

SC1015 Mini-Project

Predicting Flight Delays

Tan Leong Jun Joseph (U2321339H) Tan Zhe Kai (U2322419A)

BOARDING PASS

- GROUP FCS2
- VENUE HWLAB 3
- DATASET KAGGLE

TABLE OF CONTENTS

01

| Problem

02

| EDA

03

Models

04

| Conclusion

01 Problem Formulation

Flight Delay: >15 MINS

₹ 0n-time: ~80%

Average length: ~50 MINS

Dataset

- 8 data files
- Overlapping variables
- All data files connected
- Extensive data preparation and cleansing techniques needed

Data Preparation

EDA

02 **Exploratory** Data Analysis

On-time vs Delayed ON-TIME: 4.5 million flights

| DELAYED: 1 million flights

Airlines w/ Most Flights

- 1. Southwest Airline Co.
- 1.1M / 21.2%
- 2. Delta Air Lines Inc.
- 850k / 15.2%
- 3. American Airlines Inc.
- 760k / 13.6%

Increasing trend in the number of flights per month

Which month has the most flight delays?

- 1. June, July & August (Summer)
- 2. December (Winter)

Possible reasons:

- Adverse weather conditions
- Vacation period
- High number of concurrent flights

Which airline has the most flight delays?

Most number of flight delays:

Southwest Airlines Co.

Possible reasons:

- Budget airline
- Popular

Most Popular Airlines

- Southwest Airlines Co.
- Delta Air Lines Inc.
- American
 Airlines Inc.
- Major American airlines

03 Models

1st

Decision Tree

2nd

Random Forest

3rd

| AdaBoost

4th

XGBoost

5th Naive Bayes

Comparison Summary

Metrics used for models

Precision

🖫 | Recall

F1 Score

% of correct classifications

% of true positive/(true pos + false pos)

% of true positive/(true pos + false neg)

Mean of precision and recall

Models

Decision Tree Classifier

Default parameters

Hyperparameter Tuning using
GridSearchCV:

• To obtain the best parameters to generate the model with the highest accuracy

max_depth	: 4
	04 704

criterion: gini

Accuracy	81.3%		
Precision	67.0%		
Recall	0%		
F1-Score	0%		

Models

Random Forest Classifier

- Combination of decision trees
- Prevent overfitting
- Result = avg no. of models,evaluated k times

AdaBoost Classifier

Original Data Weighted data Weighted data Classifer Classifer Classifer Classifer

XGBoost Classifier

Naive Bayes Classifier

- Supervised learning
- Probabilistic approach + Gaussian distribution

Models

Summary of Classification Models

Model	Train Accuracy	Test Accuracy	Precision	Recall	F1-Score
Decision Tree	81.3%	81.3%	67.0%	0.0	0.0
Random Forest	99.3%	82.0%	55.5%	20.1%	29.5%
AdaBoost	81.3%	81.3%	54.4%	0.0%	1.0%
XGBoost	82.4%	82.3%	66.1%	10.7%	18.4%
Naive Bayes	81.3%	81.3%	0.0%	0.0%	0.0%

Feature Importances on the Best Model

Model	Train Accuracy	Test Accuracy	Precision	Recall	F1-Score
Random Forest	99.3%	82.0%	55.5%	20.1%	29.5%

- 1. Age of Plane
- 2. Previous Airport
- 3. Concurrent Flights
- 4. Departure Time Block
- 5. Max Wind Speed

Data Driven Insights & Recommendations

Travellers

Choose less popular seasons

Airlines

Prioritize newer aircraft models

| Airport

Interact with each other

Thank You!

References:

- Slotnick, D. (2020, February 19). Why Your Airplane (Still) Might Be Delayed.
 The New York Times. Retrieved from
 - https://www.nytimes.com/2020/02/19/business/air-travel-delays-airlines.html
- A general architecture of XGBoost. (n.d.). In ResearchGate. Retrieved from <u>https://www.researchgate.net/figure/A-general-architecture-of-XGBoost_fig3_335</u> <u>483097</u>
- Naive Bayes. (n.d.). In scikit-learn: Machine Learning in Python. Retrieved from https://scikit-learn.org/stable/modules/naive_bayes.html
- Dancerworld60. (n.d.). Demystifying Naïve Bayes-Simple Yet Powerful for Text Classification. Medium. Retrieved from https://medium.com/@dancerworld60/demystifying-na%C3%AFve-bayes-simple-yet-powerful-for-text-classification-ad92b14a5c7