Text Analysis for Economics and Finance

Ruben Durante ICREA-UPF, BGSE, IPEG, CEPR

UPF, December 2020

Representing words as discrete symbols

► In the methods studied so far we have regarded words as discrete symbols: hotel vs. motel

► Words can be represented by one-hot vectors

$$\begin{aligned} & \mathsf{motel} \ = [0000000010000000] \\ & \mathsf{hotel} \ = [0000100000000000] \end{aligned}$$

► Vector dimension = number of words in vocabulary (e.g. 500,000)

Problem with words as discrete symbols

- ► Example: in web search, if user searches for "Seattle motel", we would like to match documents containing "Seattle hotel"
- ► But:

```
\begin{aligned} & \mathsf{motel} \ = [0000000010000000] \\ & \mathsf{hotel} \ = [0000100000000000] \end{aligned}
```

- ► These two vectors are orthogonal
- There is no natural notion of similarity for one-hot vectors
- ► Solution:
 - Encode similarity in the vectors themselves

Representing words by their context

- Core idea: A word's meaning is given by the words that frequently appear close-by
 - ► "You shall know a word by the company it keeps" (J.R. Firth 1957)
 - One of the most successful ideas of modern statistical NLP
- ▶ When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window)
- ightharpoonup Use the many contexts of w to build up a representation of w

```
... government debt problems turning into

... saying that Europe needs unified

... India has just given its

banking crises as happened in 2009 ...

banking regulation to replace the hodgepodge ...

system a shot in the arm ...
```

These context words will represent banking

Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts

linguistics =
$$\begin{pmatrix} 0.286 \\ 0.792 \\ -0.177 \\ -0.107 \\ 0.109 \\ -0.542 \\ 0.349 \\ 0.271 \end{pmatrix}$$
ors are sometimes called word embeddings

 Note: word vectors are sometimes called word embeddings or word representations

word2vec: overview

 word2vec (Mikolov et al. 2013) is a framework for learning word vectors

► Idea:

- We have a large corpus of text
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context ('outside') words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability

word2vec: overview

ightharpoonup Example windows and process for computing $P(w_{t+j}|w_t)$

word2vec: overview

Example windows and process for computing $P(w_{t+j}|w_t)$

word2vec: objective function

For each position t = 1, ..., T, predict context words within a window of fixed size m, given center word w_j

$$L(\theta) = \prod_{t=1}^{l} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$

- \triangleright θ is all the variables to be optimized
- ▶ The objective function $J(\theta)$ is the average negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

▶ Minimizing objective function ⇔ Maximizing predictive accuracy

word2vec: objective function

▶ We want to minimize the objective function

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{m \leq i \leq m} \log P(w_{t+j} \mid w_t; \theta)$$

- **Question**: How to calculate $P(w_{t+j} | w_t; \theta)$
- ► Answer: We will use two vectors per word w:
 - \triangleright v_w when w is a center word
 - \triangleright u_w when w is a context word
- ▶ Then for a center word c and a context word o:

$$P(o \mid c) = \frac{\exp\left(u_o^T v_c\right)}{\sum_{w \in V} \exp\left(u_w^T v_c\right)}$$

word2vec: overview with vectors

- lacktriangle Example windows and process for computing $P(w_{t+j} \mid w_t)$
- $ightharpoonup P(u_{problems} | v_{into})$ is short for $P(problems | into, u_{problems}, v_{into}, \theta)$

word2vec: overview with vectors

ightharpoonup Example windows and process for computing $P(w_{t+j} \mid w_t)$

word2vec: prediction function

$$P(o \mid c) = \frac{\exp\left(u_o^T v_c\right)}{\sum_{w \in V} \exp\left(u_w^T v_c\right)}$$

- $u_o^T v_c$: dot product compares similarity of o and c. Larger dot product implies a larger probability
- $ightharpoonup \sum_{w \in V} \exp\left(u_w^T v_c\right)$: after taking exponent, normalize over entire vocabulary
- ▶ This is an example of the softmax function $\mathbb{R}^n \to \mathbb{R}^n$
- The softmax function maps arbitrary values x_i to a probability distribution p_i
 - ightharpoonup "max" because amplifies probability of largest x_i
 - "soft" because still assigns some probability to smaller x_i

To train the model: compute all vector gradients

- ightharpoonup Recall: heta represents all model parameters, in one long vector
- ▶ In our case with *d*-dimensional vectors and *V*-many words:

$$heta = \left[egin{array}{c} v_{aardvark} \ v_{a} \ dots \ v_{zebra} \ u_{aardvark} \ u_{a} \ dots \ u_{zebra} \end{array}
ight] \in \mathbb{R}^{2dV}$$

- Recall: every word has two vectors
- We then optimize these parameters using stochastic gradient descent

word2vec: gradient descent

- ▶ We have a cost function $J(\theta)$ we want to minimize
- Idea: for the current value of θ , calculate the gradient of $J(\theta)$, then take a small step in the direction of the negative gradient. Repeat.

word2vec: stochastic gradient descent

- ▶ Problem: $J(\theta)$ is a function of all windows in the corpus
 - $ightharpoonup
 abla_{ heta} J(heta)$ may be very expensive to compute
- You would wait a very long time before making a single update. A very bad idea for pretty much all neural nets
- ► Solution: stochastic gradient descent (SGD)
 - Repeatedly sample windows, and update after each one

word2vec: applications

 Once the vectors are constructed, they can be used to represent relations between words

Garg, Schiebinger, Jurafsky, and Zou (2018)

- Goal: develop a systematic framework to analyze word embeddings trained over a century of text data to identify historical patterns of bias and stereotype changes in the US
- Motivation: in word-embedding models, words are assigned to a high-dimensional vector in a way that they capture relationships not found through simple co-occurrence analysis
- ► Idea: exploit differences in Euclidean distance between ethnic-gender terms and professions-stereotypes words to quantify historical trends
- Main findings: the embedding captures societal shifts and sheds light on how specific adjectives and occupations became more closely associated with certain populations over time

GSJZ (2018): data

- Word embeddings:
 - word2vec embeddings trained on the Google News dataset
 - Nine decade-specific embeddings trained on text from the Corpus of Historical American English
- Word lists:
 - ► Gender: he, she, son, daughter, male, female, boy, girl, etc.
 - Ethniticty: harris, ruiz, cho, thompson, gomez, lin, etc.
 - Occupations: janitor, teacher, shoemaker, scientist, carpenter, etc.
 - Adjectives: headstrong, inventive, enterprising, poised, moody, etc.

GSJZ (2018): methodology

- Measure the strength of association between occupations or adjectives (neutral words) and a gender or ethnicity
 - 1. Compute the average vector representation of a gender or ethnic group
 - 2. Calculate the average Euclidean distance between the representative vector and each vector in a list of neutral words
 - 3. Use the difference of the average distance between gender or ethnicity pairs as a measure of embedding bias
- e.g. the occupational embedding bias for women
 - 1. Compute average embedding distance between words *she, female* and occupational words *teacher, lawyer*. Repeat for words he, male
 - 2. Compute the difference in average distances between group pair

relative norm distance
$$=\sum_{v_m \in M} \|v_m - v_1\|_2 - \|v_m - v_2\|_2$$

GSJZ (2018): gender bias snapshot validation

 Occupation difference as the relative percentage of women in each occupation using data from the Integrated Public Use Microdata Series

GSJZ (2018): gender bias historical validation

GSJZ (2018): ethnic bias historical validation

Table 1. The top 10 occupations most closely associated with each ethnic group in the Google News embedding

Hispanic	Asian	White
Housekeeper	Professor	Smith
Mason	Official	Blacksmith
Artist	Secretary	Surveyor
Janitor	Conductor	Sheriff
Dancer	Physicist	Weaver
Mechanic	Scientist	Administrator
Photographer	Chemist	Mason
Baker	Tailor	Statistician
Cashier	Accountant	Clergy
Driver	Engineer	Photographer

GSJZ (2018): ethnic bias historical validation

GSJZ (2018): quantifying gender stereotypes

Pearson correlation in embedding bias scores for adjectives over time

GSJZ (2018): quantifying gender stereotypes

Table 2. Top adjectives associated with women in 1910, 1950, and 1990 by relative norm difference in the COHA embedding

1910	1950	1990
Charming	Delicate	Maternal
Placid	Sweet	Morbid
Delicate	Charming	Artificial
Passionate	Transparent	Physical
Sweet	Placid	Caring
Dreamy	Childish	Emotional
Indulgent	Soft	Protective
Playful	Colorless	Attractive
Mellow	Tasteless	Soft
Sentimental	Agreeable	Tidy

GSJZ (2018): quantifying ethnic stereotypes

Pearson correlation in embedding Asian bias scores for adjectives

GSJZ (2018): quantifying ethnic stereotypes

Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990 by relative norm difference in the COHA embedding

1950	1990
Disorganized	Inhibited
Outrageous	Passive
Pompous	Dissolute
Unstable	Haughty
Effeminate	Complacent
Unprincipled	Forceful
Venomous	Fixed
Disobedient	Active
Predatory	Sensitive
Boisterous	Hearty
	Disorganized Outrageous Pompous Unstable Effeminate Unprincipled Venomous Disobedient Predatory

GSJZ (2018): quantifying ethnic stereotypes

Asian bias score over time for words related to outsiders in COHA data

Kozlowski, Taddy and Evans (2019): geometry of culture

Motivation

- ▶ If text represents culture, can we construct cultural dimensions of class from the dimension of word embedding vectors?
- ► Has the meaning of these dimensions changed over the XXth century?
- Class as the systematic and hierarchical distinction of people and groups in social standing. Dimension-specific nuances:
 - **Money:** easy to convert into various forms of power \rightarrow affluence
 - **Education:** determines the labor market position \rightarrow education
 - **Status:** based on authority and social position → status
 - **Cultivated taste:** based on the culture consumed → cultivation
 - **▶ Gender:** misogynistic or patriarchal hierarchies → gender
 - **Race:** reflected in post-colonial, structural racism \rightarrow race

- These dimensions can be represented through semantic contrasts
 - ▶ **Affluence:** rich vs poor, wealthy vs impoverished, luxury vs cheap
 - **Education:** educated vs uneducated, knowledgeable vs ignorant
 - ▶ **Status:** acclaimed vs modest, eminent vs mundane
 - Cultivation: civil vs uncivil, cultured vs uncultured
 - ▶ **Gender:** masculine vs feminine, he vs she, male vs female
 - Race: black vs white, African vs European
- ► Main idea: words that are opposites semantically will display systematic differences in their vector representation

Intuition: solving an analogy is equivalent to projecting a word vector onto a specific dimension

$$\overrightarrow{\text{king}} + \overrightarrow{\text{woman}} - \overrightarrow{\text{man}} \approx \overrightarrow{\text{queen}}$$

- ► The projection of the word vector for king onto a gender dimension captured by woman man yields the word vector for queen
- ► Collate lists of antonyms similar to $\overrightarrow{woman} \overrightarrow{man}$ for the different dimensions of class, i.e. $\overrightarrow{rich} \overrightarrow{poor}$
- Project words onto dimension-specific antonym lists to identify the cultural associations embedded in the word

$$\overrightarrow{\mathsf{hockey}} + \overrightarrow{\mathsf{rich}} - \overrightarrow{\mathsf{poor}} \approx \overrightarrow{\mathsf{lacrosse}}$$

KTE (2019): data and methods

- ► Use three pre-trained word embedding models:
 - Google Ngrams US
 - ► Google News embeddings
 - GloVe embeddings
- ► Trained via Google Ngram corpus
 - ▶ 6% of all books ever published
 - Only look at 5-grams
 - Divide corpus by decades
 - ► Keep only words that appear > 25 times
- Antonym lists compiled from five thesauri

KTE (2019): data

Table D1. Word Pairs Used to Construct Affluence, Gender, and Race Dimensions for Amazon Mechanical Turk Survey Validation

Affluence		Gender	Race
Affluence rich-poor richer-poorer richest-poorest affluence-poverty affluent-destitute advantaged-needy wealthy-impoverished costly-economical exorbitant-impecunious expensive-inexpensive exquisite-ruined extravagant-necessitous flush-skint invaluable-cheap lavish-economical	precious-cheap priceless-worthless privileged- underprivileged propertied-bankrupt prosperous-unprosperous developed- underdeveloped solvency-insolvency successful-unsuccessful sumptuous-plain swanky-basic thriving-disadvantaged upscale-squalid valuable-yalueless	man-woman men-women he-she him-her his-her his-hers boy-girl boys-girls male-female masculine-feminine	Race black-white blacks-whites Black-White Blacks-White African-European African-Caucasian Afro-Anglo
luxuriant-penurious luxurious-threadbare luxury-cheap moneyed-unmonied opulent-indigent plush-threadbare luxuriant-penurious	classy-beggarly ritzy-ramshackle opulence-indigence solvent-insolvent moneyed-moneyless rich-penniless affluence-penury posh-plain opulence-indigence		

KTE (2019): data

Table D3. Word Pairs Used to Construct Class Dimensions (Along with Affluence and Gender in Table D1)

Cultivation	Employment	Education	Status	Morality
Cultivation cultivated- uncultivated cultured- uncultured curcivilized courteous- discourteous discourteous proper-improper polite-rude cordial-uncordial formal-informal courtly-uncourtly urbane-boorish polished- unpolished refined-unrefined civility-incivility civil-uncivil urbanity- boorishness politesse-rudeness edified-loutish mannerly- unmannerly polished-gruff gracious- obliging unobliging unobliging unobliging unotliqued uncultured genteel-ungenteel unmannered polite-blunt	Employment employer- employee employees employees owner-worker owners-worker industrialist- laborer industrialist- laborers proprietor- employee proprietors- employees capitalist- proletarian capitalists- proletarian capitalists- proletarian manager-staff director-employee directors- employees boss-worker bosses-worker foreman-laborer foreman-laborer foreman-laborer supervisor-staff superintendent- staff	Education educated- uneducated learned-unlearned knowledgeable- ignorant trained-untrained taught-untaught literate-illiterate schooled- unschooled tutored-untutored lettered-unlettered	Status prestigious- unprestigious honorable- dishonorable esteemed-lowly influential- uninfluential reputable- disreputable distinguished- commonplace eminent-mundane illustrious-humble renowned-prosaic acclaimed-modest dignitary- commoner venerable- unpretentious exalted-ordinary estimable-lowly prominent- common	Morality good-evil moral-immoral good-bad honest-dishonest virtuous-sinful virtue-vice righteous-wicked chaste- transgressive principled- unprincipled unquestionable- questionable questionable acuses and acuses uncorrupt-corrupt scrupulous uncorrupt-corrupt scrupulous- unscrupulous altruistic-selfish chivalrous- knavish honest-crooked commendable- reprehensible pure-impure dignified- undignified holy-unholy valiant-fiendish upstanding- villainous guiltless-guilty decent-indecent chaste-unsavory righteous-odious ethical-unethical

► For each class dimension, calculate the following:

$$\frac{\sum_{p}^{|P|} \overrightarrow{p_1} - \overrightarrow{p_2}}{|P|}$$

- p are all antonym couples in set P of relevant words by context
- ► The projection of a word vector onto a dimension is computed using cosine similarity

- Use two surveys
 - ► **Modern Survey:** rate 59 words on different dimensions (class, race, gender)
 - ► *Historical* Survey: rate 360 words on 20 semantic dimensions (good/bad, soft/hard, ...)
- Example:
 - On a scale from 0 (very working class) to 100 (very upper class), how would you rate a steak?

Table B3. Percentage of Statistically Significant (p < .01) Survey Differences Correctly Classified in Google News Word Embedding Model

	Sports	Food	Music	Occupations	Vehicles	Clothes	Names	All Domains
Gender	87.9%	88.2%	72.2%	93.6%	82.4%	74.4%	95.2%	84.8%
Class	96.3%	93.8%	88.9%	60.9%	94.1%	90.0%	77.3%	75.3%
Race	90.0%	68.8%	100%	51.5%	87.5%	55.0%	94.7%	69.1%

Table B1. List of Words Rated in Cultural Associations Survey

Occupations	Clothing	Sports	Music Genres	Vehicles	Food	First Names
Banker	Blouse	Baseball	Bluegrass	Bicycle	Beer	Aaliyah
Carpenter	Briefcase	Basketball	Hip hop	Limousine	Cheesecake	Amy
Doctor	Dress	Boxing	Jazz	Minivan	Hamburger	Connor
Engineer	Necklace	Golf	Opera	Motorcycle	Pastry	Jake
Hairdresser	Pants	Hockey	Punk	Skateboard	Salad	Jamal
Journalist	Shirt	Soccer	Rap	SUV	Steak	Molly
Lawyer	Shorts	Softball	Techno	Truck	Wine	Shanice ^a
Nanny	Socks	Tennis				Tyrone
Nurse	Suit	Volleyball				•
Plumber	Tuxedo					
Scientist						

 $\textbf{Table 1}. \ \ Pearson \ Correlations \ between \ Survey \ Estimates \ and \ Word \ Embedding \ Estimates \ for \ Gender, \ Class, \ and \ Race \ Associations$

	Class (Affluence)	Gender	Race
Google Ngrams word2vec Embedding [†]	.53	.76	.27
Google News word2vec Embedding	.58	.88	.75
Common Crawl GloVe Embedding	.57	.90	.44

Figure 3. Projection of Music Genres onto Race and Class Dimensions of the Google News Word Embedding (Gray) and Average Survey Ratings for Race and Class Associations (Black)

KTE (2019): results

Figure 5. Cosine Similarity between the Affluence Dimension and Six Other Cultural Dimensions of Class by Decade; 1900 to 1999 Google Ngrams Corpus Note: Bands represent 90 percent bootstrapped confidence intervals produced by subsampling.

- Education has become more synonymous with affluence
 - ▶ Crucial for a competitive labor market → signaling
 - ▶ Mediated by cultivation: when controlled, negligible correlation

KTE (2019): results

Figure 5. Cosine Similarity between the Affluence Dimension and Six Other Cultural Dimensions of Class by Decade; 1900 to 1999 Google Ngrams Corpus Note: Bands represent 90 percent bootstrapped confidence intervals produced by subsampling.

- Gender: positive association between femininity and affluence
 - ▶ Veblen's idea of women as vessels for men's *vicarious consumption*
 - Words strongly projected include fragance, jewel, gem, perfume

KTE (2019): results

Figure 6. Standardized Coefficients from OLS Regression Models in Which Word Projections on Cultivation and Education Dimensions Predict Projection on the Affluence Dimension; 1900 to 1999 Google Ngrams Corpus

Note: A separate OLS regression model is fit for each decade; $N=50{,}000$ most common words in each decade.