Sample Size and Robustness of Inferences from Logistic Regression in the Presence of Nonlinearity and Multicollinearity

Jason S. Bergtold¹, Elizabeth A. Yeager² and Allen Featherstone³

Selected Paper prepared for presentation at the Agricultural & Applied Economics

Association's 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 2426, 2011.

Copyright 2011 by [Jason S Bergtold, Elizabeth A Yeager and Allen Featherstone]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.

¹ Assistant Professor, Department of Agricultural Economics, Kansas State University, 304G Waters Hall, Manhattan, KS 66506-4011, (785) 532-0984, bergtold@ksu.edu (contacting author).

² Graduate Research Assistant, Department of Agricultural Economics, Kansas State University, 304G Waters Hall, Manhattan, KS 66506-4011

³ Professor, Department of Agricultural Economics, Kansas State University, 304G Waters Hall, Manhattan, KS 66506-4011

Sample Size and Robustness of Inferences from Logistic Regression in the Presence of

Nonlinearity and Multicollinearity

Abstract

The logistic regression models has been widely used in the social and natural sciences and results from studies using this model can have significant impact. Thus, confidence in the reliability of inferences drawn from these models is essential. The robustness of such inferences is dependent on sample size. The purpose of this study is to examine the impact of sample size on the mean estimated bias and efficiency of parameter estimation and inference for the logistic regression model. A number of simulations are conducted examining the impact of sample size, nonlinear predictors, and multicollinearity on substantive inferences (e.g. odds ratios, marginal effects) and goodness of fit (e.g. pseudo-R², predictability) of logistic regression models. Findings suggest that sample size can affect parameter estimates and inferences in the presence of multicollinearity and nonlinear predictor functions, but marginal effects estimates are relatively robust to sample size.

Keywords: Logistic Regression Model, Multicollinearity, Nonlinearity, Robustness, Small Sample Bias,

Sample Size and Robustness of Inferences from Logistic Regression in the Presence of Nonlinearity and Multicollinearity

Introduction

A quick literature search identifies that logistic regression models have been widely used in the social and natural sciences to examine a myriad of problems. The results of these studies can have tremendous impacts (e.g. prediction of default or treatment effects), thus confidence in the reliability of inferences drawn from these models is essential. The robustness of such inferences is dependent on sample size. For example, in medical and experimental research selecting a sample size is crucial in that too small a sample could affect the meaningfulness of results obtained, but too large of sample could expose an excess number of individuals to study treatments (Biau et al., 2008).

Hosmer and Lemeshow (2000) identify two sample size issues: how many observations do I need and do I have enough data to fit my model? Despite these two issues, the authors are surpised by the "surprisingly little work on sample size for logistic regression" (Hosmer and Lemeshow 2000, p. 339). A number of quantitative measures for estimating the number of observations that may be appropriate have been suggested, but these measures provide no clear indication of the effect on the robustness of inferences made using the model. This is particularly an issue for stated choice methods in environmental and natural resource economics, especially in estimating willingness-to-pay (WTP) and other similar measures.

Greenland (2000) and Greenland et al. (2000) have addressed the impact of small sample bias examining studies on electrical wiring, as well as childhood cancer and caloric intake.

These examples were chosen because unusually high odds ratios led to suspicion of the results.

A concern arises in the plausibility of small sample bias going unnoticed due to plausible results that do not trigger an issue. A number of small-sample corrections were compared to see how well they performed. In addition, small perturbations to the data were made to observe how large an impact these changes have on estimation results. Both studies argue that small-sample bias needs to be checked more often.

Nemes et al. (2009) show that as sample size increases the size of bias in logistic regression parameter estimates approaches zero. They don't offer recommendations for correcting for small sample sizes, but instead provide guidelines for when larger samples may be more appropriate. Researchers have tried to show the magnitude of small-sample bias through various means of bias correction (Carroll and Pederson 1990; Firth 1993; MacKinnon and Smith Jr. 1997; Bull et al. 2007). However, it is difficult to know when to correct for bias and how concerned individuals should be with bias due to small samples.

The purpose of this study is to examine the impact of sample size on the bias and efficiency of parameter estimation in the logistic regression model. A number of simulations are conducted examining the impact of sample size, nonlinear predictors, and multicollinearity on substantive inferences (e.g. odds ratios, marginal effects) and goodness of fit (e.g. pseudo-R², predictability) of logistic regression models.

Simulation Methods

Simulations were conducted following the specification of the logistic regression model in Bergtold et al. (2010), which approaches the specification of the index or predictor function of the logit model using the inverse conditional distribution. That is,

$$Y_{i} = h(\mathbf{X}_{i}; \boldsymbol{\beta}) + u_{i} = \left[1 + \exp\left\{-\eta(\mathbf{X}_{i}; \boldsymbol{\beta})\right\}\right] - 1 + u_{i}, \tag{1}$$

where Y_i is a binary dependent variable, \mathbf{X}_i is a vector of explanatory variables, $\boldsymbol{\beta}$ is a vector of parameters to be estimated, u_i is an IID stochastic error term, and:

$$\eta(\mathbf{X}_{i};\beta) = \ln \left(\frac{f_{\mathbf{X}|Y=1}(\mathbf{X}_{i};\theta_{1})}{f_{\mathbf{X}|Y=0}(\mathbf{X}_{i};\theta_{0})} \right) + \kappa,$$
(2)

where $\kappa = \ln\left(\frac{p}{1-p}\right)$ and $f_{\mathbf{X}|Y}(\mathbf{X}_i;\theta_j)$ is the inverse conditional distribution of \mathbf{X}_i on Y_i . The model specification arises from the link between the logistic regression model and discriminant analysis. That is, from the relationship between the conditional distribution of Y_i on \mathbf{X}_i and the inverse conditional distribution of \mathbf{X}_i on Y_i , which is a requirement for the existence of an underlying joint distribution from which the model arises (Bergtold et al., 2010). This model specification approach provides a more parsimonious description of the model and allows for the specification and simulation of models with multicollinearity and nonlinear index/predictor functions.

Using this modeling approach, logistic regression models can be simulated using a two-step procedure, which involves the inverse conditional distribution(s). First, a realization of the dependent Bernoulli random variable is generated. Using this variable as a conditioning factor, the explanatory variables are generated using the inverse conditional distribution. With multiple explanatory variables the modeler is dealing with a multivariate inverse conditional distribution. To make the data generation more tractable, these distributions can be decomposed into products of conditional distributions, allowing one to generate realizations of the multivariate distribution in a sequential manner. For example, the inverse conditional distribution $f_{X|Y}(X_1, X_2; \theta_j)$ can be simulated by first simulating $f_{X_1|Y}(X_1; \theta_{1,j})$ and then using the results to simulate $f_{X_1|X_2,Y}(X_2|X_1; \theta_{2,j})$. The advantage of this data generation approach is that it allows for a purely

statistical method to generate binary choice process data without any *a priori* theoretical assumptions. Furthermore, exact formulas for the parameters, β , can be derived as functions of the parameters of the inverse conditional distributions (Bergtold et al. 2010).

To examine potential bias in the presence of multicollinearity and nonlinear predictor functions, four cases are examined: (1) a base case or bivariate inverse conditional normal distribution with no correlation; (2) bivariate inverse conditional normal distribution with correlation between the explanatory variables equal to 0.95; (3) a mixture inverse conditional distribution between gamma and Bernoulli distributed random variables; and (4) a mixture inverse conditional distribution between exponential and Bernoulli random variables. The resulting four logistic regression models with inverse conditional distribution assumptions are presented in Table 1. Of interest is that the two inverse conditional mixture distributions give rise to models that are nonlinear in the variables and include interaction terms as a result of the distributional assumptions (see Bergtold et al. 2010).

Using the models in Table 1, Monte Carlo simulations were conducted for differing sample sizes of N = 50; 100; 250; 500; 1000; 2,500; 5,000; 10,000; 20,000; 30,000; 40,000; and 50,000 to examine estimated bias as sample size increases. Each Monte Carlo simulation was conducted using 1,000 runs. For each run, logistic regression models were estimated, along with marginal effects, odds ratios, pseudo- R^2 , and within-sample prediction percentage for each sample realization generated. From these statistics, estimated bias was calculated as the difference between the statistic and the "true value". While the true values for the β parameters and odds ratios are exact, for marginal effects, pseudo- R^2 values and within sample prediction, these statistics are all functions of \mathbf{X}_i . Thus, the "true values" for these latter statistics represent the means of the calculated "true" measures across all runs using the randomly generated data

and true values of the β parameters for each model. Data, simulation and model estimation were all carried out in MATLAB.

Results

Results for the Monte Carlo simulations are reported in Tables 2 to 5 for each of the cases examined in Table 1. Mean estimated bias in coefficient estimates (β) are as high as 300 percent above and below the "true value" of the coefficient for small samples up to 100 observations. This bias becomes significantly less with sample sizes above 250. Estimated biases in coefficient estimates are the most pronounced for case (iii) with the mixture inverse conditional distribution of the gamma and Bernoulli random variables. While many researchers utilize odds ratios for inference, given the limited interpretability of the coefficient estimates, the bias from the coefficient estimates, results in the same significant bias in these measures, as well.

A significant and unexpected result in all the models estimated is that marginal effects were relatively robust to sample size. That is, the mean estimated bias in marginal effects estimates was on an order of magnitude of 1 x 10^{-3} or less for many of the simulation runs, even at small sample sizes. The exception is that in the models with nonlinear predictor functions the confidence intervals for the estimated bias are quite wide. For example, for case (iii) the "true" marginal effect for N = 100 for X_I is 0.11 with mean estimated bias of 0.02. The 95 percent confidence interval around the bias estimate is -0.22 to 0.32, giving an approximate range for the marginal effect of -0.11 to 0.44, which is quite large and changes in sign. These results can have significant bearing on inferences obtained from the logistic regression model. It seems to suggest, that marginal effects provide a more accurate and robust measure of the impact of a variable on the probability that $Y_i = 1$, than inference from using odds ratios, which is more likely

to be biased in small samples. This is in realization that the confidence interval around (or statistical significance) of the marginal effects may be large (or insignificant). Thus, small sample size does play a role on the variation in marginal effect estimates.

The estimated mean bias in measures of fit (e.g. McFadden Pseudo-R² and within sample predictive ability) was not greater than 0.08 for any of the models or sample sizes examined. The only significant difference was the result for cases (iii) and (iv), where predictive ability was approximately lower by 34 and 30 percent for all sample sizes, respectively.

The presence of multicollinearity, surprisingly, seems to have no significant impact on the estimated bias results when comparing them to the bivariate normal case (i) where the two explanatory variables are independent. Given the numerical issues that can be caused by the presence of multicollinearity (Greene, 2003), evidence from this study suggests that in some cases multicollinearity may not result in any significant bias beyond that caused by a small sample size.

The two cases of nonlinear index or predictor functions ((iii) and (iv)) did result in greater bias in coefficient estimates and other statistics. This result is to be expected with a more highly nonlinear function, as more data or degrees of freedom (i.e. information) may be needed to accurately estimate the parameters of the model. Increasing accuracy with increased data is the case for all the parameters and statistics estimated. As more information or data is provided, the estimated bias declines and the confidence intervals around the bias tighten.

Conclusion

This study re-examines the robustness and efficiency of inferences from logitistic regression models and finds that the impact of small sample bias is dependent on the type of

model estimated, nature of the data and inference being conducted. Furthermore, given the close relationship between the logistic regression and probit models, these results should extend to those models, as well. If the objective of the study is to obtain meaningful and interpretable marginal effects, sample size, while still an important consideration, may not be as large of an issue as previously thought.

References

Bergtold, J.S. A. Spanos and E. Onukwugha. "Bernoulli Regression Models: Revisiting the Specification of Statistical Models with Binary Dependent Variables." *Journal of Choice Modeling*, 3(2010): 1 – 28.

Biau, David Jean, Solen Kerneis, and Raphael Porcher. "Statistics in Brief: The Importance of Sample Size in the Planning and Interpretation of Medical Research." *Clinical Orthopaedics and Related Research* 466, no. 9 (2008): 2282-2288.

Bull, Shelley B., Juan Pablo Lewinger, and Sophia S. F. Lee. "Confidence intervals for multinomial logistic regression in sparse data." *Statistics in Medicine* 26 (2007): 903-918.

Carroll, R.J., and Shane Pederson. *Further Remarks On Robustness In The Logistic Regression Model.* Technical Report #90-43C, Purdue University: Department of Statistics, 1990.

Greenland, Sander. "Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators." *Biostatistics* 1, no. 1 (2000): 113-122.

Greene W.H. (2003). *Econometric Analysis*, 5th ed., Prentice Hall: Upper Saddle River, NJ.

Greenland, Sander, Judith A. Schwartzbaum, and William D. Finkle. "Problems due to Small Samples and Sparse Data in Conditional Logistic Regression Analysis." *American Journal of Epidemiology* 151, no. 5 (2000): 531-539.

Firth, David. "Bias reduction of maximum likelihood estimates." *Biometrika* 80, no. 1 (1993): 27-38.

Hosmer, David W., and Stanley Lemeshow. *Applied Logistic Regression*. Second Edition. John Wiley & Sons, Inc., 2000.

MacKinnon, James G., and Anthony A. Smith Jr. "Approximate Bias Correction in Econometrics." 1997.

Nemes, Szilard, Junmei Miao Jonasson, Anna Genell, and Gunnar Steineck. "Bias in odds ratios by logistic regression modelling and sample size." *BMC Medical Research Methodology* 9, no. 56 (July 2009): 1-5.

Table 1: Inverse Conditional Distribution Assumptions for Monte Carlo Simulations

Inverse Conditional Distributional Assumptions	$P(Y_i = 1) =$	$h(\pmb{X_i};\pmb{eta})$ and $f_{\pmb{X} Y=i}(\pmb{X};\theta_i)$
Bivariate Normal	0.50	$h(\boldsymbol{X_i};\boldsymbol{\beta}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$ $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \middle Y = 0 \sim N \begin{pmatrix} 1 \\ 1.5 \end{pmatrix} \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix} ; \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \middle Y = 1 \sim N \begin{pmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix} ;$
Bivariate Normal with Multicollinearity	0.50	$h(X_i; \boldsymbol{\beta}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$ $\binom{X_1}{X_2} Y = 0 \sim N \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1.25 & \rho(1.25)^2 \\ \rho(1.25)^2 & 1.25 \end{bmatrix} \right)$ $\binom{X_1}{X_2} Y = 1 \sim N \left(\begin{bmatrix} 1.5 \\ 3 \end{bmatrix} \begin{bmatrix} 1.25 & \rho(1.25)^2 \\ \rho(1.25)^2 & 1.25 \end{bmatrix} \right)$ and $\rho = 0.95$
Gamma and Bernoulli Mixture	0.50	$\begin{split} h(\pmb{X_i};\pmb{\beta}) &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 \ln(X_2) + \beta_4 X_1 X_2 + \beta_5 X_1 \ln(X_2) \\ X_1 Y &= 0 \sim Bernoulli(0.25); \ X_1 Y &= 1 \sim Bernoulli(0.75); \\ X_2 X_1 &= 0, Y = 0 \sim Gamma(1,1); \ X_2 X_1 &= 0, Y = 1 \sim Gamma(1,2) \\ X_2 X_1 &= 1, Y = 0 \sim Gamma(1.5,3); \ \text{and} \ X_2 X_1 &= 1, Y = 1 \sim Gamma(2,4); \end{split}$
Exponential and Bernoulli Mixture	0.50	$h(X_i; \pmb{\beta}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 \\ X_1 Y = 0 \sim Bernoulli(0.8); \ X_1 Y = 1 \sim Bernoulli(0.2); \\ X_2 X_1 = 0, Y = 0 \sim Exponential(1); \ X_2 X_1 = 0, Y = 1 \sim Exponential(1.5) \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_1 X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2); \text{and } X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 0 \sim Exponential(2.7); \\ X_2 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_3 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1, Y = 1 \sim Exponential(2.7); \\ X_4 X_1 = 1, Y = 1,$

Table 2: Monte Carlo Simulation Results for the Normal Bivariate Inverse Condition Distribution with Zero Correlation Case

N	Beta	a0	Beta	1	Bet	a2	Odds R	latio 1	Odds Ra	rtio 2
					True V	alues				
	-3.1	2	0.64		0.9	96	1.89	065	2.611	7
					Estimate	d Bias				
50	-0.43	193	0.094	32	0.13	056	0.35	71	0.7670	02
	-0.51896	-0.35964	0.071434	0.11721	0.10354	0.15758	0.28647	0.42772	0.58074	0.9533
100	-0.17	59	0.0398	311	0.053	3572	0.134	426	0.236	72
	-0.22256	-0.12923	0.025248	0.054375	0.038164	0.068981	0.10249	0.16603	0.18604	0.2874
250	-0.064	475	0.0064	747	0.02	204	0.031	924	0.0890	43
	-0.092943	-0.036008	-0.0023194	0.015269	0.01269	0.031389	0.014456	0.049392	0.063232	0.11485
500	-0.041	715	0.00354	476	0.016	5556	0.016	5848	0.0587	03
	-0.061985	-0.021445	-0.0028054	0.0099006	0.0099936	0.023119	0.0044873	0.029209	0.040778	0.076628
1000	-0.019	176	0.0041	23	0.004	0572	0.012	2163	0.0172	92
	-0.032416	-0.0059354	-4.73E-05	0.0082932	-0.00035687	0.0084713	0.0041474	0.020179	0.0056132	0.028971
2500	-0.0020	0245	0.0006	251	0.0002	25679	0.002	291	0.00346	508
	-0.010517	0.0064676	-0.0020155	0.0032657	-0.0026049	0.0031185	-0.0021201	0.00794	-0.0040549	0.010977
5000	-0.0069	9958	0.0011	127	0.002	7249	0.0029	9373	0.00844	145
	-0.01298	-0.0010114	-0.00071486	0.0029402	0.00075836	0.0046914	-0.00054245	0.0064171	0.0032842	0.013605
10000	-0.0018	8396	0.00072	0.00072342		55828	0.0018	8001	0.00237	702
	-0.0060833	0.0024041	-0.00059224	0.0020391	-0.00072452	0.0020411	-0.00070145	0.0043016	-0.0012495	0.0059898
20000	-0.0044	4734	0.00080	104	0.001	0745	0.001	7406	0.00318	321
	-0.0075821	-0.0013648	-0.0001446	0.0017467	2.52E-05	0.0021239	-5.62E-05	0.0035375	0.00043925	0.005925
30000	-0.0013	3061	-0.00023	3356	0.000	0648	-0.0003	30035	0.00190	087
	-0.0037395	0.0011273	-0.00099388	0.00052676	-0.00014857	0.0014446	-0.0017422	0.0011415	-0.00017485	0.0039922
40000	0.0002	2796	-0.00068	3615	0.0004	12796	-0.001	-0.0011912		785
	-0.0018244	0.0023836	-0.001353	-1.93E-05	-0.0002593	0.0011152	-0.0024551	7.26E-05	-0.00051891	0.0030759
50000	0.0010)452	-8.71E-05		-0.0008	80541	-7.551	E-05	-0.0019	731
	-0.0008914	0.0029817	-0.00068996	0.00051577	-0.0014232	-0.0001876	-0.001219	0.0010679	-0.0035858	-0.00036046

Table 2 continued.

N		Marginal Effect 1		N	Marginal Effect	2	P	redictive Abilit	y	Mc	Fadden Pseudo	\mathbf{R}^2
	Estimated True Value	Estimated	l Bias	Estimated True Value	Estimat	ted Bias	Estimated True Value	Estimat	ed Bias	Estimated True Value	Estimat	ed Bias
50	0.11199	0.00117	784	0.16799	-0.000	59905	0.7642	0.01	372	0.29771	0.03	4554
		-0.0014114	0.0037682		-0.0027552	0.0015571		0.011314	0.016126		0.032322	0.036785
100	0.10132	7.17E-	05	0.15198	-0.000	72551	0.76557	0.00	587	0.29948	0.01	5701
		-0.0017302	0.0018736		-0.0021589	0.00070792		0.0044502	0.0072898		0.015663	0.017739
250	0.10346	-0.0011	079	0.15519	0.000	22394	0.76433	0.003	3196	0.29826	0.006	9371
		-0.0022509	3.50E-05		-0.00069417	0.0011421		0.0024401	0.0039519		0.006514	0.0073601
500	0.10407	-0.00079	9147	0.1561	0.000	64511	0.76488	0.001	1404	0.30041	0.003	5399
		-0.0016163	3.33E-05		1.50E-05	0.0012752		0.0009703	0.0018377		0.0033221	0.0037577
1000	0.10229	0.00011	516	0.15343	-0.000	16348	0.76456	0.00	009	0.29956	0.001	6411
		-0.00044126	0.00067157		-0.00060416	0.00027719		0.00063579	0.0011642		0.0015348	0.0017474
2500	0.10103	-2.95E-	-05	0.15154	-0.000	15578	0.76411	0.000)176	0.2988	0.000	57032
		-0.00038404	0.00032504		-0.00044222	0.00013066		4.47E-05	0.00030726		0.00062864	0.00071199
5000	0.10291	-1.60E-	-05	0.15437	0.000	14073	0.7649	0.000	1134	0.30018	0.00033706	
		-0.00025824	0.00022624		-5.37E-05	0.0003352		3.04E-05	0.00019638		0.00031674	0.00035739
10000	0.10253	4.14E-	05	0.1538	-4.24	E-06	0.76457	6.831	E-05	0.29984	0.000	16457
		-0.00013044	0.00021332		-0.00013874	0.00013025		2.18E-05	0.00011478		0.00015424	0.00017491
20000	0.10264	4.68E-	05	0.15397	4.89	E-05	0.76465	3.371	E-05	0.30002	8.75	E-05
		-7.86E-05	0.00017218		-5.41E-05	0.00015199		5.12E-06	6.23E-05		8.21E-05	9.28E-05
30000	0.10249	-6.66E-	-05	0.15373	6.05	E-05	0.76468	1.071	E-05	0.29983	5.36	E-05
		-0.0001675	3.44E-05		-1.84E-05	0.00013948		-9.03E-06	3.05E-05		5.05E-05	5.68E-05
40000	0.10231	-0.00011	1467	0.15347	6.10	E-05	0.7646	6.301	E-06	0.29978	4.29	E-05
		-0.00020452	-2.48E-05		-8.45E-06	0.00013055		-1.12E-05	2.38E-05		4.03E-05	4.55E-05
50000	0.10259	1.68E-	05	0.15388	-8.19	0E-05	0.76449	1.011	E-05	0.29963	3.37	E-05
		-6.18E-05	9.54E-05		-0.00014205	-2.17E-05		-3.79E-06	2.40E-05		3.18E-05	3.56E-05

Table 3: Monte Carlo Simulation Results for the Normal Bivariate Inverse Condition Distribution with Correlation Equal to 0.95.

N	Beta 0		Beta 1		Beta 2		Odds Ratio 1		Odds Ratio 2	
					True V	alue				
	-2.7789		-1.1789		2.0211		0.3076		7.5463	
					Estimate	d Bias				
50	-0.37	802	-0.14	708	0.264	402	0.043	8851	16.88	4
	-0.44914	-0.3069	-0.19902	-0.095151	0.20601	0.32204	0.031215	0.066488	5.261	28.506
100	-0.15	122	-0.05	583	0.10	791	0.020	0541	2.470	9
	-0.19393	-0.10851	-0.090191	-0.026408	0.074075	0.14175	0.01053	0.030552	1.9377	3.0042
250	-0.055	5032	-0.034	1407	0.045	127	0.004	2862	0.8061	2
	-0.081153	-0.028912	-0.053801	-0.015014	0.024504	0.06575	-0.0017863	0.010359	0.62319	0.98904
500	-0.035	825	-0.027	7769	0.034	773	-0.001	13338	0.4892	.9
	-0.054498	-0.017153	-0.041307	-0.014232	0.020293	0.049253	-0.0054249	0.0027572	0.36565	0.61294
1000	-0.017	227	-0.003	1052	0.0079	9787	0.002	4662	0.1551	5
	-0.029376	-0.0050779	-0.012369	0.006159	-0.001744	0.017701	-0.00039545	0.0053279	0.079035	0.23126
2500	-0.0013	3356	0.0004	5241	7.57E	E-05	0.001	5647	0.03986	62
	-0.0091336	0.0064625	-0.0055186	0.0064234	-0.0062266	0.0063779	-0.00027729	0.0034066	-0.0084712	0.088195
5000	-0.006	5065	-0.004	0919	0.005	7555	-0.000)5963	0.0621	78
	-0.01156	-0.0005701	-0.0081643	-1.96E-05	0.0014175	0.010093	-0.0018436	0.00065102	0.02906	0.095297
10000	-0.001	512	-0.0005	52415	0.0013	3422	0.000	15526	0.0193	18
	-0.0054182	0.0023942	-0.0033376	0.0022893	-0.0017111	0.0043956	-0.00071044	0.001021	-0.0038578	0.042494
20000	-0.004	0521	-0.001	3583	0.002	3501	-0.000	23274	0.0230	21
	-0.006908	-0.0011963	-0.0035084	0.00079184	3.57E-05	0.0046644	-0.00089424	0.00042875	0.0055158	0.040527
30000	-0.001	1303	-0.001	4951	0.0014	4121	-0.000	35072	0.01370	08
	-0.0033722	0.0011117	-0.0031456	0.00015539	-0.00034707	0.0031713	-0.00085807	0.00015663	0.00038649	0.02703
40000	0.0003	0869	-0.001	6012	0.0010	0224	-0.00040748		0.00997	82
	-0.0016296	0.002247	-0.0030577	-0.00014472	-0.00049312	0.0025379	-0.00085451	3.96E-05	-0.0014957	0.021452
50000	0.0007	5692	0.0014	4526	-0.001	6882	0.000	5105	-0.010	9
	-0.0010294	0.0025433	0.00019503	0.0027102	-0.0030544	-0.000322	0.00012301	0.00089799	-0.021199	-0.0006008

Table 3 continued.

N		Marginal Effect 1		Marginal Ef	ect 2	I	Predictive Abilit	y	Mc	Fadded Pseudo	R ²
	Estimated True Value	Estimated Bias	Estima Truc Valu		nated Bias	Estimated True Value			Estimated True Value	Estimated Bio	16
50	-0.2128	0.0022831	0.30	548	0012638	0.751	0.01:	512	0.27099	0.034	
30	-0.2128		0.008608	-0.006547		0.01269 0.01755		0.27099	0.031	0.036252	
100	-0.19503	0.001744	0.334		-0.0065476 0.0040199 -0.0018563		0.01209		0.27271	0.031833	
100	-0.17303		.0061675	-0.005376		0.75295	0.0047449	0.0076151	0.27271	0.01552	0.01758
250	-0.19975	-0.0020793	0.34		0050943	0.75144	0.0047449		0.27141	0.01332	
230	-0.19973		.0012228	-0.001759			0.0026512	0.0042128	0.27141	0.0064293	0.0072705
500	-0.20039	-0.0044132	0.34		0.0027780	0.75252	0.0020312		0.27346	0.0004273	
300	-0.20037		0.34.	9.87E-0			0.00085128	0.0017407	0.27340	0.003286	0.0037184
1000	-0.19715	0.00049468	0.33		0.0031271	0.75197	0.000		0.27276	0.003280 0.003718	
1000	0.17713		.0018651	-0.001500			0.0004906	0.0010314	0.27270		0.0017257
2500	-0.19478	0.0003172	0.33		0.00007471	0.7514	0.000		0.27199	0.001313	
2300	0.15470		.0012012	-0.001105		0.7314	0.00015963	0.00043237	0.27177	0.00062055	
5000	-0.19801	-0.00032163	0.33		0034538	0.75223	0.000		0.27333	0.0003	
3000	0.17001		0.0027881	-0.0001357		0.73223	0.0001134	0.000281	0.27333	0.00031192	
10000	-0.19742	4.65E-05	0.33		.42E-06	0.75189	6.77H		0.27302	0.00031192	
10000	0.17712		00046105	-0.0003404				0.00011408	0.27302	0.00015228	
20000	-0.19761	-7.53E-05	0.33		0013365	0.75195	3.44E		0.27318	8.661	
20000	0.13701		00023947	-0.0001212			4.50E-06	6.42E-05	0.27510	8.13E-05	9.19E-05
30000	-0.19734	-0.0001988	0.33		0014753	0.75201	8.47I		0.27299	5.311	
20000	0.137.51		4.62E-05	-4.74E-0			-1.27E-05	2.97E-05	0.27.233	4.99E-05	5.62E-05
40000	-0.19705	-0.00025907	0.33		000156	0.75196	1.69E		0.27295	4.221	
	3.13700		4.06E-05	-1.53E-0		3.70190	-1.77E-08	3.38E-05	3.27238	3.97E-05	4.48E-05
50000	-0.19747	0.00019177				0.75186	1.04E		0.27283	3.341	
			00037818	-0.0003445			-4.53E-06	2.54E-05		3.15E-05	3.53E-05

Table 4: Monte Carlo Simulation Results for a Mixture Inverse Condition Distribution Between Gamma and Bernoulli Distributed Random Variables.

N	Beta 0	Beta 1	Beta 2	Beta 3	Beta 4	Beta 5
			True Val	lues		
	2.62574848	1.64491923	0.66666667	-0.4166667	0.5	0.5
			Estimated	Bias		
50	-6.728523894	5.446008218	2.228236875	-1.661193211	0.139926713	-0.234565971
	-119.80584 2.5637335	8 -8.7737448 117.674902	-3.8039074 43.5263565	-43.01947 7.87242512	-21.704779 10.7075909	-15.307275 23.308977
100	-0.584880815	0.048508522	0.050036919	0.144990752	0.505315336	-0.452233232
	-3.6589348 1.44233659	3.62276112	-1.292285 1.62441509	-1.679957 2.63028236	-1.4409128 4.51130038	-5.6923227 3.31578489
250	-0.133226846	-0.042807105	0.016502363	0.037919721	0.13713916	-0.087576362
	-1.5253116 0.9765605	-1.6718764 1.77295266	-0.6909212 0.87386773	-0.9364058 1.01352702	-0.8886392 1.71977127	-2.1910497 1.85099491
500	-0.063574268	-0.04187495	0.008588658	0.016458231	0.06330618	-0.032324493
	-1.0084145 0.76307033	2 -1.145314 1.09074812	-0.4962604 0.59223522	-0.6703569 0.62142777	-0.6656807 1.16313975	-1.3374729 1.22037311
1000	-0.04366258	0.006140461	0.007867736	0.001708516	0.027203051	-0.011572763
	-0.7127055 0.5295444	-0.7743222 0.82613306	-0.3515444 0.3969059	-0.4309039 0.44455164	-0.5188683 0.76466259	-0.920347 0.82539998
2500	0.001215997	-0.018709627	-0.001188087	0.008147906	0.012571602	-0.012669222
	-0.4036259 0.3852039	0.48073709	-0.2315735 0.24138413	-0.2729959 0.28931863	-0.3501233	-0.6200041 0.5614764
5000	-0.005141992	-0.005717442	-6.84E-05	0.002542473	0.006568034	-0.002396295
	-0.28252 0.250594	-0.3306515 0.32709773	-0.1645771 0.16227077	-0.1837817 0.19361023	-0.2481631 0.29547656	-0.4116538
10000	-0.006103698	0.002792809	0.002788147	-0.00191837	-0.002041385	0.002140586
	-0.2089194 0.175275	-0.2347098 0.26151414	-0.1095641 0.1129043	-0.1390995 0.13563651	-0.1734113 0.18513523	-0.275272 0.28312551
20000	0.000301382	-0.002005706	-0.000760672	0.002860551	0.002357807	-0.007651579
	-0.1412841 0.1329340	-0.169569 0.17070442	-0.0773387 0.08053514	-0.0963666 0.09719118	-0.1279681 0.13759485	-0.2189022 0.19952046
30000	-0.00258092	0.003404174	0.001044626	-0.001306721	0.000597763	-0.000308217
	-0.1181133 0.1099614	-0.1362082 0.14091062	-0.0638419 0.07134054	-0.0839338 0.07510753	-0.1153316 0.11375535	-0.172404 0.16898047
40000	-0.002109787	0.001013691	0.00073992	-0.000552287	0.00022482	0.001344101
	-0.1023506 0.0988867	-0.1237936 0.13022158	-0.0544192 0.05610819	-0.0691111 0.0655653	-0.0873223 0.10169789	-0.1472932 0.14710332
50000	-8.38E-05	-8.81E-05	-0.000475466	-1.96E-05	0.001543953	-0.000203391
	-0.0867573 0.0876835	-0.1071106 0.10789061	-0.051578 0.05071426	-0.0629728 0.05803796	-0.0807532 0.08198454	-0.1232747 0.12683537

Table 4 continued.

N	Odds Ratio1		Odds Ratio 2	2	Odds Ratio 3	3	Odds Ratio 4		Odds Ratio 5	5
					True	Value				
	5.18059146		1.94773404		0.65924063		1.64872127		1.64872127	
					Estimat	ed Bias				
50	7.095E-	+175	4.591	E+85	9.60	E+19	2.97	E+55	3.43	E+61
	-5.1797898	6.61E+51	-1.9043317	1.56E+19	-0.6592406	1729.13623	-1.6487213	73686.0339	-1.6487209	2.1883E+10
100	4.05E-	-40	55412	22.478	832.76	529199	1592	40.294	5175.	52114
	-5.07528	188.784916	-1.4128035	7.93789169	-0.5363701	8.48949504	-1.2584498	148.4510749	-1.6431622	43.7636649
250	2.24993	9896	0.1983	335008	0.111	76582	0.982	323471	0.8568	310577
	-4.2071885	25.3238378	-0.9716968	2.71934966	-0.4007957	1.15716633	-0.9707425	7.556503869	-1.4643953	8.84728585
500	0.66758	6837	0.0941	27763	0.0454	126028	0.327	300263	0.3480	024641
	-3.532521	10.2394391	-0.7619475	1.57381827	-0.3220219	0.56799122	-0.8014046	3.627128429	-1.2159184	3.9378912
1000	0.47344	3551	0.0533	374727	0.0187	730204	0.146	594933	0.1674	157605
	-2.7922552	6.65430264	-0.5773071	0.94896715	-0.2307861	0.36903677	-0.6674127	1.893176198	-0.9919024	2.11496919
2500	0.06659	6303	0.0122	273108	0.0125	505039	0.056	364125	0.0524	193294
	-2.1306638	3.19780316	-0.402627	0.53175075	-0.1574953	0.22118657	-0.4870303	0.892662392	-0.7618045	1.24191431
5000	0.04767	7454	0.0066	666203	0.0050)52516	0.027	864223	0.0324	470615
	-1.4585672	2.00456261	-0.295564	0.34314919	-0.110675	0.14082906	-0.3623351	0.566775293	-0.556355	0.8167238
10000	0.05472	1477	0.0087	700768	0.000	35446	0.004	031106	0.0207	776356
	-1.0837782	1.54845448	-0.2021266	0.2328025	-0.085608	0.09576494	-0.26249	0.335318842	-0.3967392	0.53957987
20000	0.00805	6382	0.0001	65657	0.0027	703499	0.007	81118	-0.003	398239
	-0.8080247	0.96431581	-0.1449575	0.16335048	-0.0605638	0.06728938	-0.198042	0.243203769	-0.3241381	0.36406599
30000	0.03095	0857	0.0031	87693	-0.000	315568	0.003	738444	0.0055	551831
	-0.6596915	0.7839361	-0.1204609	0.14402887	-0.0530741	0.05142081	-0.1795942	0.198634592	-0.2610931	0.30352467
40000	0.01567	6194	0.0023	310103	4.84	E-05	0.002	393717	0.0065	573731
	-0.6032168	0.72052054	-0.1031616	0.11240785	-0.0440221	0.04467177	-0.1378633	0.176493908	-0.2258075	0.26127888
50000	0.00722	6607	-0.000	236544	0.0003	801553	0.004	114077	0.0030	012978
	-0.5262117	0.59020347	-0.0979134	0.1013255	-0.0402341	0.03939307	-0.1279056	0.14086514	-0.1912173	0.22295676

Table 4 continued

N	Ma	arginal Effect 1	M	larginal Effect 2	P	redictive Ability	McI	Fadden Pseudo R ²
	Estimated True Value	Estimated Bias	Estimated True Value Estimated Bias		Estimated True Value	Estimated Bias	Estimated True Value	Estimated Bias
50	0.1098566	0.018654352	0.11823813	-0.038907646	0.84482	-0.34362	0.5653085	0.075680281
30	0.1070200	-0.2162105 0.32059509	0.11023013	-0.2788967 0.07534172	0.01102	-0.52 -0.18	0.5055005	0.0104064 0.1889523
100	0.11003332	0.00543655	0.11863512	-0.02262214	0.84895	-0.34894	0.3778433	0.039708793
100	0.11000002	-0.1517403 0.21230351	0.11002212	-0.2264235	0.0.1032	-0.46 -0.22	0.0770.00	0.0059191 0.1016726
250	0.109606	0.001404061	0.11854331	-0.021021971	0.849896	-0.349416	0.4778066	0.015723877
		-0.0969144 0.10475964		-0.0786433 0.02255537		-0.424 -0.272		0.0022546
500	0.10985986	-0.001699259	0.11821589	-0.004974642	0.849518	-0.349664	0.4182241	0.007772272
		-0.0697269 0.06716602		-0.0385977 0.01757352		-0.402 -0.296		0.0008912 0.0189213
1000	0.10983199	0.000701905	0.11841929	-0.002456445	0.849103	-0.348946	0.4585243	0.003927761
		-0.0489234 0.04715294		-0.0184173 0.01142491		-0.386 -0.313		0.0004813
2500	0.10986121	-0.000319478	0.11850305	-6.50E-05	0.848674	-0.3491944	0.4945821	0.001584473
		-0.031083 0.03063506		-0.0085509 0.00737015		-0.372 -0.3256		0.0002036 0.0039072
5000	0.10986848	-7.29E-05	0.11839841	-0.000141761	0.8488742	-0.348758	0.4976316	0.000798157
		-0.0217904 0.02178182		-0.0050084 0.00497842		-0.3652 -0.3328		7.42E-05 0.0020061
10000	0.10993617	-2.77E-06	0.11843617	-4.81E-05	0.8487941	-0.3487364	0.4881336	0.000384867
		-0.0154425 0.01775937		-0.0034684 0.00352922		-0.36 -0.3373		5.65E-05 0.0009947
20000	0.10995552	0.0001682	0.11854212	1.68E-05	0.84868925	-0.3485632	0.4886731	0.000192186
		-0.0103527 0.01045643		-0.0023229 0.00243759		-0.35645 -0.34105		2.45E-05 0.00046
30000	0.10988014	3.40E-05	0.11848012	-4.85E-06	0.84894073	-0.348903567	0.5032357	0.000131745
		-0.0087168 0.00948667		-0.0019988 0.00213229		-0.3556333 -0.3422		1.75E-05 0.000319
40000	0.10989595	4.16E-05	0.11847509	-1.80E-05	0.84900485	-0.348989275	0.4938374	9.75E-05
		-0.0074905 0.00766787		-0.0018009 0.00167678		-0.355175 -0.343		1.14E-05 0.000258
50000	0.10992241	-3.32E-05	0.11845834	-1.35E-05	0.84883304	-0.34875966	0.5003647	7.77E-05
		-0.0068374 0.00694927		-0.0016168 0.00164039		-0.3538 -0.34326		1.09E-05 0.0001964

Table 5: Monte Carlo Simulation Results for a Mixture Inverse Condition Distribution Between Exponential and Bernoulli Distributed Random Variables.

N	Beta 0		Beta 1		Beta 2		Beta 3		Odds Ratio	1	Odds Ratio 2		Odds Ratio 3	
							True Va	lues						
	0.69315		-2.6672		0.5		-0.2037		0.069444		1.6487		0.8157	
							Estimated	l Bias						
50	-0.1895	4	-1.20)95	0.54	534	-0.35	5856	3.171	E+09	1.05E-	+15	5.44E	+63
	-2.3619	1.6084	-3.7204	2.596	-0.69116	3.9426	-4.8004	1.2553	-0.067762	0.86176	-0.82272	83.343	-0.80899	2.0465
100	-0.05229	95	-0.071	775	0.162	222	-0.13	3385	0.02	1065	3.698	36	-0.007	1298
	-1.1599	1.0828	-1.8928	1.4443	-0.45321	1.3483	-1.3546	0.6824	-0.058982	0.22493	-0.60082	4.7002	-0.60521	0.79827
250	-0.0198	66	-0.035	5164	0.051	.011	-0.03	7312	0.006	50998	0.146	89	-0.001	4173
	-0.64994	0.6882	-1.0514	0.9031	-0.34255	0.63148	-0.63984	0.43173	-0.045177	0.10189	-0.4782	1.4515	-0.38552	0.44042
500	-0.0212	64	-0.007	7836	0.033	8886	-0.02	4815	0.00	3671	0.0808	845	-0.006	9858
	-0.5174	0.43572	-0.71293	0.6161	-0.24739	0.37481	-0.40435	0.30231	-0.035402	0.059146	-0.36134	0.74969	-0.2713	0.28793
1000	-2.85E-0	05	-0.008	7034	0.010	0634	-0.00	8538	0.001	2131	0.028	07	-0.0003	37484
	-0.29951	0.31695	-0.45648	0.42984	-0.17843	0.26012	-0.27593	0.231	-0.025451	0.037293	-0.26943	0.48981	-0.1967	0.21197
2500	-0.000153	599	0.0007	3091	0.003	5135	-0.003	38808	0.000	84462	0.0096	113	-0.0007	8785
	-0.21374	0.1961	-0.3135	0.28513	-0.12346	0.14551	-0.15222	0.1444	-0.018688	0.022912	-0.19148	0.25824	-0.11518	0.12672
5000	-0.00179	53	0.0038	3418	0.0024	4805	-0.003	30562	0.000	67023	0.0060	494	-0.001	2753
	-0.14717	0.13335	-0.20502	0.22496	-0.089093	0.098654	-0.1135	0.097592	-0.012873	0.017519	-0.14054	0.17095	-0.087519	0.08362
10000	-0.00095	628	-0.001	2287	0.002	6861	-0.001	14328	0.000	11303	0.0054	562	-0.0005	52192
	-0.10459	0.10188	-0.15608	0.13628	-0.065319	0.073607	-0.081926	0.074894	-0.010035	0.010139	-0.10425	0.12594	-0.064163	0.063437
20000	-0.000213	355	-0.002	1623	0.0006	55721	-0.000	17113	-4.64	E-05	0.001	58	0.0001	7468
	-0.074122	0.069926	-0.10554	0.1043	-0.043106	0.052776	-0.057117	0.051937	-0.0069556	0.0076339	-0.069559	0.08935	-0.045285	0.043485
30000	0.000592	249	-0.002	2462	0.0003	88121	-7.94	E-05	-9.91	E-05	0.00094	4289	0.0001	3685
	-0.058395	0.057829	-0.091641	0.09136	-0.035561	0.040594	-0.04534	0.043843	-0.0060811	0.0066433	-0.057599	0.068305	-0.036158	0.036559
40000	-0.00128	882	0.0013	3877	0.0010	0451	-0.00	1345	0.000	14621	0.0019	582	-0.0009	4399
	-0.053764	0.051593	-0.071668	0.070794	-0.032556	0.031878	-0.03726	0.039188	-0.0048028	0.0050944	-0.052812	0.053404	-0.029834	0.0326
50000	-0.000369	999	-3.73I	E-05	-2.101	E-05	0.0004	41416	3.78	E-05	0.00015	5024	0.0004	6075
	-0.049253	0.045912	-0.066106	0.065749	-0.029622	0.029646	-0.034625	0.032912	-0.0044423	0.0047193	-0.048123	0.04961	-0.027761	0.027293

Table 5 continued

N	N	Iarginal Effect 1	M	larginal Effect 2	Pre	edictive Ability	Mcl	Fadden Pseudo R ²
	Estimated True Value		Estimated True Value		Estimated True Value		Estimated True Value	
		Estimated Bias		Estimated Bias		Estimated Bias		Estimated Bias
50	-0.59665	-0.0043061	0.059928	0.011965	0.80576	-0.3058	0.30796	0.05493
		-0.21033 0.22326		-0.093984 0.14511		-0.48 -0.12		-0.0033824 0.1697
100	-0.59665	-0.00094674	0.059935	0.00659	0.80455	-0.30571	0.33193	0.024836
		-0.16292 0.15669		-0.046365 0.077992		-0.43 -0.18		-0.0013492 0.073541
250	-0.59672	-0.00063074	0.059937	-0.00063074	0.80394	-0.30352	0.30183	0.0097132
		-0.099558 0.098883		-0.030834 0.04254		-0.38 -0.224		-0.0006031 0.031238
500	-0.59673	0.00046189	0.059894	0.0021134	0.80347	-0.30339	0.30404	0.0049392
		-0.072399 0.074406		-0.022424 0.027759		-0.36 -0.246		-0.0004012 0.015074
1000	-0.59676	-0.00045135	0.059939	0.00041428	0.80394	-0.30424	0.25728	0.0022873
		-0.047709 0.044087		-0.015643 0.017358		-0.345 -0.266		-0.0003095 0.006832
2500	-0.59668	0.00017202	0.059904	7.25E-05	0.80363	-0.30377	0.30114	0.00096593
		-0.030861 0.029834		-0.010891 0.011487		-0.3288 -0.2784		-0.0001033 0.0029436
5000	-0.59674	0.00037502	0.059921	8.92E-05	0.80354	-0.3036	0.32418	0.00048102
		-0.021182 0.022729		-0.0073228 0.0078557		-0.3222 -0.2848		-3.73E-05 0.0015131
10000	-0.59673	-1.51E-05	0.05992	0.00021806	0.80379	-0.30381	0.32199	0.00023928
		-0.015233 0.015726		-0.0052545 0.0056533		-0.3166 -0.2901		-1.57E-05 0.0006995
20000	-0.5967	-0.0001752	0.059924	3.97E-05	0.80386	-0.30388	0.31314	0.00012232
		-0.010965 0.010635		-0.0036399 0.0041125		-0.31315 -0.2952		-5.97E-06 0.0003851
30000	-0.59672	-0.0002688	0.059915	4.84E-06	0.8039	-0.30373	0.33092	8.04E-05
		-0.009397 0.008929		-0.003003 0.0032509		-0.31083 -0.29647		-2.54E-06 0.0002328
40000	-0.59673	-8.96E-06	0.059919	4.64E-05	0.80378	-0.30367	0.32375	6.02E-05
		-0.0083003 0.0071868		-0.0028126 0.0025585		-0.31042 -0.29685		-8.13E-06 0.0001698
50000	-0.59671	0.0001662	0.059919	3.30E-05	0.80371	-0.30375	0.32033	4.86E-05
		-0.0068571 0.0068886		-0.0023079 0.0025878		-0.30962 -0.2978		-3.46E-06 0.0001488