Nome:	Matrícula:

$1\underline{a}$	Prova -	$\rm MTM1039$ - $\rm T$	10
	07 de	Abril de 2017	

1. 2. 3. 4. 5.

 \sum

Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. Nesta prova A^t denota sempre a transposta da matriz A.

Questão 1. (2pts) Considerando as matrizes:

$$A = \left[\begin{array}{cc} 1 & 0 & 1 \\ 0 & -1 & 2 \end{array} \right], B = \left[\begin{array}{cc} 1 & 3 \\ 0 & 0 \\ 0 & 0 \end{array} \right], C = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

- (a) Para **cada uma** das matrizes acima diga todas as entradas (i, j) nas quais aparece um pivô;
- (b) Se for possível, calcule

$$\bullet[i] AB - C$$

$$\bullet$$
 [ii] $A^tB^t + C$

Questão 2. (2pts) Para o sistema linear dado, encontre os valores de $a \in \mathbb{R}$ para os quais o sistema (i) não tem solução, (ii) tem infinitas soluções (e apenas neste caso descreva todos os exemplares de soluções) ou (iii) tem uma única solução.

$$\begin{cases} x + y - z = 2 \\ x + 2y + z = 3 \\ x + y + (a^2 - 5)z = a \end{cases}$$

Questão 3. (2.5pts) Considere a matriz
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 \\ 2 & 0 & 4 & 0 & 0 \\ 2 & 0 & -1 & 3 & 1 \\ -1 & 0 & 2 & 1 & 3 \end{bmatrix}$$

- (a) Calcule, usando escalonamento, o cofator $\tilde{a}_{1,2}$. Com base nisto, a matriz $\tilde{A}_{1,2}$, que representa o menor do elemento a_{12} , é invertível? Caso seja, encontre a inversa de $\tilde{A}_{1,2}$;
- (b) Volte para a matriz A. Determine os valores reais λ , tais que existe $X^t = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} \neq \bar{0}$ que satisfaz

$$AX = \lambda X;$$

(c) Para cada um dos valores de λ encontrados no item anterior, determinar todos $X^t = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$ tais que

$$AX = \lambda X$$
.

Questão 4. (2.5pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Se A e B são duas matrizes 2×2 , então $A^2 B^2 = (A B)(A + B)$;
- ii-() Se A e B são duas matrizes 2×2 invertíveis, então $(AB)^{-1} = A^{-1}B^{-1}$;
- iii-() Se $B = AA^t$, então $B^t = B$;
- iv-() Se A é uma matriz 2×2 , então det(3A) = 9 det(A);
- v-() Se A e B são matrizes 3×3 , então $\det(A+B) = \det A + \det B$.

Questão 5. (1pt) (i)Mostre que se A é uma matriz 2×3 , então o sistema $AX = \overline{0}$ tem um exemplar de solução não trivial.

E sabe-se que a quantidade de pivôs depende da matriz A dada, assim como a quantidade de variáveis livres. No entanto pode-se determinar a soma da quantidade de pivôs na forma esc. red. com a quantidade de variáveis livres, independentemente das entradas de A. (ii)Qual é essa soma se A é uma matriz 2×3 ?