Derived and Triangulated Categories

Swayam Chube

Last Updated: July 10, 2025

Contents

Localiza	tion of Categories	1
1.1 Loca	lizing Classes	1
1.2 Loca	lization and Subcategories	7
1.3 Loca	lizing Additive Categories	8
1.4 Loca	lization of Abelian Categories	11
	1.1 Loca1.2 Loca1.3 Loca	Localization of Categories 1.1 Localizing Classes

We fix some notation before proceeding. Categories will usually denoted by calligraphic symbols such as $\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}$. The opposite category of a category \mathscr{A} is denoted by \mathscr{A}^{op} . Corresponding to each object $A \in \mathscr{A}$, there is an object $A^{op} \in \mathscr{A}^{op}$ and corresponding to each morphism $f: A \to B$ in \mathscr{A} , there is a morphism $f^{op} \in \mathscr{A}^{op}$. If $A \xrightarrow{f} B \xrightarrow{g} C$ are morphisms in \mathscr{A} , then $C^{op} \xrightarrow{g^{op}} B^{op} \xrightarrow{f^{op}} A^{op}$ with $f^{op} \circ g^{op} = (g \circ f)^{op}$.

§1 Localization of Categories

THEOREM 1.1. Let \mathscr{A} be a category, and S be a class of morphisms in \mathscr{A} . Then there is a category $\mathscr{A}[S^{-1}]$ and a functor $Q: \mathscr{A} \to \mathscr{A}[S^{-1}]$ such that for every functor $F: \mathscr{A} \to \mathscr{B}$ such that F(s) is an isomorphism in \mathscr{B} for each $s \in S$, there is a unique functor $G: \mathscr{A}[S^{-1}] \to \mathscr{B}$ making

commute. Further, the pair $(\mathscr{A}[S^{-1}], Q)$ is unique up to a unique isomorphism of categories and is called the *localization* of \mathscr{A} by the class of morphisms S.

§§ Localizing Classes

Quite generally, the category $\mathscr{A}[S^{-1}]$ is quite ugly and difficult to work with. Therefore, we restrict ourselves to a more managable class S of localizing morphisms.

DEFINITION 1.2. Let \mathscr{A} be a category. A class of morphisms S in \mathscr{A} is said to be a *localizing class* if (LC1) For any object $M \in \mathscr{A}$, $\mathbf{id}_A \in S$.

(LC2) If s,t are composable morphisms in S, then so is their composition.

(LC3) (a) Every diagram of the form

$$M \xrightarrow{f} N$$

with $f \in \text{Mor}(\mathcal{A})$ and $s \in S$ can be enlarged to a commutative square

$$egin{array}{cccc} K & \stackrel{g}{\longrightarrow} L & \downarrow s \ t & \downarrow s & \downarrow s \ M & \stackrel{f}{\longrightarrow} N & \end{array}$$

for some $K \in \mathcal{A}$, $g \in \text{Mor}(\mathcal{A})$, and $s \in S$.

(b) Every diagram of the form

$$N \xrightarrow{f} M$$
 $s \downarrow$
 L

with $f \in Mor(\mathscr{A})$ and $s \in S$ can be enlarged to a commutative square

$$N \xrightarrow{f} M$$
 $s \downarrow \qquad \qquad \downarrow t$
 $L \xrightarrow{g} K$

with $K \in \mathcal{A}$, $g \in \text{Mor}(\mathcal{A})$, and $t \in S$.

(LC4) Let $f,g:M\to N$ be two morphisms in \mathscr{A} . Then

 $\exists s \in S \text{ such that } s \circ f = s \circ g \iff \exists t \in S \text{ such that } f \circ t = g \circ t.$

Clearly, if S is a localizing class in \mathscr{A} , then $S^{op} = \{s^{op} : s \in S\}$ is a localizing class in \mathscr{A}^{op} .

Our goal will now be to describe $\mathscr{A}[S^{-1}]$ given that S is a localizing class of morphisms in \mathscr{A} . Define a *left roof* between two objects M and N in \mathscr{A} to be a diagram of the form

where $s \in S$ and $f \in \text{Mor}(\mathscr{A})$. Two left roofs

are said to be *equivalent* if there exists an object $H \in \mathcal{A}$ and morphisms $p: H \to L$ and $q: H \to K$ making the diagram

commute and $s \circ p = q \circ t \in S$. It can be checked that this is indeed an equivalence relation.

Analogously a *right roof* between two objects M and N in $\mathscr A$ is defined to be diagram of the form

where $s \in S$ and $f \in \text{Mor}(\mathscr{A})$. Clearly there is a natural bijection between the left roofs in \mathscr{A} and the right roofs in \mathscr{A}^{op} with respect to S and S^{op} respectively. Two right roofs

are said to be equivalent if there exists an object $H \in \mathscr{A}$ and morphisms $p: L \to H$ and $q: K \to H$ such that

commutes. Again, it can be checked that this is indeed an equivalence relation. In fact, a shorter way to conclude this is to move from \mathscr{A} to \mathscr{A}^{op} since left roofs are mapped to right roofs. It is clear that two left roofs in \mathscr{A} are equivalent if and only if the corresponding right roofs in \mathscr{A}^{op} are equivalent.

Next, we show how to "compose" two equivalence classes of left roofs. Begin by considering two representatives

According to (LC3)a, we obtain a commutative diagram

with $u \in S$. Define the composition of the aforementioned equivalence classes to be the left roof

since $s \circ u \in S$. It is a bit tedious, but it can be checked that this "composition" is well-defined. Once this is done, it is clear that the "composition" must be associative. That is, given three representatives

using 2 (LC3)a repeatedly, we can complete this to a commutative diagram

and so it is clear that either composition

or

is equal to the equivalence class of the left roof

Finally, for each $M \in \mathcal{A}$, consider the left roof

For any left roof

, one can compute their composition using the diagram

which yields the latter left roof.

Thus, we can define a category \mathscr{A}_S where $\operatorname{ob}(\mathscr{A}_S) = \operatorname{ob}(\mathscr{A})$, and $\operatorname{Mor}_{\mathscr{A}_S}(M,N)$ is the set of equivalence classes of left roofs equipped with composition and identity maps as defined above.

There is a natural functor $Q: \mathscr{A} \to \mathscr{A}_S$ which is the identity on objects and sends a morphism $f: M \to N$ in \mathscr{A} to the equivalence class of the left roof

in \mathscr{A}_S . Indeed, it clearly takes \mathbf{id}_M to the roof representing the identity at M in \mathscr{A}_S ; further, if $M \xrightarrow{f} N \xrightarrow{g} P$ are two composable morphisms, then we have a commutative diagram

so that the composition of the bottom two left roofs is

Thus Q is indeed a functor. Finally, we claim that the pair (Q, \mathscr{A}_S) has the universal property of localization. Indeed, let $F: \mathscr{A} \to \mathscr{B}$ be a functor sending every $s \in S$ to an isomorphism F(s) in \mathscr{B} . Define a functor $G: \mathscr{A}_S \to \mathscr{B}$ such that

$$G(A) = F(A)$$
 for every object $A \in \mathcal{A}$,

and

$$G\begin{pmatrix} L \\ s & f \\ M & N \end{pmatrix} = F(f) \circ F(s)^{-1}$$

It is easily checked that this is well-defined on the equivalence class of left roofs. That G is a functor is also a trivial verification, and by construction, $F = G \circ Q$.

Finally, we must show that such a G is unique. Indeed, if $F = G \circ Q$, for each object $A \in \mathcal{A}$, we must have F(A) = G(Q(A)) = G(A). Now, a left roof

can be decomposed as the composition

which is easy to see by completing the diagram above by putting an L at the peak and identity morphisms from it to both the L's below it. But note that

so that

$$G\begin{pmatrix} L & & & \\ & L & & \\ & s & & L \\ & M & & L \end{pmatrix} = G\begin{pmatrix} L & & & \\ & \mathbf{id}_{L} & & & \\ & L & & & M \end{pmatrix}^{-1} = F(s)^{-1}$$

and hence

$$G\left(\begin{array}{c} L \\ s \\ M \end{array}\right) = F(f) \circ F(s)^{-1},$$

which completes the proof of uniqueness. We have therefore shown:

THEOREM 1.3. Let \mathscr{A} be a category and S be a localizing class of morphisms in \mathscr{A} . Then the functor $Q: \mathscr{A} \to \mathscr{A}_S$ as described above is the localization of the category \mathscr{A} at S.

§§ Localization and Subcategories

THEOREM 1.4. Let \mathscr{A} be a category, $\mathscr{B} \subseteq \mathscr{A}$ a full subcategory, and S a localizing class of morphisms in \mathscr{A} . Suppose

- (**LS**1) $S_{\mathcal{B}} = S \cap \text{Mor}(\mathcal{B})$ is a localizing class in \mathcal{B} , and
- **(LS**2) for each morphism $s: N \to M$ in S with $M \in \mathcal{B}$, there exists a morphism $u: P \to N$ with $P \in \mathcal{B}$ such that $s \circ u \in S$.

Then the induced functor $\mathscr{B}[S^{-1}_{\mathscr{B}}] \to \mathscr{A}[S^{-1}]$ is fully faithful.

$$egin{array}{cccc} \mathscr{B}^{\subset} & & \mathscr{A} & & & \downarrow Q_A \ Q_B & & & & \downarrow Q_A & & & & \downarrow Q_{S^{-1}} \ \mathscr{B}[S^{-1}] & & & \mathscr{A}[S^{-1}] \end{array}$$

Proof. Since $S_{\mathscr{B}}$ is a localizing class in \mathscr{B} , by tracing the arrows in the commutative diagram of functors above, the map $\mathscr{B}[S_{\mathscr{B}}^{-1}] \to \mathscr{A}[S^{-1}]$ explicitly sends a roof in \mathscr{B} to the equivalence class of the same roof in $\mathscr{A}[S^{-1}]$.

First, we show that the map is full. Let

be a left roof in $\mathscr{A}[S^{-1}]$ with $M, N \in \mathscr{B}$. Then due to (LS2), there exists $U \in \mathscr{B}$ and a morphism $u: U \to L$ such that $s \circ u \in S$, and hence in $S_{\mathscr{B}}$.

To see that the map is faithful, suppose two left roofs

in $\mathscr{B}[S^{-1}_{\mathscr{B}}]$ are equivalent in $\mathscr{A}[S^{-1}]$, that is, there exists an object $H \in \mathscr{A}$, and morphisms $p: H \to L$ and $q: H \to K$ in \mathscr{A} such that

commutes and $s \circ p = t \circ q \in S$. Hence, there exists an object $U \in \mathcal{B}$ and a morphism $u: U \to H$ such that $s \circ p \circ u = t \circ q \circ u \in S$, and hence in $S_{\mathcal{B}}$. Thus, the diagram

commutes and consists of morphisms in \mathscr{B} . Thus, the two roofs are equivalent in $\mathscr{B}[S^{-1}_{\mathscr{B}}]$.

§§ Localizing Additive Categories

We begin by showing that one can "take common demonimators" for morphisms in $\mathscr{A}[S^{-1}]$.

LEMMA 1.5. Let $\mathscr A$ be a category (not necessarily additive) and S a localizing class of morphisms in $\mathscr A$. Let

be left roofs in \mathscr{A} representing morphisms $\varphi_i \colon M \to N$ in $\mathscr{A}[S^{-1}]$ for $1 \le i \le n$ respectively. Then there exists an object $L \in \mathscr{A}$ and morphisms $L \xrightarrow{s} M \in S$, and $g_i \colon L \to N$ for $1 \le i \le n$ such that

represents φ_i for $1 \le i \le n$.

Proof. We prove this by induction on n. The base case n=1 is trivial. Suppose now that n>1 and that the statement has been proven for n-1. Hence, there exists an object K and a morphism $K \xrightarrow{t} M \in S$ such that

represents φ_i for $1 \le i \le n-1$. Using 2 (LC3) α , there exists a commutative diagram

$$egin{array}{c} U \stackrel{v}{\longrightarrow} L_n \ \downarrow \ \downarrow s_n \ K \stackrel{}{\longrightarrow} M \end{array}$$

with $u \in S$. Set $s = s_n \circ v = t \circ u \in S$. Then the diagram

commutes for $1 \le i \le n-1$, and

commutes with $s_n \circ v = s \in S$. Set $g_i = h_i \circ u$ for $1 \le i \le n-1$ and $g_n = f_n \circ v$; then

represents φ_i for $1 \le i \le n$, thereby completing the proof.

Now let \mathscr{A} be an *additive category* and S a localizing class of morphisms in \mathscr{A} . We shall show that $\mathscr{A}[S^{-1}]$ is naturally an additive category. For objects $M, N \in \mathscr{A}[S^{-1}]$ and morphisms

in $\mathscr{A}[S^{-1}]$; using Lemma 1.5, we can find an object U and morphisms $U \xrightarrow{u} M \in S$ and $f', g' : U \to N$ such that

Define

Note that there are three choices being made here: the choice of the representatives for φ and ψ , and choice of "common denominator" for both morphisms. It follows that $\operatorname{Mor}_{\mathscr{A}[S^{-1}]}(M,N)$ has the structure of an abelian group. Further, it must be checked that

$$\chi \circ (\varphi + \psi) = \chi \circ \varphi + \chi \circ \psi$$
 and $(\varphi + \psi) \circ \chi = \varphi \circ \chi + \psi \circ \chi$

for suitably composable morphisms χ, φ, ψ in $\mathscr{A}[S^{-1}]$. The zero object in $\mathrm{Mor}_{\mathscr{A}[S^{-1}]}(M,N)$ is given by the morphism

Finally, given objects $M, N \in \mathscr{A}[S^{-1}]$, define their direct sum/direct product to be the object $M \oplus N$ where the direct sum is taken in \mathscr{A} , and the canonical projections and injections are the images of those in \mathscr{A} . Again, it is straightforward, but must be checked, that these have the desired universal properties. In this way, $\mathscr{A}[S^{-1}]$ has been given a natural additive structure.

Finally, note that the localization functor $Q: \mathscr{A} \to \mathscr{A}[S^{-1}]$ is an additive functor. Indeed, if $f,g:M\to N$ are morphisms, then

so that by definition,

Finally, we have

THEOREM 1.6. Let \mathscr{A} be an additive category and S a localizing class of morphisms in \mathscr{A} . Then the category $\mathscr{A}[S^{-1}]$ is naturally an additive category and the localizing functor $Q: \mathscr{A} \to \mathscr{A}[S^{-1}]$ is additive.

Further, given any additive functor $F: \mathcal{A} \to \mathcal{B}$ such that F(s) is an isomorphism in \mathcal{B} for each $s \in S$, there exists a unique additive functor $G: \mathcal{A}[S^{-1}] \to B$ making

commute.

Proof. We have already proved the first part of the theorem. As for the second part, suppose $\varphi, \psi: M \to N$ are two morphisms in $\mathscr{A}[S^{-1}]$. Using Lemma 1.5, we may suppose that they are represented by

respectively. As a result,

$$G(\varphi + \psi) = F(f + g)F(s)^{-1} = F(f)F(s)^{-1} + F(g)F(s)^{-1} = G(\varphi) + G(\psi),$$

so that G is an additive functor. That G is unique has already been argued.

LEMMA 1.7. Let $\varphi: M \to N$ be a morphism in $\mathscr{A}[S^{-1}]$ represented by a left roof

Then the following are equivalent:

- (1) $\varphi = 0$.
- (2) There exists $t \in S$ such that $t \circ f = 0$.
- (3) There exists $t \in S$ such that $f \circ t = 0$.

Proof. Clearly (2) and (3) are equivalent due to (LC4). Now if $\varphi = 0$, then $Q(f) \circ Q(s)^{-1} = 0$, so that Q(f) = 0, i.e.,

represents 0. Hence, there exists an object H and and morphisms $p,q:H\to L$ such that

commutes and $p = q \in S$. The commutativity implies $f \circ p = 0$, so that (1) \Longrightarrow (2). Conversely, suppose $f \circ t = 0$ for some $t: H \to L \in S$. Then the diagram

commutes with $s \circ t \in S$. This shows that $\varphi = 0$, thereby completing the proof.

COROLLARY 1.8. Let M be an object in \mathscr{A} . Then the following are equivalent:

- (1) Q(M) = 0.
- (2) There exists an object $N \in \mathscr{A}$ such that the zero morphism $N \xrightarrow{0} M$ is in S.
- (3) There exists an object $N \in \mathscr{A}$ such that the zero morphism $M \xrightarrow{0} N$ is in S.

Proof. The equivalence of (2) and (3) follows from an immediate application of 2 (**LC3**)a and 2 (**LC3**)b. Now if Q(M) = 0, then $Q(\mathbf{id}_M) = 0$, so that by Lemma 1.7 there exists $s \in S$ with $\mathbf{id}_M \circ s = 0$, and hence s = 0. This proves (2).

Conversely, if there is an object $N \in \mathscr{A}$ with $N \xrightarrow{0} M \in S$, then the image of this map, which is the zero map $Q(N) \xrightarrow{0} Q(M)$ must be an isomorphism. Thus Q(N) = Q(M) = 0.

LEMMA 1.9. Let $f: M \to N$ be a morphism in \mathscr{A} . Then

- (1) If f is monic, then so is Q(f).
- (2) If f is epic, then so is Q(f).

Proof.

§§ Localization of Abelian Categories