T3. Diodos de unión PN

Diodos de unión PN

- **Objetivos.**
- 1 Introducción.
- Cómo y por qué funciona.
- **1** Funcionamiento del diodo en circuitos.
- Circuitos típicos del diodo.
- Otros tipos de diodos.

Objetivos

- Entender el funcionamiento del diodo de unión PN.
- Resolver circuitos que contienen diodos.
- Conocer (y entender) algunas de sus aplicaciones principales.

Introducción

- El diodo PN es un componente no-lineal.
 - » Para facilitar su tratamiento al resolver un circuito, usaremos aproximaciones lineales.
- Conceptualmente, el diodo sólo permite el paso de corriente en una sola dirección (de P a N).
 - » En hidraúlica, sería como una válvula antiretorno:

Cómo y por qué funcionan

- En un diodo PN, se necesita una cierta energía (caída de tensión) para hacer pasar las cargas en la dirección permitida (tensión umbral, V_γ).
 - En el equivalente hidraúlico, sería como si las placas (o membranas) tuviesen inicialmente una cierta fuerza o tensión cerrando el orificio de la válvula.

Cómo y por qué funcionan

- Representación (símbolo):
 - » El símbolo de circuito "es como" una flecha que indica el sentido permitido de la corriente (de P a N).

Cómo y por qué funcionan

- Representación (símbolo): (cont.)
 - » Polarización directa:

Polarització en directa.

» Polarización inversa:

Polarització en inversa.

Cómo y por qué funcionan

- Curva característica I(V):
 - » Expresión teórica (no-lineal): $I_{P o N} = I_0 (e^{V_{PN}/n \cdot V_t} 1)$
 - » Curva característica I(V):

$$V_T = \frac{KT}{Q} \cong \frac{T}{11600}$$

- La relación I(V) es "complicada" (exponencial).
 - » Al incluir en las ecuaciones se complica en exceso despejar las variables.
- Conceptualmente se puede pensar como una resistencia variable (según la corriente que le atraviesa):

Funcionamiento del diodo en circuitos

- Aproximaciones lineales de la I(V): (para calcular "a mano"):
 - » Modelo lineal:
 - © Comportamiento dividido en dos resistivos: zona directa (R_f) y zona inversa (R_r, respecto V_γ) (V_D ≅V_γ+I_D·R_f)
 - Por tanto, tendremos que resolver dos veces el circuito.

Depende del tipo de diodo.

■ En directa:

- Aproximaciones lineales de la I(V): (cont.)
 - » Modelo ideal:
 - En inversa (V_D < $V_γ$), no le atraviesa corriente (circuito abierto).
 - En directa, cae siempre V_γ, pero no presenta resistencia:

- Aproximaciones lineales de la I(V): (cont.)
 - » Modelo ideal (simplificado): Útil sólo para "descubrir" conceptualmente cómo funciona un circuito.
 - **©** Consiste en el modelo ideal pero con V_{γ} =0.
 - Directa: Como si no existiese.
 - **Inversa: Circuito abierto.**

- Procedimiento general de resolución de circuitos con diodos:
 - » Si es posible, identificar los diodos que están en directa y en inversa. Los que estén en inversa, rama abierta (o resistencia inversa).
 - » En alterna, intentar identificar para qué valores de V_i están en directa y en inversa. (si no es posible, hacer una suposición).
 - » Substituir los diodos por sus correspondientes modelos y solucionar el circuito aplicando Kirchhoff.
 - » Si alguno no está claro si está en directa o no, solucionar con el diodo en directa y comprobar que la solución cuadra con esta suposición (sentido de la corriente).

Circuitos típicos del diodo

- Circuito rectificador de media onda:
 - » Función: Transforma una señal sinusoidal de entrada a la misma señal pero forzando los valores negativos a 0.

Circuitos típicos del diodo

- Circuito rectificador de media onda: (cont.)
 - » Circuito:

- » Análisis previo con modelo ideal (modificado):
 - V_i ↑ → Diodo como si no estuviese → V_o=V_i

V_i↓ (negativo) → Circuito abierto → V_o=0V

Circuitos típicos del diodo

- Circuito rectificador de media onda: (cont.)
 - » Análisis con model ideal:
 - ${}^{\circ}$ V_{i} (> V_{γ}) \rightarrow Diodo como fuente V_{γ} \rightarrow V_{o} = V_{i} - V_{γ}

 ${}_{\circ}V_{i} \downarrow (< V_{\gamma}) \rightarrow Circuito abierto \rightarrow V_{o}=0V$

Circuitos típicos del diodo

- Circuito rectificador de media onda: (cont.)
 - » Análisis con model lineal:
 - Directa (V_i>V_γ)) —

Aplicamos Kirchhoff:

$$V_i - V_{\gamma} - i \cdot R_f - i \cdot R_L = 0 \quad \Rightarrow \quad i = \frac{V_i - V_{\gamma}}{(R_f + R_L)}$$

$$v_i = V_m \cdot \sin(wt)$$

$$\Rightarrow i = \frac{V_m \cdot \sin(\omega \cdot t) - V_{\gamma}}{(R_f + R_L)}$$

$$V_o = V_k = i \cdot R_L = \frac{V_m \cdot \sin(\omega \cdot t) - V_{\gamma}}{(R_f + R_L)} \cdot R_L$$

Circuitos típicos del diodo

- Circuito rectificador de onda completa (con Puente de diodos):
 - » Función: Ahora los valores negativos de la entrada los pasa a positivos en la salida:

Circuitos típicos del diodo

- Circuito rectificador de onda completa: (cont.)
 - » Circuito: Puente de diodos

■ El objetivo del circuito es que la corriente que atraviesa
R_L siempre sea en el mismo sentido
(independientemente del valor de tensión de V_i).

Circuitos típicos del diodo

- Circuito rectificador de onda completa: (cont.)
 - » Análisis con el modelo ideal (modificado):
 - Directa: Con V_i >0, I de arriba a abajo → Pasa por D_2 y D_3 .

$$\rightarrow V_A = V_i(+) y V_B = V_i(-) \rightarrow V_o = V_A - V_B = V_i$$

■ Inversa: Con V_i <0, I de abajo a arriba \rightarrow Pasa por D_4 y D_1 .

$$\rightarrow$$
 $V_A = V_i(-)$ y $V_B = V_i(+)$ \rightarrow $V_o = V_A - V_B = -V_i$

Circuitos típicos del diodo

Circuito rectificador de onda completa: (cont.)

» Análisis con el modelo ideal:

Circuitos típicos del diodo

- Circuito rectificador de onda completa: (cont.)
 - » Ejercicio: Plantear las ecuaciones (aplicando Kirchhoff) para el modelo lineal en ambas situaciones.

Circuitos típicos del diodo

- Filtro pasivo en rectificación:
 - » Objetivo: Obtener una tensión de salida lo más cte. posible

con una entrada sinusoidal.

- Sin C → rect. media onda.
- » Comportamiento cualitativo sin R_L:
 - Supongamos modelo ideal (modificado).
 - Si no hay R_L, cuando V_i de 0 a V_m, C se carga hasta V_m.
 - Al disminuir V_i, C no puede descargarse (el diodo no permite I hacia atrás). → C se queda cargado y V_o=V_m(cte)

 V_i

Como V_i no supera nunca V_m, C se queda siempre a V_m.

Circuitos típicos del diodo

- Filtro pasivo en rectificación:
 - » Comportamiento cualitativo con R_L:
 - Si hay R_L, ahora C puede descargarse a través de R_L cuando el diodo está en inversa. Por tanto, irá disminuyendo su tensión.

 V_i

Cuando V_i se aproxime a V_m, el C se volverá a cargar y recuperará su tensión.

 $\mathbf{R}_{\mathbf{r}}$

Circuitos típicos del diodo

- Circuitos limitadores de tensión:
 - » Función: Aseguran que la tensión no sobrepase un cierto valor (que podría ser perjudicial para los circuitos).
 - » Se basan en que la tensión en el diodo nunca sobrepasará el valor V_{γ} .
 - Se pueden ayudar de fuentes de tensión en serie con el diodo para fijar un valor de tensión máximo distinto a V_γ.

Circuitos típicos del diodo

Circuitos limitadores de tensión: (cont.)

» Ejemplos sencillos:

Circuitos típicos del diodo

- Circuitos limitadores de tensión: (cont.)
 - » Para limitar tensiones positivas y negativas:

Circuitos típicos del diodo

- Circuitos limitadores de tensión: (cont.)
 - » Para fijar otros valores de tensión distintos a V_{γ} :

Otros diodos

Diodo Zener:

- » Característica principal: Posee otra tensión umbral para diferencias de tensión negativas.
- » Representación, curva característica y modelo:

Otros diodos

- Diodo Zener: (cont.)
 - » Principales usos:
 - ullet Fijar la tensión a V_z en lugar de V_γ . (El valor de V_z puede controlarse durante la fabricación).
 - No es necesario añadir fuentes de tensión para limitar la tensión a otros valores (sólo escoger el diodo Zener adecuado).

Otros diodos

- Diodo LED (Light Emitting Diode):
 - » Diodo que, al polarizarse en directa, emite luz (dif. colores).
 - » Símbolo:
 - » Ventajas:
 - Operan con bajas tensiones y tienen bajo consumo.
 - Bajo coste y vida larga.
 - » Han ido substituyendo las pequeñas lámparas de filamento.

Otros diodos

- Diodo LED (Light Emitting Diode): (cont.)
 - » Usos múltiples:
 - Letreros luminosos de todo tipo.
 - Mandos de TV, puertas, etc (luz infrarroja).
 - Ratones ópticos.

