

Dynamic Programming

Last time

Not coding in an action movie.

Last time

- Dynamic programming is an algorithm design paradigm.
- Basic idea:
 - Identify optimal sub-structure
 - Optimum to the big problem is built out of optima of small sub-problems
 - Take advantage of overlapping sub-problems
 - Only solve each sub-problem once, then use it again and again
 - Keep track of the solutions to sub-problems in a table as you build to the final solution.

- Examples of dynamic programming:
 - 1. Longest common subsequence
 - 2. Independent sets in trees
 - 3. Balanced partition problem

The goal of this lecture

For you to get really bored of dynamic programming

Longest Common Subsequence (LCS)

• A subsequence of a sequence/string *S* is obtained by deleting zero or more symbols from *S*.

• For example, the following are some subsequences of "president": pred, sdn, predent. In other words, the letters of a subsequence of S appear in order in S, but they are not required to be consecutive.

• The longest common subsequence problem is to find a maximum length common subsequence between two sequences.

Longest Common Subsequence

How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT

DNA:

GACAGCCTACAAGCGTTAGCTTG

• Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

DNA:

Longest Common Subsequence

- Subsequence:
 - BDFH is a subsequence of ABCDEFGH
- If X and Y are sequences, a **common subsequence** is a sequence which is a subsequence of both.
 - BDFH is a common subsequence of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - ...is a common subsequence that is longest.
 - The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.

We sometimes want to find these

HNOLOGY (GUANGZHO)

Applications in bioinformatics

- The unix command diff
- Merging in version control

```
- svn, git, etc...
```

```
🛅 anari — anari@nimbook —...
   ~ cat file1
   ~ cat file2
   ~ diff file1 file2
3d2
< C
5d3
8a7
```

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Step 1: Optimal substructure

12

Prefixes:

Our sub-problems will be finding LCS's of prefixes to X and Y.

Notation: denote this prefix ACGC by Y₄

• Let C[i,j] = length_of_LCS(X_i, Y_j)

Examples: C[2,3] = 2
C[4,4] = 3

Recipe for applying Dynamic Programming

Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

• Write C[i,j] in terms of the solutions to smaller sub-problems

Two cases

- Then C[i,j] = 1 + C[i-1,j-1].
 - because $LCS(X_i,Y_j) = LCS(X_{i-1},Y_{j-1})$ followed by A

Two cases

- Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
 - either $LCS(X_i,Y_j) = LCS(X_{i-1},Y_j)$ and \top is not involved,
 - or $LCS(X_i,Y_i) = LCS(X_i,Y_{i-1})$ and A is not involved,
 - (maybe both are not involved, that's covered by the "or").

Recursive formulation of the optimal solution

Case 1

Case 2

X_i A C G G T

Y_j A C G C T T A

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.

- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

TECHNOLOGY (GOANGZING

- LCS(X, Y):
 - -C[i,0] = C[0,j] = 0 for all i = 0,...,m, j=0,...n.
 - **For** i = 1,...,m and j = 1,...,n:
 - If X[i] = Y[j]:C[i,j] = C[i-1,j-1] + 1
 - Else:
 - $-C[i,j] = max\{C[i,j-1],C[i-1,j]\}$
 - Return C[m,n]

Running time: O(nm)

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

TECHNOLOGY (GUANGZHO

				Υ		
			А	С	Т	G
		0	0	0	0	0
	Α	0				
	С	0				
X	G	0				
	G	0				
	А	0				

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

			Υ				
			А	С	Т	G	
		0	0	0	0	0	
	А	0	1	1	1	1	
	С	0	1	2	2	2	
X	G	0	1	2	2	3	
	G	0	1	2	2	3	
	_	_	4	2	2	_	

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

So the LCS of X and Y has length 3.

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

A C	Т	G
-----	---	---

X G G

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X	Α	С	G	G	Α
---	---	---	---	---	---

YA	С	Т	G
----	---	---	---

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

А	С	Т	G
---	---	---	---

	Α
	С
X	G
	G
	Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X	А	С	G	G	Α

 Once we've filled this in, we can work backwards.

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

A C	Т	G
-----	---	---

A C G G

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X A C G G A

 Once we've filled this in, we can work backwards.

That 3 must have come from the 3 above it.

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

A C T G

	Α
	С
X	G
	G
	А

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X	А	С	G	G	А
---	---	---	---	---	---

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This 3 came from that 2 – we found a match!

G

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

A C	Т	G
-----	---	---

	А
	С
X	G
	G
	А

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X	Α	С	G	G	Α
---	---	---	---	---	---

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

That 2 may as well have come from this other 2.

G

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

А	С	Т	G
---	---	---	---

	Α
	С
X	G
	G
	Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X	Α	С	G	G	Α
---	---	---	---	---	---

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

G

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

	Α
	С
X	G
	G
	Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X	Α	С	G	G	А
---	---	---	---	---	---

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

C G

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

A C T G

	Α
	С
X	G
	G
	Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

X A C G G A

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This is the LCS!

Finding an LCS

- Good exercise to write out pseudocode for what we just saw!
 - Or you can find it in lecture notes.
- Takes time O(mn) to fill the table
- Takes time O(n + m) on top of that to recover the LCS
 - We walk up and left in an n-by-m array
 - We can only do that for n + m steps.
- Altogether, we can find LCS(X,Y) in time O(mn).

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

TECHNOLOGY (GUA	NGZHOU

http://lcs-demo.sourceforge.net

Our approach actually isn't so bad

- If we are only interested in the length of the LCS we can do a bit better on space:
 - Since we go across the table one-row-at-a-time, we can only keep two rows if we want.
- If we want to recover the LCS, we need to keep the whole table.
- Can we do better than O(mn) time?
 - A bit better.
 - By a log factor or so.
 - Try to design it (as your lab work)!

What have we learned?

• We can find LCS(X,Y) in time O(nm)

$$- \text{ if } |Y| = n, |X| = m$$

- We went through the steps of coming up with a dynamic programming algorithm.
 - We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.

Independent Set

Independent Set

- Actually, this problem is NP-complete.
 So, we are unlikely to find an efficient algorithm.
- But if we also assume that the graph is a tree...

find a maximal independent set in a tree (with vertex weights).

Recipe for applying Dynamic Programming

- Step 2: Find a recursive formulation for the value of the optimal solution
- Step 3: Use dynamic programming to find the value of the optimal solution
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure

• Subtrees are a natural candidate.

• There are **two cases**:

1. The root of this tree is **not** in a maximal independent set.

2. Or it is

Case 1: the root is not in a maximal independent set

these smaller problems.

Case 2: the root is in an maximal independent set

Recipe for applying Dynamic Programming

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive formulation: try 1

• Let A[u] be the weight of a maximal independent set in the tree rooted at u.

•
$$A[u] = \max \begin{cases} \sum_{v \in u.\text{children}} A[v] \\ \text{weight}(u) + \sum_{v \in u.\text{grandchildren}} A[v] \end{cases}$$

When we implement this, how do we keep track of this term?

Recursive formulation: try 2

Keep two arrays!

• Let A[u] be the weight of a maximal independent set in the tree rooted at u.

• Let $B[u] = \sum_{v \in u. \text{children}} A[v]$

•
$$A[u] = \max \begin{cases} \sum_{v \in u.\text{children}} A[v] \\ \text{weight}(u) + \sum_{v \in u.\text{children}} B[v] \end{cases}$$

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.

- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Dynamic Programming

- MIS_subtree(u):
 - if u is a leaf:
 - A[u] = weight(u)
 - B[u] = 0
 - else:
 - **for** v in u.children:
 - MIS subtree(v)
 - $A[u] = \max\{\sum_{v \in u. \text{children}} A[v], \text{ weight}(u) + \sum_{v \in u. \text{children}} B[v]\}$
 - $B[u] = \sum_{v \in u. \text{children}} A[v]$
- MIS(T):
 - MIS_subtree(T.root)
 - return A[T.root]

Initialize global arrays A, B that we will use in all of the recursive calls.

Running time?

- We visit each vertex once, and for every vertex we do O(1) work:
 - Make a recursive call
 - Participate in summations of parent node
- Running time is O(|V|)

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

 You do this one!
- Step 5: If needed, code this up like a reasonable person.

What have we learned?

 We can find maximal independent sets in trees in time O(|V|) using dynamic programming!

• For this example, it was natural to implement our DP algorithm in a top-down way.

Balanced Partition (BP) Problem

- We are given n integers $I = \{k_1, k_2, ..., k_n\}$, s.t. $0 \le k_i \le K$.
- We like to **partition** them into two sets S_1 and S_2 s.t. the difference d of the total sizes of the two sets is as small as possible

$$\min_{S_1, S_2} d \text{ s.t. } d = |\sum_{i \in S_1} k_i - \sum_{j \in S_2} k_j|.$$

$$k_1 = 1, k_2 = 3, k_3 = 4, k_4 = 6, k_5 = 7$$

$$|S_1| = 10 |S_2| = 11$$

 $d = |10 - 11| = 1$

Solution

max item size

• Let $M = \sum_{i} k_i \le nK$.

$$|S_1| = \left\lfloor \frac{M}{2} \right\rfloor - m$$

• m = 0: The best we can hope for is $|S_1| = \left\lfloor \frac{M}{2} \right\rfloor - 0$ and $S_2 = M - S_1$.

Solution

max item size

• Let $M = \sum_{i} k_i \le nK$.

$$|S_1| = \left\lfloor \frac{M}{2} \right\rfloor - m$$

- m = 0: The best we can hope for is $|S_1| = \left\lfloor \frac{M}{2} \right\rfloor 0$ and $S_2 = M S_1$.
- m = 1: If this is not possible, the next best is $|S_1| = \left\lfloor \frac{M}{2} \right\rfloor 1$ and $S_2 = M S_1$.

Solution

max item size

• Let $M = \sum_{i} k_{i} \leq nK$.

$$|S_1| = \left\lfloor \frac{M}{2} \right\rfloor - m$$

- m = 0: The best we can hope for is $|S_1| = \left|\frac{M}{2}\right| 0$ and $S_2 = M S_1$.
- m = 1: If this is not possible, the next best is $|S_1| = \left|\frac{M}{2}\right| 1$ and $S_2 = M S_1$.
- m = 2: If this is not possible, the next best is $|S_1| = \left|\frac{M}{2}\right| 2$ and $S_2 = M S_1$.
- m = 3: If this is not possible, the next best is $|S_1| = \left|\frac{M}{2}\right| 3$ and $S_2 = M S_1$.
- ... try up to $m = \lfloor \frac{M}{2} \rfloor$. This is always possible since we have $S_1 = \emptyset$, $S_2 = I$.
- So, lets check the best we can achieve starting from m=0.

Example

Possible allocations

10

 S_2

Can I fill exactly a knapsack of size 10?

The "subsetum problem"

8

13

20

Given:

$$k_1 = 1, k_2 = 3, k_3 = 4,$$

$$k_4 = 6, k_5 = 7$$

$$M = 21, \qquad \left| \frac{M}{2} \right| = 10$$

Reduction to the Subsetum Problem (SP)

• We reduced *BP* to the problem *SP*:

• SP[n, D]: We are given n integers $I = \{k_1, ..., k_n\}$, $s.t. 0 \le k_i \le K$, and an integer $D \le nK$. Is there a subset S of them such that $\sum_{i \in S} k_i = D$? (True/False).

Reduction to the Subsetum Problem (SP)

55

- Solution of *BP*:
- Solve *BP* by finding the smallest value of m = 0,1,..., $\left\lfloor \frac{M}{2} \right\rfloor$ for which $SP\left[n,\left\lfloor \frac{M}{2} \right\rfloor m \right] = True$.
- Do we need to solve SP repeatedly (again and again form scratch) to solve BP?
- Can we reuse the solution of subproblems?

Solving SP

• Write the DP equations for SP.

• Very similar to knapsack problem.

Can you guess them?

Solving SP

• Recursion for SP[n, D]:

given items 1..j, is j used to fill X exactly?

$$SP[j,X] = \max \{SP[j-1,X], SP[j-1,X-k_j]\}, 0 \le j \le n, X \le D,$$

$$SP[j,0] = 1, j = 0,...,n, SP[0,X>0] = 0, SP[k,X<0] = 0.$$

- Solution: SP[n, D].
- Topological sort: j = 0,1,2...,n, X = 0,1,...,D.
- Complexity: ?? -> same as Knapsack = O(nD).

Solving SP

• Recursion for SP[n, D]:

given items 1..j, is j used to fill X exactly?

$$SP[j, X] = \max \{SP[j-1, X], SP[j-1, X-k_j]\}, 0 \le j \le n, X \le D,$$

$$SP[j,0] = 1, j = 0,...,n, SP[0,X>0] = 0, SP[k,X<0] = 0.$$

Solution for BP:

M: sum of item sizes

- Solve SP[n, M/2], fill in table of sub-problems.
- Find largest $X = \lfloor M/2 \rfloor, \lfloor M/2 \rfloor 1, ..., s.t. SP[1..n, X] = 1.$

Exercise

• Solve *BP* for item sizes 1,2,3,4. M = 10, [M/2] = 5

$$SP[j, X] = \max\{SP[j-1, X], SP[j-1, X-k_j]\}, 0 \le j \le n, X \le D,$$

 $SP[j, 0] = 1, j = 0, ..., n, SP[0, X > 0] = 0, SP[k, X < 0] = 0.$

	X=0	1	2	3	4	5
j=0						
1						
2						
3						
4						

Exercise

• Solve *BP* for item sizes 1,2,3,4. M = 10, [M/2] = 5

$$SP[j, X] = \max\{SP[j-1, X], SP[j-1, X-k_j]\}, 0 \le j \le n, X \le D,$$

 $SP[j, 0] = 1, j = 0, ..., n, SP[0, X > 0] = 0, SP[k, X < 0] = 0.$

	X=0	1	2	3	4	5
j=0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	1	1	1	0	0
3	1	1	1	1	1	1
4	1	1	1	1	1	1

Conclusions

 DP is a technique for solving complex optimization problems computationally.

• Key idea is to decompose a problem into a calculation involving the independent solution of similar type problems defined on reduced size systems (recurrence).

• The reduction of the complexity is due to memoization: solving each subproblem only once and remembering the results.

The End