

# TDT4136 - Introduction to Artificial Intelligence Assignment 5

## **Propositional and First Order Logic**

*Name:*Sofie Othilie Dregi

## Inn holds for tegnelse

| 1. | Models and entailment in propositional logic | 1 |
|----|----------------------------------------------|---|
|    | 1.1. Validity and Soundness                  | 1 |
|    | 1.2. Modelling                               | 1 |
|    | 1.3. Modelling 2                             | 2 |
| 2. | Resolution in propositional logic            | 3 |
|    |                                              |   |
|    | 2.1. Conjunctive Normal Form                 | 3 |
|    | 2.2. Inference in propositional logic        | 3 |
| 3. | Representation in First-Order Logic (FOL)    | 4 |
|    | 3.1. a) Argument A                           | 4 |
|    | 3.2. b) Argument B                           | 4 |
| 4. | Resolution in FOL                            | 5 |

#### 1. Models and entailment in propositional logic

#### 1.1. Validity and Soundness

- (a) Generate the vocabulary of the following argument.
- (b) Translate the argument into propositional logic statements.
- (c) Add a premise (P4) to make the conclusion of the argument valid.

P1 to P3 are the premises, C is the conclusion:

- (P1) If Peter's argument is valid and all the premises of Peter's argument are true, then Peter's argument is sound.
- (P2) If the premises of Peter's argument entail the conclusion of Peter's argument, then Peter's argument is valid.
- (P3) The premises of Peter's argument entail the conclusion of Peter's argument.
- (C) Peter's argument is sound.

#### 1.2. Modelling

A sentence is satisfiable if it is true in or satisfied by some model.

(a) 
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r) \Rightarrow (q \Rightarrow r)$$

| p | q | r | $p \Rightarrow q$ | $p \Rightarrow r$ | $q \Rightarrow r$ | $(p \Rightarrow r) \Rightarrow (q \Rightarrow r)$ | Total |
|---|---|---|-------------------|-------------------|-------------------|---------------------------------------------------|-------|
| 0 | 0 | 0 | 1                 | 1                 | 1                 | 1                                                 | 1     |
| 0 | 0 | 1 | 1                 | 1                 | 1                 | 0                                                 | 0     |
| 0 | 1 | 0 | 1                 | 1                 | 0                 | 0                                                 | 0     |
| 0 | 1 | 1 | 1                 | 1                 | 1                 | 1                                                 | 1     |
| 0 | 0 | 0 | 1                 | 1                 | 1                 | 1                                                 | 1     |
| 0 | 0 | 1 | 1                 | 1                 | 1                 | 1                                                 | 1     |
| 1 | 1 | 0 | 1                 | 1                 | 0                 | 0                                                 | 0     |
| 1 | 1 | 1 | 1                 | 1                 | 1                 | 1                                                 | 1     |
| 1 | 0 | 0 | 0                 | 0                 | 1                 | 1                                                 | 1     |
| 1 | 0 | 1 | 0                 | 1                 | 1                 | 1                                                 | 1     |
| 1 | 1 | 0 | 1                 | 0                 | 1                 | 0                                                 | 1     |
| 1 | 1 | 1 | 1                 | 1                 | 1                 | 1                                                 | 1     |

(b)  $(p \lor (\neg q \Rightarrow r)) \Rightarrow (q \lor (\neg p \Rightarrow r))$ 

| p | q | r | $\neg q \Rightarrow r$ | $p \lor (\neg q \Rightarrow r)$ | $\neg p \Rightarrow r$ | $q \lor (\neg p \Rightarrow r)$ | Total |
|---|---|---|------------------------|---------------------------------|------------------------|---------------------------------|-------|
| 0 | 0 | 0 | 1                      | 1                               | 1                      | 1                               | 1     |
| 0 | 0 | 1 | 1                      | 1                               | 1                      | 0                               | 0     |
| 0 | 1 | 0 | 1                      | 1                               | 0                      | 0                               | 0     |
| 0 | 1 | 1 | 1                      | 1                               | 1                      | 1                               | 1     |
| 0 | 0 | 0 | 1                      | 1                               | 1                      | 1                               | 1     |
| 0 | 0 | 1 | 1                      | 1                               | 1                      | 1                               | 1     |
| 1 | 1 | 0 | 1                      | 1                               | 0                      | 0                               | 0     |
| 1 | 1 | 1 | 1                      | 1                               | 1                      | 1                               | 1     |
| 1 | 0 | 0 | 0                      | 0                               | 1                      | 1                               | 1     |
| 1 | 0 | 1 | 0                      | 1                               | 1                      | 1                               | 1     |
| 1 | 1 | 0 | 1                      | 0                               | 1                      | 0                               | 1     |
| 1 | 1 | 1 | 1                      | 1                               | 1                      | 1                               | 1     |

### 1.3. Modelling 2

## 2. Resolution in propositional logic

- 2.1. Conjunctive Normal Form
- 2.2. Inference in propositional logic

## 3. Representation in First-Order Logic (FOL)

- 3.1. a) Argument A
- 3.2. b) Argument B

## 4. Resolution in FOL