Wei-Chen Chen

i

A Quick Guide for the QZ Package

Wei-Chen Chen

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Contents

Acknowledgement	ii
1. Introduction	1
2. Methods	1
2.1. Generalized Eigenvalues for Pair Matrices	1
2.2. QZ Decomposition for Pair Matrices	1
3. Implementation	2
4. Data Example	3
References	15

Acknowledgement

Wei-Chen Chen was supported in part by the project "Visual Data Exploration and Analysis of Ultra-large Climate Data" funded by U.S. DOE Office of Science under Contract No. DE-AC05-00OR22725.

Warning: This document is written to explain the main functions of **QZ** package (Chen 2013), version 0.1-3. Every effort will be made to ensure future versions are consistent with these instructions, but features in later versions may not be explained in this document.

1. Introduction

This article is to explain the **QZ** package (Chen 2013), and is organized as the following. Section 2 introduces briefly background of generalized eigenvalues problem and QZ decomposition. Section 3 lists the main functions and detail Fortran functions of LAPACK library (Anderson et al. 1999).

2. Methods

Some details can be found on wikipedia website at

http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

for generalized eigenvalues, and at

http://en.wikipedia.org/wiki/Schur_decomposition

about QZ decomposition or generalized Schur form. The LAPACK (Anderson et al. 1999) also provides functions to solve these problems.

2.1. Generalized Eigenvalues for Pair Matrices

Suppose \boldsymbol{A} and \boldsymbol{B} are two $N \times N$ non-symmetric matrices which can be both in real or in complex. The goal is to find right generalized eigen vectors \boldsymbol{v} such that $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{B}\boldsymbol{v}$, or left generalized eigen vectors \boldsymbol{u} such that $\boldsymbol{u}^H\boldsymbol{A} = \lambda \boldsymbol{u}^H\boldsymbol{B}$ where \boldsymbol{u}^H is the conjugate-transpose of \boldsymbol{u} . Also, λ is called generalized eigenvalues of \boldsymbol{A} and \boldsymbol{B} which obeys $\det(\boldsymbol{A} - \lambda \boldsymbol{B}) = 0$. Note that λ , \boldsymbol{u} , and \boldsymbol{v} may be complex even \boldsymbol{A} and \boldsymbol{B} are in real.

Suppose B is an identity matrix I, then the problem reduces to traditional eigenvalue problem. i.e. This is a special case.

2.2. QZ Decomposition for Pair Matrices

Suppose A and B are two $N \times N$ non-symmetric matrices which can be both in real or in complex. The QZ decomposition factorizes both matrices as

- ullet $oldsymbol{A} = oldsymbol{Q} oldsymbol{Z}^ op$ and $oldsymbol{B} = oldsymbol{Q} oldsymbol{T} oldsymbol{Z}^ op$ if $oldsymbol{A}$ and $oldsymbol{B}$ are real, or
- $A = QSZ^H$ and $B = QTZ^H$ if A and B are complex

where Q and Z are unitary and S and T are upper triangular. The unitary means $XX^H = I$ if X is complex or $XX^T = I$ if X is real where I is the identity matrix.

The QZ decomposition is also called generalized Schur decomposition where S and T are the Schur form of A and B. The generalized eigenvalues λ that solve the generalized eigenvalue problem $Ax = \lambda Bx$ where x is an unknown nonzero vector and $\lambda_i = S_{ii}/T_{ii}$.

Suppose B is an identity matrix I, then the problem reduces to fine Q such that $A = QSQ^{-1}$ for real A or $A = QSQ^{H}$ for complex A. i.e. This is a special case.

3. Implementation

Two main functions are <code>geigen()</code> for generalized eigenvalues, and <code>qz()</code> for QZ decomposition with reordering capability. Both functions are able to deal a single matrix \boldsymbol{A} or a paired matrices $(\boldsymbol{A},\boldsymbol{B})$ in both complex and real systems. Both functions are wrapper functions for several lower level R functions <code>qz.*()</code> which are also wrapper functions via .Call() for C and Fortran functions to LAPACK library version 3.4.2.

LAPACK library is incorporated in **QZ** including complex*16 and double precision for complex and real systems respectively. **QZ** has functions of LAPACK and BLAS (Blackford *et~al.* 2002) independently to the R's LAPACK and BLAS libraries since some functions are not available. Table~1 provides a detail lists for the qz.*() functions.

Table 1: **QZ** functions

Function	Wrapper	Wrapper Main Input System		Purpose	
geigen()	qz.zgeev	A	Complex	Generalized eigenvalues	
gergen()	qz.dgeev	$oldsymbol{A}$	Real	Generalized eigenvalues	
	qz.zgees	A	Complex	QZ decomposition	
qz()	qz.dgees	$oldsymbol{A}$	Real	QZ decomposition	
q2()	qz.ztrsen	T, Q	Complex	Reordering	
	qz.dtrsen	$oldsymbol{T}, oldsymbol{Q}$	Real	rteordering	
maiman()	qz.zggev	(A,B)	Complex	Generalized eigenvalues	
geigen()	qz.dggev	$(m{A},m{B})$	Real	Generalized eigenvalues	
	qz.zgges	$(\boldsymbol{A}, \boldsymbol{B})$	Complex	QZ decomposition	
qz()	qz.dgges	$(\boldsymbol{A}, \boldsymbol{B})$	Real	©2 decomposition	
qz()	qz.ztgsen	(S,T),Q,Z	Complex	Reordering	
	qz.dtgsen	(S,T), Q, Z	Real	Teorucinig	

An extral MATLAB-like function ordqz() is also available to reordering generalized eigenvalues and QZ decomposition results. The function which is the combinations of qz() and qz.ztrsen()/qz.dtrsen() for specified ordering keywords in Table². Note that select

Table 2: The ordez() keyword for reording.

keyword	Purpose
lhp	Left-half $(real(E) < 0)$
rhp	Right-half (real(E) > 0)
udi	Interior of unit disk $(abs(E) < 1)$
udo	Exterior of unit disk $(abs(E) > 1)$
ref	Real eigenvalues first (top-left conner)
cef	Complex eigenvalues first (top-left conner)

argument of qz() allows users to specify any order to group and reorder the decompositions.

4. Data Example

There are four demos for the **QZ** package which are listed in Table~3

Table 3: The demos of **QZ** package.

	↓ 1 ∪
demo	Purpose
ex1_geigen	geigen() for double/complex single/paired matrices
ex2_qz	qz() for double/complex single/paired matrices
ex3_ordqz	ordqz() and arbiturary reordering
ex4_fda_geigen	generalized eigen analysis of fda pacakge (Ramsay et al. 2013)

There are also several datasets for **QZ** package to verify results which are listed in Table 4.

Table 4: The datasets of **QZ** package.

	• • •
data	Source
exAB1	http://www.nag.com/lapack-ex/node124.html
exAB2	http://www.nag.com/lapack-ex/node119.html
exAB3	http://www.nag.com/numeric/fl/nagdoc_fl23/xhtml/F08/f08yuf.xml
exAB4	http://www.nag.com/numeric/fl/nagdoc_fl23/xhtml/F08/f08yuf.xml
exA1	http://www.nag.com/lapack-ex/node94.html
exA2	http://www.nag.com/lapack-ex/node89.html
exA3	http://www.nag.com/numeric/fl/nagdoc_fl23/xhtml/F08/f08quf.xml
exA4	http://www.nag.com/numeric/fl/nagdoc_fl22/xhtml/F08/f08quf.xml
exA4	http://www.nag.com/numeric/fl/nagdoc_fl22/xhtml/F08/f08quf.xm

These demos can be obtained in R by the following.

QZ demo ex1_geigen

```
[1] 6.344+0i 5.941+0i 3.654+0i 5.468+0i
U:
                [,1]
                                [,2]
                                                 [,3]
                                                                   [,4]
    0.0358-0.1155i 0.0725-0.3001i 0.1650-0.0068i
                                                     0.01727-0.02542i
[1,]
    0.2152+0.2357i -0.2139+0.7641i 0.0999-0.8330i -0.01045-0.09180i
[2,]
[3,] -0.2425+0.4271i 0.7520-0.2317i -0.9374-0.0626i -0.17518-0.82482i
    0.5658-0.4342i -0.1782-0.8218i -0.0529+0.1385i -0.84361-0.01589i
[4,]
V:
                [,1]
                                                   [,3]
                                   [,2]
                   [,4]
[1,] -0.8238-0.1762i
                      0.63974+0.360259i 0.9775+0.0225i
   -0.90623+0.093766i
[2.] -0.1530+0.0707i 0.00416-0.000547i 0.1591-0.1137i
   -0.00743+0.006875i
[3,] -0.0707-0.1530i 0.04021+0.022645i 0.1209-0.1537i
   0.03021-0.003126i
[4,] 0.1530-0.0707i -0.02264+0.040212i 0.1537+0.1209i
   -0.01459-0.140970i
> ### http://www.naq.com/lapack-ex/node117.html
> (ret <- geigen(exAB2$A, exAB2$B))</pre>
ALPHA:
[1] 3.801+0.000i 3.030+4.040i 1.563-2.084i 4.000+0.000i
BETA:
[1] 1.900 1.010 0.521 1.000
U:
            [,1]
                            [,2]
                                            [,3]
    0.53333+0i 0.2171-0.1284i 0.2171+0.1284i -7.276e-17+0i
[1,]
[2,] -0.06667+0i 0.1744-0.1851i 0.1744+0.1851i -1.000e+00+0i
[3,] -1.00000+0i -0.7928+0.2072i -0.7928-0.2072i 1.000e+00+0i
[4,] 0.60000+0i 0.3912+0.0911i 0.3912-0.0911i -3.695e-16+0i
V:
                            [,2]
            [,1]
                                            [,3]
[1,] 1.000000+0i -0.4398-0.5602i -0.4398+0.5602i -1.00000+0i
[2,] 0.005714+0i -0.0880-0.1120i -0.0880+0.1120i -0.01111+0i
[3,] 0.062857+0i -0.1424+0.0031i -0.1424-0.0031i
                                                  0.03333+0i
[4,] 0.062857+0i -0.1424+0.0031i -0.1424-0.0031i -0.15556+0i
> ### http://www.naq.com/lapack-ex/node92.html
> (ret <- geigen(exA1$A))</pre>
W:
[1] -6.000-7.000i -5.000+2.006i 7.998-0.996i 3.002-4.000i
U:
                                                                [,4]
                [,1]
                                [,2]
                                                 [,3]
[1,] 0.8357+0.0000i -0.3510+0.1013i -0.1689+0.2595i 0.1099-0.2007i
[2,] -0.0794+0.3372i -0.4035+0.4540i 0.6762+0.0000i 0.0336+0.2312i
[3,] 0.0917+0.3097i 0.6239+0.0000i 0.3032+0.5642i 0.0944-0.3947i
```

```
[4,] 0.0456-0.2741i -0.0816-0.3190i 0.1328+0.1376i 0.8534+0.0000i
V:
                 [,1]
                                                   [,3]
                                                                    [,4]
                                  [,2]
[1,] 0.8457+0.0000i -0.3865+0.1732i -0.1730+0.2669i -0.0356-0.1782i
[2,] -0.0177+0.3036i -0.3539+0.4529i 0.6924+0.0000i 0.1264+0.2666i
[3,]
     0.0875+0.3115i 0.6124+0.0000i 0.3324+0.4960i 0.0129-0.2966i
[4,] -0.0561-0.2906i -0.0859-0.3284i 0.2504-0.0147i 0.8898+0.0000i
> ### http://www.nag.com/lapack-ex/node87.html
> (ret <- geigen(exA2$A))</pre>
W:
Г1]
    0.7995+0.0000i -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i
U:
                              [,2]
                                               [,3]
             [,1]
                                                          [,4]
[1,] -0.62447+0i 0.5330+0.0000i 0.5330+0.0000i 0.6641+0i
[2,] -0.59949+0i -0.2666+0.4041i -0.2666-0.4041i -0.1068+0i
[3,]
     0.49992+0i 0.3455+0.3153i 0.3455-0.3153i 0.7293+0i
[4,] -0.02709+0i -0.2541-0.4451i -0.2541+0.4451i 0.1249+0i
V:
                              [,2]
                                               [,3]
             [,1]
                                                         [,4]
[1,] -0.65509+0i -0.1933+0.2546i -0.1933-0.2546i 0.1253+0i
[2,] -0.52363+0i 0.2519-0.5224i 0.2519+0.5224i 0.3320+0i [3,] 0.53622+0i 0.0972-0.3084i 0.0972+0.3084i 0.5938+0i
[4,] -0.09561+0i 0.6760+0.0000i 0.6760+0.0000i 0.7221+0i
```

$QZ demo ex2_qz$

```
> demo(ex2_qz, 'QZ')
       demo(ex2_qz)
Type <Return> to start :
> library(QZ, quiet = TRUE)
> ### http://www.nag.com/lapack-ex/node124.html
> (ret <- qz(exAB1$A, exAB1$B))
[1] 19.03-57.10i 11.88-29.70i 10.96- 3.65i 21.87-27.34i
BETA:
[1] 6.344+0i 5.941+0i 3.654+0i 5.468+0i
S:
            [,1]
                        [,2]
                                      [,3]
[1,] 19.03-57.1i 53.59-89.82i -81.31-63.23i 106.66-44.79i
[2,] 0.00+ 0.0i 11.88-29.70i 3.56+27.63i -0.67-16.42i
[3,] 0.00+ 0.0i 0.00+ 0.00i 10.96- 3.65i -25.02- 8.20i
[4,] 0.00+ 0.0i 0.00+ 0.00i 0.00+ 0.00i 21.87-27.34i
```

```
T:
         [,1]
                      [,2]
                                     [,3]
                                                   [,4]
[1,] 6.344+0i 3.399+0.712i -0.515-2.382i 6.582+2.430i
[2,] 0.000+0i 5.941+0.000i -2.448-0.343i 5.739-0.702i
[3,] 0.000+0i 0.000+0.000i 3.654+0.000i -1.410-3.933i
[4,] 0.000+0i 0.000+0.000i 0.000+0.000i 5.468+0.000i
Q:
                [,1]
                                 [,2]
                                                 [,3]
                                                                    [,4]
[1,] -0.3347+0.7387i 0.2872-0.4789i 0.1725+0.0093i 0.01443-0.02124i
[2,] -0.1277+0.2493i -0.0282+0.4999i 0.1541-0.8008i -0.00873-0.07670i
 [3,] \quad -0.3557 + 0.0396 i \quad -0.4615 - 0.0822 i \quad -0.3939 + 0.0258 i \quad -0.14637 - 0.68917 i 
[4,] -0.0126-0.3682i 0.1508-0.4417i 0.1517-0.3555i -0.70486-0.01328i
Z:
                [,1]
                                 [,2]
                                                    [,3]
                                     [,4]
[1,] -0.9240-0.1977i 0.2460+0.2090i -0.00543+0.05421i
   0.000e+00+0.000e+00i
[2,] -0.1716+0.0793i -0.5943+0.0905i 0.74673-0.21271i
   -1.092e-16-3.690e-16i
[3,] -0.0793-0.1716i 0.0943-0.5082i 0.01020-0.44383i
   7.034e-01-7.277e-02i
    0.1716-0.0793i 0.5082+0.0943i 0.44383+0.01020i
   -7.277e-02-7.034e-01i
> ### http://www.nag.com/lapack-ex/node119.html
> (ret <- qz(exAB2$A, exAB2$B))
ALPHA:
[1] 3.801+0.000i 3.030+4.040i 1.563-2.084i 4.000+0.000i
BETA:
[1] 1.900 1.010 0.521 1.000
S:
      [,1]
           [,2]
                     [,3]
                              [,4]
[1,] 3.801 31.326 -61.485 -66.836
[2,] 0.000 3.351
                    7.074
                            6.692
[3,] 0.000 -1.192
                    1.410
                            4.379
[4,] 0.000 0.000
                    0.000
                            4.000
T:
     [,1]
           [,2]
                    [,3]
                         [,4]
[1,]
     1.9 -1.078 -5.6252 -9.987
     0.0 1.176 0.0000
[2,]
                         1.751
     0.0 0.000
                 0.4474
[3,]
                         1.090
    0.0 0.000 0.0000
[4,]
                         1.000
Q:
                [,2]
                        [,3]
       [,1]
                                    [,4]
[1,] 0.4642 0.81159 0.3547 -5.145e-17
[2,] 0.5002 -0.06975 -0.4950 -7.071e-01
[3,] 0.5002 -0.06975 -0.4950 7.071e-01
```

```
[4,] 0.5331 -0.57585 0.6198 -2.613e-16
Z:
         [,1]
                  [,2]
                           [,3]
                                      [,4]
[1,] 0.996056 0.08183 -0.03428 0.000e+00
[2,] 0.005692 -0.44454 -0.89574 5.145e-17
[3,] 0.062609 -0.63075 0.31343 7.071e-01
[4,] 0.062609 -0.63075 0.31343 -7.071e-01
> ### http://www.nag.com/lapack-ex/node94.html
> (ret <- qz(exA1$A))
W:
[1] -6.000-7.000i -5.000+2.006i 7.998-0.996i 3.002-4.000i
T:
                                     [,3]
      [,1]
                      [,2]
                                                     [,4]
[1,] -6-7i 0.1618+0.4896i 0.4761-0.1946i 0.8633-0.3014i
     0+0i -5.0000+2.0060i 0.6907+0.2115i 0.2281+0.1328i
[2,]
[3,]
     0+0i 0.0000+0.0000i 7.9982-0.9964i -1.0155+0.3626i
[4,]
     0+0i 0.0000+0.0000i 0.0000+0.0000i 3.0023-3.9998i
Q:
                [,1]
                                [,2]
                                                                [,4]
                                                [,3]
[1,] -0.5312-0.6581i -0.0799-0.3774i -0.0935-0.2736i 0.1869-0.1321i
    0.2474-0.1769i -0.4108-0.4021i -0.4015+0.6010i -0.0713+0.2225i
[2,]
     0.1874-0.2637i -0.0937+0.6241i -0.5752-0.0389i 0.2581-0.3132i
[3,]
[4,] -0.1909+0.2262i 0.3457-0.0537i -0.1537+0.1951i 0.7668+0.3747i
> ### http://www.nag.com/lapack-ex/node89.html
> (ret <- qz(exA2$A))
W:
[1] 0.7995+0.0000i -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i
T:
                 [,2]
                          [,3]
       [,1]
                                   [,4]
[1,] 0.7995 0.006037 -0.11445 -0.03357
[2,] 0.0000 -0.099412 -0.64834 -0.20258
[3,] 0.0000 0.247764 -0.09941 -0.34742
[4,] 0.0000 0.000000 0.00000 -0.10066
Q:
         [,1]
                 [,2]
                        [,3]
                                 [, 4]
[1,] -0.65509 -0.3450 -0.1037 0.6641
[2,] -0.52363  0.6141  0.5807 -0.1068
     0.53622 0.2935 0.3073 0.7293
[3,]
[4,] -0.09561 0.6463 -0.7467 0.1249
```

QZ demo ex3_ordqz

```
> demo(ex3_ordqz, 'QZ')

demo(ex3_ordqz)
```

```
____
Type <Return> to start :
> # Reordering eigenvalues
> library(QZ, quiet = TRUE)
> select <- c(TRUE, FALSE, FALSE, TRUE)
> (ret <- qz(exAB1$A, exAB1$B, select = select))</pre>
ALPHA:
[1] 19.033-57.099i 17.897-22.371i 18.175-45.437i 8.757- 2.919i
BETA:
[1] 6.344+0i 4.474+0i 9.087+0i 2.919+0i
S:
           [,1]
                        [,2]
                                        [,3]
                                                        [,4]
[1,] 19.03-57.1i 0.07-93.12i -128.250- 6.366i -98.392+ 9.509i
[2,]
    0.00+ 0.0i 17.90-22.37i 0.581- 4.575i 6.972+17.755i
[3,]
     0.00+ 0.0i 0.00+ 0.00i 18.175-45.437i -19.992- 6.063i
[4,]
    0.00+ 0.0i 0.00+ 0.00i
                              0.000+ 0.000i 8.757- 2.919i
T:
         [,1]
                     [,2]
                                  [,3]
[1,] 6.344+0i 1.427-1.821i -4.137-6.323i -1.783-1.262i
[2,] 0.000+0i 4.474+0.000i -0.003-3.720i -2.992-0.076i
[3,] 0.000+0i 0.000+0.000i 9.087+0.000i -0.777-1.003i
[4,] 0.000+0i 0.000+0.000i 0.000+0.000i 2.919+0.000i
Q:
                               [,2]
                                              [,3]
               [,1]
                                                               [,4]
[1,] -0.3347+0.7387i 0.0511-0.3524i -0.2997+0.3302i
                                                   0.08899-0.09359i
[3,] -0.3557+0.0396i -0.4717+0.2407i 0.0591+0.2199i -0.56045+0.47485i
[4,] -0.0126-0.3682i 0.4020-0.0522i 0.1201+0.8198i 0.04567+0.10657i
Z:
               [,1]
                               [,2]
                                                [,3]
                  [,4]
[1,] -0.9240-0.1977i 0.2234+0.1906i -0.08922-0.09991i
   0.0338+0.04268i
[2,] -0.1716+0.0793i -0.5288+0.0772i 0.27684-0.00803i
   0.3880-0.67191i
[3,] -0.0793-0.1716i -0.1722-0.6151i -0.57435-0.20679i
   -0.2753-0.32832i
[4,] 0.1716-0.0793i 0.3215+0.3418i -0.58658+0.43433i
   0.3229-0.32726i
> ### http://www.nag.com/lapack-ex/node119.html
> select <- c(TRUE, FALSE, FALSE, TRUE)
> (ret <- qz(exAB2$A, exAB2$B, select = select))</pre>
```

```
ALPHA:
[1] 3.801+0.000i 9.203+0.000i 0.857+1.143i 0.857-1.143i
BETA:
[1] 1.9005 2.3008 0.2857 0.2857
S:
     [,1]
            [,2]
                     [,3]
                            [,4]
[1,] 3.801 -69.451 50.3135 -43.288
                          5.988
[2,] 0.000 9.203 -0.2001
[3,] 0.000 0.000 1.4279
                          4.445
[4,] 0.000 0.000 0.9019 -1.196
T:
     [,1]
           [,2]
                   [,3]
                          [, 4]
[1,]
    1.9 -10.228 0.8658 -5.2134
          2.301 0.7915 0.4262
[2,]
    0.0
         0.000 0.8101 0.0000
    0.0
[3,]
[4,] 0.0 0.000 0.0000 -0.2823
Q:
       [,1]
               [,2]
                        [,3]
                               [, 4]
[1,] 0.4642 0.78862 0.29148 -0.2786
[2,] 0.5002 -0.59864 0.56379 -0.2713
[3,] 0.5002 0.01541 -0.01074 0.8657
[4,] 0.5331 -0.13952 -0.77270 -0.3151
Z:
         [,1]
                 [,2]
                          [,3]
                                    [,4]
[1,] 0.996056 -0.00140 0.08868 -0.002602
[2,] 0.005692 -0.04037 -0.09376 -0.994760
[3,] 0.062609 0.71938 -0.69084 0.036273
[4,] 0.062609 -0.69344 -0.71140 0.095554
> (ret <- ordqz(exAB2$A, exAB2$B, keyword = "ref"))</pre>
[1] 3.801+0.000i 9.203+0.000i 0.857+1.143i 0.857-1.143i
BETA:
[1] 1.9005 2.3008 0.2857 0.2857
S:
     [,1]
            [,2]
                     [,3]
                            [,4]
[1,] 3.801 -69.451 50.3135 -43.288
[2,] 0.000 9.203 -0.2001 5.988
[3,] 0.000 0.000 1.4279
                          4.445
[4,] 0.000 0.000 0.9019 -1.196
T:
     [,1] [,2] [,3] [,4]
[1,] 1.9 -10.228 0.8658 -5.2134
[2,] 0.0 2.301 0.7915 0.4262
[3,] 0.0 0.000 0.8101 0.0000
```

```
[4,] 0.0 0.000 0.0000 -0.2823
Q:
               [,2]
                        [,3]
                             [,4]
       [,1]
[1,] 0.4642 0.78862 0.29148 -0.2786
[2,] 0.5002 -0.59864 0.56379 -0.2713
[3,] 0.5002 0.01541 -0.01074 0.8657
[4,] 0.5331 -0.13952 -0.77270 -0.3151
Z:
         [,1]
                [,2]
                        [,3]
                                    [,4]
[1,] 0.996056 -0.00140 0.08868 -0.002602
[2,] 0.005692 -0.04037 -0.09376 -0.994760
[3,] 0.062609 0.71938 -0.69084 0.036273
[4,] 0.062609 -0.69344 -0.71140 0.095554
> (ret <- ordqz(exAB2$A, exAB2$B, keyword = "cef"))</pre>
ALPHA:
[1] 0.8571+1.143i 0.8571-1.143i 0.6172+0.000i 4.0000+0.000i
BETA:
[1] 0.2857 0.2857 0.3086 1.0000
S:
             [,2]
        [,1]
                      [,3]
                              [, 4]
[1,] -38.566 41.488 37.2809 65.427
[2,] 6.827 -5.244 -12.9545 -15.482
[3,] 0.000 0.000 0.6172 3.252
[4,]
      0.000 0.000
                     0.0000 4.000
T:
       [,1]
            [,2]
                   [,3]
                          [,4]
[1,] -3.368 0.0000 4.9228 9.696
[2,] 0.000 0.9621 -1.1839 -2.988
[3,] 0.000 0.0000 0.3086 1.027
[4,] 0.000 0.0000 0.0000 1.000
Q:
        [,1]
                [,2]
                       [,3]
                                  [,4]
[1,] -0.5521 -0.67876 0.4842 -5.145e-17
[2,] -0.5106 0.06994 -0.4842 -7.071e-01
[3,] -0.5106 0.06994 -0.4842 7.071e-01
[4,] -0.4169 0.72767 0.5447 -2.613e-16
Z:
              [,2]
        [,1]
                          [,3]
                                     [, 4]
    0.8775 0.43756 1.961e-01 0.000e+00
[1,]
     0.1755 0.08751 -9.806e-01 5.145e-17
[2,]
[3,] -0.3155 0.63281 -2.387e-15 7.071e-01
[4,] -0.3155 0.63281 -2.498e-15 -7.071e-01
> select <- c(TRUE, FALSE, FALSE, TRUE)
```

```
> (ret <- qz(exA1$A, select = select))</pre>
W:
[1] -6.000-7.000i 3.002-4.000i -5.000+2.006i 7.998-0.996i
T:
      [,1]
                     [,2]
                                     [,3]
[1,] -6-7i 0.3254-0.8854i 0.5349-0.0829i 0.0083+0.4285i
    0+0i 3.0023-3.9998i 0.1669+0.2948i -0.2477-1.0389i
[2,]
    0+0i 0.0000+0.0000i -5.0000+2.0060i -0.5188-0.4792i
[3,]
    0+0i 0.0000+0.0000i 0.0000+0.0000i 7.9982-0.9964i
[4,]
Q:
                [,1]
                                [,2]
                                                [,3]
                                                                [,4]
[1,] -0.5312-0.6581i -0.0184-0.2122i -0.3775+0.0311i 0.3003+0.0754i
[2,] 0.2474-0.1769i 0.2150+0.2457i -0.4610+0.3622i -0.2198-0.6395i
    0.1874-0.2637i -0.0469-0.2699i 0.6166+0.1728i 0.4350-0.4701i
[3,]
[4,] -0.1909+0.2262i 0.8352-0.2747i -0.0033-0.3207i 0.0869-0.1703i
> ### http://www.nag.com/lapack-ex/node89.html
> select <- c(TRUE, FALSE, FALSE, TRUE)
> (ret <- gz(exA2$A, select = select))</pre>
W:
[1] 0.7995+0.0000i -0.1007+0.0000i -0.0994+0.4008i -0.0994-0.4008i
T:
                 [,2]
                          [,3]
                                   [, 4]
       [,1]
[1,] 0.7995 -0.005914 -0.07508 -0.09268
[2,] 0.0000 -0.100657 0.39367 0.35692
[3,] 0.0000 0.000000 -0.09941 -0.51282
[4,] 0.0000 0.000000 0.31324 -0.09941
Q:
         [,1]
               [,2]
                          [,3]
                                   [,4]
[1,] -0.65509 -0.1210 -0.50323 0.55043
[2,] -0.52363 -0.3286 0.78570 0.02287
[3,] 0.53622 -0.5974 0.09038 0.58945
[4,] -0.09561 -0.7215 -0.34825 -0.59081
> (ret <- ordqz(exA2$A, keyword = "lhp"))</pre>
[1] -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i 0.7995+0.0000i
T:
                  [,2]
         [,1]
                          [,3]
                                   [,4]
[1,] -0.09941 0.24919 0.3491 0.089393
[2,] -0.64462 -0.09941 0.2049 0.090443
     0.00000 0.00000 -0.1007 0.009467
[3,]
     0.00000 0.00000 0.0000 0.799482
[4,]
Q:
        [,1]
               [,2]
                       [,3]
[1,] -0.1733 -0.3607 -0.6707 -0.62447
```

```
[2,]
    0.3629 0.3067 -0.7241
[3,]
                            0.49992
[4,] -0.7554 0.6426 -0.1252 -0.02709
> (ret <- ordqz(exA2$A, keyword = "rhp"))</pre>
[1] 0.7995+0.0000i -0.0994+0.4008i -0.0994-0.4008i -0.1007+0.0000i
T:
       [,1]
                 [,2]
                         [,3]
                                  [, 4]
[1,] 0.7995 0.006037 -0.11445 -0.03357
[2,] 0.0000 -0.099412 -0.64834 -0.20258
[3,] 0.0000 0.247764 -0.09941 -0.34742
[4,] 0.0000 0.000000 0.00000 -0.10066
Q:
                [,2]
         [,1]
                        [,3]
                                [,4]
[1,] -0.65509 -0.3450 -0.1037 0.6641
[2,] -0.52363 0.6141 0.5807 -0.1068
[3,] 0.53622 0.2935 0.3073 0.7293
[4,] -0.09561 0.6463 -0.7467 0.1249
> (ret <- ordgz(exA2$A, keyword = "ref"))</pre>
W:
[1] 0.7995+0.0000i -0.1007+0.0000i -0.0994+0.4008i -0.0994-0.4008i
T:
                 [,2]
                         [,3]
       [,1]
                                  [,4]
[1,] 0.7995 -0.005914 -0.07508 -0.09268
[2,] 0.0000 -0.100657 0.39367 0.35692
[3,] 0.0000 0.000000 -0.09941 -0.51282
[4,] 0.0000 0.000000 0.31324 -0.09941
Q:
                [,2]
                         [,3]
                                  [,4]
         [,1]
[1,] -0.65509 -0.1210 -0.50323 0.55043
[2,] -0.52363 -0.3286 0.78570 0.02287
[3,] 0.53622 -0.5974 0.09038 0.58945
[4,] -0.09561 -0.7215 -0.34825 -0.59081
> (ret <- ordqz(exA2$A, keyword = "cef"))</pre>
W:
[1] -0.0994+0.4008i -0.0994-0.4008i 0.7995+0.0000i -0.1007+0.0000i
T:
                         [,3]
         [,1]
                 [,2]
                                   [,4]
[1,] -0.09941 0.24919 0.09306 -0.348147
[2,] -0.64462 -0.09941 0.09259 -0.203889
     0.00000 0.00000 0.79948 0.009467
[3,]
[4,]
    0.00000 0.00000 0.00000 -0.100657
Q:
        [,1] [,2] [,3]
                               [,4]
```

```
[1,] -0.1733 -0.3607 -0.6315 0.6641

[2,] 0.5173 0.6024 -0.5984 -0.1068

[3,] 0.3629 0.3067 0.4923 0.7293

[4,] -0.7554 0.6426 -0.0284 0.1249
```

QZ demo ex4_fda_geigen

```
> demo(ex4_fda_geigen, 'QZ')
       demo(ex4_fda_geigen)
Type <Return> to start :
> library(QZ, quiet = TRUE)
> ### Generate Data
> set.seed(123)
> X <- matrix(rnorm(500), nrow = 25)
> X <- t(X) %*% X
> A <- X[1:8, 9:20]
> B <- X[1:8, 1:8]
> C <- X[9:20, 9:20]
> ### Perform generalized eigenanalysis
> ret.qz <- fda.geigen(A, B, C)</pre>
> ret.fda <- fda::geigen(A, B, C)</pre>
> ### Verify
> round(abs(ret.qz$values - ret.fda$values))
[1] 0 0 0 0 0 0 0 0
> round(abs(ret.qz$Lmat - ret.fda$Lmat))
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]
     0 0 0 0 0 0
[2,]
      0
          0
              0
                   0
                       0
                           0
[3,]
      0
          0 0 0 0 0 0
[4,]
          0 0 0 0 0
                                0
      0
              0 0 0 0
[5,]
      0
          0
                            0
                                0
      0
          0
                          0
                                0
[6,]
                                     0
      0
          0
                       0
              0
                   0
                           0
[7,]
                                0
                                     0
          0
                   0
[8,]
      0
> round(abs(ret.qz$Mmat - ret.fda$Mmat))
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
       0
           0 0 0 0 0
[1,]
```

[2,]	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0

References

- Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du~Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999). *LAPACK Users' Guide*. Third edition. Society for Industrial and Applied Mathematics, Philadelphia, PA. ISBN 0-89871-447-8 (paperback).
- Blackford L, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley R (2002). "An Updated Set of Basic Linear Algebra Subprograms (BLAS)." *ACM Trans. Math. Soft.*, **28**, 135–151. URL http://www.netlib.org/blas/.
- Chen WC (2013). "QZ: Generalized Eigenvalues and QZ Decomposition." R Package, URL http://cran.r-project.org/package=QZ.
- Ramsay J, Wickham H, Graves S, Hooker G (2013). "fda: Functional Data Analysis." R Package, URL http://cran.r-project.org/package=fda.