

TO PASS 75% or higher

100%

Graded quiz on Tangent Lines to Functions, Exponents and Logarithms

LATEST SUBMISSION GR	ADE
100%	

^{1.} Convert $\frac{1}{49}$ to exponential form, using 7 as the factor.

1/1 point

- \odot 7⁻²
- \bigcirc 49⁻¹
- \bigcirc (7²)

✓ Correct

The rule for a factor to a Negative exponent is to divide by the same factor to a positive exponent with the same absolute value.

2. A light-year (the distance light travels in a vacuum in one year) is 9,460 trillion meters. Express in scientific

- $\bigcirc \ 9460 \times 10^{12} \ \text{meters}$
- $igotimes 9.46 imes 10^{15}$ meters.
- $\bigcirc~0.946\times10^{16}$
- $\bigcirc \ 9.46 \times 10^{15} \ \text{kilometers}$

✓ Correct

9,460 is (9.4×10^3) meters and one trillion meters is 10^{12} meters. $(9.4\times10^3)(10^{12})$ = 9.4×10^3 10^{15} . A kilometer is 1000 meters.

3. Simplify $(x^8)(y^3)(x^{-10})(y^{-2})$

1/1 point

- $\bigcirc (x)(y^{-2})$
- $(x^{-2})(y)$
- $\bigcirc (x^2)(y)$
- $\bigcirc (x^{-80})(y^{-6})$

✓ Correct

By the Division and Negative Powers Rule, this is $(x^{(8-10)})(y^{(3-2)})$

4. Simplify $[(x^4)(y^{-6})]^{-1}$

1/1 point

- \bigcirc (x^4) (y^{-6})
- $(x^{-4})(y^6)$
- $\bigcirc \ (x^3)(y^{-7})$
- \bigcirc (x^-4) (y^{6})

By the Power to a Power Rule, each of the exponents is multiplied by $\left(-1\right)$

5. Solve for x:

1/1 point

$$\log_2\left(39x\right) - \log_2\left(x-5\right) = 4$$

$$\bigcirc \frac{39}{23}$$

$$\bigcirc \quad \frac{23}{80}$$

✓ Correct

$$\log_2 \, rac{39x}{(x-5)} = 4 \,$$
 by the Quotient Rule.

Since both sides are equal, we can use them as exponents in an equation.

$$2^{\log_2 \frac{39x}{(x-5)}} = 2^4$$

$$\frac{39x}{(x-5)} = 16$$

$$39x = 16 \times (x - 5)$$

$$39x = 16x - 80$$

$$23x = -80$$

$$x = \frac{-80}{23}$$

6. Simplify this expression:

1/1 point

$$(x^{\frac{1}{2}})^{\frac{-3}{2}}$$

- $\circ_{x^{\frac{4}{3}}}$
- $\circ_{x^{\frac{1}{3}}}$
- \bullet $x^{\frac{-3}{4}}$
- $\bigcirc \ x^{-1}$

✓ Correct

We use the Power to a Power Rule -- multiply exponents:

$$x^{\frac12 imes \frac{-3}{2}}=x^{\frac{-3}{4}}$$

 $^{\text{7.}}$ Simplify $\log_{10}1000 + \log_{10}\frac{1}{10000}$

1/1 point

- $\bigcirc \frac{1}{10}$
- \odot -1
- \circ 1
- $^{\bigcirc \,\log_{10}-10}$

✓ Correct

By the Product Rule, this is:

$$\log_{10}(\frac{1000}{10000}) = \log_{10}(\frac{1}{10}) = -1$$

 $^{\text{8.}}$ If $\log_3 19 = 2.680$, what is $\log_9 19$?

1/1 point

- 0.8934
- 1.304
- 0.4347
- \bigcirc 5.216

✓ Correct

 $^{\rm 9.}$ If $\log_{10}b=1.8$ and $log_ab=2.5752$, what is a?

1/1 point

- \bigcirc 3
- \bigcirc 4
- \bigcirc 6

✓ Correct

To solve for a in the formula;

$$\log_a b = \frac{\log_x b}{\log_x a}$$

 $\log_a b = 2.5752$ and $\log_{10} b = 1.8$

Therefore, $\log_{10} a$ must equal to $\ \frac{1.8}{2.5752} = 0.69897$

Treating both sides of equation $\log_{10}a=0.69897$ as exponents of 10 gives $a=10^{0.69897}=5$

 $^{\rm 10.}$ An investment of 1,600 is worth 7,400 after 8.5 years. What is the continuously compounded rate of return of this investment?

1/1 point

- 0 17.01%
- $\bigcirc~19.01\%$
- **18.02%**
- $^{\circ}$ 20.01

$$\frac{\ln \frac{7400}{1600}}{8.5} = 0.18017$$

 $^{11.}$ A pearl grows in an oyster at a continuously compounded rate of .24 per year. If a 25-year old pearl weighs 1 gram, what did it weigh when it began to form?

1/1 point

- \bigcirc 0.02478
- **0** 0.002478
- 0.2478
- 0.0002478

$$e^{(0.24 imes 25)} = rac{1}{x}$$
 $x = rac{1}{(e^{0.24 imes 25})}$ $x = rac{1}{403.4288}$ $x = 0.002478$

 $^{ ext{12.}}\log_2z=6.754$. What is $\log_{10}(z)$?

1/1 point

 \bigcirc 1.3508

 $\bigcirc\ 0.82956$

Correct
$$\frac{\log_2 z}{\log_2 10}=$$

$$(\log_{10} z)\times(\log_2 10)=3.321928$$
 Therefore, $\log_{10} z=\frac{6.754}{3.321928}=2.03316$

13. Suppose that $g:\mathbb{R}\to\mathbb{R}$ is a function, and that g(1)=10. Suppose that g'(a) is negative for every single value of a. Which of the following could possibly be g(1.5)?

$$\bigcirc g(1.5) = 11$$

$$\bigcirc \ g(1.5)=103.4$$

$$\bigcirc g(1.5) = 10.1$$

$$g(1.5) = 9.7$$

Since the slope of the tangent line to the graph of \boldsymbol{g} is negative everywhere on the graph, we know that g is decreasing function! And therefore we must have g(1.5) < g(1). That is the case here, so this value is at least possible.