Exercices corrigés Algèbre linéaire 1

1 Enoncés

Exercice 1 On rappelle que $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel si

- (I) (E, +) est un groupe commutatif;
- (II-1) $\forall x, y \in E, \forall \alpha \in \mathbb{K}, \alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y;$
- (II-2) $\forall x \in E, \forall \alpha, \beta \in \mathbb{K}, (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x;$
- (II-3) $\forall x \in E, \forall \alpha, \beta \in \mathbb{K}, \alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x;$
- (II-4) $1 \cdot x = x$.

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel. On note 0_E l'élément neutre de (E, +) (que l'on appelle aussi l'origine de $(E, +, \cdot)$) et $0_{\mathbb{K}}$ le nombre zéro (dans \mathbb{K}). Pour tout x dans E, le symétrique de x est noté -x.

- (1) Montrer que, pour tout $x \in E$, $x + x = 2 \cdot x$.
- (2) Montrer que, pour tout $x \in E$, $0_{\mathbb{K}} \cdot x = 0_E$.
- (3) Montrer que, pour tout $x \in E$, $(-1) \cdot x = -x$.

Exercice 2 Soient F_1, \ldots, F_m des sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel $(E, +, \cdot)$. Montrer que $F := F_1 \cap \ldots \cap F_m$ est un sous-espace vectoriel de E.

Exercice 3 Soient $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel, $\{x_1, \ldots, x_m\}$ une famille de vecteurs de E. Montrer que $F := \text{vect}\{x_1, \ldots, x_m\}$ est un sous-espace vectoriel de E.

Exercice 4 Soient $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel, F un sous-espace vectoriel de E et A, B deux sous-ensembles de E.

- (1) Montrer que, si $A \subset B$, alors vect $A \subset \text{vect } B$.
- (2) Montrer que A est un sous-espace vectoriel de E si et seulement si vect A = A.
- (3) Montrer que, si $A \subset B \subset F$ et A engendre F, alors B engendre F.

Exercice 5 Considérons les vecteurs de \mathbb{R}^4 suivants :

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 3 \end{pmatrix}, \quad \mathbf{e}_4 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \end{pmatrix}.$$

La famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ est-elle libre? Est-ce une base de \mathbb{R}^4 ?

Exercice 6 Considérons les vecteurs de \mathbb{R}^4 suivants :

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 3 \end{pmatrix}, \quad \mathbf{e}_4 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ -2 \end{pmatrix}.$$

- (1) La famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ est-elle libre?
- (2) Quel est le rang de la famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$?
- (3) Déterminer une relation entre les nombres réels α et β pour que le vecteur $\mathbf{u} = (1, 1, \alpha, \beta)^t$ appartienne au sous-espace vectoriel engendré par la famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$.

Exercice 7 Soit $E = \mathbb{R}^{\mathbb{R}}$, l'espace des fonctions de \mathbb{R} dans \mathbb{R} .

(1) Soient c et s les fonctions définies par

$$\forall x \in \mathbb{R}, \quad c(x) = \cos x \quad \text{et} \quad s(x) = \sin x.$$

Montrer que $\{c, s\}$ est une famille libre de E. Quelle est la dimension du sous-espace vectoriel T engendré par la famille $\{c, s\}$?

(2) Soient α, β, γ trois réels fixés. Soient f, g, h les fonctions définies par

$$\forall x \in \mathbb{R}, \quad f(x) = \cos(x + \alpha), \quad g(x) = \cos(x + \beta) \quad \text{et} \quad h(x) = \cos(x + \gamma).$$

Montrer que f, g, h appartiennent à T, et expliciter leurs coordonnées dans la base $\{c, s\}$ de T. La famille $\{f, g, h\}$ est-elle libre? Quel est son rang?

(3) Soient a_1, a_2, a_3 trois réels distincts. Pour tout entier $k \in \{1, 2, 3\}$ on note f_k la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f_k(x) = |x - a_k|.$$

Montrer que $\{f_1, f_2, f_3\}$ est une famille libre de E.

- **Exercice 8** (1) On rappelle que $C_0(\mathbb{R})$ désigne l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} . Montrer que $\mathcal{A} := \{ f \in C_0(\mathbb{R}) | \forall x \in \mathbb{R}, \ f(x) = f(-x) \}$ et $\mathcal{B} := \{ f \in C_0(\mathbb{R}) | \forall x \in \mathbb{R}, \ f(x) = -f(-x) \}$ sont des sous-espaces vectoriels de $C_0(\mathbb{R})$. Sont-ils en somme directe?
 - (2) Montrer que $A := \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$ et $B := \{(x, y, z) \in \mathbb{R}^3 | x y + z = 0\}$ sont des sous-espaces vectoriels de \mathbb{R}^3 . Sont-ils en somme directe?
- **Exercice 9** (1) Soient $F := \{(x, x, x) \in \mathbb{R}^3 | x \in \mathbb{R}\}$ et $G := \{(0, y, z) \in \mathbb{R}^3 | y, z \in \mathbb{R}\}$. Montrer que F et G sont deux sous-espaces vectoriels de \mathbb{R}^3 . Préciser leurs bases et leurs dimensions. Sont-ils en somme directe?
 - (2) Soit $H := \{(x, y, z, t) \in \mathbb{R}^4 | x = 2y z, \ t = x + y + z\}$. Vérifier que H est un sous-espace vectoriel de \mathbb{R}^4 . En donner une base et la dimension.

Exercice 10 Soient $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel et A, B, C trois sous-espaces vectoriels de E.

- (1) Montrer que $(A \cap C) + (B \cap C) \subset (A+B) \cap C$. Donner un exemple dans \mathbb{R}^2 pour lequel l'inclusion est stricte.
- (2) Montrer que, si A + B = A + C, $A \cap B = A \cap C$ et $B \subset C$, alors B = C.

Exercice 11 On considère l'application donnée par

$$\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} -x + 2y + 2z \\ -8x + 7y + 4z \\ -13x + 5y + 8z \end{pmatrix}.$$

- (1) Montrer que φ est une application linéaire. Déterminer l'image par φ des vecteurs de la base canonique $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ de \mathbb{R}^3 . Calculer $\varphi(2\mathbf{e}_1 + \mathbf{e}_2 \mathbf{e}_3)$.
- (2) Déterminer le noyau de φ . En donner une base et préciser sa dimension.

- (3) L'application φ est-elle injective? surjective? bijective?
- (4) Soit ψ l'application linéaire donnée par

$$\psi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x - y \\ x + y \\ x + 2y \end{pmatrix}.$$

Déterminer $\varphi \circ \psi$.

Exercice 12 On considère l'application donnée par

$$\varphi \colon \qquad \mathbb{R}^3 \qquad \longrightarrow \quad \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \longmapsto \quad \begin{pmatrix} y+z \\ x \end{pmatrix}$$

ainsi que les vecteurs $\mathbf{u} := (1, 2, 3)^t$ et $\mathbf{v} := (1, 1, 1)^t$.

- (1) Montrer que φ est linéaire. Déterminer $\varphi(\mathbf{u})$, $\varphi(\mathbf{v})$ et $\varphi(\mathbf{u} 2\mathbf{v})$.
- (2) Déterminer le noyau de φ . En donner une base et préciser sa dimension.
- (3) Déterminer l'image de φ . En donner une base et préciser sa dimension.

Exercice 13 Soient E et F deux \mathbb{R} -espaces vectoriels et φ une application linéaire de E dans F. Soit $\mathcal{A} := \{x_1, \ldots, x_m\}$ une famille de vecteurs de E.

- (1) Montrer que, si \mathcal{A} est liée, alors $f(\mathcal{A}) = \{\varphi(x_1), \dots, \varphi(x_m)\}$ est liée.
- (2) Montrer que, si $\varphi(A)$ est libre, alors A est libre.
- (3) Montrer que, si \mathcal{A} est libre et φ est injective, alors $\varphi(\mathcal{A})$ est libre.

2 Solutions

Solution de l'exercice 1

- (1) Pour tout $x \in E$, $2 \cdot x = (1+1) \cdot x = 1 \cdot x + 1 \cdot x = x + x$, où l'on a utilisé successivement les axiomes (II-2) et (II-4).
- (2) On a:

$$\begin{array}{rcl} 0_{\mathbb{K}} \cdot x & = & (0_{\mathbb{K}}2) \cdot x \\ & = & 0_{\mathbb{K}} \cdot (2 \cdot x) & \quad \text{[d'après l'axiome (II-3)]} \\ & = & 0_{\mathbb{K}} \cdot (x+x) & \quad \text{[d'après la question (1)]} \\ & = & 0_{\mathbb{K}} \cdot x + 0_{\mathbb{K}} \cdot x. \end{array}$$

En simplifiant (c'est-à-dire, en ajoutant $-(0_{\mathbb{K}} \cdot x)$ des deux côtés), on obtient l'égalité $0_E = 0_{\mathbb{K}} \cdot x$.

(3) D'après la question (2), $0_E = 0_K \cdot x = (1 + (-1)) \cdot x = (1 \cdot x) + ((-1) \cdot x) = x + ((-1) \cdot x)$, où la troisième égalité résulte de l'axiome (II-2) et où la dernière égalité résulte de l'axiome (II-4). On en déduit que $(-1) \cdot x$ est le symétrique de x, c'est-à-dire, -x.

Solution de l'exercice 2 : Nous devons montrer que pour tous $x,y \in F$ et pour tout $\alpha \in \mathbb{R}$, $x + \alpha y \in F$. Soient donc $x,y \in F$ et $\alpha \in \mathbb{R}$ quelconques. Par définition de l'intersection, pour tout $k \in \{1,\ldots,m\}, \ x,y \in F_k$. Comme F_k est un sous-espace vectoriel de E nous déduisons que

$$x + \alpha y \in F_k$$

et ce pour tout $k \in \{1, ..., m\}$. Donc $x + \alpha y$ appartient à l'intersection des F_k , c'est-à-dire, à F.

Solution de l'exercice 3 : Remarquons tout d'abord que F est non vide, puisque que

$$0_E = 0 \cdot x_1 + \dots + 0 \cdot x_m \in F.$$

Soient $x, y \in F$ et $\alpha \in \mathbb{R}$ quelconques. Alors x et y s'écrivent

$$x = \alpha_1 x_1 + \dots + \alpha_m x_m$$
 et $y = \beta_1 x_1 + \dots + \beta_m x_m$,

avec $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_m \in \mathbb{R}$. Donc,

$$x + \alpha y = (\alpha_1 x_1 + \dots + \alpha_m x_m) + \alpha(\beta_1 x_1 + \dots + \beta_m x_m)$$
$$= (\alpha_1 + \alpha \beta_1) x_1 + \dots + (\alpha_m + \alpha \beta_m) x_m.$$

Par conséquent, $x + \alpha y$ est une combinaison linéaire des vecteurs x_1, \ldots, x_m , c'est-à-dire, un élément de F.

Solution de l'exercice 4:

(1) Supposons que $A \subset B$, et montrons que tout élément de vect A appartient à vect B. Soit donc x quelconque dans vect A. Si $A = \emptyset$, alors vect $A = \{0\}$ et donc x est forcément le vecteur nul. Comme vect B est un sous-espace vectoriel, vect $B \ni 0$ et l'on a bien vect $A \subset \text{vect } B$. Si A est non vide, alors

$$\exists p \in \mathbb{N}^*, \ \exists x_1, \dots, x_p \in A, \ \exists \alpha_1, \dots, \alpha_p \in \mathbb{R}: \quad x = \alpha_1 x_1 + \dots + \alpha_p x_p.$$

Puisque $A \subset B$, les x_k sont aussi dans B, de sorte que x est une combinaison linéaire de vecteurs de B, c'est-à-dire, un élément de vect B. On a donc encore vect $A \subset \text{vect } B$.

(2) Supposons que A = vect A. Puisque vect A est un sous-espace vectoriel, il en est de même de A. Réciproquement, supposons que A soit un sous-espace vectoriel, et montrons que A = vect A. Remarquons que tout élément de A est une combinaison linéaire particulière d'éléments de A (prendre p = 1, $\alpha_1 = 1$ et $x_1 = x$). Donc on a clairement l'inclusion $A \subset \text{vect } A$. De plus, si A est un sous-espace vectoriel, alors A est non vide. Soit alors $x \in \text{vect } A$:

$$\exists p \in \mathbb{N}^*, \ \exists x_1, \dots, x_p \in A, \ \exists \alpha_1, \dots, \alpha_p \in \mathbb{R} \colon \quad x = \alpha_1 x_1 + \dots + \alpha_p x_p.$$

Puisque A est stable par combinaison linéaire, $x \in A$. On a donc aussi l'inclusion vect $A \subset A$.

(3) D'après le point (1), $\operatorname{vect} A \subset \operatorname{vect} B \subset \operatorname{vect} F$. Or, $\operatorname{vect} F = F$ puisque F est un sous-espace vectoriel. De plus, $\operatorname{vect} A = F$ puisque A engendre F. Finalement, on a :

$$F \subset \operatorname{vect} B \subset F$$
,

ce qui montre que vect B = F. Autrement dit, B engendre F.

Solution de l'exercice 5 : On résout l'équation vectorielle $\alpha \mathbf{e}_1 + \beta \mathbf{e}_2 + \gamma \mathbf{e}_3 + \delta \mathbf{e}_4 = \mathbf{0}$. Ceci revient résoudre le système linéaire

$$\begin{cases} 0 &= \alpha + \gamma + 2\delta, \\ 0 &= \alpha + \beta + \delta, \\ 0 &= \alpha + 2\beta - 2\gamma, \\ 0 &= \alpha - \beta + 3\gamma - \delta. \end{cases}$$

On trouve que la seule solution possible est $\alpha = \beta = \gamma = \delta = 0$. Donc la famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ est libre, et puisque son cardinal est égal à la dimension de \mathbb{R}^4 , c'est une base de \mathbb{R}^4 .

Solution de l'exercice 6:

(1) On résout l'équation vectorielle $\alpha \mathbf{e}_1 + \beta \mathbf{e}_2 + \gamma \mathbf{e}_3 + \delta \mathbf{e}_4 = \mathbf{0}$. Ceci revient résoudre le système linéaire

$$\begin{cases}
0 = \alpha + \gamma + \delta, \\
0 = \alpha + \beta + \delta, \\
0 = \alpha + 2\beta - 2\gamma + 2\delta, \\
0 = \alpha + \beta + 3\gamma - 2\delta.
\end{cases}$$

On trouve que ce système est équivalent au système

$$\begin{cases}
0 = \alpha + \gamma + \delta, \\
0 = \beta - \gamma, \\
0 = \gamma - \delta.
\end{cases}$$

Ce système admet d'autres solutions que la solution nulle. On en déduit que $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ n'est pas libre.

- (2) D'après ce qui précède, le rang de la famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ est inférieur ou égal à 3. On considère alors la famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. On vérifie facilement qu'elle est libre, de sorte que le rang cherché est en fait égal à 3.
- (3) Pour que \mathbf{u} appartienne au sev engendré par $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$, il faut que l'équation vectorielle

$$\mathbf{u} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2 + \gamma \mathbf{e}_3 + \delta \mathbf{e}_4$$

admette au moins une solution. On cherche donc à résoudre le système linéaire

$$\begin{cases} 1 &= \alpha + \gamma + \delta, \\ 1 &= \alpha + \beta + \delta, \\ a &= \alpha + 2\beta - 2\gamma + 2\delta, \\ b &= \alpha + \beta + 3\gamma - 2\delta. \end{cases}$$

On vérifie que ce système est équivalent au système

$$\begin{cases} 1 &= \alpha + \gamma + \delta, \\ 0 &= \beta - \gamma, \\ a - 1 &= -\gamma + \delta, \\ b - 1 &= 3\gamma - 3\delta. \end{cases}$$

En considérant les deux dernières équations, on voit que le système n'a de solution que si b-1 = -3(a-1), c'est-à-dire, si b+3a=4.

Solution de l'exercice 7:

(1) Considérons l'équation $\alpha c + \beta s = 0$ dans $\mathbb{R}^{\mathbb{R}}$. Cette équation est équivalente à

$$\forall x \in \mathbb{R}, \quad \alpha \cos x + \beta \sin x = 0.$$

Les choix x=0 et $x=\pi/2$ donnent respectivement $\alpha=0$ et $\beta=0$. La famille $\{c,s\}$ est donc libre, et la dimension de T est égale à 2.

(2) Puisque $\cos(x+\alpha) = \cos x \cos \alpha - \sin x \sin \alpha$, on voit que

$$f = \cos \alpha \cdot c - \sin \alpha \cdot s \in T$$

et que les coordonnées de f dans la base $\{c, s\}$ de T sont données par le couple $(\cos \alpha, -\sin \alpha)$. De même,

$$g = \cos \beta \cdot c - \sin \beta \cdot s \in T$$
 et $h = \cos \gamma \cdot c - \sin \gamma \cdot s \in T$;

les coordonnées de g et h dans la base $\{c,s\}$ de T sont données respectivement par les couples $(\cos \beta, -\sin \beta)$ et $(\cos \gamma, -\sin \gamma)$. La fammille $\{f,g,h\}$ ne peut pas être libre, puisque son cardinal est égal à 3 alors que la dimension de l'espace vectoriel T est égale à 2. Son rang vaut au plus 2 (car dim T=2) et au moins 1 (car les fonctions f,g,h sont non nulles). Le rang est égal à 1 lorsque f,g,h sont colinéaires, c'est-à dire lorsqu'il existe a et b dans $\mathbb R$ tels que f=ag=bh ou, de manière équivalente, lorsque

$$\begin{pmatrix} \cos \alpha \\ -\sin \alpha \end{pmatrix} = a \begin{pmatrix} \cos \beta \\ -\sin \beta \end{pmatrix} = b \begin{pmatrix} \cos \gamma \\ -\sin \gamma \end{pmatrix}.$$

Des équations $\cos \alpha = a \cos \beta$ et $\sin \alpha = a \sin \beta$ on tire, en les élevant au carré et en les sommant, que $a^2 = 1$, c'est-à-dire, que $a \in \{-1,1\}$. Si a = 1, alors $\beta = \alpha + 2k\pi$, et si a = -1, alors $\beta = \alpha + \pi + 2k\pi$. En résumé, f et g sont colinéaires si et seulement si $\beta \in \{\alpha\} + \pi\mathbb{Z}$. De même, f et g sont colinéaires si et seulement si g et g est donc de rang 1 lorsque g et g diffèrent d'un multiple entier de g; elle est de rang 2 dans le cas contraire.

(3) Considérons l'équation $\alpha f_1 + \beta f_2 + \gamma f_3 = 0$ dans $\mathbb{R}^{\mathbb{R}}$, qui équivaut à la condition

$$\forall x \in \mathbb{R}, \quad \alpha f_1(x) + \beta f_2(x) + \gamma f_3(x) = 0.$$

Les choix $x = a_1$, $x = a_2$ et $x = a_3$ donnent respectivement les équations

$$\beta |a_1 - a_2| + \gamma |a_1 - a_3| = 0,$$

$$\alpha |a_2 - a_1| + \gamma |a_2 - a_3| = 0,$$

$$\alpha |a_3 - a_1| + \beta |a_3 - a_2| = 0.$$

Posons $a := |a_3 - a_1|$, $b := |a_3 - a_2|$ et $c := |a_1 - a_2|$. Le système d'équations précédent s'écrit

$$\begin{cases} 0 = a\alpha + b\beta, \\ 0 = c\alpha + b\gamma, \\ 0 = c\beta + a\gamma. \end{cases}$$

En résolvant ce système linéaire, et en tenant compte du fait que a, b et c sont non nuls, on voit que la seule solution possible est $\alpha = \beta = \gamma = 0$. On peut aussi écrire le système sous forme matricielle, et remarquer, pour arriver à la même conclusion, que la matrice

$$\left[\begin{array}{ccc} a & b & 0 \\ c & 0 & b \\ 0 & c & a \end{array}\right]$$

a pour déterminant le réel non nul -2abc.

Solution de l'exercice 8

(1) La fonction nulle ν (définie par $\nu(x) = 0$ pour tout $x \in \mathbb{R}$) appartient à \mathcal{A} et à \mathcal{B} . Donc, \mathcal{A} et \mathcal{B} sont non vides. De plus, pour toutes fonctions $f, g \in \mathcal{A}$ et tout réel α , la fonction $f + \alpha g$ satisfait :

$$\forall x \in \mathbb{R}, \quad (f + \alpha g)(x) = f(x) + \alpha g(x) = f(-x) + \alpha g(-x) = (f + \alpha g)(-x).$$

Par conséquent, $f + \alpha g \in \mathcal{A}$. Donc \mathcal{A} est un sous-espace vetoriel de $\mathcal{C}_0(\mathbb{R})$. De même, pour toutes fonctions $f, g \in \mathcal{B}$ et tout réel α , la fonction $f + \alpha g$ satisfait :

$$\forall x \in \mathbb{R}, \quad (f + \alpha g)(x) = f(x) + \alpha g(x) = -f(-x) - \alpha g(-x) = -(f + \alpha g)(-x).$$

Par conséquent, $f + \alpha g \in \mathcal{A}$. Donc \mathcal{B} est un sous-espace vetoriel de $\mathcal{C}_0(\mathbb{R})$. Soit maintenant f une fonction de $\mathcal{A} \cap \mathcal{B}$. Alors, pour tout $x \in \mathbb{R}$,

$$f(x) = f(-x)$$
 et $f(x) = -f(-x)$,

ce qui montre que f(x) = 0. Donc $f = \nu$. On en déduit que $\mathcal{A} \cap \mathcal{B} = \{\nu\} = \{0_{\mathcal{C}_0(\mathbb{R})}\}$, et que \mathcal{A} et \mathcal{B} sont en somme directe.

(2) Il est facile de voir que A et B contiennent le vecteur nul (0,0,0). De plus, si (x,y,z) et (x',y',z') appartiennent à A et $\alpha \in \mathbb{R}$, alors $(x,y,z) + \alpha(x',y',z') = (x+\alpha x',y+\alpha y',z+\alpha z')$ satisfait

$$(x + \alpha x') + (y + \alpha y') + (z + \alpha z') = (x + y + z) + \alpha (x' + y' + z') = 0.$$

Donc $(x, y, z) + \alpha(x', y', z') \in A$, et A est un sous-espace vectoriel de \mathbb{R}^3 . De même, si (x, y, z) et (x', y', z') appartiennent à B et $\alpha \in \mathbb{R}$, alors $(x, y, z) + \alpha(x', y', z') = (x + \alpha x', y + \alpha y', z + \alpha z')$ satisfait

$$(x + \alpha x') - (y + \alpha y') + (z + \alpha z') = (x - y + z) + \alpha (x' - y' + z') = 0.$$

Donc $(x, y, z) + \alpha(x', y', z') \in B$, et B est un sous-espace vectoriel de \mathbb{R}^3 . Soit maintenant (x, y, z) un vecteur de $A \cap B$. Alors,

$$x + y + z = 0$$
 et $x - y + z = 0$.

Le vecteur (1,0,-1) satisfait les deux équations ci-dessus. On voit donc que $A \cap B$ n'est pas réduit à $\{(0,0,0)\}$. Les sous-espaces A et B ne sont pas en somme directe.

Solution de l'exercice 9

(1) Il est facile de voir que le vecteur (0,0,0) appartient à F et à G. Donc F et G sont non vides. Soient $(x,x,x),(y,y,y)\in F$ et $\alpha\in\mathbb{R}$. Alors

$$(x, x, x) + \alpha(y, y, y) = (x + \alpha y, x + \alpha y, x + \alpha y) \in F.$$

Donc F est un sous-espace vectoriel de \mathbb{R}^3 . Soient $(0,y,z), (0,y',z') \in G$ et $\alpha \in \mathbb{R}$. Alors

$$(0, y, z) + \alpha(0, y', z') = (0, y + \alpha y', z + \alpha z') \in G.$$

Donc G est un sous-espace vectoriel de \mathbb{R}^3 . On voit que

$$F = \{x(1,1,1) | x \in \mathbb{R}\} = \text{vect}\{(1,1,1)\},\$$

$$G = \{y(0,1,0) + z(0,0,1) | x, y \in \mathbb{R}\} = \text{vect}\{(0,1,0), (0,0,1)\}.$$

De plus, on vérifie facilement que les familles $\{(1,1,1)\}$ et $\{(0,1,0),(0,0,1)\}$ sont libres. Elles forment donc des bases respectives de F et G. On en déduit que dim F=1 et dim G=2. Enfin, si $(x,y,z) \in F \cap G$, alors x=y=z et x=0. Donc $F \cap G=\{(0,0,0)\}$, et F et G sont en somme directe.

(2) On vérifie facilement que $(0,0,0,0) \in H$, de sorte que $F \neq \emptyset$. Soient $(x,y,z,t), (x',y',z',t') \in H$ et $\alpha \in \mathbb{R}$. Alors, $(x,y,z,t) + \alpha(x',y',z',t') = (x + \alpha x', y + \alpha y', z + \alpha z', t + \alpha t')$ satisfait :

$$x + \alpha x' = 2y - z + \alpha(2y' - z') = 2(y + \alpha y') - (z + \alpha z'),$$

$$t + \alpha t' = x + y + z + \alpha (x' + y' + z') = (x + \alpha x') + (y + \alpha y') + (z + \alpha z'),$$

ce qui montre que $(x, y, z, t) + \alpha(x', y', z', t') \in H$. Donc H est un sous-espace vectoriel de \mathbb{R}^4 . De plus,

$$\begin{split} H &= \{(2y-z,y,z,x+y+z)|x,y,z\in\mathbb{R}\}\\ &= \{x(0,0,0,1)+y(2,1,0,1)+z(-1,0,1,1)|x,y,z\in\mathbb{R}\}\\ &= \text{vect}\{(0,0,0,1),(2,1,0,1),(-1,0,1,1)\}. \end{split}$$

Considérons l'équation vectorielle $\alpha(0,0,0,1) + \beta(2,1,0,1) + \gamma(-1,0,1,1) = (0,0,0,0)$. Cette équation équivaut au système

$$\begin{cases}
0 = 2\beta + \gamma \\
0 = 2\beta \\
0 = \gamma \\
0 = \alpha + \beta + \gamma
\end{cases}$$

dont l'unique solution est $\alpha = \beta = \gamma = 0$. La famille $\{(0,0,0,1),(2,1,0,1),(-1,0,1,1)\}$ est donc libre, et c'est une base de H.

Solution de l'exercice 10

(1) Soit $x \in (A \cap C) + (B \cap C)$. Alors x = a + b avec $a \in A \cap C$ et $b \in B \cap C$. Puisque $a \in C$ et $b \in C$ et C est un sev, $a + b \in C$. Donc x appartient à A + B et à C. Dans \mathbb{R}^2 , Si l'on prend $A = \text{vect}\{e_1\}$, $B = \text{vect}\{e_2\}$ et $C = \text{vect}\{e_1 + e_2\}$, où $\{e_1, e_2\}$ est la base canonique, alors

$$(A \cap C) + (B \cap C) = \{0\} \cap \{0\} = \{0\}$$
 et $(A + B) \cap C = \mathbb{R}^2 \cap C = C$.

(2) Puisque $B \subset C$, il suffit de montrer que $C \subset B$. Soit donc $x \in C$. Puisque $0 \in A$, $x = 0 \in A + C$. Puisque A + C = A + B, on peut écrire x = a + b avec $a \in A$ et $b \in B$. Maintenant, a = x - b, où $x \in C$ et $x \in B \subset C$, et puisque C est un sev, $a \in C$. Donc $a \in A \cap C = B \cap C$. Donc $a \in B$. Finalement, x = a + b avec $a \in B$ et $b \in B$. Puisque B est un sev, $x \in B$.

Solution de l'exercice 11:

(1) Vérifions que φ est linéaire :

$$\varphi\left(\alpha\begin{pmatrix} x\\y\\z\end{pmatrix} + \beta\begin{pmatrix} x'\\y'\\z'\end{pmatrix}\right)$$

$$= \varphi\begin{pmatrix} \alpha x + \beta x'\\\alpha y + \beta y'\\\alpha z + \beta z'\end{pmatrix}$$

$$= \begin{pmatrix} -(\alpha x + \beta x') + 2(\alpha y + \beta y') + 2(\alpha z + \beta z')\\ -8(\alpha x + \beta x') + 7(\alpha y + \beta y') + 4(\alpha z + \beta z')\\ -13(\alpha x + \beta x') + 5(\alpha y + \beta y') + 8(\alpha z + \beta z')\end{pmatrix}$$

$$= \alpha\begin{pmatrix} -x + 2y + 2z\\ -8x + 7y + 4z\\ -13x + 5y + 8z\end{pmatrix} + \beta\begin{pmatrix} -x' + 2y' + 2z'\\ -8x' + 7y' + 4z'\\ -13x' + 5y' + 8z'\end{pmatrix}$$

$$= \alpha\varphi\begin{pmatrix} x\\y\\z\end{pmatrix} + \beta\varphi\begin{pmatrix} x'\\y'\\z'\end{pmatrix}.$$

Ensuite,

$$\varphi(\mathbf{e}_1) = \begin{pmatrix} -1 \\ -8 \\ -13 \end{pmatrix}, \quad \varphi(\mathbf{e}_2) = \begin{pmatrix} 2 \\ 7 \\ 5 \end{pmatrix}, \quad \varphi(\mathbf{e}_3) = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}.$$

Enfin, $2\mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3 = (2, 1, -1)^t$, de sorte que

$$\varphi(2\mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3) = 2\varphi(\mathbf{e}_1) + \varphi(\mathbf{e}_2) - \varphi(\mathbf{e}_3)$$

$$= 2\begin{pmatrix} -1 \\ -8 \\ -13 \end{pmatrix} + \begin{pmatrix} 2 \\ 7 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix} = \begin{pmatrix} -2 \\ -13 \\ -29 \end{pmatrix}.$$

(2) On cherche les solutions de l'équation vectorielle $\varphi(\mathbf{x}) = \mathbf{0}$. En notant $\mathbf{x} = (x, y, z)^t$, on obtient le système

$$\begin{cases} 0 = -x + 2y + 2z, \\ 0 = -8x + 7y + 4z, \\ 0 = -13x + 5y + 8z. \end{cases}$$

La seule solution de ce système est le vecteur nul, ce que l'on peut voir aussi en calculant le déterminant de la matrice

$$\left[\begin{array}{rrr} -1 & 2 & 2 \\ -8 & 7 & 4 \\ -13 & 5 & 8 \end{array}\right].$$

Donc $\ker \varphi = \{0\}$, l'unique base de $\ker \varphi$ est \emptyset , et sa dimension est nulle.

- (3) Puisque $\ker \varphi = \{\mathbf{0}\}$, l'application φ est injective. Puisque les dimensions des espaces de départ et d'arrivée sont toutes deux égales à 3, φ est aussi surjective, et donc bijective.
- (4) En notant $\mathbf{x} = (x, y)^t$, on a :

$$(\varphi \circ \psi)(\mathbf{x}) = \varphi(\psi)(\mathbf{x})$$

$$= \varphi \begin{pmatrix} x - y \\ x + y \\ x + 2y \end{pmatrix}$$

$$= \begin{pmatrix} -(x - y) + 2(x + y) + 2(x + 2y) \\ -8(x - y) + 7(x + y) + 4(x + 2y) \\ -13(x - y) + 5(x + y) + 8(x + 2y) \end{pmatrix}$$

$$= \begin{pmatrix} 3x + 7y \\ 3x + 23y \\ 34y \end{pmatrix}.$$

Solution de l'exercice 12:

(1) Vérifions que φ est linéaire :

$$\varphi\left(\alpha\begin{pmatrix} x\\y\\z\end{pmatrix} + \beta\begin{pmatrix} x'\\y'\\z'\end{pmatrix}\right)$$

$$= \varphi\left(\begin{matrix} \alpha x + \beta x'\\\alpha y + \beta y'\\\alpha z + \beta z'\end{matrix}\right)$$

$$= \begin{pmatrix} (\alpha y + \beta y'') + (\alpha z + \beta z')\\\alpha x + \beta x'\end{matrix}\right)$$

$$= \alpha\begin{pmatrix} y + z\\x\end{pmatrix} + \beta\begin{pmatrix} y' + z'\\x'\end{pmatrix}$$

$$= \alpha\varphi\begin{pmatrix} x\\y\\z\end{pmatrix} + \beta\varphi\begin{pmatrix} x'\\y'\\z'\end{pmatrix}.$$

Ensuite, $\varphi(\mathbf{u}) = (5,1)^t$, $\varphi(\mathbf{v}) = (2,1)^t$ et

$$\varphi(\mathbf{u} - 2\mathbf{v}) = \begin{pmatrix} 5 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

(2) Le vecteur $(x, y, z)^t$ appartient à ker φ si et seulement si y + z = 0 et x = 0. C'est donc l'ensemble des vecteurs de la forme $(0, y, -y)^t$ où $y \in \mathbb{R}$:

$$\ker \varphi = \left\{ \begin{pmatrix} 0 \\ y \\ -y \end{pmatrix} \middle| y \in \mathbb{R} \right\} = \operatorname{vect} \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}.$$

Le sous-espace vectoriel ker φ est donc de dimension 1, et admet pour base le singleton $\{(0,1,-1)^t\}$.

(3) D'après le théorème du rang, $\dim \mathbb{R}^3 = \operatorname{rg} \varphi + \dim \ker \varphi$, ce qui implique que $\operatorname{rg} \varphi = 2$. On en déduit que $\operatorname{im} \varphi = \mathbb{R}^2$ et que n'importe quelle base de \mathbb{R}^2 , par exemple la base canonique, est une base de $\operatorname{im} \varphi$.

Solution de l'exercice 13

(1) Si \mathcal{A} est liée, il existe $\alpha_1, \ldots, \alpha_m$ non tous nuls tels que $\alpha_m x_m + \cdots + \alpha_m x_m = 0$. Mais alors

$$\alpha_1 \varphi(x_1) + \dots + \alpha_m \varphi(x_m) = \varphi(\alpha_1 x_1 + \dots + \alpha_m x_m) = 0,$$

et puisqu'au moins un des α_i est non nul, non voyons que $\{\varphi(x_1), \ldots, \varphi(x_m)\}$ est liée.

- (2) Ce point se déduit du précédent par contre-apposition.
- (3) Supposons \mathcal{A} libre et φ injective, et considérons l'équation $\alpha_1 \varphi(x_1) + \cdots + \alpha_m \varphi(x_m) = 0$. Le membre de gauche n'est autre que $\varphi(\alpha_1 x_1 + \cdots + \alpha_m x_m)$, et puisque φ injective, on a nécessairement $\alpha_1 x_1 + \cdots + \alpha_m x_m = 0$. Puisque \mathcal{A} est libre, on déduit de cette dernière équation que $\alpha_1 = \ldots = \alpha_m = 0$. Donc $\varphi(\mathcal{A})$ est libre.