CH4020 Project

Aaryan, CO21BTECH11001

Question 1

Solution:

Reactions are

$$A \rightarrow B$$
 Rate = k_1
 $B \rightarrow C$ Rate = k_2

Rate equations are

$$\frac{\frac{dC_A}{dt} = -(k_1C_A + k_2C_B)}{\frac{dC_B}{dt} = k_1C_A}$$

$$\frac{\frac{dC_B}{dt} = k_2C_A}{\frac{dC_C}{dt} = k_2C_A}$$

Solving for rate equations assuming initial concentration of A to be C_0

We get

$$\begin{split} C_A &= C_0 exp(-\ (k_1 + k_2)t) \\ C_B &= \frac{k_1}{k_1 + k_2} (C_0 - C_0 exp(-\ (k_1 + k_2)t) = \frac{k_1}{k_1 + k_2} (C_0 - C_A) \\ C_c &= \frac{k_2}{k_1 + k_2} (C_0 - C_0 exp(-\ (k_1 + k_2)t) = \frac{k_2}{k_1 + k_2} (C_0 - C_A) \end{split}$$

Let us suppose that N values of C_A^i , C_B^i , C_C^i are given in the data file.

Define cost function as mean squared error of actual and approx values.

$$cost(k_1, k_2) = \sum_{i=1}^{N} \left[(C_A^i - C_A)^2 + (C_B^i - C_B)^2 + (C_C^i - C_C)^2 \right]$$

Now, we can calculate optimal values of k_1 , k_2 using scipy.optimize.fmin function by passing cost function and initial guess value. The reason for that is because k_1 , k_2 do not have any constraint or bound.

Question 2

Solution:

Himmelblau function is:

$$f(x_1, x_2) = min_{x_1, x_2} (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Given constraint:

$$x_1^2 + x_2^2 \ge 25$$

Given bounds:

$$-5 \le x_1, x_2 \le 5$$

Himmelblau function

a. Using deterministic algorithm:

We can calculate optimal value of x_1 , x_2 by scipy. optimize. minimize function and passing function, initial guess, constraints, bounds and setting method as SLSQP.

Since the Himmelblau function has multiple minimum values, we have to take an appropriate guess value so that the constraint is satisfied at the optimal point (solution).

By trying different guess values, I arrived at a guess value of (-4.0, -4.0).

The optimal point found is $x_1 = -3.779$, $x_2 = -3.283$, which satisfies all constraints and bounds.

b. <u>Using genetic algorithm:</u>

A class named *GenAlgo* is created which initializes the objective, bounds and constraints.

Then, the module GA of package pymoo is used by passing population size as 100 and optimal value of x_1, x_2 is calculated by using pymoo. optimize. minimize function.

The optimal point found is $x_1 = -3.779$, $x_2 = -3.283$, which satisfies all constraints and bounds.