Wifi

Nome do arquivo: "wifi.x", onde x deve ser c|cpp|pas|java|js|py2|py3

A arquitetura do novo museu de ciências é bastante peculiar. O prédio do museu é uma grande sala retangular. Dentro dessa sala existem outras salas retangulares, e dentro delas existem outras salas retangulares, e assim recursivamente, como se fossem caixas dentro de caixas... As paredes das salas não se tocam. Veja um exemplo na parte esquerda da figura, com oito salas.

O diretor quer instalar uma rede wifi que funcione em todo o museu. Para economizar, ele quer comprar o número mínimo possível de antenas. O problema é que, pela forma como foram construídas as paredes das salas, ocorre uma coisa interessante: o sinal wifi é capaz de atravessar as paredes quando vem de dentro para fora, mas estranhamente não atravessa as paredes quando vem de fora para dentro das salas! A figura mostra duas posições possíveis para uma antena, mostrada como um círculo, e a área que o respectivo sinal wifi da antena alcançaria.

Neste problema, dados N retângulos cujos lados são paralelos aos eixos cartesianos, que descrevem as salas do museu, seu programa deve computar o número mínimo possível de antenas que o diretor deve comprar para que a rede wifi funcione em todo o museu.

Entrada

A primeira linha da entrada contém um inteiro N indicando o número de salas. Cada uma das N linhas seguintes contém quatro inteiros, X_1, Y_1, X_2 e Y_2 , definindo as coordenadas do canto superior esquerdo (X_1, Y_1) e inferior direito (X_2, Y_2) de uma sala. Não há nenhum tipo de interseção entre os retângulos que definem as salas. Um dos retângulos contém todos os demais e representa a sala mais externa (as paredes externas do prédio do museu).

Saída

Imprima um inteiro, representando o número mínimo possível de antenas de wifi para que a rede funcione em todo o museu.

Restrições

- $1 < N < 10^5$
- $-10^9 \le X_1, Y_1, X_2, Y_2 \le 10^9$; $X_1 < X_2 \in Y_2 < Y_1$

Informações sobre a pontuação

• Para um conjunto de casos de testes valendo 20 pontos, $1 \le N \le 10^4$.

Exemplo de entrada 1	Exemplo de saída 1
4	2
5 19 8 17	
5 15 15 5	
0 20 20 0	
8 10 10 8	

Exemplo de entrada 2	Exemplo de saída 2
1 -10000000 10000000 10000000 -10000000	1

Exemplo de entrada 3	Exemplo de saída 3
7	3
50 80 90 75	
45 30 50 20	
5 98 6 97	
0 100 100 0	
20 60 98 5	
25 50 70 10	
30 45 65 15	