中国科学技术大学

2014 年硕士学位研究生入学考试试题

(信号与系统)

一、计算题(1~5 题每题 6分,6~10 题每题 10分,共80分)

- 1. 计算 $[1+(-1)^n]u[n]$ 的 Z 变换。
- 2. 一个离散时间 LTI 系统,当输入 x[n] 为因果序列时系统响应 $y[n] = \sum_{m=0}^{n} \sum_{k=0}^{m} x[k]$,求该系统的单位冲激响应 h[n]。
- 3. 已知一离散时间 LTI 系统的频率响应为 $H(e^{j\Omega}) = \sin^2[(\Omega \pi)/2]$,试求该系统的单位冲激响应h[n]。
- 4. $x_1[n]$ 和 $x_2[n]$ 均为稳定的因果序列, $X_1(e^{j\Omega})$ 和 $X_2(e^{j\Omega})$ 分别为 $x_1[n]$ 和 $x_2[n]$ 的 DTFT,求证: $\int_{-\pi}^{\pi} X_1(e^{j\Omega}) X_2(e^{j\Omega}) d\Omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\Omega}) d\Omega \int_{-\pi}^{\pi} X_2(e^{j\Omega}) d\Omega$
- 5. 对于单位冲激响应为 $h(t) = \delta(t-T)$ 的 LTI 系统,试证明 $\phi_1(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$ 是该系统的特征函数,并给出相应的特征值;与此类似,试找出相应的特征值为 2 的 另外一个特征函数 $\phi_1(t)$ 。
- 6. 已知 x(t) = tu(t) 2(t-1)u(t-1) + (t-2)u(t-2), 试画出 $y(t) = x(\frac{t-1}{2})$ 的波形图,并计算 y(t) 的傅里叶变换。
- 7. 某 LTI 系统的频率响应 $H(\omega) = \begin{cases} 1, |\omega| < W \\ 0, |\omega| > W \end{cases}$ 。 周期信号 $x(t) = \sum_{k=-\infty}^{\infty} \alpha^{|k|} e^{jk(2\pi/T)t}$,

 $0 < \alpha < 1$ 。如果该周期信号 x(t) 通过这个 LTI 系统,试确定 W 值取多大时,才能确保系统输出 y(t) 的平均功率至少是 x(t) 平均功率的 80%。

- 8. 已知一个周期为 N = 6 的周期序列 x[n], 当 $0 \le n < 6$ 的序列值依次为 1, -1, 0, 2, -0, 计算 x[n] 的 6 点 DFT 系数 X[k] 以及 x[n] 的 DFS 系数 $F_k, k \in Z$ 。
- 9. 由差分方程 $y[n] \frac{1}{2}y[n-1] = \sum_{k=0}^{3} (x[n-k]-2x[n-k-1])$ 和起始条件 y[-1] = -2 表示的离散时间因果系统,当系统输入 $x[n] = \delta[n]$ 时,试用递推算法求系统的零状态响应 $y_{xx}[n]$ 和零输入响应 $y_{xx}[n]$ (各计算出前 5 个序列值)。
- 10. 已知 $x[n] = \sin(\pi n/2)/(\pi n)$, $y[n] = x^2[n]$, 求x[n]与y[n]的互相关函数 $R_{xy}[n]$ 。 考试科目:信号与系统 第 1 页 共 2 页

- 二、以20.48kHz的采样频率对一模拟时域信号进行 DFT 频谱分析,取样点数为 1024。 (12 分)
- 1. 求其频谱分辨率,分别以模拟域频率 Δf 和数字域频率 $\Delta \omega$ 表示; (6分)
- 2. 求谱线 X(127) 所对应的频率, 分别以模拟域频率 f_k 和数字域频率 ω_k 表示。(6分)

三、某系统当输入
$$x(t) = \begin{cases} 1.0 < t < 2 \\ 0.$$
其它 时,输出为 $y(t) = \begin{cases} 1 - \cos \pi t, 0 \le t \le 2 \\ 0.$ 其它

已知该系统是因果的连续时间 LTI 系统。试求:

(15 分)

- 1. 该系统的单位冲激响应h(t), 并概画出h(t)的波形; (9分)
- 2. 试求该系统对于输入信号为 $x_1(t) = u(t) u(t-1)$ 的响应 $y_1(t)$,并概画出 $y_1(t)$ 的 波形。(6分)

四、已知一因果的连续时间系统,在s平面上的零极点分布如图 4 所示,已知该系统的单位冲激响应h(t) 的终值 $\lim_{t \to \infty} h(t) = 1$,

系统的初始条件为
$$y(0_{-})=1$$
, $y'(0_{-})=-1$, $y''(0_{-})=3$. (28 分)

- 1. 试求该系统的系统函数 H(s) 及其收敛域,并给出该系统的微分方程表示;(6分)
- 2. 给出该系统使用积分器等实现的并联型、级联型实现结构;(8分)

3. 当输入 $x(t) = e^{-t}u(t)$ 时,试求系统的零输入响应 $y_{zi}(t), t \geq 0$ 、零状态响应 $y_{zs}(t), t \geq 0$,自由响应 $y_{fr}(t), t \geq 0$ 、强迫响应 $y_{fo}(t), t \geq 0$,稳态响应 $y_{st}(t), t \geq 0$ 和暂态响应 $y_{te}(t), t \geq 0$ 。 (14 分)

五、对于如图 5 (a) 所示的正交多路复用系统和图 5 (b) 所示的解复用系统,两路输入信号 $x_1(t)$ 、 $x_2(t)$ 都是带限于 ω_M 的信号,即当 $|\omega| > \omega_M$, $X_1(\omega) = X_2(\omega) = 0$,其中 $X_1(\omega)$ 、 $X_2(\omega)$ 分别是 $X_1(t)$ 、 $X_2(t)$ 的傅里叶频谱。设载波频率 $X_2(\omega)$ 。试证明:

考试科目:信号与系统

第2页 共2页