HIERARCHICAL CLUSTERING

Jesse Davis

Hierarchical Clustering

Example: Gene Expression

(Green = up-regulated, Red = down-regulated)

Experiments (Samples)

4 Basics

Hierarchical Clustering: Dendogram

Note: Partitional Clustering from a Hierarchical Clustering

Can generate a partitional clustering from a hierarchical clustering by "cutting" the tree at some level

Hierarchical Clustering Approaches

Top-down or divisive

Bottom-up or agglomerative

Bottom-Up Example

Bottom-Up Hierarchical Clustering

```
Given: instances x_1, ..., x_n
For i = 1 to n, c_i = \{x_i\}
C = \{c_1, ..., c_n\}
i = n
While |C| > 1
   j = j + 1
   (c_a, c_b) = argmin dist(c_a, c_b)
   c_i = c_a U c_b
   add node to tree joining a and b
   C = (C - \{c_a, c_b\}) \cup c_i
Return tree with root node j
```

Key question: Measuring distance

Distance Matrix

	d(2,1)	0			
D=	d(3,1)	d(3,2)	0		
	•	•	•	•••	
	d(n,1)	d(n,2)	d(n,3)	••••	0

Initial Distance Matrix for a Data Set with 5 Examples

- 1) Form five clusters, one for each example
- 2) Compute pairwise distance between initial clusters (=pairwise distance between examples)

	1	2	3	4	5
1	0				
2	7.4	0			
3	0.7	7.1	0		
4	7.3	0.3	7.0	0	
5	0.5	6.9	0.6	6.8	0

Find Two Closest Clusters

Update Distance Matrix

Question: What is the distance between the new cluster (2,4) and the other three clusters?

Measuring the Distance Between Two Clusters

□ **Single link:** Distance of two most similar instances: $dist(c_{ij}, c_{v}) = min{dist(a, b) | a ∈ c_{ij}, b ∈ c_{v}}$

□ Complete link: Distance of two least similar instances: $dist(c_u, c_v) = max\{dist(a, b) \mid a \in c_u, b \in c_v\}$

■ Average link: Average distance between instances: $dist(c_u, c_v) = avg\{dist(a, b) \mid a \in c_u, b \in c_v\}$

Efficient Distance Updates

- If we merged and c_u and c_v into c_j, we can determine distance to every other cluster:
 - Single link:

$$dist(c_i, c_k) = \min(dist(c_u, c_k), dist(c_v, c_k))$$

Complete link:

$$dist(c_i, c_k) = \max(dist(c_u, c_k), dist(c_v, c_k))$$

Average link:

$$dist(c_{j}, c_{k}) = \frac{|c_{u}| * dist(c_{u}, c_{k}) + |c_{v}| * dist(c_{v}, c_{k})}{|c_{u}| + |c_{v}|}$$

Note: The linkage choice is a hyper parameter for the bottom-up clustering algorithm

Illustrative Example Updates for Each Linkage Criteria

Complete Link Dendogram for Sample Dataset

height =
$$h(c_j, c_k) = \frac{dist(c_j, c_k)}{2}$$

3.5

2.0

3.35

 $h(\{2,4\}, \{1,5,3\}) - h(\{2\}, \{4\})$

0.15

Single Link: Chaining

Single Link: Chaining

Single Link: Chaining

Single Link

Chaining:

- Bottom line:
 - Simple, fast
 - Often low quality

Complete Link Hierarchical Summary

- Complexity: O(n³)
 - □ O(n²) to build initial similarity matrix
 - O(n) for the merges
- □ Fast algorithm: Requires O(n²) space
- Bottom line
 - Typically much faster than O(n³)
 - Often good quality
 - No Chaining

Advanced Hierarchical Clustering

Other Hierarchical Clustering Methods

- Weaknesses of agglomerative clustering methods
 - **Do not scale well:** time complexity of at least $O(n^2)$, where n is the number of total objects
 - Can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - BIRCH: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - CURE: selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction

BIRCH: Balanced Iterative Reducing and Clustering using Hierarchies

- Incrementally construct a Clustering Feature (CF) tree
 - Phase 1: Scan DB to build an initial in-memory CF tree (each node: #points, sum, sum of squares)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: Finds a good clustering with a single scan
- Weaknesses: handles only numeric data, sensitive to order of data records

Definitions

□ Centroid: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ Average along each dimension

Radius: Average distance from member points to cluster centroid

$$R = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{d} (x_{ij} - \mu_j)^2}{N}}$$

- Captures tightness of cluster around centroid
- Note: Math and verbal definition not 100% aligned, but these come directly from the paper

Cluster Feature Vector

- □ Given: X₁,...,X_n, data points in a cluster where each with d-dimensions
- \square We define CF = (N, LS, SS), where
 - N: Number of data points
 - \square LS_i: $\sum_{i=1}^{n} x_{ij}$
 - \square SS_j: $\sum_{i=1}^{n} x_{ij}^2$
- Note: CFs are additive!
 - \blacksquare E.g., $CF_1 + CF_2 = (N_1 + N_2, LS_1 + LS_2, SS_1 + SS_2)$

Cluster Feature Example

$$CF = (5, (16,30), (54,190))$$

- (3,4)
- (2,6)
- (4,5)
- (4,7)
- (3,8)

LS_x = 3 + 2 + 4 + 4 + 3 = 16
LS_y = 4 + 6 + 5 + 7 + 8 = 30
SS_x =
$$3^2 + 2^2 + 4^2 + 4^2 + 3^2 = 54$$

SS_y = $4^2 + 6^2 + 5^2 + 7^2 + 8^2 = 190$

Comments

- 2d + 1 values represent any number of points
 - $\Box d$ = number of dimensions
- Average in each dimension j: LS_i/N
- Variance in each dimension j:
 - $(SS_i/N) (LS_i/N)^2$
 - To get standard deviation take square root
- Can also compute the radius (next slide)

Radius Derivation

$$R = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{d} (x_{ij} - \mu_j)^2}{N}} = \sqrt{\frac{\sum_{j=1}^{d} \sum_{i=1}^{N} (x_{ij}^2 - 2x_{ij}\mu_j + \mu_j^2)}{N}}$$

Definition of SS

Definition of LS

$$= \sqrt{\frac{\sum_{j=1}^{d} (\sum_{i=1}^{N} x_{ij}^2) - 2\mu_j (\sum_{i=1}^{N} x_{ij}) + (N\mu_j^2)}{N}}$$

Definition of centroid

$$= \sqrt{\frac{\sum_{j=1}^{d} SS_j - 2\frac{LS_j}{N}LS_j + N\left(\frac{LS_j}{N}\right)^2}{N}}$$

Cluster Feature Tree

- A CF-tree is a height-balanced tree with two parameters:
 - Branching factor (non leaf nodes B, leaf nodes, L)
 - Threshold T
- Each non leaf node has the form [CF_i, child_i]
- Each leaf node has CF
 - Set of CFs
 - Two pointers: prev and next
- Radius of a subcluster under a leaf node can not exceed the threshold T

CF Tree

Note: Dropped subscripts on leaf nodes due to space

CF-Tree Construction

 Scan data set and insert the incoming data instances into the CF tree one by one

 Each instance is inserted into the closest subcluster under a leaf node

 If insertion causes subcluster radius to exceed threshold, then create new subcluster

CF-Tree Construction

- The new subcluster may cause its parent to exceed branching factor
- If so, split leaf node
 - Identifying the pair of subclusters with largest intercluster distance
 - Divide by proximity to these two subclusters
- If this split clause non-leaf node to exceed branching factor, then recursively split
- If the root node is split, then the height of the CF tree is increased by one

Example: Insert (4,4) into CF Tree

Example: Insert (4,4) into CF Tree

Example: Insert (4,4) into CF Tree

Example: Insert (4,4) into CF Tree

Example: Result After Inserting (4,4) into CF Tree

After Inserting (50,50) into CF Tree

Traditional Algorithms

All-Points Based $d_{min,} d_{max}$

d_{avg}, d_{mean}

Centroid Based

What Would BIRCH Do?

BIRCH assumes:

- Clusters are normally distributed in each dimension
- Axes are fixed: Ellipses at an angle are not OK

Clustering Using Representatives (CURE)

- Cluster definition: Set of representative points
 - Enables clusters of differing shapes
- Requires an Euclidean space
- Two-pass (hierarchical) clustering approach
 - Pass 1: Clustering of subset of data to pick "representative" points
 - Pass 2: Assign all points to clusters

Example: Stanford Salaries

Pass 1

- Randomly sample of data that fits in memory
- Find initial clusters: Hierarchically cluster the data sample
- For each cluster, pick representative points
 - Select subset of points, as dispersed as possible to represent cluster
 - Move these points towards cluster center (e.g., shrink 20% towards mean)

Example: Initial Clusters

Example: Pick Dispersed Points

Example: Pick Dispersed Points

Pass 2

Scan entire data set

- Assign each example e to "closest" cluster
 - Standard metric determines closest
 - Done by finding representative with smallest distance to e

BIRCH vs. CURE Summary

BIRCH

Fixed axes, normally Rotated axes distributed in each dimension

Non-ellipsoid shape

Summary

- Hierarchical clustering models hierarchical structure among the examples
- Typically learned in a bottom-up manner
 - Linkage and distance are key parameters
 - Scalability is a key concern
- Advanced algorithms improve efficiency
- Shapes that can be represented are algorithm dependent

Questions?

CURE slides from MMDS.org