Skin tone detection.

ISL / 안재원

목차

Old skin tone detection method

New skin tone detection method

Result

Old skin tone detection method

WANG, Yanjiang; YUAN, Baozong. A novel approach for human face detection from color images under complex background. *Pattern Recognition*, 2001, 34.10: 1983-1992.

HSV

$$H = \begin{cases} H1 & \text{if } B \le G \\ 360^{\circ} - H1 & \text{if } B > G \end{cases}$$

$$H1 = \cos^{-1} \{ \frac{0.5[(R - G) + (R - B)]}{\sqrt{(R - G)^{2} + (R - B)(G - B)}}$$

$$S = \frac{Max(R, G, B) - Min(R, G, B)}{Max(R, G, B)}$$

$$V = \frac{Max(R, G, B)}{255}$$

$$Cyan \in \mathbb{C}$$

Old skin tone detection method

Normalized RGB

$$f(x,y) = (R,G,B)$$

$$I = R + G + B$$

Normalized
$$R' = \frac{R}{I}$$

Normalized
$$G' = \frac{G}{I}$$

Normalized
$$B' = \frac{B}{I}$$

01

Old skin tone detection method

Existing Method

$$0.36 \le R' \le 0.465$$

 $0.28 \le G' \le 0.363$
 $0 \le H \le 25$
 $51 \le S \le 173$
 $90 \le V \le 255$

02

New skin tone detection method

CHEDDAD, Abbas, et al. A skin tone detection algorithm for an adaptive approach to steganography. Signal Processing, 2009, 89.12: 2465-2478.

-			[4]	[25]	[28]	Proposed
	1	840 450	0.5160	33.515	7.796	0.125
	2	478 518	0.4060	22.094	4.156	0.047
	3	196 608	0.2970	4.547	2.188	0.062
	4	196 608	0.3280	3.563	1.906	0.062
	5	849162	0.5160	33.062	7.531	0.078
90	6	850 545	0.6090	39	8.343	0.062
	7	849162	0.6090	39.219	6.641	0.078
	8	849162	0.5160	39.172	8.484	0.078
	9	849162	0.6100	38.203	6	0.078
	10	7750656	3.1720	$> 600^{a}$	54.86	0.562
	11	982 101	0.6410	79.469	7.297	0.078
	12	21233664	9.3910	$> 600^{a}$	144	1.531

Number of pixels Time elapsed in seconds

New skin tone detection method

New skin tone detection method

$$f(x,y) = (R,G,B)$$
 RGB image

First Luminance.

 $\vec{\alpha} = [0.298936021293775390, 0.587043074451121360, 0.114020904255103250]^T$ $I = f(x, y) \otimes \vec{\alpha}$

Second Luminance.

$$\hat{I} = \max(G, B)$$

Error Signal

$$e = I - \hat{I}$$

02

New skin tone detection method

Expectation Maximization.

New skin tone detection method

Result(WYSIWYG) 03

- O X

Origin

New

감사합니다.

