

Recherche Opérationnelle

29 Avril 2025

Alban CALVO - Evan JOASSON - Mathéo PINGET

- 01 Résumé du problème
- 02 Résolution d'un problème d'optimisation
- 03 Contenu de l'étude
 - A Modélisation
 - B Complexité du problème

- 05 Résolution du problème
 - Présentation des métaheuristiques retenues
 - B Comparatif des métaheuristiques
- 06 Perspectives d'améliorations
- 07 Conclusion

Résumé du problème:

 Mission : L'ADEME à lancé un appel pour promouvoir l'expérimentation de nouvelles solutions de mobilité.

- Réduire la consommation d'énergie
- o Réduire les émissions de gaz à effet de serre.
- Comment?
 - Faire évoluer les comportements
 - Améliorer les modes de transport et leur efficacité

Résoudre un problème d'optimisation?

• Problème:

- Limiter les déplacements
- Limiter la consommation des véhicules lors des livraison
- Problème algorithmique :
 - Relier un sous ensemble de villes entre elles
 - Revenir au point de départ
 - Minimiser la durée de la tournée

• Contraintes:

- Coût ou restriction de passage sur certaines arêtes :
 Certaines routes peuvent être plus coûteuses ou interdites
 (par exemple, travaux ou routes bloquées).
- Dépendances entre visites : Une ville ne peut être visitée qu'après en avoir visité une autre (par exemple, une livraison doit précéder une collecte).

Contenu de l'étude:

- Modélisation du problème
- Analyse de la complexité du problème
- Code python capable de :
 - Générer des instances aléatoires
 - o Résoudre le problème à l'aide d'au moins deux méthodes différentes
 - Dont une méthode exacte
 - o Générer des statistiques concernant les performances des algorithmes

Modélisation du problème:

- Réseau routier représenté un graphe G = (S, A)
 - Ensemble des sommets S = {s0, s1,..., sn}
 - \circ Ensemble des arêtes $A \subseteq S \times S$
 - Arêtes (i,j) reliant une ville si à une ville sj
 - Chaque arête à un coût Cij ∈ R+
- Contrainte de dépendance :
 - \circ D \subseteq S x S : (i,j) \in D signifie que si doit être visité avant sj
- Variables de décision xij $\in \{0, 1\}$:
 - o 1 si le véhicule se rend de si à sj
 - 0 sinon

Modélisation du problème:

- Fonction objectif : Minimiser le coût total des trajets
 - ∘ min Σ (i,j)∈A (cij * xij)
 - o xij = variable de décision
 - o cij = coût de passage
- Départ du dépot et retour :
 - ∘ Σ j∈S (xS0j = 1)
 - $\circ \quad \Sigma j \in S \ (xiS0 = 1)$
- Dépendances entre les villes ui < uj
- Arêtes impraticables :
 - \forall (i, j) \in A', xij = 0
 - \circ $A' \subset A$

Compléxité du problème:

- Problème de base : Voyageur de Commerce (PVC)
 - + dépendances entre visites
 - + arêtes impraticables
- Espace de recherche:
 - \circ Pour n sommets \rightarrow espace de permutations = n 1
 - Ordre de grandeur O(n!)
- De type NP-complet :
 - PVC classique
 - PVC avec précédences
 - PVC avec arêtes impraticables
 - PVC avec contraintes multiples (NP-difficile)
- Appartenance à NP : vérifiable en temps polynomial
 - Vérification des dépendances : O(n)
 - Vérification des arêtes utilisées : O(n²)
 - Calcul des coûts : O(n)

О	Type de complexité
O(1)	constant
$O\left(\log\left(n ight) ight)$	logarithmique
$O\left(n\right)$	linéaire
$O\left(n imes \log\left(n ight) ight)$	quasi-linéaire
$O\left(n^2 ight)$	quadratique
$O\left(n^3 ight)$	cubique
$O\left(2^n\right)$	exponentiel
O(n!)	factoriel

Méthodes de résolution:

- C'est quoi une métaheurstique ?:
 - Algorithme d'optimisation approximative conçue pour fournir des solutions de bonnes qualité
- Utilisation de métaheuristiques :
 - Justifiée car problème NP-complet
 - Solution exacte qui ne peut pas être trouvée en temps polynomial
 - MAIS peut être vérifiée en temps polynomial
- Quelles métaheuristiques ?
 - Recuit simulé
 - Algorithme génétique
 - Colonie de fourmis
- Comparaison des résultats avec une méthode de résolution exacte (PLNE)

Recuit simulé:

• Définition :

 Algorithme inspiré du refroidissement des métaux. Cherche un minimum global. Accepte des solutions moins bonnes pour éviter les optima locaux

• Principe:

- Part d'une solution initiale
- Explore le voisinage
- Accepte ou refuse les solutions selon la température
- o Plus la température baisse plus l'algorithme devient strict

• Paramètres :

- Température initiale
- o Taux de refroidissement
- Température minimale
- Nb max d'itérations

Algorithme génétique:

- Définition
 - Méthode d'optimisation inspirée de l'évolution naturelle, appliquée à une population de solutions potentielles pour résoudre un problème donné.
- Principe de fonctionnement
 - a. Création d'une population initiale de solutions (généralement aléatoire)
 - b. Évaluation de la qualité de chaque solution (fonction d'évaluation)
 - c. Sélection des meilleures solutions
 - d. Croisement et mutation pour générer une nouvelle population
 - e. Répétition du processus jusqu'à obtenir une solution satisfaisante
- Paramètres clés
 - Taille de la population : nombre de solutions simultanément considérées
 - o Nombre de générations : nombre d'itérations de l'algorithme
 - o Taux de mutation : probabilité de modifier une solution
 - Nombre d'individus sélectionnés : proportion des meilleures solutions conservées pour générer la prochaine génération

Colonie de fourmis:

• Définition :

 Algorithme inspiré du comportement des fourmis cherchant un chemin optimal en déposant des traces de phéromones.

• Principe:

- Des agents (fourmis) explorent les chemins possibles
- o Elles déposent des phéromones sur les bons chemins
- o Plus un chemin est utilisé plus il est attractif
- Evaporation des phéromones pour ne pas bloquer sur un mauvais choix

• Paramètres:

- onb fourmis
- onbitérations
- o alpha: phéromones
- o béta : influence de la distance
- taux d'évaporation
- Q : intensité du dépôt de phéromones

Résolution du problème:

- Génération d'une matrice d'adjacence aléatoire → graphe connexe complet :
 - Arbre couvrant
 - Remplissage aléatoire
 - Taux de routes en travaux (-1)
 - Points de collecte (2 sommets choisis aléatoirement hors sommet 1)
 - on sommets = 100
- Pondération des arêtes :
 - Coût max = 200
 - -1 = arête impraticable
 - 0 arête inexistante
 - X coût d'une arête
- 2 sommets sont des points de collecte pour la contrainte de dépendance
- Export de la matrice dans un fichier CSV et génération du graphe


```
Points collectes: [6, 8]
[
      [0, 116, 40, 156, -1, 15, -1, 138, 185, 21],
      [116, 0, 30, -1, 192, 53, 29, 58, 159, 112],
      [40, 30, 0, 65, 84, 66, 15, -1, 72, -1],
      [156, -1, 65, 0, 40, 58, 93, 104, 124, 30],
      [-1, 192, 84, 40, 0, -1, 110, 190, 174, 163],
      [15, 53, 66, 58, -1, 0, 155, 9, 81, 7],
      [-1, 29, 15, 93, 110, 155, 0, 90, 149, 56],
      [138, 58, -1, 104, 190, 9, 90, 0, 94, 30],
      [185, 159, 72, 124, 174, 81, 149, 94, 0, 167],
      [21, 112, -1, 30, 163, 7, 56, 30, 167, 0],
]
```


Comparaison des métaheuristiques:

COMPARATIVE ANALYSIS FO)R MATRIX S	 IZE 10 	.========	:=======	:=====			
+		+		++			+	++
Algorithm	Min Cost	Avg Cost	Med Cost	Cost %	Min Time	Avg Time	Med Time	Time %
Genetic	441.0	483.2 ± 27.8	479.0 ± 30.0	0.0%		0.21 ± 0.01	0.21 ± 0.01	++ 548.8%
Simulated Annealing	495.0	555.8 ± 38.6	571.0 ± 27.0	12.2%	0.03	0.03 ± 0.00	0.03 ± 0.00	0.0%
Ant Colony	465.0	476.2 ± 12.2	469.0 ± 4.0	5.4%	0.69	0.73 ± 0.03	0.71 ± 0.02	2165.7%
PLNE	441.0	441.0 ± 0.0	441.0 ± 0.0	0.0%	0.19	0.23 ± 0.08	0.19 ± 0.01	505.1%

=======================================								
COMPARATIVE ANALYSIS FO	OR MATRIX S	IZE 30						
===========					===			
+	+	+	+	++		+		++
Algorithm	Min Cost	Avg Cost	Med Cost	Cost %	Min Time	Avg Time	Med Time	Time %
+	+	+	+	++		+		++
Genetic	886.0	1074.8 ± 120.7	1075.0 ± 97.0	56.0%	0.34	0.34 ± 0.00	0.34 ± 0.00	11099.7%
Simulated Annealing	1906.0	2019.4 ± 94.4	2026.0 ± 104.0	235.6%	0.00	0.00 ± 0.00	0.00 ± 0.00	0.0%
Ant Colony	776.0	842.0 ± 39.4	849.0 ± 19.0	36.6%	0.91	0.95 ± 0.02	0.96 ± 0.01	30368.0%
PLNE	568.0	568.0 ± 0.0	568.0 ± 0.0	0.0%	1.02	1.04 ± 0.02	1.04 ± 0.01	33827.5%
+	+	+	+	++		+		++

COMPARATIVE ANALYSIS FO	OR MATRIX S	 IZE 75 			===			
Algorithm	 Min Cost	+	Med Cost	Cost %	Min Time	Avg Time 	Med Time	
Genetic Simulated Annealing Ant Colony PLNE	3114.0 3353.0 790.0 656.0	3613.2 ± 190.1 843.4 ± 36.6		411.1%			11.36 ± 0.52	

MPARATIVE ANALYSIS F			-========		====			
	=======							
	+	+	+		+	+		+
Algorithm	Min Cost	Avg Cost	Med Cost	Cost %	Min Time	Avg Time	Med Time	Time %
Genetic	+ 1080.0	+ 1104.4 ± 27.7	 1091.0 ± 11.0	 36.7%	+ 0.09	+ 0.10 ± 0.00		+ 9149.3%
Simulated Annealing	1730.0	1865.8 ± 102.3	1863.0 ± 94.0	119.0%	0.00		0.00 ± 0.00	0.0%
Ant Colony	874.0	911.2 ± 30.6	897.0 ± 23.0	10.6%	0.21	0.22 ± 0.01	0.23 ± 0.01	21097.8
PLNE	790.0	790.0 ± 0.0	790.0 ± 0.0	0.0%	0.28	0.29 ± 0.01	0.29 ± 0.01	27950.:

COMPARATIVE ANALYSIS FO	DR MATRIX S	: [ZE 50 		=======	====			
+ Algorithm	Min Cost	Avg Cost	 Med Cost		+ Min Time		+ Med Time	+ Time %
Genetic Simulated Annealing Ant Colony PLNE	1139.0 2800.0 675.0 534.0	1288.2 ± 83.8 3419.6 ± 424.7 712.0 ± 34.0 534.0 ± 0.0	1312.0 ± 50.0 3501.0 ± 301.0 693.0 ± 18.0 534.0 ± 0.0	113.3% 424.3% 26.4% 0.0%	2.18 0.01 4.27 11.39	2.22 ± 0.04 0.01 ± 0.00 4.34 ± 0.04 11.50 ± 0.08	2.20 ± 0.03 0.01 ± 0.00 4.36 ± 0.02 11.48 ± 0.07	36180.3% 0.0% 70985.1% 189708.8%

OMPARATIVE ANALYSIS FO								
	=======		=======================================	=======				
	+	+	+	+		+	+	
Algorithm	Min Cost	Avg Cost	Med Cost	Cost %	Min Time	Avg Time	Med Time	Time %
Genetic	 2178.0	 2267.2 ± 86.1	+ 2237.0 ± 59.0	 329.6%	16.32		16.63 ± 0.12	 74077.9%
Simulated Annealing	6901.0	7317.0 ± 302.3	7328.0 ± 261.0	:	0.02	0.02 ± 0.00	0.02 ± 0.00	0.0%
Ant Colony	707.0	725.6 ± 20.7	718.0 ± 2.0	39.4%	32.53	32.74 ± 0.21	32.68 ± 0.14	147768.7
PLNE	507.0	507.0 ± 0.0	507.0 ± 0.0	0.0%	80.96	81.81 ± 0.82	81.45 ± 0.49	367961.7

Comparaison des métaheuristiques:

Test sur une matrice 100

Perspectives d'amélioration:

- Avoir plusieurs arêtes entre chaque sommet au lieu d'une seule
- Augmenter le nombre de contraintes pour rendre le problème plus réaliste :
 - Capacité du camion
 - Nb camions
 - Fenêtres temporelles
- Tester d'autres algorithmes :
 - GRASP (Greedy Randomized Adaptative Search Produce)
 - TABU

Conclusion

Bibliographie

- https://github.com/gregory-chatelier/tsp
- https://www.malaspinas.academy/prog_seq/exercices/09_voyageur_commerce/index.html
- https://igm.univ-mlv.fr/~dr/XPOSE2013/tleroux_genetic_algorithm/fonctionnement.html
- https://www.i2m.univ-amu.fr/perso/jeanphilippe.preaux/PDF/pdf_proteges/OptimisationCombinatoire/Metaheuristiques2.pdf
- http://www.lps.ens.fr/~weisbuch/livre/b9.html
- https://webusers.i3s.unice.fr/~crescenz/publications/travaux_etude/colonies_fourmis-200605-rapport.pdf
- https://members.loria.fr/VThomas/enseignement/M2rar/slides/02-metaheuristiques_individuelles.pdf