

## SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF O-METHYL DERIVATIVES OF AZALIDE ANTIBIOTICS: 1. 4", 11 AND 12-OMe DERIVATIVES VIA DIRECT METHYLATION

Sherman T. Waddell,\* Gina M. Santorelli, Timothy A. Blizzard, Amy Graham,† and James Occi†

Departments of Medicinal Chemistry and †Enzymology

Merck Research Laboratories, 50G-231, P. O. Box 2000, Rahway, NJ 07065, USA

Received 7 January 1998; accepted 27 January 1998

Abstract: A series of O-Me derivatives of 9-deoxo-8a-aza-8a-homoerythromycin has been prepared and evaluated for antibacterial activity. The relative rates of methylation of the four available hydroxyls (4", 6, 11 and 12) in 2',3'-bis-Cbz protected 9-deoxo-8a-aza-8a-homoerythromycin were compared to those given in a published report for the similarly protected 9a-azalide. An incongruity in the results prompted reinvestigation of the O-methylation of the 9a-azalide, and an error in structure assignment in the published report was discovered: the compound reported as the 6-OMe-9a-azalide has been determined to be the 12-OMe derivative.

© 1998 Elsevier Science Ltd. All rights reserved.

Landmarks in the second generation of macrolide antibiotics include clarithromycin and azithromycin. The former is derived from erythromycin simply by methylation of the 6-OH group, and displays improved activity against a variety of gram-positive organisms.<sup>1</sup> The latter is the prototypical "azalide", derived from erythromycin by formal insertion of an N-Me function at the 9a-position (along with reduction of the the 9-keto function to a methylene) to create a 15 membered ring (structure 7b), and introduces increased (and clinically useful) potency against many important gram negative species.<sup>2</sup> It was subsequently discovered that the isomeric azalide with the nitrogen in the 8a-position (1b) has similar potency to the 9a-aza prototype, and represents an important alternative platform.<sup>3</sup> We desired to investigate the effects of methylating the hydroxy groups of the 8a-azalide (1b), in hopes that a hybrid "clarithro-azalide" would show improved properties. With this aim, we were particularly interested in the 6-OMe compound. The 9a-azalide (7b) has been the previous subject of such an investigation, and the preparation of 6-OMe-9-deoxo-9a-aza-9a-homoerthromycin has been reported.<sup>4</sup> We have shown in the course of this work, however, that this structural assignment was incorrect.<sup>5</sup>

Equation 1: O-Methylation of the 8a-Azalide

0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0960-894X(98)00070-5

The classical method for O-methylating macrolides proceeds by initial protection of the reactive sites on the desosamine, typically as 2'-OCbz-3'-NMeCbz. This protected derivative is then O-methylated in a dipolar aprotic solvent (e.g., DMSO/THF or DMF) using a base (e.g., KOH or NaH) and MeI. Removal of the Cbz's and Eschweiler-Clarke methylation of the 3'-nitrogen completes the sequence. It should be noted that there are four hydroxyls that can be methylated (4", 6, 11 and 12), and mixtures of various mono-, and di-, and tri-O-methylated derivatives are generally obtained. The relative rates of methylation of the four hydroxyls presumably depend on subtle conformational details, and are not predictable by a cursory inspection of the structure. In this regard, we were interested to see what differences would be observed in these relative rates between the 8a- and 9a-azalide platforms.

In our investigation, we principally employed DMF, MeI and NaH at 0 °C, at various concentrations in order to favor more or less O-methylation. Limited experimentation showed that conservative variation of the solvent (e.g., to DMSO/THF mixtures) or the base (e.g., to KH) gave results qualitatively similar to those obtained in the DMF/NaH system. These conditions are substantially similar to those used by Kobrehel, et al.<sup>4</sup> in their investigation of the 9a-aza platform (7b), but it should be noted that while the protected 9a-aza platform is stable to prolonged reaction at room temperature under these conditions, the analogous 8a-aza platform decomposes by loss of cladinose upon warming to room temperature, and so must be maintained at 0 °C for the duration of the reaction.

A description of three experiments serves to illustrate the relative facility with which the various mono-, di-, and tri-O-methylated products are produced in the reaction (Eq. 1). Under the mildest conditions, treatment of a 0.1 M solution of 1a in DMF at 0 °C (reactions were typically conducted using 100 mg to 1 g of 1) with 6 equiv of MeI followed by 2.5 equiv of NaH (60% oil dispersion) for 20 min gave 24% (all yields given in this section are unoptimized, isolated yields) of the 4"-OMe product 2a and 4% of the 12-OMe product 3a, along with 25% recovered starting material.<sup>6</sup> In a somewhat more vigorous variation, treatment of a 0.1 M solution of 1 in DMF at 0 °C with 15 equiv of MeI followed by 5 equiv of 60% NaH (oil dispersion) for 1.5 h gave 42% of the 4",12-di-OMe product 5a and 5% of the 4",11-di-OMe product 4a, along with 17% of 2a and 4% of 3a. In a still more vigorous variation, treatment of a 0.5 M solution of 1 in DMF at 0 °C with 15 equiv of MeI followed by 10 equiv of 60% NaH (oil dispersion) for 5 h gave 55% of the 4",11,12-tri-OMe product 6a and 18% of di-OMe product, mostly 5a.

Although we did not do careful kinetics, these results clearly support the conclusion that the methylation of the 4"-OH is relatively fast, while that of the 12-OH is slower and that of the 11-OH is slower still. The consequences of this are illustrated in the reaction cascade scheme (Scheme 1). Fast 4"-O-methylation produces the major mono-O-methylation product 2a, while slow 12-O-methylation produces the minor 3a. The product of the slower 11-O-methylation is not observed as a mono-O-methylation product. The major di-O-methylation product 5a (4",12-di-OMe) is produced both by slow 12-O-methylation of the major 4"-OMe and by fast 4"-O-methylation of the minor 12-OMe product, while the minor di-O-methylation product 4a (4",11-di-OMe) is produced only by slow 11-O-methylation of the major 4"-OMe product. The 11,12-di-OMe product, which would have to be produced via two consecutive slow steps, is not observed. Finally, the 4",11,12-tri-OMe product 6a is produced principally by slow 11-O-methylation of the major 4",12-di-OMe product (the alternative route of production, 12-O-methylation of the 4",11-di-OMe isomer, is a negligible contributor on account of the low concentration of this di-OMe isomer.)

It can be seen that the 6-OH is not methylated under even the most vigorous reaction conditions (attempts to make the conditions still more vigorous, either by prolonged reaction at 0 °C or by allowing the

Scheme 1: Reaction Cascade

reaction to warm to room temperature, resulted in elimination of cladinose.) This is in constrast to the O-methylation of erythromycin (similarly protected as 2'-OCbz-3'-NMeCbz), in which system the 6-OH is easily methylated under conditions very similar to these.¹¹¹ It is also in contrast to the literature report on the 2'-OCbz-3'-NMeCbz-9a-azalide (7a), which is reported to undergo O-methylation in the following order: 11-OH ≥ 6-OH > 4"-OH.⁴ It seemed incongrouous that the pattern of O-methylation exhibited by the 9a-azalide should be more similar to that of erythromycin than to that of the 8a-azalide, and so we were prompted to reinvestigate the O-methylation of the 2'-OCbz-3'-NMeCbz-9a-azalide (7a). Using mild conditions, treatment of a 0.05 M solution of 7a in DMF at 0 °C with 6.5 equiv of MeI followed by 2.5 equiv of NaH (60% oil dispersion) for 1 h gave 38% (unoptimized, isolated yields) of the 11-OMe product 8a and 27% of the 12-OMe product 9a, along with 13% recovered starting material. More vigorously, treatment of a 0.063 M solution of 7a in DMF at 0 °C with

Table 1: Complete NMR data for compounds 2b-6b

|          | <sup>1</sup> H NMR (500 MHz, 50 °C) |              |              |              |              | <sup>13</sup> C NMR (500 MHz, 50 °C) |              |              |              |              |              |  |
|----------|-------------------------------------|--------------|--------------|--------------|--------------|--------------------------------------|--------------|--------------|--------------|--------------|--------------|--|
| proton   | 2b                                  | 3ь           | 4b           | 5b           | 6b           | carbon                               | <b>2</b> b   | 3b           | <b>4</b> b   | 5b           | 6b           |  |
| 2        | 2.81                                | 2.91         | 2.86         | 2.91         | 2.93         | 1                                    | 178.3        | 178.2        | 177.9        | 178.4        | 177.2        |  |
| 3        | 4.50                                | 4.52         | 4.56         | 4.53         | 4.58         | 2                                    | 45.6         | 45.4         | 46.1         | 45.5         | 45.2         |  |
| 4        | 1.83                                | 1.91         | 1.91         | 1.89         | 1.95         | 3                                    | 76.3         | 76.2         | 76.4         | 76.2         | 76.3         |  |
| 5        | 3.53                                | 3.52         | 3.52         | 3.51         | 3.54         | 4                                    | 43.1         | 42.8         | 43.5         | 42.9         | 42.8         |  |
| 7a       | 1.90                                | 1.91         | 1.96         | 1.93         | 2.00         | 5                                    | 84.8         | 85.0         | 84.7         | 84.8         | 84.2         |  |
| 7 b      | 1.12                                | 1.12         | 1.12         | 1.08         | 1.14         | 6                                    | 74.7         | 74.5         | 74.1         | 74.7         | 74.1         |  |
| 8        | 3.00                                | 3.02         | 3.00         | 2.98         | 3.02         | 7                                    | 36.8         | 36.9         | 36.9         | 37.0         | 38.0         |  |
| 9a       | 2.51                                | 2.51         | 2.50         | 2.50         | 2.49         | 8                                    | 56.2         | 56.7         | 56.5         | 56.4         | 56.8         |  |
| 9 b      | 2.31                                | 2.32         | 2.33         | 2.32         | 2.33         | 9                                    | 59.5         | 60.1         | 61.0         | 60.1         | 62.6         |  |
| 10       | 2.00                                | 2.06         | 2.05         | 2.05         | 2.09         | 10                                   | 30.5         | 30.4         | 30.7         | 30.6         | 31.0         |  |
| 11       | 3.53                                | 3.60         | 3.29         | 3.58         | 3.34         | 11                                   | 66.9         | 70.0         | 76.8         | 70.0         | 80.6         |  |
| 13       | 4.86                                | 5.61         | 4.80         | 5.61         | 5.34         | 12                                   | 75.7         | 79.8         | 75.4         | 79.8         | 80.7         |  |
| 14a      | 1.91                                | 1.80         | 1.94         | 1.78         | 1.76         | 13                                   | 76.9         | 73.0         | 77.2         | 73.0         | 74.9         |  |
| 14 b     | 1.49                                | 1.53         | 1.46         | 1.51         | 1.53         | 14                                   | 21.6         | 21.5         | 22.0         | 21.7         | 22.1         |  |
| 15       | 0.91                                | 0.96         | 0.91         | 0.96         | 0.92         | 15                                   | 10.8         | 10.4         | 11.0         | 10.7         | 12.1         |  |
| 1'       | 4.41                                | 4.39         | 4.42         | 4.39         | 4.42         | 1'                                   | 103.0        | 103.1        | 102.6        | 102.9        | 102.6        |  |
| 2'       | 3.20                                | 3.23         | 3.20         | 3.19         | 3.20         | 2'                                   | 70.9         | 70.7         | 70.8         | 70.8         | 70.7         |  |
| 3'       | 2.60                                | 2.54         | 2.60         | 2.59         | 2.60         | 3'                                   | 65.0         | 65.6         | nd           | 65.1         | 65.0         |  |
| 4'a      | 1.68                                | 1.71         | 1.68         | 1.68         | 1.69         | 4'                                   | 28.8         | 29.0         | nd           | 28.9         | 29.0         |  |
| 4'b      | 1.20                                | 1.24         | 1.20         | 1.20         | 1.20         | 5'                                   | 68.6         | 68.9         | 68.2         | 68.7         | 68.5         |  |
| 5'       | 3.61                                | 3.52         | 3.62         | 3.60         | 3.60         | 6'                                   | 20.9         | 21.0         | 20.9         | 21.0         | 20.8         |  |
| 6'       | 1.22                                | 1.24         | 1.22         | 1.21         | 1.20         | 1"                                   | 94.5         | 94.5         | 94.6         | 94.5         | 94.9         |  |
| 1"       | 5.10                                | 5.17         | 5.20         | 5.15         | 5.14         | 2"                                   | 35.2         | 34.8         | 35.3         | 35.4         | 35.2         |  |
| 2"a      | 2.31                                | 2.30         | 2.32         | 2.31         | 2.33         | 3"                                   | 73.8         | 72.5         | 73.8         | 73.7         | 73.8         |  |
| 2" b     | 1.51                                | 1.57         | 1.52         | 1.51         | 1.51         | 4"                                   | 89.2         | 78.2         | 89.2         | 89.4         | 89.1         |  |
| 4"<br>5" | 2.69                                | 3.02         | 2.68         | 2.69         | 2.68         | 5"                                   | 64.2         | 65.1         | 64.1         | 64.2         | 64.1         |  |
| 5"<br>6" | 4.27                                | 4.05         | 4.26         | 4.26         | 4.28         | 6"                                   | 18.0         | 17.9         | 17.9         | 18.0         | 17.8         |  |
| 2-Me     | 1.31                                | 1.30         | 1.29         | 1.30         | 1.28         | 2-Me                                 | 14.1<br>10.8 | 13.8<br>11.4 | 14.1<br>11.2 | 14.0<br>11.8 | 18.5<br>11.8 |  |
| 2-Me     | 1.19<br>1.11                        | 1.20         | 1.19<br>1.13 | 1.19<br>1.13 | 1.18<br>1.14 | 4-Me<br>6-Me                         | 27.3         | 27.1         | 27.8         | 27.2         | 27.2         |  |
| 6-Me     | 1.11                                | 1.12<br>1.37 | 1.13         | 1.13         | 1.14         | 8-Me                                 | 12.2         | 12.3         | 12.0         | 12.6         | 10.5         |  |
| 8-Me     | 0.93                                | 0.94         | 0.93         | 0.93         | 0.95         | 10-Me                                | 11.5         | 11.1         | 12.0         | 11.3         | 12.3         |  |
| 10-Me    | 0.96                                | 1.04         | 0.93         | 1.03         | 0.97         | 12-Me                                | 15.9         | 17.1         | 16.9         | 17.3         | 16.7         |  |
| 12-Me    | 1.10                                | 1.04         | 1.12         | 1.07         | 1.13         | 3"-Me                                | 21.1         | 21.0         | 21.1         | 21.2         | 21.1         |  |
| 3"-Me    | 1.25                                | 1.26         | 1.26         | 1.27         | 1.25         | NMe2                                 | 39.9         | 40.0         | 40.1         | 40.1         | 40.0         |  |
| NMe2     | 2.31                                | 2.34         | 2.30         | 2.30         | 2.30         | NMe                                  | 30.8         | 30.4         | 31.2         | 30.6         | 32.1         |  |
| NMe      | 2.05                                | 2.03         | 2.08         | 2.02         | 2.13         | 3"OMe                                | 49.3         | 49.2         | 49.4         | 49.4         | 49.2         |  |
| 3"OMe    | 3.33                                | 3.32         | 3.34         | 3.33         | 3.33         | 4"OMe                                | 61.6         | -            | 61.6         | 61.6         | 61.6         |  |
| 4"OMe    | 3.54                                | -            | 3.55         | 3.55         | 3.54         | 110Me                                | -            | -            | 62.4         | -            | 61.6         |  |
| 110Me    | -                                   | -            | 3.59         | -            | 3.53         | 120Me                                | •            | 52.4         | -            | 52.5         | 51.9         |  |
| 120Me    | -                                   | 3.46         | -            | 3.45         | 3.35         |                                      |              |              |              |              |              |  |
| ~=~IIIC  |                                     |              |              |              |              |                                      |              |              |              |              |              |  |

33 equiv of MeI followed by 5 equiv of 60% NaH (oil dispersion) for 1.5 h gave 26% of the 11,12-di-OMe product 10a and 57% of the 4",11,12-tri-OMe product 11a. These results are entirely in line with those reported by Kobrehel, et al.,<sup>4</sup> except that we discovered that all of their 6-OMe assignments are actually 12-OMe.<sup>6</sup> It can thus be seen that, as expected, the patterns of O-methylation of the two azalides are grossly similar, in that neither is O-methylated on the 6-OH, while both are O-methylated on the other three hydroxy groups, although at different rates.

Equation 2: O-Methylation of the 9a-Azalide

While the measurement of absolute rate constants was outside the scope of our study, it seems reasonable to assume that the absolute rate of O-methylation of the remote 4"-OH will be approximately the same in both the 8a- and 9a-aza platforms. This assumption allows us to qualitatively rank relative rates of O-methylation from both platforms on a single scale: 11-OH  $(9a) \ge 12$ -OH (9a) > 4"-OH  $(9a) \ge 4$ "-OH (8a) > 12-OH (8a) > 11-OH (8a). This ranking suggests that the 9a-aza platform is O-methylated more rapidly overall under these conditions than is the 8a-aza platform.

Examination of the NMR data in Table 1 reveals several key spectral changes upon O-methylation. The anticipated effects are seen for O-methylation at 4" and 11: specifically, an upfield shift of 0.2-0.3 ppm for a proton geminal to the methoxy, and a downfield shift on the order of 10 ppm for the carbon bearing the methoxy. It can be seen that O-methylation of the 12-OH produces more complicated and unexpected effects: here there is no proton geminal to the 12-OH, but it can be seen that the 13-H shifts downfield by as much as 0.75 ppm in compounds bearing a 12-OMe. In the carbon spectrum, we see that the 12-C is shifted downfield by a modest 4 ppm, but the 11-C shifts downfield by almost as much, and the 13-C is actually shifted *upfield* by about 4 ppm. Generally the chemical shift changes upon O-methylation are quite local, and so we may conclude that methylation of the 12-OH introduces a rather substantial alteration in the conformation. Our use of molecular modeling techniques to explore this issue will be the subject of a future report.

Table 2 shows the MIC's of the O-methylated derivatives of the 8a- and 9a-azalides versus selected macrolide susceptible microorganisms. It can be seen that the effect of O-methylation is uniformly deleterious, with the general trend being that a greater number of methoxy groups results in a less active compound. Although the 12-OMe compound 3b was not tested (samples of this compound were never isolated free from significant contamination by 2b), comparison of the di-O-methylated derivatives 4b and 5b suggests that

methylation of the 12-OH is better tolerated than methylation of the 11-OH. This is perhaps surprising in light of NMR evidence for a more substantial conformational reorganization upon 12-O-methylation than upon 11-O-methylation (vide supra). In general, it seems that the 9a-azalide platform tolerates a given degree of methylation somewhat better than the 8a-azalide platform, but only in the 4",11,12-tri-OMe case (6b vs. 11b) is a direct comparison possible.

| MIC's (mg/mL) |          |        |      |     |      |     |       |      |      |      |      |
|---------------|----------|--------|------|-----|------|-----|-------|------|------|------|------|
| strain        |          | 1 b    | 2 b  | 4 b | 5 b  | 6 b | 7 b   | 8 b  | 9 b  | 10 b | 11 b |
| S. pneumo     | (MB3957) | < 0.06 | 0.5  | 2   | 1    | 4   | <0.06 | 0.03 | 0.03 | 1    | 1    |
| S. pyogenes   | (MB2874) | < 0.06 | 0.03 | 0.5 | 0.25 | 0.5 | 0.03  | 0.03 | 0.03 | 0.12 | 0.25 |
| S. aureus     | (MB2865) | 0.3    | 8    | 32  | 8    | 32  | 0.5   | 1    | 1    | 8    | 8    |
| E. faecalis   | (MB5407) | 2      | 8    | 32  | 16   | 32  | 4     | 8    | 4    | 16   | 16   |
| E. faecium    | (MB5516) | 0.125  | 2    | 16  | 4    | 8   | 0.25  | 0.5  | 0.25 | 2    | 4    |
| B. subtilis   | (MB5586) | 0.3    | 4    | 16  | 4    | 2   | 1     | 1    | -    | 4    | 8    |
| M. smegmatis  | (MC2155) | 4      | _    | 8   | _    | 64  | 4     | 2    | 2    | 8    | 16   |

Table 2: MIC's versus selected organisms (susceptible strains)

In conclusion, we have shown that patterns of O-methylation of the 8a- and 9a-azalides, while resembling each other, differ from that exhibited by erythromycin. Specifically, the azalides undergo facile methylation of the 12-OH while methylation of the 6-OH is not observed, whereas with erythromycin, the 6-OH (along with the 11-OH) is first to be methylated. <sup>1b</sup> Critical to reaching this conclusion was the unifying discovery that the compound reported in the literature as 6-OMe-azithromycin. <sup>5</sup> is actually 12-OMe-azithromycin.

## References and Notes

- (a) Morimoto, S.; Takahashi, Y.; Watanabe, Y; Omura, S. J. Antibiotics 1984, 37, 187. (b) Morimoto, S.; Misawa, Y; Adachi, T.; Nagate, T.; Watanabe, Y; Omura, S. J. Antibiotics 1990, 43, 286. (c) Morimoto, S.; Nagate, T.; Sugita, K.; Ono, T.; Numata, K.; Miyachi, J.; Misawa, Y; Yamada, K; Omura, S. J. Antibiotics 1990, 43, 295.
- (a) Djokic, S.; Kobrehel, G.; Lazarevski, G.; Loppotar, N.; Tamburasev, Z.; Kamenar, B.; Nagel, A; Vickovic, I. J. Chem. Soc., Perkin Trans. I, 1986, 1881. (b) Bright, G.; Nagel, A.; Bordner, J.; Desai, K.; Dibrino, J.; Nowakowska, J.; Vincent, L.; Watrous, R.; Sciavolino, F.; English, A.; Retsema, J.; Anderson, M.; Brennan, L.; Borovoy, R.; Cimchowski, C.; Faiella, J.; Girard, A.; Girard, D.; Herbert, C.; Manousos, M.; Mason, R. J. Antibiotics 1988, 41, 1029.
- 3. Wilkening, R.; Ratcliffe, R.; Doss, G.; Bartizal, K.; Graham, A.; Herbert, C. Bioorg. Med. Chem. Lett., 1993, 6, 1287.
- Kobrehel, G.; Lazarevski, G.; Djokic, S.; Kolocny-Babic, L.; Kucisec-Tepes, N; Cvrlje, M. J. Antibiotics 1992, 45, 527.
- 5. The synthesis of 6-OMe-9-deoxo-9a-aza-9a-homoerythromycin will be the subject of a subsequent report.
- 6. Structural determination was performed on the deprotected and remethylated final products 2b-10b. By using a combination of two-dimensional NMR techniques, the complete carbon and proton spectra could be assigned unambiguously. COSY (proton-proton correlation) and HMQC (one bond proton-carbon correlation) together allowed for an almost complete assignment, with only the quaternary carbons (3", 6 & 12), protons on methyl groups attached to quaternary carbons (3"-Me, 6-Me & 12-Me), and methoxy protons (3"-OMe plus any introduced methoxys) remaining unassigned. The long-range HMBC experiment, which correlates protons to carbons over 2 and 3 bonds, eliminated all remaining ambiguities. First, it allowed carbons 6 and 12 to be unambiguously distinguished in the "C NMR spectrum. Next, we found that in every case a very strong coupling is seen from the protons on a methoxy group to the carbon bearing that methoxy group. With a complete carbon assignment, this makes it a simple matter to determine the locations of the methoxy groups.