8. 에너지 부하 예측 실습

냉난방 부하 예측모델 개발

energy_efficiency_modeling.ipynb

건물 에너지 소비는 전체 에너지 사용의 약 40%를 차지합니다. 설계 단계에서 건물의 냉난방 부하를 예측하는 것은 에너지 효율화를 위해 매우 중요합니다. 건물 에너지 성능에 대한 데이터셋을 기반으로 건물의 냉난방 부하를 예측하기 위해 다양한 모델을 개발합니다.

Input

- Relative Compactness
- Surface Area m²
- Wall Area m²
- Roof Area m²
- Overall Height m
- Orientation 2:North, 3:East, 4:South, 5:West
- Glazing Area 0%, 10%, 25%, 40% (of floor area)
- Glazing Area Distribution (Variance)
 - 1:Uniform, 2:North, 3:East, 4:South, 5:West
- Heating Load kWh
- Cooling Load kWh

Output

- 난방부하
- 냉방부하


```
[1] import os
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')
[2] data = pd.read_csv('building_energy_efficiency.csv')
```

[3] data.head()

	Relative Compactness	Surface Area	Wall Area	Roof Area	Overall Height	Orientation	Glazing Area	Glazing Area Distribution	Heating Load	Cooling Load
0	0.7638	514.5	294.0	110.25	7.0	2	0.0	0	15.55	21.33
1	0.9800	514.5	294.0	110.25	7.0	3	0.0	0	15.55	21.33
2	0.9800	514.5	294.0	110.25	7.0	4	0.0	0	15.55	21.33
3	0.9800	514.5	294.0	110.25	7.0	5	0.0	0	15.55	21.33
4	0.9000	563.5	318.5	122.50	7.0	2	0.0	0	20.84	28.28

```
[4] data.shape
    (768, 10)
    data.isnull().sum()
[5]
    Relative Compactness
    Surface Area
    Wall Area
    Roof Area
    Overall Height
    Orientation
    Glazing Area
    Glazing Area Distribution
                                  0
    Heating Load
    Cooling Load
    dtype: int64
```

각 데이터의 분포 체크

[6] data.hist(bins=20, figsize=(20,15))
plt.show()

상관관계 분석

```
[7] import plotly.express as px

yprop = 'Surface Area'
xprop = 'Cooling Load'
h= None
px.scatter(data, x=xprop, y=yprop, color=h, marginal_y="violin", marginal_x="box", trendline="ols",
```


명확한 상관관계를 찾기위해 상관관계 행렬 확인

```
[9]
    import matplotlib.pyplot as plt
     import matplotlib.style as style
     import seaborn as sns
    style.use('ggplot')
    sns.set_style('whitegrid')
    plt.subplots(figsize = (12,7))
    ## Plotting heatmap. # Generate a mask for the upper triangle (taken from seabor
    mask = np.zeros_like(data.corr(), dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True
    sns.heatmap(data.corr(), cmap=sns.diverging_palette(20, 220, n=200), annot=True,
    plt.title("Heatmap of all the Features of Train data set", fontsize = 25);
```

Heatmap of all the Features of Train data set


```
[11] from scipy.stats import randint as sp_randint
     from catboost import CatBoostRegressor
     from sklearn.model_selection import GridSearchCV
     from keras. Layers import Dense
     from keras.models import Sequential
     from sklearn.tree import DecisionTreeRegressor
     from sklearn.neighbors import KNeighborsRegressor
     from sklearn.neural_network import MLPRegressor
     from sklearn.ensemble import GradientBoostingRegressor,AdaBoostRegressor
     from sklearn.ensemble import BaggingRegressor, RandomForestRegressor
     from sklearn.model selection import GridSearchCV
     from sklearn.model_selection import train_test_split
     from sklearn.multioutput import MultiOutputRegressor
     from sklearn.preprocessing import MinMaxScaler
     from sklearn.svm import SVC
     from sklearn.svm import SVR
     from sklearn.metrics import accuracy_score, f1_score
     from sklearn.metrics import r2_score
     from sklearn.metrics import roc auc score
```

- 데이터 세트를 훈련 및 테스트 세트로 분할.
- 특징 스케일링 또는 데이터 정규화는 데이터의 독립 변수
 또는 특징의 범위를 정규화하는 데 사용되는 방법입니다.
- 따라서 독립 변수에서 값이 많이 다를 때 모든 값이
 비교 가능한 범위에 유지되도록 특성 스케일링을 사용합니다.

모델링

각 모델의 결과를 저장할 DataFrame을 만듭니다.

```
[16] for mod in regressors:
         name = mod[0]
         model = mod[1]
         model.fit(X_train, y1_train)
         actr1 = r2_score(y1_train, model.predict(X_train))
         acte1 = r2_score(y1_test, model.predict(X_test))
         model.fit(X_train, y2_train)
         actr2 = r2_score(y2_train, model.predict(X_train))
         acte2 = r2_score(y2_test, model.predict(X_test))
         Acc = Acc.append(pd.Series({'model':name, 'train_Heating':actr1,
                                      'test_Heating':acte1,'train_Cooling':actr2,
                                      'test_Cooling':acte2}),ignore_index=True )
     Acc.sort_values(by='test_Cooling')
```

	model	train_Heating	test_Heating	train_Cooling	test_Cooling
4	MLPRegressor	0.865059	0.872689	0.815817	0.835746
0	SVR	0.930662	0.910593	0.892578	0.887385
2	KNeighborsRegressor	0.945989	0.904490	0.926869	0.888896
5	AdaBoostRegressor	0.958150	0.955481	0.943954	0.941024
1	DecisionTreeRegressor	1.000000	0.997228	1.000000	0.948199
3	Random Forest Regressor	0.999405	0.997419	0.995561	0.964753
6	Gradient Boosting Regressor	0.998173	0.997641	0.979423	0.976044

모델 파라미터 튜닝

- Boosting machine learning 알고리즘은 단순한 알고리즘보다 더 나은 정확도를 제공하기 때문에 많이 사용됩니다.
- 알고리즘의 성능은 하이퍼파라미터에 따라 다릅니다.
- 최적의 parameter는 더 높은 정확도를 달성하는 데 도움이 될 수 있습니다.
- 수동으로 hyper parameter를 찾는 것은 지루하고 계산 비용이 많이 듭니다.
- 하이퍼파라미터 튜닝의 자동화가 중요합니다.
- RandomSearch, GridSearchCV, Bayesian optimization은 하이퍼파라미터를 최적화하는 데 사용됩니다.

```
[17] param_grid = [{"learning_rate": [0.01, 0.02, 0.1],
                    "n_estimators":[150, 200, 250], "max_depth": [4, 5, 6],
                    "min_samples_split":[1, 2, 3], "min_samples_leaf":[2, 3],
                    "subsample":[1.0, 2.0]}]
     GBR = GradientBoostingRegressor()
     grid_search_GBR = GridSearchCV(GBR, param_grid, cv=10,
                                    scoring='neg mean squared error')
     grid_search_GBR.fit(X_train, y2_train)
     print("R-Squared::{}".format(grid search GBR.best score ))
     print("Best Hyperparameters::\frac{\pmat(grid_search_GBR.best_params_))
```

```
R-Squared::-1.0560518941222068

Best Hyperparameters::
{'learning_rate': 0.1, 'max_depth': 5, 'min_samples_leaf': 3, 'min_samples_split': 3,
```

A. Decision Tree Regressor parameters turning

```
[18] DTR = DecisionTreeRegressor()
     param_grid = {"criterion": ["mse", "mae"],"min_samples_split": [14, 15, 16, 17],
                    "max_depth": [5, 6, 7],"min_samples_leaf": [4, 5, 6],
                    "max leaf nodes": [29, 30, 31, 32],}
     grid_cv_DTR = GridSearchCV(DTR, param_grid, cv=5)
     grid_cv_DTR.fit(X_train,y2_train)
     print("R-Squared::{}".format(grid_cv_DTR.best_score_))
     print("Best Hyperparameters::\munithmn{}".format(grid_cv_DTR.best_params_))
     R-Squared::0.9599150110108299
     Best Hyperparameters::
     {'criterion': 'mse', 'max_depth': 6, 'max_leaf_nodes': 32, 'min_samples_leaf': 5
```

```
[19] DTR = DecisionTreeRegressor()
     param_grid = {"criterion": ["mse", "mae"], "min_samples_split": [14, 15, 16, 17],
                    "max_depth": [5, 6, 7],"min_samples_leaf": [4, 5, 6],
                    "max leaf nodes": [29. 30. 31. 32].}
     grid_cv_DTR = GridSearchCV(DTR, param_grid, cv=5)
     grid_cv_DTR.fit(X_train,y2_train)
     print("R-Squared::{}".format(grid_cv_DTR.best_score_))
     print("Best Hyperparameters::\munithmulter \mathbb{H}\) | format(grid_cv_DTR.best_params_))
     R-Squared::0.9598595926917322
     Best Hyperparameters::
     {'criterion': 'mse', 'max_depth': 6, 'max_leaf_nodes': 31, 'min_samples_leaf': 5
```

B. Tune Random Forests Parameters

```
[20] from sklearn.model selection import GridSearchCV
     param_grid = [\{'n_estimators': [350, 400, 450], 'max_features': [1, 2],
                     'max_depth': [85, 90, 95]}]
     RFR = RandomForestRegressor(n_jobs=-1)
     grid_search_RFR = GridSearchCV(RFR, param_grid, cv=10,
                                    scoring='neg_mean_squared_error')
     grid_search_RFR.fit(X_train, y2_train)
     print("R-Squared::{}".format(grid_search_RFR.best_score_))
     print("Best Hyperparameters::\n{}".format(grid_search_RFR.best_params_))
     R-Squared::-2.7105394110927175
     Best Hyperparameters::
     {'max_depth': 85, 'max_features': 1, 'n_estimators': 350}
```

R-Squaredon test dataset=0.9915616795439752

C. Gradient Boosting Regression - Hyperparameter Tuning

```
[22] GBR = GradientBoostingRegressor(learning rate=0.1,n estimators=250,
                                     max_depth=5, min_samples_split=3,
                                     min samples leaf=2, subsample=1.0)
    GBR.fit(X train,y1 train)
     print("R-Squared on train dataset={}".format(GBR.score(X test,y1 test)))
     GBR.fit(X_train,y2_train)
     print("R-Squaredon test dataset={}".format(GBR.score(X_test,y2_test)))
    R-Squared on train dataset=0.9986725708412564
```

D. CatBoostRegressor

```
[23]
                import warnings
                  warnings.filterwarnings("ignore")
                   from sklearn import datasets
                  from sklearn.model_selection import train_test_split
                  from sklearn.model_selection import GridSearchCV
                  from catboost import CatBoostRegressor
                  model CBR = CatBoostRegressor()
                  parameters = \{ 'depth' : [8, 10], 'iterations' : [10000], 'learning_rate' : [0.02, 0.03], 'l
                                                                      'border_count':[5],'random_state': [42, 45]}
                  grid = GridSearchCV(estimator=model_CBR, param_grid = parameters, cv = 2, n_jobs=-1)
                  grid.fit(X_train, y2_train)
                  print(" Results from Grid Search " )
                  print("\n The best estimator across ALL searched params:\n", grid.best_estimator_)
                  print("\n The best score across ALL searched params:\n", grid.best_score_)
                   print("\n The best parameters across ALL searched params:\n", grid.best_params_)
```

E. MLPRegressor

R-Squared on train dataset=0.9978104168656019

R-Squaredon test dataset=0.9905898640304825

```
[25] Acc1 = pd.DataFrame(index=None, columns=['model','train_Heating','test_Heating',
                                               'train Cooling','test Cooling'])
[26] regressors1 = [['DecisionTreeRegressor',
                     DecisionTreeRegressor(criterion= 'mse', max_depth= 6,
                                            max_leaf_nodes= 30, min_samples_leaf= 5,
                                            min_samples_split= 17)],
                   ['RandomForestRegressor',
                    RandomForestRegressor(n_estimators = 450, max_features = 1,
                                           max depth= 90, bootstrap= True)],
                   ['MLPRegressor',
                    MLPRegressor(hidden_layer_sizes = [180,100,20],activation = relu
                                 solver='lbfgs',max_iter = 10000,random_state = 0)],
                    ['GradientBoostingRegressor',
                    GradientBoostingRegressor(learning_rate=0.1,n_estimators=250,
                                               max_depth=5, min_samples_split=2,
                                               min_samples_leaf=3, subsample=1.0)]]
```

```
[27] for mod in regressors1:
         name = mod[0]
         model = mod[1]
         model.fit(X train,y1 train)
         actr1 = r2_score(y1_train, model.predict(X_train))
         acte1 = r2_score(y1_test, model.predict(X_test))
         model.fit(X train,y2 train)
         actr2 = r2_score(y2_train, model.predict(X_train))
         acte2 = r2_score(y2_test, model.predict(X_test))
         Acc1 = Acc1.append(pd.Series({'model':name, 'train_Heating':actr1,
                                        'test_Heating':acte1,'train_Cooling':actr2,
                                        'test_Cooling':acte2}),ignore_index=True )
     Acc1.sort values(by='test Cooling')
```

	model	train_Heating	test_Heating	train_Cooling	test_Cooling
0	DecisionTreeRegressor	0.994803	0.995168	0.967655	0.959112
1	Random Forest Regressor	0.998754	0.991773	0.996188	0.974144
2	MLPRegressor	0.999816	0.997810	0.999640	0.990590
3	Gradient Boosting Regressor	0.999735	0.998553	0.998988	0.991933

```
[30] x_ax = range(len(y1_test))
     plt.figure(figsize=(20,10))
     plt.subplot(2,1,1)
     plt.plot(x_ax, y1_test, label="Actual Heating")
     plt.plot(x_ax, y1_pred, label="Predicted Heating")
     plt.title("Heating test and predicted data")
     plt.xlabel('X-axis')
     plt.ylabel('Heating load (kW)')
     plt.legend(loc='best',fancybox=True, shadow=True)
     plt.grid(True)
     plt.subplot(2,1,2)
     plt.plot(x_ax, y2_test, label="Actual Cooling")
     plt.plot(x_ax, y2_pred, label="Predicted Cooling")
     plt.title("Coolong test and predicted data")
     plt.xlabel('X-axis')
     plt.ylabel('Cooling load (kW)')
     plt.legend(loc='best',fancybox=True, shadow=True)
     plt.grid(True)
```



```
[31] def AAD(y1_test, y1_pred):
         AAD = []
         for i in range(len(y1_pred)):
             AAD.append((y1\_pred[i] - y1\_test.values[i])/y1\_test.values[i]*100)
         return AAD
     x_ax = range(len(y1_test))
     plt.figure(figsize=(20,10))
     plt.subplot(2,1,1)
     plt.plot(x_ax, AAD(y1_test, y1_pred), label="Relative deviation obtained on Heating load")
     plt.title("Heating load")
     plt.xlabel('X-axis')
     plt.ylabel('Error (%)')
     plt.legend(loc='best',fancybox=True, shadow=True)
     plt.grid(True)
     plt.subplot(2,1,2)
     plt.plot(x_ax, AAD(y2_test, y2_pred), label="Relative deviation obtained on Cooling load")
     plt.title("Cooling load")
     plt.xlabel('X-axis')
     plt.ylabel('Error (%)')
     plt.legend(loc='best',fancybox=True, shadow=True)
     plt.grid(True)
```


에너지 사용량 예측모델 개발

energy_usage_prediction.ipynb

에너지 사용량 예측모델

에너지 사용량 예측은 건물 에너지 최적화에 필수적인 기본기능입니다.

에너지 사용량 예측

에너지 사용량 예측은 건물 에너지 최적화에 필수적인 기본기능입니다. 예측 모델은 대부분의 운영 최적화, 스케줄링에 필요하므로 다양한 분야에 활용이 가능합니다.

예측 모델 - RNN(Recurrent Neural Network)

순환신경망은 고정 길이 입력이 아닌 임의 길이를 가진 시퀀스를 다룰 수 있습니다. 순환신경망은 시계열데이터를 분석해서 미래값을 예측하고 문장, 오디오를 입력으로 받아 자동번역, 자연어처리에 유용합니다.

출처 : 도서, 핸즈온 머신러닝 2판

예측 모델 - LSTM(Long Short-Term Memory)

LSTM 네트워크는 장기적인 종속성을 학습할 수 있는 특수한 종류의 RNN입니다.
LSTM은 RNN과 동일하게 입력과 출력사이 신경망이 재귀하는 구조를 갖고 있습니다.
그러나 RNN은 재귀를 통한 정보전이 및 전파가 하나의 레이어로 제어되는 반면
LSTM은 Forget gate, Input gate, Output gate를 통한 정보전이 및 전파를 제어합니다.

예측 모델 - LSTM(Long Short-Term Memory)

■ LSTM 구조

$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

■ forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

■ input gate

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

■ output gate, hidden state(단기 상태)

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$h_t = o_t * \tanh\left(C_t\right)$$

예측 모델 - 성능측정

예측 모델의 성능 측정은 MSE를 사용하며, 함수로 학습을 진행하면서 지속적으로 측정을 합니다.

■ MSE(Mean Squared Error)

예측모델 개발 방법

예측모델 사용 방법

실습 데이터셋

■ 데이터 파일 : e_usage_train.csv, e_usage_test.csv

- 데이터 설명 : ABC 빌딩의 15분 전기에너지 사용량 데이터
- e_usage_train.csv: 모델 학습(Train) 데이터, 70,000개
- e_usage_test.csv : 모델 성능 테스트(Test) 데이터, 35,040개
- 빌딩의 전기에너지 검침 주기가 15분으로,
- 1시간에는 4개의 데이터, 하루에는 96개(4개x24시) 데이터,
- 1년 기간에는 35,040개(4개x24시x365일)의 데이터가 있습니다.

■ 데이터 컬럼명

■ b_name : 빌딩 이름

Idilie . 글이 어디 - : - - 데이디 스지 !

■ daq_time : 데이터 수집 시간

■ wday : 요일 구분

■ day_type : 일 구분

1 - 평일, 2 - 토요일, 3 - 일요일, 휴일

temp : 온도(°C)

■ rh: 상대습도(%)

b_name	daq_time	wday	day_type	hour	temp	rh	p_usage
ABC	2016-01-01 0:15	5	3	1	-2.5	99	229
ABC	2016-01-01 0:30	5	3	1	-2.5	99	231
ABC	2016-01-01 0:45	5	3	1	-2.5	99	231
ABC	2016-01-01 1:00	5	3	1	-3.1	100	226
ABC	2016-01-01 1:15	5	3	2	-3.1	100	229
ABC	2016-01-01 1:30	5	3	2	-3.1	100	223
ABC	2016-01-01 1:45	5	3	2	-3.1	100	233
ABC	2016-01-01 2:00	5	3	2	-3.1	100	234
ABC	2016-01-01 2:15	5	3	3	-3.1	100	230
ABC	2016-01-01 2:30	5	3	3	-3.1	100	228
ABC	2016-01-01 2:45	5	3	3	-3.1	100	224
ABC	2016-01-01 3:00	5	3	3	-2.9	100	226
ABC	2016-01-01 3:15	5	3	4	-2.9	100	234

시퀀스 데이터 구성방법

■ 싱글스텝

■ 멀티스텝

T-N

이전 15분 전력사용량, 온도, 습도 이력데이터 N개

다음 스텝의 15분 전력사용량 예측데이터 M개

T0 T+1 T+2

T-2

T-1

energy_usage_prediction.ipynb

Open in Colab

STEP 1. 라이브러리 import

```
[1] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

import tensorflow as tf
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, LSTM, Activation, Dropout
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
```

STEP 2. 시계열 데이터 처리 csv 파일에서 Train 데이터를 로드합니다.

```
[2] df = pd.read_csv('e_usage_train.csv', header = 0, delimiter = ',')
```

데이터를 확인합니다.

[3] df.head()

	b_name	daq_time	wday	day_type	hour	temp	rh	p_usage
0	ABC	2016-01-01 0:15	5	3	1	-2.5	99.0	229
1	ABC	2016-01-01 0:30	5	3	1	-2.5	99.0	231
2	ABC	2016-01-01 0:45	5	3	1	-2.5	99.0	231

데이터셋을 입력시퀀스데이터와 타깃데이터로 분리하는 함수입니다.

- 시계열 데이터를 시퀀스 데이터로 변환
- 입력데이터는 시퀀스이고, 출력은 고정크기의 벡터나 스칼라인 다대일(many-to-one) 구조로 데이터 변환

```
def split_multivariate_data(dataset, target, start_index, end_index, hist_data_slize, target_size, step, single_step=False):
    data = []
    labels = []
    start_index = start_index + hist_data_size
    if end index is None:
        end index = len(dataset) - target size
    for i in range(start index, end index):
        indices = range(i-hist_data_size, i, step)
        data.append(dataset[indices])
        if single step:
            labels.append(target[i+target_size])
        else:
            labels.append(target[i:i+target size])
    return np.array(data), np.array(labels)
```

입력시퀀스데이터, 타깃데이터, 예측데이터를 그래프에 출력하는 함수입니다.

```
def plot_series(series, y=None, y_pred=None, x_label="$t$", y_label="$x(t)$"):
[8]
        n steps = len(series)
        plt.plot(series, ".-")
        if y is not None:
             plt.plot(n_steps, y, "bx", markersize=10)
         if y_pred is not None:
             plt.plot(n steps, y pred, "ro")
        plt.grid(True)
         if x_label:
             plt.xlabel(x label, fontsize=16, rotation=90)
         if y label:
             plt.ylabel(y_label, fontsize=16, rotation=0)
```

전력사용량, 온도, 상대습도를 입력데이터(Feature)로 사용합니다.

```
[9] features = ['p_usage', 'temp', 'rh']
  features_data = df[features]
  features_data.index = df['daq_time']
  features_data.head()
```

	p_usage	temp	temp rh	
daq_time				
2016-01-01 0:15	229	-2.5	99.0	
2016-01-01 0:30	231	-2.5	99.0	
2016-01-01 0:45	231	-2.5	99.0	

시계열 데이터의 패턴을 확인합니다.

데이터셋의 피처(Feature)를 정규화(Scaling)합니다.

```
[12] TRAIN\_SPLIT = 60000
     HISTORY_DATA_SIZE = 20
     FUTURE\_TARGET = 0
     STEP = 1
[13] scaler = MinMaxScaler()
     dataset = scaler.fit_transform(dataset)
[14] dataset
     array([[0.43126177, 0.26245211, 0.98876404],
            [0.43502825, 0.26245211, 0.98876404],
            [0.43502825, 0.26245211, 0.98876404],
```

48

Train 데이터셋과 Validation 데이터셋을 만듭니다.

```
[15] X = dataset
     y = dataset[:,0]
     X_train, y_train = split_multivariate_data(X, y,
                                                 O, TRAIN SPLIT,
                                                 HISTORY DATA SIZE, FUTURE TARGET,
                                                 STEP, True)
     X_valid, y_valid = split_multivariate_data(X, y,
                                                 TRAIN_SPLIT, None,
                                                 HISTORY_DATA_SIZE, FUTURE_TARGET,
                                                 STEP, True)
```

split_multivariate_data 함수가 반환하는 내용입니다.

```
[16] print ('Single window of past history : {}'.format(X_train[0].shape))
                                                                            입력 데이터
                                                                            [[0.43126177 0.26245211 0.98876404]
       Single window of past history: (20, 3)
                                                                            [0.43502825 0.26245211 0.98876404]
                                                                             [0.43502825 0.26245211 0.98876404]
                                                                             [0.42561205 0.25095785 1.
                                                                             [0.43126177 0.25095785 1.
                                                                             [0.41996234 0.25095785 1.
[17] print ('입력 데이터')
                                                                             [0.43879473 0.25095785 1.
       print (X_train[0])
                                                                             [0.44067797 0.25095785 1.
                                                                             [0.43314501 0.25095785 1.
       print ('타겟 데이터')
                                                                             [0.42937853 0.25095785 1.
                                                                             [0.42184557 0.25095785 1.
       print (y_train[0])
                                                                             [0.42561205 0.25478927 1.
                                                                             [0.44067797 0.25478927 1.
                                                                             [0.43502825 0.25478927 1.
                                                                             [0.43126177 0.25478927 1.
                                                                             [0.42184557 0.24329502 1.
                                                                            [0.42561205 0.24329502 1.
                                                                            [0.42372881 0.24329502 1.
                                                                            [0.42937853 0.24329502 1.
                                                                            [0.42937853 0.23563218 1.
                                                                           타켓 데이터
                                                                           0.4331450094161958
```

```
[18] cols = 3
    fig, axes = plt.subplots(nrows=1, ncols=cols, sharey=True, figsize=(20, 5))
    for i in range(cols):
        plt.sca(axes[i])
        plot_series(X_train[i, :, 0], y_train[i])
    plt.show()
```


STEP 3. 딥러닝 모델 구현

데이터가 순차데이터(Sequence Data)인 시계열(Time Series) 이므로 다양한 길이의 순차데이터 처리에 적합한 RNN 기반의 LSTM 모델을 사용합니다.

```
[19] HIDDEN_SIZE = 10
    DROP_OUT = 0.3

model = Sequential()
model.add(LSTM(HIDDEN_SIZE, input_shape=[20, 3], return_sequences=False))
model.add(Dropout(DROP_OUT))
model.add(Dense(1))
```

모델 구성 확인

[20] model.summary() Model: "sequential" Layer (type) Output Shape Param # (None, 10) Istm (LSTM) 560 (None, 10) dropout (Dropout) dense (Dense) (None, 1) 11 Total params: 571 Trainable params: 571 Non-trainable params: 0

모델 컴파일

```
[22] model.compile(optimizer='adam', loss='mse')
```

모델 학습(Train) 조기종료, 체크포인트 설정

모델 학습(Train)

전력사용량 데이터는 일(Day) 단위 패턴이 있으므로 BATCH_SIZE를 96(15분*24시간=96)

```
Epoch 1/50
Epoch 1: val_loss improved from inf to 0.00067, saving model to best_model.h5
Epoch 2/50
Epoch 2: val_loss improved from 0.00067 to 0.00049, saving model to best_model.h5
Epoch 3/50
Epoch 3: val_loss improved from 0.00049 to 0.00043, saving model to best_model.h5
Epoch 4/50
Epoch 4: val_loss improved from 0.00043 to 0.00042, saving model to best_model.h5
Epoch 5/50
Epoch 5: val_loss improved from 0.00042 to 0.00037, saving model to best_model.h5
```

모델의 Training Loss와 Validation Loss를 출력하는 함수입니다.

```
[25] def plot learning curves(loss, val loss):
         plt.figure(figsize=(12, 5))
         plt.plot(np.arange(len(loss)) + 0.5, loss, "b.-", label="Training loss")
         plt.plot(np.arange(len(val_loss)) + 1, val_loss, "r.-", label="Validation loss")
         plt.axis([1, 10, 0, 0.05])
         plt.legend(fontsize=14)
         plt.xlabel("Epochs")
         plt.ylabel("Loss")
         plt.grid(True)
     plot learning curves(history.history["loss"], history.history["val loss"])
     plt.show()
```


[26] model.save('my_model.h5')

STEP 4. 딥러닝 모델 사용

csv 파일에서 Test 데이터를 로드합니다.

```
[27] df = pd.read_csv('e_usage_test.csv', header = 0, delimiter = ',')
```

데이터를 확인합니다.

```
[28] df.head()
```

	b_name	daq_time	wday	day_type	hour	temp	rh	p_usage
0	ABC	2018-01-01 0:15	1	3	1	-1.8	43	283
1	ABC	2018-01-01 0:30	1	3	1	-1.8	43	279

전력사용량, 온도, 상대습도를 입력데이터(Feature)로 사용합니다.

```
[31] features = ['p_usage', 'temp', 'rh']
    features_data = df[features]
    features_data.index = df['daq_time']
    dataset = features_data.values
```

데이터를 정규화(Scaling) 합니다.

```
[32] scaled_dataset = scaler.transform(dataset)
```

저장한 모델을 로드합니다.

```
[34] model = load_model('best_model.h5')
```

테스트 데이터셋으로 모델 성능을 평가합니다.

AI모델로 에너지 사용량을 예측합니다.

```
[36] for TIME_STEP in range(1000,1110):
         p_usage_hist = scaler.inverse_transform(X_test[TIME_STEP])
         p_usage_hist = p_usage_hist[:, 0]
         p_usage_real = dataset[TIME_STEP + HISTORY_DATA_SIZE][0]
         pred = model.predict(
             X_test[TIME_STEP].reshape(1, HISTORY_DATA_SIZE, -1))
         pred = pred[0][0]
         p_usage_pred = scaler.inverse_transform([[pred, 0, 0]])[0][0]
         error = abs(p_usage_pred - p_usage_real)
         error_rate = error/p_usage_real*100
```

```
fig, axes = plt.subplots(nrows=1, ncols=1, sharey=True, figsize=(10, 4))
plot_series(p_usage_hist, p_usage_real, p_usage_pred)
plt.show()

print(f'입력데이터 : {p_usage_hist}')
print(f'실제값 : {p_usage_real:.2f}')
print(f'예측값 : {p_usage_pred:.2f}')
print(f'오차 : {error:.2f}')
print(f'오차율 : {error_rate:.2f}%')
```


입력데이터 : [343, 345, 344, 335, 325, 339, 339, 345, 337, 337, 345, 338, 345, 341, 339, 343, 334, 341, 350, 336,]

실제값 : 336.00 예측값 : 338.46

오차 : 2.46

오차율 : 0.73%

AI 예측모델 - Further Study

https://github.com/rickiepark/handson-ml2/blob/master/15_processing_sequences_using_rnns_and_cnns.ipynb

Thank you