STAT 2910 SAMPLE MIDTERM

October 13, 2023

Chapter 4

Probability and Probability Distributions

- 1. An experiment involves tossing a single die. These are some events:
 - A: Observe a 2
 - B: Observe an even number
 - C: Observe a number greater than 2
 - D: Observe both A and B
 - E: Observe A or B or both
 - F: Observe both A and C

Question Key

- a. List the simple events in the sample space
- b. List the simple events in each of the events A through F
- c. What probabilities should you assign to the simple events
- d. Calculate the probabilities of the six events by adding the appropriate simple-event probabilities
- 2. A sample space S consists of five simple events with these probabilities:

$$P(E_1) = P(E_2) = 0.15$$

$$P(E_3) = 0.4$$

$$P(E_4) = 2P(E_5)$$

- a. Find the probability for the simple events E_4 and E_5
- b. Find the probabilities for these two events:

$$A = (E_1, E_3, E_4)$$

$$B = (E_2, E_3)$$

- c. List the simple events that are either in event A or event B or both
- d. List the simple events that are either in both event A and event B
- 3. A sample space contains 10 simple events: $E_1, E_2, ..., E_10$. If $P(E_1) = 3P(E_2) = 0.45$ and the remaining simple events are equiprobable, find the probabilities of these remaining simple events
- 4. A basketball player hits 70% of her free throws. When she tosses a pair of free throws, the four possible simple events and three of their associated probabilities are given in the following list:

Simple Events	Outcome1	Outcome2	Probability1
1	Hit	Hit	0.49
2	Hit	Miss	?
3	Miss	Hit	0.21
4	Miss	Miss	0.09

- a. Find the probability that the player will hit on the first throw and miss on the second.
- b. Find the probability that the player will hit on at least one of the two free throws.
- 5. A bowl contains three red and two yellow balls. Two balls are randomly selected and their colors recorded. Use a tree diagram to list the 20 simple events in the experiment, keeping in mind the order in which the balls are drawn.
- 6. Refer to Exercise 4.7. A ball is randomly selected from the bowl containing three red and two yellow balls. Its color is noted, and the ball is returned to the bowl before a second ball is selected. List the additional five simple events that must be added to the sample space in Exercise 4.7.
- 7. Four equally qualified runners, John, Bill, Ed, and Dave, run a 100-meter sprint, and the order of finish is recorded.
 - a. How many simple events are in the sample space?
 - b. If the runners are equally qualified, what probability should you assign to each simple event?
 - c. What is the probability that Dave wins the race?
 - d. What is the probability that Dave wins and John places second?
 - e. What is the probability that Ed finishes last?
- 8. You have two groups of distinctly different items, 10 in the first group and 8 in the second. If you select one item from each group, how many different pairs can you form?
- 9. Three dice are tossed. How many simple events are in the sample space?

10. Evaluate the following permutations.

a.
$$P_3^5$$
 b. P_9^{10} c. P_6^6 d. P_1^{20}

11. Evaluate the following combinations.

a.
$$C_3^5$$
 b. C_9^{10} c. C_6^6 d. C_1^{20}

- 12. A student prepares for an exam by studying a list of 10 problems. She can solve 6 of them. For the exam, the instructor selects 5 questions at random from the list of 10. What is the probability that the student can solve all 5 problems on the exam?
- 13. A monkey is given 12 blocks: 3 shaped like squares, 3 like rectangles, 3 like triangles, and 3 like circles. If it draws three of each kind in order—say, 3 triangles, then 3 squares, and so on—would you suspect that the monkey associates identically shaped figures? Calculate the probability of this event.
- 14. Five cards are selected from a 52-card deck for a poker hand.
 - a. How many simple events are in the sample space?
 - b. A royal flush is a hand that contains the A, K, Q, J, and 10, all in the same suit. How many ways are there to get a royal flush?
 - c. What is the probability of being dealt a royal flush?
- 15. Refer to the previous exercise. You have a poker hand containing four of a kind.
 - a. How many possible poker hands can be dealt?
 - b. In how many ways can you receive four cards of the same face value and one card from the other 48 available cards?
 - c. What is the probability of being dealt four of a kind?
- 16. An experiment can result in one of five equally likely simple events $E_1, E_2, ... E_5$. Events A, B and C are defined as follows:

$$A: E_1, E_3$$
 $P(A) = 0.4$
 $A: E_1, E_2, E_4, E_5$ $P(B) = 0.8$
 $A: E_3, E_4$ $P(C) = 0.4$

Find the probabilities associated with these compound events by listing the simple events in each.

a. A^C

b. $A \cap B$

- c. $B \cap C$
- d. $A \cup B$
- e. B|C
- f. A|B
- g. $A \cup B \cup C$
- h. $(A \cap B)^C$
- 17. Refer to Exercise 4.42. Use the definition of conditional probability to find these probabilities:
 - a. P(A|B)
 - b. P(B|C)
- 18. Refer to Exercise 4.42. Use the Addition and Multiplication Rules to find these probabilities:
 - a. $P(A \cup B)$
 - b. $P(A \cap B)$
 - c. $P(B \cap C)$
- 19. A college student frequents one of two coffee houses on campus, choosing Starbucks 70% of the time and Peet's 30% of the time. Regardless of where she goes, she buys a cafe mocha on 60% of her visits
 - a. The next time she goes into a coffee house on campus, what is the probability that she goes to Starbucks and orders a cafe mocha?
 - b. Are the two events in part a independent? Explain.
 - c. If she goes into a coffee house and orders a cafe mocha, what is the probability that she is at Peet's?
 - d. What is the probability that she goes to Starbucks or orders a cafe mocha or both?
- 20. A smoke-detector system uses two devices, A and B. If smoke is present, the probability that it will be detected by device A is 0.95; by device B, 0.98; and by both devices, is 0.94
 - a. If smoke is present, find the probability that the smoke will be detected by device A or device B or both devices.
 - b. Find the probability that the smoke will not be detected.
- 21. Identify the following as discrete or continuous random variables:
 - a. Total number of points scored in a football game b. Shelf life of a particular drug c. Height of the ocean's tide at a given location d. Length of a 2-year-old black bass e. Number of aircraft near-collisions in a year
- 22. A random variable x has this probability distribution:

X	0	1	2	3	4	5
p(x)	0.1	0.3	0.4	0.1	?	0.05

- a. Find p(4).
- b. Construct a probability histogram to describe $\mathbf{p}(\mathbf{x})$.
- c. Find μ , σ^2 , and σ .
- d. Locate the interval $\mu \pm 2\sigma$ on the x-axis of the histogram. What is the probability that x will fall into this interval?
- e. If you were to select a very large number of values of x from the population, would most fall into the interval $\mu\pm2\sigma$? Explain.