

第三周导学

大家好!

在第二周我们推出了实验,并在 github 上给出了完整的工程。那么,这里要问一下, 大家的环境配置好了吗? 三角形绘制完成了吗?

在本周,我们将推出朴素的软光栅的剩余内容,包括圆和椭圆的绘制、多边形的扫描转换、区域填充、反走样等内容,同时也会给出上周给出**思考题的答案——四边形绘制的解决方案**。需要跟大家提前说一声抱歉的是,这周推上来的视频中后面几个因为感冒有点红鼻头,而且声音不是特别好,请大家多包涵!

第三周推出课程内容的线索如下:

- 1、在上周直线的中点画法的基础上,将中点画法进行推广,用来解决圆和椭圆的绘制;
- 2、对多边形的扫描转换和区域填充进行讨论;
- 3、对反走样的知识进行讲解,从实践上来看现在的反走样有一系列"抗锯齿"的方法, 这些内容将在《第四篇 光栅化阶段》中给出一些实验参考(现阶段给出实验还缺少一些背景知识);

补充说明:本周推出了一则小图助学,这次的小图助学演示了直线、圆、椭圆的生成过程,以及反走样的基本处理方法(演示程序是我们自己编程实现的,目前看起来还不是十分完美,仅给大家提供参考)。

4、给出《实验 四边形绘制》的文字讲解和完整工程。

补充说明: 实验下载链接 https://github.com/wanlin405/Computer-Graphics

具体提供以下教学资源:

篇章	小节	对应知识点	视频及课件
第一篇 应用程序	4.2 如果是	八分画圆法	视频: 4.2 如果是圆? (上):
阶段	圆? (上):		八分法画圆
4 图形思维的起	八分法画圆		PDF: 4.2 如果是圆? (上):
点——朴素的			八分法画圆
软光栅	4.2 如果是	中点画法的思想	视频: 4.2 如果是圆? (下):
	圆? (下):	中点 Bresenham 画法	中点画圆法
	中点画圆法	的具体过程,包括当	PDF: 4.2 如果是圆? (下):
		前点、候选点、候选	中点画圆法
		点的中点、判别式、	
		判别式的递推、优化	
		等	

ı		·
4.3 椭圆又如	椭圆的中点画法思想	视频: 4.3 椭圆又如何?: 椭圆
何?:椭圆的	分析	的中点 Bresenham 画法
中点	椭圆中点 Bresenham	PDF: 4.3 椭圆又如何?: 椭圆
Bresenham 画	算法	的中点 Bresenham 画法
法	包括上半部分和下半	
	部分的分界点寻找等	
4.4 遇见多边	多边形的表示方法	视频: 4.4 遇见多边形 (上):
形 (上):	X扫描线算法	X 扫描线算法
X扫描线算法	X扫描线算法的改进	PDF: 4.4 遇见多边形 (上):
	思想	X 扫描线算法
4.4 遇见多边	X扫描线算法的改进	视频: 4.4 遇见多边形 (中):
形 (中):	思想	Y向连贯性算法
Y向连贯性算	改进算法所需要的数	PDF: 4.4 遇见多边形 (中):
法	据结构(边表及有序	Y向连贯性算法
	边表)	
	Y向连贯性算法	
4.4 遇见多边	奇妙的想法	视频: 4.4 遇见多边形 (下):
形 (下):	边标志算法	边标志算法
边标志算法	算法分析	PDF: 4.4 遇见多边形 (下):
		边标志算法
4.5 巧妙的区	区域的定义(包括内	视频: 4.5 巧妙的区域填充
域填充	点表示、边界表示、	PDF: 4.5 巧妙的区域填充
	四向连通、八向连通	
	等)	
	种子填充思想	
	分析与改进(如何避	
	免重复入栈等)	
4.6 属性——	各种属性的定义	视频: 4.6属性——改变图元的
改变图元的	属性的基本实现方法	模样
模样		PDF: 4.6 属性——改变图元的
		模样
4.7 必不可少	走样的概念	视频: 4.7 必不可少的反走样
的反走样	反走样的概念	PDF: 4.7 必不可少的反走样
	常用的反走样方法	
小图助学: 朴	演示直线、圆和椭圆	视频:小图助学:朴素的软光
素的软光栅	生成的过程,演示反	
	走样的基本原理	
实验: 四边形	EBO 的使用	PDF: 实验: 四边形绘制
会制	H4 IX/ H	《实验:四边形绘制》工程文
-A 171		件:
		https://github.com/wanlin405/C
		omputer-Graphics 上的
		task03-quad
		taskos quad

到此为止,就是《朴素的软光栅》的全部内容了。这种逐个像素点计算的过程比较原始,但是也是启发大家图形思维的最佳途径!

在下一周,我们将接触到复杂的造型技术,除了规则物体的造型,还有很多非规则物体的造型。这些造型方法可以帮助我们获得图形表示的顶点集合,从而传入几何阶段和光栅化阶段进行 GPU 渲染。通过体验球的绘制和模型导入实验,大家将会体会到造型的魅力。敬请期待!

From 你的小图

