1 Nyquist for finite signals

Suppose we have a finite duration signal:

$$\mathbf{X}^{\top} = [x[0], x[1], \dots x[T-1]] \tag{1}$$

and we wish to decimate it as illustrated in Figure 1.

Figure 1: The decimation process.

To do this and avoid aliasing, the low-pass filter's (LPF_D) stop-band must start at π/M . Assuming this filter is an FIR filter of length L with impulse response h_{LPF_D} then we get

$$y[t] = h_{\text{LPF}_D}[t] \star x[t] \tag{2}$$

where \star indicates linear convolution. This makes y of length T+L-1.

The decimator then creates

$$z[t] = y[tM] (3)$$

so that z will be of length $\frac{T+L-1}{M}$.