Package 'AlleleShift'

October 28, 2023

,
Type Package
Title Predict and Visualize Population-Level Changes in Allele Frequencies in Response to Climate Change
Version 1.1-2
Date 2023-10-28
Author Roeland Kindt [cre, aut] (https://orcid.org/0000-0002-7672-0712)
Maintainer Roeland Kindt <roelandcekindt@gmail.com></roelandcekindt@gmail.com>
Description Methods (<doi:10.7717 peerj.11534="">) are provided of calibrating and predicting shifts in allele frequencies through redundancy analysis ('vegan::rda()') and generalized additive models ('mgcv::gam()'). Visualization functions for predicted changes in allele frequencies include 'shift.dot.ggplot()', 'shift.pie.ggplot()', 'shift.moon.ggplot()', 'shift.waffle.ggplot()' and 'shift.surf.ggplot()' that are made put data sets that are prepared by helper functions for each visualization method. Examples in the documentation show how to prepare animated climate change graphics through a time series with the 'gganimate' package. Function 'amova.rda()' shows how Analysis of Molecular Variance can be directly conducted with the results from redundancy analysis.</doi:10.7717>
License GPL-3
Imports vegan (>= 2.6-4), BiodiversityR (>= 2.15-4), adegenet
Depends R (>= $4.1.0$)
Suggests poppr, mgcv, dplyr, ggplot2, GGally, ggforce, ggrepel, ggsci, gggibbous, gganimate, patchwork
NeedsCompilation no
Repository CRAN
Date/Publication 2023-10-28 21:50:12 UTC
R topics documented:
amova.rda 2 count.model 4 Poptri.genind 8 population.shift 9 shift.dot.ggplot 11

2 amova.rda

amova.rda		A	na	lvs	is	of	M	ol	ec	ul	ar	· V	ar	iar	nce	e (A	M	ΟV	Ά) v	ia	Re	edi	un	da	nc	νı	An	al	vsi	S	
Index																																	24
VIF.subset	• •			٠			•	•	•	•	•	•		•	٠	•	•	•		•	•	•	•	•		•	•	•		•		•	22
shift.waffle.gg																																	
shift.surf.ggplo	ot .																																17
shift.pie.ggplo	t .																																14
shift.moon.ggg	olot																																13

Description

The main objective of the function is to illustrate how information on 'mean squares' can be extracted from redundancy analysis results. For balanced data sets, the final 'Phi' statistics are expected to be the same as those obtained with poppr.amova. The function can only handle 1-level (population) and 2-level (eg, region/population or population/subpopulation) hierarchies.

Usage

```
amova.rda(x, x.data)
```

Arguments

- x Result of redundancy analysis fitted via rda.
- x.data Data used to fit the redundancy analysis via ensemble.VIF.dataframe.

Details

A similar analysis of the relationship between AMOVA and RDA is given by Kindt (2020), also exploring relationships with the Multivariate Analysis of Variance Using Distance Matrices methods that are available via adonis2. For discussions on AMOVA and its relationship with the matrix of squared Euclidean distances between individuals, see Michalakis and Excoffier (1996), Peakall et al. (1995) or Meirmans and Liu (2018) (the last article also shows how AMOVA can be expanded beyond haploid and diploid organisms). These authors provide the coefficients (equations 3, 4a and 4b) that need to be used with unbalanced numbers of individuals in populations and/or groups, which could then be used to obtain the exact AMOVA statistics from the estimated Mean Squares (there is no practical point in doing this as AMOVA is available via poppr. amova).

I have also cross-checked the results with GenAlEx 6.5 (Peakall and Smouse 2012), using the export function of genind2genalex to cross-check that RDA obtains the correct Sums-of-Squares and Mean-Squares. Important to note here is that the values in GenAlEx are obtained from only the upper part of the distance matrix, hence these are exactly 50 percent of the Sums-of-Squares from RDA.

Note that for diploid organisms, the option here is not to include the hierarchical level within individuals.

amova.rda 3

Value

The function proceeds with Analysis of Molecular Variance from data generated by redundancy analysis (RDA).

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

References

Kindt R. 2020. Analysis of Molecular Variance (AMOVA) with vegan and BiodiversityR, including a graphical method to identify potential migrants. https://rpubs.com/Roeland-KINDT

Meirmans PG and Liu S. 2018. Analysis of Molecular Variance (AMOVA) for Autopolyploids. Front. Ecol. Evol., 23 May 2018. doi:10.3389/fevo.2018.00066

Michalakis Y and Excoffier L. 1996. A Generic Estimation of Population Subdivision Using Distances Between Alleles With Special Reference for Microsatellite Loci. Genetics 142: 1061-1064.

Peakall R, Smouse PE and Huff DR. 1995. Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss (Buchloe dactyloides (Nutt.) Engelm.). doi:10.1111/j.1365294X.1995.tb00203.x.

Peakall R and Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. doi:10.1093/bioinformatics/bts460.

```
## Not run:
library(poppr)
library(BiodiversityR) # also loads vegan
# Example with 1 level
data(nancycats)
names(alleles(nancycats)) <- locNames(nancycats) # small bug in this data set</pre>
nancycats2 <- missingno(nancycats, type = "loci", cutoff=0)</pre>
nancy.dist <- vegdist(nancycats2@tab, method="euc")</pre>
# Same method as in GenAlEx via the squared Euclidean distance
nancy.dist.amova <- poppr.amova(nancycats2, ~Population, within=FALSE,</pre>
                                  dist=nancy.dist, squared=FALSE)
nancy.dist.amova
# Via vegan::rda
library(vegan)
nancycats.rda.data <- data.frame(Population=nancycats2@pop)</pre>
nancycats.rda.result <- rda(nancycats2@tab ~ Population, data=nancycats.rda.data)</pre>
nancycats.rda.result
amova.rda(nancycats.rda.result, nancycats.rda.data)
```

```
# Example with 2 levels
# Same example as for poppr::poppr.amova
data(Aeut)
strata(Aeut) <- other(Aeut)$population_hierarchy[-1]</pre>
agc <- as.genclone(Aeut)</pre>
amova.result <- poppr.amova(agc, ~Pop/Subpop, within=FALSE)</pre>
amova.result
agc.rda.data <- data.frame(as.matrix(agc$other$population_hierarchy))</pre>
agc.rda.data[, 1] <- as.factor(agc.rda.data[, 1])
agc.rda.data[, 2] <- as.factor(agc.rda.data[, 2])</pre>
agc.rda.data[, 3] <- as.factor(agc.rda.data[, 3])</pre>
str(agc.rda.data)
agc.rda.result <- rda(agc@tab ~ Pop + Pop_Subpop, data=agc.rda.data)</pre>
agc.rda.result
amova.rda(agc.rda.result, agc.rda.data)
# Example with a balanced data set
# library(BiodiversityR)
data(warcom)
data(warenv)
warburgia.genind <- genind(warcom)</pre>
warburgia.genind@strata <- warenv</pre>
poppr.amova(warburgia.genind, ~ population, within=FALSE)
warburgia.rda <- rda(warcom ~ population, data=warenv)</pre>
warburgia.rda
amova.rda(warburgia.rda, warenv)
## End(Not run)
```

Description

count.model

The functions implement a two-step calibration and prediction process for allele frequencies, whereby the second calibration step uses the predictions of the first step.

Calibration and Prediction Functions for Changes in Allele Frequen-

Usage

```
count.model(genpop.data, env.data, permutations = 99,
    ordistep = FALSE, cca.model = FALSE)
```

cies

```
count.pred(count.modeled, env.data)
freq.model(count.predicted)
freq.pred(freq.modeled, count.predicted)
freq.ggplot(freq.predicted, plot.best = TRUE, threshold = 0.50, colour.Pop = TRUE, manual.colour.values = NULL, xlim = c(0.0, 1.0), ylim = c(0.0, 1.0))
```

Arguments

genpop. data Data in the format of genpop.

env.data Descriptors of (bio-)climatic conditions for the populations, either for the base-

line climate (to check calibrations) or future/past climates. It is expected that

these are in the same sequence as the populations in the genpop.data.

permutations Number of permutations as in anova.cca.

ordistep Check the results of ordistep.

cca.model Fit a CCA model with the minor allele frequency as in Blumstein et al. 2020.

count.modeled Model fitted by count.model.

count.predicted

Predictions made by count.pred, expected to be predicted for the baseline cli-

mate as a second step in the calibration process.

freq.modeled Model fitted by freq.model.

freq.predicted Allele frequencies predicted by freq.pred.

plot.best Plot the models with highest R2 (TRUE) or lowest R2 values (FALSE). threshold Threshold used to distinguish between the best and worst model.

colour.Pop Colour populations differently (TRUE), or alleles differently (FALSE)

manual.colour.values

Manual specifications for colour values

xlim limits of the x-axis ylim limits of the y-axis

Details

These functions allow for an almost completely alternative workflow of predicting shifts in allele frequencies under climate change than the protocol developed by Blumstein et al. 2020. The methodology available here calibrates and predicts changes in allele frequencies via redundancy analysis (Blumstein et al. use canonical correspondence analysis) that were calibrated from allele counts (Blumstein et al. use allele frequencies) for all alleles (Blumstein et al. only calibrate the minor alleles) in a two-step calibration process (the second step via freq.model and freq.predict to ensure that predicted alleles are in the range of 0-1 is not included in protocol developed by Blumstein et al.). Other key differences in the methodology are that explanatory variables are expected to be bioclimatic variables (and not principal components as in Blumstein et al.) and that

the input data is expected to be in the genpop format. Although a method to reduce the number of explanatory variables via ordistep is shown, I advise against reducing the explanatory variables as this likely will reduce the explanatory power of the models, whereas explanatory power is the major objective of calibrating these functions. Motivations for the differences in methodologies of Blumstein et al. and the ones available in AlleleShift are explained by Kindt 2021.

Confidence intervals are calculated via qt with p=0.95 and df=np (number of populations), although the GAM is fitted only once for all the alleles and all the populations (that was my choice to reduce overfitting the baseline data).

The 'darkolivegreen4'-coloured reference lines shown via freq.ggplot correspond to a 1:1 relationship (full line) and 1:0.95 and 1:1.05 relationships (dashed lines).

Value

The functions enable calibration and prediction of allele frequencies.

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

References

Blumstein et al. 2020. Protocol for Projecting Allele Frequency Change under Future Climate Change at Adaptive-Associated Loci. doi:10.1016/j.xpro.2020.100061

Kindt R. 2021. AlleleShift: An R package to predict and visualize population-level changes in allele frequencies in response to climate change. PeerJ 9:e11534. doi:10.7717/peerj.11534

Brauer CJ., Sandoval-Castillo J, Gates K et al. 2023, Natural hybridization reduces vulnerability to climate change. Nat. Clim. Chang. 13: 282-289, doi:10.1038/s41558022015851

See Also

```
VIF.subset, population.shift, amova.rda
```

```
baseline.env <- Poptri.baseline.env[, VIF.select$VIF$vars.included]</pre>
summary(baseline.env)
future.env <- Poptri.future.env[, VIF.select$VIF$vars.included]</pre>
# 2. Create the genpop object
data(Poptri.genind)
Poptri.genpop <- adegenet::genind2genpop(Poptri.genind)</pre>
# Get to know the populations and the alleles
poppr::poppr(Poptri.genind)
adegenet::makefreq(Poptri.genpop)
# 3. Calibrate the models
# Note that the ordistep procedure is not needed
# CCA model only to compare results with those by Blumstein et al. 2020
Poptri.count.model <- count.model(Poptri.genpop,</pre>
                                   env.data=baseline.env,
 ordistep=TRUE,
                                   cca.model=TRUE)
Poptri.pred.baseline <- count.pred(Poptri.count.model, env.data=baseline.env)</pre>
head(Poptri.pred.baseline)
Poptri.freq.model <- freq.model(Poptri.pred.baseline)</pre>
Poptri.freq.baseline <- freq.pred(Poptri.freq.model,</pre>
                                   count.predicted=Poptri.pred.baseline)
head(Poptri.freq.baseline)
# 4. Check how well the models predict baseline allele frequencies
\# Populations are split in those with R2 > 0.50 and those with R2 < 0.50
# Better populations
plotA1 <- freq.ggplot(Poptri.freq.baseline,</pre>
            plot.best=TRUE,
            ylim=c(0.0, 0.8))
plotA1
# Populations with low R2
manual.colour.values1 <- ggsci::pal_npg()(5)</pre>
plotB1 <- freq.ggplot(Poptri.freq.baseline,</pre>
            plot.best=FALSE,
            manual.colour.values=manual.colour.values1,
            xlim=c(0, 0.5),
            ylim=c(0, 0.25))
plotB1
# Colouring by alleles
```

8 Poptri.genind

```
plotA2 <- freq.ggplot(Poptri.freq.baseline,</pre>
            colour.Pop=FALSE,
            plot.best=TRUE,
            ylim=c(0.0, 0.8),
            manual.colour.values=manual.colour.values1)
plotA2
plotB2 <- freq.ggplot(Poptri.freq.baseline,</pre>
            colour.Pop=FALSE,
            plot.best=FALSE,
            manual.colour.values=manual.colour.values1,
            xlim=c(0, 0.5),
            ylim=c(0, 0.25))
plotB2
# 5. Predict future allele frequencies
Poptri.pred.future <- count.pred(Poptri.count.model, env.data=future.env)</pre>
head(Poptri.pred.future)
Poptri.freq.future <- freq.pred(Poptri.freq.model,</pre>
                                 count.predicted=Poptri.pred.future)
# The key results are variables 'Allele.freq' representing the baseline allele frequencies
# and variables 'Freq.e2', the predicted frequency for the future/ past climate.
# Variable 'Freq.e1' is the predicted allele frequency in step 1
head(Poptri.freq.future)
# 5. Visualize the changes
# See functions shift.dot.ggplot, shift.pie.ggplot, shift.moon.gpplot,
# shift.waffle.ggplot and shift.surf.ggplot
```

Poptri.genind

Example data sets for Populus trichocarpa.

Description

These data sets include the same data that were used by Blumstein et al. 2020 to document their protocol. Genomic data has been processed further into the genind format. Data sets Poptri.freq.baseline, Poptri.freq.future and Poptri.1985to2085 were obtained with the calibration and prediction methods of this package. They are included to make the documentation of the various plotting methods shorter, but also show the types of results someone can obtain.

population.shift 9

Usage

```
data(Poptri.genind)
data(Poptri.baseline.env)
data(Poptri.future.env)
data(Poptri.loc)
data(Poptri.freq.baseline)
data(Poptri.freq.future)
data(Poptri.1985to2085)
```

References

Blumstein et al. 2020. Protocol for Projecting Allele Frequency Change under Future Climate Change at Adaptive-Associated Loci. doi:10.1016/j.xpro.2020.100061

Examples

```
data(Poptri.genind)
```

population.shift Shifts of Populations in Environmental Space as Response to Climate Change

Description

The function plots the locations of each population in baseline and future climates. Arrows indicate the shifts in positions of the populations.

Usage

```
population.shift(baseline.env.data, future.env.data,
option=c("PCA", "RDA"), vector.multiply=1)
environmental.novel(baseline.env.data, future.env.data)
```

Arguments

```
baseline.env.data
Baseline (bio-)climatic conditions for the populations.

future.env.data
Changed (bio-)climatic conditions in future/past for the populations.

option
Should an explanatory variable corresponding to the climate period be used by rda.

vector.multiply
Multiplier for vector scores in the ordination diagrams.
```

10 population.shift

Details

See Kindt (2020) for alternative methods of generating ordination diagrams via vegan, BiodiversityR and ggplot2.

Function environmental.novel identifies populations with future (or past) environmental conditions that are outside the baseline range. The function further calculates the probability of observing the future condition via pnorm with the mean and standard deviation from the baseline conditions. Where one or several variables are outside the baseline range, data are provided for the variable with the smallest probability.

Value

The main function generates an ordination diagram that depicts changes between baseline and future/past conditions for the populations.

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

References

Kindt R. 2020. Ordination graphs with vegan, BiodiversityR and ggplot2. https://rpubs.com/Roeland-KINDT

```
data(Poptri.baseline.env)
data(Poptri.future.env)
environmental.novel(Poptri.baseline.env, Poptri.future.env)
# as if for past climates
environmental.novel(Poptri.future.env, Poptri.baseline.env)
VIF.select <- VIF.subset(Poptri.baseline.env,</pre>
                          keep=c("MAT", "CMI"),
                          cor.plot=FALSE)
VIF.select$vars.included
baseline.env <- Poptri.baseline.env[, VIF.select$vars.included]</pre>
future.env <- Poptri.future.env[, VIF.select$vars.included]</pre>
environmental.novel(baseline.env, future.env)
plotA <- population.shift(baseline.env,</pre>
                 future.env,
                 option="PCA")
plotA
```

shift.dot.ggplot 11

shift.dot.ggplot

Shifts of Allele Frequencies as Response to Climate Change

Description

The function shows changes in allele frequencies between the baseline and future/past climate.

Usage

```
shift.dot.ggplot(freq.future,
mean.change = FALSE, change.FUN = stats::median,
baseline.colour = "black",
future.colour = "dodgerblue3",
manual.colour.values=c("firebrick3", "chartreuse4"))
```

Arguments

```
freq.future Result from AlleleShift::predFreq..

mean.change Aggregate changes among alleles.

change.FUN Function used the aggregate changes.

baseline.colour, future.colour, manual.colour.values

Colours to be used in the plots.
```

Value

The function generates a ggplot that depicts changes between baseline and future/past allele frequencies of the populations.

Author(s)

```
Roeland Kindt (World Agroforestry, CIFOR-ICRAF)
```

See Also

```
shift.pie.ggplot, shift.moon.ggplot, shift.waffle.ggplot, shift.surf.ggplot
```

12 shift.dot.ggplot

```
# The data can be obtained via the count.model and freq.model calibrations.
# These procedures are not repeated here.
data(Poptri.freq.future)
ggdot1 <- shift.dot.ggplot(Poptri.freq.future)</pre>
ggdot1
# create an animation
## Not run:
library(ggplot2)
library(gganimate)
library(gifski)
# The data is an interpolation and extrapolation between the baseline and future climate.
# For actual application, interpolate between climate data from available sources
data(Poptri.1985to2085)
ggdot.all <- ggplot(data=Poptri.1985to2085, group=Decade) +</pre>
  scale_y_continuous(limits=c(-0.1, 1.1),
                     breaks=c(0.0, 0.25, 0.5, 0.75, 1.0)) +
  geom_errorbar(aes(x=Pop, ymin=LCL, ymax=UCL),
                colour="grey30", width=0.8, show.legend=FALSE) +
  geom_segment(aes(x=Pop, y=Allele.freq, xend=Pop, yend=Freq.e2, colour=increasing),
               size=1.2) +
  geom_point(aes(x=Pop, y=Allele.freq),
             colour="black", size=10, alpha=0.7) +
  geom_point(aes(x=Pop, y=Freq.e2),
             colour="dodgerblue3", size=10, alpha=0.7) +
  coord_flip() +
  xlab(element_blank()) +
  ylab("Allele frequencies") +
  theme(panel.grid.minor = element_blank()) +
  labs(colour="Future change in allele frequencies") +
  scale_colour_manual(values=c("firebrick3", "chartreuse4"),
                      labels=c("decreasing", "increasing")) +
  theme(axis.text.x=element_text(angle=90, vjust=0.5, size=10)) +
  theme(legend.position="top") +
  facet_grid( ~ Allele, scales="free")
ggdot.all
ggdot.anim <- ggdot.all +
  transition_states(as.factor(Decade), transition_length = 10, state_length = 100) +
  labs(title = "Decade: {closest_state}s")
ggdot.anim2 <- animate(ggdot.anim, fps=5, width=1280, height=720)</pre>
```

shift.moon.ggplot 13

```
getwd()
anim_save(filename="Allele shift animation.gif", animation=ggdot.anim2)
## End(Not run)
```

shift.moon.ggplot

Shifts of Allele Frequencies as Response to Climate Change

Description

The function shows changes in allele frequencies between the baseline and future/past climate.

Usage

```
shift.moon.ggplot(baseline.moon, future.moon,
manual.colour.values = c("white", "grey", "firebrick3", "chartreuse4"),
manual.colour.codes = c("A baseline ", "B", "A decreasing", "A increasing"))
moon.waxer(freq.in, sort.index= "Pop.index",
mean.change = FALSE, change.FUN = stats::median,
freq.focus = "Allele.freq",
ypos = 0, right = TRUE)
```

Arguments

```
baseline.moon, future.moon
                  Result from AlleleShift::moon.waxer.
manual.colour.values
                  Colours to be used in the plot.
manual.colour.codes
                  Sequence for the manual colour values.
freq.in
                  Result from AlleleShift::predFreq.
sort.index
                  Sequence of the populations in the plot.
mean.change
                  Aggregate changes among alleles.
change.FUN
                  Function used the aggregate changes.
freq.focus
                  Allele frequency for which to calculate statistics, either 'Allele.freq' or 'Freq.e2'.
ypos, right
                  Arguments used for plotting, mainly as in geom_moon
```

Value

The function generates a ggplot that depicts changes between baseline and future/past allele frequencies of the populations.

shift.pie.ggplot

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

See Also

```
shift.dot.ggplot, shift.pie.ggplot, shift.waffle.ggplot, shift.surf.ggplot
```

Examples

shift.pie.ggplot

Shifts of Allele Frequencies as Response to Climate Change

Description

The function shows changes in allele frequencies between the baseline and future/past climate.

Usage

```
shift.pie.ggplot(baseline.pie, future.pie,
manual.colour.values = c("black", "grey", "firebrick3", "chartreuse4"),
manual.colour.codes = c("A baseline ", "B", "A decreasing", "A increasing"))

pie.baker(freq.in, sort.index= "Pop.index",
mean.change = FALSE, change.FUN = stats::median,
freq.focus = "Allele.freq", ypos = 0,
r0 = 0.1, r = 0.5, focus = 0.2)
```

shift.pie.ggplot 15

Arguments

```
baseline.pie, future.pie
                  Result from AlleleShift::pie.baker.
manual.colour.values
                  Colours to be used in the plot.
manual.colour.codes
                  Sequence for the manual colour values.
freq.in
                  Result from AlleleShift::predFreq.
sort.index
                  Sequence of the populations in the plot.
mean.change
                  Aggregate changes among alleles.
change.FUN
                  Function used the aggregate changes.
freq.focus
                  Allele frequency for which to calculate statistics, either 'Allele.freq' or 'Freq.e2'.
ypos, r0, r, focus
                  Arguments used for plotting, mainly as in geom_arc_bar
```

Value

The function generates a ggplot that depicts changes between baseline and future/past allele frequencies of the populations.

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

See Also

```
shift.dot.ggplot, shift.moon.ggplot, shift.waffle.ggplot, shift.surf.ggplot
```

16 shift.pie.ggplot

```
# create an animation
## Not run:
library(ggplot2)
library(ggforce)
library(gganimate)
library(gifski)
library(transformr)
# The data is an interpolation and extrapolation between the baseline and future climate.
# For actual application, interpolate between climate data from available sources
data(Poptri.1985to2085)
decades <- sort(unique(Poptri.1985to2085$Decade))</pre>
for (d in 1:length(decades)) {
  decade.focal <- decades[d]</pre>
  decade.data <- Poptri.1985to2085[Poptri.1985to2085$Decade == decade.focal, ]</pre>
  decade.pie <- pie.baker(decade.data, r0=0.1,</pre>
                         freq.focus="Freq.e2",
                         sort.index="Latitude.index",
                         ypos=1)
  decade.pie <- cbind(Decade=rep(decade.focal, nrow(decade.pie)), decade.pie)</pre>
  if (d == 1) {
    future.pies <- decade.pie</pre>
    future.pies <- rbind(future.pies, decade.pie)</pre>
}
np <- length(unique(Poptri.baseline.pie$Pop))</pre>
manual.colour.values <- c("black", "grey", "firebrick3", "chartreuse4")</pre>
ggpie.all <- ggplot(data=future.pies, group=Decade) +</pre>
  scale_x_continuous(limits=c(0.5, np+0.5),
                      breaks=seq(from=1, to=np, by=1),
                      labels=levels(Poptri.baseline.pie$Pop)) +
  geom_arc_bar(data=Poptri.baseline.pie,
                aes(x0=sort.index, y0=ypos, r0=r0, r=0.4,
                    start=start, end=end, fill=colour),
                size=0.04, alpha=1, colour="snow1") +
  geom_arc_bar(data=future.pies,
                aes(x0=sort.index, y0=ypos, r0=r0, r=0.4,
                    start=start, end=end, fill=change.colour),
                size=0.04, alpha=1, colour="snow1") +
  geom_point(data=subset(future.pies, increasing==TRUE),
            aes(x=sort.index, y=ypos),
         size=5, shape=21, fill=manual.colour.values[4], stroke=0.03, show.legend=FALSE) +
  geom_point(data=subset(future.pies, increasing==FALSE),
```

```
aes(x=sort.index, y=ypos),
        size=5, shape=21, fill=manual.colour.values[3], stroke=0.03, show.legend=FALSE) +
 coord_flip() +
 xlab(element_blank()) +
 ylab(element_blank()) +
 labs(fill=" ") +
 scale_fill_manual(values=manual.colour.values,
                    labels=c("A baseline ", "B", "A decreasing", "A increasing")) +
 theme(panel.grid = element_blank()) +
 theme(axis.text.x=element_blank()) +
 theme(axis.ticks.x = element_blank()) +
 theme(legend.position="top") +
 facet_grid( ~ Allele, scales="free")
ggpie.all
# note this will take quite a while!
ggpie.anim <- ggpie.all +
 transition_states(as.factor(Decade), transition_length = 10, state_length = 100) +
 labs(title = "Decade: {closest_state}s")
ggpie.anim2 <- animate(ggpie.anim, fps=5, width=1280, height=720)</pre>
getwd()
anim_save(filename="Allele shift pie animation.gif", animation=ggpie.anim2)
## End(Not run)
```

shift.surf.ggplot

Shifts of Allele Frequencies as Response to Climate Change

Description

The function shows changes in allele frequencies between the baseline and future/past climate.

Usage

```
shift.surf.ggplot(freq.future,
Allele.focus=unique(freq.future$Allele)[1],
freq.focus="Allele.freq",
xcoord="LON", ycoord="LAT",
mean.change = FALSE, change.FUN = stats::median,
manual.colour.values = c("firebrick3", "chartreuse4"),
...)
```

Arguments

freq.future Result from AlleleShift::predFreq.

freq.focus Selection of the Allele.

Allele.focus Selection of the frequency.

xcoord, ycoord Geographical coordinates of the populations.

mean.change Aggregate changes among alleles.

change.FUN Function used the aggregate changes.

manual.colour.values

Colours to be used in the plot.

... Options for ordisurf.

Details

Populations are plotted in geographical space via ordination plotting methods, which is suitable as fixed coordinate systems are recommended both in ordination diagrams and maps. See Kindt (2020) for alternative methods of generating ordination diagrams via vegan, BiodiversityR and ggplot2.

Kindt (2021) shows how a STAMEN baseline map can be used to produce high resolution images via the ggmap package.

Value

The function generates a ggplot that depicts changes between baseline and future/past allele frequencies of the populations.

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

References

Kindt R. 2020. Ordination graphs with vegan, BiodiversityR and ggplot2. https://rpubs.com/Roeland-KINDT

Kindt, R. 2021. Plotting smoothed surface diagrams of allele frequencies obtained from AlleleShift on a baseline map via ggmap. https://rpubs.com/Roeland-KINDT

See Also

```
shift.dot.ggplot, shift.pie.ggplot, shift.moon.ggplot, shift.waffle.ggplot
```

```
# The data can be obtained via the count.model and freq.model calibrations.
# These procedures are not repeated here.
data(Poptri.freq.baseline)
data(Poptri.freq.future)
```

```
# Plots for the first allele
# Symbols and colours indicate future change (green, ^ = future increase)
# Symbol size reflects the frequency in the climate shown
# Baseline climate
plotA <- shift.surf.ggplot(Poptri.freq.future,</pre>
                  xcoord="Long", ycoord="Lat",
                  Allele.focus=unique(Poptri.freq.future$Allele)[1],
                  freq.focus="Allele.freq")
plotA
# Future/past climate
plotB <- shift.surf.ggplot(Poptri.freq.future,</pre>
                  xcoord="Long", ycoord="Lat",
                  Allele.focus=unique(Poptri.freq.future$Allele)[1],
                  freq.focus="Freq.e2")
plotB
# Plots for the fifth allele
# Baseline climate
plotC <- shift.surf.ggplot(Poptri.freq.future,</pre>
                  xcoord="Long", ycoord="Lat",
                  Allele.focus=unique(Poptri.freq.future$Allele)[5],
                  freq.focus="Allele.freq")
plotC
# Future climate
plotD <- shift.surf.ggplot(Poptri.freq.future,</pre>
                  xcoord="Long", ycoord="Lat",
                  Allele.focus=unique(Poptri.freq.future$Allele)[5],
                  freq.focus="Freq.e2")
plotD
# create an animation
## Not run:
library(ggplot2)
library(ggforce)
library(gganimate)
library(gifski)
library(transformr)
# The data is an interpolation and extrapolation between the baseline and future climate.
# For actual application, interpolate between climate data from available sources
data(Poptri.1985to2085)
Poptri.1985to2085$xcoord <- Poptri.1985to2085$Long
Poptri.1985to2085$ycoord <- Poptri.1985to2085$Lat
alleles <- sort(unique(as.character(Poptri.1985to2085$Allele)))
```

```
future.data <- Poptri.1985to2085[Poptri.1985to2085$Allele == alleles[1], ]</pre>
decades <- sort(unique(future.data$Decade))</pre>
for (d in 1:length(decades)) {
 decade.focal <- decades[d]</pre>
 decade.data <- future.data[future.data$Decade == decade.focal, ]</pre>
 plotLONLAT <- vegan::ordiplot(decade.data[, c("xcoord", "ycoord")])</pre>
 surfAllele <- BiodiversityR::ordisurfgrid.long(vegan::ordisurf(plotLONLAT, y=decade.data$Freq.e2))
 decade.surf <- cbind(Decade=rep(decade.focal, nrow(surfAllele)), surfAllele)</pre>
 if (d == 1) {
    future.surfs <- decade.surf
 }else{
    future.surfs <- rbind(future.surfs, decade.surf)</pre>
}
# The function above will not be able to predict far into the future.
# The results obtained (future.surfs) can still be used for plotting.
ggsurf.all <- ggplot(data=future.surfs, group=Decade) +</pre>
 geom_contour_filled(aes(x=x, y=y, z=z),
                      breaks=seq(from=0.0, to=1.05, by=0.05)) +
 geom_point(data=subset(future.data, Decade==Decade),
             aes(x=xcoord, y=ycoord, size=Freq.e2, shape=increasing),
             colour="red", alpha=0.8, stroke=1.5, show.legend=FALSE) +
 xlab(element_blank()) +
 ylab(element_blank()) +
 labs(fill=alleles[1]) +
 scale_fill_viridis_d() +
 scale_colour_manual(values=c("firebrick3", "chartreuse4"),
                      guide=FALSE) +
  scale_size_area(max_size=6) +
 scale_shape_manual(values=c(6, 2)) +
 theme(panel.grid = element_blank()) +
 theme(axis.text= element_blank()) +
 theme(axis.ticks = element_blank()) +
 theme(legend.title = element_text(size=9)) +
 theme(legend.text = element_text(size=8)) +
 coord_fixed()
ggsurf.all
ggsurf.anim <- ggsurf.all +</pre>
 transition_states(as.factor(Decade), transition_length = 10, state_length = 100) +
 labs(title = "Decade: {closest_state}s")
ggsurf.anim2 <- animate(ggsurf.anim, fps=5, width=1280, height=720)</pre>
getwd()
anim_save(filename="Allele shift surf animation.gif", animation=ggsurf.anim2)
```

shift.waffle.ggplot 21

```
## End(Not run)
```

```
shift.waffle.ggplot Shifts of Allele Frequencies as Response to Climate Change
```

Description

The function shows changes in allele frequencies between the baseline and future/past climate.

Usage

```
shift.waffle.ggplot(future.waffle,
manual.colour.values = c("black", "grey", "firebrick3", "chartreuse4"),
manual.colour.codes = c("A baseline ", "B", "A decreasing", "A increasing"))
waffle.baker(freq.in, sort.index = "Pop.index",
mean.change = FALSE, change.FUN = stats::median)
```

Arguments

Details

Althought a package ggwaffle exists, I opted to bake my own waffles (possibly the Belgian in me.). As a separate row is created for each square/rectangle of the waffle, the resulting data is quite large. Hence trying to animate this is probably a bad idea (unless you want to make some real waffles while your computer is busy).

Value

The function generates a ggplot that depicts changes between baseline and future/past allele frequencies of the populations.

VIF.subset

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

Examples

VIF.subset

Reduce the Climate Data based on Variance Inflation Factor Analysis.

Description

Through Variance Inflation Factor (VIF) analysis, a subset of variables is indentified where all variables have VIF below a predefined threshold.

Usage

```
VIF.subset(data, VIF.max, keep=NULL, silent=FALSE, cor.plot=TRUE)
```

Arguments

data	(Bio)-Climatic or environmental descriptors of the populations
VIF.max	Maximum Variance Inflation Factor as in ensemble.VIF.dataframe that is used internally.
keep	Variables to keep as in as in ensemble.VIF.dataframe.
silent	Limit the verbose output as in ensemble.VIF.dataframe.
cor.plot	Generate a correlation matrix for the final subset via ggcorr.

Value

The function returns information on a subset of variables where VIF is below a pre-defined threshold.

VIF.subset 23

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

```
data(Poptri.baseline.env)
# error as many variables are highly correlated
# VIF.subset(Poptri.baseline.env)
VIF.subset(Poptri.baseline.env, keep=c("MAT", "CMI"), cor.plot=TRUE)
```

Index

```
* datasets
                                                 qt, 6
    Poptri.genind, 8
                                                 rda, 2, 9
adonis2, 2
                                                 shift.dot.ggplot, 11, 14, 15, 18
amova.rda, 2, 6
                                                 shift.moon.ggplot, 11, 13, 15, 18
anova.cca, 5
                                                 shift.pie.ggplot, 11, 14, 14, 18
                                                 shift.surf.ggplot, 11, 14, 15, 17
count.model, 4
                                                 shift.waffle.ggplot, 11, 14, 15, 18, 21
count.pred (count.model), 4
                                                 VIF. subset, 6, 22
ensemble.VIF.dataframe, 2, 22
environmental.novel(population.shift),
                                                 waffle.baker(shift.waffle.ggplot), 21
freq.ggplot(count.model), 4
freq.model (count.model), 4
freq.pred (count.model), 4
genind, 8
genind2genalex, 2
genpop, 5, 6
geom_arc_bar, 15
geom_moon, 13
ggcorr, 22
moon.waxer(shift.moon.ggplot), 13
ordistep, 5, 6
ordisurf, 18
pie.baker(shift.pie.ggplot), 14
pnorm, 10
poppr.amova, 2
Poptri.1985to2085 (Poptri.genind), 8
Poptri.baseline.env (Poptri.genind), 8
Poptri.freq.baseline (Poptri.genind), 8
Poptri.freq.future (Poptri.genind), 8
Poptri.future.env (Poptri.genind), 8
Poptri.genind, 8
Poptri.loc(Poptri.genind), 8
population.shift, 6, 9
```