Ray Li CSC 578 October 9th, 2016 Project One

Checklist

- [X] Early stopping
- [X] Cost functions
 - [X] Quadratic
 - [X] Cross-entropy
 - [X] log-likelihood
 - [X] allow choice of cost function with a parameter
- [X] Momentum
- [X] L2 Regularization
- [X] Better initial weights
- [X] Transfer functions
 - [X] tanh
 - [X] softmax
 - [X] ReLU
- [X] Minibatch shuffling
- [X] Learning rate schedule description
- [X] Returning learned network
- [X] Returning accuracy and costs for plotting
- [X] Did NOT include the MNIST data with my submission

Incomplete	, Details	
Not sure,	Details	

Pseudocode

Function MyNetwork

Training, Testing & Validation Split

Check if using previously trained network, if no

Weight and bias initialization

Else

use previous network settings and weights and biases

Batching

Ask user to input a transfer function for output layer if the parameter specifies ReLu Ask user to input a transfer function for hidden layers if the parameter specifies Softmax

Start epoch

For each batch

Batch shuffling by shuffling the batch indexes

Calculate activations for each layer according to user specified transfer function

[Normalize tanh() output if transfer function is tanh()]

Calculate error according to user specified cost function with L2

Calculate delta according to user specified transfer function

Backpropagation

Gradient descent with momentum

End batch iteration

Use updated weight to predict on training, testing and validation set

Calculate cost and accuracy

Print out results for each set for this epoch

Save cost and accuracy for each set

Early stopping criteria (after 75% of epochs, if validation cost increases)

Graph accuracy and cost

Graph accuracy and cost

End epoch

Function act

Check if input matches a certain type of activation function

Execute that activation function

Function dact

Check if input matches a certain type of the derivative activation function

Execute that derivative of activation function

Instruction

function [weights, bias, accuracy, cost] =

MyNetwork(inputs, targets, nodeLayers, numEpochs, batchSize, eta, split, momentum, ActFunc, CostFunc, L2lambda, previousNetwork)

<u>Input variable definitions [Data type specified in parentheses]</u>

inputs: (matrix) input values; rows represent features and columns represent sample

targets: (matrix) target values

nodeLayers: (array) number of neurons on each layer

numEpochs: (double) number of epochs

batchSize: (double) batch size for each mini batch eta: (double) learning rate for gradient descent

split: (array of three doubles) each number represent the percentage of training, testing and

validation dataset (e.x. [80 10 10]) momentum: (double) momentum coeffcient ActFunc: (string) activation or transfer function

CostFunc: (string) cost or error function

L2lambda: (double) lambda, the coefficient for L2 regularization

previousNetwork: (cell or 'None') if with to train a previously trained network, save the 1) nodeLayers in the first cell 2) weights in the second cell 3) bias in the third cell

Output variable definitions [Data type specified in parentheses]

weights: (cell) weights for each layer

bias: (cell) bias for each layer

accuracy: (cell) first cell represent the training accuracy, and the second and the third represent testing and validation accuracies respectively

cost: (cell) first cell represent the training cost, and the second and the third represent testing and validation cost respectively

Note

To save all the output, you should have an array of four elements when calling the function. For example,

>> [a b c d] = MyNetwork(trn, trnAns, [784,30,10], 30, 10, 3, [80, 10, 10], 0.3, 'sigmoid', 'quad', 5, 'None');

Description

This neural network is implemented in Matlab. This system allows user to try different network settings including number of layers, number of neurons in each hidden layer, cost function, activation function, etc. Here is a high level overview of how the program works.

Step One: Weight and Bias Initialization

If the network is used to train a previously trained network, existing weights and bias will be used to start. Otherwise, the weights and bias will be initialized with a mean of zero and a standard deviation of (1/total number of training samples).

Step Two: Batching

Step Three: Start learning batch by batch and epoch by epoch

In this part, user can test out different cost and activation function combinations. For gradient descent, user can test different learning rate as well. Since momentum is added to the gradient descent, user can try different momentum coefficients as well.

Step Four: Calculate the final prediction and evaluation

Analysis

My program works for all datasets with multiple configurations, including changes in epochs, hidden layer neurons, different batch size, eta, different activation and cost functions, momentum coefficient and L2 regularization coefficient. One thing that did not work quite well was the swapping of cost function within each batch with L2 regularization. However, it has been resolved by calculating the difference between activation and target values.

Ideas for enhancement

- 1. Learning rate schedule description. This will be accomplished like momentum. By checking the accuracies and costs of training, testing and validation, if any of them starts to drift away from the others, the learning rate will adjust, by increasing or decreasing a certain value, to try to optimize the learning rate.
- 2. Drop out methods for neurons. This can avoid overfitting network or saturated neurons.
- 3. Implement a grid search algorithm to find the best optimized combination of parameters.

Outputs

Configurations:

data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
iris.csv	40	20	10	0.1	sigmoid	cross	.3	5

Matlab Code:

>> MyNetwork(iris_inputs, iris_targets, [4,20,3], 40, 10, 0.1, [80, 10, 10], 0.3, 'sigmoid', 'cross', 5, 'None');

data s	et	epochs	hids	batch	eta	trans.	cost	mom.	reg.
iris.cs	v	40	20	10	0.1	relu	cross	.3	5

Matlab Code:

>> MyNetwork(iris_inputs, iris_targets, [4,20,3], 40, 10, 0.1, [80, 10, 10], 0.3, 'relu', 'cross', 5, 'None'); note since the input transfer function is 'relu', the application will prompt the user to input a transfer function for the output layer (as shown below)

Matlab Output:

Trial>> MyNetwork(iris_inputs, iris_targets, [4,20,3], 40, 10, 0.1, [80, 10, 10], 0.3, 'relu', 'cross', 5, 'None');
ReLu should only be used for the hidden layers. Which activation function do you want to use for the output layer?
'softmax'

TEST LL VALIDATION

	TRAIN	П	TEST	VALIDATION		
Ep	Cost Corr	Acc Cost	Corr Acc C	ost Corr	Acc	
1	14.509 37/120	I 0.308 18.445	6/15 0.400	7.695 7/15	0.467	Figure 1
2	1 14.823 37/120	0.308 19.038				File Edit View Insert Tools Desktop Window Help
3	14.099 41/120	0.342 16.688	1			
4	24.847 41/120	0.342 21.011			0.133	
5	24.533 42/120	0.350 32.011	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.400	Accuracy Cost
6	12.980 42/120	0.350 16.468	2/15 0.133	18.521 6/15	0.400	0.5
7	24.312 42/120	0.350 31.967	2/15 0.133	22.906 6/15	0.400	Training — Training — Testing — Testing
8	13.588 41/120	0.342 16.568	7/15 0.467	19.287 2/15	0.133	0.45 - Validation - Validation
9	13.176 42/120	0.350 16.798	2/15 0.133	18.546 6/15	0.400	30 -
10	25.105 41/120	0.342 21.373	7/15 0.467	32.106 2/15	0.133	
11	24.289 42/120	0.350 31.966	2/15 0.133	22.877 6/15	0.400	
12	13.225 42/120	0.350 16.750	2/15 0.133	18.640 6/15	0.400	25 - 8 8 8 8 7 8 8 9 7 8 9 9 9 9 9 9 9 9 9
13	24.895 41/120	0.342 21.079	7/15 0.467	32.036 2/15	0.133	0.35
14	24.681 41/120	0.342 20.770	1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31.980 2/15	0.133	
15	24.849 41/120	0.342 21.013		32.022 2/15	0.133	- \$20 -
16	13.354 42/120	0.350 16.817	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.400	
17	14.624 42/120	0.350 19.307		8.212 6/15	0.400	
18	24.377 42/120	0.350 31.976	-,	22.983 6/15	0.400	0.25 -
19	24.286 42/120	0.350 31.965	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.400	15 -
20	24.275 42/120	0.350 31.965			0.400	0.2
21	25.235 42/120	0.350 32.249	1 1 1 11		0.400	0.2
22	24.360 42/120	0.350 31.973	1		0.400	10 -
23	24.360 42/120	0.350 31.973	1 / 1 / 1 / 11	22.963 6/15	0.400	0.15 -
24 25	24.787 41/120 13.159 42/120	0.342 20.925 0.350 16.661	1		0.133 0.400	
25 26	13.159 42/120 24.507 42/120	0.350 16.661 0.350 32.004	1	18.616 6/15 23.137 6/15	0.400	0.1
27	24.846 41/120	0.342 32.004	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.022 2/15	0.133	0 10 20 30 40 0 10 20 30 40
28	13.048 41/120	0.342 21.009	1 1 1	18.653 2/15	0.133	epoch epoch
29	24.827 41/120	0.342 10.410	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.016 2/15	0.133	
30	24.798 41/120	0.342 20.940	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	32.008 2/15	0.133	
31	24.730 41/120	0.350 31.967	1 1 1 11	22.804 6/15	0.400	
32	12.967 42/120	0.350 16.378			0.400	
33	1 1		7/15 0.467			
	topping: Validation			22.100 2/13	0.133	
Lu. ty 5	copping. Tatidation	ciioi incicasca (aree. So epochs.			

data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
iris.csv	40	20	10	0.1	relu	cross	0	5

Matlab Code:

>> MyNetwork(iris_inputs, iris_targets, [4,20,3], 40, 10, 0.1, [80, 10, 10], 0, 'relu', 'cross', 5, 'None'); note since the input transfer function is 'relu', the application will prompt the user to input a transfer function for the output layer (as shown below)

Matlab Output:

Trial>> MyNetwork(iris_inputs, iris_targets, [4,20,3], 40, 10, 0.1, [80, 10, 10], 0, 'relu', 'cross', 5, 'None');
ReLu should only be used for the hidden layers. Which activation function do you want to use for the output layer?
'softmax'

TRAIN | TEST | VALIDATION

SOTTMAX	TRAIN	П	TEST	VALIDATION		
Ep	Cost Corr	Acc Cost	Corr Acc	Cost Corr Acc		
1	12.493 40/120	0.333 18.2	58 5/15 0.333	16.063 5/15 0.333	• • •	Figure 1
2	12.716 80/120	0.667 13.0	58 10/15 0.667	13.033 10/15 0.667	File Edit View Insert 7	Fools Desktop Window Help
3	1.490 88/120	0.733 1.623	11/15 0.733	1.801 12/15 0.800		
4	7.705 77/120	0.642 9.933	9/15 0.600 1	11.753 8/15 0.533		
5	23.179 38/120	0.317 17.9	54 7/15 0.467	20.460 6/15 0.400		
6	7.792 74/120	0.617 6.430	12/15 0.800	11.416 10/15 0.667	Accuracy	Cost
7	1.431 118/120	0.983 2.10	8 14/15 0.933	2.206 14/15 0.933		Training
8	12.131 80/120	0.667 13.0		13.203 10/15 0.667	·	Testing Testing Testing
9	1.410 77/120	0.642 2.283			0.9	Validation0.1 - Validation -
10	1.066 77/120	0.642 1.958	12/15 0.800	2.200 11/15 0.733		
11	0.884 76/120	0.633 1.904			1 A AAA	-0.2
12	0.838 82/120	0.683 1.924	1		0.8	- " / / /
13	0.809 82/120	0.683 1.931	10/15 0.667	2.098 11/15 0.733		
14	0.805 83/120	0.692 1.929	10/15 0.667	2.089 11/15 0.733		-0.3
15	0.791 83/120	0.692 1.937	10/15 0.667	2.095 11/15 0.733	≥ 0.7 -	
16	0.777 77/120	0.642 1.906		2.085 11/15 0.733	30.7 - 1 1 1 1 1 1 1 1 1 1	₩ 50 -0.4 -
17	0.787 85/120	0.708 1.954	11/15 0.733	2.121 12/15 0.800	g ~ '	8 0.4
18	0.744 100/120	0.833 1.91	4 13/15 0.867	2.124 12/15 0.800	⁶⁰ 0.6	
19	0.731 103/120	0.858 1.91	7 13/15 0.867	2.130 12/15 0.800		-0.5
20	0.998 85/120	0.708 2.226	11/15 0.733	2.320 12/15 0.800		
21	0.712 106/120	0.883 1.94	3 13/15 0.867	2.179 12/15 0.800	0.5	-0.6
22	1.470 80/120	0.667 2.918	10/15 0.667	3.019 10/15 0.667		-0.0 V
23	1.101 82/120	0.683 2.464	10/15 0.667	2.534 11/15 0.733		
24	0.574 115/120	0.958 2.00	8 13/15 0.867	2.172 13/15 0.867	0.4	-0.7 - V
25	0.971 88/120	0.733 2.478	11/15 0.733	2.630 12/15 0.800		
26	1	0.942 2.25	1 1		0.3	0.8
27	1.745 80/120	0.667 3.481	10/15 0.667	3.615 10/15 0.667		30 40 0 5 10 15 20 25
28	1.457 80/120	0.667 3.112	10/15 0.667	3.303 10/15 0.667	epoch	epoch
29	1.645 80/120	0.667 3.316	10/15 0.667	3.517 10/15 0.667		
30	1.548 81/120			3.412 10/15 0.667		
31	1.924 82/120	0.683 3.617	10/15 0.667	3.620 11/15 0.733		
Early St	opping: Validation	error increase	d after 30 epochs.			

data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
MNIST	30	30	10	3.0	sigmoid	quad	.3	5

Matlab Code:

>> MyNetwork(trn, trnAns, [784,30,10], 30, 10, 3, [80, 10, 10], 0.3, 'sigmoid', 'quad', 5, 'None');

Matlab Output:

Configurations:

data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
MNIST	30	30	10	3.0	softmax	log	.3	0

Matlab Code:

>> MyNetwork(trn, trnAns, [784,30,10], 30, 10, 3, [80, 10, 10], 0.3, 'softmax', 'log', 0, 'None'); note since the input transfer function is 'soft', the application will prompt the user to input a transfer function for the hidden layer (as shown below)

Matlab Output:

data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
MNIST	30	30	10	1.0	softmax	log	.3	5

Matlab Code:

>> MyNetwork(trn, trnAns, [784,30,10], 30, 10, 3, [80, 10, 10], 0.3, 'softmax', 'log', 5, 'None'); note since the input transfer function is 'soft', the application will prompt the user to input a transfer function for the hidden layer (as shown below)

Matlab Output:

Configurations:

data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
xor.csv	20	[3 2]	1	0.1	sigmoid	cross	.3	5

Matlab Code:

>> MyNetwork(xor_input, xor_targets, [2,3,2,1], 20, 1, 0.1, [50, 25, 25], 0.3, 'sigmoid', 'cross', 5, 'None'); Matlab Output:

	data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
ſ	xor.csv	20	[3 2]	1	0.1	tanh	cross	.3	5

Matlab Code:

>> MyNetwork(xor_input, xor_targets, [2,3,2,1], 20, 1, 0.1, [50, 25, 25], 0.3, 'tanh', 'cross', 5, 'None');

Configurations:

data set	epochs	hids	batch	eta	trans.	cost	mom.	reg.
xor.csv	20	[3 2]	1	0.1	relu	cross	.3	5

Matlab Code:

>> MyNetwork(xor_input, xor_targets, [2,3,2,1], 20, 1, 0.1, [50, 25, 25], 0.3, 'relu', 'cross', 5, 'None'); note since the input transfer function is 'relu', the application will prompt the user to input a transfer function for the output layer (as shown below)

Matlab Output:

