# Presentation

## Application

OBJECTIVE: Forecasting the levels of air pollution for the

TableView station in Cape Town.

RESPONSE: Nitrogen dioxide

COVARIATES: Particulate matter, Sulfur dioxide, and Wind speed

# Time series plot



Figure 1: Time series of  $\boldsymbol{X}_t$ 

#### Components of the time series

TREND COMPONENT: Using the ndiffs() function in the forecast package, we obtain 1, suggesting that there is a linear trend in the time series.

SEASONAL COMPONENT: Using the nsdiffs() function in the forecast package, we obtain 0, suggesting that no seasonality is present in the time series.

CYCLICAL COMPONENT: There is no clear indication of a cyclical component in the time series.

RANDOM COMPONENT: Random variation is present in the time series.

## Heteroscedasticity

$$X_t \nsim \mathcal{N}(\mu, \sigma^2)$$
.

Using the BoxCox.lambda() function in the forecast package, we get that  $\lambda \approx 0$ , suggesting a natural log transformation.

$$\mathrm{Let}\,Y_t=\ln(X_t),$$

$$Y_t \overset{approx}{\sim} \mathcal{N}(\mu,\,\sigma^2).$$

#### Fitted models

AVERAGE: The prediction is the average value.

NAIVE: The prediction is the last observed value.

DRIFT: The prediction is the last observed value adjusted for the average trend.

AR(1): The prediction is based on a constant, plus a fraction of the previous value.

#### Gaussian process models

$$\begin{split} f_1(x) \sim &\operatorname{GP}(0,\,\sigma^2\delta_{ij}),\, \delta_{ij} = 1 \operatorname{for} i = j, \operatorname{and} \delta_{ij} = 0 \operatorname{for} i \neq j. \\ f_2(x) \sim &\operatorname{GP}(\mathbf{X}\beta,\,\sigma^2\delta_{ij}),\, \delta_{ij} = 1 \operatorname{for} i = j, \operatorname{and} \delta_{ij} = 0 \operatorname{for} i \neq j. \\ f_3(x) \sim &\operatorname{GP}(0,\,\alpha^2 \mathrm{exp}[(\frac{x_i - x_j}{\rho})^2]). \\ f_4(x) \sim &\operatorname{GP}(\mathbf{X}\beta,\,\alpha^2 \mathrm{exp}[(\frac{x_i - x_j}{\rho})^2]). \end{split}$$

#### Results

| Model                      | RMSE                  |        |        | MAE                   |       |        |
|----------------------------|-----------------------|--------|--------|-----------------------|-------|--------|
| Model                      | Forecasts             |        |        | Forecasts             |       |        |
|                            | (h  day time horizon) |        |        | (h  day time horizon) |       |        |
|                            | 24                    | 168    | 744    | 24                    | 168   | 744    |
| Average                    | 7.731                 | 5.397  | 7.439  | 6.042                 | 4.254 | 5.385  |
| Naive                      | 10.553                | 7.864  | 10.040 | 7.708                 | 6.071 | 7.308  |
| Drift                      | 10.606                | 8.128  | 11.358 | 7.764                 | 6.391 | 8.809  |
| AR(1)                      | 8.662                 | 5.912  | 8.044  | 6.029                 | 4.422 | 5.616  |
| GP-0-WN                    | 13.756                | 11.141 | 13.169 | 11.719                | 9.786 | 11.081 |
| GP-0-SE                    |                       |        |        |                       |       |        |
| GP-MLR-WN                  | 7.692                 | 6.134  | 7.225  | 6.119                 | 4.490 | 5.136  |
| $\operatorname{GP-MLR-SE}$ |                       |        |        |                       |       |        |

Figure 2: OOS performance of the fitted models.