HDMI/DVI的传输协议

HDMI/DVI虽然已有多个版本,但其调用其IP核后的传输协议是相互兼容的,现有传输协议主要有CEA861和BT1120两种

CEA861 时序:

HDMI/DVI的传输协议

BT1120 时序:

CEA-861是美国电子消费品制造商协会(Consumer Electronics Association,CEA)制定的"未压缩数字视频标准

BT1120是高清晰度电视演播室信号数字接口协议

器件型号:

导入源文件:

添加外部IP核的方式:

添加外部IP核的方式:

HDMI/DVI 两个IP核的参数:

添加外部IP核的方式:

HDMI/DVI 两个IP核的参数:

HDMI/DVI 两个IP核的参数:

代码讲解

hdmi_controller.v

```
input
              sys clk
input
              rst n
input [23:0]
              data
      clk out
output
output [2:0]
              hdmi out data n ;
              hdmi out data p ;
output [2:0]
              hdmi out clk p ;
output
              hdmi out clk n ;
output
              hdmi out cec ;
output
              col pixel number;
output [11:0]
              row pixel number;
output [10:0]
```

data为24位, 前8位为红色 中间8位为蓝色 后8位为绿色 如要打印纯红色 data=24'dFF_00_00

代码讲解

三段式状态机: traffic_led.v

三个always块

同步时序描述状态转移:

```
always@(posedge clk or posedge rst) begin

if(rst) begin

c_state <= GREEN;

end

else begin

c_state <= n_state;

end

end

end

end

end

end</pre>
```

组合逻辑判断转移条件:

同步时序描述每个状态的输出:

```
always@(posedge clk or posedge rst) begin
        green <= 1'b0;
        red <= 1'b0;
        yellow<= 1'b0;
        light cnt <= 6'b0;
   else begin
        case(c_state)
            GREEN: begin
                if(light_cnt == GREEN_CNT) begin
                    light_cnt <= 6'b0;
                    light_cnt <= light_cnt + 6'b1;</pre>
                green <= 1'b1;
                red <= 1'b0;
                yellow<= 1'b0;
            YELLOW: begin
                if(light cnt == YELLOW CNT) begin
                    light_cnt <= 6'b0;
                    light cnt <= light cnt + 6'b1;
                green <= 1'b0;
                red <= 1'b0;
                yellow<= 1'b1;
                if(light_cnt == RED_CNT) begin
                    light_cnt <= 6'b0;
                    light_cnt <= light_cnt + 6'b1;</pre>
                green <= 1'b0;
                red <= 1'b1;
                yellow<= 1'b0;
```

模块讲解

模块讲解

模块讲解

circle_h_max_table.coe和circle_h_min_table.coe


```
circle_h_max_table u_circle_h_max_table(
    .addra(addr[9:0]),
    .clka(clk),
    .douta(circle_h_max)
);
circle_h_min_table u_circle_h_min_table(
    .addra(addr[9:0]),
    .clka(clk),
    .douta(circle_h_min)
);
```


生成比特流文件:

编程下载:

- PROGRAM AND DEBUG
 - Generate Bitstream
 - Open Hardware Manager

编程下载:

注意,请接通板卡电源并开机!

编程下载:

编程下载:

FPGA设计流程

模块思路

paint_a_circle

整体架构

实验任务&评分标准

利用提供IP核及hdmi_controller.v代码完成HDMI/DVI传输协议的通信,达到如下效果:

 以本
 場
 財政
 红
 サ不り
 绿

 延时(s)
 10
 5
 10
 5
 10

3、加入按键消抖模块,xdc文件加上按键输入,实现如下时序,分值15:初始状态:绿灯亮10秒,黄闪5秒,红灯亮10秒,黄不闪5秒,绿灯亮10秒

按键按下:一直为红灯

再次按下:绿灯亮10秒,黄闪5秒,红灯亮10秒,黄不闪5秒,绿灯亮10秒

再次按下:一直为红灯

• • • • • •

第一次大作业

✓任务:

- 1)完成实验任务
- 2) 5月9日下课之前找助教现场验收
- 3) 5月9日下课之前提交实验报告
- √报告格式要求: 电子档, pdf, 文件命名 "第N次 大作业_学号_姓名", 如: 第1次大作业 _202252012031_魏浩杰;
- ✓提交方式: 5月9日下课之前提交至助教邮箱: 3136302362@qq.com, 逾期酌情扣分,请同学们注意按时提交作业。