Application of a Discontinuous Petrov-Galerkin (DPG) Method to the Stokes Equations

Nathan V. Roberts

Center for Predictive Engineering and Computational Sciences Institute for Computational Engineering and Sciences The University of Texas at Austin Joint work with

Denis Ridzal, Pavel B. Bochev, Kara J. Peterson, Christopher M. Siefert at Sandia, and Leszek D. Demkowicz at UT Austin

5-6 October 2010

1/7

Outline

Introduction

Stokes Formulation

Experiments with parallel adaptivity

We have implemented Heuer and Demkowicz's inner product in Camellia

$$\begin{split} &((\tau,v),(\delta\tau,\delta v))_V = C(K,\epsilon)\|v\| + \epsilon\|\nabla v\| + \|\beta\cdot\nabla v\|_w + \|\tau\|_w + \|\nabla\cdot\tau\|_w \end{split}$$
 where $C(K,\epsilon) = \min(\epsilon,|J(K)|).$

5/7

For better pictures, $\epsilon=5e-2$, slightly skew advection.

To make sure we still work at smaller scales, $\epsilon=1e-3$

