Типовой расчет по дискретной математике

1 Второй семестр

1.1 Задача 1

Для любых четырех из пяти функций $f, g, \overline{f}, \overline{g}, f \vee g$ найдите сокращенную, ядровую и все тупиковые ДНФ. Для всех четырех функций решите задачу методом Карно, и не менее, чем для одной — методом Квайна—Мак-Класки.

Для одной из функций постройте схему из функциональных элементов $\{\neg, \lor, \land\}$.

74.7	<i>C</i> (7.7	<i>C</i> (
N	$f(x_1, x_2, x_3, x_4)$	$g(x_1, x_2, x_3, x_4)$	N	$f(x_1, x_2, x_3, x_4)$	$g(x_1, x_2, x_3, x_4)$
1	1110 1000 0011 1110	1010 0011 0100 0110	31	0111 0001 0110 0011	0010 1100 0110 1000
2	1011 0001 0011 0000	0101 1100 1101 0000	32	0010 0001 0111 1100	0100 0100 0100 0011
3	0011 0000 1101 0010	1101 1100 0010 1110	33	1011010001000100	1101 0001 0101 0100
4	1010 0100 1010 1011	1110 0110 1101 0011	34	1001 1011 0110 1000	1010 1011 1000 0100
5	1100 0011 0000 0001	1101 0111 1011 0010	35	0101 0101 0011 1110	1011 1101 0000 0110
6	1011 1110 0010 1100	1001 1101 0010 1011	36	0110 0000 1011 1010	0111 1000 0101 0011
7	0001 1110 1110 0010	0110 1000 1000 0011	37	1011 1101 1001 1000	1000 0000 0100 1000
8	0111 0011 0001 1100	1101 0010 0100 1001	38	0000 1001 0001 1011	1001 1100 0110 1101
9	0010 0011 1001 0111	1101001000000111	39	0010 0110 0100 1101	0011 0101 0000 0100
10	0000 0011 1110 0110	0000 1011 0001 1000	40	0100 1010 1001 1010	1010 1001 0010 1011
11	0111 0010 1001 0011	0010 1000 1101 0000	41	1100 1011 0111 0010	1100010101100111
12	1100 0011 1010 1010	0010 1011 1000 0000	42	0111 1001 0101 1011	1011 1011 1101 1010
13	0011 1000 0010 0001	0001 0100 1101 1110	43	1101 1001 1011 1011	0001 1000 1010 0000
14	1010 0110 1101 0011	0100010010100011	44	1001 1011 0001 0100	1110 0011 0100 1000
15	1001 0010 0111 0000	0000 0001 1101 0111	45	0101 0111 0111 1000	0100 0110 1101 0000
16	0010 1011 0000 1110	1101 1000 1110 1110	46	1100010011010010	1011 0010 1010 0001
17	0110 0100 1011 1011	0001 0100 1100 1011	47	0001 0000 1010 0010	1000 0010 0010 0101
18	0001 0000 0100 1101	1000 1110 0101 0000	48	0001 1010 0011 1011	1000 1011 0010 0110
19	0001 0101 1110 0010	0000 1011 1011 0011	49	1011110000010000	1011 0000 0010 1001
20	1001 0000 1101 1100	1100 1001 1110 0110	50	0101 1100 0011 1000	0011 1101 0101 0011
21	1011 0100 0100 0110	1100 1100 0011 1010	51	0111110001100000	1000 0111 0000 0100
22	0110 1010 0111 1001	1000 0110 0001 0000	52	1100 1001 1101 1110	0001 0110 0010 1110
23	1011 0100 0000 1100	1100 0001 0110 1010	53	0111 1101 1011 0100	0001 0011 0100 0010
24	0111 0010 0111 0100	1110 0100 0001 0011	54	0100 0011 0101 0111	0110 1011 1001 1110
25	0001 0011 1000 1100	1000 0100 0100 0111	55	0111 0111 1000 0101	0010 1010 1000 0100
26	1011 1000 0011 0110	0111 0011 1110 0011	56	1100 0001 0101 1001	1000 0101 1011 0100
27	1011 0011 1001 0001	1001 1110 1000 0011	57	1101 0000 0001 1001	1110 0100 1010 0110
28	0101 0010 0100 0001	1000 0010 1110 1011	58	1010 1001 0011 1100	0011 1101 1110 0011
29	1101 0001 0010 1011	1100 0111 0111 1101	59	1011 0000 1100 0101	1010 1011 1100 0001
30	0110 0111 0101 1101	1011 1110 1001 0100	60	1110 1101 1010 0010	1011 0010 1100 1110
30	0110011101011101	1011 1110 1001 0100	ου	111011011010010	1011 0010 1100 1110

1.2 Задача 2

Перечислите все минимальные полные подсистемы системы $\{f_1, f_2, f_3, f_4, f_5, f_6\}$. Для одной из них выразите функции $0, 1, \neg, \lor, \land, \oplus$.

N	$f_1(x_1, x_2, x_3)$	$f_2(x_1, x_2, x_3)$	$f_3(x_1, x_2, x_3)$	$f_4(x_1, x_2, x_3)$	$f_5(x_1, x_2, x_3)$	$f_6(x_1, x_2, x_3)$
1	1110 0111	0001 0111	0000 1111	0001 0101	1110 1010	1110 0010
2	1000 1110	01001111	0101 1000	1111 1111	10100100	0101 0111
3	0101 0101	00110011	0001 1111	11010010	01011111	1101 1110
4	1001 0110	0111 1111	1111 1010	1011 1010	00001110	0110 0110
5	0001 0111	1011 0010	1100 1100	1001 0010	00100101	1110 0111
6	0110 1001	11001000	0101 0010	01110001	01001010	0011 0111
7	1001 0000	1001 1001	0110 1001	01110011	00110011	0000 0111
8	0011 0111	10010101	1111 0010	11110000	1010 1010	1111 1011
9	1010 1010	1101 1011	1010 1100	01100110	00000101	1101 1000
10	0100 1001	00110011	01100110	01000110	11111110	1001 0110
11	0101 0101	10110110	1011 0010	00001111	10111101	0010 1110
12	0110 0010	00101100	10000110	00000011	01011010	0111 0001
13	1111 0000	00000001	1100 1000	01010101	11000110	00101101
14	0001 0011	00110110	1010 1010	01100110	10110110	$\mid 10101101 \mid$
15	1011 1110	00010100	1111 1101	01010101	01010111	1111 1111
16	0001 0011	00001111	0010 1001	1101 1110	11010001	0110 0110
17	1000 0110	00001111	0000 1110	00000111	01001101	0110 0101
18	1001 1001	00001111	0110 1010	1110 1001	00010011	1001 0000
19	0000 0101	0111 1111	0001 0111	1000 0000	11010110	0110 0110
20	1111 1111	01010110	0111 0001	1111 1110	11001100	0101 1101
21	1101 0100	0011 1010	0011 0111	0000 0000	1010 1010	1101 1010
22	1110 1010	0000 1111	0001 1100	1100 0111	0001 0111	1100 1100
23	0110 0110	1101 0010	1110 1000	0000 0000	1011 1001	0001 0000
24	1101 1010	0111 1111	0100 0101	0101 1010	1001 0111	1101 0100
25	0101 0101	1011 0100	0111 0111	0011 0100	1010 1010	0010 1001
0.0	1111 0000	4444444	1100 0011	0011 0011	1010 0100	00111110
26	1111 0000	1111 1111	1100 0011	0011 0011	1010 0100	0011 1110
27	0100 1101	0011 0001	0010 0100	0000 0011	0000 0000	1011 0110
28	0011 0011	1011 1111	0111 0101	0000 1111	1001 1000	0110 1001
29	1111 1111	0001 0101	1111 0000	1111 0100	1000 0100	0110 1001
30	1111 0000	1101 0111	0110 1001	0000 1111	1111 0010	1110 1011

N	$f_1(x_1, x_2, x_3)$	$f_2(x_1, x_2, x_3)$	$f_3(x_1, x_2, x_3)$	$f_4(x_1, x_2, x_3)$	$f_5(x_1, x_2, x_3)$	$f_6(x_1, x_2, x_3)$
31	0010 1110	0000 1111	0011 1100	0101 0111	0010 1001	1111 0010
32	1110 1000	1000 0000	1011 0111	0011 1100	1011 0100	01010101
33	0000 1111	1010 0101	1011 1110	11100110	1111 1111	11011011
34	1010 1010	0000 0111	1011 0000	0001 0110	0001 1110	01100110
35	0000 0001	0100 1101	0000 0000	1010 1100	0101 1111	11101101
36	1010 0101	10001100	01000011	11110000	0010 1011	00110111
37	1010 0110	01100110	0110 1001	01010101	00000111	00001000
38	0101 1111	10000001	1011 0000	11110000	1000 1110	01000011
39	1000 1110	1001 0000	1110 0101	10100101	00000111	11011100
40	1010 1110	00000111	1010 1010	01110011	1111 1100	01101001
41	1001 1001	1000 1010	1110 1000	01010111	11010000	01101001
42	0111 0111	0010 1011	1111 1110	0001 1111	1001 1001	01110001
43	1110 1000	00010001	1001 1101	01101001	1001 1110	00110011
44	0000 0011	1011 0011	1111 0000	01010101	1011 1000	01101110
45	1001 0000	1001 1111	0101 1010	11001100	0011 0111	11110000
46	0011 1111	11110000	0011 0101	1001 0100	1101 1000	01101001
47	1001 1100	1001 0110	1101 0011	0011 0111	0101 0101	1011 1000
48	1010 1010	1001 0110	1100 1111	1111 0110	0001 0101	11001010
49	0001 0001	00001100	1000 1110	11000000	1111 1110	0101 1010
50	0000 1111	0001 0100	1101 0100	10000100	0011 1100	11010101
51	0001 0111	00001100	0010 0011	0111 1111	0011 1100	11010010
52	1100 0110	01001101	0101 1100	1011 0101	00000011	01101001
53	1010 1010	1111 1000	1000 1110	00010001	0110 1110	11110001
54	1010 1110	0001 0011	0111 1101	0101 1010	0110 0100	11001100
55	1110 1000	1010 1110	0011 0111	1010 0111	1100 0011	0001 1101
56	1010 1010	00000101	1111 0000	1110 1101	1001 1000	1111 1011
57	0001 0111	1110 0011	0100 1010	00000111	0110 1001	10110100
58	0000 1111	1101 1001	0000 1101	1010 0101	1101 1010	1011 0010
59	0000 1111	1111 1111	0111 0001	1010 0110	0111 1011	11110111
60	0000 1111	0001 1000	0101 0101	0001 0111	1011 1100	1101 1110

1.3 Реализуйте на любом языке программирования

http://savthe.com/pp/component_size/

http://savthe.com/pp/connected_components/

Изучите и реализуйте алгоритм Дейкстры поиска кратчайшего пути в нагруженном графе.

2 Третий семестр

2.1

Постройте рекуррентную последовательность с периодом k. Замечание: поле, содержащее элемент нужного порядка должно содержать подполе.

	_				-											
N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
k	31	9	13	20	31	7	8	9	12	5	80	31	10	62	15	13
N	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
k	5	8	7	15	12	24	26	12	121	31	62	21	15	80	15	31

Определите период последовательности сдвигового регистра, задаваемого многочленом.

O II P	-	териод поеледовательно		
1	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^5 + x^4 + x + 1$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 4x + 3$
2	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^5 + x^2 + x + 1$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + x + 2$
3	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^4 + x^3 + x + 1$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + x + 3$
4	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + 2x + 1$	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^4 + x^3 + x + 1$
5	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 4x + 1$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + x + 2$
6	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + x + 3$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 3x + 1$
7	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^4 + x^2 + x + 1$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + 2$
8	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + x + 1$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 4x + 4$
9	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 4x + 3$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + x + 1$
10	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 4x + 2$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 3x + 4$
11		$x^2 + 5x + 2$		$x^3 + x^2 + 1$
12		$x^2 + 6x + 4$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 4x + 3$
13	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + x + 2$	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^5 + x^4 + x^2 + 1$
14	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 3x + 2$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 3x + 3$
15		$x^2 + 5x + 1$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + x + 1$
16	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^5 + x^3 + x^2 + x + 1$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + 2x + 2$
17	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + x + 4$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 2x + 2$
18	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^4 + x^3 + x^2 + x + 1$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + 1$
19	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 2x + 1$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + 2x + 2$
20	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 6x + 2$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 4x + 2$
21	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + x + 5$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 4x + 1$
22	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 3x + 4$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x + 2$
23	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + 1$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + x + 2$
24	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + x^2 + x + 1$	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^5 + x^2 + x + 1$
25	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 6x + 4$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + x^2 + x + 1$
26	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 3x + 4$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 2x + 1$
27		$x^2 + x + 1$		$x^3 + 2x + 1$
28		$x^3 + x + 2$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 4x + 1$
29		$x^6 + x^4 + x^2 + x + 1$		$x^2 + x + 4$
30	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x^2 + 2x + 1$	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^4 + x^2 + x + 1$
31	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 2x + 1$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 4x + 1$
32	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + 2x + 2$		$x^2 + 3x + 2$
33	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 3x + 3$		$x^3 + 2x^2 + 2x + 2$
34	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + x + 2$	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^5 + x^3 + x^2 + 1$
35		$x^2 + 3x + 1$	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 4x + 5$
36		$x^6 + x^5 + x^3 + x + 1$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + 4x + 1$
37	$\mathbb{K} = \mathbb{F}_2,$	$x^6 + x^5 + x^2 + x + 1$	$\mathbb{K} = \mathbb{F}_3,$	$x^3 + x + 2$
38	$\mathbb{K} = \mathbb{F}_7,$	$x^2 + 6x + 2$	$\mathbb{K} = \mathbb{F}_5,$	$x^2 + x + 2$