

INCOME DETERMINANTS

EVER WONDERED WHAT INFLUENCES YOUR SALARY?

SC20 Group 6

RYAN NG . TEG SINGH TIWANA . AUGUSTINE LEE

Exploratory Data

Feature

Machine Learning

Data Insights

Problem

Formulation

Data Cleaning

<u>MOTIVATION</u>

- Regardless of fresh graduate or experienced hire, one key consideration when taking up a new job is:

 To answer this question, we need to understand what are the key factors affecting one's salary.

PROBLEM FORMULATION

- What are the most important factors affecting one's salary?
- Can we build a classification model to help in predicting an income range for a job-seeker?

Data Cleaning

Exploratory Data Analysis Feature Engineering

Machine Learning

Data Insights

<u>DATASET</u>

Annual Social and Economic Supplements,

Current Population Survey 2021

1. Filtering Dataset

	PERIDNUM	PH_SEQ	P_SEQ	A_LINENO	PF_SEQ	PHF_SEQ	OED_TYP1	OED_TYP2	OED_TYP3	PERRP	 I_DISVL1	I_DISVL2	I_SURV
0	8238946011902051101101	1	1	1	1	1	0	0	0	40	 0	0	
1	8238946011902051101102	1	2	2	1	1	0	0	0	42	 0	0	
2	8238946011902051101103	1	3	3	1	1	0	0	0	50	 0	0	
3	6092052593105071201101	2	1	1	1	1	0	0	0	40	 0	0	
4	6092052593105071201102	2	2	2	1	1	0	0	0	42	 0	0	
								****			 ***		
163538	0105117401643341311101	90757	1	1	1	1	0	0	0	41	 0	0	
163539	1107604140345131311101	90758	1	1	1	1	0	0	0	40	 0	0	
163540	1107604140345131311102	90758	2	2	1	1	0	0	0	42	 0	0	
163541	9516061708016151311101	90759	1	1	1	1	0	0	0	40	 0	0	
163542	9516061708016151311102	90759	2	2	1	1	0	0	0	45	 0	0	
163543 r	63543 rows x 830 columns												

- 830 Columns Columns split into 10 sub-groups:
 - (1) Record Identifiers, (2) Weights, (3) Demographics, (4) Basic CPS Items, (5) Work Experience, (6) Income, (7) Poverty, (8) Health Insurance, (9) Supplemental Poverty Measure, (10) Migration
- Assumption made: Only features in Demographics, Basic CPS Items,
 Work Experience and Income are relevant to us.
- Also removed those who are not working & not receiving pay.

2. Check for Missing or Null Values

3. Numerical Encoding of Salary variable

- Split salary into 4 classes based on quartiles:

```
Class 4: top 25%
Class 3: 25-50% percentile (inclusive of 25)
```

Class 3: 25-30% percentile (inclusive of 25)
Class 2: 50-75% percentile (inclusive of 50)
Class 1: 75-100% percentile (inclusive of 75)

- Target classes well balanced

4. Split into Train and Test Datasets

To better understand our data, we conducted:

- 1. Single-Variate Analysis to understand our features
- 2. **Bi-Variate Analysis** to understand possible relationship of our features with salary
- 3. Multi-Variate Analysis to understand possible trends between features.

<u>Single-Variate Analysis</u>

Some interesting insights:

Most respondents work 40 hours weekly

Most respondents aged between 20 to 64 years old

Most respondents are Bachelor Degree (43) holder or High School Graduate (39).

Problem Data Cleaning Exploratory Data Feature Machine Learning Data Insights
Formulation Analysis Engineering

<u>Bi-Variate Analysis</u>

Males generally earn more than females

People who are older tend to earn more

Problem Data Cleaning Exploratory Data Feature Machine Learning Data Insights

Formulation Analysis Engineering

Bi-Variate Analysis

Occupation Group	Average Income Class
Management, Business & Financial Occupations (1)	3.13
Professional & Related Occupations (2)	2.91
Installation, Maintenance & Repair Occupations (8)	2.64
Construction and Extraction Occupations (7)	2.39
Sales & Related Occupations (4)	2.27
Production Occupations (9)	2.27
Office & Administrative Support (5)	2.15
Transportation & Material Moving Occupations (10)	2.03
Farming, Fishing & Forestry Occupations	1.83
Service Occupations (3)	1.74

Work Class	Average Income Class
Government - Federal (2)	3.1
Self-Employed - Incorporated (5)	2.86
Government - State (3)	2.6
Government - Local (4)	2.6
Private (1)	2.44
Self-Employed - Unincorporated (9)	1.83

Multi-Variate Analysis

For the same education level, males (1) generally earn more

For the same education level, those with professional certificates (1) tend to earn more

<u>Multi-Variate Analysis</u>

For the same education level, those with disability (1) generally earn less

Jobs relating to Farming, Fishing and Forestry (6) work the longest hours to earn the same income class

1. MinMax Scaling of Numerical Variables

Aim: To improve performance that are more sensitive to scaling: SVM,
 KNN & MLP

Before Scaling

	Age	Last Week Working Hrs	HrsWeek
0	23	60	45
1	39	60	40
2	19	15	20
3	50	0	30
4	33	0	50
51190	33	40	40
51191	61	30	30
51192	71	8	8
51193	32	80	40
51194	35	60	60

After Scaling

86-	Age	Last Week Working Hrs	HrsWeek
0	0.114286	0.606061	0.448980
1	0.342857	0.606061	0.397959
2	0.057143	0.151515	0.193878
3	0.500000	0.000000	0.295918
4	0.257143	0.000000	0.500000
	1222	1.22	222
51190	0.257143	0.404040	0.397959
51191	0.657143	0.303030	0.295918
51192	0.800000	0.080808	0.071429
51193	0.242857	0.808081	0.397959
51194	0.285714	0.606061	0.602041
51195	rows × 3 c	olumns	

2. Mutual Information

- ** Only done on train data to avoid information leakage
- Aim: To understand categorical features' dependence with response variable.
- Features importance:

Occupation: 0.24866995116471946 Less than 35hrs for at least 1 week: 0.12424925709839307 Education: 0.12226432297143175 Occupation Group: 0.11867100557438492 Longest Industry: 0.09586694680866259 More than 35hrs weekly: 0.09258318088114459 Detailed Household Status: 0.06453934691995089 Industry: 0.06328110854554314 Marital: 0.04849125955930278 Cert Need: 0.022669510478366295 WorkClass: 0.02245016757791296 Pro Cert: 0.021712109572769478 Gov Cert: 0.019880597732325977 Sex: 0.019349025035164225 Longest Job Class: 0.018499135976110637 Veteran: 0.013760484296965636 Citizenship: 0.0124466283204554 Race: 0.012352572246313809 Disability: 0.006655613588452347

- ** Only done on train data to avoid information leakage
- Aim: To corroborate MI's findings by also understanding categorical features' dependence with response variable.
- P-Score of features:

```
Disability: 0.4537402007277509
Veteran: 0.22151875612092423
Race: 1.2228736395956913e-06
Longest Job Class: 3.427751770507403e-13
Industry: 4.984059473715531e-33
Pro Cert: 4.0002841568913574e-44
Citizenship: 9.7997660792459e-62
WorkClass: 3.9272609846339284e-65
Sex: 1.1820928452009293e-68
Longest Industry: 3.873866133204988e-134
Education: 0.0
Marital: 0.0
Gov Cert: 0.0
Cert Need: 0.0
Less than 35hrs for at least 1 week: 0.0
Detailed Household Status: 0.0
More than 35hrs weekly: 0.0
Occupation Group: 0.0
Occupation: 0.0
```

Findings from MI & Chi-2

- From both MI and Chi-2, disability status has the least dependence with salary.

information leakage

- Disability status and veteran status P Scores significantly higher than others → least dependent with salary.
- However, features' P scores all below 0.05 → significant dependence with salary.
- We decided to remove disability status and veteran status but we recognise that this dimension reduction may not improve our model performance.

What are the most important factors affecting one's salary?

Can we build a

classification model

to help in predicting
an income range for a

job-seeker?

How much salary should I expect?

Am I being underpaid?

Feature

Exploratory Data

GradientBoostedMachine(GBM))

Problem

Support Vector Machines (SVMs)

1) Initial tests with **regular** dataset & default parameters on various kernels

Radial Basis Function

F1 (RBF Kernel): 0.174888

Polynomial

F1 (Polynomial Kernel): 0.259292

Sigmoid

F1 (Sigmoid Kernel): 0.280103

Support Vector Machines (SVMs)

2) Initial tests with **feature engineered** dataset & default parameters on various kernels

Radial Basis Function

Polynomial

Sigmoid

F1 (RBF Kernel): 0.400765

F1 (Polynomial Kernel): 0.204022

F1 (Sigmoid Kernel): 0.286146

1) Initial tests with <u>regular</u> dataset & default parameters (max_iter = 100000) on various solvers

lbfgs

sag

saga

liblinear

F1 (lbfgs solver): 0.511295

F1 (sag solver): 0.498697

F1 (saga solver): 0.490747

F1 (liblinear solver): 0.502402

Train

Test

2. Logistic Regression

2) Initial tests with <u>feature-engineered</u> dataset & default parameters (max_iter = 100000) on various solvers

lbfgs

sag

saga

liblinear

F1 (lbfgs solver): 0.501104

F1 (sag solver): 0.488158

F1 (saga solver): 0.479224

F1 (liblinear solver): 0.498409

- 3) Hyperparameter tuning
 - Changes to max_iter appear to have no effect, so long as large enough
 - Newton-CG will be omitted
 - RandomizedSearchCV used

RandomizedSearchCV	Best Parameters				
cv value	solver	penalty	С	Score	
2	liblinear	l1	10	0.514015	
3	liblinear	l1	1	0.513038	
4	liblinear	l1	10	0.513820	

- 3) Hyperparameter tuning
 - RandomizedSearchCV used

RandomizedSearchCV	Best Parameters				
cv value	solver	penalty	С	Score	
2	liblinear	l1	10	0.514015	
3	liblinear	l1	1	0.513038	
4	liblinear	l1	10	0.513820	

- Run a for loop with C values 1 to 99 (random_state = 42) to determine the optimal C value

- 3) Hyperparameter tuning
 - Results, optimal parameters and best F1-score:

Solver	liblinear
Penalty	l1
С	3
F1-score	0.512655

Problem

Formulation

1) Initial tests with default parameters on regular and feature engineered datasets

F1 (K nearest neighbours): 0.497063

Feature Engineered

F1 (K nearest neighbours): 0.491893

3. K-nearest Neighbors

- 2) Hyperparameter tuning
 - Changes to leaf_size values appear to have no effect on F1-score
 - Only n neighbors parameter will be tested
 - Done on regular dataset
 - Run a for loop with n_neighbors values between
 1 and 199 to determine optimal n neighbors value

3. K-nearest Neighbors

- 2) Hyperparameter tuning
 - Results, optimal parameters and best F1-score:

4. Decision Trees

1) Initial tests with default parameters on **regular** dataset

Regular Dataset

F1 (Dec. Tree): 0.47628

4. Decision Trees

- 2) Hyperparameter tuning
 - Changes to max_depth values of the trees
 - Optimal max-depth found: range(7,13)
 - Done on regular dataset through cross-validation with GridSearchCV

4. Decision Trees

- 2) Hyperparameter tuning Results
 - Results, optimal parameters and best F1-score:

Problem

Formulation

5. Adaptive Boosting(AdaBoost)

 Initial tests with default parameters on <u>regular and feature engineered</u> datasets

Regular

F1 (Ada): 0.56464

Feature Engineered

F1 (Ada): 0.56271

Problem

- 2) Hyperparameter tuning
 - Changes to n_estimators values & learning_rate
 - Optimal Parameter Ranges
 - n estimators found: range(400,1050)
 - learning rate found: range(0.01,1.25)
 - Done on regular dataset through cross-validation with RandomSearchCV

5. Adaptive Boosting(AdaBoost)

- 2) Hyperparameter tuning
 - Results, optimal parameters and best F1-score:

Regular			
n_estimators	1000		
learning_rate	0.86765		
F1-score	0.56669		

Data Insights

6.1) Gradient Boosting(GBM)

Problem

Formulation

1) Initial tests with default parameters on **regular and feature engineered** datasets

Regular

F1 (GBM): 0.57255

Feature Engineered

F1 (GBM): 0.57231

6.1) Gradient Boosting(GBM)

- 2) Hyperparameter tuning
 - Changes to n_estimators values, subsample, max_depth& learning_rate
 - Optimal
 - n_estimators: range(400,1050)
 - learning rate: range(0.01,0.20)
 - subsample: range(0.<u>6, 0.95)</u>
 - max depth: range(3,8)
 - Done on regular dataset through cross-validation with RandomSearchCV

6.1) Gradient Boosting(GBM)

- 2) Hyperparameter tuning
 - Results, optimal parameters and best F1-score:

Regular			
n_estimators	450		
learning_rate	0.02583		
subsample	0.65		
depth	6		
F1-score	0.5783		

Feature-Engineered			
F1-score		0.5767	

6.2) CatBoost

1) Initial tests with default parameters on <u>regular and feature engineered</u> datasets

Regular

F1 (CB): 0.57006

Feature Engineered

F1 (CB): 0.56786

6.2) CatBoost

- 2) Hyperparameter tuning
 - Changes to iterations value, depth & learning_rate
 - Optimal
 - iterations: range(450,1050)
 - learning rate: range(0.01,0.19)
 - depth: range(4,7)
 - Done on regular dataset through cross-validation with RandomSearchCV

6.2) CatBoost

- 2) Hyperparameter tuning
 - Results, optimal parameters and best F1-score:

Regular			
iterations	1000		
learning_rate	0.1149		
depth	4		
F1-score	0.57596		

Feature-Engineered			
F1-score		0.57577	

6.3) XGBoost

1) Initial tests with default parameters on <u>regular and feature engineered</u> datasets

Regular

Feature Engineered

F1 (XG): 0.57372

F1 (XG): 0.57609

6.3) XGBoost

- 2) Hyperparameter tuning
 - Changes to n_estimators values, subsample, max_depth& learning_rate
 - Optimal ranges
 - n estimators: range(300, 500)
 - subsample: range(0.6, 0.8)
 - max depth: range(2, 6)
 - Done on regular dataset through cross-validation with GridSearchCV

6.2) XGBoost

- 2) Hyperparameter tuning
 - Results, optimal parameters and best F1-score:

Train

Test

Regular			
n_estimators	450		
learning_rate	0.02583		
subsample	0.65		
depth	6		
F1-score	0.57214		

Exploratory Data

Feature

Machine Learning

Data Insights

Problem

Data Cleaning

Prob Formul	Data (Loaning	Exploratory Data Analysis	Feature Engineering	Machine Learning	Data Insights
ML Outcomes					
Rank	Name	F1-Score (Test)	Model Fit	Important Fe	atures
1	XGBoost	0.57609	Good Fit	Marital Status Hours, Age	, Working
2	CatBoost	0.57596	Good Fit	Industry, Educa Citizen Status	ation level,
3	Gradient Boosting	0.57836	Over-Fitted	Occupation, Wo	
4	Adaptive Boosting	0.56669	Good Fit	Industry, Occu	pation, Age
5	Decision Trees	0.53561	Good Fit	Industry, Age,	Occupation
6	Logistic Regression	0.51265	Good Fit	Pro_cert, Cert	_Need, Sex
7	K-Nearest Neighbor	0.51264	Good Fit	NA	
8	Support Vector Machines (SVMs)	0.40077	Over-Fitted	NA	

Problem Data Cleaning Exploratory Data Feature Machine Learning Data Insights

ML Outcomes

Train

Test

XGBoost

CatBoost

Problem Data Cleaning Exploratory Data Feature Machine Learning Data Insights

Formulation Analysis Engineering

ML Outcomes

"CatBoost":
Industry, Education
level, Citizen Status

"XGBoost": Marital Status, Working Hours, Age

Overall Insights and Observations

What are the most important factors affecting one's salary?

Can we build a
classification model
to help in predicting
an income range for a
job-seeker?

How much salary should I expect?
Am I being underpaid?

Rank	Name	F1-Score (Test)	Model Fit	Important Features
1	XGBoost	0.57609	Good Fit	Marital Status, Working Hours, Age
2	CatBoost	0.57596	Good Fit	Industry, Education level, Citizen Status
3	Gradient Boosting	0.57836	Over-Fitted	Occupation, Working Hours, Education level

Salary can be affected by non-quantifiable data:

- Connections
- EQ
- Negotiation skills
- Individual interview & presentation performance
- Company's budget availability
- Compensation methods
 - Stock options
 - Housing
 - Education

Exploratory Data

Analysis

GitHub Link:

Data Cleaning

Problem

Formulation

Youtube Link:

https://www.youtube.com/watch?v= **Dvs-F70_L8Q**

Feature

Engineering

Special Thanks to Dr. Sourav & TA Zhou Shaowen for their guidance throughout this project.

Slide Template From:

slides go

Data Insights

<u>proj</u>

https://github.com/auglxw/SC1015

Machine Learning