Politechnika Warszawska Cyberbezpieczeństwo

WSI

Zadanie 5

Perceptron wielowarstowy

Łukasz Borowski 331159 Bartosz Czerwiński 331165

19 maja 2025

1. Wstęp

Ćwiczenie polegało na implementacji perceptronu wielowarstowego oraz dowolnego algorytmu optymalizacji gradientowej, przy użyciu metody propagacji wstecznej.

2. Opis implementacji

W pliku MLP.py zaimplementowano perceptron używający metody stochastycznego spadku gradientowego z mini-batchami, klasycznym sigmoidem i dowolna liczbą warstw ukrytych i neuronów w tych warstwach. Do testów użyto dwóch warstw, z 32 i 16 neuronami w pierwszej i drugiej warstwie. Funkcja kosztu była obliczana przy użyciu metody cross-entropy.

Ulepszona wersja została rozszerzona o regularyzację L2-L1 oraz funkcję dropoutu z zadanym wcześniej prawdopodobieństwem odrzucania neuronów.

3. Testy

Dane zostały podzielone na 3 grupy: treningowe, walidacyjne, testowe w stosunku 60:20:20. 5 razy losowo podzielono dane na 3 zbiory i wykonano na nich uczenie perceptronu, a następnie sprawdzono dokładność na danych testowych. Osiągnięto następujące wyniki:

- Dokładność zwykłego perceptronu: 64.22%
- Dokładność perceptrony z mechanizmami dropoutu oraz regularyzacji: 66.18%

4. Opis wyników

Wykorzystanie bardziej zaawansowanego perceptronu daje lepszą dokładność jednak model ten uczy się wolniej i potrzebuje więcej iteracji w celu uzyskania zadowalających wyników.