PERÍODO DE 2017.1 PROF. MARCUS VINICIUS S. POGGI DE ARAGÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

Estruturas Discretas - Segundo Trabalho

Gabriel Barbosa Diniz Lucas Rodrigues Mateus Ribeiro de Castro 1511211 1510848 1213068

2 de Julho de 2017

 ${f Observação}_1$: Os códigos fontes dos algoritmos referentes aos teoremas provados seguirá em anexo em um arquivo Jupyter Notebook para melhor entendimento, compilação, execução, testes, etc.

1 Primeiro Teorema

ENUNCIADO DO TEOREMA : Sabe-se encontrar a árvore de peso máximo de G=(V,E) que contém o vértice 1 e possui K vértices.

- Denomina-se A_k a árvore obtida com certo valor de k.
- Denomina-se V_k e E_k as listas de vértices e arestas, respectivamente, que compõem a árvore A_k .

Caso Base: Provando por indução simples em K, temos para o caso base k = 1, e assim haverá somente o vértice 1 e nenhuma aresta; o peso total será 0. Esta é a única árvore possível de 1 vértice e que contém v_1 . Está definida por $V_1 = \{v_1\}$ e $E_1 = \emptyset$.

Hipótese Indutiva: Pela hipótese indutiva, temos que o teorema é válido para k vértices e desejamos provar, portanto, que é válido também para k+1 vértices. Portanto, conhecemos V_k e E_k , e deseja-se determinar V_{k+1} e E_{k+1} .

Passo Indutivo: Considere o grafo B_k formado pelos vértices pertencentes a $V-V_k$ e por todas as arestas formadas por vértices $(b_1,b_2) \in (V-V_k)$. Considere o conjunto R de arestas do tipo (a,b) em que $a \in A_k$ e $b \in B_k$. Necessariamente, A_{k+1} tem seu conjunto de vértices

definido por $V_k \cup \{b\}$ e seu conjunto de arestas definido por $E_k \cup \{(a,b)\}$. Determinando a e b, portanto, determinamos inteiramente A_{k+1} , onde a e b são os vértices da aresta de maior peso entre as arestas R. Com isso, está determinado A_{k+1} .

Com isso então podemos, através da prova indutiva resolvida derivar um algoritmo genérico que corresponde a prova deste teorema. Segue abaixo então o algoritmo em *python*:

```
import numpy as np
5 # Algoritmo que recebe uma matriz de adjascencias com os pesos das arestas
6 #
7 # OBS: Ao inves de usar varios parametros, procure usar o retorno multiplo,
        retornando o visited e a arvore. No caso, base tenta retornar uma matriz
8 #
        vazia com o visited incluindo o primeiro vertice.
9 #
10 #
  12
  def HeavyTree(M, k):
14
     n = len(M)
15
16
     if (k > n \text{ or } k < 0):
17
         print("K invalido")
18
         return -1
19
20
     # Caso Base
21
     if(k == 1):
22
         visited = [0]
23
         tree = np.zeros((n,n))
24
25
         return tree, visited
26
     tree, visited = HeavyTree(M, k-1)
27
     B = [] # Vertices vizinhos a vertices visitados
28
29
      for i in range(n):
30
31
         if (i not in visited): # Aqui temos a avaliacao de todos os vertices
32
             for j in visited: # nao visitados que sao vizinhos de vertices
                 if (M[i,j] != 0 \text{ and } j \text{ not in } B): # visitados.
33
                    B = B + [i]
34
                    break
35
36
      biggest = 0
37
     new_v = 0
38
     old_v = 0
39
40
      for i in B:
41
         \#new = np.max(M[i])
42
         for j in visited:
43
44
             if (M[i,j] > biggest):
                 biggest = M[i,j]
```

```
new_v = i
47
                   old_v = j
48
      visited = visited + [new_v]
49
50
      #for i in range(n):
51
            if (M[new_v, i] == biggest):
52
               tree[i][new_v] = biggest
53
               tree[new_v][i] = biggest
54
               break
55
      tree[new_v][old_v] = biggest
      tree[old_v][new_v] = biggest
59
      return tree, visited
```

Listing 1: Python algorithm

OBSERVAÇÃO SOBRE O ALGORITMO REALIZADO : Por questão prática do algoritmo em si, podemos dizer que foi realizado como passo indutivo:

- Procura-se max(T(k)).
- Soma os pesos das arestas de maior peso de cada uma das folhas.
- Para todos os nós, adicionam-se as arestas de maior peso com os vértices restantes, ou seja, $max(p_bt.qb \in (V-V_k))$.

Dessa forma, saberemos que adicionamos as arestas de maior peso, e à medida que se aumenta k basta incluirmos mais arestas de maior peso.

Testes do Algoritmo: A tabela abaixo ilustra o tempo de execução do algoritmo para diferentes instâncias e com diferentes valores do parâmetro k. O tempo foi medido executando o algoritmo por 5 segundos e contando o número de execuções.

1.1 TEOREMA BÔNUS

ENUNCIADO DO TEOREMA BÔNUS : Sabe-se encontrar a floresta de peso mínimo de de G = (V, E) onde os componentes conexos possuem pelo menos k vértices.

Caso Base: Por indução simples em k. Para o caso base k=1, a floresta F_1 conterá todos os vértices de V, porém nenhuma aresta. Assim, haverá |V| componentes conexas e a soma dos pesos será mínima.

Hipótese Indutiva: Pela hipótese indutiva, temos que o teorema é válido para k vértices e desejamos provar, portanto, que é válido também para k+1 vértices. Podemos definir componente conexo como qualquer árvore A=(V',E') tal que $V'\subset V$, $E'\subset E$ e |E'|>0. Pela hipótese indutiva, um componente conexo de F_k possuirá pelo menos k vértices.

Passo Indutivo: Sendo assim, o único modo de garantir que este componente passe a conter pelo menos k+1 vértices é adicionando um novo vértice a este componente. Então, enquanto houverem componentes conexos em F_{k+1} com número de vértices menores que k+1, devemos, do conjunto de arestas de G ainda não utilizadas em F_{k+1} (*i.e.*, $S_k = E - E_{k+1}$), para um componente conexo A de F_{k+1} , escolher a aresta de menor peso $s = (v_1, v_2) \in S_k$ tal que $v_1 \in A$ e $v_2 \notin A$. Após a inclusão dessa aresta, o conjunto de componentes conexos deve ser re-avaliado. Desta maneira, todo componente conexo contará com pelo menos k+1 vértices e, assim, obteremos F_{k+1} , provando o teorema.

O algoritmo derivado desta prova indutiva é conhecido como *Algoritmo de Borůvka* e é utilizado para se obter a Árvore Geradora Mínima de grafos ponderados cujos pesos das arestas são distintos. Segue abaixo o algoritmo em *Python*:

```
1 from pygraph. classes.graph import graph
<sup>2</sup> from pygraph. algorithms. accessibility import connected_components
4 def ForestTheorem(g, k):
    # Salvaguarda
    if k > len(g.nodes()):
      raise ValueError('FORBIDDEN: K > |V|')
9
10
11
      raise ValueError('FORBIDDEN: K <= 0')</pre>
12
    # Caso base
13
    if k == 1:
14
       forest = graph()
15
16
       for node in g.nodes():
17
         forest.add_node(node)
18
19
       return forest
20
21
```

```
# Hipotese indutiva
23
    forest = ForestTheorem (g, k-1)
24
    # Enquanto ainda houverem componentes conexos
25
    # que nao satisfazem a condicao
26
27
    while True:
28
      # Atualiza a lista de componentes, pois pode ter
29
      # mudado durante a adicao
30
      cc = _transform_cc(connected_components(forest))
31
32
      # Seleciona um que tenha comprimento < k
33
      selected_component = None
34
      for component in cc:
35
         if len(component) < k:</pre>
36
           selected_component = component
37
38
39
      # Se nao conseguiu selecionar, significa que todos
40
      # satisfazem comprimento >= k, e podemos parar o while
41
      if selected_component == None:
42
        break
43
      # Caso haja um selecionado, selecionar a aresta de menor
45
      # peso que tenha somente um dos vertices em selected_component
46
      edges = g.edges()
47
      used_edges = forest.edges()
48
      unused_edges = [e for e in edges if e not in used_edges]
49
      neighbor_edges = [e for e in unused_edges if e[0] in selected_component]
50
51
      min_edge = min(neighbor_edges, key=lambda e: g.edge_weight(e))
52
      forest.add_edge(min_edge)
53
    return forest
55
56
57
58 def _transform_cc(cc):
59
    inv_map = \{\}
60
61
62
    for k, v in cc.iteritems():
63
      inv_map[v] = inv_map.get(v, [])
64
      inv_map[v].append(k)
   return inv_map.values()
```

Listing 2: Python algorithm

Testes do Algoritmo: A tabela abaixo ilustra o tempo de execução do algoritmo, em milissegundos, para diferentes instâncias e com diferentes valores do parâmetro k.

 O tempo foi medido executando o algoritmo por 5 segundos e contando o número de execuções. OBSERVAÇÃO SOBRE OS TESTES : No anexo enviado estão figuras que ilustram o passo-apasso dos vértices e arestas escolhidos em cada etapa do algoritmo quando aplicado na instância ulysses16.

entrada	k = 1	<i>k</i> = 2	<i>k</i> = 3	<i>k</i> = 5	k = 10	k = 15	<i>k</i> = 20	k = 30	k = 40	k = 50
ulysses16	0.01	1.41	1.99	2.31	3.35	3.64	_	_	_	_
ulysses22	0.01	3.09	4.66	6.36	23.57	24.95	25.02	_	_	_
bays29	0.01	7.37	11.36	14.04	21.32	21.58	21.86	_	_	_
eil51	0.02	59.49	98.04	148.13	163.11	170.35	173.74	175.71	175.82	183.72
eil76	0.03	284	393	539	610	770	818	855	861	865
bier127	0.06	1861	3127	3917	6735	8142	10210	10352	10996	13077

2 SEGUNDO TEOREMA

ENUNCIADO DO TEOREMA (i,j,q): Sabe-se determinar o prêmio máximo que o rei consegue coletar saindo da posição (i,j) e consumindo q unidades.

- Vamos considerar um desarrolamento da matriz em 64 vértices distintos, com v_1 correspondente a (1,1), v_2 a (1,2), assim por diante. Os conceitos de vizinhança continuam valendo: v_1 tem como vizinhos $\{v_2, v_9, v_10\}$.
- Considere, também, uma tabela cujas linhas correspondem aos vértices v, e as colunas ao custo q restante a ser utilizado. As células da tabela serão preenchidas com o prêmio máximo $P_{max}(v_{ij},q)$, que se consegue a partir de um trajeto que inicie no vértice v_{ij} e que consuma q unidades.

Caso Base: Por indução em q, temos o caso base para q = 0, preencheremos a primeira coluna da tabela. Neste caso, não existem unidades para consumir, logo não poderemos sair da origem (i, j). Sendo assim, o prêmio máximo para ir até (i, j) será zero e para qualquer outro vértice será $-\infty$ (que representa a impossibilidade).

Hipótese Indutiva: Como hipótese indutiva, temos que o teorema é válido para $0 \le q \le Q$, portanto queremos provar que o teorema também é válido para Q + 1.

Passo Indutivo: Neste caso, para cada um dos vértices v, devemos encontrar o prêmio máximo que pode ser obtido chegando a v consumindo Q+1 unidades. Logo, podemos observar que, para que a condição acima seja satisfeita, no instante imediatamente anterior à chegada em v, estaríamos em um vértice v_n , vizinho de v, com $Q+1-q_v$ unidades consumidas, sendo q_v o custo associado ao vértice v. Visto que o prêmio p_v associado ao vértice v é constante, devemos escolher v_n de maneira que $P_{max}(v_n,Q+1-q_v)$ seja máximo, garantindo, assim, que $P_{max}(v,Q+1)=p_v+P_{max}(v_n,Q+1-q_v)$ também seja máximo. Vale ressaltar que, caso $Q+1-q_v<0$, teremos que $P_{max}(v_n,Q+1-q_v)=-\infty$, uma vez que é impossivel chegar a qualquer vértice consumindo um custo total menor que zero.

E assim então, através da prova indutiva resolvida, podemos derivar um algoritmo genérico que corresponde a prova deste teorema. Segue abaixo o algoritmo em *Python*:

3 ALGORITMO DE BUSCA DE UMA String EM TEXTOS

ENUNCIADO DO PROBLEMA : Considerando um texto definido pelo vetor de caracteres T[1..n], deseja-se determinar todas as ocorrêcias da *string* s[1..m] em T.

• O algoritmo correspondente que possui este objetivo e que atenda à condição de "encontrar as ocorrências da string *s* exatamente como especificado "segue abaixo em *Python*:

```
def Transform(string):
       n = len(string)
       for i in range(n):
           if (maiuscula(string[i])):
                string[i] = chr(ord(string[i]) + 32)
       return string
6
8 def FindWord (text, word):
      i = 0
      j = 0
      f = len(text)
11
      n = len(word)
12
      letra = text[i]
13
      instances = []
14
      start = 0
15
       end = 0
16
       in_string = 0
17
18
       while(i<f):</pre>
19
           if(letra == word[0] and in_string == 0):
20
                j = 0
21
                start = i
               end = i
22
                in\_string = 1
23
           if(in_string == 1 and letra != word[j]):
24
                in_string = 0
25
                start = 0
26
               end = 0
27
                j = 0
28
           if (in_string == 1 \text{ and } letra == word[j] \text{ and } j != (n-1)):
                j = j + 1
30
                end = end + 1
31
           if (in_string == 1 \text{ and } letra == word[j] \text{ and } j == (n-1)):
33
                instances = instances + [[start,end]]
34
                start = 0
                end = 0
35
                in_string = 0
36
           if(i == (f-1)):
37
                break
38
           i = i + 1
39
           letra = text[i]
40
       return instances
```

Listing 3: String Python Algorithm

• O algoritmo correspondente que possui este objetivo e que atenda à condição de "permitir alternativas entre elementos de *s*, como por exemplo, maiúsculas e minúsculas serem equivalentes" segue abaixo em *Python*:

```
def Transform(string):
       n = len(string)
       for i in range(n):
            if (maiuscula(string[i])):
                string[i] = \frac{chr(ord(string[i]) + 32)}{chr(ord(string[i]) + 32)}
       return string
6
8 def FindWordEq (text, word):
       text = Transform(text)
9
       word = Transform(word)
10
       i = 0
11
       j = 0
12
13
       f = len(text)
       n = len(word)
14
       letra = text[i]
15
       instances = []
16
       start = 0
17
       end = 0
18
       in_string = 0
19
       while (i < f):
20
21
            if(letra == word[0] and in_string == 0):
22
                j = 0
23
                start = i
24
                end = i
                in\_string = 1
25
            if(in_string == 1 and letra != word[j]):
26
                in_string = 0
27
                start = 0
28
                end = 0
29
                i = 0
30
            if (in_string == 1 \text{ and } letra == word[j] \text{ and } j != (n-1)):
31
                j = j + 1
32
                end = end + 1
33
            if (in_string == 1 \text{ and } letra == word[j] \text{ and } j == (n-1)):
                instances = instances + [[start,end]]
35
36
                start = 0
                end = 0
37
                in_string = 0
38
            if(i == (f-1)):
39
                break
40
            i = i + 1
41
            letra = text[i]
42
       return instances
```

Listing 4: String Python Algorithm

 O algoritmo correspondente que possui este objetivo e que atenda à condição de "encontrar as ocorrências de s que deixam de verificar até um dos seus elementos" segue abaixo em *Python*:

```
def Transform(string):
    n = len(string)
    for i in range(n):
        if (maiuscula(string[i])):
            string[i] = chr(ord(string[i]) + 32)
    return string
```

Listing 5: String Python Algorithm