Lehrstuhl für Energiehandel und Finanzdienstleistungen Prof. Dr. Rüdiger Kiesel Ya Wen SS 2014

23.07.2014

Quantitative Climate Finance Klausur

Die Bearbeitungszeit beträgt 90 Minuten. Als Hilfsmittel ist nur ein nichtprogrammierbarer Taschenrechner erlaubt. Zeigen Sie Ihre Rechenwege und begründen Sie Ihre Antworten. Machen Sie Ihre endgültige Lösung DEUT-LICH. Runden Sie alle Ergebnisse auf zwei Nachkommastellen genau.

Name:	
Vorname:	
Matrikel-Nr.:	

Bewertung:

1	2	3	4	Gesamt
max. 25	max. 25	max. 25	max. 25	max. 100

Note:

Viel Erfolg!

Aufgabe 1 (Cap and Trade) (25 Punkte)

Ein System bestehe aus $n=30~{\rm CO_2}$ -emittierenden Unternehmen.

Wir betrachten einen Zeitraum von zwei Jahren.

Alle Unternehmen unterliegen einem Cap-and-Trade System mit konstantem ${\rm CO_2\text{-}Preis}\ p>0.$ In diesem System muss jedes Unternehmen alle seine Emissionen am Ende des zweiten Jahres durch Zertifikate abdecken.

Jedes Unternehmen $i \in \{1,...,n\}$ emittiere pro Jahr durchschnittlich 5 Tonnen CO_2 . Die Gesamtemissionen jedes Unternehmens ohne Minderungsmaßnahmen seien also 10 Tonnen CO_2 .

Unternehmen i reduziere seine Emissionen im ersten bzw. zweiten Jahr um b_t^i Tonnen, mit $t \in \{1,2\}$.

Die gesamte Emissionsmenge des Unternehmens i betrage also $e^i = 10 - b^i$ mit $b^i = b_1^i + b_2^i$.

Die Minderungskosten seien für alle Unternehmen definiert durch:

$$c(b^i) = \frac{(b^i)^2}{2} + 4b^i.$$

Der Regulator lege ein Cap von K=150 fest, welches nicht überschritten werden darf.

- (a) Stellen Sie das zugehörige Optimierungsproblem des Unternehmens i auf. Bestimmen Sie damit das optimale Emissionsniveau e^{i*} des Unternehmens in Abhängigkeit von p. (10 Punkte)
- (b) Wie muss der CO_2 -Preis p gewählt werden, damit die folgende Bedingung erfüllt ist (4 **Punkte**):

$$K = \sum_{i=1}^{n} e^{i*} ?$$

- (c) Wie hoch ist die durchschnittliche jährliche Minderungsrate \bar{d}^i , welche zum Erreichen von e^{i*} notwendig ist? Verwenden Sie den Zertifikatepreis aus Aufgabenteil (b). (5 Punkte)
- (d) Beschreiben Sie die Emissionsminderungsziele der EU vom Februar 2011: Um wieviel Prozent sollen die Emissionen bis 2020 bzw. 2050, bezogen auf das Level von 1990, vermindert werden? (6 Punkte)

Aufgabe 2 (Binomialmodell) (25 Punkte)

Wir betrachten ein Binomialmodell für den Spot-Preis der CO_2 -Zertifikate in diskreter Zeit. Der Anfangspreis zum Zeitpunkt k=0 sei mit S_0 bezeichnet. Zu jedem nächsten Zeitpunkt steige der Preis entweder mit einem Faktor u, oder sinke mit einem Faktor d. Wir bezeichnen jedes Ereignis der Preissteigerung mit H und jedes Ereignis der Preissenkung mit T. Die Wahrscheinlichkeit für das Eintreten von H sei $p\in[0,1]$ und die Wahrscheinlichkeit für T ist q=1-p.

Nun betrachten wir ein dreistufiges Beispiel (d.h. die Preise S_0 bis S_3 für die Zeitpunkte k = 0, 1, 2, 3).

- (a) Zeichnen Sie den Binomialbaum der CO₂-Zertifikate-Preise. (5 Punkte)
- (b) Wie ist ein diskretes Martingal definiert? (4 Punkte)
- (c) Seien u=1.5 und d=0.5. Weiter gelte $\mathbb{E}[S_k]=(up+dq)S_{k-1}$, für k=1,2,3. Für welche Werte von p und q ist der Prozess S_k ein Martingal? (5 **Punkte**)
- (d) Sei der Prozess S_k ein (diskretes) Martingal. Beweisen Sie unter dieser Annahme die folgende Eigenschaft (5 Punkte):

$$\mathbb{E}[S_3|\mathcal{F}_1] = S_1.$$

Seien nun $S_0=10$; $p=\frac{1}{2}$; $u=\frac{5}{4}$ und $d=\frac{3}{4}$.

(e) Berechnen Sie $\mathbb{E}[S_2]$ sowie $\mathbb{E}[S_3|HT]$. (6 Punkte)

Aufgabe 3 (Hybrid Schemes) (25 Punkte)

Wir betrachten folgende Situation eines Cap-and-Trade Systems: Die marginalen sozialen Kosten von Emissionen seien beschrieben durch $\mathsf{MSC}(x) = x^2 + 1$. Alle Unternehmen seien identisch und es herrsche vollkommener Wettbewerb. Die Grenzvermeidungskosten (marginale Minderungskosten) der Unternehmen seien beschrieben durch $\mathsf{MAC}_1(x) = x^2 - 4x + 4$. Der Definitionsbereich der MSC- und MAC-Funktionen sei das Intervall [0,2].

- (a) Berechnen Sie in dieser Situation die ökonomisch optimiale Emissionsmenge Q_1 . (3 Punkte)
- (b) Geben Sie den resultierenden Zertifikatepreis P_1 an. (3 Punkte)
- (c) Skizzieren Sie obige Situation in einer einzigen Grafik. (3 Punkte)
- (d) (Fall 1) Wir nehmen an, es wurde aufgrund einer angenommenen marginalen Minderungskostenkurve von MAC₁ die oben berechnete Gesamtmenge von Q_1 Zertifikaten auf den Markt gebracht. Diese Annahme stelle sich jedoch als falsch heraus und es gelte stattdessen $MAC_2(x) = 2x^2 8x + 8$.
 - (i) Welcher Zertifikatepreis P_0 ist gemäß obigem Modell zu erwarten? (3 Punkte)
- (e) (Fall 2) Um dem Problem nachträglich zu begegnen wird den Marktteilnehmern das Recht eingeräumt, zum Safety-Valve-Preis $P_{SV} = P_1$ beliebig viele Zertifikate zu erwerben.
 - (i) Beweisen Sie: die Umkehrfunktion von MAC $_2$ ist gegeben durch: MAC $_2^{-1}(P)=2-\sqrt{\frac{P}{2}}$. (4 Punkte)
 - (ii) Berechnen Sie die resultierende Emissionsmenge Q_H . Kennzeichnen Sie Q_H in Ihrer Grafik. (4 **Punkte**)
 - (iii) Wir betrachten nun $MAC_2^{-1}(P)$ als einen stochastischen Prozess, wobei P eine Brownsche Bewegung W_t bezeichne. Bestimmen Sie die Dynamik $dMAC_2^{-1}(P)$. (5 Punkte)

Aufgabe 4 (Carbon Revenue Bonds) (25 Punkte)

Ein Carbon-Revenue-Bond mit einer Laufzeit von 3 Jahren und dem Bondpreis P wird an einen Investor verkauft. Im Gegenzug dazu erhält dieser die Zusage, zum Anfang jedes Jahres eine Auszahlung zu erhalten, die sich aus dem Verkauf der generierten CO_2 -Zertifikate ergibt. Die erste Auszahlung erhält der Investor am Anfang des ersten Jahres. Die jährlichen Auszahlungen seien mit C_k , k=1,2,3, bezeichnet. Der effektive Zinssatz betrage r=5%.

- (a) Sei $(W_t)_{t \geq 0}$ eine Brownsche Bewegung (Wiener-Prozess). Beschreiben Sie die unabhängigen Zuwächsen von einer Brownschen Bewegung. Sei s ein weiterer Zeitpunkt mit 0 < s < t. Welchen Erwartungswert und welche Varianz hat $W_t W_s$? (3 Punkte)
- (b) Der Preisprozess $(S_t)_{t\geq 0}$ der $\mathsf{CO}_2 ext{-}\mathsf{Zertifikate}$ sei gegeben durch

$$S_t = \exp\left(\sigma W_t - \frac{\sigma^2}{2}t\right),\,$$

mit $\sigma > 0$. Berechnen Sie dS_t mit Hilfe der Itô-Formel. (4 Punkte)

- (c) Der Prozess $(S_t)_{t\geq 0}$ ist ein Martingal. Erläutern Sie dies intuitiv anhand der in (b) erhaltenen stochastischen Differentialgleichung. (2 Punkte)
- (d) Ist der Prozess $(S_t)_{t\geq 0}$ eine geometrische Brownsche Bewegung? Welchen Anfangszustand hat er? Erläutern Sie dies intuitiv. (4 **Punkte**)
- (e) Beweisen Sie $\mathbb{E}[e^{\sigma W_t}] = e^{\frac{\sigma^2}{2}t}$ mit den Ergebnissen in (b) (c) und (d). (4 Punkte)
- (f) Die Menge der jährlich generierten Zertifikate sei mit N_k bezeichnet. Wir gehen davon aus, dass das Projekt jährlich 10 Zertifikate generiert. Die Auszahlung an den Investor sei definiert durch $C_k = I\!\!E [N_k S_k]$. Berechnen Sie C_k . (4 Punkte)
- (g) Sei ab jetzt $C_k = 10$ für k = 1, 2, 3. Berechnen Sie den Bond-Preis P. (4 Punkte)