

CIDADES DE MARTE

ALUNOS

Isabela Paulino de Souza – 18189

Gustavo Ferreira Gitzel – 18194

INTRODUÇÃO

Aplicativo Windows Forms cuja principal função é descobrir os caminhos existentes entre dois nós de um grafo. Utilizando a técnica de backtracking, árvores, pilhas e listas pudemos desenvolver tal algoritmo.

DESENVOLVIMENTO

22/05 – Criação da classe Cidade e Caminho para leitura dos arquivos em disco. Adicionamos a classes PilhaLista no projeto.

23/05 – Leitura das cidades, que são guardadas na árvore. Criação da função de desenhar a árvore no painel.

27/05 – Desenvolvimento do desenho das cidades no pictureBox do mapa com base em suas coordenadas contidas no arquivo texto. Percebemos que uma das coordenadas do arquivo texto não correspondia à coordenada presente no mapa.

29/05 – Desenvolvimento do algoritmo para descobrir todos os caminhos possíveis entre duas cidades.

30/05 – Desenvolvido o método para descobrir todos os caminhos possíveis entre duas cidades

03/06— Desenvolvido o método para descobrir qual o menor caminho a partir de uma pilha com todos os caminhos possíveis

04/06— Concluído o método para achar o menor caminho, além de desenvolver algoritmo para desenhar o caminho.

05/06 – Método para traçar os menores caminhos.

06/06 – Concluído o algoritmo para descobrir todos os caminhos e o menor caminho, além de terminar de desenhá-lo no mapa.

14/06 – Correção de bugs do algoritmo para descobrir todos os caminhos. Além de adicionar o método para desenhar o caminho escolhido no dgvCaminhosEncontrados. Por fim, terminamos de comentar o código e aprimoramos o design do projeto.

^{*}Grafo utilizado entre as cidades 8 e 12

	1119
8,10,14,2,10,12	
8, 6, 22, 7, 5, 12	1 7,19 70,11 14,2 2,10 10,12
7, 6, 22, 12, 15, 20, 10, 12	2 3/14 19,6 6,00 03,00 15,0000
3,6,13,10,12	3 9,10 10,6 6,22 22, + 7,5 5,12
	2 9 10 19.6 618 18/10/10/12
1, 19, 6, 13,10,12	5 1.6 6,22 32,00 17,15 15,23 120,0104
8, 19, 6, 22, 2,5,12	6 816 6,22 22,7 7,3 13/12
7, 40, 6, 22, 17, 15, 20, 10, 12	1
	Y 6
19 19 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
7.	
0,8 8,6, 7	
Non-American Street	

*Estruturas usadas no algoritmo

CONCLUSÃO

Ao desenvolver o aplicativo, aprimoramos nosso repertório sobre assuntos como backtracking, árvores, recursão, pilhas e grafos.