Oppfriskning fra forrige gang: Et polynom $P(x_1, ..., x_n)$ kalles **symmetrisk** dersom $P(x_1, ..., x_n) = P(x_{\tau(1)}, ..., x_{\tau(n)})$ for alle permutasjoner $\tau \in S_n$. De elementære symmetriske funksjonene er

$$s_{1} = x_{1} + \ldots + x_{n}$$

$$s_{2} = x_{1}x_{2} + x_{1}x_{3} + \ldots + x_{1}x_{n} + \ldots + x_{n}x_{n-1}$$

$$s_{3} = x_{1}x_{2}x_{3} + \ldots + x_{n}x_{n-1}x_{n-2}$$

$$\vdots$$

$$s_{n} = x_{1}x_{2} \cdots x_{n}$$

Hvis x_1, \ldots, x_n er røttene til et polynom $f(x) = x^n + a_1 x^{n-1} + \ldots + a_n$ er $a_i = (-1)^i \cdot s_i$.

Oppgave 1

- a) La $f(x) = x^2 3x + 9$ ha røtter x_1, x_2 . Finn et polynom som har røtter x_1^2, x_2^2 .
- b) La $p(x) = x^2 + bx + c$ og la x_1, x_2 være røttene til p. Se på polynomet

$$D = (x_1 - x_2)^2$$
.

Det er klart at p har kun en rot hvis D = 0. Hvilken kjent betingelse gir dette på b og c?

Oppgave 2

Husk at $\mathbb{Z}_n = \{x \mod n \mid x \in \mathbb{Z}\}$, der operatsjonen er vanlig '+' modulo n.

a) Tegn opp gangetabellen til \mathbb{Z}_3 , \mathbb{Z}_4 og \mathbb{Z}_6 .

La G være en gruppe. En delmengde $H \subset G$ som også er en gruppe kalles en **undergruppe** av G.

- b) Finn undergruppene til gruppene i a). Hva kan du si om antallet elementer i slike undergrupper?
- c) Kan du finne en gruppe med uendelig mange undergrupper?

Oppgave 3

La G være gruppen av symmetrier til kvadratet (altså alle rotasjoner, speilinger, o.s.v.). Hvor mange elementer har G?

Oppgave 4 (Litt vanskeligere)

La G være en endelig gruppe og anta $|G| = m \cdot n$, for m, n > 1. Vis at G har en undergruppe $\neq \{e\}$.

Oppgave 5 (Vrien)

Du har gitt et polynom $P(x) = x^5 + 10x^4 + 50x^3 + \dots$ Vis at ikke alle røttene til P(x) kan være reelle.

 $^{^{1}|}G|$ betegener antall elementer i G.