OUTCOMES:

Upon completion of the course, the student will be able to

- Judge the emerging wireless technology standards.
- Configure functionalities of router and switches.
- Assess the importance of wireless adhoc networks.
- · Compare and contrast various wireless technologies.
- Explain and design the considerations for deploying wireless network infrastructure.

СО	РО						PSO		
	1	2	3	4	5	6	1	2	3
1.	V		V	V		√		V	
2.			V			V	V	V	
3.	V		V				V		
4.	V					V		V	
5.	V		V	V		V			V

CP5251

ADVANCED OPERATING SYSTEMS

LTPC 3 0 0 3

OBJECTIVES:

- To understand the concepts of distributed systems.
- To get an insight into the various issues and solutions in distributed operating systems.
- To learn about real-time operating systems.
- To gain knowledge on the design concepts of mobile operating systems.
- To understand cloud operating systems.

UNIT I INTRODUCTION

9

Distributed Operating Systems – Issues – Communication Primitives – Limitations of a Distributed System – Lamport's Logical Clocks – Vector Clocks – Causal Ordering of Messages

UNIT II DISTRIBUTED OPERATING SYSTEMS

9

Distributed Mutual Exclusion Algorithms – Classification – Preliminaries – Simple Solution – Lamport's Algorithm – Ricart-Agrawala Algorithm – Suzuki-Kasami's Broadcast Algorithm – Raymond's Tree-Based Algorithm – Distributed Deadlock Detection – Preliminaries – Centralized Deadlock Detection Algorithms – Distributed Deadlock Detection Algorithms – Path Pushing Algorithm – Edge Chasing Algorithm – Hierarchical Deadlock Detection Algorithms – Agreement Protocols – Classification – Solutions to the Byzantine Agreement Problem – Lamport-Shostak-Pease Algorithm

UNIT III DISTRIBUTED RESOURCE MANAGEMENT

Distributed File Systems - Design Issues - Google File System - Hadoop Distributed File System - Distributed Shared Memory - Algorithms for Implementing Distributed Shared Memory - Load Distributing Algorithms - Synchronous and Asynchronous Check Pointing and Recovery - Fault Tolerance – Two-Phase Commit Protocol – Nonblocking Commit Protocol

REAL TIME OPERATING SYSTEMS UNIT IV

9

Basic Model of Real - Time Systems - Characteristics - Application of Real - Time Systems -Real - Time Task Scheduling - Handling Resource Sharing

UNIT V MOBILE AND CLOUD OPERATING SYSTEMS

9

Android - Overall Architecture - Linux Kernel - Hardware Support - Native User-Space - Dalvik and Android's Java – System Services – Introduction to Cloud Operating Systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to

- Identify the features of distributed operating systems.
- Demonstrate the various protocols of distributed operating systems.
- Identify the different features of real time operating systems.
- Discuss the features of mobile operating systems.
- Discuss the features of cloud operating systems.

REFERENCES:

- 1. Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems -Distributed, Database and Multiprocessor Operating Systems", Tata MC Graw-Hill, 2001.
- 2. Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.
- Karim Yaghmour, "Embedded Android", O'Reilly, First Edition, 2013.
 Nikolay Elenkov, "Android Security Internals: An In-Depth Guide to Android's Security Architecture", No Starch Press, 2014.

СО	РО						PSO		
	1	2	3	4	5	6	1	2	3
1.	V		V	V			V	V	
2.	V		V	V			V	V	
3.	V		V	V	$\sqrt{}$		V	V	V
4.	V		V	V			V	V	
5.	V		V	V			V	V	