assignment5

May 2, 2024

```
[2]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
 [3]: df = pd.read_csv("Iris.csv")
 [4]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 6 columns):
          Column
                        Non-Null Count
                                        Dtype
     ___
         ----
                         _____
      0
          Ιd
                         150 non-null
                                         int64
      1
          SepalLengthCm 150 non-null
                                         float64
      2
          SepalWidthCm
                         150 non-null
                                         float64
          PetalLengthCm 150 non-null
                                         float64
          PetalWidthCm
                         150 non-null
                                         float64
          Species
                         150 non-null
                                         object
     dtypes: float64(4), int64(1), object(1)
     memory usage: 7.2+ KB
[25]: sepalLengthCm = df["SepalLengthCm"]
[26]: plt.hist(sepalLengthCm, bins=50, color="red")
      plt.title("Histogram of Sepal Length")
      plt.xlabel("Frequency")
      plt.ylabel("Sepal Length (cm)")
[26]: Text(0, 0.5, 'Sepal Length (cm)')
```


df						
:	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	\
0	1	5.1	3.5	1.4	0.2	
1	2	4.9	3.0	1.4	0.2	
2	3	4.7	3.2	1.3	0.2	
3	4	4.6	3.1	1.5	0.2	
4	5	5.0	3.6	1.4	0.2	
		•••	•••	•••	•••	
145	146	6.7	3.0	5.2	2.3	
146	147	6.3	2.5	5.0	1.9	
147	148	6.5	3.0	5.2	2.0	
148	149	6.2	3.4	5.4	2.3	
149	150	5.9	3.0	5.1	1.8	
		Species				
0	Iris-setosa					
1	I	ris-setosa				
2	I	ris-setosa				
3	I	ris-setosa				

```
4 Iris-setosa
.. ...
145 Iris-virginica
146 Iris-virginica
147 Iris-virginica
148 Iris-virginica
149 Iris-virginica
[150 rows x 6 columns]
```

```
[12]: sepalWidthCm = df["SepalWidthCm"]
   petalLengthCm = df["PetalLengthCm"]
   petalWidthCm = df["PetalWidthCm"]
```

```
[21]: plt.hist(sepalWidthCm, bins=20, color="blue")
    plt.title("Histogram of Sepal Width")
    plt.xlabel("Frequency")
    plt.ylabel("Sepal Width (cm)")
```

[21]: Text(0, 0.5, 'Sepal Width (cm)')


```
[23]: plt.hist(petalLengthCm, bins=40, color="green")
   plt.title("Histogram of Sepal Length")
   plt.xlabel("Sepal Length")
   plt.ylabel("Length in cm")
```

[23]: Text(0, 0.5, 'Length in cm')


```
[24]: plt.hist(petalWidthCm, bins=20, color="yellow")
    plt.title("Histogram of Petal Width")
    plt.xlabel("Frequency")
    plt.ylabel("Petal Width in cm")
```

[24]: Text(0, 0.5, 'Petal Width in cm')


```
[31]: fig = plt.figure(figsize=(5,5))
      plt.boxplot([sepalLengthCm, sepalWidthCm, petalLengthCm, petalWidthCm])
[31]: {'whiskers': [<matplotlib.lines.Line2D at 0x24598a9bac0>,
        <matplotlib.lines.Line2D at 0x24598a9bd90>,
        <matplotlib.lines.Line2D at 0x24598aaaeb0>,
        <matplotlib.lines.Line2D at 0x24598ab81c0>,
        <matplotlib.lines.Line2D at 0x24598ac32e0>,
        <matplotlib.lines.Line2D at 0x24598ac35b0>,
        <matplotlib.lines.Line2D at 0x24598ad1700>,
        <matplotlib.lines.Line2D at 0x24598ad19d0>],
       'caps': [<matplotlib.lines.Line2D at 0x24598aaa0a0>,
        <matplotlib.lines.Line2D at 0x24598aaa370>,
        <matplotlib.lines.Line2D at 0x24598ab8490>,
        <matplotlib.lines.Line2D at 0x24598ab8760>,
        <matplotlib.lines.Line2D at 0x24598ac3880>,
        <matplotlib.lines.Line2D at 0x24598ac3b50>,
        <matplotlib.lines.Line2D at 0x24598ad1ca0>,
        <matplotlib.lines.Line2D at 0x24598ad1f70>],
       'boxes': [<matplotlib.lines.Line2D at 0x24598a9b7f0>,
```


OUTLIERS

1.) OUTLIERS IN SEPAL LENGTH (CM)

```
[50]: Q1 = np.percentile(df["SepalLengthCm"], 25, interpolation="midpoint")
  Q3 = np.percentile(df["SepalLengthCm"], 75, interpolation="midpoint")
  IQR = Q3 - Q1
  print("Quartile 1: ",Q1)
  print("Quartile 3: ",Q3)
```

```
print("Inter Quartile Range: ",IQR)

low_limit = Q1 - 1.5 * IQR

up_limit = Q3 + 1.5 * IQR

print("Lower Limit is: ",low_limit)

print("Upper Limit is: ", up_limit)

outliers = []

for x in df["SepalLengthCm"]:
    if((x>up_limit) or (x<low_limit)):
        outliers.append(x)

print("Outliers in the dataset are: ", outliers)</pre>
```

```
[49]: Q1_SepalWidthCm = np.percentile(df["SepalWidthCm"], 25,__
      ⇔interpolation="midpoint")
      Q3_SepalWidthCm = np.percentile(df["SepalWidthCm"], 75,__
       ⇔interpolation="midpoint")
      IQR = Q3 - Q1
      print("Quartile 1: ",Q1)
      print("Quartile 3: ",Q3)
      print("Inter Quartile Range: ",IQR)
      low_limit = Q1 - 1.5 * IQR
      up limit = Q3 + 1.5 * IQR
      print("Lower Limit is: ",low_limit)
      print("Upper Limit is: ", up_limit)
      outliers = []
      for x in df["SepalWidthCm"]:
          if((x>up_limit) or (x<low_limit)):</pre>
              outliers.append(x)
      print("Outliers in the Sepal Width (Cm) are: ", outliers)
```

Quartile 1: 5.1

Quartile 3: 6.4

Inter Quartile Range: 1.30000000000007

Lower Limit is: 3.149999999999986

```
Upper Limit is: 8.35000000000001
     Outliers in the Sepal Width (Cm) are: [3.0, 3.1, 2.9, 3.1, 3.0, 3.0, 3.0, 3.1,
     3.1, 3.1, 3.0, 2.3, 3.0, 3.1, 2.3, 2.8, 2.8, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9,
     2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4,
     2.4, 2.7, 2.7, 3.0, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9,
     2.5, 2.8, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 2.7, 3.0, 2.5, 2.8, 3.0, 2.6,
     2.2, 2.8, 2.8, 2.7, 2.8, 3.0, 2.8, 3.0, 2.8, 2.8, 2.8, 2.6, 3.0, 3.1, 3.0, 3.1,
     3.1, 3.1, 2.7, 3.0, 2.5, 3.0, 3.0]
     3.) OUTLIERS IN PETAL LENGTH (CM)
[48]: Q1_PetalLengthCm = np.percentile(df["PetalLengthCm"], 25,
       ⇔interpolation="midpoint")
     Q3_PetalLengthCm = np.percentile(df["PetalLengthCm"], 75,__
      ⇔interpolation="midpoint")
     IQR = Q3 - Q1
     print("Quartile 1: ",Q1)
     print("Quartile 3: ",Q3)
     print("Inter Quartile Range: ",IQR)
     low_limit = Q1 - 1.5 * IQR
     up limit = Q3 + 1.5 * IQR
     print("Lower Limit is: ",low_limit)
     print("Upper Limit is: ", up_limit)
     outliers = []
     for x in df["PetalLengthCm"]:
         if((x>up_limit) or (x<low_limit)):</pre>
              outliers.append(x)
     print("Outliers in the Petal Width (Cm) are: ", outliers)
     Quartile 1: 5.1
     Quartile 3: 6.4
     Inter Quartile Range: 1.300000000000007
     Lower Limit is: 3.149999999999986
     Upper Limit is: 8.35000000000001
     Outliers in the Petal Width (Cm) are: [1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5,
     1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7,
     1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.5, 1.3, 1.5,
     1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 3.0]
     4.) OUTLIERS IN PETAL WIDTH (CM)
[51]: Q1_PetalWidthCm = np.percentile(df["PetalWidthCm"], 25,__
      Q3 PetalWidthCm = np.percentile(df["PetalWidthCm"], 75,11
       ⇔interpolation="midpoint")
```

```
IQR = Q3 - Q1
print("Quartile 1: ",Q1)
print("Quartile 3: ",Q3)
print("Inter Quartile Range: ",IQR)
low_limit = Q1 - 1.5 * IQR
up_limit = Q3 + 1.5 * IQR
print("Lower Limit is: ",low_limit)
print("Upper Limit is: ", up_limit)
outliers = []
for x in df["PetalWidthCm"]:
    if((x>up_limit) or (x<low_limit)):</pre>
        outliers.append(x)
print("Outliers in the Petal Width (Cm) are: ", outliers)
Quartile 1: 5.1
Quartile 3: 6.4
Inter Quartile Range: 1.300000000000007
Lower Limit is: 3.149999999999986
Upper Limit is: 8.35000000000001
Outliers in the Petal Width (Cm) are: [0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2,
0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5,
0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.1, 0.2, 0.2, 0.1, 0.2, 0.2,
0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3,
1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3,
1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3,
1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8,
2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5,
2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3,
2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
```

9

[]: