[Linear regression function by Gradient Descent]

```
LAMBDA=0
alpha=0.1
weight=np.array([[0.0]*9]*18)
gb=0.0
wb=np.array([[0.0]*9]*18)
iteration=30000
for i in range(iteration):
    b grad=0.0
    w_grad=np.array([[0.0]*9]*18)
    for n in xrange(len(trainSet)):
        sum_WX=np.sum(weight*trainSet[n,...,:9])
        b_grad=b_grad-2.0*(trainSet[n][9][9]-bias-sum_WX)*1.0
        w_grad=w_grad-2.0*(trainSet[n][9][9]-bias-sum_WX)*trainSet[n,...,:9]
    w_grad+=2.0*LAMBDA*weight
    gb+=(b_grad**2)
    wb+=(w_grad**2)
    bias=bias-alpha*(1./(gb**0.5))*b grad
    weight=weight-alpha*(1./(wb**0.5))*w_grad
```

圖一、update bias and weight

在實作的 linear_regression.py 中,Bias 與 weight 皆初始為 0,更新 bias 與 weight 的 function 如圖一所示,其中每筆 data(共 5652 筆 data)使用 162 個 features。因為 loss $L=\sum_{n}^{5652}(\hat{y}^{n}-(b+1))$

$$\sum_{i}^{162} w_{i} x_{i}^{n}))^{2} + \lambda \sum_{i}^{162} w_{i}^{2} , \text{ ffll} \frac{\partial L}{\partial w_{k}} = \sum_{n}^{5652} 2(\hat{y}^{n} - (b + \sum_{i}^{162} w_{i} x_{i}^{n}))(-x_{k}^{n}) + 2\lambda w_{k} , \text{ k=1,2,...,162},$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{b}} = \sum_{n=0}^{5652} 2(\hat{y}^n - (b + \sum_{i=0}^{162} w_i x_i^n))(-1) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\partial \mathbf{L}}{\partial \mathbf{b}}) \cdot \text{learning rate of b} : \quad \eta \mathbf{b}_t = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus g \mathbf{b}_j = \frac{\eta \mathbf{b}_0}{\sqrt{\sum_{j=0}^{t-1} g b_j^2}} \text{ } (\sharp \oplus$$

rate of w_k : $\eta w_{k_t} = \frac{\eta w_{k_0}}{\sqrt{\sum_j^{t-1} g w_{k_j}^2}}$ (其中 $g w_{k_j} = \frac{\partial \mathbf{L}}{\partial w_k}$),因此在每一 iteration 更新 bias 的 function 為:

$$b_{t+1}$$
= b_{t^-} η b_t * $\frac{\partial \mathbf{L}}{\partial \mathbf{b}}$,更新 weight 的 function 為: $w_{k_{t+1}}$ = $w_{k_{t^-}}$ η w_{k_t} * $\frac{\partial \mathbf{L}}{\partial w_k}$ 。程式碼中 sum_WX= $\sum_i^{162} w_i x_i^n$

(python 的 ndarray 有個特性是兩個相同大小的 2d-array 相乘的結果即為一個 2d-array 且其中 element 值為這兩個 2d-array

在相對應之位置之 element 相乘之結果),
$$b_grad = \frac{\partial L}{\partial b}$$
, $w_grad = \begin{pmatrix} \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_{162}} \end{pmatrix}$ (為 1d-array), $gb = \sqrt{\sum_{j=1}^{t-1} gb_j^2}$,

$$\text{wb} = \begin{pmatrix} \sqrt{\sum_{j}^{t-1} g w_{1_{j}^{2}}} \\ \vdots \\ \sqrt{\sum_{j}^{t-1} g w_{162_{j}^{2}}} \end{pmatrix}, \text{ alpha} = \eta b_{0} = \eta w_{k_{0}} = 0.1 \text{ } \circ$$

[Describe my method] (詳細步驟如上所示)

本作業利用 train.csv 中連續十小時的(24hr*20days/10hr*10-9)*12=5652 筆資料預測 test X.csv 中

240 筆中每筆 data 第 10 小時的 PM 2.5,其中使用 18(觀測項目數)*9(連續 9 小時)=162 個 features,因為 Gradient Descent 的 train 頗慢,所以取不同的 feature 對誤差的影響會在 kaggle_best part 討論。本作業的 Gradient Descent 是使用 adagrad, λ 設為 0、alpha(= η b $_0$ = η w $_k$ $_0$) 設為 0.1,adagrad 的特性為每一次都會調整 bias 或 weight 前進的大小(利用上述 η b $_t$ 與 η w $_k$ $_t$,若每一次的 gradient $\frac{\partial L}{\partial b}$ 與 $\frac{\partial L}{\partial w_k}$ 越大、 η b $_t$ 與 η w $_k$ $_t$ 會越小),依觀察的結果、其較(沒使用 adagrad 的)Gradient Descent 可以更快到達目的地,可能是因為後者容易進入 local minimum。

[comparison]

註一、Error=Loss/N,N=validation set 之 data 數, avg. error = cross validation's average error。

註二、表一~表三與表五之 error 皆為將 train set(5652 datas)任意均分成 3 組做 cross validation、且皆使用 162 features 計算得出。

表一為 regularization 對 error 的影響,這裡使用 adagrad,alpha= $\eta b_0 = \eta w_{k_0} = 1.0$,每次 train 10,000 次。由結果得知 λ 越小 error 越小。

λ	0	1.0*10-13	1.0*10-10	1.0*10-7
avg. err	36.036566441	36.036566441	36.036566441	36.0365664411
λ	1	10	100	1000
avg. err	36.0374640164	36.0454893955	36.1212528508	36.7043610144

表一、regularization 對 error 的影響

表二為 learning rate 對 error 的影響,在這裡不使用 adagrad,即 $b_{t+1}=b_t$ - $\eta*\frac{\partial L}{\partial b}$, $w_{k_{t+1}}=w_{k_t}$ - $\eta*\frac{\partial L}{\partial w_k}$, $\lambda=1.0$,每次 train 10,000 次。由結果得知 η 在 2.0*10⁻¹⁰ 效果較好,但如果 η 在大一點會產生, overflow 的結果。

η	1.0*10 ⁻¹³	1.0*10 ⁻¹²	1.0*10 ⁻¹¹	1.0*10-10	2.0*10 ⁻¹⁰
avg. err	242.111171005	171.445020947	93.9070230552	53.4541009199	45.6914089546

表二、learning rate 對 error 的影響(非 adagrad)

表三為 initial learning rate 對 error 的影響,在這裡是用 adagrad, λ =1.0,每次 train 10,000 次。 由結果得知 initial learning rate (alpha= ηb_0 = ηw_{k_0})在 0.1 時效果較好。

$ηb_0/ηw_{k_0}$	10.000	1.000	0.100	0.010	0.001
avg. err	36.0046386703	35.9921798586	35.8855707994	36.8213481328	72.1151525515

表三、initial learning rate 對 error 的影響(adagrad)

表四為 train 的次數與 Kaggle score 之關係,在使用 adagrad 時,當 $\lambda=1.0$ 、alpha= $\eta b_0=\eta w_{k_0}=1.0$ 時,train 的次數越多 kaggle score 越好(但也有可能花更多時間 train 更多次反而效果變差只是這裡沒有那麼多時間測)。

iteration	10,000	20,000	40,000
Kaggle score	5.97348	5.79287	5.72676

表四、train 的次數對 Kaggle score 的影響

表五為不同 linear model 對 error 的影響,Linear regression by adagrad 在當 $\lambda=1.0$ 、alpha= $\eta b_0=\eta w_{k_0}=1.0$ 時、train20,000 次時,效果好於 Linear regression by closed form,但 error 最小的是 Ridge regression by closed form(後兩種 linear model 在本作業中實作的方法詳述於下頁)。

method	Linear regression by	Linear regression by closed	Ridge regression by closed	
	adagrad	form	form	
avg. err	35.0955957174	36.4387397142	34.8675066862	

表五、不同 linear model 對 error 的影響

[kaggle best]

實作的 kaggle_best.py 使用 Ridge regression 的 closed form solution 解法,即 w=($X^TX+\lambda I$) $^{-1}X^TY$,w 為 weight vector,X 為 features,Y 為 label vector, λ 是為了使 weight 盡可能小以減少 noise。

表六有三種 Feature type:A type 為本來所使用的 18(觀測項目數)*9(連續 9 小時)=162 個 features;B 為 A 加上:9 個連續的 PM2.5 乘上 9 個連續的 PM10(即 $X_{PM2.5}*X_{PM10}$)、9 個連續的 PM2.5 乘上 9 個連續的 SO2、以及最後 2 個連續的 PM2.5 乘上最後 2 個連續的 O3,共 182 個 features;C 為 A 加上:最後 2 個連續的 PM2.5 乘上最後 2 個連續的 PM10、最後 2 個連續的 PM2.5 乘上最後 2 個連續的 PM2.5 乘上最後 2 個連續的 PM2.5 乘上最後 3 個連續的 CO、最後 1 個 PM2.5 乘上最後 1 個 O3、最後 2 個連續的 PM2.5 乘上最後 2 個連續的 NO2、最後 1 個 PM2.5 乘上最後 1 個 CH4、最後 1 個 PM2.5 乘上最後 1 個 WIND_DIREC、最後 1 個 PM2.5 乘上最後 1 個 RAINFALL,共 175 個 features。B type 是因為發現 PM10 與 SO2 的變化趨勢與 PM2.5 較像、並經過手調產生的 features type,而 C 只是根據 error 不斷嘗試手調所產生的結果。這裡是將 train set 分成 18 組做 cross validation 所得出的 error 平均,由表六可知在 C type 的 features 時誤差最小,但 kaggle 的分數卻是 B type 較好,很有可能是 λ 沒有調好所以有可能產生 overfitting。

另外我也實作了 Linear regression by closed form:w=X*Y (X*為 X 的 pseudo inverse),在同樣的條件下與 Ridge regression by closed form 的比較如表六,後者的結果皆比前者好,兩者基本上只差在 λ 的有無(λ 能降低 overfitting 發生的機會或降低 noise 對 train 的影響)。

Feature type	A (162)	B (182)	C (175)
Ridge regression by closed form 34.4056340525		34.4599011002	33.5890003216
avg. err	(kaggle score=5.69990)	(kaggle score=5.50032)	(kaggle score=5.72128)
Linear regression by closed form	34.9414766524	35.0190379973	34.1774420554
avg. err	(kaggle score=5.80644)	(kaggle score=5.62695)	(kaggle score=5.76370)

表六、不同 feature 對 error 的影響

因為考慮到每筆 data 的連續十小時的前幾小時可能用處不大,嘗試刪掉前兩小時、以連續 8 小時為一筆 data 的 train set 共可產生(24hr*20days/8hr*8-7)*12+240(from test set)*2=5676+480=6156 筆資料。表七有兩種 feature type: A type 為 18(觀測項目數)*7(連續 7 小時)=126 個 features; B type 為 A type 之 features 加上最後連續 5 個 PM2.5 乘上最後 5 個練續 PM10、最後 1 個 PM2.5 乘上最後 1 個 CO、最後 1 個 PM2.5 乘上最後 1 個 RH,B type 是經由手調並利用一次次 27-cross validation 找到 error(目前)最小之 features 組合。由結果得知 Ridge regression by closed form 之誤差皆小於 Linear regression by closed form,且 B type 較 A type 好。

Feature type	A (126)	B (133)
Ridge regression by closed form	34.27	33.79
avg. err	(kaggle score=5.57888)	(kaggle score=5.45797)
Linear regression by closed form	34.61	34.15

avg. err	(kaggle score=5.62868)	(kaggle score=5.49130)
----------	------------------------	------------------------

表七、不同 feature 對 error 的影響