

Master Thesis

Estimating Permeability of Porous Media with Fourier Neural Operators

by Lukas Schröder

Agenda

- 01 Task
- **02** Fourier Neural Operators
- 03 Experiments & Results
- 04 Discussion
- 05 Conclusion & Outlook

Technical Faculty

Goal

- Aim is finding the hydraulic resistance R of provided 3D media
 - Governed by Darcy's law in steady state laminar flows
 - $R = \frac{\Delta p}{Q}$
- Hydraulic resistance can be calculated from a material property called permeability k together with the geometric scales

•
$$R = \frac{\mu L}{kA}$$

Classical way of permeability estimation

Experiments

Build a container filled with porous media and measure the pressure difference

Analytical Solutions

For some geometries, like regular sand and certain rock compositions, there are formulas for permeability from porosity and other properties. Basically, finding correlations with easier to measure parameters.

Numerical Simulation

Derive *k* from the pressure difference of flow simulations like *Lattice Boltzmann methods* (LBM) or finite volumes.

Thesis approach

Generate or Provide a Geometry

Calculate Flow with LBM

Train Machine Learning Model on Pressure Field

Extract Pressure
Difference with
Model

- 3D grid of spheres from different radii and distances, shifted randomly
- Datasets of porous media

 Calculate velocities and pressure field

- Input: fill flag field
- Output: pressure field
- Calculate permeability from estimated pressure field and metrics
- Usage as surrogate model
- Very fast with inference only

Technische Fakultät

O2 Fourier Neural Operators

Technical Faculty

Neural Operator

- Idea to learn mapping G between two infinite dimensional function spaces A and U
 - $G: A \times \Theta \to U$ with finite collection of observed input-output pairs Θ
 - Used for example in learning PDEs
 - Independent of discretization
- Needs a lifting layer Q to transfer discrete input into higher dimensional codomain
 - Fully local operator
- Integral kernel operator *K* to work on entire domain
- Projection layer P to transport result back into discrete structures
 - SIREN or 2 linear layers

Fourier Transformation

FFT (nti-audio.com)

- With the kernel integral operator
 - $K(x) = IFFT(R \cdot FFT(x))$

- With the kernel integral operator
 - $K(x) = IFFT(R \cdot FFT(x))$
- And with 1x1 convolutions as weight application (Wx + b)

- With the kernel integral operator
 - $K(x) = IFFT(R \cdot FFT(x))$
- And with 1x1 convolutions as weight application (Wx + b)
- Fourier neural operator apply linear transformation in the frequency space in layer L
 - $L(x) = \sigma(Wx + b + K(x))$

- Fourier neural operator apply linear transformation in the frequency space in layer L
 - $L(x) = \sigma(Wx + b + IFFT(R * FFT(x)))$

- Fourier neural operator apply linear transformation in the frequency space in layer L
 - $L(x) = \sigma(Wx + b + IFFT(R * FFT(x)))$
- Resulting model: $G: Q \circ \sigma(L^{(1)} \circ L^{(2)} \circ L^{(3)} \circ L^{(4)}) \circ P$

- Factorized Fourier Neural Operator for deeper networks
- Splits the Fourier kernel in the three dimension → Reduction of model complexity

- Factorized Fourier Neural Operator for deeper networks
- Splits the Fourier kernel in the three dimension → Reduction of model complexity
- Borrows concepts from classical deeper networks and transformers
 - Feed forward block with 2 linear layers per Fourier block
 - Residual connections

- Factorized Fourier Neural Operator for deeper networks
- Splits the Fourier kernel in the three dimension → Reduction of model complexity
- Borrows concepts from classical deeper networks and transformers
 - Feed forward block with 2 linear layers per Fourier block
 - Residual connections
 - Added weight normalization
 - Cosine learning rate scheduling with warmups

Technical Faculty December 5, 2024 19

Overview

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance

Realizability with Packed Spheres

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts
- 256x128x128 domain filled with spheres of diameter [15, 30] and distances [diameter + 1, diameter + 8]
- Setup
 - Input as 128*x*64*x*64
 - [32, 16, 16] modes in spectral kernel

Realizability with Packed Spheres

- All reach an R² score > 98%
- No performance increase for original model after 4 layers
- Factorized version performs better overall
- Proximity of the results
- Factorized models take longer than their original counterpart

Factorized	Layers	MAE (10 ⁻	% R ² Score	Max AE (10 ⁻²)	Time per epoch in s
False	2	1.20	99.18	6.86	24.28
False	4	1.11	99.35	5.93	44.66
False	6	1.46	98.84	7.01	54.75
False	8	1.34	99.17	5.56	74.12
True	2	1.25	99.42	4.10	48.23
True	4	0.51	99.91	1.44	102.32
True	6	0.73	99.80	2.29	131.28
True	8	0.56	99.88	1.98	171.56

Realizability with Packed Spheres

- All reach an R² score > 98%
- No performance increase for original model after 4 layers
- Factorized version performs better overall
- Proximity of the results
- Factorized models take longer than their original counterpart
- Best configuration: Factorized 4 layer

Factorized	Layers	MSE field (10 ⁻²)	MAE (10 ⁻²)	MAPE	% R² Score	Max AE (10 ⁻²)
True	4	0.006	0.51	2.02	99.91	1.44

Overview

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance

Challenging DRP Dataset

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media
- Simulated with Ibmpy
- Data transformed with $x_{\text{trans}} = \sqrt{x}$

Challenging DRP Dataset

- Hard to achieve R² Score > 80%
- High maximum absolute errors > 0.4
- High intra-model score fluctuations

Factorized	Layers	MAE (10 ⁻²)	% R² Score	Max AE (10 ⁻²)	Time per epoch in s
False	2	6.28	79.19	46.26	15.15
False	4	6.56	79.85	52.77	24.97
False	8	5.98	76.43	51.40	45.09
True	2	7.46	73.11	59.94	27.21
True	4	6.00	68.19	70.02	49.50
True	8	4.42	88.54	37.48	102.87
True	12	5.40	77.57	65.52	139.31

Challenging DRP Dataset

- Hard to achieve R² Score > 80%
- High maximum absolute errors > 0.4
- High intra-model score fluctuations
- Hard to predict high pressure cases drive errors
 - Idea: Filter highest 10% out

Factorized	Layers	MAE (10 ⁻²)	% R ² Score	Max AE (10 ⁻²)
True	8	4.42	88.54	37.48

Challenging DRP Dataset

- Hard to achieve R² Score > 80%
- High maximum absolute errors > 0.4
- High intra-model score fluctuations
- Hard to predict high pressure cases drive errors
 - Idea: Filter highest 10% out

<u>Filtered</u>	MAE (10 ⁻²)	% R² Score	Max AE (10 ⁻²)
True	3.06	94.62	12.34
False	4.42	88.54	37.48

Overview

Packed Spheres

- Used for proving realizability
- Created from a waLBerla performance test setup with random shifts

Digital Rock Project Dataset

- Small, complex diverse dataset for limit testing
- Overview set of 133 real and synthetic porous media

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance

2D Comparison

2D

- From original paper used in Impana Somashekars thesis
- Used for comparison with Swin transformers performance
- Simulated with *lbmpy*
- Sets: 1000 generated polynomials, 600 rough sandstone and 200 rocks

2D Comparison

- Good results on standard, full and rock set with R² score > 94%
- Noisy set fails with R² score < 50%
- Comparison
 - Slightly improved performance in R² scores and maximum AE
 - Training takes only 6% of the transformers time!
 - Noisy set still works with the transformer

Model	Dataset	% R² Score	Max AE (10 ⁻²)	Time per epoch in s
FFNO 4-layer	standard	98.78	10.68	8.62
Swin Transformer	standard	98.14	~12	~140
FFNO 8-layer	rocks (on full)	93.29	-	32.36 (entire set)
Swin Transformer	rocks	93.82	-	~80
FFNO 8-layer	noisy (on full)	47.99	-	32.36 (entire set)
Swin Transformer	noisy	92.35	-	~30

Technische Fakultät December 5, 2024 35

Hyperparameter for FNOs

- AdamW, weight normalization and the cosine learning rate scheduling allow for short training time and stability
- Original FNO architecture deliver reliable results in a faster time
- Original architecture does not improve with added depth after 4 layers
- Factorized FNO architecture delivers the **best results** in all tested cases, but not always meaningfully better
- Factorized FNOs scale better with more layers until 8 layers (here)
- → 2/4-layer original FNO for efficiency
- → 8-layer factorized FNO for maximum performance

Use Cases for FNO based Surrogate Models

Comparison with Analytical Solution

- Formulaic solution are evaluated instantly
- Limited range of applicable geometries
- Performance Example:
 - Shifted spheres with *Kozeny-Carman* equation
 - R² score 95.04% (FFNO 4-layer 99.91%)

Comparison with LBM

- LBM is more accurate and calculations can be parallelized
- Can be simulated for any geometry
- Speed comparison
 - One sample $\sim 207s$ with lbmpy (vs $\sim 0.15s$ inference) on the same GPU
 - Breaking even point with FNO training, simulating training samples and evaluation:
 - ~275 evaluation samples
 - when trained on 250 simulated geometries

Use Cases for FNO based Surrogate Models

05 Conclusion & Outlook

Technical Faculty December 5, 2024

05 Conclusion & Outlook

5 Learnings

- Fourier neural operators can capture the pressure field to a reliable degree
- When enough geometries are provided of similar cases, wide ranges of cases can be predicted
- Original architecture is best for efficiency, while the factorized performs best
- It can bridge the range of LBM with the speed closer to analytical solutions with a state-of-the-art NN
- Use case is when many similar geometries need to be evaluated quickly

05 Conclusion & Outlook

Outlook

- Test scalability with big and complex databases
- Investigations of physically informed neural networks (PINNs)
- Comparison with more modern and elaborate analytical solution
- Test FNOs on entire flow prediction

Thanks for Your Attention