```
In [2]: print('Name: Tejaswi')
   print('Plot a heatmap which help you visualize percentage of blood leaving the
   print('Plot a heatmap which help you visualize Percentage of blood leaving the
```

Name: Tejaswi

Plot a heatmap which help you visualize percentage of blood leaving the heart at each contraction of a smoking and non smoking person heart
Plot a heatmap which help you visualize Percentage of blood leaving the heart at each contraction of person who died due to cardio vascular disease

Task 1 - Plot heat map to visualize percentage of blood leaving the heart at each contraction of a smoking and non smoking person

A normal, healthy heart will never completely empty, but it will pump out 55-70 percent of the blood that's inside it. An ejection fraction of 55-70 percent is normal; 40-55 percent is below normal. Anything less than 40 percent may indicate heart failure, and below 35 percent there's a risk for life-threating arrhythmias

```
In [43]: #predefine code for image
    from IPython.display import Image
    Image(filename='heart.png')
    #predefine code end
```

Out[43]:

The right side of your heart receives oxygen-poor blood from your veins and pumps it to your lungs, where it picks up oxygen and gets rid of carbon dioxide. The left side of your heart receives oxygen-rich blood from your lungs and pumps it through your arteries to the rest of your

bodv.

In [3]: # Import all the libraries and read heart_failure_clinical_records_dataset.csv import pandas as pd import matplotlib.pyplot as plt import seaborn as sns dataframe = pd.read_csv('heart_failure_clinical_records_dataset.csv') dataframe

Out[3]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	
0	75.0	0	582	0	20	1	2
1	55.0	0	7861	0	38	0	2
2	65.0	0	146	0	20	0	1
3	50.0	1	111	0	20	0	2
4	65.0	1	160	1	20	0	3
294	62.0	0	61	1	38	1	1
295	55.0	0	1820	0	38	0	2
296	45.0	0	2060	1	60	0	7
297	45.0	0	2413	0	38	0	1
298	50.0	0	196	0	45	0	3

299 rows × 13 columns

1

In [6]: #Group by age and smokers and find the average ejection_fraction rate
 smoking_heart_dataframe = dataframe.groupby(['age','smoking'])['ejection_fracti
 smoking_heart_dataframe

Out[6]:

_		age	smoking	ejection_fraction
-	0	40.0	0	37.000000
	1	40.0	1	35.000000
	2	41.0	1	40.000000
	3	42.0	0	38.750000
	4	42.0	1	31.666667
	70	87.0	0	38.000000
	71	90.0	0	44.000000
	72	90.0	1	40.000000
	73	94.0	0	38.000000
	74	95.0	0	35.000000

75 rows × 3 columns

```
In [11]: # Plot a heatmap to show the ejection fraction rate in smokers and non smokers

plt.figure(figsize = (10,8))
heatmap_df = pd.pivot_table(values = 'ejection_fraction' , index = 'smoking', or sns.heatmap(heatmap_df, cmap = 'plasma')
```

Out[11]: <AxesSubplot:xlabel='age', ylabel='smoking'>

0 are non smokers and 1 are smokers

Conclusion - =

Task 2 Plot a heatmap to visualize percentage of blood leaving the heart at each contraction of people who died due to cardio vascular disease

In [14]: #Group by death events and ejection fraction rate and find the average ejection import pandas as pd import matplotlib.pyplot as plt import seaborn as sns dataframe = pd.read_csv('heart_failure_clinical_records_dataset.csv') dataframe death_dataframe = dataframe.groupby(['age' ,'DEATH_EVENT'])['ejection_fraction' death_dataframe

Out[14]:

	age	DEATH_EVENT	ejection_fraction
0	40.0	0	36.428571
1	41.0	0	40.000000
2	42.0	0	39.166667
3	42.0	1	15.000000
4	43.0	0	50.000000
68	87.0	1	38.000000
69	90.0	0	38.000000
70	90.0	1	45.000000
71	94.0	1	38.000000
72	95.0	1	35.000000

73 rows × 3 columns

```
In [15]: # Plot a heatmap to show the ejection fraction rate of people who died due to a
    plt.figure(figsize = (10,8))
    heatmap_df = pd.pivot_table(values = 'ejection_fraction' , index = 'DEATH_EVEN1
    sns.heatmap(heatmap_df, cmap = 'plasma')
```

Out[15]: <AxesSubplot:xlabel='age', ylabel='DEATH_EVENT'>

1 are people died due to cardiovascular disease

Conclusion -

```
In [ ]:
```