Assignment 7

VE281

Bingcheng HU

516021910219

Q1

Adjacency matrix repre-sentation of the graph.

	а	b	С	d	e	f
а	∞	2	4	∞	∞	∞
b	2	∞	1	9	5	∞
С	4	1	∞	∞	3	∞
d	∞	9	∞	∞	6	7
e	∞	5	3	6	∞	5
f	∞	∞	∞	7	5	∞

Q2

Apply Prim's algorithm to the graph, the intermediate steps of applying the algorithm is:

- 1. a->b
- 2. b->c
- 3. c->e
- 4. e->f
- 5. e->d

The minimum spanning tree is

Q3

I'll use **Dijkstra's Algorithm** with some changes. Keep distance estimate D(v) and predecessor P(v) for each node v.

The time complexity is O(V + E).

Algorithm:

- 1. Initially, D(s) = 0; D(v) for other nodes is $+\infty$; P(v) is unknown.
- 2. Store all the nodes in a set R.
- 3. While *R* is not empty
 - 1. Choose node v in R such that D(v) is the smallest. Remove v from the set R.
 - 2. Declare that v's shortest distance is known, which is D(v).
 - 3. For each of v's neighbors u that is still in R, update distance estimate D(u) and predecessor P(u). For each of v's neighbors u that is still in R, if D(v) + w(v, u) > D(u), then update D(u) = D(v) + w(v, u) and the predecessor P(u) = v.
- 4. By backtracking, if we cannot find the s point, there is no path exists between the two nodes. Otherwise, we can obtain the longest path by backtracking.

Q4

Again, similar to Q3, with change $\underline{D(v) + w(v, u) > D(u)}$ to $\underline{D(v)} \times \underline{w(v, u) < D(u)}$.

Algorithm:

- 1. Initially, D(s) = 0; D(v) for other nodes is $+\infty$; P(v) is unknown.
- 2. Store all the nodes in a set R.
- 3. While R is not empty
 - 1. Choose node v in R such that D(v) is the smallest. Remove v from the set R.
 - 2. Declare that v's shortest distance is known, which is D(v).
 - 3. For each of v's neighbors u that is still in R, update distance estimate D(u) and predecessor P(u). For each of v's neighbors u that is still in R, if $D(v) \times w(v, u) \leq D(u)$, then update $D(u) = D(v) \times w(v, u)$ and the predecessor P(u) = v.
- 4. By backtracking, if we cannot find the s point, there is no path exists between the two nodes. Otherwise, we can obtain the longest path by backtracking.

```
DFS(v) {
 1
 2
      visit v;
      v.edges --;
 3
      for(each node u adjacent to v)
 4
        if(u.edges != 0) DFS(u);
 5
    }
 6
 7
 8
    path(s){
9
10
        for(each node v in the graph){
            set v.edges = # of edges adjacent to v;
11
12
        DFS(s);
13
   }
14
```

This is an O(|V|+|E|)-time algorithm.

For example: path(A) for the following graph, we can get $A \to B \to C \to D \to C \to A \to C \to B \to A$

