Stat. A10 d [0]		[1]	[2]	[3]	Validierung	erung
1	8	1			9	9
2	72	8	1	0	81	81
3	648	72	8	1	729	729
4	5.824	648	72	17	6.561	6.561
5	52.352	5.824	648	225	59.049	59.049
6	470.592	52.352	5.824	2.673	531.441	531.441
7	4.230.144	470.592	52.352	29.881	4.782.969	4.782.969
DEA (Q, S, d, Q = { [0], [1], [2 S = {R, nR}		1*[0]	1 * [1]	1 * [2] + 9 * [3]		
d: $Q \times S \rightarrow Q$ d([i], R) = [i + d([i], nR) = [0] d([3], *) = [3]	-	für 0 <= i <= 2 für 0 <= i <= 2 für i = 3, * aus S				
Stat A10 c						

Rotblockstartpositionen: 1 aus 5 5 Rotblock-optionen: 1 ^ 3 1 Rest-optionen: 8 ^ 4 4.096 Total: Produkt: 20.480

Stat A10 b

Irgendwie färben:	9 ^ 7	4.782.969
Exakt 0x Rot:	(0 aus 7) * 8 ^ 7	2.097.152
Exakt 1x Rot:	(1 aus 7) * 8 ^ 6	1.835.008
Exakt 2x Rot:	(2 aus 7) * 8 ^ 5	688.128
Mind. 3x Rot:	Rest	162.681
Validierung:		
Exakt 3x Rot:	(3 aus 7) * 8 ^ 4	143.360
Exakt 4x Rot:	(4 aus 7) * 8 ^ 3	17.920
Exakt 5x Rot:	(5 aus 7) * 8 ^ 2	1.344
Exakt 6x Rot:	(6 aus 7) * 8 ^ 1	56
Exakt 7x Rot:	(7 aus 7) * 8 ^ 0	1
Mind. 3x Rot:	Summe	162.681

Stat A10 a

35 Position 3x Rot: 3 aus 7 Position 2x Blau: 2 aus 4 6 Position 2x Gelb: 2 aus 2 1 Farboptionen: keine Wahl 1 210 Total: Produkt:

Stat A09

Omega = $\{(x1, x2, x3, x4) \mid xi \text{ in } \{1, 2, ..., 32 \text{ und } xi != xj \text{ für } i != j\}$

xi repräsentiert dabei die Position des entsprechenden Asses (x1: Herz A, x2: Kreuz A, x3: Pik A, x4: Karo A)

 $A = \{ x \text{ in Omega} \mid 2 \text{ in } \{x1, x2, x3, x4\} \}$

$$P(A) = 4 / 32 = 1 / 8 = 12,5\%$$

 $B = \{ x \text{ in Omega} \mid \min(xi) < 10 \text{ und } 2nd(xi) = 10 \}$

 $Y = \{ x \text{ in Omega} \mid x1 < x2 < x3 < x4 \}$

Beachte: jedes y in Y hat gleich viele Urbilder in Omega unter Sortierprojektion und diese Urbilder sind disjunkt.

 $C = \{ y \text{ in } Y \mid y1 < 10 \text{ und } y2 = 10 \}$

Beachte: für alle b in B ist sortiert(b) in C und umgekehrt.

| Y | = (4 aus 32) = 35.960

| C | = (1 aus 9) * (1 aus 1) * (2 aus 22) = 2.079

P(B) = P(C) = |C| / |Y| = 2.079 / 35.960 = 5,78 %

Stat A08	Α	richtig	P(richtig A) =	90%	A+	72,00%
	80%	falsch	P(falsch A) =	10%	A-	8,00%
	В	richtig	P(richtig B) =	50%	B+	7,50%
	15%	falsch	P(falsch B) =	50%	B-	7,50%
	С	richtig	P(richtig C) =	10%	C+	0,50%
	5%	falsch	P(falsch C) =	90%	C-	4,50%
					Summe +	80,00 %
P(<i>F</i>	\	40,00 %			Summe -	20,00 %
P (E	3 falsch) =	37,50 %				
P(0	C falsch) =	22,50 %				

```
Stat Ü 2.1
| Omega | = n!
A = \{ x \text{ in Omega} \mid x1 = 1 \}
| A | = (n-1) !
P(A) = |A| / |Omega| = 1 / n
P({X1 = 1} und {X2 = 1}) = 1/n/(n-1)
Wir gehen davon aus, dass n \ge 8, so dass X8 = 1 möglich ist.
P(\{X2 = 1\} \text{ und } \{X5 = 1\} \text{ und } \{X8 = 1\}) = 1 / n / (n-1) / (n-2)
P( "mind ein Fixpunkt" ) = ???
Sk = (k \text{ aus } n) * (1 / n / (n-1) / ... / (n-k+1)) = 1 / k!
S1 = 1
S2 = 0.5
S3 = 1/2/3
S4 = 1 / 4! = 1 / 24
P( "mind ein Fixpunkt bei n = 1" ) = 1 = 100 %
P( "mind ein Fixpunkt bei n = 2" ) = 1 - 0.5 = 0.5 = 50 \%
P( ,mind ein Fixpunkt bei n = 3") = 0.5 + 1/3! = 2/3 = 66 \%
P( ,mind ein Fixpunkt bei n = 4" ) = 2/3 - 1/4! = 5 / 8 = 62,5 %
P( ,mind ein Fixpunkt bei n = 5" ) = 5/8 + 1/5! = 19 / 30 = 63 \%
P( "mind ein Fixpunkt bei n = 6" ) = 19 / 30 - 1/6! = 91 / 144 = 63 \%
    Stat Ü 2.2
Omega = \{(x1, x2, x3, x4) \mid xi \text{ in } \{1, 2, ..., 32 \text{ und } xi != xj \text{ für } i != j\}
Y = \{ y \text{ in Omega} \mid y1 < y2 < y3 < y4 \}
gleiche Argumentation wie oben
B = \{ y \text{ in } Y \mid y1 = y2 - 1 = y3 - 2 = y4 - 3 \}
| Y | = (4 aus 32) = 35.960
| B | = (1 aus 29) = 29
P ("alle 4 Asse in Folge") = P(B) = |B| / |Y| = 29 / 35.960 = 1 / 1.240 = 0.08 \%
```