F/G 19/10 UNCLASSIFIED

THE COPE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2. GOVT ACCESSION NO.	<u> </u>	
ARO 17903.2-GS N/A	N/A	
4. TITLE (and Substitle)	5 TYPE OF REPORT & PERMO TOVERED	
Study of Three Dimensional Transonic	Final	
Flow Separations	7.1.8111.30.87.	
	6 PERFORMING ORG. REPORT NUMBER	
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(8)	
F. K. Owen T. K. McDevitt	DAAG29-81-C-0028	
3. M. Orngard T. A. Ambur		
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS	
Complere Inc.,		
P.O. Box 1697, Palo Alto, CA 94302.		
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
U. S. Army Research Office	April 1988	
Post Office Box 12211	13. NUMBER OF PAGES	
Research Triangle Park NC 27709 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	250 15. SECURITY CLASS, (of this report	
- MUNITURING AGENCY NAME & ADDRESS(II different from Controlling Office)		
	Unclassified	
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE	
5 DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimi	ited.	
	ELECTE MAY 1 0 1988	
	ELECTE MAY 1 0 1988	
7 DISTRIBUTION STATEMENT for the abeliact entered in Block 20, !! different fr	Om Reports MAY 1 0 1988	
OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Statement of the abstract entered in Block 20, if different from Statement of the Statement of th	ELECTE MAY 1 0 1988	
7 DISTRIBUTION STATEMENT for the abetract entered in Block 20, If different in NA Planta DITE reprod to the final black a while a	ELECTE MAY 1 0 1988	
7 DISTRIBUTION STATEMENT for the abetract entered in Block 20, if different in NA Criminal conveins color places: All DTIC reprod is a will be in black a wind 12. 8. SUPPLEMENTARY NOTES The view, opinions, and/or findings contained in those of the author(s) and should not be constructed by other documentation.	m Report) MAY 1 0 1988 Luct- and This report are ted as an official tsion, unless so	
7 DISTRIBUTION STATEMENT for the abetract entered in Block 20, if different in NA Criminal conveins color places: All DTIC reprod is prill to in black a warder. 8. SUPPLEMENTARY NOTES The view, opinions, and/or findings contained in those of the author(s) and should not be constructed by other documentation.	m Report) MAY 1 0 1988 Luct- and This report are ted as an official tsion, unless so	
7 DISTRIBUTION STATEMENT for the abetract entered in Block 20, if different in NA Criminal conveins color places: All DTIC reprod is prill to in black a warder. 8. SUPPLEMENTARY NOTES The view, opinions, and/or findings contained in those of the author(s) and should not be constructed by other documentation.	m AY 1 0 1988 Auct- and this report are ted as an official ision, unless so	
Original conveins color place; All DTIC reproductions of will to in black a while? The view, opinions, and/or findings contained in those of the author(s) and should not be constructed by other documentation. REY WORDS (Continue on reverse side if necessary and identify by block number transported by Stone Places.	m this report are ted as an official ision, unless so	

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20.

velocimeter system, laser vapor screen, model balance and static and dynamic surface pressure gages have been used to conduct detailed non-intrusive wind tunnel test measurements. This instrumentation has been used to determine model forces and moments, surface pressure distributions and to explore the time-averaged and turbulent characteristics of the attached viscous and coiled free shear layers over ranges of angle of attack and transonic freestream Mach number. Flow field and aerodynamic static and dynamic surface pressure measurements have been obtained on a stationary projectile model and normal and Magnus force and flow field measurements have been made on a geometrically similar spinning model. A comparison of the two sets of three dimensional lee side flow field urveys shows that model spin produces significant changes in vortex position and strength which accounts for the measured decabilizing aerodynamic effects in the transcnic test regime.

UNCLASSIFIED

Table of Contents

	Page
Introduction	4
Experimental Details	
Test Models and Facility	7
The Laser Velocimeter System	9
Results	
Force and Moment Measurements	13
Surface Pressure Distributions	15
Flow Field Measurements	19
Concluding Remarks	
References	
Acknowledgement	
List of Symbols	
Appendix 1 Tabulated Wind Tunnel Test Data	
Appendix 2 Tabulation of Laser Velocimeter Data	

Introduction

Although artillery projectiles are usually launched at high supersonic speeds, most flight envelopes require that they also fly at high subsonic and low supersonic velocities. This flight regime is often of critical importance since it usually represents the conditions during which the maximum destabilizing aerodynamic effects occur: the so called critical Mach number range. Thus a knowledge of projectile lift, drag, and moment coefficients at transonic speeds is imperative if range, payload and accuracy are to be optimized. Of these forces and moments, drag is the most difficult to predict, since it is more influenced by viscous effects especially if separation, whether shock-induced, pressure-gradient-induced, or geometry-induced is present. As the theories used to predict drag must take into account viscosity, they are more complex than potential flow methods which are usually used to predict the other forces and moments. If local flow separations occur prediction techniques become even more complex.

To achieve drag reduction and increased range artillery projectile designs with long, slender ogives, boattailed afterbodies and increased lengths have evolved. The increased lengths were necessary since drag reduction efforts resulted in decreased payload volume. In transonic flight the flows about these bodies are extremely complicated. Fig. 1, taken from Ref. 1, shows the general transonic flow features of a typical shell configuration at zero incidence. It can be seen that the surface discontinuities at the ogive-cylinder and cylinder-boattail junctures generate local supersonic expansions which terminate in complex shock wave-boundary layer interactions. These interactions may lead to local regions of flow separation which could significantly affect aerodynamic performance. Unfortunately, the interaction between a shock wave and a turbulent boundary layer is one of the most

important, but still far from resolved, problems in fluid mechanics. The region of influence of the interaction is a strong function of Reynolds number, boundary layer thickness and shock strength (pressure gradient). Since these interactions normally have large-scale time-dependent characteristics, their detailed understanding requires advanced measurement techniques. Lack of sufficient experimental data has inhibited progress in the detailed numerical simulation of these flows.

At angle of attack the situation is further complicated since axial symmetry is destroyed and cross flow, pressure gradient induced flow separation occurs. The shock on the windward surface of the boattail moves farther aft than the shock on the leeward surface. This pattern generates a force on the boattail tending to overturn the snell. Modeling of the resultant lee side flow poses additional problems since the development of turbulent flow structures in the three dimensional swept separation zones and in the tightly coiled free shear layers are virtually unexplored. Despite these problems, the computation of symmetric separated lee side flow fields is being attempted. Two principal approaches are involved, namely: parabolized approximations to the Navier Stokes equations for supersonic flows and time independent Navier Stokes equations for transonic calculations.

Once the relative incidence, i.e. the ratio of the angle of attack to semi-nose angle of the body, exceeds 1 or 2 for slender conical or tangent (secant) ogive nose shapes, the orientation of the forebody vortices becomes asymmetric with respect to the meridian plane. These flows can give rise to significant, and on occasion disastrous side forces and yawing moments. Modern spin stabilized projectiles often fly at moderate incidence where relatively extensive leeward vortex flows are present. Spin stabilization produces boundary layer distortion and asymmetric vortex flow. As projectile lengths have been increased to reduce drag, the potential for Magnus-induced

instabilities has also increased. Methods of predicting Magnus effects have been sought for many years. In supersonic flow, extensive comparisons between computation and experiment have shown significant differences which have been attributed to inaccurate modeling of the leeward vortex flows (Ref. 2).

These differences were primarily apparent in test cases where the model angle of attack exceeded 6 deg. At transonic speeds, comparisons are few since, in addition to computational difficulties, there is little experimental data. The experimental determination of the three component velocity distribution is especially difficult. Measurements with total head and hot wire probes must be suspect due to the ever present problem of flow interference except in the locally supersonic regions. Further, the interpretation of hot wire signals is still largely unresolved (Ref. 3). To date, no flow field data are available for comparison with computations (Ref. 4).

However, the development of laser velocimetry and improved analytical methods now offer the capability for the measurement and prediction of detailed flow fields and wake geometries induced by model spin at transonic speeds. The purposes of this research were to demonstrate the potential of a new three dimensional laser velocimeter for the transonic measurement of slender body flow fields, to identify the effects of spin rate and to provide challenging test cases of aerodynamic surface pressure, force and moments and lee side flow field measurements for computation. The model configurations and test conditions were chosen to complement a series of wind tunnel tests conducted by the Ballistics Research Laboratory (Refs. 5 and 6) and to extend earlier supersonic measurements on a smaller model (Refs. 7, 8 and 9) to the transonic speed regime. In the current experiments, the aerodynamic forces and moments as well as lee side velocity profiles were obtained on a spinning and stationary model. Time averaged and unsteady surface pressure

distributions were also measured on a geometrically similar instrumented stationary model.

Experimental Details

Test Models and Facility

Details of the spinning secant ogive-cylinder-boattail test model and model coordinate system are shown in Fig. 2. The model was 6 calibers long with a 1 caliber, 7° boattail, and closely resembled a modern low-drag artillery projectile. The secant ogive forebody was 3.017 calibers in length and was generated as the segment of a circle having a 18.880 caliber radius and a center at model station 4.584 caliber with a lateral offset of 18.315 caliber from the model axis. The cylindrical center body was 1.980 calibers in length and the boattail was a 1.007 caliber, seven degree half angle frustum cone. Both sharp and blunt tip configurations were tested, and to ensure turbulent flow, two brass boundary layer trip rings were put on the ogive at model stations 0.751 and 0.791 calibers. The model was mounted on a dog-leg sting such that it could be coned relative to the oncoming flow. The outer shell of the model was free to rotate about its longitudinal axis by means of two ball bearing mounts. The inner race of the ball bearings were mounted on a non-rotating sleeve that fit over the free end of the balance-strut assembly. Details and photographs of the model installation are shown in Figs. 3 and 4. For the spinning tests, the model was driven by an air turbine which was installed on the strut behind the six component strain-gauge balance BRL(SB228B), which was used to measure the aerodynamic forces and moments. A schematic and parts description of the turbine air supply and braking system are shown in Fig. 5 and Table 1.

The tests were conducted in the NASA Ames 6- by 6-Ft. Supersonic Wind Tunnel at freestream Mach numbers of 0.8, 0.94 and 1.2. This facility is a

closed circuit, single return tunnel equipped with an asymmetric sliding-block nozzle and a test section with a perforated floor and ceiling for boundary layer removal during transonic operation. The model angle of attack ranged from () to 10 deg. at spin rates (pd/U) of 0, 0.2, and 0.3. The freestream unit Reynolds number was 3×10^6 /ft. Laser vapor-screen studies were undertaken to identify the extent of vortex asymmetry caused by model rotation, to determine the effect of nose bluntness, and to define the regions of interest for the laser velocimeter measurements. Three-dimensional shear layer and wake measurements were then obtained at several model stations on the cylindrical body and the boattail. At each station, the model was coned around the axis of the dog-leg sting so that scans could be made at different circumferential locations. In addition, model balance data were taken to determine Magnus force and moment coefficients. The moments were referenced to an assumed center of gravity located 3.6 calibers from the nose.

To provide a thorough pressure measurement data base, a geometrically similar pressure model was designed and fabricated with steady state pressure orifices at 51 axial locations arranged in two rows 180 degrees apart along the body. Dynamic pressure transducers were similarly arranged at 21 axial locations in two rows offset by 90 degrees from the steady state pressure orifices. The pressure orifices were closely spaced in the regions of anticipated large pressure gradients and unsteady flow, namely at the ogive-cylinder and cylinder-boattail regions. A roll mechanism providing ±180 degrees of movement allowed circumferential pressure distributions to be obtained. Readings were taken at 2.5 degree increments to provide adequate circumferential resolution.

The model was carefully designed and fabricated to reduce orifice-induced static pressure errors. The holes were machined orthogonal to the model surface and, since static pressure measurements are very sensitive

to burrs, care was taken to assure smooth, sharp edged orifices. The measured pressure decreases toward the true value as the hole size and the ratio of hole length to diameter decrease. However, hole diameters less than .015" are difficult to produce with sharp edges and negligible burrs, and the response time is greater. Thus, smooth sharp edged orifices of .020" diameter were specified for the steady state pressure orifices. To compromise on response, the hole length was chosen to be about 3 orifice diameters. Details of the static pressure hole geometry are shown in Fig. 6.

Design objectives for the fluctuating static pressure orifices were to obtain good frequency response while minimizing error producing factors. The orifice was kept small (.030 ") and short (.010") to avoid cavity resonances within the measurement range. The gage reference cavities were all connected to a common tunnel static reference tube. By applying known pressures to this reference line the dynamic pressure transducers could easily be calibrated. Details of the cavity design are shown in Fig. 7. In order to simplify fabrication, both the steady state and dynamic pressure orifices were made from brass plugs and installed in the model prior to final surface finishing.

The axial locations of the surface static pressure measurement positions are shown in Fig. 8 and tabulated in Table 2. The static pressures were recorded using 2-48 port PSI modules. The static pressure fluctuations were recorded on magnetic tape for on line and subsequent analysis. The model, which was designed for aerodynamic loads up to 20 degrees angle of attack at a dynamic pressure, Q of 960 psf, was mounted on a 1.5" Task balance, an Ames straight sting and the NASA Ames 6- by 6-Ft. Supersonic Wind Tunnel roll mechanism (see Fig. 9).

The Laser Velocimeter System

The flow field studies were conducted using a new, three component

laser velocimeter system designed and built for the NASA Ames 6- by 6-Ft. Supersonic Wind Tunnel. The three component laser doppler velocimeter sending and receiving optics are shown schematically in Fig. 10. Optical access for this fringe mode, forward scatter system was provided by two 4 ft. diameter windows, one on each side of the test section. The 4880 and 5145 angstrom lines from a 15 watt argon-ion laser were separated by a dispersing prism. Quartz acousto optical Bragg cells, driven at 40 MHz were used as beamsplitters and frequency shifters for both the blue and green beams. The output of each Bragg cell, an incident and first order beam, was a diverging pair. These two pairs were further separated and brought parallel by specially polished, off square cubes. With this approach, originally implemented by Owen (Ref. 10), most of the laser power in each line was used. It was also relatively easy to balance the power in each pair by adjusting the Bragg cell angle or the output power from the driver. The pairs of blue and green beams were then made orthogonal by means of a sectional mirror and travel parallel to the mechanical axes of the traverse system. Thus, the bulk of the optics and laser were fixed so that only light weight components needed to be moved during a test. This significantly reduced the cost and complexity of the traverse system.

A dove prism (not shown) provided the capability to rotate the four beam cluster to maintain appropriate model coordinate orientation as the model was moved or beam entry angles changed during a test. After the prism, the beam separations were then increased to approximately 2 inches using rhomboid pairs. After the beams had been steered by all the traversing mirrors, a beam-splitter separated half the power of the green pair for the third component. Thus, the two pairs of green beams had a minimum number of different optical components and shorter independent optical paths. This self-aligning optical characteristic was essential for three component coincident

measurements over long distances in harsh environments.

Polarization rotators were then used to separate the two green pairs by 90 deg. After provision for beam steering wedge prism pairs, the beams were focused down in the test section with 2 meter focal length achromatic lenses. The 4880 angstrom pair measured the vertical component directly. The 5145 angstrom pairs were offset by an angle of 23 deg, so that each pair measured the same component of the stream velocity but opposite signs of the cross flow component.

Scattered light was collected in an off axis forward direction since this greatly improves particle sensitivity and signal to noise ratio. The first receiving assembly was designed to collect light on the bisector of the two transmitting axes. This led to a small, but unacceptable, amount of cross-talk between the two green pairs. Effective elimination of this problem was accomplished by collecting each green pair signal independently, as shown in Fig. 10. In this configuration, each collecting lens was more on axis with its own transmitting pair. This not only removes cross-talk, but also significantly improves the signal to noise ratio. Scattered light from the two green pairs was separated by polarized filters as well as by collection angle. The scattered blue light was isolated using an edge filter. Narrow bandpass and spatial filters eliminated undesired scattered and background light from each channel. The signals were detected by photo-multiplier tubes, amplified and sent to a counter processor. Both sending and receiving optics were mounted on independent, vibration damped tables. Traversing in three dimensions was accomplished by microprocessor controlled, stepper motor driven lead screws.

Modifications could also be made to the sending optics so that either line may be passed through a plane cylindrical lens system. This produced a variable, thin sheet of laser light which was used to illuminate water vapor introduced into the stream. This vapor-screen flow visualization was used to

determine the qualitative effects of model spin rate and to identify the regions of primary interest for subsequent laser velocimeter studies.

Maximum optical system sensitivity is essential for meaningful measurements particularly in large facilities. In these applications, solid angle light collection is reduced so that there is always the possibility that only the velocities of larger particles, which may not follow the flow, will be observed. This could result in errors in the mean flow and turbulence measurements and difficulty in obtaining data in vortex cores. Previous measurements have stressed the value of forward scatter optical systems whenever possible, since data rates which are orders of magnitude higher than those in the back scatter mode can be achieved. Rather than relying entirely on natural aerosols for the light scattering, it was found that the introduction of artificial aerosols of known size distribution greatly enhances data acquisition rates. Such aerosols were generated with an ultrasonic nozzle mounted in the facility. These aerosols have been found adequate for turbulence studies of shock boundary-layer interactions and vortex flows at transonic and supersonic speeds (Ref. 3). In the present experiment, seeding was achieved using a Sonimist (model 700) which was installed in the center of the final set of turning vanes immediately upstream of the settling chamber. The seeder was controlled by an air pressure valve actuator located in the control room (see Fig. 11).

Experience has shown that reliable optical traverse capability and real time data analysis is essential for cost effective studies of turbulent flow fields in large-scale facilities such as the NASA Ames 6- by 6-Ft. Supersonic Wind Tunnel, where test time is limited and expensive. To this end, a computer controlled encoder position indicator system and a data acquisition system and software capable of on-line data reduction and display were built, tested and used during the wind tunnel test programs. Traversing in three dimensions

was accomplished by microprocessor controlled, stepper motor driven lead screws (Fig. 12). Optical encoders feed back position information to a desk-top computer so that immediate corrections for backlash or slippage on any axis can be made. In addition to computer software, the data reduction system consists primarily of two elements: an event synchronizer and a desk-top computer as shown in Fig. 13. Each individual realization and essentially simultaneous arrival time is recorded. The coincidence requirement ensures that the velocities are obtained from the same particle. This is a necessary condition for shear stress measurement. Each data point taken by the processor contains the information required to calculate the instantaneous velocities u, v, w. From these determinations, the average velocities $\overline{u}, \overline{v}, \overline{w}$, turbulence levels u',v', w' and the turbulent cross correlations u'v', v'w', u'w' are all calculated. Plots of these parameters are displayed on-line as profiles are measured and hard copy is available as required. All the raw and reduced data are stored on flexible disks for permanent storage and retrieval. Real time histograms and probability densities of all three velocity components are displayed during data acquisition.

Results

Force and Moment Measurements

The overall effects of boundary-layer growth and incidence on the development of the normal forces and pitching moments are shown in Fig. 14. At low incidence, there is a favorable circumferential pressure gradient all the way from the windward to the leeward generator. Consequently, the boundary-layer grows in a regular manner and develops very small cross flows. The normal force and pitching moments develop linearly in this range, and the slopes are affected only slightly by viscous effects. However, at the higher angles of attack, there are substantial developments of non-linear lift

and pitching moment consistent with the formation of well-organized, symmetrical, coiled, free shear-layer flows on the lee side of the model.

The quantitative effects of model spin rate were determined from Magnus force and moment measurements. Data were obtained at 2 degree increments over the entire angle-of-attack range. At each angle, the model was driven to its maximum spin rate using the air turbine, then the turbine was shut off, and balance measurements were recorded as the model was coasting down from its maximum spin rate. Examples of the side force coefficient measurements at two different angles of attack are shown in Fig. 15. where it can be seen that the Magnus effects are accentuated at higher angles of attack when the vortices are strongest. The linear fits to the subsonic side force data could be forced through zero for zero spin rate. However, at the supersonic test conditions, test section flow angularity introduced by the sliding nozzle block produced a zero spin side force. This offset corresponded to a side wash angle of less than 0.5 deg. Linear fits of all the side force and yawing moment data have been made, and summary plots developed to determine the slopes of the Magnus force and moment coefficients. A direct comparison of the present slope of the Magnus force coefficient is made in Fig. 16 with the data from Ref. 6.

In the present experiment the Magnus moment was referenced to the nose so that the data were transformed to the center of gravity position to be consistent with Ref. 6. The transformation used was

$$(C_{n_{p\alpha}})_{CG} = (C_{n_{p\alpha}})_{x=0} + (C_{y_{p\alpha}}) \frac{1}{d}$$

Comparisons of the slope of the Magnus moment coefficient are shown in Fig. 17. As anticipated, these comparisons show that the Magnus effect becomes more accentuated in the transonic speed range with a maximum value indicated close to Mach one. A complete listing of the force and moment data is

given in Appendix 1.

Surface Pressure Distributions

The flow over the test model at transonic speeds is characterized by mixed regions of subsonic and supersonic flow. Shadowgraphs show that two separate shock waves occur which are preceded by supersonic flow expansions at the ogive-cylinder and cylinder-boattail regions. The surface pressure coefficient data measured on the windward and leeward rays are shown as a function of longitudinal position in Figs. 18-20. These data clearly show the two expansions and recompressions which occur over the model. At subsonic speeds the strengths of these interactions increase with increasing Mach number and angle of attack. Clearly the primary lifting elements are the forebody and boattail surfaces. However, the nature of the interaction in the boattail region on the windward side is such as to produce a destabilizing force on the boattail surface. At supersonic speeds, the nature of the windward and leeward axial pressure distributions is changed significantly. In these cases (Fig. 20) there is no upstream disturbance propagation. This results in rapid supersonic expansions at each of the two model discontinuities and gradual pressure recovery over the cylinder and boattail surfaces. Once again there is a destabilizing force distribution on the model and there is a significant lift force on the front half of the cylindrical surface at the higher angles of attack.

Comparisons of the subsonic and supersonic axial pressure distributions point to significant differences between the two flow regimes. In subsonic flow, disturbances are free to propagate in all directions. This enables upstream propagation of disturbances which are generated at the two model surface discontinuities. In the subsonic cases, flow expansion begins well upstream of the ogive-cylinder and cylinder-boattail junctions which is in sharp contrast to the rapid expansions in the supersonic test cases. These

characteristic differences illustrate the problems in the computation of transonic flows. In the supersonic flows the disturbances are swept downstream, ie. there is no upstream propagation which enables space marching computational techniques to be applied. Space marching methods require much less computer storage and CPU time for full flow field simulation.

Global surface static pressure features have been obtain from additional measurements which were made of the axial surface pressure distributions at roll angle increments of 2.5 deg. These data were used to generate a series of surface pressure contours for the test range of model angle of attack and freestream Mach numbers. These data, namely local pressure level (p), axial model location (x) and roll angle (ϕ) were used to generate a three dimensional picture of the surface pressure levels. The three dimensional model surface geometry was generated using the axial pressure tap location x and the roll angle ϕ and was described as:

$$0 \le \phi \le 360 \qquad 0 \le x \le 3.017 \qquad y = ((18.88^2 - (4.584 - x)^2)^{0.5} - 18.315) \sin \phi$$

$$z = ((18.88^2 - (4.584 - x)^2)^{0.5} - 18.315) \cos \phi$$

$$0 \le \phi \le 360 \qquad 3.017 < x \le 4.997 \qquad y = 0.5 \sin \phi$$

$$z = 0.5 \cos \phi$$

$$0 \le \phi \le 360 \qquad 4.997 < x \le 6.0 \qquad y = (0.5 - ((x - 4.997) \sin 7)/\cos 7) \sin \phi$$

$$z = (0.5 - ((x - 4.997) \sin 7)/\cos 7) \cos \phi$$

Because the locations of the 51 pressure taps did not fully define the surface of the model, four extra axial locations were defined, namely: 0.0, 0.3, 0.6, and 6.0. Pressure values of zero were entered at these locations but were not plotted. These locations served to define the nose and rear boattail geometries.

With this three dimensional description of the model and the measured

pressure data, five files were generated for each run number (x,y,z,o,p). However, since the data were obtained on two separate rows (see Fig. 8), account had to be made for the 180 deg. offset between the pressure taps numbered 1-7 and the odd values in 9-51 on the one side and the even values in 8-50 on the other side. Each file was then organized into 55 columns by 145 rows, with column entries being at the same axial station and row entries at the same roll angle. Since the data were taken at 2.5 deg. increments from 0 to 360 deg. there was a total of 145 roll angles.

With the reduction complete, the set of 45 files representing the nine test cases with 7,975 values each were transferred to a VAX account. The VAX account was used to interface to an IRIS work station where the three dimensional surface contours were generated. A limitation of the available plotting program was that it could not show multiple views concurrently. To create the three view, three dimensional plots, a sequence was devised using the programs "plot3d" and "dump_edit" to combine single views into the plots shown in Figs. 21-23.

These surface pressure contour plots clearly show the three dimensional character of the swept flow around the test model at moderate incidence. The flow fields progress from near symmetric features at 2 deg. to flows with significant positive lift on the forebody and negative lift on the boattail. The extent and strengths of the ogive-cylinder and cylinder-boattail interactions clearly vary in a strongly three dimensional manner. The expanding swept flow around the sides of the model result in the highest suction pressures close to separation.

All the data and programs for transferring and formatting files to generate plots at any normal or oblique angle to the model are available on magnetic tape in a VAX readable format. Thus, these test data and their three dimensional projections will provide innumerable stringent test cases for global

aerodynamic surface pressure calculations.

Measurements have also been made of the static pressure fluctuations over the entire test range. The surface pressure fluctuations under the viscous layer are associated with the irregular motions of the flow field turbulence. For example, the intensity of the surface pressure fluctuations beneath a two dimensional turbulent boundary layer scales with the mean shear stress and is primarily composed of high frequency fluctuations. As the layer approaches separation, the level increases and character changes due primarily to the additional generation of low frequency energy. The high frequency components are generated in the small scale inner region, the so called law of the wall region, whereas the low frequency pressure fluctuations emanate from the larger scale unsteady motions in the outer region.

Examples of the circumferential pressure fluctuation levels measured at the mid-point of the boattail are shown in Fig. 24. At low angles of attack, the surface pressure fluctuations on the windward side are broad-band, indicative of an attached, unsteady flow. Although there is some general increase in the fluctuating intensity beneath the lee side flow field, the circumferential distribution is consistent with an unsteady, attached flow. At high angles of attack, the pressure fluctuations on the windward surface are greatly reduced and are primarily composed of high frequency, small scale fluctuations indicative of a thin and stable attached swept shear layer. However, there is now a dramatic increase and variations in fluctuation level in the lee side flow field. The intensity reaches a maximum in the separation region and the spectrum is dominated by low frequency components caused by large scale unsteady motions due to time dependent fluctuations in the location of the shear layer primary separation point. The levels are significantly lower under the separated shear layer, but rise to a second peak in the reattachment region where once again large scale flow unsteadiness is present.

Flow Field Measurements

Before any flow field measurements were made, the positions of the lee side vortices adjacent to the model surface were established for both symmetric and asymmetric wake flows. However, it must be borne in mind that vapor screen photographs image the condensation or evaporation of a gas or liquid mixture in the flow field, where there are large changes in static pressure and temperature. The interpretation of vapor screen photographs is also complicated by the fact that the mixture may not achieve thermodynamic equilibrium during its transit time along the model. Thus, the dark wake regions may not precisely represent the body vortices. The boundary between the dark and light regions is not a cross flow dividing streamline, it is the locus of points where local conditions produce a saturated vapor. But, despite these complications, vapor screen photographs can be used to determine gross, qualitative flow field information. Examples of vapor-screen flow visualization of the vortices on the boattail (x/d = 6.0) are shown in Figs. 25 and 26. These pictures clearly show the leeward vortices and their feeding sheets, which are visible as dark regions within the light sheet. The effect of model spin rate on wake asymmetry is clearly evident, and substantial changes in vortex location can be identified.

Laser velocimeter data presented in Fig. 27 show the results of two scans across the wake at the cylinder-boattail junction with and without spin. These measurements give a quantitative flow field picture of spin effects. In the stationary case, symmetric lee side vortex flow is evident from the characteristics of the three mean profiles. The axial velocity variation across the wake shows slight velocity defects associated with each vortex. These defects are more pronounced and reach a maximum at the vortex cores. They also increase with vortex strength up to a maximum of 30 percent of the freestream value. The characteristic down wash of the body vortices can be

seen between the vortices (z=0) and the up wash generated by the vortices is noted outboard of each vortex. The magnitude of the down wash increases closer to the body. It also increases with angle of attack as the vortices increase in strength. Close to the body, at α =10 deg, down wash velocities of up to 25 percent of the freestream velocity were observed. The cross flow velocity component is again symmetric and indicates free-vortex forms in both the outer inviscid flow fields with a central viscous region. Clearly, spin induced asymmetries distort the leeward vortex field and alter the relative vortex strengths as evidenced by the changes in the locations and relative strengths of the axial core velocity defects. Movement and distortions of the down wash and cross flow velocity profiles are also apparent.

Scans across the wake taken close to the model surface show marked differences. Examination of the two cross flow profiles in Fig. 28 give an accurate measure of the extent of vortex asymmetry in both position and strength. In the spinning case, the gradient across the viscous core of the port vortex is almost a factor of three greater than that across the starboard vortex. Model spin also distorts the turbulence characteristics of the lee side flow field. As expected, all three turbulence normal stresses peak in regions of maximum mean gradient. However, as seen in Fig. 29, spin stabilizes the vortex on the retreating, moving wall side but adversely affects the starboard vortex stability.

Measurements have also been made in the viscous regions close to separation. Some of these results are shown in Figs. 30-32. For zero spin (Fig. 30), flow field symmetry is evident at the two circumferential stations, $\phi = 120^{\circ}$ and 240°. With spin (Figs. 31 and 32), significant asymmetry can be seen in the velocity profiles. At $\phi = 120^{\circ}$, the cross flow velocity is in the same direction as the wall velocity. At $\phi = 240^{\circ}$, the outer cross flow opposes the

wall velocity. Fig. 31 shows the axial and cross flow velocity profiles measured at the cylinder-boattail junction. Here, the favorable wall velocity delays separation at $\phi = 120^{\circ}$ and there is a thin boundary layer with a slight overshoot in the axial velocity profile. At $\phi = 240^{\circ}$, the wall velocity acts to retard the flow and thicken the wall boundary layer. The effects of surface spin are seen to persist further out into the flow field. Fig. 32 shows the corresponding velocity profiles measured midway along the boattail (x/d = 5.5). Although the decreased body diameter results in reduced surface velocity, the boundary layer is thicker and the effects of spin are seen much further from the wall. At $\phi = 240^{\circ}$, the adverse effect of wall velocity has separated the flow, as evidenced by the character of the axial velocity profile, which is typical of that produced by a streamwise vortical shear layer.

Examples of the "on line" laser velocimeter data outputs (Figs. 33 and 34) show the results of two scans across the wake at the same body station on the boattail with and without spin. These measurements of mean velocity, turbulence intensity and shear stress give a quantitative picture of spin effects. Clearly, the effect is to distort the leeward vortex field and to alter the relative vortex strengths and their turbulent characteristics. From multiple scans, obtained as the model was coned, details of the mean and turbulent structure of the attached and separated viscous layers can be constructed. Details of the wake structure can then be derived and the quantitative influence of spin induced vortex asymmetry assessed. A complete listing of the laser velocimeter flow field measurements is given in Appendix 2.

Concluding Remarks

The prediction of the destabilizing forces and moments in the transonic flight regime is a key element in projectile aerodynamics. But, although there has been a concerted computational effort in this area, to date there have been few detailed experimental measurements made for comparison. This report presents the results of an extensive test program in which the normal and Magnus force and moment coefficients, surface pressure distributions and the first quantitative flow field measurements have been made for a projectile-type configuration at transonic speeds.

The results show the amplitude, character and extent of linear and non-linear lift and pitching moment. The measurements of the Magnus force and moment coefficients show that the transonic regime is the critical Mach number range for this model configuration. It is the regime through which the projectile will encounter the maximum destabilizing aerodynamic effects. Extensive surface pressure distribution measurements have shown the relative contributions of the primary elements of the projectile, namely: the ogive, cylinder and boattail, to the total lift. The results clearly show the destabilizing influence of the boattail and the three dimensional swept nature of the flow field at higher angles of attack. Measurements of the unsteady character of the surface pressure fluctuations reveal that there is significant large-scale unsteady flow associated with the three dimensional swept separation zones even at moderate incidence.

Finally, the capabilities of a new three dimensional, forward scatter, laser velocimeter of the NASA Ames 6- by 6-Ft. Supersonic Wind Tunnel have been demonstrated and measurements have been obtained at several body stations and angles of attack. Although the simultaneous measurement of three velocity components turned out to be a tedious and lengthy proposition,

these data represent the first quantitative flow field documentation of the symmetric and asymmetric lee side vortex flows in the transonic test regime. These results will serve for comparison with computations and guide future code developments.

References

- 1. Reklis, R.P., Danberg, J.E. and Inger, G.R. Boundary Layer Flows on Transonic Projectiles AIAA Paper 79-1551, July 1979.
- 2. Sturek, W.B. and Schiff, L.B. Numerical Simulation of Steady Supersonic Flow over Spinning Bodies of Revolution AIAA Paper 82-4288.
- 3. Owen, F.K. An Assessment of Flow Field Simulation and Measurement AIAA Paper 83-1721.
- 4. Nietubitz, C.J., Sturek, W.B. and Heavy, K.R. Computations of Projectile Magnus Effect at Transonic Velocities AIAA J. Vol. 23, No. 7., p. 998.
- 5. Danberg, J.E. and Tschirschnitz, R.H., Measurements on a Projectile with an Asymmetric Afterboby at Transonic Speeds, AIAA 83-0545, AIAA 21st Aerospace Science Meeting, January 1983.
- 6. Nietuicz, C.J., Inger, G.R., and Danberg, J.E., A Theoretical and Experimental Investigation of a Transonic Projectile Flow Field, AIAA 82-0101, AIAA 20th Aerospace Science Meeting, January 1982.
- 7a. Kayser, L.D. and Sturek, W.B., Experimental Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Ogive-Cylinder Body of Revolution at Mach 3.0 Part I Description of the Experiment and Data Analysis, ARBRL-MR-02808, January 1978.

- 7b. Kayser, L.D. and Sturek, W.B., Experimental Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Ogive-Cylinder Body of Revolution at Mach 3.0 Part I Data Tabulation, ARBRL-MR-02813, March 1978.
- 8. Kayser, L.D. and Sturek, W.B., Turbulent Boundary Layer Measurements on the Boattail Section of a Yawed, Spinning Projectile Shape at Mach 3.0, ARBRL-MR-028803, November 1978.
- 9. Nietubitz, C.J. and Opalka, K. Supersonic Wind Tunnel Measurements of Static and Magnus Aerodynamic Coefficients for Projectile Shapes with Tangent and Secant Ogives Noses ARBRL-MR-02991, U.S. Army Ballistic Research Laboratory, ARRACOM, Aberdeen Proving Ground, Maryland, February 1980.
- 10. Owen, F.K., Laser Velocimeter Measurements in Free and Confined Jets with Recirculation, AIAA 75-120, January 1975.

Acknowledgement

The authors wish to express their thanks to the Army Research Office for its support under contract DAAG-2981C-0028 and to Dr. L.B. Schiff of NASA Ames Research Center for his support and many helpful discussions.

List of Symbols

Symbol	Data Symbol	Description
(1.	A, ALPHA	angle of attack of model reference axis, degrees
b		model span
ざ		mean aerodynamic chord
$c_{ m m}$	CLM	pitching moment coefficient, pitching moment/ $q_{\infty}S\overline{c}$
	CMP	Magnus force coefficient, yawing moment/ $q_{\infty}S$ D VR
C_{N}	CN	normal force coefficient, normal force/q∞S
	CNP	Magnus force coefficient, side moment/q∞S VR
0	CONE	cone angle, degrees
	CONF	configuration code number, blunt=1, sharp=2
CY	CJ	side force coefficient, side force/q∞S
$C_{\mathbf{n}}$	CYN	yawing moment coefficient, yawing moment/q∞Sb
D,d		body diameter, 0.35417 ft.
${ m M}_{\infty}$	MACH	freestream Mach number
p		model spin rate
p_{∞}	Р	freestream static pressure, psf
$p_{t\infty}$	PT	freestream total pressure, psf
Y∞	Q	freestream dynamic pressure, psf
R	RN/L	Reynolds number, millions per foot
<u> </u>	RPM	spin rate of ogive-cylinder about its axis, positive
		sense is clockwise rotation looking in the upstream
		direction, rpm
S		reference area, 0.098516 ft.3
T_{*}	7T:	freestream static temperature, psf
T_{t}	TTF	freestream total temperature, psf
u,v,w		velocity components along the x,y,z axes
$\mathbf{u}', \mathbf{v}', \mathbf{w}'$	$\overline{U}, \overline{V}, \overline{W}$	RMS quantities
$\overrightarrow{\mathbf{u}'\mathbf{v}'}$	U'V'	
VW	VV	
w'u'	WI	turbulent shear stress
(.		freestream velocity
	VR	velocity ratio, two times model surface tangential
		velocity to tunnel freestream velocity.
		$2\pi D$ RPM/60 U

Fig. 1 Projectile Flow Field, $\alpha = 0$, M = 0.96 (from Ref. 1)

Fig. 2a Secant-Ogive, Cylinder, Boattail Geometry

Fig. 2b Model Coordinate System

Fig. 3 Details of Spinning Model Installation in the NASA Ames 6- by 6 Ft. Supersonic Wind Tunnel

Fig. 4 Model Installation in the NASA Ames 6- by 6-Ft. Supersonic Wind Tunnel

Fig. 5 Turbine Air Supply System

Fig. 6 Static Pressure Hole Geometry

Fig. 7 Pressure Transducer Installation

Fig. 8 Static Pressure Measurement Locations

Fig. 9 Details of Pressure Model Installation

Fig. 10 Schematic of the LDV Optical System

Fig. 11 Wind Tunnel Seeding System

Fig. 12 Six Axis Traverse System with Position Verification

Fig. 13 Three Component Data Acquisition System

Fig. 14 Normal Force and Pitching Moment Measurements

Fig. 15 Magnus Force Coefficient, M = 0.8

Fig. 16 Slope of the Magnus Force Coefficient

Fig. 17 Slope of the Magnus Moment Coefficient

Fig. 18 Axial Surface Pressure Distributions

Fig. 18 Continued

Fig. 18 Concluded

Fig. 19 Axial Surface Pressure Distributions

Fig. 19 Continued

Fig. 19 Concluded

Fig. 20 Axial Surface Pressure Distributions

Fig. 20 Continued

Fig. 20 Concluded

Fig. 21 Surface Pressure Contours

Fig. 21 Continued

Fig. 21 Concluded

Fig. 22 Surface Pressure Contours

Fig. 22 Continued

9.340

Fig. 22 Concluded

Fig. 23 Surface Pressure Contours

MACH ALPHA

1.200 5.00 DEG

Fig. 23 Continued

1.288

Fig. 23 Concluded

Fig. 24 Surface Pressure Fluctuations, M = 0.94

Fig. 25 Vapor-Screen Flow Visualization, M = 0.8, $\alpha = 10$ deg, pd/U = 0

Fig. 26 Vapor-Screen Flow Visualization, M = 0.8, $\alpha = 10$ deg, pd/U = 0.3

Fig. 27 Model Wake Measurements, M = 1.2, $\alpha = 10$ deg, y/d = 0.125, x/d = 5.0

Fig. 28 Crossflow Velocity Profiles, M = 1.2, $\alpha = 10$ deg, y/d = 0.024, x/d = 5.0

Fig. 29 Mean and Turbulent Downwash Profiles, M = 1.2, $\alpha = 10$ deg, y/d = 0.125, x/d = 5.0

Fig. 30 Axial and Crossflow Velocity Profiles, M = 0.8, $\alpha = 10$ deg, x/d = 5.5, pd/U = 0

Fig. 31 Axial and Crossflow Velocity Profiles, M = 0.8, $\alpha = 10$ deg, x/d = 5.0, pd/U = 0.3

Fig. 32 Axial and Crossflow Velocity Profiles, M = 0.8, $\alpha = 10$ deg, x/d = 5.5, pd/U = 0.3

Fig. 33 "On Line" Flow Field Measurements, pd/U = 0

Fig. 34 "On Line" Flow Field Measurements, pd/U = 0.2

Table 1

- 1. Existing 0.5" pipe plant air supply.
- 2. Existing 0.5" valve.
- 3. 0.5" pipe nipple, 3" long.
- 4. 0.5" street tee.
- 5. 0.5" to 0.25" pipe reducing bushing.
- 6. 'NORGREN' 0.5" NPT air filter.
- 7. 0.75" NPT internal thread to 0.5" NPT external thread reducing adapter.
- 8. 0.75" pipe to 0.75" tube adapter.
- 9. 0.75" tube to 0.625" hose adapter.
- 10. 0.625" nonmetallic hose.
- 11. 0.5" street elbow.
- 12. 'NORGREN' 0.5" NPT pressure regulator.
- 13. 45°, 0.5" street elbow.
- 14. Existing 0.75" tube assembly from east side flap actuator to top of tunnel.
- 15. Existing 0.75" tube assembly through rear lead screw.
- 16. 0.75" to 0.5" tube reducer.
- 17. 0.5 tube to 0.406" hose adapter.
- 18. 0.406" nonmetallic hose.
- 19. Existing 0.375" pipe to 0.5" tube adapter.
- 20. Existing 0.375" pipe elbow.
- 21. Existing 0.375" pipe nipple, 1" long.
- 22. 0.125" pipe nipple, 3" long.
- 23. 0.125" pipe coupling.
- 24. Pressure gage, safety type, range from 0-120 psi.

Table 2

		<u> </u>
Pressure Tap #	Distance from nose (inches)	Distance from nose (calibers)
1	3.778	0.889
2	5.204	1.224
3	6.630	1.560
4	8.037	1.891
5	9.444	2.222
6	10.653	2.507
7	11.862	2.791
8	12.100	2.847
9	12.350	2.906
10	12.600	2.965
1 1	12.850	3.024
12	13.100	3.082
13	13.298	3.129
14	13.500	3.176
15	13.676	3.218
16	13.875	3.265
17	14.125	3.324
1 8	14.375	3.382
19	14.625	3.441
20	14.925	3.512
21	15.130	3.560
22	15.375	3.618
23	15.625	3.676
23	15.875	3.735
	16.125	3.794
25	16.625	3.912
26	17.125	4.029
27	1	4.147
28	17.625	4.222
29	17.944	4.316
30	18.342	4.433
31	18.842	ì
32	19.342	4.551
33	19.842	4.669
34	20.342	4.786
35	20.740	4.880
36	20.990	4.939
37	21.200	4.988
38	21.401	5.036
39	21.701	5.106
4 0	22.043	5 187
4 1	22.330	5.254
4.2	22.610	5.320
4 3	22.860	5.379
44	23.110	r 138
4.5	23.360	5 5
4.5	23.649	5.564
4.7	23.900	5.624
4.8	24.200	5.694
49	24.574	5.782
50	24.900	5 859
5 1	25.200	5.929

Appendix 1

Tabulated Wind Tunnel Test Data

10 4Ju 83417:32 PAGE 1		LYN RPM VR CNP CMP	000.0 0 300.0	0	0.031 0 0.000	0	0.031 0.000	0	0	0	0
~	1116 111	CY	0.001	660.0-				į			j
. L. (31) 1 1	451 1530 1001 78 17	N IO	-0.224		0.015			1		- 0.113 -	1
10-1086.0011	451 153	CN	0.238	-0.110	-0.058	100.00-		!		0.215	ļ
	3.01	CLNF	ი. ი.	0.0	٥ ٠ ٠	٥ . ٥	(,•(0.0	0.0	o• c	0.0
S: 1 40-11 1-11 (3)	T'1 CCNT 56 1	MACH ALPHA	10.58	-4.6.4	-2,35	-0.20	2 • 00	4.71	6.31	8.42	10.57
- -	18 T P T'! 575 1 66	MACH	0.892	0.800	002.0	0.804	0.800	0.800	0.799	0.799	0.801
-	2 -	SED	~	*	٧.	¢ '	~ !	Œ	Ċ	01	11

Q PT TIF TF 464 1573 1030 85 23 644 1573 1030 85 23 CN CIM CY LYN RPM VR CNP CMP 0.296 -0.258 -0.044 0.194 √ 6927 0.297 -0.150 0.667 0.298 -0.274 -0.031 0.104 4813 0.266 -0.152 0.667 0.298 -0.274 -0.031 0.104 293 0.129 0.653 0.289 -0.274 -0.020 0.104 2443 0.126 0.653 0.289 -0.226 -0.014 0.104 2443 0.126 0.659 0.289 -0.226 -0.014 0.024 2443 0.105 0.015 0.289 -0.227 -0.004 0.024 1777 0.016 0.019 0.289 -0.221 -0.005 0.024 1777 0.016 0.019	Q PT TF TF 64 1573 1030 85 23 64 1573 1030 85 23 CM CIM CY LYN RPM VR CNP 0.296 -0.258 -0.044 0.1946 0.169 6123 0.263 -0.150 0.298 -0.267 -0.031 0.140 4813 0.263 -0.148 0.299 -0.276 -0.031 0.104 2443 0.129 -0.155 0.289 -0.276 -0.031 0.044 2443 0.129 -0.155 0.290 -0.034 0.044 2443 0.129 -0.155 0.291 -0.026 0.024 0.044 2443 0.129 -0.159 0.292 -0.034 0.044 2443 0.129 -0.159 0.282 -0.042 0.042 1.17 0.059 -0.159 0.283 -0.276 0.004 0.014 1.17	RNZL
CH CH CY VN RPM VR CNP 296 -0.258 -0.044 0.194 0.194 0.196 -0.150 298 -0.267 -0.039 0.169 6123 0.263 -0.148 293 -0.267 -0.054 0.107 3827 0.164 -0.152 289 -0.234 -0.020 0.004 2.993 0.129 -0.155 289 -0.224 -0.020 0.004 2.443 0.105 -0.155 290 -0.226 -0.014 0.004 2.443 0.105 -0.155 290 -0.226 -0.014 0.004 2.443 0.105 -0.159 290 -0.0214 0.004 0.024 1.177 0.036 -0.159 290 -0.021 0.004 0.014 380 0.016 -0.109 285 -0.221 -0.001 0.004 -0.001 -0.004 40 0.004 286 -0.213	CH CLM CY LYN RPM VR CNP 296 -0.258 -0.044 0.1946 6123 0.263 -0.150 298 -0.267 -0.039 0.109 6123 0.263 -0.148 293 -0.246 -0.031 0.107 3827 0.164 -0.152 289 -0.234 -0.020 0.049 2993 0.129 -0.155 289 -0.274 -0.020 0.049 2993 0.129 -0.155 289 -0.274 -0.020 0.049 2443 0.165 -0.159 289 -0.224 -0.005 0.020 1177 0.015 -0.159 289 -0.224 -0.006 0.024 1177 0.054 -0.109 287 -0.218 -0.007 0.004 380 0.019 -0.109 281 -0.224 0.000 -0.004 380 0.002 -0.109 283 -0.204 -0.003	3.04
296 -0.258 -0.044 0.1946 6927 0.263 -0.148 298 -0.267 -0.034 0.169 6123 0.263 -0.148 293 -0.274 -0.034 0.104 4813 0.266 -0.152 289 -0.274 -0.020 0.049 293 0.129 -0.146 280 -0.274 -0.020 0.049 2443 0.165 -0.159 290 -0.274 -0.020 0.049 2443 0.165 -0.159 290 -0.274 -0.004 0.020 2443 0.165 -0.159 290 -0.276 -0.004 0.020 1777 0.094 -0.159 290 -0.221 -0.005 0.020 1777 0.094 -0.094 285 -0.201 -0.004 0.014 30.004 -0.138 286 -0.204 -0.001 0.004 40.006 0.006 286 -0.213 0.002 -0.004 40.006 0.006 283 -0.204 -0.006 -0.007 <	296 -0.258 -0.044 0.1947 6123 0.263 -0.158 298 -0.267 -0.034 0.104 4813 0.266 -0.152 289 -0.274 -0.024 0.107 3827 0.164 -0.1965 289 -0.274 -0.020 0.039 2993 0.129 -0.155 290 -0.224 -0.020 0.037 177 0.076 -0.081 280 -0.221 -0.005 0.020 1197 0.051 -0.081 280 -0.221 -0.005 0.020 1197 0.051 -0.081 280 -0.221 -0.005 0.020 1197 0.051 -0.138 285 -0.201 -0.007 0.004 380 0.016 -0.109 286 -0.204 -0.001 0.009 40 0.002 286 -0.204 -0.001 0.009 51 0.000 287 -0.204 -0.001 0.009 17 0.000 288 -0.204 -0.000 0.004 17 0.000 289 -0.204 -0.000 0.004 -17 -0.000 289 -0.204 -0.000 0.004 -17 -0.000 289 -0.204 -0.000 0.009 -17 -0.000 289 -0.204 -0.000 0.009 -17 -0.000 289 -0.204 -0.000 0.000 -17 -0.000 289 -0.204 -0.000 0.000 -17 -0.000 289 -0.204 -0.000 0.000 -17 -0.000 289 -0.204 -0.000 0.000 -17 -0.000	CCNE
298 -0.267 -0.039 0.169 6123 0.263 -0.148 293 -0.248 -0.031 0.140 4813 0.206 -0.152 289 -0.232 -0.024 0.107 3827 0.164 -0.146 289 -0.234 -0.020 0.089 2993 0.129 -0.146 288 -0.226 -0.014 0.064 2443 0.129 -0.159 290 -0.226 -0.014 0.044 2443 0.129 -0.159 290 -0.226 -0.044 0.044 2443 0.105 -0.129 290 -0.226 -0.044 0.044 2443 0.105 -0.129 290 -0.226 -0.044 0.044 0.076 0.076 0.076 0.076 285 -0.207 -0.007 0.004 0.004 380 0.016 0.013 286 -0.218 -0.001 0.004 0.004 0.004 0.004 286 -0.218 -0.001 0.002 0.004 0.006 0.006	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
293 -0.248 -0.031 0.140 4813 0.206 -0.152 289 -0.232 -0.024 0.107 3827 0.164 -0.146 289 -0.234 -0.020 0.089 2993 0.129 -0.155 290 -0.226 -0.021 0.064 2443 0.165 -0.159 290 -0.226 -0.014 0.064 2443 0.105 -0.129 290 -0.226 -0.014 0.064 2443 0.105 -0.129 290 -0.221 -0.004 0.024 1777 0.076 -0.081 285 -0.221 -0.005 0.024 0.013 1197 0.051 -0.094 285 -0.207 -0.004 0.004 380 0.016 -0.138 286 -0.218 -0.001 0.004 390 0.004 -0.109 286 -0.218 -0.001 0.001 0.002 0.002 -0.002 286 -0.218 -0.003 0.002 0.002 -0.003 0.002 28	293 -0.248 -0.031 0.140 4813 0.206 -0.152 289 -0.232 -0.024 0.107 3827 0.164 -0.146 288 -0.224 -0.020 0.089 2993 0.129 -0.155 290 -0.226 -0.014 0.089 2993 0.129 -0.155 290 -0.228 -0.006 0.037 1777 0.076 -0.081 289 -0.221 -0.005 0.020 1197 0.051 -0.094 285 -0.207 -0.005 0.020 1197 0.051 -0.109 285 -0.207 -0.007 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.009 97 0.004 288 -0.204 -0.001 0.009 59 0.000 289 -0.224 0.000 -0.002 -20 -0.001 289 -0.204 -0.001 0.005 -20 -0.001 289 -0.204 -0.000 0.005 -20 -0.001 289 -0.204 -0.000 0.000 -20 -20 -0.001 289 -0.204 -0.000 0.000 0.000 31 0.000 289 -0.204 -0.000 0.000 0.000 31 0.000 289 -0.204 -0.000 0.000 0.000 31 0.000 289 -0.204 -0.000 0.000 0.000 31 0.000	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	289 -0.232 -0.024 0.107 3827 0.164 -0.146 288 -0.224 -0.020 0.089 2993 0.129 -0.155 290 -0.226 -0.014 0.064 2443 0.105 -0.129 290 -0.228 -0.006 0.037 177 0.076 -0.081 289 -0.221 -0.005 0.026 1197 0.051 -0.094 285 -0.207 -0.002 0.004 380 0.016 -0.109 285 -0.207 -0.001 0.003 380 0.016 -0.109 286 -0.218 -0.001 0.003 0.009 287 -0.218 -0.001 0.003 0.009 288 -0.204 -0.003 0.002 -20 -0.001 289 -0.204 -0.000 0.002 -7 -0.000 289 -0.204 -0.000 0.004 -17 -0.000 289 -0.204 -0.000 0.002 -17 -0.000 289 -0.204 -0.000 0.002 -17 -0.000 289 -0.204 -0.000 0.002 -0.003 37 0.002 289 -0.204 -0.000 0.002 -0.003 37 0.002	0
288 -0.224 -0.020 0.089 2993 0.129 -0.155 290 -0.226 -0.014 0.064 2443 0.105 -0.129 290 -0.228 -0.006 0.037 1777 0.076 -0.081 289 -0.221 -0.005 0.020 1197 0.051 -0.094 285 -0.207 -0.005 0.004 380 0.016 -0.094 285 -0.207 -0.007 0.004 310.004 -0.109 287 -0.218 -0.001 0.004 40 0.004 288 -0.204 -0.001 0.004 40 0.002 286 -0.213 0.002 -0.003 0.002 -20.003 286 -0.213 0.002 -0.003 -0.003 -20.003 283 -0.204 -0.003 0.002 -20.003 283 -0.205 -0.002 -0.004 -3.000 283 -0.204 -0.003 0.004 -3.000 283 -0.204 -0.003 0.004 <t< td=""><td>288 -0.224 -0.020 0.089 2993 0.129 -0.155 290 -0.226 -0.014 0.064 2443 0.105 -0.129 290 -0.228 -0.006 0.037 1777 0.076 -0.081 289 -0.221 -0.005 0.026 1197 0.051 -0.094 285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.003 97 0.004 288 -0.204 -0.001 0.003 97 0.004 288 -0.213 0.002 -0.001 40 0.002 288 -0.213 0.002 -0.003 0.009 289 -0.224 0.000 -0.002 -7 -0.001 289 -0.204 -0.001 0.005 -17 -0.000 289 -0.204 -0.000 0.004 -17 -0.001 289 -0.204 -0.000 0.002 -17 -0.001 289 -0.204 -0.000 0.002 -17 -0.001 289 -0.204 -0.000 0.002 -17 -0.001</td><td></td></t<>	288 -0.224 -0.020 0.089 2993 0.129 -0.155 290 -0.226 -0.014 0.064 2443 0.105 -0.129 290 -0.228 -0.006 0.037 1777 0.076 -0.081 289 -0.221 -0.005 0.026 1197 0.051 -0.094 285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.003 97 0.004 288 -0.204 -0.001 0.003 97 0.004 288 -0.213 0.002 -0.001 40 0.002 288 -0.213 0.002 -0.003 0.009 289 -0.224 0.000 -0.002 -7 -0.001 289 -0.204 -0.001 0.005 -17 -0.000 289 -0.204 -0.000 0.004 -17 -0.001 289 -0.204 -0.000 0.002 -17 -0.001 289 -0.204 -0.000 0.002 -17 -0.001 289 -0.204 -0.000 0.002 -17 -0.001	
290 -0.226 -0.014 0.054 2443 0.105 -0.129 290 -0.228 -0.006 0.037 1777 0.076 -0.081 289 -0.221 -0.005 0.020 1197 0.051 -0.094 285 -0.207 -0.006 0.018 730 0.016 -0.138 285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.004 3000 0.004 -0.109 283 -0.224 0.000 -0.001 0.002 -20.002 -20.002 283 -0.204 -0.003 0.002 -20.002 -20.002 283 -0.205 0.005 -0.005 -7.000 283 -0.206 -0.007 0.004 -3.000 283 -0.206 -0.007 0.004 -3.000 283 -0.207 -0.000 0.004 -3.000 283 -0.204 -0.000 0.004 -3.000 283 -0.204 -0.000 0.004	290 -0.226 -0.014 0.054 2443 0.105 -0.129 290 -0.228 -0.006 0.037 177 0.076 -0.081 289 -0.221 -0.005 0.025 1197 0.051 -0.094 285 -0.207 -0.007 0.004 380 0.016 -0.109 285 -0.207 -0.001 0.003 380 0.016 -0.109 287 -0.218 -0.001 0.003 97 0.004 288 -0.204 -0.003 0.009 40 0.002 288 -0.213 0.002 -0.003 53 0.002 288 -0.204 -0.003 0.009 -0.001 7 0.000 289 -0.204 -0.001 0.005 -0.003 -7 -0.001 289 -0.204 -0.001 0.005 -1.7 -0.001 289 -0.204 -0.000 0.000 31 0.002 289 -0.204 -0.000 0.000 0.000	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290 -0.228 -0.006 0.037 177 0.076 -0.081 289 -0.221 -0.005 0.026 1197 0.051 -0.094 285 -0.207 -0.004 0.004 380 0.016 -0.109 285 -0.207 -0.001 0.004 97 0.004 287 -0.218 -0.001 0.004 97 0.004 288 -0.204 -0.003 0.009 40 0.002 288 -0.213 0.092 -0.003 53 0.002 288 -0.213 0.092 -0.002 -7 -0.001 283 -0.204 0.007 0.004 -3 -0.000 283 -0.204 0.000 0.004 -17 -0.001 283 -0.204 0.000 0.002 23 0.001	0
289 -0.221 -0.005 0.026 1197 0.051 -0.094 282 -0.204 -0.004 0.018 730 0.031 -0.138 285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.004 3 0.004 289 -0.224 0.000 -0.001 40 0.002 286 -0.213 0.002 -0.003 0.002 -20 -20 -0.001 286 -0.213 0.002 -0.003 -0.003 -20 -20 -0.001 285 -0.204 -0.003 -0.002 -0.002 -7 -0.001 283 -0.204 -0.002 -0.004 -7 -0.000 290 -0.224 0.002 0.004 -17 -0.000 293 -0.224 0.002 0.004 -17 -0.000 283 -0.204 -0.002 0.004 -17 -0.000 283 -0.204 -0.000 0.002 -20 -20 -0.00	289 -0.221 -0.005 0.026 1197 0.051 -0.094 285 -0.207 -0.002 0.004 380 0.016 -0.109 285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.003 97 0.004 288 -0.224 0.000 -0.001 40 0.002 288 -0.213 0.002 -0.003 53 0.002 288 -0.213 0.002 -0.003 -20 -0.001 289 -0.205 0.002 -0.002 -7 -0.001 283 -0.204 -0.001 0.005 -17 -0.000 283 -0.204 0.002 -0.004 -17 -0.001 283 -0.204 0.002 -0.002 37 0.002 284 -0.204 0.000 0.002 -17 -0.001	C
282 -0.200 -0.031 -0.138 285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.004 97 0.004 290 -0.218 -0.001 0.001 40 0.004 283 -0.204 -0.003 0.009 40 0.002 285 -0.204 -0.003 -0.003 -0.003 285 -0.204 -0.007 -0.002 -20 -0.001 285 -0.204 -0.007 -0.002 -20 -0.001 283 -0.204 -0.007 0.005 -0.005 -7 -0.000 283 -0.204 -0.007 0.004 -3 -0.000 290 -0.204 -0.007 0.004 -3 -0.000 291 -0.204 0.007 0.004 -3 -0.000 283 -0.204 0.007 0.004 -3 -0.000 283 -0.204 -0.000 0.002 -3 -0.000 283 -0.204 -0.000 0.002 -3 -0.000 283 -0.204 -0.000 0.002 -0.002 -0.002 283<	285 -0.207 -0.004 0.012	0.0
285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.003 97 0.004 297 0.004 289 -0.224 0.000 -0.001 40 0.002 285 -0.201 0.002 -0.003 53 0.002 285 -0.213 0.002 -0.003 53 0.002 285 -0.205 0.007 -0.002 -7 -0.001 283 -0.201 -0.001 0.005 7 0.006 290 -0.224 0.000 0.004 -3 -0.000 290 -0.224 0.000 0.000 37 0.002 283 -0.204 0.002 -0.005 37 0.002 283 -0.204 0.002 0.004 23 0.001	285 -0.207 -0.002 0.004 380 0.016 -0.109 287 -0.218 -0.001 0.003 289 -0.224 0.000 -0.0017 3 0.000 283 -0.204 -0.003 0.009 286 -0.213 0.092 -0.003 285 -0.213 0.092 -0.002 283 -0.205 0.002 -0.002 283 -0.204 0.002 0.004 -3 -0.000 283 -0.204 0.002 0.004 -17 -0.001 283 -0.204 0.002 -0.002 284 -0.204 0.002 0.004 285 -0.204 0.007 290 -0.204 0.007 200 0.002 2000 0.000 200 0.002 2000 0.002	0
287 -0.218 -0.001 0.003 290 -0.224 0.000 -0.001 3 283 -0.204 -0.003 0.009 40 286 -0.213	287 -0.218 -0.001 0.003 290 -0.224 0.000 -0.0017 3 283 -0.204 -0.003 0.009 286 -0.213 0.092 -0.003 285 -0.213 0.092 -20 283 -0.205 0.002 -0.005 283 -0.201 -0.001 0.005 290 -0.224 0.000 0.004 -17 283 -0.204 0.002 -0.009 283 -0.204 0.002 2.000 283 -0.204 0.002 2.000 283 -0.204 0.002 2.000	0
290 -0.224 0.000 -0.001 3 283 -0.204 -0.003 0.009 40 286 -0.213 0.002 -0.003 53 285 -0.213 0.002 -20 283 -0.204 -0.000 -0.002 -7 283 -0.201 -0.001 0.005 -7 283 -0.204 0.000 0.004 -17 283 -0.224 0.000 0.000 -17 283 -0.204 -0.000 0.002 -17 283 -0.204 -0.000 0.002 23	290 -0.224 0.000 -0.0012 283 -0.204 -0.003 0.009 286 -0.213 0.092 -0.003 285 -0.213 0.092 -2.0 283 -0.205 0.002 -0.005 283 -0.201 -0.001 0.005 290 -0.224 0.000 0.004 -17 283 -0.204 0.002 -0.009 283 -0.204 0.002 2.009 283 -0.204 0.002 2.009	0
283 -0.204 -0.003 0.009 40 286 -0.213 0.092 -0.003 53 285 -0.213 0.092 -0.003 53 283 -0.205 0.002 -0.006 7 283 -0.201 -0.001 0.005 7 290 -0.224 0.000 0.004 -17 283 -0.204 0.092 -0.003 37 283 -0.204 0.092 -0.003 37 283 -0.204 0.092 -0.002	283 -0.204 -0.003 0.009 40 286 -0.213 0.092 -0.003 285 -0.213 0.092 -0.003 283 -0.205 0.002 -0.005 283 -0.201 -0.001 0.005 283 -0.204 0.000 0.004 -17 283 -0.204 0.002 -0.00 283 -0.204 0.002 2.000 283 -0.204 0.002 2.000 283 -0.204 0.002 2.000 283 -0.204 0.002 2.000	0
286 -0.213	286 -0.213	0
285 -0.210 -0.000 -0.002 -20 283 -0.205 0.002 -0.006 -7 283 -0.201 -0.001 0.005 -7 283 -0.206 -0.002 0.004 -3 290 -0.224 0.000 0.000 -17 283 -0.204 0.002 -0.002 31 283 -0.204 -0.000 0.002 23	285 -0.210 -0.000 -0.002 -20 283 -0.205 0.002 -0.006 -7 283 -0.201 -0.001 0.005	0
283 -0.205 0.002 -0.006 -7 283 -0.201 -0.001 0.005 7 283 -0.206 -0.002 0.004 -3 290 -0.224 0.000 0.000 -17 283 -0.204 0.002 -0.003 31 283 -0.204 -0.000 2.002 23	283 -0.205 0.002 -0.006 -7 283 -0.201 -0.001 0.005 7 283 -0.206 -0.002 0.004 -3 290 -0.226 0.000 0.000 -17 283 -0.206 0.002 -0.00 37 283 -0.206 -0.002 23	0
283 -0.201 -0.001 '0.005 7 283 -0.204 0.000 0.000 -17 283 -0.204 0.002 -0.000 31 283 -0.204 0.002 2000 31	283 -0.201 -0.001 '0.005 283 -0.206 -0.002 0.004 -3 290 -0.224 0.000 0.000 -17 283 -0.204 0.092 -0.000 31 283 -0.204 -0.000 0.002 23	0
283 -0.206 -0.002 0.004 -3 290 -0.224 0.000 0.000 -17 283 -0.204 0.002 -0.002 31 283 -0.204 -0.000 2.002 23	283 -0.206 -0.002 0.004 -3 290 -0.224 0.000 0.000 -17 283 -0.204 0.092 -0.000 31 283 -0.204 -0.002 23	Ç
290 -0.224 0.000 0.000 -17 283 -0.204 0.002 -0.002 37 283 -0.204 -0.000 2.002 23	290 -0.224 0.000 0.000 -17 283 -0.204 0.002 -0.000 37 283 -0.204 -0.002 23 C., Ch	0
283 -0.204 0.002 -0.002 283 -0.204 -0.000 0.002	$\frac{283}{283} - 0.204 - 0.002 - 0.002$ $\frac{37}{283} - 0.204 - 0.000$ 0.002 $\frac{37}{23}$	0
283 -0.204 -0.000 0.002 23	283 -0.204 -0.000 0.002 23	ם
	C_{ν}	0

TN-66 15:1 10-FC	
5:1	
1 99-	
575 PH-	
515	

		СМР	609*0	0.595	0.560	0.554	0.592	0.538	C.564	0.459	0.655					
		CNP	-0.136	-0.131	-0.127	-0.117	-0.127	-0.107	-0.108	-0.065	-0.166					
		VR	0.197	0.297	0.284	0.210	0.156	0.111	0.078	0.047	0.028	0.007				
		R PM	4587	6913	0 580	4843	3607	2587	1810	1 1 00	643	167				
TF	3	CYN	0.120	0.1777	0.159	0.116	0.092	0.060	0.044	0.022	0.018	0.008/			14.	
TTF		CΥ	-0.027	-0.039	-0.036	-0.024	-0.020	-0.012	-0.008	-0.003	-0.005	-0.001	+	-		> -
p T p	7 1027	CLM	-0.112	-0.143	-0.146	-0.148	-0.119	-0.108	-0.109	-0.107	-0.097	-0.108				
	461 150	CN	0.217	0.224	1 •	•	•	. •	•	•	0.214	•				
	3.03	COME	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
TH CONF	1 99	ALPHA	8.48	8.48	8.47	8.48	8.48	8.48	4.48	8.48	A . 48	В. 48				
d IST	575 1 66	MACH ALPHA	0.801	0.901	0.757	0.795	0.795	0.800	0.801	0.800	0.804	0.800				
RUN	11	SEO	-	ر ر	-	•	ī	9	~	€	0	10				

ভালেক ক্ষিত্ৰ জন্ম ক্ষুত্ৰ ক্ষুত্ৰ Samuel Company of the Company

errora e es

P N / L 3.03	0 PT 0 PT 1566 TO	\$201	11F 84	1F				-
- 1	CN	CLM	۲)	CYII	RPM	A.R.	CNP	CMP
	155		-0.018		4610	0.198	-0.091	0.409
		-0.043	-0.020		4607	0.198	-0.101	0.428
1	153	1	-0.015		4540	0.195	-0.075	0.369
	155		-0.027		0 9 4 0	0.299	060 0-	0.408
			-0.027	0.163	6837	0.294	-0.091	0.417
	l	ì	-0.028		0.870	0.295	-0.095	C.420
	951		-0.026		6 800	0.293	-0.088	0.401
	58		-0.020		5787	0.250	-0.080	0.373
1	56	1	-0.019	610.0	4523	0.195	660.0-	0.402
			-0.015		3517	0.151	-0.100	0.401
	154	-0.055	-0.009		7997	0.115	-0.079	0.346
ļ	152	1	-0.006	670.0	1893	0.082	-0.068	0.309
	155		-0.003	0.013	1330	0.057	-0.050	0.223
	155		-0.003	0.011	817	0.035	-0.097	0.322
İ	152		-0.006	0.017	447	0.019	-0.306	0.903
	154		-0.000	100.0	130	900.0		
	153	-0.051	-0.002	0.40%	0.1	0.000		

i

	;	: :	СМР	0,229	0.269	0.274	0.278	0.254	C.280	0.254	0.197	0.180	0.161	0.149	0.249	0.300	0.243	0.360	0.872	
19			CNP	-0.051	990.0-	-0.071	-0.069	-0.059	-0.067	-0.060	-0.050	-0.044	-0.040	-0.030	-0.071	-0.091	-0.071	-0.117	-0.312	
PAGE			VR	0.197	0.197	0.196	0.297	0.297	0.296	0.294	0.255	0.202	0.155	0.123	0.093	0.065	0.044	0.027	0.015	0.005
17:32			RPM	4587	4573	4553	6870	6857	0989	- 6853	5917	4680	1658	0 8 8 7	2153	1451	1027	633	360	107
10 AUG 83017:32	1F	22	CYN	0.045	0.053	0.024	0.083	0.075	0.083	0.075	0,050	0.0.0	0.025	0.018	0.023	0.019	0.011	0.010	0.014	0.006
	111]	ک	-0.010	-0.013	-0.014	-0.021	-0.017	-0.020	-0.018	-0.013	-0.009	900.0-	-0.094	-0.007	900.0-	-0.003	-0.003	-0.005	-0.002
-FCRCEOUTI	d Lu	1566 1026	CLN			Į.		-0.028	ļ			-0.030			1	-0.024			-0.026	-0.034
ID-FCRO	~	461 156	CN		-		0.103							0.101			0.101			0.103
	RHZL	3.03	CONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TST-575 PH-1 TN-66 19:1	TN CCNF	56 1	ALTHA	4.18	4.18	4.18	4.18	4.18	4.18	4.18	4.19	4.18	4.18	4.18	4.18	4.18	4.18	4.18	4.18	4.18
PII-I IN	151 n TM	575 1	MACH	0.802	0.802	0.901	0.796	0. 796	0.798	0.803	0.931	0.797	0.197	0.799	0.798	0.197	2, 799	0.801	0.801	0. 199
151-575	RUN	19	SEO	1	2	3	47	υ	9	~	80	6	10	11	12	13	14	15	16	1 1

.

	1 -1 d	11-66 23	٤:	10-FUP	FORCE CUT1		10 AUL 83@1	d3wl1:32	P AGE	23	
RUM	TST P	THE CCE	r BAZU	-	ρŢ	TTF	TF				
	4 5	99	•	579 13	93 57	ج 1	37				
0.	HOVI.	VHATV	CCME	ij	CL. 4	۲	LYN	RPM	۸ ن	CNP	СМР
			1	1) } !	"9				
~	~		•		Ċ	0.009	970-0-	83	္		
•	1.239	0	•		-3.621	0.005	10000-	33	\sim		
5	6. 22			1 .	0	0.011	-0.00	19	9		
Ð	١,			•	ن	010.0	-0.018	43	٠,		
_	٠,٠			•	c	0.007	-0.011	63	٠,		
iæ	li 🗸			٠.	ات	-0.025	1.	5	-	0.12	9
٦				•	ာ	-0.023	٦.	4	-	0.11	€68
0					o	-0.024	-	6407	٦.	.12	69
_	11-				O	-0.024	0.138	100	Γ.	0.12	.71
~ ~	1.293				Ö	-0.020	٦.	4	Ξ.	0.10	.64
~ ;	1			•	Ċ	-0.038	N	9	2	.13	.70
14	1.200				-0.664	-0.038		70	2	2	59
5		0		•	•	-0.040	0.415	7	2	.13	.72
٠	1.2.32	10.71	•	•	-0.647	-0.041		11	~	.13	.72
1	. 1	0				-0.040	0.2157	 -	1	0.13	7
æ	٠.		-		•	-0.035	Ξ.	ட	2	0.12	•66
5	\sim			•	ပံ	-0.035	0.179	u 383	2	.13	69.
0	100				159.0-	-0.023	7	7	3	0.10	63
_	~	•	•		÷	-0.015	0.111	\sim	_	0.07	.58
(7	5	17.71			C	-0.015	٦.	3	7	0.09	.61
~	10				į.	-0.013	7	9	-	60.0	• 64
	~	•	-		-0.617	-0.009	0.0/1	$\boldsymbol{\omega}$	~	0.07	. 59
5	•	•	-		179-0-	-0.003	?	7	਼	.93	.51
9	1.			٠.	0	-0.006	10	1	17	0.07	19
~		•			-0.605	-0.001	٥.	2	0	.01	.52
30	۲,	•			0	0.092)	1 787	0	.04	42
10		٠. •			10	0.003	; >	ico	9	.06	35
30	1.201	10.12	0.0	0.407	-0.614	0.005		1103	0.034	0.159	0.172
. 	1.201	•			0	0.006		733	0	.26	03
•	1	•	۰								

54	575 1	i où	86.5 · ··	579 13	392 512	- 06 3	33				
[0	HOVE.	VILPHA	Tiu.75	CN	CLM	CY	ראוז	RPM	۷R	CNP	СМР
_	1.202	1,		7	Ċ		70.	30	00.		
2	1.701	n 58	()•)	0.297		0.006	-0.010	47			
-	1. 1	ir.	0.0	•	C		7	57	00.		
*	L.		0.0		<u>.</u>		-0.019	1.47	00.		
۲	1.207	·.	0.0	•	0		3	110	00.		
9	ic.1	ir.	7.1	12	0		11.	4	61.	0.11	.61
~	0	5.	•		÷		.11	~	.19	0.09	.57
5 .	1.201	ς.	0.0	-	်		71.	C	.19	0.11	.62
10	100	ir.	0.0	1	0		21.	رسا	19	0.11	.62
\rightarrow	∵∵;	5	0.0	~1	ပ်		. 1.	•	.19	0.10	• 59
_	\sim	7.	0.0	•	•		1.	9	.29	0.10	• 58
2	10	5	0.0	-	:		18	10	52.	0.12	.62
~	\sim	7.	ວ•ວ		0.	•	. 1.	5	.29	0.10	.57
.+	1.290	5	0.0		Ĵ.	-0.033	11	79630	.29	.11	09.
100	10	5	0.0	L.	0	•	11:	ļr.	5.5	0.11	.59
2	C	ſ.	0.0	•	·	•	11.	5	.29	0.10	• 58
7	U)	5	3.0	Γ.	•	•	ئا.	2	.28	0.09	53
E	10.	12	0.0	T.	0	-0.022	7	1	.23	0.09	.55
-	\mathcal{C}	5.	0.3	٠.	0	•	01.	9	.20	0.08	• 53
0	٠.,	ſ.	0.0	٠,	0	•	٠. د ن	ω	.17	0.08	• 54
	102.1	IL.	0.0	i	: :	-0.011	. C.	9	.15	0.07	.53
~	٠.	ς.	0.)	•	÷	•	• U &	2	.12	0.05	64.
~	1.201	9	0.0	٠	Ċ	•	٠04	9	1.	0.03	•44
7	10	14	0.0	2	ြ	. •	40.	0	0.09	0.05	.50
5	1.201	ī.	0.0	5	0	•	• 0.4	9	.08	0.07	.53
9	ر ۲	5	0.0	٠.	÷	•	۵0.	-	90	.03	.30
1	\sim	in	0.0	.2	0	•	TO.	-	0.2	. 05	. 23
8	\sim	5	0.0	2	ö	•	.00	3	.04	.19	90.0
c	1.290	5	0.0	.2	•	0.012	\supset	\circ	0.3	0.368	-0.492
	\sim	ļu.	0.0	2	ပဲ	: •	00.0	743	0.5	3	0.37

=	1 5	וויייי וו	^ 	~	- 1	111	-				
25	575 1		0.0	587 14	11.5 5.11	ĺ	32				
3	HACH	ALOPA	CONE	CN	r. 13	CY	١١٨٥	RPM	VP.	CNP	СМР
_	. 20	٠,	•	٠ د	0.1	.00	•	100	00.		
~	262.1	6.38	0.0	0.207	_	0.001	0.000	93	0.003		
~	20	٠.	•	~	-	0.0	•	14	00.		
4	0.2.	4	•	ς.	0:1	. 00	•	7.5	00.		
۲	• 2.0	٣.	•	.2	0.1	.00	•	80	00.		
عا	20	100	•	. • ICT	 	01	•	L)	19	0.08	• 50
~	0.2	~	•	. 2	0.1	.01	•	9	.20	0.05	.42
æ	.20	~	•	7	0.2	10.	•	9	.20	0.05	• 45
 C	5.0	100	•	.2	C. I	0.	. •	S	.20	0.06	.42
C	0	•	•	٠,	0.1	.01	•	4	.19	0.08	• 50
_	02.	٠,	0.0	. 2	0.2	.02	•	Θ	.29	0.07	.43
2	.20	T.		.2	0.2	.02		ıω	•29	0.08	.46
	0.3.	ς.	•	. 2	9.2	.02	•	∞	• 30	0.09	• 46
	\circ	~	O• C	. 2	0.2	.02	•	7 4883	.30	-0.089	0.487
ا د	.20	<u></u>	•	٠.	0.2	0.	•	~	• 5 0	90.0	• 42
9	0%	,	•	٠,	0.2	.01	•	7	• 28	90.0	• 39
~	2.0	3	•	~	0.2	.01	•	9	•24	0.06	04.
	20	~		.2	0.7	0.	•	∞	.20	6.06	. 41
	2.0	*	•	• 2	C • 2	.00	•	\Box	.17	0.03	• 38
0	20		•	.2	0.2	.01	•	6	.15	90.0	• 44
	20	3	i •	102	0.2	00.	, •	10	.12	0.05	44
	Ûć			2	0.2	.00	•	9	.11	0.03	.40
	20	~		ζ.	0.2	00.	•	0	•00	0.02	• 43
24	70	~		٠٠	0.2	00	•	ķ	0.1	0.01	• 38
	2.0	~	•	. 2	0.1	.00	•		.06	0.11	. 7 I
	2.0	~		2.	0.1	.00	•	9	.05	0.00	• 46
	20	1		. 2	0.1	000	. •	3	.04	00.	.46
	66			• 2	0.1	00.	•	853	•02	• 06	• 45
	0	ε.		• 2	0.1	00.	•	009	0.	•16	90.
	10,	-		10	0	00		300	0		

STATES NAME - 4 PM

The second of

The state of the s

		1.62 60-61	-	31.) - C.I	1 () () () () () () ()	,	10 AUG 63011:	76:11	PAGE	. 97	
2	[G]	H. CCH	~		d td		<u>.</u>				
26 51	: :	5.5	1.00	58814	12 21	2					<u></u>
SFI) HA	114011	11 P.A	CCPFF	113	CLM	C.Y	27.0	RPM	VR	CNP	CMP
	207			-	0	0.001	0.015	63	00.		
2 1.2	202		0.0	0.129	-0.092	•	0.026	63	00		
-	202			•	o	0.003	0.011	66	0		
_	202	~		-	\sim	•	0.000	27	00.		
-	202	-:		•	-9.086	÷.	610.0	16	00.		
-	701	~			10		0.305	05 7 0	61.	-0.053	0.332
-	102	-:		_	-0.049	-0.009	0.003	6453	.19	-0.045	
-	163	-		-	\supset	-0.010	0.005	6.383	.19	-0.054	4
	701	.		-	10	-0.010	0.005	6403	6 I.	-0.054	
	107	-		-	\Box	-0.010	10.004	6391	.19	-0.051	Ę,
-	5.00	-		-	-0.095	-0.013	0.087	9603	• 5 9	-0.045	0.296
-	200	-		_	10	-0.016	0.000	6216	.29	-0.052	7
-	167	-:			-0.038	-0.016	/ 560.0	7887	• 5 9	-0.052	ď.
_	201	٦.		-	ပ်	-0.015	6.090	18831	•28	-0.049	2.
	-102	_		. •	-0.089	-0.015	0.088	9823	.29	-0.050-	2
_;	5.00	-		-	<u> </u>	600.0-	0.000	9407	•28	-0.032	• 2
	707	~		7	-0.093	-0.011	•	8107	.24	-0.045	?
-	701	-		· •		-0.005	0.044	0869	.21	-0.022	7
9 1.	00%	-		-	Ö	-0.003	٦.	6003	.18	-0.016	• 2
0 .1.	107	-		_	ਂ	-0.001)	5147	.15	-0.004	-2
1	702	•		-	-0.085	-0.002	0.035	4337	.13	-0.014	-2
2	000	~			÷	0.000	~	3667	.11	0.003	٦.
3 l.	7.00	_		٦.	0	0.000	10.	3087	•00	0.004	∹
4	5 00	1 .		,	0	0		2570	.07	-0.012	• 2
5	200	_		~	0	-0.092	0.026	2010	•06	-0.028	·.
_	. U .	-		-			=	1683	.05	0.001	.
				•	•	•				,	

C	1 5)5		•	584 I4	106 064) `	33				
	HJV i	VI OHV	COME	CA	נו א	CY	NAO	RPM	VR	CNP	CMP
~	1.139	10.73	•	•	0	0.011	-0.020	<u>.</u>	਼		
4	\sim	`.	•	•	-0.591	0.006	2	0	0.		
2	1		•	į •	S	0.013	20.	0			
9	ς,	٦.	•	•	÷	010.0	70.	0	0.		
~	1.201	10.72	•	•	0	0.012	\supset	0	0.0		
15	_		•	1 •	0.61	-0.023	113	6477	0.1	-	.67
6	۲,	۲.	•	•	0.62	-0.022	~	6453	0.1	.11	•66
_	_	`.	•	•	0.51	-0.021	-	6443	0.1	.10	.64
: -	1-		•	•	$\vec{0} \cdot \vec{6} i$	-0.026		0949	0	13	71
~	2	. 7	•	•	0.61	-0.022		0467	0.1		•65
*	1.200	۲.	•	•	0.65	-0.040	•	9673	0.2	.13	7.
1.	iv.				0.63	-0.040		0696	0.2	.13	7
Ľ	1.20%		•	•	•	-0.037	102.0	9700	0.2	.12	•68
9	۲.	٠.	•	•	C. 64	-0.040	, .	0596	0.2	•13	2.
~	1	0.7	•	•	0.64	-0.038		9673	0.2	.12	69.
	\sim	٠.	•	•	0.64	-0.034	•	9587	0.5		• 64
	ζ.	0.7	•	•	0.63	-0.034		8633	0.5	.13	58
	\sim	-			0.62	-0.027	•	1723	0.2	0.11	• 64
	?	-	•	•	19.0	-0.022	-	0889	0.2	0.10	•63
	\sim			•	C.62	-0.019	-	0113	0.1	.10	.63
	.2		•	٠.	09.0	-0.018		5413	0.1	0.11	99.
	\sim		•	•	09.0	-0.013	•	4727	0.1	60.0	.61
	2	~	•	•	0.61	-0.010	0.076	4210	0.1	0.08	.59
26	1	7			09.0	-0.009		3721	0	0.07	
	\sim	~		•	0.60	-0.005	•	1253	0.0	• U 4	.53
	2	. 7		•	0.60	-0.006	•	2873	0.0	0.06	٠. ب
	100	1.	٠.	•	09:2	100.0	0.032	2513	0.0	3	7 t I
	\sim	. 7	•		0.60	-0.001	•	4183	0.0	.01	65.
	C			•	09.0	\supset	170.0	1883	0.0	0.09	46
	100	1			0.59	0.004	. •	1807	0.0	.07	35
~	1.199	10.74	0.0	0.406	-0.608	0.001	0.017	1301	0	0.032	0.434
3.4	\sim	٠,		•	0.60	0.011	-0.013	680	0.0	.53	63

₹ # Gr	- 1	1.1	CCTFF	1711	~ :	d H	116					
~	25	د 9	۲,		VT 665	ir	1	 9				
31. (- 4AC	ta Vi bi	Y	JII.	5	- CLM	CY	LYM	k d a	VR	CNP	СМР
		, 6.	~		ĵ.	-	00.	0.001	0	C.		
-	02.1 5		11	D. C	0.204	-0.184	0.004	-0.004	0	0.000		
	-	9	ī	•	~	•	00.	·	0	ς.		
-		6.		٠	?	-	00.	400.0	Û	0		
_		٠,	C.	J. C	0.2	-0.188	.00	0.010	0	0		
•		12	!	0.0	5	_	.00	0.005		o,		l
٠	<u>-</u> :	÷	₹	•	2.	٠	0.	0.103	•	٦.	0.08	.52
			ξ.	•	• 2	•	0.	\rightarrow	*	٦.	0.06	•46
•	_	i C	Ē		5.	•	.31		•	_	0.09	. 51
<u>`</u>	-	6.	=		5:	•	.01	\supset	*		0.07	94.
_	-	÷	α.		2.		16.	\sim	4	٦.	0.08	• 50
1	-	()	1		5		-0.022	-	-	.2	0:01	25.
-	-	ç	x		? •	•	.02		S	• 2	0.08	.43
<u>`</u>	4 1.200	٠,	æ	0.0	~:	•	.02	0.135	4673	0.293	-0.086	0.463
-	_	9	: :	: Q • [. 2		.02	. —	9	2	0.08	44
_	_	6.	/		٠,	•	2	-	9	• 2	0.07	.42
_		,,	7	J. C.	5	•	.02	-	Ç	2	0.08	949
1		4	=).)	. 2	٠.	0.5		9	7	0.07	•42
_	-	Ş	~)• • •	5.	•	10.	┙	S	• 2	90.0	040
36	-	·	c.) • ;	0.209		.01	_	0	•2	0.07	14.
ī~		6	 	. · · ·	. ż	•	710.0-	0.076	0	_	C.06	.42
2		ς.	7	_	2	•	-0.008	30	\sim	~	0.04	•39
۲,	_	ę	t.	٥.,١	. 2	-0.189	.00	0.004	9	٦.	0.06	• 45
16	-	9	: : !		5		0.005	3	0	7	0.04	.40
, r	-	· y	Œ		. 2	-	.03	40	4	٦.	0.06	• 45
26	-	•	8	0.0	• 2		0.01		20	٠ د	0.12	.61
	-		E	•	5	Ξ.	-0.001	.0.	,	0	0:01	.35
3.5	~	6.	æ	0.0	ζ.		00.	36.	9	0.	0.03	• 49
۷.		,,	€		.	0.18	00.	-	5	0.	.03	• 35
: :		5.		C. O.	0.205	-0.188	000.0	.01	_	C	<u>0</u> 0.	. 48
Ĩ.	-	¢	æ	•	• 2	0.18	00.	2	813	0	0.	.6 2
. j.	-	٠,	æ		5	.18	00.	Ō	533	0.	.15	٠,
	-	k			r	E . K	KK	11		C	r C	908

		dk		:			16.	\sim	L/ : 1	~ ' [$^{\vee}$ $^{\subset}$	(-1)	~		7	\circ		æ ι	r (- 3	٠ . C.	, ~	•		~	C ::	_
ļ		ر		!			•	٠	• .	•	•	0.3	•	•	٠	•	• 1	•	•	• 1	•	•	• •	•	•	•	•	•	
37		CNP		1			0.04	90.0	0.04	0.05		-0.056	0.06	0.05	0.06	0.05	0.05	\$0.0 0	0.00	\$0 C	60.00	70.0		0.05	0.13	ö.öi	0.05	0.11	
PAGE		۸۲	00.	00.	C		<u>. 19</u>	.19	.19	61.	. T .	.29	.29	67.	• 5 9	•29	• <u>2</u> 9	• 25	77.	7	٠ <u>-</u>		1: C	0.8	.06	.05	•04	 	
7:32		RPM	0	0	0 1		0470	٠	₹ .	٠ ٠	* 4	1196	9	9	9	₽	91	ς (•	÷	.		> ⋅	~	~	9	1543	1150	
I) AUG BENT		C Yill	0.012	0.032	70.	710.0	0.003	10.	0.004	٠ د د د	0.003 0.003	150.0	0.096	6,00.0	•	0.089	0.090 /	0.073	` ``	0.059	† :	† ×	1 0 0		40.	.5	0.020	0.042	
-	$\frac{11}{100} = \frac{16}{26}$	۲	0.003	900.0	h	.00.0		•	00.	- 0 :	9 3	-0.017	.0.	.01	0.	01	10:	0.	0.		00.		-0.000		0.	0.0	0.0	7.0.0-	
rncīi	11 P	N D		=	Ċ	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, –	•	<u>.</u>	ċ:			0	ပ်	Ċ	٠ :	Ċ.	ં	· ·	ंः		• -	٠ د د	· -		ن ا	0	-0.030	
m-file muī	6 5 C	11	0.127	0.126	0.125	0.174	0.126	0.128	0.12B	0.127	2.71.0 0.71.0	0.1.0	0.128	0.126	0.127	0.1	0	-	0.126	0.126 	U.124	1) • 1 < 4	1.1.0	0.124	0.125	0.125	0.125	0.125	
	10.270	alari		0.0		7 T	: · ·	0.0	0.6						· · ·)• G		೧•೮	· ·		9.0	7.5	9 T	· :	n.0	0.0	\$ • \$	
14-66 17:1	71) CENE 64 - 2	ALPEA	•	•	<u> </u>			•	•	•	•			•	•	•	•	•	•		•	•		•		•	•	•	
Pit-1-Fig	1.1 P 57.5	HOVE	1.703	1.201			1.00	102:	1.51	102.1	100		107.1	1.7.11	1.703	1.7 7.1	1.701	1.501	161	1.5.1	10.	-	16.6.71	-	16/-	0,	() ()	1.133	
1 - 5 7 5	14 in 13 in 14 in	5 15	_	r.j.	~ ,	∵ "	٠. ٤		~	÷ ;	_ =	- 1.	<u>-</u>	5 1	5 -	<i></i>	7 1	=	6-	60	<u>.</u> ;			÷ ជ ៤ 1	· · ·		υ _τ .	i ć	

ey so so

1878 18 0 03(H	Till CEME	Wind		d 10	111	1				
Ξ,		1.01	504 14	<u>.</u>	ļ	26				
	VHC IV	Harry .	5	F [0]) C Y	CYII	Кри	V R.	CNP	CMP
	16.1	0.0	•	-0.04	00.	70.	0	000.0		
16:001 6			0.054	-6.007	-0.004	0.022	0	00000		
•	1.55	0.0		•	00.	. ·	٦	0		
_		()•()	•	900.0-	.00	٦,	0	0.		
1.	-	⊋•°0	•	-0.010	.00		C	Ξ.		
1F .	<u>-</u>	0.0		- 0.006	.00	,	4	7	0.04	. 22
-	-	0.0	•	-6.012	000)	*	٦.	0.00	.13
-	_	10.)	•	-0.010	-0.005	٠.	,	~	0.02	610
-	-	0.0	•	_ i io•o	-0.000	· >	*	_	C.00	. 14
_:	-	0.0	•	-0.003	-0.001	7	*		0.00	.12
		0.3	•	-0.010	0.	5	£	7.	0.03	.20
		0.0	•	110.0-	0	3	9	5	0.05	. 23
-	-	1.)	•	-0.019	.00	?	9	• 2	0.01	. 14
· .	-	1).)	•	-0.009	-0.008	100.0	0696	0.293	-0.027	0.176
1. 2	: <u>-</u>	0.0	•		-0.044	2	9	7•	0.01	5
` <u>·</u>	~	0.0	•		-0.012)	÷	• 2	0.04	• 20
. ·	_		•		-0.008	•	5	• 2	0.03	•17
7.1	-				.00	?	4	. 2	0.03	.21
` <u>·</u>			•		-0.008	~		-:	0.04	. 23
_	-		•		00.	3.	2	٦.	0.01	-1.
<u>:</u>	-		•		00.	?	3	7	0.04	• 26
71					00.)	Ç	٦.	.01	• 1 5
-					.00	٠	\circ	÷	.00	.20
•	,		•		00.	5	4	0	0.09	• 45
•	_		•		.00	7	\circ	਼	.01	.32
-	_	٠ <u>٠</u> ٠	•	-0.009	0.004	0.005	9	0.	C.08	•00
	<u>.</u>		•		.00	\supset	\sim	0	0.14	. 75
1.7	_		•		-0.015	2	156	0	.50	• 74
: 1.ºc1	-		•		00.	0.026	659	਼	0.28	.23

A1. (9.1	715	2 2 2 3	1748 3.05 3.05	$\frac{9}{47} = \frac{9}{16}$	604 <u>1059</u>	36	30				
÷ :	OH WE	٧ +	16:3	153	ET)	د ۲	١٧٦	P. P. I	ΛP	CNP	CMP
•	_	çç	C . C	. 2.9		-0.000	100.0-	0	Ξ.		
-,	10.	-	c•3	0.286	-0.202		0.00	0	0.000		
-	15.	1	. •	. 28	100	-0:000	00.	0	9		
Ċ	1.0	6.5		.28		.00	00.	0	0		
=	. 10.	9	ن ن ن	• 28	_	.00	200.0		0,	1	!
ic.		٠.	•	.29	1:-	-0.031	.15	6	•	0.15	.68
0.6	01 10.	44		• 29	- 5 3	.02	.14	9	٦.	.14	•65
-	1.).	6.6		. 29	_	-0.029	.13		7	0.14	•66
÷	. •		. 0	• 29	, -7	.03	.13	Ŋ		0.15	.67
٦	10.	Ü		.29	_	.02	71.	5	7	0.14	.6
-	• () -1	5	•	67.	-	•04	٠1 ط	0.860	• 2	-0.143	0.632
ic.		ļΦ.		<u>. 29</u>	1.7	-0.038	7	α	~	0.12	9
÷.	10.	6.5	•	.29	$\overline{}$	• 04	61.	8	• 2	0.14	•64
- \$		99	0.0	.29		.04	0.100		• 2	0.14	• 64
-5	10.	œ	•	52.	15	. 104	. 1.	(0)	5	0.14	.65
5	1.	¢	•	.29	()	.0.	.10	\mathfrak{D}	. 2	0.14	.63
5	•	S	0.0	.29		-0.034	• 	\overline{x}	5	0.13	•62
ic.	19.	ν.	0.0	. 29		• 03	.13	ϖ	.2	0.14	• 45
9 0.	10.	Ç	0.3	.29	$\overline{}$.02	.10	0	٦.	0.13	• 61
0.0	2 10.	65	0.0	. 28		0.01	•	*		0.11	5.5
_	7 10.	5	0.0	. 2 A		0.	· 0.	∞	~	0.11	.59
5	10	ς.	0.0	.28	_	.01	.06	\mathbf{r}	0	0.15	• 64
3).	4 IO.	Š	C • D	.28	_	.01	2	r.	0	0.15	٠6٦
	$\frac{5}{3} = 10$.	66	0.0	. 28	0	00	7	0	0	0.06	.42
5 U.	> 10.	66	(, .)	. 2.9	0.20	00.	•		0	0.08	.47
ი ე			0.0		.20	00.	•		٥.	0.05	• 38

	1-110	1:(0) 00-0		0.01-01	-FPPCFCUTI		10 AUG 83017:	17:32	PAGE	40	
	151 P 575 1	1.1) - <u>199</u>	1 PNZ 3.05°	471 116	pt p	111	11 29				
51.3	117/11	ALPHA	i i i i i i i i i i i i i i i i i i i	1:0	U 10	C.Y	CYN	RPM	VR	CNP	CMP
_	1, 800	•	0.0	0.214	•	0.0	10.	80	• 0 0		
• • :	C. 79		J• J	0.212	-0.095	-0.004	0.015	၁	0.000		
~	0.793	19.40		0.212	•	.00	. J	0	00.		
, +	<u> </u>		0.0	7.	-0.0%	.0.	•	0	00.		
<u>.</u>	1	•)• c	0.213	-0.093	-0.000	•		•00		
	٠,	4.60	0.6	.21	0.107	0.	. i	5	• <u>1</u> 9	0.13	5.0
~	\simeq	•	(• (0.217	-0.106	50.	11.	-7	.19	.13	. 59
€	~	٠.	C.0	. 21	-0.104	.02	11.	3	•19	0.12	.57
10-	-	•	0.0	9.216	-0.116	.03	17.	Š	19	0.12	.60
C	~	•	0.0	0.216	-0.110	.02	. 1.	2	61.	.13	.61
	0.903	•	0.0	.22	-0.135	.03	7.	6830	•29	0.12	• 56
ارز	1==	4.49	5.5	0.219	0.125	0.3		α	.29	0.13	• 59
~	0.799	•	J•0	.22	-0.130	• 03	-	Œ	• 5 9	0.12	.57
	0.798	٠,٠	0.0	0.219	-0.125	.03	٦.	8	• 5 9	0.12	.51
ıv-	n. 800	R. 49	0.0	.23	-6.131	Ú3	-	Ξ,	<u>. 29</u>	0	.53
÷	661.0	4.	0.0	. 21	-0.126	. ĵ3		8	67.	0.11	.53
~	0.796	•	1).)	0.221	-0.136	€0.	٦.	c	•24	0.12	5.5
7.	0.737		()•()	. 22	-0.132	.02	٦.	8	.21	0.10	.51
c	108.0	•	0.0	.21	-0.111	-0.050	3.	\supset	.17	0.11	• 56
(,,	σ.	٥.	0.0	.21	-0.10A	0.	5	ال	.14	60.0	.51
, 	=		0.0	. 2 i	011.0-	10.	3	-	-	0.10	. 52
ر ۲	۲.	я.50	()•()	0.216	-0.109	.01	30.	2	•03	0.12	•58
~1		•	C. C	. 2.1	-0.100	-0.012	¿.,5	\boldsymbol{x}	.07	0.15	.65
14	in.	15.6	0.0	: 5:	-5.102	.00	ان	4	• 0.6	0.13	• 61
'n	04.		•	.21	460°0-	00.	, o.	-	•04	90.0	.41
ζ,	=	15.8		0.215	-0.103	600.0-	•	018	•03	-0.216	0.768
				. Ž	-0.093	100		567	0.5	0.05	40
		,					,				•

:

<i>-</i>	ر 1	٠	V 22 2	ç							
15 . 14	5 1 66		3.06	474-1604	04 1048		28				
31.0	MACH	11 " F A	CONT	137	5	CY	CYN	RPM	VR	CNP	CMD
,	A () 4	~	်	0.154	19.02	<u> </u>	0.005	0	00.		
2 0	404	6. 34	· •		9.046	5	•	C	00.		
İc	904	6.34	0.0	0.154	-0.047	0	0.004	0	00.		
ີ່	4) h	45.44	٠. د.	. 1.5	-0.042	5		Ð	00.		
. O . C	404	-	0.0	. 15	-0.045	00	_		00.		
0	R 1)4	6.34	9.6		-0.043	į	0.077	5	61.	0	• 39
c	908	F.	0.0	.15	-0.041	=	-	5	•19	0.0	• 39
٢)	404	٣.	0.0	0.152	24,000-)2	?	5	•19	ا 🕶	• 43
10	RU2	6.34	: : : :	0.152	-0.045	10	13	S	.19	0.0	•39
	800	6.34	0.0	• 15	-0.048	-	2	S	6 T •	0	•31
်	8.91	, T	ن ن	0.152	-0.042	-0.019	0.034	4567	0.196	-0.099	0.429
0	401	65.34	0.0	-1	-6.060-	33	-	\approx	• 5 9	0.1	.43
	800		0.0	.15	-0.053	32	7	ϖ	• 5 9	0.0	.43
	200	~	0.0	.15	-0.052) 2	7	œί	•29	0.0	42
	105	6.34	0.0	51.	-0.053	33	7	ωi	67.	0.1	44.
	903	~	0.0	. 15	-0.050	<u>3</u> 2	7	∞	• 5 9	0.0	.42
17 0.	0.199		0.5	<u>. 15</u>	-0.064	2	_	~	67.	인	38
!	902		0.0	0.157	-0.064	1	?	\boldsymbol{z}	• 54	0.0	• 35
	40%	6.35	0.0	1.5	-0.062	=	30.	Φ,	• 20	0.0	• 39
. (00%	6.34	0.0		-0.054	7		0	17	임	.36
	661	6.34	0.0		-0.046	1	0.055	3	.14	0.0	٠3،
	000		0.0	5 - 5	-0.043	-	40.	~	.12	0	٠. ج
2.0 2.	402	. ~	0.0	0.153	0.049	00.		\sim	60.	0.0	.24
	803	6.34	0.0	بي) س	-C.051	-0.005	0.	~	.07	0	•30
. C	103	~		5	-0.043	-0.001	.02	3	•06	0.1	. 33
•		~	() ()	5	-0.052	.00	•	0	•04	7	33
2	7 () u	6.34	0.0	_	150.01	00	70.	727	• 0 3	· ·	•45
•	•	•									

11. La	101 D 575 I	TH CUTE	91.7L 3.07	471 16	PT P 504 1042	114	7.F				}
\$1.0	HOAL	A 191.A	CUR	5	- 5	CY	7.7.	КРЯ	Λb	CNP	C'4P
_	060.0	1.17	်	•	~	•	800.0	0	00.		
٠-,		_	. c	0.100	-0.023	200.0-	0.005	0	0.000		
	0,405	4.17	0.0	. •	. <u>6</u> 2	, .	•	0	00.		
٠,•		-	•	•	.02	•		0	.00		
t'		4.17	•	•	.07	•	•		00.		
	11.900	4.17	6.0	•	<u>. 0</u>		•	5	19	0.05	.24
/	9.390		•	0.039	.02		•	S	.19	0.06	• 25
=	0.301			•	.01	•	•	Ŗ,	.13	0.06	. 25
	0. 10,5		0.3	•	.02		•	5	61.	0.05	.22
		4.17	0.0	•	.02	•	٠,	5	.19	0.04	.21
	50.00	-:	ر. د. د	0.100	.02	•	•	E	•29	0.07	.21
:	A. 492		10.15 10.15	•	(0)		3	=	53	0.05	. 24
	1.902	-	0.0	•	.02	•	5	$\boldsymbol{\omega}$	• 5 9	0.04	.22
, -	0.405		0.0	160.0	0.	•	0.073	0.853	• 29	-0.059	0.251
	013.6	-		•	.02		7	8	67.	0.05	. 23
	01 6 0	_	•	•	.02	•	,	\mathbf{c}	• 29	90.0	• 26
	0.803	_	•	•	0.	•	٥.	α	.29	90.0	• 25
	3.807	-			.02		, ,	-	.24	0.05	.20
	0, 903	_		•	.02	•	5	\mathfrak{A}	.20	• 05	.19
0	•	-:		•	.02		5	6	.17	0.05	12.
-	9.99	į-	0.0		.02		2	~	1.	0.04	.18
~	≈	~		•	.02)	7	1.	0.07	.27
-	. 20	~	0.0	•	.02)	-	.09	60.0	.29
	0. 403				<u>. 02</u>	-0.004	13	!~	0.	0.05	.20
7	. 80	_	0.0	٠	.03	-0.004	3	~	.05	0.07	• 26
	0	-	0.0	001.0	.02	о •	•	166	.04	~	.28
-	n. 798	4.17	0.0		0.5		13	733	03	0.13	.40
2		, , ,	•			000	,	503	5	17 0	. 07

	T.5.1 P	111. 11.11		-		_	_				
4.3	1 525	C. 3.3	3.07	472 1604	.04 1050	8.8 8.8	76				
5.0	11/3/11	VHdTV	CITA	10	נוא	ζ. γ	CYII	ВРМ	V K	CNP	СМР
	0.802	26.1	D. C	0.046	•	-0.002	0.000	C	0.000		
٠,	3.363	10.1).)	0.045	-0.004	-u.007	0.019	O	0		
·~	0.904	16.1	c:0	0.044		-0.004	0.010	0	00.		
Ţ	9.802	1.97	0.0	0.046	•	-0.002	0.007	0	0.000		
v	0.990	1.97	G. J	0.046	-0.009	-0.003	U.UU	O	0.000		,
: اح	0.805	16.1	7.5	0.044	-0.004	-0.006	0.0.1	5	0.196	9	-
~	0.805		ပ ံ	0.046	600.0-	-0.008	0.047	5	0.195	0	.13
حہ	0.904	1:51	ე •	1,0,0	-0.000	700.0-	0.025	3	0.196	0	.12
	067.0	5	0.0	0.046	-010.01	-0.005	0.019	5	0.197	-C.023	• 03
٠1	3. 200		0.0	0.047	600.0-	-0.007	0.025	S	0.197	-0.037	• 12
_	0.749	1.07	0.0	η•04R	-0.013	600.0-	0.030	0.847	0.294	-0.031	0.122
2	1.799	15	0.0	0.047	-0.007	-0.008	9.0.0	œ	0.294	-0.026	-
~	n, 799	1.51	0.0	0.047	-0.010	-0.000	750.0	\Rightarrow	0.295	-0.032	.12
<u>,</u>	108.6	1.97	0.0	0.047	-0.012	600.0-	0.000	3	0.293	-0.031	112
ir.	0. 902	1.97	0.0	0.047	-0.013	-0.011	0.040	α	0.293	-0.03B	.13
4.	9.902	1.97	0.0	0.046	-0.000	-0.007	0.031	~	0.291	-0.026	01.
~ 1	0.400	1:31	0.0	0.047	-0.011	-0.007	0.024	~	0.246	-0.029	0.
 क	006.0	1.97	0.0	0.047	-0.011	-0.008	0.024	8	0.206	-0.037	. 1.
٤.	0.802	16.1	0.0	9.046	900*0-	-0.004	0.014	0	0.172	0	.07
	0.394	15.1	0.0	9.0.0	-0.001	-0.002	0.010	3	0.142	-0.016	• 06
	0,803	1.07	0.0	0.045	-0.00	-0.001	0.006	~	0.117	0	• 0 5
	0. ac1	1.97	CO	0.046	-0.009	-0.002	0.001	2	960.0	•	.07
۲.	9, 401	1.51		9.046	-0.006	-0.003	400.0	~	0.076	0.0	7
	197.0	10		n.049	-0.015	-0.003	600.0	3	0.059	0.0	. 1 4
	0.795		C. C	9,0,0	-0.006	-0.004	600.0	1053	0.045	0.0	.19
	7. 196		•	10.047	-0.010	-0.008	610.0	111	0.033	-0.242	58
12	0.738	1.98	0.0	0.046	-00.00-	-0.003	0.000	543	0.023	0.1	.33
			,							•	•

Appendix 2

Tabulation of Laser Velocimeter Data

Pach	Alpha (deg)	Nose	Spin (RPM)	X (cal)	Profiles
0.8	0	BLUNT	0	4.50-5.75	÷
3.8	0	BLUNT	6950	4.50-5.75	
] 0.8	10	BLUNT	0	5.00	
2.8	10	BLUNT	0	5.50	·
2.3	10	BLUNT	6950	5.00	€
2.8	10	BLUNT	6950	5.50	
0.8	20	BLUNT	0	5.00	
2 2	0	BLUNT	0	4.50-5.75	
1.2	0	BLUNT	9830	4.50-5.75	· -
1.2	0 1	SHARP	0	4.50-5.50	3,
	3	SHARP	9830	5.00-5.50	
	10	BLUNT	0	5.00	2
1.2	10	BLUNT	0	5.50	j
1.2	10	BLUNT	9830	5.00	9
1.2	10	BLUNT	9830	5.50	Ξ
	10	SHARP	0	5.00	
1.2	10	SHARP	,	5.50	
1.2	10	SHARP	9830	5.00	
·. C	10	SHARP	9830	5.50	,_
1.2	20	BLUNT	C	5.00	12
- • • •	20	SHARP	0	5.00	3

	Ţ
Scan	> > > >
Betta (dog)	0000
X (Cal)	4.50 5.00 5.50 5.75
Spin (RPM)	0000
Mosses	BLUNT BLUNT BLUNT ELUNT
Alpha (dag)	0000
Met. I.	2000 2000
ŔŒ.	ଡ∺ ୯ ଓ

į

7		· · · · · · · · · · · · · · · · · · ·	flow in the large
1.487.01.33.79	X 4.500 000	7	:
3000 : ME	2 0.000 441	·c	Ç

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\neg	15.1				4.5	70			. *^	~``		4	~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	55	10000 ×W10	1876.0-	-2.5795	-2.5626	-3.4375		-2.538	-2.434]	-1.9283	-2.3878	-2.4602	-2.4504	-2.7862
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IEAK STREE	IEAK STRE	1000 *V¹W¹ U∞^2	1			0	<i>.</i>					1		0.0782
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55		1000 <u>+11.V</u>	1			-0.6045	-0.4313				-0.0648			-0.0039
∑ (10.0 ± 1) (10.0 ± 1) M (10.0 ± 1) (10.0 ± 1)			[<u>*</u> 3])	0.1466	0.1302	0.1726	0.1709	0.1387	0.1440	0.1286	0.1189	0.1215	0.1184	0.1182	0.1266
7E.7.8.1178 -0.01.5 -0.0031 -0.0254 -0.0084 -0.0127 -0.0058 -0.0145 -0.0058 -0.0141 0.0013 -0.0054 0.0040 0.0040 0.0047	E E	[451]		0.0442	0.0393	0.0467	0.0407	0.0406	0.0360	0.0370	0.0345	0.0295	0.0264	0.0249	0.0263
-0.0031 -0.0031 -0.00324 -0.0024 -0.0040 -0.0040			[=[<u>&</u>	0.0762	0.0794	0.0749	0.0675	0.0597	0.0582	0.0489	0.0400	0.0273	0.0258	0.0254	0.0266
			[3 \frac{\xi}{2}	İ				-0.0145	-0.0112	-0.0141	-0.0163	-0.0079	0.0054	0.0060	0.0089
10000000000000000000000000000000000000	VETACLES.	31:30×311 Y	15/2	-0.01.5	-0.00.91	-0.0084	-0.0055	-0.0038	-0.0062	-0.0024	0.0013	0.0040	0.0064		0.0015
			(n. : ⁵	0.8.227	0.85	0.8665	0.8395	0.9284	0.9514	0.9851	1.0043	1.0188	1.0276	1.0312	1.0298
7 (0.00) 0.00032 0.00032 0.0141 0.0188 0.0235 0.0353			¥(can)	6.00.55	0.0053	0.0082	0.0106	0.0141	0.0188	0.0235	0.0294	0.0353	0.0471	0.6766	0.1176

the 263.8 m/s	2 · · · · · · · · · · · · · · · · · · ·	. S
3.850	5,006 041	0.500 Cal
2 ;	: :	- ;
Ku#: 001	TAREFIELD	C000 : MM

		VRIDER			EM.1		ES	SHEAR STRESS	3:
I (:: ::)]:: <mark>.</mark>	157 <u>1</u>	<u>™</u>	1 <u>111</u>	17/2	M. So	100€×111V1 U≈′2	1000× <u>V·W·</u> U∞^2	1000 *₩¹U¹ U∞^2
0.0035	0.8808	-0.0255	-0.0388	0.0574	0.0307	0.1376	1	0.6336	-2.4987
0.0047	0.9213		-0.0266	0.0618	0.0354	0.1321	-0.8289		-0.9606
0.0071	0.9521			0.0598	0.0408	0.1458			-1.2385
094	0.9617	-0.0319	-0.0077	0.0588	0.0397	0.1381		0.8386	-1.6.304
0.0118	0.9829			0.0547	0.0404	0.1309			-1.2353
0.0141	0.9976			0.0553	0.0406	0.1277		0.3495	-1.3324
0.0188	1.0214			0.0527	0.0365	0.1289	-0.6354		-1.6344
0.0235	1.0418			0.0512	0.0366	0.1202	-0.6682	,	-1.6268
0.0235	1.0451			0.0479	0.0328	0.1009	-0.5961	0.1661	-0.2784
0.0353	1.0967	-0.0405		0.0333	0.0241	0.0757			-0.3148
0.0471	1.1218	-0.0374		0.0192	0.0175	0.0603			-0.3095
0.0941	1.0979	-0.0343		0.0141	0.0132	0.0525	-0.0007		-0.3781
0.1176	1.0846	-0.0314	0.0037	0.0125	0.0132	0.0534	-0.0005		-0.4411
0.2353	1.1115		-0.0057	0.0152	0.0135	0.0537	-0.0130	0.0516	-0.3993
0.2353	1.06.18		-0.0061	0.0125	0.0130	0.0511	6000.0	0.0088	-0.4305

	II	A TOTAL TO	M 2 905 (198)	X 2000 000 000 000 000 X	2 2 0 0 8 110 8 210 2 2
--	----	--	---------------	--------------------------	-------------------------

		VELL TITY			PMS		S	SHEAK STRESS	23
1 (22.7) 2	j:- \$	E S	W 11000	1000	[<u>></u>]	W. 1.)co	1660*U17 Um^2	000*U*711000*V*W*1000*W*6	1000 × M · 13 ·
0.0071	0.7767	-0.1020	0.0159	0.0753	0.0527	0.1522	-1.2640	0.8562	-3.17.98
0.0188	0.8653	-0.1081	6.0 088	0.0642	0.0518	0.1829	-1.0529	1.0725	-3.8865
0.036	6.9325	-0.1085	0.0046	0.0485	0.0439	0.1323	-0.6222	0.4347	-1.5009
0.0541	1.0151	-0.1087	0.0030	0.0279	0.0361	0.1176	-0.0496	-0.1214	-1.6849
0.0059	1.0193	-0.1091	0.0140	0.0246	0.0394	0.1128	-0.0158	0.1213	-1.8860
0.0776	1.0293	-0.1067	6.0189	0.0254	0.0311	0.11.54	-0.0087	0.0300	-1.8582
0.0894	1.0228	-0.1340	0.9146	0.0243	0.0394	0.1108	0.0256	0.0071	-1.8851
0.1012	1.0303	-0.1019	0.0176	0.0250	0.0321	0.1138	0.0080	-0.0694	-1.7506
0.1435	1.0357	-0.0908	0.0168	0.0246	0.0392	0.1143	-0.0027	0.1054	-2.0846
0.1600	1.0270	-0.0916	0.0227	0.0249	0.0385	0.1138	-0.0288	0.0352	-2.0088

				l
7 T		,	Des 262.1 m/s	
	`* ;		: 0 : ¤	
		0.000 0.41	, <u>, , </u>	

		THE CHIT			FMES			THERE STRESS	
(: t.) ;	p	134 <u>2</u>	[8]	<u> -</u> \$	1./ (S)	W. Ne≪	7,∞0 1000 <u>+Ω±7,</u>	7,000 2,001 2,001 2,001	7.∞0 1000× <u>M.11.</u>
0.315.3	9.3.35	-0.0983	0.0114	0.0709	0.0515	0.1459	-1.2142	0.3449	-1.6980
0.0118	0.7508	-0.1025	0.0121	0.6732	0.0536	0.1555	-1.3796	0.3098	-2.7974
0.0175	0.8026	-0.1041	0.0276	0.0661	0.0482	0.1429	-1.0488	0.0619	-2.5942
0.0235	0.8464	-0.1050	0.0062	0.058	0.0461	0.1452	-0.7607	0.8161	-2.5075
6.0353	0.9028	-0.1081	0.0046	0.0501	0.0424	0.1266	-0.6523	0.3289	-2.1999
0.0471	0.9447	-0.1085	0.0129	0.0386	0.0382	0.1264	-0.3900	0.2237	-2.4374
0.0588	0.9727	-0.1098	0.0076	0.0282	0.0351	0.1229	97.50.0-	0.2349	-2.4885
0.0706	0.9846	-0.1073	0.0151	0.0266	0.0350	0.1240	0.0041	-0.1614	-2.8100
0.0824	0.9864	-6.1044	0.0104	0.0244	0.0319	0.1123	0.0103	-0.0234	-2.3027
0.0941	0.9837	-0.1027	0.0049	0.0245	0.0350	0.1138	-6.0101	0.1503	-2.3707
0.1176	0.9892	-0.1010	0.0046	0.0239	0.0334	0.1121	0.0191	-0.1488	-2.2921
0.1765	0.9839	-0.0893	0.0079	0.0240	0.0352	0.1120	-0.0647	0.1066	-2.2754
0.2353	0.9894	6.0799	0.0037	0.0239	0.0360	0.1158	0.0141	-0.1838	-2.3581

, kar.	:	* v-q) Luc	
((5-8-) - 17-1)-7()		¥2	.0	:
Z (.al)	4.50	(30)	03.7	
(S) W.	0469	9990	9389	6,94.6
÷ m			RUMI	
Ásigne (Bed)	()	0	0	2.2
# #	*	:	,(·	
:		,		•

2/3 F/G 19/18 UNCLASSIFIED NEL.

2.1 m/s	o 0 = π	。 ()
1]ss-2(1 5	9
	cal	- Cal
0.800	X 4.500 cal	- 0.600
Σ	×	2
0.18	TWOTE	0469
: # ::1:	NOSE: BLONE	RFM : 6950
	•	

		VELOCITY			RMS		S	SHEAR STRESS	38
Y(cal)	10 ^{&} 0	<u> </u>	<u>™</u>	<u>10</u>	[<u>></u> ∞	M M	1000 <u>×U¹V</u> ¹1 U∞^2	1000* <u>V'W'</u>]	1600×W·11 U∞^2
0.0059	0.8633	-0.0056	0.0615	0.0849	0.0452	0.2655	-0.8568	0.5142	-9.8899
0.0118	0.9068	-0.0051	0.0150	0.0756	0.0423	0.1556	-0.7527	0.3646	-3.8708
0.0176	0.9477	-0.0030	0.0045		0.0383	0.1424	-0.2795	0.4095	-2.7137
0.0235	0.9738	-0.0030		0.0471	0.0345	0.1310	-0.2553	0.1778	-2.2804
0.0353	1.0181				0.0303	0.1175	-0.0369	0.1794	-2.1185
0.0471	1.0335	0.0057	-0.0055		0.0285	0.1236	8000.0	I	-2.7944
0.0706	1.0229	0.0042	0.0059		0.0264	0.1196	0.0108	-0.0954	-2.5369
0.1176	1.0225	0.0030	0.0017	0.0247	0.0249	0.1190	-0.0297	0.0993	-2.3888

2 M · 0.800 De 297.9 a/3	X 5,000 e.d. a - a	0 2 0.000 cal 8 0 0 2]
2000 : # UD-4	JAMES HOME	- 전쟁 : 년970

		VELS - LTY			RMS		SI	SHEAR STRESS	56
ý (Cal)	∞n 11	I> ∞	<u>M</u>	<u> </u>	1 <u>7</u> 80	M (Now	1000 <u>*U'V'</u> U~^2	1000×V·W· U∞^2	1000× <u>₩¹U¹</u> U∞^2
0.0035	0.9554	-0.0523	0.0625	0.0639	0.0329	0.1247	-0.6001	-0.0014	-1.0891
0.0071	0.9490	-0.0248	-0.0098	0.0642	0.0332	0.1386	-0.8593	0.7617	-1.6255
0.0094	0.9825	-0.0369	-0.0037	0.0634	0.0417	0.1540	-0.7228	0.2748	-2.0165
0.0141	1.0186	-0.0418	-0.0109	0.0566	0.0391	0.1360	-0.6223	0.5212	-1.7193
0.0188	1.0421	-0.0360	-0.0088	0.0554	6.0371	0.1280	-0.6494	0.1183	-1.3168
0.0212	1.0619	-0.0414	-0.0179	0.0509	0.0378	0.1287	-0.5876	0.2133	-1.6406
0.0235	1.0677	-0.0379	-0.0110	0.0479	0.0366	0.1246	-0.4746	0.2027	-1.5613
0.0329	1.1082	-0.0375	-0.0186	0.0363	0.0312	0.1157	-0.2392	0.1641	-1.6703
0.0471	1.1362	-0.0355	-0.0125	0.0262	0.0260	0.1020	0.0055	-0.2118	-1.4857
0.0706	1.1305	-0.0309	-0.0196	0.0235	0.0220	0.1021	-0.0183	0.0665	-1.6051
0.1176	1.1094	-0.0295	0.0003	0.0221	0.0225	0.0964	-0.0118	0.0057	-1.5738
0.2353	1.0810	-0.0231	0.0043	0.0191	ن.0209	0.0892	0.0164	-0.0853	-1.1788

	Σ	t. 893	The 261.6 m/3
42014:3034	×	5.500 cai	a - 0 :
MM : 6/50	22	0.000 0.1	

7,000	┺-	-2.5834	-2.6375	: 5235	.7783	1245	0441	-2.0702	963	471	594
	_										
U∞^2	0.5841	0.8358	0.7282	0.3750			'		-0.1395		
U∞^2							0.0430	-0.0332			
\ <u>\</u>	1	0.1535	0.1318	0.1256	0.1099	0.1117	0.1102	0.1093	0.1148	0.1107	0.1121
8	0.0750	0.0561	0.0459	0.0470	0.0703	0.0407	0.0371	0.040.0	0.0578	0.0401	0.0401
∞∩	0.0840	0.0750	0.0531	0.0424	0.0266	0.0253	0.0248	0.0244	0.0244	0.0246	0.0249
Ωœ	0.0549	0.0443	0.0132								0.0134
8	9660.0-	-0.1028	-0.1113	-0.1135	-0.1132	-0.1118	-0.1036	-0.1084	-0.1055	-0.0935	-0.0901
()(xx)	0.7504	0.7820	0.9126	0.9717	1.0003	1.0149	1.0071	1.0144	1.0108	1.0165	1.0168
	0.0235	0.0353	0.0471	0.0588	0.070€	0.0824	0.0941	0.1059	0.1176	0.1765	0.2353
	$(\log \log $	10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞} 10^{∞}	5 0.7504 -0.0996 0.0549 0.0840 0.0750 0.1650 3 0.7820 -0.1028 0.0443 0.0750 0.0561 0.1535	Up Up<	Up Up<	Up Up<	Up Up<	Up Up<	U∞ U∞	U∞ U∞	U∞ U∞

Kan#: 066	Σ	0.800	User 262.1 m/ss
NOTE: BLUNT	×	5.750 cal	r) – p
KPM : 6950	1.7	0.000 cal	÷ () – 9

		VELOCITY			RMS		55	SHEAR STRESS	35
Y(cal)	1 <u>0</u>	I> [○	M N∞	5 å	$\frac{\sqrt{t}}{U_{\infty}}$	W. U∞	7,∞n 1000×0101	10(0×01M1	1000×W¹IJ¹ J∞^2
0.0059	0.7060	-0.0962	0.0974	0.0848	0.0521	0.2286	-1.4376	1.2988	-5.4981
0.0118	0.7628	-0.1009	0.0444	0.0699	0.0549	0.1579	-1.4951	1.4443	-3.1672
0.0176	0.8028	-0.1010	0.0601	0.0721	0.0484	0.1917	-1.1806	0.4745	-5.3503
0.0235	0.8341	-0.1026	0.0401	0.0608	0.0488	0.1413	-1.1659	0.4534	-2.0957
0.0353	0.3990		0.0286	0.0504	0.0416	0.1373	-0.6328	0.7645	-2.4680
0.0471	0.9465		0.0131	0.0386	0.0395	0.1252	-0.3380	0.4785	-2.5235
0.0588	0.9775	-0.1107	-0.0010	0.0263	0.0379	0.1109	-0.0201	(1.1526	-2.0320
0.0706	0.9827	-0.1387	0.0074	0.0267	0.0335	0.1184	-0.0128		
0.0824	0.9868	_	-0.0024	0.0243	0.0362	0.1138	-0.0067	-(.0196	
0.0941	0.9891		-0.0028	0.0243	0.0336	0.1154	-0.0219		
0.1176	0.9877	-0.0975	0.0071	0.0264	0.0346	0.1244	-0.0161	C.0640	-2.8286
0.1765	0.930		0.00:1	0.0257	0.0352	0.1240	-0.0628	6.2458	-2.7019
0.2353	0.9938	-0.0796	-0.0019	0.0238	0.0377	0.1180	0.0506	-0.2161	-2.3699

Run	Mach	Alpha (deg)	Nose	Spin (RPM)	X (Call)	Delta (deg)	Scan
119	8.0	10	BLONF	0	2.00	09-	7
16	0.8	10	BLUNI	0	6.00	0	2
1.05	0.8	10	BLUNT	0	6.60	0	Z
107	8.0	1.0	BLUNI	0	6.00	0	2
111	8.0	1.0	BLUNT	0	5.00	0	22
138	0.8	10	BLUNT	0	5.00	(09)	Y

S/		
Jost 262.2 m/s	10 °	。09-
Uor 26	$\alpha = 10^{\circ}$	- 8
	cal	Cal
008.0 - M	X = 5.000	Z - 0.000 cal
Σ	[□]	2 -
119	UNIT	0000
Run#: 119	NOSE: BLUNT	RPM : 0000
l		

,									
		VELOCITY			MMS		SI	SHEAR STRESS	3.5
Y(cal)	<u>0</u> 0	I> [∞]	<u>w</u>	<u> </u>	<u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W ∩ M	1000× <u>U·V·</u> U∞^2	1000*V*W*1000*W*10 U~^2	1000 ×W'U'
0.0118	0.7950	-0.0715	-0.0560	0.0616	0.0385	0.1318	-1.0633	0.7771	-2.9636
0.0176		-0.0762		0.0574	0.0406	0.1405		0.8729	-2.5063
0.0235	0.9220	-0.0818		0.0543	0.0388	0.1372		0.9140	-2.9112
0.0294	0.9731	-0.0820		0.0501	0.0369	0.1306		0.3501	
0.0353	1.0169		-0.1297	0.0446	0.0343	0.1235		0.2383	
0.0412	1.0570			0.0354	0.0304	0.1157	-0.1798	0.1077	
0.0471	1.0765			0.0273	0.0286	0.1110		-0.1228	
0.0529	1.0835					0.1078	0.0232	-0.0451	
0.0588	1.0917		-0.1196	_	0.0264	0.1101		-0.1266	
0.0706	1.0838				0.0254	0.1082	0.0195		
0.0941	1.0810				0.0250				
0.1176	1.0754	-0.0625		0.0239	0.0242	0.1103	0.0370	-0.0914	

Um 262.4 m/s	ν 10 γ	. 0 0
M = 0.800	X = 5.000 cal	Y = 0.094 cal
Run#: 076	NOSE: BLUNT	RFM : 0000

		VELOCITY			MAS		51 	SHEAR STRESS	35
2(041)	[E] 88	1> 2	<u> </u>	In on	ENS.	<u>™</u>	10 10 × 10 · V	10.10×U*V*1.000×V*W*	1000 *WTT
-0.4706	1.0458	0.1551	0.1327	0.0198	0.0252	0.0899	-0.0261	-0.2301	-1.0250
-0.4235	1.0525	0.1435	0.1391	0.0196	0.0227	060.0	-0.0282	-0.2652	-0.9419
-0.3765	1.0611	0.1325	0.1490	0.0200	0.0245	0.0882	-0.0519	-0.1074	-0.5141
-0.3294	1.0590	0.1147	0.1467	0.0207	0.0257	0.0895	-0.0944	-0.0359	-0.9643
-0.2824	1.0635	0.0937	0.1487	0.0206	0.0259	(0887	-0.1052	-0.1358	-0.9130
-0.2353	1.0683	0.0707	0.1577	0.0212	0.0295	(1.0867	-0.1702	-0.1815	-0.9782
-0.1882	1.0655	0.0390	0.1527	0.0218	0.0301	0.0947	-0.1686	١	-1.3168
-0.1412	1.0701	0.0046	0.1355	0.0215	0.0334	0.0989	-0.1656	0.0981	-1.3430
-0.0941	1.0697	-0.0292	0.0980	0.(241	0.0306	U.1077	-0.0769		-1.5766
-0.0471	1.0908	-0.0452	0.0106	0.0266	0.0238	0.1217	-0.0030	-0.3478	-2.3617
0.0000	1.0814	-0.0548	-0.6160	0.0266	0.0260	0.1208	0.0040		
0.0471	1.0837	-0.0569	-0.0627	0.0265	0.0245	0.1237	0.0230	-0.4575	-2.0664
0.0941	1.0693	-0.0354	-0.1411	0.0287	0.0288	0.1265	0.0065	-0.6391	-1.9861
0.1412	1.0749	0.0067	-0.1913	0.0276	0.0293	0.1212	0.0584	-0.2866	-1.7376
0.1882	1.0797	0.0401	-0.1956	0.0247	0.0255	0.1155	0.0159	-0.2580	-1.5903
0.2353	1.0802	0.0729	-0.1833	0.0237	0.0241	0.1081	-0.0037	-0.2743	-1.7588
0.2824	1.0690	0.0945	-0.1569	0.0218	0.0268	0.1025	0.0092	-0.3102	-1.5075
0.3294	1.0638	0.1141	-0.1440	0.0213	0.0271	0.1035	0.0074	-0.2241	-1.4038
0.3765	1.0603	0.1300	-0.1502	0.0226	0.0263	0.1097	-0.0202	-0.1859	-1.6307
0.4706	1.0560	0.1526	-0.1600	0.0292	0.0300	0.1392	-0.0018	-0.3529	-2.7888

kun#: 105	008.0 M	U≪ 261.5 m/s
NCSE: REENT	X = 5.000 cal	a = 10 c
KIM : 0000	Y = 0.024 cal	6 0 ± 9

		TELOCITY			RMS		55	SHEAR STRESS	38
2 (cal)	[:] S		<u>∞</u> []	<u>.</u> 01 0∞	<u>'</u> ∑	<u> </u>	1000× <u>01°V</u>	1000×V*W*	1000 *W 17
-0.3294	1.0415	0.1199	0.1898	0.0293	0.0325	0.1076	-0.0631	-0.2137	-1.6922
-0.2824	0.9963	0.0966	0.1619	0.0561	0.0488	0.1464	0.8964	1.0361	0.6319
-0.2353	0.9534	0.0545	0.1453	0.0593	0.0660	0.1624	1.4146	1.4026	0.2390
-0.1882	0.9175	-0.0273	0.0801	0.0593	0.0550	0.1642	-0.5306	1.7752	-1.2536
-0.1412	0.9646	-0.0650	0.0012	0.0687	0.0459	0.1564	-1.2913	0.8050	-4.1527
-0.0941	1.0633		٠.	0.0487	0.0317	0.1277	-0.2116	-0.4768	-2.8292
-0.0471	1.0955		-0.0082	0.0307	0.0296	0.1264	-0.0665	-0.4335	-2.4676
0.000.0	1.0875	-0.0646	0.0246	0.0301	0.0332	0.1191	0.0095	-0.1721	-1.9849
0.0471	1.0408	-0.0665	0.0548	0.0452	0.0344	0.1253		-0.0949	-1.5714
0.0941	0.9379		0.0616	0.0577	0.0376	0.1454		0.2035	-0.1887
0.1176	0.8983			0.0588	0.0663	0.1952	0.8291	-4.0252	-3.2697
0.1412	0.8774		-0.0317	0.0586	0.0542	0.1567		-2.4546	-2.8789
0.1882	3.9770	0.0788	-0.1519	0.0834	0.0553	0.1780	2.5019	-2.0684	-6.4603
0.2353	1.0469	0.1253	-0.1861	0.0397	0.0342	0.1194	0.2795	-0.2868	-2.3179
0.2824	1.0570	0.1456	-0.1831	0.0248	0.0288	0.1148	-0.0338	-0.2192	-1.9869
0.3294	1.0507	0.1601	-0.1673	0.0243	0.0273	0.1165	-0.0444	-0.2241	-2.1668
0.3765	1.0445	0.1732	-0.1376	0.0253	0.0259	0.1149	-0.0249	-0.3120	-2.08:2
0.4235	1.0427	0.1772	-0.1254	0.3242	0.0260	0.1126	-0.0291	-0.3543	-2.0200
0.47765	1.0406	0.1871	-0.1136	0.0239	0.0237	0.1129	0.0026	-0.4455	-1.9912

Kun#: 107	M = 0.800	Jos 260.1 m/s
NOTE: BLONT	X - 5.000 cal	$a = 10^{\circ}$
RFM : 00000	$Y = 0.047 \cdot 21$	o 0 = 9

	VELICETITY			RASS		C3	SHEAR STRESS	33
الله الله	12/2	[<u>%</u>	I5 Š	1518	[<u>*</u>]	1000 <u>*U'V'</u> U∞^2	000 *U·V 1000 *V·W 1000 *V·W	1000× <u>W¹U</u> U∞^2
1.0539	0.1755	0.1330	0.076	0.0270	0.1226	-0.0279	-0.0408	-1.5358
1.0621	0.1527	0.1988	0.0244	0.0295	0.1114	-0.1117	-0.2174	-1.4139
1.0754	0.1400	0.2154	0.0752	0.0293	0.1116	-0.1120	-0.1814	-1.8209
1.0768	0.1183	0.2247	(1.0 49	0.6313	0.1068	-0.1338	-0.2477	-1.4048
1.0727	0.0985	0.2307	6.0.73	0.0359	0.1178	-0.0726	-0.3134	-1.6344
1.0453	0.0687	0 2257	0.0404	0.0438	0.1289	0.3879	0.2781	-1.5453
1.0188	0.0181	0 1885	0.0466	0.0532	0.1411	0.3412	1.4721	-0.6945
0.9993	-0.0158		0.0176	0.0512	0.1380	-0.3051	1.7403	-1.2529
1.0076	-0.0551	•	0.0543	0.0448	0.1653	-0.8036	0.5920	-3.3773
1.0805	-0.0728	0.0353	0.0.69	0.0348	0.1317	-0.2186	· 1	-2.1842
1.1042	-0.0669		0.0.89	0.0319	0.1170	-0.1004		-1.9534
1.0920	-0.0678	0.0630	0.0365	0.0358	0.1261	-0.0853	1	-1.4441
1.0601	-0.0673	0.0651	0.0452	0.0382	0.1331	-0.1947	0.2581	-0.3942
1.0103	-0.0578	0.0590	0.0496	0.0402	0.1413	-0.3521	0.1380	-0.4905
0.9605	-0.0227	0.0065	0.0506	0.0479	0.1707	-0.2171		-1.1406
0.9964	0.0343	-0.0961	0.038	0.0552	0.1735	0.8101		-3.1726
1.0647	0.0928	- 7.1228	0.0552	0.0482	0.1799	0.9065	-0.4822	0.1593
1.0852	0.1252	-0.1348	0.0386	0.0369	0.1294	-0.0655	-0.1926	-1.1370
1.0777	0.1428	-0.1090	0.0289	0.0333	0.1307	-0.0727	-0.4200	-1.5547
1.0731	0.1629	-0.1145	0.0314	0.0342	0.1451	9060.0-	-0.3472	-0.8815
1.0762	0.1722	-0.0905	6.0293	0.0328	0.1337	-0.0905	-0.5277	-1.2704
1.0702	0.1808	-0.0745	0.0295	0.0320	0.1395	-0.0505	-0.5186	-1.5830
1.0634	0.1914	- 0.0512	0.0308	0.0337	0.1516	0.0055	-0.3620	-1.6395

Kun#: 111	™ 0.860	Uca 261.7 m/s
NOSE: ELUNT	X - 5.000 cal	a 10 :
H-M : 0000	Y = 0.071 cal	20 2

		VELKUTTY			SWH		130	SHEAR STRESS	55
2 (cal)	** ***	1> \$	[M]		[\rangle \sqrt{2}]	<u>M</u> .	1000*U*V* U~^2	1000 × V · W · 1 U∞^2	1000 <u>×w¹U¹</u> U∞^2
-0.3765	1.0583	0.1690	(.1957	0.0216	0.0254	0.0380	-0.0564	-0.2130	-1.3448
-0.3294	1.0600	0.1557	U.1984	0.0221	0.0265	0.0392	-0.0686	-0.3089	-1.4026
-0.2353	1.0717	0.1201	0.2252	0.0208	0.0300	0.1021	-0.0159	-0.5228	-1.4284
-0.1882	1.0787	0.0932	0.2226	0.0219	0.0308	0.1001	-0.1133	-0.2480	-1.4813
-0.1412	1.0708	0.0544	0.2203	0.0287	0.0352	0.1102	-0.0523	-0.0316	-1.6693
-0.0941	1.0498	0.0047		0.0341	0.0392	0.1180	-0.1761	0.1021	-1.1433
-0.3471	1.0619	-0.0384	0.1202	0.0366	0.0321	0.1257	-0.21/2	0.0296	-1.9696
-0.0235	1.0838	-0.0439	0.0934	0.0327	0.0314	0.1213	-0.1153		-2.0169
0000.0	1.1030	-0.0410	0.0865	0.0292	0.0293	0.1178	-0.0190	-0.3539	-1.8637
0.0471	1.0950	-0.0440		0.0270	0.0301	0.1184	-0.0718		-1.9897
0.0941	1.0532	-0.0367	0.1083	0.0361	0.0359	0.1431	-0.1563	0.4547	-1.1334
0.1176	1.0318	-0.0200	6650.)	0.0403	0.0400	0.1588	0.0386	0.6905	-0.5795
0.1412	1.0162	-0.0079	0.0066	0.0465	0.0403	0.1459	8600.0-	-0.2107	-0.8577
0.1882	1.0214	0.0361	-0.1345	0.3443	0.0407	0.1592	0.2080		-3.1004
0.2118	1.0373	0.0732	-0.2193	0.0379	0.0404	0.1667	0.0108	-1.5211	-1.7628
0.2353	1.0521	0.0921	-0.2399	0.0341	0.0382	0.1588	-0.0845	-0.8552	-0.5000
0.2588	1.0635	0.1244	-3.2050	0.0316	0.0358	0.1435	-9.1079	-0.5959	-0.2803
0.2824	1.0707	0.1219	-3.1806	0.0280	0.0341	0.1317	-0.1899	-0.2311	-1.0219
0.3294	1.0717	0.1479	-0.1321	0.0236	0.0338	0.1116	-0.0840	-0.5217	-1.3995
0.4235	1.0623	0.1741	-0.0987	0.0244	0.0318	0.1163	0.0870	-í.2926	-1.8420
0.5176	1.0571	0.1965	-0.0766	0.0249	0.0347	0.1155	-0.1214	-6.3681	-1.7821

_	_	
1		-
	5	·c
		70.0
ः × ∵	11.00).980 cal
E)×1	53
¥\$	TMIT	0000
N. 11 # 11 N.	Note: Holding	3000 : Max

									_	_	_				_
33	1000× <u>W*11</u>	2.1147	1.6990	7.486.0-	-1.0295	-1.2659	-1.6146.	-1.2046	-1.7219	-2.0251		-0.8535	-1.0261	-1.0818	-1.2340
HEAR STRE	I	0.9969	0.9088	0.3466	0.0806	0.1244	0.1071	-0.0279	0.0275	-0.0062	-0.0640	-0.0995	-0.0427	-0.0424	-0.0590
	6,∞(1 ./\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	0.3230	0.4514	0.1602	0.1084	•		-0.0691	-0.0366	-0.0194	-0.0126	0.0082	-0.0070	-0.0390	0.0042
	<u> </u>	0.1587	0.1663	0.1414	0.1411	0.1273	0.1182	0.1157	0.1252	0.1234	0.1088	0.1_{-93}	0.1.26	0.1234	0.1085
MMS		0.0470	0.0454	0.0424	0.5405	0.0373	0.0379	0.0348	0.0338	0.0305	0.0306	0.0324	0.0318	0.0304	0.3285
	[5] %	0.6770	0.0650	0.0503	0.0389	0.0316	0.0263	0.0246	0.0277	0.0270	0.0244	0.0251	0.0240	0.0238	0.0243
	3 <u> </u>	0.1351	0.1520	0.1402	0.1413	0.1511	0.1275	0.1226	0.1082	0.1078	0.0960	0.1028	0.0794	0.0724	0.0547
ALLEVINA	[A]	6990.0-	-0.0630	-0.0566	-0.0596	-0.0638	-0.0600	6090.0-	-0.0665	-0.0706	-0.0702	-0.0678	-0.0663	-0.0570	-0.0539
	1518	0.9860	1.0368	1.0676	1.0902	1.1052	1.1064	1.0982	1.1079	1.1058	1.1022	1.1023	1.0840	1.0702	1.0662
	Ÿ(::a1)	0.0176	0.0235	0.0294	0.0353	0.0412	0.0471	0.0529	0.0588	9070.0	0.0824	0.0941	0.1176	0.1647	0.2118
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

						
2.	:3		2,0	751	N	:
99-					\$2	
01.6	9.	09:	5.50	5.50	5.50	5.50
0	0	3		С	0	()
CNCTS	HIUNI	BLON!!	BLUNT	KLAM	BUMIL	STOR
01	2	0.1	91	01	91	9.1
7° C	න ් ට	0.3	ο	\sigma_{\begin{subarray}{c} \cdot \c	ρ. Ο	X 0
971	<u> </u>	85	150 150	98	103	135
	C1.6 0 INDIN 01 8.0	C1.6 0 CNOM 01 8.0	03 0 CNCM 01 8.0 0.8 0 BLON! 0 8.0 0.8 0 BLON! 0 8.0	0.8 10 MANY 0 5.13 0.8 10 BIANY 0 0.5.0 0.8 10 BIANY 0 0.8.0	0.3 0 BLONT 0 5.13 0.8 10 BLONT 0 5.50 0.8 10 BLONT 0 5.50 0.8 10 BLONT 0 5.50	0.8 10 BLONT 0 5.13 0.8 10 BLONT 0 1.50 0.8 10 BLONT 0 5.50 0.8 10 BLONT 0 5.50

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.	1.1 2.1	Designation and a
National Control	:•:		, 19:1 - B
	53	0.000	9

1000×101V 1000×V W 1000×W 1000
<u>.</u>
<u> </u>
3 ⁸
I> §
1: 1:

ionn#: 0.30	Σ	0.800	Um-263.8 m/s
MONE; RIGHT	×	5.500 cal	$\alpha = 10^{-2}$
M.M.: 0000	>-	0.094 C.1	, 0 9

	VELOCITY			RMS		55	SHEAR STRESS	33
1= <u>\$</u>	1> 8	[M]	- ^{&}	15 8	[M]()	1000 <u>*U*V*</u> U~^2	000 ×U¹V¹ 1000 ×V¹W¹ U∞^2 U∞^2	1000×W*U*
.9877	0.1378	0.1845	0.0249	0.0256	0.1122	-0.0114	-0.3878	-2.0715
. 9933	0.1294	0.1996	0.0217	0.0263	0.1016	-0.0101		-1.5926
.9940	0.1174	0.2164	0.0217	0.0267	0.1010	-0.0538		-1.6363
.9876	0.0973	0.2317	0.0222	0.0286	0.1050	-0.0114		-1.7810
9884	0.0724	0.2420	0.0224	0.0282	0.1056	-0.0336		-1.7285
.9783	0.0441	0.2538	0.0251	0.0396	0.1123	_		-1.4946
9256.	0.0013	0.2304	0.0333	0.0580	0.1284			-1.1407
.9318	-0.0672	0.1858	0.0386	0.0632	0.1497			-2.0797
0.9413	-0.1235	0.1135	0.0410	0.0433	0.1415	-0.5440	1.2505	-3.5263
.9531	-0.1483	0.0647	0.0356	0.0330	0.1328			-2.8630
9694	-0.1569	0.0084	0.0267	0.0263	0.1204			-1.9133
).9513	-0.1582	-0.0486	0.0334	0.0314	0.1260	-0.1338		-0.7241
0806.0	-0.1374	-0.0938	0.0375	0.0413	0.1375	-0.3376		-1.4404
0.8873	-0.0697	-0.1747	0.0448	0.0582	0.1509	-0.2853		-3.1017
0.9337	0.0099	-0.2206	0.0456	0.0506	0.1514	0.5931	-1.0718	-2.5250
9705	0.0674	-0.2362	0.0330	0.0397	0.1501	0.0532	-0.2546	-1.0846
0.9757	9060.0	-0.2398	0.0263	0.0332	0.1291	-0.0265	-0.4446	-1.5410
0086.	0.1092	-0.2106	0.0246	0.0299	0.1232	-0.0389	-0.5808	-1.8725
9708	0.1238	-0.1939	0.0240	0.0285	0.1203	-0.0574	-0.2869	-2.0388
9838.0	0.1354	-0.1622	0.0294	0.0297	0.1117	-0.0191	0.7760	-1.9900

 Run#:
 093
 M = 0.800 10^{α} Z60.5 m/s

 NOSE:
 X = 5.500 cal
 $\alpha = 10^{\circ}$

 RFM:
 0000
 Y = 0.047 cal
 $\delta = 0^{\circ}$

SS	1000 * W · U · U · U · U · V	-1.0896	-1.1202	41	⁻:	1.2765	3.4491	•	-1.5566	-1.8236	-1.9645	-1.1491	-2.2579	-2.0317	-2.1491	-1.6285	-2.3614	-1.8897	-1.0506	-1.5377	-2.9897	-6.6797	-3.0193	-1.2828	-1.3447	-1.2609	-1.5615	-1.3777	-1.4747	-1.4906		-1.4711	-1.6576
SHEAR STRES	1000*V'W'	-0.1866	.201	.416	-0.0477	.371	0.0514	•	.443	.008		-0.1689	.395	327	-0.4023	-0.2897	-0.3315	•	-0.2228	-0.2190		-1.1650	-0.8443	-0.1994	-0.1672	-0.1768	-0.2637	-0.2683	-0.2763	-0.1688		-0.3583	-0.3424
S	1000×U¹V¹ U∞^2	0.0120	-0.0006	-0.0162					-0.2799	-0.2229	-0.5498	-0.1008	-0.0609	-0.0067	-0.0842	-0.0064	058	•	٠,	۲.		•	0.3077	•	•	0.0055	•	0.0019	.001	.010	0.0149	•	0.0194
	<u>W.</u> ∩∞	9060.0	•	. 12	. 12	•	.216	.160	.167	.144	٦.	Τ.	.156	•	0.1185	0.1084	~	•	.142	۲.	0.1740	0.2395	•	0.1770	•	•	.095	•	•	•	•		0.0994
RMS	<u>-</u>	0.0182	•	•	•	•	٥.	٠.	•	٠.	.046	.031	.032	0.0223	0.0303	0.0213	0.0283	0.0256	0.0280	0.0346	0.0372	0.0378	•	•		•	•	•	•	•	•	•	0.0197
	<u> </u>	0.0187	.01	•	•	•	•	0.0375	•	•	•	•	•	0.0257	0.0255	0.0224	-	•	•	•	0.0379	•	0.0491	•	0.0223	•	.020	0.0193	.01	.01	•	•	0.0209
	1 ⊠ 50	0.2610	0.2616	0.2671	0.2281	0.2125	0.1819	0.1684	0.1735	0.1351	0.1363	0.1283	0.1004	0.0655	0.0640	0.0456	0.0551	0.0950	0.0846	0.0257	-0.0739	-0.2054	-0.2207	-0.2363	-0.2132	-0.1990	-0.1839	-0.1741	-0.1577	Η.	-0.1367	-0.1244	-0.1245
VELOCITY	1> 8	0.1400	.127	0.1123	0960.0	920.	.042	-0.0453	073	Τ.	_	-0.1679	175	-0.1817	-	-0.1841						0.0200		0.0871	0.1068	0.1129	0.1271	136	0.1452	15	0.1574	_	0.1637
	12 %	9986.0	•	•	0,	.928	Ψ	Ψ	•	Φ.	∞.	•	•	0.9656	•	•	•	•	•	•	•	0.8220	σ.	•	0.9794	0.9783	•	•	•	•	•		0.9892
	(;1.)	-0.4235	•	-0.3294	-0.3059	-0.2824	-0.2588	-0.2118	-0.1882	-0.1647	-0.1412	-0.1176	-0.0941	-0.0706	-0.0471	-0.0235	0.0000	0.0235	•	0.0941	0.1412		0.2118			•	0.3294		•	•	0.5176	•	0.6118

Run#: 094 M = 0.800 Use-260.3 m/s NOSE:BLUNT X = 5.500 cal α = 10 ° RPM : 0000 γ = 0.071 cal δ = 0 °

SS	1000×W·U· U∞^2	-1.8359	-1.5887	•	-1.0788	-0.0676	0.4201	-0.2464	-0.7258	-1.5980	-1.5570	-1.3074	-1.2988	-0.8558	-0.8802	-1.5882	-3.3949	-3.8335	-2.6653	-1.3619	-1.6076	-1.5476	-1.6831	-1.5922	-1.5318	-1.7137	•	-1.5769		-1.60
SHEAR STRESS	1000 <u>×V'W'</u> U∞^2	-0.2350	-0.2873	-0.3018	-0.2658	-0.13/6	0.4161	0.2954	0.0085	-0.1118	-0.3407	-0.2311	-0.2291	-0.1159	-0.0390	-0.4820	-0.6375	•	-0.5987		-0.3376	-0.1558	-0.3044	-0.2435		-0.3264	-0.2877	-0.2679	-0.3745	-0.4054
SF	1000 *U'V'	-0.0168	-0.0166	-0.0227	-0.0252	-0.0012	0.0164	-0.0677	-0.1484	-0.1672	-0.0233	-0.0109	-0.0175	-0.0651	-0.1475	-0.0449	0.0538	0.1213	0.1485	0.0243	0.0136	-0.0128	0.0190	0.0063	0.0166	0.0292	0.0216	0.0102	0.0342	0.05741
	N _W	0.1001	0.0968	960.	.102	0.1289	0.1609	0.1467	0.1287	0.1283	0.1154	0.0982	0.1110	0.1240	0.1367	0.1383	0.1782	0.1860	0.1/35	0.1082	0.1012	0.0965	0.0983	0.0970	0.0979	0.1009	0.0997	0.0982	0.1059	0.1035
RMS	<u>`</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0207	0.0220	0.0234	•	0.0342	0.0364	0.0409	0.0404	0.0322	0.0243	0.0213	0.0197	0.0261	0.0340	0.0359		0.0320	0.0262		0.0195	0.0192	0.0193	•	0.0179	0.0178	0.0183	•	•	0.0180
	<u>, </u> ∞ Ω	0.0212	0.0202	0.0199	•	0.0334	0.0378	0.0339	0.0305	0.0293	0.0244	0.0206	0.0239	0.0275	0.0311	0.0316	0.0411	0.0431	0.0415	0.0225	0.0205	0.0201	0.0207	0.0204	0.0200	0.0208	0.0212	0.0202	0.0221	0.0209
	IW∏	0.2438	(4	•	•	0.2262	0.2141	0.1979	0.1785	0.1316	0.0936	0.0188	0.0183	0.0017	-0.0277	-0.0960	-0.2054	-0.2822	-0.2830	-0.2447	-0.2207	-0.2008	-0.1831	-0.1763	۳.	-0.1552	-0.1450	-0.1351	-0.1291	-0.1170
VELOCITY	<u>1</u> ∑	0.1307	0.1045	0.0914	0.0741	0.0316		-0.0395	-0.0824	-0.1478	-0.1702	-0.1742	-0.1701	-0.1616	140	-0.0819	.009	.028	0.0541	0.0917	0.1130	0.1268	0.1357	0.1426		⁻:		0.1602		0.1648
	IU 5 ∞	0.9851	•	•	•	0.9548	0.8982	0.8771	0.8749	0	0	0	0	0	8.0	0	0		0.9183		•		0.9812	0.9837	•	•	•	•		0.9871
	((11))	-0.4235	-0.3529	-0.3294	.305	-0.2588	-0.2353	-0.2118	-0.1882	-0.1412	-0.0941	-0.0471	0.000.0	0.0235	0.0471	0.0941	0.1412	0.1647	0.1882	0.2353	0.2824	0.3294	0.3765	•		•	•	•	0.6588	0.7059

Run#: 078	M · 0.800	U∞-261.6 m/s
NCSE: BLUNT	X - 5.500 cal	$\alpha = 10^{-9}$
RFM : 0000	Y=0.024 cal	5 0 = 9

		75	16	79	171	84	55	36	49	22	21	23	84	161	25	91	38	193	167	162	22	27
SS	1000×W¹U U∞^2	-1.3675	1.3316	3.32							-1.4021			-0.4391		-1.2191		-7.9993	1.0067			-1.5127
SHEAR STRESS	000 × V · W	-0.3198	0.2288	1.2571									-0.1655						0.3661		-0.2297	
5	$\frac{1000 \times \overline{U \cdot V}}{U \propto 2}$		0.1994			-0.0917	-0.1223	-0.1584	-0.0965	0.0288	0.0138	0.0275				-0.0879	0.3471	0.5569	0.3716	0.0177	-0.0088	-0.0432
	∞Ω <u>M</u>	0.1302	0.1826	0.2146	0.1535									0.1411		0.1483	0.2401		0.2402	0.1107	0.1040	0.1035
RMS	V∞ U∞	0.0260	0.0264	0.0398	0.0357	0.0362	0.0337	0.0332	0.0263	0.0216	0.0201	0.0202	0.0248	0.3275	0.0299	0.0334	0.0379	0.0338	0.0307	0.0239	0.0213	0.0258
	⊡Š	0.0299	0.0385	0.0593	0.0358		0.0297			0.0291					0.0311				0.0520			0.0219
	<u>∞</u> []	0.2606	0.2596	0.2049	0.1371	_							0.2268	0.2265	0.2016	0.0916	-0.1551	-0.3747	-0.3896	-0.2120	-0.1856	-0.1747
VELOCITY	I∨ ∞()	0.1124	0.0933	0.0599	0.0043	-0.0389	-0.0778	-0.1118	-0.1621	-0.1803	-0.1792	-0.1803	-0.1620	-0.1447	-0.1271	-0.0700	0.0047	0.0576	0.0954	0.1280	0.1367	0.1416
	<u> </u>	0.9560	0.9181	0.8529	0.7859	0.7778	0.7839	0.7993	0.8737	0.9450	0.9625	0.9375	0.8742	0.8303	0.7958	0.7334	0.7343	0.8239	.0.8935	0.9754	0.9807	0.9829
	Z (cal)	-0.3294	-0.3059	-0.2824	-0.2588	-0.2353	-0.2118	-0.1882	-0.1412	-0.0941	-0.0471	0.000.0	0.0471	0.0706	0.0941	0.1412	0.1882	0.2118	0.2353	0.2824	0.3294	0.4235

Run#: 163	M800	Um-261.6 m/s
NOSE: BLUNT	x = 5.500 cal	o 01 = π
RPM : 0000	Y = 0.141 cal	o 0 = 8

		VELOCITY			RMS		S	SHEAR STRESS	35
Z (cal)	Ω Ω Ω	I ∞0	M N N	- % D	[>] ⁸	MM_ CO	1000 <u>×∪ v</u>	000*U*V*1060*V*W*	1000×W'U' U∞^2
-0.4235	0.9856	0.1430	0.1782	0.0243	0.0259	0.1140	-0.0208	-0.3199	-2.0490
-0.3294	0.9854	0.1094	0.1982	0.0225	0.0271	0.1032	-0.0758	-0.2622	-1.7348
-0.2353	0.9878	0.0617	0.2105	0.0239	0.0310	0.1112	-0.0852	-0.3887	-1.9992
-0.1882	0.9889	0.0275	0.2060	0.0231	0.0366	0.1050	-0.1472	-0.5203	-1.7171
-0.1412	0.9925	-0.0133	0.1915	0.0249	0.0388	0.1128	-0.2220	0.0242	-2.1830
-0.0941	0.9936	-0.0545	0.1467	0.0237	0.0353	0.1097	-0.1161	-0.1350	-1.8871
-0.0471	0.9899	-0.0846	0.0878	0.0236	0.0335	0.1096	-0.0873	0.0627	-1.9125
0.000.0	0.9880	-0.0955	0.0296	0.0241	0.0302	0.1123	-0.0594	-0.2791	-1.9486
0.0471	0.9852	-0.0995	-0.0328	0.0245	0.0314	0.1133	0.0077	-0.3331	-2.1045
0.0941	0.9856	-0.0841	-0.1102	0.0256	0.0364	0.1171	0.0602	-0.8664	-2.2401
0.1412	0.9807	-0.0463	-0.1677	0.0234	0.0323	0.1091	0.0807	-0.6917	-1.7934
0.1882	0.9862	0.0012	-0.1901	0.0242	0.0307	0.1165	0.0547	-0.3742	-2.0235
0.2353	0.9864	0.0476	-0.1926	0.0228	0.0317	0.1061	0.0199	-0.2293	-1.6812
0.2824	0.9857	0.0803	-0.1753	0.0248	0.0306	0.1116	0.0210	-0.3437	-1.8882
0.3765	0.9931	0.1273	-0.1508	0.0235	0.0271	0.1098	-0.0338	-0.1551	-1.7062
0.4706	0.9911	0.1520	-0.1282	0.0235	0.0263	0.1066	0.0185	-0.3889	-1.6540
0.5647	0.9926	0.1711	-0.1020	0.0230	0.0243	0.1074	-0.0221	-0.1916	-1.6410

Run#: 135	0.800 M	Uoo-2(2.6 m/s
NOSE: FLUNT	X 5.500 cal	$\alpha = 10^{-6}$
KFM : 0000	z = 0.060 cal	$8 = 60^{\circ}$

$\overline{}$		_	_	_		_		_	_		_	_			_
3.5	7,∞0 1000×M±0.	6.9158		4.6807	5.3738	3.8524	1.6585	1.2670	0.0749	-0.7763			-1.3259		
SHEAR STRESS	$\frac{000 \times 0.7 \sqrt{1000 \times \sqrt{1W^4}} \frac{1000 \times \sqrt{W^4} \sqrt{1}}{1000 \times \sqrt{1}}}{1000 \times \sqrt{1}}$	[]				0.9020		0.4353	0.1599				0.0894	'	
13	1000×U·V·	1						0.2503	0.2365	0.1408	0.0134	0.0189	-0.0207	0.0355	-0.0170
	∞Ω • <u>M</u>	ĺ	0.1747			_	0.1637			0.1112	0.1088	0.1012	0.0976	0.0936	0.0994
RMS		0.1260	0.0593	0.0537	0.0487	0.0466	0.0445	0.0440	0.0419	0.0392	0.0384	0.0380	0.0372	0.0381	0.0430
	<u>.</u> ∏∾∩	0.0956	0.1018	0.1120	0.1127	0.1060	0.0873	0.0725	0.0558	0.0403	0.0303	0.0219	0.0207	0.0203	0.0222
	[<u>w</u>]	1	0.0074										0.1336	0.1394	
VELOCITY	[> S		-0.1040									-0.1085	-0.1091	-0.1070	-0.1014
	<u>-</u> 11	L	0.5678				0.8769						1.0124	1.0167	1.0165
	Y(cal)	0.0094	0.0141	0.0176	0.0235	0.0294	0.0353	0.0412	0.0471	0.0529	0.0588	0.0706	0.0824	0.0941	0.1176

Alphá	(ded)	Nose	Spin (R&M)	X (cal)	Delta (deg)	Scan
	10	BLUNT	6950	5.00	09-	Ϋ́
	10	BIONT,	0969	5.00	0	2
	10	BLONT	0969	5.00	0	Z
	10	BLUNT	0569	5.00	0	7.
	10	BLUNT	6950	5.00	0	27
	10	BLUNT	6950	5.00	09	Y

| Kun#: 118 | M = 0.860 | Jose 264.4 m/s | NoTE: BLUNT | X = 5.000 cal | $\alpha < 10^{\circ}$ | RFM : 6950 | Z = 0.000 cal | $\delta < -60^{\circ}$

		VELOCITY			HMS		S	SHEAR STRESS	33
Y (C31)	1= ⁸	1> 2	N _{cc}	l5l8	12/20	[<u>3</u>]	1000×11·V·	1000*V'W'	3√∞U U∞^2
0.0118	0.6637	<u>L</u> _	_	0.0738	0.0474	0.1846	-1.1018	0.9633	-6.5860
0.0176	0.7127			0.0744	0.0452	0.1772	-1.3548	1.8092	-5.7410
0.0235	0.7718	-0.0565	0.6367	0.0758	0.0442	0.1793	-1.0217	1.2792	-6.0686
0.0294				0.0699	0.0459	0.1462			-4.6769
0.0353					0.0432	0.1549		0.0779	-4.1778
0.0412					0.0425	0.1477			-3.5907
0.0471					0.0376	0.1404			-2.5640
0.0529	_				0.0350	0.1306			-2.3785
0.0588	1.0650	-0.0456	-0.1310	0.0351	0.0306	0.1173	0.0506	-0.1285	-2.2697
0.0706				0.0246	0.0263	0.1115		_	-2.1244
0.0824				0.0227	0.0254	0.1054			-1.8826
C.0941	_			0.0234	0.0249	0.1104	0.0109	-0.0459	-2.0063
0.1059				0.0228	0.0255	0.1068			-1.8199
0.1176					0.0259	0.1075			-1.8393
0.1765	1.0750			0.0226	0.0248	0.1064		-0.0118	-1.7902
0.2353				0.0239	0.0243	0.1084	0.0211	0.0200	-1.9930

Run#: 106	M = 0.800	U∞=261.1 m/s
NOSE: BLUNT	X = 5.000 cal	$\alpha = 10^{-6}$
RPM : 6950	Y = 0.024 cal	o 0 = 9

		VELOCITY			RMS		55 	SHEAR STRESS	SS
Z(cal)	I⊐ 80	I> \ ⁸	I⊠∑	5 <u>\$</u>	15 8	<u>* </u> 8	1000×11·V 1000×V·W 1	1000 *V'W'	1000×W¹U¹ U∞^2
-0.1882	0.9061	0.0067	0.0939	0.0572	0.0562	0.1682	0.2853	1.5296	-0.7899
-0.0941		-0.0586		0.0909	0.0473	0.2183	-0.8725		
-0.0471	1.0334	-0.0697		0.0559	0.0407	0.1448	-0.5439		
-0.0235	1.0609		-0.0014	0.0467	0.0425	0.1383	-0.5489		
0.000				0.0392	0.0401	0.1367	-0.1633		
0.0471				0.0359	0.0404	0.1283	-0.0534		
0.0941		-0.0769		0.0445	0.0424	0.1416	0.0144	0.0523	-1.1656
0.1412				0.0509	0.0514	0.1522	-0.4170		
0.2353	1.0441	0.1287		0.0437	0.0443	0.1294	0.7492		
0.2588				0.0304	0.0337	0.1202	0.1753		
0.2824	1.0567			0.0253	0.0306	0.1179	-0.0354		
0.3765	1.0484	0.1907	-0.1463	0.0239	0.0262	0.1161	-0.0058		
0.4706		0.1994		0.0248	0.0252	0.1131	-0.0308		

DO: . #	200 1	11-1 (1/1)
501 :#IIDX	00000	Oct 202.3 III/S
NOSE: BLUNT	X - 5.000 cal	$\alpha = 10^{-6}$
RFM : 6950	Y - 0.047 cal	o 0 - 9

		-	_						_						_	_												_
SS	1000× <u>W¹U</u> U∞^2	- 1	-1.4939	-1.5321	-1.7853	-1.6727	-1.8297	-1.3853				-2.8603		-1.1182	-1.5147	-1.3913	-1.3970	-1.5971	-1.4598	-1.3758	-3.4457	-3.4892	-3.4632	-2.3342	-1.1586	-1.2848	-1.4005	1 4771
SHEAR STRESS	1000×V•W•	.00	-0.1/81	-0.1903	-0.1969	-0.1068	0.0257	0.1402	0.5371	0.8374	0.1838	0.2651	0.0404	-0.2805	-0.2701	-0.2312	-0.0200	-0.3150	0.1441	0.2902	-C.9914	-2.1391	-1.9534	-1.6579	-0.3715	-0.2646	-0.2398	-f 1472
S	1000×U·V·	7,000	-0.124/	-0.0901	-0.0825	-0.1119	-0.1318	0.1211	0.3041	0.1443	-0.2092	-0.3129	-0.4834	-0.1539	-0.0689	-0.0894	-0.0785	-0.1443	-0.4140	-0.2208	-0.2229	-0.0228	0.1003	0.2246	9/90.0-	-0.1375	-0.1128	30
	W.¹ U∞o	0000	0.1088	9.1056	0.1061	0.1032	0.1055	0.1181		0.1351		0.1328	0.1449	0.1343	0.1140	0.1101	0.1059	0.1267	0.1424	•	0.2033	0.1551	Τ.	Γ.	0.1200	0.1178	0.1107	0 11 46.
rMS	V.∞	0000	0.070.0	0.0288	0.0295	0.0295	0.0301	0.0357	0.0392	0.0430	0.0405	0.0380	0.0372	•	0.0321	0.0308	•	0.0368	0.0430	0.0387	0.0624	0.0499	0.0468	0.0428	0.0313	0.0342	0.0323	0.0335
	<u>- 0</u>	0000	0.0230	0.0234	0.0232	0.0235	0.0251	0.0402	0.0479	0.0500	0.0471	0.0576	0.0712	0.0516	0.0315	0.0266	0.0252	0.0320	0.0399	0.0416	0.0495	0.0555	0.0507	0.0	0.02.7	0.0259	0.07.38	1.7. U
	M N	7000	0.1/0	0.1902	0.1986	0.1997	0.1964	0.1982	0.1715	0.1473	0.1049	0.0649	0.0258	•	0.0573	0.0647	0.0703	0.0787	0.0620	0.0499	0.0292	-0.1104	-0.1433	-0.2113	-0.1750	-0.1496	-0.1202	8080 51
VELOCITY	I ∑[]	0666	0.1/30	0.1577	0.1263	0.1069	0.0862	0.0599	0.0417	0.0135	-0.0058	-0.0283	-0.0351	-0.0431	-0.0452	-0.0464	-0.0520	-0.0592	-0.0569	-0.0450	-0.00.0-	0.0268	0.0572	0.0987	0.1535	6.1796	0.1 %44	7912 0
	<u> </u>	1050	1.0323	1.0576	1.0689	1.0763	1.0773	1.0404	•	•	0.9297	0.9346	0.9986	1.0623	1.0960	•	1.1014	1.0848	1.0445	.1.0325	1.0211	1.0030	1.0154	1.0469	1.0769	1.0642	1.0614	36.180
	Z (cal)	2020	00/ 5.0-	-0.3765	-0.2824	-0.2353	-0.1882	-0.1412	-0.1176	-0.0941	-0.0706	-0.0471	-0.0235	0.000.0	0.0235	0.0471	0.0706	0.0941	0.1412	0.1647	0.1882	0.2353	0.2588	0.2824	0.3294	0.3765	0.4245	0.5.74

Kun#: 110	CC8.0 · ₩	Uer 261.9 m/s
NAME: HEMET	X - 5.900 cal	α : 10 :
N. M. 1 6950	Y = 0.071 cal	2 O = 9

		VELOCITY			RMS		5	SHEAR STRESS	35
Z(cal)	15 8 15 5	1> 3	<u>M</u>	lala		W.U.	1000×111V U∞^2	060 <u>×11+V</u> 1 <u>1000×V+W</u> U∞^2 U∞^2	1600 <u>+ ₩ 1</u> U ·
-0.4235		0.1656		0.0220	0.0250	0.1012		-0.1870	-1.5058
-0.3294		0.1428	0.1959	0.0215	0.0274	0.0957		-0.0478	-1.3996
-0.2353		0.1095		0.0233	0.0 300	0.1041		-0.1383	-1.5909
-0.1882		0.0014		0.0215	0.0283	0.0987			-1.4556
-0.1412	1.0710	0.0686		0.0241	0.0306	0.1024			-1.4302
-0.1176				0.0300	0.0320	0.1165	0.0023	ı	-1.4932
-0.0941	1.0298			0.0368	0.0359	0.1261			-0.9914
-0.0706			0.1640	0.0432	0.0364	0.1354		0.2891	-0.1944
-0.0471	0	-0.035		0.0486	0.0397	0.1394		0.3269	-0.7513
-0.0235		-0.0256		0.0533	0.0383	0.1391		0.5021	
0000 0	П	-0.6345		0.0480	0.0350	0.1422		-0.0623	
0.0235	1.0801	-0.0344		0.0338	0.0315	C.1327		-0.2653	
0.0471	,_	-0.0345		0.0268	0.0300	0.1220		-0.1844	-1.0727
0.0706	7	-0.0391	0.0497	0.0269	0.0311	0.1216		0.0352	-1.7753
0.0941		-0.0401		0.0260	0.0305	6.1126		-0.0447	-1.6541
0.1176	1.0855	-0.0375		0.0278	0.0339	0.1205		-0.2854	-1.7785
0.1412		-0.0259		0.0293	0.0355	C.1224			-1.9247
0.1647	Н	-0.0083	-0.0376	0.0318	0.0378	0.1274			-2.0866
0.1882	П	0.0121	-0.0800	0.0362	0.0414	0.1309			-2.2119
0.2118	1	0.0409	-0.1384	0.0297	0.0424	0.1306			-1.7596
0.2353	1	0.0685	-0.1796	0.0307	0.0437	0.1356	-0.1565	-0.8707	-1.7808
0.2588	~	0.6940	-0.1951	0.0286	0.0409	0.1321		-0.4860	-1.6247
0.2824	1.0744	6.1158	-0.1846	0.0275	0.0387	0.1283	-0.2013	-0.3400	-1.7367
0.3294	1.0679	6.1464	-0.1603	0.0264	0.0376	0.1232	-0.147%	-0.3698	-1.96.64
0.3765	1.0609	6.1712	-0.1364	0.0241	0.035.0	74 TO	-5.11.91	-0.2877	1.4%
0.4235	1.0560	0.185.7	-0.1170	0.026.1	0.0343	0.1236	-0.1153	-0.1906	-2.0405
0.4176	1.0439	(0.20)	8490.0-	0.0738	7.0 M		F + 40 * C = -	-0.1668	
3	1.057+		1.0	8.70.0			3 .1.7.0.	360.0-	

্ স বি বি. শ ব সংস্থাস
স্পেস
100 - 100 MAN

		VELLANTITY			184		77	SHEAR STREES	32
2 (431)	- Σ []	NO	W 3	[5] [8]	(1)(c)	IM.	7.11.4.0001 1.0001	1000* <mark>V'W'</mark>	3√∞U 1000× <u>W*U</u>
-0.4235	1.0571	0.1622	0.1772	0.0205	6.0243	0.000	-0.0523	-0.0192	-0.9372
-0.2824	1.0648	0.1291	0.1861	0.6217	0.0286	0021	-0.0680	-0.2986	-1.2638
-0.1882	1.0716	0.0962	0.1801	0.0202	0.0334	0.5360	-6.1132	-0.1885	-1.1373
-0.1412	1.0737	0.0781	0.1814	0.6214	0.0277	0.0990	-0.0537	-0.2597	-1.3433
-0.1176	1.0764	0.0674	0.1925	0.0224	0.0279	6.1012	-0.0880	-0.1618	-1.4359
-0.0941	1.0647	0.0534	0.2076	0.0247	0.0293	0.1176	-6.0311	-6.2135	-1.7303
-0.0706	1.0537	0.0409	0.2155	0.029€	0.0419	0.1274	-0.0065	-0.2296	-1.2332
-0.0471	1.0340	0.0203	0.1856	0.0372	0.0346	0.1339	-0.1092	0.1661	-0.4081
-0.0235	1.0297	-0.0013	0.1198	0.0434	0.0338	0.1499	-0.2414	0.2362	-1.9869
0.000.	1 0550	-0.0141	0.0472	0.0382	0.0298	0.1520	-0.0843	-0.0801	-2.3152
0.0235	1.0775	-0.0212	0.0414	0.0320	0.0281	0.1355	-0.0086	-0.1695	-1.1480
0.0471	1 0873	-0.0208	0.0414	0.0242	0.0268	0.1112	-0.0109	-0.3720	-1.1952
90.0.0	1.0885	-0.0226		0.0238	0.0260	0.1115	-0.0110	-0.3718	-1.4382
0.0941	1.0921	-0.0223	0.0287	0.0230	0.0271	0.1066	-0.0420	-0.2944	-1.3945
0.1176	1.0986	-0.0181	-0.005u	0.0242	0.0287	0.1166	-0.0192	-0.2965	-1.8370
0.1412	1.0935	-0.0074	-0.0372	0.0249	0.0323	0.1173	-0.0485	-0.5201	-1.7449
0.1882	1.0880	0.0303	-0.0812	0.0243	0.0379	0.1195	-0.0262	-0.7121	-1.8827
0.2353	1.0842	0.0641	-0.1306	0.02 33	0.0403	0.1118	-0.1396	-0.5368	-1.6335
0.2588	1.0843	0.0804	-0.1340	0.0231	0.0419	6.1123	-0.0892	-0.6835	-1.4317
0.2824	1.0787	0.0973	-0.1363	0.0234	0.0398	0.1098	-0.1771	-0.5307	-1.4547
0.3294	1.0723	0.1254	-0.1407	0.0244	0.0366	6.11.31	-0.1922	-0.4044	-1.7713
0.3765	1.0667	15 . 1 . 5	-0.1208	0.0247	0.0358	0.1209	-0.6933	-0.6523	-1.2386
0.4766	3.0576	0.15.77	-(0.0824)	0.025	(.0312]	0.:190	-0.0045	-0.4346	-1.2901

,			
	:	Ö	.c
	1 E	ĸ	*:
	11.		

					THE.			THEAL SHAMES	
	1. ;	14. ¹	184	<u> </u> = .	FAŠ	[SIS		M 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1				0.0847		* 3 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5			'
			19951	0.00 4040.0				1.1.1.	-6.2782
0.0353	4.7 4.0 4.4 4.4	-3.3742	0.1881	0.0361	a		1 10 1 1 1 1	7,865,7	-0.6421
0.0412		-3.0761	6.1819	0.630	5.6347	6.1.0	0.000	7.4 105	-1,4209
0.0471	5° 3.	-0.6753	0.1656	0.6287	268.010	- 3854	* # # O -	6.1921	-1.5762
6.0529	1.1285	-0.0759	0.1677	0.0265	0.0386	6.1737	-()-	0.4589	-1.6405
0.0588	1.1207	-0.0792	0.1467	0.6284	0.0362	6.1263	$-(i_{+},i_{0})$ 333	6.3449	-1.584]
0.0647	1.1188	-0.0676	0.1588	0.0278	0.0483	C.1:33	-0.1427	6.2771	-1.5011
0.0706	1.1134	-0.0746	6.1439	0.0274	0.0365	6.1233	-0.1117	6.2615	-1.4184
0.0824	1.1095	-0.0698	0.1364	0.0274	0.0378	0.1260	-0.1304	6.3980	-1.6619
0.1176	1.0970	-0.6717	0.1226	0.6274	0.0343	0.1232	-0.1.11	0.0074	-1.4211

Wath Alpha (4884) Hall Hall <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th>		_						_
Mach Alpha (Sed) Harry Spite (Sed) Harry 95 0.8 10 Burry 590 5.50 96 0.8 10 Burry 590 5.50 97 0.8 10 Burry 6950 5.50 100 Burry 6950 5.50 101 Burry 6950 5.50 102 Burry 6950 5.50 103 Burry 6950 5.50 104 Burry 6950 5.50		J	`:	×	: 33	6/3	3	<u>}</u>
Mach Alpha (Sed) Hart April (Sed) Hart Sed 96 0.8 10 Mark 6950 96 0.8 10 Mark 6950 97 0.8 10 Mark 6950 100 10 Mark 6950 101 10 Mark 6950 102 10 Mark 6950 103 10 Mark 6950	Delta (deg)	09-	0	0	Ď)	0	09
Mach Alpha (4534) 11.30- 121 0.8 10 HART 96 0.8 10 HART 97 0.8 10 HART 100 HART 101 HART 102 HART 103 HART 104 HART 105 HART 106 HART 107 HART 108 HART 109 (ap.) ×	5.50	0, °C	06.5	5.50	05.50	5.50	5.50	
Mach Alpha (Asct) 96 96 97 97 98 98 99 98 99 99 99 99		0969	0569	(3.69	0369	0369	0769	07.69
78.0 99 99 90 90 90 90 90 90 90 90 90 90 90		BUDAL	JENTH			MIMI	INTH	RUMTE
121 99 99 90 100 00 00 00 00 00 00 00 00	Aipha (1831)	10	0	01	Oi	9.	115 126 126	
1 2	Meth		<u>အ</u> ့	8°0	8.0	0.8		∞. ○
	F. F. F. F. F. F. F. F. F. F. F. F. F. F	12.	J.	<u>.</u> ඉ	7.6	39	191	330

_			
	Uco 261.9 m/s	α = 10 °	5 = -60
	M 0.800	X 5.500 ch	Z 0.000 cal
	Kun#: 1/21	LOSSE: BUSBUT	KFM : 6950

,-:	$\overline{}$		_			_		_				_	
7,∞0 11, M ×0001	-8.5740	-1.3581	0.7189	-0.2890	-1.5239		-4.7586		-4.0179	-1.3702		-1.7697	-1.7650
1000×V*W	2.2853	2.1834	1.5293	2.1283	2.2311	2.6389	2.2108	1.6872	0.9613	0.2953	0.2495	0.2873	0.1086
1600× <u>U*V'</u> U∞′2	0.6152	0.6933	0.4434	-0.0263	-0.7101	-1.4103	-1.5715	-1.2070	-0.6560	-0.0554	-0.0080	-0.0168	-0.0012
<u>*</u> *	0.2769	0.2013	0.1720	0.1671	0.1488	0.1587	0.1592	0.1506	0.1363	0.1160	0.1105	0.1071	0.1070
15 ≗	0.0425	0.0443	0.0414	0.0468	0.0489	0.0518	0.0508	0.0447	0.0379	0.0325	0.0274	0.0271	0.0244
<u> </u>	0.0862	0.0775	0.0734	0.0657	0.0655	0.0695	0.0781	0.0803	0.0670	0.0359	0.0258	0.0232	0.0225
<u>M</u>	0.2510	0.2447	0.2140	0.1498	0.1316	0.0822	0.0323	-0.0467	-0.1050	-0.1202	-0.1248	-0.1206	-0.1158
1> <u> </u>	1	-0.0822	-0.0810	-0.0855	-0.0770	-0.0838	-0.0874	-0.0874	-0.0904	-0.0867	9060.0-	-0.0890	-0.0946
1418	0.6578	0.6448	0.6335	0.6277	0.6228	0.6498	0.6988	0.8069	0.9137	0.9881	1.0080	1.0123	1.0127
	0.0235	0.0294	0.0353	0.0412	0.0471	0.0529	0.0588	0.0706	0.0824	0.0941	0.1059	0.1176	0.1412
	$\frac{1000 \times \sqrt{1000}}{\sqrt{1000}} \frac{1000 \times \sqrt{1000}}{\sqrt{1000}} \frac{\sqrt{1000}}{\sqrt{1000}} \frac{\sqrt{1000}}{\sqrt{1000}} \frac{\sqrt{1000}}{\sqrt{1000}} \frac{\sqrt{1000}}{\sqrt{1000}} \frac{\sqrt{1000}}{\sqrt{1000}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Run#: 095	008.0 - M	[low-26].6 m/s
NCSE: BLUNT	X = 5.500 cal	$\alpha = 10^{-6}$
REM : 6950	Y = 0.071 cal	φ () () = 9

		VELOCITY			RMS		<u>155</u>	SHEAR STRESS	3.5
Z(cal)	<u>∞</u> n <u>n</u>	I> ∞ 	<u>∞</u> ()		<u>, √</u>	<u> </u>	1000 <u>× U·V·</u> U∞^2	1000×V'W' U∞^2	1 <u>000×w'u'</u> ∪∞^2
-0.3765	١.	0.0907		0.0245	0.0188	0.1179	0.0271	-0.3582	-2.5800
-0.3294	•	0.0725		0.0235	0.0194	0.1149	0.0376	-0.4305	-2.3579
-0.2824	0.9610	0.0504		0.0246	0.0221	0.1178	0.0611	-0.3809	-1.7496
-0.2353	0)	0.0132		0.0365	0.0290	Τ.	0.1529		-0.4361
-0.1882	•	-0.0463	0.1362	0.0351	0.0327	0.1574	0.0713		0.0277
-0.1647	0.8266	-0.0683		0.0317	0.0313	0.1318	0.0116		-0.3326
-0.1412	•	-0.0949		0.0303	0.0320	.134	-0.0666		-0.8346
-0.1176	0.8287	-0.1203		0.0352	0.0331	0.1508	-0.1470	0.127	-0.4077
-0.0941	-	-0.1397		0.0422	0.0289	•	0.0187		-1.4742
-0.0706	0.9349	-0.1484		0.0316	0.0246	0.1451	0.0145	-0.4633	-2.5243
-0.0471		-0.1552		0.0232	0.0218	•	-0.0337		-1.6581
-0.0235	•	-0.1618		0.0196	0.0199	•	-0.0084		-1.2839
0.000.0	•	-0.1646		0.0201	0.0198	0.0949	-0.0100		-1.2111
0.0235	0.9524	-0.1667		0.0225	0.0237	0.1096	-0.0033		-1.5966
0.0471	0.9430	-0.1626		0.0250	0.0253	0.1156	-0.0419		-1.6337
0.0706	0.9290	-0.1494	-0.0713	0.0276	0.0298	0.1245	-0.1052		-1.7009
0.0941	0.9136	-0.1281	-0.0944	0.0288	0.0333	0.1328	-0.1639		-1.8448
0.1412	•	-0.0549	-0.2079	0.0341	•	0.1540	-0.1526	-0.7564	-2.7592
0.1647	0.9038	-0.0197	-0.2877	0.0359	•	0.1597	-0.0629	-0.6501	-2.9645
0.1882	•	0.0215	-0.3493	0.0345	0.0324	0.1430	-0.0627	-0.3450	-1.8998
0.2118	•	0.0511	-0.3498	0.0304	0.0294	0.1353	-0.0450	-0.2310	
0.2353	•	0.0786	-0.3301	0.0254	•	0.1192	-0.0073	-0.1116	-0.8856
0.2824	•	0.1158	-0.2771	0.0219	•	0.1007	-0.0196	-0.2066	
0.3294	٠	0.1364	-0.2443	0.0217	•	0.1076	0.0146	-0.2923	-1.7114
0.3765	•	Τ.	-0.2132	0.0216	0.0221	0.1016	-0.0021	-0.3230	
0.4235	•	0.1578	-0.1879	0.0208	0.0179	0.0978	0.0311	-0.2696	•
0.4706	•	0.1630	-0.1733	0.0196	•	0.0932	0.0327		•
0.5176	•	0.1666	-0.1617	0.0199	.018	0.0964	0.0081	-0.2343	
0.5647	0.9768	0.1668	-0.1438	0.0210	0.0185	0.1006	0.0341	-0.3093	-1.5293
0.6118	0.9829	0.1695	-0.1357	0.0201	0.0193	0.0970	0.0113	-0.3428	-1.4447
0.6588	0.9833	0.1703	-0.1235	0.0210	0.0204	0.1013	0.0189	-0.3068	-1.5528
0.7059	0.9815	0.1721	-0.1165	0.0229	0.0197	0.1109	0.0262	-0.4119	-2.0434

Run#: 096	M ≈ 0.800	Uo≈ 261.6 m/s
NOSE: BLUNT	X = 5.500 cal	$\alpha = 10^{-4}$
RPM : 6950	Y - 0.047 cal	> 0 = 8

		VELOCITY			RMS		S	SHEAR STRESS	SS
Z (ca1)	<u>n</u>	1> 8	I⊠ [∞]	[n] ^{&}	[N]	<u> </u>	1000*(J'V') U~^2	1000*V*W*1000*W*U U~^2	1000 * W'U'
-0.3765		0.0942	0	0.0225		7.	0.0376	-0.4053	-2.0969
-0.3294	•	0.0780	0	0.0208	· 0	0.1000		-0.3733	-1.6131
-0.2824	•	0.0591	•	0.0271	0	0.1212		-0.1337	-1.5944
-0.2353	•	0.0145	0.2000	0.0447	0	0.1886	0.205	0.2799	1.5575
-0.1882	0.7785	-0.0511		0.0361	0.0	0.1500		0.1128	-0.0021
-0.1412	۲.	-0.1040	0.0808	0.0328	0	0.1407		-0.1961	-1.1459
-0.0941	0.8676	-0.1480	0.0736	0.0561		0.2056	-0.0303	7	-1.3407
-0.0471	•	-0.1626	•	0.0241	0.0198	0.1135	0.0157		-1.6468
-0.0235	•	-0.1675	0	0.0209		0.0992	-0.0004	-0.1864	-1.3946
0.0000	.956	-0.1769		0.0213		0.0999	0.0078		-1.4883
0.0235	0.9448	-0.1836	0.0584	0.0229		0.1080	-0.0184	_	-1.6268
0.0471		-0.1852		0.0265		0.1229	-0.0170	-0.4481	-2.0131
0.0706	0.9154	-0.1759	0.0774	•	0.0279	0.1366	-0.0591	-0.3826	-2.0981
0.0941	0.8849	-0.1577	0.0626	•	0.0306	0.1379	-0.0784	-0.4500	-1.7977
0.1176	0.8620	-0.1355	0.0309	•	0.0345	0.1515	-0.1765	-0.5370	-2.0220
0.1412	0.8387	-0.1036		•	0.0383	0.1588	-0.1781	_	-1.8039
0.1647	0.8305	-0.0639		0.0390	0.0408	0.1782	-0.0539	-0.9859	-3.2573
0.1882	0.8313	-0.0189	_	•	0.0411	0.1936	-0.0334	9	-5.1120
0.2118	. 0.8563	0.0278		0.0479	0.0389	0.2174	0.0936	-1.5106	-6.4607
0.2235	0.8848	0.0507		0.0481	0.0346	0.2069	0.1472		-4.9812
0.2353	•	0.0755		•	0.0325	0.1830	0.0743	0	-2.0985
0.2588	•	0.1044	7	0.0346	0.0282	0.1607	0.0313	0	-0.0408
0.2824	•	0.1270	9	0.0257	0.0233	0.1228	0.0064	0	-0.7579
0.3059	•	0.1390		0.0218	0.0206	0.1071	0.0272		-1.2392
0.3294	•	0.1499	9	0.0206	0.0183	0.0980	0.0325	0-	-1.4025
	•	0.1554	-0.2235	0.0219	0.0193	0.1045	0.0279		-1.6359
0.3765		0.1586	-0.2027	0.0233	0.0191	0.1104	0.0298	-0.3163	-1.3613
•	0.9811	0.1621	-0.1928	0.0229	0.0191	0.1093	0.0369	-0.3543	-1.9241
.423	٠	0.1660	1		•	0.0983	0.0200	-0.2880	-1.4832
0.4471	•	0.1680		0.0204	0.0162	0.0975	0.0232	0-	-1.5256
0.4706	•	0.1707	0	0.0203	0.0187	0.0940	0.0017	•	-1.51111
	0.9865	0.1733	0 	0.0203	0.0204	0.0957	6000.0-	-0.2858	-1.5086
	0.9862	0.1750	-0.1267	0.0201	0.0.03	0.0960	0.0032	-0.3135	-1.11.1
0.589	3,380.0	0.17	-5.1200	0.020.0	0.0.40	0.042	-0.0 481	00.::0-	-1.4 / -

Run#: 097	M = 0.800	U∞-261.6 m/s
NOSE: BLUNT	X = 5.500 cal	$\alpha = 10^{\circ}$
RPM : 6950	Y = 0.024 cal	o 0 = 8

Ñ	1000 *W¹U¹ U∞^2	-1.5640	-2.0102	-1.4321	2.3590	-0.2663	-1.1373	-0.92/1	-2.4567	-1.4446	-0.5615	-0.4689	-0.8806	-1.1726	-1.2808	-1.5863	•	-1 1523	-1.0406	-1.4455	-2 5900	-5.1024	-6.7549	-8.3614	-6.3427	-3.8143	0.2249	-1.0098	-1.1104	11.2451
SHEAR STRESS	1000 <u>*V W I</u> U∞^2	-0.2385	-0.3861	-0.2017	427	0.0288	0.1073	-0.0021	0.1080	-0.1927	-0.0132	-0.1272	-0.0780	-0.2023	-0.1024	-0.1752	-0.1628	-0.1803	0.0323	-0.1734	-1 0803	-1.5737	-1.8339	-2.3318	-1.7548	-0.6587	-0.0642	-0.2322	-0.2080	-0.2150
SF	1000 <u>×U ·V </u>	-0.0065	0.0340	0.0749	0.3178	0.1348	-0.0563	-0.0962	-0.2856	-0.1993	-0.1009	0.0148	-0.0631	-0.0450	-0.0532	-0.0725	-0.0866	-0.1135	-0.1934	-0.1736	-0.2286	0.0317	0.1997	0.3878	0.3079	0.1879	0.0735	-0.0013	0.0007	0.0087
	× N N N	0.1011	0.1192	0.1448	0.2027	0.1643	0.1429	0.1385	0.2116	0.1871	0.1547	0.1278	0.1130	0.1023	0.1015	0.1130	0.12//	0.1349	0.1493	0.1589	0.1793	0.2097	0.2204	0.2452	0.2412	0.2359	0.1603	0.1085	0.0936	0.0917
RMS	<u>-</u> 8	0.0204	0.0231	0.0242	0.0303	0.0321	0.0334	0.0346	0.0400	0.0360	0.0309	0.0245	0.0251	0.0245	0.0240	0.0255	•	0.0317		0.0395			0.0496	0.0458	0.0434	0.0372	0.0277	0.0224	0.0199	0.0193
	<u>-</u> [0]	0.0210	0.0254	0.0302	0.0474	0.0374	0.0345	0.0318	0.0607	0.0535	0.0398	0.0301	0.0255	0.0225	0.0223	0.0243	0.0278	0.0291	0.0322	0.0349	0.0392	0.0466	0.0519	0.0575	0.0537	0.0505	0.0350	0.0230	0.0196	0.0194
	I⊠ U	.23	0.2451	757.	0.2072	0.1062	0.0975	0.0985	0.0767	0.0419	0.0187	0.0143	0.0492	0.0865	0.1120	0.1397	0.1643	0.1634	0.1394	0.1138	-0.0496	-0.1555	-0.2184	-0.2812	-0.3786	-0.3958	-0.3342	-0.2542	-0.2248	-0.1934
VELOCITY	I> [∞] ∩	0.0846	0.0737	0.0632	0.0151	-0.0280	-0.0574	-0.0873	-0.1304	-0.1474	-0.1582	-0.1620	-0.1705	-0.1767	-0.1856	-0.1904	-0.1879	-0.1813	-0.1616	-0.1387	-0.0570	-0.0056	0.0177	0.0503	0.0747	0.1047	0.13%6	0.1554	0.1406	0.1695
	IU N		0.9608	•		•	0.7230	0.7374			•	•	•	•	•	•	•	•	•	0.8216			0.7998	0.8303	0.8550	0.8958	0.9562	9.9774	0.9785	0.9862
	2(cal)	-0.3294	-0.3059	-0.2524	-0.2353	-0.2118	-0.1882	-0.1647	-0.1176	-0.0941	-0.0706	-0.0471	-0.0235	0000.0	0.0235	0.0471	0.0706	0.0941	0.1176	0.1412	0.1882	0.2118	0.2235	0.2353	0.2471	0.2588	0.2824	0.3059	0.3294	0.4765

NOSE: BLONI RPM : 6950

		VELOC1TY			RMS		S	SHEAR STRESS	SS
Z (cal)	<u>10</u>	12 00	M ∞O	<u> = </u>	> &	[<u>*</u> 85	1000 × (1 1 V 1	1000×(1'V' 1000×V'W' 1000×W' U U∞^2 U∞^2	1000 × W · U · U · U · U · U · U · U · U · U ·
0.0000	L	0.9926 -0.0944	-0.0049	0.0212		0.1019	0.1019 -0.0187	ı	-1.8124
0.0471		-0.0919	-0.0527			0.0936	-0.0423	-0.2662	
0.0941	_			0.0219	0.0270	0.1058			-2.0391
0.1412		-0.0480	-0.1716	_		0.0950		-0.3434	-1.6443
0.3765		0.1285	-0.1503			0.1146	-0.0198	-0.3890	-2.2270
0.4235	0.9936	0.1435	-0.1294			0.1153		-0.4631	-2.1907
0 4706		0 1520	-0 1096		0.0317	0.1117		-0.2895	-2.0721

Run#: 101	M = 0.800	Uco 260.4 m/s
NOSE: BLUNT	X ~ 5.500 cal	$\alpha = 10^{\circ}$
RPM : 6950	Y = 0.094 cal	° 0 = 8

														_								
	35	1000* <u>W'U'</u>	U∞^2	-2.1748	-1.7856	-1.5770	-2.0926	-1.9729		-5.1115			-1.5751	-2.5855	-2.1957	-1.8356	-1.5751	-1.2928	-1.5647	-1.5461	-1.3537	-1.0572
	SHEAR STRESS	1000*V'W'	U∞^2	-0.3572	-0.3904	-0.3147	-0.4707	-0.3979	0.5616	1.7389	0.5014	-0.1499	-0.2933	-0.4103	-1.1254	-0.7991	-0.6551	-0.3679	-0.2257	-0.1756	-0.2600	-0.2036
	SI	1000× <u>U'V'</u>	U∞^2	-0.0148	-0.0410	-0.0815	-0.0103	0.3816	-0.0984	-0.7577	-0.4834	-0.0784	-0.0267	0.0378	-0.1390	-0.0578	-0.0648	0.0539	0.0471	0.0099	-0.0046	-0.0012
		3	 ∞∩	0.1167	0.1039	0.0993	0.1225	0.1401	0.1788	0.2082	0.1733	0.1024	0.1039	0.1343	0.1367	0.1199	0.1194	0.1064	0.1110	0.1069	0.1004	0.0844
	RMS	<u>.</u> \	 ∞∩	0.0238	0.0255	0.0282	0.0278	0.0413	0.0475	0.0430	0.0352	0.0273	0.0291	0.0338	0.0449	0.0445	0.0393	0.0341	0.0299	0.0272	0.0232	0.0178
		[b	N∞	0.0240	0.0224	0.0217	0.0254	0.0404	0.0438	0.0575	0.0553	0.0239	0.0231	0.0292	0.0303	0.0305	0.0274	0.0242	0.0236	0.0241	0.0218	0.0186
		ĮΖ	 	0.2160	0.2075	0.2116	0.2688	0.2359	0.1925	0.0490	0.0041	0.0133	-0.0349	-0.0968	-0.1998	-0.2586	-0.2902	-0.2750	-0.2417	-0.2066	-0.1553	-0.1042
	VELOCITY	>	M	0.1431	0.1157	0.0791	0.0539	0.0212	-0.0383	-0.0880	-0.1182	-0.1245	-0.1295	-0.1130	-0.0571	-0.0235	0.0165	0.0759	0.1208	0.1499	0.1781	0.1904
•		ĮΩ	n	0.9917	0.9853	0.9766	0.9656	0.9319	0.8866	0.8888	0.9483	0.9849	0.9785	0.9690	0.9627	0.9701	0.9720	0.9889	0.9898	0.9917	6066.0	1.0052
·			7 (Cd1)	-0.4235	-0.3294	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0000.0	0.0471	0.0941	0.1412	0.1882	0.2118	0.2353	0.2824	0.3294	0.3765	0.4235	0.5647

Kur.#: 136	008.0 · M	Ues 262.0 m/s
NOSE: BLUNT	X = 5.500 cal	$\alpha = 10^{\circ}$
KPM: 6950	z = 0.000 cal	× 09 = 8

		VELOCITY			IdMS		SI	SHEAR STRESS	S
Y(cal)	- N	I> ∞	<u> </u> ∞	[5]8 8	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	<u>w</u> .	$\frac{1000 \times U \cdot V}{U \sim 2}$	1000 ×1 · 1 W · 1 U∞′ 2	1000×W1U
0.011.0	0.6494	-0.1037	0.1154	0.0779	0.0992	0.2391	-1.7498	3.4114	2.0234
0.0235	0.7838	-0.1351	0.1140	0.0709	C.0513	0.2710	-0.6635	0.1822	5.5086
0.0294	0.8362	-0.1432	0.0866	0.0603	0.0422	0.2508	-0.3453	0.2495	4.7899
0.0353	0.9084	-0.1468	0.1344	0.0542	0.0413	0.2011	-0.1459	0.1772	1.7779
0.0412	0.9538	-0.1455	0.1536	0.0440	0.0371	0.1462	0.1359	0.4670	0.6436
0.0471	0.9763	-0.1448	0.1684	0.0349	0.0352	0.1197	0.0882	0.3773	-0.6311
0.0529	0.9885	-0.1471	0.1608	0.0277	0.0332	0.1085	0.0217	0.3381	-0.9161
0.0588	0.9988	-0.1477	0.1543	0.0228	0.0301	0.1611	0.0588	0.0600	-1.2253
0.0647	1.0000	-0.1482	0.1537	0.0210	0.0306	0.1008	0.0421	0.1914	-1.3039
0.0706	1.0035	-0.1436	0.1451	0.0204	0.0292	0.0965	0.0164	0.1558	-1.3003
0.0824	1.0026	-0.1414	0.1435	0.0199	0.0300	0.0971	0.0117	0.1200	-1.3030
0.0941	1.0039	-0.1387	0.1449	0.0201	0.0303	0.0964	0.0300	0.0400	-1.2997
0.1176	1.0010	-0.1303	0.1277	0.0204	0.0295	0.0959	0.0202	-0.1246	-1.3170

Mach Alpha (deg) Nose Spin (REM) X (cal) Lelta (deg) Scan 152 0.8 20 BLUNT 0 5.00 -60 Y 164 0.8 20 BLUNT 0 5.00 0 Y 165 0.8 20 BLUNT 0 5.00 0 Y 166 0.8 20 BLUNT 0 5.00 0 Y		
Mach Alpha (deg) Nose Spin (RPM) X (cal) 152 0.8 20 BLUNT 0 5.00 164 0.8 20 BLUNT 0 5.00 165 0.8 20 BLUNT 0 5.00 166 0.8 20 BLUNT 0 5.00 166 0.8 20 BLUNT 0 5.00	Scan	> > > >
Mach Alpha (deg) Nose Spin (RPM) X (C. BLUNT) 152 0.8 20 BLUNT 0 164 0.8 20 BLUNT 0 165 0.8 20 BLUNT 0 166 0.8 20 BLUNT 0	belta (deg)	000
Mach Alpha (deg) Nose 152 0.8 20 BLUNT 164 0.8 20 BLUNT 165 0.8 20 BLUNT 166 0.8 20 BLUNT 166 0.8 20 BLUNT		5.00 5.00 5.00 5.00
Mach Alpha (deg) 152 0.8 20 164 0.8 20 165 0.8 20	Spin (RPM)	000
Mach 152 0.8 164 0.8 165 0.8	Nose	BLUNT BLUNT BLUNT BLUNT
Mach 152 0.8 164 0.8 165 0.8	Alpha (deg)	20 20 20 20
		0.00
Run	Run	152 164 165 166

Kun#: 152	E).800	Um 26].6 m/s
NOSE: ELUNT	×	X 5.000 cal	a - 20 c
RFM : 0000	2	0.000 cal	⇒ 09 • <u>Q</u>

		VELOCITY			RMS		SS	SHEAR STRESS	SS
Y (cal)	ID 8	1> ≈	<u>M</u>	<u>.</u> [2]	[>] >	[M]0	1000× <u>U v</u>	000× <u>U¹V'</u> 1000× <u>V'W'</u> 1 ∪∞^2	1000×W¹U U∞^2
0.0176	0.7443		1	0.1713	08:0.0	0.7608		1	-70.2717
0.0235	0.9052			0.1474	0.0495	0.4813		10.2922	10.2922 -40.1283
0.0471	1.0454	0.0103			0.0246	0.1784		1.6161	-5.8790
0.0706	1.0457	0.0118	-0.1922		0.0229	0.1079	-0.1101	0.6295	-1.9155
0.0941		0.0152			0.0232	0.1137	-0.1361	0.7856	-1.9980
0.1176	1.0481	0.0155	-0.1748	0.0240	0.0242	0.1110	-0.1365	0.6206	-2.0106

Kur.#: 164	M ~ 0.400	Um-265.3 BdC
NOSE: BLUNE	X 5.000 cal	a 20
RPM : 0000	$Z \sim 6.000 \mathrm{cat}$. O •

		VELOCITY			FMS		ភ	SHEAR STRESS	35
X(242)	 	I № 0	<u> </u>	E 8	15/10	<u>*</u> <u>%</u>	1000×U*V*	000× <u>U'V'</u> 1000× <u>V'W'</u> U∞^2	1000×W¹U¹ U∞^2
0.0471	1.0508	-0.0971	-0.0338	0.0289	0.0366	0.1492	-0.0709	0.7955	-1.6826
0.0706	1.0514		-0.0059	0.0291	0.0358	C.1510	-0.0228	0.4451	•
0.4941	1.0498	-0.1904	0.0085	0.0296	0.0353	0.1422	0.0011	0.1314	
0.1176	1.0513	-0.2110	0.0186	0.0289	0.0357	0.1280	-0.1194	-0.3556	
0.1412	1.0487	-0.2308	0.0522	0.0269	0.0393	0.1135	-0.2572	-0.4201	-1.2784
0.1882	1.0406	-0.2081	0.0660	0.0284	0.0360	0.1192	-0.1943	-0.7719	
0.2824	1.0273	-0.0840	0.0613	0.0287	0.0361	0.1287	-0.2924	0.2210	
0.3765	1.0072	0.0335	0.0503	6.0269	0.0307	0.1162	-0.1347	-0.1421	-1.5253
0.4706	0.9921	0.1153	0.0434	0.0248	0.0320	0.1072	-0.2187	-0.1146	
0.5647	0.9799	0.1792	0.0433	0.0273	0.0305	0.1189	-0.1222	-0.4890	
0.6588	0.9689	0.2129	0.0330	0.0264	0.0306	0.1189	-0.1278	-0.6113	-1.9861

[M 0.8⊲C	800	U	
	1.71	×:	TP-0-0001, -X	α ·	2
MIM : 6000	0000	. 0 Z	07. ***1	9 0	; 0

		ALLOTHA			HAMES			CHEAR STRESS	33
	ļu Š	<u>\</u> \(\frac{\omega}{\sqrt{\sq}}\ext{\sqrt{\sq}}}}}}}}} \end{\sqrt{\sq}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \end{\sqit{\sqrt{\sqrt{\sq}}}}}}}} \end{\sqit{\sqrt{\sqrt{\sq}}}}}}} \end{\sqnt{\sq}}}}} \end{\sqnt{\sqnt{\sq}}}}}} \sqnt{\sqnt{\	<u>M</u>	[H&	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W N	1060)×U+V	000×U±V*1000×V±W*1000×W±15 U∞2 U∞2 U∞2	1000×W111
0.0353	1.0415	-0.0720	0.2129	0.0295	0.0412	0.1427	-0.2039	-1.8602	-1.0483
0.0471	1.0462			0.0287	0.0427	0.1423		-1.7815	-6.7606
0.0941	1.0443		0.1141	0.0277	0.0408	0.1243	-0.4025	-1.1795	-0.8566
0.1412	1.0473		0.0544	0.0293	0.0456	0.1136	-6.4704	-0.6059	-1.3753
0.1882	1.0372		0.0038	0.0293	0.0458	0.1299	-0.4630	0.3485	-1.7592
0.2353	1.0322	-0.1712		0.0283	0.0397	0.1373	-0.3731	0.2385	-1.8880
0.2824	1.0299	-0.0910		0.0265	0.0365	0.1352	-0.2180	-0.6131	-1.9297
0.3765	1.0096	0.0322	-0.0311	0.0260	0.0314	0.1269		-0.4743	-1.9890
0.4706	0.9942	0.1175	-0.0242	0.0254	0.0306	0.1162		-0.5743	-1.7889
0.5647	0.9815	0.1747	0.0018	0.0249	0.0290	0.1137	-0.0993	-0.7733	-1.6947
0.6588	C.9782	0.2149	0.0029	0.0258	0.0305	0.1154	-0.1418	-0.5278	-1.8163

	Σ	1 6.806	3	160 262.6 m/s
120014:40024		5.656 341	ij	02
E-10000	.7	5.141 Car	·c	: 0

						;			
		VEL TTY					55	SHEAR STRESS	- 55
¥ (Ca1)	(\frac{\frac}{\frac}}}}}}}{\frac}}}}}}}{\frac}}}}}}}}{\frac}}}}}}}}}}{\fracc}}}}}}}}}	⊠ 2			. M . M	1000× <u>U'V'</u> U~2	000×U·V 1000×V·W·1	1000× <u>W*U*</u> U∞^2
0.0471	1.0431	-0.1318	0.3325	0.0312	0.0587	0.1985	-0.6923	-7.0571	0.4899
0.0941	1.0254	-0.2098	0.1330	0.0307	0.0495	0.1504	-0.3172	-3.0741	-1.8338
0.1412	1.0218	-0.2384	0.0553	0.0349	0.0495	0.1517	-0.3625	-1.4052	-1.9647
0.1882	1.0214	-0.2186	-0.0302	0.0335	0.0520	0.1543	-0.5478	0.0320	-2.2703
0.2353	1.0234	-0.1573	-0.1207	0.0343	0.0447	0.1820	-0.2107	-1.8611	-3.1664
0.2824	1.0167	-0.0622	-0.2102	0.0278	0.0422	0.1595	-0.1048	-2.9348	-2.3105
0.3294		0.0105	-0.1709	0.0254	0.0369	0.1383	-0.0244	-2.0840	-2.1328
0.3765	0.937	0.0573	-0.1310	0.0252	0.0353	0.1260	-0.1203	-1.5370	-1.8982
0.4235	0.9963	9660.0	-0.1091	0.0243	0.0342	0.1201	-0.1198	-1.1626	-1.7243
0.4706	0.9904	0.1320	-0.0848	0.0242	0.0330	0.1195	-0.0820		-1.8576
0.5647	0.9776	0.1818	-0.0512	0.0250	0.0295	0.1119	-0.1233	-0.7026	-1.8046
0.6588	0.9736	0.2159	-0.0324	0.0251	0.0316	0.1172	-0.1027	-0.9920	-1.9953

	>-	<u> </u>	<u>}</u>	>-
[8:1] 1 (354)	- 	_``	0	9
(Cal)	() K 1 • \$-	90.5	98.4	8.75
(전원) '미현	=-			
· 630 (*)	HUME		HIGNE	
के.भित (जिंद)	0	0	0	0
 M	•	: N.	o: 	1.2
:: :::		24	****	Ç.,#

z . 34 5

					EW:			THEAR OTPROD	54
	[:.]; ^y		[X]:	[5] <u>8</u>	동충	W. 1	1000×11 ¹ V	1000 *V'W'	10001 8 22
1	0.825.4	5500.6-	8700.0-	0.0671	0.6313	0.1210	-0.3627	0.2673	-1.3286
0.0077	1 is 1 is 1 is 1 is 1 is 1 is 1 is 1 is	0.0026	-6.0124	0.0708	0.0351	6.1802	7887.0-	0.6577	-3.7073
0.0094	#12 x 0	0.0052	0.0199	0.0689	0.0347	0.1931	-0.5416	0.1142	-4.2459
٠,٠	348.0	0.0051	0.0200	0.0605	0.0330	0.2139	-0.2869	0.5025	-4.926
0.0176	0.9610	-0.9017	0.0362	0.0578	0.0297	6.2415	-0.2004	0.5576	-7.1327
0.0235	0.9574	0.0038	-6.0202	0.0366	0.0257	0.1452	-0.1505	0.2794	-1.51.35
0.0294	0.9981	0.0070	-0.0255	0.0267	0.0190	0.1110	-0.0789	0.2102	-1.4837
~	1.0175	0.0082	-0.0055	0.0220	0.0164	0.0990	3000.0	7780.0	-1.7072
0.0412	1.0209	0.0105	0.0005	0.0204	0.0157	0.0903	0.0089	-0.0344	-1.5047
0.0471	1.0258	0.0088	-0.0040	0.0176	0.0129	0.0873	-0.0043	0.0055	-1.2932
0.0588	1.0227	0.0070	0.0001	0.0201	0.0144	0.0961	-0.0227	0.1196	-1.6754
0.0706	1.0269	0.0084	-0.0050	0.0186	0.0142	0.0870	0.0013	0.0464	-1.3801
0.0941	1.0248	0.0065	-0.0027	0.0176	0.0147	0.0829	-0.0038	0.0370	-1.232c
0.1176	1.0237	0.0056	0.0014	0.0174	0.0134	0.0798	-0.0188	0.0900	-1.1671

X10 .#11X	M = 1.260	(Jos. 368, 9 m/z)
NOSE: BLONT	X = 5.000 cal	e 0 = n
RFM : 0000	$z\sim0.000$ cal	8 : 0 ?

		_	_	_	_	_	_	_		_	
SS	1000×W·U· U∞^2	-2.6430	-2.0552	-1.6173	-1.8071	-1.8137	-1.6364		-1.3713	[-1.3618]	-1.3369
SHEAR STRESS	1000× <u>010</u> 1000× <u>01</u> 1000 1000 1000 1000 1000 1000 1000	1.0969	0.6377	0.5320	0.4698	0.1811	0.1402	0.0626	-0.0402	-0.0303	0.0627
S	1000×11·V·	-0.2018	-0.2001	-0.0601	-0.1175	-0.0688	-0.0283	-0.0023	0.0136	0.0108	-0.0012
	<u></u>	0.1927	0.1879	0.1632	0.1395	0.1192	0.0997	0.0892	0.0857	0.0858	0.0848
RMS	- ∞	0.0317	0.0355	0.0294	0.0282	0.0244	0.0182	0.0164	0.0155	0.0132	0.0135
	- IO	0.0420	0 0397				0.0202	0.0176	0.0180	0.0176	0.0177
	M M	0.0678	0.0836	0.0362	0.0555	0.0261	0.0049	0.0091	0.0039	-0.0083	-0.0005
VELOCITY	1> 2	-0.0976	-0.0941	-0.0842	-0.0710	-0.0614	-0.0364	-0.0218	-0.0140	-0.0065	0.0001
 	ID S	0.9391	0.9858	1.0368	1.0508			1	1.0412	1.0351	1,0283
	Y(cal)	0.0035	0.0118	0.0235	0.0294	0.0353	0.0471	0.0588	0.0706	0.0941	0.1176
					-				_	_	

Kun#: 013	М - 1.260	U∞=368.9 m/s
NOSE: BLUNT	x - 5.500 cal	o 0 = v
0000:	z = 0.000 cal	o 0 = 9

	*V'W'1000*W'1J' •^2 U∞^2		<u>l</u>	<u>!</u>	<u>!</u>			<u>!</u>	<u> </u>	!	<u>l</u>	<u> </u>
1000 × 10 · 10 · 10 · 10 · 10 · 10 · 10	,	-0.0100 0.072	-0.0100 0.072 -0.0064 0.156	-0.0100 0.0724 -0.0064 0.1563 -0.0955 0.2093	-0.0100 0.072 -0.0064 0.156 -0.0955 0.209 0.0085 0.079	0.0064 0.072 0.0064 0.156 0.0955 0.209 0.0085 0.079	0.0064 0.0064 0.0955 0.0095 0.0085 0.0079 0.0052 0.004	0.0100 0.072 0.0064 0.156 0.0955 0.0085 0.0085 0.0060 0.0153 0.060	0.0100 0.0724 0.0064 0.1563 0.0085 0.2093 0.0052 0.0040 0.0153 0.0606 0.0153 0.0671	-0.0100 0.072 -0.0064 0.156 -0.0955 0.209 0.0085 0.079 0.0052 -0.004 -0.0115 0.060 -0.0153 0.067	-0.0100 -0.0955 0.0955 0.0085 0.0085 0.0052 -0.0115 0.0050 0.0	0.0053 0.0050 0.0055 0.00955 0.0095 0.0052 0.00794 0.0052 0.00794 0.0053 0.0606 0.0053 0.0671 0.0050 0.0050 0.0050
W. 10000				↓	1	1	1	1	i			1
		0.0264										
15/8		0.0316	0.0316	0.0316 0.0327 0.0302	0.0316 0.0327 0.0302 0.0230	0.0316 0.0327 0.0302 0.0230	0.0316 0.0327 0.0302 0.0230 0.0230	0.0316 0.0327 0.0302 0.0230 0.0231 0.0204	0.0316 0.0327 0.0302 0.0230 0.0221 0.0205	0.0316 0.0327 0.0302 0.0230 0.0221 0.0205 0.0205	0.0316 0.0327 0.0302 0.0230 0.0221 0.0205 0.0205 0.0177	0.0316 0.0327 0.0302 0.0230 0.0204 0.0205 0.0205 0.0196 0.0196
N⊠ NS		-0.0171	0.0175	-0.0121 0.0175 0.0002	-0.0121 0.0175 0.0002 0.0439	-0.0121 0.0175 0.0002 0.0439 -0.0189	0.0175 0.0002 0.0439 -0.0189	0.0175 0.0002 0.0439 -0.0189 -0.0352	0.0175 0.0002 0.0439 -0.0189 -0.0352 0.0048	0.0175 0.0002 0.0439 -0.0189 -0.0352 0.0048	0.0175 0.0075 0.00439 -0.0189 -0.0352 -0.0348	0.0175 0.0175 0.0032 0.0189 -0.0352 0.0048 -0.0350 -0.0350
1> 3	1											-0.1218 -0.1206 -0.1201 -0.1188 -0.1130 -0.1153 -0.1166
ID S	0.9352											
Y(cal)	0.0118		0.0176	0.0176	0.0176 0.0235 0.0353	0.0176 0.0235 0.0353 0.0471	0.0176 0.0235 0.0353 0.0471 0.0588	0.0176 0.0235 0.0353 0.0471 0.0588	0.0176 0.0235 0.0353 0.0471 0.0588 0.0706	0.0176 0.0235 0.0353 0.0471 0.0588 0.0706 0.0824	0.0176 0.0235 0.0353 0.0471 0.0588 0.0706 0.0824 0.0941	0.0176 0.0235 0.0353 0.0471 0.0588 0.0706 0.0824 0.0941 0.1059

_	_		
	U∞=370.2 m/s	$\alpha = 0$	· 0 = 9
	M = 1.200	X = 5.750 cal	z = 0.000 cal
	Run#: 014	NOSE: BLUNT	RPM : 0000

		VELOCITY			RMS		55	SHEAR STRESS	SS
Y(cal)	10[g	I>	 ≱	[n] ^{&}	N∞ V	<u>-</u> MN	1000 × U · V ·	1000*U'V' 1000*V'W' 1000*W'U' U~2 U~2	1000 *W¹U¹ U∞^2
0.0047	0.8040	-0.1009	0.0304	0.0501	0.0397	0.2552	-0.0833	1.9461	-3.2611
0.0059	0.8685	-0.1120	-0.0012	0.0390	0.0349	0.1862	-0.1273	0.0945	-0.8429
0.0118	0.9135	-0.1127	-0.0090	0.0338	0.0310	0.1552	0.0361	0.0185	-0.9973
0.0176	0.9550	-0.1146	-0.0138	0.0304	0.0299	0.1412	0.0575		
0.0235	0.9880	-0.1167	-0.0259	0.0280	0.0283	0.1290	0.0076	-0.1912	-1.0244
0.0353	1.0358	-0.1197	-0.0355	0.0248	0.0244	0.1212	0.0290		
0.0471	1.0704	-0.1165	-0.0322	0.0195	0.0219	0.0948	-0.0010		
0.0588	1.0848	-0.1149	-0.0175	0.0183	0.0177	0.0880	0.0191	-0.0457	
0.3824	1.0874	-0.1123	-0.0170	0.0201	0.0162	0.0952	-0.0007	-0.0162	
0.1059	1.0872	-0.1090	-0.0167	0.0170	0.0155		-0.0090		
0.1482	1.0891	-0.0976	-0.0220	0.0174	0.0162	0.0849	0.0138		
0.1647	1.0880	-0.1025	-0.0160	0.0179	0.0154		0.0056		

Scan	Å	Y	X	Y
Delta (deg)	0	0	0	0
X (cal)	4.50	5.00	5.50	5.75
Spin (RFM)	9830	9830	9830	9830
Nose	BLUNT	BIONT	FILUNT	BLUNT
Alpha (deg)	0	0	0	0
Mach	1.2	1.2	1.2	1.2
Run	18	17	16	15
				_

Jon-368.2 m/s	э О	» O
(Jea.: 36)	e z	· 8
M = 1.200	X = 4.500 cal	z = 0.000 cal
Kur#: 018	NOSE:BLUTT	REM : 9830

		VELOCITY			KMS		IS	SHEAR STRESS	SS
Y(cal)	U 0		I3 ⁸	100	<u>√</u> ∪∞	<u> </u> ⊠ 0	1000×U¹V U∞^2	000×U·V·1000×V·W·1000×W·U U∞^2 U∞^2	1000 *W'U' U∞^2
0.0059	0.8330	0.0078	0.1174	0.0424	0.0405	0.1831	0.2480	-0.4986	-3.2701
0.0118			0.0730	0.0348	0.0372		0.0131	0.1762	-1.5902
0.0176	0.9446	-0.0004	0.0383	0.0301	0.0325			0.0710	-0.9957
0.0235			0.0192	0.0260	0.0316				-1.4312
0.0294		0.0050	0.0057	0.0191	0.0339	0.0940			
0.0353	, ,		0.0092	0.0185	0.0291	0.0888			-1.1122
0.0471			0.0094	0.0178	0.0272	0.0814			
0.0706	1.0193		0.0065	0.0166	0.0258	0.0823			
0.1176			0.0137	0.0179	0.0263	0.0847			-1.1777
0.1765		0.0072	0.0236	0.0195	0.0250	0.0925	0.0004	-0.0292	

Run#: 017	M : 1,200	Uor 368.2 m/s
NOSE: BLUNT	X = 5.000 cal	: O = B
RPM : 9830	z = 0.000 cal	8 - 0 - 8

		VELOCITY			RMS		S	SHEAR STRESS	38
Y(cal)	ı=lª	I> 	[<u>₹</u>	[= <u>8</u>	<u>-</u> &	<u> </u>	1000×U·V	1000*U'V' 1000*V'W' 1000*W'U'	1000 *W'U
	>						1	7	-
0.0035			0.0948	0.0512	0.0392	0.1428	i		
0.0071	0.9694	-0.0992	0.1111	0.0402	0.0373	0.1807		0.6058	
0.0118			0.0839	0.0350	0.0348	0.1687			
0.0176	1.0248	-0.0851	0.0572	0.0313	0.0354	0.1491		0.1412	-1.3417
0.0235	1.0454	-0.0766	0.0421	0.0277	0.0329	0.1359		0.1351	-1.2979
0.0294	1.0580	-0.0634	0.0466	0.0251	0.0316	0.1152			-1.6529
0.0353	1.0646	-0.0528	0.0279	0.0223	0.0293	0.1019	-0.0056		-1.3886
0.0471	1.0611	-0.0341	0.0167	0.0196	0.0268	0.0969			
0.0588	1.0484	-0.0196	0.0289	0.0188	0.0243	0.0893			
0.0706	1.0425	-0.0117	0.0251	0.0190	0.0242	0.0904		0.0350	-1.5144
0.0941		-0.0056	0.0172	0.0178	0.0239	0.0867			
0.1176	٢	-0.0009	0.0164	0.0183	0.0249	0.0892	-0.0176	0.1122	
0.1765	1.0222	0.0027	0.0113	0.0185	0.0241	0.0874	0.0077	-0.0261	-1.3210

 Run#: 016
 M = 1.200 Ucc. 368.2 m/s

 NOSE:BLUNT
 X = 5.500 cal
 $\alpha = 0.7$

 RPM: 9830
 Z = 0.000 cal
 $\delta = 0.9$

		VELOCITY			RMS		SF	SHEAR STRESS	3.5
¥(:5al)	เมโจ๊	> [∞]	<u>M</u>	<u>- 10</u>	<u>-</u>	<u>w</u> .	1000× <u>U'V'</u> U∞^2	1000 *V'W U∞^2	1000× <u>w'U'</u> ∪∞^2
.0035	0.9213	-0.1192	0.0273	0.0506	0.0353	0.1189	ł	0.4494	-2.3968
.0059	0.9403	-0.1200	0.0410	0.0462	0.0375	0.1292			-2.7601
0.0118	0.9737	-0.1188	0.0176	0.0376	0.0350	0.1127			
.0176	1.0070	-0.1218		0.0420	0.0320	0.1098	-0.5982	0.5355	-2.1863
.0235	1.0441	-0.1216		0.0376	0.0312	0.1229			
.0353	1.0887	-0.1246		0.0243	0.0253	0.0984			
.0471	1.0963	-0.1200	-0.0299	0.0201	0.0246	0.0924			
.0588	1.0954	-0.1131		0.0202	0.0200	0.0981			
0.0706	1.1119	-0.1140		0.0199	0.0185	0.0935			
0.0824	1.1120	-0.1127		0.0199	0.0195	0.0956			
0.0941				0.0192	0.0189	0.0921	-0.0197		
0.1176	1.1145			0.0197	0.0186	0.0939	-0.0109		
1765				0.0193	0.0191	0.0952	-0.0125		

SHEAR		RMS	VELOCITY
, 0	ς -	Z - 0.000 cal	RPM : 9830
, 0	a T	X 5.750 cal	LYDIN: HOON
Uoor 370.2 m/s)/s - eo()	M · 1.200	Kun#: 015

		NODE: BEOM	LOMI	೧ α ⊀ :	5.750 Cal		 		
		: W.W	9830		JUU cal	= Q	, n		
		VELOCITY			RMS		เอ	SHEAR STRESS	55
(P) 3	10 8	1> =	M ∑	<u> </u>	5 <u>8</u>	<u>*</u> 8	1000 ×10 V v U∞^2	000*111V1 1000*V1W1	1 <u>000×W¹U¹</u> U∞^2
0.0024	0.8337	-0.1096	0.0411	0.0673	0.0393	0.1418	-1.3025	1.4293	-2.6470
9.0059	0.8655	-0.1116	0.0354	0.0612	0.0393	0.1517		0.5086	-3.2413
0.0118	0.9083	-0.1157		0.0524	0.0392	0.1361	-0.7251	0.0296	-2.9032
0.0235	0.9798	-0.1174		0.0455	0.0308	0.1068	-0.6115	0.4693	-1.8293
0.0294	0.9431	-0.1145		0.0362	0.0204	0.1577	-0.0145	0.1749	-1.3943
0.0353	0.9818	-0.1164		0.0321	0.0201	0.1413	-0.0510	0.1340	-1.4166
0.0471		-0.1211	-0.0202	0.0271	0.0217	0.0943	-0.0982	0.0251	-1.5709
U.0588	1.0685	-0.1160		0.0217	0.0169	0.1027	-0.0066	0.0163	-1.3140
0.0706	1.0845	-0.1156	-0.0220	0.0201	0.0145	0.0957	-0.0028	0.0155	-1.4170
0.0941	1.0879	-0.1164		0.0190	0.0192	0.0875	_		
(.1176				0.0183	0.0181	0.0847			
(,1765	1.0892			0.0183	0.0142	0.0923			
C 2353	1.0893	-0.0977		0.0188	0.0145	0.0935			

Scar	Ā	X	Y
Delta (deg)	0	0	0
X (cal)	4.50	6.00	5.50
Spin (RBM)	0	0	0
Nose	SHARP	SHARP	SHARP
Alpha (deg)	0	0	0
Mach	7	7.	1.2
Run	19	20	21
		_	

H= 357.9 m/s c = 0 ° 8 0 °	
l i G)
¥ 6 ± 3	
) 5 c. (1 7 c. (1	
1.200 4.500 cal 0.600 cal	•
Σ××	3
NUMBER OF STREET	2000
7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	•

							_	_	_	_	_	
88	1000×W*II*	-1.4072		-1.7656	-0.8961	-1.6594	-1.3925	-1.4494	-1.3804	-1.3993		
SHEAR STRESS	1000×V·W	0.2599			0.0957		0.0490		0.0117	0.0510	-0.1191	-0.0216
IS	1000× <u>U·V·</u> U∞^2	-1.2059		-0.7032			-0.0297	-0.0068	0.0047	0.0110	0.0280	0.0043
	IM M	0.12/2	6.1074	0.0:99	3.0362	0.0343	0.0852	0.0864	0.3861	0.0857	0.0864	0.3822
RMS	[] \sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}} \simptintiles \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \signtiles \sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}} \end{\sqrt{\sqrt{\sq}\end{\sq}}}}}}}} \end{\sqrt{\sq}}}}} \end{\sqrt{\sqrt{\sq}}}}}} \s	0.0372	0.0354	0.0316	0.0244	0.0246	0.0224	0.0222	0.0162	0.0178	0.0176	0.0202
	<u> </u>	0.0754	0.0666	0.0520	0.0394	0.0303	0.0223	0.0206	0.0189	0.0190	0.0192	0.0176
	[S]			0.0072	-0.0069	0.0128	0.0076	-0.0050	0.0011	0.0034	0.0109	0.0028
VELOCITY	1> 2	7900.0-	-0.0029	0.0005	0.0011	0.0028	0.0050		0.0050		0.0039	
		0.7814		0.9370	0.9796	1.0036	1.0212	1.0292	1.0304	1.0318	1.0313	1.0259
	Y (cal)	0.0047	0.0118	0.0176	0.0235	0.0294	0.0353	0.0412	0.0471	0.0706	0.0941	0.1176

_		
(Jos-867.5 m/s	() = D	() = 9
M - 1.200	X > 5.000 cal	Z = 0.000 cal
Run#: 020	NOSE: SHABE	RPM : 0000
	M - 1.200	$M \sim 1.200$ $X \sim 5.000$ cal

	_			_			_	
1000×W·U· U∞^2	'		-0.7251	-1.0861	-1.0385	-0.9693	-1.0953	-1.0104
1000 *V'W'								
1000 ×11 V								
W¹ Uco	}							
!∑ &	ĺ							
iāl [®]			0.0347	0.0275	0.0186			
I⊠[∞ ∪∞	ļ							
> °	-0.0095	-0.0073	-0.0008					
15/5 5/5	0.7533	0.8132	0.8603	0.9596	1.0155	1.0305	1.0306	1.0292
Y(cal)	0.0047	0.0176	0.0235	0.0353	0.0471	0.0588	0.0324	0.1059
	$\frac{\overline{U}}{U\infty} = \frac{\overline{V}}{U\infty} = \frac{\overline{W}}{U\infty} = \frac{\overline{U}^{\dagger}}{U\infty} = \frac{\overline{V}^{\dagger}}{U\infty} = \frac{\overline{W}^{\dagger}}{U\infty} = \frac{10.00 \times \overline{U}^{\dagger} \overline{V}^{\dagger}}{U\infty^{2}} = \frac{10.00 \times \overline{U}^{\dagger} \overline{V}^{\dagger}}{U\infty^{2}} = \frac{\overline{U}^{\dagger}}{U\infty^{2}} = \frac{\overline{U}^{\dagger}}{U} = \frac{\overline{U}^{\dagger}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	_	_	_
	350 16.7.5 m/s	, O	: 0
	0/1	ĭ	c
	1.269	5.500 331	0.000 0:1
	\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	J' ⊠	Z = 0.
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	INVESTIGATION OF THE PROPERTY	
L			

					_			_	
330	2,∞Ω Ω.Μ∗0001	-0.0742 -2.3764	-1.8538	-2.1261	-1.9677			-2.0001	
SHEAR STREET	Z~≈U	-0.0742	0.0456	-0.3320	6600.0	-0.0664	-0.0058		0.0513
15	10 <u>00 × UTV</u> 11 5∞2	-0.0411	1600.0-	0.0349	'		0.0046		-0.0147
	M. S. S. S. S. S. S. S. S. S. S. S. S. S.	0.1783	0.1199	6.1693		_	0.6876		
RMC	V ¹ ∏oo	2620.0	0.0265	0.0246	_		_		0.0192
	[] <u>*</u>	0.0374	0.0258	0.0227	0.0203	0.0187	0.0180	0.0262	0.0180
	[8]	0.3077	0.2621	0.0578	0.0406	0.0290	0.0004	0.2698	0.0019
ALIPORT	12/18	-0.1116	-0.1165	-0.1185	-0.1197	-0.1179			
	= *	0.5330	1.0490	1.0734	1.1254	1.1302	1.1352	1.0045	1.1374
	(11.0)3	0.0059	0.0235	0.0353	0.0588	0.0824	0.1059	0.1482	0.1647

11874)	>-	<u>)</u>
iksits (deg)	0	0
X (Cal)	00.2	9:0
Spin (NPM)	08.86	08.80
	CHARP	HME
Alpin (deg)	0	<u> </u>
Mac di	8	
: ::	S	

Dea 471.6 g 12	·; m	
		1,344 (44)
Æ	N;	17

1.5	<u>/. 55</u> <u>M. 35</u> 91	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CHEAP CYNEST	7, 37, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	0.0578 0.6478 0.1101 -0.0481 0.0038
	7,∞1 .∆.11≠0n01	0.001; 0.0038 -0.0232 0.0091 -0.0014
	. <mark>™</mark>	1
FM:	[A]	0.0245 0.0234 0.0218 0.0184 0.0150
	IEIŽ.	0.0314 0.024 0.0264 0.0217 0.0193
	[8]D	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VELAKTIY	15/2	-0.0074 -0.0006 -0.0006 -0.0006 0.0006
!	1: [·	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		8 9 4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1000 371.9 m/s	; O + B	8 0
M - 1.200	X = 5.500 cal	z = 0.000 cal
Run#: 022	NGSE: SHAKP	RPM : 9830

		VELOC1TLY			MAS		IS	SHEAR STRESS	5.5
Y(3a1)	10 8	i> \$	I <mark>™</mark>	11000	<u>√</u> 000	W []	1000*U'V' U~^2	1000×V°W¹ U∞^2 U∞^2	1000 * W* U* U* U* U* U* U* U* U* U* U* U* U* U*
0.0059	0.9684	-0.1134	0.3216	0.0301	0.0232	0.1403		l	-2.6704
0.0118	0.9932		0.2767	0.0271	0.0242	0.1280		0.0823	-2.0763
0.0176	1.0214	-0.1136		0.0258	0.0230	0.1216	-0.0288		
0.0235		-0.1155		0.0201	0.0212	0.0983		-0.1027	
0.0353				0.0193	0.0195	0.0934	0.0180	-0.0923	
0.0471			0.0433	0.0198	0.0177	0.0933	0.0149	1	7
0.0588		-0.1191		0.0186	0.0162	0.0903	-0.0056		
0.0824	_	-0.1162		0.0194	0.0145	0.0945	-0.0034		-1.6841
0.0894		-0.1071	0.0060	0.0195	0.0145	0.0934	-0.0004	0.0131	-1.6762
0.1059	1.1166	-0.1132	0.0055	0.0198	0.0159	0.0961	-0.0031	0.0074	-1.7641

Run Mach Alpha (deg) Nose Spin (M*M) X (cal) Delta (deg) Soan 115 1.2 10 BLUNY 0 5.00 -60 Y 63 1.2 10 BLUNY 0 5.00 0 Z 66 1.2 10 BLUNY 0 5.00 0 Z 70 1.2 10 BLUNY 0 5.00 0 Z 70 1.2 10 BLUNY 0 5.00 0 Z 71 1.2 10 BLUNY 0 5.00 0 Z 71 1.2 10 BLUNY 0 5.00 0 Z 75 1.2 10 BLUNY 0 5.00 0 Z 75 1.2 10 BLUNY 0 5.00 0 Z 75 1.2 10 BLUNY 0 5.00 0 Z			_						
Mach Alpha (deg) Nose Spin (MPM) X (cal) Delta 115 1.2 10 BLUNT 0 5.00 63 1.2 10 BLUNT 0 5.00 66 1.2 10 BLUNT 0 5.00 70 1.2 10 BLUNT 0 5.00 71 1.2 10 BLUNT 0 5.00 72 1.2 10 BLUNT 0 5.00 73 1.2 10 BLUNT 0 5.00 74 1.2 10 BLUNT 0 5.00	Scan	X	2	2	Z	2	2	22	71
Mach Alpha (deg) Nose Spin (MM) X (ca 1.2 10 BLUNT 0 5 63 1.2 10 BLUNT 0 5 66 1.2 10 BLUNT 0 5 70 1.2 10 BLUNT 0 5 71 1.2 10 BLUNT 0 5 72 1.2 10 BLUNT 0 5 73 1.2 10 BLUNT 0 5 74 1.2 10 BLUNT 0 5 75 1.2 10 BLUNT 0 5 76 1.2 10 BLUNT 0 5 77 1.2 10 BLUNT 0 5 78 1.2 10 BLUNT 0 5 79 1.2 10 BLUNT 0 5 70 1.2 10 BLUNT 0 5	Delta (deg)	09-	0	0	0	0			
Mach Alpha (deg) Nose 1.2 10 BLUNT 63 1.2 10 BLUNT 66 1.2 10 BLUNT 70 1.2 10 BLUNT 71 1.2 10 BLUNT 72 1.2 10 BLUNT 73 1.2 10 BLUNT 74 1.2 10 BLUNT 75 1.2 10 BLUNT 75 1.2 10 BLUNT	X (cāl)	00.3	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Mach Alpha (deg) 115 1.2 10 63 1.2 10 66 1.2 10 70 1.2 10 71 1.2 10 75 1.2 10 75 1.2 10 75 1.2 10 75 1.2 10 75 1.2 10 76 1.2 10 77 1.2 10 78 1.2 10 79 1.2 10 70 1.2 10 71 1.2 10 72 1.2 10 73 1.2 10 74 1.2 10 75 1.2 10 75 1.2 10 76 1.2 10 77 1.2 10 78 1.2 10 79 1.2 10 70 1.2 10 71 1.2 10 72 1.2 10 73 1.3 10 74 1.3 10 75 10 75 10	Spin (RPM)	0	0	0	0	0	0	0	0
Mach Alpha 115 1.2 63 1.2 70 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 1.2 75 75 75 75 75 75 75 7	Nose	BLUMI	BLUNT	BLONI'	BLUNI	BLOWL	HUNL	BLUNI	BLUNT
Maci 62 63 66 70 71 75	Alpha (deg)	10	01	10	10	10	1.0	10	10
, 4	Mach	1.2	1.2	1.2	е .	1.2	0;	1.2	1.2
	Run	115	62	63	ତ୍ତ	10	rri []	75	140

Run#: 115	M 1.200	Uce 368.6 m/s
NOSE: BILUNT	X - 5.000 cal	$\alpha = 10^{-9}$
RPM : 0000	Z ~ 0.000 cal	ο 09- = 8

		VELOCITY			RMS		S	SHEAR STRESS	SS
	12 8	<u>></u>	IWI ∞U	- N 10	- ⁸ ∩	<u>™</u> .	1000 × U·V·1	1000*V'W'	1000×W'U' U∞^2
0.0294]		-0.1536	0.0646	0.0424	0.1290	0.1103		-3.2174
0.0353		-0.0490	-0.1892	0.0672	0.0453	0.1269	-0.0197		
0.0412			-0.2089		0.0406	0.1202		-0.7427	
0.0471				0.0496	0.0384	0.0844			
0.0529	1.0416			0.0285	0.0338	0.0954	0.1339		-1.2799
0.0588					0.0321	0.0692			
0.0647	1.0561	-0.0402			0.0302	0.0807			
0.0706	1.0555				0.0291	0.0779			
0.0824	1.0544	-0.0380			0.0291	0.0805			

Use 367.9 m/s	o 01 == x	o 0 - 1 &
M = 1.200	X = 5.000 cal	Y = 0.047 cal
Kun#: 062	NOSE: BLUNT	RFM : 0000

		VELOCITY			RMS		S	SHEAR STRESS	3.5
	11 0	1 ∑ ∞	<u>∞</u> ∩ <u>M</u>	<u>-</u> ∞	<u>-</u> \ <u>\</u> \	<u>-</u> ∞ ∩ ∞	1000× <u>U¹V¹</u> U∞^2	1000×V'W' U∞^2	Z,∞Ω 1000× <u>M,Ω</u> ,
-0.2353	1.0456	0.1490	0.2208	0.0148	0.0179	0.0707	-0.0254	⊥.	-0.4686
-0.2118	1.0302	0.1340	0 1842	0.0242	0.0189	0.1229	0.0470	0.1706	0 9258
-0.2000	1.0171		0.1352	0.0321	0.0193	0.1542	0.1154		2.8093
-0.1882	1.0015		_	0.0377	0.0205	0.1819		0.3597	3.8435
-0.1412	0.9296		0	0.0396	0.0405	0.1700	1	-0.1655	1.5088
-C.0941	0.9051		0.0031	0.0312	0.0373	0.1378	-0.1309	0.2379	-0.6510
-0.0471	0.9790	-0.0506		0.0349	0.0331	0.1527	0.1422	0.3604	-0.8313
0.000.0	1.0256	-0.0580	1	0.0197	0.0213	0.0898	-0.0260	-0.0784	-0.3999
0.0471	1.0335	-0.0582		0.0146	0.0203	0.0669	0.0280		-0.4658
0.0941	1.0162	-0.0605		0.0199	0.0199	0.0912	_	-0.1218	-0.4516
0.1412	0.9607	-0.0597	0.0450	0.0284	0.0263	0.1215			-0.4379
0.1882	0.8978	-0.0499		0.0287	0.0307	0.1261			-0.5393
0.2118	0.8969	-0.0282		0.0355	0.0368	0.1578		-1.2050	-2.3584
0.2353	0.9138	0.0091	-0.1966	0.0439	0.0489	0.1964		-2.4306	-4.2089
•	0.9355	0.0215	-0.2271	0.0402	0.0450	0.1747		-1.6203	-2.3731
0.2588	0.9543	0.0422	-0.2750	0.0408	0.0448	0.1787	0.1410	-1.4192	-2.1898
0.2824	0.9945	0.0835	-C.2924	0.0431	0.0442	0.1988		-0.8228	-0.4520
0.3059	1.0315	0.1059	-0.2532	0.0319	0.0362	0.1422		-0.4288	-0.0714
0.3294	1.0534	0.1348	-0.2164	0.0197	0.0333	0.0898	-0.0930	-0.3638	-0.9087
0.3765	1.0530	0.1617	-0.1935	0.0151	0.0300	0.0715	0.0945	-0.1956	-0.7694
0.4235	1.0476	0.1774	-0.1680	0.0147	0.0275	0.0656	-0.0835	-0.1608	-0.7372
0.4706	1.0403	0.1881	-0.1401	0.0154	0.0280	0.0719	-0.0847	-0.2166	-0.8762
0.5176	1.0364	0.1919	-0.1281	0.0160	0.0281	0.0741	7660.0-	-0.1091	-0.9374
0.5412	1.0343	0.1930	-0.1200	0.0163	0.0290	0.0763	6.00.00	-0.1522	-0.9952

Kan.#: Obs	M 1.200	U∞ 367.9 m/s
NODE: BLUNT	X 5.000 cal	5 0 T 3 M
H-M : 0000	$Y \approx 0.071 \text{ cal}$	° 0 - 8

SS	1600 × <u>w'U'</u> U∞^2	i	-0.6389			1.0965		-0.6178					-2.3937	7	-3.0175	<u>-</u>		-1.1157
SHEAR STRESS	000× <u>U¹V</u> 1000× <u>V¹W</u> 1 U∞^2	-0.1088	-0.0939 -0.1052	-0.1190	-0.0271	0.1833								-1.3014	-1.1229	-0.4148	-0.2652	-0.1265
S	1)00×U¹V¹ U∞^2	-0.0071	0.001/	-0.0095	-0.0216	0.0438	0.0183	-0.0762	-0.0549	-0.0070	0.0366	-0.0021	0.0510	0.2093	0.1864	0.0124	-0.0064	-0.0268
	[M]	0.0658	0.0659	0.0643	0.0688	0.1203	0.1374	0.1294	0.1106	0.0809	0.1062	0.1231	0.1450	0.1833	0.1830	0.1171	0.0813	0.0793
RMS	<u> </u>	0.0148	0.0142	0.0162	0.0180	0.0189	0.0277	0.0301	0.0235	0.0190	0.0193	0.0220	0.0296	0.0336	0.0338	0.0264	0.0202	0.0206
	151 <u>8</u>	0.0135	0.0138	0.0136	0.0147	0.0239	0.0296	0.0293	0.0245	0.0173	0.0229	0.0268	0.0318	0.0387	0.0384	0.0249	0.0171	0.0168
	I≫ O	0.1622	0.1910	0.1980	•	0.1555	0.0677	0.0753	0.0310	0.0086	-0.0094	-0.0423	-0.0916	-0.1882	-0.2140	-0.2007	-0.1391	-0.0952
VELOCITY		0.1982	0.1875	0.1631	0.1438	0.1113	0.0267	-0.0208	-0.0565	-0.0641	-0.0688	-0.0704	-0.0333	0.0161	0.0375	0.0932	0.1825	0.2017
	<u></u>	1.0317	1.0365	1.0439	1.0461	1.0326	0.9491	0.9515	1.0183	1.0336	1.0100	0.9524	0.9301	0.9595	0.9858	1.0411	1.0376	1.0264
	(18.12	-0.4471	-0.3765	-0.2824	-0.2353	-0.1882	-0.0941	-0.0471	0.0000	0.0471	0.0941	0.1412	0.1882	0.2118	0.2353	0.2824	0.4706	0.6118

Kun#: 066	M - 1.200	U∞ 570.2 m√s
NOSE: BLUNT	X ≥ 5.000 cal	a = 10 °
RFM : 0000	Y = 0.024 cal	o () → \

		VELOCITY	1		KMS		5	SPEAR STREES	55
					(N. T.)		1.71	77.7. O. VII. W.	
	=	>	3	<u>-</u>	5	M	1000 * <u>U V · </u>	1000 *V*W	1000 × M · II ·
Z (Cat)	(i)	≗	Š N	^{&}	8	<u>8</u>	1,0~2	U~^2	1000
-0.1882	0.9369	-0.0107	0.1869	0.0459	0.0432	0.2131	-0.0549	1.4199	3.6524
-0.1412	0.9775	-0.0566	-0.0571	0.0345	0.0317	0.1498	-0.0469	0.3516	-1.9190
-0.0941	1.0336	-0.0695	-0.0435	0.0236	0.0290	0.1077	-0.1276	0.0309	
-0.0471	1.0440	-0.0795	0.0031	0.0226	0.0333	0.1064	-0.1597	-0.0091	
0.000.0	1.0413	-0.0780	0.0807	0.0227	0.0332	0.1083		0.0510	
0.0471	1.0372	-0.0760	0.1773	0.0217	0.0276	0.0983		-0.0162	-1.0335
0.0941	1.0345	-0.0627	0.3430	0.0190	0.0228	0.3902		-0.0191	
0.1412	0.9882	-0.0596	0.3371	0.0238	0.0243	0.1083		-0.1425	
0.1647	0.9280	-0.0225	0.0039	0.0416	0.0397	0.2190		-2.9759	
0.1882	0.9367	0.0100	-0.2141	0.0404	0.0476	0.2029		-2.6265	_
0.2118	0.9580	0.0600	-0.3872	0.0445	0.0489	0.2149	0.3464	-3.1117	
0.2353	0.9826	0.0891	-0.4120	0.0350	0.0397	0.1733		-0.7441	
0.2824	1.0437	0.1327	-0.2616	0.0288	0.0301	0.1404	0.0180	-0.1590	
0.3294	1.0576	0.1262	-0.1887	0.0272	0.0831	0.1048	-1.3633	-0.0402	
0.3765	1.0457	0.1076	-0.1087	0.0411	0.1400	0.1662	-3.1809	-1.3520	

| Kurn#: 070 | M = 1.200 | Use:370.6 m/s | NOSE:BLUNT | X = 5.000 cal | α = 10 | RFM : 0000 | Y = 0.141 cal | δ = 0 |

	VELOCITY			RMS		S	SHEAR STRESS	55
	<u>√</u> 2	⊠ ⊗	 - ∞ ∩ ∴	[> <u>*</u>	M ∩	1000*U'V'	1000* <u>V'W'</u> U~^2	1000×W'U'
1.0159	0.1761	0.1139	0.0151	0.0156	0.0718	-0.0122	-0.0724	-0.6629
1.0175	0.1682	0.1248	0.0152	0.0172	0.0720	-0.0147	-0.0615	-0.7013
1.0176	0.1546	0.13.27	0.0157	0.0179	0.0741	-0.0307	-0.0336	-0.7664
1.0188	0.1398	0.1409	0.0155	0.0184	0.0740	-0.0292	-0.0976	-0.7281
1.0222	0.1204	0.1395	0.0162	0.0190	0.0766	-0.0384	-0.0280	-0.8631
1.0239	0.0976	0.1364	0.0156	0.0198	0.0753	-0.0421	-0.0799	-0.7747
1.0247	0.0705	0.1241	0.0160	0.0193	0.0759	-0.0387	-0.0587	-0.8790
1.0236	0.0430	0.1042	0.0160	0.0200	0.070	-0.0432	-0.0612	-0.8705
1.0225	0.0156		0.0165	0.0210	0.0797	-0.0433	-0.0740	-0.8660
1.0218	-0.0063		0.0163	0.0195	0.0773	-0.0475	-0.0132	-0.8178
1.0215	-0.0143		0.0152	0.0194	0.0729	-0.0239	-0.0589	-0.6476
1.0231	-0.0122	-0.0503	0.0171	0.0192	0.0828	0.0059	-0.2649	-1.0941
1.0262	0.0027		0.0172	0.0226	0.0829	0.0348	-0.4469	-1.0791
1.0292	0.0287		0.0172	0.0217	0.0841	0.0459	-0.3603	-1.1131
1.0313	0.0592	-0.1535	0.0167	0.0217	0.0826	0.0413	-0.3093	-0.9972
1.0319	0.0893	-0.1726	0.0172	0.0257	0.0830	0.0248		-1.0091
1.0288	0.1119	-0.1597	0.0174	0.0209	0.0832	0.0166		-1.0712
.1.0262	0.1334	-0.1516	0.0168	0.0194	0.0819	0.0023	-0.2005	-0.9737
1.0231	0.1511	-0.1361	0.0168	0.0191	0.0809	0.0039	-0.1989	-0.9490
1.0213	0.1645	-0.1280	0.0159	0.0176	0.0793	0.0007	-0.1883	-0.8604
1.0170	0.1741	-0.1142	0.0166	0.0163	0.0808	0.0157	-0.2116	-1.0037
1.0166	0.1815	-0.1111	0.0169	0.0163	0.0817	0.0117	-0.1942	-1.0193
1.0132	0.1873	-0.0972	0.0173	0.0171	0.0824	0.0056	-0.2363	-1.0748
1.0127	0.1901	-0.0914	0.0169	0.0171	0.0812	0.0013	-0.2202	-1.0304

VELOCITY	VELOCIT	1 >- 1			RMS		S	SHEAR STRESS	3.5
<u>M</u>		13 <u>%</u>		lālå	> <u>\$</u>	<u>₩</u>	1000× <u>U'V'</u> U∞^2	000 <u>× U·V'</u> 1000 <u>V·W'</u> 1000 × W'U U∞^2 U∞^2	1000*W'U'
1.0234 0.1745 0.1060		0.1060	_	0.0158	0.0162	0.0754	-0.0021	-0.1351	-0.8801
1.0247 0.1652 0.1072	0	0.1072		0.0163	0.0168	0.0790	-0.0113	-0.0868	-0.9648
1.0253 0.1540 0.1076	0	0.1076		0.0160	0.0178	0.0754	-0.0182	-0.1088	-0.9291
_	0	0.1094		0.0159	0.0181	0.0757	-0.0208	-0.1327	-0.9164
0.1245	0	0.1074		0.0159	0.,189	0.0773	-0.0266	-0.1404	-0.9524
		0.098		0.0160	0.3186	0.0762	-0.0320	-0.1029	-0.9666
0.0842		0.0922		0.0166	0.0190	0.0797	-0.0237	-0.1425	-1.0959
0.0641	.0641	0.0773		0.0156	0 0184	0.0732	-0.0315	-0.0659	-0.9284
.0301 0.0442		0.0576		0.0170	0.0173	0.0811	-0.0159	-0.1161	
.0326 0.0325		0.027	ന	0.0161	0.0169	0.0778	-0.0158	-0.0992	
1.0293 0.0249 -0.0088		-0.0088	~	0.0163	0.0173	0.0807	0.0084	-0.2108	
.0304 0.0267		-0.0461		0.0172	0.0178	0.0839	0.0054	-0.2495	
0.0355	_	-0.0863	~	0.0173	0.0187	0.0841	0.0182		
0.0541	.0541	-0.1152	\overline{a}	0.0166	0.0200	0.0816	0.0057		
1.0321 0.0739 -0.1245	.0739	-0.124	10	0.0168	0.3213	0.0844	0.0004		
1.0310 0.0942 -0.1312	.0942	-0.1312	_	0.0166	0.0213	0.0844			-1.0505
0.1158	.1158	-0.1351	_	0.0175	0.0212	0.0858			
1.0278 0.1337 -0.1308	.1337	-0.130	8	0.0172	0.0261	0.0801	'		·
		-0.1242	\overline{a}	0.0170	0.0189	0.0825	0.3019		-1.0484
1.0234 0.1599 -0.1146		-0.1146		0.0168	0.0185	0.0822	0.0013		-1.0156
1.0209 0.1687 -0.1068		-0.1068		0.0169	0.0173	0.0829	0.0089	-0.1861	
1.0195 0.1767 -0.1062	.1767	-0.1062	_	0.0167	0.0165	0.0813	0.0110		-1.0434
1.0186 0.1813 -0.0978		-0.0978	<u></u>	0.0169	0.0166	0.0828	0.0130		-1.0652
1.0174 0.1855 -0.0972	_	-0.097	2	0.0170	0.0169	6080.0	-0.0027	-0.1892	-1.0177
	_	-0.0884		0.0165	0.0175	0.0802	-0.0050		-0.9818
1.0149 0.1925 -0.0869		-0.086	ച	0.0170	0.0180	0.0827	0.0021	-0.1789	-1.0579

		VELOC1TY			KMS		55.	SHEAR STRESS	SS
Z (cal)	ID 80	I > 000	I⊠ ∑	[5] ⁸ 0	- 8 - 5	[<u>*</u>] &	1000*U1V1 U×2	1000×V*W*1000×W*1)	1000 * W 1 1 1 U U V 2
-0.4706	1.0227	0.1848	0.1390	0.0160	0.0169	0.0778	-0.0147	-0.1007	-0.9087
.4235	1.0242	0.1754	0.1423	0.0159	0.0192	0.0770	-0.0210	-0.1371	-0.8308
-0.3765	1.0271	0.1644	0.1495	0.0154	0.0200	0.0735	-0.0290	-0.1182	-0.7961
.3294	1.0294	0.1478	0.1608	0.0158	0.0205	0.0772	-0.0460	-0.0630	-0.8566
.2824	1.0360	0.1291	0.1968	0.0151	0.0232	0.0736	-0.0484	-0.1898	-0.9532
-0.2353	1.0343	0.0987	0.1609	0.0161	0.0235	0.0756	-0.0697	-0.0784	-0.9000
.1882	1.0341	0.0713		0.0158		0.0759	-0.0709	-0.1022	-0.8172
-0.1412	1.0210	0.0349	0.1182	0.0200	0 0278	0.0948	-0.0600	-0.1859	-0.3814
.0941	1.0052	8100.0-		0.0214		0.1027	-0.0806	(0927	-0.5082
.0471	1.0141	-0.0395		0.0208	0 0254	0.0964	-0.0822	-(.0517	-1.1200
0000.	1.0213	-0.0526		0.0180	0.0202	0.0868	-0.0250	-0.1313	
0.0471	1.0086	-0.0555	-0.0452	0.0200	0.0211;	0.0963	-0.0047	-0.1075	-0.6360
0.0941	0.9927	-0.0308		0.0239	0.0341	0.1170	-0.0302	-(,5365	-1.1391
.1412	1.0029	0.0159	-0.2221	0.0265	0.0328	0.1214	0.0105	-6.6686	-1.3546
.1882	1.0271	0.0536	•	0.0224	0.0286	0.1141	0.0082	-0.5060	-1.0048
.2353	1.0369	0.0832	-0.2043	0.0183	0.0249	0.0883	-0.0270	-0.2551	-1.0288
.2824	1.0359	0.1139	-0.1993	0.0179	0.0265	0.0847	-0.0508	-0.2993	-1.0641
.3294	1.0330	0.1368	-0.1813	0.0182	0.0241	0.0843	-0.0418	-0.1756	-1.1069
0.3765	1.0277	0.1573	-0.1667	0.0171	0.0228	0.0845	-0.0379	-0.2030	-1.0437
.4235	1.0224	0.1707	-0.1517	0.0178	0.0219	0.0871	-0.0221	-0.1910	-1.1561
90.4796	1.0214	0.1812	-0.1378	0.0179	0.0207	0.0866	-0.0263	-0.1750	-1.1524
0.5647	1.0162	0.1940	-0.1090	0.0177	0.0204	0.0856	-0.0211	-0.1753	-1.0678
0.7059	1.0140	0.2033	-0.0895	0.0173	0.0206	0.0837	-0.0169	-0.1798	-1.0247

L			
	Kun#: 140	3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3 1.200 3	U∞=370.2 m/s
	NOSE: BLUNT	X 5.000 cal	$\alpha = 10^{\circ}$
	R47M : 0000	2 - 0.000 cal	ο 09 = 8

	VELOCITY			RMS		ಪ	SHEAR STRESS	: :
1=18	12 0	I¥ Cl∞	[5] <u>8</u>	15/8	<u> </u> 8	1000× <u>U'V'</u> U∞^2	1000×101V 1000×V W 1	1000×W¹U¹ U∞^2
0.9937	-0.0296	0.1740	0.0404	0.0378	0.1527	0.2528	0.8810	0.7330
1.0423		0.1854			0.0884			
1.0497				0.0282	0.0777			
1.0471	-0.0337	0.1258			0.0805	-0.0490	-0.0710	
1.0372					0.0750			

8541	Y	22	5-3	22	277	2	2	7
Delta (deg)	09-	0	0	0	0	0	0	60
X (cal)	05*5	5.50	5.50	5.50	5.50	5.50	5.50	5.50
Spin (RPM)	0	0	0	0	0	0	0	0
Nose	TALLA	ELUNI	BLUNT	BLUNE	BLUNE	BLUNT	BLUIT	BLUNI
Alpha (deg)	01	10	10	10	10	10	10	10
Macin	1.2	2.1	1.2	1.2	1.2	1.2	1.2	1.2
Kun	122	78	79	96	ω.	88	989	134

K-10#: 1/2	Σ	1.200	1Joo-369.2 m/s
TWEETHOWN.	×	5.506 (31)	$\alpha = 10^{-6}$
0000 : May	:7	0.000 cal	. 09− = 9

		VELL CITY			F.413		55	SHRAR STRESS	33
Y (24.1)	1=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	> \$	I⊠.	<u> </u>	<u>.</u> ∑()	M. Co∞	1000× <u>U¹V</u> 1 U∞^2	1000*U*V*1000*V*W*1000*W*3 U~2 U~2	1000 × W 1 U U U U U U U U U U U U U U U U U U
0.0353	0.8605	-0.1564	-0.0166	0.0584	0.0376	0.1473	-1.1282	1.4508	-4.6041
0.0412	0.9127		-0.0740	0.0532	0.0348	0.1275		0.7104	-3.3235
0.0471	0.9498	-0.1520		0.0531	0.0347	0.1100	-0.7674	0.6908	-2.7859
0.0529	0.9994	-0.1571		0.0454	0.0341	0.1149	_	0.5088	-2.45 50
0.0588	1.0372	-0.1515	-0.1601	0.0399	0.0288	0.1057		0.1228	-1.8608
0.0647	1.0634	-0.1566		0.0351	0.0288	0.0977		0.1786	-1.5331
0.0706	1.0827	-0.1584		0.0271	0.0243	0.0892	-0.0864	0.0461	-1.2772
0.0824	1.1040	-0.1586		0.0186	0.0215	0.0839	0.0272		-1.1352
0.0941	1.1042	-0.1574		0.0188	0.0203	0.0888	0.028€	-0.0604	-1.2808
0.1059		-0.1502		0.0174	0.0205	0.0853	0.0075	-0.0198	-1.3647
0.1176	1.1068	-0.1487		0.0191	0.0195	0.0881	0.0213	0.0224	-1.2770
0.1412	1.1065	-0.1466		0.0195	0.0198	0.0887	0.0266	0.0281	-1.2835

Kur#: 078	M i/00	Ups 369.2 m/L
NOSE: BLOW!	X - 5.500 car	a - 16
RPM : 0000	Y 0.024 0.1	· 0

		RPM:	0000	Y 0.0	0.024 : 1	٥٥	; 3		
		VELOCITY			RONE			HEAR STRESS	S
(160) 2	1:- 2	I> °	<u> </u>	<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M (1000× <u>01°V'</u> U∞`Z	7,∞n M10,0001	1000×W1U
-0.2353	1.0345	0.1145	0.3078	0.0280	0.0276	0.1414	0.0876	-0.6679	-2.2793
-0.1882	0.9648 0.9648	0.0561	0.2356	0.0443	0.0559	0.2049	0.2926	-0.6436	1.2309
-0.1412	0.9408	-0.0776	0.0965	0.0282	0.0592	0.1237	-0.6751	0.0159	-1.3376
-0.0941	1.0029	-0.1575	•	0.0296	0.0366	0.1265	-0.2604		-1.2304
-0.0471	1.0510	-0.1835		0.0212	0.0360	0.0918	-0.1928	-0 1076	-0.8626
0.0000	1.0655	-0.2006	0.0229	0.0150	0.0293	0.0711	-0.1061	-0.1244	-0.6165
0.0471	1.0569	-0.2014	0.0264	0.0163	0.0223	0.0769	-0.0451 -0.0451	-0.1844 -0.1131	-0./889 -1 1599
0.1412	0.9817	-0.1859	0.0850	0.0259	0.0369	0.1158	-0.2718	0.3452	-1.2470
0.1647	0.9633	-0.1695	0.0823	0.0246	0.3395	0.1117	-0.2234	-0.0636	-1.2050
0.1882	0.9445	-0.1357	0.0130	0.0292	0.3672	0.1423	-0.2985	-2.4584	-2.2748
0.2000	0.9521	-0.0958	-0.1096	0.0395	0.0743	0.2141		-6.4137	-6.6565
0.2118	0.9573	-0.0782	-0.1599		0.0868	0.2299	0.6798	-9.6333	-7.9014
0.2176	0.3667	-0.0278	-0.2699	0.0455		0.2420	•	-9.1535	-9.2613
0.2235	0.9757	-0.0002	-0.3349	0.0442	0.0881	0.2363	0.5488	-9.0907	-8.5864
0.2353	0.9877	0.0378	-0.3926	0.0416	0.0817	0.2121	0.0613	-5.2278	-6.1552
0.2588	1.0231	0.0879	-0.3842	0.0401	0.0556	0.1897	0.1377	-1.1163	-2.7078
0.2824	1.0529	0.1161	-0.3288	0.0286	0.0417	0.1352	-0.1036	-0.2765	-0.9404
0.3294	1.0782	0.1415	-0.2720		0.0221	0.0783	-0.0270	-0.2138	-0.9681
0.3765	1.0814	0.1507			0.0206	0.0751			•
0.4235	1.0859	0.1238	-0.2368	0.0187	0.0433	0.0865	-0.2173	-0.5141	-1.2773

_	_		
İ	, Å	3	_
			-
-			
Ì			 , - -
	٠.	."-	
			,
	1 ,:	181	.*
		::	
	**	. :	1:
L	_		

43	[10 0 • W U.T.]	-0.76.	10.4. 11	6.1524	1.15.34	-0.46	-1.7.35 -0.50 80 80	-0.5044	7978.0-	10,830-0-	7. (07	-2.146%	-5.1777		:				÷.	· ·	- 1, - 1, - 1, -
SHEZIK CORECO	Z,∞() .M. ∆ × (//() ()	-0.2868 -0.1334	-0.31299	-6.4216	-6.2528	0.2718	0.3460	-0.0891	-0.1138	-0.0347	-0.2841	-0.9285	-3.8186	-1.4189	# F 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		20.1.0-		T 1844	-(17.1 ;)-	469
5		0.3121	0.0027	0.1173	0.0447 -0 3378	-0.2791	-0.2438 -0.1005	-0.0393	-6.6336	-0.0479	-0.1376	0.3201	0.3515	₩. 6:			7.6.0	/t	-6.0.4	-0.5.7.4	-0.0,0
	[5]. ⁸	0.0721	0.374	78870	6.1413	0.1651	C.1047	0.0653	0.0747	0.0955	0.1083	0.1248	33.8 8 - 3	3 :		#\	7 X X X X X X X X X X X X X X X X X X X	. \$	3.07	#	0.0755
25	Edå	1.0143			0.0386	C.0404	0.0346	0.0195	0.0197	0.0217	0.0318	0.0345	0.0595	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01.0.0			18.0°.	32.0.0	* 5.5	0.67 //
		0.01%	- 18.00 o		0.0310	0.02.34	0.00.00 0.00.00	0.01 23	0.6169	4070.0	0.0230	0.0264	0.036.4	2		2070.0) (3 (3 (5) (5)			3	- : : : : : : : : : : : : : : : : : : :
	pslž	51 - 5 - 5 - 7 - 7			6.77.8 6.7283	0.1445	7390.0	0.0153	0.0145	2000.0-	-6.06.77	-0.1239	-0.3157					7	2. 2. 1		÷
	p./4		97:1:00 00:00		0.0251	-0.0433	10.1.01	10.20		3.837. IT		7.141.51	(2) (2) (3) (4) (4)	7					3.		
	1. :			3	38.86.0 0.388.00 0.388.00	5.3662	. 14834	1.0572	1.0437	0.4778	6.9615	0.96.14	3,7 3,7 3,7								
L					7 14 15 15 15 15 15 15 15 15 15 15 15 15 15	9		93000				30) T	5.		:						

Kein#: 080	Σ.	1.500	Uses 471.7 m/s
MOSE: MUMIT	: -:	5.800 0.0	a . 10 .
KIM : 0000	≻	0.071 cal	, () · •

33	1000×W1U1	-1.0520		-0.9500	-0.9960		•	-0.8660	-0.9691	-1.0271	-0.7845	-0.8839	-1.1667	-1.3050	-1.7135	-1.4850	-0.9754	-0.7684	-0.8300	-1.1565	-1.6476	-2.7864	-1.8254	-1.1288	-0.8340	-0.8310	-0.8035	-0.9049	E088.0-	10.00.0-		5 G 2 3 G 1	
SHEAR STRESS	1000× <u>V'W'</u> U∞^2	-0.1760	-0.1843	-0.1135	-0.1792	-0.1670	-0.1283	-0.1819	-0.2126	-0.2158	-0.2115	0.2267	0.2321	0.1264	0.0239	-0.0768	-0.0292	-0.0797	-0.1676	-0.3683	-0.8555	-1.1964	-0.7797	-0.2506	-0.2323	-0.1491	-0.1746	-0.2094	-0.1650	-0.1485	-0.0%	- 0. 10t s	
16	1000×11·V	0.0003	-0.0016	-0.0133	-0.0044	-0.0060	-0.0108	-0.0096	-0.0084	0.0013	-0.0687	-0.1558	-0.2385	-0.1945	-0.1581	-0.1692	-0.1026	-0.0612	-0.0356	-0.0381	-0.0136	0.0067	-0.0518	-0.1676	-0.1093	-0.0587	-0.0396	7.68.0.0-	-0.0419	-0.0457	0.00.8	0.0617	
	<u>₩</u>	0.0772	0.0783	0.0755	0.0774	0.0751	0.0740	0.0748	0.0781	0.1044	0.1187	0.1134	0.1085	0.1075	0.1032	0.0981	0.0812	0.0718	0.0754	0.0951	0.1082	0.1373	0.1171	0.1018	0.0855	0.0748	0.0712	0.0/41	0.6719	0.0708	1	0.0.01	V 13.1 (1)
RMS	[> <u>8</u>	0.0167	0.0170	0.0167	0.0166	0.0171	0.0170	•	0.0198	0.0245	0.0375	0.0386	0.0401	0.0358	0.0300	0.0306	0.0260	0.0238	0.0219	0.0248	0.0328	0.0397	0.0447	0.0427	0.0339	0.0251	0.0234	0.0229	0.0217	0.0217	0.07777	0.02	G 6, 415
	= [§]	6.0159	0.0161	0.0157	0.0159	0.0158	0.0155	0.0153	0.0164	0.0221	0.0266	0.0253	0.0237	0.0241	0.0232	0.0229	0.0182	0.0155	0.0167	0.0197	0.0225	0.0280	0.0258	0.0222	0.0190	0.0167	0.0149	0.0154	0.0151	0.0149	0.01%	0.0146	
	[X] (℃)	0.2032	0.2136	0.2222	0.2357	0.2490		0.2719	•	•	•	0.2126	•	0.1381	0.0688	0.0278	0.0189	0.0024	-0.0137	-0.0562	-0.1441	-0.2713	-0.3338	-0.3461	-0.3289	-0.3097	-0.3024	-6.3022	-0.2749	8993.0	15.75	1.41.7	
VELOCITY	∑ <u>∆</u>	0.1595	0.1531	0.146€	0.1374	0.1264	0.1079	0.1000	0.0833	0.0503	-0.0141	-0.0600	-0.0857	-0.1036	-0.1523	-0.1750	-0.1931	-0.2036	-0.2087	-0.2008	-0.1617	-0.0943	-0.0418	0.0071	0.0423	0.0661	0.0895	0.0975	6.11 %	. 11 6	2		. 1
]: [: ⁸	1.0380	1.6917	1.0896	1.0884	1.0877	1.0832	1.0793	1.0733	1.0448	1.6070	1.0087	1.0019	•	1.0126	1.0339	•	1.0543	1.0432	1.0205	1.0020	1.0136	1.0 455	1.050.1	1.0640	1.0721	1.0772	1.0768	1.9781	* * * * * * * * * * * * * * * * * * * *		:	
	1.	-0.5176	-0.4706	-0.4235	-0.4765	-0.3294	-0.2824	-0.2588	-0.2353	-0.1882	-0.1412	-0.1176	-0.1059	-0.0941	-0.0706	-0.0471	-0.0235	0.000.0	0.0471	0.0941	0.1412	0.1882	0.2118	0.2753	0.2588	0.2824	9.3053	0.3234	3.576.5	3.			

72.0 m/s	. 01	: 0
Ues 372.0	- 3	:! Q
N 1.∠06	X - 9.500 cai	Y 0.188 cal
Kun#: 087	NGTE: BIONT	KFM : 0000

		VELOCITY			RMS		55	SHEAR STRESS	35
	= \sum_{\infty}	I>[∞]	3 ⁸	<u>- </u> 8	15/8	[<u>w</u>]	1000× <u>U'V'</u> U~^2	7,∞1 1000×0.M.	1000×W¹U¹ U∞^2
-0.5176	1.0938	0.1215	0.1768	0.0151	0.0163	0.0729	0.0071	-0.1862	-0.8455
-0.4756	1.0922	0.1136	0.1794	0.0151	0.0164	0.0719	-0.0127	-0.1363	-0.8)08
-0.4235	1.0947	0.1004	0.1838	0.0150	0.0165	0.0728	-0.0038	-0.1707	-0.8802
-0.3765	1.0935	0.0870	0.1925	0.0156	0.0158		0.0031	-0.1775	-0.9839
-0.3294	1,0958	0.0693	0.1962	0.0154	0.0165	0.0738	-0.0024	-0.1787	-0.9481
-0.2824	1.0364	0.0462	0.1944	0.0155	0.0170	0.0735	-0.0164	-0.1098	-0.9758
-0.2353	1.0904	0.0172	0.1660	0.0149	0.0188	0.0721	-0.0175	-0.1817	-0.8975
-0.1882	1.0792	-0.0094	0.1229	0.0151	0.0182	0.0725	-0.0096	-0.2115	-1.0023
-0.1412	1.0770	-0.0389	0.0966	0.0148	0.0157	0.0703	-0.0199	-0.0885	-0.9039
-0.0941	1.0753	-0.0692	0.0489	0.0151	0.0186	0.0717	-0.0288	-0.1083	-0.9511
-0.0235	1.0755	-0.0981	-0.0292	0.0154	0.0194	0.0735	-0.0288	-0.1552	-1.0139
0.000.0	1.0766	-0.1002	-0.0589	0.0152	0.0200	0.0723	-0.0264	-0.1828	-0.9810
0.0235	1.0774	-0.1004	-0.0803	0.0151	0.0205	0.0718	-0.0273		-0.9457
0.0471	1.0797	-0.0929	-0.1160	0.0153	0.0206	0.0718	-0.0207		-0.9677
0.0941	1.0804	-0.0686	-0.1589	0.0146	0.0203	0.0707	-0.0097		-0.8863
0.1412	1.0853	-0.0374	-0.1859	0.0139	0.0169	0.0681	0.0004		-0.7837
0.1882	1.0923	-0.0099	-0.2102	0.0157	0.0199	0.0760	-0.0159		-1.0080
6.2353	1.0987	0.0184	-0.2368	0.0155	0.0223	0.0747	-0.0331	-0.2388	-1.0031
0.2824	1.0987	0.0430	-0.2388	0.0157	0.0204	0.0740	-0.0385	-0.1481	-0.9938
0.3294	1.0954	0.0663	-0.2306	0.0156	0.0207	0.0743	-0.0221	-0.2382	-0.9793
0.3765	1.0937	0.0843	-0.2194	0.0152	0.0190	0.0730	-0.0205	-0.1932	-0.9322
0.4235	1.0922	0.0990	-0.2085	0.0157	0.0201	0.0743	-0.0441	-0.0841	-0.9687
0.4706	1.0923	0.1108	-0.2024	0.0155	0.0197	0.0746	-0.0276	-0.1456	-0.9690
0.5176	1.0904	0.1196	-0.1931	0.3152	0.0189	0.074%	-0.0314	-0.1255	-0.9447
0.5647	1.0926	0.1285	-0.1915	0.0158	0.0198	0.076:	-0.0359	-0.1307	-1.0360

1V:11:14:11:VI	1.7.7.1	0.011 0.010
NOTE: BUILDING	X 5.500 call	o 01 = 10
KFM : 0.00 C	$\gamma = 0.14i$ cal	5 O 4 9

	7, 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Open			0.000	
VEL	VELLORITY			NEW:		.3	CHEAK STRESS	SS
	 >	3	Ē	15	×	1000*U'V'	000 × U · V · 1000 × V · W · 1006 × W · 1.	1000× <u>M</u> 41:
	≗	[] (ev]]	(S)	ω ₍₎	<u>&</u>	U∞^2	U∞^2	Uco^2
0	.1342		0.0149	0.0175	0.0713	-0.0088	-0.1464	0848.0-
1.0870 0	.1246	0.1933	0.0150	0.0161	0.0723	0.0002	-0.1867	-0.9023
	0.1132	0.2040	0.0153	0.0166	0.0730		-0.1534	-0.8943
0893	0.0993	0.2135	0.0154	0.0168	0.0728		-0.1406	-0.9196
	0.0834	0.2202	0.0148	0.0170	0.0721		-0.1484	-0.8823
.0891	0.0594	0.2166	0.0153	0.0176	0.0732	-0.0161	0.1440	7886.0-
.0832	0.0256	0.2003	0.0143	0.0211	0.0666	-0.0411	1.1051	-0.8061
.0720	0.0182	0.1569	0.0138	0.0218	0.0668	-0.0401	-0.2144	-0.8340
1.0712 -(-0.0609	0	0.0145	0.0230	0.0688	-0.0606	-0.0561	-0.7961
	-0.1122	0.0698	0.0156	0.0292	0.0710		-0.0311	-0.8196
	-0.1456	0.0090	0.0162	0.0278	0.0750		-0.0887	-1.0140
- 1690.	-0.1544	-0.0668	0.0160	0.0256	0.0771		-0.2411	-1.0198
.0717 -(-0.1436	-0.1362	0.0163	0.0281	0.0765		-0.2711	-1.0244
1.0763 -(-0.1025	-0.1963	0.0156	0.0318	0.0744	·	-0.3912	-0.9091
.0792	-0.0514	-0.2295	0.0145	0.0229	0.0691	-0.0211	-0.2940	-0.7972
.0848 -	-0.0071	-0.2546	0.0159	0.0223	0.0754		-0.2005	-0.9753
9280.	0.0363	-0.2592	0.0156	0.0226	0.0736	,	-0.2434	-0.9507
	0.0684	-0.2646	0.0154	0.0188	0.0750	-0.0069	-0.2545	-0.9743
.0884	0.0848	-0.2526	0.0152	0.0178	0.0739	-0.0184	-0.1256	-0.9575
.0878	0.0982	-0.2417	0.0155	0.0176	0.0736	-0.0199	-0.1574	-0.9647
.0872	0.1123	-0.2289	0.0151	0.0178	0.0723	·	-0.1934	−0.9076
	0.1216		0.0156	0.0178	0.0752	-0.0280	-0.1356	-0.9849
.0889	0.1313	-0.2093	0.0157	0.0203	0.0729	-0.0306	-0.1880	-0.9335
.0603	0.1381	-0.2057	0.0154	0.0214	0.0718	-0.0482	-0.1262	-0.9088

		_
U∞-372.0 m/s	a = 10 ∨	0 - 8
M 1.200	X = 5.500 cai	Y = 0.094 cal
Mars#: 0.89	NOTE: PIGNT	NFM : 0000

	_	MIN : ODOD	0000	1.00.1	0.024 (41	- 0			
'									
		VELOCITY			HMS		łs:	SHEAR STRESS	35
2(3a3)	<u> 11</u>	1> ≗	I¥ S	- ⁸			1000*U*V*1000*V*W* U\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000 *V'W' U~^2	1000 *W¹U¹ U∞^2
-0.5176	1.0904	0.1434	0.2057	0.0148	0.0186	0.0721	-0.0245	-0.1808	-0.8370
-0.4706	1.0897	0.1324	0.2142	0.0150	0.0192	0.0731	-0.0232	-0.1231	-0.9006
-0.4235	1.0901	0.1205	0.2236	0.0150	0.0176	0.0724	-0.0114	-0.1422	-0.9099
-0.3765	1.0884	0.1051	0.2367	0.0152	0.0184	0.0722	-0.0333	-0.1008	-0.9053
-0.3294	1.0854	0.0846	0.2483	0.0146	0.0184	0.0697	-0.0191	-0.1351	-0.8210
-0.2824	1.0790	0.0573	0.2491	0.0150	0.0257	0.0688	-0.0904	-0.0492	-0.7920
-0.2353	1.0524	0.0151	0.1829	0.0165	0.0348	0.0826	-0.0942	-0.7016	-0.8457
-0.1882	1.0527	-0.0461	0.2392	0.0185	0.0364	0.0841	-0.1580	-0.3921	-0.6656
-0.1412	1.0239	-0.1361	0.1095	0.0182	0.0374	0.0816	-0.2272	0.1090	-0.6812
-0.0941	1.0493	-0.1818	0.0429	0.0160	0.0231	0.0744	-0.0707	-0.0752	-0.8476
-0.0471	1.0556	-0.1886	-0.0152	0.0133	0.0209	0.0635	-0.0436	-0.0802	-0.5585
0.000.0	1.0506	-0.1905	-0.0501	0.0141	0.0236	0.0657	-0.0613	-0.1106	-0.5348
0.0471	1.0346	-0.1746	-0.0874	0.0172	0.0276	0.0839	-0.0544	-0.1880	-0.6048
0.0941	1.0243	-0.1179	-0.2205	0.0220	0.0366	0.1035	0.0293	-1.2379	-1.5340
0.1412	1.0513	-0.0297	-0.2673	0.0225	0.0331	0.1089	0.1052	-0.7782	-1.1081
0.1882	1.0758	0.0370	-0.2740	0.0182	0.0311	0.0838	-0.0906	-0.3903	-0.9735
0.2353	1.0814	0.0738	-0.2868	0.0157	0.0219	0.0762	-0.0314	-0.2528	-0.9360
0.2824	1.0813	0.0904	-0.2831	0.0158	0.0198	0.0746	-0.0201	-0.1777	-0.9663
0.3294	1.0848	0.1090	-0.2766	0.0152	0.0192	0.0731	-0.0207	-0.2037	-0.9073
0.3765	1.0848	0.1221	-0.2527	0.0157	0.0192	0.0727	-0.0331	-0.1248	-0.9678
0.4235	1.0869	0.1327	-0.2462	0.0158	0.0194	0.0746	-0.0506	-0.1485	-0.9723
0.4706	1.0856	0.1393	-0.2263	0.0151	0.0212	0.0735	-0.0208	-0.2309	-0.9023
0.5176	1.0861	0.1458	-0.2158	0.0158	0.0201	0.0735	-0.0311	-0.1208	-0.9607

. 09 - 9	z = 0.000 cal	KFM : 6000
α 10 °	X 5.500 cal	NOSE: BLUND
Hoo. ₹70.3 m./s	M = 1.200	Kun#: 134

		VELOCITY			RMS		55	SHEAR STRESS	35
(383) &	15/15 15/15	 	<u>∞</u> (1)	<u>- \$</u>	15\\n\n	W. O∞	1000 *U • V	1000 ×V·W·	1000 × W'U'
0.0235	1.0244	-0.0891	0.2325	0.0427	0.0486	0.1199	0.0989	-0.6995	-1.7954
0.0294	1.0236		0.2087	7.0564	0.0393	0.1262	0.7010	0.8891	-0.4859
0.0353	1.0419	-0.1073	0.1955	198	0.0400	0.1112	0.5026	0.5014	-0.5100
0.0412	1.0662	-0.1037	0.1947	0.0463	0.0350	0.1194	0.3145	-0.0075	-0.3621
C.0471	1.0790		0.1837	0.0374	0.0331	0.1150	0.1150		-0.4980
0.0529	1.0485	-0.1061	0.1074	0.0300	0.0352	0.1307	-0.0314		-1.6285
0.0588	1.0621	-0.1020	0.0132	0.0256	0.0369	0.1405	-0.0238		
0.0647	1.1096	-0.1080	0.1780	0.0196	0.0344	0.0931	0.0359	_	
0.0706	1.1157	-0.1174	0.1816	0.0173	0.0330	0.0826	0.0024	0.0916	
0.0824	1.1191	-0.1201	0.1754	0.0174	0.0337	0.0860	0.0005	-0.0491	-1.2640
0.0941	1.1193	-0.1168	0.1682	0.0181	0.0322	0.0853	-0.0090	9990.0	-1.3101
0.1176	1.1196	-0.1161	0.1637	0.0182	0.0342	0.0843	-0.0064	0.0355	-1.3029

				-				
¥	2	2	2	23	2/3	27	27	;H
09-	0	0	0	0	С	0	0	09
5.00	5.00	5.00	2.00	5.00	5.00	5.00	5.00	5.00
9830	0830	9830	9830	9830	9830	9830	9830	9830
BLUNI	BLUNI	BLUNT	BLUNT	BLUNT	BLONT	BLUNI	BLUNT	RIUNT
0.7	0.1	10	10	10	0.0	10	10	10
1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
116	64	65	63	68	72	73	74	139
	1.2 10 BIANT 9830 5.00	1.2 10 BIANT 9830 5.00 1.2 10 BIANT 9830 5.00	1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00	1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00	1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00	1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00	1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00 1.2 10 BLUNT 9830 5.00	1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00 1.2 10 BLANT 9830 5.00

Kun#: 116	M = 1.230	Uor:370.8 m/s
MOSE; RUME	X = 5.000 cal	α - 10 ×
KFM : 98.30	$z \sim 0.000 \mathrm{cal}$	5 09- · 8

		VELACTIFY			HAMS		ន	SHEAR STRESS	55
X(C11)	12 8	1> %	[3] &	1518	15/2	<u> </u> 3 8	1000 * U · V · U · V · U · V ·	000 *U'V' 1000 *V'W' U~^2 U~^2	1000 × W 1U 1
0.1353	0.7668	-0.0247	-0.0922	0.0923	0.0452	0.1553		i	6899.8-
0.0412	0.8475	-0.0141	-0.1395	0.0864	0.0484	0.1594			
0.1471	0.8992		-0.1678	0.0805	0.0460	0.1642	0.4422	-0.7767	
0.3529	0.9634	6800.0-	-0.1795	0.0692	0.0383	0.1262	0.5150	-0.8139	
0.)588	1.0142		-0.1917	0.0552	0.0354	0.1023	0.5151	-0.3559	
0.3647	1.0442		-0.1840	0.0258	0.0308	0.0759	0.2055	-0.2475	
0.0706	1.0518	-0.0013	-0.1729	0.0188	0.0289	0.0709	0.1067	-0.2147	
0.0824	1.0512	-0.0118		0.0167	0.0274	0.0705	0.0987	-0.1207	-0.8088
			1						

	, 	ESS	000 *V*W*15000 *W*1;**				3 -1.0578		5 -0.8450		_						5 -1.4280		2.4240	7 -1.1255	3 - 1.0164	9 -1.0823	1-1.1485	0 - 1.2025	3 -1.2224
		SHEAR STRESS	71	3	-0.0930	-0.1198	-0.171	0.0048	-0.0995	-0.0870	0.3136	0.3791	0.2457	-0.1278	-0.1778	-0.1435	-0.6005	-1.8291	-1.6831	-0.1957	-0.2273	-0.1609	-0.3501	-0.1990	-0.1888
एक- ४६7.9 m/s u ≈ 10 ° 8 · 0 ° °		S	$\frac{1000 \times 0^{1} V^{1}}{1000}$:	-0.0088	9800.0	-0.0050	-0.0636	-0.0655	-0.0128	0.1559	-0.0078	-0.0047			-0.0256	-0.0008	0.2316	0.4633	-0.0628	-0.0430	-0.0328	0.0056	-0.0289	-0.0152
15·α 36 α · ·			i _M (S)		0.0679	0.0791	0.0793	0.0790	0.0769	0.1036	0.1438	0.1390	0.1501	0.0941	0.0883	0.1066	0.1252	0.1526	0.1427	0.0895	0.0800	0.0807	0.0820	0.0828	0.0826
1.200 5.000 cal 0.071 cal		RMS	> &	,	0.0146	0.0152	0.0168	0.0232	0.0240	0.0237	0.0330	0.0315	0.0280	0.0221	0.0225	0.0226	0.0328	0.0404	0.0449	0.0279	0.0244	0.0212	0.0206	0.0216	0.02)6
M×× Service S			III 8	,	0.0139	0.0163	0.0162	0.0170	0.0160	0.0220	0.0305	0.0299	0.0348	0.0199	0.0191	0.0246	0.0269	0.0344	0.0326	0.0187	0.0168	0.0169	0.0171	0.0175	0.0174
: 064 :: BGRINT : 3830			<u>[⊠</u>		0.1762	0.1837	0.1860	0.1889	0.1858	0.1587	0.0960	0.0650	0.0388	-0.0018	-0.0149	-0.0402	-0.0834	-0.1891	-0.2274	-0.2324	-0.2091	-0.1839	-0.1560	-0.1371	-0.1014
KOD#: 06-4 NOSE: REAINT RFM: -4830		VELOCITY	1> °		0.1790	0.1665	0.1514	0.1261	9660.0	0.0706	0.0288	-0.0114	-0.0424	-0.0582	-0.0669	-0.0697	-0.0516	0.0129	0.0794	0.1285	0.1627	0.1828	0.1951	0.2042	0.2111
			1= \$\s\cdot		1.0369	1.0386	1.0426	1.0483	1.0486	1.0325	0.9821	0.9406	1.0066	1.0366	1.0274	1.0000	0.9770	0.9842	1.0214	1.0443	1.0445	1.0411	1.0373	1.0335	1.0276
	,		2(3ai)		-0.3765	-0.3294	-0.2824	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0.000.0	0.0471	0.0941	0.1412	0.1882		0.2824	•	0.3765	•	•	C.5176	0.6118

Furt#1 - 0855	1.200	U∞-367.9 m/s
MOSE: BLONT	X 5.000 cal	() 1 = π
M-M : 98.40	Y = 0.047 cal	

1 1	VELOCITY		-	FIMS		IS [SHEAR STRESS	3.5
- - - - - - - - - - - - - - - -		3 <u>-</u>	15	[5]2	[3]	1000 × U V	1000 *V'W'	000*V'W' 1000*W'U
		<u>.</u>	3	}	}	7 200	7 ~ 7	;
0.1681	L	0.1752	0.0163	0.0251	0.0741	7960.0-	-0.3695	-0.8945
0.1565		0.1744	0.0173	0.0365	0.0820	-0.0556		-0.7212
0.1246		0.1142	0.0361	0.0545	0.1503	1.2607	2.7637	2.2742
0.1784		0.1695	0.0161	0.0149	0.0739	0.0171		-0.9109
0.1785		0.1662	0.0171	0.0149	0.0778	0.0217	-0.1510	-1.0673
0.1786 (_	0.1664	0.0163	0.0148	0.0777	0.0117	-0.1611	-1.0940
		0.1698	0.0154	0.0148	0.0733			-0.9574
-0.0661		0.0228	0.0199	0.0257	0.0903	-0.0468	-0.1547	-0.8955
		0.0332	0.0241	0.0249	0.1087			-0.9029
		0.0203	0.0291	0.0360	0.1314			
		C.1048	0.0344	0.0590	0.1562		_	-2.4146
0.0627	1	-0.2488	0.0469	0.0643	0.2122		-2.6149	
0.1340 -	Ī	0.2384		0.0481	0.1504	-0.2220		•
0.1692 -	Ī	0.2244	0.0204	0.0368	0.0920	-0.1969		-1.2580
0.1875	'	-0.1954	0.0184	0.0358	0.0848	-0.1425	-0.2845	-1.1574
0.1879		0.1638	0.0204	0.0619	0.0852	-0.5796		-1.1956
0.1572	'	-0.1419	0.0250	0.0990	0.0878	-1.6474	-0.2837	-1.2924

Kur:#: 067	M = 1.200	U∞=370.6 m/s
NOTE: BLUNT	X = 5.000 cal	$\alpha = 10^{\circ}$
RFM : 9830	Y = 0.024 Cal	° 0 = 8

															_			_											
22	1000×W·U U∞^2	-1.1393											-0.9839		-1.0688		-1.4436		_		-5.0279	-3.6294	-3.8922			-2.1683		7	-1.7877
SHEAR STRESS	1000*V'W' U~^2	-0.4774	1 8190	1.4228	0.8066	0.3662	0.1603	-0.0085	-0.1890	-0.2711	-0.1022	-0.2030	-0.1621	-0.2155							-2.7958			0			-0.1817	-0.3262	-0.3043
55	1000× <u>01v</u>	-0.0083	-0.0683	-0.1809	-0.2033	-).1620	-0.1048	-0.0938	-0.0547	-0.0456	-0.0366	-0.0537	-0.0290	-0.0461	-0.0310	0.0284	-0.0505	0.1186	0.1733	0.0229	0.1056	-0.0354	0.0120	0.3021	-0.0237	0.0374	-0.3490	-0.0145	-0.0263
	M M M	0.0931	210	0.2315	•	.149	0.1229	0.1016	0.1094	0.1048	0.0980	0.0958	0.0903	0.1061	0.1114	0.1438	0.1287	0.1866	0.1607	0.1819	0.1905	0.1666	0.1733	0.1384	0.1596	0.1543	0.0946	0.0941	0.1048
KMS	- ⁸	0.0269	0.0323	0.0360	0.0353	0.0332	0.0298	0.0274	0.0250	11.0289	0.0241	0.0267	0.0229	0.0264	0.0276	0.0310	0.0344	0.0352	0.0501	0.0475	0.0558	0.0415	0.0417	0.0302	0.0321	0.0294	0.0233	0.0225	0.0231
	lalå	0.0196	0.0235	0.0446	0.0453	0.0337	0.0279	0.0224	0.0219	0.0232	0.0204	0.0203	0.0202	0.0234	0.0240	0.0282	0.0280	0.0367	0.0319	0.0373	0.0378	0.0338	0.0356	0.0279	0.0312	0.0309	0.0195	0.0195	0.0218
	13	0.2965	0.4031	0.0258	-0.0913	-0.2224	-0.1293	-0.0096	-0.0667	-0.0132	0.0631	0.1116	0.1504	0.2034	0.2056	0.1280	0.1944	-0.0419	0.0672	-0.2531	-0.0561	-0.2132	-0.2837	-0.3379	-0.3421	-0.2767	-0.1638	-0.1037	-0.0811
VELCCITY	1> &	0.0858	0.0468	-0.0463	-0.0569	-0.0775	-0.0825	-0.0756	-0.0460	-0.0436	-0.0445	-0.0422	-0.0461	-0.0445	-0.0453	-0.0518	-0.0366	-0.0256	0.0089	0.0177	0.0634	0.1159	0.1439	0.1668	6.1791	0.2035	0.2219	0.2369	0.2396
	1= \s^8	17) ()	0	0	7	7	Α,	- 1				1.0156			0									_	1.0322	1.0263	1.0212
	(le5) Z	-6.2353	-0.1882	-0.1294	-0.1176	-0.0941	-0.0471	0.000.0	0.0235	0.0471	0.0706	0.0941	0.1176	0.1412	0.1647	0.1765	0.1882	0.2000	0.2118	0.2235	0.2353	0.2588	0.2824	0.3059	0.3234	0.3765	0.4235	0.5176	0.6118

X:11#: 068	M · 1.200	U∞-370.6 m/s
NOSE: BLUNT	X 5.000 cal	α = 10 °
FPM : 9830	Y = 0.094 cal	° 0 = 8

35	1000+WIII	-0.5365	-0.5362	-0.5363	-0.5598	-0.4942	-0.5448	-0.5833	-0.5722	-0.7844	-0.9254	-0.6678	-0.7264	-0.7499	-0.5989	-0.7182	-0.8560	-0.9970	-0.8902	-0.8438	-0.9366	-1.0139	-1.0343
SHEAR STRESS	$\frac{0.00 \times \overline{U^{\dagger}V^{\dagger}}}{0.00^{2}} \frac{1.000 \times \overline{V^{\dagger}W^{\dagger}}}{0.00^{2}} \frac{1.000 \times \overline{W^{\dagger}U}}{0.00^{2}}$	-0.1203	-0.1002	-0.0611	-0.0671	-0.0891	-0.0455	-0.0459	-0.0959	-0.2437	-0.2354	0.0506		0.015.	-0.1197	-0.0991	-0.1653	-0.2686	-0.2007	-0.2178	-0.1976	-0.1668	-0.2688
	1000 <u>*U'V'</u> Jo^2	0.0036	0.0021	-C.0133	-0.0203	-0.0169	-0.0282	-0.0279	-0.0238	-0.0025	-0.0336	-0.0133	-0.0149	-0.0185	-0.0085	0.0000	-0.0032	-0.0359	-0.0325	-0.0218	-0.0028	-0.0229	-0.0020
	<u> </u>	0.0597	0.0598	0.0579	0.0588	0.0565	0.0589	0.0622	0.0630	0.0761	0.0734	0.1085	0.1033	0.1021	0.0733	0.0708	0.0757	0.0782	0.0761	0.0727	0.0768	0.0794	0.0800
RMS	<u>`</u>	0.0137	0.0125	0.0144	0.0152	0.0151	0.0162	0.0168	0.0177	0.0184	0.0209	0.0212	0.0216	0.0203	0.0158	0.0145	0.0171	0.0237	0.0221	0.0200	0.0181	0.0196	0.0196
	15 S	0.0125	0.0125	0.0124	0.0127	0.0124	0.0129	0.0126	0.0132	0.0157	0.0150	0.0213	0.0212	0.0207	0.0153	0.0147	0.0156	0.0166	0.0155	0.0154	0.0156	0.0163	0.0162
	<u> </u> M ∞)[}	0.1400	0.1462	0.1548	0.1604	0.1681	0.1698	0.1668	0.1706	0.1921	0.2787	0.1701	0.1255	0.0414	-0.0090	-0.0305	-0.0849	-0.1520	-0.1952	-0.2051	-0.1984	-0.1828	-0.1575
VELOCITY	12/3	0.1837	0.1756	0.1677	0.1548	0.1380	0.1169	0.0924	0.0656	0.0411	0.0209	0.0046	-0.0042	-0.0212	-0.0429	-0.0473	-0.0407	-0.0079	0.0391	0.0796	0.1180	0.1508	0.1728
	111 (30)	1.0299	1.0315	1.0333	1.0376	1.0420	1.0467	1.0526	1.0553	1.0459	1.0339	1.0133	1.0119	1.0162	1.0397	1.0448	1.0441	1.0440	1.0460	1.0465	1.0441	1.0400	1.0360
	2(531)	-0.5176	-0.4706	-0.4235	-0.3765	-0.3294	-0.2824	-0.2353	-0.1882	-0.1412	-0.0941	-0.0706	-0.0588	-0.0471	0.000.0	0.0471	0.0941	0.1412	0.1882	0.2353	0.2824	0.3294	0.3765

Kun#: 072	M 1.200	U∞ 369.6 m/3
NOTE: BUILD	X - 5.000 cal	a - 16 "
2008年 - 基基	Y 0.188 cal	;) + 9

		VELOCITY			KMS		15	SHEAR STRESS	38
2(001)]= ⁸	1 ⊳ ;5	<u>™</u>	[= ⁸	[5] ⁸ 0	<u>, M</u>	7,∞Ω 1000×Ω,Λ 1000×Ω,Ω	1000*V'W'	10000 <u>*W* U 1</u> U∞^2
-0 4706	1.0182	0.1672	0.0984	0.0140	0.0165	0.0667	-0.0233	-0.0618	-0.65.47
-0 4235	1 0183	0.1580	7 5 5 C	0.0141	0.172	8890 0	7810 0-	-0 1005)
-0 3765	•	0.1484	0.0973	0.0130	0.0178	0.0030	-0.0274	-0 0776	
-0.3294	1.0198	0.1356	0.0976	0.0141	0.0179	0.0670		-0.0645	-0.6973
-0.2824		0.1205	0.0940	0.0139	0.0178	0.0662		093	-0.6825
-0.2353	•	0.1049	0.0868	0.0141	0.0180	0.0682		-0.0741	-0.7353
-0.1882	•	0.0871	0.0821	0.0141	0.0179	0.0667	-0.0284	-0.0716	-0.7352
-0.1412	1.0270	0.0700	0.0697	0.0140	0.0179	0.0656	-0.0412	-0.0433	-0.7246
-0.0941	1.0292	0.0538	0.0522	0.0139	0.0180	0.0663		-0.0811	-0.7340
-0.0471	•	0.0398	0.0333	0.0140	0.0159	0.0674		-0.1304	-0.7146
0.000.0	1.0284	0.0291	-0.0019	0.0154	0.0177	0.0749		-0.1314	-0.8990
0.0471	1.0278	0.0260	-0.0359	0.0158	0.0177	0.0764		-0.1402	
0.0941	1.0279	0.0297	-0.0705	•	0.0177	0.0751	-0.0026	-0.2159	-1.0920
0.1412	1.0291	0.0423	-0.1085	0.0163	0.0200	0.0800	0800.0	-0.3250	-1.0626
0.1882	1.0277	0.0638	-0.1288	0.0163	0.0216	•	-0.0114	-0.3018	-1.0371
0.2353	1.0267	0.0872	-0.1471	•	•	•	-0.0247	-0.2628	-1.0250
0.2824	1.0252	0.1094	-0.1544	0.0160	0.0214	0.0786	-0.0008	-0.3182	-0.9280
0.3294	1.0222	0.1310	-0.1525	0.0162	0.0220	•	-0.0182	-0.2199	-0.9268
0.3765	1.0207	0.1503	-0.1474	0.0161	•	0.0785	-0.0175	-0.1892	-0.3360
0.4255	1.0190	0.1648	-0.1397	0.0160	0.0178	0.0791	0.0057	-0.2287	-0.9265
0.4706	1.0165	0.1752	-0.1298	0.0159	0.0167	0.0778	0.0132	-0.2369	-0.9416
0.5176	1.0153	0.1822	-0.1220	0.0160	•	.07	-0.0059	-0.1628	-0.9309
0.5647	1.0136	0.1887	-0.1145	0.0165	0.0169	0.0757	6/00.0-	-0.1643	-0.9363
0.6118	1.0113	0.19.11	-0.1064	0.0163	•	0.0766	0.0037	-0.1496	-0.9489
0.6588	1.0111	0.1972	-0.1042	0.0160	0.0173	0.0772	0.0031	-0.2127	-0.9.71
0.7059	1.6097	0.1399	-0.0994	0.0158	0.0174	0.0791	0.0093	-0.2611	-0.6536

100 VI 174 VI 17		THE APPLICATION OF THE PROPERTY OF THE PROPERT	<u>₩</u> (000) (2000) (2000) (2000)
1:3 ====================================		I.M.)	15/8
	\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}		13 £

		A.J. 1. 1772.			144.1			THEM TIFE	23
- (i)	p di	tol [‡]	I≫]≘	IEIS	<u> </u>	[M]	3,∞(1 <u>2,11</u> ,+000.	2,000 Z,000 11,8,000 (M,A,000)	7,000 (11,8,473)
-0.4706	() () () () () () () () () ()	0.1677	0.0397	0.0143	6.0177	0.0081		-0.1276	-0,6787
-0.4235	1.0163	0.1567	0.1050	0.013	0.0384	0.0673		-0.1010	-0.6584
-0.8765	1.0182	0.1459	5.1064	0.0139	0.0384	0.0668		-0.1220	-0.6671
-6.3294	1.0206	0.1321	0.113/	0.0151	0.0193	0.0721		-6.1159	-0.8088
-0.2824	1.6237	0.1141	0.1065	0.0140	0.0195	0.0660		-0.0490	-0.680%
-0.235≯	:.0273	0.0935	0.1024	0.0142	0.0199	0.0659		-0.0968	-0.6945
-0.1882	1.0289	0.0718	0.0919	0.0140	0.0193	0.0671		0.0267	-0.7297
-0.1412	1.0304	0.0512	0.0740	0.0141	0.0202	0.0685		-0.0601	-6.7148
-0.0941	1.0205	0.0281	0.0451	0.0176	0.0202	0.0826		-0.1107	-0.5462
-0.0471	1.0165	0.0082	0.0173	0.0181	0.0226	0.0839		0.0718	-0.7817
0.000.0	1.0239	-0.0068	-0.0222	0.6174	0.0185	0.0839		-6.1302	-1.104
0.0471	1.0271	-0.0063	-0.0594	0.0165	0.0386	0.0783		-0.1786	-1.0368
0.0941	1.0298	0.0006	-0.0959	0.0166	0.6216	0.0801		-0.3100	-1.0971
0.1412	1.0301	0.0222	-6.1417	0.0162	0.0239	0.0785		-0.2763	-1.0077
0.1882	1.0300	0.0497	-0.1702	0.0162	0.0253	0.0802		-0.4086	-0.9834
0.2353	1.0270	0.081%	-0.1838	0.0161	0.0241	0.0776		-0.3294	-0.9358
0.2824	1.0272	0.1093	-0.1965	0.6171	0.0232	0.0824		-0.2389	-1.0540
0.3294	1.0242	0.1358	-0.1895	0.0166	0.0212	0.0798		-0.1716	-0.9863
0.3765	1.6212	0.1554	-0.1681	0.0167	0.0199	0.0814		-0.2369	-1.0260
0.4235	1.02011	0.175	-0.1557	0.0164	0.0184	0.0787		-0.1511	5195.0-
0.4706	1.0173	o.1815	-0.1425	0.0163	0.0373	0.0775		-0.2077	-0.9393
0.5176	1.0148	0.1908	-0.1245	0.0160	0.0176	0.0772		-0.2195	-0.9186
0.5547	1.0125	0.1962	-0.1169	0.0161	0.0173	0.0783		-0.1391	-0.9506
0.6118	1.0716	0.3933	-0.:697	0.0162	0.0176	0.0780	-0.0167	-0.0944	-0.4440
0.1088	1.0:52	603	1669.6-	9.0162	0.0180	0.6777;		-0004	-0.474
	`.		5 % · · · ·	0.016.5	0.019	0.3787		9.17.0-1	- ()

9/20/00 (H -0.4604 -1.0961 -1.0894 -0.030h 1.0921 0.4045 -1.0.47 -0.614 54.4.3 4(Fig. 2) --() . *** ()-3. ----0.0334 -0.0533 -0.0239 0.0048 0.1382 0.4626 -0.0652 -0.1355 -0.5281 -0.230a -0.1896 W. A. (00) -0.0730 5.6336 -0.3624 -0.2793 HEY 2. 0--0.0043 -0.0540 -0.0540 -0.0541 -0.0540 -0.0540 -0.0520 -0.0520 -0.0520 -0.0520 -0.0520 -0.0520 -0.0520 -0.0520 -0.0520 300 3 0.0737 0.0669 0.0692 0.0692 0.1364 0.1366 0.0899 0.0893 0.0814 0.6786 0.68:2 0.0806 5 -€ 0.0282 0.0832 0.0832 0.0834 0.0882 0.0279 0.0187 0.0181 0.0242 6.0309 0.0317 0.0298 0.0260 0.0234 0.0207 0.0174 0.0188 0.0188 - - - E 0.0186 17 1:4 1 -0.2148 -0.7028 -0.1812 -0.11348 -0.1175 -0.1175 -0.0414 -7.1367 -0.193 1. 1. 1. 1. 1. 1. -5.0184 -6.0593 3 1 1 2 1 1 1 13 · ... 1.1 4

[-

.

-0.0087

0.0 0.0 0.0

9.083.E

3

-0.0636 -0.0055

0.6795 6.0794

-1.0.3

T	Σ	153	(100 570). Z m./s
Dech: MIONI	×	5.0000 0.41	: 0; 3;
(3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2	0.000 0.41	± 09 ± 9

_		
133	1000×M-111	-1.4447 -14.0675 -1.9271 -18.4038 0.7114 -0.6236 0.2837 -0.2457 0.2005 -0.7662 0.0631 -0.9989
SHEAR STRESS	<u>Z,∞0 X,n1,000</u> 000 <u>×0.10</u> X,∞0	1
	2,∞Ω . <u>Λ.Ω</u> *0001	0.1780 0.0889 0.3861 0.152 0.0617 -0.0436
	Mari	0.3084 0.3140 0.1732 0.1340 0.1195 0.0800 0.0800
KMC)		0.0169 0.1074 0.0442 0.0413 0.0397 0.0333
	11	0.0639 0.0786 0.0458 0.0459 0.0303 0.0189
	3 ⁸	-0.1334 -0.0984 0.1958 0.1958 0.1656 0.1904 0.1551
ALCO CAN	12-12	
	pr [t]	1.0156 6.9425 6.9425 3.9787 1.0356 1.0467

l	250 ata	D.	51	8	N	7	22	23	Y
	Delta (deg)	09-	0	0	9	0	9	C	09
	X (cal)	5.50	5.50	5.50	5.50	5.50	6.50	5.50	5.50
,	(M-M) (rick:	0830	9830	0830	0830	9830	9830	9830	9830
	Nose	BLUNI	BLUNI	BLUNI	BLUNT	BIUNT	BLUNT	BLUNI	BLUNT
	त्रीयेल (अस्त)	01	10		1.0	10	10	9	10
	4 7	2:	24			○) i	2.1	1.2	2.
	7.4 . 4 t		2.5		Ď	in an	<u></u>	(D)	m m

TONE THE TRUE	M 1.200 x 5.500 cm	$U \approx -370.2 \text{ m/s}$ $a = 10^{\circ}$
RFM : 9830	Z 0.000 cal	8 60

		VELOCITY			िक्य		ਰ	SHEAR STRESS	33
:: ::-	ļ¤ (Š	N N	<u>₩</u>	113 (No.	[N	- <u>M</u>	1000 <u>+U ·V ·</u> U∞^2	1000× V·W	000× <u>V°W</u> 1066× <u>W°U</u> 1
0.0118	0.7142	-0.1039	0.3191	0.0558	0.0304	0.2059	-0.4617	1.2436	-4.9761
0.0:76	0.7351	-0.1230	0.3034	0.0621	0.0332	0.1823	-0.0382	1.9004	2.8267
0.0235		-0.1151		0.0587	0.0436	0.1769		0.7844	-0.2878
0.3294	0.8047	-0.1159		0.0550	0.0383	0.1387	0.3968	1.2350	-0.1721
0.0353	0.8156	-0.1140	0.2475	0.0653	0.0420	0.2239		0.4545	-2.1058
0.0412	0.8043	-0.1193	0.1321	0.0684	0.0400	0.2375	0.1241	0.9422	-7.0546
0.0471	0.8032	-0.1145	0.0813	0.0594	0.0441	0.2330	-0.4920	2.9925	-6.7565
0.0529	0.8183	-0.1115			0.0454	0.2354	-0.5291	1.3424	-9.1610
0.0588	0.8524	-0.1118	-0.0405	0.0678	0.0445	0.2176	-0.8015	1.9367	-7.5734
0.0647	0.8809	-0.1134		0.0686	0.0411	0.1855	-0.7007	1.2295	-5.5899
0.0706	0.9226	-0.1104		0.0640	0.0417	0.1831	-0.5885	0.8078	-4.9260
0.0824	1.0069	-0.1056		0.0544	0.0359	0.1413	-0.2580	0.5692	-3.6922
0.0941	1.0701	-0.1031		0.0368	0.0283	0.1306	-0.0814	0.2419	-2.6551
0.1059		-0.1007		0.0223	0.0249	0.1084	-0.0322	0.1675	-2.3164
C.1176	1.1017	-0.1111	-0.1978	0.0237	0.0238	0.1104	0.0120	0.2173	-2.0061
0.1712	1.1111	-0.1115	-0.1527	0.0221	0.0266	0.1152	-0.0273	0.2146	-2.4283

UP -371.8 m/c	a - 10 °	\$ 0
M. 3.260	X > 5,150 cat	Y = 0.071 cal
Fair#: 081	NOSE: BEUNT	RIM : 9830

		VPTCVCTGV			P.M.S.		15	553845 AV415	57
		VISLOWELL							
107(3) 23		1> =	≥ ⁸	 &	<u>> </u> \$	X O	1000 * U · V · U · V · U	1000 + V'W' U∞^2	1000 +W+II
9.79.0-		0.1301	1	0.0173	0.0223	0.0810	1	-0.2841	-1.1594
-0.3765		0.1130		0.0156	0.0157	0.0772		-0.1923	-0.9975
-0.3294		0.0969		0.0156	0.0161	0.0753		-0.1584	-0.9745
-0.2824		0.0811		0.0162	0.0163	0.0769		-0.1735	-1.0550
-0.2353	1.0758	0.0623	0.2206	0.0158	0.0155	0.0754	0.0106	-0.2137	-0.9963
-0.1882		0.0386		0.0161	0.0180	0.0753		-0.2284	•
-0.1647		0.0286		0.0201	0.0191	0.0959		-0.2754	-1.5002
-0.1412		0.0075		0.0227	0.0240	0.1056		-0.1961	-1.0167
-0.0941		-0.0479		0.0239	0.0289	0.1093		-0.2705	-1.0198
-0.0706		-0.0833		0.0245	0.0280	0.1112		-0.0777	-1.5304
-0.0471		-0.1128		0.0261	0.0270	0.1183		0.0872	
-0.0235		-0.1412	0.0436	0.0278	0.0266	0.1191		0.1251	-1.8929
0.000.0		-0.1668	0.0175	0.0205	0.0270	0.0935		-0.0827	-1.4185
0.0471		-0.1908	-0.0283	0.0158	0.0223	0.0745		-0.1774	-0.8996
0.0941		-0.1990	-0.0696	0.0161	0.0214	0.0760		-0.1232	-0.9519
0.1176		-0.1971	-0.1012	0.0170	0.0225	0.0850		-0.2811	-1.0108
0.1412		-0.1931	-0.1343	0.0188	0.0238	0.0925		0	•
0.1647	7	-0.1713	-0.1712	0.0209	0.0312	0.0986		0	-1.3943
0.1882		-0.1471	-0.2158	0.0228	0.0358	0.1107		0	-1.9016
0.2353	1.0527	-0.0376	-0.3579	0.0230	0.0495	0.1087		7	-1.6782
0.2588	1.0646	0.0242	-0.3723	0.0203	0.0460	0.0985			-0.9348
0.2824		0.0499	-0.3779	0.0176	0.0338	0.0830	-0.1037	0	-0.9441
0.3294	-	0.0985	-0.3513	0.0161	0.0249	0.0762	-0.0617		-0.8693
0.3765	1.0773	0.1268	-0.3276	0.0150	0.0219	0.0714	-0.0438	-0.1	-0.8162
0.4235	1.0778	0.1459	-0.2902	0.0153	0.0197	0.0728	-0.0372	_	-0.9051
0.4765	1.0779	0.1547	-0.2660	0.0148	0.0194	0.3698	-0.0284	_	-0.8347
0.5647	1.0800	0.1644	-0.2323	0.0179	0.0198		-0.0363	-0.1649	-0.8477
0.7059	1.0824	0.1662	-0.2136	0.0150	0.0263	0.3712	-0.0372	-0.1021	-0.80%

280 :#1nv	M - 1.260	Ura-369.6 m/S
AUSE: BLONT	X - 5.500 cal	201 20
RIM : 9830	Y = 0.024 cal	\$ 0 s 8

		VELOCITY			KMS		<u> </u>	SHEAR STRESS	SS
Z (cal)	<u>n</u>	12/1	[⊠]	[<u>-</u>]&	<u>-</u> ∾∩	1)co	1000 <u>×U'V'</u> U∞^2	0.00 × U · V · 1.000 × V · W · U · V · V · W · U · V · V · W · V · V · V · V · V · V · V	1000 <u>√17 15</u> U∞^2
-0.2824	1.0806	0.0990	0.2490	0.0167	0.0193	0.0818	0.0007	-0.3082	-1.1091
-0.2353	1.0625	0.0808	0.2715	0.0187	0.0196	0.0893		-0.2430	-1.3910
-0.1882	1.0332	0.0644	0.3222	0.0247	0.0218	0.1205	0.0239	-0.3271	-2.0140
-0.1412	0.9331	0.0127	0.2021	0.0391	0.0314	0.1864	0.1025	0.3150	2.7848
-0.0941	0.9536	-0.0648	0.1923	0.0316	0.0333	0.1450	-0.1630	0.4720	-1.3722
-0.0941	0.9360	-0.0528	0.2720	0.0266	0.0320	0.1214	-0.1661	0.2879	0.2372
-0.0471	1.0100	-0.1343	0.1471	0.0303	0.0301	0.1376	-0.2346	0.3993	-2.8855
-0.0471	1.0219	-0.1161	0.0861	0.0244	0.0280	0.1116	-0.1197	-0.0242	-1.7102
0.0000	1.0517	-0.1546).0428	0.0157	0.0298	0.0702	-0.1356		-0.6636
0.0000	1.0519	-0.1707	0.0666	0.0187	0.0261	0.0884	-0.0825	-0.1142	-1.1695
0.0471	1.0534	-0.1900	0.0394	0.0158	0.0224	0.0753	-0.0538		-0.7841
0.0941	1.0437	-0.2052	0.0380	0.0166	0.0230	0.0788	-0.0481	-0.2250	-0.9013
0.1412	1.0171	-0.2162	0.0283	0.0192	0.0222	0.0882	-0.0402	-0.2214	-0.8623
0.1882	0.9829	-0.2111	0.0038	0.0225	0.0238	0.1043	-0.0166	-0.2137	-0.7280
0.2118	0.9699	-0.1911	-0.0485	0.0243	0.0326	0.1179	-0.0890	-0.4285	-0.9880
0.2353	0.9750	-0.1489	-0.1076	0.0323	0.0527	0.1527	-0.1122	-1.2761	-1.9520
0.2824	1.0536	0.0411	-0.1986	0.0401	0.1008	0.2005	-0.2486	-4.8111	-3,3307
0.2824	•	0.0307	-0.1485	0.0363	0.0902	0.1855	-0.1999	-5.4813	-4.6297
0.3294	1.0824	0.1464	-0.2761	0.0211	0.0336	0.0981	-0.0655	-0.3052	-1.0543
0.3765	1.0857	0.1676	-0.2961	0.0166	0.0213	0.0799	-0.0257	-0.1428	-0.7800
0.4235	1.0898	0.1739	-0.2871	0.0158	0.0194	0.0753	-0.0184	-0.1684	-0.7150

	Um 369.6 m/s	10 %	ر 0
1	ai.	11	::
j	Ĕ	11	:: :0
	_		Ī
Ì		_:	~ •
ĺ		ੱ	ु
١		0	~
l	;≍	Ż	
ì	٠,		٠.
l	c 7	7)	0
Ì			•
	M - 3.230	X - 5.530 cal	\succ
l			
1		Ē	3
1	Run#: 083	Ξ	RPM: 9830
l			
١	-11 :		••
١	===	¥.	Ž.
1	Ę.	NOOTH THE LIBRAY	X
1			
L			

		NOSE: FIRMT RPM : 9830	LINT. 9830	X 5. Y 0.	5.500 cal 0.047 cal	α = δ =	10 3		
•									
		VELOCITY			FMS		53 	SHEAR STRESS	35
(183) 7	j::[8]	1> \$	[<u>%</u> □	in S	FI\$	MM_C	1000 * U · V · U	1000 <u>*V'W'</u> U∞^2	1000×W'U' U∞^2
- 1		00		5,000	[5			,	
-0.3/65	1.0972	0.1128			0.0151	0.0/1/0	-6.0050	-0.115	
-0.3234	1.0929	0.00.0		0.0140	7.5	0.0581	0.0061		0018.0-
-0.2353	1.0055	0.0010	0.631	0.0130	0.0144	2020.0	0.000.0	-0.1334	10.7384
-0.2118	1.0564	0.0544	. 0	0.0193	0.0158	0.0865	0.0281		-0.5059
-0.1882	1.0329		0	0.0261	0.0254	0.1246	0.0710		-1.6421
-0.1412	0.9820		0	0.0300	0.0378	0.1350	0.0029		-0.1791
-0.1176	0.9546		0	0.0251	0.0314	0.1174	-0.0672		0.4848
-0.0941	0.9634		0.1771	0.0305	0.0316	0.1370	-0.1386	0.7010	-0.0708
-0.0706			0.1681	0.0324	0.0287	0.1501	-0.1460		-1,6016
-0.0471				0.0294	0.0284	0.1323	-0.1658		-2,7157
-0.0235		-0.1667	0.0800	0.0249	0.0264	0.1167	-0.1253		-1,9339
0.0003	<u>, – 1</u>	-0.1810	0.0477	0.0207	0.0258	0.0963	-0.0788	_	-1.2996
0.0471	7	-0.1974	0.0158	0.0144	0.0221	0.0673	0.0688		-0.6922
0.0941	← ⊣	-0.2142	-0.0018	0.0170	0.0214	0.0791	-0.0443		-0.8862
0.1412		-0.2080	-0.0245	0.0183	0.0252	0.0881	-0.0545		-0.8970
0.1882		-0.1681	-0.1152	0.0238	0.0335	0.1169	-0.0245		-1.4653
6.2118	1.0186	-0.1158	-0.2507	0.0287	0.0407	0.1286	0.0066		-2.1135
0.2353	1.0383	•	-0.2692	0.0331	0.0604	0.1579	0.1957		-2.7128
0.2588	1.0765	0.0180	-0.2848	0.0242	0.0481	0.1091	-0.1494		-1.1379
•	1.0798	•	-0.3119		0.0417	0.1021	-0.1118		-0.9214
•	1.0914	•	-0.2978	0.0169	0.0251	0.0800	-0.0681		-1.0275
0.3765	1.0926	C.1510	-0.2911	0.0158	0.0210	0.0762	-0.0233	-0.2	-0.9448
6.4235		C.1641	-0.2665	0.0155	0.0176	0.0756	0.0006		-0.9643
0.4706	1.0923	0.1709	-0.2414	0.0155	0.0167	0.0738	~0.0135	-0.1	-0.9343
6.5176	1.0933	0.1739	-0.2215	0.0153	0.0165	0.0739	-0.0019		-0.9429
5.5647	1.0936	0.1750	-0.2086	0.0146	0.0166	0.0715	-0.0034	-0-	-0.8624
6.6118	1.0967	0.14.87	-0.1347	0.0138	0.0237	0.0708	-0.0135	-0.3873	-0.782×

ه 0	# 9	Y - 0.094 cal	NEW : 98.50
. 10 .	: 5	X = 5.500 cal	THOUSE STORE
Jen 368.9 111/13	()(x)	M - 1.266	K-11.#: 0.84

		VELOCITY			SMH		S.	SHEAR STRESS	33
-			I¥ (So			<u>-</u> M∩	1000*U*V*	1060*V*W*1000*W*U	1000 * W · U · U · U · U
7.6	1.1069	0.1412	0.2205	0.0143	0.0177	0.0689	1	-).1708	-0.8271
30/	1.1076	0.1329	0.2427	0.0143	0.0184	0.0681	-0.0185		-0.7973
a'. (₹)	1.1059	0.123!	0.2467	0.0142	0.0176	0.0694			-0.8056
-0.3765	1.1051	0.1112	0.2409	0.0144	0.0173	0.0688		-0.1574	-0.7924
294	1.1020	0.0965	0.2449	0.0147	0.0198	0.0688		-0.1683	-0.8211
824	1.1024	0.0801	0.2498	0.0144	0.0196	0.0684		-0.1438	-0.8244
353	1.0992	0.0567	0.2528	0.0146	0.0253	0.0665		-0.1867	-0.7854
882	1.0897	9.0336	0.2554	0.0147	0.0254	0.0679		-0.1736	-0.7173
647	1.0653	C.0199	0.2099	0.0135	0.0207	0.0684	-0.0175		-0.4242
412	1.0667	0.0115	0.2330	0.0158	0.0219	0.0726	-0.0471		-0.0872
-0.1176	1.0480	-0.0098	0.1868	0.0193	0.0208	0.0891	-0.0364		0.0137
941	1.0187	-0.0232	0.1555	0.0239	0.0237	0.1087	-0.0438		0.6945
904	1.0153	-0.0579	0.1586	0.0188	0.0220	0.0898	-0.0236		-0.1532
471	1.0164	-0.0902	0.1374	0.0290	0.0543	0.1267	-0.8376	2.7296	-1.0939
235	1.0612	-0.1427	0.1083	0.0221	0.0411	0.0985	-0.3300		-1.7983
000	1.0720	-0.1662	0.0171	0.0215	0.0470	0.0973	-0.4522		-1.1400
471	1.0798	-0.1776	-0.0432	0.0162	0.0303	0.0758	-0.1299		-0.9383
941	1.0744	-0.1847	-0.0837	0.0159	0.0259	0.0729	-0.0713		-0.8547
412	1.0723	-0.1802	-0.1513	0.0164	0.0273	0.0780	-0.0685		-0.9505
882	1.0762	-0.1422	-0.2413	0.0180	0.0386	0.0839	-0.1211	-0.4663	-0.9871
353	1.0930	-0.0562	-0.2948	0.0197	0.0452	0.0881	-0.2352	-0.2589	-0.9207
824	1.1020	0.0273	-0.2993	0.0166	0.0380	0.0797	-0.1797	-0.4086	-0.7642
294	1.1022	0.0813	-0.3053	0.0156	0.0245	0.0739	-0.0514	-0.2538	-0.7942
765	1.1023	0.1124	-0.2745	0.0150	0.0201	0.0728	-0.0300	-0.1879	-0.8155
235	1.0996	0.1352	-0.2527	0.0153	0.0212	0.0701	-0.0500		-0 8287
306	1.0989	0.1479	-0.2327	0.0153	0.0211	0.0729	-0.0494		0068.0
1.16	1.0990	0.1551	-0.2116	0.0151	0.0202	0.0726	-0.0237	-0.2346	-0.9020
647	1.1005	0.1600	-0.2006	0.0157	0.0210	0.0736	-0.0414		-6.9757

5×0 1#1254	N 1.760	1500 11 11 1 10 10 10 10 10 10 10 10 10 10
FAR: BLOWE	X - 5.500 cal	C.
MFM : 9830	Y 0.141 cal	- 0

		VELOCITY			KMS		S	SHEAR STRESS	38
	1= <u>\$</u>		I3 S		[\sigma_{\sigma}]	<u>™</u>	3.600.4 <u>U.V.</u> U∞^2	1600 <u>4U V 1000 ×V W </u> U∞ 2 U∞ 2	1000 × <u>W¹U¹</u> U∞^2
9/1970-	1.0989	0.1250	0.1898	0.0145	0.0157	0.0685	-0.0132	-0.1505	-0.3524
-0.4706	1.0885	0.1160	0.1892	0.0153	0.0158	0.0745	-0.0062	-0.1341	-0.9649
-0.4235	1.0918	0.1043	0.1944	0.0148	0.0160	0.0731	-0.0019	-0.1603	-0.9131
-0.3765	1.0906	0.0917	0.2015	0.0156	0.0159	0.0734	-0.0128	-0.1452	-0.9809
-0.3294	1.0929	0.0763	0.2051	0.0153	0.0160	0.0738	-0.0047	-0.1600	-0.9747
-0.2824	1.0926	0.0590	0.2047	0.0151	0.0167	0.0713	-0.0225	-0.0881	-0.9020
-0.2353	1.0919	0.0355	0.1911	0.0150	0.0173	0.0735	-0.0031	-0.2087	-0.9571
-0.1882	1.3857	0.0075	0.1725	0.0148	0.0180	0.0695		-0.1066	-0.8810
-0.1412	1.0779	-0.0241	0.1436	0.0151	0.0185	0.0710	-0.6270	-0.1034	-0.8924
-0.0941	1.0640			0.0158	0.0201	0.0735		-0.1427	-0.7614
-0.0471	1.0552			0.0154	0.0285	0.0682		-0.1394	-0.6850
0.0000	1.0682	-0.1270	0.0221	0.0176	0.0286	0.0828		-0.0040	-1.2696
0.0471	1.0779	-0.1395	-0.0603	0.0160	0.0231	0.0766	-0.0457	-0.1845	-1.0781
6.0941	1.0795	-0.1350	-0.1213	0.0161	0.0224	0.0752	-0.0413	-0.2085	-1.0569
0.1412	1.0836	-0.1174	-0.1852	0.0154	0.0256	0.0732	-0.0544	-0.3004	-0.9541
•	1.0900	-0.0760	-0.2368	0.0153	0.0256	0.0719	-0.0357	-0.3328	-0.8857
0.2353	1.0931	-0.0270	-0.2549	0.0159	0.0240	0.0758	-0.0276	-0.3206	-0.9558
0.2824	1.0961	0.0235	-0.2649	0.0151	0.0240	0.0748	-0.0252	-0.2887	-0.9158
C.3294	1.0975	0.0637	-0.2642	0.0160	0.0228	0.0759	-0.0353	-0.2214	-1.0154
C.3765	1.0986	0.0914	-0.2561	0.0155	0.0217	0.0771	-0.0344	-0.1585	-1.0105
C.4706	1.0969	0.1258	-0.2178	0.0157	0.0215	0.0757	-0.0345	-0.1795	-0.9844
C.5647	1.0960	0.1449	-0.1957	0.0157	0.0229	0.0746	-0.0313	-0.2499	-0.9948

4.50 H#175	58.12 z	Uor- 371.7 m/s
NAME: STORT	X - 5.500 cal	α = 16 "
K.M : 9830	Y . C.188 cal	× 0 - 9

ALICONIAA		Į.	PAMS (1)	13	G 1000 F	DHEAR STRESS	33
I	× Š		> <u>&</u>	× ⁸	1000×U1V U∞^2	1060×U+V-1060×V+W-1066×W+1 U∞^2 U∞^2 U∞^2	1000*W'II'
0.1137	0.1681	0.0145	0.0159	0.6705	7900.0-	-0.1497	-0.8609
0.1062	0.1709	0.0149	0.0160	0.0712	-0.0151	-0.1248	-0.8795
0.0972	0.1667	0.0149	0.0164	0.0713	-0.0130	-0.1395	-0.9085
0.0826	0.1634	0.0155	0.0166	0.0728	-0.0123	-0.1473	-0.9757
	0.1678	0.0157	0.0158	0.0741	-0.0052	-0.1382	-1.0134
_	0.1696	0.0155	0.0171	0.0734	8600.0-	-0.1862	-0.9746
	0.1642	0.0153	0.0172	0.0734	-0.0142	-0.1460	-0.9733
	0.1464	0.0155	0.0164	0.0728	-0.0158	-0.1357	-0.9950
	0.1048	0.0153	0.0164	0.0730	-0.0062	-0.1640	-0.9486
	6090.0	0.0150	0.0156	0.0703	-0.0055	-0.1389	-0.8662
-0.0638	0.0300	0.0158	0.0179	0.0746	-0.0201	-0.1561	-0.9841
	0.0161	0.0161	0.0207	0.0756	-0.0649	-0.0459	-1.0997
	0.0718	0.0153	0.0199	0.0731	-0.0208	-6.2248	-0.9931
	0.1293	0.0150	0.0203	0.0718	-0.0130	-0.2692	-0.9430
	0.1686	0.0138	0.0196	0.0681	-0.0156	-0.2714	-0.7842
	-0.2037	0.0143	0.0185	0.0679	-0.0047	-0.2273	-0.7861
	-0.2288	0.0156	0.0204	0.0747	-0.0133	-0.2633	-0.9666
	-0.2452	0.0152	0.0220	0.0750	-0.0133	-0.3345	-0.9314
	-0.2515	0.0151	0.0197	0.0735	-0.0252	-0.1500	-0.9277
•	-0.2416	0.0158	0.0185	0.0753	-0.0185	-0.1710	-1.0081
0.0991	-0.2280	0.0154	0.0189	0.0763	-0.0139	-0.2227	-0.9766
1139	-0.2192	0.0155	0.0182	0.0752	-0.0106	-0.1894	-0.9863
	-0.2081	0.0160	0.0188	0.0749	-0.0366	-0.1341	-1.0244
0.1362		03100	2000	0260	20.100	1000 0-	-1.0306

K13.#1 155	x	174 567.7 m/5
THE STATES	x 5.500 cal	07
K. X. X. X. X. X. X. X. X. X. X. X. X. X.	2 - 6.050 cai	Š 60

-		VELOCITY			IMM		33	SHEAR STRESS	35
(((((((((((((((((((12/2	1> \frac{\delta}{2}	[<u>X</u>]	15 &		(N)	1000±11°V' 1∞°2	1.000 ×V·W	1000×W¹U¹ U∞^2
25.70	0.9435	-0.1173	0.0347	0.0446	0.1476	0.2110	-0.0971	0.0314	0.0962
0.0234	0.9966		0.0912	0.0447	0.0510	0.3947	-C.0328	-0.0690	1.4491
	. 0517		0.2293	0.0396	0.0385	0.1507	0.1733	0.2874	0.3590
3.3412	1.0848	-0.1435	0.2340	0.0350	0.0361	0.1482	0.0065	-0.1436	-6.3093
0.0471	1.0641	-0.1491	0.0570	0.0288	0.0386	0.1463	0.0069	-0.3416	-2.1975
0.0529	1.0817	-C.1493	0.0467	0.0229	0.0370	0.1167	0.0008	0.1418	-1.9277
0.0588	1.1279	-0.1501	0.1980	0.0214	0.0375	0.1067	0.0364	-0.0435	-1.6657
0.0706	1.1327	-0.1535	0.1911	0.0215	0.0350	0.1034	0.0592	-0.2038	-1.9207
0.0824	1.1336	-0.1509	0.1970	0.0191	0.0331	0.0919	0.0151	0.0015	-1.4964
0.0941	1.1335	-0.1512	0.1878	0.0180	0.0323	0.0864	0.0431	-0.0454	-1.2833
0.1176	1.1298	-0.1592	0.1614	0.0172	0.0336	0.0831	-0.0089	0.2768	-1.1513

Scan	Ž	Y	2	Z	23	23	22	23	22	<i>></i>
Delta (deg)	09-	0	0	0	0	0	0	0	0	60
X (cal)	00*5	5.00	5.00	2.00	5.00	5.00	2.00	5.00	2.00	5.00
Spin (RPM)	0	0	0	0	0	0	0	0	0	
Nese	SHARP	SHMR	SHARP	SHMRP	SHARP	SHARE	SHAKP	SHARP	SHARP	SHARP
Aipha (deg)	10	10	10	10	01	2	10	01	2	22
Mach	1.2	7.5	1.2	~:	1.2	1.2	~ ·	2:1	<u>~</u>	
FULL	123	\$2 2	N 20	32	<u>w</u>	48	49	22	0.2	· 🖓

Sci. 14.7	M - 1.200	Non-372.5 m/s
NO. SET CHERE	X = 5.000 cal	α = 10 ·
KIM : 0000	2 0.000 cal	§ = −60 °

		_					_															_
33	7,∞1 1000× <u>W.U.</u>	-18.7691	-16.8394	-11.1410	-11.0426	-4.0327	-1.5838	-1.5174	-1.5860	-1.6385	-1.2489	-1.1328	-1.0099	-1.0846	-1.1280	-1.2072	-1.(169	-1.6663	-1.1539	-1.1463	-1.2095	-1.0772
SHEAR STRESS	000× <u>U·V</u> ·1000× <u>V·W</u> ·1000× <u>W·U</u> U∞^2 U∞^2	1.3780	1.4774	0.7501	0.7266	0.2916	0.1707	0.1498	0.0017	-0.0979	0.0352	0.0354	0.0196	-0.0437	0.0179	0.0851	0.0546	0.1104	0.0453	-0.0278	-0.0160	-0.0376
3	1000*U*V* U∞^2	-0.2399	-0.2404	-0.1285	-0.1289	0.0185	-0.0031	-0.0191	0.0321	0.0440	0.0042	0.0026	0.0065	0.0203	0.0146	-0.0141	-0.0002	-0.0203	-0.0046	0.0179	0.0162	0.0106
	M •	0.3422	0.3255	0.2635	0.2688	0.1909	0.1440	0.1331	0.1161	0.1048	0.0874	0.0827	0.0782	0.0797	0.0806	0.0833	0.0771	0.0793	0.0815	0.0819	0.0835	0.0794
RMS	<u>, √</u>	0.0292	0.0273	0.0277	0.0282	0.0262	0.0263	0.0265	0.0263	0.0262	0.0253	0.0244	0.0237	0.0228	0.0237	0.0220	0.022€	0.0226	0.0221	0.0216	0.0224	0.0208
	<u>•fi</u>	0.0695	0.0655	0.0559	0.0545	0.0418	0.0318	0.0300	0.0250	0.0223	0.0189	0.0172	0.0162	0.0167	0.0169	0.0176	0.0164	0.0165	0.0171	0.0170	0.0171	0.0166
	<mark>.W</mark> 1∞∞	-0.2986	-0.3237	-0.2243	-0.2205	-0.2123	-0.1501	-0.1023	-0.0833	-0.0845	-0.1167	-0.1357	-0.1459	-0.1496	-0.1431	-0.1369	-0.1316	-0.1328	-0.1234	-0.1177	-0.1068	-0.0940
VELACITY	1>100	-0.0583	-0.0618	-0.0620	-0.0640	-0.0697	-0.0658	-0.0652	-0.0561	-0.0660	-0.0642	-0.0622	-0.0613	-0.0604	-0.0569	-0.0540	-0.0509	-0.0487	-0.0468	-0.0429	-6.0385	+ 7.50.0-
	#2. %	0.7507	0.7668	0.7784	0.8006	0.8644	9606.0	0.9460	0.9874	1.0133	1.0350	1.0454	1.0485	1.0487	1.0490	1.0466	1.0454	1.0447	1.0437	1.0416	1.6403	1.08.00
	Y (ct.d.)	0.0059	0.0071	0.0094	0.0118	0.0176	0.0235	0.0294	0.0353	0.0412	0.0471	0.0529	0.0588	0.0647	0.0706	0.0824	0.0941	0.1059	0.1176	0.1412	0.16.47	

***************************************		395 mil	Des \$68.6 m/:
	X 5.166 cal		. 92
10 12 12 13 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	7 0.5.0 0.1	, s	; ;

		SELECT Y			1911		5	SHEAR CTPESS	35
	1: - - - - - - - - - - - - - - - - - -	p. dž	() 	<u> []</u>	<u>17</u>	N S	1600 <u>≠11™</u> U∞C2	Z,∞n 1. <u>M.∆</u> ×0001	1.000 × W T V
	\$ \$ 	-0.0477	0.1247	0.0417	0.0266	C.2073	6.1031	-0.6525	-5.8198
:			0.040.0	0.0254	0.0241	0.1124	0.0038	-0.2826	-1. 508.c
* * * * * * * * * * * * * * * * * * *		-0.0663	6.0716	0.0184	0.0153	0.0853	0.9681	-5.2014	-1.1764
9000			0.0555	0.0139	0.0:62	0.0508	0.0138	-0.1885	-1.1632
0.41	1.0019		0.0046	0.0171	0.0142	0.0817	0.0098	-0.0789	-0.7248
967.7	1.0:15	-0.0412	-0.0317	0.0151	0.0151	0.0739	0.0127	-0.1519	-0.7668
0.1412	1.6263	-0.0195		0.0153	0.0140	0.0728	0.0119	-0.1738	-0.9511
5.1647	1.0272	-0.000-	-0.0285	0.0147	0.0159	0.6727	0.0074	-0.2010	-0.9484
1.885	1.0282	0.0150		0.0147	0.0144	0.0719	0.0055	-0.1753	-0.9330
87.72	1.0289	0.0307	-0.0110	0.0150	0.0111	0.0718	0.0232	-0.1873	-0.9709
2.23.3	1.0289	0.0436	-0.0111	0.0147	0.0129	0.0717	6.0149	-0.1969	-0.9361
0.2824	1.0278	0.0632	0.0049	6.0151	0.0129	0.0735	0.0102	-0.1627	-1.0051
6.3294	1.0272	0.0789	6.6077	0.0152	0.0141	0.0739	6.0088	-0.1790	-1.0016
1.47.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0439	0.0103	0.0151	0.0137	0.0735	0.0059	-0.1717	-6.9831
1	+		6156	0.0160	0.0120	0.0780	0.0193	-0.1984	-1.1379
		• • • • • • • • • • • • • • • • • • •	. C1 43	0.0155	0.0:35	0.0739	0.0116	-0.1773	-1.6513

Kun#: 0.28	M = 1.200	Ucom: 368.6 m/s
NOSE: SHARP	X = 5.000 cal	α = 10 °
	Y - 0.118 cal	- 5 0 · · · · · · · · · · · · · · · · · ·

	1000×111V 1000×V1W 1000×W1U
	W. 1000 ★10
<u> </u>	
5 <u>\$</u>	
[3]	}
1> =	
1:	=1.8
_	((14.))

Kun#: 032	M ∴ 1.200	Uco≃371.9 m/s
NOSE: SHARP	X = 5.000 cal	$\alpha = 10^{\circ}$
RPM : 000C	Y = 0.094 Cal	⇒ 0 = Q

		VELOCITY			RMS		S	SHEAR STRESS	3.5
2 (cal)	I⊃ 8	ı> <u>°</u>	l≊ °	[5]\$	[> [®]	[™]	1000*U'V'	1.000 *U'V' 1000 *V'W' 1000 *W'U U~^2 U~^2	$\frac{1000 \times \mathbf{W} \cdot \mathbf{U}}{\mathbf{U} \sim 2}$
-0.5647	1.0894	0.1638	0.2269	0.0172	0.0191	0.0820	-0.0202	-0.1616	-1.0099
-0.5176	1.0884	0.1600	0.2307	0.0167	0.0188	0.0770		-0.0835	-0.8765
-0.4706	1.0859	0.1501	•	0.0158	0.0180	0.0753	1	-0.1366	-0.9134
-0.4235	1.0861	0.1420	0.2488	0.0154	0.0194	0.0775		-0.2992	-0.9111
-0.3765	1.0834	0.1281	0.2608	0.0.57	0.0199	0.0751	-0.0340	-0.1088	
-0.3294	1.0779	0.1089	0.2625	0.0.58	0.0198	0.0743		-0.1076	
-0.2824	1.0597	0.0771	0.2148	0.0208	0.0233	0.0975	-0.0254	-0.0495	
-0.2353	1.0331	0.0252	0.1338	0.0243	0.0301	0.1137		-0.0596	0.7253
-0.1882	1.0114	-0.0364	0.0703	0.0237	0.0338	0.1078		-0.1034	0.1142
-0.1412	1.0124	-0.1006	0.0590	0.0220	0.0320	0.0994		0.1606	
-0.0941	1.0330	-0.1487	0.0463	0.0231	0.0276	0.1047		0.1701	-1.0424
-0.0471	1.0521	-0.1718	-0.0346	0.0182	0.0214	0.0893		-0.1289	
0.0000	1.0332	-0.1779	-0.1154	0.0198	0.0215	0960.0			
0.0471	1.0174	-0.1666	-0.1805	0.0226	0.0273	0.1035	0.0226		
0.0941	1.0144	-0.1225	-0.2649	0.0259	0.0329	0.1180			
0.1412	1.0287	-0.0533	-0.3260	0.0289	0.0376	0.1337	0.0513	-0.7980	
0.1882	1.0589	0.0273	-0.3066	0.0241	0.0335	0.1097			
0.2353	1.0740	0.0801	-0.2807	0.3161	0.0228	0.0779		-0.1439	-0.8103
0.2824	1.0770	0.1086	-0.2617	0.3162	0.0201	0.0778		-0.1745	-0.9025
0.3294	1.0784	0.1274	-0.2420	0.3161	0.0201	0.0756		-0.1269	-0.9064
0.3765	1.0788	0.1394	-0.2233	0.)160	0 0191	0.0758	-0.0083	-0.1785	-0.9090
0.4235	1.0799	0.1492	-0.2095	0.0158	0.0183	0.0755	-0.0059	-0.1254	-0.8570
0.4706	1.0815	0.1541	-0.1936	0.0161	0.0195	0.0757	0.0040	-0.2208	-0.8653
0.5176	1.0839	0.1606	-0.1820	0.0165	0.0198	0.0800	-0.0199	-0.1822	-0.8716
0.5647	1.6877	0.1652	-0.1746	0.0167	0.0178	0.0764	-0.0095	-0.1399	-0.8841

L		VELOCITY			RMS		SI	SHEAR STRESS	SS
Z (cal)	[D] &	I> °	 3 ⊗	1-18 1-18	[N	<u>-</u> 80	10.10*U'V'	10.10 * U · V · 1000 * V · W · 1	1000 × W · U · U · U · U · U · U · U · U · U ·
-0.5647	.0894	0.1638	0.2269	0.0172	0.0191	0.0820	-0.0202	-0.1616	-1.0099
-0.5176	1.0884	0.1600	•	0.0167	0.0188	0.0770	-0.0190	-0.0835	-0.8765
-0.4706	1.0859	0.1501	0 2312	0.0158	0.0180	0.0753	-).0086	-0.1366	-0.134
-0.4235	1.0861	0.1420	0.2488	0.0154	0.0194	0.0775	0.0043	-0.2992	-0.9111
-0.3765	1.0834	0.1281		0.0157	0.0199	0.0751	-0.0340		-0.9251
-0.3294	6770	0.1089	0.2625	0.0158		.074	-0.0443		-0.9234
-0.2824	0597	0.0771	•	0.0208	0.0233		-0.0254		0.1825
-0.2353	1.0331).0252	0.1338	0.0243	0.0301	0.1137	-0.0744	-0.0596	0.7253
-0.1882	1.0114	-0.0364	0.0703	0.0237	0.0338	0.1078	-0.1246		0.1142
-0.1412	0124	-0.1006	0.0590	0.0220	0.0320	0.0994	-0.1431		-0.4890
-0.0941	1.0330	-0.1487	0.0463	0.0231	0.0276	0.1047	-0.1272		-1.0424
-0.0471	1.0521	-0.1718	-0.0346	0.0182	0.0214	0.0893	-0.0137	•	-0.687/
0.000.0	0332	-0.1779	-0.1154	0.0198	0.0215	0960.0	-0.0022		-0.3672
0.0471	0174	-0.1666	-0.1805	0.0226	0.0273	•	0.0226		-1.0636
0.0941	1.0144	-0.1225	-0.2649	0.0259	0.0329	0.1180	0.0010		-1.4584
0.1412	1.0287	-0.0533	-0.3260	0.0289	0.0376	0.1337	0.0513		-1.3435
0.1882	1.0589	0.0273	-0.3066	0.0241	0.0335	0.1097	-0.0407		-0.7369
0.2353	0740	0.0801	-0.2807	0.0161	0.0228	0.0779	-0.0312	-0.1439	-0.8103
0.2824	1.0770	0.1086	-0.2617	0.0162	0.0201	0.0778	-0.0194		-0.9025
0.3294	1.0784	0.1274	-0.2420	0.0161	0.0201	0.0756	-0.0216	•	-0.9064
0.3765	1.0788	0.1394	-0.2233	0.0160	0.0191	0.0758	-0.0083		-0.9090
0.4235	6615.1	0.1492	-0.2095	0.0158	0.0183	0.0755	-0.0059	•	-0.8570
0.4706	1.0815	0.1541	-0.1936	0.0161	0.0195	0.0757	0.0040		-0.8653
0.5176	1.0839	0.1606	-0.1820	0.0165		0.89.0	-0.0199		
0.5647	1.0877	0.1652	-0.1746	0.0167	0.0178	0.0754	-0.0095	-0.1399	-0.8841

Kun#: 035	M = 1.200	Uca-371.9 m/s
NOSE: SHAKE	x 5.000 cal	$\alpha = 10^{-9}$
KPM : 0000	Y = 0.071 ca	o 0 = 0

		VELOCITY			RMS		S	SHEAR STRESS	SS
Z(cal)	n \$	I> [®]	M ∞U	<u> </u>	<u>`</u> ∾∩	M ∩	1000× <u>U'V'</u> U∞^2	$\frac{000*\overline{0'}\overline{0'}}{0\infty^2} \frac{1000*\overline{0'}\overline{W'}}{0\infty^2} \frac{1000*\overline{W'}\overline{1}}{0\infty^2}$	1000× <u>W 111</u> U∞^2
2613 0	1 0006	0.1630	0 0056	77100	ראוס	7070 0	-0 0464	10 0051	6086 0-
0/15:0-	1.007J	001.0	•	7.10.0	1010.0	#0.0.0	F010.0-		Cor / . o -
-0.4706	1.0893	0.1600	0.2336	0.0148	0.0176	0.0732	-0:0030	_	-0.8361
-0.4235	1.3876	0.1500	0.2469	0.0144	0.0161	0.0674	-0.0020	-0.1393	-0.7454
-0.3765	1.0824	0.1395	0.2513	0.0148	0.0174	0.0715	-0.0068		
-0.3294	1.0251	0.1112	0.0422	0.0167	0.0201	0.0630	0.0448		ı
-0.2824	1.0107	0.0835	0.0307	0.0290	0.0211	0.1391	0.0306	0.0816	2.6484
-0.23531	0.9765	0.0337	0.0226	0.0217	0.0323	0.0981	-0.0389		
-0.1882	0.9661	-0.0552	0.0904	0.0217	0.0395	0.0929	-0.2163		
-0.1412	0.9921	-0.1280	0.1162	0.0238	0.0387	0.1064	-0.3712	_	
-0.0941	1.0296	-0.1780	0.0551	0.0209	0.0251	0.0978	-0.1412		
-0.0471	1.0393	-0.1931	-0.0432	0.0143	0.0194	0.0669	-0.0386	-0.0285	-0.3213
0.0000	1.0204	-0.1966	-0.0977	0.0175	0.0194	0.0826	-0.0232		
0.047	0.9886	-0.1833	-0.1597	0.0208	0.0266	0.0973	-0.0275		
0.0941	0.9644	-0.1281	-0.2223	0.0251	0.0391	0.1142	-0.0509		
0.1412	0.9817	-0.0302	-0.3307	0.0339	0.0541	0.1816	0.2404	-3.8620	
0.1882	1.0475	0.0740	-0.2968	0.0290	0.0312	0.1486	0.0406	-0.7466	
0.2353	1.0687	0.1093	-0.2714	0.0160	0.0211	0.0805	-0.0194		
0.2874	1.0706	0.1324	-0.2775	0.0151	0.0173	0.0712	-0.0070		
0.3254	1.0724	0.1443	-0.2536	0.0147	0.0175	0.0706	-C.0243		
0.3765	1.0749	0.1536	-0.2411	0.0148	0.0160	0.0698	-0.0085	-0.0892	•
0.4235	1.0751	0.1604	-0.2314	0.0145	0.0155	0.0694	0.0008		
0.475	1.0769	0.1659	-0.2188	0.0147	0.0158	0.0708	0.0057		
0.5176	1.0794	0.1763	-0.2117	0.0147	0.0163	0.0714	-0.0087		
0.5647	1.0803	0.1759	-0.2049	0.0542	0.0138	0.0699	0.0126	-0.1626	-0.7569

Uoc=370.9 m/s	= 10 °	00 =
M = 1.200 Uoos	x = 5.000 cal	Y = 0.024 cal 8 =
Kun#: 048	NOSE; SHARP	KIM : 0000

VELOCITY	VELOCITY				RMS		55	SHEAR STRESS	35
\(\frac{1}{\sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sq}\sqrt{\sq}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}		8 2 8		1518 1518	> ⁸	M 0 0	1000×U·V	$\frac{1000 \times \overline{U} \cdot \overline{V}}{\text{Uoc}^2} \frac{1000 \times \overline{V} \cdot \overline{W}}{\text{Uoc}^2} \frac{1000 \times \overline{W} \cdot \overline{U}}{\text{Uoc}^2}$	1000 *W·U
0.9411 -0.0129 0.1261	-0.0129		1	0.0264	0.0268	0.1213	-0.1278	0.0280	-2.4118
0.9764 -0.0336 0.0495	-0.0336		5	0.0222	0.0217	0.1059		-0.0411	-1.6861
1.0095 -0.0447 0.0015	-0.0447	0.001	2	0.0166	0.0181	0.0765		0.0597	-0.8447
1.0219 -0.0477 0.0472	-0.0477		2.1	0.0171	0.0170	0.0779	-0.0125	-0.0908	
1.0127 -0.0512 0.1086	-0.0512		9	0.0190	0.0173	0.0848	0.0089	-0.1191	-0.6004
0.9859 -0.0573 0.1418	-0.0573		ω	0.0257	0.0189	0.1127	0.0509	-0.1211	
0.9564 -0.0573 0.2173	-0.0573		73	0.0260	0.0171	0.1226	0.0518	-0 0619	
0.9105 -0.0510 0.0858	-0.0510		8	0.0341	0.0192		0.1567	0.6550	-3.1379
0.9862 -0.0058 -0.0785	-0.0058		5	0.0508	0.0288				
1.0503 0.0775 -0.1649	0.0775		49	0.0245	0.0440	0.1176	-0.1729		
0.0256	0.0256		47	0.0327	0.0915	0.1629		-4.7355	-4.5174

Run#: 049	M = 1.200	U∞=370.9 m/3
NOSE: SHARP	X = 5.000 cal	$\alpha = 10^{\circ}$
RPM : 0000	Y = 0.047 cal	0 0 = 8

		VELOCITY			RMS		S	SHEAR STRESS	55
(; ; ;) ;	n N	>	Ωοο Μ	[=] &	<u>√</u> 0	 N∩ N∩	1000× <u>U'V'</u> U∞^2	1000 *V *W U∞^?	1000 *W'U'
-0.3765	1.0347	0.1802	0.1784	0.0122	0.0129	0.0568	-0.0149	-0.0796	-0.6235
-0.3294	1.0389	0.1666	0.1803	0.0119	0.0150	0.0553	-0.0234	-0.0493	-0.5269
-0.2821	1.0365	0.1441	0.1746	0.0124	0.0174	0.0590	-0.0243	-0.0793	-0.4527
-0.2588	1.0026	0.1275	0.0570	0.0264	0.0196	0.1328	0.0622	0.2738	2.1031
-0.2353	0.9821	0.1107	0.0135	0.0275	0.0209	0.1319	0.0356	0.0966	1.5727
-0.1882	0.9199	0.0712	-0.0331	0.0250	0.0237	0.1179	0.0509	-0.4225	-0.6235
-0.1647	0.9054	0.0470	-0.0090	0.0207	0.0236	0.1007	-0.0059	-0.4026	-0.7705
-0.1412	0.9081	0.0091	0.0772	0.0230	0.0271	0.1066	-0.1140		-0.6374
-0.0941	0.9720	-0.0244	0.1353	0.0265	0.0241	0.1166	-0.0847		-1.3961
-0.0706	1.0071	-0.0464	0.0667	0.0193	0.0200	0.0904	-0.0650		-1.4127
-0.0471	1.0210	-0.0548	0.0202	0.0162	0.0188	0.0767	-0.0427		-0.9411
0.000.0	1.0250	-0.0662	-0.0075	0.0129	0.0159	0.0617	-0.0087		-0.5255
0.0471	1.0015	-0.0705	0.0112	0.0182	0.0165	0.0819	-0.0051	-0.1392	-0.5378
0.0541	0.9468	-0.0703	0.0324	0.0235	0.0184	0.1027	-0.0024		-0.7959
0.1412	0.9083	-0.0528	0.0086	0.0212	0.0220	0.1007	-0.0071		-т.1770
0.1882	0.9585	-0.0108	-0.1063	0.0359	0.0286	0.1652	0.2080	-1.1353	-3.8120
0.2353	1.0344	0.0595	-0.1772	0.0230	0.0287	0.1076	-0.0147	-0.4554	-1.6075
0.2824	1.0485	0.1163	-0.2086	0.0137	0.0220	0.0653	-0.0374	-0.1989	-0.7120
0.3294	1.0451	0.1444	-0.1928	0.0125	0.0180	0.0585	-0.0267	-0 1066	-0.6142
0.3765	1.0384	0.1618	-0.1729	0.0127	0.0164	0.0604	-0.0195	-0.1346	-0.6529
0.4235	1.0317	C.1757	-0.1500	0.0138	0.0158	0.0665	0.0017	-0.1564	-0.8132
0.4706	1.0279	0.1839	-0.1373	0.0145	0.0155	0.0687	-0.0026	-0.1549	-0.8838
0.5176	1.0230	0.1940	-0.1195	0.0152	0.0158	0.0730	-0.0134	-0.1809	-0.9742

Kun#: 052	M = 1.200	U∞ 369.1 m/s
NOSE: SHAMP	X = 5.000 cal	$\alpha = 10^{\circ}$
REM : 0000	Y = 0.188 cal	° 0 - 8

SS	10(0 × <u>w'u'</u> √2	-0.8819	-0.8509	-0.8786	-0.8022	-0.8223		-0.6532					-0.8154					-0.9099	-1.0123	-1.0291	-1.3579	-2.7340
SHEAR STRESS	1000 *V'W' U∞^2	-0.1179	-0.1573	-0.1277	-0.1336	-0.1462	-0.1096	0.0073	-0.1161	-0.0956	-0.1044	-0.1079	-0.0797	-0.0760	-0.1489	-0.2047	-0.2195	-0.2790	-0.2739	-0.1777	-0.1064	-0.5383
SI	1000 *U·V· U~^2	-0.0154	-0.0056	-0.0111	-0.0116	-0.0157	-0.0274	-0.0480	-0.0169	-0.0295	-0.0315	-0.0359	-0.0379	-0.0446	-0.0399	-0.0287	-0.0356	-0.0342	-0.0496	-0.0550	-0.0771	-0.0210
	<u> </u> <u>×</u> [∞]	0.0683	0.0671	0.0684	0.0654	0.0666	0.0658	0.0597	0.0590	0.0603	0.0603	0.0598	0.0663	0.0662	0.0692	0.0722	0.0752	0.0714	0.0746	0.0749	0.0843	0.1191
RMS	<u>-</u> &	0.0157	0.0157	0.0157	0.0159	0.0165	0.0170	0.0178	0.0172	0.0184	0.0183	0.0187	0.0190	0.0201	0.0204	0.0210	0.0227	0.0235	0.0252	0.0233	0.0249	0.0284
	[] 8	0.0144	0.0142	0.0144	0.0138	0.0138	0.0138	0.0128	0.0124	0.0127	0.0129	0.0128	0.0143	0.0143	0.0144	0.0153	0.0157	0.0149	0.0155	0.0159	0.0180	0.0245
	IM &	0.1038	0.1055	0.1122	0.1170	0.1193	0.1203	0.1211	0.1132	0.0964	0.0740	0.0557	0.0173	-0.0128	-0.0527	-0.0890	-0.1118	-0.1264	-0.1358	-0.1236	-0.0996	-0.0837
VELOCITY	ı> <u>\</u>	0.1856	0.1804	0.1747	0.1662	0.1566	0.1435	0.1245	0.1042	0.0836	0.0633	0.0428	0.0268	0.0169	0.0181	0.0312	0.0483	0.0719	0.0935	0.1110	0.1691	0.1787
		1.0297	1.0304	1.0319	1.0336	1.0353	1.0357	1.0363	1.0378	1.0377	1.0363	1.0361	1.0381	1.0395	1.0430	1.0439	1.0431	1.0421	1.0437	1.0403	1.0312	1,0265
	(**.);	-0.5647	-0.5176	-0.4706	-0.4235	-0.3765	-0.3294	-0.2824	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0.000.0	0.0471	0.0941	0.1412	0.1882	0.2353	0.2824	0.4706	0.6118

U× 368.9 m/c	a = 10 °	o 0 ≈ 9
M 1.200	X = 5.000 cal	Y 0.094 cal
Ran#: 040	NOTE: SHARE	E-M : 0000

	W 10.	.7645	-0.7420	-0.7176	-0.6906	-0.7497	-0.7586	-0.7957	-0.8049	-0.5869	-0.5899	-0.6649	-0.6289	-0.6559	-0.7675	7783	-0.6697	-0.6685	-0.6127	-0.6321	6194	-0.96.77	-1.0812	-0.8843	-0.8977	-0.8581	-0.7032	-0.66 40	-0.8478	-0.86.04	17/5
SSS	1000×W¹U U∞^2	9	0-	0-	-0-	0	0	0-	-0-							0		_			0-	0	-1.	?.0	-0-	3.0-	. 0-	0-	3.0-	-0-	()-
SHEAR STRESS	1000*V'W' U∞^2	-0.1291	-0.1322	-0.1083	-0.0841	-0.1381	-0.1141	-0.0692	-0.1069	-0.0912	-0.0505	-0.1731	0.0132	0.0244	0.0670	0.0492	6000.0	-0.0913	-0.1049	-0.1188	-0.1417	-0.3443	-0.4708	-0.6849	-0.4203	-0.1460	-0.2302	-0.1604	-0.1582	-0.1898	-0.0706
S	7,∞0 1000× <u>010</u> 1	-0.0111	-0.0067	-0.0061	-0.0105	-0.0028		0						-0.0816	-0.1125	-0.0790	-0.0529	-0.0310	-0.0108	-0.0092	-0.0143	0.0109	-0.0063	-0.0584	-0.0768	-0.0948	-0.0605	-0.1128	-0.0805	-0.0515	-0.0879
	M.¹	0.0665	0.0664	0.0659	0.0636	0.0655	0.0647	0.0651	0.0655	0.0587	0.0603	0.0666	0.0722	0.0731	0.0750	0.0734	0.0695	0.0662	0.0678	0.0687	0.0680	0.0796	0.0837	0.0817	0.0800	0.0725	0.0641	0.0630	0.0844	0.0498	0.0
RMS	[<u>></u>]	0.0158	0.0166	0.0141	0.0148	0.0149	0.0158	0.0179	0.0190	0.0218	0.0221	0.0251	0.0276	0.0247	0.0241	0.0229	C.0202	0.0179	0.0165	0.0166	0.0181	0.0222	0.0259	0.0339	0.0306	0.0268	0.0249	0.02%0	0.0252	0.0.38	0.0254
	[:] [®]	0.0139	0.0137	0.0133	0.0134	0.0134	0.0134	0.0135	0.0135	0.0127	0.0130	0.0142	0.0158	0.0158	0.0165	0.0158	0.0146	0.0139	0.0136			0.0166	0.0172	0.0168	.01	0.0154	0.0137		0.0146	0.0:46	0.0150
	IX S	0.1248	0.1326	0.1435	0.1507	0.1584	0.1637	0.1603	0.1673	0.1759	0.1723	0.1659	0.1301	0.1181	0.0767	0.0528	0.0324	0.0069	-0.0019	-0.0168	-0.0322	-0.0801	-0.1211	-0.1666	-0.1741	-0.1791	-0.1755	-0.1631	-6.1473	-0.1368	-0.1208
VELOCITY	1> %	0.2000	0.1968	0.1921	0.1862	0.1794	0.1658	0.1479	0.1230	0.0943	0.0670	0.0342	0.0055	-0.0046	-0.0202	-0.0292	-0.0348	-0.0423	-0.0476	-0.0469	-0.0496	-0.0376	-0.0231	0.0071	0.0324	0.0703	0.0346	0.1134	0.1126	0.1596	7.16.13
		1.0371	1.0382	•	•	1.0444	•	1.0497	1.0529	1.0567	1.0540	1.0463	1.0367	1.0348	1.0317	1.0343	1.0382	1.0397	1.0392	1.0358	1.0308	1.0273	1.0314	1.0409	1.0486	1.0564	1.0570	1.05.42	1.0475	1. 441	
	2 (23.)	-0.5176	-0.4706	-0.4235	-0.3765	-0.3294	-0.2824	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	-0.0235	0.0000	0.0118	0.0235	0.0471	0.0706	0.0941	0.1176	0.1412	0.1647	0.1882	•	•	•	0.3294	0.3765	0.423	0.476*	0.17

_		
Uor 371.7 m/s	$a = 10^{\circ}$	o 09 = 8
M - 1.200	X - 5.000 cal	Z - 0.000 cal
isun#: 141	NOSE:SHARP	KFM : COOO

		VELOCITY			F443		SI	SHEAR STRESS	35
Y (0.41)	15 5	1> =	<u>M</u> [:	[5]Š		M 1 ()(∞)	1600× <u>U·V·</u> U∞^2	1000*V*W*1	1006 × W + tJ + U∞ / 2
0.0235	0.9812	-0.0081	n.1825	0.0474	0.0369	0.2203	0.1235	-0.7405	1.7255
0.0294		-0.0004	0.2539			0.1772	0.0095		
0.0353		0.0004	0.2536	0.0299	0.0259	0.1408			
0.0412			0.1849	0.0235		0.1054			
0.0471	, —1	-0.0032	0.1290	0.0150		0.0784		_	
0.0588		0.0006	0.2325	0.0148		0.0698	0.0083		-0.8174
0.0706		0.0024	0.2229	0.0146		0.0694	0.0078		-0.8475
0.0824		0.0032	0.2102	0.0146	_	0.0690			-0.8321
0.0941	F1		0.2029	0.0148	0.0192	0.0685	0.0123	-0.0166	-0.8521

leg) Scatt	Ā 09-	2 0	22 0	0	23	2 0	60 Y
Delta (deg)	'						
X (cal)	06.6	()', '',	06.0	5.50	5.50	5.50	()(; ·;)()
Spir (KFM)		① 	0	0	0	0	0
Nose	SHARP	SHARP	SHARP	SHARP	SHARP	SHARP	SHARP
Alpha (deg)	10	10	1.0	10	10	10	10
Maci	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Run	124	36	38	43	44	45	130

	_	
14.7. 3 m. 3	. 91	
13.	3	·c
1.1.00 (Mer 46) 1.1.00 (M.)	1.500 00.	0.00% 03.
Σ)×1	2
	N. SEET SHAME	(10) : RN

	N 10 10 10 10 10 10 10 10 10 10 10 10 10	136	15.4	386	388	113	720	1.21.	¥80	1. 4.4°	r x x	<u>.</u>	т. Т.
١	M + 0001	-5.9196	-4.3154	-5.2982	-3.1885	-3.3119	-2.2726	-1.8727	-1.9086	-1.4342	-1.2883	-1.408	-1.4
	 1000*V*W11696*W10	0.3441	0.4918	-0.0341	9.1251	-0.0747	-0.1601	0.1156	-0.0041	0.0307	0.0943	0.0103	-0.0335 -1.4680
	1000+81V1	-1.6409	-1.0176	-0.3405	-0.4143	-0.1031	-0.1464	-0.0316	0.6547	0.0207	-0.6094	0.0056	0.0185
	[S].	0.1694	6.1235	6.1461	9.1125	0.1328	0.1196	0.1215	0.1040	0.0891	0.0819	0.0846	0.0862
1997	 B ê	046	0.0432	0.0396	6.0364	0.03%5	0.0322	0.0305	0.0247	0.0242	0.0237	0.0222	0.6240
	15 S	0.0813	0.0712	0.0736	0.0568	0.0546	0.0448	0.0407	0.0231	0.0192	0.0171	6.0177	0.0179
	।इडि	-0.0134	-0.0198	-0.1044	-0.1217		-0.1809	-0.1843	-0.1631	-0.1615	-0.1650	-0.1584	-0.14.17
Albita 12 kills k	 1> \$	-6.1280	-0.1303	-0.1263	-0.1280	-0.1240	-0.1257	-0.1267	-0.1288	-0.1303	-0.1334	-0.1326	-0.1308
		0.7289	0.7998	0.8885	0.9408	0.9902	1.0307	1.0662	1.1173	1.1251	1.1258	1.1252	1.1235
	((t 0) X	0.0118	0.0176	0.0235	0.0294	0.0353	0.0412	0.0471	0.0588	0.0706	0.0824	0.0941	0.1176

Kun.#: 0.5	Σ.	0.00	Ora 86.9. 3 12.75	
NOSETHERE	×	1450 000	. 3.2	
MPM : 00000	<u>;</u>	5.141 cal	, O	

	38	1000× <u>W*u*</u> U∞^2	$\frac{-1.2817}{-1.1350}$	-1.1664	-1.1158			-1.0461	-1.0331	-0.9393	-1.0569	-1.2880	-0.9441	0.080.0- 0.080.0-	-0.9893	-0.921€	-0.8112	-0.9967	-0.9eci	⊸0.9€ક્	-0.974c	-1.0578	4.7	**
	SHEAR STRESS	1000 × V 1 W 1 U 0 ~ 2	-0.2521 -0.1363	-0.2034	-0.1562	-0.1875	-0.2198	-0.1492	-0.22/2	8690.0-	-0.0021	-0.0853	-0.3166	-0.2652	-0.2463	-0.0749	-0.0686	-0.2014	-0.1752	-0.2433	-0.1987	-0.3398	800 00	-0.11.3
869.3 B.78 16 7 0 3	S	1000 <u>+U V</u> U~2	-0.0450					-0.0796						-0.13//					0	-0.0853	-0.1204	-0.1400	-0.1729	-0.1666
98 86 8			0.0857	0.0813	0.0787	0.0812	0.0764	0.0779	0.0757	0.0769	0.0829	0.0859	0.0767	0.0770	0.0767	0.0802	0.0776	0.0804	0.0774	.077	0.0753	0.0794	0.0808	0.0778
90 50 eai 6.141 ed	HMS	<u>> </u>	0.0236	0.0239	0.0243	0.0242	0.0250	0.0258	0.0328	0.0329	0.0344	0.0313	0.0300	0.0336	0.0325	0.0319	0.0279	0.0293	0.0268	0.0281	0.0310			0.0449
EXE		11 (2)	0.0176 0.0168	0.0169	0.0170	0.0167	0.0162	0.0168	0.0169	0.0170	0.0184	0.0187	0.0162	0.01/2	0.0180	0.0189	0.0175	0.0171	0.0165	0.0160		0.0168	0.0174	0.6171
C P. University Occilie		<u>M</u> M	0.2172	•	•		•	0.2618		0.1646	0.0959	0.0264	-0.0474	-0.1259	-0.2330	-0.2555	-0.2505	-0.2501	-0.2285	-0.2115	-0.1946	-0.1855	-0.1761	-5.1671
KON HARE CON	VELOCITY	12 2	0.1599	0.1465	0.1390	0.1096	0.0890	0.0615	-0.0281	-0.0642	-0.1091	-0.1369	-0.1574	-0.1454	-0.0318	0.0217	0.0600	0.0889	0.1066	•	0.1347	0.1434		3511
		ı⊨İ [®]	1.1196	1.1171	1.1182	1.1171	1.1127	1.1088	1.0935	-		-	r-1 :		11	~~	7	1.1031	_	П	7	,4		
		2 (333)	-0.5647	-0.4706	-0.4235	-0.3294	-0.2824	-0.2353	-0.1682	-0.0941	-0.0471	0.000.0	0.0471	0.0941	0.1882	0.2353	0.2824	0.3294	0.3765	0.4235	0.4706	0.5176	0.5647	0.6118

A. C. C. C. #1175.A	×	2.00	Con \$70.6 m/2
	×	11 4 (65.4.1)	. 0? - n
	<u>;</u> -	(1, 1, 88 m.)	○

33	5,∞0 <u>1.1.M</u> ≠//501	67.0.14	-1.0513 -1.0241	-0.9583	-0.9854	-0.9716	-0.9983	-0.8946	-6.9446	-1.0686	-1.0773	-1.2234	-1.0933	-1.0550	-0.8348	-1.0404	-0.9421	7.006.0-	-1.0334	-1.0610	-1.0592	-1.0439	-1.00 49	-1.0574
THEAR STREETS	1000 <u>*(i*V</u> *) 1000 <u>*(i*V</u> *)	-0.1141	-0.141/ -0.2271	-0.1473	-0.1202	-0.0870	-0.1498	-0.1432	-0.2292	-0.2045	-0.1497	-0.1808	-0.1353	-0.1880	-0.3634	-0.2165	-0.3158	-0.2781	-0.1620	-0.1671	-0.1653	-0.1264	-0.3353	-0.1972
E	2,∞0 1000±11171	8090.0-	-0.0333	-0.0504	-0.0579	-0.0745	-0.0568	-0.0935	-0.1052	-0.1078	-0.1218	-0.1227	-0.0665	-0.0934	-0.0825	-0.1015	-0.0708	-0.0944	-0.0827	-0.0753	-0.0706	-0.0983	-0.0522	-0.0866
	<u> </u>	0.0784	0.0801	0.0766	0.0770	0.0762	0.0776	0.0754	0.0750	0.0773	0.0799	0.0784	0.0786	0.0773	0.0717	0.0793	0.0812	667. 3	0.0792	0.0788	0.0794	0.0798	0.0799	0.0816
EMC	IN®	6.0239	0.0249	0.0237	0.0253	0.0241	0.0262	0.0265	0.0299	0.0289	0.0292	0.0299	0.0237	0.0268	0.0292	0.0299	0.0278	0.0279	0.0258	0.0255	0.0260	0.0273	0.3267	0.0282
	[5] <u>\$</u>	9.0166	0.0165	0.0161	0.0166	0.0163	0.0162	0.0163	0.0162	0.0164	0.0174	0.0173	0.0168	0.0164	0.0150	0.0169	0.0171	0.0168	0.0171	0.0168	0.0167	0.0171	0.0167	0.0171
	WI Coo	0.2161	0.2267	0.2304	•		0.2169	0.1836	0.1633	0.1172	0.0846	0.0686	-0.0234	-0.0889	-0.1342	-0.1714	-0.2036	-0.2189	-0.2084	-0.1885	-0.1799	-0.1720	-0.1618	-0.1515
VELOCITY	[N]	0.1501	0.1348	0.1268	0.1098	0.0966	0.07/0	0.0234	-0.0073	-0.0376	-0.0652	-0.0818	-0.0891	-0.0782	-0.0524	-0.0225	0.0123	0.0417	0.0649	0.0842	0.1058	0.1208	0.1305	0.1406
	[m]: ³	1.1169	1.1159	1.1157	1.1169	1.1193	1.1125	1.1017	1.0962	1.0898	1.0933	1.1002	1.0920	1.0944	1.0954	1.0981	1.1061	1.1136	1.1142	1.1118	1.1098	1.1983	1.1081	1.1673
	(3.)2	-0.5647	-0.3176	-0.4235	-0.3765	-0.3294	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0.0000	0.0471	0.0941	0.1412	0.1882	0.2353	0.2824	0.3294	0.3765	0.4235	0.4706	0.5176	0.5647

Ucco. 366, 9 m/s	a - 10°	9 O = 8
M 1.200	X = 5.500 cal	Y = 0.071 cal
Run#: 043	NOSE: SUARP	RIM : C000

		VELOCITY			RMS		33	SHEAR STRESS	3,5
Z (cal)	15 2	I > S	I¥ ⊙∪	[<u>[</u>]	<mark> </mark>	<u>™</u>	1000× <u>01V</u> Um^2	1000×0001	1000 <u>√w u</u> U∞^2
-0.4235	1.0786	0.1425	0.1019	0.0371	0.0214	0.1930	0.1439	1.1842	4.6315
-0.3765	1.1038	0.1380	0.2503	0.0217	0.0214	0.1050	0.0134	0.0320	-0.1475
-0.3294	1.0862	0.1222	0.2192	0.0358	0.0227	0.1733	0.1006		3.7267
-0.2824	1.0171	0.0880	0.0100	0.0323	0.0238	0.1524	0.0542		1.4899
-0.2353	0.9832	0.0467	0.0735	0.0331	0.0377	0.1549	0.0311		0.1090
-0.1882	0.9713	-0.0258	0.0854	0.0298	0.0514	0.1345	-0.3927		-0.6040
-0.1412	0.9928	-0.1124	0.0210	0.0286	0.0438	0.1257	-0.3675	0.1182	-1.2876
-0.0941	1.0368	-0.1651	-0.0368	0.0283	0.0342	0.1305	-0.1928		-1.3317
-0.0471	1.0725	-0.1889		0.0215	0.0269	0.1022	-0.0662		-0.8140
0.000.0	1.0560	-0.1947		0.0219	0.0239	0.1015	-0.0021	_	-6.3425
0.0471	1.0193	-0.1992		0.0257	0.0264	0.1068	-0.0270	-0.0333	-0.3505
0.0941	0.9854	-0.1706		0.0297	0.0368	0.1367	-0.1501		-1.4104
0.1412	0.9795	-0.1145	-0.2757	0.0336	0.0437	0.1604	-0.0487	-1.2721	-2.2380
0.1882	1.0134	-0.0155	-0.4310	0.0377	0.0529	0.1836	0.0805	_	
0.2353	1.0671	0.0770		0.0305	0.0360	0.1469	0.0350	0.1803	1.4283
0.2824	1.0944	0.1150	-0.2844	0.0172	0.0228	0.0830	-0.0208	-0.1803	
0.3294	1.0963	0.1319	-0.2525	0.0164	0.0217	0.0785	-0.0282	-0.1452	-0.9515
0.3765	1.0979	0.1432	-0.2382	0.0164	0.0215	0.0786	-0.0391	-0.1305	-0.9620
0.4235	1.0990	0.1523	-0.2247	0.0170	0.0212	0.0802	-).0252	-0.1936	-1.0233
0.4706	1.0993	0.1586	-0.2068	0.0170	0.0222	0.0794	-0.0421	[-0.1691]	-0.9955
0.5176	1.1012	0.1661	-0.1972	0.0164	0.0211	0.0802	-0.0364	-0.i812	0.9932
0.5647	1.1039	0.1689	-0.1919	0.0174	0.0215	0.0816	-0.0189	-0.2768	-1.0582

Run#: 044	M = 1.200	Uc∞=368.6 m/s
NOSE: SHAKE	X = 5.500 cal	$\alpha = 10^{-6}$
RPM : 0000	Y = 0.047 cal	o 0 = 0

	VELOCIT!			RMS		IS	SHEAR STRESS	SS
n n	<u>√</u> 80	[∞] O	<u>-</u> 10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>*</u> ⊗	1000×U•V· U∞^2	000 <u>×U·V' 1000 ×V·W' 1000 ×W·U</u> U∞^2 U∞^2	1000 <u>*W¹U¹</u> U∞^2
964	9770.0		0.0466	0.0399	0.2132	0.3100	i	,
323	-0.0268		0.0321	0.0689	0.1355	-0.8104	9.2403	-1.5716
0.9676	-0.1354		0.0315	0.0466	0.1430	-0.4496		
542	-0.1781	0.0451	0.0293	0.0305	0.1296	-0.1042		
1.0810			0.0207	0.0235	0.1036	-0.0188		-1.6402
1.0692			0.0205	0.0254	0.0974	-0.0417	-0.2644	
1.0354	-0.1971	0.0879	0.0256	0.0286	0.1200	-0.0876		
0.9846			0.0274	0.0386	0.1217	-0.2432		-1.7099
173			0.0319	0.0441	0.1535	-0.0344		-3.2145
0.9570	-0.0504		0.0529	0.0693	0.2594	0.2058		-11.3149
1.0254			0.0480	0.0448	0.2391			-0.8562
1.0852	0.1364	-0.2592	0.0202	0.0221	0.0990			-0.2928 -1.3323
1.0918	0.1494	-0.2655	0.0184	0.0185	0.0883	-0.0044	-0.1769	-1.2162
1.0928	0.1552	-0.2504	0.0180	0.0161	0.0853	0.0043	-0.1478	-1,1565

Kur#: 045	M = 1.200	U∞=368.6 m/s
NOSE: SHARP	X = 5.500 cal	a = 10 °
Rim : 0000	Y = 0.024 cal	o 0 = 8

	U∞^2 U∞^2	U∞^2 U∞^2 -2.6217	U∞^2 U∞^2 -2.6217 -2.5099	U∞^2 U∞^2 2.6217 2.5099 1.4286	.2.6217 .2.5099 .1.4286	2.6217 2.5099 1.4286 0.6132	2.6217 2.5099 1.4286 0.6132	2.6217 2.5099 1.4286 0.6132 1.2572 1.9015	2.6217 2.5099 2.5099 1.4286 0.6132 1.2572 1.9015	2.6217 2.5099 1.4286 0.6132 1.2572 1.9015 1.3765 5.9468
1000×VW10001	-	-0.5394	-0.5394	-0.5394 -0.0649 -0.2719	-0.5394 -0.0649 -0.2719 -0.1421	-0.5394 -0.0649 -0.2719 -0.1421	-0.5394 -0.0649 -0.2719 -0.1421 -0.2656	-0.5394 -0.0649 -0.2719 -0.1421 -0.2656 -0.2399	-0.5394 -0.0649 -0.2719 -0.1421 -0.2656 -0.2399 -0.0093	-0.5394 -0.2719 -0.2656 -0.2399 -0.0093 -0.2631
1000×U'V' U∞^2		1	1 _	1	I		1	I		
 ∡ ^{&} ∩		0.1420	0.1420	0.1420 0.1374 0.1179	0.1420 0.1374 0.1179 0.0973	0.1420 0.1374 0.1179 0.0973	0.1420 0.1374 0.1179 0.0973 0.0991	0.1420 0.1374 0.1179 0.0973 0.0991 0.1131	0.1420 0.1374 0.1179 0.0991 0.1131 0.1130	0.1420 0.1374 0.1179 0.0991 0.1131 0.1136 0.1274
5 ⊗		0.0349	0.0349	0.0349 0.0299 0.0253	0.0349 0.0299 0.0253 0.0210	0.0349 0.0299 0.0253 0.0210	0.0349 0.0299 0.0253 0.0210 0.0210	0.0349 0.0299 0.0253 0.0210 0.0210	0.0349 0.0299 0.0253 0.0210 0.0210 0.0260	0.0349 0.0299 0.0253 0.0210 0.0210 0.0260 0.0260
[<u>.</u> []		0.0315	0.0315	0.0315 0.0296 0.0254	0.0315 0.0296 0.0254 0.0216	0.0315 0.0296 0.0254 0.0216	0.0315 0.0296 0.0254 0.0216 0.0207	0.0315 0.0296 0.0254 0.0216 0.0207 0.0267	0.0315 0.0296 0.0254 0.0216 0.0207 0.0262	0.0315 0.0296 0.0254 0.0216 0.0207 0.0262 0.0268
[<u>×</u> 8]		0.1125	0.1125	0.1125 0.0731 0.0224	0.1125 0.0731 0.0224 -0.0242	0.1125 0.0731 0.0224 -0.0242 0.0339	0.1125 0.0731 0.0224 -0.0242 0.0339	0.1125 0.0731 0.0224 -0.0242 0.0339 0.0972 0.1346	0.1125 0.0731 0.0224 -0.0242 0.0339 0.0972 0.1346	0.1125 0.0731 0.0224 -0.0242 0.0339 0.0972 0.1346
1> 8		-0.1464	-0.1464 -0.1626	-0.1464 -0.1626 -0.1765	-0.1464 -0.1626 -0.1765 -0.1866	-0.1464 -0.1626 -0.1765 -0.1866	-0.1464 -0.1626 -0.1765 -0.1866 -0.1845	-0.1464 -0.1626 -0.1765 -0.1866 -0.1845 -0.1875	-0.1464 -0.1626 -0.1765 -0.1866 -0.1845 -0.1875	-0.1464 -0.1626 -0.1765 -0.1866 -0.1845 -0.1875 -0.1302
12 8	1.0187		1.0439	1.0439	1.0439	1.0439 1.0613 1.0791	1.0439 1.0613 1.0791 1.0753	1.0613 1.0613 1.0791 1.0753 1.0550	1.0439 1.0613 1.0791 1.0753 1.0550 1.0112	1.0439 1.0439 1.0751 1.0753 1.0550 0.9665
Z(cal)	-0.1412		-0.1176	-0.1176	-0.1176 -0.0941 -0.0471	-0.1176 -0.0941 -0.0471 0.0000	-0.1176 -0.0941 -0.0471 0.0000	-0.1176 -0.0941 -0.0471 0.0000 0.0471	-0.1176 -0.0941 -0.0471 0.0000 0.0471 0.0941	-0.1176 -0.0941 -0.0471 0.0000 0.0471 0.1412
	$\frac{\overline{U}}{U_{\infty}} = \frac{\overline{V}}{U_{\infty}} = \frac{\overline{W}}{U_{\infty}} = \frac{\overline{U}^{\dagger}}{U_{\infty}} = \frac{\overline{V}^{\dagger}}{U_{\infty}} = \frac{\overline{1000 \times \overline{U}^{\dagger} V^{\dagger}} 1000 \times \overline{V}^{\dagger} \overline{W}^{\dagger}}{U_{\infty} 2} = \frac{\overline{U}}{U_{\infty} 2} = \frac{\overline{U}$	$ \frac{\overline{U}}{U_{\infty}} \qquad \frac{\overline{V}}{U_{\infty}} \qquad \frac{\overline{W}}{U_{\infty}} \qquad \frac{\overline{U}'}{U_{\infty}} \qquad \frac{\overline{V}'}{U_{\infty}} \qquad \frac{\overline{W}'}{U_{\infty}} \\ 1.0187 \qquad -0.1464 \qquad 0.1125 \qquad 0.0315 \qquad 0.0349 \qquad 0.1420 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Run#: 130	M = 1.200	U∞-371,0 m/s
NOSE: SHAKP	X - 5.500 cal	a = 10 °
RPM : 0000	z = 0.000 cal	9 09 = 8

	Z 7	295	4.3271	696	833	463	438	070	842	005	815	608
SHEAK STRESS	1000±W. 1∞^2	1		1.5969								
	1000*U'V' 1000*V'W' 1000*W'U U~^2 U~^2	l	-0.3042									
SI	1000*U¹V¹ U∞^2	l	0.0389									
RMS	<u>~</u> M	0.1874	0.2365	0.1742	0.1665	0.1403	0.1376	0.1253	0.1104	0.0807	0.0754	0.0692
	- [∞]	0.0495	0.0479	0.0373	0.0339				0.0232		0.0209	
	<u> </u>	0.0791	0.0669	0.0554	0.0497	0.0404	0.0366	0.0296	0.0213	0.0170	0.0157	0.0146
VELOCITY	<u> </u> M	-0.0774	-0.0050	0.0935	0.1324	0.1737	0.1881	0.1991	0.0405	0.2159	0.2091	0.1815
	I <u>></u> ∪	l	-0.1276									
	<u>10</u>	0.7374	0.8636	0.9310	0.9860	1.0287	1.0608	1.0865	1.0626	1.1181	1.1238	1.1263
	Y(Cal)	0.0118	0.0176	0.0235	0.0294	0.0353	0.0412	0.0471	0.0529	0.0588	0.0706	0.0941

			-								
Scan	\rightarrow	\times	2	2	2	2	5-7	2	Ζ	22	7.
(deg)	09-	0	0	0	0	0	0	0	0	0	60
Delta											
X (cal)	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Spin (RPM)	9830	9830	9830	9830	9830	9830	9830	9830	9830	9830	9830
Nose	SHARP	SHARP	SHARP	SHARP	SHARP	SHARP	SHARP	SHARP	SHARP	SHARE	SHARP
Alpha (deg)	10	10	10	10	10	10	10	10	10	10	1.0
Mach	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	. 1.2	1.2
Run	126	25	31	33	34	53	26	57	58	59	132

Kun#: 126 M - 1.200 U ∞ =372.5 m/s NOSE:SHARP X = 5.000 cal α = 10 ° RPM : 9830 Z = 0.000 cal 8 = -60 °

		VELOCITY			RMS		IS	SHEAR STRECT	56
Y(cal)	1 ∩ 8∩	<u>~</u> ∫	\ 0 	<u>0</u> 0 €	<u>-</u>	 M_ ∩	1000× <u>U¹V'</u> U∞^2	000*U'V'1000*V'W' U~^2	1000× <u>W¹U¹</u> U∞^2
0.0059	0.8131	-0.0128	-0.9511	0.0616	0.0192	0.3314	-0.0623	0.7048	-15.7856
0.0118		-0.0562	-0.6378	0.0635	0.0305	0.3408	-0.1312	1.6178	-15.5686
0.0235		-0.0560	-0.2489	0.0704	0.0319	0.3403	-0.1096	1.0985	-18.4117
0.0294	0.8692	-0.0570		0.0532	0.0381	0.2362		0.1222	-5.3805
0.0353	0.9118	-0.0547		0.0520	0.0393	0.2364			-5.4124
0.0412	0.9556	-0.0524		0.0447	0.0309	0.2088	0.0534		-4.0875
0.0471	0.9900			0.0384	0.0313	0.1735			-4.1441
0.0529	1.0250	-0.0371		0.0233	0.0249	0.1085		0.1387	-1.7694
0.0588	1.0382			0.0203	0.0249	0.0956			-1.5773
0.0647	1.0454	-0.0340		0.0185	0.0230	0.0894			-1.3704
0.0706	1.0526	-0.0309		0.0165	0.0221	0.0807	-0.0083		-1.1243
0.0824	1.0539	-0.0287		0.0165	0.0215	0.0788	-0.0047	0.0566	-1.1094
0.0941	1.0503	-0.0296		0.0165	0.0206	0.0806	-0.0016	0.0507	-1.1315
0.1059	1.0497	-0.0285		0.0166	0.0206	0.0802		0.0219	-1.0974
0.1176	1.0478	-0.0287		0.0162	0.0212	0.0772	_	0.0634	-1.0492
0.1412	1.0454	-0.0273		0.0172	0.0203	0.0812		-0.0007	-1.1799
0.1647	1.0436	-0.0220	-0.1155	0.0165	0.0211	0.0785	-0.0084	0.0800	-1.0983
0.2353	1.0393	-0.0187		0.0164	0.0201	0.0811	9800.0-	0.0759	-1.1109

Run#: 025	M = 1.200	U∞-370.2 m/s
NOSE: SHARP	X = 5.000 cal	$\alpha = 10^{\circ}$
RPM: 9830	z = 0.000 cal	0 0 = 8

		RPM: 9830	98.30	Z = 0.000 cal	000 cal	i	0		
		VFLOCITY			RMS		S	SHEAR STRESS	SS
(11, 1)	10 0	12	M M M	<u>10</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M M ∩	1000 <u>*U*V</u> *1 U∞^2	1000*V'W'1000*W'U U∞^2	1000 × W · U · U · U · U · U · U · U · U · U ·
0.0176	0.8703	-0.0498	0.0288	0.0323	0.0260	0.1525	-0.0866	-0.7573	-3.3782
0.0235	0.9277	-0.0564	0.0457	0.0379	0.0298	0.1627	-0.0423	-0.1399	-2.8906
C.0471	1.0147	-0.0681	0.0393	0.0170	0.0190	0.0785	-0.0172	-0.1575	-0.9525
0.0706	1.0196	-0.0672	0.0201	0.0164	0.0162	0.0794	-0.0004		-1.0356
0.0941	1.0237	-0.0555	-0.0046	0.0164	0.0142	0.0787	0.0119		-1.0875
0.1176	1.0274	-0.0371	-0.0080	0.0165	0.0153	0.0792	-0.0007		-1.1701
0.2353	1.0276	0.0442	0.0088	0.0161	0.0144	0.0779	0.0152		-1.1488
0.2824	1.0259	0.0644	0.0191	0.0152	0.0134	0.0749	0.0150	-0.2204	-1.0242
0.3294	1.0246	0.0796	0.0185	0.0156	0.0141	0.0742	0.0116	-0.1779	-1.0477
0.3765	1.0235	0.0923	0.0211	0.0153	0.0143	0.0732	0.0059	-0.1783	-1.0005
0.4235	1.0236	0.1051	0.0151	0.0156	0.0136	0.0753	0.0185	-0.2202	-1.0518
0.4706	1.0209	0.1145	0.0174	0.0156	0.0140	0.0730	0.0114	-0.1846	-1.0152

U∞=371.9 m/s	$\alpha = 10^{-6}$	0 0 = 8
M = 1.200	X = 5.000 cal	Y = 0.118 cal
Run#: 031	NOSE: SHARP	RPM : 9830

							_		_						_		_	_	_	_					_	_		_
	SS	1000×W'U' U∞^2	-2.3547	-2.3527	-2.2173	-2.1531	-2.0284	-1.8882	-1.7572	-1.3809	-1.2210	-0.9159	-0.7548	-2.0140	-3.8997	-2.2961	-1.3280	-1.9058	-2.4262	-2.1966	-1.2817	-1.0636	-1.2220	-1.1385		-1.1777	-1.2549	-1.2725
	SHEAR STRESS	1000*V'W'	-0.5686	-0.3747	-0.3769	-0.3800	-0.3959	-0.3889	-0.3258	-0.2560	-0.2770	-0.2626	-0.2386	-0.5478	-0.1114	-0.1904	-0.3035	-0.2639	-0.6058	-0.9724	-0.3655	-0.4097	-0.2912	-0.2905	-0.2183	-0.1773	-0.2743	-0.2795
	SF	1000*U'V'	0.0136	-0.0276	-0.0039	-0.0201	-0.0019	0.0084	0.0073	0.0026	0.0014	-0.0003	0.0214	0.0525	-0.1222	-0.0892	-0.0099	0.0011	0.0608	0.0128	-0.1298	-0.0508	-0.0275	-0.0142	-0.0019	-0.0169	0.0021	0.0122
		<u>*</u> 8	0.1156	0.1157	0.1107	0.1086	0.1072	0.1036	0.1005	0.0901	0.0864	0.0970	0.1282	0.1501	0.1512	0.1147	0.0908	0.1071	0.1203	0.1269	0.1027	0.0883	0.0908	0.0858	0.0881	0.0861	0.0871	0.0868
	RMS	1518	0.0250	0.0252	0.0237	0.0236	0.3226	0.0223	0.0204	0.0191	0.0191	0.0208	0.0231	0.0256	0.0298	0.0239	0.0233	0.0225	•	0.0395	0.0376	0.0295	0.0235	0.0215		0.0184	0.0188	0.0182
		15/8	0.0234	0.0235	0.0227	0.0225	0.0217	0.0210	0.0202	0.0182	0.0183	0.0196	0.0274	0.0301	0.0315	0.0237	0.0192	0.0224	0.0254	0.0261	0.0216	0.0186	0.0185	0.0178	0.0180	0.0180	0.0178	0.0179
		 ≥ 8		0.2121	0.2218	•	•	0.2412	•	Ċ,	•	0.1899	•	•	0.1560	0.0123	-0.0741	-0.1501	-0.2211	-0.2850	-0.3077	-0.3220	-0.2954	-0.2727	-0.2488	-0.2257	-0.2168	-0.2028
	VELOCITY	1> \$	0.1611	Τ,	۲.	0.1393	0.1302	0.1166	0.1024	0.0845	0.0640	0.0344	-0.0037	-0.0462	-0.0898	-0.1419	-0.1653	-0.1713	-0.1572	-0.1039	-0.0190	0.0503	0.0891	0.1218	0.1457	Ξ.	0.1639	0.1700
		ID 8	1.1118	1.1071	1.1032	1.0995	•	1.0950	1.0960	1.0928	1.0851	•	•	1.0085	1.0339	1.0630	1.0668	1.0637	1.0638	1.0773	1.0890	1.0936	1.0937	•	1.0919	1.0917	1.0939	1.0945
!		(31.3)2	-0.5647	-0.5176	-0.4706	-0.4235	-0.3765	-0.3294	-0.2824	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0.000.0	0.0471	0.0941	0.1412	0.1882	0.2353	0.2824	0.3294	0.3765	0.4235	0.4706	0.5176	0.5647	0.6118

n/s	2	
U∞-371.9 m/s	10	0
Uco-3	: 3	9
	cal	cal
.200	0000.	.094
	ر دی) -
Σ	x = 5.000 cal	 ⊁
033	HARP	9830
Kun#:	NOSE: SHARP	RPM:

		VELOC ITY			KMS		S	SHEAR STRESS	55
(183)	n S	<u>~</u> 0	M U ∞	<u>`</u> 0	<u>, ∞</u> 0	<u>- M</u>	1000 <u>×U¹V'</u> ∪∞^2	000*U'V' 000*V'W' 000*W'U U~^2 U~^2	1000×W'U' U∞^2
-0.5647				0.0162	0.0202	0.0782	-0.0283	-0.1642	-1.0366
-0.5176	1.0861			0.0164	0.0201	0.0789	-0.0332	-0.1188	
-0.4706		0.1326		0.0168	0.0217	0.0799	-0.0376	-0.1512	
-0.4235	1.0847	0.1218		0.0170	0.0239	0.0803	-0.0535	-0.1724	-1.0753
-0.3765	1.0820	0.1073		0.0181	0.0241	0.0855	-0.0331	-0.2118	-1.2481
-0.3294	1.0775	0.0916		0.0183	0.0237	0.0870	-0.0616	-0.1241	-1.2680
-0.2824	1.0685	0.0714	_	0.0189	0.0266	0.0895	-0.0689	-0.1255	-1.0766
-0.2353		0.0428	0.1166	0.0241	0.0299	0.1234	-0.0365	-0.2840	-0.1074
-0.1882	1.0165	0.0056	0.0509	0.0276	0.0345	0.1277	-0.0602	-0.5630	-0.1579
-0.1412		-0.0399	0.0367	0.0274	0.0375	0.1313		-0.4207	-0.8081
-0.0941	1.0012	-0.0918	0.0865	0.0315	0.0375	0.1513	-0.1408	0.0828	-1.1575
-0.0471	1.0360	-0.1396	0.0320	0.0330	0.0364	0.1525	-0.1873	-0.0502	-3.3519
0.0000	1.0528	-0.1592	-0.0618	0.0251	0.0295	0.1201	-0.0415	-0.3947	-2.2503
0.0471	1.0519	-0.1624	-0.1472	0.0223	0.0313	0.1013	-0.0829	-0.2214	-1.4231
0.0941	1.0471	-0.1483		0.0263	0.0378	0.1243	-0.0778	-0.6404	-2.2303
0.1412	1.0509	-0.0910		0.0287	0.0615	0.1314		-1.1431	-2.0687
0.1882	1.0632	-0.0192		0.0291	0.0577	0.1340	-0.4000	-0.9438	-1.9155
0.2353	1.0724	0.0518		0.0238	0.0467	0.1112		-0.5113	-1.3151
0.2824	1.0745	0.1013		0.0228	0.0370	0.1048	-0.1152	-0.3232	-1.2596
0.3294	1.0764	0.1389		0.0222	0.0331	0.1057		-0.4089	-1.3678
0.3765	1.0780	0.1564		0.0213	0.0310	0.1043	-0.0869	-0.1713	-1.4764
0.4235	1.0788	0.1679		0.0206	0.0327	0.0972		-0.3378	-1.2973
0.4706	1.0805	0.1731		0.0211	0.0318	0.1006	-0.1171	-0.2509	-1.4801
0.5176	1.0828	0.1763		0.0216	0.0323	0.1027	-0.0892	-0.3394	-1.6257
0.5647	1.0831	0.1806		0.0213	0.0303	0.1035	-0.0749	-0.2162	-1.5855
0.6118	1.0841	0.1796	-0.1961	0.0219	0.0342	0.1058	-0.0959	-0.3952	-1.7206
0.6588	1.0859	0.1806	-0.1896	0.0210	0.0341	0.1034	-0.1152	-0.3235	-1.6717
0.7059	1.0877	0.1807	-0.1907	0.0223	0.0355	0.1054	-0.1217	-0.4084	-1.8107

Run#: 054	M = 1.200	Uco-371.9 m/s
NOSE: SHARP	X = 5.000 cal	$\alpha = 10^{\circ}$
RPM : 9830	Y = 0.671 cal	o 0 = 8

		VELOCITY			RMS		SI	SHEAR STRESS	55
2('a')	1000	1> %	<u></u> Σ[Σ	<u>- </u>	<u>- </u> ∞	<u>* </u> %	1000× <u>U·V</u> ∪∞^2	1000*V'W' U∞^2	1000× <u>W¹1)¹</u> U∞^2
-0.5176	1.0837	0.1466	0.1968	0.0161	0.0177	0.0774	-0.0011	-0.1487	-0.9145
-0.4706	1.0828	0.1378	0.2122	0.0173	0.0180	0.0840	-0.0167	-0.1400	-1.1824
-0.4235	1.0828	0.1260	0.2154	0.0209	0.0180	0.1019	0.0254	-0.3463	-1.8423
-0.3765	1.0803	0.1129	0.2233	0.0219	0.0298	0.1047	-0.0742	-0.3110	-1.9312
-0.3294	1.0395	0.0937	0.0571	0.0227	0.0295	0.1098	-0.0443		-0.7423
-0.2824	1.0549	0.0797	0.1592	0.0238	0.0285	0.1186	-0.0363	Ċ	-0.6977
-0.2353	1.0012	0.0498	-0.0118	0.0316	0.0314	0.1546	-0.0055	•	0.8711
-0.1882	0.9644	0.0076	-0.0231	0.0319	0.0415	0.1596	-0.0962	-0.9703	-2.2546
-0.1412	0.9493	-0.0510	0.0414	0.0315	0.0568	0.1507	-0.3650		-1.9661
-0.0941	0.9907	-0.1121	0.1063	0.0424	0.0456	0.1956	-0.2580	0.4808	-2.3446
-0.0471	1.0391	-0.1591	0.0321	0.0335	0.0379	0.1641	-0.1936		-4.0626
0.0000	1.0501	-0.1810	-0.0707	0.0226	0.0307	0.1069	-0.0955	-0.1678	-1.4391
0.000.0	1.0483	-0.1812	-0.0656	0.0165	0.0195	0.0778	-0.0291		-0.7422
0.0471	1.0376	-0.1897	-0.1293	0.0183	0.0196	0.0848	-0.0112		
0.0941	1.0188	-0.1821	-0.2017	0.0230	0.0252	0.1103	0.0144		
0.1412	1.0045	-0.1338	-0.2882	0.0288	0.0387	0.1346	0.0842	-1.0612	
0.1882	1.0235	-0.0119	-0.3630	0.0354	0.0527	0.1772	0.1511		
0.2353	1.0674	0.0896	-0.3235	0.0212	0.0278	0.0999	0.0458		-0.7442
0.2824	1.0727	0.1291	-0.3224	0.0163	0.0218	0.0794	0.0044		-0.7171
0.3294	1.0732	0.1566	-0.3003	0.0156	0.0169	0.0737	-0.0033		-0.6956
0.3765	1.0751	0.1715	-0.2773	0.0151	0.0141	0.0727	0.0064	-0.1317	-0.7492
0.4235	1.0768	0.1797	-0.2477	0.0152	0.0137	0.0751	0.0118	-0.1227	-0.7382
0.4706	1.0781	0.1841	-0.2337	0.0145	0.0128	0.0715	0.0084	-0.1384	-0.7537
0.5176	1.0788	0.1872	-0.2153	0.0151	0.0136	0.0732	0.0061	-0.1305	-0.8045
0.5647	1.0811	0.1878	-0.1987	0.0151	0.0135	0.0732	0.0102	-0.1866	-0.8392

Use 369.9 m/s	$\alpha = 10^{\circ}$	s () 9
M - 1.260	x 5.000 cal	Y = 0.047 cal
Kun#: 053	NOTE: SHAKE	KFM : 9830

		VELOCITY			RMS		'S	SHEAR STRESS	3.5
	111 000	I>	∞n M	11 - 000	<u>, ∞</u> ()	<u>w'</u> ∪∞	1000×U'V'	1000*U'V' 1000*V'W' 1000*W'U 5002 1000*W'U	1000 ×w¹U¹ U∞^2
-0.1412	0.9549	-0.0272	1	0.0391	0.0340	0.1570	-0.2787	0.3296	-3.7839
-0.0941			-0.0194	0.0371	0.0311	0.1599	-0.1109	1	-3.7127
-0.0471		-0.0503		0.0254	0.0269	0.1027	-0.1035		-1.1469
0.0000				0.0178	0.0244	0.0750	6690.0-		-0.7703
0.0471	1.0181			0.0180	0.0236	0.0811			-0.8208
0.0941	0.9870			0.0219	0.0248	0.0933			-0.9121
0.1412	0.9517	-0.0743		0.0229	0.0244	0.1049	-0.0227	-0.2145	-0.9317
0.1882	0.9425	-0.0612	0.0071	0.0280	0.0298	0.1355	-0.0843		-1.4224
0.2353	0.9689	-0.0266		0.0363	0.0596	0.1804	0.8083	-5.5346	-4.1369
0.2824	0.9901	0.0217		0.0472	0.1021	0.1730	3.7395	-12.6482	-6.4709
0.3294	0.9921	0.0301	-0.0720	0.0488	0.1109	0.1697	4.4549	4.4549 -13.9117	-6.6627

\$ \$.

٤.	:	;++
Kur.#:	THE CELEBRATE	X X . X X

	VELOCITY					55	CHEAR STRESS	55
12 8		3 S	[= <u> </u>	15 2	[<u>*</u>	7,090 Δ.11,Δ.1 Δ.11,Δ.1	1953 <u>*11*V</u> 1000 <u>*V*W</u> 0k≈?2	1000×W¹U¹
1.0369	0.1963	0.1495	0.6137	0.0164	6.0654	-0.0124	-0.0865	-0.4568
.0377	0.1916	6.1504	0.5140	0.0164	0.0650	-0.0186	1860.0-	-0.6528
0430	0.1761	0.1675	0.0140	0.0160	0.0662	-0.0055	-0.1299	-0.7392
.0518	0.1454	0.1787	0.03.50	0.0:88	0.0639	-0.6357	-0.1132	-0.7227
.0531	0.1212	0.1639	0.0346	0.0:83	0.0725	-0.0327	-0.1005	-0.9512
.0524	9960.0	0.2006	0.0131	0.0195	0.0661	6220.0-	-0.1645	-0.6458
.0371	0.0686	0.2920	0.0171	0.0216	0.0841	-0.0076	[-0.1394]	-0.6398
.0113	0.0368	0.3872	0.038	6.0227	0.0870	-0.0264	-0.1002	-0.7989
1.0028	-0.0223	0.1186	0.0315	0.0253	0.1539	-0.1568	0.5963	-2.9984
.0498	-0.0532	0.0118	0.0194	0.0220	0.0898		-0.0648	-1.2120
.0534	-0.0607	0.0242	0.0164	0.0195	0.0742	-0.0277	-0.1223	-0.8077
.0389	-0.0685	0.0762	0.0167	0.0214	0.0789	-0.0297	-0.1596	-0.8789
1.0166	-0.0712	0.1022	0.0185	0.0219	0.0850	-0.0417	-0.1685	-0.7601
0.9970	-0.0551	0.0396	0.6223	0.0252	0.1085	0.0071	-0.4721	-1.3189
1.0051	-0.0051	-0.1518	0.0243	0.0352	0.1207	0.0366	-1.0421	-1.9272
.0 476	0.0837	-0.2252	0.6206	0.0290	0.0968	-0.0180	-0.2141	-0.9386
.0540	0.1327	-0.2219	0.0153	0.0228	0.0727	-0.0351	-0.1808	-0.6859
.0528	0.1617	-0.2602	0.0:45	0.0:91	0.0703	-0.0241	-0.1020	-0.7285
. Odss	0.1830	-0.1683	0.0146	0.0171	0.0685	-0.0162	-0.1415	-0.7967

# # 12 A	Ξ		Dec 468, 4 E. C.
Tawa Na	; -:	11 - (2.97)	77. 10
3 4 · M.	⊱	0,034 Cil	. 0

L

_		_								_													
33.	1000*W1U* Um??	2787.0-	-0.7501	-0.7583	-0.7678				-0.7433				-1.13779		-0.8559				-0.9113	-0.9441	-0.9799	-1.0301	-1.1569
SHEAR STRESS	Z,∞11 M.∆×0001	-6.1705	-0.0928	-6.1344	-0.1517	-0.0638	-0.0779	-0.0495	-0.0819					-0.0483			-0.2036	-0.2217	-0.1989	-0.1188	-0.2238	-0.1573	-0.1508
		-0.0012	-0.0129	-0.0050	-0.0030	-0.0280	-0.0318	-0.0397	-0.0407	-0.0366	-0.0503	-0.0513	-6.0434	-0.0708	-0.0254	-0.0126	-0.0300	-0.0549	-0.0959	-0.0571	-0.0390	-0.0445	-0.0223
	orei M	0.0676	0.0652	0.0643	0.0660	0.0595	0.0601	0.0598	0.0638	0.0660	0.0680	0.0735	0.0894	0.0925	0.0718	0.0735	0.0768	0.0759	0.0722	0.0739	5.0748	0.0760	0.0801
RMS	1300	0.0167	6.0154	0.0151	0.0158	0.0165	0.0177	0.0180	0.0190	0.0195	0.0218	0.0236	0.0242	0.0239	0.0207	0.0189	0.0212	0.0249	0.0288	0.0236	0.0227	0.0220	0.0200
	[5] <u>\$</u>	0.0141	0.0138	0.0134	0.0139	0.0125	0.0129	0.0129	0.0138	0.0141	0.0145	0.0155	0.0188	0.0192	0.0154	0.0152	0.0162	0.0160	0.0156	0.0156	0.0157	0.0160	0.0168
	[X]]		0.1347			0.1538	0.1635	0.1611										-0.1460		-0.1956	-0.1898	-0.1730	-0.1480
VII. 4 1.17Y	 :- : ⁸	0.1945	0.1897	0.1852	0.1795	6.1703	0.1592	0.1436	0.1243	0.1005	0.0750	0.0500	0.0208	-0.0134	-0.0392	-0.0433	-0.0356	-0.0060	0 378	0.0775	0.1151	0.1448	0.1676
]: [\$				F 4	r-4	- 1	1.0479	1.0535	1.0588	1.0602	1.0513	1.0309	1.0334	1.0527	1.0525	1.0518	1.0532	1.0556	1.0547	1.0522	i.0488	1.0440
	- -	-0.517e	-0.4706	-0.4235	-0.3765	-0.3294	-0.2824	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0.0000	0.0471	0.0941	0.1412	0.1882	0.2353	0.2824	0.3294	0.3765	0.4235	0.4706

		15.1	١.,	- :		٠ <u>٠</u> -	77 (ري -	Δĵ.	X.	~:	رد	∞	Σ,	9	ξŅ	ತ	<u>_</u>	<u></u>	<u>ا</u> ر	
	38	7,∞0 .1,%+(.501	-0.85		-0.854	-0.775	-0.7584	-0.8226	-0.6055	-0.6078	-0.7543	-0.6249	-0.6618	-0.8363	-0.8816	-0.9152	9956.0-	-0.8361	-0.8755	-0.8585	-0.941
	THEAR TERESS	1500 <u>*V'W'</u> Um^2	-0.1628	-0.1488 -0.1202	-0.1041	-0.1534	-0.0864	-0.1777	-0.1095	-0.1199	-0.1282	-0.0733	-0.0472	-0.1395	-0.1712	-0.1666	-0.1509	-0.1675	-0.1695	-0.1940	-0.1414
# # # # # # # # # # # # # # # # # # #		<u>10000 • 111V</u> 1000 • 111V	-0.0028	-6.0086	-0.0159	-0.0105	-6.0291	-0.0180	-0.0228	-0.0252	-0.0198	-0.0386	-0.0541	-0.0286	-0.0125	-0.0067	-0.0282	-0.0432	-0.0435	-0.0494	-0.0524
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.0681	0.0678	0.0684	0.0864	0.0648	0.0674	0.0587	0.0556	0.0650	0.0619	0.0664	0.0692	0.0700	0.0711	0.0725	0.0678	0.0702	0.0691	C.0717
	্যমূন	<u>-</u>	0.0156	0.0165	0.0166	0.0166	0.0180	0.0181	0.0173	0.0174	0.0183	0.0197	0.0220	0.0201	0.0174	0.0177	0.0197	0.0210	0.0201	0.0229	0.0225
		<u> 1</u> 8	0.0145	0.0141	0.0143	G 0138	0.0138	0.0136	0.0124	0.0119	0.0138	0.0136	0.0138	0.0147	0.0146	0.0147	0.0151	0.0145	0.0148	0.0146	0.0154
		।×ि	06.1	6.1243	0.1268	0.1333	0.1375	0.1449	0.1375	0.1494	0.1155	0.1234	0.3797	0.0204	-0.0229	-0.0613	-0.1038	-0.1370	-0.1556	-0.1562	-0.1537
# 1		p.lč	i ·		0 1743	0.1651	0 1557	0.1262	0 1070	6060.0	0.0679	0.0484	0.0237	0.0019	-0.0028	0.0008	0.0180	0.0461	0.0754	0.1049	0.1319
		p. J.š		7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0392	1.0396	1.0429	1.0493	1.0498	1.0554	1.0536	1.0457	1.0412	1.0487	1.0539	1.0549	1.0541	1.0521	1.0491	1.0456	1.0439
			-2.5176	4.0-	-0.3765	-0.3294	-0.2824 -0.2824	-0.1882	-0.1412	-0.0941	-0.0471	0.000.0	0.0471	0.0941	0.1412	0.1882	0.2353	0.2324	0.3294	0.3765	0.4235

\$10#: 04.4	50:- E	C./HI 1 100 - 1 11/17
VOSE: SHARE	X - 5.000 cal	a = 10 ·
₩ : 9830	Y = 0.188 cal	

																								_
35	1 <u>000×₩'U'</u> U∞^2	-0.6797	-0.8017	-0.727₺	-0.7980	-0.7381	-0.7260	-0.7327	-0.7531	-0.7932	-0.7887	-0.7590	-0.7899	-0.9061	-0.8794	-0.9377	-0.9913	-1.0349	-1.0527	-0.8319	~0.851€	-0.7729	-0.8531	-0.8748
SHEAR STRESS	1000 *V'W' U∞^2	-0.0942	-0.1280	-0.1095	-0.1067	-0.1089	-0.1442	-0.1232	-0.1631	-0.0992	-0.1146	-0.0881	-0.0844	-0.1110	-0.1861	-0.1835	-0.2764	-0.1592	-0.0343	-0.1912	-0.2438	-0.1714	-0.1535	-0.1884
SI	1000× <u>U·V·</u> U∞^2	-0.0101	-0.0041	-0.0097	-0.0184	-0.0135	-0.0127	-0.0078	·	-0.0154			0	-0.0519	-0.0661	-0.0602	-0.0720	-0.0756	-0.0980	-0.0575	-0.0510	-0.0732		-C.0521
	<u> </u>	0.0628	0.0669	0.0639	0.0663	0.0653	0.0640	0.0648	0.0659	0.0657	0.0654	0.0651	0.0566	0.0716	9690.0	0.0712	0.0737	0.0749	0.0745	0.0675	0.0714	0.0661	9690.0	0.0705
RMS	[5] ⁸	0.0148	0.0146	0.0150	0.0165	0.0160	0.0166	0.0157	0.0164	0.0160	0.0169	0.0188	0.0215	0.0216	0.0238	0.0243	0.0276	0.0254	0.0252	0.0236	0.0244	0.0255	0.0253	0.0230
	<u>-</u> &	0.0132	0.0141	0.0134	0.0141	0.0134	0.0133	0.0135	0.0135	0.0138	0.0140	0.0138	0.0142	0.0149	0.0146	0.0151	0.0155	0.0159	0.0160	0.0144	0.0142	0.0142	0.0147	0.0147
	[⊠ Ω	0 1038	0.1089	0.1120	0.1123	0.1160	0.1172	0.1148	•	0.1116	0.1048	0.0946	0.0787	0.0472	0.0113	-0.0270	-0.0590	-0.0908	-0.1056	-0.1218	0.1241	-0.1248	-6.1134	-0.1096
VELOCITY	1> 2	0.1854	0.1816	0.1767	0.1700	0.1623	0.1516	0.1395	0.1263	0.1100	0.0944	0.0777	0.0603	0.0433	0.0326	0.0317	0.0387	0.0544	0.0711	0.0935	0.1132	0.1312	0.1499	0.1600
	<u> </u>	1.0370	1.0384	1.0385	1.0406	1.0406	1.0415	1.0433	1.0453	1.0470	1.0495	1.0501	1.0502	1.0516	1.0530	1.0529	1.0512	1.0505	1.0485	1.0454	1.0429	1.0412	1.0387	1.0374
_	3,11	-0.5176	-0.4706	-0.4235	-0.3765	-0.3294	-0.2824	-0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0.0000	0.0471	0.0941	0.1412	0.1882	0.2353	0.2824	0.3294	0.3765	0.4235	0.4706	0.5176

Ferral : 132	M 1.200	Um-372.0 m/s
NOSE: SHARE	X - 5.000 cal	$\alpha = 10^{\circ}$
RFM : 9830	z = 0.000 cal	9 = 9

		VELOCITY			KMS		S	SHEAR STRESS	35
	ı=lŝ	1> 0	I3[o	[n]∞	I <mark>.</mark> N∩	MM.	1000 * <u>U'V' 1</u> U~^2	1000×V'W'1000×W'!J U∞^2	1000 *W'U'
0.0235	1.0211	-0.0199	0.2710	0.0332	0.0340	0.1483	0.1134	-0.1349	0.3406
0.0353	1.0655	-0.0069		0.0241	0.3289	0.0951		0.0400	1
0.0471	1.0776			0.0166		0.0797	-0.0068		-0.6861
0.0588				0.0157		0.0731			-0.9028
0.0706				0.0146		0.0679			
0.0824	1.0637	-0.0041		0.0149		0.0674		-0.0422	
0.0941			0.2093	0.0145	0.0189	0.0673	-0.0009	0.0256	-0.8077

Run	Mach	Alpha (deg)	Nose	Spin (MPM)	X (cal)	Delta (deg)	Эсап
120	1.2	10	SHARP	0886	5.50	09-	Ā
37	1.2	10	SHARP	0830	5.50	0	2
38	1.2	10	SHARP	9830	5.50	0	53
46	1.2	10	SHARP	9830	5.50	0	2
47	1.2	10	SHARP	9830	5.50	0	2
129	1.2	10	SHARP	9830	5.50	09	Y

Kun#: 125	M == 1.200	U∞ 371.5 m/S
NOSE: SHARP	X - 5.500 cal	$\alpha = 10^{\circ}$
RPM : 9830	z = 0.000 cal	° 09− = 9

		_																
SS	1000 €W U	0908.0	0.5180	-2.3418	-3.2467	-7.5881	-7.5241	-3.2277									Ţ	
SHEAR STRESS	1000 *V'W' U~^2	0.1215	0.9996	0.2450		0.2022	0.6813	0.1898			-0.1261					0.2851		
55	1000*11'V'	-0.6302	-0.4083	-0.4020	-0.3739	-0.2760	-0.2522	-0.0103	0.0533	-0.0297	-0.1914	-0.0015	0.0145	-0.0234	-0.0040	-0.0544	0.0037	-0.0119
	<u>[</u> M]	0.1087	0.1242	0.1434	0.1530	0.1697	0.2201	0.2291	0.1987	0.1753	0.1775	0.1578	0.0850	0.0849	0.0844	0.0923	0.0849	0.0918
KMS	5 <u>8</u>	0.0356	0.0380	0.0404	0.0382	0.0398	0.0439	0.0414	0.0370	0.0389	0.0337	0.0343	0.0287	0.0212	0.0207	0.0197	0.0207	0.0213
	<u>•</u> Ω	0.0506	0.0505	0.0581	0.0636	0.0850	0.0722	0.0543	0.0518	0.0487	0.0554	0.0448	0.0227	0.0183	0.0179	0.0184	0.0176	0.0192
	I <u>w</u> ∏			0.1789			-0.1035											
VELOCITY	<u>√</u>	ı				-0.0984				-0.0884	-0.0741	-0.0829	-0.0769	-0.0829	-0.0861	-0.0947	-0.0955	-0.0956
	80) 11				0.7774	0.8379	0.8836	0.9342	0.9722	1.0003	1.0216	1.0645	1.1223	1.1215	1.1318	1.1211	1.1206	1.1315
	¥(541)	0.0118	0.0176	0.0235	0.0294	0.0353	0.0412	0.0471	0.0529	0.0588	0.0647	0.0706	0.0824	0.0941	0.1059	0.1176	0.1412	0.2353

Kun#: 0.37	M = 1.200	U∞-371.9 m/s
NOSE: SHARE	X = 5.500 cal	$\alpha - 10$
RPM : 983C	Y = 0.141 cal	> 0 = 8

VELOCI TY
0
0.2214
•
0.2429
0.2463
0.2198
0.0
0.1579
0.1396
0.0618
0.0072
-0.06
-0.1390
-0.1965
-0.2539
-0.2691
-0.2744
-0.2553
-0.229
-0.2138
-0.191
-0.1659

		1000× <u>w'U'</u>	1)00~2	-0.8717	-0.8983	-0.9532	-0.9700	-1.0035	-0.8776	-0.8889	-0.8997	-0.9899	-0.8833	-1.1760	-0.9243	-1.5550	-1.4885	-1.3824	-1.5434	•	1.4465	-1.4253	-1.4203	-1.5075	-1.5670	-1.7743	-1.8456	1.8149
	SHEAR STRESS	1000 * W * W 100	U∞^2			-0.1521 -				-0.1669 -	-0.1633 $-$	-0.1742 -	_		-0.1563 -		_							-0.2185 -		-0.3328 -	$\overline{}$	2751 -1
	HEAR	1000	ĥ	0-		9																	_				9	- - -
1.6 m/s 10 ° 0 °	5	1000 × <u>010</u>	U∞^2	0		-0.0223	0-	9	-0.0357	0	-0.0423	-0.0611			-0.0542	-0.2003			-0.0436	-0.0191	6090.0-	-0.0867	-0.0608	-0.0472	-0.0420	-0.0245	.030	-0.0333
$0 = 371.6$ $\alpha = 10$ $\delta = 0$		M.	No	0.0703	0.0708	0.0730	0.0734	0.0754	0.0704	0.0705	0.0716	0.0740	0.0754	0.0786	0.0761	0.0993	0.0904	0.0891	0.0931	0.0877	0.0920	0.0925	0.0923	0.0940	0.0915	0.1001	•	0.0997
1.200 5.500 cal 0.188 cal	KMS	>	∩	0.0204	0.0200	0.0189	0.0194	0.0204	0.0205	0.3212	0.0213	0.0230	0.0231	0.0209	0.0220	0.0349	0.0256	0.0253	0.0261	0.0217	0.0292	0.0304	0.0268	0.0236	0.0244	0.0244	•	0.0238
M - 1.200 X - 5.500 Y = 0.18E		[5]	8	0.0148	0.0150	0.0154	0.0156	0.0158	0.0150	0.0150	0.0151	0.0161	0.0163	0.0165	0.0164	0.0233	0.0192	0.0185	0.0194	0.0182	0.0192	0.0191	0.0196	0.0195	0.0188	0.0205	•	0.0205
0.38 HARP 98.30		ĮΣ	<u>&</u>	0.1911	0.1946	0.2021	0.2079	0.2072	0.2149	0.2120	0.2089	0.2016	0.1585	0.0931	0.1052	0.0615	0.0064	-0.0574	-0.1136	-0.1649	-0.1944	-0.2199	-0.2348	-0.2281	-0.1948	-0.1838		-0.1619
Run#: 038 NOSE: EHARP RFM: 9830	VELOCITY	1>	<u>~</u>	0.1374	0.1308	0.1238	0.1159	0.1037	0.0900	0.0741	0.0541	0.0327	0.0077	-0.0151	-0.0337	-0.0724	-0.0813	-0.0817	-0.0678	-0.0428	-0.0083	0.0306	0.0676	0.0939	0.1132	0.1282	-	0.1468
		ı	∞ _Ω	1.1204	1.1130	1.1095		1.1081	•	1.1089	1.1105	1.1083	1.1014	1.0807	1.0840	1.0884	1.0941	1.0958		•	•	1.1037	1.1098	1.1115	1.1136	1.1081	1.1072	1.1067
		((60)6	7 (191)	-0.5647	-0.5176	-0.4706	-0.4235	-0.3765	-0.3294	-0.2824	0.2353	-0.1882	-0.1412	-0.0941	-0.0471	0.0000	0.0471	0.0941	0.1412	0.1882	0.2353	0.2824	0.3294	0.3765	•	0.4706	•	0.5647

$\overline{}$		-		_		_				
Sign	100, *W'U U~^2		-3.2579							
SHEAR STREUS	100 <u>0×V¹W¹</u> 100, ×W¹U U∞^2	0.4791							-0.4288	
55	1000× <u>U'V'</u> U∞^2	1	-0.1870							
	<u>-</u> №	l	0.1870					0.1178	0.1491	0.1805
RMS	<u> </u> 5 80	0.0386	0.0353	0.0310	0.0268	0.0232	0.0238	0.0253	0.0327	0.0465
	<u>- 10</u>	0.0441	0.0459	0.0417	0.0314	0.0232	0.0239	0.0256	0.0313	0.0367
	<u> </u> <u>w</u>	ľ	-0.0352					0.1324		-0.1778
VELOCITY	[∆[]	-0.1015	-0.1262							
	10 0 	0.9154		0.9873					0.9668	
	Z (cal)	-0.1176	-0.0941	-0.0471	0.0000	0.0471	0.0941	0.1412	0.1882	0.2353

U∞=368.9 m/s M = 1.200Run#: 129 NOSE·SHARP

		NOSE:SHARP RPM : 9830	HARP 9830	X = 5.	X = 5.500 cal Z = 0.000 cal	α = \$	10 °		
		VELOCITY			RMS		SI	SHEAR STRESS	SS
(165) Y	10 <u>0</u> 0	1> 0	<u>w</u> ∏	<u>-∏</u> ∞0		<u>, ™</u>	1000× <u>U'V'</u> U∞^?	1000*U'V' 1000*V'W' 1000*W'U	1000 × W'U' U∞^2
0.0176	0.9629	-0.1422	0.2851	0.0538	0.0433	0.1426	-0.1678	1.2195	-1.3756
0.0235	1.0125	-0.1486	0.2509	0.0354	0.0382	0.1139	-0.0498	0960.0	-0.8208
0.0294	1.0488		0.2551	0.0352	0.0389	0.1356	-0.0452	-0.3040	-0.5487
0.0353	1.0619	-0.1447	0.2191	0.0277	0.0361	0.1220	-0.0902	-0.1711	-1.0388
0.0412	1.0964	-0.1468	0.2406	0.0299	0.0349	0.1305	0.0274	-0.3541	-0.3751
0.0471	1.0661	-0.1487	0.0618	0.0159	0.0269	0.0900	0.0633	-0.4268	-0.7974
0.0529	1.1266	-0.1489	0.2272	0.0209	0.0281	0.0945	0.0275	-0.1766	-0.7689
0.0588	1.1320	-0.1410	0.2321	0.0179	0.0279	0.0844	0.0080	-0.0713	-1.0167
0.0706	1.1299	-0.1479	0.2117	0.0150	0.0203	0.0709	-0.0032	-0.0064	-0.3387
0.0824	1.1343	-0.1392	0.2113	0.0168	0.0262	9080.0	0.0019	-0.0386	-1.0590
0.0941	1.1299	-0.1379	0.1972	0.0149	0.0208	0.0719	0.0074	-0.0369	-0.8797
0.1176	1.1361	-0.1336	0.1874	0.0169	0.0263	0.0817	0.0052	-0.0187	-1.1167

Run#: 047	M = 1,200	U∞-370.9 m/s
NOSE: SHARP	x = 5.500 cal	(a = 10 =
RPM : 9830	Y = 0.047 cal	$\delta = 0$

!		VELOCITY			RMS		S	SHEAR STRESS	SS
2(cal)	∞n n	1 > ∾	I⊠ U S	[a]	<u>-</u>	w ∩	1000*U'V' U∞^2	1000× <u>V'W'</u> 1000×W'U U∞^2	1000× <u>W'U'</u> U∞^2
-0.2824	1.0830	0.0927	0.2638	0.0141	0.0149	0.0704	1	!	Į
-0.2353	1.0308	0.0724	0.1967		0.0182	0.1109	0.0520	-0.2911	-1.3802
-0.1882			0.2241		0.0250	0.2150			
-0.1412					0.0351	0.1284			
-0.0941					0.0322	0.1591			
-0.0471	1.0363	-0.1483			0.0274	0.1534			0.4748
0.000.0					0.0216	0.0961			
0.0471					.0205	0.0945			
0.0941	1.0367	-0.2009			0.0211	0.1116			
0.1412	1.0010			0.0289	0.0252	0.1342			
0.1882	0.9693		-0.1174	0.0363	0.0361	0.1761			
0.2353	0.9737			0.0461	0.0477	0.2271			
0.2824	1.0538			0.0398	0.0520	0.1921			

Scan	Y	⋰	> -	≻	Y	X	>-	>-	23	5.3	.2	23
Delta (deg)	09-	0	0	0	0	0	0	0	0	0	0	0
X (cal)	5.00	5.00	5.00	5.00	5.00	5.00	5.00	2.00	5.00	5.00	5.00	5.00
Spin (RPM)	0	0	0	0	0	0	0	0	0	0	0	0
Nose	BLUNT	BLUNT	BLUNI	BLUNT	BIUNT	BLUNT	BLUNT	BLUNT	BLUNT	BI.UNT	BLUNI	BLUNT
Alphā (deg)	20	20	20	20	20	20	20	20	20	50	2.0	20
Mach	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	S: ::	1.2	1.2
Run	151	153	154	155	156	157	158	163	159	160	161	162

Kun#:	5 .	1.200	Uoo 366.2 m/o
NOSE: BLUNT	: ≍	X - 5.000 cal	α = 20 ·
KF.M.:	2 2	0.000 cal	8 = -60 %

_		Andre Contract			TIMAG			GUMA CIVALI	5
		VELLUCITI		•	I.G.A.C.		6	DILLAN DIKESD	0.0
Y (5.31)	ı= <u>*</u>	1> \$	I⊠ <u>8</u>	<u> </u>	1518	<u> </u>	1000 × U'V'	1000×V'W'	1000 *W'II
		}	<u> </u>	<u> </u>	·)	:	;	1
92.0.0	0.9754	-0.0326	-0.4149	0.0607	0.0570	0.2925	-0.4936	1	2.9261 -13.4339
0.0235			-0.0836	0.0925	0.0493	0.4708	-1.5728		8.7695 -39.5545
0.0471	-		-0.0525	0.1032	0.0910	0.4008	1.5047	0.6212	0.6212 -31.1933
0.0706			-0.2397		0.0350	0.1534			1.9215 -3.0567
0.0941	, ,		-0.2624		0.0259	0.1064	-0.0667		-1.8065
0.1176		0.0603	-0.2791	0.0196	0.0253	0.0974	-0.0304	0.6497	-1.3231

**************************************	1.250	(No. 369.6 m/s
MONETHEATER	E 5.000 cal	a - 20 °
KFM: (00)	2 0.000 0.5	š 0 š

	_		-	_									_	_	_			_	_	_	_
	SS	1000*V*W*17000*W*U*	-1.2287	-1.4784	-1.3489	-1.3634	-1.4944	-1.5079	-1.6219		-1.5493	-1.7472	-1.9586	-1.5711	-1.7212	-1.6559	-1.5900	-1.7519	-1.8404	-1.7065	-1.6924
	SHEAR STRESS		-0.4799	-0.5731	-0.3897	-0.4912	-0.4381	-0.4854	-0.5373	-0.5048	-0.4931	-0.6676	-0.6335	-0.4849	-0.4870	-0.5511	-0.5188	-0.5790	-0.6088	-0.6036	-0.7211
	IS :	1000 × U · V · · · · · · · · · · · · · · · · ·	-0.0918	-0.0291	-0.0357						-0.0387	0.0103	0.0089	-0.0101	0.0114	0.0349	0.0155	0.0239	0.034	0.0339	0.0544
		<u>*</u> 85	0.1110	0.1057	0.1012	0.0983	0.1001	0.0988	0.1022	0.1061	0.1025	0.1105	0.1138	0.1012	0.1048	0.1007	0.0980	0.1010	0.1028	0.1013	0.1002
	KMS	<u>, √</u>	0.0289	0.0254	0.0241	0.0270	0.0277	0.0267	0.0295	0.0253	0.0252	0.0251	0.0233	0.0210	0.0202	0.0189	0.0193	0.0192	0.0186	0.0177	0.0185
		<u>~∩</u>	0.0237	0.0229	0.0219	9770.0	0.0245	0.0239	0.0247	0.0246	0.0237	0.0241	0.0240	0.0219	0.0218	0.0210	0.0205	0.0214	0.6217	0.0205	0.0202
		<u>w</u>	<u> </u>		-0.0150					0.0231		0.0177	0.0167	0.0277	0.0159	0.0148	0.0281	0.0200	0.0156	0.0122	0.0143
	VELACUTY		-0.1001	-0.1315	-0.1916				-0.2354	-0.2064	-0.1758	-0.0998	-0.0266	0.0299	0.0818	0.1205	0.1532	0.1794	0.2029		
		1= \$	1.0515	1.0529	1.0564	1.0567	1.0573	1.0556	1.0545	1.0517	1.0481	1.0422	1.0332	1.0271	1.0182	1.0152	1.0098	1.0036	1.0003	0.4966	034 6.0
•		Y (cal.)	0.0588	0.0706	0.0941	0.1176	0.1412	0.1647	0.1882	0.2118	0.2353	0.2824	0.3294	0.3765	0.4235	0.4706	0.5176	0.5647	0.6118	0.6588	0.7059
														_	_	_	_				

₩ 51	77. :#::N	P.	302	Use 372.2 m/s
2 0.671 e.d 8	N. H. BLGT.	;∗;	5.500 cal	, σ 20 × α
	C000: W.W.	5.	3.671 0.1	2 9

		VELLACITY			HMS		S	SHEAR STRESS	38
((54))	F [©]	1> =	M ⊗ S	15 8	17/2 18/2	<u>*</u> 8	1000×[1°V° 1∞^2	1000× V'W'	1000×W'U'
0.0471		-0.0464		0.0302	0.0348	0.1988	1	-3.3424	-3.3252
0.0588	r - 1	-0.0952		0.0232	0.0295	0.1384			-1.0752
0.0706	e 14	-0.1303		0.0226	0.0284	0.1356	-0.0860	-1.2095	-0.7982
0.0941	** 1	-0.1805		0.0225	0.0246	0.1176			-1.1449
0.1176	1.0528	-0.2208		0.0225	0.0268	0.1097	-0.0430		-1.2977
0.1412	1.0544	-0.2469		0.0222	0.0249	0.1092	-0.0373		-1.4134
6.1647	1.0549	-0.2551		0.0226	0.0257	0.1088	-0.0623		-1.4682
0.1882	1.0548	-0.2448		0.0230	0.0253	0.1105			-1.6599
0.2118	1.0526	-0.2200	-0.0364	0.0242	0.0264	0.1155		-0.6528	-1.7903
0.2353	1.0495	-0.1861		0.0246	0.0233	0.1207	0.0158	-0.5582	-2.1299
0.2824	1.0451	-0.1044		0.0270	0.0238	0.1302	0.0508	-0.8913	-2.5314
0.3294	1.0363	-0.0319		0.0250	0.0228	0.1216	0.0361	-0.8324	-2.1882
0.3765	1.0256	0.027		0.0227	0.0201	0.1092	0.0214	-0.6104	-1.8298
0.4235	1.0184	0.078.		0.0213	0.0188	0.1043	0.0369	-0.6053	-1.6804
0.4706	1.0114	0.1198		0.0206	0.0169	0.1020	0.0359	-0.4791	-1.6580
0.5176	1.0052	0.1518		0.0214	0.0176	0.1063	0.0588	-0.5701	-1.7362
0.5647	0.9998	0.1798		0.0210	0.0190	0.1064	0.0545	-0.6553	
0.6118	0.3967	0.0027	-0.0238	0.0207	0.0177	0.1031	0.0597	-0.6916	-1.6964
0.6528	0.9924	0.2200	-0.0188	0.0213	0.0168	0.1046	0.0705	-0.6020	-1.7899
1 GC C			-2.0164	0.0267	67.10.0	0.1038	0.0563	-0.5295	30,17

 20	.:	11.	Una 372. * mills
>:	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	177	t (1.2)
 71		c	

		ALIDEFIE			E.S.		8	CHEAR STRESS	35
¥(ca:)	(2)	No.	3 ⁰	11. [100	5 <u> </u> 2	M Mo ∩o	Z√∞0 1000±0±0000	1000× <u>V·W·</u> U⇔^2	1000×W¹U™ U⇔^2
0.0588	1.0505	-0.1008	0.1843	0.0315	0.0363	0.1553	-0.0211	-1.7452	-3.4398
0.0706	1.0548	-0.1322	0.1788	0.0296	0.0341	0.1522	-6.0144	-1.7259	-3.1551
0.0941	1.0550	-0.1924	0.0971	0.0304	6670.0	0.1505	0.0557	-1.3937	-3.3461
0.1176	1.0570	-0.2419	0.0399	0.0299	6.0333	0.1413	-6.0747	-1.0610	-3.0415
0.1412	1.0527	-0.2705	-0.0119	0.0361	0.0339	0.1412	-0.1088	-0.9541	-3.0682
0.1647	1.0513	-0.2863	-0.0613	0.0297	0.0347	0.1398		-0.9989	-2.2582
0.1882	1.0504	-0.2790	-0.1066	0.0293	0.0340	0.1433	-0.0969	-0.7931	-2.3877
0.2118	1.0493	-0.2531	-0.1519	0.0331	6.0344	0.1589		-1.2461	-3.4337
0.2353	1.0502	-0.2081	-0.1893	0.0300	0.0328	0.1486		-1.5936	-3.0907
0.2824	1.0485	-0.0991	-0.2498	0.0339	0.0310	0.1664	0.0924	-1.5979	-4.5807
0.3294	1.0348	-0.0210	-0.1775	0.0326	0.0264	0.1656	0.1605	-1.7118	-4.7242
0.3765	1.0250	0.0415	-0.1533	0.0289	0.0244	0.1440	0.1160	-1.4046	-3.5247
0.4235	1.0154	0.0913	-0.1114	0.0220	0.0216	0.1117	0.0503	-0.9091	-1.9948
0.4706	1.0091	0.1280	-0.0785	0.0219	0.0184	C.1118	0.0765	-0.7755	-2.0460
0.5176	1.0032	0.1607	-0.0685	0.0225	0.0200	0.1090	0.0310	-0.6701	-2.0148
0.5647	0.9980	C.1849	-0.0591	0.0214	0.6196	0.1071	0.0588	-0.7702	-1.8328
0.6118	0.9924	0.2060	-0.0491	0.0211	0.0174	0.1066	0.0742	-0.7244	-1.8246
0.6588	0.9911	0.2248	-0.0401	0.0208	0.0177	0.1071	0.0831	-0.8035	-1.7856
0.7059	0.9897	6.2399	-0.0432	0.0229	0.0175	0.1170	0.0946	-0.8413	-2.2570

	SCI #IDX NOUNT NOU	95.1 1.00.1	Z - Z - Z - Z - Z - Z - Z - Z - Z - Z -	1.200 5.000 cai	Uea - 37 α ==	Um -373.1 m/s α = 20 ×		
	RPM : (0000		0.212 cal	9	0 %		
	!	i						,
	VELOCITY			MMS		S	SHEAR STRESS	3.5
= \$	> °	I¥ ∞ U	<u> </u>	> &	<u></u>	1000× <u>U*V</u> ∪∞^2	1000×V·W·	1000 *W¹U¹ U∞^2
.0533	-0.1517	0.3606	0.0264	0.0302	0.1219	-0.0595	-0.9176	-1.9022
.0506		0.3323	0.0251	0.0295	0.1209	-0.0484	-0.6867	-1.7496
.0495	-0.2141	0.2069	0.0271	0.0311	0.1277	-0.0400	-0.5526	-1.4762
.0496	-0.2343	0.1364	0.0313	0.0505	0.1464	-0.4617	-0.9591	-1.8636
.0535	-0.2165	0.0605	0.0407	C.0677	0.1803	-0.8148	-1.7863	-3.0486
.0638	-0.1626	-0.0810	0.0453	0.0737	0.1997	-1.0617	-2.6351	-4.4564
1.0567	-0.1198	-0.1188	0.0463	0.0812	0.2032	-1.4755	-3.3416	-4.7709
1.0092	-0.0898	-0.3297	0.0518	0.0866	0.2182	-1.5321	-3.6977	-3.6860
.0391	-0.0755	-0.3674	0.0422	0.0786	0.1800	-1.1937	-3.2982	-4.5733
.0406	-0.0109	-0.3717	0.0334	0.0532	0.1497	-0.5634	-1.5479	-3.5892
.0292	0.0423	-0.2814	0.0235	0.0296	0.1129	-0.1243	-0.7783	-2.0753
.0210	0.0864	-0.2219	0.0212	0.0248	0.1025	-0.0505	-0.6934	-1.6998
0149	0.1283	-0.1684	0.0202	0.0191	0.0974	0.0406	-0.7006	-1.6563
.0085	0	-0.1378	0.0208	0.0200	0.1014	0.0097	-0.6072	-1.7602
1.0034	0.1837	-0.1201	0.0204	0.0189	0.0990	0.0332	-0.6081	-1.6859
0.9975	0.2050	-0.0989	0.0209	0.0178	0.1050	0.0583	-0.7087	-1.8801
0.3953	0.2205	-0.0879	0.0194	0.0157	0.0966	0.0520	-0.5455	-1.5821
0.9926		-0.0679	0.0199	0.0160	0.0995	0.0580	-0.5933	-1.6713
0.9879	0.2472	-0.0559	0.0210	0.0174	0.1038	0.0578	-0.6542	-1.8211

Run#: 15/	M 1.200	U∞ 372.6 m/s
NOSE: BLUNT	X 5.000 cal	α ≈ 20 °
RPM : 0000	Z = 0.282 cal	o 0 = 8

		VELOCITY			RMS		เร	SHEAR STRESS	5.5
Y(cal)	∞Ω Ω	1> 	[3] ⁸	<u> </u>	<u>`</u> ∾	[M]	1000 × U · V · U	.000*U'V' 1000*V'W' U∞^2 U∞^2	1000×W¹U¹
0.0588	1.0620	-0.1570	0.2753	0.0482	0.0357	0.2441	0.3707	-3.0910	-8.5534
0.0706	1.0686	-0.1498	0.1377	0.0594	0.0440	0.3082	0.7763		-5.7362 -15.0574
0.0941	1.0738	-0.1309	0.0558	0.0584	0.0583	0.2819	-0.1493		-11.2273
0.1176	1.0629	-0.0916	-0.0139	0.0527	0.0675	0.2534	-0.4819		-8.3175
0.1412	1.0799	-0.0045	-0.1074	0.0584	0.0743	0.2640	-0.6781	.9399	-1.1691
0.1647	1.0160	0.0509	-0.3869	0.0509	0.0725	0.2172	-1.1781	-0.8583	-1.2092
0.1882		0.0920	-0.3239	0.0487	0.0813	0.2108	-1.2012		-0.9990
0.2118	1.0242		-0.4494	0.0377	0.0670	0.1551	-0.7703	-1.6142	-2.8945
0.2353	1.0270	0.1657	-0.4890	0.0353	0.0635	0.1366	-0.9899		-2.5445
0.2824	1.0237	0.1592	-0.4389	0.0282	0.0491	0.1157	-0.5725		-1.9308
0.3294	1.0168	0.1515	-0.3539	0.0254	0.0361	0.1114	-0.2859	-0.5821	-2.0346
0.4235	1.0067	0.1861	-0.2266	0.0224	0.0245	0.1081	-0.0299		-1.9257
0.5176	1.0000	0.2165	-0.1525	0.0210	0.0193	0.1045	0.0454	-0.7324	-1.8169
0.6118	0.9947	0.2387	-0.1104	0.0205	0.0172	0.1013	0.0465	-0.6189	-1.7325
0.7059	0.9878	0.2585	-0.0781	0.0219	0.0177	0.1100	0.0635	-0.7566	-2.0125

Kur.#: 158	M > 1.200	Uca 372.5 m/s
NCSE: RUML	X - 5.000 cal	a = 20 °
RPM : 0000	Z · 0.353 cal	c 0 + %

		VELOCITY			KMS		SS	SHEAR STRESS	SS
Y(cal)	15 8	1 <u>√</u> 0	<u>M</u> ∪∫0∞	- &	[<u>~</u>]	<u>™</u>	1000×U·V· U∞^2	1000 <u>v∨'w'</u>] U∞^2	1000×W¹y¹ U∞^2
0.0706	1.0723	-0.0310	0.0887	0.0590	0.0616	0.3066	0.1344	-5.7873	-13.3221
0.1176	1.0374	0.0994	-0.1352	0.0510	0.0641	0.2279	-0.6647	-2.7036	-6.8873
0.1412	1.0233	0.1451	-0.1994	0.0489	0.0675	0.2219	-0.8098	-2.5657	-6.2342
0.1647	1.0021	0.2197	-0.2713	0.0531	0.0842	0.2265	-1.6632	-3.9413	-7.2122
0.1882	0.9909	0.2680	-0.3138	0.0550	0.0921	0.2317	-1.9792	-3.9369	
0.2118	0.9867	0.3312	-0.4111	0.0409	0.0841	0.1587	-1.8147	-1.6558	-3.7279
0.2353	0.9982	0.3244		0.0328	0.0698	0.1119	-1.5132	0.2498	-1.7850
0.2824	1.0069	0.2627		0.0196	0.0320	0.0841	-0.2294		-1.0513
0.3294	1.0069	0.2359	-0.3527	0.0157	0.0243	0.0717	-0.1282	-0.3101	-0.7140
0.3765	1.0044	0.2265	-0.2861	0.0160	0.0190	0.0778	-0.0321		-0.9381
0.4235	1,0039	0.2267	-0.2383	0.0150	0.0171	0.0709	-0.0336		-0.8396
0.4706	1.0001	0.2305	-0.1948	0.0149	0.0155	0.0708	-0.0100		-0.8453
0.5176	0.9967	0.2383	-0.1733	0.0148	0.0150	0.0731	-0.0005		-0.8874
0.6118	0.9905	0.2552	-0.1214	0.0154	0.0155	0.0735	-0.0041		-0.9193
0.7059	0.9867	0.2694	-0.090c	0.0150	0.0148	0.0738	0.0127	-0.3477	-0.9068

Uca-371.8 m/s	$\alpha = 20^{\circ}$	9 - 9
M - 1.200	X - 5.000 cal	$z \sim071$ cal
Kun.#: 16.5	MONTH BLOME	RFM : 0000

		VELOCH IY			KMS		S	SHEAR STRESS	SS
Y (cal.)	IO N	<u>√</u> 00	<u>∞</u> Ω	<u> </u>	15 8	<u>*</u> 8	1000× <u>U¹V'</u> U∞^2	1000 * <u>V'W'</u> ∪∞^2	1000 ×W¹U¹
0.0471	1.0574	-0.1590	-0.4155	0.0258	0.0278	0.1229	-0.0860		0.4761
0.0588	1.0653	-0.1746	-0.3310	0.0224	0.0249	0.1023	-0.0709	-0.2747	-0.7861
0.0706	1.0625	-0.1838	-0.2898	0.0244	0.0340	0.1077	-0.2251	-0.1835	-1.0743
0.0941	1.0489	-0.1943	-0.1954	0.0293	0.0488	0.1342	-0.6333	-0.4680	-1.9447
0.1176	1.0379	-0.1692	-0.2065	0.0452	0.0680	0.1943	-0.9808	-2.6004	-4.7961
0.1412	1.0177	-0.1646	-0.0998	0.0419	0.0723	0.1721	-1.5309	-1.0616	-4.0580
0.1882	0.9911	-0.0787	0.0389	0.0427	0.0713	0.1732	-1.4307		
0.2353	1.0247	-0.0871	0.2448	0.0317	0.0593	0.1169	-1.1132		-0.9771
0.2824	1.0275	-0.0236	0.2754	0.0195	0.0304	0.0875	-0.1717	-0.2059	
0.3294	1.0255	0.0385	0.2153	0.0181	0.0253	0.0835	-0.1093		-1.0067
0.3765	1.0194	0.0903	0.1670	0.0171	0.0208	0.0800	-0.0610		
0.4235	1.0151	0.1292	0.1265	0.0168	0.0166	1370.0	0.0016		-1.0197
0.4706	1.0097	0.1603	0.0984	0.0163	0.0184	0.0771	-0.0287		•
0.5647	1.0035	0.2090	0.0697	0.0178	0.0188	0.0860	-0.0181		-1.2168
0.6588	0.9974	0.2401	0.0417	0.0185	0.0178	0.0890	-0.0020	-0.4463	-1.3349

Kun#: 159	M - 1.200	U∞=372.5 m/s
NOSE: BLUNT	X = 5.000 cal	$\alpha = 20^{\circ}$
RFM : 0000	Y = 0.282 cal	° 0 = 8

		VELOCITY			RMS		S	SHEAR STRESS	55
$\frac{\infty \Omega}{\Delta}$ $\frac{\Omega}{\Omega}$	I> °Ω		[<u>w</u>]	<u> </u>	<u> - </u> ∞	<u>-</u> №	1000 <u>*U¹V'</u> ∪∞^2	.000*U'V'1000*V'W' U∞^2	1000×W¹U¹ U∞^2
0.9805	0	7.	0.1993	0.0250	0.0189	0.1265		<u> </u>	-2.8427
0.9826 0	0	4	0.2618	0.0230	0.0185	0.1124	0.0905	-0.8526	-2.2658
0.9833	_	3	0.3021	0.0207	0.0171	0.1017			-1.7832
0 9868	0	8	0.3366	0.020€	0.0179	0.1033			-1.7762
-0.3294 0.9927 0.4068	0	\sim	0.3668	0.0251	0.0194	0.1248		•	-2.7911
0.9983	0	\sim 1	0.4012	0.0248	0.0229	0.1250		-1.0345	-2.7482
1.0029		7	0.4310	0.0241	0.0266	0.1154			-2.3516
1.0109		~	0.4329	0.0238	0.0300	0.1146			-2.1953
1.0148			0.3958	0.0229	0.0330	0.1025			-1.7391
1.0239			0.3330	0.0234	0.0336	0.1051			-1.5400
1.0302			0.2072	0.0213	0.0286	0.0983			-1.4125
1.0382	-0.0819	_	0.1269	0.0200	0.0232	0.0928	-0.0455		-1.3696
1.0414	-0.1022		0.0273	0.0184	0.0221	0.0876			-1.1222
1.0414	-0.1100		-0.0680	0.0191	0.0215	0.0905			-1.2577
1.0430	-0.1117	_	-0.1717	0.0190	0.0234	0.0893			-1.1860
1.0501 -0.0981	-0.0981		-0.2831	0.0223	0.0303	0.1054		-0.6557	-1.6443
1.0529	-0.0255		-0.3872	0.0256	0.0514	0.1113			-1.7046
1.0348	0.1121		-0.4379	0.0261	0.0506	0.1061			-1.5424
1.0170	0.2108	\sim	-0.4340	0.0226	0.0409	0.0982		,	-1.1581
1.0089 0.2573	0.2573	~	-0.4278	0.0200	0.0343	0.0848			-1.0611
0.9903	0.3282	\sim 1	-0.3890	0.0179	0.0268	0.0814			-1.0421
0.9768	0.376	0	-0.3473	0.0172	0.0214	0.0806			-1.0279
	0.406	ζ,	-0.2976	0.0155	0.0168	0.0755			-0.9293
	0.423	4	-0.2572	0.0140	0.0139	0.0701	0.0114		-0.7699
0.9578	0.4338	~	-0.2274	0.0147	0.0138	0.0708		-0.2850	-0.8209
0.9567 0.4395	0.4395	_	-0.1786	0.0156	0.0144	0.0755	0.0162	-0.2672	-0.7433

	M = 1.200 002.1 = M	$X = 5.600 \text{ cal}$ $\alpha = 20^{\circ}$	
5 · F	Mun#: :#un	NOSE:BLUNT	RPM : 6000

		VELOCITY			RMS		100	SHEAR STRESS	SS
Z(cal)	<u>11</u>	<u>√</u> 20	M M	n O	<u> </u>	M 00	1003×U·V· U∞^2	1003×U·V 1000×V·W· U∞^2 U∞^2	1000×W¹U¹ U∞^2
-0.5647	0.9721	0.4815	0.2027	0.0229	0.0185	0.1162	0.0889	-0.8519	-2.3011
-0.4706	0.9720	0.4939	0.2616	0.0215	0.0176	0.1077	0.0831		-1.9351
-0.3765	0.9739	0.5095	0.3542	0.0211	0.0180	0.1024	0.0316		-1.5395
-0.2824	0.9750	0.5077	0.4429	0.0255	0.0266	0.1172	-0.0833	-0.7123	-1.4214
-0.2353	0.9787	0.4717	0.4549	0.0351	0.0479	0.1518	-0.5221	-1.3674	-2.6232
-0.1412	1.0369	0.1630	0.2733	0.0540	0.0748	0.2558	-0.8181	1.3101	1.3628
-0.0941	1.0215	0.0082	0.0244	0.0497	0.0701	0.2290	-1.0158	-2.4047	-6.8571
-0.0471	1.0254	-0.1493	0.0949	0.0432	0.0934	0.1332	-2.9428	-0.9487	-2.6174
0.000.0	1.0620	-0.2647	0.0880	0.0204	0.0291	0.0845	-0.2011	-0.2673	-1.0352
0.0471	1.0587	-0.2559	0.0571	0.0169	0.0257	0.0771	-0.1184	-0.2785	-0.7742
0.0941	1.0517	-0.2513	0.0283	0.0176	0.0253	0.0813	-0.1062	-0.3180	-0.7644
0.1412	1.0473	-0.2695	-0.0188	0.0209	0.0278	0.0917	-0.1430	-0.2704	-0.7585
0.1882	1.0452	-0.2758	-0.0697	0.0257	0.0333	0.1197	-0.1847	-0.3925	-1.3969
0.2353	1.0423	-0.1290	-0.1291	0.0497	0.0823	0.2180	-1.3432	-3.7374	-5.7326
0.2824	1.0409	0.0199	-0.2295	0.0488	0.0802	0.2138	-1.2408	-3.8567	-6.3685
0.3294	1.0177	0.1445	-0.2973	0.0473	0.0870	0.2000	-1.6763	-3.6873	-5.3589
0.3765	0.9658	0.3011	-0.4281	0.0484	0.0954	0.1983	-1.9776	0.3362	-1.5418
0.4235	0.9483	0.4699	-0.3687	0.0281	0.0522	0.1006	-0.7989	-0.2241	-1.2199
0.4706	0.9454	0.5190	-0.3219	0.0179	0.0225	0.0835	-0.0786	-0.1991	-0.8562
0.5176	0.9445	0.5109	-0.2750	0.0169	0.0184	0.0791	-0.0284	-0.2513	-1.0070
0.5647	0.9440	0.5049	-0.2361	0.0162	0.0159	0.0773	-0.0009	-0.3195	-1.0182
0.6588	0.9469	0.4854	-0.1816	0.0141	0.0134	0.0677	0.0001	-0.2392	-0.7802

Run#: 161	M = 1.200	(los: 372.3 m/s
NOSE: BLUNT	X = 5.000 cal	a - 20°
RPM : 0000	Y = 0.071 cal	0 0 = 9

		VELOCITY			KMS		SI	SHEAR STRESS	35
Z(cal)	<u>∞</u> n	I> ⊗∪	[M])	- N	 5 85	<u>-</u> M ∞	1000 * U · V · U	1000 *V'W' 1000 *W'U U∞^2 U∞^2	1000*W¹U'' U∞^2
-0.2353	1.0281	0.1288	-0.1570	0.0462	0.0580	0.2113	-0.6039	-1.6878	-5.1248
-0.1882	1.0668	0.0087	-0.1199	0.0450	0.0534	0.2191	-0.2914	-2.3174	-5.4769
-0.1412	1.0891	-0.0857	-0.1073	0.0477	0.0510	0.2262	-0.2405	-1.6241	-4.7336
-0.1176	1.0902	-0.1347	-0.1721	0.0482	0.0532	0.2308	-0.2362	-0.3994	-3.2443
-0.0941	1.0741	-0.1774	-0.2583	0.0380	0.0446	0.1799	-0.2432	-1.0555	-5.2285
-0.0471	1.0754	-0.1822	-0.2252	0.0229	0.0259	0.1061	-0.0641	-0.4099	-1.4155
0.0000	1.0652	-0.1538	-0.1552	0.0198	0.0225	0.0922	-0.0449	-0.3107	-0.9705
0.0471	1.0657	-0.1168	-0.0061	0.0211	0.0227	0.0994	-0.0268		-0.5271
0.0941	1.0471	-0.1071	0.0694	0.0187	0.0220	0.0891	-0.0301		8666.0-
0.1412	1.0427	-0.1166	0.1953	0.0193	0.0239	0.0864	-0.0868		-1.0181
0.1882	1.0461	-0.1397	0.2559	0.0230	0.0250	0.1086	-0.0387	-0.5981	-1.3758
0.2353	1.0465	-0.1544	0.3263	0.0243	0.0265	0.1186	-0.0126		-0.9736
0.2824	1.0525	-0.1619	0.2950	0.0379	0.0333	0.1977	0.1121	-1.7041	-4.5681
0.3294	1.0585	-0.0764	0.1195	0.0539	0.0531	0.2700	-0.0074	-4.2404	-11.1186
0.3765	1.0441	0.0940	-0.0147	0.0478	0.0540	0.2361	-0.1484	-2.4608	-6.5591
0.4235	1.0273	0.1581	-0.0808	0.0422	0.0457	0.2094	-0.1159	-1.7420	-4.5177
0.4706	1.0178	0.2522	-0.2108	0.0504	0.1105	0.1432	-4.2682	-1.0802	-2.1640

372.3 m/s	$\alpha = 20^{\circ}$. 0
[]od	=	8
M = 1.200	X = 5.000 cal	Y = 0.118 cal
Run#: 162	NOSE: BLUNT	RFM : 0000

		VELOCITY			RMS		IS	SHEAR STRESS	35
Z(cal)	∞n 11	I> ⊗∩	I3 ∞ US N	- N N	\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>™</u>	1000× <u>U'V'</u> U∞^2	1000*U'V'1000*V'W' U~^2	1000× <u>W¹U</u> U∞^2
-0.2824		0.4843	0.0472	0.0509	0.0861	0.2154	-1.9680	2.8112	0.2282
-0.2353		0.2472	-0.1046	0.0479	0.0818	0.1857	-2.0838	-1.5261	-2.1481
-0.1882	1.0306	0.1334	-0.1583	0.0497	0.0644	0.2219	-0.9657	-1.7264	-6.6080
-0.1412		0.0431	-0.1424	0.0522	0.0737	0.2383	-1.1110	-3.2957	-7.5902
-0.0941		-0.0848	-0.0517	0.0534	0.0802	0.2362	-1.2280	-3.8318	-7.2170
-0.0471	1.0618	-0.1813	0.0117	0.0467	0.0934	0.1853	-2.3858		-2.7281
0.000.0	1.0663	-0.2541	-0.0261	0.0202	0.0287	0.0895	-0.1958	-0.3469	-0.9881
0.0471	1.0575	-0.2317	0.0161	0.0180	0.0262	0.0807	-0.1003		-0.8781
0.0941	1.0518	-0.2195	0.0615	0.0184	0.0235	0.0831	-0.0860	-0.3213	-0.9121
0.1412	1.0494	-0.2291	0.0838	0.0194	0.0261	0.0908	-0.1105		-0.9611
0.1882	1.0470	-0.2373	0.0927	0.0246	0.0305	0.1146	-0.1236		-1.9095
0.2118	1.0568	-0.2256	0.0115	0.0417	0.0380	0.2053	0.0507		-6.8824
0.2353	1.0594	-0.1992	0.0001	0.0467	0.0573	0.2279	-0.3705		-8.4918
0.2824	1.0768	-0.0881	-0.1143	0.0535	0.0532	0.2690	-0.1333	-4.0812	-10.8709
0.3294	1.0554	0.0670	-0.1358	0.0525	0.0719	0.2355	0666.0-		-7.3398
0.3765	1.0241	0.1664	-0.1372	0.0460	0.0581	0.2130	-0.5373	-1.5733	-5.5723
0.4000	0.9992	0.1939	-0.2251	0.0480	0.0526	0.2332	-0.2047	-2.5093	-6.2771
0.4235	1,0094	0.2338	-0.2313	0.0385	0.0567	0.1721	-0.6793	-1.4775	-3.6591
0.4706	0.9410	0.4962	-0.2378	0.0380	0.0933	0.1104	-2.6220	-0.5278	-1.2664
0.5176	0.9293	0.5538	-0.2029	0.0179	0.0221	0.0851	-0.0761	-0.2612	6088.0-
0.5647	0.9335	0.5407	-0.1909	0.0147	0.0171	0.0708	-0.0319	-0.1966	-0.7018
0.6588	0.9393	0.5092	-0.1482	0.0156	0.0129	0.0753	0.0294	-0.3149	-0.9960

Run	Mach	Alpha (deg)	Nose	Spin (RPM)	X (cal)	Delta (deg)	Зсап
149	1.2	20	SHARP	0	5.00	09-	7
146	1.2	20	SHARP	0	5.00	0	Y
147	1.2	20	SHARP	0	5.00	0	Y
148	1.2	20	SHARP	0	5.00	0	Y
142	1.2	20	SHARP	0	5.00	0	2
143	1.2	20	SHARP	0	5.00	0	22
144	1.2	20	SHARP	0	5.00	0	2
145	1.2	20	SHARP	0	5.00	0	2

_			
	U∞=366.9 m/s	$\alpha = 20^{\circ}$	> 03 = x
	M = 1.200	X 5.000 cal	7 . 0 000 0 . 2
		NOSE: SHAKE	0000 · Wax

		VELLOCITY			KMS		55	SHEAR STRESS	SS
Y (dail)	13 S	1> \$	[<u>%</u>	In &		<u>[∞</u>]	1000 × U · V · U · V · U · V · V	000 * U * V 1000 * V * W 1000 * W * U U \infty	1000 × W * U * U × U × U × U × U × U × U × U × U
0.0235		-0.0678	1	0.0619	0.1409	0.3103	-0.9885	6.4880	6.4880 -13.5268
0.0353	0.9481	-0.1114	-0.0847	0.0872	0.0524	0.4393	-1.5273	8.9815	8.9815 -31.9486
0.0471	1.0123	0.0079		0.0862	0.1043	0.3185	4.2952	-3.9966	-3.9966 -19.6410
0.0588	1.0257	0.0425		0.0623	0.0694	0.2133	0.8006	-0.1280	-7.4792
0.0706	1.0689	0.0823		0.0338	0.0325	0.1447	,	0.9411	-3.1932
0.0941	1.0647	0.0740		0.0332	0.0294	0.1671		1.3956	
0.1176	1.0622	0.0634	-0.2110	0.0344	0.0279	0.1738	-0.2193	_	

Hoo. \$68,2 E./S	: 02:	
	7)	×
1.250	1.000.3	0.000 041
Σ	×	- 22
, I. I	HIMME	9900
## 22 22 22 22 22 22 22 22 22 22 22 22 2	TALKET SHAME	. ESS

		u \	ಹ	0	30	3.7	.2.	00	27	0.5	3	5.5	20	7	7	<u>ن</u>	90
55	1000× <u>W¹U</u> U∞^2	-1.0965	-1.2158	-1.3040	-1.3290	-1.4637	-1.5353	-1.6250	-1.6667			-2.772	-3.102	-2.37		-2.0915	
SHEAR STRESS	1000 *V*W*1	-0.4485	-0.2461	-0.4301	-0.3752	-0.5061	-0.5885	-0.8273	-0.5719	-0.5747	-0.9015	-0.9717	-1.1981	-0.8673	-0.6886	-0.7673	-0.6907
<u>6</u>	$\frac{1060 * \overline{\Pi^{\dagger} V^{\dagger}}}{15 \infty^{2}}$	-0.0648	-0.0954	-0.0842	-0.1073	-0.1477	-0.1752	-0.1683	-0.1842	-0.2004	-0.0724		-0.0395	-0.0429	-0.0550		-0.0226
	M₁ U∞	0.1139	0.1160	0.1151	0.1038	0.1056	6.1024	0.1063	0.1045	0.1045	0.1167	0.1288	0.1353	0.1164	0.1066	0.1113	0.1067
RMS	\ - 0266	0.0280	0.0281	0.0278	0.0306	0.0323	0.0329	0.0326	0.0333	0.0308	0.0304	0.0307	0.0274	0.0247	0.0231	0.0234	
	- (1) - (2)	0.0239	0.0243	0.0249	0.0230	0.0227	0.0229	0.0230	0.0235	0.0233	0.0246	0.0268	0.0276	0.0245	0.0226	0.0225	0.0220
	[S]	-0.0772	-0.0738	-0.0670	-0.0568	-0.0357	-0.0279	-0.0201	-0.0178	-0.0153	-0.0440	-0.0480	-0.0505	-0.0393	-0.0262	-0.0142	-0.0040
VELAMITY		-6.0738	-0.1111	-0.1474	-0.2109	-0.2577	-0.2808	-0.2810	-0.2642	-0.2298	-0.1889	-0.0947	-0.0150	0.0495	0.1412	0.2110	0.2518
	= ⁸	1.0611	1.0622	1.0630	1.0649	1.0661	1.0675	1.0648	1.0652	1.0599	1.0556	1.0487	1.0424	1.0329	1.0198	1.0088	1.0020
	(****) <u>X</u>	0.0471	0.0588	0.0706	0.0941	0.1176	0.1412	0.1647	0.1882	0.2118	0.2353	0.2824	0.3294	0.3765	0.4706	0.5882	0.7059

	(Jess. \$	Um 368.2 m/s
X 1,000 eal	ä	. oz
150 350 S	o O	» O

_	15-1	~~	ت	\overline{Z}	:-	7		00		,7	m	7	un.	'n	0	N	0	30
55	1000×W±9 U∞^2	-1.3073	-1.2506	-1.1822	-1.1797	-1.2282	-1.1901	-1.3512	-1.8747		-1.6253	-1.1717	-1.0705	-1.5865	0686.0-	-1.0252	-6.5830	-1.352
SHEAR STRESS	000×U·V· 1000×V·W· U~^2 U~^2	-0.4262	-0.4821	-0.4981	-0.4986	-C.4065	-0.3673	-0.5045	-1.2808	-0.7048				-0.8210	-0.3469	-0.3379	-0.2376	-0.7847
5	1000 <u>*U'V'</u> U∞^2	-0.2067	-0.2435	-0.2522				-0.3312		26/0.0-				-0.0939	-0.1293	-0.1438	-0.1944	-1.7538
	[<u>*</u> ₩]	0.0901	0.0932	0.0897	0.0905	0.0908	0.0941	0.1010	0.1247	0.1108	0.0954	0.1029	0.0910	0.1144	0.0943	0.0937	0.0971	0.1064
FMC	[3] S	8670.0	0.0318	6.0324	0.0359	0 0400	0.0440).0375	0.0605	0.0297	0.0289	0.0298	0.0288	0.0332	0.0270	0.0277	0.0305	0.0758
	1 <u>=</u> 1 <u>8</u>	0.0210	0.0206	0.0207	0.0211	0.0227	0.0240	0.0238	0.0307	0.0241	0.0209	0.0227	0.0214	0.0254	0.0206	0.0211	0.0220	0.0341
	[W]	95.00.0-	-0.0786	-0.1016	-0.1340	-0.1720	-0.2073								0.1876	0.2334	0.2677	-0.2482
VELLATIN	<u> </u>	0.2385	0.2025	0.1536	0.1164	0.0712	0.0142	-0.0800	-0.1650	-0.2742	-0.2894	-0.2953	-0.2605	-0.2399	-0.2078	-0.1443	-0.0713	-0.1167
	12 <u>3</u>	1.0071	1.0150	1.0218	1.0270	1.0334	1.0378	1.0477	1.0544	1.0547	1.0579	1.0549	1.0613	1.0539	1.0648	1.0627	1.0614	1.0479
	X(***)	6.0471	0.0588	0.0706	0.0941	0.1176	0.1412	0.1647	0.1882	0.2118	0.2353	0.2824	0.3294	0.3765	0.4235	0.4706	0.5647	0.6588
		_						_		_			_					

. y.,		l,
, S.	ĭ	·¢
:		
E	×	::
:		
# # # # #.		
	1998 7 7 7 4 9 9 C	。 (1) (2) (2) (2)

		VELIGITY			1.554		5	SHEAR STRESS	SS
1.87.) 5	4: \frac{3}{1}		s -	 	[a ²	[s]Š	1000 <u>* U 1 V 1</u> Jan 2	000 <u>*U*V*1000*V*W*</u> 0002	2.∞0 1000× <u>W111</u>
7.0	₽ (°)	-0.0713	0.24377	9.70.0	0.03	6.0491	-0.1944	-0.2376	-0.4830
2.3766	1.0627	-0.1443	5.2354	5.6.7.	0.02.72	0.0937	-0.1438	-6.3379	-1.025
0.0941	1.0643	-0.2078	0.1876	0.0206	0.0270	0.0343	-0.1293	-0.3469	-0.38 mg
5.1176	1.6613	-0.2605	0.1244	6.0214	0.07%%	0.6910	-0.1576	-0.3611	-1.6765
255T-0	2.0579		0.0532	0.0703	0.0289	0.0954	-0.1578	-0.3812	-1.0253
0.1647	1.0549		-0.0341	0.0227	0.0293	0.1029	-0.1435	-0.4307	-1.17.7
3.883	1.0547		-0.0874	0.0241	6.0297	0.1108	-0.0795	-0.7648	-1.4602
0.2118	1.0539		-0.1612	0.0254	0.0332	0.1144	-0.0999	-0.8210	-1.5865
0.2353	1.0544	-0.1650	-0.2533	0.0307	0.0605	0.1247	-0.9414	-1.2868	-1.8747
0.2588	1.0479	-0.1157	-0.2482	0.0341	0.0758	0.1064	-1.7538	-0.7847	-1.3528
0.2824	1.0477	-0.080C	-0.2430	0.0238	0.0375	0.1010	-0.3312	-0.5045	-1.3512
0.3294	1.0378	0.0142	-0.2073	0.0240	0.0440	0.0941	-0.5661	-0.3673	-1.1901
0.3765	1.0334	0.6712	-0.1720	6.0227	0.0400	0.0908	-0.4539	-0.4065	-1.228.
0.4235	1.0270	0.1154	-0.1340	0.0211	0.0359	0.0905	-0.3231		1.47.1.1
0.4706	1.0218	0.1530	-0.1016	0.0207	0.6324	0.0897	-0.2522		-1.1822
0.5647	1.0130	0.2025	-0.0780	0.0206	0.0318	0.0932	-0.2435		-1.2504
73 B C	1 00771	0 0 385		0.0210	8670.0	0.0901	-0.2007	-0.4262	-1.5073

######################################	ì:	1.1.7.1	45 cm ::	The St. 1, 2 th 1.
	141	1,1000 001	τ	
 X.	344	0.047 0.0	'S	C

		VELOXITY			PMI:		8	CHEAR TIREDS	
(111.7)	[::] ⁸	T> \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W []	I-II	<u> </u>	[N N	1066×U¹V¹ U∞^2	1000× <u>0.7</u> 1000× <u>0.7</u>	∄√∞Ω 1000× <u>₩</u> 131
941	0.9563	<u>L</u> .	-0.6469	0.0628	0.0459	0.2366	0.2138	1.7149	-0.5642
902	1.0803		-0.2160	0.0203	0.0247	0.0930	-0.0809	0.0841	0.2921
£4.	0.9666	0.0991	-0.5959	0.0532	0.0527	0.2617	-0.3112	1.0236	0.6472
235	1.0687		-0.0964	0.0195	0.0234	0.0907	-0.0742		
0.000.0	1.0641	-0.0842	-0.0394	0.0184	0.0203	0.0883	-0.0336	-0.1431	
0235	1.0614		0.0333	0.6185	0.0203	0.0851	-0.0438		
90/0	1.0528		0.1709	0.0175	0.0210	0.0871	-0.0302		
0.1176	1.0463		0.3126	0.0187	0.0231	0.0865	-0.0738		
.1647	1.0446		0.3914	0.0225	0.0281	0.1007	-0.1248	-0.3196	
882	1.0460	-0.1526	0.3497	0.0319	0.0383	0.1710	-0.0517		-1.6654
0.2353		-0.1476	0.2755	0.0536	0.0466	0.2678	0.1198		
.2824	1.0506	-0.0717	0.2199	0.0529	0.0639	0.2526	-0.7384		-8.2697
0.3294	1.0566	0.0099	0.0521	0.0525	0.0663	0.2443	-0.7679	-1.7426	-6.9534
3529	1.0705	0.0239	-0.0913	0.0624	0.0610	0.3174	0.2348	-2.7490	-7.7446
3765	1.0083	0.0721	-0.2585	0.0653	0.0674	0.3192	0.0029	-0.5309	-1.6575
000	1.0285	0.1648	-0.2838	0.0614	0.0611	0.3018	0.0640	-0.4286	-2.4512
0.4766	1.0078	0.2898	-0.0516	0.0699	0.1352	0.2592	-5.6685	-4.0271	-12.2350
5176	1.0047	0.3022	-0.0695	0.0710	0.1405	0.2544	-6.3049	-4.1651	
0.5647	1.0072	5.2981	-0.0673	0.0692	0.1402	0.2590	-5.7475	-6.4130	3084.11-

150 (307.5 × 350.0 × 3					
X 282		Σ		:	T. a. 4, 7, 7, 15, 17
7	100 H 100 H 200 H	×	5.000 cm	z	2 OS
	E V NE	7	7 \$10.0° (a)	.c	, ()

SHEAR CTRESS	1666*V*W* 1666*W*11 Uw^2 Uw'?	3,2438 7,5900	1.7				0.4870 -1.6478		_									-1.4444 -4.4465 -0.0000 -0.3000								_		1		_	.0.2285 1.94**		0.6570 1.3779	(1) を (2)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	1000 <u>4111V</u> Um^2	0.9093				0.0380	0.0072	0.1370	0.0330		<u> </u>							1.3803					.0.0677	-0.0999	0.0231			-0.1760	.0.3304	0.6414					1068			_
	[s]ê	0.2725	0.3524	0.1473	6,1223	6.1213	6.1073			0.2774			0.2259	0.2020	0.2463	0.2552	0.4130	0.1737	0.1406	0.0814	0.0724	0.0784	0.0798	0.0931	0.1397	0.1475	0.2514	0.2949	0.2659			1.980		4.11				
FMS		0.0294	0.0428	0.0203	0.0196	0.0204	6.0196	0.0241	0.0221	0.0296	0.0287	0.0892	0.1425	0.0617	0.0651	0.0786	0.0713	0.0713	7070.0	0.0367	0.0241	0.0222	0.0230	0 0244	0.0286	0.0348	0.0544	0.0637	0.0651	0.0025	0.0534	11.0554	\$130.00	0.1303		0.824	17.10	
	티크	0.0551	0.0700	0.0293	0.0246	0.0243	0.0220	0.0330	0.0234	0.0527	0.0450	0.0521	0.0697	0.0459	0.0509	0.0577	0.0470	0.0424	0.0411	0.0234	0.0165	0.0176	0.0176	0.0194	0.0280	0.0286	0.0510	0.0573	0.0547	0.0555	0.0463	0.0419	0.0338	0.05.34	6.0123	0.0187	0.48	
	3 <u>13</u>	0.5010	6.2317	6.2102	0.2078	•	0.2171	0.1817	0.2047	-0.0639	0.1429	0.1375	-0.1505	-0.1675	-0.3519	0.49/4	0.4939	0.3212	01/10-	0.0072	-0.0205	0.0553	6.1173	0.1873	0.0890	0.1798	0.0064	-0.0516	0.0842	0.1613	0.2313	5.2766	7.88		S 827	3615.5	2.114	
VELOCITY	12 2	0.4452	.478	0.5175	0.5314	0.5335	0.5516	0.5538	0.5621	0.5442	0.5385	0.5007	0.4041	0.2303	0.1487	0.1416	0.0342	1011.0	0.1990	-0.2289	0.2296	0.2107	0.2120	C.2192	0.2124	0.2291	0.1762	-0.1634	-0.0200	0.0795	7.1450	1.1881	1,6,7,1	0.3.45		2. (1.2)	4.14	•
	ыÅ	0.8455	1 2 A A	U.9640	0.9575	0.9331	0.9435	0.9285	0.9277	0.8799	0.8722	0.8938	0.9349	1.0046	7866.0	0.9604	27/7.0 0.000	1.0232	1.0250	10000	7,0690.1	要がいここ	3515	1.:471	5.0533	1.0504	1.0609	1.5751	1 1 R C	S. #5	(.8.1 c	1.0235	1.1447	24 100	0.71742	9.34E.5	1 4 4 4 7 7	
L	2 (241)	88.30 C	-	7.5176	4706	0.4471	-0.4235	-0.4000	-0.3765	- 0.3529	0.3294	- 6. 3659	0.2943	4787.0-	0.7303		7007	777.0		•		77				. d. d. d	5.2113	0.2453	0.2884	2. 36.94	5. 45.69	0.3765	**	4.42.55	17.55	17. 6 /100		

		VELOCITY			RMS		i i	SHEAR STRESS	St
((1.4))	[H]	1>	× Č	111 80 111 00 111 00 110 00 10 10 10 10 10 10 10 10 10 10 10 10 1	∞() [∑	M I	7,000 1,000 ±01,0	1000×V'W'	1000 × M · U·
-0.0941	0.9724	0.0529	-0.1163	0.0595	0.1378	0.2645	-3.7025	-13.3248	-9.4054
-0.0471	1.0126	-0.1151	0.0178	0.0736	0.1982	0.1202	-13.5790	-2.3322	-1.7769
0.000.0	1.0667	-0.2728	-0.0003	0.0186	0.0285	0.0795	-0.1657	-0.1850	-0.9139
0.0471	1.0619	-0.2738	-0.0329	0.0183	0.0245	0.0767	-0.0893	-0.3188	-0.8094
0.0941	1.0547	-0.2822	-0.0724	0.0200	0.0253	0.0902		-0.3598	-0.9691
0.1412	1.0570	-0.2806	-0.1646	0.0285	0.0308	0.1458	0.0670	-1.6071	-3.0670
0.1882	1.0360	-0.1293	-0.2929	0.0474	0.0791	0.1902	-1.6517	-1.9011	-4.3527
0.2353	1.0207	-0.0118	-0.3450	0.0499	0.0705	0.2162	-0.5679	-2.3361	-3.0689
0.2824	1.0075	0.1099	-0.3539	0.0531	0.0786	0.2242	-0.9930	-1.5978	-3.1917
0.3294	1.0263	0.2303	-0.3694	0.0430	0.0758	0.1748	-1.4052	-2.0591	-3.9164
0.3765	0.9751	0.4707	-0.3673	0.0215	0.0339	0.0899	-0.2844	-0.1547	-0.8134
0.4235	0.9626	0.5002	-0.3296	0.0181	0.0268	0.0820	-0.1394	-0.1106	-0.9151
0.4706	0.9570	0.5041	-0.2980	0.0165	0.0192	0.0760	0.0005	-0.3440	-0.8500
0.5647	0.9532	0.4939	-0.2203	0.0139	0.0153	0.0671	-0.0095	-0.201	-0.6428

Uox=368.2 m/s	$\alpha = 20^{\circ}$	o 0 = 9
M - 1.200	X = 5.000 cal	Y = 0.071 cal
Pun#: 145	NOSE: SHAKE	RFM : 0000

		VELOCITY			RMS		SI	SHEAR STRESS	SS
Z (cal.)	<u>1</u> 2	<u>∞()</u>	M ∞Ω	<u>- </u> 8	[∧] \	<u>W</u> . ∪∞	1000*U'V'	000*U'V'1000*V'W'1009*W'U	1000×W1U1
-0.0471	{		-0.2170	0.0289	0.0282	0.1380	-0.0030	-0.4486 -1.5377	-1.5377
0.0000				0.0220		0.1121	-0.0587	-0.1858	-0.7148
0.0471	1.0500		0.0307	0.0224		0.1135	600.0-	-0.4029	
0.0941		_		0.0238	0.0276	0.1167	-0.0163	-0.6556	-1.0081
0.1412				0.0288	0.0348	0.1465	-0.0284	-1.4309	-2.2208
0.1882				0.0529	0.0439	0.2761	0.4358	-3.8637	-10.9874
0.2353	1.0444	-0.1107		0.0492	0.0623	0.2264	-0.3365	0.2223	-7.5006

FILMED 7

