Brain Atlas The BRAPH 2 Team August 12, 2023

This Tutorial explains how to work with the Graphical User Interface (GUI) to manage brain atlases. This is typically the first step required to perform a graph analysis in BRAPH 2.0. In this Tutorial, we will explain you how to upload a brain atlas, how to visualize it, and how to export publication-ready brain figures.

Figure 1: **Brain atlas figure created with BRAPH 2.0.** Example of a brain surface image with some nodes representing brain regions.

Contents

Open the GUI 2
Upload the Brain Atlas 3
Ready Brain Atlases 3
Create a New Brain Atlas 5
Plot the Brain Atlas 6
Export the Figure 10

Figure 2: **Brain Atlas GUI.** Full graphical user interface to work with a brain atlas in BRAPH 2.0.

Open the GUI

The brain atlas GUI is the first step in most BRAPH 2.0 pipelines. You can open it by typing braph2 in the MatLab's terminal, which allows you to select a pipeline containing the steps required to perform your analysis. The initial step is typically to upload the brain atlas, as shown in Figure 3a.

To open the GUI and upload the brain atlas, you can also do it from the command line (i.e., without opening an analysis pipeline) by typing the commands in Code 1.

Code 1: Code to launch the Brain Atlas GUI. This code can be used in the MatLab command line to launch the Brain Atlas GUI without having to open a pipeline.

```
ba = BrainAtlas(); (1)
gui = GUIElement('PE', ba); (2)
gui.get('DRAW') (3)
gui.get('SHOW') (4)
```

Figure 3: Upload a brain atlas. The different steps you need to follow to open a brain atlas using the GUI: a Open the brain atlas GUI. b Import a brain atlas from an XLS or TXT file. c Navigate to the BRAPH 2.0 folder atlases. d Select the desidered atlas.

- (1) creates a new object BrainAtlas.
- (2) creates a GUI to upload the brain
- (3) draws the GUI.
- (4) shows the GUI.

Upload the Brain Atlas

In the GUI launched in the previous step, you have a menu that can be used to import a brain atlas (Figure 3b) either by loading one of the already-available atlases in the BRAPH 2.0 folder atlases (Figure 3c) or by loading a file you have created. In this example, we are uploading the Desikan atlas (Figure 3d).

You can change the ID, name, and notes of the brain atlas (as shown in Figure 4a) as well as the IDs, labels, coordinates, and notes of the brain regions (Figure 4b).

Ready Brain Atlases

Currently, we provide several brain atlases that are commonly used in the field of brain connectomics, some of which are shown in Figure 5). They are available in the BRAPH 2.0 folder atlases in XLS and TXT formats, and they can also can be downloaded from our website (http: //braph.org/software/brain-atlases/).

Figure 4: Edit the brain atlas information. In the brain atlas GUI: a We can see the ID, name, brain regions and notes of the brain atlas. **b** All of this information can be changed, in this example we have renamed the ID, name and notes of the brain atlas but you can also edit the IDs, labels, coordinates, and notes of the brain regions.

Figure 5: Brain Atlases. Some brain atlases provided by BRAPH 2.0:

AAL90 Automated Anatomical Labelling atlas with 90 cortical and subcortical regions.

AAL116 Automated Anatomical Labelling atlas with 116 cortical and subcortical regions, including cerebellar areas.

BNA Brainnetome atlas with 246 cortical and subcortical regions.

Craddock Functional atlas with 200 cortical and subcortical regions, including cerebellar areas.

Desikan Anatomical atlas with 68 cortical from the FreeSurfer software.

Destrieux Anatomical atlas with 148 cortical from the FreeSurfer software.

Schaefer Functional brain atlas with 200 cortical regions that belong to 7 different resting-state fMRI networks.

Subcortical FreeSurfer Anatomical atlas with 14 subcortical gray matter regions from the FreeSurfer software.

Create a New Brain Atlas

To create a new brain Atlas in BRAPH 2.0 format, you should create a new XLS file (*.xls or *.xlsx), as shown in Figure 6. (It is also possible to create it in TXT format (*.txt), for which we refer to the examples available in the BRAPH 2.0 folder atlases.)

Desikan Freesurfer					¬ □	: continu	otion				
Desikan Label				_	a 📙	i continu	ation b				
Desikan Notes				_							
BrainMesh ICBM152.nv											
ISF	superiorfrontal	-12.6	22.9	42.4	left	i					
IFP	frontalpole	-8.6	61.7	-8.7	left	rLOF	lateralorbitofrontal	23,6	28,5	-15,2	right
IRMF	rostralmiddlefrontal	-31.3	41.2	16.5	left	rPT	parstriangularis	45	29,7	4,5	right
ICMF	caudalmiddlefrontal	-34,6	10.2	42.8	left	rPOP	parsopercularis	44.9	14.4	14.2	right
IPOB	parsorbitalis	-41	38.8	-11.1	left	rMOF	medialorbitofrontal	8,8	35.7	-14,8	right
ILOF	lateralorbitofrontal	-24	28.6	-14.4	left	rRMF	rostralmiddlefrontal	32,3	40,9	17,3	right
IPT	paratriangularis	-42.4	30.6	2.3	left	rRAC	rostralanteriordingulate	8	33,5	2,1	right
IPOP	paraopercularis	-44,6	14.6	13,1	left	rINS	insula	35,1	-3,9	2,4	right
IMOF	medialorbitofrontal	-8	34,9	-14.9	left	I rPRC	precentral	36,8	-9.9	43.5	right
IRAC	rostralanteriorcingulate	-6.8	33.9	1.6	left	rPOC	postcentral	41,6	-22,4	43,8	right
ICAC	caudalanteriorcingulate	-6,6	18	26.1	left	rSUPRA	supramarginal	50,6	-33,3	30,7	right
IINS	insula	-34.2	-4.3	2.2	left	rSP	superiorparietal	22.6	-59.5	48.1	right
IPRC	precentral	-37.8	-10.7	42.1	left	rIP	inferiorparietal	42,8	-60.9	28,1	right
IPOC	postcentral	-42.3	-23.8	43.6	left	rPARAC	paracentral	9,9	-27,4	55,6	right
ISUPRA	supramarginal	-50,4	-38.8	31	left	rPCG	posteriorcingulate	7,6	-17,1	36,2	right
ISP	superiorparietal	-22,8	-60.9	46.3	left	rIST	isthmuscingulate	8,9	-45,4	17,6	right
IIP	inferiorparietal	-40	-66.4	27.3	left	rPREC	precuneus	11,7	-56,5	37,7	right
IPARA	paracentral	-10	-28.7	56.1	left	rCUN	cuneus	8,7	-80,1	19	right
IPCG	posteriorcingulate	-7.3	-17,4	35.7	left	rPERI	pericalcarine	14	-79,7	6,7	right
IIST	isthmuscingulate	-9,8	-44.8	16,9	left	rLIN	lingual	16,8	-66,3	-3,6	right
IPREC	precuneus	-11.6	-67.5	36.7	left	rLO	lateraloccipital	30,3	-86,3	0,5	right
ICUN	cuneus	-8.7	-79.6	18	left	rTRANS	transversetemporal	44,8	-22,4	6,5	right
IPERI	pericalcarine	-13,9	-80,6	6	left	rBKS	bankssts	51,9	-40,6	5,6	right
ILIN	lingual	-16,5	-66,8	-4,3	left	rST	superiortemporal	53	-14	-5,5	right
ILO	lateraloccipital	-29,7	-86,9	-1	left	rMT	middletemporal	55,9	-29,5	-12,9	right
ITRANS	transversetemporal	-44	-24.2	6	left	rIT	inferiortemporal	49,3	-31,7	-23	right
IBKS	banksats	-52,7	-44,5	4,6	left	rTP	temporalpole	34	8,4	-33,1	right
IST	superiortemporal	-52,1	-17,8	-4.4	left	rENT	entorhinal	26,2	-6,8	-31,9	right
IMT	middletemporal	-55,6	-31,1	-12,9	left	rPHIP	parahippocampal	26,1	-31,3	-16,2	right
IIT	inferiortemporal	-48.9	-34.4	-22.2	left	rFUS	fusiform	35,9	-43	-19,2	right
ITP	temporalpole	-32,8	8,4	-34,8	left						
IENT	entorhinal	-25,8	-7,6	-31,6	left	~					
IPHIP	parahippocampal	-24,7	-31,2	-17,4	left						
IFUS	fusiform	-35,7	-43,3	-19,7	left						
rSF	superiorfrontal	13,4	24,7	42	right						
rFP	frontalpole	10,3	61,1	-10	right						
rCAC	caudalanteriorcingulate	7.3	18.7	26.3	right						

Start by writing the following information in the first 4 rows:

- Brain Atlas ID (row 1, column 1). For example: Desikan FreeSurfer
- Brain Atlas LABEL (row 2, column 1). For example: Desikan Labels
- Brain Atlas NOTES (row 3, column 1). For example: Desikan Nodes
- Brain Surface Name (row 4, column 1). For example: BrainMeshICBM152.nv

Then, from row 5, you should include the IDs of the regions of your atlas (1st column), the labels of the regions of your atlas (2nd column), the X, Y and Z coordinates (3rd, 4th, and 5th columns), and any relevant notes (in this case, the brain hemisphere, 6th column).

Figure 6: Create your own brain atlas. Overview of how the XLS file containing your atlas information should look like.

Plot the Brain Atlas

Once you are satisfied with the brain atlas, you can plot it by pushing the button "Plot Brain Atlas" (Figure 7a). This will open an image with a brain surface and nodes corresponding to the brain regions (Figure 7b).

This new window has a large toolbar that allows you to change the visualization of the atlas. We suggest you try the different options to understand how they change the figure. Importantly, within this menu, there is one option called "Settings Brain Surface" (highlighted in Figure 8a), which opens the settings window shown in Figures 8b-c.

The settings window allows you to optimize how the brain regions included in your analysis are visualized. This is often included as a first figure in a manuscript.

Most things in the settings window are intuitive. So we encourage you to try them out until you achieve the visualization you want. There are many possibilities for visualization. Figure 9 shows just one example.

Each brain region can be represented with spheres, symbols, IDs, and labels. Spheres are objects that are rendered in 3D — often prettier, but also more computationally expensive. Symbols are objects

Figure 7: Brain atlas visualization. Plotting the nodes of a brain atlas on a 3D brain surface.

rendered in 2D — more stylized and less computationally expensive. IDs and lables are the texts associated to the brain region.

If you wish to apply some properties to a set of brain regions, you can select multiple regions by clicking on the checkboxes on the right, and then right-click and select "apply to selection" before applying some property.

Importantly, BRAPH 2.0 provides different brain surfaces, as shown in Figure 10, for the human brain and cerebellum in addition to animals such as the ferret, macaque, mouse, and rat. It is also possible to add additional brain surfaces by added the required NV files in the BRAPH 2.0 folder brainsurfs.

Figure 8: Visualize the brain atlas. a The "Settings Brain Surface" button in the toolbar opens b-c A window with the settings available for this brain figure.

Figure 9: Example of a visualization of the brain atlas. A final figure created with BRAPH 2.0 by changing different options in the menu.

Figure 10: Brain surfaces in BRAPH 2.0. Some brain surfaces available in BRAPH 2.0 to plot the brain atlas.

Export the Figure

To export and save a (publication-ready) figure, you can select "Print" from the brain atlas GUI and select one of the various provided options Figure 11.

Figure 11: Save a brain atlas figure. BRAPH 2.0 provides different options that allow saving a figure with different resolutions and color modes, adequate to any requirement for presentations and publicaitons.