CHRISTIAN GLACET

LIP6 – Complex Network

UPMC - Algorithmique & programmation

MA FORMATION

- Baccalauréat: Génie électrique
- DUT: informatique
- Master: informatique Génie logiciel
 - Agents mobiles, routage en présence d'erreurs
 - Impact de la dynamique sur les informations de routage
 - Avec Nicolas Hanusse & David Ilcinkas

MA FORMATION

- Baccalauréat: Génie électrique
- DUT: informatique
- Master: informatique Génie logiciel
 - Agents mobiles, routage en présence d'erreurs
 - Impact de la dynamique sur les informations de routage
 - Avec Nicolas Hanusse & David Ilcinkas
- ► THÈSE (LABRI, BORDEAUX) 2010/2013
 - Algorithmes de routage, de la réduction des coûts de communication à la dynamique
 - Projet Européen EULER
 - Avec: Nicolas Hanusse & David Ilcinkas

MA FORMATION

- Baccalauréat: Génie électrique
- DUT: informatique
- Master: informatique Génie logiciel
 - Agents mobiles, routage en présence d'erreurs
 - Impact de la dynamique sur les informations de routage
 - Avec Nicolas Hanusse & David Ilcinkas
- ► THÈSE (LABRI, BORDEAUX) 2010/2013
 - Algorithmes de routage, de la réduction des coûts de communication à la dynamique
 - Projet Européen EULER
 - Avec: Nicolas Hanusse & David Ilcinkas
- ATER AU LABRI 2014/2015
- POSTDOCTORAT (CNR, TURIN) 2015/2016
 - Etude des propriétés structurelles des réseaux véhiculaires
 - Avec: Marco Fiore
- POSTDOCTORAT (LABRI) 6 MOIS
 - Routage dans les graphes en loi de puissance
 - Avec: David Ilcinkas, Nicolas Hanusse & Cyril Gavoille

ENSEIGNEMENT

Expérience et projet d'intégration à l'UPMC

RÉPARTITION DES HEURES

RÉPARTITION DES HEURES

MONITEUR (IUT, 2 ANS – 128H)

	initiation à l'informatique	cours/TD/TP	C/C++	
--	-----------------------------	-------------	-------	--

USI, utilisation des systèmes unix TD/TP bash, ssh, svn, ...

architecture système TD/TP powerpc

RÉPARTITION DES HEURES

MONITEUR (IUT, 2 ANS - 128H)

	initiation à l'informatique	cours/TD/TP	C/C++
•	USI, utilisation des systèmes unix	TD/TP	bash, ssh, svn,

architecture système TD/TP powerpc

ATER (UNIVERSITÉ, 1 AN – 192H)

architecture système	TD/TP	y86/x86
----------------------	-------	---------

programmation orientée objet TD/TP java

initiation à l'informatique cours/TD/TP python

RÉPARTITION DES HEURES

MONITEUR (IUT, 2 ANS - 128H)

initiation à l'informatique

USI, utilisation des systèmes unix

architecture système

- ATER (UNIVERSITÉ, 1 AN 192H)
 - architecture système
 - programmation orientée objet
 - initiation à l'informatique

cours/TD/TP

TD/TP

TD/TP

C/C++

bash, ssh, svn, ...

powerpc

~120h

TD/TP

TD/TP

cours/TD/TP

y86/x86

java

python

ARCHITECTURE SYSTÈME

ARCHITECTURE SYSTÈME

- Du transistor à un processeur simple (« histoire du CPU »)
 - fonctionnement des portes logiques/bascules,
 - les registres,
 - ALU et optimisation (de circuit combinatoire), ...
 - assembleur,
 - architecture pipeliné.

ARCHITECTURE SYSTÈME

- Du transistor à un processeur simple (« histoire du CPU »)
 - fonctionnement des portes logiques/bascules,
 - les registres,
 - ALU et optimisation (de circuit combinatoire), ...
 - assembleur,
 - architecture pipeliné.
- **Q**UELQUES RÉFÉRENCES EN LA MATIÈRE
 - Carnegie Mellon (référence pédagogique assez complète: y86)
 - Chris Terman, MIT (disponibles sur youtube)

ANDROID, COMPLEX & STL

ANDROID, COMPLEX & STL

RECHERCHE:

- Combinatoire (théorie des graphes), complexité (descriptive, Kolmogorov)
- Algorithmique distribuée : agents mobiles, auto-stabilisation

ANDROID, COMPLEX & STL

RECHERCHE:

- Combinatoire (théorie des graphes), complexité (descriptive, Kolmogorov)
- Algorithmique distribuée : agents mobiles, auto-stabilisation

FORMATION:

Génie Logiciel : Design Patterns (POO), UML/MERISE

ANDROID, COMPLEX & STL

RECHERCHE:

- Combinatoire (théorie des graphes), complexité (descriptive, Kolmogorov)
- Algorithmique distribuée : agents mobiles, auto-stabilisation

FORMATION:

Génie Logiciel : Design Patterns (POO), UML/MERISE

HOBBY:

Apprentissage automatisé (régression linéaire, réseaux de neurones, ...)

ANDROID, COMPLEX & STL

RECHERCHE:

- Combinatoire (théorie des graphes), complexité (descriptive, Kolmogorov)
- Algorithmique distribuée : agents mobiles, auto-stabilisation

FORMATION:

Génie Logiciel : Design Patterns (POO), UML/MERISE

HOBBY:

Apprentissage automatisé (régression linéaire, réseaux de neurones, ...)

ENVIES:

ARE (Ateliers de Recherche Encadrée)
Initiation à la programmation
Architecture système

RECHERCHE

Thématiques principales

- ► ROUTAGE COMPACT DISTRIBUÉ [CORE RANKING A ET A*]
 - étude de la complexité de communication
 - dédié aux graphes "internet-like"

- ► ROUTAGE COMPACT DISTRIBUÉ [CORE RANKING A ET A*]
 - étude de la complexité de communication
 - dédié aux graphes "internet-like"
- ► ALGORITHMIQUE DISTRIBUÉE FONDAMENTALE [A*]
 - compromis temps-information pour l'élection de leader

- ► ROUTAGE COMPACT DISTRIBUÉ [CORE RANKING A ET A*]
 - étude de la complexité de communication
 - dédié aux graphes "internet-like"
- ► ALGORITHMIQUE DISTRIBUÉE FONDAMENTALE [A*]
 - compromis temps-information pour l'élection de leader
- GRAPHES DYNAMIQUES: ALGO./COMBINATOIRE [B ET C]
 - Impact de la dynamique sur des informations de routage
 - Arbre de plus court chemin et détection de déconnections

- ► ROUTAGE COMPACT DISTRIBUÉ [CORE RANKING A ET A*]
 - étude de la complexité de communication
 - dédié aux graphes "internet-like"
- ► ALGORITHMIQUE DISTRIBUÉE FONDAMENTALE [A*]
 - compromis temps-information pour l'élection de leader
- ► GRAPHES DYNAMIQUES: ALGO./COMBINATOIRE [B ET C]
 - Impact de la dynamique sur des informations de routage
 - Arbre de plus court chemin et détection de déconnections
- ► RÉSEAUX VÉHICULAIRES [−]
 - Étude des communications opportunistes

- ► ROUTAGE COMPACT DISTRIBUÉ [CORE RANKING A ET A*]
 - étude de la complexité de communication
 - dédié aux graphes "internet-like"
- ► ALGORITHMIQUE DISTRIBUÉE FONDAMENTALE [A*]
 - compromis temps-information pour l'élection de leader
- ► GRAPHES DYNAMIQUES: ALGO./COMBINATOIRE [B ET C]
 - Impact de la dynamique sur des informations de routage
 - Arbre de plus court chemin et détection de déconnections
- ▶ RÉSEAUX VÉHICULAIRES [−]
 - Étude des communications opportunistes

ROUTAGE

COMPROMIS (PERFORMANCES)

Vs.

ROUTAGE

longueur(route(u,v)) = 7
distance(u,v) = 3

COMPROMIS (PERFORMANCES)

Vs. ?

ROUTAGE


```
longueur(route(u,v)) = 7
distance(u,v) = 3
```

étirement(u,v) =
$$7/3$$
.
ratio : longueur /distance

COMPROMIS (PERFORMANCES)

? Vs. ?

ROUTAGE

longueur(route(u,v)) = 7 distance(u,v) = 3

étirement(u,v) = 7/3. ratio : longueur /distance

ROUTAGE


```
longueur(route(u,v)) = 7
distance(u,v) = 3
```

étirement(u,v) =
$$7/3$$
.
ratio : longueur /distance

ROUTAGE

longueur(route(u,v)) = 7distance(u,v) = 3

étirement(u,v) = 7/3.
ratio : longueur /distance

ROUTAGE

longueur(route(u,v)) = 7distance(u,v) = 3

étirement(u,v) = 7/3.
ratio : longueur /distance

ROUTAGE

dest.	port
V	2

longueur(route(u,v)) =
$$7$$

distance(u,v) = 3

étirement(u,v) =
$$7/3$$
.
ratio : longueur /distance

ROUTAGE

longueur(route(u,v)) = 7
distance(u,v) = 3

étirement(u,v) = 7/3.
ratio : longueur /distance

COMPROMIS (PERFORMANCES)

CALCUL DISTRIBUÉ

Centralisé

Une (unique) entité voit tout et décide seule.

CALCUL DISTRIBUÉ

Distribué

Plusieurs entités distinctes participent au calcul ...

CALCUL DISTRIBUÉ

Distribué

Plusieurs entités distinctes participent au calcul ...

CALCUL DISTRIBUÉ

Distribué

Plusieurs entités distinctes participent au calcul ...

⇒ communiquer pour calculer

e.g., passage de messages

ROUTAGE DISTRIBUÉ

- ON S'INTÉRESSE AUX COMPROMIS:
 - étirement
 - mémoire
 - coût de communication
- AVEC UNE ANALYSE THÉORIQUE (BORNES INFÉRIEURES/SUPÉRIEURES)
- Dans certains cas nous avons également recours à la simulation
 - exemple: il est souvent difficile de prédire le comportement moyen.

ROUTAGE DISTRIBUÉ

Routage classique e.g. [1]

Mémoire: Θ(n)

Étirement: 1

Routage compact e.g. [2,3]

Mémoire: $\Theta(\sqrt{n})$

Étirement: 3

^[1] Dijkstra, E. W. (1959) A note on two problems in connexion with graphs.

^[2] Thorup M. et al. (2001) Compact routing schemes.

^[3] Abraham I. et al. (2004) Compact name-independent routing with minimum stretch.

ROUTAGE DISTRIBUÉ

Routage classique e.g. [1]

Mémoire: Θ(n)

Étirement: 1

Coût de communication [4]: $\Theta(n^2)$

Routage compact e.g. [2,3]

Mémoire: $\Theta(\sqrt{n})$

Étirement: 3

[1] Dijkstra, E. W. (1959) A note on two problems in connexion with graphs.

[2] Thorup M. et al. (2001) Compact routing schemes.

[3] Abraham I. et al. (2004) Compact name-independent routing with minimum stretch.

[4] Haldar, S. (1997) An all pair shortest paths distributed algorithm using 2n² messages

ROUTAGE DISTRIBUÉ

Routage classique e.g. [1]

Mémoire: Θ(n)

Étirement: 1

Coût de communication [4]: $\Theta(n^2)$

Routage compact e.g. [2,3]

Mémoire: $\Theta(\sqrt{n})$

Étirement: 3

Coût de communication: o(n²) ???

^[1] Dijkstra, E. W. (1959) A note on two problems in connexion with graphs.

^[2] Thorup M. et al. (2001) Compact routing schemes.

^[3] Abraham I. et al. (2004) Compact name-independent routing with minimum stretch.

^[4] Haldar, S. (1997) An all pair shortest paths distributed algorithm using 2n² messages

ROUTAGE DISTRIBUÉ

Routage classique e.g. [1]

Routage compact e.g. [2,3]

Mémoire: Θ(n)

Mémoire: $\Theta(\sqrt{n})$

Étirement: 1

Étirement: 3 5

Coût de communication [4]: Θ(n²)

Coût de communication [DISC'13]: $O(\sqrt{n} m)$

```
[1] Dijkstra, E. W. (1959) A note on two problems in connexion with graphs.
```

^[2] Thorup M. et al. (2001) Compact routing schemes.

^[3] Abraham I. et al. (2004) Compact name-independent routing with minimum stretch.

^[4] Haldar, S. (1997) An all pair shortest paths distributed algorithm using 2n² messages

^[5] Glacet C. et al. (2013) On the communication complexity of name-independent distributed routing schemes

ROUTAGE DISTRIBUÉ

Routage classique e.g. [1]

Routage compact e.g. [2,3]

Mémoire: Θ(n)

Mémoire: $\Theta(\sqrt{n})$

Étirement: 1

Étirement: 3 5

Coût de communication [4]: Θ(n²)

Coût de communication [DISC'13]: $O(\sqrt{n} m)$

Dans un graphe dynamique?

- [1] Dijkstra, E. W. (1959) A note on two problems in connexion with graphs.
- [2] Thorup M. et al. (2001) Compact routing schemes.
- [3] Abraham I. et al. (2004) Compact name-independent routing with minimum stretch.
- [4] Haldar, S. (1997) An all pair shortest paths distributed algorithm using 2n² messages
- [5] Glacet C. et al. (2013) On the communication complexity of name-independent distributed routing schemes

PROJET DE RECHERCHE

PROJET DE RECHERCHE

- FLOTS DE LIENS (~GRAPHES DYNAMIQUES):
 - Décrire: définir et étudier leurs propriétés
 - Algorithmique sur les flots de liens
 - Mesurer (efficacement) ces propriétés
 - Détecter des anomalies (attaques réseau, fraude bancaire)
 - Identifier des propriétés (caractéristiques) déterminantes
 - Modèle de génération de flots de liens "réalistes"
 - Étudier l'impact de variations de propriétés
 - Mesurer les performances théoriques d'algorithmes

Conférences Internationales

2016	Time vs. Information tradeoffs for leader election in anonymous trees	SODA	A *
2015	Temporal Connectivity of Vehicular Networks: The Power of Store-Carry-and-Forward	VNC	-
2015	Brief.: Routing the internet with less than fifteen entries	PODC	\mathbf{A}^*
2014	Disconnected components detection and rooted shortest-path tree maintenance in networks.	SSS	C
2013	On the Communication Complexity of Distributed Name-Independent Routing Schemes	DISC	\mathbf{A}
2011	The impact of edge deletions on the number of errors in networks	OPODIS	B
Conférence Francophone			
2016	Compromis temps-information pour l'élection de leader dans des arbres anonymes	AlgoTel	_
2015	Router sur internet avec moins de quinze entrées	AlgoTel	-
2014	Impact de la dynamique sur la fiabilité d'informations de routage - meilleur article étudiant	AlgoTel	-
2013	Algorithme distribué de routage compact en temps optimal	AlgoTel	_
2012	Vers un routage compact distribué	AlgoTel	-
Journaux			
2016	The impact of dynamic events on the number of errors in networks	TCS	
2017	Time vs. Information tradeoffs for leader election in anonymous trees	TALG	

Co-auteurs:

Nicolas Hanusse (8), David Ilcinkas (8), Cyril Gavoille (4), Andrzej Pelc (3), Avery Miller (3), Marco Fiore (1), Marco Gramaglia (1), Colette Johnen (1), Lucas Verdonk (1)