Soluzioni Esercizi Reti Sequenziali Asincrone

Reti Logiche T Ingegneria Informatica

Esercizio 1

• Si completi la forma d'onda dell'uscita Z, in presenza della sequenza di ingressi riportata in figura. Il valore iniziale di Z è O.

L'uscita può cambiare valore solo ai fronti di discesa di A e C, evidenziati nel grafico dalle linee tratteggiate.

Esercizio 1

• Si completi il grafo di Mealy, aggiungendo ad ogni ramo le relative configurazioni degli ingressi. Inizializziamo la rete nello stato α

Stato	Riassunto
α	A vale 0 o vale 1 con C=0, non sono possibili fronti di discesa di A con C=1.
β	A vale 1 con C che vale 1, è possibile un fronte di discesa di A con C=1 che farebbe cambiare l'uscita.
γ	Si è verificato un fronte di discesa di A con C=1.

Esercizio 1 - Tabella di flusso e codifica

AC

		00	01	11	10
	α	α,1	α ,1	β ,1	α,1
te	β	-,-	γ,-	β ,1	α,1
	γ	α,-	γ,0	γ,0	α,-

stato presente

stato futuro, z

Le colonne '10' e '00' possono essere escluse dallo studio delle adiacenze avendo un solo stato stabile.

Una possibile codifica priva di corse

$y_1 \backslash y_0$	0		1
0	α	\rightarrow	β
			↓
1			γ

Esercizio 1 - Tabella delle transizioni

 Ricordiamoci di rimuovere le indifferenze sulle colonne 00 e 10 che abbiamo escluso dallo studio delle adiacenze. Inseriamo al posto delle indifferenze l'unico stato e l'unica uscita stabili della colonna.

		AC					
	y_1y_0	00	01	11	10		
	$00 = \alpha$	00,1	00,1	01,1	00,1		
stato presente	$01 = \beta$	00,1	11,-	01,1	00,1		
	11 = γ	00,1	11,0	11,0	00,1		
	10	00,1	-,-	-,-	00,1		

 Y_1Y_0, z

Esercizio 1 - Sintesi combinatoria Y_1

AC y_1y_0	00	01	11	10
00	0	0	0	0
01	0	1	0	0
11	0	1	1	0
10	0	-	-	0

$$Y_1 = y_1C + y_0A'C = (y_1 \uparrow C) \uparrow (y_0 \uparrow (A \uparrow A) \uparrow C)$$

Esercizio 1 - Sintesi combinatoria Y_0

AC y_1y_0	00	01	11	10
00	0	0	1	0
01	0	1	1	0
11	0	1	1	0
10	0	-	-	0

$$Y_0 = y_0 C + y_1' A C = (y_0 \uparrow C) \uparrow ((y_1 \uparrow y_1) \uparrow A \uparrow C)$$

Esercizio 1 - Schema logico

Esercizio 2 - Grafo Degli Stati

• Si completi il grafo di Moore degli stati in figura, aggiungendo ad ogni ramo le relative configurazioni degli ingressi.

Stato	Riassunto						
A	Serbatoio troppo pieno, o pieno e in temperatura						
В	Riempimento con liquido caldo in corso						
С	Riempimento con liquido freddo in corso						

Esercizio 2 - Tabella di flusso

presente

 L_1L_2T

stato	000	001	011	010	110	111	101	100	VH
A	-	С	-	-	A	A	A	В	00
В	В	В	-	-	Α	А	В	В	11
C	В	C	-	-	-	Α	C	В	10

Stato Futuro

Esercizio 2 - Codifica

Dovendo pilotare un sistema fisico con ritardi di attivazione significativi è possibile tollerare brevi glitch sulle uscite. Di conseguenza è possibile escludere dallo studio delle adiacenze tutte le colonne con una singola stabilità ('000', '110', '111', '100'). Una possibile codifica che soddisfi i vincoli rimanenti è:

$y_1 \backslash y_0$	0		1
0	A	\rightarrow	C
1			В

Esercizio 2 - Tabelle delle transizioni

 L_1L_2T

y_1y_0	000	001	011	010	110	111	101	100	VH
00 (A)	11	01	1	1	00	00	00	11	00
01 (<i>C</i>)	11	01	1	1	00	00	01	11	10
11 (<i>B</i>)	11	11	1	1	00	00	11	11	11
10	11	-	ı	-	00	00	1	11	-

 Y_1Y_0

Nelle colonne con un solo stato stabile sostituiamo le indifferenze con l'unico stato stabile (evidenziati in verde nella tabella).

Esercizio 2 – Sintesi Combinatoria Y_0

Attenzione a come vengono inseriti i valori in questa mappa!!!

L_2T y_1y_0	00	01	11	10			
00	1	1	-	-			
01	1	1	-	-			
11	1	1	-	-			
10	1	-	-	-/			
$L_1 = 0$							

L_2T y_1y_0	00	01	11	10		
00	1	0	0	0		
01	1	1	0	0		
11	1	1	0	0		
10	1	-	0	0		
$L_1 = 1$						

$$Y_0 = L_2' \cdot (L_1' + y_0 + T')$$

$$Y_0 = L_2 \downarrow ((L_1 \downarrow L_1) \downarrow y_0 \downarrow (T \downarrow T))$$

Esercizio 2 - Schema logico

Esercizio 3 - Analisi

$$Y_{1}(NAND) = (y_{0} \uparrow x_{0}) \uparrow (y_{0} \uparrow x_{1}) \uparrow (y_{1} \uparrow x'_{0}) \uparrow (x_{0} \uparrow x'_{1})$$

$$Y_{0}(NAND) = (y'_{1} \uparrow y_{0}) \uparrow (y'_{1} \uparrow x'_{0} \uparrow x'_{1})$$

$$Y_{1}(SP) = y_{0}x_{0} + y_{0}x_{1} + y_{1}x'_{0} + x_{0}x'_{1}$$

$$Y_{0}(SP) = y'_{1}y_{0} + y'_{1}x'_{0}x'_{1}$$

$$Z = y_{0}$$

Esercizio 3 - Analisi

$\begin{array}{ c c } x_1 x_0 \\ y_1 y_0 \end{array}$	00	01	11	10
00	0	1	0	0
01	0	1	1	1
11	1	1	1	1
10	. 1	1,	0	1

$$Y_1(SP) = y_0 x_0 + y_0 x_1 + y_1 x_0' + x_0 x_1' + y_1 x_1'$$

La sintesi della rete presenta alee statiche non risolte. La soluzione priva di alee richiedi l'introduzione di questo implicante aggiuntivo.

Esercizio 3 - Analisi

$\begin{array}{ c c c } x_1x_0 \\ y_1y_0 \end{array}$	00	01	11	10
00	1	0	0	0
01	1	1	1	1
11	0	0	0	0
10	0	0	0	0

$$Y_0(SP) = y_1'y_0 + y_1'x_0'x_1'$$

Esercizio 3 - Tabella delle transizioni

	x_1x_0					
	y_1y_0	00	01	11	10	Z
stato presente	00	01	10	00	00	0
	01	01	11	11	11	1
	11	10	10	10	10	1
	10	10	10	00	10	0

 Y_1Y_0

Lo stato 11 non ha stabilità ed è probabilmente stato aggiunto per risolvere corse tramite transizioni multiple.

Esercizio 3 - Grafo degli stati

Esercizio 3 - Grafo degli stati

Esercizio 3 – Tabella Di Flusso

Rimuoviamo lo stato 11 dalla tabella di flusso perché privo di stabilità.

		x_1x_0					
	y_1y_0	00	01	11	10	Z	
	A(00)	В	С	A	A	0	
stato presente	B (01)	В	С	С	С	1	
	C (10)	O	C	А	0	0	

Stato futuro

Punto 6: In stato C, con ingresso 00, la sequenza di ingressi per portarsi in B con ingresso 00 (unica situazione di uscita stabile ad 1) è 00-(01 o 10)-11-10-00.

Esercizio 4

Consideriamo come inizio di un periodo di x_1 l'intervallo di T/2 in cui $x_1 = 1$. Il grafo degli stati della rete è:

Esercizio 4

Stato	Riassunto
A	Stato attuale off, stato futuro off. Siamo giunti in questo stato al reset oppure tramite combinazione di ingressi in cui x_2 valeva 0.
В	Stato attuale off, stato futuro off. Siamo nella seconda metà di periodo di x_1 , sapendo però che x_2 ha avuto delle variazioni in precedenza (quindi stato futuro off). Ora $x_2=1$.
С	Stato attuale off, prima metà di periodo di $x_1 { m con} x_2 = 1$ (potenziale stato futuro on).
D	Stato attuale off, seconda metà di periodo di x_1 con $x_2=1$ (potenziale stato futuro on).
E	Stato attuale on, stato futuro on.
F	Stato attuale on, prima metà del periodo di x_1 . x_2 ha avuto una o più variazioni, quindi stato futuro off.
G	Stato attuale on, seconda metà del periodo di x_1 . x_2 ha avuto una o più variazioni, quindi stato futuro off.

Esercizio 4 – tabella di flusso

v	v
<i>l</i> 1	ハ つ

	00	01	11	10
Α	A,1	B,1	A,1	A,1
В	A,1	B,1	C,1	-,-
С	-,-	D,1	C,1	A,1
D	A,1	D,1	E,1	-,-
Е	G,0	E,0	E,1	F,1
F	G,0	G,0	F,1	F,1
G	G,0	G,0	C,1	A,1

stato presente

stato futuro,Z

Esecizio 4 - Adiacenze e codifica

Non ci sono configurazioni con un solo stato stabile

La rete presenta numerose corse critiche da risolvere mediante transizioni multiple.

Esecizio 4 - Adiacenze e codifica

Le corse sono risolvibili utilizzando transizioni multiple

Esecizio 4 - Tabella delle transizioni

In verde le modifiche apportate per rimuovere le corse.

	$y_2y_1y_0$	00	01	11	10
	A=000	000,1	001,1	000,1	000,1
	B=001	000,1	001,1	011,1	000,1
•	C=011	-,-	010,1	011,1	001,1
	D=010	000,1	010,1	110,1	-,-
	E=110	111,0	110,0	110,1	111,1
	F=111	101,0	101,0	111,1	111,1
	G=101	101,0	101,0	001,1	001,1
	400				

 $x_1 x_2$

stato presente

 $Y_2Y_1Y_0, Z$

Esercizio 4 - Sintesi Combinatoria Z

$$Z = y_2' + x_1$$

Esercizio 4 – Sintesi Combinatoria Y_2

$\begin{array}{ c c } x_1x_2 \\ y_1y_0 \end{array}$	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	-	0	0	0
10	0	0	1	-
		37	– 0	

$\begin{array}{ c c } \hline x_1x_2 \\ \hline y_1y_0 \\ \hline \end{array}$	00	01	11	10
00	-	-	-	-
01	1	1	0	0
11	1	1	1	1
10	7	1	1	1

$$Y_2 = y_1 y_0' x_1 + y_2 x_1' + y_2 y_1$$

Esercizio 4 – Sintesi Combinatoria Y_1

x_1x_2 y_1y_0	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	-	1	1	0
10	0	1	1	-
		<i>y</i> ₂ :	= 0	

x_1x_2 y_1y_0	00	01	11	10
00	1	ı	1	
01	0	0	0	0
11	0	0	1	1
10	1	1	1	1
	•	<i>y</i> ₂ :	= 1	

$$Y_1 = y_2' y_1 x_2 + y_2' y_0 x_1 x_2 + y_2 y_0' + y_2 y_1 x_1 + y_1 x_1 x_2 + y_1 y_0' x_2$$

Esercizio 4 – Sintesi Combinatoria Y_0

$$Y_0 = y_1'x_1'x_2 + y_0x_1x_2 + y_1x_1x_2' + y_2y_0 + y_2x_2' + y_1'y_0x_2 + y_1y_0x_1$$

x_2x_1 Schema logico semplificato

Esercizio 5 – grafo degli stati

• Definiamo un fronte di X significativo se avviene mentre E=1

Penultimo e ultimo fronte significativo di X:

Esercizio 5

Stato	Riassunto
A	Ultimi due fronti <u>significativi</u> di discesa, possibilità di soli fronti di discesa
В	Ultimi due fronti <u>significativi</u> di discesa, possibilità di fronti di salita
С	Ultimi due fronti <u>significativi</u> discesa e salita, possibilità di fronti di discesa
D	Ultimi due fronti <u>significativi</u> discesa e salita, possibilità di fronti di salita
E	Ultimi due fronti <u>significativi</u> salita e discesa, possibilità di fronti di discesa
F	Ultimi due fronti <u>significativi</u> salita e discesa, possibilità di fronti di salita
G	Ultimi due fronti <u>significativi</u> di salita, possibilità di fronti di discesa
Н	Ultimi due fronti <u>significativi</u> di salita, possibilità di fronti di salita

Esercizio 5 – tabella di flusso

XE

	00	01 11 10		Z		
Α	В	B B A A		А	0	
В	В	В	С	Α	0	
С	D	F	C	C	0	
D	٥		G	С	0	
Е	F	В			1	
F	(F)	(-)	С	E	1	
G	Н	F	G	G	1	
Н	Ŧ	Ŧ	G	G	1	

stato presente

stato futuro

Esercizio 5 – adiacenze e codifica

• Una codifica priva di corse critiche è direttamente ottenibile dalla tabella di flusso.

$y_2 \backslash y_1 y_0$	00		01		11		10	
0	A	→ ←	В	→	С	→ ←	D	\rightarrow
			1		↑↓		↓	
1	н		E	→ ←	F	←	G	→ ←

Esercizio 5 - tabella delle transizioni

T /	\mathbf{r}
X	н
/\	

	$y_2y_1y_0$	00	01	11	10	Z
	A=000	001	001	000	000	0
	B=001	001	001	011	000	0
,	C=011	010	111	011	011	0
	D=010	010	010	110	011	0
	G=110	100	111	110	110	1
	F=111	111	111	011	101	1
	E=101	111	001	101	101	1
	H=100	100	100	110	110	1

stato presente

 $Y_2Y_1Y_0$

Esercizio 5 – Sintesi combinatoria Z

y_1y_0 y_2	00	01	11	10
0	0	0	0	0
1	1	1	1	1

$$Z = y_2$$

Esercizio 5 - sintesi combinatoria Y_2

Attenzione a come vengono inseriti i valori in questa mappa!!!

XE y_1y_0	00	01	11	10
00	1	1	1	1
01	1	0	1	1
11	1	1	0	1
10	1	1	1	1

$$y_2 = 1$$

$$Y_{2} = (y_{2} + y_{1})(y_{2} + E)(y_{2} + y'_{0} + X')(y_{2} + y_{0} + X)(y_{1} + y'_{0} + X + E')(y'_{1} + y'_{0} + X' + E')$$

$$Y_{2} = (y_{2} \downarrow y_{1}) \downarrow (y_{2} \downarrow E) \downarrow (y_{2} \downarrow (y_{0} \downarrow y_{0}) \downarrow (X \downarrow X)) \downarrow (y_{2} \downarrow y_{0} \downarrow X)$$

$$\downarrow (y_{1} \downarrow (y_{0} \downarrow y_{0}) \downarrow X \downarrow (E \downarrow E)) \downarrow ((y_{1} \downarrow y_{1}) \downarrow (y_{0} \downarrow y_{0}) \downarrow (X \downarrow X) \downarrow (E \downarrow E))$$

Esercizio 5 - sintesi combinatoria Y_1

Attenzione a come vengono inseriti i valori in questa mappa!!!

								-1 -	1-	•
XE y_1y_0	00	01	11	10	_	<i>ΧΕ γ</i> ₁ <i>γ</i> ₀	00	01	11	10
00	0	6	0	0		00	0	0	1	1
01	0	0	1	0		01	1	0	0	0
11	1	1	1	1		11	1	1	1	0
10	1	1	1	1		10	0	1	1	1
$y_2 = 0$							<i>y</i> ₂ :	= 1		

$$Y_{1} = (y_{2} + y_{1} + y_{0})(y_{2} + y_{1} + E)(y_{1} + X + E')(y'_{2} + y_{0} + X + E)(y'_{2} + y_{1} + y'_{0} + X')$$

$$(y_{2} + y_{1} + X)(y_{1} + y_{0} + X)(y'_{2} + y_{1} + y'_{0} + E')(y_{1} + y'_{0} + X' + E)$$

Termini aggiunti per alee statiche <

Esercizio 5 – sintesi combinatoria Y_1

```
Y_1 = (y_2 + y_1 + y_0)(y_2 + y_1 + E)(y_1 + X + E')(y_2' + y_0 + X + E)(y_2' + y_1 + y_0' + X')
(y_2 + y_1 + X)(y_1 + y_0 + X)(y_2' + y_1 + y_0' + E')(y_1 + y_0' + X' + E)
```

```
Y_{1} = (y_{2} \downarrow y_{1} \downarrow y_{0}) \downarrow
(y_{2} \downarrow y_{1} \downarrow E) \downarrow
(y_{1} \downarrow X \downarrow (E \downarrow E)) \downarrow
((y_{2} \downarrow y_{2}) \downarrow y_{0} \downarrow X \downarrow E) \downarrow
((y_{2} \downarrow y_{2}) \downarrow y_{1} \downarrow (y_{0} \downarrow y_{0}) \downarrow (X \downarrow X)) \downarrow
(y_{2} \downarrow y_{1} \downarrow X) \downarrow
(y_{1} \downarrow y_{0} \downarrow X) \downarrow
((y_{2} \downarrow y_{2}) \downarrow y_{1} \downarrow (y_{0} \downarrow y_{0}) \downarrow (E \downarrow E)) \downarrow
(y_{1} \downarrow (y_{0} \downarrow y_{0}) \downarrow (X \downarrow X) \downarrow E)
```

Esercizio 6 - Grafo degli stati

Partiamo dallo stato in cui la rete abbia appena visto un fronte di salita di T (ST=01) e nell'intervallo precedente abbia visto un numero di fronti di salita di S dispari. Visto che S e T non possono assumere il valore 1 in contemporanea, resteranno nella configurazione ST=01 fino a quando T non tornerà a 0 (ST=00). Da questo momento, dobbiamo contare i fronti di salita di S, per sapere come dovrà variare l'uscita al prossimo fronte di salita di T.

Stato	Riassunto
A	Intervallo precedente dispari, intervallo attuale pari.
В	Intervallo precedente dispari, intervallo attuale pari. Pronto ad un fronte di salita di S o T.
С	Intervallo precedente dispari, intervallo attuale dispari.
D	Intervallo precedente dispari, intervallo attuale dispari. Pronto ad un fronte di salita di S o T.

Esercizio 6 - Grafo degli stati

In modo simmetrico, gestiamo il caso in cui la rete abbia visto un fronte di salita di T (ST=01) e nell'intervallo precedente abbia visto un numero di fronti di salita di S pari. Visto che S e T non possono assumere il valore 1 in contemporanea, resteranno nella configurazione ST=01 fino a quando T non tornerà a 0 (ST=00). Da questo momento, dobbiamo contare i fronti di salita di S, per sapere come dovrà variare l'uscita al prossimo fronte di salita di T.

Stato	Riassunto
E	Intervallo precedente pari, intervallo attuale pari.
F	Intervallo precedente pari, intervallo attuale pari. Pronto ad un fronte di salita di S o T.
G	Intervallo precedente pari, intervallo attuale dispari.
Н	Intervallo precedente pari, intervallo attuale dispari. Pronto ad un fronte di salita di S o T.

Esercizio 6 - Grafo Degli stati

Aggiungiamo quindi le transizioni, al fronte di salita di T, verso A od E, a seconda che si sia visto un numero pari o dispari di fronti di S con T = 0.

Esercizio 6 - Stati

• Il significato di ogni stato del grafo complessivo è riportato nella seguente tabella.

Stato	Riassunto
A	Intervallo precedente dispari, intervallo attuale pari.
В	Intervallo precedente dispari, intervallo attuale pari. Pronto ad un fronte di salita di S o T.
С	Intervallo precedente dispari, intervallo attuale dispari.
D	Intervallo precedente dispari, intervallo attuale dispari. Pronto ad un fronte di salita di S o T.
E	Intervallo precedente pari, intervallo attuale pari.
F	Intervallo precedente pari, intervallo attuale pari. Pronto ad un fronte di salita di S o T.
G	Intervallo precedente pari, intervallo attuale dispari.
Н	Intervallo precedente pari, intervallo attuale dispari. Pronto ad un fronte di S o T.

Esercizio 6 - Tabella di flusso

stato presente

$\overline{}$	7	Ī	1
`	1		

	00	01	11	10
Α	B,1	A,1	-,-	A,1
В	B,1	E,-	-,-	C,1
С	D,1	-,-	-,-	C,1
D	D,1	A,1	-,-	A,1
Е	F,0	E,0	-,-	E,0
F	F,0	E,0	-,-	G,0
G	H,0	-,-	-,-	G,0
Н	H,0	Α,-	-,-	E,0

stato futuro,Z

Esercizio 6 - codifica

 Una possibile codifica che presenta una corsa critica(freccia rossa) risolvibile con transizione multiple (frecce verdi).

Esercizio 6 - Tabella delle transizioni

C	Т	
S	1	

	$y_2y_1y_0$	00	01	11	10
	A=000	001,1	000,1	-,-	000,1
	B=001	001,1	011,-	-,-	101,1
•	E=011	010,0	011,0	-,-	011,0
	F=010	010,0	011,0	-,-	110,0
	G=110	111,0	100,-	-,-	110,0
	H=111	111,0	110,-	-,-	011,0
	C=101	100,1	-,-	-,-	101,1
	D=100	100,1	000,1	-,-	000,1

stato presente

 $Y_2Y_1Y_0, Z$

Esercizio 6 – sintesi combinatoria Z

ST y_1y_0	00	01	11	10
00	1	1	ı	1
01	1	1	-	1
11	0	0	-	0
10	0	0	-	0

ST y_1y_0	00	01	11	10
00	1	1	1	1
01	1	1	-	1
11	0	1	ı	0
10	0	1	1	0

$$y_2 = 0$$

$$y_2 = 1$$

$$Z = \mathbf{y_1'} = (\mathbf{y_1} \uparrow \mathbf{y_1})$$

Esercizio 6 – sintesi combinatoria Y_1

ST y_1y_0	00	01	11	10
00	0	0	-	0
01	0	1	-	0
11	1	1	-	1
10	1	1	-	1
$y_2 = 0$				

ST y_1y_0	00	01	11	10	
00	0	0	-	0	
01	0	-	-	0	
11	1	1	-	1	
10	1	0	1	1	
$y_2 = 1$					

Aggiunto per rimuovere alee statiche

$$Y_{1} = y_{2}'y_{1} + y_{0}T + y_{1}T(+y_{1}y_{0})$$

$$= ((y_{2} \uparrow y_{2}) \uparrow y_{1}) \uparrow (y_{0} \uparrow T) \uparrow (y_{1} \uparrow (T \uparrow T)) \uparrow (y_{1} \uparrow y_{0})$$

1. La rete ha una singola variabile di stato z quindi non si possono presentare problemi di corse critiche.

2. Tabella delle transizioni

Z s.p.

s.f.

c b a

3. Grafo degli stati:

Per ingresso 111 e 110, la rete non raggiunge mai uno stato stabile (configurazioni vietate).

La configurazione 011 non è adiacente a quelle per cui da stato 0 si transita in stato 1 (ovvero 100 e 101), né a quelle per cui lo stato 1 è stabile e che sono raggiungibili da 100 e 101 (ovvero 000), quindi è irraggiungibile in stato 1

4. Sintesi a NOR

ba zc	00	01	11	10
00	0	0	0	0
01	1	1	-	-
11	1	1	-	-
10	1	0	-	0

$$Z = b' \cdot (z + c) \cdot (a' + c)$$
$$Z = b \downarrow (z \downarrow c) \downarrow (a' \downarrow c)$$

La rete sintetizzata elimina a priori il rischio di alee statiche su Z, cosa che l'espressione canonica implementata dal MUX non garantisce.

5. Schema logico

Esercizio 8 – grafo degli stati

Stato	Riassunto
A	C=0 o C=1 con ultimo ciclo senza S=1
В	C=0 con S=1 verificatosi
С	C=1 con ultimo ciclo in cui S è stato = 1

Esercizo 8 - tabella di flusso

stato futuro,Z

La colonna 10 ha un solo stato stabile, quindi può essere ignorata per lo studio delle adiacenze. Una possibile codifica priva di stati:

$y_1 \setminus y_0$	0		1
0	A	←	C
			1
1			В

Esercio 8 - tabella delle transizioni

Nella colonna esclusa dallo studio delle adiacenze, inseriamo al posto delle indifferenze l'unico stato e l'unica uscita stabili della colonna.

		SC, Z			
	y_1y_0	00	01	11	10
	00 = A	0,00	00,0	00,0	11,0
stato mussomto	01 = C	00,-	01,1	01,1	11,0
stato presente	11 = B	11,0	01,-	01,-	11,0
	10	-,-	-,-	-,-	11,0

 Y_1Y_0,Z

Esercizio 8 - sintesi combinatoria

y_1y_0	00	01	11	10
00	0	0	0	0
01	-	1	1	0
11	0	-	-	0
10	-	-	1	0

$$Z = y_0 C$$

Esercizio 8 - sintesi combinatoria

y_1y_0	00	01	11	10
00	0	0	0	1
01	0	0	0	1
11	1	0	0	1
10	-	1	1	1

$$Y_1 = SC' + y_1 y_0 C'$$

Esercizio 8 - sintesi combinatoria

SC y_1y_0	00	01	11	10
00	0	0	0	1
01	0	1	1	1
11	1	1	1	1
10	-	-	-	1

$$Y_0 = SC' + y_1 + y_0S + y_0C$$

Esercizio 8 - Schema Logico

1. Espressioni a NAND/NOR e conversione SP

$$Y(NAND) = (x' \uparrow e) \uparrow (x' \uparrow y) \uparrow (e \uparrow y)$$

$$Y(SP) = x'e + x'y + ey$$

$$Z(NOR) = x' \downarrow y$$

$$Z(SP) = y'x$$

2. Tabella delle transizioni

Forme D'onda

4. L'uscita z segue l'andamento del segnale x. Se però e assume il valore 1 <u>quando x = 0</u>, l'uscita rimane costante a 0 fino a che e non assume il valore 0 <u>quando x = 1</u>.

1. Espressioni a NOR e conversione PS

$$Y(NOR) = (y \downarrow x_1) \downarrow (x_1 \downarrow x_2) \downarrow (y' \downarrow x_2)$$

 $Y(PS) = (y + x_1)(x_1 + x_2)(y' + x_2)$
 $Z(PS) = y$

2. Tabella delle transizioni (ottenibile dai mintermini delle espressioni PS)

			X_1X_2			
		00	01	11	10	
	0	0,0	0,0	1,0	1,0	
У	1	0,1	1,1	1,1	0,1	
		Y,z				

3. La configurazione d'ingresso 10 deve essere vietata perché la rete non raggiunge mai uno stato stabile.

4. La rete si comporta come un latch SR, con il comando di set x₁ attivo alto e il comando di reset x₂ attivo basso.

5. Nuova tabella delle transizioni e sintesi a NOR x_1x_2

$$Y(PS) = (x_1 + y)x_2$$

$$Y(NOR) = (y \downarrow x_1) \downarrow x_2'$$

1. Espressioni SP

$$Y = \sum_{3} m(3.4.5.7)$$

$$Y(SP) = y'x_{1}x_{0} + yx'_{1}x'_{0} + yx'_{1}x_{0} + yx_{1}x_{0}$$

$$Z(SP) = y$$

2. Tabella delle transizioni (ottenibile dai mintermini delle espressioni SP)

		X ₁ X ₀						
		00	01	11	10			
У	0	0,0	0,0	1,0	0,0			
	1	1,1	1,1	1,1	0,1			
		Y,z						

- 3. Dalla tabella delle transizioni si può osservare che se x_1 =0 la rete mantiene il bit di informazione in essa memorizzato. La configurazione x_1 =1 forza invece la scrittura del valore assunto dall'altro ingresso x_0 . Il comportamento della rete è quindi quello di un latch CD in cui x_1 è l'ingresso di clock (C) e x_0 è l'ingresso di dato (D).
- 4. Dai raggruppamenti rettangolari che corrispondono ai termini prodotto presenti nell'espressione SP (espressione canonica) della variabile di stato futuro, si può osservare la presenza di "1" adiacenti non racchiusi all'interno di uno stesso raggruppamento rettangolare. Conseguentemente, la variabile di stato è soggetta ad alee statiche di "1" e quindi non è soddisfatto il vincolo di progetto delle reti asincrone che impone l'assenza di alee sulle variabili di stato.

$$Z = ((y_1 \uparrow y_1) \uparrow y_0) \uparrow (y_2 \uparrow y_2)$$

$$Z = y_1' y_0 + y_2$$

$$Y_2 = ((y_2 \uparrow y_2) \uparrow y_1 \uparrow a \uparrow b) \uparrow (y_1 \uparrow y_0 \uparrow a \uparrow b)$$

$$Y_2 = y_2' y_1 ab + y_1 y_0 ab$$

$$Y_1 = (y_1 \uparrow y_0) \uparrow (y_1 \uparrow a) \quad (y_0 \uparrow (a \uparrow a) \uparrow b)$$

$$Y_1 = y_1 y_0 \not\exists y_1 a + y_0 a' b_{?}$$

$$Y_0 = (a \uparrow b) \quad ((y_1 \uparrow y_1) \uparrow a) \quad (y_0 \uparrow b) \uparrow (y_1 \uparrow y_0 \uparrow (a \uparrow a))$$

$$Y_0 = ab + y_1' a + y_0 b + y_1 y_0 a'$$

y_1y_0 y_2	00	01	11	10	
0	0	1	0	0	
1	1	1	1	1	

$$Z = y_1' y_0 + y_2$$

y_1y_0	00	01	11	10		y_1y_0	00	01	11	10
00	0	0	0	0		00	0	0	0	0
01	0	0	0	0		01	0	0	0	0
11	0	0	1	0		11	0	0	1	0
10	0	0	1	0		10	0	0	0	0
$y_2 = 0$				$y_2 = 1$						

$$Y_2 = y_2' y_1 ab + y_1 y_0 ab$$

y_1y_0	00	0	L	11	10	y_1y_0	00	0 1	11	10
00	0	C		0	0	00	0	d	0	0
01	0	1		0	0	01	0	1	0	0
11	1	1		1	1	11	1	1	1	1
10	0	0		1	1	10	0	0	1	1
		,	<i>y</i> ₂	= 0				<i>y</i> ₂	= 1	

$$Y_1 = y_1 y_0 + y_1 a + y_0 a' b$$

y_1y_0	00	01	11	10	y_1y_0	00	01	11	10
00	0	0	1	1	00	0	0	1	1
01	0	1	1	1	01	0	1	1	1
11	1	1	1	0	11	1	1	1	0
10	0	0	1	0	10	0	0	1	0
		<i>y</i> ₂ :	$=\overline{0}$				y_2	= 1	

$$Y_0 = ab + y_1'a + y_0b + y_1y_0a'$$

ab

	00	01	11	10	Z
000	000	000	001	001	0
001	000	011	001	001	1
011	011	011	111	010	0
010	000	000	111	010	0
100	000	000	001	001	1
101	000	011	001	001	1
111	011	011	111	010	1
110	000	000	011	010	1

 $y_2y_1y_0$

 $Y_2Y_1Y_0$

Celle non adiacenti a stabilità (combinazioni stato/ingressi impossibili)

Righe prive di stabilità (stati non utilizzati dalla rete)

ab

	00	01	11	10	Z
000	000	000	001	001	0
001	000	011	001	001	1
011	011	011	111	010	0
010	000	000	111	010	0
100	000	000	001	001	1
101	000	011	001	001	1
111	011	011	111	010	1
110	000	000	011	010	1

 $y_2y_1y_0$

 $Y_2Y_1Y_0$

Corsa	Transizioni di stato	Uscite
010 -> 111	010 -> 011 -> 111 OK 010 -> 110 -> 111 OK 010 -> 110 -> 010 -> 110 -> NO Corsa critica	Ininfluenti in caso di corsa critica
111 -> 010	111 -> 011 -> 010 OK 111 -> 110 -> 010 OK OK , corsa NON critica	1 -> 0 -> 0 OK 1 -> 1 -> 0 OK OK, transizione multipla

Violazione vincoli:

• E' presente una corsa critica in stato 010 con ingressi 11

ab

	00	01	11	10	Z
A (000)	A	A	В	В	0
B (001)	Α	С	В	В	1
C (011)	0	(C)	E	D	0
D (010)	А		E		0
E (111)		С	E	D	1

stato presente

stato futuro

Possibile interpretazione:

Una rete sequenziale asincrona riceve due segnali in ingresso a e b che non cambiano mai valore contemporaneamente, e produce un segnale di uscita Z. Quando α ha valore "0" l'uscita assume valore "0" costante. Quando a ha valore "1", sono possibili due comportamenti. L'uscita assume valore "1" costante se b valeva "0" durante il precedente fronte di discesa di a; invece, l'uscita segue l'andamento di b, se b valeva "1" durante il precedente fronte di discesa di a. All'avvio del sistema, la rete assume di aver visto b a "0" durante il precedente fronte di discesa di a.

$$Q = y_1$$

$$Y_2 = (y_2 \downarrow y_0) \downarrow (y_2 \downarrow (s \downarrow s)) \downarrow (y_1 \downarrow y_0 \downarrow t) \downarrow ((y_1 \downarrow y_1) \downarrow (t \downarrow t))$$

$$Y_2 = (y_2 + y_0)(y_2 + s')(y_1 + y_0 + t)(y'_1 + t')$$

$$Y_1 = ((y_2 \downarrow y_2) \downarrow y_1 \downarrow s) \downarrow (y_2 \downarrow t)$$

$$Y_1 = (y'_2 + y_1 + s)(y_2 + t)$$

$$Y_0 = t \downarrow y_1 \downarrow (y_0 \downarrow s) \downarrow ((y_2 \downarrow y_2) \downarrow (s \downarrow s))$$

$$Y_0 = t' y'_1 (y_0 + s)(y'_2 + s')$$

$y_1 y_0$ y_2	00	01	11	10
0	0	0	1	1
1	0	0	1	1

$$Q = \mathbf{y_1}$$

y_1y_0	00	01	11	10	
00	0	0	0	0	
01	1	1	0	0	
11	1	0	0	0	
10	0	0	0	0	
		<i>y</i> ₂ =	= 0		•

y_1y_0	00	01	11	10			
00	0	1	1 (0			
01	1	1	1	1			
11	1	0	0	1			
10	1	0	0	1			
$y_2 = 1$							

$$Y_2 = (y_2 + y_0)(y_2 + s')(y_1 + y_0 + t)(y'_1 + t')$$

y_1y_0	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

y_1y_0	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	1	1	1	1
10	1	1	1	1

$$y_2 = 0$$
 $y_2 = 1$
 $Y_1 = (y_2' + y_1 + s)(y_2 + t)(y_1 + s + t)$

Manca termine per evitare alee statiche

y_1y_0	00	01	11	10		
00	0	0	0	1		
01	1	0	0	1		
11	0	0	0	0		
10	0	0	0	0		
$y_2 = 0$						

$$Y_0 = (t')(y_1') (y_0 + s)(y_2' + s')(y_2' + y_0)$$

Manca termine per evitare alee statiche

st

	00	01	11	10	q
000	000	010	010	001	0
001	101	110	010	001	0
011	100	010	010	000	1
010	000	010	010	000	1
100	000	100	110	010	0
101	101	100	110	110	0
111	110	010	010	110	1
110	110	010	010	110	1

 $y_2y_1y_0$

 $Y_2Y_1Y_0$

Celle non adiacenti a stabilità (combinazioni stato/ingressi impossibili) Righe prive di stabilità (stati non utilizzati dalla rete)

Transizioni multiple

Potenziali corse critiche

st

	00	01	11	10	q
000	000	010	010	001	0
001	101	110	1010	001	0
011	100	010	010	000	1
010	000	010	010	000	1
100	000	100	110	010	0
101	101	100	110	110	0
111	110	010	010	110	1
110	110	010	010	110	1

 $y_2 y_1 y_0$

 $Y_2Y_1Y_0$

Corsa	Transizioni di stato	Uscite	
101 -> 110 (ingressi 10)	101 -> 111 -> 110 OK 101 -> 100 -> 110 OK 101 -> 100 -> 000 -> 001 NO Corsa critica	Ininfluenti in caso di corsa critica	
001 -> 010 (ingressi 11)	001 -> 000 -> 010 OK 001-> 011 -> 010 OK	0 -> 0 -> 1 OK 0 -> 1 -> 1 OK	

Violazione vincoli:

- Manca il termine $(y_1 + s + t)$ per evitare alee statiche nella sintesi di Y_1
- Manca il termine $(y_2' + y_0)$ per evitare alee statiche nella sintesi di Y_0
- E' presente una corsa critica in stato 101 con ingressi 10

st

	00	01	11	10	q
A (000)	A	С	1	В	0
B (001)	E		С	В	0
C (010)	Α	(n)	(n)	В	1
D (100)	Α		С		0
E (101)	Ш	D		F	0
F (110)	F	С	С	F	1

 $y_2 y_1 y_0$

 $Y_2Y_1Y_0$

<u>Possibile</u> interpretazione:

Una rete sequenziale asincrona riceve due segnali in ingresso s e t, che non cambiano mai valore contemporaneamente, e genera un segnale di uscita q. Durante il funzionamento normale della rete, si osservano fronti di discesa del segnale s solo quando t vale «1» e l'uscita q segue l'andamento del segnale t. Nel momento in cui si presenta un fronte di discesa del segnale s quando t vale «0», si hanno due possibilità:

- Il prossimo cambiamento degli ingressi vede il segnale t assumere il valore «1»: se si presenta un fronte di salita del segnale s, la rete riprende immediatamente il funzionamento normale portando q a «1»; altrimenti, la rete riprende il funzionamento normale appena t torna a «0».
- Il prossimo cambiamento degli ingressi è un fronte di salita di s: la rete porta immediatamente l'uscita q al valore «1» e lo mantiene costante fino a quando non si osserva un fronte di salita del segnale t. In quel momento la rete riprende immediatamente il funzionamento normale (q mantiene il valore «1» per tornare a «0» quando t torna a «0»).

$$t = (y_{2} \uparrow d \uparrow (p \uparrow p)) \uparrow (y_{2} \uparrow d \uparrow (p \uparrow p))$$

$$t = y_{2} dp'$$

$$Y_{2} = (y_{1} \uparrow (y_{0} \uparrow y_{0}) \uparrow d \uparrow p) \uparrow (y_{1} \uparrow (y_{0} \uparrow y_{0}) \uparrow (d \uparrow d) \uparrow (p \uparrow p)) \uparrow (y_{2} \uparrow (p \uparrow p)) \uparrow (y_{2} \uparrow d)$$

$$Y_{2} = y_{1} y_{0}' dp + y_{1} y_{0}' d' p' + y_{2} p' + y_{2} d$$

$$Y_{1} = ((y_{2} \uparrow y_{2}) \uparrow y_{0} \uparrow d \uparrow p) \uparrow ((y_{2} \uparrow y_{2}) \uparrow y_{0} \uparrow (d \uparrow d) \uparrow (p \uparrow p)) \uparrow (y_{1} \uparrow d) \uparrow (y_{1} \uparrow (p \uparrow p))$$

$$Y_{1} = y_{2}' y_{0} dp + y_{2}' y_{0} d' p' + y_{1} d + y_{1} p'$$

$$Y_{0} = (y_{0} \uparrow d \uparrow p) \uparrow (y_{0} \uparrow (d \uparrow d) \uparrow (p \uparrow p)) \uparrow ((y_{1} \uparrow y_{1}) \uparrow d \uparrow (p \uparrow p))$$

$$Y_{0} = y_{0} dp + y_{0} d' p' + y_{1}' dp'$$

dp y_1y_0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

$$y_2 = 0$$

y_1y_0	00	01	11	10
00	0	0	0	1
01	0	0	0	1
11	0	0	0	1
10	0	0	0	1

$$y_2 = 1$$

$$t = y_2 dp'$$

dp y_1y_0	00	01	11	10	
00	0	0	0	0	
01	0	0	0	0	
11	0	0	0	0	
10	1	0	1	0	
$y_2 = 0$					

y_1y_0	00	01	11	10	
00	1	0	1	1	
01	1	0	1	1	
11	1	0	1	1	
10	1	0	1	1	
$y_2 = 1$					

$$Y_2 = y_1 y_0' dp + y_1 y_0' d'p' + y_2 p' + y_2 d$$

y_1y_0	00	01	11	10
00	0 (0	0	0
01	1	0	1	0
11	1	0	1	1
10	1	0	1	1
		<i>y</i> ₂	= 0	

y_1y_0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	0	1	1
10	1	0	1	1
_		17-	– 1	

$$Y_1 = y_2' y_0 dp + y_2' y_0 d'p' + y_1 d + y_1 p'$$

dp y_1y_0	00	01	11	10		y_1y_0	00	01	11	10
00	0	0	0 [1		00	0	0	0	1
01	1) 0	1	1		01	1	0	1	1
11	1	0	1	0	_	11	1	0	1	0
10	0	0		0		10	0	0	0	0
		y_2	= 0		'			y_2	= 1	

$$Y_0 = y_0 dp + y_0 d'p' + y_1' dp' + y_1'y_0 d + y_1'y_0 p'$$

Mancano 2 termini per rimozione alee statiche

dp

	00	01	11	10
000	0,000	0,000	0,000	001,0
001	011,0	0,000	011,0	001,0
011	011,0	0,000,0	011,0	010,0
010	110,0	0,000	110,0	010,0
100	100,0	0,000	100,0	101,1
101	101,0	0,000,0	101,0	101,1
111	111,0	0,000,0	111,0	110,1
110	110,0	1000 ,0	110,0	110,1

 $y_2y_1y_0$

 $Y_2Y_1Y_0$, t

Celle non adiacenti a stabilità (combinazioni stato/ingressi impossibili)

Transizioni multiple Potenziali corse critiche

dp

0,000 0,000 000,0 001,0 000 001,0 001 011,0 0,000 011,0 011,0 011,0 **₹000**,0 010,0 011 010,0 010 000,0 110,0 110,0 100,0 100,0 0,000 101,1 100 101,0 **1000,**0 101,0 101,1 101 **1000,0** 111 111,0 111,0 110,1 110,0 \000,0 110,0 110,1 110

 $y_2y_1y_0$

 $Y_2Y_1Y_0$, t

Corsa	Transizioni di stato	Uscite
011 -> 000	011 -> 010 -> 000 OK 011 -> 001 -> 000 OK Transizione multipla	0 -> 0 -> 0 OK 0 -> 0 -> 0 OK Transizione multipla senza glitch sull'uscita
101 -> 000	101 -> 100 -> 000 OK 101 -> 001 -> 000 OK Transizione multipla	0 -> 0 -> 0 OK 0 -> 0 -> 0 OK Transizione multipla senza glitch sull'uscita
111 -> 000	111 -> 110 -> 100 -> 000 OK 111 -> 110 -> 010 -> 000 OK 111 -> 101 -> 100 -> 000 OK 111 -> 101 -> 001 -> 000 OK 111 -> 011 -> 010 -> 000 OK 111 -> 011 -> 001 -> 000 OK Transizione multipla	0 -> 0 -> 0 OK OK Transizione multipla senza glitch sull'uscita
110 -> 000	110 -> 100 -> 000 OK 110 -> 010 -> 000 OK Transizione multipla	0 -> 0 -> 0 OK 0 -> 0 -> 0 OK Transizione multipla senza glitch sull'uscita

Violazione vincoli:

• Mancano i termini $y_1'y_0d$, $y_1'y_0p'$ per evitare alee statiche nella sintesi di Y_1

dp

	00	01	11	10
A (000)	A,0	A,0	A,0	В,0
B (001)	C,0	,-	C,0	B,0
C (011)	C,0	A,0	C,0	D,0
D (010)	H,0	,-	H,0	D,0
E (100)	E,0	A,0	E,0	F,-
F (101)	F,0	A,0	F,0	F,1
G (111)	G,0	A,0	G,0	Н,-
H (110)	H,0	A,0	H,0	H,1

 $y_2 y_1 y_0$

 $Y_2Y_1Y_0$, t

Osservando il grafo ottenuto e considerando che al reset la rete si porta nello stato A noto che non è possibile per la rete portarsi negli stati E, F e G, che posso quindi escludere per cercare una possibile interpretazione del comportamento della rete.

Possibile interpretazione:

L'uscita t assume valore 0 quando p=d. Quando p è diverso da d, t assume valore 1 solo se le ultime tre configurazioni, inclusa quella corrente, in cui p è stato diverso da d sono state d=1, p=0. All'inizializzazione, la rete assume di non aver visto d=1, p=0 nell'ultima configurazione in cui d è stato diverso da p.

$$u = (y_{2} \downarrow (y_{1} \downarrow y_{1})) \downarrow (y_{1} \downarrow y_{0})$$

$$u = (y_{2} + y'_{1})(y_{1} + y_{0})$$

$$Y_{2} = (y_{2} \downarrow (y_{0} \downarrow y_{0}) \downarrow (m \downarrow m)) \downarrow (y_{2} \downarrow p) \downarrow ((m \downarrow m) \downarrow p)$$

$$Y_{2} = (y_{2} + y'_{0} + m')(y_{2} + p)(m' + p)$$

$$Y_{1} = (y_{2} \downarrow y_{1}) \downarrow (y_{1} \downarrow p) \downarrow (m \downarrow m)$$

$$Y_{1} = (y_{2} + y_{1})(y_{1} + p) m$$

$$Y_{0} = (y_{2} \downarrow m) \downarrow (y_{0} \downarrow (p \downarrow p)) \downarrow ((y_{2} \downarrow y_{2}) \downarrow (m \downarrow m) \downarrow (p \downarrow p)) \downarrow y_{1}$$

$$Y_{0} = (y_{2} + m)(y_{0} + p')(y'_{2} + m' + p')y'_{1}$$

y_1y_0 y_2	00	01	11	10	
0	0	1	0	0	
1	0	1	1	1	

$$u = (y_2 + y_1')(y_1 + y_0)$$

mp y_1y_0	00	01	11	10			
00	0	1	1	0			
01	0	1	0	0			
11	0	1	0	0			
10	0	1	1	0			
$y_2 = 0$							

y_1y_0	00	01	11	10				
00	1	1	1	0				
01	1	1	1	0				
11	1	1	1	0				
10	1	1	1	0				
$v_2 = 1$								

$$Y_2 = (y_2 + y_0' + m')(y_2 + p)(m' + p)$$

mp y_1y_0	00	01	11	10		mp y_1y_0	00	01	11	10
00	0	0	0	0		00	0	0	1	0
01	0	0	0	0		01	0	0	1	0
11	0	0	1	1		11	0	0	1	1
10	0	0	1	1		10	0	0	1	1
$y_2 = 0$							<i>y</i> ₂ =	= 1		

$$Y_1 = (y_2 + y_1)(y_1 + p) m$$

					_					
mp y_1y_0	00	01	11	10		mp y_1y_0	00	01	11	10
00	0	Q	0	1		00	1	0	0	1
01	0	0	1	1		01	1	1	0	1
11	0	0	0	0		11	0	0	0	0
10	0	0/	0	0		10	0	0	0	0
		$y_2 = 0$	C					<i>y</i> ₂ :	= 1	

$$Y_0 = (y_2+m)(y_0+p')(y_2'+m'+p')y_1'$$

mp

	00	01	11	10	и
000	000	100	100	001	0
001	000	100	001	001	1
011	000	100	010	010	0
010	000	100	110	010	0
100	101	100	110	001	0
101	101	101	110	001	1
111	100	100	110	010	1
110	100	100	110	010	1

 $Y_2Y_1Y_0$

Celle non adiacenti a stabilità (combinazioni stato/ingressi impossibili)

Righe prive di stabilità (stati non utilizzati dalla rete)

Potenziali corse critiche

 $y_2y_1y_0$

mp

	00	01	11	10	и
000	000	100	100	001	0
001	000	100	001	001	1
011	000	100	010	010	0
010	000	100	110	010	0
100	101	100	110	001	0
101	101	101	110	001	1
111	100	100	110	010	1
110	100	100	110	010	1

 $y_2y_1y_0$

ν	ν	v
12	11	1

Corsa	Transizioni di stato	Uscite	
001 -> 100	001 -> 000 -> 100 OK 001 -> 101 NO Corsa critica	Ininfluenti in caso di corsa critica	
101 -> 110	101 -> 100 -> 110 OK 101 -> 111 -> 110 OK Transizione multipla	1 -> 0 -> 1 NO 1 -> 1 -> 1 OK Transizione multipla con glitch sull'uscita	

Violazione vincoli:

- E' presente una corsa critica in stato 001 per ingressi 01
- L'uscita non mantiene il valore costante durante la transizione multipla 101->110 per ingresso 11 nel percorso 101-100-110

mp

	00	01	11	10	u
A (000)	A	D		В	0
B (001)	Α	D	В	В	1
C (010)	Α		F	C	0
D (100)	E	D	F		0
E (101)	(")	Ш	F	В	1
F (110)		D	(L)	С	1

 $y_2y_1y_0$

 $Y_2Y_1Y_0$

Possibile interpretazione:

Quando l'ingresso m, che indica il modo di funzionamento della rete, vale "0", l'uscita u assume valore "1" solo dopo un fronte di discesa di p, e lo mantiene fino al cambio di modo. Quando l'ingresso di modo m vale "1", se p valeva "0" durante il fronte di salita di m che ha iniziato la fase di modo "1", l'uscita udeve valere "1" fino al cambio di modo; se p valeva "1" durante il fronte di salita di m che ha iniziato la fase di modo "1", l'uscita u riproduce l'andamento di p fino al cambio di modo. All'inizializzazione, la rete assume di essere in modo "0" e di non aver ancora visto fronti di discesa di p.