Argumentos

1.

- (a) "Pode-se vir ao trabalho de ônibus ou carro. Fulano veio ao trabalho de ônibus, logo, não usou seu carro". Este argumento é falacioso pois as alternativas não são mutuamente exclusivas: fulano pode ter percorrido diferentes partes do trajeto com cada um dos modos de transporte.
- **(b)** "Se estiver chovendo, fulano virá com um guarda-chuva. Fulano veio com um guarda-chuva, logo, choveu". Este argumento é falacioso pois o pressuposto e o consequente não se implicam mutuamente. Embora a ocorrência de chuva leve fulano a carregar seu guarda-chuva consigo, por outro lado a não ocorrência de chuva não é proibitiva para que fulano carregue seu guarda-chuva.
- **(c)** "Se estiver chovendo, fulano virá com um guarda-chuva. Não choveu, então fulano não virá com um guarda-chuva." A mesma falácia do argumento anterior, mas na sua forma negativa.

2.

(a) isLower(7, 4)
$$\longrightarrow \neg$$
 isPrime(7) $\therefore \neg$ isLower(7, 4) \longrightarrow isPrime(7)

Se admitimos que ser ou não menor que quatro é condição para não ser ou ser, respectivamente, um número primo, então sim, a proposta é válida. Não obstante, essa condição não é coerente com a definição de número primo.

(b) isEqual(
$$l_1, l_2$$
) \longrightarrow isEqual(a_1, a_2) $\therefore \neg$ isEqual(l_1, l_2) $\longrightarrow \neg$ isEqual(a_1, a_2)

A conclusão apresentada é correta (congruente com a definição de triângulo isóceles), mas a argumentação feita é inválida (falácia da negação do antecedente).

3.

Considerando p = "hoje é terça feira" e q = "João irá trabalhar", a proposição $(p \to q) \land p \to q$ sendo verdadeira equivale à:

Se hoje é terça-feira então João irá trabalhar.

Hoje é terça-feira.

Logo, João irá trabalhar.

4.

De maneira análoga ao exemplo anterior, temos que:

Se hoje é terça-feira então João irá trabalhar.

João não irá trabalhar.

Hoje não é terça-feira.

5.

Modus ponendo tollens: $\neg(p \land q), p \vdash \neg q$

Não é possível Pedro e Quércia ambos ganharem em uma mesma partida de xadrez.

Pedro venceu a partida de xadrez.

Logo, Quércia perdeu a partida.

Modus tollendo ponens: $p \lor q, \neg p \vdash q$

Por certo, Pedro ou Quércia compareceriam à reunião.

Pedro não compareceu.

Então Quércia compareceu.

p	V	V	F	F
q	V	F	V	F
p o q	V	F	V	V
eg p o eg q	V	V	F	V
q o p	V	V	F	V
eg q o eg p	V	F	V	V
$(p o q)\wedge (q o p)$	V	F	F	V
$p \iff q$	V	F	F	V