Oscillations

- 1. A 3 kg block is attached to a horizontal spring with a spring constant of 75 N/m. The block is pulled 0.2 m from its equilibrium position and released from rest on a frictionless surface.
 - a. Calculate the angular frequency and period of the oscillation.
 - b. Determine the maximum speed of the block during its motion.
- 2. A simple pendulum has a length of 0.8 meters. Assuming small oscillations and neglecting air resistance, calculate the period of the pendulum on Earth where $g = 9.8 \, m/s^2$.
- 3. A 0.5 kg mass is hung vertically from a spring, causing it to stretch by 0.1 m at equilibrium. The mass is then pulled down an additional 0.05 m and released from rest.
 - a. Calculate the spring constant k.
 - b. Determine the total mechanical energy of the system during oscillation.
- 4. A harmonic oscillator experiences a damping force proportional to its velocity. The amplitude of the oscillation decreases to 60% of its initial value after 5 complete cycles. What is the damping constant (*b*) if the mass of the oscillator is 2 kg and the spring constant is 200 N/m?
 - (hint) The damping factor per cycle can be found using $A = A_0 e^{\frac{-bt}{2m}}$, where t is the total time for 5 cycles.
- 5. A system with mass m=5 kg, and spring constant is k=500 N/m is subjected to a driving force $F(t)=F_0cos(\omega_d t)$, where $F_0=10$ N.
 - a. Find the natural frequency (ω_0) of the system.
 - b. Determine the amplitude of steady-state oscillations when the driving frequency ω_d equals the natural frequency.
- 6. A uniform rod of length $L=2\,m$ and mass $M=5\,kg$ is pivoted about one end and swings freely in a vertical plane under the influence of gravity.
 - a. Calculate the moment of inertia of the rod about the pivot point.
 - b. Determine the period of small oscillations.
- 7. A mass-spring system oscillates with a maximum displacement of 0.3 m and a maximum speed of 2 m/s.
 - a. Calculate the angular frequency of the system.
 - b. Determine the spring constant if the mass is 1.5 kg.

- 8. A small object is attached to the end of a light rod, forming a simple pendulum of length L=3.0 m. A uniform rod of the same length and total mass equal to that of the small object is used as a physical pendulum.
 - a. Which pendulum has a longer period of oscillation?
 - b. Calculate the period difference between the two pendulums.
- 9. A horizontal spring with a force constant $k=350\ N/m$ has a block of mass $m=4\ kg$ attached to it. The block oscillates with amplitude $A=0.5\ m$. While the block is passing through equilibrium, a lump of clay of mass $m_c=3\ kg$ is dropped vertically onto it and sticks.
 - a. Determine the new amplitude of oscillation after the collision.
 - b. Calculate the percentage change in mechanical energy due to the collision.
- 10. Two oscillations are described by $x_1(t) = A\cos(\omega t)$ and
 - $x_2(t) = A\cos(\omega t + \phi)$. If these two oscillations are superimposed, the resultant amplitude varies with the phase difference ϕ .
 - a. Derive an expression for the resultant amplitude.
 - b. For A = 1 m and $\phi = \frac{\pi}{4}$, calculate the resultant amplitude.