Math 411 HW1 Section IV 2025 Duke Kunshan University

Problem 1 (Analytical). Calculate the expectation and variance of a normal random variable.

Problem 2 (Analytical). Consider a simple class of model of the form

$$y_t = r + y_{t-1} + c_0 \epsilon_t + c_{-1} \epsilon_{t-1} + \dots + c_{-p} \epsilon_{t-p}, \tag{1}$$

where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$. We want to use this model to mimic the stock market. Here, y_t represent the log-price, r represents the expected return, and ϵ_t represents the impact from the news and are independent from each other. We define the residual as $z_t = y_t - r - y_{t-1}$.

- 1. Calculate the expectation of log return $\mathbb{E}[y_t y_{t-1}]$.
- 2. Suppose $y_t = r + y_{t-1} + \epsilon_t$ and $y_0 = 0$. Suppose we are interested in the event when $y_1 > \eta$ for a threshold η to represent the scenario that the company has received good news. Calculate the conditional expectation of $\mathbb{E}[z_2|y_1 > \eta]$.
- 3. Suppose now $y_t = r + y_{t-1} + \epsilon_t + c_{-1}\epsilon_{t-1}$, $y_0 = 0$, and $\epsilon_0 = 0$. Calculate the conditional expectation of $\mathbb{E}[z_2|y_1 > \eta]$ (You can use the $\phi(x)$ to denote the cumulative distribution function of a standard normal distribution in the answer).
- 4. (Optional) Suppose now $y_t = r + y_{t-1} + \epsilon_t + c_{-1}\epsilon_{t-1}$, $y_0 = 0$, and $\epsilon_0 = 0$. Calculate the conditional expectation of $\mathbb{E}[z_3|y_2 > \eta]$ (You can use the $\phi(x)$ to denote the cumulative distribution function of a standard normal distribution in the answer).

Solution 1. 1. $\mathbb{E}[y_t - y_{t-1}] = \mathbb{E}[r + c_0 \epsilon_t + c_{-1} \epsilon_{t-1} + \dots] = r$

- 2. $\mathbb{E}[z_2|y_1>\eta]=\mathbb{E}[\epsilon_2|y_1>\eta]=0$ due to independency
- 3. Let \mathcal{Z} be the standard normal, then $\epsilon_1 = \sigma \mathcal{Z}$.

$$\mathbb{E}[z_{2}|y_{1} > \eta] = \mathbb{E}[\epsilon_{2} + c_{-1}\epsilon_{1}|r + \epsilon_{1} > \eta] = \mathbb{E}[\epsilon_{2}|r + \epsilon_{1} > \eta] + c_{-1}\mathbb{E}[\epsilon_{1}|r + \epsilon_{1} > \eta] = c_{-1}\sigma\mathbb{E}\left[\mathcal{Z} \middle| \mathcal{Z} > \frac{\eta - r}{\sigma}\right]$$

$$= c_{-1}\sigma\frac{\int_{\frac{\eta - r}{\sigma}}^{\infty} \frac{x}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}} dx}{\int_{\frac{\eta - r}{\sigma}}^{\infty} \frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}} dx} = c_{-1}\sigma\frac{-\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}\middle|_{\frac{\eta - r}{\sigma}}^{\infty}}{1 - \phi\left(\frac{\eta - r}{\sigma}\right)} = \frac{\frac{c_{-1}\sigma}{\sqrt{2\pi}}e^{-\frac{(\eta - r)^{2}}{2\sigma^{2}}}}{1 - \phi\left(\frac{\eta - r}{\sigma}\right)}.$$

4. First, similar to the last problem, we make the expression clear

$$\mathbb{E}[z_3|y_2 > \eta] = \mathbb{E}[\epsilon_3 + c_{-1}\epsilon_2|2r + \epsilon_1 + \epsilon_2 + c_{-1}\epsilon_1 > \eta] = c_{-1}\mathbb{E}[\epsilon_2|(1+c_{-1})\epsilon_1 + \epsilon_2 > \eta - 2r]$$

$$= c_{-1}\sigma\mathbb{E}\left[\mathcal{Z}_2\middle|(1+c_{-1})\mathcal{Z}_1 + \mathcal{Z}_2 > \frac{\eta - 2r}{\sigma}\right]$$

Recall that linear combination of normal is still normal. So we perform the Gram-Schmidt,

$$\begin{split} \widetilde{\mathcal{Z}}_2 &= \mathcal{Z}_2 - \frac{Cov((1+c_{-1})\mathcal{Z}_1 + \mathcal{Z}_2, \mathcal{Z}_2)}{Var((1+c_{-1})\mathcal{Z}_1 + \mathcal{Z}_2)}((1+c_{-1})\mathcal{Z}_1 + \mathcal{Z}_2) = \mathcal{Z}_2 - \frac{(1+c_{-1})\mathcal{Z}_1 + \mathcal{Z}_2}{1+(1+c_{-1})^2} \\ \Rightarrow \mathcal{Z}_2 &= \widetilde{\mathcal{Z}}_2 + \frac{(1+c_{-1})\mathcal{Z}_1 + \mathcal{Z}_2}{1+(1+c_{-1})^2}, \ \ \widetilde{\mathcal{Z}}_2 \perp \frac{(1+c_{-1})\mathcal{Z}_1 + \mathcal{Z}_2}{1+(1+c_{-1})^2} \end{split}$$

Note

$$\mathbb{E}[\mathcal{Z}_1] = \mathbb{E}[\mathcal{Z}_2] = 0 \Rightarrow \mathbb{E}[\widetilde{\mathcal{Z}}_2] = 0.$$

Therefore, we have

$$\begin{split} c_{-1}\sigma \mathbb{E}\left[\mathcal{Z}_{2} \middle| (1+c_{-1})\mathcal{Z}_{1} + \mathcal{Z}_{2} > \frac{\eta - 2r}{\sigma} \right] &= c_{-1}\sigma \mathbb{E}\left[\widetilde{\mathcal{Z}}_{2} + \frac{(1+c_{-1})\mathcal{Z}_{1} + \mathcal{Z}_{2}}{1 + (1+c_{-1})^{2}} \middle| (1+c_{-1})\mathcal{Z}_{1} + \mathcal{Z}_{2} > \frac{\eta - 2r}{\sigma} \right] \\ &= c_{-1}\sigma \mathbb{E}\left[\frac{(1+c_{-1})\mathcal{Z}_{1} + \mathcal{Z}_{2}}{1 + (1+c_{-1})^{2}} \middle| (1+c_{-1})\mathcal{Z}_{1} + \mathcal{Z}_{2} > \frac{\eta - 2r}{\sigma} \right] \\ &= \frac{c_{-1}\sigma}{\sqrt{1 + (1+c_{-1})^{2}}} \mathbb{E}\left[\mathcal{Z} \middle| \mathcal{Z} > \frac{\eta - 2r}{\sigma\sqrt{1 + (1+c_{-1})^{2}}} \right] \\ &= \frac{\frac{c_{-1}\sigma}{\sqrt{2\pi}}}{\sqrt{1 + (1+c_{-1})^{2}}} \frac{e^{-\frac{(\eta - 2r)^{2}}{2\sigma^{2}(1 + (1+c_{-1})^{2})}}}{1 - \phi\left(\frac{\eta - 2r}{\sigma\sqrt{1 + (1+c_{-1})^{2}}}\right)}. \end{split}$$

Problem 3 (Coding). Now consider we have a collection of log prices for different companies

$$y_{i,t} = r_i + y_{i,t-1} + c_0 \epsilon_{i,t} + c_{-1} \epsilon_{i,t} + \dots + c_{-p} \epsilon_{i,t-p}, \ i = 1, \dots, M,$$
(2)

whereas $y_{i,t}$ represent the log-price, $r_{i,t}$ represents the expected return, and $\epsilon_{i,t} \sim \mathcal{N}(0,\sigma_i^2)$ represents the impact from the news for the ith company and are independent from each other. We define the residual as $z_{i,t} = y_{i,t} - r_i - y_{i,t-1}$. For r_i and σ_i , you can randomly select values as long as they are positive. (As an example of demonstration, I used $r_i \sim \frac{0.05}{252}(1+\mathcal{N}(0,1))$ and $\sigma_i \sim \frac{0.05}{252} \cdot |\mathcal{N}(0,1)|$). Use the Monte Carlo simulation to generate a sequence of N (e.g., 10^4) log prices for M (e.g., 10^3) companies. Consider the event that the company keep receives the good news, that is given y_i , we find τ_i s.t. $y_{\tau_i} - y_0 > \eta$, whereas η is the threshold (e.g., $\log(2)$). We wish to estimate the impact of the news by calculating $w_k = \frac{\sum_{j|y_j,\tau_i>\eta} z_{j,k}}{\sum_{j|y_j,\tau_i>\eta} 1}$. Then we look at $v_l = \sum_{k=1}^l w_k$ to test the Markovian. For convenience, we can plot v_l from $\tau - m$ to $\tau + m$ (e.g., m = 10).

- 1. Use this model together with Monte Carlo simulation to generate a result that indicates the Markovian behavior. .
- 2. Use this model together with Monte Carlo simulation to generate a result that indicates the Non-Markovian behavior.

 Here is an example of what we should observe

