Eichler-Shimura isomorphism

Arun Soor

3rd November 2022

Abstract

These are notes for a seminar on Galois representations and modularity given in November 2022.

Contents

1 Preliminaries
2 Eichler-Shimura isomorphism
2
3 Hecke operators
4

1 Preliminaries

Let \mathfrak{H} denote the complex upper half plane and let $\mathfrak{H}^* = \mathfrak{H} \cup (\mathbb{Q} \cup \{\infty\})$ be the extended upper half plane obtained by adding in the cusps. Then $\mathfrak{H}, \mathfrak{H}^*$ have an action of $\mathrm{SL}_2(\mathbb{Z})$ by fractional linear transformations. Let $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$ be a congruence subgroup. The quotients

$$Y := \Gamma \backslash \mathfrak{H} \quad X := \Gamma \backslash \mathfrak{H}^*, \tag{1}$$

have a natural complex structure under which $X_{\Gamma}(\mathbb{C})^{\mathrm{an}}$ becomes a compact Riemann surface. A modular form of weight k and level Γ is a holomorphic function on \mathfrak{H} satisfying a boundedness condition at the cusps and the transformation rule

$$f|_{k}\gamma(\tau) := j(\gamma,\tau)^{-k}f(\gamma(\tau)) = f(\tau), \text{ for all } \gamma \in \Gamma,$$
 (2)

where, for $\gamma = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma$, $j(\gamma, \tau) \coloneqq (c\tau + d)$ is the "factor of automorphy". They form a vector space $\mathcal{M}_k(\Gamma)$. If f vanishes at the cusps it is called a cusp form and the subspace of such is denoted $\mathcal{S}_k(\Gamma)$. We can form the line bundle $\Gamma \setminus (\mathfrak{H} \times \mathbb{C}) \xrightarrow{p} Y$, with the natural projection p from the first factor, where Γ acts on $\mathfrak{H} \times \mathbb{C}$ by $\gamma \cdot (\tau, z) = (\gamma(\tau), j(\gamma, \tau)^k z)$. This extends to a line bundle ω^k over X. For f a holomorphic function on \mathfrak{H} , the condition that $\tau \mapsto (\tau, f(\tau))$ is a holomorphic section of p is equivalent to the rule (2), and boundedness of f at the cusps is equivalent to this section extending to X. Therefore we identify

$$\mathcal{M}_k(\Gamma) = H^0(X, \omega^k), \quad \mathcal{S}_k(\Gamma) = H^0(X, \omega^k(-D)), \tag{3}$$

where D = X - Y is the divisor defined by the cusps. There are \mathbb{Q} -schemes Y_{Γ} and X_{Γ} , where Y_{Γ} is affine, smooth, and identified with an open subscheme of the proper X_{Γ} , such that

$$Y = Y_{\Gamma}(\mathbb{C})^{\mathrm{an}}$$
 and $X = X_{\Gamma}(\mathbb{C})^{\mathrm{an}}$, (4)

where, if the level of Γ is ≥ 3 , Y_{Γ} is the fine moduli scheme representing the moduli functor (on Sch/\mathbb{Q}),

$$Y_{\Gamma}(S) = \{\text{elliptic schemes } E/S/\mathbb{Q} \text{ with level } \Gamma \text{ structure}\}/\sim,$$
 (5)

similarly X_{Γ} represents a moduli of generalised elliptic curves with level Γ structure. (The identification on $Y = Y_{\Gamma}(\mathbb{C})^{\mathrm{an}}$ is by sending an elliptic curve to its period.) By Yoneda, there then exists a universal elliptic curve with level Γ structure \mathcal{E}_{Γ} over Y_{Γ} . Henceforth we shall ignore all discussion of cusps and abusively refer to \mathcal{E}_{Γ} over X_{Γ} .

2 Eichler-Shimura isomorphism

Let $\mathcal{E}_{\Gamma} \xrightarrow{\pi} X_{\Gamma}$ be the structure map. It is proper. Then $\omega := R^1 \pi_* \Omega^1_{\mathcal{E}/X}$ is a line bundle over X_{Γ} such that the sheaf induced by $\omega^{\otimes k}$ on $X = X_{\Gamma}(\mathbb{C})^{\mathrm{an}}$ agrees with ω^k introduced previously. Therefore we have an "algebraic definition" of modular forms

$$\mathcal{M}_k(\Gamma) \coloneqq H^0(X_{\Gamma}, \omega^{\otimes k}). \tag{6}$$

The relative de Rham cohomology $\mathcal{H}^1_{dR}(\mathcal{E}/X)$ is equipped with a decreasing Hodge filtration

$$0 \to \omega \to \mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X) \to \omega^{-1} \to 0 \tag{7}$$

and Gauss-Manin connection $\nabla:\mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X)\to\mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X)\otimes\Omega^1_{X_\Gamma}$ satisfying Griffiths transversality, which, in this situation, amounts to the map

$$\nabla : \omega = \operatorname{gr}^{1} \mathcal{H}_{\mathrm{dR}}^{1}(\mathcal{E}/X) \to \operatorname{gr}^{0} \mathcal{H}_{\mathrm{dR}}^{1}(\mathcal{E}/X) \otimes \Omega_{X_{\Gamma}}^{1} = \omega^{-1} \otimes \Omega_{X_{\Gamma}}^{1}, \tag{8}$$

being well-defined. This is in fact an isomorphism, due to the Kodaira-Spencer isomorphism:

$$\omega^{\otimes 2} \cong \Omega^1_{X_p},\tag{9}$$

One can see this on the Riemann surface $X = \Gamma \backslash \mathfrak{H}^*$ as the map given locally by $\Omega_X^1(U) \ni f(\tau)d\tau \mapsto f(\tau)$, which is then a weight 2 modular form because of the rule $d\gamma(\tau) = j(\gamma,\tau)^{-2}d\tau$, i.e., a section of ω^2 . Let $\underline{\mathbb{Z}}$ be the constant local system on \mathcal{E}_{Γ} . Then $R^1\pi_*\underline{\mathbb{Z}}$ is (non-canonically) isomorphic to the locally constant sheaf $\underline{\mathbb{Z}}^2$ on X_{Γ} . Therefore there are isomorphisms

$$H^{1}(\Gamma, \operatorname{Sym}^{k-2}\mathbb{Z}^{2}) \otimes \mathbb{C} \cong H^{1}_{\operatorname{Betti}}(\mathfrak{H}^{*}/\Gamma, \operatorname{Sym}^{k-2}\mathbb{Z}^{2}) \otimes \mathbb{C}$$

$$= H^{1}(X_{\Gamma}(\mathbb{C})^{\operatorname{an}}, \operatorname{Sym}^{k-2}R^{1}\pi_{*}\underline{\mathbb{Z}}) \otimes \mathbb{C}$$

$$= H^{1}(X_{\Gamma}(\mathbb{C})^{\operatorname{an}}, \operatorname{Sym}^{k-2}R^{1}\pi_{*}\underline{\mathbb{C}}_{\varepsilon}).$$

$$(10)$$

Recall that the Riemann-Hilbert correspondence, for a smooth variety \mathbb{Z}/\mathbb{C} is

$$\{\mathbb{C} - \text{local systems } \mathbb{L} \text{ on } Z(\mathbb{C})^{\text{an}}\} \leftrightarrow \left\{ \begin{array}{c} \mathcal{O}_Z - \text{modules with} \\ \text{integrable connection } (\mathcal{M}, \nabla) \end{array} \right\},$$
 (11)

under which \mathbb{C}_Z corresponds to \mathcal{O}_Z . Moreover if \mathbb{L} corresponds to (\mathcal{M}, ∇) one has $H^i(Z(\mathbb{C})^{\mathrm{an}}, \mathbb{L}) = H^i_{\mathrm{dR}}(Z, \mathcal{M})$. It extends to a derived equivalence between perverse sheaves and regular holonomic \mathcal{D} -modules, compatible with the six functors on both sides, such that we recover (11) by taking cohomology. In our situation this implies $R^1\pi_*\mathbb{C}$ corresponds to $\mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X)$ since this is the first cohomology of the \mathcal{D} -module pushforward

 $\int_{\pi} \mathcal{O}_{\mathcal{E}}$. See [HTT08, Theorem 7.1.1]. Then, taking Sym^{k-2} , $\operatorname{Sym}^{k-2} R^1 \pi_* \mathbb{C}$ corresponds to $\operatorname{Sym}^{k-2} \mathcal{H}^1_{dR}(\mathcal{E}/X)$. Therefore

$$H^1(X_{\Gamma}(\mathbb{C})^{\mathrm{an}}, \mathrm{Sym}^{k-2} R^1 \pi_* \underline{\mathbb{C}}_{\mathcal{E}}) \cong H^1_{\mathrm{dR}}(X_{\Gamma,\mathbb{C}}, \mathrm{Sym}^{k-2} \mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X)).$$
 (12)

From the convergence of the Hodge-de Rham spectral sequence,

$$E_1^{p,q} = H^p(X_{\Gamma,\mathbb{C}}, \Omega_{X_{\Gamma}}^q \otimes \operatorname{Sym}^{k-2} \mathcal{H}_{dR}^1(\mathcal{E}/X)) \Rightarrow H_{dR}^{p+q}(X_{\Gamma,\mathbb{C}}, \operatorname{Sym}^{k-2} \mathcal{H}_{dR}^1(\mathcal{E}/X)), \quad (13)$$

we have an exact sequence of low degree terms

$$0 \to H^{0}(X_{\Gamma,\mathbb{C}}, \operatorname{Sym}^{k-2}\mathcal{H}^{1}_{\mathrm{dR}}(\mathcal{E}/X)) \to H^{0}(X_{\Gamma,\mathbb{C}}, \Omega^{1}_{X_{\Gamma}} \otimes \operatorname{Sym}^{k-2}\mathcal{H}^{1}_{\mathrm{dR}}(\mathcal{E}/X))$$

$$\to H^{1}_{\mathrm{dR}}(X_{\Gamma,\mathbb{C}}, \operatorname{Sym}^{k-2}\mathcal{H}^{1}_{\mathrm{dR}}(\mathcal{E}/X))$$

$$\to H^{1}(X_{\Gamma,\mathbb{C}}, \operatorname{Sym}^{k-2}\mathcal{H}^{1}_{\mathrm{dR}}(\mathcal{E}/X))$$

$$\to H^{1}(X_{\Gamma,\mathbb{C}}, \Omega^{1}_{X_{\Gamma}} \otimes \operatorname{Sym}^{k-2}\mathcal{H}^{1}_{\mathrm{dR}}(\mathcal{E}/X)) \to 0$$

$$(14)$$

Now examine the first two terms in the sequence. The last two terms will be essentially the same by Serre duality. Consider

$$H^{0}(X_{\Gamma,\mathbb{C}}, \operatorname{Sym}^{k-2}\mathcal{H}^{1}_{dR}(\mathcal{E}/X)) \xrightarrow{\nabla_{*}} H^{0}(X_{\Gamma,\mathbb{C}}, \operatorname{Sym}^{k-2}\mathcal{H}^{1}_{dR}(\mathcal{E}/X) \otimes \Omega^{1}_{X_{\Gamma}})$$

$$\uparrow \qquad \qquad \uparrow$$

$$H^{0}(X_{\Gamma,\mathbb{C}}, \omega^{k-2} \otimes \Omega^{1}_{X_{\Gamma}})$$

$$(15)$$

where the vertical map is induced by the Hodge filtration (7) on $\mathcal{H}^1_{dR}(\mathcal{E}/X)$ and the horizontal map ∇_* is induced by the Gauss-Manin connection ∇ . We claim that

$$S_k(\Gamma) \cong H^0(X_{\Gamma,\mathbb{C}}, \omega^{k-2} \otimes \Omega^1_{X_{\Gamma}})$$
 maps isomorphically onto $\operatorname{coker} \nabla_*,$ (16)

where on the left we used the Kodaira-Spencer isomorphism. Indeed, the Hodge filtration on $\mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X)$ induces one on $\mathrm{Sym}^{k-2}\mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X)$, with

$$\operatorname{gr}^{p}\operatorname{Sym}^{k-2}\mathcal{H}_{dR}^{1}(\mathcal{E}/X) \cong \omega^{2-k+2p},$$
 (17)

therefore, again by Kodaira-Spencer, $\operatorname{gr}^{\bullet}\nabla$ maps $\operatorname{gr}^{p}\mathcal{H}_{dR}^{1}$ isomorphically onto $\operatorname{gr}^{p-1}\mathcal{H}_{dR}^{1}\otimes\Omega^{1}_{X_{\Gamma}}$, for $p\geq k-2$. It follows that

$$\operatorname{coker} \operatorname{gr}^{\bullet} \nabla_{*} \cong H^{0}(X_{\Gamma,\mathbb{C}}, \omega^{k-2} \otimes \Omega^{1}_{X_{\Gamma}})[2-k] = \operatorname{gr}^{\bullet} H^{0}(X_{\Gamma,\mathbb{C}}, \omega^{k-2} \otimes \Omega^{1}_{X_{\Gamma}}), \tag{18}$$

since on the right hand side the filtration only jumps in degree k-2. The claim now follows since $\operatorname{gr}^{\bullet}$ is a conservative functor. Putting this all together, (and doing the same, after Serre duality, for the last two terms in (14)), we have obtained a natural short exact sequence

$$0 \to \mathcal{S}_k(\Gamma) \xrightarrow{\delta} H^1_{dR}(X_{\Gamma,\mathbb{C}}, \operatorname{Sym}^{k-2} \mathcal{H}^1_{dR}(\mathcal{E}/X)) \to \mathcal{S}_k(\Gamma)^{\vee} \to 0, \tag{19}$$

The de Rham's theorem comparison

$$H^1_{\mathrm{Betti}}(X, \mathrm{Sym}^{k-2}\underline{\mathbb{Z}}^2) \otimes \mathbb{C} \cong H^1_{\mathrm{dR}}(X_{\Gamma, \mathbb{C}}, \mathrm{Sym}^{k-2}\mathcal{H}^1_{\mathrm{dR}}(\mathcal{E}/X)) \tag{20}$$

endows the middle term of (19) with a complex conjugation ι , from id \otimes (-) on the left side, under which (19) becomes a Hodge filtration in weights (k-1,0), (0,k-1). In particular $\overline{\delta}: \overline{\mathcal{S}_k(\Gamma)} \cong \mathcal{S}_k(\Gamma)^{\vee} \to H^1_{\mathrm{dR}}(\ldots)$ gives a splitting of the quotient map in (19) and hence, combining with , an isomorphism

$$\beta: \mathcal{S}_k(\Gamma) \oplus \overline{\mathcal{S}_k(\Gamma)} \xrightarrow{\sim} H^1_{\text{Betti}}(X, \text{Sym}^{k-2}\mathbb{Z}^2) \otimes \mathbb{C}.$$
 (21)

This is known as the Eichler-Shimura isomorphism.

3 Hecke operators

Let $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$ be a congruence subgroup, let $\alpha \in \mathrm{GL}_2(\mathbb{Q})$ and set

$$\Gamma^{\alpha} = \alpha \Gamma \alpha^{-1} \cap \Gamma, \quad \Gamma_{\alpha} = \alpha^{-1} \Gamma \alpha \cap \Gamma, \tag{22}$$

these are again congruence subgroups. The isomorphism $[\alpha]: \Gamma_{\alpha} \to \Gamma^{\alpha}: \gamma \mapsto \alpha \gamma \alpha^{-1}$ induces an isomorphism $\Gamma_{\alpha} \backslash \mathfrak{H}^* \to \Gamma^{\alpha} \backslash \mathfrak{H}^*$. The inclusions $\Gamma_{\alpha}, \Gamma^{\alpha} \subseteq \Gamma$ induce finite unramified coverings of Riemann surfaces $\Gamma_{\alpha} \backslash \mathfrak{H}^*, \Gamma^{\alpha} \backslash \mathfrak{H}^* \to \Gamma \backslash \mathfrak{H}^*$. Therefore, we obtain a trace map on cohomology, and the composite

$$H^1_{\mathrm{Betti}}(X,A) \xrightarrow{\mathrm{Res}} H^1_{\mathrm{Betti}}(\Gamma^{\alpha} \backslash \mathfrak{H}^*, A) \xrightarrow{[\alpha]^*} H^1_{\mathrm{Betti}}(\Gamma_{\alpha} \backslash \mathfrak{H}^*, A) \xrightarrow{\mathrm{tr}} H^1_{\mathrm{Betti}}(X, A)$$
 (23)

is an A-linear map depending only on the double coset $\Gamma \alpha \Gamma$; here A is an arbitrary abelian group. If A is a $GL_2(\mathbb{Q})$ -equivariant local system we include an isomorphism $\alpha_* A \cong A$ in the composite (23). This operator is notated $[\Gamma \alpha \Gamma]$. For $f \in \mathcal{S}_k(\Gamma)$ or $\mathcal{M}_k(\Gamma)$ we define $f[\Gamma \alpha \Gamma]_k := \sum_i f|_k \beta_j$ where $\Gamma \alpha \Gamma = \bigsqcup_i \Gamma \beta_j$ is a system of coset representatives.

Since $\Gamma_1(N) \leq \Gamma_0(N)$ the quotient $\Gamma_0(N)/\Gamma_1(N) = (\mathbb{Z}/N\mathbb{Z})^{\times}$ acts on $\Gamma_1(N)$ by conjugation. Hence in the above discussion, taking $\alpha \in \Gamma_0(N)$ and $\Gamma = \Gamma_1(N)$, induces an action of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ on $H^1_{\text{Betti}}(X, A)$ and $\mathcal{S}_k(\Gamma_1(N))$. The operator induced by $d \in (\mathbb{Z}/N\mathbb{Z})^{\times}$

is denoted $\langle d \rangle_k$. Also, if one takes $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$ (and $\Gamma = \Gamma_1(N)$), the resulting oper-

ators on $H^1_{\text{Betti}}(X,A)$ and $\mathcal{S}_k(\Gamma_1(N))$ are denoted T_p . Let \mathbb{T}_k denote the subring of $\text{End}(\mathcal{S}_k(\Gamma_1(N)))$ generated by $\{\langle q \rangle_k, T_p : q, p + N \}$. Let $R(\Gamma_1(N))$ be the subring of $\text{End}(H^1_{\text{Betti}}(X, \text{Sym}^{k-2}\mathbb{Z}^2))$ generated by $\{\langle q \rangle_k, T_p : q, p + N \}$. By definition, we see that $R(\Gamma_1(N))$ is a finite \mathbb{Z} -module. Moreover, the Eichler-Shimura isomorphism is equivariant for these Hecke actions in the sense that, via (21), the action of $R(\Gamma_1(N))$ on $H^1_{\text{Betti}}(X, \text{Sym}^{k-2}\mathbb{Z}^2)$ induces an action on $\mathcal{S}_k(\Gamma_1(N))$ which agrees with \mathbb{T}_k . It follows that

Corollary 3.1. \mathbb{T}_k is a finite free \mathbb{Z} -module.

The elements of \mathbb{T}_k are commuting linear operators on $\mathcal{S}_k(\Gamma_1(N))$, and normal with respect to the Petersson inner product. Therefore

$$S_k(\Gamma_1(N)) = \bigoplus_{\lambda} S_k(\Gamma_1(N))_{\lambda}, \tag{24}$$

over all systems of eigenvalues $\lambda: \mathbb{T}_k \to \mathbb{C}$. Therefore, choosing a simultaneous basis of eigenforms simultaneously diagonalises the operators \mathbb{T}_k and defines an algebra isomorphism $\mathbb{T}_k \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}^{\#\{\text{distinct }\lambda\}}$. Since \mathbb{T}_k is free, $\mathbb{T}_k \to \mathbb{T}_k \otimes \mathbb{C}$ and so it is reduced. Corollary 3.1 implies that $\mathbb{Z} \to \mathbb{T}_k$ is an integral extension and since \mathbb{Z} is an integrally closed domain this extension satisfies going-up and going-down. In particular the minimal primes of \mathbb{T}_k are precisely the finitely many $\mathfrak{p} \subseteq \mathbb{T}_k$ lying above 0. Since $\mathbb{T}_k \otimes_{\mathbb{Z}} \mathbb{Q}$ is a finite \mathbb{Q} -algebra, it has a canonical decomposition

$$\mathbb{T}_k \otimes_{\mathbb{Z}} \mathbb{Q} \cong \prod_{\mathbf{p}} K_{\mathbf{p}}, \tag{25}$$

where the fields $K_{\mathfrak{p}}$ are the localisations of \mathbb{T}_k at these minimal primes. These primes can be identified with the kernels of homorphisms $\lambda : \mathbb{T}_k \to \overline{\mathbb{Q}}$, which determines λ

¹This is my (made-up) notation.

Arun Soor

up to $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -conjugacy². In turn we can choose a unique normalised newform $f \in \mathcal{S}_k(\Gamma_1(M))$ (for some M|N), for λ . In summary the following finite sets are in natural bijection:

- Minimal primes of \mathbb{T}_k .
- Maximal ideals of $\mathbb{T}_k \otimes_{\mathbb{Z}} \mathbb{Q}$.
- Gal($\overline{\mathbb{Q}}/\mathbb{Q}$)-conjugacy classes of normalised newforms in $\mathcal{S}_k(\Gamma_1(M))$, where M|N.

References

[HTT08] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki. *D-modules, perverse sheaves, and representation theory. Translated from the Japanese by Kiyoshi Takeuchi*, volume 236 of *Prog. Math.* Basel: Birkhäuser, expanded edition edition, 2008. ISSN: 0743-1643.

²If X/k is a scheme of locally finite type over a field then its closed points are in bijection with $X(\overline{k})/\operatorname{Gal}(\overline{k}/k)$.