

ASX: BUS

ABN 17 654 970 751

W:www.bubalusresources.com.au

T: +618 6188 8181

E: admin@bubalusresources.com.au

Level 2, 22 Mount Street

Perth WA 6000

Tuesday, 3rd December 2024 **ASX Announcement**

OPTION TO ACQUIRE HIGHLY PROSPECTIVE, DRILL READY VICTORIAN GOLD PROJECTS

Highlights

- Bubalus granted option to acquire a portfolio of Victorian exploration licences covering approximately 1,000 km² in close proximity to the operating, high-grade Fosterville and Costerfield gold mines and the Sunday Creek gold-antimony project.
- The licences are prospective for gold and antimony mineralisation, with high grade rock chips collected at the Crosbie and Murrindindi licences by the vendor.
- IP surveys at Crosbie have delineated priority targets for drill testing.
- Permitting for low impact exploration at Crosbie has been completed, which enables Bubalus to carry out drilling from existing tracks.
- · Experienced resources executive and geologist Brendan Borg to join Bubalus board.
- Placement raising A\$900,000 completed, bringing cash balance to A\$3.5 million.

Bubalus Resources Limited (ASX:BUS) (**Bubalus** or the **Company**) is pleased to announce the proposed acquisition of 100% of a portfolio of granted exploration licences located in the heart of the Victorian goldfields.

The licences include Crosbie, located 18 km from Agnico Eagle's (NYSE:AEM) Fosterville Gold Mine and 20 km from Mandalay Resource's (TSX:MND) Costerfield Gold Mine, and Murrindindi, located 20 km from the Sunday Creek Project owned by Southern Cross Gold(ASX:SXG). Work to date indicates significant potential for gold mineralisation to be present, supported by the geological setting, high grade gold rock chips collected from both licences, as well as targets enhanced by recent geophysical surveys at Crosbie.

The Fosterville and Costerfield Mines are widely accepted to be Australia's highest grade gold mines currently operating.

The Fosterville Mine had Mineral Resources at 31 December 2023 of 21.6 million tonnes at an average grade of 4.28 g/t gold for 3.0 million ounces of contained gold (Measured, Indicated and Inferred), with 8.6 million tonnes at 6.10 g/t gold in Proven and Probable Reserves (reported in accordance with NI 43-101)¹. The Costerfield Mine had Mineral Resources at 31 December 2023 of 1.25 million tonnes at an average grade of 9.8 g/t gold and 2.7% antimony (Measured, Indicated and Inferred), with 0.6 million tonnes at 10.5 g/t gold and 1.9% antimony in Proven and Probable Reserves (reported in accordance with NI 43-101)². High grade mineralisation at both Fosterville and Costerfield is believed to be associated with Devonian-age intrusions, which have been demonstrated by agedating to be present within the Crosbie Project.

Importantly, the vendor has completed the required permitting to enable low impact exploration, including drilling, to be carried out at Crosbie along existing tracks on Crown Land at Crosbie under Section 44 of the *Mineral Resources (Sustainable Development) Act 1990*. Agreements have been reached with the native title party responsible for the Taungurung land use activity agreement (**LUAA**) and a private landowner, with the latter allowing drilling to be conducted across that property.

Figure 1. Key Projects optioned by Bubalus.

¹ Refer https://s21.q4cdn.com/374334112/files/doc_downloads/agnico_downloads/RnR-Tables/2023/ye_2023_mrmr_pdf_for_aem_website_march_5_2024_v2.pdf .

² Refer https://mandalayresources.com/site/assets/files/3678/pli031_costerfield_2023_ni43-101_rev2.pdf.

Project Description - Crosbie

The Crosbie licence (EL007144) covers an area of 21.5 km², overlying a late-Devonian I-type granitic intrusion (the **Crosbie Granite**). The Crosbie Granite has intruded into Ordovician metasediments and Re-Os dating on molybdenite from a vein in the Crosbie Granite ages it at 385.6 ± 1.6 Ma (2σ). This places Crosbie in the Late Devonian group of IGRS deposits, which is regionally significant as detailed below.

Field mapping and sampling at Crosbie have identified various breccia, bladed quartz-calcite, multiple vein generations, and Unidirectional Solidification Textures (**UST**s). These features strongly suggest the presence of a well-developed magmatic hydrothermal fluid system at a shallow crustal level. An area of angular quartz float some 700 m in length is exposed by an access track across the paddock (the **Prince Foote Trend**, Figure 3) with stockwork quartz veins and aplite having been observed in exposed granite.

Results from surface sampling at Crosbie South are shown in Figure 3 and detailed in Appendix 1 and include the following high grade results: up to **19.1 g/t gold** and **1.1% antimony**, from the Prince Foote Trend.

- 4.26 g/t gold + 0.20% antimony (WES007)
- 19.1 g/t gold + 0.28% antimony (WES008)
- 2.21 g/t gold + 0.15% antimony (WES011)
- 1.59 g/t gold (CD7)
- 0.03 g/t gold + 1.1% antimony (CF152)
- 1.42 g/t gold (DE010)
- 3.89 g/t gold (SM02)
- 7.53 g/t gold + 0.1% antimony (SM07)
- 2.70 g/t gold (SM09)

Following identification of high levels of gold in rock chip samples, two Induced Polarisation (**IP**) surveys were conducted at Crosbie across the Prince Foote Trend. Inversions and analysis of the survey data were conducted by Mitre Geophysics, a well-respected Australian geophysical consulting firm. The IP surveys identified coherent chargeability anomalies detected from surface to depths of over 360 m. The chargeability anomalies are coincident with the high-grade gold samples collected along the Prince Foote Trend. 3D inversion modelling has identified four chargeable and resistive features associated with previously mapped aplite dykes and gold-antimony veins, as well as high-level hydrothermal-magmatic features observed in the field resistivity modelling, indicating that potentially a large intrusive body is present.

The IP surveys were extended into the north of the Crosbie licence (Crosbie North) to create a transect across the Crosbie Granite, the associated hornfels and into the Ordovician sediments of the Castlemaine Group. While the 2D nature of the survey means that detailed interpretation is not possible, Mitre noted a rough spatial association between chargeability features and potassium anomalism in open file GSV datasets.

The near surface layer of the Castlemaine Group is mostly resistive, but displays unexplained variability which may indicate folding and faulting of the sediments. Mineralisation at Fosterville is hosted in anticlinal hinges within the Castlemaine Group (refer below) and therefore this area could represent another target for gold mineralisation should additional work provide further evidence for this structural setting. Gold-bearing rock chips have also been collected in this area as shown on Figure 3 and detailed in Appendix 1, including:

- 4.0g /t gold + 0.80% antimony (CR012A)
- 6.46 g/t gold + 0.35% antimony (CR013)
- 12.1 g/t gold (CR073)
- 5.84 g/t gold (CR075)
- 3.96 g/t gold + 2.02% antimony (CR102)

Figure 2. Location of Crosbie showing proximity to the Fosterville and Costerfield operations.

Figure 3. Image showing rock chip results (gold + antimony) and IP chargeability anomalies.

Project Description - Murrindindi

The Murrindindi licence (EL007412) covers an area of 354 km² within the Melbourne Zone of the Lachlan Orogen. The Melbourne Zone has historically been less explored in comparison to the Bendigo Zone due to the discovery of gold at Ballarat and Bendigo however, the recent development of Costerfield as well as drilling success at the Sunday Creek Project (owned by Southern Cross Gold (ASX: SXG)) has led to renewed interest. Critically, studies have shown that gold mineralisation in the Melbourne Zone was formed closer to the ancient surface ("epizonal" mineralisation) which also makes the region more prospective to host mineralisation related to Intrusive-Related Gold Systems (IRGS), with both findings changing the targeting criteria for projects in this area. Antimony mineralisation is also associated with epizonal gold deposits in Victoria and recent export restrictions by China (the dominant global supplier) has added interest in targeting this style of mineralisation.

Murrindindi is located approximately 20 km east of Sunday Creek and appears to overlie a similar gravity feature to that associated with the high-level intrusion adjacent to Sunday Creek (Figure 3). High grade samples have been collected from two prospects: Higginbotham, where widespread sandstone alteration/silicification, quartz veining (laminated and cross-cutting) and brecciation were noted, and Tin Creek, where mapped metasediments are believed to be altered intrusions based on field inspection and previously reported identified tin-molybdenum-tungsten occurrences may represent the alteration pattern of an IRGS.

Rock samples from Higginbotham contained visible gold and returned some spectacular results, including:

- 131 g/t gold (HG60)
- 66.9 g/t gold HG48)
- 9.68 g/t gold (HG150B)
- 4.39 g/t gold (HG24B)

Rock samples from Tin Creek returned gold results consistent with a potential IRGS, including:

- 0.73 g/t gold (HG280)
- 0.93 g/t gold (HG295)
- 1.06 g/t gold (HG193A)

A single diamond drillhole completed in 1984 in the Tin Creek area, targeting large tungsten and tin anomalies, intersected sub-economic grades of tungsten and tin mineralisation, but the work identified potential for gold mineralisation.

Refer to Appendix 2 for full details of rock samples taken from the Murrindindi licence.

Figure 4. Location of EL007412 (Murrindindi) showing proximity to the Sunday Creek Project (owned by ASX.SXG).

Project Description - Other licences

The portfolio optioned by Bubalus also includes the Lockwood and Wilson's Hill licences (EL007261 and EL007359) located near Bendigo and the Castleburn licence (EL007450) located near Bairnsdale. These licences are not the immediate focus of exploration however, are believed to also have potential to host gold mineralisation.

The Lockwood and Wilson's Hill licences are located adjacent to tenure held by Falcon Metals (ASX: FAL) and structures hosting gold mineralisation are interpreted to trend into the licence areas. Historical data will be reviewed and compiled to define targets within these licences.

The Castleburn licence has also had some initial work completed however, has not been investigated with exploration targeting the IRGS style of mineralisation.

Figure 5. All licences optioned by Bubalus

Next Steps

The Company intends to implement a drilling programme at Crosbie South to test the geophysical targets supported by high-grade surface sampling results. Further surface sampling and geophysical surveys are planned at Crosbie North to refine drilling target positions.

Results of these initial programs will guide further work at Crosbie. It is likely that further drilling may require environmental and other approvals, including from the Taungurung Land Council, the Department of Energy, Environment and Climate Action and Parks Victoria.

At Murrindindi further surface sampling and geophysical surveys are planned to further define targets for drilling, including tungsten and tin targets in addition to gold. Approvals and timelines for drilling will be dependent on whether targets can be tested by drilling from existing tracks.

Data from the other licences will be compiled and reviewed to ascertain the potential for gold mineralisation and to generate targets for further work.

Geological Setting

In Victoria, the Lachlan Orogen is divided into a series of major, fault-bounded structural zones (from west to east: the Stawell Zone, the Bendigo Zone, the Melbourne Zone, the Tabberabeera Zone and

the Omeo Zone). The Bendigo Zone is best known to host gold mineralisation however in recent years gold mineralisation has been discovered within the Melbourne Zone, and specifically hosted in Intrusive-Related Gold Systems (IRGS).

The licences lie within the Bendigo and Melbourne Zones and are dominantly underlain by Cambrian volcanics and Ordovician metasediments. These packages have been progressively deformed during late Ordovician, Silurian and Devonian times resulting in upright tight folds with long subplanar limbs and narrow hinge zones. Major north-trending regional scale structures separate structural domains and differing metasedimentary packages and splays off these structures form detachment surfaces along which reverse thrusting occurred during later deformation events. Granitic intrusions have been emplaced from the Silurian (in the Stawell Zone) to the Devonian (in the Melbourne Zone).

Gold mineralisation is associated with two main events across the western Lachlan Orogen at ~445Ma during Silurian times and ~380-370Ma during Devonian times³. The Silurian event formed gold deposits at Bendigo, Castlemaine, Maldon and Daylesford and is thought to have involved crustal thickening and the circulation of metamorphic fluids through the crust. The Devonian event is restricted largely to the Melbourne and eastern Bendigo Zones and is believed to have formed gold mineralisation at Costerfield as well as being responsible for the emplacement of late higher-grade gold-in-veins at the Fosterville Gold Mine. This gold mineralising event is believed to have formed from regional-scale deformation resulting in extensive lower crustal metamorphism and significant fluid flows along a linked system of thrust faults forming a gold mineralising event. Post-tectonic granitoids emplaced in the late Devonian formed IRGS as well as associated vein-hosted mineralisation⁴.

The Fosterville Deposit is hosted by an interbedded turbidite sequence of sandstones, siltstones, and shales of Castlemaine Supergroup. This sequence has been folded into a set of upright, open to close folds, and metamorphosed to sub-greenschist facies. Much of the mineralisation at Fosterville is controlled by late, near surface, brittle faulting. The late brittle faults are generally steeply west-dipping reverse faults with a series of moderately west-dipping reverse splay faults formed in the footwall of the main fault. Gold mineralisation at Fosterville has previously been classified as orogenic in nature based on the structural framework and laminated (crack-seal) vein textures. However, the increase in visible gold within the higher grade Swan and Eagle Zone as well as stibnite mineralisation and the overall crosscutting nature of controlling structures and overprinting relationships between sulphide hosted gold and visible gold suggest that mineralisation in these areas has been influenced by younger, Devonian, igneous activity⁵.

Mineralisation at Costerfield is located within the Costerfield Dome, a broad, anticlinal dome structure with numerous cross-cutting reverse thrust faults. The core of the dome comprises the Lower Silurian Costerfield Formation. The domal structure is thought to have resulted from two separate tectonic events: firstly, east-west shortening then north-south shortening. Mineralised structures are likely to be related to the formation of the Costerfield Dome during the Devonian period and are either developed in proximity to the axial planar region of the Costerfield Dome or hosted in reactivated west-dipping thrust faults. Mineralisation occurs in a north-south corridor extending over a strike

⁵ Refer https://s21.q4cdn.com/374334112/files/doc_downloads/operations/Fosterville/Fosterville-Gold-Mine-Victoria-Australia-Updated-NI-43-101-Technical-Report-Apr-1-2019.pdf.

³ Refer Phillips D, Fu B, Wilson CJL, Kendrick MA, Fairmaid AM & Miller J MCL, 2012. Timing of gold mineralization in the western Lachlan Orogen, SE Australia: A critical overview. Australian Journal of Earth Sciences. Volume 59, pp 495-525.

⁴ Refer Bierlein FP & McKnight S, 2005. Possible intrusion-related gold systems in the western Lachlan Orogen, Southeast Australia, Society of Economic Geologist Inc. Economic Geology v100. Pp 385-398.

length of at least four kilometres with quartz-stibnite-gold veins ranging from millimetres to 1m in thickness and individual veins persisting for up to 800m along strike and 300m down-dip⁶.

Mineralisation at Sunday Creek was also formed during the Devonian period and is hosted in Ordovician to Devonian sediments of the Melbourne Zone. Mineralisation is found in gold-antimony veins which average 2 – 4m thick and are between from 20-100m long. These veins occur along an east-west corridor and drilling to date has identified mineralisation over a strike extent of 10km and to depths exceeding 1,100 meters. 48 drillholes at Sunday Creek have returned intersections above 100 gram-metres gold equivalent⁷.

Terms of the Acquisition

Bubalus has entered into a binding heads of agreement with Syndicate Minerals Pty Ltd (**Vendor** or **Syndicate**) (the **Agreement**), pursuant to which Bubalus has been granted an exclusive and binding option to acquire 100% of EL007144, EL007261, EL007359, EL007412 and EL007450 (the **Tenements**), forming the Victorian Gold Project (**Acquisition**).

The key terms of the Acquisition are set out below:

Grant of Option

In consideration for the grant of an exclusive option to acquire a 100% interest in the Tenements (**Option**), Bubalus is to satisfy a non-refundable exclusivity fee as follows:

- (a) \$100,000 to be paid in cash to the Vendor upon execution of the Agreement; and
- (b) 2,290,000 fully paid ordinary shares in the capital of Bubalus (**Shares**) to be issued to the Vendor (and/or its nominees) at a deemed issue price of \$0.11 per Share, subject to Bubalus obtaining shareholder approval for the issue (to be obtained as soon as practicable and otherwise no later than 31 January 2025 (**Drop Dead Date**)),

(together, the Exclusivity Fee).

If shareholder approval is not obtained for the issue of the Shares under the Exclusivity Fee, any party may terminate the Agreement.

Exercise of Option and Option Payments

Subject to satisfaction (or waiver) of the Conditions (defined below), Bubalus may exercise the Option during the period of 48 months after the execution date (or such other date as agreed in writing between the parties) (**Option Period**) by completing the following payments to the Vendor by the specified due dates (each, an **Option Payment**):

- (a) \$100,000 on or before the date that is 6 months from the execution date;
- (b) \$150,000 on or before the date that is 12 months from the execution date;
- (c) \$300,000 on or before the date that is 24 months from the execution date;
- (d) \$450,000 on or before the date that is 36 months from the execution date; and
- (e) \$900,000 on or before the date that is 48 months from the execution date.

ASX: BUS bubalusresources.com.au

⁶ Refer https://mandalayresources.com/site/assets/files/3678/pli031_costerfield_2023_ni43-101_rev2.pdf.

⁷ Refer https://wcsecure.weblink.com.au/clients/southerncrossgold/headline.aspx?headlineid=3656867.

Bubalus may, at any time, accelerate payment of the Option Payments with a view to exercising the Option before that date which is 48 months from the execution date.

Exploration during the Option Period

Subject to Bubalus satisfying the Exclusivity Fee, Bubalus may commence exploration on the Tenements during the Option Period.

Conditions

Exercise of the Option during the Option Period, is subject to satsification (or waiver) of the following conditions precedent:

- (a) Bubalus obtaining shareholder approval for the issue of the Consideration Shares and the Consideration Options:
- (b) the parties obtaining all necessary reuglatry aprpvaors or waivers required to complete the Acquisition; and
- (c) the parties obtaining all third party approvals and consents required to complete the Acquisition.

(together, the Conditions).

The parties must ensure that the Conditions are satisfied on or prior to the date that Bubalus exercises the Option, which must be no later than 48 months from the execution date (or such other date as agreed in writing between the parties) (**End Date**).

In the event that there is a delay in satisfying any of the Conditions which is not due to any material default or delay as a result of the actions of Bubalus, Bubalus may extend the End Date by up to a further 90 days.

If the Conditions are not satisfied (or waived) on or before the End Date, then any party may terminate the Agreement.

Settlement and Consideration

Subject to Bubalus paying all the Option Payments to Syndicate and Bubalus electing to exercise the Option settlement of the Acquisition is to occur on the date on which 5 business days after Bubalus exercises the Option.

At settlement of the Acquisition, Bubalus is to issue to Syndicate (or its nominee(s)):

- (a) 2,290,000 Shares (Consideration Shares); and
- (b) 2,290,000 options to acquire Shares, with 1,145,000 options exercisable at \$0.22 and 1,145,000 exercisable at \$0.33, on or before the date that is three years from the date of issue (the **Consideration Options**).

Bubalus also agrees to grant Syndicate a 1.5% Net Smelter Returns royalty in respect of any minerals, mineral products, ore or concentrates produced from the Tenements (**Royalty**) from settlement of the Acquisition. Bubalus will have the right to buy-back one third of the Royalty (being 0.5% of the total 1.5% Royalty) for \$1,000,000 in cash.

Syndicate is to transfer all of its rights and interests in the Tenements to Bubalus at settlement of the Acquisition.

The Agreement otherwise contains terms and conditions considered customary for transactions similar to the Acquisition.

Syndicate Minerals Pty Ltd is not a related party of Bubalus.

The Company confirms that it has obtained confirmation from ASX that ASX Listing Rules 11.1.2 and 11.1.3 do not apply to the Acquisition.

Facilitation fee

The Company has also agreed to pay Inyati Capital Pty Ltd (Inyati) (or its nominees(s)) a facilitation fee in consideration for introductory and facilitation services provided in relation to the Acqusition (Faciliation Fee), as follows:

- (a) 458,000 Shares at a deemed issue price of \$0.11 per Share (**Facilitation Shares**), subject to Bubalus obtaining shareholder approval for the issue;
- (b) a 20% fee (based on the quantum of the relevant Option Payment) to be paid in cash for each Option Payment paid to the Vendor; and
- (c) 458,000 Shares at a deemed issue price of \$0.11 per Share (**Deferred Facilitation Shares**) and 458,000 options to acquire Shares, with 229,000 options exercisable at \$0.22 and 229,000 options exercisable at \$0.33, on or before the date that is three years from the date of issue (**Deferred Facilitation Options**), subject to Bubalus exercising the Option and Bubalus obtaining shareholder approval for the issue.

Invati Capital Pty Ltd is not a related party of Bubalus.

Placement

In conjunction with the Acquisition, Bubalus is pleased to announce that it has successfully received firm commitments for a placement to raise \$900,000 (before costs) by the issue of 8,181,818 Shares (**Placement Shares**) at an issue price of \$0.11 per Share (**Placement**).

Directors intend to participate in the Placement for a total of \$210,000 through the issue of 1,909,091 Shares (included in the above total). The issue of the Shares to the Directors under the Placement is subject to shareholder approval being obtained at a general meeting.

The Placement Shares will rank equally with existing Shares at the time of issue.

Settlement of the Placement is expected to be completed on Monday, 9 December 2024.

The issue price represents a 0% discount to the Company's last close price on 28 November 2024 of \$0.11, and a 0.92% premium to the 5-day VWAP of \$0.109.

The Placement Shares to be issued to participants, other than the Directors, will be issued pursuant to the Company's existing placement capacities under ASX Listing Rules 7.1 (2,636,302 Shares) and 7.1A (3,636,425 Shares).

The Placement proceeds will be used to fund costs under the Acquisition, exploration activities at the Victorian Gold Project, exploration activities at the Company's existing projects and working capital.

Inyati acted as the Lead Manager to the Placement and will receive a management fee of 2% of the gross proceeds raised under the Placement and a capital raising fee of 4% of the gross proceeds raised under the Placement to be paid in cash. Inyati (or its nominee(s)) will also receive 1,636,364 options to acquire Shares exercisable at \$0.165, on or before the date that is three years from the date of issue (**Lead Manager Options**), subject to Bubalus obtaining shareholder approval for the issue.

General meeting

The Company will convene a general meeting of shareholders to approve the issue of the Shares under the Exclusivity Fee, the issue of the Facilitation Shares, the issue of the Shares to Directors under the Placement and the issue of the Lead Manager Options by no later than 31 January 2025.

The Company also intends to seek shareholder approval for the issue of the Consideration Shares, the Consideration Options, the Deferred Facilitation Shares and the Deferred Facilitation Options at this general meeting.

Further details will be provided to shareholders in a notice of meeting to convene the general meeting, to be released in due course.

Board Changes

Bubalus is also pleased to announce the appointment of Mr Brendan Borg to the Company as a Non-Executive Director, effective immediately.

Mr. Borg is a geologist who has specialised in the battery minerals sector and has identified numerous successful projects in an investment and/or management and operational capacity.

Mr. Borg has 28 years' experience in mineral exploration, resource development, mining operations and executive management in a wide variety of mineral commodities and jurisdictions. Mr. Borg is currently a director of battery minerals explorer Kuniko Limited (ASX:KNI) and lithium developer Leo Lithium Limited (ASX:LLL).

He is also a Director and Principal of Borg Geoscience Pty Ltd, which provides geological consultancy services, conducts mineral exploration, and invests in the resources sector.

Being based in Victoria, Mr. Borg will be able to provide local management of exploration at the Victorian Gold Projects as well as providing his experience and expertise to progress the Company's current projects in WA and the NT.

Mr. Borg holds a Master of Science in Hydrogeology and Groundwater Management (University of Technology Sydney), a Bachelor of Science in Geology/Environmental Science (Monash University), and is a member of the Australasian Institute of Mining and Metallurgy (AusIMM) and International Association of Hydrogeologists (IAH).

Bubalus would also like to announce that Mr Scott Deakin, Non-Executive Director, has advised the board of his resignation due to his increased other work commitments. Scott helped identify and secure the Victorian Gold Projects and the Company would like to thank Scott for his contributions to the Company beginning from the IPO process and wishes him success in his future endeavours.

This announcement has been authorised by the Board of Directors of Bubalus Resources Limited.

For more information, please contact:

Mr Alec Pismiris M: +61 402 212 532

Level 2, 22 Mount Street Perth WA 6000

P: +61 8 6188 8181

E: admin@bubalusresources.com.au W: www.bubalusresources.com.au

PO Box 7054, Cloisters Square Perth WA 6850

COMPETENT PERSONS STATEMENT

Information in this report relating to Exploration Results is based on information compiled, reviewed and assessed by Mr. Brendan Borg, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr. Borg is a Director of Bubalus Resources and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves (**JORC Code**). Mr. Borg consents to the inclusion of the information in the form and context in which it appears.

Some of the information is extracted from the Independent Geologist's Report contained within the Prospectus released to the ASX on 11 October 2022 and available to view on the Bubalus Resources Limited website, www.bubalusresources.com.au or on the ASX website, www.asx.com.au under the ticker code BUS.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ABOUT BUBALUS RESOURCES

Bubalus has five projects, the Yinnietharra Lithium Project (prospective for lithium), Amadeus Project (prospective for Manganese), the Coomarie Project (prospective for Heavy Rare Earths), the Nolans East Project (prospective for Light Rare Earths) and the Pargee Project (prospective for Heavy Rare Earths), which are located in premier geological provinces in the Northern Territory and Western Australia:

Yinnietharra Project (Li) - Yinnietharra Project with the boundary of E09/2724 lying only 2 km east of the Malinda Prospect owned by Delta Lithium Limited (ASX:DLI) (**Delta**). Drilling at Malinda by Delta has identified spodumene-hosted lithium mineralisation over a distance of 1.6 km and to a depth of 350m⁸.

Amadeus Project (Mn) - Significant land package with 150 kms of strike containing outcropping high-grade manganese covering 5,436 km², located 125 km south of Alice Spring where historical exploration has identified 11 manganese occurrences, along with cobalt and Ni-Zn-Cu also identified.

Nolans East Project (Light REEs) - The project covers 380 km² of the Arunta Province, analogous to Nolan's Bore light rare earth deposit and is prospective for light rare earths, located only 15 kms east of Arafura's (ASX:ARU) 56Mt NPV \$1.011Bn light rare earth deposit.

Coomarie Project (Heavy REEs) - The project covers 1,315 km² and presents as a geological analogue to Browns Dome, host to Northern Mineral's (ASX:NTU) Browns Range heavy rare earths deposit where mineralisation is hosted on margins of granite dome intrusive where the unconformity between Gardiner Sandstone and Browns Range Metamorphics exist and located in the Tanami Region.

Pargee Project (Heavy REEs) - The project is prospective for heavy rare earths and located 30 kms from PWV Resource's (ASX:PVW) Watts Rise heavy rare earths discovery.

⁸ Refer to Delta Lithium Limited's ASX Announcement on 21st August 2023 "Excellent Yinnetharra Initial Metallurgical Results and Drilling Update".

Appendix 1.

Rock Chip Results from Crosbie

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
CR001	290392	5928959	266	3	BD	45	14.7	0.2	17.2	624.81	BD	28
CR004	290457	5928817	261	2	BD	36	22.2	0.3	34.1	365.02	0.12	72
CR005	292153	5930339	225	1608	0.08	497	13.2	0.4	27.2	58.29	0.1	15
CR006	292153	5930338	225	88	BD	287	5.2	0.1	27.9	11.55	0.09	4
CR007	292155	5930339	225	103	BD	140	6.1	0.2	12.8	17.62	0.11	7
CR008	292153	5930345	225	376	BD	767	7	0.2	29.6	99.38	0.53	32
CR009	292153	5930342	230	1971	BD	387	8.7	0.3	7.8	24.86	0.11	9
CR010	292617	5930956	228	9	BD	66	7.3	0.5	6.5	100.12	BD	3
CR011A	292353	5930892	222	64	BD	117	14.8	2.2	17.4	43.32	0.41	42
CR011B	292353	5930892	222	53	BD	271	10.3	0.7	13.3	9.59	0.15	35
CR011C	292353	5930892	222	21	BD	1115	56.3	0.6	33.8	51.62	0.07	243
CR012A	292375	5930876	223	4002	0.31	1134	56.8	0.8	51.9	8042	BD	45
CR012B	292375	5930876	223	2557	0.13	1393	93.5	3.4	625.5	1255.83	BD	121
CR013	292371	5930879	223	6464	0.29	1379	48	0.6	40	3483.67	BD	29
CR014	292378	5930824	225	324	0.13	2386	83.6	0.8	38.5	16799	BD	290
CR015	292363	5930826	225	226	BD	975	67.1	0.6	24	1853.27	0.15	146
CR016	292358	5930834	225	74	BD	73	20.4	0.7	14.6	118.96	BD	21
CR017	292363	5930720	222	520	BD	720	13.8	0.5	33.6	40.83	BD	11
CR018	292393	5930626	225	64	0.19	862	19.9	0.3	103.1	67.42	0.35	96
CR019	292393	5930480	226	101	0.21	19	20.7	1	26.9	6.29	0.00	44
CR020	290176	5928358	235	103	BD	18	6.7	0.5	7.6	10.96	0.07	4
CR021	290208	5928403	236	7	0.17	14	25.9	0.2	57.3	7.03	BD	339
CR023	290467	5928074	218	4	BD	145	9.1	0.2	15.4	27.48	0.33	9
CR024	290468	5928075	219	34	0.18	309	12.6	0.2	68.3	78.45	0.61	4
CR024	291155	5927253	230	2836	15.36	7996	46.7	42.2	1340.1	212.24	40.68	2
CR027	290750	5930326	225	17	0.13	28	4.8	0.7	8.5	14.63	1.01	2
CR028	290310	5928673	245	20	0.13	128	6.2	0.7	27.4	1203.79	1.15	11
CR029	290317	5928681	246	4	0.00	170	18.7	0.2	46.4	1820.12	0.2	68
CR030	290317	5928726	250	30	0.06	52	4.1	0.3	9.3	100.87	0.17	4
CR030	290556	5930803	222	BD	0.00	5	11.5	0.4	9.3	7.22	0.17	27
CR034	292196	5930694	222	8	0.12	112	10.8	2.2	8.3	14.6	0.18	3
CR035	290030	5928770	253	4	BD	542	63.4	2.5	19.5	25.77	0.75	17
CR036	290030	5928774	253	BD	BD	242	33	2.4	16.7	38.37	0.73	48
CR038	290031	5928733	251	394	0.22	360	65.2	0.8	15.7	14.76	0.11	28
CR039	290131	5928731	250	7	0.22	11	5.2	0.8	18.3	3.6	0.07	20
CR040	290030	5928702	247	229	0.11	771	90.6	2.7	98.7	51.74	0.07	73
CR040				3								
CR041	290310 290310	5928670 5928670	246 246	44	BD BD	56 205	4.9 4.5	0.1	59.9 11.8	1924.8 388.19	0.08	32 5
CR042	290310		245	5	BD	142	20.6	0.4	26.6	784.94	BD	61
CR043	292378	5928658 5930831	225	149	0.25	975	85.9	0.2	36.5	7163	0.2	177
CR045	292379	5930822	225	27	0.1	735	39.5	0.3 1.2	40.5	10466	0.11	79
CR046	292016	5930567	222	1	BD	16	19.5		18.2	79.47	0.46	25
CR048	290251	5928775	258	BD	BD	BD 12	3.2	0.4	11.1	7.5	BD 50.59	1
CR050	291402	5926925	231	2	BD 0.2	12	3	0.5	2.4	51.02	59.58	BD
CR051	290792	5926037	239	26	0.2	20	101	2	44.6	28.85	65.2	9
CR052	290838	5926394	241	19	0.32	52	20.5	0.6	35.2	10.44	60.38	19
CR053	290792	5926033	238	38	1.22	49	233.4	2	39.5	39	103.79	29
CR054	290805	5926625	239	BD	0.09	69	3.4	0.3	8.2	5.68	3.41	BD
CR055	292136	5929789	239	199	BD	118	4.9	0.4	22.6	2196.17	0.53	13
CR056	292126	5929794	240	87	BD	87	4.5	0.2	15.4	554.96	0.59	3

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
CR057	292134	5929792	239	13	BD	11	4	0.2	6.8	246.91	0.26	1
CR058	293211	5930257	218	10	0	64	47.6	0.8	19.1	12.56	0.48	135
CR059	293204	5930230	218	214	0.13	308	28.7	2.5	47.1	39.74	0.47	30
CR060	292338	5930248	229	1	0.11	30	41.4	1.7	17	17.53	0.35	35
CR061	292081	5930124	230	3	BD	84	33.4	1.8	56.4	1706.74	0.77	43
CR062	291208	5929783	233	5	BD	95	9.2	0.3	8.7	17.02	0.1	10
CR063	292644	5929286	237	137	BD	498	51	0.9	36	389.1	0.32	22
CR064	292649	5929280	237	173	0.08	413	20.3	0.6	36.5	52.67	0.29	20
CR065	292104	5929312	247	10	BD	40	5.3	0.2	13.6	10.35	0.14	4
CR066	291468	5929167	237	71	BD	1434	73.1	0.4	138.5	1819.21	12.05	86
CR067	291454	5929180	237	77	BD	1116	52.5	0.4	175.2	3144.97	9.5	59
CR068	291445	5929130	239	12	BD	113	18.9	0.2	22.4	19.94	4.96	18
CR069	291450	5929125	238	9	BD	112	16.5	0.3	24.5	23.01	5.82	15
CR070	291457	5929155	237	31	BD	917	74.3	0	106.6	2382.46	BD	60
CR071	291439	5929204	237	13	BD	181	51.4	1.1	51.9	801.95	0.43	53
CR072	292398	5930653	225	154	BD	323	9.5	0.3	17.3	36.68	0.2	10
CR073	292413	5930674	226	12084	0.75	2753	35.1	1.2	84	167.81	0.4	68
CR074	292409	5930640	226	49	0.05	1260	44.2	0.9	60.9	49.71	0.2	88
CR075	292392	5930654	226	5844	0.07	508	12.4	0.5	27.7	39.67	0.28	14
CR076	292403	5930672	226	4458	0.06	308	7.3	0.6	25.2	29.5	0.35	11
CR077	292385	5930647	225	202	0.12	357	13	0.3	14.2	20.66	0.15	21
CR078	292403	5930640	225	505	0.11	381	34.3	0.2	15	26.94	0.2	11
CR079	292382	5930645	225	745	0.05	1139	22.9	0.7	36.6	130.42	0.18	36
CR080	292035	5930447	225	13	0.07	496	27.6	4.6	73.5	1510.37	8.51	260
CR081	292025	5930462	224	4	BD	975	25.6	1.6	182.2	157.17	0.08	79
CR082	291306	5930163	227	12	BD	381	13.5	0.4	31.3	25.68	0.27	3
CR083	291295	5930147	226	288	0.08	1201	30.7	0.6	110.9	97.92	0.28	6
CR084	291290	5930129	225	4	0.11	139	28.3	1.4	20.8	19.18	0.09	18
CR085	291297	5930148	226	942	0.64	1293	54.1	1.1	30.4	150.83	0.18	95
CR086	291301	5930154	226	51	0.09	508	18	0.3	14.2	41.54	0.19	16
CR087	290346	5928948	267	4	0.14	114	9.6	0.6	7.5	32.16	0.14	3
CR088	290368	5928946	268	3	BD	8	3.9	0.4	10.3	134.09	0.19	3
CR089	290376	5928942	269	9	BD	27	14	0.2	15.9	418.61	BD	13
CR090	290356	5928941	267	5	0.27	183	5.5	0.2	15.1	60.46	0.27	2
CR091	290241	5928403	232	BD	BD	474	68.6	0.5	14.1	9.1	BD	27
CR092	290243	5928435	235	BD	BD	267	10.1	0.9	13.7	16.44	BD	11
CR093	290237	5928434	235	7	BD	423	70.6	2.1	19.4	29.27	0.08	21
CR094	290226	5928431	234	269	0.08	602	15.6	0.4	13.8	28.37	0.11	10
CR095	290209	5928445	237	10	BD	120	6.8	0.5	12.9	29.46	0.1	4
CR096	290211	5928444	237	72	BD	228	7.6	0.2	31.5	222.13	0.07	7
CR097	291016	5926842	248	134	0.09	275	14.9	4	24	83.36	48.82	3
CR098	291403	5926926	230	3	BD	57	12.8	8.8	20	6.61	30.24	10
CR099	290813	5927288	224	1969	63.83	61160	188.1	13.3	2095.5	625.43	180.2	0
CR100	291173	5929892	236	4	0.1	187	48.3	2.6	41.2	1955.28	0.18	127
CR101	291168	5929888	236	2	BD	36	4.4	1.1	18	1232.61	0.1	16
CR102	291182	5929820	236	3965	0.49	481	86	0.4	229.5	20274	BD	80
CR103	291172	5929818	236	717	0.15	98	35.8	0.8	24.5	2875.27	BD	27
CR104	291181	5929786	234	380	0.11	789	56.4	1.3	73.3	8737	BD	100
CR105	291293	5930094	226	2	BD	115	49.6	2.5	9.4	42.25	BD	45
CR106	291173	5929864	237	121	0.33	90	47.5	3.3	23	1913.17	BD	25
CR107	290238	5928333	231	22	0.1	2875	71	2.6	139.6	117.9	0.34	141
CR108	290256	5928348	234	36	BD	1506	53.7	5.6	55.9	33.95	0.45	36
CR109	290244	5928379	233	10	0.15	538	39.3	9.9	33.8	70.94	0.53	17
CR110	290232	5928387	234	BD	BD	381	16.9	0.7	6.9	16.9	0.16	12

Sample East North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
CR111 290249 5928429	235	1	BD	462	52.7	4.3	24.3	17.99	0.2	18
CR112 290213 5928451	237	20	BD	392	13.2	0.4	13.1	25.48	0.31	18
CR113 290211 5928432	236	271	0.16	1278	19.7	0.4	11.9	56.61	0.23	5
CR114 290213 5928419	236	6	BD	56	3.5	0.6	4.2	54.05	0.15	1
CR115 290183 5928399	238	20	0.09	236	10.3	0.3	11.7	14.96	0.18	11
CR116 290198 5928435	238	1001	0.08	520	12.9	0.4	14.6	33.09	0.22	22
CR117 290199 5928419	238	199	0.1	371	23.4	0.2	20.6	90.53	0.15	26
CR119 290421 5928896	268	5	BD	88	29.3	1.3	19	1154.9	0.29	32
CR120 290426 5928851	267	BD	BD	56	15.4	0.4	6.2	590.66	BD	29
CR121 290430 5928834	265	22	0.11	850	28.7	0.3	24.1	2066.42	0.14	52
CR122 290382 5928864	267	4	BD	861	6.4	0.3	32.1	2344.55	0.35	28
CR123 290386 5928855	266	3	BD	62	3.9	0.2	17.7	1267.43	BD	37
CR124 290282 5928830	262	2475	0.09	301	10.7	0.3	32.4	312.46	BD	6
CR125 290307 5928792	255	71	BD	436	8.3	0.2	23.9	1741.75	BD	10
CR126 290308 5928786	254	40	BD	152	5.1	0.2	7.8	713	BD	2
CR127 290291 5928780	257	6	BD	244	27.4	0.2	100.1	706.42	BD	29
CR128 290307 5928763	252	10	BD	321	12.6	0.2	17	545.3	0.06	9
CR129 291918 5929496	240	6	0.11	1347	42.8	4	492.5	75.31	0.37	48
CR130 291915 5929497	240	5	BD	575	56	1.3	74.2	95.54	0.12	54
CR131 290820 5926604	242	BD	0.1	4	47	0.4	31.5	4.84	0.14	7
CR132 290820 5926604	241	BD	0.45	27	72.9	1.7	43	5.77	0.23	17
CR133 290936 5926772	239	8	0.36	10	205.6	73.9	12.5	7.03	1.05	22
CR134 290710 5926805	230	2	0.06	14	20	1.2	8.3	2.41	0.18	21
CR135 290694 5926809	230	2	BD	25	9.8	0.7	7.6	2.87	BD	6
CE01 291007 5926857	241	10	0.26	260	18.3	4.3	17.4	38.94	18.89	1
CE04 291045 5929952	234	5	0.61	104	16.3	0.7	18.3	4.82	0.78	45
CE05 291050 5929932	235	2	0.13	407	32.1	1.7	15	13.71	0.46	35
CR136 292387 5930762	222	1795	BD	316	5.9	0.2	64.3	28.88	0.14	3
CR137 292386 5930690	225	141	BD	737	15.4	1.8	53.3	45.45	0.36	5
CR138 292385 5930679	225	276	0.08	1681	60.9	1.5	40.7	77.33	0.37	13
CR139 292406 5929942	229	90	0.1	326	14.7	1.9	16.4	73.45	0.28	31
CR140 292163 5930549	220	32	BD	140	20	0.9	11.9	46.56	0.1	25
CR141 292480 5929229	233	15	BD	426	10.3	0.4	14	20.06	0.29	5
CR142 292475 5929228	232	10	BD	285	8.2	0.2	16.7	13.76	0.23	3
CR143 292467 5929219	233	27	BD	95	13.6	0.7	13.6	61.9	0.29	4
CR144 292471 5929217	233	5	BD	183	12.5	0.4	13.2	94.1	0.29	8
CR145 292446 5929356	232	175	BD	958	20	0.2	25.3	16.55	0.17	11
CR146 291478 5929175	237	61	BD	75	28.9	3.2	58.3	56.95	1.79	23
CR147 291462 5929160	235	2	BD	53	7.9	0.3	20.3	77.81	0.14	11
CR148 291459 5929160	236	10	BD	550	47.2	0.2	52.1	1432.06	0.07	44
CR149 291456 5929160	236	16	BD	827	57.2	0.2	65.6	1942.47	0.06	55
CR150 291450 5929154	236	20	BD	275	56.4	0.2	60.6	2067.84	BD	35
Wes001 291202 5927166	230	260	0.722	1340	46.7	10.05	124.5	127	59.9	15.5
Wes002 291244 5927095	230	240	0.381	1170	9.14	2.31	117	130.5	330	2.1
Wes003 291592 5926860	230	10	0.037	6.19	2.6	0.61	0.91	1.42	0.832	1.5
Wes004 291444 5926954	230	50	0.235	79.5	4.52	2.14	11.3	43.9	27.2	1.3
Wes005 291281 5927261	230	10	0.032	112	11.8	3.92	7.11	21.1	29.7	2.6
Wes006 291343 5927129	230	30	0.11	40.6	2.51	1.15	12.95	36.3	52.5	0.6
Wes007 291151 5927244	230	4260	302	33900	54.9	308	11150	1955	159.5	0.7
Wes008 291152 5927247	230	19150	542	76600	127.5	473	18900	2810	620	2.1
Wes009 291153 5927246	230	460	7.91	11200	230	7.73	290	167	40	1.4
Wes010 291213 5927175	230	180	3.5	1440	7.88	3.54	145.5	34.4	20.1	5.7
Wes011 291153 5927246	230	2210	156	164500	255	7.93	2260	1490	1210	1.6
Wes012 291153 5927246	230	2460	231	226000	148.5	7.03	981	1420	460	4.2

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
CF001	290110	5930382	230	4	BD	2.9	3.7	BD	3.7	16		1.8
CF002	292697	5929842	230	2	BD	66	88	1.2	14	7.3		120
CF003	290600	5928869	230	3	BD	46	130	2.2	20	120		290
CF004	290600	5928869	230	1	BD	30	110	1.9	23	57		220
CF005	290600	5928869	230	BD	BD	44	70	BD	18	56		180
CF006	290600	5928869	230	9	BD	84	130	BD	9	34		240
CF008	290600	5928869	230	BD	BD	6.9	16	BD	3	8.9		20
CF009	291565	5928816	230	BD	BD	13	2.4	BD	4.4	0		2.1
CF012	291565	5928816	230	BD	BD	3.6	3.6	1.1	6.1	0		1.5
CF013	291565	5928816	230	1	BD	17	3.9	1.6	2.4	0		1.8
CF014	293177	5930928	230	BD	BD	24	110	BD	23	11		250
CF015	291565	5928816	230	3	BD	39	18	BD	11	1.6		16
CF016	291565	5928816	230	BD	BD	12	2.6	BD	5.5	8.2		1.1
CF017	291948	5929995	230	26	BD	68	110	12	15	18		230
CF018	291565	5928816	230	BD	BD	7.2	8.1	BD	5	0		8.8
CF019	292697	5929842	230	26	BD	120	44	BD	5.2	45		40
CF022	292697	5929842	230	3	BD	33	120	3.2	15	7.3		90
CF024	292697	5929842	230	BD	BD	17	3.2	BD	3.2	BD		1.2
CF025 CF026	292697 292697	5929842 5929842	230	2	BD BD	39 94	57 110	BD BD	20 82	3.2 16		37 130
CF026 CF028	292697	5930254	230	4	BD	75	130	BD	71	7.9		230
CF028	293067	5930254	230	28	BD	70	120	5.1	49	10		340
CF029 CF030	293067	5930254	230	BD	BD	6.7	64	BD	15	3.1		52
CF030	290536	5928850	230	BD	BD	85	71	BD	18	35		200
CF034	293177	5930928	230	18	BD	29	7.5	BD	1.1	BD		200
CF035	291944	5930153	230	BD	BD	72	85	2.1	24	22		230
CF036	291944	5930153	230	8	BD	61	68	2.1	14	22		200
CF037	291286	5930048	230	12	BD	5.2	15	BD	3.3	4.7		17
CF039	291948	5930057	230	8	BD	29	86	1.5	18	3.5		72
CF041	292398	5929999	230	3	BD	13	150	1.2	69	11		220
CF042	292398	5929999	230	7	BD	51	110	BD	22	41		410
CF043	292398	5929999	230	7	BD	1200	83	BD	37	22		160
CF044	292398	5929999	230	BD	BD	14	36	BD	11	4.6		18
CF045	291948	5929995	230	BD	BD	76	76	6.8	17	9.1		150
CF046	291948	5929995	230	1	BD	90	82	7.4	40	18		110
CF047	291948	5929995	230	BD	BD	33	58	1.5	19	10		130
CF048	291948	5929995	230	2	BD	25	61	BD	16	1.6		93
CF050	293177	5930928	230	1300	BD	28	120	1.7	29	19		210
CF051	290435	5928859	230	9	BD	12	34	0	8.8	20		79
CF052	290435	5928859	230	3	BD	97	95	1.9	20	83		66
CF053	292459	5929984	230	6	BD	39	110	3.6	26	34		110
CF054	292459	5929984	230	BD	BD	29	54	BD	20	12		40
CF055	292459	5929984	230	BD	BD	35	44	1.9	6.2	9.7		39
CF056	292459	5929984	230	BD	BD	56	78	BD	7.1	20		80
CF057	291037	5929781	230	1	BD	31	10	BD	45	20		9.9
CF058	291037	5929781	230	BD	BD	33	49	BD	9.2	BD		30
CF060	291046	5929781	230	9	BD	41	13	2.8	BD	8.4		8
CF061	291046	5929765	230	BD	BD	10	3.2	BD	BD	6.8		1.4
CF062	292459	5929765	230	1	BD	14	7.3	BD	BD	BD		6.2
CF063	291713	5929984	230	6	BD	35	42	1.8	14	7.5		44
CF064	291713	5930140	230	8	BD	68	72	2.7	46	190		180
CF065	291713	5930140	230	BD	BD	BD	BD	BD	BD	BD		1.5
CF066	291713	5930140	230	5	BD	69	59	5.5	18	8.2	-	80
CF067	291066	5930140	230	7	BD	68	29	2.5	8.7	1.4		30

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
CF068	291066	5929823	230	1	BD	21	37	0	4.4	5.4		24
CF070	291066	5929823	230	BD	BD	36	140	2.4	19	16		200
CF071	291070	5929823	230	6	BD	59	130	0	15	11		100
CF072	291070	5929852	230	1	BD	71	110	1.4	26	21		130
CF075	290315	5930481	230	4	BD	25	10	2.4	15	9.4		15
CF076	290315	5928881	230	BD	BD	34	14	0	14	6.5		9.8
CF078	291046	5928881	230	6	BD	160	78	2.5	7.6	11		49
CF079	291039	5929765	230	BD	BD	480	63	2.9	13	14		140
CF080	291039	5929778	230	BD	BD	55	53	BD	8	6.1		110
CF081	291039	5929778	230	236	BD	79	180	BD	27	22		94
CF082	291039	5929778	230	3	BD	25	25	BD	2.4	BD		8.3
CF083	291282	5929778	230	BD	BD	12	160	BD	5.4	7		52
CF084	291282	5930050	230	BD	BD	34	4.7	BD	2	4.7		3.5
CF085	290959	5930050	230	BD	BD	25	67	BD	27	1.2		110
CF086	290959	5930831	230	BD	BD	13	6	BD	6	1.8		13
CF087	293176	5930831	230	BD	BD	54	110	BD	20	22		320
CF088	293067	5930925	230	1	BD	3.3	26	1.1	16	BD 24		22
CF089	291205	5930254	230	BD	BD	53	120	BD	14	21		160
CF090 CF091	291205 291205	5930039	230	BD BD	BD BD	20 44	81 48	2.4 1.8	3.2	7.9 4.9		150 96
CF091 CF092	291205	5930039 5930039	230	6	BD	110	19	5.8	2.8	1.7		15
CF092 CF094	291246	5929980	230	2	BD	21	5.2	1.9	1.3	2.7		2.2
CF094 CF095	293015	5929980	230	2	BD	41	140	BD	40	12		140
CF095	293015	5930386	230	289	BD	BD	5.6	BD	6.1	7.4		2.8
CF097	291073	5930386	230	9	BD	49	77	5.4	15	16		120
CF098	291073	5929845	230	1	BD	38	97	1.3	17	BD		130
CF099	291073	5929845	230	6	BD	53	110	BD	29	3.6		130
CF100	292464	5929845	230	BD	BD	15	4.5	BD	1.4	9.1		3.7
CF101	292464	5929980	230	10	BD	21	7.9	BD	4.3	11		5.3
CF102	291046	5929765	230	33	BD	83	32	BD	6.6	18		12
CF104	291046	5929765	230	11	BD	120	190	3.4	21	110		280
CF105	291046	5929765	230	9	BD	18	11	BD	3.7	18		8.8
CF108	290431	5928869	230	3	BD	36	78	1.9	9.5	13		110
CF109	290431	5928869	230	9	BD	230	81	BD	4.8	77		40
CF110	290431	5928869	230	9	BD	17	25	1.3	6.3	46		59
CF111	290431	5928869	230	25	BD	86	38	0	9.5	24		100
CF115	290113	5930378	230	2	BD	63	77	BD	22	18		110
CF116	290596	5926302	230	14	BD	110	9.6	BD	10	72		8.9
CF117	291261	5927079	230	503	BD	1600	52	26	130	170		16
CF118	290569	5926408	230	15	BD	120	24	BD	10	36		12
CF121	291548	5926808	230	231	BD	340	78	8.2	49	510		17
CF123	291272	5927057	230	9	BD	120	10	BD	10	14		2.3
CF124	291264	5927077	230	11	BD	360	11	4	33	260		4.9
CF127	291142	5927309	230	2290	1.4	150000	260	5.8	1900	460		70
CF128	291370	5926960	230	559	BD	7200	150	52	390	190		24
CF129	290557	5926335	230	10	0.88	210	12	BD	13	BD		27
CF130	290557	5926334	230	2	0.9	65	17	BD	8.1	7.5		26
CF131	290521	5926252	230	2	0.91	32	16	BD	15	4.6		25
CF132	290420	5926371	230	2	0.92	36	7	BD	17	3.8		24
CF133	290522	5926251	230	1	0.94	47	7.1	1.4	12	3.5		25
CF138	290268	5926461	230	29	0.96	27	3.9	0	2.1	490		5
CF139	291375	5926930	230	10	0.91	69	44	1.3	16	27		33
CF140	292666	5927485	230	13	0.97	8.6	2.2	BD	2.2	18	-	4.4
CF142	291328	5927004	230	50	0.95	100	9.7	BD	13	11		7.3

		I					ı					
Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
CF144	292666	5927485	230	12	0.73	70	42	BD	22	43		110
CF145	291627	5926858	230	1200	0.96	23	5.2	1.2	9.9	30		5.5
CF147	291261	5927079	230	1590	0.82	1800	56	2	110	140		21
CF152	291139	5927241	230	332	3.6	35000	95	26	2700	11000		23
CF155	291630	5926850	230	481	0.94	2200	10	BD	16	50		7.7
CF156	291370	5926960	230	16	0.95	82	14	1.8	18	18		14
CF157	291372	5926961	230	2	0.92	59	16	BD	11	16		23
CF158	291579	5926839	230	30	0.95	21	2.6	BD	1.8	14		4
CF160	291673	5926799	230	393	0.96	4.4	3.2	3.3	6.4	11		12
CF161	291627	5926857	230	3	0.95	15	6.3	BD	5.4	8.3		8.4
CF162	291677	5926801	230	3	0.94	26	11	BD	9.5	3.3		9.1
CF163	290329	5926434	230	1	0.93	30	6.8	BD	15	11		15
CF164	292054	5926939	230	3	0.9	12	11	BD	10	5.6		13
CF165	292257	5926884	230	7	0.62	64	26	BD	12	18		40
CF166	293394	5928455	230	1	0.54	34	31	2	24	17		48
CF167	292671	5927485	230	1	0.94	7.7	6.3	BD	4.6	14		9.3
CF168	291037	5929781	230	12	0.89	12	24	BD	3	20		18
CF169	293067	5930254	230	2	BD	52	48	2.7	17	34		110
CF170 CF174	290536 293041	5928850 5929217	230	BD 17	BD BD	21 36	91 66	BD	9.5 19	110 34		85 110
CF174 CF175	293041	5929217	230	29	0.77	35	24	3 1.1	6.4	26		34
CF175	293041	5929217	230	8	0.77	0	6.9	BD	5.5	8.9		7.9
CF176	293041	5929217	230	9	0.95	34	28	BD	11	8.2		45
CF177	293041	5929217	230	32	BD	90	65	BD	23	25		82
CF180	293023	5929240	230	20	BD	4.3	60	2.1	7.3	4.3		61
CF182	293023	5929240	230	20	0.82	13	13	1.6	19	7.4		18
CF184	293023	5929240	230	358	BD	28	170	BD	20	29		110
CF185	293023	5929240	230	1420	0.53	19	250	BD	30	21		83
CF186	293021	5929218	230	24	0.95	16	16	BD	2.2	4		6.3
CF187	293021	5929218	230	13	BD	91	110	2.3	30	33		190
CF188	293021	5929218	230	5	BD	38	80	2.3	15	9.9		100
CF189	293023	5929240	230	10	0.99	9.5	0	1.4	BD	2.7		2.1
CF190	292092	5929430	230	5	0.91	16	7.7	BD	4.4	1.8		8.6
CF191	293097	5929209	230	10	BD	73	65	BD	17	16		93
CF192	291829	5929383	230	BD	BD	23	56	1.5	9	30		81
CF193	291826	5929471	230	4	0.81	1.6	13	1.1	7.4	BD		18
CF194	292086	5929484	230	5	0.79	14	12	BD	14	8.8		18
CF195	292121	5929199	230	3	0.75	44	23	BD	11	21		29
CF196	292121	5929199	230	12	0.63	81	42	BD	15	30		55
CF197	292121	5929199	230	10	0.82	3.2	15	BD	5.1	7.4		18
CF198	292094	5929041	230	8	0.95	5.7	3.3	1.2	4.1	BD		4.7
CF199	292094	5929041	230	7	0.94	BD	13	BD	4.3	BD		6.2
CF200	292094	5929037	230	10	0.78	26	33	BD	11	18		53
Cm001	291524	5926228	230	6	0.98	99	13.1	BD	2.9	17		11
Cm002	290879	5926623	230	4	0.87	41	32	1.8	18	11		32
Cm003	290929	5926677	230	22	1.4	27	30.2	BD	23	19		18
Cm004	290830	5926615	230	23	1.2	61	20.1	BD	27	6.7		29
Cm006	290676	5926666	230	8	0.51	120	44.6	BD	18	12		32
Cm007	290676	5926666	230	9	0.93	250	43	BD	7.8	12		45
Cm008	290676	5926666	230	4	BD	27	38.5	BD	3.5	25		61
Cm009A	290729	5926571	230	3	0.6	BD	53.3	BD	14	11		38
Cm009B	290729	5926571	230	4	0.77	8.7	20.9	BD	1.1	1.1		52
SM 01	291198	5927191	230	1390	59	21800	39	3	2800	880	-	9.2
SM 02	291195	5927184	230	3890	0.75	122000	250	11	3800	610		58

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
SM 04	291195	5927189	230	10	4	780	13	2.7	34	47		0
SM 05	291199	5927172	230	690	0.92	3200	110	12	280	540		44
SM 06	291193	5927174	230	210	4.8	2400	160	1.5	57	61		1.4
SM 07	291156	5927247	230	7530	969	117000	1300	660	BD	1000		44
SM 08	291158	5927249	230	1110	128	43000	60	81	3800	690		17
SM 09	291157	5927248	230	2700	127	114000	210	17	1900	640		46
SM 10	291158	5927250	230	BD	66	24800	150	53	5200	590		12
CR152	290879	5926720	230	33	0.11	44	83.1	10	10.9	6.78	68.46	15
CR153	290866	5926726	230	BD	0.05	46	22	2.6	10.6	2.92	16.46	8
CR155	290934	5926775	230	47	0.17	487	17.8	3.3	26	322.71	5.3	2
CR156	290937	5926914	230	BD	0.09	34	34.7	3	14.2	3.25	6.36	3

Note: BD = Below Detection.

Appendix 2.

Rock Chip Results from Murrundindi

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG00	371076	5870002	486		BD	4	4.9	2.6	12.4	0.6	0.06	6
HG01	371494	5869767	504	277	BD	BD	10.5	1.7	1	0.16	0.06	2
HG02	371255	5869948	464	35	BD	93	11.2	1.7	9.2	2.91	0.31	19
HG03	371065	5870005	486	105	BD	50	9.1	4.2	6.3	2.06	0.09	2
HG04	371063	5870004	479	2429	1.83	40	56.8	9.2	49.3	8.7	0.35	27
HG05	371063	5870005	479	4086	1.43	115	37	17.6	36.7	9.82	0.35	81
HG06	371062	5870002	488	273	0.33	19	37.1	4.5	7.7	3.06	0.13	10
HG07	371069	5870007	492	2678	1.52	71	80.1	20.5	31	13.54	0.83	51
HG08	371062	5870002	489	1064	0.96	24	60.3	7.3	19.3	5.88	0.3	18
HG09	371797	5869891	589	25	BD	4	12.8	0.8	10.8	1.77	0.12	24
HG10A	371835	5868585	622	14	0.05	371	26.9	5.1	11	0.8	0.07	145
HG10B	371835	5868585	622	7	BD	7	12.5	1.5	14.8	3.03	BD	10
HG10C	371835	5868585	622	9	BD	23	9	1	14.7	1.21	BD	9
HG10D	371835	5868585	622	20	BD	31	8.2	1.7	3.2	1.34	0.07	22
HG10E	371835	5868585	622	4	BD	22	10.2	1.4	4.7	0.95	0.07	60
HG11A	371207	5869545	597	10	BD	21	5.7	1.4	2.5	2.08	0.2	7
HG11B	371207	5869545	597	37	1.05	1200	22.5	2.2	121.6	12.44	0.2	11
HG11C	371207	5869545	597	6	BD	44	6.6	1.9	10.2	1.71	0.17	12
HG12	371223	5869517	598	11	BD	71	4.7	1.8	4.7	3.41	0.08	6
HG13A	371209	5869580	593	73	0.27	503	23.3	1.9	50.6	8.2	0.11	19
HG13B	371209	5869580	593	161	0.13	1063	66.9	1.5	22.7	16.95	0.19	26
HG13C	371209	5869580	593	143	0.31	756	29.7	1.6	58.4	14.45	0.16	23
HG13D	371209	5869580	593	88	0.1	411	42.2	2	24.7	10.54	0.1	8
HG14A	371196	5869583	593	102	0.06	587	22.1	1.5	19.4	18.03	0.1	9
HG14B	371196	5869583	593	368	0.08	2328	31.7	1.2	8.6	24.18	0.06	3
HG14C	371196	5869583	593	15	BD	227	10.4	1.6	2.4	1.18	0.07	BD
HG14D	371196	5869583	593	357	BD	1794	73.3	1.3	19.1	26.32	0.08	46
HG14E	371196	5869583	593	38	0.06	1038	48	2	117.1	18.01	0.08	11
HG15	371218	5869539	597	9	BD	96	6.2	2.1	1.7	4.43	0.09	9
HG16	371229	5869498	597	12	BD	40	4.6	1.6	1.7	2	0.16	8
HG17	371249	5869507	594	51	0.37	161	35.8	1.2	9.9	17.31	0.08	24
HG18A	371245	5869514	594	69	BD	45	5.6	2	1.4	2.62	0.2	10

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG18B	371245	5869514	594	85	BD	127	7.4	1.1	4.2	4.14	0.06	3
HG18C	371245	5869514	594	6	BD	26	7.3	0.9	2	1.77	0.15	2
HG19	371194	5869559	597	99	BD	619	11.6	2	5.5	5.91	0.08	14
HG20	371241	5869592	588	4	BD	37	15.3	0.6	6.5	2.4	0.08	11
HG21	371231	5869619	582	91	BD	305	9.4	1.9	35.6	5.42	0.06	10
HG22	371232	5869614	584	17	BD	218	9.3	1	7.3	5.72	0.07	7
HG23	371228	5869637	576	1027	0.25	4587	123.8	1.5	48.3	68.05	0.15	39
HG24A	371229	5869641	575	37	BD	248	24.2	0.7	7.8	4.07	0.07	7
HG24B	371229	5869641	575	4392	0.84	191	6.8	0.8	7.8	45.24	0.09	2
HG25	371227	5869643	575	34	BD	228	8	1.9	7.7	4.33	0.06	10
HG26A	371223	5869644	574	77	0.59	394	14.5	1.5	57.4	5.12	BD	13
HG26B	371223	5869644	574	19	0.19	122	9.7	2	36.6	1.69	BD	3
HG27	371201	5869611	588	12	BD	41	3	1.6	3.3	1.45	0.06	7
HG28A	371205	5869603	589	1162	0.53	940	24.6	1.3	23.7	30.9	0.09	8
HG28B	371205	5869603	589	512	BD	865	24.6	1.7	27.8	34.66	0.23	9
HG29 HG30A	371201 371200	5869606	589	178 151	0.07 2.61	290 1627	11.6	2.3 1.8	26.2 366.2	9.58	0.08 BD	9
HG30B	371200	5869602 5869602	590 590	80	16.33	530	47.5 10.2	2.2	752.9	19.67 5.68	0.07	9
HG30B	371200	5869595	590	63	0.11	2019	63.6	3.1	224.9	88.65	0.07	28
HG32	371203	5869595	590	1054	0.11	1681	11.7	1.3	21.9	14.46	0.09	8
HG33	371196	5869596	590	596	0.16	797	19.3	1.7	48.8	22.26	0.11	7
HG34	371193	5869591	592	96	BD	1044	37.2	1.7	67.6	21.28	0.1	18
HG35A	371201	5869672	575	91	0.09	86	11.2	3.6	3	3	0.09	10
HG35B	371083	5869672	575	41	BD	56	8.8	2.7	2.6	1.84	0.09	10
HG36	371082	5869672	575	78	BD	257	17	4.2	3.7	6.38	0.12	11
HG37	371086	5869675	574	18	BD	95	7.2	3.3	6.8	3.12	0.07	7
HG38	371095	5869674	574	42	BD	196	20.3	6.7	9.9	5.13	0.06	15
HG39	371027	5869702	574	7	BD	19	14.2	0.5	15	3.29	0.05	20
HG40	371028	5869707	574	29	BD	22	14.3	0.7	29	2.89	0.08	27
HG41	371007	5869684	573	3	BD	18	15.4	0.4	12.9	3.59	0.06	23
HG42A	371049	5869750	568	141	BD	72	10.3	75.3	5.6	4.69	0.08	7
HG42B	371049	5869750	568	164	BD	78	23.4	46.6	7.3	5.76	0.06	13
HG43	371041	5869755	570	11	BD	50	17.1	0.6	14.1	4.06	0.05	27
HG44	371061	5869749	565	319	0.06	125	16.2	24.3	8.1	4.86	0.09	12
HG45	371051	5869748	569	326	0.08	74	12.6	19.6	20.1	3.66	0.18	9
HG46	371061	5869755	564	200	BD	76	12.8	2.7	9.2	2.82	0.06	8
HG47	371066	5869822	552	205	0.15	74	5.5	26.2	9.1	3.66	0.08	8
HG48	371055	5869825	554	66927	10.3	189	43.2	26	662.7	13.44	0.21	15
HG49	371055	5869829	553	630	BD	16	5.9	7.1	16.3	1.89	0.13	6
HG50	371027	5869819	563	137	BD	52	11.4	1.4	13	5.45	0.1	9
HG51	371034	5869817	562	161	BD	32	11.5	0.8	12.4	4.87	0.05	17
HG52	371033	5869819	562	22	0.1	11	27.1	1.6	6.3	4.56	BD	9
HG53	371029	5869817	563	24	BD	18	25.3	0.7	12.2	5.42	0.07	49
HG54	371052	5869843	552	38	BD	57	32.5	3.3	16.6	19.32	0.16	33
HG55	371056	5869851	550	31	BD	57	11.4	5.5	29	4.86	0.09	14
HG56	371058	5869855	550	1030	0.16	94	19.4	6.5	7.7	3.93	0.11	10
HG57A	371056	5869863	550	198	BD	24	17.8	5.5	2.4	1.7	0.13	7
HG57B	371056	5869863	550	52	0.06	129	25.5	3.9	3.9	4.13	0.14	3
HG58	371054	5869869	549	45	BD	16	9.3	3.6	4.9	1.43	0.1	5
HG59	371043	5869866	554	50	BD	75	15.3	5.1	4.3	8.54	0.2	26
HG60	371043	5869876	553	131202	12.85	132	61.7	4.1	37.6	13.56	0.12	34
HG61	371039	5869895	545	193	0.07	5	3.6	2.6	13	0.93	0.07	3
HG62	371042	5869899	543	114	0.08	59	15.2	3.9	15.5	2.81	0.17	11
HG63	371063	5869894	539	428	BD	138	23.1	10.1	14.1	20.84	0.16	35

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG64	371060	5869896	538	118	BD	25	12.9	3.6	4.1	1.46	0.08	11
HG65	371061	5869896	539	30	BD	47	14.4	1.3	11.2	2.45	0.11	75
HG66	371059	5869896	539	55	BD	16	6.1	11.8	5.6	1.9	BD	12
HG67	371058	5869906	535	198	0.05	43	20	4.8	10.6	7.12	0.52	15
HG68	371054	5869925	526	692	0.11	40	11.8	16.2	4.9	6.41	0.17	15
HG69	371052	5869920	527	65	BD	31	13.8	2.3	4.1	2.51	0.11	16
HG70	371040	5869935	525	247	BD	233	33.7	63.5	13.5	29.89	0.25	49
HG71	371051	5869900	540	57	BD	13	7.9	1.7	7.1	3.71	0.06	54
HG72	371829	5866515	479	4	BD	15	14.7	1.1	19.9	2.12	0.1	71
HG73	371852	5866503	478	5	BD	17	27.1	0.7	24.9	2.24	0.08	90
HG74	371742	5866301	549	4	BD	24	66.1	1.4	11.4	7.19	0.16	32
HG75	371724	5866341	545	5	BD	12	34	0.6	15.9	3.79	0.18	57
HG76	371665	5866429	545	2	BD	9	13.4	0.4	11.3	1.55	0.11	60
HG77	371651	5866427	549	4	BD	9	13.4	0.6	10.6	1.9	0.16	46
HG78	371647	5866439	547	4	BD	11	18.4	0.5	12.8	2.58	0.07	28
HG79	371647	5866436	547	2	BD	19	17	0.4	15.6	1.41	BD	29
HG80	372504	5870625	506	2	BD	7	16.8	1.9	6.2	3.45	BD	5
HG81	372503	5870612	505	8	BD	1	11.4	1.1	1.8	0.47	0.05	1
HG82	372295	5870639	497	2	BD	BD	9.9	1.3	0.6	0.19	0.07	BD
HG83	372223	5870613	494	4	BD	BD	7.1	1	1	0.12	BD	1
HG84	372208	5870553	504	2	BD	13	8.7	0.4	10.8	0.76	0.09	14
HG85	372090	5870478	537	1	BD	23	18.6	1.2	11.3	6.63	0.35	31
HG86	371956	5870516	535	BD	BD	BD	4.6	1	1.3	0.2	BD	BD
HG87	371826	5870637	541	3	BD	8	16.6	1.5	6.8	0.97	0.06	12
HG88	371625	5870809	540	1	BD	8	7.9	0.4	10.8	1.32	0.08	23
HG89	371641	5870803	542	6	BD	1	25.1	1.6	1	0.16	0.1	4
HG90	371641	5870804	542	BD	BD	5	10.6	0.4	14.9	0.7	0.08	27
HG91	371723	5870892	512	6	BD	BD	6.5	1.1	1.9	0.74	BD	2
HG92	371749	5870927	516	9	BD	8	92.1	1.2	56.8	6.82	0.14	52
HG93	371753	5870916	515	1	BD	5	16.5	0.5	10.1	1.15	0.17	41
HG94	371757	5870917	517	2	BD	6	16.6	0.3	10.6	1.03	0.17	36
HG95	371844	5870963	520	1	BD	7	6.1	0.5	8.5	0.58	0.13	9
HG96	371911	5871033	498	1	BD	7	71.2	0.5	34.9	3.45	0.13	56
HG97	371996	5871102	476	2	BD	7	16.9	0.4	16.5	1.34	0.13	10
HG98	371998	5871118	471	2	BD	3	18.4	0.8	4	0.33	0.1	3
HG99	371997	5871123	471	4	BD	12	11.8	0.4	22.8	1.33	0.11	14
HG100	372419	5870617	505	BD	BD	BD	3.2	0.8	1	0.11	BD	BD
HG101	372522	5870615	505	2	BD	66	70.2	2	38.6	15.7	0.14	30
HG102	372515	5870657	502	7	BD	84	150.9	6.4	21.6	9.84	0.07	22
HG103	371885	5868912	550	3	BD	8	25	1	10.7	1.69	0.1	26
HG104	371761	5868076	604	2	BD	11	10.9	0.8	10.1	1.51	0.06	8
HG105	371762	5868076	605	1	BD	5	7.1	1.5	2.9	1.01	0.06	7
HG106A	371758	5868055	603	1	BD	1	5.6	1.2	0.8	0.22	BD	BD
HG106B	371758	5868055	603	1	BD	2	4.2	1.6	1.2	0.47	BD	1
HG106C	371758	5868055	603	2	BD	3	6.4	1	4	0.52	0.07	2
HG107	371757	5868054	604	1	BD	11	8.4	1.1	10.6	1.82	0.06	15
HG108A	371744	5868043	602	1	BD	BD	4	1.2	1.5	0.16	BD	BD
HG108B	371744	5868043	602	BD	BD	6	9	0.9	7	0.9	BD	2
HG109A	371740	5868045	602	BD	BD	9	9.6	0.4	11	0.88	0.06	16
HG109B	371740	5868045	602	2	BD	13	7.9	0.7	17.6	2.1	0.05	8
HG110A	371711	5867998	599	4	BD	16	8.6	1.2	6.9	1.87	0.07	10
HG110B	371711	5867998	599	2	BD	1	7.6	1.2	0.6	0.26	0.06	1
HG110C	371711	5867998	599	2	BD	2	4.9	1.2	0.9	0.34	BD	1
HG111	371712	5867992	600	1	BD	16	18.7	0.5	18.6	4.44	0.09	19

				Au	Ag	As	Cu	Мо	Pb	Sb	W	Zn
Sample	East	North	RL	(ppb)	(ppm)	(ppm)	(ppm)	(ppm	(ppm)	(ppm)	(ppm)	(ppm)
HG112	371725	5868025	600	2	BD	27	15.5	0.7	8.9	1.63	BD	17
HG113A	371731	5867922	601	BD	BD	9	16.2	0.7	10.2	2.09	0.09	22
HG113B	371731	5867922	601	1	BD	5	7.1	0.7	11.2	1.26	0.08	9
HG113C	371731	5867922	601	1	BD	4	7.2	1	0.9	0.76	BD	3
HG114	371756	5867915	589	1	BD	2	4.2	1.5	0.9	0.4	0.11	7
HG115A	371758	5867925	591	1	BD	3	5.9	1	2.5	0.54	BD	2
HG115B	371758	5867925	591	BD	BD	6	5.9	0.9	14	1.57	0.06	6
HG116A	371746	5867929	596	BD	BD	1	4.7	1.6	0.7	0.22	0.07	8
HG116B	371737	5867931	599	BD	BD	2	12.4	1.4	0.8	0.35	BD	1
HG117A	371767	5868056	605	BD	BD	1	7.2	1	0.7	0.22	BD	BD
HG117B	371767	5868056	605	2	BD	3	6.2	1.3	1.7	0.7	BD	1
HG117C	371767	5868056	605	BD	BD	3	7.8	2	0.9	0.8	0.05	9
HG118	371802	5868089	610	7	BD	59	18.4	1.3	84	3.43	0.1	14
HG119A	371843	5868290	617	7	BD	26	10.7	0.9	7.2	1.83	0.07	8
HG119B	371843	5868290	617	7	BD	23	17.9	1.2	7	2.51	0.06	9
HG120	371846	5868260	618	5	BD	13	24.6	0.5	25.2	7.55	0.08	15
HG121A	371834	5868256	615	3	BD	19	16.6	0.7	13.2	4.05	0.18	15
HG121B	371834	5868256	615	1	BD	2	4.1	1.1	1.7	0.63	BD	1
HG122A	371783	5868266	608	4	BD	10	14.2	1.4	19	1.27	0.16	19
HG122B	371783	5868266	608	1	BD	6	6.7	0.7	20.2	2.93	0.08	6
HG123A	371751	5868265	607	BD	BD	BD	4.4	0.8	0.8	0.27	BD	BD
HG123B HG124A	371751	5868265	607	6 3	BD BD	22	26.7	1	10.1	4.15	0.13	41 12
HG124A HG124B	371899 371899	5868275	615 615	BD	BD	9	22.4 7.7	0.6 2.3	18.2	3.3 2.11	0.08	6
HG124B HG125A	371888	5868275 5868213	609	BD BD	BD	1	3.3	0.8	61.9 1.9	0.44	0.07 BD	BD
HG125B	371888	5868213	609	3	BD	31	15.9	0.8	16.2	10.28	0.05	11
HG126A	371869	5868247	617	BD	BD	27	14.4	0.8	9.1	3.08	BD	7
HG126B	371869	5868247	617	BD	BD	7	6.2	0.5	15.4	1.13	0.05	9
HG127A	371868	5868217	613	1	BD	4	8.1	1.4	15.1	2.35	0.06	4
HG127B	371868	5868217	613	6	BD	42	21.7	0.7	11.2	6.64	0.05	7
HG128	371860	5868217	612	BD	BD	3	6.7	0.9	4.9	0.65	BD	2
HG129	371827	5868472	618	3	BD	34	44.3	3.7	12.4	2.92	0.1	20
HG130	371829	5868475	618	3	BD	30	31.6	3.5	16.7	5.05	0.08	9
HG131A	371859	5868491	618	1	BD	9	5.9	4.8	9.6	0.61	BD	4
HG131B	371859	5868491	618	BD	BD	4	6.2	1.3	3.4	0.53	0.06	8
HG132	371842	5868488	621	9	BD	23	29.5	3.9	7	1.86	0.07	17
HG133	371841	5868492	620	7	BD	15	20.7	3	7.3	1.53	0.08	7
HG134	371833	5868493	618	BD	BD	5	15.8	0.6	23.2	1.09	0.11	14
HG135	371404	5868508	598	4	BD	19	46.5	1.3	22.5	5.52	0.38	63
HG136A	370759	5867576	516	BD	BD	10	17.4	1.1	3	2.91	0.19	8
HG136B	370759	5867576	516	4	BD	4	22.4	1.6	2.2	0.98	0.14	22
HG137	370738	5867553	518	35	BD	12	22.7	1.5	2.8	2.67	0.15	11
HG138	370625	5867627	494	2	BD	3	18.7	1.6	2.5	1.89	0.14	17
HG139	370540	5867643	512	1471	0.06	1243	27.7	0.9	10.6	64.84	0.16	58
HG140	370472	5867664	503	19	BD	140	19.7	1.5	4.5	3.65	0.13	16
HG141A	370417	5867745	473	105	BD	124	8.9	1	4.7	3.36	0.08	10
HG141B	370417	5867745	473	46	BD	172	20.9	1.1	5.3	5.03	0.08	10
HG142	370572	5867644	503	1180	0.06	388	26.9	1.2	6.8	15.25	0.13	21
HG143	370736	5867614	521	3	BD	4	10.8	0.9	0.8	0.73	0.09	4
HG144A	370771	5867641	520	36	BD	15	14.7	1.1	8.8	3.19	0.08	3
HG144B	370771	5867641	520	4	BD	17	34.4	1.1	12.7	3.55	0.13	7
HG145	370787	5867638	519	7	BD	22	20.2	1.5	7	1.34	0.07	16
HG146	370921	5867763	526	8	BD	13	10.9	1.7	2.6	1.31	0.1	27
HG147A	371008	5867859	538	640	0.13	49	14.6	1.4	1.7	3.34	0.12	10

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG147B	371008	5867859	538	276	0.1	99	14.9	1.9	1.1	3.67	0.07	8
HG148A	371059	5867986	548	137	BD	31	11	1.2	5.9	2.66	0.06	19
HG148B	371059	5867986	548	2000	1.34	365	18.7	1.5	1.9	9.36	0.11	9
HG148C	371059	5867986	548	601	0.13	70	13.6	2	3.6	2.1	0.1	12
HG149A	371050	5867986	547	15	BD	7	8.8	1.8	BD	0.53	0.13	9
HG149B	371050	5867986	547	32	0.09	62	14.6	1.4	6.3	2.61	0.09	16
HG149C	371050	5867986	547	39	0.05	27	22	1.5	3.6	1.33	0.11	13
HG150A	371064	5867977	549	245	BD	203	28.4	0.9	8.1	9.23	0.18	31
HG150B	371064	5867977	549	9686	1.34	29	22.2	1.5	2	1.84	0.09	7
HG150C	371064	5867977	549	113	BD	83	19.4	1.1	11.4	3.64	0.11	25
HG151A	371057	5867972	548	42	BD	113	19.6	1.3	6.8	2.9	0.13	25
HG151B	371057	5867972	548	7631	0.8	44	7.9	1.4	2.5	1.88	0.05	9
HG152A	371061	5867976	548	249	0.07	56	13.9	1.4	3.3	2.72	0.09	13
HG152B	371061	5867976	548	667	0.13	20	8.1	1.9	0.6	1.02	0.09	9
HG153A	371085	5868137	570	13	BD	19	13.4	0.9	3.2	1.66	0.05	10
HG153B	371085	5868137	570	306	BD	313	10	1	3.4	7.31	0.06	10
HG153C	371085	5868137	570	84	BD	114	21.4	0.7	3.7	6.81	BD	17
HG153D	371085	5868137	570	118	BD	124	10.7	0.9	2.7	4.17	0.06	8
HG154A	371129	5868143	570	1688	0.06	1308	52.9	1	19.5	21.4	0.12	44
HG154B	371129	5868143	570	577	BD	909	35.6	0.6	23.1	47.68	0.13	84
HG154C	371129	5868143	570	59	BD	85	14.2	0.9	4.4	6.11	0.1	18
HG155	371215	5868211	571	8	0.12	13	37.4	1	11.3	6.41	0.08	43
HG155B	371215	5868211	571	3	0.06	6	21	0.7	5.2	2.29	0.09	47
HG156	374328	5868568	532	4	0.05	227	32.5	0.9	66.6	1.37	0.11	51
HG157	374332	5868573	533	4	BD	103	40.8	1	49.5	1.58	0.14	52
HG158	374353	5868569	538	3	0.06	8	41	0.8	70.8	0.82	0.25	97
HG159	374472	5868608	579	2	BD	5	19.6	0.9	9.1	0.65	0.11	39
HG160A	374462	5868583	575	1	BD	6	9.5	0.6	16.6	0.57	0.13	44
HG160B	374462	5868583	575	1	BD	2	27.5	0.4	19.9	0.25	0.29	67
HG161	374361	5868573	538	2	BD	61	30.7	0.8	150.6	1.23	0.18	62
HG162	374781	5871002	747	BD	BD	2	8.5	0.8	6.1	0.38	BD	11
HG163	375581	5872038	707	2	0.22	17	3.4	0.9	4.9	1.45	3.58	7
HG164	375621	5871951	705	BD	BD	7	2.5	0.4	4.7	0.5	1.99	30
HG165	375623	5871958	707	BD	BD	10	2.1	0.4	4.6	0.61	3.32	23
HG166	375644	5871942	705	BD	BD	10	4.2	0.5	8.1	0.76	2.27	24
HG167	375594	5872015	708	BD	BD	30	19.8	0.5	20.2	0.94	7.01	71
HG168A	375628	5871959	707	BD	BD	11	2.9	0.7	5.5	0.64	1.23	14
HG168B	375628	5871959	707	BD	BD	14	6.3	0.7	4.1	0.44	1.21	10
HG169	375594	5872006	708	BD	BD	BD	4.3	1.8	0.9	0.09	0.51	8
HG170	375517	5871987	700	BD	BD	87	12.2	0.5	7.4	1.26	1.24	18
HG171	375750	5872231	702	BD	BD	2	2.7	0.6	4.4	0.22	8.47	6
HG172	375719	5872247	706	2	BD	4	5	0.8	BD	0.22	2.11	1
HG173	375695	5872267	708	2	BD	1	7.2	1.4	BD	0.22	4.3	BD
HG174	375714	5872315	706	BD	BD	BD	5.2	1.4	BD	0.13	0.91	6
HG175	375714	5872341	706	20	0.19	2	2.9	2.2	19.4	0.6	86.25	8
HG176	375765	5872404	703	BD	BD	BD	4.7	1.3	BD	0.08	1.23	4
HG177	375777	5872435	706	BD	BD	3	2.2	1.1	3.6	0.06	21.28	6
HG178A	375772	5872501	718	BD	BD	2	4.2	0.6	9.2	0.20	1.44	5
HG178B	375722	5872501	718	8	BD	1	2.3	0.8	1.4	0.17	1.14	1
HG179	375664	5872517	725	BD	BD	2	6.9	1.4	0.6	0.17	2.91	6
HG180A	375478	5872536	744	1	0.09	BD	8.3	1.4	14.9	0.21	18.19	7
HG180B	375478	5872536	744	BD	0.09	BD	4.2	1.3	0.6	0.16	0.99	BD
HG181	376392	5857102	801	16	BD	3	31.7	1.2	5.9	0.1	6.62	52
HG187	380499	5856302	730	BD	BD	48	11.9	0.7	4.4	0.24	0.62	58
110101	300433	1 3030302	130	טט	טט	1 40	וו.ש	0.7	<u> </u> 4.4	0.24	1 0.0	50

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG188	380472	5856347	736	8	0.05	75	18.9	1.6	4.8	0.41	0.92	63
HG189	380424	5856450	746	3	BD	73	16.2	1.5	4.6	0.36	1.54	59
HG190	380425	5856448	743	2	BD	62	10.9	1.4	3.4	0.28	11.28	57
HG191	380494	5856439	728	25	BD	51	16.6	1	5.6	0.27	1.12	55
HG192	380491	5856438	727	223	BD	99	24.3	1	6.1	0.44	0.88	58
HG193A	380515	5856425	718	1059	0.07	28	8.8	1.3	3.9	0.24	9.72	45
HG193B	380515	5856425	718	65	BD	40	15.5	0.6	5.3	0.23	15.43	48
HG194	380537	5856401	712	7	BD	49	20.6	0.9	6.2	0.2	17.48	58
HG195	380588	5856339	710	3	BD	39	5.7	0.9	4.6	0.19	1.42	80
HG196	380686	5856337	689	5	BD	172	20.4	0.7	6.4	0.36	4.27	70
HG197	378670	5854763	806	BD	BD	2	4.3	0.8	BD	0.06	0.13	1
HG198	378677	5854820	808	BD	BD	5	17.4	1.1	4.3	0.13	19.76	67
HG199	372417	5873762	478	1	BD	5	16	0.6	12.5	0.55	0.21	54
HG200A	372863	5874286	602	BD	BD	1	3.1	1.2	BD	0.08	0.58	BD
HG200B	372863	5874286	602	BD	BD	76	19.9	1	22.3	0.69	0.17	24
HG201A	373401	5868441	536	BD	BD	3	3.5	0.7	2.3	1.08	BD	2
HG201B	373401	5868441	536	BD	BD	2	7.1	1	4.1	0.53	0.3	2
HG202A	373430	5868519	543	1	BD	8	3.3	1.3	2.2	2.1	0.13	6
HG202B	373430	5868519	543	1	BD	21	5.2	2.3	4.3	3.12	0.11	10
HG203	373414	5868472	538	BD	BD	5	4.7	1	3.1	1.53	0.08	5
HG204	373303	5868277	515	BD	BD	4	5.7	1.1	2.6	0.34	0.08	9
HG205A	371047	5869830	556	86	0.08	119	50.1	14.1	20.3	12.43	0.51	42
HG205B	371047	5869830	556	91	BD	134	82.5	16.9	52.9	25.97	0.89	96
HG205C	371047	5869830	556	30	BD	100	90.7	8.2	23.3	34.03	0.39	74
HG205D	371047	5869830	556	245	0.05	35	12.4	9.1	12.5	4.55	0.16	9
HG206A	371053	5869825	554	31	BD	123	111.7	7.6	22.9	17.44	2.31	72
HG206B	371053	5869825	554	111	0.06	103	48.5	11.4	24.1	21.03	0.67	52
HG206C	371053	5869825	554	133	0.13	120	100.1	11	45.1	21.87	0.58	75
HG207 HG208	372679	5866800	472	4	BD BD	16	20.8	0.9 1.1	11.2	2.08	BD	96 19
HG208	372828 372818	5867071 5867076	500 499	2	BD	366 180	13.5 5.9	0.9	13.5 11.6	3.62 2.38	0.05	9
HG210	372795	5867073	499	5	0.1	544	23.9	1.3	39.1	4.15	0.08	18
HG211	372841	5867070	498	1	BD	4	7.7	1.2	1.3	1.22	0.07	3
HG212	372829	5867075	498	4	BD	221	13.9	1.4	9.6	3.13	0.07	14
HG213	372812	5867062	500	1	0.43	156	9.3	1.1	56.8	2.01	BD	3
HG214	372819	5867085	498	1	BD	386	17.4	1	11.7	2.97	0.07	9
HG215A	372822	5867089	498	2	BD	279	12.7	1.2	8.7	1.88	0.06	10
HG216	372897	5867357	503	1	BD	57	74.6	1.3	13	4.44	0.00	27
HG217	372886	5867358	502	BD	BD	10	7.2	1.1	10.2	1.9	BD	10
HG218	373275	5868229	513	2	BD	6	13	0.6	14.7	0.61	0.08	11
HG219	373256	5868233	512	BD	BD	6	9.5	0.9	6.7	0.78	0.05	7
HG220	373256	5868244	512	4	BD	20	20.1	6.7	8.7	2	BD	10
HG221	373034	5867829	505	3	BD	11	12.8	1.4	10.3	1.47	0.07	7
HG222	373034	5867827	505	1	BD	30	12.0	1.5	16.6	3	0.08	12
HG223	372998	5867771	507	2	BD	106	45.7	1.1	9.4	2.36	0.08	30
HG224	372980	5867738	510	BD	BD	504	10	0.9	8	3.74	BD	44
HG225	372989	5867733	512	BD	BD	16	4.9	0.7	9.3	0.73	BD	15
HG226	372986	5867711	512	1	BD	3	6.7	0.6	7.3	0.79	0.07	22
HG227	372984	5867712	512	2	BD	882	61.1	3	16.5	8.05	0.1	37
HG228	372987	5867705	512	4	BD	421	24.6	0.8	17.6	3.26	BD	33
HG229	372977	5867672	511	2	BD	53	167.4	1.3	16.4	2.95	0.11	39
HG230	372981	5867633	508	1	BD	11	23.2	0.7	16.4	1.11	0.1	13
HG231	372959	5867550	505	BD	BD	4	5.6	1.2	0.8	0.23	BD	2
HG232	372940	5867507	507	3	BD	5	10	0.9	10.1	1.38	0.16	25

		l							ı			
Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG233	372932	5867484	508	1	BD	13	13.4	0.8	15.2	0.94	0.11	24
HG234	372919	5867426	506	BD	BD	6	12.2	0.9	17.4	1.71	0.07	28
HG235	372905	5867427	505	1	BD	11	32.2	1.3	11.6	1.3	0.07	21
HG236	372907	5867419	505	10	BD	19	144	1.9	16.1	5.15	0.09	34
HG237	372898	5867407	505	BD	BD	8	6.1	0.9	2.6	3.54	BD	5
HG238	372895	5867382	503	2	BD	16	42.2	1.5	9.6	1.95	0.1	33
HG239A	372826	5867103	497	BD	BD	241	8.3	1	11.5	4.35	BD	10
HG239B	372826	5867103	497	2	BD	588	16.9	0.8	31.7	3.95	0.1	25
HG240A	372830	5867113	495	BD	BD	247	6.2	0.7	26.9	3.93	BD	13
HG240B	372830	5867113	495	BD	0.12	100	14.5	1.1	7.7	3.53	0.08	10
HG240C	372830	5867113	495	BD	BD	54	4.7	1	6.6	2.49	0.14	9
HG241	372952	5866530	421	BD	BD	5	9.4	0.7	7	0.87	0.06	20
HG242	372942	5866583	439	3	BD	96	48	2	32.8	2.63	0.11	52
HG243	372943	5866672	449	2	BD	8	10.9	0.9	11.6	1.17	0.08	28
HG244	372932	5866747	455	2	BD	4	7.8	0.7	14.9	1.72	0.05	13
HG245	372933	5866829	467	1	BD	6	9.4	0.5	8.7	0.74	0.15	29
HG246	372926	5866968	488	BD	BD	9	5.5	0.7	7.6	3.1	BD	14
HG247	372897	5866981	491	6	BD	240	37.9	2.4	10.8	8	BD	27
HG248	372890	5866999	495	3	BD	14	10.3	0.9	8.6	1.47	BD	8
HG249	372879	5867091	481	2	BD	24	22.5	1.3	14.8	1.97	BD	9
HG250	372897	5867088	475	BD	BD	5	10	0.9	11.7	1.18	BD	10
HG251	372922	5867041	482	BD	BD	6	8.3	0.7	5.6	2.55	BD	12
HG252	372897	5867025	490	BD	BD	8	8.8	1.1	6.9	2.77	BD	11
HG253	372921	5866990	488	3	BD	19	15.5	1.3	8.1	1.41	0.06	11
HG254	372943	5866814	465	2	BD	49	11.9	1.1	16.4	6.97	BD	19
HG255	372947	5866696	453	23	BD	11	22.6	0.8	26.7	2.7	0.1	51
HG256	380092	5858022	859	BD	BD	5	19.6	1.5	6.6	0.21	0.55	83
HG257	380925	5858066	685	BD	BD	124	4.1	0.8	0.7	0.27	72.63	BD
HG258	380926	5858063	686	BD	BD	102	5.3	0.5	3.8	0.25	0.98	59
HG259	380926	5858062	686	BD	BD	75	31.9	0.5	5.1	0.46	0.22	22
HG260	380953	5858050	680	3	BD	2006	8.9	0.6	9	2.19	0.48	8
HG261	380981	5858027	676	BD	BD	21	10.3	0.9	5.7	0.14	0.51	76
HG262	380994	5857931	663	BD	BD	32	3.4	0.9	1	0.36	140.08	8
HG263	380994	5857882	649	1	BD	753	14.7	0.7	4.7	2.32	1.26	9
HG264	380985	5857864	649	BD	BD	205	1.8	0.6	2.8	2.09	0.5	1
HG265	380948	5857828	642	BD	BD	490	45	1.6	8.4	1.44	1.3	6
HG266	380915	5857855	643	BD	BD	259	7.9	0.7	4	0.69	1.32	3
HG267	380879	5857884	640	BD	BD	22	3.1	0.3	0.7	0.09	393.65	1
HG268	380878	5857887	645	BD	BD	113	3.3	0.5	1.1	0.14	182.01	BD
HG269	380879	5857892	645	BD	BD	42	5.1	0.5	4.3	0.06	2.62	48
HG270	380873	5857931	660	BD	BD	16	6.6	1	6.3	0.13	1.06	77
HG271	380875	5857937	661	BD	BD	26	4.8	1	0.7	0.2	76.89	8
HG272	380874	5858060	689	BD	BD	27	13.4	0.7	9.4	0.16	1.08	92
HG273	380884	5858096	694	1	BD	84	4.7	0.8	13	0.34	256.07	9
HG274	380891	5858100	695	BD	BD	621	8.6	0.6	5.9	0.31	7.95	70
HG275	380887	5858087	694	BD	BD	349	3.1	1	1.3	0.58	322.48	8
HG276	380778	5858191	730	35	BD	825	9	1.3	5.9	0.49	45.82	60
HG277	380736	5858183	736	2	BD	62	6.5	1 1	5.7	0.25	2.43	60
HG278	380721	5858184	740	4	BD	1800	4.6	1.8	1.7	1.51	381.98	10
HG279	380666	5858173	752	BD	BD	64	5.7	0.9	5.6	0.22	6.08	66
HG280	380654	5858170	755	729	0.15	75	19.5	2	4.6	0.24	0.87	52
HG281	380427	5858205	806	1	0.05	22	13.5	1.5	4.9	0.26	0.73	78
HG282	380434	5858203	805	42	BD	57	10.9	1.8	11.5	0.66	1.53	45
HG283	380317	5858226	831	1	BD	8	16.6	1	5.4	0.18	0.61	87

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG285	379981	5858010	882	BD	BD	4	15.9	0.9	6.9	0.2	0.52	81
HG286	379979	5858010	881	2	BD	6	20.2	1.7	5.8	0.18	0.78	83
HG287	379971	5858021	881	1	BD	7	22.4	1	7.3	0.22	0.83	87
HG288	380797	5856343	652	2	BD	30	9.8	1.2	5.1	0.21	2.99	65
HG289	380813	5856330	655	7	BD	26	9.9	0.8	4.5	0.19	1.16	70
HG290	380773	5856275	667	2	BD	81	15.1	1	6	0.28	0.92	66
HG291	380771	5856295	665	12	BD	462	15.4	1.3	12	0.52	215.24	58
HG292	380740	5856351	666	3	BD	61	10.4	0.9	5	0.25	18.69	68
HG293	380757	5856370	661	2	BD	109	9.6	0.9	5.7	0.23	3.58	75
HG294	380757	5856416	669	95	0.06	81	19	1.6	4.5	0.36	7.63	70
HG295	380742	5856512	706	925	0.17	123	12.4	1	5.9	0.47	61.17	60
HG296	380762	5856568	706	4	BD	43	9.2	0.6	4.6	0.28	4.39	72
HG297	380800	5856605	702	2	BD	56	6.5	0.7	4	0.23	303.25	56
HG298	380855	5856720	708	9	BD	80	15.7	1.3	5.5	0.27	4.56	70
HG299	380809	5856777	719	6	BD	39	9	0.6	5.8	0.22	2.75	63
HG300	380856	5856807	715	3	BD	809	5.3	1.8	1.2	0.42	549.61	9
HG301A	380834	5856840	713	3	BD	1944	6	1.1	1.1	0.79	254.96	BD
HG301B	380834	5856840	713	387	BD	118	11.4	1.1	4.5	0.45	10.08	63
HG302	380811	5856909	712	2	BD	69	7.1	0.8	4.8	0.24	36.12	60
HG303A	380811	5856912	713	BD 40	BD	24	4.6	1.3	0.6	0.16	130.93	10
HG303B HG304	380811	5856912	713 703	10 BD	BD BD	136	8.6 5.4	0.8	5.2	0.22	3.32 4.03	66 54
	380863	5856923				148			8.5	0.16	-	
HG305	380877	5856930	700 699	4	BD BD	39	2.9 4.2	0.9	1.4	0.16	325.72	7
HG306 HG307	380894	5856914		2		825		1.5	5.8	0.46	681.86	13
HG308	380938	5856911	694	2	BD BD	860	28.5 2.4	0.9 1.2	4.5 2	2.16	109.13	6 4
HG309	380963 380752	5856917 5856370	685 660	3	BD	36 308	15.2	1.4	4.4	0.19 0.38	12.58 49.66	66
HG310	379391	5855389	863	BD	BD	19	21.2	1.4	4.4	0.36	49.00	70
HG311	379486	5856391	866	BD	BD	5	15.2	0.9	5.2	0.13	3.86	71
HG312	379756	5856630	830	BD	BD	4	14.6	1	5.6	0.13	3.37	71
HG313	379759	5856631	830	3	BD	5	11.8	1	3.8	0.14	4.12	10
HG314	379760	5856627	832	BD	BD	4	13.7	0.8	5.2	0.14	1.89	61
HG315	379791	5856621	832	BD	BD	13	28.5	1.1	3.9	0.00	2.76	9
HG316	379844	5856718	819	BD	BD	18	14.5	0.9	3.8	0.13	11.17	10
HG317	379838	5856720	818	1	BD	46	44.6	1.2	4.6	0.15	95.06	15
HG318	379852	5856718	817	1	BD	3	15.1	1.2	5.1	0.13	2.25	76
HG319	379966	5856728	807	BD	BD	4	10.3	1.3	4.2	0.14	2.59	64
HG320	380025	5856763	795	BD	BD	27	17.8	1.1	4.5	0.14	5.9	65
HG321	380089	5856764	790	BD	BD	58	12	0.9	4.8	0.22	1.56	64
HG322	380103	5856787	779	2	BD	59	10.9	1.7	3.9	0.26	93.2	60
HG323	380128	5856825	773	1	BD	37	17	1.1	4.7	0.24	3.51	65
HG324	380074	5856836	781	BD	BD	21	12.3	1.7	5	0.2	1.39	59
HG325	380040	5856844	787	BD	BD	59	11.5	1.4	4.3	0.29	1.38	64
HG326	380007	5856864	797	BD	BD	42	10.9	1.9	4.1	0.23	0.99	67
HG327	379784	5856983	842	BD	BD	4	14.7	1.2	4.7	0.08	1.21	68
HG328	379627	5856951	850	BD	BD	10	18.9	0.9	5.6	0.17	1.66	69
HG329	371261	5865266	387	5	BD	38	10.9	1.2	8.5	2.92	0.48	13
HG330	370945	5865351	451	16	BD	342	6.4	1.3	3.8	5.08	0.38	27
HG331	370949	5865350	453	33	0.33	1039	9	1.4	48.7	17.16	0.46	21
HG332	370947	5865343	452	11	0.64	588	7.9	0.9	47.5	6.03	0.51	3
HG333	370954	5865340	453	8	BD	1031	5.5	1.6	5.3	12.85	0.29	16
HG334	370949	5865330	452	132	BD	1185	14.6	2.4	8.4	28.46	0.41	43
HG335	370955	5865339	454	229	0.3	484	6.2	1.5	114	27.54	0.23	10

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG337	370946	5865320	452	15	BD	644	8.1	1.4	30.2	7.73	0.27	23
HG338	370953	5865322	454	92	0.08	598	6.5	1.5	7	8.32	0.18	12
HG339	370957	5865321	457	9	0.09	2917	12.8	1	13.7	18.2	0.23	117
HG340	370960	5865312	459	11	BD	236	6.6	1	8.3	9.61	0.19	8
HG341	370964	5865295	463	11	BD	381	7.8	1.5	4	4.64	0.2	18
HG342	370985	5865298	470	347	0.08	760	19.6	0.6	22.4	15.77	0.16	29
HG343	370983	5865299	469	27	BD	296	4.3	0.9	4.9	6.57	0.23	7
HG344	370980	5865291	467	21	BD	761	92.3	1.2	10.2	34.62	0.32	100
HG345	370990	5865278	469	33	0.07	451	13.7	0.8	11.1	5.38	0.16	17
HG346	370988	5865279	469	11	0.06	703	7.7	0.7	3.8	4.42	0.15	58
HG347	370998	5865255	468	13	0.09	195	13.1	0.9	6.8	3.82	0.21	72
HG348	370993	5865248	466	18	BD	88	7.1	1.4	1.7	2.2	0.16	16
HG349	370986	5865250	468	8	BD	101	5.8	0.9	7.7	2.67	0.1	18
HG350	371000	5865227	461	7	BD	122	4.9	1.2	2.2	1.18	0.18	18
HG351	371005	5865216	460	17	0.12	654	13.3	1.4	7.7	4.06	0.12	72
HG352A	371056	5865223	452	5	BD	82	6.3	1.5	4	1.56	0.19	10
HG352B	371056	5865223	452	2	BD	232	5.2	0.8	2.6	3.74	0.12	22
HG353	371053	5865223	452	3	BD	237	4.9	1.9	3.4	3.94	0.15	16
HG354A	371796	5865103	440	BD	BD	10	17.5	1.7	4.3	1.46	0.12	14
HG354B	371796	5865103	440	BD	BD	8	13.7	1.4	3.8	1.36	0.13	13
HG355	371181	5869350	607	144	0.06	1794	138.5	1.4	55.8	57.22	0.1	24
HG356A	371196	5869329	609	29	BD	168	7.5	1.7	7.2	5.45	BD	8
HG356B	371196	5869329	609	41	BD	154	6.2	1.8	6.1	8.47	0.06	8
HG357A	371189	5869358	606	27	BD	233	7.4	1.4	52.5	12.19	0.13	9
HG357B	371189	5869358	606	10	BD	269	9.8	1.4	10.1	15.87	0.07	9
HG358	371219	5869317	610	35	BD	776	25.7	0.9	32.7	14.47	0.29	90
HG359	371257	5869341	607	37	BD	18	15.7	0.8	16.9	4.88	0.05	54
HG360	371226	5869347	607	4	BD	39	6.7	0.8	11.2	6.28	0.06	11
HG361	371174	5865572 5865706	442	BD 11	BD BD	13	13.6	0.5	11	3.22	0.12	45 20
HG362A HG362B	371038 371038	5865706	482 482	1	BD	18 9	10.3	1.3 0.5	11.3 12.4	1.55 2.02	0.17 BD	51
HG363	371036	5865715	481	5	BD	33	20.7	1.1	10.6	2.66	BD	29
HG364	370936	5865372	451	7	BD	273	7.4	1.5	3.7	3.61	0.12	29
HG365	370930	5865434	440	10	0.06	156	4.2	1.8	11.1	3.72	0.12	11
HG366	370857	5865462	442	23	0.06	538	8.6	1.4	10.5	12.36	BD	13
HG367A	370862	5865468	444	19	BD	521	9.7	1.3	12.7	14.4	0.07	12
HG367B	370862	5865468	444	29	BD	744	10.5	1.2	10.1	16.12	BD	13
HG368	370862	5865479	442	182	0.15	701	6.5	1.5	21.2	11.96	0.12	12
HG369	370822	5865451	432	64	BD	306	16.5	1.8	8.2	10.5	0.12	27
HG370	370809	5865451	426	71	BD	43	3.6	1.1	1.1	1.88	0.05	11
HG371	370765	5865446	410	17	BD	22	4.4	1.6	2.6	1.44	BD	19
HG372	370763	5865444	409	4	BD	19	5.9	1.6	1.1	0.99	0.07	12
HG373	370703	5865496	423	55	0.06	366	6.8	1.2	8.4	9.97	0.07	11
HG374	370810	5865492	429	21	BD	918	12.3	0.8	17.7	7.64	0.08	29
HG375	370839	5865493	431	10	BD	92	5.2	1.3	2.5	1.26	0.28	15
HG376	370886	5865508	447	8	0.07	218	5.6	1.9	17.9	6.64	0.08	15
HG377	370889	5865512	447	81	BD	133	4.9	1.8	12.6	4.84	0.11	12
HG378	371750	5865590	489	BD	BD	3	2.5	1.4	3.7	0.14	0.08	7
HG379	375041	5871391	750	BD	BD	13	10.9	0.5	13.1	0.77	0.09	19
HG380	375033	5871378	750	1	BD	55	18.8	0.6	7.8	0.52	0.37	14
HG381	374958	5871413	752	9	BD	82	37.3	0.7	25.7	21.13	2.16	47
HG382	374958	5871406	753	117	BD	63	19.2	0.9	73.2	1.34	0.86	16
HG383	374970	5871393	751	96	BD	20	10.7	1.4	5.9	0.56	1.33	20
HG384	374978	5871408	750	19	BD	143	22	0.9	16.2	1.06	0.14	18

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	(ppm)	Zn (ppm)
HG385	374966	5871411	751	4	BD	32	14.3	0.8	2.1	0.99	0.16	5
HG386	374989	5871404	751	1	BD	9	8.3	0.5	15.1	0.51	1.11	6
HG387	374984	5871404	750	33	BD	170	14.9	0.9	20	1.39	0.11	14
HG388A	376741	5868458	699	BD	BD	1	7.5	1	BD	0.05	0.09	BD
HG388B	376741	5868458	699	BD	BD	3	9.4	0.7	8.3	0.3	0.22	17
HG389A	376719	5868455	698	BD	BD	42	13.3	3.2	8.4	0.38	0.81	12
HG389B	376719	5868455	698	BD	BD	2	5	1.9	BD	0.1	0.21	10
HG390	376708	5868500	692	BD	BD	5	16	0.7	9	0.23	BD	25
HG391	376704	5868504	695	BD	BD	117	24.7	7.5	14.7	0.65	0.9	15
HG392	376701	5868503	697	BD	BD	60	16.1	5.5	4.6	0.47	0.74	20
HG393	376688	5868395	699	BD	BD	1	6.5	0.8	13.9	0.2	0.53	8
HG394	376023	5869298	685	3	BD	3	14.9	2.4	13.2	0.55	0.45	4
HG395A	376052	5869291	684	BD	BD	9	4.3	3.4	0.9	0.24	13.68	7
HG395B	376052	5869291	684	BD	BD	5	12.3	6.9	7.1	0.2	2.61	8
HG396	376129	5869299	676	BD BD	BD	1	3.2	1.8 2.2	BD BD	0.21	0.97	5 6
HG397 HG398	376145 376210	5869277 5869287	674 679	BD BD	BD BD	2 13	14	1	7.9	0.47 0.26	0.36	39
HG399	376210	5869138	662	BD	BD	17	11.9	1.4	0.6	0.28	0.77	4
HG400	376105	5868992	662	4	BD	10	20.7	1.4	2.7	5.65	1.55	1
HG400B	376105	5868992	662	BD	BD	1	6.7	1.5	BD	0.14	0.97	BD
HG400B	376120	5869430	691	BD	0.14	12	33.1	1.4	21	1.72	3.43	143
HG402A	371345	5866299	537	8	BD	17	16.3	0.8	10.1	3.78	0.11	23
HG402B	371345	5866299	537	2	BD	3	7.1	1.3	2.1	0.81	0.09	9
HG403	371377	5866275	537	2	BD	2	4.5	1.5	3.4	0.64	0.09	14
HG404A	370319	5865710	460	991	0.06	809	13.5	1.8	7	11.82	0.16	41
HG404B	370319	5865710	460	4762	0.27	2773	8.1	1.9	5.8	37.52	0.09	14
HG405	370325	5865709	460	945	BD	382	7.6	1.9	7.1	14.83	0.15	18
HG406	370341	5865629	439	25	BD	11	4.6	0.7	0.6	1.22	0.07	1
HG407	370352	5865625	435	139	BD	154	5.7	2.5	2.6	5.32	0.08	3
HG408	370349	5865623	435	30	BD	122	9.6	4	5.6	4.17	0.12	16
HG409	370348	5865620	436	42	BD	147	6.9	3.5	12.9	3.44	0.09	12
HG410	370351	5865623	434	396	BD	311	6.3	3.7	14.1	8.52	0.14	10
HG411	370791	5865535	416	6	BD	22	4.1	1.3	3.3	0.94	0.19	17
HG412	370791	5865544	418	4	BD	15	3.3	1.5	1.6	0.75	0.09	15
HG413	370803	5865578	427	5	BD	30	3.1	1.2	1	1.06	0.15	13
HG414	370833	5865578	432	15	BD	441	12	1.1	8.3	7.74	0.2	26
HG415	370862	5865586	443	18	BD	279	6.7	1.8	10	8.9	0.11	26
HG416	370870	5865573	444	4	BD	167	7.1	1.2	3.3	4.77	0.1	24
HG417	370997	5870074	509	13	BD	46	6.9	15.2	1.9	2.4	0.14	14
HG418	370998	5870074	508	47	BD	105	5.4	26.6	5	2.45	0.07	11
HG419	370996	5870075	509	50	BD	44	3.5	15.9	4	1.8	0.14	8
HG420	370998	5870073	509	36	BD	38	6.4	14.3	3.3	3.27	0.17	19
HG421	370995	5870117	499	111	BD	986	41.4	115.6	21.5	22.1	0.25	44
HG422	371005	5870123	495	22	BD	292	7.3	14.6	9.5	4.83	0.11	10
HG423	370992	5870119	498	155	BD	343	18.5	84	9.7	13.6	0.25	25
HG424	370987	5870114	499	38	0.12	534	11.8	13.1	16.4	4.69	0.1	13
HG425	370993	5870167	480	26	0.09	35	59.4	1.6	48.4	11.21	0.1	55
HG426	371003	5870207	465	30	BD	171	5.3	3	2.6	4.06	0.16	12
HG427	371009	5870215	463	286	BD	1485	7	2	3.5	8.93	0.16	10
HG428	371007	5870199	466	394	BD	2228	8.6	1.8	6.9	13.87	0.12	13
HG429	370995	5870209	465	7	BD	33	19.5	1	12.6	3.06	0.14	43
HG430A	371047	5870184	465	138	BD	120	6.9	1.8	4.5	3.11	0.12	21
HG430B	371047	5870184	465	5	0.09	40	7.5	2.4	10.6	1.37	0.11	20
HG431	370997	5870208	464	102	BD	146	2.6	1.8	1.4	2.36	0.06	7

Sample	East	North	RL	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm	Pb (ppm)	Sb (ppm)	W (ppm)	Zn (ppm)
HG432	370988	5870194	468	24	BD	116	4.2	1.6	2.1	2.49	0.07	9
HG433	370980	5870189	472	4	BD	189	12.7	2.2	16.2	6	0.12	21
HG434A	370186	5870880	491	56	0.05	216	13.8	0.8	12.4	8.77	0.12	51
HG434B	370186	5870880	491	2	BD	17	8.9	0.8	6.7	1.53	0.15	25
HG435	370194	5870865	493	2	BD	18	6.6	0.9	7.7	1.4	0.1	26
HG436	370204	5870853	494	12	BD	78	8.5	1.3	9.4	15.39	0.13	84
HG437	370166	5871042	435	3	BD	11	5.4	1.4	1.9	1.09	0.11	18
HG438	370178	5871064	424	34	BD	111	12.6	0.8	9.1	4.67	0.08	40
HG439	370194	5871077	416	2	BD	99	6.3	0.6	4.1	2.05	0.19	15
HG440	370254	5871196	384	BD	BD	4	7.4	1.7	1.9	0.58	0.12	15
HG441	370251	5871194	384	BD	BD	2	3.7	1.3	1.3	0.35	0.07	8
HG442A	370218	5871127	400	25	BD	36	7.3	3.1	6.3	1.17	0.09	15
HG442B	370218	5871127	400	BD	BD	3	3.8	1.7	1	0.48	0.31	9
HG443	370229	5871121	399	3	BD	24	5	4.3	5.8	2.32	0.08	16
HG444	370186	5871049	428	108	BD	174	3.8	1.5	7	7.06	0.19	9
HG445	380653	5867174	427	2	BD	8	64.5	1.1	41.9	1.57	0.33	11
HG446	380798	5866628	359	2	BD	27	5.8	0.7	4.5	2.45	0.37	45
HG447	379492	5867701	516	2	BD	8	29.6	0.8	16.4	0.53	0.09	16

Note: BD = Below Detection.

Appendix 3.

The following tables are presented in accordance with requirements under the JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure 	 Rock sampling of outcrop or float using geological hammers. Typically 0.1-2 kg samples were chipped off and placed in sample bag, although sample weights were not available for a majority of samples Samples were taken of features of geological interest and accordingly are not
	sample representivity and the appropriate calibration of any measurement tools or systems used. • Aspects of the determination of mineralisation	likely to be representative. • Field personnel recorded descriptions of samples.
	that are Material to the Public Report.	 IP surveys carried out in 2022 and 2023
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or	using standard roll dipole dipole IP configuration.

Criteria	JORC Code explanation	Commentary
	mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling results presented
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling results presented
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drilling results presented
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	
	The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	No drilling results presented QA/QC standards were inserted for the
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Murrindindi sampling but not for the Crosbie sampling
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	QA/QC procedures are deemed satisfactory given the preliminary stage of the project as exploration is only seeking to determine the
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	presence of mineralisation.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or	Rock chip sample analysis was undertaken by Intertek and On Site Laboratory Services, independent and certified laboratories.

Criteria	JORC Code explanation	Commentary
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Samples were sorted, weighed, dried, crushed to 10mm with a 300g sub sample taken and pulverised. • Analysis was completed using an aqua regia digest and ICP-MS/Fire Assay for up to 52 elements including gold (1ppb detection limit). • These methods are considered appropriate for this style of mineralisation and stage of the project. • Laboratory QA/QC tests returned results within acceptable limits for all batches. • 2022 Dipole-dipole IP (DDIP) survey carried out using roll-front configuration with 100m dipoles (Crosbie South) and 25m dipoles and 50m station spacing (Crosbie North). GDD TxIV 5 kVA Transmitter (Tx) and IRIS Fullwaver receiver (Rx) system. • 2023 DDIP survey used array with 100m dipoles. GDD TxIV 5kVA Transmitter and a GDD Rx32 IP Receiver. • Both surveys used a transmit frequency of 0.125 Hz (2 seconds on-time, 2 seconds off-time). • All data was analysed and processed by Mitre Geophysics. Raw IP data was imported into TQIPdb, an IP data quality control and processing software package. Individual resistivity readings and chargeability decays from each station were inspected and any noisy decays, bad repeat readings, or readings with very low primary voltage were flagged in the database. Noise levels for both surveys were found to be quite significant and many readings showed noisy and or unrepeatable chargeable decays which could not be relied on. Any readings flagged for low quality were not used at any subsequent stage of the processing or in inversions.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry 	 No drilling results presented. The CP has reviewed available primary data. The CP undertook a site visit to Crosbie and Murrindindi in November, 2024.

Criteria	JORC Code explanation	Commentary
Location of data points	procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	MGA94 Zone 55 Samples located using handheld GPS, with a typical accuracy of approximately 5 metres. Pack chip sampling was on an ad hoc basis.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rock chip sampling was on an ad hoc basis with no regular data spacing Samples located using handheld GPS Sampling style and spacing is not suitable for Mineral Resources 2022 IP survey was completed on 200m line spacing (Crosbie South, 4 lines) and a single line at Crosbie North 2023 IP survey at Crosbie South was also completed on 200m line spacing (4 lines), with 2 lines overlapping with the 2022 survey.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sampling is on an ad hoc basis and accordingly may be biased. However, this is not considered material due to the preliminary nature of exploration. IP survey was designed parallel to and perpendicular to the interpreted contact between the Crosbie Granite and the surrounding metasediments.
Sample security Audits or reviews	The measures taken to ensure sample security. The results of any audits or reviews of sampling techniques and data.	 Delivered to laboratory by vendor representatives. No audits have been completed.

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	The exploration licences being acquired are
tenement and	ownership including agreements or material	Crosbie - EL007144, Murrindindi -

Criteria	JORC Code explanation	Commentary
land tenure status	issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 EL007412, Lockwood - EL007261, Wilson's Hill - EL007359, and Castleburn - EL007450. The tenements fall under Indigenous Land Use Agreements. The nominated representatives of the Native Title Parties have cleared the planned work programmes in the announcement and further clearances will be required for future programmes. The licenses overlie a mixture of Crown Land and private freehold land. For the Crosbie Project notifications for low impact exploration have been submitted as required under the Mineral Resources (Sustainable Development) Act 1990. An access agreement has been signed for a key parcel of freehold land within the Crosbie licence area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical exploration will be compiled and verified as part of initial exploration works. Searches to date on the two key projects (Crosbie/Murrindindi) indicate only surface sampling has been completed by the various parties, with the exception of a single diamond drillhole at Murrindindi targeting tungsten and tin mineralisation. Although the tungsten mineralisation encountered was subeconomic, the explorer determine that the prospect had gold potential The hole was purportedly located at 380692 mE, 5856904 mN (MGA 94, Zone 55), inclined at 60 degrees towards 060 Azuimuth, and extended 250 m but the location has not been verified/confirmed. Exploration described in the announcement has been carried out by the vendor, Syndicate Minerals Pty Ltd.
Geology	Deposit type, geological setting and style of mineralisation.	The licenses are located within the Victorian component of the Lachlan Orogen. The geological setting of the licenses is described in the announcement and is similar to that which hosts gold mineralisation elsewhere in the Bendigo Goldfields, and specifically at the Fosterville and Costerfield Gold Mines.

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No new drilling is detailed in this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No new drilling is detailed in this announcement and no aggregation of rock chip assays was carried out.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The true width of mineralisation has not yet been determined. No drilling or downhole data has been presented to date.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See diagrams in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	All available data has been presented in tables and figures.

Criteria	JORC Code explanation	Commentary
	Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material data has been included in the announcement, and compilation and validation of historical exploration data is ongoing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work, including review and analysis of results and drill planning, detailed in the body of the announcement.