Lentilles / constructions diverses

Question 1. Construire l'image par une lentille mince, d'un objet étendu AB (segment de droite perpendiculaire à l'axe principal de la lentille). On étudiera tous les cas : lentille convergente et lentille divergente, objet réel à gauche du foyer objet (lentille convergente), objet réel à droite du foyer objet (lentille convergente), sur le foyer objet, objet virtuel, objet à l'infini ... Choisir une focale de 3cm que la lentille soit divergente ou convergente.

Construction d'une image (L. Convergente), cas 1

Source: UEL

Pour un objet à l'infini, image réelle sur le foyer image de la lentille.

Construction d'une image (L. Convergente), cas 2

Source: UEL

Construction d'une image (L. Convergente), cas 3

Source: UEL

Construction d'une image (L. divergente), cas 1

Source: UEL

Pour un objet à l'infini, image virtuelle sur le foyer image de la lentille.

Construction d'une image (L. divergente), cas 2

Source: UEL

Construction d'une image (L. divergente), cas 3

Source: UEL

Lentilles convergentes / Objet réel

Question 1. Prédire la position et la taille de l'image à l'aide de la relation de conjugaison et de l'expression du grandissement.

$$\frac{1}{\overline{OA}} - \frac{1}{\overline{OA'}} = \frac{1}{\overline{OF}} = -\frac{1}{\overline{OF'}} \qquad \text{ou} \qquad \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}} = -\frac{1}{\overline{OF}}$$
$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

• **Lentille convergente** $\overline{OF'}$ = 3 cm et \overline{OF} = -3 cm

		$ \overline{OA} > 2 \times \overline{OF} $	$\left \overline{OA'}\right < \left \overline{OA}\right $	$ \gamma < 1$	image réelle inversée
	$ \overline{OA} > \overline{OF} $	$ \overline{OA} = 2 \times \overline{OF} $	$\left \overline{OA'} \right = \left \overline{OA} \right $	$ \gamma =1$	visible sur écran derrière la lentille
		$ \overline{OA} $ entre $2 \times \overline{OF} $ et $ \overline{OF} $	$\left \overline{OA'} \right > \left \overline{OA} \right $	$ \gamma > 1$	
)	$ \overline{OA} = \overline{OF} $		$ \overline{OA'} = \alpha$	$\gamma = \alpha$ $grossissement$ $pour une loupe$ $(G = \frac{d_m}{OF'})$ au lieu $du \ grandissement$	image virtuelle à l'infini droite visible par un œil placé derrière la lentille (effet loupe)
	$ \overline{OA} < \overline{OF} $		$\left \overline{OA'}\right > \left \overline{OA}\right $	$ \gamma > 1$	image virtuelle droite effet loupe
	$ \overline{OA} $ à l'infini		Image sur foyer image	$ \gamma < 1$	image réelle inversée

Objet virtuel: $\overline{OA} > 0$

Objet réel: \overline{OA} < 0

0	Quelque soit	1041 1041		
	la position	$ OA' < \overline{OA} $	$ \gamma < 1$	image réelle droite
	$ \overline{OA} $			

Lentilles divergentes / Objet réel

Question 1. Prédire la position et la taille de l'image à l'aide de la relation de conjugaison et de l'expression du grandissement.

$$\frac{1}{\overline{OA}} - \frac{1}{\overline{OA'}} = -\frac{1}{\overline{OF'}} = \frac{1}{\overline{OF}} \qquad \text{ou} \qquad \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}} = -\frac{1}{\overline{OF}}$$
$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

• Lentille divergente : $\overline{OF'}$ = -3 cm et \overline{OF} = + 3 cm

Objet réel: \overline{OA} < 0

Quelque soit la position $ \overline{OA} $	$\left \overline{OA'}\right < \left \overline{OA}\right $	$ \gamma < 1$	image virtuelle droite
$ \overline{OA} $ à l'infinie	image sur le foyer image	$ \gamma < 1$	image virtuelle droite

Objet virtuel: $\overline{OA} > 0$

	$ \overline{OA} > 2 \times \overline{OF} $	$\left \overline{OA'} \right < \left \overline{OA} \right $	$ \gamma < 1$	
$ \overline{OA} > \overline{OF} $	$ \overline{OA} = 2 \times \overline{OF} $	$\left \overline{OA'} \right = \left \overline{OA} \right $	$ \gamma =1$	image virtuelle inversée
	$ \overline{OA} $ entre $2 \times \overline{OF} $ et $ \overline{OF} $	$\left \overline{OA'} \right > \left \overline{OA} \right $	$ \gamma > 1$	
$ \overline{OA} = \overline{OF} $		$ \overline{OA'} = \alpha$	$\gamma = \alpha$ $grossissement pour$ $une loupe$ $(G = \frac{d_m}{OF'})$ au lieu du $grandissement$	image réelle droite à l'infini effet loupe
$ \overline{OA} < \overline{OF} $		$\left \overline{OA'} \right > \left \overline{OA} \right $	$ \gamma > 1$	image réelle droite effet loupe

On suppose dans tout l'exercice que la lumière se propage de la gauche vers la droite. Soit une lentille mince convergente L_1 de distante focale $O_1F_1=-2$ cm et de centre O_1 . Un objet AB de hauteur 3 cm est placé à l'abscisse $O_1A=-4$ cm ; A est situé sur l'axe optique. La lentille L_1 donne de AB une image A_1B_1 .

Question 1. Donner la relation de conjugaison qui s'applique dans le cas d'une lentille mince.

$$\frac{1}{\overline{O_1 A}} - \frac{1}{\overline{O_1 A_1}} = -\frac{1}{\overline{O_1 F' 1}} = \frac{1}{\overline{O_1 F_1}}$$

On suppose dans tout l'exercice que la lumière se propage de la gauche vers la droite. Soit une lentille mince convergente L_1 de distante focale $O_1F_1=-2$ cm et de centre O_1 . Un objet AB de hauteur 3 cm est placé à l'abscisse $O_1A=-4$ cm ; A est situé sur l'axe optique. La lentille L_1 donne de AB une image A_1B_1 .

Question 2. On cherche la position de l'image A_1B_1 . Pour ce faire, calculer la distance algébrique O_1A_1 . Quelle est la nature de l'image obtenue ?

$$\frac{1}{-0.04} - \frac{1}{\overline{O_1 A_1}} = -\frac{1}{0.02}$$

$$\frac{1}{\overline{O_1 A_1}} = 50 - 25 = 25D \ soit \ \overline{O_1 A_1} = 0.04 \ m$$
Image réelle

On suppose dans tout l'exercice que la lumière se propage de la gauche vers la droite. Soit une lentille mince convergente L_1 de distante focale $O_1F_1=-2$ cm et de centre O_1 . Un objet AB de hauteur 3 cm est placé à l'abscisse $O_1A=-4$ cm ; A est situé sur l'axe optique. La lentille L_1 donne de AB une image A_1B_1 .

Question 3. Déterminer le grandissement transversal et en déduire la taille de l'image. L'image est-elle droite ou renversée ?

$$\gamma = \frac{\overline{A_1 B_1}}{\overline{AB}} = \frac{\overline{O_1 A_1}}{\overline{O_1 A}} = \frac{0.04}{-0.04} = -1$$

$$\overline{A_1B_1} = \gamma * \overline{AB} = -3 \text{ cm}$$

Image inversée

Question 4. Construire l'image A_1B_1 de l'objet AB en traçant les trois rayons faisant intervenir le centre optique et les foyers de la lentille.

On place à droite de la lentille L_1 , à une distance de 12 cm, une lentille divergente L_2 de distance focale $O_2F'_2$ = -4cm, de centre optique O_2 . La lentille L_2 donne de A_1B_1 une image A_2B_2 .

Question 1. Calculer la distance algébrique O_2A_1 . A l'aide de la relation de conjugaison, déterminer la distance algébrique O_2A_2 . En déduire la nature de l'objet A_lB_1 et de l'image A_2B_2 .

$$\overline{O_2 A_1} = \overline{O_2 O_1} - \overline{A_1 O_1} = -12 - (-4) = -8 \text{ cm}$$

$$\frac{1}{\overline{O_2 A_1}} - \frac{1}{\overline{O_2 A_2}} = -\frac{1}{\overline{O_2 F'_2}} = -\frac{1}{-0.04} = 25D$$

$$\frac{1}{\overline{O_2 A_2}} = -(25 + 12.5) = -37.5D$$

$$\overline{O_2 A_2} = -0.0267 \text{ m} = -2.7 \text{ cm}$$

Question 2. Déterminer le grandissement γ_2 , puis le grandissement total des lentilles L_1 et L_2 . En déduire la taille de l'image finale de AB.

$$\gamma_2 = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = \frac{\overline{O_2 A_2}}{\overline{O_2 A_1}} = \frac{-0.027}{-0.08} = 0.33$$

$$\overline{A_2B_2} = \gamma_2 \times \overline{A_1B_1} = 0.33 \times (-3 \text{ cm}) = -1 \text{ cm}$$

Grandissement totale des lentilles :

$$\frac{\overline{A_2B_2}}{\overline{AB}} = \gamma_1 \times \gamma_2 = -1 \times 0.33 = -0.33$$

Image diminuée d'un tiers et inversée

Un dioptre sphérique convexe, convergent de 60 D, sépare l'air (n_{air} = 1) d'un milieu dont l'indice de réfraction est 1,353.

Question 1. Précisez la position des foyers objet et image de ce dioptre.

Dioptre sphérique convexe convergent :

$$n_1 < n_2$$

Sens positif correspond au sens de la lumière (de gauche à droite).

$$\overline{SC} > 0$$
; \overline{SF} (f) < 0 ; $\overline{SF'}$ (f') > 0

Foyer objet : D =
$$-\frac{n_1}{\overline{SF}}$$
 et donc \overline{SF} = -1/60 (m) = -0,01666 m

Résultat : -16,7 mm.

Foyer image : D =
$$\frac{n_2}{\overline{SF'}}$$
 et donc $\overline{SF'}$ = 1,353/60 = 0,02255 m

Résultat : 22,55 mm

C'est environ le cas de l'œil réduit

Question 2. Précisez la position de l'image d'un objet positionné à 5 m du dioptre.

Rappel des formules du dioptre :

$$\frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} = -\frac{n_2}{\overline{SF'}} = \frac{n_1}{\overline{SF}}$$

$$\frac{1}{-5} - \frac{1,353}{\overline{SA'}} = -60$$

$$\overline{SA}' = 22,6 mm$$

L'image est donc sur le foyer image (pour l'œil, sur la rétine).

Question 3. Précisez la position de l'image d'un objet positionné à 0,25 m du dioptre.

Rappel des formules du dioptre :

$$\frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} = -\frac{n_2}{\overline{SF'}} = \frac{n_1}{\overline{SF}}$$

$$\frac{1}{-0.25} - \frac{1.353}{\overline{SA'}} = -60$$

$$\overline{SA}' = 24,2 mm$$

Question 4. De combien la puissance doit augmenter pour maintenir l'image au même niveau que l'objet à 5 m (cas a) pour un objet à 25 cm (cas b)

$$\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA'}} = -D_1$$

$$\frac{n_1}{\overline{SA_2}} - \frac{n_2}{\overline{SA'}} = -D_2$$

$$\frac{n_1}{\overline{SA}_1} - \frac{n_1}{\overline{SA}_2} = D_2 - D_1 = \frac{1}{-5} - \frac{1}{-0.25} = 3.8 \text{ D}$$

Question 5. A une distance de 5m, quelle est la taille de l'image pour un objet de 1,20 m de haut.

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{n_1}{n_2} \times \frac{\overline{SA'}}{\overline{SA}} = \frac{1}{1,353} \times \frac{0,0226}{-5}$$

$$\overline{A'B'} = \gamma \times \overline{AB} = -0.00334 \times 1.20 \text{ m} = -0.004 \text{ m} \text{ (-4 mm)}$$