Optimization in Machine Learning

Nelder-Mead method

Learning goals

- General idea
- Reflection, expansion, contraction
- Advantages & disadvantages
- Examples

× × ×

- Derivative-free method ⇒ heuristic
- Generalization of bisection in *d*-dimensional space
- Based on d-simplex, defined by d + 1 points:
 - d = 1 interval
 - d = 2 triangle
 - d = 3 tetrahedron
 - **.** . . .

A version of the Nelder-Mead method:

Initialization: choose d+1 random, affinely independent points \mathbf{v}_i (\mathbf{v}_i are vertices: corner points of the simplex/polytope)

1. Order points according to ascending function values

$$f(\mathbf{v}_1) \leq f(\mathbf{v}_2) \leq \ldots \leq f(\mathbf{v}_d) \leq f(\mathbf{v}_{d+1})$$

with \mathbf{v}_1 best point, \mathbf{v}_{d+1} worst point

• √3

2. Compute centroid without worst point

$$\mathbf{\bar{v}} = \frac{1}{d} \sum_{i=1}^{d} \mathbf{v}_i.$$

3. Reflection: compute reflection point

$$\mathbf{v}_r = \bar{\mathbf{v}} + \rho(\bar{\mathbf{v}} - \mathbf{v}_{d+1}),$$

with $\rho > 0$. Compute $f(\mathbf{v}_r)$.

Note: Default value for reflection coefficient: $\rho = 1$

Distinguish three cases:

• Case 1: $f(\mathbf{v}_1) \le f(\mathbf{v}_r) < f(\mathbf{v}_d) \Rightarrow \text{Accept } \mathbf{v}_r \text{ and discard } \mathbf{v}_{d+1}$

• Case 2:
$$f(\mathbf{v}_r) < f(\mathbf{v}_1) \Rightarrow$$
 Expansion:

$$\mathbf{v}_{e} = \mathbf{\bar{v}} + \chi(\mathbf{v}_{r} - \mathbf{\bar{v}}), \quad \chi > 1$$

We discard \mathbf{v}_{d+1} and accept the better of \mathbf{v}_r and \mathbf{v}_e

Note: default value for expansion coefficient: $\chi = 2$

• Case 3: $f(\mathbf{v}_r) \ge f(\mathbf{v}_d) \Rightarrow$ Contraction:

$$\mathbf{v}_c = \bar{\mathbf{v}} + \gamma (\mathbf{v}_{d+1} - \bar{\mathbf{v}})$$

with $0 < \gamma \le 1/2$

- If $f(\mathbf{v}_c) < f(\mathbf{v}_{d+1})$, accept \mathbf{v}_c
- Otherwise, shrink entire simplex (Shrinking):

$$\mathbf{v}_i = \mathbf{v}_1 + \sigma(\mathbf{v}_i - \mathbf{v}_1) \quad \forall i$$

Note: default values for contraction and shrinking coefficients $\gamma=\sigma=1/2$

4. Repeat all steps until stopping criterion met

NELDER-MEAD SUMMARY

Advantages:

- No gradients needed
- Robust, often works well for non-differentiable functions

Drawbacks:

- Relatively slow (not applicable in high dimensions)
- Not each step improves, only mean of corner values is reduced
- No guarantee for convergence to local optimum / stationary point

Visualization:

http://www.benfrederickson.com/numerical-optimization/

Note: Nelder-Mead is default method of R function optim() If gradient is available and cheap, L-BFGS is preferred

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

NELDER-MEAD VS. GD

Nelder-Mead in multiple dimensions: Organize points (US cities) to keep predefined mutual distances. For 10 cities, gradient descent (top) converges well for a suitable learning rate. Nelder-Mead (bottom) fails to converge, even after many iterations.

NELDER-MEAD VS. GD

Even for only 5 cities, Nelder-Mead (bottom) performs poorly However, gradient descent (top) still works