Single Source Shortest Path

Dijkstra's Algorithm

Md. Shamimur Rahman

Dept. of CSE

Khulna University of Engineering & Technology, Khulna

Reach node 3 from node 2 with minimum cost How??????

Reach node 3 from node 2 with minimum cost How??????

One possible way 2 -> 3

Reach node 3 from node 2 with minimum cost

How??????

Another possible way

Reach node 3 from node 2 with minimum cost How??????

Two possible way

$$2-> 3 = Cost(7)$$

$$2 \rightarrow 1 \rightarrow 3 = Cost(2+3=5)$$

Reach node 3 from node 2 with minimum cost How??????

Two possible way

$$2-> 3 = Cost(7)$$

$$2 \rightarrow 1 \rightarrow 3 = Cost(2+3=5)$$

Shortest Path from node 2 to node 3

What is Single Source Shortest Path?

Shortest path for all reaching nodes from a predefine source node

If source node(start node) is 2, then calculate shortest path of other nodes from

For single source shortest path calculation, source node is predefined

What is Single Source Shortest Path?

Different Algorithms for SSSP

-> Dijkstra's Algorithm

Parent

0	1	2	3	4
-1	-1	-1	-1	-1

0	1	2	3	4
∞	∞	∞	∞	8

Source = 2

Parent

0	1	2	3	4
-1	-1	-1	-1	-1

0	1	2	3	4
∞	∞	0	8	∞

Source = 2

Parent

0	1	2	3	4
-1	-1	-1	-1	-1

Distance

0	1	2	3	4
∞	∞	0	8	8

Source = 2

2

Parent

0	1	2	3	4
-1	-1	-1	-1	-1

Distance

	0	1	2	3	4
•	8	8	0	8	8

Relaxation Condition

If Dist[u] + Dist[u,v] < Dist[v]

Then
Dist[v] = Dist[u] + Dist[u,v]

Source = 2

2

Parent

0	1	2	3	4
- 1 2	-1	-1	-1	-1

Distance

0	1	2	3	4
8	8	0	8	∞
Min(∞,0+3) 3				

Dist[2] + Dist[2,0] < Dist[0]

$$0+3 < \infty$$

True

Relaxation Condition

If Dist[u] + Dist[u,v] < Dist[v]
Then
Dist[v] = Dist[u] + Dist[u,v]

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1	-1

Distance

0	1	2	3	4
∞	8	0	8	8
Min(∞,0+3)	Min(∞,0+2)			
3	2			

Dist[2] + Dist[2,1] < Dist[1]

$$0+2 < \infty$$

True

Relaxation Condition

If Dist[u] + Dist[u,v] < Dist[v]

Then
Dist[v] = Dist[u] + Dist[u,v]

Parent

0	1	2	3	4
- 1 2	-1/2	-1	- 1 2	-1

Distance

0	1	2	3	4
∞	∞	0	8	8
Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8

Dist[2] + Dist[2,3] < Dist[3]

$$0+7 < \infty$$

True

Relaxation Condition

If Dist[u] + Dist[u,v] < Dist[v]
Then
Dist[v] = Dist[u] + Dist[u,v]

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	- 1 2	-1

Distance

0	1	2	3	4
∞	∞	0	8	8
Min(∞,0+3)	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8

Relaxation Condition

If Dist[u] + Dist[u,v] < Dist[v]
Then
Dist[v] = Dist[u] + Dist[u,v]

7

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	- 1 2	-1

Distance

0	1	2	3	4
∞	∞	0	8	8
Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8

Relaxation Condition

If Dist[u] + Dist[u,v] < Dist[v]
Then
Dist[v] = Dist[u] + Dist[u,v]

2

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	- 1 2	-1

Dist[2] + Dist[2,3] < Dist[3] $0+7 < \infty$ True

0	1	2	3	4
∞	∞	0	8	8
Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1771	-1

0	1	2	3	4
∞	8	0	8	∞
Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	∞
3	2	0	Min(7,2+3) 5	

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1771	- 1 1

0	1	2	3	4
∞	8	0	8	∞
Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
3	2	0	Min(7,2+3) 5	Min(∞,2+6) 8

Dist[1] + Dist[1,4] < Dist[4]

$$2+6 < \infty$$

True

Parent

0	1	2	3	4
- 1 2	-1/2	-1	-1771	- 1 1

Distance

0	1	2	3	4
∞	8	0	8	∞
Min(∞,0+3)	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
3	2	0	Min(7,2+3) 5	Min(∞,2+6) 8

2

1

Parent

0	1	2	3	4
- 1 2	-1/2	-1	-1771	- 1 1

0	1	2	3	4
∞	8	0	∞	∞
Min(∞,0+3)	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
3	2	0	Min(7,2+3) 5	Min(∞,2+6) 8

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1711	- 1 1

0	1	2	3	4
∞	8	0	∞	∞
Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	∞
3	2	0	Min(7,2+3) 5	Min(∞,2+6) 8

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1771	- 1 1

	0	1	2	3	4
2	∞	8	0	8	8
L	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
)	3	2	0	Min(7,2+3) 5	Min(∞,2+6) 8
	3	2	0		

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1711	- 11 0

Dist[0] + Dist[0,4] < Dist[4] 3+1 < 8 True

0	1	2	3	4
∞	8	0	~	∞
Min(∞,0+3)	Min(∞,0+2) 2	0	Min(∞,0+7) 7	∞
3	2	0	Min(7,2+3) 5	Min(7,2+3)
3	2	0	5	Min(8,3+1) 4

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1771	- 11 0

0	1	2	3	4
∞	8	0	8	8
Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
3	2	0	5	Min(8,3+1) 4

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1771	- 11 0

	0	1	2	3	4
	∞	8	0	8	~
Mi	in(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	~
	3	2	0	Min(7,2+3) 5	Min(7,2+3)
	3	2	0	5	Min(8,3+1) 4

Parent

0	1	2	3	4
- 1 2	- 1 2	-1	-1771	- 11 0

	0	1	2	3	4
2	∞	8	0	~	8
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4

Parent

0	1	2	3	4
-1/2	- 1 2	-1	- 47 1	-11 0

	0	1	2	3	4
2	∞	8	0	8	8
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4
	3	2	0	5	4

Parent

0	1	2	3	4
- 1 2	-1/2	-1	- 47 1	-11 0

	0	1	2	3	4
2	∞	8	0	8	8
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4
	3	2	0	5	4

Parent

0	1	2	3	4
- 1 2	-1/2	-1	- 47 1	-11 0

	0	1	2	3	4
2	∞	8	0	8	8
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4
3	3	2	0	5	4

Parent

0	1	2	3	4
- 1 2	-1/2	-1	- 47 1	-11 0

	0	1	2	3	4
2	8	8	0	8	8
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4
3	3	2	0	5	4

Parent

0	1	2	3	4
-1/2	- 1 2	-1	- 47 1	-11 0

Distance

	0	1	2	3	4
2	8	8	0	8	8
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4
3	3	2	0	5	4

Now destination = 3

Parent

0	1	2	3	4
-1/2	- 1 2	-1	- 47 1	-11 0

Distance

	0	1	2	3	4
2	∞	8	0	∞	8
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	8
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4
3	3	2	0	5	4

Now destination = 3

Parent

0	1	2	3	4
- 1 2	-1/2	-1	-1/7/1	-11 0

Distance

	0	1	2	3	4
2	∞	8	0	~	∞
1	Min(∞,0+3) 3	Min(∞,0+2) 2	0	Min(∞,0+7) 7	∞
0	3	2	0	Min(7,2+3) 5	Min(7,2+3) 8
4	3	2	0	5	Min(8,3+1) 4
3	3	2	0	5	4

Path: 2 -> 1-> 3

Now destination = 3

Implementation

- Using Priority-queue
- Maintain two vector(Distance & Parent)

Parent

0	-1
1	-1
2	-1
3	-1
4	-1

Distance

0	8
1	8
2	0
3	8
4	8

Parent

0	-1
1	-1
2	-1
3	-1
4	-1

Distance

0	8
1	8
2	0
3	8
4	8

Parent

0	-1
1	-1
2	-1
3	-1
4	-1

Distance

0	8
1	8
2	0
3	8
4	8

Parent

0	-1
1	-1
2	-1
3	-1
4	-1

Distance

0	8
1	8
2	0
3	8
4	8

Parent

0	2
1	2
2	-1
3	2
4	-1

Distance

0	6
1	2
2	0
3	7
4	8

Parent

0	2
1	2
2	-1
3	2
4	-1

Distance

0	6
1	2
2	0
3	7
4	8

Parent

0	2
1	2
2	-1
3	1
4	1

Distance

0	6
1	2
2	0
3	5
4	8

Parent

0	2
1	2
2	-1
3	1
4	1

Distance

0	6
1	2
2	0
3	5
4	8

Parent

0	2
1	2
2	-1
3	1
4	1

Distance

0	6
1	2
2	0
3	5
4	8

Parent

0	2
1	2
2	-1
3	1
4	1

Distance

0	6
1	2
2	0
3	5
4	8

Parent

0	2
1	2
2	-1
3	1
4	1

Distance

0	6
1	2
2	0
3	5
4	8

Parent

0	2
1	2
2	-1
3	1
4	0

Distance

0	6
1	2
2	0
3	5
4	7

Parent

0	2
1	2
2	-1
3	1
4	0

Distance

0	6
1	2
2	0
m	5
4	7

Parent

0	2
1	2
2	-1
3	1
4	0

Distance

0	6
1	2
2	0
3	5
4	7

Parent

0	2
1	2
2	-1
3	1
4	0

Distance

0	6
1	2
2	0
3	5
4	7

Parent

0	2
1	2
2	-1
3	1
4	0

Distance

0	6
1	2
2	0
3	5
4	7

Parent

0	2
1	2
2	-1
3	1
4	0

Distance

0	6
1	2
2	0
3	5
4	7

Parent

0	2
1	2
2	-1
3	1
4	0

Distance

0	6
1	2
2	0
3	5
4	7

Source = 2

Complexity

- Build Max Heap: O(log E)
- Extract Min: O(1)
- Edge excess total complexity: O(E log E) = O(E log V)) [E<=|V|²]
- Vertex excess complexity: O(V)
- Total : O(V+E log V)

