6.13- CONJUNTOS ORTOGONAIS

Seja S_1 e S_2 dois subconjuntos não-vazios de um espaço vetorial euclidiano V, diz-se que S_1 é ortogonal a S_2 , representado por $S_1 \perp S_2$, se qualquer vetor $v_1 \in S_1$ é ortogonal a qualquer vetor $v_2 \in S_2$.

Exemplo: Verifique se os conjuntos $S_1 = \{(0, 1, 2), (0, 2, 4)\}$ e $S_2 = \{(1, -2, 1), (2, -2, 1), (4, 6, -3)\}$ são ortogonais relativamente ao produto usual no IR^3 .

Teorema: Seja V um espaço vetorial euclidiano e $B = \{v_1, \ldots, v_p\}$ uma base de um subespaço S de V, gerado por B. Se um vetor $u \in V$ é ortogonal a todos os vetores da base B, então u é ortogonal a qualquer vetor do subespaço S gerado por B, ou seja, $u \perp S$.

De fato: Qualquer vetor $v \in S$ pode ser expresso por:

$$v = a_1v_1 + a_2v_2 + \dots + a_pv_p$$
e
$$u.v = u.(a_1v_1 + a_2v_2 + \dots + a_pv_p)$$

$$u.v = a_1(u.v_1) + a_2(u.v_2) + \dots + a_p(u.v_p)$$

Como por hipótese, $u.v_i = 0$, para i = 1, 2, ..., p.

Logo, u.v = 0, assim $u \perp v$ ou $u \perp S$.

A recíproca desse teorema não é verdadeira.

6.14- COMPLEMENTO ORTOGONAL

Seja V um espaço vetorial euclidiano e S um subespaço vetorial de V. O subconjunto de V formado pelos vetores que são ortogonais a S, e representado por S^{\perp} , é chamado *complemento ortogonal de S*, ou seja,

$$S^{\perp} = \{ v \in V / v \perp S \}$$

6.14.1- **Propriedades**:

1- S^{\perp} é um subespaço de V.

De fato: Se
$$v_1, v_2 \in S^{\perp}$$
, para qualquer $u \in S$, tem-se:
I) $v_1 \perp u$ e $v_2 \perp u$, ou seja, $v_1.u = 0$ e $v_2.u = 0$ então, $v_1.u + v_2.u = 0$ $(v_1 + v_2).u = 0$, logo $(v_1 + v_2) \in S^{\perp}$.

II) Analogamente, $\forall \alpha \in IR, \alpha v_1 \in S^{\perp}$.

2- Se S é um subespaço vetorial de V, então $V = S \oplus S^{\perp}$.

De fato: Se
$$S = \{0\}$$
, então $S^{\perp} = V$.
Se $S \neq \{0\}$, $\forall v \in S \cap S^{\perp}$, tem-se: $v.v = 0$, logo $v = 0$, o que mostra $S \cap S^{\perp} = \{0\}$.

Por outro lado, como S é um subespaço vetorial de V, S pode ser considerado um espaço vetorial euclidiano tal como V.

Para isso, basta tomar uma base ortogonal de $S = \{v_1, v_2, ..., v_k\}$, estendendo essa base a uma base de V, tem-se $\{v_1, ..., v_k, w_{k+1}, ..., w_n\}$, aplicando o processo de ortogonalização de Gram-Schmidt, os vetores da base de S não mudam no processo. Sendo assim, obtemos uma base ortonormal de V tal que $B = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$. Note que $\{v_{k+1}, ..., v_n\}$ é uma base de S^{\perp} . Assim,

$$V = [v_1, ..., v_k] \oplus [v_{k+1}, ..., v_n] = S \oplus S^{\perp}.$$

Exemplos:

1- Seja $V = IR^3$ com produto interno usual e $S = \{(0, 0, c)/c \in IR\}$. Determine S^{\perp} :

2- Seja $V = IR^2$ com produto interno usual e $S = \{(x, -x) | x \in IR \}$. Determine S^{\perp} :

3- Seja o produto interno usual no IR^4 e o subespaço, de dimensão 2, S = [(1, 1, 0, -1), (1, -2, 1, 0)]. Determinar S^{\perp} e uma base ortonormal de S^{\perp} .

Exercícios

1- Seja $S = \{(x, y, z, -2x + 4y + 5z)/x, y, z \in IR\}$ um subespaço de IR^4 com o produto interno usual.

Seja A =
$$\{(1, 2, -1, 1), (2, -1, 2, 2)\} \subset S$$
.

- a) Ortonormalizar o conjunto A.
- b) Completar o conjunto A de modo a transformá-lo numa base ortogonal de S.
- 2- Seja $V = IR^3$ com produto interno usual e B = $\{(1, 2, -3), (2, -4, 2)\}$. Determinar:
- a) O subespaço S gerado por B.
- b) O subespaço S^{\perp} .
- 3- Seja $V = IR^3$ com produto interno usual. Dados os subespaços

$$S_1 = \{(x, y, z) \in IR^3 / x - 2y + 3z = 0\} \text{ e } S_2 = \{t(2, 1, -1) / t \in IR\}. \text{ Determine } S_1^{\perp} \text{ e } S_2^{\perp}.$$

4- Considere o subespaço $S = \{(x, y, z) / x - z = 0\} \subset IR^3$ com o produto interno:

$$(x, y, z).(x', y', z') = 2xx' + 3yy' + 4zz'$$

Determine S^{\perp} e uma base de S^{\perp} .

RESPOSTAS

1- a)
$$\left\{ \left(\frac{1}{\sqrt{7}}, \frac{2}{\sqrt{7}}, -\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}} \right), \left(\frac{2}{\sqrt{13}}, -\frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}, \frac{2}{\sqrt{13}} \right) \right\};$$
 b) Uma delas: $\{(1, 2, -1, 1), (2, -1, 2, 2), (44, 4, 5, -47)\}.$
2- a) $S = \{(x, y, z) \in IR^3 / x + y + z = 0\};$ b) $S = \{(x, y, z) \in IR^3 / x = y = z\}.$ 3- $S_1^{\perp} = \{(x, -2x, 3x) / x \in IR\}$ e $S_2^{\perp} = \{(x, y, z) \in IR^3 / 2x + y - z = 0\}.$ 4- $S^{\perp} = \{(-2z, 0, z) / z \in IR\}$ e $S_2^{\perp} = \{(-2z, 0, 1)\}.$

BIBLIOGRAFIA

1. BOLDRINI, José Luis; COSTA, Sueli I.; FIGUEIREDO, Vera Lúcia; WETZLER, Henryg. *Álgebra Linear*. 3. ed. São Paulo: Harbra, 1980.

- 2. CABRAL, Marco A. P. e GOLDFELD, Paulo. *Curso de Álgebra Linear*. Rio de Janeiro: UFRJ/Instituto de Matemática, 2008.
- 3. CALLIOLI, Carlos A.; COSTA, Roberto C. F.; DOMINGUES, Higino H. Álgebra Linear e Aplicações. São Paulo: Atual, 1987.
- 4. HOWARD, Anton. Álgebra Linear. Editora Campus Ltda. 1982.
- 5. KOZAKEVICH, Daniel N. e BEAN, Sonia Elena P. C. *Álgebra Linear I*. Florianópolis: UFSC/EAD/CED/CFM, 2008.
- 6. LIPSCHUTZ, Seymour. Álgebra Linear. 3. ed. São Paulo: Mac Graw Hill, 1994.
- 7. STEINBRUCH, Alfredo e WINTERLE, Paulo. *Álgebra Linear*. 2ª. ed. São Paulo: Pearson Makron Books, 1987.