Olimpiada Națională de Matematică 2005

Etapa judeţeană şi a municipiului Bucureşti 5 martie 2005

CLASA A X-A

Subiectul 1. Se consideră numerele reale a>1 şi b>1. Să se demonstreze că există o funcție $f:(0,\infty)\to\mathbb{R}$ cu proprietățile:

- i) funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = f(a^x) x$ este strict crescătoare;
- ii) funcția $h: \mathbb{R} \to \mathbb{R}$, $h(x) = f(b^x) x$ este strict descrescătoare; dacă și numai dacă a > b.

Subjectul 2.

Să se determine funcțiile $f: \mathbf{Z} \times \mathbf{Z} \to \mathbb{R}$ cu proprietățile

- a) $f(x,y) \cdot f(y,z) \cdot f(z,x) = 1$ oricare ar fi $x,y,z \in \mathbf{Z}$;
- b) f(x+1,x)=2 oricare ar fi $x \in \mathbf{Z}$.

Subjectul 3.

Fie O un punct egal depărtat de vârfurile tetraedrului ABCD. Dacă distanțele de la O la planele BCD, ACD, ABD și ABC sunt egale, să se arate că suma distanțelor unui punct M, interior tetraedrului, la cele patru plane este constantă.

Subjectul 4.

Fie $n \geq 3$ un număr natural. Determinați numărul funcțiilor $f:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ cu proprietatea că

$$f(f(k)) = (f(k))^3 - 6(f(k))^2 + 12f(k) - 6$$
, pentru orice $k = 1, 2, ..., n$.

Timp de lucru 3 ore

Toate subiectele sunt obligatorii