2017~2018 学年第二学期期中考试试卷

《线性代数及其应用》(A卷 共3页)

(考试时间: 2018年4月27日)

题号	 ==	=:	РЧ	成绩	核分人签字
得分					

一、填空题与单项选择题(共30分,每小题5分)

1.
$$\[rac{\partial}{\partial A} = \begin{bmatrix} 0 & 0 & -1 & 3 \\ 0 & 0 & 1 & -2 \\ -1 & -2 & 0 & 0 \\ 3 & 4 & 0 & 0 \end{bmatrix}, \ \[\emptyset] A^{-1} = \]$$

3. 设 α , β , γ_1 , γ_2 , γ_3 均为 4 元列向量,已知 $|A| = |\alpha,\gamma_1,\gamma_2,\gamma_3| = 5$, $|B| = |\beta,\gamma_1,\gamma_2,\gamma_3| = -1$,则 $|A+B| = _____.$

4. 设 A 为 3 阶方阵,将 A 的第 2 行的 2 倍加到第 1 行得到矩阵 B ,再将 B 的第 2 行与第 3 行互换得到矩阵 C ,则满足 PA=C 的可逆矩阵 P=().

(A)
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

5. 与矩阵
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 0 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$
 相抵的矩阵是().

(A)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 0 & 1 \\ 3 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

6. 设A, B 均为n 阶矩阵,满足AB = O,且 $B \neq O$,则必有(

(A)
$$(A + B)^2 = A^2 + B^2$$
 (B) $|B| \neq 0$ (C) $|B'| \neq 0$ (D) $|A'| = 0$

(B)
$$|\mathbf{B}| \neq 0$$

(C)
$$|\boldsymbol{B}^*| \neq 0$$

(D)
$$|\mathbf{A}^*| = 0$$

二、(16 分) 当 a 为何值时,线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = -7, \\ x_1 + 3x_3 - x_4 = 8, \\ x_1 + 2x_2 - x_3 + x_4 = 2a + 2, \end{cases}$ 有解?并求其向量 $3x_1 + 3x_2 + 3x_3 + 2x_4 = -11$

形式的通解.

三、(共28分)

1.
$$(14 分)$$
设 $\mathbf{D} = \begin{vmatrix} 1 & 1 & 2 & -1 \\ -2 & 2 & 4 & 1 \\ 3 & -3 & 1 & 2 \\ -4 & 6 & 0 & 6 \end{vmatrix}$, M_{ij} , A_{ij} 分别是 (i,j) 元 $(i,j=1,2,3,4)$ 的余子式和代

数余子式. 求 (1) $A_{12} + 2A_{22} + 3A_{32} + 4A_{42}$; (2) $M_{13} + 2M_{23} + 3M_{33} + 4M_{43}$.

2.
$$(14 分)$$
设 $AX = B + X$, 其中 $A = \begin{bmatrix} 3 & -1 & 1 \\ 4 & -1 & 1 \\ -3 & 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$. 求矩阵 X .

四、(共26分)

1. (16 分) 设矩阵
$$\mathbf{A} = \begin{bmatrix} -3 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 3 & -5 \end{bmatrix}$$
, $f(x) = (x+1)^{2k}$, 其中 k 为正整数, 求 $f(\mathbf{A})$.

2. (10 分)设n元向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,而向量组 $\alpha_2,\alpha_3,\alpha_4$ 线性相关.试判断向量组 $k\alpha_1 + l\alpha_4, \alpha_2, \alpha_3$ (其中 k, l 为常数)的线性相关性,并说明理由.