Application No.: 09/891,200 Docket No.: 491712000100

CLAIM AMENDMENTS

Please cancel claims 1-74 and substitute the following claims:

75. (new): A component designed to serve as an electrolyte in a fuel cell, which component comprises

a metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating proton-conducting (EIPC) coating, which coating is of an inorganic or composite non-liquid material, said coating having a thickness such that the area-specific resistance (ASR) for protons is in the range of $0.01\text{-}100~\Omega\text{.cm}^2$ at at least one temperature between 175°C and 550°C.

- 76. (new): The component of claim 75, wherein the metal or the metal contained in the metal hydride is palladium, titanium, silver, copper, vanadium, lanthanum, nickel, iron, chromium or alloys thereof.
- 77. (new): The component of claim 76, wherein the metal or metal in the metal hydride is selected from the group consisting of Pd, PdAg, PdCu, Ti, LaNi₅, TiFe and CrV₂, V/Ni/Ti, V/Ni and V/Ti.
- 78. (new): The component of claim 75, wherein the EIPC coating is selected from the group consisting of:

mesoporous zirconium phosphate pyrophosphate, Zr(P₂O₇)_{0.81};

a superprotonic water non-stoichiometric phase of M_zH_y(AO₄)_w.xH₂O;

 $Ba_{3}Ca_{1.18}Nb_{1.82}O_{8.73}\text{-}H_{2}O\text{ (BCN 18);}$

Cs₅H₃(SO₄)₄.0.5H₂O;

an organic-inorganic hybrid (ICS-PPG), composed of 3-isocyanatopropyl-triethoxysilane (ICS) and poly(propylene glycol)bis-(2-amino-propyl ether) (2-APPG), mixed with peroxopolytungstic acid (W-PTA), (W-PTA/ICS-PPG);

a hydrate of SnCl₂;

silver iodide tetratungstate Ag₂₆I₁₈W₄O₁₆;

 $Cs_{1-x}(NH_4)_xH_2PO_4$, $Cs_{1-x}(ND_4)_xD_2PO_4$, or $K_{1-x}(NH_4)_xH_2PO_4$;

KH₂PO₄;

tetraammonium dihydrogen triselenate, (NH₄)₄H₂(SeO₄)₃;

CsDSO₄;

 CsH_2PO_4 (CDP);

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta}$ (SZYO);

a silica-polyphosphate composite containing ammonium ions;

 $La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O_3$ (LSSM); and

BaCe_{0.9-x}Zr_x $M_{0.1}O_{3-\delta}$ where M is Gd or Nd and x = 0 to 0.4.

79. (new): The component of claim 75, wherein the EIPC coating consists of Ba₃Ca_{1,18}Nb_{1,82}O_{8,73}-H₂O (BCN 18);

CsH₂PO₄ (CDP);

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta}$ (SZYO);

polyphosphate composite containing 19.96 wt% NH₄⁺, 29.3 wt% P, 1.51 wt% Si;

 $La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O_3$ (LSSM); or

BaCe_{0.9-x}Zr_xM_{0.1}O_{3- δ} where M is Gd or Nd and x = 0 to 0.4 (BCZMO).

- 80. (new): The component of claim 75, wherein the thickness of the metal or metal hydride is 5-1,000 μ m.
- 81. (new): The component of claim 80, wherein the thickness of the metal or metal hydride is 10-200 μ m.
- 82. (new): The component of claim 75, wherein the ASR for protons at at least one temperature between 175°C and 550°C is substantially equivalent to that of Nafion® 117 at 80°C.
- 83. (new): A method to prepare a component designed to serve as an electrolyte in a fuel cell, wherein said fuel cell is operable at at least one temperature in the range of 175°C-550°C, which method comprises depositing on a metal foil the EIPC coating of claim 75.

Application No.: 09/891,200 Docket No.: 491712000100

84. (new): A component designed to serve as an electrolyte in a fuel cell, which component comprises

a metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating protonconducting (EIPC) coating, which coating is of an inorganic or composite non-liquid material, said coating having a thickness such that the conductivity for protons as a function of temperature is in the gap shown in Figure 1.

- 85. (new): The component of claim 84, wherein the metal or the metal contained in the metal hydride is palladium, titanium, silver, copper, vanadium, lanthanum, nickel, iron, chromium or alloys thereof.
- 86. (new): The component of claim 85, wherein the metal or metal in the metal hydride is selected from the group consisting of Pd, PdAg, PdCu, Ti, LaNi₅, TiFe and CrV₂, V/Ni/Ti, V/Ni and V/Ti.
- 87. (new): The component of claim 84, wherein the EIPC coating is selected from the group consisting of:

mesoporous zirconium phosphate pyrophosphate, Zr(P₂O₇)_{0.81};

a superprotonic water non-stoichiometric phase of M_zH_y(AO₄)_w.xH₂O;

Ba₃Ca_{1.18}Nb_{1.82}O_{8.73}-H₂O (BCN 18);

Cs₅H₃(SO₄)₄.0.5H₂O;

an organic-inorganic hybrid (ICS-PPG), composed of 3-isocyanatopropyl-triethoxysilane (ICS) and poly(propylene glycol)bis-(2-amino-propyl ether) (2-APPG), mixed with peroxopolytungstic acid (W-PTA), (W-PTA/ICS-PPG);

a hydrate of SnCl₂;

silver iodide tetratungstate Ag₂₆I₁₈W₄O₁₆;

 $Cs_{1-x}(NH_4)_xH_2PO_4$, $Cs_{1-x}(ND_4)_xD_2PO_4$, or $K_{1-x}(NH_4)_xH_2PO_4$;

KH₂PO₄;

tetraammonium dihydrogen triselenate, (NH₄)₄H₂(SeO₄)₃;

Application No.: 09/891,200 Docket No.: 491712000100

```
CsDSO<sub>4</sub>;
```

CsH₂PO₄ (CDP);

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta}(SZYO);$

a silica-polyphosphate composite containing ammonium ions;

 $La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O_3$ (LSSM); and

BaCe_{0.9-x} $Zr_xM_{0.1}O_{3-\delta}$ where M is Gd or Nd and x = 0 to 0.4.

88. (new): The component of claim 84, wherein the EIPC coating consists of

Ba₃Ca_{1.18}Nb_{1.82}O_{8.73}-H₂O (BCN 18);

CsH₂PO₄ (CDP);

 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta}$ (SZYO);

polyphosphate composite containing19.96 wt% NH₄⁺, 29.3 wt% P, 1.51 wt% Si;

 $La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O_3$ (LSSM); or

BaCe_{0.9-x}Zr_xM_{0.1}O_{3- δ} where M is Gd or Nd and x = 0 to 0.4 (BCZMO).

- 89. (new): The component of claim 84, wherein the thickness of the metal or metal hydride is 5-1,000 μ m.
- 90. (new): The component of claim 89, wherein the thickness of the metal or metal hydride is 10-200 μ m.
- 91. (new): The component of claim 84, wherein the ASR for protons at at least one temperature between 175°C and 550°C is substantially equivalent to that of Nafion® 117 at 80°C.
- 92. (new): A method to prepare a component designed to serve as an electrolyte in a fuel cell, wherein said fuel cell is operable at at least one temperature in the range of 175°C-550°C, which method comprises depositing on a metal foil the EIPC coating of claim 84.