

Centro
Tecnológico
Departamento de
Engenharia Elétrica

Laboratório de Circuitos Elétricos I

ELE08475 - 2022/2

Experiência Nº 02 **Leis de Kirchhoff**

1. OBJETIVOS

- Verificar experimentalmente a Lei de Kirchhoff das Correntes;
- Verificar experimentalmente a Lei de Kirchhoff das Tensões.

2. INTRODUÇÃO

O comportamento dos circuitos elétricos é governado por duas leis básicas chamadas "Leis de Kirchhoff", as quais decorrem diretamente das leis da conservação da carga e da energia existentes no circuito. Estas leis estabelecem relações entre as tensões e correntes dos diversos elementos dos circuitos, servindo assim como base para o equacionamento matemático dos circuitos elétricos. O físico alemão Gustav Robert Kirchhoff foi quem elaborou e publicou essas leis pela primeira vez em 1848.

2.1. Lei de Kirchhoff das Correntes

A Lei de Kirchhoff das Correntes é baseada no Princípio da Conservação da Carga Elétrica de um circuito e estabelece que: "O somatório algébrico das correntes em qualquer nó de um circuito é nulo". Neste somatório, adota-se a seguinte convenção de sinais:

- As correntes que chegam ao nó são positivas;
- As correntes que saem do nó são negativas.

A Figura 2.1 apresenta um exemplo da aplicação da Lei de Kirchhoff das Correntes ao nó α de um circuito elétrico. Observando a figura, pode-se escrever:

Figura 2.1. Lei de Kirchhoff das Correntes.

2.2. Lei de Kirchhoff das Tensões

A Lei de Kirchhoff das Tensões é baseada no Princípio da Conservação da Energia em um circuito e estabelece que: "O somatório algébrico das tensões em qualquer malha de um circuito é nulo." Assim como no caso das correntes, também se adota uma convenção de sinais no somatório das tensões:

- As quedas de potencial elétrico no percurso da malha são negativas;
- As elevações de potencial elétrico no percurso da malha são positivas.

A Figura 2.2 apresenta um exemplo da aplicação da Lei de Kirchhoff das Tensões à malha de um circuito. Adotando-se o sentido de percurso da malha como sendo antihorário, pode-se escrever:

Figura 2.2. Lei de Kirchhoff das Tensões.

3. PROCEDIMENTO

- **3.1.** Utilize o simulador QUCS para simular o circuito mostrado na Figura 2.3 Obtenha então os valores das tensões e correntes nos três resistores e anote os valores simulados na Tabela 2. Considere os seguintes valores de resistência e de tensão nas fontes: R_1 =280 Ω ; R_2 =560 Ω ; R_3 =180 Ω ; E_1 =10 V e E_2 =10 V;
- **3.2.** Calcule as correntes das malhas I_{m1} e I_{m2} e compare os resultados obtidos com o item anterior;
- **3.3.** Calcule o erro de cada um dos valores de tensão e corrente medidos e anote os valores obtidos na Tabela 2.1;

Figura 2.3. Circuito experimental.

Tabela 2.1 – Valores calculados e simulados do circuito experimental.

	Valores Simulados	Valores Calculados	Erro (%)
\mathbf{V}_{1}			
\mathbf{V}_2			
V_3			
\mathbf{I}_1			
\mathbf{I}_2			
I_3			

3.4. Aplique a Lei de Kirchhoff das Correntes ao nó "b" do circuito da Figura 2.3, utilizando os valores das correntes medidas. Anote, logo abaixo, o valor do somatório algébrico das correntes neste nó:

Nó	Simulado	Calculado
b		

3.5. Aplique a Lei de Kirchhoff das Tensões às duas malhas do circuito da Figura 2.3, utilizando os valores das tensões medidas. Anote, logo abaixo, o valor do somatório algébrico das tensões em cada uma das malhas:

Malha	Simulado	Calculado
1		
2		

4. RESULTADOS E CONCLUSÕES

Com os resultados obtidos para a tabela, verifique se foi possível demonstrar a Lei de Kirchhoff das Correntes e a Lei de Kirchhoff das Tensões. Justifique suas respostas.