Discrete Event Simulation of Warehouse Operations

Saimadhav S, Ayush Chordiya, Trivikram Umanath
Under the guidance of
Prof. Jayendran Venkateswaran and Prof. Saurabh Jain

May 2025

Problem Statement

- Simulate warehouse order picking operations using Discrete Event Simulation (AnyLogic).
- Analyze picker utilization, order cycle time, throughput.
- Identify bottlenecks and recommend operational improvements.

Input Data Analysis

- Loaded Customer Order data: Order ID, SKU, Quantity, Timestamp.
- Parsed datetime, extracted day, hour, weekday features.
- Attempted fitting Exponential, Normal, Weibull distributions using KS and AD tests.
- Final assumption: **Poisson process** for order arrivals ¹.
- Inter-arrival times modeled as **Exponential** distribution.

¹Bartholdi & Hackman, 2014

Order Volume Over the Year

Order Arrival Rates (Top 3 Products)

Product	Order Count	Estimated Arrival Rate (orders/time)		
PY5UPB	1144	2265.73		
8N10W9	925	2802.16		
WRRW1W	551	4704.17		

Modeling Overview

- Order generation using Poisson process.
- Dynamic assignment of orders to pickers.
- Picking, traveling, and placement activities simulated.
- Batching logic incorporated for batch and zone picking.

Modeling Components

- Source Block: Creates orders based on arrival rate.
- Seize-Delay-Release: Picker seized, pick delayed, picker released.
- Java Functions: createOutputTable() for performance logging,
 Travel Time calculations.
- Experiment Parameterization: Number of pickers and batch sizes.

Key Modeling Diagram

Output Data Analysis: Key Output Metrics

- Average Cycle Time: Average time from order release to placement for the three products.
- Picker Utilization: Proportion of time picker is busy.
- Order Per Labour Hour: Number of orders processed per active labour hour.
- Throughput: Number of orders processed per hour.

Output Data Analysis: Output Metrics Plots

Figure: Cycle Time

Figure: Warehouse Throughput

Figure: Picker Utilization

Orders Picked Per Labor Hour

Figure: Orders per Labour Hour

Output Data Analysis: Replications Needed

Replications calculated using the formula:

$$n = \left(\frac{Z_{1-\alpha/2} \times S}{H}\right)^2$$

- Where:
 - $n_0 = 10$ (initial pilot replications)
 - S = 0.273 (pilot sample standard deviation)
 - H = 0.1 (desired half-width for 95% CI)
 - $Z_{0.975} = 1.96$ (z-critical value for 95% confidence)
- Required number of replications: 28.

Output Data Analysis: Picking Strategy Comparison

Comparing Single, Batch, Zone Picking strategies.

Output Data Analysis: Optimal Number of Pickers

Varying number of pickers to optimize throughput and cycle time.

Output Data Analysis: Optimal Batch Size Selection

 Analyzing batch sizes to maximize throughput while controlling cycle time for both Batch Picking and Zone Picking strategies.

Key Results: Best Configurations

Strategy	Best Configuration		
Single Picking	7 Pickers		
Batch Picking	2 Pickers		
Zone Picking	1 Picker		
Batch Picking	4 (Batch Size)		
Zone Picking	2 (Batch Size)		

Output Data Analysis - Confidence Interval Estimation

Picking Strategy	Average Cycle Time	Picker Utilization	Orders per Labour Hour	Throughput
Single Picking	$\begin{array}{c} 30.32\ \pm0.15\\ 258.57\ \pm4.78\\ 681.26\ \pm19.98 \end{array}$	0.02	139.14 ±0.8	18.78 ±0.27
Batch Picking		0.05	171.43 ±1.24	18.69 ±0.29
Zone Picking		0.08	242 ±1.22	18.70 ±0.4

Recommendations

- Use **7 Pickers** for Single Picking to minimize cycle time.
- Use **2 Pickers** for Batch Picking balancing throughput and time.
- Use **1 Picker** for Zone Picking considering warehouse constraints.
- Batch Picking: Batch Size 4; Zone Picking: Batch Size 2.

Future Scope

- Model real warehouse layout for accurate travel time.
- Include 3D animation for better representation.
- Include handling equipment and aisle congestion.
- Extend to agent-based modeling of picker behavior.

References

- Bartholdi, J. J., & Hackman, S. T. (2014). Warehouse & Distribution Science.
- Law, A. M., & Kelton, W. D. (2000). Simulation Modeling and Analysis.
- AnyLogic Simulation Software Documentation.
- Footwear Order Dataset Analysis.

Thank You!