

第四章 触发器

宗 汝 西安电子科技大学电子工程学院

Email: zongru@xidian.edu.cn

本章要点

- 触发器与时序逻辑电路
- 触发器的电路结构
- 触发器的功能及其描述方式
- 触发器应用电路

本章学习目标

- 掌握时序逻辑电路和组合逻辑电路的区别。
- 了解触发器的基本结构。
- 掌握触发器的基本功能和描述形式。
- 掌握应用触发器设计基本时序逻辑电路。

主要内容

- 触发器的基本形式
- 触发器功能的描述方法
- 时钟控制的触发器
- 集成边沿触发器概述
- 触发器的应用电路

组合逻辑和时序逻辑

组合电路:输出只与当前的输入有关。

时序电路:输出不仅与当前的输入有关,而且与过去的状态

有关。

过去的状态是如何保存的? 触发器。

触发器是时序电路的核心。

触发器的定义

• 触发器(Flip-Flop):具有记忆功能的双稳态电路。

- 触发器输入Y称为——激励
- 触发器输出Q称为——状态
- 现态(Qⁿ)——表示触发器现在的状态;(Qⁿ常略写为Q)
- 次态(Qⁿ⁺¹)——表示触发器的下一个状态;

触发器的基本形式

基本RS触发器:(NAND Gate Latch)

基本RS触发器

状态分析

 $R_D S_D = 01$ 时: Q = 0 $\overline{Q} = 1$

 $R_D S_D = 10$ 时: Q = 1 Q = 0

 $R_D S_D = 11$ 时: 输出保持不变

 $R_D S_D = 00$ 时: Q = 1 Q = 1

状态功能表:

R_D	S_D	Q	$ar{\mathcal{Q}}$
1	1	保持原	原状态
0	1	0	1
1	0	1	0
0	0	1 1 但两输入同时3 1后,输出不确定	

但当 R_DS_D =00同时变为11时,翻转快的门输出变为0,另一个不得翻转。

基本RS触发器:小结

- 输入信号作用前的状态称现态,用 Q^n 或Q表示;输入作用后触发器的新状态称次态,用 Q^{n+1} 表示。
- 用 Q 的值表示触发器的状态。 Q = 0,称触发器处于 0 状态; Q = 1,为 1 状态。
- S_D 端加入负脉冲,使Q = 1,称为"置位"或"置1"端; R_D 端加入负脉冲,使Q = 0,称为"复位"或"清0"端。
- $R_DS_D=00$ 时,两个输出均为稳定的1状态,但两个输出不是非的关系了;另外,如果出现输入从00同时变11,输出则不确定。

为了避免这个情况,要加 $R_D + S_D = 1$ 的输入约束条件。

触发器功能的描述方法

(以基本RS触发器为例)

描述方法1:状态转移真值表(状态表)

用真值表的形式画出电路输入、现态与电路输出、次态之间的逻辑关系。

基本RS触发器的状态表是:

R_D	S_D	Q^n	Q^{n+1}	•			
0	0	0	×	•	R_D	S_D	Q^{n+1}
0	0	1	×			0	
0	1	0	0	N.	U	U	
0	1	1	0		0	1	0
1	0	0	1	•	1	0	1
1	0	1	1		1	U	1
1	1	0	0		1	1	O^{n}
1	1	1	1	_		•	L

11

描述方法2 & 3:次态卡诺图与特征方程

也可根据状态表画出电路输出、次态之卡诺图;写出 函数表达式,就是特征方程(状态方程)。

基本RS触发器的卡诺图和特征方程是:

$$\begin{cases} Q^{n+1} = \overline{S_D} + R_D Q^n \\ S_D + R_D = 1 \end{cases}$$

12

描述方法4 & 5:状态转移图(状态图)与激励表

也可用图表示状态转移规律;用激励表表示现态到次态变化时对输入的要求。

基本RS触发器的状态图和激励表是:

$Q^n \rightarrow Q^{n+1}$	R_D S_D
0 0	× 1
0 1	1 0
1 0	0 1
1 1	1 ×

描述方法6:波形图

反映触发器状态在输入激励下随时间变化的规律。

基本RS触发器工作的波形图是:

NOR Gate Latch

问题1:用或非门构成基本RS触发器?

问题2:两个基本RS触发器逻辑符号如图所示,它们的

区别?

异步控制端

在实际应用中,有时需要在不受CLK控制的情况下把触发器置成指定的状态。为此,触发器电路还设置有异步置1输入端 S_D 和异步清O(即复位)输入端 R_D ,如图所示。

问题:逻辑符号中的异步清0和置1输入端都用字符上加一横和外加小圆圈标注,其表示高电平还是低电平有效?

*基本RS触发器-消抖应用

开关抖动问题:

问题:基本RS触发器如何构成的消抖开关电路?

时钟控制的触发器

实际应用中,必须协调各触发器状态改变的时刻,使其按一定的节拍动作。为此,加时钟脉冲控制信号CP,称钟控触发器。

• 钟控触发器的分类

按触发引导电路的不同,触发器又分成以下不同种类:

- 钟控RS触发器
- 钟控 D 触发器
- 钟控 T (T′) 触发器
- 钟控JK触发器

1. 钟控RS触发器

基本RS触发器特征方程

$$\begin{cases}
Q^{n+1} = \overline{S}_1 + R_1 Q \\
S_1 + R_1 = 1
\end{cases}$$

钟控RS触发器特征方程:

当CLK=0时

 $R_1=1$ $S_1=1$, 触发器为保持状态

当CLK=1时,

$$R_{1} = \overline{R} \qquad S_{1} = \overline{S}$$

$$Q^{n+1} = S + \overline{R}Q$$

$$SR=0$$

其中RS=0表示R=S不能同时为1。

钟控RS触发器

CLK=1时,状态表

状态转移图

激励表

$Q^n \rightarrow Q^{n+1}$	R S
0 0	\times 0
0 1	0 1
1 0	1 0
1 1	0 ×

钟控D触发器

基本RS触发器特征方程

$$\begin{cases} Q^{n+1} = \overline{S}_1 + R_1 Q \\ S_1 + R_1 = 1 \end{cases}$$

钟控D触发器

当CLK=0时, $R_1=1$ $S_1=1$,触发器为保持状态

当
$$CLK=0$$
时, $R_1=D$ $S_1=D$

特征方程:

$$Q^{n+1} = D$$

激励表

Q^n —	D	
0	0	0
0	1	1
1	0	0
1	1	1

思考:D触发器为什么能够保存过去的数据?为什么没有约束条件?

D触发器

状态表

状态(转移)图:

\mathbf{r}	1
/)—	
,,,	

时序波形:

钟控JK触发器

逻辑符号

$$CP = 1$$
 时, $R_1 = \overline{KQ}$ $S_1 = \overline{JQ}$

JK触发器特征方程:

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

状态表

J	K	Q^{n+1}	
0	0	Q^n	
0	1	0	
1	0	1_	
1	1	\overline{Q}^n	

激励表

$Q^n \rightarrow Q^{n+1}$	J K
0 0	0 ×
0 1	1 ×
1 0	× 1
1 1	\times 0

*钟控T触发器和T'触发器

1. T触发器

T触发器特征方程:

$$J = K = T$$
$$Q^{n+1} = T\overline{Q} + \overline{T}Q = T \oplus Q$$

状态表

T	Q^{n+1}
0	Q^n
1	Q^{i}

2. T'触发器

T'触发器特征方程:

$$T=1$$

$$Q^{n+1} = 1 \oplus Q = \overline{Q}$$

电平钟控触发器的空翻现象

空翻:把在一个CLK脉冲周期内触发器两次或更多次翻转的现象称为空翻。

空翻现象的发生使时钟的控制失效,这样就达不到同步控制的目的!

同步就要求每来一个CLK脉冲,触发器仅翻转一次,这样就要求:

- (1)输入信号在时钟有效期间不能改变;
- (2)要求时钟的有效宽度要足够的小。

为了解决空翻现象,采用边沿触发的触发器。

边沿触发器

C1输入处的三角表明了边沿触发特性,称为动态输入标志。

C1输入端加有小圈时,表示下降沿有效, 否则表示上升沿有效。

边沿触发方式的特点是:

- 触发器状态只在时钟跳转时翻转;
- 在CP=1或CP=0期间,输入端的任何变化都不影响输出。

如果翻转只发生在上升沿时称"上升沿触发"的触发器;如果翻转只发生在下降沿称"下降沿触发"的触发器。

边沿JK触发器

$$Q^{n+1} = D = J\overline{Q} + \overline{K}Q$$

触发器的逻辑符号

注意1,异步置1和清0端具有最高优先权,触发器正常工作时, 其异步置1和清0端都应加无效电平。

- 1. 以后应用中如不指明,均是边沿触发器。
- 2. 边沿触发抗干扰能力强,且不存在空翻,应用广泛。

触发器的逻辑符号

集成边沿触发器逻辑符号

触发器电路的时序图

时序图的画法一般按以下步骤进行:

- 1. 以CLK和触发器动作特点为基准,确定同步变化时刻(或时段);
- 2. 按时间顺序,当触发器能够改变状态时,根据触发器的 状态方程或状态表确定其次态;
- 3. 如有异步清0、置1端,画波形时要注意其是否有效,一旦有效,立刻改变触发器状态,直至异步控制端无效。

D触发器的时序波形图

DFF的时序波形:

触发器电路示例

例:如图所示的电路中触发器都为边沿触发器,FF1为JK触发器,FF2为D触发器,初始状态均为0,试画出在CLK的作用下Q1、Q2的波形。

解:JK触发器改变在CLK下降沿,次态方程为

$$J = \overline{Q}_2$$
 $K = 1$ $Q_1^{n+1} = J\overline{Q}_1 + \overline{K}Q_1 = \overline{Q}_2\overline{Q}_1$

D触发器改变在CLK上升沿,次态方程为

$$D = Q_1 \qquad Q_2^{n+1} = D = Q_1$$

*思考

Q:如何用边沿触发的DFF、TFF及JKFF实现2分频电路?

练习1

例:边沿JK触发器和D触发器分别如图 (a)、 (b)所示,其输入波形见图(c),试分别画出 Q_1 、 Q_2 端的波形。

(设电路初态均为0)

 Q_1 Q_2

练习1

$$Q_1^{n+1} = J\overline{Q}_1 + \overline{K}Q_1 = A\overline{Q}_1 + \overline{B}Q_1$$

分析:

新:
$$Q_2^{n+1} = D = A$$
 (当 $B=0$ 时, $Q_2^{n+1} = 0$)

设电路初态均为0

练习2

TTL边沿触发器组成的电路分别如图(a)、(b)所示,其输入波形见图(c),试分别画出 Q_1 、 Q_2 端的波形。(设电路初态均为0)

练习2

练习3

图5-27(a)是由两个JK触发器构成的单脉冲发生器,其输入 u_i 为时钟脉冲的连续序列,输出由人工按钮开关 S_1 控制,每按一次,输出一个脉冲。输出脉冲的宽度仅决定于输入时钟脉冲的周期。试画出输出端 u_o 的波形图。

练习3

将2个下降沿触发的DFF如图所示级联,试根据图中给定的 Clock信号和输入信号x,画出q和r的时序波形。

Timing for two flip flops

Note: The output of flip flop r is a replica of that of q, delayed by one clock period. The name of the D flip flop comes from Delay.

例5-4 画出图中 Q_1 、 Q_2 的波形,两个触发器的初始状态均为0。

$$\downarrow Q_1^{n+1} = J\overline{Q_1} + \overline{K}Q_1 = \overline{Q_1} \cdot \overline{Q_2}$$

$$\uparrow \quad Q_2^{n+1} = D = Q_1$$

*触发器的应用举例

例5-5 四人抢答电路。

四人参加比赛,每人一个按钮,其中最先按下按钮者,相应的指示灯亮;其他人再按按钮不起作用。

电路的核心用74LS175四D触发器。其内部包含了四个D触发器,各输入、输出以字头相区别,管脚图见下页。

公用时钟

公用清零

74LS175管脚图

本章完,谢谢大家!

作业

- 4-4
- 4-7
- *4-8