Homework 7 for ECS 20

${\bf Tamim~Nekaien~(915803826)}$

November 26, 2019

This assignment was made with \heartsuit (and \LaTeX).

Contents

1	Question 1	i
2	Question 2 2.1 part a 2.2 part b	
3	Question 3	ii
4	Question 4	ii
5	Question 5 5.1 part a 5.2 part b 5.3 part c	iv
6	Question 6	is

1 Question 1

For a number to end in 0s, it has to be divisible by both 2 and 5. So 10! has two trailing zeroes because 10/5 = 2 and 10/2 = 5, 10/4 = 2, and 10/8 = 1(4 and 8 each have more than one 2, so divide 10 by them) and 5+2+1=8 twos. But there are at most 2 pairs of 5 and 2, hence 2 trailing zeroes. Therefore, for every pair of 5 and 2 in 1000 there will be a trailing zero.

We will focus on 5 because it seems to be the limiting "agent". So following the same pattern, $\frac{1000}{5} + \frac{1000}{25} + \frac{1000}{125} + \frac{1000}{625} = 249$ zeroes.

SOLUTION CHECK: I got this right

2 Question 2

2.1 part a

For $n \in \mathbb{Z}$, where n > 1 and n is composite, we know that every composite number is a multiple of prime numbers. We also know that 1 is a divisor of primes and composite numbers. If n is greater than 1 and the smallest composite integer, then it is 4, then the smallest \sqrt{n} is 2. But we said 1 divides n and 1 < 2, so $d \le \sqrt{n}$.

SOLUTION CHECK: I'm pretty sure my proof holds.

2.2 part b

```
for (int i=2; i < \sqrt{n}; i++)
if (n%i == 0)
print ("Not prime")
else
print ("Prime")
```

SOLUTION CHECK: I got this right.

3 Question 3

A factorial of a number n is always composite, so a sequence of n! would be composite: n!+1, n!+2, n!+3.

.

SOLUTION CHECK: I was wrong, the sequence starts with (n+1)!+2 and ends with (n+1)!+(n+1). I'm not sure why they chose (n+1)! when n! would work. But I do understand why they defined k as they did.

4 Question 4

 $5^5 \equiv 1 \mod 11$ $789 \equiv 5 * 157 + 4$ $5^4 \equiv 9 \mod 11$

Then we draw the conclusion that 9 is the remainder when 11 divides 5^{789}

.

SOLUTION CHECK: I was right.

5 Question 5

5.1 part a

Using the Euclidean Algorithm: 20112340 = 1076 * 18675 + 1804018675 = 1 * 18040 + 63518040 = 28 * 635 + 260635 = 2 * 260 + 115260 = 2 * 115 + 30115 = 3 * 30 + 2530 = 1 * 25 + 5 $\gcd = 5 .$ SOLUTION CHECK: I was right.

5.2 part b

 $18,675 = 3^2 * 5^2 * 83$ $20112340 = 2^2 * 5 * 1005617$

SOLUTION CHECK: I was right.

5.3 part c

Wasn't sure how to do this at first, but you add all the factors. If you multiply $2^2+3^2+5^2+83+1005617=75119589900$ So apparently the lcm is a very large number

SOLUTION CHECK: Looked at answer, thought the lcm was four different numbers seperated by a comma, I was wrong about that.

6 Question 6

To prove the statement we need to show that there is an natural number n such that it is a common divisor of a,d, and r. So let's realize that 1 is a natural number that can divide a,d, and r. But now let's assume that n is greater than 1 and it divides d and r or is gcd(d,r). If this is true, then it also divides a. Well, if this is the case, then n divides a and d.

$$\therefore gcd(a,d) = gcd(d,r)$$

SOLUTION CHECK: I should have done a containment proof, it wasn't enough to just show

that a common divisor greater than one exists for a and d and r. A containment

proof solidifies that it indeed is the gcd and it that the gcds are equal.