CC26xx HW Training

RF Front End options and Antennas

Fredrik Kervel, Bluetooth Smart Applications

.

Reference Schematic

RF pins

RF_P: RF positive output / input

RF_N: RF negative output / input

RX_TX: Optional RF bias pin

Several options on output configuration:

- Differential output: Both RF pins are used and a balun + a pi-filter is required between the CC26xx and the antenna
- Single ended output: Only one of the RF pins is used for RF output.
 Only a pi-filter is required between the CC26xx and the antenna. Output power is reduced and sensitivity is degraded
- External biasing of the RF pins can be applied through the RX_TX pin.
 This will improve sensitivity, but requires an additional inductor.
- For single ended configuration, the unused RF pin may alternatively be used as bias pin
- RX_TX can be used for external control of for example an RF switch

Note:

- The CC26xx 7x7 package does not have RX_TX-pin, while the CC13xx 7x7 package does.

RF Frontend options

External bias

Sensitivity:

- BLE: -96 dBm

- Zigbee: -97 dBm

Sensitivity:

 $Pout_max = 5 dBm$

Differential output

Sensitivity:

- BLE: -94 dBm

- Zigbee: -95 dBm

 $Pout_max = 2 dBm$

Single-ended output

RF Frontend options

	Differential		Single Ended		
	Ext. Bias	Int. Bias	Ext. Bias	Int. Bias	
Output Power	5	5	2	2	[dBm]
BLE Sensitivity	-97	-96	-96	-94	[dBm]
Zigbee Sensitivity	-100	-99	-97	-95	[dBm]
Inductors	5	4	2	1	
Capacitors	5	5	3	3	
	10	9	5	4	

Antennas for 2.4 GHz

DN007

AN043

PCB antennas

- Low (no) cost
- Simple to integrate (follow the reference design ©)
- Good performance
- TI reference design for two different sizes which typically fits within customer requirements (board space), DN007 and AN043

– Application Notes:

- DN007: http://www.ti.com/litv/pdf/swru120b
- AN043: http://www.ti.com/litv/pdf/swra117d
- Antenna selection guide: http://www.ti.com/litv/pdf/swra161b

Chip antennas

- Can be used in applications where size is critical
- Performance is comparable to PCB antennas (depending on size)
- Cost is (obviously) higher
- Contact antenna manufacturer for recommendations
 - Johanson, TDK, etc.

Antenna tuning

- Required for both PCB- and chip antennas
- Can be don with matching network.....
- or Antenna length (PCB antennas)

6

Available reference designs

- CC2650EM-7ID (7x7, Internal bias, Differential output)
- CC2650EM-5XD (5x5, External bias, Differential output)
- CC2650EM-4XS (4x4, External bias, Single ended output)
- CC2650EM-Murbal (5x5, Internal bias, Integrated balun)