Economia applicata all'ingegneria

Riccardo Rasori

A.A. 2024/2025

Indice

1	\mathbf{Intr}	Introduzione															:	3							
	1.1	19/02/	2025																					•	3
		1.1.1	Anali	isi o	des	rli	iı	ıv	es	tiı	$n\epsilon$	ent	ti												3

Capitolo 1

Introduzione

$1.1 \quad 19/02/2025$

1.1.1 Analisi degli investimenti

Introduzione alla matematica finanziara

Valori nominali \rightarrow anno corrente Valori reali \rightarrow determinato anno (regolato a indice)

Formula $Vk_t = (VC_t/IPC_t) * 100$

Formula

$$\begin{split} C &\to C(1+r) \\ \mathbf{r} &\to \mathbf{tasso} \ \mathbf{di} \ \mathbf{crescita} \\ \mathbf{C} &\to \mathbf{capitale} \end{split}$$

Costo opportunità del capitale

Interesse e montante semplice

Formula

$$I = C*r*t$$

Formula

$$M = C(1+rt)$$
 $\mathbf{M} \to \mathbf{montante} \to \mathbf{somma}$ del capitale e degli interessi maturati nel tempo t

Dimostrazione:

$$M = C + I = C + Crt = C(1 + rt)$$

Montante semplice di rate stabili

Formula

$$M=R(n+\frac{rn\pm 1}{2})$$
+1 se la rata è anticipata, -1 se la rata è posticipata

Interesse e montante composto