Particle spectrograph

Wave operator and propagator

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_0^{\sharp 1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}$ †	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + ik \sigma_{1+}^{\#2\alpha\beta} = 0$	$0 \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{2+}^{\#1}{}^{\alpha\beta} = =$	$0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\gamma}$ -	
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}{}_{\delta}) == 0$	
 Total constraints/ga	auge generators:	16

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_{2}^{\#1}{}_{lphaeta_{\lambda}}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2
•	-	-	-

$\iiint (\frac{1}{6} (6t_1 \ \omega^{\alpha_{\prime}} \ \omega^{\theta}_{\prime} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 12t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{\prime} f^{\alpha\prime} + 12t_1$ $t_2 \partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha\prime} + 2 (t_1 + t_2) \omega_{\alpha\prime\theta} (\omega^{\alpha\prime\theta} + 2 \partial^{\theta} f^{\alpha\prime}) +$ $\partial^{\theta}\omega^{\alpha\prime}_{\alpha}$ - $6r_5 \partial_{\theta}\omega^{\prime\prime}_{\prime}_{\kappa} \partial^{\theta}\omega^{\alpha\prime}_{\alpha}$ - $6r_5 \partial_{\alpha}\omega^{\alpha\prime\theta} \partial_{\kappa}\omega^{\prime\prime}_{\prime}_{\theta}$ + $4t_1 \, \partial_{\theta} f_{\alpha_{\prime}} \, \partial^{\theta} f^{\alpha_{\prime}} + t_2 \, \partial_{\theta} f_{\alpha_{\prime}} \, \partial^{\theta} f^{\alpha_{\prime}} + 2t_1 \, \partial_{\theta} f_{\prime \alpha} \, \partial^{\theta} f^{\alpha_{\prime}}$ $t_2 \, \partial_\alpha f_{\theta_1} \, \partial^\theta f^{\alpha\prime} + 2 \, t_1 \, \partial_{\prime} f_{\alpha\theta} \, \partial^\theta f^{\alpha\prime} - t_2 \, \partial_{\prime} f_{\alpha\theta} \, \partial^\theta f^{\alpha\prime} +$ $4\,t_1\,\partial_{\alpha}f_{\,,\theta}\,\partial^{\theta}f^{\alpha\prime}+2\,t_2\,\partial_{\alpha}f_{\,,\theta}\,\partial^{\theta}f^{\alpha\prime}-4\,t_1\,\partial_{\alpha}f_{\,\theta\prime}\,\partial^{\theta}f_{\,\alpha}$ $12\,r_5\,\partial^\theta\omega^{\alpha\prime}_{\alpha}\partial_\kappa\omega^{\prime}_{\prime}))[t,\,\kappa,\,y,\,z]\,dz\,dy\,d\kappa dt$ $2 \omega_{\alpha\theta_{1}} ((t_{1}-2t_{2}) \omega^{\alpha/\theta} + 2(2t_{1}-t_{2}) \partial^{\theta} f^{\alpha\prime}) +$ $12 r_5 \, \partial^{\theta} \omega^{\alpha'}_{\alpha} \, \partial_{\kappa} \omega^{\kappa}_{\prime \ \theta} + 6 r_5 \, \partial_{\alpha} \omega^{\alpha \prime \theta} \, \partial_{\kappa} \omega^{\kappa}_{\theta \ \prime} \, 8\,r_2\,\partial_\beta\omega_{\alpha\prime\theta}\,\partial^\theta\omega^{\alpha\beta\prime} - 4\,r_2\,\partial_\beta\omega_{\alpha\theta\prime}\,\partial^\theta\omega^{\alpha\beta\prime} +$ $4\,r_2\,\partial_\beta\omega_{,\theta\alpha}\,\partial^\theta\omega^{\alpha\beta\prime} - 2\,r_2\,\partial_\prime\omega_{\alpha\beta\theta}\,\partial^\theta\omega^{\alpha\beta\prime} +$ Quadratic (free) action

 $\sigma_{1^{+}\alpha\beta}^{\#2}$

 $\sqrt{2} (t_1-2t_2)$

 $\frac{1}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$

 $6k^2r_5+t_1+4t_2$

 $\frac{3t_1t_2+2k^2r_5(t_1+t_2)}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$

 $ik(6k^2r_5+t_1+4t_2)$

 $\frac{1}{(1+k^2)^2} (3t_1t_2 + 2k^2r_5(t_1+t_2))$

0

0

0

0

0

0

0

2 i k

 $\frac{1}{t_1+2\,k^2\,t_1}$

 $\sigma_{1^{+}\,lphaeta}^{\#1}$

 $\frac{2 (t_1 + t_2)}{3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2)}$

 $\sqrt{2} (t_1-2t_2)$

 $\frac{1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$

 $-\frac{i \sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$

0

0

0

0

 $\sigma_{1}^{\#1} + \alpha \mu$

 $\tau_{1}^{\#1} \dagger^{\alpha\beta}$

 $\sigma_{1}^{\#1} + \alpha$

 $\sigma_{1}^{#2} \dagger^{\alpha}$

 $\tau_{1}^{\#2} + \alpha$

ำ	9 9 JZ					,×				
	(a,b) (a,b) $(a,b$	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3}\bar{l}k(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0	
	$12r_5 \partial^{\theta} \omega^{\alpha_{l}}_{\alpha} \partial_{\kappa} \omega^{\kappa}_{l \theta} + 6r_5 \partial_{\alpha} \omega^{\alpha_{l} \theta} \partial_{\beta}$ $12r_5 \partial^{\theta} \omega^{\alpha_{l}}_{\alpha} \partial_{\kappa} \omega^{\kappa}_{\theta}_{l l}) [t, x, y, z] dz$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0	
ı	127	$\omega_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	0	0	0	0	
			$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{#1} + ^{\alpha \beta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$	•
	$ au_1^{\sharp}$	#1 L ⁺ αβ		$\sigma_1^{\!\scriptscriptstyle f}$	#1 - α	c	$\sigma_{1-\alpha}^{\#2}$	7	$\tau_{1}^{\#1}$ α	$\tau_{1-\alpha}^{\#2}$
	$(1+k^2)(3t_1t_2)$				0		0		0	0
	$\frac{ik(6k^2r)}{(1+k^2)^2(3t_1t_2)}$	5+t ₁ +4t ₂ 2+2k ² r ₅	$\frac{1}{2}$) (t_1+t_2))		0		0		0	0
	$\frac{k^2 (6 k^2)}{(1+k^2)^2 (3 t_1 t_2)}$	$t_5 + t_1 + 4t_2$ $t_2 + 2k^2r_5$	$\frac{2}{(t_1+t_2)}$	1	0		0		0	0
		0		(0		$\frac{\sqrt{2}}{-2 k^2 t_1}$		0	$\frac{2ik}{t_1+2k^2t_1}$
		0		$\frac{1}{t_1+2}$	$\frac{\sqrt{2}}{2k^2t_1}$	$\frac{-2 k}{(t_1 +$	$\frac{2}{r_5 + t_1}$ $2 k^2 t_1$	2	0	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$

0

0

0

0

0

0

 $r^2 r_5 - \frac{t_1}{2}$

0

0

0

0

0

0

0

 $f_{1^-}^{\#1} \alpha$

 $\omega_{1^{-}\alpha}^{\#2}$

 $\omega_{1^{-}\alpha}^{\#1}$

0

0

0

0

0

 $-\vec{\imath}\,k\,t_1$

0

 $-4k^4r_5+2k^2t_1$

 $(t_1+2k^2t_1)^2$

 $i \sqrt{2} k (2k^2 r_5 - t_1)$

 $(t_1+2k^2t_1)^2$

Massive and massless spectra

Massive particle					
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$				
Polarisations:	3				
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$				
Spin:	1				
Parity:	Even				

? $J^{P} = 0^{-}$? ?
·

	Massive particle						
	Pole residue:	$-\frac{1}{r_2} > 0$					
9	Polarisations:	1					
?	Square mass:	$-\frac{t_2}{r_2} > 0$					
	Spin:	0					
	Parity:	Odd					

Unitarity conditions

 $r_2 < 0 \&\& r_5 > 0 \&\& t_1 < 0 \&\& t_2 > -t_1$