4724	Mark Sche	me	June 2007
1	(i) Correct format $\frac{A}{V+2} + \frac{B}{V-3}$	M1	s.o.i. in answer
	A=1 and $B=2$	A1 2	for both
	(ii) $-A(x+2)^{-2}-B(x-3)^{-2}$ f.t.	√A1	
	Convincing statement that each denom > 0	B1 B1 3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks.
	State whole exp < 0 AG	B1 3	5
2	Use parts with $u = x^2$. $dv = e^x$	*M1	obtaining a result $f(x) + /- \int g(x)(dx)$
	Obtain $x^2 e^x - \int 2x e^x (dx)$	A1	
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$	M1	
	Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets	A1	s.o.i. eg $e + (-2x + 2)e^x$
	Use limits correctly throughout	dep*M1	Tolerate (their value for $x = 1$) (-0)
	e ⁽¹⁾ – 2 ISW Exact answer only	A1 6	Allow 0.718 → M1
3	Volume = $(k)\int_{0}^{\pi} \sin^2 x (dx)$	B1	where $k = \pi, 2\pi$ or 1; limits necessary
	Suitable method for integrating $\sin^2 x$	+M1	$\int eg \int +/-1+/-\cos 2x (dx) \text{ or single}$
			integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x (\mathrm{d}x) = \frac{1}{2} \int 1 - \cos 2x (\mathrm{d}x)$	A1	$\int or -\sin x \cos x + \int \cos^2 x (dx)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1	or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly	dep*M1	
	Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	A1 6	Beware : wrong working leading to $\frac{1}{2}\pi^2$
4	(i) $(1+\frac{x}{2})^{-2}$	M1	Clear indication of method of ≥ 3 terms
	$= 1 + \left(-2\right)\left(\frac{x}{2}\right) + \frac{-2 - 3}{2}\left(\frac{x}{2}\right)^2 + \frac{-2 - 3 - 4}{3!}\left(\frac{x}{2}\right)^3$		
	$= 1 - x + \frac{3}{4}x^2 - \frac{1}{2}x^3$	B1 A1	First two terms, not dependent on M1 For both third and fourth terms
	4 2		
	$(2+x)^{-2} = \frac{1}{4} \left(\text{their exp of } (1+\alpha x)^{-2} \right) \text{ mult out}$	√B1	Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2} x \right < 1)$	B1 5	
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$	M1	
	$-\frac{3}{8} \left(x^3\right)$	√A1 2	Follow-through from b + d
		i	7

			_
5(i)	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	M1	
	$= \frac{-4\sin 2t}{-\sin t}$	A1	Accept $\frac{4 \sin 2t}{\sin t}$ WWW
	= 8 cos t	A1	3 .
	≤ 8 AG	A1 4	with brief explanation eg $\cos t \le 1$
	(ii) Use $\cos 2t = 2\cos^2 t + 1 - 1$ or $1 - 2\cos^2 t$	M1	If starting with $y = 4x^2 + 1$, then
	Use correct version $\cos 2t = 2\cos^2 t - 1$	A1	Subst $x = \cos t, y = 3 + 2\cos 2t$ M1
	Produce WWW $y = 4x^2 + 1$ AG	A1 3	Either substitute a formula for cos 2t M1
	(iii) U-shaped parabola abve x-axis, sym abt y-axis Portion between (-1,5) and (1,5)	B1 B1 2	Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain corr formula & say it's correct A1 Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be marked
	N.B. If (ii) answered or quoted before (i) attempted,		
		2.,047 iii pai	(i) of the dr = ox (b) by i defined.
6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1	
	Using $d(uv) = u dv + v du$ for the (3)xy term	M1	
	$\frac{d}{dx}(x^2 + 3xy + 4y^2) = 2x + 3x\frac{dy}{dx} + 3y + 8y\frac{dy}{dx}$	A1	
	Solve for $\frac{dy}{dx}$ & subst $(x, y) = (2,3)$	M1	or v.v. Subst now or at normal eqn stage;
	du. 42		(M1 dep on either/both B1 M1 earned)
	$\frac{dy}{dx} = -\frac{13}{30}$	A1	Implied if grad normal = $\frac{30}{13}$
	Grad normal = $\frac{30}{13}$ follow-through	√B1	This f.t. mark awarded only if numerical
	Find equ <u>any</u> line thro (2,3) with <u>any</u> num grad $30x - 13y - 21 = 0$ AEF	M1 A1 8	No fractions in final answer 8
7	(i) Loading term in quotient = 2×	B1	
′	 (i) Leading term in quotient = 2x Suff evidence of division or identity process 	M1	
	Quotient = $2x + 3$	A1	Stated or in relevant position in division
	Remainder = x	A1 4	Accept $\frac{x}{x^2 + 4}$ as remainder
	(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$	√B1 1	$2x+3+\frac{x}{x^2+4}$
	(iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$	√B1	
	their $\frac{Cx}{x^2+4}$ integrated as $k \ln(x^2+4)$	M1	Ignore any integration of $\frac{D}{v^2 + A}$
	$ \begin{array}{c} x + 4 \\ k = \frac{1}{2}C \end{array} $	√A1	X +4
	Limits used correctly throughout	M1	
	$14 + \frac{1}{2} \ln \frac{13}{5}$		logs need not be combined.
	- ,		10

8 (i) Sep variables
$$\operatorname{eg}\int \frac{1}{6-h}(\mathrm{d}h) = \int \frac{1}{20}(\mathrm{d}t)$$

LHS = $-\ln(6-h)$

RHS = $\frac{1}{20}t$ (+c)

Subst $t = 0.h = 1$ into equation containing 'c'

Correct value of their $c = -(20) \ln 5$ WWW

Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG

A1 (ii) When $h = 2.t = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$

M1 A1 (iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$

M1 A1 A2 (Accept $4.5, 4.\frac{1}{2}$

Or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage $\frac{6-5}{5-5} = e^{-0.5}$ or $\frac{6-h}{5-5} = e^{-0.5}$ or $\frac{6-h}{5-5}$