Estradas Escuras

Contest Local, Universidade de Ulm Malemanha

Timelimit: 3

Nestes dias se pensa muito em economia, mesmo em Byteland. Para reduzir custos operacionais, o governo de Byteland decidiu otimizar a iluminação das estradas. Até agora, todas as rotas eram iluminadas durante toda noite, o que custava 1 Dólar Byteland por metro a cada dia. Para economizar, eles decidiram não iluminar mais todas as estradas e desligar a iluminação de algumas delas. Para ter certeza que os habitantes de Byteland continuem a se sentirem seguros, eles querem otimizar o sistema de tal forma que após desligar a iluminação de algumas estradas à noite, sempre existirá algum caminho iluminado de qualquer junção de Byteland para qualquer outra junção.

Qual é a quantidade máxima de dinheiro que o governo de Byteland pode economizar, sem fazer os seus habitantes sentirem-se inseguros?

Entrada

A entrada contém vários casos de teste. Cada caso de teste inicia com dois números m ($1 \le m \le 200000$) e $n(m-1 \le n \le 200000)$, que são o número de junções de Byteland e o número de estradas em Byteland, respectivamente. Seguem n conjuntos de três valores inteiros, x, y e z, especificando qual será a estrada bidirecional entre x e y com z metros ($0 \le x$, y < m e $x \ne y$).

A entrada termina com m=n=0. O grafo especificado em cada caso de teste é conectado. O tamanho total de todas as estradas em cada caso de teste é menor do que 2^{31} .

Saída

Para cada caso de teste imprima uma linha contendo a máxima quantidade diária de dólares de Byteland que o governo pode economizar.

Exemplo de Entrada	Exemplo de Saída
7 11	51
0 1 7	
0 3 5	
1 2 8	
1 3 9	
1 4 7	
2 4 5	
3 4 15	
3 5 6	
4 5 8	
4 6 9	
5 6 11	
0 0	

2009/2010 ACM International Collegiate Programming Contest