Ankit Goyal Roll No. - 17103011

1. Quaterly	Sales	in n	nillions	
year	1	\square	\Box	TV
2002	5.3	4.1	6.8	6.7
2003	4.8	3.8	5.6	6.8
2004	4.3	3.8	5.7	6.0
2005	5.6	4.6	6.4	5.9

Considering whole year as a time poriod for regression analysis.

E Year	(4) Cumulative Sales	(X) ²	ЖУ
2002	22-9		22.9
२००७	21	4	42
2004	19.8	9	59.4
2005	22.5	16	90

$$3 = \frac{2xy}{x} = \frac{10}{y} = \frac{2.5}{y}$$

$$b = \frac{\xi XY - m \overline{X} \overline{Y}}{\xi X^2 - m (\overline{X})^2} \Rightarrow \frac{7 - \xi Y}{n} = \frac{86.2}{4}$$

$$= \frac{(219.3) - (4)(2.5)(21.51)}{(30) - 4(2.5)^2} = 21.55$$

$$y(5) = a + b(5) \Rightarrow 22.15 + (-0.24)(5) \Rightarrow y(5) = 20.95$$

Quatorly factor of each quoter.

$$0F_{1} = \frac{1}{15} \text{ Salw}(i) = \frac{5.3 + 4.8 + 4.8 + 5.6}{86.2}$$

$$= 0.23^{-1}$$

$$0F_{11} = \frac{4.1 + 3.8 + 3.8 + 4.6}{86.2} = 0.189$$

$$0F_{11} = \frac{6.8 + 5.6 + 5.7 + 6.4}{86.2} = 0.284$$

$$0F_{12} = \frac{6.7 + 6.8 + 6.6 + 5.9}{86.2} = 0.294$$

$$4Cf)_{1} = 4Cf \times 0F(x) = 20.95 \times 0.23^{2} = 4.96$$

$$4Cf)_{1} = 20.95 \times 0.189 = 3.96$$

$$4Cf)_{11} = 20.95 \times 0.284 = 5.95$$

$$4Cf)_{11} = 20.95 \times 0.294 = 6.16$$

2.	Period (X)	Remand (Y)	X	XY	
	Mahaba ka	40		40	
	2	60	4	180	V
Out.	3	80	9	240	
	9	35	16	140	
	7	30	25	150	
	6	50	36	300	
	7	60	49	420	

0	0.0	64	240
8	30	8-1	315
9	35		600
10	60	12)	880
12	40	144	480
13	50	169	6.50
14	70	196	980
15	100	225	1200
16	50	256	800
136	870	1496	7850
		070 (5) 0	

$$\overline{X} = \frac{136}{16} = 9.5$$
, $\overline{Y} = \frac{870}{16} = 54.375$

$$b = \frac{\xi XY - nXY}{\xi X^2 - n(X)^2} = \frac{7855 - 16(8.5)(54.375)}{1496 - 16(8.5)^2} = 1.353$$

$$a = \overline{9} - 6\overline{X} = 59.375 - 1.353(8.5) = 42.874$$

 $9(18) = 9 + 6(18) = 42.874 + 1.353(18) = 67.2285$

3.	Period (x)	demand (Y)	X	XY Y
	2	10	Y	20
	3	7	9	2)
	4	3	16	12
		5	25	25
	6	12	36	72
	7	9	Чg	63
	8	Ч	64	32

9 6 8|
$$\frac{160}{160}$$
54

10 16 180 160

11 12 121 132

 $\frac{17}{17}$ $\frac{17}{19}$ $\frac{1}{19}$ $\frac{1}{19}$

year (t) x.c CRF@10% Ang Amuel 63000 A 36809.96 28/04.57 4 253 58.4 75358.4 23785.89 6464 0.315 8000 6.6830 80325.6 4967.2 30325.6 5 0.26% 2/189.89 85,000 0.6209 6 35970.6 85970.6 19738.84 5645 0.2296 0.5646 10,000 6158-4 0.2054 42129 7 0.5192 92/29 12,000 18923.29 0.4665 0-1879 48660 98660 18488 35 14 000 6531 0.1736 5 5445.6 18,305.35 0-4241 105 445.6 6795.6 16000 9 62384.6 112334.6 19296.21 0.1628 0.3855 6939 10 18000

M/C at the end of 10th year. 18296.71 4 should be replaced.

		on A						No. of the last of	
5.7	t		9	3	4	5	6		8
	P(+t)	0.02	0.05	0.12	0.26	0.3	0.14	0.08	0.03
		odividu gorun			to provide the second of the	The same of the same of the same	R) 100		
			· · · · · · · · · · · · · · · · · · ·			= 1	\$ 50		
\mathcal{N}_{i}	5 = 40	2							pro-
N,	= No	1 + 4	00 (0.	211	- 0				

N2 = NoP2+ N1P1 = 400 (0.05) +8(0.02) = 28.16

NS = NoP3 + N1P2 + NNP1 = 48-803

Ny = Noly + Nils + Nala+Noli = 106.914

N5 = 129.073

No = 77.426

N7 = 72.692

Ng = 78.723

individual replacement plicy:

expected life of value = 1(0.02) + 2(0.05) + 3(0.12)+ 4(0.26)+5(0.3)+6(0.14)+7(0.08)+8(0.03)

Aug replacement/morth = 400 = 89.88 Aug. cost/morth = 89.88 ×100 = 8988.76 Ps

Group Res	lacement Policy =	
end of mouth	lacement Policy; ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Avg. cost/mosh
	- 000 + 20 000	20,800
2	20,000 + 28.16 X20 = 51408	10764
Ý	20,000 + 76.963 XTO = 23,848.15 20,000 + 183.907 XTO = 29,195.35	794938
5-	20500 + 311. 383 00 = 35, 649.25	7298.83
6.	20000 +390.411750 = 39,520.55	7129.85 6586.75
1	2000 +463.103XJO = 43,155.15 2000 +541.826XJO = 47,091.3	6165.02
8	2000	14.3882

Scanned with CamScanner

min aug cost at end of 7 mouths. > 6/65021 Company should opt for group replacement at ad of 7 month. 3 4 1. gend of mark 10 100 25 80 50 300 failur each 100 120 200 250 0.15 0.25 0.2 0.3 No = 1000 'N' = No(b') = 1000 hor1 = 100 N== NoP2+N,P1=1000 XD-15+100X.1=160 No = 1000 x.25 + 160 x1 + 100 x.25 = 281 Ny = 1000 X 0.3 + 281 XO.1+ 160 X 0.15 + 100 X 0.25 = 377.1 N5 = 1000 x0.2 +100 x0.3 +160 x0.25 +281 x0.55 +557.1x0/ 349.86 Avg. cost/month out end Total cost of Group repl. of month 100x2+1000x.5=700 700 500 + 260 X2 = 1020 510 500 + SYIX2 = 1582 527.33 500 + 918.1×2 = 2336.2 589.35 500 + 1267.96 X2 = 3035.92 607.184

all bulbs should be replaced at an interval of