Assignment 2c

Visualize the data using python libraries matplotlib, seaborn by plotting the graphs-

- Pie Chart
- Bar Graph
- Box Plot
- Histogram
- · Line Graph
- Scatter Plot
- Heatmap
- Pair Plot
- Word Cloud

Import Python Libraries

```
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn
```

Read air_quality.csv

In [2]: file= pd.read_csv("air_quality.csv")
file

_		FO.T	
()	ПΤ	1 / 1	Г,
v	uc		

	Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	1	41.0	190.0	7.4	67	5	1	High
1	2	36.0	118.0	8.0	72	5	2	High
2	3	12.0	149.0	12.6	74	5	3	Low
3	4	18.0	313.0	11.5	62	5	4	NaN
4	5	NaN	NaN	14.3	56	5	5	High
148	149	30.0	193.0	6.9	70	9	26	Low
149	150	NaN	145.0	13.2	77	9	27	NaN
150	151	14.0	191.0	14.3	75	9	28	High
151	152	18.0	131.0	8.0	76	9	29	Medium
152	153	20.0	223.0	11.5	68	9	30	Low

153 rows × 8 columns

Fill the NaN values with mean of respective column

```
In [4]: file.isnull().sum()
```

In [9]: file = file.drop(['Unnamed: 0'], axis = 1)
file

Out[9]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.00000	190.000000	7.4	67	5	1	High
1	36.00000	118.000000	8.0	72	5	2	High
2	12.00000	149.000000	12.6	74	5	3	Low
3	18.00000	313.000000	11.5	62	5	4	High
4	42.12931	185.931507	14.3	56	5	5	High
148	30.00000	193.000000	6.9	70	9	26	Low
149	42.12931	145.000000	13.2	77	9	27	High
150	14.00000	191.000000	14.3	75	9	28	High
151	18.00000	131.000000	8.0	76	9	29	Medium
152	20.00000	223.000000	11.5	68	9	30	Low

153 rows × 7 columns

```
In [10]: file["Ozone"]= file["Ozone"].fillna(file["Ozone"].mean())
    file["Solar.R"]= file["Solar.R"].fillna(file["Solar.R"].mean())
    file['Wind'].fillna(file['Wind'].mean(), inplace=True)
    file['Humidity'] = file['Humidity'].fillna(file['Humidity'].mode()[0])
    file
```

Out[10]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.00000	190.000000	7.4	67	5	1	High
1	36.00000	118.000000	8.0	72	5	2	High
2	12.00000	149.000000	12.6	74	5	3	Low
3	18.00000	313.000000	11.5	62	5	4	High
4	42.12931	185.931507	14.3	56	5	5	High
148	30.00000	193.000000	6.9	70	9	26	Low
149	42.12931	145.000000	13.2	77	9	27	High
150	14.00000	191.000000	14.3	75	9	28	High
151	18.00000	131.000000	8.0	76	9	29	Medium
152	20.00000	223.000000	11.5	68	9	30	Low

153 rows × 7 columns

In [11]: file.isnull().sum()

Pie Chart

```
In [12]: plt.pie([file["Ozone"].mean(), file["Solar.R"].mean(), file["Wind"].mean(), file["Temp"].mean()], autopct="%1.2f%%", ex plt.plot()
```

Out[12]: []

Bar Graph

```
In [24]: def addlabels():
    for i in range(len(file.iloc[0:31, 3])):
        plt.text(i, file.iloc[0:31, 3][i], file.iloc[0:31, 3][i], ha="center")

y= np.arange(len(file.iloc[0:31,3]))
    addlabels()
    plt.bar(x=y, height= file.iloc[0:31, 3], tick_label=y, color="blue")
    plt.title("Temperature for May")
    plt.xlabel("Days")
    plt.ylabel("Temperature")
    plt.show()
```


Box Plot

```
In [25]: plt.boxplot(x= file[["Ozone","Solar.R", "Wind","Temp"]], labels=["Ozone","Solar.R", "Wind","Temp"])
plt.plot()
```

Out[25]: []

Histogram

```
In [26]: plt.hist(x=file["Temp"], bins=20, color="purple", label="Temp")
   plt.title("Temperature count")
   plt.xlabel("Temperature")
   plt.ylabel("Count")
   plt.show()
```


Line Graph

```
In [28]: plt.plot(file.iloc[0: 30, 5], file.iloc[0:30, 3], color="orange")
  plt.title("Temp of May month")
  plt.xlabel("Day")
  plt.ylabel("Temp")
```

Out[28]: Text(0, 0.5, 'Temp')

Scatter Plot

```
In [29]: plt.scatter(file.iloc[0:30, 5], file.iloc[0: 30, 2], color="red")
plt.title("Wind of May month")
plt.xlabel("Day")
plt.ylabel("Wind")
```

Out[29]: Text(0, 0.5, 'Wind')

Heat Map

```
In [31]: seaborn.heatmap(data=file.iloc[0:30, [0,1,2,3]])
    plt.show()
```


Pair Plot

```
In [32]: seaborn.pairplot(file.iloc[:, [0,1,2,3,6]], hue="Humidity")
plt.show()
```


