Deep Learning

INTRODUCTION AND SOFTWARE STACK

Dr. Mohammed Salah Al-Radhi (slides by: Dr. Bálint Gyires-Tóth)

Copyright

Copyright © Bálint Gyires-Tóth & Mohammed Salah Al-Radhi, All Rights Reserved.

This presentation and its contents are protected by copyright law. The intellectual property contained herein, including but not limited to text, images, graphics, and design elements, are the exclusive property of the copyright holder identified above. Any unauthorized use, reproduction, distribution, or modification of this presentation or its contents is strictly prohibited without prior written consent from the copyright holder.

No Recordings or Reproductions: Attendees, viewers, and recipients of this presentation are expressly prohibited from making any audio, video, or photographic recordings, as well as screen captures, screenshots, or any form of reproduction, of this presentation, its content, or any related materials, whether during its live presentation or subsequent access. Violation of this prohibition may result in legal action.

For permissions, inquiries, or licensing requests, please contact: {toth.b,malradhi}@tmit.bme.hu

Unauthorized use, distribution, or reproduction of this presentation may result in civil and criminal penalties. Thank you for respecting the intellectual property rights of the copyright holder.

Outline

- 1. Brief history of deep learning
- 2. CRISP-DM for deep learning
- 3. Deep learning roles
- 4. Basic software components
- 5. Advanced software components

Brief history of deep learning

Brief history of deep learning framework

CRISP-DM for deep learning

Cross Industry Standard Process for Data Mining

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment

Source: https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

MACHINE LEARNING WORKFLOW TIME SERIES

ILLUSTRATION

DASHBOARDS

AI/ML DATA FOUNDATION - VERSIONING DATA LAKE WITH LINEAGE TRACKING

RELATIONALDATASTORE

DATA LAKE /

OBJECT

STORE

NETWORK FS

USE CASE DEPENDENT: SYNTHETIC DATA GENERATION/

AUGMENTATION

Machine learning project main steps

No free lunch theorem

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82.

Al/Deep learning roles

Data engineer

Data scientist

Business analyst

DL/ML Engineer

Al/Deep learning skills

Database Data engineering Data vizualization Storytelling/reporting **Business Insights** Modeling Deployment MLOps

Business Analyst

Data Engineer

Data Scientist

ML/DL Engineer

Business Insights

General ML related tasks

Source: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Google Colab

https://colab.research.google.com/

Bálint GYIRES-TÓTH

kubernetes

Basic software components: CUDA driver

Required: NVIDIA Driver

Main elements: cuBLAS, cuSPARSE, cuDNN, NCCL, NVVP, debugger, memcheck.

TensorFlow performance (tokens/sec), Tesla P100 + cuDNN 6 (FP32) on 17.12 NGC container, Tesla V100 + cuDNN 7.0 (Mixed) on 18.02 NGC container, Telsa V100 + cuDNN 7.4 (Mixed) on 18.10 NGC container, OpenSeq2Seq (GNMT), Batch Size: 64

TensorFlow performance (images/sec), Tesla P100 + cuDNN 6 (FP32) on 17.12 NGC container, Tesla V100 + cuDNN 7.0 (Mixed) on 18.02 NGC container, Telsa V100 + cuDNN 7.4 (Mixed) on 18.10 NGC container, ResNet-50, Batch Size: 128

CUDA version

n	V	ĹC	dia	a -	S	m:	i			
Fri Jul + NVIDI	28 19 A-SMI		-	Oriver	Versio	on: 525	. 125 90	CUDA	Versi	on: 12.0
	Name Temp	Perf	Persis e Pwr:Usa		Bus-1		D(sp ory Usag		latile U-Util	Uncorr. EC Compute . MIC M.
0 N/A	NVIDIA 53C	A100 P0	-SXM 349W /	0n 400W			:00.0 Of 81920Mi		100%	0 Default Disabled
1 N/A 	NVIDIA 57C	A100 P0	-SXM 394W /	0n 400W			:00.0 Of 81920Mi		100%	0 Default Disabled
2 N/A	NVIDIA 61C	A100 P0	-SXM 370W /	0n 400W			:00.0 Of 81920Mi		99%	0 Default Disabled
3 N/A	NVIDIA 59C	A100 P0	-SXM 404W /	0n 400W			:00.0 Of 81920Mi		100%	0 Default Disabled
4 N/A	NVIDIA 74C	A100 P0	-SXM 397W /	0n 400W			:00.0 Of 81920Mi		100%	0 Default Disabled
5 N/A	NVIDIA 67C	A100 P0	-SXM 353W /	0n 400W			:00.0 Of 81920Mi		100%	0 Default Disabled
6 N/A	NVIDIA 71C	A100 P0	-SXM 389W /	0n 400W			:00.0 Of 81920Mi		99%	0 Default Disabled
7 N/A 	NVIDIA 71C	A100 P0	-SXM 336W /				:00.0 Of 81920Mi		100%	0 Default Disabled
										+
Proce GPU 	sses: GI ID	CI	PII	тур	oe Pi	rocess i	name			GPU Memory Usage
0 1	N/A N/A	N/A N/A	342876 342871				 da/bin/p da/bin/p			76246MiB 76870MiB
2	N/A	N/A	342872	2	C /c	pt/con	da/bin/p	ython3		76612MiB
3	N/A N/A	N/A N/A	342873 342874		C /c	opt/con	da/bin/p da/bin/p	ython3		76612MiB 76616MiB
5	N/A N/A	N/A	342875		C /0	pt/con	da/bin/p	ython3		76598MiB
6	N/A	N/A	342876 342877		C /c	pt/con	da/bin/p da/bin/p	ython3		76628MiB 76684MiB
+	N/A	N/A	342877		/(ppt/con	ua/ b tn/ р 	y chons		70084MTB

nvcc --version

```
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 MVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833906_0
```

Basic software components: Containerization

Runs a virtual machine on the host and shares resources.

Encapsulations of system environments.

Advantages:

- Reproducibility
- Portability
- Isolation
- Integration

Source: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Basic software components: Containerization

- PaaS (Platform-as-a-Service) Primarily for microservices
- OS and GPU lightweight virtualization
- Isolates Dev and Ops
- Docker images are stored in a local cache and can be interacted with by commands
- Large ecosystem, Linux, MacOS and Windows support

Difference compared to VM: e.g. the system is 1 GB

- 1000 VM ~ 1000 * 1 GB
- 1000 application container ~ 1GB
- Container is refreshed -> Everything is refreshed

Basic software components: DL frameworks

- TensorFlow and TensorFlow Keras (Google)
- PyTorch (Meta AI)
- JAX (Google)
- MXNet (Apache)
- Gluon (Amazon)
- Chainer
- PaddlePaddle

Depricated

- Sonnet (DeepMind)
- CNTK (Microsoft)

Advanced components: monitoring

Metrics logging tools is required:

- nvidia-smi dmon
- Prometheus + NVML (NVIDIA Management Library)

Open source tools:

- Grafana
- Zabbix

Advanced components: multi GPU, multi node

Source: https://neptune.ai/blog/distributed-training-frameworks-and-tools

Multi-GPU training (microbatching)

Source: Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.* 2021.

Multi-GPU training pipeline

Source: Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.* 2021.

Advanced components: scheduler

• HPC/AI solution: SLURM Workload Manager

SLURM batch script

```
#!/bin/bash
                                      Job name
#SBATCH -J sample
                                      Requested time
#SBATCH -t 15:00
                                      Number of nodes
#SBATCH -N 2
                                      Number of CPUs
#SBATCH -n 8
                                      Number of GPUs
#SBATCH --gres=gpu:4
module load singularity OpenMPI/3.1.6-GCC-8.3.0
mpirun singularity run --nv horovod.sif python test.py
```

\$ sbatch batchfile.sh

Advanced component: performance analytics

NVIDIA Nsight Systems:

- Monitor CPU and GPU usage
- Identify bottlenecks
- Get most out of the HW component

MLOPS: THE AI LIFECYCLE FOR IT PRODUCTION

MLOps pipeline: level 0 – manual process

Source: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

MLOps pipeline: with manual intervention

MLOps pipeline: level 1 – ML pipeline automation

MLOps pipeline: level 2 – CI/CD

MLOps pipeline: level 2 – CI/CD

Source: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

References

- Google Colab: https://colab.research.google.com/
- MLOps pipeline: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Bálint GYIRES-TÓTH

Please, don't forget to send feedback:

https://bit.ly/bme-dl

Thank you for your attention

Dr. Mohammed Salah Al-Radhi

malradhi@tmit.bme.hu

(slides by: Dr. Bálint Gyires-Tóth)

