ASK_05	Romaniak Hubert	Informatyka	Semestr zimowy
		niestacjonarna III rok	2024/25

Wstęp teoretyczny

Przerzutniki typu D (data) to przerzutniki, które przepisują wejście informacyjne **D** na wyjście **Q**. Przepisanie następuje albo podczas odpowiedniego poziomu zegara (synchronizacja poziomem, zatrzask), albo podczas przejścia zegara między odpowiednimi stanami (synchronizacja zboczem).

Przerzutniki te często posiadają również asynchroniczne priorytetowe wejścia **S** (set) i **R** (reset), pozwalające na zmianę stanu wewnętrznego niezależnie od stanu zegara oraz od stanu wejścia informacyjnego **D**.

Zadania

1. Przerzutnik **D** typu zatrzask

Rysunek 1 - schemat logiczny przerzutnika **D** typu zatrzask

C_n	D_n	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Q_n	$\overline{Q_n}$
0	1	Q_n	$\overline{Q_n}$
1	0	0	1
1	1	1	0

Tabela 1 – tablica stanów przerzutnika **D** typu zatrzask

Przerzutnik typu D przepisuje stan wejścia **D** na wyjście **Q** tylko w przypadku, kiedy zegar jest w stanie wysokim. Gdy zegar jest w stanie niskim, stan wewnętrzny przerzutnika jest "zatrzaśnięty" w stanie, w jakim było wejście **D** w ostatnim momencie stanu wysokiego zegara.

2. Przerzutnik **D** typu zatrzask (realizacja praktyczna)

Rysunek 2 - schemat logiczny przerzutnika ${\bf D}$ typu zatrzask w realizacji praktycznej

C_n	$\boldsymbol{D_n}$	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Q_n	$\overline{Q_n}$
0	1	Q_n	$\overline{Q_n}$
1	0	0	1
1	1	1	0

Tabela 2 – tablica stanów przerzutnika **D** typu zatrzask w realizacji praktycznej

Zachowanie przerzutnika jest dokładnie takie samo jak w zadaniu 1. Dzięki połączeniu wyjścia jednej z bramek **NAND** do wejścia drugiej, można zbudować z mniejszej ilości bramek logicznych układ mający takie samo zachowanie.

3. Przerzutnik **D** wyzwalany zboczem

Rysunek 3 - schemat logiczny przerzutnika **D** wyzwalanego zboczem

Zbocze C	D_n	Q_{n+1}	$\overline{Q_{n+1}}$
A	0	Q_n	$\overline{Q_n}$
7	1	Q_n	$\overline{Q_n}$
7	0	0	1
7	1	1	0

Tabela 3 – tablica stanów przerzutnika **D** wyzwalanego zboczem

Przerzutnik wyzwalany zboczem może zmienić swój stan wyłącznie w specyficznych momentach w czasie – podczas zmiany stanów zegara. Wyzwalanie zboczem pozwala na zmniejszenie wpływu zewnętrznych zakłóceń na działanie przerzutnika.

4. Przerzutniki dostępne w programie MMLogic

a) Przerzutnik RS zatrzaskowy

Rysunek 4 - schemat logiczny zastosowania przerzutnika **RS** zatrzaskowego

S_{n+1}	R_{n+1}	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Q_n	$\overline{Q_n}$
0	1	0	1
1	0	1	0
1	1	-	-

Tabela 4 – tablica stanów przerzutnika **RS** zatrzaskowego

b) Przerzutnik RS wyzwalany zboczem

Wbudowany w programie MMLogic przerzutnik RS nie ma wejścia zegarowego, więc niemożliwe jest wyzwalanie zboczem zegara.

c) Przerzutnik **D** zatrzaskowy

Rysunek 5 - schemat logiczny zastosowania przerzutnika **D** zatrzaskowego

C_n	$\boldsymbol{D_n}$	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Q_n	$\overline{Q_n}$
0	1	Q_n	$\overline{Q_n}$
1	0	0	1
1	1	1	0

Tabela 5 – tablica stanów przerzutnika **D** zatrzaskowego

d) Przerzutnik **D** wyzwalany zboczem

Rysunek 6 - schemat logiczny zastosowania przerzutnika **D** wyzwalanego zboczem

Zbocze C	D_n	Q_{n+1}	$\overline{Q_{n+1}}$
Я	0	Q_n	$\overline{Q_n}$
7	1	Q_n	$\overline{Q_n}$
7	0	0	1
7	1	1	0

Tabela 6 – tablica stanów przerzutnika **D** wyzwalanego zboczem

e) Przerzutnik RS synchroniczny zatrzaskowy

Rysunek 7 - schemat logiczny zastosowania przerzutnika **RS** synchronicznego zatrzaskowego

C_n	S_n	R_n	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	0	Q_n	$\overline{Q_n}$
0	0	1	Q_n	$\overline{Q_n}$
0	1	0	Q_n	$\overline{Q_n}$
0	1	1	Q_n	$\overline{Q_n}$
1	0	0	Q_n	$\overline{Q_n}$
1	0	1	1	0
1	1	0	0	1
1	1	1	-	-

Tabela 7 – tablica stanów przerzutnika **RS** synchronicznego zatrzaskowego

f) Przerzutnik **RS** synchroniczny wyzwalany zboczem

Rysunek 8 - schemat logiczny zastosowania przerzutnika **RS** synchronicznego wyzwalanego zboczem

Zbocze C	S_n	R_n	Q_{n+1}	$\overline{Q_{n+1}}$
И	0	0	Q_n	$\overline{Q_n}$
A	0	1	Q_n	$\overline{Q_n}$
И	1	0	Q_n	$\overline{Q_n}$
A	1	1	Q_n	$\overline{Q_n}$
7	0	0	Q_n	$\overline{Q_n}$
7	0	1	1	0
7	1	0	0	1
7	1	1	-	-

Tabela 8 – tablica stanów przerzutnika **RS** synchronicznego wyzwalanego zboczem

g) Przerzutnik RS-MS zatrzaskowy

Rysunek 9 - schemat logiczny zastosowania przerzutnika **RS-MS** zatrzaskowego

C_n	S_n	R_n	Q_{n+1}	$\overline{Q_{n+1}}$	Q_{n+2}	$\overline{Q_{n+2}}$
0	0	0	Q_n	$\overline{Q_n}$	Q_n	$\overline{Q_n}$
0	0	1	Q_n	$\overline{Q_n}$	1	0
0	1	0	Q_n	$\overline{Q_n}$	0	1
0	1	1	Q_n	$\overline{Q_n}$	-	-
1	0	0	Q_n	$\overline{Q_n}$	Q_n	$\overline{Q_n}$
1	0	1	1	0	Q_n	$\overline{Q_n}$
1	1	0	0	1	Q_n	$\overline{Q_n}$
1	1	1	-	-	Q_n	$\overline{Q_n}$

Tabela 9 – tablica stanów przerzutnika **RS-MS** zatrzaskowego

h) Przerzutnik **RS-MS** wyzwalany zboczem

Rysunek 10 - schemat logiczny zastosowania przerzutnika **RS-MS** wyzwalanego zboczem

Zbocze C	S_n	R_n	Q_{n+1}	$\overline{Q_{n+1}}$	Q_{n+2}	$\overline{Q_{n+2}}$
A	0	0	Q_n	$\overline{Q_n}$	Q_n	$\overline{Q_n}$
И	0	1	Q_n	$\overline{Q_n}$	1	0
A	1	0	Q_n	$\overline{Q_n}$	0	1
Z	1	1	Q_n	$\overline{Q_n}$	-	-
7	0	0	Q_n	$\overline{Q_n}$	Q_n	$\overline{Q_n}$
7	0	1	1	0	Q_n	$\overline{Q_n}$
7	1	0	0	1	Q_n	$\overline{Q_n}$
7	1	1	-	-	Q_n	$\overline{Q_n}$

Tabela 10 – tablica stanów przerzutnika **RS-MS** wyzwalanego zboczem

i) Przerzutnik **D-MS** zatrzaskowy

Rysunek 11 - schemat logiczny zastosowania przerzutnika **D-MS** zatrzaskowego

Zbocze C	D_n	Q_{n+1}	$\overline{Q_{n+1}}$
Ŋ	0	Q_n	$\overline{Q_n}$
A	1	Q_n	$\overline{Q_n}$
7	0	0	1
7	1	1	0

Tabela 11 – tablica stanów przerzutnika **D-MS** zatrzaskowego

Podczas stanu niskiego wartość wejściowa **D** jest bezpośrednio wpisywana do bufora wejściowego. W momencie, gdy zegar zmieni stan na wysoki, wartość w buforze wejściowym zostaje przepisana do bufora wyjściowego, a następnie na wyjście **Q**. Oznacza to, że w momencie przełączenia na stan wysoki, wartość z ostatniej chwili stanu niskiego jest natychmiast przepisywana dna wyjście. Jest to więc działanie takie samo, jak w przypadku przerzutnika **D** wyzwalanego zboczem.

j) Przerzutnik **D-MS** wyzwalany zboczem

Rysunek 12 - schemat logiczny zastosowania przerzutnika **D-MS** wyzwalanego zboczem

Zbocze C	D_n	Q_{n+1}	$\overline{Q_{n+1}}$	Q_{n+2}	$\overline{Q_{n+2}}$
И	0	Q_n	$\overline{Q_n}$	0	1
A	1	Q_n	$\overline{Q_n}$	1	0
7	0	0	1	Q_n	$\overline{Q_n}$
7	1	1	0	Q_n	$\overline{Q_n}$

Tabela 12 – tablica stanów przerzutnika **D-MS** wyzwalanego zboczem

Przerzutnik **D-MS** wyzwalany zboczem został błędnie zaimplementowany w programie MMLogic. Po ustawieniu stanu wysokiego na wyjściu, nie ma możliwości zmiany tego stanu. W tabeli 12 zostało przedstawione teoretyczne (niepotwierdzone w programie) poprawne działanie takiego przerzutnika.

k) Przerzutnik **JK** zatrzaskowy

Rysunek 13 - schemat logiczny zastosowania przerzutnika **JK** zatrzaskowego

C_n	J_n	K_n	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	0	Q_n	$\overline{Q_n}$
0	0	1	Q_n	$\overline{Q_n}$
0	1	0	Q_n	$\overline{Q_n}$
0	1	1	Q_n	$\overline{Q_n}$
1	0	0	Q_n	$\overline{Q_n}$
1	0	1	1	0
1	1	0	0	1
1	1	1	$\overline{Q_n}$	Q_n

Tabela 13 – tablica stanów przerzutnika **JK** zatrzaskowego

l) Przerzutnik **JK** wyzwalanego zboczem

Rysunek 14 - schemat logiczny zastosowania przerzutnika **JK** wyzwalanego zboczem

Zbocze C	J_n	K_n	Q_{n+1}	$\overline{Q_{n+1}}$
A	0	0	Q_n	$\overline{Q_n}$
Ŋ	0	1	Q_n	$\overline{Q_n}$
Z	1	0	Q_n	$\overline{Q_n}$
7	1	1	Q_n	$\overline{Q_n}$
7	0	0	Q_n	$\overline{Q_n}$
7	0	1	1	0
7	1	0	0	1
7	1	1	$\overline{Q_n}$	Q_n

Tabela 14 – tablica stanów przerzutnika **JK** wyzwalanego zboczem

Wnioski

Przerzutniki **RS**, **D** i **JK** można zbudować w konfiguracji pojedynczej, lub w konfiguracji **MS**. Zmiany na nich mogą być wyzwalane stanami zegara lub przejściami między tymi stanami. Daje to prawie 20 różnych możliwych kombinacji, z których każda jest specyficzna i unikalna.

Duża możliwość wyboru typu, konfiguracji i sposobu wyzwalania przerzutników pozwala na dobranie idealnego rodzaju przerzutnika podczas projektowania i budowania układu scalonego.