# Observing and Optimizing Interaction to Next Paint at Scale

New York UX Speed and Web Performance Group Meetup June 5, 2024



# Speed Team at DDM

Ben Cochran - Product Owner, VP of Engineering

**Brian Piccione - Senior Director, Brand Platform Engineering** 

Russell Brown - Manager, Performance Engineering

**Joseph Freeman - Principal Engineer** 

**Tyron Goldschmidt - Software Engineer** 

Bayan Zhumanova - Senior QA Analyst

Hao Li - QA Software Developer



# Dotdash Meredith America's Largest Print / Digital Publisher







# BYRDIE health

allrecipes



# **Dotdash Meredith Playbook**

Best Content, Fastest Sites, Fewest Ads



## Agenda

- What is INP?
- How do we observe INP?
- How do we optimize INP?
- How do we test INP?









# Background

A new method of measuring the performance of the web



### **Core Web Vitals**

- Web vitals: metrics for user experience
  - FCP, TTI, TBT, Speed Index

- Core Web Vitals: SEO affecting web vitals
  - Loading
    - LCP

- Stability
  - o CLS

Interactivity





# First things First: FID

- First Input Delay measures first impression of interactivity
  - The time the user first interacts to the time the browser is able to respond to the interaction
- Rationale
  - First impressions last
  - Worst interactivity problems often occur during page load



Source:

https://web.dev/articles/inp



### The New Kid on the Block: INP

- Interaction to Next Paint replaces FIP as a Core Web Vital
- Measures overall responsiveness to interactions
  - The longest duration from an interaction to the browser painting the next frame
- Rationale
  - A more complete picture of the interactivity throughout the lifecycle of the page



Source: https://web.dev/articles/inp



| FID                                                       | INP                                            |  |  |
|-----------------------------------------------------------|------------------------------------------------|--|--|
| Time from first interaction to when main thread next idle | Time from interaction to next visual update    |  |  |
| First impression                                          | Overall impression                             |  |  |
| GOOD NEEDS POOR IMPROVEMENT POOR 100 ms 300 ms            | GOOD NEEDS POOR IMPROVEMENT POOR 200 ms 500 ms |  |  |
| Easier to diagnose problems                               | Trickier to diagnose problems                  |  |  |

### How can we observe INP?

**Monitoring INP** 



# Go chasing waterfalls 🎶



### **Chase Waterfalls**

Alert

**Explore Dashboards** 

Form Hypothesis

**Inspect Waterfalls** 

- Monitoring infrastructure triggers an alert
- A daily report indicates metrics increase
- Check for changes across all infrastructure to rule things out
- Dive into greater detail on the specific metric, comparing types of averages
- Look at individual record charts

- Based on chart graphs, identify problematic threshold(s)
- Understand corresponding metric
- Formulate hypothesis

- Inspect the waterfalls for corresponding records
- Identify problem via comparisons or unusual activity



## **Catchpoint Explorer Chart**



## **Catchpoint Explorer Record View**

| Q s | Search File Name, Host | File Type All                   | Req                 | quest All                 | Zone          | All       |              |          |        |
|-----|------------------------|---------------------------------|---------------------|---------------------------|---------------|-----------|--------------|----------|--------|
|     | File Name              | Host                            | IP Address          | Response<br>Code Protocol | Content Large | st 1000ms | 2000ms 3000m | s 4000ms | 5000ms |
| 9   | /e/dtb/bid?src         | =3446&u=http aax-dtb-cf.ama     | az 18.160.77.31     | 200 HTTP/2.0              |               |           |              |          |        |
| 0   | /static/1.50.0/        | cache/eNpdjD www.traveland      | lle 151.101.206.137 | 200 HTTP/2.0              | gzip          |           | I            |          |        |
| 1   | /services/pub          | ?anId=926268 pixel.adsafepr     | ot 18.213.243.141   | 200 HTTP/2.0              |               |           | I            |          |        |
| 2   | /ut/v3/prebid          | ib.adnxs.com                    | 68.67.160.117       | 200 HTTP/1.1              |               |           |              |          |        |
| 3   | /hbjson?sp=tr          | ustx grid.bidswitch.            | net 35.211.165.199  | 200 HTTP/1.1              | gzip          |           |              |          |        |
| 4   | /translator?so         | urce=prebid-cli hbopenbid.pub   | om 104.36.115.111   | 204 HTTP/2.0              |               |           | 1            |          |        |
| 5   | /cygnus?s=47           | 9140&v=8.1& htlb.casalemee      | di 172.64.154.237   | 200 HTTP/2.0              |               |           | I            |          |        |
| 6   | openrtb2/aud           | tion prebid-server.r            | ru 3.224.44.2       | 200 HTTP/2.0              | gzip          |           |              |          |        |
| 7   | /iu3?cm3ppd            | =1&d=dtb-pub s.amazon-ads       | ys 52.46.151.131    | 302 HTTP/1.1              |               |           |              |          |        |
| 8   | /iu3?cm3ppd            | =1&d=dtb-pub s.amazon-ads       | ys 52.46.151.131    | 200 HTTP/1.1              |               |           | 1            |          |        |
| 9   | _s /static/1.50.0/     | cache/eNpdjD www.traveland      | lle 151.101.206.137 | 200 HTTP/2.0              | gzip          |           | I            |          |        |
| 0   | /v3/pr?exlist=         | n-index_snb_n s.amazon-ads      | ys 52.46.151.131    | 200 HTTP/1.1              |               |           | 1            |          |        |
| 1   | cksync?cs=3            | 1&type=tam&r cs.media.net       | 104.112.153.122     | 302 HTTP/1.1              |               |           |              |          |        |
| 2   | /ecm3?ex=m             | edia.net&id=31 s.amazon-ads     | ys 52.46.151.131    | 200 HTTP/1.1              |               |           |              |          |        |
| 3   | /suid/101959           | ?ntv_r=https://s jadserve.postr | el 52.205.119.86    | 302 HTTP/2.0              |               |           |              |          |        |
| 4   | /ecm3?ex=na            | tivo.com&id=6 s.amazon-ads      | ys 52.46.151.131    | 200 HTTP/1.1              |               |           | I            |          |        |
| 5   | /usermatch?s           | =192259&cb= ssum-sec.casa       | ale 192.40.36.238   | 302 HTTP/1.1              |               |           |              |          |        |
| 6   | /usermatch?d           | b=https://s.am ssum-sec.casa    | ale 192.40.36.238   | 200 HTTP/1.1              |               |           |              |          |        |
| 7   | /w/1.0/cm?id=          | e818ca1e-0c2 u.openx.net        | 35.244.159.8        | 302 HTTP/2.0              |               |           |              |          |        |

### **SEO**

### Google Search Console



#### 5 CrUX Dashboard v2









#### Core Web Vitals

- ★ Largest Contentful Pain...
- ★ Interaction to Next Pain...
- ★ Cumulative Layout Shift...
- First Contentful Paint (F...
- First Input Delay (FID)
- ▼ Time to First Byte (TTFB)
- ☐ Device Distribution
- Navigation Type Distrib...
- Connection Distribution
- 八 Notification Permissions
- First Paint (FP)
- DOM Content Loaded (...
- Onload (OL)

r \_1

#### Largest Contentful Paint (LCP)

LCP reports the render time of the largest content element that is visible within the viewport. web.dev/lcp



·K

#### Interaction to Next Paint (INP)

INP reports the overall responsiveness to user interactions, as measured by the longest time from an interaction until the next frame is presented with visual feedback, ignoring outliers.

web.dev/ipp



1

#### Cumulative Layout Shift (CLS)

CLS measures the sum total of all individual layout shift scores for every unexpected layout shift that occurs during the entire lifespan of the page. web.dev/cls



<

### **Local Development - Performance Chrome Tab**



## **Engineering - Lighthouse**





#### Performance

| Metrics                                      |       |                                             | ==    |
|----------------------------------------------|-------|---------------------------------------------|-------|
| First Contentful Paint                       | 0.3 s | Time to Interactive                         | 0.3 s |
| <ul><li>Speed Index</li></ul>                | 0.4 s | <ul> <li>Total Blocking Time</li> </ul>     | 0 ms  |
| <ul> <li>Largest Contentful Paint</li> </ul> | 0.5 s | <ul> <li>Cumulative Layout Shift</li> </ul> | 0     |





# How can we improve INP?



## **Optimizing for INP at Scale**

## Organization buy-in

- Internal advocacy
- Education & training
- Monitoring & data
- Collaborate with vendors



### **Optimizing for INP - Strategy**

The Key is "interaction to next paint"

### Asynchronicity

- promises
- async/await,
- setTimeout
- scheduler.yield
- (rAF & rIC)

### In-depth

- Re-think classic optimization
- Break down libraries/code
- UI vs background
  - Web workers



### **Optimizing for INP**

### **INP** utilities

- Callback
- Events



### Example

### Before



### After





# How can we test INP optimization?

**Transforming Testing Strategies to Support INP Optimization** 



### **Automation Testing to Support INP Optimization**

### **Example of Click Tracking**

### Before (Synchronous)

-> Click -> Track Click (Tracking Date created) -> Fire Event -> Event Handled



### After (Asynchronous)

- -> Click -> Event handled
  - -> Async Track Click (Tracking Date created) -> Fire Event



With INP, click tracking events are optimized to execute asynchronously



### **Automation Testing to Support INP Optimization**



#### **Difficulties**

- Asynchronous operations uncertainty
   e.g. expected event is not found
- Handling of rapid page transitions
   Element loaded / unloaded?



### **Strategies**

- 1. Add waits/delays for asynchronous operations to complete
- 2. Monitor network requests and page state



# thanks.



# Q&A