9.2 Matrix Norms

For simplicity of exposition, we will consider the vector spaces $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ of square $n \times n$ matrices. Most results also hold for the spaces $M_{m,n}(\mathbb{R})$ and $M_{m,n}(\mathbb{C})$ of rectangular $m \times n$ matrices. Since $n \times n$ matrices can be multiplied, the idea behind matrix norms is that they should behave "well" with respect to matrix multiplication.

Definition 9.3. A matrix norm $\| \|$ on the space of square $n \times n$ matrices in $M_n(K)$, with $K = \mathbb{R}$ or $K = \mathbb{C}$, is a norm on the vector space $M_n(K)$, with the additional property called submultiplicativity that

$$||AB|| \le ||A|| \, ||B||$$
,

for all $A, B \in M_n(K)$. A norm on matrices satisfying the above property is often called a *submultiplicative* matrix norm.

Since $I^2 = I$, from $||I|| = ||I^2|| \le ||I||^2$, we get $||I|| \ge 1$, for every matrix norm.

Before giving examples of matrix norms, we need to review some basic definitions about matrices. Given any matrix $A = (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{C})$, the *conjugate* \overline{A} of A is the matrix such that

$$\overline{A}_{ij} = \overline{a_{ij}}, \quad 1 \le i \le m, \ 1 \le j \le n.$$

The transpose of A is the $n \times m$ matrix A^{\top} such that

$$A_{ij}^{\top} = a_{ji}, \quad 1 \le i \le m, \ 1 \le j \le n.$$

The adjoint of A is the $n \times m$ matrix A^* such that

$$A^* = \overline{(A^\top)} = (\overline{A})^\top.$$

When A is a real matrix, $A^* = A^{\top}$. A matrix $A \in M_n(\mathbb{C})$ is Hermitian if

$$A^* = A$$
.

If A is a real matrix $(A \in M_n(\mathbb{R}))$, we say that A is symmetric if

$$A^{\top} = A$$
.

A matrix $A \in M_n(\mathbb{C})$ is normal if

$$AA^* = A^*A,$$

and if A is a real matrix, it is *normal* if

$$AA^{\top} = A^{\top}A.$$

A matrix $U \in M_n(\mathbb{C})$ is unitary if

$$UU^* = U^*U = I.$$