BABU BANARASI DAS UNIVERSITY

School of Engineering (School Code: 04)

Department of Computer Science and Engineering

(University Branch Code: 41)

Bachelor of Technology: Computer Science and Engineering (Artificial Intelligence and Blockchain) - B. Tech CSE (AIBC)
(in association with IBM)

Evaluation Scheme

SEMES	STER I									
se	Course		Contact Hours			Eval				
Course	Code	Code Title	L	т	P	CIA	ESE	Course Total	Credits	
BSC	NBS4101	Matrices and Calculus	3	1	0	40	60	100	4	
Stude		select either GROUP GROUP 'B'								
	NGP4101	General Proficiency				100		100	1	
		Total	3	1	0	140	60	200	5	

GROU	JP 'A'								
e 27				Contac Hours		Eval	uation S	Scheme	
Course Cate gory	Course Code	Code Title	L	т	P	CIA	ESE	Course Total	Credits
BSC	NBS4102	Engineering Physics	3	1	0	40	60	100	4
ESC	NME4101	Engineering Mechanics	3	1	0	40	60	100	4
ESC		Introduction to Python Programming and Clean Coding	3	0	0	40	60	100	3
ESC	NEC4101	Basic Electronics Engineering	3	0	0	40	60	100	3
CCC	NBSCC1101	Environment & Ecological Sustainability	3	0	0	40	60	100	3
ESC	NME4151	Engineering Mechanics Lab	0	0	2	40	60	100	1
ESC	NCCML4151	Python Programming and Clean Coding Lab	0	0	2	40	60	100	1

ESC	NME4152	Workshop Practices	0	0	2	40	60	100	1
BSC	NBS4152	Engineering Physics Lab	0	0	2	40	60	100	1
	ı	Total	15	2	8	360	540	900	21

GROU	P 'B'								
e ory	_			Contac Hours		Evalu	ıation	Scheme	
Course	Course Code	Code Title	L	т	P	CIA	ESE	Course Total	Credits
ESC	NEE4101	Basic Electrical Engineering	3	1	0	40	60	100	4
ESC	NAIBC4102	Java Fundamental	3	0	0	40	60	100	3
BSC	NBS4103	Engineering Chemistry	3	1	0	40	60	100	4
ESC	NCS4102	Basics of Artificial Intelligence	3	0	0	40	60	100	3
CCC	NHSCC1101	Communicative English	2	1	0	40	60	100	3
ESC	NEE4151	Basic Electrical Engineering Lab	0	0	2	40	60	100	1
ESC	NAIBC4152	Java Fundamental Lab	0	0	2	40	60	100	1
BSC	NBS4153	Engineering Chemistry Lab	0	0	2	40	60	100	1
ESC	NME4153	Engineering Graphics Lab	0	0	2	40	60	100	1
		Total	14	3	8	360	540	900	21

SEMEST	SEMESTER II											
o 2				Conta Hour		Evalı	uation	Scheme				
Course	Course Code	Code Title	L	т	P	CIA	ESE	Course Total	Credits			
BSC	NBS4201	Differential Equations and Fourier Analysis	3	1	0	40	60	100	4			
Studen		elect either GROUP 'A' or ROUP 'B'										
	NGP4201	General Proficiency				100		100	1			
	Total				0	140	60	200	5			

GROU	GROUP 'A'												
rse	Course			onta Hours		Evalu	ıation	Scheme					
Course Category	Code	Code Title	L	Т	P	CIA	ESE	Course Total	Credits				
BSC	NBS4202	Engineering Physics	3	1	0	40	60	100	4				
ESC	NME4201	Engineering Mechanics	3	1	0	40	60	100	4				
ESC	NCCML4201	Introduction to Python Programming and Clean Coding	3	0	0	40	60	100	3				
ESC	NEC4201	Basic Electronics Engineering	3	0	0	40	60	100	3				
CCC	NBSCC1201	Environment & Ecological Sustainability	3	0	0	40	60	100	3				
ESC	NME4251	Engineering Mechanics Lab	0	0	2	40	60	100	1				
ESC	NCCML4251	Python Programming and Clean Coding Lab	0	0	2	40	60	100	1				
ESC	NME4252	Workshop Practices	0	0	2	40	60	100	1				
BSC	NBS4252	Engineering Physics Lab	0	0	2	40	60	100	1				
	•	Total	15	2	8	360	540	900	21				

Note: Students who have selected group A in the first semester will select group B in the second semester and vice-versa.

GROUI	GROUP 'B'												
ر ح				Contac Hours		Eval	uation	Scheme					
Course	Course Code	Code Title	L	т	P	CIA	ESE	Course Total	Credits				
ESC	NEE4201	Basic Electrical Engineering	3	1	0	40	60	100	4				
ESC	NAIBC4202	Java Fundamental	3	0	0	40	60	100	3				
BSC	NBS4203	Engineering Chemistry	3	1	0	40	60	100	4				
ESC	NCS4202	Basics of Artificial Intelligence	3	0	0	40	60	100	3				
CCC	NHSCC1201	Communicative English	2	1	0	40	60	100	3				
ESC	NEE4251	Basic Electrical Engineering Lab	0	0	2	40	60	100	1				
ESC	NAIBC4252	Java Fundamental Lab	0	0	2	40	60	100	1				
BSC	NBS4253	Engineering Chemistry Lab	0	0	2	40	60	100	1				
ESC	NME4253	Engineering Graphics Lab	0	0	2	40	60	100	1				
		Total	14	3	8	360	540	900	21				

SEMES	TER III								
Course Category				ntact ours		Eval	uation	Scheme	
Course	Course Code	Code Title	L	Т	P	CIA	ESE	Course Total	Credits
HSC		Organizational Behavior /Industrial Sociology	2	0	0	40	60	100	2
BSC	NBS4301	Complex Analysis and Integral Transforms	3	1	0	40	60	100	4
PCC	NCS4301	Discrete Mathematics	3	0	0	40	60	100	3
PCC	INAIDU 4 SUI	Data Visualization with Python	2	1	0	40	60	100	3
PCC	NCS4302	Operating Systems	3	1	0	40	60	100	4
PCC	NCS4305	C Programming	3	1	0	40	60	100	4
PCC	NAIBC4351	Data Visualization with python Lab	0	0	2	40	60	100	1
PCC	NCS4355	C Programming Lab	0	0	2	40	60	100	1
CQAC	NCC4351	Yoga Activities	0	0	2	100	-	100	1
	NGP4301	General Proficiency	-	-	-	100	-	100	1
		Total	16	4	6	520	480	1000	24

SEMES	TER IV								
rse Jory	_		_	onta Iour		Eva	luatio	n Scheme	
Course Category	Course Code	Code Title	L	Т	P	CIA	ESE	Course Total	Credits
HSC	NHS4402/ NHS4401	Industrial Sociology /Organizational Behavior	2	0	0	40	60	100	2
BSC	NBS4401	Statistical and Numerical Techniques	2	1	0	40	60	100	3
PCC	NCS4401	Database Management Systems	3	1	0	40	60	100	4
PCC	NCS4403	Data Structure Using 'C'	3	1	0	40	60	100	4
PCC	NAIBC4401	Big Data Analytics & Architecture	3	0	0	40	60	100	3
PCC	NAIBC4401	Blockchain Essentials	3	0	0	40	60	100	3
PCC	NCS4451	Database Management Systems Lab	0	0	2	40	60	100	1
PCC	NAIBC4451	Blockchain Essentials Lab	0	0	2	40	60	100	1
PCC	NCS4453	Data Structure Lab	0	0	2	40	60	100	1
CQAC	NVC4401	Indian Constitution*	1	0	0	40	60	100	1
	NGP4401	General Proficiency	-	-	•	100	-	100	1
* Compulsory	y Qualifying Audit Course								
		Total	17	3	6	500	600	1100	24

SEMES	TER V										
Course	Course			ntact ours		Eval	uation	Scheme			
Cou	Code	Code Title	L	Т	P	CIA	ESE	Course Total	Credits		
HSC	NHS4501	Engineering & Managerial Economics	3	0	0	40	60	100	3		
PCC	NAIBC4501	Concepts of Machine Learning	3	1	0	40	60	100	4		
PCC	NCS4503	Computer Networks	3	0	0	40	60	100	3		
PCC	NCS4504	Automata Theory and Formal Languages	3	1	0	40	60	100	4		
PCC	NAIBC4502	Applications of Blockchain Technology in Business Innovation	3	0	0	40	60	100	3		
PCC	NAIBC4551	Machine Learning using Python Lab	0	0	2	40	60	100	1		
SPIC	NAIBC4553	Minor Project-I	0	0	2	100	0	100	1		
CQAC	NVC4501	Essence of Indian Knowledge Tradition*	1	0	0	40	60	100	1		
	NGP4501 General Proficiency 100 - 100 1										
		Гotal	16	2	4	480	420	900	21		
* Com	pulsory Qualifying Audit	Course									

SEMES	STER VI								
rse ory			Cont	act H	ours	Eval	luation	Scheme	
Course Category	Course Code	Code Title	L	Т	Р	CIA	ESE	Course Total	Credits
HSC	NHS4601	Industrial Management	3	0	0	40	60	100	3
PCC	NAIBC4601	Deep Learning	3	0	0	40	60	100	3
PCC		Design & Analysis of Algorithms	3	1	0	40	60	100	4
PCC	NCS4604	Compiler Design	3	1	0	40	60	100	4
PEC	-	Professional Elective Course-I	3	0	0	40	60	100	3
PCC	NAIBC4651	Deep Learning Lab	0	0	2	40	60	100	1
PCC	NCS4652	Algorithms Lab	0	0	2	40	60	100	1
SPIC	NAIBC4651	Seminar	0	0	2	100	0	100	1
SPIC	NAIBC4653	Minor Project-II	0	0	2	100	0	100	1
	NGP4601	General Proficiency	-	-	-	100	-	100	1
	•	Total	15	2	8	580	420	1000	22

Note: The students need to undergo a 4 to 6 weeks of industrial training that will be evaluated in the VII Semester.

SEMES	STER VII								
rse			Cont	act H	ours	Eva	luation	Scheme	
Course Category	Course Code	Code Title	L	т	P	CIA	ESE	Course Total	Credits
PCC	NAIBC4701	Solidity and Smart Contract	3	1	0	40	60	100	4
PEC	-	Professional Elective Course II	3	0	0	40	60	100	3
PEC	-	Professional Elective Course III	3	0	0	40	60	100	3
OE	-	Open Elective I*	3	1	0	40	60	100	4
PCC	NAIBC4751	Solidity and Smart Contract Lab	0	0	2	40	60	100	1
SPIC	NAIBC4753	Major Project I#	0	0	4	100	0	100	2
SPIC	NAIBC4754	Industrial Training Evaluation	0	0	2	100	0	100	1
	NGP4701	General Proficiency	-	-	-	100	-	100	1
		Total	12	2	8	500	300	800	19

^{*}Students will opt any one of the open electives from the list of open electives provided by the university.

^{*}Students need to select a guide, carry out literature review and submit the synopsis.

SEMEST	SEMESTER VIII										
rse yory	_		Contact Hours			Eva	luatior				
Course	Course Code	Code Title	L	Т	P	CIA	ESE	Course Total	Credits		
PCC	NAIBC4801	Cybersecurity	3	0	0	40	60	100	3		
PEC	-	Professional Elective Course IV	3	0	0	40	60	100	3		
OE	-	Open Elective II**	3	1	0	40	60	100	4		
PCC	NAIBC4851	Cybersecurity Lab	0	0	2	40	60	100	1		
SPIC	NAIBC4853	Major Project II##	0	0	16	160	240	400	8		
	NGP4801	General Proficiency	-	-	-	100	-	100	1		
	Total			1	18	420	480	900	20		

^{**}The opted subject should be different from the one selected in VII Semester.

^{##}This is in continuation with the project work started in Semester VII. In this semester the students will formulate the methodology, conduct experimentation work and show the results. Finally, all project work will be presented in a report i.e. Project Report.

Legends:

- L Number of Lecture Hours per week
- T Number of Tutorial Hours per week
- P Number of Practical Hours per week
- CIA Continuous Internal Assessment
- ESE End Semester Examination

Category of Courses:

- BSC Basic Science Courses
- CCC Co-Curricular Courses
- ESC Engineering Science Courses
- PEC Professional Elective Course
- GP General Proficiency
- HSC Humanities and Social Science Courses
- OE Open Elective
- PCC Professional Core Courses
- SPIC Seminar/ Project/ Internship/ Community Services
- CQAC Compulsory Qualifying Audit Course

List of Open Electives Offered by the Department of Computer Science and Engineering

S. No.	Course Code	Open Elec	Credits	
1	OE43211	AI Ethics and Law	Open Elective-I	4
2	OE43221	AI in Cyber Security	Open Elective-II	4

List of Vocational Courses Offered by the Department of Computer Science and Engineering

S. No.	Course Code	Vocational Courses	Credits
1	NVC43241	Programming with Python	2
2	NVC43242	Artificial Intelligence	2
3	NVC43243	Cyber Crime and Computer Forensics	2
4	NVC43244	Meta-verse and Virtual Reality	2

List of Professional Elective Courses

S. No.	Course Code	Professional Elective Course I	Credits
1	NPEC44111	Blockchain and Distributed Ledger Technology	3
2	NPEC44112	Cloud-Native Application Development	3
3	NPEC44113	Pattern Recognition	3
4	NPEC44114	FinTech and Blockchain	3

S. No.	Course Code	Professional Elective Course II	Credits
1	NPEC44121	Network Security and Cryptography	3
2	NPEC44122	Generative AI	3
3	NPEC44123	Security Governance and Law	3
4	NPEC44124	Cyber and Digital Forensics	3

S. No.	Course Code	Professional Elective Course III	Credits
1	NPEC44131	Blockchain Architecture: Design and Use Cases	3
2	NPEC44132	Robotics	3
3	NPEC44133	Big Data Security	3
4	NPEC44134	Computer Vision	3

S. No.	Course Code	Professional Elective Course IV	Credits
1	NPEC44141	Distributed Systems	3
2	NPEC44142	Cryptography and Information Security	3
3	NPEC44143	AI For Blockchain	3
4	NPEC44144	Natural Language Processing	3

BABU BANARASI DAS UNIVERSITY

School of Engineering (School Code: 04)

List of Open Electives for the Department of Computer Science and Engineering

S. No.	Course Code	de Course Name						
		Open Elective-I						
1	OE43101	Disaster Management	4					
2	OE43302	Non-Conventional Energy Resources	4					
	Open Elective-II							
3	OE43501	Quality Management	4					
4	OE43102	Concepts of Climate Smart Agriculture	4					

Program	B. Tech CSE (AIBC)					
Year	I	Sem	ester	I/II		
Course Name	Engineering Mechanics					
Code	NME4101/NME4201					
Course Type	ESC	L	T	P	Credit	
Pre-Requisite	Physics	3	1	0	4	
Course Objectives	 To apply laws of mechanics to a To calculate the reactive forces a To know the geometric properties To understand the elastic proper 	and analyes of the	se the str	ructures. shapes.		
Course Outcom	es					
CO1	Solve the engineering problems in the problems involving dry friction		quilibriu	n conditio	ons & solve	
CO2	Calculate the reaction forces as determinate structures.	nd force	es in m	embers o	of statically	
CO3	Determine the centroid and momen	t of inert	ia of vari	ous plane	surfaces.	
CO4	To find out the stress, strain and ela	stic prop	erties of	different	bodies.	

Module	Course Contents	Contact Hrs.	Mapped CO
1	Two Dimensional Concurrent Force Systems: Basic concepts, Laws of motion, Principle of Transmissibility of forces, Transfer of a force to parallel position, Resultant of a force system, Simplest Resultant of Two dimensional concurrent Force systems Two dimensional Non-concurrent Force systems: Resultant of Two dimensional Non-concurrent Force systems, Distributed force system, free body diagrams, Equilibrium and Equations of Equilibrium, Applications.	30 Hours	CO1
2	Beam: Introduction, Types of support, Types of load on beam, Types of beam, Reactions from supports of beam. Friction: Introduction, Laws of Coulomb Friction, Equilibrium of Bodies involving Dry friction, Belt friction, Application.	30 Hours	CO2
3	Trusses: Introduction, Perfect, Deficient, and Redundant truss, Solution of Simple truss by Method of Joints. Centroid and Moment of Inertia: Introduction, Centroid of plane figure and composite figure, Moment of inertia of plane area, Parallel Axes Theorem & Perpendicular axes theorem, Moment of inertia of composite bodies.	30 Hours	CO3
4	Kinematics and Kinetics: Linear motion, D'Alembert principle, Impulse and momentum principle, Work and energy principle. Simple Stress and Strain: Normal and Shear stresses, Stress-Strain Diagrams for ductile and brittle material, Elastic Constants, One Dimensional Loading of members of varying cross-sections.	30 Hours	CO4

- 1. Engineering Mechanics by S.S. Bhavikatti, K.G. Rajashekarappa, New Age Publications.
- 2. A textbook of Engineering Mechanics by Dr. R.K. Bansal, Laxmi Publications.

3. Engineering Mechanics by Irving H. Shames. Prentice-Hall.

- 1. https://nptel.ac.in/courses/112106286
- **2.** https://archive.nptel.ac.in/courses/112/106/112106286/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	3	3	3	2	2									
CO2	3	2	2	3	3									
CO3	1	2	3	2	3									
CO4	2	2	2	2	2									

Program	B. Tech. CSE (AIBC)						
Year	I	Semester I/II					
Course Name	Introduction to Python Programmin	ng and C	ean Cod	ing			
Code	NCCML4101/NCCML4201						
Course Type	ESC	L	T	P	Credit		
Pre-Requisite	Basic Programming Skills	3	0	0	3		
Course Objectives	 To understand why Python is a useful scripting language for developers. To learn how to design and program Python applications To learn how to use lists, tuples, and dictionaries in Python programs To learn how to identify Python object types 						
Course Outcom	nes						
CO1	Understand the Writing of loops an	d decisio	n statem	ents in Py	thon.		
CO2	Analyze and Build package of Pyth	non modu	les for re	eusability.			
CO3	Students will apply object-oriented programs and manage data using fi exceptions gracefully to create robu	le operat	ions. The	ey will als	o handle		
CO4	Students will use Python libraries I data, and integrate real-time data us concepts in a mini project demonst development.	sing RES	T APIs.	They will	apply all		

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Python: History and features of Python, Python installation and IDEs: IDLE, VS Code, Jupyter, Basic syntax, keywords, and data types, Variables and constants, Operators: Arithmetic, Relational, Logical, Assignment, Bitwise, Input/output functions, Type conversion and typecasting, Basic programs and debugging.	30 Hours	CO1
2	Control Structures and Functions: Conditional statements: if, if-else, if-elif-else, Loops: for, while, break, continue, pass, Range and list comprehension, Functions: definition, calling, arguments, return values, Types of functions: built-in, user-defined, lambda, Variable scope: local, global, *args, **kwargs, Recursion, Modules and packages (introduction).	30 Hours	CO2
3	Data Structures and File Handling: Strings and string operations, Lists, Tuples, Sets, Dictionaries: creation, methods, use cases, Iteration over collections, File handling: opening, reading, writing, appending, Working with text and binary files, Exception handling: try, except, finally, raise, The with statement.	30 Hours	CO3

4	Object-Oriented Programming and Libraries: OOP concepts: class, object,init, self, Attributes and methods, Inheritance and polymorphism, Method overriding and overloading, Encapsulation and abstraction, Introduction to libraries: math, random,Datetime,os, sys, Brief introduction to numpy, pandas, matplotlib.	30 Hours	CO4	
---	---	-------------	-----	--

- 1. Mark Lutz, Learning Python, O'Reilly Media, Edition: 5th
- 2. Johannes Ernesti & Peter Kaiser, Python 3, Rheinwerk Computing, Edition: 1st

- **1.** https://archive.nptel.ac.in/courses/106/106/106106182/
- 2. https://pandas.pydata.org/docs/user_guide/index.html#user-guide
- 3. https://numpy.org/doc/stable/user/index.html

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	1	1						1	2	3	
CO 2	3	1	2	2	3						2	2	2	3
CO 3	2	2	1		1						1	2	2	2
CO 4	3	3	3	1	2						2	2	3	3

Program	B. Tech CSE (AIBC)									
Year	I	Sem	ester	I/II						
Course Name	Basic Electronics Engineering									
Code	NEC4101/NEC4201									
Course Type	ESC	L	T	P	Credit					
Pre-Requisite	Knowledge of Physics & Maths	3	0	0	3					
Course Objectives	 Comprehensive idea about basic electronics devices like Diodes, BJT Comprehensive idea about basic electronics devices like JFET. Fundamental principles of Operational Amplifier and its application To have an idea about Digital electronics and principle of communication. 									
Course Outcom	es									
CO1	Understanding the fundamentals Rectifier and Clippers.	of elect	ronic cii	rcuits lik	e Diode as					
CO2	Analysing the fundamentals of elec	tronic de	evices lik	e BJT and	d JFET.					
CO3	Evaluate the Number system, Bool	ean algeb	ora, logic	gates, Ka	arnaugh map.					
CO4	Understanding the principles of Op	erational	Amplific	er and its	application.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	DIODES Energy band theory, Semiconductor material, Mass action law, PN junction: Forward and Reverse Bias characteristics, Diode as Rectifier: Half wave and Full wave Rectifiers, Clippers: Series Clippers, Breakdown Mechanism: Zener & Avalanche breakdown, Zener Diode and its application, Light Emitting Diode(LED).	30 Hours	CO1
2	TRANSISTORS Construction of Bipolar Junction Transistor: PNP and NPN, Working of Transistor, Base-Width modulation (Early Effect), Thermal Runaway BJT configurations: CE, CB and CC, Input & Output characteristics of CB & CE configuration, Biasing: Fixed bias, Emitter bias, Potential divider bias, Collector feedback Configuration, Comparison of biasing circuits. Transistor Amplifying Action. JFET: Basic construction and characteristics, Concept of pinch off, maximum drain saturation current, Input and transfer characteristics, Biasing: Self bias, fixed bias and Voltage divider bias.	30 Hours	CO2

	OPERATIONAL AMPLIFIER AND DIGITAL		
	ELECTRONICS: Introduction to OP-AMP, Equivalent		
	Circuit and Pin diagram of Op-amp IC741, Characteristics		
	of ideal OP-AMP, Input Offset Current, Input Bias Current,		
	Basics of ideal and practical OP-AMP, Configurations:		
	Open loop and closed loop, Applications of OP-AMP,		
3	Inverting amplifier, Non-inverting amplifier, Voltage	30	CO3, CO4
	follower, summing amplifier, Difference Amplifier,	Hours	
	Integrator and Differentiator. Principle of feedback,		
	Concept of positive and Negative feedback.		
	Number System, Complements, Subtraction of binary		
	number using 1's and 2's Complements, Excess 3 code,		
	Gray, Code (Cyclic Code), Boolean Algebra: Basic		
	Theorems and De Morgan Theorems, Standard logic gates,		
	Universal Logic Gates, Implementation of Boolean		
	function using Basic gates and Universal gates.		

- **1.** Robert L. Boylestad and Louis Nashelsky Electronic Devices and Circuit Theory, Pearson India.
- 2. Kennedy, Electronic Communication System, TMH.
- 3. M. Morris Mano, Digital Logic and Computer Design, PHI.

- 1. https://onlinecourses.nptel.ac.in/noc21_ee55/preview
- **2.** https://archive.nptel.ac.in/courses/122/106/122106025/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	1	1									
CO2	1	1	1	1	1									
CO3	1	1	3	3	3									
CO4	1	2	1	1	3									

Program	B. Tech CSE (AIBC)	B. Tech CSE (AIBC)								
Year	I	Sem	ester	I/II						
Course Name	Engineering Mechanics Lab									
Code	NME4151/NME4251									
Course Type	ESC	L	T	P	Credit					
Pre-Requisite	Intermediate School Education	0	0	2	1					
Course Objectives	 To gain the practical knowledge of equilibrium and non- equilibrium conditions. To perform experimental analysis of Torsion tese. To apply the practical knowledge of finding bendinding moment of simply-supported and cantilever beam. 									
Course Outcom	es									
CO1	Able to understand the behaviour o impact load condition.	f metals	under ten	sion, com	pression and					
CO2	To gain the practical knowledge of different hardness testing methods.		on effect	on mater	ial using					
CO3	To apply the role of friction in lifting	ng and lo	wering o	f loads.						
CO4	To analyse the effect of load in def	lection fo	or simply	supported	d beam.					

S. No.	List of Experiments				
1	To conduct the tensile test and determine the ultimate tensile strength,	CO1			
1	percentage elongation for a steel specimen.				
2	To conduct the Impact-tests (Izod) on Impact-testing machine to find the				
	toughness.				
3	To conduct the Impact-tests (Charpy) on Impact-testing machine to find the	CO1			
3	toughness.				
4	To determine the compression test and determine the ultimate compressive	CO1			
-	strength for a Specimen.				
5	Friction experiment(s) on inclined plane and/or on screw-jack.	CO3			
6	Worm & worm-wheel experiment for load lifting.	CO3			
7	Bending of simply-supported and cantilever beams for theoretical &	CO4			
/	experimental deflection.				
8	Statics experiment on equilibrium.	CO2			
9	Belt-Pulley experiment.	CO3			
10	Torsion of rod/wire experiment.	CO4			

Online Resources

1. https://www.vlab.co.in/broad-area-mechanical-engineering

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	3	2	3	3									
CO 2	3	2	2	2	2									
CO 3	3	2	3	3	2									
CO 4	2	3	2	2	3									

Program	B.Tech. CSE (AIBC)								
Year	I	Sem	ester	I/II					
Course Name	Python Programming and Clean Coding Lab								
Code	NCCML4151/NCCML4251								
Course Type	ESC	L	T	P	Credit				
Pre-Requisite	Basics of Python Programming	0	0	2	1				
Course Objectives	 To read and write simple Python programs. To develop Python programs with conditionals and loop. To define Python functions and to use Python data structures — lists, tuples, dictionaries. To do input/output with files in Python. 								
Course Outcom	nes								
CO1	Understand the concepts of Python	Program	ming						
CO2	Analyze the syntax and structures of	of Python	Program	ming.					
CO3	Understanding project-based development	opment.							
CO4	Apply the learning to get better und	derstandi	ng of Pyt	hon Progr	ramming.				

Sr. No.	Course Contents	Mapped CO
1	Write a Python program that takes two numbers as input from the user and displays the result of all arithmetic operations (addition, subtraction, multiplication, division, modulus, exponent, and floor division).	CO1
2	Write a program that accepts a user's name and age, then prints a message displaying the user's name in uppercase and calculates the year they will turn 100.	CO1
3	Create a program that checks whether an entered number is positive, negative, or zero using conditional statements.	CO2
4	Write a function that returns the factorial of a number using recursion. Ask the user to input a number and call the function.	CO2
5	Write a program that takes a list of integers and returns a new list using list comprehension that contains only the even numbers.	CO2
6	Write a Python script to count the number of vowels, consonants, digits, and special characters in a given string.	CO2
7	Create a dictionary to store student names and their marks. Write a program to display the highest, lowest, and average marks.	CO3
8	Write a program to read a text file, count the number of words, and write the result to a new file. Use exception handling to manage file errors.	CO3
9	Create a class BankAccount with attributes account_holder and balance. Add methods to deposit, withdraw, and display the balance. Demonstrate the usage of inheritance by creating a SavingsAccount subclass that has an additional attribute for interest rate.	CO4
10	Write a Python program using the random, math, and datetime libraries to generate:	CO4

	A random number between 1 and 100,	
	The square root of the number,	
	 And the current date and time when the operation was performed. 	
11	Project Statement: Design and develop a Python-based console application	CO3, CO4
	that manages student academic records. The system should allow users to add	
	student information, record subject-wise marks, compute total and average	
	scores, assign grades, and generate individual report cards. It should also	
	support saving and retrieving data using file handling techniques.	

- 1. https://numpy.org/doc/stable/
- https://pandas.pydata.org/docs/
 https://matplotlib.org/stable/tutorials/index.html
- 4. https://scikit-learn.org/stable/user_guide.html

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3					1		2	3	2
CO2	2	2	2	2	3					1	1	2	3	2
CO3	2	2	3	3	3					2		2	3	3
CO4	3	3	3	3	3	2				2	1	2	3	3

Program	B. Tech CSE (AIBC)								
Year	I	Sem	ester	I/II					
Course Name	Workshop Practices								
Code	NME4152/NME4252								
Course Type	ESC	L	T	P	Credit				
Pre-Requisite	Intermediate School Education	0	0	2	1				
Course Objectives	 To gain the practical knowledge of making male-female join, lap and butt join, half lap corner joint etc. To perform experimental analysis of upsetting, drawing down, punching, bending etc. in black smithy shop. To apply the practical knowledge of making Plane turning, Step turning, Taper turning, Threading, Grinding in machine shop. 								
Course Outcom	es								
CO1	To apply practical knowledge of mand fitting shop.	aking dif	ferent typ	es of joir	nt in carpentry				
CO2	Able to gain the practical knowledg and punching of metals.	ge of beno	ding, ups	etting, dra	awing down				
CO3	To understand knowledge of joining methods.	g of meta	als using	various w	elding				
CO4	To Study of machine tools and oper Taper turning, Threading, grinding			turning, S	tep turning,				

S. No.	List of Experiments	Mapped CO							
	Carpentry Shop: Study of tools & operations and carpentry joints, Simple	CO1							
1	exercise using jack plane, to prepare half-lap corner joint, mortise & tennon								
	joints, Simple exercise on wood working lathe.								
	Fitting Bench Working Shop: Study of tools & operations, Simple	CO1							
2	exercises involving fitting work, make perfect male-female joint, Use of								
	drills/taps.								
	Black Smithy Shop: Study of tools & operations, Simple exercises base	CO2							
3	on black smithy operations such as upsetting, drawing down, punching,								
	bending, fullering & swaging.								
4	Welding Shop: Study of tools & operations of Gas welding & Arc	CO3							
•	welding, Simple butt and Lap welded joints, Oxy-acetylene flame cutting.								
	Sheet-metal Shop: Study of equipment & operations, Making Funnel	CO2							
5	complete with 'soldering', Fabrication of tool-box, tray, electric panel box								
	etc.								
6	Machine Shop: Study of machine tools and operations, Plane turning,	CO4							
0	Step turning, Taper turning, Threading, grinding of turning equipment.								
7	Foundry Shop: Study of tools & operations, Pattern making, Mould	CO4							
/	making with the use of a core, Method of material pouring and Casting.								

Online Resources

1. https://cgpit-bardoli.edu.in/engineering-graphics-eg-lab/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2	3	2							1		
CO 2	3	3	3	3	3							1		
CO 3	3	2	3	3	2							1		
CO 4	2	3	2	2	3							1		

Program	B. Tech CSE(AIBC)								
Year	I	Sem	ester	I/II					
Course Name	Basic Electrical Engineering								
Code	NEE4101/NEE4201	NEE4101/NEE4201							
Course Type	ESC	L	T	P	Credit				
Pre-Requisite	Intermediate with PCM	3	1	0	4				
Course Outcom	 This course provides comprehensive idea about circuit analysis. The subject gives the knowledge about combinational circuits. Subject gives the knowledge about the analysis and design of new electrical circuits. Other logical working principles of machines and common Measuring instruments. 								
CO1	To understand basic theorem of ele	ctrical en	ngineerin	g.					
CO2	To understand the basic concepts o	f magnet	ic, AC &	DC circu	iits.				
CO3	To explain the working principle, c machines & measuring instrument	onstructi s.	on, appli	cations of	DC & AC				
CO4	To gain knowledge about the funda devices.	amentals	of electri	c compor	nents,				

Module	Course Contents	Contact Hrs.	Mapped CO
1	Electric Circuit: Introduction to linear and nonlinear circuits, circuit elements, various sources and source transformation, Star delta transformation, solution of D.C. circuits using Kirchhoff's laws- Mesh Analysis and Nodal Analysis, Signal wave forms, Passive elements specifications. Basic theorems: Thevenin, Norton, Maximum Power, Superposition, Millman's Theorem, Tellegen's Theorem applied to DC networks.	30 Hours	CO1, CO2
2	A. C. Circuits: A.C. voltage and currents, average and r.m.s. values, Form factor and peak factor, Phasor representation of sinusoidal quantities, phasor in polar, rectangular and exponential forms. Analysis of single-phase series, parallel and series-parallel circuits, Active & reactive and apparent power, p.f., Volt-amperes, frequency response and Q-factor. Analysis of balanced three phase a.c. circuits, Introductory concept, voltage, current and power in three phase balanced circuits. Star-delta connections. Measurement of three phase power by Wattmeter Method.	30 Hours	CO2

3	Measuring Instruments & Electromagnetic and Transformer: Types of instruments, construction, working principles & applications, PMMC, MI, Single phase dynamometer, Ammeter, Voltmeter, Wattmeter, Induction type Energy meter, Use of shunt and multiplier. Magnetic circuit concept, B-H curves characteristics of magnetic materials, Practical magnetic circuits. Magnetic circuits with D.C. and A.C. excitation, Hysteresis and eddy current losses, Magnetic force. Self and mutual inductances, Faraday's laws, Lenz's Law, Statically and dynamically induced emfs, Energy stored in magnetic fields. Principle of Transformer operation, emf equation, Equivalent circuit of transformer, Losses and efficiency, Introduction of Auto Transformer and its applications.	30 Hours	CO3
4	Electrical Machines: Basic concepts of rotating electric machines, DC machines (motor and generator), working principle, types, EMF and torque equations characteristics and application of DC motor. Three phase induction motors, types, principle of operation, applications. Single phase induction motors, principle of operation, starting methods, applications. Synchronous machines (motor and generator), principle of operation and applications.		CO4

- **1.** Fundamental of Electric Circuits, by Charles K Alexander and Matthew N.O. Sadiku, Tata McGraw Hill Publication.
- 2. Electrical Engineering Fundamentals, by Vincent Del Toro, PHI Publication.
- 3. Basic Electrical Technology, by Kothari and I.J. Nagrath, Tata McGraw Hill.

- **1.** https://archive.nptel.ac.in/courses/108/108/108108076/
- 2. https://nptel.ac.in/courses/108105112
- **3.** https://archive.nptel.ac.in/courses/108/105/108105112/
- **4.** https://archive.nptel.ac.in/courses/108/104/108104139/

	Course Articulation Matrix													
PO-PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2									
CO2	3	3	3	3	3									
CO3	3	1	2	1	2	3								
CO4	2	2	2	2	1	2								

Program	B. Tech. CSE (AIBC)							
Year	I	Sem	ester	I/II				
Course Name	Java Fundamental							
Code	NAIBC4102/ NAIBC4202							
Course Type	ESC L T P Credit							
Pre-Requisite	Basic Knowledge of C Programming Language. 3 0 0							
Course Objectives	 Introduction to Java programming and fundamentals of object-Oriented programming, including defining classes, Invoking methods, using Clang Libraries etc. Understanding the basic of polymorphism through use of super classes and interface. Understand to handle exception, implement check and unchecked exceptions. To develop interaction use interfaces using Java swing class. 							
Course Outcom	es							
CO1	Understand the basic concepts of C	OPs.						
CO2	Understand the concepts of core jav	a such a	s inherita	nce, poly	morphism.			
CO3	Implement the enterprises application	on of jav	a bean an	d JSP.				
CO4	Apply the knowledge of JSP and de	eveloped	the enter	prises ap	plication.			

Module	Course Contents	Contact Hrs.	Mapped CO
1	INTRODUCTION: Introduction to object-oriented programming, Object concepts, Key principles of object-oriented programming. INTRODUCTION JAVA PROGRAMMING LANGUAGE: Introduction to the Java programming language. Introduction to the Java development and Productivity tools. Object-oriented programming: Java syntax basics -Part 1, Java syntax basics -Part 2.	30 Hours	CO1
2	CONCEPTS OF CORE JAVA Writing simple Java code using the IDE, Building classes, Debug applications, Inheritance, Design patterns and refactoring, Interfaces, Collections, Generics, Threads and synchronization, Utility classes, Exceptions and exception handling, I/O and serialization. INTRODUCTION TO ENTERPRISE APPLICATION DEVELOPMENT JavaBeans, Introduction to Java EE Web Component, Overview of Servlets, Java EE Container Services Overview, Servlet API, Overview of JavaServer Pages, JavaServer Pages Specification and Syntax.	30 Hours	CO2, CO3

3	ENTERPRISE APPLICATION DEVELOPMENT Create and Edit HTML and JSPs, Debugging Web Applications, Web Archive Deployment Descriptor, Session State Storage Issues, Cookie API, HttpSession: Management of Application Data, URL Rewriting, Best Practices for Session Management, JSP Expression Language, JSP Custom Tags, JSP Tag Files. Create and Edit Servlets, Filters, and Listeners, XDoclet and Annotations, Connecting to a database, Web Application Security, Java EE Packaging and Deployment, Best Practices for Server, Side Application Development.	30 Hours	CO4	
---	--	-------------	-----	--

- Java the Complete Reference by Herbert Schildt.
 Core Java An Integrated Approach by Dr. R. Nageswara Rao.

Online Resources

1. https://onlinecourses.nptel.ac.in/noc22_cs47/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		1									1		
CO2	2	2		1	2								2	2
CO3	2		2	2								1		2
CO4	2	2	3	2	2			·	·			1	2	

Program	B Tech CSE(AIBC)											
Year	I	Se	mester	I/II								
Course Name	Basics of Artificial Intelligence	Basics of Artificial Intelligence										
Code	NCS4102/NCS4202											
Course Type	ESC L T P Credit											
Pre-Requisite	Basic Knowledge of Computers	3	0	0	3							
Course Outcom	 Understanding the fundamental 3. Study of advanced AI technique computing. Understanding different AI app perception, knowledge represent 	s; like so	ft compu like prob	olem solvi	1							
CO1	Demonstrate fundamental unders intelligence (AI) and its foundation	_	of the	history	of artificial							
CO2	Apply basic principles of AI in sinference, perception, knowledge re		-	-	•							
CO3	Demonstrate advanced AI technic inspired computing.	jues; like	e soft co	mputing a	and nature							
CO4	Demonstrate awareness and a fu applications of AI techniques.	ındamen	tal unde	rstanding	of various							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Artificial Intelligence (AI): definition, foundation and history of AI, types of AI, intelligent agents, structure of intelligent agents, introduction to soft computing, introduction and operations on fuzzy sets, nature inspired computing and algorithms.	30 Hours	CO1
2	Searching for solutions: AI terminologies & basic concepts, searching for solutions, search strategies: informed and uninformed, local and global search algorithms for optimistic problems, adversarial search, searching techniques for games, Alpha Beta pruning.	30 Hours	CO2

3	Knowledge representation: Knowledge representation and reasoning, propositional logic, theory of first order logic, inference mechanism in first order logic, forward and backward chaining, probabilistic reasoning, utility theory, Bayesian Networks.	30 Hours	CO3, CO4
	Application: Applications and future of Artificial Intelligence, ethical issues, impact of AI on public life: understanding application of AI in Healthcare, Gaming, Finance, Data Security, Social Media, Travel & Transport, Automotive Industry, Robotics, AI in Entertainment, Agriculture, E- commerce and Education.		

- **1.** Stuart Russell and Peter Norvig, Artifcial Intelligence: A Modern Approach, Pearson Education, Inc., 2010.
- 2. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.
- 3. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill, 2003.
- **4.** George F. Luger, "Artificial Intelligence-Structures and Strategies For Complex Problem Solving", Pearson Education / PHI, 2002.

- 1. https://onlinecourses.nptel.ac.in/noc21_ge20/preview
- 2 https://www.youtube.com/@IITDelhiJuly

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	2	2	1									2	2	
CO2	2	2	1									2	2	
CO3	2	2	1									2	2	
CO4	2	2	1									2	2	

Program	B. Tech CSE(AIBC)										
Year	I	Sem	ester	I/II							
Course Name	Basic Electrical Engineering Lab										
Code	NEE4151/NEE4251										
Course Type	ESC	L	T	P	Credit						
Pre-Requisite	Intermediate with PCM 0 0 2 1										
Course Objectives	D.C. circuits.2. Fundamental understanding of concepts.3. Understanding three-phase ac of three-phase system.	 Fundamental understanding of Transformer, AC and DC circuit concepts. Understanding three-phase ac circuit devices for measurement and a 									
Course Outcom	es										
CO1	To have basic knowledge of variou	s electric	al equip	nent.							
CO2	To Understand the concept of Netw	To Understand the concept of Network Theorems and D.C Circuits.									
CO3	Know about concept of Three Phase AC Circuits and three phase system.										
CO4	Study and application of AC and D	C Machi	nes.								

S. No.	List of Experiments	Mapped CO
1	Study of Electrical Equipment used in daily life.	CO1
2	Transistor input-output characteristic.	CO1
3	Full wave rectifier circuit using diodes.	CO2
4	Verification of KCL & KVL.	CO2
5	Verification of Thevenin's theorem & Norton's theorem.	CO2
6	Verification of Superposition theorem.	CO2
7	Measurement of active power in 3 -phase circuit using TWO wattmeter methods.	CO3
8	Study of dc shunt motor speed control using (1) Armature control (2) Field Control.	CO4
9	Measurement of load test and Calculating efficiency of DC Machine.	CO4
10	Determination of equivalent circuit parameters of a single-phase transformer by O.C. and S.C. tests and estimation of voltage regulation and efficiency at various loading conditions and verification by load test.	CO4

Virtual Lab Source:

- 1. https://ems-iitr.vlabs.ac.in/exp/lab-equipment-familiarization/
- **2.** https://vlab.amrita.edu/?sub=3&brch=110&sim=245&cnt=526
- **3.** http://vlabs.iitkgp.ernet.in/be/exp7/index.html
- **4.** https://vlab.amrita.edu/?sub=1&brch=75&sim=217&cnt=1
- **5.** http://vlabs.iitkgp.ernet.in/asnm/index.html#
- **6.** http://vlabs.iitkgp.ernet.in/asnm/index.html#
- 7. http://vlabs.iitkgp.ernet.in/asnm/exp7/index.html
- **8.** https://em-coep.vlabs.ac.in/exp/speed-control-dc-motor/index.html
- **9.** https://em-coep.vlabs.ac.in/exp/load-test-dc-motor/
- **10.** https://ems-iitr.vlabs.ac.in/exp/circuit-parameters-oc-test/index.html

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	1	3									
CO2	3	2	3	2	2									
CO3	3	3	2	3	3									
CO4	3	2	3	2	2									
CO5	3	3	2	1	2							_		

Program	B.Tech.: CSE(AIBC)										
Year	I	Sem	ester	I/II							
Course Name	Java Fundamental Lab										
Code	NAIBC4152/NAIBC4252	NAIBC4152/NAIBC4252									
Course Type	ESC L T P Credit										
Pre-Requisite	Knowledge of C Programming language.	0	0	2	1						
Course Objectives	 List the editors used for creating java programs. Describe the Structure of java programs. Identify different keywords available in java programming language. Compare and use the various java keywords for writing java programs. 										
Course Outcom	es										
CO1	Understand the basic program of th	e java pr	ogrammi	ng langua	ge using class.						
CO2	Analyze the constructor and interfa	ce in jav	a prograr	nming lan	guage.						
CO3	1	Evaluate and discuss which query execution method and statement should be used to access database through Java programs.									
CO4	Apply knowledge of servlet to crea	te server	side prog	grams.							

The following programs should be implemented preferably on 'UNIX/WINDOWS' platform using \boldsymbol{C} .

S. No.	List of Experiments	Mapped CO
1	Write a program to create a class Student2 along with two method getData(), printData() to get the value through argument and display the data in printData. Create the two objects s1, s2 to declare and access the values from class STtest.	CO1
2	WAP using parameterized constructor with two parameters id and name. While creating the objects obj1 and obj2 passed two arguments so that this constructor gets invoked after creation of obj1 and obj2.	CO2
3	Write a program in JAVA to demonstrate the method and constructor overloading.	CO2
4	Write a java program in which you will declare two interface sum and Add inherits these interface through class A1 and display their content.	CO2
5	Write a java program in which you will declare an abstract class Vehicle inherits this class from two classes car and truck using the method engine in both display —car has good engine and —truck has bad engine.	CO1
6	Write a Java Program to finds addition of two matrices.	CO2
7	Write a program in java if number is less than 10 and greater than 50 it generate the exception out of range. Else it displays the square of number	CO1
8	Write a servlet to connect Java Web application to MySQLl/ DB2 Server	CO4
9	Create a Login form in Html and validated it on Server Side using Servlet.	CO3
10	Create a J.S.P Application to view all data of MySQL/ DB2 table on Web Page.	CO3

Online Resources

1. https://java-iitd.vlabs.ac.in/List%20of%20experiments.html

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	2								2	1	2
CO2	2	2		3								1	2	
CO3	2	2	2									2	2	2
CO4	1	2	2	1								2	2	2

Program	B. Tech CSE (AIBC)											
Year	I Semester I/II											
Course Name	Engineering Graphics Lab											
Code	NME4153/NME4253											
Course Type	ESC L T P Credit											
Pre-Requisite	Intermediate School Education	0	0	2	1							
Course Objectives	 To gain the practical knowledge of different types of line and different type of projection. To draw the projection of point on VP & HP and projection of line like line inclined to one plane, inclined with the plane, true length and true inclination. To understand the use of Computer aided drafting in engineering graphics design. 											
Course Outcom	es											
CO1	Able to gain the knowledge of type first and third angle projection.	s of proje	ection, or	thographi	c projection,							
CO2	To understand the projection of line different positions.	es, Planes	s like circ	ele and po	lygons in							
CO3	To draw Isometric scale, Isometric orthographic drawing.	axes, Iso	metric Pr	ojection f	From							
CO4	Able to understand the software's bline, circle, polygon, polyhedron, c		mands o	f drafting	entities like							

S. No.	List of Experiments	Mapped CO
1	Scales : Representative factor, plain scales, diagonal scales, scales of chords.	CO1
2	Projection : Types of projection, orthographic projection, first and third angle projection.	CO1
3	Projection of points: The principle of orthographic projections of a point on HP and VP, Conventional representation, Projection of a point in all the quadrants.	CO1
4	Projection of Lines: Line inclined to one plane, inclined with both the plane, True Length and True Inclination, Traces of straight lines.	CO2
5	Projection of planes and solids : Projection of Planes like circle and polygons in different positions; Projection of polyhedrons like prisms, pyramids and solids of revolutions like cylinder, cones in different positions.	CO2
6	Section of Solids: Section of right solids by normal and inclined planes; Intersection of cylinders.	CO3
7	Isometric Projections: Isometric scale, Isometric axes, Isometric Projection from orthographic drawing.	CO3
8	Perspective Projection: Nomenclature of Perspective Projection, Method of drawing perspective views, Visual Ray Method, using Top and Front, Top and Side views.	CO3
9	Computer Aided Drafting (CAD)- I: Introduction, benefit, software's basic commands of drafting entities like line, circle, polygon, polyhedron, cylinders.	CO4
10	Computer Aided Drafting (CAD)- II: Transformations and editing commands like move, rotate, mirror, array; solution of projection problems on CAD.	CO4

Online Resources

1. https://cgpit-bardoli.edu.in/engineering-graphics-eg-lab/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	2								
CO2	2	2	3	2	2	3						1		
CO3	3	2	3	3	3	2						1		
CO4	3	3	3	2	3	2						1		

Program	B. Tech CSE(AIBC)									
Year	П	Sem	ester	III						
Course Name	Discrete Mathematics									
Code	NCS4301									
Course Type	PCC	PCC L T P Credit								
Pre-Requisite	Basics knowledge of functions and set theory	3	0	0	3					
Course Objectives	2 Investigate functions as relations and their									
Course Outcom	es									
CO1	Explore application of Set Theory, Relations, Functions & Natural Numbers.									
CO2	To apply the basic principles Algebraic Structures.									
CO3	To analyse the simple mathematical proofs by logic and relations.									
CO4	To introduce generating function as	nd Comb	inatorics.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Set Theory, Relations, Functions & Natural Numbers Set Theory: Introduction, Combination of sets, Multisets, Ordered pairs, Proofs of some general identities on sets. Relations: Definition, Operations on relations, Properties of relations, Composite Relations, Equality of relations, Recursive definition of relation, Order of relations. Functions: Definition, Classification of functions, Operations on functions, Natural Numbers: Introduction, Mathematical Induction, Induction with Nonzero Base cases, Proof Methods, Proof by contradiction.	30 Hours	CO1
2	Groups, Rings, Fields & Lattice Algebraic Structures: Definition, Groups, Subgroups and order, Cyclic Groups, Cosets, Lagrange's theorem, Normal Subgroups, Definition and elementary properties of Rings and Fields, Integers Modulo n; Partial order sets: Definition, Partial order sets, Combination of partial order sets, Hasse diagram. Lattices: Definition, Properties of lattices, Bounded, Complemented, Modular, Complete lattice	30 Hours	CO2
3	Proposition Logic Propositional Logic: Proposition, well-formed formula, Truth tables, Tautology, Satisfiability; Contradiction; Algebra of proposition; Theory of Inference; Predicate Logic: First order predicate-well- formed formula of predicate, quantifiers, Inference theory of predicate logic. Recurrence Relation & Combinatorics Recurrence Relation & Generating function: Recursive definition of functions, Recursive algorithms, Method of solving recurrences. Combinatorics: Introduction; Counting Techniques: Pigeonhole Principle	30 Hours	CO3, CO4

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", McGraw-Hill
- **2.** R.P. Grimaldi, "Discrete and Combinatorial Mathematics", Addison Wesley.
- **3.** Jean Paul Trembley, R Manohar, "Discrete Mathematical Structures with Application to Computer Science," McGraw-Hill.

- **1.** https://archive.nptel.ac.in/courses/106/108/106108227/
- **2.** https://archive.nptel.ac.in/courses/106/105/106105192/

	Course Articulation Matrix													
PO- PSO	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	3	1	3	2									3	
CO2	3	1	3	1									1	
CO3	3	1	3	2									2	
CO4	2	1	2	2									3	

Program	B. Tech CSE(AIBC)									
Year	П	Sem	ester	III						
Course Name	Data Visualization with Python									
Code	NAIBC4301									
Course Type	ESC	L	T	P	Credit					
Pre-Requisite	Basic knowledge of Python Programming.	2	1	0	3					
Course Objectives	 Describe the basic concepts of data science such as Linear Algebra, Probability and Statistics, Matplotlib, Charts and Graphs. Understanding Data Analysis, Visualization of non-uniform data. Demonstrating Hypothesis and Gradient Descent, Data Clustering. To Study the basic concepts of the Python tool and Utilization. 									
Course Outcom	es									
CO1	Understand basic concepts of python, data visualization and data analysis.									
CO2	Analyze and plot the data visualization by using Matplotlib library.									
CO3	Analyze and plot the data visualiza	Analyze and plot the data visualization by using Matplotlib library.								
CO4	Analyze and plot the data Visualiza	ation by u	ising Sea	born Libr	ary.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	PYTHON AS TOOL: Crash course of Python, Sample Scripts with Loops in python. Data Visualization: Understanding Data Visualization, history and Architecture of Matplotlib. Data Analysis: Understanding Data Analysis, exploring 1-D data, exploring 2-D data, Bubble chart representation, Data Mingling Linear Algebra: What are vectors? various operations of vectors, Understanding Matrices. Statistics: Single set of data, Concept of Central Tendencies, Dispersion. Probability: Probability concept, Normal Distribution, Central Limit Theorem.	30 Hours	CO1
2	Visualization with Matplotlib library Basic plots: Line Plots, Bar plot, Histograms, Scatter plot, pie chart, Area Plots, Pie Charts, Box Plots, Bubble Plots, Waffle Charts, Word Clouds Pyplot in Matplotlib: Line Plot, Histogram, Scatter, 3D Plot, Image, Contour, and Polar. Matplotlib-Axes Class: axes () function, add_axes() function, ax. Legend() function, ax. plot () function, sine and cosine functions. Multiple Subplot: Create multiple subplots, add title to subplots, set single main title for all subplots, turn off the axes for subplots Advance Data Visualization Visualizing the content of a 2D array, adding a color map legend to figure, Visualization non uniform 2D data, Visualizing contour lines, Polar charts, Plotting log charts for research.	30 Hours	CO2

	Creating Maps and Visualizing Geospatial Data: Introduction to Folium, Maps with Markers, Choropleth Maps. Export Feature – Data Visualization: Generating a PNG picture, Generating PDF documents, Multiple graphs plotting and export, Inserting sub figure.		
3	Hypothesis and Gradient Descent: Understanding Hypothesis, Implementation of hypothesis in python, Gradient Descent, Implement of gradient Descent.	30 Hours	CO3, CO4
	Visualization by using Seaborn Library: Relational plot: Dist Plot, Line Plot, Lmplot. Categorical plot: Stripplot, Swarmplot, Barplot, Countplot, Boxplot, Violinplot, Stripplot. Distribution plot: Join plot, Distpot, Pairplot, Rugplot. Regression plot: Simple Linear plot with additional parameters (hue and markers), Setting size and color of the plot, Displaying multiple plots, Size and aspect ratio of plots. Matrix plot: Heatmaps, Cluster Maps. Style and Color: Set the background to be white, Set the background to be ticks, Set the background to be darkgrid, Set the background to be whitegrid. Remove axes spine: Despine Size and aspect: Non grid plot, Grid type plot Scale and Context: Poster, paper, notebook and talk.		

- 1. Matplotlib 3.0 Cookbook, by Srinivasa Rao Poladi.
- 2. Data Visualization in Python, by David Landup.

- 1. https://onlinecourses.nptel.ac.in/noc22_cs32/
- 2. https://onlinecourses.nptel.ac.in/noc21_cs45/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1		2							2		2
CO2	2		2	2	2							2		2
CO3	2	2	2	2	2							2	2	
CO4	2	2	2	2	2							2	2	2

Program	B. Tech CSE(AIBC)									
Year	П	Sem	ester	III						
Course Name	Operating Systems									
Code	NCS4302	NCS4302								
Course Type	PCC L T P Credit									
Pre-Requisite	Basic Knowledge of Computer System. 3 1 0 4									
Course Objectives	 Understand the structure and functions of OS and analyse Processes, Threads and Scheduling algorithms. Analyse OS concepts that include architecture mutual exclusion algorithms, deadlock detection algorithms and agreement. Understand the principles of concurrency and Deadlocks. Analyse various memory management schemes. Study I/O management and File systems. 									
Course Outcom	es									
CO1	Understanding of the concepts, strabout Processes, Threads and Sche		·		and Learning					
CO2	Understand the principles of concu	rrency ar	d Deadlo	ock.						
CO3	Evaluate various memory managen	nent sche	mes.							
CO4	Analyse and Implement a prototype	e file syst	em.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Operating System and Process Concept Operating system and functions, Classification of Operating systems, Operating System Structure, Operating System Services, System call and System program, Process concept, Process state, Process control block, Context switching, Operation on process, Threads and their management, Benefits of multithreading, Types of threads, Threading issues, CPU-scheduling, Scheduling criteria, Scheduling Algorithms, Concurrent Processes, Inter Process Communication models and Schemes	30 Hours	CO1
2	Process Synchronization and Deadlock Process synchronization, Producer/Consumer Problem, Critical Section Problem, Peterson's solution, Synchronization of hardware, Semaphore, Classical-problem of synchronization, Deadlock, Deadlock characterization, Deadlock Prevention, Deadlock Avoidance, Resource allocation graph algorithm, Banker's algorithm, Deadlock detection, Recovery from deadlock	30 Hours	CO2
3	Memory Management Memory Management, Multiprogramming with fixed partitions, Multiprogramming with variable partitions, Paging, Segmentation, Paged segmentation, Virtual memory concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing	30 Hours	CO3

4	I/O Management and File System		
	File System Structure, File System Implementation, Directory		
	Implementation and Allocation Methods, Free space	30	
	Management, Kernel I/O Subsystems, Disk Structure, Disk	Hours	CO4
	Scheduling, Disk Management, Swap-Space		
	Management.		

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley Publication.
- 2. Sibsankar Halder and Alex A Aravind, "Operating Systems", Pearson Education.
- **3.** Harvey M Dietel, "An Introduction to Operating System", Pearson Education.
- 4. D M Dhamdhere, "Operating Systems: A Concept-based Approach", TMH.
- 5. William Stallings, "Operating Systems: Internals and Design Principles", Pearson Education.

- 1. https://onlinecourses.nptel.ac.in/noc21_cs72/preview
- **2.** https://www.coursera.org/specializations/codio-introduction-operating-systems

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	2	3							1	1	
CO2	2	3	2	1	1								1	2
CO3	2	2	1	1	2							2	2	1
CO4	2	1	2	3	2								1	

Program	B.Tech: CSE(AIBC)									
Year	II	Sem	ester	III						
Course Name	C Programming									
Code	NCS4305									
Course Type	PCC L T P Credit									
Pre-Requisite	Fundamentals of Computers 3 1 0									
Course Outcom	 To learn the fundamentals of cor Understand the various steps in p Study the syntax and semantics of To learn the usage of structured p problems. 	orogram of C prog	ramming	language						
CO1	Develop simple algorithms for arith	nmetic an	d logical	problems	S.					
CO2	To translate the algorithms to progralso implement conditional branchi			•	guage) and					
CO3	To decompose a problem into function Program using divides and conquer		•	ze a comp	olete					
CO4	Study the use of arrays, pointers an programs.	d structu	res to dev	velop algo	orithms and					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Programming Environment, Concept of algorithm, Strategy for designing Algorithms, Top-down development, Stepwise refinement, Flowchart, Programming Languages, Assembler, Compiler, Interpreter, Systematic Development of Programs, Program Writing and execution, Introduction to the design and implementation of correct efficient and maintainable programs, Structured Programming Concept, Number System and Conversion Methods, Introduction to C language, Identifiers, Keywords, Constants and Variables in C, Storage classes, Fundamental Data types in C, Integer	30 Hours	CO1

	1 1 1 1 2		
	types, short, long. Unsigned Character types, single and double precision floating point.		
	double precision floating point.		
2	Storage Classes in C: Automatic, register, static, extern, Operators and Expressions in C: Arithmetic, Relational, Logical, Assignment, Bitwise, Conditional, Increment and Decrement, Special Operators such as comma, sizeof etc. Type Conversion in C, Operator Precedence and Associativity, Mixed mode operations, Standard Input/output functions: printf(),scanf(), getch(), getchar(), getche() etc. Conditional and Control Statements: if statement, if-else statement, nested if- else statement, else if ladder, switch statements, restrictions on switch values, Use of break and default statement with switch. Looping or Iteration: Uses of while, for and do-while loops, nesting of loops, use of break and continue statements.	30 Hours	CO2
3	Arrays, Structures and Functions: Array, notation and representation, using one dimensional, two dimensional and multi-dimensional arrays, Arrays of unknown and varying size, Searching and sorting in arrays. Strings: String declaration and initialization, String manipulation. Structures: Purpose and use of structures, declaring and assigning of structures, accessing structure elements, Array of structures, Arrays within structures. Union: Utility of unions, Union of structures. Function Declaration, function Definition, function call, Passing values between functions, Global and local variables and their scope, Call by value and call by reference	30 Hours	CO3
4	Pointers, Preprocessors and File Handling: Pointers: Understanding Pointers, Declaration and initialization of pointer variables, Accessing the address of the variable, Pointer arithmetic, Pointers and arrays. Dynamic Memory Allocation, Stack, Linked list, Recursion, Pointers to functions, Declaration of a pointer to a function, Initialization of function pointers, Calling a function using a function pointer, Passing a function to another function, How to return a function pointer. Standard C library functions: Math functions, String handling functions, The C preprocessor: preprocessor directives, defining and calling macros, conditional compilation, passing values to the compiler. File Handling in C: Types of files, Defining, opening and closing of a file, Input/output operations on files, Multiple file handling in C.	30 Hours	CO4

- **1.** Let Us C By Yashwant P. Kanetkar.
- 2. Computer Concepts and Programming in C, E Balaguruswami, McGraw Hill.
- 3. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
- **4.** Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication.
- **5.** Computer Concepts and Programming in C by Vikas Gupta, Wiley India Publication.
- **6.** Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006

- 1. https://youtu.be/-wv-OERJK3M
- 2. https://nptel.ac.in/courses/106104074

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1		2								1	2
CO2	2	3	1	1									2	2
CO3	1	3	2	2	2								1	2
CO4	1	1	2	1	1								1	1

Program	B. Tech CSE (AIBC)									
Year	П	Sem	ester	III						
Course Name	Data Visualization with Python Lab									
Code	NAIBC4351									
Course Type	ESC	L	T	P	Credit					
Pre-Requisite	Knowledge of Python	0	0	2	1					
Course Outcom	 To understand Use python librar To apply and Conduct explorato To evaluate Interpret results of e Students to learn the different da 	ry data a explorator	nalysis us ry data an	ing Pytho alysis.	n.					
CO1	Implement data visualization techniques as Matplotlib, Seaborn, and Folium to			~ .	libraries, such					
CO2	Implement the different types of histograms, bar, pie, box, scatter, and		-	such as	line, area,					
CO3	Implement advanced visualizations regression plots, maps with markers,				word clouds,					
CO4	Implementation of the scatter, line, be the Dash framework and Plotly library		e, pie, and	d sunburs	t charts using					

S. No.	List of Experiments	
1	Scatter plot with color groupings on iris dataset.	CO1
2	Scatter plot with color groupings and size encoding for the third variable of country size.	
3	Line graph: Percentage of bachelor degree conferred to women in USA, by major (1970- 2012)	CO2
4	Read Total profit of all months and show it using a line plot.	CO1, CO2
5	Read all product sales data and show it using the stack plot.	CO1, CO2
6	Some advance projects/labs 1. Finance data analysis 2. Uber data analysis of NYC 3. Hotel booking 4. Covid-19 5. Amazon customer data analysis	CO3, CO4

1. https://python-iitk.vlabs.ac.in/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										1	1	1
CO2	3	2		1								1	2	2
CO3	3	2										1	2	2
CO4	3	1				1						1	2	2

Program	B. Tech CSE (AIBC)										
Year	П	Semest	er	III							
Course Name	C Programming Lab										
Code	NCS4355										
Course Type	PCC L T P Credit										
Pre-Requisite	Basic knowledge of computer	Basic knowledge of computer 0 0 1									
Course Objectives	 To introduce students to the basi fundamentals of C language. To impart writing skill of C prog problems. To impart the concepts like loop structure. Understand how to access and us 	ramming	g to the st	udents an	d solving						
Course Outcom	es										
CO1	Understand and trace the execution	of progr	ams writ	ten in C la	anguage.						
CO2	Analyze the C code for a given algorithm	orithm.									
CO3	Evaluate Programs with pointers and arrays, perform pointer arithmetic, and use the pre-processor.										
CO4	Applying the basic concepts of poi	nter, file	handling.		_						

S. No.	List of Experiments	Mapped CO
1	Creating and editing simple C program, debugging, compilation, execution.	CO1
2	C programming on variables and expression assignment, simple arithmetic Loops, If-else, Case statements, break, continue, goto.	CO1
3	Implementing different operations on Single & Multidimensional arrays.	CO2
4	Implementing different String handling inbuilt and user defined functions.	CO2
5	Implementation of Functions, recursion, file handling in _C.	CO2
6	Implementing different operations on Single & Multidimensional arrays.	CO3
7	Implement the Pointers, address operator, declaring pointers and operations on pointers in C.	CO3
8	Implement the Address of an array, structures, pointer to structure, dynamic memory allocation in C.	CO3
9	Implement the C' program of 2's complement of a numbers.	CO4
10	Implement the Pointers, address operator, declaring pointers and operations on pointers in C.	CO4

1. https://ps-iiith.vlabs.ac.in/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	3	2									1	
CO 2	3	2	2	1									2	1
CO 3	3	3	3	2									1	2
CO 4	3	2	2	1									2	1

Program	B. Tech CSE/CSE-AI/CSE-CCML/	CSE-AII	BC								
Year	П	Semester III/IV									
Course Name	Yoga Activities										
Code	NCC4351/NCC4451										
Course Type	CQAC L T P Credit										
Pre-Requisite	Fundamental Concepts of Yoga	0	0	2	1						
Course Objectives	 To enable the student to have g To practice mental hygiene. To possess emotional stability. To integrate moral values. And 			evel of co	onsciousness.						
Course Outcom	es										
CO1	To Understand the Concept of Yog	a and its	Historica	ıl Develop	oment.						
CO2	To Analyse the relevance of Yoga i	n moder	n age and	l its scope	4.						
CO3	To Apply, the Concept of Yoga in different texts.										
CO4	To evaluate the difference between exercises.	Yogic ar	nd non-yo	ogic syste	m of						

Module	Course Contents	Contact Hrs.	Mapped CO
1	General Introduction of Yoga: Yoga it's Origin, Meaning, Definition & Objectives, Historical Development of Yoga, Relevance of Yoga in modern age and scope, Misconceptions about Yoga and their solutions, Difference between yogic and non-yogic system of exercises.	30 Hours	CO1, CO2
2	Yoga Practices. 1. Asanas Yoga Stretching, Surya namaskar (Warming-up), Standing Asana, Sitting Asana, Prone position Asana, Supine position Asana, Meditative Asana, Relaxation Asana 2. Pranayam- Surya Anuloma Viloma/Surya Bhedana Pranayama Chandra Anuloma Viloma/Chandra Bhedana Pranayama Pranayama Ujjayi Pranayama Kumbhaka Pranayama Sampoorna Yoga Shwasana (Full Yogic Breathing) 3. Meditation and Mudras	30 Hours	CO3, CO4

- 1. Prof. Ramharsh Singh Yoga Avam Yoga Chikitsa, Chaukhambha Sanskrit Pratishthan, Delhi-07.
- 2. K.S. Joshi Yoga in Daily Life, Orient Paper Back Publication, New Delhi, 1985.
- 3. Vijnananand Saraswati Yoga Vigyan, Yoga Niketan Trust, Rishikesh, 1998.
- **4.** Rajkumari Pandey-Bhartiya Yoga Parampara ke Vividh Ayam, Radha Publication, New Delhi, 2008.

- **1.** Yoga and Positive Psychology for Managing Career and Life Course (nptel.ac.in) https://nptel.ac.in/courses/106105218
- 2. NPTEL:: Management NOC: Yoga and Positive Psychology for Managing Career and Life.

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1							2	2				2		2
CO2							2	2				2		2
CO3							1	2				2		2
CO4							2	2				2		2

Program	B. Tech CSE (AIBC)											
Year	II	Semester IV										
Course Name	Database Management Systems	Database Management Systems										
Code	NCS4401	ICS4401										
Course Type	PCC L T P Credit											
Pre-Requisite	Fundamentals of computer	Fundamentals of computer 3 1 0 4										
Course Objectives	 To introduce the basics of Data Understanding the fundamental Understanding the fundamental To develop understanding of Tr Concurrency control, and Reco 	relationa of archite ansaction	al system tecture, a n Process	, data mo nd manip ing Syste	ulations. m,							
Course Outcom	es											
CO1	Understand terms related to database	se design	and man	agement.								
CO2	Constructing conceptual data mode	1.										
CO3	Understand the functional dependent	Understand the functional dependencies, normalization and using SQL.										
CO4	Understand and applying issues of control.	transactio	on proces	sing and	concurrency							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Database System Concepts, Database Users, and Architecture Introduction to Database System with example, Characteristics of the Database Approach, Users of Database System, Advantages and disadvantages of Using a DBMS, Implications of the Database Approach, Data Models, Schemas, and Instances, DBMS Architecture and Data Independence, Database Languages and Interfaces, The Components of Database System, Classification of Database Management Systems	30 Hours	CO1
2	Data Modelling & Relational Database Management System Data Modelling Using the Entity-Relationship Model, concepts, notation for ER diagram, mapping constraints, keys, Concepts of Super Key, candidate key, primary key, Entity Types, Entity Sets, and Attributes, Relationships, Relationship Types, Roles, and Structural Constraints, Strong vs Weak Entity Types, ER Diagrams, Naming Conventions, and Design Issues, Enhanced Entity-Relationship Modelling, Subclasses, Super classes, and Inheritance, Specialization and Generalization, Constraints and Characteristics of Specialization and Generalization, Modelling of UNION Types Using Categories, The Relational Data Model, Relational Constraints, and the Relational Algebra, Relational Model Concepts, Relational Constraints and Relational Database Schemas, Update Operations and Dealing with Constraint Violations, Basic Relational Algebra Operations, Additional Relational Operations, Examples of Queries in Relational Algebra	30 Hours	CO2

3	SQL and Database Design Theory and Methodology Structured Query Language- The Relational Database Standard, Data Definition, Constraints, and Schema Changes in SQL, Types of SQL Commands, SQL Operators and their Procedure, Insert, Delete, and Update Statements in SQL, Queries and Subqueries, Aggregate Functions, Joins, Unions, Intersection, Minus, Views (Virtual Tables) in SQL, Cursors, Triggers and PL/SQL, Functional Dependencies and Normalization for Relational Databases, Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependencies and Fourth Normal Form, Join Dependencies and Fifth Normal Form	30 Hours	CO3
4	Transaction Processing, Concurrency Control and Database Recovery Transaction Processing Concepts, Introduction to Transaction Processing, Transaction states and State Diagram, Transaction and System Concepts, Desirable Properties of Transactions, Schedules and Recoverability, Serializability of Schedules, Concurrency Control Techniques, Locking Techniques for Concurrency Control, Concurrency Control Based on Timestamp Ordering, Multiversion Concurrency Control Techniques, Validation (Optimistic) Concurrency Control Techniques, Granularity of Data Items and Multiple Granularity Locking, Database Recovery Techniques Based on Deferred Update, Recovery Techniques Based on Immediate Update, Shadow Paging, The ARIES Recovery Algorithm, Database Backup and Recovery from Catastrophic Failures	30 Hours	CO4

- 1. Data base System Concepts, Silberschatz, Korth, McGraw hill, Sixth Edition.
- 2. Fundamentals of Database Systems, Elmasri Navathe Pearson Education.
- **3.** Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGrawHill 3rd Edition.

- 1. https://onlinecourses.nptel.ac.in/noc22_cs51/preview
- **2.** https://www.udemy.com/topic/database-management/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1										1	1
CO2	2	2	2		2								2	2
CO3	2	1	3		2								2	2
CO4	2	2	2		3								2	2

Program	B. Tech CSE(AIBC)										
Year	II Semester IV										
Course Name	Data Structure Using 'C'										
Code	NCS4403										
Course Type	PCC L T P Credit										
Pre-Requisite	Fundamentals of computer knowledge 3 1 0 4										
Course Objectives	2. To understand various data opera3. To understand various sorting an structures.	 To introduce the basis and advanced data structures. To understand various data operations performed on in data structures. To understand various sorting and searching techniques in data structures. To analyse the performance of data structures algorithms. 									
Course Outcom	es										
CO1	Understand the applications of d implement algorithms for the crea sorting of each data structure.										
CO2	Apply knowledge of underlying problems and programming.	Apply knowledge of underlying data structures needed for solving problems and programming.									
CO3	Analyse the application of data structures for storage and retrieval of ordered and unordered data.										
CO4	Understanding the graph representa	tion and	traversal								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Basic Terminology, Data types and its classification, Algorithm complexity notations like big Oh, Time- Space trade-off. Abstract Data Type (ADT). Array: Array, Definition, Representation and Analysis of Arrays, Single and Multidimensional Arrays, Address calculation, Array as Parameters, Sparse Matrices, Recursion- definition and processes, simulating recursion, Backtracking, Recursive algorithms, Tail recursion, Removal of recursion, Tower of Hanoi.	30 Hours	CO1
2	Stack and Linked List Stack, Array Implementation of stack, Linked Representation of Stack, Application of stack: Conversion of Infix to Prefix and Postfix Expressions And Expression evaluation, Queue, Array and linked implementation of queues, Circular queues, D-queues and Priority Queues. Linked list, Implementation of Singly Linked List, Two-way Header List, Doubly linked list, Linked List in Array. Generalized linked list, Application: Garbage collection and compaction, Polynomial Arithmetic.	30 Hours	CO2
3	Tree, Searching, Sorting and Hashing Trees: Basic, terminology, Binary Trees, algebraic Expressions, Complete Binary Tree, Extended Binary Trees, Array and Linked Representation of Binary trees, Traversing Binary trees, Threaded Binary trees, Binary Search Tree(BST), AVL Trees, B-trees. Application: Algebraic Expression, Huffman coding Algorithm. Internal and External sorting, Insertion Sort, Bubble Sort, Selection	30 Hours	CO3

	sort, Quick Sort, Merge Sort, Heap Sort, Radix sort, Searching Hashing: Sequential search, binary search, Hash Table, Hash Functions, Collision Resolution Strategies, Hash Table Implementation. Symbol Table, Static tree table, Dynamic Tree table.		
4	Graphs Graphs: Terminology, Sequential and linked Representations of Graphs: Adjacency Matrices, Adjacency List, Adjacency Multi-list, Graph Traversal: Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Transitive Closure and Shortest Path algorithm: Warshall Algorithm and Dijkstra Algorithm.	30 Hours	CO4

- **1.** Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein, "Data Structures Using C and C++", PHI, 2000.
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication, 1982.
- **3.** Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with Applications", McGraw-Hill, 1984.
- **4.** R. Kruse Et Al, "Data Structures and Program Design in C", Pearson Education, 2006.
- 5. Lipschutz, "Data Structures", Schaum's Outline Series, TMH, 2014.

Online Resources

1. https://archive.nptel.ac.in/courses/106/102/106102064/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1										1	
CO2	1	1	2										1	
CO3	2	1	2										1	
CO4	2	2	2										1	

Program	B. Tech. CSE (AIBC)								
Year	II	Sem	ester	IV					
Course Name	Big Data Analytics & Architectur	e							
Code	NCS4404/NAIBC4401								
Course Type	PCC	L	T	P	Credit				
Pre-Requisite	Java, HADOOP frameworks, Clustering techniques, large data sets, PIG and HIVE								
Course Objectives	 Optimize business decisions and create competitive advantage with Big data analytics. Understand several key big data technologies used for storage, analysis and manipulation of data. Recognize the key concepts of Hadoop framework, map reduce. To learn Basic methodologies of PIG and HIVE. 								
Course Outcome	es								
CO1	Understand what Big Data, impo the elements of big data-volume,								
CO2	Analyse the Big Data framework store and process Big Data to ger		-	and NOS	QL to efficiently				
CO3	Design of Algorithms to solve Da Paradigm.	ata Intens	sive Prob	olems usir	ng Map Reduce				
CO4	Demonstrate and evaluate an abil process Big Data and Analytics.	ity to use	e framew	vorks like	pig and hive to				

Module	Course Contents	Contact Hrs.	Mapped CO
1	Essentials of Big Data and Analytics: Data, Characteristics of data and Types of digital data, Sources of data, Working with unstructured data, Evolution and Definition of big data, Characteristics and Need of big data, Challenges of big data; Overview of business intelligence, Data science and Analytics, Meaning and Characteristics of big data analytics, Need of big data analytics, Classification of analytics, Challenges to big data analytics, Importance of big data analytics, Basic terminologies in big data environment.	30 Hours	CO1
2	HADOOP: Introducing Hadoop, Need of Hadoop, limitations of RDBMS, RDBMS versus Hadoop, Distributed computing challenges, History of Hadoop, Hadoop overview, Use Case of Hadoop, Hadoop distributors, HDFS (Hadoop Distributed File System), Processing data with Hadoop, Managing resources and applications with Hadoop YARN (Yet another Resource Negotiator), Interacting with Hadoop Ecosystem.	30 Hours	CO2

3	MapReduce Programming Introduction, Mapper, Reducer, Combiner, Partitioner, Searching, Sorting, Compression, Real time applications using MapReduce, Data serialization and Working with common serialization formats, Big data serialization formats. Introduction to PIG and HIVE: Introducing Pig: Pig architecture, Benefits, Installing Pig, Properties of Pig, Running Pig, Getting started with Pig Latin, Working with operators in Pig, Working with functions in Pig. Introducing Hive: Getting started with Hive, Hive Services, Data types in Hive, Built-in functions in Hive, Hive DDL	30 Hours	CO3, CO4	
---	--	-------------	-------------	--

- Seema Acharya, Subhashini Chellappan, —Big Data and Analytics, Wiley Publications, 2nd Edition, 2014 DT Editorial Services, —Big Data, Dream Tech Press, 2nd Edition, 2015.
- 2. Tom White, —Hadoop: The Definitive Guide, O'Reilly, 3rd Edition, 2012.
- 3. Black Book Big Data, dreamtech publications, 1st Edition, 2017.

E-Text Books

- **1.** https://www.books.google.co.in/books? id=rkWPojgfeM8C&printsec=frontcover&dq=HIGH+PERF ORMANCE+COMPUTING.
- **2.** http://www.datameer.com/pdf/big-data-analytics-ebook.pdf?mkt_tok.

Online Resources

1. https://nptel.ac.in/courses/106104189

	Course Articulation Matrix													
PO- PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1		1				1				1	3	2
CO2	3	2		2				2				1	2	3
CO3	3	1	3	2	2			1				1	3	3
CO4	3		3	2	1			1					3	2

Program	B. Tech CSE (AIBC)									
Year	II	Sem	ester	IV						
Course Name	Blockchain Essentials									
Code	NAIBC4401	VAIBC4401								
Course Type	PCC	L	T	P	Credit					
Pre-Requisite	Knowledge of Networking and cryptography. 3 0 3									
Course Objectives	 Students study the foundational Basic concepts of blockchain re To study about cryptocurrencie To understand about Bitcoin an in various domains. 	equired to s and the	o underst ir functio	and the	technology. Blockchain					
Course Outcom	es									
CO1	Understand the basic concepts of b	lockchair	n and blo	ckchain s	tatus.					
CO2	Understand the Linux foundation H	Iyperledg	ger and bl	ockchain	•					
CO3	Evaluate the technical concepts of l	olockcha	in model	ling and a	pplication.					
CO4	Understand the Hyperledger Fabric	and IBN	A blockel	nain platf	orm.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Blockchain Introduction to HTML 5 and Javascript Programming, Concept of callback, promises and Async/Await, NodeJS- Server side Javascript, Docker essentials, Containers, Orchestration, Implementations, Creating and Deploying Docker containers. Introduction to Blockchain Blockchain in detail and Blockchain Status Understand the business context behind blockchain and the problems that blockchain aims to solve Distinguish between blockchain for business and other blockchain implementations, Enumerate the broad categories of blockchain solutions, Understand the state of the blockchain industry in 2019, in terms of technologies, topics and communities, See how today's blockchain implementations vary, Look at the indicators that point to blockchain's future.	30 Hours	CO1
2	Linux Foundation Hyperledger and Blockchain Use- Cases Understand the background behind the Linux Foundation Hyperledger project, Enumerate and compare the different Hyperledger projects, Introduce Hyperledger Fabric Learn about some successful blockchain projects, Evaluate good vs. bad blockchain ideas, Assess business value.	30 Hours	CO2

3	Modelling Blockchain Applications and Blockchain Technical Concepts Understand what happens after a blockchain solution has an initial design activity, Learn what modelling is and why it is necessary, Go through the different business concept types and see how they map to technical concepts, Revisit the computer science principles that are relevant to blockchain Without focusing on any particular technology, learn about key blockchain data structures and why they exist, Take a look at how agreement is achieved in a blockchain network. Hyperledger Fabric and IBM Blockchain platform Introduce Hyperledger Fabric from a technical point of view, including key concepts and components, Understand the things an application and smart contract developer needs to know when working with Hyperledger Fabric Learn the importance of the network in Hyperledger Fabric and how operators can create, manage and govern it. Introduce IBM Blockchain Platform, Take a look at the tools that IBM Blockchains Learn how to get started with IBM develop blockchains. Learn how to get started with IBM	30 Hours	CO3, CO4	
	develop blockchains, Learn how to get started with IBM Blockchain Platform.			

1. IBM Content/Books

Online Resources

1. https://onlinecourses.nptel.ac.in/noc22_cs44/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2		1							2	3	2
CO2	2	2		2								2	3	2
CO3	2	1	1	2	1							2	3	
CO4	2	2	2	2								2	3	2

Program	B. Tech CSE(AIBC)								
Year	П	Semeste	er	IV					
Course Name	Database Management Systems La	b							
Code	NCS4451	NCS4451							
Course Type	PCC	L	T	P	Credit				
Pre-Requisite	Fundamentals of computer knowledge 0 0 1								
Course Objectives	 Students are able to designing, Students are able to querying a Students are able to take backu Students are able to write funct 	database p and rol	lback dat	abase.					
Course Outcom	es								
CO1	Infer database language commands	to create	e simple o	database.					
CO2	Analyze the database using queries	to retrie	ve record	s.					
CO3	Applying PL/SQL for processing d	atabase.							
CO4	Develop solutions using database c	oncepts	for TCL (Command	ls.				

S. No.	List of Experiments	Mapped CO
1	Write the queries for Data Definition and Data Manipulation Language.	CO1
2	Write SQL queries using logical operations (=, <,>, etc.).	CO1
3	Write SQL queries using SQL operators.	CO2
4	Write SQL query using character, number, date and group functions.	CO1
5	Write SQL queries for extracting data from more than one table.	CO4
6	Write SQL queries for sub queries, nested queries.	CO2
7	Write program by the use of PL/SQL.	CO3
8	Concepts for ROLL BACK, COMMIT.	CO4
9	Create VIEWS and understand its concept.	CO3
10	Create CURSORS and understand its concept.	CO3

- 1. http://vlabs.iitkgp.ernet.in/se/4/theory/
- 2. https://vsit.edu.in/vlab.html

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1		2								1	1
CO2	3	2	2	1	1								2	1
CO3	2	3	1	1	2							2	2	1
CO4	3	3		1	2								3	1

Program	B Tech CSE (AIBC)										
Year	П	Sem	ester	IV							
Course Name	Blockchain Essentials Lab										
Code	NAIBC4451										
Course Type	PCC	L	T	P	Credit						
Pre-Requisite	Knowledge of Java Script and O O 2										
Course Objectives	 To acquire the basic knowledge and understandings of blockchain. To learn how blockchain systems work. Design, build, and deploy smart contracts and distributed applications. Integrate ideas from blockchain technology into their own projects. 										
Course Outcom	es										
CO1	Understand and implement the Blo	ckchain a	and Mark	le Tree.							
CO2	Create a Private Ethereum Blockch	ain Netw	vork.								
CO3	Perform the operation on the Ethereum blockchain.										
CO4	Design and Evaluate the blockchain blockchain platform extension.	n develoj	oment en	vironmen	t using IBM						

S. No.	List of Experiments	Mapped CO
1	Creation of Markle Tree.	CO1
2	Creation of Block.	CO1
3	Implementation of Blockchain.	CO1
4	Blockchain implementation Using Markle Trees.	CO1
5	Mining in Blockchain.	CO1
6	Peer -Peer implementation using Blockchain.	CO2
7	Creating ERC20 token.	CO2
8	Creating Crypto- Currency Wallet.	CO3
9	Creating a private Ethereum Blockchain Network.	CO3
10	Setting Up Blockchain Development Environment using IBM Blockchain platform extension.	CO4

Online Resources: https://onlinecourses.nptel.ac.in/noc22_cs44/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1									2	1
CO2	3	2	2	2									3	2
CO3	2	2	2	2	2								2	1
CO4	3	3	2	2	2								2	2

Program	B. Tech CSE (AIBC)											
Year	II Semester IV											
Course Name	Data Structure Lab											
Code	NCS4453	NCS4453										
Course Type	PCC L T P Credit											
Pre-Requisite	Basic knowledge of C language	0	0	2	1							
Course Objectives	 Understand various data representation techniques in the real world. Implement linear and non-linear data structures. Analyze various algorithms based on their time and space complexity. Develop real-time applications using suitable data structure. 											
Course Outcom	nes											
CO1	Understand the concept of data structure problems like Sorting, searching, in											
CO2	Understand linear data structures for data.	r processi	ing of ord	dered or u	nordered							
CO3	Explore various operations on dynar circular linked list and doubly linke		structures	s like sing	le linked list,							
CO4	Understand the binary search trees, and its resolution methods.	hash func	ction, and	l concepts	of collision							

S. No.	List of Experiments	Mapped CO
1	Implementation of Searching Algorithms.	CO1
2	Implementation of Sorting Algorithms.	CO1
3	Implementation of Stack using Array.	CO2
4	Implementation of Queue using Array.	CO2
5	Implementation of Circular Queue using Array.	CO2
6	Implementation of Singly Linked List.	CO2
7	Implementation of Circular Linked List.	CO3
8	Implementation of Doubly Linked List.	CO3
9	Implementation of Stack using Linked List.	CO3
10	Implementation of Queue using Linked List.	CO3
11	Implementation of Circular Queue using Linked List.	CO3
12	Implementation of Tree Structures, Binary Tree, Tree Traversal.	CO4

- 1. https://cse01-iiith.vlabs.ac.in/
- 2. https://cse.iitkgp.ac.in/~rkumar/pds-vlab/index1.html

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	2	1								1	1
CO2	2	2	1	1										
CO3	2	2	2	3	2									
CO4	2	3	2	2	1								1	1

Program	B.Tech CSE/CSE-AI/CSE-CCML/	CSE-AIE	BC .									
Year	П											
Course Name	Indian Constitution											
Code	NVC4301/NVC4401											
Course Type	CQAC L T P Credit											
Pre-Requisite	The basic knowledge of Indian Constitutions 1 0 0 1											
Course Objectives	 To realise the significance of c walks of life and help them to constitution. To Know the need To identify the importance of fu duties. To understand the functioning o in Indian federal system. To learn procedure and effects of election commission and ame 	understate and imposing and imposing notice and aments of Union, of emerge	nd the base or tance of all rights a State and oncy, com	asic conce f protectinas well as I Local Gen position	epts of Indian ng traditional. fundamental overnments							
Course Outcom	es											
CO1	Understand the concept of Indian co	onstitutio	n.									
CO2	Identify the powers and functions of Supreme Court and High court.											
CO3	Analyse the role Governor and Chief Minister.											
CO4	Explain the district administration i	role and i	mportano	ce.								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Indian Constitution Constitution meaning of the term - The making of the Indian Constitution - Sources and constitutional history - Philosophy of Constituent Assembly - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy. Union Government and its Administration Structure: President and Vice President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha, The Supreme Court and High Court: Powers and Functions.	30 Hours	CO1, CO2
2	The States and The Union Territories State Government and its Administration: Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions – Relation between the Union and the States. Local Administration District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative – Panchayati Raj: Functions PRI: Zilla Panchayat, Elected officials and their roles - Block level Organizational Hierarchy, Village level - Role of Elected and Appointed officials - Importance of grass-root democracy	30 Hours	CO3, CO4

- **1.** Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd., New Delhi.
- 2. Subash Kashyap, Indian Constitution, National Book Trust.
- 3. J. A. Siwach, Dynamics of Indian Government & Politics.
- **4.** D. C. Gupta, Indian Government and Politics.
- **5.** H. M. Sreevai, Constitutional Law of India, 4th Edition, Universal Law Publication.

Online Resources

1. https://onlinecourses.nptel.ac.in/noc20_lw03/preview

	Course Articulation Matrix													
PO-														_ ~ .
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	·	·		·	2	3	1	2		3	1	
CO2		3					1	2	3	2		1	2	
CO3		1					2	2	2	1		2	1	
CO4		2					1	3	2	2		2	2	

Program	B. Tech CSE (AIBC)											
Year	III	III Semester V										
Course Name	Concepts of Machine Learning											
Code	NAIBC4501	NAIBC4501										
Course Type	PCC L T P Credit											
Pre- Requisite	Mathematics, Programming, Theoretical knowledge, and other related tools.	3	1	0	4							
Course Objectives	 To introduce students to the basic con Learning. To develop skills of using recent mach practical problems. To gain experience of doing independe identify the characteristics of data sets and data for various applications. 	nine learn	ning soft	ware for	r solving							
CO1	Ability to select and implement machine lea environment that are suitable for the applica	_	-									
CO2	Ability to solve problems associated with ba and the big data characteristics such as high growing data and in particular scalability iss	dimension	-		_							
CO3	Ability to understand and apply scaling up machine learning techniques and associated computing techniques and technologies.											
CO4	Ability to recognize and implement various parameters for different machine learning te	•	_	suitable	model							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Machine Learning: Application of Machine Learning, Supervised vs Unsupervised Learning, Python libraries suitable for Machine Learning: Python For Machine Learning: Intro to Numpy, Joining Numpy Arrays, Numpy Intersection and Difference, Numpy Array Mathematics, Saving and Loading Numpy Array; Introduction to Pandas, Pandas SeriesObject, Pandas DataFrame Object, Pandas Functions; Data Visualization using Matplotlib and Seaborn library: Bar graph, Line graph, Histogram, Pie chart, Scatter graph.	30 Hours	CO1
2	Data Pre-processing and Data Scaling Methods: Identifying and handling the missing values using fillna() function and Simple Imputer library of Sklearn. Encoding the categorical data, Normalization, Standarization, MinMax Scaler, and Standard Scaler.	30 Hours	CO2
	Supervised Machine Learning: Regression Algorithms: Linear Regression, Decision Tree Regressor, Random Forest Regressor; Model Evaluation: Mean absolute error, Mean		

3	square error, RMS error, R-squared and Adjusted R-squared. Classification Algorithms: Logistic Regression, Decision tree classifier, Random Forest Classifier, SVM classifier, Naïve Bayes: Gaussian NB, Multinomial NB, Bernoulli NB, Model Evaluation: Confusion Matrix, Accuracy, precision, Recall, F1-score.	30 Hours	CO3
4	Unsupervised Learning Techniques: Use cases of unsupervised learning. Clustering, K-Means Clustering, Hierarchical Clustering: Agglomerative clustering, Divisive clustering, Elbow method, Density-Based clustering, PCA, Distance Matrices, Euclidean Distance, Manhattan Distance.	30 Hours	CO4

- **1.** IBM Courseware.
- Joseph K. Blitzstein and Jessica Hwang, "Introduction to Probability".
 Wes McKinney "Introduction to Machine Learning with Python: A Guide for Data Scientists".

Online Resources

1. https://onlinecourses.nptel.ac.in/noc19 cs60/preview

	Course Articulation Matrix													
PO- PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	3	2	2	2	2		2		2	1	2	2	2	2
CO2	2	2	2	3	2	1	2		2	1	1	2	2	2
CO3	2	1	3	2	2		2		2	1		2	2	2
CO4	2		2		2	2	1		1		1	2	2	2

Program	B.Tech CSE(AIBC)								
Year	III	Sem	ester	V					
Course Name	Computer Networks								
Code	NCS4503								
Course Type	PCC	L	T	P	Credit				
_	Basic Understanding of Computers and Operating Systems								
Course Objectives	 To understand the organization of layered approach. To understand the working of c Switch, Hub etc. To understand the concept of day. To understand the concept of vaccommunication. 	omputer ata comn	networks	s hardwar n.	e like LAN,				
Course Outcom	es								
CO1	Explain basic concepts of OSI reference networks devices and transmission transmission.								
CO2	Describe the functions of Data link	layer an	d Networ	k layer.					
CO3	Describe the functions of Transport	t, Session	and Pres	sentation	layer.				
CO4	Describe the functions of Application	on Layer	•						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Network objectives and applications; network structure and architecture; OSI reference model; network services; network standardization; examples of network, TCP/IP model Physical layer: Fundamentals of data communication; transmission media; analog transmission; digital transmission; switching; ISDN; terminal handling; Broadcast channels and medium access: LAN protocols	30 Hours	CO1
2	Data link layer and Network layer Data link layer: Design issues; error detection and corrections; elementary data link protocols; sliding window protocols, Examples. Network layer: Design issues; routing algorithms; congestion control; internetworking. Examples. CSMA with collision detection; collision free protocols; IEEE standard 802 for LANs; comparison of LANs; Fiber optic network and FDDI.	30 Hours	CO2

3	Transport, Session and Presentation layer Transport layer: Design Issues; connection management; examples of a simple transport protocol. Session layer: Design issues; remote procedure call; examples Presentation layer: Design issues; data compression and encryption; network security and privacy. Application Layer Design issues; File transfer and file access; electronic mail; virtual terminals; other applications, Case study based on	30 Hours	CO3 CO4
	available network software.		

- 1. Andrew S. Tanenbaum "Computer Networks" Prentice Hall of India.
- 2. William Stallings "Local Networks" Maxwell Macmillan International Edition.
- 3. B.A. Frozen "Data Communication and Networking". Tata McGraw Hill.

- 1. https://nptel.ac.in/courses/106105183
- **2.** https://archive.nptel.ac.in/courses/106/105/106105081/

	Course Articulation Matrix PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	1	1											1	1
CO2	2	1	1										1	1
CO3	2	1	1										1	1
CO4	2	1	1									1	1	1

Program	B. Tech CSE(AIBC)										
Year	III	Semester		V							
Course Name	Automata Theory and Formal Lang	Automata Theory and Formal Languages									
Code	NCS4504										
Course Type	PCC		L	T	P	Credit					
Pre-Requisite	Discrete Mathematics, Data Structu	ire	3	1	0	4					
Course Objectives	 To illustrate finite state machines to solve problems in computing. To explain the hierarchy of problems arising in the computer sciences. To familiarize Regular grammars, context frees grammar. To determine the decidability and intractability of computational problems. 										
Course Outcom	es										
CO1	Apply the knowledge of automata t for solving the problem.	heory, gramma	ars &	k regu	lar ex	pressions					
CO2	Analyse the give automata, regular language it represents.	expression &	gran	nmar t	o knov	w the					
CO3	Design Automata & Grammar for p	attern recogni	tion	and s	yntax	checking.					
CO4	Identify limitations of some compu proving them.	tational model	s an	d poss	ible m	ethods of					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Fundamentals: Formal Languages, Strings, Alphabets, Languages, Chomsky Hierarchy of languages. Finite Automata: Introduction to Finite State machine, Acceptance of strings and languages, Deterministic finite automaton (DFA) and Non-deterministic finite automaton (NFA), Equivalence of NFA and DFA − Equivalence of NDFAs with and without €-moves, Minimization of finite automata, Equivalence between two DFA's, Finite automata with output − Moore and Mealy machines, conversion of Moore to Mealy and Mealy to Moore.	30 Hours	CO1
2	Regular Languages: Regular expressions, Identity rules, Conversion of a given regular expression into a finite automaton, Conversion of finite automata into a regular expression, Pumping lemma for regular sets, Closure properties of regular sets. Context Free Grammars: Context free grammars and languages, Derivation trees, Leftmost and rightmost derivation of strings and Sentential forms, Ambiguity, left recursion and left factoring in context free grammars, Minimization of context free grammars, Normal forms for context free grammars, Chomsky normal form, Greibach normal form, Pumping Lemma for Context free Languages, Closure and decision properties of context free languages.	30 Hours	CO2
3	Pushdown Automata: Introduction to Pushdown automata, Acceptance of context free languages, Acceptance by final state and acceptance by empty state and its equivalence, Equivalence of context free grammars and pushdown automata, Inter-conversion.	30 Hours	CO3

4	Turing Machine (TM): Problems That Computers Cannot Solve, The Turing Machine, Programming Techniques for Turing Machines, Extensions to the Basic Turing Machine, Restricted Turing Machines, Turing Machines and Computers, Definition of Post's Correspondence Problem, A Language That Is Not Recursively Enumerable, An Undecidable Problem That Is RE, Context sensitive languages and Chomsky hierarchy, Other Undecidable Problems	30 Hours	CO4	
---	--	-------------	-----	--

- 1. Introduction to Languages and Automata Theory By John C Martin, Tata McGraw-Hill.
- 2. Introduction to computer theory By Deniel I. Cohen, Joh Wiley & Sons, Inc.
- **3.** Computation: Finite and Infinite By Marvin L. Minsky Prentice-Hall.

- 1. https://nptel.ac.in/courses/106104028/theory of computation.
- 2. https://lagunita.stanford.edu/courses/coursev1:ComputerScience+Automata+SelfPaced/about

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1							1	2	1
CO2	3	3	2	2	1							2	1	1
CO3	3	3	2	2	2							2	3	1
CO4	3	2	1	1	2							2	2	1

Program	B. Tech CSE (AIBC)								
Year	IV	Ser	nester	VIII					
Course Name	Cyber Security								
Code	NAIBC4801								
Course Type	PCC	L	Т	P	Credit				
Pre- Requisite	Basic Understanding of Computer Fundamentals and Operating Systems	3	0	0	3				
Course Objectives	 Understand the foundational concepts of cyber security, including types of threats, vulnerabilities, and legal/ethical considerations. Gain knowledge of system and network security mechanisms, including configuration, firewalls, and monitoring tools. Analyze and secure web applications by understanding common attack vectors and applying secure coding and scanning practices. 								
Course Outc									
CO1	Identify and explain the basic concercyptography.	ots of cyt	er securi	ity, cyber	laws, and				
CO2	Demonstrate the ability to detect and threats using appropriate tools.	defend a	against co	ommon n	etwork and system				
CO3	Assess web application vulnerabilities ethical hacking tools.	es and im	plement	security 1	measures using				
CO4	Apply advanced security concepts in real-world security problems.	n cloud, l	IoT, and	incident 1	response to solve				

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Cyber Security: Importance & need, Current threat landscape, Cybercrime and its classification, Fundamental Concepts, CIA Triad (Confidentiality, Integrity, Availability), Threats, vulnerabilities, and attacks, Attack vectors and types of hackers, Cyber Laws and Ethics, IT Act 2000 (India), Digital rights and privacy, Ethical hacking vs black-hat activity, Basic Cryptography, Symmetric vs Asymmetric Encryption, Hashing: MD5, SHA-256, Introduction to Digital Signatures, Security Policies & Best Practices, Password management, Multi-factor authentication, Data backup and safe browsing	30 Hours	CO1
2	Network Fundamentals: TCP/IP model & protocols, IP addressing & subnetting, DNS, DHCP, HTTP, HTTPS, Network Threats and Attacks, DDoS, ARP Spoofing, Packet Sniffing, MITM, DNS poisoning, Firewalls and Intrusion Detection Systems (IDS/IPS), Types of firewalls (hardware/software), IDS/IPS architecture & deployment, System and OS Security, Secure configuration of OS (Windows/Linux), User account management & permissions, Patch management, Security Tools, Wireshark, Nmap, Antivirus & Anti-malware solutions	30 Hours	CO2

3	Web Application Basics: HTTP, HTTPS, cookies, sessions, Web server vs Application server, Common Web Vulnerabilities (OWASP Top 10), SQL Injection, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), Insecure Deserialization, Secure Software Development, Secure coding practices, Static and Dynamic Analysis, Web Security Tools, Burp Suite, OWASP ZAP, Nikto, Mobile App Security (Intro), Common threats on Android/iOS, APK analysis basics	30 Hours	CO3
4	Cloud Security: Shared responsibility model, Identity & Access Management (IAM), Data protection in cloud (AWS/GCP basics), Cyber Forensics, Basics of digital forensics, File system analysis, Chain of custody, Security in IoT and Smart Devices, IoT vulnerabilities and attacks, Secure device communication, Incident Response and Disaster Recovery, Incident response lifecycle, Business Continuity Planning (BCP), Emerging Areas, AI in Cyber Security, Blockchain for security, Zero Trust Architecture	30 Hours	CO4

- 1. IBM Courseware.
- 2. Charles P. Pfleeger & Shari Lawrence Pfleeger Security in Computing.

Online Resources

1. https://onlinecourses.nptel.ac.in/noc19_cs60/preview

Course Articulation Matrix														
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2		2		2	1	2	2	2	2
CO2	2	2	2	3	2	1	2		2	1	1	2	2	2
CO3	2	1	3	2	2		2		2	1		2	2	2
CO4	2		2		2	2	1		1		1	2	2	2

Program	B.Tech CSE (AIBC)											
Year	III	Semester V										
Course Name	Machine Learning using Python Lab											
Code	NAIBC4551	NAIBC4551										
Course Type	PCC	L	T	P	Credit							
Pre- Requisite	Mathematics Fundamentals 0 0 2 1											
Course Objectives	 Understand the Practical Aspects of Machine Learning. Develop Skills in Data Preprocessing. Implement and Evaluate Machine Learning Models. 											
	4. Learn Model Tuning and Validation Techniques.5. Practice Real-time Application Development.											
Course Outco	mes											
CO1	Understand complexity of Machine Learning algorithms and their limitations.											
CO2	Analyze modern notions in data analy	ysis-orie	nted com	puting.								
CO3	Evaluate and be able to perform experiment world data.	eriments	in Machi	ne Learni	ng using real-							
CO4	Applying common Machine Learning implementing their own.	g algorith	nms in pr	actice and	1							

S. No.	Lab Experiment	Mapped CO
1	Write a program to implement data cleaning and preprocessing task such as missing values, encoding categorical variable and scaling numerical features to prepare a dataset for ML applications.	CO1
2	Write a program to identify and select the most relevant features influencing the output	CO1
3	Write a program to predict house price using regression on housing attributes.	CO1
4	Write a program to classify iris species using Logistic Regression.	CO2
5	Write a program to perform classification using a Decision Tree model.	CO2
6	Write a program to classify data using a Random Forest classifier.	CO3
7	Write a program to predict outcomes using a Support Vector Machine.	CO3
8	Write a program to perform classification using K-Nearest-Neighbors.	CO3
9	Write a program to perform classification using Naïve Bayes.	CO4
10	Write a program to group data using K-Means-clustering.	CO4

1. NumPy: https://numpy.org/doc/

Pandas: https://pandas.pydata.org/docs/
 Matplotlib: https://matplotlib.org/stable/contents.html

4. Scikit-learn: https://scikit-learn.org/stable/user_guide.html
5. Seaborn: https://seaborn.pydata.org/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	1									2	1
CO2	3	2	3	2									3	2
CO3	2	2	2	2	2								2	1
CO4	2	3	2	2	2								2	2

Program	B.Tech CSE(AIBC)								
Year	IV	Sei	mester	VIII					
Course Name	Cyber Security Lab								
Code	NAIBC4851		_						
Course Type	PCC	L	T	P	Credit				
Pre- Requisite	Programming/Scripting Basics and Awareness of Legal and Ethical 0 0 1 Aspects 1								
Course Objectives	 To understand the foundational concepts of cyber security, including types of threats, vulnerabilities, and legal/ethical considerations. To gain knowledge of system and network security mechanisms, including configuration, firewalls, and monitoring tools. To analyze and secure web applications by understanding common attack vectors and applying secure coding and scanning practices. 								
Course Out	comes								
CO1	Identify and explain the basic conceptoryptography.	ots of cyb	er securi	ty, cyber	laws, and				
CO2	Demonstrate the ability to detect and threats using appropriate tools.	defend a	igainst co	ommon ne	etwork and system				
CO3	Assess web application vulnerabilitie ethical hacking tools.	es and im	plement	security n	neasures using				
CO4	Apply advanced security concepts in cloud, IoT, and incident response to solve realworld security problems.								

S. No.	List of Experiments	Mapped CO
1	Creating and Managing Strong Passwords	CO1
2	Symmetric & Asymmetric Encryption Demo (AES/RSA)	CO1
3	Basic Network Scanning using Nmap, ZenMap	CO2
4	Packet Capture & Analysis using Wireshark	CO2
5	Firewall Rules Configuration (Windows/Linux)	CO2
6	Web Application Scanning using Burp Suite	CO3
7	SQL Injection Attack on DVWA	CO3
8	XSS and CSRF Attack Demonstration	CO3
9	Cloud Security: IAM Role Creation in AWS (Free Tier)	CO4
10	Basic Digital Forensics using Autopsy	CO4

Suggested Readings 1. IBM Courseware

Online Resources

1. Behrouz A. Forouzan – *Cryptography and Network Security* https://onlinecourses.nptel.ac.in/noc19 cs60/preview

					Cor	ırse A	rticula	tion N	Iatrix					
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2		2		2	1	2	2	2	2
CO2	2	2	2	3	2	1	2		2	1	1	2	2	2
CO3	2	1	3	2	2		2		2	1		2	2	2
CO4	2		2		2	2	1		1		1	2	2	2

Program	B.TECH:CSE/CSE-AI/CSE-CCML/C	CSE-AI	ВС						
Year	III	Se	mester	V					
Course Name	Essence of Indian Traditional Knowle	edge							
Code	NVC4501								
Course Type	CQAC	L	T	P	Credit				
Pre-Requisite	The Concepts of Indian Traditional Knowledge and to make them understand the importance of roots of knowledge system.								
Course Objectives	 To Understand the concept of Trace To Know the need and importance To Apply, Know the various en traditional knowledge. To Understand the concepts of traditional. 	e of pro actmen	tecting tr ts related	aditional.	protection of				
Course Outcom	es								
CO1	To Understand and elucidate the bas to develop the physical and social systems.		_		_				
CO2	To analyze the significance of trad communicate the traditional knowled			ge protec	tion to				
СОЗ	To Apply to Recognize the role of gomeasure its impact on the global econ		ent on tra	aditional k	enowledge to				
CO4	To Evaluate and Summarize the s FORA for excel protection of Indian	_	-		global legal				

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Indian Traditional Knowledge: Understanding the concept and significance of Indian Traditional Knowledge, Historical background, and evolution of traditional knowledge in India. Intellectual Property Rights (IPR): Overview of Intellectual Property Rights and its importance in the context of traditional knowledge, Different types of IPRs: Copyright, Trademarks, Patents, and Geographical Indications. Traditional Knowledge and Traditional Cultural Expressions (TCEs): Introduction to Traditional Cultural Expressions and the challenges in their protection, Examination of international frameworks like the WIPO Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge, and Folklore.	30 Hours	CO1, CO2
	Traditional Knowledge and Traditional Ecological Knowledge (TEK) Understanding the relationship between traditional knowledge and traditional ecological knowledge, Analysis of the role of TEK in environmental conservation and sustainable development.		

Study of the legal framework for the protection of traditional knowledge in India, Examination of relevant laws and regulations, such as the Traditional Knowledge Digital Library (TKDL), Traditional Knowledge and Patent Law: Understanding the challenges and issues surrounding the patenting of traditional knowledge, Analysis of case studies highlighting the controversies and debates in the field. Traditional Knowledge and Copyright Law: Exploring the relationship between traditional knowledge and copyright law, Discussion on the issues of cultural appropriation and protection of traditional expressions. Traditional Knowledge and Geographical Indications (GI): Overview of Geographical Indications and their significance in protecting traditional knowledge, Case studies on the successful registration and protection of traditional products and practices. Traditional Knowledge, IPR, and the Future: Analysis of the current trends and future prospects for the protection and preservation of Indian traditional knowledge, Examination of emerging issues such as digital platforms and traditional knowledge dissemination.		TRADITIONAL KNOWLEDGE AND IPR LAWS IN INDIA	
	2	Traditional Knowledge and IPR Laws: Study of the legal framework for the protection of traditional knowledge in India, Examination of relevant laws and regulations, such as the Traditional Knowledge Digital Library (TKDL), Traditional Knowledge and Patent Law: Understanding the challenges and issues surrounding the patenting of traditional knowledge, Analysis of case studies highlighting the controversies and debates in the field. Traditional Knowledge and Copyright Law: Exploring the relationship between traditional knowledge and copyright law, Discussion on the issues of cultural appropriation and protection of traditional expressions. Traditional Knowledge and Geographical Indications (GI): Overview of Geographical Indications and their significance in protecting traditional knowledge, Case studies on the successful registration and protection of traditional products and practices. Traditional Knowledge, IPR, and the Future: Analysis of the current trends and future prospects for the protection and preservation of Indian traditional knowledge, Examination of emerging issues such as digital platforms and traditional	 ·

- 1. Traditional Knowledge System in India, by Amit Jha, 2009.
- **2.** Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012.
- 3. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- **4.** Sampath, P. G. (2012). Traditional Knowledge Systems and Intellectual Property Rights. Routledge.
- **5.** Sharma, G., & Kumar, V. (Eds.). (2016). Indian Traditional Knowledge and Intellectual Property Rights: Innovations in Traditional Knowledge Preservation. Springer.
- **6.** Ganguli, P. (2010). Indian Traditional Knowledge and Intellectual Property Rights: Indigenous Community Initiatives. Ane Books Pvt Ltd.

- 1. https://aec.edu.in/knowledge/
- 2. https://www.iare.ac.in/?q=node/3745

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	2		2		1
CO2								2	2	4		3		2
CO3								1	1	4		2		2
CO4								2	2	3		1		2

Program	B.Tech CSE (AIBC)												
Year	III	Sen	nester	VI									
Course Name	Deep Learning												
Code	NAIBC4601												
Course Type	PCC L T P Credit												
Pre -Requisite	Knowledge of Machine Learning	3	0	0	3								
Course Objectives	 To introduce students to the further deep learning. To provide hands-on experience neural networks using Python. To enable students to apply descomputer vision, natural langual learning. To develop the ability to evaluate and understand the ethical constitution. 	ce in imp libraries. ep learnin age proce ate and o	lementing model essing, an	g and trainst to solve and reinfort deep learn	ning deep e problems in cement								
Course Outcor	nes												
CO1	Identify foundational concepts and vision, language, and decision-mak			ons of dee	p learning in								
CO2	Develop and train neural networks text data.	using Py	thon libra	aries for i	mage and								
CO3	Apply optimization strategies and a Transformers) to real-world tasks.	dvanced	architect	tures (CN	Ns, RNNs,								
CO4	Design and implement deep learning metrics and deployment tools, cons												

Module	Course Contents	Contact Hrs.	Mapped CO
1	Neural Network Fundamentals and Optimization Overview and evolution of Deep Learning, Applications in vision, NLP, reinforcement learning, Setting up Python environment (Anaconda, Jupyter, TensorFlow, PyTorch), Basics of Neural Networks: structure and working of ANNs, Deep Learning Fundamentals: Gradient Descent, Optimization Algorithms (SGD, Adam), Activation Functions: sigmoid, tanh, ReLU and variants, Model Evaluation Metrics: accuracy, precision, recall, F1-score, Implementing feedforward networks from scratch using NumPy, Backpropagation and weight updates, Visualization of activation functions and loss surfaces.	30 Hours	CO1
2	CNNs, RNNs and NLP Applications CNN Architecture and components: convolution, pooling, padding, Image Classification using CNN with MNIST/CIFAR-10, Transfer Learning: using ResNet/VGG models, Fine-tuning Pretrained CNNs and Data Augmentation, Sequence Modeling with RNNs and LSTMs, Vanishing Gradient Problem and solution via LSTM/GRU, Sentiment Analysis with LSTM using IMDB dataset, Text Generation with LSTM,	30 Hours	CO2

	Introduction to Attention Mechanism, Project Work: Build and fine-tune a CNN or RNN-based model.		
	GANs, Reinforcement Learning		
	Introduction and Architecture of GANs: Generator and		
3	Discriminator, Training GANs and use cases: synthetic image generation, data augmentation, Conditional GANs and Style Transfer, Introduction to Reinforcement Learning and MDPs, Q-Learning and Deep Q-Networks (DQN), Implementing DQN for CartPole and Atari Games	30 Hours	CO3
4	Advanced Topics in AI Introduction to Transformers and Self-Attention, Hugging Face Transformers: use for text classification, Capsule Networks: overview and comparison, Ethics in AI: bias, fairness, privacy, responsible AI, Capstone Project: End-to- end DL application with model training, evaluation, and deployment.	30 Hours	CO4

Suggested Reading Materials

- **1.** Ian Goodfellow, Yoshua Bengio, and Aaron Courville Deep Learning (MIT Press) Excellent for foundational theory on neural networks, CNNs, RNNs, GANs.
- **2.** Francois Chollet Deep Learning with Python (Manning) Practical book using Keras and TensorFlow, great for Units 1 and 2.
- **3.** Aurélien Géron Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (O'Reilly) Practical and covers CNNs, RNNs, GANs, and Transformers well.

- **1.** Richard S. Sutton and Andrew G. Barto Reinforcement Learning: An Introduction For Unit 3 covers fundamentals of RL and Q-Learning.
- **2.** Hugging Face Documentation https://huggingface.co/docs Latest tools and examples for using Transformers in NLP.
- **3.** PyTorch Tutorials https://pytorch.org/tutorials/ Best for hands-on learning for all units.
- **4.** TensorFlow Guides https://www.tensorflow.org/learn Extensive documentation and starter guides.

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	2	3							1	1	1
CO2	3	3	1	2	1							2	2	1
CO3	2	1	2	1	1							2	2	2
CO4	1	2	1	3	2							1	1	1

Program	B. Tech CSE(AIBC)										
Year	III	Sem	ester	VI							
Course Name	Design & Analysis of Algorithms										
Code	NCS4602										
Course Type	PCC L T P Credit										
Pre-Requisite	Data Structure	3	1	0	4						
	1. Analyse the asymptotic performa	ance of a	lgorithms	S.							
Course	2. Proving correctness of algorithm	s.									
Objectives	3. Demonstrate a familiarity with major algorithms and data structures.										
	4. Apply important algorithmic des	ign parac	ligms and	d method:	s of analysis.						
Course Outcom	es										
CO1	Analyse the problem and design an & modifying classical design techn technique.		_								
CO2	Evaluate and compare those using s select the best solution.	standard	mathema	tical tech	niques and						
СО3	Understand the mathematical criter efficient, and know many practicall any efficient algorithms.		_		_						
CO4	Apply the different kind of complex solution to problems having large c		-	non-dete	rministic						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction and Advanced Data Structure: Notion of Algorithm, Analysis of algorithms, Designing of Algorithms, Growth of Functions, Master's Theorem Asymptotic Notations and Basic Efficiency Classes, Shorting and Searching Algorithm: Insertion Sort Selection Sort and Bubble Sort Divide and conquer - Merge sort, Quick Sort, Heap Sort, Sequential Search and Binary Search	30 Hours	CO1
2	Advanced Data Structures: Red-Black Trees, B – Trees, Binomial Heaps, and Fibonacci Heaps. Greedy Methods with Examples Such as Optimal Reliability Allocation, Knapsack, Minimum Spanning Trees – Prim's and Kruskal's Algorithms, Single Source Shortest Paths – Dijkstra's and Bellman Ford Algorithms.	30 Hours	CO2
3	Dynamic Programming with Examples Such as Knapsack. All Pair Shortest Paths – Warshal's and Floyd's Algorithms, Resource Allocation Problem, Matrix chain multiplication Backtracking, Branch and Bound with Examples Such as Travelling Salesman Problem, Graph Coloring, n-Queen Problem, Hamiltonian Cycles and Sum of Subsets.	30 Hours	CO3
4	Selected Topics: String Matching-The naive method, Rabin-Karp method, Boyer-Moore, Knuth-Morris-Pratt(KMP) Theory of NP-Completeness, Approximation Algorithms and Randomized Algorithms	30 Hours	CO4

- **1.** Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithms", Printice Hall of India.
- 2. E. Horowitz & S Sahni, "Fundamentals of Computer Algorithms",
- **3.** Aho, Hopcraft, Ullman, "The Design and Analysis of Computer Algorithms" Pearson Education, 2008.
- **4.** LEE "Design & Analysis of Algorithms (POD)", McGraw Hill

Online Resources

1. https://nptel.ac.in/courses/106106131

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	3	1	3								1	3
CO2	1	1	1	2	3								1	3
CO3	2	2	1	2	2								2	2
CO4	1	2	1	3	1								1	2

Program	B. Tech CSE(AIBC)								
Year	III	Sem	ester	VI					
Course Name	Compiler Design								
Code	NCS4604								
Course Type	PCC	L	T	P	Credit				
Pre-Requisite	Automata Theory	3	1	0	4				
Course Objectives	 To apply the theory of language translation to build compilers and interpreters. Building of translators both from scratch and using compiler generators. Identifies and explores the main issues of the design of translators. The construction of a compiler/interpreter for a small language. 								
Course Outcom	es								
CO1	Understand different phases and compiler tools like LEX, YACC, e	-	of the o	compiler	and use the				
CO2	Analyse the concepts of parser and	its types	•						
CO3	Understanding translation and appl	ying it.							
CO4	Applying code generation and optim	mization	on target	machine.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Compiler: Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG. Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers.	30 Hours	CO1
2	Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables. Parse trees & syntax trees, three address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser.	30 Hours	CO2, CO3

3	Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntax directed Translators, Intermediate code, postfix notation. More about translation: Array references in arithmetic expressions, procedures call, declarations and case statements. Symbol Tables: Data structure for symbols tables, representing scope information. Run-Time Administration: Implementation of simple stack allocation scheme, storage allocation in block structured language.	30 Hours	CO3
4	Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors. Code Generation: Design Issues, the Target Language. Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, Code Generator. Code optimization: Machine-Independent Optimizations, Loop optimization, DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.	30 Hours	CO4

- 1. Aho, Sethi& Ullman, "Compilers: Principles, Techniques and Tools", Pearson Education.
- **2.** K. Muneeswaran, Compiler Design, First Edition, Oxford University Press.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, McGraw-Hill, 2003.
- **4.** HenkAlblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.
- **5.** V Raghvan, "Principles of Compiler Design", McGraw-Hill.
- 6. Kenneth Louden," Compiler Construction", Cengage Learning.
- 7. Charles Fischer and Ricard LeBlanc," Crafting a Compiler with C", Pearson Education.

- 1. https://nptel.ac.in/courses/106104123
- 2. https://nptel.ac.in/courses/106105190

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1							1	2	1
CO2	3	3	2	1	2							2	1	2
CO3	3	3	2	2	3							2	2	1
CO4	3	2	1	1	1							1	1	1

Program	B.Tech CSE (AIBC)								
Year	III	Semester		VI					
Course Name	Deep Learning Lab								
Code	NAIBC4651	NAIBC4651							
Course Type	PCC	L	Т	P	Credit				
Pre -Requisite	Basic of Python Programming	0	0	2	1				
Course Objectives Course Outcor	Implement the various deep learn Learn to work with different dee PyTorch, Caffe etc. mes			•	Keras, TensorFlow,				
CO1	To carry out fundamental and appli	ied resear	ch using	deep lear	rning mechanisms.				
CO2	To identify innovative research direction Learning and Deep Learning.	ections in	Artificia	al Intellig	ence, Machine				
CO3	To provide quality education and practical skills to faculty and students in Deep Learning, leading to quality publications and innovative models.								
CO4	Understand Deep Learning tools.								

S. No.	List of Experiments	Mapped CO
1	Write a program to implement k-Nearest Neighbour algorithm to classify the Iris dataset. Print both correct and wrong predictions.	CO1
2	Build a Logistic Regression model that answers the question: "What sorts of people were more likely to survive?" using passenger data in the Titanic dataset.	CO2
3	Build a model for digit recognition on the MNIST dataset using Support Vector Machine. Also print the confusion matrix.	CO1
4	Write a program to implement the Naïve Bayes classifier for a sample training data set stored as a CSV file. Compute the accuracy using test data sets.	CO2
5	Use the "airline-passengers.csv" dataset to implement an LSTM model that predicts the number of international airline passengers from Jan 1949 to Dec 1960 (144 observations).	CO2
6	Construct a Bayesian Network considering medical data. Use this model to diagnose heart patients using the Heart Disease dataset.	CO3
7	Write a program to classify retinal damage from the OCT Scan dataset using a pre-trained VGG16 model.	CO4
8	Build a CNN model to identify images from the CIFAR-10 dataset. Calculate the accuracy, precision, and recall.	CO3
9	Construct a Bayesian Network using medical data to demonstrate diagnosis of heart patients. (Repeat for deeper understanding).	CO4

S. No.	List of Experiments	Mapped CO
10	Project Title : <i>Stock Market Prediction</i> — Use time series analysis and sentiment analysis (from online news/blogs) to build a hybrid neural	CO3, CO4
	network model that predicts stock prices.	

1. https://vlab.spit.ac.in/ai/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	3	1								1	1
CO2	1	2	3	1	1								1	1
CO3	1	1	2	1	2								2	2
CO4	1	1	1	3	1								1	1

Program	B. Tech CSE(AIBC)							
Year	III	Semeste	er	VI				
Course Name	Algorithms Lab							
Code	NCS4652							
Course Type	PCC	L	T	P	Credit			
Pre-Requisite	Command on Programming Language	0	0	2	1			
Course Objectives	 Analyze the asymptotic performance of algorithms. Write rigorous correctness proofs for algorithms. Demonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design paradigms and methods of analysis. 							
Course Outcom	es							
CO1	Implement various search technique	ies						
CO2	Implement various sorting technique	Implement various sorting techniques.						
CO3	Implement backtracking strategy.							
CO4	Implement various greedy and dyna	amic prog	grammin	g techniqu	ies.			

S. No.	List of Experiments	Mapped CO
1	Program for Recursive Binary & Linear Search.	CO1
2	Implement Merge Sort.	CO2
3	Implement Quick Sort (Divide & Conquer).	CO2
4	Implement Heap Sort.	CO2
5	Implement Knapsack problem (Greedy ALGO.).	CO4
6	Implement Insertion Sort.	CO2
7	Implement Shortest path by Dijkstra Algorithm.	CO1
8	Implement 8- Queen problem (Back Tracking).	CO3
9	Implement Prim's Algorithms.	CO1
10	Implement Kruskal's Algorithm.	CO4

- https://cse01-iiith.vlabs.ac.in/exp/sorting/
 http://ebootathon.com/labs/beta/csit/DAA/exp1/simulation.html

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	3	1							1	2	3
CO2	3	2	3	1	1							1	2	3
CO3	1	3	2	2	1								1	
CO4	1	2	3	1	2							2	2	2

Program	B.Tech CSE (AIBC)												
Year	IV	Sem	ester	VII									
Course Name	Solidity and Smart Contract												
Code	NAIBC4701	NAIBC4701											
Course Type	PCC	L	T	P	Credit								
Pre- Requisite	Nill	Nill 3 1 0 4											
Course Objectives	 To introduce Smart Contracts und To be aware of the tools and progr To assess the effectiveness of the 	amming	skills req	uires to ge									
Course Outc	omes												
CO1	To understand the basics and objec	tives of S	Smart Co	ntracts in	Blockchain.								
CO2	Apply Ethereum in generating a Smart Contract.												
CO3	Evaluate the various functionalities	and feat	ures in E	thereum S	Smart Contract.								
CO4	Introduce the Solidity language in o	creation o	of a Smai	rt Contrac	t.								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Smart Contracts Definitions: Blockchain, Cryptocurrency, Smart Contracts, Understanding Blockchain Virtual Machine, Terminology and practices, Hash Functions.	30 Hours	CO1
	Ethereum Smart Contracts Definition and significance of Ethereum, Ethereum Virtual Machine (EVM), Ether and Gas: Costs of execution, Sample Ethereum Smart Contracts.		
2	Issues in Application of Smart Contracts Market impact & scientific innovation, Trust and future- resistance features, Security, Merkle Trees, Hacks and scandals, workflow and execution environments. Solidity Language Basics Solidity source file layout, Structure of contracts, Control structures and functions, Scoping, declarations, error handling.	30 Hours	CO2
3	Decentralized Applications (DApps) DApp Architecture, Connecting Blockchain and Smart Contracts, Introduction to Web3.js, Deployment and sample web pages (HTML/CSS/JS).	30 Hours	CO3
4	Security and Practicality Issues Developer responsibility, Trust-in-Code vs Trust-in-People, Data permanence, selective obscurity, Quantum readiness and security measures. Contemporary Issues Emerging trends and real-world challenges in Smart Contracts	30 Hours	CO4

- **1.** Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (2016).
- 2. Dannen, C., 2017. Introducing Ethereum and solidity (Vol. 318). Berkeley: Springer.
- 3. Modi, Ritesh. Solidity Programming Essentials: A beginner's guide to build smart.

- 1. https://docs.soliditylang.org
- 2. https://remix.ethereum.org
- 3. https://faucet.goerli.com/
- 4. https://sepoliafaucet.com/

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	1	3	-	-	-	1	1	-	-	3	2
CO2	3	2	3	1	3	-	-	-	1	2	-	-	3	2
CO3	3	2	3	1	3	-	-	-	2	2	-	-	3	3
CO4	3	3	2	2	3	-	-	-	1	1	-	_	3	3

Program	B.Tech CSE (AIBC)											
Year	IV	Ser	nester	VII								
Course Name	Solidity and Smart Contract Lab											
Code	NAIBC4751											
Course Type	PCC L T P Credit											
Pre-	Nill	0	0	2	1							
Requisite												
Course Objectives	 To introduce the fundamentals o with decentralized application (I To provide hands-on experience smart contracts using the Solidity Remix IDE. To understand the Ethereum bloc interact with the Ethereum Virtu To develop skills for implementi such as token creation, digital vomanagement using Solidity. 	DApp) de in writin y prograr ckchain p al Machi ng vario	evelopme g, compi mming la platform ne (EVM us blocke	nt concepting, and nguage and how sold.	deploying and tools like smart contracts ed applications							
Course Outco	mes											
CO1	Understand and explain the fundame decentralized applications (DApps) d Ethereum.											
CO2	Demonstrate proficiency in writing syntax, data types, functions, modifie											
CO3	Understand and use TypeScript and Angular to create single-page applications with modular design.											
CO4	Deploy, test, and debug smart co MetaMask, and Ethereum testnets.	ontracts	using R	Remix ID	E, Ganache,							

S. No.	Lab Experiment	Mapped CO
1	Write a simple smart contract to store and retrieve data using Remix IDE.	CO1
2	Implement addition, subtraction, multiplication, and division operations on two numbers.	CO2
3	Design a basic voting system using Solidity to register candidates and cast votes.	CO2
4	Create a smart contract that simulates a basic wallet for deposit and withdrawal operations.	CO3
5	Implement onlyOwner modifier to restrict access to certain functions.	CO3
6	Write a contract to send and receive Ether between accounts.	CO3
7	Build a crowdfunding smart contract to accept contributions and refund if target is not reached.	CO3
8	Develop and deploy a custom token following the ERC-20 standard.	CO4

9	Create a smart contract for an open bidding auction with deadline-based participation.	CO3, CO4
10	Develop a contract to issue, store, and verify certificates on the blockchain.	CO3, CO4

- 1. https://docs.soliditylang.org
- 2. https://remix.ethereum.org
- 3. https://faucet.goerli.com/
- **4.** https://sepoliafaucet.com/

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	2	-	-	-	-	-	-	-	-	-
CO2	3	2	2	-	3	-	-	-	-	-	-	-	-	-
CO3	2	2	3	-	3	-	-	-	-	-	-	-	-	-
CO4	2	3	3	2	3	-	-	-	-	-	-	-	-	-

Program	B.Tech CSE (AIBC)											
Year	II	Sem	ester	III								
Course Name	Programming with Python											
Code	NVC43241											
Course Type	VOC L T P Credit											
Pre-Requisite	C Programming	2	0	0	2							
Course Objectives	 To have strong foundation on Py Develop analytical ability on diff Mapping and respective conversion Programs. Capability to work with large amusing Python. 	ferent reation of rea	al world s al world p	situations. problems	to Python							
Course Outcom	nes											
CO1	Understand and write simple Pythor	n progran	ns.									
CO2	Analysis of conditions in a problem	and imp	lement it	in progra	m.							
CO3	Design of Python blocks using func call.	tions and	their eva	aluation u	sing function							
CO4	Apply input/output with files in Pytl and to apply OOPs concepts for ana		•	_	•							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: The Programming Cycle for Python, Python IDE, Interacting with Python Programs, Elements of Python, Type Conversion. Basics: Expressions, Assignment Statement, Arithmetic Operators, Operator Precedence, Boolean Expression. Conditionals: Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and elif statement in Python, Expression Evaluation & Float Representation.	30 Hours	CO1, CO2
2	Loops: Purpose and working of loops, While loop including its working, For Loop, Nested Loops, Break and Continue. Function: Parts of A Function, Execution of A Function, Keyword and Default Arguments, Scope Rules. Strings: Length of the string and perform Concatenation and Repeat operations in it. Indexing and Slicing of Strings.	30 Hours	CO3, CO4

- **1.** Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- **2.** Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.
- **3.** John V Guttag —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013.

- https://onlinecourses.nptel.ac.in/noc20_cs70/preview
 https://onlinecourses.nptel.ac.in/noc21_cs78/preview.

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	1	1							1	1	1
CO2	1	2	2	2	1							2	2	2
CO3	1	1	2	2	1							2	2	2
CO4	1	2	2	2	1							2	2	2

Program	B.Tech CSE (AIBC)											
Year	I Semester II											
Course Name	Artificial Intelligence											
Code	NVC43242	NVC43242										
Course Type	VOC	VOC L T P Credit										
Pre-Requisite	Data Structures & Algorithms, Fundamentals of Mathematics	2	0	0	2							
Course Objectives	 Understand the basics of the theo as a discipline and about intellig The student will learn to apply know problem solving strategies to constant the concept behind genetic Learn the basic concept of fuzzy 	ent agent nowledge nmon Al	s. e represer [applicat m and its	ntation ted	chniques and							
Course Outcom	es											
CO1	Understand the evolution and vario	us appro	aches of	AI.								
CO2	Implementation of data storage, proregression, clustering etc.	Implementation of data storage, processing, visualization, and its use in regression, clustering etc.										
CO3	Analyze the concepts of neural networks.											
CO4	Apply the concepts of face, object,	speech re	ecognitio	n and rob	oots.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	An overview to AI The evolution of AI to the present, various approaches to AI, what should all engineers know about AI, Other emerging technologies, AI and ethical concerns, Existing sets of principles for AI, AI in the Organization Structure. Data & Algorithm History of Data, Data storage and importance of and its acquisition, the stages of data processing, data visualization, regression, prediction & classification, clustering & recommender systems.	30 Hours	CO1, CO2
2	Artificial Neural Networks Deep learning, Recurrent Neural Networks, Convolutional Neural Networks, The Universal Approximation Theorem, Generative Adversarial Networks, Speech recognition, Natural language understanding, Natural language generation, Chatbots, Machine Translation. Applications Image and face recognition, Object recognition, Speech Recognition besides Computer Vision, Robots, Applications, Investments in AI and AI in start-ups, AI Strategy and Governance (agenda).	30 Hours	CO3, CO4

- **1.** S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach □ II, Prentice Hall, Third Edition, 2009.
- **2.** I. Bratko,-Prolog: Programming for Artificial Intelligencell, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.
- **3.** M. Tim Jones,-Artificial Intelligence: A Systems Approach (Computer Science) ||, Jones and Bartlett Publishers, Inc.; First Edition, 2008.

- **4.** Nils J. Nilsson, —The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- **5.** William F. Clocksin and Christopher S. Mellish, Programming in Prolog: Using the ISO Standard, Fifth Edition, Springer, 2003.
- **6.** Gerhard Weiss, —Multi Agent Systems, Second Edition, MIT Press, 2013.
- 7. David L. Poole and Alan K. Mackworth, -Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010.

- 1. https://nptel.ac.in/courses/109106184
- **2.** https://onlinecourses.nptel.ac.in/noc22_cs83/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1		2							2	2	1
CO2		1	2	3									1	
CO3	2		2	2	1							1	1	2
CO4	1		2	1	1							1	1	2

Program	B.Tech CSE (AIBC)										
Year	II	Sem	ester	IV							
Course Name	Cyber Crime and Computer Forens	Cyber Crime and Computer Forensics									
Code	NVC43243	NVC43243									
Course Type	VOC L T P Cree										
Pre-Requisite	Basic Knowledge of Cyber Laws	2	0	0	2						
Course Objectives	 Acquainting students with Cybe Providing the students the under To understand the different aspe Making the student aware of Dig Agencies for investigation of cy 	rstanding cts of co gital Evic	of Issues mputer fo lences an	orensic. d working							
Course Outcom	es										
CO1	Understand the basic concept of cy	bercrime	and con	nputer fore	ensics.						
CO2	Analyze the virus, cyber-attacks an	d hackin	g in cybe	er applicat	ions.						
CO3	Evaluate the different computer for	rensic too	ols and te	chniques.							
CO4	Apply different methods for digital	evidence	e related	to system	security.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Definition of Cyber Crime: Introduction of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime, Social Engineering, Categories of Cyber Crime, Property Cyber Crime. Introduction to internet crimes: hacking and cracking, credit card and ATM frauds, emerging digital crimes and modules. Introduction to Cyber Crime Investigation, Investigation Tools, Discovery, Digital Evidence Collection, Evidence Preservation, E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery.	30 Hours	CO1, CO2
2	Computer forensics analysis and Tools: Introduction to Computer Forensics Forensic Software and Hardware,	30	CO3,
2	Analysis and Advanced Tools, Forensic Technology and Practices, Forensic Ballistics and Photography, Face, Iris and	Hours	CO4

Fingerprint Recognition, Audio Video Analysis, Windows	
System Forensics, Linux System Forensics, Network	
Forensics.	
Email Security And Firewalls: PGP, S/MIME, Internet	
Firewalls for Trusted System- Roles of Firewalls, Firewall	
related terminology, Types of Firewalls, Firewall designs SET	
for E-Commerce Transactions.	

- **1.** Angus M. Marshall, "Digital forensics: Digital evidence in criminal investigation", John Wiley and Sons, 2008.
- **2.** Bernadette H Schell, Clemens Martin, "Cybercrime", ABC CLIO Inc, California, 2004. "Understanding Forensics in IT", NIIT Ltd, 2005.
- **3.** Nelson Phillips and EnfingerSteuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.

- 1. https://onlinecourses.swayam2.ac.in/cec20_lb06
- 2. https://nptel.ac.in/courses/106106178

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	1	2		1								1	2	
CO2	1	2	2	1								1	2	
CO3	2	1	2	2	2							2	2	2
CO4	1	1	1	2	2							2	2	2

Program	B.Tech CSE (AIBC)								
Year	Ш	Semester V							
Course Name	Meta-Verse and virtual reality								
Code	NVC43244								
Course Type	VOC	L	T	P	Credit				
Pre-Requisite		2	0	0	2				
Course Objectives	 Understand how Augmented Reinterfaces are used to interact in To create AR/VR interfaces using Use AR/VR interfaces as part of potential customers to interact viservices in the Meta-verse. Understand how all these fit interact viable business solutions 	the Meting free sof a busing with a contract the Me	a-verse. oftware tess solute mpany's ta-verse	tools. ion to enough products as a whole	able and				
Course Outcom	es								
CO1	Definition of the Meta-verse & the chain.	interplay	between	1 Web 3.0	and Block				
CO2	Use of NFTs in Meta-verse & Indu	stries usi	ng the M	leta-verse	e technology.				
CO3	Describe how VR systems work an	d list the	applicat	ions of V	R.				
CO4	Explain the concepts of motion and	l tracking	g in VR s	ystems.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction and class policies, what is the Meta-verse? Demo of the Meta-verse, The Meta-verse vs. Web 3.0 AR/VR and the Meta-verse Applications of the Meta-verse advantages and Challenges of the Meta-verse Types of the Meta-verse Block chain and the Meta-verse Crypto currency and the Meta-verse NFTs and the Meta-verse	30 Hours	CO1, CO2
2	Introduction to Virtual Reality, Representing the Virtual World, The Geometry of Virtual Worlds & The Physiology of Human Vision, Visual Perception & Rendering, Motion & Tracking	30 Hours	CO3, CO4

- 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016.
- **2.** Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.

- 1. https://elearn.nptel.ac.in/shop/iit-workshops/completed/metaverse/
- **2.** https://archive.nptel.ac.in/courses/106/106/106106138/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	1	1							1	1	1
CO2	1	2	2	2	1							2	2	2
CO3	1	1	2	2	1							2	2	2
CO4	1	2	2	2	1							2	2	2

Program	B.Tech CSE (AIBC)										
Year	III	Semester VI									
Course Name	Blockchain and Distributed Ledger	Blockchain and Distributed Ledger Technology									
Code	NPEC44111	PEC44111									
Course Type	PEC	L	T	P	Credit						
Pre-Requisite	-	3	0	0	3						
Course Outcom	cryptocurrency concepts 2. Gain a deep insight into Bitcontransactions are validated by m 3. Interpret the prospects of Blockchain can improve your beautiful deploy smart.	cryptocurrency concepts 2. Gain a deep insight into Bitcoin, its network and how Bitcoin transactions are validated by miners									
CO1	Understand how blockchain solu landscape.				•						
CO2	Develop a deeper understanding of as consensus, cryptography, privac			ical topics	s such						
CO3	Explain design principles of Bitcoin	n and Eth	nereum.								
CO4	Understand the Cryptocurrency and network.	l research	activitie	es on bloc	kchain						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Basic Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof. Blockchain Introduction, Advantage over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public blockchain.	30 Hours	CO1
2	 Distributed Consensus Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate. Cryptocurrency History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin. 	30 Hours	CO2, CO3
3	Cryptocurrency Regulation Stakeholders, Roots of Bit coin, Legal Aspects-Crypto currency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain.	30 Hours	CO4

PROJECT	
Research Activities on Blockchain network.	

- 1. IBM Courseware
- 2. Implementing Blockchain solutions using Hyperledger

Online Resources

1. NPTEL: Computer Science and Engineering - NOC: Blockchain and its Applications.

	Course Articulation Matrix														
PO- PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO1 2	PSO 1	PSO 2	
CO 1	2	2			2							2	3	2	
CO 2	2	2		2	3							2	2	2	
CO 3	2	2	3	2								2	3	2	
CO 4	2	2	2	3	2							2	3	2	

Program	B.Tech CSE (AIBC)				
Year	III	Sem	ester	VI	
Course Name	Cloud-Native Application Develop	ment			
Code	NPEC44112				
Course Type	PEC	L	T	P	Credit
Pre-Requisite	Knowledge of Hybrid Cloud	3	0	0	3
Course Objectives	 Describe the characteristics of c Understand hybrid cloud conce Explain application modernizat Explain the concepts and use containerized applications. 	pts and b ion with	enefits. hybrid cl	loud.	ınd
Course Outcom	es				
CO1	Understand the vision of Cloud n global context.	ative ap	plication	develop	nent from a
CO2	Applying and analyzing RedH with application development.	at Oper	nShift a	rchitectur	e and APIs
CO3	To evaluate the application of Devo in industrial Automation.	Ops with	Redhat (Open Shif	ft architecture
CO4	Creating projects and research development with Redhat OpenShi		rities b	ased on	application

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Hybrid Clouds Definition of Cloud native applications, Understand concepts of hybrid cloud and its connectivity, Understand application modernization with hybrid cloud, Concept of security architecture in hybrid cloud, Definition of Multi-Cloud Foundations of Cloud Native Application Development Understand twelve-factor app methodology, Linux containers, Introduction to Microservices architecture and its integration Architecture of IBM Kubernetes Service, Virtual machines and Containers isolation, Rapid security patching by using container image layering, DevOps	30 Hours	CO1
2	Architecture overview of IBM Kubernetes Service (IKS) Technical architecture of Kubernetes Container Platform, Pods, Role of master nodes, and worker nodes, Role of scheduler, Services and Routes with working, Persistent storage and list its benefits with Kubernetes, external routing into Kubernetes applications and the router's role, Internal routing within Kubernetes, Workflow of a pod deployment in Kubernetes Introduction to Red Hat OpenShift on IBM Cloud Introduction Red Hat OpenShift on IBM Cloud architecture, Key features of Red Hat OpenShift, Understand namespaces, users, and resource quota limits, application creation and auto scaling processes.	30 Hours	CO2

3	Configuring applications on Red Hat OpenShift Understand application configuration concepts, Role of volumes in cloud native application development, Concept of persistent volumes, What are environment variables, Concept of secrets, what are ConfigMap, Articulate downward API, DevOps for Red Hat Open Shift applications on IBM Cloud Challenges of application integration, Features of continuous integration (CI) and its best practices, Understand workflows, their benefits, and their tools, Introduction to DevOps Practices, Continues Delivery, Understand deployment pipeline process, Explain DevSecOps and why it is important, Understand tool chains on IBM Cloud	30 Hours	CO3, CO4
---	---	-------------	----------

- 1. Deploying to OpenShift: A Guide for Busy Developers Book by Graham Dumpleton
- 2. Cloud Native Patterns: Designing Change-tolerant Book by Cornelia Davis
- **3.** Programming Kubernetes: Developing Cloud-Native Applications Book by Michael Hausenblas and Stefan Schimanski (Software engineer)

Online Resources

1. https://onlinecourses.nptel.ac.in/noc23_cs42/preview

	Course Articulation Matrix													
PO- PS O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	2	2			2							1		
CO 2	2	2			3							1	2	2
CO 3	2	2	3									2	2	1
CO 4	2	2	2		2							2	2	2

Program	B.Tech CSE (AIBC)					
Year	III	Semester	7	VI		
Course Name	Pattern Recognition		·			
Code	NPEC44113					
Course Type	PEC		L	T	P	Credit
Pre-Requisite	Probability, Linear algebra, ML, P	ython	3	0	0	3
Course Objectives	 Learn the fundamental concepts Understand the fundamental conditions Evaluate the learning of the Model Develop some applications of p 	ncepts of Patterndels.	n Re			ognition.
Course Outcome	\mathbf{s}					
CO1	Understand the fundamental patter theories.	n recognition a	nd n	nachir	ne lear	ning
CO2	Analyze certain important pattern	recognition tecl	hniq	ues.		
CO3	Evaluate systems and algorithms f classification), with focus on sequ			on (sig	gnal	
CO4	Applying the pattern recognition the	neories to appli	catio	ons of	intere	st.

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: Introduction to Pattern Recognition, Basics of pattern recognition, Design principles of pattern recognition system, Learning and adaptation, Pattern recognition approaches, Mathematical foundations — Linear algebra, Probability Theory, Expectation, mean and covariance, Normal distribution, multivariate normal densities, Chi squared test.	30 Hours	CO1
2	Statistical Pattern Recognition: Bayesian Decision Theory, Classifiers, Normal density, Discriminant functions. Parameter Estimation Methods: Maximum-Likelihood estimation, Bayesian Parameter estimation, Dimension reduction methods, Principal Component Analysis (PCA), Fisher Linear discriminate analysis, Expectation-maximization (EM), Hidden Markov Models (HMM), Gaussian mixture models.	30 Hours	CO2
3	Nonparametric Techniques and Unsupervised Learning: Density Estimation, Parzen Windows, K-Nearest Neighbor Estimation, Nearest Neighbor Rule, Fuzzy classification, Clustering, Criterion functions for clustering, Clustering Techniques, Iterative square - error partitioned clustering – K means, Agglomerative hierarchical clustering, Cluster validation.	30 Hours	CO3, CO4

- **1.**Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", 2nd Edition, John Wiley, 2006.
- 2. C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2009.
- 3. S. Theodoridis and K. Koutroumbas, "Pattern Recognition", 4th Edition, Academic Press, 2009.

- 1. https://nptel.ac.in/courses/106106046
- 2. https://nptel.ac.in/courses/106108057
- **3.** https://nptel.ac.in/courses/117106100
- 4. https://nptel.ac.in/courses/117108048

	Course Articulation Matrix														
PO-PSO	PO1	PO 2	PO 3	PO4	PO5	PO6	PO 7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	
CO1	3	1		1								1	3	2	
CO2	3	2		2								1	2	2	
CO3	3	1	3	2	2							1	3	2	
CO4	3		3	2	1								3	2	

Program	B.Tech CSE (AIBC)				
Year	IV	Sem	ester	VII	
Course Name	Network Security and Cryptograph	y			
Code	NPEC44121				
Course Type	PCC	L	T	P	Credit
Pre-Requisite	Security Services and Mechanism	3	0	0	3
Course Objectives	 cryptography and network see Getting familiar with the cryinformation and network securi To know the different types of a secret way. To know the possible the communication. 	yptograpl ity. algorithn	hic techi	niques th	nformation in
Course Outcom	es				
CO1	Understanding cryptography ar applications.	nd netw	ork see	curity c	concepts and
CO2	Apply security principals to system	design a	and Real t	time Scer	narios.
CO3	To evaluate the application of secur	rity with	Digital si	ignature.	
CO4	Analysis of network traffic and sec	urity thre	eats.		

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Cryptography and Symmetric Ciphers Security Attacks: Security Services and mechanism; Classical encryption techniques: Substitution ciphers and Transposition ciphers, Steganography, Cryptanalysis; Modern Block Ciphers: Stream and Block Cipher, Block Cipher Principles, Block Cipher Modes of Operations; Shannon's theory of Confusion and Diffusion; Fiestal structure; Data encryption standard(DES); Strength of DES; Idea of differential cryptanalysis; Triple DES; Symmetric Key Distribution; Finite Fields: Introduction to groups, rings and fields, Modular Arithmetic, Euclidean Algorithm, Finite Fields of the form GF(p).	30 Hours	CO1
2	Basics of Number Theory and Public key Cryptography Introduction to Number Theory: Prime and Relative Prime Numbers, Fermat's and Euler's theorem, Testing for Primality, Chinese Remainder theorem, Discrete Logarithms; Public Key Cryptography: Principles of Public-Key Cryptography, RSA Algorithm, Security of RSA; Key Management: Deffie-Hellman Key Exchange.	30 Hours	CO2

3	Hash Functions and Digital Signatures Message Authentication; Hash Functions; Secure Hash Functions; Security of Hash functions and MACs; Digital Signatures; Digital Signature Standards (DSS); Proof of digital signature algorithm; Advanced Encryption Standard (AES) encryption and decryption. Network and System Security Authentication Applications: Kerberos, X.509 Certificates; Electronic Mail Security: Pretty Good Privacy, S/MIME; IP Security: IP Security Architecture, Authentication Header, Encapsulating security payloads, Combining Security Associations; Web Security: Secure Socket Layer and Transport Layer Security, Secure Electronic transaction; Intruder; Viruses; Firewalls.	30 Hours	CO3, CO4
---	--	-------------	----------

- 1. William Stallings, —Cryptography and Network Security: Principals and Practice, Pearson Education.
- Behrouz A. Frouzan: —Cryptography and Network Security□II, Tata McGraw-Hill
 Bruce Schiener, —Applied CryptographyII. John Wiley & Sons

- 1. http://swayam.gov.in/
- 2. https://nptel.ac.in/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2										1		
CO2	2	2										1	2	
CO3	2	2	3									1	3	2
CO4	2	2	2		2							1	3	2

Program	B.Tech CSE (AIBC)									
Year	IV	Sem	ester	VII						
Course Name	Security Governance and Law									
Code	NPEC44123									
Course Type	PEC L T P C									
Pre-Requisite	Knowledge of Security mechanism.	3	0	0	3					
Course Objectives	 Recognize and differentiate information security policies and strategies to guide the development of standards and procedures, in alignment with organizational goals and objectives. Identify and analyze risk management processes and procedures to ensure compliance with applicable security, privacy laws and regulations Identify incident response processes for detecting and responding to security risks Determine the proper steps to implement comprehensive business continuity, disaster recovery, and incident response plans. 									
Course Outcom	es									
CO1	Understand the concept of cyber security law and types.									
CO2	Analyze the misuses of electronics and international security for cyber fraud.									
CO3	To evaluate the application of IT Act 2000 & IT Amendment Act 2008.									
CO4	Copyright Infringe Remedies of In issues Software Piracy.	nfringem	ent Mult	imedia, C	Copyright					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Overview Security Types and Laws Designing Trusted Operating Systems, Security Policies Methods of security, Trusted operating system design, Database Security, Multilevel databases, Proposals for Multilevel security, Administrating Security, Security planning, Risk analysis, Organization and security Policies, Legal, Privacy and Ethical Issues in Computer Security, International Cyber crimes	30 Hours	CO1
2	Cyber Fraud and Electronic Misuse Characteristics Cyber Fraud Offence, fraud related Offenses, Encryption in Crime and Terrorism-Law Enforcement Options, Data protection for system designers, Evaluation criteria and security testing International standards Analysis and Logging, Recovery and data backs, Security policy development, Security Models: Frameworks, Standards, Security Certification ISO 17799/ ISO 27001, System Security Engineering Capacity Maturity Model, Laws and Legal Framework for Information Security, Recovery and risk analysis, Operating system and application specific auditing	30 Hours	CO2, CO3

3	IT Act 2000 & IT Amendment Act 2008: Introduction, Digital Signature, Secure Electronic records and secure digital signatures, Digital Signature Certificates, Offences covered under IT Act 2000, Major Amendments in IT Act, Understanding Copy Right in Information Technology: Understanding the technology of Software software-copyright vs Patent debate Authorship Copy right and Legal Issues Software Copyright Jurisdiction Issues, Copyright Infringe Remedies of Infringement Multimedia, Copyright issues Software Piracy, Patents understanding and Data Privacy laws: GDPR. PROJECT Research Activities on Security Governance with projects and research letters. (POC on dataset)	30 Hours	CO4
---	---	-------------	-----

- 1. Information Security Governance: A Practical Development and Implementation Approach (Wiley Series in Systems Engineering and Management Book 92) by Krag Brot Phillip. A. Laplante, —Real-Time Systems Design and Analysis, second edition, PHI, 2005.
- **2.** Information Security Governance Simplified: From the Boardroom to the Keyboard by Todd Fitzgerald
- **3.** Handbook of Governance and Security Edited by James Sperling, Professor of Political Science, University of Akron, US Publication Date: 2014 ISBN: 978 1 78195 316 7 Extent: 752.

Online Resources

1. https://nptel.ac.in/courses/106106129

Course Articulation Matrix														
PO- PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	2	2			2							1		1
CO 2	2	2			1							1		
CO 3	2	2	1									1	1	1
CO 4	2	2	2		2							1	1	2

Program	B.Tech CSE (AIBC)								
Year	IV	Semeste	er	VII					
Course Name	Cyber and Digital Forensics								
Code	NPEC44124								
Course Type	PEC L T P Credit								
Pre-Requisite	Basic knowledge of Cyber Security 3 0 0 3								
Course Objectives	 Learn the security issues network layer and transport layer. Be exposed to security issues of the application layer. Learn computer forensics, tools and to analyse and validate forensics data. Will gain the knowledge to implement various security attacks. 								
Course Outcomes									
CO1	Understand to the get the ideas in various ways to trace an attacker.								
CO2	Analyse and validate forensics data to satisfy.								
CO3	Evaluate the security in different layers.								
CO4	Apply the security tools to provide the security in Cyber.								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to IT laws & Cyber Crimes – Internet, Hacking, Cracking, Viruses, Virus Attacks, Pornography, Software Piracy, Intellectual property, Legal System of Information Technology, Social Engineering, Mail Bombs, Bug Exploits, and Cyber Security. Legal and Ethical Principles: Introduction to Forensics – The Investigative Process – Code of Ethics, Ethics of Investigations, Evidence Management – Collection, Transport, Storage, access control, disposition	30 Hours	CO1
2	Forensic Science: Principles and Methods – Scientific approach to Forensics, Identification and Classification of Evidence, Location of Evidence, Recovering Data, Media File Forensic Steps, Forensic Analysis – Planning, Case Notes and Reports, Quality Control	30 Hours	CO2
3	Digital Forensics: Hardware Forensics – Hidden File and Anti- forensics - Network Forensics – Virtual Systems - Mobile Forensics Digital Watermarking Protocols: A Buyer-Seller Watermarking Protocol, an Efficient and Anonymous Buyer- Seller Watermarking Protocol, Extensions of Watermarking Protocols, Protocols for Secure Computation Application Forensics, Tools and Report Writing – Application Forensics, Email and Social Media Investigations, Cloud Forensics, Current Digital Forensic Tools, Report Writing for Investigations	30 Hours	CO3, CO4

- 1. Bill Nelson, Christopher Steuart, Amelia Philips, —Computer Forensics and Investigations||, Delmar Cengage Learning; 5th edition January 2015
- 2. Chuck Eastom, —Certified Cyber Forensics Professional Certification:, McGraw Hill, July

2017.

- **3.** Nilakshi Jain, Dhananjay Kalbande, Digital Forensic: The fascinating world of Digital Evidences Wiley India Pvt Ltd 2017.
- **4.** John R.Vacca, Computer Forensics: Computer Crime Scene Investigation, Laxmi Publications, 2015.
- **5.** MarjieT.Britz, Computer Forensics and Cyber Crimel: An Introductionl, 3rd Edition, Prentice Hall, 2013.
- **6.** Clint P Garrison Digital Forensics for Network, Internet, and Cloud Computing A forensic evidence guide for moving targets and data, Syngress Publishing, Inc. 2010.

- 1. https://onlinecourses.swayam2.ac.in/cec20_lb06/preview
- **2.** https://onlinecourses.swayam2.ac.in/cec21_ge10/preview

	Course Articulation Matrix														
PO- PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	
CO1	1	2	1	1									1		
CO2	2		2	2	2							2	1		
CO3	1	2		2	2							1	2	1	
CO4	2		2	2	2								2	2	

Program	B.Tech CSE (AIBC)											
Year	IV	Semester VII										
Course Name	Blockchain Architecture: Design and Use Cases											
Code	NPEC44131											
Course Type	PEC L T P Credit											
Pre-Requisite	Basics knowledge of the Networking. 3 0 0 3											
Course Objectives	 Blockchain technology and the cryptocurrency concepts Gain a deep insight into Bitcoi transactions are validated by mir Interpret the prospects of Blo Blockchain can improve your bu Deploy your private Blockcha visually see your chains & send 	in, its ne ners ockchain isiness sta iin on th	and asso andards ne web	nd how B ess how where yo	oitcoin ou can							
Course Outcome	es											
CO1	Understand how blockchain solu landscape.	itions ar	e transfo	orming th	ne industry							
CO2	Analyse a deeper understanding consensus, cryptography, privacy a			hnical top	pics such as							
CO3	Evaluate hands-on expertise usitechnology, including Hyperledger		lar bloc	kchain o	pen source							
CO4	Apply on design and develop for a	permissi	oned Blo	ckchain.								

Module	Course Contents	Contact Hrs.	Mapped CO
1	Blockchain prerequisites and Introduction to Blockchain Introduction to Blockchain – I (Basics, History, Architecture, Conceptualization), Basic Crypto Primitives, Bitcoin Basics Distributed Consensus. Blockchain in detail and Blockchain Status Consensus in Bitcoin – I (The Basics, PoW and Beyond, The Miners) Permissioned Blockchain (Basics, Consensus), Permissioned Blockchain(RAFT Consensus, Byzantine General Problem, Practical Byzantine Fault Tolerance), Blockchain for Enterprise - Overview Blockchain Components and Concepts	30 Hours	CO1

2	Linux Foundation Hyperledger Project Hyperledger Fabric – Transaction Flow, Hyperledger Fabric Details Fabric, Membership and Identity Management, Hyperledger Fabric Network Setup, Fabric Demo on IBM Blockchain Cloud Fabric Demo, deploy from scratch. Hyperledger Composer—Application Development, Hyperledger Composer – Network Administration, Blockchain Use Cases Blockchain in Financial Service(Payments and Secure Trading, Compliance and Mortgage, Financial Trade), Revolutionizing Global Trade, Blockchain in Supply Chain, Blockchain in Other Industries Blockchain in Government (Advantages, Use Cases, Digital Identity) Blockchain in Government(Hyperledger Indy, Tax Payments and Land Registry Records).	30 Hours	CO2, CO3
3	Blockchain Security Blockchain Security (Overview, Membership and Access control in Fabric, Privacy in Fabric), Blockchain Security (Fabric SideDB) Research Aspects (Consensus Scalability, Bitcoin-NG, Collective Signing, Byzcoin), Research Aspects (Algorand, Cross Fault Tolerance, Secured Multi-Party Computation), Blockchain for Science (Blockchain for Big Data, Blockchain and AI) Project Research Activities on Blockchain network	30 Hours	CO4

1. IBM Courseware

Further suggested Readings

1. Implementing Blockchain solutions using Hyperledger

- https://onlinecourses.nptel.ac.in/noc19_cs63/preview
 https://archive.nptel.ac.in/courses/106/105/106105184/

	Course Articulation Matrix														
PO- PS O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	
CO 1	2	1	2		1								1	3	
CO 2	2	1		1									2	2	
CO 3			1	1	2							2	3	3	
CO 4	1		2	1	2							2	2	2	

Program	B.Tech CSE (AIBC)									
Year	IV	Semester VII								
Course Name	Big Data Security									
Code	NPEC44133									
Course Type	PEC	L	T	P	Credit					
Pre-Requisite	Knowledge of SQL, Data Warehousing, and Database Knowledge.	3	0	0	3					
Course Objectives	 Understand the Big Data Security module and introduce the concepts of Big Data. Understand & define security control –core disciplines. Analyze and monitor the data usage. Apply the data protection laws for secure the data. 									
Course Outcom	es									
CO1	To understand Big Data, Big Dat Architecture Security goals, contro		ses and	Capabiliti	es, Big Data					
CO2	Analyze and classifying sensitive Perimeters Encryption of data.	e data,	Remedia	tion plan	s, Security					
CO3	To Understand the Kerberos, Ider Apache Knox overview.	ntity mar	nagement	Activity	Monitoring,					
CO4	Understand the Guardium overvimplementing Masking, Data life of Case studies & hands on.		_		· ·					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Big Data Explain what Big Data is Reviewing concept of Big data capabilities, use cases & Architecture Explain Threats Introduction to Security Disciplines.	30 Hours	CO1
2	Securing & Protecting Data Understand how to identify data for down streaming processes, Understand how to integrate, process, generate data, Understand Security perimeter for security Management, Know how Access management and Auditing works.	30 Hours	CO2
3	Monitor, Enforce and Audit Understand Guardium data activity Monitoring, Benefits of Big Infosphere Guardium, Understand Architecture of Guardium, Hands-on experience with all of them. Data Protection Laws for Big data Explain GDPR Laws, Explain ILG (Lifecycle Governance), ISO 27000 Series HIPAA	30 Hours	CO3,CO 4

1. IBM COURSEWARE.

1. https://nptel.ac.in/courses/106104189

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2		1	2								1	2		
CO2	2	1	2	2								2	2	2	
CO3	2	1	2	2	2							2		2	
CO4	2	2	2	2	2		·		·			2	2	2	

Program	B.Tech CSE (AIBC)									
Year	IV	Sem	ester	VII						
Course Name	Computer Vision									
Code	NPEC44134									
Course Type	PCC	L	T	P	Credit					
Pre-Requisite	Machine Learning, Computer Graphics	3	0	0	3					
Course Objectives	2. Appling Filtering and edge detec	 Acquire knowledge Image Processing Appling Filtering and edge detection Appling deep leering for recognition and feature detection on image and videos 								
Course Outcom	es									
CO1	Understanding basics of Image Pro	cessing a	and Photo	metric						
CO2	Understanding Image Filtering and	edge det	tection.							
CO3	Understanding application of decrecognition	ep learn	ing in ii	mage pro	cessing and					
CO4	Understanding feature detection an	d motion	l.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to image processing, Image formation: Geometric primitives and transformations, Photometric image formation, digital camera, Image processing: Point operators, More neighborhood operators, Fourier transforms, Pyramids and wavelets, Geometric transformations, Model fitting and optimization, Variational methods and regularization, Markov random fields	30 Hours	CO1
2	Linear Filtering: Filter Kernels, Linear Filter Experiments, Linear Convolution Filtering, Selecting a Region-of-Interest, Adding Noise to Image, Mean Filtering, Median Filtering, Rank Order Filtering, Normal Distribution Filtering, Edges, Lines, Corners, Gaussian Kernel and Voronoï Meshes, Linear Function, Edge Detection, Double Precision Laplacian Filter, Enhancing Digital Image Edges, Gaussian Kernel, Gaussian Filter, Image Gradient Approach to Isolating Image Edges	30 Hours	CO2
3	Deep Learning: Supervised learning, Unsupervised learning, Deep neural networks, Convolutional neural networks, More complex models Recognition: Instance recognition, Image classification, Object detection, Semantic segmentation, Pose estimation, Video understanding, Vision and language Feature detection and matching: Edges and contours, Contour tracking, Lines and vanishing points, Segmentation Motion estimation: Translational alignment, Parametric motion, Optical flow, Layered motion Computational photography, High dynamic range imaging, Super-resolution, denoising, and blur removal,	30 Hours	CO3, CO4

Image matting and compositing, Video matting, Texture	
analysis and synthesis	

- **1.** Richard Szeliski, "Computer Vision: Algorithms and Applications", 2nd Edition, September 30, 2022 Springer.
- **2.** James F James F. Peters, "Foundations of Computer Vision, Computational Geometry, Visual Image, Structures and Object Shape Detection", 124, Springer.
- **3.** E. R. Davies, "Computer and Machine Vision: Theory, Algorithms, Practicalities", Fourth Edition, 2012, Elsevier.
- **4.** Ramesh Jain, Rangachar Kasturi, Brian G. Schunck,"MACHINE VISION", McGraw-Hill, Inc., ISBN 0-07-032018-7, 1995.

Online Resources

1. https://onlinecourses.nptel.ac.in/noc21_ee23/preview

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	
CO1	3	3	3	3	2							2	3	3	
CO2	3	3	3	3	3							2	2	3	
CO3	3	3	3	3	3							2	3	3	
CO4	3	3	3	3	2							2	3	3	

Program	B. Tech CSE (AIBC)	B. Tech CSE (AIBC)									
Year	IV	Semeste	er	VIII							
Course Name	Distributed Systems										
Code	NPEC44141	NPEC44141									
Course Type	PEC L T P Credit										
Pre-Requisite	Operating System	3	0	0	3						
Course Objectives	state in Distributed system. 2. Have knowledge and understanding Methods involved when dealing wit 3. To get the knowledge of how distrib Remote invocation.	 state in Distributed system. 2. Have knowledge and understanding of the main principles, techniques and Methods involved when dealing with distributed systems. 3. To get the knowledge of how distributed objects communicate by means of Remote invocation. 									
Course Outcom	nes										
CO1	Understand the foundations and issues of	of distribu	uted syste	ems.							
CO2	Analyze distributed applications work a	nd requir	ements t	hey aim to	satisfy						
CO3	Evaluate the various synchronization is system.	Evaluate the various synchronization issues and global state for distributed system.									
CO4	Apply distributed applications work, ted upon.	chniques	and infra	structures	they are built						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to distributed systems: Definitions and Examples of Distributed systems; System Models: Architectural modelsand Fundamental models; limitations of distributed systems. Logical Clocks: Lamport's clocks, Vector logical clock, NTP; Message Passing System: Causal ordering of messages, Sates of a Distributed system, Local and Global State, Consistent and inconsistent states; Termination detection.	30 Hours	CO1
2	Mutual Exclusion: Requirements of Mutual Exclusion, Classification of distributed mutual exclusion: Non-token based Quorum Based and Token Based mutual exclusion with examples; Performance metric for distributed mutual exclusion algorithms. Deadlock Detection: System models, Preliminaries, Deadlock prevention, Deadlock avoidance, Deadlock detection & resolution. Agreement Protocols: Classification of Agreement Problem: Byzantine agreement problem, Consensus problem, Interactive consistency Problem; Solution to Byzantine Agreement problem; Application of Agreement problem.	30 Hours	CO2

Resource Management: Distributed File Systems, Issues in distributed File System, Mechanism for building distributed file systems; Distributed Shared Memory, Design issues in Distributed Shared Memory, Algorithm for Implementation of Distributed Shared Memory. Failure Recovery: Backward and Forward recovery, Recovery in Concurrent systems: Checkpoints; Recovery in Distributed Database Systems; Fault Tolerance: Issues in Fault Tolerance, Voting Protocols.	30 Hours	CO3, CO4
---	-------------	----------

- 1. Singhal & Shivaratri, "Advanced Concept in Operating Systems", McGraw Hill.
- 2. Ramakrishna, Gehrke," Database Management Systems", McGraw Hill.
- 3. Vijay K. Garg Elements of Distributed Compuitng, Wiley.
- **4.** Coulouris, Dollimore, Kindberg, "Distributed System: Concepts and Design", Pearson Education.
- 5. Tenanuanbaum, Steen," Distributed Systems", PHI.

- **1.** https://onlinecourses.nptel.ac.in/noc21_cs87/preview
- **2.** https://archive.nptel.ac.in/courses/106/106/106106168/

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	1	2	1	1	2							2	2	1
CO2	1	2	2	2	2							2	2	2
CO3	1	2	2	2	2							2	2	1
CO4	2	2	2	2	2							2	2	2

Program	B. Tech CSE (AIBC)										
Year	IV	Semeste	er	VIII							
Course Name	Cryptography and Information Security										
Code	NPEC44142										
Course Type	PEC L T P Credit										
Pre-Requisite	Basic knowledge of Operating System	3	0	0	3						
Course Objectives	 To understand basics of Cryptograph To be able to secure a message over in the secure and the secure	insecure on the (channel b Confiden	y various tiality,	Integrity and						
Course Outcome	s										
CO1	Understand the DES/AES standard.										
CO2	Analyze the different public key cryptog	graphy aı	nd authen	tication.							
CO3	Evaluate various authentication algorithm	ns such lil	ke digital	signature.							
CO4	Understand the IP security system and k	key mana	gement c	oncepts.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Cryptography and Block Ciphers Introduction to security attacks - services and mechanism - introduction to cryptography - Conventional Encryption: Conventional encryption model - classical encryption techniques - substitution ciphers and transposition ciphers - cryptanalysis - steganography - stream and block ciphers - Modern Block Ciphers: Block ciphers principals - Shannon's theory of confusion and diffusion - fiestal structure - data encryption standard(DES) - strength of DES - differential and linear crypt analysis of DES - block cipher modes of operations - triple DES - AES Confidentiality and Modular Arithmetic Confidentiality using conventional encryption - traffic confidentiality- key distribution - random number generation - Introduction to graph - ring and field - prime and relative prime numbers - modular arithmetic - Fermat's and Euler's theorem - primality testing - Euclid's Algorithm - Chinese Remainder theorem - discrete algorithms.	30 Hours	CO1
2	Public key cryptography and Authentication requirements Principles of public key crypto systems - RSA algorithm - security of RSA - key management — Diffle - Hellman key exchange algorithm - introductory idea of Elliptic curve cryptography — Elgamal encryption - Message Authentication and Hash Function: Authentication requirements - authentication functions - message authentication code - hash functions - birthday attacks — security of hash functions and MACS.	30 Hours	CO2
3	Integrity checks and Authentication algorithms MD5 message digest algorithm - Secure hash algorithm	30 Hours	CO3, CO4

(SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME.

IP Security and Key Management

IP Security and Key Management, IP Security: Architecture - Authentication header - Encapsulating security payloads - combining security associations - key management.

Web and System Security

Web Security: Secure socket layer and transport layer security - secure electronic transaction (SET) - System Security: Intruders - Viruses and related threads - firewall design principals – trusted systems.

Suggested Readings

1. IBM Courseware

Online Resources

1. https://archive.nptel.ac.in/courses/106/105/106105162/

					C	Course	Articu	lation	Matrix	X				
PO- PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		2	3							2	2		1
CO2		2	3		2						2			2
CO3			1	2									2	1
CO4	2		2		2						2		2	2

Program	B.Tech CSE (AIBC)										
Year	III	Semeste	er	V							
Course Name	Applications of Blockchain Technology	in Busir	ness Inno	vation							
Code	NAIBC4502										
Course Type	PCC	L	T	P	Credit						
Pre-Requisite	Basic knowledge of Networking	3	0	0	3						
Course Objectives	 Block chain technology and the key concepts like cryptography and crypto currency concepts. Gain a deep insight into Bitcoin, its network and how Bitcoin transactions are validated by miners. Interpret the prospects of Blockchain and assess your business standards. Explanation of how blockchain, reduces the cost of networking. 										
Course Outcom	es										
CO1	Understand how blockchain solutions a	re transfo	rming th	e industry	landscape.						
CO2	Analyse a deeper understanding of bloc consensus, cryptography, privacy and so		chnical to	opics such	ı as						
CO3	_	Evaluate better knowledge of blockchain technology's potential, allowing them to determine which business challenges it can address.									
CO4	Apply blockchain-based method for add sector.	lressing a	business	problem	in their						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Blockchain: Articulate the challenges of predicting technological evolution and its impact on the economy Identify common misconceptions about blockchain technology Compare the emergence of blockchain technology to that of other general-purpose technologies. Evaluate a business application of blockchain through the lens of a strategic framework. Discern the role of entrepreneurial strategy in a time of technological uncertainty Bitcoin and The Curse of The Double-Spending Problem Explain the double-spending problem and how it is addressed by Bitcoin Interpret Bitcoin as a medium of exchange, store of value, and unit of account. Review the technical details of the Bitcoin protocol Compare the algorithms used to establish consensus in a blockchain to ensure its integrity Determine from a Bitcoin transaction how the PoW algorithm works. Investigate alternative cryptocurrencies and how they might address the challenges presented by bitcoin Evaluate current issues with scaling the Bitcoin blockchain and how they can be addressed. Investigate the role of mining in bootstrapping Bitcoin's Infrastructure.	30 Hours	CO1

	Costless Verification: Blockchain Technology and The		
2	Last Mile Problem: Demonstrate the cost of verifying the attributes of a transaction Identify situations where settlement and reconciliation are expensive today Determine how to build data integrity with costless verification Compare applications of cheaper settlement and reconciliation across different industries Investigate (online and offline) complements to blockchain technology that may help to solve the last mile problem Recommend feasible solutions to the last mile problem.	30 Hours	CO2
3	Bootstrapping Network Effects Through Blockchain Technology and Cryptoeconomics: Deduce how the nature of intermediation may change as a result of blockchain technology Articulate the economic consequences of a reduction in the cost of networking. Analyze the risks associated with smart contracts Discern the role of tokens in incentivizing the growth, operations, and security of a platform. Investigate the conditions under which relational contracts can be automated. Recommend a reward system for an incumbent adding a token to its ecosystem. Assess the ability of case examples to capitalize on the reduction in the cost of networking Using Tokens to Design New Types of Digital Platforms-Investigate the value that tokens may bring to a business's ecosystem. Analyze examples of tokens and decide which industry verticals are most promising. Distinguish the role of tokens in funding blockchain innovations and platforms. Evaluate various tokens, ranking them in terms of capital raised and trading performance. Deduce how challenges around securities regulation can affect the successful tokenization of an ecosystem.	30 Hours	CO3

- 1. IBM Courseware Kai Hwang, Min Chen, Big-Data Analytics for Cloud, IoT and Cognitive Computing, Wiley Hwaiyu Geng, Internet of Things and Data
- 2. Implementing Blockchain solutions using Hyperledger

- **1.** https://onlinecourses.nptel.ac.in/noc22_cs44/preview
- **2.** https://www.digimat.in/nptel/courses/video/106104220/L01.html

	Course Articulation Matrix													
PO- PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2		2	2							1		3	2
CO2	2	2	2		3						2	1	3	1
CO3	2	2		2	2							1	2	2
CO4	2	3	2	2							2		2	2

Program	B. Tech CSE (AIBC)											
Year	IV	Sem	ester	VIII								
Course	Disaster Management	Disaster Management										
Name												
Code	OE33101											
Course	OE	L	T	P	Credit							
Type	OL	L	1	1	Credit							
Pre-	Environmental Studies, Chemistry	4	0	0	4							
Requisite	Environmental Studies, Chemistry	7	U	U	7							
	1. Study about basic concept of environmental chemistry.											
Course	2. Learn about the various parameters	of wate	r and was	stewater.								
Objectives	3. How to examine microbial contam	ination o	f water.									
	4. Study about the different – phases	of micro	bial grow	/th.								
Course Outco	omes											
CO1	Introduction to the basic principles of	environ	mental cl	nemistry.								
CO2	Detailed knowledge of different param	meter of	water and	d wastewa	ter.							
CO3	To know the thermodynamics microb	oial syste	m.									
CO4	Know the aerobic and anaerobic proc	ess invol	ved in th	e water an	d Wastewater.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction Concept of Environmental Hazards, Environmental stress & Environmental Disasters. Types of Environmental hazards & Disasters: Natural hazards and Disasters, Volcanic Hazards/ Disasters, - Causes and distribution of Volcanoes, - Hazardous effects of volcanic eruptions, - Environmental impacts of volcanic eruptions, Earthquake Hazards/ disasters, - Causes of Earthquakes, - Distribution of earthquakes, - Flood control measures (Human adjustment, perception & mitigation), Droughts: - Impacts of droughts, - Drought hazards in India, - Drought control measures.	30 Hours	CO1
2	Mechanics & forms of Soil Erosion Factors & causes of Soil Erosion, Conservation measures of Soil Erosion, Chemical hazards/ disasters Release of toxic chemicals, nuclear explosion, Sedimentation processes, - Global Sedimentation problems, Regional Sedimentation problems, Sedimentation & Environmental problems, Corrective measures of 23 Erosion & Sedimentation, Biological hazards / disasters, Population Explosion	30 Hours	CO2
3	Stages Pre- disaster stage (preparedness)- Preparing hazard zonation maps, Predictability/ forecasting & warning, Preparing disaster preparedness plan, Land use zoning, Pre-disaster stage (mitigation) Disaster resistant house construction, Population reduction in vulnerable areas, Awareness . Emergency Stage:-Rescue training for search & operation at national & regional level, Immediate relief, and Assessment surveys. Post Disaster stage, Rehabilitation-Political Administrative Aspect	30 Hours	CO3

4	Relief Measures Provision of Immediate relief measures to disaster affected people, Prediction of Hazards & Disasters, Measures of adjustment to natural hazards Mitigation discuss the work of following Institution, Meteorological observatory, Seismological observatory, Hydrology Laboratory, Industrial Safety inspectorate, Institution of urban & regional planners, Chambers of Architects, Engineering Council, National Standards Committee, Integrated Planning Contingency management Preparedness Education on disasters, Community involvement, The adjustment of Human Population to Natural hazards & disasters	30 Hours	CO4
---	---	-------------	-----

- 1. Singh. Savinder, "Environmental Geography", Prayag Pustak Bhawan.
- 2. Sharma V.K., "(Ed) Disaster Management", IIPA Publication New Delhi.

- 1. https://nptel.ac.in/courses/124107010
- 2. https://www.youtube.com/watch?v=Eh8dAmiJ-fo

					C	ourse	Articu	lation	Matrix	K				
PO- PSO	PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO 1	PSO2
PSO														
CO1	3	2		2		2	2					2		
CO ₂	3	2		2		2	2					2		
CO3	3	2		2		2	2					2		·
CO4	3	2		2		2	2					2		

Program	B. Tech CSE (AIBC)							
Year	IV	Sem	ester	VII				
Course Name	NON-CONVENTIONAL ENERG	Y RESC	OURCES					
Code	OE43302							
Course Type	OE	L	T	P	Credit			
Pre-Requisite	Knowledge of Engineering	3	1	0	4			
Course Objectives	 To develop a strong foundation in the field of Non-Conventional energy resources. The subject gives the knowledge about different forms of Non-Conventional energy. 							
Course Outcom	es							
CO1	To understand about Non-Conventi	onal ene	ergy resou	irces.				
CO2	Evaluate solar energy, make use involved in gathering solar energy							
СО3	Study the components, kinds, ar conversion system to gain an under	-						
CO4	To understand about examples of o ways to use it.	cean ene	ergy and o	describe th	ne practical			

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction: Indian and global energy sources, Energy exploited, Energy planning, Introduction to various sources of energy, Solar thermal, Photovoltaic, Water power, wind energy, Biomass, Ocean thermal, Tidal and wave energy, Geothermal energy. Solar radiations: Extra-terrestrial radiation, Spectral distribution, Solar constant, Solar radiations on earth, Measurement of solar radiations, Solar radiation geometry, flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, Zenith angle, solar altitude angle expression for angle between incident beam and the normal to a plane surface (no derivation), Local apparent time, Apparent motion of sun, Day length.	30 Hours	CO1

2	Solar energy: Solar thermal power and its conversion, Solar collectors, Flat plat, Concentric collectors, Cylindrical collectors, Thermal analysis of solar collectors. Solar energy storage, Different systems, solar pond. Applications, Water heating, Space heating & cooling, Solar distillation, solar pumping, solar cooking, Greenhouses, Solar power plants. Biogas: Photosynthesis, Bio gas production Aerobic and anaerobic bio-conversion process, Raw materials, Properties of bio gas, Transportation of bio gas, bio gas plant technology & status, Community biogas plants, Problems involved in bio gas production, Bio gas applications, Biomass conversion techniques, Energy plantation, Fuel properties.	30 Hours	CO2
3	Wind energy:: Properties of wind, Availability of wind energy in India, wind Velocity, win machine fundamentals, Types of wind machines and their characteristics, Horizontal and Vertical axis wind mills, Elementary design principles, Coefficient of performance of a wind mill rotor, Aerodynamic considerations in wind mill design, Selection of a wind mill, Economic issues, Recent development. Electrochemical effects and fuel cells: Revisable cells, Ideal fuel cells, other types of fuel cells, Efficiency of cells, Thermions systems. Tidal power: Tides and waves as sources of energy, Fundamentals of tidal power, Use of tidal energy Limitations of tidal energy conversion systems Hydrogen Energy: Properties of hydrogen in respect of its use as source of renewable energy, Sources of hydrogen, Production of hydrogen, Storage and transportation, Problems with hydrogen as fuel.	30 Hours	CO3
4	Thermoelectric systems: Kelvin relations, power generation, Properties of thermoelectric materials, Fusion Plasma generators. Geothermal energy: Hot springs, Steam ejection, Principal of working, types of geothermal station with schematic representation, Site selection for geothermal power plants. Advanced concepts Problems associated with geothermal conversion. Ocean energy: Principal of ocean thermal energy conversion, Power plants based on ocean energy, problems associated with ocean thermal energy conversion systems.	30 Hours	CO4

- 1. 'Renewable energy sources and conversion technology' by Bansal Keemann, Meliss," Tata McGraw Hill.
- 2. 'Non-Conventional energy Sources' by Rai G.D, Khanna Publishers.
- 3. 'Non-conventional Energy' by Ashok V. Desai, New Age International Publishers Ltd.

1. NPTEL (SWAYAM) https://archive.nptel.ac.in/courses/121/106/121106014/

2. IEEE Papers

A. Ashwin Kumar, "A study on renewable energy resources in India," *2010 International Conference on Environmental Engineering and Applications*, Singapore, 2010, pp. 49-53, doi: 10.1109/ICEEA.2010.5596088.

					C	ourse A	Articul	lation 1	Matrix					
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	2	3							2	2
CO2	3	3	2	3	3	3							1	2
CO3	2	2	3	2	3	2							2	1
CO4	3	2	3	2	3	2							2	1

Program	B. Tech CSE (AIBC)	B. Tech CSE (AIBC)								
Year	IV	Sem	ester	VIII						
Course Name	Quality Management									
Code	OE43501									
Course Type	OE	L	T	P	Credit					
Pre-Requisite	Intermediate School Education	3	1	0	4					
Course Objectives	 To have knowledge of Quality concept & Quality Management. To be aware about the importance Quality Management. To have knowledge about Control charts. To have knowledge of ISO 9000 series. 									
Course Outcom	es									
CO1	Know the importance of Quality M	lanageme	ent Tools	and their	applications.					
CO2	Increase the productivity and effici- Quality Management Tools.	ency of c	organizati	on with tl	ne help of					
CO3	Can develop new types Quality Ma	nagemen	t Technic	ques.						
CO4	Apply Taguchi method & JIT method	od for vari	ious appli	cations.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Quality Concepts: Evolution of Quality control, Concept change, TQM Modern concept, Quality concept in design, Review off design, Evolution of prototype. Control on Purchased Product: Procurement of various products, Evaluation of supplies, Capacity verification, Development of sources, Procurement procedure. Manufacturing Quality: Methods and Techniques for manufacture, Inspection and control of product, Quality in sales and services, Guarantee, analysis of claims.	30 Hours	CO1
2	Quality Management: Organization structure and design, Quality function, Decentralization, Designing and fitting organization for different types products, Economics of quality value and contribution, Quality cost, Optimizing quality cost. Human Factor in Quality: Attitude of top management, Co-operation, of groups, Operators attitude, responsibility, Causes of operator's error and corrective methods.	30 Hours	CO2
3	Control Charts: Theory of control charts, Measurement range, Construction and analysis of R charts, Process capability study, Use of control charts. Attributes of Control Charts: Defects, Construction and analysis off-chart, Improvement by control chart, Variable sample size, Construction and analysis of C-chart.	30 Hours	CO3

4	Defects Diagnosis and Prevention: Defect study, Identification and analysis of defects, Corrective measure, Factors affecting reliability, MTTF, Calculation of reliability, Building reliability in the product, Evaluation of reliability, Interpretation of test results, Reliability control, Maintainability, Zero defects, quality circle. ISO-9000 and tsconceptof Quality Management: ISO-9000 series. Tagushi method, ITT in some details.	30 Hours	CO4
	ISO9000series, Taguchi method, JIT in some details		

- 1. Concurrent Engineering Kusiak John Wiley.
- 2. Concurrent Engineering Menon Chapman & hall.
- 3. Quality Control & Reliability Analysis Bijendra Singh, Khanna Publications

- **1.** https://archive.nptel.ac.in/courses/110/104/110104080/
- 2. https://nptel.ac.in/courses/110104085

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1		2	2				1		2	2			
CO2	2	2	1	3	2				2	1	2	2			
CO3	2	3	1	1	3						1	2			
CO4	3	3	3	3	3				1		1	2			

Program	B. Tech CSE(AIBC)										
Year	IV	Sem	ester		VIII						
Course Name	Concepts of Climate Smart Agric	ulture									
Code	OE43102										
Course Type	OE	DE L T P Credit									
Pre-Requisite	Environmental Studies, Disaster Management 3 1 0 4										
Course Objectives	 To give knowledge about me smart agriculture. To give knowledge about soi properties. To know about climate change To know about climate challer 	l format	ion and	its physic	cochemical						
Course Outcom	es										
CO1	To know about meteorology, at agriculture.	mospher	e, and c	climate si	mart						
CO2	To understand soil formation and it	ts physic	ochemica	al properti	es.						
CO3	To know climate change and its po	ssible in	npacts.								
CO4	To know challenges due to climate	change	and wate	r manager	nent.						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Climate relations Meteorology and atmosphere, structure and composition of atmosphere, atmospheric inputs (acid rain, dust), water-soil-plant relations, pollution in the environment and its effects on human, plant and soil, climate smart agriculture and greenhouse gases.	30 Hours	CO1
2	Soil formation and its physicochemical properties Soil forming rocks and minerals, their classification and composition, important soil physical properties; and their importance; soil particle distribution; soil organic matter – its composition and decomposition, effect on soil fertility; soil reaction – acid, saline and sodic soils. Soil nutrients, Influence of physicochemical properties of soil on plant health. Effects of macro and micro nutrients on plant growth.	30 Hours	CO2
3	Climate change and its possible impacts Historical examples of crop failure, reasons, and its social consequences, need and strategy of development of climate smart crop, successful examples of climate smart crops, effects of climate on crops, crop growth and development in relation to environmental stress -water and temperature stress, nutrient stress and resistance mechanism.	30 Hours	CO3
4	Challenges due to climate change and water management Challenges arising out of climate change and case studies (e.g., cultivating Durum wheat in Ethiopia and its mitigation). Advances of crop water management for climate smart crop production, examples of case studies. Rain water harvesting, organic farming, and use of high-quality varieties of crops.	30 Hours	CO4

- **1.** Manohar, K.R. and Iga Thinathane. C. Green House Technology and Management, B.S.Publications, Hyderabad.
- **2.** Benkeblia Noureddine (Ed) (2020) Climate Change and Crop Production: Foundations for Agroecosystem Resilience; CRC Press
- **3.** Hebbar, KB, Naresh Kumar, S. and Chowdappa, P. (2017). Impact of Climate Change on Plantation Crops (Eds). P 260. Astrel International –Daya Publishing House, New Delhi, India, ISBN: 9789351248330.
- **4.** Brady, N. E., The Nature and Properties of Soils, MacMillan Publishing Co., INC., 1984.
- **5.** Bohn, H. L., McNeal, B. L., O'Connor, G. A., Soil Chemistry, John Wiley and Sons, New York, 1979.
- 6. M.M. Rai, Principles of Soil Science, 4th ed., Macmillan India Limited, Delhi, 2002.
- **7.** Henry D. Foth and Boyd G. Ellis, Soil Fertility, 2nd edition, Lewis Publishers, New York, 1997.

- 1. L. Molley, The Chemical Nature of Soils. In: Soils, Ontario Forestry Association, 2011, Available: http://www.ontarioenvirothon.on.ca/files/soil/soil_Chapter4.pdf
- **2.** U.M. Sainju, R. Dris and B. Singh, Mineral Nutrition of Tomato, 2003, Available: www.aseanfood.info/Articles/11019991.pdf.
- **3.** www.worldagroforestry.org/publication/making-climate-smart-agriculture-work-poor

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2		2	2					2		
CO2	3	2	2	2		2	2					2		
CO3	3	2	2	2		2	2					2		
CO4	3	2	2	2		2	2					2		

Program	B. Tech CSE(AIBC)							
Year	Ш	Sem	ester	VI				
Course Name	Computer Vision							
Code	NPEC44134							
Course Type	PCC	L	T	P	Credit			
Pre-Requisite	Machine Learning, Computer Graphics 3 0 0 3							
Course Objectives	 Acquire knowledge Image Processing Appling Filtering and edge detection Appling deep leering for recognition and feature detection on image and videos 							
Course Outcom	es							
CO1	Understanding basics of Image Pro	cessing a	and Photo	metric				
CO2	Understanding Image Filtering and	edge det	tection.					
CO3	Understanding application of deep learning in image processing and recognition							
CO4	Understanding feature detection an	d motion	l .					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to image processing, Image formation: Geometric primitives and transformations, Photometric image formation, digital camera, Image processing: Point operators, More neighborhood operators, Fourier transforms, Pyramids and wavelets, Geometric transformations, Model fitting and optimization, Variational methods and regularization, Markov random fields	30 Hours	CO1
2	Linear Filtering: Filter Kernels, Linear Filter Experiments, Linear Convolution Filtering, Selecting a Region-of-Interest, Adding Noise to Image, Mean Filtering, Median Filtering, Rank Order Filtering, Normal Distribution Filtering, Edges, Lines, Corners, Gaussian Kernel and Voronoï Meshes, Linear Function, Edge Detection, Double Precision Laplacian Filter, Enhancing Digital Image Edges, Gaussian Kernel, Gaussian Filter, Image Gradient Approach to Isolating Image Edges	30 Hours	CO2
3	Deep Learning: Supervised learning, Unsupervised learning, Deep neural networks, Convolutional neural networks, More complex models Recognition: Instance recognition, Image classification, Object detection, Semantic segmentation, Pose estimation, Video understanding, Vision and language Feature detection and matching: Edges and contours, Contour tracking, Lines and vanishing points, Segmentation Motion estimation: Translational alignment, Parametric motion, Optical flow, Layered motion Computational photography, High dynamic range imaging, Super-resolution, denoising, and blur removal, Image matting and compositing, Video matting, Texture analysis and synthesis	30 Hours	CO3, CO4

- **1.** Richard Szeliski, "Computer Vision: Algorithms and Applications", 2nd Edition, September 30, 2022 Springer
- **2.** James F James F. Peters, "Foundations of Computer Vision, Computational Geometry, Visual Image, Structures and Object Shape Detection", 124, Springer
- **3.** E. R. Davies, "Computer and Machine Vision: Theory, Algorithms, Practicalities", Fourth Edition, 2012, Elsevier
- **4.** Ramesh Jain, Rangachar Kasturi, Brian G. Schunck,"MACHINE VISION", McGraw-Hill, Inc., ISBN 0-07-032018-7, 1995

Online Resources

1. https://onlinecourses.nptel.ac.in/noc21_ee23/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	3	3	3	3	2							2	3	3
CO2	3	3	3	3	3							2	2	3
CO3	3	3	3	3	3							2	3	3
CO4	3	3	3	3	2							2	3	3

Program	B. Tech CSE(AIBC)									
Year	IV	Sem	ester	VIII						
Course Name	Natural Language Processing									
Code	NPEC44144	NPEC44144								
Course Type	PEC	L	T	P	Credit					
Pre-Requisite	Python, Image Processing	3	0	0	3					
	1. To tag a given text with basic La	nguage f	eatures							
Course	2. To design an innovative applicat	ion using	NLP co	mponents						
Objectives	3. To learn the fundamentals of nat	ural lang	uage pro	cessing						
	4. To understand the use of CFG at	nd PCFG	in NLP							
Course Outcom	es									
CO1	Understating leading trends and sys	stems in r	natural la	nguage pi	rocessing.					
CO2	Understating parsing of language									
CO3	,	Understating the syntactic, semantic and pragmatic processing of language and familiarize with applications of NLP								
CO4	Understand approaches to discourse summarization within NLP.	e, genera	tion, dial	ogue and						

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to NLP: Need of NLP, History of NLP, Advantages and Disadvantages of NLP, Applications of NLP. How does NLP work, components of NLP, Phases of NLP, NLP vs. Machine learning? NLP examples, Future of NLP.	30 Hours	CO1
2	Lexical analysis: Unsmoothed N grams, evaluating N grams, Morphology and Finite state Transducers, Interpolation and Back off word classes, Part of Speech Tagging–Markov Models, Hidden Markov Models. Transformation based Models – Maximum Entropy Models.	30 Hours	CO2
3	Syntax Parsing: Concept of Parser, Types of Parsing, Concept of Derivation, Types of Derivation, Concept of Grammar, CFG, Definition of CFG. Grammar rules for English Treebank's, Normal forms for grammar—Dependency Grammar, Syntactic Parsing, Ambiguity, Dynamic Programming Parsing- Shallow Parsing.	30 Hours	CO3
4	Semantic Analysis and Disclosure Pragmatic:-Elements of Semantics Analysis, Difference between Polysemy and Homonymy. Meaning Representatives, Need of Meaning Representative, and Disclosure Pragmatic- Concept of Coherence, Disclosure structure, Text coherence, and Building Hierarchical Disclosure structure. Reference Resolution, Terminology used in Reference Resolution.	30 Hours	CO4

- **1.** Daniel Jurafsky, James H. Martin: "Speech and Language Processing", 2/E, Prentice Hall, 2008.
- **2.** James Allen, "Natural Language Understanding", 2/E, Addison-Wesley, 199Christopher D. Manning, Hinrich Schutze: "Foundations of Statistical Natural Language Processing", MIT Press,1999

- 3. Steven Bird, Natural Language Processing with Python, 1st Edition, O'Reilly, 2009.
- **4.** Jacob Perkins, Python Text Processing with NLTK 2.0 Cookbook, Packt Publishing,2010

- 1. https://onlinecourses.nptel.ac.in/noc19_cs56/preview
- 2. https://onlinecourses.nptel.ac.in/noc20_cs87/preview

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1									1	2
CO2	1	2	2	3									2	2
CO3	2	1	1	2									1	1
CO4	2	1	1	1									2	1

Program	B.Tech CSE (AIBC)							
Year	IV	Semester VII						
Course Name	AI Ethics and Law							
Code	OE43211							
Course Type	OE	L	Т	P	Credit			
Pre-Requisite	AI Ethics and Law	4	0	0	4			
Course Objectives	 This course aims to equip students with the ability to analyse and apply ethical, legal, and regulatory principles to AI systems. Ensuring their development and deployment are responsible, fair, transparent, and socially beneficial, while addressing potential risks and societal impacts. 							

Course (Outcomes
CO1	Understanding and applying ethical principles is essential for guiding the responsible development and use of AI systems.
CO2	Analyzing and applying legal and regulatory frameworks ensures AI technologies comply with national and international standards
CO3	Designing and implementing AI systems ethically requires integrating fairness, transparency, and accountability into every stage of development
CO4	Evaluating AI's societal impact involves assessing its effects on privacy, employment, inequality, and human rights.

Module	Course Contents	Contact hrs.	Mapped CO
1	Module 1: Introduction to Ethics and AI: Definition and importance of ethics in AI development, Overview of ethical theories: Virtue ethics, Deontology, Consequentialism, Moral dilemmas in AI: Bias, fairness, accountability. Ethical considerations in AI applications.	30 Hours	CO1

2	Module 2: AI and Society Impact of AI on employment and human behaviour, AI's role in surveillance and privacy concerns, Social implications of AI technologies. Legal Frameworks for AI	30 Hours	CO2
	Overview of global AI regulations (e.g., GDPR, AI Act), Intellectual Property rights in AI creations, Liability and accountability in AI systems.		
3	Module 3: Ethical AI Design and Governance Principles of ethical AI design, Transparency and explain ability in AI systems, Establishing AI governance frameworks, Case Studies in AI Ethics and Law-Analysis of real-world AI ethics cases (e.g., facial recognition, autonomous vehicles), Legal precedents in AI-related incidents.	30	CO3
4	Future Trends and Emerging Issues Artificial General Intelligence (AGI) and ethical considerations, AI in warfare and autonomous weapons, Ethical implications of AI in decision-making.	30 Hours	CO4

- 1. Cheng Xu, "AI Ethics and Legal Frameworks: A Comprehensive Textbook for STEM Students".
- 2. Abhivardhan, "Artificial Intelligence Ethics and International Law (2nd Edition)".
- **3.** Reid Blackman, "Ethical Machines: Your Concise Guide to Totally Unbiased, Transparent, and Respectful AI".

Online Resources

1. https://onlinecourses.nptel.ac.in/noc25_lw12/preview

					Cou	rse Aı	ticula	tion M	atrix					
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2				2	1	1	2	2	2
CO2	2	3	3	2	3	1		1	2	1	1	2	3	2
CO3	2	2	3	2	2				2	1		2	3	2
CO4	2	2	2	3	3	2	1		2	1	2	3	3	3

Program	B.Tech CSE (AIBC)								
Year	IV	Semester VII							
Course Name	AI in Cyber Security								
Code	OE43221				Į.				
Course Type	OE	L	Т	P	Credit				
Pre-Requisite		3	1	0	4				
Course Objectives	 The purpose of this course is artificial intelligence (AI) and he It focuses on using AI methods including machine learning, diprocessing. Using cutting-edge tools and monitor network traffic, create off hostile attacks. To educate students for the chadefense, the course places a str world case studies, and practical 	to identifice learns datasets, sintelligent	e used in cylory and addresing, and natudents will security systems in a sais on ethic	ber security ess cyberthe atural lang l learn ho stems, and AI-driven o	reats, guage w to fight				

Course C	Outcomes
CO1	Explain the fundamental concepts of Artificial Intelligence and Cyber Security, and discuss their intersection and applications in threat detection.
CO2	Apply supervised, unsupervised, and reinforcement learning algorithms to identify and classify cyber threats such as malware and intrusions
CO3	Analyze network traffic and security logs using AI techniques to detect anomalies, malware, and advanced persistent threats.
CO4	Evaluate the effectiveness of AI-driven tools in threat intelligence, and design NLP-based approaches for extracting insights from cyber threat data

Module	Course Contents	Contact hrs.	Mapped CO
1	Module 1: Foundations of AI and Cyber Security Introduction to Artificial Intelligence, Definitions and history of AI, Intelligent agents and problem-solving, Cyber Security Fundamentals, Security objectives: Confidentiality, Integrity, Availability (CIA), Threats, vulnerabilities, and risk assessment, Basic cryptographic techniques, Interplay between AI and Cyber Security, Use of AI in threat detection and response, Overview of traditional vs. AI-driven security mechanisms.	30 Hours	CO1
2	Module 2: Machine Learning Techniques for Security Supervised Learning in Security, Classification for intrusion detection(e.g., anomaly vs. misuse detection), Case studies using decision trees, SVMs, and neural networks, Unsupervised Learning and Clustering, Anomaly detection through clustering (e.g., K-means, DBSCAN), Feature selection and dimensionality reduction for security data, Reinforcement Learning for Adaptive Security, Application to firewall and honeypot adaptation, Case studies on RL-based response systems.	30 Hours	CO2
3	Module 3: AI for Threat Intelligence and Network Security Network Traffic Analysis, Using AI to detect malicious patterns and behaviors, Detection of DoS/DDoS, phishing, and botnets, AI in Malware Detection, Static and dynamic analysis using deep learning, Signature vs. behavior-based detection, Natural Language Processing (NLP) for Threat Hunting, Analyzing threat reports, emails, and dark web chatter, Entity recognition and sentiment analysis in cyber threat intelligence	30 Hours	CO3
4	In Module 4: Advanced Topics and Case Studies AI for Cyber Forensics and Incident Response, Log analysis and automated root-cause analysis, AI-driven timeline reconstruction and attribution, Adversarial Machine Learning, Evasion, poisoning, and model inversion attacks, Defenses against adversarial AI in security contexts, Ethics, Privacy, and Legal Considerations, Bias, fairness, and transparency in AI models, Group projects simulating cyber-attack detection using AI models	30 Hours	CO4

- "Artificial Intelligence: A Modern Approach" by Stuart Russell & Peter Norvig.
 "Introduction to Cyber Security" by Dhillon, Gurpreet.
 "AI in Cybersecurity" by Leslie F. Sikos.

- 1. https://onlinecourses.nptel.ac.in/noc23_cs127/preview
- 2. https://onlinecourses.nptel.ac.in/noc25_cs116/preview

	Course Articulation Matrix													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			2			2	2	1	1	2	2	2
CO2	3	3	2		3			2	2	1	1	2	3	2
CO3	2	3	1	3	3			2	2	1		2	3	2
CO4	2	2	3	2	3			2	2	1	2	3	3	3

Program	B.Tech CSE (AIBC)						
Year	III	Semester VI					
Course Name	Fintech and Blockchain						
Code	NPEC44114						
Course Type	PEC	L	Т	P	Credit		
Pre- Requisite	Basic knowledge of Computer Science and Finance (optional)	3	0	0	3		
Course Objectives	 To introduce students to the emerging field of financial technologies (Fintech). To provide foundational knowledge of blockchain and its applications. To explore real-world use cases in banking, insurance, payments, and investment. To develop hands-on skills through tools, platforms, and mini-projects 						

Course	Course Outcomes							
CO1	Understand the components and services in the Fintech ecosystem. Gain awareness of regulatory frameworks and recent trends in India.							
CO2	Gain foundational knowledge of how blockchain works. Learn basic programming with smart contracts using Solidity.							
CO3	Understand how blockchain is transforming financial services. Analyze key applications and ongoing initiatives in India (e.g., RBI's CBDC pilot).							
CO4	Recognize and critically assess challenges in adoption. Apply learning to a practical project simulating real-world fintech/blockchain solutions.							

Module	Course Contents	Contact Hrs.	Mapped CO
1	Introduction to Fintech: Evolution of Fintech: Traditional Finance vs Fintech Fintech Ecosystem: Stakeholders, Startups, and Regulators Digital Banking: Neo-banks, Core Banking Systems Payments: UPI, Mobile Wallets, QR Codes, RTGS, IMPS Fintech Regulations in India: RBI, SEBI Guidelines	30 Hours	CO1

2	Fundamentals of Blockchain Blockchain Basics: Blocks, Hashes, Nodes, Consensus Types of Blockchains: Public, Private, Consortium Distributed Ledger Technologies (DLT) Cryptographic Foundations: SHA-256, Merkle Trees, Digital Signatures	30 Hours	CO2
	Smart Contracts: Introduction using Ethereum Blockchain Platforms: Bitcoin, Ethereum, Hyperledger		
3	Blockchain in Fintech Applications Blockchain in Payments: Crypto Payments, Cross-border Transactions DeFi (Decentralized Finance): Lending, Borrowing, Yield Farming, Tokenization of Assets (NFTs, Digital Gold, Real Estate) Blockchain in Insurance: Claims, Underwriting, Fraud Prevention Central Bank Digital Currency (CBDC): e-Rupee and Global Trends Emerging Trends, Challenges, and Capstone Project Regulatory Challenges and Ethical Concerns Cybersecurity in Fintech and Blockchain Artificial Intelligence in Fintech (Robo-Advisors, Fraud Detection) Capstone Project: Build a basic DApp or Fintech use case prototype Industry Tools: MetaMask, Remix IDE, Polygon, Firebase	30 Hours	CO3

- 1. Blockchain Basics by Daniel Drescher
- **2.** Fintech: The New DNA of Financial Services by Pranay Gupta & T. Mandy Tham
- **3.** RBI and SEBI official circulars on Fintech regulations
- **4.** Ethereum and Hyperledger documentation

Online Resources

1. https://nptel.ac.in/courses/106105235

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	2				1	1	1	1		
CO2	2	2	1	2	2	1		1		1	1	2		
CO3	3	2	2	2	2				1	1	1	1		
CO4	2	2	2	2	3		1			1	2	3		

Program	B. Tech CSE (AIBC)							
Year	IV	Ser	mester	VII				
Course Name	Generative AI							
Code	NPEC44122							
Course Type	PEC	L T		P	Credit			
Pre- Requisite	Understanding of AI/ML concepts.	3 0		0	3			
Course Objectives	 To explain the theoretical concepts to probabilistic modeling, unsupervised used in generative tasks. To develop and train generative models like GPT, BERT, and diffusts. To implement generative AI techniques synthesis, text generation, audio generative appropriate metrics. To discuss ethical concerns, societal to generative technologies, including 	d learning, and dels such as Gion models. Ques in various peration, and denance and limit	ANs, VAEs, s domains included augment itations of ge	ork archited and autoregeluding imagation. The architecture architecture model architecture architecture model. All principles	ge dels			

Course Outcomes						
CO1	Understand the basic concept of AI, ML and Neural networks and generative models.					
CO2	Analyze generative AI models like GANs, VAEs, and Diffusion Models.					
CO3	Explore practical applications of Generative AI in vision, language, audio and music Generation.					
CO4	Identify and Evaluate ethical implications and future trends of Generative AI.					

Module	Course Contents	Contact Hrs.	Mapped CO
1	Foundation of Generative AI: Introduction to Artificial Intelligence and Machine Learning, Introduction to advanced Neural Network architectures, Deep Learning Fundamentals: Neural Networks, Backpropagation, Gradient Descent, Generative vs. Discriminative Models, Concepts in Generative AI: Latent Space, Sampling, noise	30 Hours	CO1

2	Core Generative Models and Generative Adversarial Networks (GANs): Architecture of GANs, Training Process, Challenges, and Variants (DCGAN, StyleGAN), Applications of GANs Variational Autoencoders (VAEs): Encoding and Decoding Process, Latent Space, Representation, Applications of VAEs Diffusion Models: Forward and Reverse Diffusion Processes, Noise Scheduling, Applications of Diffusion Models	30 Hours	CO2
3	Applications of Generative AI, Image Generation and Manipulation: Creating photorealistic images, artistic styles, and novel concepts, Image-to-image translation, in painting, and super-resolution Natural Language Processing: Text generation, translation, summarization, and dialogue systems, Large Language Models (LLMs) and their applications Music and Audio Generation: Composing music, creating sound effects, and generating speech, overview of MuseGAN architecture, Multi-track music generation using MuseGAN, MuseGAN on polyphonic music datasets, Generating complex music compositions with MuseGAN	30 Hours	CO3

- 1. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
- **2.** GANs in Action: Deep learning with Generative Adversarial Networks *By Jakub Langr and Vladimir Bok*

Online Resources

1. https://onlinecourses.nptel.ac.in/noc25_cs137/preview

	Course Articulation Matrix														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2	3	1			2	1	1	2	2	2	
CO2	3	3	3	3	3	1			2	1	1	2	3	2	
CO3	2	3	3	3	3	2			2	1		2	3	2	
CO4	2	2	1	2	2	3			2	1	2	3	3	3	

Program	B.Tech CSE(AIBC)									
Year	IV	Ser	mester	VII						
Course Name	Robotics									
Code	NPEC44132									
Course Type	PEC	L	Т	P	Credit					
Pre-Requisite	Basic knowledge of mathematics, control systems, and programming	3	0	0	3					
Course Objectives	 This course aims to introduce the dits lifecycle and real-world applicate. It focuses on using Python for day engineering, and visualization. Students will also learn to build an modern tools. 	ions. ata handling,	statistical ar	nalysis, fea	ıture					

Course Outcomes									
CO1	To grasp fundamentals of robotics: kinematics, sensors, actuators, control, embedded systems.								
CO2	To design intelligent controls using fuzzy, rule-based, genetic algorithms for robotics.								
СОЗ	To apply neural networks for robotic decision-making and pattern recognition tasks.								
CO4	To develop robotic control using adaptive, optimal, robust, and reinforcement techniques.								

Module	Course Contents	Contact Hours	Mapped CO
1	Robotic Systems:-Overview and Preliminaries- Biological Paradigms and Biomimetic Robots- Manipulator Architectures and Kinematics (DH Parameters, Forward Kinematics, Jacobian, Singularity)- Sensors and Actuators (Encoders, IMUs, Motors, LIDAR, Ultrasonic)- Low-Level Robot Control (Open-loop vs Closed-loop, PWM, PID Basics)- Mobile Robots (Differential Drive, Omnidirectional)- Controller Hardware/Software (Microcontrollers, SBCs, RTOS)- Sensor Integration (ADC, Filtering, Kalman Filter)	30 Hours	CO1
2	Intelligent Systems and Control:- Rule-Based Expert Systems (Structure, Inference Chaining, Conflict Resolution)- Fuzzy Expert Systems (Fuzzy Sets, Linguistic Variables, Inference & Defuzzification)- Applications of Fuzzy Logic (Obstacle Avoidance, Path Planning)- Genetic Algorithms (Simulation of Evolution, Genetic Operators, Fitness Function)- Applications in Robotics (Trajectory Optimization, Gait Generation)- Simulation and Control using Simulink- PID Controller Design and Tuning- Fuzzy Controller Implementation- Stability and Performance Evaluation (Bode, Root-Locus)	30 Hours	CO2
3	Neural Networks:- Learning Processes and Biological Inspiration- Single Layer Perceptron (Structure, Limitations)-Multilayer Perceptron (Architecture, Backpropagation, Activation Functions)- Regularization and Overfitting- Radial Basis Function Networks (Gaussian Basis, Center Selection, Applications)- Self-Organizing Maps (Competitive Learning, Unsupervised Mapping)- Learning Vector Quantization Networks (Prototype-based Classification)	30 Hours	CO3
4	Goal-Oriented Control:- Optimal Control (LQR Design, Cost Functions, Pontryagin's Principle)- Robust Control (Uncertainty Models, H∞ Control, Loop Shaping)- Adaptive Control (Model Reference Adaptive Control, Lyapunov Stability, Gain Scheduling)- Neural Control (Neuro-Adaptive Controllers, Reinforcement Learning - Q-Learning, DQN)-Task Planning (RRT, PRM, A*, D* Lite)- Multi-Agent Systems (Coordination, Consensus, Decentralized SLAM)-ROS Communication (Publish/Subscribe, Services, Actions)	30 Hours	CO4

- **1.** Robotics: Modelling, Planning and Control By Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo
- **2.** Introduction to Autonomous Robots: Mechanisms, Sensors, Actuators, and Algorithms *By Nikolaus Correll, Bradley Hayes, and David Coleman*

1. https://onlinecourses.nptel.ac.in/noc25_ee89/preview

	Course Articulation Matrix													
PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS										PSO2				
CO1	3	2	1											
CO2	2	3	2	2	2									
CO3	2	2	2	3	3									
CO4	1	2	3	2	3									

Program	B. Tech CSE(AIBC)								
Year	IV	Semester VIII							
Course Name	AI For Blockchain								
Code	NPEC44143								
Course Type	PEC	L T P Credit							
Pre-Requisite	Basic knowledge of AI, ML, and Python programming								
Course Objectives	 To understand the fundamentals To explore the synergies betwee To develop insights into implem systems. To analyze the role of Blockchains. To identify emerging application integration. 	n AI and Blockenting AI tection in ensuring	ckchain techi hniques with trustworthy	nologies. in Blocko AI systen	chain ns.				

Course Outcom	nes
CO1	Understand the basic structure and types of blockchain systems and AI concepts.
CO2	Analyze blockchain architecture and implement smart contracts using Solidity.
CO3	Apply AI techniques for enhancing blockchain security and performance.
CO4	Integrate AI models with blockchain platforms like Hyper ledger Fabric.

Module	Course Contents	Contact Hours	Mapped CO
1	Introduction to Blockchain and AI Integration:-Overview of Blockchain Technology: History, structure, and types (public, private, and consortium). Introduction to AI: Concepts of AI, machine learning, deep learning.ntegration of AI and Blockchain: Benefits and synergies. Use Cases: Decentralized AI models, AI-driven consensus mechanisms.	30 Hours	CO1
2	Blockchain Fundamentals:-Blockchain Architecture: Blocks, chains, consensus mechanisms (PoW, PoS, BFT). Cryptographic Primitives: Hash functions, digital signatures, public-key cryptography. Smart Contracts: Concept, creation, and deployment. Ethereum and Solidity: Basics of programming smart contracts	30 Hours	CO2
3	AI Techniques for Blockchain Enhancement:-Machine Learning Applications: Anomaly detection, fraud prevention, and predictive analytics. 'Natural Language Processing: Smart contract auditing, documentation analysis. Reinforcement Learning: Optimizing consensus protocols.AI in Security: Blockchain threat detection and mitigation.	30 Hours	C03

- 1. Blockchain Basics-Daniel Drescher
- 2. Artificial Intelligence: A Modern Approach" Stuart Russell & Peter Norvig
- 3. Research Papers and Case Studies IEEE, ACM, Elsevier
- **4.** Online Docs Ethereum, Hyperledger Fabric, TensorFlow, PyTorch
- 5. Platforms Remix IDE, Truffle, Ganache, MetaMask, Google Colab

Online Resources

- 1. Hyperledger and Ethereum official documentation
- 2. IEEE/ACM Research Papers on AI-Blockchain integration
- 3. Online platforms: Coursera, edX, MIT OpenCourseWare, GitHub Projects

	Course Articulation Matrix													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2		
CO2	3	3	2	2	2	2						2		
CO3	3	2	3	2	3				2	2	2	2		
CO4	3	2	3	3	3				2	2	2	2		
