

LISTA DE EJERCICIOS - ÁLGEBRA GEM - 2021

Caleb - Michaell

Pregunta 1. Sea p un número primo, pruebe que $(\mathbb{Z}_p - \{\overline{0}\}, \cdot)$ es un grupo.

Solución: Consideremos $\overline{a} \neq \overline{0}$ cualquiera, salvo representantes podemos considerar que $a \in \{1, \ldots, p-1\}$ y como p es primo entonces (a, p) = 1. Así existen $x, y \in \mathbb{Z}$ tales que ax + py = 1. Esto implica que $\overline{ax} = \overline{1}$, por lo que todo elemento no nulo tiene inverso, probando lo pedido.

Pregunta 2. Pruebe que:

$$D_{2n} = \langle a, b \mid a^2 = b^2 = (ab)^n = 1 \rangle$$

donde a = s y b = sr.

Solución. Basta probar que las relaciones en cuestión son equivalentes a las vistas en la teoría.

 \bullet Si $r^n=s^2=1$ y $rs=sr^{-1}$ entonces se tiene que:

$$a^2 = s^2 = 1$$
 $b^2 = (sr)^2 = srsr = s^2 = 1$ $(ab)^n = (s^2r)^n = r^n = 1$

• Si $a^2 = b^2 = (ab)^n = 1$ entonces se tiene que:

$$s^2 = a^2 = 1$$
 $r^n = (s^2r)^n = (ab)^n = 1$ $srsr = 1 \implies rs = sr^{-1}$

Pregunta 3. Pruebe que el grupo $GL_2(\mathbb{Z}_2)$ no es abeliano y que tiene orden 6.

Solución. Los elementos de \mathbb{Z}_2 son $\{0,1\}$, haciendo cuentas se llega a que:

$$GL_2(\mathbb{Z}_2) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$

Para ver que no es un grupo abeliano resta ver que:

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Daniel - Cristopher

Pregunta 1. Consideremos Q el conjunto de números racionales.

a) Considere la relación en Q definida por:

$$a \sim b \Leftrightarrow a - b \in \mathbb{Z}$$

Pruebe que \sim es una relación de equivalencia.

b) Pruebe que $\left(\frac{\mathbb{Q}}{\sim},+\right)$ es un grupo abeliano con la operación:

$$\left[\frac{a}{b}\right] + \left[\frac{c}{d}\right] = \left[\frac{ad + bc}{bd}\right]$$

¿Es finito?

c) Considere p primo, pruebe que el conjunto:

$$\mathbb{Z}(p^{\infty}) = \left\{ \left[\frac{a}{b} \right] \in \frac{\mathbb{Q}}{\sim} : b = p^i, i \ge 0 \right\}$$

es un subgrupo de $\frac{\mathbb{Q}}{\sim}$.

Solución.

- a) Es inmediato del hecho que $0 \in \mathbb{Z}$ y que \mathbb{Z} es cerrado bajo la suma y producto.
- b) Para ver que es un grupo abeliano resta ver que la operación está bien definido, pues las demás propiedades se heredan de la suma en Q. Consideremos:

$$\frac{a}{b} \sim \frac{a'}{b'} \text{ y } \frac{c}{d} \sim \frac{c'}{d'}$$

Entonces se tiene que:

$$\frac{a}{b} + \frac{c}{d} - \left(\frac{a'}{b'} + \frac{c'}{d'}\right) \in \mathbb{Z} \implies \left[\frac{a}{b} + \frac{c}{d}\right] = \left[\frac{a'}{b'} + \frac{c'}{d'}\right]$$

c) Sean $\left[\frac{a}{b}\right], \left[\frac{c}{d}\right] \in \mathbb{Z}(p^{\infty})$, se tiene entonces que $b=p^i$ y $d=p^j$ con $i,j\geq 0$. Luego:

$$\left[\frac{a}{b}\right] - \left[\frac{c}{d}\right] = \left[\frac{ad - bc}{bd}\right]$$

Como $bd = p^{i+j}$ se tiene que la resta de estos elementos está en $\mathbb{Z}(p^{\infty})$ con lo que es un subgrupo. Note que es no vacío pues [a] es un elemento para cualquier $a \in \mathbb{Z}$.

2

Pregunta 2. Dado $m \leq n$ pruebe que el número de ciclos de longitud m es:

$$\frac{n(n-1)\dots(n-m+1)}{m}$$

Solución. El número de posibilidades para escoger m números y definir la permutación $(a_1 \cdots a_m)$ es $n(n-1)(n-2) \cdots (n-m+1)$. Sin embargo se sabe que:

$$(a_1 \dots a_m) = (a_2 a_3 \dots a_m a_1) = \dots = (a_m a_1 \dots a_{m-1})$$

Así para a_1, \ldots, a_m escogidos, habrán m ciclos de longitud m que serán lo mismo. En otras palabras hemos contado m veces el número total de m-ciclos, osea:

(número de m-ciclos)
$$m = n(n-1)(n-2)\cdots(n-m+1)$$

Así hemos obtenido lo pedido.

Pregunta 3. Para cada n definimos el conjunto:

$$U_n = \{ z \in \mathbb{C}^* : z^n = 1 \}$$

- a) $U_n \subseteq U_m$ si y solo si n|m.
- b) $U_n \cap U_m = U_d$ donde d = (m, n).
- c) Sea H un subgrupo finito de (\mathbb{C}^*,\cdot) , pruebe que existen tal que $H=U_n$.

Solución.

a) Supongamos que $U_n \subseteq U_m$, dado $k \in \{0, 1, ..., n-1\}$ se tiene que el número complejo $e^{\frac{2\pi ki}{n}} \in U_n$. Luego por hipótesis tenemos:

$$\left(e^{\frac{2\pi ki}{n}}\right)^m = \cos\left(\frac{2\pi km}{n}\right) + i\sin\left(\frac{2\pi km}{n}\right) = 1$$

Esto implica que $\cos\left(2\pi k\frac{m}{n}\right)=1$, por lo que necesariamente m/n es un número entero. Recíprocamente, pongamos que m=nk con k un número entero. Si $z\in U_n$ entonces:

$$z^m = (z^n)^k = 1$$

Por lo que $z \in U_m$ y se tiene lo pedido.

- b) Procederemos por doble inclusión:
 - (\subseteq) Sea $z \in U_n \cap U_m$, como d = (m, n) existen x, y enteros tal que d = mx + ny. Así tenemos que: $z^d = z^{mx+ny} = (z^m)^x (z^n)^y = 1$.
 - (\supseteq) Sea $z \in U_d$, como d divide a m y n se sigue que $z^n = 1 = z^m$.
- c) Sea H un subgrupo finito dígamos que tiene k elementos. Afirmamos que $H = U_k$, en efecto, veamos que $H \subseteq U_k$ para esto primero probemos un resultado auxiliar.

Lema: Si G es abeliano y de orden n, para todo $a \in G$ se tiene que $a^n = 1$.

En efecto, si a=1 lo que se pide es evidente. Supongamos que $a \neq 1$ y que $G = \{a_1, \ldots, a_n\}$. Los productos aa_i nos tiene que dar algún a_j con $j \neq i$, por lo que podremos reescribir $G = \{aa_1, aa_2, \ldots, aa_n\}$. Realizando el producto de todos los elementos de G de ambas formas tenemos:

$$(a_1 \cdots a_n) = (aa_1)(aa_2) \cdots (aa_n) = a^n(a_1 \cdots a_n)$$

Cancelando se tiene que $a^n = 1$.

En nuestro caso H es un grupo finito de k elementos, por lo que cualquier $h \in H$ cumple que $h^k = 1$ y así $h \in U_k$. Finalmente como $|U_k| = k$ entonces se sigue que $H = U_k$.

Guido - Jhonatan

Pregunta 1. Sea G un grupo, pruebe lo siguiente:

- a) Si $x^2 = 1$ para todo $x \in G$, entonces G es abeliano.
- b) Si G es abeliano pruebe que $(ab)^n = a^n b^n$ para cualquier $n \in \mathbb{Z}$ y $a, b \in G$. De un ejemplo de grupo no abeliano que no satisfaga lo anterior.

Solución.

a) Sean $x, y \in G$, se tiene que:

$$y^{-1}xyx^{-1} = y^{-1}(y^{2})xy(x^{2})x^{-1} = yxyx = (yx)^{2} = 1$$

Así $y^{-1}xyx^{-1} = 1$ lo que implica que xy = yx y así G es abeliano.

b) Primero veamos cuando $n \in \mathbb{N}$. Procederemos por inducción sobre n, el caso n=1 es evidente. Supongamos válido para n, tenemos:

$$(ab)^{n+1} = (ab)^n (ab) = a^n b^n (ab) = a^{n+1} b^{n+1}$$

Si n=0 se cumple de manera trivial y si n=-m con $m\in\mathbb{N}$ tenemos:

$$(ab)^n = ((ab)^{-1})^m = (a^{-1}b^{-1})^m = a^{-m}b^{-m} = a^nb^n$$

Consideremos D_{2n} , basta ver que:

$$(rs)^2 = rsrs = sr^{-1}rs = s^2 = 1$$
 y $r^2s^2 = r^2 \neq 1$

Pregunta 2. Sea $n \geq 2$ y $m \in \{1, ..., n\}$, pruebe que:

$$H = \{ \sigma \in S_n : \sigma(m) = m \}$$

es un subgrupo de S_n .

Solución. H es no vacío pues la identidad está en H. Ahora, sean $\sigma, \psi \in H$, entonces:

$$(\sigma\psi^{-1})(m) = \sigma(m) = m$$

pues $\psi^{-1}(m) = m$. Así $\sigma \psi^{-1} \in H$ demostrando lo pedido.

Pregunta 3. Un grupo H es finitamente generado si existe un conjunto finito S tal que $H = \langle S \rangle$. Pruebe que:

- a) Todo grupo finito es finitamente generado.
- b) \mathbb{Z} es finitamente generado.
- c) Todo subgrupo de $(\mathbb{Q}, +)$ que es finitamente generado es cíclico.

Solución.

- a) Resta ver que $H = \langle H \rangle$.
- b) Evidente pues $\mathbb{Z} = \langle 1 \rangle$.
- c) Sea H un subgrupo de \mathbb{Q} que es finitamente generado, digamos $H = \langle q_1, \dots, q_n \rangle$, donde los q_i son distintos. Siendo más específicos pongamos que:

$$q_i = \frac{a_i}{b_i}$$

Definamos dos números enteros como sigue:

$$a = \left(a_1 \left(\prod_{i \neq 1} b_i\right), a_2 \left(\prod_{i \neq 2} b_i\right), \dots, a_n \left(\prod_{i \neq n} b_i\right)\right) \quad \text{y} \quad b = \prod_{i=1}^n b_i$$

Afirmación: $H = \left\langle \frac{a}{b} \right\rangle$. En efecto, si $h \in H$ entonces:

$$h = m_1 \left(\frac{a_1}{b_1}\right) + m_2 \left(\frac{a_2}{b_2}\right) + \dots + m_n \left(\frac{a_n}{b_n}\right)$$

donde $m_i \in \mathbb{Z}$. Operando estas fracciones tenemos que:

$$h = \frac{a_1 \left(\prod_{i \neq 1} b_i\right) m_1 + \ldots + a_n \left(\prod_{i \neq n} b_i\right) m_n}{b_1 \ldots b_m} = \frac{a(m_1 k_1 + \ldots + m_n k_n)}{b_1 \ldots b_n} = k \left(\frac{a}{b}\right)$$

donde los k_i son enteros. Esto prueba que $H \subseteq \left\langle \frac{a}{b} \right\rangle$. Para la otra inclusión, por la definición de a existen x_1, \ldots, x_n enteros tales que:

$$a_1 \left(\prod_{i \neq 1} b_i \right) x_1 + \ldots + a_n \left(\prod_{i \neq n} b_i \right) x_n = a$$

Esto implica que:

$$\frac{a}{b} = \frac{a_1 \left(\prod_{i \neq 1} b_i\right) x_1 + \ldots + a_n \left(\prod_{i \neq n} b_i\right) x_n}{b_1 \ldots b_n} = \frac{a_1 x_1}{b_1} + \ldots + \frac{a_n x_n}{b_n} \in H$$

Así $\left\langle \frac{a}{b} \right\rangle \subseteq H$ y esto prueba lo pedido.

Juan Paucar - Marco

Pregunta 1. Consideremos G un grupo:

- a) Sea $x \in G$ con |x| = n, pruebe que $\{1, x, \dots, x^{n-1}\}$ son diferentes.
- b) Considere D_{2n} , halle el orden de $\langle r \rangle$.

Solución.

- a) Si existieran i, j con $0 \le i < j \le n-1$ (por ejemplo) tales que $x^i = x^j$. Entonces $x^{j-i} = 1$, sin embargo j i < n algo imposible. Esto prueba lo pedido.
- b) Por lo anterior el orden del subgrupo sería n pues |r| = n.

Pregunta 2. Considere el grupo S_5 :

a) Exprese

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

como producto de ciclos disjuntos. Indique la longitud de cada uno de estos.

b) Halle el orden de σ .

Solución.

- a) Se tiene que $\sigma = (135)(24)$ es la descomposición en ciclos disjuntos. La longitud de estos son 3 y 2.
- b) El orden de (135) es 3 y el orden de (24) es 2. Por esta razón el orden de σ es 6.

Pregunta 3. Pruebe que:

$$H(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

es un grupo llamado el grupo de Heisenberg.

Solución. $H(\mathbb{R})$ es no vacío pues $\mathrm{Id} \in H(\mathbb{R})$. Consideremos:

$$\begin{pmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{pmatrix} \in H(\mathbb{R})$$

Un cálculo directo muestra que:

$$\begin{pmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -a_2 & a_2c_2 - b_2 \\ 0 & 1 & -c_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Operando concluimos lo pedido:

$$\begin{pmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & a_1 - a_2 & a_2c_2 - b_2 - a_1c_2 + b_1 \\ 0 & 1 & c_1 - c_2 \\ 0 & 0 & 1 \end{pmatrix} \in H(\mathbb{R})$$

7

Miller

Pregunta 1. Sea G un grupo, pruebe lo siguiente:

- a) Si $(ab)^2 = a^2b^2$ para todo $a, b \in G$ pruebe que G es abeliano.
- b) Si $(ab)^i = a^i b^i$ para todo $a, b \in G$ y tres enteros consecutivos i, pruebe que G es abeliano.

Solución.

a) Sean $x, y \in G$ cualesquiera, basta usar la hipótesis y la propiedad cancelativa para probar lo pedido:

$$xyxy = (xy)^2 = x^2y^2 = xxyy \implies xy = yx$$

b) Sean $a, b \in G$ cualesquiera, entonces:

$$a^{i+1}b^{i+1} = (ab)^{i+1} = (ab)^{i}(ab) = a^{i}b^{i}ab$$

$$a^{i+2}b^{i+2} = (ab)^{i+2} = (ab)^{i+1}(ab) = a^{i+1}b^{i+1}ab$$

En la primera ecuación multiplicamos por a (a la izquierda) y b (a la derecha) e igualando con la segunda ecuación obtenemos:

$$a^{i+1}b^{i+1}ab = a^{i+1}b^iab^2 \implies ba = ab$$

Esto prueba lo pedido.

Pregunta 2. Numere los vértices de un polígono regular de n lados (P_n) por $\{1, \ldots, n\}$ (mantenga fija esta numeración). Para una simetría de P_n asocie una permutación $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$ definida por:

$$\sigma(i) = j \Leftrightarrow s$$
pone el vértice i en el lugar del vértice j

Denotamos por D_{2n} el conjunto de las permutaciones asociadas a cada simetría.

a) D_{2n} es un grupo con la composición usual de funciones, además tiene orden 2n. (Sugerencia: para encontrar el número total de simetrías debe hallar el número de formas que tiene de asignar los vértices 1 y 2 mediante estas. Para esto, dado i encuentre una simetría que envíe 1 a i, utilize la posición de los vértices para verificar que fijando este valor i existen dos simetrías más.)

b) Sea r la permutación asociada a la rotación de $2\pi/n$ y s la reflexión que deja el vértice 1 fijo. Pruebe que:

$$D_{2n} = \{1, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}\$$

(Sugerencia: pruebe que $r^n = s^2 = 1$, $s \neq r^i$ y que $sr^i \neq sr^j$).

c) Del item a) concluya que D_{2n} es un subgrupo de S_n .

Solución.

a) El hecho que D_{2n} sea un grupo es evidente, la composición de funciones es cerrada y asociativa, el elemento neutro sería la identidad y el inverso la función inversa de la permutación.

Veamos ahora que el orden es 2n, para esto procederemos como sigue.

- Paso 1: Encontrar todas las maneras posibles en las que se puede mapear el par (1,2) vía una simetría. Veamos primero el caso del 1, este vértice se puede enviar a cualquier $i \in \{1,\ldots,n\}$ pues simplemente debemos hacer una rotación de $2\pi(i-1)/n$. Así 1 tiene n posibles imágenes vía simetrías. Ahora fijemos un i, el vértice 2 solo tiene dos posibilidades o bien es i-1 o bien es i+1 (recordar que una simetría es una isometría que mapea el polígono en si mismo, así debe llevar vértices en vértices y estos deben dejar la distancia entre ellos constante). En resumidas cuentas el par (1,2) tiene 2n posibilidades.
- Paso 2: Para una elección de las imágenes del par (1,2) existe una sola simetría. En efecto, consideremos por ejemplo que $\sigma(1) = i$ y $\sigma(2) = i + 1$ con n = i + j. Entonces como σ es una simetría necesariamente $\sigma(3) = i + 2$ así hasta llegar a $\sigma(j+1) = n$. Nuevamente como σ es simetría tenemos que $\sigma(j+2) = 1, \sigma(j+3) = 2, \ldots, \sigma(j+i=n) = i-1$. Esta simetría está determinada por i, así es única.
- Paso 3. De los pasos anteriores tenemos que hay 2n formas de asignar 1 y 2, cada asignación determina una única simetría por lo que exactamente hay 2n simetrías, es decir $|D_{2n}| = 2n$. (Observación: cuando nos referimos a simetrías es a la permutación asociada)
- b) Las permutaciones vienen dadas de la siguiente manera:

$$r = \begin{pmatrix} 1 & 2 & \cdots & n \\ 2 & 3 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \end{pmatrix}$$

Si n=2k es par (la línea de simetría pasa por 1 y k+1 que son vértices opuestos):

$$s = \begin{pmatrix} 1 & 2 & 3 & \cdots & k+1 & \cdots & n \\ 1 & n & n-1 & \cdots & k+1 & \cdots & 2 \end{pmatrix} = (2 \ n)(3 \ n-1)\cdots(k \ k+2)$$

Si n = 2k + 1 es impar (la línea de simetría pasa por 1 y el punto medio del lado opuesto):

$$s = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & n & n-1 & \cdots & 2 \end{pmatrix} = (2 \ n)(3 \ n-1)\cdots(k \ k+3)(k+1 \ k+2)$$

La permutación r es un n-ciclo por lo que no es complicado probar que |r|=n. La permutación s es un producto de 2-ciclos, por lo que |s|=2. Así, tenemos que:

$$\langle r \rangle = \{1, r, \dots, r^{n-1}\} \quad \text{y} \quad \langle s \rangle = \{1, s\}$$

Para probar lo pedido, vamos a encontrar 2n simetrías distintas, como ya vimos que el orden de D_{2n} es 2n estas simetrías conformarán todo el grupo. Ya hemos encontrado n, las potencias de r y una más que sería s ($r \neq s$). Encontremos las demás.

Afirmación: $s \neq r^i$ para todo i. El caso i = n es evidente pues $r^n = 1 \neq 2$ veamos el caso en que $i \neq n$. Supongamos lo contrario, entonces existe algún $i \in \{1, \ldots, n-1\}$ tal que $s = r^i$. Como s(2) = n entonces $r^i(2) = n$, el único caso posible es que i = n-2 pues:

$$r^{i}(2) = \begin{cases} i+2 & \text{si } i \neq n-1\\ 1 & \text{si } i = n-1 \end{cases}$$

Como s(n) = 2 entonces $r^i(n) = 2$ pero $r^{n-2}(n) = n-2$ así el único caso en el que se da esto es cuando n = 4. En el caso del cuadrado tenemos:

$$s = (2 \ 4) \ y \ r = (1 \ 2 \ 3 \ 4)$$

y un cálculo directo muestra que $s \neq r^2$ y $s \neq r^3$. Entonces no existe ese tal i por lo que $s \neq r^i$.

Afirmación: $sr^i \neq sr^j$ para todo $i \neq j$. En efecto supongamos que existan $i \neq j$ tal que $sr^i = sr^j$. Así $sr^i(1) = sr^j(1)$. Luego operando:

$$sr^{i}(1) = s(i+1) = n+1-i$$
 y $sr^{j}(1) = s(j+1) = n+1-j$

Si igualamos tendríamos j = i algo imposible.

De las dos afirmaciones obtenemos n elementos más que serían:

$$sr, sr^2, \dots, sr^{n-1}$$

Así hemos encontrado 2n elementos distintos, probando lo pedido.

c) Es evidente pues D_{2n} está formado por permutaciones.

Pregunta 3. Pruebe que:

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R}, a \neq 0, c \neq 0 \right\}$$

es un subgrupo de $GL_2(\mathbb{R})$.

Solución. Claramente $G \subseteq \operatorname{GL}_2(\mathbb{R})$ pues el determinante de cada matriz es no nulo, ya que $a, c \neq 0$. Además $\operatorname{Id} \in G$ por lo que G es no vacío.

Sean dos matrices:

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}, \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} \in G$$

Entonces:

■ El producto:

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix} \in G$$

■ El inverso:

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/a_1 & -b_1/a_1c_1 \\ 0 & 1/c_1 \end{pmatrix} \in G$$

Esto prueba lo pedido.