红酒质量分析报告

回归分析小组 2024 年 1 月 5 日

目录

1	问题	背景	1
2	数据	说明	1
3	描述	性统计	2
	3.1	数值特征	2
	3.2	因变量描述	4
	3.3	自变量描述	4
		3.3.1 固定酸度(Fixed Acidity)	5
		3.3.2 挥发性酸度(Volatile Acidity)	5
		3.3.3 游离二氧化硫(Free Sulfur Dioxide)	6
		3.3.4 醇度(Alcohol)	6
	3.4	自变量相关性分析	7
4	数据	建模	7
	4.1	全模型	8
		4.1.1 异常值检验	0
		4.1.2 异方差检验	0
		4.1.3 自相关性检验	1
		4.1.4 多重共线性检验	1
	4.2	选模型	1
		4.2.1 AIC 准则	2
		4.2.2 BIC 准则	2
	4.3	Box-cox 变换	3
	4.4	主成份分析	
	4.5	岭回归	
5	结论	及建议 1.4	1

1 问题背景

随着酒类产品在市场上的广泛受欢迎,对于酒的质量和特征的深入了解变得至关重要。为了更好地了解酒的品质,我们进行了一项回归分析,重点关注了酒的酸度,二氧化硫(SO_2)含量等特征。这些特征在很大程度上影响了酒的口感、风味和保存能力。

2 数据说明

我们通过 UC Irvine仓库下载了红酒数据,数据集中的特征包含酒的各类化学成分指标以及酒的品质评价。其中,成分指标,如 pH 值、 SO_2 含量、残糖量等通过物理化学检测得出;酒的品质由专业品酒师做出评价。(每个样本由三个品酒师做出评价,每个人的评分为 0(差)到 10(好)的一个整数,最终评价取三人的中位数)。红酒共 599 条数据,其中不含缺失值,共记录了 12 个特征,特征说明如 1 所示。

表 1: 酒的特征说明

变量类型	34 /_
义里大王	单位
连续型变量	g/L
硫 连续型变量	g/L
流 连续型变量	g/L
连续型变量	g/mL
值 连续型变量	
连续型变量	g/L
连续型变量	%
离散型变量	
	连续型变量 连续型变量 连续型变量 连续型变变量 连续型变变量 连续型变变量 连续型变变变量 重 连续型变变重量 连续型变变量 连续型变量

3 描述性统计

3.1 数值特征

对数据的初步描述如表 2,表3和表4 所示,包含平均值、最小值、最大值、中位数。

表 2: 数据描述 1-4

fixed.acidity	volatile.acidity	citric.acid	residual.sugar
Min.: 6.557	Min. :0.0052	Min. :-0.1331	Min. :1.223
1st Qu.: 7.857	1st Qu.:0.3278	1st Qu.: 0.3126	1st Qu.:1.784
Median: 8.622	Median: 0.4581	Median: 0.4563	Median: 1.977
Mean:8.859	Mean $:0.4808$	$\mathrm{Mean}:0.4535$	Mean $:2.407$
3rd Qu.: 9.309	3rd Qu.:0.6300	3rd Qu.: 0.5803	3rd Qu.:2.457
Max. :12.642	Max. :1.0396	Max. : 1.1742	Max. :6.780

表 3: 数据描述 5-8

chlorides	free.sulfur.dioxide	total.sulfur.dioxide	density
Min. :-0.17986	Min.: 2.872	Min.: 9.874	Min. :0.7226
1st Qu.: 0.07193	1st Qu.: 8.041	1st Qu.: 24.112	1st Qu.:0.9328
Median: 0.16598	Median: 15.930	Median: 56.041	Median: 0.9960
Mean : 0.21012	Mean $:16.475$	Mean: 63.791	Mean $:1.0014$
3rd Qu.: 0.35014	3rd Qu.:22.089	3rd Qu.:102.992	3rd Qu.:1.0719
Max. : 0.76331	Max. :39.160	Max. :151.197	Max. :1.2901

表 4: 数据描述 9-12

рН	sulphates	alcohol	quality
Min. :2.611	Min. :-0.09304	Min.: 8.768	Min. :4.000
1st Qu.:3.017	1st Qu.: 0.34213	1st Qu.: 9.273	1st Qu.:5.000
Median $:3.134$	Median:0.50100	Median: 9.498	Median $:5.000$
Mean $: 3.129$	Mean: 0.64124	Mean: 9.888	Mean $:5.581$
3rd Qu.:3.256	3rd Qu.: 0.72854	3rd Qu.:10.346	3rd Qu.:6.000
Max. :3.582	Max. : 2.84062	Max. :12.465	Max. :8.000

3.2 因变量描述

首先通过直方图观察酒品分布情况,可以发现,数据主要集中在5,6,7。

图 1: 酒品数据分布

3.3 自变量描述

我们通过自变量与酒品的箱线图对其进行描述。下面展示部分具有代表性的数据。

3.3.1 固定酸度 (Fixed Acidity)

固定酸度关于酒品的箱线图如图所示。

图 2: 固定酸度箱线图

3.3.2 挥发性酸度 (Volatile Acidity)

挥发性酸度关于酒品的箱线图如图所示。

图 3: 挥发性酸度分布箱线图

3.3.3 游离二氧化硫 (Free Sulfur Dioxide)

游离二氧化硫含量关于酒品的箱线图如图所示。

图 4: 游离二氧化硫箱线图

3.3.4 醇度 (Alcohol)

酒精含量关于酒品的箱线图如图所示。

图 5: 醇度箱线图

3.4 自变量相关性分析

我们对自变量相关性进行分析,结果如图所示。可以发现,与体现酒的 酸碱性的自变量相关性相对较大,需要通过后续处理消除它们的复共线性。

图 6: 自变量相关性热力图

4 数据建模

我们首先使用全模型进行建模,通过红酒的化学成分特征,对酒品进行 回归分析。然后使用选模型对变量进行选择,最后使用 Box-cox 对 quality 进行变换。

4.1 **全模型** 首先,我们对数据进行全模型最小二乘回归,得到结果如下:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.5577	0.8651	1.80	0.0723 .
fixed.acidity	0.0771	0.0220	3.51	0.0005 ***
volatile.acidity	-1.0448	0.1477	-7.07	0.0000 ***
citric.acid	0.0886	0.1538	0.58	0.5648
residual.sugar	0.0100	0.0277	0.36	0.7174
chlorides	-0.2167	0.1891	-1.15	0.2523
free.sulfur.dioxide	-0.0181	0.0044	-4.10	0.0000 ***
total. sulfur. dioxide	-0.0008	0.0012	-0.65	0.5157
density	0.1462	0.2437	0.60	0.5488
рН	-0.2349	0.2072	-1.13	0.2574
sulphates	-0.0626	0.0550	-1.14	0.2556
alcohol	0.4856	0.0376	12.91	0.0000 ***

Residual standard error: 0.5762 on 547 degrees of freedom Multiple R-squared: 0.5656, Adjusted R-squared: 0.5569 F-statistic: 64.76 on 11 and 547 DF, p-value: < 2.2e-16

结果显示,在 0.05 的置信水平下,固定酸度、挥发性酸度、游离二氧化 氮和醇度与酒品呈正相关。

然后我们对模型进行回归诊断, 结果如下图:

图 7: 全模型诊断图

在左上角残差图中,有一部分离群点;在右上角 Q-Q 图中,有一部分数据发生了偏离;因此有必要对数据进一步处理。

在进一步处理之前, 我们先对模型进行一系列检验。

4.1.1 异常值检验

利用 Cook 距离检验数据集中的异常值点, 结果如下:

Cook's Distance

图 8: Cook 距离

300

Observation

400

500

200

可以看到, 所有数据点的 Cook 距离都接近 0。

100

4.1.2 异方差检验

0

利用 ncvTest 检验模型异方差性, 结果如下:

表 5: 异方差检验

Chisquare	Df	p
0.1033325	1	0.74787

检验得到 p 值为 0.74787, 因此接受原假设, 认为模型不具有异方差性。

4.1.3 自相关性检验

利用 dwtest 对误差自相关性进行检验, 结果如下:

表 6: 自相关性检验

DW	p
2.0775	0.8176

检验得到 p 值为 0.8176, 因此接受原假设, 认为模型不具有自相关性。

4.1.4 多重共线性检验

利用 VIF 对自变量共线性进行检验, 结果如下:

表 7: 多重共线性

	VIF
fixed.acidity	1.50
volatile.acidity	1.45
citric.acid	1.62
residual.sugar	1.75
chlorides	2.08
free.sulfur.dioxide	2.94
total. sulfur. dioxide	4.12
density	1.04
рН	2.08
sulphates	1.49
alcohol	1.62

若 VIF 小于 1,表示自变量不存在多重共线性的问题;若 VIF 在 1 到 5 之间,表示存在轻微的多重共线性问题;若 VIF 大于 5,表示存在较强的 多重共线性。可以看到,总二氧化硫可能与其他变量的相关性相对较强。

4.2 选模型

为了解决多重共线性的问题, 我们通过 AIC 准则和 BIC 准则选取变量。

4.2.1 AIC 准则

使用 AIC 准则选择变量, 结果如下:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.6495	0.3696	1.76	0.0794 .
fixed.acidity	0.0952	0.0190	5.01	7.46e-07 ***
volatile.acidity	-1.0721	0.1330	-8.06	4.78e-15 ***
free.sulfur.dioxide	-0.0201	0.0026	-7.66	8.48e-14 ***
alcohol	0.4991	0.0329	15.16	< 2e-16 ***

Residual standard error: 0.5743 on 554 degrees of freedom Multiple R-squared: 0.563, Adjusted R-squared: 0.5598 F-statistic: 178.4 on 4 and 554 DF, p-value: < 2.2e-16

4.2.2 BIC 准则

使用 BIC 准则选择变量,结果如下:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.6495	0.3696	1.76	0.0794 .
fixed.acidity	0.0952	0.0190	5.01	7.46e-07 ***
volatile.acidity	-1.0721	0.1330	-8.06	4.78e-15 ***
free. sulfur. dioxide	-0.0201	0.0026	-7.66	8.48e-14 ***
alcohol	0.4991	0.0329	15.16	< 2e-16 ***

Residual standard error: 0.5743 on 554 degrees of freedom Multiple R-squared: 0.563, Adjusted R-squared: 0.5598 F-statistic: 178.4 on 4 and 554 DF, p-value: < 2.2e-16

使用 AIC 准则和 BIC 准则筛选出来的变量相同。

4.3 Box-cox 变换

为了改善数据的非正态性与异方差性, 我们对 Quality 进行 Box-cox 变换。

图 9: box-cox 变换

当 $\lambda = -0.74747$ 时,对数似然函数达到最大值。

4.4 主成份分析

我们可以使用主成份分析法进一步降低模型多重共线性。

	PC1	PC2	PC3	PC4	PC5	PC6
Standard deviation	1.7721	1.5014	1.1901	1.0942	0.9574	0.9279
Proportion of Variance	0.2617	0.1878	0.1180	0.0998	0.0764	0.0717
Cumulative Proportion	0.2617	0.4496	0.5676	0.6674	0.7438	0.8155

前六个主成分贡献了近80%的方差。

4.5 岭回归

5 结论及建议