

CPE 372/641 Natural Language Processing

From Morphology to Syntax

Asst. Prof. Dr. Nuttanart Muansuwan

contents from Mark Granroth-Wilding slides, University of Helsinki

1

MORPHOLOGY: some concepts

- Morpheme: smallest grammatical unit in language
- Affix: morpheme that occurs only together with others
- Word = stem [+ affixes]
 radios → radio + s
- Compound: word with multiple stems

```
thunderstorms \rightarrow thunder + storm + s
```

Types of affix:

- **prefix**: un+help+ful
- **suffix**: taste+ful, taste+ful+ness
- infix: internal affix (e.g. Arabic)
- circumfix: prefix & suffix
 - E.g. German: ge+kauf+t

Two types of morphology

Two types of morphology:

- 1. Inflectional: regular patterns for word classes
 - Changes grammatical roles
 - E.g. noun cases: kauppa, kauppa+a, kaupa+n, ...
- 2. **Derivational**: creates new words
 - Changes meaning
 - E.g. diminutive suffix: tuuli → tuulo+nen

Uses in NLP

A few uses of morphology in NLP:

- Morphosyntactic categorization (rough POS tagging)
- Morphological features
- Stemming/lemmatization
- Generation: apply syntax, features, agreement to base forms

```
occupied
                                 the throne
                                                 in
                                                       his
the
     loyal
            princes
                                                            absence
                        verb
                                 det
det
      adj
                                                      det
             noun
                                        noun
                                                prep
                                                              noun
                                                adv
                                                      adj
                                                       prn
```

A few uses of morphology in NLP:

- Morphosyntactic categorization (rough POS tagging)
- Morphological features
- Stemming/lemmatization
- Generation: apply syntax, features, agreement to base forms

the loyal princes occupied the throne in his absence def-sg pl past def-sg sg m-sg sg def-pl pst-prt def-pl

A few uses of morphology in NLP:

- Morphosyntactic categorization (rough POS tagging)
- Morphological features
- Stemming/lemmatization
- Generation: apply syntax, features, agreement to base forms

the loyal princes occupied the throne in his absence the loyal prince occupy the throne in his absence

Theoretical limitations of Finite State Machines

- No memory, just current states
- No non-linear structure like recursion or embedding, which is important for languages

Formal Grammars

- Formal grammars categorized by expressive power(expressivity)
- FSAs < Context-Free Grammars (CFGs) < Turing machine E.g.
 Programming languages
- Greater expressivity → more languages as well as higher processing requirements
- •FSA stores only current state
- CFG additionally requires stack memory

The Chomsky Hierarchy

Turing

Regular

Context-Free Grammar

A context-free grammar (CFG) is a list of rules that define the set of all well-formed sentences in a language.

Each rule has a left-hand side, which identifies a syntactic category, and a right-hand side, which defines its alternative component parts, reading from left to right.

E.g., the rule s --> np vp means that "a sentence is defined as a noun phrase followed by a verb phrase."

Figure 1 shows a simple CFG that describes the sentences from a small subset of English.

Figure 1. A grammar and a parse tree for "the giraffe dreams".

Language Modeling

- Language model (LM): probability distribution over sentences of a language
- Probability of sentence appearing in language's text

$$p(w_0,\ldots,w_N)$$

But he may make trouble with your father

Highly plausible

Each night Arkilu departed, leaving a furry man-creature on guard

Less probable

(But both real, taken from same text)

Possible uses of language modeling

Uses of LMs:

- Speech recognition: plausibility judgement of possible outputs
- Word prediction for input device / communication aid
- Spelling correction
- Much more...
- One example of statistics in NLP
- Estimate probabilities from texts seen before
- Use **linguistic corpora**

Markov LM

Simple statistical LM: Markov chain

Markov assumption: probability of word depends only on previous word

- Far from true: *long-range dependencies*
- But, how well does it work in practice?

Simply model:
$$p(w_i|w_{i-1})$$

Probability of sentence:

$$p(W_0^{n-1}) = \prod_{i=0}^{n-1} p(w_i|w_{i-1})$$

Bigram model

AKA bigram model

- bigram: pair of consecutive words $(w_i \ w_{i+1})$
- model only looks at bigram statistics

Estimate probabilities from corpus counts

$$p(w_i|w_{i-1}) \simeq \frac{C(w_{i-1}|w_i)}{C(w_{i-1})}$$

Can represent structure of model as **plate diagram**:

N-gram models

- Bigram model: predictions have limited context Markov assumption
- Condition on longer context: *n-gram*
 - $p(w_i|w_{i-2},w_{i-1})$ trigram
 - $p(w_i|w_{i-3},w_{i-2},w_{i-1}) 4$ -gram
- Estimate as before:

$$p(w_i|w_{i-3},w_{i-2},w_{i-1}) \simeq \frac{C(w_{i-3} w_{i-2} w_{i-1} w_i)}{C(w_{i-3} w_{i-2} w_{i-1})}$$

• Better predictions **if** enough examples of w_{i-3} w_{i-2} w_{i-1} in training data

Language Modeling applications: speech recognition

Part-of-speech tagging

Noun Adjective

• Distinguish syntactic function of words in broad classes

For the present, we are... vs. The present situation...

- NLP subtask: part-of-speech (POS) tagging
- Shallow syntactic analysis: no explicit structure
- Includes some disambiguation important to meaning
- Useful practical first analysis step

POS tagging ambiguity

POS	Example	
Noun	The dog ate the bone	
Verb	The dog ate the bone	
Adjective	The big dog ate the bone	Example
Adverb	He ate the bone quickly	Return now to your
Pronoun	He ate my bone	•
Determiner	The dog ate that bone	quarters and I will send
Preposition	He chewed with his teeth	you word of the outcome
Coordinating conjunction	He chewed and he growled	

- POS tag this sentence, using the POSs above
- What other POSs could each word take (in other contexts)?

SOME AMBIGUITIES

Juvenile Court to Try Shooting Defendant

Different Same POS tag Different meanings POS tags Easily misinter Ban on Nude Dancing on Governor's Desk 2 interpretations

Kids Make Nutritious Snacks

Several types of ambiguity – what?

Can **POS-tagging ambiguity** explain these?

¹Thanks to Dan Klein & Roger Levy

Ambiguity

Juvenile Court to Try Shooting Defendant

- Two interpretations by human reader
- NLP system should output both
- Most syntactic parsers will produce dozens of structures!
- Majority have no intelligible interpretation

HIDDEN MARKOV MODEL

- Probabilistic model, widely used for POS tagging
- Maybe seen before: refresher here
- Model probability of (word,tag) sequence using
 - tag-word statistics
 - tag sequence statistics
- Makes some simplifying assumptions

- Plate diagram: conditional prob dists
- Markov assumption on tag sequence: $p(t_i|t_{i-1})$
- Conditional independence of words: $p(w_i|t_i)$
- Independence assumptions pretty bad
- But works quite well in practice

HIDDEN MARKOV MODEL (HMM)

- Know $p(t_i|t_{i-1})$ and $p(w_i|t_i)$
 - Input sentence, POS tags unknown
 - Choose t_0, t_1, \ldots that maximizes sentence probability
 - Efficient inference with Viterbi algorithm (dynamic programming)

N-GRAM TAGGING MODEL

- Still an HMM: many more states
- Markov assumption over n-grams
- Each **state** represents (n-1)-gram
- Parameter estimation and inference as before

