Sprawozdanie Metody Numeryczne 2, laboratorium 5

Grzegorz Rozdzialik (D4, grupa lab. 2)

10 grudnia 2016

1 Zadanie

Temat 5, zadanie 22:

Stosując metodę potęgową (z normowaniem) oraz deflację $A_1=A-\lambda xx^*$ oblicz wszystkie wartości własne macierzy trójdiagonalnej A, gdzie $a_{k,k}=5, a_{k,k-1}=2+i, a_{k,k+1}=2-i.$

Niech $n \in \mathbb{N}$. Macierz $A \in \mathbb{C}^{n \times n}$ ma postać:

$$A = \begin{bmatrix} 5 & 2-i & 0 & 0 & \dots & 0 & 0 & 0 \\ 2+i & 5 & 2-i & 0 & \dots & 0 & 0 & 0 \\ 0 & 2+i & 5 & 2-i & \dots & 0 & 0 & 0 \\ 0 & 0 & 2+i & 5 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 5 & 2-i & 0 \\ 0 & 0 & 0 & 0 & \dots & 2+i & 5 & 2-i \\ 0 & 0 & 0 & 0 & \dots & 0 & 2+i & 5 \end{bmatrix}$$

Łatwo zauważyć, że macierz A jest diagonalnie silnie dominująca kolumnowo i wierszowo.

Należy znaleźć wszystkie własności własne λ macierzy A, czyli takie, że:

$$\exists x \in (\mathbb{C} \setminus 0) \quad Ax = \lambda x$$

Wartości własne λ są pierwiastkami wielomianu charakterystycznego macierzy A:

$$X(\lambda) = \det(A - \lambda I)$$

Z podstawowego twierdzenia algebry wiemy, że pierwiastków wielomianu $X(\lambda)$ jest n, co do krotności.

2 Opis metody

Niech $A_0 = A$.

Ponieważ metoda potęgowa znajduje dominującą wartość własną macierzy A_i $(i=0,\ldots,n-1)$, należy zastosować deflację. Po znalezieniu dominującej wartości własnej λ_i macierzy A_i oraz wektora własnego $x_i \in \mathbb{C}^n$ związanego z wartością własną λ_i macierz A_{i+1} otrzymujemy w następujący sposób:

$$A_{i+1} = A_i - \lambda_i x_i x_i^*$$

Wartość własna λ_{i+1} macierzy A_{i+1} jest mniejsza co do modułu od wartości własnej λ_i ($|\lambda_{i+1}| < |\lambda_i|$), więc metoda potęgowa zastosowana na macierzy A_{i+1} znajdzie wartość własną λ_{i+1} .

Niech $\delta \in \mathbb{R}$ będzie zadaną dokładnością przybliżenia wartości własnej λ_i . Mając przybliżenie początkowej $x_i^{(0)} \in \mathbb{C}^n$ wektora własnego odpowiadającego wartości własnej λ_i mamy:

$$y_i^{(k)} = A_i x_i^{(k-1)}$$

$$x_i^{(k)} = \frac{y_i^{(k)}}{||y_i^{(k)}||_2}$$
(1)

$$\lambda_i^{(k)} = \langle y_i^{(k)}, x_i^{(k-1)} \rangle \tag{2}$$

gdzie równania (1) przybliżają wektor początkowy związany z dominującą wartością własną macierzy A_i , a równanie (2) przybliża tą dominującą wartość własną.

Przybliżanie kontynuujemy, aż zostanie spełniony warunek stopu:

$$|\lambda_i^{(k)} - \lambda_i^{(k-1)}| < \delta$$

Obliczenia powtarzamy dla $i = 0, \dots, n-1$.

Po znalezieniu wszystkich wartości i wektorów własnych można sprawdzić jak dokładne obliczone przybliżenia. W tym celu zdefiniujmy:

$$e_i = Ax_i - \lambda_i x_i$$
 $i = 0, 1, \dots, n-1$
 $E = \begin{bmatrix} e_0 & e_1 & e_2 & \dots & e_{n-1} \end{bmatrix}$

Licząc normę z macierzy E otrzymujemy konkretną wartość oznaczającą dokładność znalezionych wartości i wektorów własnych.

3 Implementacja metody

Implementacja metody podzielona jest na następujące kroki:

- 1. Konstruowanie macierzy A rozmiaru $n \times n$ (funkcja constructMatrix)
- 2. Wykonanie metody potęgowej z normowaniem w celu znalezienia dominującej wartości własnej λ_i macierzy A_i (funkcja powerIteration)
- 3. Powtarzanie kroku związanego z metodą potęgową oraz deflacja po znalezieniu λ_i w celu znalezienia wszystkich wartości własnych macierzy A (funkcja findEigenvaluesAndVectors)
- 4. Obliczenie macierzy błędu E (funkcja calculateErrorMatrix)

4 Poprawność metody

Biorąc wektor $x_i^{(0)}=[111\dots 1]^T$ za przybliżenie początkowe metoda jest poprawna, ponieważ wektor ten ma każdą niezerową składową, zatem daje się przybliżyć do dowolnego wektora w przestrzeni wektorów własnych.

Po wykonaniu testów stwierdzam, że metoda jest poprawna, znajduje wszystkie wartości własne macierzy A oraz odpowiadające im wektory własne, a jej wyniki są zbliżone do tych z funkcji \mathbf{eig} realizującej to samo zadanie, dostępnej w Matlabie.

5 Przykłady

Z powodu niewielkiej liczby parametrów w zadaniu przykłady pokazują porównanie metody potęgowej z normowaniem oraz metody eig dostępnej w Matlabie.

W każdym przykładzie przyjęty jest limit iteracji równy 100, ale w większości przypadków nie został on osiągnięty.

Przykład 1 $n=5, \delta=0.1$

	metoda potęgowa	funkcja eig
maksymalny błąd $Ax_i - \lambda_i x_i$	16.0	14.7
norma macierzy błędu E	22.2	22.5
czas przybliżania	$0.4330 \; \text{ms}$	0.0912 ms

Pod względem dokładności obie metody są podobne, jednak funkcja eig dominuje pod względem szybkości - jest ponad czterokrotnie szybsza.

Przykład 2 $n = 5, \delta = 10^{-5}$

Zwiększenie dokładności spowodowało zmniejszenie maksymalnego błędu $Ax_i - \lambda_i x_i$ metody potęgowej do 14.7 (wynik podobny do funkcji eig) przy jednoczesnym wydłużeniu czasu przybliżania do 2.61 ms (ponad sześciokrotny wzrost).

Przykład 3 $n = 20, \delta = 0.1$

	metoda potęgowa	funkcja eig
maksymalny błąd $Ax_i - \lambda_i x_i$	39.0	29.6
norma macierzy błędu E	108.7	110.2
czas przybliżania	6.7451 ms	$0.9639 \; \mathrm{ms}$

Maksymalny odchylenie A * x - lambda * x: 3.906204e+01 Norma wektora bledu: 1.087447e+02

Funkcja eig dostepna w Matlabie: Maksymalny odchylenie A * x - lambda * x: 2.960347e+01 Norma wektora bledu: 1.101882e+02

Znalezione wartosci własne znajduja sie w zmiennej "eigenvalues"

Czas obliczania wartosci własnych: * metoda potegowa: 6.7451 m
s * funkcja eig: 0.9639 ms

6 Wnioski

1. **TODO**

7 Funkcja do testowania metody

TODO

8 Bibliografia

1. Informacje z wykładu *Metod numerycznych 2* (wydział MiNI PW, dr Iwona Wróbel), w szczególności temat dotyczący *metody potęgowej z normowaniem*, wraz z algorytmem.