练习一 流体流动

—	•	填空题

1. 连续介质假定是指	0

2. 圆管内湍流和层流的差别是: (完成下表)

稳定流动条件下,连续性方程的物理意义是

流型	层 流	清	治 流
本质区别			
Re 范围			
$u/u_{ m max}$		(满足1/7次方律)	
λ与 Re 关系		高度湍流	
↑ → Ke 大宗		一般湍流	
λ与ε/d关系			

3. 圆形直管内,体积流量 V 一定,设计时若将管内径增大一倍,则层流时摩擦阻力损失 $w_{\rm f}$ 是原值的______倍;高度湍流时, $w_{\rm f}$ 是原值的______倍。

- 4. 流体在直管内流动造成阻力损失的根本原因是______.
- 5.某孔板流量计用水测得孔流系数 $C_0=0.64$,现用于测 $\rho=900~{
 m kg/m^3}$ 、 $\mu=0.8{
 m cP}$ 的液体,此时 C_0 0.64。(填">""="或"<")
- 6. 管路如图所示,将支管 A 的阀门开大,则管内以下参数有何变化?

 V_{A} , V_{B} , V_{C} , V_{E} , p, w_{fA} , w_{fB} , w_{fC}

7. 在如图所示的管路系统中,已知流体的总阻力损失 $w_i = 56 \, \mathrm{J/kg}$ 。若关小阀门,则总阻力损失 $w_i = ____$ $\mathrm{J/kg}$,两槽液面垂直距离 $H = _____$ m 。

- 8. 一敞口容器,底部有一出口(如图所示),容器水面恒定,管内水流动速度头为 0.5m 水柱,直管阻力可忽略。
 - (1) 水由容器流入管内,则 2 点的表压 p_2 m 水柱;
 - (2) 水由管内流入容器,则 2点的表压 p_2 m 水柱。

9. 如图所示的供水管线,管长 L,流量 V。今因检修管子,用若干根直径为 0.5d,管长亦为 L 的管子并 联代替原管,保证输水量不小于 V。设所有管子的 λ 都相同且为常数,局部阻力均可忽略,则并联管 子数量至少______根。

10. 如图所示的通水管路, 当流量为 V 时, 测得(p_1-p_2) = 5m H_2 O, 则流量为 2V 时, (p_1-p_2) = ______ m H_2 O。(设流体流动处于阻力平方区)

二、选择题

1. 如图所示,倒 U 型压差计的指示剂为空气,若将指示剂改为油(流向不变),则 R

A.增大

B.变小

C.不变

D. 不变, 但倒 U 型差计中左侧液体高于右侧

2. 某孔板流量计,当水流量为 V 时,U 型压差计读数 $R = 600 \, \mathrm{mm}$ (指示液密度 $\rho_0 = 3000 \, \mathrm{kg/m^3}$),若改用密度为 $\rho_0 = 6000 \, \mathrm{kg/m^3}$ 的指示液,水流量不变,则此时读数 R 为

A.150mm

- B.120mm
- C.300mm
- D. 240mm

3. 因次(量纲)分析法的目的在于

A. 得到各变量间的确切定量关系

- B. 用无因次数群代替变量, 使实验与关联工作简化
- C. 得到各因次数群的确切定量关系
- D.用无因次数群代替变量, 使实验结果更可靠

三、计算题

- 1. 如图,三只容器 A、B、C 均装有水(液面恒定),已知: $z_1 = 1 \, \text{m}$, $z_2 = 2 \, \text{m}$,U 形水银压差计读数 $R = 0.2 \, \text{m}$, $H = 0.1 \, \text{m}$ 。
 - (1) 求容器 A 上方压力表读数 p1 (MPa);
 - (2) 若 p_1 (表压)加倍,求(R+H).

- 2. 某输送管路如图所示,已知液体的密度 $\rho = 900 \, \text{kg/m}^3$ 、黏度 $\mu = 30 \, \text{cP}$,除 AB 段以外,管路总长 $L = 50 \, \text{m}$ (包括全部局部阻力损失的当量长度在内),管内径 $d = 53 \, \text{m}$ 。复式 U 型压差计指示剂为水银,两指示剂中间流体与管内流体相同,压差计读数 $R_1 = 7 \, \text{cm}$, $R_2 = 14 \, \text{cm}$
 - (1) 若两槽液面垂直距离为 4m, 求管内的流速;
 - (2) 当阀关闭时, 试定性判断读数 R_1 、 R_2 的变化。

- 3. 某输送管路(见下图),在总管段 OC 上装一孔板流量计,该流量计孔径 $d_0 = 25$ mm,流量系数 $C_0 = 0.62$ 。 已知 OC 段、CB 段、CA 段管长和管径分别为 $L_{OC} = 45$ m、 $d_{OC} = 50$ mm, $L_{CB} = L_{CA} = 15$ m、 $d_{CB} = d_{CA} = 40$ mm;当阀 a 全关、阀 b 打开时,压力表 pB 的读数为 23.5 kpa。流体密度 $\rho = 1000$ kg/m3, λ 均取为 0.03。试计算:
 - (1) 求孔板两侧的压差 Δp (mmHg);
 - (2) 若维持阀 b 的开度不变,逐渐打开阀 a,直到 CA、CB 两管中流速相等,此时孔板两侧压差 Δp 为 560 mmHg,问压力表读数 p_A 、 p_B 分别为多少 kPa?

- 4. 如图所示,一高位水槽下面接有三根水管子 1、2、3,开始时压力表读数为 p,三个支管的流量分别为 V_1 、 V_2 、 V_3 ,且 V_1 < V_2 < V_3 。现关闭水管 2 中阀门,使 V_2 = 0,这时压力表读数为 p',水管 1、3 的 流量变为 V_1' 、 V_3' 。假设所有水管中流动均处于完全湍流区,并且水在同一高度流入大气。
 - (1)比较 p 与 p'的大小;
 - (2) 比较 (V_1-V_1') 与 (V_3-V_3') 的大小。

练习二 流体输送机械

_	植空题
	ᅺ

\ '\\		
1.属于容积式泵的,除往复泵外,还有	、等。	
2.产生离心泵气缚现象的原因是		0
避免产生气缚的方法有	o	
3. 造成离心泵汽蚀的原因是		0
增大离心泵允许安装高度的措施有		_等。
4. 往复泵的流量调节方法有	、和和	0
5. 启动离心泵前,应先	和。	
启动往复泵前,必须检查		
6. 对某一离心泵,若输送的流体密度增大1.2 何	倍,则在相同流量下,扬程为原来的倍,功率增	大倍
数为		

7. 如图所示,两管道系统阻力状况基本相同, λ 均为常数,为使 $V_2=V_1$,则泵的扬程 $H=___Z$ 。

8. 离心通风机输送 $\rho=1.2\,{\rm kg/m^3}$ 空气时,若流量为 6000 ${\rm m^3/h}$,则全风压为 240 ${\rm mmH_2O}$ 。现该通风机改 送 $\rho'=1.4\,{\rm kg/m^3}$ 的气体,则在流量的 6000 ${\rm m^3/h}$ 时,全风压为_____mmH₂O。

9.用泵抽水时,	泵出口压力	表读数为 p、?	流量为 Ⅴ。ラ	若保持 V	不变,	现泵改送密度	比水大而黏度与	ョ水基
本相同的流体	本,则以下参	数如何变化?	压力 p,	,扬程 H_		抽功率 <i>N</i> 。		

10. 两敞口容器间用离心泵输水,已知转速为 n_1 时,泵的流量 $V_1 = 100$ L/s 扬程 $H_1 = 16$ m;转速为 n_2 时,泵的流量 $V_2 = 120$ L/s,扬程 $H_2 = 20$ m。则两容器液面的垂直距离为________m。

- 11. 如图所示输送系统, p_1 、 p_2 恒定。当泵输送密度为 ρ 的流体时,流量为V。现改送密度为 ρ' ($\rho'>\rho$)的流体,此时流量为V'。试问:

12. 某台操作中的离心泵,当转速为 n 时,其特性曲线方程为 $H = 40 - 2.5 V^2 (V - m^3/min)$,而管路特性方程可用下式表示: $H_e = 20 + BV^2 (V - m^3/min)$,此时泵的工作流量 $V = 2 m^3/min$ 。当转速减慢为 n' = 0.9 n 时,其工作点所对应的压头 $H' = ______m$,流量 $V' = _____m^3/min$ 。

二、选择题

- 1.图标为离心泵性能测定装置。若水槽液面上升,则
 - A.V 增加, H 减小 C.V 和 H 都不变, p_1 和 p_2 (均为绝压)增加
 - B.V减小, H增加 D.V和H都不变, p1和 p2 (均为绝压)减小

- 2. 如图所示,常压下,内盛 100℃水的槽面距泵入口垂直距离 z 为____。已知泵的允许汽蚀余量为 2.5 m, 吸入管线阻力损失 2m H₂O。
 - A.>7m
- B.7m
- C.3m
- D. 只需 z > 0 即可

题2附图

- 3. 离心泵铭牌上标明的扬程指
 - A. 功率最大时的扬程

B. 最大流量时的扬程

C. 泵的最大扬程

- D.效率最高时的扬程
- 4.已知单台泵的特性曲线方程 $H=20-2V^2$,管路特性曲线方程为 $h_{\rm e}=10+8\,V^2$ (以上两式中 V 的单 位均为 m³/min)。现将两台泵组合起来操作,使流量达到 1.58 m³/min,下列结论正确的是
 - A.串联
- B.并联
- C. 串、并联均可 D. 无法满足要求

三、计算题

- 1.在图示的循环管路中, $L_1 = L_2 = 20 \,\text{m}$, $L_3 = 30 \,\text{m}$ (包括反应器、冷却器等的当量阻力长度在内),管 径 $d = 30 \,\text{mm}$, $\lambda = 0.03$,流量 $V = 1.413 \times 10^{-3} \,\text{m}^3/\text{s}$,密度 $\rho = 900 \,\text{kg/m}^3$,冷却器液面高出泵吸入口 2 m,试求:
 - (1) 泵的扬程 H;
 - (2) 为保证泵的吸入口不出现负压,冷却器液面上方压力 po 至少为多少 kPa(表压)?

- 2. 如图所示,两塔表压都为零,已知 d 均为 40 mm, $\lambda = 0.02$,吸入管长 $L_1 = 10$ m(包括所有局部当量长度在内,下同),压出支管 2 长 $L_2 = 70$ m,泵的特性曲线方程 $H = 22 7.2 \times 10^5$ V²,式中 H,m; V, m^3/s 。泵出口至 O 点的管长可忽略。试求:
 - (1)B阀全关时泵的流量;
 - (2) B 阀全开时泵的流量。此时支管 3 长 $L_3 = 70 \, \mathrm{m}$ (包括局部阻力当量长度在内)。

- 3. 欲用离心泵将池中水送至 10 m 高处水塔,输送量 $V = 0.21 \text{ m}^3/\text{min}$,管路总长 L = 50 m(包括局部阻力当量长度在内),管径均为 40 mm, $\lambda = 0.02$ 。试问:
 - (1) 若选用的离心泵的特性曲线方程为 $H = 40 222V^2$, 式中 $V m^3/min$ 。该泵是否适用?
 - (2) 此泵正常运转后,管路实际流量为多少 m³/min
 - (3)为了使流量满足设计要求,需用出口阀进行流量调节。则阀门的节流损失(多消耗在阀门上的阻力损失)变化了多少 mH₂O?

- 4.如图所示,用离心泵将敞口水池中的水送到反应塔内,塔顶压力表读数为 1.17×10^5 Pa,出水管口高出水池液面 4m。已知管路调节阀全开时,管路总阻力损失为 2m H₂O 柱,该泵的特性方程为 H=20 -0.0023 V²,式中 H, m; V, m^3/h 。
 - (1) 试写出阀全开时的管路特性方程,要求以 $h_e = f(V)$ 函数式表示, $h_e m$; $V m^3/h$ 。
 - (2) 若将这种泵两台并联用于该管路, 当管路调节阀全开时, 输水量为多少 m³/h?

练习三 流体流动和流体输送机械(一)

一、填空题
1. 当地大气压为 745 mmHg,测得一容器内的绝对压强为 350 mmHg,则真空度为mmHg。
得一容器内的表压为 1360mmHg,则其绝对压强为mmHg。
2. 两无限长同心组成的环隙中充满流体。已知外筒内径为 D ,内筒外径为 d ,试问内筒作旋转运动时,
量直径 d _e =。
3. 质量流量相同的两流体,分别流经同一均匀直管,已知,密度 $\rho_1=2\rho_2$,黏度 $\mu_1=2\mu_2$,则 $\mathrm{Re}_1=$ Re $_2$
若两流体流动均处于阻力平方区,则 $h_{\rm fl}$ = $h_{\rm f2}$; 若流动皆为层流,则 $h_{\rm fl}$ = $h_{\rm f2}$ 。
4. 离心泵叶轮的类型一般有种,为什么离心泵的叶片要采用后弯?
5.操作中的离心泵, 若开大出口阀, 则管路总阻力损失, 泵的轴功率泵的效率
(

6. 管道中水的经济流速范围为	m/s	,空气的经济	於流速范围为	1	m/s。若水与
空气以相同质量流量流经相同管长的水	:平直管,	并各自采用	经济流速, 「	则管径 $d_{ au}$ $pprox$ _	$_\d_{\kappa}$,
压降 $\Delta p_{\eta} pprox ___\Delta p_{\pi}$ 。					
7. 图示流程中,管径皆为 d , λ 均为定值。	两支管	只考虑阀门阻	l力,且知阀	1的ζ1=1, 阀	図 2 的 $\zeta_2 = 25$,
今只将阀 2 开大,其它不变,使流速 u_1 :	$=u_2=21$	m/s。则开大	に阀 2后,阻	力系数变为ζ₂	=,槽
A 至槽 B 的压头损失 h _{fAB} 将。	(填"变	大""变小"	"不变""不硕	确定")	
			L A	. 1	-
					B @Z
				L_2	- - -
				题7附图	
8. 流体在水平等径直管中流动时, 若流动处	处于层流	区,则压力损	号失与速度	成正比	; 若流动处于高
度湍流区,则压力损失与速度	成正比。				
9. 流体在水平等径直管中流动时的摩擦阻	力损失,	所损失的是构	孔械能中的_	项。	
10.皮(毕)托管测量管道流体的	_速度,	孔板流量计则	用于测量管:	道中流体的	速度。

二、选择题

- 1.某孔板流量计, 当流量为 V_1 时, 通过孔板前后的压降为 Δp_1 , U 型压差计的读数为 R_1 , 当流量 $V_2 = 2V_1$ 时,相应的压降为 Δp_0 ,读数为 R_0 ,则_____。
 - A. $R_2 = 2R_1$, $\Delta p_2 = 2\Delta p_1$
- B. $R_2 = \sqrt{2}R_1$, $\Delta p_2 = \sqrt{2}\Delta p_1$
- C. $R_2 = \sqrt{2}R_1$, $\Delta p_2 = 4\Delta p_1$
- D. $R_2 = 4R_1$, $\Delta p_2 = 4\Delta p_1$

- 2.操作中的离心泵,将水由水池送往敞口高位槽。现泵的转速减小(符合比例定律),管路情况不变。此 时泵的效率由原来的 η 变为 η' ,则两者的关系为
 - $A.\eta' > \eta$ $B.\eta' < \eta$ $C.\eta' = \eta$ D.不确定

- 3.牛顿型流体流经管长为 L、半径为 R 的管道,设处于管中心处的剪应力为 τ_1 ,而处于 R/2 处的剪应力 为 τ_2 ,则 τ_1/τ_2 =
 - A.0
- B.0.5
- C.0.8
- D. 判断依据不足

- 4. 对一余隙一定的往复压缩机。当压缩比增大时,每一工作循环送出的气体量将
 - A.增大
- B.减小
- C.不变
- D. 先增大再减小

三、计算题

- 1. 某输油管线如图所示,油品黏度为 25 cp,密度为 800 kg/m³,管内径均为 100 mm,在油管水平部分 B 点连接一水银 U 型压差计, 当 A 阀关闭时, R = 400 mm, h = 200 mm。现将 A 阀打开, 流量调节至 $14.1 \,\mathrm{m}^3/\mathrm{h}$,此时管长 $L_{\mathrm{OB}} = 50 \mathrm{m}$ (包括局部阻力当量长度在内)。试求:
- (1) 高度 H, m;
- (2) A 阀打开后, B 点的表压和 U 型压差计读数。

- 2. 用离心泵将江水由江中送往敞口高位槽,流程如图所示。管子规格均为 ϕ 114×4mm。已知,当A阀1/4 开度时,B 点压力表读数 $p_{\rm B}=34.32\,{\rm kPa}$,送水量 $V=36{\rm m}^3/{\rm h}$ 。当 A 阀 3/4 开度时, $p_{\rm B}'=71.59\,{\rm kPa}$, 泵出口处压力表读数 $p_1=$ 107.88kPa (表压),泵入口处真空表读数 $p_2=$ 300 mmHg。设 λ 均为定值。 (1) 求 A 阀 3/4 开度时泵的有效功率;

 - (2) 若江水上涨了 1m, 通过阀门调节, 使流量维持与 A 阀 3/4 开度时流量相同, 问此时泵出口处压 力表读数为多少 kPa?

- 3. 如图所示,水自敞口高位槽经总管流入分支管 A 和 B,然后排入大气。各段直管长度见图,管道的内径均为 27 mm。阀门全开时,总管、支管 A、B上的局部阻力当量长度分别为 $\sum L_{eO} = 1.1 \, \text{m}$, $\sum L_{eA} = 9.8 \, \text{m}$, $\sum L_{eB} = 9 \, \text{m}$,管内摩擦系数 λ 均为 0.04。试求:
 - (1) 当支管 A 上的阀 K_1 全开而支管 B 上的阀 K_2 部分开启时,测得支管 A 中水的流量为 0.5 m^3/h ,此时支管 B 中流量为多少 m^3/h ?
 - (2) 当支管 B上的阀 K2全开时,支管 A中是否有水流出?

- 4. 如图所示,用二台型号相同的离心泵串联,将河水输入高位槽。已知单泵特性曲线方程为 $H=20-5V^2$ (式中H、V 单位分别为 m、m³/min)。现流量计失灵,但 B 处的真空表正常,其读数为 300 mmHg,估计底阀阻力损失相当于是 $10 (u^2/2)$ J/kg,A 至 B 处阻力损失为 $0.1 (u^2/2)$ J/kg,式中 u 为管内流速,m/s,管径均为 100 mm。试求:
 - (1) 输水量, m³/s;
 - (2) 串联泵的有效功率。

流体流动和流体输送机械(二) 练习四

一、填空、选择题

- 1. 局部阻力损失 $w_f = \zeta \frac{u^2}{2}$ 计算式中的 u 是指
 - A.小管中流速 u_1

B. 大管中流速 u_2

C. $(u_1 + u_2)/2$

- D.与流向有关,可以是 u_1 或 u_2
- 2. 如图 a 所示, 水从高位槽经下水管排出。现将下水管截去一段(见图 b), 则其水流量将
 - A.变大
- B. 变小
- C.不变
- D.无法确定

- 3. 如图所示, 当水沿水平等径直管作稳定流动时, 压差计分别按图(a)或图(b)所示放置, 则其读数 R、、 R_2 的大小关系应该是
 - A. $R_1 > R_2$ B. $R_1 = R_2$ C. $R_1 < R_2$
- D.不一定

- 4. 如图所示, 敞口贮槽中的液面恒定, 水经下部放水管流入大气, 忽略流动阻力损失。放水管中水的流动
 - 速度 u 与_____有关
 - A.H
- B.*H*, *d*
- C.d
- D.大气压 p_{o}
- E.H, d, 大气压 p。

5	.如图所示的并联管路,	,已知两支管的摩擦系数 $\lambda_1 = \lambda_2$,	管直径 $d_1 = d_2$,	管内的气体的质量流	〔量相同,支
	管2上有一加热器, 『	则两支管长(包括局部阻力的当	量长度)L ₁ 与L	₂ 关系为	

- A. $L_1 > L_2$ B. $L_1 < L_2$ C. $L_1 = L_2$
- D.不确定

6. 如图所示, 高位槽上方的真空表读数为 p, 现 p 增大, 其它管路条件不变, 则管路总阻力损失

- A.增大
- B.减小
- C.不变
- D.不确定

7. 用离心泵将江水送至敞口高位槽。若管路条件不变,则下列参数随着江面的下降有何变化?(设泵仍能 正常工作)

泵入口处真空表读数_____, 离心泵轴功率____。

- A.增大
- B.减小
- C.不变
- D. 不确定

8. 如图所示流程, 若离心泵更换一个大一点直径的叶轮(符合切割定律), 则泵效率 η_____; 压力表读 数 p____。

- A.变大
- B.变小 C.不变
- D.不确定

二、计算题

- 1. 某离心泵工作转速为 n = 2900 r.p.m.,其特性曲线方程 $H = 30 0.01V^2$ 。当泵的出口阀全开时,管路特性曲线方程为 $h_e = 10 + 0.04V^2$,以上两式中 V 的单位为 m^3/h ,H 及 h_e 的单位均为 m。求:
 - (1) 阀全开时, 泵的输水量为多少?
 - (2) 要求所需供水量为上述供水量的 75%时:
 - a. 若采用出口阀调节,则节流损失了多少 m 水柱?
 - b. 若采用变速调节,则泵的转速应为多少 r.p.m.?

- 2. 如图所示,用四点法测量扩大局部阻力损失。现常温水($\rho=1000~{\rm kg/m^3}$, $\mu=1{\rm cP}$)以 3 m/s 的速度 从 A 段流向 B 段, A、B 管段均呈水平,A 段管内径为 25mm,B 段管内径为 50mm,并已测得 $R_1=90.9~{\rm mmHg}$, $R_2=206.9~{\rm mmHg}$ 。试求:
 - (1) 突然扩大局部阻力系数 ζ;
 - (2) 假设管子为光滑管,湍流时 $\lambda = 0.3164/\text{Re}^{0.25}$,则图标中的 L 为多长?

- 3. 某离心泵安装位置高出井中水面 4m,吸入管路为 φ89 mm×4.5 mm 规格的钢管,已知输水量为 36 m³/h 时,吸入管路总阻力损失为 2.5m 水柱,该流量下泵的允许吸上真空度为 3 m 水柱。水温 20℃,当地大气压为 10 m 水柱。试求:
 - (1) 泵入口处的真空度为多少 kPa?
 - (2) 若井水面比原来下降 1m, 该泵是否仍能按要求的流量正常输水?

- 4. 如图所示,水通过倾斜变径管段 AB。已知 $d_A = 100 \, \text{mm}$ 、 $d_B = 240 \, \text{mm}$,水流量 $2 \, \text{m}^3/\text{min}$ 。在截面 A 与 B 之间接一 U 型压差计,其读数为 $R = 20 \, \text{mm}$,指示剂为水银。A、B 两点间的垂直距离为 $h = 0.3 \, \text{m}$ 。试求:
 - (1) A、B 两点的压差为多少 Pa?
 - (2) A、B管段的阻力损失为多少 J/kg?
 - (3) 若将管路水平放置,流向与流量不变,试定性回答压差计读数及 A、B 两点压力差如何变化?

练习五 机械分离与流态化

-	7.4 机械力 两一 机芯化		
一、填空题:			
1. 某降尘室有三层隔板(板厚不计),气	流均布,已知理论上能 100%	余去颗粒粒径为 120 μm,则能 8	30%
除去的颗粒粒径为µm。			
2. 离心分离因素的物理意义是		o	
评价旋风分离器的主要性能指标是			_0
临界粒径是判别旋风分离器	高低的重要依据。		
3.已知板框压滤机中的滤饼压缩指数为	0.5 众质阳力无计 刚当过滤	F 美	/da
为原来的			/ u
/ / / / / / / / / / / / / / / / / / /		1/4//KHJIH 0	
, 杜黛喜克马·滕州·斯尔索士 - 则与杜	用配组的速波具态	次导派机的比文化与会	
4.转筒真空过滤机的转速愈大,则每转-	一同所侍的滤敝里思,	这过滤机的生产能力题	_°
5. 某恒压操作的叶滤机(V_e = 0),已知	可过滤终了时 $V=0.5\mathrm{m}^3$,用时	1小时,滤液黏度为水的4倍。	玖
拟在相同压力下用清水洗涤,洗液量	$V_{ m W}=0.1{ m m}^3$,则洗涤时间为_	min _o	
6. 流化床按其形状不同可分为	和	。流体通过流化床的	匀压
降随流量的增加 。聚式流行	化床的主要不正常现象是	和	

7. 流化床操作中,流体在床层中的真实速度 u',颗粒沉降速度 u_t 和通过床层的表观速度 u 三者之间的关系是

8. 化工生产中基于离心沉降原理的设备有	Īo
	加入一滴水,问: 滴正好到底部,则水滴沉降速度为m/s; ,加入水滴的速度不变,则第一滴水正好到
二、选择题 1.在重力场中,微小颗粒的沉降速度与下A.粒子的几何形状 C.流体与粒子的密度	F列无关。 B. 粒子的尺寸大小 D. 流体的速度
2. 推导过滤基本方程式的一个最基本的依 A. 滤饼不可压缩 C. 流体通过滤饼呈层流流动	支据是。 B. 忽略过滤介质的阻力 D. 滤渣大小均一
3.下列说法正确的是。	
$4.$ 当 $\mu = \mu_{ m w}$ 时,叶滤机洗涤速率(${ m d}V/{ m d}$ ${ m A.}1/2$ ${ m B.}1/4$	dτ)w与最终过滤速率(dV/dτ)e的比值为。 C.1/3 D.1

三、作图题

四、计算题

- 1. 一降尘室内设置 2 层隔板,每层底面积均为 10 m²。现用此降尘室净化质量流量 45 t/h、温度 60℃的常压含尘空气,尘粒密度为 2500 kg/m³,设尘粒在空气中系均匀分布。
 - (1) 试估算理论上可 100%除去的最小尘粒直径为多大?又 50%除去的尘粒直径为多大?
 - (2) 若将此含尘空气温度降为 30℃,则理论上可 100%除去的最小尘粒直径变为多大? 计算出结果后请定性分析为什么会如此变化。

设含尘空气的物性可视为与空气相同。已知 60[°]C空气的黏度为 20.1×10^{-3} cP, 30[°]C空气的黏度为 18.6×10^{-3} cP。

- 2. 拟用板框压滤机恒压过滤含 $CaCO_3$ 8% (质量) 的水悬浮液 $2m^3$,每立方米滤饼中含固体 $1000 \, kg$, $CaCO_3$ 的密度为 $2800 \, kg/m^3$,试求:
 - (1) 现有 560mm×560mm×50mm 规格的板框,问至少需要多少只框?
 - (2) 若过滤常数 $K = 0.162 \text{m}^3/\text{h}$,过滤介质阻力不计,用上述这些框过滤需用时间为 26.5 min,则滤液量为多少?

- 3.用过滤面积为 10 m^2 的板框过滤机过滤某种悬浮液,操作压力为 2 atm,过滤 15 min 共得滤液 2.91 m^3 ,滤饼不可压缩,介质阻力忽略不计,该过滤机的生产能力为 $4.8 \text{ m}^3/\text{h}$ 。试求:
 - (1)操作过程的洗涤、装卸等时间共为多少 min ?
 - (2) 若要求过滤时间与所得的滤液量不变,而操作压力降至 latm (表压),需增加多少过滤面积?
 - (3)改用一台转筒真空过滤机操作,在一个操作周期内,所得的滤液量为0.2 m³,若使该机具有上述上相同生产能力,则转速为多少转/分?

练习六 传动部分 综合练习(一)

一、填空、选择题

1.以单位重量流体为基准的机械能衡算方程式为:______; 以单位质量流体为基准的机械能衡算方程式为: 以单位体积流体为基准的机械能衡算方程式为: 2. 以水作工质所测得的直管的摩擦系数与雷诺数关系式适用于 流体。 3. 水在光滑直管内流动是有阻力损失的, 其原因是____。 流体在湍流流动时,在相同的雷诺数下,光滑管的摩擦系数 \ 要比粗糙管的小,其原因是 4. 气体黏度随温度升高而________;液体的黏度随温度的升高而_____。 5. 对如图所示的输水系统, 当阀门 A 关小时, V_{A} ____, V_{B} ____, V_{C} ____, p_{A} ____, p_{B} ____, p_{C} ____。 A.变大 B. 变小 C.不变 D.不确定

- 6. 右图中高位槽液面保持恒定,液体以一定流量流经管路, ab 和 cd 两 管段长度、管径及粗糙度均相同,则
 - (1)两U形压差计读数关系为____。
 - $A.R_1 > R_2$
- B. $R_1 = R_2$
- $C.R_1 \leq R_2$
- D.不定
- (2) 液体通过 ab 与 cd 管段的能量损失关系为
 - $A.h_{fab} > h_{fcd}$
- $B.h_{fab} = h_{fcd}$
- $C.h_{fab} < h_{fcd}$
- D.不定
- (3) ab 与 cd 两管段的压差关系为。

(4)	R_1 值表示	0

A.ab 段的压差值

B.ab 段的位能变化

C.ab 段摩擦损失

D.ab 段的压差值及摩擦损失

7.单位质量流体由截面 1	流到截面 2	的阻力损失为	$w_{f, 1-2}$,	其单位为 J/kg,	则 $w_{f, 1-2}/g$	的物理意义是
			· · · · · · · · · · · · · · · · · · ·	,其单位是		0

- 8. (1) 对不可压缩滤饼,过滤速率为 $\mathrm{d}V/\mathrm{d}\tau$ 正比于 Δp 的次方,对可压缩性滤饼,过滤速率 $\mathrm{d}V/\mathrm{d}\tau$ 正比于 Δp 的______次方。
 - (2)恒压过滤时,若介质阻力可以忽略,滤液量增大一倍,而其它操作条件不变,则过滤速率 dV/dr 为原来的 倍。
 - (3)恒压过滤时, 若滤液量 V 一定, 将过滤面积 A 增大一倍, 则过滤速率 $dV/d\tau$ 增大为原来的__倍。

二、计算题

1. 如图所示, 计划在蓄水池处安装一台离心泵, 将水输送至换热器内作冷却剂用, 要求水的流量为 $25 \,\mathrm{m}^3/\mathrm{h}$, 水自换热器出来后流进高位水槽中, 回收它用。已知:蓄水池水面标高 $3 \,\mathrm{m}$, 高位槽的进水管末端标高 $23 \,\mathrm{m}$; 输水管为 ϕ $70 \,\mathrm{mm} \times 3.5 \,\mathrm{mm}$ 的钢管; 流体经过管道部分的压头损失为 $\Sigma h_{\mathrm{f}} = 19 \times (u^2/2\mathrm{g}) \,\mathrm{m}\,\mathrm{H}_2\mathrm{O}$ (包括所有局部阻力损失在内),经过换热器的阻力损失为 $7.5 \times u^2/2 \,\mathrm{kPa}$ (式中 u 为管内流速, m/s)。 今库存有一台离心泵,其特性曲线见下图,试核算此泵是否合用。

2. 一直径为 28 μm 的球形颗粒,在 20℃、一个大气压的某气体中的沉降速度为 20℃水中沉降速度的 88 倍,又知此颗粒在此气体中的有效重量为水中的 1.6 倍,有效重量指重力与浮力之差。试求该颗粒在此气体中的沉降速度。

已知 20°C水物性为 $\mu = 1$ cP, $\rho = 1000 \text{ kg/m}^3$,20°C一个大气压下气体的密度为 1.2 kg/m^3 。

- 3. 一板框压滤机,过滤面积为 $2 \,\mathrm{m}^2$ 。现在 $1.5 \times 10^5 \,\mathrm{Pa}$ 压差下恒压过滤,过滤 $2 \,\mathrm{小时}$,得滤液 $36 \,\mathrm{m}^3$,装卸时间为 $30 \,\mathrm{分钟}$,滤液黏度为 $2 \,\mathrm{mPa} \cdot \mathrm{s}$,滤饼不可压缩,介质阻力可不计。试求:
 - (1) 若滤饼不洗涤, 求此过滤机的最大生产能力;
 - (2) 若过滤 2 小时后, 又以 5 m³ 水洗涤滤饼, 洗涤时间及生产能力又为多少? (水的黏度为 1 mPa·s)

- 4.用回转真空过滤机过滤某水悬浮液,已知该悬浮液浓度为 $0.2 \, \mathrm{kg}$ 固/kg 水,固体密度 $\rho_{\mathrm{p}} = 3000 \, \mathrm{kg/m^3}$ 。 转筒直径 $600 \, \mathrm{mm}$ 、长 $600 \, \mathrm{mm}$,转筒浸没部分的百分数 $\phi = 0.25$,3 分钟转一圈时滤液产量 $1200 \, \mathrm{kg/h}$,过滤介质阻力可忽略不计。
 - (1) 若转速提高至2分钟一转,滤液产量为多少 kg/h?
 - (2)分别求两个转速下的滤饼厚度。滤饼结构均为50%固体、30%水、余为空气(体积)。

练习七 传动部分 综合练习(二)

一、填空、选择题		
1. 在极度湍流(阻力平方)区内,粗糙管的厚	摩擦系数λ的值。	
A. 与光滑管一样	B. 只取决于相对粗料	造度
C. 只取决于雷诺数	D. 与粗糙度无关	
2. 如图所示,管中的水处于。 A. 静止 B. 向上流动	C. 向下流动	D. 不一定
		p _A =0.2atm p _A =0.2atm 题 2 附图
3. 若管路特性方程为 $h_e = A + BV^2$,则	o	
A.A 只包括单位重量流体需增加的位能		
B. A 包括单位元重量流体需要增加的位能和	和静压能	
C. BV2 代表管路系统的局部阻力损失		
D. BV2 代表单位重量流体需增加的动能		
4.往复泵适用于。		
A. 大流量且流量要求特别均匀的场合	B. 流量较小,扬程转	
C. 介质腐蚀性特别强的场合	D. 投资较小的场合	
5. 当喉径与孔径相同时, 文丘里流量计的孔流	瓦系数 Cv 比孔板流量计	$ 1 % \left(rac{1}{2} \left(rac{1}{2} ight) ight) ight) $
量计的摩擦损失比孔板流量计的		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- 6. 对于如图所示的并联管路, 其阻力关系应是____
 - A. $(\Sigma h_f)_{A1B} > (\Sigma h_f)_{A2B}$
- B. $(\Sigma hf)_{AB} > (\Sigma hf)_{A1B} = (\Sigma hf)_{A2B}$
- C. $(\Sigma h_f)_{AB} = (\Sigma h_f)_{A1B} + (\Sigma h_f)_{A2B}$ D. $(\Sigma h_f)_{AB} = (\Sigma h_f)_{A1B} = (\Sigma h_f)_{A2B}$

- 7. 在右图所示的输水系统中,阀 $A \setminus B$ 和 C 全开时,各管路的流速分别为 $u_A \setminus u_B$ 和 u_C ,现将 B 阀部分关 小,则各管路流速的变化应为。
 - $A.u_A$ 不变, u_B 变小, u_C 变小
- B. uA变大, uB变小, uC不变
- C. uA 变大, uB 变小, uC 变小
- $D.u_A$ 变小, u_B 变小, u_C 变小

8. 离心泵的特性曲线通常包括 曲线、 曲线和 曲线。

这些曲线表示在一定__________下输送某种特定流体时泵的性能。

- 9. 含尘气体通过长 4 m, 宽 3 m, 高 1 m 的降法室。已知颗粒的沉降速度为 0.03 m/s,则该降尘室的生产 能力为______m³/s。
- 10. 液柱压力计是基于 原理的测压装置。用 U 形管压差计测压, 当一端与大气相通时, 读数

三、计算题

- 1. 如图所示,敞口高位水槽 A 中的水流经一喉径为 14mm 的文丘里管,将碱液槽 B 中的浓碱液(密度为 $1400 \, \mathrm{kg/m^3}$)抽吸入文丘里管,再混合成稀碱液送入槽 C,各部分标高如图所示,稀碱液的物性与水近似相同。输水管规格为 ϕ 57×3 mm,从 A 至文丘里喉部 M 处管路总长为 20 m(包括所有局部损失的 当量长度在内,以下同),从 A 至槽 C 处管路总长为 70m,摩擦系数可按下式计算: $\lambda=0.1 \left(\frac{\epsilon}{d} + \frac{68}{\mathrm{Re}}\right)^{0.23}$,水的黏度为 $1 \, \mathrm{mPa} \cdot \mathrm{s}$ 。
 - (1) 计算当抽吸管 BM 上的阀门关闭时, 文丘里喉部 M 处的真空度 (kPa)。管路的绝对粗糙度取为 ϵ = 0.2 mm;
 - (2) 现将抽吸管 BM 上的阀门打开, 试判断槽 B 的浓碱液能否被抽吸入文丘里内(说明判断依据);
 - (3)将抽吸管 BM 上的阀门打开后槽 B 的浓碱液如果能被吸入,吸入量的大小与哪些因素有关? 为什么?

题二、1 附图

- 2. 某混合式冷凝器内真空度为 78.5 kPa,所需冷却水量为 6×10^4 kg/h,冷却水进冷凝器的人口比水池的水面高 $15\,\mathrm{m}$ 。用 ϕ 114 mm \times 7 mm 的管道输水,管长 80m,管路配有 2 个球心阀和 5 个弯头,已知球心阀的阻力系数 $\zeta_{\text{\tiny M}}=3$,弯头的阻力系数 $\zeta_{\text{\tiny S}}=1.26$,摩擦系数 $\lambda=0.02$ 。现仓库中有四种规格的离心泵(见下表),试求:
 - (1) 为完成上述输送任务, 需选用几号泵?
 - (2) 所选用的泵安装在上述管道上,若管路条件不作任何改变,实际流量能否刚好达到上述规定值? 如何调节出口阀才能达到规定阀值?(用管路特性曲线、泵特性曲线和工作点定性描述)

编号	1	2	3	4
流量 升/min	500	1000	1000	2000
扬程 m	10	10	15	15

- 3. 拟用一板框过滤机在 3 atm 的压强下恒压过滤悬浮液,已知过滤常数 $K = 7 \times 10^{-5}$ m²/s, $q_e = 0.015$ m³/m², 现要求每一操作周期得到 10 m³ 滤液,过滤时间为 0.5 h,设滤饼不可压缩,且滤饼与滤液体积比为 0.03 m³/m³。试问:
- (1) 需要多大的过滤面积?
- (2)现有一台板框过滤机,每一个框的尺寸为635 mm×635 mm×25 mm,若要求每个周期得到的滤液量仍为10 m³,过滤时间不得超过0.5 h,而操作压强则提高到8 atm,则至少需要多少个框才能满足要求?

4. 用降尘室对密度为 $0.617 \, \text{kg/m}^3$ 、黏度为 $2.82 \times 10^{-5} \, \text{Pa·s}$ 、流量为 $1.3 \times 10^5 \, \text{m}^3/\text{h}$ 的烟气除尘。气体中尘 粒均可视为球形,尘粒密度为 $3500 \, \text{kg/m}^3$,重力沉降室的沉降面积为 $55 \, \text{m}^2$,试求理论上能 100% 除去的颗粒的最小直径为多少?