Titanic: Machine Learning from Disaster

HARJONO, Natasha Valerie (Natasha)

TSUI, Ying Tsz (Yvonne)

WAHYU, Zoya Estella (Zoya)

Data Overview

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

TRAIN

891 people 12 columns Target Variable

TEST

481 people 11 columns Non Target Variable

Data Pre-Processing

P-CLASS CLASS 1 > CLASS 2 > CLASS 3

SEX

FEMALE > MALE

EMBARKED

C > Q > S

Number of Group Members

SEX AND AGE

MISSING VALUES

PassengerId	0
Survived	418
Pclass	0
Name	0
Sex	0
Age	263
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	1014
Embarked	2

AGE

```
for df in [train num, test num]:
    # get all the existed features
    age df = df[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass', 'Title']]
    # divide the passengers to known and unknown
    known age = age df[age df.Age.notnull()].values
   unknown age = age df[age df.Age.isnull()].values
    # y is tha target age
   y = known age[:, 0]
   # X is the feature value
   X = known age[:, 1:]
   # fit
   rfr = RandomForestRegressor(random state=15, n estimators=2000, n jobs=-1)
   rfr.fit(X, y)
   # use the model to predict
    age pred = rfr.predict(unknown age[:, 1::])
    df.loc[ (df['Age'].isnull()), 'Age' ] = age pred
train['Age'] = train num['Age']
test['Age'] = test num['Age']
del train num
del test num
```

Feature Engineering

Capt Col Countess Don Dona Dr Jonkheer Lady Major Master 61 Miss 260 Mlle Mme Mr 757 Mrs 197 Ms Rev Sir

TITLE

DECK

 $C90 \rightarrow C$, $B191 \rightarrow B$

FARE PER PERSON

Fare / No. of Group Members

FAMILY COUNT

Sibs + Parch

IS ALONE

0/1

Data Finalization

Transform the categorical features to numerical features. **get_dummies**

De	eck	Deck_A	Deck_B	Deck_C	Deck_D	Deck_E	Deck_F	Deck_G	Deck_T	Deck_X
	X	0	0	0	0	0	0	0	0	1
	С	0	0	1	0	0	0	0	0	0
	X	0	0	0	0	0	0	0	0	1
	С	0	0	1	0	0	0	0	0	0
	X	0	0	0	0	0	0	0	0	1

Data Finalization

- Drop "Passenger ID". (We didn't really drop it, but when being fed into model, it wasn't included in the train set)
- 2 Drop "Ticket" column

3 Drop "Cabin" column

x = train.iloc[:, 2:].values y = train.iloc[:, 1].values x_test = test.iloc[:, 2:].values

> x: 891 rows, 30 columns y: 891 rows, 1 column x test:418 rows, 30 columns

Data Finalization

	Passengerld	Survived	Sex	Age	SibSp	Parch	Fare	Died	FamilyCount	IsAlone	 Embarked_S	Deck_A	Deck_B	Deck_C	Deck_D	Deck_E	Deck_F
0	1	0	1	2	1	0	0	1	1	0	 1	0	0	0	0	0	0
1	2	1	0	3	1	0	3	0	1	0	 0	0	0	1	0	0	0
2	3	1	0	2	0	0	1	0	0	1	 1	0	0	0	0	0	0
3	4	1	0	3	1	0	3	0	Ť	0	 1	0	0	1	0	0	0
4	5	0	1	3	0	0	1	1	0	1	 1	0	0	0	0	0	0
5	6	0	1	2	0	0	1	1	0	1	 0	0	0	0	0	0	0
6	7	0	1	5	0	0	3	1	0	1	 1	0	0	0	0	1	0
7	8	0	1	0	3	1	2	1	4	0	 1	0	0	0	0	0	0
8	9	1	0	2	0	2	1	0	2	0	 1	0	0	0	0	0	0
9	10	1	0	1	1	0	2	0	1	0	 0	0	0	0	0	0	0

Model Selection

Model Selection

Linear Regression model: 45.73%

Naive Bayes Classifier model: 80.13%

Random Forest model: 98.77% Decision Tree model: 98.77%

KNN model: 81.71%

Logistic Regression model: 84.29%

A roughly estimation with default parameters.

Compare the score from different models and finally conclude that RF and Decision Tree model have a better performance.

Model Selection

More precise

More stable

All data could be used

Score Mean +/- Std

Random Forest: 80.69 + /- 2.97 % Decision Tree: 77.67 + /- 2.74 %

Random Forest

K-fold cross validation (K=5)

Hyperparameter **Tuning**

random forest = RandomForestClassifier(criterion='gini',

n estimators=1750,

min samples split=6, min samples leaf=6, max_features='auto', oob score=True, random state=42,

max depth=7,

n jobs=-1, verbose=1) GridsearchCV

n_estimators

max_depth

min_sample_split

min_sample_leaf

min_sample_split

max_features

Feature Selection

Subtract the least significant predictor of the model

+ **Re-fit** the remaining predictors to the model

ROC Curve

Confusion Matrix

Cross-Validation Data (cv=5)

TN: 412/712	FP: 34/712
FN: 95/712	TP: 171/712

Overall Error rate: 18.12%

Precision: 83.41% Recall : 64.29% F1 Score : 72.61% Test Data (Kaggle Accuracy: 0.78947)

TN: 232/418	FP: 28/418
FN: 60/418	TP: 98/418

Overall Error rate: 21.05%

Precision: 77.78% Recall : 62.03% F1 Score : 69.01%

Problems and Mistakes

- Filling in missing values on "Age"
 - Transform categorical data into numerical data before feeding into Random Forest Regressor
- Did not remove outliers
 - "Fare" column spread: [0, 512], mean: 32.2, std: 49.7
- Accuracy score stuck
 - Only tried to optimize the Random Forest Model
 - Model Assessment only after Model Selection

Problems and Mistakes

- Filling in missing values on "Age" indicator data
 - Transform categorical data into numerical data before feeding into Random Forest Regressor
- Did not remove outliers Mean + 10 × Std

- "Fare" column spread: [0, 512], mean: 32.2, std: 49.7
- Accuracy score stuck

- Only tried to optimize the Random Forest Model
- Model Assessment only after Model Selection

Q and A