Análise Exploratória

KMeans

Delermando Branquinho Filho

Podemos encontrar coisas que estão próximas?

- Como podemos definir próximo?
- Como agrupamos as coisas?
- Como visualizamos o agrupamento?
- Como interpretamos o agrupamento?

Como definimos close?

- Etapa mais importante
- Lixo em \$ longrightarrow \$ lixo para fora
- Distância ou similaridade
- Distância contínua euclidiana
- Semelhança de correlação contínua
- Binário distância manhattan
- Escolha uma distância / semelhança que faz sentido para o seu problema

K-significa agrupamento

- Uma abordagem de partilha
- Corrigir uma série de clusters
- Obter "centroids" de cada cluster
- Atribuir coisas ao centróide mais próximo
- Reclacular centróides
- Requer
- Uma métrica de distância definida
- Uma série de clusters
- Uma adivinhação inicial para centróides de cluster
- Produz
- Estimativa final de centróides de cluster
- Uma atribuição de cada ponto a clusters

K-means clustering - exemplo

```
set.seed(1234); par(mar=c(0,0,0,0))
x <- rnorm(12,mean=rep(1:3,each=4),sd=0.2)
y <- rnorm(12,mean=rep(c(1,2,1),each=4),sd=0.2)
plot(x,y,col="blue",pch=19,cex=2)
text(x+0.05,y+0.05,labels=as.character(1:12))</pre>
```


K-means clustering - Iniciando centróides

K-means clustering - Atribuir ao centróide mais próximo

K-means clustering - Recalcular centróides

K-means clustering - Reatribuir valores

K-means clustering - atualização dos Centróides

kmeans()

 \bullet Important parameters: x, centers, iter.max, nstart

kmeans()

```
par(mar=rep(0.2,4))
plot(x,y,col=kmeans0bj$cluster,pch=19,cex=2)
points(kmeans0bj$centers,col=1:3,pch=3,cex=3,lwd=3)
```


Heatmaps

```
set.seed(1234)
dataMatrix <- as.matrix(dataFrame)[sample(1:12),]
kmeansObj <- kmeans(dataMatrix,centers=3)
par(mfrow=c(1,2), mar = c(2, 4, 0.1, 0.1))
# Um caractere que especifica o tipo de eixo y. Especificar "n" suprime o traçado.
image(t(dataMatrix)[,nrow(dataMatrix):1],yaxt="n")
image(t(dataMatrix)[,order(kmeansObj$cluster)],yaxt="n")</pre>
```

