In [43]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier In [44]: iris_flower_file=pd.read_csv("iris flower file.csv") iris_flower_file.head(16) In [45]: sepal_length sepal_width petal_length petal_width Out[45]: species 0 3.5 5.1 1.4 0.2 Iris-setosa 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 0.2 Iris-setosa 1.3 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa 5 5.4 3.9 1.7 0.4 Iris-setosa 0.3 Iris-setosa 6 4.6 3.4 1.4 7 5.0 3.4 1.5 0.2 Iris-setosa 8 4.4 2.9 0.2 Iris-setosa 1.4 4.9 9 3.1 1.5 0.1 Iris-setosa 10 5.4 3.7 1.5 0.2 Iris-setosa

1.6

1.4

1.1

1.2

1.5

0.2 Iris-setosa

0.1 Iris-setosa

0.1 Iris-setosa

0.2 Iris-setosa

0.4 Iris-setosa

In [46]: iris_flower_file.shape

4.8

4.8

4.3

5.8

5.7

3.4

3.0

3.0

4.0

4.4

Out[46]: (150, 5)

11

12

13

14

15

In [47]: iris_flower_file.info()

0 sepal_length 150 non-null float64
1 sepal_width 150 non-null float64
2 petal_length 150 non-null float64
3 petal_width 150 non-null float64
4 species 150 non-null object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [48]: iris_flower_file.describe()

Out[48]: sepal_length sepal_width petal_length petal_width

	sepai_leligtii	sepai_widtii	petai_leligtii	petai_widtii
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [49]: iris_flower_file.isnull().sum()

Out[49]: sepal_length 0 sepal_width 0 petal_length 0 petal_width 0 species 0

dtype: int64

In [50]: iris_flower_file.describe()

Out[50]: sepal_length sepal_width petal_length petal_width

	sepai_iength	sepai_wiatii	petal_leligtii	petal_wiath
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [54]: iris_flower_file['sepal_length'].hist()

Out[54]: <AxesSubplot:>

In [57]: iris_flower_file['sepal_width'].hist()

Out[57]: <AxesSubplot:>


```
In [61]: iris_flower_file['petal_length'].hist()
```

Out[61]: <AxesSubplot:>


```
In [66]: iris_flower_file['petal_width'].hist()
```

Out[66]: <AxesSubplot:>


```
plt.scatter(x['sepal_length'],x['sepal_width'],c=colors[i],label=species[i])
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.legend()
```

Out[73]: <matplotlib.legend.Legend at 0x1e26479ff70>

Out[76]: <matplotlib.legend.Legend at 0x1e264813490>

Out[78]: <matplotlib.legend.Legend at 0x1e264731ff0>

Out[80]: <matplotlib.legend.Legend at 0x1e2649e3eb0>


```
In [83]: numeric_columns=iris_flower_file.drop(columns='species')
    corr=numeric_columns.corr()
    fig,axis=plt.subplots(figsize=(5,5))
    sns.heatmap(corr,annot=True,ax=axis,cmap='coolwarm')
```

Out[83]: <AxesSubplot:>


```
In [84]: le=LabelEncoder()
In [86]: iris_flower_file['species']=le.fit_transform(iris_flower_file['species'])
In [87]: iris_flower_file.head(16)
```

Out[87]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	5	5.4	3.9	1.7	0.4	0
	6	4.6	3.4	1.4	0.3	0
	7	5.0	3.4	1.5	0.2	0
	8	4.4	2.9	1.4	0.2	0
	9	4.9	3.1	1.5	0.1	0
	10	5.4	3.7	1.5	0.2	0
	11	4.8	3.4	1.6	0.2	0
	12	4.8	3.0	1.4	0.1	0
	13	4.3	3.0	1.1	0.1	0
	14	5.8	4.0	1.2	0.2	0
	15	5.7	4.4	1.5	0.4	0

```
In [88]: x=iris_flower_file.drop(columns='species')
In [89]: y=iris_flower_file['species']
In [91]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         LR=LogisticRegression()
In [92]:
In [93]: LR.fit(x_train,y_train)
Out[93]:
         ▼ LogisticRegression
         LogisticRegression()
         KNN=KNeighborsClassifier()
In [94]:
In [95]:
         KNN.fit(x_train,y_train)
Out[95]:
         ▼ KNeighborsClassifier
         KNeighborsClassifier()
In [96]: DT=DecisionTreeClassifier()
```

In [97]:

DT.fit(x_train,y_train)