# LKP-tests

Linux kernel performance test tool

#### What is LKP-tests

- Framework to run benchmarks
  - Fetch/install the benchmarks
  - Prepare test environment
    - For example, format disk
  - Run benchmark with various parameters
    - Collect performance statistics
  - Benchmark/performance statistics parsing
- Framework for performance analysis
  - Result compare
- Used for benchmark running and reproducing regression captured by 0-Day

## **Highlights**

- Rich benchmarks support
- Capture performance statistics (monitors) in addition to benchmark score
  - o For example, perf stat, perf profile, vmstat, etc.
- Compare/analyze all performance statistics data (benchmark and monitors)
  - Unified data model

#### Benchmarks

- Integrated ~50 benchmarks
  - Fetch/install benchmarks
  - Run benchmarks with various parameters
  - Parse result of benchmarks
- Mostly micro-benchmarks, several macro-benchmarks
- Mostly server workload

#### Benchmark List - 1

- Scheduler
  - o Hackbench, perf-bench-sched-pipe, etc.
- File system/IO
  - Fio, fsmark, iozone, dbench, dd, fileio, postmark, etc.
- Network
  - Netperf, iperf, apachebench, ku-latency, nepim, netpipe, nuttcp, qperf, siege, sockperf, stutter, tbench, thrulay, etc.
- Scalability
  - o Reaim, aim7, will-it-scale, etc.
- Memory management
  - vm-scalability, chromeswap, exit\_free, pft, perf-bench-numa-mem, pmbench, swapin, tlbflush, etc.

#### Benchmark List - 2

- Database
  - o Pgbench, oltp, etc.
- Noise
  - Ftq, fwq, etc.
- HPC
  - Hpcc, linpack
- Workload emulation
  - Blogbench, ebizzy (web application server), kbuild, pbzip2, pigz, pixz, plzip, pxz, etc.
- Others
  - Tcrypt, unixbench

## **Functionality Test**

- Memory Management
  - Bust\_shm\_exit, libhugetlbfs, ndctl, nvml
- File system
  - Xfstests, ext4-frags, ocfs2test
- Virtualization
  - Kvm-unit-tests
- Network
  - packetdrill
- Others
  - Cpu-hotplug, ftrace\_onoff, hwsim(wifi), kernel\_selftests, locktorture, ltp, mce-log, mce-test, perf\_event\_tests, perf-sanity-tests, pm-qa, rcutorture, stress-ng, suspend, test\_bpf, trinity, piglit, etc.

# Test Coverage

#### 0-Day CI: Test Coverage



#### **Monitors**

- Capture performance statistics when benchmark running
  - Important for performance analysis, regression root causing
- About 38 monitors now
- Examples:
  - Perf profile: find the hot spot
  - Vmstat: CPU usage, IO bandwidth, memory usage
  - o lostat: IO bandwidth, requests
  - Latencytop: measure latency
  - Turbostat: idle, frequency, and power of the CPU
  - o /proc files: meminfo, sched-debug, interrupts, etc.

#### Setups

- Scripts to prepare the test environment
- About 20 setup scripts
- Example setup scripts
  - disk: wait/check test disk to be ready
  - fs: format disk with file system, mount it
  - cpufreq\_governor: CPU frequency governor
  - o iosched: choose IO scheduler
  - dirty\_thresh: writeback dirty threshold

#### Jobs

- Define the performance tests
- Benchmark + monitors + setups
  - Each with parameters
- In yaml format
  - Key -> value with array
- Combination of various test parameters
  - One jobfile can define a set of tests
  - o For example: ext4+performance, ext4+powersave, xfs+performance, xfs+powersave

```
fs:
    - ext4
    - xfs
cpufreq_governor
    - performance
    - powersave
```

#### Job file example

```
# swap-test.yaml
testcase: vm-scalability
swap:
vmstat:
perf-profile:
 delay: 20
# ...
vm-scalability
  test: swap-w-seq
  nr_task:
```

# Supported distribution

- Debian sid
- Ubuntu 14.04
- Centos 7
- Archlinux

## Getting started

```
$ git clone https://github.com/01org/lkp-tests
$ cd lkp-tests
$ make install
$ lkp help
```

#### Prepare host description

- lkp-tests/hosts/<hostname>
  - o Yaml format
  - O Setup disks for test
- Example

```
memory: 128G
```

ssd partitions: /dev/sda1

#### Install packages for a job

```
# browse and select a job you want to run, for example, job/hackbench.yaml
$ ls lkp-tests/jobs
$ lkp install $LKP SRC/jobs/hackbench.yaml
```

## Split job

```
# Generate atomic job from one job file
$ lkp split-job lkp-tests/jobs/hackbench.yaml
jobs/hackbench.yaml => ./hackbench-1600%-process-pipe.yaml
jobs/hackbench.yaml => ./hackbench-1600%-process-socket.yaml
jobs/hackbench.yaml => ./hackbench-1600%-threads-pipe.yaml
jobs/hackbench.yaml => ./hackbench-1600%-threads-socket.yaml
jobs/hackbench.yaml => ./hackbench-50%-process-pipe.yaml
jobs/hackbench.yaml => ./hackbench-50%-process-socket.yaml
jobs/hackbench.yaml => ./hackbench-50%-threads-pipe.yaml
jobs/hackbench.yaml => ./hackbench-50%-threads-socket.yaml
```

## Run atomic job

```
$ lkp run hackbench-50%-process-pipe.yaml
...
2016-11-18 07:55:12 /usr/bin/hackbench -g 1 --process --pipe -l 60000
Running in process mode with 1 groups using 40 file descriptors each (== 40 tasks)
Each sender will pass 60000 messages of 100 bytes
Time: 7.388
```

## Check result and analyze

```
# link to result directory of latest run is created automatically
$ ls result
...
$ lkp result hackbench
/result/hackbench/50%-process-pipe-performance/lkp-kvm/debian/x86_64-rhel-7.
2/gcc-6/4.5.0-2-amd64/1/
/result/hackbench/50%-process-pipe-performance/lkp-kvm/debian/x86_64-rhel-7.
2/gcc-6/4.8.0-1-amd64/0/
$ lkp ncompare -s commit=<kernel1> -o commit=<kernel2>
```

#### Linux kernel source

- Optional
- Put it in /c/repo/linux or \$GIT\_ROOT\_DIR/linux

# Run user supplied workload

• Use "mytest" test

# Gaps

- Bug fixes
- Feedback from more users

#### References

- Git repo: <a href="https://github.com/01org/lkp-tests">https://github.com/01org/lkp-tests</a>
- Documents in source code: find lkp-tests -name README.md
- Intel internal mailing list: <a href="mailto:lkp@eclists.intel.com">lkp@eclists.intel.com</a>
- External mailing list: <a href="mailto:lkp@01.org">lkp@01.org</a>

# Thanks!

# Backup

#### Cluster: Multiple machine test

- One server and multiple clients
- Steps
  - Queue job for server
  - When schedule server job, queue job for client
  - Sync among server and clients
    - Server and client will all run the cluster job
  - Server run server side
  - Clients run client side

# Cluster: Example job file

```
suite: netperf
testcase: netperf
category: benchmark
ip: ipv4
runtime: 300s
nr threads: 200%
cluster: cs-localhost
if role server:
 netserver:
if role client:
 netperf:
    test: TCP RR
```