Sistemas de Telecomunicações

5ª Aula

Rede Digital com Integração de Serviços de Banda Larga RDIS - BL

Conteúdo

- RDIS BL
 - Modos de Transferência de Informação
 - Princípios Básicos
 - A Camada ATM
 - A Camada de Nível Físico
 - Classes de Serviço, ATCs, Categorias de Serviço
 - A camada de Adaptação AAL
 - Gestão e Controlo de Tráfego

Introdução

• Definição:

- O termo "modo de transferência" é usado pelo ITU-T para descrever a técnica usada na rede de telecomunicações, cobrindo aspectos relacionados com a transmissão, multiplexagem e comutação
- As redes telefónicas digitais e as redes de dados recorrem a diferentes técnicas de comutação e concentração (multiplexagem) da informação
- A transferência da informação é essencialmente efectuada por comutação de circuitos ou por comutação de pacotes.

Modos de Transferência de Informação

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Comutação de Circuitos

- Modo de transferência característico das redes telefónicas digitais
- Estabelecimento de um circuito durante a chamada
 - TDM Time Division Multiplexing
 - Também vulgarmente referido como STM Synchronous Transfer Mode

Características:

- A informação é transferida com uma dada frequência (e.g. 8 bits em cada 125μs para 64kbit/s ou 1000 bits em cada 125μs para 8Mbit/s
- A unidade básica de repetição, correspondente a cada fluxo individual de informação, é chamada time-slot
- Várias ligações são multiplexadas temporalmente numa única ligação física através da associação de vários time-slots numa trama, que se repetirá igualmente a uma dada frequência.
- Uma ligação (i.e. um circuito) usará sempre o mesmo time-slot da trama durante a duração completa da chamada

Comutação de Circuitos

- A comutação de circuitos pode ser efectuada internamente na central de comutação através de comutação espacial, comutação temporal ou uma combinação das duas
- A comutação de um circuito de uma linha de entrada para uma linha de saída é controlada por uma tabela de conversão, que contém a relação da linha de entrada e do número do time-slot, com a linha de saída e do time-slot associado
- A comutação de circuitos é pouco flexível já que, uma vez determinada a duração do time-slot, a taxa de transmissão é fixa

Comutação de Circuitos

Características:

- Versão melhorada da Comutação de Circuitos de modo a evitar a falta de flexibilidade em que os canais possuem apenas um ritmo fixo
- Sistema de transmissão idêntico ao anterior
- Uma conexão pode alocar mais do que um canal básico
- Cada conexão é constituída por uma associação de um ou mais canais básicos
- Esta técnica é usada, por exemplo, no serviço de Vídeo-telefone em RDIS

Desvantagens:

- Os sistemas baseados neste modo de comutação tornam-se mais complexos
- Os canais individuais de uma conexão necessitam de estar sincronizados

- Desvantagens (continuação):
 - Se cada canal for comutado individualmente, a sincronização entre os canais, ao longo da rede, não é garantida
 - A informação de um canal pode ser comutada com um atraso diferente da de um outro. Este facto não é aceitável do ponto de vista do serviço, já que um terminal considera todos os canais como uma única entidade
 - Problema: Selecção do ritmo básico.
 - alguns serviços, tais como telemetria, requerem um baixo ritmo (e.g. 1kbit/s)
 - serviços como HDTV (High Definition TeleVision) podem necessitar de um ritmo da ordem das dezenas de Mbit/s
 - Logo, se o ritmo básico é determinado pelo mínimo (1kbit/s no exemplo), um número elevado de canais básicos seria necessário para construir um canal de alto débito (dezenas de milhar)
 - Gestão de todos estes canais bastante complexa

- Desvantagens (continuação):
 - Se o ritmo do canal básico for seleccionado para um valor superior, de modo a reduzir a complexidade em termos de gestão dos canais individuais, então o desperdício de banda torna-se elevado para aplicações de baixo débito
 - De modo a ultrapassar o problema da selecção do ritmo básico, uma outra solução foi proposta:
 - Uso de múltiplos ritmos básicos
 - Nesta solução, uma trama é dividida em time-slots de comprimentos diferentes
 - um canal de 139.264kbit/s é multiplexado com 7 canais de 2.048kbit/s, 30 canais B, e um canal D de 64kbit/s para sinalização
 - Os sistemas de comutação desenvolvidos para esta solução consistem em comutadores sobrepostos, estando atribuído a cada comutador individual um ritmo básico específico

- Distribuição de TV
- Som estereófonico
- Dados de alta velocidade

- RDIS de Banda Estreita

Desvantagens:

- Usa os recursos dum modo ineficiente
- Supondo que todos os canais H1 estão ocupados, não é possível estabelecer nenhuma conexão adicional H1, mesmo que o comutador H4 esteja completamente livre
- Problemas de flexibilidade: uma vez estabelecidas as taxas dos canais básicos, todos os serviços devem tentar adaptar-se a um dos canais básicos disponíveis, mesmo que seja dum modo ineficiente
- Incapacidade para suportar, eficientemente, fontes com um comportamento flutuante em termos de débito
- Os recursos da rede são ocupados mesmo quando o terminal está inactivo
- Experiências baseadas neste conceito foram testadas em vários países
- Devido à sua ineficiência e pouca flexibilidade não foi adoptado pelo ITU-T

Comutação Rápida de Circuitos

Objectivo:

 Estender o conceito de comutação de circuitos a fontes com características de tráfego flutuante ou do tipo rajada (bursty)

Princípios:

- Os recursos da rede só são alocados durante a transferência da informação e libertados quando nenhuma informação está a ser enviada
- Durante o estabelecimento da chamada, o utilizador requisita uma banda igual a um múltiplo inteiro do ritmo básico
- O sistema não faz imediatamente a alocação dos recursos; em vez disso, guarda a informação no comutador relativa à banda requerida e ao endereço de destino
- Seguidamente, associa um cabeçalho no canal de sinalização que vai identificar a conexão
- Quando a fonte começa a enviar informação, o cabeçalho indica que a fonte tem informação para transmitir, requisitando ao comutador a alocação imediata dos recursos necessários

Comutação Rápida de Circuitos

Desvantagens:

- Devido aos recursos serem alocados a pedido, pode acontecer que o sistema seja incapaz de satisfazer pedidos momentâneos dos utilizadores, se não houver recursos disponíveis
- devido à complexidade em gerir um sistema deste género (em especial o tratamento da sinalização a uma taxa elevada), este modo de comutação torna-se pouco adequado

Comutação de Pacotes

- A informação do utilizador é encapsulada em pacotes que contêm informação adicional (no cabeçalho) usada no interior da rede para encaminhamento, correcção de erros, controlo de fluxo, ...
- Estas redes, tais como a rede X.25, foram criadas nos anos 70, em que a qualidade dos meios de transmissão era relativamente fraca e os débitos no acesso à rede baixos (da ordem dos kbit/s)
- De modo a garantir um desempenho ponto-a-ponto aceitável, em cada ligação da rede, foi necessário implementar protocolos complexos que efectuavam, basicamente, o controlo de erros e de fluxo em cada troço da rede
- Os pacotes possuem um comprimento variável e, por isso, requerem uma gestão complexa de buffers no interior da rede
- A velocidade lenta de operação possibilita ao software de controlo um desempenho adequado, mas produz atrasos relativamente longos

Comutação de Pacotes

- A elevada complexidade dos protocolos aumenta substancialmente os requisitos de processamento e o atraso de comutação no interior da rede
- Torna-se difícil aplicar esta técnica a serviços de tempo real (o atraso é elevado devido às retransmissões de pacotes com erro) e a serviços de débito elevado (os requisitos de processamento são muito elevados)
- Bastante eficiente em aplicações de transferência de dados de baixo débito, de que foi exemplo a rede X.25
- Como consequência da evolução da comutação em modo pacote na rede pública digital, desenvolveram-se soluções alternativas designadas por frame-relaying e frame-switching, contempladas pelo ITU-T
 - Estas soluções requerem menos funcionalidade na rede que o X.25 e são possíveis devido ao aumento da qualidade das ligações, com a consequente redução da complexidade nas funções a implementar nos nós, o que permite elevar o débito das ligações

Comutação Rápida de Pacotes - ATM

- Em inglês: Fast Packet Switching
 - Conceito que cobre diversas alternativas, todas elas com uma característica básica comum - comutação de pacotes com reduzidas funções de rede
- Nomes mais vulgares:
 - ATM (ATM, Asynchronous Transfer Mode) que é a designação oficialmente usada pelo ITU-T
 - ATD (ATD, Asynchronous Time Division) o nome originalmente usado pelo CNET (CNET, Centre National d'Etudes des Telecommunications) e mais tarde adoptado na Europa
 - FPS (FPS, Fast Packet Switching), a técnica mais aprofundada nos Estados Unidos

Comutação Rápida de Pacotes - ATM

- Permite uma operação assíncrona entre o relógio de emissão e o relógio de recepção
- Não impõe uma relação temporal pré-definida entre os tempos de transmissão de unidades consecutivas (pacotes, tramas, células, etc)
- A diferença entre os dois relógios pode ser facilmente resolvida através da inserção / remoção de pacotes vazios na trama de informação, isto é, pacotes que não contêm informação útil
- Possibilidade de transportar qualquer serviço independentemente das suas características, tais como débito, requisitos de qualidade ou a natureza bursty
 - Motivação principal para o ITU-T adoptar o ATM como o modo de transferência para a RDIS de Banda Larga

ATM Asynchronous Transfer Mode

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Princípios básicos

Vantagens:

- Flexibilidade e capacidade de evolução:
 - Os avanços no estado da arte dos algoritmos de codificação e da tecnologia VLSI tendem a reduzir os requisitos de largura de banda dos serviços existentes
 - Novos serviços poderão surgir com características ainda desconhecidas
 - Todas estas transformações poderão vir a ser suportadas com sucesso, sem nenhuma alteração e sem perda de eficiência na rede ATM
 - Os sistemas ATM (transmissão, comutação e multiplexagem) não necessitam de ser modificados

— Uso eficiente dos recursos:

- Todos os recursos disponíveis na rede podem ser usados por todos os serviços, o que possibilita uma óptima distribuição estatística de recursos
- Não existe especialização de recursos na rede ATM, o que significa que qualquer recurso disponível pode ser usado por qualquer serviço

Princípios básicos

- Vantagens (continuação):
 - Rede Universal de serviços:
 - Uma vez que só uma rede necessita de ser projectada, controlada, implementada e mantida, os custos globais do sistema deverão ser reduzidos devido a economias de escala
 - Estas vantagens beneficiariam todos os membros envolvidos no mundo das telecomunicações: clientes, operadores e fabricantes
 - O modo ATM foi adoptado pelo ITU como sendo o modo de transferência de informação para a RDIS de banda larga, tendo o ITU publicado as primeiras 13 recomendações sobre ATM em 1990. Estas recomendações, para além de referirem os aspectos gerais de ATM, definem as características funcionais da rede ATM:
 - o modelo de referência de protocolos
 - as características funcionais das diferentes camadas
 - as especificações da interface utilizador-rede
 - princípios de operação e manutenção

Princípios básicos

- Modo de transferência orientado a conexões
 - estabelecem-se conexões sobre canais virtuais
 - estabelecidas através de sinalização / procedimentos de gestão
 - possibilidade de garantir objectivos de qualidade de serviço (QoS)
 - as decisões de encaminhamento são efectuadas uma só vez no estabelecimento de conexões
- A informação é encapsulada em células de comprimento reduzido e fixo
 - limita os atrasos de empacotamento e atrasos em filas de espera
 - reduz a complexidade das filas de espera mais faceis de gerir
 - simplifica as estruturas de comutação
 - reduz a eficiência (valor máximo = (53 5) / 53 = 90.57%
 - exige fragmentação e reassemblagem de unidades de dados de serviço

Modelo Protocolar de Referência

 Tal como no PRM da RDIS, existem três planos:

utilizador -> onde é efectuado o transporte da informação a ele associado

controlo -> lida principalmente com informação de sinalização

gestão -> usado para coordenar a interacção entre os planos e executar funções operacionais

As funções das camadas superiores do PRM são dependentes dos serviços e a camada de adaptação AAL

AAL - ATM Adaptation Layer executa funções dependentes dos serviços suportados pelas camadas superiores

Funções e subcamadas do PRM

Camadas Superiores								
Convergência	CS	AAL						
Segmentação e Reunião	SAR							
Controlo Global de Fluxo								
Geração e Extracção do Cabeçalho da Célula								
Comutação								
Multiplexagem e Desmultiplexagem de Células								
Desacoplamento do débito de célula								
Verificação / Criação da sequência do HEC do Cabeçalho								
Delineação de Células TC								
Adaptação para a transmissão de tramas		PL						
Inserção e extracção de células em tramas								
Extracção do Relógio de bit PM								
Meio Físico								

- CS Convergence Sublayer
- SAR Segmentation and Reassembly Sublayer
- PL Physical Layer
- PM Physical Medium
- TC Transmission Convergence

- Em ATM a estrutura básica das redes temporais síncronas é mantida, sendo transportado um bloco de informação de dimensão fixa em cada intervalo de tempo - slot
- A este bloco de informação chama-se célula
- As células são transportadas na rede com base numa etiqueta (label multiplexing) não ocupando por isso uma posição fixa no tempo como acontece no modo de comutação de circuitos

- O cabeçalho contém, entre outros parâmetros, os que permitem fazer o encaminhamento da célula através da rede
- O outro campo é destinado a transportar a informação do utilizador (payload)

- As características da camada ATM são independentes do sistema de transmissão e do meio de transmissão utilizados
- A adaptação da camada ATM ao sistema de transmissão é feita ao nível da camada Física
- Esta separação, entre a camada ATM e a transmissão, permite que comutadores e multiplexers ATM, possam ser introduzidos na rede e evoluir independentemente dos aspectos de transmissão da rede
- Ao nível da camada ATM só o cabeçalho é processado, uma vez que o campo de informação só é processado nos extremos de uma ligação
- O cabeçalho permite implementar um conjunto de funções reduzidas
 - redução de funções de processamento permite velocidades elevadas

 A estrutura do cabeçalho da célula ATM é diferente na interface utilizador-rede (UNI, User Network Interface) e nas interfaces internas da rede, designadas interfaces entre nós da rede (NNI, Network Node Interface)

8	7	6	5	4	3	2	1	
GFC / VPI			VPI				1	
VPI			VCI				2	
VCI							3	
VCI				PT		CLP	4	
HEC							5	

- A diferença consiste somente na existência do campo para controlo de fluxo (GFC, Generic Flow Control), que é utilizado na interface UNI, no caso de existirem configurações com múltiplos utilizadores, para controlar o acesso destes à rede
- Como GFC é desnecessário nas interfaces internas da rede, é aproveitado nas interfaces entre os nós para aumentar o comprimento do campo VPI

- A identificação de um canal lógico ATM está dividida em duas entidades hierárquicas:
 - caminho virtual (VP, Virtual Path)
 - canal virtual (VC, Virtual Channel)
- Estas entidades são identificadas no cabeçalho da célula pelo identificador de caminho virtual
 - VPI, Virtual Path Identifier
 - VCI, Virtual Channel Identifier
- Assim, num dado Caminho Virtual será possível transportar 65 536 (2¹⁶)
 Canais Virtuais
- Numa dada interface, um canal de comunicação é identificado pelo campo (VPI+VCI) completo
- A existência de caminhos virtuais permite que a rede suporte ligações semi-permanentes entre utilizadores, comutando caminhos virtuais
 - tratando de um modo global todos os canais virtuais pertencentes a um caminho virtual

A Camada ATM - Canais Virtuais e Caminhos Virtuais

Conceito de Canal e Caminho Virtual

Comutação de Canais e Caminhos Virtuais

- O bit CLP (CLP, Cell Loss Priority) indica a prioridade de perda de célula e é manipulado quer pelo nó de origem da célula, quer por um nó intermédio de comutação
- Permite atribuir dois níveis de QoS associados à célula normal (CLP=0) e baixa prioridade (CLP=1)
- No caso de congestionamento da rede nos nós de comutação, as células de prioridade mais baixa serão as primeiras a ser eliminadas

- Os três bits PT (PT, Payload Type) veiculam informação entre entidades existentes ao nível da camada ATM e indicam o tipo de informação contida na célula
 - A célula pode conter informação do utilizador, informação para gestão e manutenção da rede, ou pode veicular informação acerca do congestionamento da rede observado pela célula
 - Outra função importante implementada por este campo é o AAU (AAU, ATM User to User Indication) usada pela camada AAL-5 para indicar a última célula de um pacote da camada de utilizador
- O campo HEC (HEC, *Header Error Control*) é um campo para controlo de erros no cabeçalho
- Devido ao mecanismo de controlo de erros ser também usado para determinar a delimitação de células, remete-se a sua descrição quando se abordar a camada de nível físico

Fluxo de Células ATM

• Tipos de células:

- células de utilizador Inseridas com débito variável (em função das características do serviço)
- células nulas inseridas quando não existe informação útil a transmitir
- células de sinalização funções de controlo
- células de gestão funções de OAM e de gestão de recursos de rede

Indicadores de canais virtuais - referenciam univocamente as células de um dado canal virtual numa ligação entre dois nós, tendo apenas significado local — não funcionam como um endereço.

Multiplexagem estatística de células ATM

- A ocupação útil de uma ligação depende da competição das diversas conexões
- É necessário utilizar filas de espera para gerir eventuais conflitos de acesso nos pontos de acesso e nos nós da rede
- Consequências sobre a qualidade de serviço:
 - atrasos variáveis
 - eventual perda de células (em situações de congestionamento)

Comutação de células ATM

- Comutação espacial: encaminhamento de células das portas de entrada para as de saída, implementando um processo de multiplexagem com filas de espera (FIFOs)
- Comutação de cabeçalhos: troca de identificadores de canais virtuais das ligações de entrada para as ligações de saída

A camada de Nível Físico

- A camada de nível físico assegura a transmissão de células da camada ATM ou do plano de gestão do modelo de referência protocolar (PRM). Está dividida em 2 subcamadas:
 - A subcamada superior, chamada subcamada de Convergência (TC) para a Transmissão
 - A subcamada inferior, chamada subcamada do Meio Físico (PM)
- As funções principais da subcamada de convergência para a transmissão são:
 - Adaptação do fluxo de células ao sistema de transmissão usado
 - conseguido através da inserção de células vazias de modo a preencher a capacidade de transmissão não usada
 - Construção do formato de trama do sistema de transmissão usado
 - Processamento dos campos de controlo das tramas de nível físico
 - Inserção e remoção de células ATM de e para o nível físico
 - Delimitação de células
 - Detecção de erros através da análise do cabeçalho da célula ATM

A camada de Nível Físico

- A realização das funções da subcamada do meio físico (PM) está inteiramente dependente do meio de transmissão utilizado. As funções principais realizadas são:
 - codificação de linha
 - regeneração de bits
 - conversão electro-óptica

Delimitação de células e controlo de erros

- O mecanismo de delimitação da célula é baseado na correlação que existe entre o valor do cabeçalho da célula e o campo HEC para controlo de erros no cabeçalho
- O campo HEC é um octeto que corresponde ao resto da divisão módulo 2, do cabeçalho da célula, excluindo o HEC, multiplicado por x⁸, pelo polinómio gerador x⁸+x²+x+1
- A utilização do HEC permite corrigir um bit e detectar múltiplos bits em erro, de acordo com o seguinte algoritmo:

Delimitação de células e controlo de erros

 Este diagrama de estados ocorre na recepção e tem o estado de Fora de Sincronismo como estado inicial

- Outras alternativas de delineação (rejeitadas por não serem tão eficazes):
 - palavra de alinhamento em cada célula reduz a eficiência
 - células regulares de sincronização reduz a eficiência
 - células vazias poderiam demorar um tempo excessivo a chegar

Sistemas de Transmissão de células ATM

- Em geral, qualquer sistema de transmissão com baixa taxa de erros e largura de banda adequada é candidato ao transporte de células ATM
- No entanto, os sistemas de transmissão baseados nas hierarquias digitais síncronas e plesiócronas são os que estão implementados em maior número
- Nas hierarquias digitais síncronas, os sistemas SDH e SONET estão bastante implementados a 155Mbit/s embora sejam usados os débitos de 52Mbit/s (SONET) e 622Mbit/s (SONET e SDH)
- Nas hierarquias plesiócronas, os sistemas E1 e E3, com débitos de 2Mbit/s e 34Mbit/s, respectivamente são os mais usados na Europa enquanto que os sistemas DS-1 e DS-3 com débitos de 1.5Mbit/s e 45Mbit/s, respectivamente são os mais usados nos EUA

Sistemas de Transmissão de células ATM SDH e SONET

 No caso do transporte de células ATM, tanto a rede SDH como a rede SONET usam o formato de dados de transporte VC-4

Sistemas de Transmissão de células ATM SDH e SONET

- A capacidade útil de transmissão desta estrutura é de 260 X 9 = 2340 octetos
 - Este valor como não é múltiplo do tamanho das células ATM,
 faz com que a posição ocupada por estas não seja fixa
- Deste modo, a delimitação das células na recepção é efectuada:
 - à custa do processamento do cabeçalho da célula, da forma referida anterioriormente
 - através do processamento do campo H4 do VC-4 POH que indica a posição do contentor virtual VC-4 onde se localiza o início da primeira célula transportada na trama seguinte

Categorias de Serviços, ATCs e Classes de Serviço

- Os procedimentos de estabelecimento de uma ligação e a implementação de mecanismos de controlo de tráfego requerem uma grande flexibilidade na camada de gestão da rede
- Para lidar com a diversidade de parâmetros de tráfego e de desempenho, o ITU-T Study Group 13 definiu dois conceitos distintos:
 - ATC (ATC, ATM Transfer Capability)
 - Classes de Serviço
- Uma ATC descreve os parâmetros da camada ATM a serem especificados e os procedimentos aplicáveis
- As Classes de Serviço especificam quais os aspectos funcionais relacionados com a adaptação dos serviços à rede (e.g. fragmentação, adaptação de relógios, multiplexagem)

Categorias de Serviços, ATCs e Classes de Serviço

- Para se cumprir um determinado contrato de tráfego, o utilizador selecciona uma dada ATC e os valores dos parâmetros relevantes (o descritor de tráfego de fonte e tolerâncias associadas) e selecciona uma Classe de Serviço
- Com a especificação do contrato de tráfego, a rede e o utilizador sabem o que esperar
- A rede garante as características da ligação, enquanto que a fonte terá de operar de acordo com as condições do contrato de tráfego estabelecido
- Uma ATC descreve as características gerais de uma ligação. Por exemplo, se a capacidade de transmissão está permanentemente disponível e que acções devem ser tomadas no caso de a taxa de envio de células ser excedida pela fonte

• DBR (DBR, Deterministic Bit Rate)

- Caracteriza-se por garantir um valor de pico (PCR, Peak Cell Rate) disponível continuamente, transferido com uma QoS especificada
- As aplicações que geram tráfego de débito constante devem optar por este tipo de ATC
- As aplicações que geram tráfego de débito variável poderão também optar igualmente por esta ATC

SBR (SBR, Statistical Bit Rate)

- SBR1, SBR2 e SBR3 formam uma família de ATCs similares
- Todas garantem uma taxa de células "sustentada" (SCR, Sustainable Cell Rate), uma espécie de taxa média de longo prazo
- Adicionalmente, permitem a ocorrência de bursts (de tamanho negociável) a uma taxa mais elevada com limite máximo imposto pelo PCR, respeitando o SCR
- As aplicações que geram tráfego de débito variável e que produzem bursts limitados encontram nesta ATC um mecanismo de transferência de informação adequado
- O SBR1 verifica se os parâmetros estão de acordo com os valores pré-estabelecidos
- O SBR2 e SBR3 baseiam-se na indicação dada pelo CLP em cada célula. O SCR é verificado apenas em células com CLP = 0 (células com menor prioridade em serem descartadas)
- O PCR é verificado em todas as células.
- A distinção entre o SBR2 e o SBR3 é feita no modo como tratam as células com o CLP = 0 que excedem o valor do SCR. O SBR2 considera tais células excedentes ao contrato (e poderá descartá-las). O SBR3 altera o valor do CLP das células excedentárias para CLP = 1, mantendo-as na rede, se cumprirem o limite imposto pelo PCR

• ABR (ABR, Available Bit Rate)

- Esta ATC garante uma taxa mínima de transferência de células (MCR, Minimum Cell Rate)
- O valor do MCR, seleccionado pelo utilizador, pode virtualmente ser zero
- Dependendo do instante, a rede pode disponibilizar mais capacidade de transmissão de uma forma dinâmica
- Através de células de gestão de recursos (resource management cells), os utilizadores "interrogam" regularmente a rede acerca da capacidade disponível e são informados no sentido de baixar ou subir o débito de transmissão
- Esta ATC é adequada para o suporte de aplicações que têm a propriedade de adaptar o débito de informação (acima do MCR) à capacidade oferecida pela rede

- ABT (ABT, ATM Block Transfer)
 - As duas variantes desta ATC:
 - ABT-DT (*Delayed Transfer*)
 - ABT-IT (Immediate Transfer)
 - permitem também a alteração das taxas de transmissão em função da flutuação da capacidade oferecida pela rede
 - A taxa permitida pela rede é acordada inicialmente e garantida durante a transferência do bloco de células
 - O tamanho do bloco de células é um dos parâmetros especificado no início da transferência
 - No caso da variante ABT DT a fonte aguarda confirmação da rede antes de transmitir o bloco de células
 - Na variante ABT IT a fonte transmite o bloco de células imediatamente, o que pode provocar atrasos ou perdas se o pedido não for garantido. Esta última é adequada para fontes que adaptem o seu ritmo de transmissão em instantes determinados pela fonte e não pela rede

- Os requisitos de novas aplicações e as novas formas de utilização da rede poderão necessitar de definição de novas ATCs, tais como:
 - CT (CT, Controlled Transfer)
 - UBR (UBR, Unspecified Bit Rate)
- Embora este aumento introduza a desvantagem da selecção ser feita através da escolha entre um maior número de ATCs, é desejável pois poderá permitir o suporte de novos serviços, ou o suporte de um serviço de uma forma mais eficiente, quer para a rede quer para a aplicação
- O objectivo será definir ATCs em número suficiente de forma a poder suportar todas as necessidades de transporte actuais e futuras

Classes de Serviço

- Os parâmetros através dos quais é feito o agrupamento das diferentes classes de serviço são:
 - Relação temporal entre fonte e destino:
 - Vários serviços requerem que seja preservada a relação temporal entre a fonte e o destino. Por exemplo, nos canais B da RDIS a 64kbit/s, existe uma relação temporal bem definida entre fonte e destino. A transferência de pacotes de dados não requer esta relação

– Débito:

- Serviços tais como o transporte de canais telefónicos geram informação a um débito fixo, enquanto que certos tipo de codificadores geram informação a um débito variável, em função das propriedades do sinal (e.g. codificação de vídeo de débito variável)
- Modo de Operação:
 - Um serviço pode ser responsável por estabelecer e remover uma ligação com o destino, enquanto que outros podem operar num modo sem ligação

Classes de Serviço

 Classificação das diferentes Classes de Serviço de acordo com o ITU-T:

	Classe A	Classe B	Classe C	Classe D
Relação Temporal entre Fonte e Destino	Existente		Não existente	
Débito	Constante	Variável		
Modo de Operação	Com Ligação Sem Ligação			

- O ATM Forum define Categorias de Serviços em vez de ATCs ou Classes de Serviço
- Enquanto que as Categorias de Serviços estão associadas à camada ATM, as Classes de Serviço estão relacionadas com a escolha do tipo de protocolo AAL

Classes de Serviço / Categorias de Serviço

 Correspondência entre as características de tráfego de Categorias de Serviço e ATCs:

ATM Forum	ITU-T SG 13		
CBR	DBR		
nrt-VBR	SBR		
rt-VBR	SBR		
UBR	Não especificado		
Sem equivalência	ABT		
ABR	ABR		

- A camada ATM fornece um serviço que é independente da estrutura da unidade de informação e do débito dos serviços suportados
- É na camada AAL que as características particulares de cada serviço são adaptadas no sentido de satisfazer a QoS requerida
- Embora as funções que a camada AAL efectua estão dependentes do serviço específico a transportar, podemos destacar as seguintes:
 - mapeamento dos formatos de informação da camada acima da AAL nos campos de informação das células ATM
 - recuperação da frequência do relógio e compensação da variação do atraso das células correspondente ao serviço suportado, quando requerido pelas características do serviço
 - detecção da ocorrência de células perdidas e o desencadear das medidas necessárias para diminuir o impacto desta situação na QoS
 - detecção da ocorrência de células mal inseridas e sua correspondente eliminação

- Para cada tipo de AAL as funções básicas são efectuadas numa subcamada de AAL:
 - Subcamada de Segmentação e Reunião (SAR, Segmenting And Reassembly sublayer)
- A subcamada acima desta na AAL:
 - Subcamada de Convergência (CS, Convergence Sublayer): implementa funções requeridas para um serviço específico dessa classe
- Os serviços podem recorrer a quatro especificações tipo, da camada AAL:
 - AAL-1: Suporta serviços CBR, sendo as principais aplicações a emulação de circuitos e o transporte de aplicações de áudio e vídeo de alta qualidade
 - AAL-2: Suporta tráfego VBR (VBR, Variable Bit Rate), permitindo reduzir o atraso no preenchimento das células assim como optimizar a eficiência na utilização da largura de banda
 - AAL-3/4: Suporta serviços de dados orientados à ligação e sem ligação, em 2 modos de transferência de informação: o modo mensagem e o modo fluxo
 - AAL-5: Fornece funções semelhantes ao AAL-3/4 mas com uma eficiência superior, satisfazendo os requisitos de eficiência e simplicidade na transferência de informação de dados e sinalização, devido a ter menos campos de controlo no cabeçalho das células

A Camada AAL - Modelo Geral de Operação

- Necessidade de suportar o transporte do tráfego de débito binário constante - CBR (CBR, Constant Bit Rate), característico das redes de comutação de circuitos
- Tal como a rede de comutação de circuitos é mais vocacionada para o transporte de sinais de débito binário constante, a rede ATM (por utilizar uma tecnologia de comutação de pacotes) é mais adequada ao transporte de sinais do tipo burst, tais como dados
- O transporte de sinais CBR, numa rede ATM, é vulgarmente referido como Emulação de Circuitos
 - O desempenho de um Serviço de Emulação de Circuitos (CES, Circuit Emulation Service) em redes ATM deve ser comparável ao verificado com recurso a técnicas TDM (TDM, Time Division Multiplexing)

A Camada de Adaptação AAL — 1 Formato de dados

- SN é composto por um campo utilizado para a inserção de um número de sequência SC e de um bit CSI utilizado para veicular informação da subcamada CS
- O campo SN é protegido pelo campo SNP, baseado no polinómio gerador $G(x) = x^3 + x + 1$ com um bit extra de paridade (EPB)
- A existência do campo SC permite detectar, na recepção, se houve células perdidas ou mal inseridas durante a transmissão
- Os restantes 47 octetos transportam a informação da subcamada superior CS

A Camada de Adaptação AAL – 1 Subcamada CS

- É ao nível da subcamada CS que os diversos serviços da Classe A são adaptados. Para alguns serviços específicos a subcamada CS suporta algumas funções especiais tais como:
 - Correcção de erros ao nível do campo de informação. Este processo pode ser combinado com um método em que os bits são entrelaçados antes de serem colocados nas células
 - Recuperação de relógio na recepção baseada na sequência de chegada de células. Esta técnica pode ser efectuada através do seguimento do nível de enchimento do buffer de recepção

- As redes celulares transmitem a informação de voz comprimida em vez de circuitos PCM de 64kbit/s de modo a economizarem largura de banda
- Além disso, o débito é também variável, devido à supressão de silêncios, motivados pela economia de potência das baterias dos dispositivos móveis
 - Nestas circunstâncias, se fosse usado o AAL-1, o atraso no preenchimento de células aumentaria proporcionalmente com a taxa de compressão
- O protocolo AAL-2 foi desenvolvido para suportar tráfego VBR (Classe B) orientado à ligação e com baixo atraso de propagação
- As características deste protocolo foram definidas a partir das necessidades da área da telefonia celular onde se procurava integrar eficientemente serviços do tipo voz e vídeo, comprimidos em tempo real, sendo especificado nas recomendações I.363.2, criadas no final da década de 90

- A estrutura do protocolo AAL-2 pode ser dividida em duas subcamadas:
 - a subcamada inferior que fornece os serviços comuns da camada AAL, designada de CPS (CPS, Common Part Sublayer)
 - a subcamada superior que fornece os chamados serviços de convergência específicos da aplicação, designada de SPCS (SPCS, Service Specific Convergence Sublayer)

Unidade de dados do protocolo para a subcamada CPS do protocolo AAL-2:

CID: Channel Identifier (8 bits)

LI: Length Indicator (6 bits)

UUI: User-to-User indication (5 bits) HEC: Header Error Control (5 bits)

CPS-INFO: Informação (1..45/64 bytes)

- É através do campo CID que é possível multiplexar no máximo 248 entidades SSCS numa única ligação ATM
 - Este campo identifica os pacotes CPS associados a cada um dos fluxos da camada superior
- Estes pacotes são agrupados para formar os 48 octetos da ATM-SDU
- Devido ao tamanho variável destes pacotes, é necessário localizar a sua posição dentro do campo de informação da célula, através de um pequeno cabeçalho (STF) que ocupa sempre o primeiro octeto

- O STF contém um campo de 6 bits de offset (OSF)
 - localiza o início do próximo pacote CPS ou, na ausência deste, o início do campo PAD
- Além disso, o STF contém um bit de paridade (P) e um número de sequência (SN), que juntos formam um mecanismo básico de controlo para detectar perdas de células
- Cada pacote CPS pode ser suportado por uma ou duas células ATM em que o ponto de partição pode ocorrer em qualquer local do pacote, incluindo o cabeçalho CPS-PH

Unidades de dados da camada AAL 2

Universidade do Minho Escola de Engenharia

exemplo de multiplexagem de 7 mini-pacotes em 3 células ATM

- Este tipo de AAL suporta serviços de débito variável em que existe uma relação temporal entre fonte e destino (Classe D)
- Caracteriza-se por suportar, duma forma eficiente, a transferência de grandes blocos de informação através da utilização da totalidade da capacidade da unidade de dados do protocolo (SAR-PDU)
- A grande diferença entre este e o AAL-3/4 reside na impossibilidade do AAL-5 suportar directamente a função de multiplexagem
- A subcamada SAR aceita SDUs de tamanho múltiplo de 48 octetos da subcamada CPCS
- Nenhum campo de controlo é adicionado aos SDUs recebidos, ao nível da SAR, sendo apenas efectuadas as funções de segmentação e reunião
- Para detectar o início e o fim de um SAR PDU recorre-se ao parâmetro AAU
 - O valor 1 do campo PT (PT, Payload Type) do cabeçalho da célula ATM, indica o fim, enquanto que o valor 0 o início ou a continuação de um SAR-PDU. Deste modo, o campo ST (existente no AAL-3/4) não é usado

 Na Figura representa-se a última unidade de dados do protocolo para a subcamada CPCS da camada de adaptação do AAL-5

 A subcamada CPCS permite a transferência de estruturas de dados de nível superior de tamanho variável entre 1 e 65535 octetos

especificado pelo campo Length

Length:

- O campo UU permite a transferência transparente, extremo a extremo, de informação entre entidades de nível superior, em cada CPCS-PDU
- O campo CPI tem funções idênticas às usadas no AAL-3/4

Length of CPCS-PDU Payload

- O campo CRC é usado para a detecção de erros
- O campo PAD é usado para ajustar o comprimento do bloco de informação ao valor de 48 octetos

 Com a excepção da última CPCS-PDU, todas as anteriores apresentam um payload de 48 octetos, de comprimento igual ao da respectiva SDU, uma vez que não é adicionado qualquer cabeçalho. Por esta razão, este tipo de segmentação e reunião, também é conhecido por AAL-0

Gestão e Controlo de Tráfego

- Em redes ATM o congestionamento de tráfego é definido como uma condição que existe nos elementos de rede (ao nível ATM), tais como comutadores ou linhas de transmissão, onde a rede não tem capacidade de cumprir um determinado objectivo de desempenho negociado
- O controlo de tráfego define um conjunto de acções tomadas pela rede para evitar o congestionamento, nomeadamente tomando medidas para se adaptar às flutuações imprevisíveis no fluxo de tráfego ou a outros problemas existentes na rede
- Os objectivos do controlo de tráfego e controlo de congestionamento são assim o de proteger a rede e ao mesmo tempo fornecer ao utilizador determinados objectivos de serviço contratados

Introdução

- Para atingir os objectivos de controlo de tráfego e de controlo de congestionamento, a rede ATM deve:
 - Executar um conjunto de acções chamadas Controlo de Admissão de Conexão (CAC, Connection Admission Control) durante o estabelecimento de chamada para determinar se uma conexão do utilizador é aceite ou é rejeitada
 - Estabelecer acções para monitorar e regular o tráfego na UNI, acções estas chamadas Controlo de Parâmetros de Utilização (UPC - Usage Parameter Control)
 - Aceitar entradas do utilizador para estabelecer prioridades para diferentes tipos de tráfego, através da utilização do bit CLP (CLP, Cell Loss Priority)
 - Estabelecer mecanismos de formatação de tráfego (traffic shaping) de modo a obter um determinado objectivo de tráfego global (com diferentes características) na UNI

Parâmetros de tráfego

Peak Cell Rate (PCR)

Recomendação I.371 do ITU-T

- O PCR é um parâmetro do descritor de tráfego da fonte que especifica o limite superior do ritmo que pode ser submetido numa conexão ATM
 - O PCR de uma conexão ATM pode ser definido como o inverso do mínimo intervalo de tempo entre a chegada de duas células consecutivas
- Sustainable Cell Rate (SCR)
 - O SCR é um parâmetro do descritor de tráfego da fonte que especifica o ritmo médio de transmissão de células durante a duração da conexão
- Intrinsic Burst Tolerance (IBT)
 - O IBT define o tamanho máximo do burst a que a fonte pode transmitir ao ritmo de pico (PCR)
- Minimum Cell Rate (MCR)
 - O MCR define o ritmo a que a fonte é sempre autorizada a transmitir pela rede. Este parâmetro é utilizado na categoria de serviço ABR

Funções de Controlo de Tráfego e de Congestionamento

- Controlo de admissão de conexão (CAC Connection Admission Control)
 - Conjunto de acções tomadas pela rede durante a fase de estabelecimento da chamada (conexão virtual) ou durante a fase de renegociação, para determinar se o pedido de conexão pode ser aceite ou se deve ser rejeitado
 - Os recursos de rede (largura de banda na porta e espaço de buffer) são reservados para a conexão em cada elemento de comutação atravessado, se tal for requerido pela classe de serviço utilizada
- Controlo de parâmetros de utilização (UPC Usage Parameter Control)
 - Conjunto de acções tomadas pela rede para monitorar e controlar o tráfego oferecido e a validade da conexão ATM na interface utilizador-rede (UNI)
 - A função principal do UPC é proteger os recursos da rede (largura de banda e buffers) de utilizadores com comportamento malicioso ou involuntário que possam afectar a QoS das conexões estabelecidas
 - Os procedimentos baseados no Generic Cell Rate Algorithm (GCRA) podem ser aplicados a cada chegada de célula, para determinar a conformidade com o contrato de tráfego definido para a conexão
 - As violações dos parâmetros negociados são detectadas e as medidas apropriadas são tomadas, nomeadamente marcação ou eliminação de células
- Controlo de parâmetros de rede (NPC Network Parameter Control)
 - conjunto de acções tomadas pela rede para monitorar e controlar o tráfego oferecido e a validade da conexão ATM na interface entre nós da rede (NNI)

Funções de Controlo de Tráfego e de Congestionamento

- Algoritmo de Ritmo de Célula Genérico (GCRA Generic Cell Rate Algorithm)
 - Utilizado para definição de conformidade para as fontes de tráfego de ritmo variável. Este método é vulgarmente conhecido por algoritmo de balde furado (em inglês, Leaky Bucket)
 - Na figura arbitraram-se os parâmetros I = 5 e L = 15. O parâmetro I é função do ritmo PCR contratado e o parâmetro L é função do IBT da rede

 De cada vez que é recebida uma célula o contador é incrementado de I unidades (5). Por cada unidade de tempo o contador é decrementado de uma unidade. Enquanto o contador não atingir o valor do parâmetro L (correspondente ao "balde" cheio), a célula é aceite. Caso o contador ultrapasse o valor de L a célula é marcada com CLP=1

Bibliografia

Livros:

- McDysan, D. E., Spohn, D. L., "ATM Theory and Application", McGraw-Hill Series on Computer Communications, 1995.
- Prycker, M., "Asynchronous Transfer Mode Solution for Broadband ISDN", Prentice Hall,
 3º Edição, 1995.

Normas:

- Study Group XVIII series standards: B-ISDN (Broadband ISDN)
 - ITU I.100 series: general
 - ITU I.200 series: service capabilities
 - ITU I.300 series: network aspects
- Study Group XI series standards: switching and signalling
 - ITU Q. series
- Study Group XV series standards: transmission systems and equipment
 - ITU G.700 series: digital carriers
- ATM Forum
 - UNI: user network interface
 - NNI: network-node interface (privada e pública)
- IETF: Internet Engineering Task Force IP over ATM

