Estimação por lntervalo

jlborges@fe.up.pt

Exemplo de estimativa pontual

Foi recolhida uma amostra de tempos de transferência de um ficheiro de
 50 Mb numa rede informática e a média dos tempos de transferência deu

Exemplo de estimativa por intervalo

 Foi recolhida uma amostra de tempos de transferência de um ficheiro de 50 Mb numa rede informática e pode-se afirmar que o tempo médio de transferência de um ficheiro de 50 Mb está contido no intervalo

[25.05 seg. , 25.97 seg.]

População

Estimativas pontuais

57	63	44	43	43	25	40	46	56	35
47	44	63	39	36	49	55	43	48	39
49	43	50	52	53	52	57	59	53	55
44	51	49	40	48	71	41	53	54	51
48	48	66	69	56	35	58	56	51	50
28	48	54	49	44	34	57	71	47	52
49	66	54	34	47	27	48	53	37	31
37	50	48	47	53	62	35	39	71	47
52	49	57	60	47	74	60	55	66	41
55	68	49	46	52	46	58	38	60	40

Vamos recolher uma amostra para estimar a **média** e o **desvio padrão** da população:

n=5

posição	73	60	76	23	83
valor	59	46	71	50	53

Média D. P. 55.80 9.73

Será 55.80 uma boa estimativa da média?

População

Estimativas pontuais

57	63	44	43	43	25	40	46	56	35
47	44	63	39	36	49	55	43	48	39
49	43	50	52	53	52	57	59	53	55
44	51	49	40	48	71	41	53	54	51
48	48	66	69	56	35	58	56	51	50
28	48	54	49	44	34	57	71	47	52
49	66	54	34	47	27	48	53	37	31
37	50	48	47	53	62	35	39	71	47
52	49	57	60	47	74	60	55	66	41
55	68	49	46	52	46	58	38	60	40

amostras aleatórias

n=5

posição	73	60	76	23	83
valor	59	46	71	50	53

Média D. P.

55.80 9.73

n=3

posição	72	29	24
valor	43	57	49

Qual a melhor estimativa???

Média D. P. 49.67 7.02

n=10

posição	37	51	96	27	74	83	88	61	96	2
valor	34	25	52	54	53	53	71	40	52	47

Média D. P. 48.10 12.64

Estimativas por intervalo

As estimativas por intervalo permitem associar uma margem de erro à estimativa.

•			
			3
		•	

posição	73	60	76	23	83
valor	59	46	71	50	53

Média	D. P.
55.80	9.73

Limite Inferior Limite Superior

Média	Var.	D. P.
43.72	33.99	5.83
67.88	781.97	27.96

Temos grande confiança que a média da população está dentro destes valores.

amostras aleatórias

Estimativas por intervalo

Média	D. P.
55.80	9.73

	Média	Var	D. P.
. I.	43.72	33.99	5.83
. S.	67.88	781.97	27.96

posição	72	29	24
valor	43	57	49

n=10

posição	37	51	96	27	74	83	88	61	96	2
valor	34	25	52	54	53	53	71	40	52	47

Média D. P. 48.10 12.64

L. I. 39.06 **L. S.** 57.14

75.54 8.69 532.11 23.07

n=20

posição	82	26	17	90	85	36	6	28	90	42
valor	48	54	66	60	51	49	28	48	60	36
posição	98	1	44	66	66	16	12	48	67	73
valor	47	57	48	57	57	48	44	53	48	59

Média	D. P.
50.90	8.71

Média

L. I. 44.67

L. S. 57.13

Var D. P.

43.83 6.62

161.66 12.71

A amplitude do intervalo é menor quando a amostra é maior!

Como se estimam os limites dos intervalos de confiança?

Um **estimador pontual** de um parâmetro consiste no valor da estatística utilizada para estimar esse mesmo parâmetro.

A cada estimador estão associadas tantas estimativas diferentes quantas as amostras utilizadas, sem que se forneça qualquer informação relativa à confiança nessas estimativas

Um intervalo de confiança consiste num intervalo obtido a partir do valor do estimador pontual correspondente, juntamente com uma percentagem que indica a nossa confiança de que o parâmetro se situa dentro do intervalo.

Estimativa ± margem de erro

Intervalo de confiança para a média da população

(variância conhecida)

Exemplo

Admita-se que a altura dos alunos do 10° ano segue uma distribuição Normal com variância σ^2 = $(0.051 \text{ m})^2$ e que uma amostra aleatória de N=25 alunos apresenta uma média de \bar{x} =1.70 m.

Como definir um intervalo que, com uma probabilidade de 95%, contenha a média da população?

Sabemos que

$$X \to N(\mu, \sigma^2)$$
 $\Rightarrow \bar{X} \to N(\mu, \sigma^2/N)$ $\Rightarrow Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{N}} \to N(0,1)$

Considere agora a distribuição Normal padronizada N(0,1)

 $z(\alpha/2)$ é um valor tal que:

P[Z > z(
$$\alpha$$
/2)] = α /2 e
P[Z < -z(α /2)] = α /2

Então:

$$P\left[-z\left(\alpha/2\right) < z < z\left(\alpha/2\right)\right] = 1 - \alpha$$

$$P\left[-z(\alpha/2)<\frac{\overline{X}-\mu}{\sigma/\sqrt{N}}< z(\alpha/2)\right]=1-\alpha$$

$$P\left[\mu-z(\alpha/2)\cdot\frac{\sigma}{\sqrt{N}}<\overline{X}<\mu+z(\alpha/2)\cdot\frac{\sigma}{\sqrt{N}}\right]=1-\alpha$$

$$P\left[\overline{X} - z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}} < \mu < \overline{X} + z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}}\right] = 1 - \alpha$$

De acordo com a última expressão o **intervalo** que **incluirá** o valor de μ com **probabilidade 1-** α , virá

$$\mu \in \left[\overline{X} - z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}} , \overline{X} + z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}} \right]$$

Exemplo (cont.)

Para o exemplo considerado (pág. 9)

$$\sigma^2 = 0.051^2$$
 e $\bar{x} = 1.70$

$$\mu \in \left[1.70 - 1.96 \cdot \frac{0.051}{\sqrt{25}} , 1.70 + 1.96 \cdot \frac{0.051}{\sqrt{25}} \right]$$

logo

$$\mu \in [1.68, 1.72]$$

com confiança de 95%

Exemplo: A seguinte amostra representa as idades de 50 elementos seleccionados ao acaso entre os trabalhadores de uma empresa.

Determine o I.C. para µ

$$\sigma = 12.1$$

a 95%. Considere

$$\bar{x} = 36.4$$

$$\alpha = 5\%$$

$$\Rightarrow z(\alpha/2) = 1.96$$

Para uma dada dimensão da amostra, quanto maior for a confiança mais amplo será o intervalo.

α representa, em média, a proporção de vezes em que o intervalo de confiança não contém o parâmetro a estimar

Exemplo

O senhor Caravanas acredita que o preço médio das auto-caravanas disponíveis no mercado é de \$40,000.

Para verificar a sua suposição seleccionou ao acaso 36 auto-caravanas (preço em \$1000s).

Sabe-se que σ =7.2.

42	47	36	28	39	36	42	40	52
37	39	31	25	38	36	37	43	44
41	28	42	40	38	40	45	35	32
42	33	28	41	25	30	49	39	50

$$\bar{x} = 38.01$$
 $s = 6.68$

Amostra do senhor Caravanas:

$$\overline{x} = 38$$

$$\left[38 - 2 \cdot \frac{7.2}{6}, 38 + 2 \cdot \frac{7.2}{6}\right] = 40 \in [35.6, 40.4]$$

20 I.C. baseados em outras tantas amostras

Sample	\bar{x}	95.44% CI	μ in Cl?
1	40.45	38.06 to 42.85	yes
2	39.21	36.81 to 41.61	yes
3	39.33	36.93 to 41.73	yes
4	38.59	36.19 to 40.99	yes
5	39.17	36.77 to 41.57	yes
6	40.07	37.67 to 42.47	yes
7	39.56	37.16 to 41.96	yes
8	40.28	37.88 to 42.68	yes
9	40.87	38.48 to 43.27	yes
10	39.61	37.22 to 42.01	yes
11	40.51	38.11 to 42.91	yes
12	41.45	39.05 to 43.85	yes
13	39.88	37.48 to 42.28	yes
14	38.85	36.45 to 41.25	yes
15	42.73	40.33 to 45.13	no
16	39.70	37.30 to 42.10	yes
17	39.60	37.20 to 42.00	yes
18	38.88	36.48 to 41.28	yes
19	41.82	39.42 to 44.22	yes
20	38.84	36.45 to 41.24	yes

Java applet que ilustra o conceito de I.C.

http://lstat.kuleuven.be/java/gent/Ap5a.html

Para quaisquer valores positivos α_1 e α_2 tais que α_1 + α_2 = α , os intervalos

$$\left[\overline{X} - z(\alpha_1) \cdot \sigma / \sqrt{N} \right], \overline{X} + z(\alpha_2) \cdot \sigma / \sqrt{N} \right]$$

são todos eles intervalos de confiança para μ a (1-lpha).100%

Para o exemplo inicialmente considerado

$$\alpha_1 = 0.025$$
 $\alpha_2 = 0.025$ \Rightarrow $[1.680, 1.720]$ \Rightarrow *AMPLITUDE* = 0.040 $\alpha_1 = 0.010$ $\alpha_2 = 0.040$ \Rightarrow $[1.676, 1.718]$ \Rightarrow *AMPLITUDE* = 0.042 $\alpha_1 = 0.005$ $\alpha_2 = 0.045$ \Rightarrow $[1.674, 1.717]$ \Rightarrow *AMPLITUDE* = 0.043

Sempre que a <u>estatística</u> a partir da qual se definem os intervalos de confiança possuir uma <u>distribuição unimodal simétrica</u>, **O intervalo simétrico em** relação à estatística é o de <u>menor amplitude</u>

IC para a média, variância conhecida.

$$\mu \in \left[\overline{X} - z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}} , \overline{X} + z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}} \right]$$

Especificação de Intervalos de Confiança

A especificação de um intervalo de confiança para um parâmetro implica conhecer em simultâneo

- Um estimador do parâmetro
- A distribuição do estimador
- Uma estimativa pontual do parâmetro (isto é, um valor particular do estimador)

Regressão para a média

- Em 1885, Sir Francis Galton descobriu uma correlação estatística que parece óbvia:
 - filhos de pais altos tendem a ser altos e filhos de pais baixos tendem a ser baixos
- No entanto também verificou o seguinte:
 - os filhos de pais altos tendiam a ser altos, mas mais baixos do que os próprios pais
 - os filhos de pais baixos tendiam a ser baixos, mas mais altos do que os próprios pais
- Há um efeito de atenuação dos valores extremos (a regressão dos valores extremos para a média da amostra)

Regressão para a média

- A altura dos filhos depende de muitos fatores
 - uma componente genética, que explica a primeira observação de Galton (mesmo esta depende de vários fatores, altura da testa, comprimento das pernas, tamanho das vertebras...)
 - várias componentes não genéticas
 - nutrição no período de crescimento
 - ausência de doenças que interfiram com o crescimento
 - ...
 - logo, para ser ser muito alto é necessário
 - uma combinação de genes excecional e
 - todo o ruído aleatório a seu favor
 - É pouco provável que os filhos de pais muito altos tenham todos os fatores aleatórios a seu favor

Regressão para a média

 quando duas variáveis estatísticas têm uma correlação imperfeita devido à existência de ruído, os valores extremos de uma das variáveis tendem a ser acompanhados por valores menos extremos da outra variável.

Exemplos:

- Nos meios desportivos americanos há a tendência dos atletas profissionais recusarem aparecer na capa da Sports Illustrated.
 Consta que há uma maldição de que quem aparece na capa vê os seus resultados piorarem.
 - o atleta será naturalmente solicitado num pico, após o que se prevê os seus resultados piorarem

Chicotada psicológica

normalmente ocorre depois de uma série de maus resultados...

PENSAR,

DEPRESSA

Regressão para a média

- the psycho DANIEL
 ortant

 KAHNEMAN
- When teaching flight instructors in the Israeli Air Force about the psychological of effective training the author was telling them about an important principle of skill training:
 - rewards for improved performance works better than punishment of mistakes.
- When finished the speech, one of the most seasoned instructors in the group raised his hand and said
- "On many occasions I have praised flight cadets for clean execution of some aerobatic maneuver. The next time they try the same maneuver they usually do worse. On the other hand, I have often screamed into a cadet's earphone for bad execution, and in general he does better the task his next try.
- What he had observed is known as regression to the mean, which in that case was due to random fluctuations in the quality of performance...

Exemplo de estimativa pontual

Foi recolhida uma amostra de tempos de transferência de um ficheiro de
 50 Mb numa rede informática e a média dos tempos de transferência deu

Exemplo de estimativa por intervalo

 Foi recolhida uma amostra de tempos de transferência de um ficheiro de 50 Mb numa rede informática e pode-se afirmar que o tempo médio de transferência de um ficheiro de 50 Mb está contido no intervalo

IC para a média, variância conhecida.

$$\mu \in \left[\overline{X} - z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}} , \overline{X} + z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}} \right]$$

Intervalo de Confiança para o Valor Esperado

(amostra grande, população qualquer)

De acordo com o teorema do limite central a média amostral segue aproximadamente uma distribuição normal:

$$\overline{X} \curvearrowright N(\mu, \sigma^2/N)$$

em que μ e σ^2 representam parâmetros da população.

$$Z = \frac{X - \mu}{\sigma / \sqrt{N}} / N(0,1)$$

Em geral σ é desconhecido sendo estimado através do desvio padrão amostral:

$$S = \sqrt{\frac{1}{N-1} \cdot \sum_{n=1}^{N} (X_n - \overline{X})^2}$$

No caso de a amostra ser grande o erro de estimação de σ é desprezável

$$S \approx \sigma$$
 (constante)

Logo,

$$Z = \frac{\overline{X} - \mu}{S / \sqrt{N}} \approx \frac{\overline{X} - \mu}{\sigma / \sqrt{N}} N(0,1)$$

O intervalo de confiança para o valor esperado, μ , a $(1-\alpha)\cdot 100\%$ vem então:

$$\left[\overline{X}-z(\alpha/2)\cdot\frac{S}{\sqrt{N}}, \quad \overline{X}+z(\alpha/2)\cdot\frac{S}{\sqrt{N}}\right]$$

amostra grande, população qualquer

Intervalo de Confiança para o Valor Esperado

(amostra pequena, população normal)

Se a amostra é pequena não é válida a aproximação

$$S \approx \sigma$$
 (constante)

logo, também não é válida a seguinte aproximação

$$\frac{\bar{X} - \mu}{S/\sqrt{N}} \frac{\bar{X} - \mu}{\sigma/\sqrt{N}}$$

mas a variável
$$\frac{\overline{X} - \mu}{S/\sqrt{N}}$$
 pode ser reescrita assim $\frac{\overline{X} - \mu}{\sigma/\sqrt{N}}$

sabemos que o numerador segue uma distribuição N(0,1).

e é possível demonstrar que

$$V = (N-1) \cdot \frac{S^2}{\sigma^2} \rightarrow \chi^2_{N-1}$$

logo, temos que
$$\frac{S}{\sigma} \rightarrow \sqrt{\frac{\chi_{N-1}^2}{(N-1)}}$$

e que

$$\frac{\overline{X} - \mu}{S / \sqrt{N}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{N}} \rightarrow \frac{N(0,1)}{\sqrt{\chi_{N-1}^2 / (N-1)}}$$

Como as variáveis em numerador e em denominador são independentes, de acordo com a definição da distribuição t de student, resulta que:

$$\frac{\overline{X} - \mu}{S / \sqrt{N}} \rightarrow t_{N-1}$$

No caso de a amostra ser pequena o intervalo de confiança para o valor esperado, μ , a $(1-\alpha)\cdot 100\%$ virá então:

$$\mu \in \left[\overline{X} - t_{N-1}(\alpha/2) \cdot \frac{S}{\sqrt{N}}, \quad \overline{X} + t_{N-1}(\alpha/2) \cdot \frac{S}{\sqrt{N}}\right]$$

amostra pequena, população normal

N a partir do qual uma amostra pode ser considerada grande Como regra prática:

i. distribuição de X simétrica: $N \ge 10$

ii. distribuição de X assimétrica: $N \ge 50$

Dimensionamento de Amostras

Em geral a dimensão da amostra não é imposta à partida, constituindo antes uma decisão a tomar.

Trata-se de uma decisão importante, que deve ser bem fundamentada, uma vez que

- Recolher uma amostra desnecessariamente grande constitui um desperdício de recursos
- Uma amostra insuficiente não permite retirar as conclusões pretendidas.

A dimensão adequada para a amostra aumentará com

- A precisão desejada para o intervalo de confiança
- O grau de confiança do intervalo

A forma de dimensionar amostras será introduzida com base no seguinte exemplo.

Exemplo: Um fabricante afirma que a tensão de rotura de um determinado material segue uma distribuição normal. Foram realizados ensaios a sete peças desses material, sendo os resultados os seguintes:

Qual a dimensão da amostra que é necessário recolher por forma a que a amplitude do intervalo de confiança não exceda 0.6?

$$\overline{X} = 51.08$$
 $S^2 = 1.00^2$

Admitindo que a amostra a recolher será grande: $\overline{X} \pm Z(0.025) \cdot \frac{S}{\sqrt{N}}$

$$Z(0.025) \cdot \frac{S}{\sqrt{N}} = 0.6/2 = 0.3 \iff N = \left(\frac{1.96 \cdot 1}{0.3}\right)^2 = 42.7 \implies N_{\text{min}} = 43$$

Verifica-se que a amostra é grande, para N pequeno deveríamos repetir cálculos com distribuição t. De seguida enumeramos os casos para os quais temos as ferramentas necessárias para especificar intervalos de confiança

Intervalo de Confiança para o Valor Esperado

(amostra grande, aplicável a qualquer tipo de variável)

$$\left[\overline{X}-z(\alpha/2)\cdot\frac{S}{\sqrt{N}}, \quad \overline{X}+z(\alpha/2)\cdot\frac{S}{\sqrt{N}}\right]$$

Intervalo de Confiança para o Valor Esperado

(amostra pequena, apenas se a variável for normal)

$$\mu \in \left[\overline{X} - t_{N-1}(\alpha/2) \cdot \frac{S}{\sqrt{N}}, \overline{X} + t_{N-1}(\alpha/2) \cdot \frac{S}{\sqrt{N}}\right]$$

Intervalo de Confiança da Proporção Binomial

(só se a amostra for grande)

$$\left[\frac{Y}{N}-z(\alpha/2)\cdot\sqrt{\frac{Y\cdot(N-Y)}{N^3}}, \frac{Y}{N}+z(\alpha/2)\cdot\sqrt{\frac{Y\cdot(N-Y)}{N^3}}\right]$$

Intervalo de Confiança para a Variância

(apenas se a variável for Normal)

$$\left[\frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(\alpha/2)}, \frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(1-\alpha/2)}\right]$$

Intervalo de Confiança para a Razão de Variâncias

(apenas se as variáveis forem Normais)

$$\left[\frac{1}{F_{N_A-1,N_B-1}(\alpha/2)}\cdot\frac{S_A^2}{S_B^2}, \frac{1}{F_{N_A-1,N_B-1}(1-\alpha/2)}\cdot\frac{S_A^2}{S_B^2}\right]$$

I. C. para a Diferença entre Valores Esperados

(amostras independentes, GRANDES, qualquer tipo de variável)

$$\left[(\overline{X}_A - \overline{X}_B) - z(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}, \quad (\overline{X}_A - \overline{X}_B) + z(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}} \right]$$

Se as variâncias são iguais

$$S^{2} = \frac{(N_{A} - 1) \cdot S_{A}^{2} + (N_{B} - 1) \cdot S_{B}^{2}}{N_{A} + N_{B} - 2}$$

$$\left[(\overline{X}_A - \overline{X}_B) - z(\alpha/2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}}, \quad (\overline{X}_A - \overline{X}_B) + z(\alpha/2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}} \right]$$

I.C. Para a Diferença entre Valores Esperados

(amostras independentes, PEQUENAS, apenas se as variáveis forem normais)

variâncias iguais

$$\left[(\overline{X}_A - \overline{X}_B) - t_{N_A + N_B - 2} (\alpha / 2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}}, \quad (\overline{X}_A - \overline{X}_B) + t_{N_A + N_B - 2} (\alpha / 2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}} \right]$$

variâncias diferentes

$$\left[(\overline{X}_{A} - \overline{X}_{B}) - t_{GL}(\alpha / 2) \cdot \sqrt{\frac{S_{A}^{2}}{N_{A}} + \frac{S_{B}^{2}}{N_{B}}}, \quad (\overline{X}_{A} - \overline{X}_{B}) + t_{GL}(\alpha / 2) \cdot \sqrt{\frac{S_{A}^{2}}{N_{A}} + \frac{S_{B}^{2}}{N_{B}}} \right] \qquad GL = \frac{\left(\frac{S_{A}^{2}}{N_{A}} + \frac{S_{B}^{2}}{N_{B}}\right)^{2}}{\frac{\left(S_{A}^{2} / N_{A}\right)^{2} + \left(S_{B}^{2} / N_{B}\right)^{2}}{N_{A} - 1}}$$

I.C. Para a Diferença entre Proporções Binomiais

(amostras independentes e grandes)

$$\left(\frac{Y_A}{N_A} - \frac{Y_B}{N_B}\right) \pm z(\alpha/2) \cdot \sqrt{\frac{Y_A \cdot (N_A - Y_A)}{N_A^3} + \frac{Y_B \cdot (N_B - Y_B)}{N_B^3}}$$

Intervalos de confiança para as seguintes variáveis

Variância de uma População Normal

Razão de Variâncias de Duas Populações Normais

Valor Esperado de uma População (amostra grande, população qualquer)

Valor Esperado de uma População (amostra pequena, população normal)

Diferença de Valores Esperados de duas Populações (amostras grandes, independentes, populações quaisquer)

Diferença de Valores Esperados de duas Populações (amostras pequenas, independentes, populações normais)

Proporção Binomial (amostra de grande dimensão)

Diferença de Duas Proporções Binomiais (amostras de grande dimensão)

Resultados de Aprendizagem

- Saber especificar intervalos de confiança bi-laterais ou unilaterais para:
 - a média
 - variância
 - proporção binomial
- e para
 - a diferença das médias
 - a razão das variâncias
 - a diferença de proporções binomiais
- Saber especificar a dimensão da amostra necessária para que o intervalo de confiança resultante tenha uma amplitude dentro dos limites pretendidos

Os slides seguintes explicam com mais detalhe e exemplificam cada um dos casos anteriores.

EXEMPLO

O fabricante do material a partir do qual são produzidos uns determinados tirantes, afirma que a tensão de rotura desse material segue uma distribuição Normal. Foram realizados sete ensaios, a partir de outros tantos tirantes seleccionados ao acaso, cujos resultados se apresentam na tabela seguinte (tensão de rotura expressa em kg/mm²).

49.84	51.83	51.46	49.48	51.99	51.62	51.36
-------	-------	-------	-------	-------	-------	-------

i) Defina o intervalo que, com 95% de confiança, inclui o valor esperado da tensão de rotura dos tirantes. Defina também o intervalo aberto à direita.

$$n=7$$
 $\overline{X}=51.08$ $S^2=1.00^2$ Estimativas pontuais

para amostras pequenas, de uma população normal

$$\mu \in \left[\overline{X} - t_{N-1}(\alpha/2) \cdot \frac{S}{\sqrt{N}}, \overline{X} + t_{N-1}(\alpha/2) \cdot \frac{S}{\sqrt{N}}\right]$$

$$\overline{X} \pm (t_6(0.025)) \frac{S}{\sqrt{N}} \equiv$$

$$51.08 \pm 2.447 \cdot \frac{1}{\sqrt{7}} \equiv 51.08 \pm 0.925$$

Temos 95% de confiança que

$$\mu \in [50.155, 52.005]$$

GL	0.05	0.025
1	6.314	12.706
2	2.920	4.303
3	2.353	3.182
4	2.132	2.776
5	2.015	2.571
6	1.943	2.447
7	1.895	2.365
8	1.860	2.306
9	1.833	2.262
10	1.812	2.228
11	1.796	2.201
•••		
8	1.645	1.960

i) cont.

Podemos no entanto admitir que apenas interessa especificar o limite inferior para a tensão de rotura. (acima desse limite haverá sempre rotura)

Neste caso recorremos a intervalos de confiança uni-laterais, em que a confiança é concentrada na cauda que pretendemos especificar.

$$\left[\overline{X} - t_6(0.05) \cdot \frac{S}{\sqrt{N}}, \infty\right]$$

$$\equiv \left[51.08 - 1.943 \cdot \frac{1}{\sqrt{7}}, \infty\right[$$

$$\mu \in [50.346, \infty[$$

ii) Admita que, com base em resultados obtidos ao longo de vários anos, a variância da tensão de rotura do material é conhecida e tem o valor 1 Defina o novo intervalo de confiança e comente os resultados.

$$n = 7$$
 $\overline{X} = 51.08$ $S^2 = 1.00^2$ Estimativas pontuais

Agora sabemos que $\sigma^2 = 1.00^2$ logo, temos menos incerteza.

IC para a média, variância conhecida.

$$\mu \in \left[\overline{X} - z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}}, \overline{X} + z(\alpha/2) \cdot \frac{\sigma}{\sqrt{N}}\right]$$

$$\overline{X} \pm Z(0.025) \cdot \frac{\sigma}{\sqrt{N}} = 51.08 \pm 1.96 \cdot \frac{1}{\sqrt{7}}$$
$$= 51.08 \pm 0.741 = \mu \in [50.339, 51.821]$$

iii) Admita que foram realizados mais 8 ensaios, cujos resultados se apresentam na tabela seguinte. Defina o novo intervalo de confiança e comente os resultados.

$$n=15$$
 $\overline{X}=51.01$ $S^2=0.83^2$ **Estimativas pontuais**

temos agora uma amostra maior \rightarrow estimativas mais precisas.

$$\overline{X} \pm t_{14} (0.025) \cdot \frac{S}{\sqrt{N}} \equiv 51.01 \pm 2.145 \cdot \frac{0.83}{\sqrt{15}} \equiv 51.01 \pm 0.460 \equiv$$

 $\mu \in [50.55, 51.47]$

Intervalo de Confiança da Proporção Binomial

(amostra grande)

Numa população constituída por elementos de dois tipos o valor *p*, que corresponde à proporção de elementos de um dos dois tipos, designa-se por proporção binomial.

Se uma amostra de dimensão N inclui y elementos de um dos tipos temos a seguinte estimativa da proporção binomial

$$\hat{p} = y / N$$

Nestas Condições $Y \rightarrow B(N, P)$.

De acordo com o teorema do limite central, para N suficientemente grande

$$Y \rightarrow N(\mu = N \cdot p, \sigma^2 = N \cdot p \cdot (1-p))$$

A aproximação será tanto mais precisa quanto maior for N e menos assimétrica for a distribuição de Y. Na prática exige-se que

$$N \ge 20$$
 , $N \cdot p > 7$ e $N \cdot (1-p) > 7$

Assim, é imediato verificar que a **proporção amostral** $\hat{p} = Y / N$

$$\hat{P} = Y / N$$

seguirá também uma distribuição normal com parâmetros:

$$\mu = \frac{1}{N} \cdot N \cdot p = p$$
 e $\sigma^2 = \frac{1}{N^2} \cdot N \cdot p \cdot (1-p) = \frac{p \cdot (1-p)}{N}$

Os limites do intervalo de confiança para p a $(1-\alpha)\cdot 100\%$ serão:

$$(Y/N) \pm z(\alpha/2) \cdot \sigma$$

Para amostras de grande dimensão, o valor de σ pode ser substituído por um qualquer valor do seu estimador:

$$S = \sqrt{\frac{\hat{P} \cdot (1 - \hat{P})}{N}} = \sqrt{\frac{Y / N \cdot (1 - Y / N)}{N}} = \sqrt{\frac{Y \cdot (N - Y)}{N^3}} \quad \text{Logo:} \qquad \frac{\frac{Y}{N} - p}{\sqrt{\frac{Y \cdot (N - Y)}{N^3}}} \quad \rightarrow \quad N(0, 1)$$

Resultando que o intervalo de confiança para a proporção binomial, p, a $(1-\alpha)\cdot 100\%$ é:

$$\left[\frac{Y}{N} - z(\alpha/2) \cdot \sqrt{\frac{Y \cdot (N-Y)}{N^3}}, \frac{Y}{N} + z(\alpha/2) \cdot \sqrt{\frac{Y \cdot (N-Y)}{N^3}}\right]$$
amostra grande

No caso de a **população ser finita** e de a amostragem ser efectuada **Sem reposição**, a aproximação da distribuição da variável *y* pela Normal pode ser efectuada desde que se verifiquem as condições

$$i - N \ge 20$$
 , $N \cdot p > 7$ $e N \cdot (1-p) > 7$

ii - e que a dimensão da população, *M*, seja grande em comparação com a dimensão da amostra, *N*.

Na prática:
$$(M \ge 10 \cdot N)$$

Nesta situação, a estimativa da variância de Y/N deve ser multiplicada pelo **factor de correcção**:

$$(M-N)/(M-1)$$

EXEMPLO

Num lote de 150 peças fabricadas numa determinada máquina-ferramenta encontraram-se 12 defeituosas.

Defina o intervalo de confiança a 95% para a proporção de peças defeituosas que a máquina produz.

$$\frac{y}{N} = \frac{12}{150} = 0.08$$
 Estimativa pontual da proporção de peças defeituosas.

IC para proporção binomial, amostras grandes

$$\left[\frac{Y}{N} - z(\alpha/2) \cdot \sqrt{\frac{Y \cdot (N-Y)}{N^3}}, \quad \frac{Y}{N} + z(\alpha/2) \cdot \sqrt{\frac{Y \cdot (N-Y)}{N^3}}\right]$$

$$z(0.025) = 1.96$$

$$p \in \frac{y}{N} \pm z(\alpha/2) \cdot \sqrt{\frac{y \cdot (N-y)}{N^3}} = 0.08 \pm 1.96 \cdot \sqrt{\frac{12 \cdot 138}{150^3}}$$
$$= 0.08 \pm 1.96 \cdot 0.0221 = 0.08 \pm 0.043$$

Temos 95% de confiança que

$$p \in [0.037, 0.123]$$

Intervalo de Confiança para a Variância

(população Normal)

Tal como referido anteriormente, se de uma população $N(\mu, \sigma^2)$ forem obtidas amostras aleatórias de dimensão N com variância amostral S^2 , temos que

$$(N-1)\cdot\frac{S^2}{\sigma^2} \rightarrow \chi^2_{N-1}$$

Sejam $(\chi_{N-1}^2)_{\Delta}$ e $(\chi_{N-1}^2)_{B}$ dois valores tais que:

$$P\left[\left(\chi_{N-1}^{2}\right)_{A} < \chi_{N-1}^{2} < \left(\chi_{N-1}^{2}\right)_{B}\right] = 1 - \alpha$$

Esta expressão pode ser reescrita da seguinte forma:

$$P\left[\left(\chi_{N-1}^{2}\right)_{A} < (N-1) \cdot \frac{S^{2}}{\sigma^{2}} < \left(\chi_{N-1}^{2}\right)_{B}\right] = 1 - \alpha$$

Valores críticos de distribuições

 χ^2_{GL}

				α				
GL	0.99	0.975	0.95	0.9	0.1	0.05	0.025	0.01
1	0	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.02	0.051	0.103	0.211	4.605	5.991	7.378	9.21
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.61	9.236	11.07	12.833	15.086
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
7	1.239	1.69	2.167	2.833	12.017	14.067	16.013	18.475
8	1.646	2.18	2.733	3.49	13.362	15.507	17.535	20.09
9	2.088	2.7	3.325	4.168	14.684	16.919	19.023	21.666
10	2.558	3.247	3.94	4.865	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	5.578	17.275	19.675	21.92	24.725
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688
14	4.66	5.629	6.571	7.79	21.064	23.685	26.119	29.141
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409
18	7.015	8.231	9.39	10.865	25.989	28.869	31.526	34.805
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191
20	8.26	9.591	10.851	12.443	28.412	31.41	34.17	37.566
30	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892
40	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691
50	29.707	32.357	34.764	37.689	63.167	67.505	71.42	76.154
60	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379
70	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425
80	53.54	57.153	60.391	64.278	96.578	101.879	106.629	112.329

$$P\left[\frac{1}{\left(\chi_{N-1}^{2}\right)_{A}} > \frac{\sigma^{2}}{(N-1)\cdot S^{2}} > \frac{1}{\left(\chi_{N-1}^{2}\right)_{B}}\right] = 1 - \alpha$$

$$P\left[\frac{(N-1)\cdot S^2}{\left(\chi_{N-1}^2\right)_A} > \sigma^2 > \frac{(N-1)\cdot S^2}{\left(\chi_{N-1}^2\right)_B}\right] = 1 - \alpha$$

$$P\left[\frac{(N-1)\cdot S^{2}}{\left(\chi_{N-1}^{2}\right)_{R}} < \sigma^{2} < \frac{(N-1)\cdot S^{2}}{\left(\chi_{N-1}^{2}\right)_{A}}\right] = 1 - \alpha$$

o intervalo de confiança para a variância, σ^2 , a $(1-\alpha)100\%$ vem então:

$$\left[\frac{(N-1)\cdot S^2}{\left(\chi_{N-1}^2\right)_B}, \frac{(N-1)\cdot S^2}{\left(\chi_{N-1}^2\right)_A}\right]$$

Uma vez que a distribuição Qui-quadrado não é simétrica existe a dificuldade de definir os valores que conduzem ao intervalo de confiança de menor amplitude.

 $\left(\chi_{N-1}^2\right)_A$ e $\left(\chi_{N-1}^2\right)_B$

Por uma questão de simplicidade e porque se aproximam dos óptimos com o aumento de N usa-se

$$\chi_{N-1}^{2}(\alpha/2)$$
 e $\chi_{N-1}^{2}(1-\alpha/2)$

A expressão para definir um intervalo de confiança para variância é:

$$\left[\frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(\alpha/2)}, \frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(1-\alpha/2)}\right]$$

população Normal

Exemplo

Com o objectivo de avaliar a variabilidade associada a um dado método de análise efectuaram-se 17 análises a uma determinada substância. A variância amostral dos resultados foi de 2.70.

Admitindo a variável segue uma distribuição Normal, defina o IC a 95% para a variância.

 $s^2=2.7 \rightarrow estimativa pontual da variância$

$$\left[\frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(\alpha/2)}, \frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(1-\alpha/2)}\right]$$

 $\left\lceil \frac{(N-1)\cdot S^2}{\chi^2_{N-1}(\alpha/2)}, \frac{(N-1)\cdot S^2}{\chi^2_{N-1}(1-\alpha/2)} \right\rceil$ | IC para a variância, população Normal

Da tabela vem que para N=17-1=16 graus de liberdade

$$\chi_{N-1}^2(0.975) = 6.91$$
 e $\chi_{N-1}^2(0.025) = 28.8$

Temos 95% de confiança que
$$\sigma^2 \in \left[\frac{(17-1)\cdot 2.7}{28.8}, \frac{(17-1)\cdot 2.7}{6.91}\right] = [1.50, 6.25]$$

Intervalo de Confiança para a Razão de Variâncias

(populações Normais)

Sejam duas populações Normais com σ_A^2 e σ_B^2 e correspondentes estimadores S_A^2 e S_B^2

Tal como anteriormente, temos que:

$$(N_A - 1) \cdot \frac{S_A^2}{\sigma_A^2} \rightarrow \chi_{N_A - 1}^2 \qquad (N_B - 1) \cdot \frac{S_B^2}{\sigma_B^2} \rightarrow \chi_{N_B - 1}^2$$

Assim, é imediato verificar que

$$\frac{S_A^2 / \sigma_A^2}{S_B^2 / \sigma_B^2} \rightarrow \frac{\chi_{N_A-1}^2 / (N_A - 1)}{\chi_{N_B-1}^2 / (N_B - 1)}$$

De acordo com a definição da distribuição **F** temos que:

$$\frac{S_A^2 / \sigma_A^2}{S_B^2 / \sigma_B^2} \rightarrow F_{N_A - 1, N_B - 1}$$

e para dois valores desta distribuição, $F_{N_A-1,N_B-1}(\alpha/2)$ e $F_{N_A-1,N_B-1}(1-\alpha/2)$ temos que:

$$P[F_{N_A-1,N_B-1}(1-\alpha/2) < F_{N_A-1,N_B-1} < F_{N_A-1,N_B-1}(\alpha/2)] = 1-\alpha$$

$$P\left[F_{N_A-1,N_B-1}(1-\alpha/2)<\frac{S_A^2/\sigma_A^2}{S_B^2/\sigma_B^2}< F_{N_A-1,N_B-1}(\alpha/2)\right]=1-\alpha$$

$$P\left[\frac{1}{F_{N_A-1,N_B-1}(1-\alpha/2)} > \frac{\sigma_A^2/\sigma_B^2}{S_A^2/S_B^2} > \frac{1}{F_{N_A-1,N_B-1}(\alpha/2)}\right] = 1 - \alpha$$

$$P\left[\frac{1}{F_{N_A-1,N_B-1}(1-\alpha/2)}\cdot\frac{S_A^2}{S_B^2}>\frac{\sigma_A^2}{\sigma_B^2}>\frac{1}{F_{N_A-1,N_B-1}(\alpha/2)}\cdot\frac{S_A^2}{S_B^2}\right]=1-\alpha$$

$$P\left[\frac{1}{F_{N_A-1,N_B-1}(\alpha/2)}\cdot\frac{S_A^2}{S_B^2}<\frac{\sigma_A^2}{\sigma_B^2}<\frac{1}{F_{N_A-1,N_B-1}(1-\alpha/2)}\cdot\frac{S_A^2}{S_B^2}\right]=1-\alpha$$

O intervalo de confiança a $(1-\alpha)100\%$ para a razão das variâncias é então:

$$\left[\frac{1}{F_{N_A-1,N_B-1}(\alpha/2)}\cdot\frac{S_A^2}{S_B^2}, \frac{1}{F_{N_A-1,N_B-1}(1-\alpha/2)}\cdot\frac{S_A^2}{S_B^2}\right]$$

populações Normais

Note-se que sendo a distribuição F assimétrica, os valores

$$F_{N_A-1,N_B-1}(\alpha/2)$$
 e $F_{N_A-1,N_B-1}(1-\alpha/2)$

não são os que conduzem ao intervalo de menor amplitude.

No entanto, estes valores costumam ser utilizados por questões de simplicidade e porque se aproximam dos óptimos à medida que N cresce

Exemplo:

Pretende-se comparar o desempenho de duas máquinas, A e B, no que diz respeito à precisão de fabrico de uma peça. A partir de duas amostras de 13 e 17 peças produzidas nas máquinas A e B respectivamente, obtiveram-se os seguintes resultados para a variância amostral de uma dada dimensão da peça:

$$S_A^2 = 6.32 mm^2$$
 $S_B^2 = 4.8 mm^2$ estimativas pontuais das variâncias

$$\left[\frac{1}{F_{N_A-1,N_B-1}(\alpha/2)}\cdot\frac{S_A^2}{S_B^2}, \frac{1}{F_{N_A-1,N_B-1}(1-\alpha/2)}\cdot\frac{S_A^2}{S_B^2}\right]$$
IC para razão de variâncias, populações Normais

Admitindo que as variáveis seguem dist. Normais, e para α =10%

Para α =10% e GL_A=N_A-1=12 e GL_B=N_B-1=16 temos

$$F_{12,16}(0.05) = 2.42$$
 $F_{12,16}(0.95) = \frac{1}{F_{16,12}(0.05)} = \frac{1}{2.60}$

L.I.:
$$\frac{1}{F_{12,16}(0.05)} \cdot \frac{S_A^2}{S_B^2} = \frac{1}{2.42} \cdot \frac{6.32}{4.80} = 0.544$$
 L.S.: $\frac{1}{F_{12,16}(0.95)} \cdot \frac{S_A^2}{S_B^2} = 2.60 \cdot \frac{6.32}{4.80} = 3.423$

Temos 90% de confiança que
$$\frac{\sigma_A^2}{\sigma_B^2} \in [0.544, 3.423]$$

Intervalos individuais

$$\left[\frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(\alpha/2)}, \frac{(N-1)\cdot S^{2}}{\chi_{N-1}^{2}(1-\alpha/2)}\right]$$

$$\sigma_A^2 \in \left[\frac{12 \cdot 6.32}{21.026}, \frac{12 \cdot 6.32}{5.226}\right] = \left[3.61, 14.51\right]$$

$$\sigma_A^2 \in \left[\frac{16 \cdot 4.8}{26.296}, \frac{16 \cdot 4.8}{7.962}\right] = \left[2.92, 9.65\right]$$

cada um com $\alpha = 10\% \Rightarrow 0.9^2 = 81\%$ de confiança

Razão de Variâncias

$$\frac{\sigma_A^2}{\sigma_B^2} \in \left[0.544, 3.423\right]$$

 $\alpha = 10\% \Longrightarrow 90\%$ de confiança

Note que se o 1 estiver incluído neste intervalo as variâncias não revelam diferenças significativas. (mais fácil comparação)

TABELA 6: Valores críticos de distribuições F para α =5%

GL1												
GL 2	1	2	3	4	5	6	7	8	9	10	15	20
1	161.5	199.5	215.7	224.6	230.2	234	236.8	238.9	240.5	241.9	245.9	248
2	18.51	19	19.16	19.25	19.3	19.33	19.35	19.37	19.39	19.4	19.43	19.45
3	10.13	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786	8.703	8.66
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.858	5.803
5	6.608	5.786	5.409	5.192	5.05	4.95	4.876	4.818	4.772	4.735	4.619	4.558
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.06	3.938	3.874
7	5.591	4.737	4.347	4.12	3.972	3.866	3.787	3.726	3.677	3.637	3.511	3.445
8	5.318	4.459	4.066	3.838	3.687	3.581	3.5	3.438	3.388	3.347	3.218	3.15
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.23	3.179	3.137	3.006	2.936
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.02	2.978	2.845	2.774
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	2.719	2.646
12	4.747	3.885	3.49	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.617	2.544
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.533	2.459
14	4.6	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.463	2.388
15	4.543	3.682	3.287	3.056	2.901	2.79	2.707	2.641	2.588	2.544	2.403	2.328
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494	2.352	2.276
17	4.451	3.592	3.197	2.965	2.81	2.699	2.614	2.548	2.494	2.45	2.308	2.23
18	4.414	3.555	3.16	2.928	2.773	2.661	2.577	2.51	2.456	2.412	2.269	2.191
19	4.381	3.522	3.127	2.895	2.74	2.628	2.544	2.477	2.423	2.378	2.234	2.155
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.447	2.393	2.348	2.203	2.124
30	4.171	3.316	2.922	2.69	2.534	2.421	2.334	2.266	2.211	2.165	2.015	1.932
40	4.085	3.232	2.839	2.606	2.449	2.336	2.249	2.18	2.124	2.077	1.924	1.839
50	4.034	3.183	2.79	2.557	2.4	2.286	2.199	2.13	2.073	2.026	1.871	1.784
60	4.001	3.15	2.758	2.525	2.368	2.254	2.167	2.097	2.04	1.993	1.836	1.748
70	3.978	3.128	2.736	2.503	2.346	2.231	2.143	2.074	2.017	1.969	1.812	1.722
80	3.96	3.111	2.719	2.486	2.329	2.214	2.126	2.056	1.999	1.951	1.793	1.703
90	3.947	3.098	2.706	2.473	2.316	2.201	2.113	2.043	1.986	1.938	1.779	1.688
100	3.936	3.087	2.696	2.463	2.305	2.191	2.103	2.032	1.975	1.927	1.768	1.676

I. C. para a Diferença entre Valores Esperados

(amostras independentes, grandes, populações quaisquer)

Sejam duas populações A e B com $\mu_{\Delta} \sigma_{\Delta}^2 e \mu_{R} \sigma_{R}^2$

$$\mu_A \sigma_A^2 e \mu_B \sigma_B^2$$

Considere duas amostras de dimensões N_A e N_B a partir das quais se calcularam os estimadores $\overline{X}_A, \overline{X}_B, S_A^2 \in S_B^2$

Sendo as amostras de grandes dimensões temos que

$$S_A^2 \approx \sigma_A^2$$
 e $S_B^2 \approx \sigma_B^2$

Logo, de acordo com o teorema do limite central, quaisquer que sejam as formas das distribuições de A e B, poderá afirmar-se que:

$$\overline{X}_A \rightarrow N(\mu_A, \sigma_A^2/N_A) \approx N(\mu_A, S_A^2/N_A)$$

$$\overline{X}_B \rightarrow N(\mu_B, \sigma_B^2 / N_B) \approx N(\mu_B, S_B^2 / N_B)$$

Como as amostras são independentes, a diferença dos valores esperados é também uma variável Normal tal que

$$\overline{X}_{A} - \overline{X}_{B} \rightarrow N \left(\mu_{A} - \mu_{B}, \frac{\sigma_{A}^{2}}{N_{A}} + \frac{\sigma_{B}^{2}}{N_{B}} \right) \approx N \left(\mu_{A} - \mu_{B}, \frac{S_{A}^{2}}{N_{A}} + \frac{S_{B}^{2}}{N_{B}} \right)$$

$$Z = \frac{(\overline{X}_{A} - \overline{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{\frac{S_{A}^{2}}{N_{A}} + \frac{S_{B}^{2}}{N_{B}}}} \rightarrow N(0, 1)$$
Logo,

O intervalo de confiança para a diferença dos valores esperados a $(1-\alpha)\cdot 100\%$ vem então:

$$\left[(\overline{X}_A - \overline{X}_B) - z(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}, \quad (\overline{X}_A - \overline{X}_B) + z(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}} \right]$$

amostras independentes, grandes, populações quaisquer

Se se admitir que as variâncias das duas populações são iguais então

$$\overline{X}_{A} - \overline{X}_{B} \rightarrow N \left(\mu_{A} - \mu_{B}, \frac{\sigma_{A}^{2}}{N_{A}} + \frac{\sigma_{B}^{2}}{N_{B}} \right) = N \left(\mu_{A} - \mu_{B}, \sigma^{2} \cdot \left(\frac{1}{N_{A}} + \frac{1}{N_{B}} \right) \right)$$

e podemos estimar a variância comum das duas populações seguinte expressão:

$$S^{2} = \frac{(N_{A} - 1) \cdot S_{A}^{2} + (N_{B} - 1) \cdot S_{B}^{2}}{N_{A} + N_{B} - 2}$$

O intervalo de confiança para a diferença dos valores esperados a $(1-\alpha)\cdot 100\%$ quando as variâncias são iguais vem

$$\left[(\overline{X}_A - \overline{X}_B) - z(\alpha/2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}}, \quad (\overline{X}_A - \overline{X}_B) + z(\alpha/2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}} \right]$$

amostras independentes, grandes, populações quaisquer variâncias das duas populações iguais

Exemplo

Um campo experimental foi utilizado para testar o crescimento de duas espécies florestais, **A** e **B**. Analisaram-se 200 árvores do tipo **A** com 20 anos de idade obtendo-se uma altura média de 145 cm e um desvio padrão amostral de 15 cm. Para 150 árvores do tipo **B**, com a mesma idade, a altura média medida foi de 141 cm e o desvio padrão amostral 12 cm.

Defina o intervalo de confiança a 95% para a diferença dos valores esperados.

$$\left[(\overline{X}_A - \overline{X}_B) - z(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}, (\overline{X}_A - \overline{X}_B) + z(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}} \right]$$

amostras independentes, grandes, populações quaisquer

$$(145-141)\pm 1.96 \cdot \sqrt{\frac{15^2}{200} + \frac{12^2}{150}} = 4.0 \pm 2.8$$

Temos 95% de confiança que

$$\mu_A - \mu_B \in [1.2, 6.8]$$

Note que se o 0 estiver incluído no intervalo as médias não revelam diferenças significativas. Neste caso as amostras indicam que a altura de A é significativamente superior à altura de B. Podíamos (e devíamos) ter verificado se as variâncias revelam diferenças significativas.

$$\left[\frac{1}{F_{N_A-1,N_B-1}(\alpha/2)}\cdot\frac{S_A^2}{S_B^2}, \frac{1}{F_{N_A-1,N_B-1}(1-\alpha/2)}\cdot\frac{S_A^2}{S_B^2}\right]$$

$$\left[\frac{1}{F_{200-1,150-1}(\alpha/2)} \cdot \frac{15^{2}}{12^{2}}, \frac{1}{F_{200-1,150-1}(1-\alpha/2)} \cdot \frac{15^{2}}{12^{2}}\right] \\
\left[\frac{1}{1.356} \cdot \frac{15^{2}}{12^{2}}, \frac{1}{0.742} \cdot \frac{15^{2}}{12^{2}}\right] = [1.15, 2.11]$$

O valor 1 não está incluído, a diferença é significativa logo, não podíamos ter considerado as variâncias idênticas.

I.C. Para a Diferença entre Valores Esperados

(amostras independentes, pequenas, populações normais)

Quando as amostras são pequenas já não são válidas as aproximações

$$S_A^2 \approx \sigma_A^2$$
 e $S_B^2 \approx \sigma_B^2$

e, consequentemente, a variável

$$\frac{(\overline{X}_A - \overline{X}_B) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}}$$

não segue uma distribuição Normal padronizada, mas é possível provar que:

$$\frac{(\overline{X}_{A} - \overline{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{\frac{S_{A}^{2} + \frac{S_{B}^{2}}{N_{B}}}{N_{B}}}} = \frac{\frac{(\overline{X}_{A} - \overline{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{\sigma_{A}^{2} / N_{A} + \sigma_{B}^{2} / N_{B}}}}{\sqrt{\frac{S_{A}^{2} / N_{A} + S_{B}^{2} / N_{B}}{\sqrt{\sigma_{A}^{2} / N_{A} + \sigma_{B}^{2} / N_{B}}}}} \rightarrow \frac{N(0,1)}{\sqrt{\chi_{GL}^{2} / GL}} = t_{GL}$$

Para definir *GL* se se puder admitir que as variâncias são iguais e a variância comum estimada pela expressão:

$$S^{2} = \frac{(N_{A} - 1) \cdot S_{A}^{2} + (N_{B} - 1) \cdot S_{B}^{2}}{N_{A} + N_{B} - 2}$$

temos que

$$\frac{(\overline{X}_A - \overline{X}_B) - (\mu_A - \mu_B)}{S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}}} \rightarrow t_{GL} = t_{N_A + N_B - 2}$$

sendo o intervalo de confiança para a **diferença dos valores esperados** com **variâncias iguais** a $(1-\alpha)\cdot 100\%$ dado por

$$\left[(\overline{X}_A - \overline{X}_B) - t_{N_A + N_B - 2} (\alpha / 2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}}, \quad (\overline{X}_A - \overline{X}_B) + t_{N_A + N_B - 2} (\alpha / 2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}} \right]$$

amostras independentes, pequenas, populações normais

Se se puder admitir que as variâncias são iguais, a variável

$$\frac{(\overline{X}_A - \overline{X}_B) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}} \rightarrow t_{GL}$$

segue aproximadamente uma distribuição t de student com o número de graus de liberdade (GL) :

$$GL = \frac{\left(\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}\right)^2}{\frac{\left(S_A^2 / N_A\right)^2}{N_A - 1} + \frac{\left(S_B^2 / N_B\right)^2}{N_B - 1}}$$

Neste caso, o intervalo de confiança para a **diferença dos valores esperados** com **variâncias diferentes** a (1- α)·100% vem dado por

$$\left[(\overline{X}_A - \overline{X}_B) - t_{GL}(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}, \quad (\overline{X}_A - \overline{X}_B) + t_{GL}(\alpha/2) \cdot \sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}} \right]$$

amostras independentes, pequenas, populações normais

Problema (cont.)

iv) Pretende-se agora comparar a resistência do material utilizado com a resistência de um novo material recentemente introduzido no mercado. Para tal, efectuaram-se 10 ensaios com o novo material, cujos resultados se apresentam de seguida.

Construa o intervalo de confiança para a diferença entre os valores esperados da tensão de rotura dos dois materiais.

Verifique se é razoável admitir que as variâncias são iguais e, em caso afirmativo, especifique o novo intervalo de confiança.

52.41	50.60	50.51	51.85	53.09	52.52	50.55	53.00	52.18	50.32

$$n_2 = 10$$
 $\overline{X}_2 = 51.70$ $S_2^2 = 1.10^2$

49.84	51.83	51.46	49.48	51.99	51.62	51.36	
50.83	50.69	51.75	50.62	51.03	49.70	52.01	50.92

$$n_1 = 15$$
 $\overline{X}_1 = 51.01 \quad S_1^2 = 0.83^2$

$$N_1 = 15$$
 $\overline{X}_1 = 51.01$ $S_1^2 = 0.83^2$ $N_2 = 10$ $\overline{X}_2 = 51.70$ $S_2^2 = 1.10^2$

$$\left[(\overline{X}_{A} - \overline{X}_{B}) - t_{GL}(\alpha/2) \cdot \sqrt{\frac{S_{A}^{2}}{N_{A}} + \frac{S_{B}^{2}}{N_{B}}}, \quad (\overline{X}_{A} - \overline{X}_{B}) + t_{GL}(\alpha/2) \cdot \sqrt{\frac{S_{A}^{2}}{N_{A}} + \frac{S_{B}^{2}}{N_{B}}} \right]$$
 amostras independentes, pequenas, populações normais,

variâncias diferentes

$$GL = \frac{\left(\frac{S_{1}^{2}}{N_{1}} + \frac{S_{2}^{2}}{N_{2}}\right)^{2}}{\frac{\left(S_{1}^{2}/N_{1}\right)^{2}}{N_{1}-1} + \frac{\left(S_{2}^{2}/N_{2}\right)^{2}}{N_{2}-1}} = \frac{\left(\frac{0.83^{2}}{15} + \frac{1.1^{2}}{10}\right)^{2}}{\frac{\left(0.83^{2}/15\right)^{2}}{14} + \frac{\left(1.1^{2}/10\right)^{2}}{9}} = 15.67 \approx 15 \rightarrow t_{15}(0.025) = 2.131$$

$$(51.01 - 51.70) \pm 2.131 \cdot \sqrt{\frac{0.83^2}{15} + \frac{1.1^2}{10}} \equiv -0.69 \pm 0.871 \equiv$$

$$\mu_1 - \mu_2 \in [-1.561, 0.181]$$

O valor 0 (zero) está incluído não há evidência de que a diferença entre as médias seja significativa.

Vamos verificar se as variâncias revelam diferenças significativas.

$$\left[\frac{1}{F_{N_1-1,N_2-1}(0.025)}\cdot\frac{S_1^2}{S_2^2}, \frac{1}{F_{N_1-1,N_2-1}(1-0.025)}\cdot\frac{S_1^2}{S_2^2}\right] \equiv$$

$$\left[\frac{1}{3.8} \cdot \frac{0.83^2}{1.1^2}, \frac{1}{0.311} \cdot \frac{0.83^2}{1.1^2}\right] \equiv \left[0.15, 1.83\right]$$
O valor 1 está incluído não havendo evidência de diferenças.

Assim, podemos estimar a variância comum:

$$S^{2} = \frac{(N_{1} - 1) \cdot S_{1}^{2} + (N_{2} - 1) \cdot S_{2}^{2}}{N_{1} + N_{2} - 2} = \frac{14 \cdot 0.83^{2} + 9 \cdot 1.1^{2}}{15 + 10 - 2} = 0.893 = 0.945^{2}$$

$$\left[(\overline{X}_A - \overline{X}_B) - t_{N_A + N_B - 2} (\alpha / 2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}}, (\overline{X}_A - \overline{X}_B) + t_{N_A + N_B - 2} (\alpha / 2) \cdot S \cdot \sqrt{\frac{1}{N_A} + \frac{1}{N_B}} \right]$$

$$\mu_1 - \mu_2 \in (51.01 - 51.70) \pm 2.069 \cdot 0.945 \cdot \sqrt{\frac{1}{15} + \frac{1}{10}} \equiv -0.69 \pm 0.798$$

<u>Variâncias iguais</u>

$$\mu_1 - \mu_2 \in [-1.488, 0.108]$$

Variâncias diferentes

$$\mu_1 - \mu_2 \in [-1.561, 0.181]$$

I.C. Para a Diferença entre Proporções Binomiais (amostras independentes e grandes)

Considerem-se duas populações A e B constituídas por elementos de dois tipos. Sendo p_A a proporção de elementos de um dos tipos em A e p_B a proporção correspondente em B.

A partir de duas amostra podemos obter os estimadores

$$\hat{P}_A = Y_A / N_A \quad e \quad \hat{P}_B = Y_B / N_B$$

Para que os estimadores possam ser aproximados por distribuições normais é necessário:

1. Populações infinitas ou amostragem com reposição:

$$N \ge 20$$
 , $N \cdot p > 7$ e $N \cdot (1-p) > 7$

2. Populações finitas e amostragem sem reposição: Dimensão da população, *M*, grande em comparação com a dimensão da amostra, *N*.

Na prática: $(M \ge 10 \cdot N)$

Sendo as amostras independentes, pode afirmar-se que a variável aleatória

$$\hat{P}_{A} - \hat{P}_{B}$$

segue também um distribuição Normal com os seguintes parâmetros:

$$\mu = p_A - p_B$$

$$\sigma^2 = \frac{p_A \cdot (1 - p_A)}{N_A} + \frac{p_B \cdot (1 - p_B)}{N_B}$$

Assim, os limites do intervalo de confiança para a diferença das proporções binomiais a $(1-\alpha)\cdot 100\%$ vêm dados por

$$\left| \left(\frac{Y_A}{N_A} - \frac{Y_B}{N_B} \right) \pm z(\alpha/2) \cdot \sqrt{\frac{Y_A \cdot (N_A - Y_A)}{N_A^3} + \frac{Y_B \cdot (N_B - Y_B)}{N_B^3}} \right|$$

amostras independentes e grandes

Exemplo

Num estudo efectuado com a finalidade de comparar os hábitos de compra de homens e mulheres foram analisadas as proporções de vezes que uma compra é concretizada após a entrada numa loja.

Em 45 observações seleccionadas aleatoriamente, os homens realizaram compras 27 vezes. No caso das mulheres, em 74 visitas a lojas 32 resultaram em compras. Construa o IC a 95% para a diferença entre as proporções entre homens e mulher.

$$\hat{p}_{H} = \frac{y_{H}}{N_{H}} = \frac{27}{45} = 0.6$$
 Estimativa da proporção de homens

$$\hat{p}_{M} = \frac{y_{M}}{N_{M}} = \frac{32}{74} = 0.43$$
 Estimativa da proporção de Mulheres

Será a diferença significativa?

$$\left[\left(\frac{Y_A}{N_A} - \frac{Y_B}{N_B} \right) \pm z(\alpha/2) \cdot \sqrt{\frac{Y_A \cdot (N_A - Y_A)}{N_A^3} + \frac{Y_B \cdot (N_B - Y_B)}{N_B^3}} \right]$$

$$\left(\frac{27}{45} - \frac{32}{74}\right) \pm 1.96 \cdot \sqrt{\frac{27 \cdot (45 - 27)}{45^3} + \frac{32 \cdot (74 - 32)}{74^3}}$$

$$p_{H} - p_{M} \in [-1.47\%, 34.99\%]$$

Dimensionamento de Amostras

Em geral a dimensão da amostra não é imposta à partida, constituindo antes uma decisão a tomar.

Trata-se de uma decisão importante, que deve ser bem fundamentada, uma vez que

- Recolher uma amostra desnecessariamente grande constitui um desperdício de recursos
- Uma amostra insuficiente não permite retirar as conclusões pretendidas.

A dimensão adequada para a amostra aumentará com

- A precisão desejada para o intervalo de confiança
- O grau de confiança do intervalo

A forma de dimensionar amostras será introduzida com base no seguinte exemplo.

Exemplo:

A proporção de defeituosas à saída de uma linha de fabrico será estimada a partir de um lote de peças constituído para esse efeito.

Qual deverá ser a dimensão da amostra para que a amplitude do intervalo de confiança a 95% para a proporção de defeituosas não ultrapasse 0.02?

Os limites do intervalo de confiança para a proporção binomial são

$$\frac{y}{N} \pm z(\alpha/2) \cdot \sqrt{\frac{y \cdot (N-y)}{N^3}}$$

Para 95% de confiança temos $z(\alpha/2) = z(0.025) = 1.96$

logo:
$$1.96 \cdot \sqrt{\frac{y \cdot (N-y)}{N^3}} < 0.01$$

Para resolver esta inequação e determinar N, é preciso uma estimativa de p. Para obter tal estimativa pode-se recolher uma amostra piloto cuja dimensão é fixada arbitrariamente.

Admita-se que a partir de uma amostra de dimensão N=300 se obteve y=30.

$$\hat{p} = \frac{y}{N} = \frac{30}{300}$$
 $y = 0.1 \cdot N$

$$1.96 \cdot \sqrt{\frac{0.1 \cdot N \cdot (N - 0.1 \cdot N)}{N^3}} < 0.01 \Leftrightarrow \frac{0.1 \cdot 0.9}{N} < \left(\frac{0.01}{1.96}\right)^2$$

$$N > \frac{0.1 \cdot 0.9}{\left(\frac{0.01}{1.96}\right)^2} = 3457.7 \text{ logo } N = 3458$$

Note-se que:

- A amostra piloto deveria ser integrada na amostra final.
- Seria razoável que, à medida que a amostra final fosse sendo constituída, a proporção *p* fosse progressivamente reestimada e o valor de *n* fosse sucessivamente corrigido.
- no caso de não ser possível estimar à priori a proporção *p*, a dimensão da amostra deve ser estimada para *p*=0.5 que induz a amplitude máxima para o intervalo, ou para uma amplitude préfixada induz uma dimensão máxima da amostra.