3.8 Derivatives of Logarithmic Functions

Recall the following properties of e^x and $\ln x$:

- $\bullet e^{\ln x} = x, \quad \ln(e^x) = x$
- $a^x = (e^{\ln a})^x = e^{(\ln a)x}$

Proposition

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
 for $x > 0$, $\frac{d}{dx}(\ln |x|) = \frac{1}{x}$ for $x \neq 0$.

- Proofs
- Examples

Corollary

$$[\ln g(x)]' = \frac{g'(x)}{g(x)},$$

$$[a^x]' = (\ln a) a^x, \quad \text{and} \quad [\log_a x]' = \frac{1}{(\ln a) x}.$$

- The logarithmic function converts a product into a sum.
- Logarithmic Differentiation
 (when there are complicated products, quotients and powers)
 - Take natural log of both sides and simplify.
 - ② Differentiate implicitly.
 - Solve the result for y'.

• The derivative $\frac{dy}{dx}$ of $y = x^{\pi} + \pi^{x}$ is

A.
$$\mathbf{V}' = \pi \mathbf{X}^{\pi - 1} + \mathbf{X} \pi^{\mathbf{X} - 1}$$

B.
$$y' = \pi x^{\pi - 1} + \pi^x \ln x$$

C.
$$y' = \pi x^{\pi - 1} + \pi^x \ln \pi$$

D.
$$y' = \pi x^{\pi - 1} + \pi^x / \ln x$$

E.
$$y' = \pi x^{\pi - 1} + \pi^x / \ln \pi$$

3.9 Derivatives of Inverse Trigonometric Functions

Proposition

$$[\sin^{-1} x]' = \frac{1}{\sqrt{1 - x^2}}, \quad [\tan^{-1} x]' = \frac{1}{1 + x^2}.$$

- Proofs
- Examples
- We also have

$$[\cos^{-1} x]' = -\frac{1}{\sqrt{1-x^2}},$$

 $[\sec^{-1} x]' = \frac{1}{x\sqrt{x^2-1}},$

$$[\csc^{-1} x]' = -\frac{1}{x\sqrt{x^2-1}},$$

 $[\cot^{-1} x]' = -\frac{1}{1+x^2}.$