Scan Conversion

Rasterization of Primitives

- How to draw primitives?
 - Convert from geometric definition to pixels
 - rasterization = selecting the pixels
- Will be done frequently
 - must be fast:
 - use integer arithmetic
 - use addition instead of multiplication

Rasterization Algorithms

- Algorithmic:
 - Line-drawing: Bresenham, 1965
 - Polygons: uses line-drawing
 - Circles: Bresenham, 1977
- Currently implemented in αll graphics libraries
 - You'll probably never have to implement them yourself

Why should I know them?

- Excellent example of efficiency:
 - no superfluous computations
- Possible extensions:
 - efficient drawing of parabolas, hyperbolas
- Applications to similar areas:
 - robot movement

Point plotting

- Application program furnish the co-ordinates.
- If the co-ordinates are real no's, they are rounded off to nearest integer, as device co-ordinates support only integer co-ordinates.

Line Scan Conversion

Line Plotting

- Two end points (co-ordinates) are specified
- Intermediate positions between end points are calculated (using line eqn)
- The intermediate and end points are plotted
- Pixel level color management to draw line on color CRT

Scan Conversion Problem of Lines

 A line segment in a scene is defined by the coordinate positions of the line end-points

The Problem (cont...)

• But what happens when we try to draw this on a pixel based display?

How do we choose which pixels to turn on?

Line Plotting

- jaggies
 - Screen location have integer values
 - If all the points on a line have integer co-ordinate, no problem
 - Rarely the case
 - In practice, non integer co-ordinates are approximated to integer co-ordinates (e.g. [10.48, 20.51] \rightarrow [10, 20])
 - Such approximation makes the line displayed with a stairstep appearance, called "jaggies"
- Jaggies reduce with increase in resolution

Jaggies

Considerations

- Considerations to keep in mind:
 - The line has to look good
 - Avoid jaggies
 - It has to be lightening fast!
 - How many lines need to be drawn in a typical scene?
 - This is going to come back to bite us again and again

Line Equations

Let's quickly review the equations involved in drawing lines

Slope-intercept line equation:

$$y = m \cdot x + b$$

• where:

$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$

$$b = y_0 - m \cdot x_0$$

Lines & Slopes

- The slope of a line (m) is defined by its start and end coordinates
- The diagram below shows some examples of lines and their

A Very Simple Solution

- We could simply work out the corresponding y coordinate for each unit x coordinate
- Let's consider the following example:

A Very Simple Solution (cont...)

First work out m and b:

$$m = \frac{5-2}{7-2} = \frac{3}{5}$$

$$b = 2 - \frac{3}{5} * 2 = \frac{4}{5}$$

Now for each x value work out the y value:

$$y(3) = \frac{3}{5} \cdot 3 + \frac{4}{5} = 2\frac{3}{5}$$
 $y(4)$

$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5}$$

$$y(4) = \frac{3}{5} \cdot 4 + \frac{4}{5} = 3\frac{1}{5}$$

$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5}$$
 $y(6) = \frac{3}{5} \cdot 6 + \frac{4}{5} = 4\frac{2}{5}$

A Very Simple Solution (cont...)

 Now just round off the results and turn on these pixels to draw our line

$$y(3) = 2\frac{3}{5} \approx 3$$
$$y(4) = 3\frac{1}{5} \approx 3$$
$$y(5) = 3\frac{4}{5} \approx 4$$
$$y(6) = 4\frac{2}{5} \approx 4$$

A Very Simple Solution (cont...)

- However, this approach is just way too slow
- In particular look out for:
 - The equation y = mx + b requires the multiplication of m by x
 - Rounding off the resulting y coordinates
- We need a faster solution