- 1. Fazer um programa que dados os catetos a e b de um triângulo retângulo calcule **em uma função a hipotenusa** e em **outra função a área do mesm.**
- 2. Fazer um programa que dados os catetos a e b de um triângulo retângulo calcule **em uma única função** a hipotenusa e a área do mesmo.
- 3. Fazer um programa ler do teclado um vetor de inteiros e positivos e um determinado número
 - Utilizar uma função para verificar quantas vezes o número aparece no vetor.
 - O vetor terá no máximo 100 posições.
 - O último elemento do vetor é o número -1.
- 4. Um vetor declarado **na memória de programa** contém a média de n alunos de uma turma, sendo que o primeiro elemento do vetor contém o número de alunos. Por exemplo, para 5 alunos:

```
float notas [] = \{5, 5.5, 6.7, 8.0, 10.0, 4.4\};
```

Elaborar duas funções:

- Uma para calcular e retornar a média dos n alunos;
- Outra para calcular e retornar quantos alunos ficaram acima da média.

A impressão dos resultados deve ser feita no programa principal. Se nenhum aluno tirou nota acima da média, deve ser impressa a mensagem:

"Não há aluno com nota acima de 5."

Aplicação em Eletrônica

- 5. Fazer um programa para calcular a resistência equivalente de n resistores.
 - O programa principal recebe o valor dos resistores e o tipo de associação.
 - Uma função deve receber um vetor com o valor dos resistores e o tipo de associação: -1 para série e -2 para paralelo.
 - A função deve retornar o resultado para o programa principal imprimir.

Por exemplo, se o usuário entrar com os resistores 2200, 4700, 6800 e escolher a associação série, o vetor será composto por:

```
R = \{2200, 4700, 6800, -1\};
Com os mesmos valores para a associação em paralelo:
R = \{2200, 4700, 6800, -2\};
```

- 6. Fazer um programa para mostrar o valor do resistor de acordo com o seu código de cores, considerando apenas resistores de 4 faixas.
 - Fazer uma função menu para o usuário escolher as faixas;
 - As faixas são guardadas em um vetor de acordo com o seu valor, por exemplo se o usuário escolher vermelho, violeta, laranja, ouro: faixas = {2, 7, 1000, 0.05} indicando: 27 x 1000 = 27000, com tolerância de 5%.
 - Fazer outra função para a partir das faixas escolhidas apresentar o valor do resistor.

Cada cor terá um valor, dependendo da faixa onde se encontra, conforme tabela abaixo:

COR		1ª FAIXA	2ª FAIXA	3ª FAIXA	4ª FAIXA
PRETO	PT	-	0	$\times 10^{0}$	-
MARROM	MR	1	1	×10 ¹	-
VERMELHO	VM	2	2	×10 ²	±2%
LARANJA	LJ	3	3	×10 ³	-
AMARELO	AM	4	4	×10 ⁴	-
VERDE	VD	5	5	×10 ⁵	-
AZUL	AZ	6	6	×10 ⁶	-
ROXO	RX	7	7	-	-
CINZA	CZ	8	8	-	-
BRANCO	BC	9	9	-	-
OURO	OU	-	-	×10 ⁻¹	±5%
PRATA	PA	-	-	×10 ⁻²	±10%