

Collision detection

- Static interference tests
- Exact collision prediction
- Conservative tests and acceleration techniques

"Collision detection is one of the most challenging and most important problems in computer animation!"

Updated November 9, 2012

Types of animations

- Camera moves in static environment
- Rigid motion: Objects are rigid, they only rotate and translate
- Articulated bodies: Parameterized linkage of rigid bodies
 - A child's pose (forearm) is obtained from a parent's pose (upper-arm) by an arbitrary rotation (elbow angle) and a fixed translation (length of upper-arm).
- Deformations: Each shape deforms with time
 - Deformation may be simulated using naïve physics or computed to interpolate between two shapes (3D morphing)
- Reactive: Responds to user actions
 - Shape moves and deforms when approached or poked by the user

All must detect collisions and adjust behavior

The collision detection problem

Shapes A and B evolve (move, deform) with time.

Notation for their instance at time t>0: A(t) and B(t).

Find the smallest t such that $A(t) \cap B(t) \neq \emptyset$.

Interference

- A and B interfere when they share at least one common point.
- A∩B≠∅

Static interference tests for collision

A and B evolve (move, deform) with time: A(t) and B(t). Test and then assume $A(0) \cap B(0) = \emptyset$

```
t=0;

repeat {

if (A(t+dt)\cap B(t+dt) \neq \emptyset) {

repeat 5 times {

if (A(t+dt/2)\cap B(t+dt/2)\neq \emptyset) dt=dt/2;

else t+=dt/2; };

return(t); };

}

return(-1);} // no collision found
```


How to test for interference

 Often (not always) we are using the bundaries of shapes to test for interference.

Testing boundaries

- A and B are disjoint if and only if their boundaries are disjoint
 - True or false?
 - If true, prove or justify
 - If false, provide a counterexample
 and propose a correct test using the boundaries:

Distinguish touch and interfere

- How can you use tests on boundries to distinguish
 - disjoint
 - touching
 - interfering

Detecting collisions between balls

- For simplicity, we assume that objects collide when their enclosing balls collide
 - Compute enclosing ball of center c and radius r as follows:
 - $\mathbf{c} := ((x_{\min} + x_{\max})/2, (y_{\min} + y_{\max})/2, (z_{\min} + z_{\max})/2)$
 - r := max (||cv||) for all vertices v of the object
- Interference detection:
 - After each time step, check whether any pair of objects interfere
 - Ball (c_1,r_1) and Ball (c_2,r_2) interfere when
 - Need very small steps not to miss a chock $\|\mathbf{c_1}\mathbf{c_2}\| < \mathbf{r_1} + \mathbf{r_2}$
- Collision prediction:
 - Express the relative motion of object 2 in the CS of object 1
 - For motions with fixed velocities, $\underline{\mathbf{v}}_1$ and $\underline{\mathbf{v}}_2$, you get \mathbf{v}_1 and \mathbf{v}_2 , $\underline{\mathbf{v}} = \underline{\mathbf{v}}_2 \underline{\mathbf{v}}_1$.
 - Shrink object 2 to a point c_2 and expand object 1 to Ball (c_1,r_1+r_2)
 - Check whether curve swept by c_2 intersects $Ball(c_1,r_1+r_2)$
 - Constant velocity motion: find smallest time t>0 when $(\mathbf{c_2} + t\underline{\mathbf{v}})^2 = (\mathbf{r_1} + \mathbf{r_2})^2$

Collision between disks

Assume that disk D_1 =disk(C_1 , r_1) will travel with constant velocity V_1 . Similarly, disk D_2 =disk(C_2 , r_2) will travel with constant velocity V_2 . Assume that they are initially disjoint.

• How would you compute the time t when they will collide?

Solve
$$((C_2+tV_2)-(C_1+tV_1))^2=(r_1+r_2)^2$$
 for t $(C_1C_2+t(V_2-V_1))^2=(r_1+r_2)^2$ $(V_2-V_1)^2t^2+2C_1C_2\bullet(V_2-V_1)t+C_1C_2^2-(r_1+r_2)^2=0$ return the smallest positive value of t if one exists

We can reduce this problem to the one of line/circle intersection:

 D_2 is stationary, D_1 moves by V_1 – V_2 D_2 has radius r_1 + r_2 (inflated by r_1), D_1 is a point (deflated by r_1) when will D_1 (the point) hit the inflated D_2 ?

Elastic shock between two disks

Assume that disk D_1 =disk(C_1 ,r) traveling with **constant velocity** V_1 and disk D_2 =disk(C_2 ,r) traveling with constant velocity V_2 have just collided. What should their velocities V_1 ' and V_2 ' be? (We assume that they have the **same mass**.)

We must exchange their normal velocities

 $N = U(C_1C_2)$ (normal direction to both at contact point)

 $U_1 = (V_1 \cdot N) N$ (normal components of velocities)

$$U_2 = (V_2 \cdot N) N$$

$$V_1' = V_1 - U_1 + U_2$$
 (cancel U_1 and add U_2)

 $V_2' = V_2 - U_2 + U_1$ (to exchange their normal velocities)

Elastic shock with a fixed disk

```
Assume that disk D_1=disk(C_1,r), traveling with constant velocity V, has just collided with a static disk D_2=disk(C_2,r). What should its velocity V' after the bounce? (We assume that D_2 has infinite mass.)

We must negate (reverse) the normal component of V N = C_1C_2.unit (normal direction to both at contact point) U = (V \cdot N) N (normal components of V)

V' = V_1 - 2U (swap direction of U)
```

Elastic collision between balls

- Tangential velocities are maintained. Masses: a and b
- Velocities in the normal direction: s and t before and s' and t' after the shock
 - Conservation of momentum: as+bt=as'+bt' (1)
 - Conservation of energy: as²+bt²=as²+bt²(2)
 - Regrouping in (1): a(s-s')=b(t'-t) (3)
 - Regrouping in (2) and using $x^2-y^2=(x+y)(x-y)$: a(s-s')(s+s')=b(t'-t)(t'+t) (4)
 - Combining (3) and (4): s+s'=t+t' (5)
 - Substituting t'=s+s'-t obtained from (5) in (1) yields: as+bt=as'+bs+bs'-bt (6)
 - Reorganizing (6): (a+b)s' = (a-b)s+2bt (7)
 - Reorganizing and swapping (s,a) and (t,b):
 - s' = s + 2b(t-s)/(a+b) and t' = t + 2a(s-t)/(a+b) (8)
- Note that when a=b, then s'=t and t'=s (exchange of normal velocities)
- When a>>b: s' = s (not affected) and t' = 2s-t (reverse speed of b if a is static)

2D interference between triangles

- Two triangles interfere if a vertex of one lies inside the other
 - True or false?
 - Justify
 - of provide a counterexample
 - and a correct test

Modify your test to distinguish disjoint, interfere, and touch

Test for polygon/polygon intersection in 2D?

- A and B are polygons
 - They are connected sets in 2D, but may have holes
- Write the high-level test for checking whether they interfere

For each connected **component** of **A** do, if the **first vertex** of that component is **in or on B**, return TRUE

For each connected component of B do, if the first vertex of that component is in or on A, return TRUE

For each **edge** Ea of A do, for each **edge** Eb of B do, if Ea intersects Eb, return TRUE

Otherwise return FALSE

Details

- Point-in-polygon
- Edge/edge intersection

Point-in-polygon test

Algorithm for testing whether point q is inside polygon P

inP:=false;

for each edge (\mathbf{a},\mathbf{b}) of P {if $(\text{inTriangle}(\mathbf{q},\mathbf{a},\mathbf{b},\mathbf{o}))$ then inP := !inP; return(inP);

Point-in-triangle test in 2D

• Is point q in tri(a,b,c)?

ab×aq

bc×bq

ca×cq

all have the same sign

Edge/edge intersection in 2D

Write a geometric expression that returns TRUE when edges
 (a,b) and (c,d) intersect

```
( (ab×ac>0) != (ab×ad>0) )
&&
( (cd×ca>0) != (cd×cb>0) )
```

