

INTRO TO QUANTUM COMPUTING

Lab #2

TRIGONOMETRY AND COORDINATE SYSTEMS

Akshay Agarwal

10/31/2020

PROGRAM FOR TODAY

Ground rules

Pre-lab student feedback

Popular questions from last week

Lab content

Post-lab student feedback

GROUND RULES

 We want to ensure that every student participating in this lab feels welcome and included

- We ask that you:
 - **Do not** spam the chat or Q&A with repeated questions or messages
 - Do not put answers to problems in the chat or Q&A, unless your TA asks you
 to
 - **Keep your questions relevant** to the topics being discussed. We have Piazza for other content-related questions, and Discord for questions on logistics
 - Only raise your hand if the TAs ask students to

GROUND RULES

- As instructors and TAs, we want to hear from diverse voices
 - Step up, step back
- We will not be able to address all content-questions in lecture or lab
 - Look at answers to similar questions on Piazza or Discord
 - Post your question in the relevant folder in Piazza (e.g. week 1)
 - We will continue to explore new content each week, and will likely answer your question in future weeks! Hold on ☺

PRE-LAB CANVAS FEEDBACK

- Please log into Canvas and answer your lab section's quiz (using the password posted below and in the chat).
 - This is lab number <insert lab number>
 - Password:
- On a scale of 1 to 5, how would you rate your understanding of this week's content?
 - 1 –Did not understand anything
 - 2 Understood some parts
 - 3 Understood most of the content
 - 4 Understood all of the content
 - 5 The content was easy for me/I already knew all of the content
- This quiz is also your lab attendance!

QUESTIONS FROM PAST WEEK

• Combinations of logic expressions: (A NAND B) XOR C

QUESTIONS FROM PAST WEEK

How are logic gates made? What's inside them?

- Transistors!
 - A transistor is a switch that can electronically turn a current ON (1) or OFF (0)
 - Gates are made using one or more such switches
 - Many gates are combined to make larger logic circuits
 - Many such logic circuits are combined to make a (classical) computer

LEARNING OBJECTIVES FOR LAB 2

- Analyze trigonometric functions at various angles
 - Finding values of sin, cos, tan
- Solidify understanding of coordinate systems
 - Cartesian coordinates
 - Polar coordinates
 - Conversion between the two systems
- Summation notation*

Unit circle: Circle of radius 1

Unit circle: Circle of radius 1

$$\sin \theta = b$$

$$\sin \theta = b$$

$$\cos \theta = a$$

$$\sin \theta = b$$

$$\cos \theta = a$$

$$\tan \theta = \frac{b}{a}$$

$$\sin\frac{\pi}{6} = \frac{1}{2}$$

$$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

$$\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$$

$$\cos\frac{4\pi}{3} = -\frac{1}{2}$$

$$\tan\frac{4\pi}{3} = \sqrt{3}$$

QUESTIONS

Questions on content so far?

COORDINATE SYSTEMS

COORDINATE SYSTEMS

POLAR COORDINATE SYSTEM

POLAR COORDINATE SYSTEM

POLAR COORDINATE SYSTEM

RELATING THE COORDINATE SYSTEMS

CONVERTING CARTESIAN TO POLAR

$$(x,y) \rightarrow (r,\theta)$$
 cartesian polar

CONVERTING CARTESIAN TO POLAR

$$(x,y) \rightarrow (r,\theta)$$
 cartesian polar

$$r = \sqrt{x^2 + y^2}$$

CONVERTING CARTESIAN TO POLAR

$$(x,y) \rightarrow (r,\theta)$$
 cartesian polar

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} \frac{y}{x}$$

CONVERTING POLAR TO CARTESIAN

$$(r,\theta) \rightarrow (x,y)$$
polar cartesian

CONVERTING POLAR TO CARTESIAN

$$(r,\theta) \rightarrow (x,y)$$
 polar cartesian

$$x = r \cos \theta$$

$$y = r \sin \theta$$

EXAMPLE OF POLAR \rightarrow CARTESIAN

$$(r,\theta) \rightarrow (x,y)$$
polar cartesian

$$x = r \cos \theta$$

$$y = r \sin \theta$$

EXAMPLE OF POLAR -> CARTESIAN

$$(r,\theta) \rightarrow (x,y)$$
polar cartesian

$$x = r \cos \theta$$

$$y = r \sin \theta$$

QUESTIONS

Questions on content so far?

POST-LAB ZOOM FEEDBACK

- Please answer the Zoom poll
- On a scale of 1 to 5, how would you rate your understanding of this week's content?
 - 1 –Did not understand anything
 - 2 Understood some parts
 - 3 Understood most of the content
 - 4 Understood all of the content
 - 5 The content was easy for me/I already knew all of the content

ADDITIONAL OPTIONAL CONENT

Sum =
$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10$$

Sum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
$$Sum = \sum_{i=1}^{10} i$$

Sum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
Sum =
$$\sum_{i=1}^{10} i$$

$$a_1 + a_2 + a_3 + a_4 + a_5 = \sum_{k=1}^{5} a_k$$

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\cos \frac{2\pi}{3} = -\frac{1}{2}$$

$$\tan \frac{2\pi}{3} = -\frac{1}{\sqrt{3}}$$

