Név (Nyomtatott betűkkel):	
Aláírás:	NEPTUN kód:

A vizsga első részében tesztkérdéseket kap, ezekből maximum 30 pont érhető el. Minden eldöntendő kérdés helyes megválaszolása 1 pontot ér. Ha nem éri el összesen a 19 pontot, akkor vizsgája elégtelen (1). A beugró teszt sikeres teljesítése esetén újabb feladatlapot kap, melybe a teszt eredménye beszámít. A tesztkérdések megválaszolására 30 perc áll rendelkezésére.

A fejlécet ne felejtse el kitölteni!

Formális nyelvek vizsga – I. rész – Teszt

Karikázza be a megfelelő betűjelét az alábbi állításoknak! (i) - igaz állítás, (h) - hamis állítás

- 1. Legyen V tetszőleges ábécé és legyen $u, v, w \in V^*$.
- Ha w = uv és $v \neq \varepsilon$, akkor v valódi részszava w-nek. (i) (h)
- Minden olyan $w \in V^+$ szónak, amelynek hossza legalább 2, van valódi rész-(i) (h) szava.
- (i) (h) Ha u prefixe a w szónak, akkor u részszava a w szónak.
 - **2.** Legyen V tetszőleges ábécé és legyen $L \subseteq V^*$.
- (i) (h) Minden L nem üres nyelv esetén $L\emptyset = \emptyset$.
- Van olyan L nyelv, amelyre $L^+ = L^*$ teljesül. (i) (h)
- (i) (h) Van olyan L nyelv, amelyre $L^* = \{\varepsilon\}$ teljesül.
 - 3. Legyen G = (N, T, P, S) tetszőleges reguláris grammatika.
- (i) (h) Akkor G minden szabályának jobboldalán legfeljebb egy nemterminális van.
- Akkor G minden szabálya vagy $A \to uB$, vagy $A \to v$ alakú, ahol $A, B \in N$ (i) (h) és $u, v \in T$.
- Akkor P-ben nem lehet $A \to \varepsilon$ alakú szabály, ahol $A \in N$ és $A \neq S$. (i) (h)

 - 4. Legyenek L_1 , L_2 és L tetszőleges 1-típusú nyelvek a V ábécé felett.
- (i) (h) Akkor $L_1 \cup L_2$ 1-típusú nyelv.
- (i) (h) Akkor $L_1L_1 \cup L_2L_2$ 1-típusú nyelv.

- (i) (h) Akkor az L^* nyelv olyan 0-típusú nyelv, amely nem 1-típusú.
 - **5.** Legyenek R és Q tetszőleges reguláris kifejezések.
- (i) (h) Akkor $(R) \cap (Q)$ reguláris kifejezés.
- (i) (h) Az $((R) + (Q))^*$ és az $(R + Q)^*$ reguláris kifejezések ugyanazt a nyelvet jelölik.
- (i) (h) Az R reguláris kifejezés által jelölt nyelv 1-típusú nyelv.
 - **6.** Legyen G = (N, T, P, S) tetszőleges környezetfüggetlen grammatika.
- (i) (h) Akkor P nem tartalmazhat $A \to B$ alakú szabályt, ahol $A, B \in N$.
- (i) (h) Akkor G-hez megadható egy olyan G' = (N', T, P', S') környezetfüggetlen grammatika, amelyre L(G') = L(G) és P'-ben nincs $A \to \varepsilon$ alakú szabály, ahol $A \in N$ és $A \neq S$.
- (i) (h) G minden A nemterminálisa hasznos.
 - 7. Döntse el az alábbi állítások igaz vagy hamis voltát!
- (i) (h) Ha G=(N,T,P,S) 1-típusú grammatika, akkor P tartalmazhat $A\to \varepsilon$ alakú szabályt, ahol $A\neq S$.
- (i) (h) Ha G Chomsky normálformájú grammatika, akkor 1-típusú grammatika is.
- (i) (h) Ha G Kuroda normálformájú grammatika, akkor 1-típusú grammatika is.
 - 8. Legyen $A=(Q,T,\delta,q_0,F)$ tetszőleges determinisztikus véges automata. Akkor
- (i) (h) $\delta: Q \times T^* \to Q.$
- (i) (h) ε akkor és csak akkor van benne az A által elfogadott nyelvben, ha $q_0 \in F$.
- (i) (h) Ha $F = \emptyset$, akkor $L(A) = \emptyset$.
 - 9. Legyen $A=(Q,T,\delta,Q_0,F)$ tetszőleges nemdeterminisztikus véges automata.
- (i) (h) A-nak legalább egy kezdőállapota van.
- (i) (h) Minden $q \in Q$ és $a \in T$ esetén $\delta(q, a)$ legfeljebb egy elemet tartalmaz.
- (i) (h) A-hoz megadható olyan G 3-típusú grammatika, amely ugyanazt a nyelvet generálja, amelyet A elfogad.
 - 10. Döntse el az alábbi állítások igaz vagy hamis voltát!
- (i) (h) Minden 3-típusú nyelv elfogadható veremautomatával.

(i) (h) Ha egy 2-típusú nyelv elfogadható veremautomatával, akkor a nyelv végtelen.

(i) (h) Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$ tetszőleges veremautomata.

Akkor $\delta: Z \times Q \times (T \cup \{\varepsilon\}) \to Z^* \times Q.$

	1
	l I
Fradmánzu	1
Eredmény:	

Név (Nyomtatott betűkkel):	
Aláírás:	NEPTUN kód:

Formális nyelvek vizsgafeladatok – II. Rész 2015.06.24.

Értékelés: Az érdemjegyeket a feladatokra kapott pontszámok összege határozza meg, az egyes feladatoknál részpontszámot is adunk. A teszt eredménye beszámít az összpontszámba. Az elérhető maximális pontszám 90. A II. rész feladatainak megválaszolására 70 perc áll rendelkezésére.

5-ös (jeles) érdemjegy: összpontszám ≥ 75 4-es (jó) érdemjegy: összpontszám ≥ 63 3-as (közepes) érdemjegy: összpontszám ≥ 50 2-es (elégséges) érdemjegy: összpontszám ≥ 36 1-es (elégtelen) érdemjegy: összpontszám < 36

Kérjük vizsgadolgozatuk fejlécét kitölteni! Minden belső oldal fejlécén szerepeljen NEPTUN kódjuk!

Eredményes munkát kívánunk!

PONTSZÁM

	FUNISZAM
I. Rész – Teszt:	
II. Rész – 1. feladat:	
II. Rész – 2. feladat:	
II. Rész – 3. feladat:	
II. Rész – 4. feladat:	
Összpontszám:	
${f Jegy:}$	

2015.06.24.

A cooport

NEPTUN:

1. Feladat

(a) Mikor nevezzük egy G=(N,T,P,S) környezetfüggetlen grammatika A nemterminálisát elérhetőnek?

Maximális pontszám: 5

(b) Legyen G=(N,T,P,S) egy tetszőleges környezetfüggetlen grammatika. A tanultak alapján ismertesse, hogyan határozza meg G aktív nemterminálisainak halmazát!

Maximális pontszám: 7

(c) Legyen G=(N,T,P,S), ahol $N=\{S,A,B,C,D,E\}$, $T=\{a,b,c\}$ és legyen $P=\{S\to AB,S\to CA,A\to a,B\to BE,B\to b,D\to aA,D\to c,E\to BB\}$.

Az előbbiek alapján határozza meg ${\cal G}$ aktív nemterminálisainak halmazát!

2015.06.24. A csoport

NEPTUN:

2. Feladat

(a) Legyen $A=(Q,T,\delta,q_0,F)$ determinisztikus véges automata. Ismertesse, hogyan konstruál meg egy A' minimális állapotszámú determinisztikus véges automatát, amelyre L(A')=L(A) teljesül!

Maximális pontszám: 10

(b) Legyen $A=(Q,T,\delta,q_0,F)$ determinisztikus véges automata, ahol $Q=\{q_0,\,q_1,\,q_2,\,q_3,\,q_4\},$ $T=\{a,\,b\},\,F=\{q_1,\,q_2\}$ és δ az alábbi táblázattal adott.

δ	a	b
q_0	q_3	q_4
q_1	q_3	q_3
q_2	q_0	q_3
q_3	q_3	q_4
q_4	q_0	q_2

Az előbbiek alapján adjon meg egy A' minimális állapotszámú determinisztikus véges automatát, amelyre L(A)=L(A') teljesül!

2015.06.24.	A csoport	NEPTUN:	

3. Feladat

(a) Adja meg a veremautomata fogalmát!

Maximális pontszám: 5

(b) Adjon meg egy olyan veremautomatát, amely felismeri az $L=\{a^{n+1}b^{n-1}\mid n\geq 2\} \text{ nyelvet és ismertesse ezen veremautomata működését!}$

2015.06.24.	A cooport	NEPTUN:

4. Feladat

Bizonyítsa be, hogy minden G=(N,T,P,S) környezetfüggetlen grammatika esetében eldönthető, hogy a grammatika által generált nyelv üres-e vagy sem! Indokolja részletesen válaszát!