	count	mean	std	min	25%	50%	75%	max
Соотношение матрица-наполнитель	1023.0	2.930366	0.913222	0.389403	2.317887	2.906878	3.552660	5.591742
Плотность, кг/м3	1023.0	1975.734888	73.729231	1731.764635	1924.155467	1977.621657	2021.374375	2207.773481
модуль упругости, ГПа	1023.0	739.923233	330.231581	2.436909	500.047452	739.664328	961.812526	1911.536477
Количество отвердителя, м.%	1023.0	110.570769	28.295911	17.740275	92.443497	110.564840	129.730366	198.953207
Содержание эпоксидных групп,%_2	1023.0	22.244390	2.406301	14.254985	20.608034	22.230744	23.961934	33.000000
Температура вспышки, С_2	1023.0	285.882151	40.943260	100.000000	259.066528	285.896812	313.002106	413.273418
Поверхностная плотность, г/м2	1023.0	482.731833	281.314690	0.603740	266.816645	451.864365	693.225017	1399.542362
Модуль упругости при растяжении, ГПа	1023.0	73.328571	3.118983	64.054061	71.245018	73.268805	75.356612	82.682051
Прочность при растяжении, МПа	1023.0	2466.922843	485.628006	1036.856605	2135.850448	2459.524526	2767.193119	3848.436732
Потребление смолы, г/м2	1023.0	218.423144	59.735931	33.803026	179.627520	219.198882	257.481724	414.590628
Угол нашивки, град	1023.0	44.252199	45.015793	0.000000	0.000000	0.000000	90.000000	90.000000
<u>Ш</u> аг нашивки	1023.0	6.899222	2.563467	0.000000	5.080033	6.916144	8.586293	14.440522
oll output; double click to hide	1023.0	57.153929	12.350969	0.000000	49.799212	57.341920	64.944961	103.988901

	Плотность нашивки	Шаг нашивки	Угол нашивни, град -	Потребление смалы, г/м2	Прочность при растяжении, МПа	Модуль упругости при растяжении. Па	Повериностная плотность, г/м2	Температура вспышки, С_2	Содержание эпоксидных групп.%_2	Количество отвердителя, и.% -	модуль упрусости. ГПа	Плотность, кг/м3	Соотношение матрица-наполнитель
Соотношение матрица-наполнитель -	0.017	0.04	-0.04	0.067	0.025	0.01	-0 514	0.01	0.023	-0.005	0.046	0.0044	
Плотность, иг/м3 -	0.096	0.645	-0.058	0.015	90.08	0.016	0.045	0.016	-0.0058	0.042	4).0051	-1	0.0044
модуль упругости, ГПа	0.068	0.0019	-0.035	0.0053	0.04	0.016	-0 0027	0.031	-0.0094	0.027	4	0 0051	0.046
Каличество отвердителя, м. %	0.0093	0.0016	0:034	0.021	0.06	-0.07	0.059	0.08€	0.00063	1:	0.027	0.042	-0.005
Содержание эпоксидных групп,%_2 -	0.04	0.005	0.014	0.015	0.027	0.004	-0.0095	0 0068	1	0.00083	-0.0094	0:0058	0.023
Температура вспышки, С_2	0.0096	0.02	0.0097	0.053	0.022	0.027	0.029	1	-0.0068	0.006	0.031	0.016	-2.01
Поверхностная плотность: Ли2 -	0.028	0.042	0.053	0.0033	0.0081	0.021	i i	0.029	-0.0095	0.059	-0.0027	0.045	-0.014
рдуль утругости при растяжении, ГПа -	0.029	-0.032	0.025	0.057	0.0046	1	8.021	0.027	0.006	-0.07	0.018	0:016	4 01
Прочнасть при растежении, МПа -	0.024	0.059	0.021	0.028	10	0.0046	-0.0081	0.022	-0.027	-0.06	0.04	0.08	0.025
Потребление смолы, ли2 -	0.012	0.018	40.02	1	0.028	0.057	0.0033	0.053	0.015	0.021	0.0053	0.018	0.007
Усол наширки, град	0.3	0.029	(3	-0.02	0.021	0.025	0.053	0.0097	0.014	0.034	0.035	0.058	6.04
Шаг нашивии -	-0.005	1	(0.023)	0.018	0.059	0.032	0.042	0.02	0.005	0.0016	-0.0019	0.046	0.04
Плотность нацивки	1.	JI 005	01	0.012	0.024	0.029	-0 02B	0.0096	40.04	0.0053	0.068	0.090	0.017
	- 0.0			- 0.2		- 0.4			- 0 6		- 0.8		- 1.0

	train_r2	test_r2	mse	mae	mape
Полный датасет	0.135939	-0.015642	0.028650	0.134170	3.783847e+12
0-й кластер	0.239273	0.020304	0.028387	0.131582	7.879145e+12
1-й кластер	0.221050	0.064647	0.023527	0.122880	3.494982e-01
Полный датасет 6 столбцов	0.121267	0.001264	0.028174	0.132902	3.718998e+12
0-й кластер 6 столбцов	0.222402	-0.009753	0.029255	0.134236	7.869201e+12
1-й кластер 6 столбцов	0.213179	0.060093	0.023636	0.123519	3.462081e-01

```
def lasso_reg(x_train, x_test, y_train, y_test):
# строим модель, обучаем ее, проверяем прогнозные значения, смотрим метрики
lasso = Lasso(alpha=1.0, #Константа, которая контролируя силу регуляриции

max_iter=1000, #Максимальное количество итераций.

tol=0.0001, #Допуск для оптимизации

random_state=42,#Начальное значение генератора псевдослучайных чисел

selection='cyclic')
lasso.fit(x_train, y_train)

predict = lasso.predict(x_train)
```

	train_r2	test_r2	mse	mae	mape
Полный датасет	2.220446e-16	-0.009483	0.028476	0.132860	3.810883e+12
0-й кластер	-5.551115e-16	-0.003623	0.029093	0.134513	8.189343e+12
1-й кластер	3.885781e-16	-0.003551	0.025251	0.125529	3.714942e-01
Полный датасет 6 столбцов	2.220446e-16	-0.009483	0.028476	0.132860	3.810883e+12
0-й кластер 6 столбцов	-5.551115e-16	-0.003623	0.029093	0.134513	8.189343e+12
1-й кластер 6 столбцов	3.885781e-16	-0.003551	0.025251	0.125529	3.714942e-01

	train_r2	test_r2	mse	mae	mape
Полный датасет	0.068137	-0.036886	0.029237	0.135432	3.534803e+12
0-й кластер	0.054912	-0.016316	0.029444	0.135089	7.204661e+12
1-й кластер	0.040216	-0.027797	0.025863	0.127571	3.773910e-01
Полный датасет 6 столбцов	0.048213	-0.040667	0.029343	0.135491	3.582180e+12
0-й кластер 6 столбцов	0.054864	-0.040367	0.030154	0.137815	7.844449e+12
1-й кластер 6 столбцов	0.065094	-0.025240	0.025799	0.127145	3.725394e-01

```
# Многослойный персептрон

def perceptron(x_train, x_test, y_train, y_test):
    model = keras.Sequential()
    model.add(Dense(20, activation='relu|'))
    model.add(Dropout(0.2))
    model.add(Dense(10, activation='relu'))
    model.add(Dense(1, activation='linear'))

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])
    history = model.fit(x_train, y_train, epochs=100, validation_split = 0.1, verbose = 2)
```

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 20)	260
dropout_2 (Dropout)	(None, 20)	0
dense_7 (Dense)	(None, 10)	210
dense_8 (Dense)	(None, 1)	11

Total params: 481

Trainable params: 481 Non-trainable params: 0

