0.1 Zentrierte Polygonalzahlen

Die zentrierten Polygonalzahlen zur Eckenzahl E ergeben sich in naheliegender Weise aus zyklisch um einen zentralen Punkt liegenden E-eckigen Punktmustern (vgl. Abbildung 0.1 und 0.2). Dabei besteht in der Stufe s jede der Grundseiten des Polygons aus s Teilstrecken mit den zugehörigen Teilpunkten. Die Summe aller so entstehenden Teilpunkte ist die (zentrierte) Polygonalzahl ZPZ(E,s).

Einige Beispiele:

Abbildung 0.1: Zentrierte Polygonalzahlen: ZPZ(3,5) = 46 ZPZ(4,5) = 61

Abbildung 0.2: Zentrierte Polygonalzahlen: ZPZ(5,4) = 51 ZPZ(6,4) = 61

Die Berechnung der zentrierten Polygonalzahlen ist denkbar einfach. Ist ZPZ(E,s) die zentrierte Polygonalzahl zum E-Eck in der Stufe s, so ist

$$ZPZ(E,s) = 1 + E + 2E + 3E + \dots + s \cdot E = 1 + E \cdot \sum_{i=1}^{s} i$$
 (0.1)

Daraus ergibt sich mit Hilfe der Formel für die Dreieckszahlen sofort die explizite

Darstellung:

$$ZPZ(E,s) = 1 + E \cdot \frac{s \cdot (s+1)}{2} \tag{0.2}$$

(E	$\Xi,s)$	0	1	2	3	4	5	6	7	8	9	10	11	12	
	3	1	4	10	19	31	46	64	85	109	136	166	199	235	
	4	1	5	13	25	41	61	85	113	145	181	221	265	313	
	5	1	6	16	31	51	76	106	141	181	226	276	331	391	
	6	1	7	19	37	61	91	127	169	217	271	331	397	469	
	7	1	8	22	43	71	106	148	197	253	316	386	463	547	
	8	1	9	25	49	81	121	169	225	289	361	441	529	625	
	9	1	10	28	55	91	136	190	253	325	406	496	595	703	
	10	1	11	31	61	101	151	211	281	361	451	551	661	781	
	11	1	12	34	67	111	166	232	309	397	496	606	727	859	
	12	1	13	37	73	121	181	253	337	433	541	661	793	937	
	13	1	14	40	79	131	196	274	365	469	586	716	859	1015	
	14	1	15	43	85	141	211	295	393	505	631	771	925	1093	
	15	1	16	46	91	151	226	316	421	541	676	826	991	1171	

Da die Dreieckszahlen in der Formel (0.2) so präsent sind, stellt sich die Frage, ob man sie nicht auch in den Figuren für die zentrierten Polygonalzahlen sehen kann. Dass man dies tatsächlich kann, zeigt die folgende Abbildung am Beispiel E=5.

Abbildung 0.3: Die Dreieckszahlen in den zentrierten Polygonalzahlen

Aufgabe: Überprüfen Sie an weiteren Beispielen, dass man im Muster der zentrierten Polygonalzahlen E-mal die Dreieckszahlen entdecken kann und dass sie überlappungsfrei alles bis auf den Zentralpunkt überdecken.

Schliesslich sei noch auf die folgende Möglichkeit zur Berechnung der zentrierten sechseckigen Polygonalzahlen hingewiesen. Da man Abbildung 0.4 auch als "Draufsicht" auf einen Würfel deuten kann, zerfällt die Konfiguration in drei kongruente Teile, von denen jeder aus $(s+1)^2$ Punkten besteht. Die Konfiguration besteht

in der Stufe s insgesamt also bei Bereinigung der Doppelzählung (entlang den dicken schwarzen Linien) aus $3(s+1)^2-3(s+1)+1$ (= 3s(s+1)+1) Punkten. Gelegentlich wird als Stufenzahl auch die Anzahl n der auf einer Seite liegenden Punkte verwendet. Wegen s=n-1 ist mit dieser Bezeichnung die Eckenzahl des zentrierten Sechsecks dann gleich $3n^2-3n+1$. Alle diese Darstellungen sind natürlich mit (0.2) kompatibel.

Abbildung 0.4: Zentrierte Sechseckszahlen als Würfelseiten gedeutet