MATH 243 Midterm 2

- 1. Little John wants to find the volume of a hemisphere of radius R using spherical coordinates for his home extension project. He sets up the bounds $0 \le \rho \le R, 0 \le \theta \le \pi, 0 \le \phi \le \pi$ and begins to compute $V = \int_0^R \int_0^\pi \int_0^\pi \rho^2 \sin(\phi) d\phi \, d\theta d\rho.$ Has he made a mistake? A. Yes. Using spherical coordinates would be circular logic since the volume of a sphere is needed to
 - derive the formulas for spherical coordinate conversions
 - B. Yes. He forgot to borrow screws from his aunt and these would change the volume once drilled in.
 - C. Yes. The bounds must be $0 \le \theta \le 2\pi$ and $0 \le \phi \le \pi/2$ instead.
 - D. Yes. This integral only computes half the volume.
 - E. No. The bounds are correct.
- 2. Let B be the unit ball centered at the origin. Select all of the following equivalent to $\iiint_B f \, dV$

A.
$$8 \int_0^1 \int_0^{\pi/2} \int_0^{\sqrt{1-z^2}} r f(r\cos\theta, r\sin\theta, z) dr d\theta dz$$

B.
$$\int_{-1}^{1} \int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \int_{-\sqrt{1-y^2-z^2}}^{\sqrt{1-y^2-z^2}} f(x,y,z) \, dx \, dy \, dz$$

- C. $\int_0^1 \int_0^{\pi} \int_0^{2\pi} f(\rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta, \rho \sin \phi) \rho^2 \sin(\phi) d\theta d\phi dr$
- D. $2\iiint_{B_+} f \, dV$ where B_+ is the portion of B with $z \ge 0$
- 3. Suppose F is a continuously differentiable vector field on \mathbb{R}^2 which is not conservative. Select all of the following which must always be true
 - A. If F = (A, B), then $A_y \neq B_x$
 - B. If D_R is the disk of radius R centered at the origin and f(x,y) is a continuously differentiable function, then $\iint_{D_R} \|F \nabla f\| dA > 0$ for some R
 - C. For any closed curve C of non-zero length, $\int_C F \cdot dr = 0$
 - D. If P=(0,0), Q=(1,0), there exists paths C_1, C_2 , both from P to Q, such that $\int_{C_1} F \cdot dr \neq \int_{C_2} F \cdot dr$
 - E. Given any $P \neq Q$, and any three distinct paths C_1, C_2, C_3 from P to Q, the integrals $\int_{C_3} F \cdot dr$ can't all have the same value
- **4.** Let R be the annulus with inner radius 1, outer radius 2, and center at the origin. Let $K = \iint_R (|x| + |x|) dx$ $y^2 + x^3$) dA. We can write $K = \frac{a}{b} + \frac{c}{d}\pi$ where a, b, c, d are integers and both fractions are in reduced form. Find a+b+c+d
- **5.** Let $L = \int_C F \cdot dr$ where C is the line segment $(0,0,1) \to (1,1,1)$ and $F = (ze^{xz} + \frac{y}{z} + \sin x, \frac{x}{z} + \sin y, xe^{xz} \frac{xy}{z^2} + \cos z)$. We can write $L = e + a b\cos(c)$ where a,b,c are integers. Find 100a + 10b + c
- **6.** Let C be the curve obtained from the graph of $y = \tan x$ restricted to $-\pi/4 \le x \le \pi/4$. Let $M = \int_C (y^3 + 1) dx + (x^3 + 1) dy$. We can write $M = \frac{\pi}{a} + b$ for some integers a, b. Find 10a + b

1

- 7. Let R be the same annulus as before. Find the surface area of the portion of the surface z = xy + 1 within R, then find the center of mass of R under the weight function w(x, y) = |x 2| + |y 2|.
- 8. Classify the critical points for $f(x, y, z) = x^2 + 2xy + y^2 + 2yz + z^2$
- 9. Let $B=\{(x,y,z): x^2+y^2+z^2\leq 1\}$ be the same unit ball as before. Find the maximum of $x^2+(x+y)^2+(x+z)^2$ on B
- 10. Extra credit: Let C_x be the infinite cylinder with radius 1 and central axis the x-axis. Similarly, define C_y and C_z . Find the volume inside the intersection of C_x , C_y , C_z , and $x + y + z \ge 0$
- 11. Extra extra credit: Let $S = [0,1]^3$ be the unit cube. Find the value of $\iiint_S \frac{z}{(1+x^2+y^2)^2} dx dy dz$