Termodynamika z elementami fizyki statystycznej Ćwiczenia 1 (26 lutego 2024)

Dochodzenie do równowagi termicznej, rozszerzalność cieplna

Zadanie 1

Metalowy blok o temperaturze początkowej T_1 umieszczony został w otoczeniu, którego temperatura przełączana jest regularnie pomiędzy dwiema ustalonymi wartościami: T_1 i T_2 ($T_1 > T_2$). Jak zmienia się temperatura bloku w funkcji czasu? Znajdź maksymalną i minimalną temperaturę bloku w stanie ustalonym (tzn. po bardzo dużej liczbie przełączeń) i przedyskutuj jako funkcję okresu b.

Zadanie 2

Blok metalowy umieszczony jest w otoczeniu, którego temperatura zmienia się według wzoru:

$$T_{ot}(t) = T_{o} + A\cos(\omega t).$$

Początkowa temperatura bloku wynosi T_{\circ} . Znajdź zależność temperatury bloku od czasu w stanie ustalonym.

Zadanie 3

Energia potencjalna oddziaływania dwóch atomów danej substancji jest przedstawiona na rysunku obok. Znaleźć średnią odległość między atomami odpowiadającą energii $E>E_0$, zakładając, że:

1. w pobliżu punktu równowagi $x=x_0$ energia potencjalna daje się przybliżyć wzorem

$$E_p(x) \approx a(x - x_0)^2 - b(x - x_0)^3 + E_0,$$

gdzie a i b są stałymi dodatnimi,

- 2. anharmoniczna poprawka trzeciego rzędu jest mała, tzn. $b|x-x_0|\ll a$,
- 3. punkty zwrotne x_{\min} i x_{\max} drgań bardzo niewiele różnią się od punktów zwrotnych oscylatora harmonicznego x_{\min}^h i x_{\max}^h (dla b=0),
- 4. średnia odległość między
atomowa w czasie drgań może być przybliżona przez średnią arytmetyczną
 $\langle x\rangle\approx\frac{x_{\min}+x_{\max}}{2}.$

Zadanie 4

Wykazać, że dla materiału anizotropowego zachodzi związek: $\gamma = \alpha_1 + \alpha_2 + \alpha_3$, gdzie γ jest współczynnikiem rozszerzalności objętościowej danego materiału, zaś α_i (i = 1, 2, 3) są współczynnikami rozszerzalności liniowej wzdłuż 3 nierównoważnych (i wzajemnie prostopadłych) kierunków tego materiału.

Zadanie 5

Termometr rtęciowy składa się ze szklanego, kulistego zbiorniczka z rtęcią połączonego ze szklaną kapilarą. W temperaturze $T_0=0$ °C pole przekroju poprzecznego kapilary wynosi A_0 , a zbiorniczek ma objętość V_0 i jest całkowicie wypełniony rtęcią. Współczynnik rozszerzalności objętościowej rtęci wynosi β , a współczynnik rozszerzalności liniowej szkła wynosi α . Jaka będzie długość słupa rtęci w kapilarze w temperaturze T? Przedyskutuj wynik.

Zadanie 6

Odległość między słupami elektrycznymi wynosi 50 m. O ile zmienia swoją długość zawieszony między nimi cienki drut miedziany, jeżeli temperatura zmienia się od -25°C do +35°C? Współczynniki rozszerzalności liniowej miedzi wynosi $\alpha = 8.9 \cdot 10^{-6} \rm K^{-1}$. Oszacuj zmianę zwisania drutu. Załóż, że na początku drut ma długość równą odległości między słupami, a w większej temperaturze przyjmuje kształt jak po obciążeniu na środku ciężarkiem.

Zadania domowe

Zadanie domowe 1

Blok metalowy znajduje się w otoczeniu którego temperatura zmienia się w czasie zgodnie z wzorem:

$$T_1 = T_0 + A \exp(-\beta t),$$

gdzie stałe $A, \beta > 0$. Temperatura początkowa bloku wynosi T_0 . Znależć zależność temperatury bloku od czasu i przedyskutować ją jako funkcję β . Po jakim czasie blok osiągnie maksymalną temperaturę?

Odpowiedź: Temperatura bloku w chwili t wynosi $T(t) = T_0 + \frac{Ak}{k-\beta} \left(e^{-\beta t} - e^{-kt} \right)$.

Zadanie domowe 2

Blok metalowy o temperaturze początkowej T_0 umieszczono na czas t_1 w otoczeniu, którego temperatura wynosi $T_0 - \Delta T$. Na jaki czas t_2 należy umieścić następnie blok w otoczeniu o temperaturze $T_0 + \Delta T$, aby znów osiągnął temperaturę T_0 ? Czy wynik zależy od ΔT ? Zbadaj wynik w granicach $t_1 \to 0$ i $t_1 \to \infty$. Który z czasów jest krótszy: t_1 czy t_2 ?

Odpowiedź: $t_2 = \frac{1}{k} \ln \left(2 - e^{-kt_1} \right)$.

Zadanie domowe 3

W lodówce, w temperaturze 0°C przechowywana jest butelka coli. Zmierzono, że w godzinę po wyjęciu jej z lodówki i pozostawieniu w otoczeniu o temperaturze 20°C temperatura płynu osiąga 14°C.

- a) Ile wynosi czas relaksacji temperatury w tej sytuacji?
- b) Na ile minut przed otwarciem butelki należy wyjąć colę z lodówki, jeżeli chcemy aby miała ona optymalną do picia temperaturę 4°C?

Odpowiedź: a) czas relaksacji $\tau \approx 50 \, \text{min}$, b) czas ogrzewania do optymalnej temperatury $t \approx 11 \, \text{min}$.

Zadanie domowe 4

Punktowa masa m drga w jednym wymiarze w polu sił zachowawczych z energią potencjalną $E_p(x) = D\left(e^{-a(x-x_\circ)}-1\right)^2$. Jest to tzw. potencjał Morse'a, oddający podstawowe własności potencjałów cząsteczkowych. Zbadaj jak punkty zwrotne takiego oscylatora zależą od energii całkowitej, która nieznacznie przekracza minimalną energię potencjalną. W tym celu rozwiń funkcję $E_p(x)$ w szereg Taylora wokół minimum, a następnie zachowaj tylko pierwszy nieznikający człon anharmoniczy. Ponadto załóż, że punkty zwrotne niewiele różnią się od rozwiązania dla oscylatora harmonicznego.

Odpowiedź: Punkty zwrotne wynoszą $x_{\pm} = x_0 \mp \frac{\sqrt{E_c/D}}{a} + \frac{E_c/D}{2a}$.

Zadanie domowe 5

Jakie długości w temperaturze $T_1 = 0$ °C powinny mieć dwa pręty: stalowy i miedziany, aby w dowolnej temperaturze pręt stalowy był dłuższy od pręta miedzianego o d = 5 cm? Współczynnik rozszerzalności liniowej dla stali wynosi $\alpha_{\text{stali}} = 1.2 \cdot 10^{-5} \, \text{K}^{-1}$, a dla miedzi $\alpha_{\text{miedzi}} = 1.6 \cdot 10^{-5} \, \text{K}^{-1}$. Założyć, że współczynniki te nie zależą od temperatury.

Odpowiedź: $L_{0,\text{stal}} = 20 \,\text{cm}, L_{0,\text{miedź}} = 15 \,\text{cm}.$