MTI820 – Entrepôts de données et intelligence d'affaires

Intégration des données et ETL

Le cycle de vie d'un projet en BI

Diagramme de flux de travail:

Question

Pourquoi est-il nécessaire de faire l'intégration des données?

Les problèmes des sources de données

- 1. Sources diverses et disparates;
- 2. Sources sur différentes plateformes et OS;
- 3. Applications *legacy* utilisant des BD et autres technologies obsolètes;
- 4. Historique de changement non-préservé dans les sources;
- 5. Qualité de données douteuse et changeante dans le temps;
- 6. Structure des systèmes sources changeante dans le temps;
- Incohérence entre les différentes sources;
- 8. Données dans un format difficilement interprétable ou ambigu.

Question

• Quelles sont les principales approches d'intégration et quels sont leurs principaux avantages/inconvénients?

Approches d'intégration

Source: "EII - ETL - EAI What, Why, and How!", Tom Yu, 2005

Extract, Transform and Load

- Intégration et livraison des données en lot
- Transformations appliquées sur les données

Enterprise Information Intergration

- Fédération de données provenant de plusieurs sources
- Accès temps-réel aux données
- Données structurées ou semistructurées

Enterprise Application Intergration

- Processus d'intégration des données d'applications
- Basé sur l'échange de messages sur un bus commun

Extract, Transform and Load (ETL)

<u>Caractéristiques</u>:

- Permet la consolidation des données à l'aide des trois opérations suivantes:
 - Extraction: identifier et extraire les données de sources ayant subi une modification depuis la dernière exécution;
 - Transformation: appliquer diverses transformations aux données pour les nettoyer, les intégrer et les agréger;
 - Chargement: insérer les données transformées dans l'entrepôt et gérer les changements aux données existantes (ex: stratégies SCD).
- Traite normalement de grande quantités de données en lots cédulés;
- Est surtout utilisé avec les entrepôts de données et les comptoirs de données.

Extract, Transform and Load (ETL)

Avantages:

- Optimisé pour la structure de l'entrepôt de données;
- Peut traiter de grandes quantités de données dans une même exécution (traitement en lot);
- Permet des transformations complexes et agrégations sur les données;
- La cédule d'exécution peut être contrôlée par l'administrateur;
- La disponibilité d'outils GUI sur le marché permet d'améliorer la productivité;
- Permet la réutilisation des processus et transformations (ex: packages dans SSIS).

Extract, Transform and Load (ETL)

• Inconvénients:

- Processus de développement long et coûteux;
- Gestion des changements nécessaire;
- Exige de l'espace disque pour effectuer les transformations (staging area);
- Exécuté indépendamment du besoin réel;
- Latence des données entre la source et l'entrepôt;
- Unidirectionnel (des sources vers l'entrepôt de données).

Entreprise Information Integration (EII)

• <u>Caractéristiques</u>:

- Fournit une vue unifiée des données de l'entreprise, où les sources de données forment une fédération;
- Les sources de données dispersées sont consolidées à l'aide d'une BD virtuelle, de manière transparente aux applications utilisant ces données;
- Toute requête à la BD virtuelle est décomposée en sous-requêtes aux sources respectives, dont les réponses sont assemblées en un résultat unifié et consolidé;
- Permet de consolider uniquement les données utilisées, au moment où elles sont utilisées (source data pulling).
- Le traitement en-ligne des données peut cependant entraîner des délais importants.

Entreprise Information Integration (EII)

Avantages:

- Accès relationnel à des sources non-relationnelles;
- Permet d'explorer les données avec la création du modèle de l'entrepôt de données;
- Accélère le déploiement de la solution;
- Peut être réutilisé par le système ETL dans une itération future;
- Aucun déplacement de données.

Entreprise Information Integration (EII)

• <u>Inconvénients</u>:

- Requiert la correspondance des clés d'une source à l'autre;
- Consolidation des données plus complexe que dans l'ETL;
- Surtaxe les système sources;
- Plus limité que l'ETL dans la quantité de données pouvant être traitée;
- Transformations limitées sur les données;
- Peut consommer une grande bande passante du réseau.

Entreprise Application Integration (EAI)

<u>Caractéristiques</u>:

- Approche permettant de fournir à l'entrepôt des données provenant des sources (source data pushing);
- Repose sur l'intégration et le partage des fonctionnalités des applications sources à l'aide d'une architecture SOA;
- Généralement utilisé en temps réel ou en semi-temps réel (Near Real Time);
- L'EAI ne remplace pas le processus ETL, mais permet de simplifier ce dernier.

Entreprise Application Integration (EAI)

Avantages:

- Facilite l'interopérabilité des applications;
- Permet l'accès en (quasi) temps-réel;
- Ne transfère que les données nécessaires;
- Contrôle du flot de l'information.

Entreprise Application Integration (EAI)

• Inconvénients:

- Support limité aux transformations et agrégations des données;
- Taille des transactions limitée (en nombre de lignes);
- Développement complexe;
- Gestion complexe de l'intégrité sémantique des données (e.g., règles d'affaires);
- Utilise la bande passante du réseau durant les heures de pointe.

Comparaison entre les approches d'intégration

	ETL	EII	EAI
Flot de données	Unidirectionnel (sources à l'entrepôt)	Bidirectionnel	Bidirectionnel
Mouvement de données	Lots cédulés	Au moment de la requête	Déclenché par la transaction
Latence	Journalier à mensuel	Temps-réel	Quasi temps-réel
Transformations/agré gations des données	Grande capacité	Moyenne capacité	Faible capacité
Volume des données	Grand (millions ou milliards de lignes)	Moyen (10,000 – 1,000,000 de lignes)	Petit (100-1000 lignes)

Quand utiliser les approches d'intégration

Approche ETL:

- Consolidation d'une grande quantité de données
- Transformations complexes

Approche EII:

- Relier un entrepôt (EDW) existant avec des données de sources spécifiques
- Données sources volatiles et accessibles à l'aide de requêtes simples (ex: SQL).

Approche EAI:

- Intégration de transactions
- Requêtes analytiques simples
- Sources non-accessibles directement

Exemples de produits commerciaux

Outils ETL:

- Oracle Warehouse Builder;
- IBM Infosphere Information Server;
- Microsoft SQL Server Integration Services (SSIS);
- SAS Data Integration Studio.

Outils EAI:

- IBM WebSphere Message Broker;
- Microsoft BizTalk Server;
- Oracle SOA Suite.

Outils EII:

- SAP BusinessObjects Data Federator;
- IBM WebSphere Federation Server.

Question

• Quelles sont les principales étapes dans le développement du système ETL?

Tâches et étapes de l'ETL

ETL des tables de faits

ETL des tables de dimension

Définir les procédures pour le chargement de données

Préparer le staging area et les outils d'assurance qualité

Planifier les agrégations de données

Définir les règles de transformation et de nettoyage des données

Définir les règles d'extraction des données cibles

Déterminer les sources internes et externes renfermant ces données

Déterminer les données nécessaires à la solution de BI

Identification des sources:

- 1. Énumérer les items cibles (métriques et attributs de dimension) nécessaires à l'entrepôt de données;
- 2. Pour chaque item cible, trouver la source et l'item correspondant de cette source;
- 3. Si plusieurs sources sont trouvées, choisir la plus pertinente;
- 4. Si l'item cible exige des données de plusieurs sources, former des règles de consolidation;
- 5. Si l'item source referme plusieurs items cibles (ex: un seul champs pour le nom et l'adresse du client), définir des règles de découpage;
- 6. Inspecter les sources pour des valeurs manquantes.

Extraction complète:

- Capture l'ensemble des données à un certain instant (snapshot de l'état opérationnel);
- Normalement employée dans deux situations:
 - 1. Chargement initial des données;
 - Rafraîchissement complet des données (ex: modification d'une source).
- Peut être très coûteuse en temps (ex: plusieurs heures/jours).

Extraction incrémentale:

- Capture uniquement les données qui ont changées ou ont été ajoutées depuis la dernière extraction;
- Peut être faite de deux façons:
 - Extraction temps-réel;
 - Extraction différée (en lot).

Question

- Comment peut-on extraire les données qui ont changées dans les sources:
 - En temps-réel?
 - En différé (lot)?

• Extraction temps-réel:

 S'effectue au moment où les transactions surviennent dans les systèmes sources.

- Option 1: Capture à l'aide du journal des transactions
 - Utilise les logs de transactions de la BD servant à la récupération en cas de panne;
 - Aucune modification requise à la BD ou aux sources;
 - Doit être fait avant le rafraîchissement périodique du journal;
 - Pas possible avec les systèmes legacy ou les sources à base de fichiers (il faut une BD journalisée).

- Option 2: Capture à l'aide de triggers
 - Des procédures déclenchées (triggers) sont définies dans la BD pour recopier les données à extraire dans un fichier de sortie;
 - Meilleur contrôle de la capture d'évènements;
 - Exige de modifier les BD sources;
 - Pas possible avec les systèmes *legacy* ou les sources à base de fichiers.

- Option 3: Capture à l'aide des applications sources
 - Les applications sources sont modifiées pour écrire chaque ajout et modification de données dans un fichier d'extraction;
 - Exige des modifications aux applications existantes;
 - Entraîne des coûts additionnels de développement et de maintenance;
 - Peut être employé sur des systèmes legacy et les systèmes à base de fichiers.

Extraction différée:

 Extrait tous les changements survenus durant une période donnée (ex: heure, jour, semaine, mois).

- Option 1: Capture basée sur les timestamps
 - Une estampille (timestamp) d'écriture est ajoutée à chaque ligne des systèmes sources;
 - L'extraction se fait uniquement sur les données dont le timestamp est plus récent que la dernière extraction;
 - Fonctionne avec les systèmes legacy et les fichiers plats,
 mais peut exiger des modifications aux systèmes sources;
 - Gestion compliquée des suppressions.

- Option 2: Capture par comparaison de fichiers
 - Compare deux snapshots successifs des données sources;
 - Extrait seulement les différences (ajouts, modifications, suppressions) entre les deux snapshots;
 - Peut être employé sur des systèmes legacy et les systèmes à base de fichiers, sans aucune modification;
 - Exige de conserver une copie de l'état des données sources;
 - Approche relativement coûteuse.

- Considérations pratiques:
 - Choisir, pour chaque source, la fenêtre temporelle durant laquelle sera faite l'extraction;
 - Déterminer la séquence des tâches d'extraction;
 - Déterminer comment gérer les exceptions.

Question

• Quelles sont les transformations à effectuer sur les données sources avant de les charger dans l'entrepôt?

- Types de transformation:
 - 1. Révision de format:
 - Ex: Changer le type ou la longueur de champs individuels.
 - 2. Décodage de champs:
 - Consolider les données de sources multiples
 - Ex: ['homme', 'femme'] vs ['M', 'F'] vs [1,2].
 - Traduire les valeurs cryptiques
 - Ex: 'AC', 'IN', 'SU' pour les statuts actif, inactif et suspendu.
 - 3. Pré-calcul des valeurs dérivées:
 - Ex: profit calculé à partir de ventes et coûts.
 - 4. Découpage de champs complexes:
 - <u>Ex</u>: extraire les valeurs *prénom*, *secondPrénom* et *nomFamille* à partir d'une seule chaîne de caractères nomComplet.

- Types de transformation (suite):
 - Fusion de plusieurs champs:
 - Ex: information d'un produit
 - Source 1: code et description;
 - Source 2: types de forfaits;
 - Source 3: coût.
 - 6. Conversion de jeu de caractères:
 - Ex: EBCDIC (IBM) vers ASCII.
 - Conversion des unités de mesure:
 - Ex: impérial à métrique.
 - Conversion de dates:
 - Ex: '24 FEB 2011' vs '24/02/2011' vs '02/24/2011'.
 - Pré-calcul des agrégations:
 - Ex: ventes par produit par semaine par région.
 - 10. Déduplication:
 - Ex: Plusieurs enregistrements pour un même client.

Problème de résolution d'entités:

- Survient lorsqu'une même entité se retrouve sur différentes sources, sans qu'on ait la correspondance entre ces sources;
 - <u>Ex</u>: clients de longue date ayant un identifiant différent sur les différentes sources;
- L'intégration des données requiert de retrouver la correspondance;
- Approches basées sur des règles de résolution
 - Ex: les entités doivent avoir au moins N champs identiques (fuzzy lookup / matching).

Problème des sources multiples:

- Survient lorsqu'une entité possède une représentation différente sur plusieurs sources;
- Approches de sélection:
 - Choisir la source la plus prioritaire;
 - Choisir la source ayant l'information la plus récente.

- Gestion des changements dimensionnels:
 - Déterminer la stratégie de gestion des changements (SCD Type 1, 2 ou 3) de chaque attribut dimensionnel modifié;
 - Préparer l'image de chargement (load image) en conséquence:
 - SCD Type 1: ancienne valeur écrasée;
 - SCD Type 2: nouvelle ligne ajoutée;
 - SCD Type 3: déplacement de l'ancienne valeur dans la colonne d'historique et écriture de la nouvelle valeur dans la colonne courante.

Exemples de transformations: (SSIS)

• Matrice de transformation:

Champs cible	Table cible	Champs source	Table source	Règle de transformation

Chargement des données

• Types de chargement:

- Chargement initial:
 - Fait une seule fois lors de l'activation de l'entrepôt de données;
 - Les indexes et contraintes d'intégrité référentielle (clé étrangères) sont normalement désactivés temporairement;
 - Peut prendre plusieurs heures.
- Chargement incrémental:
 - Fait une fois le chargement initial complété;
 - Tient compte de la nature des changements (ex: SCD Type 1, 2 ou 3);
 - Peut être fait en temps-réel ou en lot.
- Rafraîchissement complet:
 - Employé lorsque le nombre de changements rend le chargement incrémental trop complexe;
 - <u>Ex</u>: lorsque plus de 20% des enregistrements ont changé depuis le dernier chargement.

Chargement des données

Considération additionnelles:

- Faire les chargements en lot dans une période creuse (entrepôt de données non utilisé);
- Considérer la bande passante requise pour le chargement;
- Avoir un plan pour évaluer la qualité des données chargées dans l'entrepôt;
- Commencer par charger les données des tables de dimension.

Extract, Load and Transform (ELT)

Source: Ralf Goetz, What is the fundamental difference between "ETL" and "ELT" in the world of big data?, 2017

Extract, Load and Transform (ELT)

Problèmes avec ETL:

- Traite les données importantes au moment de la conception;
- Développement long et complexe.

Solution ELT:

- Utilise les technologies BigData (ex: Hadoop, Spark, etc.);
- Chargements rapides, potentiellement temps-réels;
- Lacs de données (data lakes) permettent les données nonstructurées;
- Transformations faites au moment de la requête;
- Technologies moins matures que ETL et implémentation plus complexe (ex: code Java vs outil dédié).

Extract, Load and Transform (ELT)

	Entrepôts de données	Lacs de données
Données	Structurées, traitées	Semi-/non-structurées, brutes
Traitement	Schéma-à-l'écriture	Schéma-à-la-lecture
Stockage	Coûteux pour grandes quantités	Stockage à faible coût
Agilité	Moins agile, configuration fixe	Hautement agile, reconfiguration au besoin
Sécurité	Mature	Moins mature
Utilisateurs	Professionnels d'affaires	Experts en data science

