```
Es: CRT System

\[ X = 4 \text{mod 4-4} \\ \times = 3 \text{mod 17} \\ \times = 6 \text{mod 18} \\
\times = 3366
\]
\[ \text{b}_1 = 4 \text{ ; N}_1 = 306 \]
\[ \text{b}_2 = 3 \text{ ; N}_2 = 198 \]
\[ \text{b}_3 = 6 \text{ ; N}_3 = 187 \]
\[ \text{X}_1 = 366^{-1} \text{mod 11} \]
\[ \text{X}_1 = 366^{-1} \text{mod 11} \]
\[ \text{3} = 9 \text{mod 11} \]
\[ \text{1} = 9 \text{1} + 2 \\
\text{9} = 2 \text{2} + 1 \]
```

012x1=2

$$X_1 = 366^{-1} \mod 11$$
 $306 = 9 \mod 11 = 9^{-1}$
 $11 = 9 \times 1 + 2$
 $9 = 2 \times 4 + 1$
 $4 = 1 \times 4 + 0$
 $9 = 1 \times 4 + 0$
 $10 \times 4 \times 4 \times 6$
 $10 \times 4 \times 6 \times 6$
 $10 \times 4 \times 6 \times 6$
 $10 \times 6 \times 6 \times 6$

P4=16-2=14

Ы

4

6

$$187 = \frac{1}{2} \mod 18$$
 $18 = \frac{1}{2} \times 2 + 4$
 $18 = \frac$

X=6120+8316+14586=2754+1584+1122=2094mod 3366

Ni

ተልጉ

198 14

 X_i $b_i N_i X_i$

8396

14586

306 5 6120

13

 $x = 29^{-1} \mod 401$

5x = 14 mod40+

401 = 29x+3+24 29 = 24x++5 24 = 5x4+4 5= 4x++1 4= 1x4+0

Po = 0 Pa = 1 Po = 0 - 13 - 388 Po = 14 Po = 388 - 14x4 = 332 Po = 14 - 332 = 83

5x83=415 = 14 mod 401

X=83

Es: Ec

Let $F: y^2 = x^3 + 7$ bethe elliptic come defined on $7L_{11}$ Let F=(2,2) and Q=(7,3)

If P,Q ∈ E, then compute the x-component of P+Q

Else answer NO

Check if PEE

$$2^2 = 2^3 + 7 \mod 41$$

 $4 = 8 + 7 = 4 OK$

Checky QEE

$$3^2 = 3 + 7 \mod 11$$

 $9 = 3^2 \cdot 3 + 7 \mod 11 = 9 \text{ OK}$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_4} = 1.5^{-1} \mod 11 = 9$$

$$x_3 = \lambda^2 - x_1 - x_2 = 4 - 2 - 7 = 6$$

Es: Galois

Let GF(8) be the Galois field defined by the polynomial $G(x) = X^3 + x + 16 N_2[x]$ Let $a(x) \in GF(8)$ be the polynomial $a(x) = x^2 + x$

The multiplicative inverse of a(x) 15

- a) X+1
- 6) ×
- c) $x^2 + x + 4$
- d) x2+X

Solution

$$(x^{2}+1)x^{3}+x+1$$
 $\xrightarrow{x+1}$ $(1,x^{2}+x)$ $\xrightarrow{x^{2}+1}$ $(0,1)$

Reverse rule:

$$(y+qx,x) \leftarrow (x,y)$$

$$(0,1) \xrightarrow{x^2+1} (1,0) \xrightarrow{x+1} (x+1,1)$$