CS 315: Computer Networks Lab Spring 2023-24, IIT Dharwad Assignment-12

Wireshark Lab: 802.11 WiFi March 28, 2024

Lab Instructions

- Login to the Ubuntu OS on your machine. The login credentials are as follows:
 - Username: userPassword: 123456
- Mark your attendance in the attendance sheet before leaving the lab.
- Handle the lab resources with utmost care.
- Please go through the following exercises in today's lab.
- It is recommended that you complete all the following exercises during the lab slot itself.
- If you face any difficulties, please feel free to seek help online or from your peers or TAs.
- After finishing all exercises, please carry your solutions with you (via email/pen drive) for future reference, and delete the files from the desktop.

Introduction

In this lab, we'll investigate the 802.11 wireless network protocol. Since we'll be delving a bit deeper into 802.11 than is covered in the text, you might want to check out "A Technical Tutorial on the 802.11Protocol," by Pablo Brenner (Breezecom Communications). http://www.sss-mag.com/pdf/802 11tut.pdf, and "Understanding 802.11 Frame Types," by Jim Geier, http://www.wi-fiplanet.com/tutorials/article.php/1447501. And, of course, there is the "bible" of 802.11 -"ANSI/IEEE 802.11. 1999 the standard itself. Std Edition (R2003)," http://gaia.cs.umass.edu/wireshark-labs/802.11-1999.pdf. In particular, you may find Table 1 on page 36 of the standard particularly useful when looking through the wireless trace.

In all of the Wireshark labs thus far, we've captured frames on a wired Ethernet connection. Here, since 802.11 is a wireless link-layer protocol, we'll be capturing frames "in the air." Unfortunately, some device drivers for wireless 802.11 NICs still don't provide the hooks to capture/copy received 802.11 frames for use in Wireshark (see Figure 1 in Lab 1 for an overview of packet capture). Thus, in this lab, we'll provide a trace of captured 802.11 frames for you to analyze and assume in the questions below that you are using this trace. If you're able to capture 802.11 frames using your version of Wireshark, you're welcome to do so.

Getting Started

Download the file Wireshark_802_11.pcap from the link: https://drive.google.com/file/d/1eOEvJY3BqnjzZpUgvsEJI5AGEjnoN2F6/view?usp=share_link. This trace was collected using AirPcap and Wireshark running on a computer in the home network of one of the authors, consisting of a Linksys 802.11g combined access point/router, with two wired PCs and one wireless host PC attached to the access point/router. The author is fortunate to have other access points in

neighboring houses available as well. In this trace file, we'll see frames captured on channel 6. Since the host and AP that we are interested in are not the only devices using channel 6, we'll see a lot of frames that we're not interested in for this lab, such as beacon frames advertised by a neighbor's AP also operating on channel 6. The wireless host activities taken in the trace file are:

- The host is already associated with the 30 Munroe St AP when the trace begins.
- At t = 24.82, the host makes an HTTP request to http://gaia.cs.umass.edu/wireshark-labs/alice.txt. The IP address of gaia.cs.umass.edu is 128.119.245.12.
- At t=32.82, the host makes an HTTP request to http://www.cs.umass.edu, whose IP address is 128.119.240.19.
- At t = 49.58, the host disconnects from the 30 Munroe St AP and attempts to connect to the linksys_ses_24086. This is not an open access point, and so the host is eventually unable to connect to this AP.
- At t=63.0 the host gives up trying to associate with the *linksys_ses_24086 AP*, and associates again with the *30 Munroe St* access point.

Once you have downloaded the trace, you can load it into Wireshark and view the trace using the *File* pull down menu, choosing *Open*, and then selecting the Wireshark_802_11.pcap trace file. The resulting display should look just like Figure 1.

Figure 1: Wireshark window, after opening the Wireshark 802 11.pcap file

Part-1: Beacon Frames

Recall that beacon frames are used by an 802.11 AP to advertise its existence. To answer some of the questions below, you'll want to look at the details of the "IEEE 802.11" frame and subfields in the middle Wireshark window. Whenever possible, when answering a question below, you should hand in a printout of the packet(s) within the trace that you used to answer the question asked. Annotate the printout to explain your answer. To print a packet, use *File->Print*, choose *Selected packet only*, choose *Packet summary line*, and select the minimum amount of packet detail that you need to answer the question.

- 1. What are the SSIDs of the two access points that are issuing most of the beacon frames in this trace?
- 2. What are the beacon intervals in the *linksys_ses_24086* access point and the *30 Munroe St.* access point?
- 3. What (in hexadecimal notation) is the source MAC address on the beacon frame from *30 Munroe St*? Recall from Figure 7.13 in the text that the source, destination, and BSS are three addresses used in an 802.11 frame. For a detailed discussion of the 802.11 frame structure, see section 7 in the IEEE 802.11 standards document (cited above).
- 4. What (in hexadecimal notation) is the destination MAC address on the beacon frame from 30 Munroe St??
- 5. What (in hexadecimal notation) is the MAC BSS id on the beacon frame from 30 Munroe St?
- 6. The beacon frames from the *30 Munroe St* access point advertise that the access point can support four data rates and eight additional "extended supported rates." What are these rates?

Part-2: Data Transfer

Since the trace starts with the host already associated with the AP, let's first look at data transfer over an 802.11 association before looking at AP association/disassociation. Recall that in this trace, at t = 24.82, the host makes an HTTP request to http://gaia.cs.umass.edu/wireshark-labs/alice.txt. The IP address of gaia.cs.umass.edu is 128.119.245.12. Then, at t=32.82, the host makes an HTTP request to http://www.cs.umass.edu.

- 1. Find the 802.11 frame containing the SYN TCP segment for this first TCP session (that downloads alice.txt). What are three MAC address fields in the 802.11 frame? Which MAC address in this frame corresponds to the wireless host (give the hexadecimal representation of the MAC address for the host)? To the access point? To the first-hop router? What is the IP address of the wireless host sending this TCP segment? What is the destination IP address?
- 2. Find the 802.11 frame containing the SYNACK segment for this TCP session. What are three MAC address fields in the 802.11 frame? Which of these are the MAC addresses corresponding to the host sending SYNACK, destination and BSS? What is the IP address of the server sending the TCP SYNACK?

Part-3: Association/Disassociation

In the text that a host must first *associate* with an access point before sending data. Association in 802.11 is performed using the ASSOCIATE REQUEST frame (sent from host to AP, with a frame type 0 and

subtype 0, see Section 7.3.3 in the text) and the ASSOCIATE RESPONSE frame (sent by the AP to a host with a frame type 0 and subtype of 1, in response to a received ASSOCIATE REQUEST).

- 1. What two actions are taken (i.e., frames are sent) by the host in the trace just after t=49, to end the association with the 30 Munroe St AP that was initially in place when trace collection began? (Hint: one is an IP-layer action, and one is an 802.11-layer action). Looking at the 802.11 specification, is there another frame that you might have expected to see, but don't see here?
- 2. Examine the trace file and look for AUTHENTICATION frames sent from the host to an AP and vice versa. How many AUTHENTICATION messages are sent from the wireless host to the *linksys ses* 24086 AP (which has a MAC address of Cisco Li f5:ba:bb) starting at around t=49?
- 3. Does the host want the authentication to require a key or be open?
- 4. Do you see a reply AUTHENTICATION from the *linksys ses 24086* AP in the trace?
- 5. Now let's consider what happens as the host gives up trying to associate with the <code>linksys_ses_24086</code> AP and now tries to associate with the 30 Munroe St AP. Look for AUTHENTICATION frames sent from the host to an AP and vice versa. At what times is there an AUTHENTICATION frame from the host to 30 Munroe St. AP, and when is there a reply AUTHENTICATION sent from that AP to the host reply? (Note that you can use the filter expression "wlan.fc.subtype == 11 && wlan.fc.type == 0 && wlan.addr == IntelCor_d1:b6:4f" to display only the AUTHENTICATION frames in this trace for this wireless host.)
- 6. An ASSOCIATE REQUEST from the host to AP and a corresponding ASSOCIATE RESPONSE frame from AP to the host is used for the host to be associated with an AP. At what time is there an ASSOCIATE REQUEST from the host to 30 Munroe St AP? When is the corresponding ASSOCIATE REPLY sent? (Note that you can use the filter expression "wlan.fc.subtype < 2 && wlan.fc.type == 0 && wlan.addr == IntelCor_d1:b6:4f" to display only the ASSOCIATE REQUEST and ASSOCIATE RESPONSE frames for this trace.)
- 7. What transmission rates is the host willing to use? The AP? To answer this question, you will need to look into the parameters fields of the 802.11 wireless LAN management frame.

Part-4: Other Frame types

Our trace contains a number of PROBE REQUEST and PROBE RESPONSE frames.

1. What are the sender, receiver and BSS ID MAC addresses in these frames? What is the purpose of these two types of frames? (To answer this last question, you'll need to dig into the online references cited earlier in this lab).

Submission Details

• Write your answers in a single doc/tex file, and submit its PDF named after your IIT Dharwad roll number, which contains all answers (with screenshots, if necessary).