

ETC3250

Business Analytics

Week 6
Resampling methods

31 August 2017

Outline

Week	Topic	Chapter	Lecturer
1	Introduction to business analytics & R	1	Souhaib
2	Statistical learning	2	Souhaib
3	Regression for prediction	3,7	Tas & David
4	Classification	4	Souhaib
5	Classification	4, 9	Souhaib
6	Model selection and resampling methods	5	Souhaib
	Resampling methods		Souhaib
7	Dimension reduction	6,10	Souhaib
8	Advanced regression	6	Souhaib
9	Advanced learning methods	8	Souhaib
	Semester break		
10	Clustering	10	Souhaib
11	Visualization		Souhaib
12	Data wrangling		Souhaib

4. The Bootstrap 2/23

Resampling methods

Resampling methods are used in

- validating models by using (random) subsets of the data (e.g cross validation and bootstrapping),
- estimating uncertainty in sample statistics by drawing randomly with replacement from the data set (e.g. bootstrapping),
- performing (non-parametric) significance tests (permutation tests).

4. The Bootstrap 3/23

Outline

1 Cross-validation

2 The bootstrap

4. The Bootstrap Cross-validation 4/23

Validation set and Leave-one-out

4. The Bootstrap Cross-validation 5/23

Cross-validation

4. The Bootstrap Cross-validation

6/23

k-fold Cross-validation

- Divide the data set into *k* different parts.
- Remove one part, fit the model on the remaining k-1 parts, and compute the MSE on the omitted part.
- Repeat k times taking out a different part each time

By averaging the k MSEs we get an estimated validation (test) error rate for new observations.

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

LOOCV is a special case where k = n.

4. The Bootstrap Cross-validation 7/23

k-fold Cross-validation

- Each training set is only (k-1)/k as big as the original data set. So the estimates of prediction error will be biased upwards.
- Bias minimized when k = n (LOOCV).
- But variance increases with k (as there are overlapping observations in each part).
- k = 5 or k = 10 provide a good compromise for this bias-variance tradeoff.

4. The Bootstrap Cross-validation 8/23

Outline

1 Cross-validation

2 The bootstrap

4. The Bootstrap The bootstrap 9/23

Pull yourself up by your bootstraps

4. The Bootstrap The bootstrap 10/23

What is the bootstrap?

The bootstrap is a flexible statistical tool to **quantify the uncertainty** associated with a *given* estimator or statistical learning method.

- The bootstrap allows us to use a computer to mimic the process of obtaining new data sets, so that we can estimate the variability of our estimate without generating additional samples
- We obtain distinct data sets (with the same size as our original dataset) by repeatedly sampling observations from the original data set with replacement (nonparametric) or from an estimated model (parametric).

Bootstrapping: Ideal world

4. The Bootstrap The bootstrap 12/23

Bootstrapping: Bootstrap world

4. The Bootstrap The bootstrap 13/23

Illustration of the bootstrap

The bootstrap procedure

- Find a good estimate \hat{P} of P
 - Parametric bootstrap
 - Nonparametric bootstrap
- Draw *B* independent bootstrap samples $X^{*(1)}, \ldots, X^{*(B)}$ from \hat{P} :

$$X_1^{*(b)}, \ldots, X_n^{*(b)} \sim \hat{P} \quad b = 1, \ldots, B.$$

Evaluate the bootstrap replications:

$$\hat{\theta}^{*(b)} = s(X^{*(b)}) \quad b = 1, \dots, B.$$

■ Estimate the quantity of interest from the distribution of the $\hat{\theta}^{*(b)}$

Examples

What is the standard error of $\hat{\theta}$ (i.e., the standard deviation of the sampling distribution of $\hat{\theta}$)?

- $\hat{\theta} = \mathsf{sample} \; \mathsf{mean}$
- $\hat{\theta} = \text{sample median}$
- $\hat{\theta}=$ expected shortfall at 5%
- $\hat{ heta} = \text{lag 1 autocorrelation.}$

Sample mean: n = 50

■ Two types of random variation

4. The Bootstrap The bootstrap 17/23

Sample mean: n = 9

4. The Bootstrap

The bootstrap

Fit the model on a set of bootstrap samples, and then keep track of how well it predicts the original dataset

$$\mathsf{Err}_{\mathsf{boot}} = \frac{1}{B} \frac{1}{N} \sum_{b=1}^{B} \sum_{i=1}^{N} L(y_i, \hat{f}^{*b}(x_i))$$

Each of these bootstrap data sets is created by sampling with replacement, and is the same size as our original dataset. As a result some observations may appear more than once in a given bootstrap data set and some not at all.

Fit the model on a set of bootstrap samples, and then keep track of how well it predicts the original dataset

$$Err_{boot} = \frac{1}{B} \frac{1}{N} \sum_{b=1}^{B} \sum_{i=1}^{N} L(y_i, \hat{f}^{*b}(x_i))$$

Each of these bootstrap data sets is created by sampling with replacement, and is the same size as our original dataset. As a result some observations may appear more than once in a given bootstrap data set and some not at all.

Training and validation sets have observations in common! Overfit predictions will look very good.

P(observation $i \in bootstrap sample b) = ??$

Training and validation sets have observations in common! Overfit predictions will look very good.

$$= 1 - (1 - \frac{1}{n})^n$$

$$\approx 1 - \frac{1}{e}$$

$$= 0.632$$
Remember that cross-validation uses
non-overlapping data for the training and

validation samples

P(observation $i \in bootstrap sample b) = ??$

Better bootstrap version: we only keep track of predictions from bootstrap samples not containing that observation. The leave-one-out bootstrap estimate of prediction error can be defined as

$$\mathsf{Err}_{\mathsf{loo-boot}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} L(y_i, \hat{f}^{*b}(x_i))$$

where C^{-i} is the set of indices of the bootstrap samples b that do not contain observation i. Problem of overfitting with Err_{boot} solved but training-set-size bias as with cross-validation.

Many applications

- Computing standard errors for complex statistics
- Prediction error estimation
- Bagging (Bootstrap aggregating)
- **...**

Variations

There are several types of bootstrap based on different assumptions:

- block bootstrap
- sieve bootstrap
- smooth bootstrap
- residual bootstrap
- wild bootstrap

Many applications

- Computing standard errors for complex statistics
- Prediction error estimation
- Bagging (Bootstrap aggregating)
- **...**

Variations

There are several types of bootstrap based on different assumptions:

- block bootstrap
- sieve bootstrap
 - smooth bootstrap
 - residual bootstrap
 - wild bootstrap