Interrogation écrite n°03

NOM: Prénom: Note:

1. On pose $u_n = \frac{n}{3} - \left\lfloor \frac{n}{3} \right\rfloor$ pour $n \in \mathbb{N}$. Montrer que (u_n) diverge.

On remarque que $u_{3n} = 0$ pour tout $n \in \mathbb{N}$ et que

$$\forall n \in \mathbb{N}, \ u_{3n+1} = n + \frac{1}{3} - \left| n + \frac{1}{3} \right| = n + \frac{1}{3} - n - \left| \frac{1}{3} \right| = \frac{1}{3}$$

Ainsi 0 et $\frac{1}{3}$ sont deux valeurs d'adhérence distinctes de la suite (u_n) . Celle-ci ne peut converger.

- 2. Soit $f: z \in \mathbb{C} \mapsto e^z$. Montrer que f est un morphisme du groupe $(\mathbb{C}, +)$ dans le groupe (\mathbb{C}^*, \times) . Est-il injectif? surjectif? Pour $(z, z') \in \mathbb{C}^2$, $f(z + z') = e^z e^{z'} = f(z) f(z')$ donc f est bien un morphisme du groupe $(\mathbb{C}, +)$ dans le groupe (\mathbb{C}^*, \times) . De plus, $f(2i\pi) = f(0) = 1$ donc f n'est pas injectif. Enfin, si l'on se donne $Z \in \mathbb{C}^*$, il existe $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$ tel que $Z = re^{i\theta}$. Alors $Z = f(\ln r + i\theta)$ de sorte que f est surjectif.
- 3. On note $\mathrm{SL}_n(\mathbb{K})$ l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ de déterminant 1. Montrer que $\mathrm{SL}_n(\mathbb{K})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{K})$.

Première méthode. Pour tout $M \in SL_n(\mathbb{K})$, $det(M) = 1 \neq 0$ de sorte que $M \in GL_n(\mathbb{K})$. Ainsi $SL_n(\mathbb{K}) \subset GL_n(\mathbb{K})$. De plus, $det(I_n) = 1$ donc $I_n \in SL_n(\mathbb{K})$.

Enfin, pour $(A, B) \in SL_n(\mathbb{K})^2$, $\det(AB^{-1}) = \det(A)/\det(B) = 1/1 = 1$ donc $AB^{-1} \in SL_n(\mathbb{K})$. $SL_n(\mathbb{K})$ est donc bien un sous-groupe de $GL_n(\mathbb{K})$.

Deuxième méthode. On vérifie que det est un morphisme de $(GL_n(\mathbb{K}), \times)$ dans (\mathbb{K}^*, \times) . Ainsi $SL_n(\mathbb{K})$ est un sous-groupe de $GL_n(\mathbb{K})$ en tant que noyau de ce morphisme.

4. Soit E le \mathbb{R} -espace vectoriel des fonctions de classe \mathcal{C}^1 sur [0,1]. On pose $||f|| = |f(0)| + \int_0^1 |f'(t)| \, dt$ pour $f \in E$. Montrer que $||\cdot||$ est une norme sur E.

On remarque que pour $f \in E$, $||f|| = |f(0)| + ||f'||_1$.

Homogénéité *Soit* $(\lambda, f) \in \mathbb{R} \times E$. *Alors*

$$\|\lambda f\| = |(\lambda f)(0)| + \|(\lambda f)'\|_1 = |\lambda f(0)| + \|\lambda f'\|_1 = |\lambda||f(0)| + |\lambda|||f'\|_1 = |\lambda|||f||$$

en utilisant l'homogénéité de la norme $\|\cdot\|_1$.

Inégalité triangulaire Soit $(f,g) \in \mathbb{E}^2$. Par inégalité triangulaire pour la valeur absolue et la norme $\|\cdot\|_1$,

$$\|f+g\| = |(f+g)(0)| + \|(f+g)'\|_1 = |f(0)+g(0)| + \|f'+g'\|_1 \le |f(0)| + |g(0)| + \|f_1'\| + \|g_1'\| = \|f\| + \|g\|$$

Séparation Soit $f \in E$ tel que ||f|| = 0. Alors $|f(0)| + ||f'||_1 = 0$. Comme les deux termes de la somme sont positifs, ils sont nuls. Ainsi |f(0)| = 0 et $||f'||_1 = 0$. Comme $|| \cdot ||_1$ est une norme, on obtient par séparation f' = 0. Ainsi f est constante sur [0,1]. Comme f(0) = 0, f est nulle sur [0,1].

5. On pose $N(A) = \max_{1 \le j \le n} \sum_{i=1}^{n} |A_{i,j}|$ pour $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que pour tout $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$, $N(AB) \le N(A)N(B)$.

 $Soit(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. $Soit j \in [1, n]^2$. Alors

$$\begin{split} S_{j} &= \sum_{i=1}^{n} |(AB)_{i,j}| \\ &= \sum_{i=1}^{n} \left| \sum_{k=1}^{n} A_{i,k} B_{k,j} \right| \\ &\leq \sum_{i=1}^{n} \sum_{k=1}^{n} |A_{i,k} B_{k,j}| \quad par \ in\acute{e}galit\acute{e} \ triangulaire \\ &= \sum_{k=1}^{n} \sum_{i=1}^{n} |A_{i,k}| |B_{k,j}| \\ &= \sum_{k=1}^{n} |B_{k,j}| \sum_{i=1}^{n} |A_{i,k}| \\ &\leq \sum_{k=1}^{n} |B_{k,j}| N(A) \\ &= N(A) \sum_{k=1}^{n} |B_{k,j}| \leq N(A) N(B) \end{split}$$

Ainsi N(AB) = $\max_{1 \le j \le n} S_j \le N(A)N(B)$.