Lezione 3 MSC Labeled Transition Systems (LTS)

Roberto Gorrieri

Grafi vs LTS

Grafo che non è lts

- Grafi orientati modello un po' troppo concreto: dato che una transizione è completamente determinata dal cambio di stato e dalla interazione dovuta all'azione eseguita, non c'è nessuna ragione osservabile per non identificare i due archi.
- Quando i due archi hanno lo stesso stato di partenza, lo stesso stato di arrivo e la stessa etichetta d'azione, allora i due archi devono essere identificati.
- Inoltre, spesso i grafi si intendono finiti, mentre gli lts possono avere infiniti stati.

Automi vs LTS

- Automi di solito considerati a stati finiti, mentre LTS possono avere infiniti stati.
- Automi partizionano l'insieme degli stati in stati di accettazione (finali) e non, mentre LTS non fa questa distinzione (tutti gli stati possono essere considerati finali).
- Automi di solito hanno uno stato iniziale, mentre negli LTS non sempre viene indicato.

Azioni (Labels)

 Le azioni sono le attività basiche che possono essere fatte e sono usate per etichettare le transizioni

Definition 2.1. (Actions) Let \mathscr{L} be a countable set of *input* actions, ranged over by a, b, \ldots Let $\overline{\mathscr{L}}$ be the set of co-actions, ranged over by $\overline{a}, \overline{b}, \ldots$, usually called the *outputs*. The set $\mathscr{L} \cup \overline{\mathscr{L}}$, ranged over by α, β, \ldots , is the set of *visible actions*.

Let $Act = \mathcal{L} \cup \overline{\mathcal{L}} \cup \{\tau\}$, such that $\tau \notin \mathcal{L} \cup \overline{\mathcal{L}}$, be the set of *actions* (or *labels*), ranged over by μ . Action τ denotes an invisible, internal activity.

Labeled Transition Systems

Definition 2.2. (Labeled transition systems) A labeled transition system (LTS for short) is a triple $TS = (Q, A, \rightarrow)$ where

- Q is the nonempty, countable set of *states*, ranged over by q (possibly indexed);
- A ⊆ Act is the countable set of labels (or actions), ranged over by μ (possibly indexed);
- $\rightarrow \subseteq Q \times A \times Q$ is the transition relation.

Given a transition $(q, \mu, q') \in \to$, q is called the *source*, q' the *target* and μ the *label* of the transition. A *rooted* labeled transition system is a pair (TS, q_0) where $TS = (Q, A, \to)$ is an LTS and $q_0 \in Q$ is the *initial state* (or *root*). Sometimes we write $TS = (Q, A, \to, q_0)$ for a rooted LTS.

- Contabile = finito o infinito numerabile (come l'insieme N dei numeri naturali)
- La relazione di transizione

 risulta essere contabile.

Definition vs graphical representation (1)

- Given an lts, there is an obvious possible graphical representation:
 - Each state q is represented as a node, labeled by q
 - Each transition (q, a, q') is represented as an arc form q to q' labeled by a.

For instance, the Its TS = $({q}, {a}, {(q,a,q)})$ is graphically represented as

(It is not unique ... i.e., many representations for a definition)

Definition vs graphical representation (2)

Given a graphical representation, we can derive its (minimal) formal definition.

Formally, the labeled transition system (*lts* for short) depicted in Figure 2.2 is the triple $TS = (Q,A, \rightarrow)$, where $Q = \{q_1,q_2\}$, $A = \{coin, \overline{coffee}\}$ and $\rightarrow = \{(q_1,coin,q_2), (q_2,\overline{coffee},q_1)\}$.

Definition vs graphical representation (3)

- Se ad A di TS del lucido precedente aggiungo un azione b, allora TS' = (Q, AU{b}, →) è ancora rappresentato graficamente dallo stesso lts! (cioè, più definizioni per una stessa rappresentazione!)
- Buona norma: evitare di mettere in A azioni non usate da nessuna transizione (minima definizione).
- Esercizio: Cosa succede se a TS aggiungo uno stato non usato in nessuna transizione?

Esercizio

 Definire il (minimo) labeled transition system rappresentato graficamente come:

Convenzioni di notazione

```
Notation: In the following q \xrightarrow{a} q' denotes (q, a, q') \in \to. Moreover, q \xrightarrow{a} if and only if \exists q'. q \xrightarrow{a} q' q \xrightarrow{a} if and only if \not\exists q'. q \xrightarrow{a} q' q \to q' if and only if \exists a \in A, \exists q'. q \xrightarrow{a} q' q \to q' if and only if \exists a \in A, \exists q'. q \xrightarrow{a} q'
```

$$q \rightarrow \text{ if and only if } \exists \mu \in A, q \xrightarrow{\mu}$$

 $q \nrightarrow \text{ if and only if } \forall \mu \in A, q \xrightarrow{\mu}$

Cammino e raggiungibilità

Definition 2.3. Given an LTS $TS = (Q, A, \rightarrow)$, and two states $q, q' \in Q$, a path (or computation) of length n from q to q' is a sequence of transitions $q_1 \xrightarrow{\mu_1} q'_1 q_2 \xrightarrow{\mu_2} q'_2 \dots q_n \xrightarrow{\mu_n} q'_n$ such that $q = q_1, q' = q'_n$ and $q'_i = q_{i+1}$ for $i = 1, \dots, n$, usually denoted as

$$q_1 \xrightarrow{\mu_1} q_2 \xrightarrow{\mu_2} \dots q_n \xrightarrow{\mu_n} q_{n+1}.$$

When n=0, the path is *empty* and $q=q'=q_1$. If $q_i\neq q_j$ for all $i\neq j$ $(i,j\in\{1,\ldots,n+1\})$, then the path is *acyclic*, otherwise it is *cyclic*. The rooted LTS (TS,q_0) is *acyclic* if it contains no cyclic path starting from q_0 . The LTS TS is *acyclic* if it contains no cyclic path. We say that q' is *reachable* from q if a path exists from q to q'; we denote by Q_q the set of all the states in Q reachable from q. A computation may also be infinite: the infinite sequence q_1,q_2,q_3,\ldots , such that $q_i\stackrel{\mu_i}{\longrightarrow} q_{i+1}$ for each $i\in\mathbb{N}$, yields the infinite path $q_1\stackrel{\mu_1}{\longrightarrow} q_2\stackrel{\mu_2}{\longrightarrow} q_3\ldots$

Esempio

Fig. 2.6 Reachable Its

- Lo LTS a sinistra non è aciclico, perché contiene un cammino ciclico (su q₃), mentre lo LTS a destra è aciclico.
- N.B.: il rooted (in q_0) LTS a sinistra è aciclico, perché nessun cammino ciclico parte dalla radice.

Chiusura riflessiva e transitiva di una relazione di transizione non etichettata

- Esercizio: dato un ts (Q,→) definito dalle transizioni non etichettate (q0,q1), (q1,q2), (q2,q3), (q3,q0), derivare l'Its ottenuto per chiusura riflessiva, poi per chiusura simmetrica, poi per chiusura transitiva.
- Per chiusura riflessiva (transitiva) di \rightarrow si intende la relazione \rightarrow ' tale che (i) $\rightarrow \subseteq \rightarrow$ ', (ii) \rightarrow ' sia riflessiva (transitiva) e (iii) \rightarrow ' è la più piccola relazione che soddisfa (i) e (ii). Più in breve, bisogna che:
 - (i) Se $q \rightarrow q'$, allora $q \rightarrow q'$
 - (ii) $\forall q, q \rightarrow' q (\forall q \rightarrow' q' e q' \rightarrow' q'' deve esserci <math>q \rightarrow' q''$)
- in questo esempio, la chiusura transitiva garantisce anche la chiusura riflessiva.

Chiusura riflessiva e transitiva di una relazione di transizione etichettata

Definition 2.4. (Reachability relation) Let A^* , ranged over by σ , be the set of all the strings on A, including the empty string ε . The concatenation of strings σ_1 and σ_2 yields $\sigma_1 \sigma_2$, with the proviso that $\varepsilon \sigma = \sigma = \sigma \varepsilon$. We define the *reachability relation* $\to^* \subseteq Q \times A^* \times Q$ as the reflexive and transitive closure of \to , i.e., as the least relation induced by the following axiom and rules:

$$\frac{q_1 \xrightarrow{\mu} q_2}{q \xrightarrow{\varepsilon^* q}} \qquad \frac{q_1 \xrightarrow{\mu} q_2}{q_1 \xrightarrow{\mu^*} q_2} \qquad \frac{q_1 \xrightarrow{\sigma_1} q_2 \quad q_2 \xrightarrow{\sigma_2} q_3}{q_1 \xrightarrow{\sigma_1 \sigma_2} q_3}$$

We simply write $q_1 \to^* q_2$ to state that q_2 is *reachable* from q_1 when there exists a string σ such that $q_1 \xrightarrow{\sigma}^* q_2$.

Definizioni alternative di stato raggiungibile

- 1. Uno stato q' è raggiungibile da uno stato q se esiste un cammino da q a q'.
- 2. Uno stato q' è raggiungibile da uno stato q se esiste σ tale che q $-\sigma$ ->* q'

Exercise 2.4. Let $\sigma = \mu_1 \dots \mu_n$ with $n \ge 0$. Prove, by induction on n, that $q \xrightarrow{\sigma}^* q'$ if and only if there exist q_1, \dots, q_{n+1} such that $q = q_1, q' = q_{n+1}$ and

$$q_1 \xrightarrow{\mu_1} q_2 \xrightarrow{\mu_2} \dots q_n \xrightarrow{\mu_n} q_{n+1}.$$

This implies that, when $n \ge 1$, $q \xrightarrow{\sigma}^* q'$ if and only if a state q'' exists such that $q \xrightarrow{\sigma'}^* q'' \xrightarrow{\mu_n} q'$, with $\sigma' = \mu_1 \dots \mu_{n-1}$.

This exercise shows that the definition of reachable state in Definition 2.3 is equivalent to the one based on reachability relation \longrightarrow^* of Definition 2.4.

LTS raggiungibile dallo stato iniziale

Definition 2.5. Given an LTS $TS = (Q, A, \rightarrow)$ and a state $q \in Q$, we define the sort of q as the set $sort(q) = \{\mu \in A \mid \exists q'. q \rightarrow^* q' \xrightarrow{\mu} \}$. We define the rooted LTS $TS_q = (Q_q, sort(q), \rightarrow_q, q)$, called the *reachable LTS from q*, where

- Q_q is the set of the states reachable from q, i.e., $Q_q = \{q' \in Q \mid q \to^* q'\}$, and
- \rightarrow_q is the restriction of \rightarrow on $Q_q \times sort(q) \times Q_q$.

Fig. 2.6 Reachable lts

Definizione: Un rooted LTS è ridotto quando tutti gli stati sono raggiungibili dallo stato iniziale ezione 3

Classi di LTS's

Definition 2.7. An lts $TS = (Q, A, \rightarrow)$ is:

- finite if it is acyclic and Q and A are finite sets;
- finite-state if Q and A are finite sets;
- boundedly-branching if $\exists k \in \mathbb{N}$ such that $\forall q \in Q$ the set $T_q = \{(q, \mu, q') \mid \exists \mu \in A \exists q' \in Q. \ q \xrightarrow{\mu} q' \}$ has cardinality at most k; the least k satisfying the above condition is called the *branching-degree* of the lts;
- finitely-branching if the set $T_q = \{(q, \mu, q') \mid \exists \mu \in A \exists q' \in Q. \ q \xrightarrow{\mu} q' \}$ is finite for all $q \in Q$; if this is not the case, the lts is infinitely-branching;
- image-finite if the set $T_{q,\mu} = \{(q,\mu,q') \mid \exists q' \in Q. \ q \xrightarrow{\mu} q' \}$ is finite for all $q \in Q$ and for all $\mu \in A$;
- deterministic if $q \xrightarrow{\mu} q'$ and $q \xrightarrow{\mu} q''$ imply that q' = q'', for all $q \in Q$ and for all $\mu \in A$.

Alcuni Its's

Altri Its's

Esercizi

- Dimostra che un lts finito è tale per cui esiste un k tale che ogni cammino ha lunghezza inferiore a k.
- Dimostra che un lts finito è pure finite-state. Vale il contrario?
- Dimostra che un lts finite-state è boundedly-branching.
 Vale il contrario?
- Dimostra che un lts boundedly-branching è finitelybranching. Vale il contrario?
- Dimostra che un lts finitely-branching è image-finite.
 Vale il contrario?
- Dimostra che un lts deterministico è image-finite. Vale che determinismo implica finitely-branching?