AI VIETNAM
All-in-One Course
(TA Session)

Simple Linear Regression

Extra

Dinh-Thang Duong – TA
Anh-Khoi Nguyen – STA

Getting Started

Objectives

Our objectives:

- Introduction to Linear Regression.
- Discuss the idea of how Linear Regression learn to solve a Regression problem.
- Discuss about Gradient Descent.
- Implement a simple version of Linear
 Regression using Gradient Descent.

 x_1

AI VIETNAM All-in-One Course (TA Session)

Outline

- > Introduction
- > Simple Linear Regression
- > Code Implementation
- > Question

AI VIETNAM All-in-One Course (TA Session)

Introduction

Introduction

***** Getting Started

Machine Learning (ML): A branch of AI and Computer Science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy.

Introduction

***** Getting Started

Suppose you got some dataset:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
5	Amir Johnson	Boston Celtics	90.0	PF	29.0	6-9	240.0	NaN	12000000.0
6	Jordan Mickey	Boston Celtics	55.0	PF	21.0	6-8	235.0	LSU	1170960.0
7	Kelly Olynyk	Boston Celtics	41.0	С	25.0	7-0	238.0	Gonzaga	2165160.0
8	Terry Rozier	Boston Celtics	12.0	PG	22.0	6-2	190.0	Louisville	1824360.0
9	Marcus Smart	Boston Celtics	36.0	PG	22.0	6-4	220.0	Oklahoma State	3431040.0
10	Jared Sullinger	Boston Celtics	7.0	С	24.0	6-9	260.0	Ohio State	2569260.0
11	Isaiah Thomas	Boston Celtics	4.0	PG	27.0	5-9	185.0	Washington	6912869.0
12	Evan Turner	Boston Celtics	11.0	SG	27.0	6-7	220.0	Ohio State	3425510.0
13	James Young	Boston Celtics	13.0	SG	20.0	6-6	215.0	Kentucky	1749840.0

And you want to make a program to automatically predict value of 1 column based on others.

AI VIETNAM All-in-One Course (TA Session)

Introduction

***** Getting Started

Input X Output Y

Since we use a labeled dataset to train ML Model.

=> This is called **Supervised-learning**.

Introduction

Supervised Learning

In ML Superivsed-learning algorithms, we often deal with Regression and Classification

Introduction

Supervised Learning: Regression

Regression: A task involving predicting a **continuous value** based on given inputs.

In general, we want to find the line that best fit the data distribution.

AI VIETNAM All-in-One Course (TA Session)

Simple Linear Regression

***** Intro to Linear Regression

Experience	Salary
3	60
4	55
5	66
6	93
7	?

***** Intro to Linear Regression

Experience	Salary
3	60
4	55
5	66
6	93
7	?

❖ Intro to Linear Regression

Experience	Salary
3	60
4	55
5	66
6	93
7	?

***** Intro to Linear Regression

Experience	Salary
3	60
4	55
5	66
6	93
7	?

❖ Intro to Linear Regression

predicted_salary = $w \times \text{Experience} + b$ $error = (\text{predicted_salary} - \text{real_salary})^2$

$$\widehat{y_i} = wx_i + b$$

$$error(\widehat{y_i}, y_i) = (\widehat{y_i} - y_i)^2$$

$$w = 10$$
$$b = 5$$

	Experience	Salary	Predicted	Error
1	3	60	$wx_i + b$	$(\hat{y_i} - y_i)^2$
2	4	55	$wx_i + b$	$(\hat{y_i} - y_i)^2$
3	5	66	$wx_i + b$	$(\hat{y_i} - y_i)^2$
4	6	93	$wx_i + b$	$(\hat{y}_i - y_i)^2$

predicted_salary = $w \times \text{Experience} + b$ $error = (\text{predicted_salary} - \text{real_salary})^2$

$$\widehat{y_i} = wx_i + b$$

$$error(\widehat{y_i}, y_i) = (\widehat{y_i} - y_i)^2$$

$$w = 10$$
$$b = 5$$

	Experience	Salary	Predicted	Error
1	3	60	$10\cdot 3+5=35$	
2	4	55		
3	5	66		
4	6	93		

predicted_salary =
$$\mathbf{w} \times \text{Experience} + \mathbf{b}$$

 $error = (\text{predicted_salary} - \text{real_salary})^2$
 $\widehat{y_i} = \mathbf{w}x_i + \mathbf{b}$
 $error(\widehat{y_i}, y_i) = (\widehat{y_i} - y_i)^2$

w = 10

b = 5

	Experience	Salary	Predicted	Error
1	3	60	35	$(60 - 35)^2 = 625$
2	4	55		
3	5	66		
4	6	93		

predicted_salary = $\mathbf{w} \times \text{Experience} + \mathbf{b}$ $error = (\text{predicted_salary} - \text{real_salary})^2$ $\widehat{y_i} = \mathbf{w}x_i + \mathbf{b}$ $error(\widehat{y_i}, y_i) = (\widehat{y_i} - y_i)^2$

w = 10

b = 5

ExperienceSalaryPredictedError1360356252455
$$10 \cdot 4 + 5 = 45$$
 $(55 - 45)^2 = 100$ 3566 $10 \cdot 5 + 5 = 55$ $(66 - 55)^2 = 121$ 4693 $10 \cdot 6 + 5 = 65$ $(93 - 65)^2 = 784$

$$\widehat{y_i} = wx_i + b$$

$$error(\widehat{y_i}, y_i) = (\widehat{y_i} - y_i)^2$$

$$w = 10$$

$$b = 5$$

$$Loss = \sum_{i} (\widehat{y_i} - y_i)^2 = \sum_{i} error_i$$

	Experience	Salary	Predicted	Error	Loss
1	3	60	35	625	
2	4	55	45	100	
3	5	66	55	121	
4	6	93	65	784	

$$\widehat{y_i} = wx_i + b$$

$$error(\widehat{y_i}, y_i) = (\widehat{y_i} - y_i)^2$$

$$w = 10$$

$$b = 5$$

$$Loss = \sum_{i} (\widehat{y_i} - y_i)^2 = \sum_{i} error_i$$

	Experience	Salary	Predicted	Error	Loss
1	3	60	35	625	625
2	4	55	45	100	+100
3	5	66	55	121	+121 +784
4	6	93	65	784	= 1630

Find a and b whose model has the smallest error, where $error = \sum_{i} error_{i}$

How?

***** Toward Gradient Descent

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

***** Toward Gradient Descent

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

Different b values with a fixed w value

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

Different w values with a fixed b value

***** Toward Gradient Descent

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

Different b values with a fixed w value

Derivative of a function

$$\frac{d}{dx}y(x) = \lim_{\Delta x \to 0} \frac{y(x + \Delta x) - y(x)}{\Delta x}$$

***** How gradient descent works?

***** How gradient descent works?

***** How gradient descent works: Update gradient

& Gradient Descent

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value, w and b are parameters

and x is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

& Gradient Descent

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value,

w and b are parameters

and **x** is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Find better w and b

Use gradient descent to minimize the loss function

Compute derivate for each parameter

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

 η is learning rate

* Proof: Bias (Intercept) $Loss = \sum_{i} (\hat{y} - y)^2 = \sum_{i} ((wx + b) - y)^2$

$$\left(\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial b} = \frac{\partial}{\partial \widehat{y}} (\widehat{y} - y)^2 \cdot \frac{\partial}{\partial b} (wx + b)\right)$$

$$\frac{\partial L}{\partial \widehat{y}} = \frac{\partial}{\partial \widehat{y}} (\widehat{y} - y)^2 = 2 \cdot (\widehat{y} - y) \cdot \frac{\partial (\widehat{y}_i - y_i)}{\partial \widehat{y}_i}$$

$$= 2 \cdot (\widehat{y} - y) \cdot \frac{\partial}{\partial \widehat{y}_i} (\widehat{y}_i - y_i)$$

$$= 2 \cdot (\widehat{y} - y) \cdot 1$$

$$= 2(\widehat{y} - y)$$

$$\frac{\partial \widehat{y}}{\partial b} = \frac{\partial}{\partial b} (wx + b)$$
$$= 1$$

$$\Rightarrow \frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

Update Bias (Intercept)

Proof: Slope

Loss =
$$\sum_{i} (\hat{y} - y)^2 = \sum_{i} ((wx + b) - y)^2$$

$$\left(\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial w} = \frac{\partial}{\partial \widehat{y}} (\widehat{y} - y)^2 \cdot \frac{\partial}{\partial w} (wx + b)\right)$$

$$\frac{\partial L}{\partial \hat{y}} = \frac{\partial}{\partial \hat{y}} (\hat{y} - y)^2 = 2 \cdot (\hat{y} - y) \cdot \frac{\partial (\hat{y}_i - y_i)}{\partial \hat{y}_i}$$

$$= 2 \cdot (\hat{y} - y) \cdot \frac{\partial}{\partial \hat{y}_i} (\hat{y}_i - y_i)$$

$$= 2 \cdot (\hat{y} - y) \cdot 1$$

$$= 2(\hat{y} - y)$$

$$\frac{\partial \widehat{y}}{\partial w} = \frac{\partial}{\partial w} (wx + b)$$
$$= x$$

$$\Rightarrow \frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2x(\hat{y} - y)$$

***** Update Slope

Example

$$\widehat{y} = (wx + b)$$

$$Loss = (\widehat{y} - y)^2$$

$$w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$$

$$b_{new} = b_{old} - \eta \frac{\partial L}{\partial b}$$

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\widehat{y} - y)$$

Example: Forward 1

$$\widehat{y} = (wx + b)$$

$$Loss = (\widehat{y} - y)^2$$

Experience

Salary

Example: Backpropagation 1

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial w} = 2 \times 3(35 - 60) = -150$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(35 - 60) = -50$$

$$w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$$

$$11.5 = 10 - 0.01 \times (-150)$$

$$b_{new} = b_{old} - \eta \frac{\partial L}{\partial b}$$

$$5.5 = 5 - 0.01 \times (-50)$$

Example: Forward 2

Initialize
$$w = 10$$
 $b = 5$
 $\eta = 0.1$

$$\widehat{y} = (wx + b)$$

$$Loss = (\widehat{y} - y)^2$$

Experience

Salary

Example: Backpropagation 2

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial w} = 2 \times 3(51.5 - 55) = -28$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(51.5 - 55) = -7$$

$$w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$$
 $11.78 = 11.5 - 0.01 \times (-28)$
 $b_{new} = b_{old} - \eta \frac{\partial L}{\partial b}$
 $5.57 = 5.5 - 0.01 \times (-7)$

Initialize

 \boldsymbol{W} and \boldsymbol{b}

Pick samples

	Experience	Salary
1	3	60
2	4	55
3	5	66
4	6	93

$$w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$$

$$b_{new} = b_{old} - \eta \frac{\partial L}{\partial b}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \widehat{v}} \frac{\partial \widehat{y}}{\partial w} = 2x(\widehat{y} - y)$$

Update parameters

Training data

Compute derivative for each parameter

Compute outputs $\hat{y_i}$

 $\hat{y}_i = wx_i + b$

Initialize random parameters

Compute Loss

$$Loss = \sum_{i} (\hat{y}_i - y_i)^2 = \sum_{i} error_i$$

AI VIETNAM All-in-One Course (TA Session)

QUIZ

AI VIETNAM All-in-One Course (TA Session)


```
1 def predict(x, w, b):
       return x * w + b
 4 def compute_loss(y_hat, y):
      return (y_hat - y) ** 2
 7 def compute_gradient(y_hat, y, x):
      dw = 2 * x * (y_hat - y)
      db = 2 * (y_hat - y)
10
11
       return dw, db
12
13 def update_weight(w, b, dw, db, lr):
14
      new_w = w - lr * dw
       new_b = b - lr * db
15
16
17
       return new_w, new_b
                                  62
```



```
1 def predict(x, w, b):
       return x * w + b
 4 def compute_loss(y_hat, y):
       return (y_hat - y) ** 2
 7 def compute_gradient(y_hat, y, x):
      dw = 2 * x * (y_hat - y)
      db = 2 * (y_hat - y)
10
11
       return dw, db
12
13 def update_weight(w, b, dw, db, lr):
14
      new_w = w - lr * dw
       new_b = b - lr * db
15
16
       return new_w, new_b
17
                                  63
```



```
1 def predict(x, w, b):
       return x * w + b
 4 def compute_loss(y_hat, y):
      return (y_hat - y) ** 2
  def compute_gradient(y_hat, y, x):
      dw = 2 * x * (y_hat - y)
      db = 2 * (y_hat - y)
       return dw, db
13 def update_weight(w, b, dw, db, lr):
      new_w = w - lr * dw
14
      new_b = b - lr * db
15
16
       return new_w, new_b
17
                                 64
```



```
1 def predict(x, w, b):
      return x * w + b
 4 def compute_loss(y_hat, y):
      return (y_hat - y) ** 2
 7 def compute_gradient(y_hat, y, x):
      dw = 2 * x * (y_hat - y)
      db = 2 * (y_hat - y)
10
11
      return dw, db
12
13 def update_weight(w, b, dw, db, lr):
14
      new_w = w - lr * dw
      new_b = b - lr * db
15
16
17
       return new_w, new_b
                                  65
```

***** Test functions

```
1 x = 5
 2 y = 66
4 b = 5
 5 w = 10
 6 lr = 0.01
 8 y_hat = predict(x, w, b)
 9 print(f'Prediction: {y_hat}')
10
11 loss = compute_loss(y_hat, y)
12 print(f'Loss: {loss}')
13
14 dw, db = compute_gradient(y_hat, y, x)
15 print(f'Gradient: dw = {dw}, db = {db}')
16
17 new_w, new_b = update_weight(w, b, dw, db, lr)
18 print(f'Updated weight: w = {new_w}, b = {new_b}')
```

Prediction: 55 Loss: 121 Gradient: dw = -110, db = -22Updated weight: w = 11.1, b = 5.22


```
1 X = [3, 4, 5, 6]
 2 y = [60, 55, 66, 93]
 4 \text{ epochs} = 5
 6 b = 5
 7 w = 10
 8 lr = 0.001
10 for epoch in range(epochs):
       for idx in range(len(X)):
11
12
           x = X[idx]
13
           y_hat = predict(x, w, b)
14
15
           loss = compute_loss(y_hat, y[idx])
           dw, db = compute_gradient(y_hat, y[idx], x)
16
17
           w, b = update weight(w, b, dw, db, lr)
18
19
           print(f'Epoch: {epoch}, Loss: {loss}, w: {w}, b: {b}')
```

***** Test functions

```
1 X = [3, 4, 5, 6]
 2 y = [60, 55, 66, 93]
 4 \text{ epochs} = 5
 6 b = 5
 7 w = 10
 8 lr = 0.001
10 for epoch in range(epochs):
       for idx in range(len(X)):
           x = X[idx]
12
13
           y_hat = predict(x, w, b)
14
15
           loss = compute_loss(y_hat, y[idx])
           dw, db = compute_gradient(y_hat, y[idx], x)
16
           w, b = update weight(w, b, dw, db, lr)
17
18
           print(f'Epoch: {epoch}, Loss: {loss}, w: {w}, b: {b}')
19
```

```
Epoch: 0, Loss: 625, w: 10.15, b: 5.05
Epoch: 0, Loss: 87.42250000000003, w: 10.2248, b: 5.0687
Epoch: 0, Loss: 96.18313328999996, w: 10.322873, b: 5.0883145999999995
Epoch: 0, Loss: 674.671917735367, w: 10.6345663688, b: 5.140263494799999
Epoch: 1, Loss: 526.9796530551046, w: 10.7723025931928, b: 5.186175569597599
Epoch: 1, Loss: 45.22043422409116, w: 10.826099505653849, b: 5.199624797712861
Epoch: 1, Loss: 44.48726818636239, w: 10.892798282394027, b: 5.212964553060897
Epoch: 1, Loss: 503.1159245209058, w: 11.161961231424927, b: 5.257825044566047
Epoch: 2, Loss: 451.8299181792317, w: 11.289498978991881, b: 5.300337627088366
Epoch: 2, Loss: 20.626734206131236, w: 11.325832310647435, b: 5.309420960002254
Epoch: 2, Loss: 16.495112001764532, w: 11.366446485515041, b: 5.317543794975775
Epoch: 2, Loss: 379.617577561682, w: 11.600251813018248, b: 5.356511349559643
Epoch: 3, Loss: 393.73406129822536, w: 11.719308212286561, b: 5.396196815982414
Epoch: 3, Loss: 7.434185791000412, w: 11.741120774965532, b: 5.4016499566521565
Epoch: 3, Loss: 3.5824880584478613, w: 11.760048236650734, b: 5.405435448989197
Epoch: 3, Loss: 290.1665292422299, w: 11.96445953822401, b: 5.43950399925141
Epoch: 4, Loss: 348.46127150556185, w: 12.07646224254047, b: 5.476838234023563
Epoch: 4, Loss: 1.4818504428538535, w: 12.086200744906987, b: 5.479272859615192
Epoch: 4, Loss: 0.008050291351769556, w: 12.087097979065486, b: 5.479452306446892
Epoch: 4, Loss: 224.93879873714388, w: 12.267073496895408, b: 5.509448226085213
```

***** Before and after training

Before training:

```
1 x = 5
2 y = 66
3
4 y_hat = predict(x, w, b)
5 print(f'Prediction: {y_hat}')
6
7 loss = compute_loss(y_hat, y)
8 print(f'Loss: {loss}')
9
10 print(f'w: {w}, b: {b}')
```

Prediction: 55

Loss: 121 w: 10, b: 5

After training:

```
1 x = 5
2 y = 66
3
4 y_hat = predict(x, w, b)
5 print(f'Prediction: {y_hat}')
6
7 loss = compute_loss(y_hat, y)
8 print(f'Loss: {loss}')
9
10 print(f'w: {w}, b: {b}')
```

Prediction: 66.84481571056226

Loss: 0.7137135848128137

w: 12.267073496895408, b: 5.509448226085213

AI VIETNAM All-in-One Course (TA Session)

Summarization and QA

Summarization

Summarization

In this lecture, we have discussed:

- 1. Introduction to Linear Regression.
- 2. Simple
- 3. Use SVM to solve a classification and a regression tasks.

Question

