

CLASS II DESIGN UPDATE
FOR THE FAMILY OF COMMUTER AIRPLANES

PREPARED FOR: NASA GRANT NGT-8001

PREPARED BY: THOMAS R. CREIGHTON
LOUIS J. HENDRICH

UNIVERSITY OF KANSAS
AE 790 DESIGN TEAM
MAY 1987

TEAM LEADER: THOMAS R. CREIGHTON

TEAM MEMBERS: RAPHAEL HADJAD
LOUIS HENDRICH
DOUG HENSLEY
LOUISE MORGAN
MARK RUSSELL
GERALD SWIFT

FACULTY ADVISOR: DR. JAN ROSKAM

(NASA-CR-182681) CLASS 2 DESIGN UPDATE FOR
THE FAMILY OF COMMUTER AIRPLANES (Kansas
City.) 284 p

N88-24629

CSCI 01C

Unclass
G3/05 0147415

CLASS II DESIGN UPDATE
FOR THE FAMILY OF COMMUTER AIRPLANES

PREPARED FOR: NASA GRANT NGT-8001

PREPARED BY: THOMAS R. CREIGHTON
LOUIS J. HENDRICH

UNIVERSITY OF KANSAS
AE 790 DESIGN TEAM
MAY 1987

TEAM LEADER: THOMAS R. CREIGHTON

TEAM MEMBERS: RAPHAEL HADDAD
LOUIS HENDRICH
DOUG HENSLEY
LOUISE MORGAN
MARK RUSSELL
GERALD SWIFT

FACULTY ADVISOR: DR. JAN ROSKAM

Table of Contents

List of Symbols	iii
1.0 Introduction	1
2.0 Class II Configuration Descriptions	5
2.1 Review of Common Design Features	6
2.1.1 Common Structural Component Features	6
2.1.2 Common Flight System Designs	21
2.1.2.1 Interior Layouts	21
2.1.2.2 Landing Gear System	21
2.1.2.3 Fuel System	22
2.1.2.4 Flight Control System	22
2.1.2.5 Hydraulic System	22
2.1.2.6 Pressurization System	22
2.1.2.7 De-icing System	23
2.2 Presentation of Class II Threeviews	25
3.0 Mass Properties	38
3.1 Weight and Balance	38
3.2 Inertias	38
3.3 Take-off Weight Sensitivities	39
4.0 Stability and Control Considerations	48
4.1 Commonality Considerations	48
4.2 Wing Maximum Lift	49
4.3 Wing Lift Curves	50
4.4 Trim Diagrams	50
4.5 Open Loop Handling Qualities	70
4.6 Take-off Rotation	71
4.7 Engine-out Requirements	71
4.8 Roll Performance	72
4.8.1 Lateral Acceleration of the Twinbody Configurations	73
5.0 Stick Forces and Gradients	74
5.1 Hinge Moments	74
5.2 Longitudinal Stick Forces	75
5.3 Rudder Pedal Forces	76
5.4 Aileron Wheel Forces	77
5.5 Stick Force Commonality	77
6.0 Class II Drag Prediction	79
7.0 Verification of Mission Performance	91
7.1 Field Length Verification	91
7.2 Verification of FAR 25 Climb Requirements	93
7.3 Verification of Range Requirements	93
7.4 Rate of Climb Requirements	95
8.0 Commonality Analysis of the Commuter Family	97
8.1 Summary of Weight Penalties and Cost Savings Due to Commonality	99

9.0 Comparison With Existing Airplanes	103
9.1 Take-off Weight Comparison	103
9.2 Center of Gravity Excursion Comparison	103
9.3 Wetted Area Comparison	103
9.4 Wing Loading Comparison	104
9.5 Acquisition Cost Comparison	104
9.6 Baggage Volume Comparison	106
10.0 Conclusions and Recommendations	110
10.1 Conclusions	110
10.2 Recommendations	111
11.0 References	112
Appendix A - Fuselage and Cockpit Layouts	A-1
Appendix B - Airplane Component Weight, Center of Gravity and Inertia Breakdowns	B-1
Appendix C - Stability and Control Calculations	C-1
Appendix D - Calculation of Roll Performance	D-1
Appendix E - Aramid Aluminum Data	E-1
Appendix F - Calculation of Stick Forces and Stick Force Gradients	F-1
Appendix G - Component Drag Calculations	G-1
Appendix H - Mission Performance Verification	H-1
Appendix I - Airport Dimensions	I-1

List of Symbols

Symbol	Definition	Dimension
A	Aspect ratio	-----
b	Wing span	ft
b_a	Aileron span	ft
b_f	Flap span	ft
b_t	Tire width	ft
c	Wing chord	ft
c	Wing mean geometric chord	ft
c_f	Flap chord	ft
c_f	Equivalent skin friction coefficient	-----
c_J	Specific fuel consumption	lbs/lbs/hr
C_D	Drag coefficient	-----
C_{D_0}	Zero lift drag coefficient	-----
c_l	Section lift coefficient	-----
c_{l_α}	Section lift curve slope	1/rad
$c_{l_{\alpha_f}}$	Section lift curve slope with flaps down	1/rad
C_L	Lift Coefficient	-----
C_m	Pitching moment coefficient	-----
D	Drag	lbs
D_p	Propeller diameter	ft
D_t	Tire diameter	ft
d_f, D_f	Fuselage diameter	ft
e	Oswald's efficiency factor	-----
E	Endurance	hours
f	Equivalent parasite area	ft ²
FAR	Federal Air Regulation	-----
g	Acceleration of gravity	ft/sec ²
h	Altitude	ft
i_w	Wing incidence angle	degrees
k_Δ	Sweep angle correction factor	-----
k_f	Correction factor for split flaps	-----
L	Lift	lbs
L/D	Lift-to-drag ratio	-----
l_f	Fuselage length	ft
l_{fc}	Fuselage cone length	ft
l_m	Dist. c.g. to main gear	ft

ORIGINAL PAGE IS
OF POOR QUALITY

l_n	Dist. c.g. to nose gear	ft
M	Mach number	-----
n	Load factor	-----
nm	Nautical mile (6,076 ft)	nm
n_p	Number of propeller blades	-----
n_s	Number of struts	-----
N	Number of engines	-----
P	Power, horse-power	hp
P_{bl}	Blade power loading	hp/ft ²
q	Dynamic pressure	psf
R	Range	nm
R_n	Reynold's number	-----
RC	Rate of climb	fpm or fps
s	Distance	ft
S	Wing area	ft ²
SHP	Shaft horsepower	hp
S_{wet}	Wetted area	ft ²
S_{wf}	Flapped wing area	ft ²
t	Time	sec, min, hr
t/c	Thickness ratio	-----
T	Thrust	lbs
V	True airspeed	mph, fps, kts
V.	Volume coefficient	-----
W	Weight	lbs
x_{ac}	Distance from l.e. c to aerodynamic center	
x, y, z	Distance from reference to a component c.g.	ft, in
x_v, x_h, x_c	Distance from c.g. to a.c. of a surface	ft, in
y_t	Engine-out moment arm	ft

Greek Symbols

α	angle of attack	deg, rad
β	sideslip angle	deg, rad
δ	control surface deflection	deg, rad
λ	taper ratio	-----
Λ	sweep angle	deg, rad
π	3.142	-----
Γ	dihedral angle	deg, rad
ρ	air density	slugs/ft ³
σ	air density ratio	-----
θ_{fc}	fuselage cone angle	deg, rad
θ	lateral ground clearance angle	deg, rad
θ	longitudinal ground clearance angle	deg, rad
θ_{lof}	lift-off angle	deg, rad

ϵ	Downwash angle	-----
ϵ_t	twist angle	deg, rad
η	spanwise station, fraction of the span	-----
ψ	lateral tip-over angle	deg, rad
γ	flight path angle	deg, rad
λ	bypass ratio	-----

Subscripts

a	aileron
A	approach
abs	absolute
cat	catapult
cl	climb
cr	cruise
$crew$	crew
$crit$	critical
$c/2$	semi-chord
$c/4$	quarterchord
des	design
dry	without fluids or afterburner
e	elevator
E	empty
f	flaps
ff	fuel fraction
F	mission fuel
FL	field length
$guess$	guessed
h	altitude
h	horizontal tail
le	leading edge
L	landing
LG	landing, ground
LO	lift-off
max	maximum
ME	manufacturer's empty
OE	operating empty
PA	power approach
PL	payload
RC	rate of climb
r	root
res	reserve
$reqd$	required
s	stall
TO	take-off
TOG	take-off, ground
t	tip
te	trailing edge
$tent$	tentative
tfo	trapped fuel and oil
$used$	used
w	wing

wet wetted
wb wing-body
wod wind over the deck

Acronyms

AEO All engines operating
APU Auxiliary power unit
B.L. Buttock line
c.g. Center of gravity
F.S. Fuselage station, Front spar
OEI One engine inoperative
OWE Operating weight empty
PAX Passengers
P.d. Preliminary design
R.S. Rear Spar
sls Sea level standard
TBP Turboprop
W.L. Waterline

1. INTRODUCTION

This report is the final report of seven design reports completed on the family of commuter airplanes. This design effort is completed in fulfillment of NASA/USRA grant NGT-8001.

Reference 1 contains the class I baseline designs for the commuter family. Reference 2 contains a study of take-off weight penalties imposed on the commuter family due to implementing commonality objectives. Reference 3 contains component structural designs that are common to the commuter family. Reference 4 details the acquisition and operating economics of the commuter family. The savings due to production commonality and handling qualities commonality are determined. Reference 5 details the selection of an advanced turboprop propulsion system for the family of commuter airplanes. Reference 6 contains a proposed design for a SSSA controller design to achieve similar handling for all airplanes.

The purpose of this report is to present the final class II commuter airplane designs.

Chapter 2 presents the class II threeviews and includes a review of the extent commonality is integrated into the family.

Chapter 3 details the mass properties of the family of commuter airplanes.

Chapter 4 details the stability and open loop handling characteristics of the family.

Chapter 5 presents the stick forces and gradients for the airplanes.

Chapter 6 presents class II drag polars for the family.

Chapter 7 discusses the mission performance and determines if all mission requirements are met.

Chapter 8 summarizes weight penalties and cost savings due to implementation of commonality.

Chapter 9 compares the commuter family to existing airplanes.

Chapter 10 concludes this report with a discussion of commonality objectives and the extent of implementation of these objectives.

The family concept is introduced in order to achieve structural, systems, and handling qualities commonality throughout the passenger range. Implementing commonality can substantially reduce manufacturing and production costs. By achieving common system designs maintenance costs can be reduced by allowing airlines to keep a smaller inventory of spare parts. Therefore, the higher degree of commonality that can be achieved will result in lower direct operating costs and lower life cycle cost.

The design of commonality into a family concept must occur at the very early stages of the design process. Otherwise achieving a high degree of commonality throughout a wide range of passenger capability will be impossible.

Attempting to implement many of these commonality requirements has caused configuration design problems. The twin body concept is introduced in an effort to retain commonality throughout the passenger range.

The proposed commutes range from 25 to 100 passengers. Figure 1.1 displays the family concept. All the airplanes in the family will incorporate the following common characteristics:

- 1) Advanced technology turboprop engines
- 2) NLF surfaces
- 3) Common cockpit instrumentation
- 4) Common structural and systems designs
(to at high a degree as possible)
- 5) Jet-like ride and cabin environment
- 6) Identical handling qualities allowing for cross rating of pilots
- 7) Low acquisition cost and low life-cycle cost

The following configuration decisions were incorporated into the family of commuter airplanes:

- 1) Low Wing
- 2) 2 Aft-Fuselage Mounted Engines
- 3) T-Tail Empennage
- 4) Tricycle Landing Gear
- 5) Twin Body Configurations

The following advanced technologies were integrated into the family of commuter airplanes:

- 1) NLF Surfaces
- 2) Advanced Technology Turboprops
- 3) SSSA Technology

Figure 1.1 The Family Concept

2. Configuration Descriptions

The purpose of this chapter is to present the class II configuration designs for the family of commuter airplanes. The common design features that are incorporated into the family are listed in Table 2.1. The mission specifications for which the commuter family has been designed are given in Table 2.2

Table 2.1 - Common Features Desired in the Advanced Technology Commuter Family

Feature	Implementation
Fuselage cross section	Completed
Common landing gear Tires, struts, shocks and brakes (Both nose and main gear)	Completed
Common NLF airfoil	Completed
Common wing ($S=592 \text{ ft}^2$, $A=12$)	Completed*
Common empennage ($S_H=120 \text{ ft}^2$, $S_V=170 \text{ ft}^2$)	Completed**
Common powerplants	Completed***
Common tailcone/engine arrangement	Completed
Common cockpit instrumentation	Completed
Common flight systems Flight control Fuel Pressurization De-icing and bug removal	Completed SSSA in wing behind cabin TKS

*The twinbody airplanes require a wing centerpiece of 590 ft^2

**The twinbody airplanes require a horizontal tail bar of 290 ft^2

***Two powerplants were selected. A 5500 shp engine, and a 11000 shp engine for the 75 and 100 passenger models.

Table 2.2 - Mission Specification for the Commuter Family

	25 pax	36 pax	50 pax	75 pax	100 pax
Crew	2	3	3	4	4
Range (n.m.)	1100	1100	1100	1500	1500
Altitude	All Cruise at 30,000 ft.				
Cruise Speed	All Cruise at Mach 0.70				
Climb	All Climb-out at 3,000 fpm				
TOFL, LFL	All Field Lengths are 3,500 ft				
Powerplants (shp)	5500	5500	5500	11000	11000
Pressurization	All Pressurized 5,000 ft at 30,000 ft				
Certification	All FAR 25				

2.1 Review of Common Design Features

This section is intended to review the commonality objectives of Reference 1. and summarize how these commonality goals were achieved.

2.1.1 Common Structural Component Features

The following components are common to every airplane in the family:

- 1) Fuselage Cross Section (see Figure 2.1)
- 2) Flight Deck Layout (see Figure 2.2)
- 3) Powerplants (see Figures 2.3 and 2.4)
- 4) Powerplant integration (see Figures 2.5 and 2.6)
- 5) Airfoil Cross Section (see Figure 2.7)
- 6) Wing Layouts (see Figures 2.8 and 2.9)
- 7) Main Gear Installation (see Figure 2.10)
- 8) Tailcone Arrangements (see Figure 2.11 and 2.12)

The twin body airplanes required some additional structure. This is pointed out in Table 2.1. The example production and manufacturing breakdowns contained in Figures 2.13 and 2.14, show this necessary structure more clearly.

Chapters 2 and 5 of Reference 1. define the commonality objectives and discuss the reasons for arriving at the common component designs in Figures 2.1 to 2.14.

A more detailed discussion of structural designs and structural commonality is contained in Reference 3.

Detailed information about the powerplants can be found in Reference 5.

The weight penalties imposed by commonality are the subject of Reference 2. These weight penalties are summarized in Chapter 8.

SCALE: 1:20

FIGURE E.1 FUSELAGE CROSS SECTION

FIGURE 2.2 FLIGHT DECK LAYOUT

NOTE: ALL DIMENSIONS IN INCHES.

Figure 2.3 5500 SHP PD436-11 Derivative Outline Drawing

Figure 2.4 11000 SHP PD436-11 Derivative Outline Drawing

Figure 2.5 5500 SHP Powerplant Integration

Figure 2.6 11000 SHP Powerplant Integration

Figure 2.7 Wing Cross Section

Wing Geometry

$$\begin{aligned} S &= 592 \text{ ft}^2 \\ b &= 84.3 \text{ ft} \\ A &= 12 \\ \bar{c} &= 7.45 \end{aligned}$$

$$\begin{aligned} t/c &= .13 \\ \lambda &= .40 \\ \Delta_{LE} &= 16 \text{ deg} \\ c_{sp}/c &= .10 \\ c_f/c &= .30 \end{aligned}$$

$$R_{NCR} = 20 \times 10^6 \text{ (root chord)}$$

$$R_{NCR} = 8 \times 10^6 \text{ (tip chord)}$$

Figure 2.8 Wing Layout

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 2.9 Twin-body Wing Layout

Geometry of the Empennage

	H-Tail	V-Tail
Area, ft ²	120	170
Span, ft	26.6	15.4
Aspect Ratio	5.88	1.4
Taper Ratio	0.50	0.33
M.G.C., ft	4.68	12.0
L.E. Sweep, deg	20.0	40.0
Thickness Ratio	0.11	0.11
Root Chord, ft	6.02	16.6
Spar Box Length:		
root, in	27	88
tip, in	13	27
Elevator Chord Ratio	.35	.35
Elevator Area, ft ²	42.0	59.5
Rudder Chord Ratio		
Rudder Area, ft ²		

Figure 2.11

Common Tailcone-Engine Integration
for the 25, 36, and 50 Pax Models

Figure 2.12

Tailcone Arrangement for
the Twin-Body Models

Page intentionally left blank

Page intentionally left blank

Figure 2-14 Production and Manufacturing Breakdown Example

1. Common Nose Cone
2. Forward Cabin Section of Variable Length
3. Common Wing Box Section
4. Common Wing
5. Aft Cabin Section of Variable Length
6. Common Tail Cone
7. Common Vertical Tail
8. Common Horizontal Tail
9. Engine Pylons
10. Powerplant
11. Center Wing Section
12. Center Horizontal Tail

PRECEDING PAGE BLANK NOT FILMED

2.1.2 Common Flight System Designs

The purpose of this section is to present the systems that are common to every airplane in the commuter family. After the Class II configurations are presented, an analysis of the extent in which commonality was integrated will be detailed. This is accomplished in Chapter 8.

Commonality of airplanes in the family is an effort to substantially lower acquisition and operating costs for the airplanes. In turn, the airlines will have a wide range of passenger capacity airplanes to operate. A high degree of structural and systems commonality will also result in a smaller spare parts inventory for the airline.

2.1.2.1 Interior Layouts

All airplanes in the family have a 4-abreast seating arrangement. The fuselage cross section is presented in Figure 2.1. The rationale for arriving at this decision is given in Appendix A.

A preliminary flight deck layout is shown in Figure 2.2. Appendix A describes the flight deck layout and provides a list of cockpit instruments. In the interest of instrument commonality, it was decided that all members of the family have two engines. Therefore, there are two throttles in each cockpit.

2.1.2.2 Landing Gear System

All landing gear, nose and main, have the same 18" x 9" tire. The main gear wheel base (15ft on the single body models, 63.2ft on the twin-body models) and retraction scheme is the same. This allows for similar strut sizing for the airplanes. Figure 2.10 provides the dimensions of each gear strut.

2.1.2.3 Fuel System

All airplanes in the commuter family carry fuel in the wing. Since a common wing torque box arrangement is proposed, the integral fuel tanks will be the same on all airplanes. Similar vents, pumps and access panels will be incorporated into all members of the family.

2.1.2.4 Flight Control System

A reversible flight control system is designed for the family of commuter airplanes. Due to the aft pressure loading of the NLF airfoil, the aileron control system will be designed using push rods, instead of cables. This will prevent aileron up-float.

A separate surface stability augmentation system is proposed to achieve identical handling qualities throughout the passenger range. This system will make use of electro-hydrostatic actuation. Figure 2.15 shows a proposed SSSA system that could be incorporated into the commutes. Reference 6 contains a detailed SSSA control system design for the family of commuter airplanes.

2.1.2.5 Hydraulic System

A common operating pressure hydraulic system will be implemented for the landing gear actuation. Further study is necessary to determine the operating capabilities of this system.

2.1.2.6 Pressurization System

All passenger cabins in the family are pressurized to a 5000 ft. atmosphere at 30,000 ft. All airplanes will utilize the same pressurization system.

2.1.2.7 De-Icing System

The T.K.S. de-icing system, which will also double as a bug-cleaner, will be implemented into the commuter family. The T.K.S. system is a liquid ice protection system that distributes a solution onto the leading edge of the wing through a porous wing skin. Cleaning the leading edge is required to preserve the laminar flow over the wing. Reference 7 details the capabilities of the T.K.S. system.

FIGURE 2.15 EXAMPLE OF A PROPOSED SSSA FLIGHT CONTROL SYSTEM

2.2 Presentation of Class II Threeviews

The commuter family threeviews are presented in Figures 2.16 to 2.20. Geometries of these configurations are given in Tables 2.3 to 2.8.

The twinbody concept is introduced in an effort to retain as much commonality throughout the passenger range as possible. Conventionally configured 75 and 100 passenger models are shown in Figures 2.21 and 2.22. The purpose of these figures is to show the impracticability of these concepts in terms of retaining commonality. The wing, tail surfaces, engines and take-off weight are all larger than the corresponding twin body concepts. Implementing many of the common structural designs was not possible with these configurations.

The wheel track of the twin fuselage models is 63.2 ft. From Airport Engineering by Ashford and Wright, the data of Appendix I is compiled. Conclusions drawn from this data on taxiway dimensions are:

- 1) The twinbody configuration can operate out of any commercial airline airport.
- 2) The twinbody configurations will not be able to operate on general aviation airports. General aviation airports have taxiway widths between 40 and 60 ft.

Figure 2.16 25 Passenger Class II Threeview

TABLE 2.3 TABLE OF GEOMETRY FOR THE 25 PASSENGER COMMUTER

	<u>WING</u>	<u>HORIZONTAL TAIL</u>	<u>VERTICAL TAIL</u>
S ft ²	592	120	170
b ft	84.3	26.6	15.4
c ft	7.45	4.68	12
A	12	5.88	1.40
α_{LE}	15°	25°	45°
λ	.4	.5	.33
t/c	.13	.11	.11
Airfoil	NLF	NLF (inv)	NLF (sym)
Γ	3°	0°	0°
i	0°	0°	0°
ϵ_t	-3°	0°	0°

elevator chord rudder chord
ratio .35 ratio .35

Aileron: chord ratio .30
span ratio .85 to .92

Spoiler: chord ratio .10
span ratio .50 to .85

Flap: chord ratio .30
span ratio .11 to 1.0

	<u>FUSELAGE</u>	<u>CABIN INTERIOR</u>	<u>OVERALL</u>
Length ft	71.4	28.7	72.6
Height in	96	76	320
Width in	96	91	852

Figure 2.17 36 Passenger Class II Threeview

TABLE 2.4 TABLE OF GEOMETRY FOR THE 36 PASSENGER COMMUTER

	<u>WING</u>	<u>HORIZONTAL TAIL</u>	<u>VERTICAL TAIL</u>
$s \text{ ft}^2$	592	120	170
$b \text{ ft}$	84.3	26.6	15.4
$c \text{ ft}$	7.45	4.68	12
A	12	5.88	1.40
α_{LE}	15°	25°	45°
λ	.4	.5	.33
t/c	.13	.11	.11
Airfoil	NLF	NLF (inv)	NLF (sym)
r	3°	0°	0°
i	0°	0°	0°
ϵ_t	-3°	0°	0°
		elevator chord ratio .35	rudder chord ratio .35

Aileron: chord ratio .30
span ratio .85 to .92

Spoiler: chord ratio .10
span ratio .50 to .85

Flap: chord ratio .30
span ratio .11 to 1.0

	<u>FUSELAGE</u>	<u>CABIN INTERIOR</u>	<u>OVERALL</u>
Length ft	79.4	36.7	80.6
Height in	96	76	320
Width in	96	91	852

Figure 2.18 50 Passenger Class II Threewiew

TABLE 2.5 TABLE OF GEOMETRY FOR THE 50 PASSENGER COMMUTER

	<u>WING</u>	<u>HORIZONTAL TAIL</u>	<u>VERTICAL TAIL</u>
$s \text{ ft}^2$	592	120	170
$b \text{ ft}$	84.3	26.6	15.4
$c \text{ ft}$	7.45	4.68	12.0
A	12	5.88	1.40
α_{LE}	15°	25°	45°
λ	.4	.7	.3
t/c	.13	.11	.11
Airfoil	NLF	NLF (inv)	NLF (sym)
Γ	3°	0°	0°
i	0°	0°	0°
ϵ_t	-3°	0°	0°
		elevator chord ratio .35	rudder chord ratio .35

Aileron: chord ratio .30
span ratio .85 to .92

Spoiler: chord ratio .10
span ratio .50 to .85

Flap: chord ratio .15
span ratio .11 to 1.0

	<u>FUSELAGE</u>	<u>CABIN INTERIOR</u>	<u>OVERALL</u>
Length ft	96.9	54.2	98.2
Height in	96	76	320
Width in	96	91	852

Figure 2.19 75 Passenger Class II Threeview

TABLE 2.6 TABLE OF GEOMETRY FOR THE 75 PASSENGER COMMUTER

	<u>WING</u>	<u>HORIZONTAL TAIL</u>	<u>VERTICAL TAIL</u>
$s \text{ ft}^2$	1182	410	340
$b \text{ ft}$	132.5	74.77	15.4
$c \text{ ft}$	8.97	5.63	12
A	14.85	13.6	1.40
α_{LE}	11.5°	4°	45°
λ	.4	.5	.33
t/c	.13	.11	.11
Airfoil	NLF	NLF (inv)	NLF (sym)
Γ	3°	0°	0°
i	0°	0°	0°
ϵ_t	-3°	0°	0°
		elevator chord ratio .35	rudder chord ratio .35

Aileron: chord ratio .30
span ratio .91 to .98

Spoiler: chord ratio .10
span ratio .50 to .90

Flap: chord ratio .30
span ratio .11 to 1.0

	<u>FUSELAGE</u>	<u>CABIN INTERIOR</u>	<u>OVERALL</u>
Length ft	79.4	36.7	80.6
Height in	96	76	320
Width in	96	91	852

Figure 2.20 100 Passenger Class II Threeview

TABLE 2.7 TABLE OF GEOMETRY FOR THE 100 PASSENGER COMMUTER

	<u>WING</u>	<u>HORIZONTAL TAIL</u>	<u>VERTICAL TAIL</u>
$S \text{ ft}^2$	1182	410	340
$b \text{ ft}$	132.5	74.77	15.4
$c \text{ ft}$	8.97	5.63	12
A	14.85	13.6	1.40
α_{LE}	11.5°	4°	45°
λ	.4	.5	.33
t/c	.13	.11	.11
Airfoil	NLF	NLF (inv)	NLF (sym)
Γ	3°	0°	0°
i	0°	0°	0°
ϵ_t	-3°	0°	0°
		elevator chord ratio .35	rudder chord ratio .35

Aileron: chord ratio .30
span ratio .91 to .98

Spoiler: chord ratio .10
span ratio .50 to .90

Flap: chord ratio .30
span ratio .11 to 1.0

	<u>FUSELAGE</u>	<u>CABIN INTERIOR</u>	<u>OVERALL</u>
Length ft	96.9	54.2	98.2
Height in	96	76	320
Width in	96	91	852

$$W_{TO} = 82,500 \text{ lbs}$$

$$S = 1178 \text{ ft}^2$$

$$\bar{c} = 10.5 \text{ ft}$$

$$S_H = 363 \text{ ft}^2$$

$$S_V = 363 \text{ ft}^2$$

$$b = 119 \text{ ft}$$

$$l_f = 108 \text{ ft}$$

FIGURE 2.21 3-VIEW OF THE 75 PASSENGER MODEL

$W_{TO} = 112,300 \text{ lbs}$
 $S = 1604 \text{ ft}^2$
 $c = 11.6 \text{ ft}$
 $s_h = 155 \text{ ft}^2$
 $s_v = 300 \text{ ft}^2$
 $b = 139 \text{ ft}$
 $l_f = 126 \text{ ft}$

FIGURE 2.22 3-VIEW OF THE 100 PASSENGER MODEL

3.0 MASS PROPERTIES OF THE COMMUTER FAMILY

The purpose of this chapter is to present the weights and balance of the airplanes. The airplane inertias and take-off weight sensitivities are also presented.

3.1 Weight and Balance

The class II weight breakdowns taken from Reference 2 are used and the center of gravity excursion ranges are computed. Appendix B contains the weight and balance spreadsheets for all the airplanes. Figures 3.1 to 3.5 contain the excursion diagrams for the commuter family.

3.2 Airplane Inertias

Airplane inertias were calculated. Appendix B summarizes the inertias for the commuter family.

Table 3.1 - Airplane Inertias

Model	W _{TO}			W _{OE}		
	I _{xx}	I _{yy}	I _{zz}	I _{xx}	I _{yy}	I _{zz}
25	103778	131896	188392	66528	121578	169310
36	125220	237382	339291	69710	207940	255999
50	141865	465510	580046	73363	408670	457113
75	1355496	505928	1779110	761328	441252	1125135
100	1646875	769820	2326135	888448	653359	1455491

*Inertias in slug-ft²

Figures 3.6 thru 3.8 compare the inertias of the commuter family to some existing airplanes. As seen from the figures, the inertias compare favorably with existing airplanes.

The rolling moment of inertia of the twin body configurations is larger than existing airplanes as is expected.

3.3 Take-off Weight Sensitivities

Using methods in Reference 8, the take-off weight sensitivities are calculated. Results are summarized in Table 3.2. These sensitivities compare with existing transports and regionals.

Table 3.2 - Take-off Weight Sensitivities Summary

Sensitivity	Airplane					(units)
	25	36	50	75	100	
$\Delta W_{TO} / \Delta W_{PL}$	5.09	4.45	3.92	4.36	3.94	(lb/lb)
$\Delta W_{TO} / \Delta W_E$	1.63	1.62	1.61	1.58	1.57	(lb/lb)
$\Delta W_{TO} / \Delta R$	8.54	8.54	8.16	14.24	15.20	(lb/nm)
$\Delta W_{TO} / \Delta c_p$	33755	33765	32288	76759	81963	(lb/lb/hp/hr)
$\Delta W_{TO} / \Delta L/D$	-738	-689	-599	-1342	-1433	(lb)
$\Delta W_{TO} / \Delta \eta_p$	-12011	-12014	-11489	-27312	-29164	(lb)

ORIGINAL PAGE IS
OF POOR QUALITY

30

CALC	3-25-87	TRC	REVISED	DATE
CHECK				
APPD				
APPD				

Figure 3.1 Center of Gravity
Excursion Diagram for the
25 Passenger Model

ORIGINAL PAGE IS
OF POOR QUALITY

CALC	3-25-87	TRC	REVISED	DATE
CHECK	5-1E-87	TRC		
APPD				
APPD				

Figure 3.2 Center of Gravity
Excursion Diagram for the
36 Passenger Model

ORIGINAL PAGE IS
OF POOR QUALITY.

CALC	J-25-E7	TRC	REVISED	DATE
CHECK	S-19-E7	TRC		
APPD				
APPD				

Figure 3.3 Center of Gravity
Excursion Diagram for the
50 Passenger Model

CALC	5-19-87	TRC	REVISED	DATE
CHECK				
APPD				
APPD				

Figure 3.4 Center of Gravity
Excursion Diagram for the
75 Passenger Model

ORIGINAL PAGE IS
OF POOR QUALITY

CALC	3-25-87	TRC	REVISED	DATE
CHECK	5-19-87	TRC		
APPD				
APPD				

Figure 3.5 Center of Gravity
Excursion Diagram for the
100 Passenger Model

ORIGINAL PAGE IS
OF POOR QUALITY

ROLLING MOMENT OF INERTIA, $I_w \sim \text{SLUGFT}^2$

Figure 3.6 Rolling Moment of Inertia Comparison

PITCHING MOMENT OF INERTIA, $I_y \sim \text{SLUGFT}^2$

Figure 3.7 Pitching Moment of Inertia Comparison

YAWING MOMENT OF INERTIA, I_{zz} ~ SLUGFI

Figure 3.8 Yawing Moment of Inertia Comparison

4. STABILITY AND CONTROL ANALYSIS

The purpose of this chapter is to address the stability and control considerations made during the design of the family of commuter airplanes. The following topics are included in this chapter:

- 1) Commonality Considerations
- 2) Wing Maximum Lift
- 3) Wing Lift Curves
- 4) Trim Diagrams
- 5) Handling Qualities
- 6) Take-off Rotation
- 7) Engine-out Requirements

The necessary engineering calculations are presented in Appendix C. Most of the design calculations were done using a spreadsheet program on a personal computer. Since a change in tail size, or the movement of any of the components changed the stability and control calculations for the entire family, these programs proved to be invaluable.

4.1 Commonality Considerations

Obtaining as high a degree of commonality as possible was a major theme throughout the design process. Commonality took the form of common tail areas, wing sections, and wing placement. These affected the outcome of the weight and balance as well as the stability and control calculations. Common features, from a stability and control viewpoint, are discussed below.

1) Common Wing - The 25, 36, and 50 passenger airplanes have a common wing. The 75 and 100 passenger twin-bodies use the same outboard section, and have a common center wing section between them. This resulted in oversized wings for the smaller airplanes. As a result, the flap deflections required to meet the field requirements could be lowered (see Table 4.1). Note that the flap deflections on the 36 - 75 and 50 - 100 airplanes are identical, to retain commonality between these pairs of airplanes.

2) Wing placement between the 36 - 75 and 50 - 100 airplanes should ideally be common. This idea was feasible on the 36 - 75 pair, but not feasible on the 50 - 100 pair. Common wing

placement on the 50 - 100 pair resulted in an unacceptable static margin, and gear placement problems.

3) Common Horizontal Tails - The 25, 36 and 50 passenger airplanes use a common horizontal tail. The 75 and 100 passenger airplanes use the same tail for their outboard sections, and a common tailbar to join the airplanes. The large tail sizes were required because of the large pitching moment generated by the advanced turboprops at minimum control speed.

4) Common Vertical Tail and Tailcone - The vertical tail is common to all airplanes in the family. The large vertical tail is required by the 25, 36, and 50 passenger airplanes to trim in an engine out flight condition. The use of the advanced turboprops required that the engines be mounted away from the fuselage, which creates a very large yawing moment if one engine fails.

5) The location of the engines was also subject to a trade study. Three requirements had to be balanced against each other:

- a) Propeller clearance requirements
- b) Engine-out conditions (horizontal placement)
- c) Pitch trim with full power on approach (vertical placement)

Condition (a) limited the height of the engines from the bottom of the fuselage, condition (b) sized the vertical tail, and condition (c) sized the horizontal tail.

4.2 Wing Maximum Lift

Using a method in Reference 9, Figures 4.1 and 4.2 were generated. These figures show that the low speed wing $C_{L_{max}}$ is 1.5. The cruise $C_{L_{max}}$ of the wing is 1.25. During initial performance sizing of the baseline configurations, a clean $C_{L_{max}}$ of 1.4 was assumed for all the airplanes. The wing design incorporated into the commuter family will generate the required clean $C_{L_{max}}$. The flap deflections used on each airplane are listed in Table 4.1. These flap settings were selected to obtain the needed increment in $C_{L_{max}}$ to meet the field length requirements.

Table 4.1 - Flap Deflections for the Commuter Family

25 Passenger:	$\delta_f = 0^\circ$	$\Delta C_L = 0$	$\Delta C_M = 0$
36 Passenger:	$\delta_f = 20^\circ$	$\Delta C_L = .82$	$\Delta C_M = -.349$
50 Passenger:	$\delta_f = 30^\circ$	$\Delta C_L = .94$	$\Delta C_M = -.387$
75 Passenger:	$\delta_f = 20^\circ$	$\Delta C_L = .94$	$\Delta C_M = -.250$
100 Passneger:	$\delta_f = 30^\circ$	$\Delta C_L = 1.08$	$\Delta C_M = -.280$

4.3 Wing Lift Curves

The wing lift curves are shown in Figures 4.3 and 4.4, with the corresponding equations listed in Table 4.2. Note that the three single body airplanes use a common wing, as do the two twinbody airplanes. However, the flap deflections are different, as discussed in subsection 4.1.

Table 4.2 - Lift Curve Equation for the Commuter Family

25 pax Cruise:	$C_L = 0.17 + 0.097\alpha + 0.007\delta_E$	
Approach:	$C_L = 0.17 + 0.099\alpha + 0.008\delta_E$	(no flaps)
36 pax Cruise:	$C_L = 0.17 + 0.097\alpha + 0.007\delta_E$	
Approach:	$C_L = 0.17 + 0.099\alpha + 0.008\delta_E + .83$	(flaps 20°)
50 pax Cruise:	$C_L = 0.17 + 0.097\alpha + 0.007\delta_E$	
Approach:	$C_L = 0.17 + 0.099\alpha + 0.008\delta_E + .94$	(flaps 30°)
75 pax Cruise:	$C_L = 0.17 + 0.114\alpha + 0.016\delta_E$	
Approach:	$C_L = 0.17 + 0.115\alpha + 0.016\delta_E + .94$	(flaps 20°)
100 pax Cruise:	$C_L = 0.17 + 0.114\alpha + 0.016\delta_E$	
Approach:	$C_L = 0.17 + 0.115\alpha + 0.016\delta_E + 1.08$	(flaps 30°)

4.4 Trim Diagrams

The trim diagrams for the family of commuter airplanes are presented in Figures 4.5 through 4.18. Several design features are incorporated into the family.

- 1) In the approach flight condition (V_{MC}) the flaps and powerplants (at full power) create a large negative pitching moment. To attain reasonable trimmed elevator deflections, an inverted airfoil on the horizontal tail is used. This feature

also reduces the cruise trimmed elevator deflections. The increment in C_{M_0} due to the inverted airfoil section is listed in Table 4.3, and the trimmed elevator deflections required in cruise and approach are listed in Table 4.4

2) To obtain reasonable static margins and longitudinal control power, a horizontal tail bar is used on the twin-body airplanes. The tail bar has a full span elevator, and utilizes a symmetrical airfoil. The use of an inverted airfoil for this section was investigated, but the resulting pitching moment was unacceptable in cruise.

The pitching moment equations for the commuter family are listed in Table 4.5. The following flight conditions are represented in the pitch-trim diagrams (Figures 4.5 to 4.18).

Table 4.3 - Increments in Lift and Pitching Moment Due to the Inverted Airfoil Section on the Horizontal Tail

Airplane	ΔC_{L_0}	ΔC_{M_0} fwd C.G.	ΔC_{M_0} aft C.G.
25 passenger	-0.034	0.138	0.133
36 passenger	-0.034	0.154	0.150
50 passenger	-0.034	0.190	0.187
75 passenger	-0.017	0.064	0.061
100 passenger	-0.017	0.074	0.071

Table 4.4 - Trimmed Elevator Deflections for the Commuter Family

Airplane	Elevator Deflection (deg)			
	Cruise		Approach **	
fwd C.G.	aft C.G.	fwd C.G.	aft C.G.	
25 passenger	-2.77°	-3.56°	5.75°	1.97°
36 passenger	-2.70°	-3.66°	17.73°	13.43°
50 passenger	-3.94°	-4.71°	14.92°	11.49°
75 passenger	-0.84°	-1.05°	13.65°	9.78°
100 passenger	0.22°	-0.93°	15.58°	10.84°

*Cruise Thrust

**Full Power, Flaps Down

Table 4.5 - Pitching Moment Equations for the Commuter Family

25 pax:

$$\text{Cruise, fwd: } C_M = .124 - .224C_L - .028\delta_E - .003(T)$$

$$\text{Cruise, aft: } C_M = .119 - .089C_L - .028\delta_E - .003(T)$$

$$\text{Approach, fwd: } C_M = .134 - .231C_L - .029\delta_E - .112(T)$$

$$\text{Approach, aft: } C_M = .129 - .096C_L - .029\delta_E - .112(T)$$

36 pax:

$$\text{Cruise, fwd: } C_M = .148 - .253C_L - .031\delta_E - .004(T)$$

$$\text{Cruise, aft: } C_M = .144 - .119C_L - .031\delta_E - .004(T)$$

$$\text{Approach, fwd: } C_M = .159 - .260C_L - .032\delta_E - .349(f) - .117(T)$$

$$\text{Approach, aft: } C_M = .155 - .126C_L - .032\delta_E - .349(f) - .117(T)$$

50 pax:

$$\text{Cruise, fwd: } C_M = .207 - .134C_L - .039\delta_E - .008(T)$$

$$\text{Cruise, aft: } C_M = .204 - .061C_L - .039\delta_E - .008(T)$$

$$\text{Approach, fwd: } C_M = .218 - .143C_L - .041\delta_E - .387(f) - .239(T)$$

$$\text{Approach, aft: } C_M = .215 - .070C_L - .041\delta_E - .387(f) - .239(T)$$

75 pax:

$$\text{Cruise, fwd: } C_M = .087 - .114C_L - .056\delta_E - .008(T)$$

$$\text{Cruise, aft: } C_M = .087 - .114C_L - .056\delta_E - .008(T)$$

$$\text{Approach, fwd: } C_M = .096 - .211C_L - .056\delta_E - .250(f) - .361(T)$$

$$\text{Approach, aft: } C_M = .096 - .044C_L - .056\delta_E - .250(f) - .361(T)$$

100 pax:

$$\text{Cruise, fwd: } C_M = .107 - .332C_L - .064\delta_E - .010(T)$$

$$\text{Cruise, aft: } C_M = .107 - .189C_L - .064\delta_E - .010(T)$$

$$\text{Approach, fwd: } C_M = .116 - .323C_L - .064\delta_E - .280(f) - .379(T)$$

$$\text{Approach, aft: } C_M = .116 - .180C_L - .064\delta_E - .280(f) - .379(T)$$

ORIGINAL PAGE IS
OF POOR QUALITY

CALC	12-3-86 TRC	REVISED	DATE
CHECK	3-31-87 TRC		
APPD			
APPD			

FIGURE 4.1
WING MAXIMUM LIFT AT LOW
SPEED

UNIVERSITY OF KANSAS

PAGE 53

ORIGINAL PAGE IS
OF POOR QUALITY

CALC	12-3-86	TAC	REVISED	DATE
CHECK				
APPD				
APPD				

FIGURE 4.2
WING MAXIMUM LIFT AT CRUISE

ORIGINAL PAGE IS
OF POOR QUALITY

CALC	12-4-86	TRC	REVISED	DATE
CHECK	3-31-87	TPP		
APPD				
APPD				

FIGURE 4.3
25, 36, 50 PASSENGER
WING LIFT CURVE

UNIVERSITY OF KANSAS

PAGE 55

ORIGINAL PAGE IS
OF POOR QUALITY

CALC	3-31-87	TRC	REVISED	DATE
CHECK				
APPD				
APPD				

FIGURE 4.4
75,100 PASSENGER
WING LIFT CURVE

UNIVERSITY OF KANSAS

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.5

25 PASSENGER AIRPLANE
CRUISE PITCH-TRIM DIAGRAM

UNIVERSITY OF KANSAS

PAGE 57

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

ORIGINAL PAGE IS
OF POOR QUALITY.

FIGURE 46

CALC			REVISED	DATE	25 PASSENGER AIRPLANE APPROACH PITCH TRIM DIAGRAM	UNIVERSITY OF KANSAS
CHECK						
APPD						
APPD						

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.7

CALC			REVISED	DATE	36 PASSENGER AIRPLANE CRUISE PITCH-TRIM DIAGRAM	UNIVERSITY OF KANSAS
CHECK						
APPD						
APPO						

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.8

CALC			REVISED	DATE	36 PASSENGER ~ APPROACH FLAPS DOWN PITCH TRIM DIAGRAM	
CHECK						
APPD						
APPD						
					UNIVERSITY OF KANSAS	PAGE 60

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.9

CALC		REVISED	DATE	36 PASSENGER ~ APPROACH FLAPS DOWN PITCH-TRIM DIAGRAM	PAGE
CHECK					61
APPD					
APPD					
				UNIVERSITY OF KANSAS	

ORIGINAL PAGE IS
OF POOR QUALITY.

FIGURE 4.10

CALC			REVISED	DATE	50 PASSENGER AIRPLANE CRUISE PITCH-TRIM DIAGRAM	
CHECK						
APPD						
APPD						
					UNIVERSITY OF KANSAS	PAGE 62

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.11

CALC			REVISED	DATE	50 PASSENGER ~ APPROACH FLAPS DOWN PITCH TRIM DIAGRAM
CHECK					
APPD					
APPD					
					UNIVERSITY OF KANSAS
					PAGE 63

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.12

CALC			REVISED	DATE	50 PASSENGER ~ APPROACH FLAPS DOWN PITCH TRIM DIAGRAM	
CHECK						
APPD						
APPD						

UNIVERSITY OF KANSAS

PAGE 64

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.13

75 PASSENGER AIRPLANE
CRUISE PITCH-TRIM DIAGRAM

UNIVERSITY OF KANSAS

PAGE 65

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.14

CALC		REVISED	DATE	75 PASSENGER - APPROACH FLAPS DOWN PITCH TRIM DIAGRAM
CHECK				
APPD				
APPD				
				UNIVERSITY OF KANSAS

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.15

CALC			REVISED	DATE	75 PASSENGER - APPROACH FLAPS DOWN PITCH TRIM DIAGRAM	
CHECK						
APPO						
APPD						
					UNIVERSITY OF KANSAS	PAGE 67

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4.16

CALC			REVISED	DATE	100 PASSENGER AIRPLANE CRUISE PITCH-TRIM DIAGRAM	PAGE
CHECK						
APPD						
APPD						
					UNIVERSITY OF KANSAS	68

FIGURE 4.17

CALC			REVISED	DATE	100 PASSENGER - APPROACH FLAPS DOWN PITCH TRIM DIAGRAM	
CHECK						
APPD						
APPD						
					UNIVERSITY OF KANSAS	PAGE 69

FIGURE 4.18

CALC			REVISED	DATE	100 PASSENGER - APPROACH FLAPS DOWN PITCH TRIM DIAGRAM
CHECK					
APPD					
APPD					

UNIVERSITY OF KANSAS

PAGE
70

4.5 Handling Qualities

To estimate the handling qualities, the following stability parameters were calculated:

- Short Period Frequency
- Short Period Damping Ratio
- Dutch Roll Frequency
- Dutch Roll Damping

These parameters were calculated for cruise and approach at forward and aft C.G. locations. The open loop characteristics are listed in Table 4.6. A further discussion of the handling qualities of the commuter family is contained in Reference 6. None of the airplanes are below class 2 handling qualities. With the exceptions listed below, all meet class 1 handling qualities.

- 1) 50 passenger, level 2 short period frequency at aft C.G.
- 2) Twin-bodies (75 and 100), level 2 for dutch roll requirement ($\omega_{n_D} \times \zeta_D$) at forward C.G.

Table 4.6 - Handling Qualities for the Commuter Family

Airplane	Flight Condition C.G. Location	Level Satisfied				
		$\omega_{n_{SP}}$	ζ_{SP}	ω_{n_D}	ζ_D	$\omega_{n_D} \zeta_D$
25 pax	fwd C.G. - Cruise	1	1	1	1	1
	aft C.G. - Cruise	1	1	1	1	1
	fwd C.G. - Approach	1	1	1	1	1
	aft C.G. - Approach	1	1	1	1	1
36 pax	fwd C.G. - Cruise	1	1	1	1	1
	aft C.G. - Cruise	1	1	1	1	1
	fwd C.G. - Approach	1	1	1	1	1
	aft C.G. - Approach	1	1	1	1	1
50 pax	fwd C.G. - Cruise	1	1	1	1	1
	aft C.G. - Cruise	2	1	1	1	1
	fwd C.G. - Approach	1	1	1	1	1
	aft C.G. - Approach	2	1	1	1	1
75 pax	fwd C.G. - Cruise	1	1	1	1	2
	aft C.G. - Cruise	1	1	1	1	1
	fwd C.G. - Approach	1	1	1	1	2
	aft C.G. - Approach	1	1	1	1	1
100 pax	fwd C.G. - Cruise	1	1	1	1	2
	aft C.G. - Cruise	1	1	1	1	1
	fwd C.G. - Approach	1	1	1	1	2
	aft C.G. - Approach	1	1	1	1	1

4.6 Take-off Rotation Requirements

Using the method of Reference 10, the elevator deflection required for take-off have been calculated. The results of this analysis are listed in Table 4.6. All airplanes in the commuter family were able to satisfy take-off rotation requirements.

Table 4.6 - Take-off Rotation Requirements

25 passenger:	$\delta_E = 16.4 \text{ deg}$
36 passenger:	$\delta_E = 14.7 \text{ deg}$
50 passenger:	$\delta_E = 6.2 \text{ deg}$
75 passenger:	$\delta_E = 3.2 \text{ deg}$
100 passenger:	$\delta_E = 2.1 \text{ deg}$

4.7 Engine-out Requirements

The engine-out requirements have been checked using a one dimensional model, outlined in Reference 10. The FAR's allow 5° of bank into the operating engine, which eases the required rudder deflections. The engine-out calculations assumed full thrust from the operating engine at V_{MC} . The available thrust and required rudder deflections are listed in Table 4.7

Table 4.7 - Engine-out Requirements

Airplane	Total T-O Thrust	Required δ_R
25 passenger	13,325 lbs	23.1 deg
36 passenger	15,481 lbs	22.9 deg
50 passenger	18,929 lbs	20.5 deg
75 passenger	37,891 lbs	28.1 deg
100 passenger	37,891 lbs	22.4 deg

4.8 Roll Performance

The roll performance of the commuter family was checked using the rolling approximation method of Reference 10.

All members of the family meet level 1 handling qualities requirements. Table 4.8 verifies this. Due to the large increase in I_{xx} the twinbody configurations have a larger roll time constant. Therefore these configurations have slower roll characteristics.

A roll damper could be designed for the twinbody configurations that could yield similar roll response with the single body configurations.

A separate surface aileron could be used to achieve this. Separate surface stability augmentation to achieve common dynamic handling is the subject of Reference 6.

Appendix D contains the engineering calculations for this chapter. A spreadsheet was used to extend the analysis quickly for all 5 airplanes.

Table 4.8 - Summary of Roll Performance

Model	25 pax	36 pax	50 pax	75 pax	100 pax
C_1_p	-.715	-.715	-.715	-.792	-.792
$C_1_{\delta_A}$.553	.553	.553	.608	.608
$T_{R_{CR}}$.22	.27	.30	.53	.65
$T_{R_{VMC}}$.34	.41	.47	.84	1.02
$T_{R_{REQ}}$	1.4	1.4	1.4	1.4	1.4
ϕ_{CR}^*	107°	104°	102°	56°	52°
$\delta_{A_{CR}}$	5°	5°	5°	5°	5°
ϕ_{VMC}^*	56°	53°	52°	35°	31°
$\delta_{A_{VMC}}$	10°	10°	10°	10°	10°

ϕ_{CR}^* = Roll angle in 1.9 seconds, must be at least 45°

ϕ_{VMC}^* = Roll angle in 1.8 seconds, must be at least 30°

4.8.1 Lateral Acceleration of the Twinbody Configurations

The lateral acceleration of the twinbody models is of concern for reasons of comfort to the passengers and how this motion will affect the pilot.

Lateral acceleration was calculated by:

$$P = L_{\delta_A} \delta_A e^{P_t}$$

and $a_y = P l$

where l = Distance from airplane centerline to fuselage centerline.

The following table summarizes the accelerations for the twinbody models.

Table 4.9 - Lateral Accelerations For the Twinbody Models

	75 pax		100 pax	
	Fwd C.G.	Aft C.G.	Fwd C.G.	Aft C.G.
P_{CR} (rad/sec ²)	.037	.004	.058	.009
P_{VMC} (rad/sec ²)	.080	.027	.096	.040
l (ft)	24.08	24.08	24.08	24.08
a_y (ft/sec ²) CR	.900	.099	1.395	.212
a_y (ft/sec ²) VMC	1.936	.641	2.322	.953
$\frac{a_y}{g}$ CR	.028	.003	.043	.007
$\frac{a_y}{g}$ VMC	.060	.020	.072	.030

The accelerations at the aft loading conditions (highest I_{xx}) appear acceptable in terms of good handling qualities when compared with data in Reference 11.

At forward C.G. locations the accelerations are large. The rolling mode of the twinbody configuration will need to be augmented to be similar to the single bodies.

Common roll mode time constants across the family should be the objective of roll control commonality. This could easily be implemented using digital compensation.

5.0 Stick Forces and Gradients

The purpose of this chapter is to present the stick forces and stick gradients that affect the pilot.

It will be desirable to augment the stick forces and gradients so that these parameters are similiar for each airplane in the family.

Commonality will be attempted by using a programmable control loader. This system can saugment stick forces in the range of 5 to 65 lbs/in. Therefore, all pilot stick forces required must lie in the range of 5 to 65 lbs/in. Commonalizing stick force gradients presents some design problems. This will be discussed in detail in section 5.5. Stick force and gradient calculations are contained in Appendix F. These calculations were completed using a spreadsheet.

5.1 Control Surface Hinge Moments

The control surface hinge moments were calculated using Reference 12. The hinge moments for the commuter family are contained in Tables 5.1 to 5.3.

Table 5.1 - Elevator Hinge Moments

Model	25 pax	36 pax	50 pax	75 pax	100 pax
c_f/c	.35	.35	.35	.35	.35
S_E	42 ft ²	42 ft ²	42 ft ²	143 ft ²	143 ft ²
c_f	1.64 ft	1.64 ft	1.64 ft	1.64 ft	1.64 ft
$C_{h\alpha}$	-.323	-.323	-.323	-.241	-.241
$C_{h\delta E}$	-.177	-.177	-.177	-.422	-.422

Table 5.2 - Rudder Hinge Moments

Model	25 pax	36 pax	50 pax	75 pax	100 pax
c_f/c	.35	.35	.35	.35	.35
S_R	60 ft ²	60 ft ²	60 ft ²	119 ft ²	119 ft ²
c_f	4.20 ft	4.20 ft	4.20 ft	4.20 ft	4.20 ft
$C_{h\beta}$	-.043	-.043	-.043	-.086	-.086
$C_{h\delta R}$	-.167	-.167	-.167	-.334	-.334

Table 5.3 - Aileron Hinge Moments

Model	25 pax	36 pax	50 pax	75 pax	100 pax
c_f/c	.30	.30	.30	.30	.30
S_A	12 ft ²				
c_f	2.00 ft				
$C_{h\alpha}$	-.042	-.042	-.042	-.036	-.036
$C_{h\delta_A}$	-.073	-.073	-.073	-.094	-.094

5.2 Longitudinal Stick Forces and Stick Gradients

Using methods in Reference 10, the stick force, F_s , stick force per G gradient, and the stick force per knot were calculated. Table 5.4 through 5.6 present the results. Flight conditions analyzed:

- a) $V_{MC} = 207.5$ fps, sealevel, fwd and aft C.G.
- b) $M = 0.7$, 30,000 ft, fwd and aft C.G.

It is desired to have longitudinal stick forces less than 60 lbs. The force per knot $-.167$ lbs/kt or less. The force per G should be between 23 and 80 lbs/G. If the forces and gradients are in these ranges then the FAR 25 specifications will be satisfied.

Table 5.4 - Longitudinal Stick Forces

Model	V_{MC} fwd C.G.	V_{MC} aft C.G.	CR fwd C.G.	CR aft C.G.
25 pax	44	3	176	169
36 pax	1	-38	16	-1
50 pax	-48	-48	-72	-49
75 pax	-170	-570	-570	-2675
100 pax	-126	-201	-567	-573

Stick forces in lbs

Table 5.5 - Longitudinal Stick Force per G

Model	V_{mc}	fwd C.G.	V_{mc}	aft C.G.	CR fwd C.G.	CR aft C.G.
25 pax	65			13	69	-6
36 pax	47			-1	45	-27
50 pax	18			3	-11	-32
75 pax	152			818	28	426
100 pax	203			65	173	-20

Gradient in lbs/G

Table 5.6 - Longitudinal Stick Force per Knot Gradient

Model	V_{mc}	fwd C.G.	V_{mc}	aft C.G.	CR fwd C.G.	CR aft C.G.
25 pax	.08			.18	.23	.43
36 pax	-.06			.02	-.02	.14
50 pax	-.07			-.03	-.06	.01
75 pax	-1.09			-5.25	-1.42	-7.81
100 pax	-1.07			-.85	-1.76	-1.38

Gradient in lbs/kt

5.3 Rudder Pedal Forces and Gradients

Tables 5.7 and 5.8 contain rudder pedal forces and rudder pedal force per degree of sideslip. The rudder pedal force should be less than 150 lbs, and the sideslip gradient should be 5 lbs/deg. at V_{mc} .

Table 5.7 - Rudder Pedal Forces

Model	V_{mc}	Cruise
25 pax	177	166
36 pax	308	910
50 pax	383	1238
75 pax	319	538
100 pax	479	1248

Pedal forces in lbs.

Table 5.8 - Rudder Pedal Gradient

Model	V _{MC}	Cruise
25 pax	35	55
36 pax	62	303
50 pax	76	413
75 pax	64	179
100 pax	96	416

Pedal gradients in lbs/deg of sideslip

5.4 Aileron Wheel Forces

Table 5.9 presents aileron wheel forces required to meet the FAR specifications for roll performance. These forces were acceptable and similar on all airplanes and were not augmented. The FAR's suggest 5 lbs of force needs to be sustained by the pilot.

Table 5.9 Aileron Wheel Forces

Model	V _{MC}	Cruise
25 pax	-4.0	-6.0
36 pax	-4.0	-6.0
50 pax	-4.0	-6.0
75 pax	-4.6	-6.8
100 pax	-4.6	-6.8

Wheel forces in lbs.

5.5 Stick Force Commonality

It is obvious that the data in Table 5.4 to 5.8 does not meet FAR 25 requirements.

- a) Stick and pedal forces are too large.
- b) Gradients do not meet FAR requirements, especially at aft C.G.

From the calculations in Appendix F it is determined that all the airplanes in the family have an unstable stick free static margin. This causes the stick force speed gradient to be positive.

A trim tab design was attempted to correct this deficiency. Using the tab remedied the stick force speed gradient but caused the stick force per G gradient to not meet FAR requirements.

It was concluded that a trim tab design was not the answer to attaining stick force commonality.

5.5.1 Conclusions

1) As currently balanced, the commuter family will not meet FAR 25 requirements

5.5.2 Recommendations

1) The designers feel that an iteration through the weight and balance, and stability and control calculations may allow for a stable stick force static margin. This could allow for the stick force gradients to meet FAR requirements.

2) The sensitivity of the stick forces due to the control surface hinge moments is dramatic. The hinge moments should be calculated accurately. The horizontal tail uses an inverted NLF airfoil. The C_{h_0} of this surface needs to be investigated.

3) The designers feel confident that a proposal for stick force commonality will be possible if the previous recommendations are followed.

6. CLASS II DRAG PREDICTION

The purpose of this chapter is to determine the class II drag polars for the family of commuter airplanes. The class II method consists of the drag breakdown procedure outlined in Reference 13. In this analysis, the drag polars are computed separately for the different airplanes (25, 36, 50, 75 and 100 passenger airplanes).

The total airplane drag coefficient is broken down into the following components:

$$C_D = C_{D_{wing}} + C_{D_{fus}} + C_{D_{emp}} + C_{D_{np}} + C_{D_{flaps}} + C_{D_{gear}} + C_{D_{cw}}$$

Laminar flow conditions are accounted for in the determination of the wing and empennage drag. Laminar flow is assumed to extend over 50% of the chord of the wing, horizontal tail and vertical tail. Also, 12.5 ft of laminar flow was considered over the nose cone of the fuselage.

The drag due to the windshield ($C_{D_{cw}}$) was accounted for in the fuselage drag determination.

The pylons were considered as lifting surfaces because of their relatively large areas, and a lift coefficient due to pylons (C_{L_p}) was accounted for.

In the case of the nacelle, an interference drag element ($C_{D_n^{int}}$) was determined, it has been accounted for in the C_{D_n} calculations.

For the landing gear drag estimation, only low speed conditions were applied (approach at $M=0.19$).

Appendix G contains the engineering calculations for this chapter. Table 6.1 contains the drag polars for the family of commuter airplanes. Table 6.2 summarizes the NLF assumptions used in the drag analysis. Figures 6.1 to 6.10 present the drag polars for the family of commuter airplanes. By comparing the class II and class I drag polars, note that the difference doesn't exceed 5%. This reinforces the fact that the class I drag polar estimation is fairly reliable.

Table 6.1 - Drag Polar Equations

Airplane	L/D _{max}	Cruise	Low Speed (0° flaps) (gear down)	Low Speed (30° flaps) (gear down)
25	24.4	.0129 + .0309 C _L ²	.1242 + .0308 C _L ²	.1613 + .0303 C _L ²
36	22.4	.0160 + .0309 C _L ²	.1319 + .0308 C _L ²	.1690 + .0308 C _L ²
50	22.6	.0156 + .0309 C _L ²	.1658 + .0308 C _L ²	.2029 + .0308 C _L ²
75	26.6	.0139 + .0253 C _L ²	.1564 + .0240 C _L ²	.2224 + .0240 C _L ²
100	26.2	.0145 + .0253 C _L ²	.1857 + .0240 C _L ²	.2517 + .0204 C _L ²

Table 6.2 - Natural Laminar Flow Assumptions

Wing	50% chord, on all airplanes
Fuselage	12.5 ft from the nose, for all airplanes
Horizontal Tail	50% chord, on all airplanes
Vertical Tail	50% chord, on all airplanes

ORIGINAL PAGE IS
OF POOR QUALITY.

CALC		REVISED	DATE
CHECK			
APPD			
APPD			

Figure 6.1 25 Passenger
Cruise Drag Polar

UNIVERSITY OF KANSAS

PAGE 81

ORIGINAL PAGE IS
OF POOR QUALITY.

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

Figure 6.2 36 Passenger
Cruise Drag Polar

UNIVERSITY OF KANSAS

PAGE 82

ORIGINAL PAGE IS
OF POOR QUALITY

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

Figure 6.3 50 Passenger
Cruise Drag Polar

UNIVERSITY OF KANSAS

PAGE 87

ORIGINAL PAGE IS
OF POOR QUALITY

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

Figure 6.4 75 Passenger
Cruise Drag Polar

UNIVERSITY OF KANSAS

PAGE 84

ORIGINAL PAGE IS
OF POOR QUALITY

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

Figure 6.5 100 Passenger
Cruise Drag Polar

UNIVERSITY OF KANSAS

PAGE 85

ORIGINAL PAGE IS
OF POOR QUALITY.

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

Figure 6.6 25 Passenger
Approach Drag Polar

UNIVERSITY OF KANSAS

PAGE 86

ORIGINAL PAGE IS
OF POOR QUALITY

CALC		REVISED	DATE	Figure 6.7 36 Passenger Approach Drag Polar	
CHECK					
APPD					
APPD					
				UNIVERSITY OF KANSAS	PAGE 87

ORIGINAL PAGE IS
OF POOR QUALITY

CALC		REVISED	DATE
CHECK			
APPD			
APPD			

Figure 6.8 50 Passenger
Approach Drag Polar

UNIVERSITY OF KANSAS

PAGE 88

ORIGINAL PAGE IS
OF POOR QUALITY

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

Figure 6.9 75 Passenger
Approach Drag Polar

ORIGINAL PAGE IS
OF POOR QUALITY

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

Figure 6.10 100 Passenger
Approach Drag Polar

UNIVERSITY OF KANSAS

PAGE 90

7.0 VERIFICATION OF MISSION PERFORMANCE

The purpose of this section is to verify the mission performance objectives for the family of commuter airplanes. These objectives must be verified with the current configurations, which include all design changes made for the purpose of commonality.

The mission profile for the airplane family is given in Figure 7.1. Note that the following common performance characteristics have now been designed into all of the configurations:

Common take-off and landing field lengths (under 3500ft)

Common approach and take-off speeds ($V_A = V_{TO}$)

Common climb gradients (meet FAR 25)

Common cruise and service ceilings

The above objectives are discussed in the following subsections, including descriptions of how the numerical values were obtained.

7.1 Field Length Verification

7.1.1 Take-off Distance

The take-off distances were calculated using one of the methods in Chapter 10 of Reference 14. The calculations were done on a spreadsheet program, using the equations listed in Appendix H. A printout of the spreadsheet calculations is also given in Appendix H.

The take-off distance calculations were done in such a way that the take-off stall speed was input. Iterations were then made until every airplane achieved a take-off field length of just less than 3500 feet. Two assumptions were made:

- 1) A runway inclination angle of zero degrees.
- 2) A ground friction coefficient of 0.025.

The final values for take-off field length (LFL) are given in Table 7.1.

C-2

- 1) Engine Start and Warm-up
- 2) Taxi
- 3) Take-off
- 4) First Segment Climb
 $V = 250 \text{ kts}$
 $h = 10,000 \text{ ft}$
- 5) Second Segment Climb
Cruise, $M = 0.7, 30,000 \text{ ft}$
- 6) Descent
- 7) Landing, Taxi, and Shutdown
- 8) Landing, Taxi, and Shutdown

Figure 7.1 Mission Profile for the Commuter Family

7.1.2 Landing Distance

The landing distances were also calculated using a method in Chapter 10 of Reference 14. The equations used are given in Appendix H. The spreadsheet calculations are also shown.

A common value for approach velocity was input, then iterations were made until the landing distance for every airplane was just under 3500 feet. Two assumptions were made:

1) A braking coefficient of 0.51.

2) An approach descent angle of 3° (common glideslope angle). The final values for landing field length (LFL) are given in Table 7.1.

Table 7.1 - Field Lengths

<u>Model</u>	<u>Required</u>	<u>TOFL</u>	<u>LFL</u>
25	3500 ft	3325 ft	3365 ft
36	3500 ft	3414 ft	3467 ft
50	3500 ft	3403 ft	3468 ft
75	3500 ft	3484 ft	3337 ft
100	3500 ft	3465 ft	3370 ft

7.2 Verification of FAR 25 Climb Gradients

The climb gradients for each segment as specified in FAR 25 are calculated using the following equations (from Ref. 1):

$$R.C. = (T_{AV}/W - C_D/C_L) \times (2W/\rho C_L S)^{.5}$$

$$\text{Climb Gradient} = R.C. / U_1$$

The required climb gradients and the flight conditions for which they apply, as specified by FAR 25, are listed in Table 7.2. The actual climb gradients are calculated on a spreadsheet program. A printout of the spreadsheet calculations is given in Appendix H. The results of the calculations are given in Table 7.3.

7.3 Verification of Range Requirements

It is desired that the 25, 36 and 50 passenger models travel 1100 n.m. with full payload. The 75 and 100 passenger models

Table 7.2

Climb Requirements

#	FAR Req.	Flap Set	Gear Set	V xVs	Thrust Set	Wt.	Climb Grad. %
1	25.111 OEI initial	TO	up	1.2	TO	TO	1.2
2	25.121 OEI transition	TO	down	1.15	TO	TO	0
3	25.121 OEI 2nd segment	TO	up	1.2	TO	TO	2.4
4	25.121 OEI en route	clean	up	1.25	MC	TO	1.2
5	25.119 AEO landing	landing	down	1.3	TO	L	3.2
6	25.121 OEI landing	approach	down	1.1 < V < 1.5	TO	L	2.1

Table 7.3

Actual Climb Gradients for the Commuter Family

Climb Reqmt. #	25	36	50	75	100
1	10.79	11.10	10.04	13.77	12.93
2	5.86	6.99	6.52	4.76	4.96
3	10.79	11.10	10.04	13.77	12.93
4	9.92	11.20	13.24	11.02	12.83
5	26.70	26.65	23.71	23.30	22.01
6	5.20	5.24	3.24	3.78	2.76

1500 n.m. with full payload. Figure 7.2 presents payload-range diagrams for the commuter family. From this figure it can be seen that the range requirements were met. A cruise sfc of .36 (lb/hp/hr), and a propeller efficiency of .86 were used in the range calculations.

7.4 Rate-of-Climb Requirements

The commuter family is to have a 3000 fpm climb rate at sea level. Also, 100 fpm climb rate at 30,000 ft (cruise). Table 7.4 contains the results of the rate of climb calculations. Notice the 100 passenger model does not meet the requirements of 3000 fpm at sea level.

Table 7.4 Rate-of-Climb Results

Model	Sea Level	10,000 ft	30,000 ft
25	3138	4693	984
36	3053	4128	573
50	3064	4433	1224
75	3753	5763	2150
100	2534	4684	1568

Rate of Climb in fpm

ORIGINAL PAGE IS
OF POOR QUALITY

CALC	4-28-87 TRC	REVISED	DATE
CHECK			
APPD			
APPD			

Figure 7.2 Payload Range Diagrams

8.0 Commonality Analysis of the Commuter Family

Now that the Class II designs for the commuter family have been presented, the extent of commonality that was implemented needs to be discussed. Table 8.1 shows the status of the commonality objectives.

The following items are common to all members of the commuter family:

1. Common fuselage cross section.
2. Common flight deck layout.
3. Common cockpit instrumentation.
4. Common landing gear system design.
5. Common tailcone-empennage-engine integration.
6. Common wing design.
7. Common powerplants.
8. Common airfoil.
9. Common flight control system.
10. Common fuel system.
11. Common pressurization system.
12. Common de-icing system.
13. Common dynamic handling qualities.
(only with SSSA system)

The twin-body concept is extremely conducive to commonality implementation with the smaller commuters. This allows for more commonality throughout the passenger range.

The wing areas of the 75 and 100 passenger conventional configurations were too large to implement a common torque box carry-through structure. See section 2.2. Also, the lateral gear spacing was too large to accommodate similar gear struts with the smaller members of the family. The 100 passenger conventional model would require 8 tires per bogey on the main gear, while the twin-body 100 passenger only needed 4 wheels per bogey. Empennage sizes were too large to retain common surfaces on all family members. The conventional 75 and 100 passenger models required 2500 more SHP and the take-off weights were much

Table 8.1--Status of Commonality in the Commuter Family.

Type	Airplane	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax
Structural Commonality:						
Tailcone Arrangement	Yes	Yes	Yes	Yes	Yes	Yes
Wing Design	Yes	Yes	Yes	Yes	Yes	Yes
Fuselage Cross Section	Yes	Yes	Yes	Yes	Yes	Yes
Landing Gear	Yes	Yes	Yes	Yes	Yes	Yes
Systems Commonality:						
Cockpit Instrum.	Yes	Yes	Yes	Yes	Yes	Yes
Dynamic Handling Qualities	Yes	Yes	Yes	Yes	Yes	Yes
Stick Forces and Gradients	No	No	No	No	No	No
Fuel System	Yes	Yes	Yes	Yes	Yes	Yes
De-Icing	Yes	Yes	Yes	Yes	Yes	Yes
Pressurization	Yes	Yes	Yes	Yes	Yes	Yes
Flight Controls	Yes	Yes	Yes	Yes	Yes	Yes
Engine Commonality:						
2 Engines	Yes	Yes	Yes	Yes	Yes	Yes
5500 shp	Yes	Yes	Yes	No	No	No
11,000 shp	No	No	No	Yes	Yes	Yes

greater. From reasons discussed in Reference 5, two different SHP turbo-prop engines will be used to span the passenger models. Table 8.1 shows which engines are integrated into the airplanes of the family. The design of common dynamic handling of the family and the implementation of a SSSA system are contained in Reference 6.

8.1 Weight Penalties and Cost Savings Due to Commonality

This section summarizes the take-off weight penalties and cost savings that arise due to the design of commonality. Table 8.2 summarizes the weight penalties associated with commonality. Table 8.3 details the cost of the family. Figure 8.1 compares baseline designs with the common family designs. A savings of \$1.3 million per airplane is realized due to commonality. However, there is a 12% weight penalty for the 25 passenger model.

Figure 8.1--Cost Comparison for NASA Family of Commuters.

Number of Passengers per Airplane

Table 8.2aWeight Penalty Imposed By Commonality Over Class II Baseline

Model:	25	36	50	75	100
ΔW_W	1312	924	0	1281	0
ΔW_{FUS}	176	92	0	184	0
ΔW_{EMP}	134	108	0	66	0
$\Delta W_{L.G.}$	803	405	0	1065	355
ΔW_{PWR}	624	476	0	1051	0
ΔW_{TO}	3049	2005	0	3647	355
% Diff. over Class II baseline	12.0	5.9	0	5.4	0.4

Table 8.2bSummary of Class II Weights Implementing Commonality

W_{TO}	28506	35954	43141	71419	85044
W_E	19099	22182	25153	43671	49426
W_{PL}	5125	7380	10250	15375	20500
W_{CR}	410	615	615	820	820
W_{tfo}	105	157	210	313	420
W_F	3767	5620	6913	11240	13878
ΔW_{TO}	3049	2005	0	3647	355
% Change Above Baseline					
W_{TO}	12.0	5.9	0	5.4	0.4

Table 8.3a --Average Savings Per Category Due to Common Production Parts and Processes.

Component	Tooling	Man Lab	Mat & Eq	Q/C	Total
Nose Gear	11037	61542	3961	8000	84540
Main Gear	36026	198400	15603	25793	275822
Ver. Tail	14376	87277	12114	11346	125113
Hor. Tail	8558	46579	2627	6055	63819
Fus. Secs	74420	359756	-6649	46770	474297
Wing	40742	203108	4587	26405	274842
Totals	185159	956662	32243	124369	1298433

Table 8.3b --Comparison of Acquisition Costs.

Airplane Size	Initial Prod. (incl. DT&E)	Production Baselines	Commonality Implemented
25 Pax	8667362	7363869	6065436
36 Pax	9490391	7948048	6649615
50 Pax	10428089	8611920	7313487
75 Pax	15682836	13069259	11770826
100 Pax	17121109	14079259	12780826

9.0 Comparison of Commuter Family to Existing Airplanes

The purpose of this chapter is to compare data from the commuter family with existing regional turbo-propeller driven airplanes. The larger members of the commuter family will be compared with smaller jet transports. Take-off weights, center of gravity excursion range, wetted areas, wing loadings, cabin and baggage volumes, and cost of the airplanes will be compared. These comparisons will attempt to prove the validity of the class II designs.

9.1 Comparison of Take-off Weights

Figure 9.1 shows the commuter family take-off weights compared with existing airplanes. The commuter family was sized assuming an 8% structural weight savings due to the use of advanced structural materials. Aramid aluminum will be utilized to achieve this structural weight savings. Appendix E contains data for this composite material.

9.2 Center of Gravity Excursion

Table 9.1 contains the excursion range of the center of gravity for the commuter family. These data are compared with common excursion ranges for regional turbo-propeller and jet transport airplanes taken from Reference 15.

From Table 9.1 it can be seen that all the class II designs have C.G. excursion ranges comparable with contemporary airplanes.

9.3 Comparison of Airplane Wetted Areas

Wetted areas of the commuter family are compared to regional turbo-propeller and jet transports wetted areas. Figure 9.2 compares the wetted areas of the commuter airplanes with existing

airplanes. It can be seen that these airplanes compare favorably with existing regional turbo-propeller and jet transport airplanes.

9.4 Comparison of Airplane Wing Loadings

Wing loadings of the commuter family are compared to existing commutes and jet transports. Table 9.2 lists wing loadings of some existing airplanes. Table 9.3 lists wing loadings for the commuter family. The comparison shows that the commuter family wing loadings are higher than typical commutes but less than jet transports.

9.5 Comparison of Acquisition Costs

Figure 9.3 compares the commuter family to other commutes on an acquisition cost basis. Existing prices were taken from Interavia, May 1986.

Table 9.1 CENTER OF GRAVITY EXCURSION RANGE COMPARISON

<u>AIRPLANE MODEL</u>	<u>RANGE OF C.G. TRAVEL</u>	<u>COMMON EXCURSION RANGES</u>
25 passenger	12"	.13 \bar{c}
36 passenger	12"	.13 \bar{c}
50 passenger	6"	.09 \bar{c}
75 passenger	18"	.17 \bar{c}
100 passenger	15"	.14 \bar{c}

Table 9.2 WING LOADINGS OF EXISTING AIRPLANES

Airplane	Pax	(W/S) TO psf
Beech 1900	19	50
DHC-6-300	20	30
BAe 31	18	54
METRO III	19	47
CASA C-212-200	28	38
DHC-8	37	52
EMB-120	30	52
Shorts 330	30	51
Fokker F27-200	52	60
DHC-7	50	67
Fokker F-28	85	86
BAe 146-200	100	108

Table 9.3 WING LOADINGS FOR THE COMMUTER FAMILY

Airplane Model	(W/S) TO psf
25 Passenger	50
36 Passenger	60
50 Passenger	70
75 Passenger	60
100 Passenger	72

9.6 Comparison of Cabin Volume With Existing Airplanes

Passenger and baggage volume are compared with existing airplanes in Table 9.4.

Table 9.4 COMPARISON OF CABIN AND BAGGAGE VOLUMES WITH EXISTING AIRPLANES

Airplane Type	Number of Passengers	Overhead Baggage Volume (cuft)	Overhead Volume per Seat (cuft)
<u>NASA</u>			
50, 100	50	56	1.1
36, 75	36	41	1.1
25	25	29	1.2
<u>British Aerospace</u>			
BAe Super 748	46	41	0.85
BAe ATP	48	100	1.6
BAe 146-100	64	56	0.68
<u>de Havilland</u>			
DASH 7	50	59	1.2
DASH 8	37	32	0.86
<u>Fokker</u>			
F-27	52	40	0.77
50	50	79	1.6
F-28	65	107	1.6
<u>Shorts</u>			
330	30	40	1.3
360	36	52	1.4
<u>ATR Consortium</u>			
ATR 42-200	46	53	1.2
<u>Embraer</u>			
EMB-120	30	32	1.1

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 9.1 Weight Trends for Regional Turbo-Propeller Driven Airplanes

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 9.2 Wetted Area Comparison For the Commuter Family

Figure 9.3 --Cost Comparison for Existing Commuters and the Proposed Family of Commuters.

10.0 Conclusions and Recommendations

10.1 Conclusions

- 1) The commonality approach toward designing a family of airplanes must begin at the beginning of the preliminary design process.
- 2) A family of commuter airplanes have been designed. These airplanes range from 25 to 100 passengers.
- 3) Takeoff weights range from 28,506 lbs to 85,044 lbs.
- 4) The design of a commuter family of airplanes with commonality is feasible if the twinbody concept is used.
- 5) The following commonality objectives have been integrated into the commuter family:

Common fuselage cross section
Common landing gear system
Common wing design
Common empennage/tailcone/engine arrangement
Common powerplants (2)
Common cockpit instrumentation
Common NLF airfoil
Common flight control system
Common fuel system
Common pressurization system
Common de-icing system
Common dynamic handling qualities

- 6) Large take-off weight penalties have occurred (12% on the 25 passenger airplane).
- 7) Cost savings of about \$1.3 million per airplane have occurred due to commonality.
- 8) Performance objectives met, except the 100 passenger model does not have a 3000 fpm rate of climb at sea level.
- 9) Stick forces and gradients will require rebalancing of the configurations to meet FAR requirements.

10.2 Recommendations

- 1) The airplanes should be taken through the following design iterations:
 - a) Redesign gearbox to reduce engine nacelle diameter.
 - b) Reiterate the class II weight estimation.
 - c) Set static margin stick fixed such that the airplanes will be pitch-trimmable and not have an unstable stick fixed margin.
 - d) Stick force commonality throughout the family may then be possible.
- 2) Better methods for hinge-moment derivatives should be found. As a small change in hinge moments can cause large differences in the cockpit stick forces and gradients.
- 3) A family approach to the design of commutes and transports should be considered as an economically attractive opportunity for U.S. airplane manufacturers.

11.0 REFERENCES

- 1) University of Kansas AE 790 Design Team; Class I Designs of a Family of Commuter Airplanes; University of Kansas, 1986.
- 2) Morgan, L.K., University of Kansas AE 790 Design Team; A Cost Analysis for the Implementation of Commonality in the Family of Commuter Airplanes; University of Kansas, April 1987.
- 3) University of Kansas AE 790 Design Team; A Class II Weight Assessment for the implementation of Commonality and Preliminary Structural Dsigns for the Family of Commuter Airplanes; University of Kansas, 1987.
- 4) Russell, M., and Haddad, R., University of Kansas AE 790 Design Team; Presentation of Structural Component Designs for the Family of Commuter Airplanes; University of Kansas, 1987.
- 5) Swift, G., University of Kansas AE 790 Design Team; Advanced Propfan Analysis for the Family of Commuter Airplanes; University of Kansas, May 1987.
- 6) Hensley, D., University of Kansas AE 790 Design Team; Flight Control Design and Handling Quality Comonality by Separate Surface Stability Augmentation for the Family of Commuter Airplanes; University of Kansas, May 1987.
- 7) Kohlman, D.L., Schweikhard, W.G., Albright, A., Evanich, P., "Icing Tunnel Tests of a Glycol-Exuding Porous Leading Edge Ice Protection System on a General Aviation Airfoil"; KU-FRL-464-1 University of Kansas Center for Research, Inc., Lawrence, KS., May 1981.
- 8) Roskam, J., Airplane Design: Part I, Preliminary Sizing of Airplanes, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1985.
- 9) Abbott, I.H. and Von Doenhoff, A.E., Theory of Wing Sections, Dover Publications, Inc., N.Y., 1959.
- 10) Roskam, J., Airplane Flight Dynamics and Automatic Flight Controls, Parts I and II, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1979.
- 11) Grantham, et al, "Ground Based and In-flight Simulator Studies of Flight Characteristics of a Twin-fuselage Transport Airplane During Approach and Landing"; NASA TM-2451, Sept. 1985.
- 12) Hoak, D.E.; Ellison, D.E. et al; USAF Stability and Control Datcom; Flight Control Division; Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, Ohio.

- 13) Roskam, J., Airplane Design: Part VI, Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1987.
- 14) Lan, C.E.; Roskam, J.; Airplane Aerodynamics and Performance, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1980.
- 15) Roskam, J., Airplane Design: Part II, Preliminary Configuration Design and Integration of the Propulsion System, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1985.
- 16) Roskam, J., Methods for Estimating Stability and Control Derivatives of Conventional Subsonic Airplanes, Roskam Aviation and Engineering Corporation, Ottawa, KS, 1971.

APPENDIX A

COCKPIT AND FUSELAGE ARRANGEMENTS

TABLE OF CONTENTS

A.1 FUSELAGE CROSS SECTION	A.3
A.1.1 Determination of Overhead Baggage Volume	A.5
A.2 COCKPIT LAYOUT	A.10
A.3 CABIN LAYOUTS	A.11

A.1 FUSELAGE CROSS SECTION

From Figure A.1 it is seen that many commuter airplanes in the 20 to 65 passenger range have 4-abreast seating. This range of passenger capacity spans over half of the required passenger capacity of the family. For this reason 4-abreast seating was selected.

Figure 2.1 shows the selected fuselage cross section to be used in all of the airplanes in the NASA commuter family. The overhead storage volume calculated in this section is compared with that of other commuter airplanes in tables A.1 and 4.4.

ORIGINAL PAGE IS
OF POOR QUALITY

CALC			REVISED	DATE
CHECK				
APPD				
APPD				

FIGURE A.1: FUSELAGE TRENDS

A.1.1 DETERMINATION OF OVERHEAD BAGGAGE VOLUME

CURRENT VOLUME

SCALE: 1:20 INCHES

$$\begin{aligned}
 \text{AREA OF SECTOR} &= \frac{1}{2} r^2 \theta \quad (\theta \text{ in radians}) \\
 &= \frac{1}{2} (2.26)^2 (39.5) \cdot \frac{\pi}{180} \\
 &= 1.76 \text{ in}^2
 \end{aligned}$$

ORIGINAL PAGE IS
OF POOR QUALITY

AREA OF TRIANGLE A:

(NOT TO SCALE)

ORIGINAL PAGE IS
OF POOR QUALITY

$$\alpha = 34.2^\circ \quad \therefore h = 0.22 \text{ in}$$

$$A = \frac{1}{2} b h = \frac{1}{2} (2.26)(0.22) = 0.25 \text{ in}^2$$

$$\text{AREA } A = 0.25 \text{ in}^2$$

AREA OF TRIANGLE B:

(NOT TO SCALE)

$$\alpha = 67.6^\circ \quad \therefore h = 0.92 \text{ in}$$

$$A = \frac{1}{2} b h = \frac{1}{2} (1.95)(0.92) = 0.90 \text{ in}^2$$

$$\text{AREA } B = 0.90 \text{ in}^2$$

AREA TRIANGLE C

$$\alpha = 40^\circ \quad \therefore h = 0.28 \text{ in}$$

$$A = \frac{1}{2} b h = \frac{1}{2} (2.26)(0.28) = 0.32 \text{ in}^2$$

(NOT TO SCALE)

A.

AREA OF OVERHEAD STORAGEORIGINAL PAGE IS
OF POOR QUALITY

$$A = (1.76 \text{ in}^2) - (0.25 \text{ in}^2) - (0.90 \text{ in}^2) - (0.32 \text{ in}^2)$$

$$A = 0.29 \text{ in}^2$$

$$A = 116 \text{ in}^2 = 0.81 \text{ ft}^2$$

50 PASSENGER OVERHEAD VOLUME

$$V = \frac{(0.81 \text{ ft}^2)(8.5 \text{ in})(50 \text{ in/in}) + (0.81 \text{ ft}^2)(8 \text{ in})(50 \text{ in/in})}{(12 \text{ in/ft})}$$

$VOLUME = 56 \text{ FT}^3$

36 PASSENGER OVERHEAD VOLUME

$$V = \frac{(0.81 \text{ ft}^2)(6.1 \text{ in})(50 \text{ in/in}) \times 2 \text{ rows}}{(12 \text{ in/ft})}$$

$V = 41 \text{ FT}^3$

25 PASSENGER OVERHEAD VOLUME

$$V = \frac{(0.81 \text{ ft}^2)(4.3 \text{ in})(50 \text{ in/in}) \times 2 \text{ rows}}{(12 \text{ in/ft})}$$

$V = 29 \text{ FT}^3$

FIGURE A.1 LISTS THE OVERHEAD VOLUME PER PASSENGER OF THE 25, 36 AND 50 PASSENGER COMMUTER'S ALONG WITH THE VALUES FOR OTHER COMMUTER AIRPLANES FOR COMPARISON.

TABLE A.1 COMPARISON OF CABIN AND BAGGAGE VOLUMES

Airplane Type	Number of Passengers	Overhead Baggage Volume (cuft)	Overhead Volume per Seat (cuft)
<u>NASA</u>			
50	50	56	1.1
36	36	41	1.1
25	25	29	1.2
<u>British Aerospace</u>			
BAe Super 748	46	41	0.85
BAe ATP	48	100	1.6
BAe 146-100	64	56	0.68
<u>de Havilland</u>			
DASH 7	50	59	1.2
DASH 8	37	32	0.86
<u>Fokker</u>			
F-27	52	40	0.77
50	50	79	1.6
F-28	65	107	1.6
<u>Shorts</u>			
330	30	40	1.3
360	36	52	1.4
<u>ATR Consortium</u>			
ATR 42-200	46	53	1.2
<u>Embraer</u>			
EMB-120	30	32	1.1

ORIGINAL PAGE IS
OF POOR QUALITY

A.2 COCKPIT LAYOUT

This section contains the flight deck layout for the family of transports.

Figure 2.2 contains the common flight deck layout for the family of commuter transports. Figure 2.2 also shows the laminar flow nose shape used to enclose the flight deck.

The cockpit is designed using figure 2.21 of Reference (3). The cockpit includes a third seat to accomodate an observer, possibly FAA. The fuselage nose is designed similar to the Piaggio P-180 business airplane.

Jane's all the World Aircraft (years '83, '84) gives information on the avionics for these airplanes, Boeing: 737-200, 747, 757, 767; MD-80; DHC-8 Dash 8; BAe: 146-200, 748; Fokker: 100, 50; Airbus: A310, A300. Learjet advertising information on the model 55 provides a list of avionics for this 10 passenger airplane. Business and Commercial Aviation, April 1985, contains a section detailing circa 1985 avionics components and information for these systems.

From the above resources the following list of avionics has been chosen for the common flight deck of the family of commuter transports being developed. This list is not meant to be a final listing. The components are:

Dual Navigation	Dual Artificial Horizons
Dual Communications	Dual Directional Gyros
Dual Airspeed Indicators	Dual RMI
Dual RDMI	Dual Airdata Computer Systems
Dual Instrument Switching Panel	Flight Recorder
Dual EHSI	Flight Voice Recorder
Dual Clock	Flight Management Computer System
Dual EIACS	Auto Pilot
Dual Altimeter	Colour Weather Radar
Dual Vertical Velocity Indicators	Dual EADI
Dual VOR	Dual DME
Dual ILS	

ORIGINAL PAGE IS
OF POOR QUALITY

A.3 CABIN LAYOUTS

The cabin layouts presented in this section were "laid out" using the methods presented in References (2) and (3). The seat pitch chosen was 32 inches which is consistent with those of other commuter airplanes as shown in Reference (8).

Figure A.2 presents the cabin layout for the 25-passenger commuter.

Figure A.3 presents the cabin layout for the 36-passenger commuter along with an alternate cockpit layout having 3 passenger seats to be used as the second cockpit on a twin body 75-passenger commuter.

Figure A.4 presents the cabin layout for the 50-passenger commuter.

FIGURE A.9: 36 PASSENGER CABIN LAYOUT

A.13

ORIGINAL PAGE IS
OF POOR QUALITY.

FIGURE A.11-1D PASSENGER CABIN LAYOUT

A.12

Appendix B

Airplane component weight, center of gravity and inertia
breakdowns.

ORIGINAL PAGE IS
OF POOR QUALITY

Item	25 pax	Mom. Arm			Moment		I-xx (Woe)	I-xx (Wto)
		Xi	Yi	Zi	Wi*Xi	Wi*Yi	Wi*Zi	
Wing	2,899	595	176	170	1,724,905	510,224	492,830	2,846,809
Engine Mount Bar	267	599	76	205	159,933	20,292	54,735	46,784
Vertical Tail	340	860	0	343	292,400	0	116,620	231,862
Horizontal Tail	200	941	0	431	188,200	0	86,200	346,564
Fuselage	2,158	478	0	195	1,031,524	0	420,810	1
Acoustic Treatment	1,585	646	0	195	1,023,910	0	309,075	1
Main Gear	1,438	615	90	130	684,370	129,420	186,940	550,134
Nose Gear	331	226	0	130	74,806	0	43,030	43,299
Structural Weight	9,218	584		186	5,380,048	659,936	1,710,240	
Powerplant Weight	5,434	671	130	215	3,646,214	706,420	1,168,310	2,922,715
Engine Controls	34	175	0	210	5,950	0	7,140	242
Engine Starting Sys.	27	671	130	210	18,117	3,510	5,670	14,374
Fuel System	464	589	176	170	273,296	81,664	78,880	455,647
Flight Controls	429	561	0	185	240,669	0	79,365	1,300
Hydraulics/Pneumatic	189	358	0	160	67,662	0	30,240	7,145
Electrical System	735	560	0	185	411,600	0	135,975	2,228
Avionics	445	153	0	190	68,085	0	84,550	329
A/C - Pressurization	535	645	0	180	345,075	0	96,300	3,679
Oxygen System	66	290	0	220	19,140	0	14,520	1,295
Furnishings	1,358	461	0	200	626,038	0	271,600	1,109
APU	60	831	0	215	49,860	0	12,900	755
Paint	105	491	0	200	51,555	0	21,000	86
Fixed Equipment Wt.	4,447	490		188	2,177,047	85,174	838,140	
Empty Weight	19,099	587		195	11,203,309	1,451,530	3,716,690	
Trapped Fuel / Oil	105	589	176	170	61,845	18,480	17,850	103,110
Stewardesses	0	302	0	200	0	0	0	0
Pilots	410	180	0	214	73,800	0	87,740	4,661
Operating Wt. Empty	19,614	578		195	11,338,954	1,470,010	3,822,280	9,580,067
Fuel	3,767	589	176	170	2,218,763	662,992	640,390	3,686,057
Passengers	5,125	531	0	200	2,721,375	0	1,025,000	8,938
Take-off Weight	28,506	571		193	16,279,092	2,133,002	5,487,670	14,943,977
DME + Pax	24,739	568		196	14,060,329		4,847,280	
DME + Fuel	23,381	580		191	13,557,717		4,462,670	
Excursion								Component Inertias:
Empty Wt.	19,099	587		195	11,203,309		3,716,690	
DME	19,614	578		195	11,338,954		3,822,280	
+ Fuel	23,381	580		191	13,557,717		4,462,670	
+ Passengers	28,506	571		193	16,279,092		5,487,670	
- Fuel	24,739	568		196	14,060,329		4,847,280	
- Passengers	19,614	578		195	11,338,954		3,822,280	
Travel		12						Le T _o = 555
Gear		615						
Aft C.G.		587						
Fwd C.G.		568	0.149		12			

Aft C.G.	580	0.278
X-ac-m bar		4.150
I-v		20.678
X-ac-mb bar		0.257

25 Passenger Airplane

Summary of Inertias:
(slug-ft²)

ORIGINAL PAGE IS
OF POOR QUALITY.

ORIGINAL PAGE IS
OF POOR QUALITY

I-yy (Wto)	I-yy (Wto)	I-zz (Wto)	I-zz (Wto)
81,472	97,224	2,816,775	2,842,627
4,474	7,766	51,556	54,404
1,071,609	1,121,475	839,747	882,147
1,165,212	1,204,212	818,628	850,648
672,140	581,477	672,139	581,061
227,091	276,851	227,090	276,545
248,949	260,870	422,865	448,255
1,318,761	1,265,245	1,275,462	1,225,046

1,525,869	1,771,808	4,311,776	4,540,687
171,958	166,103	171,716	165,780
7,434	8,636	21,424	22,561
10,635	11,940	448,435	451,356
5,202	2,106	3,901	1,354
291,733	272,910	284,588	266,702
9,716	4,091	7,488	2,803
2,499,797	2,417,581	2,499,468	2,417,494
78,090	93,472	74,411	90,870
171,566	163,614	170,271	162,064
579,933	513,791	578,824	511,423
120,024	126,934	119,269	125,991
24,847	21,109	24,761	20,926

2,407	2,702	101,478	102,139
0	0	0	0
2,024,303	1,954,837	2,019,642	1,948,952
17,507,196		24,380,695	
96,937		3,664,351	
264,771		255,833	
18,993,010		27,128,487	

artias:	I-xx	I-yy	I-zz
Fuselage	584,679	4,143,333	4,143,333
Wing	1,202,585	76,147	1,276,659
Vertical Tail	30,269	42,825	12,809
Horizontal Tail	37,787	1,585	39,335
Engine Mount	3,486	10,059	13,346
Engines	103,545	614,851	614,851
Furnishings	28,156	271,642	288,528
Fuel	1,562,655	98,947	1,658,909
Passengers	106,260	1,025,159	1,068,883

r Airplane

Inertias:	W-de	W-to
I-xx	66,528	103,778
Iyy	121,578	131,896
Izz	169,310	188,392
Weight Used C.G. Location	19,614 578	28,506 571

ORIGINAL PAGE IS
OF POOR QUALITY

Item	36 pax	Mom. Arm			Moment		I-xx (Woe)	I-xx (Wto)
		Xi	Yi	Zi	Wi+Xi	Wi+Yi		
Wing	2,899	633	176	170	1,835,067	510,224	492,830	2,845,053 2,833,824
Engine Mount Bar	267	695	76	205	185,565	20,292	54,735	48,851 49,382
Vertical Tail	340	956	0	343	325,040	0	116,620	233,100 241,632
Horizontal Tail	200	1,037	0	431	207,400	0	86,200	347,744 355,710
Fuselage	3,575	539	0	195	1,926,925	0	697,125	30 1,147
Acoustical Treatment	1,585	742	0	195	1,176,070	0	309,075	13 509
Main Gear	1,438	653	90	130	939,014	129,420	186,940	547,852 532,651
Nose Gear	331	226	0	130	74,806	0	43,030	42,774 39,275
Structural Weight	10,635	627		187	6,669,887	659,936	1,986,555	
Powerplant Weight	5,434	767	130	215	4,167,878	706,420	1,168,310	2,925,425 2,945,321
Engine Controls	37	175	0	210	6,475	0	7,770	277 381
Engine Starting Sys.	27	767	130	210	20,709	3,510	5,670	14,384 14,461
Fuel System	464	627	176	170	290,928		78,880	455,366 453,568
Flight Controls	729	630	0	185	459,270	0	134,865	2,036 1,044
Hydraulics/Pneumatic	283	404	0	160	114,332	0	45,280	10,457 8,887
Electrical System	846	630	0	185	532,980	0	156,510	2,363 1,211
Avionics	555	153	0	190	84,915	0	105,450	346 55
A/C - Pressurization	878	741	0	180	650,598	0	158,040	5,722 3,791
Oxygen System	82	290	0	220	23,780	0	18,040	1,660 2,029
Furnishings	1,995	509	0	200	1,015,455	0	399,000	1,889 4,183
APU	60	927	0	215	55,620		12,900	785 1,005
Paint	157	477	0	200	74,889	0	31,400	149 329
Fixed Equipment Wt.	6,113	545		189	3,329,951	3,510	1,153,805	
Empty Weight	22,182	639		194	14,167,716	1,369,866	4,308,670	
Trapped Fuel / Oil	157	627	176	170	98,439	27,632	26,690	154,078 153,470
Stewardesses	205	302	0	200	61,910		41,000	194 430
Pilots	410	180	0	214	73,800	0	87,740	4,855 6,288
Operating Wt. Empty	22,954	627		194	14,401,865	1,397,498	4,464,100	10,038,212
Fuel	5,620	627	176	170	3,523,740	989,120	955,400	5,493,651
Passengers	7,380	584	0	200	4,309,920	0	1,476,000	15,473
Take-off Weight	35,954	618		192	22,235,525	2,386,618	6,895,500	18,031,680
DME + Pax	30,334	617		196	18,711,785		5,940,100	
DME + Fuel	28,574	627		190	17,925,605		5,419,500	
Excursion								
Empty Wt.	22,182	639		194	14,167,716		4,308,670	Component Inertias:
DME	22,954	627		194	14,401,865		4,464,100	
+ Fuel	28,574	627		190	17,925,605		5,419,500	
+ Passengers	35,954	618		192	22,235,525		6,895,500	
- Fuel	30,334	617		196	18,711,785		5,940,100	
- Passengers	22,954	627		194	14,401,865		4,464,100	
Travel		11						
Gear		653						
Aft C.G.		639						
Fwd C.G.		617	0.267		11			

Aft C.G.	627	0.385
X-ac-h bar		4.754
I-v		24.715
X-ac-mb bar		0.906

36 Passenger Airpla

Summary of Inertias:
(slug-ft²s)

ORIGINAL PAGE IS
OF POOR QUALITY

I-yy (Wto)	I-yy (Wto)	I-22 (Wto)	I-22 (Wto)
56,800	61,861	2,793,858	2,810,147
38,815	50,086	85,830	96,570
1,374,002	1,445,742	1,140,902	1,204,110
1,390,533	1,444,722	1,042,789	1,089,012
868,791	702,425	868,761	701,278
646,739	752,571	646,725	752,063
215,065	223,997	391,264	415,397
1,700,555	1,623,722	1,657,781	1,584,447

3,361,471	3,818,330	6,144,668	6,581,631
235,666	226,520	235,389	226,138
16,551	18,798	30,531	32,702
6,645	7,901	446,726	447,779
2,187	4,070	150	3,026
449,530	413,376	439,073	404,490
2,538	4,723	175	3,512
3,882,915	3,737,048	3,882,569	3,736,993
357,745	413,675	358,023	409,884
291,833	276,964	290,174	274,935
871,468	746,893	869,579	742,710
168,150	178,553	167,365	177,548
110,562	97,954	110,414	97,625

2,925	2,673	151,155	151,511
674,947	638,461	674,753	638,031
2,555,883	2,455,952	2,551,028	2,449,664
29,943,311		36,863,836	
	95,700		5,423,527
	287,600		272,127
	34,183,041		48,857,935

ertias:	I-xx	I-yy	I-22
Fuselage	968,595	8,842,041	8,842,041
Wing	1,202,585	76,147	1,276,659
Vertical Tail	30,269	42,825	12,809
Horizontal Tail	37,787	1,585	39,335
Engine Mount	3,486	10,059	13,346
Engines	103,545	614,851	614,851
Furnishings	41,364	1,008,787	1,033,592
Fuel	2,331,330	147,619	2,474,931
Passengers	153,014	3,708,811	3,823,514

r Airplane

Inertias: kg-m ²	I-xx	I-yo
	69,710	125,220
	Iyy	207,940
	Izz	255,999
Weight Used C.G. Locations	22,954 627	35,954 618

Item	50 pax	Mom. Arm			Moment			J-xx (Woe)	J-xx (Wto)
		Xi	Yi	Zi	Wi*Xi	Wi*Yi	Wi*Zi		
Wing	2,899	732	176	170	2,122,068	510,224	492,830	2,844,074	2,833,620
Engine Mount Bar	267	905	76	205	241,635	20,292	54,735	46,891	49,393
Vertical Tail	340	1,166	0	343	396,440	0	116,620	233,801	241,798
Horizontal Tail	200	1,247	0	431	249,400	0	86,200	346,400	355,864
Fuselage	5,278	628	0	195	3,314,584	0	1,029,210	90	1,749
Acoustic Treatment	1,585	952	0	195	1,508,920	0	309,075	27	525
Main Gear	1,438	752	90	130	1,081,376	129,420	186,940	546,568	532,363
Nose Gear	331	226	0	130	74,806	0	43,030	42,476	39,209
Structural Weight	12,338	729		188	8,989,229	659,936	2,318,640		
Powerplant Weight	5,434	977	130	215	5,309,018	706,420	1,168,310	2,926,980	2,945,729
Engine Controls	37	175	0	210	6,475	0	7,770	285	384
Engine Starting Sys.	27	977	130	210	26,379	3,510	5,670	14,390	14,462
Fuel System	464	726	176	170	336,864		78,880	455,209	453,536
Flight Controls	873	700	0	185	611,100	0	161,505	2,325	1,231
Hydraulics/Pneumatic	379	615	0	160	233,085	0	60,640	13,824	11,863
Electrical System	944	700	0	185	660,800	0	174,640	2,514	1,331
Avionics	658	153	0	190	100,674	0	125,020	371	62
A/C - Pressurization	1,092	951	0	180	1,038,492	0	196,560	6,899	4,674
Oxygen System	102	290	0	220	29,580	0	22,440	2,101	2,533
Furnishings	2,535	614	0	200	1,556,490	0	507,000	2,598	5,383
APU	60	1,137	0	215	68,220		12,900	802	1,009
Paint	210	583	0	200	122,430	0	42,000	215	446
Fixed Equipment Wt.	7,381	649		189	4,790,589	3,510	1,395,025		
Empty Weight	25,153	759		194	19,088,836	1,369,866	4,881,975		
Trapped Fuel / Oil	210	726	176	170	152,460	36,960	35,700	206,021	205,264
Stewardesses	205	302	0	200	61,910		41,000	210	435
Pilots	410	180	0	214	73,800	0	87,740	4,967	6,317
Operating Wt. Empty	25,978	746		194	19,377,006	1,406,826	5,046,415	10,564,272	
Fuel	6,913	726	176	170	5,018,838	1,216,688	1,175,210		6,757,094
Passengers	10,250	732	0	200	7,503,000		0	2,050,000	21,764
Take-off Weight	43,141	739		192	31,898,844	2,623,514	8,271,625		20,428,490
DME + Pax	36,228	742		196	26,880,006		7,096,415		
DME + Fuel	32,891	742		189	24,395,844		6,221,625		
Excursion									Component Inertias:
Empty Wt.	25,153	759		194	19,088,836		4,881,975		
DME	25,978	746		194	19,377,006		5,046,415		
+ Fuel	32,891	742		189	24,395,844		6,221,625		
+ Passengers	43,141	739		192	31,898,844		8,271,625		
- Fuel	36,228	742		196	26,880,006		7,096,415		
- Passengers	25,978	746		194	19,377,006		5,046,415		
Travel		6							
Aft		759							
Gear		752							
Fwd C.G.	739	0.530		1	6				

Aft C.G.	746	0.603
X-ac-h bar		6.040
L-v		32.342
X-ac-mb bar		.2.148

50 Passenger Airplane

Summary of Inertias:
(slug-ft²)

I-yy (Wto)	I-yy (Wto)	I-zz (Wto)	I-zz (Wto)
70,429	47,511	2,808,466	2,796,002
211,018	229,012	257,993	275,484
2,098,797	2,164,877	1,864,996	1,923,079
1,909,292	1,957,460	1,560,891	1,601,595
2,280,414	2,037,876	2,280,323	2,036,127
2,092,586	2,226,980	2,092,559	2,226,455
186,206	177,424	363,688	369,111
2,823,239	2,750,960	2,780,761	2,711,752

9,092,786	9,625,405	11,874,428	12,388,297
375,101	366,724	374,816	366,340
45,026	47,652	59,001	61,554
14,197	9,406	452,434	449,316
59,492	43,371	57,167	42,141
215,669	194,185	201,845	182,321
64,331	46,899	61,816	45,568
7,189,638	7,032,762	7,189,267	7,032,700
1,434,630	1,524,213	1,427,731	1,519,539
661,025	642,826	658,924	640,293
1,373,374	1,244,551	1,370,776	1,239,169
286,049	295,804	285,247	294,794
173,420	160,121	173,205	159,675

6,426	4,257	204,766	203,354
1,255,720	1,219,493	1,255,510	1,219,058
4,085,897	3,994,157	4,080,930	3,987,840

58,848,475		65,824,307	
	140,133		6,694,227
	39,252		17,488
	67,033,444		83,526,675

artias:	I-xx	I-yy	I-zz
Fuselage	1,429,998	18,172,923	18,172,923
Wing	1,202,585	76,147	1,276,659
Vertical Tail	30,269	42,825	12,809
Horizontal Tail	37,787	1,585	39,335
Engine Mount	3,486	10,059	13,346
Engines	103,545	614,851	614,851
Furnishings	52,560	1,925,323	1,956,843
Fuel	2,867,702	181,582	3,044,342
Passengers	212,519	7,784,838	7,912,286

r Airplane

Inertias:	W-oe	W-to
2)		
I-xx	73,363	141,865
Iyy	408,670	465,510
I-zz	457,113	580,046
Weight Used C.G. Locations	25,978 746	43,141 739

Item	75 pax	Mom. Arm				Moment	I-xx (Woe)	I-xx (Wto)
		Xi	Yi	Zi	Wi*Xi	Wi*Yi	Wi*Zi	
Wing	4,349	628	465	170	2,731,172	2,022,285	739,330	19,649,535
Engine Mount Bar	488	689	189	215	336,232		104,920	541,858
Vertical Tail	680	956	289	343	650,080	196,520	233,240	2,122,238
Horizontal Tail	1,027	1,024	0	431	1,051,648	0	442,637	1,516,549
Fuselage	7,150	539	289	195	3,853,850	2,066,350	1,394,250	18,633,046
Acoustic Treatment	3,170	742	289	195	2,352,140	916,130	618,150	8,261,085
Main Gear	2,876	660	289	130	1,898,160	831,164	373,880	8,082,109
Nose Gear	662	226	289	130	149,612	191,318	86,060	1,860,346
Structural Weight	20,402	638		196	13,022,894	6,223,767	3,992,467	
Powerplant Weight	12,196	774	120	265	9,439,704	1,463,520	3,231,940	6,482,303
Engine Controls	44	175	289	210	7,700	12,716	9,240	114,233
Engine Starting Sys.	91	774	135	210	70,434	12,285	19,110	51,573
Fuel System	666	616	465	170	410,256		113,220	4,514,174
Flight Controls	1,458	630	289	185	918,540	421,362	269,730	3,820,451
Hydraulics/Pneumatic	546	404	289	160	220,584	157,794	87,360	1,465,094
Electrical System	1,103	630	289	185	694,890	318,767	204,055	2,890,231
Avionics	843	153	289	190	128,979	243,627	160,170	2,202,255
A/C - Pressurization	1,755	741	289	180	1,300,455	507,195	315,900	4,615,344
Oxygen System	164	290	289	220	47,560	47,396	36,080	425,978
Furnishings	3,969	509	289	200	2,020,221	1,147,041	793,800	10,324,137
APU	120	927	289	215	111,240		25,800	311,524
Paint	314	477	289	200	149,778	90,746	62,800	816,775
Fixed Equipment Wt.	11,073	549		189	6,080,637	2,958,929	2,097,265	
Empty Weight	43,671	654		213	28,543,235	10,646,216	9,321,672	
Trapped Fuel / Oil	313	616	465	170	192,808	145,545	53,210	2,121,526
Stewardesses	410	302	289	200	123,820		82,000	1,066,489
Pilots	410	180	289	214	73,800	118,490	87,740	1,064,338
Operating Wt. Empty	44,804	646		213	28,933,663	10,910,251	9,544,622	109,631,193
Fuel	11,240	616	465	170	6,923,840	5,226,600	1,910,800	37,964,627
Passengers	15,375	584	289	200	8,979,000	4,443,375	3,075,000	39,917,906
Take-off Weight	71,419	628		203	44,836,503	20,580,226	14,530,422	195,191,465
DME + Pax	60,179	630		210	37,912,663		12,619,622	
DME + Fuel	56,044	640		204	35,857,503		11,455,422	Component Inert
Excursion								
Empty Wt.	43,671	654		213	28,543,235		9,321,672	
DME	44,804	646		213	28,933,663		9,544,622	
+ Fuel	56,044	640		204	35,857,503		11,455,422	
+ Passengers	71,419	628		203	44,836,503		14,530,422	
- Fuel	60,179	630		210	37,912,663		12,619,622	
- Passengers	44,804	646		213	28,933,663		9,544,622	
Travel		18						
Gear		660						
Aft C.G.		654						
Fwd C.G.		628	0.602					

ORIGINAL PAGE IS
OF POOR QUALITY

Aft C.G.	646	0.769
X-ac-h bar		4.283
l-v		23.185
X-ac-b bar		0.994

75 Passenger T

Summary of Iner

I-yy (Wto)	I-yy (Wto)	I-zz (Wto)	I-zz (Wto)	36 Pax Wing Wt.	2,899
195,333	100,840	19,511,191	19,482,700	36 Pax Fuel Wt.	5,620
28,387	58,840	570,128	598,617		
2,390,940	2,688,207	3,799,148	4,041,860		
6,082,670	6,663,524	4,566,121	5,010,775		
2,606,241	1,768,063	21,094,793	20,312,983		
944,163	1,292,100	9,141,185	9,514,113		
634,322	574,996	7,483,922	7,558,564		
3,767,640	3,432,728	5,344,287	5,040,211		
 7,255,438	 9,538,712	 11,690,174	 13,561,332		
303,115	280,441	417,323	394,603		
46,523	60,580	98,044	112,006		
56,690	26,046	4,494,207	4,478,725		
46,894	15,651	3,796,134	3,785,066		
1,039,787	881,984	2,409,433	2,267,312		
35,476	11,840	2,871,835	2,863,462		
6,376,488	5,911,309	8,550,948	8,094,924		
554,051	729,044	5,050,372	5,254,872		
645,470	583,024	1,070,952	1,007,359		
2,328,971	1,742,370	12,611,215	12,044,089		
294,972	334,395	606,467	645,408		
279,681	222,038	1,093,142	1,037,039		
 26,643	 12,241	 2,112,142	 2,104,866		
1,508,242	1,352,748	2,570,404	2,416,921		
2,764,700	2,556,692	3,829,014	3,619,600		
 63,540,242		 162,019,371			
219,783		37,793,448			
922,262		40,828,771			
 72,853,682		 256,191,887			
 Weights:	 I-xx	 I-yy	 I-zz		
Fuselage	1,937,190	17,684,081	17,684,081		
Outbd. Wing	1,202,585	76,147	1,276,659		
Center Wing	1,255,690	64,319	1,318,342		
Vertical Tail	60,538	85,650	25,619		
Horizontal Tail	1,610,478	13,217	1,623,311		
Engine Mount	16,671	20,630	36,816		
Engines	512,558	2,750,829	2,750,829		
Furnishings	82,292	2,006,954	2,056,305		
Outbd. Fuel	2,331,330	147,619	2,474,931		
Center Fuel	4,866,882	249,293	5,109,710		
Passengers	318,779	7,774,483	7,965,655		

r Twin-body Airplane

Inertias:	I_{xx}	I_{yy}
	W-ce	W-to
I_{xx}	761,328	1,355,496
I_{yy}	441,252	505,928
I_{zz}	1,125,135	1,779,110
Weight Used C.G. Location	44,804 646	71,419 628

Item	100 Pax	Mom. Arm			Moment		I-xx	I-xx
		Xi	Yi	Zi	Wi*Xi	Wi*Yi	Wi*Zi	(Wto)
Wing	4,349	752	465	170	3,270,448	2,022,285	739,330	19,631,691
Engine Mount Bar	488	899	189	215	438,712		104,920	542,064
Vertical Tail	680	1,166	289	343	792,880	196,520	233,240	2,135,355
Horizontal Tail	1,027	1,234	0	431	1,267,318	0	442,637	1,549,654
Fuselage	10,556	628	289	195	6,629,168	3,050,684	2,058,420	27,482,994
Acoustic Treatment	3,170	952	289	195	3,017,840	916,130	618,150	8,253,229
Main Gear	2,876	784	289	130	2,254,784	831,164	373,880	8,047,485
Nose Gear	662	226	289	130	149,612	191,318	86,060	1,852,377
Structural Weight	23,808	749			17,820,762	7,208,101	4,656,637	
Powerplant Weight	12,196	984	135	265	12,000,864	1,646,460	3,231,940	8,027,571
Engine Controls	44	175	289	210	7,700	12,716	9,240	114,221
Engine Starting Sys.	91	984	135	210	89,544	12,285	19,110	51,548
Fuel System	666	740	465	170	492,840		113,220	4,510,075
Flight Controls	1,746	700	289	185	1,222,200	504,594	323,010	4,568,213
Hydraulics/Pneumatic	726	615	289	160	446,490	209,814	116,160	1,942,556
Electrical System	1,253	700	289	185	877,100	362,117	231,805	3,278,334
Avionics	1,016	153	289	190	155,448	293,624	193,040	2,650,935
A/C - Pressurization	2,183	951	289	180	2,076,033	630,887	392,940	5,730,684
Oxygen System	204	290	289	220	59,160	58,956	44,880	530,119
Furnishings	4,952	614	289	200	3,040,528	1,431,128	990,400	12,872,480
APU	120	1,137	289	215	136,440		25,800	311,580
Paint	421	583	289	200	245,443	121,669	84,200	1,094,369
Fixed Equipment Wt.	13,422	659		190	8,848,926	3,637,790	2,543,805	
Empty Weight	49,426	782		211	38,670,552	12,492,351	10,432,382	
Trapped Fuel / Oil	420	740	465	170	310,800	195,300	71,400	2,844,191
Stewardesses	410	302	289	200	123,820		82,000	1,065,775
Pilots	410	180	289	214	73,800	118,490	87,740	1,064,467
Operating Wt. Empty	50,666	773		211	39,178,972	12,806,141	10,673,522	127,936,580
Fuel	13,878	740	465	170	10,269,720	6,453,270	2,359,260	
Passengers	20,500	732	289	200	15,006,000	5,924,500	4,100,000	46,671,365
								53,217,631
Take-off Weight	85,044	758		201	64,454,692	25,183,911	17,132,782	237,149,960
DME + Pax	71,166	761		208	54,184,972		14,773,522	
DME + Fuel	64,544	766		202	49,448,692		13,032,782	
Excursion								Component Inert
Empty Wt.	49,426	782		211	38,670,552		10,432,382	
DME	50,666	773		211	39,178,972		10,673,522	
+ Fuel	64,544	766		202	49,448,692		13,032,782	
+ Passengers	85,044	758		201	64,454,692		17,132,782	
- Fuel	71,166	761		208	54,184,972		14,773,522	
- Passengers	50,666	773		211	39,178,972		10,673,522	
Travel		15						
Gear		784						
Aft C.G.		782						
Fwd C.G.		758	0.659		15.381			

Aft C.G.	773	0.802
X-ac-h bar		4.942
I-v		30.060
X-ac-b bar		1.794

100 Passenger

Summary of Iner

Iyy (Wto)	Iyy (Wto)	Izz (Wto)	Izz (Wto)	50 Pax Wing Wt.	2,899
189,795	92,301	19,523,496	19,485,831	50 Pax Fuel Wt.	6,913
240,018	304,763	781,532	843,781		
3,629,785	3,943,410	5,024,875	5,285,209		
8,325,144	8,917,304	6,775,490	7,235,442		
7,005,224	5,549,738	34,327,208	32,938,544		
3,171,226	3,716,156	11,376,104	11,941,101		
591,905	517,341	7,476,128	7,526,755		
6,296,581	5,926,229	7,881,197	7,539,662		

17,950,776	20,909,025	23,740,082	26,286,954
------------	------------	------------	------------

489,504	464,757	603,724	578,878
125,590	144,798	177,136	196,139
57,155	27,116	4,498,771	4,482,477
327,153	196,614	4,823,878	4,714,384
623,223	499,554	2,449,936	2,345,406
234,778	141,098	3,461,809	3,383,232
12,163,122	11,558,700	14,787,088	14,192,005
2,206,811	2,561,246	7,809,896	8,196,890
1,481,439	1,390,302	2,010,453	1,917,689
3,922,266	3,187,357	16,759,738	16,042,006
493,485	536,713	804,925	847,538
475,250	400,293	1,566,643	1,493,146

36,044	17,100	2,837,063	2,826,787
2,831,770	2,648,616	3,894,646	3,712,914
4,485,501	4,257,807	5,549,685	5,320,128

94,083,758		209,590,674	
	281,458		46,527,568
	428,707		53,643,630
	110,854,136		234,963,372

ertias:	Ixx	Iyy	Izz
Fuselage	2,859,997	9,403,601	9,403,601
Outbd. Wing	1,202,585	76,147	1,276,659
Center Wing	1,255,690	64,319	1,318,342
Vertical Tail	60,538	85,650	25,619
Horizontal Tail	1,610,478	13,217	1,623,311
Engine Mount	16,671	20,630	36,816
Engines	512,558	2,750,829	2,750,829
Furnishings	102,673	3,761,026	3,822,599
Outbd. Fuel	2,857,702	181,582	3,044,342
Center Fuel	6,031,642	308,954	6,332,586
Passengers	425,039	15,569,677	15,824,573

er Twin-body Airplane

Inertias:	W-de	W-to
I-xx	888,448	1,646,875
Iyy	653,359	769,820
Izz	1,455,491	2,326,135
Weight Used C.G. Location	50,666 773	85,044 758

Appendix C

Stability and Control Calculation

- Purpose:
- a) Calculation of airplane lift curve
 - b) Calculation of airplane pitching moment curve
 - c) Short period frequency and damping
 - d) Dutch roll frequency and damping
 - e) One-engine out sizing
 - f) Take-off rotation requirement

ORIGINAL PAGE IS
OF POOR QUALITY

25 Passenger Airplane: Calculations for Cruise and M.C. at Fwd and Aft C.G.
Note: All Results in RADIANS

5-13-57
Fwd - Aft

Cruise Mach Number	0.700		
Section Lift Curve Slope	6.000	Forward C.G.	0.145
Wing-Body ac shift	-0.090	Aft C.G.	0.280
X-bar C.G.	0.280		
Min Control Dynamic Pres.	51.170	Cruise A.C.	0.369
Cruise Dynamic Pressure	215.600	Min Cntrl A.C.	0.376
Minimum Control Speed fps	207.500		
Cruise Speed fps	696.290	Static Margin	-0.089
1/rad to 1/deg conversion	0.017		-0.224

Moments of Inertia:	Fwd C.G.	Aft C.G.
I-xx	67,265	102,964
Iyy	130,433	122,535
I-zz	177,066	180,634
Weights	24,739	23,381

Fuselage:

Fuselage Height	8.050
Fuselage Width	8.050
Fuselage Length	71.330
C-n-a-body	-0.171

Wing:

Wing Area sqft	592.000
Wing Span ft	84.300
Wing MAC ft	7.450
Aspect Ratio	12.000
Leading Edge Sweep rad	0.262
Semichord Sweep rad	0.194
C-L-o	0.170
C-m-o-wing (cruise)	-0.054
C-m-o-wing (approach)	-0.045

Wing Lift Curves:

K:1.0544	C-L-e (cruise)	4.7089
k:0.6820	C-L-e (app)	4.7794
B:0.7141		

Horizontal Tail:

Total H.T. Area sqft	120.000
H.T. Area (each) sqft	120.000
H.T. Span ft	26.569
H.T. Root Chord	6.022
H.T. MAC ft	4.684
H.T. Aspect Ratio	5.883
H.T. LE Sweep rad	0.436
H.T. c/2 Sweep rad	0.314
H.T. Taper Ratio	0.500
H.T. X-ac-h bar	4.150
I - downwash	0.746
H.T. q-bar corr. (eta-h)	1.000
Elevator effectiveness τ_e	0.540

Horizontal Tail Lift Curves:

K:1.0630	C-L-e (cruise)	3.8395
k:0.6820	C-L-e (app)	3.9610
B:0.71		

Vertical Tail:

Total V.T. Area sqft	170.000
V.T. Area (each) sqft	170.000
V.T. Span ft	15.400
V.T. MAC ft	12.000
V.T. Aspect Ratio	1.40
V.T. Effective Asp. Ratio	1.960

Vertical Tail Lift Curves:

K:1.0366	C-L-e (cruise)	2.0802
k:0.68	C-L-e (app)	2.2314
B:0.71		

V.T. LE Sweep rad	0.785
V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm l-v	20.678
Approach Alpha α (rad)	0.1745
Approach V.T. l-v	22.17
$l + (d\sigma/d\theta)$	1.477

Engine Mounting Bar:

Bar Area sqft	112.000
Bar Span ft	.11.000
Bar MGC ft	10.200
Bar Aspect Ratio	1.080
Bar LE Sweep rad	0.436
Bar c/2 Sweep rad	0.281
Bar Taper Ratio	0.880
X-bar ac-h	0.257
1 - downwash	1.000
Bar q-bar corr. (eta-h)	1.000

Engine Bar Lift Curves:

K:1.0202	C-L-s (cruise)	1.5317
k:0.68	C-L-s (app)	1.5395
g:0.71		

Total Take-off Thrust lbs	13,325
Total Cruise Thrust (lbs)	1,698
Z-T (vertical mom. arm)	1.920
Y-T (horizontal mom. arm)	10.500

Non-dim. Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

C-L-s Airplane	5.579	5.579	5.670	5.670
C-m-s Airplane	-1.251	-0.498	-1.308	-0.543
C-L-s-dot	1.563	1.530	1.634	1.578
C-m-s-dot	-6.342	-5.921	-6.542	-6.109
C-m-q	-27.472	-25.644	-28.341	-26.456
C-y-s	-1.168	-1.168	-1.232	-1.232
C-n-s	0.045	0.045	0.078	0.078
C-y-r	0.433	0.433	0.498	0.498
C-n-r	-0.106	-0.106	-0.131	-0.131

Dimensional Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

Z-s:	-926.009	-979.793	-223.337	-235.308
Z-s-dot:	-1.406	-1.437	-1.155	-1.181
M-s:	-9.121	-3.864	-2.264	-1.000
M-s-dot:	-0.247	-0.246	-0.203	-0.202
M-q:	-1.071	-1.065	-0.880	-0.875

$Y-g$: -193.847 -205.106 -48.535 -51.354

$Y-r$: 4.349 4.601 3.983 4.215

$N-g$: 2.760 2.705 1.123 1.101

$N-r$: -0.391 -0.383 -0.384 -0.376

Short Period:

Frequency	3.247	2.316	1.792	1.413
Damping Ratio	0.408	0.587	0.603	0.784
$N-s$	28.785	30.457	6.832	7.229

Dutch Roll:

Frequency	1.689	1.673	1.092	1.063
Damping Ratio	0.198	0.202	0.283	0.288
$\Omega + \zeta$	0.334	0.339	0.309	0.312

Verify Class I Handling Qualities:

Short Period:

Below max freq.	yes	yes	yes	yes
Above min freq.	yes	yes	yes	yes
Damping	yes	yes	yes	yes

Dutch Roll:

Frequency	yes	yes	yes	yes
Damping Ratio	yes	yes	yes	yes
$\Omega + \zeta$	yes	yes	yes	yes

Engine-Out Calculations:

$C-y-b-r$ -0.324

$C-n-b-r$ 0.085

Required $\delta-r$ (rad) 0.402

Required $\delta-r$ (deg) 23.051

Lift and Pitching Moment Calculations:

Airplane X-ac (cruise) 0.369

Airplane X-ac (approach) 0.376

Airplane C-L-s (cruise) 5.579

Airplane C-L-s (approach) 5.670

Airplane C-M-s (cruise)

Forward C.G. -1.251

Aft C.G. -0.498

Airplane C-M-s (approach)

Forward C.G. -1.308

Aft C.G. -0.543

C-L-i-H (cruise) 0.778

C-L-i-H (approach) 0.803

C-L-6-e	(cruise)	0.420				
C-L-6-e	(approach)	0.434				
C-M-i-h	(cruise)		bar values			
	Forward C.G.	-3.117	-2.942			
	Aft C.G.	-3.012	-2.942			
C-M-i-h	(approach)					
	Forward C.G.	-3.216	-3.030			
	Aft C.G.	-3.107	-3.030			
C-M-6-e	(cruise)					
	Forward C.G.	-1.683	-1.589			
	Aft C.G.	-1.626	-1.589			
C-M-6-e	(approach)					
	Forward C.G.	-1.736	-1.636			
	Aft C.G.	-1.678	-1.636			
Δf C-a-ac	(cruise)	-0.038				
	(approach)	-0.038				
C-a-ac-wb	(cruise)	-0.092				
	(approach)	-0.083				
C-a-o (a-ht)	(cruise)					
	Forward C.G.	-0.052	-0.014			
	Aft C.G.	-0.029	-0.014			
C-a-o (a-ht)	(approach)					
	Forward C.G.	-0.043	-0.004			
	Aft C.G.	-0.020	-0.004			
C-y-δ-r	(cruise)	-0.302				
	(approach)	-0.324				
C-n-δ-r	(cruise)	0.074				
	(approach)	0.085				

Lift Curve Equations:	Condition	C-l-o	i	i-h	δ-e	δ-flaps	
	Cruise	0.170	0.097	0.014	0.007	0.027	
	Min Control	0.170	0.099	0.014	0.008	0.072	
Pitching Moment Eqns:	Condition	C-a-o	C-l	i-h	δ-e	δ-δ-f	Thrust
	Cruise-fwd	-0.014	-0.224	-0.051	-0.028		-0.003
	Cruise-aft	-0.014	-0.089	-0.051	-0.028		-0.003
	Min Cntrl-fw	-0.004	-0.231	-0.053	-0.029	-0.390	-0.113
	Min Cntrl-af	-0.004	-0.096	-0.053	-0.029	-0.390	-0.113
AC-a-o H.T.	Forward C.G.	0.138					
	Aft C.G.	0.133					

Take-off Rotation Calculations:

Take-off Thrust T	13,325
Thrust Moment Arm z-t	1.92
Drag at T=0 D	2,000.00
Drag Moment Arm z-d	2.00
Lift at T=0	5,000
Take-off Weight W-to	24,739
X-mg	5.00
X-cg	1.33
Z-mg	7.75
X-ac-wb	1.19
X-ac-h	30.92
Wheel-ground friction μ	0.02
q-bar T.O.R.	50.00
C-l-o-h	0.17
C-m-ac-wb	-0.06
H.T. incidence for rotat.	0.15 rad 8.88 deg
Elevator Deflection	16.44 deg

$\sqrt{r_0} = W_{\text{ref}}$

25 Passenger Airplane: Calculations for Cruise and M.C. at Fwd and Aft C.G.
Note: All Results in RADIANS

Cruise Mach Number	0.700		
Section Lift Curve Slope	6.000	fwd - W-to C.G.	0.179
Wing-Body ac shift	-0.090	aft - W-toe C.G.	0.257
X-bar C.G.	0.257		
Min Control Dynamic Pres.	51.170	Cruise A.C.	0.369
Cruise Dynamic Pressure	215.600	Min Ctrl A.C.	0.376
Minimum Control Speed fps	207.500		
Cruise Speed fps	696.290	Static Margin	-0.112
1/rad to 1/deg conversion	0.017		-0.190

Moments of Inertia:	Fwd C.G.	Aft C.G.
I-xx	103,778	66,528
Iyy	131,896	121,578
I-zz	188,392	169,310
Weights	28,506	19,614

Fuselage:

Fuselage Height	8.050
Fuselage Width	8.050
Fuselage Length	71.330
C-n-g-body	-0.171

Wing:

Wing Area sqft	592.000
Wing Span ft	84.300
Wing MCC ft	7.450
Aspect Ratio	12.000
Leading Edge Sweep rad	0.262
Semichord Sweep rad	0.194
C-l-o	0.170
C-m-o-wing (cruise)	-0.054
C-m-o-wing (approach)	-0.045

Wing Lift Curves:

K:1.0544	C-L-e (cruise)	4.7089
k:0.6820.	C-L-e (app)	4.7794
B:0.7141		

Horizontal Tail:

Total H.T. Area sqft	120.000
H.T. Area (each) sqft	120.000
H.T. Span ft	26.569
H.T. Root Chord	6.022
H.T. MCC ft	4.684
H.T. Aspect Ratio	5.883
H.T. LE Sweep rad	0.436
H.T. c/2 Sweep rad	0.314
H.T. Taper Ratio	0.500
H.T. X-ac-h bar	4.150
1 - downwash	0.746
H.T. q-bar corr. (eta-h)	1.000
Elevator effectiveness re	0.540

Horizontal Tail Lift Curves:

K:1.0630	C-L-e (cruise)	3.8395
k:0.6820	C-L-e (app)	3.9610
B:0.71		

Vertical Tail:

Total V.T. Area sqft	170.000
V.T. Area (each) sqft	170.000
V.T. Span ft	15.400
V.T. MCC ft	12.000
V.T. Aspect Ratio	1.40
V.T. Effective Asp. Ratio	1.950

Vertical Tail Lift Curves:

K:1.0366	C-L-e (cruise)	2.0802
k:0.68	C-L-e (app)	2.2314
B:0.71		

V.T. LE Sweep rad	0.785
V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm l-v	20.678
Approach Alpha e (rad)	0.1745
Approach V.T. l-v	22.17
l+(de/dθ)	1.477

Engine Mounting Bar:

Bar Area soft	112.000
Bar Span ft	11.000
Bar MCC ft	10.200
Bar Aspect Ratio	1.080
Bar LE Sweep rad	0.436
Bar c/2 Sweep rad	0.281
Bar Taper Ratio	0.880
X-bar ac-h	0.257
1 - downwash	1.000
Bar q-bar corr. (eta-h)	1.000

Engine Bar Lift Curves:

K:1.0202	C-L-e (cruise)	1.5317
k:0.68	C-L-e (app)	1.5395
g:0.71		

Total Take-off Thrust lbs	13,325
Total Cruise Thrust (lbs)	1,698
Z-T (vertical mom. arm)	1.920
Y-T (horizontal mom. arm)	10.500

Non-dim. Derivatives:	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
C-L-e Airplane	5.579	5.579	5.670	5.670
C-m-e Airplane	-1.061	-0.626	-1.116	-0.673
C-L-e-dot	1.570	1.539	1.620	1.588
C-m-e-dot	-6.234	-5.992	-6.432	-6.182
C-m-q	-27.003	-25.949	-27.658	-26.771
C-y-e	-1.168	-1.168	-1.232	-1.232
C-m-q	0.045	0.045	0.078	0.078
C-y-r	0.433	0.433	0.498	0.498
C-m-r	-0.106	-0.106	-0.131	-0.131

Dimensional Derivatives:	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
Z-e: -803.639	-1,167.969	-193.823	-281.693	
Z-e-dot: -1.210	-1.724	-0.994	-1.416	
M-e: -7.652	-4.898	-1.909	-1.250	
M-e-dot: -0.240	-0.251	-0.198	-0.206	
M-q: -1.041	-1.086	-0.856	-0.892	

$Y-B$: -168.231 -244.496 -42.121 -61.217

$Y-r$: 3.774 5.485 3.457 5.024

$N-B$: 2.594 2.886 1.056 1.175

$N-r$: -0.367 -0.408 -0.360 -0.401

Short Period:

Frequency 2.976 2.592 1.646 1.569

Damping Ratio 0.409 0.581 0.604 0.783

$N-s$ 24.981 26.306 5.929 8.617

Dutch Roll:

Frequency 1.634 1.734 1.054 1.125

Damping Ratio 0.186 0.219 0.267 0.309

$\Omega + \zeta$ 0.304 0.380 0.282 0.348

Verify Class I Handling Qualities:

Short Period:

Below max freq. yes yes yes yes

Above min freq. yes yes yes yes

Damping yes yes yes yes

Dutch Roll:

Frequency yes yes yes yes

Damping Ratio yes yes yes yes

$\Omega + \zeta$ yes yes yes yes

Engine-Out Calculations:

$C-y-\delta-r$ -0.324

$C-n-\delta-r$ 0.085

Required $\delta-r$ (rad) 0.402

Required $\delta-r$ (deg) 23.051

Lift and Pitching Moment Calculations:

Airplane X-ac (cruise) 0.369

Airplane X-ac (approach) 0.376

Airplane C-L-s (cruise) 5.579

Airplane C-L-s (approach) 5.670

Airplane C-M-s (cruise)

Forward C.G. -1.061

Aft C.G. -0.626

Airplane C-M-s (approach)

Forward C.G. -1.116

Aft C.G. -0.673

$C-L-i-H$ (cruise) 0.778

$C-L-i-H$ (approach) 0.803

C-L-δ-e	(cruise)	0.420					
C-L-δ-e	(approach)	0.434					
C-M-i-h	(cruise)		bar values				
	Forward C.G.	-3.091	-2.942				
	Aft C.G.	-3.030	-2.942				
C-M-i-h	(approach)						
	Forward C.G.	-3.188	-3.030				
	Aft C.G.	-3.126	-3.030				
C-M-δ-e	(cruise)						
	Forward C.G.	-1.669	-1.589				
	Aft C.G.	-1.636	-1.589				
C-M-δ-e	(approach)						
	Forward C.G.	-1.722	-1.636				
	Aft C.G.	-1.688	-1.636				
Δf C-m-ac	(cruise)	-0.038					
	(approach)	-0.038					
C-m-ac-wb	(cruise)	-0.092					
	(approach)	-0.083					
C-m-o (a-ht)	(cruise)						
	Forward C.G.	-0.047	-0.014				
	Aft C.G.	-0.033	-0.014				
C-m-o (a-ht)	(approach)						
	Forward C.G.	-0.037	-0.004				
	Aft C.G.	-0.024	-0.004				
C-y-δ-r	(cruise)	-0.302					
	(approach)	-0.324					
C-n-δ-r	(cruise)	0.074					
	(approach)	0.085					
Lift Curve Equations:	Condition	C-l-o	s	i-h	δ-e	δ-flaps	
	Cruise	0.170	0.097	0.014	0.007	0.027	
	Min Control	0.170	0.099	0.014	0.008	0.072	
Pitching Moment Eqns:	Condition	C-m-o	C-L	i-h	δ-e	C-m-δ-f	Thrust
	Cruise-fwd	-0.014	-0.190	-0.051	-0.028		-0.003
	Cruise-aft	-0.014	-0.112	-0.051	-0.028		-0.003
	Min Cntrl-fwd	-0.004	-0.197	-0.053	-0.029	-0.390	-0.113
	Min Cntrl-aft	-0.004	-0.119	-0.053	-0.029	-0.390	-0.113
ΔC-m-o M.I.	Forward C.G.	0.137					
	Aft C.G.	0.134					

Take-off Rotation Calculations:

Take-off Thrust T	13,325
Thrust Moment Arm z-t	1.92
Drag at T=0 D	2,000.00
Drag Moment Arm z-d	2.00
Lift at T=0	5,000
Take-off Weight W-to	28,506
X-mg	5.00
X-rq	1.33
Z-mg	7.75
X-ac-wb	1.19
X-ac-h	30.92
Wheel-ground friction μ	0.02
q-bar T.O.R.	50.00
C-l-o-h	0.17
C-w-ac-wb	-0.08
H.T. incidence for rotat.	0.18 rad
	10.21 deg
Elevator Deflection	18.90 deg

ORIGINAL PAGE IS
OF POOR QUALITY

5-15-57

36 Passenger Airplane: Calculations for Cruise and M.C. at Fwd and Aft C.G.
Note: All Results in RADIAN

Cruise Mach Number	0.700			Fwd - Aft
Section Lift Curve Slope	6.000	Forward C.G.	0.267	
Wing-Body ac shift	-0.090	Aft C.G.	0.385	
X-bar C.G.	0.385			
Min Control Dynamic Pres.	51.170	M.C. A.C.	0.454	
Cruise Dynamic Pressure	215.600	Cruise A.C.	0.454	
Minimum Control Speed	207.500			
Cruise Speed fps	696.290	Static Margin	-0.069	-0.187
1/rad to 1/deg conversion	0.017			
Moments of Inertia:		Forward	Aft	
I-xx	70,773		124,022	
I-yy	235,569		209,114	
I-zz	284,424		310,361	
Weights	30,334		28,574	
Fuselage:				
Fuselage Height	8.050			
Fuselage Width	8.050			
Fuselage Length	79.000			
C-n-a-body	-0.138			
Wing:			Wing Lift Curves:	
Wing Area sqft	592.000		K:1.0544 C-L-a (cruise)	4.7089
Wing Span ft	84.300		k:0.6820 C-L-a (app)	4.7794
Wing MGC ft	7.450		B:0.7141	
Aspect Ratio	12.000			
Leading Edge Sweep rad	0.262			
Semichord Sweep rad	0.194			
C-L-a	0.170			
C-m-o-wing (cruise)	-0.054			
C-m-o-wing (approach)	-0.045			
Horizontal Tail:			Horizontal Tail Lift Curves:	
Total H.T. Area sqft	120.000		K:1.0630 C-L-a (cruise)	3.8395
H.T. Area (each) sqft	120.000		k:0.6820 C-L-a (app)	3.9610
H.T. Span ft	26.569		B:0.71	
H.T. Root Chord	6.022			
H.T. MGC ft	4.684			
H.T. Aspect Ratio	5.883			
H.T. LE Sweep rad	0.436			
H.T. c/2 Sweep rad	0.314			
H.T. Taper Ratio	0.500			
X-bar a-c-h	4.676			
1 - downwash	0.746			
H.T. q-bar corr. (eta-h)	1.000			
Elevator effectiveness re	0.540			
Vertical Tail:			Vertical Tail Lift Curves:	
Total V.T. Area sqft	170.000		K:1.0366 C-L-a (cruise)	2.0802
V.T. Area (each) sqft	170.000		k:0.68 C-L-a (app)	2.2314
V.T. Span ft	15.400		B:0.71	
V.T. MGC ft	12.000			
V.T. Aspect Ratio	1.40			
V.T. Effective Asp. Ratio	1.960			

V.T. LE Sweep rad	0.785
V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm l-v	24.506
Approach Alpha e (rad)	0.1745
Approach l-v	25.94
l+(dθ/dθ)	1.477

Engine Mounting Bar:

Bar Area sqft	112.000
Bar Span ft	11.000
Bar MGC ft	10.200
Bar Aspect Ratio	1.080
Bar LE Sweep rad	0.436
Bar c/2 Sweep rad	0.281
Bar Taper Ratio	0.880
X-bar ac-h	0.828
l - downwash	1.000
Bar q-bar corr. (eta-h)	1.000

Total Take-off Thrust lbs	15,481
Total Cruise Thrust (lbs)	1,967
Z-T (vertical mom. arm)	1.920
Y-T (horizontal mom. arm)	10.500

Engine Bar Lift Curves:

K:1.0202	C-L-e (cruise)	1.5317
k:0.68	C-L-e (app)	1.5395
B:0.71		

Non-dim. Derivatives:

	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
C-L-e Airplane	5.579	5.579	5.670	5.670
C-m-e Airplane	-1.041	-0.383	-1.098	-0.429
C-L-e-dot	1.743	1.696	1.798	1.750
C-m-e-dot	-7.686	-7.280	-7.929	-7.510
C-m-q	-33.485	-31.651	-34.539	-32.650
C-y-B	-1.168	-1.168	-1.232	-1.232
C-n-B	0.118	0.118	0.153	0.153
C-y-r	0.513	0.513	0.582	0.582
C-n-r	-0.149	-0.149	-0.179	-0.179

Dimensional Derivatives:

	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
Z-e: -755.210	-801.727	-182.143	-193.362	
Z-e-dot: -1.262	-1.304	-1.037	-1.072	
M-e: -4.203	-1.741	-1.052	-0.463	
M-e-dot: -0.166	-0.177	-0.136	-0.146	
M-q: -0.723	-0.770	-0.594	-0.633	

Y-g: -158.093 -167.831 -39.583 -42.021

Y-r: 4.203 4.462 3.801 4.035

N-g: 4.482 4.107 1.376 1.261

N-r: -0.341 -0.313 -0.327 -0.300

Short Period:

Frequency	2.233	1.621	1.254	1.026
Damping Ratio	0.442	0.647	0.641	0.633
N-s	23.476	24.922	5.572	5.915

Dutch Roll:

Frequency	2.129	2.039	1.189	1.139
Damping Ratio	0.134	0.136	0.218	0.220
Omega + Zeta	0.284	0.277	0.259	0.251

Verify Class I Handling Qualities:

Short Period:

Below max freq.	yes	yes	yes	yes
Above min freq.	yes	yes	yes	yes
Damping	yes	yes	yes	yes

Dutch Roll:

Frequency	yes	yes	yes	yes
Damping Ratio	yes	yes	yes	yes
Omega + Zeta	yes	yes	yes	yes

Engine-Out Calculations:

C-y-d-r -0.324

C-n-d-r 0.100

Required δ_r (rad) 0.399

Required δ_r (deg) 22.688

Lift and Pitching Moment Calculations:

Airplane X-ac (cruise) 0.454

Airplane X-ac (approach) 0.461

Airplane C-L-s (cruise) 5.579

Airplane C-L-s (approach) 5.670

Airplane C-M-s (cruise)

Forward C.G. -1.041

Aft C.G. -0.383

Airplane C-M-s (approach)

Forward C.G. -1.098

Aft C.G. -0.429

C-L-i-H (cruise) 0.778

C-L-i-H (approach) 0.803

C-L-6-e	(cruise)	0.420					
C-L-6-e	(approach)	0.434					
C-M-i-h	(cruise)		bar values				
	Forward C.G.	-3.431	-3.286				
	Aft C.G.	-3.340	-3.286				
C-M-i-h	(approach)						
	Forward C.G.	-3.540	-3.385				
	Aft C.G.	-3.445	-3.385				
C-M-6-e	(cruise)						
	Forward C.G.	-1.853	-1.775				
	Aft C.G.	-1.803	-1.775				
C-M-6-e	(approach)						
	Forward C.G.	-1.912	-1.828				
	Aft C.G.	-1.860	-1.828				
Δf C-m-ac	(cruise)	-0.044					
	(approach)	-0.043					
C-m-ac-wb	(cruise)	-0.098					
	(approach)	-0.088					
C-m-o (a-ht)	(cruise)						
	Forward C.G.	-0.037	-0.006				
	Aft C.G.	-0.017	-0.006				
C-m-o (a-ht)	(approach)						
	Forward C.G.	-0.028	0.005				
	Aft C.G.	-0.008	0.005				
C-y-6-r	(cruise)	-0.302					
	(approach)	-0.324					
C-n-6-r	(cruise)	0.088					
	(approach)	0.100					
Lift Curve Equations:	Condition	C-I-o	s	i-h	δ-e	δ-flaps	
	Cruise	0.170	0.097	0.014	0.007	0.027	
	Approach	0.170	0.099	0.014	0.008	0.027	
Pitching Moment Eqns:	Condition	C-m-o	C-L	i-h	δ-e	C-m-δ-f	Thrust:
	Cruise-fwd	-0.006	-0.187	-0.057	-0.031		-0.004
	Cruise-aft	-0.006	-0.069	-0.057	-0.031		-0.004
	Approach-fwd	0.005	-0.194	-0.059	-0.032	-0.390	-0.132
	Approach-aft	0.005	-0.076	-0.059	-0.032	-0.390	-0.132
4C-m-o H.T.	Forward C.G.	0.152					
	Aft C.G.	0.148					

Take-off Rotation Calculations:

Take-off Thrust T	15,481.40
Thrust Moment Arm z-t	1.92
Drag at T=0 D	2,000.00
Drag Moment Arm z-d	2.00
Lift at T=0	5,000.00
Take-off Weight	30,334.00
X-mg	5.00
X-cg	1.99
Z-mg	7.70
X-ac-wb	1.19
X-ac-h	34.84
Wheel-ground friction	0.02
q-bar T.O.R.	50.00
C-l-o-h	0.17
C-mac-wb	-0.09
H.T. incidence for rotat.	0.14 rad 7.95 deg
Elevator Deflection	14.71 deg

**ORIGINAL PAGE IS
OF POOR QUALITY**

36 Passenger Airplane: Calculations for Cruise and M.C. at Fwd and Aft C.G.
Note: All Results in RADIANS

$W_{fwd} - W_{aft}$

Cruise Mach Number	0.700		
Section Lift Curve Slope	6.000	Fwd - W-to C.G.	0.280
Wing-Body ac shift	-0.090	Aft - W-to C.G.	0.385
X-bar C.G.	0.385		
Min Control Dynamic Pres.	51.170	M.C. A.C.	0.454
Cruise Dynamic Pressure	215.600	Cruise A.C.	0.454
Minimum Control Speed	207.500		
Cruise Speed fps	696.290	Static Margin	-0.069
1/rad to 1deg conversion	0.017		-0.174

Moments of Inertia:	Forward	Aft
I-xx	125,220	69,710
I-yy	237,382	207,940
I-zz	339,291	255,999
Weights	35,954	22,954

Fuselage:

Fuselage Height	8.050
Fuselage Width	8.050
Fuselage Length	79.000
C-n-θ-body	-0.138

Wing:

Wing Area sqft	592.000
Wing Span ft	84.300
Wing MAC ft	7.450
Aspect Ratio	12.000
Leading Edge Sweep rad	0.262
Semichord Sweep rad	0.194
C-L-o	0.170
C-m-o-wing (cruise)	-0.054
C-m-o-wing (approach)	-0.045

Wing Lift Curves:

K:1.0544	C-L-o (cruise)	4.7089
k:0.6820	C-L-o (app)	4.7794
B:0.7141		

Horizontal Tail:

Total H.T. Area sqft	120.000
H.T. Area (each) sqft	120.000
H.T. Span ft	26.569
H.T. Root Chord	6.022
H.T. MAC ft	4.684
H.T. Aspect Ratio	5.883
H.T. LE Sweep rad	0.436
H.T. c/2 Sweep rad	0.314
H.T. Taper Ratio	0.500
X-bar ac-h	4.575
1 - downwash	0.746
H.T. q-bar corr. (eta-h)	1.000
Elevator effectiveness re	0.540

Horizontal Tail Lift Curves:

K:1.0630	C-L-o (cruise)	3.8395
k:0.6820	C-L-o (app)	3.9610
B:0.71		

Vertical Tail:

Total V.T. Area sqft	170.000
V.T. Area (each) sqft	170.000
V.T. Span ft	15.400
V.T. MAC ft	12.000
V.T. Aspect Ratio	1.40
V.T. Effective Asp. Ratio	1.960

Vertical Tail Lift Curves:

K:1.0366	C-L-o (cruise)	2.0802
k:0.68	C-L-o (app)	2.2314
B:0.71		

ORIGINAL PAGE IS
OF POOR QUALITY

V.T. LE Sweep rad	0.785
V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm l-v	24.506
Approach Alpha ϵ (rad)	0.1745
Approach l-v	25.94
1+(d α /d θ)	1.477

Engine Mounting Bar:

Bar Area sqft	112.000
Bar Span ft	11.000
Bar MSC ft	10.200
Bar Aspect Ratio	1.080
Bar LE Sweep rad	0.436
Bar c/2 Sweep rad	0.281
Bar Taper Ratio	0.880
X-bar ac-h	0.828
l - downwash	1.000
Bar q-bar corr. (eta-h)	1.000

Engine Bar Lift Curves:

K:1.0202	C-L-s (cruise)	1.5317
k:0.68	C-L-s (app)	1.5395
B:0.71		

Total Take-off Thrust lbs	15,481
Total Cruise Thrust (lbs)	1,967
Z-T (vertical mom. arm)	1.920
Y-T (horizontal mom. arm)	10.500

Non-dim. Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

C-L-s Airplane	5.579	5.579	5.670	5.670
C-m-s Airplane	-0.969	-0.383	-1.024	-0.429
C-L-s-dot	1.738	1.696	1.793	1.750
C-m-s-dot	-7.640	-7.280	-7.882	-7.510
C-m-q	-33.279	-31.651	-34.328	-32.650
C-y-q	-1.168	-1.168	-1.232	-1.232
C-n-q	0.118	0.118	0.153	0.153
C-y-r	0.513	0.513	0.582	0.582
C-n-r	-0.149	-0.149	-0.179	-0.179

Dimensional Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

I-s: -637.162	-998.019	-153.672	-240.704
Z-s-dot: -1.062	-1.624	-0.872	-1.334
M-s: -3.881	-1.751	-0.974	-0.466
M-s-dot: -0.164	-0.178	-0.135	-0.146
M-q: -0.713	-0.774	-0.586	-0.636

$Y-\theta$: -133.381 -208.922 -33.396 -52.309

$Y-r$: 3.546 5.555 3.207 5.023

$N-\theta$: 3.757 4.980 1.153 1.528

$N-r$: -0.286 -0.379 -0.274 -0.363

Short Period:

Frequency 2.129 1.691 1.186 1.097

Damping Ratio 0.421 0.705 0.616 0.685

$N-s$ 19.806 31.023 4.701 7.363

Dutch Roll:

Frequency 1.948 2.248 1.086 1.258

Damping Ratio 0.123 0.151 0.200 0.245

$\Omega + \zeta$ 0.239 0.340 0.217 0.308

Verify Class I Handling Qualities:

Short Period:

Below max freq. yes yes yes yes

Above min freq. yes yes yes yes

Damping yes yes yes yes

Dutch Roll:

Frequency yes yes yes yes

Damping Ratio yes yes yes yes

$\Omega + \zeta$ yes yes yes yes

Engine-Out Calculations:

$C-y-\delta-r$ -0.324

$C-n-\delta-r$ 0.100

Required $\delta-r$ (rad) 0.399

Required $\delta-r$ (deg) 22.888

Lift and Pitching Moment Calculations:

Airplane X-ac (cruise) 0.454

Airplane X-ac (approach) 0.461

Airplane C-L-s (cruise) 5.579

Airplane C-L-s (approach) 5.670

Airplane C-M-s (cruise)

Forward C.G. -0.969

Aft C.G. -0.383

Airplane C-M-s (approach)

Forward C.G. -1.024

Aft C.G. -0.429

C-L-i-H (cruise) 0.778

C-L-i-H (approach) 0.803

C-L- δ -e	(cruise)	0.420					
C-L- δ -e	(approach)	0.434					
C-M-i-h	(cruise)		bar values				
	Forward C.G.	-3.421	-3.286				
	Aft C.G.	-3.340	-3.286				
C-M-i-h	(approach)						
	Forward C.G.	-3.530	-3.385				
	Aft C.G.	-3.445	-3.385				
C-M- δ -e	(cruise)						
	Forward C.G.	-1.847	-1.775				
	Aft C.G.	-1.803	-1.775				
C-M- δ -e	(approach)						
	Forward C.G.	-1.906	-1.828				
	Aft C.G.	-1.860	-1.828				
Δf C-m-ac	(cruise)	-0.044					
	(approach)	-0.043					
C-m-ac-wb	(cruise)	-0.098					
	(approach)	-0.088					
C-m-o (a-ht)	(cruise)						
	Forward C.G.	-0.035	-0.006				
	Aft C.G.	-0.017	-0.006				
C-m-o (a-ht)	(approach)						
	Forward C.G.	-0.026	0.005				
	Aft C.G.	-0.008	0.005				
C-y- δ -r	(cruise)	-0.302					
	(approach)	-0.324					
C-n- δ -r	(cruise)	0.088					
	(approach)	0.100					
Lift Curve Equations:	Condition	C-I-o		i-h		δ -e	δ -flaps
	Cruise	0.170	0.097	0.014		0.007	0.027
	Approach	0.170	0.099	0.014		0.008	0.027
Pitching Moment Eqns:	Condition	C-m-o	C-L	i-h	δ -e	C-m- δ -f	Thrust
	Druise-fwd	-0.006	-0.174	-0.057	-0.031		-0.004
	Druise-aft	-0.006	-0.069	-0.057	-0.031		-0.004
	Approach-fwd	0.005	-0.181	-0.059	-0.032	-0.390	-0.132
	Approach-aft	0.005	-0.076	-0.059	-0.032	-0.390	-0.132
4C-m-o H.T.	Forward C.G.	0.151					
	Aft C.G.	0.148					

Take-off Rotation Calculations:

Take-off Thrust T	15,481.40
Thrust Moment Arm z-t	1.92
Drag at T=0 D	2,000.00
Drag Moment Arm z-d	2.00
Lift at T=0	5,000.00
Take-off Weight	35,954.00
X-mg	5.00
X-cg	2.09
Z-mg	7.70
X-ac-wb	1.19
X-ac-h	34.84
Wheel-ground friction	0.02
q-bar T.O.R.	50.00
C-l-o-h	0.17
C-m-ac-wb	-0.09
H.T. incidence for rotat.	0.16 rad
	9.10 deg
Elevator Deflection	16.84 deg

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGENAL PAGE IS
OF POOR QUALITY

50 Passenger Airplane Calculations for Cruise and M.C. at Fwd and Aft C.G.

Cruise Mach Number	0.700		
Section Lift Curve Slope	6.000	Forward C.G.	0.530
Wing-Body ac shift	-0.090	Aft C.G.	0.603
X-bar C.G.	0.603		
Min Cntrl Dynamic Pres.	51.170	approach a.c.	0.673
Cruise Dynamic Pressure	215.600	cruise a.c.	0.664
Min Cntrl Speed fps	207.500		
Cruise Speed fps	696.290	static margin	-0.061
1/rad to 1/deg conversion	0.017		-0.134

Moments of Inertia:	Forward	Aft
I-xx	141,865	73,363
Iyy	465,510	408,670
Izz	580,046	457,113
Weights	43,141	25,978

Fuselage:	
Fuselage Height	8.050
Fuselage Width	8.050
Fuselage Length	96.330
C-n-θ-body	-0.141

Wing:	
Wing Area sqft	592.000
Wing Span ft	84.300
Wing MGC ft	7.450
Aspect Ratio	12.000
Leading Edge Sweep rad	0.262
Semichord Sweep rad	0.194
C-L-o	0.170
C-m-o-wing (cruise)	-0.054
C-m-o-wing (approach)	-0.045

Wing Lift Curves:		
K:1.0544	C-L-s (cruise)	4.7089
k:0.6820	C-L-s (app)	4.7794
B:0.7141		

Horizontal Tail:	
Total H.T. Area sqft	120.000
H.T. Area (each) sqft	120.000
H.T. Span ft	26.569
H.T. Root Chord	6.022
H.T. MGC ft	4.684
H.T. Aspect Ratio	5.883
H.T. LE Sweep rad	0.436
H.T. c/2 Sweep rad	0.314
H.T. Taper Ratio	0.500
X-bar ac-h	6.040
1 - downwash	0.746
H.T. q-bar corr. (eta-h)	1.000
Elevator effectiveness τ_E	0.540

Horizontal Tail Lift Curves:		
K:1.0629	C-L-s (cruise)	3.8395
k:0.6820	C-L-s (app)	3.9610
B:0.71		

Vertical Tail:	
Total V.T. Area sqft	170.000
V.T. Area (each) sqft	170.000
V.T. Span ft	15.400
V.T. MGC ft	12.000
V.T. Aspect Ratio	1.40
V.T. Effective Asp. Ratio	1.960

Vertical Tail Lift Curves:		
K:1.0366	C-L-s (cruise)	2.0802
k:0.68	C-L-s (app)	2.2314
B:0.71		

V.T. LE Sweep rad	0.785
V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm l-v	32.342
Approach Alpha s (rad)	0.1745
Approach l-v	33.66
1+(da/dθ)	1.477

Engine Mounting Bar:

Bar Area sqft	112.000
Bar Span ft	11.000
Bar MGC ft	10.200
Bar Aspect Ratio	1.080
Bar LE Sweep rad	0.436
Bar c/2 Sweep rad	0.281
Bar Taper Ratio	0.680
X-bar ac-h	2.148
i - downwash	1.000
Bar q-bar corr. (eta-h)	1.000

Engine Bar Lift Curves:

K:1.0202	C-L-e (cruise)	1.5320
k:0.68	C-L-e (app)	1.5399
B:0.71		

Total Take-off Thrust lbs	18,929
Total Cruise Thrust (lbs)	4,047
Z-T (vertical mom. arm)	1.920
Y-T (horizontal mom. arm)	10.000

	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
--	------------	------------	---------------	---------------

C-L-e Airplane	5.579	5.579	5.670	5.670
C-m-e Airplane	-0.749	-0.341	-0.808	-0.395
C-L-e-dot	2.178	2.150	2.247	2.218
C-m-e-dot	-12.003	-11.687	-12.383	-12.057
C-m-q	-53.652	-52.137	-55.306	-53.747
C-y-q	-1.168	-1.168	-1.232	-1.232
C-n-q	0.197	0.197	0.237	0.237
C-y-r	0.677	0.677	0.756	0.756
C-n-r	-0.260	-0.260	-0.302	-0.302

	Cruise-fwd	Cruise-aft	Min Cntrl-fwd	Min Cntrl-aft
--	------------	------------	---------------	---------------

Z-e: -531.022	-881.855	-128.073	-212.688
Z-e-dot: -1.109	-1.818	-0.911	-1.493
M-e: -1.529	-0.794	-0.392	-0.218
M-e-dot: -0.131	-0.145	-0.108	-0.120
M-q: -0.586	-0.649	-0.481	-0.533

Y-B: -111.161 -184.602 -27.832 -46.220

Y-r: 3.900 6.477 3.468 5.759

N-B: 3.663 4.649 1.043 1.323

N-r: -0.292 -0.370 -0.270 -0.342

Short Period:

Frequency	1.406	1.271	0.830	0.874
Damping Ratio	0.526	0.811	0.727	0.959
N-s	16.507	27.412	3.918	6.506

Dutch Roll:

Frequency	1.921	2.169	1.030	1.167
Damping Ratio	0.117	0.146	0.196	0.242
Omega + Zeta	0.226	0.318	0.202	0.283

Verify Class I Handling Qualities:

Short Period:

Below max freq.	yes	yes	yes	yes
Above min freq.	yes	no	yes	no
Damping	yes	yes	yes	yes

Dutch Roll:

Frequency	yes	yes	yes	yes
Damping Ratio	yes	yes	yes	yes
Omega + Zeta	yes	yes	yes	yes

Engine-Out Calculations:

C-y- δ -r -0.324

C-n- δ -r 0.129

Required δ -r (rad) 0.359

Required δ -r (deg) 20.542

Lift and Pitching Moment Calculations:

Airplane X-ac (cruise) 0.664

Airplane X-ac (approach) 0.673

Airplane C-L-s (cruise) 5.579

Airplane C-L-s (approach) 5.670

Airplane C-M-s (cruise)

Forward C.G. -0.749

Aft C.G. -0.341

Airplane C-M-s (approach)

Forward C.G. -0.808

Aft C.G. -0.395

C-L-i-H (cruise) 0.778

C-L-i-H (approach) 0.803

C-L-6-e	(cruise)	0.420					
C-L-6-e	(approach)	0.434					
C-M-i-h	(cruise)		bar values				
	Forward C.G.	-4.288	-4.184				
	Aft C.G.	-4.231	-4.184				
C-M-i-h	(approach)						
	Forward C.G.	-4.424	-4.310				
	Aft C.G.	-4.365	-4.310				
C-H-6-e	(cruise)						
	Forward C.G.	-2.316	-2.259				
	Aft C.G.	-2.285	-2.259				
C-H-6-e	(approach)						
	Forward C.G.	-2.389	-2.327				
	Aft C.G.	-2.357	-2.327				
Δf C-a-ac	(cruise)	-0.057					
	(approach)	-0.056					
C-a-ac-wb	(cruise)	-0.111					
	(approach)	-0.101					
C-a-o (a-h-t)	(cruise)						
	Forward C.G.	-0.006	0.017				
	Aft C.G.	0.007	0.017				
C-a-o (a-h-t)	(approach)						
	Forward C.G.	0.004	0.028				
	Aft C.G.	0.017	0.028				
C-y-δ-r	(cruise)	-0.302					
	(approach)	-0.324					
C-n-δ-r	(cruise)	0.116					
	(approach)	0.129					
Lift Curve Equations:	Condition	C-i-o	s	i-h	δ-e	δ-flaps	
	Cruise	0.170	0.097	0.014	0.007	0.027	
	Approach	0.170	0.099	0.014	0.008	0.027	
Pitching Moment Eqns:	Condition	C-a-o	C-L	i-h	δ-e	C-a-f-flaps	Thrust
	Cruise-fwd	0.017	-0.134	-0.073	-0.039		-0.008
	Cruise-aft	0.017	-0.061	-0.073	-0.039		-0.008
	Approach-fwd	0.028	-0.143	-0.075	-0.041	-0.390	-0.161
	Approach-aft	0.028	-0.070	-0.075	-0.041	-0.390	-0.161
AC-a-o H.T.	Forward C.G.	0.190					
	Aft C.G.	0.187					

Take-off Rotation Calculations:

Take-off Thrust T	18,928.80
Thrust Moment Arm z-t	1.92
Drag at T=0 D	2,000.00
Drag Moment Arm z-d	2.00
Lift at T=0	5,000.00
Take-off Weight	43,141.00
X-mg	5.00
X-cg	3.92
Z-mg	7.67
X-ac-wb	1.19
X-ac-h	45.00
Wheel-ground friction μ	0.02
q-bar T.O.R.	50.00
C-l-o-h	0.17
C-m-ac-wb	-0.10
H.T. incidence for rotat.	0.06 rad 3.32 deg
Elevator Deflection	6.15 deg

ORIGINAL PAGE IS
OF POOR QUALITY

5-16-67

75 Passenger Twin-body:

Note: All Results in RADIANS			
Cruise Mach Number	0.700	Forward C.G.	0.602
Section Lift Curve Slope	6.000	Aft C.G.	0.769
Wing-Body ac shift	-0.140	Cruise A.C.	0.821
X-bar C.G.	0.769	Approach A.C.	0.813
Min Cntrl Dynamic Pres.	51.170	Static Margin	-0.052 -0.219
Cruise Dynamic Pressure	215.600		
Min Cntrl Speed fps	207.500		
Cruise Speed fps	696.290		
1/rad to 1/deg conversion	0.017		

Moments of Inertia:	Forward	Aft
I-xx	1,355,496	761,328
Iyy	505,928	441,252
Izz	1,779,110	1,125,135
Weights	71,419	44,804

Fuselage:

Fuselage Height	8.050
Fuselage Width	16.100
Fuselage Length	79.000
C-n-a-body	-0.121

Wing:

Wing Area sqft	1,182.000
Wing Span ft	132.500
Wing MGC ft	8.970
Aspect Ratio	14.853
Leading Edge Sweep rad	0.201
Semichord Sweep rad	0.169
C-L-o	0.170
C-m-o-wing (cruise)	-0.059
C-m-o-wing (approach)	-0.049

Wing Lift Curves:

K:1.0493	C-L-o (cruise)	4.9102
k:0.6820	C-L-o (app)	4.9578
theta:0.7141		

Horizontal Tail:

Total H.T. Area sqft	410.000
H.T. Area (each) sqft	410.000
H.T. Span ft	74.770
H.T. MGC ft	5.629
H.T. Aspect Ratio	13.600
H.T. LE Sweep rad	0.070
H.T. c/2 Sweep rad	0.052
H.T. Taper Ratio	0.500
X-bar ac-h	4.283
1 - downwash	0.786
H.T. q-bar corr. (eta-h)	1.000
Elevator effectiveness re	0.540

Horizontal Tail Lift Curves:

K:1.0519	C-L-o (cruise)	4.9475
k:0.6820	C-L-o (app)	4.9530
theta:0.71		

Vertical Tail:

Total V.T. Area sqft	340.000
V.T. Area (each) sqft	170.000
V.T. Span ft	15.400
V.T. MGC ft	12.000
V.T. Aspect Ratio	1.40
V.T. Effective Asp. Ratio	1.960
V.T. LE Sweep rad	0.785

Vertical Tail Lift Curves:

K:1.0366	C-L-o (cruise)	2.0802
k:0.68	C-L-o (app)	2.2314
theta:0.71		

V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm l-v	23.185
Approach Alpha α (rad)	0.1745
Approach l-v $l + (d\alpha/d\theta)$	24.64 1.477

Engine Mounting Bar:

Bar Area sqft	165.800
Bar Span ft	15.700
Bar MGC ft	10.620
Bar Aspect Ratio	1.487
Bar LE Sweep rad	0.436
Bar c/2 Sweep rad	0.314
Bar Taper Ratio	0.814
X-bar ac-h	0.994
1 - downwash	1.000
Bar q-bar corr. (ets-h)	1.000

Engine Bar Lift Curves:

K:1.0278	C-L-a (cruise)	1.9622
k:0.68	C-L-a (app)	1.9824
B:0.71		

Total Take-off Thrust lbs	37,891
Total Cruise Thrust (lbs)	3,747
Z-T (vertical mom. arm)	5.170
Y-T (horizontal mom. arm)	10.000

Non-dim. Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

C-L-a Airplane	6.534	6.534	6.596	6.596
C-m-s Airplane	-1.430	-0.339	-1.394	-0.292
C-L-a-dot	2.704	2.581	2.707	2.584
C-m-s-dot	-9.952	-9.070	-9.954	-9.080
C-m-q	-51.250	-46.651	-51.308	-46.704
C-y-B	-1.027	-1.027	-1.091	-1.091
C-n-B	0.034	0.034	0.055	0.055
C-y-r	0.309	0.309	0.353	0.353
C-n-r	-0.054	-0.054	-0.066	-0.066

Dimensional Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

Z-s: -750.072	-1,195.639	-179.708	-286.461
Z-s-dot: -1.999	-3.042	-1.594	-2.425
M-s: -6.460	-1.754	-1.495	-0.359
M-s-dot: -0.290	-0.303	-0.231	-0.241
M-q: -1.492	-1.557	-1.189	-1.241

**ORIGINAL PAGE IS
OF POOR QUALITY**

Y-g:	-117.871	-187.890	-29.726	-47.385
------	----------	----------	---------	---------

Y-r:	3.378	5.385	3.067	4.889
------	-------	-------	-------	-------

N-g:	0.639	1.010	0.249	0.394
------	-------	-------	-------	-------

N-r:	-0.098	-0.155	-0.094	-0.149
------	--------	--------	--------	--------

Short Period:

Frequency	2.840	2.104	1.589	1.440
Damping Ratio	0.503	0.850	0.719	0.994
N-s	23.316	37.166	5.534	8.821

Dutch Roll:

Frequency	0.807	1.022	0.509	0.647
Damping Ratio	0.165	0.208	0.233	0.292
Omega + Zeta	0.134	0.212	0.119	0.189

Verify Class I Handling Qualities:

Short Period:

Below max freq.	yes	yes	yes	yes
Above min freq.	yes	yes	yes	yes
Damping	yes	yes	yes	yes

Dutch Roll:

Frequency	yes	yes	yes	yes
Damping Ratio	yes	yes	yes	yes
Omega + Zeta	no	yes	no	yes

Engine-Out Calculations:

C-y-6-r	-0.324
C-n-6-r	0.060
Required δ_r (rad)	0.490
Required δ_r (deg)	28.084

Lift and Pitching Moment Calculations:

Airplane X-ac (cruise)	0.821
Airplane X-ac (approach)	0.813

Airplane C-L-s (cruise)	6.534
Airplane C-L-s (approach)	6.596

Airplane C-M-s (cruise)

Forward C.G.	-1.430
Aft C.G.	-0.339

Airplane C-M-s (approach)

Forward C.G.	-1.394
Aft C.G.	-0.292

C-L-i-H (cruise)	1.716
C-L-i-H (approach)	1.718

C-L-6-e (cruise)	0.927
------------------	-------

C-L-6-e	(approach)	0.928					
C-M-i-h	(cruise)		bar values				
	Forward C.G.	-6.317	-5.942				
	Aft C.G.	-6.031	-5.942				
C-M-i-h	(approach)						
	Forward C.G.	-6.324	-5.961				
	Aft C.G.	-6.037	-5.961				
C-M-6-e	(cruise)						
	Forward C.G.	-3.411	-3.208				
	Aft C.G.	-3.256	-3.208				
C-M-6-e	(approach)						
	Forward C.G.	-3.415	-3.219				
	Aft C.G.	-3.260	-3.219				
Δf C-m-ac	(cruise)	-0.023					
	(approach)	-0.023					
C-m-ac-wb	(cruise)	-0.082					
	(approach)	-0.072					
C-m-o (a-ht)	(cruise)						
	Forward C.G.	0.044	0.081				
	Aft C.G.	0.072	0.081				
C-m-o (a-ht)	(approach)						
	Forward C.G.	0.054	0.090				
	Aft C.G.	0.083	0.090				
C-y-6-r	(cruise)	-0.302					
	(approach)	-0.324					
C-n-6-r	(cruise)	0.053					
	(approach)	0.060					
Lift Curve Equations:	Condition	C-l-o	s	i-h	δ-e	δ-flaps	
	Cruise	0.170	0.114	0.030	0.016	0.027	
	Approach	0.170	0.115	0.030	0.016	0.027	
Pitching Moment Eqns:	Condition	C-m-o	C-L	i-h	δ-e	δ-flaps	Thrust
	Cruise-fwd	0.081	-0.219	-0.104	-0.056		-0.008
	Cruise-aft	0.081	-0.052	-0.104	-0.056		-0.008
	Approach-fwd	0.090	-0.211	-0.104	-0.056	-0.390	-0.361
	Approach-aft	0.090	-0.044	-0.104	-0.056	-0.390	-0.361
ΔC-m-o H.T.	Forward C.G.	0.064					
	Aft C.G.	0.061					

Take-off Rotation Calculations:

Take-off Thrust T	37,890.60
Thrust Moment Arm z-t	5.17
Drag at T=0 D	3,500.00
Drag Moment Arm z-d	2.00
Lift at T=0	10,000.00
Take-off Weight W-to	71,419.00
X-mg	5.00
X-cg	5.40
Z-mg	7.70
X-ac-wb	0.99
X-ac-h	38.42
Wheel-ground friction	0.02
q-bar T.O.R.	50.00
C-l-o-h	0.17
C-m-ac-wb	-0.07
H.T. incidence for rotat.	0.02 rad 1.09 deg
Elevator Deflection	2.02 deg

100 Passenger Twin-body:

Cruise Mach Number	0.700
Section Lift Curve Slope	6.000
Wing-Body ac shift	-0.140
X-bar C.G.	0.802
Min Cntrl Dynamic Pres.	50.286
Cruise Dynamic Pressure	215.600
Min Cntrl Speed fps	207.500
Cruise Speed fps	696.290
1/rad to 1/deg conversion	0.017

Note: All Results in RADIANS

Forward C.G.	0.659
Aft C.G.	0.802
Cruise A.C.	0.991
Min Cntrl A.C.	0.982
Static Margin	-0.189
	-0.332

Moments of Inertia:	Forward
I-xx	1,646,875
Iyy	769,820
I-zz	2,326,135
Weights	85,044

Aft
888,448
653,359
1,455,491
50,666

Fuselage:

Fuselage Height	8.050
Fuselage Width	16.100
Fuselage Length	96.330
C-n-B-body	-0.129

Wing:

Wing Area sqft	1,182.000
Wing Span ft	132.500
Wing MAC ft	8.970
Aspect Ratio	14.843
Leading Edge Sweep rad	0.201
Semichord Sweep rad	0.169
C-L-o	0.170
C-m-o-wing (cruise)	-0.059
C-m-o-wing (approach)	-0.049

Wing Lift Curves:

K:1.0493	C-L-s (cruise)	4.9090
k:0.6820	C-L-s (app)	4.9669
B:0.7141		

Horizontal Tail:

Total H.T. Area sqft	410.000
H.T. Area (each) sqft	410.000
H.T. Span ft	74.770
H.T. MAC ft	5.629
H.T. Aspect Ratio	13.600
H.T. LE Sweep rad	0.070
H.T. c/2 Sweep rad	0.052
H.T. Taper Ratio	0.500
X-bar ac-h	4.942
i - downwash	0.785
H.T. q-bar corr. (eta-h)	1.000
Elevator effectiveness τ_e	0.540

Horizontal Tail Lift Curves:

K:1.0519	C-L-s (cruise)	4.9475
k:0.6820	C-L-s (app)	4.9530
B:0.71		

Vertical Tail:

Total V.T. Area sqft	340.000
V.T. Area (each) sqft	170.000
V.T. Span ft	15.400
V.T. MAC ft	12.000
V.T. Aspect Ratio	1.40
V.T. Effective Asp. Ratio	1.960
V.T. LE Sweep rad	0.785

Vertical Tail Lift Curves:

K:1.0366	C-L-s (cruise)	2.0802
k:0.68	C-L-s (app)	2.2314
B:0.71		

V.T. c/2 Sweep rad	0.687
V.T. Taper Ratio	0.330
V.T. Moment Arm l-v	30.060
Approach Alpha e (rad)	0.1745
Approach l-v	31.41
l+(d α /d θ)	1.477

Engine Mounting Bar:

Bar Area sqft	165.800
Bar Span ft	15.700
Bar MGC ft	10.620
Bar Aspect Ratio	1.487
Bar LE Sweep rad	0.436
Bar c/2 Sweep rad	0.314
Bar Taper Ratio	0.814
X-bar ac-h	1.794
i - downwash	1.000
Bar q-bar corr. (sta-h)	1.000

Engine Bar Lift Curves:

K:1.0278	C-L-e (cruise)	1.9622
k:0.68	C-L-e (app)	1.9824
8:0.71		

Total Take-off Thrust lbs	37,891
Total Cruise Thrust (lbs)	4,414
Z-T (vertical mom. arm)	5.330
Y-T (horizontal mom. arm)	10.000

Non-dim. Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

C-l-e Airplane	6.533	6.533	6.595	6.595
C-m-e Airplane	-2.167	-1.233	-2.131	-1.188
C-l-e-dot	3.146	3.041	3.149	3.044
C-m-e-dot	-13.474	-12.589	-13.489	-12.603
C-m-q	-70.038	-65.306	-70.124	-65.385
C-y-g	-1.027	-1.027	-1.091	-1.091
C-n-g	0.071	0.071	0.096	0.096
C-y-r	0.401	0.401	0.449	0.449
C-n-r	-0.091	-0.091	-0.107	-0.107

Dimensional Derivatives: Cruise-fwd Cruise-aft Min Cntrl-fwd Min Cntrl-aft

I-e:	-629.787	-1,057.111	-148.290	-248.908
Z-e-dot:	-1.953	-3.169	-1.531	-2.483
M-e:	-6.436	-4.314	-1.476	-0.969
M-e-dot:	-0.258	-0.284	-0.202	-0.222
M-q:	-1.340	-1.472	-1.050	-1.153

Y-B:	-98.987	-166.151	-24.532	-41.178
Y-r:	3.678	6.174	3.227	5.416
N-B:	1.038	1.659	0.324	0.518
N-r:	-0.126	-0.201	-0.115	-0.184

Short Period:

Frequency	2.765	2.559	1.492	1.534
Damping Ratio	0.452	0.640	0.659	0.639
N-e	19.577	32.860	4.566	7.664

Dutch Roll:

Frequency	1.025	1.301	0.577	0.736
Damping Ratio	0.131	0.169	0.202	0.260
Omega * Zeta	0.134	0.220	0.117	0.191

Verify Class I Handling Qualities:

Short Period:

Below max freq.	yes	yes	yes	yes
Above min freq.	yes	yes	yes	yes
Damping	yes	yes	yes	yes

Dutch Roll:

Frequency	yes	yes	yes	yes
Damping Ratio	yes	yes	yes	yes
Omega * Zeta	no	yes	no	yes

Engine-Out Calculations:

C-y-δ-r	-0.324
C-n-δ-r	0.077
Required δ-r (rad)	0.391
Required δ-r (deg)	22.418

Lift and Pitching Moment Calculations:

Airplane X-ac (cruise)	0.991
Airplane X-ac (approach)	0.982

Airplane C-L-e (cruise)	6.533
Airplane C-L-e (approach)	6.595

Airplane C-M-e (cruise)	
Forward C.G.	-2.167
Aft C.G.	-1.233

Airplane C-M-e (approach)	
Forward C.G.	-2.131
Aft C.G.	-1.188

C-L-i-H (cruise)	1.716
C-L-i-H (approach)	1.718

C-L-δ-e (cruise)	0.927
------------------	-------

C-L- δ -e	(approach)	0.928				
C-M-i-h	(cruise)		bar values			
	Forward C.G.	-7.350	-6.781			
	Aft C.G.	-7.105	-6.781			
C-M-i-h	(approach)					
	Forward C.G.	-7.358	-6.803			
	Aft C.G.	-7.113	-6.803			
C-M- δ -e	(cruise)					
	Forward C.G.	-3.969	-3.662			
	Aft C.G.	-3.837	-3.662			
C-M- δ -e	(approach)					
	Forward C.G.	-3.974	-3.674			
	Aft C.G.	-3.841	-3.674			
Δf C-m-ac	(cruise)	-0.034				
	(approach)	-0.033				
C-m-ac-wb	(cruise)	-0.093				
	(approach)	-0.082				
C-m-o (a-ht)	(cruise)					
	Forward C.G.	0.043	0.100			
	Aft C.G.	0.068	0.100			
C-m-o (a-ht)	(approach)					
	Forward C.G.	0.054	0.109			
	Aft C.G.	0.078	0.109			
C-y- δ -r	(cruise)	-0.302				
	(approach)	-0.324				
C-r- δ -r	(cruise)	0.069				
	(approach)	0.077				

Lift Curve Equations:	Condition	C-L-0	α	i-h	δ -e	δ -flaps	
	Cruise	0.170	0.114	0.030	0.016	0.027	
	Approach	0.170	0.115	0.030	0.016	0.027	
Pitching Moment Eqns:	Condition	C-m-0	C-L	i-h	δ -e	C-m- δ -flaps	Thrust
	Cruise-fwd	0.100	-0.332	-0.118	-0.064		-0.010
	Cruise-aft	0.100	-0.189	-0.118	-0.064		-0.010
	Approach-fwd	0.109	-0.323	-0.119	-0.064	-0.390	-0.379
	Approach-aft	0.109	-0.180	-0.119	-0.064	-0.390	-0.379
$\Delta C-m-0$ H.T.	Forward C.G.	0.074					
	Aft C.G.	0.071					

AT APP

 Dynamic Pres. (psf) 51.17
 Speed (fps) 207.5

	25	36	50	75	100
Wing area	592	592	592	1182	1182
Wing span	84.3	84.3	84.3	132.5	132.5
I-xx-fwd	67265	70773	141865	1355496	1646875
I-xx-aft	102964	124022	73363	761328	888448
C-1-p	-0.5818	-0.5818	-0.5818	-0.6323	-0.6318
C-1-Delta-A	0.455	0.455	0.455	0.443	0.443
L-p-fwd	-4.4867	-4.2643	-2.1274	-1.1936	-0.9816
L-p-aft	-2.9311	-2.4334	-4.1138	-2.1250	-1.8196
T-R-fwd	0.2229	0.2345	0.4701	0.8378	1.0187
T-R-aft	0.3412	0.4109	0.2431	0.4706	0.5496
Handling Level	1	1	1	1	1
L-Delta-A-fwd	17.2738	16.4176	8.1903	2.6191	2.1557
L-Delta-A-aft	11.2847	9.3687	15.8380	4.6632	3.9960
Delta-A (deg)	10	10	10	20	20
Time (sec)	1.9	1.9	1.9	1.9	1.9
Phi-fwd (deg)	64.570	64.124	55.370	50.423	45.638
Phi-aft (deg)	60.065	57.484	63.795	63.098	60.074
Handling Level	1	1	1	1	1

AT APP

Dynamic Pres. (psf) 51.17
 Speed (fps) 207.5

	25	36	50	75	100
Wing area	592	592	592	1182	1182
Wing span	84.3	84.3	84.3	132.5	132.5
I-xx-fwd	67265	70773	141865	1355496	1646875
I-xx-aft	102964	124022	73363	761328	888448
C-1-p	-0.5818	-0.5818	-0.5818	-0.6323	-0.6318
C-1-Delta-A	0.455	0.455	0.455	0.443	0.443
L-p-fwd	-4.4867	-4.2643	-2.1274	-1.1936	-0.9816
L-p-aft	-2.9311	-2.4334	-4.1138	-2.1250	-1.8196
T-R-fwd	0.2229	0.2345	0.4701	0.8378	1.0187
T-R-aft	0.3412	0.4109	0.2431	0.4706	0.5496
Handling Level	1	1	1	1	1
L-Delta-A-fwd	17.2738	16.4176	8.1903	2.6191	2.1557
L-Delta-A-aft	11.2847	9.3687	15.8380	4.6632	3.9960
Delta-A (deg)	10	10	10	10	10
Time (sec)	1.5	1.5	1.5	1.5	1.5
Phi-fwd (deg)	49.179	48.736	40.397	17.599	15.701
Phi-aft (deg)	44.777	42.340	48.410	23.016	21.660
Handling Level	1	1	1	1	1

APPENDIX E

ARAMID ALUMINUM DATA SUMMARY

Table of Contents

E.1 Properties	E.3
E.2 Strengths	E.3
E.3 Machinability	E.3
E.4 Areas of Concern	E.4
E.5 Most Likely Structural Component Uses	E.4

September 4, 1986

Preliminary Overview of Feasibility of using ARALL
as a Primary Component of Aircraft Structures

ARALL - Aramid Aluminum Laminate, based upon an August 1983 report.

E.1 PROPERTIES:

	<u>2024T3</u>	<u>7075T6</u>	<u>ARALL*</u>
.2% Yield Stress (KSI)	52	70	77
Ultimate Tensile Stress (KSI)	68	81	114
Proportional Limit Comp. (KSI)	39	70	47
Youngs Modulus (KSI)	10440	10440	9135
Failure Strain %	17	11	3.5
Specific Weight	2.8	2.8	2.45
Density lb/ft ³	174.8	174.8	152.95

*ARALL 7075-T6 sheets with intermediate modulus fibers and pre-strained.

E.2 STRENGTHS:

High static strength particularly in tensile yield stress.

High fatigue resistance, in fact it is almost fatigue insensitive, with a life cycle of a factor of ten(10) times more testing cycles.

Better corrosion resistance, including the bondline when pretreated.

Delamination under heavy loads and corrosive environment is no problem.

Quality control by C-scan and Fokker bond tester easily detected delamination and voids.

E.3 MACHINABILITY:

Easily cut, drilled, sawn and milled by normal workshop procedures.

Countersinking is possible with conventional rivets. Briles rivets are ideal for thin skin installation.

Adhesive bonding with pretreatment and high temperature curing is allowable.

This material can also be bolted.

Plastic sheet bending is possible, including fabrication of stiffeners and limited double curvature bending.

E.4 AREAS OF CONCERN:

Prestressing of fibers, a technique to obtain better compressive properties, is "rather expensive".

Strength decreases with moisture absorption. Stiffness is not significantly affected.

Notched fracture toughness is comparable or worse than Al alloy. (Intermediate modulus fibers had best properties when notched)

Low fracture toughness when through the thickness damage(cut fibers) occurred.

Although it had far superior fracture toughness with the fibers intact. This is offset by whether such accidental damage will ever occur.

Avoid peel forces higher than 0.146 psf.

E.5 MOST LIKELY STRUCTURAL COMPONENT USES:

Where panel loading is above 6.27 psf, probably in lower skin of wing

cylindrical part of pressure cabin

Lower Wing: Changes from fatigue critical to mainly critical in compression(negative gust case).

Fuselage has two critical areas:

Bottom: Fatigue critical in tangential; compression critical in axial.

Crown: Fatigue critical.

Overall, where used yielded about 30 percent decrease in structural weight.

Appendix F

Calculations of stick forces and stick force gradients.

Purpose: This appendix, using the methods of Reference 10:

- a) Longitudinal stick forces
- b) Rudder pedal forces
- c) Aileron wheel force
- d) Stick force speed gradient
- e) Stick force per G gradient
- f) Rudder pedal force per sideslip gradient
- g) Control surface hinge moments

AE 790

STICK FORCE CALCS

N. RUSSELL 5/18

REFER TO SPREADSHEET:

$$R = \frac{St}{Se}$$

$$C_{hSE}(t+e) = C_{hSE} + C_{hSe} R$$

$$\alpha_{TRIM} \quad \text{Eqn. 5.134}$$

$$\delta_{o TRIM} \quad 5.135$$

$$\frac{\partial \alpha}{\partial C_L} = -\frac{C_{mSE}}{C_L a C_{mSE} - C_{ma} C_{LSSE}}$$

$$\frac{\partial \delta_e}{\partial C_L} \quad \text{Eqn. 5.46}$$

$$\alpha_{TRIM} \quad \text{Eqn. 5.132}$$

$$S_{E TRIM} \quad 5.133$$

$$C_h = C_{h\alpha} \alpha_u + C_{h\alpha} \alpha_H + C_{h\delta_e} \delta_e \quad (C_{h\theta} = 0)$$

$$SM_{FREE} \quad \text{Eqn. 5.154}$$

$$\frac{\partial F}{\partial n} \quad \text{Eqn. 5.163}$$

$$\frac{\partial F}{\partial V} \quad 5.138$$

$$F_S = G \cdot HM$$

$\Sigma N'$ in Ref. 10

A B C D E F G H

1
2 25 Pax Stick Force Calculations
3

	F.C. 1	F.C. 2	F.C. 3	F.C. 4
	Fwd c.g. Cruise	Fwd c.g. Vmc	Aft c.g. Cruise	Aft c.g. Vmc
h (ft)	30000	0	30000	0
density (slugs/ft ³)	8.893e-4	2.377e-3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696.3	207.5
q-bar (psf)	215.58	51.17	215.58	51.17
X-bar-AC	.369	.376	.369	.376
X-bar-cg	.145	.145	.280	.280

16 Geometries, Inertias
17

S (ft ²)	592	592	592	592
b (ft)	84.30	84.30	84.30	84.30
c-bar (ft)	7.45	7.45	7.45	7.45
w (lb)	24739	24739	23381	23381
Ixx (slug-ft ²)	67265	67265	102964	102964
Iyy (slug-ft ²)	130433	130433	122535	122535
Izz (slug-ft ²)	177066	177066	180634	180634
Ixz (slug-ft ²)	224	224	208	208

27 Steady State Coefficients
28

CL	.194	.817	.183	.772
CD	.014	.145	.014	.143

32 Longitudinal Derivatives
33

C-L-a-A (rad-1)	5.58	5.67	5.58	5.67
C-m-dE (rad-1)	-1.68	-1.74	-1.63	-1.68
C-L-o	.170	.170	.170	.170
C-m-o	-.014	-.004	-.014	-.004
C-L-dE (rad-1)	.420	.434	.420	.434
C-L-i-H (rad-1)	.778	.803	.778	.803
C-m-i-H (rad-1)	-3.117	-3.216	-3.012	-3.107
C-m-alpha (rad-1)	-1.251	-1.308	-.498	-.543
C-m-q (rad-1)	-27.470	-28.340	-25.640	-26.460
	FC 1	FC 2	FC 3	FC 4

44 Lateral-Directional Derivatives
45

C-n-Beta (rad-1)	.045	.078	.045	.078
C-l-p	-.715	-.582	-.715	-.582
C-l-dA (rad-1)	.553	.455	.553	.455
C-n-dR (rad-1)	.085	.079	.085	.079

50
51

52
 53 Longitudinal Stick Force Calculations
 54
 55 >> Eta-H 1.00 1.00 1.00 1.00
 56 >> Gearing Ratio (rad/ft) .72 .72 .72 .72
 57 >> S-Elev. (ft2) 42.00 42.00 42.00 42.00
 58 >> C-Elev. (ft) 1.640 1.640 1.640 1.640
 59 >> C-h-dE (rad-1) -.469 -.323 -.469 -.323
 60 >> ~~dE (deg)~~ ~~-2.80~~ ~~5.75~~ ~~9.60~~ ~~2.00~~
 61 >> C-h-d-tab (rad-1) -1.022 -1.033 -1.022 -1.033
 62 >> ~~d-tab (deg)~~ ~~7.00~~ ~~.00~~ ~~6.70~~ ~~00~~
 63 >> S-tab (ft2) 7.000 7.000 7.000 7.000
 64 >> C-tab (ft) .570 .570 .570 .570
 65 >> C-h-alpha (rad-1) -.263 -.177 -.263 -.177
 66 >> l-H (ft) 29.84 29.84 28.83 28.83
 67 >> Tau-E .540 .540 .540 .540
 68 >> i-H (rad) .014 .014 .014 .014
 69 >> dE/da .254 .254 .254 .254
 70 >> n/alpha (g/rad) 28.79 6.83 30.46 7.23
 71 >> n-Limit 2.50 2.50 2.50 2.50
 72
 73 >> R (d-tab / d-elev.) .00 .00 .00 .00
 74 >> C-h-dE (tab + elev.) -.4690 -.3230 -.4690 -.3230
 75
 76 alpha-o-trim (rad) -.032 -.032 -.031 -.031
 77 delta-o-trim (rad) -.011 -.004 -.025 -.018
 78
 79 d-alpha/dCL .190 .187 .183 .181
 80 d-dE/dCL -.141 -.141 -.056 -.059
 81
 82 alpha-trim (rad) .005 .121 .003 .109
 83 del-E-trim (rad) -.038 -.120 -.035 -.064
 84
 85 >> Load Factor (g's) 1.00 1.00 1.00 1.00
 86 d-delE/dV (rad/fps) 7.86e-5 1.11e-3 2.96e-5 4.353e-4
 87 d-delE/dn (rad/g) -.036 -.212 -.018 -.135
 88
 89 c-h .0165 .0172 .0158 .0012
 90
 91 S.M.(FREE) .098 .106 -.033 -.025
 92
 93 dF/dn (lbs/g) 69.31 64.66 -6.20 13.63
 94
 95 dF/dn MIN 23.33 23.33 23.33 23.33
 96 dF/dn MAX 80.00 80.00 80.00 80.00
 97
 98 Passes MIL-F-8785C yes yes no no
 99
 100 dF/dV (lbs/knot) .232 .076 .434 .184
 101
 102 F-S (lbs) 176.48 43.56 169.27 3.15

	A	B	C	D	E	F	G	H
73	>>	R (d-tab / d-elev.)			1.00	1.00	1.00	1.00
74		C-h-dE (tab + elev.)			-1.4910	-1.3560	-1.4910	-1.3560
75								
76		alpha-o-trim (rad)			-.032	-.032	-.031	-.031
77		delta-o-trim (rad)			-.011	-.004	-.025	-.018
78								
79		d-alpha/dCL			.190	.187	.183	.181
80		d-dE/dCL			-.141	-.141	-.056	-.059
81								
82		alpha-trim (rad)			.005	.121	.003	.109
83		del-E-trim (rad)			-.038	-.120	-.035	-.064
84								
85	>>	Load Factor (g's)			1.00	1.00	1.00	1.00
86		d-delE/dV (rad/fps)			7.86e-5	1.11e-3	2.96e-5	4.353e-4
87		d-delE/dn (rad/g)			-.036	-.212	-.018	-.135
88								
89		c-h			.0554	.1407	.0521	.0669
90								
91		S.M.(FREE)			.184	.201	.051	.067
92								
93		dF/dn (1bs/g)			391.32	457.87	142.11	234.05
94								
95		dF/dn MIN			23.33	23.33	23.33	23.33
96		dF/dn MAX			80.00	80.00	80.00	80.00
97								
98		Passes MIL-F-8785C			no	no	no	no
99								
100		dF/dV (1bs/knot)			.570	.188	1.224	.649
101								
102		F-S (1bs)			592.84	357.02	557.05	169.84

	A	B	C	D	E	F	G	H
73	>>	R (d-tab / d-elev.)			.50	.50	.50	.50
74		C-h-dE (tab + elev.)			-.9800	-.8395	-.9800	-.8395
75								
76		alpha-o-trim (rad)			-.032	-.032	-.031	-.031
77		delta-o-trim (rad)			-.011	-.004	-.025	-.018
78								
79		d-alpha/dCL			.190	.187	.183	.181
80		d-dE/dCL			-.141	-.141	-.056	-.059
81								
82		alpha-trim (rad)			.005	.121	.003	.109
83		del-E-trim (rad)			-.038	-.120	-.035	-.064
84								
85	>>	Load Factor (g's)			1.00	1.00	1.00	1.00
86		d-delE/dV (rad/fps)			7.86e-5	1.11e-3	2.96e-5	4.353e-4
87		d-delE/dn (rad/g)			-.036	-.212	-.018	-.135
88								
89		c-h			.0360	.0789	.0340	.0341
90								
91		S.M.(FREE)			.164	.183	.031	.049
92								
93		dF/dn (1bs/g)			230.32	261.27	67.95	123.84
94								
95		dF/dn MIN			23.33	23.33	23.33	23.33
96		dF/dn MAX			80.00	80.00	80.00	80.00
97								
98		Passes MIL-F-8785C			no	no	yes	no
99								
100		dF/dV (1bs/knot)			.401	.132	.829	.416
101								
102		F-S (1bs)			384.66	200.29	363.16	86.50

73	$\Delta > R \frac{\partial \text{tab}}{\partial \text{elev.}}^D$	E	-.50	F	-.50	G	-.50	H	-.50
74	C-h-dE (tab + elev.)		.0420		.1935		.0420		.1935
75									
76	alpha-o-trim (rad)		-.032		-.032		-.031		-.031
77	delta-o-trim (rad)		-.011		-.004		-.025		-.018
78									
79	d-alpha/dCL		.190		.187		.183		.181
80	d-dE/dCL		-.141		-.141		-.056		-.059
81									
82	alpha-trim (rad)		.005		.121		.003		.109
83	del-E-trim (rad)		-.038		-.120		-.035		-.064
84									
85	$\Delta > \text{Load Factor (g's)}$		1.00		1.00		1.00		1.00
86	d-delE/dV (rad/fps)		7.86e-5		1.11e-3		2.96e-5		4.353e-4
87	d-delE/dn (rad/g)		-.036		-.212		-.018		-.135
88									
89	c-h		-.0030		-.0446		-.0023		-.0316
90									
91	S.M. (FREE)		1.633		.440		1.450		.298
92									
93	dF/dn (lbs/g)		-91.69		-131.94		-80.36		-96.59
94									
95	dF/dn MIN		23.33		23.33		23.33		23.33
96	dF/dn MAX		80.00		80.00		80.00		80.00
97									
98	Passes MIL-F-8785C		no		no		no		no
99									
100	dF/dV (lbs/knot)		.064		.021		.038		-.049
101									
102	F-S (lbs)		-31.70		-113.16		-24.61		-80.20

	A	B	C	D	E	F	G	H
73	>>	R (d-tab / d-elev.)			-1.00	-1.00	-1.00	-1.00
74		C-h-dE (tab + elev.)			.5530	.7100	.5530	.7100
75								
76		alpha-o-trim (rad)			-.032	-.032	-.031	-.031
77		delta-o-trim (rad)			-.011	-.004	-.025	-.018
78								
79		d-alpha/dCL			.190	.187	.183	.181
80		d-dE/dCL			-.141	-.141	-.056	-.059
81								
82		alpha-trim (rad)			.005	.121	.003	.109
83		del-E-trim (rad)			-.038	-.120	-.035	-.064
84								
85	>>	Load Factor (g's)			1.00	1.00	1.00	1.00
86		d-delE/dV (rad/fps)			7.86e-5	1.11e-3	2.96e-5	4.353e-4
87		d-delE/dn (rad/g)			-.036	-.212	-.018	-.135
88								
89		c-h			-.0224	-.1063	-.0204	-.0644
90								
91		S.M.(FREE)			.331	.288	.192	.151
92								
93		dF/dn (1bs/g)			-252.69	-328.55	-154.52	-206.80
94								
95		dF/dn MIN			23.33	23.33	23.33	23.33
96		dF/dn MAX			80.00	80.00	80.00	80.00
97								
98		Passes MIL-F-8785C			no	no	no	no
99								
100		dF/dV (1bs/knot)			-.105	-.035	-.357	-.282
101								
102		F-S (1bs)			-239.88	-269.89	-218.50	-163.54

A B C D E F G H

36 Pax Stick Force Calculations

=====

F.C. 1 F.C. 2 F.C. 3 F.C. 4

	Fwd c.g. Cruise	Fwd c.g. Vmc	Aft c.g. Cruise	Aft c.g. Vmc
--	--------------------	-----------------	--------------------	-----------------

h (ft)	30000	0	30000	0
density (slugs/ft ³)	8.893e-4	2.377e-3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696.3	207.5
q-bar (psf)	215.58	51.17	215.58	51.17
X-bar-AC	.454	.454	.454	.454
X-bar-cg	.267	.267	.385	.385

Geometries, Inertias

S (ft ²)	592	592	592	592
b (ft)	84.30	84.30	84.30	84.30
c-bar (ft)	7.45	7.45	7.45	7.45
W (lb)	30334	30334	28574	28574
Ixx (slug-ft ²)	70773	70773	124022	124022
Iyy (slug-ft ²)	235569	235569	209114	109114
Izz (slug-ft ²)	284424	284424	310361	310361

Steady State Coefficients

CL	.238	1.001	.224	.943
CD	.0177	.1690	.0175	.1690

Longitudinal Derivatives

C-L-a-A (rad-1)	5.58	5.67	5.58	5.67
C-m-dE (rad-1)	-1.85	-1.91	-1.80	-1.86
C-L-o	.170	.170	.170	.170
C-m-o	-.006	.005	-.006	.005
C-L-dE (rad-1)	.420	.434	.420	.434
C-L-i-H (rad-1)	.778	.803	.778	.803
C-m-i-H (rad-1)	-3.431	-3.540	-3.340	-3.445
C-m-alpha (rad-1)	-1.041	-1.098	-.383	-.429
C-m-q (rad-1)	-33.485	-34.540	-31.650	-32.650
	FC 1	FC 2	FC 3	FC 4

Lateral-Directional Derivatives

C-n-Beta (rad-1)	.118	.153	.118	.153
C-l-p	-.715	-.582	-.715	-.582
C-l-dA (rad-1)	.553	.455	.553	.455
C-n-dR (rad-1)	.088	.100	.088	.100

3 Longitudinal Stick Force Calculations

5	>> Eta-H	1.00	1.00	1.00	1.00
6	>> Gearing Ratio (rad/ft)	.72	.72	.72	.72
7	>> S-Elev. (ft2)	42.00	42.00	42.00	42.00
8	>> C-Elev. (ft)	1.640	1.640	1.640	1.640
9	>> C-h-dE (rad-1)	-.469	-.323	-.469	-.323
10					
11	>> C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
12					
13	>> S-tab (ft2)	7.000	7.000	7.000	7.000
14	>> C-tab (ft)	.570	.570	.570	.570
15	>> C-h-alpha (rad-1)	-.263	-.177	-.263	-.177
16	>> l-H (ft)	32.85	32.85	31.97	32.85
17	>> Tau-E	.54	.54	.54	.54
18	>> i-H (deg)	.00	.00	.00	.00
19	dE/da	.254	.254	.254	.254
20	>> n/alpha (g/rad)	23.48	5.57	24.92	5.92
21	n-Limit	2.50	2.50	2.50	2.50
22					
23	>> R (d-tab / d-elev.)	.00	.00	.00	.00
24	C-h-dE (tab + elev.)	-.4690	-.3230	-.4690	-.3230
25					
26	alpha-o-trim (rad)	-.032	-.032	-.031	-.031
27	delta-o-trim (rad)	.014	.021	.003	.010
28					
29	d-alpha/dCL	.187	.184	.182	.180
30	d-dE/dCL	-.105	-.106	-.039	-.041
31					
32	alpha-trim (rad)	.013	.153	.010	.139
33	del-E-trim (rad)	-.010	-.085	-.005	-.029
34					
35	>> Load Factor (g's)	1.00	1.00	1.00	1.00
36	d-delE/dV (rad/fps)	7.18e-5	1.0224e-3	2.49e-5	3.765e-4
37	d-delE/dn (rad/g)	-.034	-.211	-.017	-.139
38					
39	c-h	.0015	.0005	-.0001	-.0151
40					
41	S.M. (FREE)	.048	.049	-.066	-.065
42					
43	dF/dn (lbs/g)	45.03	47.36	-27.47	-.81
44					
45	dF/dn MIN	23.33	23.33	23.33	23.33
46	dF/dn MAX	80.00	89.77	80.00	84.53
47					
48	Passes MIL-F-8785C	yes	yes	no	no
49					
50	dF/dV (lbs/knot)	-.019	-.062	.139	.022
51					
52	F-S (lbs)	16.30	1.16	-.91	-38.26

A	B	C	D	E	F	G	H
53 Longitudinal Stick Force Calculations							
54	55	56	57	58	59	60	61
55	56	57	58	59	60	61	62
56	57	58	59	60	61	62	63
57	58	59	60	61	62	63	64
58	59	60	61	62	63	64	65
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
53	54	55	56	57	58	59	60
55	56	57	58	59	60	61	62
56	57	58	59	60	61	62	63
57	58	59	60	61	62	63	64
58	59	60	61	62	63	64	65
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102
96	97	98	99	100	101	102	

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
>>	Eta-H			1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)			.72	.72	.72	.72
>>	S-Elev. (ft2)			42.00	42.00	42.00	42.00
>>	C-Elev. (ft)			1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)			-.469	-.323	-.469	-.323
>>	C-h-d-tab (rad-1)			-1.022	-1.033	-1.022	-1.033
>>	S-tab (ft2)			7.000	7.000	7.000	7.000
>>	C-tab (ft)			.570	.570	.570	.570
>>	C-h-alpha (rad-1)			-.263	-.177	-.263	-.177
>>	I-H (ft)			32.85	32.85	31.97	32.85
>>	Tau-E			.54	.54	.54	.54
>>	i-H (deg)			.00	.00	.00	.00
	dE/da			.254	.254	.254	.254
>>	n/alpha (g/rad)			23.48	5.57	24.92	5.92
	n-Limit			2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.)			-.50	-.50	-.50	-.50
	C-h-dE (tab + elev.)			.0420	.1935	.0420	.1935
	alpha-o-trim (rad)			-.032	-.032	-.031	-.031
	delta-o-trim (rad)			.014	.021	.003	.010
	d-alpha/dCL			.187	.184	.182	.180
	d-dE/dCL			-.105	-.106	-.039	-.041
	alpha-trim (rad)			.013	.153	.010	.139
	del-E-trim (rad)			-.010	-.085	-.005	-.029
>>	Load Factor (g's)			1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)			7.18e-5	1.0224e-3	2.49e-5	3.765e-4
	d-delE/dn (rad/g)			-.034	-.211	-.017	-.139
	c-h			-.0038	-.0436	-.0029	-.0302
	S. M. (FREE)			1.739	.417	1.579	.293
	dF/dn (lbs/g)			-108.09	-140.65	-95.76	-106.30
	dF/dn MIN			23.33	23.33	23.33	23.33
	dF/dn MAX			80.00	89.77	80.00	84.53
	Passes MIL-F-8785C			no	no	no	no
	dF/dV (lbs/knot)			.209	.200	.189	.146
	F-S (lbs)			-41.05	-110.70	-30.77	-76.64

	A	B	C	D	E	F	G	H
53		Longitudinal Stick Force Calculations						
54								
55	>>	Eta-H		1.00	1.00	1.00	1.00	
56	>>	Gearing Ratio (rad/ft)		.72	.72	.72	.72	
57	>>	S-Elev. (ft ²)		42.00	42.00	42.00	42.00	
58	>>	C-Elev. (ft)		1.640	1.640	1.640	1.640	
59	>>	C-h-dE (rad-1)		-.469	-.323	-.469	-.323	
60								
61	>>	C-h-d-tab (rad-1)		-1.022	-1.033	-1.022	-1.033	
62								
63	>>	S-tab (ft ²)		7.000	7.000	7.000	7.000	
64	>>	C-tab (ft)		.570	.570	.570	.570	
65	>>	C-h-alpha (rad-1)		-.263	-.177	-.263	-.177	
66	>>	I-H (ft)		32.85	32.85	31.97	32.85	
67	>>	Tau-E		.54	.54	.54	.54	
68	>>	i-H (deg)		.00	.00	.00	.00	
69		dE/da		.254	.254	.254	.254	
70	>>	n/alpha (g/rad)		23.48	5.57	24.92	5.92	
71		n-Limit		2.50	2.50	2.50	2.50	
72								
73	>>	R (d-tab / d-elev.)		-1.00	-1.00	-1.00	-1.00	
74		C-h-dE (tab + elev.)		.5530	.7100	.5530	.7100	
75								
76		alpha-o-trim (rad)		-.032	-.032	-.031	-.031	
77		delta-o-trim (rad)		.014	.021	.003	.010	
78								
79		d-alpha/dCL		.187	.184	.182	.180	
80		d-dE/dCL		-.105	-.106	-.039	-.041	
81								
82		alpha-trim (rad)		.013	.153	.010	.139	
83		del-E-trim (rad)		-.010	-.085	-.005	-.029	
84								
85	>>	Load Factor (g's)		1.00	1.00	1.00	1.00	
86		d-delE/dV (rad/fps)		7.18e-5	1.0224e-3	2.49e-5	3.765e-4	
87		d-delE/dn (rad/g)		-.034	-.211	-.017	-.139	
88								
89		c-h		-.0092	-.0877	-.0057	-.0453	
90								
91		S. M. (FREE)		.305	.250	.184	.130	
92								
93		dF/dn (lbs/g)		-261.20	-328.65	-164.06	-211.80	
94								
95		dF/dn MIN		23.33	23.33	23.33	23.33	
96		dF/dn MAX		80.00	89.77	80.00	84.53	
97								
98		Passes MIL-F-8785C		no	no	no	no	
99								
100		dF/dV (lbs/knot)		.436	.462	.239	.269	
101								
102		F-S (lbs)		-98.40	-222.55	-60.64	-115.03	

A B C D E F G H

50 Pax Stick Force Calculations

=====

	F.C. 1	F.C. 2	F.C. 3	F.C. 4
--	--------	--------	--------	--------

	Fwd c.g. Cruise	Fwd c.g. Vmc	Aft c.g. Cruise	Aft c.g. Vmc
--	--------------------	-----------------	--------------------	-----------------

h (ft)	30000	0	30000	0
density (slugs/ft ³)	8.893e-4	2.377e-3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696.3	207.5
q-bar (psf)	215.58	51.17	215.58	51.17
X-bar-AC	.664	.673	.664	.673
X-bar-cg	.530	.530	.603	.603

Geometries, Inertias

S (ft ²)	592	592	592	592
b (ft)	84.30	84.30	84.30	84.30
c-bar (ft)	7.45	7.45	7.45	7.45
W (lb)	43141	43141	25978	25978
Ixx (slug-ft ²)	141865	141865	73363	73363
Iyy (slug-ft ²)	465510	465510	408670	408670
Izz (slug-ft ²)	580046	580046	457113	457113

Steady State Coefficients

CL	.338	1.424	.204	.858
CD	.0191	.2029	.0169	.2029

Longitudinal Derivatives

C-L-a-A (rad-1)	5.58	5.67	5.58	5.67
C-m-dE (rad-1)	-2.32	-2.39	-2.29	-2.36
C-L-o	.170	.170	.170	.170
C-m-o	.017	.028	.017	.028
C-L-dE (rad-1)	.420	.434	.420	.434
C-L-i-H (rad-1)	.778	.803	.778	.803
C-m-i-H (rad-1)	-4.288	-4.424	-4.231	-4.365
C-m-alpha (rad-1)	-.749	-.808	-.341	-.395
C-m-q (rad-1)	-53.652	-55.310	-52.137	-53.747
	FC 1	FC 2	FC 3	FC 4

Lateral-Directional Derivatives

C-n-Beta (rad-1)	.197	.237	.197	.237
C-l-p	-.715	-.582	-.715	-.582
C-l-dA (rad-1)	.553	.455	.553	.455
C-n-dR (rad-1)	.116	.129	.116	.129

Longitudinal Stick Force Calculations

>> Eta-H	1.00	1.00	1.00	1.00
>> Gearing Ratio (rad/ft)	.72	.72	.72	.72
>> S-Elev. (ft2)	42.00	42.00	42.00	42.00
>> C-Elev. (ft)	1.640	1.640	1.640	1.640
>> C-h-dE (rad-1)	-.469	-.323	-.469	-.323
>> C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>> S-tab (ft2)	7.000	7.000	7.000	7.000
>> C-tab (ft)	.570	.570	.570	.570
>> C-h-alpha (rad-1)	-.263	-.177	-.263	-.177
>> l-H (ft)	41.05	41.05	40.50	41.05
>> Tau-E	.54	.54	.54	.54
>> i-H (deg)	.00	.00	.00	.00
dE/da	.254	.254	.254	.254
>> n/alpha (g/rad)	16.51	3.92	27.41	6.51
n-Limit	2.50	2.50	2.50	2.50
>> R (d-tab / d-elev.)	.00	.00	.00	.00
C-h-dE (tab + elev.)	-.4690	-.3230	-.4690	-.3230
alpha-o-trim (rad)	-.032	-.032	-.031	-.031
delta-o-trim (rad)	.018	.022	.012	.017
d-alpha/dCL	.184	.181	.181	.179
d-dE/dCL	-.059	-.061	-.027	-.030
alpha-trim (rad)	.030	.226	.006	.122
del-E-trim (rad)	-.002	-.065	.007	-.009
>> Load Factor (g's)	1.00	1.00	1.00	1.00
d-delE/dV (rad/fps)	5.77e-5	8.405e-4	1.58e-5	2.475e-4
d-delE/dn (rad/g)	-.032	-.220	-.017	-.154
c-h	-.0068	-.0191	-.0046	-.0188
S. M. (FREE)	-.040	-.029	-.110	-.100
dF/dn (lbs/g)	-11.38	18.52	-31.87	3.01
dF/dn MIN	23.33	23.33	23.33	23.33
dF/dn MAX	80.00	120.00	80.00	80.00
Passes MIL-F-8785C	no	no	no	no
dF/dV (lbs/knot)	-.062	-.075	.014	-.034
F-S (lbs)	-72.87	-48.49	-48.69	-47.75

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
>>	Eta-H		1.00	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)		.72	.72	.72	.72	.72
>>	S-Elev. (ft2)		42.00	42.00	42.00	42.00	42.00
>>	C-Elev. (ft)		1.640	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)		-.469	-.323	-.469	-.323	-.323
>>	C-h-d-tab (rad-1)		-1.022	-1.033	-1.022	-1.033	-1.033
>>	S-tab (ft2)		7.000	7.000	7.000	7.000	7.000
>>	C-tab (ft)		.570	.570	.570	.570	.570
>>	C-h-alpha (rad-1)		-.263	-.177	-.263	-.177	-.177
>>	I-H (ft)		41.05	41.05	40.50	41.05	41.05
>>	Tau-E		.54	.54	.54	.54	.54
>>	i-H (deg)		.00	.00	.00	.00	.00
	dE/da		.254	.254	.254	.254	.254
>>	n/alpha (g/rad)		16.51	3.92	27.41	6.51	6.51
	n-Limit		2.50	2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.)		1.00	1.00	1.00	1.00	1.00
	C-h-dE (tab + elev.)		-1.4910	-1.3560	-1.4910	-1.3560	-1.3560
	alpha-o-trim (rad)		-.032	-.032	-.031	-.031	-.031
	delta-o-trim (rad)		.018	.022	.012	.012	.017
	d-alpha/dCL		.184	.181	.181	.181	.179
	d-dE/dCL		-.059	-.061	-.027	-.027	-.030
	alpha-trim (rad)		.030	.226	.006	.122	.122
	del-E-trim (rad)		-.002	-.065	.007	.007	-.009
>>	Load Factor (g's)		1.00	1.00	1.00	1.00	1.00
	d-delE/dV (rad/fps)		5.77e-5	8.405e-4	1.58e-5	2.475e-4	2.475e-4
	d-delE/dn (rad/g)		-.032	-.220	-.017	-.017	-.154
	c-h		-.0043	.0478	-.0113	-.0100	-.0100
	S. M. (FREE)		.079	.102	.007	.030	.030
	dF/dn (lbs/g)		257.49	391.03	81.93	218.81	218.81
	dF/dn MIN		23.33	23.33	23.33	23.33	23.33
	dF/dn MAX		80.00	120.00	80.00	80.00	80.00
	Passes MIL-F-8785C		no	no	no	no	no
	dF/dV (lbs/knot)		-.615	-.642	-.366	-.467	-.467
	F-S (lbs)		-45.99	121.29	-120.99	-25.33	-25.33

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
53	54	55	56	57	58	59	60
55	56	57	58	59	60	61	62
56	57	58	59	60	61	62	63
57	58	59	60	61	62	63	64
58	59	60	61	62	63	64	65
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102
96	97	98	99	100	101	102	
97	98	99	100	101	102		
98	99	100	101	102			
99	100	101	102				
100	101	102					
101	102						
102							

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
>>	Eta-H		1.00	1.00	1.00	1.00	1.00
>>	Gearing Ratio (rad/ft)		.72	.72	.72	.72	.72
>>	S-Elev. (ft2)		42.00	42.00	42.00	42.00	42.00
>>	C-Elev. (ft)		1.640	1.640	1.640	1.640	1.640
>>	C-h-dE (rad-1)		-.469	-.323	-.469	-.323	-.323
>>	C-h-d-tab (rad-1)		-1.022	-1.033	-1.022	-1.033	-1.033
>>	S-tab (ft2)		7.000	7.000	7.000	7.000	7.000
>>	C-tab (ft)		.570	.570	.570	.570	.570
>>	C-h-alpha (rad-1)		-.263	-.177	-.263	-.177	-.177
>>	I-H (ft)		41.05	41.05	40.50	41.05	41.05
>>	Tau-E		.54	.54	.54	.54	.54
>>	i-H (deg)		.00	.00	.00	.00	.00
	dE/dα		.254	.254	.254	.254	.254
>>	n/α (g/rad)		16.51	3.92	27.41	6.51	6.51
	n-Limit		2.50	2.50	2.50	2.50	2.50
>>	R (d-tab / d-elev.)		-.50	-.50	-.50	-.50	-.50
	C-h-dE (tab + elev.)		.0420	.1935	.0420	.1935	.1935
	α-0-trim (rad)		-.032	-.032	-.031	-.031	-.031
	δ-0-trim (rad)		.018	.022	.012	.017	.017
	d-α/dCL		.184	.181	.181	.179	.179
	d-dE/dCL		-.059	-.061	-.027	-.030	-.030
	α-trim (rad)		.030	.226	.006	.122	.122
	δ-E-trim (rad)		-.002	-.065	.007	-.009	-.009
>>	Load Factor (g's)		1.00	1.00	1.00	1.00	1.00
	d-δE/dV (rad/fps)		5.77e-5	8.405e-4	1.58e-5	2.475e-4	2.475e-4
	d-δE/dn (rad/g)		-.032	-.220	-.017	-.154	-.154
	c-h		-.0081	-.0526	-.0012	-.0232	-.0232
	S. M. (FREE)		2.073	.431	1.974	.354	.354
	dF/dn (lbs/g)		-145.81	-167.73	-88.77	-104.89	-104.89
	dF/dn MIN		23.33	23.33	23.33	23.33	23.33
	dF/dn MAX		80.00	120.00	80.00	80.00	80.00
	Passes MIL-F-8785C		no	no	no	no	no
	dF/dV (lbs/knot)		.214	.209	.205	.182	.182
	F-S (lbs)		-86.31	-133.38	-12.54	-58.96	-58.96

A	B	C	D	E	F	G	H
53 Longitudinal Stick Force Calculations							
54	55	56	57	58	59	60	61
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102
96	97	98	99	100	101	102	

A	B	C	D	E	F	G	H
---	---	---	---	---	---	---	---

5/21/1987

75 Pax Baseline Stick Force Calculations

=====

F.C. 1	F.C. 2	F.C. 3	F.C. 4
--------	--------	--------	--------

Fwd c.g. Cruise	Fwd c.g. Vmc	Aft c.g. Cruise	Aft c.g. Vmc
--------------------	-----------------	--------------------	-----------------

h (ft)	30000	0	30000	0
density (slugs/ft ³)	8.893e-4	2.377e-3	8.893e-4	2.377e-3
V (fps)	696.3	207.5	696.3	207.5
$q\bar{}$ (psf)	215.58	51.17	215.58	51.17
$X\bar{}$ -AC	.821	.813	.821	.813
$X\bar{}$ -cg	.602	.602	.769	.769

Geometries, Inertias

S (ft ²)	1182	1182	1182	1182
b (ft)	132.50	132.50	132.50	132.50
$c\bar{}$ (ft)	8.97	8.97	8.97	8.97
W (lb)	71419	71419	44804	44804
I_{xx} (slug-ft ²)	1355496	1355496	761328	761328
I_{yy} (slug-ft ²)	505928	505928	441252	441252
I_{zz} (slug-ft ²)	1779110	1779110	1125135	1125135

Steady State Coefficients

CL	.280	1.181	.176	.741
CD	.016	.224	.015	.223

Longitudinal Derivatives

C-L-a-A (rad-1)	6.53	6.60	6.53	6.60
C-m-dE (rad-1)	-3.41	-3.42	-3.26	-3.26
C-L-o	.170	.170	.170	.170
C-m-o	.081	.090	.081	.090
C-L-dE (rad-1)	.927	.928	.927	.928
C-L-i-H (rad-1)	1.716	1.718	1.716	1.718
C-m-i-H (rad-1)	-6.317	-6.324	-6.031	-6.037
C-m-alpha (rad-1)	-1.430	-1.394	-.339	-.292
C-m-q (rad-1)	-51.250	-51.308	-46.651	-46.704
	FC 1	FC 2	FC 3	FC 4

Lateral-Directional Derivatives

C-n-Beta (rad-1)	.034	.055	.034	.055
C-l-p	-.792	-.632	-.792	-.632
C-l-dA (rad-1)	.608	.443	.608	.443
C-n-dR (rad-1)	.053	.060	.053	.060

3
4 Longitudinal Stick Force Calculations

5	54	55	56	57	58
5	59	60	61	62	63
6	64	65	66	67	68
7	68	69	70	71	72
8	71	72	73	74	75
9	74	75	76	77	78
0	77	78	79	79	80
1	79	80	81	81	82
2	81	82	83	83	84
3	83	84	85	85	86
4	85	86	87	87	88
5	87	88	89	89	90
6	89	90	91	91	92
7	91	92	93	93	94
8	93	94	95	95	96
9	95	96	97	97	98
0	97	98	99	99	100
1	99	100	101	101	102
2	101	102			

55	56	57	58	59
56	57	58	59	60
57	58	59	60	61
58	59	60	61	62
59	60	61	62	63
60	61	62	63	64
61	62	63	64	65
62	63	64	65	66
63	64	65	66	67
64	65	66	67	68
65	66	67	68	69
66	67	68	69	70
67	68	69	70	71
68	69	70	71	72
69	70	71	72	73
70	71	72	73	74
71	72	73	74	75
72	73	74	75	76
73	74	75	76	77
74	75	76	77	78
75	76	77	78	79
76	77	78	79	80
77	78	79	80	81
78	79	80	81	82
79	80	81	82	83
80	81	82	83	84
81	82	83	84	85
82	83	84	85	86
83	84	85	86	87
84	85	86	87	88
85	86	87	88	89
86	87	88	89	90
87	88	89	90	91
88	89	90	91	92
89	90	91	92	93
90	91	92	93	94
91	92	93	94	95
92	93	94	95	96
93	94	95	96	97
94	95	96	97	98
95	96	97	98	99
96	97	98	99	100
97	98	99	100	101
98	99	100	101	102
99	100	101	102	

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
>> Eta-H			1.00	1.00	1.00	1.00	
>> Gearing Ratio (rad/ft)			.72	.72	.72	.72	
>> S-Elev. (ft ²)			143.50	143.50	143.50	143.50	
>> C-Elev. (ft)			1.640	1.640	1.640	1.640	
>> C-h-dE (rad-1)			-.598	-.422	-.598	-.422	
>> C-h-d-tab (rad-1)			-1.022	-1.033	-1.022	-1.033	
>> S-tab (ft ²)			7.000	7.000	7.000	7.000	
>> C-tab (ft)			.570	.570	.570	.570	
>> C-h-alpha (rad-1)			-.346	-.241	-.346	-.241	
>> l-H (ft)			33.02	33.02	31.52	31.52	
>> Tau-E			.54	.54	.54	.54	
>> i-H (deg)			.00	.00	.00	.00	
dE/da			.214	.214	.214	.214	
>> n/alpha (g/rad)			23.32	5.53	37.17	8.82	
n-Limit			2.50	2.50	2.50	2.50	
>> R (d-tab / d-elev.)			.00	.00	.00	.00	
C-h-dE (tab + elev.)			-.5980	-.4220	-.5980	-.4220	
alpha-o-trim (rad)			-.031	-.031	-.030	-.030	
delta-o-trim (rad)			.037	.039	.028	.030	
d-alpha/dCL			.163	.161	.155	.154	
d-dE/dCL			-.068	-.066	-.016	-.014	
alpha-trim (rad)			.014	.159	-.003	.084	
del-E-trim (rad)			.018	-.038	.025	.020	
>> Load Factor (g's)			1.00	1.00	1.00	1.00	
d-delE/dV (rad/fps)			5.49e-5	7.472e-4	8.2e-6	9.82e-5	
d-delE/dn (rad/g)			-.029	-.184	-.012	-.108	
c-h			-.0156	-.0220	-.0141	-.0287	
S. M. (FREE)			-.018	-.021	-.175	-.178	
dF/dn (lbs/g)			27.95	88.65	-147.76	-37.40	
dF/dn MIN			23.33	23.33	23.33	23.33	
dF/dn MAX			80.00	90.42	80.00	80.00	
Passes MIL-F-8785C			yes	yes	no	no	
dF/dV (lbs/knot)			-1.420	-.885	-.901	-.593	
F-S (lbs)			-568.73	-190.99	-515.68	-248.49	

A	B	C	D	E	F	G	H
53	Longitudinal Stick Force Calculations						
54							
55	>> Eta-H		1.00	1.00	1.00	1.00	
56	>> Gearing Ratio (rad/ft)		.72	.72	.72	.72	
57	>> S-Elev. (ft2)		143.50	143.50	143.50	143.50	
58	>> C-Elev. (ft)		1.640	1.640	1.640	1.640	
59	>> C-h-dE (rad-1)		-.598	-.422	-.598	-.422	
60							
61	>> C-h-d-tab (rad-1)		-1.022	-1.033	-1.022	-1.033	
62							
63	>> S-tab (ft2)		7.000	7.000	7.000	7.000	
64	>> C-tab (ft)		.570	.570	.570	.570	
65	>> C-h-alpha (rad-1)		-.346	-.241	-.346	-.241	
66	>> l-H (ft)		33.02	33.02	31.52	31.52	
67	>> Tau-E		.54	.54	.54	.54	
68	>> i-H (deg)		.00	.00	.00	.00	
69	dE/da		.214	.214	.214	.214	
70	>> n/alpha (g/rad)		23.32	5.53	37.17	8.82	
71	n-Limit		2.50	2.50	2.50	2.50	
72							
73	>> R (d-tab / d-elev.)		1.00	1.00	1.00	1.00	
74	C-h-dE (tab + elev.)		-1.6200	-1.4550	-1.6200	-1.4550	
75							
76	alpha-o-trim (rad)		-.031	-.031	-.030	-.030	
77	delta-o-trim (rad)		.037	.039	.028	.030	
78							
79	d-alpha/dCL		.163	.161	.155	.154	
80	d-dE/dCL		-.068	-.066	-.016	-.014	
81							
82	alpha-trim (rad)		.014	.159	-.003	.084	
83	del-E-trim (rad)		.018	-.038	.025	.020	
84							
85	>> Load Factor (g's)		1.00	1.00	1.00	1.00	
86	d-delE/dV (rad/fps)		5.49e-5	7.472e-4	8.2e-6	9.82e-5	
87	d-delE/dn (rad/g)		-.029	-.184	-.012	-.108	
88							
89	c-h		-.0337	.0176	-.0398	-.0494	
90							
91	S. M. (FREE)		.131	.144	-.032	-.020	
92							
93	dF/dn (lbs/g)		851.36	1151.72	101.79	443.15	
94							
95	dF/dn MIN		23.33	23.33	23.33	23.33	
96	dF/dn MAX		80.00	90.42	80.00	80.00	
97							
98	Passes MIL-F-8785C		no	no	no	no	
99							
100	dF/dV (lbs/knot)		-5.371	-4.262	-3.904	-3.209	
101							
102	F-S (lbs)		-1230.47	152.99	-1454.82	-428.62	

A	B	C	D	E	F	G	H
53	Longitudinal Stick Force Calculations						
54							
55	>> Eta-H		1.00	1.00	1.00	1.00	
56	>> Gearing Ratio (rad/ft)		.72	.72	.72	.72	
57	>> S-Elev. (ft ²)		143.50	143.50	143.50	143.50	
58	>> C-Elev. (ft)		1.640	1.640	1.640	1.640	
59	>> C-h-dE (rad-1)		-.598	-.422	-.598	-.422	
60							
61	>> C-h-d-tab (rad-1)		-1.022	-1.033	-1.022	-1.033	
62							
63	>> S-tab (ft ²)		7.000	7.000	7.000	7.000	
64	>> C-tab (ft)		.570	.570	.570	.570	
65	>> C-h-alpha (rad-1)		-.346	-.241	-.346	-.241	
66	>> I-H (ft)		33.02	33.02	31.52	31.52	
67	>> Tau-E		.54	.54	.54	.54	
68	>> i-H (deg)		.00	.00	.00	.00	
69	dE/da		.214	.214	.214	.214	
70	>> n/alpha (g/rad)		23.32	5.53	37.17	8.82	
71	n-Limit		2.50	2.50	2.50	2.50	
72							
73	>> R (d-tab / d-elev.)		.50	.50	.50	.50	
74	C-h-dE (tab + elev.)		-1.1090	-.9385	-1.1090	-.9385	
75							
76	alpha-o-trim (rad)		-.031	-.031	-.030	-.030	
77	delta-o-trim (rad)		.037	.039	.028	.030	
78							
79	d-alpha/dCL		.163	.161	.155	.154	
80	d-dE/dCL		-.068	-.066	-.016	-.014	
81							
82	alpha-trim (rad)		.014	.159	-.003	.084	
83	del-E-trim (rad)		.018	-.038	.025	.020	
84							
85	>> Load Factor (g's)		1.00	1.00	1.00	1.00	
86	d-delE/dV (rad/fps)		5.49e-5	7.472e-4	8.2e-6	9.82e-5	
87	d-delE/dn (rad/g)		-.029	-.184	-.012	-.108	
88							
89	c-h		-.0246	-.0022	-.0270	-.0390	
90							
91	S.M. (FREE)		.091	.107	-.070	-.056	
92							
93	dF/dn (lbs/g)		439.65	620.19	-22.99	202.88	
94							
95	dF/dn MIN		23.33	23.33	23.33	23.33	
96	dF/dn MAX		80.00	90.42	80.00	80.00	
97							
98	Passes MIL-F-8785C		no	no	no	no	
99							
100	dF/dV (lbs/knot)		-3.396	-2.573	-2.402	-1.901	
101							
102	F-S (lbs)		-899.60	-19.00	-985.25	-338.55	

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
53	54	55	56	57	58	59	60
55	56	57	58	59	60	61	62
56	57	58	59	60	61	62	63
57	58	59	60	61	62	63	64
58	59	60	61	62	63	64	65
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
53	54	55	56	57	58	59	60
55	56	57	58	59	60	61	62
56	57	58	59	60	61	62	63
57	58	59	60	61	62	63	64
58	59	60	61	62	63	64	65
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102
96	97	98	99	100	101	102	
97	98	99	100	101	102		
98	99	100	101	102			
99	100	101	102				
100	101	102					
101	102						
102							

A B C D E F G H

1 5/21/1987

2 100 Pax Baseline Stick Force Calculations

3 =====

4 F.C. 1 F.C. 2 F.C. 3 F.C. 4

5 Fwd c.g. Fwd c.g. Aft c.g. Aft c.g.
6 Cruise Vmc Cruise Vmc

7 h (ft)	8 30000	9 0	10 30000	11 0
12 density (slugs/ft ³)	13 8.893e-4	14 2.377e-3	15 8.893e-4	16 2.377e-3
17 V (fps)	18 696.3	19 207.5	20 696.3	21 207.5
22 q-bar (psf)	23 215.58	24 51.17	25 215.58	26 51.17
27 X-bar-AC	28 .991	29 .982	30 .991	31 .982
32 X-bar-cg	33 .659	34 .659	35 .802	36 .802

37 Geometries, Inertias

38 S (ft ²)	39 1182	40 1182	41 1182	42 1182
43 b (ft)	44 132.50	45 132.50	46 132.50	47 132.50
48 c-bar (ft)	49 8.97	50 8.97	51 8.97	52 8.97
53 W (lb)	54 85044	55 85044	56 50666	57 50666
59 Ixx (slug-ft ²)	60 1646875	61 1646875	62 888448	63 888448
65 Iyy (slug-ft ²)	66 769820	67 769820	68 653359	69 653359
71 Izz (slug-ft ²)	72 2326135	73 2326135	74 1455491	75 1455491

76 Steady State Coefficients

77 CL	78 .334	79 1.406	80 .199	81 .838
82 CD	83 .017	84 .254	85 .016	86 .253

87 Longitudinal Derivatives

88 C-L-a-A (rad-1)	89 6.53	90 6.60	91 6.53	92 6.60
93 C-m-dE (rad-1)	94 -3.97	95 -3.97	96 -3.84	97 -3.84
98 C-L-o	99 .170	100 .170	101 .170	102 .170
103 C-m-o	104 .100	105 .109	106 .100	107 .109
108 C-L-dE (rad-1)	109 .927	110 .928	111 .927	112 .928
113 C-L-i-H (rad-1)	114 1.716	115 1.718	116 1.716	117 1.718
118 C-m-i-H (rad-1)	119 -7.350	120 -7.358	121 -7.105	122 -7.113
123 C-m-alpha (rad-1)	124 -2.167	125 -2.131	126 -1.233	127 -1.188
128 C-m-q (rad-1)	129 -70.038	130 -70.124	131 -65.306	132 -65.385
	FC 1	FC 2	FC 3	FC 4

133 Lateral-Directional Derivatives

134 C-n-Beta (rad-1)	135 .071	136 .096	137 .071	138 .096
139 C-l-p	140 -.792	141 -.632	142 -.792	143 -.632
144 C-l-dA (rad-1)	145 .608	146 .443	147 .608	148 .443
149 C-n-dR (rad-1)	150 .069	151 .077	152 .069	153 .077

Longitudinal Stick Force Calculations

>> Eta-H	1.00	1.00	1.00	1.00
>> Gearing Ratio (rad/ft)	.72	.72	.72	.72
>> S-Elev. (ft2)	143.50	143.50	143.50	143.50
>> C-Elev. (ft)	1.640	1.640	1.640	1.640
>> C-h-dE (rad-1)	-.598	-.422	-.598	-.422
>> C-h-d-tab (rad-1)	-1.022	-1.033	-1.022	-1.033
>> S-tab (ft2)	7.000	7.000	7.000	7.000
>> C-tab (ft)	.570	.570	.570	.570
>> C-h-alpha (rad-1)	-.346	-.241	-.346	-.241
>> l-H (ft)	38.42	38.42	37.14	37.14
>> Tau-E	.54	.54	.54	.54
>> i-H (deg)	.00	.00	.00	.00
dE/da	.214	.214	.214	.214
>> n/alpha (g/rad)	23.32	5.53	37.17	8.82
n-Limit	2.50	2.50	2.50	2.50
>> R (d-tab / d-elev.)	.00	.00	.00	.00
C-h-dE (tab + elev.)	-.5980	-.4220	-.5980	-.4220
alpha-o-trim (rad)	-.032	-.032	-.031	-.031
delta-o-trim (rad)	.043	.045	.036	.038
d-alpha/dCL	.166	.164	.160	.159
d-dE/dCL	-.091	-.088	-.052	-.049
alpha-trim (rad)	.023	.199	.001	.102
del-E-trim (rad)	.012	-.079	.026	-.003
>> Load Factor (g's)	1.00	1.00	1.00	1.00
d-delE/dV (rad/fps)	8.68e-5	1.1916e-3	2.94e-5	3.958e-4
d-delE/dn (rad/g)	-.042	-.252	-.021	-.160
c-h	-.0155	-.0145	-.0157	-.0232
S.M. (FREE)	.056	.053	-.078	-.081

dF/dn (lbs/g)	173.38	202.70	-19.76	65.22
dF/dn MIN	23.33	23.33	23.33	23.33
dF/dn MAX	80.00	90.42	80.00	80.00
Passes MIL-F-8785C	no	no	no	yes

dF/dV (lbs/knot)	-1.764	-1.066	-1.375	-.848
F-S (lbs)	-566.97	-125.68	-573.52	-201.21

A	B	C	D	E	F	G	H
3	Longitudinal Stick Force Calculations						
4							
5	>> Eta-H		1.00	1.00	1.00	1.00	
6	>> Gearing Ratio (rad/ft)		.72	.72	.72	.72	
7	>> S-Elev. (ft2)		143.50	143.50	143.50	143.50	
8	>> C-Elev. (ft)		1.640	1.640	1.640	1.640	
9	>> C-h-dE (rad-1)		-.598	-.422	-.598	-.422	
10							
11	>> C-h-d-tab (rad-1)		-1.022	-1.033	-1.022	-1.033	
12							
13	>> S-tab (ft2)		7.000	7.000	7.000	7.000	
14	>> C-tab (ft)		.570	.570	.570	.570	
15	>> C-h-alpha (rad-1)		-.346	-.241	-.346	-.241	
16	>> l-H (ft)		38.42	38.42	37.14	37.14	
17	>> Tau-E		.54	.54	.54	.54	
18	>> i-H (deg)		.00	.00	.00	.00	
19	dE/da		.214	.214	.214	.214	
20	>> n/alpha (g/rad)		23.32	5.53	37.17	8.82	
21	n-Limit		2.50	2.50	2.50	2.50	
22							
23	>> R (d-tab / d-elev.)		1.00	1.00	1.00	1.00	
24	C-h-dE (tab + elev.)		-1.6200	-1.4550	-1.6200	-1.4550	
25							
26	alpha-o-trim (rad)		-.032	-.032	-.031	-.031	
27	delta-c-trim (rad)		.043	.045	.036	.038	
28							
29	d-alpha/dCL		.166	.164	.160	.159	
30	d-dE/dCL		-.091	-.088	-.052	-.049	
31							
32	alpha-trim (rad)		.023	.199	.001	.102	
33	del-E-trim (rad)		.012	-.079	.026	-.003	
34							
35	>> Load Factor (g's)		1.00	1.00	1.00	1.00	
36	d-delE/dV (rad/fps)		8.68e-5	1.1916e-3	2.94e-5	3.958e-4	
37	d-delE/dn (rad/g)		-.042	-.252	-.021	-.160	
38							
39	c-h		-.0283	.0671	-.0421	-.0200	
40							
41	S. M. (FREE)		.230	.245	.090	.104	
42							
43	dF/dn (lbs/g)		1392.01	1702.89	516.41	877.54	
44							
45	dF/dn MIN		23.33	23.33	23.33	23.33	
46	dF/dn MAX		80.00	90.42	80.00	80.00	
47							
48	Passes MIL-F-8785C		no	no	no	no	
49							
50	dF/dV (lbs/knot)		-6.344	-4.918	-5.242	-4.129	
51							
52	F-S (lbs)		-1032.86	582.08	-1537.50	-173.79	

A	B	C	D	E	F	G	H
Longitudinal Stick Force Calculations							
53	54	55	56	57	58	59	60
55	56	57	58	59	60	61	62
56	57	58	59	60	61	62	63
57	58	59	60	61	62	63	64
58	59	60	61	62	63	64	65
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102
96	97	98	99	100	101	102	

A	B	C	D	E	F	G	H
53 Longitudinal Stick Force Calculations							
54	55	56	57	58	59	60	61
55	56	57	58	59	60	61	62
56	57	58	59	60	61	62	63
57	58	59	60	61	62	63	64
58	59	60	61	62	63	64	65
59	60	61	62	63	64	65	66
60	61	62	63	64	65	66	67
61	62	63	64	65	66	67	68
62	63	64	65	66	67	68	69
63	64	65	66	67	68	69	70
64	65	66	67	68	69	70	71
65	66	67	68	69	70	71	72
66	67	68	69	70	71	72	73
67	68	69	70	71	72	73	74
68	69	70	71	72	73	74	75
69	70	71	72	73	74	75	76
70	71	72	73	74	75	76	77
71	72	73	74	75	76	77	78
72	73	74	75	76	77	78	79
73	74	75	76	77	78	79	80
74	75	76	77	78	79	80	81
75	76	77	78	79	80	81	82
76	77	78	79	80	81	82	83
77	78	79	80	81	82	83	84
78	79	80	81	82	83	84	85
79	80	81	82	83	84	85	86
80	81	82	83	84	85	86	87
81	82	83	84	85	86	87	88
82	83	84	85	86	87	88	89
83	84	85	86	87	88	89	90
84	85	86	87	88	89	90	91
85	86	87	88	89	90	91	92
86	87	88	89	90	91	92	93
87	88	89	90	91	92	93	94
88	89	90	91	92	93	94	95
89	90	91	92	93	94	95	96
90	91	92	93	94	95	96	97
91	92	93	94	95	96	97	98
92	93	94	95	96	97	98	99
93	94	95	96	97	98	99	100
94	95	96	97	98	99	100	101
95	96	97	98	99	100	101	102
96	97	98	99	100	101	102	

A	B	C	D	E	F	G	H
53	Longitudinal Stick Force Calculations						
54							
55	>> Eta-H		1.00	1.00	1.00	1.00	
56	>> Gearing Ratio (rad/ft)		.72	.72	.72	.72	
57	>> S-Elev. (ft ²)		143.50	143.50	143.50	143.50	
58	>> C-Elev. (ft)		1.640	1.640	1.640	1.640	
59	>> C-h-dE (rad-1)		-.598	-.422	-.598	-.422	
60							
61	>> C-h-d-tab (rad-1)		-1.022	-1.033	-1.022	-1.033	
62							
63	>> S-tab (ft ²)		7.000	7.000	7.000	7.000	
64	>> C-tab (ft)		.570	.570	.570	.570	
65	>> C-h-alpha (rad-1)		-.346	-.241	-.346	-.241	
66	>> l-H (ft)		38.42	38.42	37.14	37.14	
67	>> Tau-E		.54	.54	.54	.54	
68	>> i-H (deg)		.00	.00	.00	.00	
69	dE/da		.214	.214	.214	.214	
70	>> n/alpha (g/rad)		23.32	5.53	37.17	8.82	
71	n-Limit		2.50	2.50	2.50	2.50	
72							
73	>> R (d-tab / d-elev.)		-1.00	-1.00	-1.00	-1.00	
74	C-h-dE (tab + elev.)		.4240	.6110	.4240	.6110	
75							
76	alpha-o-trim (rad)		-.032	-.032	-.031	-.031	
77	delta-o-trim (rad)		.043	.045	.036	.038	
78							
79	d-alpha/dCL		.166	.164	.160	.159	
80	d-dE/dCL		-.091	-.088	-.052	-.049	
81							
82	alpha-trim (rad)		.023	.199	.001	.102	
83	del-E-trim (rad)		.012	-.079	.026	-.003	
84							
85	>> Load Factor (g's)		1.00	1.00	1.00	1.00	
86	d-delE/dV (rad/fps)		8.68e-5	1.1916e-3	2.94e-5	3.958e-4	
87	d-delE/dn (rad/g)		-.042	-.252	-.021	-.160	
88							
89	c-h		-.0028	-.0961	.0107	-.0264	
90							
91	S.M. (FREE)		.722	.510	.566	.361	
92							
93	dF/dn (lbs/g)		-1045.26	-1297.49	-555.92	-747.10	
94							
95	dF/dn MIN		23.33	23.33	23.33	23.33	
96	dF/dn MAX		80.00	90.42	80.00	80.00	
97							
98	Passes MIL-F-8785C		no	no	no	no	
99							
100	dF/dV (lbs/knot)		2.815	2.786	2.493	2.433	
101							
102	F-S (lbs)		-101.08	-833.44	390.46	-228.64	

Circulation

 $C_{h\alpha}$ (SECTION)

5-4-87

$$\tan \phi' / 2 = \tan \phi'' / 2 = \tan \pi_{re} / 2 = .231$$

$$\frac{L/C}{r_{HCR, TAIL}} = .11 \quad C_E/C = .35$$

$$\frac{L/C}{r_{V-E, TAIL}} = - .11 \quad C_R/C = .35$$

$$\frac{L/C}{r_{A/L}} = .13 \quad C_A/C = .3$$

	HT	V-T	A/L
--	----	-----	-----

$$\frac{C_{h\alpha}}{C_{h\alpha}^{\text{THEORY}}} \quad .9 \quad .9 \quad .9$$

$$C_{h\alpha}^{\text{THEORY}} \quad -.57 \quad -.57 \quad -.54$$

$$\frac{C_{d\alpha}}{C_{d\alpha}^{\text{THEORY}}} \quad .955 \quad .955 \quad .955$$

$$C_{h\alpha}^{\prime} \quad -.513 \quad -.513 \quad -.486$$

$$C_{h\alpha}^{\prime\prime} \quad -.445 \quad -.445 \quad -.429$$

$$\begin{array}{ccc} t_C & .08 & .08 \\ C_F & .27 & .27 \\ C_B & .08 & .08 \end{array} \quad .22 \quad .06$$

$$\text{BAL. RATIO} \quad .26 \quad .26 \quad .39$$

$$\frac{C_{h\alpha}^{\text{BAL}}}{C_{h\alpha}^{\prime\prime}} \quad .68 \quad .68 \quad .30$$

$$C_{h\alpha}^{\text{BALANCE}} \quad -.303 \quad -.303 \quad -.129 \quad \text{VMC} \quad M = .19$$

$$C_{h\alpha} \quad -.424 \quad -.424 \quad -.181 \quad \text{CRUISE} \quad M = .7$$

KIRKHAMTON

Ch₈ (SECTION)

5-4-87

	H-T	V-T	AIC
Ch ₈ /Ch ₈ _{THEORY}	.95	.95	.95
Ch ₈ _{THEORY}	-.90	-.90	-.85
Ch ₈ '	-.855	-.855	-.808
Ch ₈ /Ch ₈ _{THEORY}	.92	.92	.92
Ch ₈ _{THEORY}	4.8	4.8	4.5
Ch ₈ "	-.778	-.778	-.736
Ch ₈ _{BALANCE} / Ch ₈ "	.6	.6	.2
Ch ₈ _{BALANCE}	-.467	-.467	-.147
Ch ₈ _{BALANCE}	-.654	-.654	-.206
			M = .19
			M = .7

50 SHEETS
100 SHEETS
22-141
22-142
22-144

AMPS

CREGTON

5-4-87

3

Scenes HINGE Moment Summary

	H-T	V-T	AIC	
$C_{h\alpha}$	-.30	-.30	-.13	$M = .19$
$C_{n\alpha}$	-.42	-.42	-.18	$M = .7$
<hr/>				
C_{hg}	-.47	-.47	-.15	$M = .19$
C_{ng}	-.65	-.65	-.21	$M = .7$

Figure 3.1 - Wing Cross Section

Circulator

 $\Delta C_{h\alpha}$

S-7-87

$$C_{h\alpha} = \frac{A \cos \lambda_{c/4}}{A + 2 \cos \lambda_{c/4}} C_{h\alpha \text{ BAL}} + \Delta C_{h\alpha}$$

(second)

	H-T	V-T	AIL	H-T	AIL
A	5.88	1.4	12	13.6	145.4
$\lambda_{c/4}$	20.8°	40°	12°	4.3°	10°
K_α	1.0	1.0	3.02	1.0	3.44
$\Delta C_{h\alpha}/I$.007	.015	.004	.004	.004
B_2	.98	,98	,93	.98	,93
$\Delta C_{h\alpha}$.038	.068	.066	.023	.076
$C_{h\alpha \text{ BAL}}$	-.303	-,303	-,129	-,303	-,129 (VHC)
$C_{h\alpha \text{ DM}}$	-.424	-,424	-,181	-,424	-,181 (CHVC)
$\frac{A \cos \lambda_{c/4}}{A + 2 \cos \lambda_{c/4}}$.709	.366	.838	.870	.869

Calculator

$C_{n\alpha}$

5-7-87

Model	25	36	50	75	100	
$C_{h\alpha E}$	-.177	-.177	-.177	-.241	-.241	(VMC)
$C_{h\alpha E}$	-.263	-.263	-.263	-.346	-.346	(CR)
$C_{h\alpha R}$	-.043	-.043	-.043	-.086	-.086	(VMC)
$C_{h\alpha R}$	-.087	-.087	-.087	-.174	-.174	(CR)
$C_{h\alpha A}$	-.042	-.042	-.042	-.036	-.036	(VMC)
$C_{h\alpha A}$	-.086	-.086	-.086	-.081	-.081	(CR)

Elevator, C_{hs_E} C_{hs}

R. HADDAD

5/6/87

$$\alpha_s = -\frac{(C_{es})_a}{(C_{e\alpha})_s}$$

$$C_E/C = .35$$

$$C_b/C_E = .296 \approx .3$$

Fig. 6.1.1.1-42

$$C_{e\alpha} = .077 \text{ deg}^{-1} = 4.412 \text{ rad}^{-1}$$

$$C_{e\alpha} = 6.0 \text{ rad}^{-1}$$

$$\alpha_s = -.735$$

$$\Delta C_{hs} = \frac{\Delta C_{hs}}{C_{es} B_2 K_s \cos \Lambda_{c/4} \cos \Lambda_{HL}} \underbrace{(C_{es} B_2 K_s \cos \Lambda_{c/4} \cos \Lambda_{HL})}_I$$

	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax
A_H	5.883	5.883	5.883	13.60	13.60
$\frac{\Delta C_{hs}}{(I)}$.011	.011	.011	.004	.004
B_2	.93				

$$K_s = \frac{(K_s)_{\eta_i}(1-\eta_i) - (K_s)_{\eta_o}(1-\eta_o)}{\eta_o - \eta_i}$$

$$\eta_i = 0, \quad \eta_o = 1$$

$$\text{Fig. 6.1.6.2-15(b)} \quad (K_s)_{\eta_i} = 1.0, \quad (K_s)_{\eta_o} = 4.4$$

K_s	1.0				
$\Lambda_{c/4, HT}$.364	.364	.364	.076	.076
$(\Lambda_{HL})_{HT}$.349	.349	.349	.065	.065
I	{ 3.603 .063	{ 3.603 .063	{ 3.603 .063	4.083 .071	4.083 .071
ΔC_{hs}	{ .000693 .0396	{ .000693 .0396	{ .000693 .0396	.000284 .0163	.000284 .0163

$$C_{hs_E} = \cos \Lambda_{c/4} \cos \Lambda_{HL} \left[(C_{hs})_{bal} + \alpha_s (C_{hs})_{bal} \frac{2 \cos \Lambda_{c/4}}{A + 2 \cos \Lambda_{c/4}} \right] + \Delta C_{hs}$$

C_{hs_E}	-.323	-.323	-.823	-.422	-.422
C_{hs_E} cruise	-.469	-.469	-.469	-.598	-.598

Rudder, C_{hsR} C_{hs}

R. HADDAD

5/7/87

B

$$C_R/C = .35$$

$$C_b/C_R \approx .3$$

$$\text{Fig. 6.1.1.1-42} \quad C_{l\delta} = .077 \text{ deg}^{-1} = 4.412 \text{ rad}^{-1}$$

$$C_{l\alpha} = 6.0 \text{ rad}^{-1}$$

$$\alpha_\delta = -735$$

	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax
$A_{V.T.}$	1.4	1.4	1.4	1.4	1.4
Fig 6.1.6.2-15 $\frac{\Delta C_{hs}}{(I)}$.025	.025	.025	.025	.025
Fig 6.1.6.1-19(c) $B_2 = .98$					
$K_{\delta_R} = 1.0$					
$\Lambda_{C_{l\delta_{V.T.}}} = .70 \text{ rad.}$					
$\Lambda_{M_{l\delta_{V.T.}}} = .436 \text{ rad}$					
I	3.059	3.059	3.059	3.059	3.059
ΔC_{hs}	.0765	.0765	.0765	.0765	.0765
$C_{hsR} V_{mc}$	-.167	-.167	-.167	-.167	-.167
$C_{hsR} \text{ cruise}$	-.250	-.250	-.250	-.250	-.250

Aileron, $C_{h\delta A}$ $C_{h\delta}$

R. HADDAD

5/7/87

9

$$C_A/c = .30$$

$$C_b/c_A \approx .3$$

$$\text{fig. 6.1.1.1-42} \quad C_{l\delta} = .072 \text{ deg}^{-1} = 4.125 \text{ rad}^{-1}$$

$$C_{l\alpha} = 6.0 \text{ rad}^{-1}$$

$$\alpha_S = -.686$$

	25 Pax	36 Pax.	50 Pax	75 Pax	100 Pax
A_w	12.0	12.0	12.0	14.843	14.843
Fig 6.1.6.2-15 $\frac{\Delta C_{h\delta}}{(I)}$.005	.005	.005	.003	.003
Fig 6.1.6.1-19(e) $B_2 = .93$					
γ_1	.850	.850	.850	.906	.906
γ_0	.968	.968	.968	.981	.981
Fig 6.1.6.2-15(b) $(K_S)_{\gamma_1}$	3.25	3.25	3.25	3.6	3.6
$(K_S)_{\gamma_0}$	4.1	4.1	4.1	4.25	4.25
$K_{\delta A}$	3.02	3.02	3.02	3.44	3.44
$\lambda_{e/4}$.228	.228	.228	.177	.177
λ_{HL}	.175	.175	.175	.128	.128
I	11.11	11.11	11.11	12.88	12.88
$\Delta C_{h\delta}$.056	.056	.056	.039	.039
$C_{h\delta A V_{MC}}$	-.073	-.073	-.073	-.094	-.094
$C_{h\delta A \text{ cruise}}$	-.125	-.125	-.125	-.148	-.148

Craigton * SECTION C_h *

5-15-87

Precision DATCOM SECTION 6.1.3.3

$$\left(\frac{\partial C_{hf}}{\partial \delta_t} \right)_{C_e, \delta_f} = A = -0.015, \quad c_f/c_e = .35$$

$$\left(\frac{\partial C_{hf}}{\partial \delta_t} \right)_{\delta_t, \delta_r} = B = -0.067$$

$$\left(\frac{\partial C_e}{\partial \alpha} \right)_{\delta_t, \delta_r} = C = .105 = C_{L\alpha}$$

$$\left(\frac{\partial \alpha}{\partial \delta_t} \right)_{C_e, \delta_f} = D = -0.730$$

$$C_{h\delta_t} = \left(\frac{\partial C_{hf}}{\partial \delta_t} \right)_{\alpha, \delta_f}$$

$$C_{h\delta_t} = A - BCD$$

$$C_{h\delta_t} = -0.020 \text{ DEG}^{-1}$$

$$C_{h\delta_t} = -1.154 \text{ RAD}^{-1}$$

5-17-87

SECTIONAL C_h FOR TRIM TAB

$$C_{h\alpha}'' = -.445 \text{ RAD}^{-1} (\text{NO DISTANCE EFFECTS})$$

AT $M = .7$

$$C_{h\alpha}'' = -.623 \text{ RAD}^{-1}$$

50 SHEETS
22-141 100 SHEETS
22-142 200 SHEETS
22-144 200 SHEETS

5-13-87

$$C_{h_{S_t}} = (\cos \lambda_{C_{14}} \cos \lambda_{H_L}) (H.M) + \Delta C_{h_S}$$

$$H.M = C_{h_{S_t}} + \kappa_s C_{h_a} \frac{2 \cos \lambda_{C_{14}}}{A + 2 \cos \lambda_{C_{14}}}$$

	H.T	V.T	
$\Delta C_{h_S}/x$.01	.03	
B_2	1.1	1.1	
K_S	.75	.75	$n_i = .4$ $n_o = .8$
$\cos \lambda_{C_{14}} \cos \lambda_{H_L}$.83	.60	
C_{L_6}	4.4	4.4	
κ_s	.54	.54	
ΔC_{h_S}	.003	.014	
$\lambda_{C_{14}}$.364	.70	
A	5.88	1.7	

50 SHEETS
100 SHEETS
200 SHEETS

22-141 22-142 22-144

AMFAD

5-13-87

4

$C_{n_{st}}$ BASED ON s_t c_t

	H.T	V.T
VMC	-1.003	-.754
CR	-1.022	-.784

$$n_i = .4$$

$$n_o = .8$$

$$c_t/c_e = .35$$

s_t

c_t

50 SHEETS
100 SHEETS
200 SHEETS
22-141
22-142
22-144

Appendix G

Component Drag Calculations

Purpose: This appendix contains drag calculations following methods in Reference 13.

$$C_{D\text{wing}} = C_{D\text{ow}} + C_L C_{Lw} \quad (\text{NLF considerations})$$

$$* C_{D\text{ow}} = (R_{wp})(R_{ls}) \left[1 + L' \left(\frac{t}{c} \right) + 100 \left(\frac{t}{c} \right)^4 \right] \left[(C_{fw\text{lam}} - C_{fw\text{tur}}) S_{\text{wet, lam}} + C_{fw} S_{\text{wet, w}} \right] \frac{1}{S}$$

cruise: $\rho = .8873 \times 10^{-3} \text{ slug/ft}^3$, $\mu = 3.106 \times 10^{-7}$
 approach: $\rho = 2.377 \times 10^{-3}$, $\mu = 3.737 \times 10^{-7}$

$$M_{\text{cruise}} = 0.7$$

$$M_{\text{app.}} = 0.15$$

	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax
C_f (corr)	71.33	79.0	96.33	79.0	96.33
$R_{Np\text{cruise}}$	138×10^6	156×10^6	187×10^6	156×10^6	187×10^6
$R_{Np\text{app}}$	7.6×10^7	8.4×10^7	1.0×10^8	8.4×10^7	1.0×10^8
Fig 4.1	$R_{wp\text{cruise}}$	1.015	1.015	1.015	1.015
Fig 4.1	$R_{wp\text{app}}$.932	.930	.928	.930
	$\cos \alpha_{(\frac{t}{c})_{\text{max}}} = .981$				
Fig 4.2	$R_{L.S. \text{cruise}} = 1.2$				
Fig 4.2	$R_{L.S. \text{app.}} = 1.07$				
	$\bar{c}_{we} = 11 \text{ ft}$				
Fig 4.3	$R_{Nw\text{cruise}} = 2.2 \times 10^7$	$R_{Nw\text{app}} = 1.2 \times 10^7$			
	$C_{fw\text{cruise}} = .00255$	$C_{fw\text{app}} = .00294$			
	$L' = 1.2$				
	$t/c = .13$				
	$S_{\text{wet, w}}$	1164	1164	1164	2224
	S	592	592	592	1182
	$C_{w\text{lam}} = 5.5 \text{ ft}$	(50%)			

ORIGINAL PAGE IS
OF POOR QUALITY

$$R_{Nw\text{lam,cruise}} = 1.1 \times 10^7, R_{Nw\text{lam,app}} = .6 \times 10^7$$

$$C_{fw\text{lam,cruise}} = .0004, C_{fw\text{lam,app}} = .0005$$

WING

DRAG POLAR

R.HADDAD

	25 Pak	36 Pak	50 Pak	75 Pak	100 Pak
$S_{\text{wet}} / \text{ft}^2$	582	582	582	1112	1112
$\frac{C_{D_{LW}}}{C_{D_{LW, \text{cruise}}}}$.0042	.0042	.0042	.0040	.0040
$\frac{C_{D_{LW, \text{app}}}}{C_{D_{LW, \text{cruise}}}}$.0040	.0040	.0040	.0038	.0038

$$\star C_{D_{LW}} = (C_{LW})^2 / \pi A e + 2\pi C_{LW} \epsilon_t v + 4\pi^2 (\epsilon_t)^2 w$$

$$C_{LW} = 1.05 C_L = 1.05 \left(\frac{w}{q_s} \right)$$

W	28,506	35,954	43,141	71,419	85,044
S	592	592	592	1182	1182
\bar{q}_{cruise}	215.6	215.6	215.6	215.6	215.6
\bar{q}_{app}	32.9	39.4	39.8	40.24	40.24
$C_{L_{\text{cruise}}}$.235	.296	.355	.294	.350
$C_{L_{\text{app}}}$	1.47	1.54	1.83	1.50	1.79

$$e = 1.1 \left(\frac{C_{L_{\text{app}}}}{A} \right) \left[R \left(\frac{C_{L_{\text{app}}}}{A} \right) + (1-R)\pi \right]$$

$C_{L_{\text{cruise}}}$	4.7089	4.7089	4.7089	4.9097	4.9097
$C_{L_{\text{app}}}$	4.7794	4.7794	4.7794	4.9673	4.9673

$$h_{\text{er}} = .2 \text{ ft} ; \lambda = .4$$

$$\text{Fig 4.7} \quad R_{h_{\text{er}}, \text{cruise}} = \rho u_1 \frac{h_{\text{er}}}{\mu} = .399 \times 10^6, \quad R_{h_{\text{er}}, \text{app}} = .100 \times 10^6$$

$$A_{LE} \quad .262 \quad .262 \quad .262 \quad .201 \quad .201$$

$$A \quad 12.0 \quad 12.0 \quad 12.0 \quad 14.84 \quad 14.84$$

$$\text{Fig 4.7(b)} \quad R \quad .960 \quad .960 \quad .960 \quad .965 \quad .965$$

Wing

DRAG POLAR

R. HADDAD

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
A	12.0	12.0	12.0	14.84	14.84
e_{cruise}	.859	.859	.859	.848	.848
$e_{app.}$.862	.862	.862	.894	.894
$\pi A e_{cruise}$	32.38	32.38	32.38	39.53	39.53
$\pi A e_{app.}$	32.50	32.50	32.50	41.68	41.68

It is assumed that the twist angle $\Sigma_t = 1^\circ = .017\pi$

Fig 4.9(a) V	.0009	.0009	.0009	.0008	.0008
Fig 4.10(a) W	.0003	.0003	.0003	.0003	.0003
$C_{D_L w_{cruise}}$.0017	.0027	.0039	.0022	.0031
$C_{D_L w_{app}}$.0666	.0730	.1032	.0541	.0770
then					
$C_{D_{wing} w_{cruise}}$.0059	.0069	.0081	.0062	.0071
$C_{D_{wing} w_{app}}$.0706	.0770	.1072	.0579	.0808

$$C_{Dfus} = C_{Dofus} + C_{D_{bfus}}$$

$$* C_{Dofus} = \frac{R_{wf}}{S} \left[1 + \frac{60}{(\rho_f/d_f)^3} + .0025 \left(\frac{l_f}{d_f} \right) \right] \left[(C_0 - C_{f_{fus, lam}}) S_{wet_{fus, lam}} + C_0 S_{wet_{fus}} \right]$$

$$+ C_{D_{bfus}}$$

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
l_f	69.4	78.1	94.6	78.1	94.6 (P _i)
R_{Nfus}	1.38×10^8	1.557×10^8	1.886×10^8	1.557×10^8	1.886×10^8
Fig 4.1 R_{wf}	1.015	1.015	1.015	1.015	1.015
Fig 4.3 $C_{f_{fus}}$.00195	.0019	.00185	.0019	.00185
$d_f = 8.05 \text{ ft}$					
$S_{wet_{fus}}$	450	503	651	2(503)	2(651) (ft^2)
$R_{Nfus, lam} = \rho u_i \frac{l_{f, lam}}{\mu}$					
$l_{f, lam} = 12.5 \text{ ft}$					
$R_{Nfus, lam} = 2.49 \times 10^7$					
$C_{f_{fus, lam}} = 1.33 (\sqrt{R_{Nfus, lam}})^{-1} = 0.00027$					
$S_{wet_{fus, lam}} = 101 \text{ ft}^2$				2(101)	2(101)
$C_{D_{bfus}} = 0$ because of the lack of base.					
$\rightarrow C_{Dofus}$	0.00191	0.00148	0.00191	0.00148	0.00191

$$* C_{D_L f_{fus}} = 2\alpha^2 S_{b f_{fus}} / S + \eta [C_{d_c} \alpha^3 S_{P_{ff} f_{fus}} / S]$$

$$\alpha = \left[\frac{W}{qS} - C_{L_0} \right] \frac{1}{C_{L_\alpha}}$$

$$C_{L_{\alpha, \text{cruise}}} = C_{L_{\alpha, \text{approach}}} = 0.17$$

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
$C_{L_{\alpha, \text{cruise}}}$	5.479	5.479	5.422	6.424	6.249
$C_{L_{\alpha, \text{approach}}}$	5.565	5.565	5.507	6.486	6.311
α_{cruise}	.0097	.0204	.0309	.0172	.0262
$\alpha_{\text{app.}}$.0096	.0201	.0305	.0170	.0259
Fig 4.17	$S_{b f_{fus}} = 0.5 \text{ ft}^2$				
Fig 4.17	$d_f = 96.6'' = 8.05 \text{ ft}$				
d_f	69.4	78.1	94.6	78.1	94.6 (ft)
Fig 4.19	.670	.685	.705	.685	.705
Fig 4.20	C_{d_c}	1.2	1.2	1.2	1.2
Fig 4.17	$S_{P_{ff} f_{fus}}$	490	553	698	2(553) 2(698) (ft^2)
→ $C_{D_{L f_{fus}} (\text{cruise})}$.0000	.0000	.00001	.0000	.0001
→ $C_{D_{L f_{fus}} (\text{app})}$.0000	.0000	.00001	.0000	.0001
then $C_{D f_{fus}}$.0019	.0015	.0020	.0015	.0020

- * Windshield drag is negligible and is accounted for in the fuselage drag. $\rightarrow \underline{\underline{C_{D_{cw}} = 0}}$

$$C_{D_{HT}} = C_{D_0,HT} + C_{D_L,HT}$$

$$* C_{D_0,HT} = (R_{LS}) \left[1 + L' \left(\frac{t}{c} \right) + 100 \left(\frac{t}{c} \right)^4 \right] \left[(C_{f_{HT,can}} - C_{f_{HT,tur}}) S_{wet,HT,can} + \left[C_{f_{HT}} S_{wet,HT} \right] \frac{1}{S} \right]$$

$M_{critic} = .7$
 $M_{app} = .15$

	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax	(d)
Λ_{HT} (cruise)	.314	.314	.314	.052	.052	
$R_{LS, \text{cruise}}$	1.2	1.2	1.2	1.21	1.21	

Fig 4.2

$$R_{LS, \text{app}} | 1.07 \quad 1.07 \quad 1.07 \quad 1.08 \quad 1.08$$

$$R_{N_{HT}} = \rho U_i \bar{C}_{HT,e} / \mu$$

$$\text{cruise } \rho = .8893 \times 10^{-3} \frac{\text{slug}}{\text{ft}^3}; \mu = 3.106 \times 10^{-7} \frac{\text{lbf-s}}{\text{ft}^2}; U_i = 696.29 \text{ ft/s}$$

$$\text{Approach } \rho = 2.377 \times 10^{-3} \frac{\text{slug}}{\text{ft}^3}; \mu = 3.737 \times 10^{-7} \frac{\text{lbf-s}}{\text{ft}^2}; U_i = 167.46 \text{ ft/s}$$

$$\bar{C}_{HT,app} = 6.02 \text{ ft}$$

$$R_{N_{HT,can}} = 1.20 \times 10^7$$

$$R_{N_{HT,can}} = 6.41 \times 10^6$$

Fig 4.3

$$C_{f_{HT,cruise}} = .00280$$

Fig 4.3

$$C_{f_{HT,app}} = .00321$$

Fig 4.4

$$L' = 1.2$$

$$t/c = .13$$

	200	200	200	780	780
$S_{wet,HT}$	592	592	592	1182	1182

$$C_{f_{HT,can}} = 1.33 (\sqrt{R_{N_{HT,can}}})^{-1}$$

$$R_{N_{HT,can}} = \rho U_i \bar{C}_{HT,can} / \mu$$

$$\bar{C}_{HT,can} = 3.01 \text{ ft} \quad (50\%)$$

HORizonal TAIL

UPPER TAIL

T HULLS

$$R_{N_{H.T. \text{ Lam}}} = 6.0 \times 10^6$$

$$R_{N_{H.T. \text{ Lam}}} = 3.21 \times 10^6$$

$$C_f_{H.T. \text{ Lam, cruise}} = 5.43 \times 10^{-4}$$

$$C_f_{H.T. \text{ Lam app.}} = 7.43 \times 10^{-4}$$

$$S_{\text{wet}_{H.T. \text{ Lam}}} = .5 (S_{\text{wet}_{H.T.}})$$

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
$S_{\text{wet}_{H.T. \text{ Lam}}}$	100	100	100	390	390 (ft ²)
$\longrightarrow C_{D_0 H.T. \text{ cruise}}$.00080	.00080	.00080	.00160	.00160
$\longrightarrow C_{D_0 H.T. \text{ App.}}$.00085	.00085	.00085	.00167	.00167

$$* C_{D_L H.T.} = \left[(C_{L_h})^2 / \pi A_h e_h \right] \frac{S_h}{S}$$

$$C_{L_h} = C_{L_{\alpha_h}} \alpha_h$$

$$C_{L_{\alpha_h \text{ cruise}}} = 3.6488$$

$$C_{L_{\alpha_h \text{ app}}} = 3.7568$$

$$\alpha_h = \alpha \left(1 - \frac{d\epsilon}{d\alpha} \right)$$

$$1 - \frac{d\epsilon}{d\alpha} = .764$$

$$e_h = .75$$

HORIZONTAL TAIL

LFG FOLI

R. HALLER

	25 Fox	36 Fox	50 Fox	75 Fox	100 Fox
α_{cruise}	.0077	.0204	.0309	.0172	.0262 (H)
$\alpha_{app.}$.0096	.0201	.0305	.0170	.0259 (d)
$\alpha_{h_{cruise}}$.0074	.0156	.0236	.0131	.0200 (b)
$\alpha_{h_{app}}$.0073	.0154	.0233	.0130	.0198
$C_{L_{hcruise}}$.0270	.0569	.0861	.0478	.0729
$C_{L_{happ}}$.0274	.0579	.0875	.0488	.0744
A_h	5.0	5.0	5.0	12.78	12.78
S_h	102	102	102	392	392 (f)
s	592	592	592	1182	1182
→ $C_{D_{HTcruise}}$.00001	.00004	.00011	.00003	.00008
→ $C_{D_{HTapp}}$.00001	.00005	.00011	.00003	.00008
then $C_{D_{HT}}$.0008	.0008	.0009	.0016	.0016

$$C_{D_{V,T}} = C_{D_{o,V,T}} + C_{D_{L,V,T}}$$

BUT in this case $C_{D_{L,V,T}} = 0$

$$\therefore C_{D_{V,T}} = C_{D_{o,V,T}}$$

$$* C_{D_{o,V,T}} = (R_{LS}) \left[1 + L' \left(\frac{t}{c} \right) + 100 \left(\frac{t}{c} \right)^4 \right] \left[(C_{f_{V,T}} - C_{f_{V,T}}_{lam}) S_{wet_{V,T}}_{lam} + C_{f_{V,T}} S_{wet_{V,T}} \right] \frac{1}{S}$$

	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax
$R_{N_{V,T}} (c_m)$.687	.687	.687	.687	.687
Fig. 4.2 $R_{L,S_{crui}}$	1.24	1.24	1.24	1.24	1.24
Fig 4.2 $R_{L,S_{app}}$	1.02	1.02	1.02	1.02	1.02

$$R_{N_{V,T}} = \rho U_e \bar{c}_{V,T_e} / \mu$$

$$\bar{c}_{V,T_e} = 16.6 \text{ ft}$$

$$\text{Fig 4.3 } R_{N_{V,T}}_{crui} = 3.31 \times 10^7 \Rightarrow C_{f_{V,T}}_{crui} = .0024$$

$$\text{Fig 4.3 } R_{N_{V,T}}_{app} = 1.77 \times 10^7 \Rightarrow C_{f_{V,T}}_{app} = .0027$$

$$\text{Fig 4.4 } L' = 1.2, \quad t/c = .13$$

$S_{wet_{V,T}}$	340	340	340	680	680
-----------------	-----	-----	-----	-----	-----

$$\bar{c}_{V,T_{lam}} = 8.3 \text{ ft (50%.)}$$

$$R_{N_{V,T}}_{lam} = \rho U_e \bar{c}_{V,T_{lam}} / \mu; \quad C_{f_{lam}} = 1.33 (\sqrt{R_{N_{V,T}}})^{-1}$$

$$R_{N_{V,T}}_{lam,crui} = 1.65 \times 10^7 \Rightarrow C_{f_{lam}}_{crui} = 3.27 \times 10^{-4}$$

$$R_{N_{V,T}}_{lam,app} = 8.84 \times 10^6 \Rightarrow C_{f_{lam}}_{app} = 4.47 \times 10^{-4}$$

$$S_{wet_{V,T}}_{lam} = .5 (S_{wet_{V,T}})$$

$S_{wet_{V,T}}_{lam}$	170	170	170	340	340
-----------------------	-----	-----	-----	-----	-----

VERTICAL TAIL

DRAG POLAR

R. HALLAD

	25 Pax	36 Pax	50 Pax	75 Pax	100 Pax
$\rightarrow C_{D_{0V.T}} \text{ cruise}$.0012	.0012	.0012	.0012	.0012
$\rightarrow C_{D_{0V.T}} \text{ app}$.0011	.0011	.0011	.0011	.0011
But $C_{D_{0V.T}} = C_{D_{V.T}}$					
then $C_{D_{V.T}}$.0012	.0012	.0012	.0012	.0012

$$C_{D_{np}} = C_{D_n} + C_{D_p} + C_{Cn\text{int}} + L C_{D_{wmp,app}}$$

* $C_{D_n} = (C_{D_n})_i = 2C_{D_{n0}} \quad (C_{D_{ln}} \text{ is negligible, } \approx 0)$

$$C_{D_{n0}} = C_{f_n} \left[1 + \frac{60}{(\rho_n/d_n)^3} + .0025 \left(\frac{f_n}{d_n} \right) \right] S_{\text{wet}_n}/S + C_{D_{bn}}$$

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
d_n	17.5	17.5	17.5	22.9	22.9
ρ_n app.	1.86×10^7	1.86×10^7	1.86×10^7	2.44×10^7	2.44×10^7
Fig 4.3	.0027	.0027	.0027	.0026	.0026
C_{f_n} app.	3.333	3.333	3.333	4.333	4.333
S_{wet_n}	53.89	53.89	53.89	92.08	92.08

$C_{D_{bn}} = 0$ because there is no end.

$\longrightarrow C_{D_{n0}}$.0004	.0004	.0004	.0003	.0003
$\longrightarrow C_{D_{n\text{app}}}$.0008	.0008	.0008	.0006	.0006

* $C_{D_{op}} = (R_{pf})(R_{ls})(C_{f_p}) \left[1 + L' \left(\frac{z}{z} \right) + 100 \left(\frac{z}{z} \right)^4 \right] S_{\text{wet}_p}/S$

$R_{P_{f2}}$ app.	.281	.281	.281	.314	.314
L_f (corr.)	71.33	79.00	96.33	79.00	96.33
$R_{N_{\text{bus}}}$ app	7.6×10^7	8.4×10^7	1.0×10^8	8.4×10^7	1.0×10^8
Fig 4.1	R_{pf}	.930	.930	.928	.930
Fig 4.2	R_{ls} app	1.07	1.07	1.07	1.07
	\bar{C}_{P_e}	10.83	10.83	10.83	11.67
	R_{N_T} app	1.2×10^7	1.2×10^7	1.2×10^7	1.24×10^7

PYLON

DFAS POLAR

R. HALLAH

	<u>2 ft.</u>	<u>3 ft.</u>	<u>5 ft.</u>	<u>7 ft.</u>	<u>100 ft.</u>
Fig 4.5 $C_{f_p} = f_{ff}$.0029	.0029	.0029	.00287	.00287
Fig 4.4 $L' = 1.2$					
$t/c = .12$					
$2(S_{wet})$	448	448	448	663	663
S	592	592	592	1182	1182
→ <u>$C_{D_{op}}$</u>	.0025	.0025	.0025	.0019	.0019

$$\cdot C_{D_{LP}} = 2 \left[(C_{L_p})^2 / \pi t_p e_p \right] \frac{S_p}{S}$$

	<u>C_{L_p}</u>	<u>α_p</u>	<u>$C_{L_{\alpha_p}}$</u>	<u>$C_{L_{\alpha_p}} \alpha_p$</u>	
$C_{L_{\alpha_p}}$	1.5320		1.5320	1.5320	1.9622
$\alpha_p = \alpha(1 - \frac{d\epsilon}{d\alpha})$				$1 - \frac{d\epsilon}{d\alpha} = 1.0$	
$\alpha_p = \alpha$.0096		.0201	.0305	.0170
C_{L_p}	.0147		.0308	.0467	.0334
A_p	1.080		1.080	1.080	1.487
$e_p = .5$					
S_p	112		112	112	165.8
→ <u>$C_{D_{LP}}$</u>	.0001		.0002	.0005	.0001

	<u>C_{D_p}</u>	<u>$C_{D_{op}}$</u>	<u>$C_{D_{LP}}$</u>	
→ <u>C_{D_p}</u>	.0026	.0026	.0030	.0020

* $C_{D_{nint}}$ is negligible because of the large distance between the nacelle and the fuselage.

Actually, that interference has been accounted for in the C_D calculations.

$$+ \Delta C_D_{wmprop} = 2 \left[33 \left(\frac{1}{q} S \right) SHP_{rated} \left(\frac{1}{U_1} \right) \right] \quad (\text{2 engines})$$

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
S	592	592	592	1182	1182
SHP _{Rated} (per engine)	5500	5500	5500	11000	11000
$\bar{\rho}_{air min} = 215.6$	$\frac{\text{slug}}{\text{ft}^3 \cdot \text{s}^2}$				
$U_1 = 696.29$	ft/s				
$\longrightarrow \Delta C_D_{wmprop}$.0041	.0041	.0041	.0041	.0041

then,

<u>$C_{D_{np}}$</u>	<u>.0075</u>	<u>.0075</u>	<u>.0079</u>	<u>.0067</u>	<u>.0069</u>

The calculations presented here are applied only at low speed (which is at approach $M = 0.5$)

$$C_{D_{gear}} = i [C_{D_{nose\ gear}} + C_{D_{main\ gear}}]$$

For landing gears with more than one wheel per leg :
 $C_{D_{mgear}} = D_f g e a r / S$ (main gear)

$$C_{D_{ng}} = \left(C_{D_{ngear}}_{C_L=0} + p C_L \right) \frac{S_{gear}}{S} \quad \text{where } p = -0.4 C_{D_{nose}}_{C_L=0}$$

$$a = 14 \text{ ft}$$

$$b_t = 1.9 \text{ ft}$$

$$d_t = 1.5 \text{ ft}$$

$$e = 4.2 \text{ ft}$$

$$\text{Fig. 4.58} \quad C_{D_{ngear}}_{C_L=0} = 0.8 \Rightarrow p = -0.32$$

$$C_L = \frac{W}{\frac{1}{4} S}$$

$$S_{gear} = b_t \times d_t = 2.85 \text{ ft}^2$$

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
W	28,506	35,954	43,141	71,419	85,044
S	592	592	592	1182	1182
$\bar{q}_{f_{app}}$	32.9	39.4	39.8	40.24	40.24
$C_{L_{app.}}$	1.47	1.54	1.83	1.50	1.79
Fig. 4.60 $D_f g e a r$	24	25	27	N.A.	N.A.

LANDING GEAR

DRAG POLAR

R. HADDAD

15

	<u>25 Pax</u>	<u>36 Pax</u>	<u>50 Pax</u>	<u>75 Pax</u>	<u>100 Pax</u>
→ <u>$C_{D_{gear}}$</u>	.0016	.0015	.0010	.0030	.0020
→ <u>$C_{D_{m gear}}$</u>	.0405	.0422	.0456	.0844	.0912
$C_{D_{gear}}$.0421	.0437	.0466	.0874	.0932

then,

Appendix H

Mission performance verification.

Purpose: Presentation of methods in Reference 10 detailing the calculations for mission performance. This appendix contains calculations for:

- a) Take-off field length
- b) Landing field length
- c) FAR 25 climb requirements

The work was done using a spreadsheet so all five airplanes could be checked simultaneously.

A B C D E F G H

AE 790

M. RUSSELL 4/9/87

Performance Validation for the Family of Commuter Airplanes

Take-off Distance Calculations

	Ground Distance	25	36	50	75	100
>> W-TO = W-L (lbs)	28506	35954	43141	71419	85044	
>> Thrust-TO (lbs)	14283	17330	21461	34224	41727	
>> Friction Coeff.	.025	.025	.025	.025	.025	
>> Phi Angle (rad)	0	0	0	0	0	
T/W - T.O.	.501	.482	.497	.479	.491	
F-s (lbs)	13570	16431	20382	32439	39601	
>> Wing Area	592	592	592	1182	1182	
>> Density	.002377	.002377	.002377	.002377	.002377	
C-L-max-TO	.97	1.22	1.47	1.22	1.45	
V-s-TO (fps)	204.4	204.4	204.4	204.4	204.4	
>> V-LOF (fps)	224.8	224.8	224.8	224.8	224.8	
q-bar-LOF (psf)	60.1	60.1	60.1	60.1	60.1	
C-L-TO	.802	1.011	1.213	1.006	1.198	
>> C-D-TO	.144	.163	.211	.181	.220	
D-LOF (lbs)	5120.0	5809.6	7507.4	12827.5	15628.3	
L-LOF (lbs)	34492.3	43504.3	52200.6	86417.0	102903.2	
F-LOF (lbs)	9312.7	11709.1	14180.1	21771.4	26545.2	
F-m (lbs)	11308.3	13937.1	17094.2	26751.5	32639.0	
S-G (ft)	1979.9	2026.2	1982.2	2096.9	2046.5	

Rotation Distance

S-R (ft)	674.4	674.4	674.4	674.4	674.4
----------	-------	-------	-------	-------	-------

Transition Distance

Delta C-L	.140	.156	.171	.155	.170
Radius, R (ft)	8989	10192	11142	10165	11076
Theta-CL (rad)	.321	.320	.323	.300	.307
S-TR (ft)	670	714	746	713	744

Climb Distance

H-TR (ft)	460.4	518.7	577.8	452.8	517.5
S-CL (ft)	0	0	0	0	0

S-T.O. (ft)	3325	3414	3403	3484	3465
-------------	------	------	------	------	------

Landing Distance Calculations

C-L-max-L	1.35	1.71	2.05	1.70	2.02
V-S-L (fps)	172.9	172.9	172.9	172.9	172.9
>> V-A (fps)	224.8	224.8	224.8	224.8	224.8
V-TD (fps)	198.9	198.9	198.9	198.9	198.9
C-L-Approach	.80	1.01	1.21	1.01	1.20
q-bar-A (psf)	60.06	60.06	60.06	60.06	60.06
>> C-D-Approach	.181	.200	.248	.247	.286
D-A (lbs)	6436	7111	8818	17535	20304
Gamma (rad)	.052	.052	.052	.052	.052
Thrust- A	4943.2	5228.8	6559.2	13795.8	15851.1
S-A (ft)	955.0	955.0	955.0	955.0	955.0
S-FR (ft)	596.6	596.6	596.6	596.6	596.6
>> Braking Coeff.	.45	.45	.45	.45	.45
F-S (lbs)	12828	16179	19413	32139	38270
C-L-T(OGF)	.80	1.01	1.21	1.01	1.20
>> wing ht., h (ft)	8.00	8.00	8.00	8.00	8.00
>> span, b	84.30	84.30	84.30	84.30	84.30
>> m.g.c. (ft)	7.45	7.45	7.45	7.45	7.45
>> Aspect Ratio (wing)	12.00	12.00	12.00	12.00	12.00
>> Oswald's e-landing	.750	.750	.750	.750	.750
>> wing t/c	.130	.130	.130	.130	.130
>> Lamda c/2 wing (rad)	.194	.194	.194	.194	.194
2h/b	.190	.190	.190	.190	.190
h/b	.095	.095	.095	.095	.095
h/c-bar	1.07	1.07	1.07	1.07	1.07
>> A/Aeff (Fig. 10.8)	.43	.43	.43	.43	.43
Aeff	27.9	27.9	27.9	27.9	27.9
sigma'	.499	.499	.499	.499	.499
C-L-a(OGF)	5.24	5.24	5.24	5.24	5.24
C-L-a(IGE)	5.75	5.75	5.75	5.75	5.75
delta-alpha-o (deg)	.418	.418	.418	.418	.418
C-L(IGE)	.84	1.07	1.29	1.06	1.27
delta-C-D-i	-.011	-.018	-.026	-.018	-.025
C-D-taxi	.170	.182	.222	.229	.261
F-B (lbs)	7062	7878	9451	18328	20948
k	.753	.713	.713	.765	.751
F-m (lbs)	9660	11535	13840	24590	28744
S-B (ft)	1814	1916	1916	1785	1819
Land. Dist. S-L (ft)	3365	3467	3468	3337	3370

Climb Requirements

#	FAR Req.	Flap Set	Gear Set	V xVs	Thrust Set	Wt.
1	25.111 OEI initial	TO	up	1.2	TO	TO
2	25.121 OEI transition	TO	down	1.15	TO	TO
3	25.121 OEI 2nd segment	TO	up	1.2	TO	TO
4	25.121 OEI en route	clean	up	1.25	MC	TO
5	25.119 AEO Landing	landing	down	1.3	TO	L
6	25.121 OEI Landing	approach	down	1.1 < V < 1.5	TO	L

Actual Climb Gradients

Case 1 — Initial

	25	36	50	75	100
Weight (lbs)	28506	35954	43141	71419	85044
Thrust (lbs)	7142	8665	10731	17112	20864
Density (slug/ft ³)	.002377	.002377	.002377	.002377	.002377
Wing Area (ft ²)	592	592	592	1182	1182
Velocity (fps)	245	245	245	245	245
C-L	.674	.850	1.020	.845	1.007
>> C-D	.096	.110	.151	.086	.117
R.C. (fps)	26.5	27.2	24.6	33.8	31.7
Climb Grad. %	10.79	11.10	10.04	13.77	12.93
Req'd. Grad. %	1.20	1.20	1.20	1.20	1.20
Passed Reqmt.	yes	yes	yes	yes	yes

Case 2 — Transition

	25	36	50	75	100
Velocity (fps)	235	235	235	235	235
C-L	.734	.925	1.110	.920	1.096

8	>> C-D	.141	.158	.204	.177	.215
10	R.C. (fps)	13.78	16.44	15.32	11.18	11.66
11	Climb Grad. %	5.86	6.99	6.52	4.76	4.96
12	Req'd. Grad. %	0	0	0	0	0
14	Passed Requmt.	yes	yes	yes	yes	yes
15						

166
67
68 Case 3 — Second Segment
169

		25	36	50	75	100
11	Velocity (fps)	245	245	245	245	245
12	C-L	.674	.850	1.020	.845	1.007
14	>> C-D	.096	.110	.151	.086	.117
15	R.C. (fps)	26.46	27.23	24.62	33.77	31.70
17	Climb Grad. %	10.79	11.10	10.04	13.77	12.93
18	Req'd. Grad. %	2.400	2.400	2.400	2.400	2.400
19	Passed Requmt.	yes	yes	yes	yes	yes
20						

180
31
32
183
34 Case 4 — En Route

		25	36	50	75	100
100	Velocity (fps)	255	255	255	255	255
107	C-L	.621	.783	.940	.779	.928
108	>> C-D	.094	.101	.109	.101	.109
109	R.C. (fps)	25.33	28.62	33.83	28.16	32.76
110	Climb Grad. %	9.92	11.20	13.24	11.02	12.83
111	Req'd. Grad. %	2.40	2.4	2.4	2.4	2.4
112	Passed Requmt.	yes	yes	yes	yes	yes
113						

114
98
99 Case 5 — Landing
200

		25	36	50	75	100
01	Thrust	14283	17330	21461	34224	41727
02	Velocity (fps)	266	266	266	266	266
04	C-L	.574	.724	.869	.720	.858
05	C-D	.134	.156	.226	.177	.232
06	R.C. (fps)	70.93	70.79	63.00	61.90	58.47
08	Climb Grad. %	26.70	26.65	23.71	23.30	22.01
09	Req'd. Grad. %	3.20	3.20	3.20	3.20	3.20
10						

1
212 Passed Reqmt. yes yes yes yes yes

4
215 Case 6 -- Landing Approach

	25	36	50	75	100
Thrust	7142	8665	10731	17112	20864
Velocity (fps)	307	307	307	307	307
C-L	.802	1.011	1.213	1.006	1.198
C-D	.144	.171	.248	.189	.249
R.C. (fps)	15.94	16.07	9.92	11.59	8.45
Climb Grad. %	5.20	5.24	3.24	3.78	2.76
Req'd. Grad. %	2.10	2.10	2.10	2.10	2.10

229 Passed Reqmt. yes yes yes yes yes

30
31
232 Actual Climb Gradients for the Commuter Family

Climb Reqmt. #	25	36	50	75	100
1	10.79	11.10	10.04	13.77	12.93
2	5.86	6.99	6.52	4.76	4.96
3	10.79	11.10	10.04	13.77	12.93
4	9.92	11.20	13.24	11.02	12.83
5	26.70	26.65	23.71	23.30	22.01
6	5.20	5.24	3.24	3.78	2.76

44
45
246
47 Performance Verification

	25	36	50	Model	75	100
R.C. - T.O. (fpm)	3138	3053	3064	3753	2584	
R.C. - CR. (fpm)	984	573	1224	2150	1568	
TOFL (ft)	3325	3414	3403	3484	3465	
LFL (ft)	3365	3467	3468	3337	3370	
C_L $\text{MAX } T_0$	1.41	1.41	1.47	1.41	1.45	
C_L $\text{MAX } L$	1.41	1.71	2.05	2.7	2.02	

64

5

57

V-TO	224.8	224.8	224.8	224.8	224.8
V-A	224.8	224.8	224.8	224.8	224.8
V-MC	207.5	207.5	207.5	207.5	207.5

Appendix I

Airport Dimensions

Purpose: This appendix checks taxiway widths to determine what airports the twinbody configurations can operate from.

TABLE 3-1 Characteristics of Principal Transport Aircraft

Aircraft	Manufacturer	Wingspan	Length	Wheel base	Wheel track	Maximum structural takeoff weight, lb	Maximum landing weight, lb	Operating empty weight, lb	Zero fuel weight, lb	Type of engines	Number and passengers	Runway length, ft
DC-9-32	McDonnell Douglas	93'0"	119'0"	33'02"	16'03"	108,000	98,000	56,455	67,000	2 TF	115-127	7,500
DC-9-50	McDonnell Douglas	132'00"	167'11"	60'11"	18'05"	120,000	110,000	63,325	98,000	2 TF	130	7,100
DC-9-80	McDonnell Douglas	107'10"	135'06"	72'05"	16'08"	140,000	120,000	77,707	116,000	2 TF	155-172	7,100
DC-8-51	McDonnell Douglas	148'05"	187'05"	77'05"	31'10"	325,000	240,000	152,101	224,000	4 TF	196-259	11,000
DC-8-63	McDonnell Douglas	148'05"	187'05"	77'05"	30'10"	355,000	256,000	158,735	230,000	4 TF	186-259	11,000
DC-10-10	McDonnell Douglas	155'70"	182'03"	72'05"	35'10"	430,000	363,500	234,654	305,000	3 TF	270-345	9,000
DC-10-30	McDonnell Douglas	161'70"	181'07"	72'05"	35'05"	533,000	463,000	261,074	386,000	3 TF	216-345	11,000
B-737-300	Boeing	90'00"	108'00"	37'04"	11'02"	100,000	96,000	59,058	85,000	2 TF	86-125	5,600
B-727-200	Boeing	131'00"	148'00"	63'03"	18'08"	160,000	150,000	97,480	136,000	3 TF	134-163	8,600
B-730B	Boeing	136'00"	145'00"	59'08"	9'11"	234,000	175,000	115,020	155,000	4 TF	131-149	6,100
B-737-130B	Boeing	130'00"	145'01"	52'04"	9'11"	257,340	190,000	127,500	170,000	4 TF	137-174	7,500
B-707-320B	Boeing	142'05"	152'31"	59'00"	25'01"	331,600	215,000	148,890	195,000	4 TF	141-189	11,500
B-737-200	Boeing	124'06"	153'10"	60'00"	9'40"	220,000	198,000	130,700	184,000	2 TF	178-186	6,300
B-767-200	Boeing	156'00"	155'00"	64'07"	36'06"	310,000	270,000	170,210	246,000	2 TF	211-251	6,700
B-747B	Boeing	155'00"	155'00"	229'02"	84'07"	361,000	315,000	175,000	365,800	4 TF	362-490	11,000
B-747SP	Boeing	185'00"	176'07"	67'04"	17'05"	650,000	454,000	308,400	410,000	4 TF	998-364	8,000
L-101-100	Lockheed	155'00"	177'08"	70'00"	36'07"	468,000	243,133	243,133	320,000	3 TF	255-440	10,900
L-101-500	Lockheed	164'02"	161'08"	36'00"	36'00"	406,000	210,129	240,129	300,129	3 TF	246-400	9,300
Caravelle-B	Aerospatiale	112'05"	112'05"	41'07"	11'02"	123,460	106,120	66,950	97,000	2 TF	86-104	6,900
Hawker Siddeley Trident 2E	Hawker Siddeley	98'00"	114'00"	44'07"	19'01"	143,500	113,000	73,200	101,000	3 TF	82-115	7,500
BAC111-300	British Aircraft	88'05"	92'05"	33'01"	14'03"	78,000	69,000	46,405	64,000	2 TF	63-75	6,900
Super VC-10	British Aircraft	140'00"	171'08"	72'02"	21'05"	335,000	237,000	147,000	215,000	4 TF	100-163	8,200
A-300	Airbus Industrie	147'01"	175'11"	61'01"	31'06"	302,000	281,000	186,810	256,830	2 TF	225-345	6,500
A-310	Airbus Industrie	144'00"	153'01"	40'11"	31'06"	291,000	261,250	169,910	239,290	2 TF	205-345	6,100
Concorde	British Aircraft-Aerospatiale	83'10"	202'03"	59'05"	25'04"	395,000	240,000	175,000	201,000	4 TF	108-195	11,300
Mercure	Dassault	100'00"	111'00"	39'01"	25'04"	116,840	108,000	57,022	99,300	2 TF	121-134	6,500
Ilyushin-42	U.S.S.R.	141'00"	174'00"	60'04"	22'03"	357,000	223,000	153,000	206,000	4 TF	169-196	10,700
Tupolev-154	U.S.S.R.	123'00"	157'02"	62'01"	37'08"	198,416	185,186	95,930	131,944	3 TF	128-158	6,400
Iluyshin-26	U.S.S.R.	157'00"	197'05"	70'00"	36'07"	454,150	365,000	4 TF	350	3 TF	9,600	

* Approximate only depends upon seating configuration.
** At sea level, standard day, no wind, level runway.
Source: Manufacturers' data

also dictates the widths of runways and taxiways and the distances between these trafficways, and it affects the required turning radius on pavement within and adjacent to the terminal buildings. The runway length influences a large part the land area required at an airport. The lengths provided in Tables 3-1 and 3-2 are only approximate. For more precise values the appropriate references, such as those listed in this chapter, should be consulted.

An examination of Tables 3-1 and 3-2 reveals some interesting information. The maximum takeoff weight of principal airline aircraft varies from 79,000 to 775,000 lb. Small general aviation aircraft weights range from 2000 to 8000 lb, while commuter and corporate aircraft vary from 15,000 to 74,000 lb. The maximum number of passengers carried by airline aircraft varies from 65 to nearly 500. On the other hand, small general aviation airplanes seat from 2 to 6 people, and short-haul and corporate aircraft from less than 10 to about 80 persons, depending on the configuration of the interior. Runway lengths for typical airline aircraft vary from 60 ft in 12,000 ft, but it is important to note that it is not valid to assume that the larger the weight of an aircraft, the longer the runway length required. For large aircraft especially, the trip length has a profound influence on takeoff weight and, hence, the required runway length. Therefore, in the analysis of runway length requirements, an estimate of trip length is very important.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 3-2 Characteristics of General Aviation and Short-Haul Passenger Aircraft

Aircraft	Wing span	Fuselage length	Wheel track	Weight, lb.	takeoff	Number of seats	Runway length, ft.	Number and type of engines
Beech 35 Musketeer	32'0"	25'0"	11'10"	2,200	4	1 P	1,380	
Beech V35 Bonanza	31'15"	26'14"	9'10"	3,400	6	1 P	1,320	
Beech SR Baron	37'0"	29'0"	11'0"	6,775	6	2 P	2,380	
Beech B50 Queenair	50'0"	35'05"	12'00"	8,800	11	2 P	2,680	
Beech C90	45'10"	44'17"	13'00"	10,900	17	2 TP	2,840	
Bellanca 28C	34'02"	22'11"	9'00"	3,000	4	1 P	1,000	
Cessna 130	32'06"	23'00"	6'05"	1,600	2	1 P	1,385	
Cessna 172 Skylane	35'09"	26'11"	7'02"	2,310	4	1 P	1,325	
Cessna 182 Skylane	35'10"	28'00"	7'11"	2,850	4	1 P	1,350	
Cessna T100	36'11"	29'05"	12'00"	5,500	6	2 P	2,750	
Cessna 402	44'01"	36'05"	18'00"	6,850	10	2 P	2,685	
Piper PA-22 Aztec	37'02"	30'15"	11'04"	5,260	6	2 P	1,250	
Piper PA-28 Cherokee	30'00"	23'16"	10'00"	2,400	4	1 P		
Piper PA-28 Arrow	36'00"	24'12"	10'05"	2,600	4	1 P		
Piper Twin Comanche C-36	35'00"	25'12"	13'00"	3,610	6	2 P	1,870	
Piper PA-31 Navajo	40'08"	32'07"	13'05"	6,500	6	2 P	2,095	
Gulfstream II	68'10"	79'11"	13'00"	17,500	22	2 TP	4,070	
Metroliner II	46'03"	58'05"	15'00"	12,500	22	2 TP	3,350	
Lear Jet 35	35'07"	47'07"	8'03"	13,000	6	2 T	5,186	
Lockheed Jet Star	54'15"	60'15"	12'00"	42,000	12	4 T	4,880	
Sabreliner 45	44'05"	48'04"	7'02"	20,000	12	2 T	4,875	
Jet Falcon 2000	54'03"	60'07"	12'03"	29,100	28	2 TP	4,430	
de Havilland Twin Otter	63'00"	51'09"	12'02"	12,500	22	2 TP	3,000	
Shorts 300-200	74'06"	58'01"	22'90"	22,900	28	2 TP	3,860	
Bae 146-100	85'05"	77'07"	14,600	84	4 TP	3,530		
de Havilland DASH 7	93'00"	80'08"	44,500	32	4 TP	2,260		
Fokker F27 Mk50	95'02"	82'03"	45,000	50	2 TP	5,160		

^a Includes pilot.source: *McDonnell's* data, *Jew's All the World's Aircraft* 1971.

Runway lengths for small general aviation aircraft seldom exceed 2000 ft., while for commuter and corporate aircraft this length is on the order of 5000 ft.

In Tables 3-1 and 3-2 aircraft are referred to according to their type of propulsion and thrust-generating medium. The term piston engine applies to all propeller-driven aircraft powered by gasoline-fed reciprocating engines. Most small general aviation aircraft are powered by piston engines. The term turboprop refers to propeller-driven aircraft powered by turbine engines. A few twin-engine general aviation aircraft and a few of the earlier airline aircraft are powered in this manner. The term *turbojet* makes reference to those aircraft which are not dependent on propellers for thrust, but which obtain the thrust directly from a turbine engine. The early

ORIGINAL PAGE IS OF POOR QUALITY

jet airline aircraft, particularly the Comet 707 and the DC-8, were powered by turbojet engines, but these were discarded in favor of turbofan engines principally because the latter are far more economical. When a fan is added in front or rear of a turbojet engine, it is referred to as a *turbofan*. Most fans are installed in front of the main engine. A fan can be thought of as a

TABLE 3-3 Main Landing Gear Dimensions for Typical Transport Aircraft

Main landing gear configuration	Aircraft	Dimensions, in.			Trailing inflation pressures, psi
		X	Y	Z	
	DC-9-80	29.1	30.5	17.0	
	B-737	34.0	34.0	14.0	
	DC-8-61	30.0	55.0	15.0	
	DC-8-62	35.0	55.0	16.7	
	DC-8-63	35.0	55.0	15.0	
	DC-10-10	54.0	64.0	17.3	
	B-720B	30.0	49.0	14.5	
	B-707-120B	34.0	56.0	17.0	
	B-707-320B	34.6	56.0	18.0	
	B-757	34.0	45.0	16.1	
	B-767	45.0	56.0	19.0	
	Concord	26.4	65.7	19.4	
	L-101-1-S0N	52.0	70.0	18.4	
	A-300B	25.0	55.0	15.0	

^a Center gear pressure of 134 psi supports 16 percent of total weight.^b Center gear pressure of 140 psi supports 16 percent of total weight.

source: Manufacturer's data.

TABLE 9-3 FAA Aircraft Approach Category Classification

Approach category	Approach speed, kn
A	Less than 91
B	91-120
C	121-140
D	141-165
E	166 or greater

SOURCE: Federal Aviation Administration [22].

aircraft using the airport [9]. This classification system and the grouping of some common air-carrier aircraft into classifications are shown in Table 9-2.

Present Airport Classification System

The FAA is changing the classification of airports for geometric design purposes so that it is based upon the approach category of aircraft. The approach category, as shown in Table 9-3, is determined by the aircraft approach speed, which is defined as 1.3 times the stall speed in the landing configuration of that aircraft at maximum gross landing weight [23]. Aircraft with maximum certified takeoff weights in excess of 12,500 lb are classified as large aircraft; the rest are small aircraft.

Geometric design specifications for all aircraft in approach categories A and B are governed by utility airport specifications. Utility airports are now classified as basic utility stage I, basic utility stage II, general utility stage I and general utility stage II. A basic utility stage I airport accommodates about 75 percent of most single-engine aircraft and some small twin-engine aircraft for personal and business purposes. This airport is usually designed for aircraft in airplane design group I. A basic utility stage II airport includes a broader spectrum of small business and air taxi type twin-engine aircraft. This airport is normally designed for small aircraft through-

TABLE 9-4 FAA Airplane Design Group Classification for Geometric Design for Airports

Airplane design group	Wingspan, ft	Typical aircraft
I	Less than 49	Learjet 24, Rockwell Sabre 75A
II	49 but less than 79	Gulfstream II, Rockwell Sabre 80
III	79 but less than 118	B-727, B-737, BAC1-11, B-757, B-767, Concorde, L-1011, DC-9
IV	118 but less than 171	A-300, A-310, B-707, DC-8
V	171 but less than 197	B-747
VI	197 but less than 262	Future

SOURCE: Federal Aviation Administration [129, 23].

Fig. 9-1 Comparison between former and present FAA airport classification systems. (Federal Aviation Administration)

Former Airport Classification Systems

For the purpose of geometric design standards, the FAA separated airport activity into two general classes, namely, general aviation and air carrier. A further breakdown was made within both of these categories.

Utility airports were defined as those which were used by aircraft weighing not more than 12,500 lb maximum certified takeoff weight, excluding jet aircraft [2]. Transport airports were defined as those which accommodated general aviation aircraft weighing more than 12,500 lb, and jet aircraft [11]. The utility airports were further grouped for visual and nonprecision instrument operations and for precision instrument operations. The visual and nonprecision instrument operation airports were called basic utility stage I, basic utility stage II, or general utility. A basic utility stage I airport had the capability of accommodating about 75 percent of the propeller aircraft not weighing more than 12,500 lb; in general this meant aircraft on the order of 3000 lb or less. A basic utility stage II airport had the capability of accommodating about 95 percent of the propeller aircraft weighing not more than 12,500 lb; in general this meant aircraft weighing on the order of 8000 lb or less. A general utility airport accommodated substantially all propeller aircraft not greater than 12,500 lb. A basic transport airport was one that could accommodate propeller or turbine-powered aircraft up to 60,000 lb maximum certified take off weight. This type of airport was planned for use by business jets, corporate jets, and executive jets. A general transport airport accommodated transport-category aircraft used for general aviation with maximum takeoff weights up to 150,000 lb or more. There were also specifications for a precision instrument transport category airport.

Air carrier airports had been classified for geometric design purposes according to the wingspan, undercarriage width, and wheel base of the

TABLE 9-1 Former PAA Taxiway Design Classification System for Air-Carrier Airports

	Airport/Taxiway Design Group			
	I	II	III	IV
Aircraft dimension, B				
Wingspan	Up to 130	Up to 167	Up to 200	Up to 240
Undercarriage width	Up to 30	Up to 41	Up to 44	Up to 50
Wheelbase	Up to 60	Up to 87	Up to 97	Up to 104
Typical aircraft	B-727-100	B-707	B-101	Fuselage
	B-777	B-777-300		
	BAC-111	B-157		
DC-8	B-767			
	DC-10			
	L-1011			

SOURCE: Federal Aviation Administration [9].

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

Longitudinal Grade Des

Table 7.5 Recommended Dimensional Standards for Airline Airports—Taxiways

Design Item	Symbol	Dimensional Criteria (ft) Airplane Taxiway Design Group			
		I	II	III	IV
1. Taxiway structural pavement width on tangents	W_T	50	75	100	125
2. Taxiway structural pavement width on curves	W_C	65	90	115	140
3. Taxiway shoulder width	—	20	25	35	40
4. Safety area width	—	110	150	220	310
5. Taxiway and apron taxiway obstacle-free area width	—	210	270	360	470
6. Terminal taxilane obstacle-free area width	—	160	210	290	390
7. Separation distance from taxiway C_L to taxiway C_L	S_T	200	300	300	400
8. Separation distance from taxiway C_L to runway C_L	S_R	400	400	600	1,000
9. Radius of taxiway C_L curves	R	100	150	150	200

* (turboprop and piston aircraft only: 120)

** (turboprop and piston aircraft only: 30)

* Turboprop and piston airplanes only.

Source: *Airport Design Standards—Airports Served by Air Carriers—Taxiways*, FAA Advisory Circular AC 150/5335-1A, October 4, 1973.

7.6 summarize the ICAO dimensional criteria as described in Section 7.5. These criteria are defined in Table 7.5. The recommended standards for airline airports are given in Table 7.5. To use this table, first determine the maximum wing span and the maximum undercarriage width. Then determine the maximum wheel base. Finally, determine the appropriate design group based on the maximum dimensional criteria for each item.

Transverse Grades

As shown in the figure, the transverse grade is determined by the slope of the surface. The rule of thumb is that the transverse grade should be less than or equal to the longitudinal grade. This is true for runways that serve aircraft with maximum wing spans of 110 ft or less. For runways that serve aircraft with maximum wing spans of 120 ft or more, the transverse grade should be less than or equal to the longitudinal grade plus 1%.

Beyond the runway end, the removal of shoulders is limited to 5.0% for the first 100 ft. For points beyond 100 ft, slopes of 1% are permitted. The shoulder surface gradients of at least 1% are recommended for shoulders of at least 1.5 in. in height. For shoulders less than 1.5 in. in height, the shoulder surface gradients should be at least 1%.

7.7 LONGITUDINAL GRADIENTS

From the standard runway end, the longitudinal gradient is 2%. A runway end may be located at the end of the runway. The cost of a smooth, continuous surface is approximately 10% of the cost of a rough, discontinuous surface.

**ORIGINAL PAGE IS
OF POOR QUALITY**

EZ Table 7.6 FAA Minimum Dimensional Standards for General Aviation Airports

Design Item	Airport Group					Precision Runway for Basic or General Transport
	Basic Utility Stage I	Basic Utility Stage II	General Utility	Basic Transport A ^a	Basic Transport B ^a	
Runway safety area width (ft)	100	120	150	150	300	300
Runway width (ft)	50	60	75	75	100	100
Taxiway width (ft)	20	30	40	40-60 ^b	40-60 ^b	40-60 ^b
Runway centerline to:						
Taxiway centerline (ft)	150	150	200	200	300	400
Airplane parking area (ft)	225	225	275	275	300	475
Building restriction line (ft)	200	200	250	250	300	350
Taxiway centerline to:						
Airplane parking area (ft)	75	75	75	75	100	175
Fixed or movable obstacle (ft)	50	50	50	50	75	100
Parallel taxiway (ft)	NA	NA	NA	150	150	200
Building restriction line (ft)	100	100	100	50	75	100

Sources: Utility Airports, FAA Advisory Circular AC 150/5300-4B, June 24, 1975; Airport Design Standards—General Aviation Airports—Basic and General Transport, FAA Advisory Circular AC 150/5300-6 including CHC 1, April 13, 1972.

^a For aircraft tread widths exceeding 25 ft, use a 50 ft taxiway width; for tread widths exceeding 35 ft, use a 60 ft taxiway width.

^b Basic Transport Column A is to be used only at those low activity sites where an existing utility runway, having no anticipated need for an instrument approach procedure of any kind, is extended for business jets. For all other basic transport airports use Column B.

EZ Table 7.7 Runway Longitudinal Grade Design Criteria for Civilian Airports^a

	Maximum Longitudinal Grade (%)	Maximum Grade, First and Last Quarter (%)	Maximum Effective Grade (%)	Maximum Change (%)	Distance Between Points of Intersection, D (ft)	Length of Vertical Curve ^b (ft/1% grade change)
FAA						
Air carrier airports	1.5	0.5	1.0	1.5	1000 (A + B)	1000
Basic and general transport airports	2.0	—	—	2.0	250 (A + B)	300
Utility airports	2.0	—	—	2.0	250 (A + B)	300
ICAO						
Code letter A	1.25	0.8	1.0	1.5	1000 (A + B)	1000
Code letter B	1.25	0.8	1.0	1.5	1000 (A + B)	1000
Code letter C	1.5	—	1.0	1.5	500 (A + B)	500
Code letter D	2.0	—	2.0	2.0	165 (A + B)	250
Code letter E	2.0	—	2.0	2.0	165 (A + B)	250

Sources: Utility Airports, FAA Advisory Circular AC 150/5300-4B, June 24, 1975; Airport Design Standards—General Aviation Airports—Basic and General Transport, FAA Advisory Circular AC 150/5300-6 including CHC 1, April 13, 1972; Aerodromes Annex 14 to the International Convention on Civil Aviation, Including Amendment 31, International Civil Aviation Organization, Montreal, Oct. 6, 1977.

^a Runway grade changes shall also conform to sight distance criteria described in section 7.7.

^b No vertical curve is required when grade change is less than 0.4%.

ORIGINAL PAGE IS
OF POOR QUALITY

Table 7.3 ICAO Minimum Dimensional Recommended Practices

Design Item	Code Letter				
	A	B	C	D	E
Width of cleared and graded area					
Instrument runway (ft)	500	500	500	500	500
Noninstrument runway (ft)	500	500	400	260	200
Runway width (ft)	150	150	100	75	60
Taxiway width (ft)	75	75	50	33	25
Taxiway edge to:					
Edge of instrument runway (ft)	500	500	500	—	—
Edge of other runway (ft)	250	240	240	120	95
Edge of another taxiway (ft)	205	170	140	90	75
A fixed obstruction (ft)	125	100	85	60	53

Source: Aerodromes, Annex 14, to the International Convention on Civil Aviation including Amendment 31, International Civil Aviation Organization, Montreal, Oct. 6, 1977.

Table 7.4 FAA Recommended Dimensional Standards for Airline Airports—Runways

Runway safety area width (ft)	500
Runway width (ft)	150*
Runway centerline to:	
Building restriction line (ft)	750
Airplane parking area	Determined by imaginary surfaces (See FAR Part 77 and Ref. 6)
Property line	Determined by imaginary surfaces (See FAR Part 77 and Ref. 6)

Source: Airport Design Standards—Airports Served by Air Carriers—Runway Geometrics, FAA Advisory Circular AC 150/5335-4, including CHG 1, June 14, 1976.

*A 200 ft runway width is recommended where airplanes in Design Group III (see Table 7.5) are planned to be accommodated.

TABLE 9.3 Runway Dimensional Standards

Width	International Civil Aviation Organization			4
	1	2	3	
Pavement*				
Width	60-75	75-100	100-120	130
Safety areas ^b	200	270	300	300
Shoulder ^c				
Gradient, %				
Pavement, longitudinal maximum	2.0	2.0	1.5	1.25
maximum effective maximum change	2.0	2.0	1.0	1.0
transitions curve rate of slope change per 100 ft	0.4	0.6	0.2	0.1
Pavement, transverse maximum				
Safety areas ^b				
maximum longitudinal maximum transverse	2.0	2.0	1.75	1.5
maximum transverse	1.0	1.0	2.5	2.5

* At least 100 ft for precision instrument.

^a Precision and nonprecision approach requires 500 ft for code 1 and 2, and 1000 ft for codes 3 and 4.

^b Pavement and shoulders should be at least 300 ft for codes D and E.

^c 2.0 for codes A and B, 1.5 for codes C, D, and E.

Source: International Civil Aviation Organization [4] and Federal Aviation Administration [12, 21].

may be sited in accordance with the continuous visibility requirements. A clear line of sight to taxi-lane centerlines is also desirable. This requirement may be satisfied where adequate control of aircraft exists by other means [12].

RUNWAYS

The runway system at an airport consists of the structural pavement, the shoulders, the blast pad, and the runway safety area, as shown in Fig. 9.2.

1. The structural pavement supports the aircraft with respect to structural load, maneuverability, control, stability, and other operational and dimensional criteria.

2. The shoulder adjacent to the end of the structural pavement resists jet blast erosion and accommodates maintenance and emergency equipment.

3. The blast pad is an area designed to prevent erosion of the surfaces adjacent to the ends of runways which are subjected to sustained or repeated jet blast. The ICAO requires a 100 ft blast pad, whereas the FAA has determined that the blast pad should be 100 ft in length for airplane design group 1, 150 ft for design group II, 200 ft for design groups III and

IV, and 400 ft for design groups V and VI. The width of the blast pad should include both the runway and the shoulder width.

4. The runway safety area is an area which is cleared, drained, and graded, and which includes the structural pavement, shoulders, blast pad, and stopway, if provided. This area should be capable of supporting emergency and maintenance equipment as well as providing support for aircraft should they veer off the pavement for one reason or another. The runway safety area required by the ICAO is 275 ft beyond each end of the runway for code elements 3 and 4, and for all runways with instrument operations. The FAA requires that the runway safety area extend 20 ft beyond the end of the runway for small aircraft in airplane design group I, 300 ft for small aircraft in design group II, and 600 ft for precision instrument operations with small aircraft. It also requires 1000 ft for large aircraft in all design groups. The runway safety areas should include the blast pad and its width should be 50 ft for transport category aircraft.

The ICAO and FAA runway standards related to pavement and safety area widths, as well as longitudinal and transverse gradients, are given in Table 9.5.

Sight Distance and Longitudinal Profile

In addition to the information given in Table 9.5, there are other factors that must be considered when establishing the longitudinal profile. One is