Algebra II Winter 2021 Frank Sottile

15 February Fifth Homework

Write your answers neatly, in complete sentences, and prove all assertions. Start each problem on a new page (this makes it easier in Gradescope). Revise your work before handing it in, and submit a .pdf created from a LaTeX source to Gradescope. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Due Monday 22 February.

- 1. Recall that $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ is the group of integers modulo 2. Let $\pi\colon \mathbb{Z} \to \mathbb{Z}_2$ be the canonical surjection. Prove that the induced map $\pi_*\colon \mathrm{Hom}_\mathbb{Z}(\mathbb{Z}_2,\mathbb{Z}) \to \mathrm{Hom}_\mathbb{Z}(\mathbb{Z}_2,\mathbb{Z}_2)$ is the zero map and is therefore not a surjection. (You could do worse than compute all the Hom-groups.)
- 2. For a ring R, let R^{op} be the abelian group R with multiplication $\cdot_{\mathrm{op}} \colon R \times R \to R$ define by $s \cdot_{\mathrm{op}} r := rs$. (This is called the *opposite ring to* R.)

Prove that there is a ring isomorphism $\operatorname{Hom}_R(R,R) \xrightarrow{\sim} R^{\operatorname{op}}$.

- 3. Write carefully the proof that the following conditions on a module J over a ring R are equivalent:
 - (a) J is injective.
 - (b) If $\varphi \colon A \to B$ an injection of R-modules, then $\varphi^* \colon \operatorname{Hom}_R(B,J) \to \operatorname{Hom}_R(A,J)$ is a surjection of abelian groups.
 - (c) The functor $Hom_R(-, J)$ from R-modules to abelian groups is an exact functor.