27) Principal Components Analysis

Vitor Kamada

February 2018

Reference

Tables, Graphics, and Figures from

An Introduction to Statistical Learning

James et al. (2017): Chapters: 10.2, and 10.4

USArrests Data

Principal Component Analysis (PCA)

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \dots + \phi_{p1}X_p$$
$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{p1}x_{ip}$$

$$\max_{\phi_{11},...,\phi_{p1}} \{ \frac{1}{n} \sum_{i=1}^{n} (\sum_{j=1}^{p} \phi_{j1} x_{ij})^{2} \}$$

subject to
$$\sum_{j=1}^{p} \phi_{j1}^2 = 1$$

$$z_{i2} = \phi_{12}x_{i1} + \phi_{22}x_{i2} + \dots + \phi_{p2}x_{ip}$$

First and Second Principal Component

	PC1	PC2
Murder	0.5358995	-0.4181809
Assault	0.5831836	-0.1879856
UrbanPop	0.2781909	0.8728062
Rape	0.5434321	0.1673186

Scaling the Variables

Variance for Murder, Rape, Assault, and UrbanPop: 18.97, 87.73, 6945.16, and 209.5

Proportion of Variance Explained (PVE)

$$PVE = \frac{\frac{\frac{1}{n}\sum\limits_{i=1}^{n}z_{im}^{2}}{\sum\limits_{j=1}^{p}Var(X_{j})}$$

$$\sum_{j=1}^{p} Var(X_j) = \sum_{j=1}^{p} \frac{1}{n} \sum_{i=1}^{n} x_{ij}^{2}$$

$$\frac{1}{n} \sum_{i=1}^{n} z_{im}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij} \right)^2$$

Cumulative Proportion of Variance Explained

pr.out=prcomp(USArrests, scale=TRUE)

pr.out\$center

```
Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
```

pr.out\$scale

```
Murder Assault UrbanPop Rape
4.355510 83.337661 14.474763 9.366385
```

pr.out\$rotation=-pr.out\$rotation

```
pr.out$x=-pr.out$x
pr.out$rotation
```

```
        PC1
        PC2
        PC3
        PC4

        Murder
        0.5358995
        -0.4181809
        0.3412327
        -0.64922780

        Assault
        0.5831836
        -0.1879856
        0.2681484
        0.74340748

        UrbanPop
        0.2781909
        0.8728062
        0.3780158
        -0.1338773

        Rape
        0.5434321
        0.1673186
        -0.8177779
        -0.08902432
```

biplot(pr.out, scale=0)

pr.var=pr.out\$sdev^2; pr.var

2.4802416 0.9897652 0.3565632 0.1734301

pve=pr.var/sum(pr.var); pve

0.62006039 0.24744129 0.08914080 0.04335752

plot(pve, xlab="Principal Component", ylab="Proportion of Variance Explained", ylim=c(0,1),type='b')

plot(cumsum(pve), xlab="Principal Component", ylab="Cumulative Proportion of Variance Explained", ylim=c(0,1),type='b')

