- Instead of using the original tree, we use the classifier obtained by aggregating the *B* bootstrap trees.
- This classifier can work much better than the original tree because it has reduced variance.
- This aggregated classifier is no longer a tree (the decision rule is obtained from *B* trees but we can't express this as a tree).
- ightharpoonup Example (contd): do bagging with B=10,...,200 to see the effect of B on performance. Apply to 2000 simulated test data and compute classification error (test error).

Example (contd). Taken from Hastie at al., 2017, page 285:

FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is the test error of the original tree and bagged trees as a function of the number of bootstrap samples. The orange points correspond to the consensus vote, while the green points average the probabilities.

8.3 RANDOM FORESTS FOR CLASSIFICATION

- A problem with bagging is that the trees are not independent.
- This reduces the variance reduction of averaging/aggregating.
- To understand this intuitively, note that the average of B ident. distr. variables of variance σ^2 and with positive pairwise correlation ρ , has variance

$$\rho\sigma^2 + (1-\rho)\sigma^2/B.$$

- ullet Thus no matter how large B is, the first term does not shrink and prevents the variance from being small.
- ullet Random forest is a modified technique which reduces the correlation between the trees. When growing a bootstrap tree, before each split, it selects m < p of the X_j 's at random as candidates for splitting (instead of considering all X_j 's as candidates).

- Default value of m is \sqrt{p} and default size of each terminal node is 1 (grow the largest possible tree) but it is better to choose m adaptively (i.e. from the data) as it is a tuning parameter.
- The number B of trees is not a tuning parameter. As B increases the RF becomes more and more stable, but as long as B is large enough the benefit of taking B even larger is small. Just take B large (for example what is computationally feasible).

Algorithm. Taken from Hastie at al., 2017, page 588:

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

Spam data. Taken from Hastie at al., 2017, page 589: improves bagging dramatically. Need enough trees but don't need as many as possible.

FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the spam data. For boosting, 5-node trees were used, and the number of trees were chosen by 10-fold cross-validation (2500 trees). Each "step" in the figure corresponds to a change in a single misclassification (in a test set of 1536).

8.3.1 OUT OF BAG DATA

- For random forests we do not need to use cross-validation to select m. Instead we can use out of bag (OOB) sampling.
- OOB: for each (\mathbf{X}_i, G_i) in the training data, compute the random forest classifier, using only the bootstrap trees for which (\mathbf{X}_i, G_i) does not belong to the corresponding bootstrap sample. Denote the result by \hat{G}_i .
- Then instead of using CV, we can choose m that minimises the OOB misclassification error

$$n^{-1} \sum_{i=1}^{n} I\{\hat{G}_i \neq G_i\}$$

(it does some sort of CV by itself and is faster to compute).

Spam data. Taken from Hastie at al., 2017, page 592: OOB error is not too far from true classification error.

FIGURE 15.4. OOB error computed on the spam training data, compared to the test error computed on the test set.

8.3.2 VARIABLE IMPORTANCE

- Not all variables have the same importance for classification (some do not help distinguishing individuals from different classes). We can compute a measure of the importance of each variable X_j .
- To construct a tree, we use consecutive binary splits of regions in two smaller regions. We have seen that if we already have L regions, to split one of them in two to obtain L + 1 regions R_1, \ldots, R_{L+1} , we consider splitting all L regions in two and find the split that produces the smallest value of the risk

$$\sum_{\ell=1}^{L+1} N_\ell Q_\ell,$$

where N_{ℓ} is the number of training data in region R_{ℓ} and Q_{ℓ} is either the Gini index or the cross-entropy/deviance.

- Say at the tth internal node we have split a region in two according to the variable $X_{v(t)}$. For ex, if tth node is split according to $\{X_2 < 5.1\}$ and $\{X_2 \ge 5.1\}$, then v(t) = 2.
- Let $\widehat{\operatorname{impr}}_t$ denote the decrease in $\sum_\ell N_\ell Q_\ell$ obtained by introducing this split, i.e. the difference between the value of the risk before and after the split. (When introducing a split, this risk can only decrease).
- $lue{r}$ For a single tree T, one way to measure the importance of X_j is via

$$\mathcal{I}_{j}(T) = \sum_{t} \widehat{\text{impr}}_{t} \cdot I\{v(t) = j\},$$

where the sum is over all internal nodes of the tree.

• In other words, each time X_j is used for a split in T, we compute by how much this split reduces the risk. If it reduces the risk a lot, chances are this is an important variable: it makes a big difference to split according to that variable.

• In random forests we have B trees T_1, \ldots, T_B . To compute the importance of X_j , we compute $\mathcal{I}_j(T_b)$ for $b = 1, \ldots, B$ and take

$$\frac{1}{B} \sum_{b=1}^{B} \mathcal{I}_j(T_b).$$

• Other measure of importance based on OOB: for b = 1, ..., B, denote classifier computed from T_b by \hat{G}_b . Apply \hat{G}_b to bth OOB sample S_b (data not in bth bootstrap sample). Compute prediction accuracy:

$$Acc_b = \sum_{i:(\mathbf{X}_i,G_i)\in\mathcal{S}_b} 1\{\hat{G}_b(\mathbf{X}_i) = G_i\} / \#\{i:(\mathbf{X}_i,G_i)\in\mathcal{S}_b\}.$$

- Monitor what happens if we change the values of the X_{ij} 's for the X_i 's in S_b (all other components remain fixed). If X_j is important for classification then changing the value of the X_{ij} 's should worsen classification performance.
- How to do that? Randomly permute (among them) the X_{ij} 's of the X_i 's in S_b . Compute decrease in Acc_b resulting from these random permutations. Measure the importance of X_j by averaging these decreases over the B trees.