

A Case Study on Optimizing Accurate Half Precision Average

Kenny Peou^{1,2,3} kenny.peou@numscale.com

Alan Kelly 1 , Joel Falcou 1,2,3 NUMSCALE 1 , LRI 2 and Université Paris-Saclay 3

24/09/2018

Introduction

Floating Point Format

Parallelization

Performance Considerations

Calculating the Average

Conclusion

- Average is fundamental component of some ML algorithms
 - k-means, meanshift, average pooling

- Average is fundamental component of some ML algorithms
 - k-means, meanshift, average pooling
- FP16 hardware support incoming
 - Pascal GPU, ARM SVE

- Average is fundamental component of some ML algorithms
 - k-means, meanshift, average pooling
- FP16 hardware support incoming
 - Pascal GPU, ARM SVE
- FP16 precision imposes serious limitations

- Average is fundamental component of some ML algorithms
 - k-means, meanshift, average pooling
- FP16 hardware support incoming
 - Pascal GPU, ARM SVE
- FP16 precision imposes serious limitations
- Performance is important

Precision	Exponent	Mantissa	Max	Min
Half	5	10	65504	$6.1 \cdot 10^{-5}$
Single	8	23	$3.4 \cdot 10^{38}$	$1.2 \cdot 10^{-38}$
Double	11	52	$1.8 \cdot 10^{308}$	$2.2 \cdot 10^{-308}$

Overflow - too big

$$65504 + 32 = \infty$$

 $256 \cdot 256 = \infty$

Overflow - too big

$$65504 + 32 = \infty$$

$$256 \cdot 256 = \infty$$

Underflow/Subnormals - too small

$$1 \div 66000 = 0$$

$$0.0625/64992 = 9.53674e - 07$$

Overflow - too big

$$65504 + 32 = \infty$$

$$256 \cdot 256 = \infty$$

■ Underflow/Subnormals - too small

$$1 \div 66000 = 0$$

$$0.0625/64992 = 9.53674e - 07$$

Exponent (mis)alignment - juuuuuuust wrong

$$2048 + 1 = 2048$$

$$2048 + 3.5 = 2050$$

Overflow - too big

$$65504 + 32 = \infty$$

$$256 \cdot 256 = \infty$$

Underflow/Subnormals - too small

$$1 \div 66000 = 0$$

$$0.0625/64992 = 9.53674e - 07$$

Exponent (mis)alignment - juuuuuuust wrong

$$2048 + 1 = 2048$$

$$2048 + 3.5 = 2050$$

Limited hardware support for FP16
 Emulated via half C++ library

Base Value	Half ULP	Float ULP	Double ULP
2^{-10}	2^{-20}	2^{-33}	2^{-63}
1	2^{-10}	2^{-23}	2^{-53}
2 ¹⁰	1	2^{-13}	2^{-43}

Table: Value of 1 ULP at different base values for half, single, and double precisions.

Single Instruction Multiple Data

SIMD Technologies

- GPU CUDA, OpenCL
- Multithread OpenMP, MPI
- CPU Vectorization AVX, NEON, PPC
 - No communication/transfer
 - Fixed register sizes
 - Not portable (without NSIMD)

Vectorization - NSIMD


```
// AVX
__m256 a = _mm256_load_ps( &(A[i]) );
__m256 b = _mm256_load_ps( &(B[i]) );
__m256 c = _mm256_add_ps( a , b );
_mm256_store_ps( &(C[i]) , c );
```

Vectorization - NSIMD


```
// NEON float32x4_t a = vld1q_s32( &(A[i]) ); float32x4_t b = vld1q_s32( &(B[i]) ); float32x4_t c = vaddq_f32( a , b ); vst1q_f32( &(C[i]) , c );
```



```
// VMX
__vector float a = vec_ld( 0 , &(A[i]) );
__vector float b = vec_ld( 0 , &(B[i]) );
__vector float c = vec_add( a , b );
vec_st( c , 0 , &(C[i]) );
```

Vectorization - NSIMD


```
// NSIMD (All architectures)
nsimd::pack<float> b = nsimd::load(&(B[i]));
nsimd::pack<float> c = nsimd::load(&(C[i]));
nsimd::pack<float> a = b * c;
nsimd::store(&(A[i]), a);
```

Performance Considerations

- Number of Operations/Instructions
- Instruction Latency
- Data Types (SIMD consideration)

Operation	Integer	Float	SIMD Float	SIMD Double
Load/Store	1	1	1	1
Addition	1	3	3	3
Subtraction	1	3	3	3
Multiplication	3	5	5	5
Division	22	10	10	10

Table: Minimum cycles required to perform basic arithmetic operations on an Intel Haswell CPU. (Agner Fog)

Seems simple, right?

$$\mathsf{Avg}(X) = rac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} x_i$$

Not with half precision!

Input	N	Naive	Kahan	Iterative	Upcast	Cascade
Sequential	$Input[i] = s \cdot i$					
s = 1	100 1000					
	10000					
s = 0.001	100					
	1000 10000					
Fixed Ratio	$Input[i] = \begin{cases} even: i \div 2 \\ odd: i \div (2 \cdot r) \end{cases}$					
r = N/2	100					
	1000 10000					
Fixed Diff	$\lim_{n\to\infty} i = 0$ even: $i \div 2$					
	$input[i] = \{ odd \colon (i \div 2) + d \}$					
d = N/2	100					
	1000 10000					
Random	Input[i] = rand()					
[0, 1]	1000					
[0, 10]	1000					
Fixed	Input[i] = c					
c = 10	1000					
	10000 1000000					
D						
Repeating	Input[i] = 10 + (i %3)					
10 - 12	300 3000					
	30000					
Image1	2073600					
Image2	2073600					

Processor Used	Clock Speed	RAM
Intel i7-4790S	3.20GHz	16GB
Power8 8348-21C	2.061GHz	64GB
ARM Cortex-A57r1	1.91GHz	4GB

Benchmark	Compiler Used	Compilation Flags
Scalar	All of below	-03
SSE	GCC 6.3.1	-03 -msse4.2
AVX	GCC 6.3.1	-03 -mavx2
NEON	GCC 5.4.1	-03 -march=armv8-a+simd
Altivec	GCC 6.3.0	-03 -maltivec

Performance measured using float instead of half

Naive Average


```
    function NAIVE AVERAGE(Array)
    sum = 0
    for a in Array do
    sum += a
    end for
    avg = sum / length(Array)
    end function
```

- Rounding errors gets worse and worse
- Susceptible to overflow
- Computationally simple

Input	N	Naive	Kahan	Iterative	Upcast	Cascade
Sequential	$Input[i] = s \cdot i$					
s = 1	100	9				
	1000	fail				
	10000	fail				
s = 0.001	100	16				
	1000	198				
	10000	fail				
Fixed Ratio		Inp	$ut[i] = \{$	even: $i \div 2$ odd: $i \div (2)$	· r)	
r = N/2	100	1		<u> </u>		
	1000	fail				
	10000	fail				
Fixed Diff	$Input[i] = \left\{ \begin{array}{l} even: \ i \div 2 \\ odd: \ (i \div 2) + d \end{array} \right.$					
d = N/2	100	13				
	1000	fail				
	10000	fail				
Random			Input[i] = rand()		
[0, 1]	1000	271				
[0, 10]	1000	fail				
Fixed			Inpu	t[i] = c		
c = 10	1000	152				
	10000	1070				
	1000000	1277				
Repeating	Input[i] = 10 + (i%3)					
10 - 12	300	17				
	3000	709				
	30000	1998				
Image1	2073600	fail				
Image2	2073600	1761				

Naive Average


```
1: function Kahan Average(Array)
2:
      sum = 0
     rem = 0
3:
   for a in Array do
4:
5:
          y = a - rem
          t = sum + y
6:
          rem = (t - sum) - y
7:
8:
          sum = t
      end for
9:
      avg = sum / length(Array)
10:
11: end function
```

- Mostly compensates rounding errors
- Still susceptible to overflow and misalignments

Average Using Kahan Sum

Input	N	Naive	Kahan	Iterative	Upcast	Cascade
Sequential	$Input[i] = s \cdot i$					
s = 1	100	9	1			
	1000	fail	fail			
	10000	fail	fail			
s = 0.001	100	16	1			
	1000	198	1			
	10000	fail	fail			
Fixed Ratio		Inp		even: $i \div 2$ odd: $i \div (2)$	· r)	
r = N/2	100	1	1	`		
	1000	fail	fail			
	10000	fail	fail			
Fixed Diff	$Input[i] = \left\{ \begin{array}{l} even: \ i \div 2 \\ odd: \ (i \div 2) + d \end{array} \right.$					
d = N/2	100	13	1			
	1000	fail	fail			i i
	10000	fail	fail			
Random			Input[i] = rand()		
[0, 1]	1000	271	0			
[0, 10]	1000	fail	fail			
Fixed	Input[i] = c					
c = 10	1000	152	0			
	10000	1070	fail			
	1000000	1277	fail			
Repeating	Input[i] = 10 + (i%3)					
10 - 12	300	17	0			
	3000	709	1			
	30000	1998	fail			
Image1	2073600	fail	fail			
Image2	2073600	1761	391	1		

Iterative Average

- 1: **function** Iterative Average(Array)
- 2: avg = 0
- 3: **for** i in $1 \rightarrow length(Array)$ **do**
- 4: avg += (avg Array[i]) / i
- 5: end for
- 6: end function
- Removes risk of overflow
- Misalignment, underflow, and subnormals get progressively worse
 - $\lim_{i \to \infty} \frac{(x_i \mathsf{Avg}_i)}{i} = 0$

			14.1			
Input	N	Naive	Kahan	Iterative	Upcast	Cascade
Sequential			Input[$[i] = s \cdot i$		
s = 1	100	9	1	0		
	1000	fail	fail	0		
	10000	fail	fail	993		
s = 0.001	100	16	1	20		
	1000	198	1	249		
	10000	fail	fail	1486		
Fixed Ratio		Inp		even: $i \div 2$ odd: $i \div (2 \cdot$	r)	
r = N/2	100	1	1	17	.,	
. – . • , =	1000	fail	fail	3		
	10000	fail	fail	994		
E: 1 D:#			.ra (6	ven: <i>i</i> ÷ 2		
Fixed Diff		Inpu	$t[i] = \left\{ \begin{array}{c} \epsilon \\ \epsilon \end{array} \right.$	odd: (i ÷ 2)	+ d	
d = N/2	100	13	1	23		
	1000	fail	fail	227		
	10000	fail	fail	737		
Random			Input[i]	= rand()		
[0, 1]	1000	271	0	249		
[0, 10]	1000	fail	fail	261		
Fixed	Input[i] = c					
c = 10	1000	152	0	0		
	10000	1070	fail	0		
	1000000	1277	fail	0		
Repeating	Input[i] = 10 + (i %3)					
10 - 12	300	17	0	74		
	3000	709	1	128		
	30000	1998	fail	128		
Image1	2073600	fail	fail	1037		
Image2	2073600	1761	391	1701		

Iterative Average

Increased Precision


```
1: function UPCAST AVERAGE(Array)
     sum = (upcast)0
```

- for a in Array do 3:
- 4: sum += (upcast)a
- end for
- 5
- avg = sum / length(Array)6:
- 7: end function
- Same fundamental problems as naive average
- Limitations less problematic

Input	N	Naive	Kahan	Iterative	Upcast	Cascade	
Sequential	$Input[i] = s \cdot i$						
s = 1	100	9	1	0	0		
	1000	fail	fail	0	0		
	10000	fail	fail	993	0		
s = 0.001	100	16	1	20	0		
	1000	198	1	249	0		
	10000	fail	fail	1486	0		
Fixed Ratio		Inp		even: $i \div 2$ odd: $i \div (2 \cdot$	· r)		
r = N/2	100	1	1	17	0		
,	1000	fail	fail	3	0		
	10000	fail	fail	994	0		
Fixed Diff	$Input[i] = \begin{cases} even: i \div 2 \\ odd: (i \div 2) + d \end{cases}$						
d = N/2	100	13	1	23	0		
,	1000	fail	fail	227	0		
	10000	fail	fail	737	0		
Random	Input[i] = rand()						
[0, 1]	1000	271	0	249	0		
[0, 10]	1000	fail	fail	261	0		
Fixed	Input[i] = c						
c = 10	1000	152	0	0	0		
	10000	1070	fail	0	0		
	1000000	1277	fail	0	0		
Repeating	Input[i] = 10 + (i%3)						
10 - 12	300	17	0	74	0		
	3000	709	1	128	0		
	30000	1998	fail	128	0		
lmage1	2073600	fail	fail	1037	1		
Image2	2073600	1761	391	1701	12		

Increased Precision

- Pairwise operations
- No accumulator = no overflow
- Rounding errors from input variation
- $\leq 2N$ operations


```
1: function Cascading Average(Array)
      n = length(Array)
   if n == 1 then
3:
          return Array[0]
4.
     else if n == 2 then
5:
          return (Array[0] + Array[1]) / 2
6.
7:
      else
          return (Cascading Average(Array[1:n/2]) + Cascading
8.
   Average(Array[n/2:n]))/2
      end if
g.
10: end function
```


Input	N	Naive	Kahan	Iterative	Upcast	Cascade
Sequential	$Input[i] = s \cdot i$					
s = 1	100	9	1	0	0	0
	1000	fail	fail	0	0	0
	10000	fail	fail	993	0	1
s = 0.001	100	16	1	20	0	2
	1000	198	1	249	0	4
	10000	fail	fail	1486	0	4
Fixed Ratio		Inp		even: $i \div 2$ odd: $i \div (2 \cdot$	r)	
r = N/2	100	1	1	17	0	0
	1000	fail	fail	3	0	0
	10000	fail	fail	994	0	1
Fixed Diff	$Input[i] = \left\{ \begin{array}{c} even: \ i \div 2 \\ odd: \ (i \div 2) + d \end{array} \right.$					
d = N/2	100	13	1	23	0	0
	1000	fail	fail	227	0	0
	10000	fail	fail	737	0	0
Random			Input[i]	= rand()		
[0, 1]	1000	271	0	249	0	3
[0, 10]	1000	fail	fail	261	0	4
Fixed			Inpu	t[i] = c		
c = 10	1000	152	0	0	0	0
	10000	1070	fail	0	0	0
	1000000	1277	fail	0	0	0
Repeating			Input[i] =	10 + (i%3)		
10 - 12	300	17	0	74	0	1
	3000	709	1	128	0	1
	30000	1998	fail	128	0	1
lmage1	2073600	fail	fail	1037	1	3
Image2	2073600	1761	391	1701	12	7

Performance - Overall

Analysis

- Sum then divide methods overflow easily
- Iterative average method fails for large N
- Kahan sum (with divide when necessary) is the most precise when it works
- Naive method is fast enough to increase precision and still be faster (with SIMD)
- Cascading Average is never a bad choice thanks to its robustness

Conclusion

- Numerical precision is complicated
- Performance requires effort
- Even simple things can need research

Future Works

- Similar study using 8 bit floats
- Similar study with exotic numerical formats
- Mix algorithms intelligently
- Look into other "solved" algorithms under half precision

THE END

Input	N	Naive	Kahan	Iterative	Upcast	Cascade
Sequential	$Input[i] = s \cdot i$					
s = 1	100	9	1	0	0	0
	1000	fail	fail	0	0	0
	10000	fail	fail	993	0	1
s = 0.001	100	16	1	20	0	2
	1000	198	1	249	0	4
	10000	fail	fail	1486	0	4
s = -1	100	9	1	0	0	0
	1000	fail	fail	0	0	0
	10000	fail	fail	993	0	1
Fixed Ratio				even: $i \div 2$ odd: $i \div (2 \cdot$		
r = N/2	100	1	1	17	0	0
	1000	fail	fail	3	0	0
	10000	fail	fail	994	0	1
Fixed Diff		Inpu		ven: $i \div 2$ odd: $(i \div 2)$	+ d	
d = N/2	100	13	1	23	0	0
	1000	fail	fail	227	0	0
	10000	fail	fail	737	0	0
Random			Input[i]	= rand()		
[0, 1]	1000	271	0	249	0	3
[0, 10]	1000	fail	fail	261	0	4
[0, 100]	1000	fail	fail	246	0	2
[0, 1000]	1000	fail	fail	253	0	3
Fixed				t[i] = c		
	1000	152	0	0	0	0
c = 10	10000	1070	fail	0	0	0
	100000	1259	fail	0	0	0
	1000000	1277	fail	0	0	0
Repeating				10 + (i%3)		
10 - 12	300	17	0	74	0	1
	3000	709	1	128	0	1
	30000	1998	fail	128	0	1
	300000	1401	fail	128	0	1
lmage1	2073600	fail	fail	1037	1	3
Image2	2073600	1761	391	1701	12	7