

QUELQUES EXEMPLES D'UTILISATION DE LOIS DE COMPORTEMENT EN GRANDES DÉFORMATIONS GÉNÉRÉES AVEC L'OUTIL MFRONT

<u>J. Hure</u>¹, M. Callahan¹, C. Ling^{1,2}, B. Tanguy¹, T. Helfer³

CEA Saclay, Département des Matériaux pour le Nucléaire
 Mines ParisTech, Centre des Matériaux
 CEA Cadarache, Département d'Étude du Combustible

Club Cast3M 2014 Paris, 28 Novembre 2014

o Étude du comportement mécanique des matériaux (irradiés)

- Modélisations et simulations Cast3M
 - ✓ Lois de comportement
 - ✓ Calculs de (petites) structures
- o Collaboration EDF et Centres des Matériaux (Mines ParisTech)
 - ✓ Nécessite des lois utilisables dans plusieurs codes éléments finis
- o Développement des lois de comportement sous MFront
- o Applications rupture / endommagement / plasticité cristalline
 - ✓ Nécessite de prendre en compte les grandes déformations

Le générateur de code MFront

- MFront est un générateur de code issu cadre du projet PLEIADES codéveloppé par CEA et EDF;
- MFront a été mise en open-source à la demande d'EDF pour Code-Aster:
 - ✓ simplicité d'utilisation
 - ✓ robustesse et efficacité numérique
 - √ http://tfel.sourceforge.net

o Intégrateur spécifique et générique (explicite, implicite)

Les différentes interfaces de MFront

- o À partir d'un fichier unique, MFront va générer des sources $sp\'{e}cifiques$ aux différents solveurs
- Les librairies générées peuvent être appelés depuis différents codes aux éléments finis (Cast3M, Code-Aster, ZeBuLoN, etc...)
 ou par transformée de Fourier rapide (TMFFT, AMITEX_FFT, ...)
 ou directement via le fortran, le C++, ...

Problèmes et modélisations

- o 3 exemples de lois de comportement sous MFront ...
 - ✓ Prédiction de la rupture par clivage d'un acier de cuve
 - ✓ Croissance et coalescence de cavités dans un acier inoxydable
 - ✓ Plasticité cristalline des aciers inoxydables irradiés
- o ... avec 2 formalismes de grandes déformations
 - ✓ Déformations logarithmiques (Miehe-Apel-Lambrecht)
 - \checkmark Décomposition multiplicative $\underline{\underline{F}} = \underline{\underline{F_e}}\underline{\underline{F_p}}$

Exemple 1 : Ténacité de l'acier de cuve des REP

o Prédiction de la ténacité par l'approche locale de la rupture

$$\checkmark P_f = 1 - \exp\left[-\left(\frac{\sigma_W}{\sigma_u}\right)^m\right]$$

- o Base de données expérimentales
 - ✓ Essais de traction standards
 - ✓ Essais sur éprouvettes entaillées
- o Formalisme en petites déformations

$$\checkmark \quad \mathcal{F} = \sqrt{\frac{3}{2}(\underline{\underline{s}} - \underline{\underline{X}}) : (\underline{\underline{s}} - \underline{\underline{X}}) - R(p)}$$

$$\checkmark \quad \underline{\dot{\epsilon}_p} = \left(\left\langle \frac{\mathcal{F}}{k_1} \right\rangle^{-n_1} + \left\langle \frac{\mathcal{F}}{k_2} \right\rangle^{-n_2} \right)^{-1} \frac{\partial \mathcal{F}}{\partial \underline{\underline{\sigma}}}$$

- Grandes déformations ?
 - √ Hypoélasto-plasticité
 - \checkmark \rightarrow Déformations logarithmiques

Grandes déformations sous MFront

 $@\,UMA\,TFiniteStrainStrategies\,[\,umat\,] \quad \{None\,,\,FiniteRotationSmallStrain\,\,, \\ MieheApelLambrechtLogarithmicStrain\,\}\,;$

- Le formalisme des lois petites déformations peut être réutilisé pour construire des lois grandes déformations objectives
- o Deux stratégies lagrangiennes sont disponibles dans MFront:
 - ✓ grandes rotations, petites déformations (disponible dans Code-Aster)
 - ✓ déformations logarithmiques d'après Miehe et al.. (disponible dans Code-Aster et Zebulon).

Formalisme de Miehe-Apel-Lambrecht

- o \underline{T} est le dual de la déformation logarithmique $\underline{\epsilon}^{\mathrm{to}}{}_{\mathrm{log}}$
 - $\checkmark P = \underline{T} : \underline{\dot{\epsilon}}^{\text{to}}_{\log} = \underline{S} : \underline{\dot{\epsilon}}^{\text{to}}_{\text{GL}}$
- La loi obtenue est objective (formalisme lagrangien);
- o Aucune restriction sur le formalisme petite déformation:
 - ✓ Ecrouissage cinématique
 - ✓ Orthotropie initiale ou induite
- o Désavantages: les phases de pré- et post- traitements sont non triviales et ont un coût numérique important.

Exemple 2 : Mécanismes physiques de la rupture ductile

- Nucléation, Croissance et coalescence de cavités
- o Réalisation d'expériences modèles

o Et sur les aciers utilisés dans les réacteurs nucléaires (REP) ?

Expériences et simulations (Stage Master M. Callahan)

o Développement d'un protocole expérimental

- o Simulations des essais
 - ✓ Loi élasto-plastique
 - ✓ Formalisme de Miehe-Apel-Lambrecht
 - ✓ Robuste pour de (très) grandes déformations

Exemple 3: Plasticité cristalline (Thèse C. Ling)

- Acier inoxydable austénitique irradié
 - ✓ Application: rupture ductile, fissuration intergranulaire

Thèse Xu Han, 2012

- o Formalisme plasticité cristalline (en petites déformations)
 - \checkmark Partition additive des déformations $\underline{\underline{\epsilon}} = \underline{\underline{\epsilon_e}} + \underline{\underline{\epsilon_p}}$
 - $\checkmark~$ Élasticité $\underline{\underline{\sigma}} = \underline{\underline{\Lambda}} : \underline{\underline{\epsilon}}\underline{e}$
 - \checkmark Écoulement plastique $global\ \underline{\dot{\epsilon}_p} = \sum \dot{\gamma^s} \underline{\underline{N}}^s$
 - \checkmark Loi d'écoulement $locale \ \dot{\gamma}^s = \left\langle \frac{|\tau^s| \tau_c^s(\rho)}{K_0} \right\rangle^n \operatorname{signe}(\tau^s)$

Prise en compte des grandes déformations

- o Formalisme en grandes déformations
 - \checkmark Décomposition du gradient de la transformation $\underline{\mathbf{F}} = \underline{\mathbf{F}}_e \underline{\mathbf{F}}_p$
 - ✓ Élasticité $\underline{\underline{\Pi}} = \underline{\underline{\Lambda}} : \underline{\underline{E_e}}^{GL}$
 - ✓ Écoulement plastique $global \stackrel{\stackrel{.}{\underline{e}}_p}{=} \rightarrow \stackrel{\stackrel{.}{\underline{F}}_p}{=} F_p^{-1}$
 - $\checkmark \text{ Calcul de } \tau^s = \underline{\underline{\sigma}} : \underline{\underline{N}}^s \to \left[J_E \underline{\underline{f}_e} \ \underline{\underline{\sigma}} \ \underline{\underline{f}_{e^{-1}}} \right] : \underline{\underline{N}}^s$

Algorithme d'intégration implicite (Newton-Raphson)

```
@Integrator{
...
for(unsigned short i=0;i!=Nss;i++){
    stress tauc = tau0+mu*sqrt(sum_a_rho[i]);
    stress tau = ss.mus[i] | M;
    real sgn = (tau>0) ? 1: -1;
    strain dp = abs(dgamma[i]);
    stress Dau = abs(tau)-tauc;
    fgamma[i] -= dt*pow(max(Dtau,0.)/K,n)*sgn;
    frho[i] =(drho[i]-dp*(sqrt(sum_b_rho[i])/Ka-G0*(rho0+rho[i]+theta*drho[i])))/rho0;
}
feel = eel+deel-computeGreenLagrangeTensor(Fe);
...
}
```

- ✓ Possibilité de calculer la matrice jacobienne de matière numérique
- o Sous-découpage des pas de temps
- Limitation des incréments des variables d'états lors de l'intégration

Utilisation de la loi de plasticité cristalline

- o Calculs sur aggrégats (Voronoi ou réaliste)
 - \checkmark Comportement macroscopique
 - ✓ Rupture ductile (Modèle poreux)
 - \checkmark Contraintes aux joints de grains

- $\circ\,$ Du point de vue de l'utilisateur Cast3M + MFront
 - ✓ Deux nouveaux formalismes en grandes déformations
 - ✓ ... et d'autres en les codant soi-même
- o Avis (subjectif) sur l'utilisation de MFront
 - ✓ Simplicité d'utilisation (Stagiaires, doctorants ...)
 - ✓ Permet de se concentrer sur la mécanique
 - ✓ Possibilité de travail collaboratif (utilisateurs d'autres codes éléments finis)