$$l_{tw} = \sqrt{\varepsilon_{si}X_{dep} / C_{ox}} (1 + D_{VT2}V_{bseff})$$

$$l_{tw} = \sqrt{\varepsilon_{si}X_{dep} / C_{ox}} (1 + D_{VT2w}V_{bseff})$$

$$l_{to} = \sqrt{\varepsilon_{si}X_{dep0} / C_{ox}}$$

$$X_{dep} = \sqrt{\frac{2\varepsilon_{si}(\Phi_{s} - V_{bseff})}{qN_{ch}}}$$

$$X_{dep0} = \sqrt{\frac{2\varepsilon_{si}\Phi_{s}}{qN_{ch}}}$$

$$V_{bseff} = V_{bc} + 0.5[V_{bs} - V_{bc} - \delta_{1} + \sqrt{(V_{bs} - V_{bc} - \delta_{1})^{2} - 4\delta_{1}V_{bc}}]$$

$$V_{bc} = 0.9 \left(\Phi_{s} - \frac{K_{1}^{2}}{4K_{2}^{2}}\right)$$

$$V_{bi} = v_{t} \ln(\frac{N_{ch}N_{DS}}{v_{s}^{2}})$$

B.1.2 Effective $(V_{gs}-V_{th})$

$$V_{gsteff} = \frac{2 n v_t \ln \left[1 + \exp(\frac{V_{gs} - V_{th}}{2 n v_t}) \right]}{1 + 2 n Cox \sqrt{\frac{2\Phi_s}{q \varepsilon_{si} N_{ch}}} \exp(-\frac{V_{gs} - V_{th} - 2V_{off}}{2 n v_t})}$$