1 Gaussian Pulses

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < 10, \ t \ge 0 \\ u(x,0) = \exp[-(x-5)^2]/\sqrt{2\pi}, & 0 < x < 10 \\ u_t(x,0) = 0, & 0 < x < 10 \\ u(0,t) = u(10,t) = 0, & t \ge 0. \end{cases}$$

$$(1)$$

Figure 1: IBVP (1) for t = 0, 1, 2, ..., 9.

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < 10, \ t \ge 0 \\ u(x,0) = \exp[-(x-5)^2]/\sqrt{2\pi}, & 0 < x < 10 \\ u_t(x,0) = 0, & 0 < x < 10 \\ u(0,t) = 0, & t \ge 0 \\ u_x(10,t) = 0, & t \ge 0. \end{cases}$$
(2)

Figure 2: IBVP (2) for t = 0, 1, 2, ..., 9.

1.1 $c_1 < c_2$

Figure 3: $c_1 = 1, c_2 = 4$

Figure 4: Caption

Figure 5: Caption

Figure 6: Caption

Figure 7: Caption

Figure 8: Caption

Figure 9: Caption

Figure 10: Caption

Figure 11: Caption

Figure 12: Caption

1.2 $c_1 > c_2$

Figure 13: $c_1 = 1, c_2 = 1/2$

Figure 14: Caption

Figure 15: Caption

Figure 16: Caption

Figure 17: Caption

Figure 18: Caption

Figure 19: Caption

Figure 20: Caption

Figure 21: Caption

Figure 22: Caption

2 2D Wave Equation

Figure 23: Caption

Figure 24: Caption

Figure 25: Caption

Figure 26: Caption

Figure 27: Caption

Figure 28: Caption

Figure 29: Caption

Figure 30: Caption

Figure 31: Caption

Figure 32: Caption

3 FDTD Test

Figure 33 shows a Gaussian pulse hitting a perfect magnetic conductor. All constants in Maxwell's equations are 1 here.

Figure 33: Caption