

Acompanhamento Pet-BCC

Matéria: Circuitos Digitais

Assuntos: Circuitos Combinatórios, Álgebra de Boole e Mapa de Karnaugh.

1) Circuitos Lógicos

a) Tabela Verdade

A tabela verdade é uma tabela matemática utilizada em Lógica (e, consequentemente, em circuitos digitais) para determinar se uma forma é válida ou não.

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	н
1	1	1
1	0	1
0	1	1
0	0	0

b) Portas Lógicas

i) Operação OR ('OU') e a Porta OR

É a primeira das três operações booleanas básicas, que podem ser representada na forma de expressão booleana como **A** + **B**, em que OR é simbolizado por '+'. Além disso, há a porta OR, um circuito que possui duas ou mais entradas e sua saída é resultante da combinação das entradas através da operação OU. Podendo ser saída alta (nível lógico 1, V) ou saída baixa (nível lógico 0, F).

Tabela Verdade:

Entrada A	Entrada B	Saida Y
0	0	0
0	1	1
1	0	1
1	1	1

ii) Operação AND e a Porta AND

É a segunda das operações booleanas básicas, que podem ser representada na forma de expressão booleana como **A** . **B**, em que AND é simbolizado por '.'. Além disso, há a porta AND, um circuito que possui duas ou mais entradas e sua saída é resultante da combinação das entradas através da operação AND.

Tabela Verdade:

Entrada A	Entrada B	Saida Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

iii) Operação NOT ('NÃO') OU INVERSOR

É a terceira das três operações booleanas básicas, que podem ser representada na forma de expressão booleana como **Ā**, em que NOT é simbolizado pela barra em cima da entrada negada. Além disso, há a porta NOT, um circuito que possui apenas uma entrada e sua saída é resultante da negação da mesma.

Tabela Verdade:

Entrada A	Saida Y
0	1
1	0

iv) Porta NOR ('NÃO-OU')

Combinação da operação NOT e OR. Semelhante à porta OR, diferindo apenas pelo círculo depois da porta OR, denotando a inversão. Representada pela expressão : ~(**A+B**).

Entrada A	Entrada B	Saida Y
0	0	1
0	1	0
1	0	0
1	1	0

v) Porta NAND ('NÃO-AND')

Combinação da operação NOT e AND. Semelhante à porta AND, diferindo apenas pelo círculo depois da porta AND, denotando a inversão. Representada pela expressão : ~(**A.B**).

2) Circuitos Combinatórios

a) Soma-de-produtos

Os métodos de simplificação e projetos de circuitos lógicos requerem que a expressão esteja de soma-de-produtos. Consiste em dois ou mais termos AND (produtos) conectados por um operação OR.

Exemplo: ABC+A'BC

b) Produto-de-somas

Os métodos de simplificação e projetos de circuitos lógicos, às vezes, requerem que a expressão esteja de produto-de-somas. Consiste em dois ou mais termos OR (somas) conectados por um operação AND.

Exemplo: (A+B+C).(A'+B+C)

c) XOR (Exclusive-OR e Exclusive-NOR)

Circuito lógico especial, uma combinação de operações de AND, OR e NOT. Representada pela expressão: $\Box {\bf A}$. ${\bf B}$ + ${\bf A}$. $\Box {\bf B}$ OU $A \oplus B$

Tabela Verdade:

Entrada A	Entrada B	Saida Y
0	0	0
0	1	1
1	0	1
1	1	0

d) XNOR

Circuito lógico especial, uma combinação de operações de AND, OR e NOT. Representada pela expressão: A . B + \Box A . \Box B ou not (A \oplus B)

3) Álgebra de Boole

Álgebra de boole é utilizada para a simplificação de circuitos elétricos, que correspondem basicamente a expressões booleanas ou expressões lógicas. A

simplificação de expressões resulta na diminuição de complexidade e consequentemente em diminuição de custo e de aumento na velocidade de processamento dos circuitos digitais. Abaixo estas as leis para simplificar as expressões:

Lei	Nome da lei
$\alpha \land \neg \alpha \equiv F$ $\alpha \lor \neg \alpha \equiv V$	Lei da contradição Lei do terceiro excluído
$\begin{array}{l} \alpha \wedge V \equiv \alpha \\ \alpha \vee F \equiv \alpha \end{array}$	Leis da identidade
$\begin{array}{l} \alpha \wedge F \equiv F \\ \alpha \vee V \equiv V \end{array}$	Leis da dominação
$\alpha \wedge \alpha \equiv \alpha$ $\alpha \vee \alpha \equiv \alpha$	Leis idempotentes
$\neg(\neg\alpha)\equiv\alpha$	Lei da dupla negação

$\alpha \wedge \beta \equiv \beta \wedge \alpha$ $\alpha \vee \beta \equiv \beta \vee \alpha$	Leis comutativas
$(\alpha \land \beta) \land \gamma \equiv \alpha \land (\beta \land \gamma)$ $(\alpha \lor \beta) \lor \gamma \equiv \alpha \lor (\beta \lor \gamma)$	Leis associativas
$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$ $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	Leis distributivas
$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$ $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$	Leis de De Morgan

$\alpha \vee (\alpha \wedge \beta) \equiv \alpha$	Lei da absorção
$\alpha \wedge (\alpha \vee \beta) \equiv \alpha$	

4) Mapa de Karnaugh

Além da álgebra de boole, também é possível utilizar um mapa de karnaugh para simplificar circuitos digitais.

Primeiramente para utilizarmos os mapas devemos deixar a expressão booleana em um formato de somatório de produtos (Ex.: AB + CB + DC) ou produtório de somas (Ex.: (A+B)(C+B)(D+C)).

Após obter a expressão booleana no formato correto, o procedimento para utilizar o mapa de karnaugh é dividido em duas fases:

1 - Construção do mapa de células (representação da expressão)

2 - Selecionar as células vizinhas e para grupo de células representa um conjunto de somatório de produtos.

