- (10) 1. Translate each of the following sentences into the language of the sentential calculus using the letters indicated for **atomic** sentences.
 - (a) A sufficient condition for students to be happy is that the exam is neither long nor difficult. (H,L,D)

$$(\neg L \land \neg D) \to H$$

(b) A necessary condition for the students to be happy is that the exam is not difficult. (H, D)

$$H \to \neg D$$

(10) 2. Translate the following sentences into the language of the Predicate Calculus using the following relation symbols.

Sx: x is a student Ex: x is an exam Dxy: x is difficult for y.

a) Some student finds all exams to be difficult.

$$(\exists x)(Sx \land (\forall y)(Ey \rightarrow Dyx))$$

b) Some exam is not difficult for some student.

$$(\exists x)(\exists y)(Sx \wedge Ey \wedge Dyx)$$

(10) 3. For each of the following expressions state whether it is a term (t), an atomic formula (a), a formula (f), a sentence (s) or none of these (n). (Circle *all* that apply).

(a) $(\exists x)(x > 1 \land x < 0)$	\mathbf{t}	\mathbf{a}	f	\mathbf{s}	n
(b) $[1 - (x^2 + y^2)]^3$	\mathbf{t}	a	f	\mathbf{s}	\mathbf{n}
(c) $(1 < 2) \land (2 < 3)$	\mathbf{t}	a	f	\mathbf{s}	\mathbf{n}
(d) $(\exists x)(x=0\lor 1)$	\mathbf{t}	a	f	\mathbf{s}	\mathbf{n}
(e) $(x \ge 0) \to (\exists y)(y^2 = x)$	\mathbf{t}	a	f	\mathbf{s}	n

- (a) f, s
- (b) t
- (c) f, s
- (d) n
- (e) f

(15) 4. Find a formula in **conjunctive** normal form logically equivalent to

$$[(X \vee Y) \to Z] \leftrightarrow (Y \vee Z).$$

Call the formula ϕ .

Construct the truthtable for ϕ .

Write down a DNF logically equivalent to $\neg \phi$:

$$\neg \phi \iff (\neg X \land Y \land \neg Z) \lor (X \land Y \land \neg Z) \lor (X \land \neg Y \land \neg Z)$$

Take the negation of both sides use de Morgan to get

$$\phi \Longleftrightarrow (X \vee \neg Y \vee Z) \wedge (\neg X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

(10) 5. Show that the following argument is not valid.

Premises: $\neg A \to (B \lor C), \ \neg B \to (\neg A \land D), \ D \to (B \lor C)$

Conclusion: B

Find a truth assignment that makes the conclusion False and the premises True:

$$B = F$$
, $A = F$, $D = T$, $C = T$

(15) 6. Give a formal proof of the conclusion D from the following premises.

$$\{1\}$$
 1. $C \rightarrow (E \rightarrow D)$ P

$$\{2\}\ 2.\ C \rightarrow (\neg E \rightarrow A)$$
 P

$$\{3\}$$
 3. $\neg C \rightarrow B$ P

$$\{4\} \ 4. \ \neg(A \lor B) \qquad P$$

$$\{4\}$$
 5. $\neg A$ 4 T

$$\{4\}\ 6.\ \neg B$$
 4T

$$\{3,4\}$$
 7. C 3,6 T

$$\{1,3,4\} \ 8. \ E \rightarrow D \qquad \qquad 1,7T$$

$$\{2,3,4\} \ 9. \ \neg E \to A \ 2,7T$$

$$\{2,3,4\}$$
 10. E 5,9, T

$$\{1, 2, 3, 4\}$$
 11. D 8, $10T$

- (15) 7. The following set of premises is inconsistent. Give a formal proof of a contradiction.
 - $\{1\}$ 1. $A \leftrightarrow (B \lor C)$ P
 - $\{2\}$ 2. $B \leftrightarrow \neg A$ P
 - $\{3\}$ 3. $B \lor D$ P
 - $\{4\}$ 4. $\neg C \lor \neg D$ P
 - $\{5\}$ 5. B P (for IP)
 - $\{42,5\}$ 6. $\neg A$ 2, 5 T
 - $\{1,2,5\}$ 7. $\neg (B \lor C)$ 1, 6 T
 - $\{1,2,5\}$ 8. $\neg B \land \neg C$ 7 T
 - $\{1,2,5\}$ 9. $B \land \neg B$ 5,8 T
 - $\{1,2\}$ 10. $\neg B$ 5, 9 IP
 - $\{1,2,3\}$ 11. D 3,10 T
 - $\{1,2,3,4\}$ 12. $\neg C$ 4,11 T
 - $\{1,2\}$ 13. A 2,10 T
 - $\{1,2\}$ 14. $B \lor C$ 1,13 T
 - $\{1,2,3,4\}$ 15. B 12,14 T
 - $\{1,2,3,4\}$ 16. $B \land \neg B$ 10,15 T
- (15) 8. On the island of TuFa are two kinds of people: Tus who always tell the truth and Fas who always lie. Three inhabitants, A,B and C are interviewed. A and B make the following statements:
 - A: B is a Fa
 - B: if A is a Fa, so is C.

Can one determine which kind of person each of A,B and C is? Give clear reasons.

If A is a Tu then B is a Fa. But then what B said is true, contradicting that B is a Fa.

Hence A is a Fa and B is a Tu. So what B said must be true and so C is a Fa.