In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
```

In [3]:

```
jan= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\jan-tripdat
a.csv")
feb= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\feb-tripdat
a.csv")
march= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\march-trip
data.csv")
april= pd.read csv(r"C:\Users\Atharva\google data analytics capstone project\april-trip
data.csv")
may= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\may-tripdat
a.csv")
june= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\june-tripda
ta.csv")
july= pd.read csv(r"C:\Users\Atharva\google data analytics capstone project\july-tripda
ta.csv")
aug= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\august-tripd
ata.csv")
sep= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\sept-tripdat
a.csv")
octo= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\oct-tripdat
a.csv")
nov= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\nov-tripdat
a.csv")
dec= pd.read_csv(r"C:\Users\Atharva\google data analytics capstone project\dec-tripdat
a.csv")
```

In [5]:

```
#now lets merge all the dataframes into one
data_frames = [jan, feb, march,april,may,june,july,aug,sep,octo,nov,dec]
data_df = pd.concat(data_frames)
```

In [6]:

```
data_df.head()
```

Out[6]:

	ride_id	rideable_type	started_at	ended_at	start_station_name	start_station_
0	E19E6F1B8D4C42ED	electric_bike	2021-01- 23 16:14:19	2021-01- 23 16:24:44	California Ave & Cortez St	176
1	DC88F20C2C55F27F	electric_bike	2021-01- 27 18:43:08	2021-01- 27 18:47:12	California Ave & Cortez St	176
2	EC45C94683FE3F27	electric_bike	2021-01- 21 22:35:54	2021-01- 21 22:37:14	California Ave & Cortez St	176
3	4FA453A75AE377DB	electric_bike	2021-01- 07 13:31:13	2021-01- 07 13:42:55	California Ave & Cortez St	176
4	BE5E8EB4E7263A0B	electric_bike	2021-01- 23 02:24:02	2021-01- 23 02:24:45	California Ave & Cortez St	176

•

In [7]:

data_df.dtypes

Out[7]:

```
ride_id
                        object
                        object
rideable_type
started_at
                        object
ended_at
                        object
start_station_name
                        object
start_station_id
                        object
end_station_name
                        object
end_station_id
                        object
start_lat
                       float64
start_lng
                       float64
end lat
                       float64
end_lng
                       float64
member_casual
                        object
dtype: object
```

In [8]:

```
data_df["started_at"] = pd.to_datetime(data_df["started_at"])
data_df["ended_at"] = pd.to_datetime(data_df["ended_at"])
```

```
In [9]:
```

```
data_df.dtypes
```

Out[9]:

```
ride_id
                               object
rideable_type
                               object
started_at
                       datetime64[ns]
ended at
                       datetime64[ns]
start_station_name
                               object
start_station_id
                               object
end_station_name
                               object
end_station_id
                               object
start_lat
                              float64
start_lng
                              float64
                              float64
end lat
end_lng
                              float64
member_casual
                               object
dtype: object
```

In [10]:

```
# calculating the ride length
data_df["ride_length"]= data_df["ended_at"] - data_df["started_at"]
data_df["ride_length"] # viewing the newly added column
```

Out[10]:

```
0
         00:10:25
1
         00:04:04
2
         00:01:20
3
         00:11:42
4
         00:00:43
247535
         00:19:13
247536
         00:07:01
247537
         00:08:17
247538
         00:14:13
247539
         00:03:37
Name: ride length, Length: 5595063, dtype: timedelta64[ns]
```

We can extract start date and start time from the same column. as we would like to know which days are having what number of trips per user type.

we would split the single column into two by using str.split function the function takes the character that you want to find and split e.g. it will be a space between the date and time in the field, n=1 means consider the first space found. For all this we first need to convert the format of the column to string inorder for the str.split function to work.

In [11]:

```
data_df[['start_date','start_time']] = data_df['started_at'].astype(str).str.split(' ',
n=1,expand=True)
# n =1 split at the first space
```

In [12]:

```
data_df.head()
```

Out[12]:

	ride_id	rideable_type	started_at	ended_at	start_station_name	start_station_
0	E19E6F1B8D4C42ED	electric_bike	2021-01- 23 16:14:19	2021-01- 23 16:24:44	California Ave & Cortez St	176
1	DC88F20C2C55F27F	electric_bike	2021-01- 27 18:43:08	2021-01- 27 18:47:12	California Ave & Cortez St	176
2	EC45C94683FE3F27	electric_bike	2021-01- 21 22:35:54	2021-01- 21 22:37:14	California Ave & Cortez St	176
3	4FA453A75AE377DB	electric_bike	2021-01- 07 13:31:13	2021-01- 07 13:42:55	California Ave & Cortez St	176
4	BE5E8EB4E7263A0B	electric_bike	2021-01- 23 02:24:02	2021-01- 23 02:24:45	California Ave & Cortez St	176
4						•

In [15]:

```
data_df["start_time"] = pd.to_datetime(data_df["start_time"])
data_df["start_date"] = pd.to_datetime(data_df["start_date"])
```

In [16]:

```
data_df["week day"]=data_df["start_date"].apply(lambda x:x.weekday())
# takes a column and applies weekday function on it through lamba which is an anonymous
function
data_df["week day"].unique() # show only unique values
```

Out[16]:

```
array([5, 2, 3, 0, 6, 4, 1], dtype=int64)
```

In [17]:

```
\label{lem:day_dict={0:"Sunday", 1:"Monday", 2:"Tuesday", 3:"Wednesday", 4: "Thursday", 5: "Friday", 6: "saturday"}\\
```

In [18]:

```
data_df["weekday_name"]= data_df['week day'].apply(lambda y:day_dict[y])
```

In [19]:

```
data_df['year'] = pd.DatetimeIndex(data_df['start_date']).year
data_df['month']= pd.DatetimeIndex(data_df['start_date']).month
data_df.head()
```

Out[19]:

start_station_	start_station_name	ended_at	started_at	rideable_type	ride_id	
176	California Ave & Cortez St	2021-01- 23 16:24:44	2021-01- 23 16:14:19	electric_bike	E19E6F1B8D4C42ED	0
176	California Ave & Cortez St	2021-01- 27 18:47:12	2021-01- 27 18:43:08	electric_bike	DC88F20C2C55F27F	1
176	California Ave & Cortez St	2021-01- 21 22:37:14	2021-01- 21 22:35:54	electric_bike	EC45C94683FE3F27	2
176	California Ave & Cortez St	2021-01- 07 13:42:55	2021-01- 07 13:31:13	electric_bike	4FA453A75AE377DB	3
176	California Ave & Cortez St	2021-01- 23 02:24:45	2021-01- 23 02:24:02	electric_bike	BE5E8EB4E7263A0B	4
>						4

In [20]:

```
#sort the dataFrame by start date in ascending order
data_df.sort_values(by=['start_date'],inplace= True, ascending=True )
```

```
In [21]:
```

```
data_df.isnull().sum()
Out[21]:
```

ride_id 0 rideable_type 0 started_at 0 ended at 0 start_station_name 690809 690806 start_station_id end_station_name 739170 end_station_id 739170 start_lat 0 start_lng 0 end lat 4771 end_lng 4771 member_casual 0 ride_length 0 start_date 0 start_time 0 week day 0 0 weekday_name 0 year 0 month dtype: int64

In [22]:

```
data_df.duplicated().any()
```

Out[22]:

False

lets find out the mean ride length of both groups of users such as member and casual

In [23]:

```
data_member = data_df[data_df["member_casual"]=="member"]
data_member_ride_len_mean = data_member["ride_length"].mean()
data_member_ride_len_mean
```

Out[23]:

Timedelta('0 days 00:13:37.970452')

In [24]:

```
data_casual = data_df[data_df["member_casual"]=="casual"]
data_casual_ride_len_mean = data_casual["ride_length"].mean()
data_casual_ride_len_mean
```

Out[24]:

Timedelta('0 days 00:32:00.056830')

```
In [25]:
data_member_ride_len_max = data_member["ride_length"].max()
data_member_ride_len_max
Out[25]:
Timedelta('1 days 01:59:56')
In [26]:
data_casual_ride_len_max = data_casual["ride_length"].max()
data_casual_ride_len_max
Out[26]:
Timedelta('38 days 20:24:09')
In [27]:
# calculate the mode of week day for memember which means to see what day do they usual
Ly ride on
data_member_ride_day_mode = data_member["week day"].mode()
data_member_ride_day_mode
# 2 is Tuesday
Out[27]:
     2
dtype: int64
In [28]:
data_member_ride_day_mode = data_casual["week day"].mode()
data_member_ride_day_mode
# 5 is friday
Out[28]:
     5
dtype: int64
In [29]:
mem_rides_pday= data_df[data_df["member_casual"]=="member"].groupby('week day')['ride_i
d'].count()
mem_rides_pday
Out[29]:
week day
0
     416212
1
     465513
2
     477192
3
     451524
4
     446428
5
     433047
6
     376142
Name: ride_id, dtype: int64
```

In [30]:

```
cas_rides_pday = data_df[data_df["member_casual"]=="casual"].groupby('week day')['ride_
id'].count()
cas_rides_pday
```

Out[30]:

Name: ride_id, dtype: int64

In [32]:

6

data_df.head()

481143

Out[32]:

start_sta	start_station_name	ended_at	started_at	rideable_type	ride_id	
KA1503	Kingsbury St & Kinzie St	2021-01- 01 15:44:46	2021-01- 01 15:35:15	electric_bike	BC3CB970F08D36B6	65943
	Columbus Dr & Randolph St	2021-01- 01 14:32:16	2021-01- 01 14:26:46	classic_bike	5E125D8F1F7B1813	14763
TA1305	Fairbanks Ct & Grand Ave	2021-01- 01 20:39:53	2021-01- 01 20:02:09	classic_bike	15ACCC355D076101	58467
	Federal St & Polk St	2021-01- 01 13:17:09	2021-01- 01 13:12:14	classic_bike	90EBA06FDFD44CFE	12687
	Paulina St & Howard St	2021-01- 01 16:52:02	2021-01- 01 16:47:56	classic_bike	CBF551444E1D77B8	22135
•						4

In [36]:

```
plt.figure(figsize=(8,6))
plt.plot(mem_rides_pday) # gets average ride Length in minutes
plt.plot(cas_rides_pday)
plt.title("Number of rides per day- Member vs casual")
plt.legend(["members","casual"])
labels=["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]
plt.xticks(mem_rides_pday.index,labels)
plt.show()
```


It confirms from the above plot what we already found out that the member users tend to use rides on the week days where as the casual members are riding more on the weekends.

In [38]:

```
member_type =data_df["member_casual"].value_counts()
member_type
```

Out[38]:

member 3066058 casual 2529005

Name: member_casual, dtype: int64

In [39]:

```
plt.title("Number of users- Member and Causal")
plt.bar(member_type.index, member_type.values)
plt.ticklabel_format(style='plain', axis='y')
```


In [40]:

```
# pie chart to see the percentage
plt.figure(figsize=(8,6))
plt.pie(member_type.values, labels =member_type.index,autopct='%1.1f%%')
plt.title("Percentage of each user type")
plt.legend(member_type.index)
plt.show()
```

Percentage of each user type

In [41]:

```
#To check monthly trends in the users
monthly_users = data_df.groupby("month") ['member_casual'].value_counts()
monthly_users
```

Out[41]:

month	member_casual		
1	member	78	717
	casual	183	117
2	member	394	491
	casual	10:	131
3	member	1444	463
	casual	840	233
4	member	200	529
	casual	136	501
5	member	274	717
	casual	2569	916
6	casual	370	581
	member	3589	914
7	casual	4420	ð56
	member	380	354
8	casual	4120	571
	member	391	581
9	member	392	257
	casual	3638	890
10	member	3739	
	casual	257	242
11	member	2530	249
	casual	1069	929
12	member	1778	802
	casual		738
Name:	member_casual,	dtype:	int64

In [43]:

```
plt.figure(figsize=(8,6))
sns.countplot(x="member_casual",hue="month", data=data_df)
```

Out[43]:

<matplotlib.axes._subplots.AxesSubplot at 0x24605db3248>

In [44]:

```
plt.figure(figsize=(8,6))
sns.countplot(x="member_casual", hue="rideable_type", data=data_df)
plt.ticklabel_format(style='plain', axis='y') # for removing #scientific notation
```


In []:		
In []:		
In []:		
In []:		