

DPP - 3 (Vectors)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/43

Video Solution on YouTube:-

https://voutu.be/DO8pB-Ytukl

https://physicsaholics.com/note/notesDetalis/84 Written Solution on Website:-

Q 1.	Find position	vector of point $A(2,-1,3)$	and its magnitude:

(a)
$$\vec{A} = 2\hat{\imath} - \hat{\jmath} + 3\hat{k}, |\vec{A}| = \sqrt{14}$$

(b)
$$\vec{A} = 2\hat{\imath} + \hat{\jmath} + 3\hat{k}, |\vec{A}| = \sqrt{24}$$

(c)
$$\vec{A} = 2\hat{\imath} - \hat{\jmath} - 3\hat{k}, |\vec{A}| = \sqrt{14}$$

(d) None of these

Q 2. If the dot product of two non-zero vectors
$$\overrightarrow{V_1}$$
 and $\overrightarrow{V_2}$ is zero, what does that tell us?

(a)
$$\overrightarrow{V_1} = \overrightarrow{V_2}$$

(b) $\overrightarrow{V_1}$ is parallel to $\overrightarrow{V_2}$

(c) $\overrightarrow{V_1}$ is perpendicular to $\overrightarrow{V_2}$

(d) $\overrightarrow{V_1}$ is a component of $\overrightarrow{V_2}$

Q 3. Find the dot product of the pair of vectors
$$\vec{A} = 4\hat{i} + \hat{j}$$
, $\vec{B} = -\hat{i} - \hat{j}$?

Q 4. If a vector
$$2\hat{i} - \hat{j} + 3\hat{k}$$
, is perpendicular to the vector $4\hat{i} - 4\hat{j} + \alpha\hat{k}$. Then the value of α is:

 $(d) - \frac{1}{4}$

The vector sum of two forces is perpendicular to their vector differences. In that case, Q 5.

- (a) Are not equal to each other in magnitude. magnitude.
- (b) Are equal to each other in

(c) Are equal to each other.

(d) Cannot be predicted.

Q 6. Let
$$\vec{A} = \hat{\imath} + \hat{\jmath}$$
 and, $\vec{B} = 2\hat{\imath} - \hat{\jmath}$. The magnitude of a coplanar vector \vec{C} such that $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{C} = \vec{A} \cdot \vec{C}$, is given by:

(b) $\sqrt{\frac{5}{9}}$ (c) $\sqrt{\frac{12}{9}}$

(d) $\sqrt{\frac{9}{12}}$

Q 7. The angle between two vectors
$$-2\hat{\imath} + 3\hat{\jmath} + \hat{k}$$
 and $\hat{\imath} + 2\hat{\jmath} - 4\hat{k}$ is:

(b) 90°

(c) 180°

(d) None of these

Q 8. Given vector
$$\vec{a} = 2\hat{\imath} + 3\hat{\jmath}$$
, and vector $\vec{b} = \hat{\imath} + \hat{\jmath}$. What is the vector component of \vec{a} in the direction of \vec{b} :

(a) $\frac{5}{2}\hat{i} + \frac{5}{2}\hat{j}$

(b) $5\hat{i} + 5\hat{j}$

hysicsaholics

(c) $2\hat{i} + 2\hat{j}$

- (d) None of these
- Find the angle between $\vec{A} = 4\hat{\imath} + \hat{\jmath} + 3\hat{k}$ and $\vec{B} = \hat{\imath} + 3\hat{\jmath} + 4\hat{k}$: Q9.
- (b) $\cos^{-1} \frac{19}{26}$
- (a) $\cos^{-1} \frac{26}{19}$ (c) $\cos^{-1} \frac{21}{26}$
- (d) None of these
- Q 10. The position vectors of points A, B, C and D are $\vec{A} = 3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$, $\vec{B} = 4\hat{\imath} + 5\hat{\jmath} + 6\hat{k}$, $\vec{C} = 7\hat{\imath} + 9\hat{\jmath} + 3\hat{k}$ and $\vec{D} = 4\hat{\imath} + 6\hat{\jmath}$ then the displacement vectors AB and CD are?
 - (a) Perpendicular

(b) Parallel

(c) Antiparallel

- (d) Inclined at an angle of 60°
- Q 11. If \vec{a} , \vec{b} , \vec{c} are vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 7$, $|\vec{b}| = 5$, $|\vec{c}| = 3$. then the angle between c and b is:
 - (a) $\frac{\pi}{3}$
- (b) $\frac{\pi}{6}$
- (d) π

Q.1 a	Q.2 c	Q.3 c	Q.4 a	Q.5 b
Q.6 b	Q.7 b	Q.8 a	Q.9 b	Q.10 c
Q.11 a				