COMPUTER FORENSICS

Lezione 7: Fasi del trattamento validazione e preservazione

Dott. Lorenzo LAURATO

Nella puntata precedente...

Identificazione

Ricercare la fonte di prova, <u>individuare dove il</u> dato di possibile interesse è conservato.

Preview (Perquisizione informatica)

Nella puntata precedente...

Raccogliere <u>i dati di possibile interesse</u> <u>investigativo</u> unitamente ai dati che permettono la ricostruzione dell'<u>evento probatorio</u>.

La Raccolta: Copia Forense

Legge n. 48 del 18/03/2008 art. 354 c.p.p.

(Accertamenti urgenti sui luoghi, sulle cose e sulle persone. Sequestro)

2. [...] In relazione ai dati, alle informazioni e ai programmi informatici o ai sistemi informatici o telematici, gli ufficiali della polizia giudiziaria adottano, altresì, le misure tecniche o impartiscono le prescrizioni necessarie ad assicurarne la conservazione e ad impedirne l'alterazione e l'accesso e provvedono, ove possibile, alla loro immediata duplicazione su adeguati supporti, mediante una procedura che assicuri la conformità della copia all'originale e la sua immodificabilità. [...]

Copia Forense Hash

- L'algoritmo restituisce una stringa a lunghezza fissa di esadecimali a partire da un flusso di bit (dati) di dimensione qualsiasi.
- La stringa prodotta in output è univoca per ogni file e ne è un identificatore.
- L'algoritmo non è invertibile, ossia non è possibile ricostruire il dato originale a partire dalla stringa che viene restituita in output.

Hash

HASH 1:

12ADHG56CEEE3984 66PIZXXXK334F6GC3

HASH 2:

HHBN78FV54090934 346HHFC53JHCORUY

HASH 3:

2739BD268BA0E1D6 5255E5276DD8C66E

Hash

COLLISIONE

Hash

Hash

Aggiunta di un

«punto»

File 01

CALCOLO MD5 CALCOLO MD5

2739BD268BA0E1D6 5255E5276DD8C66E

File 02

CALCOLO MD5 CALCOLO MD5.

872207A67BB4EBB7 2590F11BD68B131C

Fasi

Copia Forense hash

Validazione: garantisce che la copia eseguita è identica al dato originale.

Disco di Origine X

Disco di Destinazione Y

Art. 359 c.p.p

(accertamenti ripetibili)

VS

Art. 360 c.p.p.

(accertamenti irripetibili)

Art. 359 c.p.p (accertamenti ripetibili)

Memorie di massa in buono stato

Art. 360 c.p.p (accertamenti irripetibili)

- Memorie di massa non in buono stato;
- Live Acquisition: il sistema operativo del dispositivo deve essere avviato per poter realizzare la copia forense (*Es.: dispositivi cellullare, server, etc.*);
- Cloud (Acquisizione remota);
- Dispositivo di origine non disponibile nel tempo (Es.: dissequestro, restituzione, etc.);

Art. 360 c.p.p (accertamenti irripetibili)

Fasi

hash

Preservazione: garantisce che non vengano eseguite modifiche\alterazioni alla copia forense, se ciò avviene l'hash cambierà

SICUREZZA SISTEMI RETI INFORMATICHE

NA POLI FEDERICO II

a.a. 2021/22

hash

Preservazione: garantisce che non vengano eseguite modifiche\alterazioni alla copia forense, se ciò avviene l'hash cambierà

SICUREZZA SISTEMI RETI INFORMATICHE

NA POLI FEDERICO II

a.a. 2021/22

Copia Forense del «Disco Origine»

Copia Forense File LOG

- File descrittivo in cui sono presenti le informazioni sulla copia forense realizzata:
 - Informazioni sullo strumento impiegato: nome, versione, etc.
 - Informazioni del disco di origine: modello, capacità, S/N, etc.
 - Informazioni dell'immagine forense: nr. di file, dimensioni, etc.
 - Altre informazioni: data e ora, nr. di settori saltati, etc.
 - ► **HASH**: *MD5*, *SHA1*, *SH256*, *SHA512*, *etc.*

Copia Forense File LOG

Nome e Versione dello strumento

Informazioni del «disco sorgente»

```
Forensic Dossier
                             Serial No.:78265 --
  Software: V3.3.3RC16
                           Firmware: V1.14.2 fs:NTFS
 Acquired by___
                   _____ Location
 Acquired on_
  **************** SESSION SETTINGS ********
* Operating Mode: 4G E01:52=>D2
                                          Address Mode: LBA
* Verify : Hash-Dsk+V
* Connection : Direct
                                         Speed
                                                       UDMA-5
             E01 CAPTURE OF S2 HAS BEEN ACHIEVED.
    *** SOURCE DRIVE(S)
                       ***** DESTINATION DRIVE(S)
             51
                                             D1
                                 Model: ST2000DM008-2FR102
 Model : ST380815AS
 Serial: 5RW2FPXX
                                 Serial: WFL1C8EV
 C: 155009 H: 16
                                 C: 3876021H: 16
                 Drive Size
                                 Total Sectors
  Total Sectors
                                                Drive Size
    156250000
*** PC_OLI.E01: 51: 0 To:8667135
* start MD5: 67452301 EFCDAB89 98BADCFE 10325476
* end MD5: A18B0EE6 C7E71924 EEA6B83F 88ADF742
* Verified: A18B0EE6 C7E71924 EEA6B83F 88ADF742
*** PC_OLI.E02: S1: 8667136 To:18759679
* start MD5: A18B0EE6 C7E71924 EEA6B83F 88ADF742
      MD5: DEB75F20 10AA171F 9B05B385 AF4EEC01
* Verified: DEB75F20 10AA171F 9B05B385 AF4EEC01
*** PC_OLI.E03: 51: 18759680 To:27312127
* start MD5: DEB75F20 10AA171F 9B05B385 AF4EEC01
* end MD5: 46FA2898 B2528064 2BB26D4D B9E6F5EF
             46FA2898 B2528064 2BB26D4D B9E6F5EF
```


Copia Forense File LOG

Hash MD5 *** PC_OLI.E16: S1: 128294912 To:156249999 * start MD5: B8D79829 OFA6CCE3 296C8D89 729B04F2 MD5: 5618D5BD 398160A8 2376C70F 3B3D744E * Verified : 5618D5BD 398160A8 2376C70F 3B3D744F *** S1 From: 0, To: 156249999, Size: 156250000 Source MD5: ...EF184313 9669170C 593356DD A8849F1B... verified: ..EF184313 9669170C 593356DD A8849F1B... Skipped Sectors: 0 Recovered Sectors: 0 Compression Ratio is : 4.47 : 1 Altre Informazioni Completion Time: 08/08/2008 08:08:00 Audit Trail Checksum: 077C3058 5E1293AB DD8BB848 43EE6E86

riepilogando...

>>> Comandi

SSRI

È presente nella gran parte di tutte le distribuzioni UNIX Like

```
NAME

dd - convert and copy a file

SYNOPSIS

dd [OPERAND]...

dd OPTION
```


/dev

tutti i file al suo interno rappresentano dispositivi:

- Character device: dispositivi che trasmettono/trasferiscono dati
 - dsp[0]: dispositivo audio
 - lp[0]: porta parallela
- Block device: dispositivi che memorizzano/conservano dati
 - hd[a]: hard disk ide
 - sd[a]: hard disk scsi, memory stick, memory card, etc.

Lista dei dispositivi agganciati:

```
Disk /dev/sda: 4 GiB, 4294967296 bytes, 8388608 sectors Units: sectors of 1 * 512 = 512 bytes
```

Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

root@caine:/# fdisk-l

Disk identifier: 0x72a3c36c

Disk /dev/sdb: 20 GiB, 21474836480 bytes, 41943040 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disco target

Lista dei dispositivi agganciati:

Disk /dev/sdc: 8 GiB, 8589934592 bytes, 16777216 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x9a847d68

Device Boot Start End Sectors Size Id Type

/dev/sdc1 2048 16777215 16775168 8G 7 HPFS/NTFS/exFAT

Disco di destinazione

Prepariamo il nostro disco di destinazione della copia forense:

```
root@caine:/# mkdir /mnt/dest
root@caine:/# mount /dev/sdc1 /mnt/dest/
root@caine:/# mkdir /mnt/dest/dd_image
```


Eseguiamo la copia forense

root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda.dd bs=2048 conv=noerror,sync

IF = input file [disco sorgente «sda»]

OF = output file [file immagine «sda.dd»]

BS = block size in byte (default 512) [dimensione del blocco di lettura «2048 byte»]

CONV = esegue l'elaborazione in base ai parametri indicati
noerror = continua ad elaborare in caso di errore di lettura
sync = sostituisce i blocchi di memoria non letti nella destinazione con NULs (mantiene sincronizzata la dimensione della destinazione con quella della sorgente)

Risultato della copia forense

```
root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda.dd bs=2048 conv=noerror,sync
2097152+0 records in
2097152+0 records out
4294967296 bytes (4,3 GB, 4,0 GiB) copied, 302,094 s, 14,2 MB/s

root@caine:/# ls -1 /mnt/dest/dd_image/
total 4194304
-rwxrwxrwx 1 root root 4294967296 apr 7 23:26 sda.dd
```


Comandi avanzati:

SKIP = [n] salta la lettura del numero «n» di blocchi di memoria, partendo dall'inizio

COUNT= [n] indica all'elaborazione di terminare dopo aver letto il numero «n» di blocchi di memoria

Acquisire una sola partizione

```
Disk /dev/sda: 4 GiB, 4294967296 bytes, 8388608 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x72a3c36c
Device Boot Start End Sectors Size Id Type
/dev/sda1 2048 2099199 2097152 1G b W95 FAT32
/dev/sda2 2099200 8388607 6289408 3G b W95 FAT32
root@caine:/# dd if=/dev/sda2 of=/mnt/dest/dd_image/sda_p2.dd bs=2048
572352+0 records in
1572352+0 records out
3220176896 bytes (3,2 GB, 3,0 GiB) copied, 238,845 s, 13,5 MB/s
root@caine:/# ls -1 /mnt/dest/dd_image/
total 3144704
-rwxrwxrwx 1 root root 3220176896 apr 7 23:36 sda_p2.dd
```


Acquisire una sola partizione

```
root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda_p2.dd skip=2099199 count=6289408
6289408+0 records in
6289408+0 records out
3220176896 bytes (3,2 GB, 3,0 GiB) copied, 764,928 s, 4,2 MB/s

root@caine:/# ls -l /mnt/dest/dd_image/
total 3144704
-rwxrwxrwx l root root 3220176896 apr 7 23:55 sda_p2.dd
```


Dividere il file immagine:

Blocchi da 1GB (1024 Byte x 1.000.000)

```
root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda.000 bs=1024 count=1000000
1000000+0 records in
1000000+0 records out
1024000000 bytes (1,0 GB, 977 MiB) copied, 200,268 s, 5,1 MB/s
root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda.001 bs=1024 skip=1000000
             count=1000000
1000000+0 records in
1000000+0 records out
1024000000 bytes (1,0 GB, 977 MiB) copied, 226,651 s, 4,5 MB/s
root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda.002 bs=1024 skip=2000000
             count=1000000
1000000+0 records in
1000000+0 records out
1024000000 bytes (1,0 GB, 977 MiB) copied, 213,783 s, 4,8 MB/s
```



```
root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda.003 bs=1024 skip=3000000
             count=1000000
1000000+0 records in
1000000+0 records out
1024000000 bytes (1,0 GB, 977 MiB) copied, 220,863 s, 4,6 MB/s
root@caine:/# dd if=/dev/sda of=/mnt/dest/dd_image/sda.004 bs=1024 skip=4000000
194304+0 records in
194304+0 records out
198967296 bytes (194,3 MB, 185 MiB) copied, 220,863 s, 3,7 MB/s
root@caine:/# ls -l /mnt/dest/dd_image/
total 4194304
-rwxrwxrwx 1 root root 1024000000 apr 8 00:03 sda.000
-rwxrwxrwx 1 root root 1024000000 apr 8 00:04 sda.001
-rwxrwxrwx 1 root root 1024000000 apr 8 00:04 sda.002
-rwxrwxrwx 1 root root 1024000000 apr 8 00:05 sda.003
-rwxrwxrwx 1 root root 1024000000 apr 8 00:06 sda.004
```


Dividere il file immagine:

```
root@caine:/# dd if=/dev/sda bs=2048 | split -d -b 2G - mnt/dest/dd_image/sda.
```

SPLIT

- -D = indica di appendere al nome del file un contatore decimale [sda.00]
- $-\mathbf{B} = [n/n(K/M/G/T/P/E/Z/Y)]$ specifica la dimensione massima di ciascuna parte [2GB]

```
2097152+0 records in
2097152+0 records out
4294967296 bytes (4,3 GB, 4,0 GiB) copied, 157,836 s, 27,2 MB/s
root@caine:/# ls -l /mnt/dest/dd_image/
total 4194304
-rwxrwxrwx 1 root root 2147483648 apr 8 00:12 sda.00
-rwxrwxrwx 1 root root 2147483648 apr 8 00:13 sda.01
```


Calcolare l'Hash

Metodo nr. 1:

 Calcoliamo l'hash del dispositivo sorgente «sda» e lo memorizziamo in un file «sda_orig.hash»

```
root@caine:/# md5sum /dev/sda > /mnt/dest/dd_image/sda_orig.hash
root@caine:/# cat /mnt/dest/dd_image/sda_orig.hash
d7a09df1018710f2b40744ba62445c7b /dev/sda
```

 Calcoliamo l'hash dell'immagine «sda.dd» ottenuta in precedenza ed anche esso lo memorizziamo all'interno di un file «sda_dd.hash»

```
root@caine:/# md5sum /mnt/dest/dd_image/sda.dd > /mnt/dest/dd_image/sda_dd.hash
root@caine:/# cat /mnt/dest/dd_image/sda_dd.hash
d7a09df1018710f2b40744ba62445c7b /mnt/dest/dd_image/sda.dd
```


Copia Forense comando «DD» Calcolare l'Hash

Oppure se la nostra immagine è divisa in più file, dovremo adoperare CAT:

```
root@caine:/# cat /mnt/dest/dd_image/sda.* | md5sum >> /mnt/dest/dd_image/sda_merge.hash
root@caine:/# cat /mnt/dest/dd_image/sda_merge.hash
d7a09df1018710f2b40744ba62445c7b -
```

<u>Hash dispositivo di origine = Hash file immagine</u> (to match)

Calcolare l'Hash

- Metodo nr. 2:
 - Calcoliamo l'hash durante l'elaborazione della copia

```
root@caine:/# dd if=/dev/sda bs=2048 | tee /mnt/dest/dd_image/sda.dd |
    md5sum > /mnt/dest/dd_image/ sda.hash
```

TEE = biforca\duplica lo stream [una viene utilizzata per generare il file immagine, l'altra viene trasmesso al comando successivo «md5sum»]

Calcolare l'Hash

Patch del comando DD

root@caine:/# dc3dd if=/dev/sda ofs=/mnt/dest/dd_image/sda.000 ofsz=2G bufsz=2k hash=md5 hash=sha256 log=/mnt/dest/dd_image/sda.log verb=on

OFS = output diviso in più file [file immagine «sda.000»]

OFSZ = dimensione massima di ogni file [2 GB]

BUFSZ = BS = block size in byte (default 512) [dimensione del blocco di lettura «2048 byte»]

HASH = [MD5|SHA1|SHA256|SHA512] calcola dell'Hash indicato [*MD5 e SHA256*]

LOG = salva il report dell'elaborazione in un file [*sda.log*]

VERB=ON indica di generare un report dettagliato (verbose)


```
root@caine:/# dc3dd if=/dev/sda ofs=/mnt/dest/dd_image/sda.000 ofsz=2G bufsz=2k hash=md5
hash=sha256 log=/mnt/dest/dd_image/sda.log verb=on
dc3dd 7.2.646 started at 2020-04-08 01:07:42 +0200
compiled options:command line: dc3dd if=/dev/sda ofs=/mnt/dest/dd_image/sda.000 ofsz=2G
bufsz=2k hash=md5 hash=sha256 log=/mnt/dest/dd_image/sda.log verb=on
device size: 8388608 sectors (probed), 4,294,967,296 bytes
sector size: 512 bytes (probed)
 4294967296 bytes ( 4 G ) copied ( 100% ), 959 s, 4,3 M/s
input results for device `/dev/sda':
  8388608 sectors in
  0 bad sectors replaced by zeros
  d7a09df1018710f2b40744ba62445c7b (md5)
  f4d40a9fc0979b1dce6c9f45cf3fedc1f9d6fea23725511356d8fb1b99b7ef3a (sha256)
output results for files `/mnt/dest/dd_image/sda.000':
  8388608 sectors out
     4194304 sectors out to `/mnt/dest/dd_image/sda.000'
     4194304 sectors out to `/mnt/dest/dd_image/sda.001'
dc3dd completed at 2020-04-08 01:23:41 +0200
```



```
root@caine:/# ls -1 /mnt/dest/dd_image/
total 4194308
-rwxrwxrwx 1 root root 2147483648 apr 8 01:16 sda.000
-rwxrwxrwx 1 root root 2147483648 apr 8 01:23 sda.001
-rwxrwxrwx 1 root root 823 apr 8 01:23 sda.log
```


Comandi avanzati:

REC=OFF interrompe l'elaborazione in caso di un errore di lettura di un blocco di memoria

HOFS= l'output viene diviso in più file e per ciascuno di essi viene calcolato l'hash;

SSRI Lorenzo Laurato s.r.l.

Via Coroglio nr. 57/D (BIC- Città della Scienza) 80124 Napoli

Tel. 081.19804755 Fax 081.19576037

lorenzo.laurato@unina.it lorenzo.laurato@ssrilab.com

www.docenti.unina.it/lorenzo.laurato www.computerforensicsunina.forumcommunity.net

