DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ANSWER KEY SUBMISSION

Course Code: 18CSE481T

Date of Exam & Session	21/02/2023	Category of Exam	CLA1
Course Name	Applied Machine Learning	Course Code	18CSE481T
Name of the Faculty submitting	Dr. M. Mahasree	Date of submission of Answer Key	28/02/2023
Department to which the faculty belongs to	CSE	Total Marks	25

PART A (5x1= 5) ANSWER ALL THE QUESTIONS

Q.No.	MCQ Questions	Marks	CO	BL	PI
1.	A model of language consists of the categories which does not include (A). System Unit (B). Structural units (C). data units (D). empirical units	1	1	1	2.5.2
2.	Different learning methods does not include? (A). Introduction (B). Analogy (C). Deduction (D). Memorization	1	1	2	2.5.2
3.	The model will be trained with data in one single batch is known as? (A). Batch learning (B). Offline learning (C). Both A and B (D). None of the above	1	1	1	1.7.1
4.	How do you handle missing or corrupted data in a dataset? (A). Drop missing rows or columns (B). Replace missing values with mean/median/mode (C). Assign a unique category to missing values (D). All of the above	1	1	2	1.7.1
5.	Which of the following techniques cannot be used for normalization in text mining? (A). Stemming (B). Lemmatization (C). Stop word removal (D). None of the above	1	1	2	1.7.1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PART B (2 X 4= 8) ANSWER ALL THE QUESTIONS

Q. No.	Questions	Marks	СО	BL	PI
6	Why Data Normalization is necessary for Machine Learning models? Normalization is a data preparation technique that is frequently used in machine learning. The process of transforming the columns in a dataset to the same scale is referred to as normalization. Every dataset does not need to be normalized for machine learning. It is only required when the ranges of characteristics are different. Normalization is useful when your data has variable scales and the technique you're employing, such as k-nearest neighbors and artificial neural networks, doesn't make assumptions about the distribution of your data.	4	1	3	2.5.2
7	What is the difference between feature extraction and feature selection? When should each one be used? The key difference between feature selection and extraction is that feature selection keeps a subset of the original features while feature extraction algorithms transform the data onto a new feature space. We need to do feature selection when the dataset contains a large number of features, or when the features are highly correlated, redundant, or irrelevant.		1	3	2.5.2

PART C (1 X 12= 12) ANSWER THE QUESTIONS

Page 2 of 5

Course Code: 18CSE481T Signature of the Faculty

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Explanation (3)				
Techniques (3)				
Advantages (2)	12	1	2	5.6.2
Definition (2) Application (2)				
b) Explain in detail about what dimensionality reduction is?				
OR		1		
variables with a large fisher's score.		<u> </u>		
the fisher's criteria in descending order. Then we can select the				
technique of features selection. It returns the rank of the variable on				
Fisher's Score - Fisher's score is one of the popular supervised				
•				
desired number of features with the best chi-square value is selected.				
is calculated between each feature and the target variable, and the				
relationship between the categorical variables. The chi-square value				
Chi-square Test: Chi-square test is a technique to determine the				
variable with respect to the target variable.				
selection technique by calculating the information gain of each				
entropy while transforming the dataset. It can be used as a feature				
Information Gain: Information gain determines the reduction in				
Regularization) or Elastic Nets (L1 and L2 regularization).				
regularization techniques are L1 Regularization (Lasso				
coefficients can be removed from the dataset. The types of				
shrinks some coefficients to zero. Those features with zero				
in the model. This penalty term is added to the coefficients; hence it				
parameters of the machine learning model for avoiding overfitting				
Regularization- Regularization adds a penalty term to different				
feature_importances_attribute.				
of each feature is determined using coef_attribute or through a				
an estimator is trained with each set of features, and the importance				
by recursively taking a smaller and smaller subset of features. Now,				
recursive greedy optimization approach, where features are selected				
Recursive Feature Elimination- Recursive feature elimination is a				
combination of features and feature the best performing feature sec.				
combination of features and return the best performing feature set.				
as brute-force. It means this method tries & make each possible				
Exhaustive Feature Selection- Exhaustive feature selection is one of the best feature selection methods, which evaluates each feature selection				
model.				
removing the features does not improve the performance of the				
least significant feature. This elimination process continues until				
begins the process by considering all the features and removes the				
approach, but it is the opposite of forward selection. This technique				
Backward elimination - Backward elimination is also an iterative				
positional of the mount				
the addition of a new variable/feature does not improve the performance of the model.				

Page **3** of **5**

Course Code: 18CSE481T

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Dimensionality reduction technique can be defined as, "It is a way of converting the higher dimensions dataset into lesser dimensions dataset ensuring that it provides similar information." These techniques are widely used in machine learning for obtaining a better fit predictive model while solving the classification and regression problems.

It is commonly used in the fields that deal with highdimensional data, such as speech recognition, signal processing, bioinformatics, etc. It can also be used for data visualization, noise reduction, cluster analysis, etc.

Benefits of applying Dimensionality Reduction

- By reducing the dimensions of the features, the space required to store the dataset also gets reduced.
- Less Computation training time is required for reduced dimensions of features.
- Reduced dimensions of features of the dataset help in visualizing the data quickly.
- It removes the redundant features (if present) by taking care of multicollinearity.

Wrappers Methods

The wrapper method has the same goal as the filter method, but it takes a machine learning model for its evaluation. In this method, some features are fed to the ML model, and evaluate the performance. The performance decides whether to add those features or remove to increase the accuracy of the model. This method is more accurate than the filtering method but complex to work. Some common techniques of wrapper methods are:

Forward Selection

Backward Selection

Bi-directional Elimination

Embedded Methods:

Embedded methods check the different training iterations of the machine learning model and evaluate the importance of each feature. Some common techniques of Embedded methods are:

LASSO

Elastic Net

Ridge Regression, etc.

Common techniques of Dimensionality Reduction

Principal Component Analysis

Backward Elimination

Forward Selection

Score comparison

Course Code: 18CSE481T

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Missing Value Ratio Low Variance Filter High Correlation Filter Random Forest Factor Analysis Auto-Encoder Principal Component Analysis is a statistical process that converts the observations of correlated features into a set of linearly uncorrelated features with the help of orthogonal transformation. The backward feature elimination technique is mainly used while developing Linear Regression or Logistic Regression model. In this technique, by selecting the optimum performance of the model and maximum tolerable error rate, we can define the optimal number of features require for the machine learning algorithms. Forward feature selection follows the inverse process of the backward elimination process. It means, in this technique, we don't eliminate the feature; instead, we will find the best features that can produce the highest increase in the performance of the model.

COURSE COORDINATOR

Course Code: 18CSE481T

HOD/CSE