Büchi's Logical Characterisation of Regular Languages

Meenakshi D'Souza

IIIT-Bangalore.

Term II 2022-'23.

Background

 Büchi's motivation: Decision procedure for deciding truth of first-order logic statements about natural numbers and their ordering. Eg.

$$\forall x \exists y (x < y).$$

- Used finite-state automata to give a decision procedure.
- By-product: a logical characterisation of regular languages.

Theorem (Büchi 1960)

L is regular iff L can be described in Monadic-Second Order Logic.

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

 - $\exists x (\forall y (y \leq x)).$

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

 - $\exists x (\forall y (y \leq x)).$

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

 - $\exists x (\forall y (y \leq x)).$

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

 - $\exists x (\forall y (y \leq x)).$
 - $\exists x (\forall y (x \leq y)).$
- Sentences 1 and 4 are true while others are not.

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, ...\}.$
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

 - \bigcirc $\forall x \exists y (y < x).$
 - $\exists x (\forall y (y < x)).$
 - $\exists x (\forall y (x < y)).$
- Sentences 1 and 4 are true while others are not.
- Question: Is there an algorithm to decide if a given $FO(\mathbb{N},<)$ sentence is true or not?

First-Order Logic

- A First-Order Logic usually has a signature comprising the constants, and function/relation symbols. Eg. (0, <, +).
- Terms are expressions built out of the constants and variables and function symbols. Eg. 0, x + y, (x + y) + 0. They are interpreted as elements of the domain of interpretation.
- Atomic formulas are obtained using the relation symbols on terms of the logic. Eg. x < y, x = 0 + y, x + y < 0.
- Formulas are obtained from atomic formulas using boolean operators, and existential quantification $(\exists x)$ and universal quantification $(\forall x)$. Eg. $\neg(x < y)$, $(x < 0) \land (x = y)$, $\exists x (\forall y (x < y) \land (z < x))$.

First-Order Logic

- Given a "structure" (i.e. a domain, a concrete interpretation for each constant and function/relation symbol) and an assignment for variables to values in the domain) to interpret the formulas in, each formula is either true or false.
- A formula is called a sentence if it has no free (unquantified)
 variables.

Second-Order Logic

• In Second-Order logic, one allows quantification over relations over the domain (not just elements of the domain). Eg:

$$\exists R^{(2)}(R^{(2)}(x,y) \implies x < y).$$

 In Monadic second-order logic, one allows quantification over monadic relations (i.e. relations of arity one, or equivalently, subsets of the domain). Eg:

$$\exists X (x \in X \implies 0 < x).$$

Monadic Second-Order logic over alphabet A: MSO(A)

• Interpreted over a string $w \in A^*$.

```
w = a \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b
```

- Domain is set of positions in w: $\{0, 1, 2, \dots, |w| 1\}$.
- "<" is interpretated as usual < over numbers.
- What we can say in the logic:
 - $Q_a(x)$: "Position x is labelled a".
 - x < y: "Position x is strictly less than position y".
 - $\exists x \varphi$: "There exists a position x ..."
 - $\forall x \varphi$: "For all positions x ..."
 - $\exists X \varphi$: "There exists a set of positions X ..."
 - $\forall X \varphi$: "For all sets of positions X ..."
 - $x \in X$: "Position x belongs to the set of positions X".

Example $MSO({a, b})$ formulas

Consider the alphabet $\{a, b\}$.

What language do the sentences below define?

- **3** $\exists x \exists y \exists z (succ(x, y) \land succ(y, z) \land last(z) \land (Q_b(x)).$

Example $MSO({a,b})$ formulas

Consider the alphabet $\{a, b\}$.

What language do the sentences below define?

- $\exists y (\neg \exists x (y < x) \land Q_b(y)).$
- **③** $\exists x \exists y \exists z (succ(x, y) \land succ(y, z) \land last(z) \land (Q_b(x)).$

Give sentences that describe the following languages:

- 1 Every a is immediately followed by a b.
- Strings of odd length.

MSO sentence for strings of odd length

Language $L \subseteq \{a, b\}^*$ of strings of odd length.

$$\exists X_e \exists X_o (\exists x (x \in X_e) \land (\forall x ((x \in X_e) \implies \neg x \in X_o) \land (x \in X_o) \implies \neg x \in X_e) \land (x \in X_e \lor x \in X_o) \land (zero(x) \implies x \in X_e) \land (\forall y ((x \in X_e \land succ(x, y)) \implies y \in X_o)) \land (\forall y ((x \in X_o \land succ(x, y)) \implies y \in X_e)) \land (last(x) \implies x \in X_e)))).$$

Formal Semantics of MSO

• An interpretation for the logic will be a pair (w, \mathbb{I}) where $w \in A^*$ and \mathbb{I} is an assignment of "individual" variables to a position in w, and "set" variables to a set of positions in w.

$$\mathbb{I}: Var \rightarrow pos(w) \cup 2^{pos(w)}.$$

- $\mathbb{I}[i/x]$ denotes the assignment which maps x to i and agrees with \mathbb{I} on all other individual and set variables.
- Similarly for $\mathbb{I}[S/X]$.

Formal Semantics of MSO

The satisfaction relation $w, \mathbb{I} \models \varphi$ is given by:

```
\begin{array}{lll} w, \mathbb{I} \models Q_a(x) & \text{iff} & w(\mathbb{I}(x)) = a \\ w, \mathbb{I} \models x < y & \text{iff} & \mathbb{I}(x) < \mathbb{I}(y) \\ w, \mathbb{I} \models x \in X & \text{iff} & \mathbb{I}(x) \in \mathbb{I}(X) \\ w, \mathbb{I} \models \neg \varphi & \text{iff} & w, \mathbb{I} \not\models \varphi \\ w, \mathbb{I} \models \varphi \lor \varphi' & \text{iff} & w, \mathbb{I} \models \varphi \text{ or } w, \mathbb{I} \models \varphi' \\ w, \mathbb{I} \models \exists x \varphi & \text{iff} & \text{exists } i \in pos(w) \text{ s.t. } w, \mathbb{I}[i/x] \models \varphi \\ w, \mathbb{I} \models \exists X \varphi & \text{iff} & \text{exists } S \subseteq pos(w) \text{s.t. } w, \mathbb{I}[S/X] \models \varphi \end{array}
```

MSO sentences

- A sentence is a formula with no free variables.
- For example $\exists X (y \in X \implies 0 < y)$ is not a sentence since y occurs free.
- $\exists X (0 \in X \implies \exists y (0 < y \land y \in X))$ is a sentence.
- If φ is a sentence, then we don't need an interpretation for variables to say if φ is true or false of a given word w:

$$\mathbf{w} \models \varphi$$
.

• For a sentence φ , we can define the language of words that satisfy φ :

$$L(\varphi) = \{ w \in A^* \mid w \models \varphi \}.$$

Languages definable by MSO

• We say that a language $L \subseteq A^*$ is definable in MSO(A) if there is a sentence φ in MSO(A) such that $L(\varphi) = L$.

Theorem (Büchi 1960 (also Elgot '61 and Traktenbrot 62))

 $L \subseteq A^*$ is regular iff L is definable in MSO(A).

From automata to MSO sentence

- Let $L \subseteq A^*$ be regular. Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA for L.
- To show L is definable in MSO(A).
- Idea: Construct a sentence φ_A describing an accepting run of A on a given word.

That is: φ_A is true over a given word w precisely when A has an accepting run on w.

Let
$$Q = \{q_1, \dots, q_n\}$$
, with $q_1 = s$. Define φ_A as

$$\exists X_{1} \cdots \exists X_{n} (\forall x ((\bigwedge_{i \neq j} (x \in X_{i} \implies \neg x \in X_{j}) \land \bigvee_{i} x \in X_{i}) \land (zero(x) \implies x \in X_{1}) \land (\bigwedge_{a \in A, i, j \in \{1, \dots n\}, \delta(q_{i}, a) = q_{j}} ((x \in X_{i} \land Q_{a}(x) \land \neg last(x)) \implies \exists y (succ(x, y) \land y \in X_{j}))) \land (last(x) \implies \bigvee_{a \in A, \delta(q_{i}, a) \in F} (Q_{a}(x) \land x \in X_{i})))).$$

Example

Consider language $L \subseteq \{a, b\}^*$ of strings of even length.

DFA \mathcal{A} for L:

 $\varphi_{\mathcal{A}}$:

$$\exists X_e \exists X_o (\forall x ((x \in X_e \implies \neg x \in X_o) \land (x \in X_o \implies \neg x \in X_e) \land (x \in X_e \lor x \in X_o) \land (zero(x) \implies x \in X_e) \land ((x \in X_e \land Q_a(x) \land \neg last(x)) \implies \exists y (succ(x, y) \land y \in X_o)) \land ((x \in X_e \land Q_b(x) \land \neg last(x)) \implies \exists y (succ(x, y) \land y \in X_o)) \land ((x \in X_o \land Q_a(x) \land \neg last(x)) \implies \exists y (succ(x, y) \land y \in X_e)) \land ((x \in X_o \land Q_b(x) \land \neg last(x)) \implies \exists y (succ(x, y) \land y \in X_e)) \land (last(x) \implies ((Q_a(x) \land x \in X_o) \lor (Q_b(x) \land x \in X_o))))).$$

From MSO sentence to automaton

- Idea: Inductively describe the language of extended models of a given MSO formula φ by an automaton \mathcal{A}_{φ} .
- Extended models wrt set of first-order and second-order variables $T = \{x_1, \dots, x_m, X_1, \dots, X_n\}$: (w, \mathbb{I})
- Can be represented as a word over $A \times \{0,1\}^{m+n}$.

For example above extended word satisfies the formula

$$Q_a(x_1) \wedge (x_2 \in X_1).$$

- If φ is a formula whose free variables are in T, then we have the notion of whether $w' \models \varphi$ based on whether the (w, \mathbb{I}) encoded by w' satisfies φ or not.
- Let the set of valid extended words wrt T be $valid^T(A)$.
- We can define an automaton $\mathcal{A}_{val}^{\mathcal{T}}$ which accepts this set.
- Claim: with every formula φ in MSO(A), and any finite set of variables T containing at least the free variables of φ , we can construct an automaton $\mathcal{A}_{\varphi}^{T}$ which accepts the language $\mathcal{L}^{T}(\varphi)$.
- Proof: by induction on structure of φ .

$$Q_a(x), x < y, x \in Y, \neg \varphi, \varphi \lor \psi, \exists x \varphi, \exists X \varphi.$$

$$\exists x (Q_a(x) \land \neg \exists y (x < y))$$

- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- What you can say:

$$x < y$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

 - $\exists x (\forall y (y \leq x)).$
- Question: Is there an algorithm to decide if a given $FO(\mathbb{N}, <)$ sentence is true or not?

- Büchi considered finite automata over infinite strings (so called ω -automata).
- An infinite word is accepted if there is a run of the automaton on it that visits a final state inifinitely often.
- Büchi showed that ω-automata have similar properties to classical automata: are closed under boolean operations, projection, and can be effectively checked for emptiness.
- MSO characterisation works similarly for ω -automata as well.
- Given a sentence φ in MSO($\mathbb{N},<$) we can now view it as an MSO($\{a\}$) sentence.
- Construct an ω -automaton \mathcal{A}_{φ} that accepts precisely the words that satisfy φ .
- Check if $L(\mathcal{A}_{\varphi})$ is non-empty.
- If non-empty say "Yes, φ is true", else say "No, it is not true."

Summary

 Another characterisation of the class of regular languages, this time via logic:

Theorem (Büchi 1960)

 $L \subseteq A^*$ is regular iff L is definable in MSO(A).

 An application of automata theory to solve a decision procedure in logic:

Theorem (Büchi 1960)

The Monadic Second-Order (MSO) logic of $(\mathbb{N}, <)$ is decidable.