ASSIGNMENT 9

MTH 301, 2018

- (1) Use $f_n(x) = x^n$ on [0, 1] to show that $B = \{f \in C[0, 1] : ||f|| \le 1\}$ is not compact.
- (2) Show that $\{f \in C[0,1] : f(x) > 0 \ \forall x \in [0,1] \}$ is open.
- (3) What is the interior of $\{f \in C(R) : f(x) > 0 \ x \in \mathbb{R} \text{ and bounded} \}$?
- (4) Prove that the family $\{\sin(nx): n \geq 1\}$ is not an equicontinuous subset of $C[0,\pi]$.
- (5) (a) Show that $\mathcal{F} = \{F(x) = \int_0^x f(t)dt : f \in C[0,1], ||f||_{\infty} \le 1\}$ is a bounded and equicontinuous subset of C[0,1].
 - (b) Why is \mathcal{F} not closed?
 - (c) Show that the closure of \mathcal{F} is all functions f with Lipschitz constant 1 such that f(0) = 0.
- (6) (a) Let \mathcal{F} be a subset of C[0,1] that is closed, bounded, and equicontinuous. Prove that there is a function $g\mathcal{F}$ such that

$$\int_0^1 g(x)dx \ge \int_0^1 f(x)dx, \ \forall f \in \mathcal{F}.$$

- (b) Construct a closed bounded subset \mathcal{F} of C[0,1] for which the conclusion of the previous problem is false.
- (7) Let \mathcal{F} be an equicontinuous family of functions in C(X), where X is a compact metric space. Prove that if for each $x \in X$, $\sup\{f(x) : f \in \mathcal{F}\} = M_x < \infty$, then \mathcal{F} is bounded.
- (8) Let \mathcal{F} be a family of continuous functions defined on \mathbb{R} that is (i) equicontinuous and satisfies (ii) $\sup\{f(x): f \in \mathcal{F}\} = M_x < \infty$ for every x. Show that every sequence $\{f_n\}$ has a subsequence that converges uniformly on [-k, k] for every k > 0.
- (9) Let K(x,t) be a continuous function on the square $[a,b] \times [a,b]$. Given $f \in C[a,b]$, define $g(x) = \int_a^b f(t)K(x,t)dt$. Also, consider the operator $T: C[a,b] \to C[a,b]$ defined by Tf = g.
 - (a) Show that $q \in C[a, b]$.
 - (b) Show that T maps bounded set to equicontinuous set.