Math 69: Logic Winter '23

Homework assigned February 08, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 2.

Prove the equivalence of parts (a) and (b) of the completeness theorem.

Suggestion: $\Gamma \models \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable. And Δ is satisfiable iff $\Delta \neq \bot$, where \bot is some unsatisfiable, refutable formula like $\neg \forall xx = x$. (Similarly, the soundness theorem is equivalent to the statement that every satisfiable set of formulas is consistent.)

Amittai, S Math 69: Logic

Problem 8.

Assume the language (with equality) has just the parameters \forall and P, where P is a two-place predicate symbol. Let $\mathfrak A$ be the structure with $|\mathfrak A|=\mathbb Z$, the set of the integers (positive, negative, zero) and with $\langle a,b\rangle\in P^{\mathfrak A}$ iff |a-b|=1.

Thus, A looks like an infinite graph:

 $\cdots \longleftrightarrow \bullet \longleftrightarrow \bullet \longleftrightarrow \cdots$

Show that there is an elementarily equivalent structure $\mathfrak B$ that is not connected (being *connected* means that for every two members of $|\mathfrak B|$, there is a path between them. A path — of length n — is a sequence $\langle p_0, p_1, \dots, p_n \rangle$ of elements of $|\mathfrak B|$ such that $a=p_0$ and $b=p_n$ and $p_i, \vec p_{i+1} \in P^{\mathfrak B}$ for each i).

Write down sentences saying c and d are far apart, applying compactness.