

Probability and NumPy

Probability

- Random Variables
- Joint and Marginal Distributions

- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the enemy?
- We denote random variables with capital letters
- Random variables have domains

- R in {true, false} (often write as {+r, -r})
- T in {hot, cold}
- D in $[0, \infty)$
- L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Associate a probability with each value

Probability Distributions

Unobserved random variables have distributions

P(T)		P(W	7)		
I	T	Р		W	Р
I	hot	0.5		sun	0.6
I	cold	0.5		rain	0.1
_				fog	0.3
				meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

•
$$P(W = rain) = 0.1$$

Probability Distributions

Must have:

$$\forall x \ P(X = x) \ge 0$$
$$\sum_{x} P(X = x) = 1$$

Shorthand notation (OK if all domain entries are unique):

```
P(hot) = P(T = hot),

P(cold) = P(T = cold),

P(rain) = P(W = rain),

...
```

Joint Distributions

• A joint distribution over a set of random variables $X_1, X_2, ..., X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, ... X_n = x_n)$$

 $P(x_1, x_2, ... x_n)$

• Must obey:

$$P(x_1, x_2, ... x_n) \ge 0$$

$$\sum_{(x_1, x_2, ... x_n)} P(x_1, x_2, ... x_n) = 1$$

Joint Distributions

• Size of distribution if n variables with domain sizes d?

.........

For all but the smallest distributions, impractical to write out!

Probabilistic Model

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes

- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0

P(T,W)						
Т	W	Р				
hot	sun	0.4				
hot	rain	0.1				
cold	sun	0.2				
cold	rain	0.3				

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a join distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)						
	Т	W	Р			
	hot	sun	0.4			
	hot	rain	0.1			
	cold	sun	0.2			
	cold	rain	0.3			

$$P(+x,+y)$$
?

$$P(+x)$$
?

$$P(-y, OR + x)?$$

P(X,Y)					
Х	Υ	Р			
+x	+y	0.2			
+x	-y	0.3			
-X	+y	0.4			
-X	-y	0.1			

Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

.........

Marginalization (summing out): Combine collapsed rows by adding

Conditional Probabilities

A simple relation between joint and conditional probabilities

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P(sun|cold)?

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

$$P(+x|+y)$$
?

$$P(-x|+y)?$$

?	P(-y +x)?

P(X,Y)						
Х	Υ	Р				
+x	+y	0.2				
+x	-у	0.3				
-X	+y	0.4				
-X	-y	0.1				

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Normalization Trick

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(W = s T = c) = \frac{P(W = s, T = c)}{P(T = c)}$
= P(W = s, T = c)
P(W = s, T = c) + P(W = r, T = c)
$-\frac{0.2}{}$
$=\frac{0.2}{0.2+0.3}=0.4$

$$P(W|T=cold)$$

W	Р
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

• P(X | Y = -y)?

Х	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

SELECT the joint probabilities matching the

evidence

........

NORMALIZE the selection (make it sum to one)

Normalization

- To bring or restore to a normal condition (all entries sum to 1)
- Procedure:
 - Step 1: Computer Z sum over all entries

.........

Step 2: Divide every entry by Z

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ • Query* variable: Q• Hidden variables: $H_1 \dots H_r$
- We want: $P(Q|e_{1...}e_k)$

- Step 1: Select the entries consistent with the evidence
- Step 2: Sum out H to get joint of Query and evidence
- Step 3: Normalize

$$Z = \sum_{q} P(Q, e_1 \dots e_k)$$

$$P(Q|e_1 ... e_k) = \frac{1}{Z}P(Q, e_1 ... e_k)$$

$$P(Q, e_1 ... e_k) = \sum_{h_1 ... h_r} P(Q, h_1 ... h_r, e_1 ... e_k)$$

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution

P(W|winter, hot)?

S	T	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \leftrightarrow P(x|y) = \frac{P(x,y)}{P(y)}$$

Example:

P(W)

W	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D, W)

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_3, ... x_n) = \prod_i P(x_i|x_1 ... x_i - 1)$$

Bayes' Rule

- Two ways to factor a join distribution over two variables:
- P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing both sides by P(y) we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Let us build one conditional from its reverse

Often one conditional is tricky but the other one is simple

Inference with Bayes' Rule

Example: Diagnostic probability from casual probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

$$P(+s|+m) = 0.8$$

$$P(+s|-m) = 0.01$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m)+P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

Posterior probability of meningitis still very small!!!

What is P(W|dry)?

P(W)

W	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

You have reached the end of the lecture.