

Sommaire

Introduction:

- Sujet
- Organisation du travail de groupe
- Explication des choix faits

Travail Pratique:

- Introduction
- Prérequis
- Première Partie
- Deuxième Partie

Conclusion:

- Correction TP
- Les acquis

Introduction

Introduction au sujet:

La perspective isométrique est une méthode de représentation en perspective dans laquelle les trois directions de l'espace sont représentées avec la même importance.

Diverses applications du sujet :

Sujet: Les ESPACE VECTORIEL

Espace Orthonormée (Plan Cartésien)

Perspective Isométrique

Retranscription

SAE 1.06

JANVIER-FEVRIER 2022

Explication des choix faits

- ► Pourquoi un TP plutôt qu'un TD?
- ► Pourquoi un sujet sur la perspective isométrique?
- ▶ Pourquoi avons-nous choisi de diviser le TP en deux parties, une sur feuille et une sur ordinateur?
- Pourquoi avons-nous choisi le langage informatique : Python pour la réalisation du TP?
- Pourquoi utiliser la bibliothèque "Matplotlib" lors du TP?

TRAVAIL PRATIQUE

Introduction

Première Partie

Réflexion sur feuille et utilisation de plusieurs connaissance fondamentales Deuxième Partie

Travaille Machine (langage python de préférence sur le logiciel Spyder : OS conseillé Ubuntu) + nécessite la réussite de la première partie .

Prérequis

Première Partie

Pour la première partie de ce TP il faudra connaitre les compétences et le vocabulaire mathématique suivant :

- La Notion et l'utilisation du Pivot de Gauss
- Un Repère Orthonormé
- La notion de vecteur (de tout type)
- Une perspective isométrique
- -Une fonction inverse

Deuxième Partie

Pour la deuxième partie de ce TP il faudra connaitre les compétences suivantes :

- -Connaitre toutes les compétences de la première partie
- -Savoir maitrisé un minimum le langage python et les diffèrent logiciel ou il s'y loge.

Première partie

Pour faire une conversion d'un espace orthonormée vers une perspective isométrique nous avons donnée plusieurs questions sous forme d'étape de progression:

Première question : Récupération de donnée sur un graphique

Deuxième question : Savoir Modéliser une matrice à partir de donnée

$$A = egin{pmatrix} 1 & 0 & 0 & x_0 \ 0 & 1 & 0 & y_0 \ 0 & 0 & 1 & z_0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$
 , $ec{P} = egin{pmatrix} x \ y \ z \ 1 \end{pmatrix}$

Troisième question : Savoir utiliser la technique du pivot de gauss pour trouver une fonction de conversion (fonction inverse)

$$\begin{cases} 2x_1 + 4x_2 - 2x_3 & = -6 \\ x_1 + 3x_2 & + x_4 = 0 \\ 3x_1 - x_2 + x_3 + 2x_4 = 8 \\ - x_2 + 2x_3 + x_4 = 6 \end{cases}$$
pivot (1)

<u>Peuxième partie</u>

La deuxième Partie se fera sur le logiciel Spyder en langage python le but sera de compléter une fonction en rapport avec la première partie

def convertIso2Card(point):

Deuxième question : Perspective Isométrique ← Perspective Cartésienne

def convertCard2Iso(point):

Troisième question: Avec les fonctions compléter il ne reste plus qu'à convertir les points et a les placer pour y déterminer une figure

Conclusion

Les acquis

- Comprendre et maitriser un plan cartésien
- Comprendre et savoir utiliser des différentes perspectives
- Avoir les connaissances de base pour la création d'un jeu en perspective isométrique

Merci pour votre attention