Suppose that f is a differentiable real function in an open set $E \subset \mathbb{R}^n$, and that f has a local maximum at a point $x \in E$. Prove that f'(x) = 0

slu.

Fix $y \in \mathbb{R}^n$,

Let
$$\gamma: [-1,1] \longrightarrow \mathbb{R}^m; t \mapsto \mathbf{x} + t\mathbf{y}$$

Let
$$\phi: [-1,1] \longrightarrow \mathbb{R}; \phi = f \circ \gamma$$

Since γ is differentiable, $(-1,1) \subset [-1,1]$ is open, and f maps $\gamma(-1,1)$ into \mathbb{R} , it follows by Theorem 9.15 that ϕ is differentiable on (-1,1). And formula (22) holds for -1 < t < 1,

$$\phi'(t) = f'(\gamma(t))\gamma'(t) \tag{1}$$

Since, x is a local maximum of f. It follows that 0 is a local maximum of ϕ , since $\phi(0) = f(x)$.

Since ϕ has local maximum at t=0, it follows from Theorem 5.8 that $\phi'(0)=0$, then

$$f'(\gamma(0))\gamma'(0) = f'(x)y = 0$$
 (2)

Since y was an arbitrary non zero vector it follows that,

$$f'(\mathbf{x}) = 0$$