Équations différentielles (GM3)

Hasnaa Zidani

LMI - INSA Rouen

2022/2023 - CM3

H. Zidani ()

Équations différentielles

CM3 - Mercredi 8 février 2023

4/4/

EDO linéaire autonome - Cas général

Systèmes linéaires autonomes

- ➤ Soit $A \in \mathbb{M}_{n,n}$ une matrice donnée
- ➤ On considère le système:

Equation différentielle(ED)

$$y'(t) = Ay(t) \quad \forall t \in \mathbb{R}.$$

➤ Cas d'une matrice A diagonalisable dans \mathbb{C} : on peut calculer $e^{(t-t_0)A}$ et analyser le comportement asymptotique de $y(\cdot)$ à partir des valeurs propres de A (voir CM2).

Comment calculer l'exponentiel dans le cas général ?

H. Zidani () Équations différentielles CM3 - Mercredi 8 février 2023 2/14

➤ On considère une matrice A quelconque. Son polynôme caractéristique est de la forme

$$P_A(\lambda) = (-1)^n \prod_{j=1}^r (\lambda - \lambda_j)^{p_j}.$$

avec

$$p_1 + \cdots p_r = n$$

 $\lambda_1, \cdots, \lambda_r \in \mathbb{C}$ valeurs propres de A .

➤ Sous-espace caractéristiques dans C:

$$\Gamma_{\lambda_j} = \ker(\mathbf{A} - \lambda_j \mathbf{I})^{p_j}.$$

- Notons que $\Pi_{\lambda_j}\subset \Gamma_{\lambda_j}$, et les deux espaces coïncident lorsque A est diagonalisable
- ightharpoonup On a: dim $\Gamma_{\lambda_j} = p_j$, et

$$\mathbb{C}^n = \Gamma_1 \oplus \cdots \oplus \Gamma_r$$
.

H. Zidani ()

Équations différentielles

CM3 - Mercredi 8 février 2023

CM3 - Mercredi 8 février 2023

3/14

EDO linéaire autonome - Cas général

Décomposition de Jordan

Théorème (Forme de Jordan)

Soit $A \in \mathbb{M}_{n \times n}(\mathbb{C})$. Il existe une matrice de passage $P \in GL_n(\mathbb{C})$ telle que la matrice $J := P^{-1}AP$ soit de la forme (appelée forme de Jordan de A):

$$J = \begin{pmatrix} B_1 & 0 & 0 & \cdots & 0 \\ 0 & B_2 & \ddots & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & B_{r-1} & 0 \\ 0 & 0 & \cdots & 0 & B_r \end{pmatrix}.$$

Dans cette représentation, les matrices B_i sont des blocs carrés de la forme :

$$B_{i} = \begin{pmatrix} \lambda_{i} & \delta_{i} & 0 & \cdots & 0 \\ 0 & \lambda_{i} & \delta_{i} & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \ddots & \lambda_{i} & \delta_{i} \\ 0 & \cdots & \ddots & 0 & \lambda_{i} \end{pmatrix} \quad \text{avec } \delta_{i} \in \{0, 1\},$$

idani () Équations différentielles

▶ La décomposition de Jordan permet d'identifier la matrice A à une matrice J diagonale par bloc

$$A = P \begin{pmatrix} B_1 & & \\ & \ddots & \\ & & B_r \end{pmatrix} P^{-1}.$$

) Sur chaque sous-espace Γ_{λ_i} , on a:

$$\mathbf{A}_{|\Gamma_{\lambda_i}} = \lambda_j \mathbf{I}_{|\Gamma_{\lambda_i}} + \mathbf{N}_j,$$

où N_j est une matrice **nilpotente**, i.e $N_j^{\rho_j} = 0$.

Théorème (Calcul de l'exponentielle - Cas général)

$$e^{tA}=Pegin{pmatrix}e^{tB_1}&&&&\ &\ddots&&\ &&&e^{tB_r}\end{pmatrix}P^{-1},$$

avec

$$oldsymbol{e}^{tB_i} = oldsymbol{e}^{t\lambda_i} \left(oldsymbol{I} + t oldsymbol{N}_j + \cdots + rac{t^{m_j-1}}{(m_j-1)!} oldsymbol{N}_j^{m_j-1}
ight),$$

où $m_j \ge 1$ est le plus petit entier tel que $N_j^{m_j-1} = 0$.

H. Zidani ()

Équations différentielles

CM3 - Mercredi 8 février 2023

5/14

EDO linéaire autonome - Cas général

Forme générale des solutions dans \mathbb{R}^n

➤ Rappelons que pour une matrice réelle $A \in \mathbb{M}_{n,n}(\mathbb{R})$, on a:

 $\lambda_j \in \mathbb{C}$ est valeur propre de $A \Longrightarrow \bar{\lambda}_j$ est aussi valeur propre de A,

et

$$P_A(\lambda) = (-1)^n \prod_{j=1}^s (\lambda - \lambda_j)^{p_j} \prod_{j=s+1}^q [(\lambda - \lambda_j)(\lambda - \bar{\lambda}_j)]^{p_j},$$

avec $\lambda_j \in \mathbb{R}$ pour $j = 1, \dots, s$

➤ On définit les **sous-espaces caractéristiques réels** de **A** par

$$egin{aligned} V_j &= \Gamma_{\lambda_j} & ext{pour } 1 \leq j \leq s, \ V_j &= (\Gamma_{\lambda_j} \oplus \Gamma_{ar{\lambda}_j}) \cap \mathbb{R}^n & ext{pour } s+1 \leq j \leq q. \end{aligned}$$

➤ D'après la décomposition des noyaux, on a

$$\mathbb{R}^n = V_1 \oplus \cdots \oplus V_q$$
.

H. Zidani ()

➤ Soit $y(0) \in \mathbb{R}^n$, donc y(0) se décompose comme suit:

$$y(0) = \sum_{i=1}^{s} u_i + \sum_{i=s+1}^{q} (u_{i,1} + u_{i,2}),$$

οù

$$u_i \in \Gamma_{\lambda_i}$$
 pour $1 \le i \le s$,
et $u_{i,1} \in \Gamma_{\lambda_i}$, $u_{i,2} \in \Gamma_{\bar{\lambda}_i}$ pour $s+1 \le i \le q$.

➤ L'unique solution de (ED) est donc donnée par

$$y(t) = e^{tA}y(0)$$

$$= \sum_{j=1}^{s} e^{t\lambda_{j}} \sum_{k=0}^{m_{j}-1} \left(\frac{t^{k}}{k!} N_{j}^{k}\right) u_{j}$$

$$+ \sum_{j=s+1}^{q} \left[e^{t\lambda_{j}} \sum_{k=0}^{m_{j}-1} \left(\frac{t^{k}}{k!} N_{j}^{k}\right) u_{j,1} + e^{t\bar{\lambda}_{j}} \sum_{k=0}^{m_{j}-1} \left(\frac{t^{k}}{k!} N_{j}^{k}\right) u_{j,2} \right]$$

H. Zidani ()

Équations différentielles

CM3 - Mercredi 8 février 2023

7/1/

EDO linéaire autonome - Cas général

Forme générale des solutions dans \mathbb{R}^n

Théorème

Soit $A \in \mathbb{M}_{n,n}(\mathbb{R}^n)$ une matrice **donnée**. Toute solution de (ED) s'écrit

$$y(t) = \sum_{j=1}^{q} e^{t\alpha_j} \left(\sum_{k=0}^{m_j-1} t^k \left[\cos(t\beta_j) a_{j,k} + \sin(t\beta_j) b_{j,k} \right] \right)$$

où $\alpha_i = \mathfrak{Re}(\lambda_i)$ et $\beta_i = \mathfrak{Im}(\lambda_i)$ et $a_{i,k}, b_{i,k} \in V_i$.

➤ Pour calculer la solution de l'ED, il faut calculer les valeurs propre, déterminer la décomposition sous la forme de Jordan, calculer l'exponentielle de la matrice A et ensuite déterminer la solution par

$$y(t) = e^{tA}y_0.$$

- ▶ Le théorème donne la forme générale de la solution sans préciser les vecteurs a_{i,k} et b_{i,k}.
- ➤ La forme générale va permettre d'analyser le comportement asymptotique des solutions: stabilité, instabilité (ou divergence), périodicité, etc.

H. Zidani () CM3 - Mercredi 8 février 2023 8/14

■ Dans la décomposition $\mathbb{R}^n = V_1 \oplus \cdots \oplus V_q$

$$y(t) = y_1(t) + \cdots + y_q(t)$$
 avec

$$\begin{cases} y_i(t) = e^{\lambda_i t} \sum_{k=0}^{m_i-1} t^k a_{i,k} & 1 \leq i \leq s, \\ y_i(t) = e^{\alpha_i t} \sum_{k=0}^{m_i-1} t^k \left[\cos(t\beta_i) a_{i,k} + \sin(t\beta_i) b_{i,k} \right] & s+1 \leq i \leq q, \end{cases}$$

où
$$\alpha_i = \mathfrak{Re}(\lambda_i)$$
 et $\beta_i = \mathfrak{Im}(\lambda_i)$ et $\mathbf{a}_{i,k}, \mathbf{b}_{i,k} \in V_i$

H. Zidani ()

Équations différentielles

CM3 - Mercredi 8 février 2023

9/1

EDO linéaire autonome - Cas général

Comportement asymptotique

Théorème (Stabilité globale de y)

Si pour toute valeurs propre λ_i de A, on a $\Re e(\lambda_i) < 0$. Alors la solution de (ED) est stable,

$$\lim_{t\to+\infty}\|y(t)\|=0.$$

La réciproque est aussi vraie: Si le système est stable alors toutes les valeurs propres de A ont une partie réelle strictement négative.

H. Zidani () CM3 - Mercredi 8 février 2023 10/14

Théorème (Stabilité des composants de y)

Pour chaque $i = 1, \dots, q$

- $Si \alpha_i = \mathfrak{Re}(\lambda_i) < 0$, alors y_i est stable, i.e. $\lim_{t \to +\infty} ||y_i(t)|| = 0$.
- Si $\alpha_i = \Re(\lambda_i) = 0$, alors on a deux situations:

Si $m_i = 1$, alors y_i est périodique et

$$y_i(t) = \cos(t\beta_i)a_i + \sin(t\beta_i)b_i$$
.

Si $m_i > 1$, alors y_i est instable et

$$\lim_{t\to\pm\infty}\|y_i(t)\|=+\infty.$$

- $Si \ \alpha_i = \mathfrak{Re}(\lambda_i) > 0$, alors y_i diverge, i.e. $\lim_{t \to +\infty} \|y_i(t)\| = +\infty$, et y_i émane de l'origine, i.e $\lim_{t \to -\infty} \|y_i(t)\| = 0$.

H. Zidani ()

Équations différentielles

CM3 - Mercredi 8 février 2023

11/14

EDO linéaire autonome - Cas général

Comportement asymptotique

On définit

- \blacktriangleright l'espace "stable" $E^s := \bigoplus_{\mathfrak{Re}(\lambda_i) < 0} \Gamma_{\lambda_i} \cap \mathbb{R}^n$;
- ightharpoonup l'espace "instable" $E^u := \bigoplus_{\mathfrak{Re}(\lambda_i) > 0} \Gamma_{\lambda_i} \cap \mathbb{R}^n$;
- ➤ l'espace "borné"

$$E^c := \bigoplus_{\mathfrak{Re}(\lambda_i)=0} \Gamma_{\lambda_i} \cap \mathbb{R}^n;$$

Théorème

►
$$E^s = \{y(0) \in \mathbb{R}^n \mid \lim_{t \to +\infty} ||y(t)|| = 0\}$$

►
$$E^u = \{y(0) \in \mathbb{R}^n \mid \lim_{t \to +\infty} ||y(t)|| = +\infty\}$$

$$ightharpoonup$$
 $E^c = \{y(0) \in \mathbb{R}^n \mid \exists C > 0 \ \textit{t.q. pour t assez grand}$

$$-C||y(0)|| \le ||y(t)|| \le C|t|^n||y(0)||\}$$

H. Zidani () Équations différentielles CM3 - Mercredi 8 février 2023 12/14

Cas $A \in \mathbb{M}_2(\mathbb{R})$

Soit $\lambda_1, \lambda_2 \in \mathbb{C}$ des valeurs propres de A. Donc λ_1 et λ_2 sont réelles <u>ou</u> complexes avec $\lambda_1 = \bar{\lambda}_2$.

- ightharpoonup Cas 1: $\Re e(\lambda_1), \Re e(\lambda_2) \in]-\infty, 0[$
- ightharpoonup Cas 2: $\Re e(\lambda_1), \Re e(\lambda_2) \in]0, +\infty[$

Cas 1: Nœud Stable $E^s = E_1 \oplus E_2 = \mathbb{R}^2$

Cas 2: Noeud instable $E^u = E_1 \oplus E_2 = \mathbb{R}^2$

H. Zidani ()

Équations différentielles

CM3 - Mercredi 8 février 2023

13/14

EDO linéaire autonome - Cas général

Portrait de Phase

Exemple: $A \in \mathbb{M}_2(\mathbb{R})$

- ightharpoonup Cas 3: $\lambda_1 < 0 < \lambda_2$
- ightharpoonup Cas 4: $\mathfrak{Re}(\lambda_1), \mathfrak{Re}(\lambda_2) = 0$ et $\lambda_1 = \bar{\lambda}_2 \in i\mathbb{R}^*$
- \blacktriangleright Autres cas: $\lambda_1 = 0$; ou $\lambda_1 = \lambda_2$ (voir TD4)

Cas 3: Point col $E^s = E_1$, $E^u = E_2$

Cas 4: Périodique $E^c = \mathbb{R}^2$

H. Zidani (