This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000142922 A

(43) Date of publication of application: 23 . 05 . 00

(51) Int. CI

B65G 1/10 A47B 53/02

(21) Application number: 10326566

(22) Date of filing: 17 . 11 . 98

(71) Applicant:

ISHIKAWAJIMA HARIMA HEAVY

IND CO LTD

(72) Inventor:

TSUTSUMI YASUHIRO

OHATA KOJI OGAWA TAKESHI

(54) MULTILEVEL STORAGE FACILITY

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a multilevel storage facility which can prevent a frame from obliquely moving.

SOLUTION: In a multilevel storage facility composed of a plurality of frames 2 having left and right wheels 9, 10 and arranged in parallel on a running path 1, wheel drive mechanisms 11, 12 provided respectively in the frames 2 and rotating the wheels 9, 10 independent from each other, a reference position member 13 located along one side of the running path 1, noncontact type two position detectors 14, 15, 16 and 17 for detecting a left bias position and a right bias position of the reference position member 13, and a travel controller 19 for controlling both wheel drive mechanisms 11, 12 in accordance with signals 18b indicating that no positions are detected, from the detectors 14, 15, 16 and 17, the travel controller 19 is adapted to control one of the wheel drive mechanisms 11, 12 so as to reduce the rotational speed of either the wheel 9 or the wheel 10, which is ahead of the other in the traveling direction of the frame.

COPYRIGHT: (C)2000,JPO

THIS PAGE BLANK (LECTO).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-142922 (P2000-142922A)

(43)公開日 平成12年5月23日(2000.5.23)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

B 6 5 G 1/10

A 4 7 B 53/02

501

B 6 5 G 1/10

C 3F022

A 4 7 B 53/02

501C

審査請求 未請求 請求項の数2 OL (全 9 頁)

(21)出願番号

特願平10-326566

(22)出願日

平成10年11月17日(1998.11.17)

(71)出願人 000000099 ·

石川島播磨重工業株式会社

東京都千代田区大手町2丁目2番1号

(72)発明者 堤 靖浩

東京都江東区毛利一丁目19番10号 石川島

播磨重工業株式会社江東事務所内

(72)発明者 大畠 耕治

東京都江東区毛利一丁目19番10号 石川島

播磨重工業株式会社江東事務所内

(74)代理人 100062236

弁理士 山田 恒光 (外1名)

最終頁に続く

(54) 【発明の名称】 立体収納設備

(57)【要約】

【課題】 架構の斜行を防止可能な立体収納設備を提供する。

【解決手段】 走行路1に並列に配置され且つ左右両側に車輪9,10を有する複数の架構2と、各架構2に設けられ且つ左右の車輪9,10を別個に回転させ得る車輪駆動機構11,12と、走行路1の一側に沿って配置した位置基準部材13と、各架構2に取り付けられ且つ位置基準部材13の左側寄り部分及び右側寄り部分を検知する2つの非接触位置検知器14,15,16,17 と、非接触位置検知器14,15,16,17 からの位置非検知信号18bに基づき両車輪駆動機構11,12を制御する移動制御器19とを備え、移動制御器19が、架構進行方向に向かって先行している車輪9、または、車輪10の回転数を減少させるように車輪駆動機構11,12の一方を制御する。

【特許請求の範囲】

【請求項1】 走行路に並列に配置した物品収納用の複数の架構と、走行路に接するように各架構の左右両側に枢支した車輪と、各架構に設けられ且つ左右の車輪を別個に回転させ得る車輪駆動機構と、走行路の一側に沿って配置した位置基準部材と、各架構の前後に取り付けられ且つ位置基準部材の左側寄り部分及び右側寄り部分を検知する非接触位置検知器と、各非接触位置検知器からの信号に基づき前記の両車輪駆動機構を個々に制御する移動制御器とを備えたことを特徴とする立体収納設備。

【請求項2】 走行路に並列に配置した物品収納用の複数の架構と、走行路に接するように各架構の左右両側に枢支した車輪と、各架構に設けられ且つ左右の車輪を別個に回転させ得る車輪駆動機構と、走行路内に直線的に貼付あるいは埋め込んだ磁気誘導体と、各架構に取り付けられ且つ磁気誘導体の左右方向に対する相対位置を検知する非接触位置検知器と、該非接触位置検知器からので号に基づき前記の両車輪駆動機構を個々に制御する移動制御器とを備えたことを特徴とする立体収納設備。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は立体収納設備に関するものである。

[0002]

【従来の技術】図15から図17は従来の立体収納設備の一例を示すもので、この立体収納設備は、走行路1に並列に配置した物品収納用の複数の架構2と、走行路1に接し且つ架構2のそれぞれが互いに近接離反し得るように各架構2の左右両側に枢支した無フランジの車輪3と、該車輪3を回転させ得るように各架構2に設けた車輪駆動機構4と、上部及び下部に全長にわたる溝5を有し且つ走行路1の一側に沿って水平に配置したガイドレール6と、該ガイドレール6の溝5に嵌入するように各一機2にブラケット7を介して枢支したガイドローラ8~を備えている。

【0003】各架構2は、それぞれの車輪駆動機構4を 作動させると、単独で走行路1を自走する。

【0004】また、走行路1の全長L、架構2の前後方い向の寸法E、及び架構2の数は、走行路1内にフォークリフトなどの物品搬送機が出入り可能な間隔S(図15参照)が形成できるように設定されている。

【0005】図15から図17に示す立体収納設備において、物品の入出庫を行なう際には、各架構2を順次移動させて、入出庫作業を行なうべき架構2の端面と、それに隣接する他の架構2の端面との間に、前記の間隙Sを形成する。

【0006】この立体収納設備は、無フランジの車輪3によって各架構2を移動させるので走行路1に突起や溝が形成されず、よって、物品搬送機が間隙Sへ容易に乗り入れることができる。

[0007]

【発明が解決しようとする課題】しかしながら、図15から図17に示す立体収納設備では、摩耗などに起因して架構2の左側の車輪3と右側の車輪3の外径が異なっていたり、あるいは、走行路1に緩やかな傾斜や凹凸が形成されていると、架構2が走行路1に対して斜めに進む斜行が発生する。

【0008】更に、架構2の移動に伴って斜行角度が大きくなると、ガイドローラ8を枢支しているブラケット7などがガイドレール6に接して、架構2が移動できなくなることがある。

【0009】本発明は上述した実情に鑑みてなしたもので、架構の斜行を防止し得る立体収納設備を提供することを目的とするものである。

[0010]

20

【課題を解決するための手段】上記目的を達成するため、本発明の請求項1に記載の立体収納設備では、走行路に並列に配置した物品収納用の複数の架構と、走行路に接するように各架構の左右両側に枢支した車輪と、各架構の前後に設けられ且つ左右の車輪を別個に回転させ得る車輪駆動機構と、走行路の一側に沿って配置した位置基準部材と、各架構に取り付けられ且つ位置基準部材の左側寄り部分及び右側寄り部分を検知する非接触位置検知器と、各非接触位置検知器からの信号に基づき前記の両車輪駆動機構を個々に制御する移動制御器とを備えている。

【0011】また、本発明の請求項2に記載の立体収納設備では、走行路に並列に配置した物品収納用の複数の架構と、走行路に接するように各架構の左右両側に枢支した車輪と、各架構に設けられ且つ左右の車輪を別個に回転させ得る車輪駆動機構と、走行路内に直線的に貼付あるいは埋め込んだ磁気誘導体と、各架構に取り付けられ且つ磁気誘導体の左右方向に対する相対位置を検知する非接触位置検知器と、該非接触位置検知器からの信号に基づき前記の両車輸駆動機構を制御する移動制御器とを個々に備えている。

【0012】本発明の請求項1に記載の立体収納設備においては、移動中の架構が斜行しようとすると、少なくとも1つの非接触位置検出器が位置基準部材の左側寄り部分あるいは右側寄り部分を検知し得なくなり、移動制御器が各非接触位置検知器からの信号に基づき、架構進行方向に向かって先行している車輪の回転数を減少させるように車輪駆動機構を制御する。

【0013】本発明の請求項2に記載の立体収納設備においては、移動中の架構が斜行しようとすると、磁気誘導体に対する非接触位置検知器の相対位置が変化し、移動制御機器が非接触位置検知器からの信号に基づき、架構進行方向に向かって先行している車輪の回転数を減少させるように車輪駆動機構を制御する。

50 [0014]

【発明の実施の形態】以下、本発明を実施の形態を、図 示例に基づき説明する。

【0015】図1及び図2は本発明の立体収納設備の実施の形態の第1の例であり、図中、図15から図17と同一の符号を付した部分は同一物を表している。

【0016】この立体収納設備は、走行路1に並列に配 置され且つ左右両側に無フランジの車輪9,10を有す る複数の架構2と、左側車輪9を回転させ得るように各 架構2に設けた左側車輪駆動機構11と、右側車輪10 を回転させ得るように各架構2に設けた右側車輪駆動機 構12と、走行路1の一側に沿って水平に配置した位置 基準部材13と、各架構2の起点側(図2のB側)に取 り付けられ且つ位置基準部材13の左側寄り部分及び右 側寄り部分を検知する非接触位置検知器14,15と、 各架構2の終点側(図2のA側)に取り付けられ且つ位 置基準部材13の左側寄り部分及び右側寄り部分を検知 する非接触位置検知器16,17と、各非接触位置検知 器14, 15, 16, 17からの位置検知信号18a、 あるいは位置非検知信号18bに基づき前記の左右両側 の車輪駆動機構 11, 12を制御する移動制御器 19と を備えている。

【0017】移動制御器19は、操作盤(図示せず)からの移動指令信号20に基づき、該移動指令信号20に 応じた方向へ架構2が移動するように左側車輪駆動機構 11及び右側車輪駆動機構12を制御し、また、それぞれの非接触位置検知器14,15,16,17からの検知信号18a,18bに基づき、図3に示すように、架構2に斜行が生じはじめているか否かを判定し、左側車輪駆動機構11及び右側車輪駆動機構12を制御するように構成されている。

【0018】図1及び図2に示す立体収納設備において、物品の入出庫作業を行なう際には、操作盤から各架構2の移動制御器19に対して、各架構2の必要とする移動方向及び移動量に適応した移動指令信号20を出力する。

【0019】移動指令信号20が出力されると、各架構2に設けた移動制御器19が、それぞれに出力された移動指令信号20に基づき、それぞれの架構2を該移動指令信号20に応じた方向へ指令された移動量に応じて順次移動させる。

【0020】その結果、入出庫を行なうべき架構2の端面と、それに隣接する他の架構2の端面との間に、フォークリフトなどの物品搬送機が出入り可能な間隔S(図15参照)が形成される。

【0021】このとき、移動中の架構2が斜行しようとすると、走行路1に設置した位置基準部材13に対して、当該架構2に設けた起点側の非接触位置検出器14、15、または終点側の非接触位置検知器16、17の相対位置が変化し、少なくとも1つの非接触位置検出器14、15、16、17が位置基準部材13の左側寄 50

り部分あるいは右側寄り部分を検知し得なくなり、該非接触位置検知器 14, 15, 16, 17から位置非検知信号 18 bが出力される。

【0022】移動制御器19は、各非接触位置検知器14、15、16、17からの位置検知信号18aあるいは位置非検知信号18bに基づき、架構進行方向に向かって先行している左側車輪9(あるいは右側車輪10)の回転数を減少させるように左側車輪駆動機構11(あるいは右側車輪駆動機構12)を制御する。

【0023】次に、位置検知信号18aあるいは位置非 検知信号18bに基づき動作する移動制御器19の機能 を図3によって説明する。

【0024】架構2の移動開始後、架構移動中に位置基準部材13に対する起点側(図2のB側)の非接触位置検知器14,15及び終点側(図2のA側)の非接触位置検知器16,17のそれぞれから位置検知信号18aが出力されている場合(図3の1参照)には、架構2が起点側、終点側のいずれの方向に移動しつつある場合にも、左側車輪9及び右側車輪10が、図2に示すように、同時進行していると判別した移動制御器19が、左側車輪駆動機構11及び右側車輪駆動機構12を介して、左側車輪9及び右側車輪10の回転数を、同一に制御し、架構2を走行路1に沿って直進させる。

【0025】図3のIIに示すように、起点側(図4のB側)の右側(図4のD側)の非接触位置検知器15から位置非検知信号18bが出力され、その他の非接触位置検知器14,16,17から位置検知信号18aが出力されている場合、架構2が終点側方向(図4のA側)へ移動しているときには、図4に示すように、右側車輪10(図4のD側)が先行していると判別した移動制御器19が、右側車輪10の回転数を減少させるように右側車輪駆動機構12を制御し、架構2の斜行を是正する

【0026】また、架構2が起点側方向(図4のB側)へ移動しているときには、図4に示すように左側車輪9(図4のC側)が先行していると判別した移動制御器19が、左側車輪9の回転数を減少させるように左側車輪駆動機構11を制御し、架構2の斜行を是正する。

【0027】図3のIIIに示すように、起点側(図5 のB側)の左側(図5のC側)の非接触位置検知器14 から位置非検知信号18bが出力され、その他の非接触位置検知器15,16,17から位置検知信号18aが出力されている場合、架構2が終点側方向(図5のA側)へ移動しているときには、図5に示すように、左側車輪9(図5のC側)が先行していると判別した移動制御器19が、左側車輪9の回転数を減少させるように左側車輪駆動機構11を制御し、架構2の斜行を是正する。

【0028】また、架構2が起点側方向(図5のB側) へ移動しているときには、図5に示すように右側車輪1

6

0 (図5のD側) が先行していると判別した移動制御器 19が、右側車輪10の回転数を減少させるように右側 車輪駆動機構12を制御し、架構2の斜行を是正する。

【0029】図3のIVに示すように、終点側(図6のA側)の右側(図6のD側)の非接触位置検知器17から位置非検知信号18bが出力され、その他の非接触位置検知器14,15,16から位置検知信号18aが出力されている場合、架構2が終点側方向(図6のA側)へ移動しているときには、図6に示すように、左側車輪9(図6のC側)が先行していると判別した移動制御器、19が、左側車輪9の回転数を減少させるように左側車輪駆動機構11を制御し、架構2の斜行を是正する。

【0030】また、架構2が起点側方向(図6のB側)へ移動しているときには、図6に示すように右側車輪10(図6のD側)が先行していると判別した移動制御器19が、右側車輪10の回転数を減少させるように右側車輪駆動機構12を制御し、架構2の斜行を是正する。

「0031】図3のVに示すように、終点側(図7のA 側)の左側(図7のC側)の非接触位置検知器16から位置非検知信号18bが出力され、その他の非接触位置検知器14,15,17から位置検知信号18aが出力されている場合、架構2が終点側方向(図7のA側)へ移動しているときには、図7に示すように、右側車輪10(図7のD側)が先行していると判別した移動制御器19が、右側車輪10の回転数を減少させるように右側車輪駆動機構12を制御し、架構2の斜行を是正する。

【0032】また、架構2が起点側方向(図7のB側)へ移動しているときには、図7に示すように左側車輪9(図7のC側)が先行していると判別した移動制御器19が、左側車輪9の回転数を減少させるように左側車輪駆動機構11を制御し、架構2の斜行を是正する。

【0033】このように、図1及び図2に示す立体収納設備では、移動中の架構2が斜行しようとした場合、非控性位置検出器14,15,16,17のうちの少なく、も1つが位置基準部材13の左側寄り部分あるいは右側寄り部分を検知し得なくなり、非接触位置検知器14,15,16,17のいずれかからの位置非検知信号18bに基づき、移動制御器19が架構進行方向に向かつて先行している左側車輪9(あるいは右側車輪10)の回転数を減少させるように左側車輪駆動機構11(あるいは右側車輪駆動機構12)を制御するので、摩耗などに起因して架構2の左側車輪9と右側車輪10の外径が異なっていたり、あるいは、走行路1に緩やかな傾斜や凹凸が形成されていても、架構2の斜行を防止することができる。

【0034】図8及び図9は本発明の立体収納設備の実施の形態の第2の例であり、図中、図1及び図2と同の符号を付した部分は同一物を表している。

【0035】この立体収納設備は、走行路1に並列に配置され且つ左右両側に無フランジの車輪9,10を有す 50

る複数の架構 2 と、左側車輪 9 を回転させ得るように各 架構 2 に設けた左側車輪駆動機構 1 1 と、右側車輪 1 0 を回転させ得るように各架構 2 に設けた右側車輪駆動機 構 1 2 と、走行路 1 内に直線的に埋め込んだ磁気誘導体 2 1 と、各架構 2 に取り付けられ且つ磁気誘導体 2 1 の 左右方向に対する相対位置を検知する非接触位置検知器 2 2 と、該非接触位置検知器 2 2 からの位置検知信号 2 3 に基づき前記の左右両側の車輪駆動機構 1 1, 1 2 を 制御する移動制御器 2 4 とを備えている。

【0036】非接触位置検知器22は、16ビットの情報容量を有する棒状の磁気センサによって形成され、架構2が走行路1に対して正対しているときに、長手方向の中央部が磁気誘導体21の直上に位置するように各架構2に取り付けられており、架構2が正常の状態で移動している場合には、中央部分のビットがONで、他の部分のビットがOFFとなり、架構2が斜行すると、磁気誘導体21に近接した端部寄り部分のビットがONに変化し、中央部分のビットがOFFとなるようになっている。

【0037】移動制御器24は、操作盤(図示せず)からの移動指令信号25に基づき、該移動指令信号25に応じた方向へ架構2が移動するように左側車輪駆動機構11及び右側車輪駆動機構12を制御し、また、非接触位置検知器22からの位置検知信号23に基づき、架構2に斜行が生じはじめているか否かを判定し、図10に示すような手順で、左側車輪駆動機構11及び右側車輪駆動機構12を制御するように構成されている。

【0038】図8及び図9の立体収納設備においては、物品の入出庫作業を行なう際には、操作盤から各架構2の移動制御器24に対して、各架構2の必要する移動方向及び移動量に適応した移動指令信号25を出力する。

【0039】移動指令信号25が出力されると、各架構2に設けた移動制御器24が、それぞれに出力された移動指令信号25に基づき、それぞれの架構2を該移動指令信号25に応じた方向へ指令された移動量に応じて順次移動させる。

【0040】その結果、入出庫を行なうべき架構2の端面と、それに隣接する他の架構2の端面との間に、フォークリフトなどの物品搬送機が出入り可能な間隔S(図15参照)が形成される。

【0041】このとき、移動中の架構2が斜行しようとすると、当該架構2に設けられている非接触位置検知器22が、磁気誘導体21に対する相対位置の左右変化を検知して位置検知信号23を出力する。

【0042】非接触位置検知器22から位置検知信号23が出力されると、該位置検知信号23に基づいて、斜行しようとしている架構2に設けられている移動制御器24が、架構進行方向に向かって先行している左側車輪9(あるいは、右側車輪10)の回転数を減少させるように左側車輪駆動機構11(あるいは、右側車輪駆動機

構12)を制御し、該架構2の斜行を防止する。

. }

【0043】次に、移動制御器24の機能を図10に示す機能フロー図によって説明する。

【0044】架構2の移動開始後、架構移動中は、非接触位置検知器22の略中央部が磁気誘導体21を検知し、その検知信号23が出力されている場合、左右車輪同一回転数駆動に進み、左右の車輪9,10の回転数を同一に制御する。

【0045】非接触位置検知器22の端部寄り部分が磁気誘導体21を検知し、その検知信号23が出力されて 10 いる場合には、斜行方向チェックシーケンスに分岐し、該斜行方向チェックシーケンスでは、非接触位置検知器22の左右いずれ側のピットがONしているかを判別する。

【0046】図10の上段に示すように、架構2が終点 移動 側方向(図11のA側方向)へ移動しており、非接触位 構造 置検知器22の右側端部寄り部分のピットがON状態で ある場合には、移動制御器19が、図11に示すよう 数のに、右側車輪10(図11のD側)が先行していると判 別し、右側車輪10の回転数を減少させるように右側車 20 る。輪駆動機構12を制御し、架構2の斜行を是正する。 【6

【0047】また、非接触位置検知器22の左側端部寄り部分のピットがON状態である場合には、移動制御器19が、図12に示すように、左側車輪9(図12のC側)が先行していると判別し、左側車輪9の回転数を減少させるように左側車輪駆動機構11を制御し、架構2の斜行を是正する。

【0048】図10の下段に示すように、架構2が起点側方向(図13のA側方向)へ移動しており、非接触位置検知器22の右側端部寄り部分のビットがON状態で 30 ある場合には、移動制御器19が、図13に示すように、左側車輪9(図13のC側)が先行していると判別し、左側車輪9の回転数を減少させるように左側車輪駆動機構11を制御し、架構2の斜行を是正する。

【0049】また、非接触位置検知器22の左側端部寄り部分のピットがON状態である場合には、移動制御器19が、図14に示すように、右側車輪10(図14のD側)が先行していると判別し、右側車輪10の回転数を減少させるように右側車輪駆動機構12を制御し、架構2の斜行を是正する。

【0050】このように、図8及び図9に示す立体収納 設備では、移動中の架構2が斜行しようとすると、磁気 誘導体21に対する非接触位置検知器22の相対位置が 変化し、該非接触位置検知器22から出力される位置検 知信号23に基づき、移動制御器24が架構進行方向に 向かって先行している左側車輪9(あるいは右側車輪1 0)の回転数を減少させるように左側車輪駆動機構11 (あるいは右側車輪駆動機構12)を制御するので、摩 耗などに起因して架構2の左側車輪9と右側車輪10の

外径が異なっていたり、あるいは、走行路1に緩やかな 50

傾斜や凹凸が形成されていても、架構2の斜行を防止することができる。

【0051】なお、本発明の立体収納設備は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。

[0052]

【発明の効果】以上述べたように、本発明の立体収納設備によれば、下記のような種々の優れた効果を奏し得る。

【0053】(1) 本発明の請求項1に記載の立体収納設備においては、移動中の架構が斜行しようとすると、少なくとも1つの非接触位置検出器が位置基準部材の左側寄り部分あるいは右側寄り部分を検知し得なくなり、移動制御器が非接触位置検知器からの信号に基づき、架構進行方向に向かって先行している車輪の回転数を減少させるように車輪駆動機構を制御するので、移動する複数の架構の斜行を、確実に防止することが可能となり、架構が移動できなくなるなどの事故を未然に防止できる。

【0054】(2)本発明の請求項2に記載の立体収納 設備においては、移動中の架構が斜行しようとすると、 磁気誘導体に対する非接触位置検知器の相対位置が変化 し、移動制御機器が非接触位置検知器からの信号に基づ き、架構進行方向に向かって先行している車輪の回転数 を減少させるように車輪駆動機構を制御するので、移動 する複数の架構の斜行を、確実に防止することが可能と なり、架構が移動できなくなるなどの事故を未然に防止 できる。

80 【図面の簡単な説明】

【図1】本発明の立体収納設備の実施の形態の第1の例の斜視図である。

【図2】図1に関連する平面図である。

【図3】図1に関連する制御系の作動表である。

【図4】図2に関連する起点側右の非接触位置検知器が 位置非検知信号を出力した場合の架構の平面図である。

【図 5】図 2 に関連する起点側左の非接触位置検知器が 位置非検知信号を出力した場合の架構の平面図である。

【図 6】 図 2 に関連する終点側右の非接触位置検知器が 0 位置非検知信号を出力した場合の架構の平面図である。

【図7】図2に関連する終点側左の非接触位置検知器が 位置非検知信号を出力した場合の架構の平面図である。

【図8】本発明の立体収納設備の実施の形態の第2の例の平面図である。

【図9】図8に関連する非接触位置検知器の正面図である。

【図10】図8に関連する機能フロー図である。

【図11】図8に関連する架構の終点側移動時に非接触 位置検知器の右側ピットがONした場合の架構の平面図 である。

10

【図12】図8に関連する架構の終点側移動時に非接触 位置検知器の左側ビットがONした場合の架構の平面図 である。

【図13】図8に関連する架構の起点側移動時に非接触 位置検知器の右側ビットがONした場合の架構の平面図 である。

【図14】図8に関連する架構の起点側移動時に非接触 位置検知器の左側ビットがONした場合の架構の平面図 ⁷ である。

【図15】従来の立体収納設備の一例の平面図である。

、【図16】図15に関連する架構の斜視図である。

【図17】図16に関連するガイドローラ部分の側面図 である。

【符号の説明】

走行路 1 2

架構

[図1]

[図6]

D

[図2]

移動制御器

【図3】

		ı		11		111		ΙV		v	
位置検	起点倒	左右 検知		右非検知		左非検知		左右 検知		左右 検知	
知器	終点側	左右 検知		左右検知		左右 検知		右非検知		左非検知	
架構移動 方 向		起点	終点	起点	終点	起点侧	終点	起点	終点	起点侧	終点
回転数減少 の制御を行 なう車輪		左右	左右同一	左似	右侧車輪	右側車輪	左側車輪	右側車輪	左侧車輪	左側車輪	右側車輪

,

【図16】

【図17】

フロントページの続き

(72)発明者 小川 健 大阪府大阪市中央区本町4丁目2番12号 石川島播磨重工業株式会社関西支社内 Fターム(参考) 3F022 FF24 JJ12 MM51 NN35 PP06 QQ04

COTHEW MUNICIPAL BLANDA