强化学习:作业一

linze

2024年10月11日

1 作业内容

在"蒙特祖马的复仇"环境中实现 Dagger 算法。

2 实现过程

- 1. 搭建环境:经过我一个上午不断的尝试和错误,我发现只有 Python 版本为 3.7,gym 版本在 0.21 以下,并且可能需要对环境做出一些修改后(如将 Python 库 importlib-metadata 降至 5 级以下),并安装 gym 独立的相关依赖,才可以运行框架代码. 具体见./requirements.txt
- 2. 重构代码: 原框架代码并不是原算法 Dagger 的实现, 只有 Dagger 的一层循环, 因此需要重构代码, 并构建基础设施. 我
 - 将所有 train() val() main() 等过程封装为函数, 打包为模块 train.py
 - 并实现了对 Env Agent 的抽象, 打包为模块 Dagger
 - 加入对专家的抽象接口 Expert, 存储在 Dagger 中
 - 实现常用方法,如代码运行时动态绘画 obs 的函数 Expert.draw();从终端读按键的函数 Expert.label()(为 prompt_getkey(prompt: str)的封装);保存、读取数据 save_result(obs: list[np.ndarray], labels: list[int], conf), load_data(dir_path: str)
 - 将超参封装在 conf 中, 并与 args 合并, 可以通过 Python 和命令行调试超参.
- 3. 选择分类器: 我先进行了几轮游戏, 收集了一些数据, 存储在 ./played_dir/ 中, 并使用 脚本 ./test_clf.py (将 obs 的像素拼接为一维向量)进行不同分类器的效果检验, 结果见表 1 和文件 clf_score.txt. 最终我选择决策树作为分类器.

相关改进

在超参 conf.T 为 0xFFFFFFFF 时,此局游戏 (epoch),由专家决定什么时候结束;并且专家可以拒绝标注一个样本.这些改进大大减小了专家数据标注的负担.

在本轮游戏 (epoch) 结束后, agent 开始更新前, 专家可以在 imgs 文件夹 (conf.save_dir) 中重新查看已标注的数据, 提高数据质量.

5 cross validation performance classifier	test score / fit time				
SVM(linear kernal)	0.72/184.49	0.75/192.74	0.77/208.16	0.77/943.09	0.81/95.42
SGD SVM(linear kernal)	0.58/100.11	0.75/83.80	0.68/98.73	0.76/74.03	0.74/127.71
SGD Logistic Regression	0.67/100.35	0.74/102.31	0.80/118.58	0.77/95.82	0.71/94.74
Decision Tree	0.73/7.12	0.79/7.84	0.81/7.50	0.78/8.05	0.81/8.57
RandomForest	0.78/18.54	0.84/18.64	0.86/20.03	0.80/17.20	0.87/17.41
Multinomial Naive Byasian	0.64/4.14	0.66/4.02	0.69/4.02	0.68/4.02	0.74/4.05

表 1: 分类器性能

3 复现方式

在主文件夹下运行 python main.py 或 ./main.py (on *nix) 运行程序. 在终端中输入上下左右按键标注 agent 行走数据,输入空格()标注 agent 跳跃数据,输入逗号(,)标注 agent 左跳跃数据,输入句号(.)标注 agent 右跳跃数据,输入斜线(/)标注 agent 禁止不动数据,输入 m 拒绝标注此数据,输入 n 结束提前本轮游戏,进入下一轮.

在主文件夹下运行 python main.py --play-game True --save-dir played_dir 进行游戏游玩.

4 实验效果

4.1 结果

见图 1。

此图的超参设置为: env_name="MontezumaRevengeNoFrameskip-v0", num_fpstep=8, T=0xFFFFFFF(expert dicide when to halt the game), num_steps=100000, epochs=30, val_T=2000, val_draw=True, epsilon=0.05, log_interval=2, save_img=True, save_dir="imgs", save_interval=10, play_game=False, draw_method="plt", log_file="log", agent=DtAgent, agent_init_dir="",

4.2 累计奖励、访问专家次数和样本训练量之间的关系

从图中可以发现,随着样本训练量的增长,访问专家的次数越来越多,基本呈现线性增长. 因为框架代码中, agent 生成的数据都会被返回给专家标注, 因此呈现线性关系; 而累计奖励会不稳定地上升, 因为随着样本训练量的增长, 分类器的准确率越来越大; 但随着见过的情况越来越多, 分类器会做出权衡, 即舍弃一些游戏最开始的样本的准确率, 以应对新情况, 因此会出现累计得分不稳定的情况.

5 思考题

Q: 在玩游戏的过程中标注数据与 Dagger 算法中的标注数据方式有何不同? 这个不同会带来哪些影响?

图 1: 决策树 Agent 性能

A: 玩游戏过程中标注数据,数据的分布和专家策略生成的数据分布一致; Dagger 算法中标注数据的分布和 Agent 生成数据的分布一致.

6 小结

在这次实验中, 我发现...

- 1. 基础设施固然重要, 权衡利弊也很重要, 巧妙的设计更重要
- 2. Dagger 真的难训练,非常累人,非常消耗专家