PhishNetGuard

A PHISHING WEBSITE DETECTION SYSTEM

PRESENTED BY: VIKRANT SINGH

STUDENT NAME: VIKRANT SINGH

COLLEGE NAME: UNIVERSITY INSTITUTE OF

ENGINEERING TECHNOLOGY, KATHUA

DEPARTMENT: COMPUTER SCIENCE(CSE)

EMAIL ID: RAJPUTVIKRANT977@GMAIL.COM

AICTE STUDENT ID: STU681BA476772821746642038

OUTLINE

- > Problem Statement
- Dataset and its Information
- **▶** Data Visualization before Feature Scaling
- **≻**Model Building
- Result before feature Scaling
- **▶** Data Visualization after feature Scaling
- Result after Feature Scaling
- **▶** Comparison Between original and Scaled data
- **▶** Deep learning Model Evaluation
- > Final Comparison between the model
- **▶** Conclusion and Reference

PROBLEM STATEMENT

Phishing attacks have become one of the most common and dangerous online threats, where fake websites are designed to resemble real ones, stealing personal information such as passwords or bank details. Traditional methods like blacklists or simple rule-based systems often overlook these new and cleverly disguised phishing sites. As a result, users remain vulnerable to scams. To address this issue, this project focuses on using Machine Learning and Deep Learning to develop smarter, automated systems that can detect phishing websites more accurately. By analysing aspects like URL structures and website content, the goal is to create models that can reliably distinguish between real and fake websites and help protect users from online fraud.

DATASET AND ITS INFORMATION

- •The dataset contains:
 - Features: URL-based indicators (like having '@', length, HTTPS, etc.)
 - Target variable(Status): 1 (Phishing) or 0 (Legitimate)
- •Shape:
- •[11430,89]

DATA VISUALIZATION BEFORE FEATURE SCALING

MODEL BUILDING

MACHINE LEARNING MODELS USED:

- Logistic Regression
- Random Forest Classifier
- Support Vector Machine (SVM)
- Decision Tree
- K-Nearest Neighbours (KNN)

Split dataset:

- 80% Training
- 20% Testing

DEEP LEARNING MODELS USED:

- LSTM
- BI-LSTM

epochs = 13/50 batch_size=32

RESULT BEFORE FEATURE SCALING

Classification Report	Logistic	Decision Tree	Random Forest	SVM	KNN
Precision	0.79	0.93	0.97	0.56	0.82
Recall	0.78	0.93	0.96	0.88	0.86
F1-Score	0.79	0.93	0.97	0.68	0.84
Accuracy	0.79	0.93	0.97	0.60	0.84

DATA VISUALIZATION AFTER FEATURES SCALING

RESULT AFTER FEATURE SCALING

Classification Report	Logistic	Decision Tree	Random Forest	SVM	KNN
Precision	0.96	0.93	0.97	0.97	0.97
Recall	0.95	0.94	0.96	0.95	0.94
F1-Score	0.95	0.93	0.97	0.96	0.95
Accuracy	0.95	0.93	0.97	0.96	0.95

COMPARISON BETWEEN FEATURE AND SCALED DATA

DEEP LEARNING MODEL EVALUATION

Classification Report	LSTM	Bi-LSTM	Bi-LSTM Confusion Mat			
			-			- 1000
Precision	0.97	0.97	0 -	1078	51	- 800
Recall	0.96	0.95	True Label			- 600
F1-Score	0.97	0.96	п-	28	1129	- 400 - 200
Accuracy	0.97	0.97		0 Predict	i ed Label	

FINAL COMPARISON BETWEEN THE MODEL

FINAL COMPARISON BETWEEN THE MODEL

SOCIETAL IMPACT

PhishNetGuard helps protect people from phishing attacks by using intelligent models to detect fake websites. This is especially useful for everyday internet users who may not recognize online threats. By preventing data theft and online fraud, the project promotes safer browsing and supports a more secure digital environment for individuals, schools, and businesses.

CONCLUSION AND REFERENCES

Phish Net Guard demonstrates the effectiveness of ML and DL in phishing website detection using a Kaggle dataset. Models like KNN, SVM, Logistic Regression, Decision Tree, Random Forest, LSTM, and Bi-LSTM were evaluated, with Random Forest and Bi-LSTM achieving the highest accuracy (97%) by capturing URL patterns effectively. The project shows how combining ML and DL provides a scalable, reliable solution. Future improvements include a user-friendly interface (e.g., Streamlit or Flask) and a browser extension for real-time phishing alerts

☐ The dataset which I have used is:

□SOURCE CODE:

Jupyter Source File Microsoft Excel na Separated Va

□GitHub Link: vikrantsingh00/FINAL-PROJECT-MICRSOFT-INTERNSHIP-: A Phishing website detection system

Thank you