CreditOne Regression

July 17, 2018

```
In [1]: #Import required modules
        import numpy as np
        import pandas as pd
        import scipy
        from math import sqrt
        import matplotlib.pyplot as plt
In [3]: #import estimators
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.linear_model import LinearRegression
        from sklearn.svm import SVR
        from sklearn import linear_model
In [4]: #import model metrics
        from sklearn.metrics import mean_squared_error
        from sklearn.metrics import r2_score
        from sklearn.model_selection import cross_val_score
In [5]: #import Cross Validation
        from sklearn.cross_validation import train_test_split
C:\Users\Voleti\Anaconda3\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarning
  "This module will be removed in 0.20.", DeprecationWarning)
In [10]: #Import the the raw data from CSV file
         credit = pd.read_csv('D:/Python Data Science UTA/default of credit card clients.csv',
         credit.head()
                          SEX
Out[10]:
            ID
               LIMIT_BAL
                              EDUCATION MARRIAGE AGE PAY_O PAY_2 PAY_3 PAY_4 \
                   20000
                                                     24
                                                              2
                                                                          -1
        0
            1
                                                 1
                                                                                  -1
            2
                  120000
                                       2
                                                 2
                                                     26
         1
                                                            -1
                                                                     2
                                                                            0
         2
            3
                   90000
                                       2
                                                     34
                                                              0
                                                                            0
                                                                                   0
         3 4
                                       2
                                                     37
                                                              0
                   50000
                   50000
                                       BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 \
        0
                                               0
                                                           0
                                                                     0
```

```
1
                                               3272
                                                          3455
                                                                      3261
         2
                                              14331
                                                         14948
                                                                     15549
         3
                                              28314
                                                         28959
                                                                     29547
         4
                                              20940
                                                         19146
                                                                     19131
                      PAY AMT3
                                 PAY_AMT4
                                           PAY_AMT5
            PAY_AMT2
                                                      PAY AMT6
         0
                 689
                              0
                                        0
                                                   0
                           1000
         1
                1000
                                     1000
                                                   0
                                                          2000
         2
                1500
                           1000
                                     1000
                                                1000
                                                          5000
         3
                2019
                           1200
                                     1100
                                                1069
                                                          1000
         4
               36681
                          10000
                                     9000
                                                           679
                                                 689
            default payment next month
         0
         1
         2
                                      0
         3
                                      0
                                      0
         [5 rows x 25 columns]
In [11]: #Examine the imported raw data from cerdit default file.
         credit.info()
         credit.describe()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 25 columns):
                               30000 non-null int64
                               30000 non-null int64
LIMIT_BAL
                               30000 non-null int64
                               30000 non-null int64
EDUCATION
MARRIAGE
                               30000 non-null int64
                               30000 non-null int64
PAY_0
                               30000 non-null int64
PAY_2
                               30000 non-null int64
PAY_3
                               30000 non-null int64
PAY_4
                               30000 non-null int64
                               30000 non-null int64
PAY 5
PAY_6
                               30000 non-null int64
BILL_AMT1
                               30000 non-null int64
BILL_AMT2
                               30000 non-null int64
BILL AMT3
                               30000 non-null int64
BILL_AMT4
                               30000 non-null int64
                               30000 non-null int64
BILL AMT5
BILL_AMT6
                               30000 non-null int64
                               30000 non-null int64
PAY_AMT1
PAY_AMT2
                               30000 non-null int64
```

ID

SEX

AGE

0

1518

2000

2000

 PAY_AMT3
 30000 non-null int64

 PAY_AMT4
 30000 non-null int64

 PAY_AMT5
 30000 non-null int64

 PAY_AMT6
 30000 non-null int64

 default payment next month
 30000 non-null int64

dtypes: int64(25) memory usage: 5.7 MB

Out[11]:	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	\
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	
mean	15000.500000	167484.322667	1.603733	1.853133	1.551867	
std	8660.398374	129747.661567	0.489129	0.790349	0.521970	
min	1.000000	10000.000000	1.000000	0.000000	0.00000	
25%	7500.750000	50000.000000	1.000000	1.000000	1.000000	
50%	15000.500000	140000.000000	2.000000	2.000000	2.000000	
75%	22500.250000	240000.000000	2.000000	2.000000	2.000000	
max	30000.000000	1000000.000000	2.000000	6.000000	3.000000	
	AGE	DAY O	DAY O	DAY 2	DAY 4 \	
aaumt		PAY_0 30000.000000	PAY_2 30000.000000	PAY_3 30000.000000	PAY_4 \	
count				-0.166200		
mean std	35.485500 9.217904	-0.016700 1.123802	-0.133767 1.197186	1.196868	-0.220667 1.169139	
min	21.000000	-2.000000	-2.000000	-2.000000	-2.000000	
25%	28.000000	-1.000000	-1.000000	-1.000000	-1.000000	
50%	34.000000	0.000000	0.000000	0.000000	0.000000	
75%	41.000000	0.000000	0.000000	0.000000	0.000000	
	79.000000	8.000000	8.000000	8.000000	8.000000	
max	79.000000	8.00000	8.000000	8.000000	8.00000	
			BILL_AMT4	BILL_AMT5	\	
count		•	30000.000000	30000.000000		
mean		•	43262.948967	40311.400967		
std		•	64332.856134	60797.155770		
min			170000.000000	-81334.000000		
25%		•	2326.750000	1763.000000		
50%		•	19052.000000	18104.500000		
75%		•	54506.000000	50190.500000		
max		•	891586.000000	927171.000000		
					,	
	BILL_AMT6	PAY_AMT1	-		\	
count		30000.000000				
mean	38871.760400	5663.580500				
std	59554.107537	16563.280354				
min	-339603.000000	0.000000				
25%	1256.000000	1000.000000				
50%	17071.000000	2100.000000				
75%	49198.250000	5006.000000				
max	961664.000000	873552.000000	1.684259e+06	896040.00000		

	PAY_AMT4	PAY_AMT5	PAY_AMT6	default payment next month
count	30000.000000	30000.000000	30000.000000	30000.000000
mean	4826.076867	4799.387633	5215.502567	0.221200
std	15666.159744	15278.305679	17777.465775	0.415062
min	0.000000	0.000000	0.000000	0.000000
25%	296.000000	252.500000	117.750000	0.000000
50%	1500.000000	1500.000000	1500.000000	0.000000
75%	4013.250000	4031.500000	4000.000000	0.000000
max	621000.000000	426529.000000	528666.000000	1.000000

[8 rows x 25 columns]

In [12]: #Raw data loaded from the cedit default file is split into features and dependent va #Feature selection

features = credit.iloc[:,12:23]
print('Summary of feature sample')
features.head()

Summary of feature sample

BILL_AMT1 BILL_AMT5 BILL_AMT6 Out [12]: BILL_AMT2 BILL_AMT3 BILL_AMT4 PAY AMT1

	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5
0	689	0	0	0
1	1000	1000	1000	0
2	1500	1000	1000	1000
3	2019	1200	1100	1069
4	36681	10000	9000	689

In [15]: #Establish the training set for the X-variables or Feature space (first 1000 rows: on #Training Set (Feature Space: X Training)

X_train = (features[: 1000])

X_train.head()

Out[15]: BILL_AMT5 BILL_AMT6 BILL_AMT1 BILL_AMT2 BILL_AMT3 BILL_AMT4 PAY AMT1

```
4
                 8617
                             5670
                                       35835
                                                  20940
                                                              19146
                                                                         19131
                                                                                     2000
            PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5
         0
                 689
                              0
                           1000
         1
                1000
                                     1000
                                                  0
         2
                1500
                           1000
                                     1000
                                               1000
         3
                2019
                           1200
                                     1100
                                               1069
         4
               36681
                         10000
                                     9000
                                                689
In [16]: #Establish the training set for the Y-variable or dependent variable (the number of r
         #Dependent Variable Training Set (y Training)
         y_train = depVar[: 1000]
         y_train_count = len(y_train.index)
         print('The number of observations in the Y training set are:',str(y train count))
         y_train.head()
The number of observations in the Y training set are: 1000
Out[16]: 0
                 0
         1
              2000
         2
              5000
         3
              1000
         4
               679
         Name: PAY_AMT6, dtype: int64
In [17]: #Establish the testing set for the X-Variables or Feature space
         #Testing Set (X Testing)
         X_test = features[-100:]
         X_test_count = len(X_test.index)
         print('The number of observations in the feature testing set is:',str(X_test_count))
         print(X_test.head())
The number of observations in the feature testing set is: 100
       BILL_AMT1 BILL_AMT2 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT6 \
29900
           16809
                          0
                                      0
                                                             0
                                                 0
                                                                        0
29901
           50845
                      48750
                                 103486
                                             50590
                                                         50248
                                                                    49387
29902
           10392
                     168088
                                 168955
                                            161351
                                                        126198
                                                                   124746
29903
           27378
                      17082
                                  13333
                                                                   172104
                                                99
                                                            99
29904
           54952
                      56021
                                  54126
                                             58732
                                                         59306
                                                                    59728
                PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5
       PAY_AMT1
              0
29900
                        0
                                   0
                                             0
                                                       0
              0
29901
                     6556
                                3250
                                          1563
                                                    1208
29902
         168096
                     6409
                                7335
                                          4448
                                                    4519
29903
          10018
                    13333
                                  99
                                            99
                                                  172104
29904
           2600
                     4553
                                          2000
                                                    1000
                                5800
```

```
In [18]: #Establish Ground truth
        #Ground Truth (y_test)
         y_test = depVar[:-100]
         y_test_count = len(y_test.index)
         print('The number of observations in the Y training set are:',str(y_test_count))
         y_test.head()
The number of observations in the Y training set are: 29900
Out[18]: 0
                 0
         1
              2000
         2
              5000
         3
              1000
         4
               679
         Name: PAY_AMT6, dtype: int64
In [19]: #implement Cross Validation by running the following on the X and Y training sets:
         X_train, X_test, y_train, y_test = train_test_split(X_train, y_train)
In [20]: #use the shape function to check that the split was made as needed:
         X_train.shape, X_test.shape
Out [20]: ((750, 11), (250, 11))
In [21]: #Established three different models with the individual variable names
         #Models
         modelSVR = SVR()
         modelRF = RandomForestRegressor()
         modelLR = LinearRegression()
In [27]: #Fit above three models to our train datasets.
         #Support Vector Regression
         modelSVR.fit(X_train,y_train)
         print(cross_val_score(modelSVR, X_train, y_train))
         modelSVR.score(X_train,y_train)
[-0.03407411 -0.10966667 -0.01289266]
Out[27]: -0.023180006062174963
In [25]: #Random Forest
        modelRF.fit(X train,y train)
         print(cross_val_score(modelRF, X_train, y_train))
         modelRF.score(X_train,y_train)
[ 0.02281547 -0.66664745  0.03746356]
```

```
Out [25]: 0.75962578110099455
In [26]: #Linear Regression
        modelLR.fit(X_train,y_train)
         print(cross_val_score(modelLR, X_train, y_train))
         modelLR.score(X_train,y_train)
[ 0.24578353 -2.14695377  0.40398575]
Out[26]: 0.59133781731919344
In [28]: ##From the model score random forest is the best model out of three.
         #Making Predictions using RF
         predictions = modelRF.predict(X_test)
In [32]: #calculating RMSE
         rmse = sqrt(mean_squared_error(y_test, predictions))
         print('RMSE: %.3f' % rmse)
RMSE: 14395.439
In [33]: #Calculate Rquared value using r2_score function, y_test and predections from previou
         predRsquared = r2_score(y_test,predictions)
         print('R Squared: %.3f' % predRsquared)
R Squared: -0.026
In [36]: #Plotting the Results, create scatterplot using matplotlib pyplot.
         plt.scatter(y_test, predictions, color=['blue', 'green'], alpha = 0.5)
        plt.xlabel('Actual')
        plt.ylabel('Predictions')
        plt.show();
```

