Table 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

		_			
Component	A \ Voltage-current	A 2 Current-voltage	₿ Voltage-charge	Impedance Z(s) = V(s)/I(s)	Admittance Y(s) = I(s) V(s)
- (- Capacitor	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
\\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2q(t)}{dt^2}$	Ls	$\frac{1}{L_{Y}}$

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), C = V (mhos), C = V (henries).

Table 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

Component	Force- velocity	Force- displacement	Impedance $Z_M(s) = F(s)/X(s)$	
Spring	A	В		
$x(t)$ $\downarrow \qquad \qquad$	$f(t) = K \int_0^t \nu(\tau) d\tau$	f(t) = Kx(t)	K	
Viscous damper $x(t)$ $f(t)$	$f(t) = f_t v(t)$	$f(t) = f_v \frac{dx(t)}{dt}$	$f_{\nu}s$	
Mass $x(t)$ $M \rightarrow f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms^2	

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m s (meters, second), K = N/m (newtons/meter), $f_c = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds³/meter).

EMERCY STOCKIFE

DISSAPATE EVELLY

FOIRCE & VIOLTAGE

VELOCITY & CUIRRENT

LA (VELOCITY) & KYL (LOOP)

5' - INDUCTOR CAPACITOR

FC7315TOX