CLUSTERING AND IMPLEMENTATION

Dr. Aric LaBarr
Institute for Advanced Analytics

Course Layout

Data **Preparation**

- Transactional Data
- Recency vs. Frequency
- Network Features

Anomaly Models

- Univariate Analysis
- Clustering
- Isolation Forests
- CADE

Fraud Supervised Models

- SMOTE
- Models
- Labeled vs.
 Unlabeled
 Bias
- Not Fraud Model
- Evaluation

Clusters of Not Goods

- Cluster Analysis
- Social Network Analysis

Implement

- Investigators
- Traffic Light Indicators
- Backtesting

Fraud Maturity

Components	New / Young	Emerging SIU	Fraud Scoring	Holistic Solution
Simple Rules	Yes	Yes	Yes	Yes
Unlabeled Data	Yes / No	Yes / No	Yes	Yes
Labeled Fraud Cases	No	Yes	Yes	Yes
Anomaly Models	No	Yes / No	Yes	Yes
Supervised Models	No	No	Yes	Yes
Non-Fraud Models	No	No	No	Yes
Clusters of not Good	No	No	No	Yes

CLUSTERS OF NOT GOODS

Fraud Model, Not-Fraud Model, ...

- After identifying both the fraud and not-fraud models from the known data, turn attention to unknown data.
- Trying to find the unique instances of observations that aren't like previous fraud and not like previous not-fraud.

Unknown **Scored** Observations

- Possibly too many to investigate, so how do I prioritize the ones I need.
- Instead of just giving highest scoring observations, sometimes we take same approach as when we didn't have data:
 - 1. Anomaly models
 - 2. Clustering

Unknown **Scored** Observations

- Find the collections of scored observations that might represent new groups of fraud.
- Then same process with SME's as before:
 - 1. Subject matter experts will look through the suspected anomalies (clusters) for cases that appear to be fraudulent.
 - 2. Tag suspected fraud groups based on expert domain knowledge.
 - Treat these suspected fraud groups as if they had committed fraud and other groups as if they have not.
 - 4. Ideally, have subject matter experts also identify small set of legitimate claims in non-anomaly data.

Unknown **Scored** Observations

- One of 2 paths:
 - IDEALLY, investigators trust your process and investigate new types of fraud based solely on the SME recommendations.
 - 2. **MIGHT** have to put these tagged "possible new fraud" claims into the modeling process and let the model results tell the investigators to act.

NETWORK ANALYSIS FOR UNKNOWNS

Subgroups

- Social networks typically contain dense pockets of individuals.
- These dense pockets are sometimes called subgroups.
- If a subgroup is completely separated from the rest of the network, then it is a cohesive subgroup.
- Homophily: "Birds of a feather flock together."
- This can help in the identification of individuals with similar characteristics.
 - Marketing campaigns
 - Fraud detection

Graph Networks to Check Subgroups

Identify One in a Subgroup

Identify One in a Subgroup -> Investigate Subgroup

INTERPRETABILITY

Data Science Hype vs. Reality

Know Your Customer

Fraud End Users

- Typically, the user of a fraud system is an investigator:
 - Former/current law enforcement
 - Years of experience in investigations
 - Succeeded in their job without analytics
 - Have a current process in place
 - Need to be sold on why they might change

Listening

- VERY IMPORTANT
- Listening requires two things:
 - 1. Desire
 - 2. Humility
- Research ahead of time YES!
- Be biased ahead of time NO!
- Ask many questions to help understand YES!

Beneficial to Investigators

- Fits into their current process
 - Dashboard?
- Where should I start the investigation?
 - Important variables that drove model to pick this person as potential fraud

Scorecard Models

Variable	Level	Scorecard Points
Pay Time	<i>x</i> < 10	100
Pay Time	$10 \le x < 15$	120
Pay Time	$15 \le x < 25$	185
Pay Time	$x \ge 25$	200
Report	Yes	225
Report	No	110
Ratio	<i>x</i> < 1	225
Ratio	$1 \le x < 2.5$	200
Ratio	$2.5 \le x < 5$	180
Ratio	$5 \le x < 7$	140
Ratio	$x \ge 7$	120

Traffic Light Indicators

Variable	Level	Scorecard Points
Pay Time	<i>x</i> < 10	100
Pay Time	$10 \le x < 15$	120
Pay Time	$15 \le x < 25$	185
Pay Time	$x \ge 25$	200
Report	Yes	225
Report	No	110
Ratio	<i>x</i> < 1	225
Ratio	$1 \le x < 2.5$	200
Ratio	$2.5 \le x < 5$	180
Ratio	$5 \le x < 7$	140
Ratio	$x \ge 7$	120

Traffic Light – Example

Variable	Level	Scorecard Points
Pay Time	<i>x</i> < 10	100
Pay Time	$10 \le x < 15$	120
Pay Time	$15 \le x < 25$	185
Pay Time	$x \ge 25$	200
Report	Yes	225
Report	No	110
Ratio	<i>x</i> < 1	225
Ratio	$1 \le x < 2.5$	200
Ratio	$2.5 \le x < 5$	180
Ratio	$5 \le x < 7$	140
Ratio	$x \ge 7$	120

LONG-TERM FRAUD STRATEGY

Classification

- Claims are referred to the SIU for investigation and classified as fraud or no fraud.
- Investigated claims are labeled "Yes" or "No".
- Non-investigated claims are labeled "Maybe".
 - Classified based on unsupervised learning techniques previously discussed.
- All claims are then merged into supervised prediction model.

False Negatives?

- Claims that are labeled as no fraud should occasionally be investigated as well.
- Determine how many low scoring claims can be checked under the budget constraints.
- Randomly select low scoring claims to be passed on to SIU.
- This provides an idea for the false negative rate in the modeling process.

TWO-STAGE FRAUD MODEL

- In fraud it is not only important if someone will commit fraud, but how much the fraud will cost the company.
- Want to calculate two things with regards to fraudulent claims:
 - 1. Probability of fraud occurring
 - 2. Monetary losses if the fraud occurs

- In fraud it is not only important if someone will commit fraud, but how much the fraud will cost the company.
- Want to calculate two things with regards to fraudulent claims:
 - 1. Probability of fraud occurring
 - 2. Monetary losses if the fraud occurs

$$Score = P(Fraud) \times E(Loss|Fraud)$$

- In fraud it is not only important if someone will commit fraud, but how much the fraud will cost the company.
- Want to calculate two things with regards to fraudulent claims:
 - 1. Probability of fraud occurring
 - 2. Monetary losses if the fraud occurs

$$Score = P(Fraud) \times E(Loss|Fraud)$$

- There are two typical approaches to handling this type of problem:
 - 1. Estimate the probability of fraud and the expected loss given fraud as two separate models followed by multiplying them together.
 - 2. Estimate them jointly in a bivariate model.

$$Score = P(Fraud) \times E(Loss|Fraud)$$

- There are two typical approaches to handling this type of problem:
 - 1. Estimate the probability of fraud and the expected loss given fraud as two separate models followed by multiplying them together.

2.

Types of Models

- There are some obvious choices for different types of ways to model each of the two models.
- Binary Response Models:
 - Logistic Regression
 - Decision Trees
 - Neural Networks
- Continuous Response Models:
 - Multiple Regression
 - Regression Trees
 - Neural Networks
 - Other

Types of Models

- There are some obvious choices for different types of ways to model each of the two models.
- Binary Response Models:
 - Logistic Regression
 - Decision Trees
 - Neural Networks
- Continuous Response Models:
 - Multiple Regression
 - Regression Trees
 - Neural Networks
 - Other

Types of Models

What if loss amounts are not available?

What if there are open claims left in the system?

Types of Models

- What if loss amounts are not available?
- What if there are open claims left in the system?

SURVIVAL ANALYSIS!

- Survival analysis is typically used for fraud modeling to determine the expected loss over time for a claim.
- More common in other types of fraud compared to life insurance.

Chance & Loss

$$Score = P(Fraud) \times E(Loss|Fraud)$$

- There are two typical approaches to handling this type of problem:
 - 1.
 - 2. Estimate them jointly in a bivariate model.

What happens if you want to model more than one response variable?

- What happens if you want to model more than one response variable?
 - Build more than one model

- What happens if you want to model more than one response variable?
 - 1. Build more than one model
 - 2. Multivariate regression models

- Multivariate regression models model multiple response variables simultaneously.
- Potential to greatly improve accuracy of the models if the response variables are correlated with each other because multivariate models estimate the correlation between them.

Multivariate Regression

The following is a typical multivariate regression model:

$$\begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{p} \end{bmatrix} = \begin{bmatrix} \beta_{0,1} \\ \beta_{0,2} \\ \vdots \\ \beta_{0,p} \end{bmatrix} + \begin{bmatrix} \beta_{11,1} & \cdots & \beta_{1p,1} \\ \vdots & \ddots & \vdots \\ \beta_{p1,1} & \cdots & \beta_{pp,1} \end{bmatrix} \begin{bmatrix} X_{1,1} \\ X_{1,2} \\ \vdots \\ X_{1,p} \end{bmatrix} + \cdots$$

$$+ \begin{bmatrix} \beta_{11,k} & \cdots & \beta_{1p,k} \\ \vdots & \ddots & \vdots \\ \beta_{p1,k} & \cdots & \beta_{pp,k} \end{bmatrix} \begin{bmatrix} X_{k,1} \\ X_{k,2} \\ \vdots \\ X_{k,n} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{p} \end{bmatrix}$$

Multivariate Regression

• The following is a typical multivariate regression model:

$$\begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{p} \end{bmatrix} = \begin{bmatrix} \beta_{0,1} \\ \beta_{0,2} \\ \vdots \\ \beta_{0,p} \end{bmatrix} + \begin{bmatrix} \beta_{11,1} & \cdots & \beta_{1p,1} \\ \vdots & \ddots & \vdots \\ \beta_{p1,1} & \cdots & \beta_{pp,1} \end{bmatrix} \begin{bmatrix} X_{1,1} \\ X_{1,2} \\ \vdots \\ X_{1,p} \end{bmatrix} + \cdots$$

$$+ \begin{bmatrix} \beta_{11,k} & \cdots & \beta_{1p,k} \\ \vdots & \ddots & \vdots \\ \beta_{p1,k} & \cdots & \beta_{pp,k} \end{bmatrix} \begin{bmatrix} X_{k,1} \\ X_{k,2} \\ \vdots \\ X_{k,p} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{p} \end{bmatrix}$$

$$Y = \beta_{0} + \beta_{1}X_{1} + \cdots + \beta_{k}X_{k} + \varepsilon$$

Multivariate Regression

Let's focus our attention on the bivariate case:

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \beta_{0,1} \\ \beta_{0,2} \end{bmatrix} + \begin{bmatrix} \beta_{11,1} & \beta_{12,1} \\ \beta_{21,1} & \beta_{22,1} \end{bmatrix} \begin{bmatrix} X_{1,1} \\ X_{1,2} \end{bmatrix} + \dots + \begin{bmatrix} \beta_{11,k} & \beta_{12,k} \\ \beta_{21,k} & \beta_{22,k} \end{bmatrix} \begin{bmatrix} X_{k,1} \\ X_{k,2} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}$$

Bivariate Regression

Let's focus our attention on the bivariate case:

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \beta_{0,1} \\ \beta_{0,2} \end{bmatrix} + \begin{bmatrix} \beta_{11,1} & \beta_{12,1} \\ \beta_{21,1} & \beta_{22,1} \end{bmatrix} \begin{bmatrix} X_{1,1} \\ X_{1,2} \end{bmatrix} + \dots + \begin{bmatrix} \beta_{11,k} & \beta_{12,k} \\ \beta_{21,k} & \beta_{22,k} \end{bmatrix} \begin{bmatrix} X_{k,1} \\ X_{k,2} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}$$

- There are 4 different possibilities for modeling a bivariate case:
 - 1. Both Y_1 and Y_2 are continuous.
 - 2. Y_1 is continuous and Y_2 is categorical (binary for now)
 - 3. Y_2 is continuous and Y_1 is categorical (binary for now)
 - 4. Both Y_1 and Y_2 are categorical (binary for now).

Thank you!