1.	What HTML5 tag is used to show the contents of a webcam?						
	○ <div></div>						
	<pre><webcam></webcam></pre>						
	<pre><video></video></pre>						
	<pre> <pre></pre></pre>						
	Incorrect						

0 / 1 point

2. If I initialize a webcam object like this:

1	<pre>const webcam = new Webcam(document.getElementById('wc'));</pre>	

Which code will then start the webcam feed to render in the page?

0	1	<pre>async function ();}</pre>	init(){await	<pre>webcam.go();}async</pre>	function	init(){await	webcam.go	

- 1 async function init(){await webcam.start();}
- 1 async function init(){await webcam.setup();}
- 1 async function init(){await webcam.initialize();}

3.	If I want to create a model that uses transfer learning, with everything in mobilenet up to layer 'foo', and my
	layers afterwards, how do I do it? Assume this code was used to find layer 'foo'

1	cor	ist laye	r = mobilenet.getLo	ayer('foo');	
0	1	return	tf.model({inputs:	mobilenet, outputs: layer});	
0	1	return	tf.model({inputs:	<pre>mobilenet.inputs, outputs: layer.outputs});</pre>	
0	1	return	tf.model({inputs:	<pre>mobilenet.input, outputs: layer.outputs});</pre>	
•	1	return	tf.model({inputs:	<pre>mobilenet.inputs, outputs: layer.output});</pre>	

✓ Correct

. If I am transfer learning from a mobilenet, and I want to use my own dense layers after the mobilenet ones, what is the correct syntax to use at <INSERT CODE HERE>

```
1 * model = tf.sequential({
2 +
       layers: [
         tf.layers.flatten(<INSERT CODE HERE>),
         tf.layers.dense({ units: 100, activation: 'relu'}),
         tf.layers.dense({ units: 3, activation: 'softmax'})
6
     });
   1 {inputShape: mobilenet.outputs[0].shape.slice(1)}
   1 {inputShape: mobilenet.outputs[0].slice(1)}
   1 {inputShape: mobilenet.outputs[1].slice(0)}
   1 {inputShape: mobilenet.outputs[1].shape.slice(0)}
```


	1	/ -	1 p	oir	nt
				Ī	
	1	/	1 p	oir	nt

5.	. If I am using a mobilenet with my own DNN for transfer learning in TensorFLow.js, how do I get a prediction for an image?						
	Of Get a set of prediction embeddings from your model and pass them to mobilenet						
	Get a set of prediction embeddings from mobilenet and pass them to your model						
	Ust pass the prediction to mobilenet, because you've already added your layers to it						
	Just pass the prediction to your own model, it already includes the mobilenet layers						
	✓ Correct						
6.	If you have a set of predictions returned from model.predict(something) and you want to take the one with the largest probability, how do you do it?						
	predictions[0] contains the one with the largest probability						
	predictions.as1D().argMax(), then look at the 0th element						
	predictions.argMax() then look at the 0th element						

Correct

predictions.sort() then look at the 0th element

сп	W A	КΙ	р	~	455
	74	80	= 0]	0]	181

webcam and predicts it, what's the best way to call it, particularly if you plan to do continuous predictions?	1 / 1 point
1 foo.predict(); tf.tidy();	
1 foo.predict(tf.tidy());	
1 tf.tidy(foo.predict());	
<pre>1 tf.tidy(() => foo.predict());</pre>	
Correct	
Why is transfer learning a huge advantage, particularly when training in the browser?	1 / 1 point
It allows you to use already-learned convolutions for distinguishing features, saving training time	
It allows you to use already-learned convolutions for distinguishing features, saving space	
O It lets you skip training altogether	
O It gives you a smaller model	
✓ Correct	

8.