1 Appendix

1.1 SMPL(pkl file)

• SMPLModel(path): 24 joints model (需要从 pkl 文件中读取)。

Attributes	Explanation	Type
pose	θ	np.array(24, 3)
beta	β	np.array(10)
trans	世界坐标模型平移量	np.array(3)
verts	模型所有节点的坐标	np.array(6890, 3)
parent	joints 的父节点	$\mathrm{dict}\{\mathrm{int}\colon\mathrm{int}\}$
$J_{ m regressor}$	模型 joints 的 Regressor	
J	joints 的世界坐标	np.array(24, 3)
R	pose θ 的 Rodrigues 旋转矩阵	np.array(3, 3)
set_params(pose, beta, trans)	重新设置参数信息	function
$compute_R_G()$	根据 θ 计算所有关节的 G 旋转矩阵	$function \rightarrow \text{np.array}(24, 4, 4)$
$do_skinning(G)$	根据 G 对全体顶点作用 pose	function
update()	计算 G,作用 G	function
rodrigues(r)	将旋转向量 r 转化为 Rodrigues 旋转矩阵	$function \rightarrow \text{np.array}(3, 3)$

1.2 amc_parser

Attributes	Explanation	Type
parse_asf(path)	解析 asf 文件得到整个关节模型 (joints)	$function \to \operatorname{dict}\{\operatorname{name: joint}\}$
parse_amc(path)	解析 amc 文件得到关节点的逐帧旋转量 (frames)	$function \to \operatorname{list}[\operatorname{dict}\{\operatorname{name: list}\}]$

1.3 skeleton

• Joint(name, direction, length, axis, dof, limits): 将 asf 中的骨骼模型转化为 asf 关节模型。

Attributes	Explanation	Type
name	关节名称	string
direction	T-pose 状态下骨骼方向的正则化向量	np.array(3)
length	骨骼长度	scalar
axis	初始状态下骨骼在世界坐标下的旋转向量	list[float]
C	axis 的 Rodrigues 旋转矩阵形式	np.array(3, 3)
Cinv	C 的逆矩阵	np.array(3, 3)
parent	父节点	Joint
children	子节点	list[Joint]
coordinate	关节点的世界坐标	np.array(3)
matrix	世界坐标下关节点的旋转信息总和(父节点+此节点)	np.matrix(3, 3)
$relative_R$	动作变换 C×(motion rotation)×Cinv	np.array(3, 3)
set_motion(motion)	根据 motion 计算所有节点的 coordinate 和 matrix	function
$to_dict()$	得到整个模型的信息	$function \rightarrow \operatorname{dict}\{\text{name: Joint}\}$
$reset_pose()$	重置模型得到 T -pose 状态($relative_R = I$)	function

• SMPLJoints(idx): SMPL 模型的关节点对象。

Attributes	Explanation	Type
idx	24 joints SMPL 模型的关节编号	int
to_parent	父节点到此节点的向量	np.array(3, 3)
parent	父节点	SMPLJoints
coordinate	关节点的世界坐标	np.array(3)
children	子节点	list[SMPLJoints]
${ m align}_{ m R}$	SMPL T-pose 到 asf 模型的纠正量	np.array(3, 3)
${f motion}_{f R}$	amc 文件中该节点的旋转量	np.array(3, 3)
$init_bone()$	计算初始状态的 to_parent	function
$set_motion_R(motion)$	根据 motion 计算所有节点的旋转矩阵	function
$update_coord()$	更新所有节点的 coordinate	function
$to_dict()$	得到整个模型的信息	$\mathit{function} \to \operatorname{dict}\{\operatorname{idx: SMPLJoints}\}$
export_G()	根据 motion_R 和 align_R 计算旋转矩阵 G	$function \rightarrow \text{np.array}(3, 3)$

1.4 imitator

 $map_R_asf_smpl()$

• imitator(asf_joints, smpl): 将 asf/amc 数据集迁移到 SMPL 模型。

Attributes	Explanation	Type
asf_joints	asf 文件解析得到的关节点信息 (joints)	$\operatorname{dict}\{\operatorname{name: joint}\}$
smpl	pkl 文件解析得到的 SMPL 模型	SMPLModel
$setup_smpl_joints()$	初始化 SMPL 模型节点 (joints)	$\mathit{function} \to \operatorname{dict}\{\operatorname{idx: SMPLJoints}\}$
$align_smpl_asf()$	校准 asf 模型到 SMPL (align_R)	function
$compute_rodrigues(x, y)$	计算 align_R 满足 y = Rx	$function \rightarrow \text{np.array}(3, 3)$
imitate(motion,translate = False)	根据 amc motion 进行模型演示	function
$set_asf_motion(motion,translate)$	同上	function
$asf_to_smpl_joints(translation)$	将 asf 模型的 pose 迁移到 SMPL 模型	function

将 asf 模型的旋转量转移到 SMPL 模型

 $function \to (dict\{idx: R\}, T)$