İşaret Dili Tanıma Sistemi

Donanım ve Yazılım Gereksinimleri

1. DONANIM GEREKSİNİMLERİ

Donanım Bileşeni	Kritiklik	Teknik Özellikler ve Gerekçe
Web Kamerası	Zorunlu	En az 720p (HD) çözünürlük, 30 kare/saniye. Scientific Reports (2023) çalışmasında, işaret dili tanıma sistemlerinde kameraların ucuz, kolay erişilebilir ve kullanımı yaygın olduğu belirtilmektedir. Wiley Human-Computer Interaction dergisinde (2024) akıllı telefon kameralarının işaret tanıma için yeterli olduğu kanıtlanmıştır.
İşlemci (CPU)	Zorunlu	Çift çekirdekli (dual-core) işlemci minimum. MediaPipe resmi dokümantasyonunda gerçek zamanlı işleme için "real-time inferencing" kapasitesi gerektiği belirtilmektedir. Intel i3 serisi veya AMD Ryzen 3 serisi önerilir.
Sistem Belleği (RAM)	Zorunlu	En az 4GB RAM, 8GB önerilir. Medium'da yayınlanan teknik makale (2022), derin öğrenme ve MediaPipe kullanımı için bellek gereksinimlerini analiz etmektedir. Video buffer ve model yükleme işlemleri için kritiktir.
Depolama Alanı	Zorunlu	En az 2GB boş alan. TensorFlow tabanlı işaret dili tanıma sistemlerinde model dosyalarının boyutu önemli depolama gerektirir. SSD kullanımı başlatma hızını artırır.
Grafik İşlemci (GPU)	Makul	NVIDIA GeForce GTX serisi veya üstü. ResearchGate'te yayınlanan çalışma (2011), sinir ağı tabanlı işaret tanıma için donanım implementasyonunun önemini vurgular. CPU tabanlı işlem de mümkündür.
İnternet Bağlantısı	Makul	En az 5 Mbps hız. IoT tabanlı işaret dili tanıma sistemleri (ResearchGate, 2020) bulut bağlantısının avantajlarını göstermektedir. Çevrimdışı mod da desteklenebilir.

2. İŞLETİM SİSTEMİ UYUMLULUĞU

İşletim Sistemi	Kritiklik	Minimum Sürüm ve Kaynak
Windows	Zorunlu	Windows 10 veya üstü. Akıllı telefon tabanlı işaret tanıma çalışmaları (Wiley, 2024) cross-platform uyumluluğun önemini vurgular.
macOS	Zorunlu	macOS 10.15 (Catalina) veya üstü. Apple'ın güvenlik politikaları ve kamera erişimi için gereklidir.
Linux	Zorunlu	Ubuntu 18.04 veya üstü. MediaPipe ve Python tabanlı sistemler için yaygın olarak Linux ortamı kullanılmaktadır.
iOS/Android	Makul	iOS 12+ / Android 8.0+. Mobil cihazlarda işaret tanıma uygulamalarının başarılı örnekleri mevcuttur.

3. TEMEL YAZILIM KÜTÜPHANELERI

Kütüphane	Kritiklik	Sürüm ve Akademik Kaynak
Python	Zorunlu	3.8 veya üstü. ScienceDirect makine öğrenmesi yöntemleri incelemesinde (2021) Python'un işaret dili tanıma için yaygın kullanıldığı belirtilmektedir.
OpenCV	Zorunlu	4.5 veya üstü. MediaPipe ile birlikte OpenCV kullanımı yaygın bir uygulamadır. Görüntü işleme için endüstri standardıdır.
MediaPipe	Zorunlu	0.8 veya üstü. Sicara, Medium ve diğer teknik kaynaklarda MediaPipe'ın işaret dili tanıma için optimize edildiği gösterilmektedir. Google tarafından geliştirilen açık kaynak çerçevedir.
NumPy	Zorunlu	1.19 veya üstü. Sayısal hesaplamalar ve matris işlemleri için temel kütüphanedir.
TensorFlow	Makul	2.6 veya üstü. TensorFlow kullanarak işaret dili tanıma sistemleri başarıyla geliştirilmiştir.

4. WEB GELİŞTİRME TEKNOLOJİLERİ

Teknoloji	Kritiklik	Kullanım Alanı ve Referans
Flask veya FastAPI	Zorunlu	Python web çatısı (framework). Python tabanlı işaret tanıma sistemlerinde web API geliştirme için yaygın kullanılır.
HTML5/CSS3	Zorunlu	Web sayfa yapısı ve stil. Modern tarayıcı desteği ve duyarlı (responsive) tasarım için.
JavaScript	Zorunlu	İstemci tarafı etkileşim. Towards Data Science makalesinde (2025) gerçek zamanlı işaret tanıma için JavaScript kullanımı gösterilmektedir.
WebRTC	Makul	Gerçek zamanlı iletişim. Tarayıcı tabanlı video akışı için kullanılır.

5. VERİTABANI VE DEPOLAMA

Sistem	Kritiklik	Kullanım Amacı
SQLite	Zorunlu	Hafif veritabanı. Küçük ölçekli projeler için idealdir. Kullanıcı bilgileri ve öğrenme geçmişi için.
PostgreSQL	Makul	İlişkisel veritabanı. IoT tabanlı sistemlerde büyük veri depolama gereksinimleri için önerilir.
Redis	Makul	Bellekte önbellekleme (cache). Sistem performansını artırmak için kullanılır.

6. TEST VE KALİTE KONTROLÜ

Araç Kritiklik Kullanım Alanı

Pytest Zorunlu Birim testleri (unit testing). Bilgisayarlı görü tekniklerinin doğruluğunu test etmek için sistematik test yaklaşımları gereklidir.

Selenium Makul Web uygulaması testleri. Tarayıcı uyumluluğu testleri için.

7. GELİŞTİRME ARAÇLARI

Araç Kategorisi	Önerilen Araç	Kritiklik	Gerekçe
Kod Editörü	Visual Studio Code veya PyCharm	Zorunlu	Python geliştirme için hata ayıklama özellikleri.
Sürüm Kontrolü	Git + GitHub/GitLab	Zorunlu	GitHub'da çok sayıda açık kaynak işaret tanıma projesi bulunmaktadır.
Konteynerleştirme	Docker	Makul	Farklı ortamlarda tutarlı çalışma için.

8. MOBİL UYGULAMA GELİŞTİRME

Platform	Geliştirme Aracı	Kritiklik	Gereksinimler
iOS	Xcode + Swift	Makul	macOS işletim sistemi gerekli. Akıllı telefon tabanlı işaret tanıma uygulamaları başarıyla geliştirilmiştir.
Android	Android Studio + Kotlin	Makul	Çapraz platform geliştirme mümkündür. Google Play Store için geliştirici hesabı gerekir.
Hibrit Çözüm	React Native/Flutter	Makul	Tek kod tabanıyla her iki platform için geliştirme imkanı.

9. GÜVENLİK GEREKSİNİMLERİ

Güvenlik Katmanı	Teknoloji/Yöntem	Kritiklik	Uygulama
Veri Şifreleme	HTTPS/SSL sertifikası	Zorunlu	Web trafiği güvenliği. Engelli bireylerle iletişim sistemlerinde (ScienceDirect, 2023) güvenlik kritik önem taşır.
Kullanıcı Doğrulama	JWT token	Zorunlu	Güvenli oturum yönetimi için.
Veri Koruma	KVKK/GDPR uyumluluğu	Zorunlu	Kişisel veri koruma yasal gereksinimleri.

10. BULUT VE BARINDIRMA

Hizmet Türü	Sağlayıcı	Kritiklik	Kullanım
Web Barındırma	AWS, Google Cloud, Azure	Makul	Ölçeklenebilir altyapı. IoT tabanlı sistemler bulut entegrasyonu gerektirir.
İçerik Dağıtım Ağı	CloudFlare, AWS CloudFront	Makul	Global erişim ve hızlı yükleme için.

KAYNAKLAR VE REFERANSLAR

Bu gereksinimler aşağıdaki akademik ve teknik kaynaklardan derlenmiştir:

- 1. **Scientific Reports** (2023): "Sign language recognition using the fusion of image and hand landmarks through multi-headed convolutional neural network"
- 2. **ScienceDirect** (2021): "Machine learning methods for sign language recognition: A critical review and analysis"
- 3. **ScienceDirect** (2023): "Sign language recognition system for communicating to people with disabilities"
- 4. **Wiley Human-Computer Interaction** (2024): "Exploring Sign Language Detection on Smartphones: A Systematic Review"
- 5. **ResearchGate** (2011, 2020): İşaret dili tanıma sistemleri üzerine teknik makaleler
- 6. **Papers With Code**: İşaret dili tanıma görevleri ve kıyaslama sonuçları
- 7. **Medium, Towards Data Science**: MediaPipe ve OpenCV kullanım örnekleri
- 8. **GitHub**: Açık kaynak işaret tanıma projeleri ve gereksinim dosyaları
- 9. Sicara Blog: MediaPipe tabanlı işaret tanıma uygulama rehberi
- 10. LearnOpenCV: MediaPipe dokümantasyon ve kullanım kılavuzu