

CS 482/682 — Al: Inference in FOL

Fall 2021

Outline

- FOL Inference
 - Proof
 - Unification
 - Generalized Modus Ponens
 - Forward and backward chaining
- Industrial-strength Inference
 - Completeness
 - Resolution
 - Logic programming

Proof

Sound inference: find α such that $KB \models \alpha$. Proof process is a <u>search</u>, operators are inference rules.

E.g., Modus Ponens (MP)

$$\frac{\alpha, \quad \alpha \Rightarrow \beta}{\beta} \qquad \frac{At(Joe, UCB) \quad At(Joe, UCB) \Rightarrow OK(Joe)}{OK(Joe)}$$

E.g., And-Introduction (AI)

$$\frac{\alpha \quad \beta}{\alpha \wedge \beta} \qquad \frac{OK(Joe) \quad CSMajor(Joe)}{OK(Joe) \wedge CSMajor(Joe)}$$

E.g., Universal Elimination (UE)

$$\frac{\forall x \ \alpha}{\alpha \{x/\tau\}} \qquad \frac{\forall x \ At(x, UCB) \Rightarrow OK(x)}{At(Pat, UCB) \Rightarrow OK(Pat)}$$

au must be a ground term (i.e., no variables)

Example Proof

Bob is a buffalo	1. $Buffalo(Bob)$
Pat is a pig	Pig(Pat)
Buffaloes outrun pigs	3. $\forall x, y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
Bob outruns Pat	
<u> </u>	
Al 1 & 2	4. $Buffalo(Bob) \wedge Pig(Pat)$
UE 3, $\{x/Bob, y/Pat\}$	$ 5. \; Buffalo(Bob) \wedge Pig(Pat) \; \Rightarrow \; Faster(Bob, Pat) $
MP 4.&5.	6. $Faster(Bob, Pat)$

Search with Primitive Inference Rules

Operators are inference rules

States are sets of sentences

Goal test checks state to see if it contains query sentence

AI, UE, MP is a common inference pattern

Problem: branching factor huge, esp. for UE

<u>Idea</u>: find a substitution that makes the rule premise match some known facts

⇒ a single, more powerful inference rule

Unification

A substitution σ unifies atomic sentences p and q if $p\sigma=q\sigma$

		- 80 St.
p	q	σ
Knows(John, x)	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/John, y/OJ\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$

<u>Idea</u>: Unify rule premises with known facts, apply unifier to conclusion E.g., if we know q and $Knows(John, x) \Rightarrow Likes(John, x)$

then we conclude Likes(John, Jane)

Likes(John, OJ)

Likes(John, Mother(John))

Generalized Modus Ponens (GMP)

$$\frac{p_1', \ p_2', \ \dots, \ p_n', \ (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{q\sigma} \quad \text{where } p_i'\sigma = p_i\sigma \text{ for all } i$$

E.g.
$$p_1' = \mathsf{Faster}(\mathsf{Bob},\mathsf{Pat})$$

 $p_2' = \mathsf{Faster}(\mathsf{Pat},\mathsf{Steve})$
 $p_1 \land p_2 \Rightarrow q = Faster(x,y) \land Faster(y,z) \Rightarrow Faster(x,z)$
 $\sigma = \{x/Bob, y/Pat, z/Steve\}$
 $q\sigma = Faster(Bob, Steve)$

GMP used with KB of <u>definite clauses</u> (exactly one positive literal): either a single atomic sentence or (conjunction of atomic sentences) \Rightarrow (atomic sentence) All variables assumed universally quantified

For Your Information (Google & Book)

• What is an atom? Give the definition and an example.

Answer: An atom is a symbol starting with a lower case letter.

Example: ai_-is_-fun

• What is a body? Give the definition and an example.

Answer: A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Example: $students_are_motivated \land ai_is_fun$

• What is a definite clause? Give the definition and an example.

Answer: A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as h if b.)

Example:

 $students_are_successful \leftarrow ai_is_fun \wedge students_are_motivated$

Soundness of GMP

Need to show that

$$p_1', \ldots, p_n', (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models q\sigma$$

provided that $p_i'\sigma = p_i\sigma$ for all i

Lemma: For any definite clause p, we have $p \models p\sigma$ by UE

1.
$$(p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models (p_1 \wedge \ldots \wedge p_n \Rightarrow q)\sigma = (p_1 \sigma \wedge \ldots \wedge p_n \sigma \Rightarrow q\sigma)$$

2.
$$p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \models p_1' \sigma \land \ldots \land p_n' \sigma$$

3. From 1 and 2, $q\sigma$ follows by simple MP

An Example Proof

It is a crime for an American to sell alcohol to a minor. Jimmy, a minor, has some beer. All of Jimmy's beer was sold to him by Nathan, an American.

- 1. $\forall x,y,z \text{ American}(x) \land \text{Alcohol}(y) \land \text{Minor}(z) \land \text{Sells}(x,y,z) \Rightarrow \text{Criminal}(x)$
- 2. Minor(Jimmy)
- 3. $\exists x \ Owns(Jimmy,x) \land Beer(x)$
- 4. $\forall x \ Owns(Jimmy,x) \land Beer(x) \Rightarrow Sells(Nathan,x,Jimmy)$
- 5. American(Nathan)
- 6. $\forall x \text{ Beer}(x) \Rightarrow \text{Alcohol}(x)$

An Example Proof

- 1. $\forall x,y,z \text{ American}(x) \land \text{ Alcohol}(y) \land \text{ Minor}(z) \land \text{ Sells}(x,y,z) \Rightarrow \text{ Criminal}(x)$
- 2. Minor(Jimmy)
- 3. $\exists x \ Owns(Jimmy,x) \land Beer(x)$
- 4. $\forall x \text{ Owns}(\text{Jimmy},x) \land \text{Beer}(x) \Rightarrow$ Sells(Nathan,x,Jimmy)
- 5. American(Nathan)
- 6. $\forall x \text{ Beer}(x) \Rightarrow \text{Alcohol}(x)$
- 7. From 3 and existential elimination Owns(Jimmy, B1) ∧ Beer(B1)
- 8. From 7. and And-elimination Owns(Jimmy, B1)
 Beer(B1)
- From 6 and universal elimination Beer(B1) ⇒ Alcohol(B1)
- 10. From 9, 8-2, and modus ponens Alcohol(B1)

- 11. From 4 and universal elimination Owns(Jimmy,B1) ∧ Beer(B1) ⇒ Sells(Nathan,B1,Jimmy)
- 12. From 11, 8-1, 8-2, and modus ponens Sells(Nathan, B1, Jimmy)
- 13. From 1 and universal elimination (3 times)

 American(Nathan) ∧ Alcohol(B1) ∧
 - Minor(Jimmy) ∧ Sells(Nathan,B1,Jimmy) ⇒
 - Criminal(Nathan)
- 14. From 5, 10, 2, 12, and and-introduction
 American(Nathan) ∧ Alcohol(B1) ∧ Minor(Jimmy) ∧
 Sells(Nathan, B1, Jimmy)
- 15. From 13, 14, and modus ponens Criminal(Nathan)

Streamlined Proof with Generalized Modus Ponens...

- 1. American (x) \land Alcohol (y) \land Minor (z) \land Sells (x,y,z) \Rightarrow Criminal (x)
- 2. Minor (Jimmy)
- 3. Owns (Jimmy, B1)
- 4. Beer (B1)
- Owns (Jimmy,x) ∧ Beer (x) ⇒
 Sells (Nathan,x,Jimmy)
- 6. American (Nathan)
- 7. Beer $(x) \Rightarrow Alcohol(x)$

- 8. From 4 and 7 using GMP: Alcohol (B1)
- 9. From 3, 4, and 5 using GMP: Sells (Nathan, B1, Jimmy)
- 10. From 6, 8, 2, 9, and 1 using modus ponens: Criminal (Nathan)

Now only 3 induction steps! (plus start-up time)

Forward Chaining

When a new fact p is added to the KB for each rule such that p unifies with a premise if the other premises are $\frac{\text{known}}{\text{then add the conclusion to the KB and continue chaining}}$

Forward chaining is <u>data-driven</u>
e.g., inferring properties and categories from percepts

Forward Chaining Example

- 1. $\forall x,y,z \text{ American}(x) \land \text{Alcohol}(y) \land \text{Minor}(z) \land \text{Sells}(x,y,z) \Rightarrow \text{Criminal}(x)$
- 2. Minor(Jimmy)
- 3. $\exists x \ Owns(Jimmy,x) \land Beer(x)$
- 4. $\forall x \ Owns(Jimmy,x) \land Beer(x) \Rightarrow Sells(Nathan,x,Jimmy)$
- 5. American(Nathan)
- 6. $\forall x \text{ Beer}(x) \Rightarrow \text{Alcohol}(x)$
- Consider all the base terms: Nathan, Jimmy, B1, B2,
- Start instantiating #6

Beer(Nathan) ⇒ Alcohol(Nathan)

Beer(Jimmy) ⇒ Alcohol(Jimmy)

 $Beer(B1) \Rightarrow Alcohol(B1)$

 $Beer(B2) \Rightarrow Alcohol(B2)$

Leads to a very disorganized (and full) knowledge base!

Forward Chaining Example

Add facts 1, 2, 3, 4, 5, 7 in turn. Number in [] = unification literal; $\sqrt{}$ indicates rule firing

- $\underline{1}$. $Buffalo(x) \wedge Pig(y) \Rightarrow Faster(x, y)$
- $2. Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 3. $Faster(x, y) \wedge Faster(y, z) \Rightarrow Faster(x, z)$
- $\underline{4.} \; Buffalo(Bob) \; [1a, \times]$
- $\underline{5.} \ Pig(Pat) \ \underline{[1b,\sqrt]} \rightarrow \underline{6.} \ Faster(Bob,Pat) \ \underline{[3a,\times]}, \ \underline{[3b,\times]}$
- $\underline{7}$. Slug(Steve) [2b, $\sqrt{\ }$]
 - $\rightarrow \underline{8}. \ Faster(Pat, Steve) \ \underline{[3a, \times]}, \ \underline{[3b, \sqrt]}$
 - $\rightarrow \underline{9}$. Faster(Bob, Steve) [3a, \times], [3b, \times]

Backward Chaining

When a query q is asked if a matching fact q' is known, return the unifier for each rule whose consequent q' matches q attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)

(More complications help to avoid infinite loops)

Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming, e.g., Prolog

- 1. American(x) \land Alcohol(y) \land Minor(z) \land Sells(x,y,z) \Rightarrow Criminal(x)
- 2. American(Nathan)
- 3. Minor(Jimmy)
- 4. Beer(x) \Rightarrow Alcohol(x)
- 5. Owns(Jimmy,x) \land Beer(x) \Rightarrow Sells(Nathan,x,Jimmy)
- 6. Beer(B1)
- 7. Owns(Jimmy,B1)

Backward Chaining Example

- $\underline{1}$. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- $2. Slimy(z) \wedge Creeps(z) \Rightarrow Slug(z)$

- 3. Piq(Pat) 4. Slimy(Steve) 5. Creeps(Steve)

Outline

- FOL Inference
 - Proof
 - Unification
 - Generalized Modus Ponens
 - Forward and backward chaining

Industrial-strength Inference

- Completeness
- Resolution
- Logic programming

Some Notes from the Past

- Sound or truth-preserving:
 - \circ If KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world
 - Whenever $KB \vdash_i \alpha$ it is also true that $KB \models \alpha$, i.e., $M(KB) \subseteq M(\alpha)$
- Completeness:
 - The inference algorithm can derive any sentence that is entailed
 - \circ Whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$
- Horn clause is a clause (disjunct of literals) with at most one positive literal
 - $(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$; which is equivalent to $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

Completeness of FOL

Procedure i is complete if and only if

$$KB \vdash_i \alpha$$
 whenever $KB \models \alpha$

Forward and backward chaining are complete for Horn KBs but incomplete for general first-order logic

E.g., from

$$PhD(x) \Rightarrow HighlyQualified(x)$$

 $\neg PhD(x) \Rightarrow EarlyEarnings(x)$
 $HighlyQualified(x) \Rightarrow Rich(x)$
 $EarlyEarnings(x) \Rightarrow Rich(x)$

should be able to infer Rich(Me), but FC/BC won't do it

Does a complete algorithm exist?

- Problem is that
 ¬P(x) ⇒ R(x)
 cannot be
 converted into
 Horn form
- We need a more powerful inference rule!

A Brief History of Reasoning

450B.C.	Stoics	propositional logic, inference (maybe)	
322B.C.	Aristotle	"syllogisms" (inference rules), quantifiers	
1565	Cardano	probability theory (propositional logic + uncertainty)	
1847	Boole	propositional logic (again)	
1879	Frege	first-order logic	
1922	Wittgenstein	proof by truth tables	
1930	Gödel	∃ complete algorithm for FOL	
1930	Herbrand	complete algorithm for FOL (reduce to propositional)	
1931	Gödel	¬∃ complete algorithm for arithmetic	
1960	Davis/Putnam	"practical" algorithm for propositional logic	
1965	Robinson	"practical" algorithm for FOL—resolution	

Resolution

Entailment in first-order logic is only semidecidable:

can find a proof of α if $KB \models \alpha$ cannot always prove that $KB \not\models \alpha$

Cf. Halting Problem: proof procedure may be about to terminate with success or failure, or may go on for ever

Resolution is a <u>refutation</u> procedure:

to prove $KB \models \alpha$, show that $KB \land \neg \alpha$ is unsatisfiable

Resolution uses KB, $\neg \alpha$ in CNF (conjunction of clauses)

Resolution inference rule combines two clauses to make a new one:

Inference continues until an empty clause is derived (contradiction)

Resolution Inference Rule

Basic propositional version:

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

or equivalently

$$\frac{\neg \alpha \Rightarrow \beta, \ \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

Full first-order version:

$$\begin{array}{c}
p_1 \vee \dots p_j \dots \vee p_m, \\
q_1 \vee \dots q_k \dots \vee q_n \\
\hline
(p_1 \vee \dots p_{j-1} \vee p_{j+1} \dots p_m \vee q_1 \dots q_{k-1} \vee q_{k+1} \dots \vee q_n)\sigma
\end{array}$$

where $p_j \sigma = \neg q_k \sigma$

For example,

$$\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Me)}$$
$$\frac{Unhappy(Me)}{Unhappy(Me)}$$

with
$$\sigma = \{x/Me\}$$

Conjunctive Normal Form

<u>Literal</u> = (possibly negated) atomic sentence, e.g., $\neg Rich(Me)$

<u>Clause</u> = disjunction of literals, e.g., $\neg Rich(Me) \lor Unhappy(Me)$

The KB is a conjunction of clauses

Any FOL KB can be converted to CNF as follows:

- 1. Replace $P \Rightarrow Q$ by $\neg P \lor Q$
- 2. Move \neg inwards, e.g., $\neg \forall x P$ becomes $\exists x \neg P$
- 3. Standardize variables apart, e.g., $\forall x \, P \vee \exists x \, Q$ becomes $\forall x \, P \vee \exists y \, Q$
- 4. Move quantifiers left in order, e.g., $\forall x \, P \vee \exists x \, Q$ becomes $\forall x \exists y \, P \vee Q$
- 5. Eliminate ∃ by Skolemization (next slide)
- 6. Drop universal quantifiers
- 7. Distribute \land over \lor , e.g., $(P \land Q) \lor R$ becomes $(P \lor Q) \land (P \lor R)$

Skolemization

 $\exists x \, Rich(x) \text{ becomes } Rich(G1) \text{ where } G1 \text{ is a new "Skolem constant"}$

$$\exists k \ \frac{d}{dy}(k^y) = k^y \text{ becomes } \frac{d}{dy}(e^y) = e^y$$

More tricky when \exists is inside \forall

E.g., "Everyone has a heart"

$$\forall x \ Person(x) \Rightarrow \exists y \ Heart(y) \land Has(x,y)$$

Incorrect:

$$\forall x \ Person(x) \Rightarrow Heart(H1) \land Has(x, H1)$$

Correct:

 $\forall x \ Person(x) \ \Rightarrow \ Heart(H(x)) \land Has(x,H(x))$

where H is a new symbol ("Skolem function")

Skolem function arguments: all enclosing universally quantified variables

Resolution Proof

To prove α :

- negate it
- convert to CNF
- add to CNF KB
- infer contradiction

E.g., to prove Rich(me), add $\neg Rich(me)$ to the CNF KB

 $\neg PhD(x) \lor HighlyQualified(x)$

 $PhD(x) \vee EarlyEarnings(x)$

 $\neg HighlyQualified(x) \lor Rich(x)$

 $\neg EarlyEarnings(x) \lor Rich(x)$

Resolution Proof

Logic Programming

•

7. Find false facts

Sound bite: computation as inference on logical KBs

	Logic programming	Ordinary programming
1.	Identify problem	Identify problem
2.	Assemble information	Assemble information
3.	Tea break	Figure out solution
4.	Encode information in KB	Program solution
5.	Encode problem instance as facts	Encode problem instance as data
6.	Ask queries	Apply program to data

Should be easier to debug Capital(NewYork, US) than x := x + 2!

Debug procedural errors

PROLOG

Basis: backward chaining with Horn clauses + bells & whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques \Rightarrow 10 million LIPS

Program = set of clauses = head :- literal₁, ... literal_n. Efficient unification by open coding

Efficient retrieval of matching clauses by direct linking

Depth-first, left-to-right backward chaining

Built-in predicates for arithmetic etc., e.g., X is Y*Z+3

Closed-world assumption ("negation as failure")

e.g., not PhD(X) succeeds if PhD(X) fails