E.N.I.T.

Unité Pédagogique de Mathématiques Appliquées

1ÉRE ANNÉE TA AU: 2019-2020

Projet d'Analyse Numérique

Optimisation de la température d'un four

April 6, 2020

Objectif du travail

L'objectif de ce projet est d'étudier numériquement le problème suivant:

On considère un four représenté par un domaine $\Omega = \Omega_a \cup \Omega_c \subset \mathbb{R}^2$, de frontière $\partial \Omega$, comportant un certain nombre de résistances électriques. On se propose de chercher la consigne en température des résistances de sorte que la température dans une pièce placée à l'intérieur du four soit proche d'une consigne T_c fixée à l'avance.

On suppose que $\Omega = \Omega_a \cup \Omega_c$ avec Ω_c représente la pièce à cuir et $\Omega_a = \Omega \setminus \overline{\Omega}_c$ est le domaine occupé par l'air.

Dans un premier temps, et à partir de la valeur de chaque résistance, on se propose de calculer la température à l'intérieur du four, et en particulier la température de l'objet mis à cuire. Cette première approche est appelée **problème direct**.

Mais en réalité et dans la pratique, le **problème inverse** consiste à déterminer les valeurs minimales de résistances, considérées comme inconnues, qui donnent une température idéale au cuisson. C'est l'objet de la deuxième partie du travail.

1 Problème directe

1.1 Modélisation et formulation du problème

Le four est modélisé par un domaine rectangulaire $\Omega =]0, L_x[\times]0, L_y[$ de longueur L_x et de largeur L_y . La cuisson occupe le domaine rectangulaire $\Omega_c =]\frac{L_x}{4}, \frac{3L_x}{4}[\times]\frac{L_y}{4}, \frac{3L_y}{4}[$ et le reste du domaine est occupé par l'air (c-à-d $\Omega_a = \Omega \setminus \overline{\Omega_c}$). On note par $\partial\Omega$ (resp. $\partial\Omega_c$) la frontière de Ω (resp. Ω_c) qui est composée par quatre segments $\Gamma_i, i = 1, ..., 4$ (resp. $\gamma_i, i = 1, ..., 4$) comme l'indique la figure (1).

On suppose que sur les deux parties de bord Γ_1 et Γ_3 , la température est fixée à T_b et T_h respectivement et que Γ_2 et Γ_4 sont parfaitement isolées.

Le problème physique de diffusion de la chaleur s'écrit alors sous la forme:

Figure 1: Représentation 2D du four

 Γ_1

$$\begin{cases}
\frac{\partial T}{\partial t}(\mathbf{x}, t) - \operatorname{div}(\kappa \nabla T)(\mathbf{x}, t) = f(\mathbf{x}), & \forall \mathbf{x} \in \Omega, t \ge 0, \\
T = T_b, & \operatorname{sur} \Gamma_1, \\
T = T_h, & \operatorname{sur} \Gamma_3, \\
\kappa \frac{\partial T}{\partial n} = 0, \operatorname{sur} \Gamma_2 \cup \Gamma_4, \\
T(\mathbf{x}, 0) = T_0(\mathbf{x}) & \forall \mathbf{x} \in \Omega,
\end{cases} \tag{1}$$

où κ désigne la conductivité thermique, qui est égale à κ_a dans l'air Ω_a et κ_c dans la piéce à chauffer Ω_c , et f représente la source surfacique de chaleur produite par les différentes résistances.

On dispose de N_r résistances r_1, \dots, r_{N_r} (Dans notre cas $N_r = 6$: Voir Figure (1)) placées aux points de coordonnés $(x_{r_i}, y_{r_i}), i = 1, \dots, N_r$. Chaque résistance r_i est modélisée par un terme source f_i qui représente une densité surfacique de température.

En décompose notre problème (1) en deux sous problèmes: un problèmes stationnaire qui

vérifie:

$$\begin{cases}
-\operatorname{div}(\kappa \nabla T) = f & \operatorname{dans} & \Omega, \\
T = T_b, & \operatorname{sur} \Gamma_1, \\
T = T_h, & \operatorname{sur} \Gamma_3, \\
\kappa \frac{\partial T}{\partial n} = 0, \operatorname{sur} \Gamma_2 \cup \Gamma_4.
\end{cases}$$
(2)

et un problème transitoire qui vérifie:

$$\begin{cases}
\frac{\partial T}{\partial t}(\mathbf{x}, t) - \operatorname{div}(\kappa \nabla T)(\mathbf{x}, t) = 0 & \forall \mathbf{x} \in \Omega, t \ge 0, \\
T = 0, & \operatorname{sur} \Gamma_1 \cup \Gamma_3, \\
\kappa \frac{\partial T}{\partial n} = 0, \operatorname{sur} \Gamma_2 \cup \Gamma_4, \\
T(\mathbf{x}, 0) = T_0 - T_{st}(\mathbf{x}) & \forall \mathbf{x} \in \Omega,
\end{cases} \tag{3}$$

où T_{st} est la solution du problème stationnaire (2).

- 1. Soit T_{st} la solution du problème (2) et T_{tr} la solution du problème (3). Montrer que $T(\mathbf{x},t) = T_{st}(\mathbf{x}) + T_{tr}(\mathbf{x},t)$ est solution du problème (1).
- 2. Supposons que $f \equiv 0$. Trouver une solution exacte des problèmes (2) et (3) en absence de la pièce à cuir Ω_c dans le four (c-à-d $\kappa = \kappa_a$ dans Ω).

1.2 Problème stationnaire

- 1. Soit T_{st}^0 la solution du problème (2) pour f = 0 et T_{st}^r la solution du problème (2) avec $T_b = T_h = 0$ (condition de Dirichlet homogène). Montrer que $T_{st}(\mathbf{x}) = T_{st}^0(\mathbf{x}) + T_{st}^r(\mathbf{x})$ est solution du problème (2).
- 2. Montrer que si $T_b = T_h = 0$, la température T solution de (2) varie linéairement en fonction de f.

Afin de résoudre numériquement (2) et vu la propriété de linéarité du problème on procède de la façon suivante:

- On résout un problème thermique (2) sans terme source (f est identiquement nulle, mais avec les conditions de Dirichlet non homogènes $T = T_b$ sur Γ_1 et $T = T_h$ sur Γ_3). La solution de ce premier problème sera notée T_{st}^0 .
- On résout ensuite, pour $1 \le i \le N_r$, le problème (2) avec une seule résistance unitée r_i en prenant $f_i = 1$ au voisinage du point de coordonnées (x_{r_i}, y_{r_i}) (position de la résistance) et 0 ailleurs et avec des conditions de Dirichlet homogènes (T = 0, sur $\Gamma_1 \cup \Gamma_3$). On notera par T_{st}^i la solution obtenue.

Ainsi, la solution T_{st} de problème (2), obtenue avec les températures T_b et T_h imposées sur Γ_1 et Γ_3 , et pour N_r résistances d'amplitudes $r_i, 1 \leq i \leq N_r$, est $T_{st} = T_{st}^0 + \sum_{i=1}^{N_r} r_i T_{st}^i$.

1.2.1 Résolution par différences finies

En utilisant la condition de continuité de flux à travers le bord de cuisson le problème (2) s'écrit sous cette forme:

$$\begin{cases}
-\kappa_{a} \frac{\partial^{2} T}{\partial x^{2}}(x, y) - \kappa_{a} \frac{\partial^{2} T}{\partial y^{2}}(x, y) = f(x, y) & \forall (x, y) \in \Omega_{a} \\
-\kappa_{c} \frac{\partial^{2} T}{\partial x^{2}}(x, y) - \kappa_{c} \frac{\partial^{2} T}{\partial y^{2}}(x, y) = f(x, y) & \forall (x, y) \in \Omega_{c} \\
\kappa_{a} \frac{\partial T}{\partial n} \Big|_{\gamma_{1}^{-}} = \kappa_{c} \frac{\partial T}{\partial n} \Big|_{\gamma_{1}^{+}}, & \kappa_{c} \frac{\partial T}{\partial n} \Big|_{\gamma_{3}^{-}} = \kappa_{a} \frac{\partial T}{\partial n} \Big|_{\gamma_{3}^{+}} \\
\kappa_{c} \frac{\partial T}{\partial n} \Big|_{\gamma_{2}^{-}} = \kappa_{a} \frac{\partial T}{\partial n} \Big|_{\gamma_{2}^{+}}, & \kappa_{a} \frac{\partial T}{\partial n} \Big|_{\gamma_{4}^{-}} = \kappa_{c} \frac{\partial T}{\partial n} \Big|_{\gamma_{4}^{+}} \\
\kappa_{a} \frac{\partial T}{\partial n} \Big|_{\Gamma_{2}^{-}} = 0; & \kappa_{a} \frac{\partial T}{\partial n} \Big|_{\Gamma_{4}^{+}} = 0, \\
T = T_{b}, & \text{sur } \Gamma_{1}, & T = T_{h}, & \text{sur } \Gamma_{3}.
\end{cases}$$

$$(4)$$

Discrétisation:

Pour discrétiser le domaine Ω on choisit deux entiers n_x et n_y et on pose

$$x_i = i h_x, \ 0 \le i \le 4n_x, \quad y_j = j h_y, \ 0 \le j \le 4n_y,$$

avec $h_x = \frac{L_x}{4n_x}$ et $h_y = \frac{L_y}{4n_y}$ sont les deux pas de maillage du rectangle (voir figure (2)).

Figure 2: Maillage de rectangle

Ainsi on définit une partition régulière de Ω conforme aux bord $\partial \Omega_c$ de cuisson.

On notera par $T_{i,j}$ une approximation de $T(x_i, y_j)$: valeur de la solution exacte T au point de discrétisation (x_i, y_j) , pour $0 \le i \le 4n_x$ et $1 \le j \le 4n_y - 1$. Par la méthode de différences finis, on approche les dérivées seconde $\frac{\partial^2 T}{\partial x^2}(x_i, y_j)$ et $\frac{\partial^2 T}{\partial y^2}(x_i, y_j)$ par:

$$\frac{\partial^2 T}{\partial x^2}(x_i, y_j) \simeq \frac{T(x_{i+1}, y_j) - 2T(x_i, y_j) + T(x_{i-1}, y_j)}{h_x^2},$$
$$\frac{\partial^2 T}{\partial y^2}(x_i, y_j) \simeq \frac{T(x_i, y_{j+1}) - 2T(x_i, y_j) + T(x_i, y_{j-1})}{h_y^2},$$

et les dérivées normales $\frac{\partial T}{\partial n}\mid_{\gamma_i^+},\ 1\leq i\leq 4$ (resp. $\frac{\partial T}{\partial n}\mid_{\gamma_i^-},1\leq i\leq 4$) par des schémas d'Euler avant (resp. arrière).

Calcul de T_{st}^0 :

On commence par résoudre le problème thermique stationnaire (4) avec un terme source nul $(f \equiv 0)$ on utilisant ce schéma numérique:

$$\begin{cases} -\kappa_{a} \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \Omega_{a} \\ -\kappa_{c} \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{h_{x}^{2}} - \kappa_{c} \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \Omega_{c} \\ -\frac{\kappa_{c} T_{n_{x}+1,j} - (\kappa_{a} + \kappa_{c}) T_{n_{x},j} + \kappa_{a} T_{n_{x}-1,j}}{h_{x}^{2}} - \kappa_{a} \frac{T_{n_{x},j+1} - 2T_{n_{x},j} + T_{n_{x},j-1}}{h_{y}^{2}} = 0, & \text{si } (x_{n_{x}}, y_{j}) \in \gamma_{4} \\ -\frac{\kappa_{a} T_{3n_{x}+1,j} - (\kappa_{a} + \kappa_{c}) T_{3n_{x},j} + \kappa_{c} T_{3n_{x}-1,j}}{h_{x}^{2}} - \kappa_{a} \frac{T_{3n_{x},j+1} - 2T_{3n_{x},j} + T_{3n_{x},j-1}}{h_{y}^{2}} = 0, & \text{si } (x_{3n_{x}}, y_{j}) \in \gamma_{2} \\ -\kappa_{a} \frac{T_{i+1,n_{y}} - 2T_{i,n_{y}} + T_{i-1,n_{y}}}{h_{x}^{2}} - \frac{\kappa_{c} T_{i,n_{y}+1} - (\kappa_{a} + \kappa_{c}) T_{i,n_{y}} + \kappa_{a} T_{i,n_{y}-1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{n_{y}}) \in \gamma_{1} \\ -\kappa_{a} \frac{T_{i+1,3n_{y}} - 2T_{i,3n_{y}} + T_{i-1,3n_{y}}}{h_{x}^{2}} - \frac{\kappa_{a} T_{i,3n_{y}+1} - (\kappa_{a} + \kappa_{c}) T_{i,3n_{y}} + \kappa_{c} T_{i,3n_{y}-1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{3n_{y}}) \in \gamma_{3} \\ -\kappa_{a} \frac{T_{1,j} - T_{0,j}}{h_{x}^{2}} - \kappa_{a} \frac{T_{0,j+1} - 2T_{0,j} + T_{0,j-1}}{h_{y}^{2}} = 0, & \text{si } (x_{0}, y_{j}) \in \Gamma_{4} \\ -\kappa_{a} \frac{T_{1,j} - T_{0,j}}{h_{x}^{2}} - \kappa_{a} \frac{T_{4n_{x},j+1} - 2T_{4n_{x},j} + T_{4n_{x},j-1}}{h_{y}^{2}} = 0, & \text{si } (x_{4n_{x}}, y_{j}) \in \Gamma_{2} \\ T = T_{b}, & \text{sur } \Gamma_{1}, T = T_{h}, & \text{sur } \Gamma_{3}. \end{cases}$$

1. Soit $\mathbf{T_{app}} = \left(\mathbf{T}_1, \cdots, \mathbf{T}_{4n_y-1}\right)^T$ et $\mathbf{T}_j = \left(T_{0,j}, \cdots, T_{4n_x,j}\right)^T$, $1 \leq j \leq 4n_y - 1$. Écrire le schéma numérique ci-dessus sous la forme matricielle suivante:

$$A \mathbf{T_{app}} = F,$$

où A une matrice que l'on précisera et F un vecteur que l'on précisera.

2. Écrire un script Python pour résoudre numériquement le problème (4) par le schéma numérique (5).

Calcul de $T_{st}^i, 1 \leq i \leq N_r$:

On suppose qu'une résistance unité placée en (x_{r_i},y_{r_i}) est équivalente à une densité surfacique $f_i(x,y)=\exp(-\frac{(x-x_{r_i})^2+(y-y_{r_i})^2}{2(0.05)^2})$.

- 1. Modifier le schéma numérique (5) pour résoudre le problème (4) avec une condition de Dirichlet homogène ($T_b = 0$ et $T_h = 0$) et une source unitaire f_1 placée en $\mathbf{x}_{r_1} = (0.2 L_x, 0.2 L_y)$.
- 2. Dans le même script de l'exercice précédent calculer la solution T_{st}^1 pour $r_1 = 1$.
- 3. Calculer la température pour $r_1 = 100$ et vérifier la linéairité du problème.
- 4. Tracer la température T du four pour une seule résistance $(N_r = 1)$ d'amplitude $r_1 = 100$ placée en (x_{r_1}, y_{r_1}) et avec les conditions aux bord $T_b = 100$ et $T_b = 50$.
- 5. Tracer dans deux figures séparées, la température T du four, avec les mêmes conditions aux bord, pour quatre résistances $r_1 = r_2 = r_3 = r_4 = 100$ placées en $\mathbf{x}_{r_1} = (0.2 L_x, 0.2 L_y), \mathbf{x}_{r_2} = (0.8 L_x, 0.2 L_y), \mathbf{x}_{r_3} = (0.8 L_x, 0.8 L_y)$ et $\mathbf{x}_{r_4} = (0.2 L_x, 0.8 L_y)$
- 6. Tracer dans deux figures séparées la température T du four avec les mêmes conditions aux bord, pour six résistances $r_1 = r_2 = r_3 = r_4 = r_5 = r_6 = 100$ placées en $\mathbf{x}_{r_1} = (0.2 L_x, 0.2 L_y)$, $\mathbf{x}_{r_2} = (0.5 L_x, 0.2 L_y)$, $\mathbf{x}_{r_3} = (0.8 L_x, 0.2 L_y)$, $\mathbf{x}_{r_4} = (0.8 L_x, 0.8 L_y)$, $\mathbf{x}_{r_5} = (0.5 L_x, 0.8 L_y)$ et $\mathbf{x}_{r_6} = (0.2 L_x, 0.8 L_y)$.

1.3 Étude du problème transitoire

Maintenant on va s'intéresser au problème transitoire 3. Nous cherchons une solution approcher de ce problème par deux schémas numériques: Un schéma explicite et un schéma implicite.

Pour n_x, n_y et M trois entiers positifs non nul, soient $N_x = 4n_x + 1, N_y = 4n_y - 1,$ $h_x = \frac{L_x}{N_x - 1}$ et $h_y = \frac{L_y}{N_y + 1}$ les deux pas de discrétisation suivant les directions x et y, et Δt est le pas de discrétisation en temps avec $\Delta t = T_{max}/M$. On pose

$$x_i = i h_x, \ 0 \le i \le 4n_x, \quad y_i = j h_y, \ 0 \le j \le 4n_y, \quad t^m = m \ \Delta t \quad 0 \le m \le M.$$

Ainsi on définit une partition régulière de Ω conforme aux bord $\partial \Omega_c$ de cuisson. On cherche alors, pour chaque triplet (i, j, m) une approximation $T_{i,j}^m \simeq T(x_i, y_j, t^m)$ de la solution exacte aux noeuds de coordonnés (x_i, y_j, t^m) du domaine spatio-temporel en remplaçant les dérivées secondes $\frac{\partial^2 T}{\partial x^2}(x_i, y_j, t^m)$ et $\frac{\partial^2 T}{\partial y^2}(x_i, y_j, t^m)$ par leur valeurs approchées

$$\frac{\partial^2 T}{\partial x^2}(x_i, y_j, t^m) \simeq \frac{T_{i+1,j}^m - 2T_{i,j}^m + T_{i-1,j}^m}{h_x^2},$$

$$\frac{\partial^2 T}{\partial y^2}(x_i, y_j, t^m) \simeq \frac{T_{i,j+1}^m - 2T_{i,j}^m + T_{i,j-1}^m}{h_v^2}.$$

Pour les dérivées premières, on utilise soit des schéma d'Euler avant, soit des schéma d'Euler arrière

1.3.1 Schéma explicite

Soit
$$\mathbf{T}_{j}^{m} = \begin{pmatrix} \mathbf{T}_{0,j}^{m} \\ \vdots \\ \mathbf{T}_{4n_{x},j}^{m} \end{pmatrix}$$
, $1 \leq j \leq 4n_{y} - 1$ et $\mathbf{T}^{m} = \begin{pmatrix} \mathbf{T}_{1}^{m} \\ \vdots \\ \mathbf{T}_{4n_{y}-1}^{m} \end{pmatrix}$. On a $\mathbf{T}^{0} = T_{0} - T_{st}$,

supposons que \mathbf{T}^n est connu pour $0 \le n \le m$, on cherche alors une approximation \mathbf{T}^{m+1} de la solution exacte qui satisfait le système discret suivant:

$$\begin{cases} \frac{T_{i,j}^{m+1} - T_{i,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i+1,j}^{m} - 2T_{i,j}^{m} + T_{i-1,j}^{m}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,j+1}^{m} - 2T_{i,j}^{m} + T_{i,j-1}^{m}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \Omega_{a} \end{cases}$$

$$\frac{T_{i,j}^{m+1} - T_{i,j}^{m}}{\Delta t} - \kappa_{c} \frac{T_{i+1,j}^{m} - 2T_{i,j}^{m} + T_{i-1,j}^{m}}{h_{x}^{2}} - \kappa_{c} \frac{T_{i,j+1}^{m} - 2T_{i,j}^{m} + T_{i,j-1}^{m}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \Omega_{c} \end{cases}$$

$$\frac{T_{i,j+1}^{m+1} - T_{i,j}^{m}}{\Delta t} - \frac{\kappa_{c} T_{i,j+1,j}^{m} - (\kappa_{a} + \kappa_{c}) T_{i,j,j}^{m} + \kappa_{a} T_{i,j-1,j}^{m}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,j+1}^{m} - 2T_{i,j}^{m} + T_{i,j-1}^{m}}{h_{y}^{2}} = 0, & \text{si } (x_{n_{x}}, y_{j}) \in \gamma_{4} \end{cases}$$

$$\frac{T_{i,j+1}^{m+1} - T_{i,j}^{m}}{\Delta t} - \frac{\kappa_{c} T_{i,j+1,j}^{m} - (\kappa_{a} + \kappa_{c}) T_{i,n,j}^{m} + \kappa_{c} T_{i,n,j}^{m}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,n,j+1}^{m} - 2T_{i,n,j}^{m} + T_{i,n,j-1}^{m}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{i}) \in \gamma_{2} \end{cases}$$

$$\frac{T_{i,n,j}^{m+1} - T_{i,n,j}^{m}}{\Delta t} - \frac{\kappa_{a} T_{i+1,n,j}^{m} - 2T_{i,n,j}^{m} + T_{i-1,n,j}^{m}}{h_{x}^{2}} - \frac{\kappa_{c} T_{i,n,j+1}^{m} - (\kappa_{a} + \kappa_{c}) T_{i,n,j}^{m} + \kappa_{a} T_{i,n,j-1}^{m}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{n_{y}}) \in \gamma_{2} \end{cases}$$

$$\frac{T_{i,n,j}^{m+1} - T_{i,n,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i+1,n,j}^{m} - 2T_{i,n,j}^{m} + T_{i-1,n,j}^{m}}{h_{x}^{2}} - \frac{\kappa_{c} T_{i,n,j+1}^{m} - (\kappa_{a} + \kappa_{c}) T_{i,n,j}^{m} + \kappa_{c} T_{i,n,j-1}^{m}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{n_{y}}) \in \gamma_{3} \end{cases}$$

$$\frac{T_{i,n,j}^{m+1} - T_{i,n,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i+1,n,j}^{m} - 2T_{i,n,j}^{m} + T_{i-1,n,j}^{m}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,n,j+1}^{m} - 2T_{i,j}^{m} + T_{i,n,j-1}^{m}}{h_{y}^{2}}} = 0, & \text{si } (x_{i}, y_{i}) \in \gamma_{3} \end{cases}$$

$$\frac{T_{i,n,j}^{m+1} - T_{i,n,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i,n,j}^{m} - T_{i,n,j}^{m}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,n,j+1}^{m} - 2T_{i,j}^{m}}{h_{y}^{2}}} = 0, & \text{si } (x_{i}, y_{i}) \in \Gamma_{2} \end{cases}$$

$$\frac{T_{i,n,j}^{m+1} - T_{i,n,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i,n,j}^{m} - T_{i,n,j}^{m}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,n,j+1}^{m} - 2T_{i,n,j+1}^{m}}{h_{x}^{2}}} - \kappa_{a} \frac{T_{i,n,j+1}^{m} - 2T_{i,n,j+1}^{m}}{h_{x}^{2}}} - \kappa_{a}$$

- 1. Justifier le choix de ce schéma numérique.
- 2. Étudier la stabilité, la consistance et la convergence de ce schéma.
- 3. Écrire le schéma numérique ci-dessus sous la forme condensée suivant:

$$T^{m+1} = B \ T^m, \forall m \ge 0$$

où B une matrice (qui s'écrit en fonction de la matrice A du schéma stationnaire (5)) que l'on précisera.

- 4. Écrire un script Python pour résoudre numériquement le problème transitoire (3) par le schéma numérique (6).
- 5. Pour h fixer dessiner l'évolution de la solution approchée en fonction du temps. Que remarquer vous ?

1.3.2 Schéma implicite

Soit
$$\mathbf{T}_{j}^{m} = \begin{pmatrix} \mathbf{T}_{0,j}^{m} \\ \vdots \\ \mathbf{T}_{4n_{x},j}^{m} \end{pmatrix}$$
, $1 \leq j \leq 4n_{y} - 1$ et $\mathbf{T}^{m} = \begin{pmatrix} \mathbf{T}_{1}^{m} \\ \vdots \\ \mathbf{T}_{4n_{y}-1}^{m} \end{pmatrix}$. On a $\mathbf{T}^{0} = T_{0} - T_{st}$,

supposons que \mathbf{T}^n est connu pour $0 \le n \le m$, on cherche alors une approximation \mathbf{T}^{m+1} de la solution exacte qui satisfait le système discret suivant:

$$\begin{cases} \frac{T_{i,j}^{m+1} - T_{i,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i+1,j}^{m+1} - 2T_{i,j}^{m+1} + T_{i-1,j}^{m+1}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,j+1}^{m+1} - 2T_{i,j}^{m+1} + T_{i,j-1}^{m+1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \Omega_{a} \\ \frac{T_{i,j}^{m+1} - T_{i,j}^{m}}{\Delta t} - \kappa_{c} \frac{T_{i+1,j}^{m+1} - 2T_{i,j}^{m+1} + T_{i-1,j}^{m+1}}{h_{x}^{2}} - \kappa_{c} \frac{T_{i,j+1}^{m+1} - 2T_{i,j}^{m+1} + T_{i,j-1}^{m+1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \Omega_{c} \\ \frac{T_{i,j}^{m+1} - T_{i,j}^{m}}{\Delta t} - \frac{\kappa_{c} T_{i,j+1,j}^{m+1} - (\kappa_{a} + \kappa_{c}) T_{i,j+1}^{m+1} + \kappa_{a} T_{i,j-1}^{m+1}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,j+1}^{m+1} - 2T_{i,j}^{m+1} + T_{i,j-1}^{m+1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \gamma_{4} \\ \frac{T_{i,i,j}^{m+1} - T_{i,i,j}^{m}}{\Delta t} - \frac{\kappa_{c} T_{i,i+1,j}^{m+1} - (\kappa_{a} + \kappa_{c}) T_{i,i,j}^{m+1} + \kappa_{c} T_{i,i-1,j}^{m+1}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,i+1}^{m+1} - 2T_{i,i,j}^{m+1} + T_{i,i,j-1}^{m+1}}{h_{y}^{2}} - \kappa_{a} \frac{T_{i,i,j+1}^{m+1} - 2T_{i,i,j}^{m+1} + T_{i,i,j-1}^{m+1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{j}) \in \gamma_{4} \\ \frac{T_{i,i,j}^{m+1} - T_{i,i,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i+1,i,j}^{m+1} - 2T_{i,i,j}^{m+1} + T_{i-1,i,j}^{m+1}}{h_{x}^{2}} - \frac{\kappa_{c} T_{i,i,j+1}^{m+1} - (\kappa_{a} + \kappa_{c}) T_{i,i,j}^{m+1} + \kappa_{a} T_{i,i,j-1}^{m+1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{i}) \in \gamma_{2} \\ \frac{T_{i,i,j}^{m+1} - T_{i,i,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i+1,i,i,j}^{m+1} - 2T_{i,i,j}^{m+1} + T_{i-1,i,j}^{m+1}}{h_{x}^{2}} - \frac{\kappa_{c} T_{i,i,j+1}^{m+1} - (\kappa_{a} + \kappa_{c}) T_{i,i,j}^{m+1} + \kappa_{c} T_{i,i,j-1}^{m+1}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{i}) \in \gamma_{3} \\ \frac{T_{i,i,j}^{m+1} - T_{i,i,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i,j}^{m+1} - T_{i,j,i}^{m+1}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,j+1}^{m+1} - 2T_{i,j+1}^{m+1} + T_{i,j-1}^{m+1}}{h_{x}^{2}}}{h_{y}^{2}} = 0, & \text{si } (x_{i}, y_{i}) \in \Gamma_{2} \\ \frac{T_{i,i,j}^{m+1} - T_{i,i,j}^{m}}{\Delta t} - \kappa_{a} \frac{T_{i,i,j}^{m+1} - T_{i,i,j}^{m+1}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,i,j+1}^{m+1} - 2T_{i,j+1}^{m+1} - 2T_{i,j+1}^{m+1}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,i,j+1}^{m+1} - 2T_{i,j+1}^{m+1}}{h_{x}^{2}} - \kappa_{a} \frac{T_{i,i,j+1}^{m+1} - T_{i,i,j+1}^{m+1}}$$

- 1. Justifier le choix de ce schéma numérique.
- 2. Étudier la stabilité, la consistance et la convergence de ce schéma.
- 3. Écrire le schéma numérique ci-dessus sous la forme condensée suivant:

$$B T^{m+1} = T^m, \forall m \geq 0$$

où B une matrice (qui s'écrit en fonction de la matrice A du schéma stationnaire (5)) que l'on précisera.

- 4. Écrire un script Python pour résoudre numériquement le problème transitoire (3) par le schéma numérique (7).
- 5. Pour h fixer dessiner l'évolution de la solution approchée en fonction du temps. Que remarquer vous ?

2 Étude numérique du problème inverse

Dans cette seconde partie, on suppose que l'on cherche à chauffer le cuisson à une température idéale de cuisson T^c . Pour cela, on va déterminer les valeurs des résistances $r_1, r_2, ..., r_{N_r}$ qui permettent d'obtenir une température aussi proche que possible de T^c . On rappelle que, par application du principe de linéarité, la température T peut être écrite sous la forme:

$$T = T_{st}^0 + \sum_{r=1}^{N_r} r_i \, T_{st}^i.$$

où r_i est la valeur de la résistance palcée au point d'abscisse (x_{r_i}, y_{r_i}) , T_{st}^i est la température solution de (2) pour f_i une source unitaire en x_{r_i} et avec conditions de Dirichlet homogènes. Une température la plus proche possible de T^c dans l'objet à cuire Ω_c est celle qui minimise la fonction

$$r \in \mathbb{R}^{N_r} \mapsto J(r) = \frac{1}{2} \int_{\Omega_c} \left(T_{st}^0(\mathbf{x}) + \sum_{i=1}^n r_i \ T_{st}^i(\mathbf{x}) - T^c \right)^2 = \frac{1}{2} \int_{\frac{L_x}{4}}^{\frac{3L_x}{4}} \int_{\frac{L_y}{4}}^{\frac{3L_y}{4}} \left(T_{st}^0(\mathbf{x}) + \sum_{i=1}^{N_r} r_i \ T_{st}^i(\mathbf{x}) - T^c \right)^2.$$

La fonction quadratique objectif J est telle que

$$J(r) = \frac{1}{2}(\tilde{A}r, r) - (\tilde{b}, r) + c,$$

avec la matrice $\tilde{A} = (a_{ij}) \in \mathcal{M}_{N_r}(\mathbb{R})$, le vecteur $\tilde{b} \in \mathbb{R}^{N_r}$ et le réel c sont donnés par

$$a_{ij} = \int_{\Omega_c} T_{st}^i(\mathbf{x}) T_{st}^j(\mathbf{x}), \ b_i = \int_{\Omega_c} (T_{st}^0(\mathbf{x}) - T^c) T_{st}^i(\mathbf{x}) \ \text{et } c = \frac{1}{2} \int_{\Omega_c} (T_{st}^0(\mathbf{x}) - T^c)^2.$$

- 1. Vérifier que la matrice \tilde{A} est symétrique définie positive.
- 2. Utiliser la formule de rectangle à gauche composée pour calculer les coefficients a_{ij} et b_i en fonction des valeurs approcher de $T^m, m=1,...,Nr$ aux points de discrétisation de notre domaine Ω . On rappelle que la formule de rectangle à gauche simple est $\int_a^b f \simeq f(a)(b-a)$ et que la formule de rectangle composée sur l'intervalle [a,b] consiste à appliquer la formule simlpe à une partition de cet intervalle.

Comme la matrice \tilde{A} est symétrique définie positive, alors $r=\begin{pmatrix} r_1\\ \vdots\\ r_{N_r} \end{pmatrix}$ est miminimum

de J sur \mathbb{R}^{N_r} si et seulement si r est solution de système $\tilde{A}r = \tilde{b}$.

En pratique on prend $T^c=250$. Connaissant T^0_{st} , on suit les étapes suivantes:

- \bullet On fixe le nombre N_r et la position de chaque résistance.
- On calcule numériquement les températures $T_{st}^i, i=1,...,N_r$.
- \bullet On calcule la matrice \tilde{A} et le second membre $\tilde{b}.$

• On résout le système
$$\tilde{A}r = \tilde{b}$$
 pour obtenir $r = \begin{pmatrix} r_1 \\ \vdots \\ r_{N_r} \end{pmatrix}$ optimal.

- 1. Dans un fichier script, pour $N_r=1$ et en plaçant la seule résistance en $\mathbf{x}_{r_1}=(0.2L_x,0.2L_y)$ calculer r_1 qui donne une température T la plus proche possible de T^c . Calculer e_1 , la variation de la température entre la température optimale et la température cible; $e_1=\int_{\Omega_c}(T-T^c)^2$.
- 2. Tracer la solution obtenue.
- 3. Refaire le même travail pour quatre résistances placées en $\mathbf{x}_{r_1} = (0.2\,L_x, 0.2L_y), \ \mathbf{x}_{r_2} = (0.8\,L_x, 0.2L_y), \ \mathbf{x}_{r_3} = (0.8\,L_x, 0.8L_y)$ et $\mathbf{x}_{r_4} = (0.2\,L_x, 0.8L_y)$ puis pour 6 résistances placées en $\mathbf{x}_{r_1} = (0.2\,L_x, 0.2L_y), \ \mathbf{x}_{r_2} = (0.5\,L_x, 0.2L_y), \ \mathbf{x}_{r_3} = (0.8\,L_x, 0.2L_y), \ \mathbf{x}_{r_4} = (0.8\,L_x, 0.8L_y), \ \mathbf{x}_{r_5} = (0.5\,L_x, 0.8L_y)$ et $\mathbf{x}_{r_6} = (0.2\,L_x, 0.8L_y)$.
- 4. Conclure.