Lecture 17

Inference for One Population Mean

STAT 8010 Statistical Methods I September 30, 2019

> Whitney Huang Clemson University

Statistical Inference

For the rest of the semester, we will focus on conducting statistical inferences for the following tasks:

- Estimating one population mean
- Comparing two population means
- Comparing more than two population means
- Estimating population proportions
- Estimating relationship between response variable and predictors

Notes

Notes

Statistical Science: Use Sample to Learn About the Population

• We use parameters to describe the population **Example:** mean (μ_X) ; variacen (σ_X^2)

 We use statistics of a sample (given that the sampling was done properly) to infer the population
 Example: sample mean (X); sample variance (s_X²)

Notes			

Estimating One Population Mean

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_{i}^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- \bullet Need to quantify the level of uncertainty of the point estimate \Rightarrow Interval estimation
- Need to figure out the sampling distribution of \bar{X}_n in order to construct interval estimates \Rightarrow Central Limit Theorem (CLT)

Notes			

Central Limit Theorem (CLT)

CLT

The sampling distribution of \bar{X}_n will become approximately normally distributed as the sample size (n) becomes "large", regardless of the shape of the population distribution!

Let X_1, X_2, \cdots, X_n be a random sample from a population X with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X]$. Then $\bar{X}_n = \frac{\sum_{j=1}^n X_j}{n} \stackrel{d}{\to} \text{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

Inferences
Point/Interval

176

Notes

NOIGS			

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

for One in Mean	Notes		

CLT: Sample Size (n) and the Normal Approximation

Notes

Notes

Why CLT is important?

• CLT tells us the distribution of our estimator

$$\bar{X}_n \approx N(\mu, \frac{\sigma^2}{n})$$

- \bullet The distribution of \bar{X}_n is center around the true mean μ
- The variance of \bar{X}_n is decrease with n
- \bullet With normality approximation of the sampling distribution of \bar{X}_n , we can perform interval estimation about μ
- Applications: Confidence Interval, Hypothesis testing

Confidence Intervals (CIs) for μ

- \bullet Let's assume we know the population σ^2 (will relax this assumption later on)
- $(1 \alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n - z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}\right],$$

where $z_{(1-\frac{\alpha}{2})}$ is the $1-\frac{\alpha}{2}$ percentile of $Z\sim N(0,1)$

• $\frac{\sigma}{\sqrt{n}}$ is the standard error of \bar{X}_n , that is, the standard deviation of its sampling distribution

Population Mean
CLEMS N
Point/Interval Estimation

Notes			

Making Sense of Confidence Intervals

For any $\alpha \in (0,1)$:

$$\mathbb{P}\left(\bar{X}_{n} - Z_{\left(1 - \frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_{n} + Z_{\left(1 - \frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-Z_{\left(1 - \frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}} \le \bar{X}_{n} - \mu \le Z_{\left(1 - \frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-Z_{\left(1 - \frac{\alpha}{2}\right)} \le \frac{\bar{X}_{n} - \mu}{\frac{\sigma}{\sqrt{n}}} \le Z_{\left(1 - \frac{\alpha}{2}\right)}\right)$$

$$= \mathbb{P}\left(-Z_{\left(1 - \frac{\alpha}{2}\right)} \le Z \le Z_{\left(1 - \frac{\alpha}{2}\right)}\right)$$

$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha$$

Inference for One Population Mean
CLEMS (*)
Point/Interval Estimation
17 10

Notes			

Making Sense of Confidence Intervals Cont'd

Inference for One Population Mean
CLEMS N
Point/Interval Estimation

Notes			

Notes