

# Metodo a elementi finiti per il pricing di opzioni multi-asset con modelli di Lévy

Progetto di Programmazione Avanzata per il Calcolo Scientifico

Nahuel Foresta Giorgio Re

Dipartimento di Matematica Politecnico di Milano

31 agosto 2014

#### Indice

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultat
- Conclusioni

### Il progetto

#### Scopo

Lo scopo è di creare una piccola libreria per il pricing di derivati finanziari con il metodo degli elementi finiti, appoggiandosi sulla libreria deal.ii. L'idea è che l'utilizzatore possa sia utilizzare gli oggetti presenti, sia crearne altri con grande facilità nel caso ne avesse bisogno.

### Il progetto

#### Scopo

Lo scopo è di creare una piccola libreria per il pricing di derivati finanziari con il metodo degli elementi finiti, appoggiandosi sulla libreria deal.ii. L'idea è che l'utilizzatore possa sia utilizzare gli oggetti presenti, sia crearne altri con grande facilità nel caso ne avesse bisogno.

#### Motivazioni

La procedura più diffusa in finanza è di usare le differenze finite. Gli elementi finiti, a fronte di una maggiore difficoltà implementativa, risultano essere più vantaggiosi.

#### Indice

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultati
- Conclusioni

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C + 
+ \int_{\mathbb{R}} \left( C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C + 
+ \int_{\mathbb{R}} \left( C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

 La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C + 
+ \int_{\mathbb{R}} \left( C(t, Se^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C + 
+ \int_{\mathbb{R}} \left( C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale. Separabile in due pezzi.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C + 
+ \int_{\mathbb{R}} \left( C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale.

Trasformazioni price e logprice

$$\frac{\partial u}{\partial t} + \left(r - \frac{\sigma^2}{2}\right) \frac{\partial u}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - ru$$
$$+ \int_{\mathbb{R}} \left(u(t, x + y) - u(t, x) - (e^y - 1) \frac{\partial u}{\partial x}\right) \nu(dy) = 0$$

con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, che necessita di un trattamento speciale.

Trasformazioni price e logprice

## Scomposizione della parte integrale

Definendo nel modo seguente le quantità

$$\hat{lpha} = \int_{\mathbb{R}} (e^y - 1) 
u(y) dy$$
 $\hat{\lambda} = \int_{\mathbb{R}} 
u(y) dy$ 

l'equazione diventa

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + (r - \hat{\alpha}) S \frac{\partial C}{\partial S} - (r + \hat{\lambda}) C + \int_{\mathbb{R}} C(t, Se^y) \nu(y) dy = 0$$

# Scomposizione della parte integrale

Analogamente per la trasformazione logprice si ha

$$\hat{\lambda} = \int_{\mathbb{R}} 
u(y) dy, \ \hat{lpha} = \int_{\mathbb{R}} (\mathrm{e}^y - 1) 
u(y) dy,$$

con rispettiva equazione

$$\frac{\partial u}{\partial t} + \left(r - \frac{\sigma^2}{2} - \hat{\alpha}\right) \frac{\partial u}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - (r + \hat{\lambda})u + \int_{\mathbb{R}} u(t, x + y)\nu(y)dy = 0$$

#### In due dimensioni

Con la trasformazione Price

$$\begin{split} \frac{\partial \mathcal{C}}{\partial t} + (r - \hat{\alpha}_1) S_1 \frac{\partial \mathcal{C}}{\partial S_1} + (r - \hat{\alpha}_2) S_2 \frac{\partial \mathcal{C}}{\partial S_2} + \frac{\sigma_1^2}{2} S_1^2 \frac{\partial^2 \mathcal{C}}{\partial S_1^2} + \frac{\sigma_2^2}{2} S_2^2 \frac{\partial^2 \mathcal{C}}{\partial S_2^2} \\ + \rho \sigma_1 \sigma_2 S_1 S_2 \frac{\partial^2 \mathcal{C}}{\partial S_1 \partial S_2} - (r + \lambda_1 + \lambda_2) \mathcal{C} \\ + \int_{\mathbb{R}} \mathcal{C}(t, S_1 e^y, S_2) \nu_1(y) dy + \int_{\mathbb{R}} \mathcal{C}(t, S_1, S_2 e^y) \nu_2(y) dy = 0 \end{split}$$

#### In due dimensioni

Con la trasformazione Logprice

$$\begin{split} \frac{\partial u}{\partial t} + \frac{\sigma_1^2}{2} \frac{\partial^2 u}{\partial x_1^2} + \frac{\sigma_2^2}{2} \frac{\partial^2 u}{\partial x_2^2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} + \left(r - \frac{\sigma_1^2}{2} - \hat{\alpha}_1\right) \frac{\partial u}{\partial x_1} \\ + \left(r - \frac{\sigma_2^2}{2} - \hat{\alpha}_2\right) \frac{\partial u}{\partial x_2} - \left(r + \hat{\lambda}_1 + \hat{\lambda}_2\right) u \\ + \int_{\mathbb{R}} u(t, x_1 + y, x_2) \nu_1(y) dy + \int_{\mathbb{R}} u(t, x_1, x_2 + y) \nu_2(y) dy = 0 \end{split}$$

Data una griglia con nodi  $S_i$ 

 Per la parte differenziale, si scrive la formulazione variazionale e la discretizzazione nel modo usuale

Data una griglia con nodi  $S_i$ 

- Per la parte differenziale, si scrive la formulazione variazionale e la discretizzazione nel modo usuale
- Per la parte integrale, si calcola il valore della parte integrale relativa al nodo S<sub>i</sub>

$$J^{1}(S_{i}) = \int_{\mathbb{R}} C(t, S_{1}e^{y}, S_{2})\nu_{1}(y)dy$$

ottenendo una vettore J funzione di  $S_i$ . Tale funzione va poi scritta come elemento dello spazio a elementi finiti

Data una griglia con nodi  $S_i$ 

- Per la parte differenziale, si scrive la formulazione variazionale e la discretizzazione nel modo usuale
- Per la parte integrale, si calcola il valore della parte integrale relativa al nodo  $S_i$

$$J^{1}(S_{i}) = \int_{\mathbb{R}} C(t, S_{1}e^{y}, S_{2})\nu_{1}(y)dy$$

- ottenendo una vettore J funzione di  $S_i$ . Tale funzione va poi scritta come elemento dello spazio a elementi finiti
- Per la discretizzazione temporale, viene applicato uno schema di Eulero Implicito, ma la parte integrale viene lasciata esplicita. Lo schema è stabile se Stabile se  $\frac{1}{dt} < \lambda$ .

Data una griglia con nodi  $S_i$ 

Otteniamo dunque il seguente schema, con  $\mathbf{C}_h^k$  vettore componenti soluzione al tempo k

$$M_1\mathbf{C}_h^k = M_2\mathbf{C}_h^{k+1} + M\mathbf{J}^1 + M\mathbf{J}^2$$

Ricordiamo l'integrale da calcolare

$$\int_{\mathbb{R}} C(t, Se^y) \nu(y) dy$$

al quale applichiamo il cambio di variabile

$$z = Se^y$$



Figura: Una semplice griglia strutturata

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$



Figura: Una semplice griglia strutturata

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$

Quindi per ogni cella, si calcolano i contributi dovuti alla cella



Figura: Poniamoci su una cella

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$

Quindi per ogni cella, si calcolano i contributi dovuti alla cella e si distribuiscono ai nodi di competenza:

- In 1d, a tutti i nodi.
- In 2d, solo a quelli che giacciono sulla retta passante per la faccia selezionata. Prima sull'asse x.



Figura : I contributi della cella ai nodi x

L'integrale diventa allora

$$\int_0^\infty \frac{C(t,z)}{z} \nu\left(\log\left(\frac{z}{S}\right)\right) dz$$

Quindi per ogni cella, si calcolano i contributi dovuti alla cella e si distribuiscono ai nodi di competenza:

- In 1d, a tutti i nodi.
- In 2d, solo a quelli che giacciono sulla retta passante per la faccia selezionata. Poi sull'asse y.



Figura : I contributi della cella ai nodi y

In questo caso l'integrale da calcolare è

$$\int_{-\infty}^{\infty} u(t, x+y) \nu(y) dy$$

su una griglia qualunque. Notare come si può uscire dal dominio a causa del termine x + y



Figura : Una griglia

In questo caso l'integrale da calcolare è

$$\int_{-\infty}^{\infty} u(t, x+y) \nu(y) dy$$

su una griglia qualunque. Notare come si può uscire dal dominio a causa del termine x+y In questo caso si realizza un ciclo su tutti i vertici. Selezionato un vertice i,



Figura: Poniamoci su un nodo

In questo caso l'integrale da calcolare è

$$\int_{-\infty}^{\infty} u(t, x+y) \nu(y) dy$$

su una griglia qualunque. Notare come si può uscire dal dominio a causa del termine x+y In questo caso si realizza un ciclo su tutti i vertici. Selezionato un vertice i, si avranno dei nodi di quadratura in direzione x e si quadra su  $x_i + z_l$  (in blu), e se la dimensione è due, anche su y lungo  $y_i + z_l$ .



Figura: Calcolo lungo le direzioni

#### Indice

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultat
- Conclusioni

#### La libreria deal.ii

#### Libreria deal.ii

Una potente libreria *open source* ad elementi finiti sui quadrilateri. Molto completa e semplice da utilizzare all'inizio, permette di risolvere problemi variazionali fino a 3 dimensioni con poche righe di codice.

#### La libreria deal.ii

#### Libreria deal.ii

Una potente libreria *open source* ad elementi finiti sui quadrilateri. Molto completa e semplice da utilizzare all'inizio, permette di risolvere problemi variazionali fino a 3 dimensioni con poche righe di codice.

#### Vantaggi

- Documentazione molto ampia e chiara, a cui si aggiunge la presenza di 51 tutorial programs che illustrano come usare la libreria per problemi tipici
- Organizzata in moduli che coprono le diverse aree di un problema ad elementi finiti (creazione griglie, algebra lineare, output risultati, etc)

### La nostra implementazione

Tre strutture chiave per il problema

#### Classi Opzione

Rappresentano il problema e gestiscono creazione griglia, assemblaggio sistema e soluzione.

#### Classi Model

I vari modelli utilizzati in finanza sono rappresentati con questa classe, la cui interfaccia è stabilita da una classe base astratta.

#### Classi Integrali

Il calcolo della parte integrale è gestito da queste classi, e le Opzioni salvano un puntatore a un oggetto di questo tipo.

Tutte queste strutture sfruttano il meccanismo dell'ereditarietà al fine di coprire i diversi casi possibili.

## Le classi Opzione

Seguendo la linea di deal.ii, le classi opzione costituiscono il *core* del programma ad elementi finiti. Implementano i vari metodi necessari per la soluzione del problema.

Le classi foglia sono quelle effettivamente usate, in quanto implementano tutti i metodi.



Figura: Schema delle classi Opzione

## Le classi Opzione

Seguendo la linea di deal.ii, le classi opzione costituiscono il *core* del programma ad elementi finiti. Implementano i vari metodi necessari per la soluzione del problema.

Le classi foglia sono quelle effettivamente usate, in quanto implementano tutti i metodi.

#### Factory di Opzioni

Per facilitare la creazione di opzioni all'utente, è stata creata una *Factory* che permette di creare i vari oggetti **Opzione** con un'interfaccia comune.

## Le classi Opzione

Seguendo la linea di deal.ii, le classi opzione costituiscono il *core* del programma ad elementi finiti. Implementano i vari metodi necessari per la soluzione del problema.

Le classi foglia sono quelle effettivamente usate, in quanto implementano tutti i metodi.

#### Factory di Opzioni

Per facilitare la creazione di opzioni all'utente, è stata creata una *Factory* che permette di creare i vari oggetti **Opzione** con un'interfaccia comune.

#### Estensibile

L'utente può sia utilizzare le opzioni già esistenti, che crearne delle nuove partendo dal secondo o dal terzo livello di ereditarietà.

### Le classi Integrale

Per calcolare la parte integrale, sono state create una serie di classi. Il secondo livello di ereditarietà distingue fra *price* e *logprice*, mentre le classi foglia implementano quadrature specifiche ai modelli.



Figura: Schema delle classi LevyIntegral

### Le classi Integrale

Per calcolare la parte integrale, sono state create una serie di classi. Il secondo livello di ereditarietà distingue fra *price* e *logprice*, mentre le classi foglia implementano quadrature specifiche ai modelli.



Figura: Schema delle classi LevyIntegral

#### anything else?

## Indice

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultati
- Conclusioni

## Prezzi dei derivati?

#### Alcuni esempi di risultati ottenuti:



(a) Call europea, modello di Kou



(b) Basket Call Europea, modello di B&S

I risultati, confrontati con la soluzione analitica (nei pochi casi in cui esiste) o con altri *software* di simulazione (differenze finite o Montecarlo), sono corretti.

# Price v.s LogPrice

Con entrambi i metodi si ottengono risultati corretti e soddisfacenti:

| Price                                           | LogPrice                                                  |
|-------------------------------------------------|-----------------------------------------------------------|
| In 1d molto veloce                              | In 1d mediamente veloce                                   |
| In 2d buone performance                         | In 2d lento                                               |
| Non parallelizzabile                            | Parallelizzabile, quindi più veloce<br>di <i>Price</i> 1d |
| No mesh adapting in 2d                          | Mesh adapting anche in 2d, migliorando le prestazioni     |
| Troncamento del dominio può introdurre problemi | Nessun problema troncamento dominio                       |

Tabella: Confronto fra Price e LogPrice

# Price v.s LogPrice

Con entrambi i metodi si ottengono risultati corretti e soddisfacenti:



Figura: Convergenza del prezzo per una put al variare dello scaling factor

# Mesh adaptivity

Utilizzando le funzioni della libreria deal.ii, è facile adattare la griglia:



(a) Griglia iniziale

Figura: Adattamento di griglia per una Call Europea 2d in forma LogPrice

# Mesh adaptivity

Utilizzando le funzioni della libreria deal.ii, è facile adattare la griglia:





(b) Soluzione con griglia adattata

Figura: Adattamento di griglia per una Call Europea 2d in forma LogPrice

## Indice

- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultati
- Conclusioni

# Bilancio del progetto

Il programma finale si configura come una piccola ma solida libreria che serve da base per il pricing di derivati finanziari di base, e altri possono essere costruiti facilmente. Inoltre lascia molta libertà all'utente (più trasformazioni, scelta di parametri).

Anche se non velocissimo, le prestazioni sono migliori se comparate con altri software.

Il progetto, data al sua struttura aperta, si presta molto ad estensioni. Alcune idee:

• Aggiunta di altri derivati finanziari simili

Il progetto, data al sua struttura aperta, si presta molto ad estensioni. Alcune idee:

- Aggiunta di altri derivati finanziari simili
- Aggiunta di altri modelli finanziari

Il progetto, data al sua struttura aperta, si presta molto ad estensioni. Alcune idee:

- Aggiunta di altri derivati finanziari simili
- Aggiunta di altri modelli finanziari
- Parallelizzazione in memoria distribuita

Il progetto, data al sua struttura aperta, si presta molto ad estensioni. Alcune idee:

- Aggiunta di altri derivati finanziari simili
- Aggiunta di altri modelli finanziari
- Parallelizzazione in memoria distribuita
- Estensione al caso con tre sottostanti

Vi ringraziamo dell'attenzione.