双対格子 (Dual Lattice) の生成元

七条 彰紀

2018年7月24日

一般の格子 L について双対格子 $L^*=\mathrm{Hom}(L,\mathbb{Z})$ の格子としての生成元集合を求める. L は適当な isotopy で移して $L\cong\mathbb{Z}^r$ とする. すなわち,双線形形式 $\langle -,-\rangle_L$ とは独立に,L の元と行列との積や L 上の標準的内積を定める.

まず L は自由 $\mathbb Z$ 加群であるから, $L^*=\operatorname{Hom}_{\mathbb Z}(L,\mathbb Z)$ は L と階数が同じ $\mathbb Z$ 自由加群である.したがって L^* は L と同じく $L\otimes\mathbb Q\cong\mathbb Q^r$ の部分アーベル群である.標準的な方法で双線形形式 $\langle -,-\rangle_L$ の拡張 $\langle -,-\rangle_{L\otimes\mathbb Q}$ が定まる. L^* の元を $L\otimes\mathbb Q$ の部分アーベル群として特定する.

主張 0.1

 $L^* = \operatorname{Hom}(L, \mathbb{Z})$ の元は

$$M = \{ x \in L \otimes \mathbb{Q} \mid \forall y \in L, \ \langle x, y \rangle_{L \otimes \mathbb{Q}} \in \mathbb{Z} \}$$

という集合と一対一に対応し、この集合Mは格子の構造を持つ。

(証明). $x \in M$ ならば明らかに $\langle x, - \rangle_L \in L^*$. この対応は準同型であり, $\langle -, - \rangle_L$ が非退化であるから単射である.

準同型 $x\mapsto \langle x,-\rangle_L$ が全射であることを示す。逆に $\phi\in L^*$ に対して $0\neq u_0\in (\ker\phi)^\perp\subseteq L\otimes\mathbb{Q}$ を適当にとり, $x=\frac{\phi(u_0)}{u_0^2}u_0\in L\otimes\mathbb{Q}$ とおく。任意の元 $u\in L\otimes\mathbb{Q}=(\ker\phi)\oplus (\ker\phi)^\perp$ は

$$u = u' + \frac{\langle u, u_0 \rangle}{u_0^2} u_0 \ (u' \in \ker \phi)$$

と書ける(両辺の $\langle u_0, - \rangle$ での値を見れば良い)ので、

$$\phi(u) = \frac{\langle u, u_0 \rangle}{u_0^2} \phi(u_0) = \langle u, x \rangle.$$

以上から L^* と M はアーベル群として同型である. さらに M 上には $\langle -, - \rangle_{L\otimes \mathbb{Q}}$ の制限に依って双線形形式が定まる.あわせて,M は格子である. \blacksquare

以下, L^* を $\operatorname{Hom}(L,\mathbb{Z})$ ではなく格子 M を表すものとする.

 $r=\mathrm{rank}\,L$ とし,L の生成元集合 $G=\{g_i\}_{i=1}^r$ をとる.r 次正方行列 A を $\left[\langle g_i,g_j\rangle\right]_{i,j=1}^r$ とする.これらを用いて, $\langle x,y\rangle={}^txAy$ を書ける.(x,y) は基底 G について行ベクトルの形に書く.)

 L^* の生成元を特定する. $x\in L\otimes \mathbb{Q}$ が L^* に入っている必要十分条件は, $L^*(=M)$ の定義から次のように書ける.

$$Ax \in \bigoplus_{i=1}^{r} g_i \mathbb{Z}$$

すなわち $x\in\bigoplus_{i=1}^r(A^{-1}g_i)\mathbb{Z}$ なので, L^* の基底は $G^*=\{A^{-1}g_i\}_i$ である. $g_i^*=A^{-1}g_i$ と書く.

最後に, $L^*/L\cong \bigoplus (\mathbb{Z}/n_k\mathbb{Z})$ となる $\{n_k\}$ を求める. $g_i^*\mapsto e_i$ $(e_i$ は \mathbb{Z}^n の標準基底)という対応で L の生成元 $g_i\in L^*$ は Ae_i に写される.こうして生成元集合 $\{Ae_i\}$ で \mathbb{Z} 加群として生成される \mathbb{Z}^n の部分加群は, $\{n_ie_i\}(n_i\in\mathbb{Z})$ の形の生成元集合をもつ.実際,この n_i はその定義から A の単因子に一致している.まとめて,次の主張を得る.

主張 0.2

行列 $A \in M_r(\mathbb{Z})$ の単因子を $\{n_i\}_{i=1}^r$ とする. すると L^*/L は \mathbb{Z} 自由加群として

$$\bigoplus_{i=1}^r (\mathbb{Z}/n_i\mathbb{Z})$$

と同型である.

特に, 積 $\prod n_i$ は $d(L) = |\det A|$ と一致するから, $[L^*:L] = d(L)$.