# PENGOLAHAN CITRA DIGITAL UNTUK IDENTIFIKASI OBJEK MENGGUNAKAN METODE HIERARCHICAL AGGLOMERATIVE CLUSTERING

Juju Jumadi, Yupianti, Devi Sartika

Program Studi Informatika Fakultas Ilmu Komputer Universitas Dehasen Bengkulu Bengkulu, Indonesia

> e-mail: juju.jumadi@unived.ac.id, yupiantiprana@gmail.com, devisartika@unived.ac.id

#### Abstrak

Identifikasi objek (object recognition) merupakan suatu bidang keillmuan dari komputer vision yang menggambarkan suatu objek yang didasarkan pada sifat utama dari objek tersebut. Identifikasi objek pada citra digital membutuhkan teknik dan metode yang mampu untuk mengekstraksi dan mengidentifikasi fitur-fitur yang terdapat pada citra digital, dimana komponen utamanya adalah warna sebagai dasar dari representasi objek pada citra digital. salah satu metode yang mampu menerapkan pengelompokan warna - warna objek pada citra digital sehingga dapat menjadi fitur utama dari objek pada citra digital adalah Hierarchical Agglomerative Clustering. Analisa dilakukan secara bertahap yaitu analisis sistem dan analisis algoritma agglomerative clustering. Proses analisa kemudian dilanjutkan dengan tahap perancangan yang mana dimulai dengan perancangan use case diagram dan perancangan flowchart. Akurasi dari algoritma Hierarchical Agglomerative Clustering cukup baik khususnya pada objek yang memiliki warna khusus atau warna yang telah menjadi ciri dari objek tersebut namun dapat menghasilkan pengenalan yang buruk jika objek yang berbeda memiliki warna dominan yang sama.

Kata kunci: Identifikasi Objek, Hierarchical Agglomerative Clustering, Citra Digital

#### Abstract

Object recognition is a scientific field of computer vision that describes an object based on the main characteristics of the object. The identification of objects in digital images requires techniques and methods that are able to extract and identify the features contained in digital images, where the main component is color as the basis for object representation in digital images. One method that is able to apply object color grouping to digital images so that it can become the main feature of objects in digital images is Hierarchical Agglomerative Clustering. The analysis was carried out in stages, namely system analysis and agglomerative clustering algorithm analysis. The analysis process is then continued with the design stage which begins with designing a use case diagram and designing a flowchart. The accuracy of the Hierarchical Agglomerative Clustering algorithm is quite good, especially on objects that have a special color or a color that has become a characteristic of the object but can result in poor recognition if different objects have the same dominant color.

Keywords: Object Identification, Hierarchical Agglomerative Clustering, Digital **Image** 

# **PENDAHULUAN**

Kemajuan teknologi di bidang pengolahan citra (Image Processing) pada saat ini telah menjadi daya tarik tersendiri bagi manusia untuk di eksplorasi sehingga menjadi pengetahuan yang dapat diterima dan dipahami dalam kehidupan sehari-hari. Seiring dengan perkembangan tersebut, kreativitas identifikasi terhadap suatu objek tidak lepas dari pengolahan citra digital (Putri 2016).

P-ISSN: 2303-3142 E-ISSN: 2548-8570

Citra adalah representasi objek dua dimensi dari dunia visual, menyangkut berbagai macam disiplin ilmu yang mencakup seni, human vision, astronomi, teknik, dan sebagainya. Merupakan suatu kumpulan piksel-piksel atau titik-titik yang berwarna yang berbentuk dua dimensi (Hutahaean, Waluyo, and Rais 2019).

Pengolahan citra digital adalah teknik mengolah citra yang bertujuan memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau mesin komputer yang dapat berupa foto maupun gambar bergerak Fitriyah, and Effendi 2017). Pengolahan citra merupakan cabang ilmu dalam Artifical Intelegence vang menggunakan objek citra dalam bentuk digital untuk penyelesaian kasusnva. Metode dalam citra dapat digunakan baik perhitungan matematis pada objek secara piksel ataupun geometris. Masing-masing objek citra memiliki nilai perbedaan yang dapat diperhitungkan secara matematis, sehingga menunjukkan ciri yang berbeda antara objek satu dengan yang lain. Penciri perbedaan setiap objek dapat ditentukan dari warna, tekstur, ataupun 2017). bentuk (Widyaningsih Dengan memanfaatkan informasi digital ini pengelompokkan atau clustering dapat di implementasikan terhadap objek

Clustering adalah sebuah proses untuk mengelompokan data ke dalam beberapa cluster atau kelompok sehingga data dalam satu cluster memiliki tingkat kemiripan yang maksimum dan data antar cluster memiliki kemiripan yang minimum (Bramanto et al. 2021). Clustering melakukan pengelompokan data berdasarkan cluster/kelas dan merupakan teknik untuk mengorganisasikan data yang tidak terstruktur tersebut menjadi suatu struktur data yang mempunyai nilai informasi (Wiradharma Putu Ananda Kusuma 2015).

Clustering merupakan salah satu teknik yang dapat digunakan untuk identifikasi objek yang bekerja dengan mencirikan kelompok warna pada objek tersebut. Salah satu teknik atau metode identifikasi menggunakan ciri warna adalah Hierarchical Agglomerative Clustering.

Hierarchical Clustering adalah teknik clustering membentuk hirarki sehingga membentuk sturktur pohon. Dengan demikian pengelompokkannya proses bertingkat dilakukan secara atau bertahap. Terdapat 2 metode pada algoritma Hiearchical Clustering vaitu Agglomerative (bottom-up) dan devisive topdown).(Simanjuntak and Khaira 2021)

Metode Hierarchical Agglomerative Clustering bekerja dengan mengelompokkan piksel warna pada objek berdasarkan jarak tetangga terdekat. Setiap piksel pada awalnya dianggap sebagai sebuah cluster yang kemudian tiap cluster akan mencari tetangga terdekat untuk bergabung menjadi cluster baru. Proses pembentukan cluster terus dilakukan sampai batas jumlah cluster tercapai (Saad, Mohamed, and Al-qutaish 2012)

Pengelompokan Agglomerative Hierarchical Clustering merupakan metode pengelompokan hierarki dengan pendekatan bawah-atas (bottom up). Proses pengelompokan dimulai dari masing masing data sebagai satu buah kelompok, kemudian secara rekursif mencari kelompok potensial berdasarkan jarak sebagai pasangan untuk bergabung sebagai satu kelompok yang lebih besar. Proses tersebut Jurnal Sains dan Teknologi | 149

P-ISSN: 2303-3142 E-ISSN: 2548-8570

diulang terus sehingga tampak bergerak ke atas (Agglomerative) membentuk jenjang (hierarki) (Arifin, Stefanus, and Soeleman 2017).

Pada penelitian sebelumnva Wicaksana, Adikara dan Adinugroho pada tahun 2018 tentang clustering dokumen skripsi dengan menggunakan Hierarchical Agglomerative Clustering yang menyimpulkan Metode hierarchical agglomerative clustering lebih serina menghasilkan singleton (cluster yang terdiri dari 1 dokumen) sehingga mempengaruhi ketepatan suatu cluster dalam mengelompokkan dokumen (Wicaksana, Adikara, and Adinugroho 2018).

Peneliitian lainnya tentang identifikasi dengan clustering juga dilakukan oleh Misdayanto, Yustina dan Ira dengan menerapkan metode K-Means Clustering untuk identifikasi jenis burung Lovebird. Sistem dibagi menjadi dua tahapan yaitu tahapanpelatihan dan tahapan pengujian. Tahapan pelatihan menggunakan 30 citra burung lovebird dikenali sesuai dengan jenisnya sehingga menghasilkan tingkat akurasi sebesar 100%. Sedangkan tahapan pengujian menggunakan 24 citra burung lovebird, 22 citra burung lovebird dikenali sesuai dengan jenisnya dan 2 citra burung lovebird dikenali tetapi tidak sesuai dengan jenisnya sehingga menghasilkan tingkat akurasi sebesar 91,67% (Misdiyanto, Yustina Suhandini T 2020)

Metode Hierarchical Agglomerative Clustering menawarkan solusi yang sederhana dan cepat dalam pengelompokan piksel warna. Kemudian diberi label sebagai identitas. Pelabelan cluster adalah proses memberikan identitas berupa nama atau ciri pada suatu cluster agar cluster tersebut dapat dikenali. Nama atau ciri yang digunakan sebagai label dari suatu cluster merupakan objek yang mewakili isi dari cluster. Hasil dari pengelompokkan akan menjadi nama atau ciri dari objek yang

dikenali sehingga dapat digunakan pada proses uii identifikasi.

Berdasarkan pemaparan dan alasan diatas, metode *Hierarchical Agglomerative Clustering* akan diimplementasikan untuk identifikasi objek pada pengolahan citra digital.

#### **METODE**

Metode penelitian yang digunakan adlaah metode Air terjun (WaterFall). Model SDLC air terjun (waterfall) sering juga disebut model sekuensial linier (sequential linier) atau alur hidup klasik (classic life Model air terjun menyediakan pendekatan alur hidup perangkat lunak secara sekuential atau terurut dimulai dari analisis, desain, pengkodean, pengujian (Hirmawan, P, and Azizah 2016). Metode dikembangkan penelitian vang penelitian ini terdiri dari beberapa modul. Setiap modul pada sistem yang dibangun memiliki fungsi dan proses masing – masing sesuai dengan tujuan pembuatannya yang dapat digambarkan seperti yang terlihat pada gambar berikut ini:



Gambar 1. Arsitektur Sistem Identifikasi Objek

P-ISSN: 2303-3142 E-ISSN: 2548-8570



Gambar 2. Flowchart Training (Pelatihan)



Gambar 3. Flowchart Identifikasi



Gambar 4. Use Case Diagram Aplikasi

# Hierarchical Agglomerative Clustering

Metode hierarchical agglomerative bekerja dengan mengelompokkan piksel warna pada objek berdasarkan jarak tetangga terdekat. Setiap piksel pada awalnya dianggap sebagai sebuah cluster yang kemudian tiap cluster akan mencari tetangga terdekat untuk bergabung menjadi cluster baru. Proses pembentukan cluster terus dilakukan sampai batas jumlah cluster tercapai (Saad, et al., 2012).

Jarak antara kedua piksel dapat dihitung menggunakan dua persamaan perhitungan jarak yaitu fungsi jarak *Manhattan* dan fungsi jarak *euclidiance*. Berikut persamaan dari kedua fungsi jarak tersebut (Madhulatha 2012)

Persamaan Manhattan distance function:

Persamaan Euclidian distance function:

$$d = \sqrt{\sum_{j=1}^{n} (x_j - y_j)^2} \dots \dots \dots \dots \dots (2)$$

Proses dari Algoritma Hierarchical Agglomerative Clustering terdiri dari Setiap data atau piksel akan dianggap sebagai sebuah cluster tunggal, yang kemudia setiap cluster akan mencari nilai cluster terdekat menggunakan persamaan perhitungan jarak, setiap pasangan cluster terendah akan bergabung menjadi sebuah cluster baru dimana proses pembentukan pasangan terus berlangsung sampai dengan jumlah cluster yang dibutuhkan terpenuhi (Ackermann et al. 2014). Adapun langkahlangkah dari Hierarchical Agglomerative yaitu hitung matrik jarak antar data. pasangan cluster terendah akan bergabung menjadi sebuah cluster baru sampai jumlah cluster yang diinginkan terpenuhi kemudian gabungkan kelompok terdekat berdasarkan parameter kedekatan yang ditentukan langkah terakhir yang dilakukan adalah perbaharui matrik jarak antar data untuk mempresentasikan kedekatan diantara kelompok yang masih tersisa (Prasetyo, 2012).

P-ISSN: 2303-3142 E-ISSN: 2548-8570

# Proses Analisa Algoritma Hierarchical Agglomerative Clustering

Pada proses analaisa ini akan digunakan citra sample atau citra contoh dengan ukuran 3x3 pixel yang akan digunakan sebagai bahan analisis seperti yang dapat dilihat pada gambar berikut :



Gambar 5. Potongan Citra Sampel

Contoh potongan citra input seperti yang terlihat pada gambar 5 merupakan citra warna yang setiap pixelnya disusun oleh komponen RGB. Berikut tabel nilai piksel dari contoh citra yang digunakan:

# Tabel 1 Nilai Pixel Citra

| (130,255,250) | (100,125,140) | (60,65,45) |
|---------------|---------------|------------|
| (255,125,210) | (128,128,130) | (45,60,45) |
| (25,130,120)  | (38,19,52)    | (20,20,20) |

Adapun proses pengelompokan menggunakan algoritma *Hierarchical Agglomerative Clustering* dapat dijabarkan sebagai berikut :

Menentukan jumlah kelompok yang ingin dibentuk.

Sebagai analisis diasumsikan kelompok yang akan dibentuk adalah tiga (3) kelompok

2. Membentuk kelompok awal dari setiap piksel

```
C1 = (130,255,250) = Piksel (0,0) /
Piksel 1
C2 = (100,125,140) = Piksel (1,0) /
Piksel 2
C3 = (60,65,45) = Piksel (2,0) / Piksel 3
C4 = (255,125,210) = Piksel (0,1) /
Piksel 4
C5 = (128,128,130) = Piksel (1,1) /
Piksel 5
C6 = (45,60,45) = Piksel (2,1) / Piksel 6
C7 = (25,130,120) = Piksel (0,2) / Piksel 7
C8 = (38,19,52) = Piksel (1,2) / Piksel 8
```

 Mencari pasangan piksel dengan jarak terdekat pada masing – masing piksel dan membentuk kelompok baru dari pasangan tersebut

C9 = (20,20,20) = Piksel (2,2) / Piksel 9

```
C1baru = C1Lama + C4Lama = { (130,255,250), (255,125,210)}

C2baru = C2Lama + C5Lama = { (100,125,140), (128,128,130)}

C3baru = C3Lama + C6Lama = { (60,65,45), (45,60,45)}

C4baru = C8Lama + C9Lama = { (38,19,52), (20,20,20)}

C5baru = C7Lama = { (25,130,120)}
```

4. Dikarenakan jumlah kelompok yang dihasilkan masih lebih besar dari yang ditentukan maka proses pengelompokkan maka dilanjutkan dengan membentuk pasangan dari kelompok sebelumnya. Sehingga pada akhirnya diperoleh hasil pengelompokkan dengan tiga kelompok akhir sebagai berikut. C1 = { (130,255,250), (255,125,210), (100,125,140), (128,128,130)}
C2 = { (60,65,45), (45,60,45), (38,19,52), (20,20,20) }
C3 = { (25,130,120) }

5. Selesai

## HASIL DAN PEMBAHASAN

Hasil penelitian yang dilakuka oleh Fitri dan Fadlil tentang sistem pengenalan bunga pengolahan berbasis citra dan pengklasifikasian jarak menghasilkan tingkat akurasi tinggi sebesar 85% dengan menggunakan jarak *manhattan* dengan ekstraksi ciri histogram (Muwardi and Fadlil 2018). Penelitian terkait pengolahan citra juga dilakukan oleh endi tentang identifikasi objek benda tajam pada citra x-ray, dimana identifikasi dilakukan proses dengan menghitung boundry objek dan segmentasi warna. Hasil dari pengamatan melalui monitor mesin x-ray dan hasil pengamatan menggunakan pengolahan citra digital adalah sama (Permata 2016),

Berdasarkan tahapan dari arsitektur sistem identifikasi objek pada citra digital yang telah dikemukan diatas. Selanjutnya dilakukan tahapan pembahasan :

## A. Pelatihan

Pelatihan adalah tahapan yang akan dilakukan untuk memberikan data-data kepada sistem sebagai bahan dan referensi dalam proses indentifikasi. Pada tahapan pelatihan terdiri dari sub komponen yaitu: baca objek, clustering, dan simpan data pada database.

Baca objek merupakan sub komponen bertugas untuk membaca yang informasi pixel dari citra input dan menyediakan informasi tersebut untuk sub komponen lain guna diproses lebih lanjut. Clustering merupakan sub komponen yang mempunyai peran untuk mengelompokkan pixel warna menggunakan metode hierarchical agglomerative Setelah clustering. proses clustering maka dilanjutkan menyimpan informasi pengelompokkan pixel citra ke dalam database beserta dengan objek pemilik informasi pixel tersebut.

## B. Identifikasi

Identifikasi merupakan komponen yang berfungsi untuk melakukan pengenalan atau identifikasi objek pada citra digital. Sub komponen dari komponen identifikasi terdiri dari baca objek, clustering, baca database, identifikasi objek.

Tahapan baca objek dan clustering secara keseluruhan mempunyai fungsi yang sama pada proses pelatihan. Pada proses baca database mempunyai fungsi dan tugas untuk membaca informasi pengelompokkan pixel objek dari database yang diperoleh pada saat pelatihan. Tahapan terakhir adalah identifikasi. pada tahapan mempunyai fungsi untuk menentukan jenis objek yang terdapat pada citra input berdasarkan informasi objek yang diperoleh database dengan pencocokan terhadap informasi pengelompokkan dari citra input.

Penelitian identifikasi objek pada citra digital menggunakan hierarchical agglomerative clustering yang dilakukan ini menghasilkan sebuah sistem aplikasi yang dapat digunakan untuk meng-identifikasi objek pada citra digital menggunakan metode hierarchical agglomerative clustering. Adapun hasil dari penelitian ini terdiri dari beberapa form yaitu form utama, form pelatihan dan form identifikasi.



Gambar 6. Form Training Objek.

Form Training (pelatihan) objek memiliki fitur untuk "Cari Objek" untuk dikenali oleh aplikasi yang dibangun. Informasi pixsel yang menyusun objek pada citra digital input akan dikelompokkan menggunakan

algoritma *Hierarchical Agglomerative Clustering* dengan melakukan klik pada tombol "Proses"

P-ISSN: 2303-3142 E-ISSN: 2548-8570

Hasil dari proses algoritma Hierarchical Agglomerative Clustering yang diperoleh kemudian disimpan kedalam database untuk dapat di pergunakan pada proses identifikasi. Sebelum melakukan penyimpanan informasi objek kedalam database, objek tersebut membutuhkan nama untuk pelabelan agar dapat dikenali



Gambar 7 Form Identifikasi Objek

Form identifikasi objek memiliki fitur untuk membuka objek yang memiliki objek untuk di-identifikasi oleh aplikasi yang dibangun. Informasi pixel yang menyusun objek pada citra digital input akan dikelompokkan menggunakna algoritm hierarchical agglomerative clustering dan akan di-identifikasi menggunakan tombol "Identifikasi Objek".

# **PENGUJIAN SISTEM**

Pengujian dilakukan untuk memperoleh validasi implementasi algoritma Hierarchical Agglomerative Clustering pada aplikasi identifikasi objek pada citra digital. Adapun tujuan utama dari pengujian adalah untuk memperoleh kemampuan dari Hierarchical Agglomerative Clustering dalam proses identifikasi objek pada citra digital. Proses pengujian dimulai dengan proses pelatihan objek yang terdapat pada citra digital seperti terlihat pada gambar berikut :



Gambar 8. Pengujian Pelatihan Objek Sepeda

Pengujian pelatihan seperti yang terlihat pada gambar 9 memperlihatkan implementasi pelatihan menggunakan citra objek sepeda. Hasil pengelompokan atau clustering menggunakan hierarchical agglomerative clustering dapat dilihat pada tabel informasi dimana pixel – pixel yang menyusun objek dari citra sepeda terbagi ke dalam kelompok warna sesuai dengan warnanya masing-masing



Gambar 9. Pengujian Identifikasi Objek

Pengujian identifikasi seperti yang terlihat pada gambar 10 dilakukan menggunakan citra sepeda lainnya. Seperti yang dapat dilihat pada gambar 10 aplikasi yang dikembangkan dapat meng-identifikasi objek sepeda dengan baik

Dari hasil yang diperoleh, dapat dilihat bahwa program sistem identifikasi objke pada citra digital menggunakan metode Hierarchical Agglomerative Clustering yang dibangun dapat memberikan hasil yang cukup baik, dimana proses identifikasi menghasilkan hasil yang sesuai dengan objek yang terkandung pada citra digital.

P-ISSN: 2303-3142 E-ISSN: 2548-8570

# **SIMPULAN**

Berdasarkan hasil penelitian yang dilakukan, maka dapat di tarik kesimpulan bahwa proses identifikasi objek pada citra digital menggunakan teknik pengelompokan atau clusterina adalah melakukan pembagian terhadap pixel – pixel pada citra digital ke dalam beberapa kelompok berdasarkan kedekatan warna antara satu pixel dengan pixel lainnya. Berdasarkan kelompok – kelompok yang terbentuk dapat menjadi referensi dalam menentukan jenis obiek berdasarkan kelompok warna yang terbentu dari objek tersebut. Akurasi dari algoritma Hierarchical Agglomerative Clustering cukup baik khususnya pada objek yang memiliki warna khusus atau warna yang telah menjadi ciri dari objek tersebut.

Adapun saran yang penulis dapat kemukan terkait dengan permasalahan yang telah dijabarkan dimana proses identikasi cukup baik namun dapat menghasilkan identifikasi yang buruk jika objek yang berbeda memiliki ciri warna dominan yang sama sehingga diperlukan penelitian lebih lanjut dengan menambah algoritma atau metode untuk mengatasi kelemahan tersebut.

#### **DAFTAR PUSTAKA**

- Ackermann, Marcel R., Johannes Blömer, Daniel Kuntze, and Christian Sohler. 2014. "Analysis of Agglomerative Clustering." *Algorithmica* 69 (1): 184–215. https://doi.org/10.1007/s00453-012-9717-4.
- Arifin, Zenal, Santosa Stefanus, and Arief M. Soeleman. 2017. "Klasterisasi Genre Cerpen Kompas Menggunakan Agglomerative Hierarchical Clustering-Single Linkage." Jurnal Teknologi

- Informasi 13: 92-100.
- Bramanto, Arief, Wicaksono Putra, Muhammad Trisna, and Rheo Malani. 2021. "Jurnal Politeknik Caltex Riau Kompresi Citra Digital Dengan Basis Komponen Warna RGB Menggunakan Metode K-Means Clustering" 7 (1): 14– 23.
- Effendi, Masud, Fitriyah Fitriyah, and Usman Effendi. 2017. "Identifikasi Jenis Dan Mutu Teh Menggunakan Pengolahan Citra Digital Dengan Metode Jaringan Syaraf Tiruan." *Jurnal Teknotan* 11 (2): 67.
  - https://doi.org/10.24198/jt.vol11n2.7.
- Hirmawan, A., M. P, and D. Azizah. 2016.

  "ANALISIS SISTEM AKUNTANSI
  PENGGAJIAN DAN PENGUPAHAN
  KARYAWAN DALAM UPAYA
  MENDUKUNG PENGENDALIAN
  INTERN (Studi Pada PT.Wonojati
  Wijoyo Kediri)." Jurnal Administrasi
  Bisnis S1 Universitas Brawijaya 34 (1):
  189–96.
- Hutahaean, Harvei Desmon, Bakti Dwi Waluyo, and Muhammad Amin Rais. 2019. "Teknologi Identifikasi Objek Berbasis Drone Menggunakan Algoritma Sift Citra Digital" 04: 193–98.
- Madhulatha, T. Soni. 2012. "An Overview on Clustering Methods." *IOSR Journal of Engineering* 02 (04): 719–25. https://doi.org/10.9790/3021-0204719725.
- Misdiyanto, Yustina Suhandini T, Ira Aprilia. 2020. "Identifikasi Jenis-Jenis Burung Lovebird Menggunakan Pengolahan Citra Digital Dengan Metode K-Means Clustering." *Jurnal Sains Komputer & Informatika (J-SAKTI)* Vol. 4 (September): 445–56.
- Muwardi, Fitri, and Abdul Fadlil. 2018. "Sistem Pengenalan Bunga Berbasis Pengolahan Citra Dan Pengklasifikasi Jarak." *Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika* 3 (2): 124. https://doi.org/10.26555/jiteki.v3i2.747 0.
- Permata, Endi. 2016. "Identifikasi Obyek Benda Tajam Menggunakan Pengolahan Citra Digital Pada Citra X-Ray." *Volt* 1 (1): 1–14.

- Putri, Asti Riani. 2016. "Pengolahan Citra Dengan Menggunakan Web Cam Pada Kendaraan Bergerak Di Jalan Raya." JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika) 1 (01): 1-6. https://doi.org/10.29100/jipi.v1i01.18.
- Prasetyo E Data Mining: Konsep dan Aplikasi Menggunakan Matlab [Buku]. -Yoqyakarta: Andi, 2012
- Saad, Fathi H, Omer I E Mohamed, and Rafa E Al-qutaish. 2012. "C Omparison of H Ierarchical a Gglomerative a Lgorithms F or C Lustering M Edical" 3 (3): 1–15.
- Simanjuntak, Krisman Pratama, and Ulfa Khaira. 2021. "Pengelompokkan Titik Di Provinsi Jambi Dengan Algoritma Agglomerative Hierarchical Clustering." MALCOM: Indonesian Journal of Machine Learning and Computer Science 1 (April): 7-16. https://journal.irpi.or.id/index.php/malc om/article/view/6.
- Wicaksana, Danang Aditya, Putra Pandu Adikara, and Sigit Adinugroho. 2018. "Clustering Dokumen Skripsi Dengan Menggunakan Hierarchical Agglomerative Clustering." Jurnal Pengembangan Teknologi Informasi Dan llmu Komputer (J-PTIIK) Universitas Brawijaya 2 (12).
- Widyaningsih, Maura. 2017. "Identifikasi Kematangan Buah Apel Dengan Gray Level Co-Occurrence Matrix (GLCM)." Jurnal SAINTEKOM 6 (1): 71. https://doi.org/10.33020/saintekom.v6i 1.7.
- Wiradharma Ananda Putu Kusuma. Purwanto Yudha Purboyo Tito Waluyo. 2015. "Analisis Sistem Deteksi Anomali Trafik Menggunakan Algoritma Clustering Isodata (Self-Organizing Analys Technique) Dengan Euclidean Distance" 30 (3): 175-82.