ΠΡΟΓΡΑΜΜΑ

по дисциплине: Теория вероятностей

по направлению

подготовки: <u>03.03.01 «Прикладные математика и физика»</u>,

10.05.01 «Компьютерная безопасность»

физтех-школа: ФРКТ

кафедра: высшей математики

курс: $\frac{1}{2}$ семестр: $\frac{2}{2}$

<u>лекции — 30 часов</u>

практические (семинарские)

занятия — 30 часов

<u>дабораторные занятия — нет</u> <u>Диф. зачёт — 2 семестр</u>

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 60 Самостоятельная работа: теор. курс — 30 часов

Программу составил

д. ф.-м. н., профессор В. В. Горяйнов

Программа принята на заседании кафедры высшей математики 2 ноября 2023 г.

Заведующий кафедрой д. ф.-м. н., профессор

Г. Е. Иванов

- 1. **Вероятностное пространство.** Теоретико-множественная модель событий. Способы определения вероятности. Элементы комбинаторики. Статистики Максвелла-Больцмана, Ферми-Дирака и Бозе-Эйнштейна. Геометрические вероятности. Последовательности множеств, верхний и нижний пределы. Сигма-алгебры множеств. Счетная аддитивность и непрерывность функции множеств. Свойства вероятности.
- 2. **Условная вероятность.** Теорема умножения, формула полной вероятности, формула Байеса. Независимость. Независимые испытания: схема Бернулли и полиномиальная схема. Лемма Бореля–Кантелли.
- 3. Дискретные случайные величины. Индикаторы и их свойства. Определение и свойства математического ожидания и дисперсии. Независимость случайных величин и мультипликативное свойство математического ожидания. Совместное распределение и ковариация. Свойства ковариации и коэффициента корреляции. Ковариационная матрица. Целочисленные случайные величины и производящие функции.
- 4. Структура сигма-алгебр, продолжение меры, независимость классов событий. Определения пи- и дельта-систем. Теорема о связи их с понятием сигма-алгебры. Минимальная сигма-алгебра, порожденная классом множеств. Лемма Дынкина. Определение случайной величины как измеримого отображения и его распределения. Теорема о единственности продолжения меры с пи-системы. Теорема о независимости сигма-алгебр, порожденных пи-системами.
- 5. Случайные величины (общий случай). Определение функции распределения и плотности, их свойства. Математическое ожидание и дисперсия. Характеристические функции и их свойства. Характеристические функции и их свойства. Характеристические функции некоторых распределений. Неравенства Иенсена, Ляпунова, Маркова и Чебышёва. Совместное распределение и независимость.
- 6. Законы больших чисел и центральная предельная теорема. Сходимости последовательностей случайных величин почти наверное и по вероятности, теорема о связи между ними. Законы больших чисел Чебышёва и Бернулли. Усиленный закон больших чисел. Сходимость по распределению. Центральная предельная теорема. Сходимость в среднем.
- 7. **Цепи Маркова.** Условия марковости и однородности в терминах переходных вероятностей. Уравнения Колмогорова— Чепмена. Теорема о предельных вероятностях (стационарное распределение).
- 8. **Ветвящиеся процессы.** Описание модели Гальтона Ватсона и производящая функция процесса. Вероятность вырождения процесса, её выражение через производящую функцию и связь с классификацией про-

цесса. Примеры процессов с геометрическим распределением числа потомков от одной частицы в следующем поколении.

9. Задача линейного оценивания и уравнение регрессии.

Литература

- 1. Ширяев А. Н. Вероятность. В 2-х кн. 3-е изд. Москва : МЦНМО, 2004.
- 2. Севастьянов Б. А. Курс теории вероятностей и математической статистики.— Москва: Наука, 1982.
- 3. *Розанов Ю. А.* Теория вероятностей, случайные процессы и математическая статистика. 2-е изд. Москва: Наука, 1989.
- 4. Захаров В. К., Севастьянов Б. А., Чистяков В. П. Теория вероятностей. Москва : Наука, 1983.
- 5. Феллер В. М. Введение в теорию вероятностей и ее приложения. В 2-х томах/ пер. с англ. Т. 1.-3-е изд. Москва : Мир. 1984.
- 6. Зубков А. М., Севастьянов Б. А., Чистяков В. П. Сборник задач по теория вероятностей. 2-е изд. Москва: Наука, 1989.
- 7. Прохоров А. В., Ушаков В. Г., Ушаков Н. Г. Задачи по теории вероятностей: основные понятия, предельные теоремы, случайные процессы. Москва: КДУ, 2009.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 14-20 марта)

І. Вероятностное пространство. Свойства вероятности

- **Т.1.** Пусть A, B, C три события. Найти выражения для событий:
 - а) произошло только A;
 - б) произошли A и B, а C не произошло;
 - в) все три события произошли;
 - г) произошло хотя бы одно из них;
 - д) произошло только одно из них;
 - е) ни одно из них не произошло;
 - ж) произошло не более двух из них.
- **Т.2.** Пусть A, B два события. Найти все события X такие, что

$$\overline{(X \cup A)} \cup \overline{(X \cup \overline{A})} = B.$$

- **Т.3.** Пусть A, B два события. Найти все события X такие, что AX = AB.
- Т.4. Найти простые выражения для событий
 - a) $(A \cup B) \cap (A \cup \overline{B})$; 6) $(A \cup B) \cap (\overline{A} \cup \overline{B}) \cap (A \cup \overline{B})$; B) $(A \cup B) \cap (B \cup C)$.
- **Т.5.** Пусть

$$\Omega = \{1, 2, 3, 4\}, \quad \mathscr{A}_1 = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}, \quad \mathscr{A}_2 = \{\emptyset, \Omega, \{2\}, \{1, 3, 4\}\}.$$

Являются ли \mathscr{A}_1 и \mathscr{A}_2 алгебрами? Является ли алгеброй $\mathscr{A} = \mathscr{A}_1 \cup \mathscr{A}_2$?

- **Т.6.** Пусть $\mathscr{A}_1 \subset \mathscr{A}_2 \subset \ldots$ последовательность алгебр подмножеств Ω . Является ли алгеброй их объединение $\mathscr{A} = \bigcup_{n=1}^{\infty} \mathscr{A}_n$?
- **Т.7.** Пусть A_1, A_2, \ldots последовательность событий. Покажите, что

$$\mathsf{P}\left(\underline{\lim_{n\to\infty}}\,A_n\right)\leq\,\underline{\lim_{n\to\infty}}\,\mathsf{P}(A_n)\,\leq\,\overline{\lim_{n\to\infty}}\,\mathsf{P}(A_n)\,\leq\,\mathsf{P}\left(\overline{\lim_{n\to\infty}}\,A_n\right).$$

- Классическое определение вероятности. Комбинаторика.
 Геометрические вероятности
- **Т.8.** Пусть $1 \leq m < n$. Доказать, что $C_n^m = \sum_{k=m}^n C_{k-1}^{m-1}$
- **Т.9.** Из урны по очереди без возвращения извлекают 10 шаров, среди которых 6 белых и 4 чёрных. Какова вероятность, что не будет извлечено подряд два чёрных шара?
- **Т.10.** Объяснить, почему при подбрасывании трёх игральных костей 11 очков выпадают чаще, чем 12 очков.
- **Т.11.** Монета подбрасывается до тех пор, пока не выпадет подряд два раза одной стороной. Описать пространство элементарных исходов. Используя соображения симметрии, найти:
 - а) распределение вероятностей;
 - б) вероятность события, что эксперимент закончится до шестого бросания;
 - в) вероятность того, что потребуется чётное число бросаний.
- **Т.12.** Из колоды в 52 карты наудачу берется 6 карт. Какова вероятность того, что среди них будут представительницы всех четырех мастей?
- **Т.13.** 2n команд разбиваются на 2 равные подгруппы. Какова вероятность того, что 2 сильнейшие команды окажутся в разных подгруппах?
- **Т.14.** Найти вероятность того, что дни рождения 12 человек приходятся на разные месяцы года.
- **Т.15.** В n конвертов разложено по одному письму n адресатам. На каждом конверте наудачу написан один из n адресов. Найти вероятность того, что хотя бы одно письмо пойдет по назначению.

- **Т.16.** Расстояние от пункта A до пункта B автобус проходит за 2 минуты, а пешеход за 15 минут. Интервал движения автобусов 25 минут. Пешеход в случайный момент времени подходит к пункту A и отправляется в B пешком. Найти вероятность того, что в пути пешехода догонит очередной автобус.
- **Т.17.** На отрезке наудачу выбираются две точки. Какова вероятность того, что из получившихся трех отрезков можно составить треугольник?
- **Т.18.** На плоскость, разлинованную параллельными линиями, расстояние между которыми L, бросают иглу длины $l \leqslant L$. Какова вероятность того, что игла пересечет линию?
- Т.19. У билетной кассы стоит очередь в 100 человек. Половина людей в очереди имеет 100-рублевые купюры, а вторая половина 50-рублевые купюры. Изначально в кассе нет денег и стоимость билета 50 рублей. Какова вероятность, что никому не придется ждать сдачу?

III. Условные вероятности. Формула полной вероятности. Независимость

- **Т.20.** Трое игроков по очереди подбрасывают монету. Выигрывает тот, у кого раньше появится «герб». Найти вероятности выигрыша каждого игрока.
- **Т.21.** Пусть A, B и A, C образуют пары независимых событий и $C \subset B$. Покажите, что A и $B \setminus C$ также независимы.
- **Т.22.** В семье двое детей. Найти вероятность того, что оба ребёнка мальчики, если
 - а) старший ребёнок мальчик;
 - б) известно, что хотя бы один ребёнок мальчик.
- **Т.23.** В ящике находится 10 теннисных мячей, из которых 6 новые. Для первой игры наугад берут два мяча, которые после игры возвращают в ящик. Для второй игры также наугад берут 2 мяча. Найти вероятность того, что оба мяча, взятые для второй игры, новые.
- **Т.24.** Случайный эксперимент заключается в последовательном подбрасывании двух игральных костей. Найти вероятность того, что сумма в 5 очков появится раньше, чем сумма в 7 очков.

- Т.25. Имеется три телефонных автомата, которые принимают специальные жетоны. Один из них никогда не работает, второй работает всегда, а третий работает с вероятностью 1/2. Некто имеет три жетона и пытается выяснить, какой из автоматов исправный (работает всегда). Он делает попытку на одном из автоматов, которая оказывается неудачной. Затем переходит к другому автомату, на котором две подряд попытки оказываются удачными. Какова вероятность, что этот автомат исправный?
- **Т.26.** Из урны, содержащей M белых и N черных шаров, утеряно r шаров. Какова вероятность извлечения белого шара?
- **Т.27.** Брошены две игральные кости. Какова вероятность того, что на первой кости выпало 3 очка, если известно, что на второй кости выпало очков не меньше, чем на первой?
- **Т.28.** Пусть A, B, C три попарно независимые равновероятные события, $\mathsf{P}(A) = \mathsf{P}(B) = \mathsf{P}(C) = p$. При этом $ABC = \varnothing$. Найти максимально возможное значение p.
- **Т.29.** Пусть в схеме Бернулли вероятность успеха в отдельном испытании равна $p,\ 0 . Какова вероятность того, что цепочки из десяти подряд успехов появятся бесконечное число раз?$
- **Т.30*.** При посадке в автобус выстроилась очередь из *n* пассажиров, у каждого из которых имеется билет на одно из *n* мест. Первой в очереди стоит сумасшедшая старушка. Она вбегает в салон и садится на случайное место (возможно, и на свое). Далее пассажиры по очереди занимают свои места, а в случае, если свое место уже занято, садятся случайным образом на одно из свободных мест. Найти вероятность того, что последний пассажир займет свое место.

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 9–15 мая)

- І. Случайные величины и их характеристики
- **Т.1.** Случайные величины ξ и η независимы; ξ имеет плотность распределения $f_{\xi}(x)$, а $\mathsf{P}(\eta=0)=\mathsf{P}(\eta=1)=\mathsf{P}(\eta=-1)=\frac{1}{3}$. Найти закон распределения случайной величины $\xi+\eta$.

- **Т.2.** Игральная кость бросается до первого появления шестёрки. Пусть ξ число бросаний. Найти распределение вероятностей ξ , $\mathsf{E}\xi$, $\mathsf{D}\xi$. Чему равна вероятность того, что $\xi \leqslant 5$?
- **Т.3.** В N ячеек случайно в соответствии со статистикой Бозе–Эйнштейна (частицы неразличимы и размещение без ограничений) размещаются n частиц. Пусть ξ число пустых ячеек. Найти Е ξ и D ξ .
- **Т.4.** Подбрасываются две игральные кости. Пусть ξ_1 число очков, выпавших на первой игральной кости, а ξ_2 на второй. Определим $\xi = \max\{\xi_1, \xi_2\}, \ \eta = \min\{\xi_1, \xi_2\}.$ Найти $\mathsf{cov}(\xi, \eta)$.
- **Т.5.** Игральная кость подбрасывается n раз. Пусть ξ число появлений единицы, а η число появлений шестёрки. Найти коэффициент корреляции этих случайных величин.
- **Т.6.** Доказать, что если случайные величины ξ и η принимают только по два значения каждая, то из некоррелируемости следует независимость.
- **Т.7.** Пусть ξ_k , k=1,2,- независимые случайные величины с распределением Пуассона. Найти распределение их суммы и условное распределение ξ_1 , если известна сумма $\xi_1 + \xi_2$.
- **Т.8.** Совместное распределение случайных величин ξ и η определяется условиями $P(\xi\eta=0)=1;\ P(\xi=1)=P(\xi=-1)=P(\eta=1)=P(\eta=-1)=\frac{1}{4}.$ Найти математические ожидания, дисперсии и ковариацию этих случайных величин.
- **Т.9.** Привести примеры трех случайных величин ξ_1, ξ_2, ξ_3 , удовлетворяющих условиям:
 - (a) $\mathsf{E}\xi_i\xi_j = \mathsf{E}\xi_i\mathsf{E}\xi_j, \ i \neq j, \ \mathsf{E}\xi_1\xi_2\xi_3 \neq \mathsf{E}\xi_1\mathsf{E}\xi_2\mathsf{E}\xi_3;$
 - (b) $\mathsf{E}\xi_1\xi_2\xi_3 = \mathsf{E}\xi_1\mathsf{E}\xi_2\mathsf{E}\xi_3$, $\mathsf{E}\xi_i\xi_j \neq \mathsf{E}\xi_i\mathsf{E}\xi_j$, $i \neq j$.
- **Т.10.** Пусть ξ номер r-го успеха в последовательности независимых испытаний Бернулли. Найти $\mathbf{E}\xi$ и $\mathbf{D}\xi$.
- **Т.11.** В квадрат $\{(x_1, x_2): 0 \leqslant x_i \leqslant 1; i = 1, 2\}$ наудачу брошена точка. Пусть $\xi_1, \, \xi_2$ ее координаты. Найти функцию распределения и плотность вероятности случайной величины $\eta = \xi_1 + \xi_2$.
- **Т.12.** Точка (ξ, η) имеет равномерное распределение в квадрате $\{(x, y): 0 \le x \le a, \ 0 \le y \le a\}$. Вычислить распределение, математическое ожидание и дисперсию случайной величины $\zeta = |\xi \eta|$.

- **Т.13.** Точка (ξ, η) имеет равномерное распределение в квадрате $\{(x, y): 0 \le x \le a, 0 \le y \le a\}$. Вычислить распределение, математическое ожидание и дисперсию случайной величины $\theta = \min\{\xi, \eta\}$.
- **Т.14.** Случайная величина ξ имеет равномерное распределение на отрезке [0,1]. Придумать такие функции $f_i:\mathbb{R}\to\mathbb{R},\,1\leq i\leq 3$, чтобы случайные величины $f_1(\xi), f_2(\xi), f_3(\xi)$ были независимыми и имели распределение Бернулли с параметром $\frac{1}{2}$.
- **Т.15.** Известно, что случайная величина ξ имеет строго возрастающую непрерывную функцию распределения $F_{\xi}(x)$. Найти распределение случайной величины $\eta = F_{\xi}(\xi)$.

II. Характеристические функции. Неравенство Чебышёва

Т.16. Случайная величина ξ имеет распределение, которое определяется плотностью

$$f_{\xi}(x) = \frac{1}{2}e^{-|x|}, \quad -\infty < x < \infty.$$

Сравнить точное значение вероятности $\mathsf{P}(|\xi| \geq 4)$ с её оценкой, полученной по неравенству Чебышёва.

Т.17. Пусть ξ_n — случайная величина, равная сумме очков, появившихся при n бросаниях симметричной игральной кости. Используя неравенство Чебышева, оценить сверху

$$\mathsf{P}\left(\left|\frac{\xi_n}{n} - \frac{7}{2}\right| > \epsilon\right), \quad \epsilon > 0.$$

Т.18. Пусть ξ_n — случайная величина, равная сумме очков, появившихся при n бросаниях симметричной игральной кости. Используя центральную предельную теорему, выбрать n так, чтобы

$$\mathsf{P}\left(\left|\frac{\xi_n}{n} - \frac{7}{2}\right| \geqslant 0, 1\right) \leqslant 0, 1.$$

Т.19. Найти законы распределения, которым соответствуют следующие характеристические функции:

$$\cos t; \quad \frac{1}{2} + \frac{\cos t}{2} + i \frac{\sin t}{6}; \quad \frac{1}{2 - e^{-it}}.$$

Т.20. Какие из функций

$$\sin t; \quad \left(\frac{1}{2 - e^{-it}}\right)^3; \quad \frac{1}{1 + t^4}$$

Т.21. Найти характеристическую функцию треугольного распределения, которое определяется плотностью

$$f_{\xi}(x) = \frac{1}{\alpha} \left(1 - \frac{|x|}{\alpha} \right) \mathbb{1}_{[-\alpha,\alpha]}(x), \quad \alpha > 0.$$

III. Последовательности случайных величин. Предельные теоремы

Т.22. Пусть ξ_1, ξ_2, \ldots — последовательность одинаково распределенных случайных величин такая, что $\mathsf{E}\xi_k = a, \; \mathsf{D}\xi_k = \sigma^2$ и $\mathsf{cov}(\xi_i, \xi_j) = (-1)^{i-j}v, \; i \neq j$. Доказать, что для всякого $\varepsilon > 0$ выполняется предельное соотношение

$$\lim_{n \to \infty} \mathsf{P}\left(\left|\frac{1}{n}\sum_{k=1}^{n} \xi_k - a\right| \ge \varepsilon\right) = 0.$$

- **Т.23.** Случайная величина ξ_{λ} распределена по закону Пуассона с параметром λ . Найти $\lim_{\lambda \to \infty} \mathsf{P}\left(\frac{\xi_{\lambda} \lambda}{\sqrt{\lambda}} \leqslant x\right)$.
- **Т.24.** Книга в 500 страниц содержит 50 опечаток. Используя схему Бернулли, оценить вероятность того, что на определенной странице не менее трех опечаток. Сравнить полученный результат с пуассоновским приближением этой вероятности.
- **Т.25.** Пусть положительные независимые случайные величины $\xi_{m,n}$; $m=1,\,2,\,\ldots,\,n$ одинаково распределены с плотностью $\alpha_n e^{-\alpha_n x},\,x>0$, где $\alpha_n=\lambda n$ и $\lambda>0$. Найти предельное при $n\to\infty$ распределение случайной величины $\xi_n=\sum_{m=1}^n \xi_{m,n}$.

IV. Цепи Маркова. Ветвящиеся процессы

- **Т.26.** Население региона делится по некоторому социально-экономическому признаку на три подгруппы. Следующее поколение с вероятностями 0,4; 0,6 и 0,2, соответственно, остается в своей подгруппе, а если не остается, то с равными вероятностями переходит в любую из остальных подгрупп. Найти:
 - а) распределение населения по данному социально-экономическому признаку в следующем поколении, если в настоящем поколении в 1-й

подгруппе было 20% населения, во 2-й подгруппе — 30%, и в 3-й подгруппе — 50%;

- б) предельное распределение по данному признаку, которое не меняется при смене поколений.
- **Т.27.** В биологических приложениях процессов Гальтона Ватсона используется производящая функция

$$f(x) = px^2 + (1-p), \qquad 0$$

Найти

- а) при каких значениях параметра p процесс является докритическим, критическим, надкритическим;
 - б) математическое ожидание и дисперсию n-го поколения;
 - в) вероятность вырождения в надкритическом случае.
- **Т.28*.** Пусть матрица вероятностей перехода за один шаг цепи Маркова с двумя состояниями имеет вид

$$\begin{pmatrix} 1-\alpha & \alpha \\ \beta & 1-\beta \end{pmatrix}, \qquad 0 \leqslant \alpha, \quad \beta \leqslant 1.$$

Найти вероятности перехода за n шагов и финальные вероятности.

Задания составили:

д. ф.-м. н., профессор В. В. Горяйнов к. ф.-м. н., ст.преподаватель М. П. Савелов