Cas général

Définition 1. Soient u une fonction définie sur un intervalle I à valeurs dans un intervalle J et f une fonction définie sur l'intervalle J.

La **composée** de u par f, notée $f \circ u$, est la fonction définie sur I par :

$$(f \circ u)(x) = f(u(x))$$

.

Exemple 1. Soient u la fonction définie sur \mathbb{R} par $u(x) = x^2 + 1$ et f la fonction définie sur \mathbb{R}^+ par $f(x) = \sqrt{x}$. Alors $f \circ u$ est définie sur \mathbb{R} par $(f \circ u)(x) = f(u(x)) = \sqrt{x^2 + 1}$.

Proposition 1. Soient u une fonction définie et dérivable sur I à valeurs dans J, et f une fonction définie et dérivable sur J.

Alors la fonction $f \circ u$ est dérivable sur I et $(f \circ u)' = f'(u) \times u'$, c'est-à-dire que, pour tout $x_0 \in I$, on a

$$(f \circ u)'(x_0) = f'(u(x_0)) \times u'(x_0).$$

Dérivées des fonctions composées usuelles

Dans les exercices suivants, nous calculerons principalement les dérivées de fonctions composées selon les cas particuliers ci-dessous :

$$f(x) = \sqrt{u(x)}$$

$$f(x) = \frac{u'(x)}{2\sqrt{u(x)}}$$

$$f(x) = (u(x))^n$$

$$f(x) = e^{u(x)}$$

$$f'(x) = u'(x)(u(x))^{n-1}$$

$$f'(x) = u'(x)e^{u(x)}$$

$$f'(x) = \frac{u'(x)}{u(x)}$$

$$f'(x) = au'(ax + b)$$

Exercice 1. Calculer la dérivée de

1.
$$f(x) = (\cos(x))^n$$
, $n \in \mathbb{N}^*$

$$2. \ g(x) = a^x, \ a \in \mathbb{R}_+^*$$

3.
$$h(x) = \ln(x^3 + \cos(x)), x \in]1, +\infty[$$

4.
$$k(x) = \frac{1}{(3x+2)^3}, x \neq \frac{-2}{3}$$

5.
$$l(x) = \sin(\cos(x)).$$

Dérivation des fonctions composées

Exercice 2. Démontrer les assertions suivantes:

1. On pose $f_1(x) = (\ln(x))^4$, alors f_1 est définie sur \mathbb{R}^{*+} et

$$f_1'(x) = \frac{4(\ln(x))^3}{x}.$$

2. On pose $f_2(x) = x^{\sin(x)}$, alors f_2 est définie sur \mathbb{R}^{*+} et

$$f_2'(x) = (\frac{\sin(x)}{x} + \ln(x)\cos(x))x^{\sin(x)}.$$

3. On pose $f_3(x) = \ln(\sin^3(x) + 2)$, alors f_3 est définie pour tout $x \in \mathbb{R}$ et

$$f_3'(x) = \frac{3\cos(x)\sin^2(x)}{\sin^3(x) + 2}.$$

4. On pose $f_4(x) = \cos(2x+1)$, alors f_4 est définie pour tout $x \in \mathbb{R}$ et

$$f_4'(x) = -2\sin(2x+1).$$

5. On pose $f_5(x) = \tan(x^3)$, alors f_5 est définie sur $\mathbb{R} - \{\sqrt[3]{\frac{\pi}{2} + k\pi}, k \in \mathbb{Z}\}$ et

$$f_5'(x) = 3x^2(1 + \tan^2(x^3))$$

ou bien

$$f_5'(x) = \frac{3x^2}{\cos^2(x^3)}$$

6. On pose $f_6(x) = e^{x + \ln(x)}$, alors f_6 est définie sur \mathbb{R}_+^*

$$f_6'(x) = (1 + \frac{1}{x})e^{x + \ln(x)}.$$

7. On pose $f_7(x) = e^{(e^x)}$, f_7 est définie sur \mathbb{R} et

$$f_7'(x) = e^{(e^x + x)}$$

.