- 1. Provide complete and accurate definitions for each of the underlined and italicized terms by completing the sentences below.
- a. The <u>span</u> of the list $(\vec{v}_1, ..., \vec{v}_p)$ of vectors in \mathbf{R}^n is the set of all linear combinations of the vectors in the list; i.e., in set notation it is $\{\alpha_1\vec{v}_1 + ... + \alpha_p\vec{v}_p \mid \alpha_1, ..., \alpha_p \in \mathbf{R}\}$.
- b. The list $(\vec{v}_1, ..., \vec{v}_p)$ of vectors in \mathbf{R}^n is <u>linearly independent</u> if and only if none of its vectors is a linear combination of the others <u>or</u> only trivial linear combination of the vectors in the list is the zero vector in \mathbf{R}^n .
- c. A nonempty subset **S** of \mathbb{R}^n is a <u>subspace</u> of \mathbb{R}^n if and only if **S** is closed under vector addition and closed under multiplication by scalars \underline{or} **S** is closed under linear combinations.
- d. A <u>basis</u> for a subspace S of \mathbb{R}^n is a list of vectors in S that is linearly independent and spans S.
- e. The <u>kernel</u>, ker(A), of an $m \times n$ matrix A is the subset of all vectors \vec{x} in \mathbf{R}^n so that $A\vec{x} = \vec{0}$; i.e., in set notation it is $\{\vec{x} \in \mathbf{R}^n \mid A\vec{x} = \vec{0}\}$.
- f. The <u>image</u>, im(A), of an $m \times n$ matrix A is the subset vectors $A\vec{x}$ in \mathbf{R}^m for all \vec{x} in \mathbf{R}^n ; i.e., in set notation it is $\{A\vec{x} \mid \vec{x} \in \mathbf{R}^n\}$.
- 2. Consider the matrix equation $A \vec{x} = \vec{b}$ where A is a given $m \times n$ matrix and \vec{b} is a given vector in \mathbf{R}^m . What does
- a. $\operatorname{im}(A)$ tell us about the <u>existence</u> of solutions to $A \vec{x} = \vec{b}$? Since the image of A contains all the values of $A \vec{x}$, the equation has no solutions unless \vec{b} belongs to $\operatorname{im}(A)$. If \vec{b} does not belong to $\operatorname{im}(A)$, there can be no \vec{x} so that $A \vec{x} = \vec{b}$; in this case, the system is inconsistent.
- b. $\ker(A)$ tell us about the <u>uniqueness</u> of solutions to $A \vec{x} = \vec{b}$? Solutions to the equation are unique if and only if $\ker(A) = \{\vec{0}\}$. For, if \vec{x} is a solution to the equation, $\vec{x} + \vec{k}$ is another solution for every nonzero $\vec{k} \in \ker(A)$ since $\vec{x} + \vec{k} \neq \vec{x}$ and $A(\vec{x} + \vec{k}) = A\vec{x} + A\vec{k} = \vec{b} + \vec{0} = \vec{b}$.
- 3. Given $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 3 & 2 \\ 1 & 0 & 1 & 2 \\ 3 & 1 & 4 & 5 \end{bmatrix}$ and $rref(A) = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, find bases for

ker(A) and for im(A).

Examination of rref(A) reveals that the first and second column vectors of A comprise a linearly independent pair and the third and fourth columns are dependent on the first two. The same is true of the corresponding column

vectors of A, so a basis for im(A) is $\begin{bmatrix} 1 \\ 2 \\ 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$. Using the Solution

algorithm, we find that a basis for $\ker(A)$ is $\begin{bmatrix} 1\\1\\-1\\0\end{bmatrix}$, $\begin{bmatrix} 2\\-1\\0\\-1\end{bmatrix}$. This is a

basis for the set of vectors orthogonal to the row vectors of A or of rref(A). It is a basis for the subspace of vectors in \mathbf{R}^4 that satisfy the equation $A \vec{x} = \vec{0}$.

4.
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 4 \\ 5 \\ 4 \\ 3 \end{bmatrix}$. Notice: \vec{v}_1 and \vec{v}_2 are orthogonal.

a. Determine the 4×4 matrices P_1 and P_2 that project onto the one dimensional subspaces $\mathbf{S}_1 = \operatorname{span}(\vec{v}_1)$ and $\mathbf{S}_2 = \operatorname{span}(\vec{v}_2)$, respectively.

Unit vectors parallel to \vec{v}_1 and \vec{v}_2 are $\hat{u}_1 = \vec{v}_1/\sqrt{6}$ and $\hat{u}_2 = \vec{v}_2/\sqrt{6}$. So,

$$P_{1} = \hat{u}_{1} \ \hat{u}_{1}^{T} = \frac{1}{6} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 2 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } P_{2} = \hat{u}_{2} \ \hat{u}_{2}^{T} = \frac{1}{6} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & -2 \\ 2 & 0 & -2 & 4 \end{bmatrix}.$$

b. Determine the 4×4 matrix, call it $P_{1,2}$, that projects onto the two dimensional subspace $\mathbf{S}_{1,2} = \operatorname{span}(\vec{v}_1, \vec{v}_2)$.

$$P_{1,2} = P_1 + P_2 = \frac{1}{6} \begin{bmatrix} 2 & 2 & 0 & 2 \\ 2 & 4 & 2 & 0 \\ 0 & 2 & 2 & -2 \\ 2 & 0 & -2 & 4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 2 \end{bmatrix}.$$

c. Use $P_{1,2}$ to find the projection \vec{v}_3^{\perp} of \vec{v}_3 orthogonal to $\mathbf{S}_{1,2}$.

$$\vec{v}_{3}^{\perp} = \vec{v}_{3} - P_{1,2} \vec{v}_{3} = \begin{bmatrix} 4 \\ 5 \\ 4 \\ 3 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 4 \\ 3 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 12 \\ 18 \\ 6 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 2 \\ 1 \end{bmatrix}.$$

d. Determine an orthogonal basis for span $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$.

Since \vec{v}_3^{\perp} is orthogonal to \vec{v}_1 and \vec{v}_2 and is a linear combination of these vectors and \vec{v}_3 , the desired basis is $(\vec{v}_1, \vec{v}_2, \vec{v}_3^{\perp})$.

5. Let A be the matrix that represents a stretch T by the factor 2 along the line through the origin parallel to $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Let $\mathcal{B} = (\hat{u}_1, \hat{u}_2)$ where $\hat{u}_1 = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

and $\hat{u}_2 = \frac{1}{5} \begin{bmatrix} -4 \\ 3 \end{bmatrix}$. \mathcal{B} is an orthonormal basis for \mathbf{R}^2 .

a. The relationship between any vector \vec{x} in \mathbb{R}^2 and its \mathcal{B} -coordinate vector $[\vec{x}]_{\mathcal{B}}$ is determined by a coordinate change matrix S. What is S, what is that relationship, and what is S^{-1} ?

$$\vec{x} = S[\vec{x}]_{\mathcal{B}}.$$
 $S = [\hat{u}_1 | \hat{u}_2] = \frac{1}{5} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}.$ $S^{-1} = S^T = \frac{1}{5} \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}.$ Note that S is

an orthogonal matrix. In fact, it is a rotation.

b. What are $[\hat{u}_1]_{\mathcal{B}}$ and $[\hat{u}_2]_{\mathcal{B}}$?

$$[\hat{u}_1]_{\mathcal{B}} = \hat{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $[\hat{u}_2]_{\mathcal{B}} = \hat{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. These equations are equivalent to the

observations that $\vec{u}_1 = 1\vec{u}_1 + 0\vec{u}_2$ and $\vec{u}_2 = 0\vec{u}_1 + 1\vec{u}_2$.

c. Determine $T(\hat{u}_1), [T(\hat{u}_1)]_{\mathcal{B}}, T(\hat{u}_2)$ and $[T(\hat{u}_2)]_{\mathcal{B}}$.

We are given that T doubles vectors parallel to \hat{u}_1 and leaves unchanged those vectors that are orthogonal to \hat{u}_1 . So,

$$T(\hat{u}_1) = 2\hat{u}_1, \quad [T(\hat{u}_1)]_{\mathcal{B}} = [2\hat{u}_1]_{\mathcal{B}} = 2\hat{e}_1,$$

$$T(\hat{u}_2) = \hat{u}_2, \quad [T(\hat{u}_2)]_{\mathcal{B}} = [\hat{u}_2]_{\mathcal{B}} = \hat{e}_2.$$

d. From part c, determine the matrix B that represents T relative to the basis \mathcal{B} .

$$B = \left[\left[T(\hat{u}_1) \right]_{\mathcal{B}} | \left[T(\hat{u}_2) \right]_{\mathcal{B}} \right] = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}.$$

e. What is the relationship between the matrices A and B? A S = S B or $A = S^{-1} B S$.

f. Calculate A.

$$A = \frac{1}{5} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ -4 & 3 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 34 & 12 \\ 12 & 41 \end{bmatrix}.$$

- 6. Choose either of the following problems.
- a. $\mathcal{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ is a basis for a subspace \mathbf{S} of \mathbf{R}^4 . $\mathcal{C} = (\vec{w}_1, \vec{w}_2, \vec{w}_3)$ is a list of three vectors in \mathbf{R}^4 . The 4×6 matrix $[\vec{w}_1 | \vec{w}_2 | \vec{w}_3 | \vec{v}_1 | \vec{v}_2 | \vec{v}_3]$ is fully row-reduced to obtain the matrix M. How can one determine, by inspection of M, whether \mathcal{C} is also a basis for \mathbf{S} ? Justify your assertions. \mathcal{C} is linearly independent if and only if the first three columns of M are pivot columns. \mathcal{C} spans \mathbf{S} if and only if every vector in \mathbf{S} , including those in \mathcal{B} , are linear combinations of those in \mathcal{C} and this is true if and only if none of the last three columns of M are pivot columns. So, \mathcal{C} is a

basis for **S** if and only if *M* has the form
$$\begin{bmatrix} 1 & 0 & 0 & * & * & * \\ 0 & 1 & 0 & * & * & * \\ 0 & 0 & 1 & * & * & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$
 The

asterisks stand for any scalars (provided that the last three columns are linearly independent).

b. Prove that a linear system $A \vec{x} = \vec{b}$ cannot have exactly 2 different solutions.

If \vec{v} and \vec{w} are distinct solutions, $\vec{v} - \vec{w} \neq \vec{0}$ and $A(\vec{v} - \vec{w}) = A\vec{v} - A\vec{w}$ $= \vec{b} - \vec{b} = \vec{0}$. That is, the difference of two distinct solution vectors is a nonzero vector in $\ker(A)$. So, $\vec{v} + (\vec{v} - \vec{w}) = 2\vec{v} - \vec{w}$ is a third different solution. In fact, there are infinitely many different solutions. Others are $\vec{v} + \alpha(\vec{v} - \vec{w})$ where α is any scalar. So, as soon as we know there are two distinct solutions, we are assured that there are other infinitely many other distinct solutions.