Process Descriptions for Simulations Purposes

1. Titanium Dioxide Production via Chloride Route (Synthetic Rutile Feed)

Objective: Simulate the chloride route for TiO₂ production using synthetic rutile (~92% TiO₂) as feedstock.

Feedstock:

- Synthetic Rutile
 - o Flowrate: 5000 tonnes/year
 - o Composition: 92 wt% TiO₂, 3% Fe₂O₃, 2% SiO₂, 3% others
 - O Solid granular, particle size: 200–300 μm
- Chlorine Gas (Cl₂)
 - o Flowrate: Based on stoichiometric requirement + 10% excess
 - o Purity: 99.5%
- Coke (Carbon)
 - o Flowrate: Based on reducing requirement, 20% stoichiometric excess

Process Units:

- 1. Fluidized Bed Chlorinator
 - Reaction: $TiO_2 + 2Cl_2 + C \rightarrow TiCl_4 + CO_2$
 - o Temperature: 900–1000 °C
 - o Pressure: 1 atm
 - o Residence time: ∼1.5 h
- 2. TiCl₄ Condensation Column
 - o Temp: 150–200 °C (to condense TiCl₄)
- 3. Purification Train
 - o Units: Distillation column or absorber/stripper combo
 - o Removes: FeCl₃, VCl₄, SiCl₄
- 4. Oxidation Reactor
 - \circ TiCl₄ + O₂ \rightarrow TiO₂ + 2Cl₂
 - o Temp: 1000–1100 °C
 - o Pressure: 1.2 atm
- 5. Product Recovery (TiO₂ pigment)
 - o Cooling and solid separation, filtering, milling

Product:

- TiO₂ pigment: ~4600 tonnes/year (based on 92% conversion and recovery)
- Chlorine: Recovered and recycled (~95%)

Assumptions:

- Heat integration considered (recover from oxidation step)
- No Cl₂ loss in simulation (ideal separation)

2. Chlor-Alkali Process via Membrane Cell (Industrial Salt Feed)

Objective: Model a chlor-alkali process to produce NaOH and Cl₂ from NaCl (brine) solution.

Feedstock:

- Brine solution
 - o Flowrate: 100 m³/h
 - o NaCl Concentration: 300 g/L
 - o Temperature: 25 °C
- Deionized water for cathode compartment

Process Units:

- 1. Brine Pre-treatment Unit
 - o Filtration + Ca(OH)₂ treatment + Activated carbon
- 2. Membrane Electrolyzer
 - o Electrodes: Graphite anode, Nickel cathode
 - o Membrane: Nafion
 - Reactions:
 - Anode: $2Cl^- \rightarrow Cl_2(g) + 2e^-$
 - Cathode: $2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-$
 - Net: $2NaCl + 2H_2O \rightarrow Cl_2 + H_2 + 2NaOH$
 - o Voltage: 3.2 V per cell
 - o Current density: 3 kA/m²
 - o Temp: 80 °C
 - o Pressure: 1.5 atm
- 3. Product Separation Unit
 - o Gas-liquid separators for Cl₂ and H₂
 - o NaOH liquor: 32 wt%

Product Output:

- NaOH: ~8.5 tonnes/h
- Cl₂: \sim 7.5 tonnes/h
- H_2 : ~0.2 tonnes/h

Assumptions:

- 90% cell current efficiency
- Full water availability at cathode side

3. Phosphoric Acid Production from Pyrite and Phosphate Rock

Objective: Simulate the production of H₃PO₄ using pyrite as the source of sulfur for sulfuric acid generation, which reacts with phosphate rock.

Feedstock:

• Pyrite (FeS₂)

o Flowrate: 10 tonnes/h

o Purity: 95%

• Phosphate Rock (Ca₃(PO₄)₂)

Flowrate: 12 tonnes/h
P₂O₅ content: 30 wt%

Water

o Flowrate: 20 tonnes/h

Process Units:

1. Roasting Furnace (for SO₂ production)

 $\circ \quad FeS_2 + 11/2 O_2 \rightarrow Fe_2O_3 + 2SO_2$

- o Temp: 800–900 °C
- o Air excess: 20%
- 2. Contact Process (H₂SO₄ production)

 \circ SO₂ + O₂ \rightarrow SO₃ (catalytic converter, V₂O₅)

- \circ SO₃ + H₂O \rightarrow H₂SO₄ (absorber)
- o Conversion: 97%
- 3. Reaction with Phosphate Rock

 \circ Ca₃(PO₄)₂ + 3H₂SO₄ \rightarrow 2H₃PO₄ + 3CaSO₄

- o Temperature: 70 °C
- o Slurry concentration: 25% solids
- 4. Filtration Unit
 - o To separate gypsum (CaSO₄)
 - o Recycle water used

Product Output:

• H₃PO₄: ~5.5 tonnes/h (28% P₂O₅ basis)

• Gypsum: ~8 tonnes/h

Assumptions:

- Heat recovery from roasting used for preheating streams
- Conversion of pyrite to SO₂ is 95%
- Efficient separation assumed in filters