Answer sheet yangyiwei 2018533218

1. The homomorphism f from $\mathbb{Z}/n\mathbb{Z}$ to $\mathbb{Z}/m\mathbb{Z}$ iff $g=\gcd(m,n)>1$.

For g=1 is the trivial case. Because the homomorphism is determined by $f(\bar{1})$. According to the Lagrange's theorem, the order of $f(\bar{1})$ should be divide by both m and n. So the order of f is 1.

For g>1, let $k=\frac{m}{g}$, we have that $f(\bar{a})=\bar{ka}$ then a=b+xn for some integer x and then $f(\bar{a})=k(b+\bar{x}n)=\bar{kb}+\bar{kx}n=f(\bar{b})$. Also, kxn is divisible by m: $kxn=\frac{m}{g}xn=mx\frac{m}{g}$. Also, $f(\bar{a}+\bar{b})=f$

2. i.

a.

Denote the hormophism from $G_i \to \prod_{i \in I} G_i$ be H_i Let e_G be the identity for (G, *). Let e_H be the identity for $(H, *_2)$.

$$(g,h)\circ (e_G,e_H)=(g*_1e_G,h_{*2}e_H)=(g,h) \ (e_G,e_H)\cdot (g,h)=(e_G*_1g,e_H*_2h)=(g,h)$$

Thus (e_G, e_H) is the identity of the group direct product. Thus the direct product of groups are groups.

b.

Suppose the groups here are finite groups. Denote the homophism H_1 , H_2 ... H_n are n normal subgroup of G.

The direct sum is commutative up to isomorphism. of $G = \Sigma H_i$ we have $\forall g_i \text{ in } H_1, g_i' \text{ in } H_2$, we have $g_i * g_i' = g_i' * g_i$ and \exists one g_i and g_i' s.t.

 $(g_i)_{i\in I}*(g_i')_{i\in I}*\dots(g_i^{n\prime})_{i\in I}:=\left(g_i*_ig_i'\dots*_ig_i^{n\prime}\right)_{i\in I}$ also, the cancellation of the sum in a quotient, so that $(\Sigma H_i+H_2)/H_2$ is isomorphic to ΣH_i

From above, we have multiplication of elements in a direct sum is isomorphic to multiplication of the corresponding elements. Thus, from a, we have the direct sum of groups are groups.

ii.

By Lagrange theorem: $[S_3:S_3']$ =2 and $S_3' \leq ker\phi$ So $S_3/ker\phi$ has order at most 2. Let ϕ be $S_3 \to \mathbb{Z}_6$. The possible kernels are $\{e\}, A_3$ and S_3 .

First $\{e\}$ is the trivial case but the order is 1, so just circle out.

Then Check for S_3 , then S_3/S_3 is identity, so you can map every element of S_3 to the identity of \mathbb{Z}_6 . $\phi(s)=0, \forall s\in S_3$ and 0 is the identity of \mathbb{Z}_6 .

The last is A_3 , the order of the factor group is 2, Using isomorphism theorem: $S_3/A_3 \simeq \phi(S_3)$. Then $\phi(S_3)$ is $\{3,0\}$

Thus all normal subgroups are A_3 and S_3 .

- 3. $\forall a \in \mathbb{Q}$ there exists some non-zero element (r) in \mathbb{Z} s.t. $ra \in \mathbb{Z}$. But we know that every (a) can be written as x/y, where $x,y \in \mathbb{Z}$ thus we can always take r=y and we canthen c onclude that every \mathbb{Q}/\mathbb{Z} is a torsion group.
 - Let H be a non-zero subgroup of $\mathbb Q$ and let $0 \neq h = \frac{m}{n} \in H$, It's clear that $m = n \cdot h \in H$ and $\mathbb Z < H$ we have $h\mathbb Q \subseteq H$, so that G/H is torsion, which $\simeq G$
- 4. First, we have Aut(G) is $G/\mathbb{Z}(\mathbb{G})$ which is cylic. $\exists x \in G$, s.t. $G/\mathbb{Z}(\mathbb{G}) = < x\mathbb{Z}(G) >$ We can wrote that $x = g^k h$ for some k and some $h \in \mathbb{Z}(G)$. Given $x, y \in G$ we have $x = g^k h$ and $y = g^l h'$ Thus $xy = (g^k h)(g^l h') = g^k g^l h h' = (g^l h')(g^k h) = yx$ so that G is abelian. \square
- 5. Find the subgroup of $GL_2(\mathbb{R})$ generated by the matrices A.

$$C(\mathbb{U}_2(\mathscr{C}/\mathbb{R}))=C\{A\in GL(\mathscr{C})\mid A^{-t}=A^{-1}\} ext{ which is } \simeq S'=\{\left(egin{array}{cc} z & 0 \ 0 & z \end{array}
ight)\mid |z|=1\}$$

So that where the matrix can be $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.