Deep Reinforcement Learning and its application to games

A/Prof Richard Yi Da Xu, Kelvin Deng Chen

https://github.com/roboticcam/machine-learning-notes

University of Technology Sydney (UTS)

August 9, 2018

Deep Reinforcement Learning

- A video from Google DeepMind's Deep Q-learning playing Atari Breakout: https://www.youtube.com/watch?v=TmPfTpjtdgg
- Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
- code is also available https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

N.B.

Apologies for those have seen it before

significance of this demo shows it's possible to use Neural Network to learn how to play a game, based on:

- sequences of screen images
- scores the game receives
- poal is to learn the best policy for actions to take

Surely you don't need a menu to learn how to play Atari. i.e., it's model-free!

Reinforcement Learning (RL)

Forget about the Neural network for a second, how is Reinforcement Learning (RL) different to conventional supervised learning?

- No data label like supervised learning, i.e., no "best-action-for-that-screen" label
- only reward signal
- feedback in delayed, not instantaneous
- data are not i.i.d., (consecutive frames are similar)
- agent's actions affects the subsequent data it receives.

Let's get started with some RL background.

Reinforcement Learning (RL)

another way to look at it:

- RL uses training information that evaluates the actions taken rather than instructs by giving correct actions.
- ▶ a need for active exploration: explicit trial-and-error search for good behavior.
- purely evaluative feedback indicates how good the action taken is, but not whether it is the best or the worst action possible.
- purely instructive feedback indicates correct action to take, independently of the action actually taken. supervised learning

Application of RLs

- marketing customer's attributes s, marketing actions a, customer signs up r
- drone control all avaiable sensor data a, controls s, not crashing r
- chatbot conversations to-date s, things that a robot will say a, customer satisfaction r

Markov Process

- one may start from python and generate sequences with transition probabilities to end up in DLS star. examples:
 - Python, Python, Python, TensorFlow, Keras, DLS star
 - Python, Python, Python, TensorFlow, TensorFlow, Keras, DRL, DRL RL, DLS star
 - Python, Python, TensorFlow, TensorFlow, Keras, DRL, DLS star
 - ▶ The question is: how we may able to measure "how good" each path? ...

Markov Reward Process

Let's add some rewards to being at each of the state:

What we care is the **total return** G_t : sum of **discounted** reward from time-step t

$$\textit{G}_{t} = \textit{R}_{t+1} + \gamma \textit{R}_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^{k} \textit{R}_{t+k+1} \qquad \text{where } \gamma \in [0,1]$$

note that G_t is a random variable exercise what happens when $\gamma = 0$ and $\gamma = 1$

Markov Random Process: Bellman Equation (new)

state value function V(s) of MRP is expected total return starting from state s

$$\begin{split} V(s) &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots, r_{t+1}, r_{t+2}, \dots} [G_t | s_t = s] \\ &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots, r_{t+1}, r_{t+2}, \dots} \left[R_{t+1} + \gamma \underbrace{\left(R_{t+2} + \gamma R_{t+3} + \dots \right)}_{G_{t+1}} \right] \end{split}$$

- ▶ $\mathbb{E}[.]$ needs the integrate over $(s_1, s_2, \dots \in \mathcal{S}, r_1, r_2, \dots \in \mathcal{R})$:
- $ightharpoonup s_1, s_2, \ldots$ and r_1, r_2, \ldots are generated in the following fashion:

$$s_0 \rightarrow (s_1, r_1)$$
 $s_1 \rightarrow (s_2, r_2) \dots$

▶ for clarity, we let $s_t \rightarrow s_0$ and $s_{t+k} \rightarrow s_k$:

Markov Random Process: Bellman Equation (new)

ightharpoonup suppose we have a universal state value function V(.):

$$V(.) = \sum_{s_0} \Pr(s_0) \sum_{s_1, r_1} \Pr(s_1, r_1 | s_0) \sum_{s_2, r_2} \Pr(s_2, r_2 | s_1) \sum_{s_3, r_3} \dots \left[r_1 + \gamma (r_2 + \gamma r_3 + \dots) \right]$$

however, we usually specify value of $v_{\pi}(s_0)$ to evaluate:

$$\begin{split} V(s_0) &= \sum_{s_1, r_1} \Pr(s_1, r_1 | s_0) \bigg(\underbrace{r_1 + \gamma}_{s_2, r_2} \underbrace{\sum_{s_2, r_2} \Pr(s_2, r_2 | s_1) \sum_{s_3, r_3} \dots \big[r_2 + \gamma (r_3 + \gamma r_4 + \dots \big]}_{V(s_1) \stackrel{\triangle}{=} \mathbb{E}[G_{t+1} | s_1]} \bigg) \\ &= \underbrace{\mathbb{E}_{s_1, r_1} \big[r_1 + \gamma V(s_1) | s_0 \big]}_{V(s_0) \stackrel{\triangle}{=} \mathbb{E}[G_{t} | s_0]} \\ &= \mathbb{E}_{s_1} \big[R_1 + \gamma V(s_1) | s_0 \big] \end{aligned}$$

$$= \mathbb{E}_{s_1} \big[R_1 + \gamma V(s_1) | s_0 \big] \text{ if } R_1 \text{ is deterministic}$$

Markov Random Process: Bellman Equation (new)

$$V(\mathbf{s}_0) = \mathbb{E}_{\mathbf{s}_1} \left[R_1 + \gamma V(\mathbf{s}_1) | \mathbf{s}_0 \right]$$

- Bellman equations: value of the current state, v(s) breaks up into (1) immediate and (2) future rewards.
- ightharpoonup state value function V(s) is written in a consecutive time steps
- difficult to estimate: because V(s) also depends on various other V(s') which occur at different times

Bellman Equation in matrix form

to simplify, making R_t deterministic

$$V(s_0) = \mathbb{E}_{s_1} \left[R_1 + \gamma V(s_1) | s_0 \right]$$

▶ say $s \in \{1, ..., n\}$:

$$\underbrace{V(s_0 = 1)}_{v(1)} = \mathbb{E}_{s_1} \left[\underbrace{R_1(s_0 = 1)}_{R_1} + \gamma V(s_1) | s_0 = 1 \right] \\
V(s_0 = 2) = \mathbb{E}_{s_1} \left[R_1(s_0 = 2) + \gamma V(s_1) | s_0 = 2 \right]$$

take the first line,

$$\begin{aligned} v(1) &= \mathbb{E}_{s_1} \left[R_1 + \gamma V(s_1) | s_0 = 1 \right] \\ &= R_1 + \gamma \mathbb{E} \left[V(s_1) | s_0 = 1 \right] \\ &= R_1 + \gamma \left(\sum_{s_1 = 1}^n v(s_1) \Pr(1 \to s_1) \right) \\ &= R_1 + \gamma \left(\sum_{j = 1}^n v(j) \Pr(1 \to j) \right) \\ &\dots \end{aligned}$$

$$\implies v(n) = R_n + \gamma \left(\sum_{j=1}^n v(j) \Pr(k \to j) \right)$$

Bellman Equation in matrix form (2)

$$v(k) = R_k + \gamma \left(\sum_{j=1}^n v(j) \operatorname{Pr}(k \to j) \right)$$

$$= R_k + \gamma \mathcal{P}_{k,:}^{\top} \mathbf{v}$$

$$\Rightarrow \mathbf{v} = \mathbf{R} + \gamma \mathcal{P} \mathbf{v}$$

$$\Rightarrow \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \vdots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{1,1} & \dots & \mathcal{P}_{1,n} \\ \vdots & & \vdots \\ \mathcal{P}_{n,1} & \dots & \mathcal{P}_{n,n} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

the solution to MRP is straight forward:

$$\mathbf{v} = \mathbf{R} + \gamma \mathcal{P} \mathbf{v}$$
 $(I - \gamma \mathcal{P}) \mathbf{v} = R$
 $\mathbf{v} = (I - \gamma \mathcal{P})^{-1} R$

Markov Decision Process (MDP)

- now agent has actions
- **concept** of **policy** π : take a state s_t as input and decides and action a_t

$$\pi(a|s) = \Pr(A_t = a|S_t = s)$$

- a policy is time-invariant (or stationary) and stochastic
- next state for an agent, now also depends on its action taken:

$$\mathcal{P}_{s_0 \to s_1}^{a_0} = \Pr(S_1 = s_1 | S_0 = s_0, A_0 = a)$$

- ightharpoonup multiple transition matrix $\mathcal P$ each depends on the a taken
- once fixed π , MDP becomes MRP with transition probability $\mathcal{P}^{\pi}_{s \to s'}$:

$$\mathcal{P}^\pi_{s_0 o s_1} = \sum_{a_0\in\mathcal{A}} \pi(a_0|s_0) \mathcal{P}^{a_0}_{s_0 o s_1}$$

Markov Decision Process: Bellman Equation (new)

• given a policy π , state value function v(s) is expected total return starting from state s

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|s_{t} = s] \\ &= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \underbrace{\left(R_{t+2} + \gamma R_{t+3} + \dots\right)}_{G_{t+1}}\right] \end{aligned}$$

- ▶ $\mathbb{E}_{\pi}[.]$ needs the integrate over $(a_0, a_1, \dots \in \mathcal{A}, s_0, s_1, \dots \in \mathcal{S}, r_1, r_2, \dots \in \mathcal{R})$:
- ▶ for clarity, we let $s_t \rightarrow s_0$ and $s_{t+k} \rightarrow s_k$:
- $ightharpoonup s_0 o a_0, \qquad (s_0, a_0) o (s_1, r_1), \qquad s_1 o a_1, \qquad (s_1, a_1) o (s_2, r_2), \dots$

Markov Decision Process: Bellman Equation (new)

> suppose we have a **universal state value function** $V_{\pi}(.)$, i.e., no matter what the current state and action is:

$$v_{\pi}(.)$$

$$= \sum_{s_0} \Pr(s_0) \sum_{a_0} \pi(a_0|s) \sum_{s_1, r_1} \Pr(s_1, r_1|s_0, a_0) \sum_{a_1} \pi(a_1|s_1) \sum_{s_2, r_2} \Pr(s_2, r_2|s_1, a_1) \sum_{a_2} \cdots \sum_{s_3, r_3} \dots$$

$$[r_1 + \gamma(r_2 + \gamma r_3 + \dots)]$$

however, we do know the value $v_{\pi}(s_0)$:

$$\begin{split} V_{\pi}\left(s_{0}\right) &= \sum_{a_{0}} \pi(a_{0}|s) \sum_{s_{1}, r_{1}} \Pr(s_{1}, r_{1}|s_{0}, a_{0}) \bigg(\underbrace{r_{1} + \gamma}_{t_{1} + \gamma} \underbrace{\sum_{a_{1}} \pi(a_{1}|s_{1}) \sum_{s_{2}, r_{2}} \Pr(s_{2}, r_{2}|s_{1}, a_{1}) \sum_{a_{2}} \cdots \sum_{s_{3}, r_{3}} \dots \left[r_{2} + \gamma(r_{3} + \gamma r_{4} + \dots) \right]} \bigg) \\ & \underbrace{V_{\pi}(s_{1})^{\Delta}_{\pi} \mathbb{E}_{\pi}[G_{t+1}|s_{1}]}_{V_{\pi}\left(s_{0}\right)^{\Delta} \mathbb{E}_{\pi}\left[G_{t+1}|s_{0}\right]} \\ &= \sum_{a_{1}} \pi(a_{0}|s) \sum_{s_{2}, r_{3}} \Pr(s_{1}, r_{1}|s_{0}, a_{0}) (r_{1} + \gamma \mathbb{E}_{\pi}\left[G_{t+1}|s_{1}\right]) \end{split}$$

Bellman equation extends to Q(s, a)

summarise slides from before:

$$\begin{split} V_{\pi}(s_0) &= \sum_{a_0} \pi(a_0|s_0) \sum_{s_1,r_1} \text{Pr}(s_1,r_1|s_0,a_0) \big(r_1 + \gamma v_{\pi}(s_1)\big) \\ &= \sum_{a_0} \pi(a_0|s_0) \sum_{s_1,r_1} \text{Pr}(s_1,r_1|s_0,a_0) \big(r_1 + \gamma \mathbb{E}_{\pi}[G_{t+1}|s_1]\big) \\ &= \sum_{a_0} \pi(a_0|s_0) \mathbb{E}_{(s_1,r_1) \sim} \left[r_1 + \gamma v_{\pi}(s_1)\right] \end{split}$$

insert a_0 to obtain Q function:

$$\begin{split} Q_{\pi}(\boldsymbol{s}_{0}, \boldsymbol{a}_{0}) &= \sum_{s_{1}, r_{1}} \mathsf{Pr}(\boldsymbol{s}_{1}, r_{1} | \boldsymbol{s}_{0}, \boldsymbol{a}_{0}) \big(r_{1} + \gamma \boldsymbol{v}_{\pi}(\boldsymbol{s}_{1}) \big) \\ &= \sum_{s_{1}, r_{1}} \mathsf{Pr}(\boldsymbol{s}_{1}, r_{1} | \boldsymbol{s}_{0}, \boldsymbol{a}_{0}) \big(r_{1} + \gamma \mathbb{E}_{\pi}[G_{t+1} | \boldsymbol{s}_{1}] \big) \\ &= \mathbb{E}_{(\boldsymbol{s}_{1}, r_{1}) \sim} \left[r_{1} + \gamma \boldsymbol{v}_{\pi}(\boldsymbol{s}_{1}) \right] \end{split}$$

since any policy π works, then:

$$Q_{\pi_*}(s_0, a_0) = \mathbb{E}_{(s_1, r_1) \sim} [r_1 + \gamma v_{\pi_*}(s_1)]$$

Bellman optimality

• we know best $V_*(s)$ must be the best action from an optimal (state, action) pair: $Q_{\pi^*}(s_0, a_0)$:

$$V_*(s_0) = \max_{a_0} Q_{\pi*}(s_0, a_0)$$

and from before:

$$\begin{split} V_*(s_0) &= \max_{a_0} Q_{\pi_*}(s_0, a_0) \\ &= \max_{a_0} \mathbb{E}_{(s_1, r_1) \sim} \left[r_1 + \gamma v_{\pi_*}(s_1) \right] \quad \text{from previous page} \\ &= \sum_{s_1, r_1} \Pr(s_1, r_1 | s_0, a_0) \big(r_1 + \gamma v_{\pi_*}(s_1) \big) \\ &= \sum_{s_1, r_1} \Pr(s_1, r_1 | s_0, a_0) \big(r_1 + \gamma \max_{a_1} Q_{\pi_*}(s_1, a_1) \big) \\ &= \max_{a_0} \mathbb{E}_{(s_1, r_1) \sim} \left[r_1 + \gamma \max_{a_1} Q_{\pi_*}(s_1, a_1) \right] \\ &= \max_{a_0} \mathbb{E}_{(s_1, r_1) \sim} \left[r_1 + \gamma \max_{a_1} Q_{\pi_*}(s_1, a_1) \middle| s_0 \right] \text{removed } |s_0 \text{ for clarity previously} \\ \Longrightarrow Q_*(s_0) &= \mathbb{E}_{(s_1, r_1) \sim} \left[r_1 + \gamma \max_{a_1} Q_{\pi_*}(s_1, a_1) \middle| s_0 \right] \end{split}$$

▶ also $r_1 \triangleq r_1(s_0, \pi(s_0), s_1)$

Solve Bellman's equation using Temporal Difference

$$V_{\pi}(s_0) = \sum_{a_0} \pi(a_0|s_0) \sum_{s_1, r_1} \Pr(s_1, r_1|s_0, a_0) \big(r_1 + \gamma v_{\pi}(s_1)\big)$$

drop |s again for clarity:

$$V^{\pi}(s) = \mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right]$$

$$\implies V^{\pi}(s) + \eta V^{\pi}(s) = V^{\pi}(s) + \eta \left(\mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right]\right)$$

$$\implies V^{\pi}(s) = V^{\pi}(s) + \eta \left(\mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right] - V^{\pi}(s)\right)$$

instead of compute this expectation, in **each iteration** t, we sample a new state $\tilde{s}' \sim \Pr(s'|\dots)$

$$V_{t+1}^{\pi}(s) = V_t^{\pi}(s) + \eta \left(r(s, \pi(s), \tilde{s'}) + \gamma V_t^{\pi}(\tilde{s'}) - V_t^{\pi}(s) \right)$$

note that the last equation is called temporal difference

Bellman's equation: Three ways of solving it

$$\begin{split} V_\pi(s_0) &= \mathbb{E}_\pi \left[G_t | s_0 \right] \\ &- \text{could be approximated by Monte-carlo, i.e., sample } s_1, s_2, \dots \text{ and compute } G_t \\ &= \mathbb{E}_\pi \left[r(s_0, \pi(s_0), s_1) + \gamma V_\pi(s_1) \right] \\ &- \text{could be approximated by Temporal Difference} \\ &= \sum_{a_0} \pi(a_0 | s_0) \sum_{s_1} \mathcal{P}_{s_0 \to s_1}^{a_0} \left[r(s_0, \pi(s_0), s_1) + \gamma V_\pi(s_1) \right] \\ &- \text{could be solved exactly by Dynamic programming} \end{split}$$

Policy Iteration

- ightharpoonup choose an arbitrary policy π'
- while before some stopping criteria:

 $\pi = \pi$ compute the value function $V_{\pi}(1), \ldots V_{\pi}(n)$ using policy π :

$$V_{\pi}(s_0) = R(s, \pi(s_0)) + \gamma \sum_{s_1 \in \mathbb{S}} \mathcal{P}_{s_0 \to s_1}^{a_0} V_{\pi}(s_1)$$

improve the policy at each state:

$$\pi'(s_0) = \operatorname*{arg\,max}_{a_0} \left[R(s,a_0) + \gamma \sum_{s_1 \in \mathbb{S}} \mathcal{P}^{a_0}_{s_0 \to s_1} \, V_\pi(s_1) \right]$$

Value Iteration

$$\begin{aligned} \textbf{loop} \forall s \in \mathbb{S} \\ \textbf{loop} \forall a \in \mathcal{A} \\ Q(s_0, a_0) &= R(s, a_0) + \gamma \sum_{s_1 \in \mathbb{S}} \mathcal{P}_{s_0 \to s_1}^{a_0} V_{\pi}(s_1) \\ V(s_0) &= \max_{a_0} Q(s_0, a_0) \end{aligned}$$

Action-value (Q) function

- ▶ action-valued function $Q^{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a, \pi]$:
- \blacktriangleright expected total return starting from state s, taking action a, and then follow policy π
- Stochastic policy π:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s, a)]$$

deterministic policy:

$$v^*(s) = \max_{a'} Q^*(s, a')$$

from before:

$$\begin{split} V^*(s) &= \max_{a} \left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \underbrace{V^*(s')}_{a'} \middle| s \right] \right) \\ &= \max_{a} \underbrace{\left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \left(\max_{a'} Q^*(s', a') \right) \middle| s \right] \right)}_{Q^*(s', a') \text{ by definition}} \end{split}$$

therefore:

$$Q^*(s, a) = \mathbb{E}_{s'}\left[r(s, a, s') + \gamma\left(\max_{a'} Q^*(s', a')\right) \middle| s, a\right]\right)$$

Action-value (Q) function

$$Q^*(s, a) = \mathbb{E}_{s'}\left[r(s, a, s') + \gamma \big(\max_{a'} Q^*(s', a')\big)\big|s, a\right]\right)$$

drop |s, a, let's solve this by temporal difference:

$$Q^{\pi}(s, a) = \mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma\left(\max_{a'} Q^{\pi}(s', a')\right)\right]$$

$$\implies Q^{\pi}(s, a) + \eta Q^{\pi}(s, a) = Q^{\pi}(s, a) + \eta\left(\mathbb{E}_{s'}\left[r(s, a, s') + \gamma\left(\max_{a'} Q^{\pi}(s', a')\right)\right]\right)$$

$$\implies Q^{\pi}(s, a) = Q^{\pi}(s, a) + \eta\left(\mathbb{E}_{s'}\left[r(s, a, s') + \gamma\left(\max_{a'} Q^{\pi}(s', a')\right)\right] - Q^{\pi}(s, a)\right)$$

instead of compute this expectation, in **each iteration** t, we sample a new state $(\tilde{s'}, \tilde{a}) \sim \Pr(s', a| \dots)$.

Q-Learning: recursively:

$$Q(s, \tilde{a}) = Q(s, \tilde{a}) + \eta \left(\underbrace{r(s, \tilde{a}, \tilde{s'}) + \gamma \left(\max_{a'} Q(\tilde{s'}, a')\right)}_{y} - Q(s, \tilde{a})\right)$$

let $\eta = 1$:

$$Q(s, \tilde{a}) = r(s, \tilde{a}, \tilde{s}') + \gamma \left(\max_{a'} Q(\tilde{s}', a') \right)$$

Q-Learning algorithm

```
Require: choice of \gamma Rewards matrix R

1: Q \leftarrow \mathbf{0}

2: for each episode do

3: randomise initiate state s_0

4: while goal state not reached do

5: select (a, s') \sim \Pr(a, s'|.)

6: compute \max_{a'} Q(s', a')

7: Q(s, a) \leftarrow r(s, a, s') + \gamma \left(\max_{a'} Q(s', a')\right)

8: s_l \leftarrow s_{l+1}

9: end while

10: end for
```

Q and V functions

- if $a = \arg\max_a Q^{\pi}(s, a)$, then by setting $\pi'(a|s) = 1$, this policy is at least as good as π regardless of what π is
- if $Q^{\pi}(s, a) > V^{\pi}(s)$, then a is better than average since,

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[Q^{\pi}(s,a)]$$

• obviously, we should increase $\pi(a|s)$ if $Q^{\pi}(s,a) > V^{\pi}(s)$

Model based RL

- 1: while many iterations do
- fit a model/estimate return: learn $p(s_{t+1}|s_t, a_t)$ imporve the policy $p(s_{t+1}|s_t, a_t)$
- run policy to generate samples
- 5: end while

In terms of **improving the policy**:

- use model to learn a value function
- dynamic programming

Value function based RL

- 1: **while** many iterations **do** 2: fit a model/estimate return: fit V(s) or Q(s,a)3: imporve the policy: set $\pi(s) = \arg\max_a Q(s,a)$ 4: run policy to generate samples 5: **end while**
- In terms of improving the policy:
 - use model to learn a value function
 - dynamic programming

Direct policy gradient

- 1: **while** many iterations **do** 2: fit a model/estimate return: **evaluate** return $R_t = \sum_t r(s_t, a_t)$ 3: imporve the policy: $\operatorname{set} \theta \leftarrow \theta + \alpha \nabla_{\theta} \mathbb{E} \left[\sum_t r(s_t, a_t) \right]$ 4: run policy to generate samples 5: **end while**
- In terms of improving the policy:
 - use model to learn a value function
 - dynamic programming

Actor-Critic: value function + policy gradients

- 1: while many iterations do
- fit a model/estimate return: fit V(s) or Q(s, a) evaluate returns using V or Q
- 3: imporve the policy: set $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathbb{E} \left[\sum_{t} r(s_{t}, a_{t}) \right]$
- 4: run policy to generate samples
- 5: end while

In terms of improving the policy:

- use model to learn a value function
- dynamic programming

On or Off Policy

- on-policy
- off-policy

Q-Learning example

We took the example from the Markov Reward Process example earlier:

- there is small immediate rewards by going from one module to another
- you get a final large reward by becoming DLS star
- let $\gamma = 0.5$
- \triangleright in this special example, a = s', i.e., the action is to turn into the next state (module of studies).
- assume equal probabilities for all edges.

Q-Learning example: episode 1

before

after

- s ~ Pr(s|.) = 1, i.e, Keras
- at s=1, it has **allowable actions**: go to state $\{3,4,5\}$, i.e., $a\in\{3,4,5\}$
- $(a, s') \sim Pr(a, s'|.) = (5, 5)$
- ightharpoonup at s' = 5, it has allowable actions: $a' \in \{1, 5\}$:

$$Q(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a') \right)$$

$$= R(1, s' = 5) + 0.5 \max[Q(s' = 5, 1), Q(s' = 5, 5)]$$

$$= 100 + 0.5 \times 0 = 100$$

▶ set $s \leftarrow s' \implies s = 5$, i.e., goal state, end

$S\downarrow,A\rightarrow$	RL(0)	Ke(1)	Py(2)	TF(3)	DRL(4)	DLS*(5)
RL(0)	(0	0	0	0	0	0
Ke(1)	0	0	0	0	0	100
=Py(2)	0	0	0	0	0	0
TF(3)	0	0	0	0	0	0
DRL(4)	0	0	0	0	0	0
DLS*(5)	(0	0	0	0	0	0 /

Q-Learning example: episode 2, Iteration 1

- $s \sim \Pr(s|.) = 3$
- at s=3, it has allowable actions: go to state $\{1,2\}$, i.e., $a\in\{1,2\}$
- $(a, s') \sim \Pr(a, s' | .) = (1, 1)$
- ▶ at s' = 1, it has allowable actions: $a' \in \{3, 4, 5\}$:

$$O(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a')\right)$$

= $R(3, 1) + 0.5 \max[Q(1, 3), Q(1, 4), Q(1, 5)]$
= $1 + 0.5 \times 100 = 51$

ightharpoonup set $s \leftarrow s' \implies s = 1$, i.e., **not** a goal state, keep on going

before

after

Q-Learning example: episode 2, Iteration 2

before

	S ↓, A →	RL(0)	Ke(1)	Py(2)	TF(3)	DRL(4)	DLS*(5)
	RL(0)	(0	0	0	0	0	0 \
	Ke(1)	0	0	0	0	0	100
Q =	Py(2)	0	0	0	0	0	0
	TF(3)	0	51	0	0	0	0
	DRL(4)	0	0	0	0	0	0
	DLS*(5)	(0	0	0	0	0	0 /

after

- s = 1 from previous iteration
- at s=1, it has allowable actions: go to state $\{3,4,5\}$, i.e., $a\in\{3,4,5\}$
- $ightharpoonup (a, s') \sim \Pr(a, s'|.) = (5, 5)$
- ▶ at s' = 5, it has allowable actions: $a' \in \{1, 5\}$:

$$Q(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a')\right)$$

$$Q(1, 5) = R(1, 5) + 0.5 \max[Q(5, 1), Q(5, 5)]$$

$$= 100 + 0.5 \times 0 = 100$$

▶ set $s \leftarrow s' \implies s = 5$, i.e., goal state, end

the state-action table gets updated until convergence.

On the setting of Atari

- the states are far too many!
- ▶ need a **function approximator** to estimate the action-value function, $Q(s, a|\theta) \approx Q^*(s, a)$
- guess what? Deep Neural Network helps!

Represent Q(s, a) using neural networks

➤ The figure below represents a row of the Q function table earlier:

 $\mathsf{Conv}\: [\mathsf{16}] \to \mathsf{ReLU} \to \mathsf{Conv}\: [\mathsf{32}] \to \mathsf{ReLU} \to \mathsf{FC}\: [\mathsf{256}] \to \mathsf{ReLU} \to \mathsf{FC}\: [|\mathsf{A}|]$

these are not softmax functions.

abstracted algorithm for Deep Q-Learning

Require: Initialize an empty replay memory **Require:** Initialize the DQN weights θ

1: for each episode do

2: **for** t = 1, ..., T **do**

3: with probability ϵ select \tilde{a} random action

otherwise, select:

$$\tilde{a} = \max_{a} \left(Q^*(s, a | \theta) \right)$$

5: perform \tilde{a} and receive rewards r_t and state s'.

add tuple (s, \tilde{a}, r_t, s') into replay memory

7: Sample a mini-batch of tuples (s_j, a_j, r_j, s'_i) from the replay memory

and perform stochastic gradient descent on the DQN, based on the loss function:

$$\left(\underbrace{r_j + \gamma\big(\max_{a'} Q(s'_j, a'|\theta^-)\big)}_{y_j} - Q(s_j, a_j|\theta)\right)^2$$

9: end for 10: end for

innovation

- freeze parameters of target network $Q(s_i', a'|\theta^-)$ for fixed number of iterations
- while updating the online network $Q(s; a; \theta_i)$ by gradient descent

double Deep Q-Leanring

 \triangleright same values θ both to select and to evaluate an action:

$$y_j = r_j + \gamma \left(\max_{a'} Q(s'_j, a'|\theta) \right)$$
$$= r_j + \gamma \left(Q(s'_j, \arg\max_{a} Q(s'_j, a, \theta)|\theta) \right)$$

- more likely to select overestimated values
- resulting in overoptimistic value estimates
- the solution is:

$$y_j = r_j + \gamma \left(\max_{a'} Q(s'_j, \arg\max_{a} Q(s'_j, a, \theta) | \theta') \right)$$

- ightharpoonup still estimating value of policy according to current values defined by heta
- \blacktriangleright use second set of weights θ' to **fairly** evaluate value of this policy

In summary

- CNN and RNN are two of the building blocks in Deep Learning
- People have been putting them into many existing machine learning frameworks, and have generated many interesting stuff
- but there is plenty still needs to be explored!

Policy gradient

- We train some policy $\pi_{\theta}(a|s_0)$
- ightharpoonup such that $a_0 \sim \pi_{\theta}(a|s_0)$ and $p(s_1|s_0, a_0)$
- but there is plenty still needs to be explored!

Policy gradient

- to loop through:
 - 1. given some policy $\pi_{\theta}(a|s)$ parameterized by θ
 - 2. generate $a \sim \pi_{\theta}(a|s)$, and then $s' \sim p(s'|s,a)$, let $\tau = (s_1, a_1, \dots s_T, a_T)$:

$$p_{\theta}(\tau) \equiv p_{\theta}(s_1, a_1, \dots s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

 $\pi_{\theta}(a|s_0)$

- ▶ such that $a_0 \sim \pi_{\theta}(a|s_0)$ and $p(s_1|s_0, a_0)$
- but there is plenty still needs to be explored!