metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis[μ -bis(diphenylphosphanyl)methane- $\kappa^2 P$:P']bis[(isoquinoline- κN)silver(I)] bis(trifluoromethanesulfonate)— isoquinoline (1/1)

Xu Huang,^a Jing Li,^a Qi-Ming Qiu,^a Min Liu^b and Qiong-Hua Jin^a*

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ^bThe College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China Correspondence e-mail: jinqh204@163.com

Received 3 May 2012; accepted 27 June 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.007$ Å; disorder in main residue; R factor = 0.038; wR factor = 0.103; data-to-parameter ratio = 12.9.

The title complex, $[Ag_2(C_{25}H_{22}P_2)_2(C_9H_7N)_2](CF_3SO_3)_2$ --C₉H₇N, was prepared by the reaction of silver(I) trifluoromethanesulfonate with isoquinoline and bis(diphenylphosphanyl)methane (dppm). The dinuclear molecule is located about a center of inversion and the AgI atom is coordinated by two dppm P atoms and one isoquinoline N atom, forming an eight-membered metalla ring. In addition, in the asymmetric unit, there is a half-molecule of isoquinoline located about a center of inversion. Since this molecule does not possess this symmetry, for one position in the ring there is superposition of both a C atom of a C-H group and the isoquinoline N atom. In the structure, the Ag-P distances [2.4296 (9) and 2.4368 (9) A] agree with the corresponding distances in related structures, while the Ag-N bond length [2.489 (3) A] is slightly longer than that in related structures. On the other hand, the P-Ag-P angle $[156.44 (3)^{\circ}]$ is much larger than the corresponding angles in related structures. The trifluoromethanesulfonate anions do not coordinate to Ag^I atoms. As is usually found for these anions, the -CF₃ group is disordered over two orientations [occupancies = 0.57 (12) and 0.43 (12)].

Related literature

For background to silver(I) complexes, see: Bowmaker *et al.* (1993); Cui *et al.* (2010*a,b*); Jin *et al.* (2010*a,b*); Meijboom *et al.* (2009); Mu *et al.* (2010). For related structures, see: Jin *et al.* (2008); Song *et al.* (2010); Wu *et al.* (2009).

Experimental

Crystal data

 $[Ag_2(C_{25}H_{22}P_2)_2(C_9H_7N)_2]$ - $\beta = 100.382 (1)^{\circ}$ $(CF_3O_3S)_2 \cdot C_9H_7N$ $\gamma = 110.289 (2)^{\circ}$ $M_r = 1670.08$ $V = 1847.9 \ (3) \ \text{Å}^3$ Triclinic, $P\overline{1}$ 7 - 1a = 11.7730 (11) ÅMo $K\alpha$ radiation b = 11.9269 (12) Å $\mu = 0.74 \text{ mm}^$ c = 15.4151 (17) ÅT = 298 K $\alpha = 106.696 (1)^{\circ}$ $0.48 \times 0.39 \times 0.35 \text{ mm}$

Data collection

Bruker SMART 1000 CCD 9230 measured reflections diffractometer 6407 independent reflections Absorption correction: multi-scan (SADABS; Bruker, 2007) $R_{\rm int} = 0.717, \, T_{\rm max} = 0.781$ $R_{\rm int} = 0.026$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.038 & 497 \text{ parameters} \\ wR(F^2) = 0.103 & \text{H-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\text{max}} = 0.63 \text{ e Å}^{-3} \\ 6407 \text{ reflections} & \Delta\rho_{\text{min}} = -0.57 \text{ e Å}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Science Foundation of China (grant No. 21171119), the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020) and the National High Technology Research and Development Program 863 of China (2012 A A063201).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2206).

References

Bowmaker, G. A., Effendy, H. J. V., Healy, P. C., Skelton, B. W. & White, A. H. (1993). *J. Chem. Soc. Dalton Trans.* pp. 1387–1397.

Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010a). Acta Cryst. E66, m871.

Cui, L.-N., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2010b). Acta Cryst. E66, m969.

metal-organic compounds

- Jin, Q. H., Hu, K. Y., Chen, L. M., Sun, J. J., Yang, L. & Li, P. Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 79-81.
- Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010a). Polyhedron, **29**, 441–445. Jin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010b).
- Inorg. Chem. Commun. 13, 62-65.
- Meijboom, R., Bowen, R. J., Berners, P. & Susan, J. (2009). Coord. Chem. Rev. **253**, 325–342.
- Mu, K. J., Wang, R., Hu, K. Y., Cui, L. N., Liu, H., Jin, Q. H. & Zhang, C. L. (2010). Z. Kristallogr. New Cryst. Struct. 225, 645-648.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237-m1238.
- Wu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096m1097.

Acta Cryst. (2012). E68, m1022-m1023 [doi:10.1107/S1600536812029236]

Bis[μ -bis(diphenylphosphanyl)methane- $\kappa^2 P$:P']bis[(isoquinoline- κN)silver(I)] bis-(trifluoromethanesulfonate)—isoquinoline (1/1)

Xu Huang, Jing Li, Qi-Ming Qiu, Min Liu and Qiong-Hua Jin

Comment

The coordination chemistry of silver(I) is of considerable interest because of its luminescence properties and potential applications in catalysis, cyanide, photography antimicrobial activities and electrochemical processes (Bowmaker *et al.*, 1993; Cui *et al.*, 2010*a*, 2010*b*; Jin *et al.*, 2010*a*, 2010*b*; Meijboom *et al.*, 2009;). Nitrogen heterocyclic ligands play significant roles in the construction of d₁₀ metal complexes with phosphine ligands. For examples,[Ag₄(SCN)₄(dppm)₂] (Jin *et al.*, 2008), [Ag(SCN)(dppm)]₂ (Song *et al.*, 2010), [Ag(ClO₄)(PPh₃)₃] (Cui *et al.*, 2010*a*), [Ag(ClO₄) (PPh₃)₃(MeOH)] (Cui *et al.*, 2010*b*) and [Ag(PPh₃)(CH₃COO)]₂.H₂O.CH₃OH (Mu *et al.*, 2010) were prepared under the catalysis of nitrogen heterocyclic ligands. Here we report the first silver (I) complex which combines isoquinoline and bis(diphenylphosphine)methane, [Ag₂(dppm)₂(C₉H₇N)₂](CF₃SO₃)₂.C₉H₇N

In the compound, $C_{79}H_{65}Ag_2F_6N_3O_6P_4S_2$, the molecule is located on a center of inversion and each silver atom is coordinated by two phosphorus atoms from dppm and one nitrogen from isoquinoline to form a eight-member ring. In addition, in the asymmetric unit there is half a molecule of isoquinoline located on a center of inversion. Since this molecule does not possess this symmetry, for one position in the ring there is superposition of both a C-H and N.

In the compound, Ag—P distances (2.4296 (2)–2.4368 (9) Å), agree with the corresponding distances in [Ag₄(SCN)₄(dppm)₂] (2.399 Å) and [Ag(SCN)(dppm)]₂ (2.450 (2),2.451 (2)). The Ag—N bond distance(2.489 (3) Å) is longer than that in [Ag(C₁₂H₈N₂)(C₁₈H₁₅P)(2.376 (8) Å) (Wu *et al.*, 2009). The P—Ag—P angle (156.44°) is much larger than the corresponding angles in [Ag(SCN)(dppm)]₂ (120.0 and 120.8 (1)°). The trifluoromethanesulfonate anions do not coordinate to silver atoms. As is usually found for these anions, the CF₃ group is disordered over two orientations with occupancies of 0.57 (12)/0.43 (12).

Experimental

A mixture of silver(I) trifluoromethanesulfonate, bis(diphenylphosphanyl)methane (molar ratio 1:1) and isoquinoline (0.5 ml) in the mixed solution of CH₃OH (5 ml) and CH₂Cl₂(5 ml) was stirred for 5 h at ambient temperature. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature for about one month to yield white crystals. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement

Metal atom centers were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F^2 .

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Data collection: *SMART* (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: *SAINT-Plus*; program(*s*) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(*s*) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The ionic entities of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.

Bis[μ -bis(diphenylphosphanyl)methane- $\kappa^2 P:P'$]bis[(isoquinoline- κN)silver(I)] bis(trifluoromethanesulfonate)– isoquinoline (1/1)

Crystal data

$[Ag_2(C_{25}H_{22}P_2)_2(C_9H_7N)_2](CF_3O_3S)_2\cdot C_9H_7N$	Z=1
$M_r = 1670.08$	F(000) = 848
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.501 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
a = 11.7730 (11) Å	Cell parameters from 4635 reflections
b = 11.9269 (12) Å	$\theta = 2.5 - 28.1^{\circ}$
c = 15.4151 (17) Å	$\mu = 0.74~\mathrm{mm}^{-1}$
$\alpha = 106.696 (1)^{\circ}$	T = 298 K
$\beta = 100.382 (1)^{\circ}$	Prism, white
$\gamma = 110.289 (2)^{\circ}$	$0.48 \times 0.39 \times 0.35 \text{ mm}$
$V = 1847.9 (3) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

phi and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2007)

 $T_{\min} = 0.717, T_{\max} = 0.781$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$

 $wR(F^2) = 0.103$

S = 1.03

6407 reflections

497 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

9230 measured reflections 6407 independent reflections

4969 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.026$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$

 $h = -13 \rightarrow 14$

 $k = -13 \rightarrow 14$

 $l = -18 \rightarrow 16$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0425P)^2 + 1.3004P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 0.63 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.57 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ag1	0.52538 (2)	0.63477 (3)	0.59947 (2)	0.04145 (11)	
F1	0.401(2)	0.509 (5)	0.1002 (15)	0.115 (8)	0.57 (12)
F2	0.194 (4)	0.430(4)	0.0409 (18)	0.099(6)	0.57 (12)
F3	0.283 (8)	0.305 (4)	0.0602 (16)	0.114 (11)	0.57 (12)
F1′	0.225 (5)	0.290(3)	0.061(2)	0.101 (7)	0.43 (12)
F2'	0.406(3)	0.450 (9)	0.0954 (18)	0.123 (12)	0.43 (12)
F3′	0.233 (7)	0.462(6)	0.037(2)	0.095 (9)	0.43 (12)
N1	0.5661 (3)	0.8428 (3)	0.7245 (2)	0.0493 (8)	
N2	0.641 (11)	0.001 (13)	0.139 (8)	0.12 (12)	0.50
O1	0.3089 (4)	0.6036(3)	0.2444 (2)	0.0848 (11)	
O2	0.3653 (4)	0.4369 (4)	0.2676(2)	0.0887 (11)	
О3	0.1465 (4)	0.3951 (4)	0.2050(3)	0.1093 (15)	
P1	0.73017 (8)	0.71398 (8)	0.57100 (6)	0.0300(2)	
P2	0.70533 (8)	0.45711 (8)	0.44043 (6)	0.0304(2)	
S1	0.27513 (11)	0.46881 (11)	0.21639 (7)	0.0556(3)	
C1	0.6518 (4)	0.8795 (4)	0.8064 (3)	0.0489 (10)	
H1	0.6667	0.8162	0.8238	0.059*	

C2	0.5452 (4)	0.9371 (4)	0.7002 (3)	0.0606 (12)
H2	0.4847	0.9123	0.6423	0.073*
C3	0.6075 (4)	1.0645 (4)	0.7555 (3)	0.0618 (12)
H3	0.5892	1.1247	0.7357	0.074*
C4	0.7006 (4)	1.1052 (4)	0.8437 (3)	0.0551 (11)
C5	0.7229 (4)	1.0103 (4)	0.8701 (3)	0.0499 (10)
C6	0.8170 (5)	1.0448 (5)	0.9551 (3)	0.0677 (13)
H6	0.8317	0.9814	0.9725	0.081*
C7	0.8866 (5)	1.1717 (6)	1.0119 (4)	0.0865 (18)
H7	0.9491	1.1948	1.0683	0.104*
C8	0.8658 (6)	1.2661 (6)	0.9871 (4)	0.0915 (19)
H8	0.9150	1.3523	1.0269	0.110*
C9	0.7745 (5)	1.2365 (5)	0.9052 (4)	0.0777 (16)
H9	0.7609	1.3018	0.8899	0.093*
C10	0.8032 (3)	0.5997 (3)	0.5509(2)	0.0325 (8)
H10A	0.8122	0.5727	0.6044	0.039*
H10B	0.8876	0.6419	0.5465	0.039*
C11	0.8524(3)	0.8601(3)	0.6680(2)	0.0356 (8)
C12	0.8431 (4)	0.9755 (4)	0.6772 (3)	0.0443 (9)
H12	0.7779	0.9761	0.6334	0.053*
C13	0.9295 (4)	1.0896 (4)	0.7509(3)	0.0587 (12)
H13	0.9222	1.1664	0.7565	0.070*
C14	1.0252 (5)	1.0893 (5)	0.8153 (3)	0.0699 (15)
H14	1.0841	1.1662	0.8644	0.084*
C15	1.0349 (4)	0.9760 (5)	0.8078 (3)	0.0684 (14)
H15	1.0999	0.9766	0.8525	0.082*
C16	0.9488 (4)	0.8598 (4)	0.7342 (3)	0.0509 (10)
H16	0.9560	0.7833	0.7296	0.061*
C17	0.7319 (3)	0.7611 (3)	0.4689 (2)	0.0335 (8)
C18	0.8460 (3)	0.8180 (4)	0.4524(3)	0.0412 (9)
H18	0.9223	0.8355	0.4953	0.049*
C19	0.8473 (4)	0.8488 (4)	0.3733 (3)	0.0530 (11)
H19	0.9244	0.8875	0.3630	0.064*
C20	0.7351 (5)	0.8226 (4)	0.3095 (3)	0.0579 (12)
H20	0.7362	0.8430	0.2557	0.069*
C21	0.6221 (5)	0.7669 (4)	0.3246 (3)	0.0588 (12)
H21	0.5462	0.7488	0.2808	0.071*
C22	0.6197 (4)	0.7370 (4)	0.4048 (3)	0.0439 (9)
H22	0.5425	0.7007	0.4156	0.053*
C23	0.7693 (3)	0.4931 (3)	0.3477 (2)	0.0335 (8)
C24	0.8969 (4)	0.5276 (4)	0.3545 (3)	0.0482 (10)
H24	0.9537	0.5361	0.4090	0.058*
C25	0.9397 (4)	0.5496 (4)	0.2798 (3)	0.0609 (12)
H25	1.0247	0.5706	0.2837	0.073*
C26	0.8566 (5)	0.5401 (4)	0.2009 (3)	0.0664 (14)
H26	0.8857	0.5556	0.1514	0.080*
C27	0.7308 (5)	0.5080 (4)	0.1941 (3)	0.0601 (12)
H27	0.6752	0.5028	0.1403	0.072*
C28	0.6864 (4)	0.4834 (4)	0.2666 (3)	0.0440 (9)

H40	0.3988	0.1841	-0.0966	0.138*		
C40	0.4179 (8)	0.1228 (10)	-0.0790(7)	0.115 (3)		
H39	0.5456	0.2481	0.0487	0.137*		
C39	0.5054 (8)	0.1618 (8)	0.0075 (6)	0.115 (2)		
C38	0.5330 (5)	0.0643 (6)	0.0327 (4)	0.0837 (18)		
H37	0.6571	0.1756	0.1623	0.142*		
C37	0.6164 (7)	0.0911 (10)	0.1179 (5)	0.118 (3)		
H36	0.7001	0.0233	0.1969	0.144*	0.50	
C36	0.641 (14)	0.001 (15)	0.139 (10)	0.12 (14)	0.50	
C35	0.2884 (7)	0.4224 (6)	0.0981 (4)	0.0783 (16)		
H34	0.6982	0.3465	0.5791	0.052*		
C34	0.7290 (4)	0.3006 (4)	0.5373 (3)	0.0433 (9)		
H33	0.7370	0.1791	0.6036	0.066*		
C33	0.7515 (4)	0.1998 (4)	0.5517 (3)	0.0553 (11)		
H32	0.8093	0.0620	0.4990	0.068*		
C32	0.7953 (4)	0.1303 (4)	0.4895 (3)	0.0565 (11)		
H31	0.8483	0.1145	0.3723	0.062*		
C31	0.8182 (4)	0.1615 (4)	0.4140(3)	0.0517 (10)		
H30	0.8126	0.2836	0.3470	0.050*		
C30	0.7968 (3)	0.2631 (4)	0.3987 (3)	0.0419 (9)		
C29	0.7519(3)	0.3338 (3)	0.4608 (2)	0.0341 (8)		
H28	0.6007	0.4602	0.2612	0.053*		

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.03004 (16)	0.04394 (19)	0.04563 (19)	0.01163 (13)	0.01270 (12)	0.01485 (13)
F1	0.135 (9)	0.147 (18)	0.098 (6)	0.068 (10)	0.082(6)	0.057(8)
F2	0.128 (14)	0.105 (10)	0.051 (5)	0.035 (10)	0.003 (7)	0.045 (5)
F3	0.17(3)	0.111 (11)	0.079 (5)	0.102 (18)	0.034 (11)	0.014 (5)
F1'	0.111 (17)	0.098 (9)	0.076 (7)	0.068 (10)	0.008(8)	-0.007(6)
F2'	0.116 (10)	0.16(3)	0.110 (9)	0.069 (15)	0.063 (8)	0.034 (14)
F3'	0.14(2)	0.099 (17)	0.055 (6)	0.057 (16)	0.026 (11)	0.039 (9)
N1	0.0474 (19)	0.041(2)	0.046(2)	0.0123 (16)	0.0156 (16)	0.0056 (16)
N2	0.10 (18)	0.2(3)	0.1(2)	0.06 (18)	0.03 (15)	0.03 (19)
O1	0.111 (3)	0.057(2)	0.070(2)	0.032(2)	0.020(2)	0.0112 (17)
O2	0.099(3)	0.094(3)	0.065(2)	0.040(2)	-0.0066(19)	0.039(2)
O3	0.077(3)	0.116(3)	0.101(3)	0.003(2)	0.025(2)	0.044(3)
P1	0.0269 (4)	0.0286 (5)	0.0297 (5)	0.0088 (4)	0.0092 (4)	0.0081 (4)
P2	0.0277 (4)	0.0300 (5)	0.0302 (5)	0.0111 (4)	0.0088 (4)	0.0081 (4)
S1	0.0579 (7)	0.0556 (7)	0.0409 (6)	0.0125 (5)	0.0092 (5)	0.0192 (5)
C1	0.058(3)	0.040(2)	0.046(2)	0.017(2)	0.024(2)	0.0137 (19)
C2	0.046(3)	0.060(3)	0.060(3)	0.019(2)	0.011(2)	0.010(2)
C3	0.056(3)	0.052(3)	0.077(3)	0.030(2)	0.018(2)	0.018(2)
C4	0.054(3)	0.040(2)	0.060(3)	0.017(2)	0.024(2)	0.005(2)
C5	0.054(2)	0.045 (2)	0.041(2)	0.013(2)	0.0222 (19)	0.0076 (19)
C6	0.076(3)	0.061(3)	0.049(3)	0.015(3)	0.018(2)	0.015(2)
C7	0.081 (4)	0.078 (4)	0.053(3)	0.004(3)	0.013(3)	0.000(3)
C8	0.089 (4)	0.054 (4)	0.077 (4)	0.004(3)	0.019(3)	-0.015(3)
C9	0.077 (4)	0.046(3)	0.089 (4)	0.019(3)	0.027(3)	0.003(3)

C10	0.0318 (18)	0.0319 (19)	0.0309 (18)	0.0119 (15)	0.0092 (14)	0.0103 (15)
C11	0.0324 (18)	0.033(2)	0.0344 (19)	0.0063 (15)	0.0166 (15)	0.0091 (15)
C12	0.043 (2)	0.038(2)	0.042(2)	0.0089 (18)	0.0196 (17)	0.0094 (17)
C13	0.061(3)	0.037(2)	0.054(3)	0.002(2)	0.026(2)	0.002(2)
C14	0.068(3)	0.050(3)	0.047(3)	-0.009(2)	0.020(2)	-0.004(2)
C15	0.054(3)	0.080(4)	0.038(2)	0.008(3)	0.000(2)	0.012(2)
C16	0.047(2)	0.050(3)	0.040(2)	0.011(2)	0.0058 (18)	0.0106 (19)
C17	0.0355 (19)	0.0293 (19)	0.0319 (18)	0.0119 (15)	0.0121 (15)	0.0073 (15)
C18	0.040(2)	0.042(2)	0.041(2)	0.0151 (18)	0.0146 (17)	0.0155 (17)
C19	0.062(3)	0.048 (3)	0.050(2)	0.016(2)	0.028(2)	0.022(2)
C20	0.080(3)	0.051(3)	0.043 (2)	0.023(2)	0.018(2)	0.024(2)
C21	0.065(3)	0.058(3)	0.045(2)	0.026(2)	0.001(2)	0.019(2)
C22	0.039(2)	0.043 (2)	0.048(2)	0.0166 (18)	0.0090 (17)	0.0180 (18)
C23	0.0374 (19)	0.0305 (19)	0.0347 (19)	0.0159 (16)	0.0147 (15)	0.0110 (15)
C24	0.043 (2)	0.050(2)	0.048(2)	0.0163 (19)	0.0166 (18)	0.0155 (19)
C25	0.055(3)	0.058(3)	0.069(3)	0.017(2)	0.037(2)	0.021(2)
C26	0.090(4)	0.058(3)	0.046 (3)	0.020(3)	0.037(3)	0.017(2)
C27	0.074(3)	0.062(3)	0.038(2)	0.022(2)	0.013(2)	0.021(2)
C28	0.046(2)	0.045 (2)	0.038(2)	0.0181 (19)	0.0117 (17)	0.0152 (17)
C29	0.0289 (17)	0.0313 (19)	0.0349 (19)	0.0094 (15)	0.0073 (15)	0.0085 (15)
C30	0.044(2)	0.042(2)	0.039(2)	0.0192 (18)	0.0142 (17)	0.0125 (17)
C31	0.060(3)	0.046(2)	0.057(3)	0.032(2)	0.023(2)	0.017(2)
C32	0.068(3)	0.047 (3)	0.063(3)	0.033 (2)	0.018(2)	0.023(2)
C33	0.073 (3)	0.052(3)	0.051(2)	0.029(2)	0.023(2)	0.028(2)
C34	0.048 (2)	0.043 (2)	0.044(2)	0.0236 (19)	0.0178 (18)	0.0159 (18)
C35	0.109 (5)	0.082 (4)	0.051(3)	0.049 (4)	0.022(3)	0.026(3)
C36	0.1(2)	0.2 (4)	0.1(3)	0.1(2)	0.03 (18)	0.0(2)
C37	0.095 (5)	0.150(8)	0.081 (5)	0.041 (5)	0.030 (4)	0.017 (5)
C38	0.064(3)	0.122 (5)	0.055(3)	0.037(3)	0.030(3)	0.015 (3)
C39	0.115 (6)	0.118 (6)	0.099 (6)	0.046 (5)	0.049 (5)	0.020 (5)
C40	0.123 (7)	0.138 (8)	0.108 (7)	0.070 (6)	0.052 (6)	0.053 (6)

Geometric parameters (Å, °)

Ag1—P2i	2.4296 (9)	C14—H14	0.9300
Ag1—P1	2.4368 (9)	C15—C16	1.394 (6)
Ag1—N1	2.489 (3)	C15—H15	0.9300
F1—C35	1.35 (2)	C16—H16	0.9300
F2—C35	1.34(3)	C17—C22	1.381 (5)
F3—C35	1.33 (2)	C17—C18	1.386 (5)
F1'—C35	1.37 (3)	C18—C19	1.371 (6)
F2'—C35	1.32 (3)	C18—H18	0.9300
F3'—C35	1.33 (4)	C19—C20	1.371 (6)
N1—C1	1.312 (5)	C19—H19	0.9300
N1—C2	1.366 (6)	C20—C21	1.361 (6)
N2—C37	1.32 (13)	C20—H20	0.9300
N2C40 ⁱⁱ	1.33 (13)	C21—C22	1.385 (6)
O1—S1	1.423 (4)	C21—H21	0.9300
O2—S1	1.430(3)	C22—H22	0.9300
O3—S1	1.411 (4)	C23—C24	1.388 (5)

P1—C17	1.818 (4)	C23—C28	1.388 (5)
P1—C11	1.825 (3)	C24—C25	1.392 (6)
P1—C10	1.833 (3)	C24—H24	0.9300
P2—C23	1.820 (4)	C25—C26	1.366 (7)
P2—C29	1.823 (4)	C25—C20 C25—H25	0.9300
P2—C10	* *	C25—H25 C26—C27	
	1.841 (3)		1.371 (7)
P2—Ag1 ⁱ	2.4296 (9)	C26—H26	0.9300
S1—C35	1.800 (5)	C27—C28	1.380 (6)
C1—C5	1.420 (5)	C27—H27	0.9300
C1—H1	0.9300	C28—H28	0.9300
C2—C3	1.353 (6)	C29—C34	1.388 (5)
C2—H2	0.9300	C29—C30	1.391 (5)
C3—C4	1.414 (6)	C30—C31	1.393 (5)
C3—H3	0.9300	C30—H30	0.9300
C4—C5	1.396 (6)	C31—C32	1.364 (6)
C4—C9	1.420 (6)	C31—H31	0.9300
C5—C6	1.401 (6)	C32—C33	1.374 (6)
C6—C7	1.360 (7)	C32—H32	0.9300
C6—H6	0.9300	C33—C34	1.386 (5)
C7—C8	1.371 (8)	C33—H33	0.9300
C7—H7	0.9300	C34—H34	0.9300
C8—C9	1.365 (8)	C36—C37	1.32 (15)
C8—H8	0.9300	C36—C40 ⁱⁱ	1.33 (15)
C9—H9	0.9300	C36—H36	0.9300
C10—H10A	0.9700	C37—C38	1.367 (9)
C10—H10B	0.9700	C37—H37	0.9300
C11—C16	1.384 (5)	C38—C38 ⁱⁱ	1.406 (12)
C11—C12	1.387 (5)	C38—C39	1.443 (10)
C12—C13	1.383 (5)	C39—C40	1.369 (10)
C12—H12	0.9300	C39—H39	0.9300
C13—C14	1.363 (7)	C40—N2 ⁱⁱ	1.33 (13)
C13—H13	0.9300	C40—C36 ⁱⁱ	1.33 (15)
C14—C15	1.369 (7)	C40—H40	0.9300
C14—C13	1.309 (7)	C-1011-10	0.9300
P2 ⁱ —Ag1—P1	156.44 (3)	C21—C20—H20	119.9
P2 ⁱ —Ag1—N1	96.13 (8)	C19—C20—H20	119.9
P1—Ag1—N1	95.55 (8)	C20—C21—C22	120.2 (4)
C1—N1—C2	117.3 (4)	C20—C21—H21	119.9
C1—N1—Ag1	116.6 (3)	C22—C21—H21	119.9
C2—N1—Ag1	120.8 (3)	C17—C22—C21	120.1 (4)
C37—N2—C40 ⁱⁱ	122 (8)	C17—C22—H22	119.9
C17—P1—C11	101.96 (16)	C21—C22—H22	119.9
C17—P1—C10	102.83 (16)	C24—C23—C28	119.1 (3)
C11—P1—C10	104.74 (16)	C24—C23—C28 C24—C23—P2	122.4 (3)
C17—P1—Ag1	` ′	C24—C23—F2 C28—C23—P2	` ′
•	116.50 (12)		118.4 (3)
C11—P1—Ag1	114.01 (11)	C23—C24—C25	120.0 (4)
C10—P1—Ag1	115.11 (12)	C23—C24—H24	120.0
C23—P2—C29	105.89 (16)	C25—C24—H24	120.0
C23—P2—C10	105.53 (16)	C26—C25—C24	119.9 (4)

C29—P2—C10	102.69 (16)	C26—C25—H25	120.0
C23—P2—Ag1 ⁱ	115.97 (12)	C24—C25—H25	120.0
C29—P2—Ag1 ⁱ	105.64 (11)	C25—C26—C27	120.6 (4)
C10—P2—Ag1 ⁱ	119.53 (11)	C25—C26—H26	119.7
O3—S1—O1	113.6 (3)	C27—C26—H26	119.7
O3—S1—O2	115.2 (3)	C26—C27—C28	120.2 (4)
O1—S1—O2	114.5 (2)	C26—C27—H27	119.9
O3—S1—C35	104.9 (3)	C28—C27—H27	119.9
O1—S1—C35	103.5 (3)	C27—C28—C23	120.2 (4)
O2—S1—C35	103.2 (3)	C27—C28—H28	119.9
N1—C1—C5	123.8 (4)	C23—C28—H28	119.9
N1—C1—H1	118.1	C34—C29—C30	118.6 (3)
C5—C1—H1	118.1	C34—C29—P2	117.6 (3)
C3—C2—N1	123.8 (4)	C30—C29—P2	123.4 (3)
C3—C2—H2	118.1	C29—C30—C31	120.1 (4)
N1—C2—H2	118.1	C29—C30—H30	120.0
C2—C3—C4	119.4 (4)	C31—C30—H30	120.0
C2—C3—H3	120.3	C32—C31—C30	120.5 (4)
C4—C3—H3	120.3	C32—C31—H31	119.7
C5—C4—C3	117.7 (4)	C30—C31—H31	119.7
C5—C4—C9	118.4 (5)	C31—C32—C33	120.0 (4)
C3—C4—C9	123.8 (5)	C31—C32—C33 C31—C32—H32	120.0 (4)
C4—C5—C6		C33—C32—H32	120.0
C4—C5—C1	120.4 (4)		
	118.0 (4)	C32—C33—C34	120.2 (4)
C6—C5—C1	121.5 (4)	C32—C33—H33	119.9
C7—C6—C5	119.5 (5)	C34—C33—H33	119.9
C7—C6—H6	120.2	C33—C34—C29	120.5 (4)
C5—C6—H6	120.2	C33—C34—H34	119.7
C6—C7—C8	120.8 (6)	C29—C34—H34	119.7
C6—C7—H7	119.6	F2'—C35—F3	78.7 (12)
C8—C7—H7	119.6	F2'—C35—F3'	107.9 (18)
C9—C8—C7	121.5 (5)	F3—C35—F3′	115.2 (17)
C9—C8—H8	119.3	F2'—C35—F2	128.4 (16)
C7—C8—H8	119.3	F3—C35—F2	108 (2)
C8—C9—C4	119.3 (5)	F3'—C35—F2	22 (2)
C8—C9—H9	120.3	F2′—C35—F1	31.0 (17)
C4—C9—H9	120.3	F3—C35—F1	108.1 (12)
P1—C10—P2	110.79 (17)	F3′—C35—F1	86 (2)
P1—C10—H10A	109.5	F2—C35—F1	108.4 (12)
P2—C10—H10A	109.5	F2'—C35—F1'	106.4 (17)
P1—C10—H10B	109.5	F3—C35—F1'	27.7 (13)
P2—C10—H10B	109.5	F3′—C35—F1′	106 (2)
H10A—C10—H10B	108.1	F2—C35—F1'	90.4 (14)
C16—C11—C12	119.2 (3)	F1—C35—F1′	135.2 (10)
C16—C11—P1	123.3 (3)	F2'—C35—S1	114.4 (11)
C12—C11—P1	117.3 (3)	F3—C35—S1	116.3 (13)
C13—C12—C11	120.8 (4)	F3'—C35—S1	117.7 (18)
C13—C12—H12	119.6	F2—C35—S1	107.8 (17)
C11—C12—H12	119.6	F1—C35—S1	108.0 (13)
			(-)

G14 G12 G12	110.0 (5)	F11 G25 G1	104 (2)
C14—C13—C12	119.8 (5)	F1′—C35—S1	104 (2)
C14—C13—H13	120.1	C37—C36—C40 ⁱⁱ	122 (10)
C12—C13—H13	120.1	C37—C36—H36	119.2
C13—C14—C15	120.1 (4)	C40 ⁱⁱ —C36—H36	119.2
C13—C14—H14	120.0	C36—C37—N2	0 (10)
C15—C14—H14	120.0	C36—C37—C38	122 (6)
C14—C15—C16	121.0 (5)	N2—C37—C38	122 (5)
C14—C15—H15	119.5	C36—C37—H37	119.0
C16—C15—H15	119.5	N2—C37—H37	119.1
C11—C16—C15	119.0 (4)	C38—C37—H37	119.1
C11—C16—H16	120.5	C37—C38—C38 ⁱⁱ	119.1 (9)
C15—C16—H16	120.5	C37—C38—C39	123.0 (7)
C22—C17—C18	118.8 (3)	C38 ⁱⁱ —C38—C39	117.9 (8)
C22—C17—P1	120.8 (3)	C40—C39—C38	117.7 (7)
C18—C17—P1	120.3 (3)	C40—C39—H39	121.2
C19—C18—C17		C38—C39—H39	121.2
	120.6 (4)		
C19—C18—H18	119.7	N2 ⁱⁱ —C40—C36 ⁱⁱ	0 (10)
C17—C18—H18	119.7	N2 ⁱⁱ —C40—C39	122 (5)
C20—C19—C18	120.0 (4)	C36 ⁱⁱ —C40—C39	122 (6)
C20—C19—H19	120.0	N2 ⁱⁱ —C40—H40	119.0
C18—C19—H19	120.0	C36 ⁱⁱ —C40—H40	119.1
C21—C20—C19	120.3 (4)	C39—C40—H40	119.0
P2 ⁱ —Ag1—N1—C1	130.6 (3)	C18—C17—C22—C21	1.5 (6)
P1—Ag1—N1—C1	-69.9 (3)	P1—C17—C22—C21	-176.4 (3)
P2 ⁱ —Ag1—N1—C2	-76.1 (3)	C20—C21—C22—C17	-1.4 (6)
P1—Ag1—N1—C2	83.4 (3)	C29—P2—C23—C24	-53.5 (3)
P2 ⁱ —Ag1—P1—C17	20.80 (16)	C10—P2—C23—C24	55.0 (3)
N1—Ag1—P1—C17		Ag1 ⁱ —P2—C23—C24	
•	-98.62 (15)	_	-170.2(3)
P2 ⁱ —Ag1—P1—C11	139.21 (15)	C29—P2—C23—C28	125.5 (3)
N1—Ag1—P1—C11	19.79 (16)	C10—P2—C23—C28	-126.1 (3)
P2 ⁱ —Ag1—P1—C10	-99.70 (14)	Ag1 ⁱ —P2—C23—C28	8.7 (3)
N1—Ag1—P1—C10	140.87 (15)	C28—C23—C24—C25	-1.2 (6)
C2—N1—C1—C5	-0.1 (6)	P2—C23—C24—C25	177.7 (3)
Ag1—N1—C1—C5	154.2 (3)	C23—C24—C25—C26	1.6 (6)
C1—N1—C2—C3	0.0 (6)	C24—C25—C26—C27	-0.6(7)
Ag1—N1—C2—C3	-153.2 (4)	C25—C26—C27—C28	-0.8(7)
N1—C2—C3—C4	0.4 (7)	C26—C27—C28—C23	1.1 (6)
C2—C3—C4—C5	-0.7(7)	C24—C23—C28—C27	-0.1(6)
C2—C3—C4—C9	177.5 (4)	P2—C23—C28—C27	-179.1(3)
C3—C4—C5—C6	177.8 (4)	C23—P2—C29—C34	171.9 (3)
C9—C4—C5—C6	-0.5(6)	C10—P2—C29—C34	61.4(3)
C3—C4—C5—C1	0.6 (6)	Ag1 ⁱ —P2—C29—C34	-64.5(3)
C9—C4—C5—C1	-177.7(4)	C23—P2—C29—C30	-14.8(3)
N1—C1—C5—C4	-0.2 (6)	C10—P2—C29—C30	-125.2(3)
N1—C1—C5—C6	-177.4 (4)	Ag1 ⁱ —P2—C29—C30	108.8 (3)
C4—C5—C6—C7	0.0 (7)	C34—C29—C30—C31	-0.1(5)
C1—C5—C6—C7	177.1 (4)	P2—C29—C30—C31	-173.4 (3)
C5—C6—C7—C8	0.1 (8)	C29—C30—C31—C32	0.1 (6)
	(~)		(")

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C8—C9	0.4 (9)	C30—C31—C32—C33	-0.4(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.9(9)	C31—C32—C33—C34	0.8 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C9—C8	0.9 (7)	C32—C33—C34—C29	-0.9(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C9—C8	-177.3(5)	C30—C29—C34—C33	0.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—P1—C10—P2	-63.0(2)	P2—C29—C34—C33	174.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—P1—C10—P2	-169.23 (18)	O3—S1—C35—F2′	-161 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag1—P1—C10—P2	64.76 (19)	O1—S1—C35—F2′	80 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C23—P2—C10—P1	93.0 (2)	O2—S1—C35—F2′	-40 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29—P2—C10—P1	-156.24 (18)	O3—S1—C35—F3	-72 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag1 ⁱ —P2—C10—P1	-39.8 (2)	O1—S1—C35—F3	169 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—P1—C11—C16	-131.7(3)	O2—S1—C35—F3	49 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—P1—C11—C16	-24.8(3)	O3—S1—C35—F3′	71 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag1—P1—C11—C16	101.9 (3)	O1—S1—C35—F3′	-48 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—P1—C11—C12	51.4 (3)	O2—S1—C35—F3′	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—P1—C11—C12	158.3 (3)	O3—S1—C35—F2	50 (2)
C16—C11—C12—C13 0.7 (5) O2—S1—C35—F2 171 (2) P1—C11—C12—C13 177.7 (3) O3—S1—C35—F1 167 (3) C11—C12—C13—C14 0.1 (6) O1—S1—C35—F1 47 (3) C12—C13—C14—C15 -0.9 (7) O2—S1—C35—F1 -72 (3) C13—C14—C15—C16 0.8 (7) O3—S1—C35—F1' -45 (2) C12—C11—C16—C15 -0.8 (6) O1—S1—C35—F1' -165 (2) P1—C11—C16—C15 -177.6 (3) O2—S1—C35—F1' 76 (2) C14—C15—C16—C11 0.0 (7) C40 ⁱⁱ —C36—C37—N2 -38 (100) C11—P1—C17—C22 -132.8 (3) C40 ⁱⁱ —C36—C37—C38 -2 (16) C10—P1—C17—C22 118.8 (3) C40 ⁱⁱ —N2—C37—C38 -2 (16) C11—P1—C17—C22 18.0 (3) C40 ⁱⁱ —N2—C37—C38 -2 (13) C11—P1—C17—C18 49.4 (3) C36—C37—C38—C38 ⁱⁱ 3 (8) C10—P1—C17—C18 174.2 (2) C36—C37—C38—C38 ⁱⁱ 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) <tr< td=""><td>Ag1—P1—C11—C12</td><td>-75.0(3)</td><td>O1—S1—C35—F2</td><td>-70 (2)</td></tr<>	Ag1—P1—C11—C12	-75.0(3)	O1—S1—C35—F2	-70 (2)
P1—C11—C12—C13 177.7 (3) O3—S1—C35—F1 167 (3) C11—C12—C13—C14 0.1 (6) O1—S1—C35—F1 47 (3) C12—C13—C14—C15 -0.9 (7) O2—S1—C35—F1 -72 (3) C13—C14—C15—C16 0.8 (7) O3—S1—C35—F1' -45 (2) C12—C11—C16—C15 -0.8 (6) O1—S1—C35—F1' -165 (2) P1—C11—C16—C15 -177.6 (3) O2—S1—C35—F1' 76 (2) C14—C15—C16—C11 0.0 (7) C40ii—C36—C37—N2 -38 (100) C11—P1—C17—C22 -132.8 (3) C40ii—C36—C37—C38 -2 (16) C10—P1—C17—C22 118.8 (3) C40ii—N2—C37—C36 142 (100) Ag1—P1—C17—C18 49.4 (3) C36—C37—C38—C38ii 3 (8) C10—P1—C17—C18 -59.0 (3) N2—C37—C38—C38ii 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38ii—C38—C39—C40 -0.9 (10) <tr< td=""><td>C16—C11—C12—C13</td><td>0.7 (5)</td><td>O2—S1—C35—F2</td><td></td></tr<>	C16—C11—C12—C13	0.7 (5)	O2—S1—C35—F2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1—C11—C12—C13	177.7 (3)	O3—S1—C35—F1	
C13—C14—C15—C16 0.8 (7) O3—S1—C35—F1' -45 (2) C12—C11—C16—C15 -0.8 (6) O1—S1—C35—F1' -165 (2) P1—C11—C16—C15 -177.6 (3) O2—S1—C35—F1' 76 (2) C14—C15—C16—C11 0.0 (7) C40 ⁱⁱ —C36—C37—N2 -38 (100) C11—P1—C17—C22 -132.8 (3) C40 ⁱⁱ —C36—C37—C38 -2 (16) C10—P1—C17—C22 118.8 (3) C40 ⁱⁱ —N2—C37—C36 142 (100) Ag1—P1—C17—C22 -8.0 (3) C40 ⁱⁱ —N2—C37—C38 -2 (13) C11—P1—C17—C18 49.4 (3) C36—C37—C38—C38 ⁱⁱ 3 (8) C10—P1—C17—C18 -59.0 (3) N2—C37—C38—C38 ⁱⁱ 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38 ⁱⁱ —C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2 ⁱⁱ 0 (6)	C11—C12—C13—C14	0.1 (6)	O1—S1—C35—F1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—C14—C15	-0.9(7)	O2—S1—C35—F1	-72 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—C15—C16	0.8 (7)	O3—S1—C35—F1′	-45 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16—C15	-0.8(6)	O1—S1—C35—F1′	-165 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1—C11—C16—C15	-177.6(3)	O2—S1—C35—F1′	
C10—P1—C17—C22 118.8 (3) C40ii—N2—C37—C36 142 (100) Ag1—P1—C17—C22 -8.0 (3) C40ii—N2—C37—C38 -2 (13) C11—P1—C17—C18 49.4 (3) C36—C37—C38—C38ii 3 (8) C10—P1—C17—C18 -59.0 (3) N2—C37—C38—C38ii 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38ii—C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2ii 0 (6)	C14—C15—C16—C11	0.0(7)	C40 ⁱⁱ —C36—C37—N2	-38 (100)
Ag1—P1—C17—C22 -8.0 (3) C40ii—N2—C37—C38 -2 (13) C11—P1—C17—C18 49.4 (3) C36—C37—C38—C38ii 3 (8) C10—P1—C17—C18 -59.0 (3) N2—C37—C38—C38ii 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38ii—C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2ii 0 (6)	C11—P1—C17—C22	-132.8 (3)	C40 ⁱⁱ —C36—C37—C38	-2 (16)
C11—P1—C17—C18 49.4 (3) C36—C37—C38—C38ii 3 (8) C10—P1—C17—C18 -59.0 (3) N2—C37—C38—C38ii 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38ii—C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2ii 0 (6)	C10—P1—C17—C22	118.8 (3)	C40 ⁱⁱ —N2—C37—C36	142 (100)
C11—P1—C17—C18 49.4 (3) C36—C37—C38—C38ii 3 (8) C10—P1—C17—C18 -59.0 (3) N2—C37—C38—C38ii 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38ii—C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2ii 0 (6)	Ag1—P1—C17—C22	-8.0(3)	C40 ⁱⁱ —N2—C37—C38	-2 (13)
C10—P1—C17—C18 -59.0 (3) N2—C37—C38—C38 ⁱⁱ 3 (7) Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38 ⁱⁱ —C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2 ⁱⁱ 0 (6)	_	49.4 (3)	C36—C37—C38—C38 ⁱⁱ	
Ag1—P1—C17—C18 174.2 (2) C36—C37—C38—C39 -180 (8) C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38 ⁱⁱ —C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2 ⁱⁱ 0 (6)	C10—P1—C17—C18	* *	N2—C37—C38—C38 ⁱⁱ	` '
C22—C17—C18—C19 -0.6 (5) N2—C37—C38—C39 -179 (6) P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38 ⁱⁱ —C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2 ⁱⁱ 0 (6)	Ag1—P1—C17—C18	174.2 (2)	C36—C37—C38—C39	
P1—C17—C18—C19 177.3 (3) C37—C38—C39—C40 -178.5 (7) C17—C18—C19—C20 -0.4 (6) C38 ⁱⁱ —C38—C39—C40 -0.9 (10) C18—C19—C20—C21 0.5 (7) C38—C39—C40—N2 ⁱⁱ 0 (6)	C22—C17—C18—C19		N2—C37—C38—C39	
C17—C18—C19—C20	P1—C17—C18—C19		C37—C38—C39—C40	
C18—C19—C20—C21				
		` '		` '

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z.