Electric field involving conductors

Q1: What is conductor? How does it affect the electric field?

- Conductor is a kind substance which can supply flowing positive, negative charge or both.
- Perfect conductor is an ideal model, which supply sufficient charge and zero resistance.
- Usual conductor includes: metal (electron), electrolyte solution (both positive and negative charges), plasma (both positive and negative charge), ...

Q2: What happens when a conductor is in electric field generated by charge on itself or elsewhere?

Electrostatic equilibrium: no charge inside or on the surface moves!

• Charge redistribution \Rightarrow built-in electric field \Rightarrow electric field inside cancelled $\Rightarrow \vec{E} = \vec{E}$ inside everywhere \Rightarrow no charge inside \Rightarrow charge is only on the surface

$$\oint_{any \, S} \vec{E} \cdot d\vec{S} \equiv 0 \Rightarrow any \, Q_{in} = 0 \Rightarrow no \, charge \, inside$$

• Charge on the surface does not move $\Rightarrow \vec{E} \perp surface$

Key feature: no charge moves!

Q3: To a conductor, what is inside?

Outward normal: pointing from conductor to other

Q4: Why do we say conductor as a situation of using Gauss's Law to calculate \vec{E} ?

Inside the conductor

$$\oint_{any S} \vec{E} \cdot d\vec{S} \equiv 0$$

Outside and near the conductor

$$\oint_{S} \vec{E} \cdot d\vec{S} = \int_{in} \vec{E} \cdot d\vec{S} + \int_{out,side} \vec{E} \cdot d\vec{S} + \int_{out,flat} \vec{E} \cdot d\vec{S}$$

It's very easy to calculate electric flux! = $\int_{out,flat} \vec{E} \cdot d\vec{S} = E \cdot A = \frac{\sigma A}{\varepsilon_0} \Rightarrow E = \frac{\sigma}{\varepsilon_0}$

It's very easy to calculate electric flux!

Q5: What is the charge distribution on a conductor?

Case 1: solid charged conductor without hole

All the charges are on the surface

Because $\vec{E} = 0$ everywhere inside conductor,

for any closed surface S,

$$\oint_{S} \vec{E} \cdot d\vec{S} = 0 = \frac{Q_{in}}{\varepsilon_{0}}$$

Therefore any closed surface S there is no charge!

All the charges are on outer surface

The reason is similar to case 1

Q5: What is the charge distribution on a conductor?

Case 3: holey conductor charged by Q with a charge q in the hole

Charge -q on inner surface

Charge Q + q on outer surface

Gaussian surface

Because

$$\oint_{S} \vec{E} \cdot d\vec{S} = 0 \Rightarrow Q_{in} = 0 \Rightarrow Q_{inner\,surface} = 0$$

Here S is a closed surface inside the conductor and enclosing the whole hole.

Electrostatic shielding

A body placed inside the cavity of conductor will not be affected by the electric field outside.

Q6: How to deal with problems involving conductor?

Initial state

Electrostatic equilibrium

Charge redistribution

Charges and charged surface

Principle of superposition of \overrightarrow{E}

Example4: Flat metal plates

Two large flat metal plates with charges Q_1 and Q_2 . Determine:

- (a) charges on each surface;
- (b) electric field between the plates.

Initial state

Electrostatic equilibrium

U

Charge redistribution

Four charged surface

$$E_{P_1} = 0, E_{P_2} = 0$$

Example4: Flat metal plates

Two large flat metal plates with charges Q_1 and Q_2 . Determine:

- (a) charges on each surface;
- (b) electric field between the plates.

Each charged plane generates two uniform field!

Solution:
$$(\sigma_1 + \sigma_2)S = Q_1$$

$$(\sigma_3 + \sigma_4)S = Q_2$$

$$\frac{\sigma_1}{2\varepsilon_0} - \frac{\sigma_2}{2\varepsilon_0} - \frac{\sigma_3}{2\varepsilon_0} - \frac{\sigma_4}{2\varepsilon_0} = 0$$

$$\frac{\sigma_1}{2\varepsilon_0} + \frac{\sigma_2}{2\varepsilon_0} + \frac{\sigma_3}{2\varepsilon_0} - \frac{\sigma_4}{2\varepsilon_0} = 0$$

$$E = \frac{\sigma_2}{\varepsilon_0} = \frac{Q_1 - Q_2}{2\varepsilon_0 S}$$

Four charged surface

$$E_{P_1} = 0, E_{P_2} = 0$$