Importance Sampling

Jan Overgoor

Contents

1.	Single Models	1
2.	Many models	2
3.	$ \begin{aligned} & \textbf{Non-Uniform sampling} \\ & u_= 0.5 \cdot k_x + 2 \cdot FoF_x & $	3 4
	<pre>build from command-line, run with: -e "rmarkdown::render('sampling.Rmd', output_file='sampling.html')"</pre>	
Fi	rst we read the data.	
Dε	ata is constructed as follows:	
	• start with G = nx.erdos_renyi_graph(2000, 0.005, seed=None, directed=False) • construct $n=1000$ edges, sample i uniformly, sample j according to conditional logit with u_{ij} $0.5 \cdot \log k_j + 2 \cdot 1\{FoF_{ij}\}$.	=
1.	. Single Models	
\mathbf{M}	odel 1 - No Sampling	
Do	besit model utility well? We fit $p(x_{ij}) \sim \theta_0 \cdot u_{ij}$. The ground truth is $\theta_0 = 1$.	
## ##	u 1.006169	
Do	be it fit the parameters well? We fit $p(x_{ij}) \sim \theta_1 \cdot k_j + \theta_2 \cdot fof_{ij}$. The ground truth is $\theta_1 = 0.5$ and $\theta_2 = 0.5$: 2.
	log(deg) fof 0.4129059 2.0320689	
It	slighly underestimates θ_1 , the role of degree.	
\mathbf{M}	odel 2 - uniform sampling (s=10)	
Do	pes it model utility well?	
## ##	u 0.9889336	
Do	pes it fit the parameters well?	
	log(deg) fof 0.4385999 1.9917675	

2. Many models

In Python, for $s \in [5, 10, 20, 50, 100]$, do uniform sampling 100 times, compute both utility model and parameter model.

The estimates converge to all, with less variance as s decreases. However, there is a bias in the parameter estimates, even for all.

This looks to be variance in the data generating process.

Here is a version with better presentation:

3. Non-Uniform sampling

$$u=0.5 \cdot k_x + 2 \cdot FoF_x$$

What share of alternatives has FoF option?

Fit with uniform sampling and stratified by Fof (both s = 10).

Now, result from doing it correctly (fitting in Python).

Method	Covariate	Mean	SE
all	theta_ 0	0.9995887	0.0128838
unif	theta_ 0	0.9875032	0.0378979
$strat_adj$	theta_ 0	0.9945701	0.0128677
all	theta $_1$	0.4748447	0.0722481
unif	theta $_1$	0.5723740	0.0954774
$strat_adj$	theta $_1$	0.5853502	0.0767333
all	theta $_2$	5.0041964	0.0657916
unif	theta $_2$	4.9005008	0.1913626
$strat_adj$	theta $_2$	4.9489058	0.0659108

$$u=0.5 \cdot k_x + 5 \cdot FoF_x$$

What share of alternatives has FoF option?

Fit with uniform sampling and stratified by Fof (both s = 10).


```
(0.041)
##
                          (0.012)
## log(deg + 1e-08)
                                   0.547***
                                            0.475***
##
                                    (0.094)
                                             (0.077)
## fof
                                   5.089***
                                            -0.299***
                                    (0.210)
                                             (0.065)
##
##
## Observations
                  1,000
                           1,000
                                    1,000
                -1,426.607 -2,392.948 -1,426.529 -2,366.562
## Log Likelihood
*p<0.1; **p<0.05; ***p<0.01
## Note:
```

Now, result from doing it correctly (fitting in Python).

Method	Covariate	Mean	SE
all	theta_ 0	0.9995887	0.0128838
unif	theta $_0$	0.9875032	0.0378979
$strat_adj$	theta $_0$	0.9945701	0.0128677
all	theta $_{-}$ 1	0.4748447	0.0722481
unif	theta $_1$	0.5723740	0.0954774
$strat_adj$	theta $_1$	0.5853502	0.0767333
all	theta $_2$	5.0041964	0.0657916
unif	theta $_2$	4.9005008	0.1913626
$strat_adj$	theta_ 2	4.9489058	0.0659108