

June 2015 Final Examination

ELECTRIC CIRCUITS 1

ECSE-200S

June 12th 2015, 9:35am-12:35pm

Examiner: Professor O. Liboiron-Ladouceur

Student Name:	SOLUTIONS	McGill ID:	
Signature:			

INSTRUCTIONS:

- Print your name, fill in your student ID number and sign on the line above.
- You have three hours to complete this examination.
- This is a **CLOSED BOOK** examination. **NO CRIB SHEET** allowed.
- FACULTY STANDARD CALCULATOR permitted ONLY.
- Answer the problems in this examination. Show your work and clearly indicate your answer.
- Read through all questions and ensure that you have a complete examination.
- The examination consists of a total of 10 pages, including this cover page.
- The examination consists of 5 short questions (2 pts each) and 3 problems (10 pts each).
- The examination is worth a total of 40 points.

Course: ECSE-200S (Final Examination)

PART 2 - Problems

2.1. Consider the circuit shown below. The switch is closed for t<0s. Assume dc steady state behaviour for t<0. The switch opens at t=0s. Answer the following questions. [10pts]

- (a) Find the current $i_L(t)$ and plot it versus time t.
- (b) Find the voltage $v_L(t)$ for t > 0.
- (c) If the inductor was replaced by a capacitor, what would be the voltage across the capacitor at $t = 0^+$?

b)
$$V_{L}(t) : L \underline{di_{L}(t)}$$

$$= 1 \times 10^{-3} \underline{d} \left[6 \frac{1}{3} A + 2 \frac{2}{3} e^{-24k \cdot t} \right]$$

$$= 10^{35} \left[2 \frac{2}{3} \cdot (-24,000) e^{-24k \cdot t} \right]$$

$$V_{L}(t) = 64 e^{-24,000t} V, t > 0$$

$$V_{A} = 8A \cdot 16 \Omega = 128V$$

$$V_{B} = 0V$$

$$V_{C}(0+) = 128V$$

2.2. Consider the circuit shown below. Assume that the op-amp is ideal and that the circuit is in dc steady state. Answer the following questions. [10pts]

- (a) Find the power supplied by the voltage source and the current source?
- (b) Which resistor dissipates least amount of energy?
- (c) What is the energy stored in the capacitor and in the inductor?

a)
$$8V \sup_{QODI} : \frac{1}{600D} : \frac{4V}{300} : \frac{1}{75} A$$
 Pur $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{75} A \cdot 8V = \frac{106}{3} \frac{2}{3} \text{ mW}$
 $\frac{1}{7$

Page 7 of 10

U=1Li2=11H(200.1)2=88.8 MJ = inductor

Course: ECSE-200S (Final Examination)

2.3. Consider the circuit shown belowAnswer the following questions. [10pts]

- (a) Identify the super-mesh in the circuit above.
- (b) Find the current i_A using mesh analysis.
- (c) What is the power delivered by the current-dependent current source?

b) Super-mesh KVL:
$$6i_1 + 5(i_1+5+4i_2) + 10(i_1+5-i_2) = 0$$

 $6i_1 + 5i_1 + 25 + 24i_2 + 10i_1 + 50 - 10i_2 = 0$
Otherwish KVL: $10(i_2-i_1-5) + 2i_2 = 0$
 $10(i_2-i_1-5) + 2i_2 = 0$
 $10i_2 - 10i_1 - 50 + 2i_2 = 0$
 $-10i_1 + 12i_2 - 50 = 0$
 $i_1 = \frac{12}{10}i_2 - 5 - (2)$
(2) $i_1(1)$ $\frac{132}{10}i_2 - 55 + 14i_2 + 75 = 0$ $\frac{1}{10}i_2 - 5 - (2)$
 $132i_2 + 200 + 140i_2 = 0$

Course: ECSE-200S (Final Examination)

 $\frac{12}{10}\left(\frac{-200}{272}\right)-5=-5.88$ A