Power Dissipation in CMOS

Single Channel Inverters

CMOS Logic (Inverter)

No static leakage path exists for either 1 or 0 input.

Components of Power Dissipation

- □ Dynamic Component (P_{dyn})
 - Switching p.d. (P_{sw})
 - o Logic activity
 - o Glitches
 - Short-circuit p.d. (P_{sc})
- ☐ Static Component (P_{stat})
 - Leakage p.d.

$$P_{total} = P_{dyn} + P_{stat}$$
$$= (P_{sw} + P_{sc}) + P_{stat}$$

$$I_D = I_S \left(e^{rac{V_D q}{kT}} - 1
ight)$$

For a small-geometry IC diode, $I_S=1E^{-16}$.

Switching Power: P_{sw}

 $P = V \times I$

Switching Power: P_{sw}

$$P_{\rm SW} = \frac{1}{T} \int\limits_{0}^{T/2} i_{N}\!(t) \ V_{\rm Out} \ dt + \frac{1}{T} \int\limits_{T/2}^{T} i_{P}\!(t) (V_{\!D\!D} - V_{\rm Out}) dt$$

Since $i_N(t) = C_L dV_{Out}/dt$ and analogously for $i_P(t)$,

$$P_{\text{SW}} = \frac{C_L}{T} \int\limits_0^{V_{DD}} V_{\text{Out}} \ dV_{\text{Out}} + \frac{C_L}{T} \int\limits_{V_{DD}}^0 \left(V_{DD} - V_{\text{Out}}\right) d(V_{DD} - V_{\text{Out}})$$

$$P_{\! extsf{sw}} = rac{C_L V_{\!D\!D}^2}{T}$$

Switching Power: P_{sw}

- □ Gate output rising transition
 - Energy stored in capacitor = $C_{L}V_{DD}^{2}/2$
 - Energy dissipated in pMOS transistor = $C_L V_{DD}^2 / 2$
- Gate output falling transition
 - Energy dissipated in nMOS transistor = $C_L V_{DD}^2 / 2$
- \square Energy dissipated per transition = $C_L V_{DD}^2$
 - .: Total Power dissipation:

$$P_{sw} = C_L V_{DD}^2 / T$$

Lowering Switching Power:

Activity factor

$$P_{sw} = C_L V_{DD}^2 f_{CLK} \alpha$$

$$P_{sw} = C_L V_{DD}^2 f_{CLK} \alpha$$

□ Even though power dissipation takes place in a channel resistance, in the equation above the resistance parameter is missing and the power is independent of resistance. Why?

Glitches

- □ Glitches are temporary changes in the value of the output – unnecessary transitions.
- Are caused due to the skew in the input signals to a gate.

Type of Logic Function: NOR vs. XOR

Example: Static 2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume signal probabilities

$$p_{A=1} = 1/2$$

 $p_{B=1} = 1/2$

Then transition probability

$$p_{0\to 1} = p_{Out=0} \times p_{Out=1}$$

$$= 3/4 \times 1/4 = 3/16$$

If inputs switch every cycle

$$\alpha_{0\rightarrow 1}=3/16$$

Type of Logic Function: NOR vs. XOR

Example: Static 2-input XOR Gate

Α	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

Assume signal probabilities

$$p_{A=1} = 1/2$$

 $p_{B=1} = 1/2$

Then transition probability

$$p_{0\to 1} = p_{Out=0} \times p_{Out=1}$$

$$= 1/2 \times 1/2 = 1/4$$

If inputs switch in every cycle

$$\alpha_{0\rightarrow 1} = 1/4$$

Dynamic Gate

CLK Waveform

Dynamic Power Consumption is Data Dependent

Dynamic 2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume signal probabilities

$$P_{A=1} = 1/2$$

 $P_{B=1} = 1/2$

Then transition probability

$$P_{0\to 1} = P_{\text{out}=0} \times P_{\text{out}=1}$$

$$= 3/4 \times 1 = 3/4$$

Switching activity always higher in dynamic gates!

$$P_{0\rightarrow 1} = P_{\text{out}=0}$$

Glitch Power Dissipation

- Depending on the skew, the gate output voltage may perform a full swing or not.
- An approximation of the energy drawn during the glitch is:

$$P_{\textit{glitch}} = \frac{1}{T} \cdot C_{load} \cdot V_{dd} \cdot \sum_{i=1}^{n} \Delta V_{n}$$

Where ΔV_n is the voltage swing of a sequence of n incomplete transitions within a period of T.

Components of Power Dissipation

- □ Dynamic Component (P_{dyn})
 - \blacksquare Switching p.d. (P_{sw})
 - o Logic activity
 - o Glitches
 - Short-circuit p.d. (P_{sc})
- ☐ Static Component (P_{stat})
 - Leakage p.d.

$$P_{total} = P_{dyn} + P_{stat}$$
$$= (P_{sw} + P_{sc}) + P_{stat}$$

Short Circuit Power of a Transition: P_{sc}

P.K. Shetty, MSIS, MAHE

The short-circuit power dissipation is given by

$$P_{sc} = I_{mean} \cdot V_{DD}$$

For the input waveform shown, which depicts the short circuit in an unloaded inverter,

$$I_{mean} = 2 \times \left[\frac{1}{T} \int_{t_1}^{t_2} I(t) dt + \frac{1}{T} \int_{t_2}^{t_3} I(t) dt \right]$$

assuming that $V_{tn} = -V_{tp}$ and $\beta_n = \beta_p$ (= β) and that the behavior is symmetrical around t_2 .

$$= 2 \times \frac{2}{T} \int_{t_1}^{t_2} \frac{\beta}{2} (V_{in}(t) - V_t)^2 dt$$

with

$$V_{in}(t) = \frac{V_{DD}}{t_r}t$$
; $t_1 = \frac{V_{t_{r_1}}}{V_{DD}}t_r$; $t_2 = \frac{t_r}{2}$

Peak Short Circuit Current

For an unloaded inverter, assuming that $t_r = t_f = \tau$

$$P_{SC} = \frac{\beta}{12} (V_{DD} - V_{TH})^3 \frac{\tau}{T}$$

- \square Increases with the size (or gain, β) of transistors
- Increases with rise and fall times of input
- \square Decreases and eventually becomes zero when V_{DD} is scaled down but the threshold voltages are not scaled down.
- \square Decreases with load capacitance, C_i
- □ Largest when $C_L = 0$ P.K. Shetty, MSIS, MAHE

Summary: Short-Circuit Power

- □ Short-circuit power is consumed by each transition (increases with input transition time).
- Reduction requires that gate output transition should not be faster than the input transition (faster gates can consume more short-circuit power).
- □ Scaling down of supply voltage with respect to threshold voltages reduces short-circuit power; completely eliminated when $V_{DD} \le |V_{tp}| + V_{tn}$.

Solution:

- Theorem A CMOS gate consumes no short-circuit power when $V_{DD} \le V_{tn} + |V_{tp}|$, i.e., supply voltage is lower than the sum of the threshold voltage magnitudes for the n and p channel MOSFETs.
- Proof: The short-circuit conduction requires that a pull-up path through pMOS devices and a pull-down path through nMOS devices should be simultaneously on. If the common gate voltage for both devices is V_{in} , where $0 \le V_{in} \le V_{DD}$, then a necessary condition for short-circuit conduction is:

$$V_{tn} \le V_{in} \le V_{DD} - |V_{tp}|$$

In order to make this condition impossible, we must ensure that the upper bound on V_{in} does not exceed the lower bound. Thus,

$$\begin{aligned} & V_{DD} - |V_{tp}| \le V_{tn} \\ & V_{DD} \le V_{tn} + |V_{tp}| \end{aligned}$$

Components of Power

- Dynamic
 - Signal transitions
 - Logic activity
 - ☐ Glitches
 - Short-circuit
- □ Static
 - Leakage

Leakage Power:

Leakage Current Components

- Subthreshold leakage, I_{sub}
- 2. Reverse bias pn junction leakage, I_D
- 3. Gate induced drain leakage, $I_{\it GIDL}$ due to tunneling at the gate-drain overlap
- 4. Drain source punch-through, I_{PT} due to short channel and high drain-source voltage
- 5. Gate tunneling, I_G through thin oxide; may become significant with scaling.

1. Subthreshold Leakage, I_{sub}

- \square Occurs when $V_{GS} < V_{TH}$ (weak inversion), where minority carrier concentration is small, but not zero.
- □ Subthreshold conduction is dominated by the diffusion current
- \square This leakage component is the dominant modern device OFF-state leakage due to the low V_{TH} that is used.

Subthreshold Leakage, I_{sub}

a) For Long Channel Devices:

$$I_{sub} = \mu_0 C_{ox} (W/L) v_T^2 exp \{ (V_{GS} - V_{TH}) / \eta v_T \}$$

 μ_0 : zero bias carrier surface mobility

C_{ox}: gate oxide capacitance per unit area

L: channel length

W: gate width

 $\mathbf{v_T} = \mathbf{kT/q}$: thermal voltage

η: a technology parameter
P.K. Shetty, MSIS, MAHE

Where,
$$\eta = 1 + rac{C_{
m b}}{C_{
m g}}$$
.

$$C_{\mathrm{b}} = \frac{\epsilon_{\mathrm{si}}}{w_{\mathrm{d}}} \cdot C_{\mathrm{g}} = \frac{\epsilon_{\mathrm{ox}}}{t_{\mathrm{ox}}}.$$

where $\epsilon_{
m ox}$ and $\epsilon_{
m si}$ denote the dielectric constants of the oxide and silicon, resp., $w_{
m d}$ is the depletion width under the *channel and* $t_{
m ox}$ is the gate oxide thickness.

b) For Short Channel Devices:

$$I_{sub} = \mu_0 C_{ox}(W/L) v_T^2 exp\{(V_{GS} - V_{TH} + nV_{DS})/\eta v_T\}$$

 V_{DS} = drain to source voltage n: a DIBL constant

W. Nebel and J. Mermet (Editors), *Low Power Design in Deep Submicron Electronics*, Springer, 1997, Section 4.1 by J. Figueras, pp. 81-104