Interview Questions: Intractability

The hard deadline for this homework is Mon 3 Jun 2013 8:59 PM PDT (UTC -0700).

In accordance with the Coursera Honor Code, I (Atul Gupta) certify that the answers here are my own work.

Question 1

Graph 3-colorability. An undirected graph is 3-colorable if the vertices can be colored red, green, or blue in such a way that no edge connects two vertices with the same color. Prove that 3COLOR is \mathcal{NP} -complete.

Question 2

Decision problems. Traditionally, the complexity classes \mathcal{P} and \mathcal{NP} are defined in terms of *decision problems* with yes/no answers instead of *search problems*, e.g., instead of Prove that the search problem version of SAT (*find a binary solution to a given system of boolean equations?*) polynomial-time reduces to the decision version of SAT (*does there exists a binary solution to a given system of boolean equations.*).

Question 3

Optimization problems. Given an undirected graph with positive edge weights, the traveling salesperson problem is to find a simple cycle that visits every vertex and has minimum total weight. The search problem version of the problem is, given a parameter L, find a tour of length at most L. Prove that the optimization version of the problem polynomial-time reduces to the search version of the problem.

Remark: for many problems such as this one, the optimization version of the problem (which is not known to be in \mathcal{NP}) is solvable in polynomial time if and only if the search version of the problem (which is easily seen to be in \mathcal{NP}) is.

In accordance with the Coursera Honor Code, I (Atul Gupta) certify that the answers here are my own work.

Submit Answers

You cannot submit your work until you agree to the Honor Code. Thanks!

Save Answers