1954411/9411 APPLE 20, 2025
Deep lanning
- Discriminative approach
(Supervised learning)
NN, CNN, RNN,
- Generative methods
unsupervised learning.
Boltzmann machines, 6Aus,
variational autoencender-
Boltzmann machiner
- Dataset (X19)
- Model with parameters &
- cost/loss/Risk Junetlon
ontimize cost lanction (madient
descent method- lind out !-
optimite cost function (gradient descent methods) find opti- mal parameters G
ma a c plantituding
Dataset y = f(x; E)
Dataset y = f(x; e)
Model
7.004
cost janction C(E)
Example:
mean squared emon ?
$C(\epsilon) = \frac{1}{2} \left[(9i - f(xi'; \epsilon)) \right]$
$C(G) = \frac{1}{2} \left(3i - 3i - 3i \right)$
~ € ≠⊙

Gradient Descent Metropolis-flastings (Gills sampling) Blocking, Standard NN 4 (R; x) -> 4 (x; 6) $= NN(x; \epsilon)$ neunal network, Examples macting C++ met cpt/mac nu fon meluding ML libraries Boltzmann machine 4(E; x) -> 4(x; G) $= p(x; \epsilon) = 1 e^{-\beta E(x; \epsilon)}$ E(x; c) reflects the way
we made the met wat Benefit: we can reuse PI July, tat need to replace 4(k,'a) with

$$p(x, h, e) = \frac{1}{Z} p(x, h, e)$$

$$= \frac{1}{Z} p(x, h, e)$$

$$= \sum_{xh} p(x, h, e)$$

$$+ \sum_{j=0}^{N-1} C_j h_j + \sum_{x_i} W_{x_j} h_j'$$

$$+ \sum_{j=0}^{N-1} C_j h_j' + \sum_{x_j} V_{x_i} W_{x_j} h_j'$$

$$+ \sum_{j=0}^{N-1} C_j h_j' + \sum_{x_j} V_{x_j} e$$

$$= \frac{1}{Z(e)} p(x_j' e)$$

$$= \frac{1}{Z(e)} = \sum_{x_j} p(x_j' e)$$

$$= \frac{1}{Z(e)} = \sum_{x_j} p(x_j' e)$$

$$= \sum_{x_j} p(x_j' e)$$

$$= p(x_j'$$

$$\frac{p(x;e)}{2(e)} = p(x;e)$$

$$\left(|E \mathcal{L} | \mathcal{J} = \sum_{x} p(x; e) \mathcal{J}^{m}(x; e) \right)$$