Context-Free Languages of Sub-exponential Growth

Martin R. Bridson¹

Mathematical Institute, 24–29 St. Giles, Oxford OX1 3LB, United Kingdom E-mail: bridson@maths.ox.ac.uk

and

Robert H. Gilman

Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030 E-mail: rgilman@stevens-tech.edu

Received January 24, 2000; revised October 3, 2001

There do not exist context-free languages of intermediate growth. © 2002 Elsevier Science (USA)

Key Words: context-free languages; growth functions.

1. INTRODUCTION

The function γ whose value at each non-negative integer n is the number of words on length n in a fixed formal language L is called the growth function of L. Flajolet [3] asked if there are context-free languages of *intermediate growth*, that is, such that γ is not bounded above by a polynomial, but $\limsup \gamma(n)/r^n = 0$ for all r > 1. The answer to this question is a corollary to the following theorem.

THEOREM 1.1. If L is a context-free language with growth function γ , then either there is a number r > 1 and integer n_0 such that $\gamma(n) \ge r^n$ for all $n \ge n_0$, or else L is a bounded language.

A bounded language is one which is a subset of $w_1^* \cdots w_n^*$ for some words $\{w_1, ..., w_n\}$. Since it is clear that the growth of a bounded language is bounded above by a polynomial, we have the desired corollary.

COROLLARY 1.1. There do not exist context-free languages of intermediate growth.

¹ Supported by an EPSRC Advanced Fellowship.

We note that by a recent result of Grigorchuk and Machi there are indexed languages of intermediate growth [4].

Corollary 1.1 was obtained independently by Incitti [6]. Theorem 1.1 occurs in our previous work [1] as a remark that the proof given there of the weaker result [1, Proposition 1.3] suffices for Theorem 1.1. In this note we give a quicker proof of Theorem 1.1 based on work of Ginsburg and Spanier [5], who also obtain a corresponding decidability result:

THEOREM 1.2 [5, Theorem 5.2]. It is decidable whether or not the language L generated by a given context-free grammar is bounded; and if L is bounded, one can effectively find words $\{w_1, ..., w_n\}$ such that $L \subset w_1^* \cdots w_n^*$.

2. PROOF OF THEOREM 1.1

Suppose the language L over the finite alphabet Σ is generated by a context-free grammar G with start symbol S. Without loss of generality we may assume that each non-terminal A of G participates in a derivation of some word in L. Write $A \stackrel{*}{\Rightarrow} \alpha$ to indicate that A derives the sentential form α . Following [5] we define for each non-terminal A

$$Y_A = \{ u \mid A \xrightarrow{*} uAv \text{ for some } v \in \Sigma^* \}$$

$$Z_A = \{ v \mid A \xrightarrow{*} uAv \text{ for some } w \in \Sigma^* \}.$$

Theorem 2.1 [5, Theorem 5.1]. A necessary and sufficient condition that the non-empty language L generated by a context-free grammar G be bounded is that the monoids Y_A and Z_A both be commutative for every non-terminal A of G.

To complete the proof of Theorem 1.1 it suffices to show that if some Y_A or Z_A is not commutative, then L_A , the language of all words derivable from A, has growth function bounded below by an exponential. Indeed since A occurs in the derivation of at least one word in L, there is a derivation $S \stackrel{*}{\to} uAv$ for some words $u, v \in \Sigma^*$, and it follows easily that the growth function of L is bounded below by an exponential once the growth function for L_A is.

Suppose a particular Y_A is not commutative (the argument is similar for Z_A) and pick two derivations

$$A \stackrel{*}{\Rightarrow} u_1 A v_1$$
 $A \stackrel{*}{\Rightarrow} u_2 A v_2$, $u_1 u_2 \neq u_2 u_1$.

Choose an integer m with $m \ge |u_i|$, $m \ge |v_i|$, and $m \ge |w|$ for some $w \in L_A$, and then choose two more integers d, e such that u_1^d and u_2^e have the same length. Each derivation may be used to expand the non-terminal A occurring in u_1Av_1 and in u_2Av_2 . By iterating these expansions, one sees that for every word $W = W(x_1, x_2)$ in the free monoid $\{x_1, x_2\}^*$, L_A contains $W(u_1^d, u_2^e)$ $w\bar{W}(v_1^d, v_2^e)$, where \bar{W} is W written backwards.

If two distinct words W and W' of the same length k yield the same element of L_A , then one of $W(u_1^d, u_2^e)$, $W'(u_1^d, u_2^e)$ must be a prefix of the other. Because u_1^d and

 u_2^e have the same length, $W(u_1^d, u_2^e) = W'(u_1^d, u_2^e)$ in this case. As W and W' are distinct, we must have $u_1^d = u_2^e$. According to [2, Corollary 4.1, 5, Lemma 5.1], this implies that u_1 and u_2 commute. Since u_1 and u_2 do not commute, we conclude that the 2^k words W of length k yield 2^k distinct words $W(u_1^d, u_2^e)$ $w\bar{W}(v_1^d, v_2^e)$ of length at most (2k+1) mf in L_A . Here f is the maximum of $\{d, e\}$. Hence the growth function γ_A of L_A satisfies $\gamma_A((2k+1)mf) \geqslant 2^k$ if $k \geqslant 1$.

Suppose $n \ge 6mf$. Dividing n by mf we obtain n = (2k+1)mf + r for some $k \ge 1$ and r with $0 \le r < 2mf$. Thus $\gamma_A(n) \ge 2^k$ and $k \ge (n-3mf)/(2mf) \ge n/(4mf)$. Hence $n \ge 6mf$ implies $\gamma_A(n) \ge r^n$ for $r = 2^{-4mf}$.

REFERENCES

- M. Bridson and R. Gilman, Formal language theory and the geometry of 3-manifolds, Comment. Math. Helv. 71 (1996), 525-555.
- C. Choffrut and J. Karhumäki, Combinatorics of words, in "Handbook of Formal Languages" Vol. 1, Springer-Verlag, New York/Berlin, 1997.
- P. Flajolet, Analytic models and ambiguity of context-free languages, Theoret. Comput. Sci. 49 (1987), 283–309.
- R. I. Grigorchuk and A. Machì, An example of an indexed language of intermediate growth, *Theoret. Comput. Sci.* 215 (1999), 325–327.
- S. Ginsburg and E. Spanier, Bounded ALGOL-like languages, Trans. Amer. Math. Soc. 113 (1964), 333–368.
- 6. R. Incitti, The growth function of context-free languages, Theoret. Comput. Sci. 255 (2001), 601-605.