Deep Learning Models for Games Bachelor Thesis Session – September 2015

Florentina-Stefania Bratiloveanu Supervisor: As. Drd. Ing Tudor Berariu

Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest

September 14, 2015

- Motivation
- 2 State of the art
- 3 Architecture, Design, Results
 - Regression with complex model
 - Regression with simple model
- Future work
- 5 Conclusions
- 6 QA

Motivation

Deep Learning

- find models capable of generalization
- extract from low-level(edges,colors) to high-level(combination of rudimentary features) features
- reduce programming burden
- applicability: cancer classification, autonomous cars, object recognition from images

Once upon a time...

- reinforcement learning: Q-Learning
- neural networks vs deep neural networks

Preprocessing, Model, Loss function

- color space: RGB, YUV, grayscale
- data normalization 0..1, contrast normalization
- activation functions
 - hidden layer vs output layer
 - tanh, sigmoid, ReLU
- how many layers/features, what type of layers
- loss function: classification(binary/multi-class) or regression?
- gradient descent vs stochastic gradient descent

Train and test

- split dataset for training and testing
- when to stop training?

Source:

http://documentation.statsoft.com/statisticahelp.aspx?path=sann/overview/sannoverviewsnetworkgeneralization

Once upon a time...

Tower of Hanoi (first state)

Dataset with noise added and color changed

- game: Tower of Hanoi
- reinforcement learning: Q-Learning
- deep neural networks: predict values from Q-Learning
- machine learning framework: Torch based on Lua

Q-Learning

- finds optimal policy for action-value function
- $Q(s,a) = Q(s,a) + \alpha \cdot (r + \gamma \cdot \max_a Q(s',a') Q(s,a))$

UP = 90.6534DOWN = 86.8787LEFT = 89.1867RIGHT = 94.2824

UP = 97.6530DOWN = 100,0000LEFT = 93,8538RIGHT = 92,5261

UP = 26.3520DOWN = 23.8452LEFT = 23.8897RIGHT = 22,8827

Regression with complex model

Model

- (1): nn.SpatialConvolutionMM(3 \rightarrow 8, 5x5)
- (2): nn.Tanh
- (3): nn.SpatialSubSampling
- nn.SpatialConvolutionMM(8 \rightarrow 20, 5x5) (4):
- (5): nn.Tanh
- (6): nn.SpatialSubSampling
- (7): nn.SpatialConvolutionMM(20 \rightarrow 120, 5x5)
- (8): nn.Reshape(120)
- nn.Linear $(120 \rightarrow 100)$
- (10): nn.Tanh
- (11): nn.Linear(100 \rightarrow 4)
- (12): nn.Sigmoid

Regression with complex model

Results

Regression with simple model

Model

- (1): nn.SpatialConvolutionMM(3 \rightarrow 4, 5x5)
- (2): nn.Tanh
- (3): nn.SpatialSubSampling
- (4): nn.SpatialConvolutionMM(4 \rightarrow 6, 5×5)
- (5): nn.Tanh
- (6): nn.SpatialSubSampling
- (7): nn.Reshape(150)
- (8): nn.Linear(150 \rightarrow 4)

Regression with simple model

Results

- implement Q-Network
- test algorithm on dynamic environments or games where the state of the universe is not fully observed
- make Nao capable of playing Tic-Tac-Toe
- after all tasks mentioned above are done, use all the information gathered for cancer classification, etc.

Conclusions

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Source: http://xkcd.com/

QA

Questions and Answers

Thank you for your attention!