← Variance of 1D datasets

4/5 points (80.00%)

Quiz, 5 questions

Congratulations! You passed!

Next Item

1/1 points

1.

What is the variance of the following dataset?

$$\mathcal{D}=\{1,2,3,2\}$$

Please use decimal numbers in your answer.

0.5

Correct Response

Well done!

1/1 points

2.

What is the standard deviation of the dataset $\mathcal{D}=\{1,2,3,2\}$ which we already used in the previous question? You should provide a decimal number as your answer.

0.7071067811865476

Correct Response

Indeed: You just needed to take the square-root of the variance.

1/1 points

3.

What would be the new variance if we added 1 to each element in the dataset $\mathcal{D}=\{1,2,3,2\}$ from Question 1? Please use decimal numbers in your answer.

0.5

Yes: adding a constant to the dataset does not change its variance.

V

points

Varian6 of uID datasets iance if we multiplied each sample in a dataset ${\cal D}$ by 2.

4/5 points (80.00%)

Quiz, 5 questions The variance of the new dataset will be four times the variance of \mathcal{D} .

Correct

Well done!

- The variance of the new dataset will be two times the variance of \mathcal{D} .
- The variance of the new dataset will not change.

points

Assuming we have mean $ar{x}_{n-1}$ and variance σ^2_{n-1} for some dataset \mathcal{D}_{n-1} with n-1 samples. What would be the variance σ_n^2 if we add a new element x_* to the dataset (assuming you have computed the

- $\sigma_n^2 = rac{n-1}{n} \sigma_{n-1}^2 + rac{1}{n} (x_* ar{x}_{n-1}) (x_* ar{x}_n)$
- $\sigma_n^2 = rac{n-2}{n-1} \sigma_{n-1}^2 + rac{1}{n} (x_* ar{x}_{n-1}) (x_* ar{x}_n)$
- $\sigma_n^2 = rac{n-1}{n} \sigma_{n-1}^2 + rac{1}{n-1} (x_* ar{x}_{n-1}) (x_* ar{x}_n)$

This should not be selected

Did you divide by the wrong number in the second term?

 $\sigma_n^2 = \frac{n-1}{n} \frac{\sigma_{n-1}^2 + \frac{1}{n} (x_* - \bar{x}_{n-1})^2}{2}$

