sulfuric acid. How many grams of sulfuric acid are present in 500 mL of battery acid?

Mole Concept: Chap. 3, Sec. 3; Chap. 7, Sec. 3

Problems Involving Atoms and Elements

- **95.** Calculate the number of moles in each of the following masses.
 - **a.** 64.1 g of aluminum
 - **b.** 28.1 g of silicon
 - **c.** 0.255 g of sulfur
 - **d.** 850.5 g of zinc
- **96.** Calculate the mass of each of the following amounts.
 - a. 1.22 mol sodium
 - **b.** 14.5 mol copper
 - **c.** 0.275 mol mercury
 - **d.** 9.37×10^{-3} mol magnesium
- **97.** Calculate the amount in moles in each of the following quantities.
 - **a.** 3.01×10^{23} atoms of rubidium
 - **b.** 8.08×10^{22} atoms of krypton
 - **c.** 5 700 000 000 atoms of lead
 - **d.** 2.997×10^{25} atoms of vanadium
- **98.** Calculate the number of atoms in each of the following amounts.
 - a. 1.004 mol bismuth
 - **b.** 2.5 mol manganese
 - c. 0.000 0002 mol helium
 - d. 32.6 mol strontium
- **99.** Calculate the number of atoms in each of the following masses.
 - **a.** 54.0 g of aluminum
 - **b.** 69.45 g of lanthanum
 - c. 0.697 g of gallium
 - **d.** 0.000 000 020 g beryllium
- 100. Calculate the mass of the following numbers of atoms.
 - **a.** 6.022×10^{24} atoms of tantalum
 - **b.** 3.01×10^{21} atoms of cobalt
 - **c.** 1.506×10^{24} atoms of argon
 - **d.** 1.20×10^{25} atoms of helium

Problems Involving Molecules, Formula Units, and Ions

- **101.** Calculate the number of moles in each of the following masses.
 - a. 3.00 g of boron tribromide, BBr₃
 - **b.** 0.472 g of sodium fluoride, NaF
 - c. 7.50×10^2 g of methanol, CH₃OH
 - **d.** 50.0 g of calcium chlorate, Ca(ClO₃)₂
- **102.** Determine the mass of each of the following amounts.
 - **a.** 1.366 mol of NH₃
 - **b.** 0.120 mol of glucose, $C_6H_{12}O_6$
 - **c.** 6.94 mol barium chloride, BaCl₂
 - **d.** 0.005 mol of propane, C_3H_8
- 103. Calculate the number of molecules in each of the following amounts.
 - a. 4.99 mol of methane, CH₄

- **b.** 0.005 20 mol of nitrogen gas, N_2
- c. 1.05 mol of phosphorus trichloride, PCl₃
- **d.** 3.5×10^{-5} mol of vitamin C, ascorbic acid, $C_6H_8O_6$
- **104.** Calculate the number of formula units in the following amounts.
 - a. 1.25 mol of potassium bromide, KBr
 - **b.** 5.00 mol of magnesium chloride, MgCl₂
 - c. 0.025 mol of sodium carbonate, Na₂CO₃
 - **d.** 6.82×10^{-6} mol of lead(II) nitrate, Pb(NO₃)₂
- **105.** Calculate the amount in moles of the following numbers of molecules or formula units.
 - **a.** 3.34×10^{34} formula units of Cu(OH)₂
 - **b.** 1.17×10^{16} molecules of H₂S
 - c. 5.47×10^{21} formula units of nickel(II) sulfate, NiSO₄
 - **d.** 7.66×10^{19} molecules of hydrogen peroxide, H_2O_2
- **106.** Calculate the mass of each of the following quantities.
 - **a.** 2.41×10^{24} molecules of hydrogen, H₂
 - **b.** 5.00×10^{21} formula units of aluminum hydroxide, Al(OH)₃
 - c. 8.25×10^{22} molecules of bromine pentafluoride, BrF₅
 - **d.** 1.20×10^{23} formula units of sodium oxalate, $Na_2C_2O_4$
- **107.** Calculate the number of molecules or formula units in each of the following masses.
 - a. 22.9 g of sodium sulfide, Na₂S
 - **b.** 0.272 g of nickel(II) nitrate, Ni(NO₃)₂
 - c. 260 mg of acrylonitrile, CH₂CHCN

Mixed Review

- **108.** Calculate the number of moles in each of the following masses.
 - a. 0.039 g of palladium
 - **b.** 8200 g of iron
 - **c.** 0.0073 kg of tantalum
 - **d.** 0.006 55 g of antimony
 - e. 5.64 kg of barium
- 109. Calculate the mass in grams of each of the following amounts.
 - a. 1.002 mol of chromium
 - **b.** 550 mol of aluminum
 - **c.** 4.08×10^{-8} mol of neon
 - **d.** 7 mol of titanium
 - **e.** 0.0086 mol of xenon
 - **f.** 3.29×10^4 mol of lithium
- **110.** Calculate the number of atoms in each of the following amounts.
 - a. 17.0 mol of germanium
 - **b.** 0.6144 mol of copper
 - **c.** 3.02 mol of tin
 - **d.** 2.0×10^6 mol of carbon
 - e. 0.0019 mol of zirconium
 - **f.** 3.227×10^{-10} mol of potassium
- **111.** Calculate the number of moles in each of the following quantities.
 - **a.** 6.022×10^{24} atoms of cobalt
 - **b.** 1.06×10^{23} atoms of tungsten
 - **c.** 3.008×10^{19} atoms of silver