# Online Algorithms

#### The BALANCE Algorithm

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University



#### Adwords Problem

#### Given:

- A set of bids by advertisers for search queries
- A click-through rate for each advertiser-query pair
- A budget for each advertiser (say for 1 day, month...)
- A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
  - The size of the set is no larger than the limit on the number of ads per query
  - Each advertiser has bid on the search query
  - Each advertiser has enough budget left to pay for the ad if it is clicked upon

# Dealing with Limited Budgets

#### Our setting: Simplified environment

- There is 1 ad shown for each query
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- Value of each ad is the same (=1)

#### Simplest algorithm is greedy:

- For a query pick any advertiser who has bid 1 for that query
- Competitive ratio of greedy is 1/2

## **Bad Scenario for Greedy**

- Two advertisers A and B
  - A bids on query x, B bids on x and y
  - Both have budgets of \$4
- Query stream: x x x x y y y y
  - Worst case greedy choice: B B B B \_ \_ \_ \_
  - Optimal: AAAABBBBB
  - Competitive ratio = ½
- This is the worst case!
  - Note: Greedy algorithm is deterministic it always resolves draws in the same way

# **BALANCE Algorithm [MSVV]**

- BALANCE Algorithm by Mehta, Saberi,
  Vazirani, and Vazirani
  - For each query, pick the advertiser with the largest unspent budget
  - Break ties arbitrarily (but in a deterministic way)

### **Example: BALANCE**

- Two advertisers A and B
  - A bids on query x, B bids on x and y
  - Both have budgets of \$4
- Query stream: x x x x y y y y
- BALANCE choice: A B A B B B \_ \_ \_
  - Optimal: A A A A B B B B
- Competitive ratio = ¾
  - For BALANCE with 2 advertisers

#### Analyzing 2-advertiser BALANCE

- Consider simple case
  - 2 advertisers,  $A_1$  and  $A_2$ , each with budget B (≥1)
  - Optimal solution exhausts both advertisers' budgets

- BALANCE must exhaust at least one advertiser's budget:
  - If not, we can allocate more queries
  - Assume BALANCE exhausts A<sub>2</sub>'s budget

## **Analyzing Balance**



Case 2: BALANCE assigns more than B/2 blue queries to  $A_2$ . Consider the last blue query assigned to  $A_2$ . At that time,  $A_2$ 's unspent budget must have been at least as big as  $A_1$ 's. That means at least as many queries have been assigned to  $A_1$  as to  $A_2$ . At this point, we have already assigned at least B/2 queries to  $A_2$ . So  $y \ge B/2$ .

## **Analyzing BALANCE**



- Queries allocated to  $A_1$  in the optimal solution
- Queries allocated to  $A_2$  in the optimal solution

Optimal revenue OPT = **2B**Balance revenue BAL = **B+y** 

We have shown that y  $\geq$  B/2 BAL  $\geq$  B+B/2 = 3B/2 BAL/OPT  $\geq$  3/4

#### **BALANCE: General Result**

- In the general case, worst competitive ratio
  of BALANCE is 1–1/e = approx. 0.63
  - Interestingly, no online algorithm has a better competitive ratio!
- Let's see the worst case example that gives this ratio