1 | Escape Velocity and Gravitational Potential Energy

1.1 | Newton's Universal Gravitation Law

$$\vec{F_g} = -\frac{GM_1M_2}{r^2}\hat{r} \tag{1}$$

where, $\vec{F_g}$ is the force of gravity on M_2 ; M_1 and M_2 are two point masses; G the universal gravitation constant; r the magnitude of the vector \vec{r} from M_1 to M_2 and \hat{r} the unit vector in the \vec{r} direction. Also, introduce the following variables:

- M_e for the mass of the Earth
- ullet g for the acceleration of gravity on the surface of the Earth

1.2 | Equation for Gravitational Potential Energy

The general equation for work is as follows:

$$W = \frac{dF}{dx}dx\tag{2}$$

To begin, we need to modify the **Newton's Universal Gravitation Law** to fit the parameters of the senario. Namely, we need to treat both Earth and our object as point masses, and assign M_1 to be Earth and M_2 to be our object.

Also, it is necessary to define the coordinate system: th