FINAL EXAM PRACTICE PROBLEMS MATH H54, FALL 2021

(1) Let $\{\vec{v}_1,\ldots,\vec{v}_n\}$ be a linearly independent set of vectors in a real vector space V. Prove that

$$\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \dots, \vec{v}_{n-1} + \vec{v}_n, \vec{v}_n + \vec{v}_1\}$$

is linearly independent if and only if n is odd (not divisible by 2).

- (2) Let A be a real $n \times n$ matrix. Prove that there exists a real $n \times n$ matrix B such that BA = 0 (the zero matrix) and $\operatorname{rank}(A) + \operatorname{rank}(B) = n$. (Hint: First show that there exists an invertible matrix P such that PA is the reduced echelon form of A.) (Hint: Then find a square matrix C such that C(PA) = 0 and $\operatorname{rank}(A) + \operatorname{rank}(C) = n$. Such C should not be hard to construct, using the fact that PA is of reduced echelon form.) (Hint: Finally, show that B = CP has the desired properties.)
- (3) Let V be a finite dimensional real inner product space, and let $W\subseteq V$ be a subspace.
 - (a) Define $T_W: V \to W$ to be the orthogonal projection onto W. Prove that for any $\vec{v}_1, \vec{v}_2 \in V$, one has $\langle \vec{v}_1, T_W(\vec{v}_2) \rangle = \langle T_W(\vec{v}_1), \vec{v}_2 \rangle$.
 - (b) Conversely, suppose $T\colon V\to V$ is a linear transformation such that $T^2=T$ and $\langle \vec{v}_1,T(\vec{v}_2)\rangle=\langle T(\vec{v}_1),\vec{v}_2\rangle$ holds for any $\vec{v}_1,\vec{v}_2\in V$. Prove that T is the orthogonal projection onto its image $\mathrm{Im}(T)$. (Note: $T^2=T\circ T$ denotes the composition of T with itself.) (Hint: Plug in $\vec{v}_1=T(\vec{v})$ for any $\vec{v}\in V$, and use the condition $T^2=T$.)
- (4) Let W_1 and W_2 be two subspaces of an n-dimensional real vector space V, satisfying $\dim(W_1) + \dim(W_2) = n$. Prove that there exists a linear transformation $T: V \to V$ such that

$$Ker(T) = W_1$$
 and $Im(T) = W_2$.

(Hint: Let $\{\vec{v}_1,\ldots,\vec{v}_k\}$ be a basis of W_1 . To construct the transformation T, you might want to use the fact that $\{\vec{v}_1,\ldots,\vec{v}_k\}$ can be extended to a basis $\{\vec{v}_1,\ldots,\vec{v}_k,\ldots,\vec{v}_n\}$ of V.)

- Let A be an $n \times n$ matrix. Consider the linear transformation $T \colon \operatorname{Mat}_{n \times n}(\mathbb{R}) \to \operatorname{Mat}_{n \times n}(\mathbb{R})$ on the n^2 -dimensional vector space $\operatorname{Mat}_{n \times n}(\mathbb{R})$ defined by T(B) = AB. Express $\det(T)$ in terms of $\det(A)$.
- Let A be a square matrix with columns given by unit vectors. Prove that $|\det(A)| \le 1$. When does the equality hold?
- Let V be a finite-dimensional vector space, and let $T\colon V\to V$ be a diagonalizable linear transformation. Suppose $W\subseteq V$ is a subspace satisfying $T(W)\subseteq W$. Prove that the restriction $T|_W\colon W\to W$ also is diagonalizable.

(8) Consider a sequence of linear transformations between finite-dimensional vector spaces

$$\{0\} \xrightarrow{T_0} V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} \cdots \xrightarrow{T_{n-2}} V_{n-1} \xrightarrow{T_{n-1}} V_n \xrightarrow{T_n} \{0\}$$

Assume that $\operatorname{Im}(T_{i-1}) = \operatorname{Ker}(T_i)$ for all $1 \leq i \leq n$. What is the value of

$$\dim(V_1) - \dim(V_2) + \dim(V_3) - \dots + (-1)^n \dim(V_n)$$
?

- (9) Let A be a real $n \times n$ matrix. Prove that the following two statements are equivalent:
 - (a) $A^2 = A$;
 - (b) $\operatorname{rank}(A) + \operatorname{rank}(\mathbb{I}_n A) = n$.
- (10) Let $\{\vec{v}_1, \dots, \vec{v}_k\}$ be an orthonormal set in a finite-dimensional inner product space V. Suppose that for any $\vec{v} \in V$ we have

$$||\vec{v}||^2 = \langle \vec{v}_1, \vec{v} \rangle^2 + \dots + \langle \vec{v}_k, \vec{v} \rangle^2.$$

Prove that $\{\vec{v}_1, \dots, \vec{v}_k\}$ is a basis of V.

- (11) Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Suppose that $\mathbb{I}_m AB$ is invertible. Prove that $\mathbb{I}_n BA$ also is invertible.
- (12) Let W_1 and W_2 be subspaces of a vectors space V. Consider the union

$$W_1 \cup W_2 := \{x \in V : x \in W_1 \text{ or } x \in W_2\}.$$

Prove that if $W_1 \cup W_2$ is a subspace of V, then we must have $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

(13) Let $T: V \to V$ be a linear transformation on a (possibly infinite-dimensional) vector space V. Suppose that every subspace of V is invariant under V, i.e. $T(W) \subseteq W$ for any subspace $W \subseteq V$. Prove that T is a scalar multiple of the identity transformation.

$$T: M_{n \times n} (\mathbb{R}) \longrightarrow M_{n \times n} (\mathbb{R})$$

$$B \longmapsto AB$$

$$AB$$

Choose a basis
$$\{e_{11}, e_{21}, \dots, e_{n1}, e_{12}, \dots, e_{n2}, \dots, e_{nn}\}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$T(e_{11}) = A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = a_{11}e_{11} + a_{21}e_{21} + \cdots + a_{n_1}e_{n_1}$$

$$T(e_{21}) = A \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = a_{12}e_{11} + a_{22}e_{21} + \cdots + a_{n_2}e_{n_1}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{22} &$$

$$Sqn(\sigma_1)+sqn(\sigma_3)$$

$$C(-1)$$

$$C(\sigma_1(1),...,\sigma_{n\sigma_1(n)},\sigma_{\sigma_2(n)},\dots,\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_n(n)},\sigma_{\sigma_n(n)},\dots,\sigma_{\sigma_$$

$$= \left(\sum_{\sigma_{1} \in S_{n}} (-1) - \alpha_{1\sigma_{1}(1)} - \alpha_{n\sigma_{1}(n)} \right) \left(\sum_{\sigma_{3} \in S_{m}} (-1) - \sum_{m \in S_{2}(m)} (-1) - \sum_{m \in S_{m}} (-1)$$

(6) Let A be a square matrix with columns given by unit vectors. Prove that $|\det(A)| \le 1$. When does the equality hold?

$$A^{T}A = \begin{pmatrix} 1 & * & * \\ * & 1 \end{pmatrix} \Rightarrow tr(A^{T}A) = n = \sum eigenvalus of A^{T}A$$

ATA is positive semidefinite symmetric. $\Rightarrow TATA\hat{x} = \langle A\hat{x}, A\hat{x} \rangle \geqslant 0$ $\forall \hat{x}$.

•
$$det(A^TA) = \Pi eigenvalus of A^TA = \lambda_1 \dots \lambda_n$$
.

 $det(A)^2$

equality holds only if
$$\lambda_1 = --= \lambda_n$$
.

$$\exists \underbrace{\lambda_1 = \dots = \lambda_n = 1}$$

Continue this argument inductively. I each 2; e.w.

(11) Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Suppose that $\mathbb{I}_m - AB$ is invertible. Prove that $\mathbb{I}_n - BA$ also is invertible.

$$(I_{\Lambda} - BA) \overrightarrow{\chi} = \overrightarrow{3} \qquad \overrightarrow{\Rightarrow} \qquad \overrightarrow{\chi} = BA \overrightarrow{\chi}$$

$$\Rightarrow \qquad A \overrightarrow{\Rightarrow} = ARA \overrightarrow{\Rightarrow}$$

$$\overrightarrow{A} = \overrightarrow{A} = \overrightarrow{A}$$

(13) Let $T\colon V\to V$ be a linear transformation on a (possibly infinite-dimensional) vector space V. Suppose that every subspace of V is invariant under V, i.e. $T(W)\subseteq W$ for any subspace $W\subseteq V$. Prove that T is a scalar multiple of the identity transformation.

$$\vec{V}_1, \vec{V}_2 \neq \vec{o}$$
, $\vec{V}_1 = \vec{C}_1 \vec{v}_1$ $\vec{V}_2 = \vec{C}_1 \vec{v}_2$ $\vec{V}_1 = \vec{V}_2 \vec{v}_2$ $\vec{V}_1 = \vec{V}_2 \vec{v}_2$

$$\frac{\vec{y}_1 + \vec{y}_2}{\vec{y}_1} = C_3(\vec{y}_1 + \vec{y}_2) = C_3(\vec{y}_1 + \vec{y}_2)$$

$$C_1\vec{y}_1 + c_1\vec{y}_2$$

$$(C_1 - C_3) \vec{v}_1 = (C_3 - C_2) \vec{v}_2$$

(12) Let W_1 and W_2 be subspaces of a vectors space V. Consider the union $W_1 \cup W_2 := \{x \in V \colon x \in W_1 \text{ or } x \in W_2\}.$

Prove that if $W_1 \cup W_2$ is a subspace of V, then we must have $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

$$\overrightarrow{x}_1 \in W_1 / W_2$$
, $\overrightarrow{x}_2 \in W_2 / W_1$

· XITX2 & WIUWL.:

- (9) Let A be a real $n \times n$ matrix. Prove that the following two statements are equivalent:
 - (a) $A^2 = A$;
 - (b) $\operatorname{rank}(A) + \operatorname{rank}(\mathbb{I}_n A) = n$.

dim Nul(A) + dim Nul (A-In) = n

O, 1 are the only possible eigenvalue

$$\rightarrow$$
 $A^2 = A$.

= D since the diagonal entites are o