

A Machine Learning Approach to a Regression Problem

CAS Data Engineering - Modul 2

Teil 1: Daten Verstehen - Zielsetzung

Die Fragestellung:

Kann man historische Daten nutzen um ein Vorhersagemodell zu entwickeln?

- Wird der Preis für Bitcoin am nachfolgenden Tag steigen?
- Oder sinken?

Bild: BTC / USDT Preis, Candle Plot. Quelle: trandingview.com

Teil 1: Daten Verstehen - Datenquellen und Feature Engineering

Grundlage:

- Candlestick (Preis in USD pro Tag)
- Zeitrahmen: 2014 2021

Bild: Candlestick, Quelle

- Fokus auf: Closing Preis (pro Tag)
- Target: Closing Differenz (%) d-1

Response:

```
14990400000000,
                    // Open time
"0.01634790",
                    // Open
"0.80000000",
                    // High
"0.01575800",
                    // Low
                    // Close
"0.01577100",
"148976.11427815". // Volume
1499644799999,
                    // Close time
"2434.19055334".
                    // Quote asset volume
                    // Number of trades
"1756.87402397",
                    // Taker buy base asset volume
"28.46694368",
                    // Taker buy quote asset volume
"17928899.62484339" // Ignore.
```

Bild: Response JSON von Binance REST API

Teil 1: Daten Verstehen - Datenquellen und Feature Engineering

Feature Engineering:

- Crypto Signals: intotheblock.com
 - Financial signals
 - Network signals
- Sentiment und Markt Aktivität: <u>lunarcrush.com</u>
 - Reddit sentiment
 - Twitter sentiment
 - Telegram sentiment
 - Mentions and news score
- Technicals: Python Technical Analysis Library
 - Moving average und oscillators
 - Zu viele...
- Aktien Preise: <u>alphavantage.co</u>
 - Aktien und Index Preisentwicklung
- DIY Scraping Twitter Sentiment

Bild: Unsere Feature Engineering Strategie

Teil 1: Daten Verstehen - Herausforderungen mit Zeitreihen

Problem 1: <u>Es gibt kein falsch...</u>

Bild: Zitat George Box. Quelle

Es gibt endlose Strategien und Alle könnten ein Ergebnis produzieren...

Bild: scikit-learn algorithm cheat-sheet. Quelle

7

Teil 1: Daten Verstehen - Herausforderungen mit Zeitreihen

Problem 2: Zeitreihen und Stationarität:

Klassische TS Modelle gehen davon aus, dass die Datengrundlage **stationär** ist.

Frage:

→ Ist die Bitcoin Preis Entwicklung stationär? Wenn nicht, wie geht man damit um?

Teil 2: Vorhersagemodelle

Teil 2: Vorhersagemodelle - **Herangehensweise**

Teil 2: Vorhersagemodelle - Herausforderung


```
arima 2020 tr <- auto.arima(bit ts tran2)
checkresiduals(arima 2020 tr)
            it_model = function(bitcoin_data, h){
            bitcoin df = bitcoin data %>%
              filter(Date >= as.Date('2017-01-01'))
              arrange(Date)
            time_series = bitcoin_df %>%
              select(WeightedPrice) %>%
              ts()
            predictions = time_series %>%
              BoxCox(lambda = BoxCox.lambda(time_ser
              auto.arima() %>%
              forecast(h)
            forecast_df = cbind(data.frame(prediction
                                data.frame(prediction
                                data.frame(prediction
```

Teil 2: Vorhersage Modelle - Our initial thoughts

OUR GOAL

Develop **prediction algorithms** for bitcoin prices, based on a time series dataset, consisting of financial, blockchain-related, technical analysis and sentiment daily signals.

Teil 2: Vorhersagemodelle - Statistik: Vorgehensweise

STATISTICAL TESTS

Test the assumptions of multiple linear regression and the requirements for modeling

FEATURE SELECTION

Check the correlation between predictors and their justification to be included

EVALUATION

Based on the selected and tuned models, make a prediction on the test set, measure the performance.

BUILDING & TUNING MODELS

Split the dataset into training and validation sets, train your models, perform cross-validation, tune the hyperparameters and select the best performing estimators.

Teil 2: Vorhersagemodelle - Statistik

Teil 2: Vorhersagemodelle - Statistik: Verteilung

Teil 2: Vorhersagemodelle - Statistik: Stationarität

Teil 2: Vorhersagemodelle - Statistik: Autokorrelation

Teil 2: Vorhersagemodelle - Statistik: Heterodeskedacity

Teil 2: Vorhersagemodelle - Statistik: OK?

Teil 2: Vorhersagemodelle - Statistik: Ergebnis

Test	Outcome	Meaning
ADF Stationarity test	Daily returns stationary	Linear Models can be used
ACF Plot (Autocorrelation)	Autocorrelation	Possible use case for ARIMA*
Breusch-Pagan test (Homoskedasticity)	Heteroskedasticity present: Errors vary	Possible use case for volatility clustering (GARCH)*

^{*} ARIMA and GARCH models were not in scope of the project, although we experimented them in R a possible forecast with ARIMA in Appendix

Teil 2: Vorhersagemodelle - Feature Selection

Teil 2: Vorhersagemodelle - Correlation Matrix

Teil 2: Vorhersagemodelle - Model Building & Tuning

Teil 2: Vorhersagemodelle - Model Building & Tuning

FOCUS: CROSS-VALIDATION & GRID SEARCH

- Train/Test Split not shuffled
- Test Data saved for prediction
- Training > Cross Validation with base models
- Extract parameters, define grid around it -> perform grid search with cross validation
- Select best estimators
- Save model artifacts
- Load models and perform prediction on the separated test dataset

Teil 2: Vorhersagemodelle - Evaluation

Teil 2: Vorhersagemodelle - Metrics: Model Fit

Teil 2: Vorhersagemodelle - Metrics: Error

Teil 2: Vorhersagemodelle - Zusammenfassung

Our main focus was that we select the models, which show the best fit and tried to optimize their R-Squared.

We also checked that the errors either decrease or do not get worse.

Our 4 models, which stayed in scope of our optimization were the following:

- → Tweedie Regressor
- → Random Forest Regressor
- → Stochastic Gradient Descent
- → XGBoost Regressor

The most robust model in our analysis was the Tweedie Regressor, which is a Generalized Linear Model and is used to model data that follow Tweedie or Poisson distribution, which is the case in our project.

POSSIBLE EXTENSIONS

- Look for more / different features data (however data quality is a challenge)
- Get data with more granularity and frequency (eg. minutely, secondly)
- Try to approach the problem from a different angle (eg. Classification problem, Volatility clustering...)
- Transform the problem to a Deep learning project
-

Teil 3: Ergebnisse Bewerten

Teil 3: Ergebnisse Bewerten - Lift Chart

Teil 3: Ergebnisse Bewerten - Feature Importance

Bild: Feature Importance, Random Forest Regressor

Teil 3: Ergebnisse Bewerten - Prediction Test

1	Α	В	C	D	E
1	row_id	Date	WeightedPrice_return	Prediction	% Diff Error
2	0	01/03/2015	0.017267645	0.0198265	115%
3	1	06/03/2015	0.002940277	0.002218154	75%
4	2	15/11/2015	-0.030255463	-0.027660225	91%
5	3	16/02/2016	0.004726262	0.012457117	264%
6	4	20/09/2016	0.007410575	0.007581918	102%
7	5	27/01/2018	0.016444916	0.022355165	136%
8	6	30/08/2018	-0.016996251	-0.013463508	79%
9	7	21/10/2018	0.005119918	0.004413606	86%
10	8	19/05/2019	0.069828161	0.083065202	119%
11	9	17/04/2020	0.020487468	0.019450719	95%
12					
13					

Bild: 10 unabhängige Samples für Vorhersage, Random Forest Regressor.

RMSE = 0.0138, 0.0165

Teil 3: Ergebnisse Bewerten - Was waren die Hebel in unserem Projekt?

Teil 4: Lessons Learned

Teil 4: Lessons Learned - David: Was macht ein Modell "gut"?

Business Perspektive

Bild: PDCA und kontinuierliche Verbesserung. Quelle

Entwickler Perspektive

Bild: Development and operations. Quelle

Bild: MLOPS, Integrating ML with DevOps. Quelle

IT Perspektive

Bild: IT Risk Management. Quelle

Frage an ZHAW: Was sind die typischen Risiken in einem ML Projekt?

Teil 4: Lessons Learned - David: Was macht ein Modell "gut"?

Kunden Perspektive

Frage an Alle: Ist Vertrauen die neue Währung in der IT Welt?

Teil 4: Lessons Learned - David: Was macht ein Modell "gut"?

Teil 4: Lessons Learned - Akos

Data is the new oil...

... but not all oil is refinable

Data quality is the key!

Teil 4: Lessons Learned - Dave

Danke für Eure Aufmerksamkeit!