EECS 16A Designing Information Devices and Systems I Discussion 1A

1. Span basics

- (a) What is span $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$?
- (b) Is $\begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}$ in span $\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$?
- (c) What is a possible choice for \vec{v} that would make span $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \vec{v} \right\} = \mathbb{R}^3$?
- (d) For what values of b_1 , b_2 , b_3 is the following system of linear equations consistent? ("Consistent" means there is at least one solution.)

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 0 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

2. Visualizing Span

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b} . We know that to get to \vec{c} , we can travel along \vec{a} for some amount α , then change direction, and travel along \vec{b} for some amount β . We want to find these two scalars α and β , such that we reach point \vec{c} . That is, $\alpha \vec{a} + \beta \vec{b} = \vec{c}$.

- (a) First, consider the case where $\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\vec{c} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Draw these vectors on a sheet of paper. Now find the two scalars α and β , such that we reach point \vec{c} . What are these scalars if we use $\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ instead?
- (b) Formulate the system of equations as a matrix to find the unknowns, α, β , in terms of the vectors $\vec{a}, \vec{b}, \vec{c}$.

3. Span Proofs

Given some set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, show the following:

- (a) $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\} = \operatorname{span}\{\alpha\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\}, \text{ where } \alpha \text{ is a non-zero scalar}$ In other words, we can scale our spanning vectors and not change their span.
- (b) $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} = span\{\vec{v}_2, \vec{v}_1, ..., \vec{v}_n\}$

In other words, we can swap the order of our spanning vectors and not change their span.