Tips for Training Deep Neural Network

Outline

Outline

Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU)

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

Review:

Backpropagation

$$\frac{\partial \mathbf{C}_{x}}{\partial w_{ij}^{l}} = \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}} \frac{\partial \mathbf{C}_{x}}{\partial z_{i}^{l}}$$

$$W_{ij}$$
 \mathcal{L}_i

Forward Pass

$$z^1 = W^1 x + b^1$$

$$a^1 = \sigma(z^1)$$

• • • • •

$$z^{l-1} = W^{l-1}a^{l-2} + b^{l-1}$$

$$a^{l-1} = \sigma(z^{l-1})$$

\mathcal{S}_{i}^{l}

Error signal

$$\delta^{L} = \sigma'(z^{L}) \bullet \nabla C_{x}(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \bullet (W^L)^T \delta^L$$

$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

Review:

Backpropagation

$$\frac{\partial \mathbf{C}_{x}}{\partial w_{ij}^{l}} = \begin{bmatrix} \partial z_{i}^{l} & \partial \mathbf{C}_{x} \\ \partial w_{ij}^{l} & \partial z_{i}^{l} \end{bmatrix}$$

$|\delta_i^l|$

Error signal

Backward Pass

$$\delta^{L} = \sigma'(z^{L}) \bullet \nabla C_{x}(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \bullet (W^L)^T \delta^L$$

$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

Problem of Sigmoid

Derivative of Sigmoid Function is always smaller than 1

Vanishing Gradient Problem

Backward Pass:

- For sigmoid function, $\sigma'(z)$ always smaller than 1
- Error signal is getting smaller and smaller

Gradient is smaller

$$\frac{\partial \mathbf{C}_{x}}{\partial w_{ij}^{l}} = \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}} \frac{\partial \mathbf{C}_{x}}{\partial z_{i}^{l}} \longrightarrow \delta_{i}^{l}$$

Vanishing Gradient Problem

Backward Pass:

 $\sigma(z)$

a = z

Backward Pass:

 $\sigma(z)$

a = z

Backward Pass:

$$\frac{\partial \mathbf{C}_{x}}{\partial w_{nj}^{L}} = \frac{\partial z_{n}^{L}}{\partial w_{nj}^{L}} \frac{\partial \mathbf{C}_{x}}{\partial z_{n}^{L}}$$

Backward Pass:

All the weights connected to this neuron will not update.

$$\delta_n^{L} = \frac{\partial C_x}{\partial z_n^{L}} = 0$$

Possible solution:

- 1. softplus
- 2. Initialize with large bias

ReLU - variant

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

Maxout

All ReLU variants are just special cases of Maxout

Maxout – ReLU is special case

Maxout – ReLU is special case

Maxout - Training

Given a training data x, we know which z would be

Maxout - Training

Given a training data x, we know which z would be

Train this thin and linear netowrk

Outline

Cost Function

Output Layer

It is better to let the output bounded.

Softmax layer as the output layer

Ordinary Output layer

$$z_1^L \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1^L)$$

$$z_2^L \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2^L)$$

$$z_3^L \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3^L)$$

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

 What kind of cost function should we used for softmax layer output?

Define cost:
$$C = -log y_r$$

Cross Entropy

$$y_i = \frac{e^{z_i^L}}{\sum_{j} e^{z_j^L}}$$

Do we have to consider other dimensions?

$$y_{i} = \frac{e^{z_{i}^{L}}}{\sum_{j} e^{z_{j}^{L}}}$$

$$C = -log y_{r}$$

$$\delta_r^{L} = \frac{\partial C}{\partial z_r^{L}} : \vdots \\ y_r - 1 : \vdots$$

$$z_{1}^{L} \longrightarrow y_{1} \qquad \hat{y}_{1}$$

$$S_{r}^{L} = \frac{\partial C}{\partial z_{r}^{L}} \qquad \vdots \qquad \vdots$$

$$y_{r} - 1 \qquad \vdots$$

$$\vdots \qquad \vdots$$

$$y_{r} - 1 \qquad \vdots$$

$$\vdots \qquad \vdots$$

$$\mathcal{S}_r^{L} = \frac{\partial C}{\partial z_r^{L}} = -\frac{1}{y_r} \frac{\partial y_r}{\partial z_r^{L}} = -\frac{1}{y_r} \left(y_r - y_r^2 \right) = \underline{y_r - 1}$$

$$y_r = \frac{e^{z_r^L}}{\sum_{i} e^{z_j^L}}$$

 z_r^L appears in both numerator and denominator

The absolute value of δ_r^L is larger when y_r is far from 1

$$\mathcal{S}_{i}^{L} = \frac{\partial C}{\partial z_{i}^{L}} = -\frac{1}{y_{r}} \frac{\partial y_{r}}{\partial z_{i}^{L}} = -\frac{1}{y_{r}} \left(-y_{r} y_{i}\right) = \underline{y_{i}}$$

$$y_r = \frac{e^{z_r}}{\sum e^{z_j^L}} z_i^L \text{ appears only in denominator}$$

The absolute value of δ_i^L is larger when y_i is larger

Outline

Normalizing Input

Normalizing Input

Source of figure: http://cs231n.github.io/neural-networks-2/

Normalizing your training and testing data in the same way.

Outline

Vanilla Gradient Descent

- 1. How to determine the learning rates
- 2. Stuck at local minima or saddle points

Outline

Outline

Learning Rates

Source: http://neuralnetworksanddeeplearning.com/chap3.html

Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Give different parameters different learning rates

$$g^t = \frac{\partial C(\theta^t)}{\partial w} \qquad \eta^t = \frac{\eta}{\sqrt{t+1}}$$

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

w is one parameters

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 σ^t : **root mean square** of $w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$ the previous derivatives of parameter w

Parameter dependent

Adagrad

 σ^t : **root mean square** of the previous derivatives of parameter w

$$w^{1} \leftarrow w^{0} - \frac{\eta^{0}}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta^{1}}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\frac{1}{2}} [(g^{0})^{2} + (g^{1})^{2}]$$

$$w^{3} \leftarrow w^{2} - \frac{\eta^{2}}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\frac{1}{3}} [(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}]$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta^{t}}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\frac{1}{t+1}} \sum_{i=0}^{t} (g^{i})^{2}$$

Adagrad

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

$$\sigma^t = \sqrt{\frac{1}{t+1}} \sum_{i=0}^t (g^i)^2$$

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

Contradiction?
$$g^t = \frac{\partial C(\theta^t)}{\partial w} \quad \eta^t = \frac{\eta}{\sqrt{t+1}}$$

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t \underline{g}^t \longrightarrow$$

Larger gradient, larger step

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} \underline{g^t}$$

Larger gradient, larger step

Larger gradient, smaller step

Intuitive Reason

· <u>反差</u>

g ⁰	g ¹	g ²	g ³	g ⁴	•••••
0.001	0.001	0.003	0.002	0.1	•••••
g ⁰	g ¹	g ²	g ³	g ⁴	•••••
10.8					

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$
 造成反差的效果

Larger gradient, larger steps?

Second Derivative

$$\frac{\partial^2 y}{\partial x^2} = 2a$$
 The best step is

|First derivative|

Second derivative

More than one parameters

What to do with Adagrad?

The best step is

|First derivative|

Second derivative

Use first derivative to estimate second derivative

Outline

Easy to stuck

In physical world

Momentum

Momentum

Movement: movement of last step minus gradient at present

Start at point θ^0

Movement v⁰=0

Compute gradient at θ^0

Movement $v^1 = \lambda v^0 - \eta \nabla C(\theta^0)$

Move to $\theta^1 = \theta^0 + v^1$

Compute gradient at θ^1

Movement $v^2 = \lambda v^1 - \eta \nabla C(\theta^1)$

Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement.

Momentum

Movement: movement of last step minus gradient at present

vⁱ is actually the weighted sum of all the previous gradient:

$$\nabla C(\theta^0), \nabla C(\theta^1), \dots \nabla C(\theta^{i-1})$$

$$v^0 = 0$$

$$v^1 = - \eta \nabla C(\theta^0)$$

$$v^2 = -\lambda \eta \nabla C(\theta^0) - \eta \nabla C(\theta^1)$$

Start at point θ^0

Movement $v^0=0$

Compute gradient at θ^0

Movement $v^1 = \lambda v^0 - \eta \nabla C(\theta^0)$

Move to $\theta^1 = \theta^0 + v^1$

Compute gradient at θ^1

Movement $v^2 = \lambda v^1 - \eta \nabla C(\theta^1)$

Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement

Momentum

http://www.reddit.com/r/MachineLearning/comments/2gopfa/visual izing_gradient_optimization_techniques/cklhott (By Alec Radford)

http://www.reddit.com/r/MachineLearning/comments/2gopfa/visual izing_gradient_optimization_techniques/cklhott (By Alec Radford)

Outline

Panacea

- Have more training data
- Create more training data (?)

Handwriting recognition:

Outline

Outline

Early Stopping

How many parameter updates do we need?

Outline

The parameters closer to zero is preferred.

Training data:

$$\{(x, \hat{y}), \ldots\}$$

$$x \begin{cases} x_1 & w_1 \\ x_2 & w_2 \\ \vdots & w_i \\ x_i & z = w \cdot x \\ \vdots & \vdots \end{cases}$$

Testing data:

$$\{(x', \hat{y}), \ldots\}$$

$$x' = x + \varepsilon$$

ng data:
$$z' = w \cdot (x + \varepsilon)$$

$$= w \cdot x + w \cdot \varepsilon$$

$$= z + w \cdot \varepsilon$$

To minimize the effect of noise, we want w close to zero.

- New cost function to be minimized
 - Find a set of weight not only minimizing original cost but also close to zero

$$C'(\theta) = C(\theta) + \lambda \frac{1}{2} \|\theta\|^2 \rightarrow \text{Regularization term:}$$

$$\theta = \left\{ W^1, W^2, \ldots \right\}$$
Original cost
$$\|\theta\|^2 = \left(w_{11}^1 \right)^2 + \left(w_{12}^1 \right)^2 + \ldots$$

(e.g. minimize square $+(w_{11}^2)^2 + (w_{12}^2)^2 + \dots$

(not consider biases. why?)

$$\|\theta\|^2 = (w_{11}^1)^2 + (w_{12}^1)^2 + \dots + (w_{11}^2)^2 + (w_{11}^2)^2 + \dots$$

New cost function to be minimized

$$\mathbf{C}'(\theta) = \mathbf{C}(\theta) + \lambda \frac{1}{2} \|\theta\|^2$$
 Gradient: $\frac{\partial \mathbf{C}'}{\partial w} = \frac{\partial \mathbf{C}}{\partial w} + \lambda w$

Update:
$$w^{t+1} \rightarrow w^t - \eta \frac{\partial C'}{\partial w} = w^t - \eta \left(\frac{\partial C}{\partial w} + \lambda w^t \right)$$
$$= \underbrace{\left(1 - \eta \lambda \right) w^t}_{} - \eta \underbrace{\frac{\partial C}{\partial w}}_{}$$

Smaller and smaller

• Our Brain

Outline

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C_{\chi}(\theta^{t-1})$$

- > In each iteration
 - Each neuron has p% to dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C_{x}(\theta^{t-1})$$

Training:

(stochastic gradient descent)

> In each iteration

 \mathcal{X}

- Each neuron has p% to dropout
 - The structured of the network is changed.
- Using the new network for training

For each iteration, we resample the dropout neurons

Testing:

No dropout

- If the dropout rate at training is p%, all the weights times (1-p)%
- Assume that the dropout rate is 50%. If $w_{ij}^l = 1$ from training, set $w_{ij}^l = 0.5$ for testing.

- Intuitive Reason

Training

Dropout (腳上綁重物)

Testing

No dropout (拿下重物後就變很強)

- Intuitive Reason

我的 partner 會擺爛,所以 我要好好做

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

- Intuitive Reason
- Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Dropout - Ensemble **Training** Set **Ensemble** Set 1 Set 2 Set 3 Set 4 Network Network Network Network 3 2

Train a bunch of networks with different structures

- Ensemble

Ensemble

- Ensemble

Dropout ≈ **Ensemble**.

Training of Dropout

- > Using one data to train one network
- Some parameters in the network are shared

- Ensemble

Dropout ≈ **Ensemble**.

- Ensemble

Experiments on hand writing digital classification

Ref: http://arxiv.org/pdf/1302.4389.pdf

Practical Suggestion for Dropout

- Larger network
 - If you know your task need *n* neurons, for dropout rate *p*, your network need *n*/(1-*p*) neurons.
- Longer training time
- Higher learning rate
- Larger momentum

Concluding Remarks

Not covered today: Parameters Initialization

http://neuralnetworksanddeeplear ning.com/chap3.html#weight_initi alization

