	classfellow Page No.
	Algo Hemeworla-7
	AKSAMADER BANGT OF BOOK ON YOURS OF AND SUITED
01-3	I without the dissiple to the the day and
A1-)	Rosewe need 20-avoy and hashnap data structures.
reli	We need to identify subproblems as function defends on
0	2 parameters: in and in. We need to store results for
	every unique pour (n, m)
	Then, we need to choose data structures (20 areay for small
	values of n and mile and hashmap for large ranges of n &m
	Then, compute solutions for smaller subproblems four (q.
0300	when n=1 or m=1). Use these rosults to solve larger
W.	problems iteratively.
	Then store computed results in a table or hashmap
Hales	during Josephing. Check the table before performing a
3340	recursive call to good redundant computation.
0	con at timed y in 1 mbro pricuration of the many
(2)	
A2-)	Imput: n: positive integra
	Input: m: positive integer
	Enput: memo: a map to Drove Computed Sults.
- (Agorism: Myskry Recursion
Codb-	if n=1 and n=1 then
1/4	return 1
	else if (n, m) exists in memo then
	return memo [(n, m)]
	else if n=1 then
	rebult & m. Mystry Recursion (n, 1 m/2), mome)
	alse if m=1 then
	clase healt < n. Mystery Rocursion (LM/2), m. memo)

MyteryRecursion (1 n/2), m, memo) + m. Mysery Rows Cn, Im [2],

memor (m, m) = result

entremer and

0	
034	r-alreament ept
A3-	we can use nested for books to populate a 20 table (dp)
	where each cell aprise; I represent the result of
	injourne Recursion (i, i). The loops traverse all comprinations
	of in In starting from smallest subproblems to building
	Em 3 Cm 3 Cm 3 dp barrell order
27	For looks Explaination:
31,000	Outor coop (for n).
D1 3 11	Cutor Coop iterates through all values of n, Starting
(9)	from 1 to target (n? This ensures that smaller
10	Subproblems are solved before larger ones. 7 for i from the
	phurtorth Amadourd La
9	Inner (oop (for m):
	For each value of n, inner loop iterator through all value
	of m. Starting from 1 to m. This processes all combinations
	of (n, m) in increasing order. (for j from 1 to m).
	vegic Inside lego:- with a dieg metal e a
	Base Case: 2 j = 1 and j=1, set dp [DED = 1.
	Case 0-1: Use formula do [1][3] = 1: do [1][1][
	Case j=1: Use formula de[i][i]=i.de[Li]2][i]
	Case i=1: Use formula dependent = j. Apendent jejo Case j=1: Use formula dependent = i. de [Li] 2] [j] General Case: Use formula dependent i de [Li] 2] [j] Clip
	obsert for any except in mains their
1000	[m, m] omen weith
	MNN 1=M 11 3019
	Lamorro 15 m. 1 m molarasa man December (m. 1 m) 21 arroma)
	ment 1 m 1, esto

They can be called I manner of the state

man of the millement