RÉSUMÉ

I Régime sinusoïdal forcé

1 Signaux étudiés

On va étudié des signaux s(t) correspondant à des oscillateurs mécaniques ou électriques répondant à l'équation différentielle

 $\ddot{s} + \frac{\omega_0}{Q}\dot{s} + \omega_0^2 s(t) = \omega_0^2 e(t)$

avec e(t) une excitation extérieure sinusoïdale, par exemple $e(t) = E_0 \cos(\omega t)$.

La solution complète se met donc sous la forme : $s(t) = s_{SSM}(t) + S_m \cos(\omega t + \varphi)$ et présente l'aspect suivant pour une régime transitoire pseudo-périodique.

DÉFINITION

Le RSF correspond au RP d'un système physique lorsque l'excitation est de forme sinusoïdale

Propriété

Lorsque le régime transitoire s'est dissipé, le signal oscille de façon sinusoïdale à la même fréquence que l'excitation.

II Représentation complexe des signaux sinusoïdaux

DÉFINITION

Soit $s(t) = S_m \cos(\omega t + \varphi)$ un signal sinusoïdal. On peut associer à s(t) le nombre complexe \underline{S} tel que

$$s(t) = \Re(\underline{S}(t))$$
 et $\underline{S}(t) = S_m e^{j(\omega t + \varphi)}$

On définit l'amplitude complexe $S_m = S_m e^{j\varphi}$ avec S_m l'amplitude réelle.

!\seule la partie réelle de $\underline{S}(t)$ a une signification physique :

$$\underline{S}(t) = \underbrace{S_m \cos(\omega t + \varphi)}_{=s(t)} + \underbrace{j S_m \sin(\omega t + \varphi)}_{\text{aucun sens physique}}$$

Propriété

Dériver un signal complexe de pulsation ω revient à multiplier ce signal par $j\omega$

$$\underline{\dot{S}}(t) = j\omega \underline{S}(t)$$

$$\ddot{\underline{S}}(t) = -\omega^2 \underline{S}(t)$$

Intégrer un signal complexe de pulsation ω revient à diviser ce signal par $j\omega$

$$\int \underline{S}(t)dt = \frac{1}{j\omega}\underline{S}(t)$$

III Circuits électriques en RSF

1 Impédances et admittances complexes

DÉFINITION

L'impédance complexe \underline{Z} d'un dipôle est définie comme le rapport entre la tension \underline{U} aux bornes de ce dipôle et l'intensité \underline{I} du courant qui le traverse : $\boxed{\underline{Z} = \frac{\underline{U}}{\underline{I}}}$

L'impédance complexe \underline{Z} a la dimension d'une résistance : son module s'exprime en ohm.

On définit l'admittance complexe \underline{Y} comme l'inverse de l'impédance complexe : $\underline{\underline{Y}} = \underline{\underline{I}} = \underline{\underline{I}}$

Propriété

- Le module de \underline{Z} est **l'impédance réelle** $Z: |\underline{Z}| = \mathbb{Z} = \frac{U_m}{I_m}$ avec U_m et I_m les amplitudes réelles de la tension et de l'intensité, respectivement.
- L'argument φ_Z de \underline{Z} correspond au **déphasage** entre la tension et l'intensité : $\varphi_Z = \varphi_u \varphi_i$.
- La partie réelle de \underline{Z} est la **résistance** du dipôle $R = Z \cos \varphi_Z = \frac{U_m}{I_m} \cos(\varphi_u \varphi_i)$
- La partie imaginaire de \underline{Z} est la **réactance** du dipôle $X = Z \sin \varphi_Z = \frac{U_m}{I_m} \sin(\varphi_u \varphi_i)$

2 Résistance, condensateur et bobine

Résistance	Condensateur	Bobine
$Z_R = R$	$Z_C = \frac{1}{jC\omega}$	$Z_L = jL\omega$
Réel	imaginaire pur	imaginaire pur
Courant et ten-	Le courant est en avance de phase de $\pi/2$	Le courant est en retard de phase de $\pi/2$
sion sont en phase	par rapport à la tension	par rapport à la tension
Aucun dépen-	Dépendance en fréquence :	Dépendance en fréquence :
dance en fré-		
quence		
	$\omega = 0 \Rightarrow \underline{Z_C} \to +\infty$	$\omega = 0 \Rightarrow \underline{Z_L} = 0$
	Le condensateur se comporte comme un	La bobine se comporte comme un fil
	coupe-circuit	
	$\omega \to +\infty \Rightarrow \underline{Z_C} \to 0$	$\omega \to +\infty \Rightarrow \underline{Z_L} \to +\infty$
	Le condensateur se comporte comme un fil	La bobine se comporte comme un coupe-
		circuit

il ne faut pas mélanger impédances complexes et dérivées ou intégrales dans la même équation!

3 Utilisation des impédances complexes

on se place toujours dans le cadre de l'ARQS. toutes les lois de l'électrocinétique vues en régime continu restent donc valables en RSF :

Propriété

• loi des nœuds

$$\sum \varepsilon_k \underline{I_k} = 0$$

avec $\varepsilon_k = +1$ si $\underline{I_k} \ \varepsilon_k = -1$ si $\underline{I_k}$ repart du nœud

• loi des mailles

$$\sum \varepsilon_k \underline{U_k} = 0$$

avec $\varepsilon_k=+1$ si $\underline{U_k}$ est orientée dans le sens de la maille et $\varepsilon_k=-1$ si $\underline{U_k}$ est orientée dans le sens contraire de la maille

- Association de dipôles
 - \bullet Pour des dipôle <u>en série</u> les impédances s'additionnent : $\boxed{\underline{Z_{eq}} = \sum \underline{Z_i}}$
 - Pour des dipôles <u>en parallèle</u>, les admittance s'additionnent : $\underline{Y_{eq}} = \sum \underline{Y_i} \Rightarrow 1$

$$\boxed{\frac{1}{Z_{eq}} = \sum \frac{1}{Z_i}}$$

• pont diviseur de tension

$$\boxed{\underline{U_1} = \frac{\underline{Z_1}}{\underline{Z_1} + \underline{Z_2}}\underline{U}} \text{ et } \boxed{\underline{U_2} = \frac{\underline{Z_2}}{\underline{Z_1} + \underline{Z_2}}\underline{U}}$$

Propriété

• pont diviseur de courant

$$\boxed{\underline{I_1} = \frac{\underline{Z_2}}{\underline{Z_1} + \underline{Z_2}}\underline{I}} \text{ et } \boxed{\underline{I_2} = \frac{\underline{Z_1}}{\underline{Z_1} + \underline{Z_2}}\underline{I}}$$

IV <u>Reponse d'un circuit RLC série soumis à une excitation sinusoïdale.</u> Phénomème de résonance

$$\ddot{u_C} + \frac{\omega_0}{Q}\dot{u_C} + \omega_0^2 u_C(t) = \omega_0^2 e(t)$$
$$\frac{d^2i}{dt^2} + \frac{\omega_0}{Q}\frac{di}{dt} + \omega_0^2 i(t) = \omega_0^2 \frac{de}{dt}$$
$$\text{avec } \omega_0 = \frac{1}{\sqrt{LC}} \text{ et } Q = \frac{1}{R}\sqrt{\frac{L}{C}}$$

En notation complexes:

- Tension excitatrice $\underline{E}(t) = E_m e^{j\omega t}$ On cherche les solutions sous la même forme :
- Tension aux bornes du condensateur : $\underline{U}(t) = U_m e^{j\omega t + \varphi} = \underline{U_m}^{j\omega t}$ avec $\underline{U_m} = U_m e^{j\varphi}$ l'amplitude complexe
- Intensité du courant dans le circuit : $\underline{I}(t) = I_m e^{j\omega t + \phi} = \underline{I_m}^{j\omega t}$ avec $\underline{I_m} = I_m e^{j\phi}$ l'amplitude complexe

1 Etude de la tension aux bornes de C

On pose $x = \frac{\omega}{\omega_0}$ la pulsation réduite

L'expression de l'amplitude complexe de la tension aux bornes du condensateur est

$$U_m = E_m \frac{1}{1 - x^2 + j\frac{x}{Q}}$$

Le module de la tension complexe vaut

$$|\underline{U_m}| = E_m \frac{1}{\sqrt{(1-x^2)^2 + \left(\frac{x}{Q}\right)^2}}$$

La phase de la tension complexe vaut :

$$\varphi = \arg(\underline{U_m}) = -\arg\left(1 - x^2 + j\frac{x}{Q}\right)$$

$$\varphi = -\frac{\pi}{2} + \arctan\left(\frac{1-x^2}{x/Q}\right)$$

2 Résonance en tension

DÉFINITION

Losrque un système physique est soumis à une excitation sinusoïdale, il peut exister des fréquences particulières, appelées **fréquences de résonance**, pour lesquelles l'amplitude de la réponse du système passe par un maximum. On dit qu'il y a **résonance**

À la résonance, même une très faible excitation peut suffire pour produire de très grandes oscillations du système.

Exemples:

- Instruments de musique : guitare, violon, flute...
- destruction du pont de Tacoma en 1940 https://youtu.be/Rmfl2kFeNPM
- Résonance mécanique https://youtu.be/YoMdGLqo-Jw

Propriété

Si l'amortissement est assez faible $Q > 1/\sqrt{2}$ alors le système présente une résonance en

$$x_r = \sqrt{1 - \frac{1}{2Q^2}}$$

Le module de la tension à la résonance s'écrit $|U_m| = E_m -$

$$|U_m| = E_m \frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}}$$

La pulsation de résonance s'écrit $\omega_r = \omega_0 x_r \Rightarrow \omega_r = \omega_0 \sqrt{1}$

Définition

La bande passante $\Delta\omega$ est largeur du pic de de résonance. Elle est définie comme le domaine de pulsation $\Delta\omega = \omega_1 - \omega_2$

telle que
$$\frac{\max(U_m)}{\sqrt{2}} \le U_m \le \max(U_m)$$

 ω_1 et ω_2 sont les **pulsations de coupure** du système.

On appelle **acuité** de la résonance la grandeur adimensionnée :

acuité =
$$\frac{\omega_0}{\Delta\omega}$$

Plus le facteur de qualité est élevé, plus la bande passant est petite. On parle de résonance **aiguë** : plus la résonance est aiguë, plus l'acuité de la résonance est grande.

3 Etude de l'intensité du courant en RSF

L'expression de l'amplitude complexe de l'intensité du courant est

$$\underline{I_m} = \frac{E/R}{1 + jQ\left(x - \frac{1}{x}\right)}$$

Le module de l'intensité complexe vaut

$$\left| \underline{I_m} \right| = \frac{E_m/R}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}$$

La phase de l'intensité complexe vaut :

$$\phi = \arg(\underline{I_m}) = -\arg\left(1 + jQ\left(x - \frac{1}{x}\right)\right)$$

$$\phi = \arctan\left(Q\left(x - \frac{1}{x}\right)\right) = \arg(\underline{U_m}) + \pi/2$$

4 Résonance en intensité

Pour un circuit RLC série soumis à une excitation sinusoïdale, il existe **toujours** une résonance en intensité en $\overline{\omega_r = \omega_0}$

À la résonance, l'amplitude de l'intensité complexe est un nombre réel $\underline{I_m}(\omega_0) = \frac{E}{R}$, elle est inversement proportionnelle à R et donc proportionnelle à Q. L'amplitude de l'intensité à la résonance est d'autant plus grande que l'amortissement est faible.

La bande passante de la résonance en intensité vaut $\Delta \omega = \frac{\omega_0}{Q} = \frac{R}{L}$: Plus le facteur de qualité est grand, donc plus l'amortissement est faible, et plus la résonance est intensité est aiguë.

V <u>Réponse d'un oscillatuer mécanique soumis à une excitation sinusoïdale.</u> Phénomème de résonance

On considère une masse m accrochée à un ressort fixé en O, de longueur à vide ℓ_0 et de raideur k. On exercce une force $\vec{F}_e = F_m \cos(\omega t) \vec{e}_x$ sur la masse. On suppose que la masse se déplace sur l'axe horizontal Ox est est soumis à une force de frottement fluide $\vec{F}_f = -\alpha \vec{v}$

1 Résonance de l'élongation du ressort

$$\underline{X} = X_m e^{j\omega t + \varphi}$$
. On pose $u = \frac{\omega}{\omega_0}$, alors :

$$\underline{X} = \frac{F_m}{m\omega_0^2} \frac{1}{1 - u^2 + j\frac{u}{Q}}$$
. L'étude de X_m est équivalent à celle de la tension aux bornes du condensateur :

$$X_m = \frac{F_m}{m\omega_0^2} \frac{1}{\sqrt{(1-u^2) + \frac{u^2}{Q^2}}}$$

$$\varphi = -\arctan\left(\frac{u}{Q(1-u^2)}\right)$$

La résonance d'élongation n'existe que pour des facteur de qualité suffisament élevé $Q > \frac{1}{\sqrt{2}}$ cad un amortissement assez faible.

La <u>pulsation de résonance</u> $\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$ est différente et plus faible que la pulsation propre et dépend du facteur de qualité Q

Plus le facteur de qualité Q est grand, plus l'acuité de la résonance est aiguë.

- A basse fréquence $\omega \ll \omega_0$ le mouvement du la masse suit le mouvement imposé par l'excitation : même amplitude, même phase.
- à haute fréquence $\omega \gg \omega_0$ la masse oscille en possition de phase par rapport à la force excitatrice et avec une amplitude quasi null.
- pour $Q>1/\sqrt{2}$ on obsere une résonance pour l'élongation $\omega_r=\omega_0\sqrt{1-\frac{1}{2Q^2}}$
- Pour $Q > 5 \omega_r \approx \omega_0$ et $X_m \approx Q \frac{F_m}{m\omega_0^2}$

2 Résonance en vitesse

$$\underline{V} = j\omega \underline{X} = V_m e^{j\omega t + \phi} \text{ avec } u = \omega/omega_0 : \underline{V} = \frac{F_m}{m\omega_0} \frac{ju}{1 - u^2 + j\frac{u}{Q}}$$

L'étude de la résonance en vitesse est équivalente à l'étude de celle en intensité du circuit RLC.

$$V_m = \frac{F_m}{m\omega_0} \frac{u}{\sqrt{(1 - u^2)^2 + \frac{u^2}{Q^2}}}$$

$$\phi = -\arctan\left(Q\left(u - \frac{1}{u}\right)\right)$$

Il y a toujours résonance en vitesse, quelque soit la valeur du facteur de qualité Q.

La fréquence de résonance est $\omega_r = \omega_0$

L'acuité de la résonance est $\frac{\Delta\omega}{\omega_0} = \frac{1}{Q}$ avec $\Delta\omega$ la bande passante, donc la résonance est d'autre plus aiguë que le facteur de qualité est élevé.

A basse fréquence la vitesse est en retard de $\pi/2$ par rapport à l'élongation qui est faible.

À haute fréquence la vitesse est en avance de $\pi/2$ par rapport aux oscillations qui sont aussi très faibles.

À la résonance, les oscillations sont maximales et le déphasage entre vitesse et amplitude est nul.