

COMPUTERSYSTEMSICHERHEIT

Thema 3: Symmetrische Kryptographie

Prof. Sebastian Faust

THEMENÜBERSICHT

- Motivation Symmetrische Kryptographie
- Definition symmetrische Chiffre
- One-Time-Pad
- Blockchiffren
- Modes of Operation
- Kryptographische Hashfunktionen
- Message Authentication Codes (MACs)
- Authenticated Encryption

SYMMETRISCHE KRYPTOGRAPHIE

• Symmetrisch Kryptographie: Es gibt nur einen Schlüssel für alle Algorithmen

- Einigung auf geheimen Schlüssel:
 - Physikalisches Treffen
 - Kryptographisches Protokoll (später mehr)

DEFINITION SYMMETRISCHER CHIFFREN

FUNKTIONALE DEFINITION

- Funktionale Definition: Beschreibt Input/Output-Verhalten der Algorithmen
- Algorithmen: (Gen, Enc, Dec)

- Korrektheit: Die Entschlüsselung eines gültigen Chiffretexts resultiert in die original verschlüsselte Nachricht
 - $\rightarrow Dec(k, Enc(k, m)) = m$ für alle Nachrichten m und Schlüssel $k \leftarrow Gen$
- Effizienz: Verschlüsselung und Entschlüsselung sind effizient (> 1GB/s)

- Ziel des Angreifers: Was ist ein erfolgreicher Angriff?
 - *Naive Option:* Angreifer lernt den Schlüssel k nicht

In der Kryptographie: Angreifer lernt "nichts Neues" über m

- Angreifermodell: Was kann der Angreifer tun und sehen?
 - Angreifer lernt nur Chiffretexte (known ciphertext attack), z.B. durch Abhören des Kanals
 - Angreifer lernt Paare von Klartexten/Chiffretexten (known plaintext/ciphertext attack), z.B.
 bestimmter Teil der verschlüsselten Nachricht kann bekannt sein
 - Angreifer wählt Klartexte und lernt zugehörige Chiffretexte (chosen plainext attack), z.B.
 Angreifer Nutzer davon überzeugen Nachrichten seiner Wahl zu verschlüsseln

Sicherheit wird in der Kryptographie durch ein Spiel zwischen Angreifer und "Nutzer" definiert

SICHERHEITSSPIEL (IND-CPA)

Sicherheit wird in der Kryptographie durch ein Spiel zwischen Angreifer und "Nutzer" definiert

Angreifer gewinnt das Sicherheitsspiel wenn b = b'

Sicherheit: Symmetrische Chiffre is IND-CPA sicher, falls alle "effizienten" Angreifer das Sicherheitsspiel maximal mit Wahrscheinlichkeit $\approx \frac{1}{2}$ gewinnen können

Falls Verschlüsselungsverfahren IND-CPA sicher, dann:

- → Das Beste was der Angreifer tun kann ist b raten
- \rightarrow Angreifer kann Chiffretext c^* im wesentlichen ignorieren
- ightharpoonup Chiffretext c^* gibt keine zusätzlichen Informationen über verschlüsselte Nachricht

WIE ZEIGEN WIR (UN)SICHERHEIT?

Welche Annahmen machen wir über die Strategie des Angreifers? **Keine**, außer dass sie effizient sind!

Was bedeutet "effizient"?

- Nicht effizient: hat Laufzeit exponentiell in der Schlüssellänge, bricht Faktorisierung,...
- Effizient: siehe "Einführung in die Kryptographie"

Unsicheres Verfahren: Konstruiere effizienten Angreifer, der mit Wahrscheinlichkeit > ½ das Sicherheitsspiel gewinnt

Sicheres Verfahren: Zeige, dass alle effizienten Angreifer das Sicherheitsspiel mit Wahrscheinlichkeit < ½ gewinnen

BRUTE FORCE ANGRIFF

Betrachte einen Brute Force Angriff wo der Angreifer alle Schlüssel ausprobiert, um das Verschlüsselungsverfahren anzugreifen. Bricht dieser Angreifer die IND-CPA Sicherheitseigenschaft?

- Ja, der Angreifer kann m_0 von m_1 unterscheiden.
- Nein, der Angreifer lernt nichts von c^* über m_b .
- Nein, der Angreifer ist nicht effizient.

pingo.coactum.de

Nr.: 643569

ONE-TIME PAD VERSCHLÜSSELUNG

WIEDERHOLUNG: XOR

Bit XOR Operationen

x ⊕ 0 = x					
$x \oplus x = 0$					
$x \oplus y = y \oplus x$					
$(x \oplus y) \oplus z = x \oplus (y \oplus z)$					
$(x \oplus y) \oplus x = y$					

Erweiterung auf Bitstrings

1	0	0	1	0	1	1	1
\oplus							
1	1	1	0	1	0	1	0
\oplus							
0	1	1	1	1	1	0	1

ONE-TIME PAD

Wird häufig auch Vernam Chiffre genannt nach Gilbert Vernam One-Time Pad zur Verschlüsselung von Bitstrings der Länge n

• Gen: Ausgabe zufälliger Schlüssel $k \leftarrow \{0, 1\}^n$

• Enc: Für $m \in M$: Ausgabe $\operatorname{Enc}(k, m) = k \oplus m$.

• **Dec:** Für $c \in C$: Ausgabe $Dec(k, c) = k \oplus c$.

Gilbert Vernam (1890-1960)

Korrektheit

Für jedes k und m gilt: Dec(k, Enc(k, m)) = $Dec(k, m \oplus k) =$ $k \oplus m \oplus k = m.$

Beschränktes Sicherheitsspiel: Angreifer erhält keinen Zugriff auf Chiffretexte (wichtig: siehe nächste Slide)

Wähle zufälliges Bit b

Angreifer gewinnt das Sicherheitsspiel wenn b = b'

Perfekte Sicherheit: c^* gibt keine Information über m_b preis

Heißer Draht

Dieser Artikel erläutert die Kommunikationsverbindung, für das Geschicklichkeitsspiel siehe Heißer Draht (Spiel), für die Samstagabendshow siehe Der heiße Draht, für die Zeitung siehe Der heisse Draht.

Als **Heißer Draht** (engl. *hotline*) oder **Rotes Telefon** wurde eine ständige Fernschreiberverbindung zwischen der Sowjetunion und den Vereinigten Staaten während der Zeit des Kalten Krieges bezeichnet.

Inhaltsverzeichnis [Verbergen]

- 1 Einrichtung
- 2 Erster Einsatz
- 3 Reaktivierung
- 4 Sonstiges
- 5 Literatur
- 6 Einzelnachweise

Einrichtung [Bearbeiten | Quelltext bearbeiten]

Die Verbindung wurde aufgrund der Erfahrungen aus der Kubakrise (14. bis 28. Oktober 1962) eingerichtet. Sie läuft über London, Kopenhagen, Stockholm, Helsinki und wurde am 30. August 1963^[1] eröffnet. Parallel dazu kam es zu einer Funkverbindung über Tanger. 1966 folgte eine Verbindung der USA mit Frankreich, 1967 mit Großbritannien. Die Verbindungen sollen die Möglichkeit schaffen, eine Friedensgefährdung durch Irrtümer, Missverständnisse oder Verzögerungen im Kommunikationsweg zu verhindern.

Dass diese Gefahr weiterhin bestand, zeigt ein Vorfall vom 26. September 1983: Damals meldete die sowjetische Raketenabwehr fälschlich einen Angriff von US-Interkontinentalraketen auf die Sowjetunion (siehe den Artikel über Stanislaw Jewgrafowitsch Petrow).

Ein Rotes Telefon aus der Zeit von

Jimmy Carter, das aber nie Bestandteil
des heißen Drahtes, sondern wohl nur
des amerikanischen *Defense Red*Switch Networks war.

Beide Seiten strebten eine höchstmögliche Sicherheit gegen Abhören oder Verfälschen der übermittelten Nachrichten an. Es kam die Verschlüsselungstechnik *One-Time-Pad* zum Einsatz – eine der wenigen bekannten Anwendungen des Verfahrens, das zwar absolute Sicherheit bietet, in der Praxis aufgrund des aufwendigen Schlüsselaustausches aber nur schwer durchführbar ist.

SCHLÜSSEL NUR EINMAL VERWENDEN

One-Time Pad ist unsicher bei Wiederverwendung des gleichen Schlüssels

Lernen des XORs kann nützliche Informationen preisgeben:

- z.B. welche Bits von m_0 und m_1 gleich sind
- Wenn m_0 bekannt ist dann ist auch m_1 bekannt (und vice versa)
- → Moral: Zur Verschlüsselung jeder Nachricht muss ein neuer zufälliger Schlüssel gewählt werden

- 1. Schlüssel ist **so lang** wie Nachricht
- → Für große Mengen von Daten müssen lange zufällige Schlüssel gespeichert und ausgetauscht werden
- → Gute Zufälligkeit zu erzeugen, ist sehr aufwendig
- 2. Schlüssel kann nur einmal benutzt werden:
- → Kann etwas über Klartexte preisgeben
- 3. Sicherheit im **beschränkten** Angreifermodell
- → Chiffretext-Only Angriffe

BLOCKCHIFFREN

BLOCKCHIFFRE

Verschlüsselung/Entschlüsselung von Nachrichten/Chiffretextblöcken mit fixer Länge

- **Blocklänge n = |m| = |c|**: häufig 64 128 Bits
- Schlüssellänge k: häufig 128 256 Bits

Wesentlicher Unterschied zu One-Time-Pad: Schlüssel kann wiederverwendet werden!

EIGENSCHAFTEN VON BLOCKCHIFFREN

Korrektheit: Für jeder Nachricht M und jeden Schlüssel K

- Effizienz:
 - Enc(.) und Dec(.) sollte in Mikrosekunden berechenbar sein: XOR, bit-shifting, Lookup Tabellen, ...
 - Häufig Hardware Support auf modernen CPUs
- Sicherheit:
 - Was soll ein Angreifer nicht können?

SICHERHEIT VON BLOCKCHIFFREN

Was soll ein Angreifer nicht können?

Aus C kann der Angreifer nicht...

- M lernen
- K lernen

SICHERHEIT VON BLOCKCHIFFREN

Was soll ein Angreifer nicht können?

Aus C kann der Angreifer nicht...

- M lernen
- K lernen

Formal: Angreifer kann nicht zwischen Enc(.) und P(.) unterscheiden.

DATA ENCRYPTION STANDARD (DES)

Entwickelt von IBM im Auftrag des NIST Ende der 1970er

Verschlüsselung:

- Blocklänge n = 64 Bits
- Schlüssellänge k = 56 Bits

Theoretische Angriffe: Differenzielle Kryptoanalyse und Lineare Kryptoanalyse

DES bietet Schutz gegen Differenzielle Kryptoanalyse

Hauptschwachpunkt: Kurzer Schlüssel (nur 56 Bits)

- Brute-Force Angriff ist möglich
- DES Cracker: Bricht DES in wenigen Tagen

Triple DES: Sicherheitsniveau ist 2 x 56 Bits (wegen Time-Memory-Trade-Off)

Quellen: Wikipedia V3: Symmetrische Kryptographie

25

ADVANCED ENCRYPTION STANDARD (AES)

- Wettbewerb für AES wurde im Januar 1997 von US National Institute of Standards and Technology (NIST) angekündigt.
- 15 Chiffren wurden eingereicht
- 5 Finalisten: MARS, RC6, Rijndael, Serpent, und Twofish
- 2. October, 2000: Rijandel wurde als Gewinner gewählt.
- 26. November, 2001: AES ist ein offizieller Standard geworden.
- Autoren: Vincent Rijmen, Joan Daemen (aus KU Leuven in Belgien)
- Schlüssel-Größe: 128, 192 or 256 bit, Block-Größe: 128 Bits (weitere werden von Rijndael unterstützt)
- Gilt als ungebrochen: In den USA Zulassung für höchste Geheimhaltungsstufe

Vincent Rijmen (1970)

Joan Daemen (1965)

Wie schwer ist ein Brute-Force-Angriff auf einen 128 Bit Schlüssel?

■ Probiere 2¹²⁸ Schlüssel aus

Wie groß ist 2¹²⁸?

 $2^{128} = 2^{10*12.8} \approx 10^{3*13} = 10^{39}$

Angenommen wir haben Zugriff auf eine extrem leistungsstarke Hardware, die 10⁹ (1 Milliarden) Schlüssel pro Nanosekunde testen kann

- D.h.: 10¹⁸ Schlüssel pro Sekunde
- D.h.: Wir benötigen **10**³⁹/**10**¹⁸ = **10**²¹ Sekunden
- Das sind ca. 30 Billionen Jahre

Takeaway: Brute-Force Angriffe auf moderne Chiffren mit Schlüsseln ≥ 128 Bits unmöglich

1. Seiten-Kanal-Angriffe

- Beobachte das Gerät bei Ent-/Verschlüsselung
 - Messe die Zeit, die für kryptographische Operationen benötigt wird.
 - Messe den Stromverbrauch

2. Fehlerangriffe

- Füge Fehler (z.B. mit einem Laserstrahl) in die Berechnung ein
- Beobachte die Veränderungen im Verhalten der Ein-/Ausgabe
- z.B. Berechnugsfehler in den letzten paar Runden von DES erlauben es, den Schlüssel K zu berechnen

Blockchiffren besitzen zwei Probleme bei direktem Einsatz als Verschlüsselung:

Nicht IND-CPA sicher:

Gib 0 aus falls $c = c_0$; ansonsten 1

Merke: Deterministische Verschlüsselung kann nicht IND-CPA sicher sein

Nicht möglich Nachrichten beliebiger Länge zu entschlüsseln

MODES OF OPERATION

Ziel: Verschlüsselung von Nachrichten mit beliebiger Länge

- Ohne Vergrößerung des Chiffretexts (im Vergleich zum Klartext)
- Blockchiffren können nicht direkt für die Verschlüsselung benutzt werden.
- Sie werden immer in bestimmten "Modes of Operations" benutzt
 - 1. Electronic Codebook (ECB) Modus ← nicht sicher,
 - 2. Cipher-Block Chaining (CBC) Modus,
 - 3. Counter (CTR) Modus,

. . .

ELECTRONIC CODE BOOK (ECB) MODUS

Wenn m kein Vielfaches der Blocklänge, dann muss der Klartext um ein Padding "pad" ergänzt werden

ECB Modus ist nicht sicher, da deterministisch!

$$M_1 = M_2 \rightarrow C_1 = C_2$$

Bilddatei Format

W	W	W
W	В	В
W	В	В
W	Y	Y
В	W	

Quelle: Wikipedia

Verschlüsselte Bilddatei

E(k,W)	E(k,W)	E(k,W)
E(k,W)	E(k,B)	E(k,B)
E(k,W)	E(k,B)	E(k,B)
E(k,W)	E(k,Y)	E(k,Y)
E(k,B)	E(k,W)	

CIPHER BLOCK CHAINING (CBC) MODUS

CIPHER BLOCK CHAINING (CBC) MODUS

Entschlüsselung:

Was passiert, wenn zweimal die gleiche Nachricht verschlüsselt wird?

$$M_1 = M_2 \rightarrow C_1 \neq C_2$$
 (wegen zufälliger IV)

CBC ist sicher, wenn richtig verwendet!

Achtung: Probleme mit Padding sind häufig in der Praxis!

Wiederholung: One-Time-Pad

Wenn Schlüssel X zufällig und nicht wiederverwendet wird dann sicher

Idee: Nutze Ausgabe der Blockchiffre als One-Time-Pad

COUNTER MODUS (CTR)

Entschlüsselung:

- Cipher Feedback Mode (CFB)
- Output Feedback Mode (OFB)
- Galois Counter Mode
- Counter Mode with CBC-MAC (CCM)

Authentifizierte Modi (später mehr dazu)