

- 1. Let $Y = \{M \in \mathbb{N}^{(\omega)} : \text{ no two members of } M \text{ are coprime}\}$. Which $M \in \mathbb{N}^{(\omega)}$ accept $\{3\}$? Which M reject $\{3\}$? Which M reject $\{6\}$?
- 2. Construct a set $Y \subset \mathbb{N}^{(\omega)}$ such that the finite sets rejected by \mathbb{N} are precisely \emptyset and all sets of the form $\{m, m+1, \ldots, n\}$, $m \leq n$.
- 3. Let E be the set of even numbers and let P be the set of prime numbers. Show that the set $\{M \in \mathbb{N}^{(\omega)}: |M \cap E| = \infty, |M \cap P| < \infty\}$ is not *-open, but is a countable intersection of *-open sets.
- 4. Let $f_1, f_2, \ldots : \mathbb{C} \to \mathbb{C}$ be bounded complex-valued functions. For any bounded $f : \mathbb{C} \to \mathbb{C}$, write ||f|| for $\sup\{|f(z)|: z \in \mathbb{C}\}$. Show that there is a subsequence $(f_{n_i})_{i=1}^{\infty}$ of $(f_i)_{i=1}^{\infty}$ such that either for every subsequence $(f_{m_i})_{i=1}^{\infty}$ of $(f_{n_i})_{i=1}^{\infty}$ we have $\limsup_{k\to\infty} ||f_{m_1}+\ldots+f_{m_k}|| \geq 1$ or for every subsequence $(f_{m_i})_{i=1}^{\infty}$ of $(f_{n_i})_{i=1}^{\infty}$ we have $\limsup_{k\to\infty} ||f_{m_1}+\ldots+f_{m_k}|| < 1$.
- 5. Prove carefully that the operation + on $\beta\mathbb{N}$ is not surjective.
- 6. Prove that the operation + on $\beta\mathbb{N}$ is not commutative.
- 7. Prove that whenever the collection of finite non-empty subsets of $\mathbb N$ is finitely coloured there exist disjoint F_1, F_2, \ldots with $\{\bigcup_{i \in I} F_i : \emptyset \neq I \subset \mathbb N, \ I \text{ finite } \}$ monochromatic.
- 8. Do the Ramsey subsets of $\mathbb{N}^{(\omega)}$ form a σ -algebra?
- 9. Is the *-topology on $\mathbb{N}^{(\omega)}$ induced by a metric?
- $^+$ 10. Show that whenever N is finitely coloured there exist sets S_1, S_2, \ldots , with each S_i an arithmetic progression of length i, such that the set

$$\left\{ \sum_{i \in I} x_i : \emptyset \neq I \subset \mathbb{N}, \ I \text{ finite, } x_i \in S_i \text{ for all } i \in I \right\}$$

is monochromatic.