

Context-Aware Transfer Attacks for Object Detection

Zikui Cai, Xinxin Xie, Shasha Li, Mingjun Yin, Chengyu Song, Srikanth V. Krishnamurthy, Amit K. Roy-Chowdhury, M. Salman Asif

University of California, Riverside

Background

- Adversarial attacks
 - Most methods are developed for classification
 - Attacking object detectors is more challenging

[1] An imperceptible perturbation can fool a classifier

[2] Different types of attacks on object detectors

^[1] Goodfellow et al. 2015. Explaining and Harnessing Adversarial Examples. ICLR.

^[2] Chow et al. 2020. TOG: Targeted Adversarial Objectness Gradient Attacks on Real-time Object Detection Systems. IEEE TPS.

Background

- Black-box attack approaches
 - Query-based
 - Transfer-based

[1] Without access to internal parameters, blackbox attacks are more practical yet challenging

Background

- Contexts in computer vision
 - Context for visual recognition
 - Context-awareness of object detectors

[1] It is difficult to recognize 'kettle' without its surroundings

[2] Context-awareness in object detection

^[1] Galleguillos et al. 2010. Context based object categorization: A critical survey. CVIU.

^[2] Li et al. 2020. Connecting the Dots: Detecting Adversarial Perturbations Using Context Inconsistency. ECCV.

Quick overview and key ideas

 $Image \ I \in D$

Quick overview and key ideas

Goal is to misclassify the victim object to a target label

Quick overview and key ideas

- Goal is to misclassify the victim object to a target label
- To do so, we perturb both the victim object and the "context" associated with the victim object

Quick overview and key ideas

- Goal is to misclassify the victim object to a target label
- To do so, we perturb both the victim object and the "context" associated with the victim object
- We keep adding helper objects to enhance the context if necessary

Context Modeling

Context Modeling

A. Co-occurrence graph: models co-occurrence probability of each pair of instances in images

Context Modeling

- A. Co-occurrence graph: models co-occurrence probability of each pair of instances in images
- B. Distance graph: models conditional distance distribution of objects

Context Modeling

- A. Co-occurrence graph: models co-occurrence probability of each pair of instances in images
- B. Distance graph: models conditional distance distribution of objects
- C. Size graph: models the conditional distribution of heights and widths of objects

Adversarial perturbation generation

- A diverse set of object detectors (one-stage, two-stages, anchor-free, transformer-based)
 - one-stage, two-stages for perturbation machine, all four types for victim models
- Can work with different types of attack methods (variants of I-FGSM)

Repeat the attack process for a few iterations until success or run out of budget

Adversarial perturbation generation

- A diverse set of object detectors (one-stage, two-stages, anchor-free, transformer-based)
 - one-stage, two-stages for perturbation machine, all four types for victim models
- Can work with different types of attack methods (variants of I-FGSM)

Repeat the attack process for a few iterations until success or run out of budget

Adversarial perturbation generation

- A diverse set of object detectors (one-stage, two-stages, anchor-free, transformer-based)
 - one-stage, two-stages for perturbation machine, all four types for victim models
- Can work with different types of attack methods (variants of I-FGSM)

Attack Method Perturbation machine as a surrogate model to generate perturbed image Perturbation Machine Image I Attack Plan O' Perturbation Machine Faster R-CNN YOLOv3 Perturbed Image I' YOLOv3

Experimental setup

- Attack type:
 - Mis-categorization attacks at different perturbation levels ($L_{\infty} \le \{10,20,30\}$)
- Datasets:
 - PASCAL VOC and MS COCO
 - \circ Evaluated using 500 images that contain multiple (2-6) objects for each dataset
- Object detection models:
 - Surrogate model: Use an ensemble of Faster R-CNN and YOLOv3
 - Victim models: different two-stage, one-stage, anchor-free, and transformer-based detectors
- Comparisons:
 - Baseline is where no helper object is added
 - Random is where the helper objects are added in a randomized fashion (mismatched context)
- Evaluation metric:
 - Use attack success rate (or fooling rate) to evaluate the adversarial attack performance on any victim object detector

Experimental results

- Mis-categorization fooling rate at different perturbation levels
- Tested on different benchmark datasets and used a large variety of object detectors
- Our approach performs significantly better than context-agnostic and mismatched context approaches

Perturbation Budget	Method	Whitebox		Blackbox					
		FRCNN	YOLOv3	Retina	Libra	Fovea	Free	DETR	D-DETR
Results on PASCAL VOC									
$L_{\infty} \le 10$	Baseline	40.0	53.8	13.8	9.2	22.2	27.4	9.6	23.2
	Random	52.4	69.2	19.4	17.4	31.6	37.8	17.4	36.8
	Ours	55.8	75.6	22.6	20.4	33.6	39.2	20.2	39.2
$L_{\infty} \le 20$	Baseline	65.2	67.8	24.0	21.4	34.4	41.8	14.4	37.6
	Random	74.4	83.8	31.0	29.6	46.2	54.4	28.0	52.6
	Ours	78.6	87.2	35.2	38.4	51.6	56.6	34.0	58.4
$L_{\infty} \le 30$	Baseline	70.6	70.4	29.8	28.6	41.6	48.0	20.4	38.6
	Random	79.2	82.6	37.8	36.8	53.4	59.8	34.4	52.8
	Ours	80.6	88.0	42.0	44.2	56.8	63.6	40.2	59.0
Results on MS COCO									
$L_{\infty} \le 10$	Baseline	29.0	32.2	7.4	4.8	11.6	16.6	3.4	19.0
	Random	40.2	48.4	11.2	8.0	14.6	20.0	6.2	23.6
	Ours	41.2	54.4	12.0	11.2	18.6	25.0	10.8	27.8
$L_{\infty} \le 20$	Baseline	51.8	49.2	13.4	11.8	22.0	28.6	8.8	26.8
	Random	60.6	66.4	20.6	18.8	31.4	37.2	20.2	39.2
	Ours	64.4	70.0	20.8	22.2	35.4	40.8	20.0	43.2
$L_{\infty} \le 30$	Baseline	57.6	54.4	18.2	15.4	25.6	34.8	8.0	28.8
	Random	65.8	73.6	23.8	21.8	34.8	47.8	18.4	42.0
	Ours	68.6	75.4	27.2	27.2	39.2	46.2	21.2	48.6

Observations on fooling rate w.r.t. # of helper objects

- Mis-categorization fooling rate at perturbation level L_m ≤ 20
- Dot legends are white-box models in surrogate, square legends are black-box models
- Fooling rate increases with the number of helper objects and plateaus at around #5.

Context graphs of different datasets

- Co-occurrence matrices for VOC and COCO for 20 object categories that are common in both datasets
- The average Pearson correlation of each corresponding row of VOC matrix and COCO matrix is 0.90
- Strong positive correlation between co-occurrence relationships encoded by different context graphs

Examples where baseline attack fails but context-aware method succeeds by introducing helper objects in the attack

Victim

 Examples where baseline attack fails but context-aware method succeeds by introducing helper objects in the attack

 Examples where baseline attack fails but context-aware method succeeds by introducing helper objects in the attack

 Examples where baseline attack fails but context-aware method succeeds by introducing helper objects in the attack

Summary

- Our context-aware adversarial attack method exploits rich object co-occurrence relationships plus location and size information;
- Our method can effectively improve mis-categorization attack fooling rate against a large variety of blackbox object detectors;
- The attack performance significantly improves and gradually plateaus as we add around 5 helper objects;
- The contextual relationships modeled by our method holds true in different datasets within natural image domain, making our methods applicable to a wide range of datasets.

Acknowledgements: DARPA under Agreement No. HR00112090096.

More information: Zikui Cai (<u>zcaio32@ucr.edu</u>), M. Salman Asif (<u>sasif@ucr.edu</u>)

Code

https://github.com/CSIPlab/context-aware-attacks

Thank you!

Stay safe and healthy!