Item: Cohomology of Arithmetic Groups

John D Mangual

The Eichler-Shimura isomorphism let's you express weight-2 modular forms theory into cohology of $SL_2(\mathbb{Z})$. This will take a lot of effort to unpack. One version I have found says these two are the same:

- f(z) dz is a Γ -invariant form on $\mathbb H$
- $[f(z)dz] \in H^1(\mathbb{H}/\Gamma, \mathbb{C}) = H^1(\Gamma, \mathbb{C})$

but these are two different kinds of cohomology. One of them is a hyperbolic space \mathbb{H}/Γ and the other is a group of 2×2 matrices $\Gamma\subseteq \mathsf{SL}_2(\mathbb{Z})$. How can we not have a complete understanding of both of these objects?

There's a trade-off between generality and our ability to supply details. I never told you what Γ was, and the entire textbook writes the discussion without naming a specific answer. How can they have the best possible answer? If, I decide to focus on one Γ , let's say $\Gamma_0(4) = \langle z \mapsto z+1, z \mapsto -\frac{1}{4z} \rangle$ maybe I will say things that don't generalize.

In between, would be story where I examine many possible Γ and a statement will be true in cases and not others (in many cases and not others). I might even be able to express this type of meta-logic using a small amount of category theory.

Let's find a modular form of weight 2. The first one I can think of is a theta-function raised to the 4th power:

$$\theta(z) = \left(\sum q^{n^2}\right)^4 = \sum r_4(n) \, q^n$$

and here $\Gamma_0(4) \neq SL_2(\mathbb{Z})$. How do we know it is modular form of weight 2? This is a great example if we keep in mind the following recipe:

$$\mathsf{M}_2(\Gamma_0(N)) = \mathsf{S}_2(\Gamma_0(N)) \oplus \mathsf{E}_2(\Gamma_0(N))$$

for all congruence groups, not just N=4. This says every weight two modular form splits into to parts:

- Eisenstein series
- Cusp forms

The jargon gets worse and worse. Eichler-Shimura theory, Atkin-Lehmer theory. If I have an interesting number theory problem, maybe I can turn it into a modular forms problem:

modular forms
$$\stackrel{?}{\neq}$$
 number theory

I cannot find any modular forms of weight 2 that are not Eisenstein series until $\Gamma_0(11)$

References (1) John Cremona **The L-functions and modular forms database project** arXiv:1511.04289 http://www.lmfdb.org/ (2) William Stein **Modular Forms, A Computational Approach** Modular forms of Weight 2 http://wstein.org/books/modform/modform/index.html