

Teoretická informatika 2022/2023

Domácí úloha 1

Pavel Šesták (xsesta07)

Brno, 16. října 2022

Obsah

1	Ulo	ha 1	3
	1.1	Řešením soustavy rovnic nad regulárnímy výrazy sestavte k tomuto automatu ekvivalentní regulární výraz	3
	1.2	Sestrojte relaci pravé kongruence s konečným indexem takovou, že $L(M_3)$ je sjednocením některých tříd rozkladu a, b, c/	3
2	Úlo	ha 2	4
	2.1	Sestrojte jazyk L_2 takový, že $L_1 \cap L_2 \in \mathcal{L}_3 \wedge L_1 \cup L_2 \in \mathcal{L}_3 \dots \dots$	4
	2.2	Důkaz neregularity pomocí pumping lemma pro L_1	5
3	Úlo	ha 3	6
	3.1 3.2	Nedeterministický konečný automat M_1 přijímající jazyk L_S	6 7
		Seznam obrázků	
	1	Výsledný nedeterminický konečný automat	6
	2	Konečný automat převedený algoritmicky na deterministický	7
		Seznam tabulek	
	1	Výsledná tahulka stavů a přechodů po determinizaci	7

Teoretická informatika (TIN) – 2022/2023 Úkol 1

(max. zisk 5 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

1. Uvažte NKA M_3 nad abecedou $\Sigma = \{a, b, c\}$ z obrázku 1:

Obrázek 1: NKA M_3

- (a) Řešením rovnic nad regulárními výrazy sestavte k tomuto automatu ekvivalentní regulární výraz.
- (b) Sestrojte relaci pravé kongruence \sim s konečným indexem takovou, že $L(M_3)$ je sjednocením některých tříd rozkladu $\{a,b,c\}^*/_{\sim}$.

15 bodů

2. Mějme jazyk L_1 nad abecedou $\{a,b,c\}$ definovaný následovně:

$$L_1 = \{ w \mid w \in \{a, b, c\}^* \land \#_a(w) > \#_b(w) \}$$

Sestrojte jazyk L_2 takový, že $L_1 \cap L_2 \in \mathcal{L}_3$ a zároveň $L_1 \cup L_2 \in \mathcal{L}_3$. Dále rozhodněte a dokažte, zda L_2 je, či není, regulární. Pro důkaz regularity sestrojte příslušný konečný automat, nebo gramatiku. Pro důkaz neregularity použijte pumping lemma.

Dokažte, že jazyk L_1 není regulární.

15 bodů

3. Uvažujme jazyk L_s , jehož slova jsou n-tice binárních čísel 1 oddělené znakem #. Konkrétněji, jazyk L_s obsahuje slova tvaru $w_1\#w_2\#\dots\#w_n\#$, kde $w_1,\dots,w_n\in\{0,1\}^+$ jsou binární čísla. Tato slova odpovídají regulárnímu výrazu $R=((0+1)(0+1)^*\#)^*$. Uvažujme dále omezení, že alespoň jedno číslo ve slově $w_1\#w_2\#\dots\#w_n\#$ je sudé—tedy jeho poslední znak je 0. Formálně zapsáno:

$$L_s = \{ w \in \{0, 1, \#\}^* \mid w \in \mathcal{L}(R) \land w \in \mathcal{L}((0 + 1 + \#)^* 0 \# (0 + 1 + \#)^*) \}$$

- (a) Sestrojte nedeterministický konečný automat M_1 přijímající jazyk L_s (není nutné použít algoritmický postup).
- (b) Automat M_1 převeď te algoritmicky na deterministický konečný automat M_2 .

20 bodů

 $^{^1}$ Jako binární číslo budeme chápat libovoný řetězec nad abecedou $\{0,1\}$. Číslo tak může obsahovat počáteční nuly.

1 Úloha 1

1.1 Řešením soustavy rovnic nad regulárnímy výrazy sestavte k tomuto automatu ekvivalentní regulární výraz

Podle odchozích hran sestavíme soustavu rovnic, pro každý stav jednu rovnici. Pro lepší přehlednost jsem v následujícím postupu stavy značil velkými písmeny a symboly abecedy malými písmeny.

$$\begin{array}{rcl} Q & = & bS + aR \\ R & = & bS + \epsilon \\ S & = & cS + aR + bQ \end{array}$$

Dosadíme R do Q a S.

$$Q = bS + abS + a$$

$$R = bS + \epsilon$$

$$S = cS + a(bS + \epsilon) + bQ$$

Dosadíme Q do S a upravíme výsledné rovnice.

$$Q = (b+ab)(c+ab+bb+bab)^{*}(a+ba) + a$$

$$R = b((c+ab+bb+bab)^{*}(a+ba)) + \epsilon$$

$$S = (c+ab+bb+bab)^{*}(a+ba)$$

Výsledný regulární výraz je výraz, který se rovná Q, jelikož se jedná o startovací symbol a odpovídá tedy jazyku přijímanému daným automatem.

$$(\mathbf{b} + \mathbf{ab})(\mathbf{c} + \mathbf{ab} + \mathbf{bb} + \mathbf{bab})^*(\mathbf{a} + \mathbf{ba}) + \mathbf{a}$$
 je výsledný regulární výraz.

1.2 Sestrojte relaci pravé kongruence s konečným indexem takovou, že $L(M_3)$ je sjednocením některých tříd rozkladu a, b, c/

V tomto příkladě již využijeme značení zadaného automatu.

$$L^{-1}(q) = \epsilon \cup (\{ab, b\}(\{ab\}^* \{c\}^* \{bb\}^* \{bab\}^*)^*b)^*$$

$$L^{-1}(r) = \{a\} \cup (\{ab, b\}(\{ab\}^* \{c\}^* \{bb\}^* \{bab\}^*)^* \{a, ba\})^+$$

$$L^{-1}(s) = \{ab, b\}(\{ab\}^* \{c\}^* \{bb\}^* \{bab\}^*)^*$$

$$L(M_3) = L^{-1}(r)$$

2 Úloha 2

2.1 Sestrojte jazyk L_2 takový, že $L_1 \cap L_2 \in \mathcal{L}_3 \wedge L_1 \cup L_2 \in \mathcal{L}_3$

Uvažujme doplněk jazyka L_1 vůči universu $\{a, b, c\}^*$, potom:

$$L_{2} = \{w | w \in \{a, b, c\}^{*} \land \#_{a}(w) \le \#_{b}(w)\}$$

$$L_{1} \cap L_{2} = \emptyset$$

$$L_{1} \cup L_{2} = \{a, b, c\}^{*}$$

Prázdný jazyk je podle definice regulární jazyk. Výsledek sjednocení je také regulární jazyk, jelikož jsme schopni pro něj sestrojit konečný automat.

2.1.1 Důkaz neregularity pomocí pumping lemma pro L_2

Jazyk L_2 není regulární a pro důkaz zvolíme pumping lemma.

Důkaz sporem:

Předpokládejme, že jazyk $L_2 \in \mathcal{L}_3$. Pak tedy musí platit pumping lemma[1]:

$$L \in \mathcal{L}_3 \implies \exists p > 0:$$

$$\forall w \in \Sigma^* : w \in L \land |w| \ge p \implies$$

$$(\exists x, y, z \in \Sigma^* : w = xyz \land y \ne \epsilon \land |xy| \le p \land \forall i \ge 0: xy^iz \in L)$$

Uvažme tedy libovolné p>0splňující výše uvedenou podmínku. Zvolme řetězec $w=b^pa^p,$ pro který platí:

$$w \in L_2 \land |w| = 2p \ge p$$

Dle pumping lemma víme, že pro daný řetězec tedy musí platit:

$$\exists x, y, z \in \{a, b, c\}^* : b^p a^p = xyz \land y \neq \epsilon \land |xy| \le p \land \forall i \ge 0 : xy^i z \in L_2$$

Uvažme libovolné x,y,z splňující výše uvedené. Zvolme i = 0.

$$y = b^{l}, 0 < l \le p$$
$$xy^{0}z = b^{p-l}a^{p}$$
$$xy^{0}z \in L_{2} \land l > 0 \land p - l \ge p (SPOR)$$

Jestliže jsme došli ke sporu, tak musí platit původní tvrzení, tedy $L_1 \notin \mathcal{L}_3$

2.2 Důkaz neregularity pomocí pumping lemma pro L_1

Jazyk L_1 není regulární a pro důkaz zvolíme pumping lemma. Důkaz sporem:

Předpokládejme, že jazyk $L_1 \in \mathcal{L}_3$. Pak tedy musí platit pumping lemma[1]:

$$L \in \mathcal{L}_3 \implies \exists p > 0:$$

$$\forall w \in \Sigma^* : w \in L \land |w| \ge p \implies$$

$$(\exists x, y, z \in \Sigma^* : w = xyz \land y \ne \epsilon \land |xy| \le p \land \forall i \ge 0: xy^iz \in L)$$

Uvažme tedy libovolné p>0splňující výše uvedenou podmínku. Zvolme řetězec $w=a^pab^p,$ pro který platí:

$$w \in L_1 \land |w| = 2p + 1 \ge p$$

Dle pumping lemma víme, že pro daný řetězec tedy musí platit:

$$\exists x, y, z \in \{a, b, c\}^* : a^p a b^p = xyz \land y \neq \epsilon \land |xy| \leq p \land \forall i \geq 0 : xy^i z \in L_1$$

Uvažme libovolné x,y,z splňující výše uvedené. Zvolme i = 0.

$$y = a^{l}, 0 < l \le p$$

$$xy^{0}z = a^{p-l+1}b^{p}$$

$$xy^{0}z \in L_{2} \land l > 0 \land p - l + 1 > p (SPOR)$$

Jestliže jsme došli ke sporu, tak musí platit původní tvrzení, tedy $L_1 \notin \mathcal{L}_3$. Náš řetězec w $\in L_1$, jelikož $\#_a(w) = p + 1 \land \#_b(w) = p$. Ovšem podřetězec xy mohl obsahovat pouze znaky a. My jsme tento řetězec zkrátili, jelikož víme, že y je neprázdné. Pak víme, že jsme z řetězce vypustili minimálně jeden výskyt znaku a, tedy v novém řetězci je buď to stejný počet znaků a jako znaků b nebo je znaků b dokonce více. Každá z těchto situací porušuje podmínku jazyka L_2 . Jestliže došlo ke sporu u negovaného výroku, tak původní výrok musí být pravdivý, jazyk L_2 není regulární.

3 Úloha 3

3.1 Nedeterministický konečný automat M_1 přijímající jazyk L_S

Nedeterministický automat je navržen tak, aby přijímal binární čísla oddělená mřížkou. Někdy se může rozhodnout, že přečte symbol θ , který je následovaný symbolem #, čímž automat vyhodnotí, že přečetl sudé číslo. Nyní může buď skončit v koncovém stavu nebo číst další číslo. Determinismus je porušen ve stavu S1, kdy nevíme po přečtení symbolu θ jestli máme zůstat ve stavu S1 nebo přejít do stavu S2.

Obrázek 1: Výsledný nedeterminický konečný automat

 $^{^1{\}rm Automat}$ namodelován v programu Automata Editor, který je dostupný na adrese: https://sourceforge.net/projects/automata
editor šířený pod licencí GPLv2

3.2 Algoritmický převod automatu M₁ na deterministický konečný automat M₂

Algoritmus pro převod NKA na DKA[1]:

Vstup NKA $M = (Q, \sigma, \delta, q_0, F)$

Výstup DKA $M' = (Q', \sigma, \delta', q'_0, F')$

Postup:

- 1. Polož $Q^\prime=2^Q.$

- 2. Polož $q_0'=\{q_0\}$. 3. Polož $F'=\{S\mid S\in 2^Q\wedge S\cap F\neq\emptyset\}$. 4. Pro všechna $S\in 2^Q$ a pro všechna $a\in\Sigma$ polož:

$$\delta'(S,a) = \bigcup_{q \in S} \delta(q,a)$$

Tento algoritmus sice bude fungovat, nicméně pro ruční počítání nastává problém hned v bodě jedna, kdy nám exponenciálně vzroste počet stavů. Jelikož ve výsledném DKA nemusíme nutně potřebovat všechny možné stavy, tak můžeme začít od stávájícího automatu a přidávat pouze stavy, které budeme postupně potřebovat.

Tabulka 1: Výsledná tabulka stavů a přechodů po determinizaci

	0	1	#
->{S0}	{S1,S2}	{S1}	Ø
{S1}	{S1,S2}	{S1}	{S0}
${S1,S2}$	{S1,S2}	$\{S1\}$	${S0,S3}$
<-{S0,S3}	{S1,S2,S4}	{S1,S4}	Ø
{S1,S4}	{S1,S2,S4}	{S1,S4}	{S0,S3}
{S1,S2,S4}	{S1,S2,S4}	{S1,S4}	{S0,S3}
Ø	Ø	Ø	Ø

Jak je vidět, bylo nutné přidat pouze čtyři nové stavy, nicméně některé původní stavy se nám staly nedostupnými. 2

Obrázek 2: Konečný automat převedený algoritmicky na deterministický

 $^{^2} Automat \\$ AutomataEditor, programu namodelován který dostupný adrese: na https://sourceforge.net/projects/automataeditor šířený pod licencí GPLv2

Reference

[1] doc. RNDr. Milan Češka, P.: Přednášky předmětu Teoretická informatika. 2016.