Review

EES 4891/5891
Probability & Statistics for Geosciences
Jonathan Gilligan

Class #17: Tuesday, March 18 2025

Announcement

Announcement

- Office Hours canceled this Wednesday
 - Make-Up Office Hours:
 - Thursday March 20, 2:00–3:30
 - Or by arrangement (Most of Friday is open)
- This week, I will be recording lectures to make up for missed classes.

Learning Goals

Learning Goals

- Refresh your understanding of:
 - Descriptive statistics
 - Learn the difference between *Pearson* and *Spearman* methods for estimating *correlation*.
 - The central limit theorem
 - How to estimate parameters for parametric distributions
 - Testing hypotheses
 - New material: Bayesian hypothesis testing

Semester Research Project

Semester Research Project

- Posted to course web site
- By March 27, choose a data set (from your own research, published data sources, etc.)
 - Does not need to be geological or environmental
 - Come see me, or email for help finding a source
 - The assignment lists many possible sources of public data
- Elements:
 - 1. Import your data into R
 - 2. Characterize your data:
 - Descriptive statistics
 - Plot distributions
 - Figure out what kind of distribution your data has,
 - **...**

- Elements (cont.):
 - 3. Develop questions about your data
 - Is there a relationship between different variables?
 - Are data from two different places or times similar or different?
 - 4. Use hypothesis tests for answering your questions
 - 5. Write up a report, using R and Quarto
 - You can write up sections of your report as you go through 1–4
- By Tues. Apr. 22, turn in your project:
 - Render Quarto to HTML, PDF, or Word
 - Push your project to GitHub Classroom

Review of Basics

Descriptive Statistics

- From a distribution $X \mathcal{D}$:
 - lacksquare mean $\mu = \mathcal{E}(\mathcal{D})$
 - variance

$$Var(\mathcal{D}) = \sigma^2 = E((X - E(X))^2)$$

• standard deviation $\sigma = \sqrt{\mathsf{Var}}$

- Estimates from a sample of n observations x_1, x_2, \ldots, x_n :
 - mean

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

variance

$$\hat{\sigma}^2 = s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

standard deviation

$$\hat{\sigma} = s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Comparing Two Variables

Covariance:

$$Cov(X, Y) = E((X - E(X))(Y - E(Y)))$$

= $E(XY) - E(X)E(Y)$

- Covariance is symmetric: Cov(X, Y) = Cov(Y, X)
- $lacksquare{\bullet} \mathsf{Cov}(X,X) = \mathsf{Var}(X)$
- Correlation: Covariance has units of X and Y, which may be nonsensical ($^{\circ}C \times pH$)
 - Correlation is dimensionless (no units) and ranges from -1 to 1.

Pearson correlation:

$$\rho_{X,Y} = \text{Cov}\left(\frac{X - E(X)}{\sigma_X} \frac{Y - E(Y)}{\sigma_Y}\right)$$

- Pearson correlation measures linear correlation: if $\rho=\pm 1$, then X and Y have a perfect linear relationship.
- Spearman correlation measures nonlinear correlation:
 - Rank X and Y from smallest to largest (1 to n)
 - Spearman correlation ρ_{Spearman} is the Pearson correlation of the ranks.

Example

Generate data

```
set.seed(12345)
x <- seq(0, 1, 0.01)
y <- sinh((x - 0.5) * 10)</pre>
```

Covariance:

```
cov(x, y)
## [1] 6.315366
```

Pearson correlation:

```
cor(x, y, method = "pearson")
## [1] 0.8748097
```

- Pearson correlation $=\pm 1$ if x and y lie exactly on a line.
- Spearman correlation:

```
cor(x, y, method = "spearman")
## [1] 1
```

• Spearman correlation $=\pm 1$ if x and y lie exactly on any monotonic curve.

```
df \leftarrow tibble(x = x, y = y)
ggplot(df, aes(x = x, y = y)) + geom_point()
```


Central Limit Theorem

Central Limit Theorem

- Consider a set of M experiments, each taking No matter what distribution your data comes *n* samples of a variable x, with $X \sim \mathcal{D}$, for some distribution \mathcal{D}
- For each experiment, \overline{x} is the mean of the nobservations of *x* from that experiment
- As $n \to \infty$, the distribution of \overline{x} approaches a normal distribution with
 - Mean μ approaching $E(\mathcal{D})$
 - Variance σ approaching

$$\frac{1}{n} Var(\mathcal{D})$$

- from,
 - If you make *n* observations, and *n* is large,
 - the *average* of the observations will be normally distributed.
 - \circ The bigger n is the closer \overline{x} will be to the true mean of the distribution.
- If you want to compare two experiments, each making *n* observations,
 - you can compare the averages, using tests that assume normality.
- But this only tells you about the averages of your data.
 - Often, you want to know about the distribution your data came from.
 - e.g., estimating parameters of that distribution.

Estimating Parameters

Estimating Parameters for a Normal Distribution

- For a normal distribution,
 - Estimate mean:

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Estimate variance:

$$\hat{\sigma}^2 = s^2 = \frac{1}{n} \sum_{i=1}^n (x_i = \bar{x})^2$$

Estimating Parameters for Other Distributions

- Maximum-Likelihood Estimation
 - For data $X=(x_1,x_2,\ldots,x_n)$, and a distribution $\mathcal{D}(\Theta)$ with parameters $\Theta=(\theta_1,\theta_2,\ldots,\theta_p)$ and likelihood function $L(x|\Theta)$
 - Find values for Θ that maximize the joint likelihood of the observed x_i :

$$L(x_1, x_2, \dots, x_n | \Theta) = \prod_{i=1}^n L(x_i | \Theta)$$
 $\log L(x_1, x_2, \dots, x_n | \Theta) = \sum_{i=1}^n \log L(x_i | \Theta)$

 Using R to estimate parameters for a gamma distribution from observations x:

```
library(MASS)
fitdistr(x, "gamma")
```

- Bayesian Estimation:
 - Figure out *prior probability distributions* for $\theta_1, \theta_2, \dots, \theta_p$
 - \circ What did you already know about Θ before making the observations?
 - Use Bayes's theorem to calculate *posterior* probability distributions for $\theta_1, \theta_2, \ldots, \theta_p$

$$P(\Theta|X) = \frac{L(X|\Theta)P(\Theta)}{P(X)}$$
posterior
$$= \frac{L(X|\Theta)P(\Theta)}{\int L(X|\Theta)P(\Theta)d\Theta}$$

■ Challenge: $\int L(X|\Theta)P(\Theta)d\Theta$ is hard to compute for more than a few parameters.

• • •

Testing Hypotheses

General Strategy

- 1. Identify the test and test statistic
 - e.g., *t*-test
- 2. Define the null hypothesis
 - e.g., H_0 : $\mu = \mu_0$
- 3. Define an alternate hypothesis
 - e.g., $H_a: \mu > \mu_0$
- 4. Calculate the null distribution
 - Test statistic, assuming H_0 is true
- 5. Calculate the *p*-value
 - Cumulative probability of the test statistic, assuming H_0 is true

- Test errors:
 - Type-I: H_0 is true, but you reject it (*false positive*)
 - You don't have a disease (H_0), but a clinical test says you do.
 - \circ *p*-value is the probability of a Type-I error, if H_0 is true
 - Type-II: H_0 is false, but you don't reject it (false negative)
 - You have a disease (H_0 is false) but a clinical test says you don't.

Testing Hypotheses

- Kinds of tests:
 - What kind of distribution is it?
 - Q-Q Tests (any kind of distribution)
 - Shapiro-Wilk test (Normal only)(shapiro.test(x))
 - Goodness of fit: Does the data match a distribution with specific parameter values
 - Chi-squared test chisq.test()
 - Mostly for discrete distributions: Binomial,
 Poisson, etc.
 - Kolmogorov-Smirnov test ks.test()
 - Only for continuous distributions
 - p-values are not reliable if you estimate parameters from the data.
 - Anderson-Darling tests are better if you estimate parameters from data: AndersonDarlingTest() from DescTools package.

- Testing fit parameters:
 - Compare observations to specific parameters: one-sample tessts
 - Compare two sets of observations (do they come from the same distribution?): twosample tests
 - Normally distributed data:
 - \circ If you know the variance *a priori* and want to compare means: Z-test
 - If you don't know the variance and want to compare means: *t*-test
 - If you want to compare variance: *F*-test

Nonparametric Tests

Nonparametric Tests

- Most parametric tests only work if your data follow a parametric distribution
 - Most work only work for a Normal distribution
 - This is a historical artifact of what math people could do using pencil and paper
 - For testing means, the Central Limit
 Theorem makes normal distributions
 widely applicable.
- Nonparametric tests substitute computer power for mathematical elegance
 - They work for any distribution
 - You don't need to know a mathematical formula for the distribution

- Basic strategy:
 - Simulate a large sample of surrogate data under the null hypothesis
 - Compare this sample to the observed data
- Four ideas that use Monte Carlo methods:
 - 1. Permutation
 - 2. Reordering
 - 3. Resampling
 - 4. Direct simulation
- Monte-Carlo methods are also used for Bayesian analysis

Bayesian Hypothesis Testing

Bayesian Hypothesis Testing

- The problem:
 - The techniques we've learned only examine evidence that H_0 is *false*.
 - What about evidence that it's true?
- Bayesian methods compare a null hypothesis H_0 to an alternate hypothesis H_a and choose the one that has more evidence supporting it.
 - \blacksquare Bayes's Theorem: For a hypothesis H,

$$P(H|D) = \frac{P(D|H) P(H)}{P(D)}$$
posterior
evidence

where D is the new data and P(H) is the prior probability that H is true, based on what you knew before observing D.

- Consider two hypotheses, H_1 and H_2 :
 - The *Bayes factor K* is the ratio of probabilities that each is true:

$$K = rac{P(H_1|D)}{P(H_2|D)} = rac{\left(rac{P(D|H_1) \ P(H_1)}{P(D)}
ight)}{\left(rac{P(D|H_2) \ P(H_2)}{P(D)}
ight)}$$

P(D) cancels out, so

$$K = \frac{P(D|H_1) P(H_1)}{P(D|H_2) P(H_2)}$$

■ If you had no reason to prefer H_1 or H_2 , then $P(H_1)$ and $P(H_2)$ cancel out:

$$K = \frac{P(D|H_1)}{P(D|H_2)}$$

Bayesian Hypothesis Testing

• The *Bayes factor* K is the ratio of the posterior probabilities of H_1 and H_2 being true:

$$K = \frac{P(H_1|D)}{P(H_2|D)} = \frac{P(D|H_1) P(H_1)}{P(D|H_2) P(H_2)}$$

- If K=1, H_1 and H_2 are equally likely.
- If K > 1, bigger K gives more confidence in H_1 vs. H_2
- If K < 1, the closer K is to 0, more confidence in H_2 vs. H_1
- This says nothing about whether a third hypothesis H_3 might be more likely than H_1 or H_2 .

- There are more sophisticated Bayesian methods of comparing hypotheses.
 - Information Criteria
 - Bayesian Information Criterion (BIC) (avoid this)
 - Akaike Information Criterion (AIC) (good)
 - Watanabe-Akaike Information Criterion (WAIC) (better)
 - All of these use information theory to evaluate evidence, while accounting for degrees of freedom used in estimating parameters.
 - They allow you to compare many hypotheses all at once.
 - Beyond the scope of this course
 - Take a Bayesian methods course