

SEMESTER 1 EXAMINATION 2014/2015

ACM 30030 Multivariable Calculus Eng II

Professor G. McGuire

Dr E. A. Cox*

Time Allowed: 2 hours

Instructions for Candidates

Full marks will be awarded for complete answers to **three** questions. At least one question must be submitted from both Sections A and B.

Instructions for Invigilators

Candidates are allowed to use non-programmable calculators during this examination.

SECTION A

1. (a) Let C be the parametric curve

$$\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}, \qquad 0 \le t \le 4\pi.$$

Determine the arc length of *C*.

- (b) Let P = (1, 1, 2) be a point on the ellipsoid $3x^2 + 2y^2 + z^2 = 9$.
 - i. Find a unit normal vector to the ellipsoid at the point P.
 - ii. Determine an equation of the tangent plane to the ellipsoid at the point P.
- (c) Find the directional derivative of

$$f(x, y, z) = 3x^2 + 2xy + 3zx^3$$

at the point (2, 3, 4) in the direction of the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$.

2. (a) Consider the line integral

$$\int_{C} ((y^2 + 2xy)\mathbf{i} + (x^2 + 2xy)\mathbf{j}) \cdot \mathbf{dr}$$

where C is a curve connecting the points (-1,2) and (3,1) in the (x,y) plane.

- i. Show that this line integral is independent of the path.
- ii. Evaluate the line integral.
- (b) Evaluate the double integral

$$\iint_{R} (2x + y^2) dA$$

where R is the region in the (x, y) plane bounded by the curves $x = y^2$ and $x = y^3$.

(c) Evaluate, using Stokes Theorem, the line integral

$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{dr}$$

where C is the (counterclockwise) circle $x^2 + y^2 = 9$, z = -4 for

$$\mathbf{F} = y\mathbf{i} + xz^3\mathbf{j} - zy^3\mathbf{k}$$

.

3. (a) Let S be the parametric surface

$$\mathbf{r}(u, v) = (v - 1)\mathbf{i} + (2u + 3v)\mathbf{j} + (u - v)\mathbf{k}, \quad (u, v) \in R$$

where $R = \{(u, v) : 0 \le u \le 1, 0 \le v \le 4 \}$. Find the surface area of S by evaluating the surface integral

$$\iint_{S} 1dS$$

(b) Use the Divergence theorem to evaluate the surface integral

$$\iint_{S} ((x^{3} + \tan(yz))\mathbf{i} + (y^{3} - e^{xz})\mathbf{j} + (3z + x^{3})\mathbf{k}) \cdot \mathbf{n} dS.$$

where S is the surface of the solid that is bounded by the cylinder $x^2+y^2=4$ and the planes z=0 and z=3. Assume that S has an outward orientation.

SECTION B

4. If f(x) is a periodic function of x of period L. then the Fourier series for f(x) is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{2\pi nx}{L} + b_n \sin \frac{2\pi nx}{L})$$

where

$$a_n = \frac{2}{L} \int_{-L/2}^{L/2} f(x) \cos \frac{2\pi nx}{L} dx$$

$$b_n = \frac{2}{L} \int_{-L/2}^{L/2} f(x) \sin \frac{2\pi nx}{L} dx.$$

Let the periodic function f be defined by

$$f(x) = \begin{cases} 2, & -2 < x \le 0 \\ x, & 0 < x \le 2. \end{cases}$$

and f(x + 4) = f(x).

- (a) Sketch the function f(x) over two periods.
- (b) Determine the Fourier series representation for f(x).
- (c) What is the value of the series at x = 0.
- (d) Use parts (b) and (c) to show that

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

5. Solve the diffusion equation

$$\frac{\partial u}{\partial t} = 50 \frac{\partial^2 u}{\partial x^2}$$

subject to the boundary conditions

$$u(0, t) = 0$$

$$u(\pi,t)=0$$

and initial conditions

$$u(x, 0) = \sin(3x) - \sin(7x), \quad 0 \le x \le \pi$$

6. Solve Laplaces equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

for $0 < x < \pi$, $0 < y < \pi$. With boundary conditions

$$u(0, y) = u(x, 0) = u(x, \pi) = 0, u(\pi, y) = \cos y$$

Note: You can assume the Fourier sine series

$$\cos r = \frac{4}{\pi} \left(\frac{1}{2^2 - 1} \sin 2r + \frac{1}{4^2 - 1} \sin 4r + \frac{1}{6^2 - 1} \sin 6r + \cdots \right), \quad 0 < r < \pi$$

Formulæ in the Differential and Integral Calculus

Derivatives

У	dy/dx	У	dy/dx	У	dy/dx
X ⁿ	nx^{n-1}	sec x	tan x sec x	$sec^{-1}\frac{x}{a}$	$\frac{a}{x\sqrt{x^2-a^2}}$
			$= \sin x / \cos^2 x$		XVX u
sin x	COS X	$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2-x^2}}$	e ^x	e^x
cos x	- sin <i>x</i>	$\cos^{-1}\frac{x}{a}$	$-\frac{1}{\sqrt{a^2-x^2}}$	e ^{ax}	ae ^{ax}
tan x	$sec^2 x$	$tan^{-1} \frac{x}{a}$	$\frac{a}{a^2+x^2}$	a ^x	a ^x ln a
cot x	$-\csc^2 x$	$\cot^{-1} \frac{x}{a}$	$-\frac{a}{a^2+x^2}$	ln x	$\frac{1}{x}$
CSC X	$-\cot x \csc x$	$CSC^{-1} \frac{x}{a}$	$-\frac{a}{x\sqrt{x^2-a^2}}$		
	$=-\cos x/\sin^2 x$		XVX G		

Integrals

У	∫ ydx	У	∫ydx	У	$\int y dx$
X ⁿ	$\frac{x^{n+1}}{n+1}$ $n \neq -1$	cot x csc x	$-\csc x$	$\frac{1}{x}$	ln x
sin x	$-\cos x$	$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\frac{x}{a}$	sinh x	cosh x
			or		
			$-\cos^{-1}\frac{x}{a}$		
cos x	sin x	$\frac{a}{a^2+x^2}$	$tan^{-1}\frac{x}{a}$	sech ² x	tanh x
			or		
			$-\cot^{-1}\frac{x}{a}$		
sec ² x	tan x	$\frac{a}{x\sqrt{x^2-a^2}}$	$sec^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{x^2+a^2}}$	$ sinh^{-1} \frac{x}{a} \\ = ln \frac{x + \sqrt{x^2 + a^2}}{a} $
			or		$= \ln \frac{x + \sqrt{x^2 + a^2}}{a}$
			$-\csc^{-1}\frac{x}{a}$		l a
csc ² x	$-\cot x$	e^{ax}	$\frac{e^{ax}}{a}$	$\frac{1}{\sqrt{x^2-a^2}}$	$\cosh^{-1}\frac{x}{a}$
				, -	$ cosh-1 \frac{x}{a} = \ln \frac{x + \sqrt{x^2 - a^2}}{a} \frac{1}{a} \tanh^{-1} \frac{x}{a} = \frac{1}{2a} \ln \frac{a + x}{a - x}$
tan x sec x	sec x	a ^x	ln a	$\frac{1}{a^2-x^2}$	$\frac{1}{a} \tanh^{-1} \frac{x}{a}$
					$=\frac{1}{2a}\ln\frac{a+x}{a-x}$

Other Formulæ

Derivative of Product: y=uv, $\frac{\mathrm{d}y}{\mathrm{d}x}=v\frac{\mathrm{d}u}{\mathrm{d}x}+u\frac{\mathrm{d}v}{\mathrm{d}x}$. Derivative of Quotient: y=u/v, $\frac{\mathrm{d}y}{\mathrm{d}x}=\left(v\frac{\mathrm{d}u}{\mathrm{d}x}-u\frac{\mathrm{d}v}{\mathrm{d}x}\right)/v^2$. Integration by Parts: $\int u\mathrm{d}v=uv-\int v\mathrm{d}u$. Binomial Theorem: $(1\pm x)^n=1\pm nx+\frac{n(n-1)}{1\cdot 2}x^2\pm\frac{n(n-1)(n-2)}{1\cdot 2\cdot 3}x^3+\dots$ Maclaurin's Theorem: $f(x)=f(0)+xf'(0)+\frac{x^2}{1\cdot 2}f''(0)+\dots$ Taylor's Theorem: $f(x+h)=f(x)+hf'(x)+\frac{h^2}{1\cdot 2}f''(x)+\dots$