Memoria Técnica - Práctica Final

☼ Proyecto: Predicción del Éxito de Atracciones Turísticas

"If Objetivo General

Desarrollar un modelo de deep learning capaz de predecir si un punto de interés turístico (POI) generará un alto o bajo nivel de engagement. Para ello, se han utilizado tanto sus atributos visuales (imagen principal) como metadatos estructurados (visitas, likes, descripciones, etc.).

Dataset

El dataset contiene información de 1.569 POIs con las siguientes características: - Imagen principal (main.jpg) por cada POI. - Metadatos: identificador, nombre, descripción, categorías, número de visitas, likes, dislikes, bookmarks. - Métrica calculada de engagement: suma de interacciones positivas menos negativas. - Clase binaria engagement: alto (1) o bajo (0) en función de la mediana del score.

Preparación y Preprocesamiento

- 1. Carga desde Google Drive: Los datos ya estaban descomprimidos.
- 2. **Verificación de integridad**: Se validó que cada POI tenga su imagen.
- 3. Creación de variables clave:
 - engagement_score: Suma de Likes + Bookmarks + Visits Dislikes.
 - o engagement: Etiqueta binaria basada en la mediana.
 - has_image: Si existe la imagen asociada al POI.
- 4. **División estratificada**: En conjuntos de entrenamiento (70%), validación (15%) y test (15%).
- 5. Estandarización: Solo de las variables numéricas del conjunto estructurado.

Modelo 1 - CNN + MLP Propio

Arquitectura

- CNN personalizada con capas Conv2D, ReLU, MaxPool.
- MLP para metadatos con capas lineales, Dropout y ReLU.
- Concatenación final y capa Sigmoid para clasificación binaria.

Entrenamiento

- Función de pérdida: BCELoss y BCEWithLogitsLoss (ajustada posteriormente).
- Optimizador: Adam con lr=1e-4 0.01.
- Estrategias:
 - Reducción del batch size (32 \rightarrow 16).
 - Aumento de Dropout $(0.25 \rightarrow 0.5)$.
 - o Ajuste de epochs entre 6 y 15.

Resultados

- Accuracy en test: 0.96
- Matriz de confusión:
 - o Predicciones correctas tanto para engagement bajo como alto.
- Conclusión: modelo simple pero eficaz. Menor sobreajuste.

Modelo 2 - Multimodal con ResNet18

Arquitectura

- ResNet18 preentrenada (sin capa final) para las imágenes.
- MLP para datos estructurados.
- Capa combinada con Sigmoid al final.

Entrenamiento

• Mismo esquema y parámetros iniciales que el modelo 1.

Resultados

- Accuracy en test: 0.54
- Alta cantidad de falsos positivos.
- Conclusión: el modelo no aprendió correctamente. El uso de una arquitectura compleja sin un entrenamiento adaptado provocó sobreajuste y mala generalización.

Reproducibilidad

- Se definió SEED=42 para random, numpy, torch y torch.cuda.
- Se generó requirements.txt con las versiones exactas de las dependencias.

EXECUTE Conclusiones Finales

- Un modelo simple bien ajustado puede superar a arquitecturas complejas.
- El entrenamiento cuidadoso y el preprocesamiento correcto fueron clave.
- El modelo 1 demostró mejor generalización.

© Entregables Incluidos

- notebook_practica_final.ipynb
- best_model.pt(pertenece al modelo 2)
- requirements.txt
- memoria_tecnica.pdf

Reflexión Final

Este proyecto demostró la importancia de entender los datos, ajustar adecuadamente el modelo y analizar los resultados de forma crítica. La flexibilidad, el aprendizaje por prueba y error, y la interpretabilidad fueron clave en la elección del mejor modelo.