Дополнительные главы квантовой механики

Листок 1. Континуальный интеграл для свободной частицы.

Обязательные задачи: 1а, 16, 2, 3а, 36.

- 1. Найдите функцию действия $S(x_1, t_1; x_0, t_0)$ для
 - а) свободной частицы с лагранжи
аном $L=\frac{m\dot{x}^2}{2};$
 - б) гармонического осциллятора с лагранжи
аном $L = \frac{m}{2} (\dot{x}^2 \omega^2 x^2).$
- 2. Пусть $K(x_1,t_1;x_0,t_0)=\langle x_1|e^{-i\hat{H}(t_1-t_0)}|x_0\rangle$ ядро оператора эволюции для некоторого гамильтониана \hat{H} . Покажите, что K удовлетворяет формуле «полной вероятности»:

$$K(x_2, t_2; x_0, t_0) = \int_{\mathbb{R}} K(x_2, t_2; x_1, t_1) K(x_1, t_1; x_0, t_0) dx_1, \quad t_0 \leqslant t_1 \leqslant t_2.$$

3. Покажите, что ядро оператора эволюции для свободной частицы на прямой с гамильтонианом $H=\frac{p^2}{2m}$ есть

$$K(x_1, t_1; x_0, t_0) = \sqrt{\frac{m}{2\pi i (t_1 - t_0)}} \exp\left(\frac{im(x_1 - x_0)^2}{2(t_1 - t_0)}\right),$$
 где $\sqrt{i} = e^{\frac{\pi i}{4}}.$

Получите ответ двумя способами:

- а) решая уравнение Шредингера;
- б) вычисляя континуальный интеграл.

Нарисуйте график этой функции в зависимости от $x_1 - x_0$ при фиксированном $t_1 - t_0$. Найдите плотность вероятности перехода из точки x_0 в точку x_1 за время $t_1 - t_0$.