Theories of Bonding in transition metal complexes

Theories of bonding were proposed and used to explain the observed properties of transition metal complexes such as color, magnetism, shape of complexes

Valence bond theory

(inner orbital or low spin complex)

d'sp' hybridised orbitals of Co" ICo(NH.J.J"

from six NH, molecules

Crystal Field theory

Molecular Orbital Theory

Linus Pauling Nobel 1954,1962

Hans Bethe Nobel 1967

Mulliken (Nobel 1966) & Hund

- * Based on the concept of hybridization sp3, dsp2, dsp3, d2sp1 & sp3d2; Predicts shapes of complexes very efficiently
- Can determine magnetic moment if hybridization is known and vice versa
- · Does not explain color of complexes, distortion of shape of complexes
- Does not predict strength of ligands or temperature dependence of magnetic moments

Linus Pauling

- *Basic assumptions: Ligands and metal are point charges and the attraction between them is purely electrostatic in nature
- *Considers how the energies of the five metal d orbitals change in the presence of a ligand field (removing /lifting of the degeneracy).
- *Provides explanation to color, arranges ligands according to their strength, explains distortion of complexes and anomalies in their physical properties
- -VBT and CFT should not be MIXED: A common mistake done by many students

- *A larger picture where both metal orbitals and ligand group orbitals are made to form bonding, non bonding and antibonding orbitals.
- * CFT splitting is included in this picture; also orbital overlap: # bonding
- *Explains color, magnetism and energetics (does not predict shape)

Mullikson & Hund

Crystal Filed Theory (CFT)

- A purely ionic model for transition metal complexes.
- Basic assumptions: Ligands and metal are point charges and the attraction between them is purely electrostatic in nature (Ligands are considered as point charge).
- Splitting of d-orbitals: Considers how the energies of the five metal d orbitals change in the presence of a ligand field (removing /lifting of the degeneracy).
- Provides explanation to color, arranges ligands according to their strength, explains distortion of complexes and anomalies in their physical properties
- Used to rationalize spectroscopic and magnetic properties.

d-orbitals: look attentively along the axis

Coordination Chemistry

- · 1893, age 26: coordination theory
- Nobel prize for Chemistry, 1913
- Addition of 6 mol NH₃ to CoCl₃(aq)

Conductivity studies
Precipitation with AgNO₃

3+

3CI-

(counterior

Prof. Dr. Alfred Werner (1866-1919)

N forms a coordinate covalent bond to the metal

Metallic elements act as Lewis acids form complexes with various Lewis bases.

Werner's Theory

- > Primary valence equal the metal's oxidation number
- > Secondary valence is the number of atoms directly bonded to the metal (coordination number) and placed those molecules and ions within the sphere inbrackets
- > "free" anions (that dissociate from the complex ion) outside the bracket

Ligands

Ligand Type Examples

 Monodentate
 $H_2\ddot{O}$: Water
 : \ddot{F} : Fluoride ion
 [:C \equiv N:] Cyanide ion
 [: \ddot{O} -H] Hydroxide ion

 :NH3 Ammonia
 : \ddot{C} : Chloride ion
 [: \ddot{S} =C $=\ddot{N}$:] Thiocyanate ion
 [: \ddot{O} =N $=\ddot{O}$:] Nitrite ion

Bidentate

Polydentate

Ethylenediaminetetraacetate ion (EDTA⁴⁻)

Effective atomic number (EAN) Rule

In 1927, developed by Sidgwick

d electrons of metal + electrons of ligand = 18 electrons

d³ d⁴ d⁵ d⁶ d7 d8 d9 d¹0 Sc Ti V Cr Mn Fe Co Ni Cu Y Zr Nb Mo Tc Ru Rh Pd Ag Ta W Re Os Ir Pt Au	Cd

Effective atomic number (EAN) Rule:

" Effective atomic number is the total number of electrons present around central metal ion in a complex."

EAN=[Atomic number of the metal]-[Number of electrons lost in the formation of ion] + [Number of electrons gained from ligands]. Example:

[Cu(NH₃)₄]²⁺

$$EAN = [29 - 2 + 4(2)] = 35$$

Let us take the case [Co(NH₃)₆]³⁺

:: No. of electronsin Co(III) of the complex

Number of electrons donated by $\sin NH_3$ ligands $=6\times2=12$

$$\begin{array}{l} ::\!\! EANofCo(III)in[Co(NH_3)_6]^{3+} \end{array}$$

$$= 27 - 3 = 24$$

$$=6\times 2=12$$

Drawbacks:

- 1. The donation of electron pairs to central metal ion produce an improper accumulation of negative charge on this ion. Such condition is not fair.
- 2. Complexes of Ni(II), Co(II), Ag(I) etc. generally do not follow this rule, even then they are stable
- 3. Metals are electro positive in nature, then how they many accept electrons from ligands-not explained?

Metal atom	at.	complex	O.S. of the metal ion	e lost in ion formation	e given by ligands	EAN / noble gas
Fe	26	K4[Fe(CNd)]	2+	2	12	26-2+12=36 Kr
Со	27	[Co(NH ₃) ₆] ³⁺	3+	3	12	27-3+12=36 Kr
Ni	28	[Ni(CO)4]	0	0	8	28-0+8=36 Kr
Cu	29	[Cu(NH ₃) ₄]*	1+	1	8	29-1+8=36 Kr
Zn	30	[Zn(H ₂ O) ₄] ^{2*}	2+	2	8	30-2+8=36 Kr
² d	46	[Pd(NH ₃) ₆] ^{4*}	4+	4	12	46-4+12=54 Xe
t	78	[Pt(Cl) ₆] ²	4+	4	12	78-4+12=86 Rn
r	24	[Cr(NH ₃) ₆]3-	3+	3	12	24-3+12=35
0	26	K,[Fe(CNd)]	3+	3	12	26-3+12=35
1	28	[Ni(NH ₃) ₆] ^{2*}	2+	2	12	28-2+12=38

2 2

2