

Les 14 – DEG's en clustering (3)

Emile Apol

Institute for Life Science & Technology

LES 12

- Verdeling van vals-positieven in MA data analyse
- Koppelen van MA data aan "externe" database
- o k-means clusteren: kmeans

MICROARRAY ANALYSE: STAPPENPLAN

- Background correctie
- Log transformatie
- Normalisatie (bijv. loess)
- Toetsen op DEG's:
 - t-toets, 1-way ANOVA, ...
 - Wilcoxon's toets, Kruskall-Wallis toets, ...
- \circ Aanpassen p-waarden voor multiple toetsing
- Clustering van DEG's:
 - Hiërarchisch clusteren
 - *k*-means
 - Principale Componenten Analyse (PCA)
- o Grafische weergave: heatmap, vulcano plot, ...

MULTIPLE TOETSEN

- Per toets een kans α op vals positieve (FP) uitslag, d.w.z. H_0 waar maar toch verwerpen
- Bij G (= aantal genen) toetsen achter elkaar dus een verwacht (= gemiddeld) aantal vals positieven:

$$\overline{FP} = \alpha \cdot G$$

 \circ Voorbeeld: 10 000 genen met $\alpha=0.05$ geeft

$$\overline{FP} = 0.05 \cdot 10000 = 500$$

• De verdeling van y = FP is ongeveer Poisson verdeeld, met

$$p(y) = \frac{\lambda^{y} \cdot e^{-\lambda}}{v!} \qquad \lambda = \overline{FP} = \overline{y}$$

Poisson verdeling (1)

- Kansverdeling: $p(y) = \frac{\lambda^{y} \cdot e^{-\lambda}}{y!}$
- R syntax:
 - Kansverdeling: dpois(x, lambda)

Stel: MA analyse met G = 1000 genen en significantieniveau $\alpha = 0.05$: Gemiddeld aantal FP = $\lambda = \alpha \cdot G = 50$

```
Kansverdeling, p(FP)
                                                            6
alpha <- 0.05
G < -1000
n.FP.av <- G*alpha
                                                                           20
                                                                                      40
                                                                                                60
                                                                                                           80
                                                                                                                     100
cat("\nGemiddeld aantal FP genen: ",n.FP.av,"\n")
                                                                                   Aantal vals positieven, FP
# Parameter van Poisson verdeling:
lambda <- n.FP.av
curve(dpois(x, lambda = lambda), from = 0, to = 2*lambda, n = 2*lambda+1, add = F, type = "l", col = "red",
      xlab = "Aantal vals positieven, FP", ylab = "Kansverdeling, p(FP)")
```

0.0

0.03

0.02

Poisson verdeling (2)

- Kansverdeling: $p(y) = \frac{\lambda^{y} \cdot e^{-\lambda}}{y!}$
- R syntax:
 - Quantile functie: qpois(p, lambda)

Stel: MA analyse met G=1000 genen en significantieniveau $\alpha=0.05$: Gemiddeld aantal FP = $\lambda=\alpha\cdot G=50$.

Wat is het 95% BI van het gemiddeld aantal FP genen?

```
In the standard of the st
```

Dus met 95% zekerheid ligt het aantal vals positieve genen op basis van niet-gecorrigeerde p-waarden tussen de 37 en 64.

MULTIPLE TOETSEN

• Simulaties in R (G = 200, 1 000 of 10 000 genen, 500 x random MA met 5 replica's), met theoretische Poisson verdeling (in rood):

 Stel, we hebben dataframe MA met microarray data, en een dataframe db met extra info over genen:

E	■ Data: db								
File									
		geneNa	me s	tatus	pathways				
	1	gene A	. 0)	central				
	2	gene B	0)	central				
L	3	gene C	0)	signalling				
L	4	gene D	0)	central				
	5	gene E	0)	signalling				
	6	gene F	1		catabolism				
L	7	gene G	1		catabolism				
L	8	ge H	1		cell division				
L	9	4 1	0)	cell division				
	10	g <u> </u> J	. 0)	central				
_ :	11	ne K	1		central				
	17	gene L	1		cell division				
		gene M	1		catabolism				
	14	gene N	0)	central				
:	15	gene O	1		signalling				
:	16	gene P	1		cell division				
:	17	gene Q	1		catabolism				
:	18	gene R	. 1		central				
:	19	gene S	1		signalling				
	20	gene T	1		central				

- Matchen van gen namen (of ORF, ...)
- Stringfunctie %in% geeft alleen T of F:
 - MA\$geneName[7] %in% db\$geneName# TRUE
- Stringfunctie **match** geeft positie van 1^e match:
- o match (MA\$geneName[7], db\$geneName)

7

regel 7 in db

• \$geneName is een factor, dus resultaat is een level, GEEN string:

```
> db$pathways[match(MA$geneName[7], db$geneName)] # level, geen string!
[1] catabolism
Levels: catabolism cell division central signalling
> as.character(db$pathways[match(MA$geneName[7], db$geneName)]) # string!
[1] "catabolism"
```

Loop over alle genen (=rijen) in dataframe MA:

```
myPathways <- c()
for(i in 1 : nrow(MA)){
   myPathways[i] <- as.character(db$pathways[match(MA$geneName[i], db$geneName)])
}
MA <- data.frame(MA, pathways=myPathways)</pre>
```

Resultaat:

■ Data: MA											
File											
	geneName	M1	M2	мз	pathways						
1	gene A	1	3	1	central						
2	gene B	2	4	1	central						
3	gene C	3	5	1	signalling						
4	gene D	4	6	2	central						
5	gene E	5	7	2	signalling						
6	gene F	6	8	1	catabolism						
7	gene G	7	9	4	catabolism						

• Meestal blijken for-loops niet nodig in R:

```
myPathways <- c()
for(i in 1 : nrow(MA)){
   myPathways[i] <- as.character(db$pathways[match(MA$geneName[i], db$geneName)])
}
MA <- data.frame(MA, pathways=myPathways)</pre>
```

• Dit kan ook in 1 regel, omdat de match (x,y) functie ook met vectoren x werkt (resultaat = vector met posities in y):

```
myPathways <- as.character(db$pathways[match(MA$geneName, db$geneName)])
MA <- data.frame(MA, pathways=myPathways)
```

 Hiërarchisch clusteren hclust: alles wordt één supercluster, evt. zelf in k subclusters opdelen cutree

o k-means clustering **kmeans**: aantal clusters (k) van te voren bekend

- Distance: Euclidisch (per definitie, anders bijv. pam ())
- Algoritme:
 - 1. Stel zelf aantal clusters k vast
 - 2. Bepaal random k cluster centers
 - 3. Bepaal voor elk punt op basis van distance tot center tot welke cluster hij behoort (least squares)
 - 4. Bereken nieuw cluster center (least squares)
 - Bepaal opnieuw voor elk punt op basis van distance tot center tot welke cluster hij behoort

enz.

- Voorbeeld: matrix X met 100 genen in 2 samples
 - kmeans(X, centers=2)
- Resultaat:

KMEANS()

- *k*-means clustering via **kmeans ()**:
 - kclust <- kmeans(X, centers=2)</pre>
- Resultaat: list

kclust\$ element	inhoud	kclust\$ element	inhoud
\$cluster	per gen cluster nr	\$totss	SS _{tot}
\$centers	coördinaten centers	\$withinss	SS _{within}
\$size	aantal genen per cluster	\$tot.withinss	sum SS _{within}
		\$betweenss	SS _{between}

K-MEANS CLUSTERING: WITHIN & BETWEEN SS

 Opsplitsen van totale variantie (t.o.v. overall center) in variantie binnen clusters (t.o.v. cluster centers) en variantie tussen clusters:

FIGURE 9.7 Cluster Diagram Showing Between- and Within-Cluster Variation

K-MEANS CLUSTERING: WITHIN & BETWEEN SS

1-way ANOVA

Factor $A \rightarrow$

$$SS_{\text{tot}} = SS_{A} + SS_{\text{err}}$$

Effectsterkte:
$$\eta^2 = \frac{SS_A}{SS_{tot}}$$

k-means clustering

Sample $M_1 \rightarrow$

$$SS_{\text{tot}} = SS_{\text{clust}} + SS_{\text{within}}$$

Effectsterkte:
$$\eta^2 = \frac{SS_{\text{clust}}}{SS_{\text{tot}}}$$
 18

K-MEANS CLUSTERING: NIET DETERMINISTISCH

 Het resultaat van k-means clustering hangt af van de random keuze van begin centers!

KMEANS(): NSTART

- Bij de functie kmeans ook een optie voor meerdere random begin centers: nstart
 - kmeans(X, centers=2, nstart=5)
- \circ Resultaat is oplossing met kleinste SS_{within}

K-MEANS CLUSTERING: WEERGAVE RESULTAAT

- o hclust: o.a. dendrogram
- kmeans: officieel géén dendrogram, alleen lijst met cluster nummers per gen
- Eigen functie makeKMeansDendrogram (zie ook BB):

```
makeKMeansDendrogram <- function(kcl){
    clusters <- kcl$cluster
    n.genes <- length(clusters)
# so there will be n.genes-1 hierarchical clusters!
gene.names <- names(clusters)
n.clusters <- length(kcl$size)
cat("kcl$size = ",kcl$size,"\n")
n.clusters.NONSINGLE <- length(which(kcl$size > 1))
n.clusters.SINGLE <- length(which(kcl$size == 1))
cat("Nr of non-singleton clusters = ",n.clusters.NONSINGLE,"\n")
cat("Nr of singleton clusters = ",n.clusters.SINGLE,"\n")
NONSINGLE.g <- which(kcl$size > 1) # which cluster nrs are non-singleton?
cat("Non-singleton cluster nrs are ",NONSINGLE.g,"\n")
size.clusters <- kcl$size
ORDER <- order(clusters)</pre>
```

KMEANS(): "DENDROGRAM"

- \circ Dataframe/matrix **M** met G rijen (genes) en n samples
 - kcl <- kmeans(M, centers=2)</pre>
 - clust <- makeKMeansDendrogram(kcl)
 - plot(clust, hang=-1, ann=F, axes=T)
- Resultaat:

hclust resultaat

K-MEANS CLUSTERING: K?

- Vaak vermoed je op basis van voorkennis hoeveel clusters er in de data zullen zitten, bijv.:
 - aantal verschillende pathways (dus aantal clusters genen)
 - aantal verschillende biologische samples (dus aantal clusters samples)
- Soms meerdere clusteringen k proberen...
 - Is er een "logische" cluster toekenning, bijv. op basis van functionaliteit, biologisch sample?
 - Statistisch: is het "nodig" om meer clusters te maken?

K-MEANS CLUSTERING: K?

- Wat is een "goede" waarde voor k?
- \circ Plot de within-cluster sum of squares als functie van k:

HCLUST() VS KMEANS()

- O Hierarchisch clusteren:
 - hclust: clusteren tot 1 supercluster
 - **cutree**: opsplitsen in k subclusters
 - deterministisch (altijd zelfde resultaat)!
 - verschillende distance maten
- k-means clusteren:
 - kmeans: clusteren tot k clusters
 - niet deterministisch (i.h.a. bij herhaling verschillende resultaten)!
 - Euclidische distance
- k subclusters m.b.v. hclust zijn niet (altijd) k clusters m.b.v. kmeans

MEER "CLUSTER" FUNCTIES

- o package cluster
 - agnes(),clara(),clusplot(),
 daisy(),...
- o package **gplots**
 - heatmap.2(), venn(), redgreen(n),
 greenred(n),...
- o class **hclust**
 - as.hclust(),...
- o class dendrogram
 - as.dendrogram(),dendrapply(),...

Jullie kunnen nu de opdrachten van les 14 maken

Institute for Life Science & Technology