

APPROVAL SHEET

MULTILAYER CERAMIC CAPACITORS

Middle & High Voltage Series (200V to 4kV)

0402 to 1812 Sizes

NP0, X7R & Y5V Dielectrics

Halogen Free & RoHS compliance

*Contents in this sheet are subject to change without prior notice.

1. INTRODUCTION

WTC middle and high voltage series MLCC is designed by a special internal electrode pattern, which can reduce voltage concentrations by distributing voltage gradients throughout the entire capacitor. This special design also affords increased capacitance values in a given case size and voltage rating.

Chips size 1206 and larger to use on reflow soldering process only. Capacitors with X7R dielectrics are not intended for AC line filtering applications. Capacitors may require protective surface coating to prevent external arcing.

2. FEATURES

- a. High voltage in a given case size.
- b. High stability and reliability.

3. APPLICATIONS

- a. Snubbers in high frequency power converters.
- b. High voltage coupling/DC blocking.
- c. DC-DC converters.
- d. Back-lighting inverters

4. HOW TO ORDER

<u>1808</u>	<u>N</u>	<u>100</u>	<u>J</u>	<u>202</u>	<u>C</u>	Ī
<u>Size</u>	<u>Dielectric</u>	Capacitance	<u>Tolerance</u>	Rated voltage	<u>Termination</u>	<u>Packaging</u>
Inch (mm) 0402 (1005) 0603 (1608) 0805 (2012) 1206 (3216) 1210 (3225) 1808 (4520) 1812 (4532)	N =NP0 (C0G) B =X7R F =Y5V	Two significant digits followed by no. of zeros. And R is in place of decimal point. eg.: 0R5=0.5pF 1R0=1.0pF 100=10x10° =10pF	B=±0.1pF C=±0.25pF D=±0.5pF F=±1% G=±2% J=±5% K=±10% SYST M=±20% Z=-20/+80%	Two significant digits followed by no. of zeros. And R is in place of decimal point. 201=200 VDC 251=250 VDC 401=400 VDC 451=450 VDC 501=500 VDC 631=630 VDC 102=1000 VDC 152=1500 VDC 202=2000 VDC 202=2000 VDC 302=3000 VDC 402=4000 VDC	C =Cu/Ni/Sn	T=7" reeled G=13" reeled

5. EXTERNAL DIMENSIONS

0:						
Size Inch (mm)	L (mm)	W (mm)	T (mm)/Syr	nbol	Remark	M _B (mm)
0402 (1005)	1.00±0.05	0.50±0.05	0.50±0.05	N	#	0.25 +0.05/-0.10
	1.60±0.10	0.80±0.10	0.80±0.07	S		
0603(1608)	1.60 +0.15/-0.10	0.80 +0.15/-0.10	0.80 +0.15/-0.10	Х		0.40±0.15
			0.60±0.10	Α		
0005 (2012)	2.00±0.15	1.25±0.10	0.80±0.10	В		0.50.0.20
0805 (2012)			1.25±0.10	D	#	0.50±0.20
	2.00±0.20	1.25±0.20	1.25±0.20	I	#	
	3 20+0 15		0.80±0.10	В		
1206 (3216)	3.20±0.15	1.60±0.15	0.95±0.10	С	#	0.60±0.20
1200 (3210)			1.25±0.10	D	#	(0.5±0.25)*
	3.20±0.20	1.60±0.20	1.60±0.20	G	#	
	3.20±0.30	2.50±0.20	0.95±0.10	С	#	
	3.20±0.30	2.50±0.20	1.25±0.10	D	#	
1210 (3225)			1.60±0.20	G	#	0.75±0.25
1210 (3225)	3.20±0.40	2.50±0.30	2.00±0.20	K	#	0.75±0.25
			2.50±0.30	М	#	
	3.20±0.60**	2.50±0.50**	2.50±0.50**	IVI	#	
1909 (4520)	4.50+0.5/-0.3	2.03±0.25	1.25±0.10	,D	#	0.50±0.25
1808 (4520)	4.50+0.5/-0.5	2.03±0.25	2.00±0.20	K	#/>	0.50±0.25
			1.25±0.10	D	#-2	Bi
		3.20±0.30	1.60±0.20	5 G/-	14	7.51
1812 (4532)	4.50+0.5/-0.3		2.00±0.20	K	#9	0.50±0.25
		3 20+0 40	2.50±0.30	M	#	

2.80±0.30

6. GENERAL ELECTRICAL DATA

Dielectric	On NPO	X7R	Y5V
Size	0402, 0603, 0805, 1206, 1	210, 1808, 1812	0805, 1206, 1210, 1812
Capacitance*	0.5pF/to 0.033µF	100pF to 1.0μF	0.01μF to 0.68μF
Capacitance tolerance***	Cap≤5pF; C (±0.25pF) 5pF <cap<10pf; (±0.5pf)="" (±1%),="" (±10%)<="" (±2%),="" (±5%),k="" cap≥10pf;="" d="" f="" g="" j="" th=""><th>K (±10%), M (±20%)</th><th>Z (-20/+80%)</th></cap<10pf;>	K (±10%), M (±20%)	Z (-20/+80%)
Rated voltage (WVDC)	200V to 400	0V	200V, 250V
Q/DF*	Cap<30pF: Q≥400+20C Cap≥30pF: Q≥1000	DF≤2.5%	DF≤5%
Includion resistance at Hutt	Ur=200~630V: ≥10	OGΩ or RxC≥100Ω-F whiche	ver is smaller
Insulation resistance at Ur**	ι	Jr=1000~3000V: ≥10GΩ	
Dielectric strength	41	200~300V: ≥2 x WVDC 00V~450V: ≥1.2 x WVDC 00~999V: ≥1.5 x WVDC 00~3000V: ≥1.2 x WVDC 4000: ≥1.1 x WVDC	
Operating temperature	-55 to +125	C	-25 to +85℃
Capacitance characteristic	±30ppm	±15%	+30/-80%
Termination	Ni	'Sn (lead-free termination)	

^{*} Measured at the condition of 30~70% related humidity.

NP0: Apply 1.0 \pm 0.2Vrms, 1.0MHz \pm 10% for Cap \leq 1000pF and 1.0 \pm 0.2Vrms, 1.0kHz \pm 10% for Cap>1000pF, 25°C at ambient temperature X7R, X5R: Apply 1.0 \pm 0.2Vrms, 1.0kHz \pm 10%, at 25°C am bient temperature.

[#] Reflow soldering only is recommended.

^{*} For 1206_1000V ~3000V products.

^{**} For 1210_100V: Cap > 1µF, 250V: Cap >0, 47µF, 400V~630V: Cap >0.22µF.

Y5V: Apply 1.0±0.2Vrms, 1.0kHz±10%, at 20℃ ambient temperature.

^{**} Preconditioning for Class II MLCC: Perform a heat treatment at 150±10°C for 1 hour, then leave in a mbient condition for 24±2 hours before measurement.

Approval Sheet

7. CAPACITANCE RANGE (MIDDLE VOLTAGE - 200V to 630V)

7-1 NP0 Dielectric

	IELECTRIC	ectric									NP	n											
	SIZE	04	02	06	03		08	05			12	06	-		12	10		18	08		18	12	
RΔT	ED VOLTAGE																						
IVA	(VDC)	200	250	200	250	200	250	500	630	200	250	500	630	200	250	500	630	500	630	200	250	500	630
	0.5pF (0R5)	N	N	S	S	Α	Α	Α	Α														
	1.0pF (1R0)	N	N	S	S	Α	Α	Α	Α														
	1.2pF (1R2)	Ν	N	S	S	Α	Α	Α	Α														
	1.5pF (1R5)	N	N	S	S	Α	Α	Α	Α	В	В	В	В										
	1.8pF (1R8)	N	N	S	S	Α	Α	Α	Α	В	В	В	В					D	D				
	2.2pF (2R2)	N	N	S	S	Α	Α	Α	Α	В	В	В	В					D	D				
	2.7pF (2R7)	N	N	S	S	Α	Α	Α	Α	В	В	В	В					D	D				<u> </u>
	3.3pF (3R3)	N	N	S	S	Α	Α	Α	Α	В	В	В	В					D	D				-
	3.9pF (3R9)	N	N	S	S	Α	A	Α	Α	В	В	В	В					D	D				<u> </u>
	4.7pF (4R7)	N	N	S	S	Α	Α	Α	A	B B	B B	B B	B B					D	D D				
	5.6pF (5R6) 6.8pF (6R8)	N N	N	S	S	A	A	A	A	В	_ <u>Б</u> В	В	В					D	D				
	8.2pF (8R2)	N	N	S	S	A	A	A	A	В	В	В	В					D	D				
	10pF (100)	N	N	S	S	Α	A	A	A	В	В	В	В	С	С	С	С	D	D	D	D	D	D
	12pF (120)	N	N	S	S	Α	A	A	A	В	В	В	В	С	С	С	С	D	D	D	D	D	D
	15pF (150)	N	N	S	S	A	A	A	A	В	В	В	В	С	С	С	С	D	D	D	D	D	D
	18pF (180)	N	N	S	S	Α	A	A	A	В	B/s	В	В	С	С	С	С	D	D	D	D	D	D
	22pF (220)	N	N	S	S	Α	Α	A	Α	В	В	В	В	С	С	С	С	D	D	D	D	D	D
	27pF (270)	N	N	S	S	AY	$\langle A \rangle$	Α	A	В	В	В	B	C	С	С	С	D	D	D	D	D	D
	33pF (330)	N	N	S	S	XA.	Α	₹ A	Α	В	В	В	> B </th <th>,2,</th> <th>С</th> <th>С</th> <th>С</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th>	,2,	С	С	С	D	D	D	D	D	D
	39pF (390)	N	N	S	S	//A//	A	Α	Α	В	В	В	В	C	C	С	С	D	D	D	D	D	D
	47pF (470)	N	N	S	S	Α	4A.	Α	Α	В	В	В	/В.,	С	С	С	С	D	D	D	D	D	D
	56pF (560)	N	N	S	S	Α	Α	Α	A	В	В	В	В	С	С	С	С	D	D	D	D	D	D
	68pF (680)	N		S	S	Α	Α	Α	Α	В	В	В	В	С	С	С	С	D	D	D	D	D	D
ခွင	82pF (820)	N		S	S	₽A	A	ABSI	∨®s	rsB∈⊩	<u>'B</u> -	EABIC:	В	C	C	С	С	D	D	D	D	D	D
Capacitance	100pF (101) 120pF (121)	N		S	S	A	B B	B D	B D	B B	B B	B	B	C	C	C	C	D D	D D	D D	D D	D D	D D
bac	150pF (121)			S	S	В	D	D	D	В	В	В	В	Š	C	С	С	D	D	D	D	D	D
S.	180pF (181)			S	S	В	D	D	D	В	В	В	В	C	С	С	С	D	D	D	D	D	D
	220pF (221)			S	S	D	Ď	D	7 D	В	В	В	В	C	C	C	C	D	D	D	D	D	D
	270pF (271)			Х	Х	D	Ď	//D/ //	D	В	C	C	C	С	С	C	С	K	K	D	D	D	D
	330pF (331)			Х	Х	D	D	D	Ob)(-	V B	C	//G	С	С	С	С	С	K	K	D	D	D	D
	390pF (391)			Х	Х	D	D	D	D	В	С	С	С	С	С	С	С	K	K	D	D	D	D
	470pF (471)			Χ	Х	D	D	I	1	С	С	С	С	С	С	С	С	K	K	D	D	D	D
	560pF (561)			Х	Х	D	D	I	ı	С	D	D	D	С	С	С	С	K	K	D	D	D	D
	680pF (681)					D	D	ı	ı	С	D	D	D	С	С	С	С	K	K	D	D	D	D
	820pF (821)					D	D	1	<u> </u>	С	G	G	G	С	С	С	С	K	K	D	D	D	D
	1,000pF (102)					D	D	I	I	С	G	G	G	D	D	D	D	K	K	D	D	D	D
	1,200pF (122)					D D	D D			C D	G G	G G	G G	D D	D D	D D	D D	K	K	D D	D D	D D	D D
	1,500pF (152) 1,800pF (182)					D	D			D	G	G	G	D	D	D	D	K	K	D	D	D	D
	2,200pF (182)					D	D			D	G	G	G	D	D	D	D	K	K	D	D	D	D
	2,700pF (272)									D	G	G	G	D	D	D	D	K	K	D	D	D	D
	3,300pF (332)									D	G	G	G	D	D	D	D	K	K	D	D	D	D
	3,900pF (392)									D	G	G	G	D	D	D	D			D	D	D	D
	4,700pF (472)					İ				D	G	G	G	G	G			İ		D	D	D	D
	5,600pF (562)													G	G					D	D	D	D
	6,800pF (682)													G	G					D	D	D	D
	8,200pF (822)													G	G							D	D
	0.010µF (103)													G	G							D	D
	0.015µF (153)			ļ		<u> </u>								М								G	G
	0.022µF (223)					ļ								М								K	K
	0.033µF (333)																						

^{1.} The letter in cell is expressed the symbol of product thickness.

Approval Sheet

7-2 X7R Dielectric

	X/R Dielec												X7	7R											
	SIZE	06	03		08	05				12	06			<u> </u>		12	10			18	808		18	12	
РΛТ	ED VOLTAGE					0.5				12	.00									10			10	14	
IXAI	(VDC)	200	250	200	250	500	630	200	250	400	450	500	630	200	250	400	450	500	630	500	630	200	250	500	630
	100pF (101)	Х	Х	В	В	В	В	D	D			D	D	D	D			D	D						
	120pF (121)	Х	Х	В	В	В	В	D	D			D	D	D	D			D	D						
	150pF (151)	Х	Х	В	В	В	В	D	D			D	D	D	D			D	D	D	D				
	180pF (181)	Х	Х	В	В	В	В	D	D			D	D	D	D			D	D	D	D				
	220pF (221)	Х	Х	В	В	В	В	D	D			D	D	D	D			D	D	D	D				
	270pF (271)	Х	Х	В	В	В	В	D	D			D	D	D	D			D	D	D	D				
	330pF (331)	Х	X	В	В	В	В	D	D			D	D	D	D			D	D	D	D				
	390pF (391)	Х	X	В	В	В	В	D	D			D	D	D	D			D	D	D	D				
	470pF (471)	Х	Х	В	В	В	В	D	D			D	D	D	D			D	D	D	D				
	560pF (561)	X	X	В	В	В	В	D	D			D		D	D			D	D	D	D				
	680pF (681)	X	X	В	В	В	В	D	D			D	D	С	С			D	D	D	D				
	820pF (821)	X	X	В	В	В	В	D	D			D	D	С	С	-		D	D	D	D	_	_		_
	1,000pF (102)	X	X	В	В	В	В	D	D			D	D	С	С		_	D	D	D	D	D	D	D	D
	1,200pF (122) 1,500pF (152)	X	X	B B	B B	B B	B B	D D	D D			D D	D D	С	C			D D	D D	D D	D	D D	D D	D D	D D
	1,800pF (182)	X	X	В	В	В	В	D	D			D	D	С	С			D	D	D	D	D	D	D	D
	2,200pF (102)	X	X	В	В	В	В	D	D			D	D	С	С			D	D	D	D	D	D	D	D
	2,700pF (272)	X	X	В	В	В	В	D	D			D	D	С	С			D	D	D	D	D	D	D	D
	3,300pF (332)	X	X	В	В	В	В	D	D	-}		D/	D	C	С			D	D	D	D	D	D	D	D
	3,900pF (392)	X	X	В	В	В	В	D.	201	归		DF	D	C	C			D	D	D	D	D	D	D	D
	4,700pF (472)		X	В	В	D	D	D	D	ΠJ	L //	D	D	C	C			D	D	D	D	D	D	D	D
	5,600pF (562)	Х	Х	D	D	D	ND<	D.	D	上的	しん	D	D	é	C			D	D	K	K	D	D	D	D
Ð	6,800pF (682)	Х	Х	D	D	Div	D	D	D			D	D\	С	(0)			D	D	K	K	D	D	D	D
Capacitance	8,200pF (822)	Х	Х	D	D	D/	D	D	D			D	D	C	Ç,	1		D	D	K	K	D	D	D	D
cit	0.010µF (103)	Х	Х	D	D	D	D	D	D			D	D	С	С			D	D	K	K	D	D	D	D
abe	0.012µF (123)			D	D	D	D	D	D			D	D	С	С			D	D	K	K	D	D	D	D
O	0.015µF (153)			D	D	D	D	D	D		, I E M	D	D	С	С			D	D	K	K	D	D	D	D
	0.018µF (183)			D	D	D	D	D	D			D	D	С	С	3		D	D	K	K	D	D	D	D
	0.022µF (223)			D	D	D	D	D	D			G	G	С	C	E		D	D	K	K	D	D	D	D
	0.027µF (273)			D	D	D	D	D	D			G	G	С	C	3/		G	G	K	K	D	D	D	D
	0.033µF (333)			D	D	D	2)	G	G			G	G	C	6			G	G	K	K	D	D	D	D
	0.039µF (393)			D	D			G	G	na	00	G	G	C	C	1		G	G	K	K	D	D	D	D
	0.047µF (473) 0.056µF (563)			D D	D D		(0)	G G	G	70	O £	G G	G	D D	D D			G G	G	K	K	D	D	D K	D K
	0.056µF (563)			D	D			G	G	(G)	CGR	AND.	1101	G	G			K	K	K	K	D	D	K	K
	0.000μF (003) 0.082μF (823)			D				G	G	G	G			G	G			K	K	K	K	D	D	K	K
	0.10µF (104)			D				G	G	G	G			G	G			K	K	- `	· `	D	D	K	K
	0.12µF (124)							G	G		_			G	G	М	М	<u> </u>				D	D	М	М
	0.15µF (154)							G	G					М	М	М	М					K	K	М	М
	0.18µF (184)							G	G					М	М	М	М					K	K	М	М
	0.22µF (224)							G	G					М	М	М	М					K	K	М	М
	0.27µF (274)													М	М	М	М					K	K	М	
	0.33µF (334)													М	М	М	М					K	K	М	
	0.39µF (394)													М	М							K	K	М	
	0.47µF (474)													М	М							K	K	М	
	0.56µF (564)													М	М							М	М		
	0.68µF (684)													М	М					<u> </u>		М	M		
	0.82µF (824)																					М	М		
	1.0µF (105)																					М	М		

^{1.} The letter in cell is expressed the symbol of product thickness.

Approval Sheet

7-3 Y5V Dielectric

	DIELECTRIC				Y!	5V			
	SIZE	08	05	12	206	12	10	18	12
RAT	ED VOLTAGE (VDC)	200	250	200	250	200	250	200	250
	0.010µF (103)	В	В	В	В	С	С	D	D
	0.015µF (153)	В	В	В	В	С	С	D	D
	0.022µF (223)	В	В	В	В	С	С	D	D
	0.033µF (333)	В	В	В	В	С	С	D	D
ø	0.047µF (473)	В	В	В	В	С	С	D	D
anc	0.068µF (683)	В	В	В	В	С	С	D	D
C;	0.10µF (104)			В	В	С	С	D	D
Capacitance	0.15µF (154)			С	С	С	С	D	D
Ö	0.22µF (224)							D	D
	0.33µF (334)							D	D
	0.47µF (474)							D	D
	0.68µF (684)							D	D
	1.0µF (105)								

^{1.} The letter in cell is expressed the symbol of product thickness.

8. CAPACITANCE RANGE (HIGH VOLTAGE - 1kV to 4kV)

8-1 NP0 Dielectric

	DIELECTRIC								NP0									
	SIZE	0805		1206			1210				1808					1812		
RA	TED VOLTAGE	1000	1000	1500	2000	1000		2000	1000	1500	2000	3000	4000	1000	1500	2000	3000	4000
	0.5pF (0R5)	D																
	1.0pF (1R0)	D	İ															
	1.2pF (1R2)	D																
	1.5pF (1R5)	D	В	В	В													
	1.8pF (1R8)	D	В	В	В													
	2.0pF (2R0)	D	В	В	В				D	D	D	D						
	2.2pF (2R2)	D	В	В	В				D	D	D	D						
	2.7pF (2R7)	D	В	В	В				D	D	D	D						
	3.3pF (3R3)	D	В	В	В				D	D	D	D						
	3.9pF (3R9)	D	В	В	В				D	D	D	D						
	4.7pF (4R7)	D	В	В	В				D	D	D	D						
	5.6pF (5R6)	D	В	В	В				D	D	D	D						
	6.8pF (6R8)	D	В	В	В				D	D	D	D						
	8.2pF (8R2)	D	В	В	В				D	D	D	D						
	10pF (100)	D	В	В	В	С	С	С	D	D	D	D		D	D	D	D	
	12pF (120)	D	В	В	В	С	С	С	D	D	D	D		D	D	D	D	
	15pF (150)	D	В	В	В	С	С	С	D	D	D	D		D	D	D	D	
	18pF (180)	D	В	В	В	Ç _	, C	C	D	D	D	D		D	D	D	D	
	22pF (220)	D	В	В	В	66	C	C/	D	D	D	D		D	D	D	D	
	27pF (270)	D	В	В	B	C	С	C	D	D	D	D		D	D	D	D	
a.	33pF (330)	D	В	C/K	(/ C)	C	C	7CX	D	D	D	D		D	D	D	D	
n S	39pF (390)	D	В	C	C ×	C/	С	С	D	D/	⊴D/	D		D	D	D	D	
Capacitance	47pF (470)	D	С	// C //	_C	С	С	С	D	D	ZD)	D		D	D	D	D	
рас	56pF (560)	D	C	D	, D	С	D	D	D	D.	D	D		D	D	D	D	
ပ္မ	68pF (680)	D	С	D	D	С	D	D	D	D	D	D		D	D	D	D	
	82pF (820)	D	D	D	D	С	D	D-	D	D	D	D		D	D	D	D	
<u> </u>	100pF (101)	D	D	D	D⊃A	55 ⊅ /∈	SYDTE	M D-L	A D⊏∈	D	K	K		D	D	D	D	
	120pF (121)	D	D	G	G	D	D	D	D	D	K	K		D	D	D	D	
	150pF (151)	D	D :	G	G	D	G	G	D	K	K	K		D	D	D	D	
	180pF (181)	D	G	G	G	D	G	G	D	K	K	K		D	D	K	K	
	220pF (221)	D	G	G	G	G	G	G	D	K	K	K		D	D	K	K	_
	270pF (271)	D	G	P	P	G	OKO	K	G	K	K	K		D	K	K	K	-
	330pF (331)	D	G	P	P/	y G	K	K	G	K	K	K		D	K	K	K	-
	390pF (391)	D	G	Р	Р	//G/) M	RDMKP	//K	K	K			D	K	K	K	-
	470pF (471)		G			G	М	М	K	K	K			K	K	K	K	-
	560pF (561)		G			G			K	K	K			K	K	K		-
	680pF (681)		G			G			K	K	K			K	K	K		
	820pF (821)		G			G			K	D	D			K	K	K		
	1,000pF (102)		G			G G			K G	G	G			K	K	K		
	1,200pF (122)					K			G					K				-
	1,500pF (152)																	-
	1,800pF (182)					M			K					K				-
	2,200pF (222)					M			K					K				
	2,700pF (272)					M								K				
	3,300pF (332)					M								K				-
	3,900pF (392)					M								М				

^{1.} The letter in cell is expressed the symbol of product thickness.

	SIZE	0805		12	206			1210				1808					1812		
RA	TED VOLTAGE	1000	1000	1500	2000	2500	1000	1500	2000	1000	1500	2000	3000	4000	1000	1500	2000	3000	4000
	100pF (101)	В	D	D	D	D	D	D	D										
	120pF (121)		D	D	D	D	D	D	D										
	150pF (151)	В	D	D	D	D	D	D	D	D	D	D	D	K					
	180pF (181)	В	D	D	D	D	D	D	D	D	D	D	D	K					
	220pF (221)	В	D	D	D	D	D	D	D	D	D	D	D	K					
	270pF (271)	В	D	D	D	D	D	D	D	D	D	D	D	K	D	D	D	K	K
	330pF (331)	В	D	D	D	D	D	D	D	D	D	D	K	K	D	D	D	K	K
	390pF (391)		D	D	D	D	D	D	D	D	D	D	K	K	D	D	D	K	K
	470pF (471)		D	D	D	D	D	D	D	D	D	D	K	K	D	D	D	K	K
	560pF (561)	В	D	D	D	D	D	D	D	D	D	D	K	K	D	D	D	K	K
	680pF (681)		D	D	D	D	D	D	D	D	D	D	K	K	D	<u>D</u>	D	K	K
	820pF (821)	В	D	D	D B/C	D	D	D	D	D	D	D	K	K	D	D	D	K	K
	1,000pF (102)	В	D	D	/D/G	D	D	D	D	D	K	K	K	K	D	D	D	K	K
	1,200pF (122)	В	D	G	G	G	D	M	M	D	K	K	K		D	D	D	K	M
a	1,500pF (152)	D	D	G	G	G	D	M	M	D	K	K	K		D	D	D	K	M
n c	1,800pF (182)		D	G	G	G	D	M	M	D	K	K	K		D	D	D	M	M
ita	2,200pF (222)	D	D	G	G	G	D	M	M	D	K	K			D	D	D	М	
pac	2,700pF (272)		D	G	G		D	М	М	D	K	K			D	D	D	М	
Capacitance	3,300pF (332)		D	G	G		D	M	M	D	K	K			D	K	K	М	
	3,900pF (392)	D	D	G			G	M	M	D	K	K			D	K	K	M	
	4,700pF (472)	D	D	G			G	M	M	D	K	K			D	K	K	M	
	5,600pF (562)	D D	D D	G			G	M	M	K	K	K			D D	M M	M M	M M	<u> </u>
	6,800pF (682)	D	ם	G		75	G	M	M M	K	K	K			D	M	M	IVI	
	8,200pF (822) 0.010µF (103)	D	D	G	1	Z . K	G	M	IVI	K	KZ	K			ם	M	M		
	0.012µF (123)	D	G	- 6) G	IVI	77	K) ()	/ 1			K	M	M		
	0.015µF (153)		G		JAYn	V 14	G			K	N I	44			K	M	M		
	0.018µF (183)				774	7/3	G			K	J)	5/7			M	M	M		
	0.022µF (223)					地心	G			K	7-1				M	M	M		
	0.033µF (333)					777	G			K					M				
	0.039µF (393)						K			K					М				
	0.047µF (473)				8	F	ASSIL	E SYS	тем а		C€	35	5		М				
	0.056µF (563)				2	21				K	7.6	5 5	3		М				
	0.068µF (683)				罗	9)					7 4	1	ī		М				
	0.10µF (104)				195	S.					10	182			М				

^{1.} The letter in cell is expressed the symbol of product thickness.

9. PACKAGING DIMENSION AND QUANTITY

Size	Thickness/Syn	nbol	Pape	er tape	Plast	c tape
Size	(mm)		7" reel	13" reel	7" reel	13" reel
0402	0.50±0.05	N	10k	50k	-	-
0603	0.80±0.07	S	4k	15k	-	-
0003	0.80 +0.15/-0.10	Χ	4k	15k		
	0.60±0.10	Α	4k	15k	-	-
0805	0.80±0.10	В	4k	15k	-	-
0003	1.25±0.10	D	-	-	3k	10k
	1.25±0.20	I	-	-	3k	10k
	0.80±0.10	В	4k	15k	-	-
1206	0.95±0.10	С	-	-	3k	10k
1200	1.25±0.10	D	-	-	3k	10k
	1.60±0.20	G	-	-	2k	10k
	0.95±0.10	С	-	-	3k	10k
	1.25±0.10	D	-	-	3k	10k
1210	1.60±0.20	G	-	-	2k	-
	2.00±0.20	K	-	-	1k	6k
	2.50±0.30	М	-	-	1k	6k
4000	1.25±0.10	D	-	-	2k	10k
1808	2.00±0.20	K	-	-	1k	6k
	1.25±0.10	D	-	-	1k	5k
1812	1.60±0.20	G	-	-	1k	-
1012	2.00±0.20	K	-	-	1k	-
	2.50±0.30	М	-	-	0.5k	3k

Page 8 of 13

ASC_Middle & High Voltage_003AE

Aug. 2018

Unit: pieces

10. RELIABILITY TEST CONDITIONS AND REQUIREMENTS

No.	Item		Tes	t Condition			Requirements
1.	Visual and					* No remarka	ble defect.
	Mechanical					* Dimensions	to conform to individual specification sheet.
2.	Capacitance	Class I: (NP0)			* Shall not ex	ceed the limits given in the detailed spec.
_	Q/ D.F.	Cap≤1000pF,	1.0±0.2Vrm	s, 1MHz±10%		NP0: Cap≥	30pF, Q≥1000; Cap<30pF, Q≥400+20C
	(Dissipation	Cap>1000pF,	, 1.0±0.2Vrm	s, 1KHz±10%		X7R: ≤2.5%	6
	Factor)	Class II: (X7F	R, Y5V)			Y5V: ≤5.0%	ó
	,	1.0±0.2Vrms,					
		•		ent (Class II only): To	,		
				or 24±2 hrs at room	temp.		
4.	Dielectric	* To apply vol 200V~300V	-	times VDC		^ No evidence	e of damage or flash over during test.
	Strength	400V~450V		2 times VDC			
		500V~999V		5 times VDC			
		1000V~3000		2 times VDC			
		4000V	≥1.	1 times VDC			
		* Duration: 1	to 5 sec.				
		* Charge & di	scharge cur	ent less than 50mA.			
5.	Insulation	Rated voltage) :	To apply rated voltag	ge (500V max.)	≥10GΩ or R	xC≥100Ω-F whichever is smaller
	Resistance	200~630V		for 60 sec.	+		
		Rated voltage	e: ≥630V	To apply 500V for 60	sec.	\$.SX	
6.	Temperature	With no electi	rical load.	A REFERENCE OF THE PARTY OF THE	心心心。	THE .	
	Coefficient	T.C.	Operating T	emp	11区1万大	T.C.	Capacitance Change
		NP0	-55~125℃ á	at 25℃		NP0	Within ±30ppm/℃
		X7R	-55~125℃ a	at 25℃		X7R 💎	Within ±15%
		Y5V	-25~85℃ at	20℃		Y5V - \\	Within +30%/-80%
		*Before initial	measureme	ent (Class II only): To	apply de-aging		
		at 150℃ for 1	hr then set f	or 24±2 hrs at room	temp.	TANCE	
7.	Adhesive	* Pressurizing		3 5		* No remarka	ble damage or removal of the terminations.
	Strength of		and 10N (>	0603)		<i>\$</i>	<i>ESS</i>
	Termination	* Test time: 10				30	22
8.	Vibration	<u> </u>	equency: 10-	-55 Hz/min.			ble damage.
	Resistance	* Total amplit		Silver	hology	[*] Cap change	e and Q/D.F.: To meet initial spec.
		perpendicular	-	s each in three mutu	2/00/ coppos	UM. L.	
		E* *		ent (Class II only): To	apply de-aging	1110	
		1		or 24±2 hrs at room			
		*Cap./DF(Q)	Measureme	nt to be made after de	e-aging at 150℃		
		for 1hr then s	et for 24±2 h	rs at room temp.			
9.	Solderability	* Solder temp	erature: 235	5±5℃		95% min. c	overage of all metalized area.
		* Dipping time	e: 2±0.5 sec.				
10.	Bending Test	* The middle	part of subs	rate shall be pressur	rized by means	* No remarka	ble damage.
		of the pressu	rizing rod at	a rate of about 1 mm	per second until	* Cap change	9:
		<u> </u>		mm and then the pre	essure shall be	•	±5.0% or ±0.5pF whichever is larger.
		maintained fo		. (0)		X7R: within	
		1		ent (Class II only): To		Y5V: within :	±30% ance change means the change of capacitance under
		1		or 24±2 hrs at room t le after keeping at ro	•	· ·	ure of substrate from the capacitance measured before
		24±2 hrs.	to bo mad	and hooping at 10	•	the test.)	2. 2. 34354445 are capacitation incustred before
11.	Resistance to		erature: 260)±5℃			ble damage.
	Soldering Heat	* 5				* Cap change	_
				C for 1 minute before	imme rse the	i -	±2.5% or ±0.25pF whichever is larger.
		capacitor in a	eutectic sol	der.		X7R: within	±7.5%
		*Before initial	measureme	ent (Class II only): To	apply de-aging	Y5V: within	±20%
		•		or 24±2 hrs at room	•	:	and dielectric strength: To meet initial requirements.
		• •				* 25% max. le	eaching on each edge.
		150℃ for 1hr	then set for	24±2 hrs at room ten	np.		

No.	Item		Test Condition	n		Requirements
12.	Temperature	* Conduc	t the five cycles according to th	e temperatures	and	No remarkable damage.
	Cycle	time.				* Cap change :
		Step	Temp. (℃)	Time (min.)		NP0: within ±2.5% or ±0.25pF whichever is larger.
		1	Min. operating temp. +0/-3	30±3		X7R: within ±7.5%
		2	Room temp.	2~3		Y5V: within ±20%
		3	Max. operating temp. +3/-0	30±3		* Q/D.F., I.R. and dielectric strength: To meet initial requirements.
		<u>4</u>	Room temp.	2~3		
			nitial measurement (Class II on		aging	
			for 1hr then set for 24±2 hrs at	·		
		1	OF(Q) / I.R. Measurement to be		ging	
		•	for 1hr then set for 24±2 hrs at	room temp.		
13.	Humidity	* Test ten	np.: 40±2℃			* No remarkable damage.
	(Damp Heat)	* Humidit	y: 90~95% RH			* Cap change: NP0: within ±5.0% or ±0.5pF whichever is larger.
	Steady State	* Test tim	e: 500+24/-0hrs.			X7R: within ±12.5%
		*Before in	nitial measurement (Class II or	nly): To apply de	-aging	Y5V: within ±30%
		at 150℃	for 1hr then set for 24±2 hrs at	room temp.		* Q/D.F. value:
		* Cap. / I	DF(Q) / I.R. Measurement to b	e made after de	-aging	NP0: Cap≥30pF, Q≥350; 10pF≤Cap<30pF, Q≥275+2.5C
		at 150℃	for 1hr then set for 24±2 hrs at	room temp.		Cap<10pF; Q≥200+10C
						X7R: ≤3.0%
				3		Y5V: ≤7.5%
				纸有	1	*I.R.: ≥1GΩ or RxC≥50Ω-F whichever is smaller.
14.	Humidity	* Test ten	np.: 40±2℃		/ (2	* No remarkable damage.
	(Damp Heat)	* Humidit	y: 90~95%RH	(始妝1	分之	* Cap change: NP0: within ±7.5% or ±0.75pF whichever is larger.
	Load	* Test tim	e: 500+24/-0 hrs.	X1X 13X 1		X7R: within ±12.5%
		* To apply	y voltage: rated voltage (Max.	500V)		Y5V: within ±30%
		*Before i	nitial measurement (Class II or	nly): To apply de	-aging	* Q/D.F. value:
		at 150℃	for 1hr then set for 24±2 hrs at	room temp.		NP0: Cap≥30pF, Q≥200; Cap<30pF, Q≥100+10/3C
		* Cap. / I	DF(Q) / I.R. Measurement to b	e made after de	-aging	
		8 1	for 1hr then set for 24±2 hrs at		M ALL	Y5V: ≤7.5%
			22			* I.R.: ≥500MΩ or RxC≥25Ω-F whichever is smaller.
15.	High	* Test ten	nn ·			* No remarkable damage.
	Temperature	•	7R: 125±3°C			* Cap change: NP0: within ±3.0% or ±0.3pF whichever is larger.
	Load	Y5V: 85	11.	êc!		X7R: within ±12.5%
	(Endurance)		y voltage:	chnolog	1/2	Y5V: within ±30%
	(Linduranice)	1	NP0 (3kV) ≥1.5pF: 100% of rat	Musi	OORA	* Q/D.F. value:
			~300V: 200% of rated voltage.	ed/vollage:	KYUK	NP0: Cap≥30pF, Q≥350
		•				
		i` ′	~450V: 120% of rated voltage.			10pF≤Cap<30pF, Q≥275+2.5C
		` ′	150% of rated voltage.			Cap<10pF, Q≥200+10C
		•	~3000V: 120% of rated voltage.			X7R: ≤3.0%
		i` ′	/: 110% of rated voltage.			Y5V: <7.5%
		1	e: 1000+24/-0 hrs.			* I.R.: ≥1GΩ or RxC≥50Ω-F whichever is smaller.
		•	nitial measurement (Class II on		aging	
		1	for 1hr then set for 24±2 hrs at	·		
			F(Q) / I.R. Measurement to be		ging at	
		150℃ fo	r 1hr then set for 24±2 hrs at ro	om temp.		

APPENDIXES

■ Tape & reel dimensions

Size	0201	0402	0603		0805			1206			1210		1808	18	12
Thickness	L	N,E	S,H,X	A,H	В,Т	D,I	В,Т	C,J,D	G,P	Т	C,D,G, K	M	D,F, G,K	D,F, G,K	M,U
A ₀	0.40 +/-0.10	0.70 +/-0.20	1.05 +/-0.30	1.50 +/-0.20	1.50 +/-0.20	< 1.80	1.90 +/-0.50	< 2.00	<2.30	< 3.05	< 3.05	< 3.20	< 2.50	< 3.90	< 3.90
B ₀	0.70 +/-0.10	1.20 +/-0.20	1.80 +/-0.30	2.30 +/-0.20	2.30 +/-0.20	< 2.70	3.50 +/-0.50	< 3.70	< 4.00	< 3.80	< 3.80	<4.00	< 5.30	< 5.30	< 5.30
Т	≦0.55	≦0.80	≦1.20	≦1.15	≦1.20	0.23 +/-0.1	≦1.20	0.23 +/-0.1	0.23 +/-0.1	0.23 +/-0.1	0.23 +/-0.1	0.23 +/-0.1	0.25 +/-0.1	0.25 +/-0.1	0.25 +/-0.1
K ₀	-	-	-	1	X /	< 2.50	1)X.1/J	< 2.50	< 2.50	< 1.50	< 2.50	< 3.20	< 2.50	< 2.50	< 3.50
W	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	12.00	12.00	12.00
	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30	+/-0.30
P ₀	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10
10xP₀	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00
	+/-0.10	+/-0.10	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20	+/-0.20
P ₁	2.00	2.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	8.00	8.00
	+/-0.05	+/-0.05	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10
P ₂	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.10	+/-0.10	+/-0.10
D ₀	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0	+0.1/-0
D ₁	-	-	-	17	2	1.00 +/-0.10	-	1.00 +/-0.10	1.00 +/-0.10	1.00 +/-0.10	1.00 +/-0.10	1.00 +/-0.10	1.50 +/-0.10	1.50 +/-0.10	1.50 +/-0.10
E	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75
	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10	+/-0.10
F	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	5.50	5.50	5.50
	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.05	+/-0.10	+/-0.10	+/-0.10

Size	0402,	1808, 1812		
Reel size	7"	7" 10"		7"
C 13.0+0.5/-0.2		13.0+0.5/-0.2 13.0+0.5/-0.2		13.0+0.5/-0.2
W ₁	8.4+1.5/-0	8.4+1.5/-0	8.4+1.5/-0	12.4+2.0/-0
Α	178.0±1.0	250.0±1.0	330.0±1.0	178.0±1.0
N	60.0+1.0/-0	100.0±1.0	100±1.0	60.0+1.0/-0

Approval Sheet

Description of customer label

- a. Customer name
- b. WTC order series and item number
- c. Customer P/O
- d. Customer P/N
- e. Description of product
- f. Quantity
- g. Bar code including quantity & WTC P/N or customer
- h. WTC P/N
- i. Shipping date
- j. Order bar code including series and item numbers
- k. Serial number of label

Constructions

No.	Na	me	NPO	X7R, Y5V	
①	Ceramic material		CaZrO₃ based	BaTiO₃ based	
2	Inner electrode		Ni		
3		Inner layer	С	u	
4	Termination	Middle layer	Ni		
(5)		Outer layer	S	n	

Storage and handling conditions

- (1) To store products at 5 to 40°C ambient temperature and 20 to 70%, related humidity conditions.
- (2) The product is recommended to be used within one year after shipment. Check solderability in case of shelf life extension is needed.

Cautions:

- a. The corrosive gas reacts on the terminal electrodes of capacitors, and results in the poor solderability. Do not store the capacitors in the ambience of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
- b. In corrosive atmosphere, solderability might be degraded, and silver migration might occur to cause low reliability.
- c. Due to the dewing by rapid humidity change, or the photochemical change of the terminal electrode by direct sunlight, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or dewing condition. To store products on the shelf and avoid exposure to moisture.

Recommended soldering conditions

The lead-free termination MLCCs are not only to be used on SMT against lead-free solder paste, but also suitable against lead-containing solder paste. If the optimized solder joint is requested, increasing soldering time, temperature and concentration of N₂ within oven are recommended.

Fig. 6 Recommended reflow soldering profile for SMT process with SnAgCu series solder paste.

Fig. 7 Recommended wave soldering profile for SMT process with SnAgCu series solder.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kamaya:

0805B221K102CT	1206B682K102CT	1812B105K251CT	1206B473K501CT	0603B102K251CT	1206B101K102CT
1206B101K202CT	0805B104K201CT	1206B222K202CT	1210B472K202CT	0805B472K501CT	0805B152K102CT
0805B223K501CT	0805B473K201CT	0805B151K102CT	0603B331K201CT	1210B104K631CT	0603B101K201CT
0603B561K201CT	1206B562K102CT	0603B151K201CT	0805B222K102CT	1206B332K202CT	0603B471K251CT
0805B103K631CT	0603B221K201CT	0603B332K251CT	0603B471K201CT	0603B821K251CT	0805B682K501CT
0603B391K251CT	0603B332K201CT	1210B471K202CT	0603B681K251CT	0603B152K201CT	0603B222K251CT
1206B122K202CT	0603B182K251CT	0603B472K201CT	1808B103K631CT	1808B182K302CT	1808B222K501CT
1808B472K501CT	1808B681K501CT	1808B683K501CT	1812B102K201CT	1812B105K201CT	1812B105M251CT
1812B122J302CT	1812B122K501CT	1812B124J501CT	1812B124K501CT	1812B154K501CT	1812B222K302CT
1812B223J631CT	1812B224K501CT 1	812B274J251CT 1	812B274K201CT 1	812B274K251CT 1	812B274M251CT
1812B394J251CT	1812B394K201CT 1	812B394K251CT 1	1812B394M201CT	1812B394M251CT	1812B684M251CT
1206B101J202CT	1206B101K201CT 1	206B103M102CT	1206B121K102CT	1206B121K202CT	1206B152J202CT
1206B152M202CT	1206B182K202CT	1206B222M202CT	1206B272K202CT	1206B393K501CT	1206B472J102CT
1206B472M102CT	1206B511K501CT	1206B562M102CT	1206B563K501CT	1206B682K152CT	1206B682M102CT
1206B822K102CT	1206B822M102CT	1210B102J202CT	1210B123K102CT	1210B153K102CT	1210B183K102CT
1210B221J202CT	1210B221K202CT 1	210B274K201CT 1	1210B331K202CT	1210B394K201CT	1210B394K251CT
1210B471J202CT	1210B472J202CT 1	210B474M251CT 1	1210B561K202CT		