June 23, 2018

# 1 Description

## 2 Overview



## 2.1 Objects Overview

## 2.1.1 Overview for 31 steps

Runtime by Optimization for 31 steps



#### 2.1.2 Overview for 40 steps



## 2.1.3 Overview for 53 steps



## 2.1.4 Overview for 68 steps



## 2.1.5 Overview for 89 steps



## 2.1.6 Overview for 116 steps





## 2.1.7 Overview for 151 steps



## 2.1.8 Overview for 197 steps





## 2.1.9 Overview for 256 steps





## 2.1.10 Overview for 332 steps

#### Runtime by Optimization for 332 steps



## 2.1.11 Overview for 432 steps



## 2.1.12 Overview for 562 steps



## 2.1.13 Overview for 731 steps



## 2.1.14 Overview for 951 steps



## $2.1.15 \quad \hbox{Overview for 1236 steps}$





## 2.1.16 Overview for 1607 steps





## 2.1.17 Overview for 2089 steps



## 2.1.18 Overview for 2716 steps

#### Runtime by Optimization for 2716 steps



## 2.1.19 Overview for 3531 steps





## $\mathbf{2.1.20}\quad \mathbf{Overview} \,\, \mathbf{for} \,\, \mathbf{4590} \,\, \mathbf{steps}$



## 2.1.21 Overview for 5967 steps





## 2.1.22 Overview for 7757 steps



## $2.1.23 \quad \hbox{Overview for } 10085 \hbox{ steps}$



## 2.1.24 Overview for 13110 steps





## $2.1.25 \quad \hbox{Overview for } 17043 \hbox{ steps}$





## 2.1.26 Overview for 22157 steps



## 2.1.27 Overview for 28804 steps



## 2.1.28 Overview for 37445 steps





## **2.1.29** Overview for 48679 steps





## 2.1.30 Overview for 63282 steps





## **2.1.31** Overview for **82267** steps



## $2.1.32 \quad \text{Overview for } 106948 \text{ steps}$





## $2.1.33 \quad \text{Overview for } 139032 \text{ steps}$



## $2.1.34\quad \text{Overview for } 180742 \text{ steps}$



## 3 Research Hypotheses

No Input

Basic

# 3.1 RH1: Runtime time for Hylaa is equals than runtime time for Warm

Decomp

Optimization

Hylaa

Warm



#### 3.1.1 RH1.1: Object 31 steps

#### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6929 0.7270 0.7402 0.7371 0.7560 0.7729
```



```
## Shapiro-Wilk normality test
##

## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time
## W = 0.92348, p-value = 0.3869
##

## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.386919454155626"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6628 0.6856 0.7329 0.7237 0.7640 0.7709
```



# Comparison

time

## Runtime by Optimization for 31 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data)
## F = 0.41659, num df = 9, denom df = 9, p-value = 0.2082
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1034749 1.6771870
## sample estimates:
## ratio of variances
##
            0.4165895
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.208187552120455"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data)
## t = 0.82637, df = 18, p-value = 0.4194
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.02062869 0.04737840
## sample estimates:
## mean of x mean of y
## 0.7370949 0.7237201
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.419413568997939"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7370949268343"
## [1] "Mean Runtime for Warm: 0.7237200736998"
## [1] "Absolute difference: 0.0133748531345"
## Runtime for Hylaa is 1.8480699403742 \% greater than
## Runtime for Warm
```

#### 3.1.2 RH1.2: Object 40 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7104 0.7190 0.7355 0.7432 0.7493 0.8064
```



```
## Shapiro-Wilk normality test
##

## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time
## W = 0.84556, p-value = 0.05142
##

## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0514195741817329
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6924 0.7288 0.7488 0.7476 0.7711 0.8021
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.887960927324343"

# Comparison

time

#### Runtime by Optimization for 40 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time and subset(json_data)
## F = 0.84799, num df = 9, denom df = 9, p-value = 0.81
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2106286 3.4140009
## sample estimates:
## ratio of variances
##
            0.8479895
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.80999212614282"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time and subset(json_data)
## t = -0.293, df = 18, p-value = 0.7729
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.03658369 0.02762840
## sample estimates:
## mean of x mean of y
## 0.7431680 0.7476457
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.772870604957377"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7431680440903"
## [1] "Mean Runtime for Warm: 0.7476456880569"
## [1] "Absolute difference: 0.0044776439666"
## Runtime for Warm is 0.60250760271602 \% greater than
## Runtime for Hylaa
```

#### 3.1.3 RH1.3: Object 53 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6997 0.7278 0.7623 0.7544 0.7732 0.8157
```



```
## Shapiro-Wilk normality test
##

## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time
## W = 0.95914, p-value = 0.776
##

## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.776029544672673"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7133 0.7471 0.7863 0.7712 0.7937 0.8130
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.257924554875211"

# Comparison

time

60.000-

## Runtime by Optimization for 53 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## F = 1.1697, num df = 9, denom df = 9, p-value = 0.8192
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2905437 4.7093146
## sample estimates:
## ratio of variances
##
             1.169727
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.819169805244097"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## t = -1.0624, df = 18, p-value = 0.3021
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05003068 0.01642558
## sample estimates:
## mean of x mean of y
## 0.7543800 0.7711825
##
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.302110336252165"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7543799638747"
## [1] "Mean Runtime for Warm: 0.7711825132371"
## [1] "Absolute difference: 0.0168025493624"
## Runtime for Warm is 2.22733240104861 % greater than
## Runtime for Hylaa
```

#### 3.1.4 RH1.4: Object 68 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7376 0.7525 0.7618 0.7645 0.7681 0.8046
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time
## W = 0.92932, p-value = 0.4412
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.44123425938003"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6689 0.7051 0.7280 0.7296 0.7625 0.7815
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.753294225891065"

# Comparison

time

## Runtime by Optimization for 68 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa")$time and subset(json_data, treatment == "Hyla
## F = 0.25801, num df = 9, denom df = 9, p-value = 0.05614
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06408574 1.03874195
## sample estimates:
## ratio of variances
##
                                                 0.2580088
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.0561446074554752"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data)
## t = 2.6236, df = 18, p-value = 0.01722
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.006940516 0.062738744
## sample estimates:
## mean of x mean of y
## 0.7644785 0.7296388
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0172232044414237"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7644784688949"
## [1] "Mean Runtime for Warm: 0.7296388387681"
## [1] "Absolute difference: 0.0348396301268"
## Runtime for Hylaa is 4.77491442007421 % greater than
## Runtime for Warm
```

#### 3.1.5 RH1.5: Object 89 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7273 0.7541 0.7716 0.7796 0.8069 0.8377
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time
## W = 0.92836, p-value = 0.4319
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.431928741976726"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7299 0.7413 0.7570 0.7551 0.7618 0.7850
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.48644486648755"

# Comparison

time

50.000-

40.000 -





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa")$time == "the proper == "steps89" object == "s
## F = 3.7978, num df = 9, denom df = 9, p-value = 0.0597
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
                   0.9433294 15.2900768
## sample estimates:
## ratio of variances
##
                                                     3.797839
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.0596953035873224"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data)
## t = 1.8721, df = 18, p-value = 0.07753
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.002991089 0.051935323
## sample estimates:
## mean of x mean of y
## 0.7796074 0.7551353
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.0775319544685017"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7796074151993"
## [1] "Mean Runtime for Warm: 0.7551352977755"
## [1] "Absolute difference: 0.0244721174238"
## Runtime for Hylaa is 3.24075930444394 % greater than
## Runtime for Warm
```

#### 3.1.6 RH1.6: Object 116 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7306 0.7757 0.7947 0.7856 0.8101 0.8193
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time
## W = 0.86307, p-value = 0.08294
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0829366496429817
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7072 0.7494 0.7662 0.7585 0.7697 0.7853
```



## Shapiro-Wilk normality test
##
## data: subset(json\_data, treatment == "Warm" & object == "steps116")\$time
## W = 0.9028, p-value = 0.2351
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.235105043492915"

# Comparison

##

time

## Runtime by Optimization for 116 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## F = 1.921, num df = 9, denom df = 9, p-value = 0.3449
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4771615 7.7341344
## sample estimates:
## ratio of variances
##
              1.92105
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.34490839218464"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## t = 2.1608, df = 18, p-value = 0.04443
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.0007511088 0.0534294656
## sample estimates:
## mean of x mean of y
## 0.7855974 0.7585071
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0444344497096994"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7855973720549"
## [1] "Mean Runtime for Warm: 0.7585070848467"
## [1] "Absolute difference: 0.0270902872081999"
## Runtime for Hylaa is 3.57152724732625 % greater than
## Runtime for Warm
```

#### 3.1.7 RH1.7: Object 151 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7351 0.7457 0.7654 0.7718 0.7998 0.8188
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time
## W = 0.8855, p-value = 0.1508
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.15083040609515"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6943 0.7228 0.7333 0.7388 0.7562 0.7936
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.913118876153724"

Comparison

time

30.000-

#### Runtime by Optimization for 151 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time and subset(json_data)
## F = 1.3273, num df = 9, denom df = 9, p-value = 0.68
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3296822 5.3436964
## sample estimates:
## ratio of variances
##
             1.327299
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.680017210850041"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time and subset(json_data)
## t = 2.4293, df = 18, p-value = 0.02583
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.004463071 0.061578399
## sample estimates:
## mean of x mean of y
## 0.7718092 0.7387885
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0258252063294328"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7718092203141"
## [1] "Mean Runtime for Warm: 0.7387884855271"
## [1] "Absolute difference: 0.0330207347870001"
## Runtime for Hylaa is 4.46957897069023 % greater than
## Runtime for Warm
```

#### 3.1.8 RH1.8: Object 197 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6995 0.7490 0.7739 0.7777 0.8150 0.8338
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time
## W = 0.94142, p-value = 0.569
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.568954856828926"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6681 0.7978 0.8192 0.7995 0.8279 0.8340
```



## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.000622303170797109"

# Comparison

time

50.000-

40.000-

## Runtime by Optimization for 197 steps



```
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 27, p-value = 0.08921
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis not rejected. P-value: 0.089209552057849
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.777667427063"
## [1] "Mean Runtime for Warm: 0.799469780922"
```

## [1] "Absolute difference: 0.021802353859"

## Runtime for Hylaa

## Runtime for Warm is 2.80355754918789 % greater than

## 3.1.9 RH1.9: Object 256 steps

## Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7300 0.7691 0.7957 0.7970 0.8271 0.8542
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time
## W = 0.964, p-value = 0.8303
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.830310406698625"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7946 0.8232 0.8536 0.8482 0.8703 0.9003
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Warm" & object == "steps256")$time
## W = 0.97206, p-value = 0.9092
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.909224489734146"
```

## Comparison

## Runtime by Optimization for 256 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## F = 1.4142, num df = 9, denom df = 9, p-value = 0.614
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3512696 5.6935994
## sample estimates:
## ratio of variances
##
              1.41421
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.613964351705911"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## t = -3.1826, df = 18, p-value = 0.005156
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.08489653 -0.01738104
## sample estimates:
## mean of x mean of y
## 0.7970330 0.8481718
## [1] "T-test: Null Hypothesis rejected. P-value: 0.00515550553759939"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7970329999924"
## [1] "Mean Runtime for Warm: 0.8481717824937"
## [1] "Absolute difference: 0.0511387825013001"
## Runtime for Warm is 6.4161436856175 \% greater than
## Runtime for Hylaa
```

#### 3.1.10 RH1.10: Object 332 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7116 0.7462 0.7788 0.7682 0.7952 0.8058
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time
## W = 0.87995, p-value = 0.1303
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.130315495202675"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7992 0.8122 0.8202 0.8199 0.8297 0.8375
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.858987863455774"

Comparison

### Runtime by Optimization for 332 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data)
## F = 8.1607, num df = 9, denom df = 9, p-value = 0.004485
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 2.027007 32.855000
## sample estimates:
## ratio of variances
## 8.160717
##
## [1] "Homogeneity of variances: FALSE. P-value: 0.00448525981497427"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian disc
```

##

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "hylaa" &
## t = -4.4321, df = 11.173, p-value = 0.0009709
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.07727876 -0.02605801
## sample estimates:
## mean of x mean of y
## 0.7681974 0.8198658
## [1] "T-test: Null Hypothesis rejected. P-value: 0.000970941286228814"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7681974172593"
## [1] "Mean Runtime for Warm: 0.8198657989502"
## [1] "Absolute difference: 0.0516683816908999"
## Runtime for Warm is 6.72592494195533 % greater than
## Runtime for Hylaa
```

#### 3.1.11 RH1.11: Object 432 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7247 0.8047 0.8112 0.8107 0.8280 0.8544
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps432")$time
## W = 0.82468, p-value = 0.02887
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.0288658654097958"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8355 0.8482 0.8939 0.8827 0.9070 0.9255
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.152792850523887"

# Comparison

time

60.000-





```
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 4, p-value = 0.0001299
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 0.000129901058693628'
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8107497930526"
## [1] "Mean Runtime for Warm: 0.8827400207519"
```

## [1] "Absolute difference: 0.0719902276993001" ## Runtime for Warm is 8.87946297565438 % greater than

## Runtime for Hylaa

# 3.1.12 RH1.12: Object 562 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7673 0.8121 0.8273 0.8211 0.8393 0.8746
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time
## W = 0.93601, p-value = 0.5095
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.509497615860695"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8617 0.9117 0.9595 0.9538 0.9929 1.0640
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Warm" & object == "steps562")$time
## W = 0.98206, p-value = 0.9752
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.97524131457127"
```

### Runtime by Optimization for 562 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time and subset(json_data)
## F = 0.28648, num df = 9, denom df = 9, p-value = 0.0766
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07115856 1.15338276
## sample estimates:
## ratio of variances
##
             0.286484
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.0766012347568488"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time and subset(json_data)
## t = -6.09, df = 18, p-value = 9.377e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.17854537 -0.08695398
## sample estimates:
## mean of x mean of y
## 0.8210984 0.9538481
## [1] "T-test: Null Hypothesis rejected. P-value: 9.37740126068088e-06"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8210983753205"
## [1] "Mean Runtime for Warm: 0.9538480520249"
## [1] "Absolute difference: 0.1327496767044"
## Runtime for Warm is 16.1673291160251 % greater than
## Runtime for Hylaa
```

#### 3.1.13 RH1.13: Object 731 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.8045 0.8548 0.8749 0.8668 0.8896 0.8956
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps731")$time
## W = 0.86638, p-value = 0.09069
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0906925091728528
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.032 1.082 1.091 1.088 1.103 1.114
```



time

60.000-

### Runtime by Optimization for 731 steps



```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 0, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8668062448501"
## [1] "Mean Runtime for Warm: 1.088253617287"
## [1] "Absolute difference: 0.2214473724369"
## Runtime for Warm is 25.5475054261054 % greater than
```

## Runtime for Hylaa

# 3.1.14 RH1.14: Object 951 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8356 0.8536 0.8991 0.8888 0.9216 0.9388
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time
## W = 0.90483, p-value = 0.2474
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.247358608075924"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.230 1.294 1.306 1.302 1.313 1.338
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Warm" & object == "steps951")$time
## W = 0.84474, p-value = 0.05027
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0502723510901298
```

### Runtime by Optimization for 951 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time and subset(json_data)
## F = 1.7784, num df = 9, denom df = 9, p-value = 0.404
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4417271 7.1597900
## sample estimates:
## ratio of variances
##
             1.778391
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.404041921624122"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time and subset(json_data)
## t = -26.866, df = 18, p-value = 5.606e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4451837 -0.3806062
## sample estimates:
## mean of x mean of y
## 0.8888239 1.3017189
##
## [1] "T-test: Null Hypothesis rejected. P-value: 5.606416837992e-16"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8888238906861"
## [1] "Mean Runtime for Warm: 1.301718878745"
## [1] "Absolute difference: 0.4128949880589"
## Runtime for Warm is 46.4540830175231 % greater than
## Runtime for Hylaa
```

#### 3.1.15 RH1.15: Object 1236 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.9166 0.9495 0.9814 0.9762 0.9983 1.0260
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1236")$time
## W = 0.94652, p-value = 0.6275
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.627527133287823"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.536 1.595 1.655 1.629 1.660 1.664
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Warm" & object == "steps1236")$time
## W = 0.76803, p-value = 0.005917
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.00591727401564559"
```





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 0, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.9761788368224"
## [1] "Mean Runtime for Warm: 1.628886413575"
## [1] "Absolute difference: 0.6527075767526"
## Runtime for Warm is 66.8635246055175 % greater than
```

## Runtime for Hylaa

# $\mathbf{3.1.16} \quad \mathbf{RH1.16: \ Object \ 1607 \ steps}$

### Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.024 1.054 1.057 1.060 1.071 1.103
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1607")$time
## W = 0.9449, p-value = 0.6087
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.608652897163905"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.163 2.197 2.222 2.217 2.240 2.259
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Warm" & object == "steps1607")$time
## W = 0.95354, p-value = 0.7104
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.710439408056453"
```

### Runtime by Optimization for 1607 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
##
           F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa")$time == "steps1607" Hylaa" & object == "steps1607" Hylaa" Hylaa" & object == "steps1607" Hylaa" Hylaa
## F = 0.4755, num df = 9, denom df = 9, p-value = 0.2833
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1181066 1.9143464
## sample estimates:
## ratio of variances
##
                                                  0.4754966
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.283340876904901"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time
## t = -96.424, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.181473 -1.131086
## sample estimates:
## mean of x mean of y
## 1.060442 2.216722
##
## [1] "T-test: Null Hypothesis rejected. P-value: 6.97024301271417e-26"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.060442185402"
## [1] "Mean Runtime for Warm: 2.216721510887"
## [1] "Absolute difference: 1.156279325485"
## Runtime for Warm is 109.037469595447 \% greater than
## Runtime for Hylaa
```

#### 3.1.17 RH1.17: Object 2089 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.032 1.072 1.087 1.085 1.104 1.125
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2089")$time
## W = 0.96099, p-value = 0.7971
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.797065263315739"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.284 3.352 3.362 3.358 3.388 3.404
```



```
##
##
##
## data: subset(json_data, treatment == "Warm" & object == "steps2089")$time
  W = 0.90037, p-value = 0.2212
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.221178709949945"
```

#### Runtime by Optimization for 2089 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
##
          F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa")$time == "steps2089" object == "steps
## F = 0.56761, num df = 9, denom df = 9, p-value = 0.4116
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1409856 2.2851830
## sample estimates:
## ratio of variances
##
                                                  0.5676071
## [1] "Homogeneity of variances: TRUE. P-value: 0.411647724417158"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time
## t = -146.37, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.305652 -2.240401
## sample estimates:
## mean of x mean of y
## 1.085403 3.358430
##
## [1] "T-test: Null Hypothesis rejected. P-value: 3.84104938317838e-29"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.085403156281"
## [1] "Mean Runtime for Warm: 3.358429694177"
## [1] "Absolute difference: 2.273026537896"
## Runtime for Warm is 209.417719558163 \% greater than
## Runtime for Hylaa
```

#### 3.1.18 RH1.18: Object 2716 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.153 1.233 1.251 1.244 1.263 1.287
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2716")$time
## W = 0.87909, p-value = 0.1274
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.12738118267151"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.363 5.391 5.407 5.421 5.431 5.555
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Warm" & object == "steps2716")$time
## W = 0.81793, p-value = 0.02392
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.0239209631124515"
```

### Runtime by Optimization for 2716 steps



```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 0, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.243748641014"
## [1] "Mean Runtime for Warm: 5.420654869079"
## [1] "Absolute difference: 4.176906228065"
## Runtime for Warm is 335.832023475392 % greater than
```

## Runtime for Hylaa

# $3.1.19 \quad \text{RH}1.19 \text{: Object 3531 steps}$

### Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.319 1.340 1.350 1.350 1.359 1.382
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps3531")$time
## W = 0.98776, p-value = 0.9933
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.993277943776764"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 9.041 9.693 9.828 9.869 10.020 11.110
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Warm" & object == "steps3531")$time
## W = 0.90929, p-value = 0.2761
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.276148745026355"
```

### Runtime by Optimization for 3531 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps3531")$time and subset(js
## F = 0.00099512, num df = 9, denom df = 9, p-value = 4.067e-12
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0002471728 0.0040063328
## sample estimates:
## ratio of variances
## 0.0009951164
##
## [1] "Homogeneity of variances: FALSE. P-value: 4.06725449957138e-12"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dist
```

##

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps3531")$time and subset(json_data, treatment == "Hylaa" & object == "steps3531")$time
## t = -49.035, df = 9.0179, p-value = 2.934e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.911765 -8.125987
## sample estimates:
## mean of x mean of y
## 1.349807 9.868683
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.9337317042939e-12"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.349807333946"
## [1] "Mean Runtime for Warm: 9.868683362008"
## [1] "Absolute difference: 8.518876028062"
## Runtime for Warm is 631.117924300951 % greater than
## Runtime for Hylaa
```

#### 3.1.20 RH1.20: Object 4590 steps

### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.448 1.491 1.510 1.500 1.516 1.526
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps4590")$time
## W = 0.88116, p-value = 0.1346
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.134566691717643"
```

#### Runtime for Warm

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.1.21 RH1.21: Object 5967 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.706 1.748 1.774 1.767 1.785 1.817
```



```
## Shapiro-Wilk normality test
##

## data: subset(json_data, treatment == "Hylaa" & object == "steps5967")$time
## W = 0.93205, p-value = 0.4683
##

## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.468324949837865"
```

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 5967 steps



# 3.1.22 RH1.22: Object 7757 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.019 2.044 2.087 2.077 2.108 2.118
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps7757")$time
## W = 0.89136, p-value = 0.1756
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.175640560398436"
```

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 7757 steps



# 3.1.23 RH1.23: Object 10085 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.460 2.492 2.501 2.503 2.517 2.538
```



```
## Shapiro-Wilk normality test
##

## data: subset(json_data, treatment == "Hylaa" & object == "steps10085")$time
## W = 0.98381, p-value = 0.9823
##

## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.982277067638566"
```

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.1.24 RH1.24: Object 13110 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.939 2.987 3.016 3.050 3.024 3.430
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps13110")$time
## W = 0.65237, p-value = 0.0002343
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.000234335774565787"
```

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 13110 steps



# 3.1.25 RH1.25: Object 17043 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.629 3.681 3.709 3.702 3.723 3.763
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps17043")$time
## W = 0.97882, p-value = 0.9585
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.958546785330543"
```

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 17043 steps



# $\mathbf{3.1.26} \quad \mathbf{RH1.26: \ Object \ 22157 \ steps}$

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.491 4.572 4.594 4.593 4.616 4.679
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps22157")$time
## W = 0.97327, p-value = 0.9194
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.919388955922961"
```

time

```
## [1] "Sample size: 0"

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 22157 steps



# 3.1.27 RH1.27: Object 28804 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.654 5.720 5.767 5.771 5.803 5.926
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps28804")$time
## W = 0.94971, p-value = 0.6651
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.66510382139283"
```

```
## [1] "Sample size: 0"

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 28804 steps



# 3.1.28 RH1.28: Object 37445 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.072 7.116 7.200 7.209 7.306 7.356
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps37445")$time
## W = 0.91587, p-value = 0.3238
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.32377452748614"
```

```
## [1] "Sample size: 0"

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 37445 steps



# 3.1.29 RH1.29: Object 48679 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 8.982 9.079 9.125 9.135 9.201 9.272
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps48679")$time
## W = 0.95111, p-value = 0.6816
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.681647465980239"
```

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime by Optimization for 48679 steps



# 3.1.30 RH1.30: Object 63282 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.59 11.73 11.78 11.80 11.82 12.06
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time
## W = 0.90816, p-value = 0.2686
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.268588784180786"
```

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

#### Runtime by Optimization for 63282 steps



## 3.1.31 RH1.31: Object 82267 steps

#### Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

#### Runtime for Warm

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





## 3.1.32 RH1.32: Object 106948 steps

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

#### Runtime for Warm

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





## 3.1.33 RH1.33: Object 139032 steps

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

#### Runtime for Warm

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





## 3.1.34 RH1.34: Object 180742 steps

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

#### Runtime for Warm

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.1.35 RH1 Results: Runtime Hylaa = Warm

| Table 1: RH1 Re        | esults per Object                |
|------------------------|----------------------------------|
| $31 { m steps}$        | Inconclusive                     |
| $40 { m steps}$        | Inconclusive                     |
| $53 { m steps}$        | Inconclusive                     |
| $68 { m steps}$        | Hylaa > Warm                     |
| $89 { m steps}$        | Inconclusive                     |
| $116 { m steps}$       | Hylaa > Warm                     |
| $151 { m steps}$       | Hylaa > Warm                     |
| $197 { m steps}$       | Inconclusive                     |
| $256 { m steps}$       | Hylaa < Warm                     |
| 332  steps             | $\mathrm{Hylaa} < \mathrm{Warm}$ |
| $432 { m steps}$       | Hylaa < Warm                     |
| $562 { m steps}$       | Hylaa < Warm                     |
| $731 { m steps}$       | Hylaa < Warm<br>Hylaa < Warm     |
| $951 { m steps}$       | Hylaa < Warm                     |
| $1236 { m steps}$      | Hylaa < Warm                     |
| $1607 { m steps}$      | Hylaa < Warm                     |
| $2089 { m steps}$      | Hylaa < Warm                     |
| $2716 { m steps}$      | Hylaa < Warm                     |
| $3531 { m steps}$      | Hylaa < Warm                     |
| $4590 { m steps}$      | Hylaa                            |
| $5967  \mathrm{steps}$ | Hylaa                            |
| $7757 { m steps}$      | Hylaa                            |
| $10085 { m \ steps}$   | Hylaa                            |
| $13110 { m \ steps}$   | Hylaa                            |
| $17043 { m \ steps}$   | Hylaa                            |
| $22157 { m steps}$     | Hylaa                            |
| $28804 { m steps}$     | Hylaa                            |
| $37445 { m steps}$     | Hylaa                            |
| $48679 { m steps}$     | Hylaa                            |
| $63282 { m steps}$     | Hylaa                            |
| $82267 { m steps}$     | None                             |
| $106948 { m steps}$    | None                             |
| $139032 { m steps}$    | None                             |
| $180742 { m steps}$    | None                             |
|                        |                                  |
|                        |                                  |

 $\begin{array}{lll} \mbox{Table 2: RH1 Results Summary} \\ \mbox{Hylaa} < \mbox{Warm:} & 32.3529412\% \\ \mbox{Hylaa} > \mbox{Warm:} & 8.8235294\% \\ \mbox{Hylaa:} & 32.3529412\% \\ \end{array}$ 

Warm: 0%

None: 11.7647059% Inconclusive: 14.7058824%

# 3.2 RH2: Runtime time for Hylaa is equals than runtime time for Decomp



3.2.1 RH2.1: Object 31 steps

Runtime for Decomp

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7112 0.7196 0.7436 0.7571 0.7751 0.8397
```



```
##
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps31")$time
## W = 0.86617, p-value = 0.09017
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0901724093671922
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6929 0.7270 0.7402 0.7371 0.7560 0.7729
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time
## W = 0.92348, p-value = 0.3869
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.386919454155626"
```

#### Runtime by Optimization for 31 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data, treatment == "Hylaa")$time == "steps31" & object == "steps31" 
## F = 0.35181, num df = 9, denom df = 9, p-value = 0.1356
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08738372 1.41637027
## sample estimates:
## ratio of variances
##
                                                 0.3518063
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.135584119840178"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data)
## t = -1.1603, df = 18, p-value = 0.2611
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05610896 0.01618329
## sample estimates:
## mean of x mean of y
## 0.7370949 0.7570578
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.261085392293174"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7370949268343"
## [1] "Mean Runtime for Decomp: 0.7570577621459"
## [1] "Absolute difference: 0.0199628353116"
## Runtime for Decomp is 2.70831267247179 % greater than
## Runtime for Hylaa
```

#### 3.2.2 RH2.2: Object 40 steps

#### Runtime for Decomp

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7221 0.7897 0.8093 0.7972 0.8159 0.8207
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps40")$time
## W = 0.75921, p-value = 0.004621
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.00462065228799667"
```

## Runtime for Hylaa

time

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7104 0.7190 0.7355 0.7432 0.7493 0.8064
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time
## W = 0.84556, p-value = 0.05142
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0514195741817329
```





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 87, p-value = 0.003886
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 0.00388620667258438"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7431680440903"
## [1] "Mean Runtime for Decomp: 0.7971547126772"
## [1] "Absolute difference: 0.0539866685868999"
## Runtime for Decomp is 7.26439585450477 % greater than
```

## 3.2.3 RH2.3: Object 53 steps

#### Runtime for Decomp

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6604 0.6942 0.7238 0.7123 0.7303 0.7490
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps53")$time
## W = 0.86957, p-value = 0.09882
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0988233052680888
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6997 0.7278 0.7623 0.7544 0.7732 0.8157
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time
## W = 0.95914, p-value = 0.776
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.776029544672673"
```

#### Runtime by Optimization for 53 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## F = 1.3172, num df = 9, denom df = 9, p-value = 0.6881
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3271849 5.3032184
## sample estimates:
## ratio of variances
##
             1.317244
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.688127104972335"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## t = 2.735, df = 18, p-value = 0.0136
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.009767075 0.074485569
## sample estimates:
## mean of x mean of y
## 0.7543800 0.7122536
##
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0135990136284212"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7543799638747"
## [1] "Mean Runtime for Decomp: 0.7122536420821"
## [1] "Absolute difference: 0.0421263217926"
## Runtime for Hylaa is 5.91451125043797 % greater than
## Runtime for Decomp
```

#### 3.2.4 RH2.4: Object 68 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6524 0.7068 0.7548 0.7420 0.7718 0.8096
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps68")$time
## W = 0.95688, p-value = 0.7498
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.749821903100715"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7376 0.7525 0.7618 0.7645 0.7681 0.8046
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.44123425938003"

Comparison

##

time

# Runtime by Optimization for 68 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa")$time and subset(json_data, treatment == "Hyla
## F = 0.15757, num df = 9, denom df = 9, p-value = 0.01112
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03913742 0.63436390
## sample estimates:
## ratio of variances
##
                                                     0.157567
##
## [1] "Homogeneity of variances: FALSE. P-value: 0.0111234966136753"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data)
## t = 1.3791, df = 11.767, p-value = 0.1935
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01311417 0.05807252
## sample estimates:
## mean of x mean of y
## 0.7644785 0.7419993
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.193522859649604"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7644784688949"
## [1] "Mean Runtime for Decomp: 0.7419992923737"
## [1] "Absolute difference: 0.0224791765212"
## Runtime for Hylaa is 3.02954150391273 % greater than
## Runtime for Decomp
```

#### 3.2.5 RH2.5: Object 89 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7125 0.7454 0.7717 0.7627 0.7745 0.8053
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps89")$time
## W = 0.94031, p-value = 0.5565
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.556459664233252"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7273 0.7541 0.7716 0.7796 0.8069 0.8377
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.431928741976726"

# Comparison

time

## Runtime by Optimization for 89 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa")$time == "the proper == "steps89" object == "s
## F = 1.6557, num df = 9, denom df = 9, p-value = 0.4642
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4112493 6.6657872
## sample estimates:
## ratio of variances
##
                                                     1.655687
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.464219784270807"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data)
## t = 1.1502, df = 18, p-value = 0.2651
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01400430 0.04788649
## sample estimates:
## mean of x mean of y
## 0.7796074 0.7626663
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.265132991551365"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7796074151993"
## [1] "Mean Runtime for Decomp: 0.7626663208008"
## [1] "Absolute difference: 0.0169410943985"
## Runtime for Hylaa is 2.22129834980937 % greater than
## Runtime for Decomp
```

#### 3.2.6 RH2.6: Object 116 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7190 0.7466 0.7639 0.7703 0.7982 0.8148
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps116")$time
## W = 0.9452, p-value = 0.6122
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.61219716557611"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7306 0.7757 0.7947 0.7856 0.8101 0.8193
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0829366496429817

# Comparison

time

## Runtime by Optimization for 116 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## F = 1.0126, num df = 9, denom df = 9, p-value = 0.9854
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2515272 4.0769114
## sample estimates:
## ratio of variances
##
             1.012647
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.985370612134072"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## t = 1.0705, df = 18, p-value = 0.2986
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01476991 0.04545648
## sample estimates:
## mean of x mean of y
## 0.7855974 0.7702541
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.298555764186524"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7855973720549"
## [1] "Mean Runtime for Decomp: 0.7702540874481"
## [1] "Absolute difference: 0.0153432846068"
## Runtime for Hylaa is 1.99197704456633 % greater than
## Runtime for Decomp
```

#### 3.2.7 RH2.7: Object 151 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6978 0.7550 0.7605 0.7577 0.7719 0.7831
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps151")$time
## W = 0.82216, p-value = 0.02691
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.0269114434499181"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7351 0.7457 0.7654 0.7718 0.7998 0.8188
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.15083040609515"

# Comparison

time

30.000

## Runtime by Optimization for 151 steps



```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 45, p-value = 0.7394
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis not rejected. P-value: 0.739364350819459
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7718092203141"
## [1] "Mean Runtime for Decomp: 0.7577067136765"
```

## [1] "Absolute difference: 0.0141025066376"

## Runtime for Decomp

## Runtime for Hylaa is 1.8612091437296 % greater than

## 3.2.8 RH2.8: Object 197 steps

## Runtime for Decomp

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7146 0.7499 0.7680 0.7593 0.7732 0.7995
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps197")$time
## W = 0.90785, p-value = 0.2665
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.266542427371331"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6995 0.7490 0.7739 0.7777 0.8150 0.8338
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time
## W = 0.94142, p-value = 0.569
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.568954856828926"
```

## Comparison

## Runtime by Optimization for 197 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time and subset(json_data)
## F = 2.5361, num df = 9, denom df = 9, p-value = 0.1819
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    0.6299287 10.2102798
## sample estimates:
## ratio of variances
##
             2.536089
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.181851926756562"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time and subset(json_data, treatment == "Hylaa" & object == "steps197")$time
## t = 1.1513, df = 18, p-value = 0.2647
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01513052 0.05182147
## sample estimates:
## mean of x mean of y
## 0.7776674 0.7593220
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.264654985775134"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.777667427063"
## [1] "Mean Runtime for Decomp: 0.7593219518661"
## [1] "Absolute difference: 0.0183454751969"
## Runtime for Hylaa is 2.41603382489001 % greater than
## Runtime for Decomp
```

#### 3.2.9 RH2.9: Object 256 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7063 0.7511 0.7656 0.7610 0.7797 0.8119
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps256")$time
## W = 0.95667, p-value = 0.7474
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.747375944620537"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7300 0.7691 0.7957 0.7970 0.8271 0.8542
```



# Comparison

## Runtime by Optimization for 256 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## F = 1.5838, num df = 9, denom df = 9, p-value = 0.5041
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3933907 6.3763233
## sample estimates:
## ratio of variances
##
             1.583789
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.504110249382027"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## t = 2.2922, df = 18, p-value = 0.03416
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.003004304 0.069005641
## sample estimates:
## mean of x mean of y
## 0.797033 0.761028
##
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0341639411230433"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7970329999924"
## [1] "Mean Runtime for Decomp: 0.7610280275345"
## [1] "Absolute difference: 0.0360049724578999"
## Runtime for Hylaa is 4.73109677373448 % greater than
## Runtime for Decomp
```

#### 3.2.10 RH2.10: Object 332 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7676 0.8174 0.8319 0.8234 0.8409 0.8595
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps332")$time
## W = 0.86459, p-value = 0.0864
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0864028845483314
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7116 0.7462 0.7788 0.7682 0.7952 0.8058
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.130315495202675"

# Comparison

time

## Runtime by Optimization for 332 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data)
## F = 1.2297, num df = 9, denom df = 9, p-value = 0.7631
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3054445 4.9508359
## sample estimates:
## ratio of variances
##
             1.229718
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.763081993650492"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "hylaa" &
## t = -3.7265, df = 18, p-value = 0.001545
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.08634164 -0.02408574
## sample estimates:
## mean of x mean of y
## 0.7681974 0.8234111
## [1] "T-test: Null Hypothesis rejected. P-value: 0.00154458560398904"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7681974172593"
## [1] "Mean Runtime for Decomp: 0.8234111070633"
## [1] "Absolute difference: 0.055213689804"
## Runtime for Decomp is 7.18743496964439 % greater than
## Runtime for Hylaa
```

#### 3.2.11 RH2.11: Object 432 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7479 0.8239 0.8436 0.8364 0.8625 0.8770
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps432")$time
## W = 0.87325, p-value = 0.1091
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.10906821518627"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7247 0.8047 0.8112 0.8107 0.8280 0.8544
```



## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.0288658654097958"

# Comparison

time

40.000-





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 77, p-value = 0.04326
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 0.0432570525449782"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8107497930526"
## [1] "Mean Runtime for Decomp: 0.8364275932313"
## [1] "Absolute difference: 0.0256778001787"
## Runtime for Decomp is 3.16716703460621 % greater than
```

# 3.2.12 RH2.12: Object 562 steps

#### Runtime for Decomp

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8001 0.8548 0.8858 0.8734 0.8934 0.9158
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps562")$time
## W = 0.90464, p-value = 0.2462
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.246164284419909"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7673 0.8121 0.8273 0.8211 0.8393 0.8746
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time
## W = 0.93601, p-value = 0.5095
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.509497615860695"
```

## Comparison





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time and subset(json_data)
## F = 0.7585, num df = 9, denom df = 9, p-value = 0.6872
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1884004 3.0537124
## sample estimates:
## ratio of variances
##
             0.758499
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.687195274057246"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time and subset(json_data)
## t = -3.3368, df = 18, p-value = 0.003671
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.08516727 -0.01935662
## sample estimates:
## mean of x mean of y
## 0.8210984 0.8733603
## [1] "T-test: Null Hypothesis rejected. P-value: 0.00367054332005812"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8210983753205"
## [1] "Mean Runtime for Decomp: 0.873360323906"
## [1] "Absolute difference: 0.0522619485854999"
## Runtime for Decomp is 6.36488271762814 % greater than
## Runtime for Hylaa
```

#### 3.2.13 RH2.13: Object 731 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.8330 0.8720 0.9127 0.8992 0.9306 0.9401
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps731")$time
## W = 0.87854, p-value = 0.1255
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.125538933244617"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8045 0.8548 0.8749 0.8668 0.8896 0.8956
```



# Comparison

### Runtime by Optimization for 731 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps731")$time and subset(json_data)
## F = 0.55885, num df = 9, denom df = 9, p-value = 0.3991
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1388096 2.2499136
## sample estimates:
## ratio of variances
##
            0.5588467
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.399088259767841"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps731")$time and subset(json_data)
## t = -2.0628, df = 18, p-value = 0.05386
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0654144774 0.0005988131
## sample estimates:
## mean of x mean of y
## 0.8668062 0.8992141
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.0538632912080315"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8668062448501"
## [1] "Mean Runtime for Decomp: 0.8992140769958"
## [1] "Absolute difference: 0.0324078321457001"
## Runtime for Decomp is 3.73876311323813 % greater than
## Runtime for Hylaa
```

#### 3.2.14 RH2.14: Object 951 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.9036 0.9316 0.9794 0.9654 0.9880 1.0150
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps951")$time
## W = 0.91893, p-value = 0.3482
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.348155264626675"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.8356 0.8536 0.8991 0.8888 0.9216 0.9388
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.247358608075924"

# Comparison

time

### Runtime by Optimization for 951 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time and subset(json_data)
## F = 1.0625, num df = 9, denom df = 9, p-value = 0.9295
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2639217 4.2778084
## sample estimates:
## ratio of variances
##
             1.062547
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.929472347516757"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time and subset(json_data, treatment == "Hylaa" & object == "steps951")$time
## t = -4.4707, df = 18, p-value = 0.0002955
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.11257849 -0.04059615
## sample estimates:
## mean of x mean of y
## 0.8888239 0.9654112
## [1] "T-test: Null Hypothesis rejected. P-value: 0.000295531060619764"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8888238906861"
## [1] "Mean Runtime for Decomp: 0.9654112100603"
## [1] "Absolute difference: 0.0765873193742"
## Runtime for Decomp is 8.61670350861978 \% greater than
## Runtime for Hylaa
```

#### 3.2.15 RH2.15: Object 1236 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.9525 0.9904 0.9952 0.9986 1.0170 1.0270
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps1236")$time
## W = 0.93214, p-value = 0.4693
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.46925140659137"
```

time

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.9166 0.9495 0.9814 0.9762 0.9983 1.0260
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.627527133287823"

# Comparison

time

## Runtime by Optimization for 1236 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa")$time == "steps1236" & object == "steps12
## F = 2.9507, num df = 9, denom df = 9, p-value = 0.1227
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
                   0.7329153 11.8795520
## sample estimates:
## ratio of variances
##
                                                     2.950713
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.122690229379047"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time
## t = -1.6141, df = 18, p-value = 0.1239
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.051543781 0.006755086
## sample estimates:
## mean of x mean of y
## 0.9761788 0.9985732
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.123908728539939"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.9761788368224"
## [1] "Mean Runtime for Decomp: 0.9985731840122"
## [1] "Absolute difference: 0.0223943471898"
## Runtime for Decomp is 2.29408243090957 % greater than
## Runtime for Hylaa
```

#### 3.2.16 RH2.16: Object 1607 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.005 1.052 1.110 1.093 1.127 1.143
```



```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.024 1.054 1.057 1.060 1.071 1.103
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.608652897163905"

# Comparison

#### Runtime by Optimization for 1607 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa")$time == "steps1607" Hylaa" & object == "steps1607" Hylaa" Hylaa" & object == "steps1607" Hylaa" Hylaa
## F = 0.1968, num df = 9, denom df = 9, p-value = 0.02377
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0488816 0.7923037
## sample estimates:
## ratio of variances
##
                                                     0.196797
##
## [1] "Homogeneity of variances: FALSE. P-value: 0.02376838052269"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time
## t = -1.9296, df = 12.41, p-value = 0.07683
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.068836110 0.004050057
## sample estimates:
## mean of x mean of y
## 1.060442 1.092835
##
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.0768345798131928"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.060442185402"
## [1] "Mean Runtime for Decomp: 1.092835211755"
## [1] "Absolute difference: 0.0323930263529999"
## Runtime for Decomp is 3.05467160764829 % greater than
## Runtime for Hylaa
```

#### 3.2.17 RH2.17: Object 2089 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.131 1.145 1.184 1.191 1.226 1.266
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps2089")$time
## W = 0.91088, p-value = 0.2871
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.287118817353588"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.032 1.072 1.087 1.085 1.104 1.125
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2089")$time
## W = 0.96099, p-value = 0.7971
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.797065263315739"
```

# Comparison

### Runtime by Optimization for 2089 steps



```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2089")$time and subset(json_data, treatment == "Hylaa" & object == "steps2089")$time
## t = -5.6061, df = 18, p-value = 2.55e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.14451911 -0.06572812
## sample estimates:
## mean of x mean of y
## 1.085403 1.190527
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.54984312978809e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.085403156281"
## [1] "Mean Runtime for Decomp: 1.190526771544"
## [1] "Absolute difference: 0.105123615263"
## Runtime for Decomp is 9.68521370650819 % greater than
## Runtime for Hylaa
```

#### 3.2.18 RH2.18: Object 2716 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.284 1.307 1.356 1.351 1.388 1.427
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps2716")$time
## W = 0.92631, p-value = 0.4126
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.412585057212168"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.153 1.233 1.251 1.244 1.263 1.287
```



```
##
##
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2716")$time
  W = 0.87909, p-value = 0.1274
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.12738118267151"
```

# Comparison

time

#### Runtime by Optimization for 2716 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$ti
## F = 0.61044, num df = 9, denom df = 9, p-value = 0.4736
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1516234 2.4576080
## sample estimates:
## ratio of variances
##
                                                 0.6104351
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.473601267728052"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716
## t = -5.4792, df = 18, p-value = 3.331e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.14841207 -0.06614391
## sample estimates:
## mean of x mean of y
## 1.243749 1.351027
##
## [1] "T-test: Null Hypothesis rejected. P-value: 3.33071373512835e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.243748641014"
## [1] "Mean Runtime for Decomp: 1.351026630402"
## [1] "Absolute difference: 0.107277989388"
## Runtime for Decomp is 8.62537540547893 % greater than
## Runtime for Hylaa
```

#### 3.2.19 RH2.19: Object 3531 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.417 1.429 1.480 1.484 1.535 1.555
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps3531")$time
## W = 0.8751, p-value = 0.1146
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.114576744282644"
```

time

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.319 1.340 1.350 1.350 1.359 1.382
```



```
##
##
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps3531")$time
  W = 0.98776, p-value = 0.9933
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.993277943776764"
```

# Comparison

time

#### Runtime by Optimization for 3531 steps



```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps3531")$time and subset(json_data, treatment == "Hylaa" & object == "steps3531")$time
## t = -7.2713, df = 10.726, p-value = 1.838e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.17480019 -0.09337169
## sample estimates:
## mean of x mean of y
## 1.349807 1.483893
##
## [1] "T-test: Null Hypothesis rejected. P-value: 1.8384587625216e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.349807333946"
## [1] "Mean Runtime for Decomp: 1.483893275259"
## [1] "Absolute difference: 0.134085941313"
## Runtime for Decomp is 9.93370964439909 % greater than
## Runtime for Hylaa
```

#### 3.2.20 RH2.20: Object 4590 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.653 1.685 1.711 1.710 1.744 1.760
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps4590")$time
## W = 0.94127, p-value = 0.5672
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.567218723150407"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.448 1.491 1.510 1.500 1.516 1.526
```



# Comparison

## Runtime by Optimization for 4590 steps



```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps4590")$time and subset(json_data, treatment == "Hylaa" & object == "steps4590")$time
## t = -14.91, df = 18, p-value = 1.426e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2395715 -0.1803944
## sample estimates:
## mean of x mean of y
## 1.500478 1.710460
##
## [1] "T-test: Null Hypothesis rejected. P-value: 1.42593283273499e-11"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.500477528573"
## [1] "Mean Runtime for Decomp: 1.710460472106"
## [1] "Absolute difference: 0.209982943533"
## Runtime for Decomp is 13.9944077491584 % greater than
## Runtime for Hylaa
```

#### 3.2.21 RH2.21: Object 5967 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.008 2.040 2.054 2.057 2.070 2.122
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps5967")$time
## W = 0.97291, p-value = 0.9164
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.916418823743576"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.706 1.748 1.774 1.767 1.785 1.817
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.468324949837865"

# Comparison

time





```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time
## t = -19.258, df = 18, p-value = 1.848e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3219481 -0.2586131
## sample estimates:
## mean of x mean of y
## 1.767022 2.057303
##
## [1] "T-test: Null Hypothesis rejected. P-value: 1.84789324982661e-13"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.767022109032"
## [1] "Mean Runtime for Decomp: 2.057302689551"
## [1] "Absolute difference: 0.290280580519"
## Runtime for Decomp is 16.427671110353 % greater than
## Runtime for Hylaa
```

#### 3.2.22 RH2.22: Object 7757 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.318 2.384 2.400 2.397 2.415 2.463
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Decomp" & object == "steps7757")$time
## W = 0.96531, p-value = 0.8443
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.844301931865259"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.019 2.044 2.087 2.077 2.108 2.118
```



# Comparison

time

60.000-

#### Runtime by Optimization for 7757 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$ti
## F = 0.86394, num df = 9, denom df = 9, p-value = 0.8311
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2145902 3.4782132
## sample estimates:
## ratio of variances
##
                                                     0.863939
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.831101128488589"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757
## t = -18.801, df = 18, p-value = 2.793e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3555047 -0.2840379
## sample estimates:
## mean of x mean of y
## 2.077476 2.397248
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.79334317531679e-13"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 2.077476406097"
## [1] "Mean Runtime for Decomp: 2.397247695924"
## [1] "Absolute difference: 0.319771289827"
## Runtime for Decomp is 15.3922946555991 % greater than
## Runtime for Hylaa
```

#### 3.2.23 RH2.23: Object 10085 steps

## Runtime for Decomp

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.868 2.893 2.899 2.916 2.946 2.977
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps10085")$time
## W = 0.89919, p-value = 0.2147
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.21467674531661"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.460 2.492 2.501 2.503 2.517 2.538
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.982277067638566"

# Comparison

time





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps10085")$time and subset(json_data, num df = 9, p-value = 0.2363
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1091262 1.7687858
## sample estimates:
## ratio of variances
## 0.4393414
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.236348361136969"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dist
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps10085")$time and subset()
## t = -31.205, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4405036 -0.3849297
## sample estimates:
## mean of x mean of y
## 2.502889 2.915605
##
## [1] "T-test: Null Hypothesis rejected. P-value: 3.99703081291659e-17"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 2.502888703346"
## [1] "Mean Runtime for Decomp: 2.915605330468"
## [1] "Absolute difference: 0.412716627122"
## Runtime for Decomp is 16.4896116463452 % greater than
## Runtime for Hylaa
```

#### 3.2.24 RH2.24: Object 13110 steps

## Runtime for Decomp

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.436 3.517 3.541 3.556 3.590 3.668
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps13110")$time
## W = 0.96625, p-value = 0.854
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.85403316404518"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.939 2.987 3.016 3.050 3.024 3.430
```



## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.000234335774565787"

# Comparison

time





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 100, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 3.049691486358"
## [1] "Mean Runtime for Decomp: 3.555790042876"
## [1] "Absolute difference: 0.506098556518"
## Runtime for Decomp is 16.5950739208179 % greater than
```

# 3.2.25 RH2.25: Object 17043 steps

### Runtime for Decomp

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.328 4.401 4.416 4.411 4.432 4.481
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps17043")$time
## W = 0.91683, p-value = 0.3312
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.331240406678634"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.629 3.681 3.709 3.702 3.723 3.763
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps17043")$time
## W = 0.97882, p-value = 0.9585
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.958546785330543"
```



Optimization

```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps17043")$time and subset(
## F = 0.61802, num df = 9, denom df = 9, p-value = 0.4846
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1535077 2.4881492
## sample estimates:
## ratio of variances
##
            0.6180211
## [1] "Homogeneity of variances: TRUE. P-value: 0.484635381036366"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
##
```

Decomp

Hylaa

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps17043")$time and subset()
## t = -35.621, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7510252 -0.6673681
## sample estimates:
## mean of x mean of y
## 3.702265 4.411462
##
## [1] "T-test: Null Hypothesis rejected. P-value: 3.82603164961423e-18"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 3.70226535797"
## [1] "Mean Runtime for Decomp: 4.411462020874"
## [1] "Absolute difference: 0.709196662904"
## Runtime for Decomp is 19.1557490977054 % greater than
## Runtime for Hylaa
```

#### 3.2.26 RH2.26: Object 22157 steps

## Runtime for Decomp

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.399 5.466 5.487 5.550 5.549 6.079
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps22157")$time
## W = 0.6269, p-value = 0.0001159
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.000115908827023797"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.491 4.572 4.594 4.593 4.616 4.679
```



### Runtime by Optimization for 22157 steps



```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 100, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 4.592543911932"
## [1] "Mean Runtime for Decomp: 5.550147604941"
## [1] "Absolute difference: 0.957603693008999"
## Runtime for Decomp is 20.8512691739545 % greater than
```

# 3.2.27 RH2.27: Object 28804 steps

### Runtime for Decomp

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.781 6.844 6.937 6.921 6.957 7.120
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps28804")$time
## W = 0.95404, p-value = 0.7163
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.71632763195629"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.654 5.720 5.767 5.771 5.803 5.926
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps28804")$time
## W = 0.94971, p-value = 0.6651
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.66510382139283"
```

#### Runtime by Optimization for 28804 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps28804")$time and subset(]
## F = 0.74432, num df = 9, denom df = 9, p-value = 0.6671
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1848779 2.9966170
## sample estimates:
## ratio of variances
## 0.7443173
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.667147859923453"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian disc
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps28804")$time and subset()
## t = -27.582, df = 18, p-value = 3.529e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.236967 -1.061864
## sample estimates:
## mean of x mean of y
## 5.771499 6.920914
##
## [1] "T-test: Null Hypothesis rejected. P-value: 3.52893771802666e-16"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 5.771498990059"
## [1] "Mean Runtime for Decomp: 6.920914435387"
## [1] "Absolute difference: 1.149415445328"
## Runtime for Decomp is 19.9153711593433 % greater than
## Runtime for Hylaa
```

#### 3.2.28 RH2.28: Object 37445 steps

## Runtime for Decomp

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 8.617 8.645 8.687 8.727 8.760 9.044
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps37445")$time
## W = 0.8078, p-value = 0.01803
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.0180344892026632"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.072 7.116 7.200 7.209 7.306 7.356
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.32377452748614"

Comparison

time

20.000-





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 100, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 7.208603620529"
## [1] "Mean Runtime for Decomp: 8.727449989318"
## [1] "Absolute difference: 1.518846368789"
## Runtime for Decomp is 21.0699110222063 % greater than
```

# 3.2.29 RH2.29: Object 48679 steps

### Runtime for Decomp

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.04 11.17 11.22 11.25 11.34 11.51
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps48679")$time
## W = 0.96649, p-value = 0.8565
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.856515226056453"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 8.982 9.079 9.125 9.135 9.201 9.272
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps48679")$time
## W = 0.95111, p-value = 0.6816
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.681647465980239"
```

#### Runtime by Optimization for 48679 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(]
## F = 0.52027, num df = 9, denom df = 9, p-value = 0.3445
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1292274 2.0945997
## sample estimates:
## ratio of variances
## 0.5202689
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.344517807575589"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian disc
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset()
## t = -39.006, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.227509 -1.999818
## sample estimates:
## mean of x mean of y
## 9.134509 11.248173
##
## [1] "T-test: Null Hypothesis rejected. P-value: 7.61557391530083e-19"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 9.134509158134"
## [1] "Mean Runtime for Decomp: 11.24817292691"
## [1] "Absolute difference: 2.113663768776"
## Runtime for Decomp is 23.1393250823318 % greater than
## Runtime for Hylaa
```

#### 3.2.30 RH2.30: Object 63282 steps

## Runtime for Decomp

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 14.11 14.16 14.20 14.20 14.24 14.33
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Decomp" & object == "steps63282")$time
## W = 0.95494, p-value = 0.727
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.726954482156963"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.59 11.73 11.78 11.80 11.82 12.06
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time
## W = 0.90816, p-value = 0.2686
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.268588784180786"
```

### Runtime by Optimization for 63282 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time and subset(
## F = 5.5905, num df = 9, denom df = 9, p-value = 0.01725
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
   1.388611 22.507477
## sample estimates:
## ratio of variances
##
            5.590539
##
## [1] "Homogeneity of variances: FALSE. P-value: 0.0172480781080933"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time and subset()
## t = -47.188, df = 12.12, p-value = 4.142e-15
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.514476 -2.292756
## sample estimates:
## mean of x mean of y
  11.79832 14.20194
##
## [1] "T-test: Null Hypothesis rejected. P-value: 4.14197458288919e-15"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 11.79832429887"
## [1] "Mean Runtime for Decomp: 14.20194046496"
## [1] "Absolute difference: 2.40361616609"
## Runtime for Decomp is 20.3725215988529 % greater than
## Runtime for Hylaa
```

#### 3.2.31 RH2.31: Object 82267 steps

#### Runtime for Decomp

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

#### Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.2.32 RH2.32: Object 106948 steps

# Runtime for Decomp

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.2.33 RH2.33: Object 139032 steps

# Runtime for Decomp

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.2.34 RH2.34: Object 180742 steps

# Runtime for Decomp

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.2.35 RH2 Results: Runtime Hylaa = Decomp

| Table 3: RH2 F             | Results per Object |
|----------------------------|--------------------|
| $31 { m steps}$            | Inconclusive       |
| $40 { m steps}$            | Hylaa < Decomp     |
| $53 { m steps}$            | Hylaa > Decomp     |
| $68 { m steps}$            | Inconclusive       |
| $89 { m steps}$            | Inconclusive       |
| $116 { m steps}$           | Inconclusive       |
| $151 { m steps}$           | Inconclusive       |
| $197 { m steps}$           | Inconclusive       |
| $256 { m steps}$           | Hylaa > Decomp     |
| $332 { m steps}$           | Hylaa < Decomp     |
| $432 { m steps}$           | Hylaa < Decomp     |
| $562 { m steps}$           | Hylaa < Decomp     |
| $731 { m steps}$           | Inconclusive       |
| $951 { m steps}$           | Hylaa < Decomp     |
| $1236 { m steps}$          | Inconclusive       |
| $1607 { m steps}$          | Inconclusive       |
| $2089 { m steps}$          | Hylaa < Decomp     |
| $2716 { m steps}$          | Hylaa < Decomp     |
| $3531 { m steps}$          | Hylaa < Decomp     |
| $4590 { m steps}$          | Hylaa < Decomp     |
| $5967 { m steps}$          | Hylaa < Decomp     |
| $7757 { m steps}$          | Hylaa < Decomp     |
| $10085 { m steps}$         | Hylaa < Decomp     |
| $13110 { m steps}$         | Hylaa < Decomp     |
| $17043 { m steps}$         | Hylaa < Decomp     |
| $22157 { m steps}$         | Hylaa < Decomp     |
| $28804 { m steps}$         | Hylaa < Decomp     |
| $37445 { m steps}$         | Hylaa < Decomp     |
| $48679 { m steps}$         | Hylaa < Decomp     |
| $63282 { m steps}$         | Hylaa < Decomp     |
| $82267 { m steps}$         | None               |
| $106948 \; \mathrm{steps}$ | None               |
| $139032 { m steps}$        | None               |
| $180742 { m steps}$        | None               |
|                            |                    |

Table 4: RH2 Results Summary Hylaa < Decomp: 55.8823529% Hylaa > Decomp: 5.8823529% Hylaa: 0%

Hylaa: 0% Decomp: 0%

None: 11.7647059% Inconclusive: 26.4705882%

# 3.3 RH3: Runtime time for Hylaa is equals than runtime time for Basic



3.3.1 RH3.1: Object 31 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7186 0.7254 0.7440 0.7446 0.7578 0.7857
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps31")$time
## W = 0.93659, p-value = 0.5157
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.515716063680102"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6929 0.7270 0.7402 0.7371 0.7560 0.7729
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time
## W = 0.92348, p-value = 0.3869
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.386919454155626"
```





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data)
## F = 1.5257, num df = 9, denom df = 9, p-value = 0.5391
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3789737 6.1426437
## sample estimates:
## ratio of variances
##
             1.525746
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.539086303842604"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data)
## t = -0.66662, df = 18, p-value = 0.5135
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.03125318 0.01619724
## sample estimates:
## mean of x mean of y
## 0.7370949 0.7446229
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.513470139172935"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7370949268343"
## [1] "Mean Runtime for Basic: 0.7446228981017"
## [1] "Absolute difference: 0.00752797126740001"
## Runtime for Basic is 1.02130281912689 % greater than
## Runtime for Hylaa
```

#### 3.3.2 RH3.2: Object 40 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7434 0.7912 0.8157 0.8053 0.8221 0.8579
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps40")$time
## W = 0.91538, p-value = 0.32
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.319991403565201"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7104 0.7190 0.7355 0.7432 0.7493 0.8064
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time
## W = 0.84556, p-value = 0.05142
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0514195741817329
```

## Runtime by Optimization for 40 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time and subset(json_## F = 0.87484, num df = 9, denom df = 9, p-value = 0.8454
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2172986 3.5221124
## sample estimates:
## ratio of variances
## 0.8748429
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.845383286267737"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian disc
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time and subset(json_data)
## t = -4.1003, df = 18, p-value = 0.0006718
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.09397537 -0.03029879
## sample estimates:
## mean of x mean of y
## 0.7431680 0.8053051
## [1] "T-test: Null Hypothesis rejected. P-value: 0.000671837245387798"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7431680440903"
## [1] "Mean Runtime for Basic: 0.8053051233291"
## [1] "Absolute difference: 0.0621370792388"
## Runtime for Basic is 8.36110752243942 % greater than
## Runtime for Hylaa
```

#### 3.3.3 RH3.3: Object 53 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7812 0.8038 0.8149 0.8161 0.8311 0.8436
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps53")$time
## W = 0.97306, p-value = 0.9177
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.917690328563095"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6997 0.7278 0.7623 0.7544 0.7732 0.8157
```



```
##
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time
  W = 0.95914, p-value = 0.776
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.776029544672673"
```

time

50.000-





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## F = 3.4683, num df = 9, denom df = 9, p-value = 0.07804
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    0.8614821 13.9634439
## sample estimates:
## ratio of variances
##
             3.468322
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.0780378748014869"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## t = -4.685, df = 18, p-value = 0.0001844
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.08944492 -0.03406043
## sample estimates:
## mean of x mean of y
## 0.7543800 0.8161326
## [1] "T-test: Null Hypothesis rejected. P-value: 0.000184423208671564"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7543799638747"
## [1] "Mean Runtime for Basic: 0.8161326408387"
## [1] "Absolute difference: 0.061752676964"
## Runtime for Basic is 8.18588508724722 % greater than
## Runtime for Hylaa
```

#### 3.3.4 RH3.4: Object 68 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7020 0.8135 0.8179 0.8077 0.8258 0.8548
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps68")$time
## W = 0.77971, p-value = 0.008211
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.00821098716754948"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7376 0.7525 0.7618 0.7645 0.7681 0.8046
```



##
## data: subset(json\_data, treatment == "Hylaa" & object == "steps68")\$time
## W = 0.92932, p-value = 0.4412
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.44123425938003"

##

##

time





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 88, p-value = 0.002879
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 0.00287947346770876"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7644784688949"
## [1] "Mean Runtime for Basic: 0.8077137708664"
## [1] "Absolute difference: 0.0432353019714999"
## Runtime for Basic is 5.65552906074637 % greater than
```

# 3.3.5 RH3.5: Object 89 steps

#### Runtime for Basic

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8362 0.8574 0.8745 0.8720 0.8875 0.9022
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps89")$time
## W = 0.97464, p-value = 0.9302
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.930240033091894"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7273 0.7541 0.7716 0.7796 0.8069 0.8377
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time
## W = 0.92836, p-value = 0.4319
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.431928741976726"
```





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa")$time == "the proper == "steps89" object == "s
## F = 2.9502, num df = 9, denom df = 9, p-value = 0.1227
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
                    0.7327954 11.8776092
## sample estimates:
## ratio of variances
##
                                                          2.95023
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.122744378870267"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data)
## t = -6.8691, df = 18, p-value = 1.998e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.12071520 -0.06416816
## sample estimates:
## mean of x mean of y
## 0.7796074 0.8720491
## [1] "T-test: Null Hypothesis rejected. P-value: 1.99833886298784e-06"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7796074151993"
## [1] "Mean Runtime for Basic: 0.8720490932466"
## [1] "Absolute difference: 0.0924416780473"
## Runtime for Basic is 11.8574652119834 % greater than
## Runtime for Hylaa
```

#### 3.3.6 RH3.6: Object 116 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.9536 0.9986 1.0090 1.0090 1.0210 1.0460
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.412546529034677"

# Runtime for Hylaa

time

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7306 0.7757 0.7947 0.7856 0.8101 0.8193
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0829366496429817

# Comparison

time

#### Runtime by Optimization for 116 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## F = 1.4652, num df = 9, denom df = 9, p-value = 0.5784
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3639293 5.8987958
## sample estimates:
## ratio of variances
##
             1.465177
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.578437849677497"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## t = -16.943, df = 18, p-value = 1.652e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2511444 -0.1957315
## sample estimates:
## mean of x mean of y
## 0.7855974 1.0090353
## [1] "T-test: Null Hypothesis rejected. P-value: 1.65242796426971e-12"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7855973720549"
## [1] "Mean Runtime for Basic: 1.0090353250514"
## [1] "Absolute difference: 0.2234379529965"
## Runtime for Basic is 28.4417897697455 % greater than
## Runtime for Hylaa
```

#### 3.3.7 RH3.7: Object 151 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.217 1.228 1.247 1.244 1.256 1.273
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps151")$time
## W = 0.94617, p-value = 0.6234
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.623430069380077"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7351 0.7457 0.7654 0.7718 0.7998 0.8188
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.15083040609515"

# Comparison

time

30.000



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time and subset(json_data)
## F = 2.9605, num df = 9, denom df = 9, p-value = 0.1216
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    0.7353467 11.9189620
## sample estimates:
## ratio of variances
##
             2.960502
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.121597927974591"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time and subset(json_data)
## t = -39.75, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4968950 -0.4470062
## sample estimates:
## mean of x mean of y
## 0.7718092 1.2437598
## [1] "T-test: Null Hypothesis rejected. P-value: 5.440874983464e-19"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7718092203141"
## [1] "Mean Runtime for Basic: 1.243759799003"
## [1] "Absolute difference: 0.4719505786889"
## Runtime for Basic is 61.1486059335793 % greater than
## Runtime for Hylaa
```

#### 3.3.8 RH3.8: Object 197 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.659 1.683 1.698 1.697 1.702 1.737
```



```
## Shapiro-Wilk normality test
##

## data: subset(json_data, treatment == "Basic" & object == "steps197")$time
## W = 0.9196, p-value = 0.3537
##

## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.353670156215988"
```

##

time

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6995 0.7490 0.7739 0.7777 0.8150 0.8338
```



```
##
##
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time
  W = 0.94142, p-value = 0.569
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.568954856828926"
```

time

## Runtime by Optimization for 197 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time and subset(json_data)
## F = 2.8381, num df = 9, denom df = 9, p-value = 0.1361
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    0.7049407 11.4261218
## sample estimates:
## ratio of variances
##
             2.838087
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.13613979560032"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time and subset(json_data)
## t = -58.6, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9525410 -0.8866041
## sample estimates:
## mean of x mean of y
## 0.7776674 1.6972400
## [1] "T-test: Null Hypothesis rejected. P-value: 5.29863503198605e-22"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.777667427063"
## [1] "Mean Runtime for Basic: 1.697239995003"
## [1] "Absolute difference: 0.91957256794"
## Runtime for Basic is 118.247535635243 % greater than
## Runtime for Hylaa
```

#### 3.3.9 RH3.9: Object 256 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.480 2.537 2.563 2.560 2.584 2.632
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps256")$time
## W = 0.97902, p-value = 0.9597
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.959716352289663"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7300 0.7691 0.7957 0.7970 0.8271 0.8542
```



### Runtime by Optimization for 256 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## F = 0.852, num df = 9, denom df = 9, p-value = 0.8153
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.211625 3.430151
## sample estimates:
## ratio of variances
##
             0.852001
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.815325324168849"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## t = -97.245, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.801292 -1.725106
## sample estimates:
## mean of x mean of y
## 0.797033 2.560232
##
## [1] "T-test: Null Hypothesis rejected. P-value: 5.98473083037681e-26"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7970329999924"
## [1] "Mean Runtime for Basic: 2.560232043267"
## [1] "Absolute difference: 1.7631990432746"
## Runtime for Basic is 221.220331315192 % greater than
## Runtime for Hylaa
```

#### 3.3.10 RH3.10: Object 332 steps

#### Runtime for Basic

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.295 4.309 4.352 4.344 4.379 4.385
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps332")$time
## W = 0.86376, p-value = 0.0845
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0845037588040598
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7116 0.7462 0.7788 0.7682 0.7952 0.8058
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.130315495202675"

# Comparison

time

### Runtime by Optimization for 332 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data)
## F = 0.93169, num df = 9, denom df = 9, p-value = 0.9178
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2314186 3.7509786
## sample estimates:
## ratio of variances
## 0.93169
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.917787981425155"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian disc
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "hylaa" &
## t = -225.72, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.609468 -3.542896
## sample estimates:
## mean of x mean of y
## 0.7681974 4.3443795
## [1] "T-test: Null Hypothesis rejected. P-value: 1.58557518923748e-32"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7681974172593"
## [1] "Mean Runtime for Basic: 4.344379544259"
## [1] "Absolute difference: 3.5761821269997"
## Runtime for Basic is 465.529048477988 % greater than
## Runtime for Hylaa
```

#### 3.3.11 RH3.11: Object 432 steps

#### Runtime for Basic

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.886 7.921 7.966 7.954 7.985 8.011
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Basic" & object == "steps432")$time
## W = 0.94309, p-value = 0.5879
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.587894017375594"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7247 0.8047 0.8112 0.8107 0.8280 0.8544
```



## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.0288658654097958"

# Comparison

##

time

## Runtime by Optimization for 432 steps



```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 100, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8107497930526"
## [1] "Mean Runtime for Basic: 7.953976011278"
## [1] "Absolute difference: 7.1432262182254"
## Runtime for Basic is 881.064204941704 % greater than
```

# 3.3.12 RH3.12: Object 562 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7673 0.8121 0.8273 0.8211 0.8393 0.8746
```





```
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time
## W = 0.93601, p-value = 0.5095
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.509497615860695"
```

### Comparison

### Runtime by Optimization for 562 steps



# 3.3.13 RH3.13: Object 731 steps

# Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8045 0.8548 0.8749 0.8668 0.8896 0.8956
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps731")$time
## W = 0.86638, p-value = 0.09069
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0906925091728528
```

### Comparison



### 3.3.14 RH3.14: Object 951 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8356 0.8536 0.8991 0.8888 0.9216 0.9388
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.247358608075924"

# Comparison

time

### Runtime by Optimization for 951 steps



### 3.3.15 RH3.15: Object 1236 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.9166 0.9495 0.9814 0.9762 0.9983 1.0260
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.627527133287823"

# Comparison

time

### Runtime by Optimization for 1236 steps



# 3.3.16 RH3.16: Object 1607 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.024 1.054 1.057 1.060 1.071 1.103
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.608652897163905"

# Comparison

### Runtime by Optimization for 1607 steps



# 3.3.17 RH3.17: Object 2089 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.032 1.072 1.087 1.085 1.104 1.125
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2089")$time
## W = 0.96099, p-value = 0.7971
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.797065263315739"
```

# Comparison

### Runtime by Optimization for 2089 steps



# 3.3.18 RH3.18: Object 2716 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.153 1.233 1.251 1.244 1.263 1.287
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.12738118267151"

# Comparison

time

### Runtime by Optimization for 2716 steps



### 3.3.19 RH3.19: Object 3531 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.319 1.340 1.350 1.359 1.382
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.993277943776764"

# Comparison

### Runtime by Optimization for 3531 steps



# 3.3.20 RH3.20: Object 4590 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.448 1.491 1.510 1.500 1.516 1.526
```



# Comparison

### Runtime by Optimization for 4590 steps



# 3.3.21 RH3.21: Object 5967 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.706 1.748 1.774 1.767 1.785 1.817
```



# Comparison

time

50.000-

### Runtime by Optimization for 5967 steps



# 3.3.22 RH3.22: Object 7757 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.019 2.044 2.087 2.077 2.108 2.118
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.175640560398436"

# Comparison

time

60.000-

### Runtime by Optimization for 7757 steps



# 3.3.23 RH3.23: Object 10085 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.460 2.492 2.501 2.503 2.517 2.538
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.982277067638566"

# Comparison

time





# 3.3.24 RH3.24: Object 13110 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.939 2.987 3.016 3.050 3.024 3.430
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps13110")$time
## W = 0.65237, p-value = 0.0002343
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.000234335774565787"
```

# Comparison

##

time

### Runtime by Optimization for 13110 steps



# 3.3.25 RH3.25: Object 17043 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.629 3.681 3.709 3.702 3.723 3.763
```



# Comparison

time

40.000-

#### Runtime by Optimization for 17043 steps



# 3.3.26 RH3.26: Object 22157 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.491 4.572 4.594 4.593 4.616 4.679
```



#### Runtime by Optimization for 22157 steps



# 3.3.27 RH3.27: Object 28804 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.654 5.720 5.767 5.771 5.803 5.926
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.66510382139283"

# Comparison

time

20.000-

#### Runtime by Optimization for 28804 steps



# 3.3.28 RH3.28: Object 37445 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.072 7.116 7.200 7.209 7.306 7.356
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.32377452748614"

Comparison

time

20.000-

#### Runtime by Optimization for 37445 steps



# 3.3.29 RH3.29: Object 48679 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 8.982 9.079 9.125 9.135 9.201 9.272
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.681647465980239"

# Comparison

##

time

20.000-

#### Runtime by Optimization for 48679 steps



# 3.3.30 RH3.30: Object 63282 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.59 11.73 11.78 11.80 11.82 12.06
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time
## W = 0.90816, p-value = 0.2686
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.268588784180786"
```

#### Runtime by Optimization for 63282 steps



# 3.3.31 RH3.31: Object 82267 steps

#### Runtime for Basic

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.3.32 RH3.32: Object 106948 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.3.33 RH3.33: Object 139032 steps

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





#### $\mathbf{3.3.34} \quad \mathbf{RH3.34: \ Object \ 180742 \ steps}$

#### Runtime for Basic

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```





# 3.3.35 RH3 Results: Runtime Hylaa = Basic

| Table 5: RH3 Re            | sults per Object |
|----------------------------|------------------|
| $31 { m steps}$            | Inconclusive     |
| $40 { m steps}$            | Hylaa < Basic    |
| $53 { m steps}$            | Hylaa < Basic    |
| $68 { m steps}$            | Hylaa < Basic    |
| 89  steps                  | Hylaa < Basic    |
| $116 { m steps}$           | Hylaa < Basic    |
| $151 { m steps}$           | Hylaa < Basic    |
| $197 { m steps}$           | Hylaa < Basic    |
| $256 { m steps}$           | Hylaa < Basic    |
| $332 { m steps}$           | Hylaa < Basic    |
| $432 { m steps}$           | Hylaa < Basic    |
| $562 { m steps}$           | Hylaa            |
| $731 { m steps}$           | Hylaa            |
| $951 { m steps}$           | Hylaa            |
| $1236 { m steps}$          | Hylaa            |
| $1607 { m steps}$          | Hylaa            |
| $2089 { m steps}$          | Hylaa            |
| $2716 { m steps}$          | Hylaa            |
| $3531 { m steps}$          | Hylaa            |
| $4590 { m steps}$          | Hylaa            |
| $5967 { m steps}$          | Hylaa            |
| $7757 { m steps}$          | Hylaa            |
| $10085 { m steps}$         | Hylaa            |
| $13110 { m \ steps}$       | Hylaa            |
| $17043 { m \ steps}$       | Hylaa            |
| $22157 { m steps}$         | Hylaa            |
| $28804 { m steps}$         | Hylaa            |
| $37445 { m steps}$         | Hylaa            |
| $48679 { m steps}$         | Hylaa            |
| $63282 { m steps}$         | Hylaa            |
| $82267 { m steps}$         | None             |
| $106948 \; \mathrm{steps}$ | None             |
| $139032 { m steps}$        | None             |
| $180742 \ \mathrm{steps}$  | None             |
|                            |                  |

Table 6: RH3 Results Summary Hylaa < Basic: 29.4117647%

Hylaa > Basic: 0%

**Hylaa:** 55.8823529%

Basic: 0%

None: 11.7647059% Inconclusive: 2.9411765%

# 3.4 RH4: Runtime time for Hylaa is equals than runtime time for NoInput



#### 3.4.1 RH4.1: Object 31 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6929 0.7270 0.7402 0.7371 0.7560 0.7729
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time
## W = 0.92348, p-value = 0.3869
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.386919454155626"
```

#### Runtime for No Input

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6562 0.6918 0.7296 0.7187 0.7461 0.7690
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps31")$time
## W = 0.8834, p-value = 0.1427
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.142718895747195"
```

#### Runtime by Optimization for 31 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json
## F = 0.50593, num df = 9, denom df = 9, p-value = 0.3246
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1256662 2.0368761
## sample estimates:
## ratio of variances
## 0.5059312
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.324628978494896"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian disc
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps31")$time and subset(json_data)
## t = 1.2118, df = 18, p-value = 0.2413
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01346439 0.05016287
## sample estimates:
## mean of x mean of y
## 0.7370949 0.7187457
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.241273850751091"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7370949268343"
## [1] "Mean Runtime for No Input: 0.7187456846236"
## [1] "Absolute difference: 0.0183492422107"
## Runtime for Hylaa is 2.55295337464312 % greater than
## Runtime for No Input
```

#### 3.4.2 RH4.2: Object 40 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7104 0.7190 0.7355 0.7432 0.7493 0.8064
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps40")$time
## W = 0.84556, p-value = 0.05142
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0514195741817329
```

#### Runtime for No Input

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6528 0.7448 0.7599 0.7489 0.7715 0.7915
```



Comparison

#### Runtime by Optimization for 40 steps

##

## Runtime for Hylaa



```
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 37, p-value = 0.3527
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis not rejected. P-value: 0.352681374353202
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7431680440903"
## [1] "Mean Runtime for No Input: 0.748886680603"
```

## [1] "Absolute difference: 0.00571863651269999"

## Runtime for No Input is 0.76949440414921 % greater than

# 3.4.3 RH4.3: Object 53 steps

#### Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6997 0.7278 0.7623 0.7544 0.7732 0.8157
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time
## W = 0.95914, p-value = 0.776
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.776029544672673"
```

#### Runtime for No Input

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6819 0.7178 0.7621 0.7577 0.7980 0.8368
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps53")$time
## W = 0.96185, p-value = 0.8068
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.80676233136489"
```





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## F = 0.53269, num df = 9, denom df = 9, p-value = 0.3619
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1323131 2.1446142
## sample estimates:
## ratio of variances
##
            0.5326918
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.361939006189545"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps53")$time and subset(json_data)
## t = -0.17054, df = 18, p-value = 0.8665
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0447435 0.0380250
## sample estimates:
## mean of x mean of y
## 0.7543800 0.7577392
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.866490680679862"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7543799638747"
## [1] "Mean Runtime for No Input: 0.7577392101288"
## [1] "Absolute difference: 0.0033592462541"
## Runtime for No Input is 0.445298975975714 % greater than
## Runtime for Hylaa
```

#### 3.4.4 RH4.4: Object 68 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7376 0.7525 0.7618 0.7645 0.7681 0.8046
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time
## W = 0.92932, p-value = 0.4412
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.44123425938003"
```

#### Runtime for No Input

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7404 0.7907 0.7972 0.7922 0.8006 0.8198
```



# Comparison

time

#### Runtime by Optimization for 68 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
##
          F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data, treatment == "Hylaa")$time and subset(json_data, treatment == "Hyla
## F = 0.62593, num df = 9, denom df = 9, p-value = 0.4961
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1554714 2.5199784
## sample estimates:
## ratio of variances
##
                                                     0.625927
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.496143841238467"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps68")$time and subset(json_data)
## t = -2.856, df = 18, p-value = 0.0105
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.048045855 -0.007318659
## sample estimates:
## mean of x mean of y
## 0.7644785 0.7921607
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0104955376652981"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7644784688949"
## [1] "Mean Runtime for No Input: 0.7921607255935"
## [1] "Absolute difference: 0.0276822566986"
## Runtime for No Input is 3.62106427125625 \% greater than
## Runtime for Hylaa
```

#### 3.4.5 RH4.5: Object 89 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7273 0.7541 0.7716 0.7796 0.8069 0.8377
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time
## W = 0.92836, p-value = 0.4319
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.431928741976726"
```

#### Runtime for No Input

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6408 0.6985 0.7453 0.7280 0.7562 0.7734
```



#### Runtime by Optimization for 89 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data, treatment == "Hylaa")$time == "the proper == "steps89" object == "s
## F = 0.71928, num df = 9, denom df = 9, p-value = 0.6314
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1786585 2.8958100
## sample estimates:
## ratio of variances
##
                                                 0.7192782
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.6314423386319"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps89")$time and subset(json_data)
## t = 2.8722, df = 18, p-value = 0.01014
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01386770 0.08942062
## sample estimates:
## mean of x mean of y
## 0.7796074 0.7279633
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0101361380580459"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7796074151993"
## [1] "Mean Runtime for No Input: 0.727963256836"
## [1] "Absolute difference: 0.0516441583632999"
## Runtime for Hylaa is 7.09433585807129 % greater than
## Runtime for No Input
```

#### 3.4.6 RH4.6: Object 116 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7306 0.7757 0.7947 0.7856 0.8101 0.8193
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time
## W = 0.86307, p-value = 0.08294
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0829366496429817
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7012 0.7279 0.7534 0.7470 0.7673 0.7796
```



```
##
##
##
## data: subset(json_data, treatment == "NoInput" & object == "steps116")$time
  W = 0.92302, p-value = 0.3828
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.382818747956388"
```

## Comparison

time



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
##
  F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## F = 1.4652, num df = 9, denom df = 9, p-value = 0.5784
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3639261 5.8987430
## sample estimates:
## ratio of variances
##
             1.465164
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.578446694193737"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps116")$time and subset(json_data)
## t = 2.9294, df = 18, p-value = 0.008957
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01092605 0.06633907
## sample estimates:
## mean of x mean of y
## 0.7855974 0.7469648
## [1] "T-test: Null Hypothesis rejected. P-value: 0.00895714298884188"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7855973720549"
## [1] "Mean Runtime for No Input: 0.7469648122788"
## [1] "Absolute difference: 0.0386325597761"
## Runtime for Hylaa is 5.17193837528195 % greater than
## Runtime for No Input
```

#### 3.4.7 RH4.7: Object 151 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7351 0.7457 0.7654 0.7718 0.7998 0.8188
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time
## W = 0.8855, p-value = 0.1508
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.15083040609515"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7239 0.7507 0.7658 0.7635 0.7830 0.7938
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.345609193423644"

# Comparison

time

## Runtime by Optimization for 151 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time and subset(json_data)
## F = 1.7239, num df = 9, denom df = 9, p-value = 0.4296
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.428197 6.940486
## sample estimates:
## ratio of variances
##
             1.723918
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.429599917380244"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps151")$time and subset(json_data)
## t = 0.64503, df = 18, p-value = 0.527
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01878614 0.03543262
## sample estimates:
## mean of x mean of y
## 0.7718092 0.7634860
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.527041763031356"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7718092203141"
## [1] "Mean Runtime for No Input: 0.7634859800338"
## [1] "Absolute difference: 0.00832324028030007"
## Runtime for Hylaa is 1.09016281869794 % greater than
## Runtime for No Input
```

#### 3.4.8 RH4.8: Object 197 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6995 0.7490 0.7739 0.7777 0.8150 0.8338
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time
## W = 0.94142, p-value = 0.569
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.568954856828926"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7156 0.7303 0.7546 0.7498 0.7651 0.7762
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.150818781399032"

# Comparison

## Runtime by Optimization for 197 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time and subset(json_data)
## F = 3.6873, num df = 9, denom df = 9, p-value = 0.0652
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    0.9158757 14.8450893
## sample estimates:
## ratio of variances
##
              3.68731
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.0652026687424552"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps197")$time and subset(json_data, treatment == "Hylaa" & object == "steps197")$time
## t = 1.832, df = 18, p-value = 0.08356
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.004092036 0.059835969
## sample estimates:
## mean of x mean of y
## 0.7776674 0.7497955
## [1] "T-test: Null Hypothesis not rejected. P-value: 0.0835570018368799"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.777667427063"
## [1] "Mean Runtime for No Input: 0.7497954607011"
## [1] "Absolute difference: 0.0278719663618999"
## Runtime for Hylaa is 3.71727595360981 % greater than
## Runtime for No Input
```

#### 3.4.9 RH4.9: Object 256 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7300 0.7691 0.7957 0.7970 0.8271 0.8542
```



```
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time
## W = 0.964, p-value = 0.8303
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.830310406698625"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6937 0.7269 0.7417 0.7524 0.7702 0.8519
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.414374996139315"

## Comparison





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## F = 0.73996, num df = 9, denom df = 9, p-value = 0.661
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1837968 2.9790937
## sample estimates:
## ratio of variances
##
            0.7399647
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.660968338544875"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps256")$time and subset(json_data)
## t = 2.3674, df = 18, p-value = 0.02932
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.005024534 0.084263272
## sample estimates:
## mean of x mean of y
## 0.7970330 0.7523891
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0293228451357061"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7970329999924"
## [1] "Mean Runtime for No Input: 0.7523890972139"
## [1] "Absolute difference: 0.0446439027784999"
## Runtime for Hylaa is 5.93361904682252 % greater than
## Runtime for No Input
```

#### 3.4.10 RH4.10: Object 332 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7116 0.7462 0.7788 0.7682 0.7952 0.8058
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time
## W = 0.87995, p-value = 0.1303
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.130315495202675"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7661 0.7856 0.7997 0.8001 0.8100 0.8373
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.99580819770823"

# Comparison

time

## Runtime by Optimization for 332 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data)
## F = 2.7335, num df = 9, denom df = 9, p-value = 0.1502
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
   0.6789736 11.0052313
## sample estimates:
## ratio of variances
##
             2.733544
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.150224237981617"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "Hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "steps332")$time and subset(json_data, treatment == "hylaa" & object == "hylaa" &
## t = -2.4776, df = 18, p-value = 0.02337
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05887615 -0.00484355
## sample estimates:
## mean of x mean of y
## 0.7681974 0.8000573
## [1] "T-test: Null Hypothesis rejected. P-value: 0.0233707432692102"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.7681974172593"
## [1] "Mean Runtime for No Input: 0.8000572681428"
## [1] "Absolute difference: 0.0318598508835"
## Runtime for No Input is 4.14735199151885 % greater than
## Runtime for Hylaa
```

#### 3.4.11 RH4.11: Object 432 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7247 0.8047 0.8112 0.8107 0.8280 0.8544
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps432")$time
## W = 0.82468, p-value = 0.02887
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.0288658654097958"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7086 0.7276 0.7613 0.7602 0.7930 0.8136
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.486345623942788"

# Comparison

time





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 87, p-value = 0.003886
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 0.00388620667258438"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8107497930526"
## [1] "Mean Runtime for No Input: 0.760235786438"
## [1] "Absolute difference: 0.0505140066145999"
## Runtime for Hylaa is 6.64451838702275 % greater than
```

## 3.4.12 RH4.12: Object 562 steps

## Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7673 0.8121 0.8273 0.8211 0.8393 0.8746
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time
## W = 0.93601, p-value = 0.5095
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.509497615860695"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7268 0.7407 0.7576 0.7529 0.7674 0.7707
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps562")$time
## W = 0.86863, p-value = 0.09636
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0963607011743788
```

## Comparison

#### Runtime by Optimization for 562 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time and subset(json_data)
## F = 3.5746, num df = 9, denom df = 9, p-value = 0.07146
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    0.887879 14.391301
## sample estimates:
## ratio of variances
##
             3.574595
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.07146213762243"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps562")$time and subset(json_data)
## t = 5.8593, df = 18, p-value = 1.505e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.04373455 0.09262967
## sample estimates:
## mean of x mean of y
## 0.8210984 0.7529163
## [1] "T-test: Null Hypothesis rejected. P-value: 1.5053271323417e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8210983753205"
## [1] "Mean Runtime for No Input: 0.752916264534"
## [1] "Absolute difference: 0.0681821107865"
## Runtime for Hylaa is 9.0557362084215 % greater than
## Runtime for No Input
```

#### 3.4.13 RH4.13: Object 731 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.8045 0.8548 0.8749 0.8668 0.8896 0.8956
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps731")$time
## W = 0.86638, p-value = 0.09069
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0906925091728528
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7430 0.7590 0.7873 0.7779 0.7952 0.8051
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.145537181070326"

## Comparison

time





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
##
  F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps731")$time and subset(json_data)
## F = 1.7458, num df = 9, denom df = 9, p-value = 0.4191
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4336332 7.0286001
## sample estimates:
## ratio of variances
##
             1.745805
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.419117538249995"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps731")$time and subset(json_data)
## t = 7.5356, df = 18, p-value = 5.683e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.06411268 0.11368201
## sample estimates:
## mean of x mean of y
## 0.8668062 0.7779089
## [1] "T-test: Null Hypothesis rejected. P-value: 5.68261341534836e-07"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8668062448501"
## [1] "Mean Runtime for No Input: 0.7779088973998"
## [1] "Absolute difference: 0.0888973474503"
## Runtime for Hylaa is 11.4277324436632 % greater than
## Runtime for No Input
```

#### 3.4.14 RH4.14: Object 951 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.8356 0.8536 0.8991 0.8888 0.9216 0.9388
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time
## W = 0.90483, p-value = 0.2474
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.247358608075924"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7324 0.7447 0.7758 0.7699 0.7940 0.7987
```



# Comparison

time

## Runtime by Optimization for 951 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time and subset(json_data)
## F = 2.1532, num df = 9, denom df = 9, p-value = 0.2687
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5348345 8.6689338
## sample estimates:
## ratio of variances
##
             2.153241
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.268676900656385"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps951")$time and subset(json_data)
## t = 7.9904, df = 18, p-value = 2.493e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.08763256 0.15015421
## sample estimates:
## mean of x mean of y
## 0.8888239 0.7699305
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.49308726221035e-07"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.8888238906861"
## [1] "Mean Runtime for No Input: 0.7699305057524"
## [1] "Absolute difference: 0.1188933849337"
## Runtime for Hylaa is 15.4420930259821 % greater than
## Runtime for No Input
```

#### 3.4.15 RH4.15: Object 1236 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.9166 0.9495 0.9814 0.9762 0.9983 1.0260
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1236")$time
## W = 0.94652, p-value = 0.6275
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.627527133287823"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7678 0.7859 0.8096 0.8106 0.8302 0.8681
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.744348182960949"

# Comparison

time

60.000-

### Runtime by Optimization for 1236 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa")$time == "steps1236" & object == "steps12
## F = 1.3347, num df = 9, denom df = 9, p-value = 0.6741
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3315161 5.3734217
## sample estimates:
## ratio of variances
##
                                                     1.334682
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.67412518590098"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1236")$time and subset(json_data, treatment == "Hylaa" & object == "steps1236")$time
## t = 10.438, df = 18, p-value = 4.596e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1322239 0.1988602
## sample estimates:
## mean of x mean of y
## 0.9761788 0.8106368
## [1] "T-test: Null Hypothesis rejected. P-value: 4.59559913683751e-09"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 0.9761788368224"
## [1] "Mean Runtime for No Input: 0.810636806488"
## [1] "Absolute difference: 0.1655420303344"
## Runtime for Hylaa is 20.4212329133677 % greater than
## Runtime for No Input
```

### 3.4.16 RH4.16: Object 1607 steps

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.024 1.054 1.057 1.060 1.071 1.103
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1607")$time
## W = 0.9449, p-value = 0.6087
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.608652897163905"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7446 0.7982 0.8355 0.8248 0.8542 0.8669
```



```
##
##
## data: subset(json_data, treatment == "NoInput" & object == "steps1607")$time
  W = 0.90583, p-value = 0.2536
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.253552020700596"
```

time

## Runtime by Optimization for 1607 steps



```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps1607")$time and subset(json_data, treatment == "Hylaa" & object == "steps1607")$time
## t = 16.787, df = 18, p-value = 1.934e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2061853 0.2651791
## sample estimates:
## mean of x mean of y
## 1.060442 0.824760
##
## [1] "T-test: Null Hypothesis rejected. P-value: 1.93409446860168e-12"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.060442185402"
## [1] "Mean Runtime for No Input: 0.8247600078583"
## [1] "Absolute difference: 0.2356821775437"
## Runtime for Hylaa is 28.575849374136 % greater than
## Runtime for No Input
```

### 3.4.17 RH4.17: Object 2089 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.032 1.072 1.087 1.085 1.104 1.125
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps2089")$time
## W = 0.96099, p-value = 0.7971
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.797065263315739"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7909 0.8334 0.8728 0.8560 0.8814 0.8841
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps2089")$time
## W = 0.76002, p-value = 0.004726
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.00472634954483069"
```

## Runtime by Optimization for 2089 steps



```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 100, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.085403156281"
## [1] "Mean Runtime for No Input: 0.8559572935105"
## [1] "Absolute difference: 0.2294458627705"
## Runtime for Hylaa is 26.8057605805874 % greater than
```

## $\mathbf{3.4.18} \quad \mathbf{RH4.18: \ Object \ 2716 \ steps}$

## Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.153 1.233 1.251 1.244 1.263 1.287
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2716")$time
## W = 0.87909, p-value = 0.1274
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.12738118267151"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.7856 0.8779 0.9116 0.9062 0.9439 0.9885
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps2716")$time
## W = 0.95502, p-value = 0.7279
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.727898562403801"
```





```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$time and subset(json_data, treatment == "hylaa" & object == "steps2716")$ti
## F = 0.4354, num df = 9, denom df = 9, p-value = 0.2314
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.108147 1.752915
## sample estimates:
## ratio of variances
##
                                                  0.4353993
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.231384270826966"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps2716")$time and subset(json_data, treatment == "Hylaa" & object == "steps2716")$time
## t = 15.422, df = 18, p-value = 8.091e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2915663 0.3835313
## sample estimates:
## mean of x mean of y
## 1.2437486 0.9061998
##
## [1] "T-test: Null Hypothesis rejected. P-value: 8.09148923563213e-12"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.243748641014"
## [1] "Mean Runtime for No Input: 0.906199836731"
## [1] "Absolute difference: 0.337548804283"
## Runtime for Hylaa is 37.2488264289104 % greater than
## Runtime for No Input
```

### 3.4.19 RH4.19: Object 3531 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.319 1.340 1.350 1.350 1.359 1.382
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps3531")$time
## W = 0.98776, p-value = 0.9933
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.993277943776764"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.8988 0.9366 0.9451 0.9461 0.9604 0.9817
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps3531")$time
## W = 0.96107, p-value = 0.798
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.7980086428003"
```

### Runtime by Optimization for 3531 steps



```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps3531")$time and subset(json_data, treatment == "Hylaa" & object == "steps3531")$time
## t = 44.625, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3846720 0.4226819
## sample estimates:
## mean of x mean of y
## 1.3498073 0.9461304
##
## [1] "T-test: Null Hypothesis rejected. P-value: 6.91721605910582e-20"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.349807333946"
## [1] "Mean Runtime for No Input: 0.9461303710936"
## [1] "Absolute difference: 0.4036769628524"
## Runtime for Hylaa is 42.6661034446874 % greater than
## Runtime for No Input
```

### 3.4.20 RH4.20: Object 4590 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.448 1.491 1.510 1.500 1.516 1.526
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.134566691717643"

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.9380 0.9510 0.9634 0.9708 0.9876 1.0090
```



```
##
##
## data: subset(json_data, treatment == "NoInput" & object == "steps4590")$time
  W = 0.92396, p-value = 0.3912
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.391211123458605"
```

time

## Runtime by Optimization for 4590 steps



```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps4590")$time and subset(json_data, treatment == "Hylaa" & object == "steps4590")$time
## t = 49.428, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.5072048 0.5522360
## sample estimates:
## mean of x mean of y
## 1.5004775 0.9707572
##
## [1] "T-test: Null Hypothesis rejected. P-value: 1.11417737126626e-20"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.500477528573"
## [1] "Mean Runtime for No Input: 0.9707571506506"
## [1] "Absolute difference: 0.5297203779224"
## Runtime for Hylaa is 54.5677544139008 % greater than
## Runtime for No Input
```

### 3.4.21 RH4.21: Object 5967 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.706 1.748 1.774 1.767 1.785 1.817
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps5967")$time
## W = 0.93205, p-value = 0.4683
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.468324949837865"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.016 1.043 1.062 1.064 1.086 1.121
```



time

## Runtime by Optimization for 5967 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "hylaa" & object == "steps5967")$time and subset(json_data, treatment == "hylaa" & object == "steps5967")$time and subset(json_data, treatment == "hylaa" & object == "steps5967")$time and subset(json_data, treatment == "hylaa" & object == "steps5967")$ti
## F = 1.0281, num df = 9, denom df = 9, p-value = 0.9677
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2553723 4.1392346
## sample estimates:
## ratio of variances
##
                                                     1.028127
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.967718192462343"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps5967")$time and subset(json_data, treatment == "Hylaa" & object == "steps5967")$time
## t = 47.268, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.6720940 0.7346178
## sample estimates:
## mean of x mean of y
## 1.767022 1.063666
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.47555893133987e-20"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 1.767022109032"
## [1] "Mean Runtime for No Input: 1.06366622448"
## [1] "Absolute difference: 0.703355884552"
## Runtime for Hylaa is 66.1256198950807 % greater than
## Runtime for No Input
```

### 3.4.22 RH4.22: Object 7757 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.019 2.044 2.087 2.077 2.108 2.118
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps7757")$time
## W = 0.89136, p-value = 0.1756
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.175640560398436"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.118 1.133 1.146 1.155 1.185 1.196
```



Comparison

### Runtime by Optimization for 7757 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$ti
## F = 1.4884, num df = 9, denom df = 9, p-value = 0.563
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3696983 5.9923028
## sample estimates:
## ratio of variances
##
                                                     1.488403
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.562990289177772"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "Hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757")$time and subset(json_data, treatment == "hylaa" & object == "steps7757
## t = 61.601, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.8908627 0.9537742
## sample estimates:
## mean of x mean of y
## 2.077476 1.155158
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.16534144650849e-22"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 2.077476406097"
## [1] "Mean Runtime for No Input: 1.155157971382"
## [1] "Absolute difference: 0.922318434715"
## Runtime for Hylaa is 79.8434895974931 % greater than
## Runtime for No Input
```

### 3.4.23 RH4.23: Object 10085 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.460 2.492 2.501 2.503 2.517 2.538
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps10085")$time
## W = 0.98381, p-value = 0.9823
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.982277067638566"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.241 1.276 1.306 1.297 1.310 1.331
```



time

### Runtime by Optimization for 10085 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps10085")$time and subset(
## F = 0.6083, num df = 9, denom df = 9, p-value = 0.4705
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1510926 2.4490033
## sample estimates:
## ratio of variances
##
            0.6082978
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.470494508377598"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps10085")$time and subset()
## t = 101.51, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.181155 1.231079
## sample estimates:
## mean of x mean of y
## 2.502889 1.296772
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.766920937322e-26"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 2.502888703346"
## [1] "Mean Runtime for No Input: 1.296771836281"
## [1] "Absolute difference: 1.206116867065"
## Runtime for Hylaa is 93.0091812083158 % greater than
## Runtime for No Input
```

### 3.4.24 RH4.24: Object 13110 steps

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.939 2.987 3.016 3.050 3.024 3.430
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps13110")$time
## W = 0.65237, p-value = 0.0002343
##
## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.000234335774565787"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.396 1.449 1.464 1.458 1.477 1.492
```



time





```
##
## Wilcoxon rank sum test
##
## data: time by treatment
## W = 100, p-value = 1.083e-05
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "Wilcoxon-Mann-Whitney test: Null Hypothesis rejected. P-value: 1.0825088224469e-05"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 3.049691486358"
## [1] "Mean Runtime for No Input: 1.457536697387"
## [1] "Absolute difference: 1.592154788971"
## Runtime for Hylaa is 109.236000151855 % greater than
```

## 3.4.25 RH4.25: Object 17043 steps

#### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.629 3.681 3.709 3.702 3.723 3.763
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps17043")$time
## W = 0.97882, p-value = 0.9585
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.958546785330543"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.561 1.611 1.629 1.625 1.641 1.669
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps17043")$time
## W = 0.9524, p-value = 0.697
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.696984752188095"
```

#### Comparison

#### Runtime by Optimization for 17043 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps17043")$time and subset(
## F = 1.6416, num df = 9, denom df = 9, p-value = 0.4718
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4077409 6.6089212
## sample estimates:
## ratio of variances
##
            1.641563
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.471770520509052"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps17043")$time and subset()
## t = 133.09, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.044596 2.110182
## sample estimates:
## mean of x mean of y
## 3.702265 1.624876
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.12504242932078e-28"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 3.70226535797"
## [1] "Mean Runtime for No Input: 1.624876427651"
## [1] "Absolute difference: 2.077388930319"
## Runtime for Hylaa is 127.849041008132 % greater than
## Runtime for No Input
```

#### 3.4.26 RH4.26: Object 22157 steps

## Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.491 4.572 4.594 4.593 4.616 4.679
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps22157")$time
## W = 0.97327, p-value = 0.9194
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.919388955922961"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.862 1.880 1.907 1.910 1.939 1.964
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.557830173384547"

## Comparison

time

#### Runtime by Optimization for 22157 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps22157")$time and subset(
## F = 2.1406, num df = 9, denom df = 9, p-value = 0.2723
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5316836 8.6178616
## sample estimates:
## ratio of variances
##
            2.140555
##
## [1] "Homogeneity of variances: TRUE. P-value: 0.272299113035468"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps22157")$time and subset()
## t = 136.56, df = 18, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.641605 2.724152
## sample estimates:
## mean of x mean of y
## 4.592544 1.909665
##
## [1] "T-test: Null Hypothesis rejected. P-value: 1.33694227055956e-28"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 4.592543911932"
## [1] "Mean Runtime for No Input: 1.909665369987"
## [1] "Absolute difference: 2.682878541945"
## Runtime for Hylaa is 140.489458735028 % greater than
## Runtime for No Input
```

#### 3.4.27 RH4.27: Object 28804 steps

#### Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.654 5.720 5.767 5.771 5.803 5.926
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps28804")$time
## W = 0.94971, p-value = 0.6651
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.66510382139283"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.173 2.211 2.227 2.221 2.230 2.284
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.150114726557424"

## Comparison

time

80.000-

#### Runtime by Optimization for 28804 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps28804")$time and subset(]
## F = 7.2933, num df = 9, denom df = 9, p-value = 0.006771
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.811552 29.362770
## sample estimates:
## ratio of variances
## 7.293297
##
## [1] "Homogeneity of variances: FALSE. P-value: 0.00677143661976665"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian disc
```

##

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps28804")$time and subset()
## t = 122.32, df = 11.422, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 3.487255 3.614462
## sample estimates:
## mean of x mean of y
## 5.771499 2.220641
##
## [1] "T-test: Null Hypothesis rejected. P-value: 3.61713413299378e-19"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 5.771498990059"
## [1] "Mean Runtime for No Input: 2.22064051628"
## [1] "Absolute difference: 3.550858473779"
## Runtime for Hylaa is 159.902444711194 % greater than
## Runtime for No Input
```

#### 3.4.28 RH4.28: Object 37445 steps

#### Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.072 7.116 7.200 7.209 7.306 7.356
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps37445")$time
## W = 0.91587, p-value = 0.3238
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.32377452748614"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.653 2.684 2.700 2.702 2.711 2.789
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps37445")$time
## W = 0.89978, p-value = 0.2179
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.217881101045638"
```

## Comparison

#### Runtime by Optimization for 37445 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps37445")$time and subset(
## F = 7.4248, num df = 9, denom df = 9, p-value = 0.006346
\#\# alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
   1.844204 29.892018
## sample estimates:
## ratio of variances
##
            7.424755
##
## [1] "Homogeneity of variances: FALSE. P-value: 0.00634617982406205"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps37445")$time and subset()
## t = 127.05, df = 11.381, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.428653 4.584152
## sample estimates:
## mean of x mean of y
## 7.208604 2.702201
##
## [1] "T-test: Null Hypothesis rejected. P-value: 2.67505096703544e-19"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 7.208603620529"
## [1] "Mean Runtime for No Input: 2.702201032637"
## [1] "Absolute difference: 4.506402587892"
## Runtime for Hylaa is 166.767850854321 % greater than
## Runtime for No Input
```

#### 3.4.29 RH4.29: Object 48679 steps

## Runtime for Hylaa

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 8.982 9.079 9.125 9.135 9.201 9.272
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps48679")$time
## W = 0.95111, p-value = 0.6816
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.681647465980239"
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.276 3.302 3.321 3.325 3.336 3.392
```



```
## Shapiro-Wilk normality test
##

## data: subset(json_data, treatment == "NoInput" & object == "steps48679")$time
## W = 0.93993, p-value = 0.5522
##

## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.55219319911"
```

## Comparison

#### Runtime by Optimization for 48679 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset(json_data, treatment == "Hylaa" & object == "steps4
```

##

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps48679")$time and subset()
## t = 171.95, df = 11.399, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 5.735162 5.883242
## sample estimates:
## mean of x mean of y
## 9.134509 3.325307
##
## [1] "T-test: Null Hypothesis rejected. P-value: 8.02833760575554e-21"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 9.134509158134"
## [1] "Mean Runtime for No Input: 3.325307297707"
## [1] "Absolute difference: 5.809201860427"
## Runtime for Hylaa is 174.696692375853 % greater than
## Runtime for No Input
```

#### 3.4.30 RH4.30: Object 63282 steps

## Runtime for Hylaa

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.59 11.73 11.78 11.80 11.82 12.06
```



```
## Shapiro-Wilk normality test
##
data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time
## W = 0.90816, p-value = 0.2686
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.268588784180786"
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.041 4.052 4.070 4.082 4.101 4.151
```



```
##
## Shapiro-Wilk normality test
##
## data: subset(json_data, treatment == "NoInput" & object == "steps63282")$time
## W = 0.86196, p-value = 0.08048
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.0804772059614514
```

## Comparison

#### Runtime by Optimization for 63282 steps



```
## [1] "Fisher's F-test to verify the homoskedasticity (homogeneity of variances)"
##
## F test to compare two variances
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time and subset(
## F = 14.182, num df = 9, denom df = 9, p-value = 0.0005273
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    3.522657 57.097439
## sample estimates:
## ratio of variances
##
             14.1822
##
## [1] "Homogeneity of variances: FALSE. P-value: 0.000527290657418078"
## [1] "Assuming that the two samples are taken from populations that follow a Gaussian dis-
```

##

```
## Welch Two Sample t-test
##
## data: subset(json_data, treatment == "Hylaa" & object == "steps63282")$time and subset()
## t = 158.97, df = 10.263, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.608470 7.824025
## sample estimates:
## mean of x mean of y
## 11.798324 4.082077
##
## [1] "T-test: Null Hypothesis rejected. P-value: 9.60070696768075e-19"
## [1] ""
## [1] "Means comparison"
## [1] "Mean Runtime for Hylaa: 11.79832429887"
## [1] "Mean Runtime for No Input: 4.082077097894"
## [1] "Absolute difference: 7.716247200976"
## Runtime for Hylaa is 189.027473414378 % greater than
## Runtime for No Input
```

#### 3.4.31 RH4.31: Object 82267 steps

### Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.987 5.040 5.059 5.066 5.084 5.153
```



```
##
##
## data: subset(json_data, treatment == "NoInput" & object == "steps82267")$time
  W = 0.975, p-value = 0.933
##
## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.932976077741412"
```

## Comparison

time





## 3.4.32 RH4.32: Object 106948 steps

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.222 6.336 6.357 6.380 6.377 6.721
```



## [1] "Shapiro test: Null Hypothesis (normality) rejected. P-value: 0.000642945631112053"

## Comparison

time

#### Runtime by Optimization for 106948 steps



## 3.4.33 RH4.33: Object 139032 steps

#### Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.876 7.998 8.040 8.108 8.236 8.410
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.299757121190149"

Comparison

##

time

9.000-

#### Runtime by Optimization for 139032 steps



## 3.4.34 RH4.34: Object 180742 steps

## Runtime for Hylaa

```
## [1] "Sample size: 0"
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## NA NA NA NA NA NA 10
```

```
## [1] "Sample size: 10"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.04 10.15 10.24 10.36 10.43
```



## [1] "Shapiro test: Null Hypothesis (normality) not rejected. P-value: 0.531671950075446"

## Comparison

##

time

15.000-



## 3.4.35 RH4 Results: Runtime Hylaa = No Input

| Table 7: RH4 l      | Results per Object |
|---------------------|--------------------|
| $31 { m steps}$     | Inconclusive       |
| $40 { m steps}$     | Inconclusive       |
| $53 { m steps}$     | Inconclusive       |
| $68 { m steps}$     | Hylaa < No Input   |
| $89 { m steps}$     | Hylaa > No Input   |
| $116 { m steps}$    | Hylaa > No Input   |
| $151 { m steps}$    | Inconclusive       |
| $197 { m steps}$    | Inconclusive       |
| $256 { m steps}$    | Hylaa > No Input   |
| 332  steps          | Hylaa < No Input   |
| $432 	ext{ steps}$  | Hylaa > No Input   |
| $562 { m steps}$    | Hylaa > No Input   |
| $731 { m steps}$    | Hylaa > No Input   |
| $951 { m steps}$    | Hylaa > No Input   |
| $1236 { m steps}$   | Hylaa > No Input   |
| $1607 { m steps}$   | Hylaa > No Input   |
| $2089 { m steps}$   | Hylaa > No Input   |
| $2716 { m steps}$   | Hylaa > No Input   |
| $3531 { m steps}$   | Hylaa > No Input   |
| $4590 { m steps}$   | Hylaa > No Input   |
| $5967 { m steps}$   | Hylaa > No Input   |
| $7757 { m steps}$   | Hylaa > No Input   |
| $10085 { m steps}$  | Hylaa > No Input   |
| $13110 { m steps}$  | Hylaa > No Input   |
| $17043 { m steps}$  | Hylaa > No Input   |
| $22157 { m steps}$  | Hylaa > No Input   |
| $28804 { m steps}$  | Hylaa > No Input   |
| $37445 { m steps}$  | Hylaa > No Input   |
| $48679 { m steps}$  | Hylaa > No Input   |
| $63282 { m steps}$  | Hylaa > No Input   |
| $82267 { m steps}$  | No Input           |
| $106948 { m steps}$ | No Input           |
| $139032 { m steps}$ | No Input           |
| $180742 { m steps}$ | No Input           |
|                     |                    |

Table 8: RH4 Results Summary Hylaa < No Input: 5.8823529% Hylaa > No Input: 67.6470588%

0%

Hylaa: No Input: 11.7647059%

None: 0%

Inconclusive: 14.7058824%

# 4 Result Summary

## 4.1 Research Hypotheses

#### 4.1.1 RH1 Results: Runtime Hylaa = Warm

```
Table 9: RH1 Results per Object
                  Inconclusive
31 steps
40 steps
                  Inconclusive
53 steps
                  Inconclusive
                  Hylaa > Warm
68 steps
89 steps
                  Inconclusive
                  Hylaa > Warm
116 steps
                  Hylaa > Warm
151 steps
197 {
m steps}
                  Inconclusive
                  Hylaa < Warm
256 steps
                  Hylaa < Warm
332 steps
                  Hylaa < Warm
432 steps
562 \text{ steps}
                  Hylaa < Warm
731 steps
                  Hylaa < Warm
951 {
m steps}
                  Hylaa < Warm
                  Hylaa < Warm
1236 \text{ steps}
                  Hylaa < Warm
1607 \text{ steps}
2089 steps
                  Hylaa < Warm
                  Hylaa < Warm
2716 \text{ steps}
3531 steps
                  Hylaa < Warm
                  Hylaa
4590 \text{ steps}
                  Hylaa
5967 \text{ steps}
                  Hylaa
7757 steps
                  Hylaa
10085 \text{ steps}
13110 steps
                  Hylaa
17043 \text{ steps}
                  Hylaa
22157 \text{ steps}
                  Hylaa
28804 steps
                  Hylaa
37445 steps
                  Hylaa
48679 \text{ steps}
                  Hylaa
63282 steps
                  Hylaa
82267 \text{ steps}
                  None
106948 \text{ steps}
                 None
139032 steps
                 None
180742 steps
                 None
```

Table 10: RH1 Results Summary Hylaa < Warm: 32.3529412% Hylaa > Warm:8.8235294%Hylaa: Warm: 32.3529412%

0%

11.7647059%None: Inconclusive: 14.7058824%

## 4.1.2 RH2 Results: Runtime Hylaa = Decomp

| Table 11: RH2              | Results per Object |
|----------------------------|--------------------|
| $31 { m steps}$            | Inconclusive       |
| $40 { m steps}$            | Hylaa < Decomp     |
| $53 { m steps}$            | Hylaa > Decomp     |
| $68 { m steps}$            | Inconclusive       |
| $89 { m steps}$            | Inconclusive       |
| $116 { m steps}$           | Inconclusive       |
| $151 { m steps}$           | Inconclusive       |
| $197 { m steps}$           | Inconclusive       |
| $256 { m steps}$           | Hylaa > Decomp     |
| $332 { m steps}$           | Hylaa < Decomp     |
| $432 { m steps}$           | Hylaa < Decomp     |
| $562 { m steps}$           | Hylaa < Decomp     |
| $731 { m steps}$           | Inconclusive       |
| $951 { m steps}$           | Hylaa < Decomp     |
| $1236 { m steps}$          | Inconclusive       |
| $1607 { m steps}$          | Inconclusive       |
| $2089 { m steps}$          | Hylaa < Decomp     |
| $2716 { m steps}$          | Hylaa < Decomp     |
| $3531 { m steps}$          | Hylaa < Decomp     |
| $4590 { m steps}$          | Hylaa < Decomp     |
| $5967 { m steps}$          | Hylaa < Decomp     |
| $7757 { m steps}$          | Hylaa < Decomp     |
| $10085 { m steps}$         | Hylaa < Decomp     |
| $13110 { m steps}$         | Hylaa < Decomp     |
| $17043 { m steps}$         | Hylaa < Decomp     |
| $22157 { m steps}$         | Hylaa < Decomp     |
| $28804 { m steps}$         | Hylaa < Decomp     |
| $37445 { m steps}$         | Hylaa < Decomp     |
| $48679 { m steps}$         | Hylaa < Decomp     |
| $63282 { m steps}$         | Hylaa < Decomp     |
| $82267 { m steps}$         | None               |
| $106948 \; \mathrm{steps}$ | None               |
| $139032 { m steps}$        | None               |
| $180742 { m steps}$        | None               |
|                            |                    |

 Table 12: RH2 Results Summary

 Hylaa < Decomp:</th>
 55.8823529%

 Hylaa > Decomp:
 5.8823529%

Hylaa: 0% Decomp: 0%

None: 11.7647059% Inconclusive: 26.4705882%

## 4.1.3 RH3 Results: Runtime Hylaa = Basic

| Table 13: RH3 R              | esults per Object |
|------------------------------|-------------------|
| 31 steps                     | Inconclusive      |
| $40 { m steps}$              | Hylaa < Basic     |
| $53 { m steps}$              | Hylaa < Basic     |
| $68 { m steps}$              | Hylaa < Basic     |
| 89  steps                    | Hylaa < Basic     |
| $116 { m steps}$             | Hylaa < Basic     |
| $151 { m steps}$             | Hylaa < Basic     |
| $197 { m steps}$             | Hylaa < Basic     |
| $256 { m steps}$             | Hylaa < Basic     |
| $332 { m steps}$             | Hylaa < Basic     |
| $432 { m steps}$             | Hylaa < Basic     |
| $562 { m steps}$             | Hylaa             |
| $731 { m steps}$             | Hylaa             |
| $951 { m steps}$             | Hylaa             |
| $1236 { m \ steps}$          | Hylaa             |
| $1607 { m steps}$            | Hylaa             |
| $2089 { m steps}$            | Hylaa             |
| $2716 { m steps}$            | Hylaa             |
| $3531 { m steps}$            | Hylaa             |
| 4590 steps                   | Hylaa             |
| 5967 steps                   | Hylaa             |
| 7757 steps                   | Hylaa             |
| 10085 steps                  | Hylaa             |
| 13110 steps                  | Hylaa             |
| 17043 steps                  | Hylaa             |
| 22157 steps                  | Hylaa             |
| 28804 steps                  | Hylaa             |
| 37445 steps                  | Hylaa             |
| 48679 steps                  | Hylaa             |
| 63282 steps                  | Hylaa             |
| 82267 steps                  | None              |
| 106948 steps<br>139032 steps | None<br>None      |
| 139032 steps<br>180742 steps | None<br>None      |
| 100142 steps                 | TYOHE             |

Table 14: RH3 Results Summary Hylaa < Basic: 29.4117647%

Hylaa > Basic: 0%

Hylaa: Basic: 55.8823529%

0%

11.7647059%None: Inconclusive: 2.9411765%

## 4.1.4 RH4 Results: Runtime Hylaa = No Input

|                       | Results per Object |
|-----------------------|--------------------|
| $31 { m steps}$       | Inconclusive       |
| $40 { m steps}$       | Inconclusive       |
| $53 { m steps}$       | Inconclusive       |
| 68 steps              | Hylaa < No Input   |
| 89 steps              | Hylaa > No Input   |
| $116 { m steps}$      | Hylaa > No Input   |
| $151 { m steps}$      | Inconclusive       |
| $197 { m steps}$      | Inconclusive       |
| $256 { m steps}$      | Hylaa > No Input   |
| $332 	ext{ steps}$    | Hylaa < No Input   |
| $432 	ext{ steps}$    | Hylaa > No Input   |
| $562 { m steps}$      | Hylaa > No Input   |
| $731 { m steps}$      | Hylaa > No Input   |
| $951 { m steps}$      | Hylaa > No Input   |
| $1236 { m steps}$     | Hylaa > No Input   |
| $1607 { m steps}$     | Hylaa > No Input   |
| $2089 { m steps}$     | Hylaa > No Input   |
| $2716 { m steps}$     | Hylaa > No Input   |
| $3531 { m steps}$     | Hylaa > No Input   |
| $4590 { m steps}$     | Hylaa > No Input   |
| $5967 { m steps}$     | Hylaa > No Input   |
| $7757 { m steps}$     | Hylaa > No Input   |
| $10085 { m steps}$    | Hylaa > No Input   |
| $13110 { m steps}$    | Hylaa > No Input   |
| $17043 { m steps}$    | Hylaa > No Input   |
| $22157 { m steps}$    | Hylaa > No Input   |
| $28804 { m steps}$    | Hylaa > No Input   |
| $37445 { m steps}$    | Hylaa > No Input   |
| $48679 { m steps}$    | Hylaa > No Input   |
| $63282 { m steps}$    | Hylaa > No Input   |
| $82267 { m steps}$    | No Input           |
| $106948 { m \ steps}$ | No Input           |
| $139032 { m steps}$   | No Input           |
| $180742 { m steps}$   | No Input           |
|                       |                    |

Table 16: RH4 Results Summary Hylaa < No Input: 5.8823529% Hylaa > No Input: 67.6470588%

0%

Hylaa: No Input: 11.7647059%

None: 0%

Inconclusive: 14.7058824%

## A Session Information

```
## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.10
##
## locale:
## [1] LC_CTYPE=pt_BR.UTF-8
                                       LC_NUMERIC=C
                                  LC_COLLATE=en_US.UTF-8
    [3] LC_TIME=pt_BR.UTF-8
## [5] LC_MONETARY=pt_BR.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=pt_BR.UTF-8
                                  LC_NAME=C
## [9] LC_ADDRESS=C
                                        LC_TELEPHONE=C
## [11] LC_MEASUREMENT=pt_BR.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats
                graphics grDevices utils
                                                     datasets methods
                                                                              base
## other attached packages:
## [1] plyr_1.8.4
                        jsonlite_1.5
                                              ggplot2_2.2.1 reproducer_0.1.8
## [5] knitr_1.17
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.16 digest_0.6.12 grid_3.3.1
## [4] gtable_0.2.0 magrittr_1.5 evaluate_0.10
## [7] scales_0.4.1 rlang_0.2.0 stringi_1.1.5
## [10] lazyeval_0.2.0 labeling_0.3 RColorBrewer_1.1-2
## [13] tools_3.3.1 stringr_1.2.0 munsell_0.4.3
## [16] colorspace_1.3-2 gridExtra_2.2.1 tibble_1.3.1
```