

(KEMNA0302) Alkalmazott lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Űrfizikai és Űrtechnikai Osztály, 1121 Budapest, Konkoly-Thege Miklós út 29-33. https://facako.tki.pte.hu

2025. február 5.

A kurzus célja

- ▶ A lineáris algebra fogalmainak, alapvető eljárásainak és szakszókincsének elsajátítása
- A lineáris algebra értését és alkalmazását igénylő tárgyak tanulásához szükséges ismeretek elsajátítása
- Problémák megoldása a lineáris algebra módszereivel
- Annak felismerése, hogy mikor érdemes a lineáris algebra módszereit használni :
- A tematikát fogom követni és számonkérni, de el fogom mondani, főleg gyakorlaton, hogy mi a hasznos
- Mondják el, hogy milyen ismeretek szükségesek a tanulmányaikhoz
- Minden diát, tematikát, video felvételt, gyakorló feladatot és dolgozat feladatsort fel fogok tölteni a Teamsre
- Látják a tárgy Teams csoportját? Most csak egy csoport lesz és nem lesz Moodle

Követelmények

- Két tesztet írunk majd a gyakorlatok feladataiból. Mindent lehet használni közben
- ▶ Mindkét tesztet legalább 41 %-ra meg kell írni, különben javító zh-t kell írni
- A vizsgaidőszakban írásbeli vizsgát kell tenni
- Osztályzás: elégtelen (1): 0-40 %, elégséges (2): 41-55 %, közepes (3): 56-70 %, jó (4): 71-85 %, jeles (5): 86-100 %.
- ▶ 1. zh: 2025. március 13, 2. zh: 2025. május 8, pótzh: 2025. május 15

Bibliography

Gyémánt Iván, Görbe Tamás Ferenc: Lineáris algebra fizikusoknak, Polygon 2011.

Bártfai Pál: Az n-dimenziós tér lineáris geometriája. Typotex Kiadó 2014.

Rózsa Pál: Bevezetés a mátrixelméletbe. Typotex Kiadó 2009.

Martin Cockett, Graham Doggett: Maths for Chemists. 2nd Ed., RSC Publishing 2012.

Stephen Boyd, Lieven Vandenberghe: Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares. Cambridge University Press 2018. https://umls-book.stanford.edu/

Peter J. Olver, Chehrzad Shakiban: Applied Linear Algebra, 2nd Ed., Springer International Publishing AG 2018.

Gilbert Strang: Introduction to Linear Algebra, 5th Ed., Wellesley-Cambridge Press 2016. https://math.mit.edu/-gs/linearalgebra/

Skalár és vektor mennyiségek

- ▶ A skalár mennyiségek irány nélküli mennyiségek. Például: a tömeg (m), a sebesség ($|\mathbf{v}|$, not velocity), a hőmérséklet (T), a hosszúság, a térfogat (V), vagy a sűrűség (ρ).
- A vektor mennyiségek irányfüggő mennyiségek. Például: a súly (**F**), a sebesség (**v**), a helyzet (**r**), a gyorsulás/lassulás (**a**), a forgás, a körsebesség (ω).
- Figyelem, két fajta vektor létezik:
 - A súly (**F**), a sebesség (**v**), a helyzet (**r**), a gyorsulás (**a**).
 - ightharpoonup A forgás és a körsebesség (ω).
- A vektorokat lehet vastag betűvel (\mathbf{v}) , aláhúzással $(\underline{\mathbf{v}})$, vagy nyíllal $(\vec{\mathbf{v}})$ jelölni.

A vektorok más meghatározásai I

A vektor egy véges hosszúságú irányított szakasz az A pontból a B pontba: \overrightarrow{AB} . A kezdőpontja az A pont, a vég pontja pedig a B pont.

- ► Két vektor akkor egyenlő, ha párhuzamos eltolással egymásra transzformálhatók.
- ▶ Vagy másképpen, ha két vektor hossza, iránya és irányultsága megegyezik.

A vektorok más meghatározásai II

- ► Ha ezt meg lehet tenni két vektorral, akkor a szabad vektorok osztályához jutunk.
- ▶ Definíció: Sík (V^2) vagy térbeli vektoroknak nevezzük (V^3) azt a csoportot, amit párhuzamos eltolással egymásba lehet transzformálni.

Vektorok koordináta reprezentációi I

Számpárokat, vagy számhármasokat (...) \mathbb{R}^2 , vagy \mathbb{R}^3) meg lehet feleltetni a vektoroknak:

$$\mathbf{v}=(v_1,v_2)=\left(\begin{array}{c}v_1\\v_2\end{array}\right),$$

ahol $v_1 \in \mathbb{R}$, $v_2 \in \mathbb{R}$ a 2D vektor komponensei.

Vektorok koordináta reprezentációi II

$$\mathbf{v}=(v_1,v_2,v_3)=\left(\begin{array}{c}v_1\\v_2\\v_3\end{array}\right),$$

ahol $v_1 \in \mathbb{R}$, $v_2 \in \mathbb{R}$, $v_3 \in \mathbb{R}$ a vektor komponensei 3D-ben.

Vektorok egyenlősége és hossza I

- <u>Definíció</u>: Két vektor akkor és csak akkor egyenlő, ha az origó központú reprezentációik azonosak.
- Azaz $\mathbf{a}(a_1, a_2, a_3), \mathbf{b}(b_1, b_2, b_3) \in V^3$ egyenlő, és csak akkor egyenlő, $a_1 = b_1$, $a_2 = b_2$, és $a_3 = b_3$, ahol $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{R}$.

Vektorok egyenlősége és hossza II

• Állítás: Az $\mathbf{a} = (a_1, a_2, a_3)$ vektor nagysága, vagy hossza a következő nem nulla szám:

$$|\mathbf{a}| = \|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Bizonyítás: Az AOM pontok egy derékszögű háromszöget formáznak, ahol OMA \angle -nél van a derékszög. Így Pithagorasz-tétele miatt $|\mathbf{a}| = OM^2 + a_3^2$. Az O, $(a_1,0,0)$, $(0,a_2,0)$ pontok szintén egy derékszögű háromszöget formáznak, ahol a derékszög az $[O,(a_1,0,0),(0,a_2,0)] \angle$ szögnél van, így Pithagorasz-tétele miatt, $OM^2 = a_1^2 + a_2^2$. A két egyenlőséget összevonva $|\mathbf{a}| = OM^2 = a_1^2 + a_2^2 + a_3^2$, azaz $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

Vektorok egyenlősége és hossza III

▶ A null vektornak nincsen se hossza, se iránya: $|\mathbf{0}(0,0,0)|=0$.

Vektorok összeadása, kivonása és skalárral való szorzása I

Definíció: Vektorok összeadása. Ha $\mathbf{a}(a_1, a_2, a_3)$ és $\mathbf{b}(b_1, b_2, b_3)$, akkor

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3),$$

ahol a_1 , a_2 , a_3 , b_1 , b_2 , $b_3 \in \mathbb{R}$.

Az \mathbf{a} és \mathbf{b} vektort úgy adjuk össze, hogy az \mathbf{a} végpontjába toljuk a \mathbf{b} -t. Az összegvektor ($\mathbf{a} + \mathbf{b}$) az \mathbf{a} kezdőpontjától a \mathbf{b} végpontjába tartó vektor lesz.

Vektorok összeadása, kivonása és skalárral való szorzása II

▶ <u>Definíció:</u> Vektor skalárral való szorzása. Ha $\lambda \in \mathbb{R}$ és **a** (a_1, a_2, a_3) , ahol $a_1, a_2, a_3 \in \mathbb{R}$, akkor

$$\lambda \mathbf{a} = (\lambda a_1, \lambda a_2, \lambda a_3).$$

Figyelem, gondoljunk bele, mit jelent, ha λ 0, 1, -1, <1, vagy >1.

Az **a** vektort egy λ skalárral úgy szorozzuk meg, hogy az eredeti vektor végpontjából egy vele azonos irányú, de λ -szoros hosszúságú vektort rajzolunk.

Vektorok összeadása, kivonása és skalárral való szorzása III

Definíció: Vektorok kivonása. Ha $\mathbf{a}(a_1, a_2, a_3)$ és $\mathbf{b}(b_1, b_2, b_3)$, akkor

$$\mathbf{a} - \mathbf{b} = (a_1 - b_1, a_2 - b_2, a_3 - b_3),$$

ahol a_1 , a_2 , a_3 , b_1 , b_2 , $b_3 \in \mathbb{R}$.

Az \mathbf{a} és \mathbf{b} vektort úgy vonjuk ki, hogy a vektorokat közös kezdőpontba toljuk. A különbségvektor $(\mathbf{a} - \mathbf{b})$ a \mathbf{b} végpontjától az \mathbf{a} végpontjába tartó vektor lesz.

Vektorok összeadása, kivonása és skalárral való szorzása IV

- Vektorok összegzésének tulajdonságai
 - 1. <u>Állítás:</u> Vektorok összeadása kommutatív, azaz $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$, ahol $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$. Bizonyítás: $\mathbf{a} + \mathbf{b} = (a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3) = (b_1 + a_1, b_2 + a_2, b_3 + a_3) = (b_1, b_2, b_3) + (a_1, a_2, a_3) = \mathbf{b} + \mathbf{a}$ \mathbf{a}, e, d .
 - 2. <u>Állítás:</u> Vektorok összeadása asszociatív, azaz $(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$, ahol $\mathbf{a},\mathbf{b},\mathbf{c}\in\mathbb{R}^3$.

Bizonyítás:
$$(\mathbf{a} + \mathbf{b}) + \mathbf{c} = [(a_1, a_2, a_3) + (b_1, b_2, b_3)] + (c_1, c_2, c_3) = \overline{[(a_1 + b_1) + c_1, (a_2 + b_2) + c_2, (a_3 + b_3) + c_3]} = \overline{[a_1 + (b_1 + c_1), a_2 + (b_2 + c_2), a_3 + (b_3 + c_3)]} = \overline{(a_1, a_2, a_3) + [(b_1, b_2, b_3) + (c_1, c_2, c_3)]} = \overline{\mathbf{a} + (\mathbf{b} + \mathbf{c})}_{a_1, a_2, a_3}$$

- 3. Létezik null vektor: $\exists \mathbf{0} \in \mathbb{R}^3$, ahol $\mathbf{a} + \mathbf{0} = \mathbf{a}$, ahol $\mathbf{a} \in \mathbb{R}^3$.
- 4. Minden vektornak van egy inverz vektora: $\forall \mathbf{a} \in \mathbb{R}^3 \ \exists \ (-\mathbf{a}) \in \mathbb{R}^3$, ahol $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$.

Vektorok összeadása, kivonása és skalárral való szorzása V

- A vektorok skalárral való szorzásának tulajdonságai
 - igwedge Állítás: Vektorok skalárral való szorzása asszociatív, azaz $\lambda\left(\mu\mathbf{a}\right)=\left(\lambda\mu\right)\mathbf{a}$, ahol $\mathbf{a}\in\mathbb{R}^3, \lambda, \mu\in\mathbb{R}$. Bizonyítás: $\lambda\left(\mu\mathbf{a}\right)=\lambda\left[\mu\left(a_1,a_2,a_3\right)\right]=\lambda\left(\mu a_1,\mu a_2,\mu a_3\right)=\left(\lambda\mu a_1,\lambda\mu a_2,\lambda\mu a_3\right)=$

$$\frac{\text{Bizonyitás: }\lambda\left(\mu\mathbf{a}\right)=\lambda\left[\mu\left(a_{1},a_{2},a_{3}\right)\right]=\lambda\left(\mu a_{1},\mu a_{2},\mu a_{3}\right)=\left(\lambda\mu a_{1},\lambda\mu a_{2},\lambda\mu a_{3}\right)=\left(\lambda\mu\right)\mathbf{a}}{\left(\lambda\mu\right)\left(a_{1},a_{2},a_{3}\right)=\underbrace{\left(\lambda\mu\right)\mathbf{a}}_{q.e.d.}}\mathbf{a}$$

 \wedge <u>Állítás:</u> Vektorok összeadása disztributív a skaláris szorzásra, azaz $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$, ahol $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3, \lambda \in \mathbb{R}$.

Bizonyítás:
$$\lambda(\mathbf{a} + \mathbf{b}) = \lambda[(a_1, a_2, a_3) + (b_1, b_2, b_3)] = \lambda(a_1 + b_1, a_2 + b_2, a_3 + b_3) = \overline{[\lambda(a_1 + b_1), \lambda(a_2 + b_2), \lambda(a_3 + b_3)]} = (\lambda a_1 + \lambda b_1, \lambda a_2 + \lambda b_2, \lambda a_3 + \lambda b_3) = (\lambda a_1, \lambda a_2, \lambda a_3) + (\lambda b_1, \lambda b_2, \lambda b_3) = \lambda(a_1, a_2, a_3) + \lambda(b_1, b_2, b_3) = \underline{\lambda \mathbf{a} + \lambda \mathbf{b}}_{q. e. d}$$

Vektorok összeadása, kivonása és skalárral való szorzása VI

Egységvektor I

▶ <u>Definíció:</u> Egységvektornak nevezzük azon vektorokat, melyek hossza 1. Tekintsük a térben a következő egységvektorokat, melyeket \mathbb{R}^3 kanonikus bázisának is hívunk:

$$\mathbf{i} = \mathbf{e}_1 = (1, 0, 0), \mathbf{j} = \mathbf{e}_2 = (0, 1, 0), \mathbf{k} = \mathbf{e}_3 = (0, 0, 1).$$

ightharpoonup Állítás: Tetszőleges $\mathbf{v}(v_1, v_2, v_3)$ térbeli vektor felírható ezen vektorok segítségével a következőképpen:

$$\mathbf{v}=v_1\mathbf{e}_1+v_2\mathbf{e}_2+v_3\mathbf{e}_3.$$

Bizonyítás:

$$\mathbf{v} = (v_1, v_2, v_3) = (v_1, 0, 0) + (0, v_2, 0) + (0, 0, v_3) = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3.$$

▶ Ha $\mathbf{v} \neq \mathbf{0}$, akkor a hosszára fennáll, hogy $|\mathbf{v}| \neq 0$, ezért értelmezhető a normalizáltja:

<u>Definíció:</u> A $|\mathbf{v}| \neq \mathbf{0}$ vektor normalizáltja, normáltja, vagy irányvektora: $\frac{\mathbf{v}}{|\mathbf{v}|}$.

Egységvektor II

► A normalizált vektor már egységvektor:

$$\left|rac{{f v}}{|{f v}|}
ight|=rac{1}{|{f v}|}\,|{f v}|=1.$$

Felezőpont, pontok távolsága, gömb egyenlete I

A $P_1(x_1, y_1, z_1)$ és a $P_2(x_2, y_2, z_2)$ pontokat összekötő szakasz M felezőpontja a következő pont:

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right).$$

A P₁-be és a P₂-be mutató **p**₁ és **p**₂ vektorokkal felrajzoljuk a vektorösszeadást. A két-két vektor egymással párhuzamos, így egy paralelogrammát alkot. A paralelogramma átlói azonban felezik egymást, így az M pont a két vektor összegének a felénél található. Így a képlet igaz.

Felezőpont, pontok távolsága, gömb egyenlete II

▶ A $P_1(x_1, y_1, z_1)$ és a $P_2(x_2, y_2, z_2)$ pontok távolsága a P_1 és P_2 végpontú **a**, **b** vektorok különbségeinek a hossza: $|\mathbf{a} - \mathbf{b}|$.

Felezőpont, pontok távolsága, gömb egyenlete III

• Állítás: A $P_1(x_1, y_1, z_1)$ és a $P_2(x_2, y_2, z_2)$ pontok távolsága:

$$|P_1P_2| = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}.$$

Bizonyítás: A P_1 és P_2 pontok távolsága a két pontba mutató vektorok különbsége. A különbségvektor hossza pedig a fenti képlet.

Felezőpont, pontok távolsága, gömb egyenlete IV

• Állítás: Az a sugarú és (x_0, y_0, z_0) középpontú gömb egyenlete:

$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=a^2.$$

Bizonyítás: Egy a sugarú, \mathbf{r}_0 középpontú gömb azon pontok halmaza a térben (\mathbf{r}), amelyek a távolságban vannak \mathbf{r}_0 -től. Azaz $|\mathbf{r} - \mathbf{r}_0| = a$. Azaz,

$$\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} = a, \text{ vagyis}$$

$$\frac{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = a^2}{q_0 \text{ e. d.}}$$

Vége

Köszönöm a figyelmüket!