Docket No. 218472US0X

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Bettina MOECKEL et al.

GAU:

SERIAL NO: NEW APPLICATION

EXAMINER:

FILED:

HEREWITH

FOR:

NUCLEOTIDE SEQUENCES WHICH CODE FOR THE rpsL GENE

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

- ☐ Full benefit of the filing date of U.S. Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §120.
- ☐ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY

APPLICATION NUMBER

MONTH/DAY/YEAR

GERMANY

101 07 230.9

FEBRUARY 16, 2001

GERMANY

101 62 386.0

DECEMBER 19, 2001

Certified copies of the corresponding Convention Application(s)

- Number 101 07 230.9 is submitted herewith
- Number 101 62 386.0 will be submitted prior to payment of the Final Fee
- □ were filed in prior application Serial No. filed
- $\hfill\Box$ were submitted to the International Bureau in PCT Application Number . Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and
 - (B) Application Serial No.(s)
 - are submitted herewith
 - will be submitted prior to payment of the Final Fee

Respectfully Sybmitted

OBLON, SPIVAK , McCLELLAND. 4AIER &

Norman F. Oblon

Registration No.

24,618

James J. Kelly, Ph.D.

Registration No. 41,504

Tel. (703) 413-3000 Fax. (703) 413-2220

(OSMMN 10/98)

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 07 230.9

Anmeldetag:

16. Februar 2001

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Bezeichnung:

Neue für das rpsL-Gen kodierende Nukleotid-

sequenzen

IPC:

C 12 N, C 12 Q, C 07 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 14. Januar 2002

Deutsches Patent- und Markenamt

Der Präsident

m/Auftrag

Nietiedt

Neue für das rpsL-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das rpsL-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren unter Verwendung von Bakterien, in denen das rpsL-Gen verstärkt wird.

Stand der Technik

betreffen.

L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst

- Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und 30 Aminosäuren produzieren.
 - Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von

L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

5 Aufgabe der Erfindung

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren bereitzustellen.

Beschreibung der Erfindung

- Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-
 - 15 Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint. Besonders bevorzugt ist L-Lysin.

Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Basen, sondern auch die Salze wie z.B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

- Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpsL-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
- a) Polynukleotid, das mindestens zu 70% identisch ist mit 25 einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von
- 30 SEQ ID No. 2,

10

20

- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der Polynukleotidsequenz
 von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität des ribosomalen Proteins S12 aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
 - (iii) mindestens eine Sequenz, die mit der zur Sequenz(i) oder (ii) komplementären Sequenzhybridisiert, und gegebenenfalls
 - (iv) funktionsneutralen Sinnmutationen in (i), die die
 Aktivität des Proteins/Polypeptides nicht
 verändern

Ein weiterer Gegenstand der Erfindung sind schließlich Polynukleotide ausgewählt aus der Gruppe

- a) Polynukleotide enthaltend mindestens 15

 aufeinanderfolgende Nukleotide ausgewählt aus der
 Nukleotidsequenz von SEQ ID No. 1 zwischen den
 Positionen 1 und 499
 - b) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der

10

20

25

30

Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 500 und 883

c) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 884 und 1775.

Weitere Gegenstände sind

- ein replizierbares Polynukleotid, insbesondere DNA, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
- ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält;
- ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, 15 insbesondere Pendelvektor oder Plasmidvektor, und
 - coryneforme Bakterien, die den Vektor enthalten oder in denen das rpsL-Gen verstärkt ist.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No.1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für das ribosomale Protein S12 kodieren, oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu

10

isolieren, die eine hohe Ähnlichkeit mit der Sequenz des rpsL-Gens aufweisen. Sie sind ebenso zum Einbau in sogenannte "arrays", "micro arrays" oder "DNA chips" geeignet, um die entsprechenden Polynukleotide zu detektieren und zu bestimmen

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für das ribosomale Protein S12 kodieren.

Solche als Sonden oder Primer dienende Oligonukleotide, enthalten mindestens 25, 26, 27, 28, 29 oder 30, bevorzugt mindestens 20, 21, 22, 23 oder 24, ganz besonders bevorzugt mindestens 15, 16, 17, 18 oder 19 aufeinanderfolgende

Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 31, 32, 33, 34, 35, 36, 37, 38, 39 oder 40, oder mindestens 41, 42, 43, 44, 45, 46, 47, 48, 49 oder 50 Nukleotiden. Gegebenenfalls sind auch Oligonukleotide mit einer Länge von mindestens 100, 150, 20 200, 250 oder 300 Nukleotiden geeignet.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens besonders 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%,

10

97% oder 99% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragmentes.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität des ribosomalen Proteins S12 und auch solche ein, die zu wenigstens 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

- Die Erfindung betrifft weiterhin ein Verfahren zur fermermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-
- Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das rpsL-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
- Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

15.

20

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

10 Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme, wie beispielsweise die L-Lysin produzierenden Stämme

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DG52-5
Corynebacterium glutamicum DSM5714 und
Corynebacterium glutamicum DSM5714 und

Das neue, für das ribosomale Protein S12 kodierende rpsL-Gen von C. glutamicum wurde isoliert.

Zur Isolierung des rpsL-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses

- Mikroorganismus in Escherichia coli (E. coli) angelegt.

 Das Anlegen von Genbanken ist in allgemein bekannten

 Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel
 seien das Lehrbuch von Winnacker: Gene und Klone, Eine
 Einführung in die Gentechnologie (Verlag Chemie, Weinheim,
- Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ -Vektoren angelegt wurde.
- 15 Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde.
- Börmann et al. (Molecular Microbiology 6(3), 317-326) (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und

Collins, Gene 11, 291-298 (1980)).

Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren

subkloniert und anschließend sequenziert werden, so wie es z.B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977) beschrieben ist.

Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical

10 Analysis 39, 74-97 (1998)) untersucht werden.

Die neue für das Gen rpsL kodierende DNA-Sequenz von C.
glutamicum wurde gefunden, die als SEQ ID No. 1 Bestandteil
der vorliegenden Erfindung ist. Weiterhin wurde aus der
vorliegenden DNA-Sequenz mit den oben beschriebenen

Methoden die Aminosäuresequenz des entsprechenden Proteins
abgeleitet. In SEQ ID No. 2 ist die sich ergebende
Aminosäuresequenz des rpsL-Genproduktes dargestellt. Es ist
bekannt, daß wirtseigene Enzyme die N-terminale Aminosäure
Methionin bzw. Formylmethionin des gebildeten Proteins
abspalten können.

Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der 25 Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins 30 führen, d.h. funktionsneutral sind. Derartige Mutationen werden unter anderem auch als neutrale Substitutionen bezeichnet. Weiterhin ist bekannt, daß Änderungen am Nund/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. 35

25

Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.

In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 10 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben 15 typischerweise eine Länge von mindestens 15 Nukleotiden.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH 20 (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heisst, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflußt bzw. bestimmt wird. Die 30 Hybridisierungsreaktion wird vorzugsweise bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).

Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50°C - 68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride 5 sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, 10 Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50°C - 68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1x SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 15

50°C auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).

Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

30 Es wurde gefunden, daß coryneforme Bakterien nach Verstärkung des rpsL-Gens in verbesserter Weise Aminosäuren produzieren.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die

20

. 25

30

Promotor- und Regulationsregion oder die
Ribosomenbindungsstelle, die sich stromaufwärts des
Strukturgens befindet, mutiert werden. In gleicher Weise
wirken Expressionskassetten, die stromaufwärts des
Strukturgens eingebaut werden. Durch induzierbare
Promotoren ist es zusätzlich möglich, die Expression im
Verlaufe der fermentativen Aminosäure-Produktion zu
steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer
der m-RNA wird ebenfalls die Expression verbessert.

Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15 - 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Zur Verstärkung wurde das erfindungsgemäße rpsL-Gen beispielhaft mit Hilfe von episomalen Plasmiden

10

überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch

- 15 Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige
- Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73
- 25 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf
- ot al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al.,1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode
- der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994))

beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.

Es wurde weiterhin gefunden, dass Aminosäureaustausche in dem Abschnitt zwischen Position 38 bis 48 der Aminosäuresequenz des ribosomalen Proteins S12 dargestellt in SEQ ID No. 2 die Lysinproduktion coryneformer Bakterien verbessern.

Vorzugsweise wird L-Lysin an der Position 43 gegen jede
andere proteinogene Aminosäure ausgenommen L-Lysin
ausgetauscht, wobei der Austausch gegen L-Histidin oder LArginin bevorzugt wird. Ganz besonders bevorzugt wird der
Austausch gegen L-Arginin.

In SEQ ID No. 3 ist die Basensequenz des in Stamm DM1545
enthaltenen Allels rpsL-1545 dargestellt. Das rpsL-1545
Allel kodiert für ein Protein, dessen Aminosäuresequenz in
SEQ ID No. 4 dargestellt ist. Das Protein enthält an
Position 43 L-Arginin. Die DNA Sequenz des rpsL-1545 Allels
(SEQ ID No. 3) enthält anstelle der im rpsL Wildtypgen (SEQ
ID No. 1) an Position 627 enthaltenen Base Adenin die Base
Guanin.

Für die Mutagenese können klassische Mutageneseverfahren unter Verwendung mutagener Stoffe wie beispielsweise N-Methyl-N'-Nitro-N-Nitrosoguanidin oder ultraviolettes Licht verwendet werden. Weiterhin können für die Mutagenese invitro Methoden wie beispielsweise eine Behandlung mit Hydroxylamin (Miller, J. H.: A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Cold Spring Harbor Laboratory

Press, Cold Spring Harbor, 1992) oder mutagene Oligonukleotide (T. A. Brown: Gentechnologie für Einsteiger, Spektrum Akademischer Verlag, Heidelberg, 1993) oder die Polymerasekettenreaktion (PCR), wie sie im Handbuch von Newton und Graham (PCR, Spektrum Akademischer Verlag, Heidelberg, 1994) beschrieben ist, verwendet werden.

Zusätzlich kann es für die Produktion von L-Aminosäuren vorteilhaft sein, neben dem rpsL-Gen eines oder mehrere

10 Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-Zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken, insbesondere überzuexprimieren.

- So kann für die Herstellung von L-Lysin zusätzlich zur Verstärkung des rpsL-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe
 - das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
- das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die Triosephosphat-Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf (JP-A-09224661),
- das für die Pyruvat-Carboxylase kodierende Gen pyc (DE-A- 198 31 609),

- das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
- das für eine feed-back resistente Aspartatkinase
 kodierende Gen lysC (Kalinowski et al., Molecular Microbiologie 5(5), 1197-204 (1991)),
 - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222),
 - das für das Zwal-Protein kodierende Gen zwal (DE: 19959328.0, DSM 13115), und
 - \bullet das für die $\beta\textsc{--}Untereinheit der RNA-Polymerase B kodierende rpoB-Gen dargestellt in SEQ ID No. 5 und 6$

verstärkt, insbesondere überexprimiert werden.

Der Begriff "Abschwächung" beschreibt in diesem

Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

Weiterhin kann es für die Produktion von L-Aminosäuren 25 vorteilhaft sein, zusätzlich zur Verstärkung des rpsL-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
- das für die Glucose-6-Phosphat-Isomerase kodierende Gen
 pgi (US 09/396,478; DSM 12969),

15

20

- das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 1995 1975.7; DSM 13114),
- das für das Zwa2-Protein kodierende Gen zwa2 (DE: 19959327.2, DSM 13113)
- 5 abzuschwächen, insbesondere die Expression zu verringern.

Weiterhin kann es für die Produktion von Aminosäuren vorteilhaft sein, neben der Verstärkung des rpsL-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik

(Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch

(Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

von Storhas (Bioreaktoren und periphere Einrichtungen

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.

30 Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren

20

wie z.B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

5 Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und 10 Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die
entsprechenden Natrium haltigen Salze verwendet werden. Das
Kulturmedium muß weiterhin Salze von Metallen enthalten wie
z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum
notwendig sind. Schließlich können essentielle Wuchsstoffe
wie Aminosäuren und Vitamine zusätzlich zu den oben
genannten Stoffen eingesetzt werden. Dem Kulturmedium
können überdies geeignete Vorstufen zugesetzt werden. Die
genannten Einsatzstoffe können zur Kultur in Form eines
einmaligen Ansatzes hinzugegeben oder in geeigneter Weise
während der Kultivierung zugefüttert werden.

Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z.B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise

25

bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Ionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

Eine Reinkultur des Corynebacterium glutamicum Stammes

DM1545 wurde am 16. Januar 2001 bei der Deutschen Sammlung
für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig,
Deutschland) als DSM 13992 gemäß Budapester Vertrag
hinterlegt.

Das erfindungsgemäße Verfahren dient zur fermentativen 20 Herstellung von Aminosäuren, insbesondere L-Lysin.

Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.

Die Zusammensetzung gängiger Nährmedien wie LB- oder TY-Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.

Beispiel 1

20

dephosphoryliert.

Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wird wie bei Tauch et al. (1995, Plasmid 33:168-179) 5 beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente werden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, 10 Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCosl (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 15 Cosmid Vektor Kit, Code no. 251301) wird mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase

Anschließend wird die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wird mit der

behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04) behandelt. Das Ligationsgemisch wird anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract.

30 USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.

Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) werden die Zellen in $10~\text{mM}~\text{MgSO}_4$ aufgenommen und mit einem Aliquot der

Phagensuspension vermischt. Infektion und Titerung der Cosmidbank werden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 mg/l Ampicillin ausplattiert werden. Nach Inkubation über Nacht bei 37°C werden rekombinante Einzelklone selektioniert.

Beispiel 2

Germany).

5

Isolierung und Sequenzierung des rpsL-Gens

Die Cosmid-DNA einer Einzelkolonie wird mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente werden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgt die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden,

Die DNA des Sequenziervektors pZero-1, bezogen von der Firma Invitrogen (Groningen, Niederlande,

Produktbeschreibung Zero Background Cloning Kit, Product
No. K2500-01), wird mit dem Restriktionsenzym BamHI
(Amersham Pharmacia, Freiburg, Deutschland,
Produktbeschreibung BamHI, Product No. 27-0868-04)
gespalten. Die Ligation der Cosmidfragmente in den
Sequenziervektor pZero-1 wird wie von Sambrook et al.
(1989, Molecular Cloning: A Laboratory Manual, Cold Spring
Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit
T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über
Nacht inkubiert wird. Dieses Ligationsgemisch wird

10

30

anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgt nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wird der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet.

Die Plasmidpräparation der rekombinanten Klone erfolgt mit

Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgt in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

Die erhaltenen Roh-Sequenzdaten werden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate werden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wird mit dem Programm XNIP (Staden,

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergibt ein offenes Leseraster von 383 Basenpaaren, welches als rpsL-Gen bezeichnet wird. Das rpsL-Gen kodiert für ein Protein von 127 Aminosäuren.

1986, Nucleic Acids Research, 14:217-231) angefertigt.

```
SEQUENZPROTOKOLL
     <110> Degussa-Hüls AG
 5
     <120> Neue für das rpoL-Gen kodierende Nukleotidsequenzen
     <130> 000779 BT
     <140>
10
     <141>
     <160> 6
     <170> PatentIn Ver. 2.1
15
     <210> 1
     <211> 1775
     <212> DNA
     <213> Corynebacterium glutamicum
20
     <220>
     <221> CDS
     <222> (500)..(880)
     <223> rpsL-Wildtypgen
25
     cagetetaca agagtgteta agtggeggge attecatget ttggaggage gatetteaaa 60
     ttcctccaaa gtgagttgac ctcgggaaac agctgcagaa agttcatcca cgacttggtt 120
30
     tcggttaagg tcagtggcga gcttctttgc tggttcgttt ccttgaggaa cagtcatggg 180
     aaccattcta acaagggatt tggtgttttc tgcggctagc tgataatgtg aacggctgag 240
     teccaetett gtagttggga attgaeggea eetegeaete aagegeggta tegeeeetgg 300
35
     ttttccggga cgcggtggcg catgtttgca tttgatgagg ttgtccgtga catgtttggt 360
     cgggccccaa aaagagcccc cttttttgcg tgtctggaca ctttttcaaa tccttcgcca 420
40
     togacaaget cageettegt gttegteece egggegteae gteageagtt aaagaacaae 480
     tccgaaataa ggatggttc atg cca act att cag cag ctg gtc cgt aag ggc
                           Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly
45
                            1
                                                                        580
     cgc cac gat aag toc goc aag gtg got acc gog goa ctg aag ggt toc
     Arg His Asp Lys Ser Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser
50
     cct cag cgt cgt ggc gta tgc acc cgt gtg tac acc acc cct aag
                                                                        628
     Pro Gln Arg Arg Gly Val Cys Thr Arg Val Tyr Thr Thr Pro Lys
```

aaq cct aac tct gct ctt cgt aag gtc gct cgt gtg cgc ctt acc tcc

Lys Pro Asn Ser Ala Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser

50

676

	ggc 6 Gly 1	atc Ile	gag Glu	gtt Val	tcc Ser	gct Ala 65	tac Tyr	atc Ile	cct Pro	ggt Gly	gag Glu 70	ggc Gly	cac His	aac Asn	ctg Leu	cag Gln 75	724
5	gag (Glu)																772
10	ggt (820
15	aag Lys																868
	att Ile				taaa	atca	gca (gctco	ctaa	gc g1	tcca	gtagi	t tc	agga	ccct		920
20	gtat	acaa	agt (ccga	gata	gt t	accc	agcto	c gta	aaaca	aaga	tcc	tcat	cgg	tggc	aagaag	980
	tcca	ccgo	cag a	agcgo	catc	gt c	tacg	gtgca	a cto	cgaga	atct	gcc	gtga	gaa	gacc	ggcacc	1040
25					1			_								gttcgt	
								,								cgcgca	
																accatg	
30																gtgaag	
																cgctgg	
35																gccctt	
																ctcatt	
																ttacta	
40																aaatgt	
4 E																ggatac	
45																cacaag	
	_					ac a	aggt	ccgc	a ac	atcg	gcat	cat	ggcg	cac	atcg	atgctg	
50	gtaa	gaco	cac	gacc	а												1775
55	<210 <211 <212 <213	> 12 > PI	RT	ebac	teri	um g	luta	micu	m								
	<400 Met 1		Thr	Ile	Gln 5		Leu	Val	Arg	Lys 10		Arg	His	Asp	Lys 15		

	Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser Pro Gln Arg Arg Gly 20 25 30	
5	Val Cys Thr Arg Val Tyr Thr Thr Thr Pro <u>Lys</u> Lys Pro Asn Ser Ala 35 40 45	
10	Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser Gly Ile Glu Val Ser 50 55 60	
10	Ala Tyr Ile Pro Gly Glu Gly His Asn Leu Gln Glu His Ser Met Val 65 70 75 80	
15	Leu Val Arg Gly Gly Arg Val Lys Asp Leu Pro Gly Val Arg Tyr Lys 85 90 95	
	Ile Val Arg Gly Ala Leu Asp Thr Gln Gly Val Lys Asp Arg Lys Gln 100 105 110	
20	Ala Arg Ser Pro Leu Arg Arg Glu Glu Gly Ile Ile Lys Asn Ala 115 120 125	
25	<210> 3 <211> 1775 <212> DNA <213> Corynebacterium glutamicum	
30	<220> <221> CDS <222> (500)(880) <223> rpsL-Gen Allel 1545	
35	<400> 3 cagctctaca agagtgtcta agtggcgggc attccatgct ttggaggagc gatcttcaaa 60	Э
	tteeteeaaa gtgagttgae etegggaaae agetgeagaa agtteateea egaettggtt 12	20
40	tcggttaagg tcagtggcga gcttctttgc tggttcgttt ccttgaggaa cagtcatggg 18	3 (
	aaccattcta acaagggatt tggtgttttc tgcggctagc tgataatgtg aacggctgag 24	4 (
45	teceaetett gtagttggga attgaeggea eetegeaete aagegeggta tegeeeetgg 30	ЭС
40	ttttccggga cgcggtggcg catgtttgca tttgatgagg ttgtccgtga catgtttggt 36	60
	cgggccccaa aaagagcccc cttttttgcg tgtctggaca ctttttcaaa tccttcgcca 42	20
50	tegacaaget cageettegt gttegteece egggegteae gteageagtt aaagaacaae 48	3 (
	tccgaaataa ggatggttc atg cca act att cag cag ctg gtc cgt aag ggc 53 Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly 1 5 10	32
55	cgc cac gat aag tcc gcc aag gtg gct acc gcg gca ctg aag ggt tcc 58 Arg His Asp Lys Ser Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser 15 20 25	3 C

																cct Pro		628
	5															acc Thr		676
	10															ctg Leu		724
	15															ctc Leu 90		772
,	20															ggt Gly		820
																Glà aàà		868
	25		aaa Lys 125			taaa	atca	gca (gctco	ctaa	gc gt	tccaç	gtagi	t tea	agga	ccct		920
	30	gtai	tacaa	agt (ccga	gata	gt ta	accca	agcto	gt:	aaaca	aaga	tcct	cato	egg	tggca	aagaag	980
	30	tcca	accgo	cag a	agcg	catc	gt c	acg	gtgca	a cto	cgaga	atct	gcc	gtga	gaa	gacc	ggcacc	1040
		gato	ccagt	tag (gaac	cata	ga ga	aaggo	ctcto	gg(caac	gtgc	gtc	cagad	cct	cgaa	gttcgt	1100
	35	tcc	cgcc	gtg .	ttgg	tggc	gc ta	accta	acca	g gto	gcca	gtgg	atgi	ttcg	ccc .	agago	cgcgca	1160
		aaca	accct	tcg (cact	gcgti	tg g	tggi	taaco	c tto	cacco	cgtc	agc	gtcgt	tga (gaaca	accatg	1220
1.	40	atc	gagc	gtc	ttgc	aaac	ga ao	cttc	tggat	gc	agcca	aacg	gcct	tgg	cgc ·	ttcc	gtgaag	1280
		cgt	egega	aag	acac	ccaca	aa ga	atggo	caga	g gc	caac	egeg	ccti	cgct	tca	ctac	cgctgg	1340
		tagi	tacto	gcc a	aaga	catg	aa a	gece	aatca	a cc	ttta	agat	caad	egect	tgc	cggc	gccctt	1400
	45	caca	attt	gaa '	taag	ctgg	ca go	cctgo	cgttt	ct	tcaa	ggcg	acto	gggct	ttt	tagto	ctcatt	1460
		aato	gcagt	ttc	accg	ctgta	aa ga	atago	ctaaa	a ta	gaaa	cact	gtti	cgg	cag	tgtgt	tacta	1520
	50	aaaa	aatco	cat	gtca	cttg	cc to	cgago	cgtgo	c tg	cttga	aatc	gcaa	agtta	agt (ggcaa	aaatgt	1580
		aaca	aagaq	gaa ·	ttat	ccgt	ag gi	tgaca	aaact	tt!	ttaat	tact	tgg	gtato	ctg	tcat	ggatac	1640
		ccc	ggtaa	ata a	aata	agtga	aa t	tacc	gtaad	c caa	acaa	gttg	gggt	tacca	act (gtgg	cacaag	1700
	55	aagt	tgcti	taa (ggat	ctaa	ac a	aggto	ccgca	a ac	atcg	gcat	cat	ggcg	cac	atcga	atgctg	1760
		gtaa	agaco	cac	gacc	a												1775

```
<210> 4
     <211> 127
     <212> PRT
     <213> Corynebacterium glutamicum
5
     <400> 4
    Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly Arg His Asp Lys Ser
     Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser Pro Gln Arg Arg Gly
10
                  20
     Val Cys Thr Arg Val Tyr Thr Thr Pro Arg Lys Pro Asn Ser Ala
15
     Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser Gly Ile Glu Val Ser
     Ala Tyr Ile Pro Gly Glu Gly His Asn Leu Gln Glu His Ser Met Val
20
     Leu Val Arg Gly Gly Arg Val Lys Asp Leu Pro Gly Val Arg Tyr Lys
     Ile Val Arg Gly Ala Leu Asp Thr Gln Gly Val Lys Asp Arg Lys Gln
25
                                      105
     Ala Arg Ser Pro Leu Arg Arg Glu Glu Gly Ile Ile Lys Asn Ala
                                  120
30
     <210> 5
     <211> 5099
35
     <212> DNA
     <213> Corynebacterium glutamicum
     <220>
     <221> CDS
      <222> (702)..(4196)
40
      <223> rpoB-Gen
      <400> 5
     acaatgtgac tcgtgatttt tgggtggatc agcgtaccgg tttggttgtc gatctagctg 60
45
     aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag aaattgcttt 120
      tegacgeete cetegacgat geagetgtet etaagetggt tgeacaggee gaaageatee 180
      ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt gcggtattgg 240
50
      ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga gaagcttaac 300
      ctgctgttca aatagatttt ccctgtttcg aattgcggaa accccgggtt tgtttgctag 360
55
      ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg gttggttgct 420
      aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcgcgcgc gattggtata 480
```

		ctc	tgag	tcg	ttgc	gttg	ga at	ttcg	tgact	t ct	tttt	cgtt	cct	gtag	cgc (caaga	accttg	540
		atc	aagg	tgg	ttta	aaaa	aa co	cgati	ttgad	c aa	ggtc	attc	agt	gcta	tct	ggagt	tcgttc	600
	5	agg	ggga	tcg	ggtt	cctc	ag ca	agac	caati	t gc	tcaa	aaat	acc	agcg	gtg	ttga	tctgca	660
	10	ctt	aatg	gcc	ttga	ccag	cc a	ggtgo	caati	t ac	ccgc	gtga					ga ccc ly Pro 5	716
	10				gtc Val													764
	15	gca Ala	ccg Pro	cag Gln	cgt Arg 25	tat Tyr	tct Ser	ttc Phe	gcg Ala	aag Lys 30	gtg Val	tcc Ser	gca Ala	ccc Pro	att Ile 35	gag Glu	gtg Val	812
•	20				cta Leu													860
	25				tgg Trp													908
	30				agc Ser													956
		cag Gln	gat Asp	tac Tyr	tct Ser	gga Gly 90	aac Asn	atg Met	tcc Ser	ctg Leu	agc Ser 95	ctt Leu	tcg Ser	gag Glu	cca Pro	cgc Arg 100	ttc Phe	1004
	35	gaa Glu	gac Asp	gtc Val	aag Lys 105	aac Asn	acc Thr	att Ile	gac Asp	gag Glu 110	gcg Ala	aaa Lys	gaa Glu	aag Lys	gac Asp 115	atc Ile	aac Asn	1052
Ì	40	tac Tyr	gcg Ala	gcg Ala 120	cca Pro	ctg Leu	tat Tyr	gtg Val	acc Thr 125	gcg Ala	gag Glu	ttc Phe	gtc Val	aac Asn 130	aac Asn	acc Thr	acc Thr	1100
	45	ggt Gly	gaa Glu 135	atc Ile	aag Lys	tct Ser	cag Gln	act Thr 140	gtc Val	ttc Phe	atc Ile	ggc Gly	gat Asp 145	ttc Phe	cca Pro	atg Met	atg Met	1148
	50				gga Gly													1196
		agc Ser	cag Gln	ctc Leu	gtc Val	cgc Arg 170	tcc Ser	ccg Pro	ggc Gly	gtg Val	tac Tyr 175	ttt Phe	gac Asp	cag Gln	acc Thr	atc Ile 180	gat Asp	1244
	55				gag Glu 185													1292

		ggt Gly	gct Ala	tgg Trp 200	ctt Leu	gag Glu	ttt Phe	gac Asp	gtc Val 205	gat Asp	aag Lys	cgc Arg	gat Asp	tcg Ser 210	Val	ggt Gly	gtt Val	1340
	5	cgt Arg	att Ile 215	gac Asp	cgc Arg	aag Lys	cgt Arg	cgc Arg 220	cag Gln	cca Pro	gtc Val	acc Thr	gta Val 225	ctg Leu	ctg Leu	aag Lys	gct Ala	1388
	10	ctt Leu 230	Gly	tgg Trp	acc Thr	act Thr	gag Glu 235	cag Gln	atc Ile	acc Thr	gag Glu	cgt Arg 240	ttc Phe	ggt Gly	ttc Phe	tct Ser	gaa Glu 245	1436
	15	atc Ile	atg Met	atg Met	tcc Ser	acc Thr 250	ctc Leu	gag Glu	tcc Ser	gat Asp	ggt Gly 255	gta Val	gca Ala	aac Asn	acc Thr	gat Asp 260	Glu	1484
	20	gca Ala	ttg Leu	ctg Leu	gag Glu 265	atc Ile	tac Tyr	cgc Arg	aag Lys	cag Gln 270	cgt Arg	cca Pro	ggc Gly	gag Glu	cag Gln 275	cct Pro	acc Thr	1532
		cgc Arg	gac Asp	ctt Leu 280	gcg Ala	cag Gln	tcc Ser	ctc Leu	ctg Leu 285	gac Asp	aac Asn	agc Ser	ttc Phe	ttc Phe 290	cgt Arg	gca Ala	aag Lys	1580
	25	cgc Arg	tac Tyr 295	gac Asp	ctg Leu	gct Ala	cgc Arg	gtt Val 300	ggt Gly	cgt Arg	tac Tyr	aag Lys	atc Ile 305	aac Asn	cgc Arg	aag Lys	ctc Leu	1628
	30	ggc Gly 310	ctt Leu	ggt Gly	ggc Gly	gac Asp	cac His 315	gat Asp	ggt Gly	ttg Leu	atg Met	act Thr 320	ctt Leu	act Thr	gaa Glu	gag Glu	gac Asp 325	1676
	35	atc Ile	gca Ala	acc Thr	acc Thr	atc Ile 330	gag Glu	tac Tyr	ctg Leu	gtg Val	cgt Arg 335	ctg Leu	cac His	gca Ala	ggt Gly	gag Glu 340	cgc Arg	1724
	40	gtc Val	atg Met	act Thr	tct Ser 345	cca Pro	aat Asn	ggt Gly	gaa Glu	gag Glu 350	atc Ile	cca Pro	gtc Val	gag Glu	acc Thr 355	gat Asp	gac Asp	1772
() .		atc Ile	gac Asp	cac His 360	ttt Phe	ggt Gly	aac Asn	cgt Arg	cgt Arg 365	ctg Leu	cgt Arg	acc Thr	gtt Val	ggc Gly 370	gaa Glu	ctg Leu	atc Ile	1820
	45	cag Gln	aac Asn 375	cag Gln	gtc Val	cgt Arg	gtc Val	ggc Gly 380	ctg Leu	tcc Ser	cgc Arg	atg Met	gag Glu 385	cgc Arg	gtt Val	gtt Val	cgt Arg	1868
	50	gag Glu 390	cgt Arg	atg Met	acc Thr	acc Thr	cag Gln 395	gat Asp	gcg Ala	gag Glu	tcc Ser	att Ile 400	act Thr	cct Pro	act Thr	tcc Ser	ttg Leu 405	1916
	55	atc Ile	aac Asn	gtt Val	cgt Arg	cct Pro 410	gtc Val	tct Ser	gca Ala	gct Ala	atc Ile 415	cgt Arg	gag Glu	ttc Phe	ttc Phe	gga Gly 420	act Thr	1964
		tcc Ser	cag Gln	ctg Leu	tct Ser 425	cag Gln	ttc Phe	atg Met	gtc Val	cag Gln 430	aac Asn	aac Asn	tcc Ser	ctg Leu	tct Ser 435	ggt Gly	ttg Leu	2012

	5	act Thr	cac His	aag Lys 440	cgt Arg	cgt Arg	ctg Leu	tcg Ser	gct Ala 445	ctg Leu	ggc Gly	ccg Pro	ggt Gly	ggt Gly 450	ctg Leu	tcc Ser	cgt Arg	2060
	3	gag Glu	cgc Arg 455	gcc Ala	ggc Gly	atc Ile	gag Glu	gtt Val 460	cga Arg	gac Asp	gtt Val	cac His	cca Pro 465	tct Ser	cac His	tac Tyr	ggc Gly	2108
	10	cgt Arg 470	atg Met	tgc Cys	cca Pro	att Ile	gag Glu 475	act Thr	ccg Pro	gaa Glu	ggt Gly	cca Pro 480	aac Asn	att Ile	ggc Gly	ctg Leu	atc Ile 485	2156
	15	ggt Gly	tcc Ser	ttg Leu	gct Ala	tcc Ser 490	tat Tyr	gct Ala	cga Arg	gtg Val	aac Asn 495	cca Pro	ttc Phe	ggt Gly	ttc Phe	att Ile 500	gag Glu	2204
*	20	Thr	Pro	Tyr	cgt Arg 505	Arg	Ile	Ile	Asp	Gly 510	Lys	Leu	Thr	Asp	Gln 515	Ile	Asp	2252
	25	Tyr	Leu	Thr 520	gct Ala	Asp	Glu	Glu	Asp 525	Arg	Phe	Val	Val	Ala 530	Gln	Ala	Asn	2300
		Thr	His 535	Tyr	gac Asp	Glu	Glu	Gly 540	Asn	Ile	Thr	Asp	Glu 545	Thr	Val	Thr	Val	2348
	30	Arg 550	Leu	Lys	gac Asp	Gly	Asp 555	Ile	Ala	Met	Val	Gly 560	Arg	Asn	Ala	Val	Asp 565	2396
	35	Tyr	Met	Asp	gtt Val	Ser 570	Pro	Arg	Gln	Met	Val 575	Ser	Val	Gly	Thr	Ala 580	Met	2444
*	40	att Ile	cca Pro	ttc Phe	ctg Leu 585	Glu	cac His	gac Asp	gat Asp	gct Ala 590	Asn	cgt Arg	gca Ala	ctg Leu	atg Met 595	ggc Gly	gcg Ala	2492
	45	aac Asn	atg Met	cag Gln 600	Lys	cag Gln	gct Ala	gtg Val	cca Pro 605	Leu	att	cgt Arg	gcc Ala	gag Glu 610	Ala	cct Pro	ttc Phe	2540
		gtg Val	ggc Gly 615	Thr	ggt Gly	atg Met	gag Glu	Cag Gln 620	Arg	gca Ala	gca Ala	tac Tyr	gac Asp 625	Ala	ggc	gac Asp	ctg Leu	2588
	50	gtt Val 630	Ile	acc Thr	cca Pro	gtc Val	gca Ala 635	Gly	gtg Val	gtg Val	gaa Glu	aac Asn 640	ı Val	tca Ser	gct Ala	gac Asp	ttc Phe 645	2636
	55	ato Ile	acc Thr	ato	atg Met	gct Ala 650	Asp	gac Asp	ggc Gly	aaq Lys	g cgc Arg 655	, Glu	a acc	tac Tyr	ctg Leu	ctg Leu 660	cgt Arg	2684

		aag Lys	ttc Phe	cag Gln	cgc Arg 665	Thr	aac Asn	cag Gln	ggc	acc Thr 670	agc Ser	tac Tyr	aac Asn	cag Gln	aag Lys 675	cct Pro	ttg Leu	2732
	5	gtt Val	aac Asn	ttg Leu 680	ggc Gly	gag Glu	cgc Arg	gtt Val	gaa Glu 685	gct Ala	ggc Gly	cag Gln	gtt Val	att Ile 690	gct Ala	gat Asp	ggt Gly	2780
	10	cca Pro	ggt Gly 695	Thr	ttc Phe	aat Asn	ggt Gly	gaa Glu 700	atg Met	tcc Ser	ctt Leu	ggc Gly	cgt Arg 705	aac Asn	ctt Leu	ctg Leu	gtt Val	2828
	15	gcg Ala 710	ttc Phe	atg Met	cct Pro	tgg Trp	gaa Glu 715	ggc Gly	cac His	aac Asn	tac Tyr	gag Glu 720	gat Asp	gcg Ala	atc Ile	atc Ile	ctc Leu 725	2876
_	20	aac Asn	cag Gln	aac Asn	atc Ile	gtt Val 730	gag Glu	cag Gln	gac Asp	atc Ile	ttg Leu 735	acc Thr	tcg Ser	atc Ile	cac His	atc Ile 740	gag Glu	2924
		gag Glu	cac His	gag Glu	atc Ile 745	gat Asp	gcc Ala	cgc Arg	gac Asp	act Thr 750	aag Lys	ctt Leu	ggc Gly	gcc Ala	gaa Glu 755	gaa Glu	atc Ile	2972
	25	acc Thr	cgc Arg	gac Asp 760	atc Ile	cct Pro	aat Asn	gtg Val	tct Ser 765	gaa Glu	gaa Glu	gtc Val	ctc Leu	aag Lys 770	gac Asp	ctc Leu	gac Asp	3020
	30	gac Asp	cgc Arg 775	ggt Gly	att Ile	gtc Val	cgc Arg	atc Ile 780	ggt Gly	gct Ala	gat Asp	gtt Val	cgt Arg 785	gac Asp	ggc Gly	gac Asp	atc Ile	3068
-	35	ctg Leu 790	gtc Val	ggt Gly	aag Lys	gtc Val	acc Thr 795	cct Pro	aag Lys	ggc Gly	gag Glu	acc Thr 800	gag Glu	ctc Leu	acc Thr	ccg Pro	gaa Glu 805	3116
<u>-</u>	40	gag Glu	cgc Arg	ttg Leu	ctg Leu	cgc Arg 810	gca Ala	atc Ile	ttc Phe	ggt Gly	gag Glu 815	aag Lys	gcc Ala	cgc Arg	gaa Glu	gtt Val 820	cgc Arg	3164
)		gat Asp	acc Thr	tcc Ser	atg Met 825	aag Lys	gtg Val	cct Pro	cac His	ggt Gly 830	gag Glu	acc Thr	ggc Gly	aag Lys	gtc Val 835	atc Ile	ggc Gly	3212
	45	gtg Val	cgt Arg	cac His 840	ttc Phe	tcc Ser	cgc Arg	gag Glu	gac Asp 845	gac Asp	gac Asp	gat Asp	ctg Leu	gct Ala 850	cct Pro	ggc Gly	gtc Val	3260
	50	aac Asn	gag Glu 855	atg Met	atc Ile	cgt Arg	atc Ile	tac Tyr 860	gtt Val	gct Ala	cag Gln	aag Lys	cgt Arg 865	aag Lys	atc Ile	cag Gln	gac Asp	3308
	55	ggc Gly 870	gat Asp	aag Lys	ctc Leu	gct Ala	ggc Gly 875	cgc Arg	cac His	ggt Gly	aac Asn	aag Lys 880	ggt Gly	gtt Val	gtc Val	ggt Gly	aaa Lys 885	3356
		att Ile	ttg Leu	cct Pro	cag Gln	gaa Glu 890	gat Asp	atg Met	cca Pro	ttc Phe	ctt Leu 895	cca Pro	gac Asp	ggc Gly	act Thr	cct Pro 900	gtt Val	3404

	5	gac Asp	atc Ile	atc Ile	ttg Leu 905	aac Asn	acc Thr	cac His	ggt Gly	gtt Val 910	cca Pro	cgt Arg	cgt Arg	atg Met	aac Asn 915	att Ile	ggt Gly	3452
	J	cag Gln	gtt Val	ctt Leu 920	gag Glu	acc Thr	cac His	ctt Leu	ggc Gly 925	tgg Trp	ctg Leu	gca Ala	tct Ser	gct Ala 930	ggt Gly	tgg Trp	tcc Ser	3500
	10	gtg Val	gat Asp 935	cct Pro	gaa Glu	gat Asp	cct Pro	gag Glu 940	aac Asn	gct Ala	gag Glu	ctc Leu	gtc Val 945	aag Lys	act Thr	ctg Leu	cct Pro	3548
	15	gca Ala 950	gac Asp	ctc Leu	ctc Leu	gag Glu	gtt Val 955	cct Pro	gct Ala	ggt Gly	tcc Ser	ttg Leu 960	act Thr	gca Ala	act Thr	cct Pro	gtg Val 965	3596
	20	ttc Phe	gac Asp	ggt Gly	gcg Ala	tca Ser 970	aac Asn	gaa Glu	gag Glu	ctc Leu	gca Ala 975	ggc Gly	ctg Leu	ctc Leu	gct Ala	aat Asn 980	tca Ser	3644
	25	cgt Arg	cca Pro	aac Asn	cgc Arg 985	gac Asp	ggc Gly	gac Asp	gtc Val	atg Met 990	gtt Val	aac Asn	gcg Ala	gat Asp	ggt Gly 995	aaa Lys	gca Ala	3692
		acg Thr	Leu	atc Ile 1000	gac Asp	ggt Gly	cgc Arg	Ser	ggt Gly 1005	gag Glu	cct Pro	tac Tyr	Pro	tac Tyr 1010	ccg Pro	gtt Val	tcc Ser	3740
	30	Ile	ggc Gly 1015	tac Tyr	atg Met	tac Tyr	Met	ctg Leu 1020	aag Lys	ctg Leu	cac His	cac His	ctc Leu 1025	gtt Val	gac Asp	gag Glu	aag Lys	3788
	35	atc Ile 103	His	gca Ala	cgt Arg	Ser	act Thr 1035	ggt Gly	cct Pro	tac Tyr	Ser	atg Met 1040	att Ile	acc Thr	cag Gln	Gln	cca Pro 1045	3836
>	40	ctg Leu	ggt Gly	ggt Gly	Lys	gca Ala 1050	cag Gln	ttc Phe	ggt Gly	Gly	cag Gln 1055	cgt Arg	ttc Phe	ggc Gly	Glu	atg Met 1060	gag Glu	3884
1	45	gtg Val	tgg Trp	Ala	atg Met 1065	cag Gln	gca Ala	tac Tyr	Gly	gct Ala 1070	Ala	tac Tyr	aca Thr	Leu	cag Gln 1075	gag Glu	ctg Leu	3932
		ctg Leu	Thr	atc Ile 1080	Lys	tct Ser	gat Asp	Asp	gtg Val 1085	Val	ggc Gly	cgt Arg	Val	aag Lys 1090	gtc Val	tac Tyr	gaa Glu	3980
	50	Ala	att Ile 1095	Val	aag Lys	ggc	Glu	aac Asn 1100	atc Ile	ccg Pro	gat Asp	cca Pro	ggt Gly 1105	att Ile	cct Pro	gag Glu	tcc Ser	4028
	55	ttc Phe 111	Lys	gtt Val	ctc Leu	Leu	aag Lys 1115	Glu	ctc Leu	cag Gln	Ser	ttg Leu 1120	Cys	ctg Leu	aac Asn	Val	gag Glu 1125	4076

	gtt ctc tcc gca gac ggc act cca atg gag ctc gcg ggt gac gac gac Val Leu Ser Ala Asp Gly Thr Pro Met Glu Leu Ala Gly Asp Asp 1130 1135 1140	4124
5	gac ttc gat cag gca ggc gcc tca ctt ggc atc aac ctg tcc cgt gac Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile Asn Leu Ser Arg Asp 1145 1150 1155	4172
10	gag cgt tcc gac gcc gac acc gca tagcagatca gaaaacaacc gctagaaatc Glu Arg Ser Asp Ala Asp Thr Ala 1160 1165	4226
	aagccataca teeeceggae attgaagaga tgttetgggg ggaaagggag ttttaegtge	4286
15	tcgacgtaaa cgtcttcgat gagctccgca tcggcctggc caccgccgac gacatccgcc	4346
	gttggtccaa gggtgaggtc aagaagccgg agaccatcaa ctaccgaacc ctcaagcctg	4406
 20	agaaggacgg totgttotge gagegtatot toggtocaac togcgactgg gagtgcgcot	4466
20	geggtaagta caagegtgte egetacaagg geateatetg tgaaegetgt ggegttgagg	4526
	tcaccaagtc caaggtgcgc cgtgagcgca tgggacacat tgagctcgct gcaccagtaa	4586
25	cccacatttg gtacttcaag ggcgttccat cacgcctcgg ctaccttttg gaccttgctc	4646
	caaaggacct ggacctcatc atctacttcg gtgcgaacat catcaccagc gtggacgaag	4706
20	aggetegeea cagegaceag accaetettg aggeagaaat gettetggag aagaaggaeg	4766
30	ttgaggcaga cgcagagtct gacattgctg agcgtgctga aaagctcgaa gaggatcttg	4826
	ctgaacttga ggcagctggc gctaaggccg acgctcgccg caaggttcag gctgctgccg	4886
35	ataaggaaat gcagcacatc cgtgagcgtg cacagcgcga aatcgatcgt ctcgatgagg	4946
	tctggcagac cttcatcaag cttgctccaa agcagatgat ccgcgatgag aagctctacg	5006
	atgaactgat cgaccgctac gaggattact tcaccggtgg tatgggtgca gagtccattg	5066
40	aggetttgat ccagaactte gacettgatg etg	5099
45	<210> 6 <211> 1165 <212> PRT <213> Corynebacterium glutamicum	
50	<400> 6 Val Leu Glu Gly Pro Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val 1 5 10 15	
	Val Asp Ile Pro Gly Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser 20 25 30	
55	Ala Pro Ile Glu Val Pro Gly Leu Leu Asp Leu Gln Leu Asp Ser Tyr	

Ser Trp Leu Ile Gly Thr Pro Glu Trp Arg Ala Arg Gln Lys Glu Glu Phe Gly Glu Gly Ala Arg Val Thr Ser Gly Leu Glu Asn Ile Leu Glu 5 Glu Leu Ser Pro Ile Gln Asp Tyr Ser Gly Asn Met Ser Leu Ser Leu 10 Ser Glu Pro Arg Phe Glu Asp Val Lys Asn Thr Ile Asp Glu Ala Lys Glu Lys Asp Ile Asn Tyr Ala Ala Pro Leu Tyr Val Thr Ala Glu Phe 15 Val Asn Asn Thr Thr Gly Glu Ile Lys Ser Gln Thr Val Phe Ile Gly Asp Phe Pro Met Met Thr Asp Lys Gly Thr Phe Ile Ile Asn Gly Thr ,20 155 Glu Arg Val Val Ser Gln Leu Val Arg Ser Pro Gly Val Tyr Phe 25 Asp Gln Thr Ile Asp Lys Ser Thr Glu Arg Pro Leu His Ala Val Lys Val Ile Pro Ser Arg Gly Ala Trp Leu Glu Phe Asp Val Asp Lys Arg 30 Asp Ser Val Gly Val Arg Ile Asp Arg Lys Arg Arg Gln Pro Val Thr 210 Val Leu Leu Lys Ala Leu Gly Trp Thr Thr Glu Gln Ile Thr Glu Arg 35 Phe Gly Phe Ser Glu Ile Met Met Ser Thr Leu Glu Ser Asp Gly Val 255 40 Ala Asn Thr Asp Glu Ala Leu Leu Glu Ile Tyr Arg Lys Gln Arg Pro 265 Gly Glu Gln Pro Thr Arg Asp Leu Ala Gln Ser Leu Leu Asp Asn Ser 275 45 Phe Phe Arg Ala Lys Arg Tyr Asp Leu Ala Arg Val Gly Arg Tyr Lys Ile Asn Arg Lys Leu Gly Leu Gly Gly Asp His Asp Gly Leu Met Thr 50 305 315 Leu Thr Glu Glu Asp Ile Ala Thr Thr Ile Glu Tyr Leu Val Arg Leu 330 55 His Ala Gly Glu Arg Val Met Thr Ser Pro Asn Gly Glu Glu Ile Pro 345 Val Glu Thr Asp Asp Ile Asp His Phe Gly Asn Arg Arg Leu Arg Thr 360

		Val	Gly 370	Glu	Leu	Ile	Gln	Asn 375	Gln	Val	Arg	Val	Gly 380	Leu	Ser	Arg	Met
	5	Glu 385	Arg	Val	Val	Arg	Glu 390	Arg	Met	Thr	Thr	Gln 395	Asp	Ala	Glu	Ser	Ile 400
		Thr	Pro	Thr	Ser	Leu 405	Ile	Asn	Val	Arg	Pro 410	Val	Ser	Ala	Ala	Ile 415	Arg
	10	Glu	Phe	Phe	Gly 420	Thr	Ser	Gln	Leu	Ser 425	Gln	Phe	Met	Val	Gln 430	Asn	Asn
	15	Ser	Leu	Ser 435	Gly	Leu	Thr	His	Lys 440	Arg	Arg	Leu	Ser	Ala 445	Leu	Gly	Pro
		Gly	Gly 450	Leu	Ser	Arg	Glu	Arg 455	Ala	Gly	Ile	Glu	Val 460	Arg	Asp	Val	His
	,20	Pro 465	Ser	His	Tyr	Gly	Arg 470	Met	Cys	Pro	Ile	Glu 475	Thr	Pro	Glu	Gly	Pro 480
	25	Asn	Ile	Gly	Leu	Ile 485	Gly	Ser	Leu	Ala	Ser 490	Tyr	Ala	.Arg	Val	Asn 495	Pro
	23	Phe	Gly	Phe	Ile 500	Glu	Thr	Pro	Tyr	Arg 505	Arg	Ile	Ile	Asp	Gly 510	Lys	Leu
	30	Thr	Asp	Gln 515	Ile	Asp	Tyr	Leu	Thr 520	Ala	Asp	Glu	Glu	Asp 525	Arg	Phe	Val
		Val	Ala 530	Gln	Ala	Asn	Thr	His 535		Asp	Glu	Glu	Gly 540	Asn	Ile	Thr	Asp
	35	Glu 545	Thr	Val	Thr	Val	Arg 550		Lys	Asp	Gly	Asp 555	Ile	Ala	Met	Val	Gly 560
,	40	Arg	Asn	Ala	Val	Asp 565		Met	Asp	Val	Ser 570		Arg	Gln	Met	Val 575	Ser
F	, J	Val	Gly	Thr	Ala 580		Ile	Pro	Phe	Leu 585		His	Asp	Asp	Ala 590	Asn	Arg
	45	Ala	Leu	Met 595	Gly	Ala	Asn	Met	Gln 600	Lys	Gln	Ala	Val	Pro 605	Leu	Ile	Arç
		Ala	Glu 610	Ala	Pro	Phe	· Val	Gly 615		Gly	Met	Glu	Gln 620		Ala	Ala	Туз
	50	Asp 625		Gly	Asp	Leu	Val 630		Thr	Pro	Val	Ala 635	Gly	Val	Val	Glu	Asr 640
	55	Val	Ser	Ala	Asp	Phe 645		Thr	Ile	Met	Ala 650		Asp	Gly	Lys	655	Glu
	55	Thr	Tyr	Leu	Leu 660		l Lys	Ph∈	Gln	Arg 665		Asr	Gln	Gly	Thr 670	Ser	Ту

		Asn	Gln	Lys 675	Pro	Leu	Val	Asn	Leu 680	Gly	Glu	Arg	Val	Glu 685	Ala	Gly	Gln
	5	Val	Ile 690	Ala	Asp	Gly	Pro	Gly 695	Thr	Phe	Asn	Gly	Glu 700	Met	Ser	Leu	Gly
		Arg 705	Asn	Leu	Leu	Val	Ala 710	Phe	Met	Pro	Trp	Glu 715	Gly	His	Asn	Tyr	Glu 720
	10	Asp	Ala	Ile	Ile	Leu 725	Asn	Gln	Asn	Ile	Val 730	Glu	Gln	Asp	Ile	Leu 735	Thr
	15	Ser	Ile	His	Ile 740	Glu	Glu	His	Glu	Ile 745	Asp	Ala	Arg	Asp	Thr 750	Lys	Leu
	13	Gly	Ala	Glu 755	Glu	Ile	Thr	Arg	Asp 760	Ile	Pro	Asn	Val	Ser 765	Glu	Glu	Val
	20	Leu	Lys 770	Asp	Leu	Asp	Asp	Arg 775	Gly	Ile	Val	Arg	Ile 780	Gly	Ala	Asp	Val
Œ,		Arg 785	Asp	Gly	Asp	Ile	Leu 790	Val	Gly	Lys	Val	Thr 795	Pro	Lys	Gly	Glu	Thr 800
	25,	Glu	Leu	Thr	Pro	Glu 805	Glu	Arg	Leu	Leu	Arg 810	Ala	Ile	Phe	Gly	Glu 815	Lys
	30	Ala	Arg	Glu	Val 820	Arg	Asp	Thr	Ser	Met 825	Lys	Val	Pro	His	Gly 830	Glu	Thr
	30	Gly	Lys	Val 835	Ile	Gly	Val	Arg	His 840	Phe	Ser	Arg	Glu	Asp 845	Asp	Asp	Asp
	35	Leu	Ala 850	Pro	Gly	Val	Asn	Glu 855	Met	Ile	Arg	Ile	Туг 860	Val	Ala	Gln	Lys
		Arg 865		Ile	Gln	Asp	Gly 870	Asp	Lys	Leu	Ala	Gly 875	Arg	His	Gly	Asn	Lys 880
<u></u>	40	Gly	Val	Val	Gly	Lys 885	Ile	Leu	Pro	Gln	Glu 890	Asp	Met	Pro	Phe	Leu 895	Pro
	45	Asp	Gly	Thr	Pro 900	Val	Asp	Ile	Ile	Leu 905	Asn	Thr	His	Gly	Val 910	Pro	Arg
	40	Arg	Met	Asn 915		Gly	Gln	Val	Leu 920	Glu	Thr	His	Leu	Gly 925	Trp	Leu	Ala
	50	Ser	Ala 930	Gly	Trp	Ser	Val	Asp 935		Glu	Asp	Pro	Glu 940		Ala	Glu	Leu
		Val 945		Thr	Leu	Pro	Ala 950		Leu	Leu	Glu	Val 955		Ala	Gly	Ser	Leu 960
	55	Thr	Ala	Thr	Pro	Val 965		Asp	Gly	Ala	Ser 970		Glu	Glu	Leu	Ala 975	Gly
		Leu	Leu	Ala	Asn 980		Arg	Pro	Asn	Arg 985		Gly	Asp	Val	Met 990	Val	Asn

		Ala	Asp	Gly 995	Lys	Ala	Thr		11e .000	Asp	Gly	Arg		Gly 1005	Glu	Pro	Tyr
	5		Tyr 010	Pro	Val	Ser		Gly 015	Tyr	Met	Tyr		Leu 1020	Lys	Leu	His	His
	10	Leu 025	Val	Asp	Glu		Ile 030	His	Ala	Arg	Ser 1	Thr L035	Gly	Pro	Tyr	Ser 1	Met L040
•	10	Ile	Thr	Gln		Pro LO45	Leu	Gly	Gly	Lys 1	Ala 1050	Gln	Phe	Gly	Gly 1	Gln 1055	Arg
	15	Phe	Gly		Met 1060	Glu	Val	Trp		Met 1065	Gln	Ala	Tyr	Gly	Ala 1070	Ala	Туг
		Thr		Gln L075	Glu	Leu	Leu		Ile 1080	Lys	Ser	Asp		Val 1085	Val	Gly	Arc
	20		Lys 1090	Val	Tyr	Glu		Ile 1095	Val	Lys	Gly		Asn 1100	Ile	Pro	Asp	Pro
	25	Gly 105	Ile	Pro	Glu		Phe l110	Lys	Val	Leu		Lys 1115	Glu	Leu	Gln	Ser	Let 1120
	23	Cys	Leu	Asn		Glu 1125	Val	Leu	Ser		Asp 1130	Gly	Thr	Pro	Met	Glu 1135	Le
	30	Ala	Gly		Asp 1140	Asp	Asp	Phe		Gln 1145	Ala	Gly	Ala	Ser	Leu 1150	Gly	Ile
		Asn		Ser 1155	Arg	Asp	Glu		Ser 1160	Asp	Ala	Asp	Thr	Ala 1165			
	35																

Patentansprüche

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpsL-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der
 Polynukleotidsequenz von a), b) oder c)

wobei das Polypeptid bevorzugt die Aktivität des ribosomalen Proteins S12 aufweist.

- 20 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
 - 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
- 25 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder

10

20

25

- (ii) mindestens eine Sequenz, die der Sequenz(i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz(i) oder (ii) komplementären Sequenz hybridisiert,und gegebenenfalls
- (iv) funktionsneutrale Sinnmutationen in (i).
- 6. Replizierbare DNA gemäß Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
- 7. Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 8. Coryneforme Bakterien, in denen das rpsL-Gen verstärkt, insbesondere überexprimiert wird.
 - 9. Verfahren zur fermentativen Herstellung von LAminosäuren, insbesondere L-Lysin, d a d u r c h
 g e k e n n z e i c h n e t, daß man folgende Schritte
 durchführt:
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das rpsL-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
 - b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
- 10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß man Bakterien

einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.

- 11. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man Bakterien
 einsetzt, in denen die Stoffwechselwege zumindest
 teilweise ausgeschaltet sind, die die Bildung der
 gewünschten L-Aminosäure verringern.
- 12. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man einen mit einem
 Plasmidvektor transformierten Stamm einsetzt, und der
 Plasmidvektor die für das rpsL-Gen kodierende
 Nukleotidsequenz trägt.
- 13. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man die Expression des
 (der) Polynukleotides (e), das (die) für das rpsL-Gen
 kodiert (kodieren) verstärkt, insbesondere
 überexprimiert.
- 14. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man die
 regulatorischen/katalytischen Eigenschaften des
 Polypetids (Enzymprotein) erhöht, für das das
 Polynukleotid rpsL kodiert.
- 15. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man zur Herstellung
 von L-Aminosäuren coryneforme Mikroorganismen
 fermentiert, in denen man gleichzeitig eines oder
 mehrere der Gene, ausgewählt aus der Gruppe
 - 15.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
 - 15.2 das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap,

- 15.3 das für die Triosephosphat-Isomerase kodierende Gen tpi,
- 15.4 das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk,
- 5 15.5 das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf,
 - 15.6 das für die Pyruvat-Carboxylase kodierende Gen pyc,
 - 15.7 das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo,
 - 15.8 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC,
 - 15.9 das für den Lysin-Export kodierende Gen lysE,
 - 15.10 das für das Zwal-Protein kodierende Gen zwal,
- 15 15.11 das für die RNA-Polymerase B kodierende rpoB-Gen

verstärkt bzw. überexprimiert.

- 16. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
 - 16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
- 25 16.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi,
 - 16.3 das für die Pyruvat-Oxidase kodierende Gen poxB

25

30

- 16.4 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
- 17. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
- 5 18. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dad urch gekennzeich net, daß man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
- 19. Verfahren zum Auffinden von RNA, cDNA und DNA, um
 Nukleinsäuren, beziehungsweise Polynukleotide oder Gene
 zu isolieren, die für das ribosomale Protein S12
 kodieren oder eine hohe Ähnlichkeit mit der Sequenz des
 rpsL-Gens aufweisen, d a d u r c h
 g e k e n n z e i c h n e t, daß man das Polynukleotid,
 enthaltend die Polynukleotidsequenzen gemäß den
 Ansprüchen 1, 2, 3 oder 4, als Hybridisierungssonden
 einsetzt.
 - 20. Verfahren gemäß Anspruch 18, d a d u r c h g e k e n n z e i c h n e t, daß man arrays, micro arrays oder DNA-chips einsetzt.
 - 21. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen zwischen den Positionen 38 bis 48 in der SEQ ID No. 2 durch Aminosäureaustausch verändert sind.
 - 22. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen an Position 43 in der SEQ ID No. 2 jede andere proteinogene Aminosäure ausgenommen L-Lysin enthalten.

- 23. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen an Position 43 in der SEQ ID No. 2 L-Histidin oder L-Arginin enthalten.
- 5 24. DNA gemäß Anspruch 23 d a d u r c h
 g e k e n n z e i c h n e t, daß diese für das
 ribosomale Protein S12 kodiert, dessen
 Aminosäuresequenz an Position 43 L-Arginin enthält,
 dargestellt in SEQ ID No. 4.
- 10 25. DNA gemäß Anspruch 24 d a d u r c h
 g e k e n n z e i c h n e t, daß diese an Position 627
 die Nukleobase Guanin enthält, dargestellt in SEQ ID No
 3.
- 26. Coryneforme Bakterien die eine DNA gemäß Anspruch 21,22, 23, 24 oder 25 enthalten.

20

Zusammenfassung

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das rpsL-Gen verstärkt vorliegt, und die Verwendung von Polynukleotiden, die die erfindungsgemäßen Sequenzen enthalten, als Hybridisierungssonden.