第二章 RAID技术与应用

www.huawei.com

- 学习完本章节后,您将能够:
 - 熟悉RAID基本概念与数据组织方式
 - 熟悉常用RAID级别原理与特点
 - 掌握不同RAID级别的应用场景
 - □ 具备RAID规划和操作时的技术决策能力

- 1. RAID基本概念与技术原理
- 2. RAID技术与应用
- 3. RAID特点及不同场景下应用
- 4. RAID与LUN

RAID概念与实现方式

RAID (Redundant Array of Independent Disks): 独立冗余磁盘阵列,简称磁盘阵列。RAID是按照一定的形式和方案组织起来的存储设备,它比单个存储设备在速度、稳定性和存储能力上都有很大提高,并且具备一定的数据安全保护能力。

- RAID 的主要实现方式分为硬件RAID 方式和软件RAID 方式
 - □ 硬件RAID: 利用集成了处理器的硬件RAID适配卡来对RAID任务进行处理,无 须占用主机CPU资源。
 - □ 软RAID:通过软件技术实现,需要操作系统支持,一般不能对系统磁盘实现 RAID功能。

RAID的数据组织方式

- 分块:将一个分区分成多个大小相等的、地址相邻的块,这些块称为分块。它是组成条带的元素。
- 条带:同一磁盘阵列中的多个磁盘驱动器上的相同"位置"(或者说是相同编号)的分块。

RAID校验方式

• XOR校验的算法——相同为假,相异为真:

```
0 \oplus 0 = 0; 0 \oplus 1 = 1; 1 \oplus 0 = 1; 1 \oplus 1 = 0;
```

- XOR的逆运算仍为XOR:
- 如果A为1,B为0,则校验值P为1:A(1)⊕B(0)=P(1)
- 则有逆运算: B(0)⊕P(1)=A(1); A(1)⊕P(1)=B(0);

异或校验冗余备份

RAID数据保护机制---热备与重构1

- 热备(Hot Spare): 当冗余的RAID阵列中某个磁盘失效时,在不干 扰当前RAID系统正常使用的情况下,用RAID系统中另外一个正常的 备用磁盘顶替失效磁盘。
- 热备通过配置热备盘实现,热备盘分为全局热备盘和局部热备盘

RAID数据保护机制---热备与重构2

• 重构: 镜像阵列或者RAID阵列中发生故障的磁盘上的所有用户数据和校验数据的重新构建(rebuild)过程,或者将这些数据写到一个或者多个备用磁盘上的过程。

RAID的几种状态

- 1. RAID基本概念与技术原理
- 2. RAID技术与应用
- 3. RAID特点及不同场景下应用
- 4. RAID与LUN

常用RAID级别与分类标准

 RAID技术将多个单独的物理硬盘以不同的方式组合成一个逻辑硬盘,提高 了硬盘的读写性能和数据安全性,根据不同的组合方式可以分为不同的 RAID级别。

RAID级别	描述				
RAID 0	数据条带化,无校验				
RAID 1	数据镜像,无校验				
RAID 3	数据条带化读写,校验信息存放于专用硬盘				
RAID 5	数据条带化,校验信息分布式存放				
RAID 6	数据条带化,分布式校验并提供两级冗余				
RAID10	类似于RAID 0+1,区别在于先做RAID 1,后做RAID 0				
RAID 50	先做RAID 5,后做RAID 0,能有效提高RAID 5的性能				

RAID 0实现方式

逻辑磁盘

无差错控制的条带化阵列

RAID 0数据写入

写入数据块D2,D3··· 写入数据块D1 逻辑磁盘 写入数据块D0 D5 DO, D1, D2, D3, D4, D5 D4 D3 驱动器1 驱动器2 D2 D4 D5 D1 D2 D3 D0 D0 D1

RAID 0数据读取

RAID 0数据丢失

阵列中某一个驱动器发生故障,将导致其中的数据丢失。

RAID 1的工作原理

逻辑磁盘

镜像结构的阵列

RAID1 数据写入

逻辑磁盘

Page 17

RAID1 数据读取

逻辑磁盘

Page 18

RAID 1的数据恢复

RAID 3的工作原理

带奇偶校验码的并行阵列

RAID 3的数据写入

RAID 3的数据读取

Page 22

RAID 3的数据恢复

RAID 5的工作原理

分布式奇偶校验码的独立磁盘结构

RAID 5数据写入

RAID 5数据读取

RAID 5数据恢复

磁盘失效 数据恢复

RAID 6介绍

- RAID 6是带有两种分布存储的奇偶校验码的独立磁盘结构,它是RAID 5的一种扩展,采用两种奇偶校验方法,需要至少N+2个磁盘来构成阵列,一般用在数据可靠性、可用性要求极高的应用场合
- 常用的RAID 6技术有RAID6 P + Q和RAID6 DP

RAID6 P+Q的工作原理

- RAID6 P + Q需要计算出两个校验数据P和Q,当有两个数据丢失时,根据P和Q恢复出丢失的数据。校验数据P和Q是由以下公式计算得来的:
 - P=D0 ⊕ D1 ⊕ D2
 - $Q = (\alpha \otimes D0) \oplus (\beta \otimes D1) \oplus (\gamma \otimes D2) \dots$

RAID6 DP的工作原理

- DP Double Parity,就是在RAID4所使用的一个行XOR校验磁盘的基础上又增加了一个磁盘用于存放斜向的XOR校验信息
- 横向校验盘中P1—P4为各个数据盘中横向数据的校验信息

例: P0=D0 XOR D1 XOR D2 XOR D3

斜向校验盘中DP1—DP4为各个数据盘及横向校验盘的斜向数据校验信息

例: DP0=D0 XOR D5 XOR D10XOR D15

驱动器1	驱动器2	驱动器3	驱动器4	横向校验盘	斜向校验盘	.
D0	D1	D2	D3	P0	DP0	条带0
D4	D5	D6	D7	P1	DP1	条带1
D8	D9	D10	D11	P2	DP2	条带2
D12	D13	D14	D15	P3	DP3	条带3
L					DP4	'

RAID组合---RAID 10

RAID 10是将镜像和条带进行组合的RAID级别,先进行RAID 1镜像然后再做
RAID 0。RAID 10也是一种应用比较广泛的RAID级别。

RAID组合---RAID50

 RAID 50是将RAID 5和RAID 0进行两级组合的RAID级别,第一级是 RAID 5,第二级为RAID 0;

- 1. RAID基本概念与技术原理
- 2. RAID技术与应用
- 3. RAID特点及不同场景下应用
- 4. RAID与LUN

常用RAID级别的比较

RAID级别	RAID 0	RAID 1	RAID 3	RAID 5	RAID 10
别名	条带	镜像	专用奇偶位条 带	分布奇偶位条 带	- 镜像阵列条带 -
容错性	无	有	有	有	有
冗余类型	无	复制	奇偶校验	奇偶校验	复制
热备盘选项	无	有	有	有	有
读性能	高	低	高	高	一般
随机写性能	高	低	最低	低	一般
连续写性能	高	低	低	低	一般
最小硬盘数	2块	2块	3块	3块	4块
可用容量	N*单块硬 盘容量	(N /2) * 单块 硬盘容量	(N -1) * 单块 硬盘容量	(N -1) * 单块 硬盘容量	(N /2) * 单块硬盘 容量

RAID 典型应用场景

RAID级别	RAID 0 RAID 1		RAID 3	RAID 5 /6	RAID 10	
典型应用环境	迅速读写, 安全性要求 不高,如图 形工作站等	随机数据 写入,安全性要求高,如服务器、数据库存储	连续数据传输,安全性要求高,如视频编辑、 大型数据库等	随机数据 传输,安 全性要 高,数据 高、数据 库、存储	数据量大, 安全性要求 高,如银行、 金融等领域	
		领域		等		

- 1. RAID基本概念与技术原理
- 2. RAID技术与应用
- 3. RAID特点及不同场景下应用
- 4. RAID与LUN

RAID级别选择

从可靠性、性能和成本简单比较各RAID级别的优劣(相对而言),供在实际项目中选择时参考。

	RAID 0	RAID 1	RAID 3	RAID 5	RAID 10	RAID6
可靠性	*	***	**	***	****	****
性能	****	***	***	***	***	**
成本	***	**	***	***	**	**

RAID与LUN的关系

- RAID由几个硬盘组成 , 从整体上看相当于有多个硬盘组成的一个大的物理卷
- 在物理卷的基础上可以按照指定容量创建一个或多个逻辑单元,这些逻辑单元称作LUN,可以做为映射给主机的基本块设备

思考题

- 您能简要描述RAID中的数据是如何组织的?分条深度对RAID的性能有影响吗?
- RAID组的状态有哪些?它们之间是如何转换的?
- 3. 您能描述一下RAID5的数据组织方式和重构过程是如何实现的?
- 4. RAID5和RAID1的应用场景有区别吗?有哪些?
- 5. 在客户更关注可靠性和性能的情况下,给客户推荐合适的RAID方案有哪些?
- 6. RAID与LUN的关系是什么?

Thank you

www.huawei.com