Radiomics

Loading Everything

Project Plan

What features to take?

- Not sure to take Zone Entropy or not
- Run Entropy and Zone Entropy do not follow the same patter on biplot

Figure 1: Project Plan $\frac{1}{2}$

Important measures to check

• We will compare diameter to volume to ITH

```
pyrad$volume = as.numeric(pyrad$original_shape_MeshVolume)
pyrad$volume_from_pyrad = as.numeric(pyrad$original_shape_MeshVolume)
pyrad$diameter = as.numeric(pyrad$original_shape_Maximum2DDiameterSlice)
```

how to define radITH

- Do we need to normalize something by volume?
- Numbers were a bit wierd when divided by volume therefore I did not divide anything with volume

```
# weighted mean
# w = 1-abs(cor(pyrad[,features_of_interest], pyrad[,"volume"]))
# pyrad$radITH = apply(pyrad[,features_of_interest],1, function(x){
# weighted.mean(x[features_of_interest], w = w)
# })
```

```
pyrad$radITH = rowMeans(pyrad[,features_of_interest], na.rm = T)
Q = 3

pyrad$volume_group = gtools::quantcut(pyrad$volume, q=Q, na.rm=TRUE)
pyrad$diameter_group = gtools::quantcut(pyrad$diameter, q=Q, na.rm=TRUE)
pyrad$radITH_group = gtools::quantcut(pyrad$radITH, q=Q, na.rm=TRUE)
```

Expected correlations

 $\bullet\,$ Negative cor radITH to volume

Mutations

Let's group DRIVER mutations by Sanchez Vega def

Let's test Sanchez Vega Muts vs radITH groups (q = 3)

```
## [1] "Adeno fisher test results"
  [1] "nrf2"
##
##
    Fisher's Exact Test for Count Data
##
## data: table(tmp$radITH_group, tmp[, col])
## p-value = 0.02679
## alternative hypothesis: two.sided
##
   [1] "pi3k"
##
##
   Fisher's Exact Test for Count Data
##
## data: table(tmp$radITH_group, tmp[, col])
## p-value = 0.003382
```

```
## alternative hypothesis: two.sided
##
## [1] "cell_cycle"
##
## Fisher's Exact Test for Count Data
##
## data: table(tmp$radITH_group, tmp[, col])
## p-value = 0.0003902
## alternative hypothesis: two.sided
##
## [1] "wnt"
##
## Fisher's Exact Test for Count Data
##
## data: table(tmp$radITH_group, tmp[, col])
## p-value = 0.04017
## alternative hypothesis: two.sided
## [1] "Squamous fisher test results"
## [1] "rtk_kras"
## Fisher's Exact Test for Count Data
## data: table(tmp$radITH_group, tmp[, col])
## p-value = 0.01748
## alternative hypothesis: two.sided
## [1] "pi3k"
##
## Fisher's Exact Test for Count Data
##
## data: table(tmp$radITH_group, tmp[, col])
## p-value = 0.007167
## alternative hypothesis: two.sided
```

Sanchez Vega vs rad
ITH groups (q = 3) vs pathology vs volume (Median)

Invasive adenocarcinoma Volume(median):Low

Does Volume or diameter predict biology?

- Diameter is not associated at all
- $\bullet~$ Volume is associated with HIPPO
- ## [1] "Adeno fisher test results"
- ## [1] "Squamous fisher test results"

How does radITH associate with survival?

How does volume (diameter) associate to survival?

Can we overlap radITH and Volume groups and check survival?

In order to increase group sizes, all measures will be split by median (Q=2)

Coxph Model

 $\bullet\,$ radITH does not help improve cox ph model

Tracerxs

Hallmarks all samples

- Association (cor) of radITH with hallmarks
- Hallmarks computed with SS-GSEA
- $\bullet~$ P values are adjusted using FDR

All samples ssGSEA Hallmark correlation to radITH FDR adjusted pval

Hallmarks Adeno

Adeno ssGSEA Hallmark correlation to radITH FDR adjusted pval

Hallmarks Squamous

Hallmark expression-radITH Correlation in Large vs Small tumors (all samples)

Small tumors (median) ssGSEA Hallmark correlation to radITH FDR adjusted pval

Let's split by Size and Pathology and repeat

Squamous cell carcinoma Volume(median): High ssGSEA Hallmark correlation to radITH FDR adjusted pval

Invasive adenocarcinoma Volume(median): High ssGSEA Hallmark correlation to radITH FDR adjusted pval

Invasive adenocarcinoma Volume(median): Low ssGSEA Hallmark correlation to radITH FDR adjusted pval

Picking genes for Gene Expression Analysis

• Mean and SD value based on entire cohort

Number of Genes after cutoff: 10332

Gene Expression Analysis without volume

• Genes that were picked for analysis were based on mean and SD (entire cohort)

Gene Expression Analysis by volume group and cancer type

• Genes that were picked for analysis were based on mean and SD (entire cohort)

Chr Instability and TIL

Corr coef.

