存储器设计实验

实验整体框架

MIPS寄存器文件设计

4位可级联先行进位电路设计

- □ 4位快速加法器设计
- □ 16位快速加法器
- □ 32位快速加法器

MIPS 的RAM设计

5位阵列乘法器

□ 5位乘法流水线

算数逻辑运算单元

基础任务

实验目标

> 熟悉多路选择器、译码器、解复用器

5bits

5bits

➤ 在Logisim中实现MIPS寄存器组(寄存器文件)

add \$s0,\$s1,\$s2

5bits

 R_s

6bits

OP

MIPS寄存器组的外部特性

- ▶ 包含32个寄存器
- ▶ 1个写入端口,2个读端口

引脚	输入/输出	位宽	功能描述						
R1#	输入	5	第1个读寄存器的编号						
R2#	输入	5	2个读寄存器的编号						
W#	输入	5	写入寄存器编号						
Din	输入	32	写入数据						
WE	输入	1	写使能信号,为1时在CLK上跳沿将Din数据写入W#寄存器						
CLK	输入	1	时钟信号,上跳沿有效						
RD1	输出	32	R1#寄存器的值, 0号寄存器值恒零						
RD2	输出	32	R2#寄存器的值, 0号寄存器值恒零						

设计方法

- ▶ 简化设计,只需要实现 寄存器组中4个寄存器
- ▶ 根据R1#、R2#、W#来 控制读出、写入的对象
- ▶ 0号寄存器恒0,设计时 如何变通?

运用多路选择器、译码器、 解复用器等完成寄存器组的 内部逻辑

B路功能:实现MIPS寄存器组,为简化工作量,寄存器编号高3位不要,最终电路中只需要实现0-3号寄存器,注意0号寄存器恒零 请仔细测试电路,核对功能无误后提交教师进行自动检测评分

MIPS寄存器组的自动测试

```
测试逻辑伪代码:
```

写寄存器,使reg[i] = i+1;

读出所有寄存器的值与标准值进行 比较,若发生异常则记录错误寄存器编 号;

}

常见问题:写入某个寄存器,影响了其他寄存器的值

二、MIPS 的RAM设计

实验目标

- > 理解主存地址的基本概念
- > 掌握存储系统位扩充的基本思想
- ➤ 在Logisim中实现MIPS的RAM

MIPS RAM的特点:

- 同时支持字节、半字、字访问的存储子系统
- □ 数据位宽可变

mov	eax	, [201]	#硬件强	制对齐到200
mov	ax,	[201]	#未对齐	
mov	eax,	[200]	#按字访存 e	ax=0x04030201
mov	ax,	[200]	#按半字访存	ax=0x0201
mov	ah,	[200]	#按字节访存	ah=0x01

主存	0
01	200
02	200
03	
04	203

提示: 硬件强制对齐地址,可以靠截断地址实现

MIPS RAM的外部特性

- ▶ 存储容量: 4KB(1K*4B)
- ➤ 能支持MIPS中 Load/Store指令的存储器

□ Ib Ih Iw sb sh sw

引脚	输入/输出	位宽	功能描述					
Addr	输入	12	字节地址 (字访问半字访问时应硬件强制对齐)					
Din	输入	32	写入数据,不同访问模式有效数据均存放在最低位,高位忽略					
WE	输入	1	写使能, 高电平有效					
CLK	输入	1	时钟信号,上跳沿有效					
Mode	输入	2	访问模式 00: 字访问, 01: 字节访问, 10: 2字节访问					
Dout	输出	32	输出数据,不同访问模式有效数据均存放在最低位,高位忽略					

MIPS RAM的电路设计

- > MIPS RAM内部,由4片数据宽度为1KB的RAM通过位扩充构成
- ➤ 4片RAM依次提供了 Byte3、Byte2、Byte1、Byte0

电路功能:利用下图中给定的RAM器件实现既既可以按照字节,也可以按照半字,也可以按照32位字访问的MIPS存储器请勿增改引脚,请勿修改子电路封装 请在下方利用上方输入输出引脚的隧道信号构建电路,ctrl+d复制选择部件

000 00 00 00 00 004 00 00 00 00 PA 008 00 00 00 00 D

, ooc**loo oo oo oo**l

1024*8 bit的RAM

10位地址A;

8位数据D

写使能Str:

读使能 ld:

片选信号sel:

外部输入地址共12位

- ◆ 高10位: 选中某一个字(32位)
- ◆ 低2位:区分不同字节(8位)

重点在于访问模式控制,输入/输出的位宽变化,地址的使用

不同访问方式下输入输出的总线控制

有效数据总是出现在数据总线的低位

- Mode 决定了数据总线上有效数据的位宽(字:32位, 半字:低16位, 字节:低8位)
- 低位地址 决定了数据总线上有效数据的构成 (与哪个字节/存储体有关?)

Mode			Ding	组成		Dout组成				
字访问	字写入	Byte3	Byte2	Byte1	Byte0	字读出	Byte3	Byte2	Byte1	Byte0
半字访问	高半字写入			Byte3	Byte2	高半字读出			Byte3	Byte2
十子切问	低半字写入			Byte1	Byte0	低半字读出			Byte1	Byte0
	最高字节写入				Byte3	最高字节读出				Byte3
今世先位	次高字节写入				Byte2	次高字节读出				Byte2
字节访问	次低字节写入				Byte1	次低字节读出				Byte1
	最低字节写入				Byte0	最低字节读出				Byte0

MIPS RAM的设计要点

电路功能:利用下图中给定的RAM器件实现既既可以按照字节,也可以按照半字,也可以按照32位字访问的MIPS存储器请勿增改引脚,请勿修改子电路封装 请在下方利用上方输入输出引脚的隧道信号构建电路,ctrl+d复制选择部件

1、外部输入地址(字节地址)如何使用?

A11-A2 字地址; A11-A1 半字地址, A1表示高/低半字; A11-A0 字节地址, A1 A0 表示不同字节

- 2、访问模式(Mode)如何起作用?
- 3、他们与4个存储体的片选信号有何关
- 系? 例如: Sel3 在字访问、高半字访问、 最高字节访问时均需有效

4、不同模式、不同地址下,输入/输出 数据总线的构成

半字、字节访问时,输出数据总线的无关高位需设为0,否则会影响后续自动测试验证。

MIPS RAM的测试

- 1、手动测试
- 对连续空间,依次进行字写入、半字写入、字节写入
- 测试非对齐写入、重复覆盖写入
- 对连续空间进行字读出、半字读出、字节读出

2、自动测试

依次执行设计好的操作序列,完成读写动作。读出的数据进行 累加求和,与标准值对比

Ctrl + K 连续自动测试,Ctrl+T单步自动测试 回

实验报告要求——存储器设计

- 1、撰写实验报告。报告需将2个实验子任务的分析、设计思路与过程清晰描述,并相应贴出测试截图。
- 2、实验完成后,将最终的"Storage.circ"文件以"学号_存储器.circ"命名另存。
- 3、在福大课程中心平台中,本门课程的"作业"中,相应提交实验报告与电路文件。