Olimpiada Națională de Matematică 2005

Etapa judeţeană şi a municipiului Bucureşti 5 martie 2005 CLASA A XII-A

Subiectul 1. Se consideră mulțimile finite $A_1, A_2, \ldots, A_n, n \geq 2$ cu proprietățile

- i) $|A_i| \geq 2$ pentru orice $i = 1, 2, \dots, n$, şi
- ii) $|A_i \cap A_j| \neq 1$ pentru orice $i, j \in \{1, 2, \dots, n\}$.

Să se arate că elementele mulțimii $A_1 \cup A_2 \cup \cdots \cup A_n$ pot fi colorate cu două culori, astfel încât nici o mulțime A_i să nu aibă toate elementele colorate la fel.

(Prin | X | se notează cardinalul mulțimii X)

Subiectul 2. Se consideră funcția continuă $f:[0,1]\to\mathbb{R}$ și șirurile de numere reale $(a_n)_n, (b_n)_n$ cu proprietatea că

$$\lim_{n \to \infty} \int_0^1 |f(x) - a_n x - b_n| \mathrm{d}x = 0.$$

Arătați că:

- a) Şirurile $(a_n)_n$ şi $(b_n)_n$ sunt convergente.
- b) Există $a, b \in \mathbb{R}$ astfel încât f(x) = ax + b, oricare ar fi $x \in [0, 1]$.

Subiectul 3. Fie G un grup şi F mulţimea elementelor de ordin finit din G. Dacă F este finită, să se arate că există $n \in \mathbb{N}^*$ astfel încât $x^n y = yx^n$ oricare ar fi $x \in G$ şi $y \in F$.

Subiectul 4. Fie A un inel finit cu $n \geq 3$ elemente, în care există exact $\frac{n+1}{2}$ pătrate. Să se arate că

- a) 1 + 1 este inversabil.
- b) A este corp.

(Elementul $a \in A$ se numește pătrat dacă $a = b^2$ cu $b \in A$)

Timp de lucru 3 ore

Toate subiectele sunt obligatorii