Actividades de la unidad IV

1) Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ un endomorfismo cuya matriz asociada es

$$A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$$

Determina si los vectores $u = {2 \choose 1}$ y $v = {3 \choose 2}$ son vectores propios de A.

En caso afirmativo halla el valor propio asociado.

- 2) Determine todos los valores propios y vectores propios de los siguientes endomorfismos:
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(a,b) = (2a 3b, 3a + b)
 - b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por T(x, y, z) = (3y z, 3x z, 3x y)
 - c) $F: P_3 \rightarrow P_3$ tal que

$$F(a_3x^3 + a_2x^2 + a_1x^1 + a_0) = 3a_3x^2 + 2a_2x + a_1$$

donde P_3 es el espacio de los polinomios de grado menor o igual que 3, con coeficientes reales y en la variable x.

d) $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$T(x, y, z) = (-x - 3z, 3x + 2y + 3z, -3x - z)$$

e) $G: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$G(x, y, z) = (x + y + z, 2y + z, 2y + 3z)$$

- 3) Si λ es un valor propio de un endomorfismo f, demuestre que λ^k es un valor propio de f^k para cualquiera que sea $k \in \mathbb{Z}^+$.
- 4) Sean las matrices:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} , B = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix} , C = \begin{pmatrix} -2 & 0 & 0 \\ 3 & 2 & 3 \\ 4 & -1 & 6 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix} , E = \begin{pmatrix} 10 & 0 & 2 \\ 0 & 6 & 0 \\ 2 & 0 & 7 \end{pmatrix} , G = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

$$F = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} , M = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix} , N = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}$$