Proves d'Accés a la Universitat. Curs 2009-2010

Tecnologia industrial

Sèrie 2

La prova consta de dues parts que tenen dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Una cinta transportadora d'un aeroport es mou a 0,7 m/s i té una ocupació nominal de 3 passatgers per metre. Quina és la capacitat nominal de transport de la cinta en passatgers per hora?

- a) 7560
- **b**) 3780
- c) 5040
- **d**) 2520

Qüestió 2

El peltre és un aliatge format per un 92 % d'estany (Sn), un 3 % de coure (Cu) i un 5 % d'altres elements (zinc, plom...) que es fa servir en la fabricació de coberts i de vaixelles rústiques. Quina quantitat dels dos components principals, en kg, hi ha en 450 kg d'aquest aliatge?

	Sn	Cu
a)	414	13,5
b)	414	22,5
<i>c</i>)	427,5	22,5
d)	427.5	13,5

Qüestió 3

Una placa solar d'1,188 m \times 0,540 m està formada per cèl·lules fotovoltaiques rectangulars que tenen una superfície de 17820 mm². Quantes cèl·lules hi ha en la placa solar, com a màxim?

- **a**) 35
- **b**) 36
- **c**) 37
- **d**) 38

Qüestió 4

Una resistència està feta de fil de constantà de 0,8 mm de diàmetre, 2 m de llargària i 0,5 $\mu\Omega$ · m de resistivitat. Quin és el valor d'aquesta resistència?

- *a*) 198,9 Ω
- **b**) 19,89 Ω
- *c*) 1,989 Ω
- d) 0,1989 Ω

Qüestió 5

La *fiabilitat* és la probabilitat que una màquina funcioni sense avaries durant un cert temps. Si, d'un lot de 320 màquines, 240 continuen funcionant després de 1800 h, la fiabilitat d'aquestes màquines per a 1800 h es pot estimar que és del

- a) 75%
- **b**) 66%
- c) 33%
- d) 25%

Exercici 2

[2,5 punts]

Un cotxe disposa d'una alarma que sona si, a partir d'una velocitat límit $v_{\rm lim}$, algun passatger porta el cinturó de seguretat descordat o hi ha alguna porta oberta. Utilitzant les variables d'estat següents:

velocitat
$$v = \begin{cases} 1: v \ge v_{\text{lim}} \\ 0: v < v_{\text{lim}} \end{cases}$$
; cinturó $c = \begin{cases} 1: \text{cordat} \\ 0: \text{descordat} \end{cases}$

portes
$$p = \begin{cases} 1 \text{: tancades} \\ 0 \text{: obertes} \end{cases}$$
; alarma $a = \begin{cases} 1 \text{: sona} \\ 0 \text{: no sona} \end{cases}$

a) Escriviu la taula de veritat del sistema.

[1 punt]

b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la.

[1 punt]

c) Dibuixeu l'esquema de portes lògiques equivalent.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

Pel motor d'una serra circular elèctrica que s'alimenta a U=230 V circula un corrent I=5,5 A. En règim de funcionament nominal, proporciona a l'eix de sortida, que gira a $n=5\,300$ min⁻¹, una potència $P_s=850$ W. Determineu:

a) El parell, Γ_s , a l'eix de sortida.

[0,5 punts]

b) El rendiment electromecànic, η , de la serra.

[0,5 punts]

- c) L'energia elèctrica consumida, $E_{\text{elèctrica}}$, i l'energia dissipada, $E_{\text{dissipada}}$, si es fa funcionar durant un temps t=10 min. [1 punt]
- *d*) Quin és el cost econòmic de fer funcionar la serra durant t=10 min si el preu de l'energia elèctrica és $p=0.09 \in /(kW \cdot h)$? [0.5 punts]

Exercici 4

[2,5 punts]

L'esquema de la figura representa un circuit elèctric de resistència variable. Les dues resistències tenen el mateix valor $R = 30 \Omega$, el potenciòmetre pot variar la seva resistència entre 0Ω i 45Ω , i la tensió d'alimentació és U = 18 V.

- a) Determineu els corrents màxim, I_{max} , i mínim, I_{min} , que poden circular pel circuit. [0,75 punts]
- **b**) Dibuixeu, de manera aproximada i indicant les escales, el corrent I en funció de R_p , per a $0 \Omega \le R_p \le 45 \Omega$. [0,75 punts]

La potència màxima que poden dissipar tant cadascuna de les resistències com el potenciòmetre és $P_{\rm max}=10$ W. Per a comprovar si aquest valor se supera:

c) Calculeu la potència màxima dissipada per cada resistència, $P_{R_{max}}$, i pel potenciòmetre, $P_{P_{max}}$; tingueu en compte que aquesta es produeix quan $R_p = R/2$. [1 punt]

OPCIÓ B

Exercici 3

[2,5 punts]

El remolc de la figura representa el d'una tenda d'acampada plegable i es mou arrossegat per un vehicle articulat en el punt O. El remolc amb càrrega té una massa m = 395 kg. Amb el remolc en repòs:

- a) Determineu la força F, en funció de d, que la roda fa sobre el terra. [0,75 punts]
- **b**) Determineu la força vertical F_0 , en funció de d, que el vehicle ha de fer en el punt O. [0,5 punts]
- c) Dibuixeu, de manera aproximada i indicant les escales, les gràfiques de F i de $F_{\rm O}$ per a $-200~{\rm mm} \le d \le 300~{\rm mm}$. [0,75 punts]
- d) Justifiqueu com s'hauria de distribuir la càrrega per a minimitzar el valor del mòdul de F_0 . Quins serien, en aquest cas, els valors de F i de F_0 ? [0,5 punts]

Exercici 4

[2,5 punts]

Un elevador accionat amb un motoreductor de vis sens fi aixeca a velocitat constant una càrrega $m=3\,000$ kg fins a una altura h=2 m en un temps t=35 s. El motor, pel qual circula un corrent I=16 A, s'alimenta a U=230 V i té un rendiment $\eta_{\rm mot}=0,75$. La velocitat de gir d'aquest motor és $n=1\,390$ min⁻¹. Les resistències passives a l'elevador es consideren negligibles. Determineu:

- a) La potència, $P_{\rm m}$, i el parell, $\Gamma_{\rm m}$, a l'eix de sortida del motor. [1 punt]
- **b**) El rendiment, $\eta_{\rm red}$, del reductor. [1 punt]
- c) La potència total dissipada, P_{diss} , en el motoreductor. [0,5 punts]

