ASTR 589 – Physics of Astrophysics

Assignment I on Radiative Transfer and Processes

Due Date: Thursday September 14 on D2L by end of day

- 1. Analytically or numerically integrate the 1D, time independent radiative transfer equation through a slab (or use the formal solution to the transfer equation) to find $I_{\nu}(\mu)$ for the following source functions and temperature profiles:
 - a. $S_{\nu}(T) = B_{\nu}(T)$ and T(z) = const.

b.
$$S_{\nu}(T) = B_{\nu}(T)$$
 and $T(z) = T_0 \tau^2$

Here, τ is the dimensionless depth variable at $\mu = 1$, $B_{\nu}(T)$ is the blackbody function, and you may take $\tau_{\text{max}} = 10$ through the entire slab for $\mu = 1$ (i.e., at normal incidence to the slab). The boundary conditions are $I_{\nu}(\mu) = 0$ for $-1 \le \mu < 0$ specified at $\tau = 0$ and $I_{\nu}(\mu) = 0$ for $0 \le \mu \le 1$ specified at $\tau = \tau_{\text{max}}$.

- 2. A distant source emits blackbody radiation at temperature T_s . There is an intervening nebula at temperature $T_n < T_s$. Calculate the specific intensity of the radiation you would observe by looking at the source through the nebula as well as along a line of sight to the nebula that does not intersect the source. You may assume that the frequency of observation is smaller than both kT_s and kT_n so that you may work in the Rayleigh-Jeans limit. Can you use these two observations to infer the optical depth through the nebula at that wavelength?
- 3. Photoionization is a process in which a photon is absorbed by an atom and an electron is ejected. An energy at least equal to the ionization potential is required. Let this energy be $h\nu_0$ and let σ_{ν} be the cross section for photoionization. Show that the number of photoionizations per unit volume and per unit time is

$$4\pi n_a \int_{\nu_0}^{\infty} \frac{\sigma_{\nu} J_{\nu}}{h \nu} d\nu,$$

where n_a is the number density of atoms.

4. We discussed in class that there is a close connection but not a one-to-one relationship between the photon mean-free-path λ_p and the degree of isotropy of the radiation field. Give an example for each case (where l is the characteristic length scale of the medium):

$$\lambda_p << l$$

but I_{ν} is anisotropic; and

$$\lambda_p > l$$

but I_{ν} is isotropic. Note that the second case is more rare.