DO NOT DETACH FROM BOOK.

<u> </u>				PE	RIO	DIC	TAI	BLE	PERIODIC TABLE OF THE ELEMENTS	THE	EL	EMI	ENT	S			18
H												13	4	7	16	17	He
3	4											5	9	7	8	6	10
Li												В	C	Z	0	1	Ne
6.94												10.81	12.01	14.01	16.00	19.00	20.18
11	-											13	14	15	16	17	18
Na		(,		\	ı	((,	*	,	Al	Si	Ь	S	\Box	Ar
22.99		\mathfrak{T}	4		9	_	∞	6	10	Π	12	26.98	28.09	30.97	32.06	35.45	39.95
19		21	22		24	25	26	27	28	29	30	31	32	33	34	35	36
K		Sc	Τ̈		$C_{\mathbf{r}}$	Mn	Fe	ပိ	Ż	Cn	Zn	Ga	Ge	As	Se	Br	Kr
39.10		44.96	47.87		52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37		39	40		42	43	44	45	46	47	48	49	50	51	52	53	54
Rb		Y	Zr		Mo	Tc	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Te	Ι	Xe
85.47		88.91	91.22		95.95	(64)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55		57	72		74	75	92	77	78	79	80	81	82	83	84	85	98
Cs		*La	Ht		M	Re	Os	Ir	Pt	Au	Hg	Ι	Pb	Bi	P_0	At	Rn
132.91		138.91	178.49		183.84	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87		68	104		106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	† Ac	Rf	Db	$S_{\mathbf{g}}$	Bh	Hs	Mt	Ds	Rg	Cn	Uut	F	Uup	$\Gamma_{\mathbf{v}}$	Uns	Ono
(223)	(226)	(227)	(267)		(271)	(270)	(277)	(276)	(281)	(282)	(285)	(285)	(586)	(288)	(293)	(294)	(294)

	58	59	09	61	62	63	64	65	99	67	89	69	70	71
*Lanthanoid Series	č	Pr		Pm	Sm	Eu	Сd	Tp	Dy	\mathbf{H}_0	Er	Tm	Χþ	Lu
	140.12	140.91	$\overline{}$	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
	06	91		93	94	95	96	62	86	66	100	101	102	103
†Actinoid Series	Th	Pa	n	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	6.4	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL = liter(s), milliliter(s)

g = gram(s)

nm = nanometer(s) atm = atmosphere(s) mm Hg = millimeters of mercury

J, kJ = joule(s), kilojoule(s)

V = volt(s)mol = mole(s)

ATOMIC STRUCTURE

$$E = h \nu$$

$$c = \lambda v$$

E = energy

v = frequency

 λ = wavelength

Planck's constant, $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$

Speed of light, $c = 2.998 \times 10^8 \,\text{m s}^{-1}$

Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$

Electron charge, $e = -1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$
, where $a A + b B \rightleftharpoons c C + d D$

$$K_p = \frac{(P_{\rm C})^c (P_{\rm D})^d}{(P_{\rm A})^a (P_{\rm R})^b}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_b = \frac{[OH^-][HB^+]}{[B]}$$

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$$

= $K_a \times K_b$

$$\mathrm{pH}\,=-\mathrm{log}\,[\mathrm{H}^+]\,,\;\mathrm{pOH}=-\mathrm{log}\,[\mathrm{OH}^-]$$

$$14 = pH + pOH$$

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

$$pK_a = -\log K_a, pK_b = -\log K_b$$

Equilibrium Constants

 K_c (molar concentrations)

 K_p (gas pressures)

 K_a (weak acid)

 K_b (weak base)

 K_w (water)

KINETICS

$$\ln[A]_t - \ln[A]_0 = -kt$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

$$t_{1/2} = \frac{0.693}{k}$$

k = rate constant

t = time

 $t_{1/2}$ = half-life

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A$$
, where $X_A = \frac{\text{moles A}}{\text{total moles}}$

$$P_{total} = P_{A} + P_{B} + P_{C} + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

$$KE$$
 per molecule = $\frac{1}{2}mv^2$

Molarity, M = moles of solute per liter of solution

$$A=abc$$

P = pressure

V = volume

T = temperature

n = number of moles

m = mass

M = molar mass

D = density

KE = kinetic energy

v = velocity

A = absorbance

a = molar absorptivity

b = path length

c = concentration

Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

 $= 0.08206 L atm mol^{-1} K^{-1}$

 $= 62.36 \text{ L torr mol}^{-1} \text{ K}^{-1}$

1 atm = 760 mm Hg = 760 torr

STP = 273.15 K and 1.0 atm

Ideal gas at STP = 22.4 L mol^{-1}

THERMODYNAMICS/ELECTROCHEMISTRY

$$q = mc\Delta T$$

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products} - \sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products} - \sum \Delta H_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ products} - \sum \Delta G_f^{\circ} \text{ reactants}$$

$$\Lambda G^{\circ} = \Lambda H^{\circ} - T \Lambda S^{\circ}$$

$$= -RT \ln K$$

$$= -nFE^{\circ}$$

$$I = \frac{q}{t}$$

q = heat

m = mass

c =specific heat capacity

T = temperature

 S° = standard entropy

 $H^{\circ} = \text{standard enthalpy}$

 G° = standard Gibbs free energy

n = number of moles

 E° = standard reduction potential

I = current (amperes)

q = charge (coulombs)

t = time (seconds)

Faraday's constant, F = 96,485 coulombs per mole of electrons

$$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$