

BDT Regression Variables

Wei Shi
EMTF Working Meeting

Variable Cut Value Distributions

- Black
 - Input variable distribution from 2017 BDT training sample
- Red
 - BitCompressed + RPC (2017 BDT: Mode_15_invPtTarg_invPtWgt)
- Blue
 - Non-BitCompressed, no RPC (MODE_15_logPtTarg_invPtWgt)

Bits allocation [1]

Four-Station Modes													
Mode	Feature	$\Delta \phi_{12}$	$\Delta \phi_{23}$	$\Delta \phi_{34}$	sign	$\Delta\theta_{14}$	B_1	B_2	B_3	B_4	FR_1	θ	Mode
1-2-3-4	Bits	7	5	4	2	2	2	1	1	1	1	3	1

dPhi_12: 7 bits

dPhi_23: 5 bits

dPhi_34: 4 bits

dTh_14: 2 bits

RPC_1: 2 bits

- Why allocating 2 bits for this?
 - Indicate if the LCT comes from St1_ring2?

RPC_2: 1 bit

RPC_3: 1 bit

RPC_4: 1 bit

FR_1: 1 bit

Theta: 3 bits

St1_ring2

dPhi_13: no bits

dPhi_14: no bits

dPhi_24: no bits

bend_1: no bits

dPhiSum4: no bits

dPhiSum4A: no bits

dPhiSum3: no bits

dPhiSum3A: no bits

outStPhi: no bits

Comments

- Why use 2 bits for the *sign*?
 - Encodes the signs of the later dPhis relative to the 1st dPhi
- How are current bits used across each variable range?
- Are there more transformations between the cut value from xml file and the bits represented value? (degree to int, etc.)

Back Up

Files

• Locations:

- /afs/cern.ch/work/w/wshi/public/EMTFpTResolution/PtRegression_Apr_2017_05_10_invPtT arg_invPtWgt_MODE_15_bitCompr_RPC.root
- /afs/cern.ch/work/w/wshi/public/EMTFpTResolution/XmlScan_Mode_15_invPtTarg_invPtW gt_bitCompr_RPC.root
- /afs/cern.ch/work/w/wshi/public/EMTFpTResolution/XmlScan_MODE_15_logPtTarg_invPt Wgt_noBitCompr_noRPC.root

Reference

[1]

Boosted Decision Trees in the CMS Level-1 Endcap Muon Trigger, http://cds.cern.ch/record/2289251/files/CR2017_361.pdf