Contents

\mathbf{C}	Contents	i
1	Statistics for the Working Economist	ii
	1.1 Measurements	ii
	1.2 Linear Models	iii

Last update: 2025 January 23

Chapter 1

Statistics for the Working Economist

§ 1.1. Measurements

Definition 1.1.1.

- (1) The large body of data that is the target of our interest is called the *population*.
- (2) A subset selected from a given population is called a *sample*.

Definition 1.1.2. The *mean* of a sample of n measured responses $y_1, ..., y_n$ is given by:

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

The corresponding population mean is denoted μ .

Remark. We usually cannot measure the value of the population mean, μ ; rather, μ is an unknown constant that we may want to estimate using sample information.

Definition 1.1.3. The *variance* of a sample of measurements $y_1, ..., y_n$ is given by:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2.$$

The corresponding population variance is denoted by σ^2 . The larger the variance of a set of measurements, the greater will be the amount of variation within the set

Definition 1.1.4. The standard deviation of a sample of measurements is given by:

$$s = \sqrt{s^2}$$

The corresponding population standard deviation is denoted by $\sigma = \sqrt{\sigma^2}$

Definition 1.1.5. An *estimator* is a formula that tells how to calculate the value of an estimate based on the measurements contained in a sample.

Example 1.1.1. The sample mean \overline{y} is one possible point estimator of a population mean μ .

§ 1.2. Linear Models

In this chapter, we undertake a study of inferential procedures that can be used when a random variable Y, called the *dependent variable*, has a mean that is a function of one or more non-random variables $x_1, ..., x_k$ called *independent variables*.

Definition 1.2.1. A *linear statistical model* relating a random response Y to a set of independent variables $x_1, ..., x_k$ is of the form:

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon,$$

where $\beta_0, ..., \beta_k$ are unknown parameters, epsilon is a random variable (typically an error of some sort), and the variables $x_1, ..., x_k$ are known values.

Remark. Although unreasonable, we will assume that $E(\epsilon) = 0$, hence that:

$$E(Y) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k.$$