Olympic Athletes and BIMI

Graeme Joyce, Elizabeth Hughley, Amina Lampkin

Research Question

Data Manipulation

- 3 subsets of data for 2008, 2012, and 2016 Olympic games
- Each subset then took 2 top 5 teams from the medal table
- Utilized athlete height and weights to calculate BMI
- Comparisons drawn between nations and years to search for statistical significance

PROJECT DESIGN

Encountered Difficulties:

- Weeding out N/A and null values from our original dataset
- Eliminating unnecessary rows from our subsetted data
- Python Formatting for t-tests and regressions

Descriptive Statistics

Scatterplot of Chinese athletes' height and weight

Scatterplot of German athletes' height and weight

2012

Height and weight data spread for the 2012 Olympics

Notable Features	
Average height	1.763 meters (~ 5' 9")
Average weight	71.33 kg (~ 156 lbs.)

2016

Olympic Athletes Weight:

U.S. Average: 73.61kg Germany Average: 73.03kg

Olympic Athletes Height:

Germany

U.S. Average: 1.78m Germany Average: 1.78m

Histogram Comparing Weight for US and Germany

Histogram Comparing Height for US and Germany

Results

2008 T-Test for Germany and China

CODE

```
# Import stats from the scipy package
from scipy import stats

# Run a sample t-test
cTtest = olympics[olympics['Team'] == 'China']['BMI']
gTtest = olympics[olympics['Team'] == 'Germany']['BMI']
stats.ttest_ind(cTtest, gTtest)
```

OUTPUI

 $Ttest_indResult(statistic=-3.7316542151080196,pvalue=0.00019877955694735879)$

Summer games from 2004—2016 Linear Regression

How much does your age predict your BMI?

