Introduction to Algorithms Lecture 10

By: Darmen Kariboz

Introduction to Graph Theory: Basic Concepts

What is a Graph?

- ■Graph ~ network
- Informally a *graph* is a set of nodes joined by a set of lines or arrows.

Graph-based representations

- Representing a problem as a graph can provide a different point of view
- Representing a problem as a graph can make a problem much simpler
- More accurately, it can provide the appropriate tools for solving the problem

Friendship Network

facebook

Facebook helps you connect and share with the people in your life.

Beshparmak, manty,ehh...

Internet

Graph Theory - History

Leonhard Euler's paper on "Seven Bridges of Königsberg", published in 1736.

Graph Theory - History

Trees in Electric Circuits

Gustav Kirchhoff

Graph Theory - History

Four Colors of Maps

Definition: Graph

- G is an ordered triple G:=(V, E, f)
- V is a set of nodes, points, or vertices.
- •E is a set, whose elements are known as edges or lines.
- •f is a function
- maps each element of E
- to an unordered pair of vertices in V.

Definitions

- Vertex
- Basic Element
- Drawn as a node or a dot.
- **Vertex set** of G is usually denoted by V(G), or V
- Edge
- A set of two elements
- Drawn as a line connecting two vertices, called end vertices, or endpoints.
- ■The edge set of G is usually denoted by E(G), or E.

Example

- •V:={1,2,3,4,5,6}
- •E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}

Simple Graphs

Simple graphs are graphs without multiple edges or self-loops.

Directed Graph (digraph)

- Edges have directions
- An edge is an *ordered* pair of nodes

directed graph

Social networks as graphs: Twitter

Weighted graphs

• is a graph for which each edge has an associated *weight*, usually given by a *weight* function $w: E \rightarrow \mathbb{R}$.

Connectivity

- a graph is connected if
- •you can get from any node to any other by following a sequence of edges OR
- any two nodes are connected by a path.

A directed graph is **strongly connected** if there is a directed path from any node to any other node.

Component

Every disconnected graph can be split up into a number of connected components.

Degree

•Number of edges incident on a node

The degree of 5 is 3

Degree (Directed Graphs)

- In-degree: Number of edges entering
- Out-degree: Number of edges leaving
- Degree = indeg + outdeg

outdeg
$$(1)=2$$
 indeg $(1)=0$

outdeg
$$(2)=2$$
 indeg $(2)=2$

outdeg
$$(3)=1$$
 indeg $(3)=4$

Walks

A walk of length k in a graph is a succession of k (not necessarily different) edges of the form

UV,VW,WX,...,YZ.

This walk is denote by uvwx...xz, and is referred to as a *walk between u and z*.

A walk is **closed** if u=z.

Path

A path is a walk in which all the edges and all the nodes are different.

Walks and Paths

1,2,5,2,3,4 walk of length 5

1,2,5,2,3,2,1 CW of length 6

1,2,3,4,6 path of length 4

Cycle

A *cycle* is a closed walk in which all the edges are different.

Special Types of Graphs

Empty Graph / Edgeless graph

No edge

 $\binom{6}{}$

(3)

- Null graph
- No nodes
- Obviously no edge

Trees

- Connected Graph without cycles
- Two nodes have exactly one path between them

Special Trees

Stars

Bipartite graph

- V can be partitioned into 2 sets V_1 and V_2 such that $(u, v) \in E$ implies
- ■either $u \in V_1$ and $v \in V_2$
- ■OR $v \in V_1$ and $u \in V_2$.

Complete Graph

- Every pair of vertices are adjacent
- Has n(n-1)/2 edges

Planar Graphs

- Can be drawn on a plane such that no two edges intersect
- ■K₄ is the largest complete graph that is planar

Spanning tree

Let G be a connected graph. Then a **spanning tree** in G is a subgraph of G that includes every node and is also a tree.

Representation (Matrix)

- Incidence Matrix
- ■V x E
- [vertex, edges] contains the edge's data
- Adjacency Matrix
- V x V
- Boolean values (adjacent or not)
- Or Edge Weights

Matrices

	1,2	1,5	2,3	2,5	3,4	4,5	4,6
1	1	1	0	0	0	0	0
2	1	0	1	1	0	0	0
3	0	0	1	0	1	0	0
4	0	0	0	0	1	1	1
5	0	1	0	1	0	1	0
6	0	0	0	0	0	4,5 0 0 0 1 1 0	1

Representation (List)

- Edge List
- pairs (ordered if directed) of vertices
- Optionally weight and other data
- Adjacency List (node list)

Edge and Node Lists

Edge List	Node
1 2	122
1 2	2 3 5
2 3	3 3
2 5	435
3 3	5 3 4
4 3	
4 5	
5 3	
5 4	

List

Edge Lists for Weighted Graphs

Edge List 1 2 1.2 2 4 0.2 4 5 0.3 4 1 0.5 5 4 0.5 6 3 1.5

Distance Matrix

 $|V| \times |V|$ matrix $D = (d_{ij})$ such that d_{ij} is the topological distance between i and j.

	1	2	3	4	5	6
1	0	1	2	2	1	3
2	1	0	1	2	1	3 2 1
3	2	1	0	1	2	2
4	2	2	1	0	1	1
5	1	1	2	1	0	2
6	3	3	2	1	2	2 0

Which of the following statements hold for this graph?

```
(a)nodes v and w are adjacent;(b)nodes v and x are adjacent;(c)node u is incident with edge 2;(d)Edge 5 is incident with node x.
```


Write down the degree sequence of each of the following graphs:

Complete the following statements concerning the graph given below:

- (a) xyzzvy is a ______ of length_____between___and__;
- (b) *uvyz* is ______ of length _____ between___ and___.

Write down all the paths between s and y in the following graph. Build the distance matrix of the graph.

Draw the graphs given by the following representations:

Node list	Edge list	<u>Ac</u>	<u>dja</u>	<u>cer</u>	ncy	<u>ma</u>	<u>trix</u>
1234	1 2		1	2	3	4	5
2 4	1 4	1 (^	2	٥	1	1
3 4	2 2	1	0	2	Û	1	1
4123	2 4	2	2	0	0	l	1
5 6	2 4	3	0	0	0	0	0
6 5	3 2	4	1	1	0	0	2
	4 3	5	1	1	0	2	0

HW / Assignment 1

Find the degree for each vertex, if adjacency matrix is given:

Sample input

11000

00101

10101

01001

10001

Sample output:

54526

HW / Assignment 2

Distance matrix is given.

Find shortest path between 1 and last vertex:

Sample input

5

02007

20103

0 1 0 0 2

00002

73220

Sample output:

5

1235