Co je správně?

- Jeden bit má osm bajtů.
- Jeden bajt má osm bitů.
- Jeden bajt je složen ze dvou nebo čtyř slov.

Nejmenší adresovatelná jednotka paměti je

- kapacita místa v paměti, které má vlastní adresu.
- · nejmenší hodnota adresy v paměti.
- nejmenší číslo, které lze do paměti uložit.

Nejmenší adresovatelná jednotka paměti typicky je

- 1 bit
- 8 bitů
- 16 bitů

1 KB je

- 1000 B
- 1048 b
- 1024 B

2¹⁰ bajtů je

- 1 KB
- 128 KB
- 512 KB
- 1 MB

2¹⁶ bajtů je

- 24 KB
- 32 KB
- 64 KB
- 128 KB

2²⁰ bajtů je

- 256 KB
- 512 KB
- 1 MB
- 2 MB
- 4 MB

2³² bajtů je

- 2 MB
- 4 MB
- 1 GB
- 2 GB
- 4 GB

Adresový registr obsahuje 4 bity. Kolik je schopen namapovat (zaadresovat) adres?

- 4
- 8
- 10
- · 16
- 20

Paměť o maximální kapacitě 1 M adresovatelných míst musí mít adresovací sběrnici širokou právě

- 32 bitů
- 21 bitů
- 20 bitů
- 30 bitů

Paměť o maximální kapacitě 1 G adresovatelných míst musí mít adresovací sběrnici širokou právě

- 32 bitů
- 21 bitů
- 20 bitů
- 30 bitů

Jaká je správná posloupnost seřazená podle velikosti uchovávané informace od nejmenší po největší?

- · bit, slovo, bajt
- bit, bajt, slovo
- · bajt, slovo, bit
- bajt, bit, slovo
- · slovo, bajt, bit

Paměť RAM

- se řadí mezi paměti se sekvenčním přístupem
- je určena pouze ke čtení
- je určena ke čtení i k zápisu
- se řadí mezi periferní paměti

Doslovný překlad zkratky RAM je

- · Rewrite And Machine
- Random Access Memory
- Record Access Memory

Vestavěný program řídící činnost automatického jednoúčelového zařízení patří typicky do kategorie

- hardware
- bestware
- firmware
- adware
- spyware

Jednotka informace 1 slovo (1 word) odpovídá

- 80 b
- 2 B
- 32 b
- 64 b
- · všechny odpovědi mohou být správně

Jedno slovo obyčejně nemá

- 1 slabiku
- 2 slabiky
- 4 slabiky
- 8 slabik

Kontrolní bit například na děrné pásce se nazývá

- párový bit
- partikulární bit
- paralelní bit
- parciální bit
- paritní bit

24bitová adresová sběrnice dokáže adresovat paměťový prostor o kapacitě maximálně (adresovatelná jednotka je bajt):

- 4 MB
- 16 MB
- 1 GB
- 4 GB
- 16 GB

Mezi různými typy pamětí nejmenší kapacitu má obvykle

- registr
- vnitřní (operační) paměť
- vnější (periferní) paměť

Mezi různými typy pamětí je z hlediska přístupu nejrychlejší pamětí

- registr
- vnitřní (operační) paměť
- vnější (periferní) paměť

Paměť se sekvenčním přístupem

- má vždy kratší přístupovou dobu k datům než paměť s přímým přístupem
- při přístupu k místu s adresou n projde nejdříve adresy 0-(n-1)
- je typicky paměť typu registr
- je typicky vnitřní (operační) paměť

Která charakteristika neplatí pro paměť typu registr?

- · velmi malá kapacita
- energeticky nezávislá
- velmi nízká přístupová doba
- paměť s přímým přístupem
- slouží pro krátkodobé uchování právě zpracovávaných informací

Která charakteristika platí pro paměť typu registr?

- kapacita v řádu desítek GB
- · energeticky nezávislá
- paměť s přímým přístupem
- slouží pro dlouhodobé uchování informací
- při přístupu k místu s adresou n projde nejdříve adresy 0-(n-1)

Architektura počítače "von Neumann" obsahuje pravidlo:

- Počítač obsahuje procesor, DMA kanál, operační paměť a V/V zařízení.
- Počítač obsahuje operační paměť, ALJ, řadič a V/V zařízení.
- Počítač obsahuje procesor, DMA kanál a operační paměť.

Architektura počítače "von Neumann" obsahuje pravidlo:

- Údaje a instrukce jsou vyjádřeny binárně.
- Údaje a instrukce jsou vyjádřeny číselně.
- Údaje a instrukce jsou vyjádřeny slovně.
- Instrukce se v assembleru píší zkratkou.

V architektuře "von Neumann" má dekódování instrukcí na starost

- řadič
- aritmeticko-logická jednotka
- procesor
- operační paměť
- V/V zařízení

Které tvrzení neplatí pro von Neumannovu architekturu?

- Program je uložen v paměti oddělené od paměti pro data.
- Počítač obsahuje operační paměť, ALJ, řadič a V/V zařízení.
- · Program je uložen v paměti spolu s datv.
- Instrukce jsou vyjádřeny binárně.
- Data jsou vyjádřena binárně.

Stavová hlášení jsou v architektuře "von Neumann" zasílána:

- aritmeticko-logické jednotce
- operační paměti
- řadiči
- V/V zařízení
- procesoru

Které tvrzení o koncepci Johna von Neumanna neplatí?

- Program se umístí do operační paměti přes ALJ pomocí vstupního zařízení.
- Data se umístí do operační paměti přes ALJ pomocí vstupního zařízení.
- Jednotlivé kroky výpočtu provádí aritmeticko-logická jednotka.
- Mezivýsledky jsou ukládány do operační paměti.
- Po skončení jsou výsledky poslány přes řadič na výstupní zařízení.

Ve von Neumannově modelu

- netečou data z ALJ do paměti
- netečou data z řadiče do ALJ
- netečou data z ALJ do řadiče
- netečou data z paměti do ALJ

Mezi typickou činnost řadiče patří

- transformuje instrukce na posloupnost signálů ovládající připojené zařízení
- která tečou do procesoru
- slouží jako podpůrná výpočetní jednotka pro ALJ
- · transformuje logickou adresu na fyzickou

DMA je určeno především pro

- ukládání často užívaných instrukcí
- přenos dat z disku do operační paměti
- korekci obrazového výstupu
- kontrolu dat ukládaných na disk
- provádění aritmetických operací

V polyadické soustavě je číslo

- součet bitů n-tice, ve které je uloženo.
- vždy dělitelné svým základem.
- součet mocnin základu vynásobených číslicemi.

Čísla lze snadno (každou k-tici číslic nižší soustavy nahradíme číslicí soustavy vyšší) převádět mezi soustavami o základu

- 5a7
- 8a2
- 10 a 16

Číslo 21 v desítkové soustavě po převedení do soustavy dvojkové je

- 10101
- 11011
- 10011
- nelze do dvojkové soustavy převést

Pascalovský typ INTEGER je celé číslo, které se na počítačích PC zobrazuje v

- přímém kódu.
- doplňkovém kódu.
- inverzním kódu.

Znaménkový bit v celém čísle je zpravidla bit

- neinižšího řádu.
- · nultého řádu.
- nejvyššího řádu.

Znaménkový bit bývá zpravidla

- roven jedné, pokud se zobrazuje číslo kladné
- roven nule, pokud se zobrazuje číslo záporné
- roven nule, pokud se zobrazuje číslo kladné

Rozsah zobrazení celého čísla uloženého poskytuje paměťový prostor pro data, ve dvojkovém doplňkovém kódu na 8 (celkem) bitech je

- <-128;127>
- <-256;255>
- <-511:512>
- <-1024;1023>
- žádný z uvedených

Největší zobrazitelné celé číslo ve dvojkovém doplňkovém kódu má tvar

- 100...00
- 111...11
- 000...00
- 100...01
- 011...11

Při sčítání dvou čísel v inverzním kódu jako korekci výsledku použijeme:

- násobný přenos
- kruhový přenos
- konverzní přenos
- desítkový přenos

Přeplnění (přetečení) je stav, ve kterém Osmičkovou a šestnáctkovou soustavu

- výsledek spadá mimo přesnost
- výsledek spadá mimo rozlišitelnost
- výsledek spadá mimo rozsah zobrazení

Vyberte nepravdivé tvrzení týkající se zobrazení celého čísla:

- přímý kód obsahuje kladnou a zápornou nulu
- · inverzní kód obsahuje kladnou a zápornou nulu
- doplňkový kód obsahuje pouze jednu
- rozsah zobrazení doplňkového kódu je symetrický
- se všemi bity doplňkového kódu se pracuje stejně

Inverzní kód pro zobrazení celého čísla Při sčítání ve dvojkovém doplňkovém nemá

- jednu nulu
- symetrický rozsah zobrazení
- znaménkový bit
- ve znaménkovém bitu jedničku pro označení záporného čísla

Znaménkový bit pro zobrazení celého čísla

- je bit nejnižšího řádu
- se běžně nepoužívá
- je bit nejnižšího řádu pouze pokud se iedná o číslo
- má hodnotu 1 pro kladné číslo
- má hodnotu 0 pro kladné číslo

Přetečení v celočíselné aritmetice ve dvojkovém doplňkovém kódu nastane

- pokud se přenos ze znaménkového bitu rovná přenosu do znaménkového
- pokud se přenos ze znaménkového bitu nerovná přenosu do znaménkového bitu
- pokud se přenos ze znaménkového bitu nerovná znaménkovému bitu
- pokud se přenos ze znaménkového bitu rovná znaménkovému bitu
- pokud výsledek operace nespadá mimo rozsah zobrazení

používáme, protože:

- vnitřně si počítač uchovává data v těchto soustavách
- výpočet procesoru je rychlejší než při použití dvojkové soustavy
- zápis čísla je kratší než ve dvojkové soustavě
- vstupní a výstupní zařízení pracují s těmito soustavami

Binární hodnota 0,1001 odpovídá dekadické hodnotě desetinného čísla:

- 9/16
- 1/32
- 9/10
- 1/16
- 10/9

kódu platí:

- přetečení nastane, pokud je rozsah zobrazení jiný než <0:2ⁿ-1>
- všechny bity (kromě znaménkového) se sčítají stejně
- vznikne-li přenos ze znaménkového bitu, je nutné provádět tzv. kruhový přenos
- přetečení nastane, pokud se přenosy z/do znaménkového bitu rovnají
- vznikne-li přenos ze znaménkového bitu, tak se ignoruje

Dvojkové číslo 1000 v přímém kódu v Kladná čísla v reprezentaci bez zobrazení se znaménkem na 4 bitech je: znaménka mají na n bitech rozsah:

- neivětší zobrazitelné
- nejmenší zobrazitelné
- kladná nula
- záporná nula
- žádná odpověď není správná

Dvojkové číslo 1000 v inverzním kódu v

- největší zobrazitelné
- nejmenší zobrazitelné
- kladná nula
- záporná nula
- žádná odpověď není správná

Dvojkové číslo 1111 v doplňkovém kódu v zobrazení se znaménkem na 4 bitech je:

- největší zobrazitelné
- nejmenší zobrazitelné
- kladná nula
- záporná nula
- žádná odpověď není správná

Kruhový přenos je:

- inverze bitů
- inverze bitů a přičtení jedničky k výsledku
- přičtení přenosu z nejvyššího řádu k výsledku
- přičtení přenosu z nejvyššího řádu ke znaménkovému bitu
- přičtení jedničky k nejvyššímu řádu výsledku

Kladná čísla v zobrazení se znaménkem maií na n bitech:

- ve všech kódech stejný rozsah
- v přímém kódu o 1 větší rozsah než v inverzním
- stejný rozsah jako kladná čísla v zobrazení bez znaménka
- v inverzním kódu o 1 číslo méně, než je záporných
- v inverzním kódu rozsah <0;2ⁿ-1>

Které z dvoikových čísel v reprezentaci se znaménkem na 4 bitech je kladné?

- 1010 v inverzním kódu
- 0100 v inverzním kódu
- 1010 v přímém kódu
- 1111 v doplňkovém kódu
- všechny odpovědi isou správné

• $<0;2^{n}-1>$

- $<0;2^{n-1}-1>$
- $<0;2^{n-1}+1>$
- -<-2ⁿ-1;2ⁿ-1>
- <-2ⁿ⁻¹-1:2ⁿ⁻¹-1>

zobrazení se znaménkem na 4 bitech je: Rozsah zobrazení směrem ke kladným číslům a směrem k záporným číslům je rozložen asymetricky v:

- přímém kódu
- · inverzním kódu
- doplňkovém kódu
- přímém a inverzním kódu
- inverzním a doplňkovém kódu

Dvě reprezentace nuly se vyskytují v:

- přímém a doplňkovém kódu
- přímém a inverzním kódu
- inverzním a doplňkovém kódu
- doplňkovém, inverzním a přímém

Která z čísel jsou shodná (nejvyšší bit je znaménkový)?

- 1001 v přímém a 1010 v inverzním kódu
- 1101 v inverzním a 1110 v doplňkovém kódu
- 1111 v doplňkovém a 1000 v přímém kódu
- 1000 v doplňkovém a 1000 v inverzním kódu
- žádná z odpovědí není správná

Rozsah zobrazení dvojkového doplňkového kódu na n bitech je:

- $<0:2^{n-1}-1>$
- $<-2^{n-1};2^{n-1}-1>$
- <-2ⁿ⁻¹-1:2ⁿ⁻¹-1>
- $<-2^{n}-1:2^{n}-1>$
- $<-2^n+1;2^n-1>$

Dvojkové číslo 1001 v reprezentaci se znaménkem na 4 bitech se v inverzním kódu rovná

- 6
- -6
- . 9
- -9

Jak při sčítání binárních čísel ve dvojkovém doplňkovém kódu poznám, že došlo k přetečení?

- k přetečení nemůže dojít, zabraňuje mu kruhový přenos
- přenos ze znaménkového bitu je 1
- přenos do znaménkového bitu se nerovná přenosu ze znaménkového hitu
- přenos do znaménkového bitu se rovná přenosu ze znaménkového bitu

Číslo 14 v decimální soustavě odpovídá

- D v hexadecimální soustavě
- 15 v oktalové soustavě
- 1101 v binární soustavě
- E v hexadecimální soustavě

Kruhový přenos v inverzním kódu se využívá

- pro korekci při přechodu přes nulu
- pro zkopírování nejnižšího bitu do nejvyššího
- pro zkopírování nejvyššího bitu do nejnižšího
- kruhový přenos se v inverzním kódu nepoužívá

Jednoduše nelze převádět čísla mezi soustavami o základech

- 5 a 25
- 3 a 9
- 4 a 40
- 6 a 216
- 6 a 36

Osmičková soustava se také nazývá

- oktetová
- oktalová
- oktanová
- oktarová
- oklotová

V ASCII kódu má

- ordinální hodnota znaku návrat vozíku (CR) menší hodnotu než ordinální hodnota znaku 'A'.
- ordinální hodnota znaku návrat vozíku (CR) větší hodnotu než ordinální hodnota znaku 'A'.
- znak návrat vozíku (CR) v ASCII kódu vůbec není.

V ASCII kódu jsou znaky s ordinální hodnotou 0 až 31 označeny jako

- řídící znaky
- alfanumerické znaky
- alfabetické znaky
- tisknutelné znaky

Písmena s diakritikou nejsou součástí vnějšího kódování

- ASCII
- ISO-8859-2
- · Windows-1250

Jaké kódování je korektní pro zobrazení všech českých znaků s diakritikou

- ASCII
- · ISO-8859-1
- ISO-8859-2

Znak "Line feed"

- je řídící znak s ordinální hodnotou nižší než 30
- je řídící znak s ordinální hodnotou vyšší než 30
- se nevyskytuje v kódování ASCII-7
- není řídící znak

Řídící znak "Carriage return" znamená

- přesun na začátek téhož řádku
- přesun na začátek dalšího řádku
- začátek příkazové řídicí sekvence
- · přesun na začátek předchozího řádku
- takový řídící znak neexistuje

Pro označení konce řádku v textovém souboru MS-Windows slouží kombinace znaků:

- CR+NUL
- · CR+LF
- BS+CR
- LF
- CR+DEL

Unicode je

- vnější kódování znaků
- sjednocené kódování celých čísel
- způsob ukládání reálných čísel

UTF-8 zobrazuje jeden znak

- vždy jedním bajtem
- vždy dvěma bajty
- různým počtem bajtů

Unicode je

- způsob uložení a UTF-8 je vnější kódování
- vnější kódování a UTF-8 je způsob uložení

Česká písmena s diakritikou jsou v UTF-8 uložena nejvíce na

- · jednom bajtu
- dvou bajtech
- třech bajtech
- čtyřech bajtech

UTF-8 uloží znak z ASCII 7 na

- 1 bajtu
- 2 bajty
- 3 bajty
- 4 bajty
- 5 bajtů

Počet bajtů, v kolika je uložen znak v UTF-8 (je-li uložen ve více než jednom bajtu), je vyjádřen

- počtem binárních jedniček v bitech nejvyšších řádů
- počtem binárních nul v bitech nejvyšších řádů
- číslem 0-7 v nejvyšších třech bitech
- číslem 0-7 v nejnižších třech bitech

Vnější kódy ISO-8859-2 a Windows-1250 se liší v ordinální hodnotě znaku

- ň
- č
- ·š

Detekční kód je kód, který

- nahlásí chybu v počítači.
- rozpozná chybu v uložené či přenášené informaci.
- detekuje hackera v počítači.

Opravný kód je kód, který

- najde chybu v systému Windows a opraví ji.
- opraví chybu programátora v jeho zdrojovém kódu.
- opraví chybu v uložené či přenášené informaci.

Hammingova trojrozměrná krychle má

- 6 stěn.
- 2 stěny.
- · žádnou stěnu.
- 8 stěn.

BCD (Binary Coded Decimal) znamená

- binárně zakódovaná čísla tak, aby je nešlo dešifrovat.
- · desítkově kódovaná binární čísla.
- jedna desítková číslice uložená vždy na čtyřech bitech.

BCD znamená

- Binary Coded Decimal
- · Binary Crowded Decimal
- Binary Coded Hexadecimal
- · Bipolary Coded Decimal

BCD kód v každé

- trojici bitů ukládá jednu oktalovou číslici
- čtveřici bitů ukládá jednu šestnáctkovou číslici
- čtveřici bitů ukládá jednu desítkovou číslici
- trojici bitů ukládá jednu desítkovou číslici

Kladné číslo v rozvinutém BCD tvaru je

- · 71346C
- · 71346D
- F7F1F3F4C6
- F7F1F3F4F6C
- +F7F1F3F4F6D

Číslo, které je v rozvinutém BCD tvaru uloženo na 5 bajtech, bude ve zhuštěném BCD tvaru uloženo ve

- 2 bajtech
- 3 baitech
- 4 baitech
- 5 bajtech
- 6 bajtech

V čem je uznávaná výhoda zobrazení čísel v BCD kódu oproti zobrazení čísel v přímém binárním kódu?

- jednodušší převod čísla do desítkové soustavy
- jednodušší provádění aritmetických operací
- kratší zápis čísla
- BCD kód je nyní všeobecně používanější

Co znamená kód 2 z 5?

- způsob zabezpečení informace, právě dva bity isou rovny nule
- způsob kódování podobný kódu CP1250
- způsob zabezpečení, právě dva bity jsou rovny jedné
- způsob kódování na principu UTF-16

Při Hammingově vzdálenosti (d) pět

- mohu kód opravit, pokud vznikne maximálně jedna chyba
- mohu kód opravit, pokud vzniknou maximálně dvě chyby
- mohu kód opravit, pokud vzniknou maximálně tři chyby
- nejsem schopen opravit chybu

Při Hammingově vzdálenosti (d) dva

- jsem schopen detekovat chybu a nejsem schopen ji opravit
- jsem schopen detekovat chybu a jsem Kolik chyb jsme schopni detekovat, schopen ji opravit
- nejsem schopen detekovat chybu

Sudá parita znamená

- počet bitů vč. paritního obsahujících hodnotu 1 je sudý
- počet bitů vč. paritního obsahujících hodnotu 1 je lichý
- počet bitů bez paritního obsahujících hodnotu 1 je sudý
- počet bitů bez paritního obsahujících hodnotu 1 je lichý
- počet chyb, které jsme schopni detekovat, je sudý

Mějme detekční kód 2 z 5. Které z následujících čísel obsahuje chybu?

- 00101
- 11010
- 10001
- 00011
- 01100

Ztrojení

- je příkladem vnějšího kódu
- je příkladem opravného kódu
- uloží hodnotu tří bitů na jeden bit
- umožňuje detekovat 3 chyby, ale pouze 2 opravit

Kódová (Hammingova) vzdálenost je:

- počet bitů, v nichž se liší dvě sousední platné kódové kombinace
- počet bitů, v nichž se se shodují dvě sousední platné kódové kombinace
- počet jedničkových bitů ve dvou sousedních platných kódových kombinacích
- počet chyb, které jsme schopni detekovat
- počet chyb, které jsme schopni opravit

Pro Hammingovu vzálenost 1 platí

- žádnou chybu nelze detekovat, tedy ani opravit
- jednu chybu lze detekovat, ale nelze ji
- jednu chybu lze detekovat a je možné ii opravit
- dvě chyby lze detekovat a jednu chybu lze opravit

jestliže kódová vzdálenost d=3?

- žádnou
- iednu
- dvě
- tři
- čtyři

Kolik chyb jsme schopni opravit, jestliže kódová vzdálenost d=3?

- žádnou
- jednu
- dvě
- tři
- čtyři

V opravném kódu v případě ztrojení každého bitu

- jsme schopni jednu chybu detekovat a dvě chyby korektně opravit
- jsme schopni jednu chybu detekovat a jednu chybu korektně opravit
- jsme schopni dvě chyby detekovat a obě dvě korektně opravit
- jsme schopni dvě chyby detekovat a jednu chybu korektně opravit

Jak jaké ordinální hodnoty mají číslice v Sériové zapojení vyjádřené v Booleově EBCDIC (vnější kód BCD)? algebře znamená

- A0 až A9
- C0 až C9
- D0 až D9
- E0 až E9
- F0 až F9

Co znamená Big-Endian

- počítač má jeden konec větší než druhý
- bajt nejvyššího řádu je na nejnižší adrese
- bajt nejnižšího řádu je na nejnižší adrese
- bajt nejvyššího řádu je na nejvyšší adrese

Co znamená použití pořadí Little-Endian?

- Bajt nejnižšího řádu je uložen na nejnižší adrese.
- Bajt nejvyššího řádu je uložen na nejnižší adrese.
- Bajt nejnižšího řádu je uložen na nejvyšší adrese.
- Všechny bity (kromě znaménkového) se sčítají stejně.

Little-Endian a Big-Endian jsou způsoby

- ukládání bitů v bajtu
- ukládání bajtů ve slově
- připojování konektorů sběrnic

Jak na čísle ve dvojkovém doplňkovém kódu poznáme, zda je uloženo v Big-Endian nebo Little-Endian

- podle hodnoty nejvyššího bitu
- podle hodnoty nejvyššího bajtu
- podle hodnoty nejnižšího bajtu
- podle hodnoty nejnižšího bitu
- nelze to ze zápisu čísla jednoznačně poznat

Mezi operace Booleovy algebry nepatří

- logický součet
- logický rozdíl
- logický součin
- negace

- logický součet
- logický rozdíl
- logický součin
- negaci

Paralelní zapojení vyjádřené v Booleově algebře znamená

- logický součet
- logický rozdíl
- logický součin
- negaci

Který z uvedených způsobů se nepoužívá pro minimalizaci výrazu?

- matematické úpravy
- jednotková krychle
- karnaughova mapa
- jednotková kružnice

Proč není Booleova algebra vhodná pro technickou realizaci?

- obsahuje příliš mnoho operací
- byla vymyšlena dříve, než se začala uplatňovat von Neumannova koncepce
- zakreslení grafů je pomocí ní příliš obtížné
- není možné pomocí ní provádět operaci implikace

Jaké operace využívá Shefferova algebra?

- jedinou operaci a to negovaný logický součin (NAND)
- jedinou operaci a to negovaný logický součet (NOR)
- dvě operace negovaný logický součin (NAND) a negovaný logický součet (NOR)
- operace logický součin (AND), logický součet (OR) a negaci (NOT)

Shefferova algebra (NAND) se používá místo Booleovy algebry v technických zapojeních, protože

- je rychlejší.
- je levnější.
- má jen jednu operaci.
- má více operací.

Zakázané pásmo v obvodech

- je vymezeno nejnižší hodnotou napětí, je rovna 1, když při které již může dojít k poškození obvodu
 všechny vst aspoň iedna
- vymezuje hodnoty signálu, ve kterých se signál nesmí nacházet během jeho vzorkování
- je maximální vzdálenost mezi dvěma obvody, ve které ještě dochází k nežádoucímu ovlivňování tvaru signálu

Zakázané pásmo v obvodech je

- vzdálenost od počítače, ve které se nesmí vyskytovat jiný spotřebič.
- poloměr kruhu okolo procesoru, ve kterém se nesmí vyskytovat žádný signál.
- rozsah hodnot, ve kterém se signál nesmí nacházet v okamžiku vzorkování.

Napájecí napětí technologie TTL je

- 5 V
- 220 V
- 120 V na americkém kontinentu

Invertor

- je sekvenční logický člen
- je logický člen měnící kladné napětí na záporné
- je logický člen měnící logickou 0 na logickou 1 a opačně
- je sekveční logický člen měnící logickou 0 na logickou 1 a opačně

Výstupní hodnota logického členu NOR je rovna 1, když

- všechny vstupní hodnoty jsou 1.
- aspoň jedna vstupní hodnota je 0.
- aspoň jedna vstupní hodnota je 1.
- všechny vstupní hodnoty isou 0.

Výstupní hodnota logického členu NOR je rovna 0, když

- aspoň jedna vstupní hodnota je 0.
- aspoň jedna vstupní hodnota je 1.
- všechny vstupní hodnoty jsou 0.

Výstupní hodnota logického členu NAND je rovna 0, když

- všechny vstupní hodnoty jsou 1.
- aspoň jedna vstupní hodnota je 0.
- aspoň jedna vstupní hodnota je 1.
- všechny vstupní hodnoty jsou 0.

Výstupní hodnota logického členu NAND je rovna 1, když

- všechny vstupní hodnoty jsou 1.
- aspoň jedna vstupní hodnota je 0.
- aspoň jedna vstupní hodnota je 1.

Mezi kombinační logické obvody patří

- NAND, NOT, multiplexor
- · RS, JK, AND, OR
- NOR, D, XOR

Mezi kombinační logické obvody patří

- klopný obvod R-S
- sčítačka pro jeden binární řád
- jednobitová paměť

Kombinační logický obvod "nonekvivalence" má stejnou funkci jako:

- logický součet
- sčítačka modulo 2
- multiplexor

Klopný obvod RS v obecném případě nesmí mít na vstupu kombinaci 00,

- pokud je řízen jedničkami
- pokud je řízen nulami
- protože na komplementárních výstupech budou stejné hodnoty

Parita je

- obvod pro vyhodnocení hlasovací funkce.
- způsob porovnání dvou čísel.
- způsob zabezpečení informace proti chybě.

Multiplexor se čtyřmi datovými vstupy je obvod, který

- dle zadané adresy vybere jeden ze vstupních signálů a předá jej na výstup.
- dle zadané adresy vybere čtyři vstupní signály a sloučí je do jednoho výstupního.
- vybere náhodně jeden ze čtyř vstupních signálů a předá jej na výstup.

Multiplexor se 16 datovými vstupy potřebuje

- 4 adresové vstupy.
- 16 adresových vstupů.
- 65536 adresových vstupů.

Dekodér, který má 2 vstupy, má

- 2 výstupy.
- 4 výstupy.
- 8 výstupů.

Úplná sčítačka pro jeden binární řád má

- dva bity sčítanců na vstupu a jeden bit součtu na výstupu.
- dva bity sčítanců na vstupu a jeden bit součtu a přenos na výstupu.
- dva bity sčítanců a přenos na vstupu a Co není správně? jeden bit součtu a přenos na výstupu.

Co je pravda?

- Sekvenční logické obvody mají vnitřní
- Kombinační logické obvody mají vnitřní stav.
- Nic z toho není pravda.

Zakázaný stav u klopného obvodu R-S řízeného jedničkami je stav, kdy

- R=0 a S=0.
- R=1 a S=1.
- se R a S nerovnají.
- je R nebo S nenastaveno.

Klopný obvod je název obvodu

- · ze skupiny sčítaček.
- ze skupiny kombinačních logických
- ze skupiny sekvenčních logických obvodů.

Sčítačka pro jeden řád BCD kódu se realizuje pomocí dvou čtyřbitových sčítaček. Pokud je součet dvou BCD číslic klasickou sčítačkou větší než 9

- provádí se korekce přičtením čísla 6.
- provádí se korekce extrakcí dolních 4 bitů.
- není třeba dělat korekci, přenos se použije jako číslice vyššího řádu.

®ádný bit se neztrácí při

- logickém posunu bitů.
- rotaci bitů.
- aritmetickém posunu doleva.

Násobení dvěma lze realizovat

- rotací o jeden bit doprava.
- aritmetickým posunem o jeden bit doprava.
- aritmetickým posunem o jeden bit doleva.

Operaci celočíselného dělení dvěma lze provést

- aritmetickým posuvem obsahu registru doleva
- logický posuvem obsahu registru doleva
- logický posuvem obsahu registru doprava
- aritmetickým posuvem obsahu registru doprava

- Boolova algebra je nauka o operacích na dvouprvkové množině
- Boolova algebra užívá tři základní operace
- Boolova algebra je vybudována na operaci negovaného logického součinu

Technologie TTL používá jako svůj základní prvek

- tranzistor NPN
- tranzistor PNP
- invertor
- magnetické obvody

Pro technickou realizaci je nejméně vhodná

- Booleova algebra
- Pierceova algebra
- Shefferova algebra
- všechny algebry jsou stejně vhodné

Shefferova algebra je vybudována pouze na jediné logické operaci, a to

- NAND
- NOR
- XOR
- **NOXOR**
- AND

Piercova algebra je vybudována pouze na jediné logické operaci, a to

- NAND
- NOR
- XOR
- NOXOR
- OR

Základním stavebním prvkem technologie TTL je

- relé
- elektronka
- unipolární tranzistor
- bipolární tranzistor

Logický obvod NAND

- pro vstupy 0 a 0 dá výstup 0
- pro vstupy 0 a 0 dá výstup 1
- pro vstupy 0 a 1 dá výstup 0
- pro vstupy 1 a 1 dá výstup 1
- provádí negaci logického součtu

Logický obvod NOR

- pro vstupy 0 a 0 dá výstup 0
- pro vstupy 0 a 1 dá výstup 1
- pro vstupy 1 a 0 dá výstup 0
- pro vstupy 1 a 1 dá výstup 1
- provádí negaci logického součinu

Logický obvod XOR (nonekvivalence)

- pro vstupy 0 a 0 dá na výstup 0
- pro vstupy 0 a 1 dá na výstup 0
- pro vstupy 1 a 1 dá na výstup 1
- pro vstupy 0 a 0 dá na výstup 1
- provádí negaci vstupu

Negaci bitu provádí:

- logický obvod AND
- logický obvod OR
- invertor
- multiplexor
- dekodér

Pro výběr jednoho z n vstupů slouží:

- logický obvod AND
- logický obvod NOR
- invertor
- multiplexor
- dekodér

n adresových vstupů a 2ⁿ datových výstupů má:

- logický obvod AND
- logický obvod NOR
- invertor
- multiplexor
- dekodér

Impuls je

- trvalá změna hodnoty signálu
- dočasná změna hodnotv signálu
- invertování hodnoty bitu

Mezi sekvenční logické obvody patří

- multiplexor, dekodér, sčítačka modulo
 2
- polosčítačka, klopný obvod JK, klopný obvod RS
- klopný obvod JK, klopný obvod RS, klopný obvod D
- žádná z uvedených možností

Zakázaný stav se nachází u

- u polosčítačky
- klopného obvodu D
- klopného obvodu JK
- žádná z uvedených možností

Sekvenční logické obvody se vyznačují tím, že

- výstup nezávisí na předchozí posloupnosti změn
- nemají vnitřní pamět
- výstup závisí na předchozí posloupnosti změn
- nemají tvz. zpětnou vazbu

Výstupy z eventuální sčítačky Modulo 4 mohou nabývat hodnoty

- · 0, 1
- 0, 1, 2
- 0, 1, 2, 3
- 0, 1, 2, 3, 4

Pro kombinační logické obvody platí, že

- nepatří sem sčítačka modulo 2
- výstupy nezávisí na předchozí posloupnosti změn
- patří sem klopný obvod RS
- výstupy závisí na předchozí posloupnosti změn

Signálem Reset

- je návrat do předem definovaného stavu
- není návrat do předem definovaného stavu
- vynulujeme všechny výstupní hodnoty
- všem vstupním hodnotám přiřadíme jedničku

Mezi kombinační logické obvody nepatří

- polosčítačka
- multiplexor
- sčítačka modulo 2
- žádná z uvedených možností

Zakázaný stav klopného obvodu JK nastane když

- J=0, K=0
- J=1, K=1
- J=1, K=0
- žádná z uvedených možností

Korekce pro BCD sčítačku nepřičítá šestku, když

- bity součtu binárního řádu 1 a 3 jsou rovny jedné
- bity součtu binárního řádu 2 a 3 jsou rovny jedné
- přenosový bit součtu je roven jedné
- přenosový bit součtu je roven nule

Logický posun nenulového obsahu registru doprava

- nikdy neovlivní znaménko
- nejvyššímu bitu přiřadí jedničku
- nejnižší bit se ztrácí
- žádná z uvedených možností

Aritmetický posun nenulového obsahu registru doleva způsobí

- obsah registru se celočíselně vydělí dvěma, nezmění se znaménko, nedošlo-li k přetečení
- obsah registru se celočíselně vynásobí dvěma, nezmění se znaménko, nedošlo-li k přetečení
- obsah registru ani znaménko se nezmění
- obsah registru i znaménko se změní, pokud nedošlo k přetečení

Pokud se obsah registru posune aritmeticky doprava a číslo se blíží k maximální hodnotě, kterou lze do registru uložit, pak

- obsah bude celočíselně vydělen dvěmaznamená
- obsah bude vynásoben dvěma a výsledek bude správný
- obsah registru přeteče
- žádná z uvedených možností

Jednotka Baud udává

- počet bajtů přenesených za sekundu
- počet bitů přenesených za sekundu
- počet změn stavů přenesených za sekundu

Při stejné přenosové rychlosti je vždy počet bitů přenesených za sekundu

- menší nebo roven počtu baudů
- větší nebo roven počtu baudů
- menší než počet baudů
- větší než počet baudů
- rovný počtu baudů

Jako tzv. hradlo funguje

- součinový logický člen
- součtový logický člen
- logický člen NOR
- logický člen nonekvivalence
- invertor

Jako sčítačka modulo 2, která neřeší přenosy, funguje

- logický člen NOR
- logický člen NAND
- logický člen XOR
- klopný obvod D
- klopný obvod RS

Polosčítačka se dvěma vstupy

- má tři výstupy
- řeší přenos z nižšího řádu
- její pravdivostní tabulka má 8 řádků
- dává na výstup přenos do vyššího řádu

Klopný obvod RS řízený nulami

- nemá zakázaný stav
- nemá definovaný stav pro vstupy 1 a 1
- pro hodnoty 1 a 1 setrvává v předchozím stavu
- pro hodnoty 0 a 0 setrvává v předchozím stavu

"R" v názvu klopného obvodu RS sznamená

- repeat
- reset
- read
- random
- ready

Registry jsou typicky konstruovány z

- klopného obvodu D
- klopného obvodu JK
- klopného obvodu RS
- polosčítačky
- úplné sčítačky

Při dvoustavové komunikaci je rychlost Pod rotací bitů vpravo rozumíme přenosu udávaná v baudech (Bd)

- větší než rvchlost udávaná v bitech za sekundu
- menší než rychlost udávaná v bitech za sekundu
- stejná jako rychlost udávaná v bitech za sekundu
- neporovnatelná s rychlostí udávanou v bitech za sekundu

Při čtvřstavové komunikaci je rvchlost přenosu udávaná v baudech (Bd)

- větší než rychlost udávaná v bitech za sekundu
- menší než rychlost udávaná v bitech za sekundu
- stejná jako rychlost udávaná v bitech za sekundu
- neporovnatelná s rychlostí udávanou v bitech za sekundu

Pod pojmem "zakázané pásmo" při přenosu signálu rozumíme

- skupinu počítačů, ke kterým signál nesmí dorazit
- frekvenci, se kterou nesmí vysílající
- rozsah napětí, v jehož rámci je hodnota signálu nedefinovaná
- všechny hodnoty napětí nerovnající se U_{l} a U_{h}

Pro multiplexor neplatí

- má datové vstupy
- má adresové vstupy
- má datový výstup
- má adresový výstup

Jaký zakázaný stav má klopný obvod RS řízený jedničkami?

- . 0,0
- · 0,1
- · 1,0
- 1.1

Pod rotací bitů vlevo rozumíme

- posuv z nižšího řádu do vyššího, žádná hodnota bitu se neztrácí
- posuv z nižšího řádu do vyššího, ztrácí se hodnota některého bitu
- posuv z vyššího řádu do nižšího, žádná hodnota bitu se neztrácí
- posuv z vyššího řádu do nižšího, ztrácí se hodnota některého bitu

- posuv z nižšího řádu do vyššího, žádná hodnota bitu se neztrácí
- posuv z nižšího řádu do vyššího, ztrácí se hodnota některého bitu
- posuv z vyššího řádu do nižšího, žádná hodnota bitu se neztrácí
- posuv z vyššího řádu do nižšího, ztrácí se hodnota některého bitu

Pod poimem logický posun vlevo rozumíme

- posuv z nižšího řádu do vyššího, žádná hodnota bitu se neztrácí
- posuv z nižšího řádu do vyššího, ztrácí se hodnota některého bitu
- posuv z vyššího řádu do nižšího, žádná hodnota bitu se neztrácí
- posuv z vyššího řádu do nižšího, ztrácí se hodnota některého bitu

Pod pojmem logický posun vpravo rozumíme

- posuv z nižšího řádu do vyššího, žádná hodnota bitu se neztrácí
- posuv z nižšího řádu do vyššího, ztrácí se hodnota některého bitu
- posuv z vyššího řádu do nižšího, žádná hodnota bitu se neztrácí
- posuv z vyššího řádu do nižšího, ztrácí se hodnota některého bitu

Při aritmetickém posunu

- se mění hodnota znaménkového bitu, nedojde-li k přetečení
- se nemění hodnota znaménkového bitu, nedojde-li k přetečení
- je posun doleva ekvivalentní celočíselnému dělení dvěma
- je posun doprava ekvivalentní násobení dvěma

V techologii TTL při použití tranzistoru NPN se kolektor a emitor otevírá

- když je na bázi přivedena vysoká úroveň -- logická jednička
- když je na bázi přivedena nízká úroveň -- logická nula
- když je na kolektor přivedena vysoká úroveň -- logická jednička
- když je na kolektor přivedena nízká úroveň -- logická nula

K čemu se využívá Karnaughova mapa

- k minimalizaci počtu operací B-algebry nezávislá?
- k uchování informace o rámcích, které nejsou zaplněny
- k uchování informace o dostupných V/V branách
- pro popis volných bloků paměti

Pokud jsou 1 a 1 na vstupu sčítačky modulo 2, pak na výstupu je

- 0
- 1
- 2
- tento vstup je neplatný

Mám 16 zařízení, zařízení číslo 10 chci poslat signál 1, ostatním 0. Co použiji?

- dekodér
- multiplexor
- úplnou sčítačku
- polosčítačku

Pro úplnou sčítačku pro jeden binární řád platí

- má 3 vstupy a 2 výstupy
- má 2 vstupy a 3 výstupy
- má 2 vstupy a 2 výstupy
- má 3 vstupy a 3 výstupy

Co platí pro klopný obvod D?

- je to paměť na jeden bit
- má čtyři výstupy
- má čtyři datové vstupy
- má ekvivalentní funkci jako polosčítačka

NOXOR je stejný jako:

- ekvivalence
- NOR
- OR
- NAND

Které zapojení nelze popsat pomocí Booleovy algebry?

- sériové
- můstkové
- paralelní
- sérioparalelní

Která paměť musí být energeticky nezávislá?

- vněiší paměť
- vnitřní paměť
- registry

Obsah adresového registru paměti se na výběr jednoho z výběrových (adresových) vodičů převádí

- multiplexorem 1 z N.
- dekodérem 1 z N.
- sčítačkou 1 plus N.

K destruktivnímu nevratnému zápisu do permanentní paměti pomocí přepalování tavných spojek proudovými impulsy je určena paměť

- ROM
- PROM
- EPROM

Parametr pamětí "vybavovací doba - čas přístupu" bude nejvyšší u

- registru
- · vyrovnávací (cache) paměti
- operační paměti
- diskové paměti

Paměť, která svůj obsah adresuje klíčem, který je uložen odděleně od obsahu paměti a vyhledává se v klíči paralelně, se nazývá

- · operační paměť.
- · permanentní paměť.
- asociativní paměť.
- · klíčová paměť.

Paměť typu cache nebývá umístěna mezi

- procesorem a pamětí
- procesorem a V/V zařízením
- procesorem a registry

Do paměti typu PROM

- nelze data zapsat
- · Ize zapsat data pouze jednou
- Ize zapsat data libovolněkrát působením UV záření
- Ize zapsat data libovolněkrát vyšší hodnotou elektrického proudu
- lze zapsat data libovolněkrát přepálením tavné pojistky NiCr

Které tvrzení neplatí pro popis fyzické struktury vnitřní paměti?

- Dekodér na jeden z adresových vodičů nastaví hodnotu logická 1.
- Informace je na koncích datových vodičů zesílena zesilovačem.
- Adresa je přivedena na vstup dekodéru.
- Podle zapojení buněk na řádku projde/neprojde logická 1 na datové vodiče.
- Datový registr má na vstup přivedeny adresové vodiče.

Máme-li vnitřní paměť o kapacitě 16 bitů zapojenou jako matici paměťových buněk 4x4 bity, pak nejmenší adresovatelná jednotka je

- 1 bit
- 2 bity
- 4 bity
- 16 bitů
- 65536 bitů

Působením UV záření je možné vymazat obsah paměti

- ROM
- PROM
- EPROM
- EEPROM
- RAM

Statickou, energeticky nezávislou pamětí není paměť typu

- ROM
- PROM
- EPROM
- EEPROM
- · žádná z odpovědí není správně

Vybavovací doba paměti znamená

- čas přístupu k jednomu záznamu v paměti
- doba potřebná pro přenesení 1 KB dat do paměti
- čas potřebný pro instalaci paměťového modulu
- doba potřebná pro načtení celé kapacity paměti

Pro paměť s přímým přístupem platí

- musím se k informaci "pročíst", doba přístupu není konstantní
- doba přístupu k libovolnému místu v paměti je konstantní
- obsah z adres nižších hodnot získám rychleji nez vyšších

Energeticky závislá paměť obecně obsahuje po obnově napájení

- předdefinovaný konstantní obsah
- samé nuly
- samé jedničky
- · obsah paměti je nedefinovaný

Energeticky závislá paměť typicky je

- paměť RAM
- harddisk
- paměť Flash
- · CD-R

Správný postup čtení dat z paměti je

- procesor vloží adresu do adresového registru, příkaz čti, procesor převezme informaci z datového registru
- procesor vloží adresu do datového registru, příkaz čti, procesor převezme informaci z datového registru
- procesor vloží adresu do adresového registru, procesor zapíše informaci z datového registru, příkaz čti
- žádná z uvedených možností neplatí

Paměť určená pro čtení i pro zápis má zkratku

- ROM
- PROM
- EPROM
- RWM

Zpětnému proudu v ROM pamětech zabraňuje

- použití vodičů
- použití polovodičů
- použití nevodičů
- žádná z uvedených možností

Kolikrát je možno zapisovat do paměti PROM?

- pouze při výrobě
- · Ize jednou naprogramovat
- · lze přeprogramovat libovolněkrát

Ultrafialovým světlem lze přemazat paměť

- ROM
- PROM
- EPROM
- RWM

Elektrickým proudem lze přemazat paměť

- ROM
- PROM
- EPROM
- EEPROM

Paměť, ze které se většinou čte, maže se elektrickým proudem a dá se do ní i zapisovat má zkratku

- RMM
- RWM
- ROM
- RUM

Pro asociativní paměť neplatí

- v paměti se plní klíč a obsah
- paměť klíčů se prohledává paralelně
- zkratka je CAM
- používá se jako operační paměť

CAM paměti předám adresu. Nejdříve ji hledá v

- adresovém registru
- datovém registru
- obsahu ke klíčům
- paměti klíčů

Jaké sběrnice jsou mezi procesorem a pamětí?

- pouze datová
- · pouze adresová
- datová a adresová
- datová, adresová a pro v/v zařízení

Jakou funkci u paměti má refresh cyklus?

- jednorázově vymaže obsah paměti
- obnovuje data uložená v dynamické paměti
- obnovuje data uložená ve statické paměti
- opraví chybu v paměti

Mezi paměti s výhradně s přímým přístupem patří

- páska
- disk
- operační paměť

Která z uvedených pamětí není programovatelná?

- ROM
- PROM
- EPROM
- EEPROM

Pro statickou paměť neplatí

- informace se udržuje, pokud je napájení
- informace se udržuje, i když není napájení
- informace se neudržuje, když není napájení

ROM je paměť

- · pouze pro zápis
- pouze pro čtení
- pro zápis i pro čtení
- žádná odpověď není správná

ROM je zkratka pro

- read only memory
- · read on memory
- read only matter
- ride on memory

Páska je paměť

- se sekvenčním přístupem
- s přímým přístupem
- s kombinovaným přístupem
- s indexsekvenčním přístupem

Na libovolnou adresu v paměti s přímým přístupem se dostanu typicky

- za proměnlivý čas
- za konstatntní čas
- záleží na nastavení v operačním systému
- nelze jednoznačně určit

Registr PC -- čítač instrukcí v procesoru Příznaky pro větvení programu vždy obsahuje

- adresu právě prováděné instrukce.
- počet již provedených instrukcí.
- počet instrukcí, které zbývají do konce programu.

Jednou z fází zpracování instrukce procesorem není:

- výběr operačního kódu z paměti
- výběr adresy operandu z paměti
- kopírování instrukce do paměti
- provedení instrukce
- zápis výsledků zpracované instrukce

Pro adresaci operační paměti mající kapacitu 64 K adresovatelných jednotek (bajtů) je třeba adresová sběrnice šířky

- 10 bitů.
- 16 bitů.
- 20 bitů.
- 32 bitů.

Pro adresaci operační paměti mající kapacitu 1 M adresovatelných jednotek (bajtů) je třeba adresová sběrnice šířky

- 10 bitů.
- 16 bitů.
- 20 bitů.
- 32 bitů.

PC -> AR, 0 -> WR, DR -> IR PC+1 -> AR, 0 -> WR, DR -> TA PC+2 -> AR, 0 -> WR, DR -> TA_L TA -> AR, 0 -> WR, DR -> A PC+2 -> PC

- jsou mikroinstrukce instrukce LDA
- jsou mikroinstrukce instrukce STA
- jsou mikroinstrukce jiné instrukce
- tyto mikroinstrukce jsou nekorektní

Mezi aritmetické instrukce fiktivního procesoru definovaného na přednáškách patří pouze tyto

- · ADD, MOV, CMP
- STA, ADD, CMA
- ADD, CMA, INR

nastavují tyto instrukce fiktivního procesoru definovaného na přednáškách

- · ADD, INR, CMA
- LDA, ADD, CMP
- ADD, MOV, INR

Příznaky pro větvení programu nikdy nemění tyto instrukce fiktivního procesoru definovaného na přednáškách

- CMA, JMP, LDA
- MOV, STA, JMP
- STA, LDA, CMP

Instrukce mající zkratku LDA typicky znamená

- ulož obsah registru A do paměti na adresu zadanou operandem instrukce.
- vynuluj obsah registru A.
- zvyš obsah registru A o jedničku.
- naplň obsah registru A hodnotou z paměti.

Instrukce mající zkratku JMP typicky provádí

- nepodmíněný skok.
- podmíněný skok na adresu zadanou operandem.
- · volání podprogramu.

Příznakový registr procesoru se používá na

- sledování výkonnosti procesoru.
- realizaci podmíněných skoků.
- · zaznamenávání verzí firmware procesoru.

Instrukce CMP pro porovnání typicky

- větší číslo uloží do registru A.
- uloží do registru A hodnotu 1, pokud ie první číslo větší.
- pouze nastaví příznaky.

Posloupnost instrukcí

LDA x
MOV B,A
LDA y
CMP B
JP ne
ano: ...
JMP ven
ne: ...
ven: ...

vyjadřuje příkaz

IF x>y THEN ano ELSE ne;

IF x>=y THEN ano ELSE ne;

IF x<y THEN ano ELSE ne;

IF x<=y THEN ano ELSE ne;

Posloupnost instrukcí

LDA y
MOV B,A
LDA x
CMP B
JM ne
ano: ...
JMP ven
ne: ...
ven: ...

vyjadřuje příkaz

IF x>y THEN ano ELSE ne;

IF x>=y THEN ano ELSE ne;

IF x<y THEN ano ELSE ne;

IF x<=y THEN ano ELSE ne;

Posloupnost instrukcí

LDA y
MOV B,A
LDA x
CMP B
JP ne
ano: ...
JMP ven
ne: ...
ven: ...

vyjadřuje příkaz

IF x>y THEN ano ELSE ne;

IF x>=y THEN ano ELSE ne;

IF x<y THEN ano ELSE ne;

IF x<=y THEN ano ELSE ne;

Posloupnost instrukcí

LDA x
MOV B,A
LDA y
CMP B
JM ne
ano: ...
JMP ven
ne: ...
ven: ...

vyjadřuje příkaz

IF x>y THEN ano ELSE ne;

IF x>=y THEN ano ELSE ne;

IF x<y THEN ano ELSE ne;

IF x<=y THEN ano ELSE ne;

PC -> AR, 0 -> WR, DR -> IR
PC+1 -> AR, 0 -> WR, DR -> TA_L
PC+2 -> AR, 0 -> WR, DR -> TA_H
TA -> AR, 0 -> WR, DR -> TAX_L
TA+1 -> AR, 0 -> WR, DR -> TAX_H
TAX -> AR, A -> DR, 1 -> WR
PC+3 -> PC

· jsou mikroinstrukce instrukce LDA

jsou mikroinstrukce instrukce STA

jsou mikroinstrukce LDAX (nepřímé naplnění)

jsou mikroinstrukce STAX (nepřímé naplnění)

tyto mikroinstrukce jsou nekorektní

Instrukce podmíněného skoku

 provede následující instrukci, pokud je splněna podmínka.

 skočí na instrukci, jejíž adresa je zadána operandem, pokud podmínka není splněna.

 provede následující instrukci, pokud podmínka splněna není.

Operace PUSH nad zásobníkem

· vloží položku do zásobníku.

· vybere položku ze zásobníku.

stlačí obsah zásobníku.

Jaký je správný postup operací?

- PUSH sníží SP a uloží položku na adresu podle SP; POP vybere z adresy podle SP a zvýší SP.
- PUSH sníží SP a uloží položku na adresu podle SP; POP zvýší SP a vybere z adresy podle SP.
- PUSH uloží položku na adresu podle SP a sníží SP; POP vybere z adresy podle SP a zvýší SP.

Instrukce volání podprogramu musí

- uchovat návratovou adresu.
- uchovat obsah čítače instrukcí.
- uchovat obsah registrů do zásobníku.

Pojem 'time-out' při provádění V/V operací znamená, že např.

- zahájená výstupní operace neodpověděla 'hotovo' do definované doby.
- mezi výstupní a vstupní operací musí být prodleva definované doby.
- před zahájením vstupní operace lze signál 'start' poslat ne dříve než uplyne definovaná doba.

Posloupnost instrukcí

START

opak: FLAG opak

IN STA x

je podle toho, jak jsme si na přednáškách definovali vlastní procesor (pomíjíme otázku time-outu, neefektního využití procesoru),

- korektní operace čtení ze vstupního zařízení
- korektní operace zápisu do výstupního zařízení
- žádná z ostatních odpovědí není správná

Posloupnost instrukcí

LDA x START OUT

opak: FLAG opak

je podle toho, jak jsme si na přednáškách definovali vlastní procesor (pomíjíme otázku time-outu, neefektního využití procesoru),

- korektní operace čtení ze vstupního zařízení
- korektní operace zápisu do výstupního zařízení
- žádná z ostatních odpovědí není správná

Ve kterém z následujících okamžiků by mělo dojít ke vzniku přerušení?

- zahájení tisku znaku
- konec tisku znaku
- ukončení programu

Které z konstatování vztahujících se k okamžiku přerušení procesu je nesprávné?

- Přerušit nelze během provádění instrukce.
- Přerušit lze pouze tehdy, je-li to povoleno (nejde-li o nemaskovatelné přerušení).
- Přerušit nelze bezprostředně po zahájení obsluhy přerušení.
- Přerušení nastane ihned po žádosti signálem INTERRUPT.

Jaké je správné modelové chování obsluhy vzniku přerušení?

- Mikroinstrukce musí uložit PC a vynulovat IF. Programem se ukládají všeobecné registry.
- Mikroinstrukce musí uložit PC a všeobecné registry. Program dle svého zvážení vynuluje IF.
- Mikroinstrukce uloží obsah PC.
 Program uloží dle zvážení obsah všeobecných registrů a vynuluje IF.

Operační kód (operační znak) je

- numerické vyjádření konkrétní instrukce, je vždy stejně dlouhý
- numerické vyjádření konkrétní instrukce, má typicky proměnlivou délku
- je adresa operandu
- je adresa 1. a 2. operandu

Operační kód není

- operační znak
- numerické vyjádření konkrétní instrukce, které má proměnlivou délku
- · součást instrukce
- · žádná z uvedených možností

Pro čítač instrukcí procesoru neplatí

- může mít zkratku PC
- může mít zkratku IP
- · obsahuje adresu prováděné instrukce
- žádná z uvedených možností

Která instrukce naplní registr A obsahem slabiky z paměti?

- STA
- LDA
- INA
- 1MP

Instrukce STA

- uloží registr A do paměti
- naplní registr A obsahem slabiky z paměti
- je nepodmíněný skok na adresu A
- · žádná z uvedených možností

Instrukce JMP je

- nepodmíněný skok
- podmíněný skok
- uloží registr P do paměti
- · žádná z uvedených možností

Osmibitový procesor se 64KB pamětí má

- 8bitovou datovou sběrnici a 20bitovou nepatří
 adresovou sběrnici
- 8bitovou datovou sběrnici a 8bitovou adresovou sběrnici
- 8bitovou datovou sběrnici a 16bitovou adresovou sběrnici

Registr PC procesoru naplníme instrukcí

- LDA
- STA
- JMP
- · žádnou z uvedených

Pomocný 16bitový registr TA procesoru definovaného na přednáškách se skládá

Z

- 8bitového TA High a 8bitového TA Low
- 12bitového TA High a 4bitového TA Low
- 4bitového TA High a 12bitového TA Low
- · žádná z uvedených možností

První fází každé instrukce je

- výběr operandu
- provedení instrukce
- výběr operačního znaku
- aktualizace PC

Pro mikroinstrukci výběr operačního znaku neplatí

- cílem je vložit do instrukčního registru instrukci
- je vždy 1. fází instrukce
- cílem je vložit do datového registru data
- je součástí např. instrukce LDA

Mikroinstrukce výběr operačního znaku znamená

- procesor zjistí, kterou instrukci provádí
- procesor načte adresu z adresového registru
- procesor zahájí instrukci LDA
- žádná z uvedených možností

Mezi mikroinstrukce instrukce LDA nepatří

- výběr operačního znaku
- výběr operandu
- aktualizace registru PC zvýšením o délku instrukce
- naplnění registru PC hodnotou operandu instrukce

Instrukce INR procesoru definovaného na přednáškách způsobí

- zvýší obsah registru o jedna
- sníží obsah registru o jedna
- uloží obsah registru R do paměti
- načte obsah registru R z paměti

Instrukce CMA procesoru definovaného Instrukce procesoru definovaného na na přednáškách způsobí

- inverzi bitů v registru A
- zvýší obsah registru A o jedna
- sníží obsah jedničku A o jedna
- žádná z uvedených možností

Která instrukce sníží obsah registru o jedna

- INR
- CMA
- ADD
- žádná z uvedených možností

Instrukce ADD procesoru definovaného na přednáškách

- přičte obsah registru k registru A
- invertuje bity v registru A
- vždy zvýší obsah registru A o jedna
- žádná z uvedených možností

Příznak procesoru definovaného na přednáškách není

- jednobitový indikátor
- Z (zero)
- CY (Carry)
- žádná z uvedených možností

S (Sign) je příznak procesoru definovaného na přednáškách, kterým je

- kopie znaménkového bitu výsledku operace
- · kopie znaménkového bitu 1. operandu
- kopie znaménkového bitu 2. operandu
- 1 při nulovém výsledku operace

Pro příznaky procesoru definovaného na přednáškách platí

- nastavuje je programátor
- nastavuje je procesor
- nastavuje je procesor a programátor může nastavování vypnout
- žádná z uvedených možností

Příznaky procesoru definovaného na přednáškách mění instrukce

- · INR, ADD, CMA
- LDA, STA
- · LDA, STA, JMP
- LDA, STA, JMP, MOV

přednáškách CMP B porovná obsah registru A s obsahem registru B a

- změní podle toho příznaky
- nezmění podle toho příznaky
- uloží výsledek do registru A
- · uloží výsledek do registru B

Mezi příznaky procesoru definovaného na přednáškách nepatří

- CY
- AC
- TΑ
- 7

Změnu znaménka u čísla v registru A procesoru definovaného na přednáškách provedeme posloupností instrukcí

- · CMA, INR A
- CMA, MOV B,A
- INR A, CMA
- žádná z uvedených možností

Pro zásobník procesoru definovaného na přednáškách neplatí, že

- je datová struktura fungující systémem LIFO
- je datová struktura fungující systémem FIFO
- vkládá se do ní operací PUSH
- vybírá se z ní operací POP

PUSH procesoru definovaného na přednáškách

- · je instrukce, vkládá obsah registru do zásobníku
- je instrukce, vybírá obsah ze zásobníku
- je příznak
- je interní registr

PSW procesoru definovaného na přednáškách je

- stavové slovo procesoru, tvořeno z registru A a příznaků
- stavové slovo procesoru, tvořeno z reaistru A
- stavové slovo procesoru, tvořeno z příznaku na předdefinovaný registr
- žádná z uvedených možností

Pro zásobník procesoru definovaného naInstrukce OUT procesoru definovaného přednáškách platí na přednáškách

- má kontrolu podtečení
- nemá kontrolu podtečení
- je strukturou First in First out
- žádná z uvedených možností

LXISP procesoru definovaného na přednáškách

- ie ukazatel na vrchol zásobníku
- zapíše hodnotu na dno zásobníku
- definuje dno zásobníku
- instrukce, která vkládá obsah registru A do zásobníku

Instrukce PUSH procesoru definovaného na přednáškách

- numericky snižuje ukazatel vrcholu zásobníku
- numericky zvyšuje ukazatel vrcholu zásobníku
- inkrementuje SP
- · žádná z uvedených možností

Instrukce POP procesoru definovaného na přednáškách

- definuje dno zásobníku
- snižuje ukazatel vrcholu zásobníku
- · dekrementuje SP
- žádná z uvedených možností

Pro instrukci RET procesoru definovaného na přednáškách neplatí

- vrátí se z podprogramu do těla programu
- obsah vrcholu zásobníku je vložen do registru PC
- vrátí se na absolutní začátek programu
- používá se na konci podprogramu

Která posloupnost instrukcí může korektně obsloužit time-out při programování V/V operace procesoru definovaného na přednáškách

- 100 START
- 100 START
- 100 START

- zapíše obsah reg. A na datovou sběrnici pro v/v zařízení
- načte obsah datové sběrnice od v/v zařízení a uloží jej do A
- zapíše obsah reg. A a zahájí vstupně výstuní operaci

Která instrukce procesoru definovaného na přednáškách skočí na adresu, není-li operace hotova?

- START
- FLAG
- IN
- OUT

Posloupnost instrukcí procesoru definovaného na přednáškách LDA x, OUT, START, FLAG je

- korektní operace čtení ze vstupního zařízení
- korektní operace zápisu do výstupního zařízení
- žádná z ostatních odpovědí není správná

Posloupnost instrukcí procesoru definovaného na přednáškách START, IN, STA x, FLAG je

- korektní operace čtení ze vstupního zařízení
- korektní operace zápisu do výstupního zařízení
- žádná z ostatních odpovědí není správná

Co je time-out?

- doba, kterou jsme ochotni čekat na dokončení V/V operace
- doba, kterou jsme ochotni čekat na začátek V/V operace
- doba, kterou nemůžeme ovlivnit (je předdefinovaná)

Signál INTERRUPT (INTR)

- žádá o přerušení v procesoru
- deaktivuje rutinu pro obsluhu přerušení
- žádá o ukončení provádění procesu
- žádá o uvedení procesoru do počátečních podmínek

Která činnost se vykonává jako poslední Co neplatí pro instrukci STI procesoru při návratu z přerušení procesoru definovaného na přednáškách definovaného na přednáškách?

- provedení obslužné rutiny, která zjistí kdo žádá o přerušení
- přerušení provádění programu
- · obnovení PC, A, ...
- úklid obsahu registrů PC, A, ...

Pro přerušení platí:

- přerušit lze pouze během provádění instrukce
- Ize přerušit bezprostředně po zahájení obsluhy předchozího přerušení
- o přerušení se musí požádat signálem INTERRUPT
- přerušení se používá typicky v kritické sekci

 Pro signál RESET procesoru

Instrukce, která zakáže přerušení procesoru definovaného na přednáškách, se nazývá

- STI
- CLI
- INTERRUPT
- žádná možnost není správná

Co je v registru PC procesoru definovaného na přednáškách při uplatnění žádosti o přerušení

- adresa instrukce, která byla provedena před přerušením
- adresa instrukce, která nebyla provedena v důsledku přerušení
- adresa vrcholu zásobníku

Během uplatnění přerušení není provedeno

- uložení registru PC do zásobníku
- vynulování IF
- povolení přerušení
- uklizení registru A a dalších do zásobníku

Která z instrukcí nepatří mezi instrukce procesoru definovaného na přednáškách, které se použijí při návratu z přerušení

- POP
- STI
- RET
- CLI

- povolí přerušení až po provedení následující instrukce
- nastaví IF na hodnotu 1
- povolí přerušení po svém dokončení

Signál RESET procesoru definovaného na přednáškách nezpůsobí

- nastavení procesoru do počátečních podmínek
- vynulování příznaků procesoru
- předání řízení na adresu ukazující zpravidla do permanentní paměti
- zakázání přerušení
- vynulování IF

Pro signál RESET procesoru definovaného na přednáškách neplatí

- · provede se kdykoliv
- nastaví IF na nulu
- provede se pouze při přerušení
- předá řízení na adresu ukazující zpravidla do v permanentní paměti

Výběr instrukcí procesoru definovaného na přednáškách je řízen registrem

- PC
- AR
- DR
- IR

Který z registrů procesoru definovaného na přednáškách není 16bitový

- PC
- IR
- TA
- AR

Která instrukce procesoru definovaného na přednáškách nenastavuje příznaky

- INR
- ADD
- LDA
- CMA

Která instrukce procesoru definovaného na přednáškách nastavuje příznaky

- LDA
- ADD
- STA
- JMP

Která instrukce procesoru definovaného K obecnému mechanismu virtuální na přednáškách porovná zadaný registr paměti: Co je obvyklé? s registrem A

- CMA
- CMP
- STA
- LDA

Zásobník má strukturu

- LIFO
- FIFO
- PIFO
- SIFO

Fronta má strukturu

- LIFO
- FIFO
- PIFO
- SIFO

Pro instrukci CALL procesoru definovaného na přednáškách neplatí

- provede nepodmíněný skok na zadanou adresu
- přečte obsah zadaného registru
- provede totéž co posloupnost instrukcí PUSH a JMP

a se V/V zařízeními

- užíváním různých sběrnic
- signálem M/IO
- signálem NMI
- signálem CLK

Jak široká musí být adresa, pokud chceme adresovat 1 K stránek a každá stránka má velikost 4 K adresovatelných jednotek.

- 12 bitů.
- 16 bitů.
- 22 bitů.
- 32 bitů.

Pokud používáme virtualizaci paměti, pak

- šířka virtuální adresy by měla být větší nebo rovna šířce reálné adresy.
- šířka virtuální adresy by měla být menší nebo rovna šířce reálné adresy.
- se musí šířka virtuální adresy a reálné adresy shodovat.

- · Počet stránek je větší než počet rámců.
- Počet stránek je roven počtu rámců.
- Počet stránek je menší než počet rámců.

K obecnému mechanismu virtuální paměti: Která z adres může být širší (má se na mysli, že je více bitová)

- reálná
- virtuální
- bezpodmínečně musí být reálná a virtuální adresa stejně velké

K obecnému mechanismu virtuální paměti: Co platí?

- · Rámce jsou uloženy na disku, stránky isou v reálné paměti.
- · Stránky jsou uloženy na disku, rámce jsou v reálné paměti.

uloží návratovou adresu do zásobníku K obecnému mechanismu algoritmu LRU: Algoritmus LRU vybírá

- · nejdéle nepoužitou položku
- nejméněkrát použitou položku
- nejdéle uloženou položku

Procesor rozlišuje komunikaci s pamětí Algoritmus LRU pro výběr oběti např. při virtualizaci paměti vybírá

- nejméněkrát použitý obsah rámce.
- · nejdéle nepoužitý obsah rámce.
- náhodný rámec.
- předchozí použitý rámec.

Při virtualizaci paměti se používají pojmy

- segment a stránka.
- rámec a stránka.
- · segment a rámec.

K obecnému mechanismu algoritmu LRU: K úplnému ošetření osmi položek algoritmem LRU (pomocí neúplné matice) bychom potřebovali kolik bitů v neúplné matici?

- 28
- 36
- 24
- 16
- . 8

Pro virtualizaci paměti neplatí

- paměť dělíme do rámců a disk na stránky
- reálná adresa ukazuje do reálné paměti
- počet stránek je větší nebo roven počtu rámců
- rámec není stejně velký prostor jako stránka

Při virtualizaci paměti neplatí

- obsah špinavého rámce musím před jeho smazáním zapsat na disk
- označení čistý rámec odpovídá označení rámec, do kterého nebylo zapsáno
- rámec je špinavý, pokud má příznak parity nastaven na jedničku
- do špinavého rámce bylo něco zapsáno

Co platí pro segmenty a stránky:

- segmenty jsou různé velikosti, stránky jsou stejné velikosti
- segmenty jsou stejné velikosti, stránky isou různé velikosti
- jsou různé velikosti
- · segmenty jsou stejné velikosti, stránky jsou stejné velikosti

Co znamená LRU:

- least recently used
- last record used
- · load record unsaved
- let ring upset

Jaká je nesprávná konfigurace virtuální paměti u obecného procesoru?

- 32bitová reálná adresa a 48bitová virtuální adresa
- 32bitová reálná adresa a 24bitová virtuální adresa
- · 24bitová reálná adresa a 24bitová virtuální adresa

Jaká je maximální hodnota adresy reálné paměti v procesoru Intel 8086

- 1048575₁₀
- 1048576₁₀
- FFFF₁₆
- 10FFEF₁₆

Adresa 02AB:00A4₁₆ reálného režimu procesorů Intel se vyčíslí na hodnotu

- 2B54₁₆
- 2CB4₁₆
- 34F₁₆
- 0CEB₁₆
- na žádnou z uvedených

Na jaké hodnoty se nastaví bity příznakového registru provedením instrukce ADD v procesorech Intel řady 86 s operandy -5 a 8

- CF=1, ZF=SF=OF=0
- CF=ZF=SF=OF=0
- CF=SF=1, ZF=OF=0
- ZF=CF=OF=1, SF=0

Jaký je korektní postup činností při přerušení v procesoru Intel 8086?

- do zásobníku se uloží obsah reg. příznaků
- vynulují se příznaky IF a TF
- Rádný z uvedených.

Jaká je poslední (20bitová) adresa segmenty jsou různé velikosti, stránky tabulky přerušovacích vektorů v procesoru Intel 8086 a reálných režimech procesorů vyšších

- 1023₁₀
- 255₁₀
- 4095₁₀
- 0FFFFFh

Adresový prostor adres V/V zařízení v procesorech Intel (typicky 8086) je

- 20bitový
- 16bitový
- 8bitový

Kolik různých přerušení může vzniknout v procesoru Intel 8086 a reálných režimech procesorů vyšších

- 256
- 128
- 1024
- 65536

Která z uvedených variant instrukce

- MOV prom1,AX
- MOV prom1,prom2
- MOV BX,prom2
- MOV AX,DX

Která z uvedených variant instrukce MOV v procesorech Intel je nekorektní? nejbezpečnější realizace podmínky?

- MOV AL, BX
- MOV CX,DX
- MOV CL,DH
- MOV BL,BL

Jaké dvě různé operace se v procesorech Intel realizují jedinou instrukcí?

- SAL a SHL provádí SHL (arit. a logický posun bitů vlevo se vždy provádí jako logický posun vlevo)
- SAL a SHL provádí SAL (arit. a logický posun bitů vlevo se vždy provádí jako aritm. posun vlevo)
- SAR a SHR provádí SAR (arit, a logický posun bitů vpravo se vždy provádí jako aritm. posun vpravo)
- · SAR a SHR provádí SHR (arit. a logický posun bitů vpravo se vždy provádí jako logický posun vpravo)

Které varianty instrukce JMP v procesorech Intel přiřazují (nepřičítají) operand do registru IP?

- vzdálený (far) skok a nepřímý skok
- blízký (near) skok a nepřímý skok
- krátký (short) skok a blízký (near)
- vzdálený (far) skok a blízký (near) skok

Které varianty instrukce JMP v procesorech Intel přičítají (nepřiřazují) operand k obsahu registru IP?

- vzdálený (far) skok a nepřímý skok
- blízký (near) skok a nepřímý skok
- krátký (short) skok a blízký (near)
- vzdálený (far) skok a blízký (near) skok

Programujeme cyklus typu REPEAT, ve MOV v procesorech Intel je nekorektní? kterém na konci bloku testujeme, zda je hodnota i>5. Pokud ano, pak provádění bloku opakujeme. Neznáme však velikost bloku, který musíme opakovat. Blok začíná návěštím "Blok" a programujeme jej na procesoru Intel 8086. Jaká bude správná a

- CMP i,5 JG Blok
- CMP i,5 JLE Dále JMP Blok Dále:
- CMP i,5 JG Dále JMP Blok Dále:

Čím se procesor 8088 liší od procesoru 8086

- 8088 je určen pro vnější osmibitové prostředí
- 8088 je 8bitový
- 8088 je 16bitový
- 8088 je 20bitový

NMI - nemaskovatelné přerušení se používá například při

- hlášení chyb parity paměti
- skocích z cyklu
- přechodu do reálného režimu
- žádostech o přerušení z rychlého zařízení (např. disku)

Při adresaci paměti procesoru 8086 neplatí

- používá se 20bitová adresa složená z dvou 16bitových komponent
- adresu zapisujeme ve tvaru segment: offset
- používá se 32bitová adresa složená z dvou 16bitových komponent

Mezi segmentové registry nepatří:

- CS
- PC
- SS
- DS

Pro registr CS platí

- je určen pro výpočet adresy instrukce
- slouží pro výpočet adresy dat
- je řídícím registrem
- je ekvivalentem registru PC

Pro registr IP neplatí

- · je ekvivalentem registru PC
- obsahuje část adresy právě prováděné instrukce
- obsahuje pomocný datový segment

Adresu paměti u procesoru 8086 zapisujeme ve tvaru

- · segment
- offset
- segment: offset
- · offset: segment

Jakou velikost má jeden segment v procesoru 8086

- 16 bitů
- 20 KB
- 64 KB
- 1 MB

Segment procesoru 8086 začíná na adrese dělitelné

- není specifikováno, smí začínat na libovolné
- 16
- 4 K
- 32

Jaká je korektní posloupnost operací při uplatnění přerušení v procesoru 8086?

- IF:=0; PUSH F; PUSH CS; PUSH IP
- PUSH F; IF:=0; PUSH CS; PUSH IP
- PUSH AX; IF:=0; PUSH F; PUSH IP
- PUSH IP; PUSH AX; PUSH F; IF:=0

Instrukce IRET procesoru 8086 obnovuje ze zásobníku obsahy registrů

- IP, AX
- · IP, CS
- · IP, CS, F
- · AX, CS, IP, F

Jaký rozsah adres v procesoru 8086 bude přepsán, pokud se v nekonečné smyčce zacyklí použití instrukce PUSH AX?

- 00000-FFFFF
- SS:0000-SS:FFFF
- CS:0000-CS:FFFF
- DS:0000-DS:FFFF

V trasovacím režimu (TF=1) procesoru 8086 se provedení jedné instrukce spustí instrukcí

- IRET
- JMP
- CALL
- RET

Trasovací režim procesoru 8086 se spouští nastavením TF=1

- instrukcí SETTF
- instrukcí CLTF
- v příznaku TF
- · v registru TF

Trasovací režim procesoru 8086 se spouští nastavením TF=1 a ukončuje se

- · instrukcí CLTF
- instrukcí STOPT
- neukončuje se

Důvodem, proč po použití instrukce MOV SS,... v procesoru 8086 se zakazuje přerušení na dobu provádění jedné následující instrukce, je

- · časová náročnost instrukce MOV SS,...
- · kontrola přetečení obsahu zásobníku
- atomické naplnění adresy vrcholu zásobníku
- odstranění zbývající návratové adresy ze zásobníku

Nepovolená instrukce v procesoru 8086 je

- MOV CS,...
- MOV SS,...
- MOV DS,...
- MOV ES,...

Programátor procesoru 8086 nastavuje příznaky

- DF, IF, TF
- · OF, SF, ZF
- · AF, PF, CF

Příznak ZF procesoru 8086 je nastaven Při přerušení v procesoru 8086 se jako

- · při nulovém výsledku operace
- při krokovacím režimu
- při aritmetickém přeplnění
- při sudé paritě výsledků

Příznak TF procesoru 8086

- uvede procesor do krokovacího režimu
- zabrání uplatnění vnějších maskovatelných přerušení
- je nastaven při nulovém výsledku operace

Všechny odkazy na zásobník procesoru 8086 jsou segmentovány přes registr

- SS (Stack segment)
- CS (Code segment)
- DS (Data segment)
- ES (Extra segment)

Pro vnější přerušení procesoru 8086 neplatí

- vyvolá se pomocí signálu INTERRUPT
- vyvolá se např. při dělení nulou
- · vyvolá se pomocí signálu NMI
- dělí se na maskovatelná a nemaskovatelná

Pro vnitřní přerušení procesoru 8086 neplatí

- vyvolá se chybou při běhu programu
- · je generováno programově
- vyvolá se instrukcí INT n
- je generováno řadičem přerušení

Akce, která se neprovádí při přerušení procesoru 8086:

- vynulují se příznaky IF a TF
- provede se instrukce OUT
- do zásobníku se uloží registr CS
- do zásobníku se uloží registr IP

Pro tabulku adres rutin obsluhujících přerušení procesoru 8086 neplatí

- začíná na adrese 0:0000
- začíná na začátku adresového prostoru
- má 256 řádků
- začíná na adrese SS:0000

Při přerušení v procesoru 8086 se jako první operace provádí

- do zásobníku se uloží registr příznaků
 (F)
- vynulují se příznaky IF a TF
- registr IP se naplní 16bitovým obsahem adresy n x 4
- registr CS se naplní 16bitovým obsahem adresy n x 4 + 2

Při návratu z přerušení v procesoru 8086 se provádí instrukce IRET, pro níž neplatí

- · ze zásobníku se obnoví registr IP
- · ze zásobníku se obnoví registr CS
- ze zásobníku se obnoví příznakový registr
- ze zásobníku se obnoví registr SS

Návrat do přerušeného procesu v procesoru 8086 typicky zajistí instrukce

- IRET
- MOV
- OUT
- POP

Mezi rezervovaná přerušení procesoru 8086 nepatří

- · pokus o dělení nulou
- krokovací režim
- ladící bod
- časovač

Pro trasovací režim procesoru 8086 neplatí

- po provedení instrukce je generováno přerušení INT 1
- procesor je uveden do krokovacího režimu příznakem TF (Trace Flag)
- krokovací režim využívá instrukci IRET
- probíhá, když je TF nastaven na nulu

Příznak TF procesoru 8086 se nastaví na iedničku

- při obnově příznakového registru (F) ze zásobníku instrukcí IRET
- instrukcí SETTF
- při obnově registru IP ze zásobníku instrukcí IRET
- žádná z uvedených možností

Signál RESET procesoru 8086 neprovede Pro instrukci MOV procesoru 8086 neplatí

- vynuluje IP
- vynuluje příznakový registr
- nastaví TF = 1
- vynuluje SS

Chci naplnit registr AH procesoru 8086 hodnotou 50, které řešení není správné Který ze zápisů instrukcí procesoru

- MOV AH,50
- PADESAT DB 50
- AH,PADESAT
- MOV AH,[50]

Chci naplnit registr AH procesoru 8086 obsahem adresy 50, které řešení je správné

- MOV AH,50
- PADESAT DB 50
- AH,50
- MOV AH,[50]
- žádná z uvedených možností

Instrukce procesoru 8086 MOV AH,[BX] Pro aritmetické instrukce procesoru provede

- hodnota registru BX se uloží do reaistru AH
- hodnota, která je na adrese v registru BX, se uloží do AH
- registr BX se naplní hodnotou z adresy Pro znaménkové rozšíření procesoru uložené v registru AH
- hodnota registru AH se uloží do registru BX

Instrukce procesoru 8086 MOV AH,[BX][DI] provede

- hodnota vzniklá sečtením obsahů registrů BX a DI se uloží do registru
- hodnota, která je na adrese, jež vznikne součtem adres v registrech BX a DI se uloží do AH
- hodnota, která je uložena v AH se uloží do registrů BX a DI
- hodnota, která je na adrese, jež vznikne rozdílem adres v registrech BX a

Který ze zápisů instrukcí procesoru 8086 není korektní operací?

- MOV AX,BX
- MOV AX,[BX]
- MOV AX,PROM[BX][DI]
- žádná z uvedených možností

mění příznaky

- nelze s ní měnit registr CS
- má povolen tvar MOV BX,CX
- nemá povolen tvar MOV adresa, adresa

8086 je špatně

- MOV CS,DS
- MOV DS,adresa
- MOV adresa,DS
- MOV CX,DX

Pro instrukci procesoru 8086 MOV SS,... platí

- po dobu trvání následující instrukce je zakázáno přerušení
- po dobu trvání předchozí instrukce bylo zakázáno přerušení
- je nepovolená operace

8086 platí

- nesmí nastavovat příznaky
- nepatří sem instrukce ADD
- nepatří sem instrukce INC
- žádná z uvedených možností

8086 neplatí

- do všech bitů nové horní poloviny se zkopíruje znaménkový bit původního objektu
- znaménko je zachováno
- všechny bity původního objektu se zkopírují do jeho nové horní poloviny

Instrukce procesoru 8086 ADC se používá

- při sčítání širších obiektů
- při násobení dvou čísel
- při odčítání s výpůjčkou
- při přičítání k obsahu registru CX

Při násobení reálných čísel procesoru 8086 použijeme instrukci

- IMUL
- MUL
- IDIV
- · žádná z uvedených možností

Který z následujících skoků procesoru 8086 mění registr CS?

- vzdálenný (far)
- krátký (short)
- blízký (near)
- žádná z uvedených možností

Který skok procesoru 8086 pracuje se 16bitovým operandem?

- vzdálenný (far)
- krátký (short)
- blízký (near)
- žádná z uvedených možností

Který skok procesoru 8086 pracuje s 8bitovým operandem?

- vzdálenný (far)
- krátký (short)
- blízký (near)
- žádná z uvedených možností

Pro podmíněný skok procesoru 8086 neplatí

- je vždy krátký
- reaguje na obsah příznaků
- vždy mění registr CS
- cílová adresa se vytvoří 8bitovým přírůstkem

Do zásobníku procesoru 8086 se vkládají

- 8bitové objekty
- 16bitové objekty
- 32bitové objekty
- 64bitové objekty

Pro instrukci POP SS,... platí

- po dobu trvání následující instrukce je zakázáno přerušení
- po dobu trvání předchozí instrukce bylo zakázáno přerušení
- je nepovolená operace

Jaký je rozdíl mezi instrukcí RET a RETF procesoru 8086

- RETF naplní i registr CS
- RET i RETF pracují s 32bit. objekty, ale pouze RETF naplňuje registr CS
- RET i RETF pracují s 32bit. objekty, ale pouze RET naplňuje registr CS

Instrukce HALT procesoru 8086

- vynuluje registry
- vypne počítač
- uvede procesor do stavu čekání
- vynuluje příznaky a registry

Proč instrukce STI procesoru 8086 nepovoluje přerušení ihned?

- aby mohlo být provedeno instrukcí MOV SP,... atomické naplnění ukazatele vrcholu zásobníku
- aby mohl být nepřerušitelně zastaven procesor instrukcí HLT
- aby mohl být atomicky nepřerušitelně uložen ukazatel vrcholu zásobníku
- aby byla nepřerušitelně ze zásobníku vybrána adresa přerušené instrukce

Kde začíná segment reálného režimu (procesoru 8086)?

- na libovolné adrese
- na adrese dělitelné 4
- na adrese dělitelné 16
- na adrese dělitelné 32

Adresa reálného režimu procesorů Intel x86 ve tvaru segment : offset 01B2:0015 představuje dvacetibitovou adresu (hexadecimálně)

- 01B35
- 01B17
- 011B5
- 002B5

Registr IP procesoru Intel 8086 obsahuje

- segmentovou část adresy právě prováděné instrukce
- offsetovou část adresy právě prováděné instrukce
- segmentovou část adresy následující instrukce
- offsetovou část adresy následující instrukce

Všechny odkazy na zásobník v procesoru Intel 8086 jsou

- AX
- F
- SS
- CS
- DS

Instrukce IRET reálného režimu procesoru Intel x86 zajišťuje

- návrat do přerušeného procesu a jeho pokračování
- přerušení procesu
- přerušení procesu po provedení následující instrukce
- návrat od přerušeného procesu. Jeho pokračování zajistí jiná instrukce
- · návrat z podprogramu

Je-li v procesoru 8086 nastaven příznak OF=1 a následně je provedena instrukce INTO, nastane

- přepnutí do krokovacího režimu
- přerušení INT 4
- návrat do přerušeného procesu
- obnovení registru IP ze zásobníku

Procesor 8086 poskytuje pro adresování V/V bran

- 8bitovou adresu
- 16bitovou adresu
- 20bitovou adresu
- 24bitovou adresu

Která z následujících operací procesoru Intel x86 je nekorektní

- MOV BX,CX
- MOV DI,10000
- MOV AX,CS
- MOV CS,AX

Instrukce AND Intel x86 provádí

- logický součin
- logický součet
- přidání hodnoty ze zdrojového registru do cílového
- · součet dvou čísel
- přičtení čísla

Instrukce IN AX,DX procesoru x86 zajišťuje

- přenos slabiky z AL do V/V brány podle DX
- přenos slova z AL do V/Vbrány podle DX
- přenos slabiky z V/V brány podle DX do registru AX
- přenos slova z V/V brány podle DX do registru AX

Instrukce INC CL provede v procesoru x86

- CL := CL + CL
- CL := CL + 1
- CL := 1
- CL := 0

Kolika bitovou adresu při přístupu do paměti vytváří procesor Intel 8086?

- 16
- 20
- 24
- 32

Adresa SS:SP ukazuje vždy na

- dno zásobníku
- na vrchol zásobníku
- na adresu naposled prováděné instrukce
- na adresu naposled použité V/V brány

Jaká je maximální dosažitelná adresa v reálném režimu procesoru Intel 80286 a vyšších procesorů

- OFFFFFh
- 10FFEFh
- 10FFFFh
- 10FFFEh

Kolik řádků má tabulka popisovačů segmentů GDT nebo LDT procesoru Intel 80286 a vyšších procesorů

- 8192
- 4096
- 16384
- 65536

Virtuální adresa procesoru Intel 80286 má celkem 30 bitů na adresaci virtuální paměti. Jak velká tato virtuální paměť může být?

- 1 GB
- 4 GB
- 2 GB
- 16 MB

S obsahem instrukčního segmentu procesoru Intel 80286 je povoleno následující:

- číst a provádět; mám-li potřebná práva, pak i zapisovat
- pouze provádět a možná i číst; mám-li potřebná práva
- · cokoli, pokud mám potřebná práva

Popisovač segmentu s LDT (tabulka popisovačů lokálního adresového prostoru) se v procesoru Intel 80286 smí nacházet v těchto tabulkách

- pouze v GDT
- v GDT i v LDT
- v GDT a IDT
- v žádné z nich

Popisovač segmentu s GDT (tabulka popisovačů globálního adresového prostoru) se v procesoru Intel 80286 smí nacházet v těchto tabulkách

- pouze v GDT
- v GDT i v LDT
- pouze v IDT
- v žádné z nich

V reálném režimu procesoru Intel 80286 nelze provést instrukci

- LLDT (plnění registru LDTR)
- LGDT (plnění registru GDTR)
- LIDT (plnění registru IDTR)
- LMSW (plnění registru MSW)
- HLT (zastavení procesoru)

Jaký je rozdíl mezi přerušením typu trap a fault v procesoru Intel 80286?

- Fault je fatální stav, ze kterého se nelze zotavit. Z přerušení trap se zotavit lze.
- Fault pracuje s adresou ukazující na instrukci, která přerušení způsobila. Trap poskytuje adresu ukazující na instrukci následující.
- Přerušení typu trap je obsluhováno branou z tabulky IDT a přerušení fault je obsluhováno branou z tabulky GDT.

Co znamená výjimka (přerušení) "Výpadek segmentu" v procesoru Intel 80286?

- procesor při vyčíslování virtuální adresy narazil na nulovou hodnotu bitu Present
- procesor při vyčíslování virtuální adresy narazil na nulovou hodnotu bitu Accessed
- procesoru se nepodařilo vyčíslit reálnou adresu z virtuální

Procesor 80286 má

- 16bit. datovou a 24bit. adresovou sběrnici
- 24bit. datovou a 20bit. adresovou sběrnici
- 32bit. datovou a 24bit. adresovou sběrnici
- 24bit. datovou a 32bit. adresovou sběrnici

Procesor 80286 má

- · chráněný a reálný režim
- chráněný a virtuální režim
- sběrnicový a reálný režim
- reálný a nereálný režim

Pro chráněný režim procesoru 80286 neplatí

- není možnost jej softwarově vypnout
- tabulka vektorů přerušení má velikost
 1 KB
- poskytuje prostředky 4úrovňové ochrany
- adresuje 16 MB reálné paměti

Pro registr MSW procesoru 80286 neplatí

- slouží k zapnutí chráněného režimu
- slouží k zapnutí reálného režimu
- plní se instrukcí LMSW
- čte se instrukcí SMSW

Signál RESET u procesoru 80286

- zapíná chráněný režim procesoru
- zapíná reálný režim procesoru
- vypíná koprocesor
- žádná z uvedených možností

Bit P popisovače datového segmentu procesoru 80286 nastavený na 1 sděluje:

- obsah segmentu je uložen na disku
- obsah segmentu je prázdný
- obsah segmentu je uložen v reálné paměti
- je vždy automaticky nastaven na iedničku

Bit ED datového segmentu procesoru 80286 určuje

- zda datový segment obsahuie zásobník
- přístupová práva k segmentu
- zakazuje čtení obsahu segmentu
- · zakazuje zápis do segmentu

Bit C (Conforming) popisovače Která z možností nepatří mezi instrukčního segmentu procesoru 80286 rezervovaná přerušení 80286?

- může způsobit změnu úrovně oprávnění pro podprogramy volané v tomto seamentu
- indikuje směr rozšiřování segmentu
- je nastaven na jedna, je-li procesor v reálném režimu
- · žádná z uvedených možností

Pro registr GDTR procesoru 80286 neplatí

- má délku 5 bajtů
- při spuštění chráněného režimu se do něj vkládá adresa tabulky GDT
- naplňuje se instrukcí LGDT
- označuje segment stavu procesoru

Pro TSS (segment stavu procesoru 80286) neplatí

- na segment TSS ukazuje popisovač systémového segmentu, který může být umístěn pouze v GDT
- slouží k uložení kontextu procesu, kterému bylo odebráno řízení
- je to ukazatel, jestli je procesor 80286 v chráněném režimu
- každý proces má vlastní TSS

Interrupt Descriptor Table (IDT) procesoru 80286 nemá popisovač

- brána zpřístupňující TSS
- brána pro maskující přerušení
- brána pro nemaskující přerušení
- brána pro V/V operace

Pro Interrupt Descriptor Table (IDT) procesoru 80286 neplatí

- obsahuje až 256 popisovačů rutin obsluhujících přerušení
- její adresu obsahuje IDTR
- slouží k uložení kontextu procesu, kterému bylo odebráno řízení
- obsahuje nejvýše tolik popisovačů, kolik dovoluje limit segmentu

Který z následujících názvů nespecifikuje kategorii přerušení generovanou procesorem 80286?

- Fault
- Trap
- Abort
- Flag
- - dělení nulou
 - přeplnění
 - chybný operační kód
 - výpadek systému

Zapnutí chráněného režimu procesoru 80286 neznamená

- změnu způsobu adresace
- nastavení bitu PE=1 registru MSW
- · vypnutí reálného režimu
- restart procesoru

Počet lokálních adresových prostorů procesoru 80286 typicky se rovná

- počtu spuštěných procesů
- počtu uplatněných přerušení
- iedné
- záleží na operačním systému
- velikosti tabulky GDT

Procesor Intel 80386 je

- 32bitový procesor s 32bitovou adresovou a datovou sběrnicí
- 32bitový procesor s 24bitovou vnější a 32bitovou vnitřní adresovou sběrnicí
- 32bitový procesor s 24bitovou adresovou a 32bitovou datovou sběrnicí

Selektor v chráněném režimu procesoru Co znamená "Mapa přístupných V/V Intel 80386 je bran" v procesoru Intel 80386?

- 16bitový
- 32bitový
- 48bitový
- 64bitový

Procesor Intel 80386 pracuje s těmito možnými adresami

- 48bitovou logickou adresou, 32bitovou lineární adresou a 32bitovou fyzickou adresou
- lineární adresou a 32bitovou fyzickou adresou
- 48bitovou logickou adresou, 48bitovou lineární adresou a 32bitovou fyzickou adresou

Kolika bity plní programátor segmentové registry v procesoru Intel 80386 a vyšších typech?

- 16
- 32
- 48
- 64

Stránkováním se v procesoru Intel 80386 transformuje

- logická adresa na lineární
- fyzická adresa na lineární
- lineární adresa na fyzickou
- logická adresa na fyzickou

Největší možná velikost segmentu v procesoru Intel 80386 a vyšších typech procesoru 80386 neplatí je

- 64 KB
- 1 MB
- 4 MB
- 1 GB
- 4 GB

Velikost stránky v procesoru Intel 80386 a vyšších typech je

- maximálně 4 KB
- právě 4 KB
- · maximálně 1 KB
- právě 1 KB

Seznam existuiících V/V adres na počítači.

- Seznam V/V adres dostupných jednomu konkrétnímu (typicky V86) procesu.
- Seznam V/V adres dostupných (typicky V86) procesům chráněného režimu.

Jaká část adresy vstupující do • 64bitovou logickou adresou, 48bitovou postihnuta (v procesoru Intel 80386)?

- dolních 12 bitů
- dolních 10 bitů
- horních 10 bitů
- horních 20 bitů

Kolik bitů je nezbytných pro uložení adresy stránkovací tabulky (zpravidla ve stránkovacím adresáři) a stránkovacího adresáře (zpravidla v CR3)?

- 20
- 32
- 16

Pro procesor 80386 neplatí

- datová sběrnice má 32 bitů
- Ize použít stránkování
- data se do/z paměti přenášejí po 4 baitech
- adresová sběrnice má 24 bitů

Pro adresaci v chráněném režimu

- offset je 16bitový
- selektor je stejný jako v 80286
- báze segmentu je 32bitová
- limit segmentu může být až 4 GB

Co znamená, že stránkovací jednotka procesoru 80386 není zapnuta

- fyzická adresa je totožná s lineární adresou
- fyzická adresa obsahuje 48 bitů
- lineární adresa obsahuje 48 bitů
- lineární adresa je totožná s logickou adresou

Pro stránkování procesoru 80386 platí

- je povinně zapnuto
- je-li vypnuto, tak se lineární adresa transformuje na logickou
- je-li zapnuto, tak se lineární adresa transformuje na fyzickou
- žádná z uvedených možností

Pro stránkový adresář procesoru 80386 neplatí

- má velikost právě jedné stránky
- ukazuje na max. 1024 stránkových tabulek
- je k dispozici pouze se zapnutým stránkováním
- žádná z uvedených možností

Pro bit D (Dirty) při stránkování procesoru 80386 neplatí

- procesor ho nastaví na jedničku při zápisu do rámce
- · procesor jej nenuluje, to má na starost software
- rozlišuje, jestli je rámec špinavý nebo
 Procesor 80486 nemá
- pokud je nastaven na jedničku, tak je rámec vybrán za oběť

Pro TLB neplatí

- je zapnuto pouze v chráněném režimu neliší v procesoru 80286
- je to vyrovnávací paměť
- při vyprazdňování se vynulují bity V (validita)

Procesor 80386 má 32 bitovou adresovou sběrnici A2 až A31, což znamená, že

- do paměti se jde alespoň pro 1 bajt
- do paměti se ide alespoň pro 2 bajty
- do paměti se ide alespoň pro 4 bajty
- do paměti se jde alespoň pro 8 bajtů

Jaký má význam interní vyrovnávací paměť v procesoru Intel 80486?

- Pamatuie si posledních několik transformovaných lineárních adres na fyzické.
- Pamatuje si několik posledních obsahů adres čtených z fyzické paměti vč.
- Vyrovnává rozdíly toku dat mezi interními jednotkami procesoru pro proudové zpracování (pipeline).

Kolik bitů by potřeboval algoritmus LRU v interní vyrovnávací paměti procesoru Intel 80486 k tomu, aby úplně fungoval pro výběr ze čtyř položek na řádku (předpokládejme, že by byl realizován neúplnou maticí)?

- 3
- 4
- 6
- 8
- 10

- datovou sběrnici 32bitů
- adresovou sběrnici 32bitů
- integrovaný matematický koprocesor
- žádná z uvedených možností

• funguje na principu asociativní paměti Procesor 80486 se od procesoru 80386

- velikosti vnějších sběrnic
- interní vyrovnávací paměti
- nové technologii, která se blíží k RISCovým procesorům
- jednotce operací v pohyblivé řádové čárce

V procesoru Pentium

- se dvnamicky předvídá výskyt nepodmíněné skokové instrukce
- se dynamicky předvídá výskyt podmíněné skokové instrukce
- se dynamicky předvídá výsledek vyhodnocení podmínky podmíněné skokové instrukce
- se staticky předvídají nepodmíněné skoky dvouvariantními instrukcemi

Který rys je vlastní technologii procesorů RISC?

- usnadnění programování pro člověka programátora
- zrychlení provádění poskytnutím co nejbohatších instrukcí
- integrování vnější paměti dovnitř procesoru
- poskytnutí velkého počtu registrů v procesoru

Základní šířka dat interně zpracovávaných koprocesorem pro výpočty v pohyblivé řádové čárce je

- 80 bitů
- 128 bitů
- 64 bitů
- 40 bitů
- 32 bitů

Nejmenší záporné číslo (největší v absolutní hodnotě; číslo na levé hranici rozsahu zobrazení) v IEEE 754 má

- znaménko mantisy 1, největší kladné zobrazitelné číslo v exponentu.
- znaménko mantisy 1, nejmenší záporné zobrazitelné číslo v exponentu.
- znaménko mantisy 1, nulový exponent.
- · znaménko mantisy 0.

Signály STROBE a BUSY používá rozhraní

- RS-232
- V.24
- Centronics
- USB

Paralelní rozhraní je

- RS-232.
- · Centronics.

Rozhraní Centronics: Signál !STROBE je v aktivní úrovni

- dokud neuplyne doba "předstih"
- dokud neuplyne doba "přesah"
- dokud tiskárna signálem BUSY neoznámí konec zpracování
- pevně stanovenou dobu

Rozhraní Centronics: Signál !STROBE je v aktivní úrovni

- když přenáší hodnotu logická "0"
- když přenáší hodnotu logická "1"

Rozhraní RS-232C: Přenos dat tímto rozhraním je:

- synchronní
- asynchronní
- synchronní i asynchronní
- nic z toho

Rozhraní RS-232C: Jaké zapojení nulmodemu je nesmyslné?

- SG--SG, TxD--RxD, RxD--TxD
- SG--SG, TxD--TxD, RxD--RxD
- SG--SG, TxD--RxD, RxD--TxD, RTS+CTS--DCD, DCD--RTS+CTS

USB při komunikaci používá protokol

- Master-Slave
- CSMA/CD
- Token-Ring