

コンピュータの演算の仕組み

①論理回路

●コンピュータの演算は 0 か l だけで表現される2進数で行う (論理演算)

- ●論理演算を行う回路は②AND回路(論理積回路)
 - ③0R回路(論理和回路), ④NOT回路(否定回路)の 3つの論理回路の組み合わせですべての計算を 行うことができる。

AND回路(論理積回路)について

AとB<u>どちらの条件も満たす</u> AとBとが重なっている部分が真

真理値表:入力と出力の関係を示す表

例 合格:O 不合格:×

A:情報	B:数学	総合判定
×	×	×
0	×	×
×	0	×
0	0	0

真理值表

入力		出力
Α	В	L
0	0	0
0	I	0
ı	0	0
I	I	I

OR回路(論理和回路)について

AまたはBどちらか条件を満たす AとBどちらかに属していれば真

例 合格:O 不合格:×

A:情報	B:数学	総合判定
×	×	×
0	×	0
×	0	0
0	0	0

真理值表

入力		出力
Α	В	L
0	0	0
0	I	1
I	0	1
I	I	l l

NOT回路(否定回路)について

真理值表

入力	出力
Α	L
0	l l
l l	0

ミル記号について

MIL(ミル)記号・・論理回路の回路図に使用する記号

論理積(AND)

$$A \cdot B = Y$$

論理和(OR)

$$A + B = Y$$

否定(NOT)

$$\bar{A} = Y$$

NOR回路 (NOT OR回路) について

OR回路の否定

真理值表

入力		出力
Α	В	L
0	0	T I
0	I	0
I	0	0
l	I	0

ミル記号

NAND (NOT AND) 回路について

AND回路の否定

真理值表

入力		出力
Α	В	L
0	0	0
0	I	T I
I	0	l l
I	I	I

ミル記号

XOR回路 (排他的論理和回路) について

OR回路からAND回路を引いたもの 基本的にはOR回路と同じ真理値表だが LとIのときにOになる

真理值表

入力		出力
Α	В	L
0	0	0
0	I	I
I	0	I
I	I	0

ミル記号

入力		出力
a	b	C
0	0	T
0	I	
I	0	
I	I	

出力CI

論理回路 演習(1)

入力		出力
а	b	С
0	0	1
0	I	T
I	0	
I	I	

出力CI

論理回路 演習(1)

入力		出力
α	b	С
0	0	T.
0	I	T.
I	0	0
I	I	

出力C 0

論理回路 演習(1)

入力		出力
а	b	С
0	0	1
0	I	T.
I	0	0
I	I	l l

出力C 0

入力		出力
Α	В	X
0	0	0
0	I	
I	0	
I	I	

出力C O

入力		出力
Α	В	X
0	0	0
0	I	0
I	0	
I	ı	

出力C 0

入力		出力
Α	В	X
0	0	0
0	I	0
I	0	0
I	I	

出力C 0

入力		出力
Α	В	X
0	0	0
0	I	0
I	0	0
I	ı	I

出力CI

入	カ	出	カ
Α	В	С	S
0	0	0	0
0	I		
I	0		
I	I		

入	カ	出	カ
Α	В	С	S
0	0	0	0
0	I	0	I
I	0		
ı	I		

入	カ	出	カ
A	В	С	S
0	0	0	0
0	I	0	I
I	0	0	I
I	l		

入	カ	出	カ
Α	В	С	S
0	0	0	0
0	I	0	T
I	0	0	1
I	I	I	0

●問題集P.56~P.57

半加算器回路について

- ●OR回路、AND回路、NOT回路を使い加算を行う回路
- ●2つの2進数を加算して同桁の値(S)と桁上がり(C)を出力
- ●下位桁からの桁上がりを配慮しないため2桁目までしか計算できない

半加算器回路について

●2つの2進数を加算して同桁の値(S)と桁上がり(C)を出力

半加算器回路について

●入力値がA、Bだとすると同桁の値(S)と桁上がり(C)は どうなるか

B 0 0+00+11+0 1+1

入	カ	出	カ
Α	В	С	S
0	0	0	0
0	I	0	I
I	0	0	I
I	I	I	0

真理值表

問しア

- ●論理演算を行う回路は②AND回路(論理積回路)
 - ③0R回路(論理和回路)、④NOT回路(否定回路)の
 - 3つの論理回路の組み合わせですべての計算を行うことができる。

答え 4

問2 イ

●AND回路

真理值表

入力		出力
Α	В	L
0	0	0
0	I	0
I	0	0
I	I	I

答え ②

問2 ウ

OR回路

真理值表

入力		出力
Α	В	L
0	0	0
0	I	l l
I	0	1
I	I	T.

答え 4

問2 工

真理值表

入力	出力
Α	L
0	T I
I	0

答え

問3 才

入力		出力	
Α	В	С	S
0	0	0	0
0	I		
I	0		
I	I		

問3 才

入力		出力	
Α	В	С	S
0	0	0	0
0	I	0	T I
I	0		
I	I		

問3 | オ

入力		出力	
Α	В	С	S
0	0	0	0
0	I	0	T
I	0	0	1
I	I		

問3 才

入力		出力	
A	В	С	S
0	0	0	0
0	I	0	I
I	0	0	I
I	I	T I	0

問4 力

半加算器回路の真理値表

入力		出力	
A	В	С	S
0	0	0	0
0	I	0	I
I	0	0	T.
I	I	T I	0

これに当てはめるとAとBが1と1のときCとSも1と1

駿台模試解說

問1 | コ

- ●メモリカードが入っていない時が0 入っている時が1
- ●シャッターボタンが押されていない時が0 押された時が1
 - ●撮影が実行できる場合はメモリカードが入っていて(I)、 かつシャッターが押された時(I)
 - ●ともに (M,S) = (I、I) のときのみIになる。 それ以外は全て0になる回路を選ぶ

問2 サ

●エラーになる(Iになる)状況は メモリカード(M)が入っていない(0)状態で、 シャッターが押された時(Iの状態)

真理值表

入力		出力	
M	S	E	
0	0	0	
0	I	l l	
1	0	0	
1	I	0	

答え ①

問2 サ ヒント

●エラーになる(1になる)状況は1つだけ

メモリカード(M)が入っていない(0)状態で、 シャッターが押された時(Iの状態)のみ

問3 シ

- ●Sは<u>シャッターボタンが押されていない時が0</u> 押された時が1
- ●Lは明るい時が1、明るさが足らない時は0
- ●Dは日中モードで撮影されれば1、撮影されなければ0
- ●Nは夜間モードで撮影されれば1、撮影されなければ0

- ●わかりやすいのは明るさが足らない時に撮影されれば夜間モードになる SがI、L、D、Nは何?
- ●明るさが足りている時に撮影されれば日中モードになる Sが1、L、D、Nは何?

問3 シ

- ●Sは<u>シャッターボタンが押されていない時が0</u> 押された時が1
- ●Lは明るい時が1、明るさが足らない時は0
- ●Dは日中モードで撮影されれば1、撮影されなければ0
- ●Nは夜間モードで撮影されれば1、撮影されなければ0

- ●わかりやすいのは明るさが足らない時に撮影されれば夜間モードになる Sが1、Lが0、Dが0、Nが1
- ●明るさが足りている時に撮影されれば日中モードになる Sが1、Lが1、Dが1、Nが0

答え 3

入力		出力	
S	L	D	N
0	0	0	0
0	I	0	0
T.	0	0	T.
T.	I	T I	0

この真理値表をそれぞれの選択肢の回路に当てはめて考える

答え