13 Sequence Diagrams

2025-10-19

Contents

L	Seq	uence Diagrams - Vision-Based Pick and Place System	1
	1.1	Document Control]
	1.2	1. Introduction	2
	1.3	2. End-to-End Pick-Place Sequence	2
		1.3.1 2.1 Complete Workflow (Nominal Path)	2
	1.4	3. Vision Pipeline Sequence	4
		1.4.1 3.1 Object Detection & Pose Estimation	4
	1.5	4. Grasp Planning Sequence	
		1.5.1 4.1 Grasp Synthesis & Collision Checking	
	1.6	5. Motion Planning Sequence (MoveIt2)	6
		1.6.1 5.1 Path Planning with Collision Checking	6
	1.7	6. Trajectory Execution Sequence	7
		1.7.1 6.1 ros2_control Execution Loop	7
	1.8	7. Error Recovery Sequence	8
		1.8.1 7.1 Grasp Failure \rightarrow Retry	8
	1.9	8. Calibration Sequence	Ć
		1.9.1 8.1 Hand-Eye Calibration	Ć
	1.10	9. System Startup Sequence	11
		1.10.1 9.1 Boot & Initialization	11
	1.11	10. Shutdown Sequence	12
			12
	1.12	Summary	13

1 Sequence Diagrams - Vision-Based Pick and Place System

1.1 Document Control

Item	Details		
Document Title	Sequence Diagrams		
Version	1.0		
Date	2025-10-18		
Status	Draft		
Author(s)	System Architect		

1.2 1. Introduction

This document provides sequence diagrams showing time-ordered interactions between system components. All diagrams use ASCII art and can be rendered with Mermaid or PlantUML.

1.3 2. End-to-End Pick-Place Sequence

1.3.1 2.1 Complete Workflow (Nominal Path)

User Task Vision Grasp MoveIt2 ros2_control Robot Gripper Orchestrator Pipeline Planner Manager Arm

Start

 ${\tt ScanReq}$

Capture Camera

Image

RunYOLO

EstPose

ObjPoses

GraspReq

(pose, cloud)

Sample

CheckColl

RankGrasps

GraspPose

PlanPickReq

(target_pose)

SolveIK

PlanPath

(RRT*)

	GenTraj	
	Trajectory	
	ExecPickReq (trajectory)	
		MoveToPre
		MoveToGrsp
	CloseGripper	
	GraspForce (F/T sensor: 20N)	
	CheckGrasp	
	Success	
	PlanPlaceReq	
	PlanPath	
	Trajectory	
	ExecPlaceReq	
		MoveToTarget
	OpenGripper	
		Retract
	ReturnHome	
		MoveHome
Complete		

- Execution (place): 300ms

1.4 3. Vision Pipeline Sequence

1.4.1 3.1 Object Detection & Pose Estimation

Task Camera Image Object Pose TF2 Orchestrator Driver Processor Detector Estimator

ScanRequest

Trigger

RGB+Depth

PublishRGB (topic)

PublishDepth (topic)

Preprocess (resize)

RunYOLO (TensorRT)

NMS

Filter (conf>0.7)

Publish Task Detections

(for each det)

ExtractROI

Deproject (depth→3D)

EstPose (PnP/ICP)

LookupTF (camera→base)

Transform

Publish Task Poses (base frame)

ObjPoses

1.5 4. Grasp Planning Sequence

1.5.1 4.1 Grasp Synthesis & Collision Checking

Task Grasp Grasp Collision Grasp Orchestrator Planner Sampler Checker Ranker

GraspRequest
 (pose,cloud)

Sample

GenCandidates
(N=50)

Grasps

ForEach Grasp

CheckGripper -Object

CheckGripper -Scene

CollFree (boolean)

IfCollFree

CompQuality (force closure)

Quality

AddToValid List

EndLoop

Sort

ByQuality

RankedList

SelectTop

GraspPose
+Quality

1.6 5. Motion Planning Sequence (MoveIt2)

1.6.1 5.1 Path Planning with Collision Checking

Task MoveIt Planning IK OMPL Trajectory Orchestrator MoveGroup Scene Solver Planner Generator

PlanRequest
 (target_pose)

UpdateScene

AddObstacles (point cloud)

SceneReady

SolveIK

ComputeIK (KDL/TRAC-IK)

JointAngles

ValidateGoal

PlanPath

(start, goal)

RunRRT*
(5 sec timeout)

CheckColl Scene

(repeated)

CollFree

Path

(joint configs)

GenTrajectory

TimeParam (parabolic)

ApplyLimits

(vel, accel)

Trajectory

Trajectory
 (ready)

1.7 6. Trajectory Execution Sequence

1.7.1 6.1 ros2_control Execution Loop

MoveIt Controller Trajectory PID Hardware Motor MoveGroup Manager Follower Controller Interface Driver

ExecAction (trajectory)

LoadTraj

Start Loop @1kHz

Interpolate
Setpoint
 (t=now)

 ${\tt SendSetpoint}$

CompPID
(error = sp-fb)

AddFF (gravity comp)

Output (torque cmd)

ReadEnc (position)

Feedback

JointStates

Feedback

(progress)

CheckDone

IfDone Stop Loop

Result (success)

Loop Timing: - Control frequency: 1000 Hz (1ms period) - Setpoint interpolation: <50 s - PID computation: <100 s - EtherCAT communication: <200 s - Total loop time: <1 ms (with margin for jitter)

1.8 7. Error Recovery Sequence

1.8.1 7.1 Grasp Failure \rightarrow Retry

Task F/T Error Grasp MoveIt2 ros2_control Orchestrator Sensor Detector Planner Manager

ExecPick

MoveToPre Robot

MoveToGrsp Robot

CloseGripper Gripper

ForceReading (5N, low!)

DetectDrop

RaiseFault

ErrorEvent
 (GRASP_FAIL)

LogError CheckRetry Count IfRetry<Max Retract MoveBack Robot ReplanGrasp (increase force) AdjustForce (50%→100%) NewGrasp RetryPick Execute Robot CloseGripper Gripper ForceReading (20N, OK!) Success Continue (place) 1.9 8. Calibration Sequence 1.9.1 8.1 Hand-Eye Calibration Calib Detection Calibration Robot Camera Wizard Controller Driver Node Solver Start

Execute

MoveToPos1

 ${\tt AtPosition}$ CaptureImg Trigger Image Detect Checkerboard Corners ReadRobotPose TcpPose StoreData (corners, robot_pose) RepeatForPos2-5 (loop 4 more times) AllDataCollected SolveCalib (AX=XB) ${\tt ComputeTF}$ (camera→base) Transformation Matrix Validate PlaceObject DetectObject Pos(camera)

TransformTo

BaseFrame (using TF)

Pos(base)

MeasureActual (CMM/ruler)

ActualPos

CompError (predicted-actual)

IfError<5mm

SaveCalib

(to YAML file)

Success

1.10 9. System Startup Sequence

1.10.1 9.1 Boot & Initialization

User Init ROS2 Vision MoveIt2 ros2_control Robot Script Daemon Nodes Nodes Manager Hardware

PowerOn

StartROS2

LaunchCore

 ${\tt CoreReady}$

LaunchVision

InitCamera

CamReady

LoadModel (YOLOv8)

ModelReady

LaunchMoveIt

LoadURDF

 ${\tt InitPlanningScene}$

Ready

LaunchControl

InitHW (EtherCAT)

HwReady

LoadControllers

CtrlReady

HomeRobot

MoveHome

AtHome

SystemReady

Display "READY"

Startup Time: \sim 45 seconds total - ROS2 daemon: 5s - Vision nodes: 15s (model loading) - MoveIt2: 10s (URDF, planning scene) - ros2_control: 10s (EtherCAT init, homing) - Final checks: 5s

1.11 10. Shutdown Sequence

1.11.1 10.1 Graceful Shutdown

User Task ros2_control MoveIt2 Vision ROS2
Orchestrator Manager Nodes Nodes Daemon

Shutdown

StopTasks

MoveHome

Execute

	AtHome			
	DisableMotor	`s		
		Deactivate		
	MotorsOff			
	StopVision			
			UnloadModel	
			CloseCamera	
	VisionStopp	ed		
	StopMoveIt			
	MoveItStopp	ed		
	StopControl			
		UnloadCtrl		
		CloseHW		
	ControlStop	ped		
	ShutdownROS			
				KillNodes
Shutdown Complete				
PowerOff				
.12 Sumr				

1.12 Summary

This document provides 10 comprehensive sequence diagrams covering:

- 1. ${\bf End\text{-}to\text{-}End}$ ${\bf Pick\text{-}Place}$ Complete workflow with all subsystems
- 2. Vision Pipeline Object detection and pose estimation
- 3. Grasp Planning Synthesis and collision checking
- 4. Motion Planning MoveIt2 path planning
- 5. Trajectory Execution ros2_control real-time loop

- 6. Error Recovery Grasp failure retry logic
- 7. Calibration Hand-eye calibration procedure
- 8. System Startup Boot and initialization
- 9. System Shutdown Graceful shutdown

Key Insights: - Vision pipeline: 150ms (camera \rightarrow poses) - Grasp planning: 200ms (pose \rightarrow grasp) - Motion planning: 300-500ms (IK \rightarrow trajectory) - Control loop: 1ms period @ 1kHz - Startup time: \sim 45 seconds - Total cycle time: \sim 2 seconds (scan \rightarrow place)

Document Status: Complete **Last Updated:** 2025-10-18 **Format:** ASCII sequence diagrams (convertible to Mermaid) **Review Status:** Pending Technical Review