数学建模:第8次作业

周炜 计算机科学与技术

日期: 2022年12月10日

1 题目一

一、中铁网发售某地区的铁路车票,近期推出一款名为"中铁卡"的优惠产品。每张中铁卡售价为C元,有效期为T天,可随时购买,立即生效。购买了中铁卡的乘客在其有效期内购买面值为P元的车票只须实付 βp 元,其中 $0 < \beta < 1$ 。已知准备购买的n张车票价格 p_j 和购票时间 $t_j, j = 1, \cdots, n$,其中 $t_1 \le t_2 \le \cdots \le t_n$,欲使购买中铁卡和车票支付的总金额最小。

为此,构造有向图G = (V, E),其中 $V = \{u, w, v_1, \dots, v_n\}$, v_j 对应于需购买的第j 张车票。试确定G 的边和每条边的权,使该问题等价于寻找图G 中自u 到w 的一条最短有向路。

若不购买中铁卡,按照时间顺序,有 $u \xrightarrow{p_1} v_1 \xrightarrow{p_2} v_2 \xrightarrow{p_3} \dots \xrightarrow{p_n} v_n$

加入中铁卡后,为方便起见,引入 α_i ,可以记 $v_i \xrightarrow{C} \alpha_i$,i=1,2,3...n 为购买中铁卡。并且假设,在 v_i 处购买中铁卡后,在有效期 T 内,满足 $t_{k_i}-t_i \leq T \leq t_{k_i+1}-t_i$,则有

$$v_i \xrightarrow{\beta p_{i+1}} v_{i+1} \xrightarrow{\beta p_{i+2}} \dots \xrightarrow{\beta p_{k_i}} v_{k_i}$$

为此,引入拉普拉斯变换中的单位阶跃函数 $u(t) = \begin{cases} 1, t \geq 0 \\ 0, t < 0 \end{cases}$,此时如果在 v_i 处购买中铁卡,可以把 $< v_i, v_i >$ 的边权重从原始的 p_{i+1} 修正为 $p_{i+1} - u(t_i + T - t_i)(1 - \beta)p_{i+1}$

由于需要将图限制在 $V=(u,w,v_1,v_2,....,v_n)$ 中,对上述分析过程需要做出一定修改

综上分析,不妨记 $u=v_0$, $w=v_{n+1}$,并且假设 $j_1,j_2,...,j_{k_i}(k_i\leq n+1)$ 是一系列满足 $0\leq t_i+T-t_{j_\alpha}$, $\alpha=1,2,...k_i$ 的点,则对任意的 v_i ,有 $< v_i,v_i>$ 的边权重有

$$\langle v_i, v_j \rangle = \begin{cases} C + \beta \sum_{s=i+1}^{j} p_s, j = \max\{j_1, j_2, ..., j_{k_i}\} \\ p_{i+1}, j = i+1 \\ 0, j = others \end{cases} i, j = 0, 1, 2, ...n + 1$$

第 8 次作业 IAT_EX

2 题目二

二、中世纪英国学者 Alcuin 在他的著作中给出了下面的过河问题。现有n件物品需用一艘船从河的左岸运至右岸。两件不同的物品之间可能存在排斥性,即它们不能同时位于河的一侧,除非此时船也在河的这一侧。用图G=(V,E)表示物品之间的排斥性。V中每个顶点表示一件物品,两个顶点之间有边相连当且仅当这两个顶点表示的物品是排斥的。所有物品和船的一种状态可用三元组 (V_L,V_R,b) 表示,其中 V_L,V_R 分别代表位于河左岸和右岸的物品集,且有 $V_L \cup V_R = V$, $V_L \cap V_R = \emptyset$, $b \in \{E,A\}$ 表示船所在的位置。船从左岸到达右岸,或从右岸到达左岸的过程称为一次运输。每次运输时船至多装载k件物品,k称为船的容量。现要求给出一由多次运输组成的可行运输方案,将所有物品从左岸运到右岸。

- (1)请用图论语言表示一次允许的运输过程导致的状态变化,进而完整描述上述问题。
- (2) 记 $\beta(G)$ 为 G 的最小顶点覆盖所包含顶点的数目, k^* 为 G 的 **Alcuin 数**,即存在可行运输方案时船容量的最小值,证明 $\beta(G) \le k^* \le \beta(G) + 1$ 。
- (3) 设 X_1, X_2, X_3, Y_1, Y_2 为V的子集, $X = X_1 \cup X_2 \cup X_3$, $Y = V \setminus X$,这些子集满足以下条件:
 - (i) X_1, X_2, X_3 两两不交, X 为 G 的独立集;
 - (ii) $|Y| \le k$, $Y_1, Y_2, \to Y$ 的非空子集;
 - (iii) $X_1 \cup Y_1$ 和 $X_2 \cup Y_3$ 为 G 的独立集;
 - (iv) $|Y_1| + |Y_2| \ge |X_3|$

试设计一可行运输方案,并证明其运输次数不超过2|V|+1。

2.1

 $(L_t|B_t|R_t)$ 表示第 t 次运输中的运输情况,其中 L_t , B_t , R_t 分别表示第 t 次运输过程中左岸、船上和右岸的点的集合。" \rightarrow "" \leftarrow "分别表示第 t 次的运输方向,一次允许的运输过程则可以表示为:

存在有限的序列: $(L_1, B_1, R_1), (L_2, B_2, R_2), ..., (L_s, B_s, R_s)$ 使之满足三个条件:

- 1. 对任意的 t, L_t , B_t , R_t 为点集 V 的一个划分, L_t 和 R_t 是 G 的独立集, 且 $|B_t| \le k(|B_t|$ 表示集合 B_t 中的元素个数)
 - 2. $L_1 \cup B_1 = V, R_1 = \emptyset; B_s \cup R_s = V, L_s = \emptyset$
- 3. 对于偶数 $t \geq 2$,有 $B_t \cup R_t = B_{t-1} \cup R_{t-1}$, $L_t = L_{t-1}$;对于奇数 $t \geq 3$,有 $L_t \cup B_t = L_{t-1} \cup B_{t-1} R_t = R_{t-1}$
 - s 为运输方案的长度,显然,s 是一个奇数

第 8 次作业 IAT_EX

2.2

在任何可行的运输方案的第一次运输期间,左岸将留下了一个稳定的集合 L_1 并用船运送了集合 B_1 (至少要有 $\beta(G)$ 个顶点,否则与假设矛盾),这表明 $\beta(G) \leq k^*$

不妨考虑一个容量 $k=\beta(G)+1$ 的船,假设 C 为 G 的最小项点覆盖所包含项点的集合,则装满 $\beta(G)$ 个项点后,船上还剩下一个容量,在 V-C 取出一个项点放在船中,向右运移到河对岸。重复该步骤,可以将所有的 V-C 运送到对岸。然后最后一步中,把 C 在对岸放下。这说明 $k \geq \beta(G)+1$ 时,运输一定是可行的。

综上所诉,

$$\beta(G) \le k^* \le \beta(G) + 1$$

2.3

首先证明如果运输次数不多于 2|V|+1 时在满足题设的条件下一定满足 (i)(ii)(iii)(iv)

不失一般性,考虑一个可行的运输过程 (L_k, B_k, S_k) ,且 $B_k \neq B_{k+1}$, $1 \leq k \leq s-1$ 。根据(2)中所得到的结论,存在一个顶点覆盖 $Y \subset V$,满足 |Y| = k (Y 不一定是最小顶点覆盖),并且其补集 X = V - Y稳定,下面将分成三种情况进行讨论:

1. 存在 $L_t \cap Y \neq \emptyset$, $R_t \cap Y \neq \emptyset$, 令 $Y_1 = L_t \cap Y$, $X_1 = L_t \cap X$, $Y_2 = R_t \cap Y$, $X_2 = R_t \cap X$, $X_3 = B_t \cap X$, 显然 Y_1 和 Y_2 是不相交集合,并且 $X = X_1 \cup X_2 \cup X_3$,满足假设条件 (i)(ii)(iii),因此有

$$|Y| = k \ge |B_t \cap X| + |B_t \cap Y| = |X_3| + (|Y| - |Y_1| - |Y_2|)$$

同时有 $|Y_1| + |Y_2| \ge |X_3|$ 满足条件 (iv)

2. 存在 $1 \le t \le s$,使得 $B_t = Y$,如果 t 是奇数 (船是正向移动,即运到对岸),由于题目假设 $B_{t-1} \ne B_t \ne B_{t+1}$,这表明 $L_{t-1} \cap Y \ne \emptyset$ 并且 $R_{t+1} \cap Y \ne \emptyset$ 。进一步,X 中的每一个元素一定包含在 $L_{t-1} \cup B_{k-1}$ 或者 $R_{k+1} \cup B_{k+1}$ 中的一个。令 $Y_1 = L_{t-1} \cap Y, X_1 = L_{t-1} \cap X, Y_2 = R_{t+1} \cap X$,那么 X_1, X_2, X_3 成对不相交,即满足 (i)(ii)(iii),由上述条件可以得到:

$$|Y| = k \ge |B_{t-1} \cap X| + |B_{t-1} \cap Y| = |B_{t-1} \cap X| + |Y| - |Y_1|$$

这表明 $|B_{t-1} \cap X| \le |Y_1|$, 由对称性, $|B_{t+1} \cap X| \le |Y_2|$, 两式合并得到 $|Y_1| + |Y_2| \ge |X_3|$ 即满足 (iv) 如果船反向移动,同理

3. 对所有 t 满足 $L_t \cap Y = \emptyset$ 或者 $R_t \cap Y = \emptyset$, 并且满足 $B_t \neq Y$ 。 若 $R_s \cap Y \neq \emptyset$ (如果 $R_s \cap Y = \emptyset$, 则同样可以变换为 $R_s \cap Y \neq \emptyset$), 令 $Y_1 = R_s \cap Y$, $X_1 = R_s \cap X$, $Y_2 = Y_1$, $Y_3 = Y_2$, $Y_4 = Y_5$, 则有

$$|Y| = b \ge |B_s \cap X| + |B_s \cap Y| = |X_3| + (|Y| - |Y_1|)$$

,满足条件(i)(ii)(iii)(iv)。

一个可行的方案

用符号 (L|B|R) 表示左侧有集集合 L, B 在船上,R 在右岸. 由于满足 (i)(ii)(iii)(iv),我们可以得到下述方案:

步骤 1. 由条件 (ii),船可以携带集合 Y,留下 X 在左岸,然后把 Y_1 放在对岸(假设为右岸),然后返回左岸,这之后两岸的情况为 $(X|Y-Y_1|Y_1)$ 。

完成该步骤,船移动了2次

步骤 2. 完成上一步骤后,船有 $|Y_1| \ge 1$ 的余量,将 X_1 切割成最大为 $|Y_1|$ 的子集合,然后分批过河,这样多次之后,两岸的情况为 $(X_2,X_3|Y-Y_1|X_1,Y_1)$

完成该步骤,船移动了 $2[|X_1|/|Y_1|]$ 次

步骤 3. 由于 $|Y_1| + |Y_2| \ge |X_3|$, 我们可以把 X_3 分成两个不相交子集 X_{31}, X_{32} , 并且这两个集合满足

第 8 次作业

 $|X_{31}| \le |Y_1|, |X_{32}| \le |Y_2|$ 。从左岸出发走 4 次,每次后两岸的情况为:

$$(X_2, X_{32} | Y - Y_1, X_{31} | X_1, Y_1), \quad (X_2, X_{32} | Y | X_1, X_{31}),$$

 $(X_2, Y_2 | Y - Y_2, X_{32} | X_1, X_{31}), \quad (X_2, Y_2 | Y - Y_2 | X_1, X_3).$

完成该步骤,船移动了4次

步骤 4. 完成上一步骤后,船有至少 $|Y_2| \ge 1$ 的余量,可以将 X_2 载到对岸,之后两岸的情况为 $(Y_2|Y-Y_2|X)$

完成该步骤,船一移动了, $2[|X_2|/|Y_2|]$ 次

步骤 5. 最后只需要把 Y_2 放到右岸,最后两岸的情况是 $\emptyset |Y|X$

完成该步骤,船移动了1次

由于 $|V| \ge |X_1| + |X_2| + |X_3| + 1$, 这表明船最多移动了 $s = 2|V| - 2|X_3| + 5$ 次

- (a) 如果 $|X_3| \ge 2$, $s \le 2|V| + 1$
- (b) 如果 $|X_3|=1$, 改变步骤 2 中的最后一趟返程为 $(X_2,X_3\mid Y\mid X_1)$ 以及步骤 3 为 $(X_2,Y_2\mid Y-Y_2,X_3\mid X_1)$ 和 $(X_2,Y_2\mid Y-Y_2\mid X_1,X_3)$ 。这样操作之后节省了 2 次移动,因此 $s\leq 2|V|+1$
- (c) 如果 $|X_3|=0$,改变步骤 2 中的最后一趟返程为 $(X_2|Y|X_1)$,去除步骤 3,并且把步骤 4 中的第一趟正程改为将 $|Y_2|$ 留在左岸,因此可以节省 4 次移动,因此 $s\leq 2|V|+1$

综上所诉, 其运输次数不超过 2|V|+1