アルゴリズムとデータ構造

第2週目

担当 情報システム部門 徳光政弘 2025年4月16日

今日の内容

- アルゴリズムの定義
- アルゴリズムの評価基準(計算量)
- 計算量の漸近的評価

アルゴリズムの考え方

- アルゴリズム うまくやるための手順
- 例
 - 料理のレシピ
 - 料理本の手順
 - ゲームの攻略本
 - 作業の指示書

アルゴリズムの考え方

図 1.1 料理におけるアルゴリズム

アルゴリズムの定義

- 教科書の定義
- コンピュータで動作させるためにはプログラミング言語で
 - ◆定義 1.1 アルゴリズム

与えられた問題の正しい答えを求めるための"うまいやり方"であり、一般に文章 やプログラミング言語で記述される。

アルゴリズムの例

• 教科書の定義

[書版 1.4]

n桁の整数が与えられた場合に、その整数が3の倍数であるかどうかを答えよ。

"小学校で習った筆算を使って、与えられたn桁の整数を3で割算し、余りが0ならば3の倍数であると答える。"

アルゴリズムの例

- 例で考えてみる
- 例1 300/3=100(3の倍数)
- 例2 999/3=333(3の倍数)
- 例3 1000/3=333と余り1(3の倍数ではない)
- 極端な例
- - 64ビットの整数では表現できなくて単純には計算できない

アルゴリズムの評価基準

• 例 1893206753214

$$1+8+9+3+2+0+6+7+5+3+2+1+4=51$$

- 割り算より単純に足すだけのでわかりやすい
- 長い桁数でも一桁ずつ数値を足せばよい

アルゴリズムの評価基準

- 問題を解くためのアルゴリズムは複数ある場合がある
- どのようにしてアルゴリズムを比較するのかが問題
- コンピュータは「計算する」機械である
- 直感的には「速いが優れている」気もする

アルゴリズムの比較例

• テニスボールの山から不良品のボールを探す

[書題 1.2]

n個のテニスボールがある. このテニスボール 1 個の重さは $100~\rm g$ であるが、n 個のうち 1 つだけ重さが $95~\rm g$ の不良品である. 重さが測定できるはかりを用いて、この不良品のテニスボールをみつけよ.

テニスボールの比較

• ボールをb1、b2、…、bnと区別する

図 1.2 テニスボールとはかり

テニスボールの比較

• 単純なアルゴリズム そのアイデアとは?

アルゴリズム 1.2

入力:n 個のテニスボール $\{b_1, b_2, \ldots, b_n\}$ アルゴリズム:

- ② テニスボール b_i をはかりに載せる.
- ③ b_i の重さが 100 g ならば、i を 1 だけ増加させて②、③の操作を繰り返す、 b_i の重さが 95 g ならば、そのボールを不良品としてアルゴリズムを終了する。

テニスボールの比較

アルゴリズム 1.3

入力:n 個のテニスボール $\{b_1, b_2, \ldots, b_n\}$ アルゴリズム:

- ① テニスボールを約半分ずつの 2 つの集合 $B_1 = \{b_1, b_2, \ldots, b_{\lceil \frac{n}{2} \rceil}\}, B_2 = \{b_{\lceil \frac{n}{2} \rceil + 1}, b_{\lceil \frac{n}{2} \rceil + 2}, \ldots, b_n\}$ に分ける¹⁾.
- ② テニスボールの集合 B_1 をはかりに載せる.
- ③ B_1 の重さが 100 の倍数ならば、テニスボールの集合 B_2 に不良品があり、 B_1 の重さが 100 の倍数でなければ、不良品は B_1 の中にある、このとき、不良品の含まれているほうのボールの集合に対して、以下の操作を行う。
 - a. 不良品の含まれているボールの集合に1つのボールしかなければ, そのボールを不良品としアルゴリズムを終了する.
 - b. 不良品の含まれているボールの集合に複数のボールが含まれていれば、そのボールの集合を①と同様に2つの集合 B_1 と B_2 に分けて、②、③の操作を繰り返す。

復習 集合と天井関数・床関数

アルゴリズム 1.3

入力:n 個のテニスボール $\{b_1,b_2,\ldots,b_n\}$ アルゴリズム:
① テニスボールを約半分ずつの 2 つの集合 $B_1=\{b_1,b_2,\ldots,b_{\lceil\frac{n-1}{2}\}},B_2=\{b_{\lceil\frac{n-1}{2}+1},a_{\lceil\frac{n-1}{2}\}}\}$

テニスボールの比較 アルゴリズム1.3の考え方

比較回数

$$\left(\frac{1}{2}\right)^k \times n$$

終了条件

$$\left(\frac{1}{2}\right)^k \times n = 1$$

$$\left(\frac{1}{2}\right)^k \times n = 1$$

$$2^k = n$$

$$\log_2 2^k = \log_2 n$$

$$k = \log_2 n$$

$$\frac{1}{2} \binom{n}{k} \times n = 1$$

$$2^{k} = n$$

$$\log_{2} 2^{k} = \log_{2} n$$

$$k = \log_{2} n$$

1回10秒要すると仮定すると、n個の場合は何秒かかるか

表 1.1 アルゴリズムの実行時間

テニスボール	アルゴリズム 1.2		
の数 n	b ₁ が不良品の場合	b _n が不良品の場合	アルゴリズム 1.3
10	10 秒	100 秒	$10 imes \log_2 10 = 約40$ 秒
100	10秒	1000 秒	10 × log ₂ 100 = 約 70 秒
1000	10 秒	10000 秒	10×log ₂ 1000=約100秒
10000	10 秒	100000秒	10×log ₂ 10000 = 約140秒
100000	10 秒	10000000秒	10×log ₂ 100000 = 約 170 秒

アルゴリズムの計算量

- 入力の大きさで計算時間が変わる
- 時間計算量 計算時間で比較する
- もっと速いケース 最良時間計算量
- もっとも悪いケース 最悪時間計算量
- ・ 領域計算量 データの記憶容量で比較する

アルゴリズムの計算量

表 1.2 アルゴリズムの時間計算量

	アルゴリズム 1.2	アルゴリズム 1.3
最良時間計算量	10	$10\log_2 n$
最悪時間計算量	10n	$10\log_2 n$

計算量の漸近的評価

- 計算量の比較を考える
- 入力のサイズ「n」と仮定する
 - データの個数、ボールの個数を想像するとよい

アルゴリズム A : $10n^2 + 100n + 10000$

アルゴリズム B $: n^4 - n^3 - n$

アルゴリズム $C:100n^3$

計算量のオーダー記法

このオーダ記法の定義は少々わかりにくいので,以下のような理解で十分である.まず,アルゴリズムの時間計算量を入力サイズn を用いた関数として求める.つぎに,その関数のなかで主要項(n) が無限大に近い場合にもっとも大きな項)をみつける.この主要項の係数を削除した関数がf(n) であるとき,"アルゴリズムの時間計算量はO(f(n)) である",もしくは"アルゴリズムはO(f(n)) 時間で実行できる"という.ア

アルゴリズム A : $10n^2 + 100n + 10000$

オーダー記法
$$O(n^2)$$

計算量の漸近的評価

• テニスボールの計量の例

表 1.3 アルゴリズムの漸近的な時間計算量

	アルゴリズム 1.2	アルゴリズム 1.3
最良時間計算量	O(1)	$O(\log n)$
最悪時間計算量	O(n)	$O(\log n)$

計算量の比較

$$\log n^{(1)} < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < n!$$

なお、関数 f(n) が n に依存しない定数である場合は、その時間計算量を特別に O(1) と記述し、その時間計算量を定数時間とよぶ、

計算量の比較

表 1.4 アルゴリズム A, B, C の実行時間

入力サイズ	アルゴリズム A	アルゴリズムB	アルゴリズム C
(n)	$(10n^2 + 100n + 10000)$	$(n^4 - n^3 - n)$	$(100n^3)$
10	12000	8990	100000
100	1210000	98999900	100000000
1000	10110000	9.99×10^{11}	10×10^{10}
10000	1001010000	9.99×10^{15}	10×10^{13}
100000	10×10^{10}	9.99×10^{19}	10×10^{16}

アルゴリズムの記述

• 教科書の「アルゴリズムの記述」の節を参照

計算量の例

• 教科書の「アルゴリズムの記述」の節を参照

```
    アルゴリズム 1.4 最大値の計算
    入力:n個の整数 x[1], x[2], ..., x[n]
    max=x[1];
    for (i=2; i<n+1; i=i+1) {
        if (max<x[i]) { max=x[i]; }
    }
}
</p>
```

$$^{ ext{thm}}$$
 $O(1) imes(n-1)=O(n)$

計算量の例

アルゴリズム 1.5 等しい整数の出力

```
入力:n個の整数 x[1], x[2], ..., x[n]
for (i=1; i<n; i=i+1) {
  for (j=i+1; j<n+1; j=j+1) {
   if (x[i]==x[j]) { x[i]とx[j]は同じであると出力; }
}
```

$$\sum_{i=1}^{n-1} (n-i) \times O(1) = O(1) \times \sum_{i=1}^{n-1} i$$

$$= O(1) \times \frac{n(n-1)}{2}$$

$$= O(n^2)$$

計算量