Úvod do aproximačních a pravděpodobnostních algoritmů

Karel Velička

6.února2025

Vyučující: prof. RNDr. Jiří Sgall, DrSc., doc. Mgr. Petr Kolman, Ph.D.

Obsah

1	Úvod a základní definice				
2	Metrický TSP				
3	Diskrétní pravděpodobnost				
4	Randomized Quicksort 5				
5	Konflikty v distribuovaném systému	5			
6	Globální minimální řez				
7	Hladové algoritmy 7.1 LPT - Largest Processing Time first	Ĝ			
8	SAT 8.1 RAND-SAT 8.2 BIASED-SAT 8.3 LP-SAT 8.4 BEST-SAT	12 13			
9	Pokrývací problémy9.1 Vrcholové pokrytí9.2 Množinové pokrytí				
10	Paralelní maximální nezávislá množina - PARA-MIS	17			
11	Hashovací funkce11.1 Dynamický slovník				
12	Testování 12.1 Násobení matic	20 20 20			
13	Perfektní párování 13.1 Izolující lemma	21 21			

1 Úvod a základní definice

Definice 1.1. (Optimalizační problém) definujeme jako $(\mathcal{I}, \mathcal{F}, f, g)$, kde:

- \bullet $\mathcal I$ je množina všech vstupů/instancí (například množina všech ohodnocených grafů)
- $\forall I \in \mathcal{I} : \mathcal{F}(I)$ je množina přípustných řešení (např. pro daný ohodnocený graf všechny kostry)
- $\forall I \in \mathcal{I}, A \in \mathcal{F}(I) : f(I, A)$ je účelová funkce (např. součet hran na kostře)
- \bullet g je bit určující, zda chceme maximalizovat nebo minimalizovat

Definice 1.2. (NP-Optimalizační problém) definujeme jako $(\mathcal{I}, \mathcal{F}, f, g)$, pro které platí stejné vlastnosti jako pro normální optimalizační problémy, ale navíc:

- Délka přípustných řešení $\leq \text{poly}(|I|)$.
- Jazyk dvojic $(I, A), I \in \mathcal{I}, A \in \mathcal{F}(I)$ je v P (rychle umíme ověřit, zda je řešení přípustné).
- ullet f je počitatelná v polynomiálním čase.

Definice 1.3. (*R-aproximace*): Algoritmus *A* je *R*-aproximační, pokud:

- V polynomiálním čase v |I| na vstupu I najde $A \in \mathcal{F}(I)$.
- Pro minimalizační problém: $\forall I: f(A) \leq R \cdot \text{OPT}(I)$.
- Pro maximalizační problém: $\forall I: f(A) > OPT(I)/R$.

Třídy jazyků a Pravděpodobnostní algoritmy

Definice 1.4. (*Třída problémů NP*) je třída rozhodovacích problémů, v níž problém L leží \iff pokud $\exists K \in P$ problém a $\exists g$ polynom, přičemž $\forall x$ vstupy je $L(x) = 1 \iff$ pokud pro nějaký řetězec y délky nejvýše g(|x|) platí K(x,y) = 1.

Definice 1.5. (NP-těžký problém) $L \equiv$ je-li na něj převoditelný každý problém z NP.

Definice 1.6. (NP-úplný problém) $L \equiv \text{pokud je NP-těžký a zároveň } L leží v NP.$

Definice 1.7. (Zero-error Probabilistic Poly time - ZPP): Algoritmus má vždy správný výstup a běží v poly čase.

Definice 1.8. (Randomized Poly time - RP): Algoritmus může omylem odmítnout správnou odpověď, ale nikdy nemá falešný pozitivní výsledek. Pravděpodobnost chyby je nejvýše 1/2. Běží v poly čase.

Definice 1.9. (Bounded-error Probabilistic Poly time - BPP): Algoritmus může mít falešně pozitivní i negativní výsledky. Pokud je srávná odpověď je TRUE, algoritmus přijme s pravděpodobností alespoň 2/3, naopak pokud je FALSE, tak s pravděpodobností < 1/3.

Metrický TSP 2

Definice 2.1. (Metrika) na množině V je funkce $f: V \times V \to \mathbb{R}_0^+$ taková, že:

- (i) $\forall x, y \in V : d(x, y) = 0 \iff x = y$,
- (ii) $\forall x, y \in V : d(x, y) = d(y, x)$,
- (iii) $\forall x, y, z \in V : d(x, z) \leq d(x, y) + d(y, z)$.

Problém 2.1. (Obchodního cestujícího - TSP): Dostaneme úplný ohodnocený graf. Cílem je najít nejmenší Hamiltonovský cyklus. Nemůže být aproximována, za předpokladu $P \neq NP$.

V algoritmech budeme používat pojem 'zkracování', to znamená, že budeme vracet vždy jen první výskyt vrcholu v eulerovském tahu. Například $ET = (1, 3, 4, 3, 2, 1, 6) \rightsquigarrow HT = (1, 3, 4, 2, 6)$. Cíl je minimalizovat $d(\mathcal{C})$.

Algorithm 1 Metric-TSP

Input: $G = (V, E), d: V \times V \to \mathbb{R}_0^+$

Output: Cyklus $C = V_1, \dots, V_n$ zpermutovaných vrcholů

- 1: Najdi minimální kostru T.
- 2: Zdvojnásob každou hranu a najdi Eulerovský tah \mathcal{T} .

⊳ každá hrana právě jednou

3: Vypiš Hamiltonovský cyklus \mathcal{C} po zkracování.

Věta 2.1. Algoritmus Metrický TSP je 2-aproximační

 $D\mathring{u}kaz$. Víme, že $cost(T) \leq OPT$. Protože jinak pokud vynecháme hranu z OPT, dostaneme kostru. Ta ale nemůže být menší než naše nejmenší kostra T. Výsledný cyklus je díky zkracování $cost(\mathcal{C}) < 0$ $cost(\mathcal{T})$. Jelikož \mathcal{T} obsahuje každou hranu T dvakrát, tak $cost(\mathcal{T}) = 2 \cdot cost(\mathcal{T})$. Celkem tak dostaneme $cost(C) \leq cost(T) = 2 \cdot cost(T) \leq 2 \cdot OPT$.

Algorithm 2 Christofidesův algoritmus

- 1: Najdi $\overline{\text{minimální kostru } T \text{ a označme } W \text{ vrcholy lichého stupně } T.}$
- 2: Najdi minimální perfektní párování M na W
- 3: Najdi Eulerovský tah $T \cup M$ a proveď zkracování.
- 4: Vypiš vzniklý cyklus $\mathcal{C} = T \cup M$.

Věta 2.2. Algoritmus Metric-TSP je 3/2-aproximační.

 $D\mathring{u}kaz$. Víme, že $cost(T) \leq OPT$. Zároveň víme, že $cost(M) \leq \frac{OPT}{2}$ (viz. Obr.), proto:

$$cost(T \cup M) \le cost(T) + cost(M) \le OPT + \frac{1}{2}OPT = \frac{3}{2}OPT.$$

3 Diskrétní pravděpodobnost

Definice 3.1. (Diskrétní pravděpodobnostní prostor) je dvojice (Ω, P) , kde Ω je konečná nebo spočetná množina elementárních jevů a P je pravděpodobnostní funkce $P:\Omega\to [0,1]$ taková, že $\sum_{w\in\Omega}P[w]=1.$

Definice 3.2. (Uniformní pravděpodobnostní prostor). Uniformní pravděpodobnostní prostor pro konečnou Ω je každý elementární jev $A \in \Omega : P[A] = \frac{1}{|\Omega|}$.

Definice 3.3. (Geometrický pravděpodobnostní prostor). Geometrický pravděpodobnostní prostor pro spočetnou Ω je je každý elementární jev $A \in \Omega$: $P[A] = \frac{1}{2^A}$.

Definice 3.4. (Jev). Jev je podmnožina $A \subseteq \Omega$.

Definice 3.5. (Pravděpodobnost). Pravděpodobnost jevu A je $P[A] = \sum_{w \in A} P[w]$.

Pozorování 3.1. Pravděpodobnost pro disjunktní jevy $A, B \subseteq \Omega$ je $P[A \cup B] = P[A] + P[B]$.

Definice 3.6. (Náhodná veličina). Náhodná veličina na (Ω, P) je libovolná funkce $X : \Omega \to \mathbb{R}$.

Definice 3.7. (Střední hodnota). Střední hodnota náhodné veličiny X je $\mathbb{E}(X) = \sum_{w \in \Omega} P[w] \cdot X(w)$.

Lemma 3.1. (Linearita střední hodnoty). Nechť X, Y jsou nezávislé veličiny a $\alpha \in \mathbb{R}$, potom:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y] \quad a \quad \mathbb{E}[\alpha X] = \alpha \mathbb{E}[X].$$

Definice 3.8. (Indikátor náhodného jevu). Indikátor náhodného jevu A je náhodná veličina:

$$Y_A: \Omega \to \{0,1\}, \qquad Y_A(w) = \begin{cases} 1 & \text{pokud } w \in A \text{ (pokud jev nastal)} \\ 0 & \text{pokud } w \notin A \text{ (pokud jev nenastal)} \end{cases}$$

Definice 3.9. (Podmíněná pravděpodobnost). *Podmíněná pravděpodobnost* je pravděpodobnost, že nastal jev *A* za podmínek, že nastal jev *B*.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Věta 3.1. (O úplné pravděpodobnosti). Nechť A je jev a $B_1, ..., B_k$ je rozklad Ω na disjunktní jevy. Potom:

$$P(A) = \sum_{i}^{k} P[A|B_i] \cdot P(B_i)$$

Důkaz.

$$P(A) = P\left[A \cap \bigcup_{i=1}^{k} B_i\right] = \sum_{i=1}^{k} P[A \cap B_i]$$

Definice 3.10. (Nezávislé jevy). Jevy A a B jsou $nezávislé \iff P(A \cap B) = P(A) \cdot P(B)$.

4 Randomized Quicksort

Problém 4.1. (Randomizovaný Quiksort)

Algorithm 3 QS(S), $\mathcal{O}(n \log n)$

Input: S množina n čísel

 $\mathbf{Output} \colon \mathbf{Set\check{r}} \mathsf{id\check{e}} \mathsf{n\check{a}}$ množina S

1: if $|S| \leq 1$ then return S

2: Vyber uniformě náhodně pivot $p \in S$

3: Rozděl S na $A = \{x \in S \mid x < p\}, B = \{x \in S \mid x > p\}$

4: **return** QS(A), p, QS(B)

Pozorování 4.1. Quicksort běží v nejhorším případě $\Omega(n^2)$.

Věta 4.1. Pro každý vstup je očekávaný počet porovnání nejvýše $2nH_n$.

 $D\mathring{u}kaz$. Nechť X je náhodná veličina udávající počet porovnání.

Zafixujeme vstupní posloupnost a počítáme $A_{i,j} = \Pr[\text{porovnáme } i\text{-tý a } j\text{-tý prvek}].$

To, že se dva prvky porovnají musí znamentat, že jeden z jich byl pivot:

Protože kdyby pivot p > i, j respektive p < i, j, tak bychom postoupili do další úrovně rekurze.

Kdyby i , tak to prvky <math>i, j rozdělí – i půjde do levé větve a j do pravé – takže se i, j nemůžou porovnat. Proto, aby se porovnaly, musí platit, že p = i, nebo p = j.

Možností voleb p, že prvky i, j nepostoupí do další úrovně rekurze je j+1-i. Z toho 2 volby vedou k porovnání. Dostaneme tak pro i < j, že

$$\Pr\left[A_{i,j}\right] = \frac{2}{j-i+1}.$$

Nechť $X_{i,j} = \begin{cases} 1 & A_{i,j} \text{ nastane,} \\ 0 & \text{jinak} \end{cases}$ je indikátorové veličina. Střední hodnota počtu porovnání je pak:

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[X_{i,j}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[A_{i,j}] =$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \le \sum_{i=1}^{n-1} \sum_{k=2}^{n} \frac{2}{k} \le 2n \cdot \sum_{k=1}^{n} \frac{1}{k} = 2nH_n$$

Pozorování 4.2. Jelikož Harmonická řada $H_n \approx \ln n$, dostáváme tak průměrný čas $\mathcal{O}(n \log n)$.

5 Konflikty v distribuovaném systému

Mějme n synchronizovaných procesů P_1, \ldots, P_n a jednu sdílenou paměť. Všechny tyto procesory chtějí zapisovat do jedné buňky. To se povede vždy jen jednomu procesoru. Zkouší to v každém cyklu. Cílem je navrhnout protokol tak, aby po t krocích s velkou pravděpodobností získal každý procesor přístup.

Algorithm 4 ConflictDistSystem

- 1: V každém cyklu zkus s pravděpodobností p přistoupit do databáze
- 2: Opakuj, dokud se ti to nepovede

Věta 5.1. Pro algortimus s pravděpodobností $p = \frac{1}{n}$ platí, že s pravděpodobností alespoň $1 - \frac{1}{n}$ všechny procesy uspějí v prvních $t = 2en \ln n$ kolech.

 $D\mathring{u}kaz$. Označme $A_{i,t}$ jev, že i-tý proces uspěl v kole t. Potom platí 1 :

$$\Pr[A_{i,t}] = p(1-p)^{n-1} = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{1}{en}.$$

Označme $F_{i,t}$ jev, že i-tý proces neuspěl v žádném z 1 – t kol. Potom tedy:

$$\Pr[F_{i,t}] = \prod_{\tau=1}^{t} \left(1 - \Pr[A_{i,\tau}]\right) \le \left(1 - \frac{1}{en}\right)^t = \left[\left(1 - \frac{1}{en}\right)^{en}\right]^{\frac{t}{en}} \le \left(\frac{1}{e}\right)^{\frac{t}{en}}.$$

Nyní dosadíme hodnotu $t=2en\ln n$, aby nám to hezky vycházelo: $\left(\frac{1}{e}\right)^{\frac{t}{en}}=\left(\frac{1}{e}\right)^{\frac{2e N\ln n}{e^n}}=\frac{1}{n^2}$. Pravděpodobnost, že nějaký proces P_i neuspěje v prvních t kolech je $\leq \sum_{i=1}^n \Pr[F_{i,t}] \leq n \cdot \frac{1}{n^2}=\frac{1}{n}$.

6 Globální minimální řez

Na vstupu dostaneme neorientovaný multigraf G = (V, E) a na výstupu bude řez $\emptyset \neq S \subseteq E$. Cílem je minimalizovat velikost řezu |S|.

Algorithm 5 Tokový $\mathcal{O}(n^3)$

- 1: Převedeme graf na ohodnocený s jednotkovými kapacitami.
- 2: Zafixujeme vrchol s.
- 3: Pro všechny ostatní vrcholy t najdeme minimální st-řez.
- 4: **return** minimum z nich

Algoritmus na $\binom{n}{2} \approx n^2$ párech počítá minimální st-řez (v $\mathcal{O}(n)$). Proto celkem $\mathcal{O}(n \cdot n^2) = \mathcal{O}(n^3)$.

Algorithm 6 Contract $\mathcal{O}(n^2 \log n)$

- 1: Vyber uniformě náhodně hranu a její vrcholy zkontrahujeme do jednoho
- 2: Opakujeme, dokud nemáme pouze dva vrcholy
- 3: Zbylé hrany na konci jsou náš řez

Na obrázku nám zůstaly pouze dva vrcholy, označme proto globální řez například $S = \{a, b, c\}$.

Pozorování 6.1. Každý řez $v G \setminus \{e\}$ odpovídá řezu v G.

Geometrické rozdělení $p(1-p)^{n-1}$ - prvních n-1 pokusů neúspěšných, n-tý pokus úspěšných

Pozorování 6.2. Pokud C je řez v G a $e \notin C$, pak C je řez v $G \setminus \{e\}$.

Lemma 6.1. Multigraf s n vrcholy a minimálním řezem velikosti k má alespoň $\frac{1}{2}nk$ hran.

 $D\mathring{u}kaz$. Pro každý vrchol $v \in V$, kde |V| = n hrany incidentní s v tvoří řez. A tedy $\forall v : \deg(v) \ge k$. Kdyby ne, tak existuje řez s velikostí menší než k.

Víme, že počet hran je roven polovině ze součtu stupňů vrcholů, tedy:

$$|E| = \frac{1}{2} \sum_{v} \deg(v) \ge \frac{1}{2} nk.$$

Věta 6.1. Pravděpodobnost, že najdeme daný minimální řez C je alespoň $\binom{n}{2}^{-1} = \frac{2}{n \cdot (n-1)}$

 $D\mathring{u}kaz$. Zafixujme minimální řez C.

Označme A_i jev, že v prvních i iteracích jsme **ne**vybrali hranu z C.

V počátečním stavu zjevně platí:

$$\Pr[A_0] = 1,$$

protože jsme nevybrali žádnou hranu.

Nás ovšem zajímá $\Pr[A_{n-2}]$ – začal s n vrcholy a končí se dvěma – celkem udělá n-2 iterací. $\Pr[A_1] \geq 1 - \frac{k}{nk/2} = 1 - \frac{2}{n}$, neboli alespoň 1 mínus pravděpodobnost, že vybereme hranu z C. $\Pr[A_2 \mid A_1] \geq 1 - \frac{k}{(n-1)k/2} = 1 - \frac{2}{n-1}$, je tam už pouze n-1 vrcholů a z podmíněné pravděpodobnosti dostaneme: $\Pr[A_2] = \Pr[A_2 \mid A_1] \cdot \Pr[A_1]$. Pro i-tý krok tak platí, že $\Pr[A_{i+1} \mid A_i] \geq 1 - \frac{2}{n-i}$. Celkem tedy můžeme určit:

$$\Pr[A_{n-2}] \ge \left(1 - \frac{2}{n}\right) \cdot \left(1 - \frac{2}{n-1}\right) \cdot \dots \cdot \left(1 - \frac{2}{3}\right) =$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \dots \cdot \frac{2}{4} \cdot \frac{1}{3} = \frac{2}{n(n-1)} = \binom{n}{2}^{-1}$$

Důsledek 6.1. Každý graf G má nejvýše $\binom{n}{2}$ globálních minimálních řezů.

Věta 6.2. Když budeme algoritmus opakovat $\binom{n}{2} \log n$ -krát, tak dostaneme globální minimální řez s pravděpodobností $\geq 1 - \frac{1}{n}$.

 $D\mathring{u}kaz$.

$$\left(1 - \binom{n}{2}^{-1}\right)^{\binom{n}{2}\log n} = \left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}\log n} \le \left(\frac{1}{e}\right)^{\log n} = \frac{1}{n}.$$

Důsledek 6.2. Celkový počet globálních minimálních řezů $je \leq \frac{1}{\frac{2}{n(n-1)}} = \frac{n(n-1)}{2} = \binom{n}{2}$.

7 Hladové algoritmy

- $Vstup: m \text{ strojů}, n \text{ úloh, každá trvá } p_i$.
- Výstup: Rozvržení úloh stroje. Rozklad množiny $\{1,\ldots,n\}=I_1,\ldots,I_m$. (na disjunktní množiny)
- $\mathit{Cil}: \max_{i=1,\dots,m} \sum_{j\in I_i} p_j$, neboli maximalizovat délku rozvrhu stroje

Každá úloha může být zpracována jen na jednom ze strojů a každý stroj může zpracovávat nejvýše jednu úlohu najednou.

Notace: Pro I_1, \ldots, I_m a úlohu $j \in I_i$:

- $S_j = \sum_{k \in I_i; \ k < j} p_k$ je čas začátku úlohy j
- $C_j = S_j + p_j$ je čas konce úlohy j
- $C_{\max} = \max_{j} C_{j}$, neboli délka rozvrhu
- $C_{\min} = \min_{i} \max_{j \in I_i} C_j$

Algorithm 7 Lokální prohledávání rozvrhu

- 1: Začni s nějakým rozvrhem
- 2: **if** $\exists j : C_j = C_{\max} \& S_j > C_{\min}$ **then**
- 3: Přeřaď úlohu j na stroj s minimální dobou dokončení.
- 4: else return aktuální rozvrh
- 5: Opakuj krok 2.

Pozorování 7.1. $Plati \ \forall j \in [n] : OPT \ge p_j$. $Protože \ p_j \ je \ součástí \ OPT$.

Pozorování 7.2. Platí $OPT \ge \frac{1}{m} \sum_{i=1}^{n} p_i \ge C_{\min} \ge S_j$

Věta 7.1. Algoritmus je $(2 - \frac{1}{m})$ -aproximační.

 $D\mathring{u}kaz$. Odhad zlepšíme na $S_j \leq \frac{1}{m} \left(\sum_{i=1}^n p_i - p_j \right)$, protože alg před časem S_j nepracuje na úloze j.

$$C_{\max} = S_j + p_j \le \frac{\sum_{i=1}^n p_i}{m} - \frac{p_j}{m} + p_j = \frac{\sum_{i=1}^n p_i}{m} + \left(1 - \frac{1}{m}\right) p_j \stackrel{Poz.7.1.+7.2.}{\le}$$
(1)

$$\leq OPT + \left(1 - \frac{1}{m}\right)OPT = \left(2 - \frac{1}{m}\right)OPT.$$
 (2)

Algorithm 8 List scheduling - Hladový

- 1: Libovolně uspořádej úlohy
- 2: Zpracovávej úlohy jednu po druhé a přiřaď úlohu na nejméně načtený stroj

Věta 7.2. Algoritmus je $(2 - \frac{1}{m})$ -aproximační.

Online algoritmy Vstup přichází postupně. Řešení musíme konstruovat také po krocích a pak už ho nesmíme měnit. Hladový algoritmus je online, ale Lokální prohledávání není.

7.1 LPT - Largest Processing Time first

Algorithm 9 LPT

- 1: Úlohy uspořádáme tak, že $p_1 \ge p_2 \ge \ldots \ge p_n$.
- 2: Použijeme hladový List Scheduling algoritmus.

Věta 7.3. Algoritmus je $\frac{4}{3}$ -aproximační.

 $D\mathring{u}kaz$. BÚNO předpokládejme, že p_n skončil jako poslední a určuje tak délku rozvrhu. Nechť:

- (1) $p_n \leq \frac{1}{3}OPT$: Jelikož $S_n \leq C_{\min} \leq OPT$, tak $C_{\max} = S_n + p_n \leq OPT + \frac{1}{3}OPT = \frac{4}{3}OPT$.
- (2) $p_n > \frac{1}{3}OPT$: V optimu rozvrhu jsou nejvýše 2 úkoly na každém stroji.

Pokud $n \ge m+1: OPT \ge p_m+p_{m+1}$, protože OPT pro prvních m+1 úloh má 2 úlohy na stejném stroji a ty jsou velké alespoň jako p_m, p_{m+1} . Pokud $n \ge m+2: OPT \ge p_{m-1}+p_{m+2}$, protože OPT pro prvních m+2 úloh má 2 dvojice na stejném stroji. Alespoň jedna ve dvojici je velikosti alespoň p_{m-1} .

Tedy pro
$$\begin{cases} n = m + i & OPT \ge p_{m-i+1} + p_{m+i} \\ n = m + (n - m) & OPT \ge p_{m-(n-m)+1} + p_{m+(n-m)} = p_{1-m} + p_n \rightsquigarrow \frac{2}{3}OPT > p_{1-m} \end{cases}$$

Můžeme si tedy všimnout, že alespoň n-m úkolů z p_1,\ldots,p_m má délku $<\frac{2}{3}OPT$.

7.2 Bin packing

- $Vstup: n \text{ věcí } a_1, \ldots, a_n \in [0, 1]$
- Výstup: Rozvržení $\{1,\ldots,n\}$ na I_1,\ldots,I_m , že $\forall i:\sum_{j\in I_i}a_j\leq 1.$ (\sum věcí v každém koši ≤ 1)
- Cil: minimalizovat m, tedy počet košů.

Algorithm 10 Hladový - First fit "dej aj do prvního koše, do kterého se vejde."

- 1: **for all** j = 1 ... n **do**
- 2: Nechť i je první koš, do kterého se věc i vejde.
- 3: Vložme věc j do koše i.
- 4: **if** není takový koš **then**
- 5: Přidáme nový koš.

Best fit: Říká, dej a_i do nejplnějšího koše, do kterého se vejde.

Věta 7.4. Každý Any Fit algoritmus je 2-aproximační.

 $D\mathring{u}kaz$. Předpokládejme I_1, \ldots, I_m zkonstruované algoritmem. Jelikož pro jeden koš je OPT = 1, tak nechť máme alespoň 2 koše. Označme $B_i = \sum_{i \in I_i} a_i$ jako velikost i-tého koše.

Musí platit, že $\forall i, j$, že $i \neq j$: $B_i + B_j > 1$ a $B_1 + B_m > 1$. Sečteme tedy všechny dvojice:

$$(B_1 + B_2) + (B_2 + B_3) + \dots + (B_{m-1} + B_m) + (B_m + B_1) = 2(B_1 + \dots + B_m) = 2\sum_{i=1}^m B_i$$

A jelikož pro jednotlivý součet dvojice platí, že je > 1, tak:

$$m < 2\sum_{i=1}^{m} B_i = 2\sum_{j=1}^{n} a_j \le 2OPT.$$

9

7.3 Hledání disjunktních cest

Bez kapacity:

- $Vstup: G = (V, E), k párů (s_1, t_1), ..., (s_k, t_k) \in V^2$
- Výstup: $I \subseteq \{1, ..., k\}$ spolu s cestou P_i pro $i \in I$ takovou, že P_i spojuje s_i a t_i a každá hrana je použita nejvýše jednou cestou.
- $Cil: \max |I|$, neboli počet dvojic, které pospojujeme

Algorithm 11 HLADOVÝ

- 1: $I \leftarrow \emptyset$
- 2: for all $i \in [k] \setminus I$ do
- 3: Nechť P_i je nejkratší $s_i t_i$ -cesta v G
- 4: Najdi $j \in [k] \setminus I$, že $|P_i| \le |P_i|$ pro každé $i \in [k] \setminus I$
- 5: **if** neexistuje taková cesta **then return** I a P_i ($\forall i \in I$)
- 6: $I \leftarrow I \cup \{j\}, \quad G \leftarrow G \setminus P_j$ return I a P_i $(\forall i \in I)$

Věta 7.5. Algoritmus je $2\sqrt{m} + 1$ -aproximační, kde $m = |E| = \Omega(k^2)$ pro OPT = k.

 $D\mathring{u}kaz$. Předpokládejme optimální řešení $OPT \geq 1$ a $|I| = ALG \geq 1$. Nechť P_i^* je optimální s_it_i -cesta pro $i \in OPT$. Počítejme cesty a rozdělme je na dva druhy – dlouhé OPT_l a krátké OPT_s :

$$OPT_l = \{ |P_i^*| \ge \sqrt{m} \mid i \in OPT \}, \quad OPT_s = OPT \setminus OPT_l.$$

Můžeme si všimnout, že $|OPT_l| \leq \sqrt{m}$. Protože máme $\sqrt{m} \cdot \sqrt{m} = m$ neopakujících se hran. Kdyby jich bylo více než \sqrt{m} , tak bychom použili více hran, než je v grafu.

Dlouhé cesty tedy nic nekazí, protože najdou alespoň jednu cestu. Což nám stačí.

Krátké cesty, kde $i \in OPT_s$ jsou také v pořádku, protože tuto $s_i t_i$ -cestu alg spojil. Je jich |I|. Předpokládejme ale P_i^* pro $i \in OPT_s \setminus I$.

Potom existuje společná hrana $e \in P_i^*$ s nějakou cestou P_i (zvolena hladově), že $|P_i| \leq |P_i^*| \leq \sqrt{m}$.

Cesta P_j blokuje P_i^* a nemůžeme tak vybrat cestu delší než \sqrt{m} . Počet krátkých cest P_i^* je proto $|OPT_s \setminus I| \leq \sqrt{m} \cdot |I|$ a tedy:

$$|OPT| = |OPT_l| + \underbrace{|OPT_s|}_{|OPT_s \setminus I| + |I|} \le \underbrace{\sqrt{m}}_{\text{dlouh\'e}} + \underbrace{\sqrt{m} \cdot |I| + |I|}_{\text{kr\'atk\'e}} \le (2\sqrt{m} + 1)|I|.$$

S kapacitami:

Každá hrana má celočí
selnou kapacitu $c \ge 1$. Pro c = 1 bychom měli $\beta = \sqrt{m}$.

Algorithm 12 Hladový s kapacitami

1:
$$I \leftarrow \emptyset$$
, $\beta := \left\lceil m^{\frac{1}{c+1}} \right\rceil$, $\forall e \in E : d(e) = 1$.

- 2: for all $i \in [k] \setminus I$ do
- 3: Nechť P_i je d-nejkratší $s_i t_i$ -cesta v G
- 4: Najdi $j \in [k] \setminus I$, že $d(P_j) \leq d(P_i)$ pro každé $i \in [k] \setminus I$
- 5: **if** neexistuje takové j nebo $d(P_i) \ge \beta^c$ then return I a P_i ($\forall i \in I$)
- 6: $I_i \leftarrow I \cup \{j\}, \quad \forall e \in P_j : d(e) := d(e) \cdot \beta$ return I a P_i $(\forall i \in I)$

Věta 7.6. Algoritmus je $3c \cdot m^{\frac{1}{c+1}} + 1$ -aproximační, tedy $\mathcal{O}(m^{\frac{1}{c+1}}) = \mathcal{O}(\beta)$.

 $D\mathring{u}kaz$. Předpokládejme optimální řešení $OPT \geq 1$ a $|I| = ALG \geq 1$. Nechť P_i^* je optimální s_it_i -cesta pro $i \in OPT$. Nechť d_i je délka funkce na konci iterace i.

Opět rozdělíme cesty na krátké a dlouhé:

Říkáme, že cesta je
$$krátk\acute{a}$$
, pokud $d(P)=\sum\limits_{e\in P}d(e)\leq \beta^c=m^{\frac{c}{c+1}}.$

Nechť l je poslední iterace, ve které hladový algoritmus vybal krátkou cestu a označme $\bar{d} = d_l$. Z pozorování 7.3. a pozorování 7.4. vyplývá, že:

$$|OPT \setminus I| \le \frac{c \cdot \bar{d}(E)}{\beta^c} = \frac{c \cdot m(1+2|I|)}{m^{\frac{c}{c+1}}} = c \cdot m^{\frac{1}{c+1}}(1+2|I|) \le c \cdot m^{\frac{1}{c+1}} \cdot 3|I|.$$

Takže
$$|OPT| \le |OPT \setminus I| + |I| \le \left(3c \cdot m^{\frac{1}{c+1}} + 1\right)|I|$$
.

Pozorování 7.3. $\bar{d}(E) \le m(1+2|I|)$

 $D\mathring{u}kaz$. Každá hrana má na počátku algoritmu d(e) = 1, proto i d(E) = m. Kdyby byla delší, tak by to značilo, že už byla vybána (byla by přenásobena faktorem β). Takže pro krátkou cestu po výběru:

$$\bar{d}(E) \le m + \sum_{i \in I} \beta^c \cdot \beta \le m + \sum_{i \in I} 2m = m + 2m|I|.$$

Pozorování 7.4. Pro každou cestu $P \in OPT \setminus I$ je $\bar{d}(P) \geq \beta^c$.

 $D\mathring{u}kaz$. Pro spor předpokládejme, že pro nějakou cestu P je její délka $d(P) < \beta^c$. Každá hrana na P je použita $\leq c-1$ cestami z hladového algoritmu $\implies P$ je dostupná pro hladový algoritmus, ale ten ji nepoužil \implies spor.

8 SAT

- Vstup: n boolovských proměnných x_1, \ldots, x_n a m klauzulí C_1, \ldots, C_m s vahou w_j .
- Výstup: Hodnota True/False vzhledem k x_1, \ldots, x_n
- Cil: maximalizovat váhy příslušných klauzulí, tedy max $\sum_{i=1}^{m} w_{j}$

Předpokládáme, že se žádný literál v klauzuli neopakuje a že nejvýše jeden z x_i, \bar{x}_i se vyskytuje v C_i

8.1 RAND-SAT

Algorithm 13 RAND-SAT

1: Pro $\forall i \in [n]$ nezávisle náhodně nastav $x_i = \begin{cases} \text{True} & \Pr = \frac{1}{2}, \\ \text{False} & \Pr = \frac{1}{2}. \end{cases}$

Věta 8.1. Algoritmus je 2-aproximační.

 $D\mathring{u}kaz$. Pro každou klauzuli C_j zavedeme indikátorovou proměnnou Y_j s 1 =nesplněna, 0 =splněna. Pro k literálů je $\Pr[C \text{ není splněna}] = \frac{1}{2^k} = \sum Y_j$.

Víme, že $k \geq 1$ a že platí $\mathbb{E}[Y_j] = \Pr[C]$ je $splněna] = 1 - \frac{1}{2^k} \geq \frac{1}{2}$. A tedy:

$$W = \sum_{j=1}^{m} w_j Y_j, \qquad \mathbb{E}[W] \stackrel{\text{linearita}}{=} \sum_{j=1}^{m} \mathbb{E}[Y_j] w_j \ge \frac{1}{2} \sum_{j=1}^{m} w_j \ge \frac{1}{2} OPT.$$

8.2 BIASED-SAT

Předpokládáme, že $\forall i: \underbrace{\sum_{j:C_j=x_i} w_j}_{\sum_+} \geq \underbrace{\sum_{j:C_j=\bar{x}_i} w_j}_{\sum_-}.$

Algorithm 14 BIASED-SAT

1: Pro $\forall i \in [n]$ nezávisle náhodně nastav $x_i = \begin{cases} \text{True} & \text{s pravděpodobností } p > \frac{1}{2}, \\ \text{False} & 1 - p. \end{cases}$

Nechť U je množina klauzulí bez záporných jednotkových klauzulí.

Pozorování 8.1. $OPT \leq \sum_{j \in U} w_j$.

 $D\mathring{u}kaz$. Používáme předpoklad, že $\sum_{+} w_{j} \geq \sum_{-} w_{j}$

$$\begin{split} \mathbb{E}\left[\sum_{j=1}^m w_j Y_j\right] &= \sum_{j=1}^m w_j \mathbb{E}[Y_j] \geq \sum_{j=1}^m w_j \Pr[C_j \text{ je splněná}] \geq \\ &\geq \sum_{j=1}^m w_j \cdot p \geq p \cdot OPT. \end{split}$$

Věta 8.2. Algoritmus je φ -aproximační.

 $D\mathring{u}kaz$. Uvažme klauzuli C_i délky k_i a indikátorovou veličinu Y_i .

Pokud je k=1, tak dostaneme kladný literál: $Y_j=p$. Pro $k_j\geq 2$:

Označme a počet záporných literálů a b počet kladných literálů. $\Pr[C \text{ nesplněná}] = p^a(1-p)^b$.

$$Y_j = 1 - p^a (1 - p)^b \stackrel{p > \frac{1}{2}}{\geq} 1 - p^{a+b} \stackrel{k_j \ge 2}{\geq} 1 - p^2.$$

Máme tedy $p=1-p^2$ a dostáváme tak $p=\varphi=\frac{\sqrt{5}-1}{2}$.

8.3 LP-SAT

Algorithm 15 LP-SAT

- 1: Pro každou proměnnou x_i si pořídíme binární proměnnou $y_i \in \{0,1\}$ a pro každou klauzuli C_j binární proměnnou $z_j \in \{0,1\}$.
- 2: Vytvoř lineární program (viz. LP níže)
- 3: Relaxuj program a vyřeš ho (dostaneme optimum y^*, z^*)
- 4: Nastav proměnné x_i na True s pravděpodobností y_i^* a False s $(1 y_i^*)$.

Lineární Program:

- $\acute{U}\check{c}elov\acute{a}$ funkce: $\max\sum_{j=1}^{m}z_{j}$
- Proměnné: $y_i \in \{0,1\}, \, z_j \in \{0,1\},$ (negaci zapisujeme jako $1-y_i$)
- Podmínky: $z_j \leq \sum_{+} y_i + \sum_{-} (1 y_i)$

Fakt A. (A/G nerovnost). Pro každé nezáporné $a_1, \ldots, a_n : \prod_{i=1}^n a_i^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^n a_i$

Fakt B. (Konvexní funkce). Pokud je funkce f na [0,1] konkávní a f(0)=a, f(1)=a+b, pak

$$\forall x \in [0,1]: f(x) > a + bx$$

Fakt C. (Odhad na 1/e). $\left(1 - \frac{1}{n}\right)^n \le \frac{1}{e}$

Věta 8.3. Algoritmus je $(1 - \frac{1}{e})$ -aproximační

 $D\mathring{u}kaz$. Uvažme y^*, z^* a C_i s délkou k_i ; potom:

$$\begin{split} \Pr\left[C_j \text{ není splněná}\right] &= \overbrace{\prod_{i:x_i \in C_j} (1-y_i^*) \prod_{i:\overline{x}_i \in C_j} y_i^*}^{\text{kladné}} \stackrel{A}{=} \\ &\stackrel{A}{=} \left[\frac{1}{k_j} \left(\sum_{i:x_i \in C_j} (1-y_i^*) + \sum_{i:\overline{x}_i \in C_j} y_i^*\right)\right]^{k_j} = \\ &= \left[1 - \frac{1}{k_j} \left(\sum_{i:x_i \in C_j} y_i^* + \sum_{i:\overline{x}_i \in C_j} (1-y_i^*)\right)\right]^{k_j} \leq \\ &\leq \left(1 - \frac{z_j^*}{k_i}\right)^{k_j} \end{split}$$

Nás zajímá splnění, tedy:

$$\begin{split} \Pr\left[C_j \text{ je splněná}\right] & \geq \overbrace{1 - \left(1 - \frac{z_j^*}{k_j}\right)^{k_j}}^{f(z_j^*)} \overset{B}{\geq} \\ & \geq \left[1 - \left(1 - \frac{1}{k_j}\right)^{k_j}\right] \cdot z_j^* \overset{C}{\geq} \left(1 - \frac{1}{e}\right) z_j^* \end{split}$$

Pro fakt B jsme pozorovali, že a = f(0) = 0 a také že druhá derivace je nekladná. Pak:

$$\mathbb{E}\left[\sum_{j=1}^{m} w_{j} Y_{j}\right] = \sum_{j=1}^{m} w_{j} \mathbb{E}\left[Y_{j}\right] \geq \sum_{j \in U} w_{j} \cdot \Pr\left[C_{j} \text{ je splněná}\right] \geq$$

$$\geq \sum_{j \in U} w_{j} \cdot \left(1 - \frac{1}{e}\right) z_{j}^{*}$$

$$= \left(1 - \frac{1}{e}\right) \text{OPT}$$

8.4 BEST-SAT

Algorithm 16 BEST-SAT

1: S pravděpodobností $\frac{1}{2}$ spusť RAND-SAT, s pravděpodobností $\frac{1}{2}$ spusť LP-SAT.

Věta 8.4. Algoritmus je $\frac{3}{4}$ -aproximační.

 $D\mathring{u}kaz$. Nechť W je součet všech splnitelných klauzulí v BEST-SAT, W_1 v RAND-SAT a W_2 v LP-SAT.

$$\mathbb{E}[W] = \mathbb{E}\left[\frac{1}{2}W_1 + \frac{1}{2}W_2\right] \geq \frac{1}{2}\sum_{j=1}^m w_j \left(1 - \frac{1}{2^{k_j}}\right) + \frac{1}{2}\sum_{j=1}^m w_j \left[1 - \left(1 - \frac{1}{k_j}\right)^{k_j}\right] z_j^* \geq \underbrace{\frac{3}{4}\sum_{j=1}^m w_j z_j^*}_{\text{LP-OPT}} \geq \frac{3}{4}OPT$$

k_j	Rand-SAT	LP-SAT	BEST-SAT
1	$\frac{1}{2}$	$1 \cdot z_j^*$	$\geq \frac{3}{4}z_j^*$
2	$\frac{3}{4} = k_1 + \frac{1}{4}$	$\frac{3}{4} = k_1 + (1 - \frac{1}{4})z_j^*$	$\geq \frac{3}{4}z_j^*$
≥ 3	$\geq \frac{7}{8}$	$\left(1 - \frac{1}{e}\right)z_j^*$	$> \frac{3}{4}z_{j}^{*}$

9 Pokrývací problémy

9.1 Vrcholové pokrytí

- Vstup: Graf G=(V,E) a ceny vrcholů $c:V\to\mathbb{R}^+$
- Výstup: $W \subseteq V$, že $\forall e \in E : e \cap W \neq 0$.
- $\mathit{Cil}: \min \sum_{w \in W} c(w)$, minimalizujeme ceny, označme C(W)

Pozorování 9.1. W je vrcholové pokrytí $\iff V \setminus W$ je nezávislá množina.

Pozorování 9.2. Vrcholové pokrytí je speciálním případem množinového pokrytí, kde f=2 a $g \le n$ je maximální stupeň grafu. (f, g si uvedeme později).

Algorithm 17 Vertex-Cover

- 1: Vytvoř celočíselný lineární program (viz. LP níže).
- 2: Zrelaxuj program a vyřeš ho: $I = \{i \mid x_i^* \geq \frac{1}{2}\}, \text{ tedy } x_v = 1, \text{ když } x_v \geq \frac{1}{2}.$

Lineární program:

- Proměnné: $x_v \in \{0,1\} \ (\forall v \in V)$
- $\acute{U}\check{c}elov\acute{a}$ funkce: $\min \sum_{v \in V} c(v) x_v$
- Podmínky: $x_u + x_v \ge 1 \ (\forall uv \in E)$

Věta 9.1. Algoritmus je 2-aproximační.

 $D\mathring{u}kaz$. Proměnné jsme během relaxace zaokrouhlili z $x_v^* \ge \frac{1}{2}$ na 1. Tím jsme řešení max zdvojnásobili.

$$ALG = \sum_{v \in V} c(v) \le 2 \sum_{v \in V} c(v) x_v^* \le 2OPT.$$

9.2Množinové pokrytí

- Vstup: Systém množin $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$, každý má cenu $c_1, \ldots, c_m \geq 0$, kde $c: V \to \mathbb{R}^+$
- Výstup: Podsystém $I \subseteq \{1, ..., m\}$, že $\bigcup_{i \in I} S_i = \{1, ..., n\}$.
- Cil: min $\sum_{i \in I} c(j)$, tedy minimalizovat cenu I.

Parametry: Můžeme si to představit jako bipartitní graf, kde levá partita obsahuje $\{1,\ldots,n\}$ a pravá $\{S_1,\ldots,S_m\}$. Potom máme parametry:

- $f = \max_{e \in [n]} |\{j \mid e \in S_j\}|$, tedy maximální stupeň na levé partitě,
- $g = \max_{j \in [m]} |S_j| \le n$, tedy maximální stupeň na pravé partitě.

Algorithm 18 LP-Set Cover

- 1: Vytvoř celočíselný lineární program (viz. LP níže).
- 2: Zrelaxuj program a vyřeš ho: $I = \{i \mid x_i^* \ge \frac{1}{f}\}$, tedy zvol v, když $x_v \ge \frac{1}{f}$.

Lineární program

- Účelová funkce: $\min \sum_{i=1}^{m} c(i) x_i$
- Proměnné: $x_1, \ldots, x_m \ge 0$

Duální program

- Účelová funkce: $\max \sum_{i=1}^{m} y_e$
 - Proměnné: $y_1, \ldots, y_n \ge 0$
- Podmínky: $\sum_{j:e\in S_i} x_j \ge 1$, pro $e=1,\ldots,m$ Podmínky: $\sum_{e\in S_i} y_e \le c(j)$, pro $j=1,\ldots,m$

Věta 9.2. Algoritmus je f-aproximační.

 $D\mathring{u}kaz$. Proměnné jsme během relaxace zaokrouhlili z $x_v^* \ge \frac{1}{f}$ na 1. Řešení jsme násobili max f-krát:

$$ALG = \sum_{i \in I} c(i) \le f \sum_{i \in I} c(i) x_i^* \le f \sum_{i=1}^m c(i) x_i^* = f \cdot OPT.$$

Podmínky komplementarity Pokud jsou x^* a y^* optima, pak $\begin{cases} \forall j: x_j^* = 0 \lor \sum y_e = c(j), \text{ a} \\ \forall e: y_e^* = 0 \lor \sum_{j: e \in S_j} x_j = 1 \end{cases}$

Algorithm 19 Primárně-Duální (PDA)

```
1: I \leftarrow \emptyset, E \leftarrow \emptyset, y_1, \dots, y_n = 0

2: while \exists e \notin E do

3: \delta = \min_{j:e \in S_j} \left( c(j) - \sum_{e \in S_j} y_e \right) \triangleright říká o kolik můžeme zvýšit

4: y_e \leftarrow y_e + \delta \triangleright zvýšíme y_e "co nejvíc"

5: for all j: e \in S_j a \sum_{e \in S_j} y_e = c(j) do \triangleright přidáme množiny splňující podm. kompl.

6: I \leftarrow I \cup \{j\}, E \leftarrow E \cup S_j

return I
```

Věta 9.3. Algoritmus je f-aproximační.

Důkaz.

$$ALG \stackrel{\text{def.}}{=} \sum_{j \in I} c(j) \stackrel{\text{PDA 5.}}{=} \sum_{j \in I} \sum_{e \in S_j} y_e \stackrel{\text{def } f}{\leq} \sum_{e=1}^n f \cdot y_e \stackrel{DP}{\leq} f \cdot \text{OPT}$$

Vybereme na začátku množinu pokrývající nejvíc prvků. A pak vybíráme takovou, která pokrývá nejvíce nových prvků. Tedy abychom si za stejnou cenu koupili co nejvíc.

Algorithm 20 Hladový Set-Cover

```
1: I \leftarrow \emptyset, E \leftarrow \emptyset, q_e = 0

2: while E \neq \{1, \dots, n\} do

3: Pro j \in \{1, \dots, m\} & S_j \nsubseteq E polož p_j := \frac{c(j)}{|S_j \setminus E|}. \triangleright kolik zaplatíme za pokrytí nového prvku

4: Buď j_0, že p_{j_0} je minimální.

5: Buď q_e = p_{j_0} (\forall e \in S_{j_0} \setminus E). \triangleright uložíme cenu nově pokrytých prvků

6: I \leftarrow I \cup \{j_0\}, E \leftarrow E \cup S_{j_0}.
```

Věta 9.4. Algoritmus je H_g aproximační.

$$D\mathring{u}kaz$$
. Máme, že ALG = $\sum_{e=1}^{m} q_e$.

Označme $\bar{q} = \frac{1}{H_q} q$ jako přípustné řešení duálního LP. Chceme $\sum_{e \in S_j} q_e \le c(j)$.

Nechť $S_j = \{e_1, \dots, e_i, \dots, e_k\}$ a očíslujeme prvky tak, že e_k je první a e_1 je poslední pokrytý prvek. Uvědomme si, že $q_{e_i} \leq \frac{c(j)}{i}$, protože pro e_i máme prvních i prvků ještě nepokrytých. Z definice vybíráme vždy nejlevnější možnou množinu. Dostaneme tak:

$$\sum_{e \in S_j} q_e = \sum_{i=1}^k q_{e_i} \le \frac{c(j)}{1} + \frac{c(j)}{2} + \dots + \frac{c(j)}{k} = H_k \cdot c(j)$$
$$\sum_{e \in S_j} \overline{q}_e = \frac{1}{H_g} \sum_{e \in S_j} q_e \le \frac{1}{H_g} \cdot H_k \cdot c(j) \stackrel{k \le g}{\le} c(j)$$

A tedy \bar{q} je přípustné řešení.

Pozorování 9.3. Jelikož platí, že $H_q \approx \ln g \leq \ln n$, tak je algoritmus $\ln(n)$ -aproximační.

10 Paralelní maximální nezávislá množina - PARA-MIS

- Vstup: Graf G = (V, E)
- $V ystup: I \subseteq V$ maximální nezávislá množina vzhledem k inkluzi

Vybereme velkou nezávislou množinu S. Z grafu odebereme $S \cup N(S)$ spolu se všemi incidentními hranami.²

Algorithm 21 PARA-MIS

- 1: $I \leftarrow \emptyset$
- 2: while $V \neq 0$ do
- 3: for all $v \in V$ do pokud je $d_v = 0$ pak $I := I \cup \{v\}, V := V \setminus \{v\}.$ $\triangleright d_v := \deg(v)$
- 4: for all $v \in V$ do označ v s pravděpodobností $\frac{1}{2d_v}$ (nezávisle).
- 5: for all $uv \in E$ do pokud u i v jsou označeny, smaž označení nižšího stupně.
- 6: $S \leftarrow \{v \in V \mid v \text{ označený}\}$
- 7: $I \leftarrow I \cup S$, $V \leftarrow V \setminus (S \cup N(S))$, $E \leftarrow$ odebereme hrany incidentní s vrcholem v $S \cup N(S)$. **return** I, pokud $V \neq 0$.

Definice 10.1. Vrchol $v \in V$ je **dobrý**, pokud má alespoň $\frac{d_v}{3}$ sousedů stupně $\leq d_v$. Jinak **špatný**.

Definice 10.2. Hrana $uv \in E$ je **špatná**, pokud jsou oba její vrcholy špatné.

Lemma 10.1. Existuje konstanta $\alpha > 0$, že $\forall v \ dobrý \ platí v jedné iteraci <math>\Pr[v \in S \cup N(S)] \ge \alpha$. 3 Důkaz. Nechť v je dobrý vrchol. Platí:

 $\Pr\left[v \text{ má souseda označeného v (4)}\right] \geq 1 - \underbrace{\prod_{w \in N(v)} \left(1 - \frac{1}{2d_w}\right)}_{\text{mean}} \geq 1 - \left(1 - \frac{1}{2d_v}\right)^{\frac{d_v}{3}} = \text{konst.} > 0$

Jestliže je libovolný vrchol w označen, ukážeme, že s pravděpodobností alespoň $\frac{1}{2}$ zůstane označen i po kroku (5). Označení můžeme odebrat jedině když má označeného souseda stejného nebo vyššího stupně. Ten je však označen s pravděpodobností nejvýše $\frac{1}{2dw}$.

Vzhledem k tomu, že w má nejvýše dw takových sousedů, ceľková pravděpodobnost odebrání označení je nejvýše $d_w \cdot \frac{1}{2dw} = \frac{1}{2}$.

Lemma 10.2. Špatných hran je nejvýše $\frac{|E|}{2}$. (Respektive, alespoň polovina hran je dobrá.)

 $D\mathring{u}kaz$. Nechť jsou B špatné vrcholy, E_B špatné hrany a d^{in} , d^{out} je počet (vy)stupujících hran. Hrany zorientujeme tak, že $u \to v$, pokud $d_u < d_v$, tedy od menšího k většímu stupni.

 $^{^{2}}N(S) = \{u \mid \exists v \in S : uv \in E\}$ je množina sousedů

³Pravděpodobnost, že daný vrchol odstraníme je $> \alpha$

Podíváme se na špatný vrchol $v \in B$, z definice máme $d_v^{\text{in}} \leq \frac{d_v}{3}$. Proto pro vystupující $d_v^{\text{out}} > \frac{2}{3}d_v$ a tedy dostaneme $d_v^{\text{in}} < \frac{1}{2}d_v^{\text{out}}$. To platí i celkově při sečtení:

$$|E_B| \le \sum_{v \in B} d_v^{\text{in}} \le \frac{1}{2} \sum_{v \in B} d_v^{\text{out}} \le \frac{1}{2} |E|.$$

Věta 10.1. Průměrný počet fází algoritmu je $< \mathcal{O}(\log n)$.

 $D\mathring{u}kaz$. Nechť M_i je počet hran E po i-fázích.

Na počátku máme $M_0=m=|E|$ počet hran na vstupu. Tvrdíme, že platí:

$$\mathbb{E}[M_{i+1}] \le \left(1 - \frac{\alpha}{2}\right) \mathbb{E}[M_i].$$

Pokud máme v nějaké fázi M_i hran, které vstupují do i-té fáze, tak podle lemmatu 10.2. je alespoň

 $\frac{M_i}{2}$ dobrých a dobrá hrana je odebrána s pravděpodobností α . "Polovina hran je dobrých a dobrou hranu odstraníme s pravděpodobností α , proto $1-\frac{\alpha}{2}$ ". Po t fázích, kde $t = c \log m$, dostaneme, že algoritmus skončí s pravděpodobností alespoň $\frac{1}{2}$:

$$\mathbb{E}[M_t] \le \left(1 - \frac{\alpha}{2}\right)^t m \stackrel{c \log m}{\le} \frac{1}{2}.$$

Hashovací funkce 11

Definice 11.1. Nechť $M, |M| = m, N, |N| = n, H \subseteq \{f \mid f : M \mapsto N\}$. Systém H je

• 2-univerzální, jestliže:

$$(\forall x_1, x_2 \in M, x_1 \neq x_2) \Pr_{h \in H} [h(x_1) = h(x_2)] \le 1/n$$

• silně 2-univerzální, jestliže:

$$(\forall x_1, x_2 \in M, x_1 \neq x_2) (\forall y_1, y_2 \in N) \Pr_{h \in H} [h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{n^2}$$

Pozorování 11.1. Silná 2-univerzalita \implies slabá 2-univerzalita.

Pozorování 11.2. Silná 2-univerzalita $\implies \{h(x) \mid x \in N\}$ po 2 nezávislé náhodné proměnné.

Konstrukce: Například pro M=N je těleso máme silně 2-univerzální systém

$$H = \{h_{a,b} \mid a, b \in N\} \quad h_{a,b} : x \mapsto ax + b$$

11.1 Dynamický slovník

Máme univerzum M velikosti $|M| = m = 2^d$, slovník $S \subseteq M$ velikosti |S| = s a cílem je reprezentovat S tabulkou N velikosti $n = |N| = \mathcal{O}(s)$. H je silně 2-univerzální, $h \in H$ volíme uniformě náhodně.

Kolize Řešíme za pomoci spojového seznamu. Řetězíme za sebe.

Operace: (trvá průměrně $\mathcal{O}(1)$):

- \bullet vložení do S
- ullet vyhledávání x v S
- \bullet vymazání x z S

Lemma 11.1. Pokud $n = \mathcal{O}(s)$, tak průměrná doba operace je $\mathcal{O}(1)$

 $D\mathring{u}kaz$. Chceme $\forall x \in S: \mathbb{E}\left[n_{h(x)}\right] = \mathcal{O}(1)$. Budeme počítat počet kolizí na jeden prvek:

Nechť
$$X_y = \begin{cases} 1 & h(y) = h(x), \\ 0 & \text{jinak.} \end{cases}$$

Jelikož $\forall x, y, x \neq y$ jsou h(x), h(y) nezávislé, tak $\mathbb{E}[X_y] = \frac{1}{n}$:

$$\mathbb{E}\left[n_{h(x)}\right] = 1^{\text{prvek } x} + \sum_{y \neq x} \mathbb{E}\left[X_{y}\right] = 1 + \frac{s-1}{n} = \mathcal{O}(1)$$

Lemma 11.2. $\mathbb{E}[|C|] = \binom{s}{2} \frac{1}{n}$, pokud je H silně 2-univerzální, kde C je množina kolizí pro h, S.

11.2 Statický slovník

S je dáno předem. Vytvoříme datastrukturu v polynomiálním čase. Chceme, aby prostor byl velikosti $\mathcal{O}(|S|)$ a aby operace vyhledání běžela nejhůř v čase $\mathcal{O}(1)$.

(to jsme předtím neměli – seznam mohl být dlouhý a maximální počet operací velký)

- 1. Najdeme $h \in H: U \to T$ tak, že $|C| \leq n.$ 4
- 2. Vytvoříme dvě tabulky a hashujeme dvakrát jednou pro index do první tabulky ($|C| \le n$) a ta určí funkci pro druhé hashování (|C| = 0).

Lemma 11.3. Existuje $h \in H$ s $|C| \le n$.

Lemma 11.4. *Existuje* $h \in H$ s |C| = 0.

$$D\mathring{u}kaz. \ \mathbb{E}[|C|] \stackrel{\text{2-univ}}{\leq} \binom{s}{2} \frac{1}{n} \stackrel{s \leq n}{\leq} \binom{n}{2} \frac{1}{n} \leq \frac{n}{2}.$$

$$D\mathring{u}kaz. \ \mathbb{E}[|C_{n_i}|] \leq \binom{n_i}{2} \frac{1}{n_i^2} \leq \frac{1}{2}.$$

Lemma 11.5. $\sum n_i^2 \in \mathcal{O}(|C|+s)$

$$\frac{D\mathring{u}kaz. \ |C| = \sum_{i=1}^{n} \binom{n_i}{2} = \sum \left(\frac{n_i^2}{2} - \frac{n_i}{2}\right) = \sum \frac{n_i^2}{2} - \frac{n}{2}}{{}^4C = \{\{x,y\} \mid x,y \in M, x \neq y, h(x) = h(y)\}, \text{ neboli kolize}}$$

12 Testování

12.1 Násobení matic

• Vstup: Matice $A, B, C \subseteq K^{n \times n}$

• Výstup: ANO, pokud $A \cdot B = C$, jinak NE.

Algorithm 22 MATRIX, $\mathcal{O}(n^2)$

1: Vezmi náhodný $\vec{x} \in \{0,1\}^n$

2: if $A \cdot B \cdot \vec{x} = C \cdot \vec{x}$ then return ANO

3: else return NE

Věta 12.1. Pokud $A \cdot B \neq C$, pak $Pr['NE'] \geq \frac{1}{2}$.

 $D\mathring{u}kaz$. Nechť D=AB-C je nenulová matice. Pokud $D\neq 0$, pak $\Pr[Dx\neq 0]\geq \frac{1}{2}$.

12.2 Nulovost polynomů (PIT)

• Vstup: Matice polynomů proměnných, determinant určuje náš polynom

• Výstup: ANO, jestliže je polynom identicky nulový, jinak NE

Nezajímá nás, jestli je identicky nulový, ale zda je nulový v tělese, ve kterém pracujeme. Budeme pracovat s polynomy více proměnných a d bude označovat celkový stupeň (součet stupňů v nějakém nenulovém monomu).

Převeditelné na to, zda je výrok tautologie (jdou na sebe převést) \implies NP těžké.

Lemma 12.1. Nechť $P(x_1, ..., x_n)$ je nenulový polynom nad K stupně $\leq d_i$ a $S \subseteq K$ konečná množina. Nechť $x_1, ..., x_n \in S$ uniformě náhodně. Pak

$$\Pr_{\vec{x}} \left[P(\vec{x}) = 0 \right] \le \frac{d}{|S|}.$$

Pro n=1 má polynom nejvýše d kořenů, ať zvolíme s jakkoliv. Je to dost šikovné, protože podle |S| si volíme přesnost algoritmu (pro $|S| \ge 2d$ máme $\ge \frac{1}{2}$)

 $D\mathring{u}kaz$. Pro n=1 platí.

Nyní indukcí podle n. Rozdělíme polynom na A a B, kde stupeň v B je ostře menší k. To umíme tím, že vytkneme nějakou proměnnou:

$$P(\vec{x}) = x_1^k \cdot A(x_2, \dots, x_n) + B(\vec{x})$$

Aje identicky nulový (podle IP) s pravděpodobností $\leq \frac{d-k}{|S|}.$

Chceme dokázat, že $\Pr[P(\vec{x}) = 0 \mid A(x_2, \dots, x_n) \neq 0] \leq \frac{k}{|S|}$.

Při konkrétních hodnotách x_2, \ldots, x_n se polynom vyhodnotí na nějaké číslo a zbytek polynomu $P(\vec{x})$ bude $\alpha x_1^k + \beta$, což nebude mít více než k kořenů

Nyní si uvědomíme, že

$$\Pr[P(\vec{x}) = 0] \le \alpha + \beta \le \frac{d - k}{|S|} + \frac{k}{|S|} = \frac{d}{|S|}.$$

Perfektní párování 13

Definice 13.1. (Edmondsova matice). Nechť (U, V, E) je bipartitní graf, n = |U| = |V|. Pak Edmondsova matice grafu je $n \times n$ matice B definována předpisem $B_{u,v} = \begin{cases} x_{u,v} & uv \in E, \\ 0 & \text{jinak.} \end{cases}$

Za každou hranu bude v matici jedna proměnná.

Pozorování 13.1. det(B) je polynom, jehož monomy bijektivně odpovídají perfektním párovaním. (sčítáme součin permutace matice a když se zrovna trefíme do párovaní, tak máme monom)

Algorithm 23 Test existence perfektního párování

- 1: Zvol uniformně náhodně nezávisle $x_{u,v} \in \{1, \dots, 2n\},$ $\triangleright 2n$, aby nám vyšlo 'NE' s $p \ge \frac{1}{2}$

- 2: Spočítej determinant.
- 3: **if** determinant $\neq 0$ **then** párování určitě existuje.
- 4: **else** párování neexistuje s pravděpodobností $\geq \frac{1}{2}$

13.1 Izolující lemma

Věta 13.1. Nechť máme systém množin $S_1, \ldots, S_n \subseteq \{a_1, \ldots, a_m\}$ s náhodně zvolenými vahami $w(a_1), \ldots, w(a_m) \in R, |R| = r. Pak^5$

$$\Pr\left[\exists \ pr\'{a}v\check{e} \ jedin\'{a} \ S_j \ s \ minim\'{a}ln\'{i} \ w(S_j)\right] \geq 1 - \frac{m}{r}.$$

Pro naše použití budeme chtít r = 2m

 $D\mathring{u}kaz$. Nechť A_i je jev, že existují S_k, S_l tak, že $w(S_k) = w(S_l) = \min_i w(S_i)$ a $a_i \notin S_k, a_i \in S_l$. Existují dvě minimální množiny, které se liší v prvku i (špatný jev). Když nenastane žádný z jevů A_i , pak máme vyhráno, jelikož dvě minimální neexistují

Ukážeme, že $\Pr[A_i] \leq \frac{1}{r}$. Systémy S_1, \ldots, S_n rozdělíme na dvě množiny podle i:

$$S_0 = \{j \mid a_i \notin S_j\}, \qquad S_1 = \{j \mid a_i \in S_j\}$$

Pokud A_i nastane, pak platí: $\begin{cases} \text{pro } S_k & k \in \mathcal{S}_0, w(S_k) = \min_{j \in \mathcal{S}_0} w(S_j), \\ \text{pro } S_l & l \in \mathcal{S}_1, w(S_l) = \min_{j \in \mathcal{S}_1} w(S_j). \end{cases}$ Pak, když zafixujeme všechny váhy a vybíráme váhu a_i , platí:

$$\Pr_{w(a_i) \in R} \left[w(S_k) = w(S_l) \mid w(a_i'), i' \neq i \text{ vybrána} \right] \leq \frac{1}{r}.$$

Součtem pro všechny množiny a dostáním opačného jevu dostáváme hledanou nerovnost.

Algorithm 24 Rychlý paralelní algoritmus pro perfektní párování

- 1: Zvol rovnoměrně náhodně váhy $w(uv) \in \{1, \dots, 2m\}$ pro každou hranu.
- 2: Zasubstituuj do Edmondsovy matice $x_{uv} = 2^{w(uv)}$.

3: Najdi W tak, že 2^W je maximální číslo tvaru 2^{α} , že $2^{\alpha} \mid \det(C)$.

- 4: for $uv \in E$ do
- Spočítej $d = \det(C^{uv})$. 5:
- if $2^{W-w(uv)}$ je max. číslo tvaru $2^{\alpha}\mid d$ then přidej uv do M▷ přežilo párov. smazání uv? 6:
- 7: Zkontroluj, že M je PP

⊳ mohli jsme vygenerovat nesmysl

- (*) V algoritmu příspěvek PP je $\pm 2^{w(M)} = \pm \prod_{uv \in M} 2^{w(uv)}$
- (**) Zajímá nás poslední index, kde det = 1, jelikož to odpovídá unikátnímu perfektnímu párování. (všechny PP jsou ve tvaru 0b10000, kde w(uv) jsou nuly za 1)

 $^{^5}$ Prvky a_i budou hrany v grafu a množiny S_i budou perfektní párování. Chceme nějak zvolit váhy a ukázat, že nám nějak jednoznačně identifikují nějakou z množin (tedy perfektních párování).

\mathbf{Zdroje}

Čerpal jsem z vlastních poznámek z hodin plus:

- skripta prof. Jiřího Sgalla
- $\bullet\,$ poznámky z hodin Sláma