Digital Image Processing

Dr. Ajay Kumar Mahato Assistant Professor ECE Department Gla University Mathura

DIGITAL IMAGE PROCESSING

LECTURE -13

Morphological Operations (Recap)

Morphological Operations

- Image Morphology is the study of shapes of the objects present in the image and extraction of image features. Image features are necessary for object recognition.
- We user the same word here in the context of mathematical morphology as a tool for extracting image components that are useful in the representation and description of region shape, such as boundaries, skeletons and convex hull.

Dilation Operations

Perform X ⊕ B

Dilation Operations

Perform X ⊖ B

Perform X ⊖ B

Opening Operation

 $\Box \text{Opening Operation: } A \circ B = (A \ominus B) \oplus B$

A

В

Opening Operation

 $A \circ B = (A \ominus B) \oplus B$

Opening Operation

 $A \circ B = (A \ominus B) \oplus B$ Opening

$$(A \ominus B)$$

Closing Operation

 \square Closing Operation: $A \cdot B = (A \oplus B) \ominus B$

A

X

Closing Operation

 $A \cdot B = (A \oplus B) \ominus B$

 $(A \oplus B)$

Closing Operation

$$A \cdot B = (A \oplus B) \ominus B$$

Closing

$$(A \oplus B)$$

$$A \cdot B = (A \oplus B) \ominus B$$

B

Morphological Operations - 2

- The morphological hit-or-miss transform (HMT) is a basic tool for Shape Detection.
- It is useful to be able to match specified configurations of pixels in an image, such as isolated foreground pixels or pixels that are endpoints of line segment.
- It is a morphological operator for finding local patterns of pixels.
- The hit-or-miss transform is a general binary morphological operation that can be used to look for patterns of foreground and background pixels in an image

☐ Concepts:

- Hit object
- Miss background

☐ Mathematical expression for Hit or Miss Transform is given as:

$$I \circledast S = (I \ominus S) \cap (I^c \ominus (W - S))$$

☐ It can be written as

$$I \circledast S = (I \ominus S_1) \cap (I^c \ominus S_2)$$

Where,

- S1 is the set formed from elements of S associated with an object (S in this case)
- S2 is the set of elements of S associated with the corresponding background (W – S)
- ☐ **HIT Condition:** The set contains all the points at which, S1 found a match (HIT) in I and S2 found a match in I^C

Example 1:

Input Image

Structuring Element

Step 1:

Step 2: Perform the $(I \ominus S)$

Step 3: Perform the I^c

 $I^c \ominus (W-S)$

Step 4: Determine $(I^C \ominus (W-S))$

 I^{C}

Step 4: Perform the operations $(I \ominus S) \cap (I^c \ominus (W - S))$

$$I^c \ominus (W-S)$$

 $(I \ominus S) \cap (I^c \ominus (W - S))$

Boundary Extraction

Boundary Extraction

- ☐ The boundary of an object in an image is the set of pixels that have one or more neighbors
- ☐ A boundary is a **contour in the image that represents a change** in pixel ownership from one object to another
- ☐ There are two types of boundary
 - Internal boundary: It contains boundary pixels that are inside the object

$$\beta(I) = I - (I \ominus S)$$

External boundary: It contains boundary pixels that are outside the object

$$\beta(I) = (I \oplus S) - I$$

Internal Boundary Extraction

Example 1: Internal Boundary extraction $\beta(I) = I - (I \ominus S)$

Internal Boundary Extraction

Example 1: Internal Boundary extraction $\beta(I) = I - (I \ominus S)$

Step 1: Determine $(I \ominus S)$

Internal Boundary Extraction

Step 2: Determine $I - (I \ominus S)$

$$Internal\ Boundary = I - (I \ominus S)$$

External Boundary Extraction

Example 2: Determine the external boundary $\beta(I) = (I \oplus S) - I$

External Boundary Extraction

$$\beta(I) = (I \oplus S) - I$$

 $I \oplus S$

External Boundary

 $(I \oplus S) - I$

- ☐ Region filling is used to fill the selected region of the object.
- ☐ The process that achieves this is ass follows:
 - 1. Let P be the point of the region to be filled. Initially $P = X_0$. Let A be the subset of element that represents the region. Let K denote the iteration.
 - 2. Let B be the structuring element.
 - 3. Repeat steps 4 to 6
 - 4. Set K = K + 1
 - 5. $X_K = (X_{K-1} \oplus B) \cap A^c$ and store the result
 - 6. If $X_K = X_{K-1}$ (point of convergence), then STOP
 - 7. Exit

Example 1:

$$X_K = (X_{K-1} \oplus B) \cap A^c$$

$$X = (X_{K-1} \oplus B) \cap A^{c}$$

For K=1
$$X_1 = (X_0 \oplus B) \cap A^c$$

$$X_0$$

B

$$(X_0 \oplus B)$$

B

Region Filling Operation

Thank You