操作系统原理

第一章:介绍

洪明坚

重庆大学软件学院

February 19, 2016

目录

- 1 课程简介
 - 主要内容及参考资料
 - 为什么要学习操作系统原理?
- What's an Operating System?
 - Components of a Computer System
 - What's an Operating System?
 - Components of an operating system
 - History of Operating System
 - Features migration

Outline

- 1 课程简介
 - 主要内容及参考资料
 - 为什么要学习操作系统原理?
- What's an Operating System?
 - Components of a Computer System
 - What's an Operating System?
 - Components of an operating system
 - History of Operating System
 - Features migration

• 主要内容

- 主要内容
 - 操作系统的基本概念、原理和设计。

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.
 - 9th edition is also available.

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.
 - 9th edition is also available.
 - Andrew S. Tanenbaum, Modern operating System, 2nd Edition, Prentice Hall.

4 / 22

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.
 - 9th edition is also available.
 - Andrew S. Tanenbaum, Modern operating System, 2nd Edition, Prentice Hall.
 - Maurice J. Bach, The design of Unix operating system, Pearson education.

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.
 - 9th edition is also available.
 - Andrew S. Tanenbaum, Modern operating System, 2nd Edition, Prentice Hall.
 - Maurice J. Bach, The design of Unix operating system, Pearson education.

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.
 - 9th edition is also available.
 - Andrew S. Tanenbaum, Modern operating System, 2nd Edition, Prentice Hall.
 - Maurice J. Bach, The design of Unix operating system, Pearson education.

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.
 - 9th edition is also available.
 - Andrew S. Tanenbaum, Modern operating System, 2nd Edition, Prentice Hall.
 - Maurice J. Bach, The design of Unix operating system, Pearson education.

- 主要内容
 - 操作系统的基本概念、原理和设计。
- 教材及参考资料
 - Abraham Silberschatz, Operating System Concepts, 6th Edition, John Wiley & Sons, Inc.
 - 9th edition is also available.
 - Andrew S. Tanenbaum, Modern operating System, 2nd Edition, Prentice Hall.
 - Maurice J. Bach, The design of Unix operating system, Pearson education.

• 操作系统是最重要的系统软件之一,

- 操作系统是最重要的系统软件之一,
 - 没有操作系统的计算机几乎不能使用;

- 操作系统是最重要的系统软件之一,
 - 没有操作系统的计算机几乎不能使用:
 - 学习操作系统将帮助软件开发人员开发出优秀的应用软件系统。

- 操作系统是最重要的系统软件之一,
 - 没有操作系统的计算机几乎不能使用;
 - 学习操作系统将帮助软件开发人员开发出优秀的应用软件系统。
- 操作系统是最复杂的系统软件之一,

- 操作系统是最重要的系统软件之一,
 - 没有操作系统的计算机几乎不能使用;
 - 学习操作系统将帮助软件开发人员开发出优秀的应用软件系统。
- 操作系统是最复杂的系统软件之一,
 - 学习计算机系统是如何工作的;

- 操作系统是最重要的系统软件之一,
 - 没有操作系统的计算机几乎不能使用;
 - 学习操作系统将帮助软件开发人员开发出优秀的应用软件系统。
- 操作系统是最复杂的系统软件之一,
 - 学习计算机系统是如何工作的;
 - 学习如何通过抽象来掌握复杂的软件系统;

- 操作系统是最重要的系统软件之一,
 - 没有操作系统的计算机几乎不能使用;
 - 学习操作系统将帮助软件开发人员开发出优秀的应用软件系统。
- 操作系统是最复杂的系统软件之一,
 - 学习计算机系统是如何工作的;
 - 学习如何通过抽象来掌握复杂的软件系统;
 - 学习如何系统地设计复杂的软件系统。

Outline

- 1 课程简介
 - 主要内容及参考资料
 - 为什么要学习操作系统原理?
- What's an Operating System?
 - Components of a Computer System
 - What's an Operating System?
 - Components of an operating system
 - History of Operating System
 - Features migration

Components of a Computer System

Components of a Computer System

Different views

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program
 - The operating system manages the resources of a computer so that various applications and users can operate the computer system efficiently and fairly.

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program
 - The operating system manages the resources of a computer so that various applications and users can operate the computer system efficiently and fairly.
 - Resource manager (Resource allocator)

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program
 - The operating system manages the resources of a computer so that various applications and users can operate the computer system efficiently and fairly.
 - Resource manager (Resource allocator)
 - The operating system abstracts the computer hardware and presents the user a friendly interface.

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program
 - The operating system manages the resources of a computer so that various applications and users can operate the computer system efficiently and fairly.
 - Resource manager (Resource allocator)
 - The operating system abstracts the computer hardware and presents the user a friendly interface.
 - Extended machine (Virtual machine)

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program
 - The operating system manages the resources of a computer so that various applications and users can operate the computer system efficiently and fairly.
 - Resource manager (Resource allocator)
 - The operating system abstracts the computer hardware and presents the user a friendly interface.
 - Extended machine (Virtual machine)
- So, what's an operating system?

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program
 - The operating system manages the resources of a computer so that various applications and users can operate the computer system efficiently and fairly.
 - Resource manager (Resource allocator)
 - The operating system abstracts the computer hardware and presents the user a friendly interface.
 - Extended machine (Virtual machine)
- So, what's an operating system?
 - No common accepted definition is available.

What's an Operating System?

- Different views
 - The operating system controls and coordinates the use of the hardware among the various application programs for the various users.
 - Control program
 - The operating system manages the resources of a computer so that various applications and users can operate the computer system efficiently and fairly.
 - Resource manager (Resource allocator)
 - The operating system abstracts the computer hardware and presents the user a friendly interface.
 - Extended machine (Virtual machine)
- So, what's an operating system?
 - No common accepted definition is available.
 - The operating system exists because they are a reasonable way to solve the problem of creating a usable computing system.

• What's the part of the operating system?

- What's the part of the operating system?
 - Various people, company or organization has different opinions.

- What's the part of the operating system?
 - Various people, company or organization has different opinions.
 - Microsoft insists that web browser and media player are parts of the operating system.

- What's the part of the operating system?
 - Various people, company or organization has different opinions.
 - Microsoft insists that web browser and media player are parts of the operating system.
- In this course, we will focus on the **kernel** of the operating system.

- What's the part of the operating system?
 - Various people, company or organization has different opinions.
 - Microsoft insists that web browser and media player are parts of the operating system.
- In this course, we will focus on the **kernel** of the operating system.
 - The kernel provides the lowest level of abstraction layer for the resources (especially memory, processors and I/O devices). It includes (but is not limited to) the following components

- What's the part of the operating system?
 - Various people, company or organization has different opinions.
 - Microsoft insists that web browser and media player are parts of the operating system.
- In this course, we will focus on the **kernel** of the operating system.
 - The kernel provides the lowest level of abstraction layer for the resources (especially memory, processors and I/O devices). It includes (but is not limited to) the following components
 - CPU manager

- What's the part of the operating system?
 - Various people, company or organization has different opinions.
 - Microsoft insists that web browser and media player are parts of the operating system.
- In this course, we will focus on the **kernel** of the operating system.
 - The kernel provides the lowest level of abstraction layer for the resources (especially memory, processors and I/O devices). It includes (but is not limited to) the following components
 - CPU manager
 - Memory Manager

- What's the part of the operating system?
 - Various people, company or organization has different opinions.
 - Microsoft insists that web browser and media player are parts of the operating system.
- In this course, we will focus on the **kernel** of the operating system.
 - The kernel provides the lowest level of abstraction layer for the resources (especially memory, processors and I/O devices). It includes (but is not limited to) the following components
 - CPU manager
 - Memory Manager
 - File System

- What's the part of the operating system?
 - Various people, company or organization has different opinions.
 - Microsoft insists that web browser and media player are parts of the operating system.
- In this course, we will focus on the **kernel** of the operating system.
 - The kernel provides the lowest level of abstraction layer for the resources (especially memory, processors and I/O devices). It includes (but is not limited to) the following components
 - CPU manager
 - Memory Manager
 - File System
 - Device Manager

• To see what operating systems are and what they do, we will consider how they have developed over past 45 years.

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.
 - Mainframes and mini-computers

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.
 - Mainframes and mini-computers
 - Mainframe IBM System z9

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.
 - Mainframes and mini-computers
 - Mainframe IBM System z9
 - Mini-computer IBM System i

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.
 - Mainframes and mini-computers
 - Mainframe IBM System z9
 - Mini-computer IBM System i
 - Desktop computers

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.
 - Mainframes and mini-computers
 - Mainframe IBM System z9
 - Mini-computer IBM System i
 - Desktop computers
 - Apple II, Macintosh

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.
 - Mainframes and mini-computers
 - Mainframe IBM System z9
 - Mini-computer IBM System i
 - Desktop computers
 - Apple II, Macintosh
 - IBM Personal Computer

- To see what operating systems are and what they do, we will consider how they have developed over past 45 years.
- Operating system runs on specific hardwares.
 - We cannot understand operating system without some knowledge of underlying hardware.
- So, we will trace the evolution of computer systems and their operating systems to identify the common elements of operating systems.
 - Mainframes and mini-computers
 - Mainframe IBM System z9
 - Mini-computer IBM System i
 - Desktop computers
 - Apple II, Macintosh
 - IBM Personal Computer
 - Embedded computers

 Mainframes and minicomputers usually have dedicated operating systems.

- Mainframes and minicomputers usually have dedicated operating systems.
 - **zOS** is the operating system for IBM System z9.

- Mainframes and minicomputers usually have dedicated operating systems.
 - **zOS** is the operating system for IBM System z9.
 - OS/400 is the operating system for IBM System i.

- Mainframes and minicomputers usually have dedicated operating systems.
 - **zOS** is the operating system for IBM System z9.
 - OS/400 is the operating system for IBM System i.
- They evolved from simple batch system, to multiprogramming system and to time-sharing system.

• The computer runs one and only one application at a time.

- The computer runs one and only one application at a time.
- Batching similar jobs

- The computer runs one and only one application at a time.
- Batching similar jobs
 - Automatically transfers control from one job to another.

- The computer runs one and only one application at a time.
- Batching similar jobs
 - Automatically transfers control from one job to another.
- First rudimentary operating system.

• (a) Programmers bring cards to IBM 1401

• (a) Programmers bring cards to IBM 1401 (b) 1401 reads batch of jobs into tape.

- (a) Programmers bring cards to IBM 1401 (b) 1401 reads batch of jobs into tape.
- (c) Operator carries input tape to IBM 7094

- (a) Programmers bring cards to IBM 1401 (b) 1401 reads batch of jobs into tape.
- (c) Operator carries input tape to IBM 7094 (d) 7094 does computing.

- (a) Programmers bring cards to IBM 1401 (b) 1401 reads batch of jobs into tape.
- (c) Operator carries input tape to IBM 7094 (d) 7094 does computing.
- (e) Operator carries output tape to IBM 1401.

- (a) Programmers bring cards to IBM 1401 (b) 1401 reads batch of jobs into tape.
- (c) Operator carries input tape to IBM 7094 (d) 7094 does computing.
- (e) Operator carries output tape to IBM 1401. (f) 1401 prints output.

• A typical job:

• A typical job:

• A punch card

• A punch card

Multiprogramming systems

Multiprogramming systems

• Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them.

Multiprogramming systems

 Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them.

Batch v.s. Multiprogramming system

Batch v.s. Multiprogramming system

CPU idle: .083 I/O idle: .583

 The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).

- The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
 - Designed for interactive computing which requires quick response time.

- The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
 - Designed for interactive computing which requires quick response time.

• Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X
 - IBM OS/2

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X
 - IBM OS/2
 - Unix

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X
 - IBM OS/2
 - Unix
 - Solaris by Sun microsystem

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X
 - IBM OS/2
 - Unix
 - Solaris by Sun microsystem
 - HP-UX by Hewlett-Packard

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X
 - IBM OS/2
 - Unix
 - Solaris by Sun microsystem
 - HP-UX by Hewlett-Packard
 - AIX by IBM

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X
 - IBM OS/2
 - Unix
 - Solaris by Sun microsystem
 - HP-UX by Hewlett-Packard
 - AIX by IBM
 - Free (as in freedom) software such as BSD (Berkeley Software Distribution) Unix, GNU/Linux

- Operating systems for these computers have benefited in several ways from the development of the operating systems for mainframes.
 - Microsoft MS-DOS, Windows 9x/NT
 - Apple Macintosh, Mac OS X
 - IBM OS/2
 - Unix
 - Solaris by Sun microsystem
 - HP-UX by Hewlett-Packard
 - AIX by IBM
 - Free (as in freedom) software such as BSD (Berkeley Software Distribution) Unix, GNU/Linux
 -

 Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor,

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc
- Some control devices have time requirement, i.e., Real time

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc
- Some control devices have time requirement, i.e., Real time
 - Hard real time, actions absolutely MUST occur at a certain moment.

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc
- Some control devices have time requirement, i.e., Real time
 - Hard real time, actions absolutely MUST occur at a certain moment.
 - **Soft real time**, missing an occasional deadline is acceptable.

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc
- Some control devices have time requirement, i.e., Real time
 - Hard real time, actions absolutely MUST occur at a certain moment.
 - **Soft real time**, missing an occasional deadline is acceptable.
- Examples

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc
- Some control devices have time requirement, i.e., Real time
 - Hard real time, actions absolutely MUST occur at a certain moment.
 - Soft real time, missing an occasional deadline is acceptable.
- Examples
 - Microsoft Windows CE (Consumer Electronics)

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc
- Some control devices have time requirement, i.e., Real time
 - Hard real time, actions absolutely MUST occur at a certain moment.
 - Soft real time, missing an occasional deadline is acceptable.
- Examples
 - Microsoft Windows CE (Consumer Electronics)
 - Windriver vxWorks

- Embedded computer is often used as a control device in a dedicated application such as industrial control systems. Usually, they have limited resources:
 - Slow processor, limited memory.
 - Small or even no display screen.
 - Limited power supply, etc
- Some control devices have time requirement, i.e., Real time
 - Hard real time, actions absolutely MUST occur at a certain moment.
 - Soft real time, missing an occasional deadline is acceptable.
- Examples
 - Microsoft Windows CE (Consumer Electronics)
 - Windriver vxWorks
 - GNU/Linux, etc

Features migration

Features migration

• History repeats itself.

Features migration

History repeats itself.

Questions

• Any questions?

