Licence Math 2ème année

Corrigé de l'épreuve du Mars 2017

(Les calculatrices et les documents sont interdits. Les téléphones portables doivent être éteints)

Exercice 1

Voir cours.

Exercice 2

1. (a) Le domaine est donné par

(b) L'ensemble n'est pas ouvert puisque le point (1,0) est dans A, mais aucune boule de centre (1,0) de rayon r strictement positif n'est incluse dans A (une telle boule contient l'intervalle]1,1+r[de l'axe des x, qui n'est pas contenu dans A).

L'ensemble n'est pas non plus fermé, puisque la suite $(1/n,0)_{n\in\mathbb{N}^*}$ est une suite de A convergeant vers un élément qui n'est pas dans A.

(c) On a $A \subset D$ où D est le disque fermé de centre (0,0) de rayon un. Donc $\overline{A} \subset \overline{D} = D$. Pour montrer que $\overline{A} = D$, il suffit de construire pour tout point (0,y) avec $-1 \leq y \leq 1$ une suite de A convergeant vers ce point. Lorsque $y \geq 0$, on peut prendre la suite $(1/n, y - 1/n)_{n \geq N_0}$, avec N_0 assez grand pour que

$$\frac{1}{n^2} + \left(y - \frac{1}{n}\right)^2 = y^2 - 2\frac{y}{n} + \frac{2}{n^2} \le 1.$$

Lorsque $y \leq 0$, on prend $(1/n, y + 1/n)_{n \geq N_0}$.

(d) Comme A n'est pas fermé, il ne peut être compact.

- (e) Si A était connexe par arcs, il existerait une application continue $t \to \gamma(t) = (\gamma_1(t), \gamma_2(t))$ définie sur [0,1] à valeurs dans A, avec $\gamma(0) = (-\frac{1}{2},0)$ et $\gamma(1) = (\frac{1}{2},0)$. En particulier, γ_1 est continue sur un intervalle, à valeurs dans \mathbb{R} , et prend les valeurs $-\frac{1}{2}$ et $\frac{1}{2}$. Par le théorème des valeurs intermédiaires, il doit donc exister t_0 dans [0,1] avec $\gamma_1(t_0) = 0$. Mais alors $\gamma(t_0)$ n'est pas dans A, d'où une contradiction. Donc A n'est pas connexe par arcs.
- 2. Comme U est une réunion d'ouverts, c'est un ouvert.
- 3. L'ensemble F n'est pas fermé, puisque la suite $(1/n,0)_{n\in\mathbb{N}^*}$ est une suite de F qui converge vers le point (0,0) qui n'est pas dans F (comme tous les F_n sont contenus dans le demiplan x>0, il en est de même de F).

Exercice 3

- 1. La fonction $(x,y) \to y/x$ est continue sur U puisque le dénominateur ne s'annule pas, donc f est composée de fonctions continues, donc est continue sur U.
- 2. Pour voir que f est continue sur \mathbb{R}^2 , il suffit de montrer que pour toute suite $(x_n, y_n)_n$ convergeant vers un point de la forme (0, y), la suite $(f(x_n, y_n))_n$ tend vers f(0, y) = 0. Or, comme la fonction Arctg est de valeur absolue majorée par $\pi/2$, on a $|f(x_n, y_n)| \leq \frac{\pi}{2}|x_n|$ qui tend vers 0.
- 3. Si un tel λ existait, pour toute suite $(x_n, y_n)_n$ de A tendant vers (0, 0), on aurait $h(x_n, y_n) = g(x_n, y_n) \to \lambda$. Si on prend $x_n = \frac{1}{n}, y_n = \frac{t}{n}$, avec t > 0 on a $h(x_n, y_n) = \frac{\operatorname{Arctg} t}{t}$, qui ne peut être égal à λ pour toute valeur de t > 0.

Exercice 4

- 1. Comme B est une partie fermée et bornée d'un espace vectoriel normé de dimension finie, elle est compacte. De plus, f est continue, car on sait que $x \to N(x-y)$ est continue. Or, une fonction continue sur un compact est bornée et atteint ses bornes, d'où l'existence de x_0 .
- 2. On a

$$f(x) = N(x - a) + N(x - b) + N(x - c) \ge N(x - a) \ge f(a),$$

la dernière inégalité résultant du fait que x est à l'extérieur de la boule B.

3. Pour tout x dans B, on a $f(x) \ge f(x_0)$. Comme a est dans B, on a en particulier $f(a) \ge f(x_0)$. Pour tout x hors de la boule B, on a $f(x) \ge f(a) \ge f(x_0)$. Donc, en tout point x de \mathbb{R}^p , on a $f(x) \ge f(x_0)$.