\mathbf{y^2zj} + \mathbf{xy^2z^2k}$, find $\left|\frac{\partial^2 \mathbf{R}}{\partial x^2} \times \frac{\partial^2 \mathbf{R}}{\partial y^2}\right|$ at the point (2,1,-2)(6 marks)
- (2) (a) Find a polar equation corresponding to the given rectangular equation.
 - (i) $u^2 x^2 = 4$ (3 marks)
 - $(ii) x^2 + y^2 = x ag{3 marks}$
 - (b) Find the area inside the limacon $r=3+2\cos\theta$ and outside the circle r=2(14 marks)
- (3) (a) State what is meant by curl and divergence of a vector field F. (04 marks)
 - (b) If $\phi = xy + yz + zx$ and $A = x^2y\mathbf{i} + y^2z\mathbf{j} + z^2x\mathbf{k}$
 - (i) $(A.\nabla\phi)$ (05 marks)
 - (iii) $\nabla \cdot (\phi A)$ (05 marks)
 - (c) Find a unit normal to the surface $x^2y 2xz + 2y^2z^4 = 10$ at a point (2,1,-1) (06 marks)
 - 4a(i) (i) State what is meant by a function f(t) being vector valued. (2 marks)
 - (ii) For avector valued function f(t), define what is meant by the derivative $f'(t_0)$ of f(t) at a point t_0 . (2 marks)

- (b) Given a vector valued function $\frac{1-t^2}{1+t}\mathbf{i} + e^{-2t}\mathbf{j} + (1-t^3)\mathbf{k}$ find;
 - (i) $\lim_{t\to -1} f(t)$ (4 marks)
 - (ii) f'(2) (2 marks)
 - (iii) $\int f(t)dt$ (5 marks)
- (c) Show that $r = e^-t(C_1cos2t + C_2sin2t)$, where C_1 , C_2 are constant vectors, is a solution of the differential equation $\frac{d\mathbf{r}^2}{dt^2} + 2\frac{d\mathbf{r}}{dt} + 5\mathbf{r} = 0$, (5 marks)
- Given the region R in the xy plane bounded by x+y=6, x-y=2 and y=0, Find the area bounded by R (06 marks)
 - (b) If $\phi = 2xyz^2$, $F = xy\mathbf{i} z\mathbf{j} + x^2\mathbf{k}$ and C is the curve $x = t^2$, y = 2t, $Z = t^3$ from t = 0 to t = 1, evaluate the line integrals
 - (i) $\int_C \phi dr$ (05 marks)
 - (ii) $\int_C F \times dr$ (05 marks)
 - (c) Show that $\mathbf{F} = (2\mathbf{x}\mathbf{y} + \mathbf{z}^3)\mathbf{i} + \mathbf{x}^2\mathbf{j} + 3\mathbf{x}\mathbf{z}^2\mathbf{k}$ is a conservative force field marks) (04)
 - 6a(i) Define arc length of a curve (2 marks)
 - (ii) A curve is described by a pair of parametric equations x(t) = 1 2cost, y(t) = 2 + 3sint, on the interval $0 \le t \le 2\pi$, find the length of the arc of the curve. (6 marks)
 - (b) Find the arc length of $r = 2 2\sin\theta$ (8 marks)
 - (c) Find all polar coordinate representation for the rectangular point (-3, 1) (4 marks)
 - 7(a) Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = (x 3y)\mathbf{i} + (y 2x)\mathbf{j}$ and C is the closed curve in the xy plane, $x = 2\cos t$, $y = 3\sin t$ from t = 0 to $t = 2\pi$ (6 marks)

- (b) Compute the value of triple integral $\int \int_D f(x,y,z) dv$ for : f(x,y,z) = xy sinz; D is a cube bounded by $0 \le x \le \pi, 0 \le y \le \pi$ and $0 \le z \le \pi$ (6 marks)
- (c) Let $\mathbf{F}=2xz\mathbf{i}-x\mathbf{j}+y^2\mathbf{k}$. Evaluate $\int \int_V \mathbf{F} dV$ where V is the region bounded by the surfaces $x=0,\,y=0,y=6,\,z=x^2,\,z=4$ (8 marks)