Math 132 Homework 1

Jiaping Zeng

10/16/2020

$$1.1.5 \ (\overline{2-i})^2$$

Answer:
$$(\overline{2-i})^2 = (2+i)^2 = 4+4i-1 = 3+4i$$

$$1.1.7 (x+iy)^2$$

Answer:
$$(x+iy)^2 = x^2 + 2xyi - y^2 = (x^2 - y^2) + i(2xy)$$

$$1.1.8 \ i\overline{(2+i)^2}$$

Answer:
$$i(2+i)^2 = i(3+4i) = i(3-4i) = 4+3i$$

1.2.10
$$|\overline{(2+3i)^8}|$$

$$\left| \frac{(2+3i)^8}{8} \right|$$
 Answer: $\left| \frac{(2+3i)^8}{(2+3i)^8} \right| = \left| (2+3i)^8 \right| = \left| 2+3i \right|^8 = \sqrt{13}^8 = 13^4 = 28561$

$$1.2.15 |z-4|=3$$

Answer: Since |z| = 3 is a circle of radius 3 at the origin, |z - 4| = 3 is a circle of radius 3 centered at (4,0).

$$1.2.16 |z+2+i| = 1$$

Answer: Similar to the above, |z+2+i|=1 is a circle of radius 1 centered at (-2,-1).

1.2.34 (a) Use the triangle inequality to show that $|z-1| \le 2$ for $|z| \le 1$.

Answer:
$$|z| \le 1 \implies |z| + |-1| \le |1| + |-1| \implies |z-1| \le |z| + |-1| \le |1| + |-1| = 2 \implies |z-1| \le 2$$

(b) Explain your result in (a) geometrically.

Answer: As shown in the figure below, the disk $|z-1| \le 2$ bounds the disk $|z| \le 1$.

(c) Is the upper bound in (a) best possible?

Answer: Take z = -1, then we have |z| = 1 and |z - 1| = 2. Therefore $|z| \le 1$ is the best upper bound possible.

1.3.5 -3 - 3i

Answer: $r = \sqrt{(-3)^2 + (-3)^2} = 3\sqrt{2}$; $\cos \theta = \frac{x}{r} = \frac{-3}{3\sqrt{2}} = -\frac{\sqrt{2}}{2}$, $\sin \theta = \frac{y}{r} = \frac{-3}{3\sqrt{2}} = -\frac{\sqrt{2}}{2} \implies \theta = \frac{5\pi}{4} \implies \text{Arg } z = -\frac{3\pi}{4}$. Then $-3 - 3i = 3\sqrt{2}(\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right))$.

 $1.3.6 - \frac{\sqrt{3}}{2} + \frac{i}{2}$

Answer: $r = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$; $\cos \theta = \frac{x}{r} = -\frac{\sqrt{3}}{2}$, $\sin \theta = \frac{y}{r} = \frac{1}{2} \implies \theta = \frac{5\pi}{6} = \text{Arg } z$. Then $-\frac{\sqrt{3}}{2} + \frac{i}{2} = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}$.

 $1.3.21 \ (1+i)^{30}$

Answer: $(1+i)^{30} = \sqrt{2}^{30} (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})^{30} = 2^{15} (\cos \frac{30\pi}{4} + i \sin \frac{30\pi}{4}) = 2^{15} (0+i) = 2^{15}i$, so Re z = 0 and Im $z = 2^{15}$.

 $1.5.7 \ e^{-1-i\frac{\pi}{6}}$

Answer: $e^{-1-i\frac{\pi}{6}} = e^{-1} \cdot e^{-i\frac{\pi}{6}} = e^{-1}(\cos(\frac{-\pi}{6}) + i\sin(\frac{\pi}{6})) = e^{-1}\cos(\frac{-\pi}{6}) + ie^{-1}\sin(\frac{\pi}{6})$, so $a = e^{-1}\cos(\frac{-\pi}{6})$ and $b = e^{-1}\sin(\frac{\pi}{6})$.

P1 Let z = x + iy be a complex number. Show that:

(a) $\bar{z} = z$

Answer: $\bar{z} = \overline{\overline{x+iy}} = \overline{x-iy} = x+iy = z$

(b) $Re(z) = \frac{z + \bar{z}}{2}$

Answer: $\frac{z+\bar{z}}{2} = \frac{x+iy+\overline{x+iy}}{2} = \frac{x+iy+x-iy}{2} = \frac{2x}{2} = x = \operatorname{Re}(z)$

(c) $\operatorname{Im}(z) = \frac{z - \bar{z}}{2i}$

Answer: $\frac{z-\bar{z}}{2i} = \frac{x+iy-\overline{x+iy}}{2i} = \frac{x+iy-(x-iy)}{2i} = \frac{2iy}{iy} = y = \text{Im}(z)$

P2 Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be complex numbers. Show that:

(a) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

Answer: $\overline{z_1 + z_2} = \overline{x_1 + iy_1 + x_2 + iy_2} = \overline{(x_1 + x_2) + i(y_1 + y_2)} = (x_1 + x_2) - i(y_1 + y_2) = (x_1 - iy_1) + (x_2 - iy_2) = \overline{x_1 + iy_1} + \overline{x_2 + iy_2} = \overline{z_1} + \overline{z_2}$

2

(b) $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

Answer: $\overline{z_1 z_2} = \overline{(x_1 + iy_1)(x_2 + iy_2)} = \overline{x_1 x_2 - y_1 y_2 + ix_1 y_2 + ix_2 y_1} = x_1 x_2 - y_1 y_2 - ix_1 y_2 - ix_2 y_1 + ix_2 y_2 - ix_1 y_2 - ix_2 y_1 + ix_2 y_2 - i$ $ix_2y_1 = (x_1 - iy_1)(x_2 - iy_2) = \overline{x_1 + iy_1} \cdot \overline{x_2 + iy_2} = \overline{z_1} \cdot \overline{z_2}$

P3 (a) Show that $|z-4| \le 6$ if $|z-3i| \le 1$

Answer: $|z - 3i| \le 1 \implies |z - 4| \le |z - 3i| + |-4 + 3i| \le 1 + |-4 + 3i| = 6 \implies |z - 4| \le 6$

(b) Show that $|z-4| \ge 4$ if $|z-3i| \le 1$

Answer: $|z-4| = |(z-4)+(4-3i)| \ge ||z-3i|-|-4+3i|| = ||z-3i|-5|$; since $|z-3i| \le 1$, we have $|z-4| \ge ||z-3i|-5| \ge |1-5| = 4 \implies |z-4| \ge 4$.

(c) Show that $\left|\frac{1}{z-4}\right| \leq \frac{1}{2}$ if $|z-1| \leq 1$ **Answer:** $|z-4| = |(z-1)-3| \geq ||z-1|-3|$; since $|z-1| \leq 1$, $|z-4| \geq ||z-1|-3| \geq |1-3| = 2 \implies |z-4| \geq 2$. Then $\left|\frac{1}{z-4}\right| = \frac{1}{|z-4|} \leq \frac{1}{2} \implies \left|\frac{1}{z-4}\right| \leq \frac{1}{2}$.