GitHub Link -

https://github.com/sandy100061/MachineLearningAssignment/tree/main/Assignment 1

Video link-

https://drive.google.com/file/d/1AcggvcPQqpyzjLUH1qdvpnV6qQEBDHuk/view?usp=drive link

1. Pandas

- 1. Read the provided CSV file 'data.csv'. https://drive.google.com/file/d/1-Ir3AXK1A77A-qCDu5gGkAxv-nbmWlHO/view?usp=sharing
- 2. Show the basic statistical description about the data.
- 3. Check if the data has null values. a. Replace the null values with the mean
- 4. Select at least two columns and aggregate the data using: min, max, count, mean.
- 5. Filter the dataframe to select the rows with calories values between 500 and 1000.
- 6. Filter the dataframe to select the rows with calories values > 500 and pulse < 100.
- 7. Create a new "df_modified" dataframe that contains all the columns from df except for "Maxpulse".
- 8. Delete the "Maxpulse" column from the main df dataframe
- 9. Convert the datatype of Calories column to int datatype.

```
#Read the provided CSV file 'data.csv'. https://drive.google.com/file/d/1-
Ir3AXK1A77A-qCDu5gGkAxv-nbmWlHO/view?usp=sharing
import pandas as pd
df = pd.read_csv('/content/data.csv')
```

```
print(df)
```

```
2]
print(df)
 Duration Pulse Maxpulse Calories
    60 110
             130 409.1
     60 117
              145
                   479.0
1
2
    60 103
              135
                   340.0
3
    45 109
              175
                   282.4
    45 117
              148 406.0
     60 105
              140 290.8
164
              145 300.0
165
      60 110
               145 310.2
      60 115
166
      75 120
               150 320.4
167
168
      75 125
              150 330.4
```

[169 rows x 4 columns]

```
df = pd.DataFrame(df)
```

```
\#Show the basic statistical description about the data. df=df.describe() df
```

Duration	Pulse	Maxpulse	Calories	
count	169.000000	169.000000	169.000000	164.000000
mean	63.846154	107.461538	134.047337	375.790244
std	42.299949	14.510259	16.450434	266.379919
min	15.000000	80.000000	100.000000	50.300000
25%	45.000000	100.000000	124.000000	250.925000
50%	60.000000	105.000000	131.000000	318.600000
75%	60.000000	111.000000	141.000000	387.600000
max	300.000000	159.000000	184.000000	1860.400000

```
#Check if the data has null values.
df = pd.read_csv('/content/data.csv')
df.isnull()
```

Duration	Pulse	Maxpulse	Calories	
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
•••				
164	False	False	False	False

Duration Pulse Maxpulse Calories

165	False	False	False	False
166	False	False	False	False
167	False	False	False	False
168	False	False	False	False

 $169 \text{ rows} \times 4 \text{ columns}$

```
#checking is there any null value is there or not.
df.isnull().values.any()
```

True

```
# a. Replace the null values with the mean
new df=df.fillna(df.mean())
```

```
new df.isnull().values.any()
```

False

```
#4. Select at least two columns and aggregate the data using: min, max,
count, mean
# by using groupby function with aggregation to get mean, min and max
values
result = df.groupby('Duration').agg({'Calories': ['mean', 'min', 'max']})
print("Mean, min, and max values are")
print(result)
```

```
Mean, min, and max values are
           Calories
              mean
                     min
                            max
Duration
15
         87.350000
                     50.5
                          124.2
20
         151.600000
                     50.3
                           229.4
25
         244.200000 244.2 244.2
30
         192.125000 86.2
                          319.2
         273.236364 100.7 406.0
45
```

60	339.675000	215.2	486.0
75	325.400000	320.4	330.4
80	643.100000	643.1	643.1
90	541.800000	466.4	700.0
120	666.833333	500.0	1000.1
150	939.400000	816.0	1115.0
160	943.700000	853.0	1034.4
180	733.600000	600.1	800.4
210	1618.200000	1376.0	1860.4
270	1729.000000	1729.0	1729.0
300	1500.200000	1500.2	1500.2

#5. Filter the dataframe to select the rows with calories values between 500 and 1000.

df.query('Calories <= 1000 and Calories >= 500')

Duration	Pulse	Maxpulse	Calories	
51	80	123	146	643.1
62	160	109	135	853.0
65	180	90	130	800.4
66	150	105	135	873.4
67	150	107	130	816.0
72	90	100	127	700.0
73	150	97	127	953.2
75	90	98	125	563.2
78	120	100	130	500.4
83	120	100	130	500.0
90	180	101	127	600.1
99	90	93	124	604.1
101	90	90	110	500.0
102	90	90	100	500.0
103	90	90	100	500.4

Duration	Pulse	Maxpulse	Calories	
106	180	90	120	800.3
108	90	90	120	500.3

6. Filter the dataframe to select the rows with calories values > 500
and pulse < 100
df.query('Calories > 500 and Pulse < 100')</pre>

Duration	Pulse	Maxpulse	Calories	
65	180	90	130	800.4
70	150	97	129	1115.0
73	150	97	127	953.2
75	90	98	125	563.2
99	90	93	124	604.1
103	90	90	100	500.4
106	180	90	120	800.3
108	90	90	120	500.3

#7. Create a new "df_modified" dataframe that contains all the columns
from df except for "Maxpulse"
df_modified=df.drop(columns=["Maxpulse"])
df modified

Duration	Pulse	Calories	
0	60	110	409.1
1	60	117	479.0
2	60	103	340.0

Duration	Pulse	Calories	
3	45	109	282.4
4	45	117	406.0
•••			
164	60	105	290.8
165	60	110	300.0
166	60	115	310.2
167	75	120	320.4
168	75	125	330.4

169 rows \times 3 columns

8. Delete the "Maxpulse" column from the main df dataframe
df.drop(columns=["Maxpulse"], axis=1, inplace=True)
df

Duration	Pulse	Calories	
0	60	110	409.1
1	60	117	479.0
2	60	103	340.0
3	45	109	282.4
4	45	117	406.0
•••		•••	
164	60	105	290.8
165	60	110	300.0
166	60	115	310.2
167	75	120	320.4
168	75	125	330.4

$169 \text{ rows} \times 3 \text{ columns}$

```
#9. Convert the datatype of Calories column to int datatype.
df=df.fillna(df.mean())
df = df.astype({'Calories':'int'})
print(df.dtypes)
```

Duration int64
Pulse int64
Calories int64
dtype: object