L1-MASS - ANALYSE II

FEUILLE DE TRAVAUX DIRIGÉS N° 1

Rappel sur les suites réelles

Enseignant : H. El-Otmany

A.U.: 2013-2014

Exercice n°1 Déterminer la limite, si celle ci existe, des suites suivantes :

$$a_{n} = \frac{3^{n} - (-2)^{n}}{3^{n} + (-2)^{n}}, \ n \geqslant 0 \quad ; \quad b_{n} = \sqrt{n^{2} + 2n + 1} - \sqrt{n^{2} - 2n - 1}, \ n \geqslant 0$$

$$c_{n} = \frac{n - \sqrt{n^{2} + 1}}{n + \sqrt{n^{2} - 1}}, \ n \geqslant 1 \quad ; d_{n} = \frac{1}{n^{2}} \sum_{k=1}^{n} k, \ n \geqslant 0$$

$$p_{n} = \left(1 + \frac{1}{n}\right)^{n}, \ n \geqslant 1 \quad ; \quad q_{n} = \frac{\sin n}{n + (-1)^{n+1}}, \ n \geqslant 1$$

$$r_{n} = \frac{n - (-1)^{n}}{n + (-1)^{n}}, \ n \geqslant 2 \quad ; \quad s_{n} = \frac{e^{n}}{n^{n}}, \ n \geqslant 1$$

Exercice n°2 On considère la suite (u_n) définie par $u_1 = 1$ et $u_n = \frac{n}{n+1}u_n + \frac{4}{n+1}$.

- 1. Calculer u_2 .
- 2. Démontrer que la suite (v_n) définie par $v_n = nu_n$ est une suite arithmétique dont on précisera le premier terme et la raison de (v_n) .
- 3. En déduire l'expression de (v_n) en fonction de n, puis celle de u_n en fonction de n.
- 4. En déduire que la suite (u_n) est strictement monotone et bornée.

Exercice n°3 Pour tout $n \in \mathbb{N}$, on considère $S_n(p) = \sum_{k=0}^n \frac{k^p}{k^{p+1}+1}$ pour tout entier $p \geqslant 1$.

- 1. Montrer que pour tout $n \ge 1$, on a $S_{2n}(p) S_n(p) \ge \frac{1}{4}$, $\forall p \ge 1$.
- 2. En déduire que $\lim_{n \to +\infty} S_n(p) = +\infty, \forall p \geqslant 1.$

Exercice n°4 On considère la suite (u_n) de nombre réels définie par la relation de récurrence :

$$\begin{cases} 0 < u_0 \leqslant 1, \\ u_{n+1} = \frac{u_n}{2} + \left(\frac{u_n}{2}\right)^2, \forall n \geqslant 1. \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n > 0$.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq 1$.
- 3. Montrer que la suite (u_n) est monotone. En déduire que la suite est convergente.
- 4. Déterminer la limite de la suite (u_n) .

Exercice n°5 Soit $\alpha > 0$ et soit $(u_n)_{n \ge 1}$ la suite de nombres réels définie par $u_0 > 0$ et

$$u_n \frac{1}{2} \left(u_n + \frac{\alpha}{u_n} \right), \ n \geqslant 0.$$

1. Montrer que

$$u_{n+1}^2 - \alpha = \frac{(u_n^2 - \alpha)^2}{4u_n^2}.$$

- 2. Montrer que pour tout $n \ge 1$, on a $u_n \ge \sqrt{\alpha}$ et que la suite (u_n) est décroissante.
- 3. En déduire que la suite (u_n) est convergente et déterminer sa limite.
- 4. En appliquant l'identité remarquable à $u_{n+1}^2 \alpha$, donner une majoration de $u_{n+1} \sqrt{\alpha}$ en fonction de $u_n \sqrt{\alpha}$.
- 5. Si $u_1 \sqrt{\alpha} \leqslant k$ et pour $n \geqslant 1$, montrer que

$$u_n - \sqrt{\alpha} \leqslant 2\sqrt{\alpha} \left(\frac{k}{2\sqrt{\alpha}}\right)^{2^{n-1}}.$$

6. Application : calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0=3$.

Exercice n°6 Soit (S_n) la suite définie par $S_n = \sum_{k=1}^n \frac{1}{k}$.

1. En utilisant une intégrale, montrer, pour tout n > 0, l'inégalité suivante :

$$\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

- 2. Montrer que $\ln(n+1) \leqslant S_n \leqslant \ln(n) + 1$.
- 3. Déterminer la limite de S_n .
- 4. Montrer que la suite de terme général $u_n := S_n \ln(n)$ converge (indication : on montrera que $(u_n)_{n>0}$ est décroissante.

Exercice n°7 Pour tout entier naturel $n \ge 1$, on considère $u_n = \sum_{k=1}^n \frac{1}{k(k-1)}$.

- 1. Montrer que (u_n) converge et déterminer sa limite.
- 2. En déduire que la suite (v_n) définie pour tout $n \in \mathbb{N}^*$: $v_n = \sum_{k=1}^n \frac{1}{k^2}$, est convergente.

Exercice n°8 Soit (u_n) une suite réelle telle que : $\forall n \in \mathbb{N}, 0 \leq u_n < 1$.

- 1. Étudier la nature de la suite (v_n) telle que $v_n = \prod_{i=0}^n u_i, n \in \mathbb{N}$.
- 2. On suppose maintenant qu'il existe $q \in \mathbb{R}^*$ tel que pour tout $n \in \mathbb{N}$, $u_n < q < 1$. Déterminer la limite de v_n lorsque n tend vers $+\infty$.
- 3. Soit (a_n) une suite à termes positifs et borné. On définit la suite (w_n) par :

$$\begin{cases} w_0 = a_0, \\ w_n = \sum_{k=0}^n a_k u_k^k, & n \in \mathbb{N}^*. \end{cases}$$

Étudier la suite (w_n) .

Exercice n°9 Soit (u_n) la suite de nombres réels définie pour tout $n \ge 1$ par :

$$u_n = \frac{1}{\sqrt{n}} E(\sqrt{n}).$$

Montrer que la suite (u_n) est convergente et déterminer sa limite.

Exercice n°10 On considère les suites (u_n) et (v_n) définies pour tout $n \in \mathbb{N}^*$ par :

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}, \quad v_n = u_n + \frac{1}{n \cdot n!}.$$

- 1. Montrer que les suites (u_n) et (v_n) sont adjacentes. Elles convergent donc vers une même limite, notée e.
- 2. Montrer que e est irrationnel.

Exercice n°11

1. Étudier la suite $(u_n)_{n\in\mathbb{N}}$, définie par la relation de récurrence :

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_{n+1} = u_n + a^n, \end{cases}$$

où a est un réel donné.

2. Généraliser le résultat au cas où la suite $(u_n)_{n\in\mathbb{N}}$, définie par

$$\begin{cases} u_0 \in \mathbb{C} \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + v_n, \end{cases}$$

avec v_n est une suite donnée.