PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

Jaroslav Křivánek

Charles University in Prague http://cgg.mff.cuni.cz/~jaroslav/

Light transport

Geometric optics

Light transport

Light transport

Camera response

Path integral formulation

Measurement contribution function

$$\overline{x} = x_0 x_1 \dots x_k$$

Geometry term

$$G(x \leftrightarrow y) = \frac{|\cos \theta_x| |\cos \theta_y|}{\|x - y\|^2} V(x \leftrightarrow y)$$

Path integral formulation

Path integral formulation

$$I_j = \int_{\Omega} f_j(\overline{x}) \, d\mu(\overline{x})$$

Path integral

$$I_{j} = \int_{\Omega} f_{j}(\overline{x}) \, \mathrm{d}\mu(\overline{x})$$

$$\text{The limit of the problem of the contribution of the contribu$$

RENDERING:

EVALUATING THE PATH INTEGRAL

Path integral

$$I_{j} = \int_{\Omega} f_{j}(\overline{x}) \, \mathrm{d}\mu(\overline{x})$$

$$\partial_{x} \partial_{x} \partial_{x$$

Monte Carlo integration

Monte Carlo integration

General approach to numerical evaluation of integrals

Integral:

$$I = \int f(x) \mathrm{d}x$$

Monte Carlo estimate of *I*:

$$p(\mathbf{x}) \qquad \langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}; \quad x_i \propto p(x)$$

 x_5 x_3x_1 x_4 x_2 x_6 1 Correct "on average":

$$E[\langle I \rangle] = I$$

MC evaluation of the path integral

Path integral

$$I_j = \int_{\Omega} f_j(\overline{x}) \, \mathrm{d}\mu(\overline{x})$$

MC estimator

$$\left\langle I_{j}\right\rangle = \frac{f_{j}(\overline{x})}{p(\overline{x})}$$

- Sample path \bar{x} from some distribution with PDF $p(\bar{x})$

- Evaluate the probability density $p(\bar{x})$
- Evaluate the integrand $f_i(\bar{x})$

Algorithms = different path sampling techniques

Algorithms = different path sampling techniques

Algorithms = different path sampling techniques

- Algorithms = different path sampling techniques
- Same general form of estimator

$$\langle I_j \rangle = \frac{f_j(\overline{x})}{p(\overline{x})}$$

No importance transport, no adjoint equations!!!

PATH SAMPLING & PATH PDF

Local path sampling

- Sample one path vertex at a time
- 1. From an a priori distribution
 - lights, camera sensors
- 2. Sample direction from an existing vertex
- 3. Connect sub-paths
 - test visibility between vertices

Example – Path tracing

Use of local path sampling

Path tracing

Light tracing

Bidirectional path tracing

path PDF
$$\underline{p(\overline{x})} = \underline{p(x_0,...,x_k)}$$
joint PDF of path vertices

path PDF

$$p(\overline{x}) = p(x_0, ..., x_k)$$

joint PDF of path vertices

path PDF

$$\begin{array}{ccc}
p(\overline{x}) &= & p(x_0, ..., x_k) &= & p(x_3) \\
& & \textbf{joint PDF of path vertices} & p(x_2 \mid x_3) \\
& & & p(x_1 \mid x_2) \\
& & & p(x_0)
\end{array}$$

 $p(x_2 | x_3)$ product of (conditional) vertex PDFs

Path tracing example:

path PDF

product
of (conditional)
vertex PDFs

Path tracing example:

Vertex sampling

Importance sampling principle

Sample from an a priori distrib.

2. Sample direction from an existing vertex

3. Connect sub-paths

Vertex sampling

Measure conversion

Sample direction from an existing vertex

$$\underline{p(y)} = \underline{p^{\perp}(x \to y)} G(x \leftrightarrow y)$$

$$\langle I_{j} \rangle = \frac{f_{j}(\overline{x})}{p(\overline{x})}$$

$$= \frac{\cdots \rho_{s}(x \to y)G(x \leftrightarrow y)\cdots}{\cdots p^{\perp}(x \to y)G(x \leftrightarrow y)\cdots}$$

Summary

Path integral

MC estimator

$$\langle I_j \rangle = \frac{p(\overline{x})}{p(\overline{x})}$$

$$p(\overline{x}) = p(x_0) \dots p(x_k)$$

$$f_{j}(\overline{x}) = L_{e} G(x_{0} \leftrightarrow x_{1}) \rho_{s}(x_{1}) \dots \rho_{s}(x_{k-1}) G(x_{k-1} \leftrightarrow x_{k}) W_{e}^{j}$$

$$x_{0}$$

$$x_{1}$$

$$x_{k-1}$$

Summary

Algorithms

- different path sampling techniques
- different path PDF

Time for questions...

Tutorial: Path Integral Methods for Light Transport Simulation

Jaroslav Křivánek – Path Integral Formulation of Light Transport