贝叶斯分类器

一、贝叶斯定理

1.1 贝叶斯定理

1. 设 \mathbb{S} 为试验E 的样本空间; B_1, B_2, \dots, B_n 为E 的一组事件。若:

- $\circ \ B_i \cap B_j = \phi, i \neq j, i, j = 1, 2, \cdots, n$
- $\circ B_1 \bigcup B_2 \bigcup \cdots \bigcup B_n = \mathbb{S}$

则称 B_1, B_2, \dots, B_n 为样本空间 \mathbb{S} 的一个划分。

- 2. 如果 B_1, B_2, \dots, B_n 为样本空间 $\mathbb S$ 的一个划分,则对于每次试验,事件 B_1, B_2, \dots, B_n 中有且仅有一个事件发生。
- 3. 全概率公式: 设试验 E 的样本空间为 $\mathbb S$, A 为 E 的事件, B_1,B_2,\cdots,B_n 为样本空间 $\mathbb S$ 的一个划分,且 $p(B_i)\geq 0 (i=1,2,\cdots,n)$ 。则有:

$$p(A) = p(A \mid B_1)p(B_1) + p(A \mid B_2)p(B_2) + \dots + p(A \mid B_n)p(B_n) = \sum_{j=1}^n p(A \mid B_j)p(B_j)$$

4. 贝叶斯定理: 设试验 E 的的样本空间为 $\mathbb S$, A 为 E 的事件, B_1, B_2, \cdots, B_n 为样本空间 $\mathbb S$ 的一个划分,且 $p(A)>0, p(B_i)\geq 0 (i=1,2,\cdots,n)$,则有: $p(B_i\mid A)=\frac{p(A|B_i)p(B_i)}{\sum_{i=1}^n p(A|B_i)p(B_i)}$ 。

1.2 先验概率、后验概率

1. 先验概率:根据以往经验和分析得到的概率。

后验概率: 根据已经发生的事件来分析得到的概率。

- 2. 例:假设山洞中有熊出现的事件为Y,山洞中传来一阵熊吼的事件为X。
 - \circ 山洞中有熊的概率为 p(Y) 。它是先验概率,根据以往的数据分析或者经验得到的概率。
 - 。 听到熊吼之后认为山洞中有熊的概率为 $p(Y\mid X)$ 。它是后验概率,得到本次试验的信息从而重新修正的概率。

二、朴素贝叶斯法

1. 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。

对给定的训练集:

- 首先基于特征条件独立假设学习输入、输出的联合概率分布。
- \circ 然后基于此模型,对给定的输入 \vec{x} ,利用贝叶斯定理求出后验概率最大的输出y。
- 2. 朴素贝叶斯法不是贝叶斯估计, 贝叶斯估计是最大后验估计。

2.1 原理

1. 设输入空间 $\mathcal{X} \subseteq \mathbb{R}^n$ 为 n 维向量的集合 ,输出空间为类标记集合 $\mathcal{Y} = \{c_1, c_2, \cdots, c_k\}$ 。 令 $\vec{\mathbf{x}} = (x_1, x_2, \cdots, x_n)^T$ 为定义在 \mathcal{X} 上的随机向量,y 为定义在 \mathcal{Y} 上的随机变量。

令 $p(\vec{\mathbf{x}},y)$ 为 $\vec{\mathbf{x}}$ 和 y 的联合概率分布,假设训练数据集 $\mathbb{D}=\{(\vec{\mathbf{x}}_1,\tilde{y}_1),(\vec{\mathbf{x}}_2,\tilde{y}_2),\cdots,(\vec{\mathbf{x}}_N,\tilde{y}_N)\}$ 由 $p(\vec{\mathbf{x}},y)$ 独立同分布产生。

朴素贝叶斯法诵过训练数据集学习联合概率分布 $p(\vec{\mathbf{x}}, y)$ 。具体的学习下列概率分布:

- \circ 先验概率分布: p(y) 。
- \circ 条件概率分布: $p(\mathbf{\vec{x}} \mid y) = p(x_1, x_2, \cdots, x_n \mid y)$ 。
- 2. 朴素贝叶斯法对条件概率做了特征独立性假设: $p(\vec{\mathbf{x}} \mid y) = p(x_1, x_2, \dots, x_n \mid y) = \prod_{i=1}^n p(x_i \mid y)$ 。
 - 这意味着在分类确定的条件下,用于分类的特征是条件独立的。
 - 该假设使得朴素贝叶斯法变得简单,但是可能牺牲一定的分类准确率。
- 3. 根据贝叶斯定理:

$$p(y \mid \vec{\mathbf{x}}) = rac{p(\vec{\mathbf{x}} \mid y)p(y)}{\sum_{y'} p(\vec{\mathbf{x}} \mid y')p(y')}$$

考虑分类特征的条件独立假设有:

$$p(y \mid ec{\mathbf{x}}) = rac{p(y) \prod_{i=1}^n p(x_i \mid y)}{\sum_{y'} p(ec{\mathbf{x}} \mid y') p(y')}$$

则朴素贝叶斯分类器表示为:

$$f(\mathbf{ec{x}}) = rg \max_{y \in \mathcal{Y}} rac{p(y) \prod_{i=1}^n p(x_i \mid y)}{\sum_{y'} p(\mathbf{ec{x}} \mid y') p(y')}$$

由于上式的分母 $p(\vec{\mathbf{x}})$ 与 y 的取值无关,则分类器重写为: $f(\vec{\mathbf{x}}) = \arg\max_{y \in \mathcal{Y}} p(y) \prod_{i=1}^n p(x_i \mid y)$ 。

2.2 期望风险最小化

- 1. 朴素贝叶斯分类器是后验概率最大化,等价于期望风险最小化。
- 2. 令损失函数为:

$$egin{aligned} L(y,f(ec{\mathbf{x}})) &= egin{cases} 1, & y
eq f(ec{\mathbf{x}}) \ 0, & y = f(ec{\mathbf{x}}) \ \end{cases} \ R_{exp}(f) &= \mathbb{E}[L(y,f(ec{\mathbf{x}}))] &= \sum_{ec{\mathbf{x}} \in \mathcal{X}} \sum_{y \in \mathcal{Y}} L(y,f(ec{\mathbf{x}})) p(ec{\mathbf{x}},y) \end{aligned}$$

3. 根据 $p(\vec{x}, y) = p(\vec{x})p(y \mid \vec{x})$ 有:

$$R_{exp}(f) = \mathbb{E}[L(y, f(\vec{\mathbf{x}}))] = \sum_{\vec{\mathbf{x}} \in \mathcal{X}} \sum_{y \in \mathcal{Y}} L(y, f(\vec{\mathbf{x}})) p(\vec{\mathbf{x}}, y) = \mathbb{E}_X[\sum_{y \in \mathcal{Y}} L(y, f(\vec{\mathbf{x}})) p(y \mid \vec{\mathbf{x}})]$$

为了使得期望风险最小化,只需要对 \mathbb{E}_X 中的元素极小化。

令 $\hat{y} = f(\vec{x})$, 则有:

$$\begin{split} \arg\min_{\hat{y}} \sum_{y \in \mathcal{Y}} L(y, \hat{y}) p(y \mid \vec{\mathbf{x}}) &= \arg\min_{\hat{y}} \sum_{y \in \mathcal{Y}} p(y \neq \hat{y} \mid \vec{\mathbf{x}}) \\ &= \arg\min_{\hat{y}} (1 - p(\hat{y} \mid \vec{\mathbf{x}})) = \arg\max_{\hat{y}} p(\hat{y} \mid \vec{\mathbf{x}}) \end{split}$$

即:期望风险最小化,等价于后验概率最大化。

2.3 算法

- 1. 在朴素贝叶斯法中, 学习意味着估计概率: p(y), $p(x_i \mid y)$ 。
- 2. 可以用极大似然估计相应概率。
 - 。 先验概率 p(y) 的极大似然估计为: $p(y=c_k)=rac{1}{N}\sum_{i=1}^N I(ilde{y}_i=c_k)$
 - 。 设第 j 个特征 x_j 可能的取值为 $\{a_{j,1},a_{j,2},\cdots,a_{j,s_j}\}$,则条件概率 $p(x_j=a_{j,l}\mid y=c_k)$ 的极大似然估计为:

$$p(x_j = a_{j,l} \mid y = c_k) = rac{\sum_{i=1}^{N} I(x_{i,j} = a_{j,l}, ilde{y}_i = c_k)}{\sum_{i=1}^{N} I(ilde{y}_i = c_k)} \ j = 1, 2, \cdots, n; \ l = 1, 2, \cdots, s_j; \ k = 1, 2, \cdots, K$$

其中: I 为示性函数, $x_{i,j}$ 表示第 i 个样本的第 j 个特征。

- 3. 朴素贝叶斯算法:
 - 输入:
 - 训练集 $\mathbb{D} = \{(\vec{\mathbf{x}}_1, \tilde{y}_1), (\vec{\mathbf{x}}_2, \tilde{y}_2), \cdots, (\vec{\mathbf{x}}_N, \tilde{y}_N)\}$ 。 $\vec{\mathbf{x}}_i = (x_{i,1}, x_{i,2}, \cdots, x_{i,n})^T, x_{i,j} \text{ 为第 } i \text{ 个样本的第 } j \text{ 个特征。其中 } x_{i,j} \in \{a_{j,1}, a_{j,2}, \cdots, a_{j,s_j}\}$, $a_{i,l}$ 为第 j 个特征可能取到的第 l 个值。
 - 实例 🛣 。
 - 输出:实例 式的分类
 - 。 算法步骤:
 - 计算先验概率以及条件概率:

$$egin{aligned} p(y=c_k) &= rac{1}{N} \sum_{i=1}^N I(ilde{y}_i = c_k), k = 1, 2, \cdots, K \ p(x_j = a_{j,l} \mid y = c_k) &= rac{\sum_{i=1}^N I(x_{i,j} = a_{j,l}, ilde{y}_i = c_k)}{\sum_{i=1}^N I(ilde{y}_i = c_k)} \ j = 1, 2, \cdots, n; \ l = 1, 2, \cdots, s_j; \ k = 1, 2, \cdots, K \end{aligned}$$

- $lacksymbol{ iny}$ 对于给定的实例 $ec{\mathbf{x}}=(x_1,\ x_2,\cdots,x_n)^T$,计算: $p(y=c_k)\prod_{i=1}^n p(x_j\mid y=c_k)$ 。
- lacksquare 确定实例 $ec{\mathbf{x}}$ 的分类: $\hat{y} = rg \max_{c_k} p(y=c_k) \prod_{j=1}^n p(x_j \mid y=c_k)$.

2.4 贝叶斯估计

1. 在估计概率 $p(x_i \mid y)$ 的过程中,分母 $\sum_{i=1}^N I(\tilde{y}_i = c_k)$ 可能为 0 。这是由于训练样本太少才导致 c_k 的样本数为 0 。而真实的分布中, c_k 的样本并不为 0 。

解决的方案是采用贝叶斯估计(最大后验估计)。

2. 假设第 j 个特征 x_j 可能的取值为 $\{a_{j,1},a_{j,2},\cdots,a_{j,s_j}\}$,贝叶斯估计假设在每个取值上都有一个先验的计数 λ 。即:

$$p_{\lambda}(x_j = a_{j,l} \mid y = c_k) = rac{\sum_{i=1}^{N} I(x_{i,j} = a_{j,l}, ilde{y}_i = c_k) + \lambda}{\sum_{i=1}^{N} I(ilde{y}_i = c_k) + s_j \lambda} \ j = 1, 2, \cdots, n; \ l = 1, 2, \cdots, s_j; \ k = 1, 2, \cdots, K$$

它等价于在 x_i 的各个取值的频数上赋予了一个正数 λ 。

若 c_k 的样本数为0,则它假设特征 x_j 每个取值的概率为 $\frac{1}{s_j}$,即等可能的。

3. 采用贝叶斯估计后,p(y) 的贝叶斯估计调整为:

$$p_{\lambda}(y=c_k) = rac{\sum_{i=1}^{N}I(ilde{y}_i=c_k) + \lambda}{N+K\lambda}$$

- \circ 当 $\lambda=0$ 时,为极大似然估计当 $\lambda=1$ 时,为拉普拉斯平滑
- 。 若 c_k 的样本数为 0,则假设赋予它一个非零的概率 $\frac{\lambda}{N+K\lambda}$ 。

三、半朴素贝叶斯分类器

- 1. 朴素贝叶斯法对条件概率做了特征的独立性假设: $p(\vec{\mathbf{x}}\mid y)=p(x_1,x_2,\cdots,x_n\mid y)=\prod_{j=1}^n p(x_j\mid y)$ 。 但是现实任务中这个假设有时候很难成立。若对特征独立性假设进行一定程度上的放松,这就是半朴素贝叶斯分类器 semi-naive Bayes classifiers 。
- 2. 半朴素贝叶斯分类器原理: 适当考虑一部分特征之间的相互依赖信息,从而既不需要进行完全联合概率计算,又不至于彻底忽略了比较强的特征依赖关系。

3.1 独依赖估计 OED

1. 独依赖估计 One-Dependent Estimator:OED 是半朴素贝叶斯分类器最常用的一种策略。它假设每个特征在类别之外最多依赖于一个其他特征,即:

$$p(\mathbf{ec{x}}\mid y) = p(x_1, x_2, \cdots, x_n\mid y) = \prod_{j=1}^n p(x_j\mid y, x_j^P)$$

其中 x_i^P 为特征 x_j 所依赖的特征,称作的 x_j 父特征。

2. 如果父属性已知,那么可以用贝叶斯估计来估计概率值 $p(x_j \mid y, x_j^P)$ 。现在的问题是:如何确定每个特征的 父特征?

不同的做法产生不同的独依赖分类器。

3.1.1 SPODE

1. 最简单的做法是:假设所有的特征都依赖于同一个特征,该特征称作超父。然后通过交叉验证等模型选择方法来确定超父特征。这就是 SPODE: Super-Parent ODE 方法。

假设节点 Y 代表输出变量 y ,节点 X , 代表属性 x_i 。 下图给出了超父特征为 x_1 时的 x_1 时的 x_2 可以 x_3 可以 x_4 可以 x_5 可以 $x_$

朴素贝叶斯

半朴素贝叶斯: SPODE

3.1.2 TAN

- 1. TAN: Tree Augmented naive Bayes 是在最大带权生成树算法基础上,通过下列步骤将特征之间依赖关系简化为如下图所示的树型结构:
 - \circ 计算任意两个特征之间的条件互信息。记第 i 个特征 x_i 代表的结点为 X_i ,标记代表的节点为 Y 则有:

$$I(\mathbf{X}_i, \mathbf{X}_j \mid \mathbf{Y}) = \sum_y \sum_{x_i} \sum_{x_j} p(x_i, x_j \mid y) \log rac{p(x_i, x_j \mid y)}{p(x_i \mid y) p(x_j \mid y)}$$

如果两个特征 x_i,x_j 相互条件独立,则 $p(x_i,x_j\mid y)=p(x_i\mid y)p(x_j\mid y)$ 。则有条件互信息 $I(\mathbf{X}_i,\mathbf{X}_j\mid \mathbf{Y})=0$,则在图中这两个特征代表的结点没有边相连。

- 。 以特征为结点构建完全图,任意两个结点之间边的权重设为条件互信息 $I(\mathbf{X}_i,\mathbf{X}_j\mid \mathbf{Y})$ 。
- \circ 构建此完全图的最大带权生成树,挑选根结点(下图中根节点为节点 \mathbf{X}_1),将边置为有向边。
- \circ 加入类别结点 \mathbf{Y} ,增加 \mathbf{Y} 到每个特征的有向边。因为所有的条件概率都是以 y 为条件的。

半朴素贝叶斯: TAN

四、其它讨论

- 1. 朴素贝叶斯分类器的优点:
 - 。 性能相当好,它速度快,可以避免维度灾难。
 - 。 支持大规模数据的并行学习,且天然的支持增量学习。

- 2. 朴素贝叶斯分类器的缺点:
 - 。 无法给出分类概率,因此难以应用于需要分类概率的场景。