Remember long division and finding remainders? It's going to be important for us...

Definition:

The ______ of two integers n and m is found by division of n by m and is the number of times m can fully "go into" n. (Division by m=0 is not defined.) The ______ is an integer value r, where $0 \le r < |m|$ that is "leftover" when n is divided by m. If the remainder of the division of n by m is 0, then n is ______ m or m ______ n. Using the ______, we can write n in terms of m, its quotient, and remainder: n=qm+r, where $0 \le r < |m|$.

Note: the "division algorithm" is not an algorithm in the way we will normally talk about algorithms in this class. Rather than giving us a procedure to follow (which is what we normally mean by an algorithm), it gives us an existence proof of the fact that we can always write a

Example: Suppose you want to divide n by m. Find the quotient and remainder for the given n and m. Use the division algorithm to write n in terms of m, the quotient, and the remainder.

(a) n = 15, m = 7

number in this format.

- (b) n = 67, m = 5
- (c) n = 78, m = 3
- (d) n = -72, m = 13
- (e) n = -85, m = -9

In this chapter we will often be just as (if not more) interested in the remainder than the quotient. In particular:

Definition:

Let m be an integer greater than 1. If x and y are integers, we say that x is
to y m if $x - y$ is divisible by m . If x is congruent to y modulo m , we write
; otherwise, we write We call this relation on the set of integers
·

Example: Find two (or more) integers that are congruent to each other modulo m for each modulus in (a)-(d).

- (a) n = 15, m = 7
- (b) n = 67, m = 5
- (c) n = 78, m = 3
- (d) n = -72, m = 13

Example: We skipped the prior (e) as an example. Why should we have done so?

Example: Determine whether $p \equiv q \pmod{m}$:

- (a) p = 15, q = 29, m = 7
- (b) p = 94, q = -22, m = 5
- (c) p = -14, q = 37, m = 3

Theorem 3.1:

Congruence modulo m is an equivalence relation.

Definition:

The equivalence classes for congruence modulo m are called _____ modulo m. The set of all congruence classes modulo m will be denoted \mathbb{Z}_m (or \mathbb{Z}_m).

Example: Determine the distinct congruence classes in \mathbb{Z}_4 .

Example: Determine the distinct congruence classes in \mathbb{Z}_7 .

Example: Determine which congruence class of \mathbb{Z}_m p and q are in for each example and relate this to congruence (or lack of congruence) mod m.

- (a) p = 15, q = 29, m = 7
- (b) p = 94, q = -22, m = 5
- (c) p = -14, q = 37, m = 3

Theorem 3.2

If $x \equiv x' \pmod{m}$ and $y \equiv y' \pmod{m}$, then

- (a) $x + y \equiv x' + y' \pmod{m}$ and
- (b) $xy \equiv x'y' \pmod{m}$.

Implication:

Based on Theorem 3.2, we can safely define addition and multiplication in \mathbb{Z}_m as follows:

$$[x] + [y] = [x + y]$$
 and $[x][y] = [xy]$.