It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Many applications use a mix of several languages in their construction and use. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Scripting and breakpointing is also part of this process. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Normally the first step in debugging is to attempt to reproduce the problem. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. There exist a lot of different approaches for each of those tasks. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. One approach popular for requirements analysis is Use Case analysis. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). There are many approaches to the Software development process. Also, specific user environment and usage history can make it difficult to reproduce the problem. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. There exist a lot of different approaches for each of those tasks. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. One approach popular for requirements analysis is Use Case analysis.