中国科学技术大学

2011— 2012学年 第 2 学期《计算方法(B)》考试试卷

题号	_	=	三	四	五.	六	总计
得分							
评卷人							

注意事项:

- 1. 答卷前,考生务必将所在系、姓名、学号等填写清楚。
- 2. 本试卷为闭卷考试。共 6 道试题, 满分 100 分, 考试时间 120 分钟。
- 3. 计算结果保留4位小数。

填空

一、填空

(1) (6分) 准确值 $x^* = 0.715251828 \cdots$, 保留四位有效数字所得的近似值为______,相对误差为_____.

(2) (6分) 设
$$A = \begin{pmatrix} -3 & 2 & -1 \\ 4 & -1 & 1 \\ 0 & 5 & -3 \end{pmatrix}$$
, 则 $\|A\|_1 =$ _____, $\|A\|_{\infty} =$ ____.

- (3) (6分) n个积分节点的数值积分公式,最高能达到 阶代数精度,达到时称
- (5) (6分) 给出矩阵的LU分解。

$$A = \begin{pmatrix} -2 & 2 & -4 \\ 2 & -1 & 1 \\ -1 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \dots & 1 & 0 \\ \dots & \dots & 1 \end{pmatrix} \begin{pmatrix} \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & 0 & \dots \end{pmatrix}.$$

- (7) (6分) $f(x) = x^4 + 2x 1$,满足h(-1) = f(-1),h(0) = f(0),h'(0) = f'(0),h(1) = f(1)最低次的插值多项式为______,插值误差为______.

得分	评卷人	

二、解答题

二、(12分)下表为 $f(x)=\frac{4}{1+x^2}$ 在[0,1]区间等分点上的函数值,分别用复化梯形和复化 Simpson 积分公式计算 $\int_0^1 \frac{4}{1+x^2} dx$.

x	0	0. 125	0. 25	0. 375	0. 5	0. 675	0. 75	0.875	1
f(x)	4	3. 9385	3. 7647	3. 5068	3. 200	2.8764	2. 5600	2. 2655	2

三、(10分)设有数据

x_i	1	4	9	16	
$f(x_i)$	2.96	5.04	6.88	9.24	

, 求 $y = a + b\sqrt{x}$ 形式的拟合函数。

四、(10分)对某3阶矩阵A采用<mark>规范化幂法计算其模最大特征值</mark>,取初始向量 $x^{(0)}=(1,0,0)^T$ 按 $\mathbb{E}[x^{(k+1)}] = A \frac{x^{(k)}}{\|x^{(k)}\|_{\infty}}$ 算得向量序列 $\{x^{(i)}\}$ 如下表所示,<mark>请根据表格计算矩阵A的按模最大特征值和相应的特征向量</mark>,并简单说明理由.

i	$x^{(i)T}$
0	(1,0,0)
1	(-4.625, 1.688, -1.125)
2	(3.865, -1.095, 0.7297)
3	(-4.035, 1.227, -0.8182)
4	(3.991, -1.193, 0.7955)
5	(-4.002, 1.202, -0.8011)
6	(3.999, -1.200, 0.7997)
7	(-4.0, 1.200, -0.8001)
8	(4.0, -1.200, 0.8000)
9	(-4.0, 1.200, -0.8000)
10	(4.0, -1.200, 0.8000)

五、(14分)
$$A=\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$
, $b=(1,2,3)^T$,用迭代法解方程组 $Ax=b$.

- (1). 写出Jacobi迭代和Gauss-Seidel迭代的分量形式.
- (2). 判断(1)中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快.

六、(12分)用线性多步法求初值问题 $\begin{cases} y' = f(x,y) \\ y(a) = y_0 \end{cases}$ ($a \le x \le b$)的数值解(取等距分割),请 构造p = 1, q = 2时的显式差分格式,并求出<mark>局部截断误差</mark>.