Representation

Exercises: Artificial Intelligence

The farmer, fox, goose and grain

Representation

- Start: [Fa Fo Go Gr|]
- Goal: [|Fa Fo Go Gr]
- Rules:
 - $-R_1$: [Fa $X|\mathcal{Y}] \longrightarrow [X|Fa \mathcal{Y}]$
 - $-R_2: [X|Fa \mathcal{Y}] \longrightarrow [Fa X|\mathcal{Y}]$
 - $-R_3$: [Fa $z X | \mathcal{Y}] \longrightarrow [X | Fa z \mathcal{Y}]$
 - $-R_4: [X | Fa z \mathcal{Y}] \longrightarrow [Fa z X | \mathcal{Y}]$
 - No combination (Fo,Go) or (Go,Gr) on either bank, without the farmer.

• States of the form $[\mathcal{L}|\mathcal{R}]$, where:

- $-\mathcal{L}$: Items on left bank
- $-\mathcal{R}$: Items on right bank
- \mathcal{L} and \mathcal{R} contain:

- Fa: Farmer

− Fo: *Fox*

- Go: Goose

- Gr: Grain

Depth-first search (queues)

- S = (<[Fa Fo Go Gr|]>)
- Q₁ = (<[Fa Fo Go Gr]][Fo Gr | Fa Go]>)
- Q₂ = (<[Fa Fo Go Gr|][Fo Gr|Fa Go][Fa Fo Gr|Go]>)
- Q₃ = (<|Fa fo Go Gr|||Fo Gr||Fa Go||Fa Fo Gr||Go||Gr||Fa Fo GO|>,<|Fa fo Go Gr|||Fo Gr||Fa Go||Fa Fo Gr||Go||Fo |Fa Go||Fa Go||Fa Fo Gr||Go||Fo |Fa Go||Fa Go||Fa Fo Go||Fa
- $Q_5 = (<|F_a|F_0 G_0 G_f|)|F_0 G_f|F_a G_0|F_a F_0 G_f|G_0||G_f|F_a F_0 G_0||F_a G_0 G_f|F_0||G_0||F_a F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||F_0||G_0||F_0 G_0||G_0||F_0 G_0||F_0 G_0||F$
- Q₆ = (<[Fa Fo Go Gr]]|Fo Gr]Fa Go]|Fa Fo Gr]Go]|Gr]Fa Fo Go]|Fa Fo Go]|Fa Go Gr]Fo]|Go] Fa Fo Gr][Fa Go] Fo Gr]Fa Fo Go]|Fa Fo Go]|
- $G = \{\langle \text{Fa Fo Go Gr}||\text{Fo Gr}|\text{Fa Go}||\text{Fa Fo Gr}|\text{Go}||\text{Gr}|\text{Fa Fo Go}||\text{Fa Go Gr}|\text{Fa Go}|\text{Fa Go}|\text{Fa Go}|\text{Fa Fo Go}||\text{Fa Fo Go}|$

Depth-first search (search tree)

Breadth-first search (search tree)

Bidiretional Search

Bidirectional Search

PROBLEM 1: BREADTH-FIRST?

Other methods than 2 x breadth-first

- Bidirectional search is complete for each combination with at least one complete search-strategy.
 - 2 x Breadth-first
 - 2 x Depth-first
 - Breadth-first and Depth-first
- Not each combination benefits from searching at both ends.

2 x Depth-first

- Forward:
 - (<S>) \rightarrow (<SA>,<SE>) \rightarrow (<SABC>,<SE>) \rightarrow (<SABCD,<SE>) \rightarrow (<SABCD<u>F</u>>,<SE>)
- Backward:
 - $\begin{array}{l} (<\mathsf{G}>) \rightarrow (<\mathsf{GK}>,<\mathsf{GL}>) \rightarrow (<\mathsf{GKJ}>,<\mathsf{GL}>) \rightarrow (<\mathsf{GKJI}>,<\mathsf{GL}>) \\ \rightarrow (<\mathsf{GKJIH}>,<\mathsf{GL}>) \rightarrow (<\mathsf{GKJIH}\underline{F}>,<\mathsf{GL}>) \end{array}$

2 x Breadth-first

- Forward:
 - (<S>)→(<SA>,<SE>)→(<SE>,<SAB>)→(<**SAB>,<SE<u>F</u>>)**
- Backward:
 - $-(\langle G \rangle) \rightarrow (\langle GK \rangle, \langle GL \rangle) \rightarrow (\langle GK J \rangle, \langle GL \underline{F} \rangle)$

Breadth-first and Depth-first

- Forward (Breadth-first):
 - (<S>)→(<SA>,<SE>)→(<SE>,<SAB>)→(<SAB>,<SEF>) →(<SE<u>F</u>>,<SABC>)
- Backward (Depth-first):
 - (<G>)→(<GJ>,<GD>)→(<GJI>,<GD>)→(<GJIH>,<GD>) →(<GJIH<u>F</u>>,<GD>)

Replace shared-state check

- When only checking identical end-states, paths can cross each other unnoticed.
- Forward:

 $-(\langle S \rangle) \rightarrow (\langle SA \rangle) \rightarrow (\langle SAB \rangle) \rightarrow (\langle SABG \rangle)$

• Backward:

 $-(\langle G \rangle) \rightarrow (\langle GB \rangle) \rightarrow (\langle GBA \rangle) \rightarrow (\langle GBAS \rangle)$

Exercises: Artificial Intelligence

PROBLEM 2: SHARED-STATE CHECK?

Bidirectional Search

Beam Search

Beam Search

- Input:
 - QUEUE: Path only containing root
 - WIDTH: Number
- Algorithm:
 - WHILE (QUEUE not empty && goal not reached) DO
 - Remove <u>all paths</u> from <u>QUEUE</u>
 - Create paths to all children (of all paths)
 - · Reject paths with loops
 - Sort new paths (according to heuristic)
 - (Optimization: Remove paths without successor)
 - Add WIDTH best paths to QUEUE
 - IF goal reached
 - THEN success
 - ELSE failure

Depth-first Search

Exercises: Artificial Intelligence

Path Search

Heuristic: Manhattan Distance

4	3	2	3	4	5	6	7
3	2	1	2	3	4	5	6
2	1	0	1	2	3	4	5
3	2						6
4		2	3	4	5	6	7
5	4		4	5	6		8
6	5	4	5	6	7	8	9
7	6	5	6	7	8	9	10

Hill-climbing I Search

Greedy Search

Exercises: Artificial Intelligence

Water Jugs

Representation

- States of the form [x,y], where:
 - x: contents of 4 liter jug
 - − y: contents of 3 liter jug
- Start: [0,0]Goal: [2,0]

Representation

• Rules:

 $\begin{array}{lll} - & \text{Fill x:} & [x,y] \land x < 4 \longrightarrow [4,y] \\ - & \text{Fill y:} & [x,y] \land y < 3 \longrightarrow [x,3] \\ - & \text{Empty x:} & [x,y] \land x > 0 \longrightarrow [0,y] \\ - & \text{Empty y:} & [x,y] \land y > 0 \longrightarrow [x,0] \end{array}$

- Fill x with y: $[x,y] \land x+y > 4 \land y > 0 \longrightarrow [4,(x+y-4)]$ - Fill x with y: $[x,y] \land x+y \le 4 \land y > 0 \longrightarrow [(x+y),0]$ - Fill y with x: $[x,y] \land x+y > 3 \land x > 0 \longrightarrow [(x+y-3),3]$ - Fill y with x: $[x,y] \land x+y \le 3 \land x > 0 \longrightarrow [0,(x+y)]$

Heuristic

- H([x,y]) = f(x) + f(y)
- f(x) is defined as follows:

x	0	1	2	3	4
f(x)	2	1	0	1	3

- We need a jug filled with 2 liter.
- To obtain a jug filled with 2 liter we need a jug filled with either 1 or 3 liter.
- We consider an empty jug better than a jug filled with 4 liter.

Hill-climbing II Search

Exercises: Artificial Intelligence

 A^*

Iterated Deepening A*

Problem

0 12 S 12

Simplified Memory-bounded A*

Problem

Problem

Problem

Problem

Problem

Problem

Problem

Problem

Problem

Problem

Problem

Problem

• Prove that:

- IF a heuristic function h satisfies the monotonicity restriction
 - $h(x) \leq cost(x...y) + h(y)$
- **THEN** f is monotonously non-decreasing
 - $f(s...x) \le f(s...x...y)$

Exercises: Artificial Intelligence

Monotonicity 1

Monotonicity 1

- · Given:
 - $-\underline{\textbf{\textit{h}}}$ satisfies the $\underline{\textbf{\textit{monotonicity restriction}}}$
- Proof:

$$f(S...A) = cost(S...A) + h(A)$$

$$\leq cost(S...A) + cost(A...B) + h(B)$$

$$\leq cost(S...A...B) + h(B)$$

$$\leq f(S...A...B)$$

Exercises: Artificial Intelligence

Monotonicity 2

- Prove or refute:
 - **IF** *f* is monotonously non-decreasing
 - $f(s...x) \le f(s...xy)$
 - THEN h is an admissable heuristic
 - h is an underestimate of the remaining path to the goal with the smallest cost
- Can an extra constraint on h change this?

Monotonicity 2

- · Given:
 - f is mononously non-decreasing
- Proof (Counter-example):

f is monotonously non-decreasing, yet **h** is not an admissable heuristic.

Monotonicity 2

- · Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

$\begin{array}{l} \underline{f(S...A) \leq f(S...AB) \leq ... \leq f(S...AB...G)} \Leftrightarrow \\ f(S...A) \leq f(S...G) \Leftrightarrow \\ cost(S...A) + h(A) \leq cost(S...G) + h(G) \Leftrightarrow \\ \underline{cost(S...A)} + h(A) \leq \underline{cost(S...A)} + cost(A...G) + h(G) \Leftrightarrow \\ h(A) \leq cost(A...G) + \underline{h(G)} \Leftrightarrow \\ h(A) \leq cost(A...G) \end{array}$

Exercises: Artificial Intelligence

Version Spaces: Colors

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

[?,?]

Exercises: Artificial Intelligence

Version Spaces: Playing Cards

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

[?,?,?,?]

Exercises: Artificial Intelligence

Version Spaces: Ex-exam

Version-Spaces Algorithm

[SD,NW,18,Ne]

 \perp

Version-Spaces Algorithm

19 out of 23 do some not cover last positive example [SD,NW,18,Ne]

Version-Spaces Algorithm

[SD,NW,18,Ne]

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Version-Spaces Algorithm

Using the result

- [MO,HR,32,Ha]: Maybe
 - More Specific than [SC,Us,?,?]
 - Not more Specific than [SC,Us,Yo,?]
- [SD,HH,18,Ne]: NO
 - Not More Specific than [SC,Us,?,?]
 - Not More Specific than [?,Us,Yo,?]
- [Da,NW,22,Ug]: Maybe
 - More Specific than [?,Us,Yo,?]
 - Not more Specific than [SC,Us,Yo,?]

Exercises: Artificial Intelligence

Version Spaces: Computer Screen

Version-Spaces Algorithm

$G = \{[((0,0),5),white]\}$

S = {⊥}

Version-Spaces Algorithm

G = {[((0,0),5),white]}

 $G = \{ \\ [((0,2),3),white],\\ [((1,0),4),white],\\ [((1,1),4),white],\\ [((0,0),5),cyan] \} \\ Redundant:\\ [((0,0),5),green]\\ [((0,0),5),blue] \\ S = \{\bot\}$

[((0,2),3),white],

[((1,0),4),white],

[((1,1),4),white]

[((1,2),2),yellow]

[((0,2),3),yellow]

[((1,2),3),yellow]

[((1,1),3),yellow] [((1,1),4),yellow] [((1,0),4),yellow]

Version-Spaces Algorithm

$$\begin{split} G &= \{[((0,2),3), white], [((1,0),4), white], [((1,1),4), white], [((0,0),5), cyan]\} \\ S &= \{\bot\} \end{split}$$

Version-Spaces Algorithm

 $\mathsf{G} = \{[((0,2),3), \mathsf{white}], [((1,0),4), \mathsf{white}], [((1,1),4), \mathsf{white}]\}$

S = {[((2,1),1),red],[((2,2),1),red],[((3,1),1),red],[((3,2),1),red]}

 $\mathsf{G} = \{[((0,2),3), \mathsf{white}], [((1,0),4), \mathsf{white}], [((1,1),4), \mathsf{white}]\}$

S = {[((1,2),2),yellow]}


```
G = {
		 [((0,2),3),white],
		 [((1,0),4),white]
}
Redundant:
		 [((1,1),3),white]
Others don't generalize S
S = {
		 [((1,2),2),yellow]
}
```

Version-Spaces Algorithm

G = {[((0,2),3),white],[((1,0),4),white]}

S = {[((1,2),2),yellow]}

Version-Spaces Algorithm

 $G = \{[((0,2),3),white],[((1,1),3),white]\}$

S = {[((1,2),2),yellow]}

Using the Result

G = {[((0,2),3),white],[((1,1),3),white]}

S = {[((1,2),2),yellow]}

MiniMax without $\alpha\beta$ -pruning

Exercises: Artificial Intelligence

MiniMax & Constraint Processing:
MiniMax Algorithm

MiniMax with $\alpha\beta$ -pruning

26: 2 31: 2 30: 1 10: 3 18: 2 24: 4 4: 3 9: 2 15: 2 21: 5 6: 3 28: 1 4: 3 5: 2 17: 2 23: 4 4: 3 5: 2 17: 2 23: 4 4: 3 6: 3 18: 2 21: 5 23: 4 29: 1 28:

Reordering, MiniMax with $\alpha\beta$ -Pruning

MiniMax For 3 Players

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm for 3 Players

Constraint Processing

• Problem representation:

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: The 4 Houses problem

Constraint Processing: Backtracking

Constraint Processing: Backjumping

Constraint Processing: Backmarking

Constraint Processing: Backmarking

Constraint Processing: Backmarking

Constraint Processing: No-goods

- {A=1}: No-good
 - No value for D such that A = D + 1
- {A=2,B=2}: No-good
 - A and B should have different houses
- {A=2,B=3}: Not a no-good: {A=2,B=3,C=4,D=1}
- {A=2,B=3,C=1}: No-good
 - A = D + 1, thus D = 1, but C = 1
- {A=2,B=4}: No-good
 - -A = D + 1, thus D = 1, thus C = 3, but C cannot be 3

Constraint Processing: Intelligent Backtracking

Efficiency

All (One solution)	Opened Nodes	Checks
Standard Backtracking	28 (13)	142 (56)
Backjumping	21 (8)	93 (30)
Backmarking	28 (13)	79 (34)
Intelligent Backtracking	6 (4)	16 (9) + NG

Problem Optimization

• Problem optimization:

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: The 4 Teachers problem

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: FORWARD CHECKING

Forward Checking

Forward Checking В **≠**→ B∈{1,3,4,5} Č C∈{1,2,3,4} > D∈{3,4,5} В D A=3 |C-B|>1 B=1 A=3 |C-B|>1 B=4 A=3 A=2 B=4 C∈{1,2,4} D∈{4,5} C∈{1,2,4} D∈{4,5} C∈{1,2,<mark>4</mark>} D∈{4,5} C=1 D=3 C A=2 B=5 B=5 B=5 C=1 D=3 A=2 B=5 C=2 D∈{4} D**∈**{4} C=1 D=4 |D|D Δ=2 R=5 C=3 D=4 A=3 B=5 A=3 B=5 C=1 D=4 C=2 D=4

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: DYNAMIC SEARCH REARRANGEMENT FC

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz I

Solution

Solution

Solution

Solution

Line Drawing NOT allowed: 3-faced vertices!!

Drawing is locally correct, but is globally impossible. Waltz procedure is local, thus, cannot detect this!

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz II

Solution

• Solution 1: Floating cube

Solution

• Solution 2: Sitting cube

Solution

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz III

Constraint Processing II & Waltz: Waltz IV

Solution

• We can determine all nodes except for D:

• D can still take 6 interpretations:

Termination Waltz

- Waltz's procedure terminates if
 - No possibilities for some vertexOR
 - No reduction of junction piles
- Waltz's procedure does not terminate if
 - Only non-empty piles

AND

- Reduction of piles possible
- BUT
 - Piles are finite ⇒ Number of iterations finite
 - ⇒ Waltz's procedure terminates

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz V

Planning & Logic: Blocks world

Are the before constraints satisfiable?

$$\longrightarrow 031 \longrightarrow 032 \longrightarrow 033 \longrightarrow$$

Planning & Logic: Buying milk

STRIPS

Are the before constraints satisfiable?

$$\longrightarrow 01 \longrightarrow 02 \longrightarrow 03 \longrightarrow 05 \longrightarrow 04 \longrightarrow$$

Exercises: Artificial Intelligence

Planning & Logic: English to Logic

Problem & Solution

Not all students take both history and biology
 ¬∀x [student(x) ⇒ takes(x,hist) ∧ takes(x,bio)]

$$\iff [A \Rightarrow B \Leftrightarrow \neg A \lor B]$$

 $\neg \forall x [\neg [student(x)] \lor [takes(x,hist) \land takes(x,bio)]]$

$$\Leftrightarrow [\neg \forall x (F) \Leftrightarrow \exists x (\neg F)]$$

 $\exists x \neg [\neg [student(x)] \lor [takes(x,hist) \land takes(x,bio)]]$

$$\Leftrightarrow$$
 $[\neg(A \lor B) \Leftrightarrow \neg A \land \neg B], [\neg(A \land B) \Leftrightarrow \neg A \lor \neg B]$

 $\exists x [student(x) \land [\neg takes(x,hist) \lor \neg takes(x,bio)]]$

Problem & Solution

• No person likes a smart vegetarian

$$\forall x \ \forall y \ [person(x) \land vegetarian(y) \land smart(y) \Rightarrow \neg likes(x,y)]$$

$$\iff [A \Rightarrow B \Leftrightarrow \neg A \lor B]$$

 $\forall x \forall y [\neg [person(x) \land vegetarian(y) \land smart(y)] \lor \neg likes(x,y)]$

$$\Leftrightarrow$$
 [$\neg A \lor \neg B \Leftrightarrow \neg (A \land B)$]

 $\forall x \forall y \neg [person(x) \land vegetarian(y) \land smart(y) \land likes(x,y)]$

$$\Leftrightarrow [\forall x \neg (F) \Leftrightarrow \neg \exists x (F)]$$

 $\neg \exists x \exists y [person(x) \land vegetarian(y) \land smart(y) \land likes(x,y)]$

Problem & Solution

 There is a woman who likes all men who are not vegetarians.

 $\exists x [woman(x) \land [\forall y [man(y) \land \neg vegetarian(y) \Rightarrow likes(x,y)]]]$

Problem & Solution

• The best score in history was better than the best score in biology.

 $\forall x \ \forall y \ [bestscore(hist,x) \land bestscore(bio,y) \Rightarrow better(x,y)]$

Problem & Solution

Every person who dislikes all vegetarians is smart.
 ∀x[person(x) ∧ [∀y [vegetarian(y) ⇒ ¬likes(x,y)]] ⇒ smart(x)]

Problem & Solution

 There is a barber who shaves all men in town who do not shave themselves.

```
\exists x \; [barber(x) \land [\forall y \; [townsman(y) \land \neg shaves \; (y,y) \Rightarrow shaves(x,y)]]] \\ \Leftrightarrow \\ \exists x \; [barber(x) \land [\forall y \; [\neg [townsman(y) \land \neg shaves \; (y,y)] \lor shaves(x,y)]]] \\ \Leftrightarrow \\ \exists x \; [barber(x) \land [\forall y \; \neg [townsman(y) \land \neg shaves \; (y,y) \land \neg shaves(x,y)]]] \\ \Leftrightarrow \\
```

 $\exists x [barber(x) \land [\neg \exists y [townsman(y) \land \neg shaves(y,y) \land \neg shaves(x,y)]]]$

Problem & Solution

 No person likes a professor unless the professor is smart.

```
 \forall x \ \forall y \ [person(x) \land professor(y) \Rightarrow [likes(x,y) \Rightarrow smart(y)]] \Leftrightarrow \\ \forall x \ \forall y \ [person(x) \land professor(y) \Rightarrow [\neg likes(x,y) \lor smart(y)]] \Leftrightarrow \\ \forall x \ \forall y \ [\neg [person(x) \land professor(y)] \lor [\neg likes(x,y) \lor smart(y)]] \Leftrightarrow \\ \forall x \ \forall y \ [\neg [person(x) \land professor(y)] \lor \neg [likes(x,y) \land \neg smart(y)]] \Leftrightarrow \\ \forall x \ \forall y \ \neg [person(x) \land professor(y) \land likes(x,y) \land \neg smart(y)] \Leftrightarrow \\ \neg \ \exists x \ \exists y \ [person(x) \land professor(y) \land likes(x,y) \land \neg smart(y)]
```

Problem & Solution

Only one person failed both history and biology.

 $\exists !x \ student(x) \land failed(x,hist) \land failed(x,bio)$

Note that: $\exists ! x \ p(x) \Leftrightarrow \exists x \ p(x) \land [\forall y \ [p(y) \Rightarrow x=y]]$

Problem & Solution

 Politicians can fool some of the people all the time, and they can fool all of the people some of the time, but they can't fool all the people all of the time.

```
\forall x [politician(x) \Rightarrow [\exists y people(y) \land [\forall t time(t) \Rightarrow fool(x,y,t)]]]
\forall x [politician(x) \Rightarrow [\exists t time(t) \land [\forall y people(y) \Rightarrow fool(x,y,t)]]]
\forall x [politician(x) \Rightarrow \neg[\forall y \forall t [people(y) \land time(t)] \Rightarrow fool(x,y,t)]]
```

Problem & Solution

• One more outburst like that and you are in contempt of court.

outburst ⇒ court **NOT**: outburst ∧ court

Exercises: Artificial Intelligence

Planning & Logic: And-Or-If

Problem & Solution

• Either the Red Sox win or I'm out ten dollars.

redSoxWin ⇔ ¬outTenDollars

NOT: redSoxWin ∨ outTenDollars

Problem & Solution

• Maybe I'll come to the party and maybe I won't.

maybeComeToParty ∨ ¬maybeComeToParty **NOT**: maybeComeToParty ∧ ¬maybeComeToParty

Problem & Solution

- I don't jump off the Empire State Building implies if I jump off the Empire State Building, then I float safely to the ground.
 - Translating the meaning of the sentence is not possible

 \neg jumpESB \Rightarrow [jumpESB \Rightarrow floatTTGround] \Leftrightarrow \neg jumpESB \vee floatTTGround] \Leftrightarrow jumpESB \vee \neg jumpESB \vee floatTTGround

Exercises: Artificial Intelligence

Planning & Logic: Weird Logic

Problem & Solution

- It is not the case that if you attempt this exercise you will get an F. Therefore, you will attempt this exercise.
 - Translating the meaning of the sentence is not possible

```
\neg[attempt \Rightarrow getF] \Rightarrow attempt \Leftrightarrow
\neg[\neg attempt \lor getF] \Rightarrow attempt \Leftrightarrow
     ¬attempt ∨ getF ∨ attempt
```

Exercises: Artificial Intelligence

Automated Reasoning: Good to walk

Solution

- We assume that it is not good to walk:
 - false ← walk
- Given:
 - raining ∨ snowing ∨ dry (← true)
 - warm (← true)
 - false ← raining
 - false ← snowing
 - walk ← nice
 - nice ← dry ∧ warm

false ← walk $walk \leftarrow nice$ false ← nice nice ← dry ∧ warm false ← dry ∧ warm

warm ← true

Solution

false ← dry

false ← true

Solution MGU: {x/f(A), w/f(A), y/A}

- What is the m.g.u. of: p(f(y), w, g(z, y)) = p(x, x, g(z, A))
 - Init: p(f(y), w, g(z, y)) = p(x, x, g(z, A))
 - Case 5: f(y) = x, w = x, g(z,y) = g(z,A)
 - Case 1: x = f(y), w = x, g(z,y) = g(z,A)
 - Case 4: x = f(y), w = f(y), g(z,y) = g(z,A)
 - Case 5: x = f(y), w = f(y), z = z, y = A
 - Case 2: x = f(y), w = f(y), y = A
 - **Case 4:** x = f(A), w = f(A), y = A

Exercises: Artificial Intelligence

Automated Reasoning: MGU

- What is the m.g.u. of: p(A,x,f(g(y))) = p(z,f(z),f(A))
 - Init: p(A,x,f(g(y))) = p(z,f(z),f(A))
 - Case 5: A = z, x = f(z), f(g(y)) = f(A)
 - Case 1: z = A, x = f(z), f(g(y)) = f(A)
 - Case 4: z = A, x = f(A), f(g(y)) = f(A)
 - Case 5: z = A, x = f(A), g(y) = A
 - Case 5: stop := true

Solution

- What is the m.g.u. of: q(x,x) = q(y,f(y))
 - Init: q(x,x) = q(y,f(y))
 - Case 5: x = y, x = f(y)
 - Case 4: x = y, y = f(y)
 - − Case 3: stop := true

Solution | MGU: {x/g(f(a),f(a)), u/f(a), v/f(a)} | Result: f(g(f(a),f(a)),g(f(a),f(a)))

- What is the m.g.u. of: f(x,g(f(a),u)) = f(g(u,v),x)
 - Init: f(x,g(f(a),u)) = f(g(u,v),x)
 - Case 5: x = g(u,v), g(f(a),u) = x
 - Case 4: x = g(u,v), g(f(a),u) = g(u,v)
 - Case 5: x = g(u,v), f(a) = u, u = v
 - Case 1: x = g(u,v), u = f(a), u = v
 - Case 4: x = g(f(a), v), u = f(a), f(a) = v
 - Case 1: x = g(f(a), v), u = f(a), v = f(a)
 - Case 4: x = g(f(a), f(a)), u = f(a), v = f(a)

Exercises: Artificial Intelligence

Automated Reasoning: Resolution

Solution

- Assumption: Peter has no mother-in-law
 - false ← mother-in-law(x,Peter)
- Given:
 - mother-in-law(x,y) ← mother(x,z) \land married(z,y)
 - mother(x,y) ← female(x) \land parent(x,y)
 - female(An) (← true)
 - parent(An,Maria) (← true)
 - married(Maria,Peter) (← true)

Solution

- false ← mother-in-law(x,Peter)
 - mother-in-law(x',y') ← mother(x',z') \wedge married(z',y')
 - $-\{x'/x, y'/Peter\}$
- false ← mother(x,z') ∧ married(z',Peter)

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
 - mother(x',y') \leftarrow female(x') \wedge parent(x',y')
 - $-\left\{ x^{\prime }/x,\,y^{\prime }/z^{\prime }\right\}$
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)

Solution

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)
 female(An)
 - $-\{x/An\}$
- false ← parent(An,z') ∧ married(z',Peter)

Solution

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)
- false ← parent(An,z') ∧ married(z',Peter)
 - parent(An, Maria)
 - {z'/Maria}
- false ← married(Maria,Peter)

Solution

{x/An}

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)
- false ← parent(An,z') ∧ married(z',Peter)
- false ← married(Maria,Peter)
 - married(Maria,Peter)
- false ← true (□)

Solution

- Assumption: "There is no valid colouring"
 false ← nb(b,g),nb(g,n),nb(n,b)
- Given:
 - $-c(R) (\leftarrow true)$
 - $-c(G) (\leftarrow true)$
 - $-c(B) (\leftarrow true)$
 - $-\operatorname{nb}(x,y) \leftarrow \operatorname{c}(x), \operatorname{c}(y), \operatorname{diff}(x,y)$
 - diff/2 succeeds when arguments cannot be unified

Solution

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
 - $-\operatorname{nb}(x',y') \leftarrow \operatorname{c}(x'), \operatorname{c}(y'), \operatorname{diff}(x',y')$
 - $-\{x'/b,y'/g\}$
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false ← c(b) ∧ c(g) ∧ diff(b,g) ∧ nb(g,n) ∧ nb(n,b)
 nb(x',y') ← c(x'), c(y'), diff(x',y')
 {x'/g,y'/n}
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)

Solution

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false ← c(b) ∧ c(g) ∧ diff(b,g) ∧ c(n) ∧ diff(g,n) ∧ nb(n,b)
 nb(x',y') ← c(x'), c(y'), diff(x',y')
 {x'/n,y'/b}
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)

Solution

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false ← c(b) ∧ c(g) ∧ diff(b,g) ∧ c(n) ∧ diff(g,n) ∧ diff(n,b)
 c(R)
 {b/R}
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)

Solution

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false ← c(g) ∧ diff(R,g) ∧ c(n) ∧ diff(g,n) ∧ diff(n,R)
 c(G)
 {g/G}
- false \leftarrow diff(R,G) \wedge c(n) \wedge diff(G,n) \wedge diff(n,R)

Solution

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)
- false ← diff(R,G) ∧ c(n) ∧ diff(G,n) ∧ diff(n,R)
 c(B)
 {n/B}
- false ← diff(R,G) ∧ diff(G,B) ∧ diff(B,R)

Solution

{b/R,g/G,n/B}

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)
- false \leftarrow diff(R,G) \wedge c(n) \wedge diff(G,n) \wedge diff(n,R)
- false \leftarrow diff(R,G) \land diff(G,B) \land diff(B,R)
 - Built-in diff/2: succeeds for different arguments
- false ← true (□)

Alternative solution

{**b/B**,g/G,**n/R**}

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff($\underline{\mathbf{B}}$,g) \land c(n) \land diff(g,n) \land diff(n, $\underline{\mathbf{B}}$)
- false \leftarrow diff($\underline{\mathbf{B}}$,G) \wedge c(n) \wedge diff(G,n) \wedge diff(n, $\underline{\mathbf{B}}$)
- false \leftarrow diff($\underline{\mathbf{B}}$,G) \wedge diff(G, $\underline{\mathbf{R}}$) \wedge diff($\underline{\mathbf{R}}$, $\underline{\mathbf{B}}$)
 - Built-in diff/2: succeeds for different arguments
- false \leftarrow true (\square)

Exercises: Artificial Intelligence

Automated Reasoning: Predicate Resolution

Or consistency = Continue search

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)
- false \leftarrow diff(R, \mathbb{R}) \wedge c(n) \wedge diff(\mathbb{R} ,n) \wedge diff(n,R)
- false ← diff(R,R) ∧ diff(R,B) ∧ diff(B,R)
 diff(R,R) is false
- false ← false

Solution

- Formula in implicative normal form:
 - $\forall x p(x) \vee \neg r(f(x))$
 - $p(x) \leftarrow r(f(x))$
 - $\forall x \forall y r(f(x)) \vee r(f(f(y)))$
 - r(f(x)) ∨ r(f(f(y))) (← true)
- Assumption

$$\neg [\forall x \exists y p(f(x)) \land r(y)] \Leftrightarrow \exists x \forall y \neg [p(f(x)) \land r(y)] \Leftrightarrow \forall y \neg [p(f(A)) \land r(y)] \Leftrightarrow false \leftarrow p(f(A)) \land r(y)$$

Solution

- false ← p(f(A)) ∧ r(y)
 p(x') ← r(f(x'))
 {x'/f(A)}
- false ← r(f(f(A))) ∧ r(y)

Solution

- false $\leftarrow p(f(A)) \land r(y)$
- false $\leftarrow r(f(f(A))) \land r(y)$
 - Factoring: $mgu(r(f(f(A))) = r(y)) = {y/f(f(A))}$
- false ← r(f(f(A))) ∧ r(f(f(A)))

 ${y/f(f(A))}$

- false $\leftarrow p(f(A)) \land r(y)$
- false ← r(f(f(A))) ∧ r(y)
- false $\leftarrow r(f(f(A))) \land r(f(f(A)))$
 - $r(f(x')) \vee r(f(f(y'))) (\leftarrow true)$
 - Factoring: $mgu(r(f(x')) = r(f(f(y')))) = \{x'/f(y')\}$
 - $r(f(f(y'))) (\leftarrow true)$
 - $-\{y'/A\}$
- false ← true (□)

Exercises: Artificial Intelligence

Automated Reasoning: Movable Objects

Solution: Movable Objects

- English to logic
- · Logic to implicative normal form
 - Model
 - Assumption to prove
- Apply resolution
 - Derive inconsistency:
 - Model + negated assumption

Solution: Model to logic

- If all movable objects are blue, then all nonmovable objects are green.
 - $-(\forall x \text{ mov}(x) \rightarrow \text{blue}(x)) \rightarrow (\forall y \neg \text{mov}(y) \rightarrow \text{green}(y))$
- If there exists a non-movable object, then all movable objects are blue.
 - $-(\exists x \neg mov(x)) \rightarrow (\forall y mov(y) \rightarrow blue(y))$
- D is a non-movable object.
 - ¬mov(D)

Solution: Implicative normal form

- $(\forall x \text{ mov}(x) \rightarrow \text{blue}(x)) \rightarrow (\forall y \neg \text{mov}(y) \rightarrow \text{green}(y))$
 - mov(A) ∨ mov(y) ∨ green(y) (← true) mov(y) ∨ green(y) ← blue(A)
- $(\exists x \neg mov(x)) \rightarrow (\forall y mov(y) \rightarrow blue(y))$
 - mov (x) \lor blue(y) \leftarrow mov(y)
- ¬mov(D)
 - false ← mov(D)
- Negated assumption: $\neg \exists x \text{ green}(x) \leftrightarrow \forall x \neg \text{green}(x)$
 - false ← green(x)

Solution: Implicative normal form

- **Prove** using resolution:
 - Assumption: false \leftarrow green(x)
- · Model:
 - $\text{mov(A)} \vee \text{mov(y)} \vee \text{green(y)} (\leftarrow \text{true})$
 - $mov(y) \vee green(y) \leftarrow blue(A)$
 - $-\operatorname{mov}(x) \vee \operatorname{blue}(y) \leftarrow \operatorname{mov}(y)$
 - false ← mov(D)

Solution: Resolution

Exercises: Artificial Intelligence

Automated Reasoning: Politicians

Problem: Politicians

· Given:

- If a poor politician exists, then all politicians are male.
- If people are friends with a politician, then this politician is poor and female.
- Lazy people have no friends.
- People are either male or female, but not both.
- If Joel is not lazy, then he is a politician.

• Proof by resolution:

– There exists no person who is a friend of Joel.

Solution: English to logic

- $(\exists x \text{ pol}(x) \land \text{poor}(x)) \rightarrow (\forall y \text{ pol}(y) \rightarrow \text{male}(y)).$
- $\forall x (pol(x) \land (\exists y fr(y,x))) \rightarrow poor(x) \land fem(x).$
- $\forall x | \text{lazy}(x) \rightarrow (\neg(\exists y | \text{fr}(y,x))).$
- $\forall x \, (male(x) \vee fem(x)) \wedge (\neg (male(x) \wedge fem(x))).$
- ¬lazy(Joel) → pol(Joel).

Solution: Implicative normal form

- male(y) \leftarrow pol(x) \land poor(x) \land pol(y)
- $poor(x) \leftarrow pol(x) \land fr(y,x)$
- $fem(x) \leftarrow pol(x) \land fr(y,x)$
- false \leftarrow lazy(x) \wedge fr(y,x)
- male(x) \vee fem(x)
- false ← male(x) ^ fem(x)
- lazy(Joel) v pol(Joel)

Solution: Implicative normal form

Prove:

- There exists no person who is a friend of Joel
 - $\neg \exists x \ fr(x,Joel) \leftrightarrow \forall x \ \neg fr(x,Joel)$
- Negate assumption:
 - There exists a person who is a friend of Joel
 - ∃x fr(x,Joel)
 - Call the friend S
 - fr(S,Joel)

Solution: Implicative normal form

- male(y) \leftarrow pol(x) \land poor(x) \land pol(y)
- $poor(x) \leftarrow pol(x) \land fr(y,x)$
- fem(x) \leftarrow pol(x) \wedge fr(y,x)
- false \leftarrow lazy(x) \wedge fr(y,x)
- male(x) \vee fem(x)
- false ← male(x) \cdot fem(x)
- lazy(Joel) v pol(Joel)
- fr(S,Joel)

Solution: Apply Resolution

- male(y1) \leftarrow pol(x1) \land poor(x1) \land pol(y1)
 - $-\operatorname{poor}(x2) \leftarrow \operatorname{pol}(x2) \wedge \operatorname{fr}(y2,x2)$
 - RESOLUTION: {x2/x1}
- male(y1) \leftarrow pol(x1) \land pol(y1) \land fr(y2,x1)
 - FACTORING: {y1/x1}
- male(x1) \leftarrow pol(x1) \land fr(y2,x1)
 - 'Politicians who have friends must be male'

Solution: Apply Resolution

- male(x1) ← pol(x1) ∧ fr(y2,x1)
 - false ← male(x3) \land fem(x3)
 - RESOLUTION: {x3/x1}
- false ← pol(x1) ∧ fr(y2,x1) ∧ fem(x1)
 - 'Politicians who have friends cannot be female'

Solution: Apply Resolution

- false ← pol(x1) ∧ fr(y2,x1) ∧ fem(x1)
 - fem(x4) ← pol(x4) \wedge fr(y4,x4)
 - RESOLUTION: {x4/x1}
- false $\leftarrow pol(x1) \land fr(y2,x1) \land pol(x1) \land fr(y4,x1)$
 - FACTORING: {}
- false ← pol(x1) ∧ <u>fr(y2,x1)</u> ∧ <u>fr(y4,x1)</u>
 - FACTORING: {y4/y2}
- false ← pol(x1) ∧ fr(y2,x1)
 - 'Politicians do not have friends'

Solution: Apply Resolution

- false $\leftarrow pol(x1) \land fr(y2,x1)$
 - − lazy(Joel) ∨ pol(Joel)
 - RESOLUTION: {x1/Joel}
- lazy(Joel) ← fr(y2,Joel)
 - 'If Joel has friend, then he must be lazy'

Solution: Apply Resolution

- <u>lazy(Joel)</u> ← fr(y2,Joel)
 - false \leftarrow <u>lazy(x5)</u> \land fr(y5,x5)
 - RESOLUTION: {x5/Joel}
- false ← <u>fr(y2,Joel)</u> ∧ <u>fr(y5,Joel)</u>
 - FACTORING: {y5/y2}
- false ← fr(y2,Joel)
 - 'Joel does not have any friends'

Solution: Apply Resolution

- false $\leftarrow \underline{fr(y2,Joel)}$
 - fr(S,Joel)
 - RESOLUTION: {y2/S}
- false ← true