Chemistry Lecture #103: Gibbs Free Energy

We can predict if a chemical reaction will occur spontaneously by looking at the ΔH and ΔS of a reaction.

 ΔH = -, spontaneous ΔH = +, non-spontaneous ΔS = +, spontaneous ΔS = -, non-spontaneous.

If a reaction has $\Delta H = -$ and $\Delta S = +$, the reaction will be spontaneous. This is a reaction where energy is released and the products are more random than the reactants, making a reaction highly likely.

If a reaction has $\Delta H = +$ and $\Delta S = -$, the reaction will not be spontaneous. This is a reaction where energy must be added, and the products will have greater order than the reactants. This type of reaction will not occur spontaneously.

But what if a reaction releases energy, which favors spontaneity, and decreases randomness, which opposes spontaneity? Or, what if a reaction absorbs energy, which opposes spontaneity, but increases randomness, which favors spontaneity?

In circumstances where ΔH and ΔS oppose each other's influence on spontaneity, we can use the Gibbs free energy formula to calculate the spontaneity of a reaction.

 $\Delta G = \Delta H - T\Delta S$

 ΔG = change in Gibbs free energy (kJ/mol) ΔH = change in enthalpy for the reaction (kJ/mol)

T = Temperature in Kelvins

 ΔS = change in entropy for the reaction (kJ/mol K)

If ΔG = negative, then the reaction will occur spontaneously. If ΔG is a positive number, then the reaction will not be spontaneous.

A reaction at 298 K has a change in enthalpy of -80.7 kJ/mole and a change in entropy of -0.0963 kJ/mol K. Find the change in Gibbs free energy. Is the reaction spontaneous?

Solution

In this reaction, $\Delta H = -80.7$ kJ/mole. Since ΔH is negative, energy is being released and the reaction will tend to be spontaneous. But, $\Delta S = -0.0963$ kJ/mol K. A negative change in entropy means that the products are less random and more orderly, reducing the likelihood of spontaneity.

Substituting the values into the Gibbs free energy formula, we get

 $\Delta G = \Delta H - T \Delta S$

 $\Delta G = -80.7 - (298)(-0.0963)$

 $\Delta G = -80.7 + 28.6974$

 $\Delta G = -52.0 \text{ kJ/mole.}$

Since ΔG is negative, the reaction will occur spontaneously.

Another way to calculate ΔG is to use a thermodynamic properties chart like the one below.

	Δ	H _f ° (kJ/mol)	ΔG_f° (kJ/mol) S°	(J/mol·K)		
				eous solutions is	,		
Substance	ΔH_f°	ΔG_f°	S°	Substance	ΔH_f°	ΔG_f°	S°
Ag(cr)	0	0	42.55	H ₃ PO ₃ (aq)	-964.4	_	_
AgCI(cr)	-127.068	-109.789	96.2	H ₃ PO ₄ (aq)	-1279.0	-1119.1	110.50
AgCN(cr)	146.0	156.9	107.19	H ₂ S(g)	-20.63	-33.56	205.79
Al(cr)	0	0	28.33	H ₂ SO ₃ (aq)	-608.81	-537.81	232.2
Al ₂ O ₃ (cr)	-1675.7	-1582.3	50.92	H ₂ SO ₄ (aq)	-909.27	-744.53	20.1
BaCl ₂ (aq)	-871.95	-823.21	122.6	HgCl ₂ (cr)	-224.3	-178.6	_
BaSO ₄ (cr)	-1473.2	-1362.2	132.2	Hg ₂ Cl ₂ (cr)	-265.22	-210.745	192.5
Be(cr)	0	0	9.50	Hg ₂ SO ₄ (cr)	-743.12	-625.815	200.66
BeO(cr)	-609.6	-580.3		I ₂ (cr)	0	0	116.13
Bi(cr)	0	0	56.74	K(cr)	0	0	64.18
BiCl ₃ (cr)	-379.1	-315.0	177.0	KBr(cr)	-393.798	-380.66	95.90
Bi ₂ S ₃ (cr)	-143.1	-140.6	200.4	KMnO ₄ (cr)	-837.2	-737.6	171.71
Br ₂ (I)	0	0	152.231	KOH(cr)	-424.764	_	_
CH ₄ (g)	-74.81	-50.72	186.264	LiBr(cr)	-351.213		
C ₂ H ₂ (g)	+226.73	+209.20	200.94	LiOH(cr)	-484.93	-438.95	42.80
C ₂ H ₄ (g)	+52.26	+68.15	219.56	Mn(cr)	0	0	32.01
C ₂ H ₆ (g)	-84.68	-32.82	229.60	MnCl ₂ (aq)	-555.05	-490.8	38.9
CO(g)	-110.525	-137.168	197.674	$Mn(NO_3)_2(aq)$	-635.5	-450.9	218
CO ₂ (g)	-393.509	-394.359	213.74	MnO ₂ (cr)	-520.03	-465.14	53.05
CS ₂ (I)	+89.70	+65.27	151.34	MnS(cr)	-214.2	_	
Ca(cr)	0	0	41.42	N ₂ (g)	0	0	191.61
Ca(OH) ₂ (cr)	-986.09	-898.49	_	NH ₃ (g)	-46.11	-16.45	192.45
Cl ₂ (g)	0	0	223.066	NH ₄ Br(cr)	-270.83	-175.2	113
Co ₃ O ₄ (cr)	-891	-774	-	NO(g)	+90.25	86.55	210.76
CoO(cr)	-237.94	-214.20	52.97	NO ₂ (g)	+33.18	+51.31	240.06
Cr ₂ O ₃ (cr)	-1139.7	-1058.1	81.2	N ₂ O(g)	+82.05	+104.20	219.85
CsCl(cr)	-443.04	-414.53	101.17	Na(cr)	0	0	51.21
Cs ₂ SO ₄ (cr)	-1443.02	-1323.58	211.92	NaBr(cr)	-361.062	-	70.40
CuI(cr)	-67.8	-69.5	96.7	NaCl(cr)	-411.153	-384.138	72.13
CuS(cr)	-53.1	-53.6	66.5	NaNO ₃ (aq)	-447.48	_	_
Cu ₂ S(cr)	-79.5	-86.2	120.9	NaOH(cr)	-425.609	-	_
CuSO ₄ (cr)	-771.36	-661.8	109	Na ₂ S(aq)	-447.3	-	440.50
F ₂ (g)	0 -399.49	0	202.78	Na ₂ SO ₄ (cr)	-1387.08	-1270.16	149.58
FeCl ₃ (cr)		- /	-	O ₂ (g)	0	0	205.13
FeO(cr)	-272.0 -824.2	_ -742.2	- 87.40	P ₄ O ₆ (cr)	-1640.1	2607.7	200.00
Fe ₂ O ₃ (cr)	-824.2 -1118.4	-742.2 -1015.4	146.4	P ₄ O ₁₀ (cr)	-2984.0 -278.7	-2697.7	228.86
Fe ₃ O ₄ (cr)	+217.965	-1015.4 -	146.4	PbBr ₂ (cr)	-278.7 -359.41	-261.92 -314.10	161.5
H(g) H ₂ (g)	1217.965	0	130.684	PbCl ₂ (cr)	-359.41 0	-314.10 0	136.0 31.80
HBr(g)	-36.40	-53.45	198.695	S(cr)			
HCI(g)	-92.307	-55.45 -95.299	186.908	SO ₂ (g) SO ₃ (g)	-296.830 -454.51	−300.194 −374.21	248.22 70.7
HCI(g)	-167.159	-131.228	56.5	SrO(cr)	-454.51 -592.0	-374.21 -561.9	70.7 54.4
HCN(aq)	+150.6	+172.4	94.1	Ti(cr)	-592.0 0	-561.9 0	30.63
HCHO(g)	-108.57	-102.53	218.77	TiO ₂ (cr)	-9 3 9.7	- 884 .5	49.92
HCOOH(I)	-424.72	-361.35	128.95	TII(cr)	-939.7 -123.8	-884.5 -125.39	
HF(g)	-424.72 -271.1	-361.35 -273.2	173.779	UCl ₄ (cr)	-1019.2	-930.0	127.6 197.1
HI(g)	+26.48	-273.2 +1.70	206.594	UCI ₅ (cr)	-1019.2 -1059	-930.0 -950	242.7
H ₂ O(I)	-285.830	-237.129	69.91		-1059 0	-950 0	
	-241.818	-237.129 -228.572	188.825	Zn(cr)			41.63
H ₂ O(g) H ₂ O ₂ (I)	-241.818 -	-228.572 -120.35	188.825	ZnCl ₂ (aq) ZnO(cr)	-488.19 -348.38	-409.50	0.8
H ₃ PO ₂ (I)	-595.4	- 120.35	109.0	ZnO(cr) ZnSO ₄ (aq)	-348.28 -1063.15	-318.30 -891.59	43.64 -92.0

We can use the chart to find ΔG for a reaction by putting ΔG_f values into the equation

 $\Delta G = \sum \Delta G_f(products) - \sum \Delta G_f(reactants)$

 ΔG = change in Gibbs free energy for the reaction

 $\Sigma\Delta Gf(products)$ = sum of the change in Gibbs free energies of the products

 $\Sigma\Delta G_f$ (reactants) = sum of the change in Gibbs free energies of the reactants.

Using the thermodynamic properties chart, find ΔG for the reaction

Solution

$$\Delta G_{1}(products) (kJ/mole)$$
 $\Delta G_{2}(products) (kJ/mole)$
 $\Delta G_{3}(products) (kJ/mole)$
 $\Delta G_{2}(products) = -141$
 $\Delta G_{3}(products) = -315 \times 2 = -630$
 $\Delta G_{3}(products) = -33.6 \times 3 = -100.8$
 $\Delta G_{4}(products) = -712.8$
 $\Delta G_{4}(products) = -712.8$
 $\Delta G_{4}(products) = -730.8$

Notice that we multiply the ΔG_f of each substance by the coefficient in front of it in the balanced equation. For example, the ΔG_f of HCI is multiplied by 6 since the balanced equation has GHCI.

$$\Delta G = \sum \Delta G_f(\text{products}) - \sum \Delta G_f(\text{reactants})$$

 $\Delta G = -712.8 - (-730.8)$

 $\Delta G = 18 \text{ kJ/mole.}$

Since ΔG is positive, the reaction will not occur spontaneously.