Package 'BayesMultiMode'

October 31, 2024

```
Type Package
Title Bayesian Mode Inference
Version 0.7.3
Description A two-step Bayesian approach for mode inference following
     Cross, Hoogerheide, Labonne and van Dijk (2024) <doi:10.1016/j.econlet.2024.111579>).
     First, a mixture distribution is fitted on the data using a sparse finite
     mixture (SFM) Markov chain Monte Carlo (MCMC) algorithm. The number of
     mixture components does not have to be known; the size of the mixture is
     estimated endogenously through the SFM approach. Second, the modes of the
     estimated mixture at each MCMC draw are retrieved using algorithms
     specifically tailored for mode detection. These estimates are then used to
     construct posterior probabilities for the number of modes, their locations
     and uncertainties, providing a powerful tool for mode inference.
License GPL (>= 3)
Imports assertthat, bayesplot, dplyr, ggplot2 (>= 3.3.4), ggpubr,
     gtools, magrittr, MCMCglmm, mvtnorm, posterior, sn, stringr,
     tidyr, Rdpack
Depends R (>= 3.5.0)
Suggests testthat (>= 3.0.0)
RdMacros Rdpack
Encoding UTF-8
LazyData true
URL https://github.com/paullabonne/BayesMultiMode
BugReports https://github.com/paullabonne/BayesMultiMode/issues
NeedsCompilation no
RoxygenNote 7.3.1
Config/testthat/edition 3
Author Nalan Baştürk [aut],
     Jamie Cross [aut],
     Peter de Knijff [aut],
```

2 bayes_fit

Lennart Hoogerheide [aut], Paul Labonne [aut, cre], Herman van Dijk [aut]

Maintainer Paul Labonne <labonnepaul@gmail.com>

Repository CRAN

Date/Publication 2024-10-31 15:30:06 UTC

Contents

	bayes_fit	2
	bayes_mixture	7
	bayes_mode	
	bayes_trace	13
	ct47	14
	cyclone	15
	d4z4	16
	galaxy	16
	mixture	17
	mix_mode	19
	plot.bayes_mixture	22
	plot.bayes_mode	23
	plot.mixture	24
	plot.mix_mode	24
	print.bayes_mixture	25
	print.bayes_mode	25
	print.mixture	26
	print.mix_mode	26
	summary.bayes_mixture	27
	summary.bayes_mode	27
	summary.mixture	28
	summary.mix_mode	28
Index		29

bayes_fit

Bayesian estimation of mixture distributions

Description

Estimation of a univariate mixture with unknown number of components using a sparse finite mixture Markov chain Monte Carlo (SFM MCMC) algorithm.

bayes_fit 3

Usage

```
bayes_fit(
  data,
  K,
  dist,
  priors = list(),
  nb_iter = 2000,
  burnin = nb_iter/2,
  print = TRUE
)
```

Arguments

Vector of observations. data Κ Maximum number of mixture components. dist String indicating the distribution of the mixture components; currently supports "normal", "skew_normal", "poisson" and "shifted_poisson". List of priors; default is an empty list which implies the following priors: priors a0 = 1, A0 = 200, b0 = median(y), $B0 = (\max(y) - \min(y))^2 \text{ (normal)},$ $D_xi = 1$, $D_psi = 1$, (skew normal: $B0 = diag(D_xi, D_psi)$), c0 = 2.5, 10 = 1.1 (poisson), 10 = 5 (shifted poisson), L0 = 1.1/median(y),L0 = 10 - 1 (shifted poisson), g0 = 0.5, G0 = 100 * g0/c0/B0 (normal),G0 = g0/(0.5*var(y)) (skew normal). nb_iter Number of MCMC iterations; default is 2000. burnin Number of MCMC iterations used as burnin; default is nb_iter/2. print Showing MCMC progression? Default is TRUE.

Details

Let y_i , $i=1,\ldots,n$ denote observations. A general mixture of K distributions from the same parametric family is given by:

$$y_i \sim \sum_{k=1}^K \pi_k p(\cdot | \theta_k)$$

with $\sum_{k=1}^{K} \pi_k = 1$ and $\pi_k \ge 0, k = 1, ..., K$.

The exact number of components does not have to be known a priori when using an SFM MCMC

4 bayes fit

approach. Rather, an upper bound is specified for the number of components and the weights of superfluous components are shrunk towards zero during estimation. Following Malsiner-Walli et al. (2016) a symmetric Dirichlet prior is used for the mixture weights:

$$\pi_k \sim \text{Dirichlet}(e_0, \dots, e_0),$$

where a Gamma hyperprior is used on the concentration parameter e_0 :

$$e_0 \sim \text{Gamma}(a_0, A_0)$$
.

Mixture of Normal distributions

Normal components take the form:

$$p(y_i|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi} \sigma_k} \exp\left(-\frac{1}{2} \left(\frac{y_i - \mu_k}{\sigma_k}\right)^2\right).$$

Independent conjugate priors are used for μ_k and σ_k^2 (see for instance Malsiner-Walli et al. 2016):

$$\mu_k \sim \text{Normal}(b_0, B_0),$$

 $\sigma_k^{-2} \sim \text{Gamma}(c_0, C_0),$
 $C_0 \sim \text{Gamma}(g_0, G_0).$

Mixture of skew-Normal distributions

We use the skew-Normal of Azzalini (1985) which takes the form:

$$p(y_i|\xi_k,\omega_k,\alpha_k) = \frac{1}{\omega_k\sqrt{2\pi}} \, \exp\left(-\frac{1}{2}\left(\frac{y_i-\xi_k}{\omega_k}\right)^2\right) \, \left(1 + \operatorname{erf}\left(\alpha_k\left(\frac{y_i-\xi_k}{\omega_k\sqrt{2}}\right)\right)\right),$$

where ξ_k is a location parameter, ω_k a scale parameter and α_k the shape parameter introducing skewness. For Bayesian estimation, we adopt the approach of Frühwirth-Schnatter and Pyne (2010) and use the following reparameterised random-effect model:

$$z_i \sim TN_{[0,\infty)}(0,1),$$

$$y_i|(S_i = k) = \xi_k + \psi_k z_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma_k^2),$$

where the parameters of the skew-Normal are recovered with

$$\omega_k = \frac{\psi_k}{\sigma_k}, \qquad \omega_k^2 = \sigma_k^2 + \psi_k^2.$$

By defining a regressor $x_i = (1, z_i)'$, the skew-Normal mixture can be seen as random effect model and sampled using standard techniques. Thus we use priors similar to the Normal mixture model:

$$(\xi_k, \psi_k)' \sim \text{Normal}(b_0, B_0),$$

$$\sigma_k^{-2} \sim \text{Gamma}(c_0, C_0),$$

$$C_0 \sim \text{Gamma}(g_0, G_0).$$

bayes_fit 5

We set

$$\mathbf{b}_0 = (\text{median}(y), 0)'$$

and

$$B_0 = diag(D_xi, D_psi)$$

with $D_xi = D_psi = 1$.

Mixture of Poisson distributions

Poisson components take the form:

$$p(y_i|\lambda_k) = \frac{1}{y_i!} \lambda_k^{y_i} \exp(-\lambda_k).$$

The prior for λ_k follows from Viallefont et al. (2002):

$$\lambda_k \sim \text{Gamma}(l_0, L_0).$$

Mixture of shifted-Poisson distributions

Shifted-Poisson components take the form

$$p(y_i|\lambda_k, \kappa_k) = \frac{1}{(y_i - \kappa_k)!} \lambda_k^{(y_i - \kappa_k)!} \exp(-\lambda_k)$$

where κ_k is a location or shift parameter with uniform prior, see Cross et al. (2024).

Value

A list of class bayes_mixture containing:

data Same as argument.

mcmc Matrix of MCMC draws where the rows corresponding to burnin have been

discarded;

mcmc_all Matrix of MCMC draws.

loglik Log likelihood at each MCMC draw.

K Number of components.

dist Same as argument.

pdf_func The pdf/pmf of the mixture components.

dist_type Type of the distribution, i.e. continuous or discrete.

pars_names Names of the mixture components' parameters.

loc Name of the location parameter of the mixture components.

nb_var Number of variables/parameters in the mixture distribution.

6 bayes_fit

References

Azzalini A (1985). "A Class of Distributions Which Includes the Normal Ones." *Scandinavian Journal of Statistics*, **12**(2), 171–178. ISSN 0303-6898, Publisher: [Board of the Foundation of the Scandinavian Journal of Statistics, Wiley].

Cross JL, Hoogerheide L, Labonne P, van Dijk HK (2024). "Bayesian mode inference for discrete distributions in economics and finance." *Economics Letters*, **235**, 111579. ISSN 0165-1765, doi:10.1016/j.econlet.2024.111579.

Frühwirth-Schnatter S, Pyne S (2010). "Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions." *Biostatistics*, **11**(2), 317–336. ISSN 1465-4644, doi:10.1093/biostatistics/kxp062.

Malsiner-Walli G, Fruhwirth-Schnatter S, Grun B (2016). "Model-based clustering based on sparse finite Gaussian mixtures." *Statistics and Computing*, **26**(1), 303–324. ISSN 1573-1375, doi:10.1007/s1122201495002.

Viallefont V, Richardson S, Peter J (2002). "Bayesian analysis of Poisson mixtures." *Journal of Nonparametric Statistics*, **14**(1-2), 181–202.

Examples

```
set.seed(123)
# retrieve galaxy data
y <- galaxy
# estimation
bayesmix <- bayes_fit(</pre>
 data = y,
 K = 5, # not many to run the example rapidly
 dist = "normal",
 nb_iter = 500, # not many to run the example rapidly
 burnin = 100
)
# plot estimated mixture
# plot(bayesmix, max_size = 200)
set.seed(123)
# retrieve galaxy data
y <- galaxy
# estimation
K <- 5
bayesmix <- bayes_fit(</pre>
 data = y,
```

bayes_mixture 7

```
K = K, # not many to run the example rapidly
 dist = "normal",
 priors = list(
   a0 = 10,
   A0 = 10 * K
 nb_iter = 500, # not many to run the example rapidly
 burnin = 100
)
# plot estimated mixture
# plot(bayesmix, max_size = 200)
set.seed(123)
# retrieve DNA data
y \leftarrow d4z4
# estimation
bayesmix <- bayes_fit(</pre>
 data = y,
 K = 5, # not many to run the example rapidly
 dist = "shifted_poisson",
 nb_iter = 500, # not many to run the example rapidly
 burnin = 100
)
# plot estimated mixture
# plot(bayesmix, max_size = 200)
```

bayes_mixture

Creating a S3 object of class bayes_mixture

Description

Creates an object of class bayes_mixture which can subsequently be used as argument in bayes_mode(). This function is useful for users who want to use the mode inference capabilities of BayesMultiMode with mixture estimated using external software.

Usage

```
bayes_mixture(
  mcmc,
  data,
  burnin = 0,
  dist = NA_character_,
```

8 bayes_mixture

```
pdf_func = NULL,
dist_type = NA_character_,
loglik = NULL,
vars_to_keep = NA_character_,
vars_to_rename = NA_character_,
loc = NA_character_
```

Arguments

mcmc A matrix of MCMC draws with one column per variable, e.g. eta1, eta2, ...,

mu1, mu2, etc...

data Vector of observation used for estimating the model. burnin Number of draws to discard as burnin; default is 0.

dist Distribution family of the mixture components supported by the package (i.e.

"normal", "student", "skew_normal" or "shifted_poisson"). If left un-

specified, pdf_func is required.

pdf_func (function) Pdf or pmf of the mixture components; this input is used only if dist

is left unspecified. pdf_func should have two arguments : (i) the observation where the pdf is evaluated; (ii) a named vector representing the function parameters. For instance a normal pdf would take the form: pdf_func <- function(x, pars) dnorm(x, pars['mu'], pars['sigma']). The names of pars should

correspond to variables in mcmc, e.g. "mu1", "mu2" etc...

dist_type Either "continuous" or "discrete".

loglik Vector showing the log likelihood at each MCMC draw.

vars_to_keep (optional) Character vector containing the names of the variables to keep in

mcmc, e.g. c("eta", "mu", "sigma").

vars_to_rename (optional) Use for renaming variables/parameters in mcmc. A named character

vector where the names are the new variable names and the elements the vari-

ables in mcmc, e.g. c("new_name" = "old_name").

loc (for continuous mixtures other than Normal mixtures) String indicating the lo-

cation parameter of the distribution; the latter is used to initialise the MEM

algorithm.

Value

A list of class bayes_mixture containing:

data Same as argument.

mcmc Matrix of MCMC draws where the rows corresponding to burnin have been

discarded;

mcmc_all Matrix of MCMC draws.

loglik Log likelihood at each MCMC draw.

K Number of components.dist Same as argument.

bayes_mixture 9

```
pdf_func The pdf/pmf of the mixture components.

dist_type Type of the distribution, i.e. continuous or discrete.

pars_names Names of the mixture components' parameters.

loc Name of the location parameter of the mixture components.

nb_var Number of parameters in the mixture distribution.
```

Examples

```
# Constructing synthetic mcmc output
mu < -c(0.5, 6)
mu_mat <- matrix(rep(mu, 100) + rnorm(200, 0, 0.1),
 ncol = 2, byrow = TRUE
)
omega \leftarrow c(1, 2)
sigma_mat <- matrix(rep(omega, 100) + rnorm(200, 0, 0.1),</pre>
 ncol = 2, byrow = TRUE
nu <- c(5, 5)
nu_mat <- matrix(rep(nu, 100) + rnorm(200, 0, 0.1),</pre>
 ncol = 2, byrow = TRUE
eta <- c(0.8, 0.2)
eta_mat <- matrix(rep(eta[1], 100) + rnorm(100, 0, 0.05),
 ncol = 1
)
eta_mat <- cbind(eta_mat, 1 - eta_mat)</pre>
xi_mat <- matrix(0, 100, 2)
fit <- cbind(eta_mat, mu_mat, sigma_mat, nu_mat, xi_mat)</pre>
colnames(fit) <- c(</pre>
  "eta1", "eta2", "mu1", "mu2",
  "omega1", "omega2", "nu1", "nu2", "xi1", "xi2"
)
# sampling observations
data <- c(
 sn::rst(eta[1] * 1000, mu[1], omega[1], nu = nu[1]),
 sn::rst(eta[2] * 1000, mu[2], omega[2], nu = nu[2])
)
pdf_func <- function(x, pars) {</pre>
 sn::dst(x, pars["mu"], pars["sigma"], pars["xi"], pars["nu"])
}
dist_type <- "continuous"</pre>
```

bayes_mode

```
BM <- bayes_mixture(fit, data,
  burnin = 50,
  pdf_func = pdf_func, dist_type = dist_type,
  vars_to_rename = c("sigma" = "omega"), loc = "xi"
)
# plot(BM)</pre>
```

bayes_mode

Bayesian mode inference

Description

Bayesian inference on the modes in a univariate mixture estimated with MCMC methods, see Cross et al. (2024). Provides posterior probabilities of the number of modes and their locations. Under the hood it calls the function mix_mode() to find the modes in each MCMC draw.

Usage

```
bayes_mode(
   BayesMix,
   rd = 1,
   tol_mixp = 0,
   tol_x = sd(BayesMix$data)/10,
   tol_conv = 1e-08,
   inside_range = TRUE,
   range = c(min(BayesMix$data), max(BayesMix$data)),
   conditional_nb_modes = NULL
)
```

BayesMix	An object of class bayes_mixture generated with either bayes_fit() or bayes_mixture().
rd	(for continuous mixtures) Integer indicating the number of decimal places when rounding the distribution's support. It is necessary to compute posterior probabilities of mode locations.
tol_mixp	Components with a mixture proportion below tol_mixp are discarded when estimating modes; note that this does not apply to the biggest component so that it is not possible to discard all components; should be between 0 and 1; default is 0.
tol_x	(for continuous mixtures) Tolerance parameter for distance in-between modes; default is sd(data)/10 where data is the vector of observations from BayesMix. If two modes are closer than tol_x, only the first estimated mode is kept.
tol_conv	(for continuous mixtures) Tolerance parameter for convergence of the algorithm; default is 1e-8.
inside_range	Should modes outside of range be discarded? Default is TRUE.

bayes_mode 11

range limits of the support where modes are saved (if inside_range is TRUE); conditional_nb_modes

Mcmc draws are filtered to include those with only conditional_nb_modes number of modes; default is c(min(BayesMix\$data), max(BayesMix\$data)). This sometimes occurs with very small components when K is large.

Details

Each draw from the MCMC output after burnin, $\theta^{(d)}$, d = 1, ..., D, leads to a posterior predictive probability density/mass function:

$$p(y|\theta^{(d)}) = \sum_{k=1}^{K} \pi_k^{(d)} p(y|\theta_k^{(d)}).$$

Using this function, the mode in draw $dy_m^{(d)}$, $m = 1, ..., M^{(d)}$, where $M^{(d)}$ is the number of modes, are estimated using the algorithm mentioned in the description above.

After running this procedure across all retained posterior draws, we compute the posterior probability for the number of modes being M as:

$$P(\# \text{modes} = M) = \frac{1}{D} \sum_{d=1}^{D} 1(M^{(d)} = M).$$

Similarly, posterior probabilities for locations of the modes are given by:

$$P(y = \text{mode}) = \frac{1}{D} \sum_{d=1}^{D} \sum_{m=1}^{M^{(d)}} 1(y = y_m^{(d)}),$$

for each location y in the range $[\min(y), \max(y)]$. Obviously, continuous data are not defined on a discrete support; it is therefore necessary to choose a rounding decimal to discretize their support (with the rd argument).

Value

A list of class bayes_mode containing:

data From BayesMix.
dist From BayesMix.
dist_type From BayesMix.
pars_names From BayesMix.

modes Matrix with a row for each draw and columns showing modes.

p1 Posterior probability of unimodality.

p_nb_modes Matrix showing posterior probabilities for the number of modes.

p_mode_loc Matrix showing posterior probabilities for mode locations.

mix_density Mixture density at all mode locations in each draw.

algo Algorithm used for mode estimation.

range Range outside which modes are discarded if inside_range is TRUE.

conditional_nb_modes

From BayesMix.

BayesMix BayesMix.

bayes_mode

References

Cross JL, Hoogerheide L, Labonne P, van Dijk HK (2024). "Bayesian mode inference for discrete distributions in economics and finance." *Economics Letters*, **235**, 111579. ISSN 0165-1765, doi:10.1016/j.econlet.2024.111579.

Examples

```
set.seed(123)
# retrieve galaxy data
y <- galaxy
# estimation
bayesmix <- bayes_fit(</pre>
 data = y,
 K = 5, # not many to run the example rapidly
 dist = "normal",
 nb_iter = 500, # not many to run the example rapidly
 burnin = 100
)
# mode estimation
BayesMode <- bayes_mode(bayesmix)</pre>
# plot
# plot(BayesMode, max_size = 200)
# summary
# summary(BayesMode)
set.seed(123)
# retrieve DNA data
y < - d4z4
# estimation
bayesmix <- bayes_fit(</pre>
 data = y,
 K = 5, # not many to run the example rapidly
 dist = "shifted_poisson",
 nb_iter = 500, # not many to run the example rapidly
 burnin = 100
)
# mode estimation
BayesMode <- bayes_mode(bayesmix)</pre>
# plot
# plot(BayesMode, max_size = 200)
```

bayes_trace 13

```
# summary
# summary(BayesMode)
mu < -c(0.5, 6)
sigma \leftarrow c(1, 2)
nu <- c(5, 5)
p <- c(0.8, 0.2) #'
data <- c(
 sn::rst(p[1] * 1000, mu[1], sigma[1], nu = nu[1]),
 sn::rst(p[2] * 1000, mu[2], sigma[2], nu = nu[2])
fit <- c(eta = p, mu = mu, sigma = sigma, nu = nu, xi = c(0, 0))
fit <- rbind(fit, fit)</pre>
pdf_func <- function(x, pars) {</pre>
 sn::dst(x, pars["mu"], pars["sigma"], pars["xi"], pars["nu"])
dist_type <- "continuous"</pre>
bayesmix <- bayes_mixture(fit, data,</pre>
 burnin = 1,
 pdf_func = pdf_func, dist_type = dist_type, loc = "mu"
BayesMode <- bayes_mode(bayesmix)</pre>
# plot
# plot(BayesMode, max_size = 200)
# summary
# summary(BayesMode)
```

bayes_trace

Trace plots

Description

This is wrapper around the bayesplot::mcmc_trace() function from package bayesplot.

Usage

```
bayes_trace(BayesMix, mcmc_vars = NULL, with_burnin = FALSE, ...)
```

14 ct47

Arguments

BayesMix An object of class bayes_mixture.

mcmc_vars Variables to plot; default is all the variable in the MCMC output.

with_burnin Plot all draws?

Additional arguments passed to function bayesplot::mcmc_trace().

Value

A trace plot.

Examples

ct47

X chromosomal macrosatellite repeats ct47

Description

Repeat units that encode for a cancer testis antigen.

Locus (hg18): Xq24 Unit (kb): 4.8

Restriction enzyme: EcoRI

Encoded product: cancer testis antigen 47

Usage

ct47

cyclone 15

Format

A vector of counts with 410 elements.

References

Schaap M, Lemmers RJ, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, Basturk N, de Knijff P, van der Maarel SM (2013). "Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions." *BMC Genomics*, **14**(1), 143. ISSN 1471-2164, doi:10.1186/1471216414143.

cyclone

Tropical cyclones lifetime maximum intensity

Description

Dataset constructed using the International Best Track Archive for Climate Stewardship (IBTrACS). The distribution of tropical cyclones lifetime maximum intensity across the globe is known to be bimodal which has important implications for climate modelling.

Usage

cyclone

Format

A dataset with three columns showing the identification of the cyclone, its year of occurrence and its lifetime maximum intensity (LMI). LMI is calculated as the maximum wind speed for each cyclone with unit ks.

Source

https://www.ncei.noaa.gov/products/international-best-track-archive

References

Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010). "The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data." *Bulletin of the American Meteorological Society*, **91**(3), 363–376. ISSN 0003-0007, 1520-0477, doi:10.1175/2009BAMS2755.1, Publisher: American Meteorological Society Section: Bulletin of the American Meteorological Society.

Knapp KR, Diamond HJ, J.P. K, Kruk MC, Schreck CJ (2018). "International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4." *NOAA National Centers for Environmental Information*. doi:10.1175/2009BAMS2755.1.

16 galaxy

d4z4

Autosomal macrosatellite repeats d4z4

Description

Macrosatellite repeats D4Z4 in the subtelomere of chromosome 4q.

Locus (hg18): 4q35.2

Unit (kb): 3.3

Restriction enzyme: EcoRI + HindIII/EcoRI + BlnI/XapI

Encoded product: DUX4

Usage

d4z4

Format

A vector of counts with 410 elements.

References

Schaap M, Lemmers RJ, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, Basturk N, de Knijff P, van der Maarel SM (2013). "Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions." *BMC Genomics*, **14**(1), 143. ISSN 1471-2164, doi:10.1186/1471216414143.

galaxy

Galaxy series

Description

Velocity at which 82 galaxies in the Corona Borealis region are moving away from our galaxy, scaled by 1000.

Usage

galaxy

Format

An object of class numeric of length 82.

Source

https://people.maths.bris.ac.uk/~mapjg/mixdata

mixture 17

References

Richardson S, Green PJ (1997). "On Bayesian Analysis of Mixtures with an Unknown Number of Components." *Journal of the Royal Statistical Society. Series B (Methodological)*, **59**(4), pp. 731–792. ISSN 00359246.

 ${\tt mixture}$

Creating a S3 object of class mixture

Description

Creates an object of class mixture which can subsequently be used as argument in mix_mode() for mode estimation.

Usage

```
mixture(
  pars,
  dist = NA_character_,
  pdf_func = NULL,
  dist_type = NA_character_,
  range,
  loc = NA_character_
)
```

pars	Named vector of mixture parameters.
dist	Distribution family of the mixture components supported by the package (i.e. "normal", "student", "skew_normal" or "shifted_poisson"). If left unspecified, pdf_func is required.
pdf_func	(function) Pdf or pmf of the mixture components; this input is used only if dist is left unspecified. pdf_func should have two arguments: (i) the observation where the pdf is evaluated; (ii) a named vector representing the function parameters. For instance a normal pdf would take the form: pdf_func <- function(x, par) dnorm(x, par['mu'], par['sigma']). The names of par should correspond to variables in pars, e.g. "mu1", "mu2" etc
dist_type	Type of the distribution, either "continuous" or "discrete".
range	upper and lower limit of the range where the mixture should be evaluated.
loc	(for continuous mixtures other than Normal mixtures) String indicating the location parameter of the distribution; the latter is used to initialise the MEM algorithm.

18 mixture

Value

A list of class mixture containing:

Same as argument. pars pars_names Names of the parameters of the components' distribution. dist Same as argument. Pdf (or pmf) of the mixture components. pdf_func dist_type Same as argument. Type of the distribution, either "continuous" or "discrete". loc Number of parameters in the mixture distribution. nb_var Number of mixture components. Κ

Same as argument.

Examples

range

```
# Example with the skew normal ==============================
xi < -c(0, 6)
omega \leftarrow c(1, 2)
alpha <- c(0, 0)
p \leftarrow c(0.8, 0.2)
params <- c(eta = p, xi = xi, omega = omega, alpha = alpha)</pre>
dist <- "skew_normal"</pre>
mix \leftarrow mixture(params, dist = dist, range = c(-2, 10))
# summary(mix)
# plot(mix)
# Example with an arbitrary distribution ====================
mu < -c(0, 6)
omega \leftarrow c(1, 2)
xi <- c(0, 0)
nu <- c(3, 100)
p \leftarrow c(0.8, 0.2)
params <- c(eta = p, mu = mu, sigma = omega, xi = xi, nu = nu)
pdf_func <- function(x, pars) {</pre>
  sn::dst(x, pars["mu"], pars["sigma"], pars["xi"], pars["nu"])
}
mix <- mixture(params,</pre>
  pdf_func = pdf_func,
  dist_type = "continuous", loc = "mu", range = c(-2, 10)
# summary(mix)
# plot(mix, from = -4, to = 4)
```

mix_mode 19

mix_mode	Mode estimation	

Description

Mode estimation in univariate mixture distributions. The fixed-point algorithm of Carreira-Perpinan (2000) is used for Gaussian mixtures. The Modal EM algorithm of Li et al. (2007) is used for other continuous mixtures. A basic algorithm is used for discrete mixtures, see Cross et al. (2024).

Usage

```
mix_mode(
  mixture,
  tol_mixp = 0,
  tol_x = 1e-06,
  tol_conv = 1e-08,
  type = "all",
  inside_range = TRUE
)
```

Arguments

mixture	An object of class mixture generated with mixture().
tol_mixp	Components with a mixture proportion below tol_mixp are discarded when estimating modes; note that this does not apply to the biggest component so that it is not possible to discard all components; should be between 0 and 1; default is 0 .
tol_x	(for continuous mixtures) Tolerance parameter for distance in-between modes; default is 1e-6; if two modes are closer than tol_x the first estimated mode is kept.
tol_conv	(for continuous mixtures) Tolerance parameter for convergence of the algorithm; default is 1e-8.
type	(for discrete mixtures) Type of modes, either "unique" or "all" (the latter includes flat modes); default is "all".
inside_range	Should modes outside of mixture\$range be discarded? Default is TRUE. This sometimes occurs with very small components when K is large.

Details

This function finds modes in a univariate mixture defined as:

$$p(.) = \sum_{k=1}^{K} \pi_k p_k(.),$$

where p_k is a density or probability mass/density function.

20 mix_mode

Fixed-point algorithm Following Carreira-Perpinan (2000), a mode x is found by iterating the two steps:

(i)
$$p(k|x^{(n)}) = \frac{\pi_k p_k(x^{(n)})}{p(x^{(n)})},$$

(ii)
$$x^{(n+1)} = f(x^{(n)}),$$

with

$$f(x) = (\sum_{k} p(k|x)\sigma_k)^{-1} \sum_{k} p(k|x)\sigma_k \mu_k,$$

until convergence, that is, until $abs(x^{(n+1)} - x^{(n)}) < tol_{conv}$, where tol_{conv} is an argument with default value 1e-8. Following Carreira-perpinan (2000), the algorithm is started at each component location. Separately, it is necessary to identify identical modes which diverge only up to a small value; this tolerance value can be controlled with the argument tol_x .

MEM algorithm Following Li et al. (2007), a mode x is found by iterating the two steps:

(i)
$$p(k|x^{(n)}) = \frac{\pi_k p_k(x^{(n)})}{p(x^{(n)})},$$

$$(ii) \quad x^{(n+1)} = \mathrm{argmax}_x \sum_k p(k|x) \mathrm{log} p_k(x^{(n)}),$$

until convergence, that is, until $abs(x^{(n+1)}-x^{(n)}) < \mathrm{tol}_{\mathrm{conv}}$, where $\mathrm{tol}_{\mathrm{conv}}$ is an argument with default value 1e-8. The algorithm is started at each component location. Separately, it is necessary to identify identical modes which diverge only up to a small value. Modes which are closer then tol_x are merged.

Discrete method By definition, modes must satisfy either:

$$p(y_m - 1) < p(y_m) > p(y_m + 1);$$

 $p(y_m - 1) < p(y_m) = p(y_m + 1) = \dots = p(y_m + l - 1) > p(y_m + l).$

The algorithm evaluate each location point with these two conditions.

Value

A list of class mix_mode containing:

mode_estimates estimates of the mixture modes.

algo algorithm used for mode estimation.

dist from mixture.

dist_type type of mixture distribution, i.e. continuous or discrete.

pars from mixture.
pdf_func from mixture.
K from mixture.
nb_var from mixture.

mix_mode 21

References

Cross JL, Hoogerheide L, Labonne P, van Dijk HK (2024). "Bayesian mode inference for discrete distributions in economics and finance." *Economics Letters*, **235**, 111579. ISSN 0165-1765, doi:10.1016/j.econlet.2024.111579.

Carreira-Perpinan MA (2000). "Mode-finding for mixtures of Gaussian distributions." *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **22**(11), 1318–1323. ISSN 1939-3539, doi:10.1109/34.888716, Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

Cross JL, Hoogerheide L, Labonne P, van Dijk HK (2024). "Bayesian mode inference for discrete distributions in economics and finance." *Economics Letters*, **235**, 111579. ISSN 0165-1765, doi:10.1016/j.econlet.2024.111579.

Li J, Ray S, Lindsay BG (2007). "A Nonparametric Statistical Approach to Clustering via Mode Identification." *Journal of Machine Learning Research*, **8**, 1687-1723.

Examples

```
mu < -c(0, 5)
sigma \leftarrow c(1, 2)
p < -c(0.5, 0.5)
params <- c(eta = p, mu = mu, sigma = sigma)</pre>
mix <- mixture(params, dist = "normal", range = c(-5, 15))
modes <- mix_mode(mix)</pre>
# summary(modes)
# plot(modes)
# Example with a skew normal ================================
xi <- c(0, 6)
omega \leftarrow c(1, 2)
alpha <- c(0, 0)
p \leftarrow c(0.8, 0.2)
params <- c(eta = p, xi = xi, omega = omega, alpha = alpha)
dist <- "skew_normal"</pre>
mix \leftarrow mixture(params, dist = dist, range = c(-5, 15))
modes <- mix_mode(mix)</pre>
# summary(modes)
# plot(modes)
# Example with an arbitrary continuous distribution ============================
xi < -c(0, 6)
omega \leftarrow c(1, 2)
alpha <- c(0, 0)
nu <- c(3, 100)
p < -c(0.8, 0.2)
params <- c(eta = p, mu = xi, sigma = omega, xi = alpha, nu = nu)
pdf_func <- function(x, pars) {</pre>
```

22 plot.bayes_mixture

```
sn::dst(x, pars["mu"], pars["sigma"], pars["xi"], pars["nu"])
mix <- mixture(params,</pre>
 pdf_func = pdf_func,
 dist_type = "continuous", loc = "mu", range = c(-5, 15)
modes <- mix_mode(mix)</pre>
# summary(modes)
# plot(modes, from = -4, to = 4)
lambda <- c(0.1, 10)
p <- c(0.5, 0.5)
params <- c(eta = p, lambda = lambda)</pre>
dist <- "poisson"
mix <- mixture(params, range = c(0, 50), dist = dist)
modes <- mix_mode(mix)</pre>
# summary(modes)
# plot(modes)
# Example with an arbitrary discrete distribution ===========
mu < -c(20, 5)
size <- c(20, 0.5)
p <- c(0.5, 0.5)
params <- c(eta = p, mu = mu, size = size)
pmf_func <- function(x, pars) {</pre>
 dnbinom(x, mu = pars["mu"], size = pars["size"])
}
mix <- mixture(params,</pre>
 range = c(0, 50),
 pdf_func = pmf_func, dist_type = "discrete"
modes <- mix_mode(mix)</pre>
# summary(modes)
# plot(modes)
```

plot.bayes_mode 23

Description

Plot an estimated mixture for a given number of draws with a frequency distribution of the data.

Usage

```
## S3 method for class 'bayes_mixture'
plot(x, draws = 250, draw = NULL, bins = 30, alpha = 0.1, ...)
```

Arguments

X	An object of class bayes_mixture.
draws	The number of MCMC draws to plot.
draw	Plot estimated mixture in draw draw; note that draws is discarded. Default is NULL.
bins	(for continuous mixtures) Number of bins for the histogram of the data. Passed to geom_histogram().
alpha	transparency of the density lines. Default is 0.1 . Should be greater than 0 and below or equal to 1 .
	Not used.

plot.bayes_mode	Plot method for bayes_mode objects
p=00.5aj000a0	Tree members and an action

Description

Plot method for bayes_mode objects

Usage

```
## S3 method for class 'bayes_mode'
plot(x, graphs = c("p1", "number", "loc"), draw = NULL, ...)
```

X	An object of class bayes_mode.
graphs	which plot to show? Default is all three c("p1", "number", "loc").
draw	Plot modes in a given mcmc draw; note that graphs is discarded. Default is NULL.
	Not used.

24 plot.mix_mode

plot.mixture	Plot method for mixture objects	

Description

Plot method for mixture objects

Usage

```
## S3 method for class 'mixture'
plot(x, from = x$range[1], to = x$range[2], ...)
```

Arguments

x	An object of class mixture.
from	the lower limit of the range over which the function will be plotted. Default is xrange[1]$.
to	the upper limit of the range over which the function will be plotted. Default is xrange[2]$.
	Not used.

nix_mode Plot method for mix_mode objects

Description

Plot method for mix_mode objects

Usage

```
## S3 method for class 'mix_mode'
plot(x, from = x$range[1], to = x$range[2], ...)
```

x	An object of class mix_mode.
from	the lower limit of the range over which the function will be plotted. Default is $x=me_1$.
to	the upper limit of the range over which the function will be plotted. Default is $x = [2]$.
• • •	Not used.

print.bayes_mixture 25

print bayos mixtura	Print mathed for boyos mixture objects
print.bayes_mixture	<pre>Print method for bayes_mixture objects</pre>

Description

Print method for bayes_mixture objects

Usage

```
## S3 method for class 'bayes_mixture'
print(x, max_length = 6L, max_width = 6L, print_all = F, ...)
```

Arguments

X	An object of class bayes_mixture.
max_length	maximum number of elements (for vector) or rows (for matrices) to show. Default is 6L.
max_width	maximum number of columns to show (for matrices). Default is 6L.
print_all	override max_length and max_width to print everything? Default is FALSE.
	Not used.

|--|--|

Description

Print method for bayes_mode objects

Usage

```
## S3 method for class 'bayes_mode'
print(x, max_length = 6L, max_width = 6L, print_all = F, ...)
```

X	An object of class bayes_mode.
max_length	maximum number of elements (for vector) or rows (for matrices) to show. Default is 6L.
max_width	maximum number of columns to show (for matrices). Default is 6L.
print_all	override max_length and max_width to print everything? Default is FALSE.
	Not used.

26 print.mix_mode

print.mixture	Print method for mixture objects

Description

Print method for mixture objects

Usage

```
## S3 method for class 'mixture'
print(x, max_length = 6L, max_width = 6L, print_all = F, ...)
```

Arguments

X	An object of class mixture.
max_length	maximum number of elements (for vector) or rows (for matrices) to show. Default is 6L.
max_width	maximum number of columns to show (for matrices). Default is 6L.
print_all	override max_length and max_width to print everything? Default is FALSE.
	Not used.

print.mix_mode

Description

Print method for mix_mode objects

Usage

```
## S3 method for class 'mix_mode'
print(x, max_length = 6L, max_width = 6L, print_all = F, ...)
```

x	An object of class mix_mode.
max_length	maximum number of elements (for vector) or rows (for matrices) to show. Default is 6L.
max_width	maximum number of columns to show (for matrices). Default is 6L.
print_all	override max_length and max_width to print everything? Default is FALSE.
• • •	Not used.

summary.bayes_mixture 27

summary.bayes_mixture Summary method for bayes_mixture objects The summary of MCMC draws is given by the function summarise_draws from package poste-

Description

Summary method for bayes_mixture objects The summary of MCMC draws is given by the function summarise_draws from package posterior.

Usage

```
## S3 method for class 'bayes_mixture'
summary(object, ...)
```

Arguments

An object of class bayes_mixture. object

Not used. . . .

summary.bayes_mode

Summary method for bayes_mode objects

Description

Summary method for bayes_mode objects

Usage

```
## S3 method for class 'bayes_mode'
summary(object, ...)
```

Arguments

object An object of class bayes_mode.

Not used. . . .

28 summary.mix_mode

summary.mixture

Summary method for mixture objects

Description

Summary method for mixture objects

Usage

```
## S3 method for class 'mixture'
summary(object, ...)
```

Arguments

object An object of class mixture.

... Not used.

summary.mix_mode

Summary method for mix_mode objects

Description

Summary method for mix_mode objects

Usage

```
## S3 method for class 'mix_mode'
summary(object, ...)
```

Arguments

object An object of class mix_mode.

... Not used.

Index

```
* datasets
    ct47, 14
    cyclone, 15
    d4z4, 16
    galaxy, 16
bayes_fit, 2
bayes_fit(), 10
bayes_mixture, 7
bayes_mixture(), 10
bayes_mode, 10
bayes_mode(), 7
bayes_trace, 13
bayesplot::mcmc_trace(), 13, 14
ct47, 14
cyclone, 15
d4z4, 16
galaxy, 16
mix_mode, 19
mix_mode(), 10, 17
mixture, 17
mixture(), 19
plot.bayes_mixture, 22
plot.bayes_mode, 23
plot.mix_mode, 24
plot.mixture, 24
print.bayes_mixture, 25
print.bayes_mode, 25
print.mix_mode, 26
print.mixture, 26
summary.bayes_mixture, 27
summary.bayes_mode, 27
summary.mix_mode, 28
summary.mixture, 28
```