# $21BCE7247\_Indhu\_Assignment-2\_Data\_Visualization$

### September 12, 2023

## 0.1 Importing Libraries

```
[1]: import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

### 0.2 Loading Dataset Car\_Crashes

```
[2]: df = pd.read_csv('car_crashes.csv')
```

[3]: df

| [3]: | total | speeding | alcohol | not_distracted | no previous | ins_premium | \ |
|------|-------|----------|---------|----------------|-------------|-------------|---|
| 0    | 18.8  | 7.332    |         | 18.048         | _           | 784.55      | • |
| 1    | 18.1  | 7.421    | 4.525   | 16.290         | 17.014      | 1053.48     |   |
| 2    | 18.6  | 6.510    | 5.208   | 15.624         | 17.856      | 899.47      |   |
| 3    | 22.4  | 4.032    | 5.824   | 21.056         | 21.280      | 827.34      |   |
| 4    | 12.0  | 4.200    | 3.360   | 10.920         | 10.680      | 878.41      |   |
| 5    | 13.6  | 5.032    | 3.808   | 10.744         | 12.920      | 835.50      |   |
| 6    | 10.8  | 4.968    | 3.888   | 9.396          | 8.856       | 1068.73     |   |
| 7    | 16.2  | 6.156    | 4.860   | 14.094         | 16.038      | 1137.87     |   |
| 8    | 5.9   | 2.006    | 1.593   | 5.900          | 5.900       | 1273.89     |   |
| 9    | 17.9  | 3.759    | 5.191   | 16.468         | 16.826      | 1160.13     |   |
| 10   | 15.6  | 2.964    | 3.900   | 14.820         | 14.508      | 913.15      |   |
| 11   | 17.5  | 9.450    | 7.175   | 14.350         | 15.225      | 861.18      |   |
| 12   | 15.3  | 5.508    | 4.437   | 13.005         | 14.994      | 641.96      |   |
| 13   | 12.8  | 4.608    | 4.352   | 12.032         | 12.288      | 803.11      |   |
| 14   | 14.5  | 3.625    | 4.205   | 13.775         | 13.775      | 710.46      |   |
| 15   | 15.7  | 2.669    | 3.925   | 15.229         | 13.659      | 649.06      |   |
| 16   | 17.8  | 4.806    | 4.272   | 13.706         | 15.130      | 780.45      |   |
| 17   | 21.4  | 4.066    | 4.922   | 16.692         | 16.264      | 872.51      |   |
| 18   | 20.5  | 7.175    | 6.765   | 14.965         | 20.090      | 1281.55     |   |
| 19   | 15.1  | 5.738    | 4.530   | 13.137         | 12.684      | 661.88      |   |
| 20   | 12.5  | 4.250    | 4.000   | 8.875          | 12.375      | 1048.78     |   |
| 21   | 8.2   | 1.886    | 2.870   | 7.134          | 6.560       | 1011.14     |   |
| 22   | 14.1  | 3.384    | 3.948   | 13.395         | 10.857      | 1110.61     |   |
| 23   | 9.6   | 2.208    | 2.784   | 8.448          | 8.448       | 777.18      |   |

| 24 | 17.6 | 2.640 | 5.456  | 1.760  | 17.600 | 896.07  |
|----|------|-------|--------|--------|--------|---------|
| 25 | 16.1 | 6.923 | 5.474  | 14.812 | 13.524 | 790.32  |
| 26 | 21.4 | 8.346 | 9.416  | 17.976 | 18.190 | 816.21  |
| 27 | 14.9 | 1.937 | 5.215  | 13.857 | 13.410 | 732.28  |
| 28 | 14.7 | 5.439 | 4.704  | 13.965 | 14.553 | 1029.87 |
| 29 |      | 4.060 |        | 10.092 | 9.628  | 746.54  |
|    | 11.6 |       | 3.480  |        |        |         |
| 30 | 11.2 | 1.792 | 3.136  | 9.632  | 8.736  | 1301.52 |
| 31 | 18.4 | 3.496 | 4.968  | 12.328 | 18.032 | 869.85  |
| 32 | 12.3 | 3.936 | 3.567  | 10.824 | 9.840  | 1234.31 |
| 33 | 16.8 | 6.552 | 5.208  | 15.792 | 13.608 | 708.24  |
| 34 | 23.9 | 5.497 | 10.038 | 23.661 | 20.554 | 688.75  |
| 35 | 14.1 | 3.948 | 4.794  | 13.959 | 11.562 | 697.73  |
| 36 | 19.9 | 6.368 | 5.771  | 18.308 | 18.706 | 881.51  |
| 37 | 12.8 | 4.224 | 3.328  | 8.576  | 11.520 | 804.71  |
| 38 | 18.2 | 9.100 | 5.642  | 17.472 | 16.016 | 905.99  |
| 39 | 11.1 | 3.774 | 4.218  | 10.212 | 8.769  | 1148.99 |
| 40 | 23.9 | 9.082 | 9.799  | 22.944 | 19.359 | 858.97  |
| 41 | 19.4 | 6.014 | 6.402  | 19.012 | 16.684 | 669.31  |
| 42 | 19.5 | 4.095 | 5.655  | 15.990 | 15.795 | 767.91  |
| 43 | 19.4 | 7.760 | 7.372  | 17.654 | 16.878 | 1004.75 |
| 44 | 11.3 | 4.859 | 1.808  | 9.944  | 10.848 | 809.38  |
| 45 | 13.6 | 4.080 | 4.080  | 13.056 | 12.920 | 716.20  |
| 46 | 12.7 | 2.413 | 3.429  | 11.049 | 11.176 | 768.95  |
| 47 | 10.6 | 4.452 | 3.498  | 8.692  | 9.116  | 890.03  |
| 48 | 23.8 | 8.092 | 6.664  | 23.086 | 20.706 | 992.61  |
| 49 | 13.8 | 4.968 | 4.554  | 5.382  | 11.592 | 670.31  |
| 50 | 17.4 | 7.308 | 5.568  | 14.094 | 15.660 | 791.14  |
|    |      |       |        |        |        |         |

|    | ins_losses | abbrev |
|----|------------|--------|
| 0  | 145.08     | AL     |
| 1  | 133.93     | AK     |
| 2  | 110.35     | AZ     |
| 3  | 142.39     | AR     |
| 4  | 165.63     | CA     |
| 5  | 139.91     | CO     |
| 6  | 167.02     | CT     |
| 7  | 151.48     | DE     |
| 8  | 136.05     | DC     |
| 9  | 144.18     | FL     |
| 10 | 142.80     | GA     |
| 11 | 120.92     | HI     |
| 12 | 82.75      | ID     |
| 13 | 139.15     | IL     |
| 14 | 108.92     | IN     |
| 15 | 114.47     | IA     |
| 16 | 133.80     | KS     |
| 17 | 137.13     | KY     |

```
18
                     LA
        194.78
19
         96.57
                     ME
20
        192.70
                     MD
21
        135.63
                     MA
22
        152.26
                     ΜI
23
        133.35
                     MN
24
                     MS
        155.77
25
        144.45
                     MO
26
         85.15
                     MT
27
        114.82
                     NE
28
        138.71
                     NV
29
        120.21
                     NH
30
        159.85
                    NJ
31
        120.75
                     NM
32
        150.01
                     NY
33
                     NC
        127.82
34
        109.72
                     ND
35
        133.52
                     OH
36
        178.86
                     OK
37
                     OR
        104.61
38
        153.86
                     {\tt PA}
39
        148.58
                     RΙ
40
        116.29
                     SC
41
                     SD
         96.87
42
        155.57
                     TN
43
        156.83
                     TX
44
                     UT
        109.48
45
        109.61
                     VT
46
                     VA
        153.72
47
        111.62
                     WA
48
        152.56
                     WV
49
        106.62
                     WI
50
        122.04
                     WY
```

#### [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50

Data columns (total 8 columns):

| # | Column                  | Non-Null Count | Dtype   |
|---|-------------------------|----------------|---------|
|   |                         |                |         |
| 0 | total                   | 51 non-null    | float64 |
| 1 | speeding                | 51 non-null    | float64 |
| 2 | alcohol                 | 51 non-null    | float64 |
| 3 | ${\tt not\_distracted}$ | 51 non-null    | float64 |
| 4 | no_previous             | 51 non-null    | float64 |
| 5 | ins_premium             | 51 non-null    | float64 |
| 6 | ins losses              | 51 non-null    | float64 |

```
7 abbrev 51 non-null object
```

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

```
[5]: df.head(5)
```

| total | speeding                     | alcohol                                                                                     | ${\tt not\_distracted}$                                                                                                                     | no_previous                                                                                                                                                                                     | ins_premium                                                                                                                                                                                                                                         | \                                                                                                                                                                                          |
|-------|------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.8  | 7.332                        | 5.640                                                                                       | 18.048                                                                                                                                      | 15.040                                                                                                                                                                                          | 784.55                                                                                                                                                                                                                                              |                                                                                                                                                                                            |
| 18.1  | 7.421                        | 4.525                                                                                       | 16.290                                                                                                                                      | 17.014                                                                                                                                                                                          | 1053.48                                                                                                                                                                                                                                             |                                                                                                                                                                                            |
| 18.6  | 6.510                        | 5.208                                                                                       | 15.624                                                                                                                                      | 17.856                                                                                                                                                                                          | 899.47                                                                                                                                                                                                                                              |                                                                                                                                                                                            |
| 22.4  | 4.032                        | 5.824                                                                                       | 21.056                                                                                                                                      | 21.280                                                                                                                                                                                          | 827.34                                                                                                                                                                                                                                              |                                                                                                                                                                                            |
| 12.0  | 4.200                        | 3.360                                                                                       | 10.920                                                                                                                                      | 10.680                                                                                                                                                                                          | 878.41                                                                                                                                                                                                                                              |                                                                                                                                                                                            |
|       | 18.8<br>18.1<br>18.6<br>22.4 | 18.8       7.332         18.1       7.421         18.6       6.510         22.4       4.032 | 18.8       7.332       5.640         18.1       7.421       4.525         18.6       6.510       5.208         22.4       4.032       5.824 | 18.8       7.332       5.640       18.048         18.1       7.421       4.525       16.290         18.6       6.510       5.208       15.624         22.4       4.032       5.824       21.056 | 18.8       7.332       5.640       18.048       15.040         18.1       7.421       4.525       16.290       17.014         18.6       6.510       5.208       15.624       17.856         22.4       4.032       5.824       21.056       21.280 | 18.1     7.421     4.525     16.290     17.014     1053.48       18.6     6.510     5.208     15.624     17.856     899.47       22.4     4.032     5.824     21.056     21.280     827.34 |

```
ins_losses abbrev
0
       145.08
                   AL
       133.93
                   AK
1
       110.35
2
                   AZ
3
       142.39
                   AR
4
       165.63
                   CA
```

#### 0.3 Data Visualization with Inference

• Scatter Plot

```
[6]: sns.scatterplot(x="alcohol", y="speeding", data=df)
plt.title("Alcohol vs. Speeding in Car Crashes")
```

[6]: Text(0.5, 1.0, 'Alcohol vs. Speeding in Car Crashes')



**Inference:** The scatter plot shows a positive correlation between alcohol consumption and speeding involvement in car crashes, stating that higher alcohol consumption tend to have higher speeding involvement.

• Line Plot

```
[7]: plt.figure(figsize=(12, 6))
    sns.lineplot(x='abbrev', y='alcohol', data=df)
    plt.title('Alcohol Consumption by State (i.e., abbrev)')
    plt.xticks(rotation=90)
    plt.show()
```



**Inference:** The line plot shows the alcohol consumption of each state (abbrev). It appears that state (abbrev) "ND" has the highest alcohol consumption among the observed states.

• Joint Plot

```
[8]: plt.figure(figsize=(12, 8))
sns.jointplot(x='ins_premium', y='ins_losses', data=df)
```

[8]: <seaborn.axisgrid.JointGrid at 0x25df2fee4d0>

<Figure size 1200x800 with 0 Axes>



**Inference:** The joint plot displays the bivariate relationship between insurance premium and losses. The lower insurance premiums is associated with lower insurance losses.

• Bar Plot

```
[9]: plt.figure(figsize=(12, 6))
    sns.barplot(x='abbrev', y='speeding', data=df)
    plt.title('Average Speeding in Each State(i.e., abbrev)')
    plt.xticks(rotation=90)
    plt.show()
```



**Inference:** state (abbrev) "NJ" has the lowest speeding, while state "HI" has the highest average speeding among the state (abbrev).

• Count Plot

```
[10]: sns.countplot(x=df['speeding'] > 7)
plt.title('Count of State (i.e., abbrev) with High Speeding')
```

[10]: Text(0.5, 1.0, 'Count of State (i.e., abbrev) with High Speeding')



**Inference:** The count plot shows that a significant number of states (abbrev) have low speeding rates (speeding < 7). This states that a substantial portion of the states (abbrev) has below-average speeding behavior.

• Dist Plot

```
[17]: sns.distplot(df['speeding'])
plt.title('Distribution of Speeding Rates')
```

[17]: Text(0.5, 1.0, 'Distribution of Speeding Rates')



**Inference:** This displot provides a visual representation of the distribution of speeding rates across the dataset. It states that the distribution is right-skewed, indicating that a majority of the observed data points have lower speeding rates (speeding < 7), while a smaller number of data points have higher speeding rates.

• Rel Plot

```
[12]: sns.relplot(x='speeding', y='ins_losses', data=df)
plt.title('Relationship between Speeding and Insurance Losses')
```

[12]: Text(0.5, 1.0, 'Relationship between Speeding and Insurance Losses')



**Inference :-** There is a positive correlation between speeding and insurance losses. States (abbrev) with higher average speeding tend to have higher insurance losses.

• Box Plot

```
[13]: plt.figure(figsize=(12, 6))
    sns.boxplot(x='abbrev', y='ins_premium', data=df)
    plt.title('Box Plot of Insurance Premium by State (i.e., abbrev)')
    plt.xticks(rotation=90)
    plt.show()
```



**Inference :-** The box plot shows the distribution of insurance premiums by state. It highlights variations in ins\_premium amounts across different states, with some states having higher ins\_premiums.

• Violin Plot

```
[14]: plt.figure(figsize=(12, 6))
    sns.violinplot(x=df["total"])
    plt.title('Violin Plot of Total')
    plt.xlabel('Total')
    plt.show()
```



**Inference**: The white dot in the center of the violin represents the median value i.e., 15.6. The violin appears to be roughly symmetrical, indicating that the data distribution is somewhat balanced.

• Pair Plot

```
[15]: sns.pairplot(df[['total', 'speeding', 'alcohol', 'not_distracted', \( \times \) 'no_previous', 'ins_premium', 'ins_losses']])

plt.suptitle('Pair Plots')

plt.show()
```



**Inference**: This pair plot displays pairwise scatter plots for selected columns (total, speeding, alcohol, not\_distracted, no\_previous, ins\_premium, ins\_losses). It allows for the visualization of relationships between these variables.