Transit Performance and Reliability Evaluation for Arterial Corridors

Presented at the Transportation Planning Applications Conference (TRBAppcon), Portland, OR, June 2019.

Natalia Zuniga Garcia, M.Sc. Randy B. Machemehl, Ph.D. Natalia Ruiz-Juri, Ph.D. Heidi W. Ross, M.Sc. Nadia Florez-Morcote, M.Sc.

June 5th, 2019

Cite as:

Zuniga-Garcia, N., N. Ruiz-Juri, N. Florez-Morcote, H.W. Ross, and R.B. Machemehl. Transit Performance and Reliability Evaluation for Arterial Corridors. Transportation Planning Applications Conference (TRBAppcon), Portland, OR, June 2019.

Outline

- 1. Background
- 2. Introduction
- 3. Case Study
- 4. Metrics
- 5. Future Work

Background

Corridor Mobility Program

- Development, design, and construct improvements along key Austin corridors that enhance mobility, safety, and connectivity for all users.
- Recommendations supported by identifiable **metrics** to prioritize:
 - a) reduction in congestion
 - b) improved level of service for all modes of travel
 - c) connectivity, and improved effectiveness of transit operations

Background

Our Role

Generate performance metrics for bond corridor evaluation by practitioners

- 1. Identify current and future data sources
- 2. Complete back office system architecture capable of ingesting data from multiple sources
- 3. Develop a tool that uses data from multiple sources to calculate key performance metrics

Introduction

Recent advances in ITS transit data-collection allow evaluation of multiple operational variables.

Problem

- Digesting and understanding the large amount of complex data available
- For arterial corridors: the presence of different traffic control systems, multiple transit routes, and multimodal interaction

Objective

Develop an evaluation tool to provide **transit performance and reliability** information for arterial corridors in Austin, Texas.

Case Study

Metrics: Tool Development

Transit Speed Ridership Occupancy Dwell Time Vehicle Capacity Measurable Impacts Transit Speed Ridership Occupancy Dwell Time Delay Volume-to-Capacity Ratio

Service Coverage

Reliability

Frequency

Metrics: Transit Speed on Corridors

- Speed estimated using AVL data
 - GPS points (location & time stamp) for all buses
- Average speed through the corridor
 - Difference in time stamps over distance
 - Distance is corridor length covered by bus trajectory
- Challenges:
 - GPS points are provided every 1-2 minutes
 - The results may not be representative of the entire corridor
 - Different routes cover different corridor segments
 - Dwell times are included in travel time

Metrics: Transit Speed on Corridors

4. Summarize Transit Speed Estimate by Hour and Direction

10

12

15

Hour

18

21

Metrics: Occupancy

21

18

4. Summarize Transit Occupancy by Hour

0

12

15

Hour

Metrics: Boardings and Alightings

10000

Number of Passengers

(not normalized by number of stops)

E. MLK

Period 2

Period 1

Metrics: Dwell Time

Future Work

- Estimate bus trajectory
 - Integrate AVL and APC
 - Update speed estimation
- Estimate bus on-time performance
 - Integrate GTFS and APC

THANKS

Questions or Comments? nzuniga@utexas.edu