Содержание

- 1 Предел последовательности точек в n-мерном евклидовом пространстве. Связь между сходимостью последовательности точек и сходимостью последовательностей их координат. Внутренние, предельные, изолированные точки множества. Открытые и замкнутые множества, их свойства. Внутренность, замыкание и граница множества.
- $\mathbf{2}$
- 2 Предел числовой функции нескольких переменных. Предел функции по множеству. Пределы по направлениям. Непрерывность функции нескольких переменных в точке и по множеству. Непрерывность сложной функции. Свойства функций, непрерывных на компакте ограниченность, достижимость (точных) нижней и верхней граней, равномерная непрерывность. Теорема о промежуточных значениях функции, непрерывной в области. 5

1 Предел последовательности точек в n-мерном евклидовом пространстве. Связь между сходимостью последовательности точек и сходимостью последовательностей их координат. Внутренние, предельные, изолированные точки множества. Открытые и замкнутые множества, их свойства. Внутренность, замыкание и граница множества.

Арифметическим n-мерным пространством мы называем декартову степень \mathbb{R}^n ($n \in \mathbb{N}$). Элементы $x = (x_1, \dots, x_n) = (x_i) \in \mathbb{R}^n$ называются точками, а упорядоченный набор чисел (x_i) – координатами точки.

Через \mathbf{V}^n обозначим n-мерное векторное=линейное пространство, элементы которого задаются упорядоченным набором из n чисел-координат, которые записаны столбцом: $\mathbf{a}=(a_1,\ldots,a_n)^T$. Согласно договоренности, координаты точки записываем строкой, а координаты вектора – столбцом. Между \mathbb{R}^n и \mathbf{V}^n имеется каноническая биекция $x=(x_1,\ldots,x_n)\leftrightarrow \mathbf{x}=(x_1,\ldots,x_n)^T$, которая ставит в соответствие точке ее радиус-вектор.

Определение 9.1.3. Точечно-векторные операции:

1) разность точек $y(y_i)$ и $x(x_i)$ – это вектор

$$\overrightarrow{y-x} := (y_i - x_i)^T;$$

2) откладывание вектора от точки – это точка

$$x(x_i) + \mathbf{a}(a_i)^T := y(x_i + a_i);$$

3) расстояние между точками

$$\rho(x,y) := |\overrightarrow{y-x}| = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}. \quad \boxtimes$$
(9.1)

Определение 9.3.1. Последовательностью точек в \mathbb{R}^n называется отображение из множества натуральных чисел \mathbb{N} в пространство \mathbb{R}^n .

Определение 9.3.2. Точка $x^0=(x_1^0,\dots,x_n^0)\in\mathbb{R}^n$ называется пределом последовательности $\{x^k=(x_1^k,\dots,x_n^k)\}$, если $\lim_{k\to\infty}\rho(x^k,x^0)=0$. Последовательность, имеющая предел, называется сходящейся. \boxtimes

ЛЕММА 9.3.1 (критерии сходимости). Последовательность сходится κ точке x^0 только тогда, когда:

- 1) геометрический критерий: в любой окрестности точки x^0 содержатся значения почти всех элементов последовательности, т. е. всех, кроме конечного их количества;
- 2) координатный критерий: $\forall i = 1, \dots, n \hookrightarrow \lim_{k \to \infty} x_i^k = x_i^0$.

Определение 9.2.1 (двух типов окрестностей).

1) Шаровой ε -окрестностью $(\varepsilon>0)$ точки $x^0\in\mathbb{R}^n$ называется подмножество

$$U_{\varepsilon}(x^0) := \{ x \in \mathbb{R}^n : \ \rho(x, x^0) < \varepsilon \}.$$

Шаровую ε -окрестность мы будем называть просто «окрестностью».

2) Проколотой шаровой ε -окрестностью $(\varepsilon>0)$ точки $x^0\in\mathbb{R}^n$ называется подмножество

$$\overset{\circ}{U}_{\varepsilon}(x^0) := \{ x \in \mathbb{R}^n : 0 < \rho(x, x^0) < \varepsilon \}. \quad \boxtimes$$

Определение 9.2.2 (munos movex omnocumeльно nodмножесства). Точка $x^0 \in \mathbb{R}^n$ называется по отношению к подмножеству X

1) внутренней, если x^0 принадлежит X вместе с некоторой окрестностью:

$$\exists \varepsilon > 0 : U_{\varepsilon}(x^0) \subset X;$$

2) изолированной, если она принадлежит X, и существует ее проколотая окрестность, не пересекающаяся с X:

$$x^{0} \in X \wedge \exists \overset{\circ}{U}_{\varepsilon}(x^{0}) : \overset{\circ}{U}_{\varepsilon}(x^{0}) \cap X = \emptyset;$$

3) **предельной**, если в любой ее окрестности находятся точки из X, *отмичные от* $x^0 \Leftrightarrow$ в любой ее **проколотой** окрестности находятся точки из X:

$$\forall \varepsilon > 0 \hookrightarrow \overset{\circ}{U}_{\varepsilon} (x^0) \cap X \neq \emptyset;$$

4) **граничной**, если в любой ее окрестности находятся как точки из X, так и точки из дополнения X^C :

$$\forall \varepsilon > 0 \hookrightarrow U_{\varepsilon}(x^{0}) \cap X \neq \emptyset \land U_{\varepsilon}(x^{0}) \cap X^{C} \neq \emptyset. \quad \boxtimes$$

Изолированные точки обязательно принадлежат множеству, граничные могут не принадлежать $((0,1)\cup\{2\}$ и концы (0,1))

ЛЕММА 9.2.1 (о принадлежности предельных и граничных точек). Если точка $x^0 \in X$, то:

- 1) она является предельной только в том случае, когда она не является изолированной;
- 2) она является граничной только в том случае, когда она не является внутренней.

Опр x_0 называется точкой прикосновения множества E, если в любой её

окресности найдутся точки из множества (не проколотой).

Изолированная точка является точкой прикосновения, но не является предельной, любая предельная является изолированной.

Опр (эквивалентное) x^0 – предельная точка E, если $\exists x^m \to x^{(0)}, x^m \neq x^{(0)}$.

Определение 9.2.3. Подмножество $X \subset \mathbb{R}^n$ называется

- 1) открытым, если все его точки внутренние;
- 2) замкнутым, если оно содержит все свои предельные точки.

Опр Область – открытое, линейно связное множество.

Опр E – линейно связное множество, если $\forall x_1, x_2 \in E$ можем соединить кривойБ принадлежащей E

Опр Компакт – ограниченное, замкнутое множество.

Опр E – ограничено, если $\exists U_{\varepsilon}(0): E \subset U_{\varepsilon}(0)$

Π ЕММА $9.2.2~(o~\phi y$ ндаментальных свойствах открытых u~замкнутых nodмножеств).

- 1) Дополнение κ открытому (замкнутому) подмножеству замкнуто (открыто).
- 2) Пустое подмножество \emptyset и всё пространство \mathbb{R}^n одновременно открыты и замкнуты.
- 3) Произвольное объединение (пересечение) открытых (замкнутых) подмножеств открыто (замкнуто).
- 4) Любое **конечное** пересечение (объединение) открытых (замкнутых) подмножеств открыто (замкнуто).

Определение 9.2.4 (типов подмножеств, порожденных X).

- 1) Внутренностью множества X называется подмножество $X^0\subset X$ всех его внутренних точек.
- 2) Границей ∂X множества X называется совокупность всех его граничных точек.
- 3) Замыканием множества X называется объединение $\overline{X} = X \cup \partial X$ множества с его границей. \boxtimes

2 Предел числовой функции нескольких переменных. Предел функции по множеству. Пределы по направлениям. Непрерывность функции нескольких переменных в точке и по множеству. Непрерывность сложной функции. Свойства функций, непрерывных на компакте — ограниченность, достижимость (точных) нижней и верхней граней, равномерная непрерывность. Теорема о промежуточных значениях функции, непрерывной в области.

Определение 10.1.1. Функцией нескольких переменных мы называем отображение, область определения которого принадлежит *п*-мерному точечному пространству, а образ – числовой прямой:

$$f: \mathbb{R}^n \supset Def(f) \rightarrow \mathbb{R}^1. \boxtimes$$

Определение 10.1.3 (предела функции по Коши). Пусть функция f определена в некоторой проколотой окрестности $\overset{\circ}{U}_{\delta_0}(x^0)\subset Def(f)$ точки x^0 . Точка $y^0\in\overline{\mathbb{R}}(\mathbb{R}P^1)$ называется пределом функции f при $x\to x^0$, если $\forall \varepsilon>0\ \exists \delta=\delta(\varepsilon)\in(0,\delta_0)\colon\ \forall x\in\overset{\circ}{U}_\delta(x^0)\ \hookrightarrow f(x)\in U_\varepsilon(y^0).$

Обозначение:

$$\lim_{x \to x^0} f(x) = \lim_{(x_1, \dots, x_n) \to (x_1^0, \dots, x_n^0)} f(x_1, \dots, x_n) = y^0.$$

Терминология: предел функции нескольких переменных будем также называть n-арным, чтобы отличать его от различных одномерных модификаций (см. ниже).

Определение 10.1.4. Последовательностью Гейне точки x^0 для функции f мы называем последовательность точек $\{x^k\} \subset \overset{\circ}{U}_{\delta} (x^0) \subset Def(f)$, которая сходится к точке x^0 . \boxtimes

Определение 10.1.5 (предела функции по Гейне). Точка $y^0 \in \overline{\mathbb{R}}$ ($\mathbb{R}P^1$) называется пределом функции f при $x \to x^0$, если для любой последовательности Гейне $x^k \to x^0$ справедливо: $\lim_{k \to \infty} f(x^k) = y^0$. \boxtimes

Определение 10.2.1 (полярной системы координат в точке (x_0, y_0)). Полярным радиусом $\rho \geq 0$ точки (x, y) называется расстояние от точки (x, y) до точки (x_0, y_0) , полярным углом φ – угол от положительного направления оси Ox к радиус-вектору $\mathbf{a} = (x - x_0, y - y_0)^T \neq \mathbf{0}$. Формулы перехода таковы:

$$\begin{cases} x = x_0 + \rho \cos \varphi, \\ y = y_0 + \rho \sin \varphi \end{cases} \Leftrightarrow \begin{cases} \rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}, \\ \varphi = \operatorname{arctg} \frac{y - y_0}{x - x_0} + \pi k + 2\pi m \end{cases},$$

где $x \neq x_0$ (иначе возьмем функцию arcctg), параметр k=0,1 зависит от координатной четверти и определяется знаками пары чисел $(x-x_0,y-y_0)$, целочисленный параметр $m \in \mathbb{Z}$ – произвольный. Точке $P=(x_0,y_0)$, которую называют **полюсом**, отвечает бесконечное множество пар координат $(0,\varphi)$, где $\varphi \in \mathbb{R}$ – произвольное. \boxtimes

Определение 10.2.2. Пусть функция f(x,y) определена в некоторой проколотой окрестности точки (x_0,y_0) . Пределом по направлению, которое задается углом $\varphi_0 = const$, называется предел функции одной переменной ρ :

$$\lim_{\rho \to +0} f(x_0 + \rho \cos \varphi_0, y_0 + \rho \sin \varphi_0) = \lim_{\rho \to +0} \widetilde{f}(\rho, \varphi_0). \quad \boxtimes$$

Для удобства будем вместо термина «предел» использовать термин **двойной предел**. К сожалению, система обозначений несовершенна, поэтому в каждом конкретном случае нужно определяться, какой предел вы ищете: двойной или по направлению.

Очевидно, что двойной предел "сильнее" предела по направлению:

Лемма 10.2.1. Если существует двойной предел $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = t_0$, то предел по любому направлению φ_0 существует и равен t_0 .

Определение 10.3.1. Пусть $E \subset Def(f) \subset \mathbb{R}^n$ – подмножество области определения функции f. Пусть x^0 – предельная точка подмножества E. Точка $y_0 \in \overline{\mathbb{R}}$ ($\mathbb{R}P^1$) называется пределом функции f по множеству E при $x \to x^0$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) : \ \forall x \in \overset{\circ}{U}_{\delta}(x^{0}) \cap E \ \hookrightarrow f(x) \in U_{\varepsilon}(y_{0}).$$

Обозначение: $\lim_{x \to x^0, x \in E} f(x) = y_0$. \boxtimes

Например, односторонние пределы функции одной переменной или предел по направлению функции нескольких переменных.

Опр (Скубачевский) Предел по направлению – предел по множеству E, где E – луч.

Утв $\exists \lim_{x \to x^{(0)}} f(x) \Rightarrow$ в точке $x^{(0)}$ существует предел по всем направлениям, и они равны.

Обратное не верно. Пример: парабола, поднятая вверх на 1 для точки (0.0).

Определение 10.5.1. Отображение $f: \mathbb{R}^n \supset X \to \mathbb{R}^m$ называется непрерывным в точке $x^0 \in X$, если:

- 1) или x^0 является изолированной точкой подмножества X;
- 2) или x^0 является предельной точкой подмножества X и

$$\lim_{x \to x^0, \ x \in X} f(x) = f(x^0). \quad \boxtimes$$

ПЕММА 10.5.1 (покоординатный критерий непрерывности в точке). Отображение f непрерывно в точке x^0 только тогда, когда кажедая координатная функция $f_i(x)$ $(i=1,\ldots,m)$ (см. (10.1)) непрерывна в x^0 .

Понятие предела по направлению порождает понятие непрерывности по выделенной переменной.

Определение 10.5.2. Отображение f называется непрерывным по переменной x_i в точке $x^0=(x_1^0,\dots,x_i^0,\dots,x_n^0)$, если вектор-функция одной переменной

$$\varphi(x_i) := f(x_1^0, \dots, x_{i-1}^0, x_i, x_{i+1}^0, \dots, x_n^0)$$

непрерывна в точке x_i^0 .

Терминология. Если точка x_0 является внутренней для множества X, то непрерывность по определению 10.5.1 еще называют **непрерывностью** по совокупности переменных в точке x_0 .

ЛЕММА 10.5.2 (необходимое условие непрерывности). Если отображение f непрерывно по совокупности переменных в точке x^0 , то оно непрерывно по каждой переменной в отдельности. В обратную сторону утверждение в общем случае неверно.

ЛЕММА 10.5.3 (о непрерывности операций). Пусть даны два отображения f, g с общей областью определения $X \subset \mathbb{R}^n$, которые действуют в векторное пространство V^m . Пусть эти отображения непрерывны в точке x^0 . Тогда:

- 1) их линейная комбинация $\alpha f + \beta g$ также непрерывна в точке x^0 ;
- 2) если m=1 (т. е. даны числовые функции нескольких переменных), то произведение функций f(x)g(x) и их частное f(x)/g(x) ($g(x^0) \neq 0$) непрерывны в точке x^0 .

ЛЕММА 10.5.4 (о непрерывности в точке суперпозиции отображений). Если отображение $f: \mathbb{R}^n \supset U_{\varepsilon}(x^0) \to \mathbb{R}^m$ непрерывно в точке x^0 , а отображение $g: \mathbb{R}^m \supset U_{\delta}(y^0) \to \mathbb{R}^p$ непрерывно в точке $y^0 = f(x^0)$, то суперпозиция отображений $h = g \circ f$, заведомо определенная в некоторой окрестности точки x^0 , непрерывна в этой точке.

Определение 10.6.1. Отображение $f: \mathbb{R}^n \supset X \to \mathbb{R}^m$ называется непрерывным на X, если оно непрерывно в каждой точке $x \in X.$

Ниже даются пять базовых утверждения, которые справедливы для отображений пространств произвольной размерности.

ТЕОРЕМА 10.6.1 (о непрерывности операций на подмножестве). Пусть даны два отображения f, g с общей областью определения $X \subset \mathbb{R}^n$, которые действуют в векторное пространство V^m . Пусть эти отображения непрерывны на X. Тогда:

- 1) их линейная комбинация $\alpha f + \beta g$ также непрерывна на X;
- 2) если m=1 (т. е. даны числовые функции нескольких переменных), то произведение функций f(x)g(x) непрерывно на X, и при дополнительном условии $\forall x \in X \hookrightarrow g(x) \neq 0$ их частное f(x)/g(x) также непрерывно на X.

ТЕОРЕМА 10.6.2 (о непрерывности на подмножестве суперпозиции отображений). Если отображение $f: \mathbb{R}^n \supset X \to \mathbb{R}^m$ непрерывно на подмножестве X, отображение $g: \mathbb{R}^m \supset Y \to \mathbb{R}^p$ непрерывно на подмножестве Y, и $f(X) \subset Y,$ то суперпозиция отображений $h = g \circ f: X \to \mathbb{R}^p$ непрерывна на X.

ТЕОРЕМА 10.6.3 (критерий непрерывности на множестве). Отображение $f: \mathbb{R}^n \supset X \to \mathbb{R}^m$, область определения которого открытое подмножество, непрерывно на X только тогда, когда прообраз любого открытого подмножества из \mathbb{R}^m открыт в \mathbb{R}^n :

$$f \ \text{непрерывно на } X = X^0 \subset \mathbb{R}^n \ \Leftrightarrow$$

$$\forall \ O = O^0 \subset \mathbb{R}^m \ \hookrightarrow \ f^{-1}(O) \ \text{открыто } \text{в } \mathbb{R}^n.$$