Relations binaires

Relations d'équivalence

Exercice 1 [02643] [Correction]

Soit \mathcal{R} une relation binaire sur un ensemble E à la fois réflexive et transitive. On définit les nouvelles relations S et T par :

$$xSy \iff (xRy \text{ et } yRx) \text{ et } xTy \iff (xRy \text{ ou } yRx).$$

Les relations \mathcal{S} et \mathcal{T} sont-elles des relations d'équivalences?

Exercice 2 [02644] [Correction]

Soit E un ensemble et A une partie de E. On définit une relation \mathcal{R} sur $\wp(E)$ par :

$$X\mathcal{R}Y \iff X \cup A = Y \cup A.$$

- (a) Montrer que \mathcal{R} est une relation d'équivalence
- (b) Décrire la classe d'équivalence de $X \in \wp(E)$

Exercice 3 [02983] [Correction]

On considère sur $\mathcal{F}(E,E)$ la relation binaire \mathcal{R} définie par :

$$f\mathcal{R}g \iff \exists \varphi \in \mathcal{S}(E) \text{ telle que } f \circ \varphi = \varphi \circ g.$$

- (a) Montrer que \mathcal{R} est une relation d'équivalence.
- (b) Décrire la classe d'équivalence d'une fonction donnée $f \in \mathcal{F}(E, E)$.

Exercice 4 [02984] [Correction]

Soit \mathcal{R} une relation binaire réflexive et transitive.

On définit une relation S par :

$$xSy \iff xRy \text{ et } yRx.$$

Montrer que S est une relation d'équivalence et que R permet de définir une relation d'ordre sur les classes d'équivalences de \mathcal{S} .

Exercice 5 [02985] [Correction]

Soit (G, \times) un groupe et H un sous groupe de (G, \times) .

On définit une relation binaire \mathcal{R} sur G par :

$$x\mathcal{R}y \iff xy^{-1} \in H.$$

Montrer que \mathcal{R} est une relation d'équivalence et en décrire les classes d'équivalence.

Exercice 6 [03243] [Correction]

Soit G un groupe multiplicatif de cardinal p^{α} avec p premier et $\alpha \in \mathbb{N}^*$. Montrer que

$$Z(G) \neq \{1\}.$$

Exercice 7 [02357] [Correction]

Soit E un ensemble de cardinal n, \mathcal{R} une relation d'équivalence sur E ayant k classes d'équivalence et $G = \{(x, y) \in E^2 \mid x \mathcal{R} y\}$ le graphe de \mathcal{R} supposé de cardinal p. Prouver qu'on a $n^2 < kp$.

Calculs en congruence

Exercice 8 [01190] [Correction] Montrer que $11 \mid 2^{123} + 3^{121}$.

Exercice 9 [01191] [Correction]

Quel est le reste de la division euclidienne de $1234^{4321} + 4321^{1234}$ par 7?

Exercice 10 [01192] [Correction]

Montrer que pour tout $n \in \mathbb{N}$:

- (a) $6 \mid 5n^3 + n$ (c) $5 \mid 2^{2n+1} + 3^{2n+1}$ (e) $9 \mid 4^n 1 3n$

- (b) $7 \mid 3^{2n+1} + 2^{n+2}$ (d) $11 \mid 3^{8n} \times 5^4 + 5^{6n} \times 7^3$ (f) $15^2 \mid 16^n 1 15n$

Exercice 11 [01193] [Correction]

Trouver les entiers $n \in \mathbb{Z}$ tel que $10 \mid n^2 + (n+1)^2 + (n+3)^2$.

Exercice 12 [03679] [Correction]

Montrer que si n est entier impair alors

$$n^2 \equiv 1 [8].$$

Exercice 13 [03680] [Correction]

Soient $\lambda, a, b \in \mathbb{Z}$ et $m \in \mathbb{N}^*$. On suppose λ et m premiers entre eux. Montrer

$$a \equiv b \ [m] \iff \lambda a \equiv \lambda b \ [m]$$
.

Exercice 14 [02359] [Correction]

Soit A la somme des chiffres de 4444^{4444} , B celle de A et enfin C celle de B. Que vaut C?

Relations d'ordre

Exercice 15 [01518] [Correction]

On définit une relation binaire \leq sur \mathbb{R}_+^* par :

$$x \preccurlyeq y \iff \exists n \in \mathbb{N}, y = x^n.$$

Montrer que \leq est une relation d'ordre. Cet ordre est-il total?

Exercice 16 [01519] [Correction]

Soit \leq la relation définie sur $E = \{(x,y) \in \mathbb{R}^2 \mid x \leq y\}$ par

$$(x,y) \preccurlyeq (x',y') \iff (x,y) = (x',y') \text{ ou } y \le x'.$$

Montrer que \leq est une relation d'ordre sur E.

Exercice 17 [01520] [Correction]

On définit une relation binaire \leq sur $\{z \in \mathbb{C} \mid \text{Im}(z) \geq 0\}$ par :

$$z \preccurlyeq z' \iff |z| < |z'| \text{ ou } (|z| = |z'| \text{ et } \operatorname{Re}(z) \le \operatorname{Re}(z')).$$

Montrer qu'il s'agit d'une relation d'ordre total.

Exercice 18 [01521] [Correction]

Soit E l'ensemble des couples (I,f) formé d'un intervalle I et d'une fonction réelle définie sur I.

On définit une relation \leq sur E par : $(I, f) \leq (J, g) \iff I \subset J$ et $g|_{I} = f$. Montrer que \leq est une relation d'ordre sur E.

Exercice 19 [01523] [Correction]

Soient A, B deux parties d'un ensemble E ordonné par \leq .

On suppose que A et B ont chacun un plus grand élément.

Qu'en est-il de $A \cup B$ lorsque l'ordre est total? lorsqu'il ne l'est pas? Que dire de $A \cap B$?

Exercice 20 [01524] [Correction]

Soit (E, \preccurlyeq) un ensemble ordonné tel que toute partie non vide admet un plus petit élément et un plus grand élément.

Montrer que E est fini.

Exercice 21 [01525] [Correction]

Soit E un ensemble ordonné par une relation \leq .

Un tableau à n lignes et p colonnes est formé d'éléments $a_{i,j} \in E$ avec i indice de ligne $(1 \le i \le n)$ et j indice de colonne $(1 \le j \le p)$.

On note le plus petit élément de chaque colonne et l'on prend le plus grand de ces plus petits :

$$\max_{1 \le j \le p} (\min_{1 \le i \le n} a_{i,j}).$$

On note aussi le plus grand élément de chaque ligne et l'on prend le plus petit de ces plus grands :

$$\min_{1 \le i \le n} (\max_{1 \le j \le p} a_{i,j}).$$

- (a) Comparer ces deux nombres.
- (b) Donner un exemple de non égalité.

Exercice 22 [02055] [Correction]

Montrer qu'il n'existe pas de suite strictement décroissante d'entiers naturels.

Supremum et infimum

Exercice 23 [02107] [Correction]

Soit

$$A = \left\{ (-1)^n + \frac{1}{n+1} \mid n \in \mathbb{N} \right\}.$$

Montrer que A est bornée, déterminer inf A et $\sup A$.

Exercice 24 [02108] [Correction]

Soient A et B deux parties non vides et bornées de $\mathbb R$ telles que $A\subset B$. Comparer inf A, sup A, inf B et sup B.

Exercice 25 [02110] [Correction]

Soient A et B deux parties de \mathbb{R} non vides et majorées. Montrer que $\sup A, \sup B$ et $\sup(A \cup B)$ existent et

$$\sup(A \cup B) = \max(\sup A, \sup B).$$

Exercice 26 [02113] [Correction]

Pour $n \in \mathbb{N}$, on pose $f_n(x) = x^n(1-x)$. Déterminer

$$\lim_{n \to +\infty} \sup_{x \in [0;1]} f_n(x).$$

Exercice 27 [00225] [Correction]

Soit A une partie non vide et minorée de \mathbb{R} . On pose

$$m = \inf A \text{ et } B = A \cap]-\infty; m+1].$$

Déterminer la borne inférieure de B.

Corrections

Exercice 1 : [énoncé]

Les relations S et T sont clairement réflexives et symétriques.

Soient $x, y, z \in E$.

Supposons xSy et ySz.

On a alors xRy et yRz donc xRz et aussi yRx et zRy donc zRx puis xSz. Le raisonnement n'est plus valable avec \mathcal{T} et on peut présumer que \mathcal{T} ne sera pas

une relation d'équivalence.

Prenons pour \mathcal{R} la relation divise définie sur \mathbb{N}^* . On a 2 | 6 et 3 | 6 donc $2\mathcal{T}6$ et $6\mathcal{T}3$ or 2 $\mathcal{T}3$.

Ici la relation \mathcal{T} n'est pas transitive.

Exercice 2 : [énoncé]

- (a) La relation étudiée est évidemment réflexive, symétrique et transitive.
- (b) $Y \in Cl(X) \iff Y \cup A = X \cup A$. Soit $Y \in Cl(X)$. On a $Y \cup A = X \cup A$ $\forall x \in Y \setminus A$ on a $x \in Y \cup A = X \cup A$ et $x \notin A$ donc $x \in X \setminus A$. Ainsi $Y \setminus A \subset X \setminus A$ et inversement $X \setminus A \subset Y \setminus A$ donc $X \setminus A = Y \setminus A$. Puisque $Y = (Y \setminus A) \cup (Y \cap A)$ on a $Y = (X \setminus A) \cup B$ avec $B \in \wp(A)$. Inversement soit $Y = (X \setminus A) \cup B$ avec $B \in \wp(A)$. On a $Y \cup A = (X \setminus A) \cup (B \cup A) = (X \cap \overline{A}) \cup A = X \cup A$. Finalement $Cl(X) = \{(X \setminus A) \cup B \mid B \in \wp(A)\}$.

Exercice 3: [énoncé]

- (a) $f \circ \operatorname{Id}_E = \operatorname{Id}_E \circ f$ donc $f \mathcal{R} f$. Si $f \mathcal{R} g$ alors il existe $\varphi \in \mathcal{S}(E)$ telle que $f \circ \varphi = \varphi \circ g$ mais alors $g \circ \varphi^{-1} = \varphi^{-1} \circ f$ donc $g \mathcal{R} f$. Si $f \mathcal{R} g$ et $g \mathcal{R} h$ alors il existe $\varphi, \psi \in \mathcal{S}(E)$ telles que $f \circ \varphi = \varphi \circ g$ et $g \circ \psi = \psi \circ h$ donc $f \circ \theta = \theta \circ h$ avec $\theta = \varphi \circ \psi \in \mathcal{S}(E)$. Ainsi $f \mathcal{R} h$.
- (b) $g \in \mathcal{C}l(f) \iff \exists \varphi \in \mathcal{S}(E), g = \varphi^{-1} \circ f \circ \varphi.$

Finalement

$$Cl(f) = \big\{ \varphi^{-1} \circ f \circ \varphi \ \big| \ \varphi \in \mathcal{S}(E) \big\}.$$

Exercice 4 : [énoncé]

 \mathcal{S} est réflexive, symétrique et transitive sans difficultés.

On définit $Cl(x) \leq Cl(y) \iff x\mathcal{R}y$. La relation \leq est bien définie, réflexive transitive.

Si $Cl(x) \leq Cl(y)$ et $Cl(y) \leq Cl(x)$ alors xSy donc Cl(x) = Cl(y).

Exercice 5: [énoncé]

Soit $x \in G$. On a $x\mathcal{R}x$ car $xx^{-1} = 1 \in H$.

Soient $x, y \in G$. Si $x\mathcal{R}y$ alors $xy^{-1} \in H$ et donc $yx^{-1} \in H$ d'où $y\mathcal{R}x$.

Soient $x, y, z \in G$. Si $x\mathcal{R}y$ et $y\mathcal{R}z$ alors $xy^{-1} \in H$ et $yz^{-1} \in H$ donc $xz^{-1} \in H$ d'où $x\mathcal{R}z$.

Finalement \mathcal{R} est une relation d'équivalence.

Soit $a \in G$.

$$x \in Cl(a) \iff x\mathcal{R}a \iff xa^{-1} \in H$$

donc

$$Cl(a) = Ha = \{ ha \mid h \in H \}.$$

Exercice 6: [énoncé]

Considérons la relation binaire \mathcal{R} sur G définie par

$$y_1 \mathcal{R} y_2 \iff \exists x \in G, xy_1 = y_2 x.$$

Il est immédiat de vérifier que $\mathcal R$ est une relation d'équivalence sur G. Les classes d'équivalence de $\mathcal R$ forment donc une partition de G ce qui permet d'affirmer que le cardinal de G est la somme des cardinaux des classes d'équivalence de $\mathcal R$.

Une classe d'équivalence d'un élément y est réduite à un singleton si, et seulement si,

$$\forall x \in G, xy = yx.$$

i.e.

$$y \in Z(G)$$
.

En dénombrant G en fonction des classes d'équivalence de $\mathcal R$ et en isolant parmi celles-ci celles qui sont réduites à un singleton on a

$$\operatorname{Card} G = \operatorname{Card} Z(G) + N$$

avec N la somme des cardinaux des classes d'équivalence de $\mathcal R$ qui ne sont pas réduites à un singleton.

Pour poursuivre, montrons maintenant que le cardinal d'une classe d'équivalence de la relation \mathcal{R} divise le cardinal de G.

Considérons une classe d'équivalence $\{y_1, \ldots, y_n\}$ pour la relation \mathcal{R} et notons

$$H_i = \{ x \in G \mid xy_1 = y_i x \}.$$

Pour $i \in \{1, ..., n\}$, puisque $y_1 \mathcal{R} y_i$, il existe $x_i \in G$ tel que

$$x_i y_1 = y_i x_i.$$

Considérons alors l'application $\varphi \colon H_1 \to H_i$ définie par

$$\varphi(x) = x_i x$$
.

On vérifie que cette application est bien définie et qu'elle est bijective. On en déduit

$$\operatorname{Card} H_1 = \ldots = \operatorname{Card} H_n = m$$

et puisque G est la réunion disjointes des H_1, \ldots, H_n

$$\operatorname{Card} G = mn = p^{\alpha}.$$

Ainsi toutes les classes d'équivalences qui ne sont pas réduites à 1 élément ont un cardinal multiple de p et donc $p \mid N$.

Puisque p divise Card G = Card Z(G) + N, on a

$$p \mid \operatorname{Card} Z(G)$$
.

Sachant $Z(G) \neq \emptyset$ (car $1 \in Z(G)$) on peut affirmer

$$\operatorname{Card} Z(G) \geq p$$
.

Exercice 7: [énoncé]

Notons n_1,\ldots,n_k les cardinaux respectifs des k classes d'équivalence de \mathcal{R} . D'une part $n=n_1+\cdots+n_k$, d'autre part $p=n_1^2+\cdots+n_k^2$. Par l'inégalité de Cauchy-Schwarz : $(n_1+\cdots+n_k)^2 \leq k(n_1^2+\cdots+n_k^2)$.

Exercice 8: [énoncé]

$$2^5 = -1$$
 [11] donc $2^{10} = 1$ [11] puis $2^{123} = 2^{120} \times 2^3 = (2^{10})^{12} \times 8 = 1 \times 8 = 8$ [11]. $3^5 = 1$ [11] donc $3^{121} = 3^{120} \times 3 = (3^5)^{24} \times 3 = 1 \times 3 = 3$ [11]. Ainsi $2^{123} + 3^{121} = 8 + 3 = 0$ [11] et donc $11 \mid 2^{123} + 3^{121}$.

Exercice 9: [énoncé]

1234 = 2 [7] et $2^3 = 1$ [7] donc $1234^{4321} = 2^{4321} = 2^{4320} \times 2 = 1 \times 2 = 2$ [7]. 4321 = 2 [7] donc $4321^{1234} = 2^{1234} = 2^{1233} \times 2 = 1 \times 2 = 2$ [7]. Par suite $1234^{4321} + 4321^{1234} = 2 + 2 = 4$ [7]. Le reste cherché est 4.

Exercice 10: [énoncé]

- (a) Pour n = 0, 1, 2, 3, 4, 5 on a $n^3 = n$ [6] donc $5n^3 + n = 6n = 0$ [6].
- (b) $3^{2n+1} + 2^{n+2} = 3 \cdot (3^2)^n + 4 \cdot 2^n = 3 \cdot 2^n + 4 \cdot 2^n = 7 \cdot 2^n = 0$ [7].
- (c) $2^{2n+1} + 3^{2n+1} = 2 \cdot (2^2)^n + 3 \cdot (3^2)^n = 2 \cdot 4^n + 3 \cdot 4^n = 5 \cdot 4^n = 0$ [5]
- (d) $3^{8n} \times 5^4 + 5^{6n} \times 7^3 = 5^n \times 9 + 5^n \times 2 = 11 \times 5^n = 0$ [11].
- (e) $4^n 1 3n = (4 1)(1 + 4 + \dots + 4^{n-1}) 3n = 3(1 + 4 + \dots + 4^{n-1} n)$ or $1 + 4 + \dots + 4^{n-1} - n = 1 + \dots + 1 - n = n - n = 0$ [3] donc $9 \mid 4^n - 1 - 3n$.
- (f) $16^n 1 15n = (16 1)(1 + 16 + \dots + 16^{n-1}) 15n = 15(1 + 16 + \dots + 16^{n-1} n)$ or $1 + 16 + \dots + 16^{n-1} - n = 1 + \dots + 1 - n = n - n = 0$ [15] donc $15^2 \mid 16^n - 1 - 15n$.

Exercice 11 : [énoncé]

On a

	0									
$n^2 + (n+1)^2 + (n+3)^2$	0	1	8	1	0	5	6	3	6	5

donc $10 \mid n^2 + (n+1)^2 + (n+3)^2 \iff n = 0 \text{ ou } 4 [10].$

Exercice 12 : [énoncé]

On peut écrire n = 2p + 1 et alors

$$n^2 = (2p+1)^2 = 4p(p+1) + 1.$$

Puisque l'un des facteurs de p(p+1) est pair, le produit 4p(p+1) est multiple de 8 et donc

$$4p(p+1) + 1 \equiv 1$$
 [8].

Exercice 13 : [énoncé]

(\Longrightarrow) Si $a \equiv b$ [m] alors m divise b-a et divise a fortiori $\lambda b - \lambda a = \lambda (b-a)$. (\Longleftrightarrow) Si $\lambda a \equiv \lambda b$ [m] alors m divise $\lambda (b-a)$. Or m et λ sont supposés premiers entre eux donc, en vertu du théorème de Gauss, m divise b-a.

Exercice 14: [énoncé]

Posons $x=4444^{4444}$, 4444=7 [9], $7^3=1$ [9] donc $4444^{4444}=7$ [9]. $x<10^{5\times4444}$ donc $A\leq 9\times 5\times 4444=199980$, $B\leq 9\times 5+1=46$ puis $C\leq 4+9=13$. Or C=B=A=x [9] donc C=7

Exercice 15: [énoncé]

Soit x > 0, on a $x = x^n$ pour $n = 1 \in \mathbb{N}$ donc $x \le x$. La relation \le est réflexive. Soient x, y > 0, si $x \le y$ et $y \le x$ alors il existe $n, m \in \mathbb{N}$ tels que $y = x^n$ et $x = y^m$.

On a alors $x = x^{nm}$ donc $\ln x = nm \ln x$

Si x = 1 alors $y = x^n = 1 = x$.

Si $x \neq 1$ alors $\ln x \neq 0$ puis 1 = nm. Or $n, m \in \mathbb{N}$ donc n = m = 1 puis x = y. Finalement la relation \leq est antisymétrique.

Soient x, y, z > 0. Si $x \leq y$ et $y \leq z$ alors $\exists n, m \in \mathbb{N}$ tels que $y = x^n$ et $z = y^m$. On a $z = x^{mn}$ avec $mn \in \mathbb{N}$ donc $x \leq z$. La relation \leq est transitive.

Finalement \leq est une relation d'ordre.

Cet ordre n'est pas total car, par exemple, 2 et 3 ne sont pas comparables.

Exercice 16: [énoncé]

 \preccurlyeq est clairement réflexive et transitive.

Si $(x,y) \leq (x',y')$ et $(x',y') \leq (x,y)$ alors (x,y) = (x',y') ou $x \leq y \leq x' \leq y' \leq x$ et donc (x,y) = (x,x) = (x',y').

Exercice 17: [énoncé]

 \preccurlyeq est clairement réflexive.

Si $z \le z'$ et $z' \le z$ alors nécessairement |z| = |z'| et Re(z) = Re(z') donc z = z' car Im(z), Im(z') > 0.

Si $z \preccurlyeq z'$ et $z' \preccurlyeq z''$ alors si |z| < |z''| alors $z \preccurlyeq z''$ et sinon |z| = |z'| = |z''| et donc $\operatorname{Re}(z) \leq \operatorname{Re}(z') \leq \operatorname{Re}(z'')$ ce qui permet à nouveau d'affirmer $z \preccurlyeq z''$.

Pour $z, z' \in \{z \in \mathbb{C} \mid \operatorname{Im} z \ge 0\}.$

Si |z| < |z'| alors $z \leq z'$

Si |z| > |z'| alors $z' \leq z$.

Si |z| = |z'| alors dans le cas où $\operatorname{Re}(z) \leq \operatorname{Re}(z')$ on a $z \leq z'$ et, dans le cas complémentaire, on a $z' \leq z$.

Dans tout les cas z et z' sont comparables, la relation d'ordre est totale.

Exercice 18: [énoncé]

La relation est clairement réflexive.

Si $(I,f) \preccurlyeq (J,g)$ et $(J,g) \preccurlyeq (I,f)$ alors $I \subset J, J \subset I$ et $g|_{I} = f$ donc I = J et f = g.

Si $(I, f) \leq (J, g)$ et $(J, g) \leq (K, h)$ alors $I \subset J \subset K$ et $h_{\uparrow I} = (h|_J)|_{I} = g|_{I} = f$ donc $(I, f) \leq (K, h)$.

Finalement \leq est une relation d'ordre.

Exercice 19: [énoncé]

Si l'ordre est total $A \cup B$ possède un plus grand élément : $\max(A \cup B) = \max(\max(A), \max(B))$.

Si l'ordre n'est pas total, les plus grands éléments de A et de B peuvent ne pas être comparés aux éléments de A et B. Dans $(\mathbb{N}^*,|)$, pour $A=\{2,4\}$ et $B=\{3,9\}, A$ et B ont un plus grand élément alors que $A\cup B$ n'en a pas. $A\cap B$ peut ne pas posséder de plus grand élément, cet ensemble peut notamment être vide.

Exercice 20 : [énoncé]

Par l'absurde supposons E infini.

Posons $x_0 = \min E$, $x_1 = \min E \setminus \{x_0\}, \dots, x_n = \min E \setminus \{x_0, x_1, \dots, x_{n-1}\}, \dots$ L'ensemble $\{x_0, \dots, x_n, \dots\}$ n'a pas de plus grand élément. Absurde.

Exercice 21 : [énoncé]

(a) Pour tout $1 \le m \le p$,

$$a_{i,m} \le \max_{1 \le j \le p} a_{i,j}$$

donc

$$\min_{1 \le i \le n} a_{i,m} \le \min_{1 \le i \le n} \max_{1 \le j \le p} a_{i,j}$$

puis

$$\max_{1 \leq m \leq p} \min_{1 \leq i \leq n} a_{i,m} \leq \min_{1 \leq i \leq n} \max_{1 \leq j \leq p} a_{i,j}.$$

(b) Pour le tableau $\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$

$$\max_{1 \le j \le 2} \min_{1 \le i \le 2} a_{i,j} = 2 \text{ et } \min_{1 \le i \le 2} \max_{1 \le j \le 2} a_{i,j} = 3.$$

Exercice 22: [énoncé]

Par l'absurde, supposons que (u_n) soit une telle suite.

 $A = \{u_n \mid n \in \mathbb{N}\}$ est une partie non vide de \mathbb{N} , elle possède donc un plus petit élément m.

Puisque $m \in A$, il existe $n \in \mathbb{N}$ tel que $m = u_n$. Mais alors $u_{n+1} < u_n \le m = \min A$. Absurde.

Exercice 23 : [énoncé]

 $\forall n \in \mathbb{N}, -1 \leq (-1)^n + \frac{1}{n+1} \leq 2 \text{ donc } A \text{ est bornée.}$

A est une partie de \mathbb{R} non vide et bornée donc inf A et sup A existent.

2 est plus grand élément de A et donc sup $A = \max A = 2$.

A est clairement minorée par -1 et $(-1)^{2p+1}+\frac{1}{2p+2}\to -1$ donc il existe une suite d'éléments de A qui converge vers -1 donc inf A=-1.

Exercice 24 : [énoncé]

A et B sont des parties non vides et bornées de $\mathbb R$ donc les bornes sup et inf considérées existent.

Pour tout $a \in A$, on a $a \in B$ donc $a \le \sup B$. $\sup B$ majore A donc $\sup A \le \sup B$. Pour tout $a \in A$, on a $a \in B$ donc $\inf B \le a$. $\inf B$ minore A donc $\inf B \le \inf A$. Enfin, puisque $A \ne \emptyset$, $\inf A < \sup A$.

Exercice 25 : [énoncé]

 $A, B, A \cup B$ sont des parties de \mathbb{R} non vides et majorées donc $\sup A, \sup B, \sup(A \cup B)$ existent dans \mathbb{R} .

Pour tout $x \in A \cup B$ on a $x \leq \max(\sup A, \sup B)$ donc

$$\sup(A \cup B) \le \max(\sup A, \sup B).$$

Puisque $A, B \subset A \cup B$ on a sup A, sup $B \leq \sup(A \cup B)$ donc

$$\max(\sup A, \sup B) < \sup(A \cup B)$$

puis l'égalité.

Exercice 26: [énoncé]

La fonction f_n est dérivable avec

$$f'_n(x) = nx^{n-1}(1-x) - x^n = nx^{n-1} - (n+1)x^n.$$

On en déduit les variations

$$\begin{array}{c|cccc} x & 0 & x_n & 1 \\ \hline f_n(x) & 0 & \nearrow & M_n & \searrow & 0 \\ \end{array}$$

avec $x_n = \frac{n}{n+1} \in [0;1]$ et

$$M_n = \sup_{x \in [0,1]} f_n(x) = \left(1 - \frac{1}{n+1}\right)^n \frac{1}{n+1} \to 0.$$

Exercice 27: [énoncé]

Puisque m+1 ne minore pas A, la partie B est non vide. De plus $B \subset A$ donc la borne inférieure de B existe et

$$\inf A \leq \inf B$$
.

Soit $x \in A$, si $x \le m+1$ alors $x \in B$ et donc $x \ge \inf B$.

Si x > m + 1 alors à nouveau $x \ge \inf B$.

Ainsi $\inf B$ minore A et donc

$$\inf A > \inf B$$
.

Finalement

$$\inf A = \inf B$$
.