Übungsblatt 9

Julius Auer, Alexa Schlegel

Aufgabe 1 (Platonische Körper):

Platonische Körper sind volkommen regelmäßige konvexe Polyeder. Polyeder sind dreidimensionale Körper, die von Polygonen (Vielecken) als Seitenflächen begrenzt sind.

a) Die Summe aller zusammentreffender Innenwinkel muss < 360° sein. Ist die Summe genau 360° so entsteht eine Fläche in der Ebene, bei > 360° ist die Ecke nicht mehr konvex.

Ein regelmäßiges Dreieck hat einen Innenwinkel von 60° , ein Viereck von 90° , ein Fünfeck von 108° , ein Sechseck von 120° . Ein Sechseck als Facette kann es damit nicht geben $(3 \cdot 120^{\circ} = 360^{\circ})$.

Somit kann es nur regelmäßige m-Ecke mit $m \in \{3, 4, 5\}$ geben.

An einer Ecke müssen ≥ 3 Facetten zusammentreffen damit eine Ecke entsteht. So können höchstens 5 regelmäßige Dreiecke an einer Ecke zusammenstoßen (360°/60° = 6), höchstens 3 regelmäßige Vierecke (360°/90° = 4) und höchstens 3 regelmäßige Fünfecke (360°/108° = 3.3). Damit ergibt sich für $k = \{3, 4, 5\}$, und die folgenden Kombinationen für k und m:

$$m = 3, k = 3$$

 $m = 3, k = 4$
 $m = 3, k = 5$
 $m = 4, k = 3$
 $m = 5, k = 3$

b) Ikosaeder und Dodekaeder als geometrische Graphen

Abbildung 1: Der Ikosaeder hat 20 Facetten (gleichseitige Dreiecken), 30 Kanten und 12 Ecken.

Abbildung 2: Der Dodekaeder hat 12 Facetten (regelmäßiges Fünfeck), 30 Kanten und 20 Ecken.

Aufgabe 2 (d-dimensionale Polytope):

a) Seien V_d die Ecken des Einheitswürfels in d Dimensionen. Dann gibt es für jede Ecke $(x_1,...,x_d)$ dieses Würfels in d+1 Dimensionen genau die zwei Ecken $(x_1,...,x_d,0)$ und $(x_1,...,x_d,1)$. Es gilt also:

$$|V_{d+1}| = 2 \cdot |V_d|$$

Dass $|V_1| = 2$ ist klar, womit sich die Anzahl Ecken im Allgemeinen ergibt, zu:

$$|V_d| = 2^d$$

Für den Einheitswürfel liegt eine Facette f stets parallel zu einer Achse des Koordinatensystems. Für jede Dimension gibt es zwei solcher paraller Facetten und folglich ist für die Menge aller Facetten F_d somit

$$|F_d| = 2 \cdot d$$

Die jeweiligen Facetten $f_1, ..., f_{2 \cdot d} \in F_d$ seien dabei durch die sie begrenzenden Ecken definiert:

$$f_i = \begin{cases} \{(x_1, ..., x_{i \mod d}, ..., x_d) \in V_d : x_i = 0\} &, \text{ falls } i \leq d \\ \{(x_1, ..., x_{i \mod d}, ..., x_d) \in V_d : x_i = 1\} &, \text{ sonst} \end{cases}$$

- b) Siehe Abb. 3: Ecken mit $x_4 = 1$ sind mit dem Faktor $\frac{1}{3}$ skaliert, um (0.4, 0.3, 0, 0) verschoben und haben eine andere Farbe. Kanten, deren Eckpunkte unterschiedliche Werte in dieser Dimension haben, sind Wellenförmig dargestellt (durch eine gerade Kante zu implizieren es gäbe einen anschaulichen geometrischen Zusammenhang in einer derartigen dreidimensionalen Darstellung des W_4 , wäre doch Humbug!?)
- c) Alle Punkte mit einer Koordinate < 0 liegen außerhalb des Simplex. Im positiven Sektor wird das Simplex begrenzt durch eine Hyperebene. Der Bereich der von den Koordinatenachsen und dieser Hyperebene eingeschlossen wird ist genau das Simplex. Die Ecken des Simplex sind somit stets 0^d und die d vielen Ecken die benötigt werden, um die Hyperebene zu definieren (das sind genau die Ecken (1,0,...,0),...,(0,...,0,1)). Es gibt also d+1 viele Ecken.

Offenbar entstehen so stets d+1 viele Facetten (der "Boden" und d viele, die inzident zu 0^d sind). Die Ecken, welche die Hyperebene beschreiben, sind zwar paarweise adjazent, liegen jedoch alle auf besagter Hyperebene, weshalb keine zusätzlichen Facetten entstehen. Für S_4 (siehe auch Abb. 4) liegt beispielsweise p_4 auf der selben Facette wie $p_1, ..., p_3$.

Abbildung 3: W_4

Abbildung 4: S_4 - man sieht deutlich 5 Facetten :)

Aufgabe 3 (Konvexe Hülle):

Wir gehen davon aus, dass keine 4 Punkte auf einer Ebene liegen. Die Punkte p_1,\ldots,p_n werden nacheinader hinzugefügt. In jedem Schritt wird die konvexe Hülle aktualisiert. Wir nehmen nun an, dass die konvexte Hülle der ersten k Punkte bekannt ist. p_{k+1} kann nun entweder (1) Teil der konvexen Hülle sein, $p_{k+1} \in CH(p_1,\ldots,p_n)$ oder (2) außerhalb der konvexen Hülle liegen, $p_{k+1} \notin CH(p_1,\ldots,p_n)$.

Für jeden Punkt p_i der bereits zur konvexen Hülle gehört wird nun getestet, mit welchen Facetten die Gerade g durch p_i und p_{k+1} einen Schittpunkt hat. Treten keine Schnittpunkte auf so ist die Strecke p_i, p_{k+1} eine neue Kante. Der Punkt p_i wird für das spätere Erzeugen der Facetten geeignet abgespeichert, nennen wir die Menge F. Alle Facetten die von g getroffen wurden, können entfernt werden.

Aus je zwei benachbarten Knoten in P_n und p_{k+1} wird nun eine neue Facette gebastelt.

```
Algorithm 1 CH3D(P = \{p_1, p_2, ..., p_n\})
```

```
1: C \leftarrow CH(p_1, p_2, p_3, p_4)
2: for i = 5 to n do
      if p_i liegt außerhalb von C then
3:
        for alle Punkte p_c \in C do
 4:
           for alle Facetten f_c \in C do
5:
             if Gerade durch p_i und p_c schneidet Facette f_c then
6:
                entferne f_c aus C (und zugehörige Kanten und Ecken bzw. Punkte)
7:
8:
                füge p_i, p_c als neue Kante zu C hinzu
9:
                F \leftarrow p_c \text{ (merken)}
10:
             end if
11:
           end for
12:
        end for
13:
      end if
14:
      füge p_i als neue Ecke bzw. Punkt zu C hinzu
15:
16:
      for alle benachbarten Knoten \in F do
        erzeuge neue Facette
17:
      end for
18:
19: end for
```

- (2) Anzahl der Punkte: O(n) (3) Test ob inner oder außerhalb???
- (4) Anzahl Punkte in konvexer Hülle: $O(n^2)$
- (5) Anzahl der Facetten O(n)
- (6-10) O(1)
- (6-10) O(1)
- (15) O(1)
- (16, 17) O(n)???

Gesamtlaufzeit in $O(n \cdot (n^2 \cdot n + n)) = O(n^4)$.

Zweiter Versuch - naiv, einfach zu beschreiben, Brute-Force:

- (1) Für jedes Tupel (p_1, p_2, p_3) paarweise ungleicher $p_1, p_2, p_3 \in S$:
- (2) Prüfe ob alle Punkte $p \in S$ auf der selben Seite der Ebene liegen, die von (p_1, p_2, p_3) aufgespannt wird. Wenn dem so ist gehören (p_1, p_2, p_3) zur konvexen Hülle (wenn keine 4 Punkte auf einer Ebene liegen definieren sie außerdem eine Facette).

Es gibt $|S|^3$ Tupel die in (1) betrachtet werden müssen. Für (2) müssen wiederum alle |S| Elemente geprüft werden. Insgesamt ist folglich $O(|S|^4)$ Zeit erforderlich.