Table The statistics of operations for breaking cycles in Jmeter

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	107→74	75	160	85	0.1701	0.1414	1.8346	1	1
	107→98	27	85	58	0.1701	0.1414	1.7285	1	1
000 (051 104 00 54 54 105	248→63	37	58	21	0.1843	0.2828	1.1741	2	2
$SCC_1 = \{251, 106, 99, 76, 74, 107, \\ 71, 20, 100, 07, 70, 00, 63, 240, 52, \\ 72, 73, 74, 75, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76$	107→63	9	21	12	0.1701	0.2828	1.0469	2	2
71, 39, 100, 97, 70, 98, 63, 248, 52,	107→100	1	12	11	0.1701	0.1414	0.9625	1	1
59}	74 → 76	3	11	8	0.0005	0.1414	0.7101	1	1
	63→98	3	8	5	0.0031	0.2828	0.7160	2	2
	70 → 98	1	5	4	0.0038	0.1414	0.0271	1	1
$SCC_2 = \{164, 162\}$	162→164	1	4	3	0.0439	0.5657	0.0439	4	4
$SCC_3 = \{160, 159, 156\}$	156→159	1	3	2	0.0017	0.2828	0.0059	2	2
$SCC_4 = \{179, 180\}$	179→180	1	2	1	0.0001	0.1414	0.0004	1	1
$SCC_5 = \{262, 259\}$	259→262	1	1	0	0.0029	0.2828	0.0102	2	2

Table The statistics of operations for breaking cycles in Joda-time

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
$SCC_1 = \{134, 125\}$	125→134	1	526	525	0.0002	0.1782	0.0009	1	1
	90→91	150	525	375	0.0002	0.0110	16.8303	1	0
	101→99	119	375	256	0.0007	0.0110	18.8166	1	0
	101→112	34	256	222	0.0007	0.0110	8.0970	1	0
	101→116	23	222	199	0.0007	0.0110	6.3795	1	0
	101→114	18	199	181	0.0007	0.0110	5.6197	1	0
	101→113	18	181	163	0.0007	0.0110	6.3048	1	0
	101→111	18	163	145	0.0007	0.0110	7.1811	1	0
	101→108	18	145	127	0.0007	0.0110	8.3416	1	0
	101→115	17	127	110	0.0007	0.0110	9.3675	1	0
	101→107	17	110	93	0.0007	0.0110	11.4573	1	0
$SCC_2 = \{91, 88, 74, 87, 85, 116, \dots \}$	101→103	17	93	76	0.0007	0.0110	14.7515	1	0
115, 114, 113, 112, 111, 108,	13→23	43	76	33	0.0027	0.1782	3.4002	1	1
107, 103, 98, 97, 93, 83, 79, 99,	97→21	12	33	21	0.0423	0.1782	2.5846	1	1
101, 151, 144, 142, 21, 146, 143,	90→89	4	21	17	0.0002	0.1782	3.3946	1	1
57, 32, 62, 23, 13, 86, 84, 78, 77, 76, 71, 70, 69, 73, 89, 90}	146→21	3	17	14	0.0055	0.1782	3.4065	1	1
70, 71, 70, 09, 73, 89, 90}	62→57	2	14	12	0.0012	1.2374	0.4853	7	7
	144→142	1	12	11	0.0019	0.1782	0.0105	1	1
	62 → 32	1	11	10	0.0012	0.1782	0.0017	1	1
	69→88	1	10	9	0.0001	0.1782	0.0006	1	1
	69→87	1	9	8	0.0001	0.1782	0.0006	1	1
	69→85	1	8	7	0.0001	0.1782	0.0006	1	1
	69→84	1	7	6	0.0001	0.1782	0.0006	1	1
	69→78	1	6	5	0.0001	0.1782	0.0006	1	1
	69 → 77	1	5	4	0.0001	0.1782	0.0006	1	1
	69→76	1	4	3	0.0001	0.1782	0.0006	1	1

	69 → 71	1	3	2	0.0001	0.1782	0.0006	1	1
	69 → 70	1	2	1	0.0001	0.1782	0.0006	1	1
$SCC_3 = \{138, 128\}$	138→128	1	1	0	0.0002	0.1782	0.0009	1	1

Table IX The statistics of operations for breaking cycles in Xml-security

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	1→67	883	1119	236	1.6e-05	0.3536	1.3558	1	1
$SCC_1 = \{212, 211, 172, 120, 88,$	199→1	223	236	13	3.1e-05	1.0607	0.5657	3	3
87, 85, 84, 83, 81, 80, 76, 75, 170,	197→209	4	13	9	0.0001	0.3536	1.6972	1	1
166, 33, 167, 171, 74, 73, 72, 79,	191→209	4	9	5	9.4e-05	0.3536	1.6972	1	1
77, 71, 206, 70, 67, 66, 8, 7, 2, 5,	209→195	1	5	4	0.1974	0.3536	0.2233	1	1
195, 197, 194, 193, 64, 191, 159,	209→194	1	4	3	0.1974	0.3536	0.2233	1	1
63, 199, 65, 36, 35, 34, 209, 3, 1}	209→193	1	3	2	0.1974	0.7071	0.2792	2	2
	209→34	1	2	1	0.1974	1.4142	0.1396	4	4
$SCC_2 = \{153, 150\}$	153→150	1	1	0	2.3e-04	0.0566	4.0e-08	1	0

Table IX The statistics of operations for breaking cycles in DNS

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	21→11	10	16	6	0.1403	0.0410	16.01	1	0
$SCC_1 = \{8,11,21,25,$	21→8	1	6	5	0.1403	0.1399	1.12	3	1
32,48,58}	32→48	1	5	4	0.0875	0.1399	0.73	3	1
	32→58	1	4	3	0.0875	0.6077	0.27	2	9
CCC (22.29.52)	38→33	2	3	1	0.0515	0.2707	3.64	1	4
$SCC_2 = \{33,38,52\}$	52→33	1	1	0	0.0434	0.2707	0.25	1	4

Table X The statistics of operations for breaking cycles in ANT

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	24→23	40	654	614	0.0587	0.0554	6.17	1	1
	24→22	68	614	546	0.0587	0.0554	5.35	1	1
	10→23	60	546	486	0.0093	0.0756	5.07	2	2
	18 → 23	25	486	461	0.0375	0.0554	4.54	1	1
	16 → 22	40	461	421	0.2467	0.0554	3.95	1	1
	18→22	59	421	362	0.0375	0.0554	3.72	1	1
$SCC_1 = \{2,4,10,16,$	10→4	59	362	303	0.0093	0.1366	3.48	3	3
17,18,19,20,	16 → 4	92	303	211	0.2466	0.2272	3.79	7	7
21,22,23,24}	16→20	64	211	147	0.2466	0.1461	3.36	4	4
	16→2	92	147	55	0.2466	0.1902	3.01	5	5
	19 → 18	31	55	24	0.0434	0.1366	2.72	3	3
	21→20	19	24	5	0.0263	0.1597	2.56	0	7
	16 → 21	3	5	2	0.2466	0.1902	1.86	5	5
	16 → 17	1	2	1	0.2466	0.0554	0.95	1	1
	20→18	1	1	0	0.0439	0.0554	0.34	1	1

Table XI The statistics of operations for breaking cycles in BCEL

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	Cycles _a	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	2→21	133674	416091	282417	0.0647	0.0979	9.57	1	1
	20→45	40096	282417	242321	0.0651	0.0884	6.51	1	0
	18→10	17162	242321	225159	0.1232	0.0884	3.62	1	0
	18→15	17162	225159	207997	0.1232	0.0884	4.39	1	0
	18→13	17092	207997	190905	0.1232	0.0884	4.42	1	0
	6→15	15020	190905	175885	0.0794	0.0884	3.80	1	0
	6→13	14960	175885	160925	0.0794	0.0884	3.73	1	0
	16 → 45	16775	160925	144150	0.0083	0.0884	4.52	1	0
	14 → 45	16168	144150	127982	0.0089	0.0884	4.67	1	0
	12 → 45	16168	127982	111814	0.0089	0.0884	5.28	1	0
	11 → 45	16168	111814	95646	0.0089	0.0884	5.66	1	0
	9→45	16167	95646	79479	0.0070	0.0884	6.81	1	0
	7 → 45	15418	79479	64061	0.0076	0.0884	7.76	1	0
	19→45	15223	64061	48838	0.0119	0.0884	9.56	1	0
	6→45	11189	48838	37649	0.0794	0.0884	9.29	1	0
SCC	10→45	11178	37649	26471	0.0066	0.0884	8.67	1	0
$SCC_1 =$	6 → 36	11189	26471	15282	0.0794	0.0884	6.56	1	0
{2,4,5,6,	18→45	6950	15282	8332	0.1232	0.0884	13.47	1	0
7,8,9,10,	18 → 36	6950	8332	1382	0.1232	0.0884	10.37	1	0
1,12,13,14,	17 → 18	70	1382	1312	0.0083	0.0839	6.39	0	2
5,1617,18,	6 → 7	12	1312	1300	0.0794	0.0979	5.08	1	1
20,21,22,	6 → 9	12	1300	1288	0.0794	0.0979	5.73	1	1
6,27,28,	6→11	12	1288	1276	0.0794	0.0979	6.61	1	1
30,31,32,	6 → 12	12	1276	1264	0.0794	0.0979	7.85	1	1
4,35,36,	6 → 14	12	1264	1252	0.0794	0.0979	9.69	1	1
38,39,40,	6 → 19	12	1252	1240	0.0794	0.0979	10.53	1	1
3,44,45}	6 → 16	12	1240	1228	0.0794	0.1218	6.65	1	2
	8→18	12	1228	1216	0.0131	0.1957	5.05	2	2
	6→20	1	1216	1215	0.0794	0.0979	1.19	1	1
	6 → 10	1	1215	1214	0.0794	0.3536	0.40	4	0
	18→7	1	1214	1213	0.1232	0.1817	1.22	2	1
	18→9	1	1213	1212	0.1232	0.1817	1.22	2	1
	18→11	1	1212	1211	0.1232	0.1817	1.22	2	1
	18→12	1	1211	1210	0.1232	0.1817	1.22	2	1
	18→14	1	1210	1209	0.1232	0.1817	1.22	2	1
	18→19	1	1209	1208	0.1232	0.1817	1.22	2	1
	18 → 16	1	1208	1207	0.1232	0.2781	0.75	3	2
	33→45	108	1207	1099	0.0111	0.0884	2.42	1	0
	45→26	91	1099	1008	0.0158	0.0884	2.46	1	0
	33→36	99	1008	909	0.0111	0.0884	2.52	1	0
	31→45	61	909	848	0.0232	0.0884	2.57	1	0
	34→45	60	848	788	0.0222	0.0884	2.60	1	0
l l									

SCC	Edge'(Ci,Cj)	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	Ŵij	N_m	N_a
	32→45	60	788	728	0.0170	0.0884	2.65	1	0
	41 → 45	37	728	691	0.0867	0.0884	2.68	1	0
	2→29	106	691	585	0.0647	0.0839	2.77	0	2
	31 → 36	61	585	524	0.0232	0.0884	2.83	1	0
	43→45	36	524	488	0.0088	0.0884	2.87	1	0
	40→45	36	488	452	0.0078	0.0884	2.92	1	0
	44 → 45	36	452	416	0.0071	0.0884	2.96	1	0
	25→45	36	416	380	0.0052	0.0884	3.00	1	0
	22 → 45	36	380	344	0.0014	0.0884	3.04	1	0
	2 → 37	37	344	307	0.0647	0.0420	3.10	0	1
	2→38	37	307	270	0.0647	0.0979	3.16	1	1
	2→36	36	270	234	0.0647	0.0884	3.22	1	0
	2 → 39	35	234	199	0.0647	0.0420	3.28	0	1
	40→36	36	199	163	0.0078	0.0884	3.33	1	0
	5→36	31	163	132	0.0021	0.0884	3.39	1	0
	30→35	27	132	105	0.1497	0.1768	3.55	2	0
	2→4	45	105	60	0.0647	0.3469	3.88	1	8
	13→45	4	60	56	0.0071	0.0884	3.93	1	0
	30→45	1	56	55	0.1497	0.0884	3.97	1	0
	30→26	6	55	49	0.1497	0.1768	4.09	2	0
	30→36	1	49	48	0.1497	0.0884	4.15	1	0
	30→39	2	48	46	0.1497	0.0979	4.23	1	1
	45→29	4	46	42	0.0158	0.1218	4.33	1	2
	21 → 45	2	42	40	0.0227	0.0884	4.37	1	0
	45→39	2	40	38	0.0158	0.0979	4.43	1	1
	45→35	13	38	25	0.0158	0.0884	5.13	1	0
	45→4	5	25	20	0.0158	0.3469	5.46	1	8
	2→45	9	20	11	0.0647	0.0884	6.77	1	0
	2→22	1	11	10	0.0647	0.0979	6.83	1	1
	2→43	1	10	9	0.0647	0.0979	6.89	1	1
	2→25	1	9	8	0.0647	0.1218	6.98	1	2
	2→32	1	8	7	0.0647	0.1218	7.08	1	2
	2→34	1	7	6	0.0647	0.1218	7.17	1	2
	2→40	1	6	5	0.0647	0.1218	7.25	1	2
	2→44	1	5	4	0.0647	0.1537	7.38	1	3
	45→28	2	4	2	0.0158	0.1897	7.56	1	4
	45→15	1	2	1	0.0158	0.0884	7.60	1	0
	45→5	1	1	0	0.0158	0.1897	7.77	1	4

Here, $Edge'(C_i, C_j)$ represents the removed edge, $Cycles_b$ and $Cycles_b$ denote the number of cycles in the system before and after remove $< C_i, C_j >$.