Generative Language Model

Training Components

- Training
 - Data
 - Just Text
 - Model Architecture (Transformer / LSTM)
 - Loss
 - Cross-Entropy loss (default)
 - Next-Token Prediction (Auto-regressive prediction)

Type of transformer

- Encoder only (BERT)
- Encoder & Decoder (T5)
- Decoder only (GPT-2 / 3)

Difference of architecture

- Encoder
 - Can attend bi-directional token

Cannot predict next token (because it is already attend to next token)

- Decoder
 - Can attend only left-side token
 - Auto-regressive ability (predict next token, only one at a time)

Decoder only

Beyond next token prediction

Conditional Generation (Translation)

Training Dataset

I	am	а	student	<to-fr></to-fr>	je	suis	étudiant
let	them	eat	cake	<to-fr></to-fr>	Qu'ils	mangent	de
good	morning	<to-fr></to-fr>	Bonjour				

Conditional Generation (Summarize)

Training Dataset

Article #1 to	<summarize></summarize>		Article #1 Summary			
Article #2 tokens	<summarize></summarize>	Mmarize> Article #2 Summary		padding		
Article #3	3 tokens	<summarize></summarize>		Article #3 Summary		

What is important on Training

- Hyperparameter
 - Batch size (gradient accumulation * batch size)
 - Learning rate
 - number of training step
- Implementation
 - Padding or not / if padding do you calculate loss on pad token?
 - BOS / EOS token is consistance to pretrained ?
 - Always print generate sentence (sampling sentence) because you may cannot tell that you implementation is correct or not based on only loss
 - If the training set is large enough, you can ignore to do validation set split, because training set is a validation set because you are training only for 1 epoch)
 - Most implementation bug / problem should be detect in first 100 500 step
 - Implementation detail & hyperparameter are also important but you can mostly stick with huggingface trainer default param
- Data
- Sampling algorithm

What to know about data?

- More clue to a model = better performance
- Input English & Thai together, the loss will be lower than put only one
- Similar pattern to pretrained data, the better the performance
- Human liked sentence > set of word

What to know about data?

- Balance between hard & easy data is important
 - If task is too easy, model will not learn anything, because it got low loss, without learning
 - If input & output is the same, except one token, the model will always copy token, without learning anything
 - If task is too hard, the model will overfit because it need to remember the thing that is not related.
 - We want to learn about paraphrase, but if input have difference content from output, it need to remember how to create content.

Sampling algorithm

- Greedy
- Beam-Search
- Sample

- https://huggingface.co/blog/how-to-generate
- https://docs.cohere.ai/docs/controlling-generation-with-top-k-top-p

Greedy

Simple

Beam-search (mostly used on task that need high accuracy)

- Important params
 - num_beam

Sampling (mostly used on task that need creativity)

- Important params
 - temperature
 - top_p
 - top_k

Additional method

- Contrastive search (sampling token using its own prob and prob of that token is still contrast with previous token)
 - Can combine with sampling & greedy & beam?
 - Best decoding method
 - Hyper param
 - top_k
 - penalty_alpha

Experiment

- Check input & output data
- Select Architecture (Decoder only / Encoder & Decoder)
- Make sure the implementation is correct (it can learn, generation look make sense)
- Find a setting that lead to biggest batch size, then can be run for ~ 1 day (because colab has max running duration = 24 hours)
- LR tuning (may start with default LR ~1e-5)
 - Running for around ~1000 step
 - Try increase LR by [* 5] (5e-5) if loss is lower than first run, try increase the (power) but change the multiplier to 1 (1e-4)
 - If the loss is higher, do another way (try (5e-6))
 - Try in range of (1e-4, 1e-6) (it should be in this range)
- Set the sampling method (greedy, beam, sampling) (in this case I think we should use greedy or sample?
- Train for step (try with 1 epoch when there are lot of example)
- Check the result
- May be change the data pattern (if it is similar you can ignore the LR test process and use same LR)