Examenul de bacalaureat național 2018 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_1 b_3 = b_2^2$ $b_1 b_2 b_3 = b_2^3 = 4^3 = 64$	2p
	$b_1 b_2 b_3 = b_2^3 = 4^3 = 64$	3 p
2.	f(1) = 0	2p
	g(f(1)) = g(0) = 2018	3 p
3.	$5^{2x} = 5^{x^2} \Leftrightarrow x^2 - 2x = 0$	3p
	x = 0 sau $x = 2$	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	În mulțimea numerelor naturale de două cifre sunt 10 numere care au cifra zecilor egală cu 9, deci sunt 10 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{90} = \frac{1}{9}$	2p
5.	$m_d = \frac{a-1}{a^2}$	2p
	Dreapta d este paralelă cu axa $Ox \Leftrightarrow \frac{a-1}{a^2} = 0$, deci $a = 1$	3 p
6.	Cum $\sin x = \frac{1}{\sqrt{5}}$ și $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\cos x = \frac{2}{\sqrt{5}}$	2p
	$tg x + ctg x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{5}{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} = 3 \cdot (-2) - 1 \cdot 1 =$	3p
	=-6-1=-7	2 p
b)	$xA(y) - yA(x) = x \begin{pmatrix} y+2 & y \\ 1 & -2 \end{pmatrix} - y \begin{pmatrix} x+2 & x \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} xy+2x-yx-2y & xy-yx \\ x-y & -2x+2y \end{pmatrix} =$	2 p
	$= \begin{pmatrix} 2(x-y) & 0 \\ x-y & -2(x-y) \end{pmatrix} = (x-y) \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix} = (x-y)A(0), \text{ pentru orice numere reale } x \text{ §i } y$	3 p
c)	$aA(-1)-(-1)A(a)=(a+1)A(0) \Rightarrow (aA(-1)+A(a))A(0)=(a+1)A(0)A(0)=4(a+1)I_2$	3 p
	$4(a+1) = a^2 + 7 \Leftrightarrow a = 1 \text{ sau } a = 3$	2 p
2.a)	$f = 4X^3 - 6X + 2 \Rightarrow f(1) = 4 \cdot 1^3 - 6 \cdot 1 + 2 =$	3 p
	=4-6+2=0	2p

b)	Restul împărțirii polinomului f la $X^2 + X + 1$ este egal cu $-6X + m + 4$	3p
	Cum pentru orice număr real m restul este nenul, polinomul f nu se divide cu $X^2 + X + 1$	2p
c)	$x_1x_2 + x_1x_3 + x_2x_3 = -\frac{3}{2}, \ x_1x_2x_3 = -\frac{m}{4} \Rightarrow \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = \frac{x_1x_2 + x_2x_3 + x_3x_1}{x_1x_2x_3} = \frac{6}{m}$	3p
	$\left(\frac{6}{m}\right)^2 = -\frac{4}{m}$ şi, cum m este număr real nenul, obținem $m = -9$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 0 - \frac{\frac{1}{x} \cdot x - \ln x}{x^2} - \left(-\frac{1}{x^2}\right) =$	3p
	$= -\frac{1 - \ln x - 1}{x^2} = \frac{\ln x}{x^2}, \ x \in (0, +\infty)$	2 p
b)	f(1) = 0, $f'(1) = 0$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 0$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este crescătoare pe $[1,+\infty)$	2p
	$f(x) \ge f(1) \Rightarrow f(x) \ge 0$, pentru orice $x \in (0, +\infty)$, deci $f(\sqrt{x}) \ge 0 \Rightarrow 1 - \frac{\ln \sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \ge 0$, deci $\frac{\ln x}{2\sqrt{x}} \le 1 - \frac{1}{\sqrt{x}}$, pentru orice $x \in (0, +\infty)$	3 p
2.a)	$\int_{0}^{2} (x+1) f(x) dx = \int_{0}^{2} (3x^{3} + 3x^{2} + 1) dx = \left(\frac{3x^{4}}{4} + x^{3} + x\right) \Big _{0}^{2} =$	3p
	=12+8+2=22	2p
b)	$\int_{0}^{1} \left(f(x) - \frac{1}{x+1} \right) e^{x^{3}} dx = \int_{0}^{1} 3x^{2} e^{x^{3}} dx = e^{x^{3}} \Big _{0}^{1} =$	3p
	=e-1	2p
c)	$g(x) = \frac{1}{x+1} \Rightarrow V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} \frac{1}{(x+1)^{2}} dx = -\frac{\pi}{x+1} \Big _{0}^{1} = -\frac{\pi}{2} + \pi = \frac{\pi}{2}$	3p
	$\frac{\pi}{n} = \frac{\pi}{2} \iff n = 2$	2 p