AlterMundus

Alain Matthes

January 4, 2022 Documentation V.4.00

http://altermundus.fr

tkz-euclide

AlterMundus

Alain Matthes

🕼 tkz-euclide 4.00 is now independent of tkz-base. It is a set of convenient macros for drawing in a plane (fundamental two-dimensional object) with a Cartesian coordinate system. It handles the most classic situations in Euclidean Geometry. tkz-euclide is built on top of PGF and its associated frontend TikZ and is a (La)TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible.

English is not my native language so there might be some errors.

Firstly, I would like to thank **Till Tantau** for the beautiful ₺∏X package, namely TikZ.

🚱 Acknowledgements : I received much valuable advice, remarks, corrections and examples from **Jean-Côme** Charpentier, Josselin Noirel, Manuel Pégourié-Gonnard, Franck Pastor, David Arnold, Ulrike Fischer, Stefan Kottwitz, Christian Tellechea, Nicolas Kisselhoff, David Arnold, Wolfgang Büchel, John Kitzmiller, Dimitri Kapetas, Gaétan Marris, Mark Wibrow, Yves Combe for his work on a protractor, Paul Gaborit, Laurent Van Deik for all his corrections, remarks and questions and Muzimuzhi Z for the code about the option "dim".

🕼 I would also like to thank Eric Weisstein, creator of MathWorld: MathWorld.

You can find some examples on my site: altermundus.fr. under construction!

Please report typos or any other comments to this documentation to: Alain Matthes. This file can be redistributed and/or modified under the terms of the MFX Project Public License Distributed from CTAN archives.

Contents

⊥.		General survey : a brief but comprehensive review	13
1.		Installation	14
2.	2.1. 2.2. 2.3. 2.4.	TikZ vs tkz-euclide 2.2.1. Book I, proposition I _Euclid's Elements 2.2.2. Complete code with tkz-euclide tkz-euclide4 vs tkz-euclide3	15 15 15 17 19 20 21 23 24
3.	3.1. 3.2. 3.3.	Notations and conventions	27 27 27 29
4.		News and compatibility	30
ΙI	. •	Setting	32
5.		First step: fixed points	33
6.	6.1. 6.2. 6.3. 6.4. 6.5.	6.1.1. Cartesian coordinates 6.1.2. Calculations with xfp 6.1.3. Polar coordinates 6.1.4. Relative points Point relative to another: \tkzDefShiftPoint 6.2.1. Isosceles triangle 6.2.2. Equilateral triangle 6.2.3. Parallelogram Definition of multiple points: \tkzDefPoints Create a triangle	333 344 355 355 356 366 367 377 377
ΙI	I.	Calculating	38
7.	7.1. 7.2.	Auxiliary tools Constants	39 39 39
8.	8.1.	Special points Middle of a segment \tkzDefMidPoint	40 40

	0.0	D		
	8.2.	_	reentric coordinates	41
		8.2.1.	Using \tkzDefBarycentricPoint with two points	41
		8.2.2.	Using \tkzDefBarycentricPoint with three points	41
	8.3.		len ration	42
	8.4.	Use	the golden ratio to divide a line segment	42
	8.5.	Inte	rnal Similitude Center	42
	8.6.	Equi	distant points	43
		8.6.1.		43
		8.6.2.	Using \tkzDefEquiPoints with options	43
9.		Special	l points relating to a triangle	44
	9.1.	Triar	ngle center: \tkzDefTriangleCenter	44
		9.1.1.	Option ortho or orthic	44
		9.1.2.	Option centroid	45
		9.1.3.	Option circum	45
		9.1.4.	Option in	45
		9.1.5.		45
		9.1.6.	Option ex	46
			Option euler	
		9.1.7.	Option symmedian	46
		9.1.8.	Option spieker	47
		9.1.9.	Option gergonne	47
		9.1.10.	Option nagel	48
		9.1.11.	Option mittenpunkt	48
		9.1.12.	Example: relation between gergonne, centroid and mittenpunkt	49
10	•	_	tion of excenters	50
		10.0.1.	Excircles	50
		.		- 4
11			on line or circle	51
	11.1.		t on a line	51
			Use of option pos	51
	11.2.	Poin	t on a circle	52
4.0		D 61 1.	NA PARAMETER DE LA PARAMETER D	
12			tion of points by transformation : \tkzDefPointBy	53
	12.1.		mples of transformations	53
			translation	53
			reflection (orthogonal symmetry)	54
		12.1.3.	homothety and projection	54
		12.1.4.	projection	54
		12.1.5.	symmetry	55
		12.1.6.	rotation	55
		12.1.7.	rotation in radian	55
			inversion	55
			Inversion of lines	57
			Inversion of circle	58
			. Inversion of Cricie	58
			. Inversion: orthogonal circle with inversion circle	58
			Inversion and homothety	59
			inversion negative	59
	12.2.		sformation of multiple points; \tkzDefPointsBy	60
			Example of translation	61
		1222	Example of symmetry	61

13. D	ofinin	g points using	a wostor						62
13.1.									
		*	at, simple example						
			at, complex example						
	13.1.3.	Option colinear	at				 	 	. 63
	13.1.4.	Option colinear	at				 	 	. 64
	13.1.5.	Option orthogona	al				 	 	. 64
		_	al						
			al more complicated						
			and orthogonal						
			al normed						
			al normed and $K=2$.						
	13.1.11.	Option linear .					 	 	
	13.1.12.	Option linear no	ormed				 	 	. 66
13.2.	\tkz	GetVectxy					 	 	. 66
			er with \tkzGetVect :						
			•	•					
14. T	he str	aight lines							68
14.1.		_	nes						
		0	iator						
		-							
		_	ector and normed .						
		_	hogonal and paralle						
		_							
	14.1.5.	A parabola					 	 	. 70
14.2.	Spec	fic lines: Tangent t	o a circle				 	 	. 70
	14.2.1.	Example of a tange	ent passing through a	point on	the circ	le	 	 	. 71
	14.2.2.	Example of tanger	nts passing through a	n external	point .		 	 	. 71
			w Mertz		_				
		-	t option from						
	17.2.7.	Diawing a tangem	option nom				 	 	. 12
15. T	riangl	AS							73
15.1.	0		tkzDefTriangle						
		_	_						
			es						
		_							
			e						
	15.1.4.	Option golden .					 	 	. 75
	15.1.5.	Option equilates	ral and isosceles i	right .			 	 	. 75
	15.1.6.	Option gold					 	 	. 75
	15.1.7.	Option euclid .					 	 	. 75
16. S	pecifi	c triangles wit	h \tkzDefSpcTrian	gle					76
16.1.	_	_	es	_			 	 	. 76
16.2.			roid						
16.3.	_		1						
	_								
16.4.	_		1						
16.5.	_		tact						
16.6.	_								
16.7.	Optio	on orthic					 	 	. 79
16.8.	Optio	n feuerbach					 	 	. 80
16.9.	Optio	n tangential					 	 	. 80
16.10.	_	_							
16.11.	_		on orthic						
		_							
16.12.	. opul	лгвушшечтат					 	 	. 83

17	Dofini	tion of polygons	84
17		tion of polygons	
		ning the points of a square	
		Using \tkzDefSquare with two points	84
		Use of \tkzDefSquare to obtain an isosceles right-angled triangle	
		Pythagorean Theorem and \tkzDefSquare	
	17.2. Defi	ining the points of a rectangle	85
	17.2.1.	Example of a rectangle definition	85
	17.3. Defi	nition of parallelogram	85
	17.3.1.	Example of a parallelogram definition	86
	17.4. The	golden rectangle	86
		Golden Rectangles	86
		Construction of the golden rectangle	86
		ular polygon	87
	_	Option center	87
		Option side	88
	17.5.2.	Option side	00
18	. The Ci	rclas	89
10		racteristics of a circle: \tkzDefCircle	
		Example with a random point and option through	
		Example with option diameter	90
		Circles inscribed and circumscribed for a given triangle	
		Example with option ex	
		Euler's circle for a given triangle with option euler	
		Apollonius circles for a given segment option apollonius	92
		Circles exinscribed to a given triangle option ex	92
		Spieker circle with option spieker	92
	18.1.9.	Examples from js bibra tex.stackexchange.com	93
4.0	D (0.5
19		tion of circle by transformation; \tkzDefCircleBy	95
		mples of transformations	
		Translation	
		Reflection (orthogonal symmetry)	
	19.1.3.	Homothety	96
	19.1.4.	Symmetry	97
	19.1.5.	Rotation	97
	19.1.6.	Orthogonal from	97
	19.1.7.	Orthogonal from: Right angle between circles	97
	19.1.8.	Orthogonal through	98
	19.1.9.	Inversion	98
20	. Inters	ections	99
	20.1. Inte	rsection of two straight lines	99
	20.1.1.	Example of intersection between two straight lines	99
	20.2. Inte	rsection of a straight line and a circle	99
		Line-circle intersection	100
		Line-circle intersection in Sangaku	
		More complex example of a line-circle intersection	
		Circle defined by a center and a measure, and special cases	
		More complex example	
		Calculation of radius example 1	
		Calculation of radius example 2	103
	20.2.8	LINTION WITH HOMES"	1 ()/1

20.3	Intersection of two circles 10 20.3.1. Construction of an equilateral triangle 10 20.3.2. Example a mediator 10 20.3.3. An isosceles triangle. 10 20.3.4. Segment trisection 10 20.3.5. With the option "with nodes" 10 20.3.6. Mix of intersections 10 20.3.7. An oval 10)4)5)5)5)6
21. 21.3 21.3 21.4	Example of the use of \tkzGetAngle	08 08 08 09 09 10 10
22. 22.2 22.3 22.4 22.4	Random point in a rectangle	12 13 13 13
IV.	Drawing and Filling	16
23.	Drawing 11 Draw a point or some points 11 23.1.1. Drawing points \tkzDrawPoint 11 23.1.2. Example of point drawings 11 23.1.3. Example 11	17 17 17
24. 24.	Drawing the lines 11 Draw a straight line 11 24.1.1. Examples with add 11 24.1.2. Example with \tkzDrawLines 11 24.1.3. Example with the option add 12	18 19 19
25. 25.2 25.2 25.3	25.1.1. Example with point references	20 20 21 21 22 22 22
20.0	25.3.1 How to draw Altitude	

	25.4	. Drav	ring a polygon	.23
		25.4.1.	\tkzDrawPolygon 1	23
		25.4.2.	Option two angles	24
		25.4.3.	Style of line $\dots \dots \dots$.24
	25.5	. Drav	ring a polygonal chain	.24
		25.5.1.	Polygonal chain	.25
		25.5.2.	The idea is to inscribe two squares in a semi-circle	.25
		25.5.3.	Polygonal chain: index notation	.25
00				٥-
26				.25
	26.1		one circle	
	00.0		Circles and styles, draw a circle and color the disc	
	26.2		ring circles	
			Circles defined by a triangle	
			Concentric circles	
			Exinscribed circles	
	00.0		Cardioid	
	26.3		ring semicircle	
	00.4		Use of \tkzDrawSemiCircle 1	
	26.4	. Drav	ring semicircles	.29
27		Drawing	arcs 1	29
	27.1	-	on towards	
	27.2		on towards	
	27.3		on rotate	
	27.4		on R	
	27.5	_	on R with nodes	
	27.6		on delta	
	27.7	_	on angles : example 1	
	27.8	_	on angles: example 2	
		. ори		
28				.33
	28.1		${\tt DrawSector} \hspace{0.1cm} \ldots \ldots \ldots \ldots \ldots \hspace{0.1cm} 1$	
		28.1.1.	$\verb \tkzDrawSector and towards $.33
		28.1.2.	$\verb \tkzDrawSector and rotate$.34
			$\verb \tkzDrawSector and R $	
		28.1.4.	$\verb \tkzDrawSector and R $	35
		28.1.5.	$\verb \tkzDrawSector and R with nodes$.35
	28.2	. Colo	ring a disc	36
			8	.36
		28.2.2.	From a sangaku	36
		28.2.3.	Clipping and filling part I	.37
				37
		28.2.5.	Clipping and filling part III	38
	28.3	. Colo	ring a polygon	38
		28.3.1.	\tkzFillPolygon 1	.38
	28.4	. \tkz	FillSector l	.38
		28.4.1.	$\verb \tkzFillSector and towards $.39
		28.4.2.	$\verb \tkzFillSector and rotate$	39
	28.5	. Colo	ur an angle: $ ag{tkzFillAngle}$	39
		28.5.1.	Example with \mathtt{size}	40
		28.5.2.	Changing the order of items $\dots \dots \dots$	40
		28.5.3.	Multiples angles	41

29	. Controlling Bounding Box	142
	29.1. Utility of \tkzInit	. 142
	29.2. \tkzInit	. 142
	29.3. \tkzClip	. 142
	29.4. \tkzClip and the option space	. 143
	29.5. tkzShowBB	. 143
	29.5.1. Example with \tkzShowBB	. 144
	29.6. tkzClipBB	
	29.6.1. Example with \tkzClipBB and the bisectors	
30		145
	30.1. Clipping a polygon	
	30.1.1. \tkzClipPolygon	
	30.1.2. \tkzClipPolygon[out]	
	30.1.3. Example: use of "Clip" for Sangaku in a square	
	30.2. Clipping a disc	
	30.2.1. Simple clip	
	30.3. Clip out	
	30.4. Intersection of disks	. 147
	30.5. Clipping a sector	. 147
	30.5.1. Example 1	. 148
	30.5.2. Example 2	. 148
	30.6. Options from Ti k Z: trim left or right	. 148
	30.7. TikZ Controls \pgfinterruptboundingbox and \endpgfinterruptboundingbox	. 148
	30.7.1. Example about contolling the bouding box	. 149
	30.8. Reverse clip: tkzreverseclip	. 149
	30.8.1. Example with \tkzClipPolygon[out]	. 149
٧.	Manalain o	151
۷.		
	30.9. Mark a segment \tkzMarkSegment	
	30.9.1. Several marks	
	30.9.2. Use of mark	
	30.10. Marking segments \tkzMarkSegments	
	30.10.1. Marks for an isosceles triangle	
	30.11. Another marking	
	30.12. Mark an arc \tkzMarkArc	
	30.12.1. Several marks	
	30.13. Mark an angle mark: \tkzMarkAngle	
	30.13.1. Example with mark = x	
	30.13.2. Example with mark =	
	30.14. Marking a right angle: \tkzMarkRightAngle	
	30.14.1. Example of marking a right angle	
	30.14.2. Example of marking a right angle, german style	
	30.14.3. Mix of styles	
	30.14.4. Full example	
	30.15. \tkzMarkRightAngles	. 156

VI.	Labelling	157
31.	Labelling 1. Label for a point	158 158 158 159 159 159
32.	Label for a segment 32.0.1. First example	161 161
	Add labels on a straight line \tkzLabelLine 33.0.1. Example with \tkzLabelLine 1. Label at an angle: \tkzLabelAngle 33.1.1. Example author js bibra stackexchange 33.1.2. Example with pos 2. Giving a label to a circle 33.2.1. Example 33.2.2. Second example Label for an arc 34.0.1. Label on arc	162 163 163 164 165 165
VII.	Complements	167
35. 35.	Using the compass 1. Main macro \tkzCompass	168 168
36. 36.	36.1.1. Example of \tkzShowLine and parallel 36.1.2. Example of \tkzShowLine and perpendicular 36.1.3. Example of \tkzShowLine and bisector 36.1.4. Example of \tkzShowLine and mediator	170 171 171 171 172
37. 37.	1	

38.1 38.2 38.3 38.4 38.5	38.1.1. Proportion of gold with \tkzDuplicateSegment 38.1.2. Golden triangle or sublime triangle Segment length \tkzCalcLength 38.2.1. Compass square construction 38.2.2. Example Transformation from pt to cm or cm to pt Change of unit	174 175 175 176 176 176 177 177
VIII.	Working with style	178
39.	Predefined styles	179
40.	Points style 40.0.1. Use of \tkzSetUpPoint 40.0.2. Global style or local style 40.0.3. Simple example with \tkzSetUpPoint 40.0.4. Use of \tkzSetUpPoint inside a group	180 180
41.	Lines style 41.0.1. Use of \tkzSetUpLine 41.0.2. Change line width 41.0.3. Change style of line 41.0.4. Example 3: extend lines	181 182
42.	Arc style	182
43.	Compass style, configuration macro \tkzSetUpCompass 43.0.1. Use of \tkzSetUpCompass	
44.	Label style	184
45.	Own style	184
IX.	Examples	186
46.1 46.2 46.3 46.4 46.5 46.6 46.7 46.8 46.9	About right triangle Archimedes 46.3.1. Square and rectangle of same area; Golden section 46.3.2. Steiner Line and Simson Line Lune of Hippocrates Lunes of Hasan Ibn al-Haytham About clipping circles Similar isosceles triangles Revised version of "Tangente"	193 194

46.10	Triangle altitudes	196
46.11	Altitudes - other construction	197
46.12	Three circles in an Equilateral Triangle	198
46.13		
46.14	Flower of Life	200
46.15	Pentagon in a circle	202
46.16	Pentagon in a square	203
46.17	Hexagon Inscribed	204
46.18	Power of a point with respect to a circle	205
46.19	Radical axis of two non-concentric circles	206
46.20	External homothetic center	207
46.21	Tangent lines to two circles	208
46.22	Tangent lines to two circles with radical axis	209
46.23	Definition of a circle _Apollonius	210
46.24	Application of Inversion: Pappus chain	211
46.25	Book of lemmas proposition 1 Archimedes	212
46.26	Book of lemmas proposition 6 Archimedes	212
46.27	"The" Circle of APOLLONIUS	213
47		047
	ifferent authors	217
47.1.	Code from Andrew Swan	
47.2.	Example: Dimitris Kapeta	
47.3.	Example: John Kitzmiller	
47.4.	Example 1: from Indonesia	
47.5.	Example 2: from Indonesia	
47.6.	Illustration of the Morley theorem by Nicolas François	
47.7.	Gou gu theorem / Pythagorean Theorem by Zhao Shuang	
47.8.	Reuleaux-Triangle	224
х. н	'AQ	225
	·	
48. F	'AQ	226
48.1.	Most common errors	226
Index		228
THUCK		220

Part I.

General survey : a brief but comprehensive review

1. Installation 14

1. Installation

tkz-euclide is on the server of the **CTAN**¹. If you want to test a beta version, just put the following files in a texmf folder that your system can find. You will have to check several points:

- The ${\tt tkz-euclide}$ folder must be located on a path recognized by ${\tt latex}.$
- The tkz-euclide uses xfp.
- This documentation and all examples were obtained with lualatex but pdflatex or xelatex should be suitable.

 $^{1 \}quad \textbf{tkz-euclide} \ is \ part \ of \ \texttt{TeXLive} \ and \ \textbf{tlmgr} \ allows \ you \ to \ install \ them. \ This \ package \ is \ also \ part \ of \ \texttt{MiKTeX} \ under \ \texttt{Windows}.$

2. Presentation and Overview


```
\begin{tikzpicture} [scale=.25]
\tkzDefPoints{\(0/\0/A\,12/\0/B\,6/12*\sind(6\0)/C\)}
\foreach \density in {2\0,3\0,...,24\0}{\%}
\tkzDrawPolygon[fill=teal!\density](A,B,C)
\pgfnodealias{X}{A}
\tkzDefPointWith[linear,K=.15](A,B) \tkzGetPoint{A}
\tkzDefPointWith[linear,K=.15](B,C) \tkzGetPoint{B}
\tkzDefPointWith[linear,K=.15](C,X) \tkzGetPoint{C}}
\end{tikzpicture}
```

2.1. Why tkz-euclide?

My initial goal was to provide other mathematics teachers and myself with a tool to quickly create Euclidean geometry figures without investing too much effort in learning a new programming language. Of course, **tkz-euclide** is for math teachers who use **MTEX** and makes it possible to easily create correct drawings by means of **MTEX**.

It appeared that the simplest method was to reproduce the one used to obtain construction by hand. To describe a construction, you must, of course, define the objects but also the actions that you perform. It seemed to me that syntax close to the language of mathematicians and their students would be more easily understandable; moreover, it also seemed to me that this syntax should be close to that of MEX. The objects, of course, are points, segments, lines, triangles, polygons and circles. As for actions, I considered five to be sufficient, namely: define, create, draw, mark and label.

The syntax is perhaps too verbose but it is, I believe, easily accessible. As a result, the students like teachers were able to easily access this tool.

2.2. TikZ vs tkz-euclide

I love programming with TikZ, and without TikZ I would never have had the idea to create **tkz-euclide** but never forget that behind it there is TikZ and that it is always possible to insert code from TikZ. **tkz-euclide** doesn't prevent you from using TikZ. That said, I don't think mixing syntax is a good thing.

There is no need to compare TikZ and tkz-euclide. The latter is not addressed to the same audience as TikZ. The first one allows you to do a lot of things, the second one only does geometry drawings. The first one can do everything the second one does, but the second one will more easily do what you want.

The main purpose is to define points to create geometrical figures. **tkz-euclide** allows you to draw the essential objects of Euclidean geometry from these points but it may be insufficient for some actions like coloring surfaces. In this case you will have to use TikZ which is always possible.

Here are some comparisons between **TikZ** and **tkz-euclide** 4. For this I will use the geometry examples from the PGFManual. The two most important Euclidean tools used by early Greeks to construct different geometrical shapes and angles were a compass and a straightedge. My idea is to allow you to follow step by step a construction that would be done by hand (with compass and straightedge) as naturally as possible.

2.2.1. Book I, proposition I _Euclid's Elements_

Book I, proposition I _Euclid's Elements_

To construct an equilateral triangle on a given finite straight line.

Explanation:

The fourth tutorial of the PgfManual is about geometric constructions. T. Tantau proposes to get the drawing with its beautiful tool TikZ. Here I propose the same construction with tkz-elements. The color of the TikZ code is green and that of tkz-elements is red.

```
\usepackage{tikz}
     \usetikzlibrary{calc,intersections,through,backgrounds}
     \usepackage{tkz-euclide}
How to get the line AB? To get this line, we use two fixed points.
     \coordinate [label=left:A] (A) at (\emptyset,\emptyset);
     \coordinate [label=right:$B$] (B) at (1.25,\emptyset.25);
     \draw (A) -- (B);
     \tkzDefPoint(0,0){A}
     \tkzDefPoint(1.25, 0.25){B}
     \tkzDrawSegment(A,B)
     \tkzLabelPoint[left](A){$A$}
     \tkzLabelPoint[right](B){$B$}
We want to draw a circle around the points A and B whose radius is given by the length of the line AB.
     \frac{p1 = (\$ (B) - (A) \$)}{}
     n2 = {veclen(x1, y1)} in
                (A) circle (\n2)
                (B) circle (\n2);
     \tkzDrawCircles(A,B B,A)
The intersection of the circles
     draw [name path=A--B] (A) -- (B);
     node (D) [name path=D,draw,circle through=(B),label=left:$D$] at (A) {};
     node (E) [name path=E,draw,circle through=(A),label=right:$E$] at (B) {};
     path [name intersections={of=D and E, by={[label=above:$C$]C, [label=below:$C'$]C'}];
     draw [name path=C--C',red] (C) -- (C');
     path [name intersections={of=A--B and C--C',by=F}];
     node [fill=red,inner sep=1pt,label=-45:$F$] at (F) {};
     \tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{X}
How to draw points:
     \foreach \point in {A,B,C}
     \fill [black,opacity=.5] (\point) circle (2pt);
      \tkzDrawPoints[fill=gray,opacity=.5](A,B,C)
```

2.2.2. Complete code with tkz-euclide


```
\begin{tikzpicture}[scale=1.25,thick,help lines/.style={thin,draw=black!50}]
\tkzDefPoint(0,0){A}
\tkzDefPoint(1.25+rand(),0.25+rand()){B}
\tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{X}

\tkzFillPolygon[triangle,opacity=.5](A,B,C)
\tkzDrawSegment[input](A,B)
\tkzDrawSegments[red](A,C B,C)
\tkzDrawCircles[help lines](A,B B,A)

\tkzLabelPoints(A,B)
\tkzLabelCircle[below=12pt](A,B)(180){$D$}
\tkzLabelCircle[above=12pt](B,A)(180){$E$}
\tkzLabelPoints[above,red](C){$C$}
\tkzDrawPoints[fill=gray,opacity=.5](A,B,C)

\end{tikzpicture}
```

Book I, Proposition II _Euclid's Elements_

Book I, Proposition II _Euclid's Elements_

To place a straight line equal to a given straight line with one end at a given point.

Explanation

In the first part, we need to find the midpoint of the straight line AB. With TikZ we can use the calc library

```
\label=left:\$A\$] (A) at (\emptyset,\emptyset); $$ \operatorname{label=right:\$B\$}] (B) at (1.25,\emptyset.25); $$ \operatorname{A} -- (B); $$ node [fill=red,inner sep=1pt,label=below:\$X\$] (X) at ($ (A)!.5!(B) $) {}; $$
```

With tkz-euclide we have a macro \tkzDefMidPoint, we get the point X with \tkzGetPoint but we don't need this point to get the next step.

Then we need to construct a triangle equilateral. It's easy with tkz-euclide. With TikZ you need some effort because you need to use the midpoint X to get the point D with trigonometry calculation.

```
\node [fill=red,inner sep=1pt,label=below:$X$] (X) at ($ (A)!.5!(B) $) {};
\node [fill=red,inner sep=1pt,label=above:$D$] (D) at
($ (X) ! {\sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
```

We can draw the triangle at the end of the picture with

```
\tkzDrawPolygon{A,B,C}
```

We know how to draw the circle around B through C and how to place the points E and F

\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{D}

```
\node (H) [label=135:$H$,draw,circle through=(C)] at (B) {};
\draw (D) -- ($ (D) ! 3.5 ! (B) $) coordinate [label=below:$F$] (F);
\draw (D) -- ($ (D) ! 2.5 ! (A) $) coordinate [label=below:$E$] (E);
\tkzDrawCircle(B,C)
\tkzDrawLines[add=0 and 2](D,A D,B)
```

We can place the points E and F at the end of the picture. We don't need them now.

Intersecting a Line and a Circle: here we search the intersection of the circle around B through C and the line DB. The infinite straight line DB intercepts the circle but with TikZ we need to extend the lines DB and that can be done using partway calculations. We get the point F and BF or DF intercepts the circle

```
\node (H) [label=135:$H$,draw,circle through=(C)] at (B) {};
\path let \p1 = ($ (B) - (C) $) in
  coordinate [label=left:$G$] (G) at ($ (B) ! veclen(\x1,\y1) ! (F) $);
\fill[red,opacity=.5] (G) circle (2pt);
```

Like the intersection of two circles, it's easy to find the intersection of a line and a circle with elements. We don't need F

```
\tkzInterLC(B,D)(B,C)\tkzGetFirstPoint{G}
```

there are no more difficulties. Here the final code with some simplications.


```
\begin{tikzpicture}[scale=2]
\tkzDefPoint(0,0){A}
\t \mathbb{Q}.75, \mathbb{Q}.25) \{B\}
\tkzDefPoint(1,1.5){C}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{D}
\tkzInterLC(B,D)(B,C)\tkzGetFirstPoint{G}
\tkzInterLC(D,A)(D,G)\tkzGetSecondPoint{L}
\tkzDrawCircles(B,C D,G)
\tkzDrawLines[add=0 and 2](D,A D,B)
\tkzDrawSegment(A,B)
\tkzDrawSegments[red](A,L B,C)
\tkzDrawPoints[red](D,L)
\tkzDrawPoints[fill=gray](A,B,C)
\tkzLabelPoints[left,red](A)
\tkzLabelPoints[below right,red](L)
\tkzLabelCircle[above left=6pt](B,G)(180){$H$}
\tkzLabelPoints[above left](D,G)
\tkzLabelPoints[above,red](C)
\tkzLabelPoints[right,red](B)
\tkzLabelCircle[above left=6pt](D,G)(180){$K$}
\end{tikzpicture}
```

2.3. tkz-euclide4 vs tkz-euclide3

Now I am no longer a Mathematics teacher, and I only spend a few hours studying geometry. I wanted to avoid multiple complications by trying to make tkz-euclide independent of tkz-base. Thus was born tkz-euclide 4. The latter is a simplified version of its predecessor. The macros of tkz-euclide 3 have been retained. The unit is now cm. Si vous avez besoin de certaines macros de tkz-base, il vous faudra sans doute utiliser la macro \tkzInit.

2.4. How to use the tkz-euclide package ?

2.4.1. Let's look at a classic example

In order to show the right way, we will see how to build an equilateral triangle. Several possibilities are open to us, we are going to follow the steps of Euclid.

 First of all, you have to use a document class. The best choice to test your code is to create a single figure with the class standalone.

\documentclass{standalone}

- Then load the tkz-euclide package:

```
\usepackage{tkz-euclide}
```

You don't need to load TikZ because the **tkz-euclide** package works on top of TikZ and loads it.

- Start the document and open a TikZ picture environment:

```
\begin{document}
\begin{tikzpicture}
```

- Now we define two fixed points:

```
\tkzDefPoint(0,0){A}\tkzDefPoint(5,2){B}
```

- Two points define two circles, let's use these circles:

circle with center A through B and circle with center B through A. These two circles have two points in common.

```
\tkzInterCC(A,B)(B,A)
```

We can get the points of intersection with

```
\tkzGetPoints{C}{D}
```

- All the necessary points are obtained, we can move on to the final steps including the plots.

```
\tkzDrawCircles[gray,dashed](A,B B,A)
\tkzDrawPolygon(A,B,C)% The triangle
```

– Draw all points A, B, C and D:

```
\tkzDrawPoints(A,...,D)
```

- The final step, we print labels to the points and use options for positioning:

```
\tkzLabelSegments[swap](A,B){$c$}
\tkzLabelPoints(A,B,D)
\tkzLabelPoints[above](C)
```

- We finally close both environments

\end{tikzpicture}
\end{document}

- The complete code

\begin{tikzpicture}[scale=.5] % fixed points $\t \mathbb{Q}$ \tkzDefPoint(5,2){B} % calculus \tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{D} % drawings \tkzDrawCircles(A,B B,A) \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,...,D) % marking \tkzMarkSegments[mark=s||](A,BB,CC,A) % labelling \tkzLabelSegments[swap](A,B){\$c\$} \tkzLabelPoints(A,B,D) \tkzLabelPoints[above](C) \end{tikzpicture}

2.4.2. Part I: golden triangle

Let's analyze the figure

- 1. CBD and DBE are isosceles triangles;
- 2. BC = BE and (BD) is a bisector of the angle CBE;
- 3. From this we deduce that the CBD and DBE angles are equal and have the same measure α

$$\widehat{BAC} + \widehat{ABC} + \widehat{BCA} = 180^{\circ}$$
 in the triangle BAC

 $3\alpha + \widehat{BCA} = 180^{\circ}$ in the triangle CBD

then

 $\alpha + 2\widehat{BCA} = 180^{\circ}$

or

$$\widehat{BCA} = 90^{\circ} - \alpha/2$$

4. Finally

$$\widehat{CBD} = \alpha = 36^{\circ}$$

the triangle CBD is a "gold" triangle.

How construct a gold triangle or an angle of 36°?

- 1. We place the fixed points C and D. $\t \$ and $\t \$
- 2. We construct a square CDef and we construct the midpoint m of [Cf]; We can do all of this with a compass and a rule;
- 3. Then we trace an arc with center m through e. This arc cross the line (Cf) at n;
- 4. Now the two arcs with center C and D and radius Cn define the point B.


```
\begin{tikzpicture}
\t \mathbb{Q} \
\t (4,0){D}
\tkzDefSquare(C,D)
\tkzGetPoints{e}{f}
\tkzDefMidPoint(C,f)
\tkzGetPoint{m}
\tkzInterLC(C,f)(m,e)
\tkzGetSecondPoint{n}
\tkzInterCC[with nodes](C,C,n)(D,C,n)
\tkzGetFirstPoint{B}
\tkzDrawSegment[brown,dashed](f,n)
\tkzDrawPolygon[brown,dashed](C,D,e,f)
\tkzDrawArc[brown,dashed](m,e)(n)
\tkzCompass[brown,dashed,delta=20](C,B)
\tkzCompass[brown,dashed,delta=20](D,B)
\tkzDrawPoints(C,D,B)
\tkzDrawPolygon(B,...,D)
\end{tikzpicture}
```

After building the golden triangle BCD, we build the point A by noticing that BD = DA. Then we get the point E and finally the point F. This is done with already intersections of defined objects (line and circle).

```
\begin{tikzpicture}
 \tkzDefPoint(0,0){C}
 \tkzDefPoint(4,0){D}
  \tkzDefSquare(C,D)
  \tkzGetPoints{e}{f}
  \tkzDefMidPoint(C,f)
  \tkzGetPoint{m}
  \tkzInterLC(C,f)(m,e)
  \tkzGetSecondPoint{n}
  \tkzInterCC[with nodes](C,C,n)(D,C,n)
  \tkzGetFirstPoint{B}
  \tkzInterLC(C,D)(D,B) \tkzGetSecondPoint{A}
  \tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E}
  \tkzInterLL(B,D)(C,E) \tkzGetPoint{F}
  \tkzDrawPoints(C,D,B)
  \tkzDrawPolygon(B,...,D)
```

```
\tkzDrawPolygon(B,C,D)
\tkzDrawSegments(D,A A,B C,E)
\tkzDrawArc[delta=10](B,C)(E)
\tkzDrawPoints(A,...,F)
\tkzMarkRightAngle(B,F,C)
\tkzMarkAngles(C,B,D E,A,D)
\tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$}
\tkzLabelPoints[below](A,C,D,E)
\tkzLabelPoints[above right](B,F)
\end{tikzpicture}
```

2.4.3. Part II: two others methods with golden and euclid triangle

tkz-euclide knows how to define a "golden" or "euclide" triangle. We can define BCD and BCA like gold triangles.

```
\begin{tikzpicture}
  \tkzDefPoint(0,0){C}
  \tkzDefPoint(4,0){D}
  \tkzDefTriangle[euclid](C,D)
  \tkzGetPoint{B}
  \tkzDefTriangle[euclid](B,C)
  \tkzGetPoint{A}
  \tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E}
  \tkzInterLL(B,D)(C,E) \tkzGetPoint{F}
  \tkzDrawPoints(C,D,B)
  \tkzDrawPolygon(B,...,D)
  \tkzDrawPolygon(B,C,D)
  \tkzDrawSegments(D,A A,B C,E)
  \tkzDrawArc[delta=10](B,C)(E)
  \tkzDrawPoints(A,...,F)
  \tkzMarkRightAngle(B,F,C)
  \tkzMarkAngles(C,B,D E,A,D)
  \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$}
  \tkzLabelPoints[below](A,C,D,E)
  \tkzLabelPoints[above right](B,F)
\end{tikzpicture}
```

Here is a final method that uses rotations:

```
\begin{tikzpicture}
\tkzDefPoint(0,0){C} % possible
% \tkzDefPoint[label=below:$C$](0,0){C}
% but don't do this
\tkzDefPoint(2,6){B}
% We get D and E with a rotation
\tkzDefPointBy[rotation= center B angle 36](C) \tkzGetPoint{D}
\tkzDefPointBy[rotation= center B angle 72](C) \tkzGetPoint{E}
% To get A we use an intersection of lines
\tkzInterLL(B,E)(C,D) \tkzGetPoint{A}
\tkzInterLL(C,E)(B,D) \tkzGetPoint{H}
% drawing
\tkzDrawArc[delta=10](B,C)(E)
\tkzDrawPolygon(C,B,D)
\tkzDrawSegments(D,A B,A C,E)
```

```
% angles
\tkzMarkAngles(C,B,D E,A,D) %this is to draw the arcs
\tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$}
\tkzMarkRightAngle(B,H,C)
\tkzDrawPoints(A,...,E)
% Label only now
\tkzLabelPoints[below left](C,A)
\tkzLabelPoints[below right](D)
\tkzLabelPoints[above](B,E)
\end{tikzpicture}
```

2.4.4. Complete but minimal example

A unit of length being chosen, the example shows how to obtain a segment of length \sqrt{a} from a segment of length a, using a ruler and a compass.

$$IB = a$$
, $AI = 1$

Comments

- The Preamble

Let us first look at the preamble. If you need it, you have to load **xcolor** before **tkz-euclide**, that is, before TikZ. TikZ may cause problems with the active characters, but... provides a library in its latest version that's supposed to solve these problems babel.

```
\documentclass{standalone} % or another class
    % \usepackage{xcolor} % before tikz or tkz-euclide if necessary
\usepackage{tkz-euclide} % no need to load TikZ
    % \usetkzobj{all} is no longer necessary
    % \usetikzlibrary{babel} if there are problems with the active characters
```

The following code consists of several parts:

Definition of fixed points: the first part includes the definitions of the points necessary for the construction,
 these are the fixed points. The macros \tkzInit and \tkzClip in most cases are not necessary.

```
\tkzDefPoint(0,0){A} \tkzDefPoint(1,0){I}
```

- The second part is dedicated to the creation of new points from the fixed points; a B point is placed at 10 cm from A. The middle of [AB] is defined by M and then the orthogonal line to the (AB) line is searched for at

the I point. Then we look for the intersection of this line with the semi-circle of center M passing through A.

```
\tkzDefPointBy[homothety=center A ratio 10](I)
  \tkzGetPoint{B}
\tkzDefMidPoint(A,B)
  \tkzGetPoint{M}
\tkzDefPointWith[orthogonal](I,M)
  \tkzGetPoint{H}
\tkzInterLC(I,H)(M,B)
\tkzGetSecondPoint{C}
```

- The third one includes the different drawings;

```
\tkzDrawSegment[style=orange](I,H)
\tkzDrawPoints(0,I,A,B,M)
\tkzDrawArc(M,A)(0)
\tkzDrawSegment[dim={$1$,-16pt,}](A,I)
\tkzDrawSegment[dim={$a/2$,-10pt,}](I,M)
\tkzDrawSegment[dim={$a/2$,-16pt,}](M,B)
```

- Marking: the fourth is devoted to marking;

```
\tkzMarkRightAngle[ra](A,I,C)
```

- Labelling: the latter only deals with the placement of labels.

```
\labelPoint[left](A) {$A(0,0)$} $$ \tkzLabelPoint[right](B) {$B(10,0)$} $$ \tkzLabelSegment[right=4pt](I,C) {$\sqrt{a^2}=a (a>0)$} $$
```

- The full code:

```
\begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}]
   % fixed points
   \tkzDefPoint(0,0){A}
   \tkzDefPoint(1,0){I}
   % calculation
   \tkzDefPointBy[homothety=center A ratio 10](I) \tkzGetPoint{B}
   \tkzDefMidPoint(A,B)
                                    \tkzGetPoint{M}
   \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H}
   \tkzInterLC(I,H)(M,B)
                                    \tkzGetSecondPoint{C}
   \tkzDrawSegment[style=orange](I,C)
   \tkzDrawArc(M,B)(A)
   \tkzDrawSegment[dim={$1$,-16pt,}](A,I)
   \tkzDrawSegment[dim={$a/2$,-10pt,}](I,M)
   \tkzDrawSegment[dim={$a/2$,-16pt,}](M,B)
   \tkzMarkRightAngle[ra](A,I,C)
   \tkzDrawPoints(I,A,B,C,M)
   \t \LabelPoint[left](A){$A(0,0)$}
   \tkzLabelPoints[above right](I,M)
   \tkzLabelPoints[above left](C)
   \t \ (B) {$B(10,0)$}
```

 $\label Segment[right=4pt](I,C){$\scriptstyle a^2}=a \ (a>0)$} \end{tikzpicture}$

3. The Elements of tkz code

To work with my package, you need to have notions of LEX as well as TikZ. In this paragraph, we start looking at the "rules" and "symbols" used to create a figure with tkz-euclide.

3.1. Objects and language

The primitive objects are points. You can refer to a point at any time using the name given when defining it. (it is possible to assign a different name later on).

To get new points you will use macros. **tkz-euclide** macros have a name beginning with tkz. There are four main categories starting with: \tkzDef...\tkzDraw...\tkzMark... and \tkzLabel.... The used points are passed as parameters between parentheses while the created points are between braces.

Le code des figures est placés dans un environnement tikzpicture

```
\begin{tikzpicture}
  code ...
\end{tikzpicture}
```

Contrary to TikZ, you should not end a macro with ";". We thus lose the important notion which is the **path**. However, it is possible to place some code between the macros **tkz-euclide**.

Among the first category, \tkzDefPoint allows you to define fixed points. It will be studied in detail later. Here we will see in detail the macro \tkzDefTriangle.

This macro makes it possible to associate to a pair of points a third point in order to define a certain triangle \tkzDefTriangle(A,B). The obtained point is referenced tkzPointResult and it is possible to choose another reference with \tkzGetPoint{C} for example.

\tkzDefTriangle[euclid](A,B) \tkzGetPoint{C}

Parentheses are used to pass arguments. In (A,B) A and B are the points with which a third will be defined. However, in {C} we use braces to retrieve the new point.

In order to choose a certain type of triangle among the following choices: equilateral, isosceles right, half, pythagoras, school, golden or sublime, euclid, gold, cheops... and two angles you just have to choose between hooks, for example:

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{\(\0/\A\,8\\0/\B\)}
\foreach \tr in {euclid,gold}
{\tkzDefTriangle[\tr](A,B) \tkzGetPoint{C}\
\tkzDrawPoint(C)
\tkzLabelPoint[right](C){\tr}
\tkzDrawSegments(A,C C,B)}
\tkzDrawPoints(A,B)
\tkzDrawSegments(A,B)
\tkzLabelPoints(A,B)
\tkzLabelPoints(A,B)
\end{tikzpicture}

3.2. Notations and conventions

I deliberately chose to use the geometric French and personal conventions to describe the geometric objects represented. The objects defined and represented by **tkz-euclide** are points, lines and circles located in a plane. They are the primary objects of Euclidean geometry from which we will construct figures.

According to **Euclid**, these figures will only illustrate pure ideas produced by our brain. Thus a point has no dimension and therefore no real existence. In the same way the line has no width and therefore no existence in the real world. The objects that we are going to consider are only representations of ideal mathematical objects. **tkz-euclide** will follow the steps of the ancient Greeks to obtain geometrical constructions using the ruler and the compass.

Here are the notations that will be used:

- The points are represented geometrically either by a small disc or by the intersection of two lines (two straight lines, a straight line and a circle or two circles). In this case, the point is represented by a cross.

The existence of a point being established, we can give it a label which will be a capital letter (with some exceptions) of the Latin alphabet such as A, B or C. For example:

- O is a center for a circle, a rotation, etc.;
- M defined a midpoint;
- H defined the foot of an altitude;
- P' is the image of P by a transformation;

It is important to note that the reference name of a point in the code may be different from the label to designate it in the text. So we can define a point A and give it as label P. In particular the style will be different, point A will be labeled A.

Exceptions: some points such as the middle of the sides of a triangle share a characteristic, so it is normal that their names also share a common character. We will designate these points by M_a , M_b and M_c or M_A , M_B and M_C .

In the code, these points will be referred to as: M_A, M_B and M_C.

Another exception relates to intermediate construction points which will not be labelled. They will often be designated by a lowercase letter in the code.

- The line segments are designated by two points representing their ends in square brackets: [AB].
- The straight lines are in Euclidean geometry defined by two points so A and B define the straight line (AB). We can also designate this stright line using the Greek alphabet and name it (δ) or (Δ). It is also possible to designate the straight line with lowercase letters such as d and d'.

- The semi-straight line is designated as follows [AB).
- Relation between the straight lines. Two perpendicular (AB) and (CD) lines will be written (AB) ⊥ (CD) and
 if they are parallel we will write (AB) // (CD).
- The lengths of the sides of triangle ABC are AB, AC and BC. The numbers are also designated by a lowercase letter so we will write: AB = c, AC = b and BC = a. The letter a is also used to represent an angle, and r is frequently used to represent a radius, d a diameter, l a length, d a distance.
- Polygons are designated afterwards by their vertices so ABC is a triangle, EFGH a quadrilateral.
- Angles are generally measured in degrees (ex 60°) and in an equilateral ABC triangle we will write $\widehat{ABC} = \widehat{B} = 60^{\circ}$.
- The arcs are designated by their extremities. For example if A and B are two points of the same circle then
 AB.
- Circles are noted either \mathscr{C} if there is no possible confusion or $\mathscr{C}(O; A)$ for a circle with center O and passing through the point A or $\mathscr{C}(O; 1)$ for a circle with center O and radius 1 cm.
- Name of the particular lines of a triangle: I used the terms bisector, bisector out, mediator (sometimes called perpendicular bisectors), altitude, median and symmedian.
- $-(x_1,y_1)$ coordinates of the point A_1 , (x_A,y_A) coordinates of the point A.

3.3. Set, Calculate, Draw, Mark, Label

The title could have been: Separation of Calculus and Drawings

When a document is prepared using the MEX system, the source code of the document can be divided into two parts: the document body and the preamble. Under this methodology, publications can be structured, styled and typeset with minimal effort. I propose a similar methodology for creating figures with tkz-euclide.

The first part defines the fixed points, the second part allows the creation of new points. **Set and Calculate** are the two main parts. All that is left to do is to draw (or fill), mark and label. It is possible that **tkz-euclide** is insufficient for some of these latter actions but you can use TikZ

One last remark that I think is important, it is best to avoid introducing coordinates within a code as much as possible. I think that the coordinates should appear at the beginning of the code with the fixed points. Then the use of references is recommended. Most macros have the option nodes or with nodes.

I also think it's best to define the styles of the different objects from the beginning.

4. News and compatibility

Some changes have been made to make the syntax more homogeneous and especially to distinguish the definition and search for coordinates from the rest, i.e. drawing, marking and labelling. In the future, the definition macros being isolated, it will be easier to introduce a phase of coordinate calculations using **Lua**. Here are some of the changes. I'm sorry but the list of changes and novelties is made in the greatest disorder!

- An important novelty is the recent replacement of the fp package by xfp. This is to improve the calculations
 a little bit more and to make it easier to use;
- Improved code and bug fixes;
- First of all, you don't have to deal with Tik Z the size of the bounding box. Early versions of tkz-euclide did not control the size of the bounding box, The bounding box is now controlled in each macro (hopefully) to avoid the use of \tkzInit followed by \tkzClip;
- With tkz-euclide loads all objects, so there's no need to place \usetkzobj{all};
- Added macros for the bounding box: \tkzSaveBB \tkzClipBB and so on;
- Logically most macros accept TikZ options. So I removed the "duplicate" options when possible thus the "label options" option is removed;
- The unit is now the cm:
- \tkzCalcLength \tkzGetLength gives result in cm;
- \tkzMarkArc and \tkzLabelArc are new macros;
- Now \tkzClipCircle and \tkzClipPolygon have an option out. To use this option you must have a
 Bounding Box that contains the object on which the Clip action will be performed. Cela peut se faire en
 utilisant un objet qui englobe la figure ou bien en utilisant la macro \tkzInit;
- The options end and start which allowed to give a label to a straight line are removed. You now have to use the macro \tkzLabelLine;
- Introduction of the libraries quotes and angles; it allows to give a label to a point, even if I am not in favour of this practice;
- The notion of vector disappears, to draw a vector just pass "->" as an option to \tkzDrawSegment;
- \tkzDrawMedian, \tkzDrawBisector, \tkzDrawAltitude, \tkzDrawMedians, \tkzDrawBisectors et \tkzDrawAltitudes do not exist anymore. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with \tkzDefSpcTriangle[median] and then to choose the ones you are going to draw with \tkzDrawSegments or \tkzDrawLines;
- \tkzDefIntSimilitudeCenter and \tkzDefExtSimilitudeCenter do not exist anymore;
- \tkzDrawTriangle has been deleted. \tkzDrawTriangle[equilateral] was handy but it is better to get the third point with \tkzDefTriangle[equilateral] and then draw with \tkzDrawPolygon; idem for \tkzDrawSquare and \tkzDrawGoldRectangle;

- \tkzDefRandPointOn is replaced by \tkzGetRandPointOn;
- now \tkzTangent is replaced by \tkzDefTangent;
- An option of the macro \tkzDefTriangle has changed, in the previous version the option was "euclide" with an "e". Now it's "euclid";
- Random points are now in tkz-euclide and the macro \tkzGetRandPointOn is replaced by \tkzDefRandPointOn. For homogeneity reasons, the points must be retrieved with \tkzGetPoint;
- New macros have been added: \tkzDrawSemiCircles, \tkzDrawPolygons, \tkzDrawTriangles;
- Option "isosceles right" is a new option of the macro \tkzDefTriangle;
- Appearance of the macro \usetkztool which allows to load new "tools";
- The styles can be modified with the help of the following macros: \tkzSetUpPoint, \tkzSetUpLine, \tkzSetUpArc, \tkzSetUpCompass, \tkzSetUpLabel and \tkzSetUpStyle. The last one allows you to create a new style.

Part II.

Setting

5. First step: fixed points

The first step in a geometric construction is to define the fixed points from which the figure will be constructed. The general idea is to avoid manipulating coordinates and to prefer to use the references of the points fixed in the first step or obtained using the tools provided by the package. Even if it's possible, I think it's a bad idea to work directly with coordinates. Preferable is to use named points.

tkz-euclide uses macros and vocabulary specific to geometric construction. It is of course possible to use the tools of TikZ but it seems more logical to me not to mix the different syntaxes.

A point in **tkz-euclide** is a particular "node" for TikZ. In the next section we will see how to define points using coordinates. The style of the points (color and shape) will not be discussed. You will find some indications in some examples; for more information you can read the following section 39.

6. Definition of a point : \tkzDefPoint or \tkzDefPoints

Points can be specified in any of the following ways:

- Cartesian coordinates;
- Polar coordinates:
- Named points;
- Relative points.

A point is defined if it has a name linked to a unique pair of decimal numbers. Let (x, y) or (a: d) i.e. (x abscissa, y ordinate) or (a angle: d distance). This is possible because the plan has been provided with an orthonormed Cartesian coordinate system. The working axes are (ortho)normed with unity equal to 1 cm.

The Cartesian coordinate (a, b) refers to the point a centimeters in the x-direction and b centimeters in the y-direction

A point in polar coordinates requires an angle α , in degrees, and a distance d from the origin with a dimensional unit by default it's the cm.

The $\t xDefPoint$ macro is used to define a point by assigning coordinates to it. This macro is based on $\t coordinate$, a macro of TikZ. It can use TikZ-specific options such as **shift**. If calculations are required then the xfp package is chosen. We can use Cartesian or polar coordinates.

Cartesian coordinates Polar coordinates

```
\begin{tikzpicture}[scale=1]
 \tkzInit[xmax=5,ymax=5]
 % necessary to limit
 % the size of the axes
 \tkzDrawX[>=latex]
 \tkzDrawY[>=latex]
 \tkzDefPoint(3.4){A}
 \tkzDrawPoints(0,A)
 \t X_1 = X_1 (x_1,y_1)
 \tkzShowPointCoord[xlabel=$x_1$,
                  ylabel=$y_1$](A)
 \tkzLabelPoints(0,I)
 \tkzLabelPoints[left](J)
 \tkzDrawPoints[shape=cross](I,J)
\end{tikzpicture}
```

```
\begin{tikzpicture}[,scale=1]
 \tkzInit[xmax=5,ymax=5]
  \tkzDrawX[>=latex]
  \tkzDrawY[>=latex]
  \t Nd = 1/0, 1/0/1, 0/1/J
  \tkzDefPoint(40:4){P}
  \tkzDrawSegment[dim={$d$,
                 16pt,above=6pt}](0,P)
  \tkzDrawPoints(0,P)
  \tkzMarkAngle[mark=none,->](I,0,P)
  \tkzFillAngle[opacity=.5](I,0,P)
  \tkzLabelAngle[pos=1.25](I,0,P){%
  \tkzLabelPoint(P){$P (\alpha : d )$}
  \tkzDrawPoints[shape=cross](I,J)
  \tkzLabelPoints(0,I)
  \tkzLabelPoints[left](J)
\end{tikzpicture}
```


6.1. Defining a named point \tkzDefPoint

\tkzDefPoi	$\label{local options} $$ \txDefPoint[\langle local options \rangle] (\langle x,y \rangle) {\langle ref \rangle} $ or $(\langle \alpha:d \rangle) {\langle ref \rangle} $$									
arguments	default	definition								
(x,y) (α:d) {ref}	no default	x and y are two dimensions, by default in cm. α is an angle in degrees, d is a dimension Reference assigned to the point: A, T_a ,Pl or P_1								

The obligatory arguments of this macro are two dimensions expressed with decimals, in the first case they are two measures of length, in the second case they are a measure of length and the measure of an angle in degrees. Do not confuse the reference with the name of a point. The reference is used by calculations, but frequently, the name is identical to the reference.

options	default	definition
		allows you to place a label at a predefined distance adds (x,y) or $(\alpha:d)$ to all coordinates

6.1.1. Cartesian coordinates

6.1.2. Calculations with xfp


```
\begin{tikzpicture}[scale=1]
  \tkzInit[xmax=4,ymax=4]
  \tkzDrawX\tkzDrawY
  \tkzDefPoint(-1+2,sqrt(4)){0}
  \tkzDefPoint({3*ln(exp(1))},{exp(1)}){A}
  \tkzDefPoint({4*sin(pi/6)},{4*cos(pi/6)}){B}
  \tkzDrawPoints(0,B,A)
  \end{tikzpicture}
```

6.1.3. Polar coordinates

6.1.4. Relative points

First, we can use the **scope** environment from TikZ. In the following example, we have a way to define an equilateral triangle.


```
\begin{tikzpicture}[scale=1]
\begin{scope}[rotate=30]
\tkzDefPoint(2,3){A}
\begin{scope}[shift=(A)]
\tkzDefPoint(90:5){B}
\tkzDefPoint(30:5){C}
\end{scope}
\end{scope}
\tkzDrawPolygon(A,B,C)
\tkzLabelPoints[above](B,C)
\tkzLabelPoints[below](A)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}
```

6.2. Point relative to another: \tkzDefShiftPoint

lem:lemma		
arguments	default	definition
(x,y) (α:d) {ref}	no default	x and y are two dimensions, by default in cm. α is an angle in degrees, d is a dimension Reference assigned to the point: A, T_a ,Pl or P_1
options	default	definition
[pt]	no default	\tkzDefShiftPoint[A](0:4){B}

6.2.1. Isosceles triangle

This macro allows you to place one point relative to another. This is equivalent to a translation. Here is how to construct an isosceles triangle with main vertex A and angle at vertex of 30° .

\begin{tikzpicture} [rotate=-30]
\tkzDefPoint(2,3){A}
\tkzDefShiftPoint[A](0:4){B}
\tkzDefShiftPoint[A](30:4){C}
\tkzDrawSegments(A,B B,C C,A)
\tkzMarkSegments[mark=|](A,B A,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(B,C)
\tkzLabelPoints[above left](A)
\end{tikzpicture}

6.2.2. Equilateral triangle

Let's see how to get an equilateral triangle (there is much simpler)

\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,3){A}
\tkzDefShiftPoint[A](30:3){B}
\tkzDefShiftPoint[A](-30:3){C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(B,C)
\tkzLabelPoints[above left](A)
\tkzMarkSegments[mark=|](A,B,A,C,B,C)
\end{tikzpicture}

6.2.3. Parallelogram

There's a simpler way

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(30:3){B}
\tkzDefShiftPointCoord[B](10:2){C}
\tkzDefShiftPointCoord[A](10:2){D}
\tkzDrawPolygon(A,...,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}

6.3. Definition of multiple points: \tkzDefPoints

$\text{tkzDefPoints}[\langle \text{local options} \rangle] \{\langle x_1/y_1/n_1, x_2/y_2/r_2, \ldots \rangle \}$				
x _i and y _i ar	x_i and y_i are the coordinates of a referenced point r_i			
argumen	arguments default example			
$x_i/y_i/r_i$	$x_i/y_i/r_i$ \tkzDefPoints{\\0/0,2/2/\A}			
options	default	definition		
shift	no default	Adds (x,y) or $(\alpha \!:\! d)$ to all coordinates		

6.4. Create a triangle

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{\0/\0/A,4/\0/B,4/3/C}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints(A,B,C)
 \end{tikzpicture}

6.5. Create a square

Note here the syntax for drawing the polygon.

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,2/0/B,2/2/C,0/2/D}
\tkzDrawPolygon(A,...,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}

Part III.

Calculating

7. Auxiliary tools 39

Now that the fixed points are defined, we can with their references using macros from the package or macros that you will create get new points. The calculations may not be apparent but they are usually done by the package. Vous aurez peut-être besoin d'utiliser certains constantes mathématiques, voici la liste des constantes définies par le package.

7. Auxiliary tools

7.1. Constants

tkz-euclide knows some constants, here is the list:

```
\def\tkzPhi{1.618\034}
\def\tkzInvPhi{0.618\034}
\def\tkzSqrtPhi{1.272\02}
\def\tkzSqrTwo{1.414213}
\def\tkzSqrThree{1.732\05\08}
\def\tkzSqrFive{2.236\0679}
\def\tkzSqrTwobyTwo{0.7071\065}
\def\tkzPi{3.1415926}
\def\tkzEuler{2.71828182}
```

7.2. New point by calculation

\tkzGetPoint{\ref\}

When a macro of tkznameofpack creates a new point, it is stored internally with the reference tkzPointResult. You can assign your own reference to it. This is done with the macro \tkzGetPoint. A new reference is created, your choice of reference must be placed between braces.

If the result is in tkzPointResult, you can access it with \tkzGetPoint. arguments default example ref no default \tkzGetPoint{M} see the next example

Sometimes you need to get two points. It's possible with

```
\tkzGetPoints{\langle ref1\rangle} \{\ref2\rangle}

The result is in tkzPointFirstResult and tkzPointSecondResult.

arguments default example

{ref1,ref2} no default \tkzGetPoints{M,N} It's the case with \tkzInterCC
```

If you need only the first or the second point you can also use:

\tkzGetFir	\t			
arguments	default	example		
ref1	no default	\tkzGetFirstPoint{M}		
1				

$\verb \tkzGetSecondPoint{ \langle ref2\rangle }$			
arguments	default	example	
ref2	no default	\tkzGetSecondPoint{M}	

Parfois les résultats consistent en un point et une dimension. Vous obtenez le point avec \tkzGetPoint et la dimension avec \tkzGetLength.

\tkzGetLength{\name of a macro\}			
arguments	default	example	
name of a macro	no default	\tkzGetLength{rAB} \rAB gives the length in cm	

8. Special points

Here are some special points.

8.1. Middle of a segment \tkzDefMidPoint

It is a question of determining the middle of a segment.

\tkzDefMidPoint(\langle pt1, pt2 \rangle)				
The result is in tkzPointResult. We can access it with \tkzGetPoint				
arguments default defi		definition		
(pt1,pt2)	no default	pt1 and pt2 are two points		

8.1.1. Use of \tkzDefMidPoint

Review the use of \tkzDefPoint.

\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,3){A}
\tkzDefPoint(6,2){B}
\tkzDefMidPoint(A,B)
\tkzGetPoint{M}
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,M)
\tkzLabelPoints[below](A,B,M)
\end{tikzpicture}

8.2. Barycentric coordinates

pt₁, pt₂, ..., pt_n being n points, they define n vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, ..., $\overrightarrow{v_n}$ with the origin of the referential as the common endpoint. α_1 , α_2 , ... α_n are n numbers, the vector obtained by:

$$\frac{\alpha_1\overrightarrow{v_1}+\alpha_2\overrightarrow{v_2}+\cdots+\alpha_n\overrightarrow{v_n}}{\alpha_1+\alpha_2+\cdots+\alpha_n}$$

defines a single point.

$\verb \tkzDefBarycentricPoint(\langle pt1=\alpha_1, pt2=\alpha_2,\rangle) $			
arguments	default	definition	
$(pt1=\alpha_1, pt2=\alpha_2,)$	no default	Each point has a assigned weight	
You need at least two points. Result in tkzPointResult.			

8.2.1. Using \tkzDefBarycentricPoint with two points

In the following example, we obtain the barycentre of points A and B with coefficients 1 and 2, in other words:

$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$$
 \begin\{tikzpicture\} \tkzDefPoint(2,3)\{A\} \tkzDefShiftPointCoord[2,3](3\0:4)\{B\} \tkzDefBarycentricPoint(A=1,B=2) \tkzGetPoint\{G\} \tkzDrawLine(A,B) \tkzDrawPoints(A,B,G) \tkzLabelPoints(A,B,G) \end\{tikzpicture\}

8.2.2. Using \tkzDefBarycentricPoint with three points

This time M is simply the center of gravity of the triangle.

For reasons of simplification and homogeneity, there is also \tkzCentroid.

\begin{tikzpicture}[scale=.8]
 \tkzDefPoints{2/1/A,5/3/B,\@/6/C}
 \tkzDefBarycentricPoint(A=1,B=1,C=1)
 \tkzGetPoint{G}
 \tkzDefMidPoint(A,B) \tkzGetPoint{C'}
 \tkzDefMidPoint(A,C) \tkzGetPoint{B'}
 \tkzDefMidPoint(C,B) \tkzGetPoint{A'}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawLines[add=\@ and 1,new](A,G B,G C,G)
 \tkzDrawPoints[new](A',B',C',G)
 \tkzDrawPoints[new](A',B',C',G)
 \tkzAutoLabelPoints[center=G](A,B,C)
 \tkzAutoLabelPoints[center=G,above right](A',B',C')
 \end{tikzpicture}

8.3. Golden ration

From Wikipedia: In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a, b a > b > 0 a + b is to a as a is to b.

$$\frac{\mathbf{a}+\mathbf{b}}{\mathbf{a}} = \frac{\mathbf{a}}{\mathbf{b}} = \phi = \frac{1+\sqrt{5}}{2}$$

One of the two solutions to the equation $x^2 - x - 1 = 0$ is the golden ratio ϕ , $\phi = \frac{1 + \sqrt{5}}{2}$.

\tkzDefGo	$ldenRatio(\langle pt1 \rangle$	1,pt2>)
arguments	default	example
(pt1,pt2)	no default	\tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
AB = a, BC = b and $\frac{AC}{AB} = \frac{AB}{BC} = \phi$		

8.4. Use the golden ratio to divide a line segment

8.5. Internal Similitude Center

The centres of the two homotheties in which two circles correspond are called external and internal centres of similitude.


```
\begin{tikzpicture}[rotate=30]
 \t \ \tkzDefPoints{\0/\0/0,4/-5/A}
 \t 3/0/x,5/-5/y
 \pgfmathsetmacro\R{3}\pgfmathsetmacro\r{1}
 \t \DefIntSimilitudeCenter[R](0,\R)(A,\r) \t \E GetPoint{I}
 \t \DefExtSimilitudeCenter[R](0,\R)(A,\r) \t \ZetPoint{J}
 \tkzDefTangent[from with R= I](0,3)
                                       \tkzGetPoints{D}{E}
 \tkzDefTangent[from with R= I](A,1)
                                        \tkzGetPoints{D'}{E'}
 \tkzDefTangent[from with R= J](0,3)
                                        \tkzGetPoints{F}{G}
 \tkzDefTangent[from with R= J](A,1)
                                        \tkzGetPoints{F'}{G'}
 \tkzDrawCircles(0,x A,y)
                                        \tkzDrawCircles[R](0,3 A,1)
 \tkzDrawSegments[add = .5 and .5,new](D,D' E,E')
 \tkzDrawSegments[add= 0 and 0.25,new](J,F J,G)
 \tkzDrawPoints(0,A,I,J,D,E,F,G,D',E',F',G')
 \tkzLabelPoints[font=\scriptsize](0,A,I,J,D,E,F,G,D',E',F',G')
\end{tikzpicture}
You can \tkzDefBarycentricPoint to find a homothetic center
\t DefBarycentricPoint(0=\r,A=\R)
                                          \tkzGetPoint{I}
\t \DefBarycentricPoint(O={-\r},A=\R) \t \CetPoint{J}
```

8.6. Equidistant points

8.6.1. \tkzDefEquiPoints

\tkzDefEquiPoints[\langlelocal options\rangle](\langlept1,pt2\rangle)			
arguments	default de	finition	
(pt1,pt2) options	no default un default	ordered list of two items definition	
dist from=pt show /compass/del	2 (cm) no defaul false lta 0	half the distance between the two points t reference point if true displays compass traces compass trace size	

This macro makes it possible to obtain two points on a straight line equidistant from a given point.

8.6.2. Using \tkzDefEquiPoints with options

9. Special points relating to a triangle

9.1. Triangle center: \tkzDefTriangleCenter

This macro allows you to define the center of a triangle.. Be careful, the arguments are lists of three points. This macro is used in conjunction with \tkzGetPoint to get the center you are looking for.

You can use tkzPointResult if it is not necessary to keep the results.

arguments	default	example
(pt1,pt2,pt3)	no default	\tkzDefTriangleCenter[ortho](B,C,A)
options	default	definition
ortho	circum	intersection of the altitudes
orthic	circum	
centroid	circum	intersection of the medians
median	circum	•••
circum	circum	circle center circumscribed
in	circum	center of the circle inscribed in a triangle
in	circum	intersection of the bisectors
ex	circum	center of a circle exinscribed to a triangle
euler	circum	center of Euler's circle
gergonne	circum	defined with the Contact triangle
symmedian	circum	Lemoine's point or symmedian center or Grebe's point
lemoine	circum	•••
grebe	circum	•••
spieker	circum	Spieker circle center
nagel	circum	Nagel Center
mittenpunkt	circum	Or middlespoint
feuerbach	circum	Feuerbach Point

9.1.1. Option ortho or orthic

The intersection H of the three altitudes of a triangle is called the orthocenter.

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(5,1){B}
 \tkzDefPoint(1,4){C}
 \tkzDefTriangleCenter[ortho](B,C,A)
 \tkzGetPoint{H}
 \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawSegments[new](A,Ha B,Hb C,Hc)
 \tkzDrawPoints(A,B,C,H)
 \tkzLabelPoint(H){\$H\$}
 \tkzAutoLabelPoints[center=H](A,B,C)
 \tkzMarkRightAngles(A,Ha,B B,Hb,C C,Hc,A)
 \end{tikzpicture}

9.1.2. Option centroid

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{0/0/A,5/0/B,1/4/C}
 \tkzDefTriangleCenter[centroid](A,B,C)
 \tkzGetPoint{G}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawLines[add = 0 and 2/3,new](A,G B,G C,G)
 \tkzDrawPoints(A,B,C,G)
 \tkzLabelPoint(G){\$G\$}
\end{tikzpicture}

9.1.3. Option circum

\begin{tikzpicture}
 \tkzDefPoints{\0/1/A,3/2/B,1/4/C}
 \tkzDefTriangleCenter[circum](A,B,C)
 \tkzGetPoint{0}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawCircle(0,A)
 \tkzDrawPoints(A,B,C,0)
 \tkzLabelPoint(0){\$0\$}
\end{tikzpicture}

9.1.4. Option in

In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex A, or the excenter of A. Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system.

(https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle)

We get the centre of the inscribed circle of the triangle. The result is of course in tkzPointResult. We can retrieve it with \tkzGetPoint.

9.1.5. Option ex

An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the

triangle's sides.

(https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle)

We get the centre of an inscribed circle of the triangle. The result is of course in tkzPointResult. We can retrieve it with \tkzGetPoint.


```
\begin{tikzpicture}[scale=.5]
  \tkzDefPoints{\0/1/A,3/2/B,1/4/C}
  \tkzDefTriangleCenter[ex](B,C,A)
  \tkzGetPoint{J_c}
  \tkzDefPointBy[projection=onto A--B](J_c)
  \tkzDefPointTC}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawCircle[new](J_c,Tc)
  \tkzDrawLines[add=1.5 and \0](A,C B,C)
  \tkzDrawPoints(A,B,C,J_c)
  \tkzLabelPoints(J_c)
\end{tikzpicture}
```

9.1.6. Option euler

This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet H_A , H_B , and H_C dropped from the vertices of any reference triangle ABC on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints M_A , M_B , M_C of the sides of ABC. By Feuerbach's theorem, the nine-point circle also passes through the midpoints E_A , E_B , and E_C of the segments that join the vertices and the orthocenter H. These points are commonly referred to as the Euler points.

(https://mathworld.wolfram.com/Nine-PointCircle.html)


```
\begin{tikzpicture}[scale=1,rotate=90]
\t \DefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
\tkzDefTriangleCenter[euler](A,B,C)\tkzGetPoint{N}
% I= N nine points
\tkzDefTriangleCenter[ortho](A,B,C)\tkzGetPoint{H}
\tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
\tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
\tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
\tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle[new](N,E_A)
\tkzDrawSegments[new](A,H_A B,H_B C,H_C)
\tkzDrawPoints(A,B,C,N,H)
\tkzDrawPoints[new](M_A,M_B,M_C)
\tkzDrawPoints( H_A,H_B,H_C)
\tkzDrawPoints[green](E_A,E_B,E_C)
\tkzAutoLabelPoints[center=N,
font = \colored A, B, C, M\_A, M\_B, M\_C, H\_A, H\_B, H\_C, E\_A, E\_B, E\_C)
\tkzLabelPoints[font=\scriptsize](H,N)
\tkzMarkSegments[mark=s|,size=3pt,
color=blue,line width=1pt](B,E_B E_B,H)
\end{tikzpicture}
```

9.1.7. Option symmedian

The point of concurrence K of the symmedians, sometimes also called the Lemoine point (in England and France) or the Grebe point (in Germany).

Weisstein, Eric W. "Symmedian Point." From MathWorld-A Wolfram Web Resource.

9.1.8. Option spieker

The Spieker center is the center Sp of the Spieker circle, i.e., the incenter of the medial triangle of a reference triangle.

Weisstein, Eric W. "Spieker Center." From MathWorld-A Wolfram Web Resource.

9.1.9. Option gergonne

The Gergonne Point is the point of concurrency which results from connecting the vertices of a triangle to the opposite points of tangency of the triangle's incircle. (Joseph Gergonne French mathematician)


```
\begin{tikzpicture}
\tkzDefPoints{0/0/B,3.6/0/C,2.8/4/A}
\tkzDefTriangleCenter[gergonne] (A,B,C)
\tkzGetPoint{Ge}
\tkzDefSpcTriangle[intouch] (A,B,C){C_1,C_2,C_3}
\tkzDrawCircle[in] (A,B,C)
\tkzDrawLines[add=.25 and .25,teal] (A,B A,C B,C)
\tkzDrawSegments[new] (A,C_1 B,C_2 C,C_3)
\tkzDrawPoints(A,...,C,C_1,C_2,C_3)
\tkzDrawPoints[red] (Ge)
\tkzLabelPoints(A,...,C,C_1,C_2,C_3,Ge)
\end{tikzpicture}
```

9.1.10. Option nagel

Let Ta be the point at which the excircle with center Ja meets the side BC of a triangle ABC, and define Tb and Tc similarly. Then the lines ATa, BTb, and CTc concur in the Nagel point Na. Weisstein, Eric W. "Nagel point." From MathWorld–A Wolfram Web Resource.

\begin{tikzpicture}[scale=.5]

 $\t Nd Points {0/0/A,6/0/B,4/6/C}$ \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} \tkzDefTriangleCenter[nagel](A,B,C) \tkzGetPoint{Na} \tkzDrawPolygon[blue](A,B,C) \tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc) \tkzDrawPoints[new](Ja, Jb, Jc, Ta, Tb, Tc) \tkzClipBB \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A) \tkzDrawCircles[ex,new](A,B,C C,A,B B,C,A) \tkzDrawSegments[new,dashed](Ja,Ta Jb,Tb Jc,Tc) \tkzDrawPoints(B,C,A) \tkzDrawPoints[new](Na) \tkzLabelPoints(B,C,A) \tkzLabelPoints[new](Na) \tkzLabelPoints[new](Ja, Jb, Jc, Ta, Tb, Tc) \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C Jb,Tb,A Jc,Tc,B) \end{tikzpicture}

9.1.11. Option mittenpunkt

The mittenpunkt (also called the middlespoint) of a triangle ABC is the symmedian point of the excentral triangle, i.e., the point of concurrence M of the lines from the excenters through the corresponding triangle side midpoints.

Weisstein, Eric W. "Mittenpunkt." From MathWorld-A Wolfram Web Resource.


```
\begin{tikzpicture}[scale=.5]
\t Nd = 10^{10} 
\tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc}
\tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc}
 \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc}
 \tkzDefTriangleCenter[mittenpunkt](A,B,C)
 \tkzGetPoint{Mi}
\tkzDrawPoints[new] (Ma,Mb,Mc,Ja,Jb,Jc)
\tkzClipBB
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawLines[add=0 and 1](Ja,Ma
              Jb,Mb Jc,Mc)
\tkzDrawLines[add=1 and 1](A,B A,C B,C)
 \tkzDrawCircles[new](Ja,Ta Jb,Tb Jc,Tc)
 \tkzDrawPoints(B,C,A)
\tkzDrawPoints[new] (Mi)
\tkzLabelPoints(Mi)
\tkzLabelPoints[left](Mb)
\tkzLabelPoints[new] (Ma,Mc,Jb,Jc)
\tkzLabelPoints[above left](Ja,Jc)
\end{tikzpicture}
```

9.1.12. Example: relation between gergonne, centroid and mittenpunkt

The Gergonne point Ge, triangle centroid G, and mittenpunkt M are collinear, with GeG/GM=2.


```
\begin{tikzpicture}
\tkzDefPoints{\(\0/\A\,2/2/B\,8/\0/C\)}
\tkzDefTriangleCenter[gergonne](\(A\,B\,C\))\tkzGetPoint{\(G\)}
\tkzDefTriangleCenter[centroid](\(A\,B\,C\))
\tkzGetPoint{\(G\)}
\tkzDefTriangleCenter[mittenpunkt](\(A\,B\,C\))
\tkzDefTriangleCenter[mittenpunkt](\(A\,B\,C\))
\tkzDrawLines[add=.25 and .25,teal](\(A\,B\,A\,C\,B\,C\))
\tkzDrawLines[add=.25 and .25,new](\(G\,A\,B\,A\,C\,B\,C\))
\tkzDrawPoints(\(A\,...,C\))
\tkzDrawPoints[red\,size=2](\(G\,M\,G\,B\))
\tkzLabelPoints(\(A\,...,C\,M\,G\,G\,G\))
\tkzMarkSegment[mark=s||](\(G\,A\,B\,C\,B\))
\end{tikzpicture}
```

10. Projection of excenters

$\label{local options} $$ \txzDefProjExcenter[\langle local options \rangle](\langle A,B,C \rangle)(\langle a,b,c \rangle) \{\langle X,Y,Z \rangle\} $$$

Each excenter has three projections on the sides of the triangle ABC. We can do this with one macro \tkzDefProjExcenter[name=J](A,B,C)(a,b,c){Y,Z,X}.

options	default	definition		
name	no defaut	used to nam	ne the vertices	
arguments		default	definition	
$(pt1=\alpha_1, pt2=\alpha_2,)$		no default	Each point has	a assigned weight

10.0.1. Excircles


```
\begin{tikzpicture}[scale=.5]
\tkzDefPoints{\(\0\)/A,5\\0/B,\(\0.8/4/C\)}
\tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c}
\tkzDefSpcTriangle[intouch,name=I](A,B,C){a,b,c}
\tkzDefProjExcenter[name=J](A,B,C)(a,b,c){X,Y,Z}
\tkzDefCircle[in](A,B,C) \tkzGetPoint{I} \tkzGetSecondPoint{T}\
\tkzDrawCircles[red](Ja,Xa Jb,Yb Jc,Zc)
\tkzDrawCircle(I,T)
\tkzDrawPolygon[dashed,color=blue](Ja,Jb,Jc)
\tkzDrawLines[add=2 and 2,line width=1pt](A,C A,B B,C)
\tkzDrawSegments(Ja,Xa Ja,Ya Ja,Za)
```

```
Jb, Xb Jb, Yb Jb, Zb
                 Jc,Xc Jc,Yc Jc,Zc
                 I,Ia I,Ib I,Ic)
\tkzMarkRightAngles[size=.2,fill=gray!15](%
      Ja,Za,B
      Ja,Xa,B
      Ja,Ya,C
      Jb,Yb,C
      Jb,Zb,B
      Jb,Xb,C
      Jc,Yc,A
      Jc,Zc,B
      Jc,Xc,C
      I,Ia,B
      I,Ib,C
      I,Ic,A)
\tkzDrawSegments[blue](Jc,C Ja,A Jb,B)
\tkzLabelPoints(Xb,Yc,A,B,C,Xa,Xc,Ya,Yb,Ja,Jb,Jc,I)
\tkzLabelPoints[above right](Za,Zb,Zc)
\tkzLabelPoints[below](Ia,Ib,Ic)
\end{tikzpicture}
```

11. Point on line or circle

11.1. Point on a line

\tkzDefPointOnLine[\langlelocal options\rangle](\langle A, B\rangle)						
arguments defau	lt o	definition				
pt1,pt2 no de	efault 7	Two points	to	define	e a lin	е
options default	definition	n				
pos=nb nb is a decimal						

11.1.1. Use of option pos

 $\begin{array}{cccc} pos=-.2 & pos=.5 & pos=1.2 \\ & & & & & B \end{array}$

 $\t \mathbb{Q}/\mathbb{Q}/\mathbb{A}, 4/\mathbb{Q}/\mathbb{B}$ \tkzDefPointOnLine[pos=1.2](A,B) \tkzGetPoint{P} \tkzDefPointOnLine[pos=-0.2](A,B) \tkzGetPoint{R} \tkzDefPointOnLine[pos=0.5](A,B) \tkzGetPoint{S} \tkzDrawLine[new](A,B) \tkzDrawPoints(A,B,P) \tkzLabelPoints(A,B) \tkzLabelPoint[above](P){pos=\$1.2\$} \tkzLabelPoint[above](R){pos=\$-.2\$} \tkzLabelPoint[above](S){pos=\$.5\$} \tkzDrawPoints(A,B,P,R,S) \tkzLabelPoints(A,B) \end{tikzpicture}

\begin{tikzpicture}

11.2. Point on a circle

\tkzDefPointOnCircle[\langle local options \rangle]				
options	default	definition		
center	<pre>% tkzPointResult \tkzLengthResult</pre>	angle formed with the abscissa axis circle center required radius circle		

\begin{tikzpicture}
\tkzDefPoints{\(\0/\A,4\\0/B,\Q.8/3/C\)}
\tkzDefPointOnCircle[angle=9\Q,center=B,radius=1]
\tkzGetPoint{I}
\tkzDefCircle[circum](A,B,C)
\tkzDefCircle[circum](A,B,C)
\tkzGetPoint{G} \tkzGetLength{rG}
\tkzDefPointOnCircle[angle=3\Q,center=G,radius=\rG]
\tkzDrawCircle[R,teal](B,1)
\tkzDrawPoint[teal](I)
\tkzDrawPoints(A,B,C)
\tkzDrawCircle(G,J)
\tkzDrawPoints(G,J)
\tkzDrawPoint[red](J)
\tkzDrawPoints(G,J)

\end{tikzpicture}

12. Definition of points by transformation : \tkzDefPointBy

These transformations are:

- translation;
- homothety;
- orthogonal reflection or symmetry;
- central symmetry;
- orthogonal projection;
- rotation (degrees or radians);
- inversion with respect to a circle.

The choice of transformations is made through the options. There are two macros, one for the transformation of a single point **\tkzDefPointBy** and the other for the transformation of a list of points **\tkzDefPointsBy**. By default the image of A is A'. For example, we'll write:

\tkzDefPointBy[translation= from A to A'](B)

The result is in tkzPointResult

$\t \sum PointBy[\langle local options \rangle](\langle pt \rangle)$

The argument is a simple existing point and its image is stored in tkzPointResult. If you want to keep this point then the macro \tkzGetPoint{M} allows you to assign the name M to the point.

arguments	definition	examples	
pt o	existing	point name (A)	
options			examples
translation		= from #1 to #2	[translation=from A to B](E)
homothety		= center #1 ratio #2	[homothety=center A ratio .5](E)
reflection		= over #1#2	[reflection=over AB](E)
symmetry		= center #1	[symmetry=center A](E)
projection		= onto #1#2	[projection=onto AB](E)
rotation		= center #1 angle #2	[rotation=center O angle 30](E)
rotation in	rad	= center #1 angle #2	[rotation in rad=center O angle pi/3](E)
inversion		= center #1 through #2	[inversion =center O through A](E)
inversion ne	egative	= center #1 through #2	

12.1. Examples of transformations

12.1.1. translation

\begin{tikzpicture}[>=latex]
\tkzDefPoints{0/0/A,3/1/B,3/0/C}
\tkzDefPointBy[translation= from B to A](C)
\tkzGetPoint{D}
\tkzDrawPoints[teal](A,B,C,D)
\tkzLabelPoints[color=teal](A,B,C,D)
\tkzDrawSegments[orange,->](A,B D,C)
\end{tikzpicture}

12.1.2. reflection (orthogonal symmetry)

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{-2/-2/A,-1/-1/C,-4/2/D,-4/\(0\)/0}
\tkzDrawCircle(0,A)
\tkzDefPointBy[reflection = over C--D](A)
\tkzGetPoint{A'}
\tkzDefPointBy[reflection = over C--D](0)
\tkzGetPoint{0'}
\tkzDrawCircle(0',A')
\tkzDrawLine[add= .5 and .5](C,D)
\tkzDrawPoints(C,D,0,0')
\end{tikzpicture}

12.1.3. homothety and projection

\begin{tikzpicture} $\t Nd Points {0/1/A,5/3/B,3/4/C}$ \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} \tkzDrawLine[add=0 and 0,color=magenta!50](A,a) \tkzDefPointBy[homothety=center A ratio .5](a) \tkzGetPoint{a'} \tkzDefPointBy[projection = onto A--B](a') \tkzGetPoint{k'} \tkzDefPointBy[projection = onto A--B](a) \tkzGetPoint{k} \tkzDrawLines[add= 0 and .3](A,k A,C) \tkzDrawSegments[blue](a',k' a,k) \tkzDrawPoints(a,a',k,k',A) \tkzDrawCircles(a',k' a,k) \tkzLabelPoints(a,a',k,A) \end{tikzpicture}

12.1.4. projection

\begin{tikzpicture}[scale=1.5] $\t \DefPoints{0/0/A,0/4/B}$ \tkzDefTriangle[pythagore](B,A) \tkzGetPoint{C} \tkzDefLine[bisector](B,C,A) \tkzGetPoint{c} \tkzInterLL(C,c)(A,B) \tkzGetPoint{D} \tkzDefPointBy[projection=onto B--C](D) \tkzGetPoint{G} \tkzInterLC(C,D)(D,A) \tkzGetPoints{E}{F} \tkzDrawPolygon(A,B,C) \tkzDrawSegment(C,D) \tkzDrawCircle(D,A) \tkzDrawSegment[new](D,G) \tkzMarkRightAngle[fill=orange!10,opacity=.4](D,G,B) \tkzDrawPoints(A,C,F) \tkzLabelPoints(A,C,F) \tkzDrawPoints(B,D,E,G) \tkzLabelPoints[above right](B,D,E,G) \end{tikzpicture}

12.1.5. symmetry

12.1.6. rotation


```
\begin{tikzpicture}[scale=0.5]
\t \DefPoints{0/0/A,5/0/B}
\tkzDrawSegment(A,B)
\tkzGetPoint{C}
\tkzDefPointBy[symmetry=center C](A)
\tkzGetPoint{D}
\tkzDrawSegment(A,tkzPointResult)
\tkzDrawLine(B,D)
\tkzDrawArc(A,B)(C)
\tkzDrawArc(B,C)(A)
\tkzDrawArc(C,D)(D)
\tkzMarkRightAngle(D,B,A)
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\end{tikzpicture}
```

12.1.7. rotation in radian


```
\begin{tikzpicture}
  \tkzDefPoint["$A$" left](1,5){A}
  \tkzDefPoint["$B$" right](4,3){B}
  \tkzDefPointBy[rotation in rad= center A angle pi/3](B)
  \tkzGetPoint{C}
  \tkzDrawSegment(A,B)
  \tkzDrawPoints(A,B,C)
  \tkzCompass(A,C)
  \tkzCompass(B,C)
  \tkzLabelPoints(C)
  \end{tikzpicture}
```

12.1.8. inversion

Inversion is the process of transforming points to a corresponding set of points known as their inverse points. Two points P and P' are said to be inverses with respect to an inversion circle having inversion center O and inversion radius k if P' is the perpendicular foot of the altitude of OQP, where Q is a point on the circle such that

OQ is perpendicular to PQ.

The quantity k^2 is known as the circle power (Coxeter 1969, p. 81). (https://mathworld.wolfram.com/Inversion.html)

Some propositions:

- The inverse of a circle (not through the center of inversion) is a circle.
- The inverse of a circle through the center of inversion is a line.
- The inverse of a line (not through the center of inversion) is a circle through the center of inversion.
- A circle orthogonal to the circle of inversion is its own inverse.
- A line through the center of inversion is its own inverse.
- Angles are preserved in inversion.

Explanation


```
\begin{tikzpicture}[scale=.5]
 \t 2DefPoints{4/0/A,6/0/P,0/0/0}
 \tkzDefCircle(0,A)
 \tkzDefLine[orthogonal=through P](0,P)
 \tkzGetPoint{L}
  \tkzDefTangent[from = P](0,A) \tkzGetPoints{Q}{R}
  \tkzDefPointBy[projection=onto O--A](Q) \tkzGetPoint{P'}
 \tkzDrawSegments(0,P 0,A)
 \tkzDrawSegments[new](0,P 0,Q P,Q Q,P')
  \tkzDrawCircle(0,A)
  \tkzDrawLines[add=1 and 0](P,L)
  \tkzLabelPoints[below,font=\scriptsize](0,P')
  \tkzLabelPoints[above right,font=\scriptsize](P,Q)
  \tkzDrawPoints(0,P) \tkzDrawPoints[new](Q,P')
  \tkzLabelSegment[above](0,Q){$k$}
  \tkzMarkRightAngles(A,P',Q P,Q,0)
  \tkzLabelCircle[above=.5cm,
      font=\scriptsize](0,A)(100){inversion circle}
 \tkzLabelPoint[left,font=\scriptsize](0){inversion center}
 \tkzLabelPoint[left,font=\scriptsize](L){polar}
\end{tikzpicture}
```

Directly (Center O power= $k^2 = OA^2 = OP \times OP'$)


```
\begin{tikzpicture}[scale=.5]
  \tkzDefPoints{4/\(\Delta\)/P,\(\Q\)/P)\\
  \tkzDefCircle(0,A)
  \tkzDefPointBy[inversion = center 0 through A](P)
  \tkzGetPoint{P'}
  \tkzDrawSegments(0,P)
  \tkzDrawGircle(0,A)
  \tkzLabelPoints[above right,font=\scriptsize](0,A,P,P')
  \tkzDrawPoints(0,A,P,P')
  \end{tikzpicture}
```

12.1.9. Inversion of lines

\begin{tikzpicture}[scale=.5] $\t \DefPoints{0/0/0,3/0/I,4/3/P,6/-3/Q}$ \tkzDrawCircle(0,I) \tkzDefPointBy[projection= onto P--Q](0) \tkzGetPoint{A} \tkzDefPointBy[inversion = center 0 through I](A) \tkzGetPoint{A'} \tkzDefPointBy[inversion = center 0 through I](P) \tkzGetPoint{P'} \tkzDrawCircle[new,diameter](0,A') \tkzDrawLines[add=.25 and .25,red](P,Q) \tkzDrawLines[add=.25 and .25](0,A) \tkzDrawSegments(0,P) \tkzDrawPoints(A,P,0) \tkzDrawPoints[new](A',P') \end{tikzpicture} \begin{tikzpicture}[scale=.5] $\t N0/0,3/0/1,3/2/P,3/-2/Q$ \tkzDrawCircle(0,I) \tkzDefPointBy[projection= onto P--Q](0) \tkzGetPoint{A} \tkzDefPointBy[inversion = center 0 through I](A) \tkzGetPoint{A'} \tkzDefPointBy[inversion = center 0 through I](P) \tkzGetPoint{P'} \tkzDrawCircle[new,diameter](0,A') \tkzDrawLines[add=.25 and .25,red](P,Q) \tkzDrawLines[add=.25 and .25](0,A) \tkzDrawSegments(0,P) \tkzDrawPoints(A,P,0) \tkzDrawPoints[new](A',P') \end{tikzpicture} \begin{tikzpicture}[scale=.5] $\t \DefPoints{0/0/0,3/0/I,2/1/P,2/-2/Q}$ \tkzDrawCircle(0,I) \tkzDefPointBy[projection= onto P--Q](0) \tkzGetPoint{A} \tkzDefPointBy[inversion = center 0 through I](A) \tkzGetPoint{A'} \tkzDefPointBy[inversion = center 0 through I](P) \tkzGetPoint{P'} \tkzDrawCircle[new,diameter](0,A') \tkzDrawLines[add=.25 and .75,red](P,Q) \tkzDrawLines[add=.25 and .25](0,A') \tkzDrawSegments(0,P') \tkzDrawPoints(A,P,O) \tkzDrawPoints[new](A',P')

tkz-euclide AlterMundus

\end{tikzpicture}

12.1.10. Inversion of circle


```
\begin{tikzpicture}[scale=.5]
\t Note = 100, 3/2/A, 2/1/P
\tkzDefTangent[from = 0](A,P) \tkzGetPoints{T}{X}
\tkzDefPointsBy[homothety=center O ratio 1.25](A,P,T){}
\tkzInterCC(A,P)(A',P') \tkzGetPoints{C}{D}
\tkzCalcLength(A,P)
\tkzGetLength{rAP}
\tkzDefPointOnCircle[angle=190,center=A,radius=\rAP]
\tkzGetPoint{M}
\tkzDefPointBy[inversion = center 0 through C](M)
\tkzGetPoint{M'}
\tkzDrawCircles(A,P A',P')
\tkzDrawCircle(0,C)
\t \ and .5](0,T' 0,A' 0,M' 0,P')
\tkzDrawPoints(A,A',P,P',O,T,T',M,M')
\tkzLabelPoints(0,T,T')
\tkzLabelPoints[above left](M,M')
\tkzLabelPoints[below](P,P')
\end{tikzpicture}
```

12.1.11. Inversion of Triangle with respect to the Incircle


```
\t No. 1/B, 3/6/C
\tkzDefTriangleCenter[in](A,B,C) \tkzGetPoint{0}
\tkzDefPointBy[projection= onto A--C](0) \tkzGetPoint{b}
\tkzDefPointBy[projection= onto A--C](0) \tkzGetPoint{b}
\tkzDefPointBy[projection= onto B--C](0) \tkzGetPoint{a}
\tkzDefPointBy[projection= onto A--B](0) \tkzGetPoint{c}
\tkzDefPointsBy[inversion = center 0 through b](a,b,c)%
                                             {Ia,Ib,Ic}
\tkzDefMidPoint(0,Ia) \tkzGetPoint{Ja}
\tkzDefMidPoint(0,Ib) \tkzGetPoint{Jb}
\tkzDefMidPoint(0,Ic) \tkzGetPoint{Jc}
\tkzInterCC(Ja,0)(Jb,0) \tkzGetPoints{0}{x}
\tkzInterCC(Ja,0)(Jc,0) \tkzGetPoints{y}{0}
\tkzInterCC(Jb,0)(Jc,0) \tkzGetPoints{0}{z}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(0,b)\tkzDrawPoints(A,B,C,0)
\tkzDrawCircles[dashed,gray](Ja,y Jb,x Jc,z)
\tkzDrawArc[line width=1pt,orange](Jb,x)(z)
\tkzDrawArc[line width=1pt,orange](Jc,z)(y)
\tkzDrawArc[line width=1pt,orange](Ja,y)(x)
\label{low} $$ \txLabelPoint[below](A) {$A$} \times LabelPoint[above](C) {$C$} $$
\tkzLabelPoint[right](B){$B$}\tkzLabelPoint[below](0){$0$}
\end{tikzpicture}
```

12.1.12. Inversion: orthogonal circle with inversion circle

The inversion circle itself, circles orthogonal to it, and lines through the inversion center are invariant under inversion. If the circle meets the reference circle, these invariant points of intersection are also on the inverse circle. See I and J in the next figure.

\begin{tikzpicture}[scale=1]

12.1.13. Inversion and homothety

For a more complex example see Pappus 46.24

12.1.14. inversion negative

It's an inversion followed by a symmetry of center O


```
\begin{tikzpicture} [scale=1.5]
  \tkzDefPoints{1/\( \)/\( A, \) \( \)/\( O) \\
  \tkzDefPoint(-1.5, -1.5) \{ z1 \}
  \tkzDefPoint(\( \) .35, -2) \{ z2 \}
  \tkzDefPointBy[inversion negative = center 0 through A] (z1)
  \tkzGetPoint{Z1}
  \tkzDefPointBy[inversion negative = center 0 through A] (z2)
  \tkzDefPoint{Z2}
  \tkzDrawCircle(0, A)
  \tkzDrawCircle(0, A)
  \tkzDrawPoints[color=black, fill=red,size=4] (Z1, Z2)
  \tkzDrawSegments(z1, Z1 z2, Z2)
  \tkzDrawPoints[color=black, fill=red,size=4] (0, z1, z2)
  \tkzLabelPoints[font=\scriptsize] (0, A, z1, z2, Z1, Z2)
  \end{tikzpicture}
```

12.2. Transformation of multiple points; \tkzDefPointsBy

Variant of the previous macro for defining multiple images. You must give the names of the images as arguments, or indicate that the names of the images are formed from the names of the antecedents, leaving the argument empty.

\tkzDefPointsBy[translation= from A to A'](B,C){}

The images are B' and C'.

\tkzDefPointsBy[translation= from A to A'](B,C){D,E}

The images are D and E.

\tkzDefPointsBy[translation= from A to A'](B)

The image is B'.

```
\tkzDefPointsBy[\langle local options\rangle](\langle list of points\rangle)\{\langle list of points\rangle}\}
arguments
examples
(\langle list of points\rangle)\{\langle list of pts\rangle}\} (A,B)\{E,F\} E,F images of A, B
```

If the list of images is empty then the name of the image is the name of the antecedent to which "'" is added.

options	examples
translation = from #1 to #2	[translation=from A to B](E){}
homothety = center #1 ratio #2	[homothety=center A ratio $.5](E){F}$
reflection = over #1#2	<pre>[reflection=over AB](E){F}</pre>
symmetry = center #1	[symmetry=center A](E){F}
projection = onto #1#2	<pre>[projection=onto AB](E){F}</pre>
rotation = center #1 angle #2	[rotation=center angle 30](E){F}
rotation in rad = center #1 angle #2	for instance angle pi/3

The points are only defined and not drawn.

12.2.1. Example of translation

12.2.2. Example of symmetry


```
\begin{tikzpicture}[scale=.4]
  \t(-4, 0)\{I\}
  \tkzDefPoint(4,0){J}
  \t \mathbb{Q} 
  \tkzInterCC(J,0)(0,J) \tkzGetPoints{L}{H}
  \tkzInterCC(I,0)(0,I) \tkzGetPoints{K}{G}
  \tkzDrawLines[add=1.5 and 1.5](I,K I,G J,H J,L)
  \tkzDrawLines[add=.5 and .5](I,J)
  \tkzInterLL(I,K)(J,H) \tkzGetPoint{M}
  \tkzInterLL(I,G)(J,L) \tkzGetPoint{N}
  \tkzDefPointsBy[symmetry=center J](L,H){D,E}
  \tkzDefPointsBy[symmetry=center I](G,K){C,F}
  \tkzDrawPoints(H,L,K,G,I,J,D,E,C,F,M,N)
  \tkzDrawCircle[R](0,4)
  \tkzDrawCircle[R](I,4)
  \tkzDrawCircle[R](J,4)
  \tkzDrawArc(N,D)(C)
  \tkzDrawArc(M,F)(E)
  \tkzDrawArc(J,E)(D)
  \tkzDrawArc(I,C)(F)
  \tkzLabelPoints[font=\scriptsize](H,L,K,G,I,J,%
                                   D,E,C,F,M,N)
\end{tikzpicture}
```

13. Defining points using a vector

13.1. \tkzDefPointWith

There are several possibilities to create points that meet certain vector conditions. This can be done with \tkzDefPointWith. The general principle is as follows, two points are passed as arguments, i.e. a vector. The different options allow to obtain a new point forming with the first point (with some exceptions) a collinear vector or a vector orthogonal to the first vector. Then the length is either proportional to that of the first one, or proportional to the unit. Since this point is only used temporarily, it does not have to be named immediately. The result is in tkzPointResult. The macro \tkzGetPoint allows you to retrieve the point and name it differently. There are options to define the distance between the given point and the obtained point. In the general case this distance is the distance between the 2 points given as arguments if the option is of the "normed" type then the distance between the given point and the obtained point is 1 cm. Then the K option allows to obtain multiples.

\tkzDefPointWith(\langle pt1, pt2 \rangle)

It is in fact the definition of a point meeting vectorial conditions.

arguments	definition	explication
(pt1,pt2)	point couple	the result is a point in tkzPointResult

In what follows, it is assumed that the point is recovered by \tkzGetPoint{C}

•	$AC = AB$ and $\overrightarrow{AC} \perp \overrightarrow{AB}$
onal normed](A,B)	$AC = 1$ and $\overrightarrow{AC} \perp \overrightarrow{AB}$
](A,B)	$\overrightarrow{AC} = K \times \overrightarrow{AB}$
normed](A,B)	$AC = K$ and $\overrightarrow{AC} = k \times \overrightarrow{AB}$
ar= at C](A,B)	$\overrightarrow{CD} = \overrightarrow{AB}$
ar normed= at C](A,B)	$\overrightarrow{CD} = \overrightarrow{AB}$
[(A,B),K=2]	$\overrightarrow{AC} = 2 \times \overrightarrow{AB}$
	ear = at C](A,B) ear = at C](A,B) ear = at C](A,B)

13.1.1. Option colinear at, simple example

 $(\overrightarrow{AB} = \overrightarrow{CD})$


```
\begin{tikzpicture}[scale=1.2,
   vect/.style={->,shorten >=1pt,>=latex'}]
   \tkzDefPoint(2,3){A}   \tkzDefPoint(4,2){B}
   \tkzDefPoint(\(\0,1)\{C\}
   \tkzDefPointWith[colinear=at C](A,B)
   \tkzGetPoint{D}
   \tkzDrawPoints[new](A,B,C,D)
   \tkzLabelPoints[above right=3pt](A,B,C,D)
   \tkzDrawSegments[vect](A,B C,D)
   \end{tikzpicture}
```

13.1.2. Option colinear at, complex example


```
\begin{tikzpicture}[scale=.75]
\t Nd = 1.5/4/A
\tkzDefSpcTriangle[ortho](A,B,C){Ha,Hb,Hc}
\verb|\tkzDefTriangleCenter[ortho](A,B,C) \tkzGetPoint{H}|
\tkzDefSquare(A,C) \tkzGetPoints{R}{S}
\tkzDefSquare(B,A) \tkzGetPoints{M}{N}
\tkzDefSquare(C,B) \tkzGetPoints{P}{Q}
\tkzDefPointWith[colinear= at M](A,S) \tkzGetPoint{A'}
\tkzDefPointWith[colinear= at P](B,N) \tkzGetPoint{B'}
\tkzDefPointWith[colinear= at Q](C,R) \tkzGetPoint{C'}
\tkzDefPointBy[projection=onto P--Q](Ha) \tkzGetPoint{Pa}
\tkzDrawPolygon[teal,thick](A,C,R,S)\tkzDrawPolygon[teal,thick](A,B,N,M)
\tkzDrawPolygon[teal,thick](C,B,P,Q)
\tkzDrawPoints[teal,size=2](A,B,C,Ha,Hb,Hc,A',B',C')
\tkzDrawSegments[ultra thin,red](M,A' A',S P,B' B',N Q,C' C',R B,S C,M C,N B,R A,P A,Q)
\tkzDrawSegments[ultra thin,teal, dashed](A,Ha B,Hb C,Hc)
\tkzDefPointBy[rotation=center A angle 90](S) \tkzGetPoint{S'}
\tkzDrawSegments[ultra thin,teal,dashed](B,S' A,S' A,A' M,S' B',Q P,C' M,S Ha,Pa)
\tkzDrawArc(A,S)(S')
\end{tikzpicture}
```

13.1.3. Option colinear at

How to use K

13.1.4. Option colinear at

With
$$K = \frac{\sqrt{2}}{2}$$

13.1.5. Option orthogonal

AB=AC since K=1.

\begin{tikzpicture} [scale=1.2,
 vect/.style={->,shorten >=1pt,>=latex'}]
 \tkzDefPoints{2/3/A,4/2/B}
 \tkzDefPointWith[orthogonal,K=1](A,B)
 \tkzGetPoint{C}
 \tkzDrawPoints[color=red](A,B,C)
 \tkzLabelPoints[right=3pt](B,C)
 \tkzLabelPoints[below=3pt](A)
 \tkzDrawSegments[vect](A,B,A,C)
 \tkzMarkRightAngle(B,A,C)
 \end{tikzpicture}

13.1.6. Option orthogonal

With K = -1 OK=OI since |K| = 1 then OI=OJ=OK.

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{1/2/0,2/5/I}
 \tkzDefPointWith[orthogonal](0,I)
 \tkzGetPoint{J}
 \tkzDefPointWith[orthogonal,K=-1](0,I)
 \tkzGetPoint{K}
 \tkzDrawSegment(0,I)
 \tkzDrawSegments[->](0,J 0,K)
 \tkzMarkRightAngles(I,0,J I,0,K)
 \tkzDrawPoints(0,I,J,K)
 \tkzLabelPoints(0,I,J,K)
 \end{tikzpicture}

13.1.7. Option orthogonal more complicated example

\begin{tikzpicture}[scale=.75] $\t \mathbb{Q}/\mathbb{Q}/\mathbb{A}, 6/\mathbb{Q}/\mathbb{B}$ \tkzDefMidPoint(A,B) \tkzGetPoint{I} \tkzDefPointWith[orthogonal,K=-.75](B,A) \tkzGetPoint{C} \tkzInterLC(B,C)(B,I) \tkzGetPoints{D}{F} \tkzDuplicateSegment(B,F)(A,F) \tkzGetPoint{E} \tkzDrawArc[delta=10](F,E)(B) \tkzInterLC(A,B)(A,E) \tkzGetPoints{N}{M} \tkzDrawArc[delta=10](A,M)(E) \tkzDrawLines(A,B B,C A,F) \tkzCompass(B,F) \tkzDrawPoints(A,B,C,F,M,E) \tkzLabelPoints(A,B,C,F,M,E) \end{tikzpicture}

13.1.8. Options colinear and orthogonal

\begin{tikzpicture}[scale=1.2,
 vect/.style={->,shorten >=1pt,>=latex'}]
 \tkzDefPoints{2/1/A,6/2/B}
 \tkzDefPointWith[orthogonal,K=.5](A,B)
 \tkzGetPoint{C}
 \tkzDefPointWith[colinear=at C,K=.5](A,B)
 \tkzGetPoint{D}
 \tkzMarkRightAngle[fill=gray!20](B,A,C)
 \tkzDrawSegments[vect](A,B A,C C,D)
 \tkzDrawPoints(A,...,D)
\end{tikzpicture}

13.1.9. Option orthogonal normed

K = 1 AC = 1.

\begin{tikzpicture}[scale=1.2,
 vect/.style={->,shorten >=1pt,>=latex'}]
 \tkzDefPoints{2/3/A,4/2/B}
 \tkzDefPointWith[orthogonal normed](A,B)
 \tkzGetPoint{C}
 \tkzDrawPoints[color=red](A,B,C)
 \tkzDrawSegments[vect](A,B,A,C)
 \tkzMarkRightAngle[fill=gray!20](B,A,C)
\end{tikzpicture}

13.1.10. Option orthogonal normed and K=2

K = 2 therefore AC = 2.


```
\begin{tikzpicture}[scale=1.2,
   vect/.style={->,shorten >=1pt,>=latex'}]
  \tkzDefPoints{2/3/A,5/1/B}
  \tkzDefPointWith[orthogonal normed,K=2](A,B)
  \tkzGetPoint{C}
  \tkzDrawPoints[color=red](A,B,C)
  \tkzDrawCircle[R](A,2)
  \tkzDrawSegments[vect](A,B A,C)
  \tkzMarkRightAngle[fill=gray!20](B,A,C)
  \tkzLabelPoints[above=3pt](A,B,C)
  \end{tikzpicture}
```

13.1.11. Option linear

Here K = 0.5.

This amounts to applying a homothety or a multiplication of a vector by a real. Here is the middle of [AB].


```
\begin{tikzpicture}[scale=1.2]
  \tkzDefPoints{1/3/A,4/2/B}
  \tkzDefPointWith[linear,K=0.5](A,B)
  \tkzGetPoint{C}
  \tkzDrawPoints[color=red](A,B,C)
  \tkzDrawSegment(A,B)
  \tkzLabelPoints[above right=3pt](A,B,C)
\end{tikzpicture}
```

13.1.12. Option linear normed

In the following example AC = 1 and C belongs to (AB).

\begin{tikzpicture}[scale=1.2]
\tkzDefPoints{1/3/A,4/2/B}
\tkzDefPointWith[linear normed](A,B)
\tkzGetPoint{C}
\tkzDrawPoints[color=red](A,B,C)
\tkzDrawSegment(A,B)
\tkzLabelSegment(A,C){\$1\$}
\tkzLabelPoints[above right=3pt](A,B,C)
\end{tikzpicture}

13.2. \tkzGetVectxy

Retrieving the coordinates of a vector.

Allows to obtain the coordinates of a vector.

arguments	example	explication
(point){name of macro}	\tkzGetVectxy(A,B){V}	$\Vx,\Vy:$ coordinates of \overrightarrow{AB}

13.2.1. Coordinate transfer with $\t \$

\begin{tikzpicture}
\tkzDefPoints{0/0/0,1/1/A,4/2/B}
\tkzGetVectxy(A,B){v}
\tkzDefPoint(\vx,\vy){V}
\tkzDrawSegment[->,color=red](0,V)
\tkzDrawSegment[->,color=blue](A,B)
\tkzDrawPoints(A,B,0)
\tkzLabelPoints(A,B,0,V)
\end{tikzpicture}

14. The straight lines

It is of course essential to draw straight lines, but before this can be done, it is necessary to be able to define certain particular lines such as mediators, bisectors, parallels or even perpendiculars. The principle is to determine two points on the straight line.

14.1. Definition of straight lines

```
\label{line} $$ \textbf{tkzDefLine}[\langle local\ options \rangle](\langle pt1, pt2 \rangle) \ or \ (\langle pt1, pt2, pt3 \rangle) $$
```

The argument is a list of two or three points. Depending on the case, the macro defines one or two points necessary to obtain the line sought. Either the macro \tkzGetPoint or the macro \tkzGetPoints must be used. I used the term "mediator" to designate the perpendicular bisector line at the middle of a line segment.

arguments	example	e explica	ation
(⟨pt1,pt2⟩)	$(\langle A, B \rangle)$	[media	ator](A,B)
(⟨pt1,pt2,pt3⟩)	$(\langle A, B, C \rangle)$	C)) [bised	ctor](B,A,C)
options		default	definition
mediator			perpendicular bisector of a line segment
perpendicular=t	hrough	mediator	perpendicular to a straight line passing through a point
orthogonal=thro	ugh	mediator	see above
parallel=through	h	mediator	parallel to a straight line passing through a point
bisector		mediator	bisector of an angle defined by three points
bisector out		mediator	Exterior Angle Bisector
K		1	coefficient for the perpendicular line
normed		false	normalizes the created segment

14.1.1. Example with mediator


```
\begin{tikzpicture}[rotate=25]
\tkzDefPoints{-2/\( \)/A,1/2/B}
\tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D}
\tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D}
\tkzDefMidPoint(A,B) \tkzGetPoint{I}
\tkzFillPolygon[color=teal!3\( \)](A,C,B,D)
\tkzDrawSegments(A,B C,D)
\tkzMarkRightAngle(B,I,C)
\tkzDrawSegments(D,B D,A)
\tkzDrawSegments(C,B C,A)
\end{tikzpicture}
```

14.1.2. Example with bisector and normed

\begin{tikzpicture}[rotate=25,scale=.75]
\tkzDefPoints{\0/\0/C, 2/-3/A, 4/\0/B}
\tkzDefLine[bisector,normed](B,A,C) \tkzGetPoint{a}
\tkzDrawLines[add= \0 and .5](A,B A,C)
\tkzShowLine[bisector,gap=4,size=2,color=red](B,A,C)
\tkzDrawLines[new,dashed,add= \0 and 3](A,a)
\end{tikzpicture}

14.1.3. Example with orthogonal and parallel


```
\begin{tikzpicture}
  \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-0.7/1/C}
  \tkzDrawLine(A,B)
  \tkzLabelLine[pos=1.25,below left](A,B){$(d_1)$}
  \tkzDrawPoints(A,B,C)
  \tkzDefLine[orthogonal=through C](B,A) \tkzGetPoint{c}
  \tkzDrawLine(C,c)
  \tkzLabelLine[pos=1.25,left](C,c){$(\delta)$}
  \tkzInterLL(A,B)(C,c) \tkzGetPoint{I}
  \tkzMarkRightAngle(C,I,B)
  \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c'}
  \tkzDrawLine(C,c')
  \tkzLabelLine[pos=1.25,below left](C,c'){$(d_2)$}
  \tkzMarkRightAngle(I,C,c')
  \end{tikzpicture}
```

14.1.4. An envelope

Based on a figure from O. Reboux with pst-eucl by D Rodriguez.


```
begin{tikzpicture}[scale=.75]

\tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6] % necessary

\tkzClip

\tkzDefPoint(0,0){0}

\tkzDefPoint(132:4){A}

\tkzDefPoint(5,0){B}

\foreach \ang in {5,10,...,360}{%}

\tkzDefPoint(\ang:5){M}

\tkzDefLine[mediator](A,M)

\tkzDrawLine[color=magenta,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)}

\end{tikzpicture}
```

14.1.5. A parabola

Based on a figure from O. Reboux with pst-eucl by D Rodriguez. It is not necessary to name the two points that define the mediator.


```
\begin{tikzpicture} [scale=.75]
  \tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6]
  \tkzClip
  \tkzDefPoint(0,0){0}
  \tkzDefPoint(132:5){A}
  \tkzDefPoint(4,0){B}
  \foreach \ang in {5,10,...,360}{%}
  \tkzDefPoint(\ang:4){M}
  \tkzDefLine[mediator](A,M)
  \tkzDrawLine[color=teal,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)}
\end{tikzpicture}
```

14.2. Specific lines: Tangent to a circle

Two constructions are proposed. The first one is the construction of a tangent to a circle at a given point of this circle and the second one is the construction of a tangent to a circle passing through a given point outside a disc.

```
\label{local options} $$ \text{tkzDefTangent}[\langle local options \rangle](\langle pt1, pt2 \rangle) \ or \ (\langle pt1, dim \rangle) $$
```

The parameter in brackets is the center of the circle or the center of the circle and a point on the circle or the center and the radius. This macro replaces the old one: \tkzTangent.

($\langle A,B\rangle$) or ($\langle A,2cm\rangle$) [AB] is radius A is the center
definition
tangent to a point on the circle
tangent to a circle passing through a point
idem, but the circle is defined by center = radius
t

14.2.1. Example of a tangent passing through a point on the circle


```
\begin{tikzpicture}[scale=.75]
  \tkzDefPoint(0,0){0}
  \tkzDefPoint(6,6){E}
  \tkzDefRandPointOn[circle=center 0 radius 3]
  \tkzGetPoint{A}
  \tkzDrawSegment(0,A)
  \tkzDrawCircle(0,A)
  \tkzDefTangent[at=A](0)
  \tkzGetPoint{h}
  \tkzDrawLine[add = 4 and 3](A,h)
  \tkzMarkRightAngle[fill=teal!30](0,A,h)
  \end{tikzpicture}
```

14.2.2. Example of tangents passing through an external point


```
\begin{tikzpicture}[scale=.8]
  \tkzDefPoint(3,3){c}
  \tkzDefPoint(6,3){a@}
  \pgfmathsetmacro\R{1}
  \tkzDrawCircle[R](c,\R)
  \foreach \an in {@,1@,...,35@}{
    \tkzDefPointBy[rotation=center c angle \an](a@)
    \tkzGetPoint{a}
    \tkzDefTangent[from with R = a](c,\R)
    \tkzGetPoints{e}{f}
    \tkzDrawLines[color=teal](a,f a,e)
    \tkzDrawSegments(c,e c,f)
}%
\end{tikzpicture}
```

14.2.3. Example of Andrew Mertz

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(1\0\0:8){A}\tkzDefPoint(5\0:8){B}
\tkzDefPoint(\0,\0){C}\tkzDefPoint(\0,4){R}
\tkzDrawCircle(C,R)
\tkzDefTangent[from = A](C,R)\tkzGetPoints{D}{E}
\tkzDefTangent[from = B](C,R)\tkzGetPoints{F}{G}
\tkzDrawSector[fill=teal!2\0,opacity=\0.5](A,D)(E)
\tkzFillSector[color=teal,opacity=\0.5](B,F)(G)
\tkzInterCC(A,D)(B,F)\tkzGetSecondPoint{I}
\tkzDrawPoint[color=black](I)
\end{tikzpicture}

http://www.texample.net/tikz/examples/

14.2.4. Drawing a tangent option from

\tkzDefPoint(0,0){B} \tkzDefPoint(0,8){A} \tkzDefSquare(A,B) \tkzGetPoints{C}{D} \tkzDrawSquare(A,B) \tkzClipPolygon(A,B,C,D) \tkzDefPoint(4,8){F} \tkzDefPoint(4,\){E} \tkzDefPoint(4,4){Q} \tkzFillPolygon[color = green](A,B,C,D) \tkzDrawCircle[fill = orange](B,A) \tkzDrawCircle[fill = purple](E,B) \tkzDefTangent[from=B](F,A) \tkzInterLL(F,tkzFirstPointResult)(C,D) \tkzInterLL(A,tkzPointResult)(F,E) \tkzDrawCircle[fill = yellow](tkzPointResult,Q) \tkzDefPointBy[projection= onto B--A](tkzPointResult) \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A) \end{tikzpicture}

\begin{tikzpicture}[scale=.5]

15. Triangles 73

15. Triangles

15.1. Definition of triangles \tkzDefTriangle

The following macros will allow you to define or construct a triangle from at least two points. At the moment, it is possible to define the following triangles:

- two angles determines a triangle with two angles;
- equilateral determines an equilateral triangle;
- isosceles right determines an isoxsceles right triangle;
- half determines a right-angled triangle such that the ratio of the measurements of the two adjacent sides to the right angle is equal to 2;
- pythagore determines a right-angled triangle whose side measurements are proportional to 3, 4 and 5;
- school determines a right-angled triangle whose angles are 30, 60 and 90 degrees;
- **golden** determines a right-angled triangle such that the ratio of the measurements on the two adjacent sides to the right angle is equal to $\Phi = 1.618034$, I chose "golden triangle" as the denomination because it comes from the golden rectangle and I kept the denomination "gold triangle" or "Euclid's triangle" for the isosceles triangle whose angles at the base are 72 degrees;
- euclid or gold for the gold triangle; in the previous version the option was "euclide" with an "e".
- **cheops** determines a third point such that the triangle is isosceles with side measurements proportional to 2, Φ and Φ .

$\time Triangle[\langle local options \rangle](\langle A, B \rangle)$

The points are ordered because the triangle is constructed following the direct direction of the trigonometric circle. This macro is either used in partnership with \tkzGetPoint or by using tkzPointResult if it is not necessary to keep the name.

1			
options		default	definition
	two angles= #1 and #2 equilateral	no defaut equilateral	triangle knowing two angles equilateral triangle
ı	isosceles right	equilateral	isosceles right triangle
	pythagore	equilateral	proportional to the pythagorean triangle 3-4-5
ı	school	equilateral	angles of 30, 60 and 90 degrees
	gold	equilateral	angles of 72, 72 and 36 degrees, A is the apex
ı	euclid	equilateral	same as above but [AB] is the base
	golden	equilateral	B rectangle and $AB/AC = \Phi$
	cheops	equilateral	AC=BC, AC and BC are proportional to 2 and Φ .

\tkzGetPoint allows you to store the point otherwise tkzPointResult allows for immediate use.

15. Triangles 74

15.1.1. Option two angles


```
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefTriangle[two angles = 50 and 70](A,B)
\tkzDefTriangle[two angles = 50 and 70](A,B)
\tkzDrawSegment(A,B)
\tkzDrawSegments(A,B)
\tkzDrawPoints(A,B)
\tkzDrawSegments[new](A,C B,C)
\tkzDrawPoints[new](C)
\tkzLabelPoints[above,new](C)
\tkzLabelAngle[pos=1.4](B,A,C){$50^\circ$}
\tkzLabelAngle[pos=0.8](C,B,A){$70^\circ$}
\end{tikzpicture}
```

15.1.2. Option school

The angles are 30, 60 and 90 degrees.


```
\begin{tikzpicture}
  \tkzDefPoints{\0/\0/A,4/\0/B}
  \tkzDefTriangle[school](A,B)
  \tkzGetPoint{C}
  \tkzMarkRightAngles(C,B,A)
  \tkzLabelAngle[pos=\0.8](B,A,C){\$3\0^\circ\}
  \tkzLabelAngle[pos=\0.8](C,B,A){\$9\0^\circ\}
  \tkzLabelAngle[pos=\0.8](A,C,B){\$6\0^\circ\}
  \tkzDrawSegments(A,B)
  \tkzDrawSegments[new](A,C,B,C)
  \end{tikzpicture}
```

15.1.3. Option pythagore

This triangle has sides whose lengths are proportional to 3, 4 and 5.


```
\begin{tikzpicture}
  \tkzDefPoints{0/0/A,4/0/B}
  \tkzDefTriangle[pythagore](A,B)
  \tkzGetPoint{C}
  \tkzDrawSegments(A,B)
  \tkzDrawSegments[new](A,C B,C)
  \tkzMarkRightAngles(A,B,C)
  \tkzLabelPoint[above,new](C){$C$}
  \tkzDrawPoints[new](C)
  \tkzDrawPoints(A,B)
  \tkzLabelPoints(A,B)
  \tkzLabelPoints(A,B)
```

15. Triangles 75

15.1.4. Option golden

\begin{tikzpicture}[scale=.8]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[golden](A,B)\tkzGetPoint{C}
\tkzDefSpcTriangle[in,name=M](A,B,C){a,b,c}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B)
\tkzDrawSegment(C,Mc)
\tkzDrawPoints[new](C)
\tkzLabelPoints[A,B)
\tkzLabelPoints[above,new](C)
\end{tikzpicture}

15.1.5. Option equilateral and isosceles right

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(4,0){B}
 \tkzDefTriangle[equilateral](A,B)
 \tkzGetPoint{C}
 \tkzDefTriangle[isosceles right](A,B)
 \tkzGetPoint{E}
 \tkzDrawPolygons(A,B,C A,B,E)
 \tkzDefTriangle[equilateral](B,A)
 \tkzGetPoint{D}
 \tkzDrawPolygon(B,A,D)
 \tkzMarkRightAngles(B,E,A)
 \tkzDrawPoints(A,B,C,D,E)
 \tkzLabelPoints(A,B,C,D,E)
 \end{tikzpicture}

15.1.6. Option gold

\begin{tikzpicture}
 \tkzDefPoints{0/0/A,4/0/B}
 \tkzDefTriangle[gold](A,B)
 \tkzGetPoint{C}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoints(A,B)
 \tkzLabelPoints[above](C)
 \tkzLabelAngle[pos=0.8](B,A,C){\$36^\circ\$}
 \tkzLabelAngle[pos=0.8](C,B,A){\$72^\circ\$}
 \tkzLabelAngle[pos=0.8](A,C,B){\$72^\circ\$}
 \tkzLabelAngle[pos=0.8](A,C,B){\$72^\circ\$}
 \end{tikzpicture}

15.1.7. Option euclid

Euclid and **gold** are identical but the segment AB is a base in one and a side in the other.

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[euclid](A,B)\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[above](C)
\tkzLabelAngle[pos=0.8](B,A,C){\$72^\circ\$}
\tkzLabelAngle[pos=0.8](C,B,A){\$72^\circ\$}
\tkzLabelAngle[pos=0.8](A,C,B){\$36^\circ\$}
\end{tikzpicture}

16. Specific triangles with \tkzDefSpcTriangle

The centers of some triangles have been defined in the "points" section, here it is a question of determining the three vertices of specific triangles.

$\label{local options} $$ \text{$$ \clin p2,p3$} (\p1,p2,p3) (\p1,p2,p3) $$$

The order of the points is important! p1p2p3 defines a triangle then the result is a triangle whose vertices have as reference a combination with name and r1,r2, r3. If name is empty then the references are r1,r2 and r3.

options	default	definition
orthic	centroid	determined by endpoints of the altitudes
centroid or medial	centroid	intersection of the triangle's three triangle medians
in or incentral	centroid	determined with the angle bisectors
ex or excentral	centroid	determined with the excenters
extouch	centroid	formed by the points of tangency with the excircles
intouch or contact	centroid	formed by the points of tangency of the incircle
		each of the vertices
euler	centroid	formed by Euler points on the nine-point circle
symmedial	centroid	intersection points of the symmedians
tangential	centroid	formed by the lines tangent to the circumcircle
feuerbach	centroid	formed by the points of tangency of the nine-point
		circle with the excircles
name	empty	used to name the vertices

16.1. How to name the vertices

With $\txDefSpcTriangle[medial,name=M](A,B,C)_{A,B,C}$ you get three vertices named M_A , M_B and M_C .

With $\txzDefSpcTriangle[medial](A,B,C){a,b,c}$ you get three vertices named and labeled a, b and c. Possible $\txzDefSpcTriangle[medial,name=M_](A,B,C){A,B,C}$ you get three vertices named M_A , M_B and M_C .

16.2. Option medial or centroid

The geometric centroid of the polygon vertices of a triangle is the point G (sometimes also denoted M) which is also the intersection of the triangle's three triangle medians. The point is therefore sometimes called the median

point. The centroid is always in the interior of the triangle.

Weisstein, Eric W. "Centroid triangle" From MathWorld-A Wolfram Web Resource.

In the following example, we obtain the Euler circle which passes through the previously defined points.


```
\begin{tikzpicture}[rotate=90,scale=.75]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{M}
\tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[dashed,new](A,M_A B,M_B C,M_C)
\tkzDrawPolygon[new](M_A,M_B,M_C)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[new](M,M_A,M_B,M_C)
\tkzDrawPoints[center=M,font=\scriptsize]%
(A,B,C,M_A,M_B,M_C)
\tkzLabelPoints[font=\scriptsize](M)
\end{tikzpicture}
```

16.3. Option in or incentral

The incentral triangle is the triangle whose vertices are determined by the intersections of the reference triangle's angle bisectors with the respective opposite sides.

Weisstein, Eric W. "Incentral triangle" From MathWorld-A Wolfram Web Resource.


```
\begin{tikzpicture}[scale=1]
  \tkzDefPoints{ 0/0/A,5/0/B,1/3/C}
  \tkzDefSpcTriangle[in,name=I](A,B,C){_a,_b,_c}
  \tkzInCenter(A,B,C)\tkzGetPoint{I}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPolygon[new](I_a,I_b,I_c)
  \tkzDrawPoints(A,B,C,I,I_a,I_b,I_c)
  \tkzDrawCircle[in](A,B,C)
  \tkzDrawSegments[dashed,new](A,I_a B,I_b C,I_c)
  \tkzAutoLabelPoints[center=I,%
  new,font=\scriptsize](I_a,I_b,I_c)
  \tkzAutoLabelPoints[center=I,
    font=\scriptsize](A,B,C)
  \end{tikzpicture}
```

16.4. Option ex or excentral

The excentral triangle of a triangle ABC is the triangle $J_aJ_bJ_c$ with vertices corresponding to the excenters of ABC.


```
\begin{tikzpicture}[scale=.6]
  \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
  \tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c}
  \tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPolygon[new](J_a,J_b,J_c)
  \tkzClipBB
  \tkzDrawPoints(A,B,C)
  \tkzDrawPoints[new](J_a,J_b,J_c)
  \tkzLabelPoints[new](J_b,J_c)
  \tkzLabelPoints[new](J_b,J_c)
  \tkzLabelPoints[new,above](J_a)
  \tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
  \end{tikzpicture}
```

16.5. Option intouch or contact

The contact triangle of a triangle ABC, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of ABC with ABC.

Weisstein, Eric W. "Contact triangle" From MathWorld-A Wolfram Web Resource.

We obtain the intersections of the bisectors with the sides.


```
\begin{tikzpicture}[scale=.75]
  \tkzDefPoints{\(\0/\0/A\,6\\0/\0,\0.8\\0.4/C\)}
  \tkzDefSpcTriangle[intouch,name=X](A,B,C)\{_a,_b,_c\}
  \tkzInCenter(A,B,C)\tkzGetPoint{I}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPolygon[new](X_a,X_b,X_c)
  \tkzDrawPoints(A,B,C)
  \tkzDrawPoints[new](X_a,X_b,X_c)
  \tkzDrawCircle[in](A,B,C)
  \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]%
  (X_a,X_b,X_c)
  \tkzAutoLabelPoints[center=I,red,font=\scriptsize]%
  (A,B,C)
  \end{tikzpicture}
```

16.6. Option extouch

The extouch triangle $T_a T_b T_c$ is the triangle formed by the points of tangency of a triangle ABC with its excircles J_a , J_b , and J_c . The points T_a , T_b , and T_c can also be constructed as the points which bisect the perimeter of $A_1 A_2 A_3$ starting at A, B, and C.

Weisstein, Eric W. "Extouch triangle" From MathWorld-A Wolfram Web Resource.

We obtain the points of contact of the exinscribed circles as well as the triangle formed by the centres of the exinscribed circles.


```
\begin{tikzpicture}[scale=.7]
\t Nd = 100 \text{ A} \cdot 100 \text{ A
\tkzDefSpcTriangle[excentral,
                                                                                          name=J](A,B,C){_a,_b,_c}
\tkzDefSpcTriangle[extouch,
                                                                                               name=T](A,B,C)\{_a,_b,_c\}
\tkzDefTriangleCenter[nagel](A,B,C)
\tkzGetPoint{N a}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDrawPoints[new](J_a,J_b,J_c)
\tkzClipBB \tkzShowBB
\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
\tkzDrawLines[add=1 and 1](A,B B,C C,A)
\tkzDrawSegments[new](A,T_a B,T_b C,T_c)
\tkzDrawSegments[new](J_a,T_a J_b,T_b J_c,T_c)
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[new](T_a,T_b,T_c)
\tkzDrawPoints(A,B,C,N_a)
\tkzLabelPoints(N_a)
\tkzAutoLabelPoints[center=N_a](A,B,C)
\tkzAutoLabelPoints[center=G,new,
                                                                                                                                    dist=.4](T_a,T_b,T_c)
\tkzMarkRightAngles[fill=gray!15](J_a,T_a,B
     J_b,T_b,C J_c,T_c,A)
\end{tikzpicture}
```

16.7. Option orthic

Given a triangle ABC, the triangle $H_AH_BH_C$ whose vertices are endpoints of the altitudes from each of the vertices of ABC is called the orthic triangle, or sometimes the altitude triangle. The three lines AH_A , BH_B , and CH_C are concurrent at the orthocenter H of ABC.


```
\begin{tikzpicture}[scale=.75]
\t 1/5/A, 0/0/B, 7/0/C
\tkzDefSpcTriangle[orthic](A,B,C){H_A,H_B,H_C}
\tkzDefTriangleCenter[ortho](B,C,A)
 \tkzGetPoint{H}
 \tkzDefPointWith[orthogonal,normed](H_A,B)
 \tkzGetPoint{a}
\tkzDrawSegments[new](A,H_A B,H_B C,H_C)
\tkzMarkRightAngles[fill=gray!20,
        opacity=.5](A,H_A,C B,H_B,A C,H_C,A)
\tkzDrawPolygon[fill=teal!20,opacity=.3](A,B,C)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[new](H_A,H_B,H_C)
\tkzDrawPolygon[new,fill=orange!20,
                opacity=.3](H_A,H_B,H_C)
\tkzDrawPoint(a)
\tkzLabelPoints(C)
\tkzLabelPoints[left](B)
\tkzLabelPoints[above](A)
\tkzLabelPoints[new](H_A)
\tkzLabelPoints[new,above left](H_C)
\tkzLabelPoints[new,above right](H_B,H)
\end{tikzpicture}
```

16.8. Option feuerbach

The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles.

Weisstein, Eric W. "Feuerbach triangle" From MathWorld-A Wolfram Web Resource.

The points of tangency define the Feuerbach triangle.


```
\begin{tikzpicture}[scale=1.25]
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(3,\(0)\{B\}
 \t \DefPoint(0.5,2.5){C}
 \tkzDefCircle[euler](A,B,C) \tkzGetPoint{N}
 \tkzDefSpcTriangle[feuerbach,
                       name=F](A,B,C)\{\_a,\_b,\_c\}
 \tkzDefSpcTriangle[excentral,
                       name=J](A,B,C){a,b,c}
 \tkzDefSpcTriangle[extouch,
                        name=T] (A,B,C) \{\_a,\_b,\_c\}
 \tkzDrawPoints[blue](J_a,J_b,J_c,%
          F_a,F_b,F_c,A,B,C)
 \tkzClipBB \tkzShowBB
 \tkzDrawCircle[purple](N,F_a)
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPolygon[new](F_a,F_b,F_c)
  \tkzDrawCircles[gray](J_a,F_a J_b,F_b J_c,F_c)
  \tkzAutoLabelPoints[center=N,dist=.3,
  font=\scriptsize](A,B,C,F_a,F_b,%
                   F_c,J_a,J_b,J_c)
\end{tikzpicture}
```

16.9. Option tangential

The tangential triangle is the triangle $T_aT_bT_c$ formed by the lines tangent to the circumcircle of a given triangle ABC at its vertices. It is therefore antipedal triangle of ABC with respect to the circumcenter O.

Weisstein, Eric W. "Tangential Triangle." From MathWorld-A Wolfram Web Resource.

16.10. Option euler

The Euler triangle of a triangle ABC is the triangle $E_A E_B E_C$ whose vertices are the midpoints of the segments joining the orthocenter H with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle.

Weisstein, Eric W. "Euler Triangle." From MathWorld-A Wolfram Web Resource.


```
\begin{tikzpicture}[rotate=90,scale=1.25]
\tkzDefSpcTriangle[medial,
    name=M](A,B,C){_A,_B,_C}
\tkzDefTriangleCenter[euler](A,B,C)
    \tkzGetPoint{N} % I= N nine points
\tkzDefTriangleCenter[ortho](A,B,C)
       \tkzGetPoint{H}
\tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
\tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
\tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
\tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(N,E_A)
\tkzDrawSegments[new](A,H_A B,H_B C,H_C)
\tkzDrawPoints(A,B,C,N,H)
\tkzDrawPoints[red](M_A,M_B,M_C)
\tkzDrawPoints[blue]( H_A,H_B,H_C)
\tkzDrawPoints[green](E_A,E_B,E_C)
\tkzAutoLabelPoints[center=N,font=\scriptsize]%
(A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C)
\tkzLabelPoints[font=\scriptsize](H,N)
\tkzMarkSegments[mark=s|,size=3pt,
  color=blue,line width=1pt](B,E_B E_B,H)
  \tkzDrawPolygon[color=cyan] (M_A,M_B,M_C)
\end{tikzpicture}
```

16.11. Option euler and Option orthic


```
\begin{tikzpicture}[scale=1.25]
  \t \DefPoints{0/0/A,6/0/B,0.8/4/C}
  \tkzDefSpcTriangle[euler,name=E](A,B,C){a,b,c}
  \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
  \tkzDefExCircle(A,B,C) \tkzGetPoint{I} \tkzGetLength{rI}
  \tkzDefExCircle(C,A,B) \tkzGetPoint{J} \tkzGetLength{rJ}
  \tkzDefExCircle(B,C,A) \tkzGetPoint{K} \tkzGetLength{rK}
  \tkzDrawPoints[orange](I,J,K)
  \tkzLabelPoints[font=\scriptsize](A,B,C,I,J,K)
  \tkzClipBB
  \tkzInterLC[R](I,C)(I,\rI) \tkzGetSecondPoint{Fc}
  \tkzInterLC[R](J,B)(J,\rJ) \tkzGetSecondPoint{Fb}
  \tkzInterLC[R](K,A)(K,\rK) \tkzGetSecondPoint{Fa}
  \tkzDrawLines[add=1.5 and 1.5](A,B A,C B,C)
  \tkzDrawCircle[euler,orange](A,B,C) \tkzGetPoint{E}
  \tkzDrawSegments[orange](E,I E,J E,K)
  \tkzDrawSegments[dashed](A,Ha B,Hb C,Hc)
  \t \Times [R] (J,{\rJ} I,{\rI} K,{\rK})
  \tkzDrawPoints(A,B,C)
  \tkzDrawPoints[orange](E,I,J,K,Ha,Hb,Hc,Ea,Eb,Ec,Fa,Fb,Fc)
  \tkzLabelPoints[font=\scriptsize](E,Ea,Eb,Ec,Ha,Hb,Hc,Fa,Fb,Fc)
\end{tikzpicture}
```

16.12. Option symmedial

The symmedial triangle $K_A K_B K_C$ is the triangle whose vertices are the intersection points of the symmedians with the reference triangle ABC.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefPoint(.75,4){C}
\tkzDefTriangleCenter[symmedian](A,B,C)\tkzGetPoint{K}
\tkzDefSpcTriangle[symmedial,name=K_](A,B,C){A,B,C}
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[new](A,K_A B,K_B C,K_C)
\tkzDrawPoints(A,B,C,K,K_A,K_B,K_C)
\tkzLabelPoints[font=\scriptsize](A,B,C,K,K_A,K_B,K_C)
\end{tikzpicture}

17. Definition of polygons

17.1. Defining the points of a square

We have seen the definitions of some triangles. Let us look at the definitions of some quadrilaterals and regular polygons.

$\t \sum P(y) = (\langle pt1, pt2 \rangle)$

The square is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a square. The square is defined in the forward direction.

The results are in tkzFirstPointResult and tkzSecondPointResult.

We can rename them with \tkzGetPoints.

Arguments example		explication			
(⟨pt1,pt2⟩)	$\t X$	The square is defined in the direct direction.			

17.1.1. Using \tkzDefSquare with two points

Note the inversion of the first two points and the result.

We may only need one point to draw an isosceles right-angled triangle so we use \tkzGetFirstPoint or \tkzGetSecondPoint.

17.1.2. Use of \tkzDefSquare to obtain an isosceles right-angled triangle


```
\begin{tikzpicture}[scale=1]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(3,0){B}
  \tkzDefSquare(A,B) \tkzGetFirstPoint{C}
  \tkzDrawSegment(A,B)
  \tkzDrawSegments[new](A,C B,C)
  \tkzDrawPoints(A,B) \tkzDrawPoint[new](C)
  \tkzLabelPoints(A,B)
  \tkzLabelPoints[new](C)
  \end{tikzpicture}
```

17.1.3. Pythagorean Theorem and \tkzDefSquare

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){C}
\tkzDefPoint(4,0){A}
\tkzDefPoint(0,3){B}
\tkzDefSquare(B,A)\tkzGetPoints{E}{F}
\tkzDefSquare(A,C)\tkzGetPoints{G}{H}
\tkzDefSquare(C,B)\tkzGetPoints{I}{J}
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon(A,C,G,H)
\tkzDrawPolygon(B,A,E,F)
\tkzLabelSegment(A,C){\$a\$}
\tkzLabelSegment[swap](A,B){\$c\$}
\end{tikzpicture}

17.2. Defining the points of a rectangle

•

\tkzDefRectangle(\langle(pt1,pt2\rangle))

The rectangle is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a rectangle. The two points passed in arguments are the ends of a diagonal of the rectangle. The sides are parallel to the axes.

The results are in tkzFirstPointResult and tkzSecondPointResult.

We can rename them with \tkzGetPoints.

Arguments	example	explication		
(⟨pt1,pt2⟩)	$\verb \tkzDefRectangle(\langle A , B \rangle) $	The rectangle is defined in the direct direction.		

17.2.1. Example of a rectangle definition

\begin{tikzpicture}
\tkzDefPoints{\(\0/\A\,5/2/C\)}
\tkzDefRectangle(A,C) \tkzGetPoints{\(B\){D}\\
\tkzDrawPolygon[fill=teal!15](A,...,D)
\end{tikzpicture}

17.3. Definition of parallelogram

Defining the points of a parallelogram. It is a matter of completing three points in order to obtain a parallelogram.

\tkzDefParallelogram(\langle pt1, pt2, pt3 \rangle)			
arguments	default	definition	
((pt1,pt2,pt3))	no default	Three points are necessary	

From three points, another point is obtained such that the four taken in order form a parallelogram. The result is in tkzPointResult.

We can rename it with the name \tkzGetPoint...

17.3.1. Example of a parallelogram definition


```
\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,3/0/B,4/2/C}
\tkzDefParallelogram(A,B,C)
% or \tkzDefPointWith[colinear= at C](B,A)
\tkzGetPoint{D}
\tkzDrawPolygon(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}
```

17.4. The golden rectangle

17.4.1. Golden Rectangles

17.4.2. Construction of the golden rectangle

Without the previous macro here is how to get the golden rectangle.


```
\begin{tikzpicture}[scale=.5]
\verb|\tkzDefPoint(0,0){A}|
\tkzDefPoint(8,0){B}
\tkzDefMidPoint(A,B)
\tkzGetPoint{I}
\tkzDefSquare(A,B)\tkzGetPoints{C}{D}
\tkzInterLC(A,B)(I,C)\tkzGetPoints{G}{E}
\tkzDefPointWith[colinear= at C](E,B)
 \tkzGetPoint{F}
\tkzDefPointBy[projection=onto D--C ](E)
\tkzGetPoint{H}
\tkzDrawArc[style=dashed](I,E)(D)
\tkzDrawSquare(A,B)
\tkzDrawPoints(C,D,E,F,H)
\tkzLabelPoints(A,B,C,D,E,F,H)
\tkzDrawSegments[style=dashed,color=gray]%
(E,F C,F B,E F,H H,C E,H)
\end{tikzpicture}
```

17.5. Regular polygon

$\label{local options} $$ \textbf{LkzDefRegPolygon[(local options)]((pt1,pt2))} $$$

From the number of sides, depending on the options, this macro determines a regular polygon according to its center or one side.

arguments	example	explication
(\langle pt1, pt2 \rangle) (\langle pt1, pt2 \rangle)		with option "center", O is the center of the polygon. with option "side", $[AB]$ is a side.
options	default	example
name	P	The vertices are named P1, P2,
sides	5	number of sides.
center	center	The first point is the center.
side	center	The two points are vertices.
Options TikZ		

17.5.1. Option center


```
\begin{tikzpicture}
  \tkzDefPoints{\0/\0/P\,\0/\0\\0,2/\0/P1}
  \tkzDefMidPoint(P\0,P1) \tkzGetPoint{\Q1}
  \tkzDefRegPolygon[center,sides=7](P\0,P1)
  \tkzDefMidPoint(P1,P2) \tkzGetPoint{\Q1}
  \tkzDefRegPolygon[center,sides=7,name=\Q](P\0,Q1)
  \tkzFillPolygon[teal!2\0](Q\0,Q1,P2,Q2)
  \tkzDrawPolygon(P1,P...,P7)
  \foreach \j in \{1,...,7\} \{%
  \tkzDrawSegment[black](P\0,Q\j)\}
\end{tikzpicture}
```

17.5.2. Option side

\begin{tikzpicture}[scale=1]
 \tkzDefPoints{-4/\(0/A\), -1/\(0/B\)}
 \tkzDefRegPolygon[side,sides=5,name=P](A,B)
 \tkzDrawPolygon[thick](P1,P...,P5)
\end{tikzpicture}

18. The Circles

Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given centre passing through a given point. This will be the default method, otherwise you will have to use the R option. There are a large number of special circles, for example the circle circumscribed by a triangle.

- I have created a first macro \tkzDefCircle which allows, according to a particular circle, to retrieve its center and the measurement of the radius in cm. This recovery is done with the macros \tkzGetPoint and \tkzGetLength;
- then a macro \tkzDrawCircle;
- then a macro that allows you to color in a disc, but without drawing the circle \tkzFillCircle;
- sometimes, it is necessary for a drawing to be contained in a disk, this is the role assigned to \tkzClipCircle;
- it finally remains to be able to give a label to designate a circle and if several possibilities are offered, we
 will see here \tkzLabelCircle.

18.1. Characteristics of a circle: \tkzDefCircle

This macro allows you to retrieve the characteristics (center and radius) of certain circles.

example

```
\label{local options} $$ \txDefCircle[\langle local options \rangle](\langle A,B \rangle)$ or $(\langle A,B,C \rangle)$ $$
```

regional distribution of the contraction of the con

arguments

Attention the arguments are lists of two or three points. This macro is either used in partnership with \tkzGetPoint and/or \tkzGetLength to obtain the center and the radius of the circle, or by using tkzPointResult and tkzLengthResult if it is not necessary to keep the results.

explication

$(\langle pt1, pt2 \rangle)$ or	(<pt1,pt2< th=""><th>,pt3\rangle) ($\langle A,B\rangle$) [AB] is radius A is the center</th></pt1,pt2<>	,pt3 \rangle) ($\langle A,B\rangle$) [AB] is radius A is the center
options	default	definition
through	through	circle characterized by two points defining a radius
diameter	through	circle characterized by two points defining a diameter
circum	through	circle circumscribed of a triangle
in	through	incircle a triangle
ex	through	excircle of a triangle
euler or nine	through	Euler's Circle
spieker	through	Spieker Circle
apollonius	through	circle of Apollonius
K	1	coefficient used for a circle of Apollonius

In the following examples, I draw the circles with a macro not yet presented, but this is not necessary. In some cases you may only need the center or the radius.

18.1.1. Example with a random point and option through


```
\begin{tikzpicture}[scale=1]
  \tkzDefPoint(0,4){A}
  \tkzDefPoint(2,2){B}
  \tkzDefMidPoint(A,B) \tkzGetPoint{I}
  \tkzDefRandPointOn[segment = I--B]
  \tkzGetPoint{C}
  \tkzDefCircle[through](A,C)
  \tkzGetLength{rACcm}
  \tkzcmtopt(\rACcm){rACpt}
  \tkzDrawCircle(A,C)
  \tkzDrawPoints(A,B,C)
  \tkzLabelPoints(A,B,C)
  \tkzLabelCircle[draw,
           text width=3cm,text centered,
           font=\scriptsize,below=1cm](A,C)(-90)%
  {The radius measurement is:
   \rACcm cm i.e. \rACpt pt}
\end{tikzpicture}
```

18.1.2. Example with option diameter

It is simpler here to search directly for the middle of [AB].

\begin{tikzpicture}[scale=1]
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(2,2){B}
 \tkzDefCircle[diameter](A,B)
 \tkzGetPoint{0}
 \tkzDrawCircle(0,B)
 \tkzDrawSegment(A,B)
 \tkzDrawPoints(A,B,0)
 \tkzLabelPoints(A,B,0)
 \end{tikzpicture}

18.1.3. Circles inscribed and circumscribed for a given triangle

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B}
\tkzDefPoint(1,-2){C}
\tkzDefCircle[in](A,B,C)
\tkzGetPoint{I} \tkzGetLength{rIN}
\tkzDefCircle[circum](A,B,C)
\tkzGetPoint{K} \tkzGetLength{rCI}
\tkzDrawCircles[R,new](I,{\rIN} K,{\rCI})
\tkzLabelPoints[below](B,C)
\tkzLabelPoints[above left](A,I,K)
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C,I,K)
\end{tikzpicture}

18.1.4. Example with option ex

We want to define an excircle of a triangle relatively to point C

18.1.5. Euler's circle for a given triangle with option euler

We verify that this circle passes through the middle of each side.

18.1.6. Apollonius circles for a given segment option apollonius


```
\begin{tikzpicture}[scale=0.75]
 \t \mathbb{Q} \
 \t (4,0){B}
 \tkzDefCircle[apollonius,K=2](A,B)
 \tkzGetPoint{K1}
 \tkzGetLength{rAp}
 \tkzDrawCircle[R,color = teal!50!black,
     fill=teal!20,opacity=.4](K1,\rAp)
 \tkzDefCircle[apollonius,K=3](A,B)
 \tkzGetPoint{K2}
                   \tkzGetLength{rAp}
  \tkzDrawCircle[R,color=orange!50,
  fill=orange!20,opacity=.4](K2,\rAp)
 \tkzLabelPoints[below](A,B,K1,K2)
 \tkzDrawPoints(A,B,K1,K2)
  \tkzDrawLine[add=.2 and 1](A,B)
\end{tikzpicture}
```

18.1.7. Circles exinscribed to a given triangle option ex

You can also get the center and the projection of it on one side of the triangle. with \tkzGetFirstPoint{Jb} and \tkzGetSecondPoint{Tb}.


```
\begin{tikzpicture}[scale=.6]
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(3,0){B}
 \tkzDefPoint(1,2.5){C}
 \tkzDefCircle[ex](A,B,C) \tkzGetPoint{I}
    \tkzGetLength{rI}
  \tkzDefCircle[ex](C,A,B) \tkzGetPoint{J}
    \tkzGetLength{rJ}
  \tkzDefCircle[ex](B,C,A) \tkzGetPoint{K}
    \tkzGetLength{rK}
   \tkzDefCircle[in](B,C,A) \tkzGetPoint{0}
     \tkzGetLength{r0}
  \tkzDrawLines[add=1.5 and 1.5](A,B A,C B,C)
 \tkzDrawPoints(I,J,K)
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPolygon[dashed](I,J,K)
 \tkzDrawCircle[R,teal](0,\r0)
 \tkzDrawSegments[dashed](A,K B,J C,I)
 \tkzDrawPoints(A,B,C)
 \tkzDrawCircles[R,new](J,{\rJ} I,{\rI}%
                         K,\{\r K\}
 \tkzLabelPoints(A,B,C,I,J,K)
\end{tikzpicture}
```

18.1.8. Spieker circle with option spieker

The incircle of the medial triangle M_aM_bM_c is the Spieker circle:


```
\begin{tikzpicture}[scale=1]
  \tkzDefPoints{ \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \(
```

18.1.9. Examples from js bibra tex.stackexchange.com


```
\begin{tikzpicture}[scale=0.4]
\tkzDefPoint(6,4){A}
\tkzDefPoint(6,-4){B}
\tkzDefMidPoint(B,A)\tkzGetPoint{P}
\tkzDefLine[orthogonal =through P](A,B)
\tkzGetPoint{X}
\tkzDefCircle[through](X,P)
\tkzCalcLength(X,P)\tkzGetLength{rXP}
\tkzDefShiftPoint[X](180:\rXP*2){y}
\tkzDefPointWith[linear,K=0.3](y,P)
\t x
\tkzDrawPoints(X,x)
\tkzDrawCircles(x,P X,P)
\t \sum_{pos=0.5,above} (x,p) \{r1\}
\tkzDefShiftPoint[X](-60:\rXP){X'}
\tkzDrawSegments[<->, >=triangle 45](X,X' P,x)
\tkzLabelPoints[above](x)
\tkzLabelPoints[above](X)
\end{tikzpicture}
```



```
\begin{tikzpicture}
    \tkzDefPoint(0,4){A}
    \tkzDefPoint(2,2){B}
    \tkzDefMidPoint(B,A)\tkzGetPoint{P}
    \tkzDefLine[orthogonal =through P](B,A)
    \tkzGetPoint{X}
    \tkzDefCircle[through](X,P)
    \tkzGetLength{rXPpt}
    \tkzpttocm(\rXPpt){rXPcm}
    \t \ \tkzDefPointWith[linear, K=\( 0.3 \)] (X,P)
    \tkzGetPoint{x}
    \tkzDefCircle[through](x,P)
    \tkzGetLength{rxPpt}
    \tkzpttocm(\rxPpt){rxPcm}
    \tkzDrawCircles(X,P x,P)
    \tkzDrawPoints(X,x)
    \tkzDrawSegment[<->, >=triangle 45](x,P)
    \tkzDrawSegment(P,X)
    \tkzLabelPoints(X,x)
    \t \ \tkzLabelLine[pos=\0.5,left](x,P)\{r}
    \tkzCalcLength[cm](X,P)\tkzGetLength{rXP}
    \tkzDefShiftPoint[X](-90:\rXP){y}
    \tkzDrawSegments[<->, >=triangle 45](X,y)
    \tkzLabelLine[pos=0.5,left](X,y){R}
\end{tikzpicture}
```

19. Definition of circle by transformation; \tkzDefCircleBy

These transformations are:

- translation;
- homothety;
- orthogonal reflection or symmetry;
- central symmetry;
- orthogonal projection;
- rotation (degrees);
- orthogonal from;
- orthogonal through;
- inversion.

The choice of transformations is made through the options. The macro is \tkzDefCircleBy and the other for the transformation of a list of points \tkzDefCirclesBy. For example, we'll write:

\tkzDefCircleBy[translation= from A to A'](0,M)

O is the center and M is a point on the circle. The image is a circle. The new center is tkzFirstPointResult and tkzSecondPointResult is a point on the new circle. You can get the results with the macro \tkzGetPoints.

\tkzDefCircleBy[\local options\rangle](\local,pt2\rangle)

The argument is a couple of points. The results is a couple of points. If you want to keep these points then the macro \tkzGetPoints{0'}{M'} allows you to assign the name 0' to the center and M' to the point on the circle.

arguments definition	examples		
pt1,pt2 existing	g points (O,M)		
options		examples	
translation	= from #1 to #2	[translation=from A to B](0,M)	
homothety	= center #1 ratio #2	[homothety=center A ratio .5](0,M)	
reflection	= over #1#2	[reflection=over AB](0,M)	
symmetry	= center #1	[symmetry=center A](0,M)	
projection = onto #1#2		[projection=onto AB](0,M)	
rotation = center #1 angle		[rotation=center O angle 30](0,M)	
orthogonal from	= #1	[orthogonal from = A](O,M)	
orthogonal through	= #1 and #2	[orthogonal through = A and B](0,M)	
inversion	= center #1 through #2	[inversion =center O through A](O,M)	
The image is only defined and not drawn.			

19.1. Examples of transformations

19.1.1. Translation

\begin{tikzpicture}[>=latex]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[translation= from B to A](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](A,B,C,D,C',D')
\tkzLabelPoints[color=teal](A,B,C,D,C',D')
\tkzDrawSegments[orange,->](A,B)
\tkzDrawCircles(C,D C',D')
\end{tikzpicture}

19.1.2. Reflection (orthogonal symmetry)

\begin{tikzpicture}[>=latex]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[reflection = over A--B](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](A,B,C,D,C',D')
\tkzLabelPoints[color=teal](A,B,C,D,C',D')
\tkzDrawLine[add =0 and 1][orange](A,B)
\tkzDrawCircles(C,D C',D')
\end{tikzpicture}

19.1.3. Homothety

Α

\begin{tikzpicture}[scale=1.2]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[homothety=center A ratio .5](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](A,C,D,C',D')
\tkzLabelPoints[color=teal](A,C,D,C',D')
\tkzDrawCircles(C,D C',D')
\end{tikzpicture}

19.1.4. Symmetry

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[symmetry=center B](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](B,C,D,C',D')
\tkzLabelPoints[color=teal](B,C,D,C',D')
\tkzDrawLines[orange](C,C' D,D')
\tkzDrawCircles(C,D C',D')
\end{tikzpicture}

19.1.5. Rotation

\begin{tikzpicture}[scale=0.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,-1){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[rotation=center B angle 60](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](B,C,D,C',D')
\tkzLabelPoints[color=teal](B,C,D,C',D')
\tkzDrawCircles(C,D C',D')
\end{tikzpicture}

19.1.6. Orthogonal from

Orthogonal circle of given center. \tkzGetPointsz1z2 gives two points of the circle.

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{0/0/0,1/0/A}
 \tkzDefPoints{1.5/1.25/B,-2/-3/C}
 \tkzDefCircleBy[orthogonal from=B](0,A)
 \tkzGetPoints{z1}{z2}
 \tkzDefCircleBy[orthogonal from=C](0,A)
 \tkzGetPoints{t1}{t2}
 \tkzDrawCircle(0,A)
 \tkzDrawCircles[new](B,z1 C,t1)
 \tkzDrawPoints(t1,t2,C)
 \tkzDrawPoints(z1,z2,0,A,B)
 \tkzLabelPoints(0,A,B,C)
 \end{tikzpicture}

19.1.7. Orthogonal from : Right angle between circles

We are looking for a circle orthogonal to the given circle.

19.1.8. Orthogonal through

Orthogonal circle passing through two given points.

\begin{tikzpicture}[scale=1]
 \tkzDefPoint(0,0){0}
 \tkzDefPoint(1,0){A}
 \tkzDrawCircle(0,A)
 \tkzDefPoint(-1.5,-1.5){z1}
 \tkzDefPoint(1.5,-1.25){z2}
 \tkzDefCircleBy[orthogonal through=z1 and z2](0,A)
 \tkzGetPoint{c}
 \tkzDrawCircle[new](tkzPointResult,z1)
 \tkzDrawPoints[new](0,A,z1,z2,c)
 \tkzLabelPoints(0,A,z1,z2,c)
 \end{tikzpicture}

19.1.9. Inversion

\begin{tikzpicture}[scale=1.5]
\tkzSetUpPoint[size=4,color=red,fill=red!20]
\tkzSetUpStyle[color=purple,ultra thin]{st1}
\tkzSetUpStyle[color=cyan,ultra thin]{st2}
\tkzDefPoint(2,0){A} \tkzDefPoint(3,0){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(4,2){D}
\tkzDefCircleBy[inversion = center B through A](C,D)
\tkzDrawPoints{C'}{D'}
\tkzDrawPoints(A,B,C,D,C',D')
\tkzLabelPoints(A,B,C,D,C',D')
\tkzDrawCircles(B,A)
\tkzDrawCircles[st1](C,D)
\tkzDrawCircles[st2](C',D')
\end{tikzpicture}

20. Intersections

It is possible to determine the coordinates of the points of intersection between two straight lines, a straight line and a circle, and two circles.

The associated commands have no optional arguments and the user must determine the existence of the intersection points himself.

20.1. Intersection of two straight lines

```
\mathsf{L}(\langle A, B \rangle) (\langle C, D \rangle)
```

Defines the intersection point tkzPointResult of the two lines (AB) and (CD). The known points are given in pairs (two per line) in brackets, and the resulting point can be retrieved with the macro \tkzDefPoint.

20.1.1. Example of intersection between two straight lines

20.2. Intersection of a straight line and a circle

As before, the line is defined by a couple of points. The circle is also defined by a couple:

- (O, C) which is a pair of points, the first is the centre and the second is any point on the circle.
- (O,r) The r measure is the radius measure. The unit can be the *cm* or *pt*.

$\label{eq:local_continuous} $$ \text{tkzInterLC[\langle options \rangle](\langle A, B \rangle)(\langle O, C \rangle) or (\langle O, r \rangle) or (\langle O, r \rangle) } $$$			
So the arguments are two couples.			
options	default	definition	
N	N	(O,C) determines the circle	
R	N	(0, 1) unit 1 cm	
with nodes	N	(O,C,D) CD is a radius	

The macro defines the intersection points I and J of the line (AB) and the center circle O with radius r if they exist; otherwise, an error will be reported in the .log file. with nodes vous évite de calculer le rayon qui est la longueur de [CD].

20.2.1. Line-circle intersection

In the following example, the drawing of the circle uses two points and the intersection of the straight line and the circle uses two pairs of points:

\begin{tikzpicture}[scale=.75]
\tkzInit[xmax=5,ymax=4]
\tkzDefPoint(1,1){0}
\tkzDefPoint(0,4){A}
\tkzDefPoint(5,0){B}
\tkzDefPoint(3,3){C}
\tkzInterLC(A,B)(0,C) \tkzGetPoints{D}{E}
\tkzDrawCircle(0,C)
\tkzDrawPoints[color=blue](0,A,B,C)
\tkzDrawPoints[color=red](D,E)
\tkzDrawLine(A,B)
\tkzLabelPoints[above right](0,A,B,C,D,E)
\end{tikzpicture}

20.2.2. Line-circle intersection in Sangaku


```
\begin{tikzpicture}[scale=1]
\def\ORadius{6}
 \def\00Radius{4}
 \pgfmathparse{(2*(\ORadius-\OORadius))/(\ORadius/\OORadius+1)}%
 \let\000Radius\pgfmathresult%
 \pgfmathparse{\ORadius-\OOORadius}%
 \let\0000Radius\pgfmathresult%
 \pgfmathparse{2*\00Radius-\0Radius}%
 \let\XA\pgfmathresult%
 \int \int dx \, dx = \partial t = \partial t
    \tkzDefPoint["$A$" below right](\XA,\(0)\{A}\)
\else
    \tkzDefPoint["$A$" below left](\XA,\(0){A})
\fi
 \tkzDefPoint["$D$" below right](\00Radius,\0){D}
 \tkzDefPoint["$X$" below left](-\ORadius, \( \) \{X}
 \tkzDefPoint["$B$" below right](\ORadius,\0){B}
 \tkzDefLine[mediator](A,B)
                                      \tkzGetPoints{mr}{ml}
                                  \tkzGetPoints{C}{E}
 \tkzInterLC[R](D,mr)(O,\ORadius)
 \tkzDefLine[orthogonal=through A](X,A) \tkzGetPoint{pr}
 \ifdim\XA pt < 0 pt\relax
  \tkzInterLC[R](A,pr)(0,\0000Radius) \tkzGetPoints{04}{03}
 \left( XA pt = \emptyset pt \right)
  \label{lem:local_condition} $$ \txzInterLC[R](A,pr)(0,\0000Radius) \txzGetPoints{03}{04}$
\fi
 \fi
 \tkzDefPointBy[projection=onto A--C](03) \tkzGetPoint{H}
 \t \t \DrawCircles[R](0,{\Omega}) 02,{\Omega} 03,{\Omega} 03,{\Omega}
 \tkzDrawSegments[dashed](0,03 C,D 03,A 03,H)
 \tkzDrawSegments(X,B A,C B,C)
 \tkzMarkSegments[mark=s|](D,B D,A)
 \tkzLabelPoints[right](03,H)
 \tkzLabelPoint[above right](C){$C$}
 \tkzMarkRightAngles[fill=gray!30](X,D,C X,A,O3 A,H,O3)
 \tkzDrawPoints(A,B,C,D,X,O,O2,O3,H)
\end{tikzpicture}
```

20.2.3. More complex example of a line-circle intersection

Figure from http://gogeometry.com/problem/p190_tangent_circle

20.2.4. Circle defined by a center and a measure, and special cases

Let's look at some special cases like straight lines tangent to the circle.

\end{tikzpicture}

20.2.5. More complex example

Be careful with the syntax. First of all, calculations for the points can be done during the passage of the arguments, but the syntax of **xfp** must be respected. You can see that I use the term **pi** because **xfp** can work with radians. You can also work with degrees but in this case, you need to use specific commands like sind or cosd. Furthermore, when calculations require the use of parentheses, they must be inserted in a group... TEX{ ...}.

20.2.6. Calculation of radius example 1

With pgfmath and \pgfmathsetmacro

The radius measurement may be the result of a calculation that is not done within the intersection macro, but before. A length can be calculated in several ways. It is possible of course, to use the module **pgfmath** and the macro \pgfmathsetmacro. In some cases, the results obtained are not precise enough, so the following calculation $0.0002 \div 0.0001$ gives 1.98 with pgfmath while xfp will give 2.

20.2.7. Calculation of radius example 2

With xfp and \fpeval:


```
\begin{tikzpicture}
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,4){B}
\tkzDefPoint(4,4){0}
\pgfmathsetmacro\tkzLen{\fpeval{0.0002/0.0001}}
% or \edef\tkzLen{\fpeval{0.0002/0.0001}}
\tkzInterLC[R](A,B)(0, \tkzLen)
\tkzDrawCircle[R](0,\tkzLen)
\tkzDrawPoints[color=blue](A,B)
\tkzDrawPoints[color=red](I,J)
\tkzDrawLine(I,J)
\end{tikzpicture}
```

20.2.8. Option "with nodes"

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{\(\0/\0/A\,4/\0/B\,1/1/D\,2/\0/E\)}
\tkzDefTriangle[equilateral](A\,B)
\tkzGetPoints{C}
\tkzInterLC[with nodes](D\,E)(C\,A\,B)
\tkzGetPoints{F}{G}
\tkzDrawCircle(C\,A)
\tkzDrawPolygon(A\,B\,C)
\tkzDrawPoints(A\,...\,G)
\tkzDrawLine(F\,G)
\end{tikzpicture}

20.3. Intersection of two circles

The most frequent case is that of two circles defined by their center and a point, but as before the option R allows to use the radius measurements.

$\label{eq:local_continuous_local} $$ \text{tkzInterCC[}(options)]((O,A))((O',A'))$ or $((O,r))((O',r'))$ or $((O,A,B))$ $((O',C,D))$ and (O',A') or $((O,r))((O',r'))$ or $((O,A,B))$ $((O',C,D))$ and $((O',A'))((O',A'))$ or $((O',A'))((O',A'))((O',A'))$ or $((O',A'))((O',A'))((O',A'))$ or $((O',A'))((O',A'))((O',A'))((O',A'))$ or $((O',A'))((O',A'))((O',A'))((O',A'))((O',A'))$ or $((O',A'))((O',A',A'))((O',A'$		
options	default	definition
N	N	OA and $O'A'$ are radii, O and O' are the centres
R	N	\boldsymbol{r} and \boldsymbol{r}' are dimensions and measure the radii
with nodes	N	in (A,A,C)(C,B,F) AC and BF give the radii.

This macro defines the intersection point(s) I and J of the two center circles O and O'. If the two circles do not have a common point then the macro ends with an error that is not handled.

It is also possible to use directly \tkzInterCCN and \tkzInterCCR.

20.3.1. Construction of an equilateral triangle

\begin{tikzpicture}[trim left=-1cm,scale=.5]
\tkzDefPoint(1,1){A}
\tkzDefPoint(5,1){B}
\tkzInterCC(A,B)(B,A)\tkzGetPoints{C}{D}
\tkzDrawPoint[color=black](C)
\tkzDrawCircles(A,B B,A)
\tkzCompass[color=red](A,C)
\tkzCompass[color=red](B,C)
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon(A,B,C)
\tkzMarkSegments[mark=s|](A,C B,C)
\tkzLabelPoints[](A,B)
\tkzLabelPoint[above](C){\$C\$}
\end{tikzpicture}

20.3.2. Example a mediator

20.3.3. An isosceles triangle.

\begin{tikzpicture} [rotate=120,scale=.75]
\tkzDefPoint(1,2){A}
\tkzDefPoint(4,0){B}
\tkzInterCC[R](A,4)(B,4)
\tkzGetPoints{C}{D}
\tkzDrawCircles[R,dashed](A,4 B,4)
\tkzCompass[new](A,C)
\tkzCompass[new](B,C)
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[mark=s|](A,C B,C)
\tkzLabelPoints[](A,B)
\tkzLabelPoint[above](C){\$C\$}
\end{tikzpicture}

20.3.4. Segment trisection

The idea here is to divide a segment with a ruler and a compass into three segments of equal length.


```
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,2){B}
\tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{D}
\tkzInterCC(D,B)(B,A) \tkzGetPoints{A}{E}
\tkzInterCC(D,B)(A,B) \tkzGetPoints{F}{B}
\tkzInterLC(E,F)(F,A) \tkzGetPoints{D}{G}
\tkzInterLL(A,G)(B,E) \tkzGetPoint{0}
\tkzInterLL(0,D)(A,B) \tkzGetPoint{J}
\tkzInterLL(0,F)(A,B) \tkzGetPoint{I}
\tkzDrawCircles(D,A A,B B,A F,A)
\tkzDrawSegments[new](0,G
 0,B 0,D 0,F)
\tkzDrawPoints(A,B,D,E,F,G,I,J)
\tkzLabelPoints(A,B,D,E,F,G,I,J)
\tkzDrawSegments(A,B B,D A,D%
 A,F F,G E,G B,E)
\tkzMarkSegments[mark=s|](A,I I,J J,B)
\end{tikzpicture}
```

20.3.5. With the option "with nodes"


```
\begin{tikzpicture}[scale=.5]
\t Nd = 100 
\tkzDefPoint(54:5){F}
\tkzInterCC[with nodes](A,A,C)(C,B,F)
\tkzGetPoints{a}{e}
\tkzInterCC(A,C)(a,e) \tkzGetFirstPoint{b}
\tkzInterCC(A,C)(b,a) \tkzGetFirstPoint{c}
\tkzInterCC(A,C)(c,b) \tkzGetFirstPoint{d}
\tkzDrawCircle[new](A,C)
\tkzDrawPoints(a,b,c,d,e)
\tkzDrawPolygon(a,b,c,d,e)
foreach \vertex/\num in {a/36,b/108,c/180,}
                         d/252,e/324}{%
\tkzDrawPoint(\vertex)
\tkzLabelPoint[label=\num:$\vertex$](\vertex){}
\tkzDrawSegment(A,\vertex)
\end{tikzpicture}
```

20.3.6. Mix of intersections

20.3.7. An oval


```
\begin{tikzpicture}[scale=0.4]
  \tkzDefPoint(-4,\){I}
  \tkzDefPoint(4,0){J}
  \t \mathbb{Q}  \tkzDefPoint(\mathbb{Q}, \mathbb{Q}){0}
  \tkzInterCC(J,0)(0,J) \tkzGetPoints{L}{H}
  \tkzInterCC(I,0)(0,I) \tkzGetPoints{K}{G}
  \tkzInterLL(I,K)(J,H) \tkzGetPoint{M}
  \tkzInterLL(I,G)(J,L) \tkzGetPoint{N}
  \tkzDefPointsBy[symmetry=center J](L,H){D,E}
  \tkzDefPointsBy[symmetry=center I](G,K){C,F}
  \begin{scope}[line style/.style = {very thin,teal}]
    \tkzDrawLines[add=1.5 and 1.5](I,K I,G J,H J,L)
    \tkzDrawLines[add=.5 and .5](I,J)
    \tkzDrawPoints(H,L,K,G,I,J,D,E,C,F,M,N)
    \tkzDrawCircles[R](0,4 I,4 J,4)
    \tkzDrawArc(N,D)(C)
    \tkzDrawArc(M,F)(E)
    \tkzDrawArc(J,E)(D)
    \tkzDrawArc(I,C)(F)
  \end{scope}
  \tkzLabelPoints(H,L,K,G,I,J,D,E,C,F,M,N)
\end{tikzpicture}
```

21. The angles

21. The angles

21.1. Recovering an angle \tkzGetAngle

\tkzGetAngle(\(\lambda\) of macro\(\rangle\)

Assigns the value in degree of an angle to a macro. This macro retrieves \tkzAngleResult and stores the result in a new macro.

arguments	example	explication
name of macro	\tkzGetAngle{ang}	\ang contains the value of the angle.

21.2. Example of the use of \tkzGetAngle

The point here is that (AB) is the bisector of \widehat{CAD} , such that the AD slope is zero. We recover the slope of (AB) and then rotate twice.


```
\begin{tikzpicture}
  \tkzDefPoint(1,5){A} \tkzDefPoint(5,2){B}
  \tkzDrawSegment(A,B)
  \tkzFindSlopeAngle(A,B)\tkzGetAngle{tkzang}
  \tkzDefPointBy[rotation= center A angle \tkzang ](B)
  \tkzGetPoint{C}
  \tkzDefPointBy[rotation= center A angle -
\tkzang ](B)
  \tkzGetPoint{D}
  \tkzCompass[length=1](A,C)
  \tkzCompass[delta=10,brown](B,C)
  \tkzDrawPoints(A,B,C,D)
  \tkzLabelPoints(B,C,D)
  \tkzLabelPoints[above left](A)
  \tkzDrawSegments[style=dashed,color=orange!30](A,C A,D)
\end{tikzpicture}
```

21.3. Angle formed by three points

The result is stored in a macro \tkzAngleResult.

arguments	example	explication
(pt1,pt2,pt3)	\tkzFindAngle(A,B,C)	\tkzAngleResult gives the angle $(\overrightarrow{BA}, \overrightarrow{BC})$

The result is between -180 degrees and +180 degrees. pt2 is the vertex and \tkzGetAngle can retrieve the angle.

21. The angles

21.3.1. Verification of angle measurement

\begin{tikzpicture}[scale=.75]
 \tkzDefPoint(-1,1){A}
 \tkzDefPoint(5,2){B}
 \tkzDefEquilateral(A,B)
 \tkzGetPoint{C}
 \tkzDrawPolygon(A,B,C)
 \tkzFindAngle(B,A,C)
 \tkzGetAngle{angleBAC}
 \edef\angleBAC{\fpeval{round(\angleBAC)}}
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoints(A,B)
 \tkzLabelPoint[right](C){\$C\$}
 \tkzLabelAngle(B,A,C){\angleBAC\$\circ\$}
 \tkzMarkAngle[size=1.5](B,A,C)
 \end{tikzpicture}

21.3.2. Determination of the three angles of a triangle

 $\t \DefPoints{0/0/a,5/3/b,3/6/c}$ \tkzDrawPolygon(a,b,c) \tkzFindAngle(c,b,a) \tkzGetAngle{angleCBA} \pgfmathparse{round(1+\angleCBA)} \let\angleCBA\pgfmathresult \tkzFindAngle(a,c,b) \tkzGetAngle{angleACB} \pgfmathparse{round(\angleACB)} \let\angleACB\pgfmathresult \tkzFindAngle(b,a,c) \tkzGetAngle{angleBAC} \pgfmathparse{round(\angleBAC)} \tkzMarkAngle(c,b,a) \tkzLabelAngle[pos=1.4](c,b,a)% {\tiny \$\angleCBA^\circ\$} \tkzMarkAngle(a,c,b) \tkzLabelAngle[pos=1.4](a,c,b)% {\tiny \$\angleACB^\circ\$} \tkzMarkAngle(b,a,c) \tkzLabelAngle[pos=1.4](b,a,c)% {\tiny \$\angleBAC^\circ\$} \end{tikzpicture}

\begin{tikzpicture}

21. The angles

21.3.3. Angle between two circles

\begin{tikzpicture}[scale=.4]
\pgfkeys{/pgf/number format/.cd,fixed,precision=1}
\tkzDefPoints{0/0/A,6/0/B,4/2/C}
\tkzDrawCircles(A,C B,C)
\tkzDefTangent[at=C](A) \tkzGetPoint{a}
\tkzDefPointsBy[symmetry = center C](a){d}
\tkzDefTangent[at=C](B) \tkzGetPoint{b}
\tkzDrawLines[add=1 and 4](a,C C,b)
\tkzDrawSegments(A,C B,C)
\tkzFindAngle(b,C,d)\tkzGetAngle{bcd}
\tkzMarkAngle[size=3,arc=ll,mark=s](b,C,d)
\tkzFillAngle[fill=teal,opacity=.2,size=2](b,C,d)
\tkzLabelAngle[pos=1.25](b,C,d){%
\tiny \$\pgfmathprintnumber{\bcd}^\circ\$}
\end{tikzpicture}

21.4. Angle formed by a straight line with the horizontal axis \tkzFindSlopeAngle

Much more interesting than the last one. The result is between -180 degrees and +180 degrees.

$\t X$

Determines the slope of the straight line (AB). The result is stored in a macro \tkzAngleResult.

arguments	example	explication
(pt1,pt2)	\tkzFindSlopeAngle(A,B)	

\tkzGetAngle can retrieve the result. If retrieval is not necessary, you can use \tkzAngleResult.

21.4.1. Use of \tkzFindSlopeAngle and \tkzGetAngle

Here is another version of the construction of a mediator

21. The angles

21.4.2. Another use of \tkzFindSlopeAngle

The slope of (AC) is: 0

The slope of (AD) is: 333.43

B

D

The slope of (AB) is: 45

\begin{tikzpicture}[scale=1.5] \tkzDefPoint(1,2){A} \tkzDefPoint(3,4){B} \tkzDefPoint(3,2){C} \tkzDefPoint(3,1){D} \tkzDrawSegments(A,B A,C A,D) \tkzDrawPoints[color=red](A,B,C,D) \tkzLabelPoints(A,B,C,D) \tkzFindSlopeAngle(A,B)\tkzGetAngle{SAB} \tkzFindSlopeAngle(A,C)\tkzGetAngle{SAC} \tkzFindSlopeAngle(A,D)\tkzGetAngle{SAD} \pgfkeys{/pgf/number format/.cd,fixed,precision=2} \tkzText(1,5){The slope of (AB) is : \$\pgfmathprintnumber{\SAB}\$} tkzText(1,4.5){The slope of (AC) is : \$\pgfmathprintnumber{\SAC}\$} \tkzText(1,4){The slope of (AD) is : \$\pgfmathprintnumber{\SAD}\$} \end{tikzpicture}

22. Random point definition

At the moment there are four possibilities:

- 1. point in a rectangle;
- 2. on a segment;
- 3. on a straight line;
- 4. on a circle.

22.1. Obtaining random points

This is the new version that replaces \tkzGetRandPointOn.

\tkzDefRandPointOn[\langlelocal options\rangle]

The result is a point with a random position that can be named with the macro \tkzGetPoint. It is possible to use tkzPointResult if it is not necessary to retain the results.

options	default	definition
rectangle=pt1 and pt2		[rectangle=A and B]
segment= pt1pt2		[segment=AB]
line=pt1pt2		[line=AB]
circle =center pt1 radius dim		[circle = center A radius 2]
circle through=center pt1 through pt2		[circle through= center A through B]
disk through=center pt1 through pt2		[disk through=center A through B]

22.2. Random point in a rectangle

\begin{tikzpicture}
 \tkzInit[xmax=5,ymax=5]\tkzGrid
 \tkzDefPoints{\(0/\Omega/A,2/2/B,5/5/C\)}
 \tkzDefRandPointOn[rectangle = A and B]
 \tkzGetPoint{a}
 \tkzDefRandPointOn[rectangle = B and C]
 \tkzGetPoint{d}
 \tkzDrawLine(a,d)
 \tkzDrawPoints(A,B,C,a,d)
 \tkzLabelPoints(A,B,C,a,d)
 \end{tikzpicture}

22.3. Random point on a segment


```
\begin{tikzpicture}
  \tkzInit[xmax=5,ymax=5] \tkzGrid
  \tkzDefPoints{\0/\0/A,2/2/B,3/3/C,5/5/D}
  \tkzDefRandPointOn[segment = A--B] \tkzGetPoint{a}
  \tkzDefRandPointOn[segment = C--D] \tkzGetPoint{d}
  \tkzDrawPoints(A,B,C,D,a,d)
  \tkzLabelPoints(A,B,C,D,a,d)
  \end{tikzpicture}
```

22.4. Random point on a straight line


```
\begin{tikzpicture}
  \tkzInit[xmax=5,ymax=5] \tkzGrid
  \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D}
  \tkzDefRandPointOn[line = A--B]\tkzGetPoint{E}
  \tkzDefRandPointOn[line = C--D]\tkzGetPoint{F}
  \tkzDrawPoints(A,...,F)
  \tkzLabelPoints(A,...,F)
  \end{tikzpicture}
```

• E

22.4.1. Random point on a circle

\begin{tikzpicture}
\tkzInit[ymin=-1,xmax=6,ymax=5] \tkzGrid
\tkzDefPoints{3/2/A,1/1/B}
\tkzCalcLength(A,B) \tkzGetLength{rAB}
\tkzDefRandPointOn[circle = center A radius \rAB]
\tkzGetPoint{a}
\tkzDefRandPointOn[circle through= center A through B]
\tkzGetPoint{b}
\tkzDefRandPointOn[disk through=center A through B]
\tkzGetPoint{c}
\tkzDrawCircle[R](A,\rAB)
\tkzDrawSegment(A,a)
\tkzDrawPoints(A,B,a,b,c)
\tkzLabelPoints(A,B,a,b,c)
\end{tikzpicture}

22.4.2. Random example and circle of Apollonius


```
\begin{tikzpicture}[scale=1]
\t XDefPoints {0/0/A,3/0/B}
\def\coeffK{2}
\tkzApolloniusCenter[K=\coeffK](A,B)
\tkzGetPoint{P}
\tkzDefApolloniusPoint[K=\coeffK](A,B)
\tkzGetPoint{M}
\tkzDefRandPointOn[circle through=%
                center P through M]
\tkzGetPoint{N}
\tkzDefApolloniusRadius[K=\coeffK](A,B)
\tkzDrawCircle[R,color = blue!50!black,
     fill=blue!20,
     opacity=.4](tkzPointResult,\tkzLengthResult)
\tkzLabelCircle[R,draw,fill=green!10,%
     text width=3cm,%
     text centered](P,\tkzLengthResult+1)(-120)%
 { $MA/MB=\coeffK$\\$NA/NB=\coeffK$}
 \tkzDrawPoints(A,B,P,M,N)
\tkzLabelPoints(A,B,P,M,N)
\tkzDrawSegments[red](N,A N,B)
\tkzDrawPoints(A,B)
\tkzDrawSegments[red](A,B)
\end{tikzpicture}
```

22.5. Middle of a compass segment

To conclude this section, here is a more complex example. It involves determining the middle of a segment, using only a compass.


```
\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefRandPointOn[circle= center A radius 4]
 \tkzGetPoint{B}
 \tkzDefPointBy[rotation= center A angle 180](B)
 \tkzGetPoint{C}
 \tkzInterCC[R](A,4)(B,4)
 \tkzGetPoints{I}{I'}
 \t \L (A,4)(I,4)
 \tkzGetPoints{J}{B}
 \tkzInterCC(B,A)(C,B)
 \tkzGetPoints{D}{E}
 \tkzInterCC(D,B)(E,B)
 \tkzGetPoints{M}{M'}
 \verb|\tkzSetUpArc[ccolor=teal,style=dashed,delta=10]| \\
 \t X
 \tkzDrawArc(B,E)(D)
 \tkzDrawCircle[color=teal,line width=.2pt](A,B)
 \tkzDrawArc(D,B)(M)
 \tkzDrawArc(E,M)(B)
 \tkzCompasss[color=orange,style=solid](B,I I,J J,C)
 \tkzDrawPoints(A,B,C,D,E,M)
 \tkzLabelPoints(A,B,M)
\end{tikzpicture}
```

Part IV.

Drawing and Filling

23. Drawing 117

23. Drawing

tkz-euclide can draw 5 types of objects: point, line or line segment, circle, arc and sector.

23.1. Draw a point or some points

There are two possibilities: \tkzDrawPoint for a single point or \tkzDrawPoints for one or more points.

23.1.1. Drawing points \tkzDrawPoint

\tkzDrawPointas	
arguments	default	definition
name of point	no default	Only one point name is accepted

The argument is required. The disc takes the color of the circle, but lighter. It is possible to change everything. The point is a node and therefore it is invariant if the drawing is modified by scaling.

options	default	definition
TikZ options		all $TikZ$ options are valid.
shape	circle	Possible cross or cross out
size	6	6× \pgflinewidth
color	black	the default color can be changed

We can create other forms such as cross

By default, point style is defined like this:

```
\tikzset{point style/.style = {%
    draw = black,
    inner sep = Qpt,
    shape = circle,
    minimum size = 3 pt,
    fill = black
    }
}
```

23.1.2. Example of point drawings

Note that **scale** does not affect the shape of the dots. Which is normal. Most of the time, we are satisfied with a single point shape that we can define from the beginning, either with a macro or by modifying a configuration file.

It is possible to draw several points at once but this macro is a little slower than the previous one. Moreover, we have to make do with the same options for all the points.

\tkzDra	\tkzDrawPoints[\langlelocal options\rangle](\langleliste\rangle)					
arguments default definition						
points	list no	default	example \tkzDrawPoints(A,B,C)			
options	default	definition	l			
shape size color	circle 6 black	6× \pgf]	e cross or cross out Linewidth ault color can be changed			

Beware of the final "s", an oversight leads to cascading errors if you try to draw multiple points. The options are the same as for the previous macro.

23.1.3. Example

•

\begin{tikzpicture}
\tkzDefPoints{1/3/A,4/1/B,0/0/C}
\tkzDrawPoints[size=3,color=red,fill=red!50](A,B,C)
\end{tikzpicture}

0

24. Drawing the lines

The following macros are simply used to draw, name lines.

24.1. Draw a straight line

To draw a normal straight line, just give a couple of points. You can use the **add** option to extend the line (This option is due to **Mark Wibrow**, see the code below).

The style of a line is by default:

```
\tikzset{line style/.style = {%
    line width = 0.6pt,
    color = black,
    style = solid,
    add = {.2} and {.2}%
    }}
with

\tikzset{%
    add/.style args={#1 and #2}{
        to path={%
    ($(\tikztostart)!-#1!(\tikztotarget)$)--($(\tikztotarget)!-#2!(\tikztostart)$)%
    \tikztonodes}}}
```

You can modify this style with \tkzSetUpLine see 41.0.1

\tkzDrawLine[\langle local options\rangle](\langle pt1,pt2\rangle)

The arguments are a list of two points or three points. It would be possible, as for a half line, to create a style with \add.

options	default	definition
TikZ options add	0.2 and 0.2	all $TikZ$ options are valid. add = kl and kr ,
•••	•••	allows the segment to be extended to the left and right.

add defines the length of the line passing through the points pt1 and pt2. Both numbers are percentages. The styles of TikZ are accessible for plots.

24.1.1. Examples with add

It is possible to draw several lines, but with the same options.

```
\tkzDrawLines[\langle local options \rangle] (\langle pt1, pt2 pt3, pt4 \ldots \rangle)
```

Arguments are a list of pairs of points separated by spaces. The styles of TikZ are available for the draws.

24.1.2. Example with \tkzDrawLines


```
\begin{tikzpicture}
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(2,0){B}
  \tkzDefPoint(1,2){C}
  \tkzDefPoint(3,2){D}
  \tkzDrawLines(A,B C,D A,C B,D)
  \tkzLabelPoints(A,B,C,D)
  \end{tikzpicture}
```

24.1.3. Example with the option add


```
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){0}
\tkzDefPoint(3,1){I}
\tkzDefPoint(1,4){J}
\tkzDefLine[bisector](I,0,J)
\tkzGetPoint{i}
\tkzDefLine[bisector out](I,0,J)
\tkzGetPoint{j}
\tkzDrawLines[add = 1 and .5](0,I 0,J)
\tkzDrawLines[add = 1 and .5,new](0,i 0,j)
\end{tikzpicture}
```

25. Drawing a segment

There is, of course, a macro to simply draw a segment.

25.1. Draw a segment \tkzDrawSegment

\tkzDrawSe	gment[(loc	al op	tion	s>](<pt1,]< th=""><th>ot2>)</th><th></th></pt1,]<>	ot2>)	
The argument	s are a list o	f two p	oints	. The styles	of Ti <i>k</i>	Z are available for the drawings.
argument	example	defini	tion			
(pt1,pt2)	(A,B)	draw	the	segment	[A, B]	
options	examp	ole	de	finition		
TikZ optio	ns		al	l Ti <i>k</i> Z op	tions	are valid.
dim	no de	fault	di	m = {labe	1,dim	,option},
	•••		al	lows you	to ad	d dimensions to a figure.
This is of cour	se equivaler	nt to \d	raw	(A)(B)	. You	can also use the option add .

25.1.1. Example with point references


```
\begin{tikzpicture}[scale=1.5]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(2,1){B}
  \tkzDrawSegment[color=red,thin](A,B)
  \tkzDrawPoints(A,B)
  \tkzLabelPoints(A,B)
\end{tikzpicture}
```

25.1.2. Example of extending an segment with option add

25.1.3. Adding dimensions with option dim partI


```
\begin{tikzpicture}[scale=4]
 \pgfkeys{/pgf/number format/.cd,fixed,precision=2}
% Define the first two points
\tkzDefPoint(0,0){A}
\t (3, 0) \{B\}
\tkzDefPoint(1,1){C}
\mbox{\ensuremath{\textit{\%}}} Draw the triangle and the points
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
% Label the sides
\tkzCalcLength(A,B)\tkzGetLength{ABl}
 \tkzCalcLength(B,C)\tkzGetLength{BCl}
\verb|\tkzCalcLength(A,C)\tkzGetLength{AC1}|
% add dim
\verb|\tkzDrawSegment[dim={\pgfmathprintnumber\BCl,6pt,transform shape}](C,B)|
\verb|\tkzDrawSegment[dim={\pgfmathprintnumber\ACl,6pt,transform shape}](A,C)|
 \tkzDrawSegment[dim={\pgfmathprintnumber\ABl,-6pt,transform shape}](A,B)
\end{tikzpicture}
```

25. Drawing a segment

25.1.4. Adding dimensions with option dim part II

25.2. Drawing segments \tkzDrawSegments

If the options are the same we can plot several segments with the same macro.

```
\tkzDrawSegments[\langlelocal options\rangle](\langlept1,pt2 pt3,pt4 ...\rangle)
```

The arguments are a two-point couple list. The styles of TikZ are available for the plots.


```
\begin{tikzpicture}
  \tkzInit[xmin=-1,xmax=3,ymin=-1,ymax=2]
  \tkzClip[space=1]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(2,1){B}
  \tkzDefPoint(3,0){C}
  \tkzDrawSegments(A,BB,C)
  \tkzDrawPoints(A,B,C)
  \tkzLabelPoints[above](B)
  \end{tikzpicture}
```

25.2.1. Place an arrow on segment


```
\begin{tikzpicture}
\tkzSetUpStyle[postaction=decorate,
    decoration={markings,
    mark=at position .5 with {\arrow[thick]{#1}}
    }]{myarrow}
    \tkzDefPoint(0,0){A}
    \tkzDefPoint(4,-4){B}
    \tkzDrawSegments[myarrow=stealth](A,B)
    \tkzDrawPoints(A,B)
\end{tikzpicture}
```

25.3. Drawing line segment of a triangle

25.3.1. How to draw Altitude

\begin{tikzpicture} [rotate=-90] \tkzDefPoint(0,1){A} \tkzDefPoint(2,4){C} \tkzDefPointWith[orthogonal normed,K=7](C,A) \tkzGetPoint{B} \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c} \tkzDrawLine[dashed,color=magenta](C,Hc) \tkzDrawSegment[green!60!black](A,C) \tkzDrawSegment[green!60!black](C,B) \tkzDrawSegment[green!60!black](B,A) \tkzLabelPoint[left](A){\$A\$} \tkzLabelPoint[right](B){\$B\$} \tkzLabelPoint[above](C){\$C\$} \tkzLabelPoint[left](Hc){\$Hc\$} \tkzLabelSegment[auto](B,A){\$c\$} \tkzLabelSegment[auto,swap](B,C){\$a\$} \tkzLabelSegment[auto,swap](C,A){\$b\$} \tkzMarkAngle[size=1,color=cyan,mark=|](C,B,A) \tkzMarkAngle[size=1,color=cyan,mark=|](A,C,Hc) <page-header>color=orange,mark=||](Hc,C,B) \tkzMarkAngle[size=0.75, color=orange,mark=||](B,A,C) \tkzMarkRightAngle(A,C,B) \tkzMarkRightAngle(B,Hc,C) \end{tikzpicture}

25.4. Drawing a polygon

\tkzDrawPolygon[\local options\](\local list\)

Just give a list of points and the macro plots the polygon using the TikZ options present. You can replace (A, B, C, D, E) by (A, ..., E) and $(P_1, P_2, P_3, P_4, P_5)$ by (P_1, P_2, P_5)

arguments	(example	explication	
(\pt1,pt2,pt3	,))	\tkzDrawPolygon[gray,dashed](A,B,C)	Drawing a triang	le
options	default	example		
Options TikZ		\tkzDrawPolygon[red,line width=2pt]	(A,B,C)	

25.4.1. \tkzDrawPolygon

\begin{tikzpicture} [rotate=18,scale=1]
\tkzDefPoints{\(0/0/A,2.25/\0.2/B,2.5/2.75/C,-\0.75/2/D)}
\tkzDrawPolygon(A,B,C,D)
\tkzDrawSegments[style=dashed](A,C B,D)
\end{tikzpicture}

25. Drawing a segment

25.4.2. Option two angles

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(6,0){B}
\tkzDefTriangle[two angles = 50 and 70](A,B) \tkzGetPoint{C}
\tkzLabelAngle[pos=1.4](B,A,C){\$50^\circ\$}
\tkzLabelAngle[pos=0.8](C,B,A){\$70^\circ\$}
\end{tikzpicture}

50° 70°

25.4.3. Style of line

\begin{tikzpicture}[scale=.6]
\tkzSetUpLine[line width=5mm,color=teal]
\tkzDefPoint(0,0){0}
\foreach \i in {0,...,5}{%
\tkzDefPoint({30+60*\i}:4){p\i}}
\tkzDefMidPoint(p1,p3) \tkzGetPoint{m1}
\tkzDefMidPoint(p3,p5) \tkzGetPoint{m3}
\tkzDefMidPoint(p5,p1) \tkzGetPoint{m5}
\tkzDrawPolygon[line join=round](p1,p3,p5)
\tkzDrawPolygon[teal!80,
line join=round](p0,p2,p4)
\tkzDrawSegments(m1,p3 m3,p5 m5,p1)
\tkzDrawCircle[teal,R](0,4.8)
\end{tikzpicture}

25.5. Drawing a polygonal chain

\tkzDrawPolySeg[\langlelocal options\rangle](\langlepoints list\rangle)				
Just give a list of p	oints and	d the macro plots the polygonal chain using th	he TikZ options present.	
arguments		example	explication	
(\pt1,pt2,pt3,	, >)	<pre>\tkzDrawPolySeg[gray,dashed](A,B,C)</pre>	Drawing a triangle	
options	default	example		
Options TikZ		\tkzDrawPolySeg[red,line width=2pt](A,B,C)	

25.5.1. Polygonal chain

\begin{tikzpicture}
 \tkzDefPoints{0/0/A,6/0/B,3/4/C,2/2/D}
 \tkzDrawPolySeg(A,...,D)
 \tkzDrawPoints(A,...,D)
 \end{tikzpicture}

25.5.2. The idea is to inscribe two squares in a semi-circle.

A Sangaku look! It is a question of proving that one can inscribe in a half-disc, two squares, and to determine the length of their respective sides according to the radius.


```
\begin{tikzpicture}[scale=.75]
  \tkzDefPoints{\0/\0/A,8/\0/B,4/\0/I}
  \tkzDefSquare(A,B)  \tkzGetPoints{C}{D}
  \tkzInterLC(I,C)(I,B)  \tkzGetPoints{E'}{E}
  \tkzInterLC(I,D)(I,B)  \tkzGetPoints{F'}{F}
  \tkzDefPointsBy[projection=onto A--B](E,F){H,G}
  \tkzDefPointsBy[symmetry = center H](I){J}
  \tkzDefSquare(H,J)  \tkzGetPoints{K}{L}
  \tkzDrawSector(I,B)(A)
  \tkzDrawPolySeg(H,E,F,G)
  \tkzDrawPolySeg(J,K,L)
  \tkzDrawPoints(E,G,H,F,J,K,L)
  \end{tikzpicture}
```

25.5.3. Polygonal chain: index notation

\begin{tikzpicture}
\foreach \pt in {1,2,...,8} {%
\tkzDefPoint(\pt*20:3){P_\pt}}
\tkzDrawPolySeg(P_1,P_...,P_8)
\tkzDrawPoints(P_1,P_...,P_8)
\end{tikzpicture}

26. Draw a circle with \tkzDrawCircle

26.1. Draw one circle

(Feb 👗

 $\verb|\tkzDrawCircle[\langle local options \rangle](\langle A, B \rangle)|$

Attention you need only two points to define a radius or a diameter. An additional option \mathbf{R} is available to give a measure directly.

arguments	example	e explication
(⟨pt1,pt2⟩	$) \qquad (\langle A, B \rangle)$	two points to define a radius or a diameter
options	default	definition
through diameter	0	circle with two points defining a radius circle with two points defining a diameter
R	through	circle characterized by a point and the measurement of a radius

Of course, you have to add all the styles of TikZ for the tracings...

26.1.1. Circles and styles, draw a circle and color the disc

We'll see that it's possible to colour in a disc while tracing the circle.

26.2. Drawing circles

Attention, the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option **R** is available to give a measure directly.

arguments	example	explication
(⟨pt1,pt2 pt3,pt4⟩)	$(\langle A, B C, D \rangle)$	List of two points

options	default	definition
	O	circle with two points defining a radius
R alameter	0	circle with two points defining a diameter circle characterized by a point and the measurement of a radius

Of course, you have to add all the styles of TikZ for the tracings...

26.2.1. Circles defined by a triangle.

\begin{tikzpicture}
 \tkzDefPoints{\(\0/\A\,2/\0/\B\,3/2/C\)}
 \tkzDrawPolygon(\A,\B,\C)
 \tkzDrawCircles(\A,\B,\C)
 \tkzDrawPoints(\A,\B,\C)
 \tkzLabelPoints(\A,\B,\C)
 \end{tikzpicture}

26.2.2. Concentric circles.

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDrawCircles[R](A,1 A,2 A,3)
 \tkzDrawPoint(A)
 \tkzLabelPoints(A)
\end{tikzpicture}

26.2.3. Exinscribed circles.

26.2.4. Cardioid

Based on an idea by O. Reboux made with pst-eucl (Pstricks module) by D. Rodriguez. Its name comes from the Greek *kardia (heart)*, in reference to its shape, and was given to it by Johan Castillon (Wikipedia).


```
\begin{tikzpicture}[scale=.5]
  \tkzDefPoint(0,0){0}
  \tkzDefPoint(2,0){A}
  \foreach \ang in {5,10,...,360}{%
    \tkzDefPoint(\ang:2){M}
    \tkzDrawCircle(M,A)
  }
\end{tikzpicture}
```

26.3. Drawing semicircle

\tkzDrawSemiCircle[\langle local options \rangle](\langle A, B \rangle)					
arguments	exampl	e explication			
(\langle pt1, pt2 \rangle	((O,A))) or($\langle A,B \rangle$) radius or diameter			
options	default	definition			
through diameter	through through	circle characterized by two points defining a radius circle characterized by two points defining a diameter			

26.3.1. Use of \tkzDrawSemiCircle


```
\begin{tikzpicture}
   \t \DefPoint(0,0){A} \t \DefPoint(6,0){B}
   \tkzDefSquare(A,B)
                      \tkzGetPoints{C}{D}
   \tkzDrawPolygon(B,C,D,A)
   \tkzDefPoint(3,6){F}
   \tkzDefTriangle[equilateral](C,D)
   \tkzGetPoint{I}
   \tkzDefPointBy[projection=onto B--C](I)
   \tkzGetPoint{J}
   \tkzInterLL(D,B)(I,J) \tkzGetPoint{K}
   \tkzDefPointBy[symmetry=center K](B)
   \tkzGetPoint{M}
   \tkzDrawCircle(M,I)
   \tkzCalcLength(M,I) \tkzGetLength{dMI}
   \tkzDrawPolygon(A,B,C,D)
   \tkzDrawCircle[R](M,\dMI)
   \tkzDrawSemiCircle(F,D)
\end{tikzpicture}
```

26.4. Drawing semicircles

\tkzDrawSemiCircles[\langle local options \rangle](\langle A, B C, D\rangle)									
arguments		ex	ample		explic	atior	1		
(<pt1,pt2< td=""><td>pt3,pt4 .</td><td>>) (⟨</td><td>A,B C,</td><td>,D⟩)</td><td>List</td><td>of t</td><td>two]</td><td>poir</td><td>nts</td></pt1,pt2<>	pt3,pt4 .	>) (⟨	A,B C,	,D⟩)	List	of t	two]	poir	nts
options	default	definitio	n						
through diameter	through through	circle circle			-			_	

27. Drawing arcs

$\t \sum_{\alpha} (\langle 0, ... \rangle) (\langle 0, ... \rangle)$

This macro traces the arc of center O. Depending on the options, the arguments differ. It is a question of determining a starting point and an end point. Either the starting point is given, which is the simplest, or the radius of the arc is given. In the latter case, it is necessary to have two angles. Either the angles can be given directly, or nodes associated with the center can be given to determine them. The angles are in degrees.

options	default	definition
towards	towards	O is the center and the arc from A to (OB)
rotate	towards	the arc starts from A and the angle determines its length
R	towards	We give the radius and two angles
R with nodes	towards	We give the radius and two points
angles	towards	We give the radius and two points
delta	Ø	angle added on each side

Of course, you have to add all the styles of TikZ for the tracings...

options	arguments	example
towards rotate R R with nodes angles	(⟨pt,pt⟩)(⟨pt⟩) (⟨pt,pt⟩)(⟨an⟩) (⟨pt,r⟩)(⟨an,an⟩) (⟨pt,r⟩)(⟨pt,pt⟩) (⟨pt,pt⟩)(⟨an,an⟩)	\tkzDrawArc[delta=10](0,A)(B) \tkzDrawArc[rotate,color=red](0,A)(90) \tkzDrawArc[R](0,2)(30,90) \tkzDrawArc[R with nodes](0,2)(A,B) \tkzDrawArc[angles](0,A)(0,90)

Here are a few examples:

27.1. Option towards

It's useless to put **towards**. In this first example the arc starts from A and goes to B. The arc going from B to A is different. The salient is obtained by going in the direct direction of the trigonometric circle.

\begin{tikzpicture}[scale=.75]
 \tkzDefPoint(0,0){0}
 \tkzDefPoint(2,-1){A}
 \tkzDefPointBy[rotation= center 0 angle 90](A)
 \tkzDefPointBB}
 \tkzDrawArc[color=orange,<->](0,A)(B)
 \tkzDrawArc(0,B)(A)
 \tkzDrawLines[add = 0 and .5](0,A 0,B)
 \tkzDrawPoints(0,A,B)
 \tkzLabelPoints[below](0,A,B)
 \end{tikzpicture}

27.2. Option towards

In this one, the arc starts from A but stops on the right (OB).

\begin{tikzpicture} [scale=0.75]
 \tkzDefPoint(0,0){0}
 \tkzDefPoint(2,-1){A}
 \tkzDefPoint(1,1){B}
 \tkzDrawArc[color=blue,->](0,A)(B)
 \tkzDrawArc[color=gray](0,B)(A)
 \tkzDrawArc(0,B)(A)
 \tkzDrawLines[add = 0 and .5](0,A 0,B)
 \tkzDrawPoints(0,A,B)
 \tkzLabelPoints[below](0,A,B)
\end{tikzpicture}

27.3. Option rotate

\begin{tikzpicture}[scale=0.75]
 \tkzDefPoint(0,0){0}
 \tkzDefPoint(2,-2){A}
 \tkzDefPoint(60:2){B}
 \tkzDrawLines[add = 0 and .5](0,A 0,B)
 \tkzDrawArc[rotate,color=red](0,A)(180)
 \tkzDrawPoints(0,A,B)
 \tkzLabelPoints[below](0,A,B)
 \end{tikzpicture}

27.4. Option R

\begin{tikzpicture} [scale=0.75]
 \tkzDefPoints{0/0/0}
 \tkzSetUpCompass [<->]
 \tkzDrawArc[R,color=teal,double](0,3)(270,360)
 \tkzDrawArc[R,color=orange,double](0,2)(0,270)
 \tkzDrawPoint(0)
 \tkzLabelPoint[below](0){\$0\$}
\end{tikzpicture}

27.5. Option R with nodes

\begin{tikzpicture}[scale=0.75]
 \tkzDefPoint(0,0){0}
 \tkzDefPoint(2,-1){A}
 \tkzDefPoint(1,1){B}
 \tkzCalcLength(B,A)\tkzGetLength{radius}
 \tkzDrawArc[R with nodes](B,\radius)(A,0)
\end{tikzpicture}

27.6. Option delta

 $This \, option \, allows \, a \, bit \, like \, \verb|\tkzCompass| \, to \, place \, an \, arc \, and \, overflow \, on \, either \, side. \, delta \, is \, a \, measure \, in \, degrees.$


```
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPointBy[rotation= center A angle 60](B)
 \tkzGetPoint{C}
\begin{scope}% style only local
   \tkzDefPointBy[symmetry= center C](A)
   \tkzGetPoint{D}
   \tkzDrawSegments(A,B A,D)
   \tkzDrawLine(B,D)
   \tkzSetUpCompass[color=orange]
   \tkzDrawArc[orange,delta=10](A,B)(C)
   \tkzDrawArc[orange,delta=10](B,C)(A)
   \tkzDrawArc[orange,delta=10](C,D)(D)
\end{scope}
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\tkzMarkRightAngle(D,B,A)
\end{tikzpicture}
```

27.7. Option angles: example 1


```
\begin{tikzpicture}[scale=.75]
  \t \mathbb{Q} 
  \text{tkzDefPoint}(5, \mathbb{Q})\{B\}
  \text{tkzDefPoint}(2.5, \emptyset) \{0\}
  \tkzDefPointBy[rotation=center 0 angle 60](B)
  \tkzGetPoint{D}
  \tkzDefPointBy[symmetry=center D](0)
  \tkzGetPoint{E}
  \begin{scope}
    \tkzDrawArc[angles](0,B)(0,180)
    \tkzDrawArc[angles,](B,0)(100,180)
    \tkzCompass[delta=20](D,E)
    \tkzDrawLines(A,B 0,E B,E)
    \tkzDrawPoints(A,B,O,D,E)
  \end{scope}
  \tkzLabelPoints(A,B,O,D,E)
  \tkzMarkRightAngle(0,B,E)
\end{tikzpicture}
```

27.8. Option angles: example 2

\begin{tikzpicture} $\t \mathbb{Q}$ $\t (5,0){I}$ \tkzDefPoint(0,5){J} \tkzInterCC(0,I)(I,0)\tkzGetPoints{B}{C} \tkzInterCC(0,I)(J,0)\tkzGetPoints{D}{A} \tkzInterCC(I,0)(J,0)\tkzGetPoints{L}{K} $\t \sum_{i=1}^{n} (0,i)(0,90)$ \tkzDrawArc[angles,color=gray, style=dashed](I,0)(90,180)\tkzDrawArc[angles,color=gray, style=dashed](J,0)(-90,0)\tkzDrawPoints(A,B,K) \foreach \point in {I,A,B,J,K}{% \tkzDrawSegment(0,\point)} \end{tikzpicture}

28. Drawing a sector or sectors

28.1. \tkzDrawSector

Mattention the arguments vary according to the options.

\tkzDrawSector[\langlelocal options\rangle](\langle 0,\rangle)(\langle\rangle)				
options	default	definition		
towards rotate R R with nodes	towards towards towards towards	O is the center and the arc from A to (OB) the arc starts from A and the angle determines its length W e give the radius and two angles W e give the radius and two points		
You have to add, o	of course, al	l the styles of TikZ for tracings		
options	argument	example		
towards rotate R R with nodes	(\langle pt, pt \rangle) (\langle pt, pt \rangle) (\langle pt, r \rangle) (\langle pt, r \rangle)	$\label{eq:color} $$ (\langle an \rangle) $$ \text{$$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ $$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ $$ $$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ $$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ $$ $$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ $$ $$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ $$ $$ \text{$$ \text{$$ (\langle an \rangle)$} $} $$ $$ $$ \text{$$ (\langle an \rangle)$} $$ $$ $$ $$ $$ \text{$$ (\langle an \rangle)$} $$ $$ $$ $$ \text{$$ (\langle an \rangle)$} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		

Here are a few examples:

28.1.1. \tkzDrawSector and towards

There's no need to put towards. You can use fill as an option.


```
\begin{tikzpicture}
  \tkzDefPoint(0,0){0}
  \tkzDefPoint(-30:3){A}
  \tkzDefPointBy[rotation = center 0 angle -60](A)
  \tkzDrawSector(0,A)(tkzPointResult)
  \begin{scope}[shift={(-60:1)}]
  \tkzDefPoint(0,0){0}
  \tkzDefPoint(-30:3){A}
  \tkzDefPointBy[rotation = center 0 angle -60](A)
  \tkzDrawSector(0,tkzPointResult)(A)
  \end{scope}
\end{tikzpicture}
```

28.1.2. \tkzDrawSector and rotate

\begin{tikzpicture}[scale=2]
\tkzDefPoint(0,0){0}
\tkzDefPoint(2,2){A}
\tkzDrawSector[rotate,draw=orange!50!black](0,A)(30)
\tkzDrawSector[rotate,draw=teal!50!black](0,A)(-30)
\end{tikzpicture}

28.1.3. \tkzDrawSector and R

\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){0}
\tkzDefPoint(2,-1){A}
\tkzDrawSector[R](0,2)(30,90)
\tkzDrawSector[R](0,2)(90,180)
\tkzDrawSector[R](0,2)(180,270)
\tkzDrawSector[R](0,2)(270,360)
\end{tikzpicture}

28.1.4. \tkzDrawSector and R

28.1.5. \tkzDrawSector and R with nodes


```
\begin{tikzpicture} [scale=.4]
\t = 1/-2/A, 1/3/B
\tkzDefRegPolygon[side,sides=6](A,B)
\tkzGetPoint{0}
\tkzDrawPolygon[fill=black!10, draw=blue](P1,P...,P6)
\t \ \tkzLabelRegPolygon[sep=1.05](0){A,...,F}
\tkzDrawCircle[dashed](0,A)
\tkzLabelSegment[above,sloped,
                  midway](A,B)\{(A B = 16m)\}
\foreach \i [count=\xi from 1] in \{2,...,6,1\}
  {%
   \tkzDefMidPoint(P\xi,P\i)
    \path (0) to [pos=1.1] node {\xi} (tkzPointResult);
   }
 \tkzDefRandPointOn[segment = P3--P5]
 \tkzGetPoint{S}
 \tkzDrawSegments[thick,dashed,red](A,S S,B)
 \tkzDrawPoints(P1,P...,P6,S)
 \tkzLabelPoint[left,above](S){$S$}
 \tkzDrawSector[R with nodes,fill=red!20](S,2)(A,B)
 \label{loss} $$ <page-header> \B[pos=1.5] (A,S,B) {$\alpha$} 
\end{tikzpicture}
```

28.2. Coloring a disc

This was possible with the macro \tkzDrawCircle, but disk tracing was mandatory, this is no longer the case.

\tkzFil	lCircle[(local options)](⟨A,B⟩)
options	default	definition
radius R		two points define a radius a point and the measurement of a radius

You don't need to put **radius** because that's the default option. Of course, you have to add all the styles of TikZ for the plots.

28.2.1. Yin and Yang

\begin{tikzpicture} [scale=.75]
 \tkzDefPoint(0,0){0}
 \tkzDefPoint(-4,0){A}
 \tkzDefPoint(-2,0){I}
 \tkzDefPoint(2,0){J}
 \tkzDefPoint(2,0){J}
 \tkzDrawSector[fill=teal](0,A)(B)
 \tkzFillCircle[fill=white](J,B)
 \tkzFillCircle[fill=teal](I,A)
 \tkzDrawCircle(0,A)
\end{tikzpicture}

28.2.2. From a sangaku


```
\begin{tikzpicture}
  \t \DefPoint(0,0){B} \t \C}
  \tkzDefSquare(B,C)
                        \tkzGetPoints{D}{A}
  \tkzClipPolygon(B,C,D,A)
  \tkzDefMidPoint(A,D) \tkzGetPoint{F}
  \tkzDefMidPoint(B,C) \tkzGetPoint{E}
  \tkzDefMidPoint(B,D) \tkzGetPoint{Q}
  \tkzDefTangent[from = B](F,A) \tkzGetPoints{G}{H}
  \tkzInterLL(F,G)(C,D) \tkzGetPoint{J}
  \tkzInterLL(A,J)(F,E) \tkzGetPoint{K}
  \tkzDefPointBy[projection=onto B--A](K)
  \tkzGetPoint{M}
  \tkzDrawPolygon(A,B,C,D)
  \tkzFillCircle[red!20](E,B)
  \tkzFillCircle[blue!20](M,A)
  \tkzFillCircle[green!20](K,Q)
  \tkzDrawCircles(B,A M,A E,B K,Q)
\end{tikzpicture}
```

28.2.3. Clipping and filling part I

\begin{tikzpicture} $\t \DefPoints{0/0/A,4/0/B,2/2/0,3/4/X,4/1/Y,1/0/Z,$ 0/3/W,3/0/R,4/3/S,1/4/T,0/1/U\tkzDefSquare(A,B)\tkzGetPoints{C}{D} \tkzDefPointWith[colinear normed=at X,K=1](0,X) $\t \$ \begin{scope} \tkzFillCircle[fill=teal!20](0,F) \tkzFillPolygon[white](A,...,D) \tkzClipPolygon(A,...,D) $\foreach \c/\t in \{S/C,R/B,U/A,T/D\}$ {\tkzFillCircle[teal!20](\c,\t)} \end{scope} $\foreach \c/\t in \{X/C,Y/B,Z/A,W/D\}$ {\tkzFillCircle[white](\c,\t)} $foreach \c/\t in {S/C,R/B,U/A,T/D}$ {\tkzFillCircle[teal!20](\c,\t)} \end{tikzpicture}

28.2.4. Clipping and filling part II

\begin{tikzpicture}[scale=.75] $\t Nd = \frac{0}{0}A, \frac{8}{0}B, \frac{8}{0}C, \frac{9}{0}B$ \tkzDefMidPoint(A,B) \tkzGetPoint{F} \tkzDefMidPoint(B,C) \tkzGetPoint{E} \tkzDefMidPoint(D,B) \tkzGetPoint{I} \tkzDefMidPoint(I,B) \tkzGetPoint{a} \tkzInterLC(B,I)(B,C) \tkzGetSecondPoint{K} \tkzDefMidPoint(I,K) \tkzGetPoint{b} \begin{scope} \tkzFillSector[fill=blue!10](B,C)(A) \tkzDrawSemiCircle[diameter,fill=white](A,B) \tkzDrawSemiCircle[diameter,fill=white](B,C) \tkzClipCircle(E,B) \tkzClipCircle(F,B) \tkzFillCircle[fill=blue!10](B,A) \end{scope} \tkzDrawSemiCircle[thick](F,B) \tkzDrawSemiCircle[thick](E,C) \tkzDrawArc[thick](B,C)(A) \tkzDrawSegments[thick](A,B B,C) \tkzDrawPoints(A,B,C,E,F) \tkzLabelPoints[centered](a,b) \tkzLabelPoints(A,B,C,E,F) \end{tikzpicture}

28.2.5. Clipping and filling part III


```
\begin{tikzpicture}
  \tkzDefPoint(0,0){A} \tkzDefPoint(1,0){B}
  \tkzDefPoint(2,0){C} \tkzDefPoint(-3,0){a}
  \tkzDefPoint(3,0){b} \tkzDefPoint(0,3){c}
  \tkzDefPoint(0,-3){d}
  \begin{scope}
  \tkzClipPolygon(a,b,c,d)
  \tkzFillCircle[teal!20](A,C)
  \end{scope}
  \tkzFillCircle[white](A,B)
  \tkzDrawCircle[color=red](A,C)
  \tkzDrawCircle[color=red](A,B)
  \end{tikzpicture}
```

28.3. Coloring a polygon

\tkzFillPolygon[\langle local options\rangle](\langle points list\rangle)

You can color by drawing the polygon, but in this case you color the inside of the polygon without drawing it.

arguments	example	explication
(⟨pt1,pt2,⟩)	$(\langle A, B, \rangle)$	

28.3.1. \tkzFillPolygon


```
\begin{tikzpicture}[scale=.5]
  \t \DefPoint(0,0){C} \t \DefPoint(4,0){A}
  \tkzDefPoint(0,3){B}
  \tkzDefSquare(B,A)
                         \tkzGetPoints{E}{F}
  \tkzDefSquare(A,C)
                         \tkzGetPoints{G}{H}
  \tkzDefSquare(C,B)
                          \tkzGetPoints{I}{J}
  \tkzFillPolygon[color = orange!30 ](A,C,G,H)
  \tkzFillPolygon[color = teal!40 ](C,B,I,J)
  \tkzFillPolygon[color = purple!20](B,A,E,F)
  \t \ = 1pt](A,B,C)
  \tkzDrawPolygon[line width = 1pt](A,C,G,H)
  \tkzDrawPolygon[line width = 1pt](C,B,I,J)
  \tkzDrawPolygon[line width = 1pt](B,A,E,F)
  \tkzLabelSegment[above](C,A){$a$}
  \tkzLabelSegment[right](B,C){$b$}
  \tkzLabelSegment[below left](B,A){$c$}
\end{tikzpicture}
```

28.4. \tkzFillSector

Attention the arguments vary according to the options.

\tkzFillSecto	r[〈local o	options)]((0,))(())
options	default	definition
towards	towards	O is the center and the arc from A to (OB)
rotate	towards	the arc starts from A and the angle determines its length
R	towards	We give the radius and two angles
R with nodes	towards	We give the radius and two points

Of course, you have to add all the styles of TikZ for the tracings...

options	arguments	example
towards	$(\langle pt, pt \rangle) (\langle pt \rangle)$	\tkzFillSector(0,A)(B)
rotate	$(\langle pt, pt \rangle) (\langle an \rangle)$	\tkzFillSector[rotate,color=red](0,A)(90)
R	$(\langle pt, r \rangle) (\langle an, an \rangle)$	\tkzFillSector[R,color=blue](0,2)(30,90)
R with nodes	$(\langle pt, r \rangle) (\langle pt, pt \rangle)$	\tkzFillSector[R with nodes](0,2)(A,B)

28.4.1. \tkzFillSector and towards

It is useless to put towards and you will notice that the contours are not drawn, only the surface is colored.


```
\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){0}
\tkzDefPoint(-30:3){A}
\tkzDefPointBy[rotation = center 0 angle -60](A)
\tkzFillSector[fill=purple!20](0,A)(tkzPointResult)
\begin{scope}[shift={(-60:1)}]
\tkzDefPoint(0,0){0}
\tkzDefPoint(-30:3){A}
\tkzDefPointBy[rotation = center 0 angle -60](A)
\tkzGetPoint{A'}
\tkzFillSector[color=teal!40](0,A')(A)
\end{scope}
\end{tikzpicture}
```

28.4.2. \tkzFillSector and rotate

\begin{tikzpicture}[scale=1.5]
 \tkzDefPoint(0,0){0} \tkzDefPoint(2,2){A}
 \tkzFillSector[rotate,color=purple!20](0,A)(30)
 \tkzFillSector[rotate,color=teal!40](0,A)(-30)
 \end{tikzpicture}

28.5. Colour an angle: \tkzFillAngle

The simplest operation

$\time TillAngle[(local options)]((A,0,B))$

O is the vertex of the angle. OA and OB are the sides. Attention the angle is determined by the order of the points.

options	default	definition
size	1	this option determines the radius of the coloured angular sector.

Of course, you have to add all the styles of TikZ, like the use of fill and shade...

28.5.1. Example with size

\begin{tikzpicture}
 \tkzInit
 \tkzDefPoints{0/0/0,2.5/0/A,1.5/2/B}
 \tkzFillAngle[size=2, fill=gray!10](A,0,B)
 \tkzDrawLines(0,A 0,B)
 \tkzDrawPoints(0,A,B)
\end{tikzpicture}

28.5.2. Changing the order of items

\begin{tikzpicture}
 \tkzInit
 \tkzDefPoints{\0/\0/0,2.5/\0/A,1.5/2/B}
 \tkzFillAngle[size=2,fill=gray!1\0](B,0,A)
 \tkzDrawLines(0,A 0,B)
 \tkzDrawPoints(0,A,B)
\end{tikzpicture}

 $\label{local options} $$ \txFillAngles[\langle local options \rangle] (\langle A, 0, B \rangle) (\langle A', 0', B' \rangle) etc. $$$

With common options, there is a macro for multiple angles.

28.5.3. Multiples angles


```
\begin{tikzpicture}[scale=0.5]
  \tkzDrawPolygon(B,C,D,A)
 \verb|\tkzDefTriangle[equilateral](B,C) \tkzGetPoint{M}|
  \tkzInterLL(D,M)(A,B) \tkzGetPoint{N}
  \tkzDefPointBy[rotation=center N angle -60](D)
  \tkzGetPoint{L}
  \tkzInterLL(N,L)(M,B)
                          \tkzGetPoint{P}
  \tkzInterLL(M,C)(D,L)
                          \tkzGetPoint{Q}
  \tkzDrawSegments(D,N N,L L,D B,M M,C)
  \tkzDrawPoints(L,N,P,Q,M,A,D)
  \tkzLabelPoints[left](N,P,Q)
  \tkzLabelPoints[above](M,A,D)
  \tkzLabelPoints(L,B,C)
  \tkzMarkAngles(C,B,M B,M,C M,C,B D,L,N L,N,D N,D,L)
  \tkzFillAngles[fill=red!20,opacity=.2](C,B,M%
     B,M,C M,C,B D,L,N L,N,D N,D,L)
\end{tikzpicture}
```

29. Controlling Bounding Box

From the **PgfManual**: "When you add the clip option, the current path is used for clipping subsequent drawings. Clipping never enlarges the clipping area. Thus, when you clip against a certain path and then clip again against another path, you clip against the intersection of both. The only way to enlarge the clipping path is to end the pgfscope in which the clipping was done. At the end of a pgfscope the clipping path that was in force at the beginning of the scope is reinstalled."

First of all, you don't have to deal with TikZ the size of the bounding box. Early versions of tkz-euclide did not control the size of the bounding box, now with tkz-euclide 4 the size of the bounding box is limited.

The initial bounding box after using the macro $\t kzInit$ is defined by the rectangle based on the points (0,0) and (10,10). The $\t kzInit$ macro allows this initial bounding box to be modified using the arguments (xmin, xmax, ymin, and ymax). Of course any external trace modifies the bounding box. TikZ maintains that bounding box. It is possible to influence this behavior either directly with commands or options in TikZ such as a command like $\t useasboundingbox$ or the option t as bounding box. A possible consequence is to reserve a box for a figure but the figure may overflow the box and spread over the main text. The following command $\t pgfresetboundingbox$ clears a bounding box and establishes a new one.

29.1. Utility of \tkzInit

However, it is sometimes necessary to control the size of what will be displayed. To do this, you need to have prepared the bounding box you are going to work in, this is the role of the macro \tau_tzInit. For some drawings, it is interesting to fix the extreme values (xmin,xmax,ymin and ymax) and to "clip" the definition rectangle in order to control the size of the figure as well as possible.

The two macros that are useful for controlling the bounding box:

- \tkzInit
- \tkzClip

To this, I added macros directly linked to the bounding box. You can now view it, backup it, restore it (see the section Bounding Box).

29.2. \tkzInit

\tkzIni	t[(local	options>]
options	default	definition
xmin	Ø	minimum value of the abscissae in cm
xmax	10	maximum value of the abscissae in cm
xstep	1	difference between two graduations in \boldsymbol{x}
ymin	Ø	minimum y-axis value in cm
ymax	10	maximum y-axis value in cm
ystep	1	difference between two graduations in \boldsymbol{y}

The role of \tkzInit is to define a orthogonal coordinates system and a rectangular part of the plane in which you will place your drawings using Cartesian coordinates. This macro allows you to define your working environment as with a calculator. With tkz-euclide 4 \xstep and \ystep are always 1. Logically it is no longer useful to use \tkzInit, except for an action like "Clipping Out".

29.3. \tkzClip

\tkzClip[\langle local options \rangle]

The role of this macro is to make invisible what is outside the rectangle defined by (xmin; ymin) and (xmax; ymax).

options	default	definition
space	1	added value on the right, left, bottom and top of the background

The role of the **space** option is to enlarge the visible part of the drawing. This part becomes the rectangle defined by (xmin-space; ymin-space) and (xmax+space; ymax+space). **space** can be negative! The unit is cm and should not be specified.

The role of this macro is to "clip" the initial rectangle so that only the paths contained in this rectangle are drawn.

\begin{tikzpicture}
\tkzInit[xmax=4, ymax=3]
\tkzDefPoints{-1/-1/A,5/2/B}
\tkzDrawX \tkzDrawY
\tkzGrid
\tkzClip
\tkzDrawSegment(A,B)
\end{tikzpicture}

It is possible to add a bit of space

\tkzClip[space=1]

29.4. \tkzClip and the option space

This option allows you to add some space around the "clipped" rectangle.

\begin{tikzpicture}
\tkzInit[xmax=4, ymax=3]
\tkzDefPoints{-1/-1/A,5/2/B}
\tkzDrawX \tkzDrawY
\tkzGrid
\tkzClip[space=1]
\tkzDrawSegment(A,B)
\end{tikzpicture}

The dimensions of the "clipped" rectangle are xmin-1, ymin-1, xmax+1 and ymax+1.

29.5. tkzShowBB

The simplest macro.

\tkzShowBB[\local options\]

This macro displays the bounding box. A rectangular frame surrounds the bounding box. This macro accepts TikZ options.

29.5.1. Example with \tkzShowBB


```
\begin{tikzpicture} [scale=.5]
  \tkzInit[ymax=5,xmax=8]
  \tkzGrid
  \tkzDefPoint(3,\(0)\{A\}
  \begin{scope}
    \tkzClipBB
    \tkzDrawCircle[R](A,5)
    \tkzShowBB[line width = 4pt,fill=teal!1\(0)\,opacity=.4\)
  \end{scope}
  \tkzDrawCircle[R,red](A,4)
  \end{tikzpicture}
```

29.6. tkzClipBB

\tkzClipBB

The idea is to limit future constructions to the current bounding box.

29.6.1. Example with \tkzClipBB and the bisectors


```
\begin{tikzpicture}
\tkzInit[xmin=-3,xmax=6, ymin=-1,ymax=6]
\tkzDefPoint(0,0){0}\tkzDefPoint(3,1){I}
\tkzDefPoint(1,4){J}
\tkzDefLine[bisector](I,0,J) \tkzGetPoint{i}
\tkzDefLine[bisector out](I,0,J) \tkzGetPoint{j}
\tkzDrawPoints(0,I,J,i,j)
\tkzClipBB
\tkzDrawLines[add = 1 and 2,color=orange](0,I 0,J)
\tkzDrawLines[add = 1 and 2](0,i 0,j)
\tkzShowBB
\end{tikzpicture}
```

30. Clipping different objects

30.1. Clipping a polygon

\tkzClipPolygon[\langle local options \rangle] (\langle points list \rangle)			
This macro makes it possible to contain the different plots in the designated polygon.			
arguments	example	explication	
(\(\rho \text{pt1,pt2,pt3,}\)	$(\langle A,B,C \rangle)$		
options	default	definition	
out		allows to clip the outside of the object	

30.1.1. \tkzClipPolygon

\begin{tikzpicture} [scale=1.25]
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefPoint(1,3){C}
\tkzDrawPolygon(A,B,C)
\tkzDefPoint(0,2){D}
\tkzDefPoint(2,0){E}
\tkzDrawPoints(D,E)
\tkzLabelPoints(D,E)
\tkzClipPolygon(A,B,C)
\tkzClipPolygon(A,B,C)
\tkzDrawLine[new](D,E)
\end{tikzpicture}

30.1.2. \tkzClipPolygon[out]

\begin{tikzpicture}[scale=1] $\t \mathbb{Q}_{0}$ \tkzDefPoint(4,\){P2} \tkzDefPoint(4,4){P3} $\t \DefPoint(0,4){P4}$ \tkzDefPoint(1,1){Q1} \tkzDefPoint(3,1){Q2} \tkzDefPoint(3,3){Q3} \tkzDefPoint(1,3){Q4} \tkzDrawPolygon(P1,P2,P3,P4) \begin{scope} \tkzClipPolygon[out](Q1,Q2,Q3,Q4) \tkzFillPolygon[teal!20](P1,P2,P3,P4) \end{scope} \tkzDrawPolygon(Q1,Q2,Q3,Q4) \end{tikzpicture}

30.1.3. Example: use of "Clip" for Sangaku in a square

It is not necessary to put radius because that is the default option.

\begin{tikzpicture}[scale=.75] \tkzGetPoints{C}{D} \tkzDefSquare(A,B) \tkzDefPoint(4,8){F} \tkzDefTriangle[equilateral](C,D) \tkzGetPoint{I} \tkzDefPointBy[projection=onto B--C](I) \tkzGetPoint{J} \tkzInterLL(D,B)(I,J) \tkzGetPoint{K} \tkzDefPointBy[symmetry=center K](B) \tkzGetPoint{M} \tkzClipPolygon(B,C,D,A) \tkzGetLength{dMI} \tkzCalcLength(M,I) \tkzFillPolygon[color = orange](A,B,C,D) \tkzFillCircle[R,color = yellow](M,\dMI) \tkzFillCircle[R,color = blue!50!black](F,4) \end{tikzpicture}

30.2. Clipping a disc

\tkzCli	$\txclipCircle[\langle local options \rangle](\langle A,B \rangle) \text{ or } (\langle A,r \rangle)$			
argumen	ts	example explication		
$(\langle A, B \rangle)$	or $(\langle A, r \rangle)$	$(\langle A,B\rangle)$ or $(\langle A,2cm\rangle)$ AB radius or diameter		
options	default	definition		
radius R out		circle characterized by two points defining a radius circle characterized by a point and the measurement of a radius allows to clip the outside of the object		

30.2.1. Simple clip

\begin{tikzpicture}[scale=.5]
 \tkzDefPoint(0,0){A} \tkzDefPoint(2,2){0}
 \tkzDefPoint(4,4){B} \tkzDefPoint(5,5){C}
 \tkzDrawPoints(0,A,B,C)
 \tkzLabelPoints(0,A,B,C)
 \tkzDrawCircle(0,A)
 \tkzClipCircle(0,A)
 \tkzDrawLine(A,C)
 \tkzDrawCircle[fill=teal!10,opacity=.5](C,0)
\end{tikzpicture}

30.3. Clip out

30.4. Intersection of disks

\begin{tikzpicture}
\tkzDefPoints{0/0,4/0/A,0/4/B}
\tkzDrawPolygon[fill=teal](0,A,B)
\tkzClipPolygon(0,A,B)
\tkzClipCircle(A,0)
\tkzClipCircle(B,0)
\tkzFillPolygon[white](0,A,B)
\end{tikzpicture}

see a more complex example about clipping here: 46.6

30.5. Clipping a sector

Mattention the arguments vary according to the options.

\tkzClip	Sector[<lo< th=""><th>ocal options)]((0,)</th><th>)(())</th><th></th></lo<>	ocal options)]((0,))(())	
options	default	definition		
towards rotate R	towards O is the centre and the sector starts from A to (OB) towards The sector starts from A and the angle determines its amplitude. towards We give the radius and two angles			
You have to	add, of cou	rse, all the styles of Tik	Z for tracings	
options	argument	S	example	
towards rotate R		(⟨pt⟩) (⟨angle⟩) ⟨angle 1,angle 2⟩)	\tkzClipSector(0,A)(B) \tkzClipSector[rotate](0,A)(90) \tkzClipSector[R](0,2)(30,90)	

30.5.1. Example 1

30.5.2. Example 2

\end{scope}
\end{tikzpicture}

\tkzFillSector[teal!40!white](c,AC1)(AC2)

30.6. Options from TikZ: trim left or right

See the **pgfmanual**

30.7. TikZ Controls \pgfinterruptboundingbox and \endpgfinterruptboundingbox

This command temporarily interrupts the calculation of the box and configures a new box. See the **pgfmanual**

30.7.1. Example about contolling the bouding box

\begin{tikzpicture}
\tkzDefPoint(0,5){A}\tkzDefPoint(5,4){B}
\tkzDefPoint(0,0){C}\tkzDefPoint(5,1){D}
\tkzDrawSegments(A,B C,D A,C)
\pgfinterruptboundingbox
 \tkzInterLL(A,B)(C,D)\tkzGetPoint{I}
\endpgfinterruptboundingbox
\tkzClipBB
\tkzDrawCircle(I,B)
\end{tikzpicture}

30.8. Reverse clip: tkzreverseclip

In order to use this option, a bounding box must be defined.

```
\tikzset{tkzreverseclip/.style={insert path={
    (current bounding box.south west) --(current bounding box.north west)
--(current bounding box.north east) -- (current bounding box.south east)
-- cycle} }}
```

30.8.1. Example with \tkzClipPolygon[out]

\tkzClipPolygon[out], \tkzClipCircle[out] use this option.


```
\fbox{\begin{tikzpicture}[scale=1]
\tkzInit[xmin=-5,xmax=5,ymin=-4,ymax=6]
\tkzClip
\tkzDefPoints{-.5/\(\0)P1,.5/\(\0)P2\)
\foreach \i [count=\j from 3] in \{2,...,7\}{\%}
\tkzDefShiftPoint[P\i] (\{45*(\i-1)\}:1)\{P\j\}\}
\tkzClipPolygon[out] (P1,P...,P8)
\tkzCalcLength(P1,P5)\tkzGetLength\{r\}
\begin\{scope\}[blend group=screen]
\foreach \i in \{1,...,8\}{\%}
\pgfmathparse\{1\(\0)\0-5*\i\)\}
\tkzFillCircle[R,color=teal!\%}
\pgfmathresult](P\i,\r)\}
\end\{scope\}
\end\{tikzpicture\}\}
```

Part V.

Marking

30.9. Mark a segment \tkzMarkSegment

\tkzMarkSegment[\langlelocal options\rangle](\langlept1,pt2\rangle)

The macro allows you to place a mark on a segment.

options	default	definition
pos color	.5 black	position of the mark color of the mark
mark	none	choice of the mark
size	4pt	size of the mark

Possible marks are those provided by TikZ, but other marks have been created based on an idea by Yves Combe.

30.9.1. Several marks


```
\begin{tikzpicture}
  \tkzDefPoint(2,1){A}
  \tkzDefPoint(6,4){B}
  \tkzDrawSegment(A,B)
  \tkzMarkSegment[color=brown,size=2pt,pos=0.4, mark=z](A,B)
  \tkzMarkSegment[color=blue,pos=0.2, mark=oo](A,B)
  \tkzMarkSegment[pos=0.8,mark=s,color=red](A,B)
  \end{tikzpicture}
```

30.9.2. Use of mark


```
\begin{tikzpicture}
  \tkzDefPoint(2,1){A}
  \tkzDefPoint(6,4){B}
  \tkzDrawSegment(A,B)
  \tkzMarkSegment[color=gray,pos=0.2,mark=s|](A,B)
  \tkzMarkSegment[color=gray,pos=0.4,mark=s||](A,B)
  \tkzMarkSegment[color=brown,pos=0.6,mark=||](A,B)
  \tkzMarkSegment[color=red,pos=0.8,mark=||](A,B)
  \tkzMarkSegment[color=red,pos=0.8,mark=||](A,B)
```

30.10. Marking segments \tkzMarkSegments

```
\tkzMarkSegments[\langle local options\rangle](\langle pt3, pt4 ...\rangle)
```

Arguments are a list of pairs of points separated by spaces. The styles of TikZ are available for plots.

30.10.1. Marks for an isosceles triangle


```
\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/0,2/2/A,4/0/B,6/2/C}
\tkzDrawSegments(0,A A,B)
\tkzDrawPoints(0,A,B)
\tkzDrawLine(0,B)
\tkzMarkSegments[mark=||,size=6pt](0,A A,B)
\end{tikzpicture}
```

30.11. Another marking


```
\begin{tikzpicture}[scale=1]
 \t \DefPoint(0,0){A}\t \DefPoint(3,2){B}
 \t \DefPoint(4,0) \{C\} \t \DefPoint(2.5,1) \{P\}
 \tkzDrawPolygon(A,B,C)
 \tkzDefEquilateral(A,P) \tkzGetPoint{P'}
 \tkzDefPointsBy[rotation=center A angle 60](P,B){P',C'}
 \tkzDrawPolygon(A,P,P')
 \tkzDrawPolySeg(P',C',A,P,B)
 \tkzDrawSegment(C,P)
 \tkzDrawPoints(A,B,C,C',P,P')
 \tkzMarkSegments[mark=s|,size=6pt,
 color=blue](A,P P,P' P',A)
 \tkzMarkSegments[mark=||,color=orange](B,P P',C')
 \tkzLabelPoints(A,C) \tkzLabelPoints[below](P)
 \tkzLabelPoints[above right](P',C',B)
\end{tikzpicture}
```

30.12. Mark an arc \tkzMarkArc

\tkzMarkArc[\langlelocal options\rangle](\langlept1,pt2,pt3\rangle)

The macro allows you to place a mark on an arc. pt1 is the center, pt2 and pt3 are the endpoints of the arc.

options	default	definition
pos	.5	position of the mark
color	black	color of the mark
mark	none	choice of the mark
size	4pt	size of the mark

Possible marks are those provided by TikZ, but other marks have been created based on an idea by Yves Combe.

```
|, ||,|||, z, s, x, o, oo
```

30.12.1. Several marks

\begin{tikzpicture}
\tkzDefPoint(0,0){0}
\pgfmathsetmacro\r{2}
\tkzDefPoint(30:\r){A}
\tkzDefPoint(85:\r){B}
\tkzDrawCircle(0,A)
\tkzMarkArc[color=red,mark=||](0,A,B)
\tkzDrawPoints(B,A,0)
\end{tikzpicture}

30.13. Mark an angle mark: \tkzMarkAngle

More delicate operation because there are many options. The symbols used for marking in addition to those of TikZ are defined in the file tkz-lib-marks.tex and designated by the following characters:

|, ||,|||, z, s, x, o, oo

$\text{tkzMarkAngle}[\langle local options \rangle](\langle A, 0, B \rangle)$

O is the vertex. Attention the arguments vary according to the options. Several markings are possible. You can simply draw an arc or add a mark on this arc. The style of the arc is chosen with the option arc, the radius of the arc is given by mksize, the arc can, of course, be colored.

options	default	definition
arc size mark mksize mkcolor mkpos	1 (cm) none 4pt black 0.5	choice of 1, 11 and 111 (single, double or triple). arc radius. choice of mark. symbol size (mark). symbol color (mark). position of the symbol on the arc.

30.13.1. Example with mark = x

30.13.2. Example with mark = | |

 $\t MarkAngles[\langle local options \rangle](\langle A, 0, B \rangle)(\langle A', 0', B' \rangle)etc.$

With common options, there is a macro for multiple angles.

30.14. Marking a right angle: \tkzMarkRightAngle

\tkzMarkRightAngle[\langle[\langle](\langleA,0,B\rangle)

The **german** option allows you to change the style of the drawing. The option **size** allows to change the size of the drawing.

options	default	definition
german size	normal 0.2	german arc with inner point. side size.

30.14.1. Example of marking a right angle

30.14.2. Example of marking a right angle, german style

30.14.3. Mix of styles

30.14.4. Full example

\begin{tikzpicture} [rotate=-90] \tkzDefPoint(0,1){A} \tkzDefPoint(2,4){C} \tkzDefPointWith[orthogonal normed,K=7](C,A) \tkzGetPoint{B} \tkzDrawSegment[green!60!black](A,C) \tkzDrawSegment[green!60!black](C,B) \tkzDrawSegment[green!60!black](B,A) \tkzDefSpcTriangle[orthic](A,B,C){N,O,P} \tkzDrawLine[dashed,color=magenta](C,P) \tkzLabelPoint[left](A){\$A\$} \tkzLabelPoint[right](B){\$B\$} \tkzLabelPoint[above](C){\$C\$} \tkzLabelPoint[left](P){\$P\$} \tkzLabelSegment[auto](B,A){\$c\$} \tkzLabelSegment[auto,swap](B,C){\$a\$} \tkzLabelSegment[auto,swap](C,A){\$b\$} \tkzMarkAngle[size=1,color=cyan,mark=|](C,B,A) \tkzMarkAngle[size=1,color=cyan,mark=|](A,C,P) \tkzMarkAngle[size=0.75,color=orange, mark=||](P,C,B) $\verb|\tkzMarkAngle[size=0.75,color=orange,\\$ mark=||](B,A,C) \tkzMarkRightAngle[german](A,C,B) \tkzMarkRightAngle[german](B,P,C) \end{tikzpicture}

30.15. \tkzMarkRightAngles

 $\label{local options} $$ \txMarkRightAngles[(local options)]((A,0,B))((A',0',B'))$ etc. $$$

With common options, there is a macro for multiple angles.

Part VI.

Labelling

31. Labelling 158

31. Labelling

31.1. Label for a point

It is possible to add several labels at the same point by using this macro several times.

$\time \time \tim$			
arguments	example		
point options	\tkzLabelPoint(A){\$A_1\$} default	definition	
TikZ options		colour, position etc.	

Optionally, we can use any style of TikZ, especially placement with above, right, dots...

31.1.1. Example with \tkzLabelPoint

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(4,0){B}
 \tkzDefPoint(0,3){C}
 \tkzDrawSegments(A,BB,CC,A)
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoint[left,red](A){\$A\$}
 \tkzLabelPoint[right,blue](B){\$B\$}
 \tkzLabelPoint[above,purple](C){\$C\$}
\end{tikzpicture}

31.1.2. Label and reference

The reference of a point is the object that allows to use the point, the label is the name of the point that will be displayed.

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){\$A_1\$}
 \end{tikzpicture}

31.2. Add labels to points \tkzLabelPoints

It is possible to place several labels quickly when the point references are identical to the labels and when the labels are placed in the same way in relation to the points. By default, **below right** is chosen.

$LLabelPoints[\langle local \; options \rangle] (\langle A_1, A_2, \rangle)$			
arguments	example	result	
list of points	\tkzLabelPoints(A,B,C)	Display of A, B and C	

This macro reduces the number of lines of code, but it is not obvious that all points need the same label positioning.

31. Labelling 159

31.2.1. Example with \tkzLabelPoints

31.3. Automatic position of labels \tkzAutoLabelPoints

The label of a point is placed in a direction defined by a center and a point **center**. The distance to the point is determined by a percentage of the distance between the center and the point. This percentage is given by **dist**.

$\time The Label Points [(local options)] ((A_1, A_2,))$		
arguments	example	result
list of points	\tkzLabelPoint(A,B,C)	Display of A, B and C

31.3.1. Example with \tkzAutoLabelPoints

Here the points are positioned relative to the center of gravity of A, B, C and O.

31.3.2. Example with \tkzAutoLabelPoints

This time the reference is O and the distance is by default 0.15.


```
\begin{tikzpicture}[scale=1.25]
  \tkzDefPoint(2,1){0}
  \tkzDefRandPointOn[circle=center 0 radius 1.5]
  \tkzGetPoint{A}
  \tkzDrawCircle(0,A)
  \tkzDefPointBy[rotation=center 0 angle 100](A)
  \tkzGetPoint{C}
  \tkzDefPointBy[rotation=center 0 angle 78](A)
  \tkzGetPoint{B}
  \tkzDrawPoints(0,A,B,C)
  \tkzDrawSegments(0,B,A,B,C)
  \tkzAutoLabelPoints[center=0,red](A,B,C)
  \end{tikzpicture}
```

32. Label for a segment

\tkzLabelSe	$\verb \tkzLabelSegment[\langle local options \rangle](\langle pt1, pt2 \rangle) \{\langle label \rangle\} $		
This macro allo	This macro allows you to place a label along a segment or a line. The options are those of $\operatorname{Ti} k \mathbb{Z}$ for example pos .		
argument	example	definition	_
label (pt1,pt2)	\tkzLabelSegment(A,B){5} (A,B)	label text label along [AB]	
	fault definition		-
pos .5	label's position		

32.0.1. First example

a	\begin{tikzpicture}	
		$\text{\tkzDefPoint}(\emptyset,\emptyset)\{A\}$
4		\tkzDefPoint(6,0){B}
		<pre>\tkzDrawSegment(A,B)</pre>
		\tkzLabelSegment[above,pos=.8](A,B){\$a\$}
		\tkzLabelSegment[below,pos=.2](A,B){\$4\$}
		\end{tikzpicture}

32.0.2. Example : blackboard


```
\tikzstyle{background rectangle}=[fill=black]
\begin{tikzpicture}[show background rectangle,scale=.4]
 \t \mathbb{Q} 
 \tkzDefPoint(1,0){I}
  \t 10,0){A}
  \tkzDefPointWith[orthogonal normed,K=4](I,A)
  \tkzGetPoint{H}
  \tkzDefMidPoint(0,A) \tkzGetPoint{M}
  \tkzInterLC(I,H)(M,A)\tkzGetPoints{C}{B}
  \tkzDrawSegments[color=white,line width=1pt](I,H 0,A)
  \tkzDrawPoints[color=white](0,I,A,B,M)
  \tkzMarkRightAngle[color=white,line width=1pt](A,I,B)
  \tkzDrawArc[color=white,line width=1pt,
             style=dashed](M,A)(0)
 \tkzLabelSegment[white,right=1ex,pos=.5](I,B){$\sqrt{a}$}
 \tkzLabelSegment[white,below=1ex,pos=.5](0,I){$1$}
  \tkzLabelSegment[pos=.6,white,below=1ex](I,A){$a$}
\end{tikzpicture}
```

32.0.3. Labels and option : swap


```
\begin{tikzpicture}[rotate=-60]
\tkzSetUpStyle[red,auto]{label seg style}
\tkzDefPoint(0,1){A}
\tkzDefPoint(2,4){C}
\tkzDefPointWith[orthogonal normed,K=7](C,A)
\tkzGetPoint{B}
\tkzDefSpcTriangle[orthic](A,B,C){N,O,P}
\tkzDefTriangleCenter[circum](A,B,C)
\tkzGetPoint{0}
\tkzDrawPolygon[green!60!black](A,B,C)
\tkzDrawLine[dashed,color=magenta](C,P)
\tkzLabelSegment(B,A){$c$}
\tkzLabelSegment[swap](B,C){$a$}
\tkzLabelSegment[swap](C,A){$b$}
\tkzMarkAngles[size=1,
     color=cyan,mark=|](C,B,A A,C,P)
\tkzMarkAngle[size=0.75,
     color=orange,mark=||](P,C,B)
\tkzMarkAngle[size=0.75,
      color=orange,mark=||](B,A,C)
\tkzMarkRightAngles[german](A,C,B B,P,C)
\tkzAutoLabelPoints[center = 0,dist= .1](A,B,C)
\tkzLabelPoint[below left](P){$P$}
\end{tikzpicture}
```

```
\tkzLabelSegments[\langle local options \rangle] (\langle pt1, pt2 pt3, pt4 \ldots \rangle)
```

The arguments are a two-point couple list. The styles of TikZ are available for plotting.

32.0.4. Labels for an isosceles triangle

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/0,2/2/A,4/0/B,6/2/C}
\tkzDrawSegments(0,A A,B)
\tkzDrawPoints(0,A,B)
\tkzDrawLine(0,B)
\tkzLabelSegments[color=red,above=4pt](0,A A,B){\$a\$}
\end{tikzpicture}

33. Add labels on a straight line \tkzLabelLine

\tkzLabelLine[\local opti	$ions \] (\langle pt1, pt2 \rangle) \{\langle label \rangle\}$	
arguments default defini	ition	
label \tkzL	LabelLine(A,B){\$\Delta\$}	
options default definition	n	
1	an option for $TikZ$, but essent to the pos , you can use all styles of T	rial in this case TikZ, especially the placement with above,

33.0.1. Example with \tkzLabelLine

An important option is **pos**, it's the one that allows you to place the label along the right. The value of **pos** can be greater than 1 or negative.


```
\begin{tikzpicture}
  \tkzDefPoints{0/0/A,3/0/B,1/1/C}
  \tkzDefLine[perpendicular=through C,K=-1](A,B)
  \tkzGetPoint{c}
  \tkzDrawLines(A,B C,c)
  \tkzLabelLine[pos=1.25,blue,right](C,c){$(\delta)$}
  \tkzLabelLine[pos=-0.25,red,left](C,c){again $(\delta)$}
\end{tikzpicture}
```

33.1. Label at an angle : \tkzLabelAngle

$\time The Label Angle [(local options)] ((A,0,B))$

There is only one option, dist (with or without unit), which can be replaced by the TikZ's pos option (without unit for the latter). By default, the value is in centimeters.

options	default	definition		
pos	1	or dist, controls the	e distance from the	top to the label.

It is possible to move the label with all TikZ options: rotate, shift, below, etc.

33.1.1. Example author js bibra stackexchange

\begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){C} \tkzDefPoint(20:9){B} \tkzDefPoint(80:5){A} \tkzDefPointsBy[projection=onto B--C](A){a} \tkzDrawPolygon[thick,fill=yellow!15](A,B,C) \tkzDrawSegment[dashed, red](A,a) \tkzDrawSegment[style=red, dashed, dim={\$100\$,15pt,midway,font=\scriptsize, rotate=90}](A,a) \tkzMarkAngle(B,C,A) \tkzMarkRightAngle(A,a,C) \tkzMarkRightAngle(C,A,B) \tkzFillAngle[fill=blue!20, opacity=0.5](B,C,A) \tkzFillAngle[fill=red!20, opacity=0.5](A,B,C) \tkzLabelAngle[pos=1.25](A,B,C){\$\beta\$} \tkzLabelAngle[pos=1.25](B,C,A){\$\alpha\$} \tkzMarkAngle(A,B,C) \tkzDrawPoints(A,B,C) \tkzLabelPoints(B,C) \tkzLabelPoints[above](A) \end{tikzpicture}

33.1.2. Example with pos

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{0/0/0,5/0/A,3/4/B}
 \tkzMarkAngle[size = 4,mark = ||,
 arc=ll,color = red](A,0,B)%
 \tkzDrawLines(0,A 0,B)
 \tkzDrawPoints(0,A,B)
 \tkzLabelAngle[pos=2,draw,circle,
 fill=blue!10](A,0,B){\$\alpha\$}
\end{tikzpicture}


```
\begin{tikzpicture}[rotate=30]
  \tkzDefPoint(2,1){S}
  \tkzDefPoint(7,3){T}
  \tkzDefPointBy[rotation=center S angle 60](T)
  \tkzGetPoint{P}
  \tkzDefLine[bisector,normed](T,S,P)
  \tkzGetPoint{s}
  \tkzDrawPoints(S,T,P)
  \tkzDrawPolygon[color=blue](S,T,P)
  \tkzDrawLine[dashed,color=blue,add=0 and 3](S,s)
  \tkzLabelPoint[above right](P){$P$}
  \tkzLabelPoints(S,T)
  \tkzMarkAngle[size = 1.8,mark = |,arc=11,
                    color = blue](T,S,P)
  \tkzMarkAngle[size = 2.1,mark = |,arc=1,
                    color = blue](T,S,s)
  \tkzMarkAngle[size = 2.3,mark = |,arc=1,
                    color = blue](s,S,P)
 \label{lambda} $$ \tx_LabelAngle[pos = 1.5](T,S,P)_{$60^{\circ}}% $$
 \tkzLabelAngles[pos = 2.7](T,S,s s,S,P){%
                             30^{\circ}
\end{tikzpicture}
```

```
\label{local options} $$ \tx_LabelAngles[\langle local options \rangle](\langle A, 0, B \rangle)(\langle A', 0', B' \rangle)$ etc. $$
```

With common options, there is a macro for multiple angles.

It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here **\tkzLabelCircle**.

33.2. Giving a label to a circle

$\label{local options} $$ \time {\colored} (A,B)(\colored) {\colored} $$$		
options default definition		
radius	radius	circle characterized by two points defining a radius
R	radius	circle characterized by a point and the measurement of a radius

You don't need to put **radius** because that's the default option. We can use the styles from TikZ. The label is created and therefore "passed" between braces.

34. Label for an arc 165

33.2.1. Example

\begin{tikzpicture} $\t \mathbb{Q}_{0} \$ $\t \mathbb{Q}_{0} \$ $\t DefPointBy[rotation=center 0 angle 50](N)$ \tkzGetPoint{M} \tkzDefPointBy[rotation=center 0 angle -20](N) \tkzGetPoint{P} \tkzDefPointBy[rotation=center 0 angle 125](N) \tkzGetPoint{P'} \tkzDrawCircle(0,M) \tkzFillCircle[color=blue!10,opacity=.4](0,M) \tkzLabelCircle[R,draw, text width=2cm,text centered](0,3)(-6 \emptyset)% {The circle\\ \$\mathcal{C}\$} \tkzDrawPoints(M,P)\tkzLabelPoints[right](M,P) \end{tikzpicture}

33.2.2. Second example

34. Label for an arc

\tkzLabelArc[\langlelocal options\rangle](\langlept1,pt2,pt3\rangle)\{\langlelocal options\rangle}

This macro allows you to place a label along an arc. The options are those of TikZ for example **pos**.

argumen	t	example	definition
label (pt1,pt	2,pt3)	<pre>\tkzLabelSegment(A,B){ (0,A,B)</pre>	1 label text label along the arc \widehat{AB}
options	default	definition	
pos	.5	label's position	

34. Label for an arc

34.0.1. Label on arc

\begin{tikzpicture}
\tkzDefPoint(0,0){0}
\pgfmathsetmacro\r{2}
\tkzDefPoint(30:\r){A}
\tkzDefPoint(85:\r){B}
\tkzDrawCircle(0,A)
\tkzDrawPoints(B,A,0)
\tkzLabelArc[right=2pt](0,A,B){\$\widearc{AB}\$}
\tkzLabelPoints(A,B,0)
\end{tikzpicture}

Part VII.

Complements

35. Using the compass

35.1. Main macro \tkzCompass

$\t \Compass[\langle local options \rangle](\langle A,B \rangle)$

This macro allows you to leave a compass trace, i.e. an arc at a designated point. The center must be indicated. Several specific options will modify the appearance of the arc as well as TikZ options such as style, color, line thickness etc.

You can define the length of the arc with the option length or the option delta.

options	default	definition
		Modifies the angle of the arc by increasing it symmetrically (in degrees)
length	1 (cm)	Changes the length (in cm)

35.1.1. Option length

\begin{tikzpicture}
 \tkzDefPoint(1,1){A}
 \tkzDefPoint(6,1){B}
 \tkzInterCC[R](A,4)(B,3)
 \tkzGetPoints{C}{D}
 \tkzDrawPoint(C)
 \tkzCompass[length=1.5](A,C)
 \tkzDrawSegments(A,B A,C B,C)
 \end{tikzpicture}

35.1.2. Option delta

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(5,0){B}
 \tkzInterCC[R](A,4)(B,3)
 \tkzGetPoints{C}{D}
 \tkzDrawPoints(A,B,C)
 \tkzCompass[delta=20](A,C)
 \tkzCrawPolygon(A,B,C)
 \tkzDrawPolygon(A,B,C)
 \tkzMarkAngle(A,C,B)
 \end{tikzpicture}

35.2. Multiple constructions \tkzCompasss

\tkzCompasss[\langlelocal options\rangle](\langlept1,pt2 pt3,pt4,...\rangle)

(FF 🏅

Attention the arguments are lists of two points. This saves a few lines of code.

options	default	definition
delta	Q	Modifies the angle of the arc by increasing it symmetrically
length	~	Changes the length


```
\begin{tikzpicture}[scale=.75]
\t \DefPoint(2,2){A} \t \DefPoint(5,-2){B}
\tkzDefPoint(3,4){C} \tkzDrawPoints(A,B)
\tkzDrawPoint[shape=cross out](C)
\tkzCompasss[new](A,B A,C B,C C,B)
\tkzShowLine[mediator,new,dashed,length = 2](A,B)
\tkzShowLine[parallel = through C,
                    color=purple,length=2](A,B)
\tkzDefLine[mediator](A,B)
 \verb|\tkzGetPoints{i}{j}|
\tkzDefLine[parallel=through C](A,B)
  \tkzGetPoint{D}
\t \ and .6](C,D A,C B,D)
\tkzDrawLines(i,j) \tkzDrawPoints(A,B,C,i,j,D)
\tkzLabelPoints(A,B,C,i,j,D)
\end{tikzpicture}
```

36. The Show 170

36. The Show

36.1. Show the constructions of some lines \tkzShowLine

$\time [(local options)]((pt1,pt2))$ or ((pt1,pt2,pt3))

These constructions concern mediatrices, perpendicular or parallel lines passing through a given point and bisectors. The arguments are therefore lists of two or three points. Several options allow the adjustment of the constructions. The idea of this macro comes from **Yves Combe**.

options	default	definition
mediator perpendicular orthogonal	mediator mediator mediator	displays the constructions of a mediator constructions for a perpendicular idem
bisector	mediator	constructions for a bisector
K	1	circle within a triangle
length	1	in cm, length of a arc
ratio	.5	arc length ratio
gap	2	placing the point of construction
size	1	radius of an arc (see bisector)

You have to add, of course, all the styles of TikZ for tracings...

36.1.1. Example of \tkzShowLine and parallel

36.1.2. Example of \tkzShowLine and perpendicular

36. The Show 171

36.1.3. Example of \tkzShowLine and bisector

\begin{tikzpicture}[scale=1.25] $\t \DefPoints{0/0/A, 4/2/B, 1/4/C}$ \tkzDrawPolygon(A,B,C) \tkzSetUpCompass[color=brown,line width=.1 pt] \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} \tkzDefPointBy[projection = onto A--B](I) \tkzGetPoint{H} \tkzShowLine[bisector,size=2,gap=3,blue](B,A,C) \tkzShowLine[bisector,size=2,gap=3,blue](C,B,A) \tkzDrawCircle[radius,color=blue,% line width=.2pt](I,H) \tkzDrawSegments[color=red!50](I,tkzPointResult) \tkzDrawLines[add=0 and -0.3,color=red!50](A,a B,b) \end{tikzpicture}

36.1.4. Example of \tkzShowLine and mediator

\begin{tikzpicture}
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,4){B}
\tkzDrawPoints(A,B)
\tkzShowLine[mediator,color=orange,length=1](A,B)
\tkzGetPoints{i}{j}
\tkzDrawLines[add=-0.1 and -0.1](i,j)
\tkzDrawLines(A,B)
\tkzLabelPoints[below =3pt](A,B)
\end{tikzpicture}

36.2. Constructions of certain transformations \tkzShowTransformation

$\txShowTransformation[\langle local options \rangle](\langle pt1, pt2 \rangle) or (\langle pt1, pt2, pt3 \rangle)$

These constructions concern orthogonal symmetries, central symmetries, orthogonal projections and translations. Several options allow the adjustment of the constructions. The idea of this macro comes from **Yves Combe**.

options	default	definition
reflection= over pt1pt2 symmetry=center pt projection=onto pt1pt2	reflection reflection	constructions of orthogonal symmetry constructions of central symmetry constructions of a projection
translation=from pt1 to pt2	reflection	constructions of a translation circle within a triangle
length	1_	arc length
ratio gap	.5 2	arc length ratio placing the point of construction
size	1	radius of an arc (see bisector)

36. The Show 172

36.2.1. Example of the use of \tkzShowTransformation

36.2.2. Another example of the use of \tkzShowTransformation

You'll find this figure again, but without the construction features.


```
\begin{tikzpicture}[scale=.6]
 \t Nd = 10/0/A, 8/0/B, 3.5/10/I
 \tkzDefMidPoint(A,B) \tkzGetPoint{0}
 \tkzDefPointBy[projection=onto A--B](I)
     \tkzGetPoint{J}
 \tkzInterLC(I,A)(0,A) \tkzGetPoints{M'}{M}
 \tkzInterLC(I,B)(0,A) \tkzGetPoints{N}{N'}
 \tkzDrawSemiCircle[diameter](A,B)
 \tkzDrawSegments(I,A I,B A,B B,M A,N)
 \tkzMarkRightAngles(A,M,B A,N,B)
 \tkzDrawSegment[style=dashed,color=blue](I,J)
 \tkzShowTransformation[projection=onto A--B,
                  color=red,size=3,gap=-3](I)
 \tkzDrawPoints[color=red](M,N)
 \tkzDrawPoints[color=blue](0,A,B,I)
 \tkzLabelPoints(0)
 \tkzLabelPoints[above right](N,I)
 \tkzLabelPoints[below left](M,A)
\end{tikzpicture}
```

37. Protractor 173

37. Protractor

Based on an idea by Yves Combe, the following macro allows you to draw a protractor. The operating principle is even simpler. Just name a half-line (a ray). The protractor will be placed on the origin O, the direction of the half-line is given by A. The angle is measured in the direct direction of the trigonometric circle.

\tkzProtractor[\langlelocal options\rangle](\langle O, A \rangle)		
options	default	definition
	<pre>0.4 pt 1 false</pre>	line thickness ratio: adjusts the size of the protractor trigonometric circle indirect

37.1. The circular protractor

Measuring in the forward direction

37.2. The circular protractor, transparent and returned


```
\begin{tikzpicture}[scale=.5]
  \tkzDefPoint(2,3){A}
  \tkzDefShiftPoint[A](31:5){B}
  \tkzDefShiftPoint[A](158:5){C}
  \tkzDrawSegments[color=red,line width=1pt](A,B A,C)
  \tkzProtractor[return](A,C)
  \end{tikzpicture}
```

38. Miscellaneous tools

38.1. Duplicate a segment

This involves constructing a segment on a given half-line of the same length as a given segment.

$\label{likelihood} $$ \text{LikzDuplicateSegment}(\langle pt1,pt2\rangle)(\langle pt3,pt4\rangle)\{\langle pt5\rangle\}$$

This involves creating a segment on a given half-line of the same length as a given segment. It is in fact the definition of a point. \tkzDuplicateSegment is the new name of \tkzDuplicateLen.

arguments	example	explication
(pt1,pt2)(pt3,pt4){pt5}	\tkzDuplicateSegment(A,B)(E,F){C}	AC=EF and $C \in [AB)$

The macro \tkzDuplicateLength is identical to this one.

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{\(\0/\A,2/-3/B,2/5/C\)}
\tkzDuplicateSegment(\(A,B\)(\(A,C\))
\tkzDrawSegments[new](\(A,B\)(A,C\))
\tkzDrawSegment[teal](\(A,D\))
\tkzDrawPoints[new](\(A,B,C,D\))
\tkzLabelPoints[above right=3pt](\(A,B,C,D\))
\end{tikzpicture}

38.1.1. Proportion of gold with \tkzDuplicateSegment

\begin{tikzpicture}[rotate=-90,scale=.4] $\t \DefPoints{0/0/A,10/0/B}$ \tkzDefMidPoint(A,B) \tkzGetPoint{I} \tkzDefPointWith[orthogonal,K=-.75](B,A) \tkzGetPoint{C} \tkzInterLC(B,C)(B,I) \tkzGetSecondPoint{D} \tkzDuplicateSegment(B,D)(D,A) \tkzGetPoint{E} \tkzInterLC(A,B)(A,E) \tkzGetPoints{N}{M} \tkzDrawArc[orange,delta=10](D,E)(B) \tkzDrawArc[orange,delta=10](A,M)(E) \tkzDrawLines(A,B B,C A,D) $\t \t DrawArc[orange,delta=10](B,D)(I)$ \tkzDrawPoints(A,B,D,C,M,I) \tkzLabelPoints(A,B,D,C,M,I) \end{tikzpicture}

38.1.2. Golden triangle or sublime triangle

38.2. Segment length \tkzCalcLength

There's an option in TikZ named **veclen**. This option is used to calculate AB if A and B are two points. The only problem for me is that the version of TikZ is not accurate enough in some cases. My version uses the xfp package and is slower, but more accurate.

\tkzCalcLength[\langle local options \rangle] (\langle pt1, pt2 \rangle)			
You can store the defines the mac	re result with the macro \tkzGetLength for example \tkzGetLength{dAB} cro \dAB.		
arguments	example explication		
(pt1,pt2){na	ame of macro} \tkzCalcLength[pt](A,B) \dAB gives AB in pt		
Only one option	1		
options defa	ault example		
cm tru	e \tkzCalcLength(A,B) After \tkzGetLength{dAB} \dAB gives AB in cm		

38.2.1. Compass square construction

38.2.2. Example

The macro \tkzDefCircle[radius] (A,B) defines the radius that we retrieve with \tkzGetLength, this result is in cm.

38.3. Transformation from pt to cm or cm to pt

- 12.57

Not sure if this is necessary and it is only a division by 28.45274 and a multiplication by the same number. The macros are:

\tkzpttocm(\langle nombre \rangle) \{ \langle n	ame of macro>}	
The result is stored in a macr	0.	
arguments	example	explication
(nombre)name of macro	\tkzpttocm(120){len}	\len donne un nombre de tkznamecm
You'll have to use \len along	with cm.	

38.4. Change of unit

\tkzcmtopt(\langle nombre \rangle) \{ \langle name of macro \}				
The result is stored in a macro.				
arguments	example	explication		
(nombre){name of macro}	\tkzcmtopt(5){len}	\len longueur en pts		
The result can be used with \lenpt.				

38.5. Get point coordinates

$\t X = \t X = $				
arguments	example	explication		
(point){name of macro}	\tkzGetPointCoord(A){A}	\Ax and \Ay give coordinates for A		
Stores in two macros the coordinates of a point. If the name of the macro is p , then \px and \py give the coordinates of the chosen point with the cm as unit.				

38.5.1. Coordinate transfer with \tkzGetPointCoord

38.5.2. Sum of vectors with \tkzGetPointCoord


```
\begin{tikzpicture}[>=latex]
  \tkzDefPoint(1,4){a}
  \tkzDefPoint(3,2){b}
  \tkzDefPoint(1,1){c}
  \tkzDrawSegment[->,red](a,b)
  \tkzGetPointCoord(c){c}
  \draw[color=blue,->](a) -- ([shift=(b)]\cx,\cy);
  \draw[color=purple,->](b) -- ([shift=(b)]\cx,\cy);
  \tkzDrawSegment[->,blue](a,c)
  \tkzDrawSegment[->,purple](b,c)
  \end{tikzpicture}
```

Part VIII.

Working with style

39. Predefined styles

The way to proceed will depend on your use of the package. A method that seems to me to be correct is to use as much as possible predefined styles in order to separate the content from the form. This method will be the right one if you plan to create a document (like this documentation) with many figures. We will see how to define a global style for a document. We will see how to use a style locally.

The file tkz-euclide.cfg contains the predefined styles of the main objects. Among these the most important are points, lines, segments, circles, arcs and compass traces. If you always use the same styles and if you create many figures then it is interesting to create your own styles. To do this you need to know what features you can modify. It will be necessary to know some notions of TikZ.

The predefined styles are global styles. They exist before the creation of the figures. It is better to avoid changing them between two figures. On the other hand these styles can be modified in a figure temporarily. There the styles are defined locally and do not influence the other figures.

For the document you are reading here is how I defined the different styles.

```
\tkzSetUpColors[background=white,text=black]
\tkzSetUpPoint[size=2,color=teal]
\tkzSetUpLine[line width=.4pt,color=teal]
\tkzSetUpCompass[color=orange, line width=.4pt,delta=10]
\tkzSetUpArc[color=gray,line width=.4pt]
\tkzSetUpStyle[orange] {new}
```

The macro \tkzSetUpColors allows you to set the background color as well as the text color. If you don't use it, the colors of your document will be used as well as the fonts. Let's see how to define the styles of the main objects.

40. Points style

This is how the points are defined:

```
\tikzset{point style/.style = {%
    draw = \tkz@euc@pointcolor,
    inner sep = \tilde{0pt},
    shape = \tkz@euc@pointshape,
    minimum size = \tkz@euc@pointsize,
    fill = \tkz@euc@pointcolor}}
```

It is of course possible to use \tikzset but you can use a macro provided by the package. You can use the macro \tkzSetUpPoint globally or locally,

Let's look at this possibility.

40.0.1. Use of \tkzSetUpPoint

\tkzSet	tkzSetUpPoint[(local options)]		
options	default	definition	
color	black	point color	
size	3	point size	
fill	black!50	inside point color	
shape	circle	point shape circle, cross or cross out	

40. Points style

40.0.2. Global style or local style

First of all here is a figure created with the styles of my documentation, then the style of the points is modified within the environment tikzspicture.

You can use the macro \tkzSetUpPoint globally or locally, If you place this macro in your preamble or before your first figure then the point style will be valid for all figures in your document. Il sera possible d'utiliser un autre style locallement en utilisant cette commande au sein d'un environnement tikzpicture.

Let's look at this possibility.


```
\begin{tikzpicture}
  \tkzDefPoints{0/0/A,5/0/B,3/2/C,3/1/D}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A,B,C)
  \tkzLabelPoints(A,B)
  \tkzLabelPoints[above right](C)
\end{tikzpicture}
```

The style of the points is modified locally in the second figure


```
\begin{tikzpicture}
  \tkzSetUpPoint[size=4,color=red,fill=red!20]
  \tkzDefPoints{0/0/A,5/0/B,3/2/C,3/1/D}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A,B,C)
  \tkzDrawPoint[shape=cross out,thick](D)
  \tkzLabelPoints(A,B)
  \tkzLabelPoints[above right](C)
\end{tikzpicture}
```

The points get back the initial style. Point D has a new style limited by the environment **scope**. It is also possible to use {...} or The points get back the initial style. Point D has a new style limited by the environment **scope**. It is also possible to use {...} or \begingoup ... \endgroup.


```
\begin{tikzpicture}
  \tkzDefPoints{\0/\0/A,5/\0/B,3/2/C,3/1/D}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A,B,C)
  \begin{scope}
    \tkzSetUpPoint[size=4,color=red,fill=red!2\0]
    \tkzDrawPoint(D)
  \end{scope}
  \tkzLabelPoints(A,B)
  \tkzLabelPoints[above right](C)
  \end{tikzpicture}
```

40.0.3. Simple example with \tkzSetUpPoint

```
\begin{tikzpicture}
    \tkzSetUpPoint[shape = cross out,color=blue]
    \tkzDefPoint(2,1){A}
    \tkzDefPoint(4,0){B}
    \tkzDrawLine(A,B)
    \tkzDrawPoints(A,B)
    \end{tikzpicture}
```

41. Lines style

$4 \ \ 0.4.$ Use of \tkzSetUpPoint inside a group

41. Lines style

41.0.1. Use of \tkzSetUpLine

It is a macro that allows you to define the style of all the lines.

\tkzSetUpLine[\langle local options \rangle]		
options	default	definition
color	black	colour of the construction lines
line width	<pre>0.4pt</pre>	thickness of the construction lines
style	solid	style of construction lines
add	.2 and .2	changing the length of a line segment

41.0.2. Change line width


```
\begin{tikzpicture}[scale=.75]
\tkzSetUpLine[line width=1pt]
\begin{scope}[rotate=-90]
    \t Nd Points {0/6/A,10/0/B,10/6/C}
    \tkzDefPointBy[projection = onto B--A](C)
    \tkzGetPoint{H}
    \tkzMarkRightAngle[size=.4,
                       fill=teal!20](B,C,A)
    \tkzMarkRightAngle[size=.4,
                       fill=orange!20](B,H,C)
    \tkzDrawPolygon(A,B,C)
    \tkzDrawSegment[new](C,H)
\end{scope}
\tkzLabelSegment[below](C,B){$a$}
\tkzLabelSegment[right](A,C){$b$}
\tkzLabelSegment[left](A,B){$c$}
\tkzLabelSegment[color=red](C,H){$h$}
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[above left](H)
\tkzLabelPoints(B,C)
 \tkzLabelPoints[above](A)
\end{tikzpicture}
```

42. Arc style 182

41.0.3. Change style of line


```
\begin{tikzpicture}[scale=.5]
\tikzset{line style/.style = {color = gray,
                              style=dashed}}
\label{local_tau_bound} $$ \txDefPoints{1/0/A,4/0/B,1/1/C,5/1/D} $$
\t 1/2/E, 6/2/F, 0/4/A', 3/4/B'
\tkzCalcLength(C,D)
\tkzGetLength{rCD}
\tkzCalcLength(E,F)
\tkzGetLength{rEF}
\tkzInterCC[R](A',\rCD)(B',\rEF)
\tkzGetPoints{I}{J}
\tkzDrawLine(A',B')
\tkzCompass(A',B')
\tkzDrawSegments(A,B C,D E,F)
\tkzDrawCircles[R](A',{\rCD} B',\rEF)
\begin{scope}
  \tkzSetUpLine[color=red]
  \tkzDrawSegments(A',I B',I)
\end{scope}
\tkzDrawPoints(A,B,C,D,E,F,A',B',I,J)
\tkzLabelPoints(A,B,C,D,E,F,A',B',I,J)
\end{tikzpicture}
```

41.0.4. Example 3: extend lines

\begin{tikzpicture}[scale=.75]
\tkzSetUpLine[add=.5 and .5]
\tkzDefPoints{\(\0/\0/\0A\),4\(\0/\0B\),1\(\a/\0C\)}
\tkzDrawLines(A,B B,C A,C)
\tkzDrawPolygon[red,thick](A,B,C)
\tkzSetUpPoint[size=4,circle,color=red,fill=red!2\0]
\tkzDrawPoints(A,B,C)
\end{tikzpicture}

42. Arc style

options default definition	
options default definition	
color black colour of the lines line width 0.4pt thickness of the line style solid style of construction	_

43. Compass style, configuration macro \tkzSetUpCompass

The following macro will help to understand the construction of a figure by showing the compass traces necessary to obtain certain points.

\tkzSetUpCompass[\langlelocal options\rangle]		
options	default	definition
color	black	colour of the construction lines
line width	0.4pt	thickness of the construction lines
style	solid	style of lines : solid, dashed, dotted,
delta	Ø	changes the length of the arc

43.0.1. Use of \tkzSetUpCompass


```
\begin{tikzpicture}
  \tkzSetUpCompass[color=red,delta=15]
  \tkzDefPoint(1,1){A}
  \tkzDefPoint(6,1){B}
  \tkzInterCC[R](A,4)(B,4) \tkzGetPoints{C}{D}
  \tkzCompass(A,C)
  \tkzCompass(B,C)
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A,B,C)
  \end{tikzpicture}
```

44. Label style 184

43.0.2. Use of \tkzSetUpCompass with \tkzShowLine

\begin{tikzpicture}[scale=.75] \tkzSetUpStyle[bisector,size=2,gap=3]{showbi} \tkzSetUpCompass[color=teal,line width=.3 pt] $\t Nd Points { N/1/A, 8/3/B, 3/6/C }$ \tkzDrawPolygon(A,B,C) \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} \tkzShowLine[showbi](B,A,C) \tkzShowLine[showbi](C,B,A) \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} \tkzDefPointBy[projection= onto A--B](I) \tkzGetPoint{H} \tkzDrawCircle[radius,new](I,H) \tkzDrawSegments[new](I,H) \tkzDrawLines[add=0 and .2,new](A,I B,I) \end{tikzpicture}

44. Label style

The macro \tkzSetUpLabel is used to define the style of the point labels.

```
\tkzSetUpStyle[\langlelocal options\rangle]
```

The options are the same as those of TikZ

\begin{tikzpicture} [scale=.75]
 \tkzSetUpLabel[font=\scriptsize,red]
 \tkzSetUpStyle[line width=1pt,teal,<->]{XY}
 \tkzInit[xmin=-3,xmax=3,ymin=-3,ymax=3]
 \tkzDrawX[XY]
 \tkzDrawY[XY]
 \tkzDrawY[XY]
 \tkzDefPoints{1/0/A,0/1/B,-1/0/C,0/-1/D}
 \tkzDrawPoints[teal,fill=teal!30,size=6](A,...,D)
 \tkzLabelPoint[above right](A){\$(1,0)\$}
 \tkzLabelPoint[above right](B){\$(0,1)\$}
 \tkzLabelPoint[above left](C){\$(-1,0)\$}
 \tkzLabelPoint[below left](D){\$(0,-1)\$}
 \end{tikzpicture}

45. Own style

You can set your own style with \tkzSetUpStyle

\tkzSetUpStyle[\langle local options\rangle]

The options are the same as those of TikZ

45. Own style 185

Part IX.

Examples

46. Some interesting examples

46.1. Square root of the integers

Square root of the integers

How to get 1, $\sqrt{2}$, $\sqrt{3}$ with a rule and a compass.

\begin{tikzpicture}
 \tkzDefPoint(0,0){0}
 \tkzDefPoint(1,0){a0}
 \tkzDrawSegment(0,a0)
 \foreach \i [count=\j] in {0,...,16}{%
 \tkzDefPointWith[orthogonal normed](a\i,0)
 \tkzGetPoint{a\j}
 \pgfmathsetmacro{\c}{5*\i}
 \tkzDrawPolySeg[fill=teal!\c](a\i,a\j,0)}
\end{tikzpicture}

46.2. About right triangle

About right triangle

We have a segment [AB] and we want to determine a point C such that AC = 8 cm and ABC is a right triangle in B.

\begin{tikzpicture}[scale=.5]
 \tkzDefPoint["\$A\$" left](2,1){A}
 \tkzDefPoint["\$B\$" right](6,4){B}
 \tkzDefPointWith[orthogonal,K=-1](B,A)
 \tkzDrawLine[add = .5 and .5](B,tkzPointResult)
 \tkzInterLC[R](B,tkzPointResult)(A,8)
 \tkzGetPoints{C}{J}
 \tkzDrawSegment(A,B)
 \tkzDrawPoints(A,B,C)
 \tkzCompass(A,C)
 \tkzCompass(A,C)
 \tkzDrawLine[color=gray,style=dashed](A,C)
 \tkzLabelPoint[above](C){\$C\$}
 \end{tikzpicture}

46.3. Archimedes

Archimedes -

This is an ancient problem proved by the great Greek mathematician Archimedes. The figure below shows a semicircle, with diameter AB. A tangent line is drawn and touches the semicircle at B. An other tangent line at a point, C, on the semicircle is drawn. We project the point C on the line segment [AB] on a point D. The two tangent lines intersect at the point T. Prove that the line (AT) bisects (CD)


```
\begin{tikzpicture}[scale=1]
 \t \DefPoint(8,0){B}\t \DefPoint(4,0){I}
 \tkzDefLine[orthogonal=through D](A,D)
 \tkzInterLC[R](D,tkzPointResult)(I,4) \tkzGetFirstPoint{C}
 \tkzDefLine[orthogonal=through C](I,C)
                                          \tkzGetPoint{c}
 \tkzDefLine[orthogonal=through B](A,B)
                                          \tkzGetPoint{b}
 \tkzInterLL(C,c)(B,b) \tkzGetPoint{T}
 \tkzInterLL(A,T)(C,D) \tkzGetPoint{P}
 \tkzDrawArc(I,B)(A)
 \tkzDrawSegments(A,B A,T C,D I,C) \tkzDrawSegment[new](I,C)
 \t \ \tkzDrawLine[add = 1 and 0](C,T) \tkzDrawLine[add = 0 and 1](B,T)
 \tkzMarkRightAngle(I,C,T)
 \tkzDrawPoints(A,B,I,D,C,T)
 \tkzLabelPoints(A,B,I,D) \tkzLabelPoints[above right](C,T)
 \tkzMarkSegment[pos=.75,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D)
\end{tikzpicture}
```

46.3.1. Square and rectangle of same area; Golden section

Book II, proposition XI _Euclid's Elements_

To construct Square and rectangle of same area.


```
\begin{tikzpicture}[scale=.75]
\t \DefPoint(0,0)\{D\} \t \Bright(8,0)\{A\}
\tkzDefSquare(D,A) \tkzGetPoints{B}{C}
\tkzDefMidPoint(D,A) \tkzGetPoint{E}
\tkzInterLC(D,A)(E,B)\tkzGetSecondPoint{F}
\verb|\tkzInterLC(A,B)(A,F)\tkzGetSecondPoint{G}|
\tkzDefSquare(A,F)\tkzGetFirstPoint{H}
\tkzInterLL(C,D)(H,G)\tkzGetPoint{I}
\tkzFillPolygon[teal!10](I,G,B,C)
\tkzFillPolygon[teal!10](A,F,H,G)
\tkzDrawArc[angles](E,B)(0,120)
\tkzDrawSemiCircle(A,F)
\tkzDrawSegments(A,F E,B H,I F,H)
\tkzDrawPolygons(A,B,C,D)
\t X
\t XLabelPoints(A,...,I)
\end{tikzpicture}
```

46.3.2. Steiner Line and Simson Line

Steiner Line and Simson Line

Consider the triangle ABC and a point M on its circumcircle. The projections of M on the sides of the triangle are on a line (Steiner Line), The three closest points to M on lines AB, AC, and BC are collinear. It's the Simson Line.


```
\begin{tikzpicture}[scale=.75,rotate=-20]
  \tkzDefPoint(0,0){B}
  \tkzDefPoint(2,4){A} \tkzDefPoint(7,0){C}
  \tkzDefCircle[circum](A,B,C)
  \tkzGetPoint{0}
  \tkzDrawCircle(0,A)
  \tkzCalcLength(0,A)
  \tkzGetLength{rOA}
  \tkzDefShiftPoint[0](40:\rOA){M}
  \tkzDefShiftPoint[0](60:\rOA){N}
  \tkzDefTriangleCenter[orthic](A,B,C)
  \tkzGetPoint{H}
  \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
  \tkzDefPointsBy[reflection=over A--B](M,N){P,P'}
  \tkzDefPointsBy[reflection=over A--C](M,N){Q,Q'}
  \tkzDefPointsBy[reflection=over C--B](M,N){R,R'}
  \tkzDefMidPoint(M,P)\tkzGetPoint{I}
  \tkzDefMidPoint(M,Q)\tkzGetPoint{J}
  \tkzDefMidPoint(M,R)\tkzGetPoint{K}
  \tkzDrawSegments[new](P,R M,P M,Q M,R N,P'%
  N,Q' N,R' P',R' I,K)
  \tkzDrawPolygons(A,B,C)
  \tkzDrawPoints(A,B,C,H,M,N,P,Q,R,P',Q',R',I,J,K)
  \tkzLabelPoints(A,B,C,H,M,N,P,Q,R,P',Q',R',I,J,K)
\end{tikzpicture}
```

46.4. Lune of Hippocrates

Lune of Hippocrates

From wikipedia: In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle. In the first figure, the area of the lune is equal to the area of the triangle ABC. Hippocrates of Chios (ancient Greek mathematician,)


```
\begin{tikzpicture}
\tkzInit[xmin=-2,xmax=5,ymin=-1,ymax=6]
\tkzClip % allows you to define a bounding box
    % large enough
    \tkzDefPoint(0,0){A}\tkzDefPoint(4,0){B}
    \tkzDefSquare(A,B)
    \tkzGetFirstPoint{C}
    \tkzDrawPolygon[fill=green!5](A,B,C)
    \begin{scope}
        \tkzClipCircle[out](B,A)
        \tkzDrawSemiCircle[diameter,fill=teal!5](A,C)
    \end{scope}
    \tkzDrawArc[delta=0](B,C)(A)
    \end{tikzpicture}
```

46.5. Lunes of Hasan Ibn al-Haytham

Lune of Hippocrates

From wikipedia: the Arab mathematician Hasan Ibn al-Haytham (Latinized name Alhazen) showed that two lunes, formed on the two sides of a right triangle, whose outer boundaries are semicircles and whose inner boundaries are formed by the circumcircle of the triangle, then the areas of these two lunes added together are equal to the area of the triangle. The lunes formed in this way from a right triangle are known as the lunes of Alhazen.


```
\begin{tikzpicture}[scale=.5,rotate=180]
  \tkzInit[xmin=-1,xmax=11,ymin=-4,ymax=7]
  \tkzClip
  \t \DefPoints{0/0/A,8/0/B}
  \tkzDefTriangle[pythagore](A,B)
  \tkzGetPoint{C}
  \tkzDrawPolygon[fill=green!5](A,B,C)
  \tkzDefMidPoint(C,A) \tkzGetPoint{I}
  \begin{scope}
    \tkzClipCircle[out](I,A)
    \tkzDrawSemiCircle[diameter,fill=teal!5](B,A)
    \tkzDrawSemiCircle[diameter,fill=teal!5](C,B)
  \end{scope}
  \tkzSetUpCompass[/tkzcompass/delta=0]
  \tkzDrawSemiCircle[diameter](C,A)
\end{tikzpicture}
```

46.6. About clipping circles

About clipping circles -

The problem is the management of the bounding box. First you have to define a rectangle in which the figure will be inserted. This is done with the first two lines.


```
\begin{tikzpicture}
  \tkzInit[xmin=0,xmax=6,ymin=0,ymax=6]
  \tkzClip
  \t \DefPoints{0/0/A, 6/0/B}
  \tkzDefSquare(A,B)
                          \tkzGetPoints{C}{D}
  \tkzDefMidPoint(A,B)
                              \tkzGetPoint{M}
  \tkzDefMidPoint(A,D)
                              \tkzGetPoint{N}
  \tkzDefMidPoint(B,C)
                              \tkzGetPoint{0}
  \tkzDefMidPoint(C,D)
                              \tkzGetPoint{P}
 \begin{scope}
  \tkzClipCircle[out](M,B) \tkzClipCircle[out](P,D)
  \tkzFillPolygon[teal!20](M,N,P,0)
 \end{scope}
 \begin{scope}
   \tkzClipCircle[out](N,A) \tkzClipCircle[out](0,C)
   \tkzFillPolygon[teal!20](M,N,P,O)
 \end{scope}
\begin{scope}
   \tkzClipCircle(P,C) \tkzClipCircle(N,A)
   \tkzFillPolygon[teal!20](N,P,D)
\end{scope}
\begin{scope}
     \tkzClipCircle(0,C) \tkzClipCircle(P,C)
     \tkzFillPolygon[teal!20](P,C,0)
\end{scope}
\begin{scope}
     \tkzClipCircle(M,B) \tkzClipCircle(0,B)
     \tkzFillPolygon[teal!20](0,B,M)
\end{scope}
\begin{scope}
     \tkzClipCircle(N,A) \tkzClipCircle(M,A)
     \tkzFillPolygon[teal!20](A,M,N)
\end{scope}
\tkzDrawSemiCircles(M,B N,A O,C P,D)
\tkzDrawPolygons(A,B,C,D M,N,P,0)
\end{tikzpicture}
```

46.7. Similar isosceles triangles

Similar isosceles triangles

The following is from the excellent site **Descartes et les Mathématiques**. I did not modify the text and I am only the author of the programming of the figures. http://debart.pagesperso-orange.fr/seconde/triangle.html

The following is from the excellent site **Descartes et les Mathématiques**. I did not modify the text and I am only the author of the programming of the figures.

http://debart.pagesperso-orange.fr/seconde/triangle.html Bibliography:

- Géométrie au Bac Tangente, special issue no. 8 Exercise 11, page 11
- Elisabeth Busser and Gilles Cohen: 200 nouveaux problèmes du "Monde" POLE 2007 (200 new problems of "Le Monde")
- Affaire de logique n° 364 Le Monde February 17, 2004

Two statements were proposed, one by the magazine *Tangente* and the other by *Le Monde*.

Editor of the magazine "Tangente": Two similar isosceles triangles AXB and BYC are constructed with main vertices X and Y, such that A, B and C are aligned and that these triangles are "indirect". Let α be the angle at vertex $\widehat{AXB} = \widehat{BYC}$. We then construct a third isosceles triangle XZY similar to the first two, with main vertex Z and "indirect". We ask to demonstrate that point Z belongs to the straight line (AC).

Editor of "Le Monde": We construct two similar isosceles triangles AXB and BYC with principal vertices X and Y, such that A, B and C are aligned and that these triangles are "indirect". Let α be the angle at vertex $\widehat{AXB} = \widehat{BYC}$. The point Z of the line segment [AC] is equidistant from the two vertices X and Y. At what angle does he see these two vertices?

The constructions and their associated codes are on the next two pages, but you can search before looking. The programming respects (it seems to me ...) my reasoning in both cases.

46.8. Revised version of "Tangente"


```
\begin{tikzpicture}[scale=.8,rotate=60]
 \tkzDefShiftPoint[X](-110:6){A}
                                \tkzDefShiftPoint[X](-70:6){B}
 \tkzDefPointBy[translation= from A' to B](Y) \tkzGetPoint{Y}
 \tkzDefPointBy[translation= from A' to B ](B') \tkzGetPoint{C}
 \tkzInterLL(A,B)(X,Y) \tkzGetPoint{0}
 \tkzDefMidPoint(X,Y) \tkzGetPoint{I}
 \tkzDefPointWith[orthogonal](I,Y)
 \tkzInterLL(I,tkzPointResult)(A,B) \tkzGetPoint{Z}
 \tkzDefCircle[circum](X,Y,B) \tkzGetPoint{0}
 \tkzDrawCircle(0,X)
 \label{lines} $$ \time [add = \emptyset \ and \ 1.5](A,C) \times C^{\infty} = \emptyset \ and \ 3](X,Y) $$
 \tkzDrawSegments(A,X B,X B,Y C,Y) \tkzDrawSegments[color=red](X,Z Y,Z)
 \tkzDrawPoints(A,B,C,X,Y,0,Z)
 \tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,0)
\end{tikzpicture}
```

46.9. "Le Monde" version


```
\begin{tikzpicture}[scale=1.25]
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(3,0){B}
 \tkzDefPoint(9,\(0)\{C\}
 \tkzDefPoint(1.5,2){X}
 \tkzDefPoint(6,4){Y}
 \tkzDefCircle[circum](X,Y,B) \tkzGetPoint{0}
 \tkzDefMidPoint(X,Y)
                                   \tkzGetPoint{I}
 \tkzDefPointWith[orthogonal](I,Y) \tkzGetPoint{i}
 \tkzDrawLines[add = 2 and 1,color=orange](I,i)
 \tkzInterLL(I,i)(A,B)
                                  \tkzGetPoint{Z}
 \tkzInterLC(I,i)(0,B)
                                   \tkzGetSecondPoint{M}
 \tkzDrawCircle(0,B)
 \tkzDrawLines[add = 0 and 2,color=orange](B,b)
 \tkzDrawSegments(A, X B, X B, Y C, Y A, C X, Y)
 \tkzDrawSegments[color=red](X,Z Y,Z)
 \tkzDrawPoints(A,B,C,X,Y,Z,M,I)
 \tkzLabelPoints(A,B,C,Z)
 \tkzLabelPoints[above right](X,Y,M,I)
\end{tikzpicture}
```

46.10. Triangle altitudes

Triangle altitudes

From Wikipedia: The following is again from the excellent site **Descartes et les Mathématiques** (Descartes and the Mathematics). http://debart.pagesperso-orange.fr/geoplan/geometrie_triangle.html. The three altitudes of a triangle intersect at the same H-point.


```
\begin{tikzpicture}
   \t \DefPoint(\emptyset, \emptyset) \{C\} \t \DefPoint(7, \emptyset) \{B\}
   \tkzDefPoint(5,6){A}
   \tkzDefMidPoint(C,B) \tkzGetPoint{I}
   \tkzInterLC(A,C)(I,B)
   \tkzGetSecondPoint{B'}
   \tkzInterLC(A,B)(I,B)
   \tkzGetFirstPoint{C'}
   \tkzInterLL(B,B')(C,C') \tkzGetPoint{H}
   \tkzInterLL(A,H)(C,B) \tkzGetPoint{A'}
   \tkzDefCircle[circum](A,B',C') \tkzGetPoint{0}
   \tkzDrawArc(I,B)(C)
   \tkzDrawPolygon(A,B,C)
   \tkzDrawCircle[color=red](0,A)
   \tkzDrawSegments[color=orange](B,B' C,C' A,A')
   \tkzMarkRightAngles(C,B',B B,C',C C,A',A)
   \tkzDrawPoints(A,B,C,A',B',C',H)
   \tkzLabelPoints(A,B,C,A',B',C',H)
\end{tikzpicture}
```

46.11. Altitudes - other construction


```
\begin{tikzpicture}
\t \DefPoint(0,0){A} \t \B
\tkzDefPoint(5,6){C}
\tkzDefMidPoint(A,B)\tkzGetPoint{0}
\tkzDefPointBy[projection=onto A--B](C) \tkzGetPoint{P}
\tkzInterLC(C,A)(O,A)
\tkzGetSecondPoint{M}
\tkzInterLC(C,B)(O,A)
\tkzGetFirstPoint{N}
\tkzInterLL(B,M)(A,N)\tkzGetPoint{I}
\tkzDrawCircles[diameter](A,B I,C)
\tkzDrawSegments(C,A C,B A,B B,M A,N)
\tkzMarkRightAngles[fill=brown!20](A,M,B A,N,B A,P,C)
\tkzDrawSegment[style=dashed,color=orange](C,P)
\tkzLabelPoints(0,A,B,P)
\tkzLabelPoint[left](M){$M$}
\tkzLabelPoint[right](N){$N$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[above right](I){$I$}
\tkzDrawPoints[color=red](M,N,P,I)
\tkzDrawPoints[color=brown] (0,A,B,C)
```

\end{tikzpicture}

46.12. Three circles in an Equilateral Triangle

Three circles in an Equilateral Triangle

From Wikipedia: In geometry, the Malfatti circles are three circles inside a given triangle such that each circle is tangent to the other two and to two sides of the triangle. They are named after Gian Francesco Malfatti, who made early studies of the problem of constructing these circles in the mistaken belief that they would have the largest possible total area of any three disjoint circles within the triangle. Below is a study of a particular case with an equilateral triangle and three identical circles.


```
\begin{tikzpicture}[scale=.8]
  \t \DefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c}
  \tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
  \tkzDefMidPoint(A,B) \tkzGetPoint{M}
  \tkzDefMidPoint(B,C) \tkzGetPoint{N}
  \tkzDefMidPoint(A,C) \tkzGetPoint{P}
  \tkzInterLL(A,N)(M,a) \tkzGetPoint{Ia}
  \tkzDefPointBy[projection = onto A--B](Ia)
  \tkzGetPoint{ha}
  \tkzInterLL(B,P)(M,b) \tkzGetPoint{Ib}
  \tkzDefPointBy[projection = onto A--B](Ib)
  \tkzGetPoint{hb}
  \tkzInterLL(A,c)(M,C) \tkzGetPoint{Ic}
  \tkzDefPointBy[projection = onto A--C](Ic)
  \tkzGetPoint{hc}
  \tkzInterLL(A,Ia)(B,Ib) \tkzGetPoint{G}
  \tkzDefSquare(A,B) \tkzGetPoints{D}{E}
  \tkzDrawPolygon(A,B,C)
  \tkzClipBB
  \tkzDrawSemiCircles[gray,dashed](M,B A,M
  A,B B,A G,Ia)
  \tkzDrawCircles[gray](Ia,ha Ib,hb Ic,hc)
  \tkzDrawPolySeg(A,E,D,B)
  \tkzDrawPoints(A,B,C,G,Ia,Ib,Ic)
  \tkzDrawSegments[gray,dashed](C,M A,N B,P
  M,a M,b A,a a,b b,B A,D Ia,ha)
\end{tikzpicture}
```

46.13. Law of sines

Law of sines

From wikipedia: In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of a triangle (any shape) to the sines of its angles.

In the triangle ABC

\begin{tikzpicture} $\t Nd Points {0/0/A,5/1/B,2/6/C}$ \tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{0} \tkzDefPointBy[symmetry= center 0](B) \tkzGetPoint{D} \tkzDrawPolygon[color=brown](A,B,C) \tkzDrawCircle(0,A) \tkzDrawPoints(A,B,C,D,O) \tkzDrawSegments[dashed](B,D A,D) \tkzLabelPoint[left](D){\$D\$} \tkzLabelPoint[below](A){\$A\$} \tkzLabelPoint[above](C){\$C\$} \tkzLabelPoint[right](B){\$B\$} \tkzLabelPoint[below](0){\$0\$} \tkzLabelSegment(B,C){\$a\$} \tkzLabelSegment[left](A,C){\$b\$} \tkzLabelSegment(A,B){\$c\$} \end{tikzpicture}

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \tag{1}$$

$$\widehat{C} = \widehat{D}$$

$$\frac{c}{2R} = \sin D = \sin C$$
(2)

Then

$$\frac{c}{\sin C} = 2R$$

tkz-euclide

46.14. Flower of Life

Book IV, proposition XI _Euclid's Elements_

Sacred geometry can be described as a belief system attributing a religious or cultural value to many of the fundamental forms of space and time. According to this belief system, the basic patterns of existence are perceived as sacred because in contemplating them one is contemplating the origin of all things. By studying the nature of these forms and their relationship to each other, one may seek to gain insight into the scientific, philosophical, psychological, aesthetic and mystical laws of the universe. The Flower of Life is considered to be a symbol of sacred geometry, said to contain ancient, religious value depicting the fundamental forms of space and time. In this sense, it is a visual expression of the connections life weaves through all mankind, believed by some to contain a type of Akashic Record of basic information of all living things.

One of the beautiful arrangements of circles found at the Temple of Osiris at Abydos, Egypt (Rawles 1997). Weisstein, Eric W. "Flower of Life." From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/FlowerofLife.html


```
\begin{tikzpicture}[scale=.75]
      \tkzSetUpLine[line width=2pt,color=teal!80!black]
      \tkzSetUpCompass[line width=2pt,color=teal!80!black]
         \t \DefPoint(0,0){0} \t \DefPoint(2.25,0){A}
         \tkzDrawCircle(0,A)
\foreach \i in \{0, ..., 5\}{
         \tkzDefPointBy[rotation= center 0 angle 30+60*\i](A)\tkzGetPoint{a\i}
         \label{lem:content} $$ \t \ensuremath{\mathsf{C}} = \ensuremath{\mathsf{C}} 
         \tkzDefPointBy[rotation= center {f\i} angle 60](d\i)\tkzGetPoint{g\i}
         \tkzDefPointBy[rotation= center {d\i} angle 60](e\i)\tkzGetPoint{h\i}
         \tkzDefPointBy[rotation= center {e\i} angle 180](b\i)\tkzGetPoint{k\i}
         \tkzDrawCircle(a\i,0)
         \tkzDrawCircle(b\i,a\i)
         \tkzDrawCircle(c\i,a\i)
         \tkzDrawArc[rotate](f\i,d\i)(-120)
         \tkzDrawArc[rotate](e\i,d\i)(180)
         \tkzDrawArc[rotate](d\i,f\i)(180)
         \tkzDrawArc[rotate](g\i,f\i)(60)
         \tkzDrawArc[rotate](h\i,d\i)(60)
         \tkzDrawArc[rotate](k\i,e\i)(60)
}
         \tkzClipCircle(0,f0)
\end{tikzpicture}
```

46.15. Pentagon in a circle

Book IV, proposition XI _Euclid's Elements_

To inscribe an equilateral and equiangular pentagon in a given circle.

```
\begin{tikzpicture}
 \t \DefPoint(0,0){0} \t \DefPoint(5,0){A}
 \t \DefPoint(0,5){B} \t \C}
 \tkzDefPoint(0,-5){D}
 \tkzDefMidPoint(A,0)
                          \t \Tilde{I}
 \tkzInterLC(I,B)(I,A)
                          \tkzGetPoints{F}{E}
 \tkzInterCC(0,C)(B,E)
                          \tkzGetPoints{D3}{D2}
 \tkzInterCC(0,C)(B,F)
                          \tkzGetPoints{D4}{D1}
 \tkzDrawArc[angles](B,E)(180,360)
 \tkzDrawArc[angles](B,F)(220,340)
 \tkzDrawLine[add=.5 and .5](B,I)
 \tkzDrawCircle(0,A)
 \tkzDrawCircle[diameter](0,A)
 \tkzDrawSegments(B,D C,A)
 \tkzDrawPolygon[new](D,D1,D2,D3,D4)
 \tkzDrawPoints(A,...,D,0)
 \tkzDrawPoints[new](E,F,I,D1,D2,D4,D3)
 \tkzLabelPoints(A,...,D,0)
 \tkzLabelPoints[new](I,E,F,D1,D2,D4,D3)
 \end{tikzpicture}
```


46.16. Pentagon in a square

Pentagon in a square

: To inscribe an equilateral and equiangular pentagon in a given square.

```
\begin{tikzpicture}
     \t \ 
     \t \DefPoint(+5,-5){B} \t \DefPoint(0,-5){F}
     \tkzDefSquare(A,B)
                                                                                                                \tkzGetPoints{C}{D}
     \tkzInterLC(D,C)(E,B)
                                                                                                                \tkzGetSecondPoint{T}
     \tkzDefMidPoint(D,T)
                                                                                                                \tkzGetPoint{I}
     \tkzInterCC[with nodes](0,D,I)(E,D,I)
                                                                                                                \tkzGetSecondPoint{H}
     \tkzInterLC(0,H)(0,E)
                                                                                                                \tkzGetSecondPoint{M}
     \tkzInterCC(0,E)(E,M)
                                                                                                                \tkzGetFirstPoint{Q}
     \tkzInterCC[with nodes](0,0,E)(Q,E,M)
                                                                                                                \tkzGetFirstPoint{P}
     \tkzInterCC[with nodes](0,0,E)(P,E,M)
                                                                                                                \tkzGetFirstPoint{N}
     \tkzCompass(0,H)
     \tkzCompass(E,H)
     \tkzDrawArc(E,B)(T)
     \tkzDrawPolygon(A,B,C,D)
     \tkzDrawCircle(0,E)
     \tkzDrawSegments[new](T,I 0,H E,H E,F F',K)
     \tkzDrawPoints(T,M,Q,P,N,I)
     \tkzDrawPolygon[new](M,E,Q,P,N)
     \tkzLabelPoints(A,B,O,N,P,Q,M,H)
     \tkzLabelPoints[above right](C,D,E,I,T)
\end{tikzpicture}
```


46.17. Hexagon Inscribed

Hexagon Inscribed

To inscribe a regular hexagon in a given equilateral triangle perfectly inside it (no boarders).

Another solution

46.18. Power of a point with respect to a circle

Power of a point with respect to a circle

$$\overline{MA} \times \overline{MB} = MT^2 = MO^2 - OT^2$$

\begin{tikzpicture}

 $\protect\pro$

\pgfmathsetmacro{\x0}{6}%

 $\protect{$\mathbb{x}$}{\xo-\r}%$

\tkzDefPoints{\Q\\\0\M,\\\x0\\\0\0,\\\xE\\\\E}

\tkzDefCircle[diameter](M,0)

\tkzGetPoint{I}

\tkzInterCC(I,0)(0,E) \tkzGetPoints{T}{T'}

\tkzDefShiftPoint[0](45:2){B}

\tkzInterLC(M,B)(O,E) \tkzGetPoints{A}{B}

\tkzDrawCircle(0,E)

\tkzDrawSemiCircle[dashed](I,0)

\tkzDrawLine(M,0)

\tkzDrawLines(M,T 0,T M,B)

\tkzDrawPoints(A,B,T)

\tkzLabelPoints[above](A,B,O,M,T)

\end{tikzpicture}

46.19. Radical axis of two non-concentric circles

· Radical axis of two non-concentric circles -

From Wikipedia: In geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. For this reason the radical axis is also called the power line or power bisector of the two circles. The notation radical axis was used by the French mathematician M. Chasles as axe radical.


```
\begin{tikzpicture}
\tkzDefPoints{\(0/\0/A\,4/2/B\,2/3/K\)}
\tkzInterCC[R](A\,1)(K\,3) \tkzGetPoints{a}{a'}
\tkzInterCC[R](B\,2)(K\,3) \tkzGetPoints{b}{b'}
\tkzDrawLines[color=red\,add=2\ and 2](a\,a')
\tkzDrawLines[color=red\,add=1\ and 1](b\,b')
\tkzInterLL(a\,a')(b\,b') \tkzGetPoint{X}
\tkzDefPointBy[projection=\ onto A--B](X) \tkzGetPoint{H}\
\tkzDrawCircle[R](A\,1)\tkzDrawCircle[R](B\,2)
\tkzDrawCircle[R\,dashed\,orange](K\,3)
\tkzDrawPoints(A\,B\,H\,X\,a\,b\,a'\,b')
\tkzDrawLine(A\,B)
\tkzDrawLine[A\,B)
\tkzLabelPoints(A\,B\,H\,X\,a\,b\,a'\,b')
\end{tikzpicture}
```

46.20. External homothetic center

External homothetic center -

From Wikipedia: Given two nonconcentric circles, draw radii parallel and in the same direction. Then the line joining the extremities of the radii passes through a fixed point on the line of centers which divides that line externally in the ratio of radii. This point is called the external homothetic center, or external center of similitude (Johnson 1929, pp. 19-20 and 41).


```
\begin{tikzpicture}
\tkzDefPoints{\(0\)/\(0A\),4/2/\(B\),2/3/\(K\)}
\tkzDefShiftPoint[\(A\)] (6\(0.1\) (\(M\))
\tkzDefShiftPoint[\(B\)] (6\(0.2\)) (\(M'\))
\tkzInterLL(\(A\),B) (\(M\),M') \tkzGetPoint{\(0\)}
\tkzDefTangent[\(from = 0\)] (\(B\),M') \tkzGetPoints{\(X\)}{\(T'\)}
\tkzDefTangent[\(from = 0\)] (\(A\),M) \tkzGetPoints{\(X\)}{\(T'\)}
\tkzDrawCircle[\(R\)] (\(A\),1)\tkzDrawCircle[\(R\)] (\(B\),2)
\tkzDrawLine(\(A\),B)
\tkzDrawLines[\(A\),B,0,T,T',M,M')
\tkzDrawSegments[\(new\)] (\(A\),M B,M')
\tkzLabelPoints(\(A\),B,0,T,T',M,M')
\end{tikzpicture}
```

46.21. Tangent lines to two circles

Tangent lines to two circles

For two circles, there are generally four distinct lines that are tangent to both if the two circles are outside each other. For two of these, the external tangent lines, the circles fall on the same side of the line; the external tangent lines intersect in the external homothetic center


```
\begin{tikzpicture}
 \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
 \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
 \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
\t Nd Points {0/0/A,4/2/B,2/3/K}
\tkzDefMidPoint(A,B) \tkzGetPoint{I}
\tkzInterLC[R](A,B)(B,\rt) \tkzGetPoints{E}{F}
\tkzInterCC(I,B)(B,F) \tkzGetPoints{a}{a'}
\t X'}{T'}
\tkzDefTangent[at=T'](B) \tkzGetPoint{h}
\tkzInterLL(T',h)(A,B) \tkzGetPoint{0}
\label{lem:local_three_local} $$ \text{T}_{T} (0,T')(A,\r) \ \text{tkzGetPoints}_{T}^{T}$$
\tkzDrawCircle[R](A,\r)
                                                                                                                                                                                                                                                                                                                     \tkzDrawPoints(0,A,B,a,a',E,F,T',T)
\tkzDrawLines(0,B A,a B,T' A,T)
\tkzDrawLines[add= 1 and 8](T',h)
\tkzLabelPoints(0,A,B,a,a',E,F,T,T')
         \end{tikzpicture}
```

46.22. Tangent lines to two circles with radical axis

Tangent lines to two circles with radical axis

As soon as two circles are not concentric, we can construct their radical axis, the set of points of equal power with respect to the two circles. We know that the radical axis is a line orthogonal to the line of the centers. Note that if we specify P and Q as the points of contact of one of the common exterior tangents with the two circles and D and E as the points of the circles outside [AB], then (DP) and (EQ) intersect on the radical axis of the two circles. We will show that this property is always true and that it allows us to construct common tangents, even when the circles have the same radius.


```
\begin{tikzpicture}
\t Nd Points {0/0/A,4/2/B,2/3/K}
\tkzDrawCircle[R](A,1)\tkzDrawCircle[R](B,3)
\tkzInterCC[R](A,1)(K,3) \tkzGetPoints{a}{a'}
\tkzInterCC[R](B,3)(K,3) \tkzGetPoints{b}{b'}
\tkzInterLL(a,a')(b,b') \tkzGetPoint{X}
\tkzDefPointBy[projection= onto A--B](X) \tkzGetPoint{H}
\tkzGetPoint{C}
\tkzInterLC[R](A,B)(B,3) \tkzGetPoints{b1}{E}
\tkzInterLC[R](A,B)(A,1) \tkzGetPoints{D}{a2}
\tkzDefMidPoint(D,E) \tkzGetPoint{I}
\tkzDrawCircle[orange](I,D)
\tkzInterLC(X,H)(I,D) \tkzGetPoints{M'}{M}
\tkzInterLC(M,D)(A,D) \tkzGetPoints{P'}{P}
\tkzInterLC(M,E)(B,E) \tkzGetPoints{Q}{Q'}
\tkzInterLL(P,Q)(A,B) \tkzGetPoint{0}
\tkzDrawSegments[orange](A,P I,M B,Q)
\tkzDrawPoints(A,B,D,E,M,I,O,P,Q,X,H)
\tkzDrawLines(0,E M,D M,E 0,Q)
\tkzDrawLine[add= 3 and 4,orange](X,H)
\tkzLabelPoints(A,B,D,E,M,I,O,P,Q,X,H)
\end{tikzpicture}
```

46.23. Definition of a circle _Apollonius_

Definition of a circle _Apollonius_

From Wikipedia: Apollonius showed that a circle can be defined as the set of points in a plane that have a specified ratio of distances to two fixed points, known as foci. This Apollonian circle is the basis of the Apollonius pursuit problem. ... The solutions to this problem are sometimes called the circles of Apollonius.

Explanation

A circle is the set of points in a plane that are equidistant from a given point O. The distance r from the center is called the radius, and the point O is called the center. It is the simplest definition but it is not the only one. Apollonius of Perga gives another definition: The set of all points whose distances from two fixed points are in a constant ratio is a circle.

With tkz-euclide is easy to show you the last definition

The code and the analyse

```
\documentclass{standalone}
    % Excellent class to show the result and to verify the bounding box.
\usepackage{tkz-euclide}
    % no need to use \usetkzobj !
\begin{document}
\begin{tikzpicture}[scale=1.5]
    % Firstly we defined two fixed point.
    \mbox{\ensuremath{\it\%}} The figure depends of these points and the ratio \mbox{\ensuremath{\it K}}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
    % tkz-euclide.sty knows about the apollonius's circle
    \% with K=2 we search some points like I such as IA=2 x IB
\tkzDefCircle[apollonius,K=2](A,B) \tkzGetPoint{K1}
\tkzGetLength{rAp}
\tkzDefPointOnCircle[angle=30,center=K1,radius=\rAp]
\tkzGetPoint{I}
\tkzDefPointOnCircle[angle=280,center=K1,radius=\rAp]
\tkzGetPoint{J}
\tkzDrawSegments[new](A,I I,B A,J J,B)
\tkzDrawCircle[R,color = teal,fill=MidnightBlue!20,opacity=.4](K1,\rAp pt)
\tkzDrawPoints(A,B,K1,I,J)
\tkzDrawSegment(A,B)
\tkzLabelPoints[below,font=\scriptsize](A,B,K1,I,J)
\end{tikzpicture}
\end{document}
```

The result

46.24. Application of Inversion : Pappus chain

Pappus chain

From Wikipedia In geometry, the Pappus chain is a ring of circles between two tangent circles investigated by Pappus of Alexandria in the 3rd century AD.


```
\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
        \pgfmathsetmacro{\xC}{9}%
        \protect{xD}{(\xC*\xC)/\xB}%
        \protect{xJ}{(\xC+\xD)/2}%
         \protect{pgfmathsetmacro{\r}{\xD-\xJ}}%
         \pgfmathsetmacro{\nc}{16}%
\begin{tikzpicture}[ultra thin]
        \t \DefPoints{0/0/A,\xB/0/B,\xC/0/C,\xD/0/D}
       \tkzDrawCircle[diameter,fill=teal!20](A,C)
       \foreach \i in \{-\nc,...,\emptyset,...,\nc\}
       {\txDefPoint(\xJ,2*\r*\i){J}}
           \t xJ,2*\r*\i-\r){H}
           \tkzDefCircleBy[inversion = center A through C](J,H)
            \tkzDrawCircle[diameter,fill=teal](tkzFirstPointResult,tkzSecondPointResult)}
\end{tikzpicture}
```

46.25. Book of lemmas proposition 1 Archimedes

Book of lemmas proposition 1 Archimedes

If two circles touch at A, and if [CD], [EF] be parallel diameters in them, A, C and E are aligned.


```
\begin{tikzpicture}
  \tkzDefPoints{\0/\0/0_1,\0/1/0_2,\0/3/A}
  \tkzDefPoint(15:3){F}
  \tkzInterLC(F,0_1)(0_1,A) \tkzGetSecondPoint{E}
  \tkzDefLine[parallel=through 0_2](E,F)
  \tkzGetPoint{x}
  \tkzInterLC(x,0_2)(0_2,A) \tkzGetPoints{D}{C}
  \tkzDrawCircles(0_1,A 0_2,A)
  \tkzDrawSegments[new](0_1,A E,F C,D)
  \tkzDrawSegments[purple](A,E A,F)
  \tkzDrawPoints(A,0_1,0_2,E,F,C,D)
  \tkzLabelPoints(A,0_1,0_2,E,F,C,D)
  \end{tikzpicture}
```

(CD) \parallel (EF) (AO₁) is secant to these two lines so $\widehat{AO_2C} = \widehat{AO_1E}$.

Since the triangles AO_2C and AO_1E are isosceles the angles at the base are equal widehat $ACO_2 = \widehat{AEO_1} = \widehat{CAO_2} = \widehat{EAO_1}$. Thus A,C and E are aligned

46.26. Book of lemmas proposition 6 Archimedes

Book of lemmas proposition 6 Archimedes

Let AC, the diameter of a semicircle, be divided at B so that AC/AB = ϕ or in any ratio]. Describe semicircles within the first semicircle and on AB, BC as diameters, and suppose a circle drawn touching the all three semicircles. If GH be the diameter of this circle, to find relation between GH and AC.

Let GH be the diameter of the circle which is parallel to AC, and let the circle touch the semicircles on AC, AB, BC in D, E, F respectively.

Then, by Prop. 1 A,G and D are aligned, ainsi que D, H and C.

For a like reason A E and H are aligned, C F and Gare aligned, as also are B E and G, B F and H.

Let (AD) meet the semicircle on [AC] at I, and let (BD) meet the semicircle on [BC] in K. Join CI, CK meeting AE, BF in L, M, and let GL, HM produced meet AB in N, P respectively.

Now, in the triangle AGB, the perpendiculars from A, C on the opposite sides meet in L. Therefore by the properties of triangles, (GN) is perpendicular to (AC). Similarly (HP) is perpendicular to (BC).

Again, since the angles at I, K, D are right, (CK) is parallel to (AD), and (CI) to (BD).

Therefore

$$\frac{AB}{BC} = \frac{AL}{LH} = \frac{AN}{NP}$$
 and $\frac{BC}{AB} = \frac{CM}{MG} = \frac{PC}{NP}$

hence

$$\frac{AN}{NP} = \frac{NP}{PC}$$
 so $NP^2 = AN \times PC$

Now suppose that B divides [AC] according to the divine proportion that is:

$$\phi = \frac{AB}{BC} = \frac{AC}{AB}$$
 then $AN = \phi NP$ and $AN = \phi PC$

We have

$$AC = AN + NP + PC$$
 either $AB + BC == AN + NP + PC$ or $(\phi + 1)BC = AN + NP + PC$

we get

$$(\phi + 1)BC = \phi NP + NP + PC = (\phi + 1)NP + PC = \phi(\phi + 1)PC + PC = \phi^2 + \phi + 1)PC$$

as

$$\phi^2 = \phi + 1$$
 then $(\phi + 1)BC = 2(\phi + 1)PC$ i.e. $BC = 2PC$

That is, p is the middle of the segment BC.

Part of the proof from https://www.cut-the-knot.org

46.27. "The" Circle of APOLLONIUS

The Apollonius circle of a triangle _Apollonius_

The circle which touches all three excircles of a triangle and encompasses them is often known as "the" Apollonius circle (Kimberling 1998, p. 102)

Explanation

The purpose of the first examples was to show the simplicity with which we could recreate these propositions. With TikZ you need to do calculations and use trigonometry while with tkz-euclide you only need to build simple objects

But don't forget that behind or far above tkz-euclide there is TikZ. I'm only creating an interface between TikZ and the user of my package.

The last example is very complex and it is to show you all that we can do with tkz-euclide.

The code and the analyse

```
% !TEX TS-program = lualatex
\documentclass{standalone}
\usepackage{tkz-euclide}
\begin{document}
\begin{tikzpicture}[scale=1]
\t \DefPoints{0/0/A,6/0/B,0.8/4/C}
% we need some special points if the triangle, tkz-euclide.sty knows about them
\tkzDefTriangleCenter[euler](A,B,C)
                                        \tkzGetPoint{N} % or
                                                                 \tkzEulerCenter(A,B,C)
\tkzDefTriangleCenter[circum](A,B,C)
                                        \tkzGetPoint{0} %
                                                               \txcircumCenter(A,B,C)
\tkzDefTriangleCenter[lemoine](A,B,C) \tkzGetPoint{K}
\tkzDefTriangleCenter[ortho](A,B,C)
                                        \tkzGetPoint{H}
% \tkzDefSpcTriangle new macro to define new triangle in relation wth ABC
\tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c}
\tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c}
\tkzDefCircle[in](Ma,Mb,Mc)
                                          \tkzGetPoint{Sp} % Sp Spieker center
\% here I used the definition but tkz-euclide knows this point
% \tkzDefTriangleCenter[spieker](A,B,C)
                                             \tkzGetPoint{Sp}
% each center has three projections on the sides of the triangle ABC
% We can do this with one macro
\t \DefProjExcenter[name=J](A,B,C)(a,b,c){Y,Z,X}
% but possible is
% \tkzDefPointBy[projection=onto A--C](Ja) \tkzGetPoint{Za}
\tkzDefLine[parallel=through Za](A,B)
                                            \tkzGetPoint{Xc}
\tkzInterLL(Za,Xc)(C,B)
                                             \tkzGetPoint{C'}
\tkzDefLine[parallel=through Zc](B,C)
                                             \tkzGetPoint{Ya}
\tkzInterLL(Zc,Ya)(A,B)
                                             \tkzGetPoint{A'}
\tkzDefPointBy[reflection= over Ja--Jc](C')\tkzGetPoint{Ab}
\tkzDefPointBy[reflection= over Ja--Jc](A')\tkzGetPoint{Cb}
\mbox{\ensuremath{\textit{\%}}} 
 Now we can get the center of THE CIRCLE : Q
\mbox{\ensuremath{\it \#}}\xspace\,\mbox{\ensuremath{\it BUT}}\xspace we need to find the radius or a point on the circle
\tkzInterLL(K,0)(N,Sp)
                                             \tkzGetPoint{Q}
\tkzInterLC(A,B)(Q,Cb)
                                             \tkzGetSecondPoint{Ba}
\tkzInterLC(A,C)(Q,Cb)
                                             \tkzGetPoints{Ca}{Ac}
\tkzInterLC(B,C')(Q,Cb)
                                             \tkzGetSecondPoint{Bc}
                                             \tkzGetSecondPoint{F'a}
\tkzInterLC(Q,Ja)(Q,Cb)
                                             \tkzGetSecondPoint{F'c}
\tkzInterLC(Q,Jc)(Q,Cb)
\tkzInterLC(Q,Jb)(Q,Cb)
                                             \tkzGetSecondPoint{F'b}
\tkzInterLC(Sp,F'a)(Ja,Za)
                                             \tkzGetFirstPoint{Fa}
\tkzInterLC(Sp,F'b)(Jb,Yb)
                                             \tkzGetFirstPoint{Fb}
```

```
\tkzInterLC(Sp,F'c)(Jc,Yc)
                                            \tkzGetSecondPoint{Fc}
\tkzInterLC(Mc,Sp)(Q,Cb)
                                            \tkzGetSecondPoint{A''}
\tkzDefLine[parallel=through A''](N,Mc)
                                            \tkzGetPoint{q}
\% Calculations are done, now you can draw, mark and label
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(Q,Bc)%
\tkzDrawCircle[euler,lightgray](A,B,C)
\tkzDrawCircles[ex](A,B,C B,C,A C,A,B)
\tkzDrawSegments[dashed](A,A' C,C' A',Zc Za,C' B,Cb B,Ab A,Ca C,Ac
                        Ja,Xa Jb,Yb Jc,Zc)
\begin{scope}
   \t ClipCircle(Q,Cb) \% We limit the drawing of the lines
   \tkzDrawLine[add=5 and 12,orange](K,0)
   \tkzDrawLine[add=12 and 28,red!50!black](N,Sp)
\end{scope}
\tkzDrawPoints(A,B,C,K,Ja,Jb,Jc,Q,N,O,Sp,Mc,Xa,Xb,Yb,Yc,Za,Zc)
\tkzDrawPoints(A',C',A'',Ab,Cb,Bc,Ca,Ac,Ba,Fa,Fb,Fc,F'a,F'b,F'c)
\tkzLabelPoints(Ja, Jb, Jc, Q, Xa, Xb, Za, Zc, Ab, Cb, Bc, Ca, Ac, Ba, F'b)
\tkzLabelPoints[above](0,K,F'a,Fa,A'')
\tkzLabelPoints[below](B,F'c,Yc,N,Sp,Fc,Mc)
\tkzLabelPoints[left](A',C',Fb)
\tkzLabelPoints[right](C)
\tkzLabelPoints[below right](A)
\tkzLabelPoints[above right](Yb)
\tkzDrawSegments[color=green!50!black](Mc,N Mc,A'' A'',Q)
\tkzDrawSegments[color=red,dashed](Ac,Ab Ca,Cb Ba,Bc Ja,Jc A',Cb C',Ab)
\tkzDrawSegments[color=red](Cb,Ab Bc,Ac Ba,Ca A',C')
\tkzMarkSegments[color=red,mark=|](Cb,Ab Bc,Ac Ba,Ca)
\tkzMarkRightAngles(Jc,Zc,A Ja,Xa,B Jb,Yb,C)
\tkzDrawSegments[green,dashed](A,F'a B,F'b C,F'c)
\end{tikzpicture}
\end{document}
```

The result

47. Different authors

47.1. Code from Andrew Swan

47.2. Example: Dimitris Kapeta

You need in this example to use mkpos=.2 with \tkzMarkAngle because the measure of CAM is too small. Another possiblity is to use \tkzFillAngle.

\end{scope}
\end{tikzpicture}

\draw [decorate,decoration={brace,amplitude=1\pt},

\draw [decorate, decoration={brace, amplitude=10pt},

xshift=4pt,yshift=0pt]
(D) -- (B) node [black,midway,xshift=27pt]

xshift=4pt,yshift=0pt]

(E) -- (C) node [black,midway,xshift=-27pt]

{\footnotesize \$\tan x\$};

{\footnotesize \$\sin x\$};

47.3. Example : John Kitzmiller

Prove that
$$\frac{AC}{CE} = \frac{BD}{DF}$$
.

Another interesting example from John, you can see how to use some extra options like decoration and postaction from TikZ with tkz-euclide.


```
\begin{tikzpicture}[scale=1.5,decoration={markings,
 mark=at position 3cm with {\arrow[scale=2]{>}}}]
 \t \DefPoints{0/0/E, 6/0/F, 0/1.8/P, 6/1.8/Q, 0/3/R, 6/3/S}
 \tkzDrawLines[postaction={decorate}](E,F P,Q R,S)
 \t 3.5/3/A, 5/3/B
 \tkzDrawSegments(E,A F,B)
 \tkzInterLL(E,A)(P,Q) \tkzGetPoint{C}
 \tkzInterLL(B,F)(P,Q) \tkzGetPoint{D}
 \tkzLabelPoints[above right](A,B)
 \tkzLabelPoints[below](E,F)
 \tkzLabelPoints[above left](C)
 \verb|\tkzDrawSegments[style=dashed](A,F)|
 \tkzInterLL(A,F)(P,Q) \tkzGetPoint{G}
 \tkzLabelPoints[above right](D,G)
 \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](A,C A,G)
 \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](C,E G,F)
 \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](B,D)
 \end{tikzpicture}
```

47.4. Example 1: from Indonesia


```
\begin{tikzpicture}[scale=3]
   \t ND = \frac{0}{0}A, \frac{2}{0}B
   \tkzDefSquare(A,B) \tkzGetPoints{C}{D}
   \tkzDefPointBy[rotation=center D angle 45](C)\tkzGetPoint{G}
   \tkzDefSquare(G,D)\tkzGetPoints{E}{F}
   \tkzInterLL(B,C)(E,F)\tkzGetPoint{H}
   \tkzFillPolygon[gray!10](D,E,H,C,D)
   \verb|\tkzDrawPolygon(A,...,D)\tkzDrawPolygon(D,...,G)|
   \tkzDrawSegment(B,E)
   \tkzMarkSegments[mark=|,size=3pt,color=gray](A,B B,C C,D D,A E,F F,G G,D D,E)
   \tkzMarkSegments[mark=||,size=3pt,color=gray](B,E E,H)
   \tkzLabelPoints[left](A,D)
   \tkzLabelPoints[right](B,C,F,H)
   \tkzLabelPoints[above](G)\tkzLabelPoints[below](E)
   \tkzMarkRightAngles(D,A,B D,G,F)
\end{tikzpicture}
```

47.5. Example 2: from Indonesia


```
\begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5},
     seg/.style={tkzdotted,color=gray}, hidden pt/.style={fill=gray!40},
      mra/.style={color=gray!70,tkzdotted,/tkzrightangle/size=.2},scale=1.5]
 \t \DefPoints \{0/0/A, 2.5/0/B, 1.33/0.75/D, 0/2.5/E, 2.5/2.5/F\}
 \tkzDefLine[parallel=through D](A,B) \tkzGetPoint{I1}
 \tkzDefLine[parallel=through B](A,D)
                                      \tkzGetPoint{I2}
 \tkzInterLL(D,I1)(B,I2)
                                      \tkzGetPoint{C}
 \tkzDefLine[parallel=through E](A,D)
                                      \tkzGetPoint{I3}
 \tkzDefLine[parallel=through D](A,E)
                                      \tkzGetPoint{I4}
 \tkzInterLL(E,I3)(D,I4)
                                      \tkzGetPoint{H}
 \tkzDefLine[parallel=through F](E,H)
                                      \tkzGetPoint{I5}
 \tkzDefLine[parallel=through H](E,F)
                                      \tkzGetPoint{I6}
 \tkzInterLL(F,I5)(H,I6)
                                      \tkzGetPoint{G}
 \tkzDefMidPoint(G,H) \tkzGetPoint{P}
                                      \tkzDefMidPoint(G,C) \tkzGetPoint{Q}
 \tkzDefMidPoint(B,C) \tkzGetPoint{R}
                                      \tkzDefMidPoint(A,B) \tkzGetPoint{S}
 \tkzDefMidPoint(A,E) \tkzGetPoint{T}
                                      \tkzDefMidPoint(E,H) \tkzGetPoint{U}
 \tkzDefMidPoint(A,D) \tkzGetPoint{M}
                                      \tkzDefMidPoint(D,C) \tkzGetPoint{N}
 \tkzDefLine[parallel=through K](D,H)
                                      \tkzGetPoint{I7}
 \tkzInterLL(K,I7)(B,D)
                                      \tkzGetPoint{0}
 \tkzFillPolygon[pol](P,Q,R,S,T,U)
 \tkzDrawSegments[seg](K,O K,L P,Q R,S T,U C,D H,D A,D M,N B,D)
 \tkzDrawSegments(E,H B,C G,F G,H G,C Q,R S,T U,P H,F)
 \tkzDrawPolygon(A,B,F,E)
 \tkzDrawPoints(A,B,C,E,F,G,H,P,Q,R,S,T,U,K) \tkzDrawPoints[hidden pt](M,N,O,D)
 \tkzMarkRightAngle[mra](L,0,K)
 \tkzMarkSegments[mark=|,size=1pt,thick,color=gray](A,S B,S B,R C,R
                   Q,C Q,G G,P H,P E,U H,U E,T A,T)
 \tkzLabelAngle[pos=.3](K,L,0){$\alpha$}
 \tkzLabelPoints[below](0,A,S,B)
                                   \tkzLabelPoints[above](H,P,G)
 \tkzLabelPoints[left](T,E)
                                   \tkzLabelPoints[right](C,Q)
 \tkzLabelPoints[above left](U,D,M) \tkzLabelPoints[above right](L,N)
 \tkzLabelPoints[below right](F,R) \tkzLabelPoints[below left](K)
\end{tikzpicture}
```

47.6. Illustration of the Morley theorem by Nicolas François


```
\begin{tikzpicture}
 \tkzInit[ymin=-3,ymax=5,xmin=-5,xmax=7]
 \tkzClip
 \text{tkzDefPoints}\{-2.5/-2/A,2/4/B,5/-1/C\}
 \tkzFindAngle(C,A,B) \tkzGetAngle{anglea}
 \tkzDefPointBy[rotation=center A angle 1*\anglea/3](C) \tkzGetPoint{TA1}
 \tkzDefPointBy[rotation=center A angle 2*\anglea/3](C) \tkzGetPoint{TA2}
 \tkzFindAngle(A,B,C) \tkzGetAngle{angleb}
 \tkzDefPointBy[rotation=center B angle 2*\angleb/3](A) \tkzGetPoint{TB2}
 \tkzFindAngle(B,C,A) \tkzGetAngle{anglec}
 \tkzDefPointBy[rotation=center C angle 1*\anglec/3](B) \tkzGetPoint{TC1}
 \tkzDefPointBy[rotation=center C angle 2*\anglec/3](B) \tkzGetPoint{TC2}
 \tkzInterLL(A,TA1)(B,TB2) \tkzGetPoint{U1}
 \tkzInterLL(A,TA2)(B,TB1) \tkzGetPoint{V1}
 \tkzInterLL(B,TB1)(C,TC2) \tkzGetPoint{U2}
 \tkzInterLL(B,TB2)(C,TC1) \tkzGetPoint{V2}
 \tkzInterLL(C,TC1)(A,TA2) \tkzGetPoint{U3}
 \tkzInterLL(C,TC2)(A,TA1) \tkzGetPoint{V3}
 \tkzDrawPolygons(A,B,C U1,U2,U3 V1,V2,V3)
 \tkzDrawLines[add=2 and 2,very thin,dashed](A,TA1 B,TB1 C,TC1 A,TA2 B,TB2 C,TC2)
 \tkzDrawPoints(U1,U2,U3,V1,V2,V3)
 \tkzLabelPoint[left](V1){\$s_a\} \tkzLabelPoint[right](V2){\$s_b\}
 \tkzLabelPoint[below](V3){$s_c$} \tkzLabelPoint[above left](A){$A$}
 \tkzLabelPoints[above right](B,C) \tkzLabelPoint(U1){$t_a$}
 \tkzLabelPoint[below left](U2){$t_b$} \tkzLabelPoint[above](U3){$t_c$}
\end{tikzpicture}
```

47.7. Gou gu theorem / Pythagorean Theorem by Zhao Shuang

Gou gu theorem / Pythagorean Theorem by Zhao Shuang

Pythagoras was not the first person who discovered this theorem around the world. Ancient China discovered this theorem much earlier than him. So there is another name for the Pythagorean theorem in China, the Gou-Gu theorem. Zhao Shuang was an ancient Chinese mathematician. He rediscovered the "Gou gu theorem", which is actually the Chinese version of the "Pythagorean theorem". Zhao Shuang used a method called the "cutting and compensation principle", he created a picture of "Pythagorean Round Square" Below the figure used to illustrate the proof of the "Gou gu theorem." (code from Nan Geng)


```
\begin{tikzpicture}[scale=.8]
 \t \DefPoint(0,0){A} \t \DefPoint(4,0){A'}
 \tkzInterCC[R](A, 5)(A', 3)
 \tkzGetSecondPoint{B}
 \tkzDefSquare(A,B)
                       \tkzGetPoints{C}{D}
 \tkzCalcLength(A,A') \tkzGetLength{1A}
 \tkzCalcLength(A',B) \tkzGetLength{1B}
 \pgfmathparse{\1A-\1B}
 \tkzInterLC[R](A,A')(A',\pgfmathresult)
 \tkzGetFirstPoint{D'}
 \tkzDefSquare(D',A')\tkzGetPoints{B'}{C'}
 \tkzDefLine[orthogonal=through D](D,D')
  \tkzGetPoint{d}
 \tkzDefLine[orthogonal=through A](A,A')
  \tkzGetPoint{a}
 \tkzDefLine[orthogonal=through C](C,C')
  \tkzGetPoint{c}
 \tkzInterLL(D,d)(C,c) \tkzGetPoint{E}
 \tkzInterLL(D,d)(A,a) \tkzGetPoint{F}
 \tkzDefSquare(E,F)\tkzGetPoints{G}{H}
 \tkzDrawPolygons[fill=teal!10](A,B,A' B,C,B'
    C,D,C' A,D',D)
 \tkzDrawPolygons(A,B,C,D E,F,G,H)
 \tkzDrawPolygon[fill=green!10](A',B',C',D')
 \tkzDrawSegment[dim={\$a\$,-1\pt,}](D,C')
 \tkzDrawSegment[dim={$b$,-1\pt,}](C,C')
 \tkzDrawSegment[dim={$c$,-1\pt,}](C,D)
 \tkzDrawPoints[size=2](A,B,C,D,A',B',C',D')
 \tkzLabelPoints[left](A)
 \tkzLabelPoints[below](B)
 \tkzLabelPoints[right](C)
 \tkzLabelPoints[above](D)
 \tkzLabelPoints[right](A')
 \tkzLabelPoints[below right](B')
 \tkzLabelPoints[below left](C')
 \tkzLabelPoints[below](D')
\end{tikzpicture}
```

47.8. Reuleaux-Triangle

Reuleaux-triangle by Stefan Kottwitz

A well-known classic field of mathematics is geometry. You may know Euclidean geometry from school, with constructions by compass and ruler. Math teachers may be very interested in drawing geometry constructions and explanations. Underlying constructions can help us with general drawings where we would need intersections and tangents of lines and circles, even if it does not look like geometry. So, here, we will remember school geometry drawings. We will use the tkz-euclide package, which works on top of TikZ. We will construct an equilateral triangle. Then we extend it to get a Reuleaux triangle, and add annotations. The code is fully explained in the LaTeX Cookbook, Chapter 10, Advanced Mathematics, Drawing geometry pictures. Stefan Kottwitz

Part X.

FAQ

48. FAQ 226

48. FAQ

48.1. Most common errors

For the moment, I'm basing myself on my own, because having changed syntax several times, I've made a number of mistakes. This section is going to be expanded.

- Error "dimension too large": In some cases, this error occurs. One way to avoid it is to use the "xfp" option. When this option is used in an environment, the "veclen" function is replaced by a function dependent on "xfp". For example, an error occurs if you use the macro \tkzDrawArc with too small an angle. The error is produced by the decoration library when you want to place a mark on an arc. Even if the mark is absent, the error is still present.


```
\begin{tikzpicture}[scale=1.25]
  \t \mathbb{Q} 
 \t(2.5, 0){N}
 \t (-4.2, 0.5){M}
  \tkzDefPointBy[rotation=center 0 angle 30](N)
  \tkzGetPoint{B}
  \tkzDefPointBy[rotation=center O angle -50](N)
  \tkzGetPoint{A}
  \tkzInterLC(M,B)(O,N) \tkzGetFirstPoint{C}
  \tkzInterLC(M,A)(O,N) \tkzGetSecondPoint{A'}
  \tkzMarkAngle[mkpos=.2, size=0.5](A,C,B)
  \tkzMarkAngle[mkpos=.2, size=0.5](A,M,C)
  \tkzDrawSegments(A,C M,A M,B)
  \tkzDrawCircle(0,N)
  \tkzLabelCircle[above left](0,N)(120){$\mathcal{C}$}
  \begin{scope}[xfp]
   \tkzMarkAngle[mkpos=.2, size=1.2](C,A,M)
  \end{scope}
  \tkzDrawPoints(O, A, B, M, B, C)
  \tkzLabelPoints[right](0,A,B)
  \tkzLabelPoints[above left](M,C)
  \tkzLabelPoint[below left](A'){$A'$}
\end{tikzpicture}
```

- \tkzDrawPoint(A,B) when you need \tkzDrawPoints.
- \tkzGetPoint(A) When defining an object, use braces and not brackets, so write: \tkzGetPoint{A}.

48. FAQ 227

- \tkzGetPoint{A} in place of \tkzGetFirstPoint{A}. When a macro gives two points as results, either we retrieve these points using \tkzGetPoints{A}{B}, or we retrieve only one of the two points, using \tkzGetFirstPoint{A} or \tkzGetSecondPoint{A}. These two points can be used with the reference tkzFirstPointResult or tkzSecondPointResult. It is possible that a third point is given as tkzPointResult.

- \tkzDrawSegment(A,B A,C) when you need \tkzDrawSegments. It is possible to use only the versions with an "s" but it is less efficient!
- Mixing options and arguments; all macros that use a circle need to know the radius of the circle. If the radius is given by a measure then the option includes a **R**.
- \tkzDrawSegments[color = gray,style=dashed]{B,B' C,C'} is a mistake. Only macros that define an object use braces.
- The angles are given in degrees, more rarely in radians.
- If an error occurs in a calculation when passing parameters, then it is better to make these calculations before calling the macro.
- Do not mix the syntax of pgfmath and xfp. I've often chosen xfp but if you prefer pgfmath then do your calculations before passing parameters.
- Use of \tkzClip: In order to get accurate results, I avoided using normalized vectors. The advantage of normalization is to control the dimension of the manipulated objects, the disadvantage is that with TeX, this implies inaccuracies. These inaccuracies are often small, in the order of a thousandth, but they lead to disasters if the drawing is enlarged. Not normalizing implies that some points are far away from the working area and \tkzClip allows you to reduce the size of the drawing.

```
\add, 109
\ang, 98
\Ax, 167
\Ay, 167
\coordinate, 23
\dAB, 165
\Delta, 152
\draw (A)--(B);,110
\verb|\endpgfinterruptboundingbox|, 138|
Environment
     scope, 25, 170
     tikzpicture, 170
     {\tt tikzspicture}, 170
\footnotemark \fpeval, 93
\len, 166, 167
Operating System
     Windows, 5
Package
     fp, 20
     pgfmath, 217
     tkz-euclide, 132
     xfp, 5, 20, 23, 25, 92, 165, 217
\pgfinterruptboundingbox, 138
\pgflinewidth, 107, 108
\pgfmathsetmacro, 93
\pgfresetboundingbox, 132
\px, 167
\py, 167
\rAB, 30
standalone, 10
TeX Distributions
     MiKTeX, 5
     TeXLive, 5
\text{Ti}kZ Library
     angles, 20
     babel, 15
     decoration, 216
     quotes, 20
\tikzset, 169
\tkzAngleResult, 98, 100
\verb|\tkzAutoLabelPoints|, 149|
\tkzCalcLength, 165
\tkzCalcLength: arguments
     (pt1,pt2){name of macro}, 165
\tkzCalcLength: options
     {\tt cm}, 165
\t CalcLength[\langle local options \rangle](\langle pt1, pt2 \rangle), 165
\tkzCentroid, 31
```

```
\tkzClip, 15, 20, 132, 133, 217
\tkzClip: options
    space, 133
\tkzClipBB, 20, 134
\tkzClipCircle[out], 139
\tkzClipCircle, 79, 136
\tkzClipCircle: arguments
     (\langle A,B\rangle) or (\langle A,r\rangle), 136
\tkzClipCircle: options
    R, 136
    out, 136
    radius, 136
\t XClipCircle[(local options)]((A,B)) or ((A,r)), 136
\tkzClipPolygon[out], 135, 139
\tkzClipPolygon, 135
\tkzClipPolygon: arguments
     ((pt1,pt2,pt3,...)),135
\tkzClipPolygon: options
    out, 135
\tkzClipPolygon[\langlelocal options\rangle](\langlepoints list\rangle), 135
\tkzClipSector(0,A)(B),137
\tkzClipSector[R](0,2)(30,90),137
\tkzClipSector[rotate](0,A)(90),137
\tkzClipSector, 137
\tkzClipSector: options
    R, 137
    rotate, 137
    towards, 137
\text{\clipSector}[\langle \text{local options} \rangle](\langle 0,... \rangle)(\langle ... \rangle), 137
\tkzClip[(local options)], 133
\tkzcmtopt, 167
\tkzcmtopt: arguments
     (nombre) {name of macro}, 167
\t (\norm{norm}) {\norm{norm}}, 167
\tkzCompass, 121, 158
\tkzCompass: options
    delta, 158
    length, 158
\tkzCompasss, 158
\tkzCompasss: options
    delta, 158
    length, 158
\tkzCompasss[\langlelocal options\rangle](\langlept1,pt2 pt3,pt4,...\rangle), 158
\t X = \frac{(A,B)}{158}
\tkzDefBarycentricPoint, 31, 33
\tkzDefBarycentricPoint: arguments
     (pt1=\alpha_1, pt2=\alpha_2, ...), 31
\tkzDefBarycentricPoint(\langle pt1=\alpha_1, pt2=\alpha_2, ... \rangle), 31
\tkzDefCircle[radius](A,B), 166
\tkzDefCircle, 79
\tkzDefCircle: arguments
     (\langle pt1, pt2 \rangle) or (\langle pt1, pt2, pt3 \rangle), 79
\tkzDefCircle: options
    K. 79
    apollonius, 79
    circum, 79
    diameter, 79
     euler or nine, 79
```

```
ex, 79
     in, 79
     spieker, 79
     through, 79
\tkzDefCircleBy, 85
\tkzDefCircleBy: arguments
     pt1,pt2,85
\tkzDefCircleBy: options
    homothety, 85
     inversion, 85
     orthogonal from, 85
     orthogonal through, 85
     projection,85
     reflection, 85
     rotation,85
     symmetry,85
     translation, 85
\t \DefCircleBy[\langle local options \rangle](\langle pt1, pt2 \rangle), 85
\tkzDefCirclesBy, 85
\t \DefCircle[(local options)]((A,B))  or ((A,B,C)), 79
\tkzDefEquiPoints, 33
\tkzDefEquiPoints: arguments
     (pt1,pt2),33
\tkzDefEquiPoints: options
     /compass/delta,33
     dist,33
     from=pt,33
     show, 33
\tkzDefEquiPoints[\langlelocal options\rangle](\langlept1,pt2\rangle),33
\tkzDefGoldenRatio(A,C),32
\tkzDefGoldenRatio, 32
\tkzDefGoldenRatio: arguments
     (pt1,pt2),32
\tkzDefGoldenRatio(\langle pt1, pt2 \rangle), 32
\tkzDefGoldenRectangle, 76
\tkzDefGoldenRectangle: arguments
     (\langle pt1, pt2 \rangle), 76
\tkzDefGoldenRectangle(\( \point, point \)), 76
\tkzDefGoldRectangle, 76
\tkzDefLine, 58
\tkzDefLine: arguments
     (\langle pt1, pt2, pt3 \rangle), 58
     (\langle pt1, pt2 \rangle), 58
\tkzDefLine: options
    K, 58
     bisector out, 58
    bisector, 58
    mediator, 58
    normed, 58
     orthogonal=through..., 58
     parallel=through..., 58
     perpendicular=through..., 58
\t \sum_{i=1}^{n} (\langle pt1, pt2 \rangle) \text{ or } (\langle pt1, pt2, pt3 \rangle), 58
\tkzDefMidPoint, 8, 30
\tkzDefMidPoint: arguments
     (pt1,pt2),30
\tkzDefMidPoint(\langle pt1, pt2 \rangle), 30
\tkzDefParallelogram, 75
```

```
\tkzDefParallelogram: arguments
     (\(\rho t1, pt2, pt3\)), 75
\tkzDefParallelogram(\(\rangle pt1, pt2, pt3 \rangle)), 75
\tkzDefPoint, 23, 24, 30, 89
\tkzDefPoint: arguments
     (\alpha:d), 24
     (x,y), 24
     {ref}, 24
\tkzDefPoint: options
    label, 24
     shift, 24
\tkzDefPointBy, 43
\tkzDefPointBy: arguments
     pt, 43
\tkzDefPointBy: options
    homothety, 43
     inversion negative, 43
     inversion, 43
     projection, 43
     reflection, 43
     rotation in rad, 43
    rotation, 43
    symmetry, 43
     {\tt translation}, 43
\t \ \tkzDefPointBy[\ \left(local options)](\ \pt), 43
\tkzDefPointOnCircle, 42
\tkzDefPointOnCircle: options
     angle, 42
     center, 42
     radius, 42
\tkzDefPointOnCircle[\langlelocal options\rangle], 42
\tkzDefPointOnLine, 41
\tkzDefPointOnLine: arguments
     pt1,pt2,41
\tkzDefPointOnLine: options
     pos=nb, 41
\t \DefPointOnLine[\langle local options \rangle](\langle A,B \rangle), 41
\t Nd Points (N/N/0, 2/2/A), 27
\tkzDefPoints, 23, 27
\tkzDefPoints: arguments
     x_{i}/y_{i}/r_{i}, 27
\tkzDefPoints: options
     shift, 27
\tkzDefPointsBy, 43, 50
\tkzDefPointsBy: arguments
     (\langle list of points \rangle){\langle list of pts \rangle}, 50
\tkzDefPointsBy: options
    homothety = center #1 ratio #2,50
    projection = onto #1--#2,50
    reflection = over #1--#2,50
    rotation = center #1 angle #2,50
    rotation in rad = center #1 angle #2,50
     symmetry = center #1,50
     translation = from #1 to #2,50
\t \DefPointsBy[\langle local options \rangle](\langle list of points \rangle) {\langle list of points \rangle}, 50
\text{tkzDefPoints}[\langle \text{local options} \rangle] \{\langle x_1/y_1/n_1, x_2/y_2/r_2, \ldots \rangle\}, 27
\tkzDefPointWith, 52
\tkzDefPointWith: arguments
```

```
(pt1,pt2),52
\tkzDefPointWith: options
     K, 52
     colinear normed= at #1,52
     colinear= at \#1,52
     linear normed, 52
     linear, 52
     orthogonal normed, 52
     orthogonal, 52
\tkzDefPointWith(\(\rho t1, pt2\)), 52
\t \sum_{\alpha, \gamma} (\langle \alpha, \gamma \rangle) \{\langle ref \rangle\}  or (\langle \alpha, \gamma \rangle) \{\langle ref \rangle\}  or (\langle \alpha, \gamma \rangle) \{\langle ref \rangle\} , 24
\t XDefProjExcenter[name=J](A,B,C)(a,b,c){Y,Z,X},40
\tkzDefProjExcenter, 40
\tkzDefProjExcenter: arguments
      (pt1=\alpha_1, pt2=\alpha_2, ...), 40
\tkzDefProjExcenter: options
     name, 40
\label{local options} $$ \txDefProjExcenter[\langle local options \rangle](\langle A,B,C \rangle)(\langle a,b,c \rangle) \{\langle X,Y,Z \rangle\}, 40 $$
\tkzDefRandPointOn, 21, 102
\tkzDefRandPointOn: options
     circle =center pt1 radius \dim, 102
     circle through=center pt1 through pt2, 102
     disk through=center pt1 through pt2, 102
     line=pt1--pt2, 102
     rectangle=pt1 and pt2, 102
     segment= pt1--pt2, 102
\tkzDefRandPointOn[\langlelocal options\rangle], 102
\tkzDefRectangle, 75
\tkzDefRectangle: arguments
     (\langle pt1, pt2 \rangle), 75
\tkzDefRectangle(\(\rho t1, pt2\)), 75
\tkzDefRegPolygon, 77
\tkzDefRegPolygon: arguments
     (⟨pt1,pt2⟩),77
\tkzDefRegPolygon: options
     Options TikZ,77
     center, 77
     name, 77
     sides, 77
     side, 77
\tkzDefRegPolygon[\langlelocal options\rangle](\langlept1,pt2\rangle),77
\tkzDefShiftPoint, 25, 26
\tkzDefShiftPoint: arguments
     (\alpha:d), 26
     (x,y), 26
     {ref},26
\tkzDefShiftPoint: options
     [pt], 26
\t \sum_{(x,y)} {\langle ref \rangle}  or (\langle \alpha:d \rangle) {\langle ref \rangle}, 26
\tkzDefSpcTriangle[medial,name=M_](A,B,C){A,B,C},66
\tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C},66
\tkzDefSpcTriangle[medial](A,B,C){a,b,c},66
\tkzDefSpcTriangle,66
\tkzDefSpcTriangle: options
     centroid or medial, 66
     euler 66
     ex or excentral, 66
     extouch, 66
```

```
feuerbach, 66
    in or incentral, 66
    intouch or contact, 66
    name, 66
    orthic,66
    symmedial, 66
    tangential, 66
    , 66
\t \sum_{p=1}^{n} (\langle p_1, p_2, p_3 \rangle) \{\langle r_1, r_2, r_3 \rangle\}, 66
\tkzDefSquare, 74, 75
\tkzDefSquare: arguments
    (\langle pt1, pt2 \rangle), 74
\tkzDefSquare(\langle pt1, pt2 \rangle), 74
\tkzDefTangent, 60
\tkzDefTangent: arguments
    (\langle pt1, pt2 \text{ or } (\langle pt1, dim \rangle) \rangle), 61
\tkzDefTangent: options
    at=pt, 61
    from with R=pt,61
    from=pt,61
\t \sum_{i=1}^{n} (\operatorname{pt1,pt2}) \text{ or } (\operatorname{pt1,dim}), 60
\tkzDefTriangle, 21, 63
\tkzDefTriangle: options
    cheops, 63
    equilateral, 63
    \verb"euclid", 63"
    golden, 63
    gold, 63
    isosceles right, 63
    pythagore, 63
    school, 63
    two angles= #1 and #2,63
\tkzDefTriangleCenter[ortho](B,C,A),34
\t X
\tkzDefTriangleCenter: arguments
    (pt1,pt2,pt3),34
\tkzDefTriangleCenter: options
    centroid, 34
    circum, 34
    euler,34
    ex, 34
    feuerbach, 34
    \tt gergonne, 34
    grebe, 34
    in, 34
    lemoine, 34
    \verb|median|, 34|
    mittenpunkt, 34
    nagel, 34
    orthic, 34
    ortho,34
    spieker, 34
    symmedian, 34
\t \ \tkzDefTriangle[\(\)(\)\ options\)](\(\)(A,B\)), 63
\tkzDrawArc[angles](0,A)(0,90),120
\tkzDrawArc[delta=10](0,A)(B),120
\tkzDrawArc[R with nodes](0,2)(A,B),120
```

```
\tkzDrawArc[R](0,2)(30,90),120
\tkzDrawArc[rotate,color=red](0,A)(90),120
\tkzDrawArc, 120, 216
\tkzDrawArc: options
    {\tt R} with nodes, 120
    R, 120
     angles, 120
     delta, 120
     rotate, 120
     towards, 120
\t \sum_{\alpha} (\langle 0, ... \rangle) (\langle 0, ... \rangle) (\langle ... \rangle), 120
\tkzDrawCircle, 79, 115, 126
\tkzDrawCircle: arguments
     ((pt1,pt2)),115
\tkzDrawCircle: options
     R, 115
     diameter, 115
     through, 115
\tkzDrawCircles, 116
\tkzDrawCircles: arguments
     (\(\rho \text{pt1,pt2 pt3,pt4 \ldots\)),116
\tkzDrawCircles: options
     R, 116
     diameter, 116
     through, 116
\tkzDrawCircles[\langlelocal options\rangle](\langle A, B C, D ...\rangle), 116
\t \DrawCircle[(local options)]((A,B)), 115
\tkzDrawLine, 109
\tkzDrawLine: options
     TikZ options, 109
     ..., 109
     add, 109
\tkzDrawLines, 109
\tkzDrawLines[\local options\rightarrow](\local pt3,pt4 ...\rightarrow),109
\time [(local options)]((pt1,pt2)), 109
\tkzDrawPoint(A,B),216
\tkzDrawPoint, 107
\tkzDrawPoint: arguments
    name of point, 107
\tkzDrawPoint: options
    TikZ options, 107
     color, 107
     shape, 107
     size, 107
\tkzDrawPoints(A,B,C),108
\tkzDrawPoints, 107, 108, 216
\tkzDrawPoints: arguments
     points list, 108
\tkzDrawPoints: options
     color, 108
     shape, 108
     size, 108
\tkzDrawPoints[\langlelocal options\rangle](\langlelocal), 108
\t \DrawPoint[(local options)]((name)), 107
\tkzDrawPolygon, 113
\verb|\tkzDrawPolygon: arguments| \\
     (\langle pt1, pt2, pt3, \ldots \rangle), 113
\tkzDrawPolygon: options
```

```
Options TikZ, 113
\tkzDrawPolygons, 21
\tkzDrawPolygon[\langlelocal options\rangle](\langlepoints list\rangle), 113
\tkzDrawPolySeg, 114
\tkzDrawPolySeg: arguments
     (\(\pt1,\pt2,\pt3,\ldots\)), 114
\tkzDrawPolySeg: options
     Options TikZ, 114
\tkzDrawPolySeg[\langlelocal options\rangle](\langlepoints list\rangle), 114
\tkzDrawSector(0,A)(B),123
\tkzDrawSector[R with nodes](0,2)(A,B),123
\tkzDrawSector[R,color=teal](0,2)(30,90),123
\tkzDrawSector[rotate,color=red](0,A)(90),123
\tkzDrawSector, 123-125
\tkzDrawSector: options
     R with nodes, 123
     R. 123
     rotate, 123
     towards, 123
\text{tkzDrawSector}[\langle \text{local options} \rangle](\langle 0,...\rangle)(\langle ...\rangle), 123
\tkzDrawSegment(A,B A,C),217
\tkzDrawSegment, 20, 110
\tkzDrawSegment: arguments
     (pt1,pt2),110
\tkzDrawSegment: options
    TikZ options, 110
     ..., 110
     {\tt dim}, 110
\tkzDrawSegments[color = gray, style=dashed] {B,B' C,C'}, 217
\tkzDrawSegments, 112, 217
\tkzDrawSegments[\langlelocal options\rangle](\langlept1,pt2 pt3,pt4 \ldots\rangle),112
\tkzDrawSegment[\langlelocal options\rangle](\langlept1,pt2\rangle),110
\tkzDrawSemiCircle, 119
\tkzDrawSemiCircle: arguments
     (\langle pt1, pt2 \rangle), 119
\tkzDrawSemiCircle: options
     diameter, 119
     through, 119
\tkzDrawSemiCircles, 21, 119
\tkzDrawSemiCircles: arguments
     (\(\rho \text{pt1}, \rho \text{pt2} \text{ pt3}, \rho \text{t4} \\ \dots\)), 119
\tkzDrawSemiCircles: options
     diameter, 119
     through, 119
\t \t \D raw Semi Circle [(local options)] ((A,B)), 119
\tkzDrawTriangles, 21
\tkzDuplicateLen, 164
\tkzDuplicateLength, 164
\tkzDuplicateSegment, 164
\tkzDuplicateSegment: arguments
     (pt1,pt2)(pt3,pt4){pt5},164
\t \t DuplicateSegment(\langle pt1, pt2 \rangle)(\langle pt3, pt4 \rangle) \{\langle pt5 \rangle\}, 164
\tkzFillAngle, 129, 130, 207
\tkzFillAngle: options
     size, 130
\tkzFillAngles, 130
\text{tkzFillAngles}[\langle \text{local options} \rangle](\langle A, O, B \rangle)(\langle A', O', B' \rangle) \text{ etc.}, 130
```

```
\text{tkzFillAngle[(local options)]((A,0,B)),} 130
\tkzFillCircle, 79, 126
\tkzFillCircle: options
    R, 126
    radius, 126
\text{tkzFillCircle[(local options)]((A,B)),} 126
\tkzFillPolygon, 128
\tkzFillPolygon: arguments
     (\(\pt1,\pt2,\ldots\)), 128
\tkzFillPolygon[\langlelocal options\rangle](\langlepoints list\rangle), 128
\tkzFillSector(0,A)(B),129
\tkzFillSector[R with nodes](0,2)(A,B),129
\text{tkzFillSector}[R, \text{color=blue}](0,2)(30,90),129
\tkzFillSector[rotate,color=red](0,A)(90),129
\tkzFillSector, 128, 129
\tkzFillSector: options
    R with nodes, 129
    R, 129
    rotate, 129
     towards, 129
\label{local options} $$ \text{tkzFillSector}[\langle local options \rangle](\langle 0,... \rangle)(\langle ... \rangle), 129 $$
\tkzFindAngle, 98
\tkzFindAngle: arguments
     (pt1,pt2,pt3),98
\tkzFindAngle(\(\rho t1, pt2, pt3\)),98
\tkzFindSlopeAngle, 100, 101
\tkzFindSlopeAngle: arguments
     (pt1,pt2), 100
\t XFindSlopeAngle(\langle A,B \rangle), 100
\tkzGetAngle, 98, 100
\tkzGetAngle: arguments
    name of macro, 98
\tkzGetAngle(\(\langle\) of macro\(\rangle\), 98
\tkzGetFirstPoint{A}, 217
\tkzGetFirstPoint{Jb},82
\tkzGetFirstPoint{M},29
\text{\tx}GetFirstPoint, 29, 74
\tkzGetFirstPoint: arguments
    ref1,29
\text{tkzGetFirstPoint}(\langle ref1 \rangle), 29
\tkzGetLength{dAB}, 165
\tkzGetLength, 30, 79, 165, 166
\tkzGetLength: arguments
    \verb|name| of a macro, 30|
\t xGetLength{\langle name of a macro \rangle}, 30
\tkzGetPoint(A),216
\t A, 216, 217
\tkzGetPoint{C},52
\tkzGetPoint{M},29
\tkzGetPoint{M}, 43
\tkzGetPoint, 8, 21, 29, 30, 32, 34-36, 52, 58, 63, 76, 79, 102
\tkzGetPoint: arguments
    ref, 29
\tkzGetPointCoord, 167
\tkzGetPointCoord: arguments
     (point) {name of macro}, 167
\t XCetPointCoord((A)){(name of macro)}, 167
\tkzGetPoints{A}{B}, 217
```

```
\tkzGetPoints{M,N},29
\tkzGetPoints{0'}{M'},85
\tkzGetPoints, 29, 58, 74-76, 85
\tkzGetPoints: arguments
     \{ref1, ref2\}, 29
\t X = \frac{\langle ref1 \rangle}{\langle ref2 \rangle}, 29
\tkzGetPointsz1z2,87
\text{tkzGetPoint}(\langle ref \rangle), 29
\tkzGetRandPointOn, 21, 102
\tkzGetSecondPoint{A}, 217
\tkzGetSecondPoint{M} ,30
\tkzGetSecondPoint{Tb},82
\tkzGetSecondPoint, 30, 74
\tkzGetSecondPoint: arguments
     ref2,30
\t X
\tkzGetVectxy, 56, 57
\tkzGetVectxy: arguments
      (point) {name of macro}, 56
\t X = \t X = (A, B) {\langle text \rangle}, 56
\tkzInit, 10, 15, 20, 132
\tkzInit: options
     xmax, 132
     xmin, 132
     xstep, 132
     ymax, 132
     ymin, 132
     ystep, 132
\tkzInit[(local options)], 132
\tkzInterCC, 29, 94
\tkzInterCC: options
     N, 94
     R, 94
     with nodes, 94
\tkzInterCCN, 94
\tkzInterCCR, 94
\label{eq:local_continuous_continuous} $$ \text{tkzInterCC[}(options)]((O,A))((O',A'))$ or $((O,r))((O',r'))$ or $((O,A,B))$ $((O',C,D))$, 94 $$ $$ $$
\tkzInterLC,89
\tkzInterLC: options
     N, 89
     R, 89
     with nodes, 89
\time The LC[\langle options \rangle](\langle A, B \rangle)(\langle O, C \rangle) \text{ or } (\langle O, r \rangle) \text{ or } (\langle O, C, D \rangle), 89
\tkzInterLL,89
\text{\tkzInterLL}(\langle A, B \rangle)(\langle C, D \rangle), 89
\tkzLabelAngle, 152
\tkzLabelAngle: options
     pos, 152
\tkzLabelAngles, 154
\t LabelAngles[(local options)]((A,0,B))((A',0',B'))etc.,154
\t XLabelAngle[\langle local options \rangle](\langle A, O, B \rangle), 152
\tkzLabelArc, 155
\tkzLabelArc: arguments
     (pt1,pt2,pt3),155
     label, 155
\tkzLabelArc: options
\t \sum_{\alpha \in \{(\log \alpha) \in (\alpha, pt2, pt3)\}} {\langle (pt1, pt2, pt3) \rangle} {\langle (\log \alpha) \rangle}, 155
```

```
\tkzLabelCircle, 79, 154
\tkzLabelCircle: options
                  R, 154
                  radius, 154
\label{local options} $$ \time (A,B)(\langle A,B \rangle)(\langle A,B \rangle)(\langle A,B \rangle) (\langle A,B \rangle) 
\tkzLabelLine(A,B), 152
\tkzLabelLine, 20, 152
\tkzLabelLine: arguments
                  label, 152
\tkzLabelLine: options
                 pos, 152
\t \sum_{(pt1,pt2)} {\langle label \rangle}, 152
\t XLabelPoint(A) \{ A_1 \}, 148
\tkzLabelPoint(A,B,C), 149
\tkzLabelPoint, 148
\tkzLabelPoint: arguments
                  point, 148
\tkzLabelPoint: options
                  TikZ options, 148
\tkzLabelPoints(A,B,C), 148
\tkzLabelPoints, 148, 149
\tkzLabelPoints: arguments
                  list of points, 148, 149
\texttt{\tkzLabelPoints[\langle local options \rangle](\langle A_1, A_2, ... \rangle), 148, 149}
\t \sum_{\alpha \in \mathbb{Z}} (\langle point \rangle) {\langle label \rangle}, 148
\text{\tkzLabelSegment(A,B)}{5}, 150, 155
\tkzLabelSegment, 150
\tkzLabelSegment: arguments
                   (pt1,pt2), 150
                  label, 150
\tkzLabelSegment: options
                  pos, 150
\tkzLabelSegments, 151
\tkzLabelSegments[\langlelocal options\rangle](\langlept1,pt2 pt3,pt4 ...\rangle), 151
\t \sum_{\alpha \in \mathbb{Z}} (\langle pt1, pt2 \rangle) {\langle label \rangle}, 150
\tkzMarkAngle, 143, 144, 207
\tkzMarkAngle: options
                  arc, 144
                  mark, 144
                  mkcolor, 144
                  mkpos, 144
                 mksize, 144
                  size, 144
\tkzMarkAngles, 144
\label{local options} $$ \txxMarkAngles[(local options)]((A,0,B))((A',0',B'))$ etc., 144 $$
\text{\tx}_Angle[\langle local options \rangle](\langle A, O, B \rangle), 144
\tkzMarkArc, 143
\tkzMarkArc: options
                  color, 143
                 mark, 143
                 pos, 143
                  size, 143
\tkzMarkArc[\langlelocal options\rangle](\langlept1,pt2,pt3\rangle),143
\tkzMarkRightAngle, 144, 145
\tkzMarkRightAngle: options
                  german, 145
                   size, 145
\tkzMarkRightAngles, 146
```

```
\t XBARR Angles [(local options)] ((A,0,B)) ((A',0',B')) etc., 146
\text{tkzMarkRightAngle}[\langle local options \rangle](\langle A, O, B \rangle), 145
\tkzMarkSegment, 142
\tkzMarkSegment: options
     {\tt color}, 142
     mark, 142
     pos, 142
     size, 142
\tkzMarkSegments, 142
\tkzMarkSegments[\langlelocal options\rangle](\langlept1,pt2 pt3,pt4 \ldots\rangle), 142
\tkzMarkSegment[\langlelocal options\rangle](\langlept1,pt2\rangle), 142
\tkzProtractor, 163
\tkzProtractor: options
     lw, 163
     return, 163
     scale, 163
\text{tkzProtractor}[\langle \text{local options} \rangle](\langle O, A \rangle), 163
\tkzpttocm, 166
\tkzpttocm: arguments
     (nombre) name of macro, 166
\t (nombre) {(name of macro)}, 166
\tkzSaveBB, 20
\tkzSetUpArc, 21, 172
\tkzSetUpArc: options
     color, 172
     \verb|line| width, 172|
     style, 172
\tkzSetUpArc[\langlelocal options\rangle], 172
\tkzSetUpColors, 169
\tkzSetUpCompass, 21, 173, 174
\tkzSetUpCompass: options
     color, 173
     delta, 173
     line width, 173
     style, 173
\tkzSetUpCompass[\langlelocal options\rangle],173
\tkzSetUpLabel, 21, 174
\tkzSetUpLine, 21, 108, 171
\tkzSetUpLine: options
     {\tt add,}\ 171
     color, 171
     line width, 171
     style, 171
\tkzSetUpLine[\langlelocal options\rangle], 171
\text{\txsSetUpPoint}, 21, 169-171
\tkzSetUpPoint: options
     \verb"color", 169
     fill, 169
     shape, 169
     size, 169
\tkzSetUpPoint[\langlelocal options\rangle],169
\tkzSetUpStyle, 21, 174
\tkzSetUpStyle[\langlelocal options\rangle], 174
\tkzShowBB, 133, 134
\tkzShowBB[\local options\right)],133
\tkzShowLine, 160, 161, 174
\tkzShowLine: options
     K, 160
```

```
\verb|bisector|, 160
                    gap, 160
                    length, 160
                   {\tt mediator}, 160
                    \verb|orthogonal|, 160
                    {\tt perpendicular,}\,160
                    \verb"ratio", 160
                    \mathtt{size}, 160
\label{local_options} $$ \txshowLine[\langle local options \rangle] (\langle pt1, pt2 \rangle) or (\langle pt1, pt2, pt3 \rangle), 160 $$
\tkzShowTransformation, 161, 162
\tkzShowTransformation: options
                   K, 161
                    gap, 161
                   length, 161
                    \verb|projection=onto|| \verb|pt1--pt2|, 161||
                    \verb"ratio", 161
                    reflection= over pt1--pt2, 161
                    size, 161
                    symmetry=center pt, 161
                    translation=from pt1 to pt2, 161
\tkzTangent, 60
\verb|\useasboundingbox|, 132|
\usetkzobj{all},20
\usetkztool, 21
\Vx, 56
\Vy, 56
\xspace \xsp
\ystep, 132
```