实验报告: AlexNet、VGG16 和 VGG19 模型对比

1. 实验概述

在本实验中,分别测试了 AlexNet、VGG16 和 VGG19 三种经典卷 积神经网络模型在花卉分类任务中的表现。

2. 数据集和预处理

数据集: Tensorflow 官方花卉分类数据集 (3670 张图片),按9:1 比例分为训练集和测试集。

训练集预处理:

随机裁剪成 224x224 大小

随机水平翻转

图像标准化,均值为(0.5, 0.5, 0.5),标准差为(0.5, 0.5, 0.5)

测试集预处理:

调整为 224x224 大小

图像标准化,均值为(0.5, 0.5, 0.5),标准差为(0.5, 0.5, 0.5)

3. 模型架构

AlexNet: 较浅的卷积神经网络,包含5个卷积层和3个全连接层,较为简单,适合较小的数据集。

VGG16: 包含 16 层 (13 个卷积层, 3 个全连接层), 结构比 AlexNet 更深。

VGG19: 与 VGG16 类似,但包含 19 层 (16 个卷积层,3 个全连接层),理论上可以捕获更丰富的特征。

4. 训练参数

训练轮数 (epochs):30

批次大小 (batch size):32

学习率按每个模型各自多次测试取最佳来设置, ALEX 为 0.0002,

VGG16 和 19 为 0.0001

数据增强: 随机裁剪、水平翻转

5. 实验结果对比

模型 训练轮数 训练损失 测试准确率

AlexNet Epoch 1 1.489 0.486

Epoch 5 0.979 0.681

Epoch 10 0.794 0.725

Epoch 20 0.654 0.802

Epoch 30 0.519 0.791

VGG16 Epoch 1 1.544 0.415

Epoch 5 1.046 0.646

Epoch 10 0.910 0.662

Epoch 20 0.777 0.734

Epoch 30 0.657 0.755

VGG19 Epoch 1 1.527 0.277

Epoch 5 1.111 0.558

Epoch 10 0.945 0.640

模型 训练轮数 训练损失 测试准确率

Epoch 20 0.800 0.720

Epoch 30 0.708 0.734

AlexNet 的最佳测试准确率出现在第 27 轮,为 0.805 VGG16 的最佳测试准确率出现在第 28 轮,为 0.786 VGG19 的最佳测试准确率出现在第 29 轮,为 0.750

6. 实验分析

在本实验中, AlexNet 模型的表现反而优于 VGG16和 VGG19 模型。本实验的数据集规模较小,且数据样本的复杂度有限。对于这样的任务,深层的 VGG19 可能无法发挥出其优势,因为它设计的初衷是用于大规模图像数据集,需要提取非常复杂的特征。而在这个相对简单的数据集上,浅层模型更容易适应数据的特征,反而表现出更高的测试准确率。

另外就是, epoch 只设置了 30 轮, 但深层网络的训练难度较高, 随着网络深度的增加, 梯度可能会出现消失或爆炸的现象, 尤其是在小数据集和较长训练过程中。这可能导致模型在早期阶段难以快速收敛, 导致其效果不如较浅的模型。