

planetmath.org

Math for the people, by the people.

example of an extension that is not normal

 ${\bf Canonical\ name} \quad {\bf Example Of An Extension That Is Not Normal}$

Date of creation 2013-03-22 16:00:28 Last modified on 2013-03-22 16:00:28 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 6

Author Wkbj79 (1863)

Entry type Example Classification msc 12F10 In this entry, $\sqrt[3]{2}$ indicates the real cube root of 2.

Consider the extension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. The minimal polynomial for $\sqrt[3]{2}$ over \mathbb{Q} is x^3-2 . This polynomial factors in $\mathbb{Q}(\sqrt[3]{2})$ as $x^3-2=(x-\sqrt[3]{2})(x^2+x\sqrt[3]{2}+\sqrt[3]{2}+\sqrt[3]{4})$. Let $f(x)=x^2+x\sqrt[3]{2}+\sqrt[3]{4}$. Note that $\mathrm{disc}(f(x))=(\sqrt[3]{2})^2-4\sqrt[3]{4}=\sqrt[3]{4}-4\sqrt[3]{4}=-3\sqrt[3]{4}<0$. Thus, f(x) has no real roots. Therefore, f(x) has no roots in $\mathbb{Q}(\sqrt[3]{2})$ since $\mathbb{Q}(\sqrt[3]{2})\subseteq\mathbb{R}$. Hence, x^3-2 has a root in $\mathbb{Q}(\sqrt[3]{2})$ but does not split in $\mathbb{Q}(\sqrt[3]{2})$. It follows that the extension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal.