

RECEIVED

AUG 17 2001

TECH CENTER 1600/2900

<10> Doutriaux, Marie-Pascale
Betzner, Andreas
Freyssinet, Georges
Perez, Pascal

CJ
[Handwritten signature]
<120> METHOD FOR OBTAINING PLANT VARIETIES

<130> A33153-PCT-USA 072667.0128

<140> US 09/529,239
<141> 2000-10-27

<150> PCT/EP98/06977
<151> 1998-10-09

<160> 98

<210> 1
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<221> modified_base
<222> 11
<223> I

<220>
<221> modified_base
<222> 14
<223> I

<220>
<221> modified_base
<222> 17
<223> I

<220>
<223> Degenerate oligonucleotides UPMU used to isolate AtMSH3 and
AtMSH6.

<300>
<301> Reenan and Kolodner
<302> Genetics
<303> 132
<306> 963-973
<307> 1992

<400> 1
ctggatccac nggnccnaay atg 23

<210> 2
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<221> modified_base

<222> 15
<223> I

<220>
<221> modified_base
<222> 18
<223> I

<220>
<223> Degenerate oligonucleotides DOMU used to isolate AtMSH3 and AtMSH6.

<300>
<301> Reenan and Kolodner
<302> Genetics
<303> 132
<306> 963-973
<307> 1992

<400> 2

ctggatccrt artgngtnrc raa 23

<210> 3
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> MSH3 specific primer 636 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 3

tgctagtgcc tcttgcaagc tcac 24

<210> 4
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Primer AP1 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia containing adapter sequences ligated to both its ends

<400> 4

ccatccta atcgactcact ataggc 27

<210> 5
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Primer AP2 for PCR using cDNA of Arabidopsis thaliana ecotype

Columbia
containing adapter sequences ligated to both its ends

<400> 5

actcactata gggctcgagc ggc 23

<210> 6

<211> 30

<212> DNA

<213> Artificial sequence

<220>

<223> MSH3 specific primer S525 for PCR using cDNA of Arabidopsis thaliana
ecotype Columbia

<400> 6

aggttctgat tatgtgtgac gctttactta 30

<210> 7

<211> 29

<212> DNA

<213> Artificial sequence

<220>

<223> MSH3 specific primer S51 for PCR using cDNA of Arabidopsis thaliana
ecotype Columbia

<400> 7

ggatcgggta ctgggttttg agtgtgagg 29

<210> 8

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> MSH3 specific primer 635 for PCR using cDNA of Arabidopsis thaliana
ecotype Columbia

<400> 8

gcacgtgctt gatgggttt tcac 24

<210> 9

<211> 28

<212> DNA

<213> Artificial sequence

<220>

<223> MSH3 specific primer S523 for PCR using cDNA of Arabidopsis thaliana

ecotype Columbia

<400> 9

tcagacagta tccagcatgg cagaagta 28

<210> 10
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> MSH3 specific primer 1S5 for PCR using cDNA of Arabidopsis thaliana
ecotype Columbia

<400> 10

atcccggat gggcaagcaa aagcagcaga cga 33

<210> 11
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> MSH3 specific primer S53 for PCR using cDNA of Arabidopsis thaliana
ecotype Columbia

<400> 11

gacaaaagagc gaaatgaggc cccttgg 27

<210> 12
<211> 1250
<212> DNA
<213> Arabidopsis thaliana ecotype Columbia
<223> Clone 52

<400> 12

cccgggatgg gcaagcaaaa gcagcagacg atttctcggt tcttcgtcc caaacccaa 60
tccccgactc acgaaccgaa tccggtagcc gaatcatcaa caccgccacc gaagatatcc
120
gccactgtat ctttctctcc ttccaagcgt aagttctct ccgaccacct cgccgcgcg
180
tcacccaaaa agcctaaact ttctcctcac actcaaaacc cagtacccga tcccaattta
240
caccaaagat ttctccagag atttctggaa ccctcgccgg aggaatatgt tcccgaaacg
300
tcatcatcga ggaaatacac accatggaa cagcaagtgg tggagctaaa gagcaagtac
360
ccagatgtgg ttttgtgg ggaagttgg tacaggtaca gattttcg agaagacgcg
420
gagatcgcag cacgcgtgtt gggtatgg gctcatatgg atcacaattt catgacggcg
480
agtgtgccaa catttcgatt gaattccat gtgagaagac tggtaatgc aggataacaag

540
attgggttag tgaagcagac tgaaactgca gccattaagt cccatgggc aaaccggacc
600
ggccctttt tccggggact gtcggcggt tataccaaag ccacgcttga agcggctgag
660
gatataagtg gtgggtgtgg tggtaagaa gggtttgggtt cacagagtaa ttcttggtt
720
tgtgttgtgg atgagagagt taagtcggag acattaggct gtggtattga aatgagttt
780
gatgttagag tcgggtgtgt tggcgttcaa atttcgacag gtgaagttgt ttatgaagag
840
ttcaatgata atttcatgag aagtggatta gaggctgtga tttttagctt gtcaccagct
900
gagctgtgc ttggccagcc tctttcacaa caaaactgaga agttttgggt ggcacatgct
960
ggacctacct caaacgttcg agtggAACGT gcctcaactgg attgtttcag caatggtaat
1020
gcagtagatg aggttatttc attatgtgaa aaaatcagcg caggttaactt agaagatgat
1080
aaagaaatga agctggaggg tgctaaaaaa ggaatgtctt gcttgacagt tcatacaatt
1140
atgaacatgc cacatctgac tggcaagcc ctgcgcctaa cgtttgcca tctcaaacag
1200
tttggatttg aaaggatcct ttaccaaggg gcctcatttc gctcttgtc 1250

<210> 13
<211> 34
<212> DNA
<213> Artificial sequence

<220>
<223> MSH3 specific primer 2S5 for PCR using cDNA of *Arabidopsis thaliana* ecotype Columbia

<400> 13

atcccgggtc aaaatgaaca agttggttt agtc 34

<210> 14
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> MSH3 specific primer S52 for PCR using cDNA of *Arabidopsis thaliana* ecotype Columbia

<400> 14

gccacatctg actgttcaag ccctcgc 27

<210> 15
<211> 2110
<212> DNA
<213> *Arabidopsis thaliana* ecotype Columbia
<223> Clone 13

<400> 15

60

gccacatctg actgttcaag ccctcgccct aacgtttgc catctcaaac agtttgatt
tgaaaaggatc ctttaccaag gggccatttcatt tcgtcttttgc tcaagaaca cagagatgac
120
tctctcagcc aatactctgc aacagttgga gggtgtgaaa aataattcag atggatcgga
180
atctggctcc ttattccata atatgaatca cacacttaca gtatatggtt ccaggcttct
240
tagacactgg gtgactcatc ctctatgcga tagaaatttg atatctgctc ggcttgatgc
300
tggttctgag atttctgctt gcatggatc tcatagttct tcccagctca gcagttagtt
360
ggttgaagaa ggttctgaga gagcaattgt atcacctgag ttttatctcg tgctctcctc
420
agtcttgaca gctatgtcta gatcatctga tattcaacgt ggaataacaa gaatcttca
480
tcggactgct aaagccacag agttcattgc agttatggaa gctatttac ttgcggggaa
540
gcaaaattcag cggcttggca taaagcaaga ctctgaaatg aggagatgc aatctgcaac
600
tgtgcgatct actctttga gaaaattgat ttctgttatt tcatccccgt ttgtgggtga
660
caatgccgga aaacttctct ctgccctaaa taaggaagcg gctgttcgag gtgacttgct
720
cgacatacta atcaactcca gcgaccaatt tcctgagctt gctgaagctc gccaaggcagt
780
tttagtcatc agggaaaagc tggattcctc gatagcttca tttcgcaaga agctcgctat
840
tcgaaatttg gaatttcttc aagtgtcggg gatcacacat ttgatagagc tgcccggtga
900
ttccaagggtc cctatgaatt gggtaaaagt aaatagcacc aagaagacta ttcgatata
960
tccccccagaa atagtagctg gcttggatga gctagctcta gcaactgaac atcttgcatt
1020
tgtgaaccga gcttcgtggg atagttccct caagagttc agtagatact acacagattt
1080
taaggctgcc gttcaagctc ttgtcgact ggactgtttc cactccctt caactctatc
1140
tagaaacaag aactatgtcc gtcccgagtt tgtggatgac tgtgaaccag ttgagataaa
1200
catacagtct ggtcgatcatc ctgtactggaa gactatatta caagataact tcgtcccaa
1260
tgacacaaattt ttgcattgcag aagggaaata ttgccaaattt atcaccggac ctaacatgg
1320
aggaaaagagc tgcttatatcc gtcaagttgc tttaatttcc ataatggctc aggttgggttc
1380
ctttgtacca gcttcattcg ccaagctgca cgtgcttgc ggtgtttca ctcggatgg
1440
tgcttcagac agtacccagc atggcagaag tacctttcta gaagaattaa gtgaagcgctc
1500
acacataatc agaacctgtt cttctcggtc gcttggatata ttagatgagc ttggaagagg
1560
caactgcaca cacgacggtg tagccattgc ctatgcaaca ttacagcatc tccttagcaga
1620
aaagagatgt ttgggttctt ttgtcactgc ttaccctgaa atagctgaga tcagtaacgg
1680
atcccgaggc tctgttggga cataccatgt ctcgtatctg acattgcaga aggataaagg
1740
cagttatgtatcatgatgatg tgacacctt atataagctt gtgcgtggc tttgcagcag

1800
gagctttggc tttaagggtt ctcagcttgc ccagataacct ccatcatgta tacgtcgagc
1860
catttcaatg gctgcaaaat tggaagctga ggtacgtgca agagagagaa atacacgcat
1920
gggagaacca gaaggacatg aagaaccgag aggccgcagaa gaatctatgg cggctctagg
1980
tgacttgttt gcagacctga aatttgcctt ctctgaagag gacccttggaa aagcattcga
2040
gtttttaaag catgcttggaa agattgctgg caaaatcaga ctaaaaaccaa cttgttcatt
2100
ttgaccgggg 2110

<210> 16
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> MSH3 specific primer S51 for PCR using cDNA of *Arabidopsis thaliana* ecotype Columbia

<400> 16
ggatcgggta ctgggttttgg agtgtgagg 29

<210> 17
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> MSH3 specific primer S525 for PCR using cDNA of *Arabidopsis thaliana* ecotype Columbia

<400> 17
aggttctgat tatgtgtgac gctttactta 30

<210> 18
<211> 3522
<212> DNA
<213> *Arabidopsis thaliana* ecotype Columbia

<220>
<221> CDS
<222> (100)....(3342)
<223> AtMSH3 full-length cDNA and deduced sequence of the encoded polypeptide

<400> 18
cctaagaaag cgcgcgaaaa ttggcaaccc aagttcgcca tagccacgac cacgaccc 60
catttctctt aaacggaggg gattacgaat aaagcaatt 99

atg ggc aag caa aag cag cag acg att tct cgt ttc gct ccc aaa 147

Met	Gly	Lys	Gln	Lys	Gln	Gln	Thr	Ile	Ser	Arg	Phe	Phe	Ala	Pro	Lys	
1																15
ccc	aaa	tcc	ccg	act	cac	gaa	ccg	aat	ccg	gta	gcc	gaa	tca	tca	aca	195
Pro	Lys	Ser	Pro	Thr	His	Glu	Pro	Asn	Pro	Val	Ala	Glu	Ser	Ser	Thr	
																20
																25
																30
ccg	cca	ccg	aag	ata	tcc	gcc	act	gta	tcc	ttc	tct	cct	tcc	aag	cgt	243
Pro	Pro	Pro	Lys	Ile	Ser	Ala	Thr	Val	Ser	Phe	Ser	Pro	Ser	Lys	Arg	
																35
																40
																45
aag	ctt	ctc	tcc	gac	cac	ctc	gcc	gcc	tca	ccc	aaa	aag	cct	aaa		291
Lys	Leu	Leu	Ser	Asp	His	Leu	Ala	Ala	Ser	Pro	Lys	Lys	Pro	Lys		
																50
																55
																60
ctt	tct	cct	cac	act	caa	aac	cca	gta	ccc	gat	ccc	aat	tta	cac	caa	339
Leu	Ser	Pro	His	Thr	Gln	Asn	Pro	Val	Pro	Asp	Pro	Asn	Leu	His	Gln	
																65
																70
																75
																80
aga	ttt	ctc	cag	aga	ttt	ctg	gaa	ccc	tcg	ccg	gag	gaa	tat	gtt	ccc	387
Arg	Phe	Leu	Gln	Arg	Phe	Leu	Glu	Pro	Ser	Pro	Glu	Glu	Tyr	Val	Pro	
																85
																90
																95
gaa	acg	tca	tca	tcg	agg	aaa	tac	aca	cca	ttg	gaa	cag	caa	gtg	gtg	435
Glu	Thr	Ser	Ser	Arg	Lys	Tyr	Thr	Pro	Leu	Glu	Gln	Gln	Gln	Val	Val	
																100
																105
																110
gag	cta	aag	agc	aag	tac	cca	gat	gtg	gtt	ttg	atg	gtg	gaa	gtt	ggt	483
Glu	Leu	Lys	Ser	Lys	Tyr	Pro	Asp	Val	Val	Leu	Met	Val	Glu	Val	Gly	
																115
																120
																125
tac	agg	tac	aga	ttc	tcc	gga	gaa	gac	gcc	gag	atc	gca	gca	cgc	gtg	531
Tyr	Arg	Tyr	Arg	Phe	Phe	Gly	Glu	Asp	Ala	Glu	Ile	Ala	Ala	Arg	Val	
																130
																135
																140
ttg	ggt	att	tac	gct	cat	atg	gat	cac	aat	ttc	atg	acg	gct	agt	gtg	579
Leu	Gly	Ile	Tyr	Ala	His	Met	Asp	His	Asn	Phe	Met	Thr	Ala	Ser	Val	
																145
																150
																155
																160
cca	aca	ttt	cga	ttg	aat	ttc	cat	gtg	aga	aga	ctg	gtg	aat	gca	gga	627
Pro	Thr	Phe	Arg	Leu	Asn	Phe	His	Val	Arg	Arg	Leu	Val	Asn	Ala	Gly	
																165
																170
																175
tac	aag	att	ggt	gta	gtg	aag	cag	act	gaa	act	gca	gcc	att	aag	tcc	675
Tyr	Lys	Ile	Gly	Val	Val	Lys	Gln	Thr	Glu	Thr	Ala	Ala	Ile	Lys	Ser	
																180
																185
																190
cat	ggt	gca	aac	cgg	acc	ggc	cct	ttt	ttc	cgg	gga	ctg	tcg	gct	ttg	723
His	Gly	Ala	Asn	Arg	Thr	Gly	Pro	Phe	Phe	Arg	Gly	Leu	Ser	Ala	Leu	
																195
																200
																205
tat	acc	aaa	gcc	acg	ctt	gaa	gca	gct	gag	gat	ata	agt	ggg	ttt	tgt	771
Tyr	Thr	Lys	Ala	Thr	Leu	Glu	Ala	Ala	Glu	Asp	Ile	Ser	Gly	Gly	Cys	
																210
																215
																220
ggg	ggg	gaa	gaa	ggg	ttt	ggg	tca	cag	agt	aat	ttc	ttg	gtt	tgt	ttt	819
Gly	Gly	Glu	Glu	Gly	Phe	Gly	Ser	Gln	Ser	Asn	Phe	Leu	Val	Cys	Val	
																225
																230
																235
																240
gtg	gat	gag	aga	gtt	aag	tcg	gag	aca	tta	ggc	tgt	ggt	att	gaa	atg	867
Val	Asp	Glu	Arg	Val	Lys	Ser	Glu	Thr	Leu	Gly	Cys	Gly	Ile	Glu	Met	

245	250	255	
agt ttt gat gtt aga gtc ggt gtt gtc ggc gtt gaa att tcg aca ggt Ser Phe Asp Val Arg Val Gly Val Val Gly Val Glu Ile Ser Thr Gly			915
260	265	270	
gaa gtt gtt tat gaa gag ttc aat gat aat ttc atg aga agt gga tta Glu Val Val Tyr Glu Glu Phe Asn Asn Phe Met Arg Ser Gly Leu			963
275	280	285	
gag gct gtg att ttg agc ttg tca cca gct gag ctg ttg ctt ggc cag Glu Ala Val Ile Leu Ser Leu Ser Pro Ala Glu Leu Leu Leu Gly Gln			1011
290	295	300	
cct ctt tca caa caa act gag aag ttt ttg gtg gca cat gct gga cct Pro Leu Ser Gln Gln Thr Glu Lys Phe Leu Val Ala Met Ala Gly Pro			1059
305	310	315	320
acc tca aac gtt cga gtg gaa cgt gcc tca ctg gat tgt ttc agc aat Thr Ser Asn Val Arg Val Glu Arg Ala Ser Leu Asp Cys Phe Ser Asn			1107
325	330	335	
ggg aat gca gta gat gag gtt att tca tta tgt gaa aaa atc agc gca Gly Asn Ala Val Asp Glu Val Ile Ser Leu Cys Glu Lys Ile Ser Ala			1155
340	345	350	
ggg aac tta gaa gat gat aaa gaa atg aag ctg gag gct gct gaa aaa Gly Asn Leu Glu Asp Asp Lys Glu Met Lys Leu Glu Ala Ala Glu Lys			1203
355	360	365	
gga atg tct tgc ttg aca gtt cat aca att atg aac atg cca cat ctg Gly Met Ser Cys Leu Thr Val His Thr Ile Met Asn Met Pro His Leu			1251
370	375	380	
act gtt caa gcc ctc gcc cta acg ttt tgc cat ctc aaa cag ttt gga Thr Val Gln Ala Leu Ala Leu Thr Phe Cys His Leu Lys Gln Phe Gly			1299
385	390	395	400
ttt gaa agg atc ctt tac caa ggg gcc tca ttt cgc tct ttg tca agt Phe Glu Arg Ile Leu Tyr Gln Gly Ala Ser Phe Arg Ser Leu Ser Ser			1347
405	410	415	
aac aca gag atg act ctc tca gcc aat act ctg caa cag ttg gag gtt Asn Thr Glu Met Thr Leu Ser Ala Asn Thr Leu Gln Gln Leu Glu Val			1395
420	425	430	
gtg aaa aat aat tca gat gga tcg gaa tct ggc tcc tta ttc cat aat Val Lys Asn Asn Ser Asp Gly Ser Glu Ser Gly Ser Leu Phe His Asn			1443
435	440	445	
atg aat cac aca ctt aca gta tat gct tcc agg ctt ctt aga cac tgg Met Asn His Thr Leu Thr Val Tyr Gly Ser Arg Leu Leu Arg His Trp			1491
450	455	460	
gtg act cat cct cta tgc gat aga aat ttg ata tct gct cgg ctt gat Val Thr His Pro Leu Cys Asp Arg Asn Leu Ile Ser Ala Arg Leu Asp			1539
465	470	475	480
gct gtt tct gag att tct gct tgc atg gga tct cat agt tct tcc cag Ala Val Ser Glu Ile Ser Ala Cys Met Gly Ser His Ser Ser Gln			1587
485	490	495	

ctc	agc	agt	gag	ttg	gtt	gaa	gaa	ggt	tct	gag	aga	gca	att	gta	tca	1635	
Leu	Ser	Ser	Glu	Leu	Val	Glu	Glu	Gly	Ser	Glu	Arg	Ala	Ile	Val	Ser		
500									505					510			
cct	gag	ttt	tat	ctc	gtg	ctc	tcc	tca	gtc	ttg	aca	gct	atg	tct	aga	1683	
Pro	Glu	Phe	Tyr	Leu	Val	Leu	Ser	Ser	Val	Leu	Thr	Ala	Met	Ser	Arg		
515									520					525			
tca	tct	gat	att	caa	cgt	gga	ata	aca	aga	atc	ttt	cat	cgg	act	gct	1731	
Ser	Ser	Asp	Ile	Gln	Arg	Gly	Ile	Thr	Arg	Ile	Phe	His	Arg	Thr	Ala		
530							535				540						
aaa	gcc	aca	gag	ttc	att	gca	gtt	atg	gaa	gct	att	tta	ctt	gcg	ggg	1779	
Lys	Ala	Thr	Glu	Phe	Ile	Ala	Val	Met	Glu	Ala	Ile	Leu	Leu	Ala	Gly		
545							550				555			560			
aag	caa	att	cag	cgg	ctt	ggc	ata	aag	caa	gac	tct	gaa	atg	agg	agt	1827	
Lys	Gln	Ile	Gln	Arg	Leu	Gly	Ile	Lys	Gln	Asp	Ser	Glu	Met	Arg	Ser		
565									570					575			
atg	caa	tct	gca	act	gtg	cga	tct	act	ctt	ttg	aga	aaa	ttg	att	tct	1875	
Met	Gln	Ser	Ala	Thr	Val	Arg	Ser	Thr	Leu	Leu	Arg	Lys	Leu	Ile	Ser		
580								585					590				
gtt	att	tca	tcc	cct	gtt	gtg	gtt	gac	aat	gcc	gga	aaa	ctt	ctc	tct	1923	
Val	Ile	Ser	Ser	Pro	Val	Val	Val	Asp	Asn	Ala	Gly	Lys	Leu	Leu	Ser		
595								600					605				
gcc	cta	aat	aag	gaa	gcf	gct	gtt	cga	ggt	gac	ttg	ctc	gac	ata	cta	1971	
Ala	Leu	Asn	Lys	Glu	Ala	Ala	Val	Arg	Gly	Asp	Leu	Leu	Asp	Ile	Leu		
610							615					620					
atc	act	tcc	agc	caa	ttt	cct	gag	ctt	gct	gaa	gct	cgc	caa	gca	2019		
Ile	Thr	Ser	Ser	Asp	Gln	Phe	Pro	Glu	Leu	Ala	Glu	Ala	Arg	Gln	Ala		
625							630				635			640			
gtt	tta	gtc	atc	agg	gaa	aag	ctg	gat	tcc	tcg	ata	gct	tca	ttt	cgc	2067	
Val	Leu	Val	Ile	Arg	Glu	Lys	Leu	Asp	Ser	Ser	Ile	Ala	Ser	Phe	Arg		
645								650					655				
aag	aag	ctc	gct	att	cga	aat	ttg	gaa	ttt	ctt	caa	gtg	tcg	ggg	atc	2115	
Lys	Lys	Leu	Ala	Ile	Arg	Asn	Leu	Glu	Phe	Leu	Gln	Val	Ser	Gly	Ile		
660								665					670				
aca	cat	ttg	ata	gag	ctg	ccc	gtt	gat	tcc	aag	gtc	cct	atg	aat	tgg	2163	
Thr	His	Leu	Ile	Glu	Leu	Pro	Val	Asp	Ser	Lys	Val	Pro	His	Asn	Trp		
675								680					685				
gtg	aaa	gta	aat	agc	acc	aag	aag	act	att	cga	tat	cat	ccc	cca	gaa	2211	
Val	Lys	Val	Asn	Ser	Thr	Lys	Lys	Thr	Ile	Arg	Tyr	His	Pro	Pro	Glu		
690								695					700				
ata	gta	gct	ggc	ttg	gat	gag	cta	gct	cta	gca	act	gaa	cat	ctt	gcc	2259	
Ile	Val	Ala	Gly	Leu	Asp	Glu	Leu	Ala	Leu	Ala	Thr	Glu	His	Leu	Ala		
705								710					715			720	
att	gtg	aac	cga	gct	tcg	tgg	gat	agt	ttc	ctc	aag	agt	ttc	agt	aga	2307	
Ile	Val	Asn	Arg	Ala	Ser	Trp	Asp	Ser	Phe	Leu	Lys	Ser	Phe	Ser	Arg		
725									730					735			

tac tac aca gat ttt aag gct gcc gtt caa gct ctt gct gca ctg gac	2355		
Tyr Tyr Thr Asp Phe Lys Ala Ala Val Gln Ala Leu Ala Ala Leu Asp			
740	745	750	
tgt ttg cac tcc ctt tca act cta tct aga aac aac aag tat gtc cgt	2403		
Cys Leu His Ser Leu Ser Thr Leu Ser Arg Asn Lys Asn Tyr Val Arg			
755	760	765	
ccc gag ttt gtg gat gac tgt gaa cca gtt gag ata aac ata cag tct	2451		
Pro Glu Phe Val Asp Asp Cys Glu Pro Val Glu Ile Asn Ile Gln Ser			
770	775	780	
ggc cgt cat cct gta ctg gag act ata tta caa gat aac ttc gtc cca	2499		
Gly Arg His Pro Val Leu Glu Thr Ile Leu Gln Asp Asn Phe Val Pro			
785	790	795	800
aat gac aca att ttg cat gca gaa ggg gaa tat tgc caa att atc acc	2547		
Asn Asp Thr Ile Leu His Ala Glu Gly Glu Tyr Cys Gln Ile Ile Thr			
805	810	815	
gga cct aac atg gga gga aag agc tgc tat atc cgt caa gtt gct tta	2595		
Gly Pro Asn Met Gly Gly Lys Ser Cys Tyr Ile Arg Gln Val Ala Leu			
820	825	830	
att tcc ata atg gct cag gtt ggt tcc ttt gta cca gcg tca ttc gcc	2643		
Ile Ser Ile Met Ala Gln Val Gly Ser Phe Val Pro Ala Ser Phe Ala			
835	840	845	
aag ctg cac gtg ctt gat ggt gtt ttc act cgg atg ggt gct tca gac	2691		
Lys Leu His Val Leu Asp Gly Val Phe Thr Arg Met Gly Ala Ser Asp			
850	855	860	
agt atc cag cat ggc aga agt acc ttt cta gaa gaa tta agt gaa gcg	2739		
Ser Ile Gln His Gly Arg Ser Thr Phe Leu Glu Leu Ser Glu Ala			
865	870	875	880
tca cac ata atc aga acc tgt tct tct cgt tcg ctt gtt ata tta gat	2787		
Ser His Ile Ile Arg Thr Cys Ser Ser Arg Ser Leu Val Ile Leu Asp			
885	890	895	
gag ctt gga aga ggc act agc aca cac gac ggt gta gcc att gcc tat	2835		
Glu Leu Gly Arg Gly Thr Ser Thr His Asp Gly Val Ala Ile Ala Tyr			
900	905	910	
gca aca tta cag cat ctc cta gca gaa aag aga tgt ttg gtt ctt ttt	2883		
Ala Thr Leu Gln His Leu Leu Ala Glu Lys Arg Cys Leu Val Leu Phe			
915	920	925	
gtc acg cat tac cct gaa ata gct gag atc agt aac gga ttc cca ggt	2931		
Val Thr His Tyr Pro Glu Ile Ala Glu Ile Ser Asn Gly Phe Pro Gly			
930	935	940	
tct gtt ggg aca tac cat gtc tcg tat ctg aca ttg cag aag gat aaa	2979		
Ser Val Gly Thr Tyr His Val Ser Tyr Leu Thr Leu Gln Lys Asp Lys			
945	950	955	960
ggc agt tat gat cat gat gat gtg acc tac cta tat aag ctt gtg cgt	3027		
Gly Ser Tyr Asp His Asp Asp Val Thr Tyr Leu Tyr Lys Leu Val Arg			
965	970	975	
ggt ctt tgc agc agg agc ttt ggt ttt aag gtt gct cag ctt gcc cag	3075		

Gly Leu Cys Ser Arg Ser Phe Gly Phe Lys Val Ala Gln Leu Ala Gln
 980 985 990

ata cct cca tca tgt ata cgt cga gcc att tca atg gct gca aaa ttg 3123
 Ile Pro Pro Ser Cys Ile Arg Arg Ala Ile Ser Met Ala Ala Lys Leu
 995 1000 1005

gaa gct gag gta cgt gca aga gag aga aat aca cgc atg gga gaa cca 3171
 Glu Ala Glu Val Arg Ala Arg Glu Arg Asn Thr Arg Met Gly Glu Pro
 1010 1015 1020

gaa gga cat gaa gaa ccg aga ggc gca gaa gaa tct att tcg gct cta 3219
 Glu Gly His Glu Glu Pro Arg Gly Ala Glu Glu Ser Ile Ser Ala Leu
 1025 1030 1035 1040

ggt gac ttg ttt gca gac ctg aaa ttt gct ctc tct gaa gag gac cct 3267
 Gly Asp Leu Phe Ala Asp Leu Lys Phe Ala Leu Ser Glu Glu Asp Pro
 1045 1050 1055

tgg aaa gca ttc gag ttt tta aag cat gct tgg aag att gct ggc aaa 3315
 Trp Lys Ala Phe Glu Phe Leu Lys His Ala Trp Lys Ile Ala Gly Lys
 1060 1065 1070

atc aga cta aaa cca act tgt tca ttt tgatttaatc ttaacattat 3362
 Ile Arg Leu Lys Pro Thr Cys Ser Phe
 1075 1080

agcaactgca aggtcttgat catctgttag ttgcgtacta acttatgtgt attagtataa
 3422
 caagaaaaga gaatttagaga gatggattct aatccggtgt tgcagttacat cttttctcca
 3482
 cccgcataaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3522

<210> 19
 <211> 1081
 <212> PRT
 <213> Arabidopsis thaliana ecotype Columbia
 <223> Polypeptide MSH3

<400> 19

Met Gly Lys Gln Lys Gln Gln Thr Ile Ser Arg Phe Phe Ala Pro Lys
 1 5 10 15

Pro Lys Ser Pro Thr His Glu Pro Asn Pro Val Ala Glu Ser Ser Thr
 20 25 30

Pro Pro Pro Lys Ile Ser Ala Thr Val Ser Phe Ser Pro Ser Lys Arg
 35 40 45

Lys Leu Leu Ser Asp His Leu Ala Ala Ala Ser Pro Lys Lys Pro Lys
 50 55 60

Leu Ser Pro His Thr Gln Asn Pro Val Pro Asp Pro Asn Leu His Gln
 65 70 75 80

Arg Phe Leu Gln Arg Phe Leu Glu Pro Ser Pro Glu Glu Tyr Val Pro
 85 90 95

Glu Thr Ser Ser Ser Arg Lys Tyr Thr Pro Leu Glu Gln Gln Val Val

100 105 110

Glu Leu Lys Ser Lys Tyr Pro Asp Val Val Leu Met Val Glu Val Gly
115 120 125

Tyr Arg Tyr Arg Phe Phe Gly Glu Asp Ala Glu Ile Ala Ala Arg Val
130 135 140

Leu Gly Ile Tyr Ala His Met Asp His Asn Phe Met Thr Ala Ser Val
145 150 155 160

Pro Thr Phe Arg Leu Asn Phe His Val Arg Arg Leu Val Asn Ala Gly
165 170 175

Tyr Lys Ile Gly Val Val Lys Gln Thr Glu Thr Ala Ala Ile Lys Ser
180 185 190

His Gly Ala Asn Arg Thr Gly Pro Phe Phe Arg Gly Leu Ser Ala Leu
195 200 205

Tyr Thr Lys Ala Thr Leu Glu Ala Ala Glu Asp Ile Ser Gly Gly Cys
210 215 220

Gly Gly Glu Glu Gly Phe Gly Ser Gln Ser Asn Phe Leu Val Cys Val
225 230 235 240

Val Asp Glu Arg Val Lys Ser Glu Thr Leu Gly Cys Gly Ile Glu Met
245 250 255

Ser Phe Asp Val Arg Val Gly Val Val Glu Ile Ser Thr Gly
260 265 270

Glu Val Val Tyr Glu Glu Phe Asn Asp Asn Phe Met Arg Ser Gly Leu
275 280 285

Glu Ala Val Ile Leu Ser Leu Ser Pro Ala Glu Leu Leu Gly Gln
290 295 300

Pro Leu Ser Gln Gln Thr Glu Lys Phe Leu Val Ala Met Ala Gly Pro
305 310 315 320

Thr Ser Asn Val Arg Val Glu Arg Ala Ser Leu Asp Cys Phe Ser Asn
325 330 335

Gly Asn Ala Val Asp Glu Val Ile Ser Leu Cys Glu Lys Ile Ser Ala
340 345 350

Gly Asn Leu Glu Asp Asp Lys Glu Met Lys Leu Glu Ala Ala Glu Lys
355 360 365

Gly Met Ser Cys Leu Thr Val His Thr Ile Met Asn Met Pro His Leu
370 375 380

Thr Val Gln Ala Leu Ala Leu Thr Phe Cys His Leu Lys Gln Phe Gly
385 390 395 400

Phe Glu Arg Ile Leu Tyr Gln Gly Ala Ser Phe Arg Ser Leu Ser Ser
405 410 415

Asn Thr Glu Met Thr Leu Ser Ala Asn Thr Leu Gln Gln Leu Glu Val
420 425 430

Val Lys Asn Asn Ser Asp Gly Ser Glu Ser Gly Ser Leu Phe His Asn
435 440 445

Met Asn His Thr Leu Thr Val Tyr Gly Ser Arg Leu Leu Arg His Trp
450 455 460

Val Thr His Pro Leu Cys Asp Arg Asn Leu Ile Ser Ala Arg Leu Asp
465 470 475 480

Ala Val Ser Glu Ile Ser Ala Cys Met Gly Ser His Ser Ser Gln
485 490 495

Leu Ser Ser Glu Leu Val Glu Glu Gly Ser Glu Arg Ala Ile Val Ser
500 505 510

Pro Glu Phe Tyr Leu Val Leu Ser Ser Val Leu Thr Ala Met Ser Arg
515 520 525

Ser Ser Asp Ile Gln Arg Gly Ile Thr Arg Ile Phe His Arg Thr Ala
530 535 540

Lys Ala Thr Glu Phe Ile Ala Val Met Glu Ala Ile Leu Leu Ala Gly
545 550 555 560

Lys Gln Ile Gln Arg Leu Gly Ile Lys Gln Asp Ser Glu Met Arg Ser
565 570 575

Met Gln Ser Ala Thr Val Arg Ser Thr Leu Leu Arg Lys Leu Ile Ser
580 585 590

Val Ile Ser Ser Pro Val Val Val Asp Asn Ala Gly Lys Leu Leu Ser
595 600 605

Ala Leu Asn Lys Glu Ala Ala Val Arg Gly Asp Leu Leu Asp Ile Leu
610 615 620

Ile Thr Ser Ser Asp Gln Phe Pro Glu Leu Ala Glu Ala Arg Gln Ala
625 630 635 640

Val Leu Val Ile Arg Glu Lys Leu Asp Ser Ser Ile Ala Ser Phe Arg
645 650 655

Lys Lys Leu Ala Ile Arg Asn Leu Glu Phe Leu Gln Val Ser Gly Ile
660 665 670

Thr His Leu Ile Glu Leu Pro Val Asp Ser Lys Val Pro His Asn Trp
675 680 685

Val Lys Val Asn Ser Thr Lys Lys Thr Ile Arg Tyr His Pro Pro Glu
690 695 700

Ile Val Ala Gly Leu Asp Glu Leu Ala Leu Ala Thr Glu His Leu Ala
705 710 715 720

Ile Val Asn Arg Ala Ser Trp Asp Ser Phe Leu Lys Ser Phe Ser Arg
725 730 735

Tyr Tyr Thr Asp Phe Lys Ala Ala Val Gln Ala Leu Ala Leu Asp
740 745 750

Cys Leu His Ser Leu Ser Thr Leu Ser Arg Asn Lys Asn Tyr Val Arg
755 760 765

Pro Glu Phe Val Asp Asp Cys Glu Pro Val Glu Ile Asn Ile Gln Ser
770 775 780

Gly Arg His Pro Val Leu Glu Thr Ile Leu Gln Asp Asn Phe Val Pro
785 790 795 800

Asn Asp Thr Ile Leu His Ala Glu Gly Glu Tyr Cys Gln Ile Ile Thr
805 810 815

Gly Pro Asn Met Gly Gly Lys Ser Cys Tyr Ile Arg Gln Val Ala Leu
820 825 830

Ile Ser Ile Met Ala Gln Val Gly Ser Phe Val Pro Ala Ser Phe Ala
835 840 845

Lys Leu His Val Leu Asp Gly Val Phe Thr Arg Met Gly Ala Ser Asp
850 855 860

Ser Ile Gln His Gly Arg Ser Thr Phe Leu Glu Glu Leu Ser Glu Ala
865 870 875 880

Ser His Ile Ile Arg Thr Cys Ser Ser Arg Ser Leu Val Ile Leu Asp
885 890 895

Glu Leu Gly Arg Gly Thr Ser Thr His Asp Gly Val Ala Ile Ala Tyr
900 905 910

Ala Thr Leu Gln His Leu Leu Ala Glu Lys Arg Cys Leu Val Leu Phe
915 920 925

Val Thr His Tyr Pro Glu Ile Ala Glu Ile Ser Asn Gly Phe Pro Gly
930 935 940

Ser Val Gly Thr Tyr His Val Ser Tyr Leu Thr Leu Gln Lys Asp Lys
945 950 955 960

Gly Ser Tyr Asp His Asp Asp Val Thr Tyr Leu Tyr Lys Leu Val Arg
965 970 975

Gly Leu Cys Ser Arg Ser Phe Gly Phe Lys Val Ala Gln Leu Ala Gln
980 985 990

Ile Pro Pro Ser Cys Ile Arg Arg Ala Ile Ser Met Ala Ala Lys Leu
995 1000 1005

Glu Ala Glu Val Arg Ala Arg Glu Arg Asn Thr Arg Met Gly Glu Pro
1010 1015 1020

Glu Gly His Glu Glu Pro Arg Gly Ala Glu Glu Ser Ile Ser Ala Leu
1025 1030 1035 1040

Gly Asp Leu Phe Ala Asp Leu Lys Phe Ala Leu Ser Glu Glu Asp Pro
1045 1050 1055

Trp Lys Ala Phe Glu Phe Leu Lys His Ala Trp Lys Ile Ala Gly Lys
1060 1065 1070

Ile Arg Leu Lys Pro Thr Cys Ser Phe

1075

1080

<210> 20
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> MSH6 specific primer 638 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 20

tctctaccag gtgacgaaaa accg 24

<210> 21
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> Primer S81 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 21

cgtcgccttt agcatccccct tccttcac 28

<210> 22
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> MSH6 specific primer S823 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 22

gcttggcgca tctaatacgaa tcatgacagg 30

<210> 23
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> MSH6 specific primer 637 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 23

gacagcgtca gttcttcaga atgc 24

<210> 24
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> MSH6 specific primer 1S8 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 24

atcccgggat gcagcgccag agatcgattt tgt 33

<210> 25
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> MSH6 specific primer S83 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 25

cgctatatctat ggctgcttcg aattgag 27

<210> 26
<211> 2188
<212> DNA
<213> Arabidopsis thaliana ecotype Columbia
<223> Clone 43

<400> 26

ccggggatgc agcgccagag atcgattttg tctttcttcc aaaaacccac ggcggcgact 60
acgaagggtt tggttccgg cgatgctgct agcggcgggg gcggcagcgg aggaccacga
120
ttaaatgtga aggaagggaa tgctaaaggc gacgcttctg tacgtttgc tgttcgaaa
180
tctgtcgatg aggttagagg aacggatact ccacccgaga aggttcccg tcgtgtcctg
240
ccgtctggat ttaagccggc tgaatccgcc ggtgatgctt cgtccctgtt ctccaatatt
300
atgcataagt ttgtaaaagt cgatgatcga gattgttctg gagagaggag ccgagaagat
360
gttgttccgc tgaatgattc atctctatgt atgaaggcta atgatgttat tcctcaattt
420
cgttccaata atggtaaaac tcaagaaaga aaccatgctt ttagttcag tgggagagct
480
gaacttagat cagtagaaga tataggagta gatggcgatg ttcctggtcc agaaacacca
540
gggatgcgtc cacgtgcttc tcgcttgaag cgagttctgg aggatgaaat gacttttaag
600
gaggataagg ttccctgtatt ggactctaac aaaaggctga aaatgctcca ggatccgggtt
660
tgtggagaga agaaagaagt aaacgaagga accaaatttg aatggcttga gtcttctcga

720 atcaggatg ccaatagaag acgtcctgat gatccccttt acgatagaaa gaccc tacac
780 ataccacctg atgtttcaa gaaaatgtct gcatacataaa agcaatattg gagtgtaag
840 agtgaatata tggacattgt gctttctt aaagtggga aatttatga gctgtatgag
900 ctagatgcgg aatttaggtca caaggagctt gactggaaga tgaccatgag tggtgtgg
960 aaatgcagac aggttggat ctctgaaagt gggatagatg aggcaatgcgaa aagctatta
1020 gctcgatggat ataaagttgg acgaatcgag cagctagaaa catctgacca agcaaaagcc
1080 agaggtgcta atactataat tccaaggaag ctatgtcagg tattactcc atcaacagca
1140 agcgaggaa acatcgccgc tcatgtgc tcatttcctt ctataaaaga gatcaaaatg
1200 gagctacaaa agtggcaac tgtgtatgga ttgtttttt ttgactgtgc tgccttgagg
1260 ttgtttttt ggtccatcag cgatgtgc tcatgtgc tcattggagc gttattgtatg
1320 cagggttctc caaaggaagt gttatgtac agtaaaggc tatcaagaga agcacaaaag
1380 gctctaagga aatacgtt gacagggtct acggcggtac agttggctcc agtaccacaa
1440 gtaatggggg atacagatgc tgctggagtt agaaatataa tagaatctaa cggatactt
1500 aaagggttctt ctgaatcatg gaactgtgc ttgtatggc taaatgaatg tgatgttgcc
1560 cttatgtc ttggagagct aattaatcat ctgtcttaggc taaagctaga agatgtactt
1620 aagcatgggg atattttcc ataccaagtt tacaggggtt gtctcagaat tgatggccag
1680 acgatggtaa atcttggat atttaacaat agctgtgatg gtggcccttc agggacctt
1740 tacaatatac ttgataactg tgtagtcca actggtaagc gactcttaag gaattggatc
1800 tgccatccac tcaaagatgt agaaagcatc aataaacggc ttgtatgtatg tgaagaattc
1860 acggcaaaact cagaaagtat gcaaattact ggccagtatc tccacaaact tccagactta
1920 gaaagactgc tcggacgcat caagtctgc gttcgatcat cagcctctgt gttgcctgct
1980 ctgtttttt gaaaagtgc gaaacaacga gttaaagcat ttggcaaat tggaaagg
2040 ttcaagaatgtg gaatttgatct gttgtggct ctacagaagg aatcaaataat gatgagttt
2100 ctatataaac tctgtaaact tcctatatta gtaggaaaaa gcgggctaga gttatttctt
2160 tctcaattcg aagcagccat agatagcg
2188

<210> 27
<211> 1385
<212> DNA
<213> *Arabidopsis thaliana* ecotype Columbia
<223> Clone 62

<400> 27

catcagcctc tgtgttgctt gctttctgg ggaaaaaaagt gctgaaacaa cgagttaaag 60
catttggca aattgtgaaa gggttcagaa gtgaaattga tctgttgtt gctctacaga
120
aggaatcaaa tatgtatgagt ttgcattata aactctgtaa acttcctata ttagtaggaa
180
aaagcgggct agagttattt ctttctcaat tcgaaggcagc catagatagc gactttccaa
240
attatcagaa ccaagatgtg acagatgaaa acgctgaaac tctcacaata cttatcgAAC
300
tttttatcga aagagcaact caatggctg aggtcattca caccataagc tgccTAGATG
360
tcctgagatc ttttgcattc gcagcaagtc tctctgctgg aagcatggcc aggctgtta
420
tttttcccga atcagaagct acagatcaga atcagaaaac aaaagggcca atacttaaaa
480
tccaaggact atggcatcca tttgcagttt cagccgatgg tcaattgcct gttccgaatg
540
atatactcct tggcgaggct agaagaagca gtggcagcat tcattcctcg tcattgttac
600
tgacgggacc aaacatgggc ggaaaatcaa ctcttcttcg tgcaacatgt ctggccgtta
660
tctttgccca acttggctgc tacgtccgt gtgagtctt cggaaatctcc ctcgtggata
720
ctatcttcac aaggcttggc gcatctgata gaatcatgac aggagagagt accttttgg
780
tagaatgcac tgagacagcg tcagttcttc agaatgcaac tcaggattca ctagtaatcc
840
ttgacgaact gggcagagga actagtactt tcgatggata cgccattgca tactcggtt
900
ttcgtcacct ggttagagaaa gttcaatgtc ggatgcttt tgcaacacat taccaccctc
960
tcaccaagga attcgcgtct cacccacgtg tcacctcgaa acacatggct tgccgttca
1020
aatcaagatc tgattatcaa ccacgtgggt gtgatcaaga cctagtgttc ttgtaccgtt
1080
taaccgaggg agcttgcct gagagctacg gacttcaagt ggcactcatg gctggaataac
1140
caaaccaagt ggtgaaaca gcatcagggtg ctgctcaagc catgaagaga tcaattgggg
1200
aaaactcaa gtcaagttag ctaagatctg agttctcaag tctgcatgaa gactggctca
1260
agtcattggt gggtatttct cgagtcgccc acaacaatgc cccattggc gaagatgact
1320
acgacacttt gtttgctta tggcatgaga tcaaattcctc ttactgtgtt cccaaataac
1380
ccggg 1385

<210> 28
<211> 34
<212> DNA
<213> Artificial sequence

<220>
<223> MSH6 specific primer 2S8 for PCR using cDNA of Arabidopsis
thaliana
ecotype Columbia

<400> 28

atcccggtt atttggaaac acagtaagag gatt 34

<210> 29
 <211> 27
 <212> DNA
 <213> Artificial sequence

 <220>
 <223> MSH6 specific primer S82 for PCR using cDNA of Arabidopsis
 thaliana
 ecotype Columbia

 <400> 29

 gcgttcgatc atcagcctct gtgttgc 27

 <210> 30
 <211> 3606
 <212> DNA
 <213> Arabidopsis thaliana ecotype Columbia

 <220>
 <221> CDS
 <222> (142)....(3468)
 <223> AtMSH6 full-length cDNA and deduced sequence of the encoded
 polypeptide

 <400> 30

 aaaagttgag ccctgaggag tatcgttcc gccatttcta cgacgcaagg cgaaaatttt 60
 tggcgccaat cttccccccc ttgcgaattc ttcagctca aaacatcggt tctctctcac
 120

 tctctctcac aattccaaaa a atg cag cgc cag aga tcg att ttg tct ttc 171
 Met Gln Arg Gln Arg Ser Ile Leu Ser Phe
 1 5 10

 ttc caa aaa ccc acc gcg gcg act acg aag ggt ttg gtt tcc ggc gat 219
 Phe Gln Lys Pro Thr Ala Ala Thr Thr Lys Gly Leu Val Ser Gly Asp
 15 20 25

 gct gct agc ggc ggg ggc agc gga gga cca cga ttt aat gtg aag 267
 Ala Ala Ser Gly Gly Ser Gly Gly Pro Arg Phe Asn Val Arg
 30 35 40

 gaa ggg gat gct aaa ggc gac gct tct gta cgt ttt gct gtt tcg aaa 315
 Glu Gly Asp Ala Lys Gly Asp Ala Ser Val Arg Phe Ala Val Ser Lys
 45 50 55

 tct gtc gat gag gtt aga gga acg gat act cca ccg gag aag gtt ccg 363
 Ser Val Asp Glu Val Arg Gly Thr Asp Thr Pro Pro Glu Lys Val Pro
 60 65 70

 cgt cgt gtc ctg ccg tct gga ttt aag ccg gct gaa tcc gcc gat 411
 Arg Arg Val Leu Pro Ser Gly Phe Lys Pro Ala Glu Ser Ala Gly Asp
 75 80 85 90

 gct tcg tcc ctg ttc tcc aat att atg cat aag ttt gta aaa gtc gat 459
 Ala Ser Ser Leu Phe Ser Asn Ile Met His Lys Phe Val Lys Val Asp
 95 100 105

gat cga gat tgt tct gga gag agg agc cga gaa gat gtt gtt ccg ctg 507
 Asp Arg Asp Cys Ser Gly Glu Arg Ser Arg Glu Asp Val Val Pro Leu
 110 115 120

 aat gat tca tct cta tgt atg aag gct aat gat gtt att cct caa ttt 555
 Asn Asp Ser Ser Leu Cys Met Lys Ala Asn Asp Val Ile Pro Gln Phe
 125 130 135

 cgt tcc aat aat ggt aaa act caa gaa aga aac cat gct ttt agt ttc 603
 Arg Ser Asn Asn Gly Lys Thr Gln Glu Arg Asn His Ala Phe Ser Phe
 140 145 150

 agt ggg aga gct gaa ctt aga tca gta gaa gat ata gga gta gat ggc 651
 Ser Gly Arg Ala Glu Leu Arg Ser Val Glu Asp Ile Gly Val Asp Gly
 155 160 165 170

 gat gtt cct ggt cca gaa aca cca ggg atg cgt cca cgt gct tct cgc 699
 Asp Val Pro Gly Pro Glu Thr Pro Gly Met Arg Pro Arg Ala Ser Arg
 175 180 185

 ttg aag cga gtt ctg gag gat gaa atg act ttt aag gag gat aag gtt 747
 Leu Lys Arg Val Leu Glu Asp Glu Met Thr Phe Lys Glu Asp Lys Val
 190 195 200

 cct gta ttg gac tct aac aaa agg ctg aaa atg ctc cag gat ccg gtt 795
 Pro Val Leu Asp Ser Asn Lys Arg Leu Lys Met Leu Gln Asp Pro Val
 205 210 215

 tgt gga gag aag aaa gaa gta aac gaa gga acc aaa ttt gaa tgg ctt 843
 Cys Gly Glu Lys Lys Glu Val Asn Glu Gly Thr Lys Phe Glu Trp Leu
 220 225 230

 gag tct tct cga atc agg gat gcc aat aga aga cgt cct gat gat ccc 891
 Glu Ser Ser Arg Ile Arg Asp Ala Asn Arg Arg Arg Pro Asp Asp Pro
 235 240 245 250

 ctt tac gat aga aag acc tta cac ata cca cct gat gtt ttc aag aaa 939
 Leu Tyr Asp Arg Lys Thr Leu His Ile Pro Pro Asp Val Phe Lys Lys
 255 260 265

 atg tct gca tca caa aag caa tat tgg agt gtt aag agt gaa tat atg 987
 Met Ser Ala Ser Gln Lys Gln Tyr Trp Ser Val Lys Ser Glu Tyr Met
 270 275 280

 gac att gtg ctt ttc ttt aaa gtg ggg aaa ttt tat gag ctg tat gag 1035
 Asp Ile Val Leu Phe Phe Lys Val Gly Lys Phe Tyr Glu Leu Tyr Glu
 285 290 295

 cta gat gcg gaa tta ggt cac aag gag ctt gac tgg aag atg acc atg 1083
 Leu Asp Ala Glu Leu Gly His Lys Glu Leu Asp Trp Lys Met Thr Met
 300 305 310

 agt ggt gtg gga aaa tgc aga cag gtt atc tct gaa agt ggg ata 1131
 Ser Gly Val Gly Lys Cys Arg Gln Val Gly Ile Ser Glu Ser Gly Ile
 315 320 325 330

 gat gag gca gtg caa aag cta tta gct cgt gga tat aaa gtt gga cga 1179
 Asp Glu Ala Val Gln Lys Leu Leu Ala Arg Gly Tyr Lys Val Gly Arg
 335 340 345

atc gag cag cta gaa aca tct gac caa gca aaa gcc aga ggt gct aat		1227	
Ile Glu Gln Ileu Glu Thr Ser Asp Gln Ala Lys Ala Arg Gly Ala Asn			
350	355	360	
act ata att cca agg aag cta gtt cag gta act cca tca aca gca		1275	
Thr Ile Ile Pro Arg Lys Leu Val Gln Val Leu Thr Pro Ser Thr Ala			
365	370	375	
agc gag gga aac atc ggg cct gat gcc gtc cat ctt ctt gct ata aaa		1323	
Ser Glu Gly Asn Ile Gly Pro Asp Ala Val His Leu Leu Ala Ile Lys			
380	385	390	
gag atc aaa atg gag cta caa aag tgt tca act gtg tat gga ttt gct		1371	
Glu Ile Lys Met Glu Leu Gln Lys Cys Ser Thr Val Tyr Gly Phe Ala			
395	400	405	410
ttt gtt gac tgt gct gcc ttg agg ttt tgg gtt ggg tcc atc agc gat		1419	
Phe Val Asp Cys Ala Ala Leu Arg Phe Trp Val Gly Ser Ile Ser Asp			
415	420	425	
gat gca tca tgt gct gct ctt gga gcg tta ttg atg cag gtt tct cca		1467	
Asp Ala Ser Cys Ala Ala Leu Gly Ala Leu Leu Met Gln Val Ser Pro			
430	435	440	
aag gaa gtg tta tat gac agt aaa ggg cta tca aga gaa gca caa aag		1515	
Lys Glu Val Leu Tyr Asp Ser Lys Gly Leu Ser Arg Glu Ala Gln Lys			
445	450	455	
gct cta agg aaa tat acg ttg aca ggg tct acg gcg gta cag ttg gct		1563	
Ala Leu Arg Lys Tyr Thr Leu Thr Gly Ser Thr Ala Val Gln Leu Ala			
460	465	470	
cca gta cca caa gta atg ggg gat aca gat gct gct gga gtt aga aat		1611	
Pro Val Pro Gln Val Met Gly Asp Thr Asp Ala Ala Gly Val Arg Asn			
475	480	485	490
ata ata gaa tct aac gga tac ttt aaa ggt tct tct gaa tca tgg aac		1659	
Ile Ile Glu Ser Asn Gly Tyr Phe Lys Gly Ser Ser Glu Ser Trp Asn			
495	500	505	
tgt gct gtt gat ggt cta aat gaa tgt gat gtt gcc ctt agt gct ctt		1707	
Cys Ala Val Asp Gly Leu Asn Glu Cys Asp Val Ala Leu Ser Ala Leu			
510	515	520	
gga gag cta att aat cat ctg tct agg cta aag cta gaa gat gta ctt		1755	
Gly Glu Leu Ile Asn His Leu Ser Arg Leu Lys Leu Glu Asp Val Leu			
525	530	535	
aag cat ggg gat att ttt cca tac caa gtt tac agg ggt tgt ctc aga		1803	
Lys His Gly Asp Ile Phe Pro Tyr Gln Val Tyr Arg Gly Cys Leu Arg			
540	545	550	
att gat ggc cag acg atg gta aat ctt gag ata ttt aac aat agc tgt		1851	
Ile Asp Gly Gln Thr Met Val Asn Leu Glu Ile Phe Asn Asn Ser Cys			
555	560	565	570
gat ggt ggt cct tca ggg acc ttg tac aaa tat ctt gat aac tgt gtt		1899	
Asp Gly Gly Pro Ser Gly Thr Leu Tyr Lys Tyr Leu Asp Asn Cys Val			
575	580	585	
agt cca act ggt aag cga ctc tta agg aat tgg atc tgc cat cca ctc		1947	

Ser Pro Thr Gly Lys Arg Leu Leu Arg Asn Trp Ile Cys His Pro Leu
 590 595 600
 aaa gat gta gaa agc atc aat aaa cgg ctt gat gta gtt gaa gaa ttc 1995
 Lys Asp Val Glu Ser Ile Asn Lys Arg Leu Asp Val Val Glu Glu Phe
 605 610 615
 acg gca aac tca gaa agt atg caa atc act ggc cag tat ctc cac aaa 2043
 Thr Ala Asn Ser Glu Ser Met Gln Ile Thr Gly Gln Tyr Leu His Lys
 620 625 630
 ctt cca gac tta gaa aga ctg ctc gga cgc atc aag tct agc gtt cga 2091
 Leu Pro Asp Leu Glu Arg Leu Leu Gly Arg Ile Lys Ser Ser Val Arg
 635 640 645 650
 tca tca gcc tct gtg ttg cct gct ctt ctg ggg aaa aaa gtg ctg aaa 2139
 Ser Ser Ala Ser Val Leu Pro Ala Leu Leu Gly Lys Lys Val Leu Lys
 655 660 665
 caa cga gtt aaa gca ttt ggg caa att gtg aaa ggg ttc aga agt gga 2187
 Gln Arg Val Lys Ala Phe Gly Gln Ile Val Lys Gly Phe Arg Ser Gly
 670 675 680
 att gat ctg ttg ttg gct cta cag aag gaa tca aat atg atg agt ttg 2235
 Ile Asp Leu Leu Ala Leu Gln Lys Glu Ser Asn Met Met Ser Leu
 685 690 695
 ctt tat aaa ctc tgt aaa ctt cct ata tta gta gga aaa agc ggg cta 2283
 Leu Tyr Lys Leu Cys Lys Leu Pro Ile Leu Val Gly Lys Ser Gly Leu
 700 705 710
 gag tta ttt ctt tct caa ttc gaa gca gcc ata gat agc gac ttt cca 2331
 Glu Leu Phe Leu Ser Gln Phe Glu Ala Ala Ile Asp Ser Asp Phe Pro
 715 720 725 730
 aat tat cag aac caa gat gtg aca gat gaa aac gct gaa act ctc aca 2379
 Asn Tyr Gln Asn Gln Asp Val Thr Asp Glu Asn Ala Glu Thr Leu Thr
 735 740 745
 ata ctt atc gaa ctt ttt atc gaa aga gca act caa tgg tct gag gtc 2427
 Ile Leu Ile Glu Leu Phe Ile Glu Arg Ala Thr Gln Trp Ser Glu Val
 750 755 760
 att cac acc ata agc tgc cta gat gtc ctg aga tct ttt gca atc gca 2475
 Ile His Thr Ile Ser Cys Leu Asp Val Leu Arg Ser Phe Ala Ile Ala
 765 770 775
 gca agt ctc tct gct gga agc atg gcc agg cct gtt att ttt ccc gaa 2523
 Ala Ser Leu Ser Ala Gly Ser Met Ala Arg Pro Val Ile Phe Pro Glu
 780 785 790
 tca gaa gct aca gat cag aat cag aaa aca aaa ggg cca ata ctt aaa 2571
 Ser Glu Ala Thr Asp Gln Asn Gln Lys Thr Lys Gly Pro Ile Leu Lys
 795 800 805 810
 atc caa gga cta tgg cat cca ttt gca gtt gca gcc gat ggt caa ttg 2619
 Ile Gln Gly Leu Trp His Pro Phe Ala Val Ala Ala Asp Gly Gln Leu
 815 820 825
 cct gtt ccg aat gat ata ctc ctt ggc gag gct aga aga agc agt ggc 2667
 Pro Val Pro Asn Asp Ile Leu Leu Gly Glu Ala Arg Arg Ser Ser Gly

830	835	840	
agc att cat cct cggttgc tca ctg acggaa cca aac atggc gga			2715
Ser Ile His Pro Arg Ser Leu Leu Leu Thr Gly Pro Asn Met Gly Gly			
845	850	855	
aaa tca act ctt ctt cgt gca aca tgt ctggcc gtt atc ttt gcc caa			2763
Lys Ser Thr Leu Leu Arg Ala Thr Cys Leu Ala Val Ile Phe Ala Gln			
860	865	870	
ctt ggc tgc tac gtg ccgttgt gag tct tgc gaa atc tcc ctc gtg gat			2811
Leu Gly Cys Tyr Val Pro Cys Glu Ser Cys Glu Ile Ser Leu Val Asp			
875	880	885	890
act atc ttc aca agg ctt ggc gca tct gat aga atc atg aca gga gag			2859
Thr Ile Phe Thr Arg Leu Gly Ala Ser Asp Arg Ile Met Thr Gly Glu			
895	900	905	
agt acc ttt ttgtgtactgactgactgactgactgactgactgactgactgactgactg			2907
Ser Thr Phe Leu Val Glu Cys Thr Glu Thr Ala Ser Val Leu Gln Asn			
910	915	920	
gca act cag gat tca cta gta atc ctt gac gaa ctggc aga gga act			2955
Ala Thr Gln Asp Ser Leu Val Ile Leu Asp Glu Leu Gly Arg Gly Thr			
925	930	935	
agt act ttc gat gga tac gcc att gca tac tcgtttcgactcacctg			3003
Ser Thr Phe Asp Gly Tyr Ala Ile Ala Tyr Ser Val Phe Arg His Leu			
940	945	950	
gta gag aaa gtt caa tgt cggtatgc ttt gca aca cat tac cac cct			3051
Val Glu Lys Val Gln Cys Arg Met Leu Phe Ala Thr His Tyr His Pro			
955	960	965	970
ctc acc aag gaa ttc gcgttccacccatgttgcaccatcgaaaacatgt			3099
Leu Thr Lys Glu Phe Ala Ser His Pro Arg Val Thr Ser Lys His Met			
975	980	985	
gct tgc gca ttc aaa tca aga tct gat tat caa cca cgt ggt tgt gat			3147
Ala Cys Ala Phe Lys Ser Arg Ser Asp Tyr Gln Pro Arg Gly Cys Asp			
990	995	1000	
caa gac cta gtg ttc ttgtac cgtttaaccgaggaa gcttgtcctgag			3195
Gln Asp Leu Val Phe Leu Tyr Arg Leu Thr Glu Gly Ala Cys Pro Glu			
1005	1010	1015	
agc tac gga ctt caa gtg gca ctc atg gct gga ata cca aac caa gtg			3243
Ser Tyr Gly Leu Gln Val Ala Leu Met Ala Gly Ile Pro Asn Gln Val			
1020	1025	1030	
gtt gaa aca gca tca ggt gct gct caa gcc atg aag aga tca att ggg			3291
Val Glu Thr Ala Ser Gly Ala Ala Gln Ala Met Lys Arg Ser Ile Gly			
1035	1040	1045	1050
gga aac ttc aag tca agt gag cta aga tct gag ttc tca agt ctg cat			3339
Glu Asn Phe Lys Ser Ser Glu Leu Arg Ser Glu Phe Ser Ser Leu His			
1055	1060	1065	
gaa gac tgg ctc aag tca ttgtgtggatttctcgatgttgcggcccacaac			3387
Glu Asp Trp Leu Lys Ser Leu Val Gly Ile Ser Arg Val Ala His Asn			
1070	1075	1080	

aat gcc ccc att ggc gaa gat gac tac gac act ttg ttt tgc tta tgg 3435
Asn Ala Pro Ile Gly Glu Asp Asp Tyr Asp Thr Leu Phe Cys Leu Trp
1085 1090 1095

cat gag atc aaa tcc tct tac tgt gtt ccc aaa taaaatggcta 3478
His Glu Ile Lys Ser Ser Tyr Cys Val Pro Lys
1100 1105

tgacataaca ctatctgaag ctcgttaagt ctttgcctc tctgatgttt attcctctta
3538
aaaaatgctt atatatcaaa aaattgttc ctcgattaaa aaaaaaaaaa aaaaaaaaaa
3598
aaaaaaaaa 3606

<210> 31
<211> 1109
<212> PRT
<213> Arabidopsis thaliana ecotype Columbia
<223> Polypeptide MSH6

<400> 31

Met Gln Arg Gln Arg Ser Ile Leu Ser Phe Phe Gln Lys Pro Thr Ala
1 5 10 15

Ala Thr Thr Lys Gly Leu Val Ser Gly Asp Ala Ala Ser Gly Gly
20 25 30

Gly Ser Gly Gly Pro Arg Phe Asn Val Arg Glu Gly Asp Ala Lys Gly
35 40 45

Asp Ala Ser Val Arg Phe Ala Val Ser Lys Ser Val Asp Glu Val Arg
50 55 60

Gly Thr Asp Thr Pro Pro Glu Lys Val Pro Arg Arg Val Leu Pro Ser
65 70 75 80

Gly Phe Lys Pro Ala Glu Ser Ala Gly Asp Ala Ser Ser Leu Phe Ser
85 90 95

Asn Ile Met His Lys Phe Val Lys Val Asp Asp Arg Asp Cys Ser Gly
100 105 110

Glu Arg Ser Arg Glu Asp Val Val Pro Leu Asn Asp Ser Ser Leu Cys
115 120 125

Met Lys Ala Asn Asp Val Ile Pro Gln Phe Arg Ser Asn Asn Gly Lys
130 135 140

Thr Gln Glu Arg Asn His Ala Phe Ser Phe Ser Gly Arg Ala Glu Leu
145 150 155 160

Arg Ser Val Glu Asp Ile Gly Val Asp Gly Asp Val Pro Gly Pro Glu
165 170 175

Thr Pro Gly Met Arg Pro Arg Ala Ser Arg Leu Lys Arg Val Leu Glu
180 185 190

Asp Glu Met Thr Phe Lys Glu Asp Lys Val Pro Val Leu Asp Ser Asn

195 200 205

Lys Arg Leu Lys Met Leu Gln Asp Pro Val Cys Gly Glu Lys Lys Glu
210 215 220

Val Asn Glu Gly Thr Lys Phe Glu Trp Leu Glu Ser Ser Arg Ile Arg
225 230 235 240

Asp Ala Asn Arg Arg Pro Asp Asp Pro Leu Tyr Asp Arg Lys Thr
245 250 255

Leu His Ile Pro Pro Asp Val Phe Lys Lys Met Ser Ala Ser Gln Lys
260 265 270

Gln Tyr Trp Ser Val Lys Ser Glu Tyr Met Asp Ile Val Leu Phe Phe
275 280 285

Lys Val Gly Lys Phe Tyr Glu Leu Tyr Glu Leu Asp Ala Glu Leu Gly
290 295 300

His Lys Glu Leu Asp Trp Lys Met Thr Met Ser Gly Val Gly Lys Cys
305 310 315 320

Arg Gln Val Gly Ile Ser Glu Ser Gly Ile Asp Glu Ala Val Gln Lys
325 330 335

Leu Leu Ala Arg Gly Tyr Lys Val Gly Arg Ile Glu Gln Leu Glu Thr
340 345 350

Ser Asp Gln Ala Lys Ala Arg Gly Ala Asn Thr Ile Ile Pro Arg Lys
355 360 365

Leu Val Gln Val Leu Thr Pro Ser Thr Ala Ser Glu Gly Asn Ile Gly
370 375 380

Pro Asp Ala Val His Leu Leu Ala Ile Lys Glu Ile Lys Met Glu Leu
385 390 395 400

Gln Lys Cys Ser Thr Val Tyr Gly Phe Ala Phe Val Asp Cys Ala Ala
405 410 415

Leu Arg Phe Trp Val Gly Ser Ile Ser Asp Asp Ala Ser Cys Ala Ala
420 425 430

Leu Gly Ala Leu Leu Met Gln Val Ser Pro Lys Glu Val Leu Tyr Asp
435 440 445

Ser Lys Gly Leu Ser Arg Glu Ala Gln Lys Ala Leu Arg Lys Tyr Thr
450 455 460

Leu Thr Gly Ser Thr Ala Val Gln Leu Ala Pro Val Pro Gln Val Met
465 470 475 480

Gly Asp Thr Asp Ala Ala Gly Val Arg Asn Ile Ile Glu Ser Asn Gly
485 490 495

Tyr Phe Lys Gly Ser Ser Glu Ser Trp Asn Cys Ala Val Asp Gly Leu
500 505 510

Asn Glu Cys Asp Val Ala Leu Ser Ala Leu Gly Glu Leu Ile Asn His
515 520 525

Leu Ser Arg Leu Lys Leu Glu Asp Val Leu Lys His Gly Asp Ile Phe
530 535 540

Pro Tyr Gln Val Tyr Arg Gly Cys Leu Arg Ile Asp Gly Gln Thr Met
545 550 555 560

Val Asn Leu Glu Ile Phe Asn Asn Ser Cys Asp Gly Gly Pro Ser Gly
565 570 575

Thr Leu Tyr Lys Tyr Leu Asp Asn Cys Val Ser Pro Thr Gly Lys Arg
580 585 590

Leu Leu Arg Asn Trp Ile Cys His Pro Leu Lys Asp Val Glu Ser Ile
595 600 605

Asn Lys Arg Leu Asp Val Val Glu Glu Phe Thr Ala Asn Ser Glu Ser
610 615 620

Met Gln Ile Thr Gly Gln Tyr Leu His Lys Leu Pro Asp Leu Glu Arg
625 630 635 640

Leu Leu Gly Arg Ile Lys Ser Ser Val Arg Ser Ser Ala Ser Val Leu
645 650 655

Pro Ala Leu Leu Gly Lys Lys Val Leu Lys Gln Arg Val Lys Ala Phe
660 665 670

Gly Gln Ile Val Lys Gly Phe Arg Ser Gly Ile Asp Leu Leu Leu Ala
675 680 685

Leu Gln Lys Glu Ser Asn Met Met Ser Leu Leu Tyr Lys Leu Cys Lys
690 695 700

Leu Pro Ile Leu Val Gly Lys Ser Gly Leu Glu Leu Phe Leu Ser Gln
705 710 715 720

Phe Glu Ala Ala Ile Asp Ser Asp Phe Pro Asn Tyr Gln Asn Gln Asp
725 730 735

Val Thr Asp Glu Asn Ala Glu Thr Leu Thr Ile Leu Ile Glu Leu Phe
740 745 750

Ile Glu Arg Ala Thr Gln Trp Ser Glu Val Ile His Thr Ile Ser Cys
755 760 765

Leu Asp Val Leu Arg Ser Phe Ala Ile Ala Ala Ser Leu Ser Ala Gly
770 775 780

Ser Met Ala Arg Pro Val Ile Phe Pro Glu Ser Glu Ala Thr Asp Gln
785 790 795 800

Asn Gln Lys Thr Lys Gly Pro Ile Leu Lys Ile Gln Gly Leu Trp His
805 810 815

Pro Phe Ala Val Ala Ala Asp Gly Gln Leu Pro Val Pro Asn Asp Ile
820 825 830

Leu Leu Gly Glu Ala Arg Arg Ser Ser Gly Ser Ile His Pro Arg Ser
835 840 845

Leu Leu Leu Thr Gly Pro Asn Met Gly Gly Lys Ser Thr Leu Leu Arg
850 855 860

Ala Thr Cys Leu Ala Val Ile Phe Ala Gln Leu Gly Cys Tyr Val Pro
865 870 875 880

Cys Glu Ser Cys Glu Ile Ser Leu Val Asp Thr Ile Phe Thr Arg Leu
885 890 895

Gly Ala Ser Asp Arg Ile Met Thr Gly Glu Ser Thr Phe Leu Val Glu
900 905 910

Cys Thr Glu Thr Ala Ser Val Leu Gln Asn Ala Thr Gln Asp Ser Leu
915 920 925

Val Ile Leu Asp Glu Leu Gly Arg Gly Thr Ser Thr Phe Asp Gly Tyr
930 935 940

Ala Ile Ala Tyr Ser Val Phe Arg His Leu Val Glu Lys Val Gln Cys
945 950 955 960

Arg Met Leu Phe Ala Thr His Tyr His Pro Leu Thr Lys Glu Phe Ala
965 970 975

Ser His Pro Arg Val Thr Ser Lys His Met Ala Cys Ala Phe Lys Ser
980 985 990

Arg Ser Asp Tyr Gln Pro Arg Gly Cys Asp Gln Asp Leu Val Phe Leu
995 1000 1005

Tyr Arg Leu Thr Glu Gly Ala Cys Pro Glu Ser Tyr Gly Leu Gln Val
1010 1015 1020

Ala Leu Met Ala Gly Ile Pro Asn Gln Val Val Glu Thr Ala Ser Gly
1025 1030 1035 1040

Ala Ala Gln Ala Met Lys Arg Ser Ile Gly Glu Asn Phe Lys Ser Ser
1045 1050 1055

Glu Leu Arg Ser Glu Phe Ser Ser Leu His Glu Asp Trp Leu Lys Ser
1060 1065 1070

Leu Val Gly Ile Ser Arg Val Ala His Asn Asn Ala Pro Ile Gly Glu
1075 1080 1085

Asp Asp Tyr Asp Thr Leu Phe Cys Leu Trp His Glu Ile Lys Ser Ser
1090 1095 1100

Tyr Cys Val Pro Lys
1105

<210> 32
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of ATHGENEA
microsatellite

<400> 32
accatgcata gcttaaaactt cttg 24

<210> 33
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of ATHGENEA microsatellite

<400> 33
acataaccac aaataggggt gc 22

<210> 34
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer DMCIN-A for PCR on genomic DNA of *Arabidopsis thaliana* ssp. *Landsberg erecta* "Ler"

<400> 34
gaagcgatat tgttcgtg 18

<210> 35
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer DMCIN-B for PCR on genomic DNA of *Arabidopsis thaliana* ssp. *Landsberg erecta* "Ler"

<400> 35
agattgcgag aacattcc 18

<210> 36
<211> 31
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer DMCIN-1 for PCR on genomic DNA of *Arabidopsis thaliana* ssp. *Landsberg erecta* "Ler"

<400> 36

acgcgtcgac tcagctatga gattactcgt g 31

<210> 37
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer DMCIN-2 for PCR on genomic DNA of *Arabidopsis thaliana*
ssp. *Landsberg erecta "Ler"*

<400> 37

gctctagatt tctcgctcta agactctct 29

<210> 38
<211> 32
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer DMCIN-3 for PCR on genomic DNA of *Arabidopsis thaliana*
ssp. *Landsberg erecta "Ler"*

<400> 38

gctctagagc ttctcttaag taagtgattt at 32

<210> 39
<211> 48
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer DMCIN-4 for PCR on genomic DNA of *Arabidopsis thaliana*
ssp. *Landsberg erecta "Ler"*

<400> 39

tccccccgggc tcgagagatc tccatggttt cttagctct atgaatcc 48

<210> 40
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer DMC1a for PCR on genomic DNA of *Arabidopsis thaliana* ssp.
Landsberg erecta "Ler"

<400> 40

acgcgtcgac gaattcgcaa gtgggg 26

<210> 41
<211> 38
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer DMC1b for PCR on genomic DNA of *Arabidopsis thaliana* ssp.
Landsberg erecta "Ler"

<400> 41

tccatggaga tctcccggtt accgatttgc ttcgaggg 38

<210> 42
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of ATEAT1 SSLP marker in *Arabidopsis thaliana* subspecies

<400> 42

gccactgcgt gaatgatatg 20

<210> 43
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of ATEAT1 SSLP marker in *Arabidopsis thaliana* subspecies

<400> 43

cgaacagcca acattaattc cc 22

<210> 44
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA63 SSLP marker in *Arabidopsis thaliana* subspecies

<400> 44

aaccaaggca cagaagcg 18

<210> 45

<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA63 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 45

acccaagtga tcgccacc 18

<210> 46
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA248 SSLP marker in
Arabidopsis thaliana subspecies

<400> 46

taccgaacca aaacacaaag g 21

<210> 47
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA248 SSLP marker in
Arabidopsis thaliana subspecies

<400> 47

tctgtatctc ggtgaattct cc 22

<210> 48
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA128 SSLP marker in
Arabidopsis thaliana subspecies

<400> 48

ggtctgttga tgtcgtaagt cg 22

<210> 49
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA128 SSLP marker in
Arabidopsis thaliana subspecies

<400> 49

atcttgaaac cttagggag gg 22

<210> 50
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA280 SSLP marker in
Arabidopsis thaliana subspecies

<400> 50

ctgatctcac ggacaatagt gc 22

<210> 51
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA280 SSLP marker in
Arabidopsis thaliana subspecies

<400> 51

ggctccataa aaagtgcacc 20

<210> 52
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA111 SSLP marker in
Arabidopsis thaliana subspecies

<400> 52

ctccagttgg aagctaaagg g 21

<210> 53
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA111 SSLP marker in
Arabidopsis thaliana subspecies

<400> 53

tgttttttag gacaaatggc g 21

<210> 54
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA168 SSLP marker in Arabidopsis thaliana subspecies

<400> 54

ccttcacatc caaaacccac 20

<210> 55
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA168 SSLP marker in Arabidopsis thaliana subspecies

<400> 55

gcacataccc acaaccagaa 20

<210> 56
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA1126 SSLP marker in Arabidopsis thaliana subspecies

<400> 56

cgctacgctt ttccggtaaaag 20

<210> 57
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA1126 SSLP marker in Arabidopsis thaliana subspecies

<400> 57

gcacagtcca agtcacacaacc 20

<210> 58

<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA361 SSLP marker in Arabidopsis thaliana subspecies

<400> 58

aaagagatga gaatttggac 20

<210> 59
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA361 SSLP marker in Arabidopsis thaliana subspecies

<400> 59

acatatcaat atattaaagt agc 23

<210> 60
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA168 SSLP marker in Arabidopsis thaliana subspecies

<400> 60

tcgtctactg cactgccg 18

<210> 61
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA168 SSLP marker in Arabidopsis thaliana subspecies

<400> 61

gaggacatgt ataggagcct cg 22

<210> 62
<211> 20
<212> DNA
<213> Artificial sequence

<220>

<223> Forward primer for PCR amplification of AthBIO2 SSLP marker in
Arabidopsis thaliana subspecies

<400> 62

tgacctccctc ttccatggag 20

<210> 63

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Reverse primer for PCR amplification of AthBIO2 SSLP marker in
Arabidopsis thaliana subspecies

<400> 63

ttaacagaaa cccaaagctt tc 22

<210> 64

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Forward primer for PCR amplification of AthUBIQUE SSLP marker
in
Arabidopsis thaliana subspecies

<400> 64

aggcaaatgt ccatttcatt g 21

<210> 65

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Reverse primer for PCR amplification of AthUBIQUE SSLP marker
in
Arabidopsis thaliana subspecies

<400> 65

acgacatggc agatttctcc 20

<210> 66

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Forward primer for PCR amplification of NGA172 SSLP marker in
Arabidopsis thaliana subspecies

<400> 66
agctgcttcc ttatagcgtc c 21

<210> 67
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA172 SSLP marker in Arabidopsis thaliana subspecies

<400> 67
catccgaatg ccattgttc 19

<210> 68
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA126 SSLP marker in Arabidopsis thaliana subspecies

<400> 68
aaaaaaaacgc tactttcgtg g 21

<210> 69
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA126 SSLP marker in Arabidopsis thaliana subspecies

<400> 69
caagagcaat atcaagagca gc 22

<210> 70
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA162 SSLP marker in Arabidopsis thaliana subspecies

<400> 70
catgcaattt gcatctgagg 20

<210> 71
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA162 SSLP marker in
Arabidopsis thaliana subspecies

<400> 71

ctctgtcaact cttttcctct gg 22

<210> 72
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA6 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 72

tggatttctt cctctcttca c 21

<210> 73
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA6 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 73

atggagaagc ttacactgat c 21

<210> 74
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA12 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 74

aatgttgtcc tccccctcctc 20

<210> 75
<211> 22

<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA12 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 75

tgatgctctc tgaaacaaga gc 22

<210> 76
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA8 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 76

gagggcaaata ctttatattcg g 21

<210> 77
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA8 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 77

tggctttcgt ttataaacat cc 22

<210> 78
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA1107 SSLP marker in
Arabidopsis thaliana subspecies

<400> 78

gcgaaaaaac aaaaaaatcc a 21

<210> 79
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA1107 SSLP marker in
Arabidopsis thaliana subspecies

<400> 79

cgacgaatcg acagaattag g 21

<210> 80
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA225 SSLP marker in
Arabidopsis thaliana subspecies

<400> 80

gaaatccaaa tcccagagag g 21

<210> 81
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA225 SSLP marker in
Arabidopsis thaliana subspecies

<400> 81

tctccccact agttttgtgt cc 22

<210> 82
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA249 SSLP marker in
Arabidopsis thaliana subspecies

<400> 82

taccgtcaat ttcatcgcc 19

<210> 83
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA249 SSLP marker in
Arabidopsis thaliana subspecies

<400> 83
ggatccctaa ctgtaaaatc cc 22

<210> 84
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of CA72 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 84
aatccagta accaaacaca ca 22

<210> 85
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of CA72 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 85
cccagtctaa ccacgaccac 20

<210> 86
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA151 SSLP marker in
Arabidopsis thaliana subspecies

<400> 86
gttttggaa gtttgctgg 20

<210> 87
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA151 SSLP marker in
Arabidopsis thaliana subspecies

<400> 87
cagtctaaaa gcgagagtat gatg 24

<210> 88
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA106 SSLP marker in Arabidopsis thaliana subspecies

<400> 88

gttatggagt ttcttagggca cg 22

<210> 89
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA106 SSLP marker in Arabidopsis thaliana subspecies

<400> 89

tgccccatTT tggTcttctc 20

<210> 90
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA139 SSLP marker in Arabidopsis thaliana subspecies

<400> 90

agagctacca gatccgatgg 20

<210> 91
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA139 SSLP marker in Arabidopsis thaliana subspecies

<400> 91

ggtttcgttt cactatccag g 21

<210> 92
<211> 22
<212> DNA

<213> Artificial sequence

<220>

<223> Forward primer for PCR amplification of NGA76 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 92

ggagaaaaatg tcactctcca cc 22

<210> 93

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Reverse primer for PCR amplification of NGA76 SSLP marker in
Arabidopsis
thaliana subspecies

<400> 93

aggcatggga gacatttacg 20

<210> 94

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Forward primer for PCR amplification of ATHSO191 SSLP marker
in
Arabidopsis thaliana subspecies

<400> 94

ctcccaccaat catgcaaatg 20

<210> 95

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Reverse primer for PCR amplification of ATHSO191 SSLP marker
in
Arabidopsis thaliana subspecies

<400> 95

tgatgttgat ggagatggtc a 21

<210> 96

<211> 22

<212> DNA

<213> Artificial sequence

<220>
<223> Forward primer for PCR amplification of NGA129 SSLP marker in
Arabidopsis thaliana subspecies

<400> 96

tcaggaggaa ctaaagttag gg 22

<210> 97
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Reverse primer for PCR amplification of NGA129 SSLP marker in
Arabidopsis thaliana subspecies

<400> 97

cacactgaag atggcttga gg 22

<210> 98
<211> 8062
<212> DNA
<213> Arabidopsis thaliana ecotype Columbia

<220>
<223> Genomic DNA sequence of AtMSH6

<400> 98

tttttgggtt gctaacaata aaggtatacg gttttatgtc atcaatataa ctatataaa 60
aagaaatgaa agatataatat tgtttttca ttatcaaac aaaacaacaa gacttttt
120
ttactttta cattggtcaa caaaatacaa gataaacgac atcgttaat cattcccaa
180
ttttaccctt aagtttaaca cctagaacct tctccatctt cgcaagcaca gcctgattag
240
gaacagcttt accattctca tattcctgaa ctacctgagt cctctcattt atctgtttcg
300
ccaaatccgc ttgtgacatc ttcttctcca atctcgcttt ctgtatcatc aacctcacct
360
ctgcttcac acgatccatc gccgcaggct ctgtttcttc ttccagcttc ttcgtgttaa
420
tcaccggAAC cgccgttagat ttcccccttt tggtcgacc ggcatcgaaat ttcttaaccg
480
tttgaaccgc gacaccgttt ctcagagctg cgttaaccgc ttccggatcg cgtaggttt
540
ggctcttttgg tttgatttg tggagaacta ctgggtccca gtcttgtgtt actgctcctg
600
ggtatctgct cgccatcgatc gatgaattga gagaaaggaa caacgcgaaa atttttattaa
660
tctgatgtttt gaaattgaga aacgatgaag atgaagaatg ttgttgagag gattgtgata
720
tttatataata cgaagattgg tttctggaga attcgatcat cttttctcc attttcgtct
780
ctggAACGTT ctttagagatg attgacgacg tgcattatc tgattgcag ttaaccaatg
840

ctttttgggt tggattcgtg gtacaccata ttatccgatt tggctcaatg gttttatata
900
aatttggttt tcggttcggt tatgagttat cattaaaatt aagctaacca aaaattttcg
960
taaaaatttat ttcggtttca attcgatcc ctacttcca gaaccgaatt attcgaaacc
1020
ggggtagcc gaaccgaata ccaatgcctg attgactcgt tggctagaaa gatccaaacgg
1080
tatacaataa tagaacataa atcggacggt catcaaagcc tcaaagagtg aacagtcaac
1140
aaaaaaagtt gagccctgag gagtatcggtt tccgcattt ctacgacgca aggcgaaaat
1200
ttttggcgcc aatcttccc cccttcgaa ttctctcagc tcaaaacatc gtttctct
1260
cactctct cacaattcca aaaaatgcag cgccagagat cgatttgtc tttttccaa
1320
aaacccacgg cggcgactac gaagggttg gttccggcg atgctgctag cggcgaaaa
1380
ggcagcggag accacgattt aatgtgaagg aaggggatgc taaaggcgac gtttctgtac
1440
gttttgcgtt ttcaaatct gtcgatgagg ttagaggaac ggatactcca ccggagaagg
1500
ttccgcgtcg tgtcctgccg tctggattt agccggctga atccgcgggt gatgcttcgt
1560
ccctgttctc caatattatg cataagttt taaaagtcga tgatcgagat tgttctggag
1620
agaggtacta atcttcgatt ctcttaattt tgttatcttt agctggaaga agaagattcg
1680
tgtaatttgt tgattcgtt ggagagattc tgattactgc attggatcgt tgttacaaa
1740
tttcaggag ccgagaagat gttgtccgc tgaatgattc atctctatgt atgaaggcta
1800
atgatgttat tcctcaattt cgttccaata atggtaaaac tcaagaaaga aaccatgctt
1860
ttagtttcag tggagagct gaaccttagat cagtagaaga tataggagta gatggcgatg
1920
ttcctggtcc agaaacacca gggatgcgtc cacgtgcattc tcgcttgaag cgagttctgg
1980
aggatgaaat gactttaag gaggataagg ttccgttatt ggactctaac aaaaggctga
2040
aaatgctcca ggatccgggtt tgtggagaga agaaagaagt aaacgaagga accaaatttgc
2100
aatggcttga gtcttcgtca atcaggatg ccaatagaag acgtcctgat gatccccctt
2160
acgatagaaa gacctacac ataccacctg atgtttcaa gaaaatgtct gcatcacaaa
2220
agcaatattt gagtgttaag agtgaatata tggacattgt gctttcttt aaagtggta
2280
gtaactatta atctagtgtt caatccattt cctcaatgtg atttggcac ttacatctgt
2340
ttacgtttagt ctcttcgt gggaaatttt atgagctgta tgagctagat gcggaaattag
2400
gtcacaagga gcttgactgg aagatgacca tgagtgggtt gggaaaatgc agacaggtaa
2460
attagtgaa acaactggcc tgcttgaattt attgtgtcta taaatggta caccacctt
2520
tgtttcagggt tggtatctct gaaagtggga tagatgaggc agtgcaaaag ctattagctc
2580
gtgggtaagg gaaccatcat actttatggaa attcgatcc tgctacttcg gctaggattt
2640
aagaaatggaa aatcacttca agcatcatta gttaggatcc tgagaactca ggatgtttc

2700 ttattcgtta tataataagt cttttcatca aggagtaaca aacaaaactt gcacaatatt
2760 tgtgtgctca ctggcaaggc atatataccc agctaaccctt tgctagttca ctgttagtaac
2820 agttacggat aatatatgtt tacttgtatg tggtaccctc atttgtctc tcataggc
2880 tttcaagcct tgtgttgaaa ctggatagtt acatatgctt ccaacagaaa cttagcatgca
2940 gattcatatg ctttccttatt ctactaatta tgtattgaca cactcggtgt ttctttgaa
3000 agatataaag ttggacgaat cgagcagcta gaaacatctg accaagcaaa agccagaggt
3060 gctaatactg taagtttct tggataggc aaggagagtg ttgcagactg tttttgatca
3120 tttcttttc tgtacattac tttcatgctg taattaactc aatggctatt ctggtctgat
3180 tatcagataa ttccaaggaa gctagttcag gtattaactc catcaacagc aagcgaggga
3240 aacatcgggc ctgatgccgt ccatcttctt gctataaaag aggtttgtta ttacttatt
3300 tatcttatca tgttcagttc atccaagtcc tgaaaaatta cactcttctt taccaatctt
3360 ccatcaagct gtgtaaagga tttggattt gaaaatcatt atttgcatttt ttgtttata
3420 tgcaagaggt tcccttgaaa agatctgtt aagattctt gcacttgaaa aattcaatct
3480 ttttaagtga atcccctact ttcttacaat gatcatagtc tgcaattgca tgtcaagtaa
3540 tattttctt tgttactgca tcccccttctt tcttaatgac cattgtctat gttgttttg
3600 tctcgtgtgc tggagaaaat gatagctgat ccaagctgta cattatcatg attaagtagc
3660 tgctcaggaa ttgcctttgg ttacattgcc taatggttt atgtcaattt ttcttctgaa
3720 tctttatattt agatcaaaat ggagctacaa aagtgttcaa ctgtgtatgg atttgcttt
3780 gttgactgtg ctgccttgag gttttgggtt gggccatca gcgtatgtgc atcatgtgct
3840 gctctggag cgttattgtat gcaaggtaagc aagtgtattc tgcattttat gtttaccatg
3900 tgacttcctg tgcataatatt tgggttgcag gaactaattc tgaatcacca tttggatgt
3960 tttttccagg tttctccaaa ggaagtgttata tatgacagta aaggtaact gcttgcattcg
4020 ccagttgttt tttttttttt aatttaaacag aatttaaatgtt aatgtacact ggttaattt aagtgcatac
4080 atgttggaaat attgcagggc tatcaagaga agcacaaggaa gctctaagga aatatacgtt
4140 gacaggtaacc atttcagtag gcaaggtaac tgacaattt accgctcacc gaatgtatgg
4200 tctctaaac attgctaattt tagatgtatgt ttatgtttca atctaatttgcgttgc
4260 gtacagttgg ctccagttacc acaagtaatg ggggatacag atgctgtgg agtttagaaat
4320 ataatagaat ctaacggata ctttaaaggat tcttctgaat catgaaactg tgctgttgat
4380 ggtctaaatg aatgtatgtt tgcccttagt gctcttgag agctaattaa tcatctgtct
4440 aggctaaagg tttttttttt ttgtgttgat ttttttttttca caaattaagc aaaggaaactt
4500

ttcataactt acagtttcta tctacttgca gctagaagat gtacttaagc atggggat 4560
tttccatac caagttaca ggggttgtct cagaattgat ggccagacga tggtaatct 4620
ttagatattt aacaatagct gtgatggtgg tccttcaggc aagtgcataat ttctttttg 4680
ataacttcaa ctagagggca gacatagaag gaaaattct aataacttcgt acggatctcc 4740
agtaagtaat agccgatttt tgtttaccta tgttagggacc ttgtacaaat atcttgataa 4800
ctgtgttagt ccaactggta agcgactctt aaggaattgg atctgccatc cactcaaaga 4860
tgttagaaagc atcaataaaac ggcttgatgt agtgaagaa ttcacggcaa actcagaaag 4920
tatgcaaatc actggccagt atctccacaa acttccagac ttagaaagac tgctcgacg 4980
catcaagtct agcgttcgat catcagcctc tgtgttgccct gctttctgg ggaaaaaaagt 5040
gctgaaacaa cgagtaagta tcaatcacaa gtttctgag taatgccttc catgagtagt 5100
ataggactaa aacattacgg gtctagctaa agactgttct ctttttttgc caatgtctgg 5160
ttattcatta catttctctt aacttattgc attgcagggtt aaagcatttgc ggcaaatttgt 5220
gaaagggttc agaagtggaa ttgatctgtt gttggctcta cagaaggaat caaatatgt 5280
gagtttgctt tataaactct gtaaaactcc tatatttagta ggaaaaagcg ggctagagtt 5340
atttcttctt caattcgaag cagccataga tagcgacttt ccaaattatc aggtgcccatt 5400
ctatcttca tactttacaa caaaatgtct gtcactactc aaagcaatgc atatggctt 5460
gatctcaact cacacccoga ggatcctaaa gggatttgc ttattttctt aatgttttg 5520
gatggtttga ttatattctt acttgaactt attaatcttg taccagaacc aagatgtgac 5580
agatgaaaac gctgaaactc tcacaataact ttcgaactt ttatcgaaa gagcaactca 5640
atggcttgag gtcattcaca ccataagctg cctagatgtc ctgagatctt ttgcaatcg 5700
agcaagtctc tctgctggaa gcatggccag gcctgttatt ttccccgaat cagaagctac 5760
agatcagaat cagaaaacaa aaggccaat actaaaatc caaggactat ggcatccatt 5820
tgcagttgca gccgatggtc aattgcctgt tccgaatgtat atactccttg gcgaggctag 5880
aagaagcagt ggcagcattc atcctcggtc attgttactg acgggaccaa acatggccgg 5940
aaaatcaact ttcttcgtt caacatgtct ggccgttatac ttgccccaaat tttgtataact 6000
cgtagataa ttactctatt ctttgcatac agttttcaaa catgaataat aaattctgtt 6060
ttctgtctgc agcttggctg ctacgtggccg tgtgagtctt gcgaaatctc cctcgtggat 6120
actatcttca caaggcttgg cgcatctgat agaatcatga caggagagag taagttttgt 6180
tctcaaaaata ccaattcctc gaactatttta ctcagatttt gtctgattgg acaagggtgg 6240
tttgctttttt ttaggttacc tttttggtag aatgcactga gacagcgtca gttcttcaga 6300
atgcaactca ggattcacta gtaatccttg acgaactggg cagaggaact agtactttcg

6360 atggataacgc cattgcatac tcggtaacct gctttctcc ttcaacttat acttgttcat
6420 caacaaaaac atgcaattca ttttgctgaa acttattttagat ttatatcagg ttttcgtca
6480 cctggtagag aaagttcaat gtcggatgct ctggcaaca cattaccacc ctctcaccaa
6540 ggaattcgcg tctcacccac gtgtcacccctc gaaacacatg gcttgcgcac tcaaatacg
6600 atctgattat caaccacgtg gttgtatca agacctagtg ttcttgtacc gtttaaccga
6660 gggagcttgt cctgagagct acggacttca agtggcactc atggctggaa taccaaacc
6720 agtggttgaa acagcatcg gtgctgctca agccatgaag agatcaattt gggaaaactt
6780 caagtcaagt gagctaagat ctgagttctc aagtctgcat gaagactggc tcaagtcatt
6840 ggtgggtatt tctcgagtcg cccacaacaa tgccccatt ggcgaagatg actacgacac
6900 ttgtttgc ttatggcatg agatcaaatac ctcttactgt gttccaaat aaatggctat
6960 gacataaacac tattctgaagc tcgttaagtc ttttgcctct ctgatgttta ttcctcttaa
7020 aaaatgctta tataatcaaaa aattgttcc tcgattataa caagattata tatgtatctg
7080 tcggtttagc tatggatat aatataatgta tggtcatgag attggtaag agaaataactc
7140 acaaacagta tattaagaag gaaatatgaa tatgcattaa tttaagttc aagataaaact
7200 gcaaataacc tcgactaaag ttgcaaagac caaacacaaa ttacaaaact tataagactt
7260 aagttctgaa ttccctaaaa ccaaaaaaaaaa aaacagaaca tattttgttgc catctacaaa
7320 caacacaaaac ctacatagtt tataacttac tcattactga gattaacatc agaatcatc
7380 tccatttctt catcttact ctcatcatca tcaccaccac catgatgatt ctccctct
7440 tcacgtaaacc tagcaatctc actctgagct ctatcaacaa tctgcttctt ctgcaactcc
7500 aaatctctct gaaaatcagc tctcatcttc tccaactcct tcatttgctc tttcttactc
7560 ttctccatct ttcataaaac cttcccaaacc ctctcaacag aatccgcacaa catcttatac
7620 gaagcagcgt cattaacctt cttccctctcg tactcaaccc catcatcctc atccctctcc
7680 tcttcagaat caccaggact atccatcatc tcattcaaccc cattagactt atctaaataa
7740 accttagtgt tcataaacac aaactcacct gaatcaacac cacaagctaa acctaaatcc
7800 gacttggcg aaacacaaaag caacatatcc aacttattga aaaacgacca tttacttgaa
7860 cctaaacctg atttctcaac cttaatcttc tctttctat acttcctctt caagtcatca
7920 atcattctcc tacattgcgt ctcagatttc tccatcctta gtcctcact cacttctca
7980 gctacttcat tccaatcctc gttcctcaaa ctccttctac ccaattgcaa aaacctatct
8040 ccccaaactt caagcaacac aa