BG.B Testes 2021.2

Felipe B. Pinto 61387 – MIEQB

11 de abril de 2023

Conteúdo

1 BG.D Teste Resolução		Questao 17							23
II Teste Prático	3	Questão 18							24
Questão 5	4	Questão 19							25
Questão 15	5	Questão 20							26
III Teste 3 2021 – 2022 Resolução	6	Questão 21							27
Questão 1	7	Questão 22							28
Questão 2	8	Questão 23							29
Questão 3	9	Questão 24							30
Questão 4	10	Questão 25							31
Questão 5	11	Questão 26							32
Questão 6	12	Questão 27							33
Questão 7	13	Questão 28							34
0 0	14	Questão 29							35
	15	Questão 30							36
0 +~ 10	16	Questão 31							37
0 11	17	Questão 32							38
	18	Questão 33							39
Questão 12		Questão 34							40
Questão 13	19	Questão 35							41
Questão 14	20	Questão 36							42
Questão 15	21	Questão 37							43
Questão 16	22	(

I – BG.b Teste Resolução

II – Teste Prático

Uma solução mãe de proteína BSA de concentração 0.25 mg/mL é utilizada para preparar uma serie de standards como indicado a continuação.

Volumes de Solução Mãe. Volume de Água Volume de reagente C Volume de reagente D são dados em mL

Vol. Sol. Mae	Vol. H ₂ O	Vol. Reag.C	Vol. Reag.D	Abs
0	120	200	1400	0.020
20	100	200	1400	0.102
40	80	200	1400	0.214
60	60	200	1400	0.320
100	20	200	1400	0.433
120	0	200	1400	0.539

100 mg de plasma são liofilizados e depois o sólido formado e redissolvido em 1 mL de buffer.

20 mL desta solução são levados a 120 mL com um buffer.

A estos 120 mL são adicionados o reagente C e o reagente D nos mesmos volumes que as soluções estândar (200 mL e 1400 mL respetivamente).

As absorbências desta última solução de (120+200+1400) foram 0.370, 0.375 e 0.360, (branco descontado) calcule a concentração de proteína total nas 100 mg originais de Plasma em mg (prot)/mg de plasma.

Resolução

- 0.519 Abs prot + plasma
- 368.33 E-3 Abs plasma processado

$$\begin{aligned} &[\text{Prot}] = \\ &= \frac{Abs_{prot}}{Abs_{plas}} = \frac{0.519 - Abs_{plas}}{Abs_{plas}} = \frac{0.519}{Abs_{plas}} - 1 = \frac{0.519}{368.33 \, \text{E} - 3\frac{20}{120 + 200 + 1400}} - 1 \cong \\ &\cong -718.19 \, \text{E} - 3 \end{aligned}$$

Uma coluna cromatográfica de separação por tamanho tem um diâmetro de 1 cm e a altura do leito de resina e de 17 cm. Sendo que 5 mL é volume com o qual é extraída a molécula de tamanho superior ao tamanho máximo de separação da resina, calcule qual será o volume de extração para a molécula que marca o tamanho inferior da resina de separação.

a. 8.74 mL

c. 9.25 mL

b. 49.98 mL

d. 54.97 mL

Tamanho inferior: $V = V_i + V_0$

$$Vol = Vol_i + Vol_0 = Vol_i + 5 \text{ mL};$$

 $Vol_t = -Vol_{res} + \pi ((1/2) \text{ cm})^2 17 \text{ cm} = -Vol_{res} + 13.35 \text{ cm}^3 \implies$
 $\implies Vol_i = 13.35 \text{ cm}^3 - 5 \text{ cm}^3 - Vol_{res} = 8.35 \text{ cm}^3 - Vol_{res}$

III – Teste 3 2021 – 2022 Resolução

Identifique a resposta correcta.

A glicólise é:

- 1. A ligação do piruvato à coenzima A acoplada à eliminação de CO2 e à redução de NAD+ a NADH
- 2. A descarboxilação completa do grupo acetil na acetil coenzima A
- 3. A reacção degradativa da glucose e de outras hexoses com formação de duas moléculas de piruvato
- 4. A hidrólise do amido que leva à formação de várias moléculas de glucose
- 5. A redução de oxigénio molecular a água na cadeia respiratória mitocondrial

RS:

3

Escolha a opção correcta:

- 1. Os D-monossacáridos são típicamente aldoses, enquanto os L-sacáridos são cetoses
- 2. Os D-monossacáridos têm sempre cinco ou mais átomos de carbono
- 3. Os D-monossacáridos com o carbono anomérico livre são redutores
- 4. Todos os D-polissacáridos são polímeros lineares de unidades sacárido idênticas

Uma das reacções na glicólise onde se dá origem a ATP a partir de ADP+Pi é catalizada pela enzima

Escolha a resposta certa

- 1. enolase
- 2. fosfofrutocinase.
- 3. cinase do piruvato.
- 4. hexocinase.

S:

3

Assinale as afirmações verdadeiras

- 1. A energia nos organismos vivos e intercambiada COM RECURSO a forma de uma O-glicosilação.
- 2. A energia nos organismos vivos e intercambiada COM RECURSO a forma de uma N-glicosilação.
- 3. A energia nos organismos vivos e intercambiada COM RECURSO a uma adenosine diphospate.
- 4. A energia nos organismos vivos e intercambiada COM RECURSO a uma adenosine triphospate.
- 5. A energia nos organismos vivos e intercambiada COM RECURSO A enlace fosfato.

Considere a glicólise a partir da molécula glucose:

Assinale verdadeira/s:

- 1. A glicólise produz 2 ATPs e consume 2 ATPS
- 2. A glicólise produz 4 ATPs e consume 2 ATPS
- 3. glicólise produz 2ATPs e consume 4 ATPS
- 4. glicólise produz 2 moléculas de piruvato
- 5. A glicólise produz 4 moléculas de piruvato
- 6. A glicólise produz 1 moléculas de piruvato

RS: 2 e 4

Quantas moléculas de ATP (descontadas as consumidas) são formadas por degradação glicolítica de 20 moléculas de glucose, seguida de fermentação láctica?

Selecione uma opção de resposta:

1. 40

2. 100

3. 30

4. 20

20 * 4

Assinale a verdadeira: No caminho metabólico central, a formação de ATP catalizada por cinases (fosforilação a nível de substracto) dá-se

Selecione uma opção de resposta:

- 1. Na reacção catalizada pela enzima piruvatocinase
- 2. Na reacção catalizada pela enzima fosfofrutocinase
- 3. Na reacção catalizada pela enzima piruvato desidrogenase
- 4. No complexo V da cadeia respiratória mitocondrial (F0F1 ATPase)

RS:

1

Considere a temperatura de fusão (Tm, melting point) dos seguintes troços de DNA duplex.

1	GAAATTTC CTTTAAAG
2	GCCATGGC CGGTACCG
3	GCGCGCGC CGCGCGCG
4	GGAATTCC CCTTAAGG

Diga qual a resposta correcta:

- a) Tm1 > Tm2 > Tm3 > Tm4
- b) Tm3 > Tm2 > Tm4 > Tm1
- c) Tm2 > Tm3 > Tm4 > Tm1
- d) Tm4 > Tm3 > Tm2 > Tm1

$$\begin{array}{c}
 12 \\
 26 \\
 38 \\
 44
 \end{array}
 \implies Tm3 > Tm2 > Tm4 > Tm1$$

RS: b

Qual dos seguintes compostos / moléculas / complexos não é necessário na síntese de proteínas:

a) Ribossoma

c) spliceosoma

e) metionina

b) peptidil transferase d) tRNA

Um passo fermentativo é acoplado à glicólise em condições anóxicas porque:

- 1. A fermentação está acoplada à formação de ATP a partir de ADP + Pi
- 2. A fermentação asegura a reoxidação do NADH a NAD+ necessário no passo de insersão de fosfato inorgânico no gliceraldeído-3-fosfato.
- 3. A fermentação induz a formação de Acetil CoA a partir do produto final piruvato
- 4. A fermentação estimula a libertação de água no complexo IV da cadeia de TE mitocondrial

lS:

A glicólise envolve:

- 1. 10 passos e 09 enzimas, finalizando em 2 moléculas de Piruvato.
- 2. 10 passos e 10 enzimas, finalizando em 2 moléculas de Piruvato.
- 3. 10 passos e 10 enzimas, finalizando em 2 moléculas de Lactato.
- 4. 10 passos e 10 enzimas, finalizando em 2 moléculas de lactato.

Selecione uma opção de resposta:

O complexo de pré-iniciação de síntese de proteínas em procariontes e composto por:

- a) Fatores de iniciação, mRNA, 30S subunit, 50S subunit, ATP
- b) Fatores de iniciação, mRNA, 30S subunit, GTP
- c) Fatores de iniciação, 30S subunit, 50S subunit, ATP
- d) Fatores de iniciação, mRNA, 50S subunit, GTP
- e) Fatores de iniciação, mRNA, 30S subunit, 50S subunit, GTP
- f) sem resposta

Considere o diagrama do fluxo de informação genética dos organismos vivos:

$$3 DNA \xrightarrow{1} RNA \xrightarrow{2} Proteína$$

Diga qual a resposta certa:

		Passo 1	Passo 2	Passo 3
[H]	1.	Replicação	transcrição	tradução
	2.	transcrição	replicação	tradução
	3.	Tradução	transcrição	Replicação
	4.	Transcrição	tradução	Replicação
	5.	Replicação	tradução	transcrição

Selecione uma ou mais opções de resposta

Assinale as afirmações verdadeiras:

- 1. A ATPsynthase e considerada constituída por duas aprtes principais a F0 integrada na membrana e a F1 integrada no espaço fora da membrana
- 2. A ATPsynthase e considerada constituída por duas partes principais a F1 integrada na membrana e a F0 integrada no espaço de fora da membrana
- 3. A ATPsynthase faz fluir protões desde o espaço intermembranar para a matriz
- 4. A ATPsynthase faz fluir protões desde a matriz na direção do espaço intermembranar

RS: 3 e (1 ou 2)

Selecione uma opção de resposta

Na figura seguinte apresenta-se um diagrama para o processo de transferência electrónica em bactérias oxidantes de sulfureto.

[Figura]

Neste esquema, uma entidade com função semelhante ao complexo IV da cadeia respiratória mitocondrial

- 1. coresponde ao troço integrado no parêntesis 1
- 2. coresponde ao troço integrado no parêntesis 3
- 3. coresponde ao troço integrado no parêntesis 4
- 4. não existe

RS: 3 ou 4

Selecione uma opção de resposta

Assinale a afirmação verdadeira

- 1. A ATPsynthase produze aproximadamente 60 kg de ATP por pessoas por dia.
- 2. A ATPsynthase produze aproximadamente 6 kg de ATP por pessoas por dia.
- 3. A ATPsynthase produze aproximadamente 60 g de ATP por pessoas por dia.
- 4. A ATPsynthase produze aproximadamente 6 g de ATP por pessoas por dia.
- 5. A ATPsynthase produze aproximadamente 600 g de ATP por pessoas por dia.

ATPSintase diariamente produz ATP em peso equivalente ao peso do individuo ≅ 60 kg por humano adulto

Diga qual a reposta errada

- 1. A tradução resulta na síntese de proteína, ocorre nos ribossomas e envolve rRNA, mRNA e tRNA
- 2. Na tradução a informação codificada em triades no mRNA interage com tríades complementares em tRNAs originando a síntese de proteína
- 3. Na tradução a síntese de uma proteína envolve tRNAs ligados a diferentes aminoácidos
- 4. Na tradução a informação codificada nas triades no DNA é lida por tríades complementares em tRNAs originando a síntese de proteína

Nula

Cinco amostras de DNA duplex isoladas de diferentes estirpes (A-D) de bactérias apresentam as seguintes percentagens de guanina:

Estirpe A. 40%

Estirpe D. 25%

Estirpe B. 35%

Estirpe C. 30%

Estirpe E. 20%

Indique a resposta falsa

- 1. A amostra cujo DNA tem 35% de resíduos adenina é a da estirpe B
- 2. A amostra cujo DNA tem 20% de resíduos adenina é da estirpe C
- 3. A amostra cujo DNA tem 30% de resíduos citosina é a da estirpe C
- 4. A amostra com temperatura de fusão mais elevada é a amostra E

...

b) 2

RS:

O número de subunidades do ribossoma numa célula humana é de:

- a) 1 c) 3
 - d) 4

1

e) 5

A formação do enlace peptídico entre aminoácidos numa cadeia polipeptídico no ribossoma em formação no ribossoma é catalisada pela:

- a) Peptidyl transferase
- b) Amino acyl-tRNA systhetase
- c) Peptide polymesase

- d) Peptidyl synthesase
- e) Peptidyl nuclease
- f) sem resposta

Identifique a resposta correcta.

Na glicólise em organismos aeróbicos, o piruvato é transportado para as mitocôndrias e convertido em:

1. Acetil CoA

3. Lactato

2. Etanol

4 Glucose

Identifique a afirmação verdadeira

"No Ciclo de Krebs dá-se:"

- 1. A descarboxilação completa do grupo acetil na acetil coenzima A
- 2. A reacção degradativa da glucose e de outras hexoses com formação de duas moléculas de piruvato
- 3. A hidrólise do amido que leva à formação de várias moléculas de glucose
- 4. O transporte de electões que leva à redução final de oxigénio molecular a água

Que moléculas produzidas na glicólise são usadas na fermentação láctica?

- 1. glucose, ATP e NAD+
- 2. piruvato e ATP
- 3. acetil CoA e NADH

5. lactato, ATP e CO2

4. piruvato e NADH

No ciclo de Krebs, o grupo acetil na acetilCoA é totalmente convertida em

- 1. Duas moléculas de CO2
- 2. Duas moléculas de H2O
- 3. Uma molécula de piruvato

4. Uma molécula de oxaloacetato

5. Dois protões e dois electrões

Os aminoácidos de uma proteína podem-se determinar no DNA pela ordem de:

a) rRNA d) mRNA

b) tRNA e) anticodões

c) Nucleotidos f) sem resposta

RS: c)

No caminho metabólico central, a libertação de CO2 dá-se:

- 1. No complexo IV da cadeia respiratória mitocondrial
- 2. Em dois dos passos da glicólise
- 3. Em dois dos passos do ciclo de Krebs
- 4. Em um dos passos do ciclo de Krebs

lS:

Diga qual das afirmações é falsa

- 1. Os carbohidratos, também designados por sacáridos, são aldeídos ou cetonas com múltiplos grupos –OH
- 2. Os carbohidratos, também designados por sacáridos, são todos aldoses
- 3. Muitos carbohidratos, também designados por sacáridos, têm capacidade para ciclização interna dando origem a furanósidos ou piranósidos
- 4. Muitos carbohidratos, também designados por sacáridos, têm fórmula bruta Cn(H2O)n

Identifique a resposta correcta.

Nos produtos finais da glicólise de uma hexose contam-se duas moléculas de, duas moléculas de e duas moléculas de.

- 1. ATP, gliceraldeído 3-fosfato, piruvato
- 2. Água, gliceraldeído 3-fosfato, piruvato
- 3. ATP, NADH, piruvato
- 4. Água, dióxido de carbono, glucose

S:

3

Identifique as ligações corretas:

- 1. NADH e complexo I
- 2. NADH e complexo II
- 3. NADH e complexo III

6. FADH e complexo III

4. FADH e complexo I

5. FADH e complexo II

1, 2 e 6

Identifique as afirmações correctas:

- 1. Os complexos 1, 2, 3 bombam protões desde a membrana ao espaço intermembranar
- 2. Os complexos 1, 3 e 4 bombam protões desde a membrana ao espaço intermembranar
- 3. O complexo 1 não bomba protões desde a membrana ao espaço intermembranar
- 4. O complexo 2 não bomba protões desde a membrana ao espaço intermembranar

RS: 3 e 4

Uma amostra de DNA contem 180 000 pares de bases, com um conteúdo em G+C de 32,5%. Quantos grupos fosfato tem a amostra

a) 180 000

d) 720 000

b) 260 000

e) 360 000

c) 90 000

f) sem resposta

2*180000 = 360000

RS: e)

Duas amostras de DNA (A e B) foram hidrolisadas. As bases constituintes foram separadas por cromatografia em papel e eluídas separadamente com 10 ml de água. Mediu-se a absorvância A260 nm das quatro soluçõeseluídas, obtendo-se os resultados seguintes:

Qual o numero de moles de adenina em cada amostra

1. A: 1E-5 B: 7E-6

2. A: 1E-6 B: 7E-7

3. A: 1E-7 B: 7E-8

4. A: 1E-9 B: 7E-9

5. A: 1E-10 B: 7E-7

6. Todas as respostas estão erradas

Assinale as afirmações verdadeiras

- 1. In ATPsynthase the catalytic unit is made of a dimer of subunits and there are three of these arranged in a ring.
- 2. In ATPsynthase the catalysis (conversion of ATP in ADP + Pi) occurs at the interface between the dimmers.
- 3. If complex 1 stops, the OXPHO cycle stops.
- 4. If complex 2 stops, the OXPHO cycle stops.
- 5. Water is formed in Complex III
- 6. A healthy human produces about 7 litres of water per day.
- 7. A lack of oxygen renders the OXPHO machinery jumping the electrons to COMPLEX V via cytochrome C.

RS: 6 e 5

DNA Gyrase tem a função de:

- a) Evitar que a doble hélice do DNA desestabilize.
- b) Catalisa a adição de novos nucleótidos.
- c) Ajuda a colocar a DNA polimerase no seu lugar durante a replicação.
- d) Colocar os primers no seu lugar para que a DNA polimerase inicie o a replicação.
- e) Ajuda a leading strand durante o processo de replicação.
- f) Sem resposta

Questão <u>35</u>

Identifique a afirmação incorrecta

Questão <u>36</u>

No ciclo de krebs ocorre:

Mitocondria

RS 4