Рентгеновские пульсары и их временной анализ

Горизонты физики ИКИ РАН, 2023 Мухин Андрей

Рентгеновское излучение в космосе

Историческая справка

Пульсары (одиночные)

Пульсары (в двойных системах)

Временной анализ

Чем мы займемся на практике?

Историческая справка

Открыли рентгеновское излучение Rontgen, W. (1896). On a New Kind of Rays. Nature.

(череда открытий излучения Солнца)

Нашли рентгеновский источник вне Солнечной Системы (Sco X-1) Giacconi, Riccardo et al. (1962). Evidence for x Rays From Sources Outside the Solar System

Нашли первый рентгеновский пульсар (Cen X-3)

Giacconi, R. et al. (1971). Discovery of Periodic X-Ray Pulsations in Centaurus X-3 from UHURU

Почему так долго?

Почему так долго?

Эволюция звёзд

Нейтронные звезды

Экстремальный объект:

Что такого экстремального?

Магнитное поле

Напряженность магнитного поля:

Земли 0,5 Гс

Магнит на холодильнике 50 Гс

3везд 10 – 1000 Гс

Для левитации лягушки 10⁵ Гс

Сильнейшее в лаборатории 10⁶ Гс

Нейтронной звезды 10¹²-10¹³ Гс

Размеры

Радиус объекта:

Солнц	a	696 340 км
	1 ···	

Белого карлика 7000 км

Земли 6371 км

Радиус МКАД 19 км

Нейтронной звезды

Откуда такая экстремальность?

Экстремальность: размер

Экстремальность: размер

Экстремальность: размер

Экстремальность: **все остальное**

Законы сохранения

магнитного момента

 \sim BR² = const

момента импульса

 $M\omega R^2 = const$

Из звезды (Солнца)

1000000 км

В объект радиусом

10 KM

Пульсары (одиночные)

Периодическое излучение в **радио-диапазоне**

Как это работает?

Пульсар вращается вокруг оси вращения излучение идет вдоль магнитной оси

Пульсары (одиночные)

Откуда излучение?

Магнитное поле теряет энергию, ускоряя частицы до релятивистских скоростей

Частицы теряют энергию, излучая в радиодиапазоне

Пульсары (в двойных системах)

Пульсары (в двойных системах)

Пульсары (в двойных системах)

Два режима:

pulsars: nsient X

Временной анализ Как выглядят данные?

Временной анализ

Ссылка

Временной анализ

Основные виды: Вейвлет анализ

Normalized power (dB)

Ссылка

2.8

1.0

0.5

Временной анализ

Основные виды:

Наложение эпох (Epoch folding)

Чем мы займемся на практике?

Ha искусственных данных научимся использовать **Epoch folding**:

- Что такое гистограммы
- Что такое хи-квадрат
- Как это написать в коде

Возьмем настоящие данные **рентгеновского пульсара Cen X-3** и найдем в них **его период**

- Какой период детектируется у этого объекта
- Как определить истинный период в данных

Спасибо за внимание