NIS2312-01 Fall 2023-2024

信息安全的数学基础(1)

Answer 15

2023 年 11 月 21 日

Problem 1

设 F 是域, f(x) 与 g(x) 是 F 上不全为零的两个多项式, 则存在 F 上的多项式 s(x) 和 t(x) 使得

$$s(x)f(x) + t(x)g(x) = \gcd(f(x), g(x)).$$

解: **类似整数最大公因子的证明:** 假设 d(x) 是首一多项式集合

$$S = \{p(x)f(x) + q(x)g(x) : p(x), q(x) \in F[x]\}$$

中次数最小的多项式, 因此有 $s(x), t(x) \in F[x]$ 满足 d(x) = s(x)f(x) + t(x)g(x). 接下来证明 $d(x) \mid f(x)$: 利用长除法, 有 f(x) = a(x)d(x) + b(x), 其中 b(x) = 0 或者 $\deg(b(x)) < \deg(d(x))$. 则有

$$b(x) = f(x) - a(x)d(x) = f(x) - a(x)(s(x)f(x) + t(x)g(x))$$

= $f(x)(1 - a(x)s(x)) + g(x)(-a(x)t(x)),$

即 b(x) 是 f(x) 和 g(x) 的组合,因此 $b(x) \in S$. 但 d(x) 是集合 S 中次数最小的多项式,故 b(x) = 0,也就是说 $d(x) \mid f(x)$. 同理可得 $d(x) \mid g(x)$. 因此 d(x) 是 f(x) 和 g(x) 的公因式.

再设存在 $d'(x) \mid f(x)$ 和 $d'(x) \mid g(x)$,则有 $d'(x) \mid s(x)f(x) + t(x)g(x)$,故 $d'(x) \mid d(x)$. 因此 d(x) 的次数在 f(x) 和 g(x) 的公因式集合中是最大的,也就是说 $d(x) = \gcd(f(x), g(x))$.

Problem 2

构造两个有限域并给出其乘法表 (使用的 $\mathbb{F}_2[x]$ 上的 3 次和 4 次不可约多项式分别 是 $x^3 + x + 1$ 和 $x^4 + x + 1$)

解: 仅给出 3 次的情况, 4 次的结果直接列乘法表.

$$\begin{split} \frac{\mathbb{F}_2[x]}{\langle x^3 + x + 1 \rangle} &= \left\{ \overline{a_0 + a_1 x + a_2 x^2} : a_0, a_1, a_2 \in \mathbb{F}_2 \right\} \\ &= \left\{ \overline{0}, \overline{1}, \overline{x}, \overline{1 + x}, \overline{x^2}, \overline{1 + x^2}, \overline{x + x^2}, \overline{1 + x + x^2} \right\}. \end{split}$$

PS: 为了方便书写, 忽略元素上方的求模符号.

$$1 * x = x, 1 * x^2 = x^2, x * x = x^2, x * x^2 = x^3 = 1 + x, x^2 * x^2 = x^3 * x = x + x^2,$$

故整个乘法表可以通过上述结果计算得到.

×	1	\overline{x}	1+x	x^2	$1 + x^2$	$x + x^2$	$\boxed{1+x+x^2}$
1	1	x	1+x	x^2	$1 + x^2$	$x + x^2$	$1 + x + x^2$
x		x^2	$x + x^2$	1+x	1	$1 + x + x^2$	$1 + x^2$
1+x			$1 + x^2$	$1 + x + x^2$	x^2	1	x
x^2				$x + x^2$	x	$1 + x^2$	1
$1 + x^2$					$1 + x + x^2$	1+x	$x + x^2$
$x + x^2$						x	x^2
$1 + x + x^2$							1+x

×	1 x 1 + x	x^2	$1 + x^2$	$x + x^2$	$1 + x + x^2$	x^3	$1 + x^3$	$x + x^3$	$1 + x + x^3$	$x^2 + x^3$	$1 + x^2 + x^3$	$x + x^2 + x^3$	$1 + x + x^2 + x^3$
1	1 x 1 + x	x^2	$1+x^2$	$x + x^2$	$1 + x + x^2$	x^3	$1 + x^3$	$x + x^3$	$1 + x + x^3$	$x^2 + x^3$	$1 + x^2 + x^3$	$x + x^2 + x^3$	$1 + x + x^2 + x^3$
x	$x^2 x + x^2$	x^3	$x + x^3$	$x^2 + x^3$	$x + x^2 + x^3$	1 + x	1	$1+x+x^2$	$1+x^2$	$1+x+x^3$	$1 + x^3$	$1+x+x^2+x^3$	$1 + x^2 + x^3$
1 + x	$1+x^2 x^2$	$^{2} + x^{3}$	$1+x^2$ x^2+x^3 $1+x+x^2+x^3$	$x + x^3$	$1 + x^3$	$1 + x + x^3$	x^3	$1 + x^2 + x^3$	$x + x^2 + x^3$	$1+x+x^2$	x^2	1	x
x^2	1	x+1	$1+x \qquad 1+x+x^2$	$1 + x + x^3$	$1 + x + x^3$ $1 + x + x^2 + x^3$	$x + x^2$	x	$x + x^2 + x^3$	$x + x^3$	$1+x^2$	1	$1 + x^2 + x^3$	$1 + x^3$
$1 + x^2$			x	$1+x^2+x^3$	x^3	$x + x^2 + x^3$	$1+x+x^3$	x^2	1	$1+x^3$	$x^2 + x^3$	1 + x	$x + x^2$
$x + x^2$				$1+x+x^2$	1	$1+x^2$	1 + x	$1 + x^3$	$1 + x + x^2 + x^3$	$x + x^2 + x^3$	x^3	x	x^2
$1 + x + x^2$					$x + x^2$	$1 + x^2 + x^3$	$x + x^3$	1+x	x^2	x	$1+x^2$	$x^2 + x^3$	$1 + x + x^3$
x^3						$x^2 + x^3$	x^2	$1 + x + x^2 + x^3$	$1 + x + x^2$	$x + x^3$	x	$1 + x^3$	1
$1 + x^3$							$1 + x^2 + x^3$	$1 + x^2$	$x^2 + x^3$	$x + x^2$	$1 + x + x^2 + x^3$	$1+x+x^2$	$x + x^2 + x^3$
$x + x^3$								x^3	x	1	$1 + x + x^3$	$x + x^2$	$x^2 + x^3$
$1+x+x^3$									$1 + x^3$	$1 + x^2 + x^3$	$x + x^2$	x^3	1+x
$x^2 + x^3$										$1+x+x^2+x^3$	1+x	x^2	x^3
$1 + x^2 + x^3$											$x + x^2 + x^3$	$x + x^3$	$1 + x + x^2$
$x + x^2 + x^3$												$1+x+x^3$	$1 + x^2$
$1 + x + x^2 + x^3$													$x + x^3$