Trabajo 1. Teoría de la Decisión. Enunciados y soluciones

Lucía García Infante

```
source("teoriadecision_funciones_incertidumbre.R")
```

EJERCICIO 1.

Aplicar los criterios de decisión bajo incertidumbre al siguiente problema considerando una situación favorable (beneficios) y desfavorable (costos)

	e1	e2	e3	e4	e5	e6
$\overline{d1}$	100	200	130	150	240	100
d2	300	145	230	345	200	280
d3	120	300	260	400	100	330
d4	180	130	300	370	280	190
d5	200	140	135	280	190	100

Apartado a. Tabla correspondiente a beneficios.

1. Método de Wald

```
b1 = criterio.Wald(tb01a,favorable=TRUE)
names(b1$AlternativaOptima)
```

[1] "d2"

2. Método Optimista

```
b2 = criterio.Optimista(tb01a, favorable = TRUE)
names(b2$AlternativaOptima)
```

[1] "d3"

3. Método Hurwicz

```
b3 = criterio.Hurwicz(tb01a,alfa=0.5,favorable=TRUE)
names(b3$AlternativaOptima)
```

[1] "d3" "d4"

4. Método Savage

```
b4 = criterio.Savage(tb01a,favorable=TRUE)
names(b4$AlternativaOptima)
```

[1] "d2"

5. Método Laplace

```
b5 = criterio.Laplace(tb01a,favorable=TRUE)
names(b5$AlternativaOptima)
```

[1] "d3"

6. Método Punto Ideal

b6 = criterio.PuntoIdeal(tb01a,favorable=TRUE) names(b6\$AlternativaOptima)

[1] "d2"

? Conclusiones:

Tomando los datos de la tabla como beneficios, los resultados que obtenemos son: La decisión 1 y la 5 no se eligen en ningún método. La 2 y la 3 empatan siendo elegidas por 3 métodos. Y la decisión 4 sólo aparece en 1. Por tanto, las mejores decisiones en este caso son la 2 y la 3.

Apartado b. Tabla correspondiente a costes.

1. Método de Wald

```
c1 = criterio.Wald(tb01a,favorable=FALSE)
names(c1$AlternativaOptima)
```

[1] "d1"

2. Método Optimista

```
c2 = criterio.Optimista(tb01a,favorable = FALSE)
names(c2$AlternativaOptima)
```

[1] "d1" "d3" "d5"

3. Método Hurwicz

```
c3 = criterio.Hurwicz(tb01a,alfa=0.5,favorable=FALSE)
names(c3$AlternativaOptima)
```

[1] "d1"

4. Método Savage

```
c4 = criterio.Savage(tb01a,favorable=FALSE)
names(c4$AlternativaOptima)
```

[1] "d5"

5. Método Laplace

```
c5 = criterio.Laplace(tb01a,favorable=FALSE)
names(c5$AlternativaOptima)
```

[1] "d1"

6. Método Punto Ideal

c6 = criterio.PuntoIdeal(tb01a,favorable=FALSE) names(c6\$AlternativaOptima)

[1] "d1"

? Conclusiones:

Tomando los datos de la tabla como costes, los resultados que obtenemos son: La decisión 2 y la 4 no se eligen en ningún método. La 3 es elegida una única vez y la 5, dos veces. La decisión 1 es la que más veces es elegida por 5 métodos. Por tanto, la mejor decisión en este caso es la 1.