Logical Inner–Form Pattern Map Cheat–Sheet for Choosing Proof Techniques

Strip off the quantifiers first, then match the logical "shape" of the remaining statement to a row below. The **preferred tactic** is usually the shortest route; if it stalls, switch to one of the alternatives in the "Why" column.

#	Canonical Inner Form	Typical Surface Wording	Preferred Proof Tactic	Why It's Natural
1	R(x)	Plain predicate (e.g. "x is prime")	Direct algebra / definition chase	No logical connectors to rearrange – just verify the property.
2	$P(x) \Rightarrow Q(x)$	"If x then"	Direct or Contrapositive	Choose the side (assume P vs. assume $\neg Q$) whose algebra is simpler.
3	$P(x) \Leftrightarrow Q(x)$	"iff"	Prove each direction as an implication	Each half may need a different trick.
4	$P(x) \Rightarrow [Q(x) \lor R(x)]$	"then Q or R "	Contrapositive	Negating the conclusion gives $\neg Q \land \neg R$, which is usually simpler than an inclusive OR.
5	$\begin{array}{c} [P(x) \land Q(x)] \Rightarrow \\ R(x) \end{array}$	"P and Q then R"	Direct	You already have two facts to leverage.
6	$P(x) \Rightarrow [Q(x) \land R(x)]$	"then both Q and R "	Direct (prove each part)	Must establish two conclusions explicitly.
7	$\forall x \; \exists y \; P(x,y)$	"For every x there exists y such that"	Construction	Reader expects a formula or algorithm that produces y from x .
8	$\exists x \ P(x)$	"There exists x such that"	Construction or non-constructive (pigeonhole, contradiction)	One explicit example suffices; if hard, argue existence indirectly.
9	$\forall n \geq n_0 \ P(n)$ where P references $n-1$, $n-2$,	Recursive/iterative integer claims	Mathematical induction (ordinary or strong)	The truth "propagates" along n .

10	Parity / Rationality / Divisibility patterns	even/odd, rational/irrational, divisible by k	Contrapositive or contradiction	Negations have compact algebraic forms (e.g. "not even" = $2k+1$).
11	Piecewise or absolute–value conditions	x < 1, max, min	Proof by cases	The definition itself already splits the domain.
12	Counting identity $A(n) = B(n)$	Binomial identities, combinatorial sums	Combinatorial (double–count) proof	Count the same set two different ways to avoid messy algebra.

Tip: When unsure, scribble one minute of scratch work using both the direct and contrapositive options; the cleaner path usually reveals itself quickly.