Ferienkurs Experimentalphysik 2 Übungsblatt 1

Tutoren: Elena Kaiser und Matthias Golibrzuch

1 Elektrostatik

1.1 Öltröpfchen

An ein Öltröpfchen mit der Dichte $\rho=0,8\times10^3$ kg/m³ und dem Radius $R=10~\mu\mathrm{m}$, das zehn Elementarladungen -e trägt, wird ein zweites Tröpfchen der gleichen Größe mit nur einer Elementarladung -e aus dem Unendlichen bis auf einen Abstand von $a=100~\mu\mathrm{m}$ angenähert.

- a) Berechnen Sie die dafür nötige Arbeit.
- b) Wie groß müsste die Dichte des Öls sein, damit die Gravitation bei diesem Abstand die elektrostatische Abstoßung kompensiert? Gilt dies nur für diesen Abstand?
- c) Welche Spannung muss an einem horizontal aufgestellten Plattenkondensator (Plattenabstand = 10 mm) angelegt werden, um das höher geladene Öltröpfchen im Schwerefeld der Erde zum Schweben zu bringen? Was passiert mit dem zweiten Tröpfchen unter diesen Bedingungen?

1.2 Coulombenergie

Ein Calciumatom besitzt 20 Protonen, dessen Ladung betragsmäßig gleich dem des Elektrons ist. Der Abstand zwischen diesen beträgt $a=10^{-15}$ m. Will man 20 Protonen aus dem Unendlichen zusammenbringen, damit sie den Calciumkern bilden, muss Energie in Form von Coulombenergie aufgebracht werden. Diese muss von der Bindungsenergie der Kernkräfte kompensiert werden.

- a) Berechnen Sie die Coulombenergie.
- b) Angenommen die Kernkraft würde plötzlich aussetzen und die gesamte freiwerdende Coloumbenergie in kinetische Energie umgesetzt. Wie groß wäre die Endgeschwindigkeit einer 100 g schweren Tafelschokolade , wenn die gesamte Energie nutzbar gemacht werden könnte?

1.3 Kondensator mit Glasplatte

Ein Plattenkondensator mit der Plattengröße A und dem Plattenabstand d wird zur Hälfte mit einer Glasplatte mit der relativen Dieletrizitätskonstanten ϵ_r und mit Luft gefüllt. Anschließend wird mit einer Batterie die Spannung U angelegt.

- a) Berechnen Sie Kapazität, Ladung auf den Platten, elektrische Feldstärke und Feldenergie für einen baugleichen Kondensator ohne Glasplatte. (Plattenabstand d=1 cm, Spannung U=5 kV , Fläche A=0,1 m²)
- b) Wie groß ist bei angeschlossener Batterie das elektrische Feld i) im luftgefüllten Zwischenraum und ii) im Glas?
- c) Wie groß ist die Gesamtkapazität des Kondensators?

1.4 Elektrische Feldstärke zwischen Metallringen

Zwei dünne Metallringe mit Durchmesser d=30 cm stehen sich im Abstand D=1m gegenüber. Der linke Ring ist mit $Q^-=-1$ mC, der rechte mit $Q^+=+1$ mC geladen. Wie stark ist das elektrische Feld genau auf der Mitte der Verbindungslinie der Ringmittelpunkte und in welche Richtung zeigt es?

1.5 Kugel mit Loch

- a) Berechnen Sie das elektrische Feld einer homogen geladenen Kugel mit Radius R.
- b) Nun wird in diese Kugel ein kugelförmiges Loch mit Radius R_L gebohrt. Das Loch befindet sich im Mittelpunkt der Kugel. Berechnen Sie ohne erneute Anwendung des Gaus'schen Satzes das elektrische Feld im Loch, in der Hohlkugel und außerhalb der Hohlkugel.