Lògica en la Informàtica

Codificació de restriccions numèriques en SAT

José Miguel Rivero Robert Nieuwenhuis

Facultad de Informàtica Universitat Politècnica de Catalunya (UPC)

Tardor 2022

- Vídeos de la web de LI sobre: Codificació de restriccions numèriques en SAT
- Apunts de la web de Ll:

 Breu resumen escrit sobre això
- ➤ ALO, AMO, exactly one
- Cardinality constraints en general:

$$l_1 + \dots + l_n \le K$$

$$l_1 + \dots + l_n \ge K$$

$$l_1 + \dots + l_n = K$$

Pseudo-Boolean constraints:

$$a_1 I_1 + \cdots + a_n I_n \le K$$

 $a_1 I_1 + \cdots + a_n I_n \ge K$
 $a_1 I_1 + \cdots + a_n I_n = K$

ALO (at least one), AMO (at most one), exactly one

Per exemple, exactly 1 of $\{l_1, l_2, ..., l_9\}$ és equivalent a:

- at least 1 of $\{l_1, l_2, \dots, l_9\}$ que pot ser codificat amb una sola clàusula: $l_1 \vee l_2 \vee \dots \vee l_9$
- at most 1 of $\{l_1, l_2, ..., l_9\}$ per $\binom{9}{2} = \frac{9 \cdot 8}{2} = 36$ clàusules binaries: $\neg l_1 \lor \neg l_2, \ \neg l_1 \lor \neg l_3, \ ..., \ \neg l_8 \lor \neg l_9$.

➤ ALO (at least one), AMO (at most one), exactly one

En lloc de AMO (l_1, \ldots, l_n) escriurem: $l_1 + \cdots + l_n \le 1$.

Nota: aqui l_1, \ldots, l_n poden ser literals positius o negatius (variables negades).

Codificació	num vars auxiliars	num clausulas
Quadràtica	0	$\binom{n}{2}$
Ladder	n	3 <i>n</i>
Heule 3	n/2	3 <i>n</i>
Heule 4	n/3	3.3 <i>n</i>
Log	log n	n log n

Cardinality constraints en general:

```
I_1 + \cdots + I_n < K
    l_1 + \cdots + l_n > K
    l_1 + \cdots + l_n = K
™ Pràctica 3: miSudoku.pl
exactly(K, Lits) :- atLeast(K, Lits), atMost(K, Lits), !.
atMost(K, Lits) :- \% l1+...+ln \le k: in all subsets of size k+1,
                                   at least one is false:
   negateAll(Lits, NLits),
    K1 is K+1, subsetOfSize(K1, NLits, Clause), writeClause(Clause), fail.
atMost( . ).
atLeast(K, Lits) :- % l1+...+ln >= k: in all subsets of size n-k+1,
                                      at least one is true:
    length(Lits, N),
    K1 is N-K+1, subsetOfSize(K1, Lits, Clause), writeClause(Clause), fail
atLeast(_, _).
```

Cardinality constraints en general:

$$l_1 + \dots + l_n \le K$$

$$l_1 + \dots + l_n \ge K$$

$$l_1 + \dots + l_n = K$$

Pràctica 3: miSudoku.pl

K1 is K+1, subsetOfSize(K1, NLits, Clause), writeClause(Clause), fa:
atMost(_, _).

Per exemple: el constraint atMost(2,[x,y,z,u]) que representa $x+y+z+u \le 2$ genera 4 clàusules:

Cardinality constraints en general:

 $I_1 + \cdots + I_n < K$

```
I_1+\cdots+I_n\geq K
I_1+\cdots+I_n=K

Theorem Practica 3: miSudoku.pl

atLeast(K, Lits):- % 11+...+ln >= k: in all subsets of size n-k+1,
% at least one is true:

length(Lits, N),
K1 is N-K+1, subsetOfSize(K1, Lits, Clause), writeClause(Clause), fail atLeast(_, _).
```

Per exemple: el constraint atLeast(3,[x,y,z,u]) que representa x+y+z+u >= 3 genera 6 clàusules:

Cardinality constraints en general:

$$l_1 + \dots + l_n \le K$$

$$l_1 + \dots + l_n \ge K$$

$$l_1 + \dots + l_n = K$$

Codificacions més compactes fent servir variables auxiliars:

Codificació	num vars auxiliars	num clausulas
Polinòmic	0	$\binom{n}{k}$
Ladder encoding	n	3 <i>n</i>
Sorting networks	n log² n	n log ² n
Cardinality networks	n log² n	n log² k

Pseudo-Boolean constraints:

$$a_1l_1 + \cdots + a_nl_n \le K$$

 $a_1l_1 + \cdots + a_nl_n \ge K$
 $a_1l_1 + \cdots + a_nl_n = K$

Es codifiquen en SAT fent servir BDD's, i definint una nova variable auxiliar i quatre clàusules per cada node del BDD.

