$$d_{1} = d_{0} - \left(v - \frac{v}{2}\right) \frac{l}{v} = d_{0} - \frac{l}{2}.$$
 (2)

Из (1)-(2) находим

$$S = l$$
.

Следует заметить, что мы считаем автомобили материальными точками, что не совсем корректно. Например, если $\frac{S}{2}$ больше длины автомобиля, и просвета между ними нет, таким образом автомобили столкнуться (Соблюдай дистанцию!). Приведенное решение предполагает, что длина автомобиля много меньше l.

10-2. Обозначим через h высоту поверхности плота с человеком над водой. Когда человек находиться в центре плота условие равновесия плота выглядит следующим образом:

$$d^{2}(d-h)\rho_{0}g = mg + a^{2}d\rho g;$$

 $h = 0.01 \text{ m};$
 $\Delta V = a^{2}h = 0.04 \text{ m}^{3}.$

Если человек сместится на x параллельно ребру плота, и один край плота коснулся воды, таким образом другой поднялся на 2h. При равновесии сумма моментов всех сил относительно

центра тяжести плота должна быть равна нулю. Это, кроме веса человека $m\vec{g}$, силы F_l и F_2 , точки приложения которых расположены на расстоянии трети высоты треугольников (точки A_l и A_2 соответственно). Эти силы равны

$$F_1 = \rho_0 \Delta V g$$
, $F_2 = \rho \Delta V g$.

Правило моментов дает

$$F_{1} \frac{a \cos \alpha}{6} + F_{2} \frac{a \cos \alpha}{6} = mgx \cos \alpha.$$

Откуда

$$x = \frac{(\rho + \rho_0)\Delta Va}{3m} = 0.6 \text{ m}$$

10-3. Запишем первое начало термодинамики