Digital Filters & Spectral Analysis

Digital spectral analysis of discrete-time signals

Performing spectral analysis on a digital signal processor

Why do we need the DFT

Performing spectral analysis on a digital signal processor

Why do we need the DFT

From the DTFT to the DFT

Frequency domain sampling

N equidistant samples
$$\delta\Omega = \frac{2\pi}{N}$$
 , $0 \le \Omega < 2\pi$

From the DTFT to the DFT

Frequency domain sampling – Can we recover the original DT signal?

$$\Omega_{k} = \frac{2\pi}{N} k, \ k = 0, 1, \dots, N - 1$$

$$X(\Omega_{k}) = \sum_{n = -\infty}^{\infty} x[n] e^{-j\Omega_{k}n}$$

$$X(\frac{2\pi}{N}k) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\frac{2\pi}{N}kn}$$

$$= \dots + \sum_{n=-N}^{-1} x[n] e^{-j2\pi kn/N} + \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} + \sum_{n=N}^{2N-1} x[n] e^{-j2\pi kn/N} + \dots$$

- 1. $n \rightarrow n lN$
- 2. Change order of summation

$$e^{-j2\pi k(n-lN)/N} = e^{-j2\pi kn/N}e^{j2\pi klN/N} = e^{-j2\pi kn/N}e^{j2\pi kl}$$

From the DTFT to the DFT

Frequency domain sampling - Can we recover the original DT signal?

$$\Omega_{k} = \frac{2\pi}{N} k, \ k = 0, 1, \dots, N - 1$$

$$X(\Omega_{k}) = \sum_{n = -\infty}^{\infty} x[n] e^{-j\Omega_{k}n}$$

$$X(\frac{2\pi}{N} k) = \sum_{n = -\infty}^{\infty} x[n] e^{-j\frac{2\pi}{N} kn}$$

$$X(\frac{2\pi}{N}k) = \sum_{n=0}^{N-1} \sum_{l=-\infty}^{\infty} x[n-lN] e^{-j2\pi kn/N}, k = 0,1,...,N-1$$

$$x_p[n] = \sum_{l=1}^{\infty} x[n-lN], n = 0,1,..,N-1$$
 Periodic version of x[n] with period N

$$X(\frac{2\pi}{N}k) = \sum_{n=0}^{N-1} x_p(n)e^{-j2\pi kn/N}, k = 0,1,...,N-1$$

(1)

Discrete Fourier Series

Fourier series for discrete-time periodic signals

$$T_p \to N$$
, $\omega_0 = 2\pi/T_p \to 2\pi/N$, $t \to n$, $0 \le k \le N-1$

$$x_p(n) = \sum_{l=-\infty}^{\infty} x[n-lN], n = 0,1,..,N-1$$

Periodic version of x[n] with period N

$$x_p(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi k n/N}, n = 0,1,...,N-1$$

Fourier Series expansion of $x_p[n]$

From the DTFT to the DFT

Frequency domain sampling – Can we recover the original DT signal?

$$\Omega_{k} = \frac{2\pi}{N} k, \ k = 0,1,...,N-1$$

$$x_{p}(n) = \sum_{l=-\infty}^{\infty} x[n-lN], \ n = 0,1,...,N-1$$

$$X(\frac{2\pi}{N} k) = \sum_{n=0}^{N-1} x_{p}(n)e^{-j2\pi kn/N}$$
(1)

$$x_p(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi k n/N}, \ n = 0,1,...,N-1$$
 Fourier Series expansion of $x_p[n]$ (2)

$$c_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x_{p}(n) e^{-j2\pi k n/N} \quad \stackrel{(1)}{\Rightarrow} c_{k} = \frac{1}{N} X(\frac{2\pi}{N} k) , k = 0,1,..,N-1 \quad (3)$$

$$\Rightarrow x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(\frac{2\pi}{N}k) e^{j2\pi k n/N}, \ n = 0,1,...,N-1$$
 (4)

From the DTFT to the DFT

Can we recover the aperiodic DT signal x[n] from the samples of $X(\Omega)$?

From the sampled spectrum we can recover a periodic extension of x[n], $x_p[n]$

$$x_p(n) = \sum_{l=-\infty}^{\infty} x[n-lN], n = 0,1,...,N-1$$

$$x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(\frac{2\pi}{N}k) e^{j2\pi k n/N}$$
 (4)

- 1. Sampling in the frequency domain leads to a periodic representation in the time domain
- 2. Sampling in the frequency domain can lead to overlapping copies in the time domain

Time Domain Aliasing

1. If aliasing is not present then we can recover x[n] from the periodic signal $x_p[n]$:

$$x[n] = \begin{cases} x_p[n], & 0 \le n \le N - 1 \\ 0, & elsewhere \end{cases}$$

Time Domain Aliasing

Can we recover the aperiodic signal x[n] from the samples of $X(\Omega)$?

a) x[n] Original discrete time signal of length L

- b) x_p[n] Periodic discrete time signal recovered from the sampled spectrum when N > L
- c) $x_p[n]$ Aliased periodic discrete time signal recovered from the sampled spectrum when N < L

To avoid aliasing the number of samples N in the frequency domain should be greater than the number of samples L in the time domain (length of DFT > length of signal)

Time Domain Aliasing

Avoiding overlapping copies in the time domain due to spectrum sampling

From the DTFT to the DFT

From infinite-extent periodic signals to finite extent aperiodic ones

$$x_p(n) = \sum_{l=-\infty}^{\infty} x[n-lN], n = 0,1,..., N-1 = x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(\frac{2\pi}{N}k) e^{j2\pi kn/N}$$

Infinite extent periodic signal

N>L => No Aliasing

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(\frac{2\pi}{N}k) e^{j2\pi k n/N}, \ 0 \le n \le N-1$$

Inverse Discrete Fourier Transform (IDFT)

From the DTFT to the DFT

From infinite-extent periodic signals to finite extent aperiodic ones

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi k n/N}, k = 0,1,2,...,N-1$$

Discrete Fourier Transform (DFT)

N>L => No Aliasing

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(\frac{2\pi}{N}k) e^{j2\pi k n/N}, \ 0 \le n \le N-1$$

Inverse Discrete Fourier Transform (IDFT)

Improving the visualisation of the DFT

DTFT of Rectangular Pulse

Signal Length L =5

$$x[n] = \begin{cases} 1 & 0 \le n \le L - 1 \\ 0 & \text{elsewhere} \end{cases} \quad \overset{DTFT}{\longleftrightarrow} \quad X(\Omega) = \frac{\sin(\Omega(L/2))}{\sin(\Omega/2)} e^{-j(\Omega/2)(L-1)}$$

Improving the visualisation of the DFT

Zero Padding

Signal Length L=5 - DFT Length N=5

Signal Length L=5 - DFT Length N=10

Improving the visualisation of the DFT

Zero Padding

Zero Padding helps make the shape of the spectrum more evident (better visualisation)

Improving the visualisation of the DFT

Zero Padding

Improving the visualisation of the DFT

Zero Padding

Improving the visualisation of the DFT

Zero Padding

Relationship to the Z transform

$$z = re^{j\Omega}$$

DTFT equal to Z transform evaluated on the unit circle

X(z) is sampled to obtain the periodic sequence X[k] (N = 8).

DFT can be obtained by sampling X(z) at N equally spaced samples on the unit circle