

20 പൊട്ടുകൾ കൊണ്ടൊരു ചതുരം

നീളത്തിൽ 5, വീതിയിൽ 4.

പൊട്ടുകൾ മാറ്റിയടുക്കി, വേറെ ചതുരങ്ങളുണ്ടാക്കാമോ?

ഇങ്ങനെ ആയാലോ?

ഇങ്ങനെയുമാകാം.

ഇനിയും ഇത്തരം ചതുരങ്ങളുണ്ടോ?

നീളത്തിലും വീതിയിലും വച്ച പൊട്ടുകളുടെ എണ്ണം ഗുണിച്ചാൽ 20 കിട്ടണമല്ലോ.

20 നെ രണ്ട് എണ്ണൽസംഖ്യകളുടെ ഗുണനഫലമായി എങ്ങനെയെല്ലാം എഴുതാം?

ഇനി 24 പൊട്ടുകൾകൊണ്ട് പല ചതുരങ്ങളുണ്ടാക്കി നോക്കൂ. ഓരോ ചതുരത്തിലും നീളത്തിലും വീതിയിലും വച്ച പൊട്ടുകളുടെ എണ്ണം എഴുതിവയ്ക്കുകയും വേണം.

നീളം	വീതി

30 പൊട്ടുകളായാലോ?

ചതുരമുണ്ടാക്കാതെ തന്നെ ആലോചിക്കാം. നീളത്തിലും വീതിയിലും വയ്ക്കാവുന്ന പൊട്ടുകളുടെ എണ്ണം എന്തൊക്കെയാണ്?

പട്ടികയിലെ ഓരോ വരിയിലെയും സംഖൃകളുടെ നീളം ഗുണനഫലം 30 ആണ്. 30

ഇത് മറ്റൊരു രീതിയിലും പറയാമല്ലോ. ഈ സംഖ്യകളെല്ലാം 30 ന്റെ ഘടകങ്ങളാണ്.

ഇനി 40 പൊട്ടുകൾ കൊണ്ട് എങ്ങനെയെല്ലാം ചതുരമുണ്ടാക്കാമെന്ന് എഴുതാമോ?

45 പൊട്ടുകളായാലോ?

60 പൊട്ടുകൾ?

61 പൊട്ടുകളായാലോ?

30	1
15	2

വീതി

ഘടകങ്ങൾ ജോടികൾ

72 ന്റെ ഘടകങ്ങൾ എന്തൊക്കെയാണ്?

1 ഉം 72 ഉം എളുപ്പം പറയാം.

72 നെ 2 കൊണ്ട് ശിഷ്ടമില്ലാതെ ഹരിക്കാമല്ലോ. അതായത് 2 ഉം 72 ന്റെ ഘടകമാണ്. 72 നെ 2 കൊണ്ടു ഹരിച്ചാൽ 36.

$$72 = 2 \times 36$$

അപ്പോൾ 36 ഉം 72 ന്റെ ഘടകം തന്നെ.

ഇങ്ങനെ ജോടികളായി ഘടകങ്ങൾ കണ്ടുപിടിക്കാം.

$$72 \div 3 = 24$$

ആയതിനാൽ

$$72 = 3 \times 24$$

അപ്പോൾ 3, 24 എന്ന മറ്റൊരു ജോടി ഘടകങ്ങളായി. ഇതുപോലെ മറ്റു ജോടികൾ കണ്ടുപിടിക്കാമല്ലോ.

- (1,72)
- (2, 36)
- (3, 24)
- (4, 18)
- (6, 12)
- (8, 9)

ഇതുപോലെ 90, 99, 120 എന്നിവയുടെ ഘടകങ്ങൾ ജോടിയായി കണ്ടുപിടിക്കു.

- 2 ഉം 3 ഉം ഒരു സംഖ്യയുടെ ഘട കങ്ങളാണെങ്കിൽ 6 ആ സംഖ്യയുടെ ഘടകമാകണമെന്നുണ്ടോ?
- 3 ഉം 5 ഉം ഒരു സംഖ്യയുടെ ഘട കങ്ങളാണെങ്കിൽ 15 ആ സംഖ്യ യുടെ ഘടകമാകണമെന്നുണ്ടോ?
- 4 ഉം 6 ഉം ഒരു സംഖൃയുടെ ഘട കങ്ങളാണെങ്കിൽ 24 ആ സംഖൃ യുടെ ഘടകമാകണമെന്നുണ്ടോ?
- 4, 6 ഇവ ഒരു സംഖൃയുടെ ഘടക ങ്ങളാണെങ്കിൽ അതേ സംഖൃയുടെ ഘടകമാണ് എന്ന് ഉറപ്പിച്ച് പറയാൻ കഴിയുന്ന ഏറ്റവും വലിയ സംഖൃ ഏത്?
- രണ്ട് സംഖ്യകൾ മറ്റൊരു സംഖ്യ യുടെ ഘടകങ്ങളാണെങ്കിൽ ആദ്യ രണ്ട് സംഖ്യകളുടെ ഗുണനഫലം മൂന്നാമത്തെ സംഖ്യയുടെ ഘടക മാണ് എന്ന് ഉറപ്പിച്ച് പറയാൻ കഴി യുന്നത് എപ്പോഴാണ്?

ഒറ്റയും ഇരട്ടയും

20, 24, 30, 40, 45, 60, 61, 72, 90, 99, 120 എന്നിങ്ങനെ കുറെ സംഖൃകളുടെ ഘടകങ്ങൾ കണ്ടുപിടിച്ചല്ലോ. ഓരോന്നിനും എത്ര ഘടകങ്ങൾ ഉണ്ടെന്ന് നോക്കു.

ഈ സംഖ്യകളുടെയെല്ലാം ഘടകങ്ങളുടെ എണ്ണം ഇരട്ടസംഖ്യയല്ലേ? എന്തുകൊണ്ടാണിത്?

എല്ലാ സംഖ്യകൾക്കും ഇതു ശരിയാണോ?

36 ന്റെ ഘടകങ്ങൾ ജോടിയായി എഴുതി നോക്കൂ.

(1, 36), (2, 18), (3, 12), (4, 9), (6, 6)

അപ്പോൾ 36 ന്റെ ഘടകങ്ങൾ എന്തെല്ലാമാണ്?

1, 2, 3, 4, 6, 9, 12, 18, 36

ആകെ 9 ഘടകങ്ങൾ.

ഇവിടെ ഘടകങ്ങളുടെ എണ്ണം ഒറ്റസംഖൃയായത് എന്തുകൊണ്ടാണ്?

ഘടകങ്ങളുടെ എണ്ണം ഒറ്റസംഖ്യയായ മറ്റേതെങ്കിലും സംഖൃ കണ്ടുപിടിക്കാമോ?

16 എടുത്തു നോക്കൂ.

25 ആയാലോ?

ഘടകങ്ങളുടെ എണ്ണം ഒറ്റസംഖ്യയായ സംഖ്യകളുടെ പ്രത്യേകത എന്താണ്?

ആവർത്തനഗുണനം

5 ന് എത്ര ഘടകങ്ങളുണ്ട്?

17 cmo?

5 ഉം 17 ഉം അഭാജ്യസംഖ്യകളാണല്ലോ. ഏത് അഭാജ്യസംഖ്യയ്ക്കും രണ്ടു ഘടകങ്ങൾ മാത്രമല്ലേയുള്ളൂ?

1 ഉം അതേ സംഖ്യയും.

ഭാജ്യസംഖ്യകൾക്കെല്ലാം രണ്ടിൽ കൂടുതൽ ഘടകങ്ങ ളുണ്ടാകും.

ഉദാഹരണമായി 32 നോക്കാം.

1 മുതൽ 100 വരെയുള്ള സംഖൃകളിൽ, ഘടകങ്ങളുടെ എണ്ണം ഒറ്റസംഖൃയായവ എല്ലാം കണ്ടുപിടിക്കാമോ?

$$32 = 2 \times 2 \times 2 \times 2 \times 2$$

ഇതിൽ ആദ്യത്തെ 2 ഒറ്റയ്ക്കും മറ്റു 2 കൾ എല്ലാം ഒരുമിച്ചുമെടുത്താൽ

$$32 = 2 \times 16$$

ആദ്യത്തെ രണ്ടു 2 കൾ ഒരുമിച്ചും, മിച്ചമുള്ള 2 കൾ ഒരുമിച്ചും എടുത്താലോ?

$$32 = 4 \times 8$$

എല്ലാ 2 കളും ഒരുമിച്ചെടുക്കുന്നതിനെ

$$32 = 1 \times 32$$

എന്നുമെഴുതാം.

അങ്ങനെ 32 ന്റെ ഘടകങ്ങൾ

എന്നീ 6 സംഖ്യകളാണെന്നു കാണാം.

ഇതുപോലെ 81 ന്റെ ഘടകങ്ങൾ നോക്കാം.

81 നെ അഭാജ്യഘടകങ്ങളുടെ ഗുണനഫലമായി എഴുതിയാൽ

$$81 = 3 \times 3 \times 3 \times 3$$

അപ്പോൾ 81 നെ

$$3 \times 27$$

$$9 \times 9$$

$$1 \times 81$$

എന്നിങ്ങനെ എഴുതാം.

അപ്പോൾ ആകെ 5 ഘടകങ്ങൾ 1,3,9,27,81ഇത് മറ്റൊരു രീതിയിലും പറയാം.

3 കളെ കൂട്ടങ്ങളായെടുത്ത്

$$3 \times 3 = 9$$

$$3 \times 3 \times 3 = 27$$

$$3 \times 3 \times 3 \times 3 = 81$$

എന്നീ ഘടകങ്ങൾ കണ്ടുപിടിക്കാം

അപ്പോൾ 81 ന്റെ ഘടകങ്ങൾ 1,3,9,27,81 എന്നീ അഞ്ച് സംഖ്യകളാണ്. ഈ ഉദാഹരണങ്ങളിൽ, കുറേ 2 കളുടെ ഗുണനഫലമാണ് 32; കുറെ 3 കളുടെ ഗുണനഫലമാണ് 81.

ഇതുപോലെ ഏതെങ്കിലുമൊരു അഭാജ്യസംഖ്യയുടെ ആവർത്തന ഗുണനമായി പിരിച്ചെഴുതാവുന്ന സംഖ്യകളുടെയെല്ലാം ഘടകങ്ങൾ കണ്ടുപിടിക്കുന്നത് എളുപ്പമല്ലേ?

216 = 6 × 6 × 6
എന്നു പിരിച്ചെഴുതാം,
അപ്പോൾ 1, 6, 36, 216
എന്നീ 4 സംഖ്യകൾ മാത്രമാണ്
216 ന്റെ ഘടകങ്ങൾ എന്ന്
പറയാമോ? 216 ന് മറ്റേതെല്ലാം
ഘടകങ്ങളുണ്ട്?

- 1. ചുവടെയുള്ള സംഖൃകളുടെ ഘടകങ്ങളെല്ലാം കണ്ടുപിടിക്കുക.
 - (i) 256
- (ii) 625
- (iii) 243
- (iv) 343
- (v) 121
- 2. 1 മുതൽ 100 വരെയുള്ള സംഖ്യകളിൽ മൂന്നു ഘടകങ്ങൾ മാത്രമുള്ള സംഖ്യകൾ ഏതൊക്കെയാണ്?

അഭാജ്യഘടകങ്ങൾ

16 ന്റെ ഘടകങ്ങൾ എങ്ങനെ കണ്ടുപിടിക്കും?

16 ന്റെ ഒരേ ഒരു അഭാജ്യഘടകം 2 ആണല്ലോ.

$$16 = 2 \times 2 \times 2 \times 2$$

എന്നെഴുതിക്കഴിഞ്ഞാൽ, ഇതിന്റെ 1 ഒഴിച്ചുള്ള ഘടകങ്ങളെല്ലാം, കുറെ 2 കൾ ഗുണിച്ചതാണെന്നു കാണാം.

$$2 \times 2 = 4$$

$$2 \times 2 \times 2 = 8$$

$$2 \times 2 \times 2 \times 2 = 16$$

1 ഉം കൂടി എടുത്താൽ, എല്ലാ ഘടകങ്ങളുമായി. അതായത് 1,2,4,8,16 ഇനി $16\times 3=48$ എന്ന സംഖ്യയുടെ ഘടകങ്ങൾ കണ്ടുപിടിക്കാം.

$$48 = (2 \times 2 \times 2 \times 2) \times 3$$

ഇതിന്റെ ഘടകങ്ങൾ കണ്ടുപിടിക്കാൻ, കുറെ 2 കൾ മാത്രമെടുത്ത് ഗുണിക്കാം; അല്ലെങ്കിൽ, കുറെ 2 കളും 3 ഉം എടുത്ത് ഗുണിക്കാം.

2 കൾ മാത്രമെടുത്താൽ കിട്ടുന്നത് $16\,{
m sq}$ ഘടകങ്ങൾ തന്നെ.

2 കളും 3 ഉം എടുത്താലോ?

$$(2 \times 3) = 6$$

$$(2 \times 2) \times 3 = 4 \times 3 = 12$$

$$(2 \times 2 \times 2) \times 3 = 8 \times 3 = 24$$

$$(2 \times 2 \times 2 \times 2) \times 3 = 48$$

അപ്പോൾ,

എന്നീ ഘടകങ്ങളും കിട്ടി.

3 മാത്രമായി എടുത്താലും ഒരു ഘടകമാണ്. എല്ലാ സംഖൃകളുടെയും ഘടകമായ 1 ഉം ഉണ്ട്.

ഈ ഘടകങ്ങളെയെല്ലാം ഇങ്ങനെ തരംതിരിക്കാം.

3 ഇല്ലാത്തവ	1	2	4	8	16
3 ഉള്ളവ	3	6	12	24	48

ആദ്യത്തെ വരിയിലെ സംഖൃകളോരോന്നിനും ചുവടെയുള്ള സംഖൃയുമായി എന്താണ് ബന്ധം?

ഇനി $48 \times 3 = 144$ എടുത്താലോ ?

$$144 = (2 \times 2 \times 2 \times 2) \times (3 \times 3)$$

ഘടകങ്ങൾ കണ്ടുപിടിക്കാൻ, നേരത്തെ ചെയ്തതുപോലെ, കുറെ 2 കൾ മാത്രമെടുക്കാം; അല്ലെങ്കിൽ കുറെ 2 കളും ഒരു 3 ഉം എടുക്കാം; അല്ലെങ്കിൽ കുറെ 2 കളും രണ്ടു 3 കളും എടുക്കാം.

3 കൾ മാത്രമെടുത്താൽ 3,9 എന്നീ ഘടകങ്ങളും കിട്ടും.

1 ഉം ഘടകം തന്നെ.

ഇവയെയും പട്ടികയായി എഴുതാം.

3 ഇല്ല	1	2	4	8	16
ഒരു 3	3	6	12	24	48
രണ്ടു 3	9	18	36	72	144

ആദ്യത്തെ വരിയിലെ സംഖ്യകളെ 3 കൊണ്ടു ഗുണിച്ചതാണ് രണ്ടാമത്തെ വരിയിലെ സംഖ്യകൾ.

രണ്ടാമത്തെ വരിയിലെ സംഖ്യകളെ 3 കൊണ്ടു ഗുണിച്ചതാണ് മൂന്നാ മത്തെ വരിയിലെ സംഖ്യകൾ.

നിരകളിലൂടെ പട്ടിക നോക്കിയാലോ?

ആദ്യത്തെ നിര 1,3,9. ഈ സംഖ്യകളിൽ 2 ഘടകമല്ല.

രണ്ടാമത്തെ നിര 2, 6, 18. ഇവയിലെല്ലാം ഒരു 2 ഘടകമാണ്.

മൂന്നാമത്തെയും, നാലാമത്തെയും നിരകളിലോ?

	2 ഇല്ല	ഒരു 2	രണ്ടു 2	മൂന്നു 2	നാലു 2
3 ഇല്ല	1	2	4	8	16
ഒരു 3	3	6	12	24	48
രണ്ടു 3	9	18	36	72	144

അപ്പോൾ ഓരോ നിരയിലേയും സംഖ്യകളെ 2 കൊണ്ട് ഗുണിച്ചതാണ് അടുത്ത നിരയിലെ സംഖ്യകൾ.

144 ന്റെ ഒരു ഘടകം ഇങ്ങനെ കണ്ടെത്താം.

കുറച്ച് 2 കളും കുറച്ച് 3 കളും തമ്മിൽ ഗുണിക്കുക. ഗുണിക്കുന്ന 2 കളുടെ എണ്ണം 4 അതിൽ കുറവോ ആകണം. (ഒരു 2 പോലും എടുക്കാതിരിക്കുകയും ആകാം). ഗുണിക്കുന്ന 3 കളുടെ എണ്ണം 2 ഓ അതിൽ കുറവോ ആകാം. (ഒരു 3 പോലും എടുക്കാതിരിക്കുകയും ആവാം). ഇത്തരം ഘടകങ്ങളോടൊപ്പം 1 കൂടിയായാൽ 144 ന്റെ എല്ലാ ഘടകങ്ങളുമായി.

ഉദാഹരണമായി 24 എന്നത് 3 രണ്ടുകളും ഒരു 3 ഉം തമ്മിൽ ഗുണിച്ച താണ്.

$$24 = 2 \times 2 \times 2 \times 3$$

അതുപോലെ 18 എന്നത് ഒരു 2 ഉം രണ്ട് 3 ഉം തമ്മിൽ ഗുണിച്ചതാണ്.

9 എന്നത് 2 മൂന്നുകൾ മാത്രം ഗുണിച്ചത്.

ഇതുപോലെ, 200 ന്റെ ഘടകങ്ങൾ കണ്ടുപിടിക്കാമോ?

$$200 = 2 \times 2 \times 2 \times 5 \times 5$$

പട്ടികയായി എഴുതി നോക്കൂ.

	2 ഇല്ല	ഒരു 2	രണ്ടു 2	മൂന്നു 2
5 ഇല്ല				
ഒരു 5				
രണ്ടു 5				

ചുവടെയുള്ള സംഖ്യകളുടെ ഘടകങ്ങളെല്ലാം കണ്ടുപിടിക്കുക.

- (i) 242
- (ii) 225
- (iii) 400
- (iv) 1000

144 ന്റെ ഘടകങ്ങൾ കണ്ടുപിടിച്ചല്ലോ.

ഇനി, $144 \times 5 = 720$ എന്ന സംഖ്യയുടെ ഘടകങ്ങൾ നോക്കാം.

$$720 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$$

ഇതിന്റെ ഘടകങ്ങളെ, 5 ഇല്ലാത്ത ഘടകങ്ങൾ, 5 ഉള്ള ഘടകങ്ങൾ എന്നി ങ്ങനെ തരംതിരിക്കാം.

5 ഇല്ലാത്ത ഘടകങ്ങളെല്ലാം 144 ന്റെ ഘടകങ്ങളാണല്ലോ.

ഇവ നേരത്തെ കണ്ടുപിടിച്ചതുപോലെ കണ്ടുപിടിക്കാം.

	2 ഇല്ല	ഒരു 2	രണ്ടു 2	മൂന്നു 2	നാലു 2
3 ഇല്ല	1	2	4	8	16
ഒരു 3	3	6	12	24	48
രണ്ടു 3	9	18	36	72	144

ഈ ഘടകങ്ങളെയെല്ലാം 5 കൊണ്ട് ഗുണിച്ചാൽ 5 ഉള്ള എല്ലാ ഘടകങ്ങ ളുമായി.

	2 ഇല്ല	ഒരു 2	രണ്ടു 2	മൂന്നു 2	നാലു 2
3 ഇല്ല	5	10	20	40	80
ഒരു 3	15	30	60	120	240
രണ്ടു 3	45	90	180	360	720

ഇനി 720 ന്റെ ഘടകങ്ങളെയെല്ലാം ഒരു പട്ടികയായി എഴുതാം.

	2 ഇല്ല	ഒരു 2	രണ്ടു 2	മൂന്നു 2	നാലു 2	
3 ഇല്ല	1	2	4	8	16	
ഒരു 3	3	6	12	24	48	5 ഇല
രണ്ടു 3	9	18	36	72	144	
3 ഇല്ല	5	10	20	40	80	
ഒരു 3	15	30	60	120	240	ഒരു
രണ്ടു 3	45	90	180	360	720	5

ഇനി $144 \times 25 = 3600$ ആയാലോ?

720 ന്റെ ഘടകങ്ങളുടെ പട്ടിക ഇങ്ങനെ വലുതാക്കാം.

	2 ഇല്ല	ഒരു 2	രണ്ടു 2	മൂന്നു 2	നാലു 2	
3 ഇല്ല	1	2	4	8	16	5
ഒരു 3	3	6	12	24	48	මූලු
രണ്ടു 3	9	18	36	72	144	
3 ഇല്ല	5	10	20	40	80	
ഒരു 3	15	30	60	120	240	ഒരു
രണ്ടു 3	45	90	180	360	720	5
3 ഇല്ല	25	50	100	200	400	ි බ
ഒരു 3	75	150	300	600	1200	രണ്ടു
രണ്ടു 3	225	450	900	1800	3600	5

ചുവടെയുള്ള സംഖൃകളെയെല്ലാം അഭാജ്യഘടകങ്ങളായി പിരി ച്ചെഴുതി, എല്ലാ ഘടകങ്ങളും പട്ടികയായി എഴുതുക. ഓരോ ന്നിനും എത്ര ഘടകങ്ങളുണ്ടെന്നും എഴുതുക:

- (i) 72
- (ii) 108
- (iii) 300

- (iv) 96
- (v) 160
- (vi) 486

- (vii) 60
- (viii) 90
- (ix) 150

- (i) 6, 10, 15, 14, 21 എന്നീ സംഖൃകൾക്കെല്ലാം എത്ര ഘടകങ്ങ ളുണ്ടെന്നു കണക്കാക്കുക. നാലു ഘടകങ്ങൾ മാത്രമുള്ള മറ്റു ചില സംഖൃകൾ കണ്ടുപിടിക്കുക.
- (ii) നാലു ഘടകങ്ങൾ മാത്രമുള്ള സംഖ്യകളെല്ലാം, രണ്ടു വൃത്യസ്ത അഭാജ്യസംഖ്യകളുടെ ഗുണനഫലമാണെന്നു പറഞ്ഞാൽ അതു ശരിയാണോ?

ഘടകങ്ങളുടെ എണ്ണം

64 ന്റെ ഘടകങ്ങളെല്ലാം കണ്ടുപിടിക്കാൻ അറിയാമല്ലോ.

ഘടകങ്ങളെല്ലാം വിസ്തരിച്ചെഴുതാതെ, ഘടകങ്ങളുടെ എണ്ണം മാത്രം കണ്ടുപിടിക്കാമോ?

$$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

ഇവയിൽ ഒരു 2, രണ്ടു 2, മൂന്ന് 2 എന്നിങ്ങനെയെടുത്ത് ഗുണിച്ച് ഘടക ങ്ങളുണ്ടാക്കാം. അങ്ങനെ എത്ര ഘടകങ്ങൾ?

ഇതിൽ ആറു 2 കളാണുള്ളത്. അപ്പോൾ 1 മുതൽ 6 വരെ 2 കളെടുത്ത് ഘടകങ്ങളുണ്ടാക്കാം. 1 ഉം ഒരു ഘടകകമാണ്.

ആകെ 6+1=7 ഘടകങ്ങൾ.

ഇതുപോലെ 243 ന്റെ ഘടകങ്ങളുടെ എണ്ണം കണ്ടുപിടിക്കാമോ?

$$243 = 3 \times 3 \times 3 \times 3 \times 3$$

എത്ര 3 കൾ?

ഇവയിൽ ഒരേണ്ണവും, രണ്ടെണ്ണവും, മൂന്നെണ്ണവുമെല്ലാം എടുത്ത് എത്ര ഘടകങ്ങളുണ്ടാക്കാം? 1 എന്ന ഘടകവും കൂടി ആയാലോ?

ആകെ 5+1=6 ഘടകങ്ങൾ.

ഏതെങ്കിലും ഒരു അഭാജ്യസംഖ്യയുടെ ആവർത്തനഗുണനമായി എഴു താവുന്ന സംഖ്യകളുടെയെല്ലാം ഘടകങ്ങളുടെ എണ്ണം കണക്കാക്കാനുള്ള എളുപ്പവഴി എന്താണ്?

ഇനി രണ്ട് അഭാജ്യ സംഖ്യകളായാലോ?

ഉദാഹരണമായി $64 \times 3 = 192$ നോക്കാം.

$$192 = (2 \times 2 \times 2 \times 2 \times 2 \times 2) \times 3$$

1 ഉം 2 ന്റെ കൂട്ടങ്ങളുടെ ഗുണനഫലങ്ങളും എടുത്താൽ നേരത്തെ കണ്ട തുപോലെ 7 ഘടകങ്ങൾ കിട്ടും; ഇവ ഓരോന്നിലും ഒരു 3 കൂടി ചേർത്തു ഗുണിച്ചാൽ വീണ്ടും 7 എണ്ണം; ആകെ 7+7=14 ഘടകങ്ങൾ.

ഒരു 3 കൂടി ആയാലോ?

അതായത് $192 \times 3 = 576$ ന് എത്ര ഘടകങ്ങളുണ്ട്?

$$576 = (2 \times 2 \times 2 \times 2 \times 2 \times 2) \times (3 \times 3)$$

ഇതിന്റെ ഘടകങ്ങൾ ഇങ്ങനെ തരംതിരിച്ച് കണ്ടുപിടിക്കാം.

(i) 3 ഇല്ലാത്ത ഘടകങ്ങൾ

1 2

8

16

48

64

(ii) ഈ ഘടകങ്ങളെയെല്ലാം 3 കൊണ്ട് ഗുണിച്ച് കിട്ടുന്നത്

3

6

12

24

32

96

192

(iii) ആദ്യമെഴുതിയ ഘടകങ്ങളെയെല്ലാം രണ്ടുതവണ 3 കൊണ്ട് ഗുണിച്ച് കിട്ടുന്നത്.

9 18 36 72 144 288 576

ഓരോ ഇനത്തിലും 7 ഘടകങ്ങൾ. ആകെ $7 \times 3 = 21$

മറ്റൊരുവിധത്തിലും ഇത് പറയാം; 576 ലെ 2 കളെയും 3 കളെയും വെവ്വേറെ ഗുണിച്ചെഴുതിയാൽ

$$576 = 64 \times 9$$

576 ന്റെ ഘടകങ്ങളെ മൂന്നായി തരംതിരിച്ചത് ഒന്നുകൂടി നോക്കൂ.

(i) 1, 2, 4, 8, 16, 32, 64

- 64 ന്റെ ഘടകങ്ങൾ

(ii) 3, 6, 12, 24, 48, 96, 192

- 64 ന്റെ ഘടകങ്ങളെ 9 ന്റെ ഘടകമായ 3 കൊണ്ടു ഗുണിച്ചവ

(iii) 9, 18, 36, 72, 144, 288, 576 - 64 ന്റെ ഘടകങ്ങളെ 9 ന്റെ മറ്റൊരു ഘടകമായ 9 കൊണ്ടു ഗുണിച്ചവ

ഇങ്ങനെ നോക്കുമ്പോൾ, ആദ്യമെഴുതിയ ഘടകങ്ങൾ, 64 ന്റെ ഘടക ങ്ങളെ 9 ന്റെ ഘടകമായ 1 കൊണ്ടു ഗുണിച്ചതാണെന്നും പറയാം.

അപ്പോൾ 64 ന്റെ ഓരോ ഘടകത്തെയും 9 ന്റെ ഓരോ ഘടകം കൊണ്ടു ഗുണിച്ചവയാണ് $64 \times 9 = 576$ ന്റെ ഘടകങ്ങൾ.

64 ന് 7 ഘടകങ്ങളും, 9 ന് 3 ഘടകങ്ങളുമാണുള്ളത്. അതിനാൽ $64 \times 9 = 576$ ന് 7 ഘടകങ്ങളുടെ 3 കൂട്ടങ്ങളാണ് ഘടകങ്ങളായുള്ളത്.

അതായത്, $7 \times 3 = 21$ ഘടകങ്ങൾ.

ഇതുപോലെ 1000 ന് എത്ര ഘടകങ്ങളു ണ്ടെന്നു കണ്ടുപിടിക്കാമോ?

$$1000 = (2 \times 2 \times 2) \times (5 \times 5 \times 5)$$

ഇതിലെ $2\times2\times2=8$ ന് 4 ഘടകങ്ങൾ; $5\times5\times5=125$ നും 4 ഘടകങ്ങൾ.

4 ന് 3 ഘടകങ്ങളും 6 ന് 4 ഘടക ങ്ങളും ആണുള്ളത്. അപ്പോൾ 4 × 6 = 24 ന് 3 × 4 = 12 ഘടകങ്ങളാണെന്നു പറയാമോ? 4 ന്റെ ഓരോ ഘടക ത്തെയും 6 ന്റെ ഓരോ ഘടകങ്ങൾ കൊണ്ടു ഗുണിച്ചു നോക്കൂ. എണ്ണം തെറ്റിയതെന്തുകൊണ്ടാണ്?

ഇതിൽ 8 ന്റെ 4 ഘടകങ്ങൾ ഓരോന്നിനെയും 125 ന്റെ 4 ഘടകങ്ങളിൽ ഓരോന്നുകൊണ്ടും ഗുണിച്ച് 1000 ത്തിന്റെ എല്ലാ ഘടകങ്ങളും കണ്ടു പിടിക്കാം. അതായത്, 4 ഘടകങ്ങളുടെ 4 കൂട്ടങ്ങൾ. ആകെ $4\times 4=16$ ഘടകങ്ങൾ.

ഇനി 3600 ന് എത്ര ഘടകങ്ങളുണ്ടെന്നു നോക്കാം:

$$3600 = (2 \times 2 \times 2 \times 2) \times (3 \times 3) \times (5 \times 5)$$

ഇതിലെ $2 \times 2 \times 2 \times 2 = 16$ ന് 5 ഘടകങ്ങൾ; $3 \times 3 = 9$ നും $5 \times 5 = 25$ നും 3 ഘടകങ്ങൾ വീതം.

16 ന്റെ ഓരോ ഘടകത്തെയും 9 ന്റെ ഓരോ ഘടകം കൊണ്ട് ഗുണിക്കുമ്പോൾ 16×9 ന്റെ $5\times 3=15$ ഘടകങ്ങൾ കിട്ടും. ഈ ഘടകങ്ങൾ ഓരോന്നിനെയും 25 ന്റെ ഘടകങ്ങൾ കൊണ്ടു ഗുണിക്കുമ്പോൾ, $16\times 9\times 25=3600$ ന്റെ എല്ലാ ഘടകങ്ങളുമായി.

അതായത് $15 \times 3 = 45$ ഘടകങ്ങൾ.

(നേരത്തെ ചെയ്ത 3600 ന്റെ ഘടകപ്പട്ടിക ഒന്നുകൂടി നോക്കുക)

1. ഒരു സംഖൃയുടെ ഘടകപ്പട്ടികയാണ് ചുവടെ കൊടുത്തി രിക്കുന്നത്. ചില ഘടകങ്ങൾ എഴുതിയിട്ടുമുണ്ട്.

	2 ഇല്ല	ഒരു 2	രണ്ടു 2	മൂന്നു 2	
5 ഇല്ല		2			7
ഒരു 5					® 20
രണ്ടു 5			100		
5 ഇല്ല					90
ഒരു 5					ഒരു 7
രണ്ടു 5					
5 ഇല്ല					a
ഒരു 5		490			രണ്ടു 7
രണ്ടു 5					7

- ഏത് സംഖ്യയുടെ ഘടകപ്പട്ടികയാണ്?
- (ii) വട്ടമിട്ട കളങ്ങളിലെ സംഖ്യകൾ എഴുതുക.
- (iii) ചുവടെ കൊടുത്തിരിക്കുന്ന സംഖ്യകൾ പട്ടികയിൽ ശരിയായ സ്ഥാനത്ത് എഴുതി ചേർക്കുക.
 - 4, 25, 140, 200
- (iv) ചുവടെ കൊടുത്തിരിക്കുന്ന സംഖ്യകളിൽ ഏതെല്ലാമാണ് പട്ടിക യിൽ വരാത്തത്?
 - 32, 40, 50, 200, 300, 350

3. ചുവടെയുള്ള സംഖൃകൾ ഓരോന്നിനും എത്ര ഘടകങ്ങൾ ഉണ്ടെന്ന് കണ്ടുപിടിക്കുക.

600

900

- (i) 500
- (ii)
- (iii)
 - ii) 700

- (iv) 800
- (v)
- 3. മൂന്നു വ്യത്യസ്ത അഭാജ്യസംഖ്യകളുടെ ഗുണനഫലമായ സംഖ്യകൾക്കെല്ലാം എത്ര ഘടകങ്ങളുണ്ടാകും? നാലു വ്യത്യസ്ത അഭാജ്യസംഖ്യകളുടെ ഗുണനഫലമായാലോ?
- 4. i) അഞ്ചു ഘടകങ്ങൾ മാത്രമുള്ള രണ്ടു സംഖൃകൾ കണ്ടുപിടി ക്കുക.
 - ii) അഞ്ചു ഘടകങ്ങൾ മാത്രമുള്ള ഏറ്റവും ചെറിയ സംഖൃ എന്താണ്?
- 5. 3600 ന് ഇരട്ടസംഖ്യകളായ എത്ര ഘടകങ്ങളുണ്ട്?

തിരിഞ്ഞു നോക്കുമ്പോൾ

	പഠനനേട്ടങ്ങൾ	എനിക്ക് കഴിയും	ടീച്ചറുടെ സഹായത്തോടെ കഴിയും	ഇനിയും മെച്ചപ്പെടേ ണ്ടതുണ്ട്
•	ഒരു സംഖ്യയുടെ എല്ലാ ഘടകങ്ങളും കണ്ടെത്തു ന്നതിനുള്ള മാർഗം രൂപീകരിക്കുന്നു. വിശദീകരി ക്കുന്നു.			
•	സംഖൃാബന്ധങ്ങളുടെ യുക്തി കണ്ടെത്തി വിശ ദീകരിക്കുന്നു.			
•	ഒരു സംഖൃയുടെ എല്ലാ ഘടകങ്ങളും കണ്ടെ ത്താതെ തന്നെ ഘടകങ്ങളുടെ എണ്ണം കണ്ടെ ത്തുന്നതിനുള്ള മാർഗം രൂപീകരിക്കുന്നു. സമർത്ഥിക്കുന്നു.			