AI CUP 2021 醫病決策預判與問答成果報告書

1. 参賽隊伍資訊

隊名	NCUEE		
是否參加創意獎選拔□Yes■No			
	*姓名	*學校	*系/所
*指導教授	李龍豪	國立中央大學	電機工程系
	Lung-Hao Lee	National Central University	Department of Electrical
			Engineering
*隊員	曾昱翔	國立中央大學	電機工程系
	Yu-Xiang Zeng	National Central University	Department of Electrical
			Engineering
	盧建寰	國立中央大學	電機工程系
	Chien-Huan Lu	National Central University	Department of Electrical
			Engineering
	陳柏翰	國立中央大學	電機工程系
	Po-Han Chen	National Central University	Department of Electrical
			Engineering
	陳昌浩	國立中央大學	電機工程系
	Chang-Hao Chen	National Central University	Department of Electrical
			Engineering
	陳品蓉	國立中央大學	電機工程系
	Pin-Jung Chen	National Central University	Department of Electrical
			Engineering

填寫說明:

- 1.指導教授學校/系所(學校/科系所名稱需為老師本職系所,請參考老師系上網頁的名稱),若無指導教授者,請填"無指導教授"。
- 2.有關學校名稱與系所名稱需依照學校網站所公告的系所中英文名稱
- 3. * 欄位中英文名皆需要
- 4. 欲參加創意獎選拔,請選擇 yes 並標記成「■」。

2. 演算法說明

QA task:

圖 1 OA task 流程圖

- 1. Input:將訓練資料和測試資料讀入。
- 2. 文本斷句:先將訓練資料和測試資料每一筆的對話語境做斷句,以「人物:...」為一句,切成多個句子。
- 3. 關鍵句萃取:每篇文章經過斷句後,獲得多個句子,從答案選項分別以字串比對的方式,從多個句子裡挑選關鍵句,並使用停用詞將部分文字不做字串比對,例如:醫師、個管師...等等。每個答案各別取最相近的2個句子, 3個答案總共會取出6句,若有重複的句子則不取出。最後對話語境會被萃取成只有關鍵句的文本,當作模型最後輸入的對話語境。
- 4. 問句轉換:把訓練資料和測試資料中的問句做篩選,部分問句的選項與標籤可能有全形的文字,一律轉為半 形。若問句裡面含有「有誤」、「不是」...等反義詞,將其改為「正確」、「是」...... 等等,並把答案標籤改為 其他選項,將改變後的問題及答案當作模型的輸入。
- 5. 模型訓練及預測:使用的模型為 MacBERT [1],將前處理過後的對話語境、問題及答案轉為簡體,將外部資料 C3 資料集 [2] 與訓練資料相疊,一起放入模型中訓練,如圖 2 所示。每段對話語境、問題(question)、答案(answer) 使用 [SEP]相接,最後經過 softmax 取得每個答案輸出的機率值。[3]

圖 2 QA task model 架構圖

- 6. 模型輸出後處理:根據問題將三個選項的機率值做處理,每個問題選擇最高機率的選項(argmax),作為最後輸出,若在前處理中問句中含有反義詞,則取最低機率的選項(argmin)為最後輸出。
- 7. Output:輸出 qa.csv 檔案。

Risk task:

圖 3 Risk task 流程圖

- 1. Input:將訓練資料和測試資料讀入。
- 2. 文本斷句:先將訓練資料和測試資料每一筆的對話語境做斷句,以「人物:....」為一句,切成多個句子。
- 3. 關鍵 句 萃取: 擷取醫生、 個管師的對話部分, 並將「人物:」去除。
- 5. 模型訓練及預測:使用的模型為 RoBERTa-large [4],如圖4所示,將整理好的資料隨機取90%當成 training data,剩下10%當成 evaluation data,輸入模型中訓練及預測,最後輸出兩個機率值。[5]

圖 4 Risk task model 架構圖

- 6. 模型輸出後處理:將模型輸出的兩個機率經過 Softmax,取 label 1 的輸出當預測值。
- 7. Output: 輸出 decision.csv 檔案。

3. 工具說明

QA task:

- 程式語言版本: Python 3.7.0
- 作業系統: Windows 10、Linux
- pip install 套件:
 - Tensorflow-gpu 1.13.1 \ Transformers 4.6.0 \ Opence 1.1.1
- condainstall 套件:
 - pytorch 1.7.1 · cudatoolkit 10.1

程式碼執行方法:

- 2. 將下載好的 model checkpoint 放入 input_data 資料夾、若要重新訓練則將預訓練模型下載至 chinese pretrain mrc macbert large 資料夾。
- 3. 執行 C3_finetune.py , GPU 需自行設定張數,這裡選擇 gpu_ids 2,3 , GPU 記憶體約 60000MB 才能執行, 執行方法與參數設定如下:
 - python C3_finetune.py--task_name c3 --gpu_ids 2,3 --do_eval--data_dir input_data --vocab_file chinese_pretrain_mrc_macbert_large/vocab.txt --bert_config_file chinese_pretrain_mrc_macbert_large/bert_config.json --init_checkpoint input_data/model_best.pt --max_seq_length 512 --train_batch_size 4 --eval_batch_size 16 --learning_rate 2e-5 --num_train_epochs 4.0 --output_dir input_data --gradient_accumulation_steps 1 若須重新訓練,則把--init_checkpoint 改為預訓練模型 chinese_pretrain_mrc_macbert_large/pytorch_model.bin,並加上--do_train,程式原始碼資料夾內已附有測試集模型輸出結果 logits_test.txt,可直接進行下一步後處理。
- 4. 訓練與測試完畢 input_data 資料夾會得到 logits_test.txt,執行 qa_output.ipynb,將模型輸出 logits_test.txt 轉為能上傳的 qa.csv 檔,並存在 output 資料夾裡。
- ◆ 訓練好的模型 (chinese_pretrain_mrc_roberta_wwm_ext_large) 下載連結:

 https://drive.google.com/drive/folders/1n1Fve1WfUAQpb3IibBsVKpokmBQH5A6_?usp=sharing
- ◆ 預訓練模型 (luhua/chinese_pretrain_mrc_roberta_wwm_ext_large) 連結:

 https://huggingface.co/luhua/chinese_pretrain_mrc_roberta_wwm_ext_large

 https://drive.google.com/drive/folders/1EvswU9SkMGOztxFbkUDTT4m2NvZ492Kt?usp=sharing

Risk task:

- 程式語言版本: Python 3.7.0
- 作業系統:Linux
- pip install 套件:
 - Transformers 4.6.1
- condainstall 套件:
 - pytorch 1.6.0 \times torchvision 0.7.0 \times cudatoolkit 10.1.243 \times scikit-learn 0.23.2

程式碼執行方法:

- 1. 將訓練資料 Train_risk_classification_ans.csv 及測試資料 Test_risk_classification.csv 放入「aicup_risk_data」 資料來中。
- 2. 將下載的 model checkpoint 「risk model.pt」放在「aicup risk model state」資料夾中
- 3. 若需要修改參數,可修改之參數包括:
 - I. 訓練: python aicup_risk_train.py --GPU 0 --MODEL_NAME hfl/chinese-roberta-wwm-ext-large --SAVE_STATE_NAME risk_model.pt --MODEL_SAVE_PATH aicup_risk_output --BATCH SIZE 8 --EPOCHS 4 --LR 2e-5 --MAX SEQ LENGTH 512
 - II. 測試: pythonaicup_risk_test.py --GPU 0 --MODEL_NAMEhfl/chinese-roberta-wwm-ext-large --LOAD STATE NAMErisk model.pt --BATCH SIZE8 --MAX SEQ LENGTH 512
- 4. 若要訓練,則執行「aicup_risk_train.py」,則在aicup_risk_output資料夾中輸出risk_model.pt、risk model structure.txt。
- 5. 若要測試,則執行「aicup risk test.py」。則在 aicup risk output 輸出 decision.csv
- ◆ 訓練好的模型(chinese-roberta-wwm-ext-large) 參數下載連結:
 https://drive.google.com/file/d/1InA3beOGjMbFiixz3T9hkdiXw7GfQzC2/view?usp=sharing
- ◆ 預訓練模型連結(hfl/chinese-roberta-wwm-ext-large):

https://huggingface.co/hfl/chinese-roberta-wwm-ext-largehttps://github.com/ymcui/Chinese-BERT-wwm

4. 流程說明

QA task:

- 1. 文本斷句、關鍵句萃取、問句轉換:執行 qa_process.ipynb,執行完獲得文本斷句、關鍵句萃取完成的訓練資料 並做問句轉換,最後再與外部資料相疊。
- 2. 模型訓練及預測:執行 C3 finetune.py,輸出機率值檔案 logits test.txt。
- 3. 模型輸出後處理:執行 qa_output.ipynb,將模型輸出檔 logits_test.txt 轉為能上傳的 qa.csv 檔,並存在 output 資料 夾裡。

Risk task:

- 1. 文本斷句、關鍵句萃取、問句轉換:執行 aicup risk train.py 中的 get data()。
- 2. 模型、optimizer、scheduler建構:執行 aicup_risk_train.py 中的 create_model()、create_opt()、create_lr scheduler()。
- 3. 模型訓練: 執行 aicup_risk_train.py 中的 train(),則在 aicup_risk_output 資料夾中輸出 risk_model.pt、risk_model_structure.txt。
- 4. 模型測試: 執行 aicup risk test.py, 則在 aicup risk output 輸出 decision.csv。

5. 組態說明 (e.g.環境設定、參數設定)

QA task			
環境設定	Python 3.7.0 \times Tensorflow-gpu 1.13.1 \times Transformers 4.6.0 \times Opence 1.1.1 \times pytorch 1.7.1 \times cudatoolkit		
	10.1		
參數設定	learning rate=2e-5 \ max_seq_length=512 \ num_train_epochs=4.0 \ train_batch_size=4 \		
	eval_batch_size=16 \ gradient_accumulation_steps=1 \ data_dir=input_dataoutput_dir=input_data \		
	init_checkpoint=input_data/model_best.pt \ randomseed=345		
Risk task			
環境設定	Python 3.7.0 \times Transformers 4.6.0 \times pytorch 1.6.0 \times torchvision 0.7.0 \times cudatoolkit 10.1.243 \times scikit-learn		
	0.23.2		
參數設定	GPU=0 · MODEL_NAME=hfl/chinese-roberta-wwm-ext ·		
	LOAD_STATE_NAME=risk_model.pt \ SAVE_STATE_NAME=risk_model.pt \		
	MODEL_SAVE_PATH=aicup_risk_output \ BATCH_SIZE=8 \ EPOCHS=4 \ LR=2e-5 \		
	MAX_SEQ_LENGTH=512、randomseed 未設定(取用在開發集中成績最好模型)		

6. 外部資源與參考文獻

- 1. Revisiting Pre-trained Models for Chinese Natural Language Processing:
 - https://arxiv.org/pdf/2004.13922.pdf
- 2. C3 資料集: https://github.com/nlpdata/c3
- 3. BERT Fine-tune: https://github.com/ewrfcas/bert cn finetune
- 4. RoBERTa: A Robustly Optimized BERT Pretraining Approach: https://arxiv.org/pdf/1907.11692.pdf
- 5. BERT 核心代碼解讀: https://blog.csdn.net/one_super_dreamer/article/details/105344649

7. 檢附隊員學生證明

(依照1隊員順序貼上學生證圖檔或在學證明書)

