CLAIMS

What is claimed is:

- 1. (Withdrawn) A method for treating, preventing or inhibiting tumor cell metastasis in a subject comprising administering to the subject in need of such therapy a therapeutically effective amount of an activated $\alpha_{11b}\beta_3$ receptor antagonist.
- 2. (Withdrawn) The method of claim 1, wherein the tumor cell metastasis targets an organ system of the subject.
- 3. (Withdrawn) The method of claim 2, wherein the tumor cell metastasis targets a skeletal system of the subject.
- 4. (Withdrawn) The method of claim 3, wherein the tumor cell metastasis targets a bone of the subject skeletal system.
- 5 (Withdrawn) The method of claim 3, wherein the tumor cell metastasis targets a bone cell of the subject skeletal system.
- 6. (Withdrawn) The method of claim 1, wherein the antagonist is a platelet-specific activated $\alpha_{\text{Hb}}\beta_3$ receptor antagonist.
- 7. (Withdrawn) The method of claim 1, wherein the platelet-specific activated $\alpha_{IIb}\beta_3$ receptor antagonist is a spiro compound.
- 8. (Withdrawn) The method of claim 7, wherein the spiro compound is represented by the formula:

$$Q-(L)_{Z}-Z-R_{3}$$

wherein

Z is a spirocyclic nucleus selected from the group consisting of Nucleus (A), (B), (C), or (D) represented by the formulas:

Nucleus (A) Nucleus (B)
$$\frac{(CH_2)_r}{(R_{10})m} \frac{A_{42}}{(CH_2)_s} \frac{(R_0)_n}{A_{43}} \frac{(CH_2)_r}{(R_{10})m} \frac{A_{51}}{(CH_2)_s} \frac{A_{51}}{A_{53}} \frac{A_{52}}{(R_0)_n} \frac{(R_0)_n}{(CH_2)_s} \frac{A_{61}}{A_{62}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_r}{(CH_2)_s} \frac{A_{71}}{A_{73}} \frac{A_{73}}{(R_0)_n} \frac{(CH_2)_r}{(R_{10})m} \frac{A_{72}}{(CH_2)_s} \frac{A_{73}}{A_{74}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_s}{(R_{10})m} \frac{A_{72}}{(R_0)_n} \frac{A_{73}}{(R_0)_n} \frac{(CH_2)_r}{(R_{10})m} \frac{A_{73}}{(R_0)_n} \frac{(CH_2)_r}{(R_0)_n} \frac{(CH_2)_r}{(R_0)_n} \frac{A_{73}}{(R_0)_n} \frac{(CH_2)_r}{(R_0)_n} \frac{(CH_2)_r}{(R_0)_n} \frac{A_{73}}{(R_0)_n} \frac{(CH_2)_r}{(R_0)_n} \frac{(CH_2)_r}{(R_0)_n$$

wherein

the group Q--(L)_Z -- is bound to the nitrogen containing ring of nuclei (A), (B), (C), or (D) and the group R_3 is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} , or

the group R_3 is bound to the nitrogen containing ring and the group Q-- $(L)_Z$ -- is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} ;

r and s are independently a number from zero to 5 with the proviso that not both r or s are 0 and (r+s) is not more than 6, and z is zero or one;

atoms A₄₁, A₄₂, A₄₃, A₅₁, A₅₂, A₅₃, A₅₄, A₆₁, A₆₂, A₆₃, A₆₄, A₆₅, A₇₁, A₇₂, A₇₃, A₇₄, A₇₅, or A₇₆ are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one of said atoms is carbon;

provided that the hydrogens of the nitrogen containing part of the spirocycle Z may be substituted by a number of m substituents R_{10} , wherein;

m is a number from zero to (r+s); and

 R_{10} is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one or two R_{10} may be ===0 or ===S;

n is a number from zero to 3 in Z of having nuclei (A), or a number from zero to 4 in Z having nuclei (B), a number from zero to 5 in Z having nuclei (C), or a number from zero to 6 in Z having nuclei (D);

 R_0 is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one or two R_0 may be ===O or ===S, and

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.

9: (Withdrawn) The method of claim 7, wherein the spiro compound is represented by the formula:

wherein

atoms A_i and B_j are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one atom of A_i is carbon, and at least one atom B_i is carbon;

optionally, the rings of the spirobicycle formed by A_i and B_j, respectively, are partly unsaturated;

p and q are independently numbers from 2 to 6; m is a number from zero to p;

 R_{10} is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one R_{10} may be ===0 or ===S, if p is 2 or one or two R_{10} may be ===0 or ===S, if p is a number from 3 to 6;

n is the number from zero to q;

 R_0 is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one R_0 may be ===0 or ===S, if q is 2 or one or two R_0 may be ===0 or ===S, if q is a number from 3 to 6;

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof

10. (Withdrawn) The method of claim 7, wherein the spiro compound is represented

$$Q$$
 $(R_0)_n$ $(R_0)_n$

by the formula: wherein

the spirocycle having $(A_i)_p$, C, and $(B_j)_q$ is m is a number from zero to 9;

R₁₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo,

n is a number from zero to 2;

R₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo,

wherein Q--(L) is attached at a and R₃ is attached at b;

--(L)-- is a bond or a substituted or unsubstituted chain selected from the group consisting of CO, $CO(C_1-C_6 \text{ alkyl})$, $O(C_1-C_6 \text{ alkyl})$, NHCO, and $C_1-C_6 \text{ alkyl}$;

Q is a basic group selected from the group consisting of amino, imino, amidino, hydroxyamidino, N-alkylamidine, N,N'-dialkylamidine, N-arylamidine, aminomethyleneamino, aminomethylamino, guanidino, aminoguanidino, alkylamino, dialkylamino, trialkylamino, alkylideneamino, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, amide, thioamide, benzamidino, pteridinyl, 4aH-carbozolyl, carbozolyl, beta-carbolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, phenarsazinyl, phenothiazinyl, pyrrolinyl, imidazolidinyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl, indolinyl, isoindolinyl quinuclidinyl, morpholinyl, any of the foregoing radicals substituted on a benzene ring, optionally substituted with R_{2c}, wherein R_{2c} is hydrogen or halogen and any of the foregoing radicals substituted by amino, imino, amidino, hydroxyamidino, aminomethyleneamino,

iminomethylamino, guanidino, alkylamino, dialkylamino, trialkylamino, tetrahydroisoquinoline, dihydrosioindole, alkylideneamino or

; and

 R_3 is an acidic group selected from the group consisting of CO_2 R_5 , $(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 $CONH(C_1-C_6$ alkyl), CO_2 aryl, or $CONH(C_1-C_6)$ alkyl); and

R₅ is hydrogen, C₁-C₆ alkyl, aryl, or substituted aryl; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.

11. (Withdrawn) The method of claim 7, wherein the spiro compound is represented by the formula:

or a pro-drug thereof.

12. (Withdrawn) The method of claim 11, wherein the pro-drug is represented by the formula.

13. (Currently amended) A method for inhibiting metastasis of a tumor cell growth in a subject, the method comprising administering to the a subject in need of such therapy thereof a therapeutically effective amount of an activated α_{IIb}β₃ receptor antagonist in an amount effective to inhibit the ability of a bone microenvironment to support metastatic migration of a tumor cell within the microenvironment.

14-17. (Canceled)

18. (Original) The method of claim 13, wherein the antagonist is a platelet-specific activated $\alpha_{IIb}\beta_3$ receptor antagonist.

- 19. (Original) The method of claim 18, wherein the platelet-specific activated $\alpha_{IIb}\beta_3$ receptor antagonist is a spiro compound.
- 20. (Original) The method of claim 19, wherein the spiro compound is represented by the formula:

$$Q--(L)_Z--Z--R_3$$

wherein

Z is a spirocyclic nucleus selected from the group consisting of Nucleus (A), (B), (C), or (D) represented by the formulas:

Nucleus (A) Nucleus (B)
$$\frac{(CH_2)_r}{(R_{10})m} \frac{A_{42}}{(CH_2)_s} \frac{(R_0)_n}{A_{43}} \frac{(CH_2)_r}{(R_{10})m} \frac{A_{51}}{(CH_2)_s} \frac{A_{54}}{A_{54}} \frac{A_{52}}{(R_0)_n} \frac{(CH_2)_r}{A_{53}} \frac{A_{73}}{(R_0)_r} \frac{(CH_2)_r}{A_{63}} \frac{A_{73}}{(R_{10})m} \frac{(CH_2)_r}{(CH_2)_s} \frac{A_{73}}{A_{74}} \frac{(R_0)_r}{(R_{10})m} \frac{(CH_2)_r}{(CH_2)_s} \frac{A_{73}}{A_{74}} \frac{(R_0)_r}{(CH_2)_s} \frac{A_{74}}{A_{74}} \frac{A_{73}}{A_{74}} \frac{(R_0)_r}{(CH_2)_s} \frac{A_{74}}{A_{74}} \frac{A_{74}}{A_{74}} \frac{A_{74}}{A_{74}} \frac{A_{74}}{A_{74}} \frac{A_{75}}{(R_0)_r} \frac{A_{75}}{A_{75}} \frac{A_{7$$

wherein

the group Q--(L)_Z -- is bound to the nitrogen containing ring of nuclei (A), (B), (C), or (D) and the group R_3 is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} , or

the group R_3 is bound to the nitrogen containing ring and the group $Q_{--}(L)_Z$ -- is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} ;

r and s are independently a number from zero to 5 with the proviso that not both r or s are 0 and (r+s) is not more than 6, and z is zero or one;

atoms A₄₁, A₄₂, A₄₃, A₅₁, A₅₂, A₅₃, A₅₄, A₆₁, A₆₂, A₆₃, A₆₄, A₆₅, A₇₁, A₇₂, A₇₃, A₇₄, A₇₅, or A₇₆ are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one of said atoms is carbon;

the hydrogens of the nitrogen containing part of the spirocycle Z may be substituted by a number of m substituents R₁₀, wherein;

m is a number from zero to (r+s); and

 R_{10} is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one or two R_{10} may be ===0 or ===S;

n is a number from zero to 3 in Z of having nuclei (A), or a number from zero to 4 in Z having nuclei (B), a number from zero to 5 in Z having nuclei (C), or a number from zero to 6 in Z having nuclei (D);

 R_0 is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one or two R_0 may be ===0 or ===S, and

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen,

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.

21 (Original) The method of claim 19, wherein the spiro compound is represented by the formula

wherein

atoms A_i and B_j are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one atom of A_i is carbon, and at least one atom B_j is carbon;

optionally, the rings of the spirobicycle formed by A_i and B_j, respectively, are partly unsaturated;

p and q are independently numbers from 2 to 6;

m is a number from zero to p;

 R_{10} is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===O, or ===S, with the proviso that only one R_{10} may be ===O or ===S, if p is 2 or one or two R_{10} may be ===O or ===S, if p is a number from 3 to 6;

n is the number from zero to q;

 R_0 is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one R_0 may be ===0 or ===S, if q is 2 or one or two R_0 may be ===0 or ===S, if q is a number from 3 to 6;

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.

22. (Canceled)

23. (Previously presented) The method of claim 19, wherein the spiro compound is represented by the formula:

or a pro-drug thereof.

24. (Previously presented) The method of claim 19, wherein the spiro compound is represented by the formula:

- 25. (Withdrawn) A method for destroying a tumor in a subject comprising administering to the subject in need of such therapy a therapeutically effective amount of an activated $\alpha_{Hb}\beta_3$ receptor antagonist.
- 26. (Withdrawn) The method of claim 25, wherein the tumor cell resides in an organ system of the subject.
- 27. (Withdrawn) The method of claim 26, wherein the tumor cell resides in a skeletal system of the subject.
- 28. (Withdrawn) The method of claim 27, wherein the tumor cell resides in a bone of the subject skeletal system.
- 29. (Withdrawn) The method of claim 27, wherein the tumor cell resides in a bone cell of the subject skeletal system.
- 30. (Withdrawn) The method of claim 25, wherein the antagonist is a platelet-specific activated $\alpha_{IIb}\beta_3$ receptor antagonist.
- 31. (Withdrawn) The method of claim 30, wherein the platelet-specific activated $\alpha_{\text{IIb}}\beta_3$ receptor antagonist is a spiro compound.

32. (Withdrawn) The method of claim 31, wherein the spiro compound is represented by the formula:

$$Q-(L)_{Z}-Z-R_{3}$$

wherein

Z is a spirocyclic nucleus selected from the group consisting of Nucleus (A), (B), (C), or (D) represented by the formulas:

Nucleus (A) Nucleus (B)
$$\frac{(CH_2)_r}{(R_{10})m} \frac{A_{42}}{(CH_2)_s} \frac{(R_0)_n}{A_{43}} \frac{(CH_2)_r}{(R_{10})m} \frac{A_{51}}{(CH_2)_s} \frac{A_{52}}{A_{53}} \frac{(R_0)_n}{A_{53}}$$
Nucleus (C) Nucleus (D)
$$\frac{(CH_2)_r}{(CH_2)_r} \frac{A_{61} - A_{62}}{A_{63}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_r}{(CH_2)_s} \frac{A_{73}}{A_{74}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_s}{(CH_2)_s} \frac{A_{73}}{A_{74}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_s}{(CH_2)_s} \frac{A_{74}}{A_{74}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_s}{(CH_2)_s} \frac{A_{74}}{A_{74}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_s}{(CH_2)_s} \frac{A_{74}}{A_{74}} \frac{(R_0)_n}{(R_{10})m} \frac{(CH_2)_s}{(CH_2)_s} \frac{A_{75}}{A_{75}} \frac{(R_0)_n}{(R_10)_m} \frac{(CH_2)_s}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(CH_2)_s}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(CH_2)_s}{(CH_2)_s} \frac{(R_0)_n}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_n}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_n}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_n}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_n}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_n}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_n}{(CH_2)_s} \frac{(R_0)_n}{(R_10)_m} \frac{(R_0)_$$

wherein

the group Q--(L)_Z -- is bound to the nitrogen containing ring of nuclei (A), (B), (C), or (D) and the group R_3 is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} , or

the group R_3 is bound to the nitrogen containing ring and the group $Q_{--}(L)_Z$ -- is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} ,

r and s are independently a number from zero to 5 with the proviso that not both r or s are 0 and (r+s) is not more than 6, and z is zero or one;

atoms A₄₁, A₄₂, A₄₃, A₅₁, A₅₂, A₅₃, A₅₄, A₆₁, A₆₂, A₆₃, A₆₄, A₆₅, A₇₁, A₇₂, A₇₃, A₇₄, A₇₅, or A₇₆ are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one of said atoms is carbon;

the hydrogens of the nitrogen containing part of the spirocycle Z may be substituted by a number of m substituents R_{10} , wherein,

m is a number from zero to (r+s); and

 R_{10} is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one or two R_{10} may be ===0 or ===S;

n is a number from zero to 3 in Z of having nuclei (A), or a number from zero to 4 in Z having nuclei (B), a number from zero to 5 in Z having nuclei (C), or a number from zero to 6 in Z having nuclei (D);

 R_0 is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one or two R_0 may be ===0 or ===S; and

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.

33. (Withdrawn) The method of claim 31, wherein the spiro compound is

represented by the formula: wherein

atoms A_i and B_j are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one atom of A_i is carbon, and at least one atom B_i is carbon,

optionally, the rings of the spirobicycle formed by A_i and B_j, respectively, are partly unsaturated:

p and q are independently numbers from 2 to 6; m is a number from zero to p;

 R_{10} is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===S, with the proviso that only one R_{10} may be ===0 or ===S, if p is 2 or one or two R_{10} may be ===0 or ===S, if p is a number from 3 to 6,

n is the number from zero to q;

R₀ is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===O, or ===S, with the proviso that only one R₀ may be ===O or ===S, if q is 2 or one or two R₀ may be ===O or ===S, if q is a number from 3 to 6;

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof...

34. (Withdrawn) The method of claim 31, wherein the spiro compound is

represented by the formula: wherein

the spirocycle having $(A_i)_p$, C, and $(B_j)_q$ is m is a number from zero to 9;

R₁₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo;

n is a number from zero to 2;

R₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo;

wherein Q--(L) is attached at a, and R₃ is attached at b;

--(L)-- is a bond or a substituted or unsubstituted chain selected from the group consisting of CO, $CO(C_1-C_6 \text{ alkyl})$, $O(C_1-C_6 \text{ alkyl})$, NHCO, and $C_1-C_6 \text{ alkyl}$;

Q is a basic group selected from the group consisting of amino, imino, amidino, hydroxyamidino, N-alkylamidine, N,N'-dialkylamidine, N-arylamidine, aminomethyleneamino, aminomethylamino, guanidino, aminoguanidino, alkylamino, dialkylamino, trialkylamino, alkylideneamino, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H;indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, amide, thioamide, benzamidino, pteridinyl, 4aH-carbozolyl, carbozolyl, beta-carbolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, phenarsazinyl, phenothiazinyl, pyrrolinyl, imidazolidinyl, imidazolidinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, indolinyl, isoindolinyl quinuclidinyl, morpholinyl, any of the foregoing radicals substituted on a benzene ring, optionally substituted with R_{2c}, wherein R_{2c} is hydrogen or halogen and any of the foregoing radicals substituted by amino, imino, amidino, hydroxyamidino, aminomethylamino, guanidino, alkylamino, dialkylamino, trialkylamino, tetrahydroisoquinoline, dihydrosioindole, alkylideneamino or

; and

 R_3 is an acidic group selected from the group consisting of CO_2 R_5 , $(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 $CONH(C_1-C_6$ alkyl), CO_2 aryl, or $CONH(C_1-C_6)$ alkyl), and

R₅ is hydrogen, C₁-C₆ alkyl, aryl, or substituted aryl; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.

35. (Withdrawn) The method of claim 31, wherein the spiro compound is represented by the formula:

or a pro-drug thereof.

36. (Withdrawn) The method of claim 35, wherein the pro-drug is represented by the formula:

- 37. (Withdrawn) A method for treating, preventing or inhibiting tumor cell metastasis to bone in a subject comprising replacing substantially all bone marrow affected by tumor cell metastasis transplant in the subject, wherein said bone marrow is replaced with β_3 bone marrow.
- 38. (Withdrawn) A method for treating, preventing or reversing tumor metastasis or formation comprising modulating β_3 integrin expression.
- 39. (Withdrawn) The method of claim 38, wherein the modulating β_3 integrin expression comprises decreasing the β_3 integrin expression in a mammalian cell.

- 40. (Withdrawn) The method of claim 39, wherein decreasing the expression comprises transforming the cell to express a polynucleotide anti-sense to at least a portion of an endogenous polynucleotide encoding β_3 integrin.
- 41. (Withdrawn) The method of claim 39, wherein decreasing the expression comprises transfecting the cell with a polynucleotide anti-sense to at least a portion of an endogenous polynucleotide encoding β_3 integrin.
- 42. (Withdrawn) The method of claim 39, wherein decreasing the expression comprises transfecting a cell with a siRNA targeting at least a portion of an endogenous polynucleotide encoding β integrin.