Question 4

(1)

We denote the augmented signature scheme's parameters and functions with a star to differentiate them from the parameters and routines of the input signature scheme.

For key generation, set $sk^* = (pk, sk)$ and $pk^* = H(pk)$, where $pk, sk \leftarrow KeyGen$ is generated from the input signature scheme, and H is the input collision-resistant hash function.

For Sign*(sk*, m), first compute $\sigma = \text{Sign}(\text{sk}, m)$ using the input signature scheme's signing routine, then output $\sigma^* = (\text{pk}, \sigma)$ as the signature.

For Verify*(pk^*, σ^*, m), first unpack the signature ($pk, \hat{\sigma}$) = σ^* and check that H(pk) is equal to pk^* . Then, run the input signature scheme's verification routine Verify($pk, \hat{\sigma}, m$). The verification passes if and only if both checks pass.

(2)

We show that the modified signature scheme is EUF-CMA by showing that if there exists an EF-CMA adversary for the modified scheme $\mathcal{A}_{\text{EF-CMA}}^*$, then we can build an EF-CMA adversary for the original scheme $\mathcal{A}_{\text{EF-CMA}}$ with equal advantage.

In the EF-CMA game of the input scheme, key generation outputs the keypair (pk, sk). $\mathcal{A}_{\text{EF-CMA}}$ computes pk* = H(pk) and passes pk* to $\mathcal{A}_{\text{EF-CMA}}^*$.

When $\mathcal{A}_{\text{EF-CMA}}^*$ queries the signature of some message m_i , $\mathcal{A}_{\text{EF-CMA}}$ queries the signature σ_i of m_i from the signing oracle for the input signature scheme. $\mathcal{A}_{\text{EF-CMA}}$ then gives $\sigma_i^* = (\text{pk}, \sigma_i)$ back to $\mathcal{A}_{\text{EF-CMA}}^*$ as the answer to the query.

When $\mathcal{A}^*_{\text{EF-CMA}}$ outputs the forgery $\hat{\sigma^*} = (\hat{\text{pk}}, \hat{\sigma}, \hat{m})$, we claim that $\hat{\text{pk}} = \text{pk}$, because otherwise we will have found collision $\hat{\text{pk}} \neq \text{pk}$ such that $H(\hat{\text{pk}}) = H(\text{pk})$. Thus $\mathcal{A}^*_{\text{EF-CMA}}$ is valid if and only if $\hat{\sigma}, \hat{m}$ pass the verification of the original signature scheme. Therefore, $\mathcal{A}_{\text{EF-CMA}}$ has the same advantage as $\mathcal{A}^*_{\text{EF-CMA}}$.