Global System for Mobile Communication (GSM)

Li-Hsing Yen
National University of Kaohsiung

Nomenclature

- MS (Mobile Station) = MT (Mobile Terminal) + TE (Terminal Equipment)
- BSS (Base Station Subsystem) = BTS (Base Transceiver Station) + BSC (Base Station Controller)
- NSS (Network Switching Subsystem)
- MSC (Mobile Switching Center): telephony switching function and authentication of user

HLR and VLR

- HLR (Home Location Register)
 - a database to store and management permanent data of subscribers
- VLR (Visitor Location Register)
 - a database to store **temporary** information about subscribers
 - needed by MSC in order to service visiting subscribers

AuC and EIR

- Authentication Center (AuC)
 - used in the security data management for the authentication of subscribers.
- Equipment Identity Register (EIR)
 - used to maintain a list of legitimate, fraudulent, or faulty MSs.
 - optional in GSM network, and is not used generally.

GSM Interfaces

- U_m
 - Radio interface between MS and BTS
 - each physical channel supports a number of logical channels
- A_{bis}
 - between BTS and BSC (vender specific)
 - primary functions: traffic channel transmission, terrestrial channel management, and radio channel management

GSM Frame Structure

- 1 hyperframe = 2048 superframes (~3.5hr)
- For speech
 - 1 superframe = 51 multiframes = 6.12s
 - 1 multiframe = 26 frames = 120ms
- For Signaling
 - 1 superframe = 26 multiframes
 - 1 multiframe = 51 frames
- 1 frame = 8 time slots = 4.615 ms
- 1 time slot = 156.25 bit duration = 0.577ms

Normal Burst Format

- Trail bits
 - always (0,0,0); provide start and stop bit pattern
- encrypted bits
 - data is encrypted
- stealing bits
 - indicate whether the burst was stolen for urgent control signaling (FACCH signaling)
- · Guard bits
 - avoid overlapping with other bursts due to different path delay

Training Sequence

- A known bit pattern that differs for different adjacent cells
- to adapt the parameters of the receiver to the current path propagation characteristics
- to select the strongest signal in case of multipath propagation
- · for multipath equalization
 - extract the desired signal from unwanted reflections

Layer 1 - Physical Layer

- Modulation
- Equalization
- · Channel coding
 - block code
 - convolutional code
- Interleaving
 - to distribute burst error

Parity Bits

- The first 50 bits are protected by 3 parity bits p(0), p(1), p(2)
- generator polynomial g(D)=D³+D+1
- the remainder of d(0)D⁵²+d(1)D⁵¹+...+d(49)D³+p(0)D²+p(1)D+p(2) divided by g(D) should be 1+D+D²

Physical Vs. Logical Channels

- Physical channels are all the available time slots of a BTS
 - a BTS with 6 carriers has 48 physical channels
- Logical channels are piggybacked on the physical channels
 - logical channels are laid over the grid of physical channels
 - each logical channel performs a specific task

GSM Logical Channels (I)

- Speech traffic channels (TCH)
 - Full-rate TCH (TCH/F)
 - Half-rate TCH (TCH/H)
- Broadcast channels (BCH)
 - Frequency correction channel (FCCH)
 - Synchronization channel (SCH)
 - Broadcast control channel (BCCH)
- Cell broadcast channel (CBCH)

GSM Logical Channels (II)

- Common control channels (CCCH)
 - Paging channel (PCH)
 - Access grant channel (AGCH)
 - Random access channel (RACH)
- Dedicated control channel (DCCH)
 - Slow associated control channel (SACCH)
 - Stand-alone dedicated control channel (SDCCH)
 - Fast associated control channel (FACCH)

Broadcast Channels (BCH)

- Frequency correction channel (FCCH)
 - the "lighthouse" of a BTS
- Synchronization channel (SCH)
 - PLMN/base identifier of a BTS plus synchronization information (frame number)
- Broadcast control channel (BCCH)
 - to transmit system information 1-4, 7-8 (differs in GSM 900, GSM 1800, and PCS 1900)

CBCH and **CCCH**

- CBCH (Cell Broadcast Channel)
 - transmits cell broadcast messages
- PCH (Paging Channel)
 - carries PAG_REQ message
- AGCH (Access Grant Channel)
 - SDCCH channel assignment
- RACH (Random Access Channel)
 - communication request from MS to BTS

Mapping of Logical Channels

- Each BTS has a particular frequency carrier called BCCH-TRX to transmit BCCH info
- The following channel structure can be found on time slot 0 of carrier BCCH-TRX
 - FCCH
 - SCH
 - BCCH information 1-4
 - Four SDCCH subchannels (optional)
 - CBCH (optional)

Example Mapping of Logical Channels on Time Slot 0 (Downlink)

FCCH + SCH + BCCH 1 - 4
Block 0 reserved for CCCH
FCCH/SCH
Block 1 reserved for CCCH
Block 2 reserved for CCCH
FCCH/SCH
Block 3 CCCH/SDCCH

Example Mapping of Logical Channels on Time Slot 2 (Downlink)

GSM Layer 2: LAPDm

- Functions
 - organization of Layer 3 information into frames
 - peer-to-peer transmission of signaling data in defined frame formats
 - recognition of frame formats
 - establishment, maintenance, and termination of one or more (parallel) data links on signaling channels

Layer 3 Protocol Architecture: Mobile Station Side

Layer 3 - RR Sublayer

- The RR sublayer handles all the procedures necessary to establish, maintain, and release dedicated radio connections
 - channel allocation
 - handover
 - timing advance
 - power control
 - frequency hopping

Three Cases of Hand-over

Layer 3 - MM Sublayer

- The MM sublayer copes with all the effects of handling a mobile user that are not directly related to radio functions
 - location area
 - location registration & call delivery
 - location update & paging

Layer 3 - CM Sublayer

- The CM sublayer manages all the functions necessary for circuit-switched call control
 - call establishment procedures for mobileoriginated calls and mobile-terminated calls
 - in-call modification
 - call reestablishment
 - Dual Tone Multi Frequency (DTMF) control procedure for DTMF transmission

Contents of CM

- Call Control (CC)
- Short Message Service (SMS)
- Supplementary Service (SS)

