Example on Geometric Series

在圖中,兩條直綫 PR 和 QR 相交於 R 點。PR 上的點 $O_1 \times O_2 \times O_3 \times \cdots \times O_n$ 都是一些圓的圓心,使

- (I) $O_1R > O_2R > O_3R > \cdots > O_nR$;
- (II) 以 O_1 為圓心的圓與 RQ 相切於 S_1 ,以 O_2 為圓心的圓與 RQ 相切於 S_2 ,以 O_3 為圓心的圓與 RQ 相切於 S_3 ,餘此類推;
- (III) 以 O_1 為圓心的圓與以 O_2 為圓心的圓互相外切,而以 O_2 為圓心的圓與以 O_3 為圓心的圓 互相外切,餘此類推。

如果 $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ 分別表示以 $O_1 \cdot O_2 \cdot \cdots \cdot O_n$ 為圓心的圓的半徑,而 $r_1 = 10$, $O_1R = 20$ 。

- (a) (i) 試以 r_2 表示 O_1O_2 和 O_2R ,
 - (ii) 從而,求 r₂;
- (b) (i) 試以 r_3 表示 O_3R ,
 - (ii) 從而,求 r3;
- (c) 試求 r5;
- (d) 如果這個作圖的過程一直繼續下去,試求所有圓的面積的總和。

- (a) (i) Label the largest circle as c_1 , the second largest circle as c_2 , the third larest circle as c_3 , ... and so on.
 - c_1 touches c_2 at R_1 , c_2 touches c_3 at R_2 , \cdots and so on.

$$O_1S_1 \perp QR$$
, $O_2S_2 \perp QR$, $O_3S_3 \perp QR$, \cdots and so on (tangent \perp radii)

$$O_1S_1 = O_1R_1 = r_1$$
, $O_2S_2 = O_2R_2 = r_2$, $O_3S_3 = r_3$, ... and so on.

$$O_1O_2 = r_1 + r_2 = 10 + r_2$$

$$\Delta O_2 R S_2 \sim \Delta O_1 R S_1 \tag{A.A.A.}$$

$$\frac{O_2 R}{O_1 R} = \frac{O_2 S_2}{O_1 S_1}$$
 (cor. sides, ~\Delta s)

$$O_2R = 20 \times \frac{r_2}{10} = 2r_2$$

(ii) Draw $O_2A_1 // S_2S_1$, cutting O_1S_1 at A_1 .

Then
$$\angle O_1 A_1 O_2 = \angle O_1 S_1 S_2 = 90^{\circ}$$

 $A_1O_2S_2S_1$ is a rectangle

$$A_1S_1 = O_2S_2 = r_2$$

$$O_1A_1 = O_1S_1 - A_1S_1 = r_1 - r_2 = 10 - r_2$$

$$\Delta O_1 O_2 A_1 \sim \Delta O_1 R S_1$$

$$\frac{O_1 A_1}{O_1 O_2} = \frac{O_1 S_1}{O_1 R}$$

$$\frac{10 - r_2}{10 + r_2} = \frac{10}{20} = \frac{1}{2}$$

$$20 - 2r_2 = 10 + r_2$$

$$r_2 = \frac{10}{3}$$

(cor. \angle s $O_2A_1 // S_2S_1$)

(It has 3 right angles)

(opp. sides of rectangle)

(A.A.A.)

(cor. sides, $\sim \Delta s$)

(b) (i)
$$\Delta O_3 R S_3 \sim \Delta O_1 R S_1$$
 (A.A.A.)
$$\frac{O_3 R}{O_1 R} = \frac{O_3 S_3}{O_1 S_1}$$
 (cor. sides, $\sim \Delta s$)
$$O_3 R = 20 \times \frac{r_3}{10} = 2r_3$$

(ii) Draw
$$O_3A_2$$
 // S_3S_2 , cutting O_2S_2 at A_2 .
Then $\angle O_2A_2O_3 = \angle O_2S_2S_3 = 90^\circ$ (cor. $\angle s \ O_2A_1$ // S_2S_1)

 $A_2O_3S_3S_2$ is a rectangle (It has 3 right angles)

 $A_2S_2 = O_3S_3 = r_3$ (opp. sides of rectangle)

 $O_2A_2 = O_2S_2 - A_2S_2 = r_2 - r_3$
 $\Delta O_2O_3A_2 \sim \Delta O_1RS_1$ (A.A.A.)

 $\frac{O_2A_2}{O_2O_3} = \frac{O_1S_1}{O_1R}$ (cor. sides, $\sim \Delta s$)

 $\frac{r_2 - r_3}{r_2 + r_3} = \frac{10}{20} = \frac{1}{2}$
 $2r_2 - 2r_3 = r_2 + r_3$
 $r_3 = \frac{1}{3}r_2 = \frac{1}{3}\left(\frac{10}{3}\right) = \frac{10}{9}$

- (c) $r_1 = 10$, $r_2 = \frac{10}{3}$, $r_3 = \frac{10}{9}$, form a geometric sequence with common ratio $\frac{1}{3}$ $r_5 = 10 \times \left(\frac{1}{3}\right)^{5-1} = \frac{10}{81}$
- (d) Sum of areas of all cirles = $\pi (10)^2 + \pi \left(\frac{10}{3}\right)^2 + \pi \left(\frac{10}{9}\right)^2 + \cdots$ to infinity

The above series is a geometric series sum to infinity with common ratio $=\frac{1}{9}$

$$S_{\infty} = \frac{a}{1 - R} = \frac{100\pi}{1 - \frac{1}{9}} = \frac{225\pi}{2}$$