XCVario Benutzer-Handbuch

XCVario 57mm und 80mm Serie 2020-2023

Software Version: 23.0508

Handbuch Ausgabe 2.54

info@xcvario.de

Weitere Versionen früherer Software Stände unter: https://github.com/iltis42/XCVario/tree/master/handbook

Inhaltsverzeichnis

1. Beschreibung	9
2. Features	11
3. Übersicht	12
4. Bedienung	13
5. Geräte-Management.	
5.1. Software Update	
5.2. Debug/Reset	
5.3. Backup/Restore	
6. Airliner-Style Anzeige	
6.1. Variometer	
6.2. Mittleres Steigen	
6.3. Sollfahrt	
6.4. Höhenmesser.	
6.5. Wölbklappen Empfehlung.	
6.6. Batterie Anzeige	
6.7. Temperatur	
6.8. MC-Wert	
6.9. Wireless Symbol	
6.10. CAN Symbol	
7. Zeiger Anzeige	
8. FLARM	
9. Konfigurationen und Router	
9.1. XCVario, Wireless Navi und FLARM	
9.2. XCVario, wired Navi (Kobo, OpenVario, IPX,. etc) und FLARM	24
9.3. Zwei XCVario, zwei Wireless Navis und FLARM	25
9.3.1. Erstgerät	25
9.3.2. Zweitgerät	25
9.4. Zwei XCVario, zwei wired Navis (OV, Kobo, XCTouchNav, etc) und FLARM.	26
9.4.1. Erstgerät	
9.4.2. Zweitgerät	26
9.5. Zwei XCVario wireless, zwei wireless Navis und FLARM	
9.5.1. Erstgerät	
9.5.2. Zweitgerät	
10. Setup	
10.1. MC	
10.2. Audio Volume	
10.3. QNH Setup	
10.4. Ballast	
10.5. Bugs	
10.6. Airfield Elevation	
10.7.1 Page 1	
10.7.1. Range	
10.7.2. Log-Scale	
10.7.3. Mode	
10.7.4. Netto Mode	
10.7.5. Polar Sink	
10.7.6. Needle Color	
10.7.7. Center Aid	
10.7.8. Vario Damping	33

10.7.9. Averager	33
10.7.10. Mean Climb	33
Minimum climb	33
Duration	33
Cycle	
Major Change	
10.7.11. S2F Settings	
Damping	
Blockspeed	
S2F Mode	
S2F AutoSpeed	36
S2F Flap Pos	
S2F AHRS Deg	
Hysteresis	
Arrow Color	
10.7.12. Electronic Compensation	
eCompesatione	
Adjustment	
10.8. Audio	
10.8.1. Default Volume	
10.8.2. Max Volume	
10.8.3. Cruise Audio	
10.8.4. Tone Styles	
CenterFreq	
Octaves	
Dual Tone	
Dual Tone Pitch	
Chopping	
Chopping Style	
10.8.5. Range	
10.8.6. Deadbands	
10.8.7. Audio Exponent	
10.8.8. Amplifier Off	
10.8.9. Audio in Setup	
10.8.10. Frequency Response	
10.8.11. Split Volume	
10.9. Weight/Polar	
10.9.1. Glider Type	
10.9.2. Polar Adjust	
[Wingload]	
[Speed 1]	
[Sink 1]	
[Speed 2]	
[Sink 2]	
[Speed 3]	
[Sink 3]	
10.9.3. Max Ballast	
10.9.4. Wing Area	
10.9.5. Empty Weight	
10.9.6. Crew Weight	
10.10. Options.	
10.10.1 Student Mode	1.1

10.10.2. Flap (WK) Indicator	44
Flap Indicator	44
Max postitive Flap	45
Max negative Flap	45
Takeoff Flap	45
Flap Speeds Setup	45
Speed +3 to +2	45
Speed +2 to +1	45
Speed +1 to 0	45
Speed 0 to -1	45
Speed -1 to -2	45
Speed -2 to -3	45
Flap Position Labels	46
Flap Label +3:	46
L	
Flap Label +2:	
+2	
Flap Label +1:	
+1	
Flap Label 0:	
+0	
Flap Label -1:	
-0	
Flap Label -2:	
-2	
Flap Label -3:	
-5	
Flap Sensor	
Sensor Calibration	
10.10.3. Units	
Altimeter	
Airspeed	
Vario	
Temperature	
QNH Distance	
10.10.4. [Airspeed Mode]	
10.10.5. Auto Transition	
10.10.6. Transition Altitude	
10.10.7. FLARM	
Alarm Level	
Alarm Volume	
FLARM Simulation	
10.10.8. Compass/Wind.	
Compass.	
Sensor Option	
Sensor Calibration	
Setup Declination	
Auto-Deviation	
Setup Deviations	
Show Deviations	
Reset Deviations	54

Setup NMEA	55
Magnetic Heading	55
True Heading	55
Damping	55
I2C Clock	55
Show Settings	55
Wind Calculation	56
Display	57
Arrow Ref	
Straight Wind	57
Filters	57
Airspeed Lowpass	57
Deviation Lowpass	57
GPS Lowpass	58
Averager	
Limits	
Deviation Limit	58
Sideslip Limit	58
Course Limit	
AS Delta Limit	59
Straight Wind Status	59
Circling Wind	
Circling Wind Status	
Max Angle Delta	
Averager	
Wind Logging	60
10.10.9. Wireless	62
Wireless	62
Bluetooth	62
Wireless Master	62
Wireless Client	62
Wireless Standalone	62
Bluetooth LE	62
WL Routing	62
XCVario	63
S1-RS232	63
S2-RS232	63
CAN-bus	63
WiFi Power	63
Lock Master	64
Monitor	64
Monitor Mode	65
Custom-ID	65
10.10.10. G-Load Display	66
Activation Mode	66
Positive Threshold	
Negative Threshold	
Red positive Limit	66
Yellow positive Limit	
Red negative Limit	
Yellow negative Limit	67
Max Positive	67

Max Negative	67
G-Load reset	67
10.11. System	68
10.11.1. Software Update	68
Software Vers	68
Software Update	68
10.11.2. Factory Reset	70
10.11.3. Battery Setup	70
Battery Low	
Battery Red	
Battery Yellow	70
Battery Full	70
Battery Display	
10.11.4. Hardware Setup	
DISPLAY Setup	
HW Type	
Style	
Color Variant	71
Orientation	71
Needle Alignment	
Rotary Setup	
Direction	
Increment	
Rotation	
Setup Activation	
Screens	
S2F Switch	
Gear Warning	
AHRS Setup	
AHRS ID	
AHRS Option	
AHRS Autzero	
AHRS License Key	
AHRS Gyro	
AHRS RPYL Sentence	
AHRS Temp Control	
AS Sensor type	
10.11.5. Factory Voltmeter Adj	
10.11.6. Altimeter, Airspeed	
Altimeter Source	
AS Calibration	78
AutoZero AS Sensor	78
Alt. Quantization	79
Stall Warning	
Stall Warning	
Stall Speed	
Maximum Speed	
10.11.7. RS232 Interface S1	
Baudrate	
Serial Loops	
S1 Routing	
VCVario	01

Wireless	81
S2-RS232	81
CAN-bus	82
TX Inversion	82
RX Inversion	82
Twist RX/TX Pins	82
TX Line	84
10.11.8. RS232 Interface S2	85
Baudrate	85
S2 Routing	
XCVario	
Wireless	85
S1-RS232	85
CAN-bus.	
TX Inversion	
RX Inversion.	
Twist RX/TX Pins	
TX Line	
10.11.9. CAN Interface	
Datarate	
CAN Routing.	
XCVario	
Wireless	
S1-RS232	
S2-RS232	
Mode	
10.11.10. NMEA Protokoll.	
OpenVario	
Borgelt	
Cambridge	
XCVario	
Disable	
11. XCSoar	
11.1. XCSoar Konfiguration	
11.1.1. Bluetooth	
11.1.2. Wireless LAN	
XCVario TCP Ports	
11.1.3. Gerätetreiber	
OpenVario	
Borgelt	
Cambridge	
XCVario	
XCVario Kommandos:	
12. Installation	
12.1. Anschlüsse Rückseite, Serie 2020	
12.2. Anschlüsse Rückseite, Serie 21&22.	
12.3. Einbau und Bohrplan	
12.3.1. Zeichnung des Frontteils	
12.4. Micro USB.	
12.5. Audio Ausgang	
12.6. Elektrische Anschlüsse	
12.6.1. RJ45 Anschluss S1	

Temperatursensor:	101
Sollfahrt-Umschalter:	102
FLARM	102
12.6.2. RJ45 Anschluss S2	
Wölbklappensensor	104
12.6.3. KRT2 / ATR 833 Radio	
12.6.4. Stefly OpenVario +	106
12.6.5. Temperatursensor	
12.6.6. Stromversorgung	
12.6.7. Vario-Sollfahrt Umschalter	
12.6.8. RS232 Schnittstelle	109
12.7. Vergleich IGC- und FCC Standard	109
13. Technische Daten	111
L4. Wartung	
15. Garantiebestimmungen	112
16. Zulassung	113
17. Haftungsbeschränkung	
18. CE-Konformitätserklärung	
19. Appendix	
19.1. Sinkrate in Abhängigkeit vom Lastvielfachen	116

1. Beschreibung

Das XCVario ist ein modernes digitales und smartes Variometer mit drahtgebundenen seriellen sowie drahtlosen **Schnittstellen** zu einem beliebigen **Navigations-Display** oder mit Applikationen wie XCSoar, LK8000 und mehr, sowie drahtgebundenen Schnittstellen zu einer GPS Quelle, einem FLARM, einem OpenVario oder anderen Geräten. Es besitzt moderne hochauflösende digitale Sensoren, für Drücke, Beschleunigungen und Temperatur, ein Ausgleichsgefäß wie bei älteren Systemen üblich wird nicht mehr benötigt.

Das XCVario wird an TE Düsendruck, dem statischen und dem Staudruck angeschlossen, und entweder konventionell über die TE Düse oder elektronisch kompensiert. Es besitzt eine **Audiofunktion** über einen eigenen eingebautem 2 Watt Lautsprecher.

Das vorausdenkende **Kalman Filter** bietet bei guter Glättung der Varioanzeige eine schnelle Reaktion auf Änderungen, ohne die sonst üblichen Verzögerung von einigen Sekunden wie man sie von einfachen Dämpfungen her kennt. Das Vario zeigt genau das an was man auch spürt. Über das Setup kann durch viele Einstellmöglichkeiten das Vario zusätzlich nach persönlichen Präferenzen angepasst werden.

Ab Serie 2021 wird mittels **Beschleunigungssensor** das **Lastvielfache** (n) bei der Berechnung des aktuellen Sinkwertes aus der Polaren-Koeffizienten mit berücksichtigt, denn das erhöhte Lastvielfache verlangt dem Profil mehr

$$Sink_n = a0 \sqrt{n}^3 + a1 n V + a2\sqrt{n} V^2$$

Auftrieb ab bei gleichbleibender Flugzeugmasse (Unterschied zu höherem Ballast). Damit steigt der Widerstandsbeiwert und dies führt zu erhöhten Sinkwerten. Bei einem Standardklasse Flugzeug ergibt sich daraus z.B. bei einem Lastvielfachen von 2 g etwa die doppelte Sinkrate. Dies ist nicht unerheblich und wird beim Netto Vario berücksichtigt, was die Netto Vario Anzeige besonders bei unter **dynamischen Vorgängen** (Hochziehen, Nachdrücken) gegenüber herkömmlichen Geräten ohne entsprechende Sensorik deutlich **verbessert**.

Optional kann ein FLARM oder einen andere Quelle für NMEA (GPS-) Daten mit dem XCVario verbunden werden, das Vario leitet nicht nur diese Daten an XCSoar weiter, es können z.B. mit XCSoar auch Tasks auf einem (IGC-) FLARM deklariert werden, Einstellungen vorgenommen, und der Flug anschließend ausgelesen werden. Clubs können des Gerät mit seinen vielen Möglichkeiten im "Stundent Mode" betreiben, welcher von den Benutzern nur die 5 wichtigsten Einstellungen wie QNH, MC, etc. modifizieren lässt.

Die standardmäßig installierte und frei verfügbare Software des XCVario (https://github.com/iltis42/XCVario) bietet viele Features. Neben einer Varioanzeige, Geschwindigkeit mit Sollfahrt nach MacCready Einstellung, gibt es einen präzisen Höhenmesser, eine Windanzeige, eine Ladezustandsanzeige für die Batterie, eine Temperaturanzeige und mehr. Die optional zuschaltbare Wölbklappen Anzeige kann mittels einem externen Sensors die Klappenstellung anzeigen und gibt Hinweise auf die optimale Klappenstellung in Abhängigkeit von der Flächenbelastung, der Geschwindigkeit und dem Lastvielfachen. Durch eine wachsende Bibliothek von mehr als 100 Polaren für verschiedenste Segelflugzeug-Typen lässt sich das Vario auf fast jedes Segelflugzeug anpassen. Da die Software auf github öffentlich zugänglich ist, können Entwickler die Software klonen, und eigene Features und Ideen weiterentwickeln, und auch zuliefern.

Neben der eigenständigen Funktion kann das Vario Daten über die Wireless Schnittstelle entweder via Bluetooth oder Wireless LAN (WLAN, WiFi), oder über die RS232 (-TTL) Schnittstelle, je nachdem über welches Interface das verwendete Gerät verfügt, mit der dort laufenden Software austauschen. Die Wireless Standards sorgen für eine sichere und stabile Übertragung, und haben den Vorteil, dass der Aufwand für eine hardwaremäßige und teils aufwändige Verkabelung mit dem Navigations-Gerät entfällt.

Durch die hohe Auflösung der digitalen, temperaturkompensierten und ab Werk geeichten Drucksensoren werden bereits kleinste Höhenunterschiede von nur 8 cm erkannt. Eigenschaften wie Genauigkeit, Zuverlässigkeit und

Langzeitstabilität sind damit gegeben. Der Sensor für den Staudruck bzw. Geschwindigkeit oder IAS, ermöglicht eine absolute Genauigkeit von besser als 1%, bei 100 km/h ist die Abweichung maximal 1 km/h. Die Außentemperatur kann mit dem digitalen Temperatursensor im Lüftungsbereich auf 0.5° Celsius mit einer Auflösung von 0,1° Celcius gemessen werden, und wird bei der Berechnung der TAS (True Airspeed) als atmosphärischer Parameter für die Bestimmung der Luftdichte einkaluliert.

Durch die genaue Fluggeschwindigkeit, sowie Temperatur und TE-Variowerte können präzise Werte für die Sollfahrt errechnet werden. Der präzise Höhenmesser ohne Hysterese lässt Endanflughöhen in XCSoar passend berechnen, denn auch die Windberechnung in XCSoar und neu auch im XCVario selbst, funktioniert zusammen mit einer GPS Quelle zuverlässig und genau.

Die Bedienung ist sehr einfach und erfolgt über den Rotary (Drehknopf) mit über Push&Turn (Drücken und Drehung), daneben gibt es einen Knopf zum Einschalten.

Das System welches in hohen Stückzahlen hergestellt wird, ist ein hervorragender Ersatz für alte Variosysteme mit vielen zusätzlichen modernen Features.

2. Features

- Airliner-Style Balken Display oder Retro-Style Anzeige mit Zeiger
- TE-Variometer mit optimiertem Kalman Filter, einstellbarem Bereich und Dämpfung
- Barometrischer Höhenmesser mit QNH Einstellung oder QNH Autosetup (Flugplatzhöhe als Vorgabe)
- Geschwindigkeitsanzeige (IAS, TAS, CAS) mit Sollfahrt (S2F)
- Einstellbare Flächenbelastung und MacCready Wert
- Eingebauter Lautsprecher mit Lautstärkeregelung, Leistung 1.2 Watt
- Ton individuell konfigurierbar (Höhe, Chopping, DualTone, Deadband)
- Wölbklappen Anzeige mit optimaler Stellung entsprechend Ballast, Airspeed und dem Lastvielfachen
- Umfangreiche Polaren Bibliothek mit über 100 gängigen Polaren
- Polare nachträglich modifizierbar
- Digitaler Kompass mit externem Magnetsensor (Serie 21)
- Windberechnung im Kreisflug und mit Kompass auch Geradeausflug (TAWK Verfahren, in Entwicklung)
- MacCready, Ballast und Bugs Einstellmöglichkeit
- Überziehwarnung
- Außentemperatur Anzeige mit externem Fühler
- Batterie Ladezustandsanzeige, Spannungen konfigurierbar
- Wireless Bluetooth V4.2 (classic BT) oder Standard WLAN Access Point für externe Geräte
- 2x RS232 TTL Schnittstellen, S1 mit Standard Kabel in IGC Norm, S2 Socket im IGC Standard
- Barometrischer Höhenmesser mit hoher Genauigkeit
- Sonnenlicht ablesbares, helles und kontrastreiches 2.4 inch IPS Display mit 57 mm Diagonale
- Schaltereingang für Vario/Sollfahrt Umschaltung (Schalter oder Taster einstellbar)
- Einfaches Setup Menu durch Drehschalter mit Push and Turn Funktion
- Leichtes und kleines Gerät für Standard 57 mm Instrumentenausschnitte, Gehäusetiefe nur 35 mm
- Elegantes und robustes CNC gefrästes mattschwarz eloxiertes ALU-Gehäuse (abschirmend, low EMI)
- Software Update über WiFi 'Over The Air' (OTA) im eingebauten Zustand für neue Features
- Analog Eingang f
 ür W
 ölbklappenanzeige
- Alternativ zur Wölbklappenanzeige, Fahrwerks-Warnung über denselben Eingang
- Vollwertige FLARM Bridge zum Task-Deklarieren im IGC Flarm, Flugdownload sowie FLARM Setup

Ab Serie 2021 kommen noch die folgenden 3 neuen Hardware-Features dazu:

- Zweites serielles RS232 TTL Interface S2, IGC Standardbelegung und DTE und DCE Support (RX/TX pins per Software tauschbar)
- Audio Leistung nun 2 Watt, besserer Klang bei hohen Lautstärken
- Eingang z.B. für einen Wölbklappensensor oder eine Fahrwerkswarnung
- Optionales Feature: Attitude and Heading Reference System (AHRS): 6 Achsen Richtungs- und Lagesensor mit 3 Achsen Gyroskop sowie 3 Achsen Beschleunigungsmesser

Ab Serie 2022:

 Zusätzlich ein CAN Bus Interface an S2 zur Verbindung eines Doppelsitzer-Zweitgerätes, eines CAN Magnet-Sensor (ab Oktober 2022), sowie zukünftigen Erweiterungen.

Ab Serie 2023: (geplant April/Mai 2023)

• Temperaturregelung für den AHRS Chip für verbesserte Langzeitstabilität

3. Übersicht

Die folgende Übersicht zeigt die Einbettung des XCVario im Cockpit Umfeld.

Der Standardfall und häufigste Fall ist der Anschluss eines Android Gerätes mit XCSoar am Wireless Interface mit Bluetooth, sowie einem FLARM mit dem entsprechenden Kabel an Schnittstelle S1. Das Interface S1 wird dazu mit dem mit dem Wireless Interface gekoppelt. Dies ist der Auslieferungszustand der Einstellungen.

Mit dem WiFi Standard am Wireless Interface, ist es auch möglich mit Geräten ab der Serie 2021 noch ein weiteres Gerät, z.B. ein Funkgerät an der Schnittstelle S2 zu steuern. Mehr dazu im Kapitel zum XCSoar Setup.

4. Bedienung

Die Bedienung des XCVario ist sehr einfach und intuitiv, und erfolgt über einen Drehknopf (**Rotary**) mit Tasten Funktion (**Push and Turn**), einen optionalen zusätzlichen Schalter oder Taster (konfigurierbar) für Vario oder Sollfahrt Modus, sowie über den Ein-Aus Schalter. Die folgende Beschreibung gilt für die Voreinstellung, die Funktion des Rotary lässt sich einstellen, mehr dazu im Kapitel zum Setup.

Nach dem Einschalten am Boden muss zunächst am Drehknopf das QNH eingestellt, oder bei konfigurierter Elevation (Höhe des Flugfeldes) bestätigt werden. Nach dem Drücken des Drehknopfs geht das Display und die Datenübertragung des Gerätes in Betrieb. Durch Links-Drehen wird die Lautstärke verringert, entsprechend beim Rechts-Drehen vergrößert.

Im Betrieb wird nach Knopfdruck (Push) das Menu für die Parameter wie MC-Wert, Ballast, Polare und mehr gestartet.

Durch einfachen Push gelangt man in den obersten Punkt des Setup [<<Setup], welcher ohne zu Drehen, also Scrollen im Menu eine Rückkehr aus dem Setup anbietet. Nochmaliger Push ohne zu Scrollen wechselt somit zwischen Setup und Normalbetrieb hin und her. Im Setup-Menu gibt es für nahezu alle Funktionen einen Hilfetext, um auch bei wenig Übung die korrekten Einstellungen schnell zu finden.

Durch Rechtsdrehen, entsprechend "Scroll Down", oder Linksdrehen für "Scroll Up", werden am Rotary im Setup die einzelnen Unterpunkte angewählt.

Die meisten Punkte im Setup-Menu kehren in die der obersten Punkt der vorherigen Ebene zurück, so dass mehrere Einstellungen vorgenommen werden können, ohne das Menu gänzlich zu verlassen.

Das Setup Menu ist geschachtelt, in die einzelnen Punkte kann durch Knopfdruck (Push) weiter abgestiegen werden, der oberste Punkt kehrt wieder in das vorherige Menu zurück.

Alle Einstell-Werte können durch Links-Drehen vermindert und durch Rechts-Drehen vergrößert werden.

Will man den Wert speichern kann man dies durch einfachen Push quittieren, das Speichern wird bestätigt und aus dem Dialog zurückgekehrt.

Dialoge für Parameter, die man in der Regel separat einstellt, wie zum Beispiel der MC Wert kehren direkt zum Varioanzeige zurück. Man spart sich damit einen weiteren Knopfdruck um das Setup zu verlassen.

Das XCVario kann ebenfalls über Software-Befehle ferngesteuert werden, unterstützt wird die Rotary Bedienung wie Kurz- oder Lang-Druck um z.B. den Bildschirm zu wechseln, oder ins Setup anzusteigen, Scrollen (Up/Down) für die Menu Navigation, sowie einige Kurzbefehle für Änderungen der Lautstärke oder des MacCready Wertes.

5. Geräte-Management

Ein wichtiges Feature ist das XCVario Management über den WiFi Access-Point des Gerätes. Nach dem **Aktivieren** des "ESP32 OTA" WiFi z.B. durch **Knopfdruck** beim **Einschalten** sofort wenn die Zeile mit der Software-Version erscheint, kann über ein WiFi fähiges Gerät über die Seite https://192.168.4.1 die nebenstehende Management Seite aufgerufen werden. Darunter lassen sich der Software-Update, unter Debug/Reset ein Factory Reset (siehe dazu eigene Kapitel unter "Setup"), ein eventuelles Core-File zu Debug-Zwecken, sowie unter Backup/Restore ein Backup-File der Konfiguration auf dem Handy, Tablet oder Laptop speichern und auch wieder auf das Gerät einspielen.

5.1. Software Update

Unter dem Tab Software Update wird die installierte Software Version angezeigt, sowie weitere Details wie die exakte Zeit wann das Paket gebaut wurde. Mittels [SELECT], kann das File mit der neuen Software auf dem Smartphone angewählt werden, und anschliessend via [UPLOAD] hochgeladen werden.

5.2. Debug/Reset

Die Bedienung ist selbsterklärend, nach Drücken des Knopfes [FACTORY RESET] muss die Durchführung in einem weiteren Dialog bestätigt werden, das Gerät setzt sich damit auf die Werkseinstellung zurück. Damit sind alle Einstellungen verloren, sofern es kein Backup der Konfiguration (nächster Punkt), gibt.

Der Knopf [DOWNLOAD CORE DUMP] liefert ein File was zur Fehlersuche an der Hersteller geschickt werden kann, falls das Gerät im Betrieb Fehlfunktionen zeigt z.B. bei neuen Features welche noch im Alpha-Modus sprich im Testbetrieb laufen. Das Core File wird nur dann angelegt falls das System auf einen Fatalfehler läuft, und die Software neu startet, und nach dem Hochladen auf dem XCVario gelöscht.

5.3. Backup/Restore

Auch hier ist die Bedienung selbsterklärend, [BACKUP] schreibt alle Einstellungen, welche vom Default abweichen, also auch die Kalibrierung des Kompasses, oder eine Deviationstabelle in ein File welches auf dem Handy, Tablet oder PC abgelegt werden kann.

Hingegen [RESTORE] lädt die Konfiguration aus dem File zurück in das Gerät, was z.B. bei einem Gerätetausch oder Upgrade auf ein neueres Modell oder nach einem durchgeführten Factory-Reset sehr hilfreich ist. Grundsätzlich wird beim Restore kein Factory-Reset durchgeführt, d.h. anderen Settings welche nicht im Backup-File stehen, bleiben zunächst erhalten. Will man nur diese Settings aus dem Backup-File sehen, dann ist zuvor ein Factory Reset durchzuführen, somit existiert neben einer sauberen Wiederherstellung eines früheren Standes auch die Möglichkeiten eines "Merge" der bestehenden Konfiguration mit dem Stand aus dem Backup.

6. Airliner-Style Anzeige

Die Anzeige besteht aus mehreren Komponenten für Vario, Geschwindigkeit, Sollfahrt und Höhe. Daneben wird der MC-Wert, die Außentemperatur, die Batteriespannung, der Status der Bluetooth Verbindung sowie optional die Empfehlung für die Wölbklappen angezeigt. Die Anzeige erfolgt in Form von farblich animierten Balken und wurde optimiert um viele Informationen gut ablesbar unterzubringen, und bietet neben digitalen Werten für die Sollfahrt auch eine grafische Anzeige der Fluggeschwindigkeit.

6.1. Variometer

Links befindet sich die wichtigste Anzeige, das Variometer. Nach Oben werden Steigwerte mit einem grünen

Balken, nach unten mit einem roten Balken angezeigt. Der weiße Pfeil wandert mit dem Steigwert mit.

Der über N Sekunden gemittelte Wert wird rechts davon digital angezeigt (N einstellbar).

In der Voreinstellung wird in der Variometer Anzeige das polare Eigensinken in Abhängigkeit von der Geschwindigkeit als blauer Balken nach unten dargestellt. In vollkommen ruhiger Luft wird ab 50 km/h Staudruck ein blauer Balken nach unten gezeigt, welcher dem polarem Eigensinken bei der aktuellen Geschwindigkeit und Beladung entspricht.

Bei zusätzlichem Fallen erweitert der rote Balken unterhalb des blauen Balken die Anzeige auf den aktuelle Sinkwert. Bei Steigen wird der blaue Balken mit einem grünen Balken entsprechend dem Steigen der umgebenden Luftmasse von unten her überschrieben.

Die Länge des roten oder grünen Balkens entspricht dem Netto Variometer Wert, am Ende der Balken lässt sich der Brutto Variometer-Wert, das tatsächliche Steigen/Fallen gegenüber Grund ablesen.

Die verschiedenen Variometer Anzeigen sind in nachfolgenden Skizzen dargestellt. **Links mit der Option für polares Eigensinken aktiviert**, daneben die klassische Anzeige **rechts ohne Darstellung** des polaren **Eigensinkens** also ohne Information über die Nettosteigwerte. Ein Eigensinken von ca. einem -1 m/s wird hier in allen fünf Fällen angenommen.

Nettosteigen 0 m/s,	Nettosteigen 0.5 m/s,	Nettosteigen -0.5 m/s,	Nettosteigen 1m/s,	Nettosteigen 0.5 m/s,
Eigensinken 1m/s	Eigensinken 1m/s	Eigensinken 1m/s	Eigensinken 1 m/s	Eigensinken 1 m/s
0	0	-1	0	0

6.2. Mittleres Steigen

Das mittlere Steigen wird als farbiges Symbol in Form einer kleinen Route innerhalb der Variometer Skala dargestellt und bewegt sich entsprechend nach oben. Zu geringe Steigwerte, die man nicht zum Kernsteigen dazu zählen möchte, können dazu im Vario Dialog ausgeblendet werden. Das Mittlere Steigen dient dazu einen möglichst optimalen Vorschlag für den MacCready Wert zu liefern.

Das Symbol ändert seine Farbe nach **grün**, sofern sich das mittlere Steigen seit der letzten Messung um mehr als 0.2 m/s verbessert hat, und nach **rot** wenn das Steigen um 0.2 m/s schlechter geworden ist. Verbessert sich das deutlich, genauer gesagt um mehr als 20%, verlängert sich der obere Teil der Route zu einem Pfeil wie rechts dargestellt. Im umgekehrten Fall, bei einer deutlichen Verschlechterung verlängert sich der untere Teil des dann rot dargestellten Symbols. Die untere Grafik zeigt das Symbol im Anzeige Modus "Retro" (Zeiger-Display). Ist das Steigen konstant, wird das Symbol in blauer Farbe dargestellt.

6.3. Sollfahrt

In der Mitte des Displays befindet sich die Geschwindigkeitsanzeige. In dieser kleinen Box wird die aktuelle Geschwindigkeit in Form einer bewegten Skala dargestellt, der kleine weiße Pfeil in der Mitte der Box zeigt auf den aktuellen Geschwindigkeitswert. Über dieser Box ist zusätzlich eine Digitalanzeige des aktuellen IAS Werts. Rechts daneben der genaue Wert der Sollfahrt (engl. S2F Speed2Fly) ebenfalls digital.

Unterhalb des S2F Wertes ist der eigentliche Sollfahrtgeber in gewohnter Weise. Er zeigt nach unten in roter Farbe für drücken bzw. schneller, und nach oben in grüner Farbe für ziehen oder langsamer. Die Länge des Pfeils misst sich mit der Sollfahrtdifferenz, ab etwa 45 km/h Differenz wird die Spitze des Pfeil abschnitten, der Pfeil wird mit zunehmender Abweichung immer breiter.

Bei mehr als 10 km/h Abweichung wird der genaue Wert der Abweichung unter oder über den Kommandopfeil angezeigt.

6.4. Höhenmesser

Unterhalb der Sollfahrtanzeige wird die aktuelle Höhe und der dazugehörige QNH oder QFE Wert (bei Standard Einstellung) angezeigt. Die Höhe kann in Meter, Fuß oder Flighlevel (FL) angezeigt werden

6.5. Wölbklappen Empfehlung

Am rechten Rand unterhalb des kleinen Profils befindet sich die Wölbklappen Anzeige, welche eine Empfehlung für die zu rastende Position bei Wölbklappenflugzeugen gibt. Es können fünf verschiedene Stellungen in Form einer bewegten Skala gezeigt werden: -2, -1, 0, +1, +2. Das kleine Profil bewegt die rot dargestellte Wölbklappe (WK) analog zu der Empfehlung. Die zugehörigen optimalen Geschwindigkeiten entsprechend der Polare können

im Setup je nach Modell angepasst werden. Die Anzeige muss dazu im Setup unter /Flap (WK) Indicator/Flap Indicator Option/ [Enable] aktiviert werden. Neben der Anzeige der besten Einstellung, ist mit dem WK Sensor ab Serie 2021 auch die Anzeige der aktuellen WK Stellung grafisch, in Form eines kleinen Hebels möglich. Weicht die Hebelstellung um mehr als eine Raste ab von der optimalen Klappenstellung, blinkt der Wölbklappenhebel rot.

6.6. Batterie Anzeige

Die Batterie Anzeige zeigt den Ladezustand der Batterie in Form eines Symbols verschiedenfarbig an. Der genaue Wert in Prozent wird ebenfalls angezeigt. Bei zu Neige gehender Batterie wechselt die Farbe von Grün nach Gelb, danach Rot. Zusätzlich blinkt das Symbol bei Rot. Die entsprechenden Spannungen sind für einen Bleiakku voreingestellt, und können im Setup modifiziert werden.

6.7. Temperatur

Die Temperatur am oberen Rand des Display, oder links oben in der Retro Style Anzeige zeigt in °C den Wert der Außentemperatur an. Ist kein Sensor vorhanden, oder ist der Sensor defekt, zeigt der Wert "---" an. Die Einheit °C oder F wird ebenfalls dargestellt, und ändert bei Temperaturabweichungen der Regelung des AHRS Chips ab Hardware Revision -23 die Farbe. Details dazu siehe AHRS Setup.

6.8. MC-Wert

Der MC Wert zeigt den aktuell eingestellten MacCready-Wert. Der MC Wert ist der oberste Wert im Setup-Menu und kann über dessen Auswahl und Drücken des Knopfes leicht erreicht und modifiziert werden. Der Wert wird erfasst mit derselben Einheit wie das Variometer eingestellt ist.

6.9. Wireless Symbol

Das Wireless Symbol zeigt je aktiviertem eingestelltem Standard entweder ein Bluetooth oder ein WiFi Symbol an. Mit blauer Farbe wird dabei eine bestehende Verbindung zum Wireless Gerät und der XCSoar Applikation an, sofern ein Austausch von Daten stattfindet. Besteht keine Verbindung mehr oder werden keine Daten mehr ausgetauscht (Gerät im XCSoar deaktiviert), wird das S

werden keine Daten mehr ausgetauscht (Gerät im XCSoar deaktiviert), wird das Symbol grau dargestellt.

Eine zusätzliche Funktionen ist die Überwachung der Verbindung zum FLARM. Werden von dort PFL* NMEA Datensätze empfangen, so wird im WiFi-Fall der Punkt, und bei Bluetooth Verbindung der "Zahn" in grüner Farbe dargestellt.

6.10.CAN Symbol

Unterhalb des Wireless Symbol gibt es ein Symbol für den CAN Link, welches bei aktiviertem CAN Interface erscheint, und mit grün eine Verbindung mit einem zweiten Variometer oder einem CAN-Magnet-Sensor signalisiert.

7. Zeiger Anzeige

Ab den Software Ständen November 2020 gibt es auch ein Zeiger Display im "Retro" Style wie von Rundinstrumenten her gewohnt. Der Winkel von Zeigern wird im Augenwinkel besser wahrgenommen als Ziffern oder Balkenanzeigen. Diese Form der Anzeige steht auf dem XCVario hiermit nun ebenfalls zur Verfügung, in Laufe von 2021 wurden weitere Features ergänzt.

Der Modus lässt sich im "Setup->Hardware Setup->DISPLAY Setup->Display Style" mit der Einstellung "Retro" auswählen.

Im dieser Einstellung finden sich nahezu alle Elemente aus dem bisherigen "Airliner" Style wieder, zu Gunsten einer optimalen Variometer Darstellung wurde hier auf die grafische Anzeige der Fluggeschwindigkeit verzichtet.

In der Mitte des Display findet sich das integrierte Steigen in oben angegebenen Einheit. Rechts davon, wie bisher im Setup aktivierbar (hier so gezeigt), die Empfehlung für die optimale Wölbklappenstellung entsprechend der aktuelle

Fluggeschwindigkeit. Die Anzeige ist größer und zeigt den gesamten Bereich, zukünftig wird es noch zwei weitere mögliche Stellungen geben für bis zu drei positiven oder negativen Klappen-Positionen.

Es gibt drei verschiedene Anzeige Modi, **Brutto**, **Netto** (**net**) und Relativ-Netto oder **Super-Netto** (**s-net**). Im Brutto Modus wird das polare Eigensinken durch die blaue Linie entlang der Skala nach unten dargestellt, und verlängert sich mit zunehmendem Eigensinken. Analog dazu gibt es bei Steigen einen grünen Bogen entlang der Skala nach Oben bis zur Zeigerspitze welche das tatsächliche Steigen des Flugzeugs indiziert. Der blaue Bogen dagegen steht unabhängig vom Zeiger. Die Länge des blauen Bogens plus des grünen Bogens entsprechen dem Netto-Steigen, also der vertikalen Bewegung der Luftmasse um das Flugzeug herum. Die Anzeige der Vario ist linear oder wie hier gezeigt logarithmisch möglich.

Im Netto Modus, optimal für den Vorflug, geht das polare Eigensinken direkt in die Zeigerstellung mit ein, zusätzlich wird beim Super-Netto Modus das polare Eigensinken im Kreisflug berücksichtigt. Die Nadel zeigt also im Vorflug auf den Wert, dem man als effektives (Brutto) Steigen hätte, wenn man an der Stelle kurbeln würde, und zwar unabhängig von der Geschwindigkeit. Die Umschaltung zwischen Brutto/Netto lässt sich mit dem Modus Sollfahrt/Kreisflug koppeln (Cruise-Netto). Weitere Details dazu in der Beschreibung unter "Vario Mode" im Setup.

Ober- und unterhalb des mittleren Steigens ist die Anzeige der Sollfahrt. Nach oben werden grüne Balken, nach unten rote Balken dargestellt. Jeder Balken bedeutet 10 km/h. Rechts in der Anzeige werden mit 4 Balken z.B. 40 km/h langsamer fliegen dargestellt. Der MC Wert links unten ist etwas größer als im Airliner Mode und damit leichter ablesbar.

Selbstverständlich lässt sich auch hier der Vario Bereich zwischen 1 m/s und 30 m/s beliebig wählen, wie auch die Einheiten von Vario, Fluggeschwindigkeit oder der Höhe entsprechend neben dem metrischen System auch in Knoten, Fuß oder FL = Flighlevel. Geändert hat sich hier die Anzeige zwischen Kreisflug und Sollfahrt, oben abgebildet ist der Kreisflug, im Schnellflug wird anstelle des Kreises ein nach unten geneigter Pfeil dargestellt der den Gleitpfad symbolisiert.

Der Höhenmesser kann in voller Auflösung, oder wie hier gezeigt quantisiert auf 10 Meter in Form einer gleitenden Skala dargestellt werden.

Die Temperaturanzeige hat in der linken oberen Ecke Platz gefunden, keinen Änderung bei Bluetooth und der Batterieanzeige welche an Ihrem Platz ganz Rechts jeweils oben und unten geblieben sind.

Auch das mittlere Steigen wird visualisiert, wie im Airliner Modus mittels einer Raute innerhalb der Skala, die Raute wechselt die Farbe und Form je nach Trend, wird das mittlere Steigen besser wechselt die Farbe nach grün, bei schlechter werdendem mittleren Steigen zeigt diese die Farbe rot. Details dazu siehe auch voriges Kapitel für das Mittlere Steigen.

Zusätzlich gibt es eine Windanzeige mit Flugzeugsymbol und relativem Wind-Pfeil zur Flugzeuglängsachse, sowie unterhalb der Fluggeschwindigkeit eine digitale Anzeige des Windes, die auch das Heading anzeigen kann, sofern der Kompass bestückt ist.

8. FLARM

Jedes FLARM, ob Classic-, Power- oder RedBox-FLARM mit RJ45 Anschluss lässt sich mit Standard-Kabeln an das XCVario anbinden. Das im Shop verfügbare Kabel hat die Power Option, bei dem die Versorgung des FLARM's ebenfalls über dieses Kabel erfolgt. Dies spart eine zusätzliche Verkabelung für die Versorgung des FLARM aus dem Bordnetz. Andere FLARM's mit RJ12 Connector oder Sub-D connector können ebenfalls mit einem modifizierten Kabel verbunden werden.

Ist das FLARM gesteckt, werden Standardmäßig mit dem FLARM Kabel die NMEA Daten von GPS und barometrischer Sonde (sofern beim FLARM vorhanden), an XCSoar gesendet. Mit dem bidirektionalen FLARM Kabel (siehe Kapitel Elektrischer Anschluss /FLARM) können aber auch Tasks in ein IGC-Flarm geschrieben werden, und **Einstellungen des FLARM** vorgenommen werden. Siehe dazu die Beschreibung von XCSoar.

Mit den aufgezeichneten Flügen im FLARM lässt auch ein **Flugdownload** durchführen. Dazu ist das FLARM als eigenes Device mit Treiber "FLARM" im XCSoar anzulegen, und für den Download zu aktivieren (Konfig/NMEA-Anschluss/FLARM../Aktivieren). Während der Aktivierung des FLARM Treibers sind anderen Treiber wie OpenVario, welche denselben Bluetooth Anschluss benutzen zu deaktivieren (Konfig/NMEA-Anschluss/OpenVario../Deaktivieren). Der Flugdownload kann dann im FLARM Device angetippt werden, es wird zunächst eine Liste von Flügen übertragen, aus welcher dann der gewünschte Flug angewählt wird. Der Flugdownload über die serielle Schnittstelle kann je nach Länge des Flugs einige Minuten in Anspruch nehmen, da die Datenrate der seriellen Schnittstelle bei Standard 19.200 Baud nur etwa 2 Kilobyte pro Sekunde zulässt. Höhere Datenraten für schnelleren Download sind möglich, siehe dazu das Kapitel zur Einstellung der Baudrate der seriellen RS232 Schnittstelle. Sofern XCSoar anstelle Bluetooth über **WiFi** angebunden ist, kann das FLARM auch als eigenes Gerät mit dem Treiber "FLARM" in XCSoar angelegt werden. Das Anlegen (oder Ändern), des Gerätetreibers für den Flugdownload, sowie das **Wechseln** in das Vario Setup Menü ist dann **nicht mehr notwendig**. Der Flugdownload über die WiFi Schnittelle ist mit **einem WiFi Gerät** möglich, welches zu dem Zweck über das Flarm Port verbunden ist. Weitere mit dem XCVario verbundene Geräte sind während des Downloads abzuschalten.

Es steht in den aktuellen Software-Versionen auch ein einfacher **FLARM Bildschirm zur Warnung vor einer drohenden Kollision** mit einen anderen Flugzeug zur Verfügung, welcher Abstand, Richtung, sowie den Höhenversatz der Annäherung grafisch visualisiert. Je nach Alarmstufe wird zusätzlich mit einem in der Lautstärke einstellbaren akustischen Warnsignal auf die Gefahr aufmerksam gemacht.

9. Konfigurationen und Router

Eine wichtige Funktionalität des XCVario ist die integrierte Router-Funktion, welche es ermöglicht die Daten des Geräts, sowie Daten externer Geräte beliebig zwischen den verschiedenen Schnittstellen des Gerätes zu verbinden. Hierdurch ergeben sich eine Vielzahl von Möglichkeiten, das XCVario einzusetzen und damit nahezu beliebige Erweiterungen und Einsatzmöglichkeiten abgedeckt sind. Eine Übersicht dazu nachfolgend, weitere Setups sind denkbar und können aus den gezeigten Kombinationen abgeleitet werden.

Es wird grundsätzlich empfohlen **nicht benötigte** Verbindungen **abzuschalten**, da diese unnötig Ressourcen wie CPU und RAM belegen, insbesondere wenn es gar kein Ziel am anderen Ende gibt, die Daten stauen sich auf, können nicht zugestellt werden und müssen verworfen werden. Mit minimaler Einstellung für das Routing steht die volle Leistung für den Vario Betrieb des Gerätes zur Verfügung.

Das Routing von Daten, welche von Außen über ein beliebiges Interface an das XCVario geschickt werden, ist immer aktiviert, d.h. das **XCVario** reagiert **immer** auf **FLARM und GPS Daten, Kommandos** usw ohne dafür ein Routing programmieren zu müssen. Für die XCVario Daten selbst, also die Richtung nach Außen ist das Routing entsprechend für das Interface zu setzten. Ebenso werden im CAN Mode Master die XCVario Daten automatisch auf den CAN Bus geroutet.

Konfigurationen welche den CAN Bus benötigen, können daher erst ab der aktuellen Hardware Serie XCVario-22 benutzt werden.

Die Konfiguration des Routers ist immer bidirektional, d.h. sowohl die Vorwärts-Richtung, als auch die Rückwärtsrichtung der Datenströme werden immer verbunden. Serielle Geräte können immer nur mit einem Ziel bidirektional verbunden werden, um mehrere zu betreiben siehe Kapitel Setup für die seriellen Schnittstellen.

Die Rückwärts-Richtung wird daher automatisch konfiguriert, stellt man beispielsweise im Wireless Routing als Ziel S1-RS232 ein, so wird automatisch im S1-Routing das Wireless enabled. Die Einstellung braucht daher nur an einem Ende vorgenommen zu werden, und ist an beiden Endpunkten sichtbar, es handelt sich also um das selbe Konfigurations-Element.

9.1. XCVario, Wireless Navi und FLARM

Die häufigste Anwendung im Einsitzer ist die folgende. Diese Einstellung entspricht auch dem **Auslieferungszustand**, ein Wireless-Navi und ein Flarm mit IGC Standard-Anschluss laufen daher per **Plug and Play** ohne weitere Einstellungen vornehmen zu müssen. In dieser Konfiguration müssen die XCVario Daten nach Wireless (WL) geleitet (engl. routing) werden, und auch die Daten an S1 welche vom FLARM her kommen sind auf Wireless von Interesse, damit am Navi ein GPS Fix und auch der Verkehr anderer Flugzeuge mit FLARM angezeigt werden kann, daher stehen diesen Beiden Schalter auf "Enable". Die Schnittstelle S2 sowie der CAN Bus werden hierzu nicht benötigt. Weitere Infos, z.B. wo die Routing Dialoge im Setup Menu zu finden sind, bitte dem Kapitel Setup entnehmen.

9.2. XCVario, wired Navi (Kobo, OpenVario, IPX,. etc) und FLARM

Für diese Konfiguration mit einem verdrahteten (engl. wired) Navi sind XCVario, sowie die Daten vom FLARM an S1 auf S2 zu routen (S1: S2-RS232 = Enable, bzw. S2: S1-RS232 = Enable). Die Einstellungen erfolgen im Routing von S1 und S2, alle anderen Ports werden im Prinzip nicht benötigt, es kann aber Sinn machen die Wireless Einstellungen auf XCVario und S1 dennoch enabled zu lassen, so kann notfalls ein zweites Gerät drahtlos gekoppelt werden, z.B. bei Stromknappheit für das fest eingebaute Gerät, oder bei einem Ausfall. Es besteht damit zusätzlich die Möglichkeit nach dem Flug mit dem Handy das IGC File drahtlos auszulesen. Das an S2 verdrahtete Gerät kann somit im Cockpit verbleiben, eine Speicherkarte oder ein USB Stick zum Datentransfer werden dann nicht benötigt.

9.3. Zwei XCVario, zwei Wireless Navis und FLARM

Für Doppelsitzer und zwei wireless Navis bietet sich die nachfolge Konfiguration an, bei der das Hautgerät vorne mit dem FLARM an S1 verbunden wird, sowie über den CAN Bus die Zweitanzeige für den hinteren Sitz. Die Daten des Erstgeräts sowohl vom FLARM an S1 als auch die Daten des XCVario selbst werden über den CAN Bus zur Zweitanzeige übertragen. Nur das vordere Gerät muss verschlaucht werden. Dies ist die einfachste Konfiguration für Doppelsitzer und erfordert nur ein 1:1 Patchkabel zwischen den S2 Schnittstellen des vorderen und hinteren Gerätes.

9.3.1. Erstgerät

Wireless (WL) Routing S1		S1-R	outing	S2-Routing		CAN Routing	
Port	Einstellung	Port	Einstellung	Port	Einstellung	Port	Einstellung
XCVario	Enable	XCVario	Disable	XCVario	Disable	XCVario	Enable
S1-RS232	Enable	Wireless	Disable	Wireless	Disable	Wireless	Disable
S2-RS232	Disable	S2-RS232	Enable	S1-RS232	Disable	S1-RS232	Enable
CAN-bus	Disable	S1-CAN	Enable	CAN-bus	Disable	S2-RS232	Disable

9.3.2. Zweitgerät

Wireless (WL) Routing		S1-R	S1-Routing		S2-Routing		CAN Routing	
Port	Einstellung	Port	Einstellung	Port	Einstellung	Port	Einstellung	
XCVario	Enable	XCVario	Disable	XCVario	Disable	XCVario	Enable	
S1-RS232	Disable	Wireless	Disable	Wireless	Disable	Wireless	Enable	
S2-RS232	Disable	S2-RS232	Disable	S1-RS232	Disable	S1-RS232	Disable	
CAN-bus	Disable	S1-CAN	Disable	CAN-bus	Disable	S2-RS232	Disable	

9.4. Zwei XCVario, zwei wired Navis (OV, Kobo, XCTouchNav, etc) und FLARM

Für Doppelsitzer mit zwei drahtgebundenen Navis ergibt sich ein ähnliches Bild wie in der letzten Konfiguration, das vordere Navi kann dabei an S2 angeschlossen werden, das hinteren Navi an S1 oder S2. Bei einer Verbindung über S1 am Zweitgerät bietet sich das IGC kompatible Flarm Port des Standard Kabelsatzes an sofern das Gerät ebenfalls serielle Ports nach IGC Standard besitzt, oder auch ein Anschluss an S2 mit einem 1:1 Patch-Kabel. In dem Fall sind am Zweitgerät dieselben Routing Einstellungen "CAN" und "XCVario" wie bei S1 gezeigt stattdessen an S2 zu tätigen. Beim Anschluss an S2 im hinteren Cockpit, ist wie bei vorderen Gerätz gezeigt ein der Extender zu verwenden.

9.4.1. Erstgerät

Wireless (WL) Routing S1-Routing		outing	S2-Routing		CAN I	Routing	
Port	Einstellung	Port	Einstellung	Port	Einstellung	Port	Einstellung
XCVario	Enable	XCVario	Disable	XCVario	Enable	XCVario	Enable
S1-RS232	Enable	Wireless	Disable	Wireless	Disable	Wireless	Disable
S2-RS232	Disable	S2-RS232	Enable	S1-RS232	Enable	S1-RS232	Enable
CAN-bus	Disable	S1-CAN	Enable	CAN-bus	Disable	S2-RS232	Disable

9.4.2. Zweitgerät

Wireless (WL) Routing S1-Routing		outing	S2-Routing		CAN Routing		
Port	Einstellung	Port	Einstellung	Port	Einstellung	Port	Einstellung
XCVario	Enable	XCVario	Enable	XCVario	Disable	XCVario	Enable
S1-RS232	Enable	Wireless	Disable	Wireless	Disable	Wireless	Disable
S2-RS232	Disable	S2-RS232	Disable	S1-RS232	Disable	S1-RS232	Enable
CAN-bus	Disable	S1-CAN	Enable	CAN-bus	Disable	S2-RS232	Disable

9.5. Zwei XCVario wireless, zwei wireless Navis und FLARM

Diese Konfiguration kommt gänzlich ohne eine Verkabelung zwischen dem vorderen und hinteren Gerät aus. Sowohl Navi, als auch die beiden XCVarios können **per WiFi gekoppelt** werden, in den Options / Wireless ist dazu das vordere Gerät als Wireless Master, und das hintere Gerät als Wireless Client einzustellen. Da Bluetooth und WLAN nur alternativ möglich sind ist nur die WLAN Verbindung möglich, weitere Details dazu im Kapitel Settings / Wireless. Die Voreinstellung für das Routing kann hierbei benutzt werden. Relevant ist nur die Einstellung für S1 am Erstgerät, sowie das WL Routing an Beiden Geräten.

9.5.1.Erstgerät

Wireless (WL) Routing		S1-Routing		S2-Routing		CAN Routing	
Port	Einstellung	Port	Einstellung	Port	Einstellung	Port	Einstellung
XCVario	Enable	XCVario	Disable	XCVario	Disable	XCVario	Disable
S1-RS232	Enable	Wireless	Enable	Wireless	Disable	Wireless	Disable
S2-RS232	Disable	S2-RS232	Disable	S1-RS232	Disable	S1-RS232	Disable
CAN-bus	Disable	S1-CAN	Disable	CAN-bus	Disable	S2-RS232	Disable

9.5.2. Zweitgerät

Wireless (WL) Routing		S1-Routing		S2-Routing		CAN Routing	
Port	Einstellung	Port	Einstellung	Port	Einstellung	Port	Einstellung
XCVario	Enable	XCVario	Disable	XCVario	Disable	XCVario	Disable
S1-RS232	Enable	Wireless	Disable	Wireless	Disable	Wireless	Disable
S2-RS232	Disable	S2-RS232	Disable	S1-RS232	Disable	S1-RS232	Disable
CAN-bus	Disable	S1-CAN	Disable	CAN-bus	Disable	S2-RS232	Disable

10. Setup

Im Setup Menu können viele Parameter detailliert eingestellt werden. Die wichtigsten Parameter sind im Hauptmenü.

10.1.MC

0.5 m/s

Hier kann der MacCready Wert (MC) von 0 in 0.1 m/s Schritten bis 9.9 m/s eingestellt werden. Nach Bestätigung durch Kurzdruck, befinden sich das Vario sofort wieder im Normalbetrieb.

10.2. Audio Volume

20%

Das Verhalten des Drehschalters außerhalb des Setup Menu kann aber unter Setup/System/Rotary Default/ angepasst werden, und z.B. den MacCready Wert anstelle der Lautstärke beeinflussen. In dem Fall lässt sich die Lautstärke im Setup an dieser Stelle verändern.

10.3.QNH Setup

1013.25 hPa

200 m

Dialog zur Einstellung des QNH Wertes. Am Boden stellt man den Wert so ein, dass die Höhenmesser Anzeige, ebenfalls eingeblendet, die Flugplatzhöhe (Airfield Elevation) anzeigt, oder auf den QNH Wert der nächstgelegenen ATC.

10.4.Ballast

80 liters

39.00 kg/m2

Im Ballast Dialog kann der Wasserballast eingestellt werden. Zusätzlich wird die Flächenbelastung angezeigt, welche sich aus dem zusätzlichen Ballast ergibt. 1 Liter Wasser entspricht im Normalfall 1 kg Ballast.

Beispiel: Ein Segelflugzeug mit 10 m2 Flügelfläche hat ein Rüstgewicht von 260kg, der Pilot wiegt 80kg, 100 Liter Wasser (100kg) sind getankt. Das Abfluggewicht beträgt damit 440kg, entsprechend die Flächenbelastung 440kg/10m2 = 44 kg/m2.

10.5.Bugs

0 %

Eine Verschlechterung der Polaren durch Insekten kann über den Parameter Bugs (Insekten), eingestellt werden. Hierbei werden die Koeffizienten der Polaren-Parabel a0, a1, und a2 entsprechen der Prozentangabe verschlechtert. Die Polare kann damit prozentual verschlechtert werden. Wobei der absolute, der lineare, als auch der quadratische Koeffizient verschlechtert wird, was einer größeren Verschlechterung bei höheren Geschwindigkeiten gleich kommt. Das Verfahren ist identisch mit dem in XCSoar verwendeten Verfahren zur Polaren-Verschlechterung, und das allgemein gängige Verfahren Insekten bei Segelflugzeug Polaren zu berücksichtigen.

Die maximale Verschlechterung beträgt in Übereinstimmung mit XCSoar 50%. Realistisch sind Werte von 10-20% bei modernen Profilen. Ältere Regen- und Mücken-empfindlichere Profile z.B. bei LS3, Kestrel oder Nimbus 2 können allerdings bei sehr starker Verschmutzung den Wertebereich weitgehend ausschöpfen.

10.6. Airfield Elevation

-1 m

Sofern hier der Wert für die **Flugplatzhöhe** erfasst wird, wird das **QNH automatisch** nach dem Einschalten auf die gegebene Platzhöhe (Airfield Elevation) einjustiert. Im QNH Dialog ist das QNH dann nur zu bestätigen. Sollte auf einem anderen Platz mit verschiedener Höhe gelandet werden, ist beim Einschalten das lokale QNH zu verwenden, oder die Airfield Elevation auf die neue Höhe anzupassen, will man das

Autosetup für das QNH verwenden. Per Voreinstellung ist hier -1 Meter gewählt, damit ist das Feature abgeschaltet und das letzte erfasste QNH wird verwendet und muss konventionell justiert werden.

10.7. Vario and Speed 2 Fly

Im Vario Dialog können die Einstellungen für die Varioanzeige und die Sollfahrt angepasst werden.

10.7.1. Range

5 m/s

Mit dem Bereich (engl. Range), wird die **Skala des Variometers** eingestellt. Es kann ein Bereich von 1 m/s bis 30 m/s für die min/max Werte gewählt werden. Voreinstellung sind 5 m/s.

10.7.2. Log-Scale

[Disable]

[Enable]

Mit Hilfe dieser Option lässt sich das Zeiger-Display des Variometers mit einer logarithmische Skala darstellen. Der Bereich um den **Nullpunkt** ist dabei **gedehnt**, sowie die Bereiche zum hin Skalen-ende gerafft. Der Modus hat den Vorteil einen deutlich größeren Messbereich darstellen zu können, ohne dabei Genauigkeit um den Nullpunk oder zu verlieren. Ein weiterer entscheidender Vorteil: Hiermit sind **relative** Änderungen besser zu bewerten, was soviel bedeutet wie eine Verbesserung des

Steigens von 20%, bei 1 m/s, also einer Erhöhung um 0.2 m/s, entspricht auf der Skala **dem selben Weg** wie relative Verbesserung um 20% bei 5 m/s, entsprechend 1 m/s.

10.7.3. Mode

[Brutto]

[Netto]

[Cruise Netto]

Polaren Eigensinkens arbeitet, oder als Netto Vario wobei das Polare Eigensinken herausgerechnet wird. Die Einstellung "Cruise-Netto" (deutsch Vorflug-Netto), wählt die Netto Einstellung genau dann, wenn sich das Vario im Sollfahrt Modus befindet, sonst arbeitet das Vario als Brutto Variometer, was beim Kreisen durchaus Sinn macht, denn für die MacCready Einstellung ist immer das Brutto-Steigen relevant.

Selbstverständlich folgt auch das Audio-Signal dem eingestellten Modus. In der Einstellung Brutto meldet die Akustik erst dann Steigen, wenn die umgebende Luftmasse schneller steigt als das polare Eigensinken, also das tatsächlich Flugzeug steigt. In der Netto Einstellung ist das Audio-Signal ist mit dem Netto Steigen gekoppelt, sobald also die umgebende Luftmasse steigt, wird durch die Akustik auch Steigen indiziert. Dies macht z.B. Sinn um bei schnellem Vorflug auch kleine Änderungen in der umgebenden Luftmasse besser zu erkennen, da das teilweise höhere Eigensinken im Netto-Modus sonst kompensiert wird.

10.7.4. Netto Mode

[Normal]

[Relative]

Mit dieser Einstellung lässt sich der Netto-Modus weiter verfeinern. In der Einstellung **[Normal]** wird **nur** das **polare Sinken** für die aktuelle Geschwindigkeit berücksichtigt, die Variometer Anzeige entspricht daher genau dem Steigen oder Fallen der umgebenden Luftmasse. Im Display wird diese Einstellung für das normale Netto mit "**net**" in der oberen Statuszeile signalisiert.

Würde man beispielsweise bei 2 m/s Netto Anzeige einkreisen hätte durch das Eigensinken im Kurvenflug etwas weniger effektives (Brutto-) Steigen als der reine Netto-Wert, z.B. bei einer LS-4 mit einem Eigensinken von 0.6 m/s im Kurvenflug nur 1.4 m/s.

Um dem Rechnung zu tragen wird der Netto Mode Einstellung [Relative], vielfach auch genannt "Super Netto" (voreingestellt), zusätzlich das Eigensinken beim Kreisen berücksichtigt, und zwar genau das Eigensinken welches beim Kreisen mit 45% Schräglage und der dafür optimalen Geschwindigkeit der Fall wäre. Es wird also damit der Wert anzeigt dem man an Brutto-Steigen hätte, wenn man an der Stelle einkreisen würde. Die Anzeige des Vario wäre in diesem Fall 1.4 m/s, und reduziert weiter die Arbeitsbelastung im Cockpit, da man um abzuschätzen ob sich ein Einkreisen lohnt, nicht mehr rechnen muss, der Wert des zu erwarten Steigens wird im Super-Netto Modus direkt angezeigt. Diese Einstellung wird mit "s-net" in der Statuszeile signalisiert.

10.7.5. Polar Sink

[ENABLE] [DISABLE]

Durch die Auswahl von [ENABLE] (Voreinstellung), wird im Brutto Modus des Variometers das **polare Eigensinken** in Abhängigkeit von der Geschwindigkeit dargestellt. Mit [DISABLE] lässt sich die Darstellung abschalten, das Polare Sinken wird dann nicht mehr angezeigt. Das Polare

Sinken wird im Airliner-Style als blauer Balken, im Retro-Style als blauer Bogen ausgehend vom Nullpunkt nach unten hin dargestellt.

10.7.6. Needle Color

[White]

[Orange]

[Red]

Option für die Farbe des Vario Zeigers. In der Voreinstellung ist der Vario Zeiger weiß [White], kann aber auch in der Farbe Orange oder Rot (Red), dargestellt werden.

10.7.7. Center Aid

[Disable]

[Enable]

Mit der Option für die **Zentrierhilfe** (engl. Center Aid), kann gewählt werden im Retro Display eine Zentrierhilfe anzuzeigen. Voreingestellt ist [Disable], mit [Enable] wird die Zentrierhilfe angezeigt. Das Feature ist noch neu, und muss im Flug noch getestet werden. Es zeigt in der unteren Skalenhälfte auf einem Kreisbogen ringsherum grüne Punkte, die sich mit der Stärke der Aufwinds vergrößern und zwar relativ zur Flugrichtung (Heading), und soll den Piloten darin unterstützen den Kreis entsprechend zum besseren Steigen hin zu verlagern.

Ist kein Magnetsensor vorhanden, wird als Referenz der Kurs über Grund von einem eventuell angeschlossenen Flarm oder GPS verwendet.

10.7.8. **Vario Damping**

3 sec

Die Dämpfung (engl. Damping), regelt die Zeitkonstante zur Glättung der Variometer Anzeige. Normale **Thermik ist** vom Wesen her **turbulent** was bedeutet dass eine ungedämpfte Vario Anzeige dem Piloten kaum auswertbare Information liefert. Üblich sind Zeitkonstanten von einigen Sekunden. Eine zu starke Dämpfung verzögert bei einfachen Tiefpässen die Anzeige. Die optimierte Kalman Filterung, welche physikalische Gegebenheiten berücksichtigt und vorausdenkt, reagiert schnell ohne nervös zu wirken. Voreingestellt sind 3 Sekunden. Für eine noch ruhigere Anzeige können Werte bis 6 Sekunden sinnvoll sein.

10.7.9. Averager

20 sec

Diese Dämpfung (engl. Damping), regelt die **Zeitkonstante** zur **Glättung** der digitalen Average Variometer Anzeige, oben in der Mitte des Display's. Voreingestellt sind **20 Sekunden**, die digitale Anzeige gibt also das mittlere Steigen während der letzten 20 Sekunden wieder. Dies ist ein recht üblicher Wert in vielen Variometersystemen, und gibt dem Piloten Hinweise über die aktuelle Stärke des Aufwindes. Zu geringe Dämpfungen führen zu schlechter Ablesbarkeit und bieten durch die Nervosität der Anzeige kaum nutzbringende Information. Der Wert kann theoretisch bis auf 60 Sekunden erhöht werden.

10.7.10. **Mean Climb**

Minimum climb

0.5 m/s

Die Einstellung "Mean Climb min(imum)". Für die Berechnung des mittleren Steigens können geringe Steigwerte, die etwa im Geradeausflug bei hoher Geschwindigkeit vorhanden sind ausgeblendet werden. Einer modernen Empfehlung (http://aboutgliding.com/005-asmall-error-in-maccready-theory/) folgend soll für den MC Wert nur das Kernsteigen beim Kreisen herangezogen werden, und nicht die Steigwerte im Geradeausflug oder beim

Duration

Den Empfehlungen folgend, sollen außerdem die Steigwerte der letzten 3 Aufwinde als mittleres Steigen für den MC Wert berücksichtigt werden. Aus der Analyse viele Flüge erkennt man dass ca. alle 15 Minuten ein neues Aufwindgebiet angeflogen wird. Mit einer Voreinstellung von 45 Minuten für die "Mean Climb dur(ation)" wird dem Rechnung getragen, es werden also nur Werte aus den letzten 45 Minuten berücksichtigt. Der Wert nach in Minuten Schritten verändert werden.

Cycle

Mit Hilfe dieser Einstellung wird festgelegt **wie oft das mittlere Steigen berechnet** wird. Der "Mean Climb cycl(e)" legt die Periode fest, in der dies geschieht. Voreingestellt sind 60 Sekunden, der Wert kann zwischen 10 und 60 Sekunden getuned werden. Ein Kreis mit 45% Schräglage dauert mit einem Segelflugzeug dauert in der Regel ca. 20 Sekunden, 60 Sekunden entsprechen etwa 3 Kreisen. Dies ist ein guter Wert genug Daten für die neue Anzeige des mittleren Steigens zu sammeln und den Trend (Form/Farbe der Raute) entsprechend deutlich zeigen zu können. Kürzere Zeiten führen zu kleinen Werten und schwächen die Trend Signalisierung eher ab.

Major Change

Mit "Major Change" wird der Wert für die Änderung beim mittleren Steigen bezeichnet, welche mittels Symbol grafisch dargestellt wird. Wird der Wert überschritten, ändert sich die Form der Route, und nach oben oder unten wird die Raute verlängert. Voreingestellt sind 0.5 m/s.

10.7.11. S2F Settings

Damping

5 sec

Auch die Sollfahrt (S2F, Speed 2 (to) Fly) kann in gewissen Grenzen gedämpft werden, voreingestellt sind 5 Sekunden. Größere Dämpfungen glätten, aber verzögern auch die S2F Anzeige, so dass nach dem Verlassen der Thermik die Sollfahrt nicht unmittelbar entsprechend des Sinkens anwächst. Der Wert lässt sich in 0.1 Sekunden Schritten bis maximal 10 Sekunden einstellen. Bei modernen Flugzeugen mit hohen Flächenbelastungen und hohen Vorfluggeschwindigkeiten jenseits der 150 km/h, macht es wenig Sinn auf kurze Thermikblasen zu reagieren. Dies wäre sogar kontraproduktiv, da durch Massenträgheit dann ungünstig hohe Lastvielfache auftreten welche die Leistung vermindern, was für eine Dämpfung der Sollfahrt spricht. Sinnvoll ist bei einer Aufreihung mit andauerndem Steigen oder in einem blauen Loch mit andauerndem Fallen zu reagieren, welches auch mit einer gewissen Dämpfung sehr gut möglich ist. Der Wert von 5 Sekunden kann vom Benutzer nach getuned werden.

Blockspeed

[ENABLE]

[DISABLE]

Durch die Einstellung der Blockspeed [Enable] wird das **Steigen oder Fallen der umgebenden Luftmasse** (entsprechend dem Wert des Netto Vario), **ausgeblendet**. Nur die Beladung und der MacCready Wert gehen dann in die Berechnung der optimalen Sollfahrt Geschwindigkeit mit ein. Die Geschwindigkeit die der Sollfahrtgeber dann anzeigt bleibt damit in der Thermik konstant, was der Theorie folgt, dass ein **Hochziehen** bei typischen Thermik Dauern von wenigen Sekunden, aufgrund der Trägheit des Flugzeugs **nicht unbedingt Sinn** macht. Dies wurde vor Jahren and der TU München durch numerische Simulation bewiesen, und gezeigt dass die MacCready Geschwindigkeit für den Aufwind Fall nur Sinn macht ab einer bestimmten Thermik Dauer von ca. 20-30 Sekunden (halbe Periodendauer der Phygoide oder Eigenfrequenz, auch Pumpfrequenz genannt), oder wenn man tatsächlich kurbeln will. Einige sehr bekannte Piloten fliegen diesen Stil und erreichen durchaus damit gute Durchschnittsgeschwindigkeiten.

S2F Mode

[Vario fix]
[Cruise fix]
[Switch]
[AutoSpeed]
[External]
[Flap]
[AHRS-Gyro]

Der S2F 'Mode' gibt an, nach welchem Verfahren zwischen **Kreisflug und Sollfahrt gewechselt** wird. Es gibt vier Optionen. Der Modus kann entweder fest auf Vario [Vario] oder Sollfahrt [Cruise] eingestellt werden. Das Instrument wechselt den Modus dann nicht, und bleibt fest entweder im Kreisflug oder im Sollfahrt Modus. In der Praxis, beim Streckenfliegen machen diese beiden Einstellungen wenig Sinn, allenfalls der Vario-Modus kann Sinn machen wenn man nicht nach Sollfahrt fliegen will, und immer eine herkömmliche Vario Anzeige sehen möchte.

Der Sollfahrt-Geber ist immer sichtbar, im "Vario" Modus wird daher ebenfalls eine Sollfahrt angezeigt, allerdings ist dies die **optimale Kreisfluggeschwindigkeit** bei der aktuellen Beladung **für das minimale Sinken bei** einem **Kurvenflug** von ca. **45**°. Dem dabei entstehenden 1.4 fachen Lastvielfachen (+40%) wird entsprechend mit einer Fahrterhöhung von ~20% Rechnung getragen.

Weiter gibt es die Option über einen externen Schalter, z.B. einen Knüppelschalter oder Schalter oder auch (moderner) mittels Taster am I-Panel, besser am Steuerknüppel zwischen Vario und Sollfahrt umzuschalten [Switch]. Der Schalter/Taster muss natürlich bedient werden, was die Arbeitsbelastung im Cockpit erhöht, bietet aber maximale Flexibilität. Will man dies vermeiden, und soll die Umschaltung automatisch ab einer bestimmten Geschwindigkeit erfolgen, so ist [AutoSpeed] (Voreinstellung) zu wählen. Die Geschwindigkeit lässt sich im folgenden Menüpunkt einstellen.

Im Modus [External] wird die **Sollfahrt Einstellung vom einem zweiten Variometer** übernommen, entweder gekoppelt über Bluetooth oder über den CAN Bus ab Serie 2022. Das zweite Gerät kann sowohl das hintere, als auch das vordere Variometer sein, je nachdem wohin man die Schalter oder Taster verdrahten will. An dem Gerät welches auf die Schalter reagieren soll ist Switch (oder Autospeed), zu wählen. Am zweiten Gerät welches man synchronisieren möchte der Modus "External".

Achtung: Der Modus "**Cruise from Master**" ist entfallen wurde durch diese Einstellung ersetzt, hiermit kann die Synchronisation nun auch vom Client erfolgen.

Der Modus [Flap] erlaubt eine Umschaltung des Sollfahrt-Modus in den Kreisflug Modus über den optionalen Wölbklappen-Sensor. Die Umschaltung erfolgt genau dann, wenn die Wölbklappe den Wert von "S2F Flap Pos" überschreitet.

Der Modus [AHRS-Gyro] kann bei allen Geräte außer Serie 2020 benutzt werden, dabei wird automatisch in den Kreisflug Modus umgeschaltet wenn die Drehgeschwindigkeit in Grad pro Sekunde größer als die "S2F AHRS Deg" entspricht. Die gemessene Drehgeschwindigkeit dabei wird der Wert über 20 Sekunden gemittelt und mit einer Hysterese von 20% versehen, zurückgeschaltet wird dann erst wenn der um Wert 20% niedriger als der eingestellte Wert liegt.

S2F AutoSpeed

100 km/h

Dies ist die **Geschwindigkeit** im **AutoSpeed Modus**, ab welcher das Variometer von Kreisflug (Circling) auf Sollfahrt oder Vorflug (Cruise) wechselt. Voreingestellt sind 100 km/h. Bei höherer Flächenbelastung und modernen Segelflugzeugen kann der Wert entsprechen höher eingestellt werden.

S2F Flap Pos

1

Mit dieser Einstellung wird die **Klappenstellung** definiert, bei der im "S2F Modus" [Flap] der S2F Modus umgeschaltet werden soll. In der Voreinstellung ist die Klappen-Stellung +1 gesetzt.

S2F AHRS Deg

12°

Hiermit wird die Schwelle für die **Drehgeschwindigkeit** in **Grad pro Sekunde** festgelegt, bei der das Gerät im Modus [AHRS-Gyro] den S2F Modus umschaltet. Kleine Werte schalten schon früh beim Einkreisen in den Thermik-Modus, während größere Werte durch eine Mittelwertbildung über ca. 20 Sekunden mit Verzögerung umschalten. Ein typischer Kreis mit einer Dauer von 30 Sekunden hat eine Drehgeschwindigkeit von 360/30 = 12 ° Grad pro Sekunde, was der Voreinstellung entspricht.

Hysteresis

5 km/h

Mit der Hysterese (engl. Hysteresis), lässt sich die automatische, durch die Fluggeschwindigkeit gesteuerte Umschaltung (Modus AutoSpeed) auf Sollfahrt beruhigen. Ohne Hysterese kann es vorkommen, dass der Modus bei einer Fluggeschwindigkeit um die eingestellte AutoSpeed häufig hin und her-schaltet. Eine Hysterese von 5 km/h (Voreinstellung) schaltet bei 105 km/h in den Sollfahrt Modus, und umgekehrt bei 95 km/h wieder zurück in den Vario-Modus.

Arrow Color

[White/White]

[Blue/Blue]

[Green/Red]

Unter "Arrow Color" kann die Farbe des Sollfahrt-Pfeils individuell eingestellt werden. Die erste Farbe ist für den Pfeil nach oben, die zweite Farbe für den Pfeil nach unten bestimmt. Der letzte Pfeil wird in einer anderen Farbe dargestellt, sofern der Bereich überschritten ist, dargestellt werden 3 Pfeile mit den Stufen 10, 20 und 30 km/h, bei über 30 km/h Abweichung ist der Fall der Überschreitung gegeben.

10.7.12. Electronic Compensation

Über die elektronische Kompensation kann man das Vario optional ohne TE-Düse eine

Totalenergiekompensation erreichen. Das Feature befindet sich noch in der Optimierungsphase, funktioniert aber bereits grundsätzlich.

Eine gute elektronische Kompensation erfordert gut platzierte und funktionierende Druckabnahmen des statischen Drucks sowie des Staudrucks. Viele Faktoren spielen hierbei eine Rolle, angefangen von der Masse der in den Druckleitungen eingeschlossenen Luft, Druckänderungen entlang des Rumpfes und im Bereich der Flügel, Beschleunigungen und mehr. Es wird daher zu generell zur **TE-Düsenkompensation** geraten, die in den meisten Fällen besser funktioniert. Welche Parameter für eine gute Kompensation eine Rolle spielen, findet sich im .pdf Scan folgender Abhandlung, die seinerzeit Herr Brötzel von der Fa. ILEC zusammengestellt hat: https://xcvario.de/wp-content/uploads/2021/11/GliderInducedErrorsinTotalEnergyVariometry.pdf

eCompesation

[Enable]

[Disable]

Über diese Einstellung [Enable] wird die elektronische Kompensation gewählt. Der TE **Düsendruck** ist dabei **nicht** mehr **relevant** und braucht im Prinzip nicht angeschlossen zu werden. Voreinstellung ist Disable. Ist diese Einstellung gewählt wird nur mit dem an ST angeschlossenen Druck, dem statischen Druck gearbeitet. Dies kann Sinn machen wenn keine TE Düse zur Verfügung steht.

Adjustment

0.00 %

Über diesen prozentualen Faktor kann die Kompensation in 0.1% Schritten positiv oder negativ bis +/-50% justiert werden. Dieser Faktor mindert oder erhöht die theoretische **kinetische Energie**, welche beim Hochziehen in Höhe umgewandelt wird (V²/2g). Bei einer Unterkompensation (Vario zeigt Steigen beim Hochziehen), ist der Wert so lange zu erhöhen, bis die Anzeige passt. Entsprechend bei einer Überkompensation mit negativen Werten. Es empfiehlt sich zudem die voreingestellte Dämpfung des Vario's von 3 Sekunden auf mindestens 5-6 Sekunden zu erhöhen, um transiente Effekte (kurzzeitige Abweichungen), zu minimieren. Das **schnell konvergierende Kalman Filter** reagiert dann immer noch ausreichend schnell auf Änderungen.

10.8. Audio

Der Tongenerator ist das ein wichtiger Teil zu Verbesserung der **Sicherheit** im Cockpit, da er erlaubt die Aufmerksamkeit auf andere Flugzeuge zu richten. Der Ton ändert sich mit der Vario oder Sollfahrt Anzeige in Tonhöhe und Intervall zwischen 100 mS langen Pausen (oder einem zweiten Ton), und wird über den internen Lautsprecher an der Rückseite des Gehäuses abgegeben.

10.8.1. Default Volume

10 %

In dieser Einstellung wird die Lautstärke die **nach dem Einschalten** des Gerätes zur Anwendung kommt, ist konfiguriert. Voreingestellt sind 10% Lautstärke.

10.8.2. Max Volume

100 %

In dieser Einstellung wird die **maximal mögliche Lautstärke** des Geräts konfiguriert. Voreingestellt sind 100% Lautstärke. Sollte der verwendete Lautsprecher, z.B. beim einem externen Lautsprecher bei der maximalen Lautstärke Verzerrungen aufweisen, oder ist eine Begrenzung wünschenswert, so kann der Wert hiermit reduziert werden. Eine Einstellung von 50% beispielsweise reduziert die Lautstärke um etwa 6 dB.

10.8.3. Cruise Audio

[Speed2Fly]

[Vario]

Mit dieser Einstellung wird gewählt welches Tonsignal im Sollfahrt Modus generiert wird. Im [Speed2Fly] also Sollfahrt Modus wird ein Ton erzeugt welcher die **Abweichung von der Sollfahrt** signalisiert. Bei zu hoher Fluggeschwindigkeit wird ein zunehmend höherer, optional unterbrochener Ton erzeugt , bei bei einer zu geringen Geschwindigkeit ein tieferer Ton. In der Einstellung [Vario] bleibt das Audiosignal in der Vario Einstellung, und kann beispielsweise das Netto-Steigen signalisieren, sofern das Vario im "Netto Modus" oder "Cruise Netto Modus" eingestellt ist. Näheres dazu beim Setup des "Vario Mode".

10.8.4. Tone Styles

CenterFreq

500 Hz

Gibt die **Mittenfrequenz** des Tongenerators (Sinus) an, und kann in 10 Hz Schritten zwischen 200 Hz und 2000 Hz modifiziert werden. Voreingestellt sind 500 Hz.

Octaves

2.00 fold

Hiermit wird festgelegt über **wie viele Oktaven** sich die Tonänderung zwischen den tiefsten, sowie der Mittenfrequenz (Center Frequency) und dem höchsten bzw. tiefsten Ton erstreckt. Der Wert lässt sich in 0.1 Schritten zwischen 1.5 fach und 4.1 fach verändern. Voreingestellt ist 2 fach was bedeutet bei einer Mittenfrequenz von 500Hz ist der höchste Ton 1000Hz und der

tiefste Ton 250 Hz. Ein zu hoher Wert erzeugt Töne außerhalb des optimalen Spektrums für den Lautsprecher und das menschliche Gehör.

Dual Tone

[Disable]

[Enable]

In dieser Einstellung wird gewählt ob ein einfacher Ton [Single Tone] mit kurzen Unterbrechungen gewünscht ist (di di di), oder ob das Vario im Zweiton Modus [Dual Tone] (di da di da) arbeitet. Voreingestellt ist der Modus mit einfachem Ton und Unterbrechungen.

Dual Tone Pitch

Diese Einstellung ist nur im Zweiton Modus relevant. Es gibt den Pitch, also die Tonhöhen Änderung des zweiten Tons an. Der zweite Ton wird um diesen Prozentsatz in der Tonhöhe noch oben versetzt. Voreingestellt sind 12%.

Chopping

[Disabled]

[Vario Only]

[S2F Only]

[Vario and S2F]

Beim Audio im Vario oder Sollfahrtmodus (S2F) kann der Ton bei Werten über Null mit kurzen Unterbrechungen (100 mS), deren Häufigkeit mit dem angezeigten Vario oder S2F Wert zunimmt gewählt werden. Diese Unterbrechung (eng. Chopping) kann abgeschaltet werden [Disabled], oder nur für Vario [Vario only] oder die Sollfahrt [S2F only] gelten. Eine vierte Option ist eine Unterbrechung für Beide Modi also [Vario and S2F], was voreingestellt ist. Die maximale Unterbrechungs-Frequenz bei Anschlag der Skala beträgt genau 10 Hz, die minimale Frequenz 1 Hz. Dazwischen wird die Frequenz linear mir dem Anzeigewert erhöht.

Chopping Style

[Soft]

[Hard]

Wird der Ton durch Chopping (deutsch: Zerhacken) unterbrochen, so wird beim Ein- und Ausschalten ein gewisser "Klick-Laut" vernommen, dies rührt her von der spontanen rechteckförmigen Leistungsänderung welche

Oberwellen erzeugt. Um diese Effekt zu **minimieren** wird in der Einstellung

[Soft] die Leistung innerhalb weniger Millisekunden **langsam hochgefahren** (Fade-In), sowie beim Ausschalten langsam wieder heruntergefahren (Fade-Out). Die Einstellung ist Geschmackssache, voreingestellt ist der Soft-Modus welcher überwiegend als angenehmer empfunden wird.

10.8.5. Range

[Fix 5 m/s]

Fix or Variable?

[Fix 10 m/s]
[Variable (=N m/s)]

Hiermit wird festgelegt ob der Tongenerator einer **festen Bereichseinstellung** folgt [Fix 5 m/s] oder [Fix 10 m/s] oder der **aktuellen** Variometer **Bereichseinstellung** folgt [Variable (=N m/s)]. Der Bereich legt fest ab welche Wert der Tongenerator die höchste oder tiefste Frequenz und Intervall-Folge ausgibt. Es kann Sinn machen bei schwachem Steigen den Bereich dynamisch zu vergeben. Bei dynamischer Einstellung und einem Range von 2 m/S des Vario's, hören sich dann 2 m/s gleich an wie ansonsten 5 m/s bei fester Einstellung. Die Voreinstellung ist [Fix 5 m/s].

10.8.6. Deadbands

[Lower Vario]

- 0.30 m/s

[Upper Vario]

0.30 m/s

[Lower S2F]

- 10km/h

[Upper S2F]

+ 10km/h

Mit dem Deadband wird der Bereich angegeben an dem das Vario keinen Ton abgibt (muted). Es gibt den [Lower ..] für den negativen Wert und den [Upper ..] für positive Werte. Voreingestellt sind +-0.3 m/s für das Deadband. Das Deadband hilft **kleine Steigwerte auszublenden** und am Boden für Ruhe zu sorgen ohne die Lautstärke ab-regeln zu müssen. Auch die Sollfahrt (S2F) hat ein Deadband, voreingestellt sind -+10km/h erst ab einer Überschreitung der Sollfahrt Differenz ab diesem Wert wird das Muting aufgehoben.

10.8.7. Audio Exponent

1.00

Mit dieser Option lässt sich der Zusammenhang der Tonhöhe mit dem Vario (oder S2F) Wert optimal an die Gegebenheiten anzupassen. Die Voreinstellung ist 1.0 also ein linearer Zusammenhang. Werte größer als 1, z.B. 1.5 erzielen einen Lupen-Effekt um den Nullpunkt. Dies ist eher eine Einstellung für das Flachland, wenn überwiegend kleine Steigwerte zu erwarten sind, kleine Variowerte führen dann zu größeren Tonänderungen, der Piloten wird schon bei kleineren Steigwerten aufmerksam. Werte kleiner 1, z.B. 0.5 dämpfen das Tonsignal für kleine Steigwerte. Hiermit wird die Aufmerksamkeit dagegen auf hohe Steigwerte

gelenkt. Dies kann Sinn im Gebirge machen, wenn überwiegend sehr gute Steigwerte zu erwarten sind.

10.8.8. Amplifier Off

[Always On]

[Shutdown]

Mit dieser Einstellung lässt sich der digitale Audio Verstärker innerhalb des Deadband (Bereich in dem kein Ton abgegeben wird), entweder temporär abschalten [Shutdown] oder durchgängig betreiben [Always On]. Das Abschalten des Verstärker spart Strom (ca.

3-4 mA bei 12V), und unterdrückt Restrauschen aus dem System, das Vario gibt damit nicht das geringste Geräusch von sich, daher ist **[Shutdown]** die Voreinstellung.

Will man die sehr geringen Klick-Geräusche beim Wiedereinschalten des Verstärker (durch die digitale Technik wirksam unterdrückt) vollständig loswerden, kann die Einstellung [Always On] gewählt werden. Je nach Umgebung kann das Eine oder das Andere mehr Sinn machen. Im Normalfall ist die Werkseinstellung hier die optimale Einstellung.

10.8.9. Audio in Setup

[Silent]

[Stay On]

In der Voreinstellung bleibt der Ton während man im Setup-Menu Einstellungen vornimmt an, mit der Einstellung [Silent] kann während der Einstellarbeiten für Ruhe gesorgt werden, das Audio bleibt dann abgeschaltet bis das Menu wieder verlassen wird.

10.8.10. Frequency Response

30 %

Da die Empfindlichkeit des menschlichen Gehörs im Bereich von ~30 Hz bis 4000 Hz kontinuierlich um ca. 6 Dezibel pro Oktave zunimmt, hören sich höhere Töne deutlich lauter an als tiefe, bzw. lassen sich tiefe Frequenzen bei angenehmer Lautstärke von hohen

Tönen kaum mehr wahrnehmen. Mit dieser Einstellung wird dem Rechnung getragen, und die Lautstärke pro Oktave um den angegebenen Faktor verringert. Ein Faktor von 50% (Amplitude) entspräche einer Abschwächung von genau diesen 6 Dezibel, da der Dynamik des Systems Grenzen gesetzt sind, sind 30% voreingestellt, was einen sehr guten Kompromiss darstellt.

10.8.11. Split Volume

[Disable]

[Enable]

Mit diesem Feature, welches die Lautstärke im Vario-Modus und im Sollfahrt-Modus getrennt einstellen lässt sich die Lautstärke an die unterschiedliche Akustik im Cockpit beim Kreisen sowie im Schnellflug anpassen. Oft ist gerade bei älteren Segelflugzeugen im Schnellflug eine höhere Lautstärke nötig, damit der Ton noch wahrgenommen werden kann. Das Feature ist etwas gewöhnungsbedürftig und per Voreinstellung abgeschaltet. Mit [Enable] wird es aktiviert.

10.9. Weight/Polar

Im Beladung/Polaren Dialog wird die passende Polare zum Flugzeugtyp gewählt, Massen können justiert werden und die jeweilig eingestellte Polare kann manuell getuned werden.

10.9.1. Glider Type

[User Polar]

[Antares 20E]

[ASK 21]

:

Hiermit kann die **Polare** für den entsprechenden **Flugzeugtyp** eingestellt werden.

Daneben gibt eine Polare [User-Polar], z.B. für einen Flugzeug Typ der nicht in der Bibliothek enthalten ist. Die [User Polar] ist per Default selektiert und entspricht den Werten für eine LS4a. Daneben gibt es umfangreiche und ständig wachsende Bibliothek.

Die aktuelle Liste der unterstützen Polaren in der Bibliothek finden sich hier:

https://github.com/iltis42/XCVario/blob/master/main/Polars.cpp

Achtung: Beim **Update von älteren Software Ständen** ist nach dem Update **die eingestellte Polare zu überprüfen**, die Übernahme der Einstellung ist u.U. nicht korrekt. Bei einem Upgrade von neueren Software Ständen ab 6.Juni 2021, ist das Problem behoben, und die Kontrolle nicht mehr nötig.

10.9.2. Polar Adjust

[Wingload]

34.4 kg/m2

[Speed 1]

80 km/h

[Sink 1]

- 0.66 m/s

[Speed 2]

125 km/h

[Sink 2]

- 0.97 m/s

[Speed 3]

175 km/h

[Sink 3]

- 2.24 m/s

Unter PolarAdjust kann die **Referenz-Flächenbelastung** (engl. Wingload), sowie die **Sinkwerte** für die einzelnen Geschwindigkeiten modifiziert werden. Die Referenz-Flächenbelastung ist der Wert, bei dem die Polare erflogen wurde, und ist in der Regel bei der Polare mit angegeben. Ist die momentane Flächenbelastung auch ohne Ballast höher, dann ist diese unter "Fixed Ballast" siehe nachfolgend, einzustellen. Die Referenz-Flächenbelastung sollte im Normalfall nicht verändert werden, und muss mit den Angaben aus der Polare übereinstimmen. Für diese Flächenbelastung sind entsprechend der Polaren aus dem Flughandbuch bei den entsprechenden Geschwindigkeiten [Speed 1,2,3] die dazugehörigen Sink-Werte [Sink 1,2,3] an drei Stützpunkten einzustellen. Das jeweilige Sinken wird als negativer Wert erfasst. Idealerweise nimmt man die erste Geschwindigkeit um das geringste Sinken, dann eine mittlere Geschwindigkeit, sowie eine noch sinnvolle höchste Geschwindigkeit welche beim Vorflug relevant ist.

Modifikationen der selektierten Polaren werden durch das Selektieren eines anderen Flugzeugtyps wieder zurückgesetzt. Normalerweise ist nur der Flugzeugtyp einzustellen, eine Justierung obiger Parameter ist im Normalfall nicht notwendig, weitere Flugzeugtypen werden von XCVario **auf Anfrage zeitnah in die Bibliothek mit eingebaut**, und stehen nach einem **SW Update** sofort zur Verfügung.

10.9.3. Max Ballast

160.00 liters

Hier kann der maximal mögliche Wasserballast modifiziert werden. Diese Parameter ist normalerweise durch den Flugzeugtyp gegeben, und kommt aus der Polarbibliothek nach Herstellerangaben, kann aber durch Modifikationen wie z.B. Anbau vom Winglets oder Einbau anderer Wassersäcke abweichen, und kann hier entsprechend modifiziert werden.

10.9.4. Wing Area

10.5 m²

Hier kann die Flügelfläche modifiziert werden. Diese Parameter eigentlich durch den Flugzeugtyp gegeben, kann aber durch Modifikationen wie z.B. Ansteckflügel oder Winglets abweichen, und hier entsprechend modifiziert werden.

10.9.5. Empty Weight

265 kg

Mit "Empty Weight" oder Leermasse, lässt sich das Leergewicht oder die Leermasse genauer einstellen. Segelflugzeuge haben die Eigenart **mit der Zeit schwerer** zu werden, nicht nur durch den Einbau von Instrumenten, Anbau von Winglets oder Neulackierungen, auch das CFK oder GFK selbst zieht im Lauf der Zeit Wasser und wird dadurch schwerer. Um dem Rechnung zu tragen kann man hiermit das Leergewicht auf einen höheren Wert eingestellt werden, als die beim Vergleichsflug bei der Ermittlung der Gleitflug-Polaren zu Grunde lag. Als Voreinstellung wird beim Selektieren der Polare die Leermasse aus dem Fluggewicht minus dem Pilotengewicht eingetragen. Eine höhere Leermasse verbessert also den Gleitflug zu höheren Geschwindigkeiten hin, und trägt ebenso wie der normale Wasser-Ballast zur Erhöhung der Flächenbelastung bei.

10.9.6. Crew Weight

80 kg

Mit dem "Crew Weight" oder Piloten und Passagier-Gewicht, sollte das Gewicht des Piloten, ggf. auch des Passagiers bei Doppelsitzern incl. Fallschirm und Gepäck erfasst werden. Als Voreinstellung sind 80 kg eingetragen. Ein korrektes Gewicht trägt zur korrekten Ermittlung der Flächenbelastung und damit zu einer besseren Übereinstimmung der Polaren mit der Praxis bei, und liefert genauere Werte bei der Sollfahrt und beim Netto-Vario, wie auch die anderen Gewichte.

10.10. Options

10.10.1. Student Mode

[Disable]

[Enable]

Mit dem "Student Mode", sofern "Enabled" werden nur noch die für den Flug notwendigen Einstellung im Setup Menu gezeigt, wie MacCready, Audio Volume, QNH Setup, Ballast, Bugs sowie Airfield Elevation. Alle anderen Einstellmöglichkeiten sind dann ausgeblendet. Der Mode kann durch die Eindrehen des "Expert Passworts" 271 am Drehschalter **plus einem Neustart** wieder beendet werden. Danach werden wieder alle Setup Optionen angezeigt.

Der Modus kann für Vereine Sinn machen um ein unbeabsichtigtes Verdrehen eines wichtigen Parameters in einem Schulflugzeug zu unterbinden. In der Voreinstellung ist dieser Mode abgeschaltet.

10.10.2. Flap (WK) Indicator

Der "Flap Indicator" zeigt dem Piloten die optimale Einstellung der Wölbklappe in Abhängigkeit von der Flächenbelastung und der Geschwindigkeit im Geradeausflug. Die Voreinstellung für den Flap Indikator ist abgeschaltet, und lässt sich per [Enable] einschalten. Dabei sollen die Geschwindigkeiten aus dem Flughandbuch für die Flächenbelastung der eingegeben Polare erfasst werden.

Flap Indicator

[Enable]

[Disable]

Hiermit lässt sich das Feature der Wölbklappenanzeige ein [Enable] oder ausschalten [Disable]. In der Voreinstellung ist die Anzeige ausgeschaltet. Die optimale Rastung der Wölbklappe wird wie oben gezeigt mit dem grünen Dreieck angezeigt. Das grüne Dreieck bewegt sich vertikal entsprechend der eingestellten Geschwindigkeitsbereiche für die Wölbklappen Stellungen.

Max postitive Flap

2

Voreingestellt sind zwei positive Klappenstellungen. Es kann hiermit die Anzahl der positiven Klappenstellungen gewählt werden. Zwischen 0 und 3 positive Klappenstellungen stehen zur Verfügung. Entsprechend dieser Einstellung werden diese Wölbklappen Stellungen visualisiert, sowie Menüpunkte zur Erfassung der Geschwindigkeitsbereiche angezeigt, und bei vorhandenem Sensor die Werte zur Kalibrierung erfasst.

Max negative Flap

-2

Wie voranstehend, für die Anzahl der negativen Klappenstellungen.

Takeoff Flap

1

Hier kann eingestellt werden welche Klappenstellung ohne anliegenden Staudruck am Boden angezeigt werden soll. Normalerweise ist dies die Stellung die beim Start benötigt wird, und ist in der Regel dem Flughandbuch. Die Einstellung kann je nach Beladung und Windsituation eine Korrektur benötigen, im Zweifel gilt immer die Klappenstellung die das Flughandbuch für die jeweilige Situation vorgibt.

Flap Speeds Setup

Die optimalen Geschwindigkeitsbereiche werden unter den folgenden Einträgen erfasst, hier gezeigt für jeweils drei positive und drei negative Klappenstellungen. Nur diese Werte werden verwendet welche durch die maximale positive und negative Einstellung vorgegeben sind.

Speed +3 to +2

70.00 km/h

Speed +2 to +1

78.00 km/h

Speed +1 to 0

88.00 km/h

Speed 0 to -1

105.00 km/h

Speed -1 to -2

165 km/h

Speed -2 to -3

195 km/h

Flap Position Labels Flap Label +3: L Flap Label +2: +2 Flap Label +1: +1 Flap Label 0: +0 Flap Label -1: -0 Flap Label -2:

Um eine Anpassung der Anzeige an die Beschriftung der Wölbklappen im Cockpit zu ermöglichen, kann hier für jede Klappenstellung, benannt in der Software von -3 bis +3 ein Label gewählt werden.

Für jede Stellung kann aus einem Vorrat an Ziffern von **-9 bis +20** und Buchstaben wie **N,L und S** gewählt werden. Auf Anfrage können weitere Buchstaben oder Ziffern ergänzt werden. Die Labels am Klappenhebel können Positionen oder auch Grad-Zahlen für die Neigung der Klappe darstellen, dies ist von Hersteller zu Hersteller unterschiedlich.

Aus Platzgründen wird das Plus-Zeichen nur bei Ziffern kleiner 10 angezeigt. Negative Werte sind bis -9 unterstützt (bisher bei allen betrachteten Modellen ausreichend) und werden immer mit Minuszeichen ausgegeben.

Flap Sensor

[Disable]

-2

-S

Flap Label -3:

[Enable IO-2]

[Enable IO-34]

[Enable IO-26]

Diese Option aktiviert den Wölbklappen Sensor, welches in früheren Hardware Ständen auf IO-2 oder IO-26 liegt und in späteren Serien auf IO-34 zu liegen gekommen ist. Die Einstellungen für IO-2 oder IO-26 können nur zusammen mit der Bluetooth Anbindung benutzt werden. Bei WiFi Anbindung ist die Verwendung des IO-34 notwendig, dies wird ab der zweiten Serie in 2021 unterstützt. Die Anzeige erfolgt mittels des Rechtecks, welches dem Klappenhebel symbolisiert. Die Farbe des Rechtecks wechselt je nach Ablage des Klappenhebels. Bei guter Einstellung, Ablage kleiner eine halbe Klappenstellung, ist die Farbe Grün, ansonsten Weiß. Bei gröberem Fehler, Ablage mehr als eine ganze Rastung, blinkt das Symbol zusätzlich in der Farbe Rot.

Sensor Calibration

[Cancel]

[Start Calibration]

Mit Hilfe der Flap Sensor Calibration wird der Wölbklappen Sensor auf die gerasteten Wölbklappen Stellungen ein gemessen. Mit [Start Calibration] beginnt der Dialog, welcher auffordert angegebene Stellungen zu rasten. Der Dialog sieht folgendermaßen aus:

Set Flap +2

Sensor: 385

Saved

und fordert damit auf die Klappenstellung +2 zu setzten. Die digitalisierten Sensor-Daten im Bereich von 0..4095 werden hierbei in Echtzeit angezeigt. Ist die Klappe korrekt gesetzt wird durch Drücken des Push-Buttons der Wert gespeichert und zur nächsten Klappenstellung gegangen. Am Ende erscheint die Abschlussmeldung "Saved", und die Kalibrierung ist abgeschlossen. Die Grafik für die Wölbklappenanzeige ist daraufhin zu prüfen. Die Klappenstellungen müssen nun bildlich mit der gewählten Klappenstellung zusammenpassen.

Sollte dies nicht passen, z.B. weil man eine Stellung nicht korrekt gerastet hatte kann die Kalibrierung jederzeit wiederholt werden. Bei weiteren Problemen ist der Einbau des Potentiometer z.B. mit einem Multimeter zu überprüfen. Es wird empfohlen den Potentiometer ist so einzubauen, zur Mechanik siehe den Punkt Wölbklappensensor weiter hinten, dass bei positiven Klappenstellungen kleinere Widerstands- oder digitale Messwerte und bei negativen Stellungen größere Werte entstehen, damit ein einheitliches Verfahren angewandt wird um im Fehlerfalle die Überprüfung, Messung und Support zu erleichtern, funktioniert aber auch umgekehrt.

Die Werte sind proportional zum Widerstand des Potentiometers. Wird ein eigener Poti verwendet, so ist dieser auf einer Seite mit einer Spannung von 1.2V zu versorgen, der Eingang besitzt intern keinen Pull-Up. Im einfachsten Falle genügt ein Widerstand zum Bordnetz. Besser ist eine geregelte Spannung.

Es wird empfohlen den mittlerweile verfügbaren und im XCVario Shop angebotenen XCVario Wölbklappen Sensor (https://xcvario.com/product/flap-sensor/) zu verwenden, welcher mit einer geregelten Referenzspannung und einem Operationsverstärker (Spannungsfolger) arbeitet, und damit etwas genauer als ein einfaches Poti arbeitet, den vollen Bereich und Auflösung des AD-Wandlers ausschöpft, und seine Spannung unabhängig von Bordnetz-Schwankungen liefert.

10.10.3. Units

Für internationalen Einsatz lassen sich die Einheiten für das Variometer, die Fluggeschwindigkeit (Airspeed) den Höhenmessers (Altimeter), Temperatur, QNH und für Entfernungen (Distance) beliebig einstellen, die Einstellmöglichkeiten sind wie oben, **fett gedruckt jeweils die Voreinstellung**.

Altimeter

[Meter (m)]

[Foot (ft)]

[Flightlevel (FL)]

Airspeed

[Kilom. (km/h)]

[Miles (mph)]

[Knots (kt)]

Vario

[Meter/sec (m/s)]

[Feet/min x 100 (ft/min)]

[Knots (knots)]

Temperature

[Celcius]

[Fahrenheit]

[Kelvin]

QNH

[Hektopascal]

[InchMercury]

Distance

[Meter (m)]

[Feet (ft)]

10.10.4. [Airspeed Mode]

[IAS]

[TAS]

[CAS]

[Slip Angle]

Neben IAS (Indicated AirSpeed), also der angezeigten Geschwindigkeit welche in der Höhe vom wahren Wert etwas unten abweicht steht alternativ auch die TAS (True AirSpeed) oder CAS (Calibrated Airspeed) zu Verfügung. Die TAS nimmt in größeren Höhen zu und

entspricht der wahren Geschwindigkeit und ist ohne Wind vergleichbar mit der Groundspeed des GPS welche in größeren Höhen einen höheren Wert anzeigt. Die Einstellung "Slip Angle" zeigt anstelle der Geschwindigkeit eine aus den Beschleunigungswerten ermittelte Abschätzung des Schiebe Winkel in Grad an, etwa entsprechend dem Faden, welcher bei der Windberechnung im Geradeausflug eine Rolle spielt.

10.10.5. Auto Transition

[Disable]

[Enable]

Mit dieser Einstellung lässt sich der Höhenmesser ab der "Transition Altitude" automatisch auf QNH Standard 1013.25 hPa umstellen.

10.10.6. Transition Altitude

50.00 FL

Mit dieser Einstellung kann die länderspezifische "Transition Altitude" als Flight Level (FL) gesetzt werden. Diese ist nur relevant, sofern die Automatic Transition aus dem vorhergehenden Punkt eingeschaltet ist (Enable). Unterhalb der Transition Altitude gilt die QFE Einstellung für den Höhenmesser, darüber wird auf QNE entsprechend Standard 1013.25 hPa umgeschaltet.

10.10.7. FLARM

Alarm Level

[Disable]

[Level 1]

[Level 2]

[Level 3]

Die Variometer Anzeige ist bei drohender Kollision zweitrangig, bei angeschlossenem FLARM lässt sich mit dem Gerät daher eine akustische und optische FLARM Warnung, ähnlich der gängigen LED FLARM-Zweitanzeige realisieren mit einer höherer Detailtiefe und **zusätzlichen Informationen**. Voreingestellt ist [Level 1], die **FLARM Warnung ist eingeschaltet** auf Stufe 1 und informiert bereits ab der geringsten Alarmstufe "1" des FLARM bei einem drohender Kollision in 13 bis18 Sekunden, Level 2 würde bei 9-12 Sekunden warnen, entsprechend Level 3 erst ab der höchsten Alarmstufe also der unmittelbaren Gefahr einer Kollision zwischen 0 und 8 Sekunden. Weitere Details dazu bitte der Beschreibung des verwendeten FLARM entnehmen.

Dreiecks über die Richtung informiert woher die Gefahr kommt, und zwar in der Draufsicht, als auch in der Horizontalsicht. Ein Beispiel für einen Traffic Alert Warnstufe 1, die geringste Alarmstufe, siehe rechts. Die Gefahr kommt dabei von vorn leicht links, hier gezeigt eine relative Peilung von -10 Grad, das rote Dreieck gibt also den exakten Winkel wieder, analog dazu die Horizontalsicht. Weiter wird mittels Text z.B. mit "Traffic Alert 2" die Art der Warnung und der Alarmstufe ausgegeben. Die Richtung der Annäherung im Uhrzeiger System z.B. "2 o'clock", die relative Entfernung, sowie der relative Höhenunterschied im gewählten Einheiten-System.

Alarm Volume

[100 %]

Die akustische Warnung ist zur Unterscheidung von anderen Tönen als konstant und schnell alternierender Zweiton ausgeführt und erhöht sich in der Frequenz, Tonfolge und Lautstärke entsprechend der Alarmstufe. In der höchsten Alarmstufe 3 wird der Warnton

mit dem hier eingestellte Pegel ausgegeben. Bei Alarmstufe 2 wird um etwa 6 Dezibel, bei Alarmstufe 1 um etwa 12 Dezibel reduziert. Voreingestellt sind 100%, die Lautstärke kann zwischen 20% und 125% variiert werden.

FLARM Simulation

[Disable]

[Start Sim]

Unter diesem Menüpunkt lässt sich die Simulation einer Annäherung durch ein zweites Luftfahrzeug simulieren. Die Annäherung beginnt links unterhalb und zieht nach rechts unter weiterer Abnahme der Distanz und Höhendifferenz am Bug vorbei. Verschiedene Alarmstufen des FLARM werden hierbei optisch und akustisch simuliert. Das Setup ist zu **verlassen** um die Situation am Bildschirm verfolgen zu können.

10.10.8. Compass/Wind

Compass

Der Kompass ist ein optionales Modul für die Schnittstelle S2, ein magnetischer Sensor neuester Bauart, welcher bei optimaler Einbauposition und Kalibrierung eine Genauigkeit bis zu einem Grad Abweichung ermöglicht. Der Magnet-Sensor misst das Erdmagnetfeld in 3D, also in alle 3 Raumrichtungen, und verfügt über eine **Neigungswinkel-Korrektur** (Tilt-Kompensation). Die Neigungsdaten bekommt der Sensor vom AHRS Modul. Hierzu ist es notwendig dass auch die **Sensor-Kalibrierung des AHRS Sensor** einmal in seiner Einbaulage, am Besten in Fluglage, durchgeführt wird. Eine Freischaltung des AHRS Features ist dafür nicht notwendig.

Der Magnetsensor muss dabei fest in der richtigen Position mit dem Flugzeug verbunden sein, die Symbolik auf dem Sensor zeigt ein Flugzeugsymbol mit Leitwerk und Flügeln, dies muss mit dem realen Flugzeug übereinstimmen und der Schriftzug 'Top' muss dabei nach Oben zeigen. Es dürfen sich am Einbauort keine Metalle in der Nähe befinden, 20 besser 30 cm Abstand sind Mindestabstände um gute Ergebnisse zu liefern. Der Kompass sollte in keiner Richtung mehr als 15°, besser nur 10° Abweichung (Deviation) zeigen. Eine gute Position in einem engen Segelflugzeug-Rumpf mit Steuerung, aus Seilzügen und Stahlteilen und diversen Beschlägen ist nicht leicht zu finden. Das Kabel sollte dabei eine Länge von zwei Metern nicht überschreiten und Punkt zu Punkt ausgeführt sein. Sollte ebenfalls ein Wölbklappen Sensor moniert sein, dürfen die Pins 3 und 4 an der Schnittelle S2 nur zum Magnetsensor, nicht auch noch als Stichleitung zum Wölbklappen Sensor verlaufen, Lesefehler bis hin zur Ausfall des Kompass sind sonst möglich.

Die Anzeige des Magnetic Heading wird aktuell aus Platzgründen nur im Retro Display oder dem UL-Style unterstützt.

In den folgenden Menüpunkten lassen sich dessen Einstellungen wie auch die Kalibrierung des Sensor oder die Kompensation der Deviation durchführen.

Sensor Option

[Disable]

[Enable I2C]

[Enable I2C no Tilt Comp.]

[Enable CAN Sensor]

Hiermit kann der Type des Magnetsensors gewählt oder der Sensor abgeschaltet werden.

Voreingestellt ist der Magnetsensor abgeschaltet [Disable]. In der Einstellung [Enable I2C]

wird ein an S2 angeschlossener einfacher Magnetsensor mit I2C Interface gewählt, welcher **Neigungswinkel kompensiert** (englisch Tilt Compensation) arbeitet. In der Einstellung ohne Tilt Kompensation im nächsten Punkt ist mit dem üblichen Kompass-Drehfehler bis hin zu einer Invertierung der Anzeigewerte zu rechnen. Diese Einstellung dient im Wesentlichen nur zu Testzwecken z.B. bei einem Versuchsaufbau im Auto. Die Einstellung [Enable CAN Sensor] ermöglicht die Verwendung eines **neuen Magnet Sensor Typ's mit CAN Interface**, womit die serielle Schnittelle an S2 frei bleibt, und für andere Zwecke, z.B. für die serielle Verbindung zu einem OpenVario eingesetzt werden kann. Weiterhin gibt es keine Beschränkung der Kabellänge beim CAN Interface (max. 2 Meter bei I2C), der CAN Magnetsensor kann somit an einer beliebigen Stelle eingebaut werden. <u>Anmerkung CAN:</u>

Bei Auswahl des CAN Typs ist im System Menu das **CAN Interface** einzuschalten, die Einstellung **1000 Kbit** wird empfohlen, die anderen Datenraten sind ebenfalls möglich.

Der Sensor sollte bei **eingeschaltetem Kompass auch eingesteckt** sein, da die Software ansonsten das Modul regelmäßig abfragt, was im Fehlerfall unnötige CPU Last erzeugt.

Sensor Calibration

[Cancel]

[Start]

[Show]

[Show Raw Data]

Mit dieser Option wird der Messbereich des Magnetsensors kalibriert, in der gleicher Weise wie man es vom Kompass-Modul eines Mobiltelefons her kennt. Die Kalibrierung ist neu durchzuführen wenn sich die **Stärke des Erdmagnetfeld** ändert, dies ist z.B. der Fall sein wenn man sich auf dem Globus in einer anderen Region bewegt. Im Normalfall genügt es die Kalibrierung einmal durchzuführen.

Zum Zwecke der Kalibrierung ist der Sensor dabei in alle Raum-Richtungen zu schwenken, was vor dem festen Einbau des Sensor in seine Einbauposition an einem Ort möglichst frei von Metall oder Magneten erfolgen muss. Hierbei werden die Minima und Maxima der Magnetfeldstärke in den einzelnen Raumrichtungen X,Y,Z aufgezeichnet und im nicht flüchtigen Speicher des XCVario fest gespeichert. Die **Kalibrierung ist beendet** wenn die drei angezeigten Skalierwerte (X-,Y-,Z-Scale) **Werte nahe beieinander** liegen, und sich nicht mehr ändern. Im Sensor-Dialog wird rechts neben dem Skalierwert in Klammer jeweils auch die **gemessene Feldstärke** für die einzelnen Richtungen X,Y,Z in Prozent des Maximalwerts von 2 Gauss **live** angezeigt.

Beispiel:

X Scale=95.2 (-5.2) Y-Scale=100.4 (3.9) Z-Scale=102.1 (13.9)

Die besten Ergebnisse erzielt man wenn man die 3 Richtungen einzeln kalibriert, und darauf achtet dass jede Richtung X,Y,Z einmal die maximal mögliche positive Feldstärke Anzeige , z.B. (+18.5), und danach und Gegenrichtung, also 180 Grad gedreht, und damit die maximal negative Anzeige z.B. (-18.5) anzeigt. Dies ist für alle 3 Raumrichtungen in beiden Richtungen durchzuführen. Die entsprechende Raumrichtung geht auf Grün, sofern die Maximalwerte erreicht wurden. Dies ist der Fall wenn die beiden anderen Richtungen auf Null oder nahe Null sind (Anzeigebetrag kleiner 1.0), die beiden anderen Richtungs-Sensoren stehen dann zum Erdmagnetfeld orthogonal. Eine kleine Grafik mit Maxima und Minima, sowie den aktuellen Messwerten für die sechs Richtungen X,Y,Z jeweils positiv und negativ, erleichtert die Kalibrierung.

Die X-Achse des Sensors verläuft dabei quer zum Platine (also entlang der kurzen Seite), die Y-Achse längs dazu (entlang der langen Seite), und die Z-Achse verläuft genau senkrecht zur Oberfläche der Platine.

Achtung: Die **Inklination**, also die Neigung der Feldlinie des Magnetfelds zur Erdoberfläche liegt in Deutschland zwischen 62° und **70**° (im Norden steiler), der Sensor zur Kalibrierung daher in einem Winkel von etwa 35° und zwar geneigt nach Süden, gegenüber der Horizontalen zu halten um den Maximalwert zu erfassen. Hat man diesen gefunden, dreht man den Sensor in genau dieser Lage **um 180**° **um die eigene Achse**, bei der sich dieser Wert invertiert. Danach rotiert man den Sensor um 90° in eine andere Richtung für die nächste Achse.

Unter der Option [Show] können die abgespeicherten Ergebnisse der Kalibrierung jederzeit angeschaut werden.

Mit "Show Raw Data" können die rohen Messwerte, die Sensor-Daten wie sie in Echtzeit geliefert werden. Ein Beispiel ist nachfolgend:

```
X = 3397
Y = 1874
Z = 5420
Raw magn H= 48.0 uT
Cal magn H= 48.5 uT
```

Hierbei sind die X,Y und Z Werte die digitalen Werte der AD-Wandler für alle drei Raumrichtungen. Der Wert 8192 entspricht hierbei 1 Gauss oder 100 μT . Und die "Raw Magn H" die Quadratsumme der Werte, also den Betrag der Feldstärke in μT . Die normale Feldstärke in Deutschland liegt bei etwa **49 \mu T** und sollte unbeeinflusst etwa diesen Wert zeigen. Der "Cal magn H" wird gezeigt wenn der Sensor vollständig kalibriert ist, und sollte nicht mehr als 2% vom Rohwert abweichen, liegt die Differenz stark darüber, kann diese auf eine fehlerhafte Kalibrierung hinweisen.

Beachte: **Ohne die Sensor-Kalibrierung** können keine sinnvollen Richtungen ermittelt werden, die **Anzeige** bleibt daher solange **abgeschaltet**. Eine fehlerhafte, nicht vollständig durchgeführte Kalibrierung kann zu Abweichung beim magnetischen Heading führen.

Setup Declination 0°

Die lokale Ortsmissweisung oder auch Deklination, Quelle z.B. ICAO Karte oder aus Flugplatzdaten im Internet, kann mit diesem Parameter berücksichtigt werden. Eine negative Ortsmissweisung beispielsweise -2 Grad entspricht einer Abweichung der Magnetnadel nach Westen. Eine positive Ortsmissweisung entspricht von z.B. 2 Grad entspricht einer Abweichung der Magnetnadel nach Ost. Diese Einstellung kann Sinn machen wenn man ohne eine neue Kalibrierung durchführen zu wollen, an einem andern Ort startet, für den eine andere Ortsmissweisung gilt.

Auto-Deviation

[Disable]

[Enable]

Bei eingeschalteter "Auto-Deviation" wird die Deviation automatisch ermittelt, braucht also nicht wie im folgenden Punkt möglich, manuell kompensiert zu werden. Diese Einstellung ist ein Teil des neuen Verfahrens zur Windberechnung **TAWC** (**T**esla **A**ssisted **W**ind **C**alculation), welche die Richtungs-Information das Erdmagnetfeld nutzt, die Kompensation der Deviation aber in einer Regelschleife mit Hilfe der Windinformation aus dem Kreisflug errechnet. Hierbei wird das Wind-Dreieck mit dem Grund-Vektor sowie dem Wind aus dem Kreisflug gespeist, und als Ergebnis erhält man einen errechneten Vektor für das Heading und die Airspeed, womit sich die Abweichungen beim Kompass sowie bei der Airspeed perfekt aus-regeln lassen. Die ermittelten Werte werden etwa alle Stunde im nichtflüchtigen Flash-Speicher gesichert. Das Verfahren kann nur angewandt werden, wenn mindestens ein Kurbel-Anteil von 20% vorhanden ist. Im reinen Geradeausflug z.B. in einem UL, ist auf manuelle Deviations Kompensation am Kompensationsplatz zurückzugreifen.

Setup Deviations

Direction: 000
Direction: 045
Direction: 090
Direction: 135
Direction: 180
Direction: 225
Direction: 270
Direction: 315

Hiermit wird **Deviation des Kompass** in seiner Einbaulage im Flugzeug

kompensiert. Über den Dialog kann jede Richtung getrennt eingestellt werden. Dies entspricht dem schrittweisen Erstellen einer Deviationstabelle, die Software führt anhand dieser Werte eine Approximation für alle Richtungen durch. Das Flugzeug ist zum Kompensation der Deviation am Boden mit waagerechtem Flügel in acht verschiedene Richtungen präzise zu drehen. Manche Flugplätze haben zu dem Zweck einen Kompensationsplatz mit einer am Boden angebrachte Kompassrose, womit sich dies leicht durchführen lässt. Ist dies kleine Option, kann mit Hilfe eines genauen Kompass z.B. auf dem Flügel, die Richtung ermittelt werden. Es müssen für eine vollständige Kompensation alle **8 Richtungen** angewählt werden, und die Kalibrierung jeweils durch Knopfdruck gestartet und auch beendet werden. Nach der Bestätigung ist der Wert im

nichtflüchtigen Speicher abgespeichert, und es kann zur nächsten Richtung gewechselt werden.

Man kompensiert hierbei an der konkreten
Einbaulage zwei unterschiedliche Effekte den
sogenannten "Soft Iron Effect" welcher von
Einflüssen nicht magnetischer Metalle auf das
Erdmagnetfeld ausgehen, wie z.B. Nickel oder auch
Eisen, und das Magnetische Feld verbiegen.
Daneben gibt es die "Hard Iron Effects", Metalle
welche selbst magnetisch sind, sprich eigene

Magnetfelder produzieren und im Normalfall von Magneten wie beispielsweise einem Lautsprecher ausgehen.

Show Deviations

Unter diesem Punkt lassen sich die Deviations Werte zeigen, und zwar für alle **acht Richtungen** für welche die Deviation gespeichert wurde, sei es manuell ermittelt durch Kompensation wie im vorhergehenden Punkt, oder durch das AutoDeviation Feature errechnet. Eine kleine **Grafik** veranschaulicht den Verlauf der Deviations-Kurve. Die Kurve sollte idealerweise stetig verlaufen, und eine Sinus-Periode ohne weitere Schwingungen aufweisen.

Reset Deviations

[Cancel]

[Reset]

Eine bestehende Deviationstabelle wie im vorhergehenden Punkt erstellt, kann hiermit gelöscht werden.

Setup NMEA

Einstellung der NMEA Sätze welche das Kompass-Modul generiert.

Magnetic Heading

[Disable]

[Enable]

Einschalten der Generierung der NMEA Sätze für den missweisenden Kurs, welcher in die Richtung zum magnetischen Nordpol hin weißt. Der entsprechende NMEA Satz hierzu ist \$HCHDM.

True Heading

[Disable]

[Enable]

Für die Generierung des NMEA für True Heading, entsprechend \$HCHDT ist eine Ortsmissweisung (Declination) zu erfassen, und die Kalibrierung durchzuführen.

Damping

3.00 sec

Mit der Dämpfung (engl. Damping) wird die Anzeige des Kompass beruhigt, voreingestellt sind 3 Sekunden, was in der Regel ausreichend ist um eine stabile Anzeige zu erhalten. Sollte im Einzelfall z.B. durch elektrische Leitungen oder anderweitige Störquellen der Anzeige-Wert nicht stabil sein, kann die Dämpfung leicht erhöht werden. Die Einschwingzeiten erhöhen sich entsprechend.

I2C Clock

100 KHz

Der Takt des I2C Bus (SCL) zum Magnet-Sensor welcher außerhalb des Gehäuses liegt kann hierdurch eingestellt werden. 100 KHz sind die Herstellerempfehlung für den Chip, sollen z.B. durch lange Leitungen hiermit Probleme auftauchen wie z.B. ein nicht gefundener Sensor während der Kalibrierung oder keine Anzeige zu sehen sein, kann die Frequenz auch erniedrigt werden.

Show Settings

Zeigt eine Übersicht der wichtigsten Einstellungen, sowie ob eine Überschreitung des Messbereichs (Sensor Overflow) stattgefunden hat.

Wind Calculation

[Disable]

[Straight] [Circling]

[Both]

Für den Wind im Geradeausflug (Einstellung **Straight**) muss der Kompass installiert und funktionsfähig sein, die Sensor-Kalibrierung muss durchgeführt sein. Die Windberechnung erfolgt als Vektorsubtraktion des Air-Vektors aus dem True Heading (TH) des Kompass und der Airspeed, sowie aus dem GPS Signal eines angeschlossen FLARM den Ground Vektor aus Groundspeed und dem True Course (TC), dem Kurs über Grund. Die Deviation kann am Boden kompensiert werden, oder im Flug automatisch ermittelt werden. Ebenso muss das XCVario dazu mit einem Flarm in Verbindung stehen. Der Wind im Geradeausflug ist eine wichtige Info, da bei Kurbelanteilen von vielleicht nur

20% ein Segelflugzeug die meiste Zeit im Geradeausflug unterwegs ist. Hierbei ist eine gute Genauigkeit des Kompass wichtig, der hochauflösende 3D Magnetsensor, verfügbar als Zusatzmodul zur XCVario Hardware Serie 21 unterstützt hierbei.

Beachte: Die Einstellung Geradeausflug (engl. Straight) für die Wind-Berechnung wird aktuell im Flug getestet, und wurde mit Hilfe von Simulationen optimiert, befindet sich also **noch in der Entwicklung**. Mit einer endgültige Freigabe wird aufgrund schlechten Wetters in der Saison 2021 erst im Sommer 2022 gerechnet.

Nachfolgend ein Vergleich der Windanzeige beider Verfahren über einen gesamten Flugtag am 7.2.2022 (https://www.weglide.org/flight/178203), an in der Flughöhe dem Ostwind mit ca. 20 km/h im Westen aus 120° und im Osten auf Süd drehend um 150° angesagt waren. Beide Verfahren liefern mittlerweile Werte mit guter Übereinstimmung:

Die Windberechnung im Kreisflug (engl. **Circling**) dagegen ist bereits ausreichend stabil, das Verfahren ist identisch mit XCSoar oder Cumulus, von dem es ursprünglich stammt, und ist bereits freigegeben.

In der Einstellung 'Beides' (engl. **Both**), wird immer der Wind angezeigt, der gerade berechnet wurde, hier werden beide je nach Flugzustand Kreisen oder Geradeaus die entsprechenden Berechnungen ausgeführt.

Display

[Disable]

[Wind Digits]
[Wind Arrow]
[Wind Both]
[Compass]

Unter der Einstellung "Display" kann entweder der aktuelle Wind digital [Wind Digits] z.B. **90°/25** im Format Windrichtung/Windstärke im Retro-Style Display (unterhalb IAS/TAS) dargestellt werden, oder als kleiner Windpfeil innerhalb des Display's [Wind Arror], oder auf beide Arten [Wind Both]. In der Voreinstellung ist die Windanzeige abgeschaltet [Disable]. Zusätzlich, in der Einstellung [Compass] kann auch der Kompass-Kurs gewählt und dargestellt werden. Sofern keine Windberechnung vorliegt, z.B. am Boden oder während er ersten Berechnungen, wird der statt dem digitalen Wind immer der Kompass-Kurs angezeiht. Die Windanzeige erfolgt immer in der Einheit welche für die Fluggeschwindigkeit gewählt ist.

Arrow Ref

[North]

[Mag Heanding] [GPS Course]

Mit der "Arrow Ref(erence)", wird festgelegt ob der Windpfeil (engl. Arrow), relativ zur Nordrichtung, zum Kompasskurs bzw. Richtung der Flugzeuglängsachse [Mag. Heading] (nur möglich bei vorhandenem Magnetsensor) also zu Flugzeuglängsachse, oder relativ zum GPS Kurs [GPS Course] über Grund dargestellt wird. Der Windpfeil wird nur im Retro-Style Display Modus dargestellt. Bei den relativen Darstellungen, wird ein kleines Flugzeugsymbol an der Spitze des Windes gezeichnet.

Straight Wind

Filters

Airspeed Lowpass

0.020

Der Airspeed Sensor wird bei der Windmessung fortlaufend kalibriert. Der Tiefpass Faktor bestimmt dabei die Geschwindigkeit, mit welcher die Kalibrierung angepasst wird. Der voreingestellte Wert von 0.020 oder 2% bedeutet eine Änderung der Kalibrierung um 2% pro Sekunde. Der Default Wert braucht im Normalfall nicht angepasst zu werden.

Deviation Lowpass

0.020%

Auch die Deviation des Magnet-Sensors wird bei der Windmessung fortlaufend kalibriert. Der Tiefpass Faktor bestimmt dabei die Geschwindigkeit, mit welcher die Kalibrierung angepasst wird. Der voreingestellte Wert von 0.020 oder 2% bedeutet eine Änderung der Kalibrierung um 2% pro Sekunde. Der Default Wert braucht im Normalfall nicht angepasst zu werden.

GPS Lowpass

1.0 sec

Mit diesem Wert werden die Kursinformationen vom GPS nachträglich gefiltert um ein identisches Zeitverhalten mit dem Kompass zu erhalten. Der Defaultwert wird im Moment noch optimiert und kann sich noch geringfügig ändern.

Averager

60

Hiermit wird die Anzahl der Messungen festgelegt, welche bei der Mittelwertbildung der Messungen relevant sind. Die Messungen erfolgen jede Sekunde, ein Wert von 20 (voreingestellt), bedeutet eine Mittelwertbildung über die letzten 60 Sekunden. Eine kleinere Einstellung macht die Windberechnung nervöser, Abweichungen beim Kurs z.B. durch Schiebeflug zeigen sich unmittelbar. Bei einer höheren Einstellung werden temporäre Abweichungen aus-gemittelt.

Limits

Deviation Limit

30°

Die korrekte Deviation des Magnetsensors ist ein wichtiger Parameter, und kann bei "AutoDeviation" automatisch mit Hilfe des Kreisflug-Windes berechnet werden. Die Toleranz gibt an wie weit die berechnete Deviation für die aktuelle Richtung von letzten gespeicherten Wert abweichen darf. Bei Werten darüber wird die aktuelle Windmessung als nicht plausibel verworfen. Voreingestellt sind 30%. Der Wert braucht im Normalfall nicht angepasst zu werden.

Sideslip Limit

2.0°

Die Windberechnung benötigt einen präzisen Kompasskurs (Heading), was nur gewährleistet ist wenn der Faden exakt in der Mitte verbleibt. Bereits bei Abweichungen von wenigen Grad lässt die Genauigkeit der Windberechnung nach. Typischerweise pendeln Segelflugzeuge durch das je nach Modell unterschiedlich stark ausgeprägte Rollwendemoment bei jeder Korrektur um ein paar Grad um die Hochachse. Damit der Schiebeflug wenig oder gar keinen Einfluss mehr auf die Wind-Berechnung hat, berechnet das XCVario kontinuierlich den Schiebewinkel aus der Sensorik, und verwendet nur diese Wind Messwerte welche bei einem Schiebewinkel innerhalb einer hier konfigurierbaren Toleranz gewonnen wurden. Je kleiner dieser Wert, um so präziser die Windberechnung, allerdings werden um so weniger Messungen in das Toleranzband fallen. Zur Kontrolle lässt sich der Slip-Angle live im Feld der Anzeige für die Geschwindigkeit (IAS/TAS) im Retro-Display darstellen. Per Voreinstellung ist ein maximaler Schiebewinkel von 2 Grad (nach links und nach rechts) konfiguriert. Werte bis 1 Grad wurden bereits erfolgreich getestet.

Course Limit

7.5°

Das Course Limit gibt die maximale Abweichung in Grad pro Sekunde für den Geradeausflug an, bis zu dem die Windberechnung durchgeführt wird, eine Messung bei höheren Drehgeschwindigkeiten als dem konfigurierten Wert wird als fehlerbehaftet verworfen. Voreingestellt sind 7.5 Grad pro Sekunde.

AS Delta Limit

15 km/h

Das AS Delta Limit gibt die maximale Abweichung in km/h für die Fluggeschwindigeit im Geradeausflug an, bis zu dem die Windberechnung durchgeführt wird, eine Messung bei höherer Varianz der Geschwindigkeit als dem konfigurierten Wert wird als fehlerbehaftet verworfen. Voreingestellt sind 15 km/h Änderung pro Sekunde.

Straight Wind Status

Der Statusbildschirm zeigt Informationen zur Geradeausflug Windberechnung, wie die Eingangsparameter, z.B. der GPS Status, Abweichungen der Geschwindigkeit über Grund und der Fluggeschwindigkeit innerhalb des Messfensters, der zu Grunde gelegten Deviation des Kompasses und mehr, und dient im Wesentlichen zur Entwicklung des Features, kann aber auch zur Diagnose herangezogen werden falls die Messung nicht funktioniert.

- Straight Wind enabled : Yes [No] (Feature aktiviert oder nicht)
- Status: Initial [Calculating] (Status der Berechnung)
- GPS Status: Good [Bad]
- AS C/F: +1.000%/1.000% (Airspeed Kalibrierungs Info)
- Last Wind: 93°/25 (Richtung und Windstärke in der eingestellten Einheit für die Geschwindigkeit)
- MH/Dev: 68.00/+7.23: (Magnetic Heading and corresponding Deviation)
- Wind Age: 120 sec (Alter der letzten Windmessung)

Circling Wind

Beim der **Kreisflug Windberechnung** kann nur wenig eingestellt werden, das Verfahren ist recht simpel. Die Berechnung basiert rein auf den GPS Daten, ein Kompass Modul ist dazu nicht notwendig, daher auch auf Geräten der **Serie 2020**, ohne zweite Schnittstelle S2 **möglich**. Ein **Flarm als GPS Datenquelle** ist hierbei die Voraussetzung. Bei der Berechnung werden die Vektoren der Geschwindigkeit über Grund evaluiert, und aus den Richtungen der maximalen und minimalen Geschwindigkeit über Grund der Wind-Vektor errechnet. Das Verfahren funktioniert auch bei Kreisen, die nicht ganz kreisförmig sind, eine relativ konstante Geschwindigkeit im Kreisflug ist dabei vorteilhaft. Die Messung verbessert sich durch eine **intelligente Filterung** (vereinfachtes Kalman-Filter) über mehrere Kreise, dabei wird der Qualitätsfaktor der Messung aus der Korrelation der Richtung der Minima und Maxima der gemessenen Geschwindigkeitswerte herangezogen. Im Normalfall reichen zwei bis drei Kreise für einen präzisen Wert, und bereits nach einem Kreis erfolgt eine erste Anzeige des Windes.

Circling Wind Status

Der Statusbildschirm zeigt Informationen zur Kreiswindberechnung. Durch Knopfdruck kann dieses Anzeige-Element wieder verlassen werden. Durch drehen am Knopf erfolgt ein Update der Information.

- Circling Wind enabled: Yes [No] (Feature aktiviert oder nicht)
- GPS Status : Good [Bad] (Der GPS Status)
- GPS Satellites: 8 (Anzahl der Satelliten)
- Number of Cirlces: 2.52 (Anzahl der Kreise die gedreht wurden seit Start der Messung)
- Last Wind: 93°/25 (Aktuelle Richtung/Windstärke in der eingestellten Einheit für Geschwindigkeit)
- Wind Age: 20 sec (Alter der letzten Windmessung)
- Quality : 95% (Faktor für die Qualität der Messung (0..100%)
- Status: sampling (Status der Windberechnung)
- Flight Mode: circling L (Flugmodus, nur im Kreisflug wird gerechnet)

Max Angle Delta

90°

Hier lässt sich die maximal **zulässige Winkeldifferenz** der normalisierten Richtungen für die maximale und minimale Geschwindigkeit über Grund (Grund-Vektor), einstellen. Voreingestellt sind 90 Grad, darüber macht eine Windberechnung keinen Sinn mehr, ein Kreis mit einer Winkeldifferenz von über 90 Grad wird für die Windberechnung daher verworfen.

Averager

5

Hiermit wird die **Anzahl der Messungen** festgelegt, welche bei der **Mittelwertbildung** der Wind Messungen beim Kreisen relevant sind. Die Messung erfolgt nach jedem vollständigen Kreis. Ein Wert von 5 (voreingestellt), bedeutet eine Mittelwertbildung über die letzten 5 Kreise. Eine kleinere Einstellung macht die Windberechnung nervöser, eine höhere Einstellung dämpft temporäre Ausreißer, z.B. durch Fahrtschwankungen während des Kreisens.

Wind Logging

[Disable]

[Enable WIND]
[Enable GYRO/MAG]
[Enable Both]

Mit dieser Einstellung kann der Wind-Logger aktiviert werden, dieser dient der Entwicklung und Optimierung des Features, und erzeugt NMEA ähnliche Datensätze mit der \$WIND Kennung im normalen NMEA Datenstrom des XCVario's. Der Datensatz enthält einen Zeitstempel (Sekunde), den Grundvektor (°, km/h), den Airspeed Vektor, die aktuelle Windberechnung und den gemittelten Wind, die letzte Kreiswindberechnung, die Airspeed Korrektur, den Flugmodus, den GPS Status, sowie die Deviation.

Um die Daten nach dem Flug auswerten zu können, ist neben dieser Einstellung auf Enable in den **XCSoar Einstellungen** unter System → Einstellungen → Logger der "**NMEA-Logger**" auf "**Ein**" zu stellen.

In den XCSoarData, dem logs Verzeichnis wird dann eine Datei .nmea abgelegt, welche alle Informationen die das XCVario an XCSoar geschickt hat, dabei auch der \$WIND Datensatz, enthält.

Die Einstellung GYRO/MAG gibt weitere Datenfelder mit den X,Y,Z Rohwerten der Beschleunigung, des Gyrometers, sowie des Magnetsenors aus.

Beispiel:

\$WIND;9747;214.8;115.9;153.1;136.3;58.9;116.6;58.9;116.6;89.8;26.2;5.0,1,1,16.8

10.10.9. Wireless

Wireless

[Disable]

[Bluetooth]

[Wireless Master]

[Wireless Client]

[Wireless Standalone]

[Bluetooth LE]

Der Dialog dient zum Aktivierung und Deaktivierung der Schnittstelle zu einem Wireless Gerät. Die Wireless Schnittstelle kann entweder im **Bluetooth** Modus ein einzelnes Gerät versorgen, oder in der **Wireless** Einstellung über WLAN (**WiFi**) bis zu 3 Geräte, wobei eines davon das Zweitgerät in einem Doppelsitzer sein kann. Das XCVario dient hierbei als WiFi Server. In dieser Einstellung werden mehrere Geräte sowie auch mehrere Treiber auf eigenen Ports im XCSoar unterstützt, siehe dazu auch das Kapitel XCSoar Konfiguration / Wireless LAN.

Bluetooth

Voreingestellt ist [Bluetooth] wobei sich immer nur ein Gerät mit dem XCVario verbinden kann.

Wireless Master

Mit dieser Einstellung kann das Gerät als WiFi-Server und Master zur **Zweitanzeige im Doppelsitzer** eingestellt werden, und zusätzlich ein oder zwei Navi's über diesen WiFi Access Point verbunden werden.

Wireless Client

Mit dieser Einstellung kann das Gerät als **Zweitanzeige im Doppelsitzer** eingesetzt werden. Dabei wird beim Einschalten auf das Master XCVario gewartet, welches im [Wireless Master] Modus zu betreiben ist. Eine Synchronisation des Zweitgeräts im Bluetooth Mode ist nicht möglich. Der Wartebildschirm auf das Master XCVario kann notfalls per Knopfdruck beendet werden, und der Mode wieder umgesetzt werden, falls man versehentlich dies eingestellt hat, aber nur ein Vario besitzt. Im [Wireless Client] Modus erhält das Zweitgerät alle Sensor-Daten vom Master Vario, wie Temperatur, Fluggeschwindigkeit, TE-Variometer und mehr. Auch **QNH, Ballast** und **Bugs** und die Lautstärke werden gegenseitig **synchronisiert**, wogegen der **MacCready Wert individuell** eingestellt werden kann, sowohl am Master, als auch am Client Gerät.

Wireless Standalone

Diese Einstellung ist für **Einsitzer** gedacht, wenn kein Zweitgerät über Wireless zu verbinden aber ein Navi über den WiFi Access Point des Geräts angebunden werden soll, und ist in dem Fall anstelle von [Wireless Master] zu wählen, um unnötige Aussendungen an ein nicht vorhandenes Zweitgerät zu unterbinden (bessere Performance).

Bluetooth LE

Der Bluetooth Low Energy oder BLE-Standard ist derzeit experimentell. Classic Bluetooth unterstützt besser die NMEA Streaming-Protokolle über die RFCOM-Funktion, aber ist NMEA-Streaming ist ebenfalls über BLE mit dem nordic UART Service möglich. Es gibt noch keine Unterstützung in XCSoar oder LK8000, aber wir erwarten dass die Teil einer zukünftigen Entwicklung sein wird, und deshalb haben wir BLE bereits verfügbar gemacht. Das XCVario gibt eine ID wie "XCVario-1234-LE" bekannt, sobald BLE aktiviert ist.

WL Routing

Als neues Feature ab dieser Software Version lässt sich nun das Routing für alle Schnittstellen ohne Einschränkungen ganz individuell einrichten. Die neue Funktion ermöglicht Routing Einstellungen, um z.B. eine Aufgabe an einem mit dem Zweitgerät über Bluetooth gekoppelten Navi auf dem am vorderen Gerät gekoppelten

Logger oder Flarm zu deklarieren, oder die NMEA Daten an den seriellen Schnittstellen des Zweitgerätes auf das vordere Gerät zu routen. Einstellungen aus einer vorhergehenden Software-Version werden automatisch übernommen, und die neuen Schalter entsprechend voreingestellt. Wege, die es zuvor nicht gab, sind nun ab dieser Software-Version zusätzlich einstellbar.

Eine Routing Menu im Setup existiert für das Wireless Interface, die beiden seriellen Schnittstellen S1 und S2, sowie für den CAN Bus.

XCVario

[Enable]

[Disable]

Mit dieser Einstellung auf "**Enable**" wird gewählt ob Daten des XCVario auf der Wireless Schnittstelle ausgegeben und Kommandos über diese Schnittstelle empfangen werden werden und bearbeitet werden sollen.

S1-RS232

[Enable]

[Disable]

Diese Einstellung routet die Daten der **Wireless** Interface auf das serielle **RS232 Schnittstelle S1**. Das XCVario arbeitet mit dieser Einstellung als Bluetooth oder WiFi **Bridge**, und leitet Daten eines drahtlos gekoppelten Navis mit z.B. XCSoar transparent an die serielle Schnittstelle S1 weiter. Daten aus anderen Quellen werden im Zeit Multiplex-Verfahren nacheinander auf die Schnittstelle geschaltet. Die Einstellung ist gleichwertig mit der Routing Einstellung [Wireless] beim S1 Interface. Ist diese Einstellung enabled, wird automatisch die Rückrichtung beim S1 Interface ebenso enabled und damit bidirektional geroutet. Dies gilt generell für alle Rückrichtungen.

S2-RS232

[Enable]

[Disable]

Mit dieser Einstellung werden die Daten von **Wireless auf** die Schnittstelle **S2** geroutet und umgekehrt, das XCVario arbeitet in dieser Einstellung wie zuvor für S1, hier als Bridge zur seriellen Schnittstelle S2.

CAN-bus

[Enable]

[Disable]

Diese Einstellung routet die Daten am **Wireless** Interface zum **CAN Bus**, z.B. wenn diese auch an der Zweitanzeige von Relevanz sind.

WiFi Power

50%

Mit der Option WiFi Power wird die maximale Leistung des WiFi Moduls eingestellt. Die Leistung kann zwischen 2 dBm und 20 dBm variieren. In der kleinsten Einstellung 10% werden 2 dBm ausgestrahlt, dies genügt in der Regel für Einsitzer bei denen das Empfangsgerät nahe beim Variometer z.B. am I-Brett montiert ist. Der **Default ist auf 50%** entsprechend **10 dBm** und sollte für alle Anwendungen, auch für den Empfang in Doppelsitzern vom hinteren Sitz genügen. Falls es in schwierigen Empfangssituationen, z.B. durch geschlossene Carbon Panels welche Funkwellen perfekt dämpfen zu Verbindungsabbrüchen kommt, kann die **Leistung** auch auf **100% erhöht** werden. Der Stromverbrauch erhöht sich dadurch um ca. 5 mA.

Lock Master

[Unlock]

[Lock]

Unter dem Eintrag "Lock Master" kann ein **Zweitgerät** mit seinem WiFi-Master **gepaart** werden, damit sich das Gerät nur mit diesem Master XCVario verbindet. Nach der Auswahl von [Lock] erscheint im Dialog die ID des XCVario mit dem stärksten WiFi Signal in der Nähe, normalerweise das vordere Gerät, und dann per Knopfdruck mit gespeichert werden. Die Verbindung wird dann **nur noch mit diesem Gerät** aufgebaut. Es ist bei der Paarung darauf zu achten dass kein drittes Gerät näher als das vordere Gerät im Cockpit in der Nähe ist, ggf. diese für den Moment der Paarung abschalten. Die Paarung kann mit [Unlock] jederzeit aufgehoben werden. Das explizite konfigurieren hat den Vorteil, dass kein anderes Gerät gefunden werden kann, z.B. wenn das vordere Gerät zum Zeitpunkt des Einschaltens des Zweitgerätes noch nicht eingeschaltet ist.

Monitor

[Disable]

[Bluetooth]

[WiFi 8880]

[WiFi 8881]

[WiFi 8882]

[RS232 S1]

[RS232 S2]

[CAN Bus]

Der Monitor dient dazu externe Datenverbindungen des XCVario zu überwachen, und kann mit diesem Dialog aktiviert werden. Unter [Disable] ist der Monitor abgeschaltet und keine Schnittelle ausgewählt, während z.B. [RS232 S2] das serielle Interface an S2 wählt, und die dort übertragenen Daten auf dem Bildschirm ausgibt. Erfolgt keine Ausgabe, werden auch keine Daten übertragen. Nach der Auswahl der zu überwachenden Schnittstelle, startet per kurzem Knopfdruck die Ausgabe der Daten am Bildschirm. Der Bildschirm scrollt dabei durch, die Ausgabe kann durch kurzen Knopfdruck pausiert werden, mit langem Druck wird der Daten-Monitor beendet. Alle druckbare ASCII Zeichen werden hierbei ausgegeben, was für alle Datensätze im NMEA Format und NMEA ähnlichen Formate (z.B. GPS Datensätze), als mächtiges Tool zur Fehlersuche zur Verfügung steht. Zu Beginn eines jeden Datensatzes am Start einer neuen Zeile, wird durch das Zeichen > Zeichen angezeigt dass es sich um Daten in Empfangsrichtung handelt, und mittels dem < Zeichen die Daten in Senderichtung. Nach jedem übertragenen Satz erfolgt ein Zeilenvorschub. Die Ausgabegeschwindigkeit hat Ihre Grenzen, bei schnellen Datenverbindung mit hohem Datenaufkommen können einzelne Pakete verloren gehen. Durch die meist zyklische Übertagung werden trifft es aber unterschiedliche Pakete, so dass die gesuchten Daten normalerweise problemlos erfasst werden können. Die Anzahl der empfangenen und gesendeten Bytes werden in der Kopfzeile dargestellt.

Das einzig bekannte binäre Protokoll ist das FLARM Protokoll zum Download von Flügen, und kann damit nur insofern überwacht werden, wie den Start des Binär-Modus (FLARM bincom), und den druckbaren Zeichen während der Übertragung.

\mathbf{r}	•	•		. 1	
н	$^{\circ}$	C	nı	e	

Daten in Senderichtung:

<\$PXCV,-0.0,0.5,0,1.00,0,24.1 ,1003.0,984.5,0.0,0.9,0.8,0.01,0 .00,1.00*30

Daten im Empfangsrichtung:

>\$GPGSV,3,1,12,02,36,257,19,04 ,14,080,34,05,23,307,,06,22,206, *7B

Monitor Mode

ASCII

Binary

Mit dem "Monitor Mode" wird gewählt ob die Daten im ASCII oder im Binärformat angezeigt werden. Normalerweise werden NMEA Daten in ASCII versendet. Manche Geräte verwenden aber das Binärformat, z.B. Protokolle um ein Funkgerät einzustellen, diese Daten können im Detail nur im Binärformat angezeigt werden, welches die binären Daten als Hexadezimal-Tuple's (00..ff) darstellt. Per Default ist der ASCII Mode eingestellt. Änderungen hier werden nicht im Flash gespeichert, müssen also nach den nächsten Start erneut gesetzt werden.

Custom-ID

Über die "Custom-ID" kann eine eigene Kennung für die wireless Geräte-ID bei Bluetooth oder WLAN ein **eigener Name** eingestellt werden. Der Prefix "XCVario-" ist dabei unveränderlich, die Ziffer danach lässt sich über dieses Setup beliebig einstellen. Dafür stehen sechs Ziffern zur Verfügung und ermögicht die Eingabe eines vollständigen Kennzeichens, z.B. D-1234 oder D-KABC. Auch ein Wettbewerbskennzeichen oder der Flugzeug-Typ sind denkbar, z.B. ASW24. Zusammen mit dem Präfix ensteht damit beispielsweise die ID "XCVario-D-KABC" welche in gewohnter Weise mit dem Smartphone gekoppelt werden kann. Bei Änderung der ID wird empfohlen, falls das Vario mit dem Navi Gerät noch gekoppelt ist, die alte (nun ungültige) ID dort zu löschen.

10.10.10. G-Load Display

Das G-Load Display ist ab dem XCVario Serie 21 (ff) eine Option um das Lastvielfache anzuzeigen. Ist die Option aktiviert, werden auch die Maximalwerte im nichtflüchtigen Speicher festgehalten, im G-Load Display angezeigt oder können im Setup Menu des G-Meters abgerufen werden. Es kann unter "System/Hardware_Setup/Rotary_Setup/Screens" eingestellt werden, den G-Messer per Knopfdruck im Wechsel mit dem Variometer Display anzuzeigen. Zusätzlich wird nun auch die maximale IAS unterhalb des Spitzenwerts des negativen Lastvielfachen angezeigt. Die Spitzenwerte werden rot dargestellt, sobald die konfigurierten Limits überschritten wurde.

Activation Mode

[Off]

[Dynamic]

[Always On]

Die **Anzeige des Lastvielfachen** kann entweder deaktiviert sein [Off] voreingestellt, dynamisch erfolgen [Dynamic] und bei einer Überschreitung der eingestellten Schwellen für positives oder negatives Lastvielfaches erfolgen, oder kann dauerhaft aktiviert sein [Always On], z.B. für Kunstflug.

Positive Threshold

5.0

Hiermit wird die Schwelle (engl. Threshold) für das positive Lastvielfache in g (Vielfachem der Erdbeschleunigung) festgelegt bei welcher eine Anzeige des "G-Load" Displays erfolgt. Eine "1" oder 1 g entspricht der normalen Schwerkraft, der Erdbeschleunigung. Voreingestellt sind 5 g. Der Wert wie auch die nachfolgenden Einstellungen sind in Schritten von 0.1 g einstellbar.

Negative Threshold

-3.0

Die entspreche Einstellung wie im vorhergehenden Punkt, nur für das negative Lastvielfache. Voreingestellt sind - 3 g.

Red positive Limit

4.0

Das positive Limit des Lastvielfachen wie für den konkreten Flugzeugtyp relevant. Der Wert ist dem Flughandbuch zu entnehmen. Die Skala zeigt die Überschreitung dieses Lastvielfachen als roten Bereich. Voreingestellt sind 4 g. Es ertönt **zusätzlich** ein **akustisches Warnsignal**, wenn das eingestellte maximal zulässige positive Lastvielfache erreicht wird.

Yellow positive Limit

3.0

Zweites, reduziertes positives Limit für das Lastvielfache für den Wert der z.B. ausserhalb des Bereichs der Manöviergeschwindigkeit gilt. Der Wert ist dem Flughandbuch zu entnehmen. Gibt es dort keinen Wert, dann kann der Wert gleich gesetzt werden mit dem vorangegangenen Limit, ein gelber Bereich taucht dann nicht auf. Die Skala zeigt die Überschreitung dieses Lastvielfachen als orangen Bereich. Voreingestellt sind 3 g.

Red negative Limit.

-3.0

Die entspreche Einstellung des Limit wie im vorhergehenden Punkt, nur für das negative Lastvielfache. Voreingestellt sind -3 g. Bei Überschreitung ertönt auch hier ein akustisches Warnsignal.

Yellow negative Limit

-2.0

Die entspreche Einstellung des Limit wie im vorhergehenden Punkt, nur für das negative Lastvielfache. Voreingestellt sind -2 g.

Max Positive

Der höchste gemessene Wert des Lastvielfachen seit dem letzten Reset.

Max Negative

Der höchste gemessene Wert des negativen Lastvielfachen seit dem letzten Reset.

G-Load reset

Hiermit können die gespeicherten Maximalwerte der vorhergehenden zwei Punkte zurückgesetzt werden.

10.11. System

Im System Menu verschiedene Dinge welche mit der Hard- und Software in Zusammenhang stehen eingestellt.

10.11.1. Software Update

Software Vers.

21.0119-18

Anzeige der installierten Software-Version.

Software Update

[Cancel]

[Start]

Die Software des Geräts ist als OpenSource frei zugänglich auf github Seite: https://github.com/iltis42/XCVario .

Für den Download der Datei, sowie den Update wird der Firefox Browser empfohlen, mit anderen Browsern kann es auf machen Geräten durch die Endung "bin" der zu ladenden Datei zu Problemen durch anderweitige Verknüpfungen kommen.

Software Releases werden auf: https://github.com/iltis42/XCVario/releases veröffentlicht, und können OTA (Over The Air) über einen WiFi Access Point des Vario's eingespielt werden. Hierzu ist die neue Firmware, z.B. die Datei sensor-master-22.0824-2302.bin zunächst auf einen WiFi fähigen Gerät z.B. ein Android oder IOS Handy oder Tablet, oder auch einen Laptop oder PC mit Internetverbindung zunächst lokal zu speichern. Bitte dabei darauf achten dass die Dateilänge der geladenen Datei dem entspricht, was die Webseite zeigt. Typische Dateilängen sind ca. 1.7 Megabyte.

Zwischenreleases zu Testzwecken sind hier zugänglich https://github.com/iltis42/XCVario/tree/master/images, die Installation erfolgt aber auf eigene Verantwortung, die Dokumentation ist zum Zeitpunkt der Veröffentlichung möglicherweise noch nicht auf dem letzten Stand, und es wurden damit noch nicht alle Tests durchgeführt, ein Support kann dafür nur eingeschränkt gegeben werden.

Danach im Vario Setup unter System/Software Update/ [Start] den Software Update am XCVario starten und am Gerät auf welchem sich die Datei befindet, auf das WiFi "ESP32 OTA" wechseln. **Alternativ** kann in den Software Update Modus gesprungen werden (Shortcut), wenn man **unmittelbar nach dem Einschalten**, gleich nachdem die **Software-Version angezeigt** wird (erste Zeile), den **Rotary drückt.** Da manche neueren Geräte mit ungesichterten WiFi Netzen nicht mehr umgehen können oder wollen, wurde im Februar 2022 das WiFi auf den sicheren Standard WPA2 PSK umgestellt. Eimalig ist dazu ein Passwort anzugeben. Das **Passwort** wird am Bildschirm angezeigt, und ist wie beim ESP32 XCVario-<nnnn> WiFi Zugangspunkt ebenfalls: **xcvario-21** .

Ist das erfolgt kann dort die neue Firmware im Browser auf der Webseite http://192.168.4.1, ausgewählt (Browse) und dann hochgeladen werden. Die IP-Addresse ist nun ebenfalls vereinheitlicht. Den Prefix http://dabei angeben, auf jeden Fall falls der Browser eine Verbindung mit https:// versucht, eventuell eine vorhandene automatische Weiterleitung nach https gegebenenfalls abschalten.

Der Dialog führt dabei mit Fortschritts Anzeige durch den Download und zeigt den Erfolg sowohl auf der Webseite, als auch am Variometer an. Kommt es zu Übertragungsfehlern wird die Software verworfen und das Variometer startet mit der bisherigen Software neu. Es gibt zwei Downloadbereiche, die neue Software wird immer in den **nicht aktiven Bereich** geschrieben, und jederzeit die Funktionsfähigkeit des Gerätes zu garantieren.

Wurde der Software Download am Vario selektiert, aber keine Datei ausgewählt und geladen, gibt es **nach 15 Minuten** einen automatischen **Timeout** und die alte Software startet neu. Will man den Timeout nicht abzuwarten, kann per **Knopfdruck am Drehschalter** der Software Download jederzeit **abgebrochen** werden.

Sollte die Verbindung mit dem WiFi nicht klappen, prüfen ob das Gerät einen Haken besitzt dass die **Verbindung gehalten** werden soll, auch wenn diese nicht internetfähig ist. Ein entsprechendes PopUp gegebenenfalls ebenfalls positiv benatworten. Das XCVario wählt ab Software Februar 2022 **bei jedem Start** des Download-Features **zufällig einen anderen Kanal**, damit auch ein einem Umfeld mit vielen belegten WiFi Kanälen auch ein Kanal gefunden werden kann, welcher einen fehlerfreien Download ermöglicht.

Nach dem Update, sind die **Einstellungen zu überprüfen**. Im Normalfall sollten diese aus der vorherigen Installation vollständig übernommen werden. In neuen Releases können jedoch **neue Features** dazukommen, deren Voreinstellungen unter Umständen geändert werden müssen. In den Release-Notes dazu entsprechende Hinweise bitte lesen.

<u>Anmerkung:</u> Beim **Update von älteren Versionen vor Mitte 2021** ist es möglich, dass die Einstellung der Polare sich verändert hat, diesen Parameter daher auf jedem Fall zu überprüfen, ggf. korrigieren. Das Problem der potentiellen Verschiebung der Polaren ist ab dem Juli Release 2, 2021 gelöst, die Überprüfung bei Update von Versionen danach ist nicht mehr notwendig.

10.11.2. Factory Reset

[Cancel]

[ResetAll]

Ermöglicht einen Reset auf Voreinstellung aller Settings des Gerätes. Achtung alle Einstellungen gegenüber den Default Werten gehen verloren. Nach einen Reset Polare und sonstige Einstellungen notwendig für den Flugzeugtyp vornehmen. Ein Factory Reset kann auch beim Software-Download über den Browser über den Button "Factory Reset" durchgeführt werden.

10.11.3. Battery Setup

Die Spannungen sind für einen Bleiakku voreingestellt. Bei anderen Akkutypen entsprechend dem Herstellerdatenblatt justieren. Bei Spannungen unterhalb vom Wert "Battery Red", blinkt zusätzlich die Anzeige.

Battery Low

11.50 Volt

Einstellung der Spannung für Batterie Leer (Anzeige 0%, leer, keine Anzeige von Restladung)

Battery Red

11.75 Volt

Einstellung der Spannung für Batterie Alarm Rot (Anzeige 0-10%, Restladung rot blinkend)

Battery Yellow

12.00 Volt

Einstellung der Spannung für Batterie Gelb (Anzeige 10-20%, Restladung gelb)

Battery Full

12.80 Volt

Einstellung der Spannung für Batterie Voll (Anzeige 20-100%, Ladeanzeige grün)

Battery Display

[Percentage]

[Voltage]

[Voltage Big]

Unter dem Menüpunkt, Battery Display" lässt sich die **Art der Anzeige** modifizieren. Der Batteriewert kann sowohl in Prozent [Percentage] als auch in Spannung [Voltage] angezeigt mit einer Dezimalstelle, z.B. **12.5V** werden. [Voltage Big] zeigt den Wert in Volt ohne das Batterie Symbol mit einer größeren, leichter ablesbaren Zahl.

10.11.4. Hardware Setup

DISPLAY Setup

[HW Type]

[Style]

[Orientation]

Alle Einstellungen das Display betreffend.

HW Type

[UNIVERSAL]

[RAYSTAR]

[ST7789]

[ILI9341]

Das Display ist werksseitig mit dem korrekten Default gesetzt welcher dem verbauten Display Typ entspricht. Eine Änderung unter [Type] **hier bringt keine Vorteile**, kann allenfalls die Darstellung verschlechtern, und braucht daher nicht vorgenommen zu werden.

Style

[Airliner]

[Retro]

[UL]

Hiermit lässt sich der Modus der grafischen Anzeige zwischen "Airliner" Style, dem "Retro" Style oder dem "UL" Style wechseln. Im Airliner Style findet sich die bisherige farbige Balken Anzeige, dagegen arbeitet der Retro Style mit einer halb runden Anzeige mit Zeiger wie bei mechanischen Variometern üblich. Die beiden Anzeigen sind in den entsprechenden Kapiteln am Anfang des Dokuments näher erläutert. Neu dazugekommen ist der **UL-Style**, welcher die für den Segelflug spezifische Sollfahrtanzeige, und den MacCready Wert ausblendet, dafür aber die Anzeige des QNH-Werts enthält.

Color Variant

[W/B]

[B/W]

Mit dieser Option kann die Farbe des Display von "W/B" also Weiß auf Schwarz (engl. White on Black), auf Schwarz auf Weiß umgestellt werden. Voreingestellt ist W/B, was sich im Sonnenlicht etwas besser ablesen lässt und durch die geringere Leuchtintensität vom Auge angenehmer empfunden wird. Die invertierte Einstellung ist eine weitere Möglichkeit und kann dann Sinn machen wenn andere Instrumente oder das Panel ebenfalls in diesem Farbe gehalten sind.

Orientation

[NORMAL]

[TOPDOWN]

Das Gerät ist per Default für einen Einbau in der linken Seite des Panels konfiguriert. Die Bedienung erfolgt mit der linken Hand, am linken Rand der Anzeige. Für einem Einbau rechts, kann die Display

Ausrichtung mit der Einstellung [Orientation] invertiert werden, damit verschiebt sich der Drehknopf auf die andere Seite. [NORMAL] und [TOPDOWN] stehen zur Auswahl.

Needle Alignment

[Front]

[Back]

Hiermit kann eingestellt werden ob die Variometer Nadel im Vordergrund [Front] also über die Informationen innerhalb Ihres Bereiches wie Höhenanzeige, Wind-Information usw. dargestellt wird, oder im Hintergrund [Back] sprich dahinter.

Rotary Setup

Direction

[Clockwise]

[CounterClockwise]

Die Drehrichtung des Drehschalters (Rotary) lässt sich umkehren falls der verwendete Drehschalter eine andere Kodierung aufweist. Diese Einstellung wird im Werk vorgenommen, braucht im Normalfall nicht zu verändert werden. Nach einem Factory-Reset kann es notwendig sein diese Einstellung erneut vorzunehmen.

Increment

1 Indent

2 Indent

3 Indent

4 Indent

Hiermit lässt sich die Empfindlichkeit des Drehschalters anpassen. Es gibt Drehschalter welche zwei Impulse pro Rastung (engl. Indent) liefern. In dem Falle ist "2..4 Indent per Increment" angesagt, da sonst bei einer Rastung ein Punkt übersprungen würde. Die optimale Einstellung wird im Werk vorgenommen, und braucht im Normalfall nicht zu verändert werden. Es hat sich bewährt eine Einstellung mit "2 Indent" per Increment zu wählen (Voreinstellung), um beim Drücken des Drehknopfes nicht versehentlich um eine Zeile oder einen Wert zu verrutschen.

Rotation

[Volume]

[MC Value]

Über die Voreinstellung für den Drehschalter (engl. Rotary Default), wird festgelegt welche Einstellung im Variobetrieb durch Drehen des Rotary verändert wird. Zur Auswahl stehen [Volume] für die Lautstärke, sowie [MC Value] für den MC Wert. Voreingestellt ist [Volume]. Wird die Lautstärkeregelung nicht benötigt, z.B. bei Verwendung eines externen Audio Gerätes mit eigenem Lautstärkeregler, oder falls das verändern der Lautstärke über das Setup ausreicht, kann hier auch der MC Wert verwendet werden.

Die Einstellung [MC Value] macht Sinn falls die Audio Funktion über den externen Audio-Eingang des Funkgeräts realisiert wird, der interne Lautsprecher ist dann abgeschaltet. In diesem Fall wird der Lautstärkeregler des Funkgerätes genutzt, der Rotary kann daher die andere Funktion übernehmen.

Setup Activation

[Short-Press]

[Long-Press]

Mit Hilfe dieser Einstellung kann gewählt werden ob das XCVario bei einem **kurzen Rotary-Knopfdruck** (engl. Short-Press), kürzer als eine halbe Sekunde, oder einem **langen Knopfdruck das Setup-Menü aktivieren** werden soll. In der Voreinstellung "Short-Press" wird bei einem kurzen Druck auf den Rotary das Setup-Menü aktiviert.

Möchte man das Feature nutzen, und mit kurzem Druck zwischen verschiedenen Anzeige-Bildschirmen, siehe nächste Überschrift, hin und her wechseln, macht es Sinn den das Setup-Menü erst mit einem Lang-Druck zu aktivieren. Der kurze Druck steht damit zum Wechsel der Anzeige auf den nächsten Bildschirm zur Verfügung.

Screens

[Variometer]

[+G-Load]

[+Traffic] (geplant)

[+Thermal Assistant] (geplant)

Über den Menüpunkt "Screens" kann gewählt werden welche Screens sich durch kurzes Drücken am Rotary angezeigt werden. In der Voreinstellung ist nur das Variometer sichtbar, und per Knopfdruck kann zwischen dem Setup-Menü und dem Variometer hin und her gesprungen werden. Will man auch den G-Load Bildschirm per Knopfdruck anzeigen, lässt sich dies mit der Einstellung [+G-Load] erreichen. Auf Knopfdruck wechselt das XCVario damit zwischen Variometer, Setup, G-Load, Setup usw. durch. Will man nur zwischen den Bildschirmen durch-wechseln, und dazwischen nicht ins Setup, kann wie im vorhergehenden Punkt beschrieben das Setup auf den Langdruck gelegt werden. Auf Kurzdruck erfolgt dann nur ein Umschalten zwischen den hier gezeigten Bildschirmen. Für die Zukunft sind weitere Bildschirme geplant, die sich dann ebenfalls auf die Weise anwählen lassen.

S2F Switch

[Switch]

[Push Button]
[Switch Inverted]

Der Typ der Sollfahrt-Umschalter lässt sich einstellen, voreingestellt ist ein Schalter [Switch], es kann aber auch ein Taster gewählt werden [Push Button], welcher bei jedem Knopfdruck die Einstellung ändert. Dies kann z.B. bei Verwendung eines Stefly-Knüppel Eingabegerätes, welches mit Tastern bestückt ist Sinn machen. Die Option [Switch Inverted] steht für einen Schalter mit umgekehrter Funktion, heißt der Modus Sollfahrt wird dann bei offenem Schalter, anstelle von geschlossenem Schalter gewählt.

Gear Warning

[Disable]

[S2 Flap positive][S2 RS232 positive][S2 Flap negative]

[S2 RS232 negative]

Mit der "Gear-Warning" (deutsch Fahrwerkswarnung) kann eine Warnung im Falle von ausgefahrenen Bremsklappen und eingefahrenem Fahrwerk ausgelöst werden. Der Magnet-Kontakt an der Bremsklappe muss dazu im eingefahrenen Zustand **geschlossen** sein, sowie der Kontakt am Fahrwerk wenn dieses vollständig ausgefahrenen ist. Die Warnung kann durch einen Druck auf den **Rotary bestätigt** werden, und schaltet sich dann für 5 Minuten ab.

Beide Kontakte werden **parallel** geschaltet mit dem einem Ende mit Masse verbunden (GND, Batterie Minus), und mit dem anderen Ende am Pin 6, dem Wölbklappen-Sensor Eingang, an S2 angeschlossen und über einen Pull-Up Widerstand mit +12 Volt verbunden. Alternativ kann Pin 4 an S2, das RX Pin der RS232 Schnittstelle benutzt werden.

Die Warnung erfolgt optisch mit der Anzeige ! GEAR!, sowie durch einen akustischen Warnton, und hat Priorität gegenüber den anderen Screens, mit Ausnahme der Stall-Warnung.

Das Feature steht zur Verfügung wenn entweder der Wölbklappen-Sensor oder die RS232 Schnittstelle nicht konfiguriert ist, d.h. Einstellung: **Disable** ist dort zwingend, und ist in der Voreinstellung abgeschaltet.

Rechts gezeigt ist die Schaltung der beiden Magnetkontake, beide müssen als Schließer ausgeführt sein, also in der Nähe des Magneten geschossen sein. Der Pull-Up Widerstand ist notwendig um einen High-Pegel zu erreichen, und sollte im Bereich von 68 bis 150 Kilo-Ohm liegen und mindestens 1/8 Watt Leistung ausweisen.

Mit den Optionen "negativ" kann man auch Kontakte verwenden, welche in Reihe zu legen sind, und dann schließen, wenn die Klappen nicht verriegelt, oder das Fahrwerk nicht vollständig verriegelt ist.

AHRS Setup

Ab der Serie 2021 des XCVario gibt es einen fest verbauten AHRS Sensor, welcher einen Sensor für die Beschleunigung in allen drei Achsen, sowie einen Gyro für die Drehgeschwindigkeit ebenfalls in alle drei Achsen.

Der Sensor wird benutzt um die Beschleunigung bzw. das Lastvielfache (G-Load) z.B. beim Kreisen zu erfassen, welche im Prinzip denselben Effekt hat wie zusätzlicher Ballast, also eine Erhöhung der optimalen Fahrt zur Folge hat, als auch Input für den Lageindikator (künstlicher Horizont) und das Lastvielfache an XCSoar zu liefern.

SW_Reed

S2_Pin_6_Flap

AHRS ID

Die vierstellige "AHRS ID" wird benötigt um den Lizenz-Schlüssel für das AHRS Feature zu generieren. Falls das Feature nicht direkt mit dem Gerät mitbestellt wurde, ist diese ID bei der Bestellung des AHRS Features anzugeben. Die AHRS ID ist nicht veränderbar.

AHRS Option

[Enable]

[Disable]

In der Voreinstellung und bei gesetztem Lizenz-Key (License-Key) ist der Sensor Enabled, ansonsten Disabled. Die Option lässt sich nur auf Enabled setzen sofern ein gültiger Key vorhanden ist. Mit dieser Einstellung lässt sich die Verarbeitung der Daten des Sensor's abschalten. Im abgeschalteten Zustand werden die Datenfelder für den Rollwinkel sowie die Längsneigung in den NMEA Sätzen nicht weitergeleitet, die entsprechenden Felder bleiben in dem Fall leer.

AHRS Autzero

[Cancel]

[Start AHRS Autozero]

Der Sensor muss nach Herstellerangabe für maximale Genauigkeit in seiner Einbaulage einmal genullt werden. Dies ist notwendig, da beim Verlöten kleine Abweichungen von 1 bis 2 Grad möglich sind. Dies wird ab Werk durchgeführt und passt in Normalfall. Sollte die Einbaulage des Geräts im Panel für die Fluglage jedoch ebenfalls abweichen, ist es möglich den Sensor bezüglich **Querneigung und Horizont** damit **auf Null** zu stellen. Das Flugzeug kann am Boden dabei mit den Flügeln waagerecht stehen, vorzugsweise am Boden ausgerichtet z.B. mit einer Wasserwaage, und der Rumpf sollte wie bei einer Wägung vorgeschrieben ausgerichtet werden. Im Flug lässt sich dies nur bedingt einstellen, da eine stabile Messung über mehrere Messwerte benötigt wird.

AHRS License Key

[First Letter]
[Second Letter]
[Third Letter]
[Last Letter]

Über diesen Menüpunkt kann der vierstellige Lizenz-Schlüssel für die Aktivierung des AHRS Sensors eingegeben werden. Es sind 4 Buchstaben, Zahlen oder Sonderzeichen möglich, und ergeben sich dadurch mehrere Millionen Kombinations-Möglichkeiten. Wird das Feature gekauft, ist der Lizenz-Schlüssel entsprechend eingestellt.

Der Schlüssel wird bei einem Factory-Reset nicht überschrieben.

Beachte: Der Lagesensor dient zur Berücksichtigung des Lastvielfachen bei der Überziehwarnung sowie bei der Polaren zur genauen Berechnung der Sollfahrt. Das Variometer hat keinen Bildschirm für einen künstlichen Horizont, dieser wäre bei Wettbewerben nach Regeln der International Gliding Commission (IGC) auch nicht zugelassen. Die Daten werden bei einer Aktivierung allerdings auch an XCSoar weitergeleitet, doch dienen diese dem dort vorhandenen einfachen Anzeige-Element "Horizont" oder dem Horizont-Bildschirm, welcher bereits mit GPS Daten funktioniert ausschließlich zur Bewusstmachung der Flugsituation (engl. Situation-Awareness). Keinesfalls dient dieser vereinfachte Bildschirm dazu um damit in IMC Bedingungen einzufliegen. Der Lizenz-Schlüssel kann nur am Boden eingegeben werden.

AHRS Gyro

90.00%

Mit dieser Option wird der verbesserte 3D Algorithmus für die Fusion des Drehwinkel Sensor (Gyro-Sensor), mit dem Beschleunigungs-Sensor für den Lageindikator getuned. Hierbei wird der **3D Vektoren** des **Beschleunigungs-Sensors** mit den Werten für den

Drehwinkel des **Gyro-Sensors fusioniert**, die Prozentangabe sagt dabei aus wie sehr dem Gyro während der Rotation vertraut wird, der optimale Wert ist so hoch wie möglich, ohne dass es durch die Gyro-Drift zu statischen Lage-Abweichungen kommt. Der Faktor wird nur angewandt wenn die beiden Verktoren nahe beieinander liegen, bei größeren Abweichungen wird dieser Wert auf 25% des eingestellten Niveaus erniedrigt. Bei 0% ist der Gyro ganz abgeschaltet, per Voreinstellung sind 90% aktiviert.

AHRS RPYL Sentence

[Disable]

[Enable]

AHRS Temp Control

Ab der Hardware-Revision -23 kann die **Temperatur** des AHRS Chip auf einen **konstanten Wert** eingeregelt werden. Das Feature verbessert durch die konstante Temperatur die Genauigkeit des G-Messers und Drehratensensor (Gyro), und damit die Genauigkeit des Horizonts. Voreingestellt sind 45° Celcius. Die Temperatur kann für nordische Bereiche reduziert, oder südliche Bereicht erhöht werden. Eine Einstellung von -1° Ceclcius schaltet das Feature ab. Maximal erhöht sich die Leistung des Geräts dadurch um 0.3 Watt oder etwa 20 mA bei 12V. Normal wird nur ein Teil der Leistung gebraucht, die Regelung reduziert bei Erreichen der eingestellten Temperatur über ein PWM Signal die Leisung. Es kann etwa eine Temperatur von 35° Celcius über der Umgebungstemperatur erreicht werden. Bei einer Einstellung von 45° bleibt also die Temperatur in einem Umgebungsbereich von 10° bis 45° konstant. Das Feature ist bei der Hardware revision -23 automatisch eingeschaltet. Ist die Temperatur korrekt eingeregelt, wird die Einheit links oben im Display wie gewohnt grau (°C) dargestellt, ist die Temperatur mehr als 0.5 Grad höher, wird die Einheit rot dargestellt (°C) oder ist die Temperatur zu gering in blauer Farbe (°C).

AS Sensor type

[ABPMRR] [TE4525] [MP5004] [Autodetect] Verschiedene Sensoren für die Fluggeschwindigkeit (eng. Airspeed, abgekürzt: AS), kommen zum Einsatz. Die Serie 2020 wurde mit dem Sensortyp MP5004 ausgeliefert, in 2021 kamen der TE4525 sowie später der ABPMRR zum Einsatz. Die **Einstellung wird ab Fabrik vorgenommen** und braucht **nicht verändert** zu werden. Mit [Autodetect] wird versucht die korrekte Einstellung beim nächsten Start automatisch zu erkennen. Achtung:

Die Typen ABPMRR und TE4525 sind an Ihrer Schnittelle nicht zu unterscheiden, haben aber Unterschiede in der Mechanik und im Verhalten, und müssen daher manuell eingestellt werden. Das Verfahren über Autodetect den Sensor zu erkennen kann hier nicht verwendet werden. **Der korrekte Typ muss manuell eingestellt werden**. Beim **Update von älteren Software Ständen**, kann dies der Fall sein.

10.11.5. Factory Voltmeter Adj

-0.00 % 12.75 Volt

Dialog welcher nur im Werk zu präzisen Feinjustage der Batteriespannungs-Messung verwendet werden kann um maximale Genauigkeit zu erreichen. Ist die Justage bereits erfolgt, wird der Dialog bei nächsten Start unterdrückt. Nach einem Factory Reset erscheint der Dialog, und ermöglicht eine präzise Justierung. Ohne diese Einstellung die Messung auf ca. 1% genau. Zur Durchführung ist ein Multimeter notwendig, mit dem die Spannung exakt gemessen wird.

10.11.6. Altimeter, Airspeed

Hierüber können Parameter für den Höhenmesser (Altimeter) sowie den Sensor für die angezeigte Geschwindigkeit (IAS) eingestellt werden, sowie der Airspeed Sensor genullt werden.

Altimeter Source

[TE Sensor]

[Baro Sensor]

Als Quelle für den Höhenmesser kann entweder der [TE Sensor] oder der [Baro Sensor] ausgewählt werden. Voreingestellt ist der Baro Sensor. Der TE Sensor macht nur dann Sinn wenn man die Energiehöhe angezeigt haben möchte, oder zu Testzwecken.

AS Calibration

0 %

Mit der AS Calibration kann eine proportionale Kalibrierung der "Air Speed (AS)" bzw. Fluggeschwindigkeit vorgenommen werden. Die Kalibrierung lässt sich in 1% Schritten im Bereich von +-10% einstellen. Mit einer Kalibrierung von beispielsweise +5% werden anstelle von 100, 105 km/h angezeigt. Dies ist normalerweise nicht nötig, da die Genauigkeit des Sensors normalerweise völlig ausreicht, jedoch können die Druckabnahmen im Flugzeug fehlerhafte Werte liefen, und somit besteht hier die Option diese Fehler zu minimieren. Voreingestellt s

liefen, und somit besteht hier die Option diese Fehler zu minimieren. Voreingestellt sind 0% Kalibrierung. Die AS Kalibrierung kalibriert entsprechend der Einstellung IAS/TAS den jeweiligen Wert.

AutoZero AS Sensor

[Cancel]

[Start Autozero]

Mit dieser Option lässt sich der Nullpunkt des Airspeed Sensors neu kalibrieren. Die hohe Genauigkeit des Airspeed Sensors wird durch eine tägliche Kalibrierung des Nullpunkts sichergestellt. Diese wird im Normalfall beim Power ON automatisch am Boden durchgeführt, und ist daher nur in Ausnahmefällen notwendig. Bei niedrigen Geschwindigkeiten < 30km/h sind sehr kleine Drücke relevant, unterschiedlicher Winddruck durch eine Böe oder den Propeller auf die Statik oder das Pitot-Rohr bei Einschalten kann u.U. zu einer Abweichung führen. Sollte die Anzeige am Boden durch eine fehlerhaften Nullpunkt nicht exakt Null zeigen kann hierdurch Abhilfe geschaffen werden.

Alt. Quantization

[Disable]

2

5

10

20

Mit diesem Punkt kann gewählt werden inwiefern die Darstellung des Höhenmessers eine Quantisierung auf ein Intervall von 2-20 Metern (oder 6-60 ft) vornimmt, wie rechts in der Grafik mit 10 Metern gezeigt. Die beiden Ziffern bewegen sich wie auf einer Zählerrad dann nach oben durch (Steigen), bzw. nach unten (Fallen), was die Ablesbarkeit bei in Bewegung befindlicher Flughöhe gegenüber der einfachen Digital-Darstellung deutlich verbessert.

Stall Warning

Die Überziehwarnung (engl. Stall Warning), warnt optisch und akustisch vor einem drohenden Strömungsabriss. Hierbei ist die eingestellte Überziehgeschwindigkeit (engl. Stall Speed), die Beladung und bei vorhandener und freigegebener AHRS Option auch das Lastvielfache maßgeblich. Die Überziehgeschwindigkeit erhöht sich beispielsweise in einer

Steilkurve mit 60 Grad und 2 g Lastvielfachem um 41%, die Überziehwarnung kann in Flugphasen hoher Workload z.B. beim Landeanflug bei böigem Wetter, oder beim Kreisen in der Thermik hilfreich sein. Die Warnung erfolgt durch einen Screen mit dem roten Schriftzug "! STALL !" und einem Dreieck welches nach unten zeigt und damit Nachdrücken optisch, und zusätzlich durch einen Warnton akustisch signalisiert. Die Überziehwarnung erst wird aktiviert, wenn das Flugzeug die Überzieh-Geschwindigkeit erstmalig erreicht hat.

Stall Warning

[Disable]

[Enable]

Hiermit kann das Feature ein- oder abgeschaltet werden. Voreingestellt ist die Stall-Warnung mit [Disable] abgeschaltet

Stall Speed

70 km/h

Per Voreinstellung sind 70 km/h für das Flugzeug ohne zusätzliche Beladung eingestellt was für viele Standard-Segelflugzeuge wie LS4 und ähnlich passt. Bei anderen Flugzeugtypen ist die korrekte Überzieh-Geschwindigkeit dem Flughandbuch zu entnehmen und hier einzustellen. Die Warnung wird ausgelöst ab der Überziehgeschwindigkeit und langsamer, bis minus 30% der Überziehgeschwindigkeit.

Maximum Speed

270 km/h

Per Voreinstellung sind 270 km/h als die höchste Geschwindigkeit (IAS, indicated Airspeed) eingestellt, welche das Instrument bei der Sollfahrt vorgibt. Dieser darf nicht über der höchsten zulässigen Geschwindigkeit für Flugzeug liegen.

Achtung: Der voreingestellte Wert ist zu prüfen und anzupassen, sollte der Wert im Flughandbuch von der Voreinstellung abweichen.

10.11.7. RS232 Interface S1

Das RS232 Interface dient zur Ausgabe der seriellen OpenVario Daten (TX), sowie als Serial to Bluetooth Bridge (RX) um ein weiteres Serielles Gerät, z.B. ein Flarm mit dem Gerät auf dem XC Soar läuft zu verbinden.

Baudrate

[Serial OFF]

[4800 baud]

[9600 baud]

[19200 baud]

[38400 baud]

[57600 baud]

[115200 baud]

Unter diese Option kann die Geschwindigkeit zwischen 4800 und 115200 baud in den üblichen Baudraten eingestellt, oder abgeschaltet werden [Serial OFF]. Die Schnittstelle ist voreingestellt auf die ebenfalls beim FLARM voreingestellte Baudrate von 19200. Die Einstellung der Geschwindigkeit gilt immer für beide Richtungen RX und TX. Die Voreinstellung ist perfekt für den normalen Betrieb des FLARM um GPS Daten, Baro und die Daten anderer Flugzeuge zu empfangen. Für den regelmäßigen Download längerer Flüge wird empfohlen, eine höhere Datenrate einzustellen. Beispielsweise mit der vom Classic FLARM höchsten unterstützte Datenrate 57600 können auch längere Flüge in akzeptabler Zeit geladen werden, was sich in verschiedenen Anwendungen als stabil erwiesen hat. Tests auf Power-Flarms neuerer Generation welche höhere Datenraten unterstützen liefen auch mit 115200 Baud stabil. Die höhere Datenrate kann selbstverständlich für den normalen Betrieb auch so bleiben. Die Datenrate muss im FLARM selbstverständlich gleich eingestellt sein.

Serial Loops

[Disable]

[Enable]

Diese Option lenkt Daten aus der Empfangsrichtung des seriellen Interfaces auf die Senderichtung. Die Einstellung bezieht sich auf die Quelle der Daten. Zum Beispiel [Enable] bedeutet ein Routing der auf empfangsseitig eingegangenen Daten (RX) auf die Senderichtung (TX).

Der Modus wird nur an S1 unterstützt, und z.B. benötigt wenn an einem Geräte XCVario-20 mit nur einem Interface zwei Geräte angeschlossen sind, z.B. ein FLARM auf seriell RX und ein OpenVario auf seriell TX, und auch die Daten des FLARM zum OpenVario geschleift werden sollen. Dieser Modus erlaubt allerdings keine bidirektionale Kommunikation mit den jeweiligen Geräten, es ist also kein Flugdownload aus dem Flarm und auch keine Synchronisation von MC, Ballast, Bugs Synchronisation von XCSoar zum Vario möglich.

S1 Routing

Unter dieser Einstellung lassen sich die Daten aller anderen Schnittstellen auf die serielle Schnittelle S1 routen.

Das Routing ist immer bidirektional, das heißt neben der Senderichtung wird auch Empfangsrichtung, also die Rückrichtung geroutet.

In der Voreinstellung bei S1 ist das Wireless Interface auf Enable, d.h. das gekoppelte Device via WiFi oder Bluetooth wird damit mit einem Gerät am seriellen Interface S1 verbunden.

Damit werden sowohl die Kommandos aus dem Navi z.B. von XCSoar, z.B. um ein Funkgerät zu steuern, als auch die Nachrichten die das Gerät sendet zurück an das XCSoar geroutet.

Die folgenden Abbildung zeigt die insgesamt fünf Schnittstellen des Routers wie sie sowohl im Setup-Menu, also auch hier in der Doku bezeichnet sind.

XCVario

[Enable]

[Disable]

Mit dieser Einstellung auf "**Enable**" wird gewählt ob Daten des XCVario auf der Schnittstelle **S1** ausgegeben und Kommandos über diese Schnittstelle empfangen und bearbeitet werden sollen.

Wireless

[Enable]

[Disable]

Diese Einstellung routet die Daten zwischen **S1** und der **Wireless Schnittstelle**, je nach Einstellung Bluetooth oder WiFi. Das XCVario arbeitet mit dieser Einstellung als Bluetooth oder WiFi **Bridge**, und leitet Daten eines drahtlos gekoppelten Navis mit z.B. XCSoar transparent an die serielle Schnittstelle S1 weiter. Daten aus anderen Quellen werden im Zeit Multiplex-Verfahren nacheinander auf die Schnittstelle geschaltet.

S2-RS232

[Enable]

[Disable]

Mit dieser Einstellung werden die Daten zwischen **S1 und der Schnittstelle S2** geroutet und umgekehrt. Dies ist z.B. von Interesse wenn an S1 ein Flarm angeschlossen ist, und an S2 ein OpenVario betrieben werden soll. Diese Einstellung unterstützt z.B. die Möglichkeit am Hauptgerät ein serielles FLARM an S1 und ein OpenVario an S2 anzubinden.

CAN-bus

[Enable]

[Disable]

Diese Einstellung routet die Daten zwischen **S1** und dem **CAN Bus**, z.B. wenn diese auch an der Zweitanzeige von Relevanz sind. Ist zum Beispiel am vorderen Gerät ein FLARM angeschlossen dessen Daten dort zum CAN Bus geroutet werden, so können diese am der Zweitanzeige hiermit auf S1 geleitet werden, damit die FLARM Daten z.B. für ein OpenVario an S1 zur Verfügung stehen. In dem Fall diese Einstellung auf Enable stellen.

TX Inversion

[Normal]

[Inverted]

Ist die Einstellung korrekt, dann reagiert das angeschlossene Gerät korrekt auf gesendete Kommandos und im NMEA Geräte-Monitor des Navis erscheinen lesbare Zeichen. Das XCVario arbeitet mit 3.3 Volt Pegeln, eine externe 5 Volt Hardware ist damit aber kompatibel, da beim TTL Standard die Eins bereits ab einem Pegel am Eingang bereits von 2 Volt sicher erkannt wird, und 3.3 Volt deutlich darüber liegen.

RX Inversion

[Normal]

[Inverted]

Wie bei der TX (Sende-) Invertierung aber für die Empfangsseite. Voreinstellt ist [Inverted] für RS232 TTL. Normalerweise ist die Einstellung identisch mit der Einstellung für die TX Leitung. Zur Kontrolle man im Geräte Manager von XCSoar die Daten anschauen, sofern bei korrekter Baudrate lesbare ASCII Zeichen dort erscheinen, ist die Einstellung korrekt.

Twist RX/TX Pins

[Normal]

[Twisted]

Mit dieser Option lässt sich sowohl ein serielles Gerät mit **(DTE)** Schnittstelle also Terminal wie z.B. FLARM, als auch ein Gerät mit **(DCE)** also Modem oder Computer wie zum Beispiel ein **OpenVario** an das XCVario anbinden. Generell gilt: Bei RS232 seriellen Leitungen ist ein mit **TX** benannter Anschluss am anderen Ende mit einen **RX** benannten Anschluss zusammen zu schalten. Sollte das Gerät am anderen Ende an Pin 4 ebenfalls mit

TX gelabelt sein, dann das XCVario die Pins mit der Einstellung "Twisted" drehen, um eine Verbindung mit 1:1 Standard Patch Kabeln zu ermöglichen. Die Normal Einstellung bedeutet **Pin 3 = TX** und **Pin 4 = RX.** Im Twisted Mode ist Pin 3 = RX und Pin 4 = TX am Flarm Stecker des mitgelieferten Standard-Kabel-Satzes an S1, order direkt an der Buchse an S2.

TX Line

[Disable]

[Enable]

Mit Hilfe dieser Option lässt sich in der Einstellung [Disable] die **Sendeleitung** (TX) der S1 Schnittelle **abschalten.** Es werden dann nur die Daten welche in Empfangsrichtung der Schnittelle S1 (RX) ankommen ausgewertet, die Sendeleitung bleibt hochohmig.

Das Feature wird benötigt falls an der externen Quelle (z.B. FLARM) zwei Geräte mit Hilfe eines einfachen passiven 1:1 Splitters (RJ45 T-Stück) angeschlossen werden sollen, und 1:1 Standard Kabel 8P8C im Einsatz kommen soll. Im Modus [Disable] kann vom XCVario au KRT2 s nicht aktiv auf das FLARM zugegriffen werden, z.B. um eine Flugaufgabe zu deklarieren oder einen Flug herunterzuladen.

10.11.8. RS232 Interface S2

Das zweite RS232 Interface, ab Serie 2021, dient vorzugsweise zur Kommunikation mit einem seriellen Gerät OpenVario Daten (TX) z.B. für ein OpenVario, oder einen seriellen Kobo, oder im Falle eines Wireless Device als Serial to Wireless Bridge um ein weiteres

Gerät mit dem Wireless Device zu verbinden. Die Anwendung OpenVario sollte hier erfolgen da dieses Interface hardwaremäßig die RX/TX Leitungen tauschen kann, und daher in der Lage ist mit einem 1:1 Standard Kabel z.B. mit einem OpenVario zu kommunizieren. Diverse Geräte sind möglich, diverse Funkgeräte die XCSoar unterstützt, z.B. ein KRT2 Funkgerät (Baudrate 9600 baud) können hier angeschlossen werden.

Baudrate

[Serial OFF]

[4800 baud]

[9600 baud]

[19200 baud]

[38400 baud]

[57600 baud]

[115200 baud]

Die Einstellung der Baudrate erfolgt wie bei Interface S1, es werden dieselben Baudraten unterstützt.

S2 Routing

Unter dieser Einstellung lässt sich jede der vier weiteren Daten-Quellen oder Senken auf die serielle Schnittelle S2 routen.

Voreingestellt mit ist das über Wireless: Enable, d.h. das gekoppelte Device, entweder via WiFi oder Bluetooth, wird damit mit einem Gerät am seriellen Interface S2 zusammengebracht. Damit werden sowohl die Kommandos aus dem Navi z.B. von

XCSoar, z.B. um ein Funkgerät zu steuern, als auch die Nachrichten die das Gerät sendet zurück an das XCSoar geroutet.

[Enable]

[Disable]

Mit dieser Einstellung auf "**Enable**" wird gewählt ob Daten des XCVario an der Schnittstelle S2 ausgegeben und Kommandos über diese Schnittstelle empfangen werden werden und bearbeitet werden sollen.

Wireless

[Enable]

[Disable]

Diese Einstellung routet die Daten an S2 auf die Wireless Schnittstelle, je nach Einstellung Bluetooth oder WiFi.

S1-RS232

[Enable]

[Disable]

Mit dieser Einstellung werden die Daten von S2 auf die Schnittstelle S1 geroutet und umgekehrt. Dies ist z.B. von Interesse wenn an S1 ein Flarm angeschlossen ist, und an S2 ein OpenVario betrieben werden soll. Diese Einstellung unterstützt die Möglichkeit ein serielles FLARM an S1 und ein OpenVario an S2 anzubinden.

CAN-bus

[Enable]

[Disable]

Diese Einstellung routet die Daten zwischen S2 und dem CAN Interface, z.B. wenn diese auch an der Zweitanzeige von Relevanz sind.

TX Inversion

[Normal]

[Inverted]

Identisch mit der Funktion wie bei S1, nur hier für das Interface S2.

RX Inversion

[Normal]

[Inverted]

Identisch mit der Funktion wie bei S1, nur hier für das Interface S2.

Twist RX/TX Pins

[Normal]

[Twisted]

Identisch mit der Funktion wie bei S1, nur hier für das Interface S2.

TX Line

[Disable]

[Enable]

Identisch mit der Funktion wie bei S1, nur hier für das Interface S2.

10.11.9. CAN Interface

Die XCVario-22 Hardware ab ca. Oktober 2021 besitzt zusätzlich ein CAN Bus Interface als Option für die Datenübertragung zum einem Zweitgerät und zur Anbindung zukünftiger Hardware. Bei Geräten ohne CAN die Einstellungen bei CAN-OFF belassen wie hier fett gezeigt (Voreinstellung). Der CAN Bus unterstützt Kabellängen bis 20 Meter.

Datarate

[CAN OFF]

[250 Kbit]

[500 Kbit]

[1 Mbit]

Hiermit kann die Datenrate eingestellt werden. Es wird empfohlen die Einstellung **1 Mbit** zu verwenden, was auf die kurze Distanz im Flugzeug ohne Probleme funktioniert, und weit außerhalb des Spektrums des Funkgerätes liegt.

CAN Routing

Unter dieser Einstellung lässt sich jede Daten-Quelle oder Senke auf den CAN Bus routen. Das Routing ist immer bidirektional, das heißt neben der Senderichtung wird auch Empfangsrichtung, also die Rückrichtung geroutet.

Voreingestellt mit ist für alle Daten "**Disable**", denn dies macht nur Sinn wenn eine Zweitanzeige über den CAN Bus angeschlossen und synchronisiert werden soll.

XCVario

[Enable]

[Disable]

Mit dieser Einstellung auf "**Enable**" wird gewählt ob Daten des XCVario auf dem CAN Bus ausgegeben und Kommandos über den CAN Bus empfangen werden werden und bearbeiten soll. Es setzt voraus, dass das Gegenüber ebenfalls die entsprechen Daten auf den CAN Bus routet.

Wireless

[Enable]

[Disable]

Diese Einstellung routet die Daten zwischen dem CAN Bus und der Wireless Schnittstelle, je nach Einstellung Bluetooth oder WiFi.

S1-RS232

[Enable]

[Disable]

Mit dieser Einstellung werden die Daten zwischen S1 und den CAN Bus geroutet und umgekehrt. Hiermit lassen sich z.B. die Daten eines Flarm an S1 über den CAN Bus zur Zweitanzeige hin übertragen.

S2-RS232

[Enable]

[Disable]

Selbe Funktionalität wie bei "S1-RS232" hier sichtbar im Setup für die Schnittstelle S2.

Mode

[Master]

[Client]

[Standalone]

Diese Setup hat im Wesentlichen Relevanz wenn **zwei Geräte bei einem Doppelsitzer** mit dem CAN Bus verbunden werden. Beim vorderen Gerät ist dann "Master" und beim hinteren Gerät "Client" einzustellen. Ansonsten bleibt der Mode auf "Standalone" welcher voreingestellt so ausgeliefert wird.

Achtung: Wird der Mode Master bei einem Standalone Gerät gewählt, entsteht eine Blindlast durch den Verkehr der an das Zweitgerät gesendet, aber nicht bestätigt wird, optimal ist daher die Einstellung Standalone.

10.11.10. NMEA Protokoll

[OpenVario]

[Borgelt]

[Cambridge]

[XCVario]

Diese Option dient zur Einstellung des Protokolls der Daten die das Variometer über Bluetooth an das angeschlossene Gerät sendet.

OpenVario

Dies ist die Voreinstellung des XCVario's und bietet die wesentlichen Daten der Variometer Sensorik wie der barometrische Druck für die Höhe, der Staudruck für die Airspeed, TE Vario Information sowie die Außen-Temperatur, sofern der Temperaturfühler entsprechend montiert. Die Synchronisation von MC, Bugs oder Ballast ist seitens XCSoar nicht implementiert, und wird daher auch nicht gesendet.

Das Protokoll OpenVario (POV) ist wie folgt definiert:

```
$POV, P, <baro>, Q, <dp>, E, <te>, T, <temp>"
<baro>: static pressure in hPa
    Example: 1018.35
<dp>: dynamic pressure in Pa
    Example: 23.3
<te>: TE vario in m/s
    Example: 2.15
<temp>: temperature in deg C
    Example: 23.52
```

Eine detaillierte Beschreibung des Protokolls befindet sich auch hier: https://www.openvario.org/doku.php? id=projects:series 00:software:nmea

Borgelt

Die zweite Option ist [Borgelt], am XCSoar ist 'Borgelt B50/B800' als Device Treiber einzustellen. Das Borgelt Protokoll unterstützt die Synchronisation von MacCready Wert (MC), Ballast oder Insekten (Bugs), vom und zum XCVario. Die barometrische Höhe ist kein Bestandteil des Borgelt Protokolls, wird aber über eine generische Schnittstelle mit Hilfe des \$PTAS1 NMEA Datensatzes als Höhe über der Standard-Druckfläche (1013 hPa) übertragen. Das QNH ist daher am XCSoar wie auch am Vario getrennt einzustellen, und ermöglicht beispielsweise eine Einstellung am XCSoar nach Standard, und eine Einstellung am Vario nach QNH, was für Flüge in der Nähe von Luftraumbeschränkungen die in der Regel auf Standard bezogen sind Sinn machen kann.

Format siehe nachfolgend, dieses Format wird automatisch ebenfalls XCSoar gesendet und dort unabhängig vom eingestellten Protokoll Treiber, wie auch die standardisierten FLARM Daten ebenfalls immer ausgewertet.

Die Borgelt Datensätze haben dabei folgendes Format:

```
$PBB50, AAA, BBB.B, C.C, DDDDD, EE, F.FF, G, HH*CS<cr><lf>
 AAA = TAS 0 to 150 knots
 BBB.B = Vario, -10 to +15 knots, negative sign for sink
 C.C = MacCready 0 to 8.0 knots
 DDDDD = IAS squared 0 to 22500
 EE = bugs degradation, 0 = clean to 30 %
 F.FF = Ballast 1.00 to 1.60
 G = 1 in climb, 0 in cruise, Note: Original Borgelt docu shows vice versa
 HH = Outside airtemp in degrees celcius (may have leading negative sign)
 CS = standard NMEA checksum
$PTAS1, xxx, yyy, zzzzz, aaa*CS<CR><LF>
 xxx: CV or current vario. =vario*10+200 range 0-400(display +/-20.0 knots)
        AV or average vario. =vario*10+200 range 0-400(display +/-20.0 knots)
  zzzzz: Barometric altitude in feet +2000, related to QNH standard 1013.25 setting
 aaa:
        TAS knots 0-200
 CS:
        XOR Checksumme
```

Cambridge

Mittels des Cambridge (CAI302) Format, können weitere Geräte mit Daten beliefert werden, beispielsweise LX-Mini-Map, LK8000 und Andere welche nur diese Format verstehen. Das Cambridge Format unterstützt die Synchronisierung von MC, Ballast Bugs und QNH (QNH nur vom Gerät), allerdings keine AHRS Informationen. Alle relevanten Datenfelder werden hierbei unterstützt, bis auf den Wind-Vektor, welcher im Streckenflug-Programm berechnet wird. In den aktuellen Software-Versionen steht dieses Format zur Verfügung, bisher als experimentelles Format, und nur mit XCSoar getestet, weitere Tests für andere Geräte sind notwendig.

```
* Cambridge 302 Format
!W,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>,<13>*CS<CR><LF>
<1> Vector wind direction in degrees
<2> Vector wind speed in 10ths of meters per second
<3> Vector wind age in seconds
<4> Component wind in 10ths of m/s + 500 (500 = 0, 495 = 0.5 m/s tailwind)
<5> True altitude in Meters + 1000
<6> Instrument QNH setting
<7> True airspeed in 100ths of Meters per second
<8> Variometer reading in 10ths of knots + 200
<9> Averager reading in 10ths of knots + 200
<10> Relative variometer reading in 10ths of knots
<12> Instrument Ballast setting in percent of capacity
<13> Instrument Bug setting
```

XCVario

Für die das XCVario mit AHRS wurde ein eigenes Protokoll mit eigenem Gerätetreiber "XCVario" in XCSoar entwickelt, welches die Elemente des Setup, die Übertragung der Sensor-Daten, sowie die AHRS Fähigkeit der neuen Serie in einem eigenen Protokoll vereint.

Das Protokoll wurde im XCSoar Projekt bereits übernommen, und wird bereits in den aktuellen Releases (>6.8.16) unterstützt. Mit dem XCVario Protokoll lässt sich dann wie beim Borgelt Protokoll eine bidirektionale Synchronisation von MacCready-Wert, Ballast und Bug sowie QNH (QNH nur vom Gerät) erreichen, und auch die Übertragung der AHRS Sensor Daten für den Lageindikator (Horizont), wird damit voll unterstützt. Das Protokoll besteht aus Komponenten des Cambridge CAI302, Borgelt, sowie aus dem OpenVario Protokoll. Die Serie 2020 profitiert hierbei ebenfalls durch die neu dazugekommene QNH Synchronisation, die AHRS Daten

können von diesen Geräten natürlich nicht geliefert werden.

```
/*
      Sentence has following format:
      $PXCV,
                  Vario, -30 to +30 m/s, negative sign for sink
     BBB.B,
     C.C,
                  MacCready 0 to 10 m/s
      EE,
              // Bugs degradation, 0 = clean to 30 %
      F.FF.
              //
                 Ballast 1.00 to 1.60
                 1 in climb, 0 in cruise, Note: Original Borgelt docu shows vice versa
     G,
              //
                 Outside airtemp in degrees celcius ( may have leading negative sign )
     HH.H.
              //
      0000.0, //
                 ONH e.g. 1013.2
      PPPP.P. //
                 Static pressure in hPa
      0000.0, //
                 Dynamic pressure in Pa
             // Roll angle
      RRR.R.
      III.I,
             // Pitch angle
      X.XX,
              // Acceleration in X-Axis
              // Acceleration in Y-Axis
      Y.YY,
             // Acceleration in Z-Axis
      *CHK = standard NMEA checksum
      <CR><LF>
```

Disable

Mit dieser Auswahl werden alle **NMEA** Aussendungen aus diesem Menüpunkt **abgeschaltet**, z.B. wenn kein Gerät vorhanden ist, oder wenn nur die NMEA Datensätze aus anderen Einstellungen, z.B. nur die Datensätze des AHRS Subsystems oder des Kompass von Interesse sind.

11. XCSoar

XC Soar ist eine freie OpenSource Software und kann auf verschiedenen Systemen, z.B. Android Geräten installiert werden. Diese beinhalten in der Regel bereits einen GPS Empfänger welcher ausreichend genaue GPS Daten für die aktuelle Position, oder die Geschwindigkeit über Grund liefert.

Für einen vollständigen Segelflugrechner fehlen aber weitere Werte wie Staudruck, TE-Düsendruck, Statischer Druck, um eine brauchbare Varioanzeige oder Informationen für den Vorflug für die aktuelle Sollfahrt liefen zu können. Das XCVario liefert genau diese Daten an XC Soar entweder wireless über WiFi oder Bluetooth oder eine serielle RS232 Schnittstelle.

Die XCSoar Software ist auf vielen Plattformen lauffähig, darunter Android Geräte wie moderne Smartphones, eBook Reader wie Kobo's, Android Navis mit hellem Farbdisplay und großen Bildschirmen, sowie auf vielen Linux basierenden System, darunter auch Raspbery-PI oder auch ein OpenVario.

Fertige Geräte sind am Markt mit ausreichend hellen Display's und Touchscreens erhältlich, und eignen sich für den Einsatz im Cockpit gut. Mit dem XCVario steht damit zu einem erschwinglichen Preis eine fortschrittliche Technik zur Verfügung. Daneben existieren OpenVario Hardware Lieferanten, welche sich ebenso gut eignen mit dem XCVario kombiniert zu werden. Diverse Anwender ziehen das XCVario der nativen Sensorbox des OpenVario aus verschiedenen Gründen vor.

Im Vorflugmodus kann XCSoar mit den Daten des XCVario genaue Sollfahrtinformationen liefern, und auch die Windberechnung funktioniert problemlos. Insgesamt bietet XCSoar zusammen mit dem XCVario einen Segelflugrechner neuester Technologie, intuitiver Touchscreen Bedienung (auf Touchscreen Geräten), vielen Screens voller Features für Thermik-Kurbeln, Vorflug, Endanflug mit frei konfigurierbaren Info Boxen, Darstellung von Gelände mit Luftraum incl. Seitenansicht. Anzeigen mit Topographie und Landefeldern. Dazu gibt es Assistenten für Wettbewerbe, eine Vario mit Akustikfunktion, Sollfahrtgeber für MC- oder Delfin-Vorflug und vieles mehr.

11.1. XCSoar Konfiguration

Auf dem Wireless-Gerät mit XCSoar, z.B. Tablet oder Smartphone lässt sich das XCVario mit wenigen Klicks in die XCSoar Anwendung integrieren. Hierzu muss das Gerät hardwareseitig entweder über Bluetooth oder über WiFi verfügen. Das XCVario unterstützt ab Dezember 2020 beide Varianten.

Bluetooth

11.1.1. **Bluetooth**

Um eine Verbindung mit Bluetooth aufzubauen, muss das XCVario im Setup/Options/[Wireless iVario-123] auf **Bluetooth** eingestellt sein. Dies ist die Voreinstellung. Zunächst muss das XCVario beim Android als Bluetooth Gerät gepaart gepaart werden. Hierzu im Android Geräte Setup unter Bluetooth einen Gerätescan durchführen, und das Vario, welche dort z.B. als XCVario-5678 auftauchen sollte, zunächst im Pairing Dialog paaren. Die Nummer (bei Serie 2020 nur dreistellig), ist die dabei die Seriennummer des Geräts. Sollte bei älteren Geräten ein Bluetooth Passwort abgefragt werden, ist dieses mit "1234" anzugeben. Danach in XC Soar ist unter Konfiguration/NMEA-Anschluss, ein bislang freier Anschluss A..F einzurichten (Bearbeiten). Ist das XCVario via Bluetooth gepaart, kann dieses im Feld ,Anschluss' mit seiner Bluetooth-ID z.B. XCVario-5678 gefunden werden. Dort dieses auswählen, und in dem folgenden Dialog den gewünschten Treiber, bei aktuellen XCVario Versionen "XCVario" angeben. Der Schalter K6Bt bleibt dabei auf 'Aus'. Nach Quittierung des Dialogs mit "OK", wird sich XCSoar innerhalb weniger Sekunden mit dem Vario verbinden, welches dann als regulärer NMEA Anschluss z.B. mit Status "Verbunden; Baro, Vario" angezeigt wird. Nun sollten unter 'Überwachen' die relevanten Sätze des Vario's zu sehen sein, mehr Details dazu unter Gerätetreiber nachfolgend. Es kann immer nur ein Gerät mit Bluetooth gekoppelt werden. Dies ist leider eine Einschränkung des Protokolls Bluetooth/RFCOMM, und kann nicht geändert werden.

11.1.2. Wireless LAN

Um eine drahtlose LAN Verbindung Verbindung (auch Wireless LAN, WLAN oder WiFigenannt) aufzubauen, muss das XCVario im Setup/Options/[Wireless XCVario-1234] auf **Wireless LAN** eingestellt sein. Ist das der Fall, kann man an diesem WLAN ein Wireless Gerät, z.B. ein Android Gerät, anmelden. Die Netzwerk-ID ist identisch mit der Bluetooth-ID z.B. XCVario-5678. Das Pairing beim WiFi erfolgt durch Eingabe des Passworts.

Das WLAN Passwort ist: xcvario-21 alles klein-geschrieben und mit Bindestrich (Minus Zeichen).

Das XCVario ist ein reines Datengerät, und bietet natürlich keine Schnittstelle ins Internet an, was manche Geräte veranlasst permanent nach besseren Netzen zu suchen und bei Erfolg auch in diese zu wechseln. Um eine sichere Verbindung zu gewährleisten, zum Beispiel falls das Android Gerät beim Start ins Clubheim WiFi wechselt, sollten zur Sicherheit die Passwörter anderer WiFi Netze auf dem Gerät gelöscht werden, bzw. diese Netze vom Gerät gelöscht oder, wenn unterstützt, diese auf dem Gerät gesperrt werden. Während es bei **Bluetooth nicht möglich ist einen zweiten Gerätetreiber** anzugeben, ist dieses bei der Verbindung **über WiFi** durch verschiedene Ports **möglich**. Die Ports sind den Schnittstellen im Vario (siehe auch Übersicht am Anfang des Dokuments) fest zugeordnet. Auch ist es möglich bis zu 3 Geräte gleichzeitig über WiFi zu koppeln. Zwei Geräte sind ohne merkliche Einbußen der Performance möglich. Die Limitierung in der

Das XCVario bietet insgesamt drei Ports für verschiedene Treiber auf einer IP-Adresse.

Es ist dabei jeweils die Option "TCP Client" für den Geräteanschluss auszuwählen, die IP Adresse ist mit **192.168.4.1** anzugeben (die IP-Adresse des Servers), sowie die Ports, zugeordnet wie im folgenden Kapitel gezeigt.

XCVario TCP Ports

Software liegt bei 4 Geräten.

8880	XCVario sendet Sensor-Daten entsprechend dem unter NMEA Protokoll eingestellten Gerätetreiber imVario
8881	FLARM sofern ein FLARM am Stecker des FLARM Kabels angeschlossen ist (Anschluss S1-RS232), werden die Daten auf diesem Port ausgetauscht.
8882	Ab XCVario Serie 21 kann ein weiteres Gerät, z.B. ein Funkgerät über diese Port an der zweite seriellen Schnittstelle S2 gesteuert werden.

Das Vario leitet über seinen internen Router die Daten an das Gerät weiter. Hierbei muss jeweils das Routing zum "Wireless" an der entsprechenden seriellen Schnittstelle aktiviert sein, Details zur Einstellung im Kapitel Router, im Setup zum Wireless Routing, sowie den RS232 Schnittstellen.

11.1.3. Gerätetreiber

Es stehen auf der Seite des XCVario mehrere Gerätetreiber, mehr Details dazu im vorherigen Kapitel zum Setup bei "Setup/NMEA Protokoll. Um eine Entscheidungshilfe zu geben, nachfolgend ein paar Erklärungen.

OpenVario

Bislang wurden alle Geräte mit der Voreinstellung **OpenVario** ausgeliefert. Dieses Protokoll unterstützt keine Einstellung von- oder zum Gerät, was für viele Anwender ausreicht, oder gar gewünscht ist, z.B. im XCSoar ein Sicherheits MacCready Wert eingestellt werden soll, um dort Information für eine sichere Ankunft am Ziel zu erhalten, und Ballast oder Einstellungen für Bugs kein Thema sind, und für die Sollfahrt die Echtzeit-Anzeige des XCVario verwendet wird. Die Auslieferung erfolgt zukünftig mit dem **XCVario** Protokoll.

OpenVario Daten Beispiel: \$POV, P, 978.1, Q, 0.0, E, -0.0, T, 15.0*4F

Borgelt

Um einen Austausch der Einstellungen zu ermöglichen, was manch ein Anwender wünscht, wurde noch im Laufe der Saison 2020 (ab Software Version 20.0815-21) bereits das **Borgelt B50/B800** Protokoll implementiert. Damit lassen sich MC, Ballast und Bugs in beide Richtungen synchronisieren, allerdings kein QNH, da dieses nicht Bestandteil des Borgelt Protokolls ist.

Die Höhenanzeige braucht man aber am XCSoar nicht notwendigerweise, und kann den gut ablesbaren Höhenwert am XCVario ablesen, in dem Fall ist keine Synchronisation nötig. Will man die Höhe auch im XCSoar, angezeigt haben, stellt man das QNH vor dem Start an beiden Geräten ein.

Da das Borgelt keine barometrische Höhe unterstützt, wird nach jedem Borgelt Satz ein zusätzlicher Satz im NMEA Standard Protokoll "PTAS1" gesendet. XCSoar wertet Standard NMEA Sätze automatisch aus, damit wird auch die Höhe an den Flight-Computer von XCSoar übermittelt.

Borgelt Daten Beispiel: \$PBB50,000,+0.1,3.7,0,0,1.00,0,25*65

\$PTAS1, +0.1, +0.0, +3000, 0*34

Cambridge

Dieses Protokoll wurde weniger in Hinblick auf XCSoar entwickelt, sondern für Endgeräte mit einem Navigationsprogramm (Oudie, LX) welches weder Borgelt, noch XCVario unterstützt. Es bietet gegenüber Borgelt im Grunde keinen großen Vorteil. Eine Synchronisation von MC, Ballast und Bugs vom XCVario ist damit in gleicher Weise möglich. Vom XCVario werden übermittelt die wahre Fluggeschwindigkeit (TAS), die Höhe, Variometer Werte sowie die QNH Einstellung. Sofern das angeschlossene Gerät es unterstützt können diese Werte (bis auf QNH), auch in Richtung XCVario synchronisiert werden. Borgelt benutzt ebenfalls das Cambridge Protokoll für eben diese Einstellungen.

XCVario

Obige Varianten haben keine Möglichkeit Informationen des Gyro-Sensors zu übermitteln. Zwar gibt es einige Protokolle welche dies könnten (z.B. Eye-Sensorbox), allerdings bleiben damit jegliche Einstellungen auf der Strecke. Für die Serie 2021 musste daher etwas Neues entwickelt werden.

Heute wird per Default das XCVario mit der Einstellung XCVario ausgeliefert.

Der neue Treiber "**XCVario**" ist in den letzten 6.8er Versionen sowie in der 7er Versionen von XCSoar (update via Google Playstore) schon seit der Saison 2021 integriert. Das XCVario Protokoll unterstützt neben der gesamten **Sensorik** inklusive dem **AHRS Lagesensor**, auch den Austausch **aller Einstellungen, auch QNH** vom Gerät in Richtung XCSoar. Die QNH Einstellung von XCSoar zum Gerät hin, ist aktuell nicht möglich, ist aber bereits in den Quellcode geliefert und wird ab der Version XCSoar 7.22 erwartet.

XCVario Daten Beispiel:

\$PXCV, -0.0, 0.5, 0, 1.00, 0, 24.4, 1012.0, 962.0, 0.0, 0.1, -3.2, -0.05, 0.00, 0.99*1C

XCVario Kommandos:

Das XCVario Protokoll unterstützt zur Einstellung diverse NMEA-Kommandos, die ersten drei dienen zu Einstellung des MacCready Wertes und Ballast und Bugs und entsprechen 1:1 dem Cambridge Format benötigen am Ende mindestens ein Carrige-Return (\r' <CR> 0d) zur Zeilen Terminierung. Die Kommandos für QNH und den Sollfahrt Modus wurden an das Cambridge-Daten Format angelehnt, beinhalten zusätzlich eine Checksumme, und folgen weiter dem NMEA Standard, werden also mit <CR> und <LF> terminiert. Diese ermöglichen die Fernbedienung des XCVario z.B. über XCSoar gesteuerte "sendNMEA1" Events die sich in einem .xpi File definieren lassen, z.B. angesteuert von einem einen XCNav oder Stefly Remote Stick.

Zusätzlich kann auch die Fahrwerks-Warnung über ein Kommando von einem externen Gerät ausgelöst und wieder gestoppt werden.

Folgende Kommandos sind aktuell unterstützt:

CAI 302 Format: !g, <cmd><value><cr></cr></value></cmd>	<value> Einheit</value>	Zweck
!g,m15 <cr></cr>	Zehntel Knoten	Setzt den MacCready Wert im Beispiel auf 1.5 Knots/s
!g,b1 <cr></cr>	Ballast in % mal 10, auch float möglich z.B. !g,b2.25 = 22.5% Ballast	Setzt den Ballast wie im Beispiel auf 10%
!g,u20 <cr></cr>	Prozent Verschmutzung durch Mücken	Setzt die Verschmutzung in Beispiel auf 20%
!g,q1021 <cr></cr>	Hektopascal	Setzt das QNH auf 1021
XCVario Format: \$g, <cmd><value><cr><lf></lf></cr></value></cmd>		
\$g,s1* <cs><cr><lf></lf></cr></cs>	0 = Vario, 1 = Sollfahrt	Setzt den Sollfahrt-Modus im Beispiel auf eingeschaltet
\$g,v4* <cs><cr><lf></lf></cr></cs>	Lautstärke erhöhen um <n> %</n>	Lautstärke plus 4%
\$g,v-4* <cs><cr><lf></lf></cr></cs>	Lautstärke erniedrigen um <n> %</n>	Lautstärke minus 4%
\$g,rp* <cs><cr><lf></lf></cr></cs>		Rotary kurzer Knopfdruck
\$g,rl* <cs><cr><lf></lf></cr></cs>		Rotary langer Knopfdruck
\$g,ru* <cs><cr><lf></lf></cr></cs>	1 Schritt	Rotary Links, Cursor Up
\$g,rd* <cs><cr><lf></lf></cr></cs>	1 Schritt	Rotary Rechts, Cursor Down
\$g,rx* <cs><cr><lf></lf></cr></cs>		Exit from Setup Menu
\$g,w1* <cs><cr><lf></lf></cr></cs>	<cs> = 0C</cs>	Start der Fahrwerks Warnung
\$g,w0* <cs><cr><lf></lf></cr></cs>	$\langle cs \rangle = 0D$	Stop der Fahrwerks Warnung

12. Installation

Das XCVario wurde einfach gehalten in Bezug auf Installation und Konfiguration. Der Einbau im Cockpit ist somit denkbar leicht. Mittels 6 mm T- oder Y-Stücken können die für das XCVario benötigten Drücke mit den Instrumentenschläuchen der mechanischen Instrumente verbunden werden. Falls diese Verbindungen nicht bereits von einem vorherigen Vario vorhanden sind, kann der Instrumentenschlauch an geeigneter Stelle aufgetrennt, und mittels T-Stück der Anschluss für das Vario hergestellt werden.

Es werden benötigt:

- ST: Statischer Druck (= Static)
- PI: Staudruck (= Pitot = Gesamtdruck)
- TE: TE-Düsendruck

Die Drücke sind normalerweise Hersteller seitig hinter dem Instrumenten Panel verschlaucht, und entweder bereits passend für ein Vorgängergerät verlegt, oder können an mechanischen Instrumenten mit Hilfe eines T-Stücks abgenommen werden. PI und ST liegen dabei am Fahrtmesser an, TE in der Regel an einem mechanischen Variometer.

12.1.Anschlüsse Rückseite, Serie 2020

Die elektrischen Verbindungen sind über den RJ45 Verbinder und optional für einen externen Lautsprecher oder Audio-Eingang an der 3,5 mm Audio-Klinken Buchse an der Rückseite des Gerätes herzustellen. Es sind verschiedene Kabel verfügbar womit die Verbindung mit dem Bordnetz, dem Sollfahrtumschalter, dem Temperaturfühler und über die serielle RS232 die Verbindung mit einem FLARM hergestellt werden kann. Die Druckanschlüsse sind entsprechend den Labeln auf die 6 mm Nippel aufzustecken.

12.2. Anschlüsse Rückseite, Serie 21&22

Die elektrischen Verbindungen sind identisch mit der Serie 2020, S1 entspricht exakt dem einzigen RJ45 Verbinder wie im vorherige Punkt gezeigt.

Ab Serie 2021 kommt mit einem weiteren Anschluss "S2" woran optional ein weiteres Gerät angeschlossen werden. Die Belegung, siehe Kapitel zum den RJ45 Verbindern. Das Interface S2 besitzt Standard IGC Belegung, der Anschluss einzelner Geräte wie der Wölbklappensensor oder dem Magnetsensor und kann an S2 mit 1:1 Patch Kabeln erfolgen. Das 80 mm Gerät hat dieselben Anschlüsse auf der Rückseite.

Achtung: Alle **anderen Geräte** sind unbedingt über den **S2-Extender/Splitter** anzuschließen. Ein direkter Anschluss eines z.B. eines Flarm's an S2 kann den CAN-Bus (ab XCVario-22) beschädigen.

Das mitgelieferte Kabelbaum darf nur mit dem "Vario" gelabelten Stecker mit der S1 Buchse verbunden werden. Den Vario Stecker auch nicht mit der S2 Buchse verbinden. Wenn Spannung anliegt kann dies bei älteren Revisionen des Kabelbaums den Temperatursensor im Kabel beschädigen.

Ebenso nicht "**Flarm**" gelabelte Ende des Kabelbaums **nicht** mit dem **XCVario verbinden**, dies ist für ein Flarm IGC Port vorgesehen, und sollte falls kein Flarm verwendet unbenutzt bleiben.

Ein eventueller Defekt durch nachweislich fehlerhafte Verkabelung ist nicht über die Garantie abgedeckt.

12.3. Einbau und Bohrplan

Das 57 mm Gerät (links) entspricht mechanisch der Luftfahrtnorm für Instrumente mit **57mm** Durchmesser, das 80 mm Gerät den Einbaumaßen der für 80mm Instrumente. Die Bohrungen für vier **M4** Instrumentenschrauben sollten mindestens 4.5 mm betragen. Die Instrumentenschrauben dürfen nicht mehr als 10 mm in das Gehäuse hineinragen. Keine Garantie auf fehlerfreien Betrieb bei gewaltsam eingedrehten Schrauben > 10 mm. Empfohlen sind je nach Dicke des Instrumenten-Panels Schrauben von **M4x8 bis maximal M4x10**. Das exakte Maß des Bohrkreises für die Befestigungsschrauben liegt bei **66,675** mm beim 57mm Gerät, und **89,095** mm beim 80 mm Gerät.

Bei besonders dicken Instrumenten-Panels mit einer Dicke von mehr als 2 mm, muss seitlich auf halber Höhe für den Rotary Knopf eine kleine vorzugsweise halb-runde Nische mit einer Breite von 2 mm und einer Höhe von 14 mm geschaffen werden. Im Normalfall ist das nicht notwendig, da Standard Panels ca. 2 mm Stärke aufweisen.

Das 57mm Gerät ist für eine 57 mm Bohrung entwickelt und dafür optimal angepasst. Für einen 80 mm Auschnitt ist das 80mm Gerät besser geeignet.

Der Einbau des 57 mm Gerätes in einen 80 mm Ausschnitt ist mittels unsere Blende mit Gewinden und vier gekürzten M4 Schrauben oder M4 Schrauben und vorne aufgesetzten Hutmuttern dennoch möglich. Die Befestigung der Blende wie in der Skizze gezeigt erfolgt mit M4 Senkkopfschrauben von der Rückseite des I-Panel (Senkungen anbringen), gegen Hutmuttern an der Vorderseite. Alternativ können normale M4 Instrumenten-Schrauben von vorne eingeschraubt werden, und dann die Überstände hinten mit einem Sägeblatt bündig gekürzt werden, oder die Schrauben vorher passend auf die Stärke des I-Brett plus der Blende ablängen. Eine entsprechende **Blende mit Gewinden im 89 mm Lochkreis ist im Shop lieferbar**.

12.3.1. Zeichnung des Frontteils

Eine genaue Bemaßung des Frontteils als Schnittstelle zum Instrumentenbrett ist nachfolgend gezeigt. Die Gerät ist nach unten leicht asymmetrisch, dort sind etwa 4 mm mehr Platz vorzusehen. Geht das nicht, kann das Gerät auch um 180 Grad gewendet werden, das Display lässt sich per Setup drehen.

57 mm Gerät:

12.4.Micro USB

Über den Micro USB-B Verbinder auf der Sensor-Platine wird das Gerät im Werk erstmalig programmiert, und ist in der Serie 20 und 21 nur bei abgenommenem Deckel zugänglich. Ab der Serie 22 ist beim 57 mm Gerät der USB-B Verbinder an der Oberseite des Gerätes zugänglich, die Öffnung wird werksseitig mit einem Aufkleber verschlossen.

Das Gerät kann über USB zur Diagnose mit einem PC verbunden werden und auch über deren mit Power versorgt werden. Um Kontakt mit dem seriellen Interface des ESP32 herzustellen werden u.U. Treiber für den Serial-USB Wandler Chip CH340G benötigt.

Der Anschluss wird für den Betrieb als Variometer nicht benötigt, ebenso nicht für den OTA Software Update, welcher über die ESP32 OTA WiFi Verbindung erfolgt.

12.5. Audio Ausgang

Eine 3.5mm Stereo Klinkerbuchse bietet einen externen Ausgang für das Audio-Signal des Variometers. Daran kann entweder eine eigener externer Lautsprecher angeschlossen werden, oder ein Audio-Eingang eines Funkgerätes genutzt werden. Im Normalfall reicht der interne Lautsprecher des Variometers, es kann aber Sinn machen z.B. bei Betrieb mit Headsets das Signal dort hören zu können, oder in lauten Cockpits einen externen Lautsprecher näher am Kopf zu verbinden. Der Interne Lautsprecher schaltet sich ab sofern ein externes Audiogerät gesteckt ist.

Die Abbildung rechts zeigt den notwendigen Audio Stecker, es ist ein Standard 3.5 mm Klinkenstecker mit Tip,Ring,Sleeve (TRS), also 3 Anschlüssen. In dem Modell in der Zeichnung rechts ist der Anschluss 1 die Spitze (engl. Tip), 2 der Ring, und 3 der Schirm (engl. Sleeve). Der Lautsprecher wird dabei am Anschluss 1 und 3 gelegt. Anschluss 2 bleibt dabei unbelegt (NC). Im Zweifel den Stecker mit einem Multimeter nachmessen. Der Lautsprecher muss zwischen der Spitze und dem Massekontakt angeschlossen werden.

Abbildung 1: Audio Stecker

Anschluss	Bezeichner	Lautsprecher
1	Tip, L	Anschluss 1
2	Ring, R	NC
3	Sleeve, GND, Masse	Anschluss 2

Vario seitig ist das Mono Audio Signal auch an Anschluss 2 (Ring) aufgelegt, daher ist die Verwendung eines Mono Klinkenstecker (TS) bei Geräten der Serie 2020 und teilweise 2021 nicht möglich, da dieser keinen isolierten Ring zwischen Anschluss 2 und 3 hat, und den Anschluss 2 damit nach Masse legt. Ab der Serie 4/2021, d.h. Geräte ab September 2021, wird das Vario Signal nur noch auf Anschluss 1 ausgegeben, die alternative Verwendung eines Mono Steckers ist dann möglich.

12.6. Elektrische Anschlüsse

12.6.1. RJ45 Anschluss S1

Es können eigene RJ45 Stecker mit geeigneten Kabeln konfektioniert werden, oder auf ein handelsübliches LAN-Patch Kabel zurückgegriffen werden, welcher folgende Farbcodierung aufweist. Es gibt europäische (568A) und amerikanische (568B) Standards, mit Unterschieden in der Farb-Kodierung. Bei den gebräuchlicheren 568B Kabeln ist der **Pluspolorange/weiß, und GND braun.** Weiter können über den Shop günstige Kabel mit bereits konfektioniertem Temperaturfühler und einem Stecker für Standard-Verwendungen (Standard IGC Belegung z.B. wie bei den meisten FLARMs, und Loggern) bezogen werden was empfohlen wird, sofern keine Kenntnisse an dieser Stelle vorhanden sind.

Abbildung 2: S1 FCC Pinbelegung

Achtung: Die Belegung am Anschluss S1 mit S2F-Switch und Temperatursensor hat **keine IGC Belegung sondern XCVario spezifisch und unterschiedlich zu S2.** Erst das XCVario FLARM-Kabel setzt die Belegung am S1 passend um, so dass **am Ende des Kabel des FLARM Kabels** die für das FLARM notwendige **IGC Standard Belegung (RJ45)** zur Verfügung steht. Die RJ45 Buchse ist oben in der Abbildung in der Draufsicht von der Rückseite her gezeichnet. Pin 1 liegt also ganz links. Fett dargestellt sind die minimalen Anschlüsse die zum Betreiben des Geräts in seiner Basisfunktion notwendig sind.

Schnittelle S1

	Schmittene S1			
Pin# RJ45 FCC	Pin# RJ45 IGC	Bezeichner	Richtung	Kabelfarben 568B
1	8	Plus 828 VDC	∌	orange-weiß
2	7	RS232 TTL RX	€	orange
3	6	RS232 TTL TX	→	grün-weiss
4	5	Vario/Sollfahrt Schalter	Ð	blau
5	4	T-Sensor +3.3 VDC	↦	blau-weiß
6	3	T-Sensor Data	€	grün
7	2	GND	€	braun-weiß
8	1	GND	€	braun

Temperatursensor:

Der Temperatursensor ist mit den drei vorgesehenen Pin's 5,6 und 7 mit dem RJ45 Kabeln der entsprechenden Farbe zu verbinden. Der Temperatur Sensor ist Teil des FLARM Kabels.

Sollfahrt-Umschalter:

Der Vario/Sollfahrt Umschalter ist mit dem Pin 4 des RJ45 und mit Masse Pin 8 zu verbinden. Ist der Schalter geschlossen wird Sollfahrt selektiert. Die Funktion kann im Setup auch geändert werden, d.h. bei geschlossenem Schalter wird dann Vario-Modus selektiert.

FLARM

Das FLARM ist die Standardkonfiguration für das Interface S1, und kann mit dem Standard FLARM Kabel mit dem XCVario verbunden. Beim einfachen FLARM Kabel ist nur die Richtung FLARM nach XCVario (Serie 20) verbunden, d.h. nur das Pin 4 in FCC Nummerierung. Diese Kabel werden nicht mehr angeboten. Für eine bidirektionale Kommunikation mit dem FLARM ist das bidirektionales FLARM Kabel notwendig (Standard ab Serie 2021). Dies ermöglicht z.B. die Flugdeklaration im FLARM über den Navi (z.B. XCSoar).

Nachfolgend die Belegung am mit **FLARM bezeichneten Ende** des Standard Kabels, fett dargestellt die Verbindungen welche für den Empfang von FLARM Daten mindestens nötig sind.

Pin# RJ45 FCC	Pin# RJ45 IGC	XCVario FLARM Kabel Ende	FLARM mit RJ45 Interface
1	8	GND	GND
2	7	GND	GND
3	6	RS232 TX	RS232 RX
4	5	RS232 RX	RS232 TX
5	6		
6	3		
7	2		+828 VDC
8	1	+828 VDC	+828 VDC

12.6.2. RJ45 Anschluss S2

Ab Serie 2021 besitzt die Hardware mit dem zweiten elektrischen RJ45 Verbinder "S2" mit **Standard IGC Belegung** für den seriellen Port, plus einem zusätzlichen Ein/Ausgängen für einen Wölbklappen Sensor, sowie für einen CAN Bus (2).

Am seriellen Interface, Pins 3,4 kann mit einem **1:1 Patchkabel** z.B. ein Strefly OpenVario angeschlossen werden, ein FLARM in verschiedenen Ausführungen, ein Volkslogger, ein Funkgerät oder jedes andere Gerät welches von XCSoar unterstützt wird angeschlossen werden. Sofern das angeschlossene Gerät nicht über einen Standard IGC RJ45 Stecker verfügt, sollte dies mit einen dafür speziell angefertigten spezifischen Kabel erfolgen. Hierzu finden sich für

Abbildung 3: S2 FCC Pinbelegung

diverse Geräte Quellen im Internet. Ein kundenspezifisches Kabel kann entsprechend der Anforderung meist selbst angefertigt werden, XCVario leistet dafür Unterstützung. Alle Anschlüsse am S2 sind optional für einen eigenständigen Betrieb des Geräts.

Schnittelle S2

Pin # RJ45 FCC	Pin # RJ45 IGC	Bezeichner	Richtung	568A	568B	Anschluss
1	8	GND	Ð	grün-weiss	orange-weiß	Bordnetz Masse
2	7	GND (1)		grün	orange	-
3	6	RS232 TTL TX	ightharpoons	orange- weiß	grün-weiss	Navi Serial RX
4	5	RS232 TTL RX	Ð	blau	blau	Navi Serial TX
5	4	CAN-L (2)	⇒	blau-weiß	blau-weiß	-
6	3	Analog-Eingang	Ð	orange	grün	01.2 Volt Spannung gegen GND
7	2	CAN-H (2)		braun-weiß	braun-weiß	-
8	1	+828 V	Ð	braun	braun	Bordnetz +12VDC

- 1) Ab Serie 2021/2 verfügbar seit Juni 2021
- 2) Ab Serie 2021/3 verfügbar seit Oktober 2021

Wölbklappensensor

Die Hardware der Serie 2021 besitzt einen analogen Eingang für verschiedene Funktionen, hier wird die Anwendung des WK Sensors und dessen Herstellung beschrieben.

Bitte beachten: Der analoge Eingang kann aufgrund einer Einschränkung in der ersten Serie 2021 nur im Bluetooth Modus verwendet werden. Für Anwendungen die den WiFi Mode zwingend benötigen ist die Hardware ab März 2021 notwendig.

Der Wölbklappensensor wird in der Nähe des Klappengestänges an einer geeigneten Position montiert z.B. in einer kleinen Box, und mit 5

Minuten Epoxy an der Rumpfwand fixiert, und mit Hilfe eines am Poti aufgepressten Mitnehmers plus einer M3 Kugelgelenk-Stange am WK-Gestänge befestigt. Das Gestänge darf auf keinen Fall angebohrt werden.

Der Mitnehmer am Poti muss lange genug sein, Richtwert ist etwa der Weg den das WK-Gestänge zurücklegt. Das Gestänge darf nicht blockiert werden. Zur Befestigung am Gestänge eignen sich ebenfalls klebende Verfahren, oder eine Schelle die das Gestänge umschließt mit einem Streifen GFK und einer M2 Schraube für den Kugelkopf. Der Mitnehmer am Poti lässt sich z.B. aus einer 2-3 mm starken Epoxy-Platte oder Aluminiumblech herstellen welche an der 6 mm Achse des Poti aufgepresst und verklebt wird (Epoxidharz). Die Kugelgelenke und einer gesicherten Schraube verbunden werden. Da diese Mechanik stark vom Flugzeugtyp abhängt, ist es am Einfachsten diese Teile vor Ort beim Einbau anzupassen, die Teile sind Standardbauteile und können wie folgt bezogen werden. Ein passender Sensor ist im Shop nun ebenfalls verfügbar.

Teileliste

- 1x ABS-Gehäuse; voelkner.de: A403151 o.ä. (Loch 12mm und Ausklinkung 20x18 mm anbringen)
- 2x Aluminium Gabelkopf mit Innengewinde M3; voelkner.de: A59085
- 1x Gewindestange 3mm; voelkner.de: A24701
- 1x GFK Platte 3mm; voelkner.de: A03670
- 1x Verbindungskabel <u>Flexible Network Cable Patch Cable</u>; amazon.de (Länge messen und passend bestellen)

12.6.3. KRT2 / ATR 833 Radio

Die Verbindung zum einen Funkgerät vom Typ KRT2, oder auch einem anderen Modell e.g. ATR 833 sofern das Navi (z.B. XCSoar) einen Treiber dazu besitzt, lässt sich mit einem 21er oder 22er Modell über S2 seriell herstellen. Die Baudrate ist auf **9600** Baud einzustellen. Alles Weitere im S2 Setup bleibt auf Default. Dazu die Verbindung von S2 Pin 3 und 4 zum entsprechenden seriellen RX/TX des KRT2 zu machen, am Besten dort am vorhandenen KRT2 Sub-D Stecker anlöten, auf Pin 2 und 13 und zwar gekreuzt also RX nach TX sowie TX nach RX wie folgt verdrahten:

XCV 3 grün/weiß (TX) <-> 13 KRT2 (RX)

XCV 4 blau (RX) <-> 2 KRT2 (TX Remote)

XCV 1 orange/weiß (GND) <-> 1 KRT2 (GND)

Das Setting beim S2 Routing ist dabei auf Wireless einzustellen, damit die Daten dorthin geleitet werden. Die Verbindung softwareseitig geht mit dem XCVario nur im WiFi Mode (was u.U. ein paar Nachteile mit sich bringt,

From left to right:
Pin 9: GND Mikrofon
Pin 10: PTT-L
Pin 11: PTT-R
Pin 12: Intercom with Bridge to Gnd
Pin 13: RX
Pin 14: Headset
Pin 15: connected with Pin 8 Batterie+

Pin 15: connected with Pin 8 Batterie+

From left to right:
Pin 8: Batterie plus
Pin 7: Speaker +
Pin 6: Mikrofon R
Pin 5: Ext. NF
Pin 4: Speaker minus (not GND)
Pin 3: Mikrofon L
Pin 2: TX Remote

siehe Handbuch Wireless LAN), über den TCP Client mit Port 8882. Dort im Navi den Treiber für das KRT2 konfigurieren.

Eine Verbindung via Bluetooth ist neben dem XCVario leider nicht möglich, da XCSoar bei einer Schnittstelle nur einen Treiber konfigurieren kann, und nur eine Bluetooth Verbindung zu einem Gerät möglich ist.

Alternativ, um bei Bluetooth zu bleiben gibt es die Möglichkeit das Funkgerät über eine externe Bluetooth Brücke als eigenes BT-Gerät ans XCSoar anzubinden, BT-Bridges gibt es von vielen Herstellern, oder hier im Shop: https://xcvario.com/product/serial-bluetooth-WiFi-adapter/

Die Steckerbelegung und Verbindungen beim ATR833 sind wie folgt:

XCV 3 grün/weiß (TX) <-> 9 ATR 833 (Data RX)
XCV 4 blau (RX) <-> 22 ATR 833 (Data TX)
XCV 1 orange/weiß (GND) <-> 25 ATR 833 (GND)

ATR833-II / P/N 833-II-(C Bedienung und Einbau		f.u.n.k.e.			
4.7.2 Stecker-Pinbele	gung				
MICR GND	14	7	<u>〜</u>	1	LSP (+)
PTT 0	15	Γ>	5-	2	HEAD 0 (+)
LSP (-)	16	Κ,	5-	3	GND (HEAD 0)
PTT 1	17	K	5	4	EXT NF
MICR STD	18	К	5	5	MICR DYN
MICL STD	19	К	₹.	6	MICLGND
		К	<	7	INTERCOM SWITCH
HEAD1(+)	20	\leftarrow	Υ.	8	MICL DYN
GND (HEAD 1)	21	Ю	ζ.	9	DATA RX
DATA TX	22	-	Υ.	10	do not connect
do not connect	23	ŀ	>	11	BATT (+) (14/28V)
+5VDC (TO REMOTE)	24	ŀč	>	12	BATT (+) (14/28V)
BATT (-)	25	Ŕ	>	13	BATT (-)
				ım ATR833 stückunass	

12.6.4. Stefly OpenVario +

Das Stefly OV kann direkt an ttyS1 oder ttyS2 mit einem 1:1 Kabel an S2 oder mit dem FLARM des Standard Kabels an S1 mit dem XCVario verbunden werden. Dabei wird das **XCVario über** das **OpenVario direkt gespeist**. Das OpenVario von Seiten des XCVario mit Strom zu versorgen wird nicht empfohlen, denn das OpenVario mit großem Display und höherem Stromverbrauch ist als Versorger besser geeignet. Die Stromversorgung (Verbindung mit dem Bordnetz) des XCVario am Verbinder S1 bleibt in dem Falle unbelegt. Will man die beiden Geräte separat versorgen, was Sinn machen kann um diese bei Stromknappheit einzeln abzuschalten, oder um jedes Gerät mit einer eigener Sicherung abzusichern, ist die Verbindung der +12V im Patch Kabel zu trennen, und die Versorgung des XCVario an den Power Kabeln an S1 auszuführen.

Eine weitere Möglichkeit, die Verwendung des ttyS0 am OV, hierbei muss am Sub-D Stecker des OV das RX und TX Pin, sowie Masse mit der seriellen Schnittstelle des XCVario an S1 oder S2 verbunden werden.

Die RX/TX Pins am Variometer sind im "Setup/System/RS232 Interface S[1|2]" unter "Twist RX/TX Pins" für diesen Anwendungsfall auf Twisted" einzustellen. Die Voreinstellung hier steht auf "Normal". Die Baudrate ist an beiden Enden gleich einzustellen. Alle Anderen Einstellungen der seriellen Schnittstelle bleiben unverändert.

Das Flarm kann dabei direkt am OV eingesteckt werden, oder auch über das Vario an das OV weitergeleitet werden. Siehe dazu auch die Einstellungen für das Routing an den beiden seriellen Schnittstellen. Fett dargestellt die Pins welche mindestens notwendig sind um die Daten vom FLARM auf dem OV angezeigt zu bekommen.

Pin RJ45 FCC		XCVario S1 FLARM oder S2	Stefly OV ttyS1 (o. ttyS2)
1	8	GND	GND
2	7	NC	GND
3	6	RS232 TTL RX	OV TX
4	5	RS232 TTL TX	OV RX
5	4	-	-
6	3	-	-
7	2	-	+816 VDC
8	1	+816 V	+816 VDC

Als Kabel zum OV kann beim XCVario-21 ein RJ45 Standardkabel 8p8c, also 8pin mit 8 Verbindungen, mit Belegung 1:1, wie in der Netzwerktechnik vielfach eingesetzt, verwendet werden. Dazu nach folgendem Begriff bei google oder amazon suchen: Flexible Network Cable Patch Cable.

In der Regel genügt zwischen den zwei Geräten am I-Brett eine Länge von 0,5 Meter.

Achtung: Die Verkabelung mit einem **XCVario-22** zum OV erfordert **immer den S2 Splitter**, da das OV auf Pin 7 ebenfalls +12V liefert und der CAN Bus ansonsten Schaden nehmen kann (keine Garantie bei direktem Anschluss eines OV an S2). Das OV wird am Splitter-Port RS232 angeschlossen. Soll die +12V **Versorgung zum**

OV ganz unterbunden werden, ist das **Y-Stück** einzusetzen und dort beide Jumpers für **Pin 7 und 8** ziehen, um nur die Datenverbindung zwischen den beiden Geräten herzustellen.

Bei zwei XCVario's und zwei OV's im Doppelsitzer, braucht die Verschlauchung nur am vorderen Gerät ausgeführt zu werden, die Daten vom vorderen Gerät können über den CAN Bus zum Zweitgerät weitergeleitet werden.

Dazu wird der Splitter am vorderen Gerät an S2 angeschlossen. Das Patch Kabel vom vorderen Gerät zum Splitter sollte dabei 50 cm Länge nicht überschreiten, je kürzer um so besser um Interferenzen auszuschließen. Am CAN Port des Splitters kann dann das zweite Gerät über S2 ebenfalls mit einem Patch Kabel passender Länge verbunden werden. Die Versorgung läuft dann in dem Fall über das Patch Kabel vom Erstgerät und braucht beim der Zweitanzeige somit nicht explizit verkabelt werden.

Die Kabel sollten möglichst flexibel sein, um an den Steckern keine großen Kräfte einwirken zu lassen, und nicht länger als für die Verbindung notwendig.

Am Splitter kann noch ein Wölbklappen Sensor angeschlossen werden, sowie mit Hilfe eines zusätzlichen 1:1 RJ45 Y-Stück am CAN Bus nach dem Splitter ist auch noch ein CAN Magnetsensor möglich.

12.6.5. Temperatursensor

Der Temperatursensor ist ein fertig konfektionierter Dallas DS1820B Sensor mit wasserdichter Ummantelung und einer 1 Meter langen Zuleitung. Der Sensor besitzt drei streige Leitungen, welche in der Regel mit den Farben Rot, Gelb und Schwarz codiert sind. Wird ein eigener Sensor verwendet, sind die Angaben des Herstellers zu beachten.

Dies kann auch im Lüftungsrohr erfolgen sofern vorhanden. In dem Falle wird mit einem Cutter-Messer ein kleiner Schlitz geschnitten, der Temperatursensor eingeschoben und z.B. mit Aluminium-Klebetape oder Silikon abgedichtet.

12.6.6. Stromversorgung

Die Stromversorgung wird mit dem Bordnetz verbunden. Eine Einzel-Absicherung für e KRT2 in Variometer ist für Segelflugzeuge nicht vorgeschrieben, wird aber empfohlen. Die Verkabelung kann mit Kupferlitze ab 0,14 mm² erfolgen, empfohlen wird 0,25 mm². Alternativ kann das XCVario kann parallel zu einem anderen Gerät das mindestens mit 0,5 besser 1 Ampere abgesichert ist dazugeschaltet werden. Die Absicherung des Gerätes ist notwendig, da Stecke und Kabel nicht für höhere Ströme ausgelegt sind. Das Gerät verträgt Spannungen im Bereich von 5-28 Volt ideal ist eine Versorgung mit 12 Volt. Beim Betrieb des Gerätes ohne jede Absicherung plus einem externen Kurzschluss z.B. an S2 ist ein interner Schaden zu erwarten der nicht durch die Garantie abgedeckt ist. Daher unbedingt, auch auf dem Labortisch zu Versuch-Zwecken absichern.

Das XCVario ist verpolungssicher und ist intern gegen transiente Überspannungen wie ESD Entladungen und Induktionsspitzen beim Anlassen geschützt. Generell gilt die Avionik beim Anlassen abgeschaltet zu lassen, sollte es nicht vermieden können z.B. beim Anlassen während des Flugs, muss man sich auf den Überspannungsschutz verlassen.

12.6.7. Vario-Sollfahrt Umschalter

Der Vario-Sollfahrt Umschalter lässt sich am Knüppel oder im Instrumenten Panel anbringen. Sein zweites Pin muss nach Masse (Minuspol Versorgung), gelegt werden. Bei Massekontakt an Pin 4 ist das Vario im Sollfahrt-Modus, bei offenem Schalter im Vario-Modus. Die Sollfahrt-Anzeige ist ständig in Betrieb, aber es wechselt der Tongenerator auf Sollfahrt als Input. Anstelle eines Schalters kann auch ein Taster verwendet werden. In diesem Fall ist der Typ des Schalters im Setup entsprechend einzustellen.

Der Umschalter ist nicht unbedingt notwendig, da es möglich ist die Sollfahrt automatisch ab einer bestimmten Geschwindigkeit umzuschalten. Dies lässt sich im Menu Audio/AudioMode durch die Einstellung "Autospeed"

erreichen. Die "AutoSpeed" ist diejenige Geschwindigkeit, bei deren Überschreitung das Variometer in den Sollfahrt Modus wechselt.

12.6.8. RS232 Schnittstelle

Die RS232 Schnittstelle dient entweder zur Anbindung eines Gerät ohne Wireless (Bluetooth oder WiFi) Support (OpenVario, älterer Kobo), oder zur Anbindung eins FLARM wie oben gezeigt.

Mit einem bidirektionalen Kabel (RX und TX Richtung verbunden) kann im FLARM auch eine Flugaufgabe deklariert werden, das FLARM gemanagt werden, oder ein Flugdownload erfolgen. Zum Kabel siehe die Beschreibung im Kapitel zur Kabelkonfektionierung. Der Anwendungsfall FLARM ist voreingestellt, im Setup braucht an der seriellen Schnittstelle keine Einstellung dazu gemacht werden.

Grundsätzlich kann nur ein Gerät an einer seriellen Schnittelle angeschlossen werden.

Dies ist eine Einschränkung des RS232 Protokolls. Ausnahmen dazu sind der

Wölbklappensensor, welcher über ein zusätzliches Pin an S2 (Pin 6) verfügt verbunden

wird, d.h. über einen RJ45 Splitter 8P8C, wie rechts gezeigt verbunden werden kann,

sowie ein zweites Gerät welches unidirektional verbunden wird, d.h. das zweite Gerät

liest nur, d.h. dessen TX Leitung ist nicht mit dem Vario verbunden. Dasselbe gilt auch

für das andere Ende, z.B. darf an einem Flarm auch nur ein Gerät angeschlossen werden, es sein denn dass das

zweite Gerät keine Senderichtung (TX) zum Flarm hin unterhält. Hierzu sind spezielle Kabel erforderlich, welche

nicht alle Verbindungen aufweisen.

Im Falle eines OpenVario an der seriellen Schnittstelle werden die "XCVario" Daten auf der seriellen Schnittstelle gebraucht welche im Setup des "RS232 Interface S1" unter "TX Routing" gesetzt werden können. Näheres in der Setup Beschreibung.

12.7. Vergleich IGC- und FCC Standard

Die Nummerierung der RJ45 Buchsen erfolgt im Dokument nach dem internationalem Standard der Federal Communications Commission (**FCC**). Daneben gibt es den **IGC** Standard für Schnittstellen zum Auslesen von Loggern. Die Schnittstelle **S2** des XCVario folgt exakt dem **IGC Standard**, benutzt aber in erster Linie die

Standard FCC Nummerierung. Zum Vergleich sind die IGC Nummerierungen in einer extra Spalt zusätzlich erwähnt.

Abbildung 4: FCC-Standard

Abbildung 5: IGC-Standard (verkehrt)

Links die Abbildung 4 zeigen den FCC Standard, welcher das erste Pin in der Draufsicht auf den Stecker mit Pin 8 bezeichnet. Daneben rechts in Abbildung 5 der verkehrt nummerierte IGC Standard (Quelle: TECHNICAL SPECIFICATION FOR IGC-APPROVED GNSS FLIGHT RECORDERS - Second Edition with Amendment 6 25 November 2020). Dort beginnt die Nummerierung des ersten Pins am Stecker links mit Pin 1.

Um abzuschätzen ob die Steckerbelegung eines Gerätes passt, ist beim Lesen eines Dokuments ist daher immer zu prüfen **welchem Standard die Nummerierung folgt**, ist es der IGC Standard sind die + 12V nummeriert mit Pin 1 und 2 links in der Draufsicht auf den Stecker, beim FCC Standard liegen die +12V natürlich ebenfalls links, sind aber nummeriert mit Pin 7 und 8. Nachfolgend die Tabelle mit einem Vergleich beider Nummern-Systeme mit einer Gegenüberstellung.

Die von der FCC abweichende, verkehrte Nummerierung der IGC sorgt vielfach für Verwirrung. Auf der ganzen Welt nummerieren Hersteller Bauteile, CAD-Symbole oder Kabel nach dem FCC Standard, mittlerweile auch wieder die Avionik Geräte-Hersteller. Alleine mit der Pin-Nummer kann man daher nicht abschätzen ob die Belegung stimmt. Es ist daher immer auch eine Zeichnung des Steckers mit anzuschauen.

Vergleich der Pinnummern des FCC- und des (verkehrten) IGC-Standard's:

Signal	RJ45 FCC Standard Pin#	RJ45 IGC Standard Pin#
Volts +	7+8	1+2
Data out (TX)	4	5
Data in (RX)	3	6
Earth (GND)	1+2	7+8

13. Technische Daten

Stromversorgung	8-28V DC
Spannung empfohlen	10-18V DC
Stromaufnahme bei 12,5V typisch	70 mA = 0.9 Watt 100 mA = 1.2W (Wireless verbunden) 120 mA = 1.5W (XCV-23 Heizung an) 250 mA = 2.5W (maximale Lautstärke)
Bluetooth Standard	V4.2, EDF, classic Bluetooth
WiFi Standard	802.11 b/g/n Wi-Fi MAC Protokoll
Variometer Bereich	+- 1m/s bis +-30m/s
Baro und TE Drucksensor Auflösung	0,01 hPa (0,1 m)
Baro Sensor relative Genauigkeit	0,12 hPa (1 m)
Baro Sensor absolute Genauigkeit	1 hPa (8 m)
Baro Sensor Bereich	0-9.000 m kalibriert bis 16.000 m unkalibriert
Staudrucksensor Genauigkeit bei 100 km/h	1 km/h
Staudrucksensor Bereich	10 – 280 km/h
Temperatursensor Bereich	-1085 °C
Temperatursensor Genauigkeit	+-0.5 °C
Abmessungen des Gehäuse (Breite x Höhe x Tiefe)	64x68x35 mm (5) 80x80x35 mm (8)
Ausschnitt im Instrumenten Panel	57 mm (5) 80 mm (8)
Elektrischer Anschluss	2x RJ45 Main Buchse 8 polig
RJ45 / RS232 Interface S1	RS232 RX/TX (TTL level 3.3V)
RJ45 / RS232 Interface S2 (IGC Standard)	RS232 RX/TX, CAN Bus, Analog In 01V
RJ45/ OneWire Interface	OneWire Bus Interface für Temperatursensor mit 3.3V Power Supply (470 Ohm Vorwiderstand für Kurzschlussschutz)
CAN Interface (2)	250 kBit1MBit CAN Bus
USB Interface	Micro USB-B
Audio Ausgang	2 Watt Leistung (3) 3.5 mm Stereo Klinke geschaltet, deaktiviert internen Lautsprecher
Pneumatik Anschlüsse	Drei 6 mm Nippel für PVC Schlauch 8x1,5 mm (5 mm Innendurchmesser)
Gewicht	165 g (5) 235 g (8)

- 1) Ab Hardware der Serie 2021
- 2) Ab Serie 2021/3 (Oktober 21)
- 3) Serie 2020 mit 1.2 W Leistung
- 5) Modell 57mm
- 8) Modell 80mm

14. Wartung

Das Variometer bedarf keiner weiter Wartung, da im Normalfall im Rahmen des Instandhaltungsprogammes (IHP) des Flugzeugs eine turnusmäßige <u>Dichtigkeitsprüfung</u> der Instrumentierung ohnehin vorgeschrieben ist. Diese ist in der Regel mindestens 1x jährlich auszuführen. Damit ist die Prüfung des Variometer mit abgedeckt. Selbstverständlich wird im Werk eine Prüfung vorgenommen, diese enthält aber nicht die flugzeugseitige Instrumenten-Verschlauchung, sowie deren Alterung und die Alterung von O-Dichtringen im Variometer selbst. Sollte die Prüfung auf Dichtheit im IHP fehlen, sollte eine entsprechende Ergänzung vorgenommen werden.

15. Garantiebestimmungen

Für das Vario leistet der Hersteller eine Garantie von zwei Jahren ab Kaufdatum hinsichtlich Aufwand und Materialkosten der Instandsetzung. Innerhalb dieser Zeitspanne werden Komponenten, die unter normalen Betriebsbedingungen ausfallen, **kostenlos repariert oder getauscht**, vorausgesetzt das Gerät wurde kostenfrei an den Hersteller gesendet.

Die Garantie deckt keine Schäden ab, die durch fehlerhafte Bedienung, Missbrauch, Unfälle, unautorisierte Änderungen oder Reparaturen, mechanische Beschädigungen sowie Hitze-Einwirkung z.B. durch Brennglaseffekt der Haube am Display, mangelnde Wartung, nachweislich falsche oder fehlerhafte Verkabelung entstehen.

Die Rückgabe kann nach BGB innerhalb von 14 Tagen ab Kaufdatum erfolgen. Das Gerät samt Zubehör ist in dem Falle vom Käufer an die Adresse von der aus es geliefert wurde zurückzusenden. Die Kosten dafür trägt der Käufer.

16. Zulassung

Für jedes Instrument gilt, sofern die Ausrüstung ein Teil der **Mindestausrüstungsliste** ist oder einer Zulassung bedarf, darf diese nur eingebaut werden, wenn vom Lieferant oder Hersteller ein Dokument über die ordnungsgemäße Prüfung auf Übereinstimmung mit der jeweiligen Spezifikation des individuellen Ausrüstungsgegenstandes mitgeliefert wird, Bereich der EASA ist das in der Regel das EASA Form One.

Für alle übrige Ausrüstung, sowie für **Standard-Parts** ist eine entsprechende Prüfung und Dokumentation derselben <u>nicht erforderlich</u> (z.B. **Variometer**, Endanflugrechner, Flugdatenaufzeichnungsgeräte, Navigationsrechner, zusätzliche Antennen, Batterien, Kameras, zusätzliche Drucksonden, Mückenputzanlagen u.s.w.). Dies regelt im Detail die EASA in AMC 21.A.303(c) 2, mit folgendem Wortlaut:

AMC 21.A.303(c) Standard Parts

- 1. In this context a part is considered as a **'standard part'** where it is designated as such by the design approval holder responsible for the product, part or appliance, in which the part is intended to be used. In order to be considered a 'standard part', all design, manufacturing, inspection data and marking requirements necessary to demonstrate conformity of that part should be in the public domain and published or established as part of officially recognised Standards, or
- 2. For sailplanes and powered sailplanes, where it is a **non-required instrument** and/or equipment certified under the provision of CS 22.1301(b), if that instrument or equipment, when installed, functioning, functioning improperly or not functioning at all, does not in itself, or by its effect upon the sailplane and its operation, constitute a safety hazard.

'Required' in the term 'non-required' as used above means required by the applicable certification specifications (CS 22.1303, 22.1305 and 22.1307) or required by the relevant operating regulations and the applicable Rules of the Air or as required by Air Traffic Management (e.g. a transponder in certain controlled airspace).

Examples of equipment which can be considered **standard parts are electrical variometers**, bank/slip indicators ball type, total energy probes, capacity bottles (for variometers), final glide calculators, navigation computers, data logger / barograph / turnpoint camera, bug-wipers and anti-collision systems. Equipment which must be approved in accordance to the certification specifications shall comply with the applicable ETSO or equivalent and is not considered a standard part (e.g. oxygen equipment).

Somit wird für das Vario auch kein EASA Form One benötigt, und darf eingebaut werden.

Nach dem Einbau muss eine Dichtheitsprüfung des Systems erfolgen, die Ausrüstungsliste des Flugzeugs angepasst, und sofern durch die Masse von 0,17 kg mehr im I-Brett eine relevante Schwerpunktänderung festzustellen ist, eine Wägung vorgenommen und die Änderung freigegeben werden.

17. Haftungsbeschränkung

Mit dem Kauf des Geräts erklärt sich der Kunde einverstanden dass keine Haftung für jegliche unmittelbaren oder mittelbaren Schäden, Schadenersatzforderungen oder Folgeschäden gleich welcher Art und aus welchem Rechtsgrund, die durch die Verwendung des Geräts entstehen.

Das Gerät ist ein rein streckenflugtaktisches Gerät, zählt somit nicht zur Sollinstrumentierung bei Segelflugzeugen, und darf im Zweifel nicht als primäre Quelle für die Steuerung des Flugzeugs, insbesondere in kritischen Flugphasen genommen werden. Hierzu ist die Sollinstrumentierung zu verwenden. Das Gerät benötigt daher auch keiner FAA oder EASA Zulassung.

18. CE-Konformitätserklärung

DECLARATION OF CONFORMITY

XCVario, Inhaber Dipl. Ing (FH) Eckhard Völlm, Panoramastr. 86/1, D-71665 Vaihingen/Enz, erklärt dass in normaler Konfiguration die Variometer Hardware den Anforderungen der CE entspricht, siehe hierzu auch das Zertifikat des ESP32 WROOM-32 Moduls:

https://www.espressif.com/sites/default/files/Espressif%20Systems%20ESP32-WROOM-32E%20CE%20B2004079%20RED%20Final.pdf

Die EMC Vertäglichkeit entspricht EN 301 489-3:2002-08 für ein Class 3 SRD Device (equipment type I).

19. Appendix

19.1.Sinkrate in Abhängigkeit vom Lastvielfachen

Anbei die englische Fassung der Ableitung der Gleichungen für die Rechnung den beschleunigten Polaren im XCVario.

A glider loses energy due to its drag at a rate equal to the work of the current drag.

$$\frac{dE}{dt} = DV$$

E = Total energy of glider

D = Drag

V = True Airspeed

Glider total energy variation is equal to the variation of energy per unit of weight:

$$\frac{1}{mg}\frac{dE}{dt} = \frac{dH}{dt} + \frac{V}{g}\frac{dV}{dt} = Sink(V)$$

H = Height

Sink(V) = glider sink rate at speed V

m = mass

g = gravitational acceleration (9,81 m/s²)

Therefore, $Sink(V) = \frac{DV}{mg}$

For a glider flying at constant speed V and mass m the only variable is the drag, therefore we can generalize:

$$Sink_n(V) = \frac{D_nV}{mg}$$

 $Sink_n(V)$ = sink rate at mass m, speed V and load factor n

n = load factor

 D_n = drag at mass m, speed V and load factor n

 $n mg = L_n$, apparent weight = Lift under g load

$$Sink_n(V) = n \frac{D_n V}{L_n} = n V \frac{Cd_n}{Cl_n}$$
 (1)

 Cd_n = coefficient of drag at mass m, speed V and load factor n

 Cl_n = coefficient of lift at mass m, speed V and load factor n

The following demonstration only considers the primary effects from static conditions and ignores the secondary dynamic effects, which occur during glider incidence variations.

If a glider of mass m, flying at speed V, increases the load factor from 1 to n, it must increase the lift coefficient from Cl to $Cl_n = n$ Cl to maintain required lift.

If we use the equation of lift:

$$nmg = \frac{1}{2} \ rho \ S \ V^2 C l_n$$
 (2) (https://www.flight-training-made-simple.com/post/the-lift-formula)

 ${\it Cl}_n$ corresponds to the speed polar point for the glider flying at mass ${\it m}$, load factor ${\it n}$ and speed ${\it V}$ Rearranging the equation (2)

$$mg = \frac{1}{2} rho S \left(\frac{V}{\sqrt{n}}\right)^2 C l_n$$

rho = air density constant, equals to 1,2041 kg/m 3 at 20 °C

S = wing area

 Cl_n also corresponds to the same speed polar point for the glider flying at mass m, load factor 1 and speed $\frac{v}{\sqrt{n}}$

Speed polars, usually available from glider manufacturers at load factor n = 1, deliver the gliders unaccelerated sink speed Sink(V), as source for our calculations.

Using equation (1) and expanding the it by \sqrt{n} we get:

$$Sink_n(V) = n V \frac{Cd_n}{Cl_n} = n \sqrt{n} \left(\frac{V}{\sqrt{n}} \frac{Cd_n}{Cl_n} \right)$$

We can change expression $\frac{V}{\sqrt{n}}\frac{Cd_n}{Cl_n} = \frac{V}{\sqrt{n}}/\frac{Cl_n}{Cd_n}$ and plus the simplification $n\sqrt{n} = \sqrt{n}^3$ we get:

$$Sink_n(V) = \sqrt{n}^3 \frac{V}{\sqrt{n}} / \frac{Cl_n}{Cd_n}$$
 (3)

Taking $\frac{Cl_n}{Cd_n}$ as needed for accelerated speed at point $\frac{V}{\sqrt{n}}$ from the polar, using again eq (1) we can also write:

$$Sink(\frac{V}{\sqrt{n}}) = \frac{V}{\sqrt{n}} / \frac{Cl_n}{Cd_n}$$
 (4)

therefore with (3) equals (4) we get:

$$Sink_n(V) = \sqrt{n^3} Sink(\frac{V}{\sqrt{n}})$$

We can conclude that the sink rate of a glider at speed V under load factor n is:

$$Sink_n(V) = \sqrt{n^3} Sink(\frac{V}{\sqrt{n}})$$
 (5)

Expressing sink rate by the second order approximation:

$$Sink(V) = a0 + a1 V + a2 V^{2}$$
 (6)

And with (5) in equation (6) we get:

$$Sink_n(V) = \sqrt{n}^3 \left(a0 + a1 \frac{V}{\sqrt{n}} + a2 \left(\frac{V}{\sqrt{n}}\right)^2\right)$$
 (7)

finally equation (7) simplified to be ready to get crunched:

$$Sink_n = a0 \sqrt{n}^3 + a1 nV + a2\sqrt{n} V^2$$

The following graph shows the effect of acceleration to the polar:

