OtFMI, an OpenTURNS module for uncertainties analysis with 0D/1D system models

Michaël Baudin ¹ Audrey Jardin ¹ Mathias Bouquerel ¹
Anne-Laure Popelin ¹ Audrey Jardin ¹
Julien Schueller ² Sylvain Girard ²

¹EDF R&D. 6, quai Watier, 78401, Chatou Cedex - France, michael.baudin@edf.fr

²Phimeca Engineering. 18/20 boulevard de Reuilly, 75012 Paris - France,
girard@phimeca.com

October 19th 2017

Industrial issue

► EDF uses 0D/1D system models programmed in Modelica as decision support for the conception and operation of its industrial assets.

► How to apply OpenTURNS' panoply of methods to these models?

"Regular" models vs 0D/1D system models

"Regular" modelling

("Packing"

$$\begin{cases}
\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), t) \\
\mathbf{y}(t) = g(\mathbf{x}(t), \mathbf{u}(t), t)
\end{cases}$$
Equation formulation

Solver programming

"Regular" models vs 0D/1D system models

Solver programming

"Regular" models vs 0D/1D system models

Modelica programming language

 Modelica is an open language for programming models based on differential algebraic systems of equations

- ► Equations are written in almost natural language, and solved by a multipurpose third party tool.
- ▶ It is object-oriented: available module libraries cover most applications
 - Complex models can be achieved simply by combining this modules using a graphical interface!

Modelica tools

- ► Main tools :
 - Dymola (Dassault Systèmes, proprietary)
 - OpenModelica (Open Source Modelica Consortium, open source)

- Functions
 - Flatten equation systems
 - Compile to machine code after including a solver
 - Development environment
 - Model graphical interface
 - Basic post-processing...

OpenModelica, model graphical view

Piloting models

- Most OpenTURNS methods apply to functional black boxes
 - Uncertainty propagation and reliability analysis
 - Sensitivity analysis
 - Emulation
 - Parameter estimation

► We need efficient input—output data interfaces, a.k.a. wrappers in OpenTURNS jargon.

Functional mock-up interface (FMI)

▶ FMI is a standard for input—output data interface for numerical model.

► A functional mock-up unit (FMU) is a black box following the standard.

OtFMI: integrating FMI support into OpenTURNS

- ► The new open source module OtFMI allows transparent use of FMU with OpenTURNS methods.
- ▶ It provides high level classes derived from ot.PythonFunction: running an FMU instead of a Python function only requires to change a single code line!

Implementation overview

OtFMI grahical interface

Motivations

- ► Provide access to OpenTURNS' methods for Modelica users unfamiliar with Python
- ► Considerably ease simple studies

Issues

► Modelica models often define hundreds or thousands of variables

OtFMI grahical interface, FMU overview

OtFMI grahical interface, picking inputs and outputs

Perspectives

► Most 0D/1D system model are dynamical. We need methods for sensitivity analysis and emulation of model with time series inputs or outputs.

▶ EDF is interested into data assimilation with its Modelica models.

▶ What are the opportunities of extending the Modelica language to support stochastic description of variables?

Thank you for your attention.