

ONIP-2 / FISA

Diffraction

Outils Numériques / Semestre 6 / Institut d'Optique / ONIP-2

ONIP-2 / Déroulement

ENTREPRISE

TP1 - Diffraction

TP2/3 - Filtrage Détramage

3 séquences

Programmation Objet

Filtrage

Diffraction

TP1a **ENTREPRISE** TP1b TP2a TP2b **ENTREPRISE** TP3a

TP3b

ONIP-2 / Diffraction

Diffraction

3 séances

Analyse des images de diffraction

Coupe dans l'image (barycentre / max)

Moyennage

Modélisation (fit)

ENTREPRISE

TP1a

ENTREPRISE

TP1b

TP2a

TP2b

ENTREPRISE

TP3a

TP3b

CR de TP

Vendredi 4 avril 2025 eCampus (21h)

CR -> PDF Code+Images -> ZIP

Diffraction / Rappels et TP

pupille disque

$$\theta_{1}^{er}_{z \in ro} = 1,22 \frac{\lambda}{a}$$

pupille fente

$$\theta_{1^{er} z \acute{e} ro} = \frac{\lambda}{a}$$

Diffraction / Rappels et TP

Diffraction / Objectif en ONIP-2

Diffraction / Objectif en ONIP-2

Recherche du maximum Utilisation du barycentre « risquée »

Diffraction / Algorithme

Pour un ensemble d'images

Ouvrir l'image

Chercher les indices du maximum

Afficher la coupe de l'image

Mesurer la taille de la figure de diffraction

Stocker le résultat

Afficher la loi en taille de l'objet diffractant et taille de la figure de diffraction

$$\mathcal{E}_{disque} = \left| \frac{J_1(\pi x)}{\pi x} \right|^2$$

$$x = \frac{a \times sin\theta}{\lambda}$$

pupille disque

$$\theta_{1^{er} z \acute{e} ro} = 1,22 \frac{\lambda}{a}$$

pupille fente

$$\theta_{1}^{er}_{z\acute{e}ro} = \frac{\lambda}{a}$$

Diffraction / Algorithme

Pour un ensemble d'images

Ouvrir l'image

Chercher les indices du maximum

Afficher la coupe de l'image

Mesurer la taille de la figure de diffraction

Stocker le résultat

Afficher la loi en taille de l'objet diffractant et taille de la figure de diffraction

L'étape de mesure de la taille de la figure de diffraction peut être faite manuellement,

puis dans un second temps, automatisée

Trouver minimums locaux proches de chaque côté du maximum

Faire la différence entre les deux minimums trouvés

Diffraction / Algorithme

Pour un ensemble d'images

Ouvrir l'image

Chercher les indices du maximum

Afficher la coupe de l'image*

Mesurer la taille de la figure de diffraction**

Stocker le résultat

Afficher la loi en taille de l'objet diffractant et taille de la figure de diffraction

+ Rédaction CR de TP

Vendredi 4 avril 2025 eCampus (21h)

Quelques fonctions intéressantes

numpy.unravel_index cv2.imread scipy.special.j1 scipy.optimize.curve_fit scipy.signal.argrelextrema

* Afin de **lisser les données** de la coupe dans l'image, il est important de **faire la moyenne sur plusieurs lignes** (proches du maximum). Le nombre de lignes utilisées a un impact sur le résultat...

** L'étape de mesure de la taille de la figure de diffraction peut être faite manuellement,

puis dans un second temps, automatisée