Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) (МАИ)

Институт № 8 «Компьютерные науки и прикладная математика»

КУРСОВАЯ РАБОТА

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

2-й семестр

Выполнил: студент группы M8O-101Б-22 Терентьев Михаил Андреевич

Проверил: Смерчинская С.О.

Вариант 22

1. Определить для орграфа, заданного матрицей смежности:

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- а) матрицу односторонней связности (2 способа, включая итерационный алгоритм);
- б) матрицу сильной связности;
- в) компоненты сильной связности;
- г) матрицу контуров;
- д) изображение графа и компонент сильной связности.
- 2. Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

3. Используя алгоритм "фронта волны", найти все минимальные пути из первой вершины в последнюю орграфа, заданного матрицей смежности.

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

4. Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

1

$$C = \begin{pmatrix} \infty & 2 & 7 & 8 & \infty & \infty & \infty \\ 12 & \infty & 4 & \infty & 6 & \infty & \infty \\ \infty & 4 & \infty & 1 & 3 & 5 & 7 \\ \infty & \infty & 1 & \infty & \infty & 3 & \infty \\ \infty & \infty & 3 & \infty & \infty & \infty & 5 \\ \infty & \infty & 5 & \infty & \infty & \infty & 2 \\ 2 & \infty & \infty & 3 & 4 & 6 & 7 \end{pmatrix}$$

5. Найти остовное дерево с минимальной суммой длин входящих в него ребер.

Значения X1 - X13 приведены в задании, значения X14 - X17 равны 5.

6. Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E1 и E2, а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить систему уравнений для токов.

7. Построить максимальный поток по транспортной сети.

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A^{2} = A * A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

$$A^{3} = A^{2} * A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} * \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$T = E \vee A \vee A^2 \vee A^3$$

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \vee \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

По итерационному алгоритму Уоршалла.

$$k = 0$$

$$T^{0} = E \lor A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lor \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$k = 1, k - 1 = 0$$

$$T^{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lor \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$k = 2, k - 1 = 1$$

$$T^{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$k = 3, k - 1 = 2$$

$$T^{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$k = 4, k - 1 = 3$$

$$T^{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = T$$

6)
$$\overline{S} = T \& T^T = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\overline{S} = egin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
 - матрица сильной связности

в) Компоненты сильной связности

Выбираем первую строку, как ненулевую в матрице сильной связности

$$\overline{S} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

Номера вершин первой компоненты сильной связности соответствуют номерам столбцов матрицы S, в которых в первой строке стоят единицы:

$$\{V_1, V_4\}$$

1. Обнуляем первый и четвертый столбец матрицы S. Получаем матрицу

$$\overline{S_1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- 2. Ищем ненулевую строку матрицы S1: это вторая строка. Единицы две во втором и третьем столбце. Следовательно, вторая компонента сильной связности: $\{V_2, V_3\}$.
- 3. Обнуляем третий столбец матрицы S1, получаем нулевую матрицу. Следовательно, других компонент сильной связности нет.

Дуги $<\!V_1,\ V_4\!><\!V_2,\ V_3\!>,\ <\!V_3,\ V_2\!>,\ <\!V_4,\ V_1\!>$ принадлежат какому-либо контуру исходного графа.

д) Граф

Компоненты сильной связности: $V_1 = \{v_1, v_4\}; V_2 = \{v_2, v_3\}$

D1:

D2:

Маршрут: 1 \rightarrow 6 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 1 \rightarrow 4 \rightarrow 1

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

k	FW_k	Комментарий
0	$FW_0 = \{V_1\}$	В начальный момент времени волна сосредоточена в V_1
1	$FW_1 = \{V_5, V_6\}$	Видно из первой строки матрицы смежности
2	$FW_2 = \{V_5, V_6\}$	V_5, V_6 - источники распространения волны
3	$FW_3 = \{V_4\}$	Из вершины V_3 есть дуга в V_4
4	$FW_4 = \{V_7\}$	Достигнуто условие окончания прямого хода. Минимальная длина 4

	промежуточные вершины кратчайших путей
1	V_7
2	$W_3(V_1) \cap \Gamma^{-1}V_7 = \{V_4\} \cap \{V_4\} = \{V_4\}$
3	$W_2(V_1) \cap \Gamma^{-1}V_4 = \{V_2, V_3\} \cap \{V_3\} = \{V_3\}$
4	$W_1(V_1) \cap \Gamma^{-1}V_3 = \{V_5, V_6\} \cap \{V_6\} = \{V_6\}$
5	$W_0(V_1) \cap \Gamma^{-1}V_6 = \{V_1\} \cap \{V_1\} = \{V_1\}$

=> Кратчайший путь: $V_1 \rightarrow V_6 \rightarrow V_3 \rightarrow V_4 \rightarrow V_7$

$$C = \begin{pmatrix} \infty & 2 & 7 & 8 & \infty & \infty & \infty \\ 12 & \infty & 4 & \infty & 6 & \infty & \infty \\ \infty & 4 & \infty & 1 & 3 & 5 & 7 \\ \infty & \infty & 1 & \infty & \infty & 3 & \infty \\ \infty & \infty & 3 & \infty & \infty & \infty & 5 \\ \infty & \infty & 5 & \infty & \infty & \infty & 2 \\ 2 & \infty & \infty & 3 & 4 & 6 & 7 \end{pmatrix}$$

Составим таблицу итераций:

	V_1	V_2	V_3	V_4	V_5	V_6	V_7	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$
V_1	∞	2	7	8	∞	∞	∞	0	0	0	0	0	0	0
V_2	12	∞	4	∞	6	∞	∞	∞	2	2	2	2	2	2
V_3	∞	4	∞	1	3	5	7	∞	7	6	6	6	6	6
V_4	∞	∞	1	∞	∞	3	∞	∞	8	$\sqrt{8}$	7	7	7	7
V_5	∞	∞	3	∞	∞	∞	5	∞	∞	8	8	8	8	8
V_6	∞	∞	5	∞	∞	∞	2	∞	∞	11	11	10	10	10
V_7	2	∞	∞	3	4	6	7	∞	∞	14	13	13	12	12

- ① Минимальный путь из $v_1 \to v_2$: $v_1 \to v_2$, его длина 2 $\lambda_2^{(1)} = \lambda_1^{(0)} + C_{12} \quad (0+2=2)$
- 2 Минимальный путь из $v_1 \to v_3$: $v_1 \to v_2 \to v_3$, его длина 6 $\lambda_3^{(2)} = \lambda_1^{(0)} + C_{23} \quad (2+4=6)$ $\lambda_2^{(1)} = \lambda_3^{(1)} + C_{12} \quad (0+2=2)$
- 3 Минимальный путь из $v_1 \to v_4$: $v_1 \to v_2 \to v_3 \to v_4$, его длина 7 $\lambda_4^{(3)} = \lambda_3^{(2)} + C_{34} \quad (6+1=7)$ $\lambda_3^{(2)} = \lambda_2^{(1)} + C_{23} \quad (2+4=6)$ $\lambda_2^{(1)} = \lambda_1^{(0)} + C_{12} \quad (0+2=2)$

4 Минимальный путь из $v_1 \to v_5$: $v_1 \to v_2 \to v_5$, его длина 8

$$\lambda_5^{(2)} = \lambda_2^{(1)} + C_{25} \quad (2+6=8)$$

$$\lambda_2^{(1)} = \lambda_1^{(0)} + C_{12} \quad (0+2=2)$$

5 Минимальный путь из $v_1 \to v_6$: $v_1 \to v_2 \to v_3 \to v_4 \to v_6$, его длина 10

$$\lambda_6^{(4)} = \lambda_4^{(3)} + C_{46} \quad (7+3=10)$$

$$\lambda_4^{(3)} = \lambda_3^{(2)} + C_{34} \quad (6+1=7)$$

$$\lambda_3^{(2)} = \lambda_2^{(1)} + C_{23} \quad (2+4=6)$$

$$\lambda_2^{(1)} = \lambda_1^{(0)} + C_{12} \quad (0+2=2)$$

6 Минимальный путь из $v_1 \to v_7$: $v_1 \to v_2 \to v_3 \to v_4 \to v_6 \to v_7$, его длина 12

$$\lambda_7^{(5)} = \lambda_6^{(4)} + C_{67} \quad (10 + 2 = 12)$$

$$\lambda_6^{(4)} = \lambda_4^{(3)} + C_{46} \quad (7+3=10)$$

$$\lambda_4^{(3)} = \lambda_3^{(2)} + C_{34} \quad (6+1=7)$$

$$\lambda_3^{(2)} = \lambda_2^{(1)} + C_{23} \quad (2+4=6)$$

$$\lambda_2^{(1)} = \lambda_1^{(0)} + C_{12} \quad (0+2=2)$$

Возможное остовное дерево с минимальной суммой длин ребер 38:

Минимальный вес остовного дерева L(D)=38 Ещё есть три варианта остовного дерева с минимальной суммой длин рёбер - 38 :

1. Зададим на графе произвольную ориентацию:

2. Построим произвольное остовное дерево D заданного графа:

$$(D+q6): \mu_1: V_1-V_2-V_3-V_7-V_6-V_5-V_1 C(\mu_1): (1,1,1,1,1,0,0,0,0,0,0,0) (D+q7): \mu_2: V_1-V_2-V_3-V_4-V_1 C(\mu_2): (1,1,0,0,0,0,-1,0,0,0,-1,0,0) (D+q8): \mu_3: V_2-V_3-V_7-V_6-V_5-V_2 C(\mu_3): (0,1,1,1,1,0,0,-1,0,0,0,0,0)$$

$$(D+q9): \mu_4: V_2-V_3-V_4-V_2 \\ C(\mu_4): (0,1,0,0,0,0,0,1,0,-1,0,0) \\ (D+q10): \mu_5: V_4-V_3-V_7-V_6-V_5-V_4 \\ C(\mu_5): (0,0,1,1,1,0,0,0,0,-1,1,0,0) \\ (D+q12): \mu_6: V_4-V_3-V_7-V_6-V_4 \\ C(\mu_6): (0,0,1,1,0,0,0,0,0,1,1,0) \\ (D+q13): \mu_7: V_4-V_3-V_7-V_4 \\ C(\mu_7): (0,0,1,0,0,0,0,0,0,1,0,1)$$

3. Составим цикломатическую матрицу:

	q1	q2	q3	q4	q 5	q6	q7	q8	q9	q10	q11	q12	q13
μ_1	1	1	1	1	1	1	0	0	0	0	0	0	0
μ_2	1	1	0	0	0	0	-1	0	0	0	-1	0	0
μ_3	0	1	1	1	1	0	0	-1	0	0	0	0	0
μ_4	0	1	0	0	0	0	0	0	1	0	-1	0	0
μ_5	0	0	1	1	1	0	0	0	0	-1	1	0	0
μ_6	0	0	1	1	0	0	0	0	0	0	1	1	0
μ_7	0	0	1	0	0	0	0	0	0	0	1	0	1

4. Запишем закон Кирхгова для напряжений:

$$\begin{cases} u_1+u_2+u_4+u_5+u_6=0\\ u_1+u_2-u_7-u_11=0\\ u_2+u_3+u_4+u_5-u_8=0\\ u_2+u_9-u_11=0\\ u_3+u_4+u_5-u_10+u_11=0\\ u_3+u_4+u_11+u_12=0\\ u_3+u_11+u_13=0\\ u_1,u_2,u_3,u_4,u_5,u_6,u_9-\text{ базисные переменныe} \end{cases}$$

5. Найдём матрицу инцидентности:

	q1	q2	q3	q4	q 5	q6	q7	q8	q9	q10	q11	q12	q13
u_1	-1	0	0	0	0	1	-1	0	0	0	0	0	0
u_2	1	-1	0	0	0	0	0	-1	1	0	0	0	0
u_3	0	1	-1	0	0	0	0	0	0	0	0	1	0
u_4	0	0	0	0	0	0	1	0	-1	-1	-1	1	1
u_5	0	0	0	0	1	-1	0	1	0	1	0	0	0
u_6	0	0	0	1	-1	0	0	0	0	0	0	-1	0
u_7	0	0	1	-1	0	0	0	0	0	0	0	0	-1

$$\begin{cases}
-I_1 + I_6 - I_7 = 0 \\
I_1 - I_2 + I_8 + I_9 = 0 \\
I_2 - I_3 + I_{11} = 0 \\
I_7 - I_9 - I_{10} - I_{11} + I_{12} + I_{13} = 0 \\
I_5 - I_6 + I_8 + I_{10} = 0 \\
I_4 - I_5 - I_{12} = 0 \\
I_3 - I_4 - I_{13} = 0
\end{cases}$$

6. Подставим закон Ома:

$$\begin{cases} \varepsilon_{1} = I_{7}R_{7} + I_{9}R_{9} \\ 0 = -I_{2}R_{2} - I_{9}R_{9} + I_{11}R_{11} \\ 0 = -I_{3}R_{3} - I_{11}R_{11} - I_{13}R_{13} \\ 0 = -I_{4}R_{4} - I_{12}R_{12} + I_{13}R_{13} \\ \varepsilon_{2} = I_{10}R_{10} + I_{12}R_{12} \\ 0 = -I_{6}R_{6} - I_{7}R_{7} - I_{10}R_{10} \\ 0 = -I_{8}R_{8} - I_{9}R_{9} + I_{10}R_{10} \end{cases}$$

7. Совместная система имеет вид:

$$\begin{cases} -I_1 + I_6 - I_7 = 0 \\ I_1 - I_2 + I_8 + I_9 = 0 \\ I_2 - I_3 + I_{11} = 0 \\ I_5 - I_6 + I_8 + I_{10} = 0 \\ I_4 - I_5 - I_{12} = 0 \\ I_3 - I_4 - I_{13} = 0 \\ \varepsilon_1 = I_7 R_7 + I_9 R_9 \\ 0 = -I_2 R_2 - I_9 R_9 + I_{11} R_{11} \\ 0 = -I_3 R_3 - I_{11} R_{11} - I_{13} R_{13} \\ 0 = -I_4 R_4 - I_{12} R_{12} + I_{13} R_{13} \\ \varepsilon_2 = I_{10} R_{10} + I_{12} R_{12} \\ 0 = -I_6 R_6 - I_7 R_7 - I_{10} R_{10} \\ 0 = -I_8 R_8 - I_9 R_9 + I_{10} R_{10} \end{cases}$$

13 уравнений и 13 неизвестных - $I_1, I_2, ..., I_{13}$; ЭДС $\varepsilon_1, \, \varepsilon_2$ и сопротивления $R_1, R_3, R_4, R_6, R_7, ..., R_{13}$ известны.

Построение полного потока:

1.
$$v_1 - v_2 - v_3 - v_4 - v_9$$

•
$$\min\{6-0, 6-0, 7-0, 9-0\} = 6$$

2.
$$v_1 - v_3 - v_4 - v_9$$

•
$$\min\{8-0, 7-6, 9-6\} = 1$$

3.
$$v_1 - v_5 - v_9$$

•
$$\min\{6-0, 5-0\} = 5$$

4.
$$v_1 - v_7 - v_8 - v_9$$

• $\min\{10-0, 9-3, 16-3\}=6$

5. $v_1 - v_6 - v_7 - v_8 - v_9$

• $\min\{3-0, 3-0, 9-0, 16-0\}=3$

6. $v_1 - v_5 - v_8 - v_9$

• $\min\{6-5, 6-0, 16-9\} = 1$

Величина полного потока $\Phi_{\text{пол.}} = 7 + 5 + 10 = 22$

Построение максимального потока

1.
$$v_1 - v_3 - v_2 - v_5 - v_4 - v_9$$

•
$$\Delta_1 = \min\{8 - 1, 2 - 0, 4, 3 - 0, 9 - 7\} = 2$$

2.
$$v_1 - v_7 - v_6 - v_5 - v_8 - v_9$$

•
$$\Delta_2 = \min\{10 - 6, 7 - 0, 3, 6 - 1, 16 - 10\} = 3$$

Величина максимального потока $\Phi_{\text{макс.}} = 9 + 5 + 13 = 27$

Следовательно, величина потока увеличилась на 5

Раскраска вершин гиперграфа Код:

```
import tkinter as tk
from tkinter import simpledialog
import matplotlib.pyplot as plt
import matplotlib.patches as patches
def draw_hypergraph(n, m, incidence_matrix):
    fig, ax = plt.subplots(figsize=(10, 10))
   ax.set_xlim(-1, n + 2)
    ax.set_ylim(-1, m + 2)
    colors = ['red', 'green', 'blue', 'yellow', 'purple', 'cyan',
       'magenta', 'lime', 'pink', 'brown']
   vertex_colors = {}
   def available colors(vertex):
        adjacent_colors = set()
        for i in range(m):
            if incidence_matrix[vertex][i] == 1:
                for v in range(n):
                    if incidence_matrix[v][i] == 1 and v in
                       vertex_colors:
                        adjacent_colors.add(vertex_colors[v])
        return set(colors) - adjacent_colors
    for vertex in range(n):
        available = available_colors(vertex)
        vertex_colors[vertex] = next(iter(available)) if
          available else colors[len(vertex_colors) % len(colors)]
    #
    for j in range(m):
```

```
vertices = [i for i in range(n) if incidence_matrix[i][j]
           == 1]
        width = len(vertices)
        height = 1
        left_x = vertices[0] + 1
        left_y = j + 1
        rect = patches.Rectangle((left_x, left_y), width, height,
           linewidth=1, edgecolor='black', facecolor='none')
        ax.add_patch(rect)
        #
        for i, vertex in enumerate(vertices):
            circle = plt.Circle((left_x + i + 0.5, left_y + 0.5),
               0.2, fc=vertex_colors[vertex])
            ax.add_artist(circle)
            ax.text(left_x + i + 0.5, left_y + 0.5, f'{vertex + 0.5})
              1}', ha='center', va='center')
    ax.set_aspect('equal')
    ax.set_axis_off()
    plt.show()
def create_matrix_input_window(n, m):
    root = tk.Tk()
    root.title("Input Matrix")
    entries = [[tk.Entry(root, width=5) for j in range(m)] for i
      in range(n)]
    for i in range(n):
        label = tk.Label(root, text=f"U{i+1}")
        label.grid(row=i+1, column=0)
        for j in range(m):
```

```
entries[i][j].grid(row=i+1, column=j+1)
    for j in range(m):
        label = tk.Label(root, text=f"E{j+1}")
        label.grid(row=0, column=j+1)
    def get_matrix():
        matrix = [[int(entries[i][j].get()) for j in range(m)]
          for i in range(n)]
        root.destroy()
        return matrix
    submit_button = tk.Button(root, text="Submit", command=lambda
      : root.quit())
    submit_button.grid(row=n+1, column=0, columnspan=m+1)
    root.mainloop()
    incidence_matrix = get_matrix()
    return incidence_matrix
def main():
    n = int(simpledialog.askstring("Input", "
                                          (n):"))
   m = int(simpledialog.askstring("Input", "
                                       (m):")
    incidence_matrix = create_matrix_input_window(n, m)
                                                      : ")
    print("
    for row in incidence_matrix:
        print(row)
    draw_hypergraph(n, m, incidence_matrix)
   __name__ == "__main__":
if
    main()
```

Результат работы программы для матрицы инцидентности

В программе используется "жадный"
алгоритм раскраски вершин. Сложность $\mathrm{O}(n^2)$, где n - количество вершин.