BU CS 332 – Theory of Computation

Lecture 4: Assignment Project Exam Help

- More on N Reading:

 https://eduassistpro.github.io/pser Ch 1.1-1.2
- NFAs vs. DFAs
- Closure Properties

 Add WeChat edu_assist_pro

Mark Bun

February 3, 2021

Last Time

- Deterministic Finite Automata (DFAs)
 - Informal description: State diagram
 - Formal description: What are they?
 - Formal description: Haw plother Example Pelp
 - A language is r https://eduassistpro.githphaio/

Add WeChat edu_assist_pro

Intro to Nondeterministic FA

Nondeterminism

A Nondeterministic Finite Automaton (NFA) accepts if there exists a way to make it reach an accept state.

Some special transitions

https://eduassistpro.github.io/

$$L(N) =$$

- a) { WeChat edu_assist_pro
- b) $\{w \mid \text{the second to last symbol of } w \text{ is } 0\}$
- c) {*w* | *w* starts with 00 or 01}
- d) $\{w \mid w \text{ ends with } 001\}$

Formal Definition of a NFA

```
An NFA is a 5-tuple M = (Q, \Sigma, \delta, q_0, F)
Q is the set of states
\Sigma \text{ is the alphabet Project Exam Help}
\delta \colon Q \times \Sigma_{\varepsilon} \qquad \text{sition function https://eduassistpro.github.io/}
q_0 \in Q \text{ is the start state }
Add \text{ WeChat edu_assist_pro}
F \subseteq Q \text{ is the set of acc}
```

M accepts a string w if there exists a path from q_0 to an accept state that can be followed by reading w.

Example

$$N = (Q, \Sigma, \delta, q_0^{Add})$$
 WeChat edu_assist_pro

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_3\}$$

$$\delta(q_0, 1) =$$

$$\delta(q_1, \varepsilon) =$$

$$\delta(q_2, 0) =$$

Nondeterminism

Why study NFAs?

 Not really a realistic model of computation: Real computing devices can't really try many possibilities in parallel

Assignment Project Exam Help

But:

https://eduassistpro.github.io/

- Useful tool for understanding edu_assist Fpsoregular languages
- NFAs can be simpler than DFAs
- Lets us study "nondeterminism" as a resource (cf. P vs. NP)

NFAs can be simpler than DFAs

A DFA that recognizes the language {w | w starts with 0 and ends with 1}:

An NFA for this language: 0,1 0 1 0

Equivalence of NFAs and Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Equivalence of NFAs and DFAs

Every DFA is an NFA, so NFAs are at least as powerful as DFAs

Assignment Project Exam Help

Theorem: For eve https://eduassistpro.githup sqch that L(M) = L(N) Add WeChat edu_assist_pro

Corollary: A language is regular if and only if it is recognized by an NFA

Equivalence of NFAs and DFAs (Proof)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA

Goal: Construct DFA $M = (Q', \Sigma, \delta', q_0', F')$ recognizing L(N)

Assignment Project Exam Help threads of N in

https://eduassistpro.githgbhe/set of

Add WeChat edu_assist_pro

Formally: Q' = P(Q)

"The Subset Construction"

NFA -> DFA Example

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Subset Construction (Formally, first attempt)

Input: NFA $N = (Q, \Sigma, \delta, q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

Q' Assignment Project Exam Help

 $\delta': Q' \times \Sigma \rightarrow Q'$ https://eduassistpro.github.io/

 $\delta'(R, \sigma) = \frac{\delta'(R, \sigma)}{\text{Add WeChat edu_assist_pro}} \text{ and } \sigma \in \Sigma.$

$$q_0' =$$

$$F' =$$

Subset Construction (Formally, for real)

Input: NFA $N = (Q, \Sigma, \delta, q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

Q' = P(Q) Assignment Project Exam Help

 $\delta': Q' \times \Sigma \rightarrow Q'$ https://eduassistpro.github.io/

 $\delta'(R,\sigma) = \bigcup_{r \in R} \operatorname{Add} \delta(r,\sigma)$ and $\sigma \in \Sigma$.

$$q_0' = \{q_0\}$$

 $F' = \{ R \in Q' \mid R \text{ contains some accept state of } N \}$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Proving the Construction Works

Claim: For every string w, running M on w leads to state

```
\{q \in Q | \text{There exists a computation path } Assignment Project Exam Help of <math>q\}
```

https://eduassistpro.github.io/

Proof idea: By indaction of heat edu_assist_pro

Historical Note

Subset Construction introduced in Rabin & Scott's 1959 paper "Finite Automata and their Decision Problems"

Assignment Project Exam Help

Thei https://eduassistpro.giteub.io
the idea of nondetermi
whiches weed that edu_assist_pro
valuable concept. Their
classic paper has been a continuous source
of inspiration for subsequent work in this

field.

NFA -> DFA: The Catch

If *N* is an NFA with *s* states, how many states does the DFA obtained using the subset construction have?

Assignment Project Exam Help

- a) *s*
- b) s^2
- c) 2^s

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

d) None of the above

Is this construction the best we can do?

Subset construction converts an n state NFA into a 2^n -state DFA

Could there be a construction that always produces, say, an n^2 -state DFA?

https://eduassistpro.github.io/

Theorem: For every $n \ge 1$, there $edu_assist_pround L_n$ such that 1. There is an (n+1)-stat end $edu_assist_pround L_n$.

- 2. There is no DFA recognizing L_n with fewer than 2^n states.

Conclusion: For finite automata, nondeterminism provides an exponential savings over determinism (in the worst case).

Closur Assignment Project Exam Help https://eduassistpro.github.io/ Add WeChat edu_assist_pro

An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$ are closed under Assignment Project Exam Help

- Addition: x + https://eduassistpro.github.io/
- Multiplication: x × y
 Negation: -x

 Multiplication: x × y
 Add WeChat edu_assist_pro
- ...but NOT Division: x / y

We'd like to investigate similar closure properties of the class of regular languages

Regular operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$ Assignment Project Exam Help

Concatenation: A https://eduassistpro.gfth@b.io/

Add WeChat edu_assist_pro

Star: $A^* =$

Other operations

Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement: $\overline{A} = \{w \mid w \notin A\}$ Assignment Project Exam Help

https://eduassistpro.github.io/

Intersection: $A \cap B = \{w \mid w \mid w \in B\}$

Reverse: $A^R = \{w \mid w^R \in A\}$

Closure properties of the regular languages

Theorem: The class of regular languages is closed under all three regular operations (union, concatenation, star), as well as under complement, intersection, and reverse.

Assignment Project Exam Help

https://eduassistpro.github.io/i.e., if A and B are regular, app f these operations yields a regular langedu_assist_pro

Proving Assignment Project Exam Help Derties https://eduassistpro.github.io/ Add WeChat edu_assist_pro

Complement

Complement: $\overline{A} = \{ w \mid w \notin A \}$

Theorem: If A is regular, then \overline{A} is also regular

Proof idea:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Complement, Formally

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA recognizing a language A. Which of the following represents a DFA recognizing \overline{A} ?

- a) $(F, \Sigma, \delta, q_0^{\text{Assignment Project Exam Help})$
- b) $(Q, \Sigma, \delta, q_0, Q)$ https://eduassistpro.githusetopf states in Q that are not in F
- c) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q)$ uch that $\delta(p, s) = q$
- d) None of the above

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, $A \circ B$ is also regular.

Proof idea: Given DFAs M, and M, construct NFA by Assignment Project Exam Help

Connecting all acc

rt state in M_B .

Make all states in https://eduassistpro.github.io/

Closure under Concatenation

Concatenation: $A \circ B = \{ xy \mid x \in A, y \in B \}$

Theorem. If A and B are regular, $A \circ B$ is also regular.

Proof idea: Given DFAs M, and M, construct NFA by Assignment Project Exam Help

Connecting all acc

rt state in M_B .

Make all states in https://eduassistpro.github.io/

A Mystery Construction

Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?

Closure under Star

Star: $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$

Theorem. If A is regular, A* is also regular. Assignment Project Exam Help

https://eduassistpro.github.io/

Closure under Star

Star: $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$

Theorem. If A is regular, A* is also regular. Assignment Project Exam Help

On proving your own closure properties

You'll have homework/test problems of the form "show that the regular languages are closed under operation op"

What would sipsegument Project Exam Help

- Give the "proof https://eduassistpro.gtakepma/chine(s) recognizing regular language(ate a new machine Add WeChat edu_assist_pro
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove the construction works