Solve the exercises by hand and verify your answers using Mathematica.

- 1. Compute the following antiderivatives.
 - (a) $\int x^2 \log(x) \, dx$
 - (b) $\int x^2 e^x \, dx$
 - (c) $\int \left[\log(x)\right]^2 dx$
- 2. Evaluate the following definite integrals.
 - (a) $\int_{4}^{7} x^2 \log(x) \, dx$
 - (b) $\int_0^\infty \frac{1}{(1+x)^2} dx$
- 3. Let K, T, σ , and r be positive constants and let

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_0^{b(x)} e^{-\frac{y^2}{2}} dy$$

where $b(x) = \frac{1}{\sigma\sqrt{T}} \left[\log\left(\frac{x}{K}\right) + \left(r + \frac{\sigma^2}{2}\right) T \right]$. Compute g'(x).

- 4. Let $\phi(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$ so that $\Phi(x) = \int_{-\infty}^{x} \phi(u) du$ (i.e., the $\Phi(x)$ in Black-Scholes).
 - (a) For x > 0, show that $\phi(-x) = \phi(x)$.
 - (b) Given that $\lim_{x\to\infty} \Phi(x) = 1$, use the properties of the integral as well as a substitution to show that $\Phi(-x) = 1 \Phi(x)$ (again, assuming x > 0).