SEQUENCE LISTING

<110>	Newgard, Christ Jensen, Mette Sherry, A. Dear Burgess, Shawn	v. n				·							
<120>	LACTATE DEHYDRO	OGENASE AS A	A NOVEL TARG	SET AND REAC	GENT FOR DIA	BETES							
<130>	5405-301												
<150> <151>	US 60/441,476 2003-01-21												
<160>	27												
<170>	PatentIn version 3.2												
<210><211><211><212><213>	1 1609 DNA Rattus norvegio	cus			;								
<400> gtgtgc	1 tgga gccactgtcg	ccgatctcgc	gcacgctact	gctgctgctc	gcccgtcgtc	60							
ccccat	cgtg cactaagcgg	tcccaaaaga	ttcaaagtcc	aagatggcag	ccctcaagga	. 120							
ccagct	gatt gtgaatcttc	ttaaggaaga	acaggtcccc	cagaacaaga	ttacagttgt	180							
tggggt	tggt gctgttggca	tggcttgtgc	catcagtatc	ttaatgaagg	acttggctga	240							
tgagct	tgcc cttgttgatg	tcatagaaga	taagctaaag	ggagagatga	tggatcttca	300							
gcatgg	cage etttteetta	agacaccaaa	aattgtctcc	agcaaagatt	atagtgtgac	360							
tgcaaa	ctcc aagctggtca	ttatcaccgc	gggggcccgt	cagcaagagg	gagagagccg	420							
gctcaa	tttg gtccagcgaa	acgtgaacat	cttcaagttc	atcattccaa	atgttgtgaa	480							
atacag	tcca cagtgcaaac	tgctcatcgt	ctcaaaccca	gtggatatct	tgacctacgt	540							
ggcttg	gaag atcagcggct	tccccaaaaa	cagagttatt	ggaagtggtt	gcaatctgga	600							
ttcggc	tegg tteegttace	tgatgggaga	aaggctggga	gttcatccac	tgagctgtca	660							
cgggtg	ggtc ctgggagagc	atggcgactc	cagtgtgcct	gtgtggagtg	gtgtgaacgt	720							
cgccgg	cgtc tccctgaagt	ctctgaaccc	gcagctgggc	acggatgcag	acaaggagca	780							
gtggaa	ggat gtgcacaagc	aggtggttga	cagtgcatac	gaagtgatca	agctgaaagg	840							
ttacac	atcc tgggccattg	gcctctccgt	ggcagacttg	gccgagagca	taatgaagaa	900							
ccttag	gcgg gtgcatccca	tttccaccat	gattaagggt	ctctatggaa	tcaaggagga	960							
tgtctt	cctc agcgtcccat	gtatcctggg	acaaaatgga	atctcagatg	ttgtgaaggt	1020							
gacact	gact cctgacgagg	aggcccgcct	gaagaagagt	gcagataccc	tctggggaat	1080							

ccagaaggag	ctgcagttct	aaagtcttcc	cagtgtccta	gcacttcact	gtccaggctg	1140
cagcagggtt	tctatggaga	ccacgcactt	ctcatctgag	ctgtggttag	tccagttggt	1200
ccagttgtgt	tgaggtggtc	tgggggaaat	ctcagttcca	cagctctacc	ctgctaagtg	1260
gtacttgtgt	agtggtaacc	tggttagtgt	gacaatccca	ctgtctccaa	gacacactgc	1320
caactgcatg	caggctttga	ttaccctgtg	agcctgctgc	attgctgtgc	tacgcaccct	1380
caccaaacat	gcctaggcca	tgagttccca	gttagttata	agctggctcc	agtgtgtaag	1440
tccatcgtgt	atatcttgtg	cataaatgtt	ctacaggata	ttttctgtat	tatatgtgtc	1500
tgtagtgtac	attgcaatat	tacgtgaaat	gtaagatctg	catatggatg	atggaaccaa	1560
ccactcaagt	gtcatgccaa	ggaaaacacc	aaataaacct	tgaacagtg		1609

<210> 2

<211> 332

<212> PRT

<213> Rattus norvegicus

<400> 2

Met Ala Ala Leu Lys Asp Gln Leu Ile Val Asn Leu Leu Lys Glu Glu 1 5 10 15

Gln Val Pro Gln Asn Lys Ile Thr Val Val Gly Val Gly Ala Val Gly 20 25 30

Met Ala Cys Ala Ile Ser Ile Leu Met Lys Asp Leu Ala Asp Glu Leu 35 40 45

Ala Leu Val Asp Val Ile Glu Asp Lys Leu Lys Gly Glu Met Met Asp 50 55 60

Leu Gln His Gly Ser Leu Phe Leu Lys Thr Pro Lys Ile Val Ser Ser 65 70 75 80

Lys Asp Tyr Ser Val Thr Ala Asn Ser Lys Leu Val Ile Ile Thr Ala 85 90 95

Gly Ala Arg Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln Arg
100 105 110

Asn Val Asn Ile Phe Lys Phe Ile Ile Pro Asn Val Val Lys Tyr Ser

Pro Gln Cys Lys Leu Leu Ile Val Ser Asn Pro Val Asp Ile Leu Thr 130 140

Tyr 145	Val	Ala	Trp	Lys	Ile 150	Ser	Gly	Phe	Pro	Lys 155	Asn	Arg	Val	Ile	Gly 160		
Ser	Gly	Cys	Asn	Leu 165	Asp	Ser	Ala	Arg	Phe 170	Arg	Tyr	Leu	Met	Gly 175	Glu		
Arg	Leu	Gly	Val 180	His	Pro	Leu	Ser	Cys 185	His	Gly	Trp	Val	Leu 190	Gly	Glu		
His	Gly	Asp 195	Ser	Ser	Val	Pro	Val 200	Trp	Ser	Gly	Val	Asn 205	Val	Ala	Gly		
Val	Ser 210	Leu	Lys	Ser	Leu	Asn 215	Pro	Gln	Leu	Gly	Thr 220	Asp	Ala	Asp	Lys		
Glu 225	Gln	Trp	Lys	Asp	Val 230	His	Lys	Gln	Val	Val 235	Asp	Ser	Ala	Tyr	Glu 240		
Val	Ile	Lys	Leu	Lys 245	Gly	Tyr	Thr	Ser	Trp 250	Ala	Ile	Gly	Leu	Ser 255			
Ala	Asp	Leu	Ala 260	Glu	Ser	Ile	Met	Lys 265	Asn	Leu	Arg	Arg	Val 270	His	Pro		
Ile	Ser	Thr 275	Met	Ile	Lys	Gly	Leu 280	Tyr	Gly	Ile	Lys	Glu 285	Asp	Val	Phe		
Leu	Ser 290	Val	Pro	Cys	Ile	Leu 295	Gly	Gln	Asn	Gly	Ile 300	Ser	Asp	Val	Val		
Lys 305	Val	Thr	Leu	Thr	Pro 310	Asp	Glu	Glu	Ala	Arg 315	Leu	Lys	Lys	Ser	Ala 320		
Asp	Thr	Leu	Trp	Gly 325	Ile	Gln	Lys	Glu	Leu 330	Gln	Phe						
<210 <210 <210 <210	1> : 2> :	3 1287 DNA Ratt	us no	orve	gicus	5											
	0> : tcta		gctg	tagg	ac to	ctgg	gtga	t ggg	gaga	agag	cggg	gagg	gca ·	gttc	tttaac		60
cgt	gtaa	gag	gagg	gacc	at c	cctt	ttgg	g gt	tcat	caag	atga	agta	aga	actc	aggcgg	1	L20
cta	caca	tat .	acgg	agac	ct c	agta	ttat	t tti	tcca	tttc	aagg	gtcc	caa	aaga	ttcaaa	1	180

gtccaagatg gcagccctca aggaccagct gattgtgaat cttcttaagg aaqaacaggt 240 cccccagaac aagattacag ttgttggggt tggtgctgtt ggcatggctt gtgccatcag 300 tatettaatg aaggaettgg etgatgaget tgeeettgtt gatgteatag aagataaqet 360 aaagggagag atgatggatc ttcagcatgg cagccttttc cttaagacac caaaaattgt 420 ctccagcaaa gattatagtg tgactgcaaa ctccaagctg gtcattatca ccqcqqqqc 480 ccgtcagcaa gagggagaga gccggctcaa tttggtccag cgaaacgtga acatcttcaa 540 gttcatcatt ccaaatgttg tgaaatacag tccacagtgc aaactgctca tcgtctcaaa 600 cccagtggat atcttgacct acgtggcttg gaagatcagc ggcttcccca aaaacaaagt 660 tattggaagt ggttgcaatc tggattcggc tcggttccgt tacctgatgg gagaaaggct 720 gggagttcat ccactgagct gtcacgggtg ggtcctggga gagcatggcg actccagtgt 780 gcctgtgtgg agtggtgtga acgtcgccgg cgtctccctg aagtctctga acccgcagct 840 gggcacggat gcagacaagg agcagtggaa ggatgtgcac aagcaggtgg ttgacagtgc 900 atacgaagtg atcaagctga aaggttacac atcctgggcc attggcctct ccqtqqcaqa 960 cttggccgag agcataatga agaaccttag gcgggtgcat cccatttcca ccatgattaa 1020 gggtctctat gggatcaagg aggatgtctt cctcagcgtc ccatgtatcc tgggacaaaa 1080 tggaatetea gatgttgtga aggtgacaet gaeteetgae gaggaggeee geetgaagaa 1140 gagtgcagat accetetggg gaatecagaa ggagetgcag ttetaaagte tteccagtgt 1200 cctagcactt cactgtccag gctgcagcag ggtttctatg gagaccacgc acttctcatc 1260 tgagctgtgg ttagtccagt tggtcca 1287

<210> 4

<211> 361

<212> PRT

<213> Rattus norvegicus

<400> 4

Met Ser Lys Asn Ser Gly Gly Tyr Thr Tyr Thr Glu Thr Ser Val Leu

5 10 15

Phe Phe His Phe Lys Val Pro Lys Asp Ser Lys Ser Lys Met Ala Ala 20 25 30

Leu Lys Asp Gln Leu Ile Val Asn Leu Leu Lys Glu Glu Gln Val Pro
35 40 45

Gln Asn Lys Ile Thr Val Val Gly Val Gly Ala Val Gly Met Ala Cys 50 55 60

Ala 65	Ile	Ser	Ile	Leu	Met 70	Lys	Asp	Leu	Ala	Asp 75	Glu	Leu	Ala	Leu	Val 80
Asp	Val	Ile	Glu	Asp 85	Lys	Leu	Lys	Gly	Glu 90	Met	Met	Asp	Leu	Gln 95	His
Gly	Ser	Leu	Phe 100	Leu	Lys	Thr	Pro	Lys 105	Ile	Val	Ser	Ser	Lys 110	Asp	Tyr
Ser	Val	Thr 115	Ala	Asn	Ser	Lys	Leu 120	Val	Ile	Ile	Thr	Ala 125	Gly	Ala	Arg
Gln	Gln 130	Glu	Gly	Glu	Ser	Arg 135	Leu	Asn	Leu	Val	Gln 140	Arg	Asn	Val	Asn
Ile 145	Phe	Lys	Phe	Ile	Ile 150	Pro	Asn	Val	Val	Lys 155	Tyr	Ser	Pro	Gln	Cys 160
Lys	Leu	Leu	Ile	Val 165	Ser	Asn	Pro	Val	Asp 170	Ile	Leu	Thr	Tyr	Val 175	Ala
Trp	Lys	Ile	Ser 180	Gly	Phe	Pro	Lys	Asn 185	Arg	Val	Ile	Gly	Ser 190	Gly	Cys
Asn	Leu	Asp 195	Ser	Ala	Arg	Phe	Arg 200	Tyr	Leu	Met	Gly	Glu 205	Arg	Leu	Gly
Val	His 210	Pro	Leu	Ser	Cys	His 215	Gly	Trp	Val	Leu	Gly 220	Glu	His	Gly	Asp
Ser 225	Ser	Val	Pro	Val	Trp 230	Ser	Gly	Val	Asn	Val 235	Ala	Gly	Val	Ser	Leu 240
Lys	Ser	Leu	Asn	Pro 245	Gln	Leu	Gly	Thr	Asp 250	Ala	Asp	Lys	Glu	Gln 255	Trp
Lys	Asp	Val	His 260	Lys	Gln	Val	Val	Asp 265	Ser	Ala	Tyr	Glu	Val 270	Ile	Lys
Leu	Lys	Gly 275	Tyr	Thr	Ser	Trp	Ala 280	Ile	Gly	Leu	Ser	Val 285	Ala	Asp	Leu
Ala	Glu 290	Ser	Ile	Met	Lys	Asn 295	Leu	Arg	Arg	Val	His 300	Pro	Ile	Ser	Thr

Met Ile Lys Gly Leu Tyr Gly Ile Lys Glu Asp Val Phe Leu Ser Val 305 310 315 Pro Cys Ile Leu Gly Gln Asn Gly Ile Ser Asp Val Val Lys Val Thr 330 Leu Thr Pro Asp Glu Glu Ala Arg Leu Lys Lys Ser Ala Asp Thr Leu 345 Trp Gly Ile Gln Lys Glu Leu Gln Phe 355 <210> 5 <211> 15 <212> PRT <213> Artificial Sequence <223> Mitochondrial targeting peptide <400> 5 Met Leu Ser Arg Leu Ser Leu Arg Leu Leu Ser Arg Tyr Leu Leu 10 <210> 6 <211> 34 <212> PRT <213> Zea mays <400> 6 Met Tyr Arg Ala Ala Ala Ser Leu Ala Ser Lys Ala Arg Gln Ala Gly Ser Ser Ser Ala Ala Arg Gln Val Gly Ser Arg Leu Ala Trp Ser Arg Asn Tyr <210> 7 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> Mitochondrial targeting peptide <400> 7 Met Leu Ser Leu Arg Gln Ser Ile Arg Phe Phe Pro Ala Thr Arg Thr 10

```
20
<210> 8
<211> 27
<212> PRT
<213> Artificial Sequence
<223> Mitochondrial targeting peptide
<400> 8
Met Leu Arg Thr Ser Ser Leu Phe Thr Arg Arg Val Gln Pro Ser Leu
                                   10
Phe Ser Arg Asn Ile Leu Arg Leu Gln Ser Thr
           20
<210> 9
<211> 17
<212> PRT
<213> Artificial Sequence
<223> Mitochondrial targeting peptide
<400> 9
Met Leu Ser Leu Arg Gln Ser Ile Arg Phe Phe Lys Pro Ala Thr Arg
Thr
<210> 10
<211> 21
<212> PRT
<213> Artificial Sequence
<223> Mitochondrial targeting peptide
<400> 10
Met Phe Ser Asn Leu Ser Lys Arg Trp Ala Gln Arg Thr Leu Ser Lys
               5
                                   10
Ser Phe Tyr Ser Thr
           20
```

Leu Cys Ser Ser Arg Tyr Leu Leu

<210> 11

<211>	10	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Mitochondrial targeting peptide	
<400>	11	
Met Ly	s Ser Phe Ile Thr Arg Asn Lys Thr 5 10	
<210>	12	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic oligonucleotide primer	•
<400>	12	
ggaatt	cgtg tgctggagcc actgt	25
<210>	13	
<211>		
<212>		
	Artificial Sequence	
-220-		
<220> <223>	Synthetic oligonucleotide primer	
(223)	Synthetic Oligonacieotide primer	
<400>	13	
cgcgga	tcct gtagaacatt ttatgcac	28
-210 >	14	
<210> <211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Synthetic oligonucleotide primer	
<400>	14	
	actt gctgtagg	18
ogooo		_
<210>	15	
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic oligonucleotide primer	
-400-	15	
<400>	15	2.

```
<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 16
aaccgtgtaa gaggagggac catc
                                                                      24
<210> 17
<211>
      24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 17
tggaccaact ggactaacca cagc
                                                                      24
<210>
      18
<211>
      174
<212> DNA
<213> Mus musculus
ggagcaactt ggcgctctac ttgctgtagg gctctgggtg atgggagaag agcgggaggg
                                                                     60
cagettteta accatataag aggagataee ateceetttt ggtteateaa gatgagtaag
                                                                     120
tcctcaggcg gctacacgta cacggagacc tcggtattat ttttccattt caag
                                                                     174
<210>
      19
<211>
      DNA
<213> Mus musculus
<400>
tgcgtgctgg agccactgtc gccgagctcg gccacgctgc ttctcctcgc cagtcgcccc
                                                                      60
cccatcgtgc atctagcg
                                                                      78
<210> 20
<211> 29
<212> PRT
<213> Mus musculus
<400> 20
Met Ser Lys Ser Ser Gly Gly Tyr Thr Tyr Thr Glu Thr Ser Val Leu
                                    10
```

25

Phe Phe His Phe Lys Val Ser Lys Asp Ser Lys Ser Lys

20

```
<210> 21
 <211> 29
 <212> PRT
 <213> Rattus norvegicus
 <400> 21
Met Ser Lys Asn Ser Gly Gly Tyr Thr Tyr Thr Glu Thr Ser Val Leu
                                      10
 Phe Phe His Phe Lys Val Pro Lys Asp Ser Lys Ser Lys
             20
 <210> 22
 <211> 29
 <212> PRT
 <213> Homo sapiens
 <400> 22
Met Gly Glu Pro Ser Gly Gly Tyr Thr Tyr Thr Gln Thr Ser Ile Phe
                5
                                      10
 Leu Phe His Ala Lys Ile Pro Phe Gly Ser Lys Ser Asn
             20
                                  25
<210> 23
<211> 29
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Consensus leader sequence
 <220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> "X" represents a variable amino acid residue
 <400> 23
 Met Ser Lys Xaa Ser Gly Gly Tyr Thr Tyr Thr Glu Thr Ser Val Leu
                 5
                                      10
 Phe Phe His Phe Lys Val Pro Lys Asp Ser Lys Ser Lys
             20
                                  25
 <210> 24
 <211> 1680
 <212> DNA
```

<213> Mus musculus

60	gcgggagggc	tgggagaaga	ctctgggtga	tgctgtaggg	gcgctctact	<400> 24 gagcaacttg
120	atgagtaagt	gttcatcaag	tccccttttg	ggagatacca	ccatataaga	agctttctaa
180	aaggtctcaa	tttccatttc	cggtattatt	acggagacct	ctacacgtac	cctcaggcgg
240	cttcttaagg	gattgtgaat	aggaccagct	gcaaccctca	gtccaagatg	aagattcaaa
300	ggcatggctt	tggtgctgtt	ttgttggggt	aagattacag	tccccagaac	aagagcaggc
360	gacgtcatgg	tgcccttgtt	cggatgagct	aaggacttgg	tatcttaatg	gtgccatcag
420	cttaaaacac	cagcctcttc	tccagcatgg	atgatggatc	caagggcgag	aagacaaact
480	gtcattatca	ctccaagctg	taactgcgaa	gactactgtg	ctccagcaaa	caaaaattgt
540	cgaaacgtga	cctggtccag	gccggctcaa	gaggggaga	ccgtcagcaa	ccgcgggggc
600	aagctgctga	tccacactgc	tcaagtacag	cccaacattg	gttcatcatt	acatcttcaa
660	ggctttccca	gaaaatcagt	acgtggcttg	atcttgacct	tccagtggat	tcgtctccaa
720	tacctgatgg	gcggttccgt	tggattcagc	ggttgcaatc	aattggaagt	aaaaccgagt
780	gaacatggcg	ggtcctggga	gtcacggctg	gcgctgagct	gggggttcac	gagagaggct
840	aagtctctta	cgtctccctg	atgttgccgg	agtggtgtga	gcctgtgtgg	actccagtgt
900	aagcaggtgg	ggaggttcac	agcagtggaa	gcagacaagg	gggcactgac	acccagaact
960	attggcctct	atcctgggcc	aaggttacac	atcaagctga	ctacgaggtg	tggacagtgc
1020	cccatttcca	gcgggtgcat	agaaccttag	agcataatga	cttggctgag	ctgtggcaga
1080	ccatgtatcc	cctcagtgtc	aggatgtctt	ggaatcaatg	gggtctctat	ccatgattaa
1140	gaagaggccc	gactcctgag	aggtgacact	gatgttgtga	tggaatctcg	tgggacaaaa
1200	ttctaaagtc	ggagctgcag	gaatccagaa	accctctggg	gagcgcagac	gcctgaagaa
1260	cagaccacac	ggcttctagg	gctgcagcag	cactgtccag	cctagcactt	ttccccgtgt
1320	aaacatctca	tggtgtgggg	ggtgttgaga	ttagtacagt	tgagctgtgg	ccttctcgtc
1380	tggttagtgt	agtggtgacc	gtacttgtgt	ctgccaagtg	ctctgccctg	ctccccacag
1440	ccctgtgagc	cttcgattac	caactgcagg	gacacactgc	ctgtctctga	gacagtccca
1500	ttaagtcgta	gagttcccag	ctaggccgac	accaaacagc	gctgccctgc	ctgctgcatt
1560	ttgtacagga	tgcataaatg	gcatatcttg	cgtccatgat	ccagtgtgta	taacctggct
1620	atgtaagatc	attatgtgag	gcattgcaat	tctgtagtgt	attatatgtg	tattttatat
1680	ttgaacagtg	aaataaaacc	gtgtcatgcc	aaccacccaa	tgatggaacc	tgcatatgga

<210> 25

<211> 361

<212> PRT

<213> Mus musculus

<400> 25

Met Ser Lys Ser Ser Gly Gly Tyr Thr Tyr Thr Glu Thr Ser Val Leu 1 5 10 15

Phe Phe His Phe Lys Val Ser Lys Asp Ser Lys Ser Lys Met Ala Thr 20 25 30

Leu Lys Asp Gln Leu Ile Val Asn Leu Leu Lys Glu Glu Gln Ala Pro
35 40 45

Gln Asn Lys Ile Thr Val Val Gly Val Gly Ala Val Gly Met Ala Cys 50 55 60

Ala Ile Ser Ile Leu Met Lys Asp Leu Ala Asp Glu Leu Ala Leu Val 65 70 75 80

Asp Val Met Glu Asp Lys Leu Lys Gly Glu Met Met Asp Leu Gln His
85 90 95

Gly Ser Leu Phe Leu Lys Thr Pro Lys Ile Val Ser Ser Lys Asp Tyr
100 105 110

Cys Val Thr Ala Asn Ser Lys Leu Val Ile Ile Thr Ala Gly Ala Arg 115 120 125

Gln Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln Arg Asn Val Asn 130 135 140

Ile Phe Lys Phe Ile Ile Pro Asn Ile Val Lys Tyr Ser Pro His Cys 145 150 155 160

Lys Leu Leu Ile Val Ser Asn Pro Val Asp Ile Leu Thr Tyr Val Ala 165 170 175

Trp Lys Ile Ser Gly Phe Pro Lys Asn Arg Val Ile Gly Ser Gly Cys 180 185 190

Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Met Gly Glu Arg Leu Gly
195 200 205

Val His Ala Leu Ser Cys His Gly Trp Val Leu Gly Glu His Gly Asp 210 215 220

Ser Ser Val Pro Val Trp Ser Gly Val Asn Val Ala Gly Val Ser Leu

225 230 235 240

Lys Ser Leu Asn Pro Glu Leu Gly Thr Asp Ala Asp Lys Glu Gln Trp 245 250 255

Lys Glu Val His Lys Gln Val Val Asp Ser Ala Tyr Glu Val Ile Lys 260 265 270

Leu Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser Val Ala Asp Leu 275 280 285

Ala Glu Ser Ile Met Lys Asn Leu Arg Arg Val His Pro Ile Ser Thr 290 295 300

Met Ile Lys Gly Leu Tyr Gly Ile Asn Glu Asp Val Phe Leu Ser Val 305 310 315 320

Pro Cys Ile Leu Gly Gln Asn Gly Ile Ser Asp Val Val Lys Val Thr
325 330 335

Leu Thr Pro Glu Glu Glu Ala Arg Leu Lys Lys Ser Ala Asp Thr Leu 340 345 350

Trp Gly Ile Gln Lys Glu Leu Gln Phe 355 360

<210> 26

<211> 1761

<212> DNA

<213> Homo sapiens

<400> 26

ctctggtgtt tacttgagaa gccctggctg tgtccttgct gtaggagccg gagtagctca 60 gagtgatett gtetgaggaa aggeeageee caettggtta ataaacegeg atgggtgaae 120 cctcaggagg ctatacttac acccaaacgt cgatattcct tttccacgct aagattcctt 180 ttggttccaa gtccaatatg gcaactctaa aggatcagct gatttataat cttctaaagg 240 aagaacagac cccccagaat aagattacag ttgttggggt tggtgctgtt ggcatggcct 300 gtgccatcag tatcttaatg aaggacttgg cagatgaact tgctcttgtt gatgtcatcg 360 aagacaaatt gaagggagag atgatggatc tccaacatgg cagccttttc cttagaacac 420 caaagattgt ctctggcaaa gactataatg taactgcaaa ctccaagctg gtcattatca 480 cggctggggc acgtcagcaa gagggagaaa gccgtcttaa tttqqtccaq cqtaacqtqa 540 acatatttaa attcatcatt cctaatgttg taaaatacag cccgaactgc aagttgctta 600

ttgtttcaaa tccagtggat atcttgacct acgtggcttg gaagataagt ggttttccca 660 aaaaccgtgt tattggaagt ggttgcaatc tggattcagc ccgattccgt tacctgatgg 720 gggaaaggct gggagttcac ccattaagct gtcatgggtg ggtccttggg gaacatggag 780 . attecagtgt geetgtatgg agtggaatga atgttgetgg tgtetetetg aaqaetetge 840 acccagattt agggactgat aaagataagg aacagtggaa agaggttcac aagcaggtgg 900 ttgagagtgc ttatgaggtg atcaaactca aaggctacac atcctqqqct attqqactct 960 ctgtagcaga tttggcagag agtataatga agaatcttag gcgggtgcac ccagtttcca 1020 ccatgattaa gggtctttac ggaataaagg atgatgtctt ccttagtgtt ccttgcattt 1080 tgggacagaa tggaatctca gaccttgtga aggtgactct gacttctgag gaagaggccc 1140 gtttgaagaa gagtgcagat acactttggg ggatccaaaa ggagctgcaa ttttaaagtc 1200 ttctgatgtc atatcatttc actgtctagg ctacaacagg attctaggtg gaggttgtgc 1260 atgttgtcct ttttatctga tctgtgatta aagcagtaat attttaagat ggactgggaa 1320 aaacatcaac teetgaagtt agaaataaga atggtttgta aaatccacag ctatateetg 1380 atgctggatg gtattaatct tgtgtagtct tcaactggtt agtgtgaaat agttctgcca 1440 cctctgacgc accactgcca atgctgtacg tactgcattt gccccttgag ccaggtggat 1500 gtttaccgtg tgttatataa cttcctggct ccttcactga acatgcctag tccaacattt 1560 tttcccagtg agtcacatcc tgggatccag tgtataaatc caatatcatg tcttgtgcat 1620 aattetteea aaggatetta tittgtgaae tatateagta gtgtacatta eeatataatg 1680 taaaaagatc tacatacaaa caatgcaacc aactatccaa gtqttatacc aactaaaacc 1740 cccaataaac cttgaacagt g 1761

Met Gly Glu Pro Ser Gly Gly Tyr Thr Tyr Thr Gln Thr Ser Ile Phe 1 5 10 15

Leu Phe His Ala Lys Ile Pro Phe Gly Ser Lys Ser Asn Met Ala Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Lys Asp Gln Leu Ile Tyr Asn Leu Leu Lys Glu Gln Gln Thr Pro 35 40 45

Gln Asn Lys Ile Thr Val Val Gly Val Gly Ala Val Gly Met Ala Cys

<210> 27

<211> 361

<212> PRT

<213> Homo sapiens

<400> 27

Ala	Ile	Ser	Ile	Leu	Met	Lys	Asp	Leu	Ala	Asp	Glu	Leu	Ala	Leu	Val
65					70					75					80

60

55

50

- Asp Val Ile Glu Asp Lys Leu Lys Gly Glu Met Met Asp Leu Gln His
 85 90 95
- Gly Ser Leu Phe Leu Arg Thr Pro Lys Ile Val Ser Gly Lys Asp Tyr 100 105 110
- Asn Val Thr Ala Asn Ser Lys Leu Val Ile Ile Thr Ala Gly Ala Arg 115 120 125
- Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln Arg Asn Val Asn 130 135 140
- Ile Phe Lys Phe Ile Ile Pro Asn Val Val Lys Tyr Ser Pro Asn Cys 145 150 155 160
- Lys Leu Leu Ile Val Ser Asn Pro Val Asp Ile Leu Thr Tyr Val Ala 165 170 175
- Trp Lys Ile Ser Gly Phe Pro Lys Asn Arg Val Ile Gly Ser Gly Cys
 180 185 190
- Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Met Gly Glu Arg Leu Gly 195 200 205
- Val His Pro Leu Ser Cys His Gly Trp Val Leu Gly Glu His Gly Asp 210 215 220
- Ser Ser Val Pro Val Trp Ser Gly Met Asn Val Ala Gly Val Ser Leu 225 230 235 240
- Lys Thr Leu His Pro Asp Leu Gly Thr Asp Lys Asp Lys Glu Gln Trp 245 250 255
- Lys Glu Val His Lys Gln Val Val Glu Ser Ala Tyr Glu Val Ile Lys 260 265 270
- Leu Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser Val Ala Asp Leu 275 280 285
- Ala Glu Ser Ile Met Lys Asn Leu Arg Arg Val His Pro Val Ser Thr 290 295 300

Met Ile Lys Gly Leu Tyr Gly Ile Lys Asp Asp Val Phe Leu Ser Val 305 310 315 320

Pro Cys Ile Leu Gly Gln Asn Gly Ile Ser Asp Leu Val Lys Val Thr 325 330 335

Leu Thr Ser Glu Glu Glu Ala Arg Leu Lys Lys Ser Ala Asp Thr Leu 340 345 350

Trp Gly Ile Gln Lys Glu Leu Gln Phe 355 360