

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 7

Дисциплина Экономика программной инженерии

Тема «Предварительная оценка параметров программного проекта»

Студент Сусликов Д.В. Склифасовский Д.О. Платонова О.С.

Группа ИУ7-85Б

Преподаватель Барышникова М.Ю., Силантьева А.В.

Задание (варианта №2):

Компания получила заказ на разработку клиентского мобильного приложения брокерской системы. Программа позволяет просматривать актуальную биржевую информацию, производить сделки и отслеживать их выполнение.

Расчёт по методу функциональных точек:

Произведем расчет количества функциональных точек.

FTR – количество связанных с каждым функциональным типом файлов типа ссылок.

DET – количество связанных с каждым функциональным типом элементарных данных. (количество типов элементов данных)

RET – количество типов элементов записей.

EI (Внешний ввод) — элементарный процесс, перемещающий данные из внешней среды в приложение.

EO (Внешний вывод) — элементарный процесс, перемещающий данные, вычисленные в приложении, во внешнюю среду.

EQ (Внешний запрос) — элементарный процесс, состоящий из комбинации «запрос/ответ», не связанный с вычислением производных данных или обновлением внутренних логических файлов (базы данных).

ILF (Внутренний логический файл) — выделяемые пользователем логически связанные группы данных или блоки управляющей информации, которые поддерживаются внутри продукта и обслуживаются через внешние вводы.

EIF (Внешний интерфейсный файл) — выделяемые пользователем логически связанные группы данных или блоки управляющей информации, на которые ссылается продукт, но которые поддерживаются вне продукта

В нашем приложении используются 4 внутренних файла: таблица с логинами и паролями, таблица с типом заявки, именем бумаги, ценой и количеством, таблица с названием бумаги. Также существует одна внешняя таблица с информацией о бирже с названием бумаги, ценой и изменением.

Вычислим ЕІ (Внешний ввод):

- Добавить бумагу:
 - FTR = 1 (ссылается на один внутренний логический файл)
 - DET = 2 (элементы данных: кнопка, название бумаги)
- Удалить заявку:
 - FTR = 1 (ссылается на один внутренний логический файл)
 - DET = 5 (элементы данных: тип, имя, цена, количество, кнопка)
- Изменить заявку:
 - FTR = 1 (ссылается на один внутренний логический файл)
 - DET = 5 (элементы данных: тип, имя, цена, количество, кнопка)
- Создать заявку:
 - FTR = 1 (ссылается на один внутренний логический файл)
 - DET = 5 (элементы данных: тип, имя, цена, количество, кнопка)

Уровень сложности - низкий

Вычислим ЕО (Внешний вывод):

- Вывод списка заявок:
 - FTR = 1 (ссылается на один внутренний логический файл)
 - DET = 4 (элементы данных: тип, имя, цена, количество)
- Вывод биржевых сводок:
 - FTR = 2 (ссылается на один внутренний логический файл и один внешний интерфейсный файл)
 - DET = 3 (элементы данных: имя, цена, изменения)

Уровень сложности – низкий

Вычислим ЕО (Внешний запрос):

• Внешний запрос на авторизацию

FTR = 1 (ссылается на один внутренний логический файл)

DET = 4 (элементы данных: логин, пароль, кнопка, флажок)

Уровень сложности – низкий

Вычислим **ILF** (Внутренний логический файл):

• RET = 4 (различные типы элементов записи)

DET = 4 (различные типы элементов данных)

Уровень сложности – низкий

Вычислим **EIF** (Внешний интерфейсный файл):

• RET = 2 (различные типы элементов записи) DET = 3 (различные типы элементов данных)

Уровень сложности – низкий

На Рисунке 1 представлен результат:

Нормированное количество функциональных точек = 50.47

Количество функциональных точек = 49

Количество строк исходного кода = 3219

асчет ненормированного числа функ	циональных	гочек		Ситсемные параметры приложения			Языки разработ		
Характеристика	Количество	Уровень слож	ности Итого	Передача данных	5	•	ASM		
Внешние вводы (ЕІ)	4	Низкий (3)	* 12	Распределенная обработка данных	5	•	С		
Внешние выводы (ЕО)	2	Низкий (4)	* 8	Производительность	3	•	Cobol		
Внешние запросы (EQ)	1	Низкий (3)	* 3	Эксплуатационные ограничения	2	•	Fortran		
Внутренние логические файлы (ILF)	3	Низкий (7)	₹ 21	Частота транзакций	3	•	Pascal		
Внешние интерфейсные файлы (EIF)	1	Низкий (5)	· 5	Оперативный ввод данных	4	-	C++		
		Итого:	49	Эффективность работы конечных пользователей	1	*	Java		
				Оперативное обновление	4	•	C#		
Рассчитать				Сложность обработки	4	•	Ada 95		
				Повторное использование	0	•	SQL		
езультаты				Легкость инсталляции	1	•	Visual C++		
Нормирующий фактор: 1.03				Легкость эксплуатации	2	•	Delphi Pascal	1	
Нормированное количество функциональных точек: 50.47				Количество возможных установок на платформах	2	·	Perl		
Количество функциональных точек:		49		Простота изменений	2	-	Prolog		
Количество строк исходного кода:		3219		. poeto a moneralita	_				

Рис.1 – Метод функциональных точек

Оценка по методике СОСОМО II:

Определим показатели проекта:

- Новизна проекта (PREC) полное отсутствие прецедентов, полностью непредсказуемый проект (т.к. была сформирована новая команда разработчиков, только отдельные члены имели некоторый опыт создания систем подобного типа)
- Гибкость процесса разработки (FLEX) большей часть согласованный процесс (график жесткий, точной регламентации нет)
- Разрешение рисков в архитектуре системы (RESL) некоторое (40%)
- Сплоченность команды (TEAM) некоторая согласованность (команд новая, но были проведены определенные мероприятия по сплочению)
- Уровень развития процесса разработки (PMAT) уровень 1+ (только начинают внедрять)

На Рисунке 2 показан результат расчёта показателя степени:

p = 1.2317

Почти полное отсутствие прецедентов, в знач 🔻					
Большей частью согласованный процесс					
Некоторое (40 %)	,				
Некоторая согласованность	,				
Уровень 1+ СММ	,				
	Большей частью согласованный процесс Некоторое (40 %) Некоторая согласованность				

Рис.2 – Факторы показателя степени модели

Модель композиции приложения

- Страница авторизации 3 простых поля и 1 средней сложности (обращение к БД)
- Страница биржевых сводок 3 простых поля и 1 средней сложности (обращение к БД)
- Страница заявок 1 простое поле и 2 средней сложности (обращение к БД)
- Страница новой заявки 4 простых поля и 1 средней сложности (обращение к БД)

Итого:

Простые поля = 11

Средней сложности = 5

Также имеются 2 модуля, написанные на ЯП третьего поколения.

Повторное использование = 0%

Опытность команды – низкая

Результат работы программы представлен на Рисунке 3.

Рис.3 – Модель композиции приложения

Модель ранней разработки архитектуры

PERS (возможности персонала) - номинальный

RCPX (надежность и уровень сложности разрабатываемой системы) – очень высокий

RUSE (повторное использование компонентов) - низкий

PDIF (сложность платформы разработки) - высокий

PREX (опыт персонал) - низкий

FCIL (средства поддержки) – очень высокий

SCED (график работ) – очень высокий

KSLOC = 4 (из метода функциональных точек)

Результаты расчетов представлены на Рисунке 4.

Рис.4 – Модель ранней разработки архитектуры

Вывод:

В ходе выполнения данной работы был разработан инструмент для определения трудозатрат и времени разработки проекта методом СОСОМО2. Также, был выполнен анализ выданного задания, а именно:

- 1) рассчитаны функциональные точки;
- 2) рассчитан показатель степени модели (р);
- 3) были определены факторы, влияющие на показатель степени;
- 4) произведен расчет трудозатрат и времени по модели ранней разработки архитектуры приложения и модели композиции приложения.

В итоге было выяснено, что модель композиции приложения дает более оптимистичный прогноз, по сравнению с моделью ранней архитектуры приложения.