10 - Protokol IPv6

Specifikace

- následník IPv4
- 128 bitů
- · spadá do L3 modelu OSI/ISO (síťová vrstva)
- 340 undecilionů adres
- bezpečnost
- obsahuje tři druhy adres unicast, multicast a anycast
 - neobsahuje broadcast

Rozdíly IPv4 vs IPv6

IPv4

- · části odděleny tečkou
- čísla v desítkové soustavě
- má 4 oktety (oktet = byte)
- · adresní prostor je 32 bitů

IPv6

- · části odděleny dvojtečkou
- · čísla v hexadecimální soustavě
- má 8 hextetů (hextet = 4 hexadecimální čísla)
- adresní prostor je 128 bitů

Dual-Stack

- duální implementace obou verzí IP adresy
- takto se nazývá host, co implementuje obě adresy
- obsahuje zásobníky protokolu pro IPv4 a IPv6

NAT64

- mechanismus, který usnadňuje přechod od IPv4 na IPv6
- vzájemný překlad datagramů, aby mohla komunikovat i zařízení s odlišnými verzemi adres
- zajišťuje přístup k IPv4 internetu pro stroje s adresou IPv6
 - o druhým směrem lze komunikovat pouze velmi omezeně

Tunel

- zabalení protokolu do druhého
- tuneluje se IPv6 datagram aby prošel IPv4 sítí
- tím se "zamaskuje", že jde ve skutečnosti o IPv6 datagram
 - o bez problémů projde IPv4 sítí

SLACC

- · Stateless address autoconfiguration
- host se automaticky konfiguruje v síti
- po připojení posílá svou adresu pro konfiguraci informací (multicastem)

Prefix

- · shodné nejvýznamější bity v adrese vlevo
 - o v jedné síti / podsíti
- · velikost prefixu je dána CIDR
 - Classless Inter-Domain Routing
- doporučená velikost podsítě je /64
 - aby fungoval NDP protokol
- délka prefixu určuje, jaká část adresy je pouze adresa podsítě a nikoliv adresa zažízení

Komprimace nul

- pokud adresa obsahuje dlouhou posloupnost nul, lze ji zjednodušit
- adresy se komprimují pomocí dvou dvouteček za sebou ::
- kompresi lze v adrese použít jen jednou
- poté lze zpětně vyjádřit, kolik nul komprese obsahuje

Druhy vysílání

Unicast

- individuální adresa
- jedno konkrétní síťové zařízení

Multicast

- · skupina adres
- · více konkrétních zařízení, doručuje se všem

Anycast

- výběrové adresy
- více konkrétních zařízení, doručí se pouze jednomu (např. nejbližšímu)

Příklady adres

GUA

- · Global Unicast Address
- globální, alternativa public adresy v IPv4
- 2000::/3

LLA

- Link-Local Address
- nejsou unikátní mimo síť, neměly by tedy být směrované routerem, pouze v lokánlí síti
- FE80::/10

ULA

- · Unique Local Address
- unikátní lokální
- FC00::/7

Loopback

- oproti IPv4 má pouze jednu Loopback adresu
- směruje na samotný stroj, pro testování software
- ::1/128

Nespecifikovaná

- nedefinovaná adresa IPv6
- ::/128

Multicast

- · doručen skupině zařízení, začíná FF
- FF0::/

Zóna

- · adresy ve své zóně musí být unikátní
- zóna má různé dosahy (Ethernet, podsíť, organizace, celosvětový)
- zóna má vždy nadřazenou zónu většího dosahu
- · zóny stejného dosahu se nesmí překrývat
- ZoneID = identifikátor dané zóny

ICMPv6

- · víceúčelový protokol
- pro ohlašování chyb při přenosu packetů
- vyhledává uzly
- · přenáší informace pro odesílání multicastů
- uvnitř IPv6 datagramu

NDP

- Neighbor Discovery Protocol
- automatická konfigurace adres uzlů
- objev jiných uzlů na lince
- hledání dostupných routerů a DNS serverů
- obsahuje 5 typů packetů ICMPv6:
 - RS (Router Solicitation)
 - multicast žádost, snaží se nalézt routery
 - RA (Router Advertisment)
 - o router ohlašuje přítomnost, může být rekace na RS
 - NS (Neighbor Solicitation)
 - k určení adresy souseda nebo ověření, že je soused stále dosažitelný
 - zjištění MAC adresy cíle
 - NA (Neighbor Advertisment)
 - reakce na NS žádost
 - Redirect
 - o routery informují, že existuje lepší cesta k cíli (kratší)