Deep Learning Using TensorFlow

1.3: Tools for Deep Learning

- Backend
 - TensorFlow (Google)
 - Scikit-Learn (Google)
 - Theano (Univ of Montreal)
 - CNTK (Microsoft)
 - Torch + PyTorch (Facebook)
 - Caffe (UC Berkeley)
 - H2O

- Frontend
 - R
 - Keras/R
 - Python
 - Keras/Python
 - Apache MXNet (Amazon)

Deep Learning Framework Power Scores 2018

Who's on top in usage, interest, and popularity?

- TensorFlow
- 2. K Keras
- 3. O PyTorch
- 4. Caffe
- 5. theano
- 6. Minnet
- 7. CNTK
- 8. DL4J
- 9. **Ö** Caffe2
- 10. Chainer
- 11. fast.ai

Job Listings

TensorFlow: Google

- TensorFlow is an open source software library released in 2015 by Google to make it easier for developers to design, build, and train deep learning models
- At a high level, **TensorFlow** is a Python library that allows users to express arbitrary computation as a graph of data flows

Keras: Google

TensorFlow Software History

- November 2015: TensorFlow Beta
- February 2017: Version 1.0.0
- November 2019: Version 2.0 Beta
- January 2020: Version 2.1.0

Difference between TensorFlow 1.0 & 2.0

- Eager execution is enabled by default (2.0)
 - No placeholders
 - Session.run() gone
 - Tf.global_variable_initializer() gone
- Keras API is now the standard (2.0)
- User Interface is simplified (2.0)
 - Tf.contrib is gone
 - To create your own layers and models subclass use the keras layer/model
 - Sessions are gone
 - Tf.function for efficiency of compiled graphs

TensorFlow

Step 2: Executes DAG

```
import tensorflow as tf

a1 = tf.constant([5,3,8])

b1 = tf.constant([3,-1,2])

c1 = tf.add(a1,b1)

print (c1)
Tensor("Add_1:0", shape=(3,), dtype=int32)

with tf.Session() as sess:
    result = sess.run(c1)
    print (result)

[ 8  2 10]
```


Numpy and TensorFlow

```
import numpy as np
a = np.array([5,3,8])
b = np.array([3, -1, 2])
c = np.add(a,b)
print(c)
[ 8  2 10]
```

```
import tensorflow as tf

a1 = tf.constant([5,3,8])

b1 = tf.constant([3,-1,2])

c1 = tf.add(a1,b1)

print (c1)
Tensor("Add_1:0", shape=(3,), dtype=int32)

with tf.Session() as sess:
    result = sess.run(c1)
    print (result)

[ 8  2 10]
```

TensorFlow 2.0

- TensorFlow 2.0 supports both eager and lazy (graph) computation
 - Eager mode is default
- TF2.0 is Backward compatible with TF 1.0

What 'Tensor Flow' Has to do with Tensors?

- TensorFlow programs use a tensor data structure to represent all data
- Only tensors are passed between operations in the computation graph
- TensorFlow tensor as an n-dimensional array or list.
 - For example,
 - a scaler is a tensor
 - a vector is a tensor
 - a matrix is a tensor

TensorFlow

- Creates Directed Acyclic Graph (DAG)
 - DAG represents mathematical operations
 - + * /
 - Vector arithmetic
 - Matrix multiplication
- DAG
 - Edges
 - Input/output of math operation
 - Represents array of data

Cloud Computing

For Building Deep Learning Convolutional Neural Networks
If GPU and TPU are Needed for Data Ingestion

What is Cloud Computing?

- Cloud computing is the delivery of computing services
 - Servers
 - Storage
 - Databases
 - Networking
 - Software
 - Analytics
 - Offer faster innovation, flexible resources
 - Economics of scale
- Cloud computing is using someone else's computer over the internet for your personal needs

Types of Cloud Computing Service Models

Cloud Providers Major Players

Cloud Providers Time Line

Why Choose Google Cloud Platform (GCP) over AWS and Azure?

- We plan to use TensorFlow software
 - Which is a Google's product
- We plan to use Keras software
 - Which is a Google's product
- We plan to use GPUs and TPUs
 - TPUs are only available with GCP
- Google's Cloud prices are lowest

Why Choose Google Cloud Platform (GCP) over AWS and Azure?

- If you plan to use Convolutional Neural Network (CNN) for object identification in an image
 - You must use GPUs
 - You cannot build this Model on your own personal computer because you don't have the right GPU
 - Build a computer on Google Cloud Platform which has the correct GPU
 - Build the CNN on GCP with the correct GPU

GPU and TPU Speed

8	GPU	TPU 🕔 🕥
Speed	Moderate with 16GB memory and 100 TFLOPS on the best GPU Tesla V100	High, with 64GB memory and 180 TFLOPS of performance
Cost	Expensive at \$3454 per training preemption on a GPU 8	Cost-efficient at \$724 per training preemption
Best suited for	Mid-to-large datasets and models, Image and video processing, Applications running CUDA or OpenCL	Matrix Computations, Dense vector processing, massive datasets and huge models