NFA ve NFA-A

 $L_1 = \{x \in \{a, b\}_* \mid x \text{ aa ile biter}\}$

«b» ile biten «aa» altkatarını içermeyen katarlardan oluşan dili tanıyan DFA

«abbaab» altkatarını içeren katarları kabul eden DFA'yı çiziniz.

3 ile bölünebilen tamsayıların ikili gösterimini kabul eden DFA makinesi:.

$$M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$$

$$M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$$

$$Q = Q_1 \times Q_2$$
$$q_0 = (q_1, q_2)$$

$$\delta((p,q),\sigma)=(\delta_1(p,\sigma),\delta_2(q,\sigma))$$

- 1. If $A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}$, M accepts the language $L_1 \cup L_2$.
- 2. If $A = \{(p, q) \mid p \in A_1 \text{ and } q \in A_2\}$, M accepts the language $L_1 \cap L_2$.
- 3. If $A = \{(p, q) \mid p \in A_1 \text{ and } q \notin A_2\}$, M accepts the language $L_1 L_2$.

$L_1 = \{x \in \{a, b\} * \mid aa, x'in altkatarı değildir.\}$

 $L_2 = \{x \in \{a, b\} * \mid x, ab ile biter\}$

{aa,aab}*{b}

 $(aab)^*(a + aba)^*$.

aababa.

$$q_0 \in Q$$
 $A \subseteq Q$
 $\delta: Q \times (\Sigma \cup \{\Lambda\}) \to 2^Q$

Let
$$M = (Q, \Sigma, q_0, A, \delta)$$

$$\delta^*: Q \times \Sigma^* \to 2^Q$$

- 1. For every $q \in Q$, $\delta^*(q, \Lambda) = \Lambda(\{q\})$.
- 2. For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$,

$$\delta^*(q, y\sigma) = \Lambda\left(\bigcup\{\delta(p, \sigma) \mid p \in \delta^*(q, y)\}\right)$$

 $x \in \Sigma^*$ is accepted by M if $\delta^*(q_0, x) \cap A \neq \emptyset$.

$$\delta^*(q_0, \Lambda) = \Lambda(\lbrace q_0 \rbrace)$$
$$= \lbrace q_0, p, t \rbrace$$

$$\begin{split} \delta^*(q_0, a) &= \Lambda \left(\bigcup \{ \delta(k, a) \mid k \in \delta^*(q_0, \Lambda) \} \right) \\ &= \Lambda \left(\delta(q_0, a) \cup \delta(p, a) \cup \delta(t, a) \right) \\ &= \Lambda \left(\emptyset \cup \{p\} \cup \{u\} \right) \\ &= \Lambda(\{p, u\}) \\ &= \{p, u\} \end{split}$$

$$\begin{split} \delta^*(q_0,ab) &= \Lambda \left(\bigcup \{ \delta(k,b) \mid k \in \{p,u\} \} \right) \\ &= \Lambda (\delta(p,b) \cup \delta(u,b)) \\ &= \Lambda (\{r,v\}) \\ &= \{r,v,w,q_0,p,t\} \end{split}$$

$$\begin{split} \delta^*(q_0, aba) &= \Lambda \left(\bigcup \{ \delta(k, a) \mid k \in \{r, v, w, q_0, p, t\} \} \right) \\ &= \Lambda(\delta(r, a) \cup \delta(v, a) \cup \delta(w, a) \cup \delta(q_0, a) \cup \delta(p, a) \cup \delta(t, a)) \\ &= \Lambda(\{s\} \cup \{v\} \cup \emptyset \cup \emptyset \cup \{p\} \cup \{u\})) \\ &= \Lambda(\{s, v, p, u\}) \\ &= \{s, v, p, u, w, q_0, t\} \end{split}$$

$$\delta^*(A,0) = \Lambda\left(\bigcup_{p \in \Lambda(\{A\})} \delta(p,0)\right)$$

q	$\delta(q, \varLambda)$	$\delta(q,0)$	$\delta(q,1)$	$\delta^*(q,0)$	$\delta^*(q, 1)$
A	{ B }	$\{A\}$	Ø	$\{A,B,C,D\}$	Ø
В	$\{D\}$	{C}	Ø	{C. D}	Ø
C	Ø	Ø	(B)	Ø	$\{B, D\}$
D	Ø	{D}	Ø	{D}	Ø

q	δ (q,a)	δ (q,b)	$\delta(\mathbf{q}, \mathbf{\Lambda})$	δ* (q, a)	δ* (q,b)
1	{1}	Ø	{2, 4}	{1, 2, 3, 4, 5}	{4, 5}
2	{3}	{5}	Ø	{3}	{5}
3	Ø	{2}	Ø	Ø	{2}
4	{5}	{4}	Ø	{5}	{4}
5	Ø	Ø	Ø	Ø	Ø

$((aa+b)^*(aba)^*bab)^*$

