

# 腾讯互娱DB管理平台GCS的迭代路径



# agenda

- 精品游戏存储的难题
- Services Window自助化
- GCS 1.X 3.X的演进之路
  - GCS1.0 高可用技术
  - GCS2.0 MySQL分支定制
  - GCS3.0 存储层云化
- GCS 4.X的规划
- Q&A





#### 精品游戏存储的难题

#### 基础DB管理能 力

- 基础管理需求多
- 日常变更频繁

痛点1

#### 透明数据存储能力

- 硬件故障影响面广
- 快速加字段需求大
- Innodb存储优化难

痛点Ⅱ

#### 动态运营能力

- 透明扩缩容能力
- 数据化运营能力

痛点Ⅲ







#### 精品游戏存储的难题 - 痛点1运营效率低

• 几个核心数据

250+款游戏(端游+手游)、10000+台服务器、20000+个实例 690次SQL变更/月,人均每天支撑2个业务SQL变更,人均管理着500台机器、1000个实例

• DBA管理的进程,从进程托管到机器托管

| 按数据库分类    | 进程名                                                       |  |
|-----------|-----------------------------------------------------------|--|
| oracle    | ora_pmon, ora_smon                                        |  |
| mysq1     | mysqld, mysqld_safe, mysql-proxy                          |  |
| sqlserver | sqlservr.exe, SQLAGENT.EXE, sqlbrowser.exe, sqlwriter.exe |  |
| mongodb   | mongod, mongos                                            |  |
| redis     | redis-server, nutcracker                                  |  |
| Memcache  | memcache                                                  |  |
| tcaplus   | tca-server, tca-proxy                                     |  |



#### 精品游戏存储的难题 - 痛点2 玩家体验差

硬件故障影响玩家时间长







#### 精品游戏存储的难题 - 痛点2: 版本停机时长

高星级业务变更加字段停机时间长



## 精品游戏存储的难题 - 痛点3: 成本高

- 2/3机器处在低负载状态
- 不同大区对应DB忙闲不均





## Services Window自助化

- 痛点1的应对思路
  - 以统一的Interface管理不同的DB存储类型
  - 提升DB管理效率、释放人力(90%以上日常需求自助化)





## Services Window自助化

流程设计



## Services Window自助化



#### GCS 1.X - 3.X的演进之路

- 痛点2-3的应对思路
  - GCS 1.0 高可用技术
  - GCS 2.0 定制MySQL分支
    - 解决快速加字段问题
    - 解决大字段(blob/text)的压缩问题
    - tmysqlparse语法自动检测工具
  - GCS 3.0 存储云化
    - 解决CPU/MEM/IO的扩展性问题
    - 实现在线扩容及缩容
    - 透明分库分表





#### GCS 1.X-3.X的演进之路-GCS系统架构



#### GCS 1.X - 3.X的演进之路 - GCS1.0 高可用技术

- 数据切换保护及例行化checksum
  - chunk-size-exact,数据块切分不均在可重复度隔离级别下的"锁数据"问题





#### GCS 1.X - 3.X的演进之路 - GCS1.0 高可用技术

- mysql-proxy admin接口扩展
  - refresh backends, refresh users
  - show processlist, refresh connlog
- 故障探测两段式仲裁及GM中控切换
  - 两个监测点同时认为故障checkmysql、checkssh
  - Double check | Slave Status Checksum Time Delay
  - 插件式支持MSSQL、Redis等存储介质







#### GCS 1.X - 3.X的演进之路 - GCS1.0 高可用技术

- 业务应用效果
  - 52%线上业务接入,涵盖多种类型端游及全部手游
  - 60S内,从故障发生到成功实施切换



TMySQL版本迭代 <a href="https://github.com/TencentDBA/TMySQL">https://github.com/TencentDBA/TMySQL</a>

| 版本         | 主要功能                                                    | 详细描述                                                                                                                                  | 发布时间       |
|------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|
| TMySQL 1.1 | 在线加字段                                                   | 秒级实现,支持MySQL分区表                                                                                                                       | 2012/12/10 |
| TMySQL 1.2 | 内存分配优化<br>核心BUG修复                                       | Valgrind代码修改定位内存使用过多问题<br>深入剖析glibc内存碎片问题<br><b>集成tcmalloc作为TMySQL内存管理模块</b><br>修复 <b>5</b> 个重要mysql bugs,发现并定位 <b>15</b> 个mysql bugs | 2013/3/20  |
| TMySQL 1.3 | (In-Place) Upgrade<br>安全性增强<br>运营特性增强<br><b>备份、恢复增强</b> | 支持MySQL5.0 → TMySQL的原地快速升级<br>增加TMySQL客户端程序名审计、密码二次加密<br>增加Alter Log日志记录<br>支持跨库表一致性备份<br>并行数据恢复加速(A5 60% Z3 90%缩短数据导入时间)             | 2013/6/6   |
| TMySQL 1.4 | SqlParse工具开发<br>Binlog多线程导入<br>innodb字段压缩实现             | 集成语法、语义检查到OSS的变更子系统,提升业务变更效率<br>Binlog并发导入,缩短业务数据的回档时间<br>通过配置化的innodb底层字段压缩,提升mysql的cache利用率                                         | 2013/11/1  |



- TMySQL在线加字段
  - 1秒以内完成加字段,后期性能损失2%-5%
  - 安装或者升级到TMySQL,并且alter table tbl row\_format=GCS;









- TMySQL Innodb blob/text列压缩 背景
  - 结构体序列化存储
  - 较多C/C++ NULL占位符,序列化 ≠ 压缩
  - DBA推动研发改动几行代码困难

```
^A\0\\^P4週煞E\0~Z1_\0\0\0^B\0^A\0^L\0\0\0\0\0\0\0\0\0^A \0\0^A\0\\^PtSL?E:
0^A\0^M\0\0\0\0\0\0\0\0\0^A\0^A\0\\^P ~TL沏肎0~Z1J\0\0\0^A\0^A\0^N\0\0\0
 \0\0\0\^A\0\\^P\0 钱]\0~Z1\\\0\0\0^A\0^A\0^0\0\0\0\0\0\0\0\0\0\0\
D3\0\0\0^0\0^A\0^P\0\0\0\0\0\0\0^A\0\0\0^A\0\0^A\0\\^P^L~@L佩t\0~ZD2\0\0\0^A\0
0\\^P^L~FL佩z\0~Z^J~\0\0\0^D\0^A\0^S\0\0\0\0\0\0^A\0\0\0^A \0\0^A\0\\^P5AM^C?
\0^A\0^T\0\0\0\0\0^A\0\0\0^A\0\0\0^A\0\\^P^L~IL佩}\0~Z^]]\0\0\0^D\0^A\0^U\0\
     \0\0^A\0\\^PL-L?[1m ^0~C\0~Z^]2\0\0\0^C\0^A\0^V\0\0\0\0\0\0^A\0\0\0^A
0~Z^]#\0\0\0^N\0^A\0^N\0\0\0\0\0\0\0\0\0\0\0^A \0\0^A\0\\^P.j^\L洽 0~Z^]!\0\0\0
0\0\0\0\0\0^A \0\0^A\0\\^P^MRL \ \\0~Z^] \0\0\07\0^A\0^Y\0\0\0\0\0\0\0\0\0\0\0\
^Pc鵏?0\0?[1m ~~S碶0\0\0^A\0^A\0^A\0\0\0\0\0\0\0\0\0\0^A                     ^B\0\0\0\0^^
```



- TMySQL Innodb blob/text列压缩 使用及效果
  - 创建表

```
Create table t1 (
 C1 int primary key,
 C2 blob compressed,
 C3 text character set gbk compressed,
 C4 blob
 ) engine = innodb row format=GCS
```

- 修改表

Alter table t1 change c4 c4 blob compressed.

某业务数据,压缩前51G,压缩后7.3G,压缩率达14.3%







• TMySQL Innodb blob/text列压缩 性能对比

| 对比纬度 | 数据不压缩 | row_format=compressed | BLOB列压缩 |
|------|-------|-----------------------|---------|
| 数据量  | 51G   | 24G                   | 7. 1G   |
| QPS  | 1174  | 1524                  | 3994    |
| IO   | 100%  | 100%                  | 30%     |
| CPU  | 15%   | 45%                   | 50%     |

利用空闲的CPU计算能力换取IO能力的提升!





TMySQL Tmysqlparse语法自动检测工具



自 2013-12-01 至 2014-05-01 半年时候, tmysqlparse 总计在 2777 个提单中检测出 120 例语法错误,平均每天大概 1.5 个语法错误的单据被提前发现。

#### GCS 1.X - 3.X的演进之路 - GCS3.0 存储层云化

- 透明DB中间件-Spider
- CPU/MEM/IO扩展
- 透明分库分表,应用无关性





# GCS4.X规划

- 从功能到性能
  - TMySQL迁移到MySQL 5.6
  - 取消MySQL的锁粒度

- 数据化运营
  - 数据库优化标准化进而形成有竞争力的产品或服务
  - SQL变更时间自动化预估
    - 需整合现网备份时间数据、实例Schema数据、表信息数据等









# GCS的迭代路径

• DBHA 高可用 (2012.1至2012.5)

- mysql-proxy定制
- DNS集群
- 两段式监测点探测及 GM切换
- checksum例行化
- 支持Redis及MSSQL

• TMySQL加字段及 Innodb透明压缩 (2012.5至2013.1)

- 在线加字段支持分区表
- Innodb大字段透明压缩
- 内存性能问题分析及 tcmalloc引入
- 语法自动检测工具

• Spider云化 (2013.1至2013.9)

- 扩展性、动态扩缩容
- DB负载得以平均
- DB成本缩减

- 数据化运营 (2013.9至今)
- SQL变更时间预估
- SQL性能自动分析及优化







# Q&A THANKS







## 附录1: TMySQL在线加字段与业界的对比

| 在线加字段方案      | 优势                  | 劣势                                                        | 谁在使用           |
|--------------|---------------------|-----------------------------------------------------------|----------------|
| Facebook OSC | 支持更多类型的DDL,外围<br>实现 | 触发器实现,性能至少损失<br>20%<br>对负载高的DB,加字段完成<br>时间不可控<br>外围管理成本较高 | Facebook、新浪、淘宝 |
| ·            |                     | 数据需要拷贝,磁盘压力大<br>GA不足半年,不建议使用                              |                |
| TMySQL       | 贝,<br>只需修改数据字典, 立即  | 不是通用的DDL Online方案,但未来会集成到5.6的MySQL版本                      | 腾讯互娱           |

TMySQL字段扩展达到商业数据库Oracle 11g,MSSQL 2012的能力!







# 附录2: Spider与业界的对比

| 云 | 化存储方案   | 可扩展性                              | 兼容性                                                           | 成熟度                                        |
|---|---------|-----------------------------------|---------------------------------------------------------------|--------------------------------------------|
|   | SPIDER  | 优<br>接入层、存储层可自由<br>扩展             | 良<br>应用层透明,支持大部分<br>SQL,但不宜过于复杂,事<br>务支持程度有限。<br>对mysql版本无要求。 | 良<br>未release,但已通过基本<br>的压测,待解决问题已基本<br>明确 |
| C | CDB+CBS | 中<br>存储层(TSSD)可扩展,<br>但CDB本身会成为瓶颈 | 良<br>与普通mysql没有差别,理<br>论上支持任意SQL及事务。<br>仅支持CDB订制的mysql版<br>本  | 优<br>已在生产环境中使用                             |
|   | Fabric  | 良<br>接入层、存储层可自由<br>扩展,但存在中央节点     | 中<br>应用层需要特定访问接口,<br>mysql需要5.6+                              | 中<br>未release                              |
| É | 自制proxy | 优<br>与spider一致                    | 中<br>支持SQL有限,需要开发支<br>持                                       | 差<br>需重新开发                                 |



