

FIG. 1

1 GAGGTCCAGC TTCAGCAGTC TGGACCTGAC CTGGTGAAGC CTGGGGCTTC
 E V Q L Q Q S G P D L V K P G A S

51 AGTGAAGATA TCCTGCAAGG CTTCTGGTTA CTCATTCACT GGCTACTACA
 V K I S C K A S G Y! S F T G Y Y

101 TGCAC TGGGT GAAGCAGAGC CATGGAAAGA GCCTTGAGTG GATTGGACGT
 M H W V K Q S H G K S L E W I G R

151 ATTAATCCTA ACAATGGTGT TACTCTCTAC AACCA GAAAT TCAAGGACAA
 I N P N N G V T L Y N Q K F K D K

201 GCCATATTA ACTGTAGACA AGTCATCCAC CACAGCCTAC ATGGAGCTCC
 A I L T V D K S S T T A Y M E L

251 GCAGCCTGAC ATCTGAGGAC TCTGCGGTCT ATTACTGTGC AAGATCTACT
 R S L T S E D S A V Y Y C A R S T

301 ATGATTACGA ACTATGTTAT GGACTACTGG GGTCAAGTAA CCTCAGTCAC
 M I T N Y V M D Y W G Q V T S V T

351 CGTCTCCTCA GGTGGTGGTG GGAGCGGTGG TGGCGGCACT GGCGCGGGCG
 V S S G G G G S G G G G T G G G

401 GATCTAGTAT TGTGATGACC CAGACTCCC A CATTCTGCT TGTTTCAGCA
 G S S I V M T Q T P T F L L V S A

451 GGAGACAGGG TTACCATAAC CTGCAAGGCC AGTCAGAGTG TGAGTAATGA
 C D R V T I T C K A S Q S V S N D

501 TGTAGDTGG TACCAACAGA AGCCAGGGCA GTCTCCTACA CTGCTCATAT
 V A W Y Q Q K P G Q S P T L L I

551 CCTATACATC CAGTCGCTAC GCTGGAGTCC CTGATCGCTT CATTGGCAGT
 S Y T S S R Y A G V P D R F I G S

601 GGATATGGGA CGGATTTCAC TTTCACCATC AGCACTTTGC AGGCTGAAGA
 G Y G T D F T F T I S T L Q A E D

651 CCTGGCAGTT TATTCTGTC AGCAAGATTA TAATTCTCCT CCGACGTTCG
 L A V Y F C Q Q D Y N S P P T F

701 GTGGAGGCAC CAAGCTGGAA ATCAAACGG
 G G G T K L E I K R

FIG. 2

ATGGGCCACA	CACGGAGGCA	GGGAACATCA	CCATCCAAGT	GTCCATACCT	50
M G H	T R R	Q G T S	P S K	C P Y L	
CAATTTCTTT	CAGCTCTTGG	TGCTGGCTGG	TCTTTCTCAC	TTCTGTTCA	100
N F F	Q L L	V L A G	L S H	F C S	
GTGTTATCCA	CGTGACCAAG	GAAGTGAAAG	AAGTGGCAAC	GCTGTCCTGT	150
G V I H	V T K	E V K	E V A T	L S C	
GGTCACAATG	TTTCTGTTGA	AGAGCTGGCA	CAAACCTCGCA	TCTACTGGCA	200
G H N V	S V E	E L A	Q T R	I Y W Q	
AAAGGAGAAG	AAAATGGTGC	TGACTATGAT	GTCTGGGAC	ATGAATATAT	250
K E K K	M V L T M M	S G D	M N I		
GGCCCGAGTA	CAAGAACCGG	ACCATCTTG	ATATCACTAA	TAACCTCTCC	300
W P E Y	K N R T I F	D I T N N	N L S		
ATTGTGATCC	TGGCTCTGCG	CCCATCTGAC	GAGGGCACAT	ACGAGTGTGT	350
I V I L A L R	P S D	E G T	Y E C V		
TGTTCTGAAG	TATGAAAAAG	ACGCTTCAA	GCAGGAACAC	CTGGCTGAAG	400
V L K Y E K	D A F K	R E H	L A E		
TGACGTTATC	AGTCAAAGCT	GACTCCCTA	CACCTAGTAT	ATCTGACTTT	450
V T L S V K A	D F P	T P S I	S D F		
GAAATTCCAA	CTTCTAATAT	TAGAAGGATA	ATTGCTCAA	CCTCTGGAGG	500
E I P T S N I	R R I	I C S	T S G G		
TTTCCAGAG	CCTCACCTCT	CCTGGTTGGA	AAATGGAGAA	GAATTAAATG	550
F P E P H L	S W L E	N G E	E L N		
CCATCAACAC	AACAGTTCC	CAAGATCCTG	AAACTGAGCT	CTATGCTGTT	600
A I N T T V S	Q D P	E T E I	Y A V		
AGCAGCAAAC	TGGATTTCAA	TATGACAACC	AACCACAGCT	TCATGTGTCT	650
S S K L D F N	M T T	N H S	F M C L		
CATCAAGTAT	GGACATTTAA	GAGTGAATCA	GACCTTCAA	TGGAATACAA	700
I K Y G H L	R V N Q	T F N	W N T		
CCAAGCAAGA	GCATTTCC	GATGGAGGCG	GGGGATCCGA	GGTCCAGCTT	750
T K Q E H F P	D G G	G G S	E V Q L		

CAGCAGTCTG	GACCTGACCT	GGTGAAGCCT	GGGGCTTCAG	TGAAGATATC	800
Q Q S G P D L	V K P G A S	V K I S			
CTGCAAGGCT	TCTGGTTACT	CATTCACTGG	CTACTACATG	CACTGGGTGA	850
C K A S G Y S F T G	Y Y M H W V				
AGCAGAGCCA	TGGAAAGAGC	CTTGAGTGGA	TTGGACGTAT	TAATCCTAAC	900
K Q S H G K S L E W	I G R I N P N				
AATGGTGT TA	CTCTCTACAA	CCAGAAATT C	AAGGACAAGG	CCATATTAAC	950
N G V T L Y N Q K F	K D K A I L T				
TGTAGACAAG	TCATCCACCA	CAGCCTACAT	GGAGCTCCGC	AGCCTGACAT	1000
V D K S S T T A Y M	E L R S L T				
CTGACCACTC	TGCGGTCTAT	TACTGTGCAA	GATCTACTAT	GATTACGAAC	1050
S E D S A V Y Y C A R	S T M I T N				
TATGTTATGG	ACTACTGGCC	TCAAGTAACC	TCAGTCACCG	TCTCCTCAGG	1100
Y V M D Y W G Q V T	S V T V S S G				
TGGTGGTGGG	AGCGGTGGT G	CGGGCACTGG	CCCCGGCGGA	TCTAGTATTG	1150
G G G S G G G G T G	G G G S S I				
TGATGACCCA	GACTCCCACA	TTCCCTGCTTG	TTTCAGCAGG	AGACACCC TT	1200
V M T Q T P T F L L	V S A G D R V				
ACCATAACCT	GCAAGGCCAG	TCAGAGTGT G	AGTAATGATG	TAGCTTGGTA	1250
T I T C K A S Q S V	S N D V A W Y				
CCAACAGAAG	CCAGGGCAGT	CTCCTACACT	GCTCATATCC	TATACATCCA	1300
Q Q K P G Q S P T L	L I S Y T S				
GTCGCTACGC	TGGAGTCCCT	GATCGCTTCA	TTGGCAGTGG	ATATGGGACG	1350
S R Y A G V P D R F	I G S G Y G T				
GATTCACCT	TCACCATCAG	CACTTGCAG	GCTGAAGACC	TGGCAGTTA	1400
D F T F T I S T L Q	A E D L A V Y				
TTCTGTCAG	CAAGATTATA	ATTCTCCTCC	GACGTTCGGT	GGAGGCACCA	1450
F C Q Q D Y N S P P	T F G G G T				
AGCTGGAAAT	CAAATAA				
K L E I K					

FIG. 2_{CONT'D}

www.ijerph.org | ISSN: 1660-4601 | DOI: 10.3390/ijerph17030853 |

FIG. 3a

FIG. 3b

1 ATGGGACTGA GTAACATTCT CTTTGTGATG GCCTTCCTGC TCTCTGGTGC
 M G L S N I L F V M A F L L S G A
 51 TGCTCCTCTG AAGATTCAAG CTTATTTCAA TGAGACTGCA GACCTGCCAT
 A P L K I Q A Y F N E T A D L P
 101 GCCAATTTGC AAACTCTCAA AACCAAAGCC TGAGTGAGCT AGTAGTATTT
 C Q F A N S Q N Q S L S E L V V F
 151 TGGCAGGACC AGGAAAACCTT GGTTCTGAAT GAGGTATACT TAGGCAAAGA
 W Q D Q E N L V L N E V Y L G K E
 201 GAAATTTGAC AGTGTTCATT CCAAGTATAT GGGCCGCACA AGTTTGATT
 K F D S V H S K Y M G R T S F D
 251 CGGACAGTTG GACCCTGAGA CTTCACAATC TTCAAGATCAA GGACAAGGGC
 S D S W T L R L H N L Q I K D K G
 301 TTGTATCAAT GTATCATCCA TCACAAAAAG CCCACAGGAA TGATTCGCAT
 L Y Q C I I H H K K P T G M I R I
 351 CCACCAGATG AATTCTGAAC TGTCACTGCT TGCTAACTTC AGTCAACCTG
 H Q M N S E L S V L A N F S Q P
 401 AAATAGTACC AATTCTAAT ATAACAGAAA ATGTGTACAT AAATTGACC
 E I V P I S N I T E N V Y I N L T
 451 TGCTCATCTA TACACGGTTA CCCAGAACCT AAGAAGATGA GTGTTTGCT
 C S S I H G Y P E P K K M S V L L
 501 AAGAACCAAG AATTCAACTA TCGAGTATGA TGGTATTATG CAGAAATCTC
 R T K N S T I E Y D G I M Q K S
 551 AAGATAATGT CACAGAACTG TACGACGTTT CCATCAGCTT GTCTGTTCA
 Q D N V T E L Y D V S I S L S V S
 601 TTCCCTGATG TTACGAGCAA TATGACCATC TTCTGTATTC TGGAAACTGA
 F P D V T S N M T I F C I L E T D
 651 CAAGACGCCG CTTTTATCTT CACCTTCCTC TATAGAGCTT GAGGACCCCTC
 K T R L L S S P F S I E L E D P
 701 AGCCTCCCCC AGACCACATT CCTGGAGGGCG GGGGATCC
 Q P P P D H I P G G G G S

FIG. 4

FIG. 5

atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagttcc atgtccaagg 60
 ctcattcttc tctttgtct gctgatcgct ctttcacaag tgtcttcaga tggtgatgaa 120
 caactgtcca agtcaagtcaa agataaggta ttgtgcctt gccgttacaa ctctccgcatt 180
 gaagatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtctgtc 240
 attgtctggaa aactaaaagt gtggcccgag tataagaacc ggactttata tgacaacact 300
 acctactctc ttatcatctt gggcgtggc ctttcagacc ggggcacata cagctgtgtc 360
 gttcaaaaga agggaaqaqq aacqtatgaa gttaaacact tggcttttagt aaagttgtcc 420
 atcaaagctg acttctctac ccccaacata actgagtcg gaaacccatc tgcagacact 480
 aaaaggatttta cctgctttgc ttccgggggt ttcccaaaagc ctcgccttctc ttgggtggaa 540
 aatggaaagag aattacctgg catcaatacg acaattttcc aggatcctga atctgaattt 600
 tacaccatttta gtagccaaact agatttcaat acgactcgca accacacccat taatgtctc 660
 attaaatatg gagatgctca cgtgtcagag gacttcaccc tggaaaaacc cccagaagac 720
 cctccgtata gcaagccccg ggggtgggg akgcgtgtg gccgcagtgg cggcggcgga 780
 actagtgagg tccagctca gcagtcgttgc cctgacccgtt tgaagcctgg ggcttcagtg 840
 aayalalccct gcaagcttc tggttactca ttcaactgct actacatgca ctgggtgaag 900
 cagagccatg gaaagagcc ttagtggatt ggacgttata atcctaacaa tggtgttact 960
 ctctacaaacc agaaattcaa ggacaaggcc atattaactg tagacaagtc atccaccaca 1020
 gcctacatgg agctccgcag cctgacatct gaggactctg cggtcttata ctqtcqaaga 1080
 tctactatgatgatgaaact ttttatggac tactggggtc aagtaacttc agtcaccgtc 1140
 tcttcaggtt gtggggggag cgggtggc ggcactggcg gccggcgatc tagtattgtg 1200
 atgacccaga ctcccacatt cctgcttgc ttcaactgca tcagcaggag acagggttac cataacctgc 1260
 aaggccagtc agagtgttag taatgtatgtt gcttggtacc aacagaagcc aggggcagtct 1320
 cctacactgc tcatatccata tacatccagt cgctacgtt ggtttctga tcgcttcatt 1380
 ggcagttggat atgggacgga ttcaacttcc accatcagca ctggcaggc tgaagacctg 1440
 gcagtttatt tctgtcagca agattataat tctcctccga cggtcggtgg aggcaccaag 1500
 ctggaaateca aacggtaa 1518

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

FIG. 6

Leader / 5T4 scFv / HlgG DNA and deduced protein sequence

```

CTCGAGCCACCATGGATGGAGCTGTATCATCCTCTTGGTAGCAACAGCTACAGGTGTCCACTCCGAGGTCCAGCTG
M G W S C I I L F L V A T A T G V H S E V Q L

CAGCAGTCTGGACCTGACCTGGTGAAGCCTGGGGCTTCAGTGAAAGATATCCTGCAAGGCTTCTGGTTACTCATTCACTGG
Q Q S G P D L V K P G A S V K I S C K A S G Y S F T

CTACTACATGCACTGGGTGAAGCAGGCCATGGAAAGGCCCTTGAGTGGATTGGACGTATTAACTCTAACATGGGTGTTA
G Y Y M H W V K Q S H G K S L E W I G R I N P N N G V

CTCTCTACAACCAGAAATTCAAGGACAAGGCCATTAACTGTAGACAAGTCATCCACCCAGCCTACATGGAGCTCCGC
T L Y N Q K F K D K A I L T V D K G S T T A Y M E L R

AGCCTGACATCTGAGGACTCTGGGTCTATTACTGTGCAAGATCTACTATGATTACGAACTATGTATGGACTACTGGGG
S L T S E D S A V Y Y C A R S T M I T N Y V M D Y W

TCAAGTAACCTTCAGTCACCGTCTCTCAGGTGGTGGGGAGCGGTGGTGGCGGCACTGGCGCGGCCGATCTAGTATTG
G Q V T S V T V S S G G G G S G G G G T G G G G S S I

TGATGACCCAGACTCCCCACATTCCTGTTTCAAGCAGGAGACAGGGTACCATAACCTGCAAGGCCAGTCAGAGTGTG
V M T Q T P T F L L V S A G D R V T T T C K A S Q S V

AGTAATGATGTAGCTGGTACCAACAGAAGCCAGGGCAGTCCTCACACTGCTCATATCCTATACATCCAGTCGCTACGC
S N D V A W Y Q Q K P G Q S P T L L I S Y T S S R Y

TCCACTCCCTCATCGCTTCATTGGAGTGGATATGGAGCGGATTTCCTTCAGCATCAGCACTTGCAGGCTGAAGAACCC
A G V P D R F I G S G Y G T D F T F T I S T L Q A E D

TGGCAGTTTTCTGTCAAGAACAGATTATAATTCTCTCCGACGTTGGTGGAGGCCAACAGCTTGAATCAAACGGGCC
L A V Y F C Q Q D Y N S P P T F G G G G T K L E I K R A

TCCACCAAGGGCCCACATCGCTTCCCTGGCACCCCTCCCAAGAGCACCTCTGGGGGCACAGGGCCCTGGGCTGCC
S T K G P S V F P L A P S S K S T S G G T A A L G C

GGTCAAGGACTACTCCCCGAACCGGTGACGGTGTGGAACTCAGGGCCCTGACCAAGGCCCTGGGGGCACAGGGCCCTGGGCTGCC
L V K D Y F P E P V T V S W N S G A L T S G V H T F P

CTGTCCTACAGTCAGGACTCTACTCCCTCAGCACGCGTGTGGACCGTGCCTCCAGCAGCTGGGACCCAGACCTAC
A V L Q S S G L Y S L S S V V T V P S S S L G T Q T Y

ATCTGCAACGTGAATCACAAGCCCAGCAACCCAAGGTGGACAAGAACAGTTGAGCCAAATCTTGTGACAAAACCTCACAC
I C N V N H K P S N T K V D K K V E P K S C D K T H

ATGCCACCGTGCCTGACCTGAACCTCTGGGGGACCGTCAAGTCTCTCTTCCCTCTCCCCCAAACCCAAGGACACCCCTCA
T C P P C P A P E L L G G P S V F L F P P K P K D T L

TGATCTCCGGACCCCTGAGGTACATGCGTGGTGGAGCTGAGCCACAGAACGCTGTGGTCAAGTCACTGGTAC
M I S R T P E V T C V V V D V S H E D P E V K F N W Y

GTGGACGGCGTGGAGGTGCAATGCAAGAACAGCCGGAGGAGCAGTACAACAGCACGTCACGGTGTGGTCAAGCCTG
V D G V E V H N A K T K P R E E Q Y N S T Y R V V S

CCTCACCGTCTGCACCAAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAGGTCTCCAACAAAGCCCTCCAGCCCCA
V L T V L H Q U W L N G K E Y K C K V S N K A L P A P

TCGAGAAAACCATCTCAAAGCCAAGGGCAGCCCCAGAACCAAGGTGTACACCCCTGCCCTCCAGGGATGAGCTG
I E K T I S K A K G Q P R E P Q V Y T L P P S R D E M

ACCAAGAACAGGTCAAGCTGACCTGGCTGGTCAAAGGCTCTATCCAGGACATGCCGTGGAGTGGAGAGCAATGG
T K N Q V S L T C L V K G F Y P S D I A V E W E S N

GCAGCGGAGAACAAACTACAAGGACACGCCCTCCCGTGTGGACTCCGACGGCTCCTCTTCTATAGCAAGCTCACCG
G Q P E N N Y K T T P P V L D S D G C F F L Y S K L T

TGGACAAAGGCAGGTGGCAGCAGGGAAACGTCTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAACCAACTACACGCAG
V D K S R W Q Q G N V F S C S V M H E A L H N H Y T Q

AAGAGCUCTUCUUTGTCCCCGGTAAATGACTCGAG
K S L S L S P G K .

```

FIG. 7

ctcgagccac catggatgg agctgtatca tccttttctt gtagcaaca gctacagg 60
 tccactccga ggtccagctg cagcagtctg gacctgacct ggtgaagcct ggggcttcag 120
 tgaagatata ctgcaggct tctggtaact cattcactgg ctactacatg cactgggtga 180
 aacagagcca tggaaagac cttgatgya ttggacalal laalclaaac aatgggttta 240
 ctctctacaa ccagaaattc aaggacaagg ccatattaac tgtagacaag tcataccca 300
 cagcctacat ggagctccgc agcctgacat ctgaggactc tgccgtctat tactgtgcaa 360
 gatctactat gattacgaac tatgttatgg actactgggg tcaagtaact tcagtcaccg 420
 tctttcagg tggatgggg agcggtggg gccgcactgg cggccggcga tctagtattg 480
 ttagtgcacca gactccaca ttccgttg tttcagcagg agacagggtt accataaccc 540
 gcaaggccag tcagatgtg agtaatgtg tagttgtt ccaacagaag ccagggcagt 600
 ctccctacact gctcatatcc tatacatcca qtcgtaccc tgaggatccct gatcgcttca 660
 ttggcagtgg atatgggacg gattcaact tcaccatcg cacttgcag gctgaagacc 720
 tggcagtta ttctgtcag caagattata attctctcc gacgttcggg ggaggcccca 780
 agcttgaat caaacggcc tccacacaga gccccatccgt cttcccctt acccgctgct 840
 gcaaaaacat tccctccaaat gccacccctcg tgactctggg ctgcctggcc acgggctact 900
 tcccgagcc ggtgtatgg acctgggaca caggctccct caacgggaca actatgaccc 960
 taccagccac caccctcagc ctctctggc actatgccc catcagctt ctgaccgtct 1020
 cgggtgcgtg ggccaagcag atgtcacct gccgtgtgc acacatcca tgcgtccacag 1080
 alyyylyuya caacaaaaacc ttcaagcgtct gctccaggaa cttcaccctt cccaccgtga 1140
 agatcttaca gtcgtcctgc gacggccggc ggcactttcc cccgaccatc cagctcctgt 1200
 gcctcgcttc tgggtacacc ccaggggacta tcaacatcac ctggctggag gacggggcagg 1260
 tcatggacgt ggacttgtcc accgcctcta ccacgcagga gggtagctg gcctccacac 1320
 aaagcgagct caccctcagc cagaaggact ggctgtcaga ccgcacccatc acctgccagg 1380
 tcacctatca aggtcacacc ttggaggaca gcaacaagaa gtgtgcagat tccaacccga 1440
 gaggggttag cgcctacta agccggccca gccgttgcg cctgttcatc cgcaagtcgc 1500
 ccacgatcac ctgtctggt gtggacacttgg caccggcggaa ggggaccgtg aacctgaccc 1560
 ggtcccgccg cagtggaaag cctgtgaacc actccaccag aaaggaggag aagcagcgc 1620
 atggcacgtt aaccgtcagc tccacccctgc cgggtggcac ccgagactgg atcgaggggg 1680
 agacctacca gtgcagggtg accccccccc acctgcccag ggcctcatg cggtccacga 1740
 ccaagaccag cggcccggt gctgccccgg aaygtatya ylllycyacy cyyaylyyc 1800
 cggggagccg ggacaagcgc accctcgct gcctgatcca gaacttcatg cctgaggaca 1860
 tctcggtgca gtggctgcac aacggaggc agtcccccga cgcggccac agcacgacgc 1920
 agccccgca gaccaaggc tccggcttc tgcgttccatc cccgctggag gtgaccaggg 1980
 cccaatggga gcagaaagat gagttcatct gccgtgcagt ccatgaggca gcgagccct 2040
 cacagaccgt ccagcgcg gttctgtaa atcccgtaa atgagagctc 2090

FIG. 8

atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagttcc atgtccaagg 60
 ctcatttttc tctttgtgt gctgttgcg ctttcacaag tgcgttccatc ttttgcataa 120
 caactgtcca agtcagtgaa agataaggta ttgtgcctt gccgttacaa ctctccgcata 180
 gaaatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtctgtc 240
 attgtggga aactaaaagt gtggcccgag tataagaacc ggactttata tgacaacact 300
 acctactctc ttatcatcc tggcctggc ctttcagacc ggggcacata cagctgtgtc 360
 gttcaaaaaga aggaaaagg aacgtatgaa gttaaaact tggcttttagt aaagttgtcc 420
 atcaaagctg acttctctac ccccaacata actgagtctg gaaacccatc tgcagacact 480
 aaaaggattt cctgtttgc ttccgggggt ttcccaaagc ctcgtttctc ttgggtggaa 540
 aatggaaag aattacctgg catcaatacg acaatttccc aggtcctga atctgaattt 600
 tacaccatta gtagccact ayaatttcaal ayaalcyca accacccat taagtytctc 660
 attaaatatg gagatgtca cgtgtcagag gacttcaccc gggaaaaacc cccagaagac 720
 cctcctgata gcaagcccg ggggtgggg agcgggtggg gccgcgttgg cggccggcga 780
 actagtaata gtgactctga atgtccctg tcccacatg ggtactgcct ccatgatgg 840
 gtgtgcatgt atattgaagc attggacaag tatgcatgca actgtgttgc tggctacatc 900
 ggggagcgt gtcagtcaccc agacccatc ggggtggaaac tgcgc 945

FIG. 9
CT26-neo Transfectants

FIG. 10
CT26-h5T4 Transfectants

FIG. 11
B16-h5T4 Tumour Growth

FIG. 12
B16-neo Tumour Growth

FIG. 13

A9 neo
Mock / αHis
B7.scFv.M.H / αHis
B7.scFv.M.H / αMyc

FIG. 14

FIG. 15

A9 5T4

FIG. 16

FIG. 17

FIG. 18
pONY8.1SM

FIG. 19
FUSION PROTEIN CONSTRUCTS IN pONY 8.1SM

FIG. 20

pKLink – the $(\text{Gly}_4\text{Ser})_3$ linker in pBluescript II SK (pBS II)

	<i>Age I</i>	<i>Bam HI</i>	<i>Sma I</i>	<i>Sall</i>
<i>Xba I</i>	<i>Spe I</i>	<i>GCGGGTGGGTGGGAGCCGGTGGCTGGGGCAGTCGGGGCG</i>		
<i>Xba I</i>	<i>C TAGTACCGGTGGGTGGGTGGGAGCCGGTGGCTGGGGCAGTCGGGGCG</i>			
<i>PBS II</i>	<i>ATGGCCACCAACACCCTGCCAACACGCCGTCACCGCGCCCTAG</i>			
	<i>G G G S G G G S G G G S G G G S</i>			

FIG. 21

An scFv and leader sequence in PBSII

FIG. 22

Leader-II-5 scFv in pONY 8.1SM

FIG. 23

Leader-HIV gp120 scFv in pONY 8.1SM

FIG. 24

pAdApt

FIG. 25

FUSION PROTEIN CONSTRUCTS IN pAdApt

FIG. 26

Canine 5T4 Coding Sequence

ATGGCTGGGGGGTGCCTCCGGGCCCCGCCGGGACGGGCGGTTGCCTGGCGCCTGGCCTGGCTGGTGCTCTGGG 80
 M P G G C S R G P A A G D G R L R L A R L A L V L L

 CTGGGTCTCTCGTCTCGCTCACCTCTGGGCCCTCCGCCGCCCTCCACGTCGCCGGCCCTCCAGTCGCCGGCCCTCCGCCGGCTCG 160
 G W V S S S S L T S W A P S A A A S T S P P A S A A S

 CCCCGCCCCGCTGCCGGCCAGTGCCGGCAGCCTTGCGAGTGCCTGGAGGCCGCGCACGGTCAAGTGCCTTAACCGC 240
 A P P P L P G Q C P Q P C E C S E A A R T V K C V N R

 AACCTGACCGAGGTGCCGCCGGACCTGCCCTACGTGCGAACCTCTTCACGGCAACCAGCTGCCGGTGTGCC 320
 N L T E V P A D L P F Y V R N L F L T G N Q L A V L

 CCCCGGCCCTTCGCCGCCGCCGCCCTGGCCAGCTGCCGCCCTCAACCTGAGCGGAGCAGGCCCTGCCGGAGGTGT 400
 P P G A F A R R P P L A E L A A L N L S G S S L R E V

 GCGCCGGCCCTTCGACCAACTGCCAGCCTGCCAGCTGCACCTCACCCACAACCCCTGGCAACCTAGCGCCCTC 480
 C A G A F E H L P S L R Q L D L S H N P L G N L S A F

 GCCTTCGCCGGCAGCGCACGCCAGGCCCTGGGGCCCCAGGGGGCTGGTGGAGCTGATGCTGAACACATCGGCCCTC 560
 A F A G S D A S R S G P S P L V E L M L N H I V P P

 CGACCGGGCGCAGAACCGGAGCTTCGAGGGCATGGTGGCGCTGCCCTCCAGCAGGCCGCCGCGCTTCGCCGGCTGCAGT 640
 D D R R Q N R S F E G M V A A A L R A G R A L R G L Q

 GCCTGGAGCTGCCGCCAACCGCTTCCTACTTGCTCGCACGTCCTGGCCAGCTACCCGCCCTCCGCCACCTGGAC 720
 C L E L A G N R F L Y L P R D V L A Q L P G L R H L D

 CTGCGCAACAACTCCCTGGTGAGCCTCACCTACGTGCTTCCGCAACCTGACGCACTTGGAGAGGCCACCTGGAGGA 800
 L R N N S L V S L T Y V S F R N L T H L E S L H L E

 CAACGCCCTCAAGGTCCCTCACAAACGCCACCCCTGGCGAGCTGCAGAGCCTGCCCAAGTCGGGTCTTCCTGGACAACA 880
 D N A L K V L H N A T L A E L Q S L P H V R V F L D N

 ACCCCCTGGGTCTGCGATTGTACATGGCAGACATGGCTGGCCTGGCTCAAGGAGACAGAGGGTGGTGCCTGGCAAAGCCGG 960
 N P W V C D C H M A D M V A W L K E T E V V P G K A G

 CTCACCTGTGCATTCCGGAGAAAATGAGGAATCGGGCCCTCTGGAACTCAACAGCTCCACCTGGACTGTGACCTAT 1040
 L T C A F P E K M R N R A L L E L N S S H L D C D P

 CCTCCCTCCATCCCTGCAGACTTCTATGTCTTCTAGGTATTGTCTTAGCCCTGATAGGGGCCATCTTCTACTGGTTT 1120
 I L P P S L Q T S Y V F L G I V L A L I G A I F L L V

 TGTATTTGAACCGCAAGGGATAAAGAAGTGGATGCTACATCAGAGATGCCCTGCAGGGATCACATGAAAGGGTATCAC 1200
 L Y L N R K G I K K W M H N I R D A C R D H M E G Y H

 TACAGATACGAAATCAATGCGAGACCCAGGTTAACAAACCTCAGTCCAATTGGATGCTGA
 Y R Y E I N A D P R L T N L S S N S D V . 1263