Using an IMU Array for cycle slip detection and repair

Artem Novichkov¹, Ilya Goncharov¹
¹Bauman Moscow State Technical University

23 September 2021

Содержание

- 1 Введение
- 2 IMU Cluster
- 3 Оценка выходных погрешностей
- 4 Интеграция ИНС/ГНСС
- 5 Сравнение кластера и аналогичного по характеристикам IMU

Аннотация

Текст аннотации

1 Введение

Режимы PPP и RTK являются одними из самых точных режимов позиционирования на сегодняшний день, предоставляя пользователю возможность определять свою позицию с миллиметровой точностью путем обработки фазовых измерений спутниковой навигационной системы. RTK нашел широкое практическое применение в различных областях: геодезия, сельское хозяйство, строительство. Не смотря на это, задача позиционирования в условиях прерывания непрерывного слежения за фазой радионавигационного сигнала до сих пор является актуальной и ее решение востребовано на практике, особенно в условиях городской среды.

В данной работе рассматривается схема интеграции инерциальной навигационной системы на базе кластера из четырех микромеханических инерциальных блоков MPU6050 и двухчастотного спутникового навигационного приемника с целью детектирования и исправления cycle slip-ов, возникающих вследствие прерывания слежения за фазой радионавигационного сигнала.

2 IMU Cluster

В настоящее время широкое распространение получили блоки инерциальных чувствительных элементов на базе MEMS-технологии. Их основными преимуществами являются: низкая стоимость, малые массогабаритные характеристики и низкое энергопотребление. Однако подобные приборы обладают низкой точностью: нестабильность нуля у гироскопов единицы-десятки градусов в час, а у акселерометров сотые-десятые доли милли-g.

Одним из путей повышения точности микромеханических бчэ является объединение их в массив (кластер). [ссылки на работы по кластеру]. Кластерные бчэ позволяют уменьшить шум в информационном сигнале в \sqrt{N} раз, где N - количество отдельных используемых бчэ. [ссылка]

Рис. 1: Печатная плата с кластерным БЧЭ

Для проверки и подтверждения характеристик кластерного бчэ в ходе данной работы была создана печатная плата (Рис. 1).

В состав разработанного кластерного БЧЭ входят шестиосные датчики фирмы Invensense MPU6050 (трехосный акселерометр и трехосный датчик угловых скоростей). Данные БЧЭ были выбраны вследствие их наибольшей распространнености и доступности. Каждый из MPU6050 располагается на печатной плате в вершинах квадрата со стороной 10 мм. Кроме того, они установлены так, чтобы соответствующие оси чувстительности каждого датчика были параллельны между собой.

В работе использовались следующие настройки для чувствительных элементов из состава MPU6050: диапазон измеряемых угловых скоростей - \pm 500 °/s; диапазон измеряемых линейных ускорений - \pm 4g. Съем информации с датчиков производился на частоте 100 Γ ц. Данные параметры были выбраны в предположении установки разрабатываемого устройства на маломаневренных, наземных объектах.

Таблица 1: Смещение нуля и дрейф от запуска к запуску акселерометров МРИ6050

Position	Axis	Mean, g	RTR, mg
	X	0.0686	0.068
Pos.1	Y	-0.0250	0.06
	Z	1.0199	0.2413
	X	0.0541	0.0943
Pos.2	Y	-0.0086	0.0501
	Z	-1.0121	0.2652
	X	1.0567	0.1836
Pos.3	Y	-0.0246	0.0878
	Z	0.0028	0.1113
	X	-0.9377	0.1664
Pos.4	Y	-0.0045	0.0966
	Z	-0.00004	0.2716
	X	0.0486	0.0729
Pos.5	Y	-1.0271	0.0152
	Z	-0.0071	0.2099
	X	0.0731	0.2276
Pos.6	Y	0.9929	0.1313
	Z	0.0171	0.2973

Таблица 2: Смещение нуля и дрейф от запуска к запуску гироскопов МРU6050

Position	Axis	Mean, °/s	RTR, °/h
	X	-1.0739	44.8406
Pos.1	Y	-1.0022	17.3611
	Z	1.2711	22.4487
	X	-1.0246	59.2236
Pos.2	Y	-0.9897	15.8603
	Z	1.2628	27.1911
	X	-1.0122	66.8934
Pos.3	Y	-0.9913	16.7310
	Z	1.2515	34.0154
	X	-1.0254	17.4720
Pos.4	Y	-0.9991	7.7416
	Z	1.2946	12.8763
	X	-1.0106	13.5531
Pos.5	Y	-0.9849	3.7527
	Z	1.2519	7.4237
	X	-1.0095	1.7701
Pos.6	Y	-0.9878	12.9651
	Z	1.2655	19.6326

Рис. 2: Девиация Аллана акселерометров по оси У

Таблица 3: Нестабильность смещения нуля акселерометров MPU6050, mg

Ось	IMU_1	IMU_2	IMU_3	IMU_4	Average
X	0.0467	0.0409	0.0417	0.0417	0.0264
Y	0.0278	0.0259	0.0409	0.0344	0.0225
Z	0.0764	0.0704	0.0714	0.0692	0.0472

3 Оценка выходных погрешностей

Для оценки точности автономной работы БИНС на базе кластерного блока чувствительных элементов были использованы уравнения ошибок автономной работы ИНС. Данные уравнения учитывают медленно

Таблица 4: Velocity random walk (VRW) of accelerometers MPU6050, mg/ \sqrt{Hz}

Ось	IMU_1	IMU_2	IMU_3	IMU_4	Average
X	0.24014	0.22564	0.24332	0.24124	0.11715
Y	0.22065	0.23029	0.22929	0.22040	0.11211
Z	0.35402	0.35872	0.36701	0.37358	0.18599

Рис. 3: Девиация Аллана гироскопов по оси Ү

Таблица 5: Нестабильность смещения нуля гироскопов MPU6050, °/h

Ось	IMU_1	IMU_2	IMU_3	IMU_4	Average
X	4.644	3.553	3.780	4.327	2.416
Y	3.272	3.215	4.370	5.087	1.685
Z	3.740	2.696	3.503	2.693	1.580

Таблица 6: Angular random walk (ARW) of gyroscopes MPU6050, $^{\circ}/\sqrt{hr}$

Ось	IMU_1	IMU_2	IMU_3	IMU_4	Average
X	0.2022	0.1872	0.2382	0.2010	0.1044
Y	0.2028	0.1812	0.1854	0.1938	0.0954
Z	0.1638	0.2106	0.1884	0.1944	0.0972

изменяющуюся составляющую ошибки, не зависящую от горизонтального ускорения объекта. Нестационарные погрешности, зависящие от ускорения и обусловленные погрешностью масштабных коэффициентов акселерометров, представляют собой высокочастотную ошибку, модулирующую медленно изменяющуюся шулеровскую, не учитываются в данной модели.

Для связи выходных параметров ИНС (крен, тангаж, курс, широта, долгота) использованы следующие зависимости:

$$\Phi_x(t) = \Phi_x(0)\cos\nu t - U\cos\phi \frac{\sin\nu t}{\nu} \Phi_z(0) - \frac{\sin\nu t}{\nu R} \delta V_y(0) + \frac{\sin\nu t}{\nu} \xi_x - U\cos\Phi \frac{1 - \cos\nu t}{\nu^2} \xi_z - \frac{1 - \cos\nu t}{\nu^2 R} B_y(0)$$
(1)

$$\Phi_y(t) = \Phi_y(0)\cos\nu t + \frac{\sin\nu t}{\nu R}\delta V_x(0) + \frac{\sin\nu t}{\nu}\xi_y + \frac{1-\cos\nu t}{\nu^2 R}B_y(0)$$
(2)

$$\Phi_{z}(t) = \Phi_{x}(0)U\cos\phi t + \Phi_{y}(0)\operatorname{tg}\phi + \frac{\operatorname{tg}\phi\sin\nu t}{\nu R}\delta V_{x}(0) - (t - \frac{\sin\nu t}{\nu})\operatorname{tg}\phi\xi_{y} + \operatorname{tg}\phi\frac{1 - \cos\nu t}{\nu^{2}R}B_{x}(0) + \Phi_{z}(0) + \xi_{z}t$$
(3)

$$\delta V_e(t) = -\Phi_y(0)R\sin\nu t + \delta V_x(0)\cos\nu t - \xi_y R(1-\cos\nu t) + \frac{\sin \ nut}{t} B_x(0)$$

$$\tag{4}$$

$$\delta V_n(t) = -\Phi_x(0)R\sin\nu t + \delta V_y(0)\cos\nu t + \xi_x R(1-\cos\nu t) + \frac{\sin\ nut}{\nu} B_y(0)$$
(5)

$$\lambda(t) = \int \frac{\delta V_e(t)}{R\cos\phi} dt \tag{6}$$

$$\phi(t) = \int \frac{\delta V_n(t)}{R\cos\phi} dt \tag{7}$$

где $\, \nu = \sqrt{rac{g}{R}} \,$ - шулеровская частота колебания;

 $B_{x}(0), B_{y}(0)$ - смещения нулей акселерометра;

 ξ_x, ξ_u, ξ_z - дрейф гироскопа;

Для оценки остаточной случайной составляющей погрешности акселерометра и гироскопа, с целью использования данных значений в уравнениях (1) — (7) проведена запись показаний чувствиетльных элементов на протяжении 2-ух часов. По результатам измерений построены графики девиации Аллана.

Рис. 4: График девиации Аллана

Полученный график Рис.4 девиации Аллана позволяет оценить остаточную случайную погрешность, которая будет присутствовать в выходных данных показаний акселерометров в составе кластерного инерциального измерительного блока. Исходя из уравнений (1) – (7) остаточная погрешность акселерометра не вносит существенный вклад в ошибку определения выходных координат. Данная ошибка будет влиять исключительно на расчет пространственной ориентации.

Ниже представлены графики нарастания ошибки определения угла тангажа и крена в течение 5 секунд автономной работы кластерной инерциальной навигационной системы.

Рис. 5: Нарастание ошибки в определении тангажа

Рис. 6: Нарастание ошибки в определении крена

Дрейф гироскопов является основной составляющей ошибки определения координат в процессе автономной работы ИНС. Именно поэтому основной задачей исследования точности чувствительных элементов был анализ остаточных погрешностей гироскопов. Из графика (Рис.7) видно, что значение дрейфа на интервале осреднения $0.01~\rm c.$ не превышает $0.03375~\rm ^\circ/s$

Рис. 7: График девиации Аллана

Рис. 8: График нарастания ошибки в определении долготы места

Рис. 9: График нарастания ошибки в определении широты места

4 Интеграция ИНС/ГНСС

Основной целью интеграции кластерного инерциального блока с навигационным приемником является повышение надежности и точности выдаваемого им решения. Для обеспечения максимальной надежности интегрированного алгоритма позиционирования необходимо воспользоваться соответсвующей схемой интеграции двух систем. В данной работе используется ОЕМ плата спутникового навигационного приемника компании NTLab. Данная плата позволяет пользователю получить доступ к срезу кодовых и фазовых измерений на текущую эпоху. Таким образом, тесная схема интеграции ИНС и СНС, которая предполагает использование псевдодальностей СНС и псевдодальности ИНС, видится наиболее оптимальным вариантом.

Модель системы для расчета углов оринетации, скорости и координат ИНС:

(8)

(9)

(10)

5 Сравнение кластера и аналогичного по характеристикам IMU

Я считаю, что было бы круто сравнить данный кластер со схожим по характеристикам IMU, так как я в abstract писал, что у нас COST-EFFECTIVE решение.

Список литературы

[1] Author1 Article1