MA398 Matrix Analysis and Algorithms: Exercise Sheet 2

- 1. Create a Python function **p_norm** that can calculate the p-norm and the inner product of two vectors. Hence, prove that the function **p_norm** correctly implements the p-norm definition and the function inner product correctly implements the standard inner product.
- 2. Implement a function that verifies whether a given square matrix is unitary. Hence, prove that the function **is_unitary** correctly implements the definition of a unitary matrix. Also, give an intuitive explanation of why this condition ensures the columns of Q are orthonormal.
- 3. Prove the following Theorem:

"If $A \in \mathbb{C}^{n \times n}$ is Hermitian then there is a unitary Q and a real $\Lambda \in \mathbb{R}^{n \times n}$ such that $A = Q\Lambda Q^*$."

Hint: Remember that a Hermitian matrix is one that is equal to its own conjugate transpose, i.e., $A = A^*$. You might want to utilize the Spectral Theorem for Hermitian matrices in your proof, which states that every Hermitian matrix can be diagonalized by a unitary matrix.

Answer: Firstly, we need to understand what Hermitian means in the context of complex matrices. A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian if it is equal to its own conjugate transpose, i.e., $A = A^*$.

Now, let us prove the theorem:

Proof:

The Spectral Theorem for Hermitian matrices states that a Hermitian matrix A can be diagonalized by a unitary matrix, i.e., there exists a unitary matrix Q and a diagonal matrix Λ such that $A = Q\Lambda Q^*$.

We need to show that the diagonal elements of Λ are real. This can be deduced from the property of Hermitian matrices that their eigenvalues are real.

Consider the equation $Ax = \lambda x$, where x is an eigenvector corresponding to the eigenvalue λ

Taking the complex conjugate transpose of both sides, we get $(Ax)^* = \lambda^* x^*$.

This becomes $x^*A^* = \lambda^*x^*$.

Since A is Hermitian, we can replace A^* with A. This gives us $x^*A = \lambda^*x^*$.

But we know from the original eigenvalue equation that $x^*A = \lambda x^*$. Therefore, we can equate $\lambda = \lambda^*$, which implies that λ is real.

Therefore, all the diagonal elements of Λ , which are the eigenvalues of A, are real. Thus, we have shown that if A is Hermitian, then there exists a unitary matrix Q and a real diagonal matrix Λ such that $A = Q\Lambda Q^*$.

This concludes the proof.

- 4. Implement a Python function **is_normal(A)** that checks whether a given square matrix A is normal. Recall from the lecture notes that a matrix A is normal if it satisfies $A^*A = AA^*$. The function should take as input a NumPy array A and return a Boolean value (True or False).
- 5. (Geometric series for matrices) Let $\|\cdot\|$ be a matrix norm on $\mathbb{C}^{n\times n}$. Assume that $\|X\| < 1$ for some $X \in \mathbb{C}^{n\times n}$. Show that,

(a) I - X is invertible with $(I - X)^{-1} = \sum_{i=0}^{\infty} X^i$,

(b)
$$||(I-X)^{-1}|| \le (1-||X||)^{-1}$$
.

Answer: For every $m \in \mathbb{N}$

$$\|\sum_{i=0}^{m} X^{i}\| \le \sum_{i} \|X^{i}\| \le \sum_{i} \|X\|^{i} = \frac{1 - \|X\|^{m+1}}{1 - \|X\|}$$
 (1)

where the properties of a matrix norm were used. The right hand side converges as $m \to \infty$ since ||X|| < 1 (geometric series). An analogous argument shows that $n \mapsto \sum_{i=0}^{n} X^i$ is a Cauchy sequence. As a consequence, $\sum_{i=0}^{\infty} X^i$ exists and $X^i \to 0$ as $i \to \infty$ in $\mathbb{C}^{n \times n}$. We infer that

$$(I - X) \sum_{i=0}^{\infty} X^i = \lim_{m \to \infty} (I - X) \sum_{i=0}^{m} X^i = \lim_{m \to \infty} (I - X^{m+1}) = I.$$

Letting $m \to \infty$ in the right hand side of (1) we obtain the second claim:

$$\|(I-X)^{-1}\| = \lim_{m \to \infty} \|\sum_{i=0}^m X^i\| \le \lim_{m \to \infty} \frac{1 - \|X\|^{m+1}}{1 - \|X\|} = (1 - \|X\|)^{-1}.$$

6. (Cholesky factorisation) If $A \in \mathbb{C}^{n \times n}$ is Hermitian and positive definite then there exists a unique upper triangular matrix $R \in \mathbb{C}^{n \times n}$ with (real and) positive diagonal elements such that $A = R^*R$. (Hint: Induction on n.)

Answer: Base case: For n = 1 where A is a 1×1 matrix, we can construct R as a 1×1 matrix with $R_{11} = \sqrt{A_{11}}$. This satisfies the conditions of an upper triangular matrix with real and positive diagonal elements, and $R^*R = A$.

Inductive step: Assume that the theorem holds for n = k and let us prove it for n = k+1.

Consider an $(k+1) \times (k+1)$ Hermitian positive definite matrix A. We can write A in block form as:

$$\begin{bmatrix} A' & b \\ b^* & a \end{bmatrix}$$

where A' is a $k \times k$ submatrix, b is a $k \times 1$ column vector, b^* is its conjugate transpose $(1 \times k \text{ row vector})$, and a is a scalar.

Since A is Hermitian positive definite, the Schur complement $a - b^*A'^{-1}b$ must be positive. Therefore, B is also positive definite.

By the induction hypothesis, there exists an upper triangular matrix R' of size $k \times k$ with real and positive diagonal elements such that $A' = R'^*R'$.

Now, define a new matrix R as:

$$R = \begin{bmatrix} R' & v \\ 0 & r \end{bmatrix}$$

where v is a $k \times 1$ column vector and r is a scalar.

We want to find v and r such that R is an upper triangular matrix with real and positive diagonal elements, and $A = R^*R$.

Using the block matrix multiplication, we have:

$$R^*R = \begin{bmatrix} R'^* & 0 \\ v^* & r^* \end{bmatrix} \begin{bmatrix} R' & v \\ 0 & r \end{bmatrix} = \begin{bmatrix} R'^*R' & R'^*v \\ v^*R' & v^*v + r^*r \end{bmatrix}$$

We want this to be equal to A. Equating corresponding entries, we have:

$$R'^*R' = A', \quad R'^*v = b, \quad v^*R' = b^*, \quad v^*v + r^*r = a$$

From the first equation, we know that $R'^*R' = A'$. From the second equation, we can solve for v as $v = (R'^*)^{-1}b$, where $(R'^*)^{-1}$ is the inverse of R'^* (since R' is invertible).

Now, let's examine the equation $v^*v + r^*r = a$, where $v = (R'^*)^{-1}b$ and R' is the upper triangular matrix that satisfies $A' = R'^*R'$.

Substituting the expression for v, we have:

$$v^*v + r^*r = ((R'^*)^{-1}b)^*((R'^*)^{-1}b) + r^*r$$
$$= b^*(R'^*)^{-T}(R'^*)^{-1}b + r^*r.$$

Since R' is an upper triangular matrix, its conjugate transpose $(R'^*)^{-T}$ is a lower triangular matrix. Let's denote $(R'^*)^{-T}$ as L. Then the equation becomes:

$$b^*L^TLb + r^*r$$

Now, we need to choose r such that $b^*L^TLb + r^*r = a$. In order to do that, let's choose r as $r = \sqrt{a - b^*L^TLb}$, where we take the positive square root since $a - b^*L^TLb$ is positive (as A is positive definite). With this choice of r, the equation becomes:

$$b^*L^TLb + (\sqrt{a - b^*L^TLb})^2 = a$$

Hence, we have found a suitable choice of v and r such that $v^*v + r^*r = a$. This completes the proof.

7. (Norms)

(a) Is $||A||_{\max} = \max_{i,j} |a_{ij}|$ a matrix norm?

Answer: In order to show that the function $|A|_{\text{max}} = \max i, j |a_{ij}|$ defines a matrix norm, we need to check if it satisfies the following four properties:

- i. $|A|\max \ge 0$, and $|A|_{\max} = 0$ if and only if A is the zero matrix.
- ii. $|\alpha A|_{\text{max}} = |\alpha||A|_{\text{max}}$ for all scalars α .
- iii. $|A + B|_{\text{max}} \le |A|_{\text{max}} + |B|_{\text{max}}$ (Triangle inequality).
- iv. $|AB|_{\text{max}} \leq |A|_{\text{max}}|B|_{\text{max}}$ (Submultiplicativity).

We can easily verify the first three properties:

- i. It's clear that $|A|_{\text{max}}$ is always nonnegative, since it's the maximum of absolute values. It's also clear that $|A|_{\text{max}} = 0$ if and only if all entries of A are zero, i.e., A is the zero matrix.
- ii. If we multiply A by a scalar α , all entries a_{ij} of A get multiplied by α , so the maximum absolute value gets multiplied by $|\alpha|$.
- iii. If we add two matrices A and B, any entry of the resulting matrix is the sum of corresponding entries in A and B. The absolute value of a sum is always less than or equal to the sum of absolute values, so the maximum absolute value in A + B is less than or equal to the sum of maximum absolute values in A and B.

However, the function $|A|_{\text{max}}$ fails to satisfy the submultiplicativity property, i.e., $|AB|_{\text{max}} \leq |A|_{\text{max}}|B|_{\text{max}}$ does not necessarily hold. For example, consider two 2×2 matrices $A = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}$. Then, $AB = \begin{pmatrix} 1 & 2 & 0 & 1 \end{pmatrix}$, so $|AB|_{\text{max}} = 2$, while $|A|_{\text{max}} = |B|_{\text{max}} = 1$, and hence $|A|_{\text{max}}|B|_{\text{max}} = 1 < |AB|_{\text{max}}$.

So, the function $|A|_{\text{max}}$ does not define a matrix norm because it doesn't satisfy all four required properties.

(b) Show that $||uv^*||_2 = ||u||_2 ||v||_2$ for all $u, v \in \mathbb{C}^n$. Does this also hold true if $||\cdot||_2$ is replaced by the Frobenius norm $||\cdot||_F$?

Answer: Let $u, v \in \mathbb{C}^n$ be arbitrary. We have:

$$|uv|^{2} = \sqrt{\sum_{i=1}^{n} |(uv^{*})_{i}|^{2}}$$

$$= \sqrt{\sum_{i=1}^{n} |u_{i}v_{i}^{*}|^{2}} \qquad \text{(because } (uv^{*})i = u_{i}v_{i}^{*}\text{)}$$

$$= \sqrt{\sum_{i=1}^{n} |u_{i}|^{2}|v_{i}|^{2}} \qquad \text{(because } |u_{i}v_{i}^{*}| = |u_{i}||v_{i}^{*}| = |u_{i}||v_{i}|\text{)}$$

$$= \sqrt{\left(\sum_{i=1}^{n} |u_{i}|^{2}\right)\left(\sum_{i=1}^{n} |v_{i}|^{2}\right)}$$

$$= |u|_{2}|v|_{2}$$

Therefore, we have shown that $|uv^*|_2 = |u|_2|v|_2$ for all $u, v \in \mathbb{C}^n$.

We want to show that for all $u, v \in \mathbb{C}^n$, $|uv^*|_F = |u|_F |v|_F$. Since uv^* is a scalar (an 1×1 matrix), its Frobenius norm is simply the magnitude of the scalar. Therefore, we can rewrite the equation as:

(1)
$$|uv^*| = |u|_F |v|_F$$

Now, let's compute the left-hand side of the equation:

(2)
$$|uv^*| = |u_1v_1^* + u_2v_2^* + \dots + u_nv_n^*|$$

To compute the right-hand side of the equation, we first find the Frobenius norms of u and v:

(3)
$$|u|_F = \sqrt{|u_1|^2 + |u_2|^2 + \dots + |u_n|^2}$$

(3)
$$|u|_F = \sqrt{|u_1|^2 + |u_2|^2 + \dots + |u_n|^2}$$

(4) $|v|_F = \sqrt{|v_1|^2 + |v_2|^2 + \dots + |v_n|^2}$

Then, we compute their product:

(5)
$$|u|_F|v|_F = \sqrt{(|u_1|^2 + |u_2|^2 + \dots + |u_n|^2)(|v_1|^2 + |v_2|^2 + \dots + |v_n|^2)}$$

Now, let's square both sides of the equation (1) to simplify the expression:

(6)
$$|uv^*|^2 = (|u|_F|v|_F)^2$$

Substituting the expressions for $|uv^*|$ and $|u|_F|v|_F$ from equations (2) and (5) into equation (6), we have:

(7)
$$(u_1v_1^* + u_2v_2^* + \dots + u_nv_n^*)(u_1v_1^* + u_2v_2^* + \dots + u_nv_n^*)^* = (|u_1|^2 + |u_2|^2 + \dots + |u_n|^2)(|v_1|^2 + |v_2|^2 + \dots + |v_n|^2)$$

Expanding the left-hand side, we get:

(8)
$$\sum_{i=1}^{n} u_i v_i^* \sum_{i=1}^{n} u_i^* v_i = \sum_{i=1}^{n} |u_i|^2 |v_i|^2$$

And the right-hand side is:

(9)
$$\sum_{i=1}^{n} |u_i|^2 |v_i|^2$$

Since the left-hand side (equation 8) and the right-hand side (equation 9) are equal, we can conclude that:

$$|uv^*|_F = |u|_F |v|_F$$

for all $u, v \in \mathbb{C}^n$.

(c) Let $p \in [1, \infty)$. Prove the following statement:

$$||x||_{\infty} \le ||x||_p \le \sqrt[p]{n} ||x||_{\infty} \quad \forall x \in \mathbb{C}^n.$$

Answer: Firstly, we will show that $|x|_{\infty} \leq |x|_{p}$.

The ∞ -norm of a vector x is defined as the maximum absolute value of its elements, i.e. $|x|_{\infty} = \max_{i} |x_{i}|$. The *p*-norm is defined as $|x|_{p} = (\sum_{i} |x_{i}|^{p})^{\frac{1}{p}}$. Since $|x_{i}|^{p} \leq (\max_{i} |x_{i}|)^{p} = |x|_{\infty}^{p}$ for all *i* and $p \geq 1$, summing over all elements gives $\sum_{i} |x_{i}|^{p} \leq n|x|_{\infty}^{p}$, and hence $|x|_{p} = (\sum_{i} |x_{i}|^{p})^{\frac{1}{p}} \geq |x|_{\infty}$.

Secondly, we will show that $|x|_p \leq \sqrt[p]{n}|x|_{\infty}$.

By definition, $|x|_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$. We have $|x_i|^p \leq |x|_\infty^p$ for all i, so $\sum_i |x_i|^p \leq \sum_i |x|_\infty^p = n|x|_\infty^p$. Hence, $|x|_p = (\sum_i |x_i|^p)^{\frac{1}{p}} \leq (n|x|_\infty^p)^{\frac{1}{p}} = \sqrt[p]{n}|x|_\infty$. Therefore, we have $|x|_\infty \leq |x|_p \leq \sqrt[p]{n}|x|_\infty$ for all $x \in \mathbb{C}^n$ and $p \in [1, \infty)$.