```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv("Crimes_-_2001_to_Present.csv")
data.shape
    (7846809, 22)
print("number of rows:",data.shape[0])
print("number of columns:",data.shape[1])
    number of rows: 7846809
    number of columns: 22
data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 7846809 entries, 0 to 7846808
    Data columns (total 22 columns):
     # Column
                            Dtype
    ---
     0 ID
                            int64
     1
        Case Number
                           object
        Date
                            object
        Block
                            object
        IUCR
                            object
        Primary Type
                            object
        Description
                            obiect
        Location Description object
     8
        Arrest
                            bool
     9
        Domestic
                            bool
     10 Beat
                            int64
     11 District
                            float64
     12 Ward
                            float64
     13 Community Area
                            float64
     14 FBI Code
                            object
     15 X Coordinate
                            float64
     16 Y Coordinate
                            float64
     17 Year
                            int64
     18 Updated On
                            obiect
     19 Latitude
                            float64
     20 Longitude
                            float64
     21 Location
                            object
    dtypes: bool(2), float64(7), int64(3), object(10)
    memory usage: 1.2+ GB
data.isnull().sum()
data.isnull().sum().sum()
    1679689
data.columns
    'Location'],
         dtype='object')
df=data[['ID','Date','Primary Type','Location Description','Arrest','Domestic']]
df.head()
```

	ID	Date	Primary Type	Location Description	Arrest	Domestic
0	11646166	09/01/2018 12:01:00 AM	THEFT	RESIDENCE	False	True
1	11645836	05/01/2016 12:25:00 AM	DECEPTIVE PRACTICE	NaN	False	False
2	11449702	07/31/2018 01:30:00 PM	NARCOTICS	STREET	True	False
3	11643334	12/19/2018 04:30:00 PM	CRIMINAL DAMAGE	STREET	False	False
4	11645527	02/02/2015 10:00:00 AM	DECEPTIVE PRACTICE	OTHER	False	False

```
df.isnull().sum()
```

```
① ID
     Date
                                0
    Primary Type
                                0
     Location Description
                            10758
     Arrest
                                0
    Domestic
                                0
    dtype: int64
df=df.dropna()
df.isnull().sum()
     ID
    Date
    Primary Type
                            0
    Location Description
                            0
     Arrest
                            a
    Domestic
                            0
    dtype: int64
df.Date = pd.to_datetime(df.Date,format = '%m/%d/%Y %I:%M:%S %p')
df.info()
     <class 'pandas.core.frame.DataFrame'>
     Index: 7836051 entries, 0 to 7846808
    Data columns (total 6 columns):
     # Column
                               Dtype
         -----
     0 ID
                               int64
     1
         Date
                              datetime64[ns]
         Primary Type
                              object
         Location Description object
        Domestic
                               bool
     dtypes: bool(2), datetime64[ns](1), int64(1), object(2)
     memory usage: 313.9+ MB
Top 10 primary crime types
df['Primary Type'].value_counts().head(10)
    Primary Type
     THEFT
                           1654808
     BATTERY
                           1433691
     CRIMINAL DAMAGE
                           894464
    NARCOTICS
     ASSAULT
     OTHER OFFENSE
    BURGLARY
                            426108
    MOTOR VEHICLE THEFT
                            382244
    DECEPTIVE PRACTICE
                            339189
     ROBBERY
                            294604
    Name: count, dtype: int64
df['Primary Type'].values
     array(['THEFT', 'NARCOTICS', 'CRIMINAL DAMAGE', ...,
            'OFFENSÉ INVOLVING CHILDREN', 'DECEPTIVÉ PRACTICE',
            'CRIMINAL TRESPASS'], dtype=object)
```

How Many Criminals Are Arrested Having Primary Crime type is Theft?

```
df['Primary Type']=="THEFT"
                 True
     2
                False
     3
                False
     4
                False
                False
     7846804
                False
     7846805
                False
     7846806
                False
     7846807
                False
     7846808
                False
     Name: Primary Type, Length: 7836051, dtype: bool
```

df[df['Primary Type']=="THEFT"]

	ID	Date	Primary Type	Location Description	Arrest	Domestic
0	11646166	2018-09-01 00:01:00	THEFT	RESIDENCE	False	True
21	11227293	2017-09-09 20:17:00	THEFT	RESIDENCE	False	False
30	11022695	2017-07-17 10:10:00	THEFT	RESIDENCE	False	False
37	11036284	2017-07-29 15:40:00	THEFT	SIDEWALK	False	False
41	10225582	2015-09-04 20:50:00	THEFT	PARK PROPERTY	False	False
7846766	9061796	2013-03-26 03:39:00	THEFT	STREET	False	False
7846769	9157617	2013-06-02 23:00:00	THEFT	RESTAURANT	False	False

df[df['Primary Type']=="THEFT"]['Arrest'].value_counts()

Arrest

False 1470543 True 184265

Name: count, dtype: int64

Find The Top 10 Crime Location Descriptions

df['Location Description'].value_counts().head(10)

Location Description 2045225 RESIDENCE 1313506 891006 APARTMENT SIDEWALK 732097 OTHER 270017 PARKING LOT/GARAGE(NON.RESID.) 202985 ALLEY 174393 148878 146387 SMALL RETAIL STORE SCHOOL, PUBLIC, BUILDING RESIDENCE-GARAGE 135543 Name: count, dtype: int64

How Many of Are Arrested Having Location Type is STREET

```
df[df['Location Description']=='STREET']['Arrest'].value_counts()
```

Arrest

False 1488333 True 556892 Name: count, dtype: int64

df.index = pd.DatetimeIndex(df.Date)

df

	ID	Date	Primary Type	Location Description	Arrest	Domestic
Date						
2018-09-01 00:01:00	11646166	2018-09-01 00:01:00	THEFT	RESIDENCE	False	True
2018-07-31 13:30:00	11449702	2018-07-31 13:30:00	NARCOTICS	STREET	True	False
2018-12-19 16:30:00	11643334	2018-12-19 16:30:00	CRIMINAL DAMAGE	STREET	False	False
2015-02-02 10:00:00	11645527	2015-02-02 10:00:00	DECEPTIVE PRACTICE	OTHER	False	False
2001-01-01 11:00:00	11034701	2001-01-01 11:00:00	DECEPTIVE PRACTICE	RESIDENCE	False	False
		•••				
2023-06-21 20:00:00	13128007	2023-06-21 20:00:00	CRIMINAL DAMAGE	STREET	False	False
2023-06-20 04:00:00	13129172	2023-06-20 04:00:00	BATTERY	RESIDENCE	False	True

plt.plot(df.resample('Y').size())
plt.title("Crime Count Per Year")
plt.xlabel("Years")
plt.ylabel("Number of Crimes")

Text(0, 0.5, 'Number of Crimes')

plt.plot(df.resample('M').size())
plt.title("Crime Count Per Year")
plt.xlabel("Years")
plt.ylabel("Number of Crimes")

Text(0, 0.5, 'Number of Crimes')

Preparing The data

df_prophet

```
df_prophet = pd.DataFrame(df.resample('M').size().reset_index())
df_prophet.columns=['Date','Crime count']
```

		Date	Crime	count		
0)	2001-01-31		38119		
1		2001-02-28		33786		
2	2	2001-03-31		40564		
3	3	2001-04-30		40091		
4	ļ	2001-05-31		41839		
26	6	2023-03-31		20431		
26	7	2023-04-30		20371		
26	8	2023-05-31		21763		
26	9	2023-06-30		21956		
27	0	2023-07-31		10238		
271 rows × 2 columns						

df_prophet=df_prophet.rename(columns={'Date':'ds','Crime count':'y'})

df_prophet.head(5)

	ds	у
0	2001-01-31	38119
1	2001-02-28	33786
2	2001-03-31	40564
3	2001-04-30	40091
4	2001-05-31	41839

Train the model

pip install prophet

```
Requirement already satisfied: prophet in c:\users\abhilash\anaconda3\lib\site-packages (1.1.5)
Requirement already satisfied: cmdstanpy>=1.0.4 in c:\users\abhilash\anaconda3\lib\site-packages (from prophet) (1.2.0)
Requirement already satisfied: numpy>=1.15.4 in c:\users\abhilash\anaconda3\lib\site-packages (from prophet) (1.24.3)
Requirement already satisfied: matplotlib>=2.0.0 in c:\users\abhilash\anaconda3\lib\site-packages (from prophet) (3.7.2)
Requirement already satisfied: pandas>=1.0.4 in c:\users\abhilash\anaconda3\lib\site-packages (from prophet) (2.0.3)
Requirement already satisfied: holidays>=0.25 in c:\users\abhilash\anaconda3\lib\site-packages (from prophet) (0.36)
Requirement already satisfied: tqdm>=4.36.1 in c:\users\abhilash\anaconda3\lib\site-packages (from prophet) (4.65.0)
Requirement already satisfied: importlib-resources in c:\users\abhilash\anaconda3\lib\site-packages (from prophet) (6.1.1)
Requirement already satisfied: stanio~=0.3.0 in c:\users\abhilash\anaconda3\lib\site-packages (from cmdstanpy>=1.0.4->prophet) (0.3
Requirement already satisfied: python-dateutil in c:\users\abhilash\anaconda3\lib\site-packages (from holidays>=0.25->prophet) (2.8
Requirement already satisfied: contourpy>=1.0.1 in c:\users\abhilash\anaconda3\lib\site-packages (from matplotlib>=2.0.0->prophet)
Requirement already satisfied: cycler>=0.10 in c:\users\abhilash\anaconda3\lib\site-packages (from matplotlib>=2.0.0->prophet) (0.11
Requirement already satisfied: fonttools>=4.22.0 in c:\users\abhilash\anaconda3\lib\site-packages (from matplotlib>=2.0.0->prophet)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\abhilash\anaconda3\lib\site-packages (from matplotlib>=2.0.0->prophet)
Requirement already satisfied: packaging>=20.0 in c:\users\abhilash\anaconda3\lib\site-packages (from matplotlib>=2.0.0->prophet) (2
Requirement already satisfied: pillow>=6.2.0 in c:\users\abhilash\anaconda3\lib\site-packages (from matplotlib>=2.0.0->prophet) (9.4
Requirement already satisfied: pyparsing<3.1,>=2.3.1 in c:\users\abhilash\anaconda3\lib\site-packages (from matplotlib>=2.0.0->proph
Requirement already satisfied: pytz>=2020.1 in c:\users\abhilash\anaconda3\lib\site-packages (from pandas>=1.0.4->prophet) (2023.3.r
Requirement already satisfied: tzdata>=2022.1 in c:\users\abhilash\anaconda3\lib\site-packages (from pandas>=1.0.4->prophet) (2023.3
Requirement already satisfied: colorama in c:\users\abhilash\anaconda3\lib\site-packages (from tqdm>=4.36.1->prophet) (0.4.6)
Requirement already satisfied: six>=1.5 in c:\users\abhilash\anaconda3\lib\site-packages (from python-dateutil->holidays>=0.25->property (from python-dateutil->holidays)=0.25->property (from python-dateutil->holidays)=0.25
Note: you may need to restart the kernel to use updated packages.
```

from prophet import Prophet

Train the model

```
m=Prophet()
m.fit(df_prophet)

22:08:01 - cmdstanpy - INFO - Chain [1] start processing
22:08:02 - cmdstanpy - INFO - Chain [1] done processing
prophet.forecaster.Prophet at 0x1e3716f2550>
```

Make the predictions

pred=m.make_future_dataframe(periods=24,freq='M')
forcast = m.predict(pred)

forcast

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	addit
0	2001- 01-31	41753.221304	37032.074675	41066.070887	41753.221304	41753.221304	-26
1	2001- 02-28	41693.150756	34410.479306	38528.959074	41693.150756	41693.150756	-52
2	2001- 03-31	41626.644078	38495.609931	42705.650803	41626.644078	41626.644078	-10
3	2001- 04-30	41562.282777	38128.055180	42354.207018	41562.282777	41562.282777	-12
4	2001- 05-31	41495.776100	40814.465289	44963.551320	41495.776100	41495.776100	13
290	2025- 03-31	17229.630571	14134.282588	18406.376346	17067.729049	17393.671512	-10
291	2025- 04-30	17180.196961	13785.202744	18032.505179	17004.939746	17358.096855	-12
292	2025- 05-31	17129.115563	16470.081461	20649.754957	16940.371682	17323.905854	13
293	2025- 06-30	17079.681953	16558.207726	20716.885560	16875.441928	17286.129127	15
294	2025- 07-31	17028.600556	17857.602945	22355.919963	16807.883638	17246.502063	29

295 rows × 16 columns

m.plot(forcast,xlabel="Date",ylabel="Crime rate")

Save model

```
import json
from prophet.serialize import model_to_json, model_from_json
with open('prophet_model.json', 'w') as fout:
    json.dump(model_to_json(m), fout)

with open('prophet_model.json', 'r') as fin:
    m1 = model_from_json(json.load(fin))

x=int(input("Enter the months to forecast"))
```

Enter the months to forecast 36

pred=m1.make_future_dataframe(periods=x,freq='M')
forcast = m1.predict(pred)

forcast

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	addit
0	2001- 01-31	41753.221304	37043.099474	41278.421688	41753.221304	41753.221304	-26
1	2001- 02-28	41693.150756	34332.022506	38609.060040	41693.150756	41693.150756	-52
2	2001- 03-31	41626.644078	38390.064083	42721.759290	41626.644078	41626.644078	-10
3	2001- 04-30	41562.282777	38271.211492	42264.761936	41562.282777	41562.282777	-12
4	2001- 05-31	41495.776100	40728.675934	45079.152402	41495.776100	41495.776100	13
		•••	•••	•••	•••	•••	
302	2026- 03-31	16628.188313	13368.967230	17918.157612	16254.776727	16973.279207	-10
303	2026- 04-30	16578.754703	13535.425742	17771.207701	16182.296203	16939.062223	-9
304	2026- 05-31	16527.673306	15864.142438	20384.639210	16106.766030	16915.120083	16
305	2026- 06-30	16478.239696	15939.133253	20163.969516	16036.584687	16881.155685	16
306	2026- 07-31	16427.158298	16658.180744	20905.365215	15962.314569	16854.590956	24

307 rows × 16 columns

figure = m1.plot(forcast, xlabel='Date', ylabel='Crime Rate')

