MCMC implementation

林文智,亞琳娜,蔡潔詩

source: Four basic mood categories; based on the PANAS model by Watson and Tellegen (1985), with examples of moods (in the circle) from Russell (1980) and Barrett & Russell (1999).

Which of the following best describe how you usually feel on...

Sunny day

Cloudy day

Windy day

Rainy day

- Alert / elated / happy / excitement 警報/興奮/快樂/興奮
- Contented / relaxed / serene / calm 滿足/放鬆/寧靜/平靜
- Upset / tense / distress / nervous 生氣緊張/苦惱/緊張
- Depressed / lethargic / fatigued / sad 沮喪/嗜睡/疲勞/悲傷

Which of the following activities would you prefer to participate when you are feeling...

Probability Tables

Node:	Energized				
S	W	С	R	P(E)	P(~E)
Т	Т	Т	Т	0.007936507937	0.9920634921
Т	T	Т	F	0.0119047619	0.9880952381
Т	T	F	T	0.02380952381	0.9761904762
Т	Т	F	F	0.09523809524	0.9047619048
Т	F	Т	T	0.0119047619	0.9880952381
Т	F	Т	F	0.03571428571	0.9642857143
Т	F	F	T	0.0555555556	0.944444444
T	F	F	F	0.1587301587	0.8412698413
F	Т	Т	Т	0.0277777778	0.972222222
F	Т	Т	F	0.02380952381	0.9761904762
F	Т	F	Т	0.09920634921	0.9007936508
F	Т	F	F	0.1547619048	0.8452380952
F	F	Т	Т	0.03571428571	0.9642857143
F	F	Т	F	0.01984126984	0.9801587302
F	F	F	Т	0.06746031746	0.9325396825
F	F	F	F	0.1706349206	0.8293650794

Node:	Sunny		
P(S)	P(~S)		
0.2951807	0.7048193		
Node:	Windy		
P(W)	P(~W)		
0.0813253	0.9186747		
Node:	Cloudy		
P(C)	P(~C)		
0.8915663	0.1084337		
Node:	Rainy		
P(R)	P(~R)		
0.6385542	0.3614458		
Node:	Male		
P(M)	P(~M)		
0.571	0.429		
Node:	Adult		
P(A)	P(~A)		
0.519	0.481		

Gibbs sampling

```
function GIBBS-ASK(X, e, bn, N) returns an estimate of \mathbf{P}(X|\mathbf{e}) local variables: \mathbf{N}, a vector of counts for each value of X, initially zero \mathbf{Z}, the nonevidence variables in bn \mathbf{z}, the current state of variables \mathbf{Z}, initially random
```

```
for i=1 to N do choose Z_j in {\bf Z} uniformly at random set the value of Z_j in {\bf z} by sampling from {\bf P}(Z_j|mb(Z_j)) {\bf N}[x]\leftarrow {\bf N}[x]+1 where x is the value of X in {\bf z} return NORMALIZE(N)
```


Markov Blanket

$$P(x_j'|mb(X_j)) = P(x_j'|parents(X_j)) \prod_{Z_\ell \in Children(X_j)} P(z_\ell|parents(Z_\ell))$$

source: Stuart Russell, CS professor in Berkeley, Bayesian networks: Inference and learning CS194-10 Fall 2011 Lecture 22

```
def gibbs_ask(self,x,e,bn,N):
#returns an estimate of P(x|e)
#prepare graph
result = [0,0]
bnNew = copy.deepcopy(bn)
mNodes = bnNew.fill nodes(e)
myX = bnNew.get x node(x)
for i in range (N):
    shufList = [i for i in range(len(mNodes))]
    shuffle(shufList)
    for z in shufList:
        ##Set value of Zj in z by sampling from P(Zj|mb(Zj))
        zState = self.mb(mNodes[z],bnNew)
        bnNew.set state(zState, mNodes[z])
        xState = self.mb(myX,bnNew)
        if xState:
            result[1] = result[1] + 1
        else:
            result[0] = result[0] + 1
total = result[0] + result[1]
normalizedFalse = result[0]/total
normalizedTrue = result[1]/total
return {True: normalizedTrue, False: normalizedFalse}
```

```
def mb(self, z, bn):
#returns probability of Z in the markov blanket space in BN
\#P(x \text{ given mb}(X)) = P(x \text{ given parents}(X)) multiplied by the multiplication
# of all children Z with formula P(Z given parents(Z))
probParent = bn.get_prob(z)
probChild = bn.get_prob_children(z)
return bn.def_new_state(probParent*probChild, z)
```

Result Analysis:

Based on weather only

probability of 'energized' given cloudy=True, sunny=False, windy=True, rainy=False, is: {False: 0.8359, True: 0.1641} probability of 'pleasant' given cloudy=True, sunny=False, windy=True, rainy=False, is: {False: 0.9003, True: 0.0997}

... adding opposite mood

probability of 'energized' given cloudy=True, sunny=False, windy=True, rainy=False, pleasant=False, is: {False: 0.86844444444444445, True: 0.13155555555555556}

... adding activity

probability of 'energized' given cloudy=True, rainy=False, pleasant=False, sunny=False, windy=True, sport=True, is: {False: 0.51425, True: 0.48575} probability of 'pleasant' given cloudy=True, rainy=False, energized=False, sunny=False, windy=True, sport=True, is: {False: 0.503125, True: 0.496875}

... adding age

probability of 'energized' given cloudy=True, rainy=False, pleasant=False, sunny=False, windy=True, sunny=True, adult=True, is: {False: 0.4797142857142857, True: 0.5202857142857142}

probability of 'pleasant' given cloudy=True, rainy=False, energized=False, sunny=False, windy=True, sunny=True, adult=True, is: {False: 0.5032857142857143, True: 0.4967142857142857}t