

Hypergraphs and Information Fusion for Term Representation Enrichment. Applications to Named Entity Recognition and Word Sense Disambiguation

Ph.D. Thesis Defense

Pavel Soriano-Morales Supervised by Sabine Loudcher and Julien Ah-Pine February 7th, 2018

Why is it useful to us to understand text?

How do we extract meaning from text?

We use **Natural Language Processing** (NLP), a field of computer science interested in making computers comprehend text and obtain useful information from it

Feature Representation and Knowledge Discovery

How do we represent text for the machine to understand?

Dealing with data sparsity Leveraging heterogeneity What techniques do we use to discover meaning from text?

Finding semantic communities

Introduction

Representing Text

- $\boldsymbol{\cdot}$ Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree

Introduction

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree
- Example Phrase

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
- Example Phrase

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - · Dependency Tree
- Example Phrase

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
- Example Phrase

Represention Models

- · Two classic models
 - Graph-based
 - · Matrix-based
- Leveraging the network structure
 - We can find communities of similiar words according to their meaning

Represention Models

- · Two classic models
 - Graph-based
 - · Matrix-based
- · Leveraging the network structure
 - We can find communities of similiar words according to their meaning

Pavel SORIANO-MORALES 5/41

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph model to hold different types of linguistic information

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find communities existing within the language networks?
 - An alternative network-based algorithm to discover semantically related words within a text

Pavel SORIANO-MORALES 7/41

Contributions in Detail

Hypergraph Linguistic Model

Hypergraph Linguistic Model Introduction

We extract useful information from a text based on the distributional hypothesis (a word is defined by its surroundings)

- · We choose network models
 - Used in a large quantity of NLP tasks
 - Graphs structures can give us a clearer view into the relations of words within a text
 - Ultimately graphs are transformed to a vectorial representation through the adjacency/incidence matrices

Pavel SORIANO-MORALES

Hypergraph Linguistic Model Classic Language Networks

Example phrase

Example phrase

The report contains copies of the minutes of these meetings

Lexical Networks

Sentence Level

Example phrase

The report contains copies of the minutes of these meetings

Syntactic Networks

Constituency Tree

Example phrase

The report contains copies of the minutes of these meetings

Syntactic Networks

Dependency Tree

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- · The edges of the network relate maximum two words at each time

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network relate maximum two words at each time

Proposition

- Use a hypergraph model to link together the different types of networks
- This allows for a semantic overview at three different layers: short range, medium range, and long range at once
- Relating more than two words at the same time

Lexical Networks

Sentence Level

Syntactic Networks

Constituency Tree

Syntactic Networks

Dependency Tree

Pavel SORIANO-MORALES 11/41

Pavel SORIANO-MORALES 11/41

Pavel SORIANO-MORALES 11/41

Contributions in Detail

Combining Features and Dealing with Sparsity

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

Definition

- · Used in multimedia analysis tasks to integrate multiple media
- We adapt them to combine textual information
- The goal is to obtain rich insights about the data being treated
- By creating a single representation from heterogeneous information

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

Definition

- · Used in multimedia analysis tasks to integrate multiple media
- We adapt them to combine textual information
- The goal is to obtain rich insights about the data being treated
- By creating a single representation from heterogeneous information

Main fusion operators:

- Early Fusion $E_{\alpha}(\cdot)$,
- Late Fusion $L_{\beta}(\cdot)$,
- Cross Fusion $X_{\gamma}(\cdot)$

Combining Features and Dealing with Sparsity Early and Late Fusion

DEFINITIONS

M ^L	Lexical features	MS	Syntactic features
S^L	Lexical similarities	SS	Syntactic similarities

EARLY FUSION

Matrices M^L and M^S have the same number of rows

DEFINITIONS

M^L	Lexical features	MS	Syntactic features
S^L	Lexical similarities	SS	Syntactic similarities

EARLY FUSION

Matrices M^L and M^S have the same number of rows

LATE FUSION: SIMILARITY FUSION

Matrices S^L and S^S have the same size

Combining Features and Dealing with Sparsity

Cross Fusion

Combining Features and Dealing with Sparsity **Hybrid Fusion**

\cdot Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

Combining Features and Dealing with Sparsity Hybrid Fusion

Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

· First Degree

- E(M^L, M^S), L(S^S, M^L)
- Cross Feature Fusion: $X_F(S^S, M^L)$
- Cross Similarity Fusion: $X_S(S^S, S^L)$

$$X_F(S^L, M^S)$$

Cross Feature Fusion

Cross Similarity Fusion

$$\overset{w_1}{\underset{w_3}{\overset{w_1}{=}}} \left(\begin{array}{c} s^1 \\ s^2 \\ s^3 \end{array} \right) \ X \ \overset{w_1}{\underset{w_3}{\overset{w_1}{=}}} \left(\begin{array}{c} s^1 \\ s^2 \\ s^3 \end{array} \right) \ \ = \ \overset{w_1}{\underset{w_3}{\overset{w_2}{=}}} \left(x_s^1 (s^s, s^s) \right)$$

Pavel SORIANO-MORALES

Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

· Second Degree

- Cross Feature Early Fusion: $X_F(S^T, E(M^S, M^L))$
- Late Cross Feature Fusion: $L(M^T, X_F(S^T, M^T))$

Pavel SORIANO-MORALES 15/

Combining Features and Dealing with Sparsity **Hybrid Fusion**

Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

Higher Degree

• Triple Early Double Late Cross Feature Fusion: $E(M_L, E(E(M_T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Combining Features and Dealing with Sparsity **High Degree Fusion**

Higher Degree Operator

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Pavel SORIANO-MORALES 16/41

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$L(M^T, X_E(S^T, M^T)))$

$$\begin{array}{c} \overset{w_{1}}{\overset{w_{2}}{\overset{w}{_{2}}}} \left(\begin{array}{c} S^{T} \end{array} \right) & X & \overset{w_{1}}{\overset{w_{1}}{\overset{w}{_{2}}}} \left(\begin{array}{c} M^{T} \end{array} \right) & = & \overset{w_{1}}{\overset{w_{2}}{\overset{w}{_{2}}}} \left(X_{F}(S^{T},M^{T}) \right) \\ \overset{w_{1}}{\overset{w_{2}}{\overset{w}{_{3}}}} \left(\begin{array}{c} M^{T} \end{array} \right) & = & \overset{w_{1}}{\overset{w_{2}}{\overset{w}{_{3}}}} \left(X_{F}(S^{T},M^{T}) \right) \\ \overset{w_{1}}{\overset{w_{2}}{\overset{w}{_{3}}}} \left(\begin{array}{c} M^{T} \end{array} \right) & + & \overset{w_{1}}{\overset{w_{2}}{\overset{w}{_{3}}}} \left(X_{F}(S^{T},M^{T}) \right) \\ \overset{w_{2}}{\overset{w_{3}}{\overset{w}{\overset{w}{_{3}}}}} \left(X_{F}(S^{T},M^{T}) \right) & = & \overset{w_{1}}{\overset{w_{2}}{\overset{w}{_{3}}}} \left(\begin{array}{c} L(M^{T},X_{F}(S^{T},M^{T})) \end{array} \right) \\ \end{array}$$

Pavel SORIANO-MORALES 16/41

$$\begin{array}{c|c} E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T)))) \\ \hline \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ W_1 \\ W_2 \\ W_3 \\ \hline \\ W_1 \\ W_2 \\ W_3 \\ \hline \\ \\ E(M^T, X_F(S^T, M^T))) \\ \hline \\ = W_1 \\ W_2 \\ W_3 \\ \hline \\ \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ \end{bmatrix}$$

$$\underbrace{ E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))) }_{L(M^{L}, X_{F}(S^{S}, M^{L}))) }_{L(M^{L}, X_{F}(S^{S}, M^{L}))) }$$

$$\underbrace{ E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))) }_{W_{3}} \underbrace{ \left(L(M^{L}, X_{F}(S^{S}, M^{L})) \right) }_{W_{3}} = \underbrace{ \left(L(M^{L}, X_{F}(S^{S}, M^{L}) \right) }_{W_{3}} = \underbrace{ \left(L(M^{L$$

$$\begin{split} E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))) \\ E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))) \\ & \overset{w_{1}}{\underset{w_{2}}{\bigcup}} \left(\begin{array}{c} M^{T} \\ M^{T} \end{array} \right) |I| \overset{w_{1}}{\underset{w_{2}}{\bigcup}} \left(\begin{array}{c} E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))) \end{array} \right) \\ & = \\ & \overset{w_{1}}{\underset{w_{2}}{\bigcup}} \left(\begin{array}{c} E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))) \end{array} \right) \end{split}$$

Pavel SORIANO-MORALES 16/41

Contributions in Detail

Finding Communities in the Network

contributions in Detai

Finding Communities in the Network Introduction

- · Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network

Finding Communities in the Network Introduction

· Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Seminal approaches

- Hyperlex [Vó4]
- University of York (UoY) [KM07]

Finding Communities in the Network Introduction

Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Seminal approaches

- Hyperlex [Vó4]
- University of York (UoY) [KMo7]

Limitations of existing approaches

- Single typed networks
- Large number of parameters

Finding Communities in the Network Introduction

Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Seminal approaches

- Hyperlex [Vó4]
- University of York (UoY) [KMo7]

· Limitations of existing approaches

- Single typed networks
- Large number of parameters

Proposition

- Be able to exploit different types of linguistic information (lexical or syntactic co-occurrence)
- Keep the number of parameters low and allow for their automatic adjusting according to the network's nature

Finding Communities in the Network **Proposed Method**

Applications to NLP

Hypergraph Model Instantiation

Hypergraph Model Instantiation Hypergraph Model Instantiation

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- Steps performed

Pavel SORIANO-MORALES 19/41

Hypergraph Model Instantiation Syntactically Annotated Wikipedia

FILENAME wiki_oo.parsed

token	lemma	POS	constituency	head	dependency
%%#PAGE	%%#PAGE Anarchism				
:	:	:	:	:	:
%%#SEN 25 9					
Α	a	DT	NP_22,S_97	3	det
great	great	JJ	NP_22,S_97	3	amod
brigand	brigand	NN	NP_22,S_97	4	nsubj
becomes	become	VBZ	VP_44,S_97	0	root
a	a	DT	NP_18,NP_20,VP_44,S_97	6	det
ruler	ruler	NN	NP_18,NP_20,VP_44,S_97	4	xcomp
of	of	IN	PP_57,NP_20,VP_44,S_97	9	case
a	a	DT	NP_18,PP_57,NP_20,VP_44,S_97	9	det
Nation	nation	NN	NP_18,PP_57,NP_20,VP_44,S_97	6	nmod

Pavel SORIANO-MORALES

Hypergraph Model Instantiation Hypergraph Incidence Matrix

-		CONSTITUENT		DEPENDENCY		SENTENCE	
		NP ₁ DT:NN	NP ₂ NP:PP:PP	NP ₃ NNS	nsubj contains	dobj contains	S ₁
	report	1			1		1
NN	copies		1	1		1	1
ININ	minutes		1				1
	meetings		1				1
VB	contains						1

Characteristics of the enriched space

- · Sparsity is reduced
- Semantic relatedness differs according to the representation space

	Lexical Features (5.49%) M ^L	Syntactic Features (4.97%) M ^s	Early Fusion (5.23%) $E(M^{L}, M^{S})$	X_F Fusion (16.75%) $X_F(S^s, M^L)$	<i>X_F</i> Fusion (13.45%) <i>X_F</i> (<i>S</i> ^L , <i>M</i> ^S)
priest	priests	monk	sailor	vassal	sailor
	nun	regent	regent	regent	fluent
	canton	aedile	nuclei	nun	dean
	sailor	seer	nun	sailor	nuclei
	burial	meek	relic	monk	chorus

Solving Named Entity Recognition

Applications to NLP

Solving Named Entity Recognition Introduction

· NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Solving Named Entity Recognition Introduction

NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

· Classic entities types

- · Location (LOC)
- Organization (ORG)
- · Person (PER)
- Miscellaneous (MISC)
- None (O)

NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

· Classic entities types

- · Location (LOC)
- · Organization (ORG)
- · Person (PER)
- Miscellaneous (MISC)
- None (O)

Our goal

 We assess the effectiveness of the classic fusion methods and propose new hybrid combinations

Example Phrase

Australian scientist discovers star with telescope

Three different types of features

Word	Features	Feature Type
Australian	word:Australian, word+1:scientist,	Lexical (L)
scientist	Australian/JJ/amod, discovers/VBZ/nsubj_inv	Syntactic (S)
discover	discover, no-capital-letter, prf:dis, suf:ver, VBZ	Standard (T)

Solving Named Entity Recognition Experimental Protocol

- Preprocessing
 - · Normalize numbers

Solving Named Entity Recognition Experimental Protocol

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL): Train: 219,554 lines. Test: 50,350 lines
 - Wikiner (WNER): 3.5 million words.
 - Wikigold (WGLD): 41,011 words.

Solving Named Entity Recognition Experimental Protocol

Preprocessing

- · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL): Train: 219,554 lines. Test: 50,350 lines
 - Wikiner (WNER): 3.5 million words.
 - Wikigold (WGLD): 41,011 words.
- · Learning Algorithm
 - Structured Perceptron

Solving Named Entity Recognition Experimental Protocol

Preprocessing

- · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL): Train: 219,554 lines. Test: 50,350 lines
 - Wikiner (WNER): 3.5 million words.
 - Wikigold (WGLD): 41,011 words.
- Learning Algorithm
 - Structured Perceptron
- · Evaluation Metric
 - F-measure
 - Evaluated with a 5-fold CV (WNER and WGLD)

Α	Single Features				
	CONLL	WNER	WGLD		
M^{T}	77.41	77.50	59.66		
$M^{\scriptscriptstyle L}$	69.40	69.17	52.34		
M ^s	32.95	28.47	25.49		

Α	В	Early Fusion (EF)				
		CONLL	WNER	WGLD		
M ^L	Ms	72.01	70.59	59.38		
$M^{\scriptscriptstyle L}$	$M^{\scriptscriptstyle T}$	78.13	79.78	61.96		
Ms	M^{T}	77.70	78.10	60.93		
M ^L	$\mathbf{E}(\mathbf{M^S}, \mathbf{M^T})$	78.90	80.04	63.20		

A	В	Baseline (EF)			
		CONLL	WNER	WGLD	
M ^L	$\mathbf{E}(\mathbf{M^S}, \mathbf{M^T})$	78.90	80.04	63.20	

First Degree Fusion

		Cross Feature Fusion (X _F F)				
		CONLL	WNER	WGLD		
SL	M^{T}	49.90	70.27	62.69		
S ^s	M^{T}	47.27	51.38	48.53		
ST	$b_{x_FF}^*$	52.89	62.21	50.15		

A	В	Baseline (EF)			
		CONLL	WNER	WGLD	
Mr	$\mathbf{E}(\mathbf{M^S},\mathbf{M^T})$	78.90	80.04	63.20	

Second Degree Fusion

Α	В	Early Cross Feature Fusion (EX _F F)			
		CONLL	WNER	WGLD	
M ^τ	$X_F(S^s, M^L)$	49.58	77.32	61.69	

Α	В	Baseline (EF)			
		CONLL	WNER	WGLD	
Mr	$\mathbf{E}(\mathbf{M^S}, \mathbf{M^T})$	78.90	80.04	63.20	

Second Degree Fusion

Α	В	Late Cross Feature Fusion (LX _F F)			
		CONLL	WNER	WGLD	
Мт	$X_F(S^s, M^T)$	56.53	62.27	52.39	

A	В	Baseline (EF)		
		CONLL	WNER	WGLD
Mr	$\mathbf{E}(\mathbf{M^S}, \mathbf{M^T})$	78.90	80.04	63.20

High Degree Fusion

		Triple Early Double Late Cross Feature Fusion (EEELX _F LX _F)				
		CONLL	WNER	WGLD		
$\mathbf{M}^{L}_{\alpha=0.95}$	$\hat{\mathbf{b}}_{\text{EEELX}_{\text{F}}\text{LX}_{\text{F}}}$	79.67	81.79	67.05		
$\widehat{b}_{\text{EELX}_{F}LX_{F}} = E(E(M^{T}, L(M^{T}, X_{F}(S^{S}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))$						

· Split the operator in four different models

Analyzing the Best Fusion Operator

Split the operator in four different models

$$(M_1)$$
 M^L

$$(M_2)$$
 $E(M^{\scriptscriptstyle \perp}, M^{\scriptscriptstyle \intercal})$

$$(M_3)$$
 $E_{\alpha}(M^{\scriptscriptstyle L}, M^{\scriptscriptstyle T}, L(M^{\scriptscriptstyle T}, X_F(S^{\scriptscriptstyle S}, M^{\scriptscriptstyle T})))$

$$(M_4)$$
 $E_{\alpha}(M^{\scriptscriptstyle L}, M^{\scriptscriptstyle T}, L(M^{\scriptscriptstyle T}, X_F(S^{\scriptscriptstyle S}, M^{\scriptscriptstyle T})), L(M^{\scriptscriptstyle L}, X_F(S^{\scriptscriptstyle S}, M^{\scriptscriptstyle L})))$

Solving Named Entity Recognition Analyzing the Best Fusion Operator

Error Analysis Model

• To interpret the decision we change the prediction model to a logistic regression with L_1 normalization, which also benefits from the enriched spaces

Solving Named Entity Recognition Analyzing the Best Fusion Operator

Error Analysis Model

• To interpret the decision we change the prediction model to a logistic regression with L_1 normalization, which also benefits from the enriched spaces

Procedure

- We find an error on a model and then see if this error was fixed in the next evolved model
- We study the weights assigned to each feature and see if those added by the fusion makes the model change its decision

Solving Named Entity Recognition Analyzing the Best Fusion Operator

Error Analysis Model

 To interpret the decision we change the prediction model to a logistic regression with L₁ normalization, which also benefits from the enriched spaces

Procedure

- We find an error on a model and then see if this error was fixed in the next evolved model
- We study the weights assigned to each feature and see if those added by the fusion makes the model change its decision

Experiment

- We follow the proper name *Kory* from (M_1) (incorrectly classified as O) to (M_2) (correctly classified as PER)
- Similarly, we follow the proper name *Green* from (M_3) (incorrectly classified as ORG) to (M_4) (correctly classified as PER)

Pavel SORIANO-MORALES 29/41

We focus on the word *Kory*, and its performance from model (M_1) to (M_2)

We focus on the word *Green*, and its performance from model (M_3) to (M_4)

Applications to NLP

Solving Word Sense Induction and Disambiguation

Solving Word Sense Induction and Disambiguation Introduction

WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word

Solving Word Sense Induction and Disambiguation Introduction

· WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word

· Our goals

- Assess the effectiveness of the fusion enriched spaces
- Evaluate the pertinence of our community discovering algorithm

- Preprocessing
 - Remove very frequent and very infrequent words

- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350

- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- · Clustering Algorithm
 - Spectral Clustering [SMoo]
 - Proposed Community Algorithm

- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- Clustering Algorithm
 - Spectral Clustering [SMoo]
 - Proposed Community Algorithm
- Evaluation Metrics
 - · Supervised Recall
 - · Unsupervised F-measure

Solving Word Sense Induction and Disambiguation

Experimental Protocol

- Preprocessing
 - · Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- Clustering Algorithm
 - Spectral Clustering [SMoo]
 - Proposed Community Algorithm
- Evaluation Metrics
 - · Supervised Recall
 - · Unsupervised F-measure
 - · Proposed: H-measure

$$H\text{-measure} = \frac{1}{2} \left(2 * \frac{SR * UF}{SR + UF} + \frac{\delta}{\delta + |\#cl - \delta|} \right)$$

 δ is the average true number of senses of the words in a test corpus

Solving Word Sense Induction and Disambiguation Spectral Clustering Evaluation

	X _S F)	sion (X ₁	larity Fu	ross Simi	Cross Feature C
	3.11	76.10	80.40	78.40	$X_F(X_S(S^L, S^s), M^L)$
	3.16	75.60	81.80	78.90	$X_F(X_S(S^L, S^s), M^s)$
	EX _F F)	usion (I	eature F	ly Cross F	Ear
2F	3.57	75.70	82.40	79.20	$E(M^L, X_F(S^L, M^L))$
	1.95	75.80	80.50	78.30	$E(M^s, X_F(S^L, M^L))$
	X _F F)	usion (I	eature F	te Cross F	La
	4.22	75.80	81.10	78.60	$L(M^s, X_F(S^L, M^s))$
	3.96	75.70	82.80	79.50	$L(M^L, X_F(S^L, M^L))$
	X _F F)	sion (El	ature Fu	Cross Fe	Early Late
HF	4.26	75.40	81.40	78.50	$E(M^L, L(M^s, X_F(S^L, M^s)))$
	3.99	75.90	82.70	79.50	$E(M^L, L(M^L, X_F(S^L, M^L)))$
	1.00	76.20	80.90	78.70	Baseline MFS

Figure 1: Supervised Recall

Solving Word Sense Induction and Disambiguation Spectral Clustering Evaluation

	3.11	76.10	80.40	78.40	$X_F(X_S(S^L, S^s), M^L)$
	3.16	75.60	81.80	78.90	$X_F(X_S(S^L, S^s), M^s)$
	EX _F F)	usion (I	eature F	y Cross F	Earl
2F	3.57	75.70	82.40	79.20	$E(M^L, X_F(S^L, M^L))$
	1.95	75.80	80.50	78.30	$E(M^s, X_F(S^L, M^L))$
	X _F F)	usion (I	eature F	e Cross F	La
	4.22	75.80	81.10	78.60	$L(M^s, X_F(S^L, M^s))$
	3.96	75.70	82.80	79.50	$L(M^L, X_F(S^L, M^L))$
	X _F F)	sion (El	ature Fu	Cross Fe	Early Late
HF	4.26	75.40	81.40	78.50	$E(M^L, L(M^s, X_F(S^L, M^s)))$
	3.99	75.90	82.70	79.50	$E(M^L, L(M^L, X_F(S^L, M^L)))$
	1.00	76.20	80.90	78.70	Baseline MFS

Figure 1:	Supervised	Recall
-----------	------------	--------

	Fusion (EF)		
	71.11 4.46	74.00	$E(M^L, M^s)$
	usion (X _F F)	Cross Fea	
	72.50 3.63	76.20	$X_F(S^L, M^L)$
τF	73.90 3.08	74.60	$X_F(S^L, M^S)$
11	76.90 1.08	78.90	$X_F(S^s, M^L)$
	70.00 2.72	73.70	$X_F(S^s, M^s)$
	ısion (X _S F)	Cross Simila	
	76.80 1.01	78.90	$X_S(S^s, S^L)$
	76.80 1.33	78.70	$X_S(S^L, S^S)$

Figure 2: Unsupervised F-measure

Solving Word Sense Induction and Disambiguation **Spectral Clustering Evaluation**

Figure 3: Proposed H-measure

Solving Word Sense Induction and Disambiguation **Proposed Algorithm Evaluation**

		Early	Fusior	(EF)	
(M^L, M^S)	78.80	81.00	76.40	2.43	
	Cross	Feature	Fusion	(X _F F)	
$_{F}(S^{L},M^{L})$	78.70	80.90	76.20	3.11	
$_{F}(S^{L},M^{S})$	78.50	81.10	75.60	1.92	ıF
$_{F}(S^{s},M^{t})$	79.10	81.60	76.40	1.73	11
$_{F}(S^{s},M^{s})$	78.60	80.90	76.00	1.81	
	Cross Sin	milarity	Fusion	(X_SF)	
$_{S}(S^{s},S^{L})$	78.60	80.80	76.20	1.44	
$S(S^L, S^S)$	78.70	80.90	76.20	1.10	

Figure 4: Supervised Recall

Solving Word Sense Induction and Disambiguation **Proposed Algorithm Evaluation**

		Earl	y Fusior	(EF)	
$E(M^{L}, M^{S})$	78.80	81.00	76.40	2.43	
	Cross	Feature	Fusion	(X _F F)	
$X_F(S^L, M^L)$	78.70	80.90	76.20	3.11	
$X_F(S^L, M^S)$	78.50	81.10	75.60	1.92	1F
$X_F(S^s, M^L)$	79.10	81.60	76.40	1.73	11
$X_F(S^s, M^s)$	78.60	80.90	76.00	1.81	
	Cross Sin	milarity	Fusion	(X_SF)	
$X_S(S^s, S^L)$	78.60	80.80	76.20	1.44	
$X_S(S^L, S^s)$	78.70	80.90	76.20	1.10	

Figure 4: Supervised Recal	Figure	4: S	upervise	ed Reca	Ш
----------------------------	--------	-------------	----------	---------	---

		Early 1	Fusion ((EF)	
(M^L, M^s)	76.90	80.20	73.10	2.43	
	Cross Fea	ture F	usion ()	(_F F)	
$_{F}(S^{L},M^{L})$	71.00	68.10	74.20	3.11	
$_{F}(S^{L},M^{s})$	77.70	79.60	75.50	1.92	1F
$_{F}(S^{s},M^{L})$	75.20	75.50	74.90	1.73	11
$_{F}(S^{s},M^{s})$	77.60	80.50	74.30	1.81	
	Cross Simil	arity F	usion (X	(_S F)	
$_{S}(S^{s},S^{L})$	74.10	72.10	76.50	1.44	
$_{S}(S^{L},S^{S})$	78.30	79.70	76.80	1.10	

Figure 5: Unsupervised F-measure

Solving Word Sense Induction and Disambiguation **Proposed Algorithm Evaluation**

Figure 6: Proposed H-measure

Conclusions

Conclusions

Insights From our Contributions

- Hypergraph linguistic model to hold heterogeneous information
 - Hypergraphs allow a multi-layered representation of text within a single resource.
 - The Wikipedia-based instantiation serves as a NLP system starting point

Insights From our Contributions

- Hypergraph linguistic model to hold heterogeneous information
 - Hypergraphs allow a multi-layered representation of text within a single resource.
 - The Wikipedia-based instantiation serves as a NLP system starting point
- Multimedia fusion techniques to combine and densify representations
 - High-degree combinations of linguistic representations reduce sparsity
 - These fusion spaces achieve improvements on NER and WSI/WSD compared to single features and trivial fusion

Insights From our Contributions

- Hypergraph linguistic model to hold heterogeneous information
 - Hypergraphs allow a multi-layered representation of text within a single resource.
 - The Wikipedia-based instantiation serves as a NLP system starting point
- Multimedia fusion techniques to combine and densify representations
 - High-degree combinations of linguistic representations reduce sparsity
 - These fusion spaces achieve improvements on NER and WSI/WSD compared to single features and trivial fusion
- Finding semantically-related communities on linguistic networks
 - The proposed community finding method improves over similar algorithms while being simpler and allowing for heterogeneous features

Conclusions Future Work

Hypergraph Linguistic Model

- A dataframe-like structure specialized on linguistic information based on the proposed model
- Defining inter-features similarities measures within the network

Hypergraph Linguistic Model

- A dataframe-like structure specialized on linguistic information based on the proposed model
- Defining inter-features similarities measures within the network

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring fusion with other types of features (other modalities)

Hypergraph Linguistic Model

- A dataframe-like structure specialized on linguistic information based on the proposed model
- Defining inter-features similarities measures within the network

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring fusion with other types of features (other modalities)

Applications to NLP

- Comparison with other distributional representations (word embeddings)
- Using the large Wikipedia-based network as a background corpus to further enrich domain-specific corpora
- Test more feature weighting schemes, validate findings on more datasets

Publications Produced by our Research

- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Fusion Techniques for Named Entity Recognition and Word Sense Induction and Disambiguation. DS 2017
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Using a Heterogeneous Linguistic Network for Word Sense Induction and Disambiguation. CICLING 2016
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Hypergraph Modelization of a Syntactically Annotated English Wikipedia Dump. LREC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales, Ciprian-Octavian Truica: Topic modeling and hypergraph mining to analyze the EGC conference history. EGC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales: TOM: A library for topic modeling and browsing. EGC 2016
- Julien Ah-Pine, Edmundo-Pavel Soriano-Morales: A Study of Synthetic Oversampling for Twitter Imbalanced Sentiment Analysis. DMNLP@PKDD/ECML 2016
- Sabine Loudcher, Wararat Jakawat, Edmundo-Pavel Soriano-Morales, Cécile Favre: Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics 103(2) 2015

Pavel SORIANO-MORALES 40/41

Thank you for your attention

- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Fusion Techniques for Named Entity Recognition and Word Sense Induction and Disambiguation. DS 2017
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Using a Heterogeneous Linguistic Network for Word Sense Induction and Disambiguation. CICLING 2016
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Hypergraph Modelization of a Syntactically Annotated English Wikipedia Dump. LREC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales, Ciprian-Octavian Truica: Topic modeling and hypergraph mining to analyze the EGC conference history. EGC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales: TOM: A library for topic modeling and browsing. EGC 2016
- Julien Ah-Pine, Edmundo-Pavel Soriano-Morales: A Study of Synthetic Oversampling for Twitter Imbalanced Sentiment Analysis. DMNLP@PKDD/ECML 2016
- Sabine Loudcher, Wararat Jakawat, Edmundo-Pavel Soriano-Morales, Cécile Favre: Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics 103(2) 2015

Pavel SORIANO-MORALES 41/