Square wave generator (Astable multivibrator) +Vo **V**c βVout βVo Vd -βVo -Vo

Square wave generator (Astable multivibrator)

• Let, $v_o = +V_{sat}$

Voltage across the capacitor
$$v_c(t) = V_f + (V_i - V_f)e^{-t/RC}$$

Final value, $V_f = +V_{Sat}$

Final value, $V_f = +V_{Sat}$

Initial value, $V_i = -\beta V_{Sat}$

$$\therefore \mathbf{v}_{c}(t) = V_{Sat} - V_{Sat}(1+\beta)e^{-t/RC}$$

At
$$t = T_1$$

$$v_c(T_1) = \beta V_{sat}$$

$$\beta V_{sat} = V_{Sat} - V_{Sat}(1+\beta)e^{-T_1/RC}$$

Solving

$$T_1 = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

Design of square wave generator

Let the frequency of oscillation be 1 kHz

Take
$$\beta = 0.5$$
 and $R_1 = R_2 = 10 \text{ k}\Omega$.

Frequency,
$$f = \frac{1}{2RC \ln 3}$$

Assume $C = 0.1 \mu F$

Then,
$$R = \frac{1}{2Cf \ln 3} = \frac{1}{2 \times 0.1 \times 10^{-6} \times 1000 \times \ln 3} = 4.55 \text{ k}\Omega$$

Select standard value of 4.7 k Ω for R.

Square wave generator (Astable multivibrator)

- If $R_1 = R_2$ -Expression for period = 2
 - —The frequency of oscillation =

Square wave generator

Triangular waveform generator

