MULTI 5 - Data set: GASOLINE

INTRODUZIONE

In questo dataset contiene informazioni relative a 18 countries raccolte per 19 anni. I panel relativi a paesi diversi sono composti dallo stesso numero di individui. Le variabili sono le seguenti:

- 1. CO: country
- 2. YR: year
- 3. LN GAS CAR: logaritmo del consumo di gasolio per auto
- 4. LN_Y_N: logaritmo del reddito pro capite
- 5. LN PMG PGDP: logaritmo del prezzo del gasolio
- 6. LN CAR N: stock of cars per capita

La variabile dipendente è il consumo per macchine, le altre sono utilizzate come variabili esplicative.

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione Multivariata

```
#-- R CODE
library(car)
library(sjstats)
library(plotrix)
library(sjPlot)
library(sjmisc)
library(lme4)
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2</pre>
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
  LM <- nrow(data)*Ru2
  p.value <- 1-pchisq(LM, 2)</pre>
  data.frame("Test statistic"=LM,"P value"=p.value)
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x \ge mean(x) + sd_factor * sd(x) | x \le mean(x) - sd_factor * sd(x))
#-- import dei dati
ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
d <- read.csv(paste0(ABSOLUTE_PATH,"\\esercizi (5) copia\\5.mult\\data.csv"),sep=";")</pre>
```

```
d_au <- d[d$COUNTRY=="AUSTRIA",]
names(d_au) <- paste0(names(d_au),"_AU")

d_be <- d[d$COUNTRY=="BELGIUM",]
names(d_be) <- paste0(names(d_be),"_BE")

d1 <- cbind(d_au,d_be)

#-- vettore di variabili numeriche presenti nei dati
VAR_NUMERIC <- c("LGASPCAR_AU","LINCOMEP_AU","LRPMG_AU","LCARPCAP_AU","LGASPCAR_BE","LINCOMEP_BE","LRPM
#-- print delle prime 6 righe del dataset
pander(head(d1),big.mark=",")</pre>
```

Table 1: Table continues below

					_
COUNTRY_AU	YEAR_AU	LGASPCAR_AU	LINCOMEP_AU	$LRPMG_AU$	LCARPCAP_AU
AUSTRIA	1,960	4.173	-6.474	-0.3345	-9.767
AUSTRIA	1,961	4.101	-6.426	-0.3513	-9.609
AUSTRIA	1,962	4.073	-6.407	-0.3795	-9.457
AUSTRIA	1,963	4.06	-6.371	-0.4143	-9.343
AUSTRIA	1,964	4.038	-6.322	-0.4453	-9.238
AUSTRIA	1,965	4.034	-6.295	-0.4971	-9.124

COUNTRY_BE	$YEAR_BE$	LGASPCAR_BE	LINCOMEP_BE	$LRPMG_BE$	LCARPCAP_BE
BELGIUM	1,960	4.164	-6.215	-0.1657	-9.406
BELGIUM	1,961	4.124	-6.177	-0.1717	-9.303
BELGIUM	1,962	4.076	-6.13	-0.2223	-9.218
BELGIUM	1,963	4.001	-6.094	-0.2505	-9.115
BELGIUM	1,964	3.994	-6.036	-0.2759	-9.005
BELGIUM	1,965	3.952	-6.007	-0.3449	-8.863

STATISTICHE DESCRITTIVE

Si propongono la matrice di correlazione tra le variabili e alcune descrittive di base.

```
#-- R CODE
pander(summary(d1[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

Table 3: Table continues below

LGASPCAR_AU	LINCOMEP_AU	$LRPMG_AU$	LCARPCAP_AU
Min. :3.923	Min. :-6.474	Min. :-0.6545	Min. :-9.767
1st Qu.:4.032	1st Qu.:-6.308	1st Qu.:-0.5408	1st Qu.:-9.181
Median $:4.048$	Median :-6.153	Median :-0.4696	Median :-8.789
Mean $:4.056$	Mean :- 6.120	Mean :- 0.4858	Mean : -8.848

LGASPCAR_AU	LINCOMEP_AU	LRPMG_AU	LCARPCAP_AU
3rd Qu.:4.091	3rd Qu.:-5.882	3rd Qu.:-0.4336	3rd Qu.:-8.459
Max. :4.199	Max. :-5.762	Max. :-0.3345	Max. :-8.211

_				
	$LGASPCAR_BE$	LINCOMEP_BE	$LRPMG_BE$	LCARPCAP_BE
_	Min. :3.818	Min. :-6.215	Min. :-0.5909	Min. :-9.406
	1st Qu.:3.854	1st Qu.:-6.022	1st Qu.:-0.3755	1st Qu.:-8.934
	Median $:3.878$	Median :-5.858	Median :-0.3449	Median :-8.521
	Mean $: 3.922$	Mean :- 5.852	Mean :- 0.3258	Mean :- 8.630
	3rd Qu.:3.973	3rd Qu.:-5.634	3rd Qu.:-0.2587	3rd Qu.:-8.293
	Max. $:4.164$	Max. :- 5.533	Max. :- 0.1657	Max. :- 8.105
	Median :3.878 Mean :3.922 3rd Qu.:3.973	Median :-5.858 Mean :-5.852 3rd Qu.:-5.634	Median :-0.3449 Mean :-0.3258 3rd Qu.:-0.2587	Median :-8.521 Mean :-8.630 3rd Qu.:-8.293

pander(cor(d1[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

Table 5: Table continues below

	LGASPCAR_AU	LINCOMEP_AU	LRPMG_AU	LCARPCAP_AU
LGASPCAR_AU	1	-0.4292	-0.176	-0.469
LINCOMEP_AU	-0.4292	1	-0.4552	0.9759
$LRPMG_AU$	-0.176	-0.4552	1	-0.5629
$LCARPCAP_AU$	-0.469	0.9759	-0.5629	1
$LGASPCAR_BE$	0.4681	-0.7425	0.6504	-0.8495
LINCOMEP_BE	-0.4324	0.9974	-0.4926	0.9845
$LRPMG_BE$	0.566	-0.8435	0.479	-0.8587
LCARPCAP_BE	-0.4381	0.9669	-0.602	0.996

	LGASPCAR_BE	LINCOMEP_BE	LRPMG_BE	LCARPCAP_BE
LGASPCAR_AU	0.4681	-0.4324	0.566	-0.4381
LINCOMEP_AU	-0.7425	0.9974	-0.8435	0.9669
$\mathbf{LRPMG}\mathbf{_AU}$	0.6504	-0.4926	0.479	-0.602
$LCARPCAP_AU$	-0.8495	0.9845	-0.8587	0.996
$LGASPCAR_BE$	1	-0.7643	0.6984	-0.8672
LINCOMEP_BE	-0.7643	1	-0.853	0.9775
$LRPMG_BE$	0.6984	-0.853	1	-0.8549
LCARPCAP_BE	-0.8672	0.9775	-0.8549	1

plot(d1[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(3,3))
for(i in VAR_NUMERIC){
  boxplot(d1[,i],main=i,col="lightblue",ylab=i)
}
par(mfrow=c(3,3))
```



```
for(i in VAR_NUMERIC){
  hist(d1[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


ESERCIZIO 1

#-- R CODE
mod1_AU <- lm(LGASPCAR_AU ~ LCARPCAP_AU + LINCOMEP_AU + LRPMG_AU, d1)
pander(summary(mod1_AU), big.mark=",")</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	3.727	0.373	9.99	5.06e-08
LCARPCAP_AU	-0.5199	0.1131	-4.595	0.0003502
LINCOMEP_AU	0.7607	0.2115	3.597	0.00264
$\mathbf{LRPMG_AU}$	-0.7932	0.1501	-5.285	9.163 e-05

Table 8: Fitting linear model: LGASPCAR_AU \sim LCARPCAP_AU + LINCOMEP_AU + LRPMG_AU

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
19	0.03919	0.7334	0.6801

pander(anova(mod1_AU),big.mark=",")

Table 9: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
LCARPCAP_AU	1	0.01902	0.01902	12.38	0.003104
LINCOMEP_AU	1	0.001478	0.001478	0.9624	0.3421
$LRPMG_AU$	1	0.04291	0.04291	27.93	9.163e-05
Residuals	15	0.02304	0.001536	NA	NA

#-- R CODE

mod1_BE <- lm(LGASPCAR_BE ~ LCARPCAP_BE + LINCOMEP_BE + LRPMG_BE, d1)
pander(summary(mod1_BE),big.mark=",")</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.042	0.4525	6.722	6.84e-06
LCARPCAP_BE	-0.6735	0.09332	-7.217	2.989e-06
LINCOMEP_BE	0.845	0.1702	4.964	0.00017
$LRPMG_BE$	-0.04165	0.1579	-0.2638	0.7956

Table 11: Fitting linear model: LGASPCAR_BE \sim LCARPCAP BE + LINCOMEP BE + LRPMG BE

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
19	0.03421	0.9088	0.8906

pander(anova(mod1 BE),big.mark=",")

Table 12: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
LCARPCAP_BE	1	0.1447	0.1447	123.7	1.213e-08
LINCOMEP_BE	1	0.03007	0.03007	25.7	0.0001385
$LRPMG_BE$	1	8.14e-05	8.14e-05	0.06957	0.7956
Residuals	15	0.01755	0.00117	NA	NA

Entrambi i modelli spiegano bene la variabile dipendente soprattutto nel caso del Belgio. Risultano fortemente significativi i parametri relativi a "Lcarcap" in entrambi i casi e "lincompep" più per l'Austria che per il Belgio. Simile anche il valore dei loro coefficienti di regressione. Il risultato si interpreta nel senso che "Lcarcap" logaritmo numero macchine procapite e "lincompep" logaritmo reddito procapite hanno un legame simile con "Lgaspcar" logaritmo consumi per macchina a significare comportamenti simili nell'uso delle automobili nei due paesi, sia rispetto all'uso delle macchine in dotazione sia rispetto al reddito.

Completamente diversi invece i coefficienti "Lrpmq" logaritmo prezzo della benzina logartimo consumo per macchima: il segno è sempre negativo ma il valore molto più forte per Austria dove il parametro è fortemente significativo rispetto al Belgio dove il parametro non è significativo. Solo in Austria il prezzo della benzina è determinante nel livello dei consumi.

Si propone innanzitutto la matrice di covarianza e correlazione tra valori predetti considerati congiuntamente.

```
#-- R CODE
pander(cor(data.frame(resid(mod1_BE),resid(mod1_AU))),big.mark=",")
```

	resid.mod1_BE.	resid.mod1_AU.
resid.mod1_BE. resid.mod1_AU.	1 0.2232	0.2232 1

```
pander(var(data.frame(resid(mod1_BE),resid(mod1_AU))),big.mark=",")
```

	resid.mod1_BE.	resid.mod1_AU.
resid.mod1_BE. resid.mod1_AU.	0.000975 0.0002494	0.0002494 0.00128

Si considerino ora le stesse regressioni stimate con errori correlati per individui posizionati nella stessa posizione.

```
#-- R CODE
e1 <- LGASPCAR_AU ~ LCARPCAP_AU + LINCOMEP_AU + LRPMG_AU
e2 <- LGASPCAR_BE ~ LCARPCAP_BE + LINCOMEP_BE + LRPMG_BE
sistema <- list(e1=e1,e2=e2)</pre>
mod1 <- systemfit(sistema, "SUR", data=d1)</pre>
summary(mod1)
##
## systemfit results
## method: SUR
##
##
           N DF
                                    OLS-R2 McElroy-R2
                     SSR detRCov
## system 38 30 0.041078
                            2e-06 0.852695
                                              0.857787
##
##
       N DF
                 SSR
                           MSE
                                   RMSE
                                               R2
                                                    Adj R2
## e1 19 15 0.023154 0.001544 0.039288 0.732153 0.678584
## e2 19 15 0.017924 0.001195 0.034568 0.906848 0.888218
##
## The covariance matrix of the residuals used for estimation
##
                          e2
              е1
## e1 0.00153615 0.00029925
## e2 0.00029925 0.00116999
##
## The covariance matrix of the residuals
               e1
## e1 0.001543571 0.000455754
## e2 0.000455754 0.001194940
## The correlations of the residuals
##
            e1
                     e2
```

```
## e1 1.000000 0.335579
## e2 0.335579 1.000000
##
##
## SUR estimates for 'e1' (equation 1)
## Model Formula: LGASPCAR AU ~ LCARPCAP AU + LINCOMEP AU + LRPMG AU
##
               Estimate Std. Error t value
                                              Pr(>|t|)
## (Intercept) 3.713252
                          0.371877
                                   9.98516 5.0955e-08 ***
## LCARPCAP_AU -0.496348
                          0.111424 -4.45457 0.00046346 ***
## LINCOMEP_AU 0.721405
                          0.208790 3.45516 0.00353421 **
## LRPMG_AU
              -0.753844
                          0.146377 -5.15002 0.00011858 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.039288 on 15 degrees of freedom
## Number of observations: 19 Degrees of Freedom: 15
## SSR: 0.023154 MSE: 0.001544 Root MSE: 0.039288
## Multiple R-Squared: 0.732153 Adjusted R-Squared: 0.678584
##
##
## SUR estimates for 'e2' (equation 2)
## Model Formula: LGASPCAR_BE ~ LCARPCAP_BE + LINCOMEP_BE + LRPMG_BE
##
##
                Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept) 2.8433228 0.4452354 6.38611 1.2236e-05 ***
## LCARPCAP_BE -0.6864106
                         0.0928051 -7.39626 2.2322e-06 ***
## LINCOMEP_BE 0.8351676
                         0.1695077 4.92702 0.00018248 ***
## LRPMG_BE
                         0.1539447 -0.84984 0.40877471
              -0.1308282
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.034568 on 15 degrees of freedom
## Number of observations: 19 Degrees of Freedom: 15
## SSR: 0.017924 MSE: 0.001195 Root MSE: 0.034568
## Multiple R-Squared: 0.906848 Adjusted R-Squared: 0.888218
```

I modelli interpretano bene le variabili dipendenti, meglio quello relativo al Belgio. Per quanto riguarda i singoli parametri i valori sono molto simili a quelli ottenuti con la stima OLS e i parametri significativi sono i medesimi. Ciò significa che la correlazione tra individui nella stessa posizione non è elevata come era prevedibile visto che gli individui nella stessa posizione non sono gli stessi.

```
#-- R CODE
plot(fitted(mod1)[,1],resid(mod1)[,1],pch=19,xlab="Predicted",ylab="Residual",main="Austria")
```

Austria

hist(resid(mod1)[,1],col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)[,1]),col=2,lwd=2)

pander(white.test(mod1[[1]][[1]]),big.mark=",")

Test.statistic	P.value
5.201	0.07424

pander(dwtest(mod1[[1]][[1]]),big.mark=",")

Table 16: Durbin-Watson test: mod1[[1]][[1]]

Test statistic	P value	Alternative hypothesis
1.88	0.1493	true autocorrelation is greater than 0

#-- R CODE
plot(fitted(mod1)[,2],resid(mod1)[,2],pch=19,xlab="Predicted",ylab="Residual",main="Belgio")

Belgio

hist(resid(mod1)[,2],col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)[,2]),col=2,lwd=2)

pander(white.test(mod1[[1]][[2]]),big.mark=",")

Test.statistic	P.value
7.121	0.02842

```
pander(dwtest(mod1[[1]][[2]]),big.mark=",")
```

Table 18: Durbin-Watson test: mod1[[1]][[2]]

Test statistic	P value	Alternative hypothesis
1.91	0.1851	true autocorrelation is greater than 0

Si evidenzia l'assenza di correlazione tra gli errori in entrambi i casi.

Si testano ora le ipotesi che rispettivamente i coefficienti A2 e B2, A3 e B3 e (A2 e B2, A3 e B3) siano uguali nelle due equazioni.

```
#-- R CODE
pander(linearHypothesis(mod1,"e1_LINCOMEP_AU = e2_LINCOMEP_BE",test="FT"),big.mark=",")
```

Table 19: Linear hypothesis test (Theil's F test)

Res.Df	Df	F	Pr(>F)
31	NA	NA	NA
30	1	0.2148	0.6464

pander(linearHypothesis(mod1,"e1_LCARPCAP_AU = e2_LCARPCAP_BE",test="FT"),big.mark=",")

Table 20: Linear hypothesis test (Theil's F test)

Res.Df	Df	F	Pr(>F)
31	NA	NA	NA
30	1	2.013	0.1663

pander(linearHypothesis(mod1,"e1_LRPMG_AU = e2_LRPMG_BE",test="FT"),big.mark=",")

Table 21: Linear hypothesis test (Theil's F test)

Res.Df	Df	F	Pr(>F)
31	NA	NA	NA
30	1	8.653	0.006238

Si passa a equazioni con regressori differenti, stimati con metodo OLS. Nella equazione 1 appaiono gli stessi regressori, nella 2 invece B2 e B4.

```
#-- R CODE
mod1_BE <- lm(LGASPCAR_BE ~ LCARPCAP_BE + LINCOMEP_BE, d1)
pander(summary(mod1_BE),big.mark=",")</pre>
```

	Estimate	Std. Error	t value	$\Pr(>\! t)$
(Intercept)	3.138	0.2613	12.01	2.036e-09
LCARPCAP_BE	-0.6687	0.08888	-7.524	1.217e-06
LINCOMEP_BE	0.8522	0.1631	5.223	8.364 e - 05

Table 23: Fitting linear model: LGASPCAR_BE \sim LCARPCAP_BE + LINCOMEP_BE

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
19	0.0332	0.9084	0.8969

pander(anova(mod1_BE),big.mark=",")

Table 24: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
LCARPCAP_BE	1	0.1447	0.1447	131.3	3.997e-09
LINCOMEP_BE	1	0.03007	0.03007	27.28	8.364 e-05
Residuals	16	0.01763	0.001102	NA	NA

#-- R CODE

mod1_AU <- lm(LGASPCAR_AU ~ LCARPCAP_AU + LINCOMEP_AU + LRPMG_AU, d1)
pander(summary(mod1_AU), big.mark=",")</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	3.727	0.373	9.99	5.06e-08
LCARPCAP_AU	-0.5199	0.1131	-4.595	0.0003502
LINCOMEP_AU	0.7607	0.2115	3.597	0.00264
$LRPMG_AU$	-0.7932	0.1501	-5.285	9.163 e-05

Table 26: Fitting linear model: LGASPCAR_AU ~ LCARPCAP_AU + LINCOMEP_AU + LRPMG_AU

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
19	0.03919	0.7334	0.6801

pander(anova(mod1_AU),big.mark=",")

Table 27: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
LCARPCAP_AU	1	0.01902	0.01902	12.38	0.003104
LINCOMEP_AU	1	0.001478	0.001478	0.9624	0.3421
$\mathbf{LRPMG}\mathbf{_AU}$	1	0.04291	0.04291	27.93	9.163 e-05
Residuals	15	0.02304	0.001536	NA	NA

La correlazione tra valori predetti delle variabile dipendente diminuisce leggermente ma il fitting complessivo rimane elevatissimo.

#-- R CODE
pander(cor(data.frame(resid(mod1_BE),resid(mod1_AU))),big.mark=",")

	resid.mod1_BE.	resid.mod1_AU.
${\bf resid.mod 1_BE.}$	1	0.1785
${\rm resid.mod 1_AU.}$	0.1785	1

pander(var(data.frame(resid(mod1_BE),resid(mod1_AU))),big.mark=",")

	resid.mod1_BE.	resid.mod1_AU.
resid.mod1_BE. resid.mod1_AU.	0.0009795 0.0001999	0.0001999 0.00128

Effettuiamo ora una stima Sure sulle due equazioni con differenti regressori.

```
#-- R CODE
e1 <- LGASPCAR_AU ~ LCARPCAP_AU + LINCOMEP_AU + LRPMG_AU
e2 <- LGASPCAR_BE ~ LCARPCAP_BE + LINCOMEP_BE
sistema <- list(e1=e1,e2=e2)</pre>
mod1 <- systemfit(sistema, "SUR", data=d1)</pre>
summary(mod1)
##
## systemfit results
## method: SUR
##
##
           N DF
                     SSR detRCov
                                   OLS-R2 McElroy-R2
## system 38 31 0.040745
                           2e-06 0.853887
##
##
       N DF
                          MSE
                                  RMSE
                 SSR
                                              R2
                                                   Adi R2
## e1 19 15 0.023113 0.001541 0.039254 0.732621 0.679145
## e2 19 16 0.017632 0.001102 0.033196 0.908366 0.896912
##
## The covariance matrix of the residuals used for estimation
##
               е1
                           e2
## e1 0.001536154 0.000232289
## e2 0.000232289 0.001101949
## The covariance matrix of the residuals
##
               e1
                           e2
## e1 0.001540879 0.000254352
## e2 0.000254352 0.001102000
## The correlations of the residuals
            е1
## e1 1.000000 0.195191
## e2 0.195191 1.000000
##
##
## SUR estimates for 'e1' (equation 1)
## Model Formula: LGASPCAR_AU ~ LCARPCAP_AU + LINCOMEP_AU + LRPMG_AU
##
##
                Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept) 3.717944
                         0.372286 9.98680 5.0845e-08 ***
## LCARPCAP_AU -0.501566
                          0.112036 -4.47682 0.00044332 ***
## LINCOMEP_AU 0.730330
                           0.209750 3.48191 0.00334546 **
## LRPMG AU
                           0.147721 -5.15559 0.00011732 ***
              -0.761591
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.039254 on 15 degrees of freedom
## Number of observations: 19 Degrees of Freedom: 15
## SSR: 0.023113 MSE: 0.001541 Root MSE: 0.039254
## Multiple R-Squared: 0.732621 Adjusted R-Squared: 0.679145
##
##
## SUR estimates for 'e2' (equation 2)
## Model Formula: LGASPCAR_BE ~ LCARPCAP_BE + LINCOMEP_BE
##
##
               Estimate Std. Error t value
                                              Pr(>|t|)
## (Intercept) 3.143384
                          0.260967 12.04516 1.9485e-09 ***
## LCARPCAP_BE -0.671089
                          0.088639 -7.57103 1.1251e-06 ***
## LINCOMEP_BE 0.856562
                          0.162711 5.26431 7.7105e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.033196 on 16 degrees of freedom
## Number of observations: 19 Degrees of Freedom: 16
## SSR: 0.017632 MSE: 0.001102 Root MSE: 0.033196
## Multiple R-Squared: 0.908366 Adjusted R-Squared: 0.896912
```

Anche in questo caso i cambiamenti sono minimi rispetto al caso OLS.

Per quanto riguarda i singoli parametri i valori sono molto simili a quelli ottenuti con la stima OLS e i parametri significativi sono i medesimi. Ciò significa che la correlazione tra individui nella stessa posizione non è elevata come era prevedibile visto che gli individui nella stessa posizione non sono gli stessi.

Si considerano infine tests sull'uguaglianza dei parametri in differenti equazioni.

```
#-- R CODE
pander(linearHypothesis(mod1,"e1_LCARPCAP_AU = -0.5199",test="FT"),big.mark=",")
```

Table 30: Linear hypothesis test (Theil's F test)

Res.Df	Df	F	Pr(>F)
32	NA	NA	NA
31	1	0.02682	0.871

```
pander(linearHypothesis(mod1,"e2_LCARPCAP_BE = -0.6687",test="FT"),big.mark=",")
```

Table 31: Linear hypothesis test (Theil's F test)

Res.Df	Df	F	Pr(>F)
32	NA	NA	NA
31	1	0.0007273	0.9787