

Псевдоэксперимент $N_{\bar{0}}1$

Хафизов Фанис

11 декабря 2020 г.

1 Теория

Запишем уравнение второго закона Ньютона:

$$\vec{F_c} + \vec{F_a} + m\vec{g} = 0$$

$$Ox : mg - F_a - F_c = 0$$

$$F_c = A\eta vd$$

$$F_a = \rho_w gV = \rho_w g \frac{4}{3}\pi \frac{d^3}{8} = \rho_w g \frac{\pi d^3}{6}$$

$$m = \rho_c V = \rho \frac{4\pi d^3}{3 \cdot 8} = \rho_c \frac{\pi d^3}{6}$$

$$(\rho_c - \rho_w)g \frac{d^3}{6} = A\eta \frac{l}{\tau} d$$

$$\tau = \frac{6A\eta l}{gd^2(\rho_c - \rho_w)}$$

2 Расчеты

Построим график зависимости τ от $\frac{1}{d^2}$.

d, мм	Время движения, с						
	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$\overline{ au}$	$1/d^2$, M^{-2}
1,00	60,94	60,73	60,54	60,81	60,55	60,714	1 000 000,00
4,39	5,58	5,73	5,45	5,32	5,44	5,504	51 888,48
2,02	15,94	15,73	15,55	15,92	15,43	15,714	245 074,01
2,70	8,93	8,63	9,14	8,99	9,18	8,974	137 174,21
3,70	4,94	4,73	4,92	4,39	4,34	4,664	73 046,02
3,21	6,37	6,26	6,41	6,23	6,13	6,280	97 048,75
3,35	5,27	5,25	5,62	5,76	5,71	5,522	89 106,71

Как мы видим, все точки, кроме (5,504; 51888,48), лежат на одной прямой. Значит, шарик под номером 2 отличается от всех остальных и у него другая плотность. Угловые коэффициенты графиков равны 15600 для свинцового и 9300 для отличающегося шарика соответственно.

$$\frac{A\eta l}{g(\rho_c - \rho_w)} = 15600$$

$$\frac{A\eta l}{g(\rho_c - \rho_w)} = 15600$$

$$\frac{A\eta l}{g(\rho_x - \rho_w)} = 9300$$

$$\frac{\rho_x-\rho_w}{\rho_c-\rho_w}=\frac{15600}{9300}$$

$$\rho_x=\frac{15600}{9300}(\rho_c-\rho_w)+\rho_w=\frac{15600}{9300}(11,3-1,0)+1,0=18,27 \Gamma/\text{cm}^3$$

3 Расчет погрешностей

$$\varepsilon_{\rho_x} = \varepsilon_{\tau} + 2\varepsilon_d = \sum_{i=1}^{7} \sqrt{\frac{\sum_{j=1}^{5} (\tau_{ij} - \overline{\tau_i})^2}{5\overline{\tau^2}}} + \sum_{i=1}^{7} \frac{\Delta d}{d_i} = 23, 2\%$$

$$\Delta \rho_x = \rho_x \cdot \varepsilon_{\rho_x} = 18, 27 \cdot 0, 232 = 4, 24\Gamma/\text{cm}^3$$

4 Ответ

$$\rho_x = (18, 27 \pm 4, 24) \Gamma / \text{cm}^3$$