

Teori Bahasa Automata

< Finite State Automata >

< Minggu-4th (29 Agustus 2025) >

Topics of the day

- 1.Reduksi State pada DFA
- 2.Non Deterministik Finite Automata
 (NFA)
- 3. Ekuivalensi NFA ke DFA

For more info: SLIDESGO | BLOG | FAQS You can visit our sister projects:
FREEPIK | FLATICON | STORYSET | WEPIK | VIDEVO

Review

Buatlah FA Berikut!

```
: {q0, q1, q2}
Q
Σ : {a, b}
      : \delta(q0, a) \rightarrow q1
       \delta(q0, b) \rightarrow q2
        \delta(q1, a) \rightarrow q0
        \delta(q1, b) \rightarrow q2
        \delta(q2, a) \rightarrow q2
        \delta(q2, b) \rightarrow q1
q<sub>0</sub> : {q<sub>0</sub>}
      : {q2}
```


01 { . .

Reduksi State pada DFA

Introduction

Ada dua buah istilah yang perlu diketahui yaitu :

- 1. Distinguishable yang berarti dapat dibedakan.
- Indistinguishable yang berarti tidak dapat dibedakan.

Langkah Penyederhanaan

- 1. Identifikasilah setiap kombinasi state yang mungkin
- State yang berpasangan dengan state akhir merupakan state yang distinguishable
- 3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state tersebut disebut distinguishable
- 4. Kelompokkan pasangan state yang indistinguishable
- 5. Reduksi state FA

Langkah Penyederhanaan (Contoh)

Langkah Penyederhanaan (Contoh)

```
1. Identifikas kombinasi state
{q0, q1}
{q0, q2}
{q0, q3}
{q0, q4}
{q1, q2}
{q1, q3}
{q1, q4}
{q2, q3}
{q2, q4}
{q3, q4}
```



```
    Langkah Penyederhanaan (Contoh)
```

```
2. State yang berpasangan {q2, q3}
   dengan state akhir merupakan {q2, q4} → distinguishable
   state yang distinguishable {q3, q4} → distinguishable
{q0, q1}
{q0, q2}
{q0, q3}
\{q0, q4\} \rightarrow distinguishable
{q1, q2}
{q1, q3}
\{q1, q4\} \rightarrow distinguishable
```

Langkah Penyederhanaan (Contoh)

3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state

```
tersebut disebut distinguishable
```

```
{q0, q1}
{q0, q2}
{q0, q3}
{q1, q2}
{q1, q3}
{q2, q3}
```


Langkah Penyederhanaan (Contoh)

3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state

tersebut disebut distinguishable

{q0, q1}

State	Input	
	0	1
q _e	q_1	q ₃
q_1	q_2	q ₄

Langkah Penyederhanaan (Contoh)

3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state

tersebut disebut distinguishable

 $\{q0, q1\} \rightarrow distinguishable$

State	Input	
	0	1
q _e	q_1	q ₃
q_1	q_2	q ₄

Langkah Penyederhanaan (Contoh)

3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state

tersebut disebut distinguishable

 $\{q0, q1\} \rightarrow distinguishable$ $\{q1, q2\} \rightarrow ?$

State	Input	
	Θ	1
q_1	q_2	q ₄
q_2	q_1	q ₄

Langkah Penyederhanaan (Contoh)

3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state

tersebut disebut distinguishable

 $\{q0, q1\} \rightarrow distinguishable$

{q1, q2} → indistinguishable

State	Input	
	Θ	1
q_1	q_2	q ₄
q_2	q_1	q ₄

Langkah Penyederhanaan (Contoh)

3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state

```
tersebut disebut distinguishable {q0, q1} → distinguishable
```

```
\{q0, q2\} \rightarrow ?
```

$$\{q0, q3\} \rightarrow ?$$

{q1, q2} → indistinguishable

```
\{q1, q3\} \rightarrow ?
```

 $\{q2, q3\} \rightarrow ?$

Langkah Penyederhanaan (Contoh)

3. Untuk pasangan state lainnya, Jika mendapat input yang sama dan salah satu mencapai state akhir, maka pasangan state

tersebut disebut distinguishable

```
{q0, q1} → distinguishable
{q0, q2} → distinguishable
{q0, q3} → distinguishable
{q1, q2} → indistinguishable
{q1, q3} → indistinguishable
```

{q2, q3} → indistinguishable


```
    Langkah Penyederhanaan (Contoh)
```

```
4. Kelompokkan pasangan state yang indistinguishable
{q1, q2} → indistinguishable
{q1, q3} → indistinguishable
{q2, q3} → indistinguishable
```

{

Langkah Penyederhanaan (Contoh)

4. Kelompokkan pasangan state yang indistinguishable
{q1, q2} → indistinguishable
{q1, q3} → indistinguishable
{q2, q3} → indistinguishable

Karena q1 indistinguishable dengan q2 dan q2 indistinguishable dengan q3 , maka bisa dikatakan bahwa q1, q 2 , dan q3 saling indistinguishable dan dapat dijadikan satu state

Langkah Penyederhanaan (Contoh)

5. Reduksi state FA

Langkah Penyederhanaan (Contoh)

5. Reduksi state FA

02 { . .

Non Deterministik Finite Automata (NDFA)

Non Deterministik FA (NDFA)

Perhatikan!

Non Deterministik FA (NDFA)

Perhatikan!

Non Deterministik FA (NDFA)

Contoh!

```
Gambarlah diagram NFA
                                                      \delta(q1, a) \rightarrow \emptyset
                                                      \delta(q1, b) \rightarrow \{q2\}
berikut:
                                                      \delta(q2, a) \rightarrow \{q2\}
Q : \{q0, q1, q2, q3, q4\}
Σ :{a, b}
                                                      \delta(q2, b) \rightarrow \{q2\}
                                                      \delta(q3, a) \rightarrow \{q4\}
q0:{q0}
                                                      \delta(q3, b) \rightarrow \emptyset
F: {q2, q4}
\delta : \delta(q0, a) \rightarrow \{q0, q3\}
                                                      \delta(q4, a) \rightarrow \{q4\}
       \delta(q0, b) \rightarrow \{q0, q1\}
                                                      \delta(q4, b) \rightarrow \{q4\}
```

03 { . .

Ekuivalensi NFA ke DFA

Introduction

Dari sebuah mesin Non-Deterministic Finite Automata dapat dibuat mesin Deterministic Finite Automata-nya yang ekuivalen (bersesuaian). Ekuivalen di sini artinya mampu menerima bahasa yang sama.

Contoh

1. Buat tabel transisi

State	Input	
	0	1
q _e	{q0,q1}	{q1}
q_1	Ø	{q0,q1}

2. Tentukan state baru dan transisinya

State	Input	
	0	1
q _e	{q0,q1}	{q1}
q_1	Ø	{q0,q1}

2. Tentukan state baru dan transisinya

State	Input	
	0	1
q _e	$\{q_0,q_1\}$	{q1}
q_1	Ø	{q ₀ ,q ₁ }
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_1\}$

2. Tentukan state baru dan transisinya

State	Input	
	0	1
q _e	$\{q_0,q_1\}$	{q 1 }
q_1	Ø	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_1\}$
Ø	Ø	Ø

3. Gambar diagramnya

State	Input	
	0	1
{q₀}	$\{q_0,q_1\}$	{q1}
{q ₁ }	Ø	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_1\}$
Ø	Ø	Ø

NFA to DFA

Diagram dan Tabel Transisi Deterministik

Latihan

Lakukan reduksi pada DFA berikut!

Latihan

Tentukan DFA dari NFA berikut!

どうもありがとうございます

slidesgo