223.8

THOMAS BREYDO

Problem. Give an example of an operator T on a complex vector space such that $T^9=T^8$ but $T^2\neq T$.

The key idea is to construct a T such that T^2, T^3, \dots, T^9 are all the zero map, while T itself is not.

Consider the complex vector space \mathbf{C} with basis 1+0i, 0+1i. Let T be the linear map defined by

$$T(a+bi) = b+0i$$

for all $a + bi \in \mathbf{C}$.

Claim. $T^2 \equiv 0$.

Proof. For all $a + bi \in \mathbf{C}$,

$$T^{2}(a+bi) = T(b+0i)$$
$$= 0+0i.$$

Thus, T^2 is the zero map.

Claim. $T^9 \neq T^8$.

Proof. It follows from the previous claim that $T^8 \equiv 0$ and $T^9 \equiv 0$, so $T^8 = T^9$. \Box

Claim. $T^2 \neq T$.

Proof. Since

$$T(1+1i) = 1+0i$$

while

$$T^2(1+1i) = 0 + 0i,$$

the two maps are different.

Note. You can view the source code for this solution here.