Devoir surveillé n°5 : corrigé

Problème 1 – Petites Mines 2009

Partie I - Étude d'une fonction

1. f est dérivable sur \mathbb{R} par opérations arithmétiques sur des fonctions dérivables. Pour tout $x \in \mathbb{R}$,

$$f'(x) = 3(1 - 2x^2)e^{-2x^2}$$

On en déduit que f est

- strictement décroissante sur $\left]-\infty, -\frac{1}{\sqrt{2}}\right]$;
- ▶ strictement croissante sur $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$;
- ▶ strictement décroissante sur $\left[\frac{1}{\sqrt{2}}, +\infty\right[$.

Pour tout $x \neq 0$, $xe^{-x^2} = \frac{x^2 e^{-x^2}}{x}$. Par croissances comparées,

$$\lim_{x \to +\infty} x^2 e^{-x^2} = \lim_{x \to -\infty} x^2 e^{-x^2} = 0$$

via le changement de variables $X = x^2$. A fortiori

$$\lim_{x \to +\infty} x e^{-x^2} = \lim_{x \to -\infty} x e^{-x^2} = 0$$

Puis, par opérations

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = -1$$

On en déduit le tableau de variations suivant.

En particulier, C_f admet une asymptote horizontale d'équation y=-1 au voisinage de $+\infty$ et $-\infty$. Puisque f(-x)+f(x)=-2 pour tout $x\in\mathbb{R}$, C_f est symétrique par rapport au point de coordonnées (0,-1).

2. Puisque f(0) = -1 et f'(0) = 3, C_f admet au point d'abscisse 0 une tangente d'équation y = 3x - 1. Pour tout $x \in \mathbb{R}$

$$f(x) - (3x - 1) = 3x(e^{-x^2} - 1)$$

Pour tout $x \in \mathbb{R}$, $e^{-x^2} - 1 \le 0$ car $-x^2 \le 0$ et par croissance de exp sur \mathbb{R} . Ainsi $f(x) - (3x - 1) \le 0$ pour $x \ge 0$ et $f(x) - (3x - 1) \ge 0$ pour $x \le 0$. On en déduit que \mathcal{C}_f est au-dessus de sa tangente à gauche de 0 et au-dessous de celle-ci à droite de 0. \mathcal{C}_f admet donc un point d'inflexion au point d'abscisse 0.

3.

- **4. a.** f étant de classe C^{∞} sur \mathbb{R} , elle admet un développement limité à tout ordre en 0.
 - **b.** On sait que $e^u = 1 + u + \frac{u^2}{2} + o(u^2)$. On en déduit que

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2} + o(x^4)$$

puis que

$$f(x) = -1 + 3x - 3x^3 + \frac{3}{2}x^5 + o(x^5)$$

Partie II - Étude d'une équation différentielle

- 1. L'équation différentielle H_n est $xy'-(n-2x^2)y=0$. Sur \mathbb{R}^* , elle équivaut à $y'-\left(\frac{n}{x}-2x\right)y=0$. Une primitive de $x\mapsto\frac{n}{x}-2x$ sur \mathbb{R}^*_+ est $x\mapsto n\ln(x)-x^2$. Les solutions de H_n sur \mathbb{R}^*_+ sont donc les fonctions $x\mapsto \lambda x^ne^{-x^2}$ où λ décrit \mathbb{R} . Une primitive de $x\mapsto\frac{n}{x}-2x$ sur \mathbb{R}^*_- est $x\mapsto n\ln(-x)-x^2$. Les solutions de H_n sur \mathbb{R}^*_+ sont donc les fonctions $x\mapsto \lambda(-x)^ne^{-x^2}$ où λ décrit \mathbb{R} ou, de manière plus simple, les fonctions $x\mapsto \lambda x^ne^{-x^2}$ où λ décrit encore \mathbb{R} .
- 2. La fonction constante égale à -1 étant clairement une solution particulière de E_n sur \mathbb{R} . On en déduit que les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* sont les fonctions $x\mapsto -1+\lambda x^n e^{-x^2}$.
- 3. Supposons dans un premier temps n=1. Soit y une solution de E_1 sur \mathbb{R} . Comme y est solution de E_1 sur \mathbb{R}^*_+ et \mathbb{R}^*_- , il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que

$$y(x) = \begin{cases} -1 + \lambda x e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x e^{-x^2} & \text{si } x < 0 \end{cases}$$

La continuité de y en 0 impose y(0) = -1. De plus,

$$\lim_{x\to 0^+}\frac{y(x)-y(0)}{x-0}=\lambda \qquad \text{et} \lim_{x\to 0^+}\frac{y(x)-y(0)}{x-0}=\mu$$

La dérivabilité de y en 0 impose donc $\lambda = \mu$. On a donc $y(x) = \lambda x e^{-x^2}$ pour tout $x \in \mathbb{R}$. Réciproquement pour tout $\lambda \in \mathbb{R}$, $x \mapsto -1 + \lambda x e^{-x^2}$ est de classe \mathcal{C}^1 et solution de E_1 sur \mathbb{R} . Les solutions de E_1 sur \mathbb{R} sont donc les fonctions $x \mapsto -1 + \lambda x e^{-x^2}$ où λ décrit \mathbb{R} .

Supposons maintenant $n \ge 2$. Comme précédemment toute solution y de E_n sur \mathbb{R} est nécessairement de la forme

$$y(x) = \begin{cases} -1 + \lambda x^{n} e^{-x^{2}} & \text{si } x > 0\\ -1 + \mu x^{n} e^{-x^{2}} & \text{si } x < 0\\ -1 & \text{si } x = 0 \end{cases}$$

Réciproquement, si y est de la forme précédente, elle est bien solution de E_n sur \mathbb{R}_+^* et \mathbb{R}_-^* , elle est bien de classe \mathcal{C}^1 sur \mathbb{R}_+^* et sur \mathbb{R}_+^* , elle est continue en 0 puisque $\lim_{0^+} y = \lim_{0^-} y = 0 = y(0)$ et

$$\lim_{x \to 0^+} y'(x) = \lim_{x \to 0^-} y'(x) = 0$$

donc y est de classe \mathcal{C}^1 sur \mathbb{R} en vertu du théorème de prolongement \mathcal{C}^1 .

Remarque. Si on ne connaît pas encore le théorème de prolongement \mathcal{C}^1 , on procède «à la main». On constate que

$$\lim_{x \to 0^+} \frac{y(x) - y(0)}{x - 0} = \lim_{x \to 0^-} \frac{y(x) - y(0)}{x - 0} = 0$$

donc y est dérivable en 0 et y'(0) = 0. De plus,

$$\lim_{x \to 0^+} y'(x) = \lim_{x \to 0^-} y'(x) = 0 = y'(0)$$

donc y' est continue en 0. Puisque y' est continue sur \mathbb{R}_+^* et \mathbb{R}_-^* , y' est continue sur \mathbb{R} i.e. y est de classe \mathcal{C}^1 sur \mathbb{R} . \blacksquare On vérifie alors que y est encore solution de E_n en 0 donc elle est solution de E_n sur \mathbb{R} .

 $\text{Les solutions de } E_n \text{ sur } \mathbb{R} \text{ sont donc les fonctions } x \mapsto \begin{cases} -1 + \lambda x^n e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x^n e^{-x^2} & \text{si } x < 0 \text{ avec } (\lambda, \mu) \in \mathbb{R}^2. \\ -1 & \text{si } x = 0 \end{cases}$

Partie III - Étude de deux suites

- 1. On a $f_n(0) = -1 < 0$ et $f_n(1) = \frac{3}{e} 1 > 0$.
- **2.** f_n est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$

$$f'_n(x) = 3(nx^{n-1} - 2x^{n+1})e^{-x^2} = 3x^{n-1}(n - 2x^2)e^{-x^2}$$

On en déduit que f_n est strictement croissante sur $\left[0,\sqrt{\frac{n}{2}}\right]$ et strictement décroissante sur $\left[\sqrt{\frac{n}{2}},+\infty\right[$. Pour tout $x\in\mathbb{R}_+^*$

$$f_n(x) = (x^2)^{\frac{n}{2}} e^{-x^2} - 1$$

donc, par croissances comparées, $\lim_{x\to +\infty} f_n(x) = -1$.

Remarquons que puisque $n \geqslant 2$, $1 \in \left[0, \sqrt{\frac{n}{2}}\right]$ et puisque f_n est strictement croissante sur cet intervalle, $f_n\left(\sqrt{\frac{n}{2}}\right) \geqslant f_n(1) > 0$.

f est strictement monotone et continue sur chacun des deux intervalles $\left[0,\sqrt{\frac{n}{2}}\right]$ et $\left[\sqrt{\frac{n}{2}},+\infty\right[$. De plus, $f_n(0)<0$, $f_n\left(\sqrt{\frac{n}{2}}\right)>0$ et $\lim_{+\infty}f<0$ donc, d'après le corollaire du théorème des valeurs intermédiaires, f_n s'annule une unique fois sur chacun des deux intervalles $\left[0,\sqrt{\frac{n}{2}}\right]$ et $\left[\sqrt{\frac{n}{2}},+\infty\right[$ en deux réels notés respectivement u_n et v_n .

Puisque $f_n(1) > 0$ et que 1 appartient à l'intervalle $\left[0, \sqrt{\frac{n}{2}}\right]$ sur lequel f_n est strictement croissante, $u_n > 1$. Par ailleurs $v_n > \sqrt{\frac{n}{2}} \geqslant 1$ puisque $n \geqslant 2$.

- 3. D'après la question précédente, $\nu_n \geqslant \sqrt{\frac{n}{2}}$ pour tout $n \geqslant 2$. Or $\lim_{n \to +\infty} \sqrt{\frac{n}{2}} = +\infty$ donc $\lim_{n \to +\infty} \nu_n = +\infty$ par théorème de minoration.
- **4. a.** Par définition, $f_n(u_n) = 0$ pour tout $n \ge 2$ donc $e^{-u_n^2} = \frac{1}{3u_n^n}$.
 - **b.** $f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} 1 = u_n 1 < 0.$

- c. On sait également que $f_{n+1}(u_{n+1}) = 0$ et que f_{n+1} est strictement croissante sur l'intervalle [0,1] contenant u_n et u_{n+1} . D'où $u_n < u_{n+1}$. Ceci étant valable pour tout $n \ge 2$, la suite $(u_n)_{n \ge 2}$ est strictement croissante.
- **d.** La suite $(u_n)_{n\geq 2}$ est également majorée par 1 donc elle converge en vertu du théorème de la limite monotone.
- **5. a.** Évident.
 - **b.** Supposons $l \neq 1$. On a en fait l < 1 puisque (u_n) est majorée par 1. Pour tout $n \geq 2$, $f_n(u_n) = 0$ et donc $g_n(u_n) = 0$ d'après la question précédente. Ainsi pour tout $n \in \geq 2$.

$$0 = \ln 3 + n \ln(u_n) - u_n^2$$

Puisque l < 1, le membre de droite diverge vers $-\infty$, ce qui est absurde. On en déduit que l = 1.

c. Pour tout $n \ge 2$, $g_n(u_n) = 0$ et donc

$$n\ln(1+w_n) = u_n^2 - \ln 3$$

Puisque (w_n) converge vers 0, $n \ln(1+w_n) \sim n w_n$. Par ailleurs, $\lim_{n \to +\infty} u_n^2 - \ln 3 = 1 - \ln 3$ donc

$$w_n \sim \frac{1 - \ln 3}{n}$$

SOLUTION 1.

- 1. On sait que th est strictement croissante et continue sur \mathbb{R} . De plus, $\lim_{-\infty} th = -1$ et $\lim_{+\infty} th = 1$. Donc th induit une bijection de \mathbb{R} sur \mathbb{G} .
- **2.** Soit $(a, b) \in \mathbb{R}^2$.

$$\begin{split} \frac{th(\mathfrak{a}) + th(\mathfrak{b})}{1 + th(\mathfrak{a}) \, th(\mathfrak{b})} &= \frac{\frac{sh \, \mathfrak{a}}{ch \, \mathfrak{a}} + \frac{sh \, \mathfrak{b}}{ch \, \mathfrak{b}}}{1 + \frac{sh \, \mathfrak{a}}{ch \, \mathfrak{a}} \cdot \frac{sh \, \mathfrak{b}}{ch \, \mathfrak{b}}} \\ &= \frac{sh \, \mathfrak{a} \, ch \, \mathfrak{b} + sh \, \mathfrak{b} \, ch \, \mathfrak{a}}{ch \, \mathfrak{a} \, ch \, \mathfrak{b} + sh \, \mathfrak{a} \, sh \, \mathfrak{b}} \\ &= \frac{(e^{\mathfrak{a}} - e^{-\mathfrak{a}})(e^{\mathfrak{b}} + e^{-\mathfrak{b}}) + (e^{\mathfrak{b}} - e^{-\mathfrak{b}})(e^{\mathfrak{a}} + e^{-\mathfrak{a}})}{(e^{\mathfrak{a}} + e^{-\mathfrak{a}})(e^{\mathfrak{b}} + e^{-\mathfrak{b}}) + (e^{\mathfrak{b}} - e^{-\mathfrak{b}})(e^{\mathfrak{a}} - e^{-\mathfrak{a}})} \\ &= \frac{e^{\mathfrak{a} + \mathfrak{b}} - e^{-(\mathfrak{a} + \mathfrak{b})}}{e^{\mathfrak{a} + \mathfrak{b}} + e^{-(\mathfrak{a} + \mathfrak{b})}} = th(\mathfrak{a} + \mathfrak{b}) \end{split}$$

3. Vérifions que \star est une loi interne sur G. Soit $(x,y) \in G^2$. Par surjectivité de th sur G, il existe $(a,b) \in \mathbb{R}^2$ tel que x = th a et y = th b. Alors $x \star y = \text{th}(a+b) \in G$.

La loi ★ est clairement commutative.

Vérifions que \star est associative. Soit $(x,y,z) \in G^3$. Comme précédemment, il existe $(a,b,c) \in \mathbb{R}^3$ tel que $(x,y,z) = (\operatorname{th} a,\operatorname{th} b,\operatorname{th} c)$. Alors

$$(x \star y) \star z = \operatorname{th}(a + b) \star \operatorname{th} c = \operatorname{th}(a + b + c) = \operatorname{th} a \star \operatorname{th}(b + c) = x \star (y \star z)$$

Pour tout $x \in G$, $0 \star x = x \star 0 = x$ et $0 \in G$ donc 0 est neutre pour \star .

Enfin, pour tout $x \in G$, $x \star (-x) = (-x) \star x = 0$ et $-x \in G$ donc tout élément de G est inversible pour la loi \star . Tout ceci prouve que (G, \star) est un groupe commutatif.

4. Tout d'abord $x^{*0} = 0 = \frac{(1+x)^0 - (1-x)^0}{(1+x)^0 + (1-x)^0}$. Supposons que $x^{*n} = \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}$ pour un certain $n \in \mathbb{N}$. Alors

$$\begin{split} x^{\star(n+1)} &= x \star x^{\star n} \\ &= \frac{x + x^{\star n}}{1 + x \cdot x^{\star n}} \\ &= \frac{x + \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}}{1 + x \cdot \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}} \\ &= \frac{x(1+x)^n + x(1-x)^n + (1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n + x(1+x)^n - x(1-x)^n} \\ &= \frac{(1+x)(1+x)^n - (1-x)(1-x)^n}{(1+x)(1+x)^n + (1-x)(1-x)^n} \\ &= \frac{(1+x)^{n+1} - (1-x)^{n+1}}{(1+x)^{n+1} + (1-x)^{n+1}} \end{split}$$

Par récurrence, l'égalité de l'énoncé est vraie pour tout $n \in \mathbb{N}$. Enfin, si $n \in \mathbb{Z}_{-}$, en utilisant le fait que $-n \in \mathbb{N}$,

$$\begin{aligned} x^{*n} &= (x^{*-1})^{*(-n)} = (-x)^{*(-n)} \\ &= \frac{(1 + (-x))^{-n} - (1 - (-x))^{-n}}{(1 + (-x))^{-n} + (1 - (-x))^{-n}} \\ &= \frac{\frac{1}{(1-x)^n} - \frac{1}{(1+x)^n}}{\frac{1}{(1-x)^n} + \frac{1}{(1+x)^n}} \\ &= \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n} \end{aligned}$$

SOLUTION 2.

- 1. a. Récurrence évidente.
 - **b.** Soit $n \in \mathbb{N}^*$.

$$u_{n} - \sqrt{a} = \frac{1}{2} \left(u_{n-1} - 2\sqrt{a} + \frac{a}{u_{n-1}} \right) = \frac{1}{2} \left(\sqrt{u_{n-1}} - \frac{\sqrt{u_{n-1}}}{\sqrt{a}} \right)^{2} \geqslant 0$$

c. Soit $n \in \mathbb{N}^*$.

$$u_{n+1} - u_n = \frac{1}{2} \left(\frac{a}{u_n} - u_n \right) = \frac{a - u_n^2}{u_n}$$

Or $u_n > 0$ et $u_n^2 \geqslant \alpha$ d'après la question **1.b** donc $u_{n+1} - u_n \leqslant 0$. La suite (u_n) est donc décroissante à partir du rang 1.

- **d.** La suite (\mathfrak{u}_n) est décroissante et minorée (par 0 ou \sqrt{a} au choix) donc elle converge vers un réel ℓ . Par passage à la limite, $\ell \geqslant \sqrt{a} > 0$ donc on peut affirmer que $\lim_{n \to +\infty} \frac{a}{\mathfrak{u}_n} = \frac{a}{\ell}$ puis que $\ell = \frac{1}{2} \left(\ell + \frac{a}{\ell} \right)$. On en déduit que $\ell^2 = a$ et, comme $\ell > 0$, $\ell = \sqrt{a}$.
- 2. On pose $\nu_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$ pour tout $n \in \mathbb{N}$.
 - **a.** Soit $n \in \mathbb{N}$. D'une part,

$$u_{n+1} - \sqrt{a} = \frac{1}{2} \left(u_n - 2\sqrt{a} + \frac{a}{u_n} \right) = \frac{(u_n - \sqrt{a})^2}{2u_n}$$

D'autre part,

$$u_{n+1} + \sqrt{\alpha} = \frac{1}{2} \left(u_n + 2\sqrt{\alpha} + \frac{\alpha}{u_n} \right) = \frac{(u_n + \sqrt{\alpha})^2}{2u_n}$$

On en déduit que

$$\nu_{n+1} = \frac{u_{n+1} - \sqrt{a}}{u_{n+1} - \sqrt{a}} = \frac{(u_n - \sqrt{a})^2}{(u_n + \sqrt{a})^2} = \nu_n^2$$

- **b.** Une récurrence évidente montre que $\nu_n=\nu_0^{2^n}$ pour tout $n\in\mathbb{N}.$
- $\textbf{c.} \ \ \text{Puisque} \ u_0 > 0 \ \text{et} \ \alpha > 0, \\ u_0 \sqrt{\alpha} < u_0 + \sqrt{\alpha} \ \text{et} \ \sqrt{\alpha} u 0 < u_0 + \sqrt{\alpha} \ \text{donc} \ |u_0 \sqrt{\alpha}| < u_0 + \sqrt{\alpha} = |u_0 + \sqrt{\alpha}|. \\ \text{On en déduit que} \ |v_0| < 1.$
- **d.** Pour tout $n \in \mathbb{N}^*$, $\nu_n = \nu_0^{2^n}$. Or $|\nu_0| < 1$. On en déduit que (ν_n) converge vers 0. Or pour tout $n \in \mathbb{N}$,

$$u_n = \frac{1 + v_n}{1 - v_n} \sqrt{a}$$

Donc (u_n) converge vers \sqrt{a} .

- 3. On s'intéresse maintenant à la vitesse de convergence de (u_n) vers sa limite.
 - $\textbf{a. La suite } (u_n + \sqrt{a}) \text{ est convergente donc born\'ee. Ainsi } u_n + \sqrt{a} \underset{n \to +\infty}{=} \mathcal{O} (1). \text{ Or pour } n \in \mathbb{N}^*, \nu_n = \nu_{n-1}^2 \geqslant 0 \text{ donc } \nu_n = |\nu_n| = |\nu_0|^{2^n} = K^{2^n} \text{ en posant } K = |\nu_0|. \text{ Or } u_n \sqrt{a} = \nu_n (u_n + \sqrt{a}) \text{ donc } u_n \sqrt{a} \underset{n \to +\infty}{=} \mathcal{O} (K^{2^n}).$
 - **b.** Montrer que pour tout $q \in [0, 1[$, $u_n \sqrt{a} = 0$ = 0

c. Soit $q \in]0,1[$. La question précédente nous dit qu'il suffit de montrer que $K^{2^n} = o(q^n)$. C'est évident si K=0. Sinon, pour tout $n \in \mathbb{N}$,

$$\frac{{\mathsf K}^{2^{\mathfrak n}}}{{\mathsf q}^{\mathfrak n}} = \exp\left(2^{\mathfrak n} \ln {\mathsf K} - {\mathfrak n} \ln {\mathsf q}\right)$$

Or pour tout $n \in \mathbb{N}$,

$$2^{n} \ln K - n \ln q = 2^{n} \left(\ln K - \frac{n}{2^{n}} \ln q \right)$$

Par croissance comparées, $\lim_{n\to +\infty}\frac{n}{2^n}=0$ donc $\lim_{n\to +\infty}\ln K-\frac{n}{2^n}\ln q=\ln K<0$ donc $\lim_{n\to +\infty}2^n\ln K-n$ $\ln q=-\infty$. Par conséquent, $\lim_{n\to +\infty}\frac{K^{2^n}}{q^n}=0$ i.e. $K^{2^n}=0$ i.e. K

4.

from math import sqrt