Week 1

方科晨

March 7, 2024

0.1 Exercise 1

球体积公式为 $V=\frac{4}{3}\pi r^3$,令半径的准确值为 R,测量值为 \hat{R} ,则球体积的相对误差为 $e_r(\hat{V})=\frac{\hat{V}-V}{V}=\frac{\frac{4}{3}\pi\hat{R}^3-\frac{4}{3}\pi R^3}{\frac{4}{3}\pi R^3}=\frac{\hat{R}^3-R^3}{R^3}=(\frac{\hat{R}}{R})^3-1$,由题意得 $|(\frac{\hat{R}}{R})^3-1|\leq 1\%$,则 $0.99\leq (\frac{\hat{R}}{R})^3\leq 1.01$,即有 $-0.00334\leq e_r(\hat{R})=\frac{\hat{R}-R}{R}\leq 0.00332$ 故误差限 $\varepsilon_r(\hat{R})\approx 0.00332$

0.2 Exercise 2

- (1) 绝对误差为 $\sin(x+h) \sin x \approx h \cdot \sin'(x) = h \cos x$
- (2) 相对误差为 $\frac{\sin(x+h)-\sin x}{\sin x} \approx \frac{h\cos x}{\sin x} = h\cot x$

0.3 Exercise 4

令 \hat{Y}_n 为计算得到的值,则有 $\hat{Y}_0=Y_0=28$, $\hat{Y}_n=\hat{Y}_{n-1}-\frac{1}{100}\times 27.982$ 有 $Y_{100}=Y_0-\sqrt{783},\hat{Y}_{100}=\hat{Y}_0-27.982$ 则绝对误差为 $e(\hat{Y}_{100})=\hat{Y}_{100}-Y_{100}=\sqrt{783}-27.982=0.000137$,相对误差为 $e_r(\hat{Y}_{100})=\frac{e(\hat{Y}_{100})}{Y_{100}}=0.00767847$

0.4 补充题

 $d_0=3$,又有 $0.1\%=0.001\leq \frac{5}{d_0+1}\times 10^{-3}=0.00125$,则前三位一定是对的(含"四舍五入"后与准确值的结果相同)