Optimal parameters

STATISTICAL THINKING IN PYTHON (PART 2)

Justin Bois

Lecturer at the California Institute of Technology

Histogram of Michelson's measurements

¹ Data: Michelson, 1880

CDF of Michelson's measurements

¹ Data: Michelson, 1880

Checking Normality of Michelson data

```
import numpy as np
import matplotlib.pyplot as plt
mean = np.mean(michelson_speed_of_light)
std = np.std(michelson_speed_of_light)
samples = np.random.normal(mean, std, size=10000)
```

CDF of Michelson's measurements

¹ Data: Michelson, 1880

CDF with bad estimate of st. dev.

¹ Data: Michelson, 1880

CDF with bad estimate of mean

¹ Data: Michelson, 1880

Optimal parameters

 Parameter values that bring the model in closest agreement with the data

Mass of MA large mouth bass

¹ Source: Mass. Dept. of Environmental Protection

Packages to do statistical inference

scipy.stats

Packages to do statistical inference

scipy.stats

statsmodels

Packages to do statistical inference

scipy.stats

statsmodels

hacker stats with numpy

¹ Knife image: D ² M Commons, CC BY ³ SA 3.0

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 2)

Linear regression by least squares

STATISTICAL THINKING IN PYTHON (PART 2)

Justin Bois

Lecturer at the California Institute of Technology

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Residuals

¹ Data retrieved from Data.gov (https://www.data.gov/)

Least squares

• The process of finding the parameters for which the sum of the squares of the residuals is minimal

Least squares with np.polyfit()

4.0370717009465555e-05

intercept

40.113911968641744

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 2)

The importance of EDA: Anscombe's quartet

STATISTICAL THINKING IN PYTHON (PART 2)

Justin Bois

Lecturer at the California Institute of Technology

¹ Data: Anscombe, The American Statistician, 1973

¹ Data: Anscombe, The American Statistician, 1973

Look before you leap!

Do graphical EDA first

¹ Data: Anscombe, The American Statistician, 1973

¹ Data: Anscombe, The American Statistician, 1973

¹ Data: Anscombe, The American Statistician, 1973

¹ Data: Anscombe, The American Statistician, 1973

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 2)

