

Art of Problem Solving 2005 Balkan MO

Balkan MO 2005

_	May 6th
1	Let ABC be an acute-angled triangle whose inscribed circle touches AB and AC at D and E respectively. Let X and Y be the points of intersection of the bisectors of the angles $\angle ACB$ and $\angle ABC$ with the line DE and let Z be the midpoint of BC . Prove that the triangle XYZ is equilateral if and only if $\angle A = 60^{\circ}$.
2	Find all primes p such that $p^2 - p + 1$ is a perfect cube.
3	Let a, b, c be positive real numbers. Prove the inequality
	$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge a + b + c + \frac{4(a-b)^2}{a+b+c}.$
	When does equality occur?
4	Let $n \geq 2$ be an integer. Let S be a subset of $\{1, 2,, n\}$ such that S neither contains two elements one of which divides the other, nor contains two elements which are coprime. What is the maximal possible number of elements of such a set S ?