Big data science Day 1 - Hands on

F. Legger - INFN Torino https://github.com/leggerf/MLCourse-INFN-2021

What we will use

- Python with Jupyter notebooks
- Day 1: familiarise with ML dataset, parquet files
- Day 2: Gradient Boosting Trees GBT MLlib
- Day 3: Neural networks
 - Multilayer Perceptron Classifier MCP MLlib
 - Keras Sequential model

Input dataset for hands-on

https://archive.ics.uci.edu/ml/datasets/HIGGS

- Open HEP dataset @UCI
- Signal (heavy Higgs) + background (ttbar)

Baldi, Sadowski, and Whiteson. "Searching for Exotic Particles in High-energy Physics with Deep Learning." Nature Communications 5

Input dataset for hands-on

- Monte Carlo events
 - o 21 low level features
 - pt's, angles, MET, b-tag, ...
 - o 7 high level features
 - Invariant masses (m(jj), m(jjj), ...)

Hands-on today

- You will familiarize with jupyter notebooks, numpy, pandas
- Input data:
 - efficient format: convert CSV to Parquet
 - A comma-separated values (CSV) file is a delimited text file that uses a comma to separate values
 - And Apache parquet?
 - Create input for ML. Format depends on chosen ML library, in our case MLLib from Apache
- Visualization
 - explore dataset, plot features, correlation matrix
- Slides and notebooks available on github
 https://github.com/leggerf/MLCourse-INFN-2021

How to start

- 1. Point your browser to the JHub link you received by email
- 2. **Authenticate** through github
- 3. Open a terminal:
 - git clone
 https://github.com/leggerf/MLCourse-INFN-2021.git
- 4. From JupyterHub Home tab:
 - Notebooks/Day1/inputForML.ipynb
 - You will receive the solutions tomorrow

