С. Р. Насыров РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

1 Ряды Фурье в гильбертовых пространствах

1.1Метрические пространства

Пусть X — некоторое множество и задана функция $d: X \times X \to \mathbb{R}$, удовлетворяющая условиям:

- 1) $d(x,y) \ge 0 \ \forall x, y \in X$ и $d(x,y) = 0 \Leftrightarrow x = y$;
- 2) $d(x,y) = d(y,x) \ \forall x, y \in X$ (симметричность);
- 3) $d(x,z) \le d(x,y) + d(y,z) \ \forall x, y, z \in X$ (неравенство треугольника).

Пара (X,d) называется метрическим пространством, а функция d— расстоянием или метрикой на X.

Примеры метрических пространств.

- 1) $X = \mathbb{R}, \ d(x,y) = |x-y|.$ 2) $X = \mathbb{R}^n, \ d(x,y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}.$
- 3) Пространство l_2 квадратично суммируемых последовательностей. Оно состоит из вещественных последовательностей $x = (x_1, x_2, \dots, x_n, \dots)$ таких, что $\sum_{n=1}^{\infty} (x_n)^2 < +\infty$. Метрика вводится по формуле:

$$d(x,y) = \sqrt{\sum_{n=1}^{\infty} (x_n - y_n)^2}.$$

Нетрудно показать, что это действительно метрика. Проверка условий 1) и 2) очевидна. Докажем, что имеет место неравенство треугольника. Для любого натурального N имеем неравенство треугольника в \mathbb{R}^N (пример 2):

$$\sqrt{\sum_{n=1}^{N} (x_n - z_n)^2} \le \sqrt{\sum_{n=1}^{N} (x_n - y_n)^2} + \sqrt{\sum_{n=1}^{N} (y_n - z_n)^2}.$$

Переходя к пределу при $N \to \infty$ получаем

$$\sqrt{\sum_{n=1}^{\infty} (x_n - z_n)^2} \le \sqrt{\sum_{n=1}^{\infty} (x_n - y_n)^2} + \sqrt{\sum_{n=1}^{\infty} (y_n - z_n)^2}.$$

Это — требуемое неравенство треугольника в l_2 .

4) Рассмотрим пространство непрерывных на компактном множестве X функций C(X). Введем расстояние между непрерывными функциями f и g на X:

$$d(f,g) = \max_{x \in X} |f(x) - g(x)|.$$

По теореме Вейерштрасса этот максимум существует. Провверим, что так введенная функциям удовлетворяет условиям 1)–3). Условия 1) и 2) очевидны. Установим справедливость неравенства треугольника. Фиксируем $x \in X$. Тогда в силу неравенства треугольника для чисел

$$|f(x) - h(x)| \le |f(x) - g(x)| + |g(x) - h(x)| \le$$

$$\leq \max_{t \in X} |f(t) - g(t)| + \max_{t \in X} |g(t) - h(t)| = d(f, g) + d(g, h).$$

Итак, $|f(x) - h(x)| \le d(f,g) + d(g,h)$ для любого $x \in X$. Учитывая, что правая часть последнего неравенства не зависит от x, получаем

$$d(f,h) = \max_{x \in X} |f(x) - g(x)| \le d(f,g) + d(g,h).$$

В качестве X можно взять и отрезок [a;b]. В этом случае соответствующее пространство обозначается C[a,b].

5) Рассмотрим на пространстве непрерывных функций на отрезке [a;b] функцию

$$d_1(f,g) = \int_a^b |f(x) - g(x)| dx.$$

Докажите, что что функция d_1 определяет некоторое расстояние на этом пространстве. Еще одна метрика, которую можно определить на пространстве непрерывных на отрезке функций, задается по формуле

$$d_2(f,g) = \left(\int_a^b |f(x) - g(x)|^2 dx\right)^{1/2}.$$

Пусть (X, d) — метрическое пространство. Говорят, что последовательность x_n сходится в этом пространстве к элементу x, если числовая последовательность $d(x_n, x) \to 0, n \to \infty$.

Последовательность x_n называется фундаментальной в (X,d), если $\forall \varepsilon > 0 \ \exists N : \forall m, \ n \geq N \ d(x_m,x_n) < \varepsilon$.

Очевидна

Теорема. Если последовательность в метрическом пространстве сходится, то она фундаментальна.

Обратное, вообще говоря, неверно.

Метрическое пространство называется *полным*, если любая фундаментальная последовательность в нем сходится. Примеры полных метрических пространств: \mathbb{R} , \mathbb{R}^n , C(X), где X компактно (см. теорему ниже).

Примеры неполных метрических пространств: пространство непрерывных на [a;b] функций с интегральной метрикой d_1 или с интегральной метрикой d_2 . Чтобы продемонстрировать это, построим фундаментальную последовательность в этом пространстве, которая не сходится ни к какой непрерывной функции. Для простоты рассмотрим отрезок [0,1]. Пусть непрерывная функция

$$f_n(x) = \begin{cases} 0, & 0 \le x \le 1/2, \\ n(x - 1/2), & 1/2 \le x \le 1/2 + 1/n, \\ 1, & 1/2 + 1/n \le x \le 1. \end{cases}$$

Тогда последовательность f_n фундаментальна по метрике d_1 , но не сходится ни к какой непрерывной функции, поскольку предел должен быть равен нулю при $0 \le x < 1/2$ и единице при $1/2 < x \le 1$ (докажите это строго!). Следовательно, предел — разрывная в точке x = 1/2 функция.

Теорема. Пространство C(X) полно.

Доказательство. Пусть последовательность $f_n \in C(X)$ и $d(f_n, f_m) \to 0$ при $m, n \to \infty$, т. е. $\forall \varepsilon > 0 \ \exists N : \forall m, n \ge N$

$$d(f_m, f_n) = \max_{x \in X} |f_n(x) - f_m(x)| < \varepsilon.$$

Тогда для любого $x \in X$ при $m, n \ge N$ имеем

$$|f_n(x) - f_m(x)| < \varepsilon. \tag{*}$$

Это означает, что числовая последовательность $f_n(x)$ фундаментальна в \mathbb{R} . По критерию Коши последовательность $f_n(x)$ сходится в \mathbb{R} . Обозначим ее предел через f(x). Переходя к пределу в (*), получаем

$$|f_n(x) - f(x)| \le \varepsilon \tag{**}$$

при $n \geq N$. Это неравенство выполняется для любого $x \in X$ и $N = N(\varepsilon)$ не зависит от $x \in X$. Значит, $f_n \Rightarrow f$ на X. Так как f_n непрерывны

на X, то и f непрерывна как равномерный предел последовательности непрерывных функций. Так как (**) выполняется для любого $x \in X$, то $d(f_n, f) = \max_X |f_n(x) - f(x)| \le \varepsilon, n \ge N$. Следовательно, $f_n \to f$ в C(X) и теорема доказана.

Замечание. В процессе доказательства мы показали, что сходимость в пространстве C(X) равносильна равномерной сходимости.

1.2 Линейные нормированные пространства

Нормированное векторное пространство E над полем Λ (в дальнейшем будем считать, что $\Lambda = \mathbb{R}$ или $\Lambda = \mathbb{C}$) — это линейное векторное пространство над Λ , на котором определена функция $\|\cdot\|$, называемая нормой и удовлетворяющая следующим свойствам:

- 1) $\forall x \in E ||x|| \ge 0$, причем $||x|| = 0 \Leftrightarrow x = \theta$;
- 2) $\forall x \in E \ \forall \lambda \in \Lambda \$ имеем $\|\lambda x\| = |\lambda| \cdot \|x\| \$ (однородность);
- 3) $\forall x, y \in E$ справедливо неравенство $||x+y|| \le ||x|| + ||y||$ (неравенство треугольника).

Любое нормированное пространство является метрическим с метрикой d(x,y) = ||x-y||.

Примеры нормированных пространств.

- 1) \mathbb{R} с нормой ||x|| = |x|.
- 2) \mathbb{R}^n с нормой $||x|| = (\sum_{i=1}^n x_i^2)^{1/2}$.
- 3) Множество C(X) непрерывных функций на компактном множестве X с нормой $\|f\| = \max_{x \in X} |f(x)|$. Свойства нормы 1) и 2) легко проверяются. Покажем, что имеет место неравенство треугольника. Для любого $x \in X$ имеем

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le \max_{y \in X} |f(y)| + \max_{y \in X} |g(y)| = ||f|| + ||g||.$$

Итак, $|f(x) + g(x)| \le ||f|| + ||g||$, $x \in X$. Следовательно,

$$||f + g|| = \max_{x \in X} |f(x) + g(x)| \le ||f|| + ||g||.$$

4) Рассмотрим множество $l_p \ (p \ge 1)$ последовательностей

$$x = (x_1, x_2, \dots, x_n, \dots)$$

таких, что сходится ряд $\sum_{i=1}^{\infty}|x_i|^p$. Определим в l_p норму

$$||x|| = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}.$$

Эта норма превращает l_p в линейное нормированное пространство. Важнейший частный случай — p=2.

5) Рассмотрим множество $L_p(a,b)$ $(p \ge 1)$ функций f на отрезке [a,b], таких что функция $|f|^p$ интегрируема (по Лебегу) на [a,b] (по поводу интеграла Лебега см. замечание ниже). Следующая операция превращает $L_p(a,b)$ в линейное нормированное пространство:

$$||f|| = \left(\int_a^b |f(x)|^p dx\right)^{1/p}.$$

Важнейшие частные случаи — p = 1 и p = 2.

Замечание 1. Интеграл Лебега является обобщением интеграла Римана. Здесь мы не даем определения интеграла Лебега! Отметим только, что если функция интегрируема по Риману на отрезке, то она интегрируема и по Лебегу и интегралы Римана и Лебега от нее совпадают.

Замечание 2. На самом деле требуется также, чтобы функции из $L_p(a,b)$ были измеримыми (определение измеримости функции будет дано в курсе теории функций действительного переменного или в курсе функционального анализа). Кроме того, функции, совпадающие во всех точках отрезка, за исключением множества меры нуль по Лебегу, считаются за один элемент пространства $L_p(a,b)$.

Банаховым пространством называется полное линейное нормированное пространство.

1.3 Унитарные пространства

Пусть Λ — полем действительных или комплексных чисел. Линейное пространство U над полем Λ называется yнитарным, если оно бесконечномерно и задана функция $(\cdot\,,\,\cdot):U\times U\to\Lambda$, удовлетворяющая условиям

1) для любых $x, y, z \in U$ и любых $\alpha, \beta \in \Lambda$ имеем $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z);$

- 2) для любых $x, y, z \in U$ выполняется равенство $(y, x) = \overline{(x, y)}$ (черта сверху означает комплексное сопряжение);
- 3) для любого $x \in U$ имеем $(x,x) \ge 0$, причем (x,x) = 0 тогда и только тогда, когда $x = \theta$.

При этом функция $(\,\cdot\,,\,\cdot\,)$ называется *скалярным произведением*. Обозначим $\|x\|=\sqrt{(x,x)}$ и назовем $\|x\|$ нормой элемента x.

Упражнение 1. Докажите, что в действительном унитарном пространстве

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2),$$

а в комплексном —

$$\operatorname{Re}(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2), \quad \operatorname{Im}(x,y) = \frac{1}{4}(\|x+iy\|^2 - \|x-iy\|^2).$$

Таким образом, скалярное произведение можно выразить через норму.

Упражнение 2. Основываясь на результате упражнения 1, докажите, что $f: U_1 \to U_2$ — линейное отображение унитарных пространств и $||f(x)||_{U_2} = ||x||_{U_1}$ для любого $x \in U_1$, то

$$(f(x_1), f(x_2))_{U_2} = (x_1, x_2)_{U_1}, \quad x_1, x_2 \in U_1.$$

Теорема (неравенство Коши-Буняковского). Для любых $x, y, z \in U$ выполняется равенство

$$|(x,y)| \le ||x|| \cdot ||y||.$$

Знак равенства в этом неравенстве имеет место тогда и только тогда, когда х и у линейно зависимы.

Доказательство. Для любого $t \in \mathbb{R}$ имеем

$$0 \le ||tx + y||^2 = (tx + y, tx + y) = (tx, tx) + (y, tx) + (tx, y) + (y, y) =$$
$$= t^2(x, x) + t(x, y) + t(x, y) + (y, y) = ||x||^2 t^2 + 2\operatorname{Re}(x, y)t + ||y||^2.$$

Итак, $\|x\|^2t^2+2\operatorname{Re}(x,y)t+\|y\|^2\geq 0,\ t\in\mathbb{R}$. Можно считать, что $x,y\neq\theta$. Тогда $\|x\|^2\neq 0$ и квадратичный трехчлен имеет дискриминант $D\leq 0$, откуда $D/4=(\operatorname{Re}(x,y))^2-\|x\|^2\|y\|^2\leq 0$. Таким образом, $|\operatorname{Re}(x,y)|\leq \|x\|\cdot\|y\|$.

Для доказательства неравенства Коши-Буняковского рассмотрим вместо x вектор $e^{-i\theta}x$, где $\theta \in \mathbb{R}$. Тогда в силу доказанного,

$$|\operatorname{Re}(e^{-i\theta}x, y)| \le ||e^{-i\theta}x|| \cdot ||y|| = ||x|| \cdot ||y||.$$

Можно считать, что $(x,y) \neq 0$, иначе доказываемое неравенство очевидно. Пусть $\theta = -\arg(x,y)$. Тогда $\mathrm{Re}(e^{-i\theta}x,y) = |(x,y)|$ и нужное неравенство установлено.

Если в неравенстве Коши-Буняковского имеет место знак равенства, то дискриминант квадратичного трехчлена равен нулю и тогда существует $t \in \mathbb{R}$, при котором этот трехчлен обращается в нуль. Тогда $\|te^{-i\theta}x+y\|^2=0$, откуда $te^{-i\theta}x+y=\theta$. Следовательно, x и y линейно зависимы. Обратно, если $y=\lambda x$, то

$$|(x,y)| = |(x,\lambda x)| = |\lambda| \cdot |(x,x)| = |\lambda| \cdot ||x||^2 = |\lambda| \cdot ||x|| \cdot ||x|| = ||x|| \cdot ||\lambda x|| = ||x|| \cdot ||y||.$$

Теперь докажем, что функция $\|\cdot\|$ обладает свойствами абстрактной нормы.

- 1) $\forall x \in U \|x\| \ge 0$, причем $\|x\| = 0 \Leftrightarrow x = \theta$. Это очевидно.
- 2) $\forall \lambda \in \Lambda \ \forall x \in U \ \|\lambda x\| = (\lambda x, \lambda x)^{1/2} = (\lambda \cdot \overline{\lambda}(x, x))^{1/2} = |\lambda| \cdot \|x\|.$
- 3) $\forall x, y \in U \|x+y\|^2 = (x+y,x+y) = (x,x)+(x,y)+(y,x)+(y,y) = \|x\|^2+2\operatorname{Re}(x,y)+\|y\|^2 \leq \|x\|^2+2|(x,y)|+\|y\|^2 \leq \|x\|^2+2\|x\|\cdot\|y\|+\|y\|^2 = (\|x\|+\|y\|)^2$, откуда следует неравенство треугольника $\|x+y\| \leq \|x\|+\|y\|$. Таким образом, мы доказали следующее утверждение.

Теорема 1. Любое унитарное пространство является нормированным с нормой $||x|| = (x, x)^{1/2}$.

Поскольку нормированное пространство является метрическим с расстоянием $\rho(x,y) = \|x-y\|$, в унитарном пространстве U можно ввести метрику и говорить о сходимости по этой метрике.

Теорема 2. Норма и скалярное произведение в унитарном пространстве являются непрерывными функциями, т. е. если $x_n \to x$, $y_n \to y$, то 1) $||x_n|| \to ||x||$; 2) $(x_n, y_n) \to (x, y)$.

Доказательство. 1) Непрерывность норму следует из неравенства треугольника. Имеем $| \|x_n\| - \|x\| | \le \|x_n - x\|$. Если $x_n \to x$, то $\|x_n - x\| \to 0$ и тогда $| \|x_n\| - \|x\| | \to 0$. Отсюда следует, что $\|x_n\| \to \|x\|$.

2) Имеем с применением неравенств треугольника и Коши-Буняковского: $|(x_n,y_n)-(x,y)|=|((x_n-x)+x,(y_n-y)+y)-(x,y)|=|(x_n-x,y_n-y)+(x,y_n-y)+(x,y_n-y)+(x,y_n-y)+|(x,y_n-y)|+|(x,y_n-y)|+|(x,y_n-y)|+|(x,y_n-y)|\leq ||x_n-x||\,||y_n-y||+||x||\,||y_n-y||+||x_n-x||\,||y||\to 0$ если $x_n\to x,\,y_n\to y$. Поэтому $(x_n,y_n)\to (x,y)$. Теорема доказана.

Векторы x и y назовем opmoronaльными в унитарном пространстве U, если (x,y)=0. В случае ортогональности векторов x и y пишем $x\perp y$. Opmoronaльной системой в U называется система $\{e_{\alpha}\}$ векторов из U таких, что $e_{\alpha}\neq\theta$ для любого α и $(e_{\alpha},e_{\beta})=0$, т. е. $e_{\alpha}\perp e_{\beta}$, для любых α , β таких, что $\alpha\neq\beta$.

Лемма. Eсли $\{e_{\alpha}\}$ — ортогональная система векторов в U, то $\{e_{\alpha}\}$ — линейно независимая система.

Доказательство. Предположим, что некоторые векторы системы e_{α_1} , $e_{\alpha_2},\dots,e_{\alpha_n}$ линейно зависимы. Тогда существуют константы $\lambda_1,\lambda_2,\dots,\lambda_n$, не все равные нулю и такие, что $\lambda_1 e_{\alpha_1} + \lambda_2 e_{\alpha_2} + \dots + \lambda_n e_{\alpha_n} = 0$. Умножая скалярно обе части последнего равенства на $e_{\alpha_k}, 1 \leq k \leq n$, получаем $\lambda_k = 0$. Таким образом, все $\lambda_k = 0$ — противоречие. Итак, $\{e_{\alpha}\}$ — линейно независимая система.

Ортогональная система $\{e_{\alpha}\}$ в унитарном пространстве U называется ортонормированной, если $\forall \alpha \|e_{\alpha}\| = 1$. Любая ортогональная система $\{f_{\alpha}\}$ может быть сделана ортонормированной преобразованием $f_{\alpha} \mapsto e_{\alpha} = \frac{f_{\alpha}}{\|f_{\alpha}\|}$. Для краткости вместо «ортонормированная система» будем писать «онс».

Пусть $\{e_{\alpha}\}$ — онс в U. Эта система называется *полной* в U, если линейная оболочка этой системы $L\{e_{\alpha}\}$ плотна в U, т. е. замыкание $\overline{L\{e_{\alpha}\}}$ совпадает с U. Другими словами, $\forall x \in U \; \exists x_n \in L\{e_{\alpha}\}: x_n \to x, \; n \to \infty$.

1.4 Примеры унитарных пространств и онс в них

1) Пространство \mathbb{C}^n . Элементами \mathbb{C}^n являются упорядоченные наборы комплексных чисел $z=(z_1,z_2\ldots,z_n)$. Пусть $x=(x_1,x_2\ldots,x_n),\ y=(y_1,y_2\ldots,y_n)\in\mathbb{C}^n$. Определим их скалярное произведение по формуле $(x,y)=\sum_{k=1}^n x_k\overline{y_k}$. Это пространство удовлетворяет всем условиям, входящим в определение унитарного пространства, за исключением одного: оно конечномерно. Следующий пример дает бесконечномерное обобще-

ние пространства \mathbb{C}^n .

2) Пространство l_2 квадратично суммируемых последовательностей. Оно состоит из последовательностей $z=(z_1,z_2\ldots,z_n,\ldots)$ комплексных чисел z_n таких, что $\sum_{k=1}^{\infty}|z_k|^2<+\infty$. Введем в l_2 линейные операции сложения и умножения на скаляр. Если $\lambda\in\mathbb{C},\ z=(z_1,z_2\ldots,z_n,\ldots)$ и $u=(u_1,u_2\ldots,u_n,\ldots)$ — векторы из l_2 , то, по определению,

$$\lambda z = (\lambda z_1, \lambda z_2, \dots, \lambda z_n, \dots), \quad z + u = (z_1 + u_1, z_2 + u_2, \dots, z_n + u_n, \dots).$$

Проверим, что λz и z + u лежат в l_2 . Действительно,

$$\sum_{k=1}^{\infty} |\lambda z_k|^2 = |\lambda|^2 \sum_{k=1}^{\infty} |z_k|^2 < +\infty,$$

$$\sum_{k=1}^{\infty} |z_k + u_k|^2 \le \sum_{k=1}^{\infty} 2(|z_k|^2 + |u_k|^2) = 2\left(\sum_{k=1}^{\infty} |z_k|^2 + \sum_{k=1}^{\infty} |u_k|^2\right) < +\infty.$$

Эти операции превращают l_2 в линейное векторное пространство над полем \mathbb{C} (проверьте это!). Роль нулевого играет вектор $\theta = (0, 0, \dots, 0, \dots)$.

Введем в l_2 скалярное произведение по правилу

$$(z, u) = \sum_{k=1}^{\infty} z_k \overline{u_k}.$$

Покажем, что последний ряд сходится. Имеем

$$|z_k \overline{u_k}| = |z_k| |u_k| \le \frac{1}{2} (|z_k|^2 + |u_k|^2),$$

поэтому

$$\sum_{k=1}^{\infty} |z_k \overline{u_k}| \le \frac{1}{2} \left(\sum_{k=1}^{\infty} |z_k|^2 + \sum_{k=1}^{\infty} |u_k|^2 \right) < +\infty.$$

Таким образом, ряд $\sum_{k=1}^{\infty} z_k \overline{u_k}$ сходится абсолютно, следовательно, сходится.

Проверим аксиомы скалярного произведения. Имеем

$$(\lambda z, u) = \sum_{k=1}^{\infty} \lambda z_k \overline{u_k} = \lambda \sum_{k=1}^{\infty} z_k \overline{u_k} = \lambda(z, u),$$

$$(z+u,v) = \sum_{k=1}^{\infty} (z_k + u_k) \overline{v_k} = \sum_{k=1}^{\infty} z_k \overline{v_k} + \sum_{k=1}^{\infty} u_k \overline{v_k} = (z,v) + (u,v),$$

$$(u,z) = \sum_{k=1}^{\infty} u_k \overline{z_k} = \sum_{k=1}^{\infty} \overline{z_k \overline{u_k}} = \overline{\sum_{k=1}^{\infty} z_k \overline{u_k}} = \overline{(z,u)},$$

$$(z,z) = \sum_{k=1}^{\infty} z_k \overline{z_k} = \sum_{k=1}^{\infty} |z_k|^2 \ge 0,$$

причем (z,z)=0 тогда и только тогда, когда $z_k=0$, т. е. $z=\theta=(0,0,\ldots,0,\ldots)$.

Рассмотрим систему векторов в l_2

$$e_1 = (1, 0, 0, \dots, 0, \dots),$$

 $e_2 = (0, 1, 0, \dots, 0, \dots),$
 \vdots
 $e_n = (0, 0, 0, \dots, 1, \dots),$

Ясно, что $e_m \perp e_n, \ m \neq n,$ и $\|e_n\| = 1$. Таким образом, $\{e_n\}$ — онс в l_2 . Система $\{e_n\}$ является полной в l_2 . Действительно, покажем, что для любого $x \in l_2$ существует последовательность $y_n \in L\{e_n\}$, сходящаяся к x. Пусть $x = (x_1, x_2, \ldots, x_n, \ldots)$. Рассмотрим последовательность $y_n = \sum_{k=1}^n x_k e_k = (x_1, x_2, \ldots, x_n, 0, 0, \ldots)$. Тогда $x-y_n = (0, 0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots)$ и $\|x-y_n\|^2 = \sum_{k=n+1}^\infty |x_k|^2 \to 0, \ n \to \infty$, как остаток сходящегося ряда. Следовательно, $y_n \to x, \ n \to \infty$. Это означает, что $\overline{L\{e_n\}} = l_2$. Пространство l_2 является нормированным с нормой $\|z\| = \sqrt{\sum_{k=1}^\infty |x_k|^2}$.

3) Пространство $L_2(a,b)$ — это пространство комплекснозначных измеримых функций f на отрезке [a;b] таких, что функция $|f|^2$ интегрируема по Лебегу на [a;b]. Более детально интеграл Лебега будет рассмотрен далее в курсах «Функциональный анализ» или «Действительный анализ». Здесь мы будем пользоваться свойствами этого интеграла без особых обоснований.

Пусть $\alpha \in \mathbb{C}$. Если $f \in L_2(a,b)$, то $\alpha f \in L_2(a,b)$, так как функция $|\alpha f|^2 = |\alpha|^2 |f|^2$ интегрируема по Лебегу на [a;b]. Если $f,g \in L_2(a,b)$, то $|f|^2$ и $|g|^2$ интегрируемы на [a;b], поэтому из неравенства $|f+g|^2 \leq 2(|f|^2 + |g|^2)$ следует, что $|f+g|^2$ интегрируема на [a;b]. Операции сложения и умножения на скаляр превращают $L_2(a,b)$ в линейное векторное пространство.

Введем на $L_2(a,b)$ скалярное произведение. Для любых $f,g\in L_2(a,b)$ положим

$$(f,g) = \int_{a}^{b} f\overline{g}d\mu. \tag{**}$$

Это определение корректно. Действительно, $|f\overline{g}| = |f| |g| \le \frac{1}{2} (|f|^2 + |g|^2)$, откуда следует, что функция $f\overline{g}$ интегрируема по Лебегу на [a;b].

Проверим, что скалярное произведение, заданное по формуле (**) удовлетворяет всем нужным свойствам. Имеем

$$(f,f) = \int_a^b f\overline{f}d\mu = \int_a^b |f|^2 d\mu \ge 0,$$

так как $|f|^2 \ge 0$. Если (f,f)=0, то $\int_a^b |f|^2 d\mu=0$ и, поскольку функция $|f|^2$ неотрицательна, с использованием свойств интеграла Лебега выводим, что f=0 почти всюду (т. е. за исключением множества меры нуль) на [a;b]. Будем не различать функции, которые равны почти всюду. Тогда $f\equiv 0$. Остальные свойства скалярного произведения выполняются очевидным образом.

Как и любое унитарное пространство, $L_2(a,b)$ является нормированным с нормой $||f|| = \sqrt{(f,f)}$, т. е.

$$||f|| = \left(\int_a^b |f|^2 d\mu\right)^{1/2}.$$

Покажем, что система $\{1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos nx, \sin nx, \dots\}$ является ортогональной в $L_2(0, 2\pi)$.

 $1 \perp \cos nx$, $n \in \mathbb{N}$. Проверим это. Имеем

$$\int_0^{2\pi} 1 \cdot \cos nx \, dx = \frac{\sin nx}{n} \bigg|_0^{2\pi} = 0$$

Аналогично показываем, что $1 \perp \sin nx$, $n \in \mathbb{N}$. $\sin mx \perp \cos nx$, m, $n \in \mathbb{N}$, так как при $m \neq n$

$$\int_0^{2\pi} \sin mx \cdot \cos nx \, dx = \frac{1}{2} \int_0^{2\pi} \sin(m+n)x \, dx + \frac{1}{2} \int_0^{2\pi} \sin(m-n)x \, dx =$$

$$= -\frac{1}{2} \left. \frac{\cos(m+n)x}{m+n} \right|_0^{2\pi} - \frac{1}{2} \left. \frac{\cos(m-n)x}{m-n} \right|_0^{2\pi} = 0.$$

При m = n вычисления проводятся еще проще. $\cos mx \perp \cos nx, m, n \in \mathbb{N}, m \neq n$, так как

$$\int_0^{2\pi} \cos mx \cdot \cos nx \, dx = \frac{1}{2} \int_0^{2\pi} \cos(m-n)x \, dx - \frac{1}{2} \int_0^{2\pi} \cos(m+n)x \, dx =$$

$$= -\frac{1}{2} \frac{\sin(m-n)x}{m-n} \Big|_0^{2\pi} - \frac{1}{2} \frac{\sin(m+n)x}{m+n} \Big|_0^{2\pi} = 0.$$

Аналогично $\sin mx \perp \sin nx$, $m, n \in \mathbb{N}$, $m \neq n$.

Подсчитаем нормы элементов этой ортогональной системы.

Имеем

$$||1||^2 = \int_0^{2\pi} 1^2 dx = 2\pi,$$

при $n \in \mathbb{N}$

$$\|\cos nx\|^2 = \int_0^{2\pi} \cos^2 nx dx = \frac{1}{2} \int_0^{2\pi} (1 + \cos 2nx) dx = \pi,$$

$$\|\sin nx\|^2 = \int_0^{2\pi} \cos^2 nx dx = \frac{1}{2} \int_0^{2\pi} (1 - \cos 2nx) dx = \pi.$$

Таким образом, $\|1\| = \sqrt{2\pi}$, $\|\cos nx\| = \|\sin nx\| = \sqrt{\pi}$, $n \in \mathbb{N}$. Итак, следующая система является онс:

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{2\pi}}, \dots \right\}$$

1.5 Сепарабельные унитарные пространства. Процесс ортогонализации Грама-Шмидта

Теорема. Пусть $\{f_n\}_{n\in\mathbb{N}}$ — некоторая система линейно независимых векторов в унитарном пространстве U. Тогда в U существует счетная ортогональная система $\{e_n\}$ такая, что линейная оболочка $L\{e_n\}$ системы векторов e_n совпадает с линейной оболочкой $L\{f_n\}$ системы векторов f_n .

Доказательство. Строим систему $\{e_n\}$ по индукции. Пусть $e_1=f_1$. Будем искать e_2 в виде $e_2=f_2-\alpha e_1$. Тогда

$$(e_1, e_2) = 0 \Longrightarrow (e_2, e_1) = (f_2, e_1) - \alpha(e_1, e_1) = 0,$$

откуда

$$\alpha = \frac{(f_2, e_1)}{(e_1, e_1)} = \frac{(f_2, f_1)}{(f_1, f_1)}.$$

Теперь предположим, что построены векторы $e_1, e_2, \ldots, e_{n-1}$. Будем искать e_n в виде

$$e_n = f_n - \alpha_1 e_1 - \alpha_2 e_2 - \ldots - \alpha_{n-1} e_{n-1}.$$

По предположению индукции $e_1, e_2, \ldots, e_{n-1}$ являются линейными комбинациями векторов $f_1, f_2, \ldots, f_{n-1}$. Поэтому e_n является линейной комбинацией векторов f_1, f_2, \ldots, f_n . Обратно,

$$f_n = \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_{n-1} e_{n-1} + e_n$$

линейная комбинация векторов e_k , $1 \le k \le n$. Для того, чтобы $e_n \perp e_k$, $1 \le k \le n-1$, необходимо и достаточно, чтобы

$$0 = (e_n, e_k) = (f_n, e_k) - \alpha_1(e_1, e_k) - \alpha_2(e_2, e_k) - \dots - \alpha_{n-1}(e_{n-1}, e_k) =$$
$$= f_n, e_k) - \alpha_k(e_k, e_k),$$

откуда
$$\alpha_k = \frac{(f_n, e_k)}{(e_k, e_k)}$$
.

Метрическое пространство X называется cenapaбелным, если в нем существует счетное всюду плотное множество, т. е. счетное множество A, замыкание которого \overline{A} совпадает со всем пространством X.

Следствие. В любом сепарабельном пространстве U существует счетная полная онс.

Действительно, пусть $\{f_n\}$ — счетная всюду плотная система векторов в U. Без ограничения общности можно считать, что система векторов $\{f_n\}$ линейно независима. Применим к этой системе процесс ортогонализации Грама-Шмидта. В результате получим счетную ортогональную систему векторов $\{e_n\}$. При этом, $L\{e_n\} = L\{f_n\}$, откуда

$$\overline{L\{e_n\}} = \overline{L\{f_n\}} = U.$$

Наконец, систему $\{e_n\}$ можно нормировать, заменяя e_n на $\frac{e_n}{\|e_n\|}$.

1.6 Коэффициенты Фурье разложения элемента унитарного пространства в ряд Фурье

Пусть U — унитарное пространство, $\{e_n\}$ — счетная онс в нем. Тогда скалярное произведение $c_k := (x, e_k)$ назовем k-м коэффициентом Фурье элемента x по онс $\{e_n\}$. Ряд, т. е. формальная сумма $\sum_{k=1}^{\infty} c_k e_k$ называется $p n \partial o m$ Фурье элемента x.

Лемма. Для любых a_1, a_2, \dots, a_n справедливо неравенство

$$||x - \sum_{k=1}^{n} a_k e_k|| \ge ||x - \sum_{k=1}^{n} c_k e_k||,$$

где c_k — коэффициенты Фурье элемента x по онс $\{e_n\}$.

Доказательство. Имеем

$$||x - \sum_{k=1}^{n} a_k e_k||^2 = (x - \sum_{k=1}^{n} a_k e_k, x - \sum_{k=1}^{n} a_k e_k) =$$

$$= (x, x) - 2\operatorname{Re}(x, \sum_{k=1}^{n} a_k e_k) + (\sum_{k=1}^{n} a_k e_k, \sum_{k=1}^{n} a_k e_k) =$$

$$= ||x||^2 - 2\sum_{k=1}^{n} (x, e_k)\overline{a_k} + \sum_{k=1}^{n} a_k \overline{a_k}(e_k, e_k) = ||x||^2 - 2\sum_{k=1}^{n} \operatorname{Re} c_k \overline{a_k} + \sum_{k=1}^{n} |a_k|^2 =$$

$$= ||x||^2 - \sum_{k=1}^{n} |c_k|^2 + \sum_{k=1}^{n} |c_k|^2 - 2\sum_{k=1}^{n} \operatorname{Re} c_k \overline{a_k} + \sum_{k=1}^{n} |a_k|^2 =$$

$$= ||x||^2 - \sum_{k=1}^{n} |c_k|^2 + \sum_{k=1}^{n} |c_k - a_k|^2 \ge ||x||^2 - \sum_{k=1}^{n} |c_k|^2.$$

Равенство в последнем неравенстве имеет место тогда и только тогда, когда $a_k = c_k, \ 1 \le k \le n.$

Следствие 1.

$$\min_{a_1,\dots,a_n} \|x - \sum_{k=1}^n a_k e_k\|^2 = \|x - \sum_{k=1}^n c_k e_k\|^2 = \|x\|^2 - \sum_{k=1}^n |c_k|^2.$$

Следствие 2 (неравенство Бесселя). Если c_k — коэффициенты Фурье элемента x по счетной онс $\{e_n\}$, то последовательность

$$c = (c_1, c_2, \dots, c_n, \dots) \in l_2$$

и $\|c\|_{l_2} \leq \|x\|$, т. е. ряд $\sum_{n=1}^{\infty} |c_n|^2$ сходится и

$$\sum_{n=1}^{\infty} |c_n|^2 \le ||x||^2. \tag{*}$$

Действительно, из следствия 1 получаем: $||x||^2 - \sum_{k=1}^n |c_k|^2 \ge 0$, т. е. $\sum_{k=1}^n |c_k|^2 \le ||x||^2$ для любого $n \in \mathbb{N}$.

Следовательно, ряд $\sum_{n=1}^{\infty}|c_n|^2$ сходится и его сумма $\sum_{n=1}^{\infty}|c_n|^2\leq\|x\|^2$. С другой стороны, $\|c\|_{l_2}^2=\sum_{n=1}^{\infty}|c_n|^2$.

Неравенство (*) называется неравенством Бесселя.

Система $\{e_n\}$ называется $\mathit{замкнутой}$, если для любого элемента $x \in U$ имеет место равенство

$$\sum_{n=1}^{\infty} |c_n|^2 = ||x||^2,$$

где c_n — коэффициенты Фурье элемента x по онс $\{e_n\}$. Это равенство называется равенством Парсеваля.

Теорема. Система $\{e_n\}$ полна тогда и только тогда, когда она замкнута.

Доказательство. Необходимость. Предположим, что система $\{e_n\}$ полна. Тогда любой элемент x можно представить как предел последовательности некоторых $x_m \in L\{e_n\}$. Пусть $x_m = \sum_{k=1}^{N_m} a_k e_k$. В силу леммы частичные суммы ряда Фурье $x_m = \sum_{k=1}^{N_m} c_k e_k$ элемента x дают лучшее приближение, чем $\sum_{k=1}^{N_m} a_k e_k$. Поэтому $\|x - \sum_{k=1}^{N_m} c_k e_k\|^2 \to 0$, $m \to \infty$. С другой стороны,

$$||x - \sum_{k=1}^{N_m} c_k e_k||^2 = ||x||^2 - \sum_{k=1}^{N_m} |c_k|^2 \to 0, \quad m \to \infty.$$

Следовательно,

$$\sum_{k=1}^{\infty} |c_k|^2 = \lim_{m \to \infty} \sum_{k=1}^{N_m} |c_k|^2 = ||x||^2.$$

Таким образом, для любого элемента x имеет место равенство Парсеваля. Значит, система замкнута.

Достаточность. Пусть система $\{e_n\}$ замкнута. Тогда для любого $x \in U$ имеет место равенство Парсеваля и

$$||x - \sum_{k=1}^{n} c_k e_k||^2 = ||x||^2 - \sum_{k=1}^{n} |c_k|^2 = \sum_{k=1}^{\infty} |c_k|^2 - \sum_{k=1}^{n} |c_k|^2 = \sum_{k=n+1}^{\infty} |c_k|^2 \to 0,$$

 $n \to \infty$. Это означает, что элемент x является пределом элементов $x_n = \sum_{k=1}^n c_k e_k$ из линейной оболочки $L\{e_n\}$. Таким образом, система $\{e_n\}$ полна.

Из доказательства теоремы получаем

Следствие. Если $\{e_n\}$ — полная онс в унитарном пространстве U, то для любого элемента $x \in H$ его ряд Фурье $\sum_{k=1}^{\infty} c_k x_k$ сходится κ x.

1.7 Гильбертовы пространства. Теорема Рисса-Фишера.

Гильбертовым пространством называется полное унитарное пространство.

Теорема (Рисс-Фишер). Пусть $c = (c_1, c_2, \ldots, c_n, \ldots)$ — некоторая последовательность из пространства l_2 , $\{e_n\}$ — счетная онс в гильбертовом пространстве H. Тогда ряд $\sum_{n=1}^{\infty} c_n e_n$ сходится в гильбертовом пространстве H к некоторому элементу x, причем c_k является k-м коэффициентом Фурье элемента x.

Доказательство. Рассмотрим частичные суммы $S_n := \sum_{k=1}^n c_k e_k$ ряда $\sum_{k=1}^\infty c_k e_k$. Требуется доказать, что последовательность S_n сходится в пространстве H. Для этого достаточно установить, что S_n фундаментальна. При m>n имеем

$$||S_m - S_n||^2 = ||\sum_{k=n+1}^m c_k e_k||^2 = (\sum_{k=n+1}^m c_k e_k, \sum_{j=n+1}^m c_j e_j) = \sum_{k,j=n+1}^m (c_k e_k, c_j e_j) =$$

$$= \sum_{k,j=n+1}^m c_k \overline{c_j}(e_k, e_j) = \sum_{k,j=n+1}^m c_k \overline{c_j} \delta_{kj} = \sum_{k=n+1}^m c_k \overline{c_k} = \sum_{k=n+1}^m |c_k|^2.$$

Так как $c \in l_2$, ряд $\sum_{k=1}^{\infty} |c_k|^2$ сходится. По критерию Коши $\sum_{k=n+1}^m |c_k|^2 \to 0, \ m, \ n \to \infty$. Тогда $\|S_m - S_n\|^2 \to 0, \ m, \ n \to \infty$, т. е. последовательность S_n фундаментальна. В силу полноты H существует предел $\lim_{n\to\infty} S_n = x$. В силу непрерывности скалярного произведения получаем $(x,e_k) = \lim_{n\to\infty} (S_n,e_k)$. Так как при $n \geq k$ имеет место равенство $(S_n,e_k) = (\sum_{k=1}^n c_j e_j,e_k) = \sum_{k=1}^n c_j (e_j,e_k) = \sum_{k=1}^n c_j \delta_{jk} = c_k$, то

$$(x, e_k) = \lim_{n \to \infty} (S_n, e_k) = c_k.$$

Два гильбертовых пространства H_1 и H_2 называются изоморфными, если существует изоморфизм $f: H_1 \to H_2$ линейных векторных пространств такой, что $(f(x_1), f(x_2))_{H_1} = (x_1, x_2)_{H_2}$ для любых $x_1, x_2 \in H_1$. Изоморфизм определяет отношение эквивалентности на множестве гильбертовых пространств.

Теорема. Любое сепарабельно гильбертово пространство H изоморфно пространству l_2 .

Доказательство. Рассмотрим любое сепарабельное гильбертово пространство H. По доказанному выше в H существует полная, значит, замкнутая, счетная онс $\{e_n\}$. Рассмотрим отображение $f: H \to l_2$, действующее по правилу $f: x \mapsto c := (c_1, c_2, \ldots, c_n, \ldots)$, где $c_n = (x, e_n) - n$ -й коэффициент Фурье элемента x. В силу равенства Парсеваля $\|c\|_{l_2} = \|x\|_H$, т. е.

$$||f(x)||_{l_2} = ||x||_H. (*)$$

В силу теоремы Рисса-Фишера существует отображение $g:l_2\to H$, действующее по правилу $c:=(c_1,c_2,\ldots,c_n,\ldots)\mapsto x=\sum_{n=1}^\infty c_n e_n$. По той же теореме $f\circ g=\mathrm{id}_{l_2}$. Так как ряд Фурье любого элемента по полной онс сходится к этому элементу, имеем $g\circ f=\mathrm{id}_H$. Таким образом, g- отображение, обратное к f и слева и справа. Следовательно, f- биекция. Из определения следует, что f- линейное отображение. Таким образом, f- изоморфизм между H и l_2 . Равенство (*) означает, что f сохраняет норму. Следовательно, f сохраняет и скалярное произведение. Теорема доказана.

Следствие. Любые два сепарабельных гильбертовых пространства изомор ϕ ны.

2 Тригонометрические ряды Фурье

2.1 Сходимость тригонометрических рядов Фурье в пространстве $L_2(-\pi,\pi)$

Рассмотрим пространство $L_2(a,b),\ b-a=2\pi.$ Все эти пространства изоморфны между собой и получаются друг из друга сдвигом: $f(x)\mapsto f(x+t)$. Поэтому без ограничения общности будем считать, что $a=-\pi,$ $b=\pi$

Как показано выше, тригонометрическая система функций

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}}, \ n \ge 1 \right\}$$

является ортонормированной системой в $L_2(-\pi,\pi)$. Ниже мы покажем, что эта система является полной. Ряд Фурье функции f по этой системе имеет вид:

$$\alpha_0 \frac{1}{\sqrt{2\pi}} + \alpha_1 \frac{\cos x}{\sqrt{\pi}} + \beta_1 \frac{\sin x}{\sqrt{\pi}} + \alpha_2 \frac{\cos 2x}{\sqrt{\pi}} + \beta_2 \frac{\sin 2x}{\sqrt{\pi}} + \dots,$$

где коэффициенты Фурье вычисляются как скалярное произведение функции f на соответствующий элемент онс:

$$\alpha_n = \int_{-\pi}^{\pi} f(t) \frac{\cos nt}{\sqrt{\pi}} dt, \quad \beta_n = \int_{-\pi}^{\pi} f(t) \frac{\sin nt}{\sqrt{\pi}} dt,$$
$$\alpha_0 = \int_{-\pi}^{\pi} f(t) \frac{1}{\sqrt{2\pi}} dt.$$

В силу полноты онс этот ряд сходится в пространстве $L_2(-\pi,\pi)$ к элементу f и имеет место равенство Парсеваля:

$$\int_{-\pi}^{\pi} f^2(t)dt = \alpha_0^2 + \sum_{n=1}^{\infty} (\alpha_n^2 + \beta_n^2).$$

На практике вместо этой онс используют более простую:

$$\{1, \cos nx, \sin nx, \ n \ge 1\}.$$

Эта система является ортогональной, но не нормированной. Обозначим

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt.$$

Тогда $\alpha_n=\sqrt{\pi}a_n,\,\beta_n=\sqrt{\pi}b_n,\,n\geq 1,\,\alpha_0=\sqrt{2\pi}a_0$ и имеет место равенство в $L_2(-\pi,\pi)$:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$
 (1)

Отметим, что скобки в последней сумме, как правило, не ставят. Равенство Парсеваля в терминах коэффициентов a_n , b_n имеет вид

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(t)dt = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

Замечание. Следует еще раз подчеркнуть, что равенство (1) имеет место в смысле пространства $L_2(-\pi,\pi)$. Поскольку в $L_2(-\pi,\pi)$ две функции, отличающиеся друг от друга на множестве меры нуль по Лебегу, считаются одинаковыми, то из (1) не следует, что в фиксированной точке x равенство это имеет место.

В связи с этим возникают следующие вопросы:

- 1) При каких условиях на функцию f равенство (1) имеет место в точке $x \in [a,b]$?
- 2) при каких условиях на функцию f равенство ряд Фурье сходится равномерно к f на [a,b]?

Решению этих вопросов будут посвящены следующие пункты.

2.2 Частичные суммы ряда Фурье. Ядро Дирихле.

Рассмотрим частичные суммы ряда

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$

Имеем

$$S_n = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt + \sum_{k=1}^{n} \left[\frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\cos kt dt \cos kx + \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\sin kt dt \sin kx \right] =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{k=1}^{n} (\cos kx \cos kt + \sin kx \sin kt) \right] dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos k(x - t) \right] dt.$$

Подсчитаем сумму

$$\frac{1}{2} + \sum_{k=1}^{n} \cos kx = \frac{1}{2} + \sum_{k=1}^{n} \frac{2\sin\frac{x}{2}\cos kx}{2\sin\frac{x}{2}} =$$

$$= \frac{\sin\frac{x}{2} + \sum_{k=1}^{n} \left(\sin\frac{(2k+1)x}{2} - \sin\frac{(2k-1)x}{2}\right)}{2\sin\frac{x}{2}} = \frac{\sin\frac{(2n+1)x}{2}}{2\sin\frac{x}{2}}.$$

Обозначим

$$D_n(x) = \frac{\sin\frac{(2n+1)x}{2}}{2\pi\sin\frac{x}{2}}.$$

Функция $D_n(x)$ называется ядром Дирихле. Таким образом, мы доказали равенство

$$S_n(x) = \int_{-\pi}^{\pi} f(t)D_n(t-x)dt.$$

Установим следующий вспомогательный результат.

Лемма. Если функция f является 2π -периодической на \mathbb{R} , то для любых точек a, b выполняется равенство

$$\int_{a}^{a+2\pi} f(t)dt = \int_{b}^{b+2\pi} f(t)dt.$$

Доказательство. Имеем

$$\int_{a}^{a+2\pi} f(t)dt = \int_{a}^{b} f(t)dt + \int_{b}^{b+2\pi} f(t)dt + \int_{b+2\pi}^{a+2\pi} f(t)dt =$$

$$= \int_{a}^{b} f(t)dt + \int_{b}^{b+2\pi} f(t)dt + \int_{b}^{a} f(t+2\pi)dt =$$

$$= \int_{a}^{b} f(t)dt + \int_{b}^{b+2\pi} f(t)dt + \int_{b}^{a} f(t)dt = \int_{b}^{b+2\pi} f(t)dt.$$

Функция D_n является 2π -периодической. Продолжим функцию f до 2π -периодической функции на всю прямую \mathbb{R} . Если $f(-\pi) \neq f(\pi)$, то переопределим произвольно f в одной из точек $-\pi$, π , на величину интегралов это не влияет. Тогда

$$S_n(x) = \int_{-\pi}^{\pi} f(t)D_n(t-x)dt = \int_{-\pi+x}^{\pi+x} f(t+x)D_n(t)dt = \int_{-\pi}^{\pi} f(t+x)D_n(t)dt.$$

Итак,

$$S_n(x) = \int_{-\pi}^{\pi} f(t+x)D_n(t)dt.$$

2.3 Ядро Фейера. Теорема Фейера.

Если функция f непрерывна на $[-\pi;\pi]$ и $f(-\pi)=f(\pi)$, то ее ряд Фурье не обязан сходиться к f, тем более, равномерно. Однако в этом случае средние арифметические частичных сумм ряда Фурье сходятся равномерно к f.

Пусть $\sum_{k=1}^{\infty} a_k$ — некоторый числовой ряд. Обозначим через S_n его n-ю частичную сумму. Рассмотрим средние арифметические

$$\sigma_n = \frac{S_1 + S_2 + \ldots + S_n}{n}$$

частичных сумм S_1, S_2, \ldots, S_n . Эти величины σ_n называются *чезаровскими средними* ряда $\sum_{k=1}^{\infty} a_k$. Если последовательность σ_n имеет конечный предел S, то говорят, что ряд $\sum_{k=1}^{\infty} a_k$ сходится по Чезаро и его сумма равна S.

Теперь рассмотрим тригонометрический ряд Фурье. Его чезаровские средние равны

$$\sigma_n(x) = \frac{S_0(x) + S_1(x) + \dots + S_{n-1}(x)}{n} =$$

$$= \frac{1}{2\pi n} \int_{-\pi}^{\pi} \frac{f(t+x)}{\sin\frac{t}{2}} \left[\sin\frac{t}{2} + \sin\frac{3t}{2} + \dots + \sin\frac{(2n-1)t}{2} \right] dt.$$

Имеем

$$\sin\frac{t}{2} + \sin\frac{3t}{2} + \dots + \sin\frac{(2n-1)t}{2} =$$

$$= \frac{2\sin^2\frac{t}{2} + 2\sin\frac{t}{2}\sin\frac{3t}{2} + \dots + 2\sin\frac{t}{2}\sin\frac{(2n-1)t}{2}}{2\sin\frac{t}{2}} =$$

$$= \frac{(1 - \cos t) + (\cos t - \cos 2t) + \dots + (\cos(n-1)t - \cos nt)}{2\sin\frac{t}{2}} = \frac{1 - \cos nt}{2\sin\frac{t}{2}} = \frac{\sin^2\frac{nt}{2}}{\sin\frac{t}{2}}.$$

Итак,

$$\sigma_n(x) = \frac{1}{2\pi n} \int_{-\pi}^{\pi} f(t+x) \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} dt.$$

Функция

$$\Phi_n(t) = \frac{1}{2\pi n} \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}}$$

называется ядром Фейера.

Свойства ядра Фейера.

- 1) $\Phi_n(t) \geq 0, \ t \in (-\pi,\pi), \ t \neq 0, \ n \geq 1.$ 2) $\int_{-\pi}^{\pi} \Phi_n(t) dt = 1, \ n \geq 1.$ Действительно,

$$\int_{-\pi}^{\pi} D_n(t)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} (\frac{1}{2} + \cos t + \cos 2t + \dots + \cos nt)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} dt = 1.$$

Тогда

$$\int_{-\pi}^{\pi} \Phi_n(t)dt = \frac{1}{n} \int_{-\pi}^{\pi} (D_0(t) + D_1(t) + \dots + D_{n-1}(t))dt =$$

$$= \frac{1}{n} \left(\int_{-\pi}^{\pi} D_0(t)dt + \int_{-\pi}^{\pi} D_1(t)dt + \dots + \int_{-\pi}^{\pi} D_{n-1}(t)dt \right) = 1.$$

- 3) $\lim_{t\to 0}\Phi_n(t)=\frac{n}{2\pi}.$ 4) Для любого $\varepsilon\in(0,\pi)$ последовательность $\Phi_n(t)$ равномерно стремится к 0 на $[-\pi; -\varepsilon] \cup [\varepsilon, \pi]$. Действительно,

$$|\Phi_n(t)| \le \frac{1}{2\pi n \sin^2 \frac{\varepsilon}{2}} \to 0, \ n \to \infty,$$

на $[-\pi; -\varepsilon] \cup [\varepsilon, \pi]$ при $n \to \infty$.

Теорема Фейера. Если функция f непрерывна на $[-\pi;\pi]$ и $f(-\pi)=$ $f(\pi)$, то чезаровские средние σ_n частичных сумм тригонометрического ряда Фурье этой функции равномерно сходятся к функции f на $[-\pi;\pi]$. Доказательство. Так как $f(-\pi) = f(\pi)$, функцию f можно продолжить на всю прямую до непрерывной 2π -периодической функции, которую будем также обозначать через f. Имеем $\sigma_n(x) = \int_{-\pi}^{\pi} f(t+x)\Phi_n(t)dt$. Кроме того, с учетом свойства 2) функции Φ_n имеем

$$f(x) = f(x) \int_{-\pi}^{\pi} \Phi_n(t) dt = \int_{-\pi}^{\pi} f(x) \Phi_n(t) dt.$$

Тогда, с учетом свойства 1) функции Φ_n получаем

$$|\sigma_{n}(x) - f(x)| = \left| \int_{-\pi}^{\pi} [f(t+x) - f(x)] \Phi_{n}(t) dt \right| \le \int_{-\pi}^{\pi} |f(t+x) - f(x)| \Phi_{n}(t) dt =$$

$$= \int_{-\pi}^{-\delta} |f(t+x) - f(x)| \Phi_{n}(t) dt + \int_{-\delta}^{\delta} |f(t+x) - f(x)| \Phi_{n}(t) dt +$$

$$+ \int_{\delta}^{\pi} |f(t+x) - f(x)| \Phi_{n}(t) dt. \tag{*}$$

Функция f непрерывна на отрезке $[-2\pi; 2\pi]$. Значит, f равномерно непрерывна. Отметим, что если $x, t \in [-\pi; \pi]$, то $x, x + t \in [-2\pi; 2\pi]$ и тогда из равномерной непрерывности следует, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x, t \in [-\pi; \pi] \quad (|t| < \delta \Rightarrow |f(x+t) - f(x)| < \frac{\varepsilon}{2}).$$

Тогда, с использованием свойств 1) и 2) функции $\Phi_n(t)$, получаем

$$\int_{-\delta}^{\delta} |f(t+x) - f(x)| \Phi_n(t) dt \le \frac{\varepsilon}{2} \int_{-\delta}^{\delta} \Phi_n(t) dt = \frac{\varepsilon}{2}.$$

Так как f непрерывна на $[-2\pi; 2\pi]$, существует $M>0: |f(x)|\leq M$ $\forall x\in [-2\pi; 2\pi].$ Тогда

$$\int_{\delta}^{\pi} |f(t+x) - f(x)| \Phi_n(t) dt \le \int_{\delta}^{\pi} (|f(t+x)| + |f(x)|) \Phi_n(t) dt \le 2M \int_{\delta}^{\pi} \Phi_n(t) dt.$$

Так как $\Phi_n \rightrightarrows 0$ на $[\delta; \pi]$, последовательность интегралов

$$\alpha_n = \int_{\delta}^{\pi} \Phi_n(t)dt \to 0, \quad n \to \infty.$$

Следовательно, $\exists N: \forall n \geq N \ (\alpha_n < \frac{\varepsilon}{8M})$. Тогда при $n \geq N$

$$\int_{\delta}^{\pi} |f(t+x) - f(x)| \Phi_n(t) dt < 2M \frac{\varepsilon}{8M} = \frac{\varepsilon}{4}.$$

Подчеркнем что $N=N(\delta)=N(\delta(\varepsilon))$ зависит только от ε и не зависит от x.

Аналогично, при $n \geq N$ получаем неравенство

$$\int_{-\pi}^{\delta} |f(t+x) - f(x)| \Phi_n(t) dt < \frac{\varepsilon}{4}.$$

Из полученных неравенств и неравенства (*) следует, что

$$|\sigma_n(x) - f(x)| < \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon$$

при $x \in [-\pi; \pi], n \geq N$, т. е. $\sigma_n \rightrightarrows f, n \to \infty$. Теорема Фейера доказана.

2.4 Теоремы Вейерштрасса о приближении. Разложение в ряд Фурье четных и нечетных функций.

Тригонометрическим многочленом называется выражение вида

$$T_N(x) = \sum_{k=0}^{N} (a_k \sin kx + b_k \sin kx),$$

где a_k и b_k — константы.

Теорема Вейерштрасса о приближении тригонометрическими многочленами. Если функция непрерывна и 2π -периодична на \mathbb{R} , то существует последовательность тригонометрических многочленов, равномерно сходящаяся на \mathbb{R} к функции f. Иначе говоря, для любого $\varepsilon > 0$ существует тригонометрических многочлен T_n такой, что $|f(x) - T_n(x)| < \varepsilon$ для любого $x \in \mathbb{R}$.

Доказательство сразу следует теоремы Фейера и того факта, что чезаровские средние частичных сумм тригонометрического ряда Фурье функции f являются тригонометрическими многочленами.

Теперь отметим особенности разложения в тригонометрический ряд Фурье четных и нечетных функций.

Теорема 1. Если функция f интегрируема по Лебегу на $[-\pi;\pi]$ и является четной, то при разложении в ряд Фурье все коэффициенты b_n равны нулю, m. e.

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

причем

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

Доказательство. Имеем

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx + \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin nx dx =$$
$$= \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx dx + \frac{1}{\pi} \int_{\pi}^{0} f(-x) \sin nx dx = 0.$$

Аналогично

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx + \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos nx dx =$$

$$= \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx dx - \frac{1}{\pi} \int_{\pi}^{0} f(-x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx.$$

Точно так же доказывается

Теорема 2. Если функция а интегрируема по Лебегу на $[-\pi;\pi]$ и является нечетной, то при разложении в ряд Фурье все коэффициенты a_n равны нулю, m. e.

$$f(x) \sim \sum_{n=1}^{\infty} b_n \cos nx,$$

причем

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx.$$

Из теоремы Фейера с учетом теорем 1 и 2 можно вывести следствия.

Следствие 1. Если функция f непрерывна на $[-\pi,\pi]$ и является четной, то f можно представить в виде равномерного предела последовательности тригонометрических многочленов вида $\sum_{k=0}^{n} a_k \cos kx$, а если нечетной — то многочленов вида $\sum_{k=1}^{n} a_k \sin kx$.

Следствие 2. Если функция f непрерывна на $[0, \pi]$, то

- 1) f можно представить в виде равномерного предела последовательности тригонометрических многочленов вида $\sum_{k=0}^{n} a_k \cos kx$,
- 2) в случае, если $f(0) = f(\pi)$, f можно представить в виде равномерного предела последовательности тригонометрических многочленов вида $c + \sum_{k=1}^{n} a_k \sin kx$.

Доказательство. 1) Любую непрерывную на $[0,\pi]$ функцию можно продолжить четным образом на $[-\pi,\pi]$. Далее применяем следствие 1.

2) Если к тому же $f(0) = f(\pi)$, то функцию g(x) = f(x) - f(0) можно продолжить нечетным образом на $[-\pi,\pi]$, при этом $g(-\pi) = g(\pi) = 0$. В силу следствия 1 g можно представить в виде равномерного предела последовательности тригонометрических многочленов вида $\sum_{k=1}^n a_k \sin kx$. Тогда f можно представить в виде равномерного предела последовательности тригонометрических многочленов вида $f(0) + \sum_{k=1}^n a_k \sin kx$.

Многочлены Чебышева.

Рассмотрим функции $P_n(x) = \cos n$ агссоз x, где n — неотрицательное целое число. Используя формулы для косинусов кратных углов, получаем $P_0(x) = \cos 0 = 1$, $P_1(x) = \cos \arccos x = x$, $P_2(x) = \cos 2 \arccos x = 2x^2 - 1$, $P_3(x) = \cos 3 \arccos x = 4x^3 - 3x$. Мы видим, что при n = 0, $1, 2, 3 \dots$ функции $P_n(x)$ являются многочленами от переменной x. Они называются многочленами Чебышева.

Теорема. Для любого неотрицательного целого n функция P_n является многочленом от x степени n.

Доказательство. Пусть $\alpha = \arccos x$, тогда $\cos \alpha = x$. Имеем

$$P_n(x) = \cos n\alpha = \operatorname{Re} e^{in\alpha} = \operatorname{Re} (e^{i\alpha})^n = \operatorname{Re} (\cos \alpha + i \sin \alpha)^n =$$

$$= \operatorname{Re} \sum_{k=0}^n C_n^k \cos^{n-k} \alpha (i \sin \alpha)^k = \sum_{j=0}^{[n/2]} (-1)^j C_n^{2j} \cos^{n-2j} \alpha \sin^{2j} \alpha =$$

$$= \sum_{j=0}^{[n/2]} (-1)^j C_n^{2j} \cos^{n-2j} \alpha (1 - \cos^2 \alpha)^j = \sum_{j=0}^{[n/2]} (-1)^j C_n^{2j} x^{n-2j} (1 - x^2)^j.$$

Теорема Вейерштрасса о приближении алгебраическими многочленами. Если функция f непрерывна на отрезке [a;b], то функцию f можно представить как равномерный предел последовательности алгебраических многочленов на отрезке [a;b]. Иначе говоря, для любого $\varepsilon > 0$ существует алгебраический многочлен Q_n такой, что $|f(x) - Q_n(x)| < \varepsilon$ для любого $x \in [a;b]$.

Доказательство. 1) Сначала рассмотрим случай, когда функция f задана на отрезке [-1;1]. Пусть $g(x)=f(\cos x),\ x\in[0;\pi]$. В силу следствия 2 для любого $\varepsilon>0$ существует тригонометрический многочлен $T_n(x)=\sum_{k=0}^n a_k\cos kx$ такой, что $|g(t)-T_n(t)|<\varepsilon$ для любого $t\in[0;\pi]$. Тогда $\forall x\in[-1;1]$ имеем $|f(x)-T_n(\arccos x)|<\varepsilon$. При этом

$$T_n(\arccos x) = \sum_{k=0}^n a_k \cos k \arccos x = \sum_{k=0}^n a_k P_k(x),$$

где $P_k(x)$ — многочлены Чебышева. Следовательно, $T_n(\arccos x)$ является искомым алгебраическим многочленом.

2) Случай произвольного отрезка [a;b] сводится к рассмотренному выше линейной заменой переменной. Рассмотрим функцию

$$\varphi(t) = \alpha t + \beta.$$

При $\alpha=(b-a)/2$, $\beta=(b+a)/2$ эта функция отображает отрезок [-1;1] на [a;b]. Пусть $h(t)=f(\varphi(t))$. Функция h непрерывна на [-1;1]. В силу доказанного в п. 1) для любого $\varepsilon>0$ существует алгебраический многочлен R_n такой, что $|h(t)-R_n(t)|<\varepsilon$. Тогда

$$|f(x) - R_n(\varphi^{-1}(x))| < \varepsilon, \quad x \in [a; b],$$

где $\varphi^{-1}(x) = (x - \beta)/\alpha$. Остается заметить, что $R_n(\varphi^{-1}(x))$ является алгебраическим многочленом от переменной x.

2.5 Полнота тригонометрической системы функций в пространстве $L_2(-\pi,\pi)$

С помощью теорем Вейерштрасса можно доказать полноту тригонометрической системы функций в пространстве $L_2(-\pi,\pi)$. Предварительно дадим некоторые определения и установим необходимые факты.

Пусть X — топологическое пространство, A, $B \subset X$. Множество A называется *плотным* в B, если $\overline{A} \supset B$. Например, $\overline{\mathbb{Q}} = \mathbb{R}$, поэтому \mathbb{Q} плотно в \mathbb{R} .

Лемма. Если A плотно в B, B плотно в C, то A плотно в C. Доказательство. Имеем $\overline{A} \supset B$, $\overline{B} \supset C$, поэтому $\overline{A} = \overline{\overline{A}} \supset \overline{B} \supset C$.

Теперь рассмотрим пространство $L_2(-\pi,\pi)$. В курсе теории функций действительного переменного доказывается, что множество непрерывных функций C[a;b] плотно в пространстве $L_2(a;b)$. Отсюда вытекает следующее утверждение.

Теорема. Система $\{1, \cos nx, \sin nx, n \geq 1\}$ полна в $L_2(-\pi, \pi)$.

Доказательство. Рассмотрим линейную оболочку Λ векторов тригонометрической системы. Пусть функция f непрерывна на $[-\pi,\pi]$ и $f(-\pi)=f(\pi)$. Фиксируем $\varepsilon>0$. По теореме Вейерштрасса существует тригонометрический полином Q(x) такой, что $\forall x\in [-\pi,\pi]\ |f(x)-Q(x)|<\varepsilon/\sqrt{2\pi}$. Тогда

$$||f - Q||_{L_2(-\pi,\pi)} = \left(\int_{-\pi}^{\pi} |f(x) - Q(x)|^2 dx\right)^{1/2} \le \left(\int_{-\pi}^{\pi} \varepsilon^2 dx\right)^{1/2} = \varepsilon.$$

Следовательно, множество Λ плотно в $C[-\pi,\pi]$ в смысле топологии $L_2(-\pi,\pi)$. Далее, как отмечалось выше, $C[-\pi;\pi]$ плотно в пространстве $L_2(-\pi;\pi)$. В силу леммы отсюда следует, что Λ плотно в $L_2(-\pi;\pi)$. Таким образом, тригонометрическая система полна в $L_2(-\pi;\pi)$.

Следствие. Пусть функция $f \in L_2(-\pi; \pi)$ и

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

ее ряд Фурье. Тогда справедливо равенство Парсеваля

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

Доказательство следует из того, что система полна в $L_2(-\pi,\pi)$, поэтому она замкнута, т. е. для любой функции $f \in L_2(-\pi;\pi)$ справедливо равенство Парсеваля.

Замечание Из равенства Парсеваля следует, что для любой функции $f \in L_2(-\pi;\pi)$ ряд $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ сходится, следовательно, $a_n, b_n \to 0, n \to \infty$.

Комплексная форма рядов Фурье 2.6

Пусть

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$

Из формулы Эйлера следует, что

$$\cos nx = \frac{1}{2}(e^{inx} + e^{-inx}), \quad \sin nx = \frac{1}{2i}(e^{inx} - e^{-inx}).$$

С учетом этих равенств преобразуем ряд Фурье: Пусть

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})] = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n (e^{inx} + e^{-inx}) - ib_n (e^{inx} - e^{-inx})]$$

$$= \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} [(a_n - ib_n)e^{inx} + (a_n + ib_n)e^{-inx}] = \sum_{n=-\infty}^{+\infty} c_n e^{inx}.$$

Таким образом,

$$f(x) \sim \sum_{n=-\infty}^{+\infty} c_n e^{inx}.$$

т. е. функции f сопоставляется комплексный ряд Фурье $\sum_{n=-\infty}^{+\infty} c_n e^{inx}$. Отметим, что комплекснозначная система $\{e^{inx}\}_{n\in\mathbb{Z}}$ является ортогональной в пространстве $L_2(-\pi;\pi)$. Действительно, для любых $m \neq n$ имеем

$$(e^{imx}, e^{inx}) = \int_{-\pi}^{\pi} e^{imx} \overline{e^{inx}} dx = \int_{-\pi}^{\pi} e^{imx} e^{-inx} dx =$$

$$= \int_{-\pi}^{\pi} e^{i(m-n)x} dx = \frac{e^{i(m-n)x}}{i(m-n)x} \Big|_{x=-\pi}^{\pi} = 0.$$

При этом

$$||e^{inx}||^2 = \int_{-\pi}^{\pi} |e^{inx}|^2 dx = \int_{-\pi}^{\pi} dx = 2\pi,$$

откуда $||e^{inx}|| = \sqrt{2\pi}$. Коэффициенты c_n вычисляются по правилу

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{inx} dx.$$

Система система $\{e^{inx}\}_{n\in\mathbb{Z}}$ является полной, следовательно, и замкнутой в пространстве $L_2(-\pi;\pi)$. Равенство Парсеваля справедливо дял любой функции $f\in L_2(-\pi;\pi)$ и имеет вид

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n=-\infty}^{+\infty} |c_n|^2.$$

2.7 Связь комплексных рядов Фурье с теорией функций комплексного переменного

Рассмотрим в единичном круге $\{z \in \mathbb{C} \mid |z| < 1\}$ аналитическую функцию $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Если последний ряд сходится в граничной точке $e^{i\theta}$ единичного круга, то по теореме Абеля существует конечный предел

$$\lim_{r \to 1^{-}} f(re^{i\theta}) = \sum_{n=0}^{\infty} a_n (e^{i\theta})^n = \sum_{n=0}^{\infty} a_n e^{in\theta}.$$

Это показывает, что комплексные ряды Фурье являются средством для изучения граничных значений аналитических функций.

2.8 Осцилляционная лемма. Принцип локализации Римана

Осцилляционная лемма. Пусть функция f интегрируема на [a,b] по Лебегу. Тогда

$$\lim_{\lambda \to \infty} \int_a^b f(x) \cos \lambda x dx = \lim_{\lambda \to \infty} \int_a^b f(x) \sin \lambda x dx = 0.$$

Замечание. Название леммы связано с тем, что при больших λ функции $\cos \lambda x$ и $\sin \lambda x$ сильно осциллируют, т. е. колеблются на отрезке [a,b].

Доказательство. Рассмотрим для примера интеграл $\int_a^b f(x) \cos \lambda x dx$. (Второй интеграл рассмотрите самостоятельно.)

1) Рассмотрим сначала случай, когда f непрерывно дифференцируема на [a,b]. Тогда функции f и f' непрерывны на [a,b], следовательно, ограничены на этом отрезке. т. е. существуют константы M, C такие, что

 $|f(x)| \le M, |f'(x)| \le C, x \in [a, b].$ Применяя интегрирование по частям, получаем

$$\int_a^b f(x)\cos\lambda x dx = \frac{1}{\lambda} \int_a^b f(x) d\sin\lambda x = \frac{1}{\lambda} f(x) \sin\lambda x \Big|_a^b - \frac{1}{\lambda} \int_a^b f'(x) \sin\lambda x dx,$$

следовательно, с учетом неравенства треугольника, получаем

$$\left| \int_{a}^{b} f(x) \cos \lambda x dx \right| \leq \frac{1}{|\lambda|} \left(|f(b)| |\sin \lambda b| + |f(a)| |\sin \lambda a| + \int_{a}^{b} |f'(x)| |\sin \lambda x| dx \right) \leq$$

$$\leq \frac{1}{|\lambda|} \left(|f(b)| + |f(a)| + \int_{a}^{b} |f'(x)| dx \right) \leq \frac{2M + C}{|\lambda|} \to 0, \ \lambda \to \infty.$$

2) Рассмотрим произвольную интегрируемую функцию f. фиксируем $\varepsilon > 0$. Множество непрерывных функций плотно в пространстве интегрируемых функций $L_1(a,b)$, а непрерывную функцию можно приблизить сколь угодно точно алгебраическими многочленами. Следовательно, существует многочлен φ такой, что

$$||f - \varphi||_{L_1(a,b)} = \int_a^b |f(x) - \varphi(x)| dx < \frac{\varepsilon}{2}.$$

Так как φ — гладкая функция, в силу 1) имеем

$$\int_{a}^{b} \varphi(x) \cos \lambda x dx \to 0, \ \lambda \to \infty.$$

Следовательно, существует λ_0 такое, что при $|\lambda| > \lambda_0$

$$\left| \int_{a}^{b} \varphi(x) \cos \lambda x dx \right| < \frac{\varepsilon}{2}.$$

При $|\lambda| > \lambda_0$ имеем

$$\left| \int_{a}^{b} f(x) \cos \lambda x dx \right| \le \left| \int_{a}^{b} (f(x) - \varphi(x)) \cos \lambda x dx \right| + \left| \int_{a}^{b} \varphi(x) \cos \lambda x dx \right| \le$$

$$\leq \int_{a}^{b} |f(x) - \varphi(x)| |\cos \lambda x| dx + \frac{\varepsilon}{2} \leq \int_{a}^{b} |f(x) - \varphi(x)| dx + \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Лемма доказана.

Теорема (принцип локализации Римана). Сходимость ряда Фурье интегрируемой на отрезке $[-\pi,\pi]$ функции f точке $x \in (-\pi,\pi)$ зависит лишь от поведения этой функции в любой сколь угодно малой окрестности точки x.

Доказательство. частичные суммы ряда Фурье функции f равны

$$S_n(x) = \int_{-\pi}^{\pi} f(x+t)D_n(t)dt,$$

где

$$D_n(t) = \frac{1}{2\pi} \frac{\sin((2n-1)t/2)}{\sin(t/2)}$$

ядро Дирихле. Фиксируем достаточно малое $\delta > 0$. Имеем

$$S_n(x) = \int_{-\pi}^{\delta} f(x+t)D_n(t)dt + \int_{-\delta}^{\delta} f(x+t)D_n(t)dt + \int_{\delta}^{\pi} f(x+t)D_n(t)dt.$$

Докажем, что в последней сумме первое и третье слагаемые стремятся к нулю при $n \to \infty$. Рассмотрим для определенности третье слагаемое (первое исследуется аналогично).

Имеем

$$\int_{\delta}^{\pi} f(x+t)D_n(t)dt = \frac{1}{2\pi} \int_{\delta}^{\pi} \frac{f(x+t)}{\sin(t/2)} \sin((2n-1)t/2)dt =$$
$$= \frac{1}{2\pi} \int_{\delta}^{\pi} g(t) \sin((2n-1)t/2)dt,$$

где

$$g(t) = \frac{f(x+t)}{\sin(t/2)}.$$

Функция f(x+t) интегрируема на $[\delta,\pi]$ как суперпозиция интегрируемой функции и сдвига $t\mapsto x+t$, а функция $\sin(t/2)$ непрерывна и $\sin(t/2)\geq\sin(\delta/2)>0$ на $[\delta,\pi]$. Поэтому функция g как частное этих функций интегрируема на $[\delta,\pi]$. По осцилляционной лемме

$$\int_{\delta}^{\pi} f(x+t)D_n(t)dt = \frac{1}{2\pi} \int_{\delta}^{\pi} g(t)\sin((2n-1)t/2)dt \to 0, \ n \to \infty.$$

Таким образом, сходимость $S_n(x)$ конечному пределу имеет место тогда и только тогда, когда имеет конечный предел второе слагаемое

$$\int_{-\delta}^{\delta} f(x+t)D_n(t)dt.$$

Но это слагаемое зависит лишь от значений функции f в δ -окрестности точки x. Поскольку δ может быть взято сколь угодно малым, теорема доказана.

Замечание. Совершенно аналогично доказывается, что ряд Фурье интегрируемой на $[-\pi,\pi]$ функции сходится в точке $x\in (-\pi,\pi)$ к значению f(x) тогда и только тогда, когда разность

$$S_n(x) - f(x) = \int_{-\pi}^{\delta} [f(x+t) - f(x)] D_n(t) dt + \int_{-\delta}^{\delta} [f(x+t) - f(x)] D_n(t) dt + \int_{\delta}^{\pi} [f(x+t) - f(x)] D_n(t) dt$$

стремится к нулю. При этом первое и третье слагаемые стремятся к нулю по осцилляционной лемме, поэтому ряд Фурье сходится в точке x к f(x) тогда и только тогда, когда при некотором $\delta \in (0,\pi)$ (или при любом $\delta \in (0,\pi)$!)

$$\int_{-\delta}^{\delta} [f(x+t) - f(x)] D_n(t) dt = \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{f(x+t) - f(x)}{\sin(t/2)} \sin((2n-1)t/2) dt \to 0,$$
 $n \to \infty.$

2.9 Сходимость ряда Фурье в точке

Будем говорить, что интегрируемая на отрезке $[-\pi,\pi]$ функция f удовлетворяет условию Дини в точке $x \in (-\pi,\pi)$, если для некоторого малого δ существует интеграл

$$\int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt. \tag{*}$$

Отметим, что если этот интеграл существует для некоторого малого δ , то он существует при всех $\delta \in (0,\pi)$, поскольку знаменатель подинтегрального выражения непрерывен и обращается в нуль только в точке t=0.

Теорема 1. Пусть функции f интегрируема на отрезке $[-\pi, \pi]$ и удовлетворяет в точке $x \in (-\pi, \pi)$ условию Дини. Тогда ряд Фурье этой функции в точке x сходится κ значению f(x).

Доказательство. Пусть для некоторого δ существует интеграл (*). Тогда он существует при всех $\delta \in (0,\pi)$. Из свойства абсолютной непрерывности интеграла как функции множества следует, что при $\delta \to 0$ значение интеграла стремится к нулю. Фиксируем $\varepsilon > 0$. Тогда существует $\delta \in (0,\pi)$ такое, что

$$\int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \varepsilon.$$

Используя известное неравенство $(2/\pi)|t| \le |\sin t| \le 1, t \in [0,\pi/2]$ получаем

$$\left| \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{f(x+t) - f(x)}{\sin(t/2)} \sin((2n-1)t/2) dt \right| \le \frac{1}{2\pi} \int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{\sin(t/2)} \right| dt \le \frac{1}{2\pi} \int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \frac{\varepsilon}{2}.$$

Из осцилляционной леммы следует, что существует N такое, что при $n \geq N$ выполняются неравенства

$$\left| \frac{1}{2\pi} \int_{-\pi}^{-\delta} \frac{f(x+t) - f(x)}{\sin(t/2)} \sin((2n-1)t/2) dt \right| < \frac{\varepsilon}{4},$$

$$\left| \frac{1}{2\pi} \int_{\delta}^{\pi} \frac{f(x+t) - f(x)}{\sin(t/2)} \sin((2n-1)t/2) dt \right| < \frac{\varepsilon}{4}.$$

Тогда с учетом аддитивности интеграла и неравенства треугольника получаем при $n \geq N$

$$|S_n(x) - f(x)| = \left| \frac{1}{2\pi} \int_{-\pi}^{-\delta} \frac{f(x+t) - f(x)}{\sin(t/2)} \sin((2n-1)t/2) dt \right| < \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon.$$

Теорема доказана.

Теперь опишем некоторые классические условия, при которых выполняется условие Дини.

1) Говорят, что функция f удовлетворяет условию Гельдера с показателем $\alpha>0$ в точке x, если существуют константы $\delta,\ A>0$ такие, что

$$|f(x+t) - f(x)| < A|t|^{\alpha}, \quad |t| < \delta.$$

Если функция f непрерывна на $[-\pi,\pi]$ и удовлетворяет условию Гельдера в точке $x \in (-\pi,\pi)$, то она удовлетворяет условию Дини в этой точке. Действительно, из условия Гельдера следует, что

$$\left| \frac{f(x+t) - f(x)}{t} \right| \le \frac{A}{|t|^{1-\alpha}}.$$

Поскольку несобственный интеграл

$$\int_{-\delta}^{\delta} \frac{1}{|t|^{1-\alpha}} dt$$

сходится, то существует интеграл (*). Таким образом, справедливо

Следствие 1. Пусть функции f непрерывна на $[-\pi, \pi]$ и удовлетворяет условию Гельдера в точке $x \in (-\pi, \pi)$. Тогда ряд Фурье этой функции в точке x сходится κ значению f(x).

2) Пусть функция f непрерывна на $[-\pi,\pi]$ и дифференцируема в точке $x\in (-\pi,\pi).$ Тогда существует

$$\lim_{t \to 0} \frac{f(x+t) - f(x)}{t} = f'(x).$$

Поэтому функция

$$\frac{f(x+t) - f(x)}{t}$$

ограничена в некоторой окрестности нуля, следовательно, функция f удовлетворяет условию Гельдера с показателем $\alpha=1$. Отсюда получаем следующее достаточно простое достаточное условие сходимости ряда Фурье.

Следствие 2. Пусть функции f непрерывна на $[-\pi, \pi]$ и дифференцируема в точке $x \in (-\pi, \pi)$. Тогда ряд Фурье этой функции в точке x сходится κ значению f(x).

Замечание. Из принципа локализации Римана следует, что в следствиях 1 и 2 непрерывность функции f достаточно требовать лишь в некоторой малой окрестности точки x.

Теперь рассмотрим случай, когда точка x может являться точкой разрыва первого рода функции f.

Будем говорить, что функция f удовлетворяет обобщенному условию \mathcal{A} ини в точке x, если в точке x существуют конечные односторонние пределы $f(x\pm 0)$ и существуют интегралы

$$\int_0^{\delta} \left| \frac{f(x+t) - f(x+0)}{t} \right| dt, \quad \int_0^{\delta} \left| \frac{f(x-t) - f(x-0)}{t} \right| dt. \quad (**)$$

Теорема 2. Пусть функции f интегрируема на отрезке $[-\pi, \pi]$ и удовлетворяет в точке $x \in (-\pi, \pi)$ обобщенному условию Дини. Тогда ряд Фурье этой функции в точке x сходится κ значению

$$\frac{f(x+0)+f(x-0)}{2}.$$

Доказательство проводится точно так же как в случае обычного условия Дини. Докажите теорему самостоятельно!

Замечание. Если функции f интегрируема на отрезке $[-\pi,\pi]$ и существуют пределы $f(\pi-0), f(-\pi+0)$ в концевых точках отрезка, то ряд Фурье функции f сходится в точках $\pm \pi$ к значению $(1/2)(f(\pi-0)+f(-\pi+0))$. Действительно, достаточно рассмотреть 2π -периодическое продолжение функции f на всю числовую ось (при этом значение в точках $\pi+2\pi k, k\in\mathbb{Z}$, задаем произвольно, значение коэффициентов Фурье от этихз значений не зависит!).vskip0.3 cm

Пример. Рассмотрим функцию $f(x) = x, x \in [-\pi, \pi]$. Эта функция нечетная, поэтому ее разложение происходит только по синусам. Имеем

$$b_n = \frac{2}{\pi} \int_0^{\pi} x \sin nx = 2 \frac{(-1)^{n+1}}{n},$$

поэтому ряд Фурье функции f имеет вид

$$2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx.$$

Поскольку функция f дифференцируема в любой точке из $(-\pi, \pi)$, сумма того ряда равна f(x) = x, т. е.

$$x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx, \quad x \in (-\pi, \pi).$$

Если мы рассмотрим этот ряд в точках $x=\pm\pi$, то его сумма равна нулю. При этом $f(\pi-0)=\pi$, $f(-\pi+0)=-\pi$ и $(1/2)(f(\pi-0)+f(-\pi+0))=0$, что согласуется с замечанием выше.

2.10 Равномерная сходимость ряда Фурье

Теперь коснемся вопроса равномерной сходимости ряда Фурье. Будем говорить что непрерывная на $[-\pi,\pi]$ функция f, принимающая одинаковые значения на концах отрезка, удовлетворяет равномерному условию Дини, если для любого $\varepsilon>0$ найдется такое $\delta>0$, что для любого x выполняется неравенство

$$\int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \varepsilon.$$

Без доказательства приведем следующую теорему и следствия из нее.

Теорема. Пусть функция f непрерывна на $[-\pi, \pi]$ и $f(-\pi) = f(\pi)$. Если f удовлетворяет равномерному условию Дини, то ее ряд Фурье сходится равномерно на $[-\pi, \pi]$ к функции f.

Следствие 1. Пусть функция f задана на отрезке $[-\pi,\pi]$ и $f(-\pi)=f(\pi)$. Если f удовлетворяет условию Гельдера

$$|f(x_1) - f(x_2)| \le A|x_1 - x_2|^{\alpha}, \quad x_1, x_2 \in [-\pi, \pi],$$

с некоторыми константами $A>0, \ \alpha\in(0,1],\ mo\ ee\ pяд\ Фурье\ сходится равномерно на <math>[-\pi,\pi]\ \kappa\ \phi$ ункции f.

Следствие 2. Пусть функция f непрерывно дифференцирууема задана на отрезке $[-\pi,\pi]$ и $f(-\pi)=f(\pi)$. Тогда ее ряд Фурье сходится равномерно на $[-\pi,\pi]$ к функции f.

3 Интерал Фурье и пробразование Фурье

3.1 Интерал Фурье

Нам понадобится понятие фукнции, интегрируемой по Лебегу на всей числовой прямой. Определение похоже на определение несобственных

интегралов Римана. Функция f, заданная на всей числовой оси, интегрируема на \mathbb{R} , если она интегрируема на любом отрезке и для любой последовательности отрезков A_n , исчерпывающей \mathbb{R} , существует конечный предел

$$\lim_{n \to \infty} \int_{A_n} |f(x)| dx.$$

Если f интегрируема на \mathbb{R} , то, по определению,

$$\int_{\mathbb{R}} f(x)dx = \lim_{n \to \infty} \int_{A_n} f(x)dx.$$

Интегралы Лебега по неограниченным множествам обладают большинством свойств, которым удовлетворяют интегралы Лебега по ограниченным множествам.

Интегрируемые на \mathbb{R} функции образуют банахово пространство $L_1(\mathbb{R})$ с нормой

$$||f|| = \int_{-\infty}^{+\infty} |f(x)| dx.$$

Теорема. Пусть функцию f интегрируема по Лебегу на \mathbb{R} . Если эта функция в точке x удовлетворяет услоию Дини, то

$$f(x) = \frac{1}{\pi} \int_0^{+\infty} d\lambda \int_{-\infty}^{+\infty} f(t) \cos \lambda (t - x) dt.$$

Доказательство. Требуется доказать, что

$$I_A := \frac{1}{\pi} \int_0^A d\lambda \int_{-\infty}^{+\infty} f(t) \cos \lambda (t - x) dt \to f(x), \quad A \to +\infty.$$

Из неравенства

$$|f(t)\cos\lambda(t-x)| \le |f(t)|, \quad \lambda \in [0,A], \ t \in \mathbb{R},$$

и интегрируемости функции |f| на $\mathbb R$ следует, что функция $f(t)\cos\lambda(t-x)$ интегрируема на $[0,A]\times\mathbb R$. По известной теореме Фубини о перестановке порядка интегрирования получаем

$$\frac{1}{\pi} \int_0^A d\lambda \int_{-\infty}^{+\infty} f(t) \cos \lambda (t-x) dt = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^A d\lambda \int_0^{+\infty} f(t) \cos \lambda (t-x) dt = \frac{1}{\pi} \int_0^A d\lambda \int_0^{+\infty} f(t) \cos \lambda (t-x) dt = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dt = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) d\lambda = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt \int_0^A \cos \lambda (t-x) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt = \frac{1}{\pi} \int_0^{+\infty} f(t) dx = \frac{1}{\pi} \int_0^{+\infty} f(t) dt = \frac{1}{\pi} \int_0^{+\infty}$$

$$= \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \frac{\sin[A(t-x)]}{t-x} dt = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t+x) \frac{\sin At}{t} dt.$$

Таким образом,

$$I_A = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t+x) \frac{\sin At}{t} dt.$$

Используя известное значение интеграла Дирихле, получаем

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} f(x) \frac{\sin At}{t} dt = f(x) \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin At}{t} dt = f(x) \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin \tau}{\tau} d\tau = f(x).$$

Таким образом,

$$I_A - f(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(t+x) - f(x)}{t} \sin At \, dt.$$

Докажем, что при $M \to +\infty$

$$\int_{-\infty}^{-M} \frac{f(t+x) - f(x)}{t} \sin At \, dt \to 0, \quad \int_{M}^{+\infty} \frac{f(t+x) - f(x)}{t} \sin At \, dt \to 0,$$
(1)

причем сходимость равномерна по $A \in [1, \infty]$. Рассмотрим второй интеграл, первый исследуется аналогично. Имеем

$$\left| \int_{M}^{+\infty} \frac{f(t+x) - f(x)}{t} \sin At \, dt \right| \le$$

$$\le \int_{M}^{+\infty} \frac{|f(t+x) - f(x)|}{t} |\sin At| \, dt + |f(x)| \left| \int_{M}^{+\infty} \frac{\sin At}{t} \, dt \right| \le$$

$$\le \int_{M}^{+\infty} \frac{|f(t+x) - f(x)|}{t} \, dt + |f(x)| \left| \int_{AM}^{+\infty} \frac{\sin t}{t} \, dt \right| \le$$

$$\le \frac{1}{M} \int_{-\infty}^{+\infty} |f(t+x) - f(x)| \, dt + |f(x)| \left| \int_{AM}^{+\infty} \frac{\sin t}{t} \, dt \right|.$$

Если $M \to +\infty$, то $\frac{1}{M} \to 0$, и поскольку $AM \ge M$ при $A \ge 1$, имеем

$$\int_{AM}^{+\infty} \frac{\sin t}{t} \, dt \to 0,$$

как остаток сходящегося несобственного интеграла Дирихле, причем равномерно по A на $[1, +\infty)$.

Фиксируем $\varepsilon > 0$. Тогда в силу (1) существует M > 0 такое, что для любого $A \ge 1$ выполняются неравенства

$$\left| \int_{-\infty}^{-M} \frac{f(t+x) - f(x)}{t} \sin At \, dt \right| < \frac{\varepsilon}{3},\tag{2}$$

$$\left| \int_{M}^{+\infty} \frac{f(t+x) - f(x)}{t} \sin At \, dt \right| < \frac{\varepsilon}{3}. \tag{3}$$

Точно так же как при доказательстве теоремы о сходимости ряда Фурье в точке доказываем, что при выполнении условия Дини в точке x

$$\int_{-M}^{M} \frac{f(t+x) - f(x)}{t} \sin At \, dt \to 0, \quad A \to +\infty,$$

поэтому существует $A_0 ge1$ такое, что при $a \ge A_0$ выполняется неравенство

$$\left| \int_{-M}^{M} \frac{f(t+x) - f(x)}{t} \sin At \, dt \right| < \frac{\varepsilon}{3}. \tag{4}$$

Из свойства аддитивности интеграла имеем

$$I_A - f(x) = \int_{-\infty}^{-M} \frac{f(t+x) - f(x)}{t} \sin At \, dt +$$

$$+ \int_{-M}^{M} \frac{f(t+x) - f(x)}{t} \sin At \, dt + \int_{M}^{+\infty} \frac{f(t+x) - f(x)}{t} \sin At \, dt.$$

Применяя неравенство треугольника с учетом (2), (3) и (4) получаем

$$|I_A - f(x)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

 $A \geq A_0$. Это и означает, что $I_A - f(x) \to 0, A \to +\infty$. Доказательство теоремы закончено.

3.2 Прямое и обратное преобразование Фурье

Запишем доказанное равенство несколько по-другому. Заметим, что функция

$$G(\lambda) = \int_{-\infty}^{+\infty} f(t) \cos \lambda (t - x) dt$$

нечетная, поэтому

$$f(x) = \frac{1}{\pi} \lim_{A \to +\infty} \int_0^A G(\lambda) d\lambda = \frac{1}{2\pi} \lim_{A \to +\infty} \int_{-A}^A G(\lambda) d\lambda = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} G(\lambda) d\lambda.$$

Аналогично, поскольку функция

$$H(\lambda) = \int_{-\infty}^{+\infty} f(t) \sin \lambda (t - x) dt$$

нечетная, имеем

$$\frac{1}{2\pi}v.p.\int_{-\infty}^{+\infty}H(\lambda)d\lambda=0.$$

Применяя равенство Эйлера

$$\cos \lambda(t-x) - i \sin \lambda(t-x) = e^{-i\lambda(t-x)},$$

записываем равенство в виде

$$f(x) = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} [G(\lambda) - iH(\lambda)] d\lambda = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} d\lambda \int_{-\infty}^{+\infty} f(t) e^{-i\lambda(t-x)} dt =$$

$$= \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} e^{i\lambda x} d\lambda \int_{-\infty}^{+\infty} f(t) e^{-i\lambda t} dt.$$

Обозначим

$$\Phi(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t}dt.$$
 (5)

Тогда последнее равенство можно записать в виде

$$f(x) = \frac{1}{\sqrt{2\pi}} v.p. \int_{-\infty}^{+\infty} \Phi(\lambda) e^{i\lambda x} d\lambda.$$
 (6)

Отметим, что равенства (5) и (6) достаточно похожи. При этом, интеграл в (6) понимается в смысле главного значения по Коши.

Пусть равенство (5) имеет место для всех точек $x \in \mathbb{R}$. Соответствие $F: f \mapsto \Phi$, определяемое (5), называется преобразованием Фурье, а функция F — преобразование Фурье функции f. В дальнейшем вместо Φ будем часто писать F[f], почеркивая, что функция Φ — результат преобразования Фурье F, примененного к функции f. Аналогично, равенство (6) определяет обратное преобразование Фурье, которое обозначается через F^{-1} . Таким образом, $f = F^{-1}[\Phi]$.

3.3 Свойства преобразования Фурье

Теорема 1. Если последовательность f_n сходится в пространстве $L_1(\mathbb{R})$ κ функции f, то $F[f_n] \Longrightarrow F[f]$ на \mathbb{R} .

Доказательство. Имеем

$$|F[f_n](\lambda) - F[f](\lambda)| = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{+\infty} (f_n(t) - f(t))e^{-i\lambda t} dt \right| \le$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |f_n(t) - f(t)| dt = \frac{1}{\sqrt{2\pi}} \|f_n - f\|_{L_1(\mathbb{R})} \to 0,$$

 $n \to \infty$.

Теорема 2. Пусть $f \in L_1(\mathbb{R}.\ Torda\ F[f])$ — непрерывная функция на $\mathbb{R},\ npuчем\ F[f](\lambda) \to 0,\ \lambda \to \infty.$

Доказательство. 1) Рассмотрим сначала случай, когда $f=\chi_{[a,b]}$ — характеристическая функция отрезка [a,b], т. е.

$$f(x) = \begin{cases} 1, & x \in [a, b] \\ 0, & x \notin [a, b]. \end{cases}$$

Имеем

$$F[f](\lambda) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-i\lambda t} dt = \left. \frac{e^{-i\lambda t}}{-i\lambda\sqrt{2\pi}} \right|_a^b = \frac{e^{-i\lambda b} - e^{-i\lambda a}}{-i\lambda\sqrt{2\pi}},$$

откуда видно, что $F[f](\lambda)$ является непрерывной функцией на \mathbb{R} . При этом,

$$|F[f](\lambda)| = \left| \frac{e^{-i\lambda b} - e^{-i\lambda a}}{-i\lambda\sqrt{2\pi}} \right| \le \frac{|e^{-i\lambda b}| + |e^{-i\lambda a}|}{\lambda\sqrt{2\pi}} = \sqrt{\frac{2}{\pi}} \frac{1}{|\lambda|} \to 0, \quad \lambda \to \infty.$$

2) Пусть $f(x) = \sum_{k=1}^l \alpha_k \chi_{a_k,b_k}(x)$ — линейная комбинация характеристических функций отрезков. Тогда утверждение следует из доказанного в п. 1) и линейности преобразования Фурье, в силу которой

$$F[f](\lambda) = \sum_{k=1}^{l} \alpha_k F[\chi_{a_k,b_k}](\lambda).$$

3) Теперь рассмотрим случай произвольной функции из $L_1(\mathbb{R})$. Из свойств интеграла Лебега следует, что существует последовательность функций f_n , каждая из которых является линейной комбинацией характеристических функций отрезков, и которяа сходится к f в пространстве $L_1(\mathbb{R})$. В силу доказанного в п. 2) их преобразования Фурье $F[f_n]$ являются непрерывными функциями, стремящимися к нулю на бесконечности. По теореме 1 $F[f_n] \Rightarrow F[f]$ на \mathbb{R} . Продолжим функции $F[f_n]$ на \mathbb{R} , полагая $F[f_n](-\infty) = F[f_n](+\infty) = 0$, $F[f](-\infty) = F[f](+\infty) = 0$. Тогда $F[f_n] \Rightarrow F[f]$ на \mathbb{R} . Равномерный предел последовательности непрерывных функций является непрерывной функцией, поэтому F[f] непрерывна на \mathbb{R} . В частности, существуют $\lim_{\lambda \to +\infty} F[f](\lambda) = F[f](-\infty) = 0$, $\lim_{\lambda \to +\infty} F[f](\lambda) = F[f](+\infty) = 0$. Теорема 2 доказана.

Теорема 3. Пусть $f(t) \in L_1(\mathbb{R})$ и $tf(t) \in L_1(\mathbb{R})$. Тогда функция F[f] дифференцируема на \mathbb{R} и

$$\frac{d}{d\lambda}F[f](\lambda) = F[-itf(t)](\lambda).$$

Приведем доказательство для случая, когда функции f(t) и tf(t) абсолютно интегрируемы в несобственном смысле по Риману на \mathbb{R} . Обоснуем возможность дифференцируемости под знаком интеграла. Имеем

$$\frac{d}{d\lambda}(f(t)e^{-i\lambda t}) = -itf(t)e^{-i\lambda t}.$$

Интеграл

$$\int_{-\infty}^{+\infty} f(t)e^{-i\lambda t}dt$$

сходится, поскольку $|f(t)e^{-i\lambda t}|=|f(t)|$ — интегрируемая несобственном смысле функция на ${f R}$.

Интеграл

$$\int_{-\infty}^{+\infty} \frac{d}{d\lambda} (f(t)e^{-i\lambda t})dt = \int_{-\infty}^{+\infty} (-it)f(t)e^{-i\lambda t}dt$$

сходится равномерно по λ по признаку Вейерштрасса, поскольку

$$|(-it)f(t)e^{-i\lambda t}| = |tf(t)|$$

является интегрируемой функцией на \mathbb{R} .

Таким образом, с учетом предыдущих равенств получаем

$$\frac{d}{d\lambda}F[f](\lambda) = \frac{1}{\sqrt{2\pi}}\frac{d}{d\lambda}\int_{-\infty}^{+\infty}f(t)e^{-i\lambda t}dt =$$

$$= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}(-it)f(t)e^{-i\lambda t}dt = F[-itf(t)](\lambda).$$

Следствие. Если в условиях теоремы 3 функция $t^n f(t)$ интегрируема на \mathbb{R} , то преобразование Фурье функции f является n раз непрерывно дифференцируемой на \mathbb{R} функцией u

$$\frac{d^n F[f](\lambda)}{d\lambda^n} = F[(-it)^n f(t)](\lambda).$$

Теорема 4. Если функция $f \in L_1(\mathbb{R})$ и непрерывно дифференцируема на \mathbb{R} , причем $f'(t) \in L_1(\mathbb{R})$, то

$$F[f'](\lambda) = (i\lambda)F[f](\lambda).$$

Доказательство. Применяя интегрирование по частям, получаем

$$F[f'](\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(t)e^{-i\lambda t}dt =$$

$$= \frac{1}{\sqrt{2\pi}} f(t)e^{-i\lambda t}\Big|_{-\infty}^{+\infty} + \frac{i\lambda}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t}dt = (i\lambda)F[f](\lambda).$$

Следствие 1. Если функция $f \in L_1(\mathbb{R})$ непрерывно дифференцируема n раз на \mathbb{R} , причем $f^{(n)}(t) \in L_1(\mathbb{R})$, то

$$F[f^{(n)}](\lambda) = (i\lambda)^n F[f](\lambda).$$

Следствие 2. В условиях следствия 1

$$F[f](\lambda) = o(\lambda^{-n}), \quad \lambda \to \infty.$$

Действительно, силу теоремы 1 и следствия 1

$$F[f](\lambda) = \frac{F[f^{(n)}](\lambda)}{(i\lambda)^n} = \frac{o(1)}{(i\lambda)^n} = o(\lambda^{-n}), \quad \lambda \to \infty.$$

Следствие 2. Если функция $f \in L_1(\mathbb{R})$ дважды непрерывно дифференцируема на \mathbb{R} , то $F[f](\lambda) = o(\lambda^{-2})$, $\lambda \to \infty$. Следовательно, функция F[f] абсолютно интегрируема на \mathbb{R} и интеграл в формуле для обратного преобразования Фуръе $f = F^{-1}[\Phi]$, где $\Phi = F[f]$, можно понимать в обычном смысле, а не в смысле главного значения по Коши.

3.4 Преобразование Фурье в пространстве быстро убывающих на ∞ функций

Введем пространство S_{∞} быстро убывающих на ∞ функций. Это пространство играет важную роль при определении так называемых обобщенных функций, играющих важную роль в соременной математике.

Говорят, что функция f принадлежит пространству S_{∞} , если $f \in C^{\infty}(\mathbb{R})$ и для любых целых неотрицательных p и q выполняется условие

$$\sup_{x \in \mathbb{R}} |x^p f^{(q)}(x)| < +\infty.$$

Если $f \in S_{\infty}$, то

$$|f^{(q)}(x)| \le \frac{c_{p,q}}{|x|^p} \quad \forall p, q \ge 0,$$
 (*)

с некоторыми константами $c_{p,q}$. Из (*) следует, что сама функция f и все ее производные убывают на бесконечности быстрее, чем любая степенная функция. Отсюда также следует, что все производные $f^{(q)}$ абсолютно интегрируемы на \mathbb{R} . Более того, для любых $p, q \geq 0$ функция $x^p f^{(q)}(x) \in L_1(\mathbb{R})$.

Примером функции $f \in S_{\infty}$ является функция $f(x) = e^{-x^2}$.

Из формулы Лейбница следует, что для любых целых неотрицательных m и n

$$(x^m f(x))^{(n)} = \sum_{k=0}^n A_k x^{\alpha_k} f^{(k)}(x)$$

с некоторыми неотрицательными целыми α_k и константами A_k . Поэтому

$$\sup_{\mathbb{R}} |(x^m f(x))^{(n)}| < +\infty.$$

Более того,

$$(x^m f(x))^{(n)} = o(x^{-s}), \quad x \to \infty,$$

для любого $s \ge 0$. Справедлива

Теорема. Преобразование Фурье является биекцией пространства S_{∞} на себя.

Доказательство. Используя теоремы 3 и 4 из предыдущего пункта, получаем, что если функция $f \in S_{\infty}$, то для любых $p, q \geq 0$ функция F[f] является q раз непрерывно дифферецнируемой и

$$(i\lambda)^p \frac{d^q F[f](\lambda)}{d\lambda^q} = F \left[\frac{d^p[(-it)^q f(t)](\lambda)}{dt^p} \right],$$

откуда следует, что $F[f] \in S_{\infty}$, так как по теореме 2 предыдущего пункта преобразование Фурье интегрируемой функции является непрерывной функцией, стремящейся к нулю на бесконечности, т.е ограниченной.

Так как для любой функции $f \in S_{\infty}$ имеем $F[f] \in S_{\infty}$, обратное преобразование Фурье F^{-1} переводит F[f] в f, при этом $F^{-1} \circ F = F \circ F^{-1} = id_{S_{\infty}}$. Таким образом, F обладает обратным F^{-1} как слева, так и справа, следовательно, F — биекция.

3.5 Преобразование Фурье свертки

Пусть $f_1, f_2 \in L_1(\mathbb{R})$. Сверткой этих функций называется функция

$$f(x) = f_1 * f_2(x) =: \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_1(\xi) f_2(x - \xi) d\xi.$$

С помощью теоремы Фубини можно показать, что правая часть последнего равенства существует почти всюду и является интегрируемой по Лебегу на $\mathbb R$ функцией. Действительно, рассмотрим повторный интеграл

$$\int_{-\infty}^{+\infty} d\xi \int_{-\infty}^{+\infty} |f_1(\xi)f_2(x-\xi)| dx = \int_{-\infty}^{+\infty} |f_1(\xi)| d\xi \int_{-\infty}^{+\infty} |f_2(x-\xi)| dx =$$

$$= \int_{-\infty}^{+\infty} |f_1(\xi)| d\xi \int_{-\infty}^{+\infty} |f_2(t)| dt.$$

Следовательно, существует этот повторный интеграл. Из теоремы Фубини следует, что существуют оба повторных интеграла

$$\int_{-\infty}^{+\infty} d\xi \int_{-\infty}^{+\infty} f_1(\xi) f_2(x-\xi) dx,$$
$$\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} f_1(\xi) f_2(x-\xi) d\xi,$$

причем во втором интеграле внутренний интеграл существует почти всюду и является интегрируемой функцией; отметим, что он совпадает с функцией f.

Теорема. *Ecnu*
$$f_1$$
, $f_2 \in L_1(\mathbb{R})$, mo $F[f_1 * f_2] = F[f_1] \cdot F[f_2]$.

Доказательство. С использованием теоремы Фубини (см. ниже) можно изменить порядок интегрирования в повторном интеграле, который

представляет собой преобразование Фурье от свертки. Имеем, с использованием замены переменных,

$$F[f_{1} * f_{2}](\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-i\lambda x} dx \int_{-\infty}^{+\infty} f_{1}(\xi) f_{2}(x - \xi) d\xi =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f_{1}(\xi) d\xi \int_{-\infty}^{+\infty} f_{2}(x - \xi) e^{-i\lambda x} dx =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f_{1}(\xi) d\xi \int_{-\infty}^{+\infty} f_{2}(t) e^{-i\lambda(t + \xi)} dt =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_{1}(\xi) e^{-i\lambda \xi} d\xi \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f_{2}(t) e^{-i\lambda t} dt = F[f_{1}] \cdot F[f_{2}].$$

Обоснование применения теоремы Фубини. Имеем $|e^{-i\lambda x}|=1$, поэтому $|e^{-i\lambda x}f_1(\xi)f_2(x-\xi)|=|f_1(\xi)f_2(x-\xi)|$. Повторный интеграл от функции $|f_1(\xi)f_2(x-\xi)|$ существует, этом мы показывали пере доказательством теоремы. Таким, образом, теорема Фубини применима.

Содержание

1	Ряд	ы Фурье в гильбертовых пространствах	2
	1.1	Метрические пространства	2
	1.2	Линейные нормированные пространства	5
	1.3	Унитарные пространства	6
	$1.4 \\ 1.5$	Примеры унитарных пространств и онс в них	9
	1.0	нализации Грама-Шмидта	13
	1.6	Коэффициенты Фурье разложения элемента унитарного	10
	1.0	пространства в ряд Фурье	15
	1.7	Гильбертовы пространства. Теорема Рисса-Фишера	17
2	Три	гонометрические ряды Фурье	19
	2.1	Сходимость тригонометрических рядов Фурье в простран-	
		CTBE $L_2(-\pi,\pi)$	19
	2.2	Частичные суммы ряда Фурье. Ядро Дирихле	20
	2.3	Ядро Фейера. Теорема Фейера.	22
	2.4	Теоремы Вейерштрасса о приближении. Разложение в ряд	
		Фурье четных и нечетных функций	25
	2.5	Полнота тригонометрической системы функций в простран-	
		CTBE $L_2(-\pi,\pi)$	28
	2.6	Комплексная форма рядов Фурье	30
	2.7	Связь комплексных рядов Фурье с теорией функций ком-	
		плексного переменного	31
	2.8	Осцилляционная лемма. Принцип локализации Римана	31
	2.9	Сходимость ряда Фурье в точке	34
	2.10	Равномерная сходимость ряда Фурье	38
3	Интерал Фурье и пробразование Фурье		38
	3.1	Интерал Фурье	38
	3.2	Прямое и обратное преобразование Фурье	41
	3.3	Свойства преобразования Фурье	43
	3.4	Преобразование Фурье в пространстве быстро убывающих	
		на ∞ функций	46
	3.5	Преобразование Фурье свертки	47