2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

game

Language: cs-CZ

Hra

Je-Ní-Ček rád hraje hry. Nedávno potkal kamarádku Ma-Řen-Ku a pověděl jí o síti leteckých linek na Tchaj-wanu. Je tam n měst (očíslovaných 0, ..., n-1), mezi některými z nich vedou letecké linky. Každá linka spojuje dvě města a může být použita v obou směrech.

Ma-Řen-Ka se zeptala Je-Ní-Čka, zda je možné cestovat mezi každými dvěma městy těmito leteckými linkami (buď přímo, nebo nepřímo). Je-Ní-Ček nechtěl prozradit správnou odpověď a navrhnul následující hru. Ma-Řen-Ka mu může pokládat otázky tvaru "Jsou města \boldsymbol{x} a \boldsymbol{y} přímo spojena linkou?" a Je-Ní-Ček na otázku hned odpoví. Ma-Řen-Ka se postupně zeptá na všechny dvojice měst, na každou právě jednou, dohromady tedy položí $\boldsymbol{r} = n(n-1)/2$ otázek. Ma-Řen-Ka hru vyhraje, pokud existuje takové \boldsymbol{i} , že $\boldsymbol{i} < \boldsymbol{r}$ a zároveň po získání odpovědí na prvních \boldsymbol{i} otázek může rozhodnout, zda je možné cestovat mezi každými dvěma městy. V opačném případě, pokud potřebuje všech \boldsymbol{r} odpovědí, vyhraje Je-Ní-Ček.

Aby hra byla pro Je-Ní-Čka zajímavější, dohodli se, že zapomenou na stávající tchajwanskou leteckou síť, Je-Ní-Ček si bude v průběhu hry vymýšlet vlastní síť a volit své odpovědi na základě předchozích otázek. Pomozte Je-Ní-Čkovi odpovídat na otázky tak, aby ve hře zvítězil.

Příklady

Pravidla hry objasníme na třech příkladech. Ve všech příkladech je n=4 měst a r=6 otázek.

V prvním příkladu (viz následující tabulka) Je-Ní-Ček *prohraje*, protože po otázce s číslem 4 už Ma-Řen-Ka s jistotou ví, že je možné cestovat mezi každou dvojicí měst nezávisle na tom, jaké budou odpovědi na zbývající otázky.

číslo otázky	otázka	odpověď
1	0, 1	ano
2	3, 0	ano
3	1, 2	ne
4	0, 2	ano
5	3, 1	ne
6	2, 3	ne

V dalším příkladu Ma-Řen-Ka po otázce číslo 3 ví, že *není možné* leteckými linkami cestovat z města 0 do města 1 a Je-Ní-Ček proto opět *prohrává*.

číslo otázky	otázka	odpověď
1	0, 3	ne

číslo otázky	otázka	odpověď
2	2, 0	ne
3	0, 1	ne
4	1, 2	ano
5	1, 3	ano
6	2, 3	ano

V posledním příkladu Ma-Řen-Ka nemůže až do získání odpovědi na poslední otázku rozhodnout, zda je možné cestovat mezi každými dvěma městy, Je-Ní-Ček proto vyhraje. Protože odpověděl *ano* na poslední otázku (v následující tabulce), je možné cestovat mezi každými dvěma městy. Kdyby ovšem odpověděl na poslední otázku *ne*, nebylo by to možné.

číslo otázky	otázka	odpověď
1	0, 3	ne
2	1, 0	ano
3	0, 2	ne
4	3, 1	ano
5	1, 2	ne
6	2, 3	ano

Úloha

Napište program, který pomůže Je-Ní-Čkovi vyhrát hru. Uvědomte si, že ani Ma-Řen-Ka, ani Je-Ní-Ček předem neznají strategii toho druhého. Ma-Řen-Ka může pokládat své otázky v libovolném pořadí a Je-Ní-Ček na ně musí okamžitě odpovídat bez znalosti budoucích otázek. Implementujte následující dvě funkce.

- initialize (n) -- Na začátku výpočtu bude zavolána funkce initialize. Její parametr *n* udává počet měst.
- hasEdge (u, v) -- Potom bude r-krát zavolána funkce hasEdge, kde r = n(n-1)/2. Každé volání reprezentuje jednu otázku Ma-Řen-Ky v pořadí, v jakém je pokládá. Pro každou otázku musíte rozhodnout, zda vede přímá linka z města \boldsymbol{u} do města \boldsymbol{v} . Návratová hodnota je rovna 1, pokud přímá linka z \boldsymbol{u} do \boldsymbol{v} existuje, 0 v opačném případě.

Podúlohy

Každá podúloha se skládá z několika her. Body za podúlohu získáte pouze tehdy, když váš program vyhraje za Je-Ní-Čka všechny tyto hry.

podúloha	počet bodů	n
1	15	n=4
2	27	$4 \le n \le 80$
3	58	$4 \le n \le 1500$

Upřesnění implementace

Odevzdejte právě jeden soubor pojmenovaný game.c, game.cpp nebo game.pas. Tento soubor implementuje funkce popsané výše s následujícími parametry.

Programy v C/C++

```
void initialize(int n);
int hasEdge(int u, int v);
```

Programy v Pascalu

```
procedure initialize(n: longint);
function hasEdge(u, v: longint): longint;
```

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup v následujícím formátu:

- řádek 1: n
- lacktriangle následujících $m{r}$ řádků: každý řádek obsahuje dvě celá čísla u a v, která určují dotaz na města $m{u}$ a $m{v}$.