Appendix 1. An example of Algorithm 2 (discretization function) in 8 steps with five candidates (w_{ω} .cc) and three QAs for each candidate

```
/* Steps 2-7 show that how to select a candidate for a dimention of a wolf
/* The question mark are the values to be determined
/* The red values in steps 2-7 denote the new values changed
/* Two red cross in step 3 denote wolves delta and beta have not suitable candidate for second dimension of
        new omega wolf
Suppose that:
w_{\omega}.cc= [297,1029, 302,1435,2381]
\mathbf{w}_{\mathbf{0}}, O= [(0.69, 0.65, 0.94), (0.67, 0.98, 0.87), (0.86, 0.94, 0.34), (0.59, 0.61, 0.48), (0.88, 0.75, 0.39)]
\mathbf{w}_{\mathbf{o}}.AQV= [0.46,0.90,0.53]
w_{\omega}.F=0.56
and
w_{\alpha}.cc= [417,160,2441,1562,937]
\mathbf{w}_{\alpha}.Q= [(0.93, 0.98, 0.79), (0.69, 0.99, 0.90), (0.90, 0.89, 0.39), (1, 0.97, 0.82), (0.93, 0.98, 0.99)]
w_{\alpha}.AQV= [0.53,0.96,0.79]
w_{\alpha}.F= 0.83
and
w_{B}.cc= [375,1,687,1508,2188]
w_{\beta}, Q= [(0.98, 0.99, 0.78), (0.69, 0.99, 0.67), (0.90, 0.89, 0.91), (0.81, 0.98, 0.93), (1, 0.95, 0.85)]
w_B.AQV= [0.46,0.95,0.89]
w_{B}.F= 0.80
and
w_{\delta}.cc= [192,729,1070, 1424,1251]
\mathbf{w}_{\delta}.Q=[(0.90, 0.96, 0.58), (0.88, 0.74, 0.95), (0.87, 0.89, 0.91), (0.78, 0.97, 0.69), (0.93, 0.92, 0.82)]
w_{\delta}.AOV= [0.57,0.87,0.90]
w_{\delta}.F= 0.78
and we want to determine the candidate for each dimension of the new omega wolf (w_{\omega new})
w_{\omega - new} .cc= [?, ?, ?, ?, ?]
\mathbf{w}_{m,new}. O= [(0.75,0.73,0.66), (0.93,0.75,0.93), (0.42,0.37,0.38), (0.59,0.66,0.68), (1.072,1.10,1.11)]
w_{\omega - new} .AQV= [?,?,?]
w_{\omega\text{-new}}.F=?
we calculated the w_{\omega new} .Q<sub>1</sub>=(0.75,0.73,0.66), by using the Relations 7-9 represented in section 4.2.2 in line
\text{if } (\sum_{k=1}^{3} w_{\delta} \cdot Q_{1}^{k} = 0.90 + 0.96 + 0.58 > \sum_{k=1}^{3} w_{\omega - new} \cdot Q_{1}^{k} = 0.75 + 0.73 + 0.66) ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 ---> w_{\omega - new} \cdot \text{cc}_{1} \\ = 192 -
.cc= [192, ?, ?, ?, ?] and \mathbf{w}_{\omega new} .Q= [(0.90,0.96,0.58), (0.93,0.75,0.93), (0.42,0.37,0.38), (0.59,0.66,0.68),
(1.072, 1.10, 1.11)
we calculated the w_{\omega-new} .Q<sub>2</sub>=(0.93,0.75,0.93), by using the Relations 7-9 represented in section 4.2.2
if (\sum_{k=1}^{3} w_{\delta}. Q_{2}^{k} = 0.88 + 0.74 + 0.95 \implies \sum_{k=1}^{3} w_{\omega-new}. Q_{2}^{k} = 0.93 + 0.75 + 0.93) 
if (\sum_{k=1}^{3} w_{\beta}. Q_{2}^{k} = 0.69 + 0.99, +0.67 \implies \sum_{k=1}^{3} w_{\omega-new}. Q_{2}^{k} = 0.93 + 0.75 + 0.93)
if (\sum_{k=1}^{3} w_{\alpha}. Q_{2}^{k} = 0.72 + 0.99 + 0.90 > \sum_{k=1}^{3} w_{\omega-new}. Q_{2}^{k} = 0.93 + 0.75 + 0.93) ---> w_{\omega-new}. cc_{2} = 160 ---> w_{\omega-new}
.cc = [192, 160, ?, ?, ?] and w_{\omega - new} .Q = [(0.90, 0.96, 0.58), (0.72, 0.99, 0.90), (0.42, 0.37, 0.38), (0.59, 0.66, 0.68),
(1.072,1.10,1.11)
5:
we calculated the w_{opnew}, Q_3=(0.42,0.37,0.38), by using the Relations 7-9 represented in section 4.2.2
```

```
if (\sum_{k=1}^{3} w_{\delta}. Q_{3}^{k} = 0.87 + 0.89 + 0.91 > \sum_{k=1}^{3} w_{\omega - new}. Q_{3}^{k} = 0.42 + 0.37 + 0.38) --->w_{\omega - new}.cc<sub>3</sub> =1070 ---> w_{\omega - new}.cc<sub>4</sub> = [192, 160, 1070, ?, ?] and w_{\omega - new}.Q= [(0.90,0.96,0.58), (0.72, 0.99,0.90), (0.87,0.89,0.91), (0.59,0.66,0.68), (1.072,1.10,1.11)]
```

6.

we calculated the $w_{\omega - new}$.Q₄=(0.59,0.66,0.68), by using the Relations 7-9 represented in section 4.2.2 if $(\sum_{k=1}^3 w_\delta . Q_4^k = 0.78 + 0.97 + 0.69 > \sum_{k=1}^3 w_{\omega - new} . Q_4^k = 0.59 + 0.66 + 0.68)$ ---> $w_{\omega - new}$.cc= [192, 160, 1070, 1424, ?] and $w_{\omega - new}$.Q= [(0.90,0.96,0.58), (0.72, 0.99,0.90), (0.87,0.89,0.91), (0.78,0.97,0.69), (1.072,1.10,1.11)]

7:

we calculated the $w_{\omega\text{-new}}$. Q_5 =(1.072,1.10,1.11), by using the Relations 7-9 represented in section 4.2.2 if $(\sum_{k=1}^3 w_\delta \,.\, Q_5^k = \, 1.072 + 1.10 + 1.11 \, > \, Upperbound = 3 \, or \, \sum_{k=1}^3 w_\delta \,.\, Q_5^k = \, 1.072 + 1.10 + 1.11 \, < \, Lowerbound = 1 --->$

Select a candidate randomly ---> $w_{\omega - new}$.cc₅ =1990 ---> $w_{\omega - new}$.cc= [192, 160, 1070, 1424, 1990] and $w_{\omega - new}$.Q= [(0.90,0.96,0.58), (0.72, 0.99,0.90), (0.87,0.89,0.91), (0.78,0.97,0.69), (0.91,0.87,0.92)]

So, now we have:

 $w_{\omega\text{-new}}$.cc= [192, 160, 1070, 1424, 1990]

 $w_{\omega - new}$ Q= [(0.90,0.96,0.58), (0.72, 0.99,0.90), (0.87,0.89,0.91), (0.78,0.97,0.69), (0.91,0.87,0.92)]

 $w_{\omega\text{-new}}$.AQV= [?,?,?]

 $w_{\omega\text{-new}}$.F=?

8.

We should calculate $w_{\omega - new}$.AQV by using graph summarization method and then we can calculate the $w_{\omega - new}$.F by using the Relation 3. In section 4.2.1.

Appendix 2. Categorizing the selection methods

Table A-1. Categorizing the Selection Methods in Terms of Fitness

Best Fitness							
Scheffe ^a							
Method	n —	Subset for alpha = 0.05					
		1	2	3	4	5	
IPSO	30	.652351637177					
SFLA	30	.663735251586	.663735251587				
BGWO	30		.671092552173				
GA	30			.792307674999			
HGWO	30			.805621355484	.805621355484		
SFLAGA	30				.817317127106		
RDGWO+GA	30				.818705309643		
DEGWO	30					.841180729205	
Sig.		.188	.752	.059	.069	1.000	
Means for groups in homogeneous subsets are displayed.							
a. Uses Harmonic Mean Sample Size = 30,000.							

Table A-2. Categorizing the Selection Methods in Terms of Availability

Availability							
Scheffe ^a							
Method	N —	Subset for alpha $= 0.05$					
	IN —	1	2	3	4	5	
IPSO	30	.446419870790					
SFLA	30	.481733360267	.481733360267				
BGWO	30		.502277034991				
GA	30			.862055103994			
HGWO	30			.900713060262	.900713060262		
SFLAGA	30				.932948672060		
RDGWO+GA	30				.937517748630		
DEGWO	30					.993556095116	
Sig.		.146	.811	.074	.109	1.000	
Means for groups in homogeneous subsets are displayed.							

Means for groups in homogeneous subsets are displayed

a. Uses Harmonic Mean Sample Size = 30.000.

 $Table \ A-3. \ Categorizing \ the \ Selection \ Methods \ in \ Terms \ of \ Response \ Time$

Response Time Scheffe ^a					
Method	N	Subset for alpha = 0.05			
DEGWO	30	.015595478077			
SFLAGA	30	.029168690309	.029168690309		
RDGWO+GA	30	.033071459564	.033071459564		
GA	30		.036533668738		
HGWO	30		.036880391840		
IPSO	30		.039662988308		
BGWO	30		.043100890465		
SFLA	30		.044159925547		
Sig.		.148	.334		

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 30.000.

Table A-4. Categorizing the Selection Methods in Terms of Cost

Cost Scheffe ^a				
Method	N	Subset for alpha = 0.05 $1 2 3$		
DEGWO	30	.001764183820		
SFLAGA	30	.004206413941	.004206413941	
RDGWO+GA	30	.004525990020	.004525990020	
GA	30	.005344191488	.005344191488	.005344191488
HGWO	30	.005405276349	.005405276349	.005405276349
BGWO	30		.006836413588	.006836413588
IPSO	30		.007368421052	.007368421052
SFLA	30			.009151302551
Sig.		.129	.290	.093

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 30.000.