1.6 ANOVA Table & the F-Test

Recall the decomposition of the Total Sum of Squares (TSS)

$$TSS = FSS + RSS$$
 $\uparrow \uparrow \uparrow \uparrow$

Total variation Variation accounted in y through the model \uparrow

- $TSS = \sum_i (y_i \bar{y})^2$ measures the total variation in ys: the greater TSS is, the more variation there is in the y values.
- $RSS = \sum_i (y_i \hat{y}_i)^2$ measures the variation in the data using the stated regression model: the larger RSS is, the more y_i s vary around the estimated regression line.
- $FSS = \sum_i (\hat{y}_i \bar{y})^2$ measures how far the predicted center of each probability distribution is from the overall center of all y's together.

The partition of the total variation is also illustrated below:

Breakdown of Degrees of Freedom

Each of the terms in the decomposition of the *TSS* is associated with its own degrees of freedom as follows:

- $df_{TSS}=n-1$: one df is lost, because the sample mean is used to estimate the population mean.
- $df_{RSS}=n-2$: two df are lost, because the two parameters are estimated in obtaining the fitted values \hat{y} .
- $df_{FSS}=1$: there are n deviations $\hat{y}_i-\bar{y}$, but all the fitted values are associated with the same regression line.

The degrees of freedom are additive, so

$$df_{TSS} = df_{RSS} + df_{FSS}$$

Sum of Squares	Expression	df
FSS	$\sum_{i}(\hat{y}_{i}-\bar{y})^{2}$	1
RSS	$\sum_i (y_i - \hat{y}_i)^2$	n-2
TSS	$\sum_i (y_i - \bar{y})^2$	n-1

The Sume of Squares, their corresponding degrees of freedom and the corresponding Mean Squares are all summarized in the famous **ANOVA Table**

Source	SS	df	MS	F
Regression (model)	FSS	1	$MSReg = \frac{FSS}{1}$	$F=rac{ extit{MSReg}}{ extit{MSE}}$
Error	RSS	n – 2	$MSE = \frac{RSS}{n-2}$	
Total	TSS	n-1		

As you can see the *Mean Squares* are defined as the ratio of the *SS* divided by its own degrees of freedom:

$$MS = rac{SS}{df}$$

Be careful, because the Mean Squares are not additive.

On the ANOVA table above, we also see an F test, but to which hypothesis this test corresponds to?

In **Simple** Linear Regression the answer is easy: it is an alternative test statistic that can be used to test whether the slope is 0 or not, i.e.

$$\left\{egin{array}{ll} H_0:eta_1=0\ H_lpha:eta_1
eq 0 \end{array}
ight.$$

Under the H_0 , the F-test statistic is

$$F = rac{MSReg}{MSE} = rac{FSS}{RSS/(n-2)} \sim F_{1,n-2}$$

So, if you ask which test to use when you want to test for the statistical significance of the slope, the answer is: either! In fact, if can be shown that the F-test statistic is **equal** to the square of the t-test statistic and their p-values are the same.

$$F = rac{FSS}{RSS/(n-2)} = \left(rac{\hat{eta}_1}{\hat{\sigma}/\sqrt{S_{xx}}}
ight)^2 = t^2$$

So, this test is equivalent to the t-test before.

In R, the ANOVA table is obtained using the anova function.

University Admissions Example (Revisited)

The results of this F test are shown at the bottom of the \mbox{lm} output. We can also obtain the full ANOVA table, as discussed in the lecture as follows:

```
admissions.anova = anova(admissions.lm)
admissions.anova
```

We can see that the p-value of the F test is exactly the same as the one obtained in the regression table from the t test for the slope. We can also verify that the square of the t test statistic is equal to the F test statistic. Indeed,

```
admissions.anova[1,4] ## F- value from ANOVA Table

## [1] 33.9982

admissions.coef[2,3]^2 ## Square of t test

## [1] 33.9982
```