```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import metrics

In [30]:

dfx = pd.read_csv('Diabetes_XTrain.csv')
dfy = pd.read_csv('Diabetes_YTrain.csv')
print(dfx.shape)
print(dfy.shape)
dfx.head(n=5)
(576, 8)
(576, 1)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	A
0	7	168	88	42	321	38.2	0.787	4
1	8	110	76	0	0	27.8	0.237	5
2	7	147	76	0	0	39.4	0.257	4
3	2	100	66	20	90	32.9	0.867	2
4	4	129	86	20	270	35.1	0.231	2

```
In [31]:

dfy.head(n=5)
```

Outcome

- 0
- 1 0
- 2 1
- 3 1
- 4 0

```
In [32]:

X_Train = dfx.values

Y_Train = dfy.values

Y_Train = Y_Train.reshape((-1))

print(X_Train.shape)

print(Y_Train.shape)

(576, 8)
 (576,)
```

```
In [33]:

dfx = pd.read_csv('Diabetes_XTest.csv')
print(dfx.shape)
dfx.head(n=5)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	A
0	0	180	90	26	90	36.5	0.314	3
1	2	93	64	32	160	38.0	0.674	2
2	2	114	68	22	0	28.7	0.092	2
3	13	76	60	0	0	32.8	0.180	4
4	1	80	74	11	60	30.0	0.527	2

```
In [34]:

X_Test = dfx.values
print(X_Test.shape)

(192, 8)
```

```
In [35]:
def dist(x1,x2):
    return np.sqrt(sum((x1-x2)**2))
def KNN(X,Y,query_point,K=5):
    vals = []
    m = X.shape[0]
    for i in range(m):
        d = dist(query_point,X[i])
        vals.append((d,Y[i]))
    vals = sorted(vals)
    # Nearest/First K points
    vals = vals[:K]
    vals = np.array(vals)
    #print("Vals: ",vals)
    new_vals = np.unique(vals[:,1],return_counts=True)
    #print(new vals)
    index = new_vals[1].argmax()
    pred = new_vals[0][index]
    return pred
In [36]:
pred = KNN(X_Train,Y_Train,X_Test[3])
print(int(pred))
 0
In [37]:
# Accuracy of KNN
Y_Pred = []
for i in range(X_Test.shape[0]):
    p = int(KNN(X_Train,Y_Train,X_Test[i]))
    Y_Pred.append(p)
#print("Accuracy: ",np.mean(Y_Pred==Y_Tst))
```

```
In [38]:
#Saving File

df = pd.DataFrame(data = Y_Pred, columns=["Outcome"])

df.to_csv('Diabetes_Ytest.csv',index=False)

In [39]:
len(Y_Pred)

In []:
```