Министерство образования и науки Российской Федерации Московский физико-технический институт (национальный исследовательский университет)

Физтех-школа аэрокосмических технологий Кафедра вычислительной механики Лаборатория моделирования механических систем и процессов

Выпускная квалификационная работа бакалавра

Создание программного комплекса для уточнения орбит космических аппаратов

Автор:

Студент группы Б03-106бт Хрипунов Иван Владимирович

Научный руководитель: Кузнецов Александр Алексеевич

Аннотация

Исследование и разработка методов машинного обучения $\it Иванов~ \it Иван$

Краткое описание задачи и основных результатов, мотивирующее прочитать весь текст.

Abstract

Research and development of machine learning methods

Содержание

1	Вве	дение	4
2	Восстановление орбиты		
	2.1	Прогноз и виды прогноза	!
		2.1.1 Аналитический	!
		2.1.2 Численно-аналитический	ļ
		2.1.3 Численный	ļ
	2.2	Модель измерений	ļ
		2.2.1 Радиолокация	ļ
		2.2.2 Оптические измерения	ţ
		2.2.3 ΓHCC	į
		2.2.4 Лазерные	ļ
	2.3	Обработка измерений	ļ
		2.3.1 Фильтр Калмана	ļ
		2.3.2 Метод наименьших квадратов	
		2.3.3 Оптимальная фильтрация измерений	
	2.4	Проблематика	
		2.4.1 Оценка быстродействия	
3	Pen	дение проблемы	(
4	4 Верификация		
5	5 Валидация		
հ	Вы	волы	

1 Введение

Актуальность

Цель

Задачи

Новизна

Практическая значимость

- 2 Восстановление орбиты
- 2.1 Прогноз и виды прогноза
- 2.1.1 Аналитический
- 2.1.2 Численно-аналитический
- 2.1.3 Численный

Модель вращения Земли

Геопотенциал

Сопротивление атмосферы

Солнечное давление

Альбедо

- 2.2 Модель измерений
- 2.2.1 Радиолокация
- 2.2.2 Оптические измерения
- 2.2.3 Γ HCC
- 2.2.4 Лазерные
- 2.3 Обработка измерений
- 2.3.1 Фильтр Калмана

Расширенный фильтр Калмана

Сигма-точечный фильтр Калмана

- 2.3.2 Метод наименьших квадратов
- 2.3.3 Оптимальная фильтрация измерений
- 2.4 Проблематика
- 2.4.1 Оценка быстродействия

3 Решение проблемы

4 Верификация

5 Валидация

6 Выводы

Список литературы

- [1] Mott-Smith, H. The theory of collectors in gaseous discharges / H. Mott-Smith, I. Langmuir // Phys. Rev. 1926. Vol. 28.
- [2] *Морз*, *P.* Бесстолкновительный РІС-метод / Р. Морз // Вычислительные методы в физике плазмы / Ed. by Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1974.
- [3] $\mathit{Kucen\"ee}$, A. A. Численное моделирование захвата ионов бесстолкновительной плазмы электрическим полем поглощающей сферы / A. A. Кисел\"eв, Долгоносов M. C., Красовский B. $\Pi.$ // Девятая ежегодная конференция «Физика плазмы в Солнечной системе». 2014.