

Atomic and ionic radii

1. (b) Value of Z for hydrogen =1

Value of Z for helium = 2

Value of n for both is = 1

$$r_H = \frac{0.52 \times 1^2}{1} \ r_{He^+} = \frac{0.52 \times 1^2}{1}$$

$$\frac{r_H}{r_{He^+}} = 1:1 \text{ or } r_{He^+}: r_H = 1:1$$

- **2.** (d) The size of an species decreases with increasing nuclear charge because the attraction for the electrons increases. Thus Al^{3+} is smaller in size.
- **3.** (c) As the nuclear charge per electron is maximum in F^- . Therefore it is smallest in size.
- 4. (a) During the formation of cation the size decreases.
- 5. (a) Cl⁻

(a) Cl $^-$ (Z=17, gains 1e $^- o 18e^-$ total)

Extra electron increases repulsion → radius increases.

DUCATI

lonic radius ≈ 181 pm.

(b) Ar (Z=18, neutral atom)

Noble gas, no extra electron cloud expansion.

Atomic radius ≈ **71 pm**.

(c) K^+ (Z=19, loses $1e^- \rightarrow 18e^-$ total)

Positive charge shrinks radius (due to increased nuclear pull).

Ionic radius ≈ 138 pm.

(d) Ca^{2+} (Z=20, loses $2e^- \rightarrow 18e^-$ total)

Higher positive charge shrinks size even more.

lonic radius ≈ 100 pm.

Order of sizes: $CI^- > K^+ > Ca^{2+} > Ar$

IIT-JEE CHEMISTRY

- 6. (d) Highest the nuclear charge smallest the atomic size as well as radius also.
- **7.** (a) Atomic radius decreases on going from left to right in a period. Thus size of O > F. As O^{2-} and F^{-} are isoelectronic, therefore, size of $O^{2-} > F^{-}$.
- **8.** (b) As the nuclear charge per e^- is maximum in Mg^{+2} , it has smallest size among Na^+, Mg^{+2}, Cl^- and F^- .
- **9.** (b) S^{2-} and Cl^- both are isoelectronic but nuclear charge of Cl^- is more than S^{2-} . So it has largest size.
- 10. (d) In completely filled shell inter atomic repulsion is more so have greater size.
- **12.** (d) I^- as it has the biggest size.
- 13. (d) Mg, as we move across the period atomic radius decreases.
- **14.** (a) O^{-2} has the highest value of ionic radii as this can be explained on the basis of $Z/e\left\{\frac{\text{Nucleaus charge}}{\text{No. of electron}}\right\}$

Whereas Z / e ration increases, the size decreases and when Z / e ration decreases the size increases.

- 15. (a) Continuous increase as no. of shells increases down the group.
- **16.** (d) $Na^+ < F^- < 0^{2-} < N^{3-}$ All are isoelectronic, effective number charge is highest for Na^+ so it has smallest size.

ESTD: 2005

17. (d)
$$I^-_{54} > I_{53} > I^+_{52 \text{atmoic number}}$$

19. (a) Continuously decreases as the effective nuclear charge increases.

IIT-JEE CHEMISTRY

- **20.** (a) $Mg^{2+} < Na^+ < F^- < Al$ F^- has bigger size than Mg^{2+} and Na^+ due to small nuclear charge.
- **21.** (b) More than F^- as K^+ has more no of shells in atomic state.
- **22.** (d) All are isoelectronic but O^{2-} has lowest charge among them. So it is largest in size.
- **23.** (a) As effective nuclear charge on Na^+ is maximum. It has smallest size.
- 24. (a) Atomic number

As we move **down a group**, a **new electron shell (energy level)** is added each time.

This increases **atomic number (Z)**, atomic size, and ionic radius. The **cause** is **increasing atomic number**, not weight or mass.

EDUCATIONAL
PLATFORM
ESTD: 2005

