ZENITH TUTORIALS PHY 101 PDF 2

CONTACT ZENITH ON 08149147222

1.	refers to any measurable properties of a
	substance. Ans: Quantity
2.	Measurement of quantities are specified by
	Ans: Units
3.	The units were established by international
	agreement inAns: 1960
4.	The main basic units areand
	Ans: Length, mass and time
5.	The basic quantities are Ans: LMTETAL i
	length, mass, time, electric current, temperature,
	amount of substance, luminous intensity.
6.	The units of the basic/fundamental quantities are
	Ans: M, Kg, S. A, K, Mol, Cd.
7.	The units of derived quantities are called devived
	units becauseAns: This is because they are
	combination of basic units
8.	Not all vectors are derived quantities: True/False
	Ans: True
9.	Not all fundamental quantities are vectors?
	True/False Ans: True
10.	Newton is equivalent to Ans: Kgm/s ²
11.	is the unit of energy? Ans: J/Kgm ² s ⁻²
12.	Convert the speed of a car moving at 30miles per
	hour into kilometer per hour (Km/hr) Ans:
	48.27km.hr
13.	Convert the speed of a car moving at 30miles per
	hour into mm/sec Ans: 13408.3mm/sec
14.	The result of scalar multiplication always results to
	Ans: Scalar
15.	The dot product of two perpendicular vectors is
	Ans: Zero (0)

- 16. The cross product of two parallel vectors is _____ Ans: (Zero)
- 17. The dot product of two perpendicular vectors is zero because _____ Ans: $Cos90^0 = 0$ (Zero)
- 18. If $\overline{A} = 2i + j + 3K$ and B = 3i + 2j + 6k find the dot product? Ans: 26
- 19 If $\bar{A} = 2i + j + 3K$ and B = 3i + 2j + 6k find the angle between vectors A and B Ans: $\theta = 6.70^{\circ}$
- 20. If A = 2i + j + 3k and B = 3i + 2j + 6kFind the cross product of A and B Ans: -3j + k
- i.e. 21. If A = 4i 8j 3k and B = 6i 3j 4k what is AxB? Ans: 23i 2j + 36k
 - 22. If $\frac{\bar{A}}{10N}$ and $\frac{\bar{B}}{5N}$ move in the same direction, then their resultant force is _____ Ans: $F_R = 10N + 5N$ = 15N
 - 23. If $\frac{\bar{A}}{10N}$ and $\frac{\bar{B}}{5N}$ move in opposite direction then their reusltant force is _____ Ans: $F_R = 10N$ 5N = 5N
 - 24. If forces 3N and 4N are perpendicular to each other, the resultant force is _____

 Ans: $R = \sqrt{4^2 + 3^2} = \sqrt{25} = 5N$

Find the resultant vector and direction Ans: 27.3N, 38.5°

	MOTION ANALYSIS	13.	is expressed as the total distance
1.	A body exhibits motion when its position changes		covered divided by the total take time
	Ans: Continuously		Ans: Average speed
2.	deals with the description of motion	14.	is defined as the distance travelled in unit
	Ans: KINEMATICS		time Ans: Speed
3.	deals with motion and its cause	15.	is defined as the rate of change of
	Ans: DYNAMICS		displacement with time. Ans: Velocity
4.	is the position of an object, relative to	16.	is expressed as equal displacement in equal
	some reference point. Ans: Distance		time Ans: Uniform velocity
5.	is the distance covered in a specified	17.	is expressed as the total displacement
	direction. Ans: Displacement		over total time taken Ans: Average velocity
6.	involves only the initial and final position	18.	is expressed as change in displacement
	of an object. Ans: Displacement		when the change in time is very small?
7.	If a man moves from $(X) = 0m$ to $10m$ (from A to		Ans: Instaneous velocity
	and then back to $(X) = 0$ m. What is the distance	19.	In a car, what does the car measure Ans: Speed (by
	and the displacement of the bus? Ans: Distance =		the instrument called speedometer)
	20m, Displacement = 0m	20.	Given that the displacement of a body is described
8.	If a bus moves from $(X) = 5m$ to. $(X) = 200m$ and		by the equation $X = ct + Dt^2$ where $C =$
	then back to $x=5m$, what is the distance and the		2m/s and $D = 0.1m/s$ while X is in metre (m)
	displacement of the bus? Ans: Distance = 390m,		and t is in seconds (s) what are the displacement
	Displacement = 0m		between the time interval t= 2sec and t=5sec and
9.	If a player runs from his own post to the other team's		the average velocity? Ans: 8.1m and 2.7mls
	post and return to his own post, the distance	21.	The motion of a talking drum is
	covered by the player is? Ans: 2 x		Ans: Oscillatory/vibratory
10.	is a scalar quantity whileis a	22.	A car travels along a straight pole for 4.8km at
	vector quantity Ans: Distance is scalar while		60km/hr at which point the car runs out of gas and
	displacement is vector		stop. The driver walks for the next 15min, for
11.	If an object covers equal distances in equal time		another 1.5km along the road to find a gas
	interval, the object is said to have Ans:		station? What is the driver's displacement from the
	Uniform or constant speed		beginning of the journey, the time interval taken for
12.	If the distances covered by an object are not equal,		the journey and the average velocity for whole
	the object is said to have		journey? Ans: 6.3km, 0.33hr, 19.09km
	Ans: Average speed	23.	is the slope of any distance time graph?
			Ans: Speed

37.

24. A line graph that denotes the distance covered in a 35.

given time is _____Ans: Distance time graph

- 25. _____is the slope for velocity-time graph?

 Ans: Acceleration
- 26. The area under graph for velocity-time graph is

 Ans: $\frac{Displacement}{2} = \frac{d}{2}$
- 27. The slope for acceleration-time graph is

 Ans: Jerk

 36.
- 28. $\frac{Acceleration}{time}$ is equal to _____ Ans: Jerk
- 29. Area under graph for acceleration time-graph is $\underline{\qquad} \text{Ans: } \frac{Velocity}{2} = \frac{V}{2}$
- 30. The motion of an object is described by v(m/s)

- Determine the total distance travelled by the object? Ans: 90m. 41.
- 31. The simplest kind of accelerated motion is

 _____Ans: Straight line motion with constant 42.
 acceleration
- 32. _____is the motion in which velocity changes at the same rate. Ans: Uniformly accelerated motion 43.
- 33. _____is constant for a uniformly accelerated 44. body Ans: Acceleration due to gravity (g)
- 34. If the effect of the air can be neglected, all bodies/objects at a particular location fall with the same downward acceleration regardless of their size or weight. This the statement of who? Ans:

 Galileo

A stone is thrown up from the top of a platform with an initial velocity 19.8mls. If the top of the platform is taken to be ground level, calculate the time taken to reach the maximum height, maximum height reached by the stone, total time taken to reach back to the to top of the platform and velocity just before reaching the ground Ans: 2.02sec, 20.0m, 4.04sec and 19.8mls A ball of mass 0.75kg is thrown vertically upward with an initial velocity 40mls. Find the velocity after 3sec, the maximum height attained and the time taken to reach the height? Ans: 10.6sec, 81.63ms⁻¹ and 8.2sec

The maximum range occurs at _____Ans: 45^{0} Maximum range is given by the formula

____Ans: $R_{max} = \frac{U^{2}}{a}$

The time taken for a projectile to reach the maximum height is given by _____ Ans: $\frac{V sin \alpha}{g}$

If P is pressure of a gas, and V is its volume, what unit is the quantity PV measured Ans: Newton meter i.e. Nm

The path followed by a projectile is called _____Ans: TRAJECTORY

At $\theta = 45^{\circ}$, Range is _____Ans: Range = $\frac{V^2}{g}$ (i.e. maximum range)

The shape of the path followed by a projectile is _____Ans: Parabolic shape

The time of flight for an object is 20sec and its horizontal displacement is 400m. the horizontal component of its velocity is ______Ans: 20mls Every body or object continues in its state of rest in a straight line unless it is acted upon by an external force. This is _____Ans: 1st law of motion

46.	The 1 st law of motion is otherwise called	60.	Acceleration of an object dependson the
	Ans: INTERTIA		mass of the object Ans: Inversely
47.	"Action and Reaction are equal but opposite" this is	61.	When forces are unbalanced, then
	Ans: 3 rd law of motion		Ans: There is an acceleration
48.	When the same force (F) is applied to two bodies	62.	A force of 10N gives a mass M ₁ an acceleration of
	of masses M1 and M2 and accelerantion a1 and a2		5m/s^2 and M_2 an acceleration of 20m/s^2 . Find M_1
	respectively, then Ans: $\frac{M_2}{M_1} = \frac{a_1}{a_2}$		and M_2 ? Ans: $M_1 = 2kg$, $M_2 = 0.5kg$
49.	is defined as the force which gives a mass of	63.	Mass of 3kg and 5kg are connected by a cord and
	1kg an acceleration of 1ms ⁻² Ans: Newton (N)		are suspended over a frictionless pulley. What is
50.	The interactions between two bodies always exist		their acceleration when released Ans: 2.45m/s ²
	in pairs and are called Ans: ACTION	64.	is the motion of an object with regard to
	AND REACTION		other moving object? Ans: Relative motion
51.	is defined as the motion of a particle not	65.	Relative motion occurs with, and
01.	subjected to forces Ans: Intertia frame of reference		Ans: Relative speed, acceleration and
52.	The presence of an in balanced forcean object		velocity
02.	and the speed and direction	66.	Two cars A&B that are approaching and intersect
	Ans: Accelerates the object and changes the speed and		along two perpendicular roads have the following
	direction		velocity. Velocity of car A relative to the ground
53.	For unbalanced forces, acceleration is not equal to		82m/s eastward. Velocity of car B relative to the
00.	zero: TRUE/FALSE Ans: True		ground is 52m/s northward. Find the magnitude and
54.	For balanced forces, acceleration is		direction of car A as measured by a passenger in
<i>5</i> 1.	Ans: ZERO		car B Ans: 97.1m/s and 32.38 ⁰
55.	For balanced forces, when an object is at rest, then	67.	When a particle moves along a curved path, its
33.	velocity is Ans: ZERO		direction of the velocityAns: Changes
56.	For balanced forces, when the object stays in motion	68.	When a particle moves along a curved part, its
50.	with same speed and direction, velocity is		direction of the speed is Ans: Constant
	Ans: Velocity is not equal to zero	69.	is a motion in which particle move in a
57.	The law that suggest that all forces are unbalanced is		circle with a constant "speed and varying
31.	Ans: 2 nd law of motion		velocity Ans: Uniform circular motion
58.	The acceleration of an object depends upon	70.	In circular motion, the acceleration is always
56.		71.	? Ans: Directed radially inwards.
	andAns: Net force and the mass of		If a driver travels at a constant speed in the circle
50	Acceleration of an object depends on the net		of radius 5.0m and makes one complete circle in
59.	Acceleration of an object dependson the net		
	force? Ans: directly		

	4sec. find the acceleration of the motion? Ans:	83.	The number of cycle/oscillation completed in a given
	12.34ms ⁻¹		time isAns: Frequency
72.	Find the acceleration of the earth as its moved in its	84.	The time taken to complete one oscillation is
	orbit around the sum for a period of a year		Ans: Period
	$(r = 1.496 \times 10^{11} \text{m}) \text{ Ans:}$	85.	Energy in simple Harmonic motion is due to
73.	A pendulum bob of mass 2kg is attached to a string		and Ans: Potential and
	2m long and made to revolve in a horizontal circle		Kinetic energies
	of radius 0.8m. Find the tension (T) in the	86.	The energy stored in the particle of a system is
	string? Ans: 21N		Ans: Potential energy
74.	is the force required to keep an object	87.	Total energy in a system is given by
	of mass M moving in a circular path?		Ans: $E_T = \frac{1}{2} KA^2$
	Ans: Centripetal force	88.	The energy of a particle of a system exhibiting
75.	is the force that acts outward from the		simple harmonic motion is proportional to the
	centre of a circle? Ans: Centrifugal force		square ofof the motion Ans: Amplitude
76.	is a reaction to centripetal force	89.	The equation of motion for a body undergoing
	Ans: Centrifugal force		simple harmonic motion can be written as $x = A$
77.	A ball of mass 2kg moves round a circle of radius		\sin (wt + θ). The velocity V of the body from the
	5m with a constant speed of 10m/s. calculate the		above equation can be written as
	force towards; the centre? Ans: 40N		Ans: $V = w\sqrt{A^2 - x^2}$
78.	A mass of 25kg is attached to a rope of radius 5m	90.	The bob of a simple pendulum of length 10m
	at a little push, the object revolves uniformly in a		oscillates with a small amplitude. Calculate the
	circle. If the object completes 5 revolutions every		period Ans: 6.28sec
	minute. Find the force exerted? Ans: 34.27N	91.	A particle moves about the same point several times
79.	is a motion that is represented in terms		at regular time intervals. The motion of the
	of sines and cosines? Ans: Harmonic motion		particle is Ans: Circular
80.	is the motion of a particle whose	92.	An object is oscillating in simple harmonic motion
	acceleration is proportional to its distance from a fixed		with amplitude of 15cm and a period of 2sec. Find
	point and its always directed towards that point?		the velocity and acceleration when its displacement
	Ans: SIMPLE HARMONIC MOTION		from the equilibrium is $x = 0$ Ans: 0.4713m/s and
81.	Examples of simple harmonic motion are,		Om/s^2
	and Ans: Swing. Pendulum string	93.	The S.I unit of work isAns: J or Nm
	of guitar and Loaded test tube	94.	When work is positive, then
82.	The maximum displacement from the equilibrium		Ans: $0 < \theta < 90^{\circ}$
	position inAns: Amplitude		

ZENITH THTODIALS	MAKING THE COMPLEX SIMPLE
ZENIIN IUIURIALS	.WAKING THE CUMPLEX SIMPLE

95. When work is negative, then _____ 108.

Ans: $90^{\circ} < \theta < 180^{\circ}$

96. When work is Zero, then ______
Ans: $\theta = 90^{\circ}$

97. A girls carrying load from one point to another on a straight line. The angle made by the girl is 90°, what 109. is the work done? Ans: Zero

98. How much work is done if a force of 12N moves an object a distance of 5m Ans: 60Nm or 60J 110.

99. If you use a 40N force to lift a bag and do 20J of work, how far did you do the work? Ans: 0.5m

100. Express 10kJ in Joule? Ans: 10,000J

101. Express 35mJ in Joule? Ans: 35 x 10⁻³J

102. Express 0.5 mJ in Joule? Ans: $0.5 \text{x} \cdot 10^{-3} \text{J}$

103. If the stone in the below diagram, is dropped, what is the K.E when it has fallen half way of the ground? Ans: 80J

4m

104. The stone of mass 4kg on the slide below slides down along a slope, what is its speed when it reaches the ground? Ans: 10m/s

105. The unit of power is Watt or J/S

106. The product of force (F) and velocity (V) is 115.

____Ans: Power

107. A proton is accelerating at $3.6 \times 10^{15} \text{m/s}^2$ through a distance of 2.5cm. If the initial velocity is 116. 2.4×10^7 ms-1. Find the change in Kinetic energy at the end of the distance? (M = $1.67 \times 10^{-27} \text{kg}$

Ans: 2.1 x 10⁻¹³N

A body of mass 2kg has initial velocity of 8ms in the +x direction as it passes the origin of the coordinates. It is subejected to a rearding force such that Fx = -0.5. what will be the x – coordinate when it stops? Ans: 128m

A 10g bullet moving at 70ms⁻¹ penetrates a of wood 5cm before stopping. The kinetic energy and the average stopping force are? Ans: 24.5J and 490N

An airplane engine develops a total thrust of 10,000N when it is flying at 250ms⁻¹. Calculate the power developed by the engine in horse power?

Ans: 3351.2hp

111.

112.

113.

A body whose mass is 40kg finds that he can run up a flight of 50steps each 15cm high, in 5sconds. How much power is required? (g =10ms¹) Ans: 600N

A tractor, can exert a force of 5×10^5 N while moving at a constant speed of 10m/s determine its power in hose power? Ans: 6702hp

_____is otherwise called turning effect" Ans:

Moment

Find the tonque produced by the 300N force applied at an angle of 60^0 to the door of the figure

Ans: 520Nm

If the force tends to produce a counter clockwise acceleration, then moment is ______
Ans: positive

If the force tends to produce a clockwise acceleration, then moment is _____

Ans: Negative

134.

- 118. A rigid rod AB, length 2.8m with negligible mass is 126. acted upon by a force of 20N at end A. If the rod is pivoted 1.2m from end A, find the value of the force at B, such that the rod is in equilibrium and the 127. reaction at the pivot? Ans: 15N and 35N
- 119. The point where the mass of the body can be thought to be concentrated is _____Ans: Centre 128. of mass (M)
- 120. The point through which the total gravitation attraction can be considered to act on the body is 129.

 ______ Ans: Centre of gravity (G)
- 121. The pressure exerted on fluid at rest is ______
 Ans: applied in all directions
- 122. What is the difference in blood pressure between 130. the top of the heart and the bottom of the heart of 1.5m tall man standing uprightly? Take the density of the blood to be 1.038 x 10⁴kg/m³ 131. Ans: 159936Nm⁻²
- 123. IF the liquid in a manometer is mercury of density $1.64 \times 10^4 \text{ kgm}^{-3}$ and the height (h) is measured to 132. be 21.13m as shown below. Calculate the corresponding absolute pressure?

Ans: 3497313.6Nm⁻²

- 124. The ability of an object to float when it is placed in a fluid is _____Ans: Bouyancy 135.
- is the principle that states that upthrust is equal to weight of the fluid displaced by the object? Ans: Archimedes' principle

Determine the weight of the iron cube of volume 600cm^3 , if it totally immersed in water of density 5g/cm^3 Ans: $2.94 \times 10^4 \text{N}$

Heat can be transferred by there processes except
(a) Radiation (b) Conduction (c) Evaporation
(d) Convection Ans: Evaporation (C)

The amount of heat which a substance absorbs or

releases during a phase change without change in temperature is called ______ Ans: Latent heat An ideal gas at 27^{0} C and pressure of 1.0×10^{5} is compressed at constant temperature until its volume in halved. Calculate the final press of the gas? Ans: 2.0×10^{5} (i.e. pressure is doubled)

If P is the pressure of a gas and V volume, in what unit could the quantity PV be measured? Ans: Newton-metre (i.e. Nm)

_____is the ratio of change in length over original length multiplied by temperature Ans: Linear exansivity (α)

What will be the decrease in length of a rod at 20° C. if it is 100.06cm long at 70° C? Ans: 0.06cm

A system absorbs 1,500 J of heat energy from each surroundings. Calculate the change in internal energy body of the system when the system performs 2,200J of work on the surroundings Ans: -700J

A system absorbs 1,500J of heat energy from the surroundings. Calculate the change in internal energy of a system when the surrounding performs 2200J of work on the system? Ans: 3700J

An ideal gas performs 600J of work with the release of heat energy of 502J. find the value of work, ΔQ and ΔU and what happens to the temperature of the system Ans: 600J, -502J, -1102J

136.	An ideal gas is heated at constant volume its 149. pressure doubles whenAns: The mean	Calculate the force acting on a body of mass 5kg that will produce a velocity of 10ms ⁻¹ in a time of
	square speed of the molecules doubles.	5sec Ans: 10N
137.	The liquid that is most viscous is 150.	Calculate the gravitational attraction of two cars 5m
	Ans: Engine oil.	apart if the masses of the cars are; 1000kg and
138.	The specific heat capacity of gas at constant	1200kg Ans: 3.2 x 10 ⁻⁶ N
	pressure is greater than that at constant volume 151.	Calculate the force between the sun and Jupiter.
	because	Assume that the mass of the sun equals 2 x
139.	Ans: This is because at constant pressure, the	10^{30} kg, the mass of Jupiter equals 1.89 x 10^{27} kg, and
	molecules have to travel lesser distance between	the radius of Jupiter's orbit equals $7.73 \times 10^{11} \text{m}$
	collision	Ans: 4.22 x 10 ²³ N
140.	In which of the following is the expansion of solid 152.	The gravitational force of attraction acting between
	a disadvantage Ans: The balance wheel of a watch	any two bodies of the masses M_1 and M_2 is
141.	Which property can be used to measure temperature?	proportional to be product to the masses and
	Ans: Change in colour	inversely proportional to the square of the distance 'r'
142.	The clinical thermometer differs from other liquid	between them. This was the statement of?
	in glass thermometer because Ans: It has a	Ans: Newton's Law of Universal Gravitation
	constriction 153.	is the resistive force which acts at the
143.	The temperature at which water vapour present in air	surface of separation of two bodies in contact and
	is just sufficient to saturate it is	tends to oppose the motion of one over another
	Ans: Dew point	Ans: Friction
144.	Which is the correct statement of Boyle's law? 154.	is the type of friction when the body is just
	Ans: V $\alpha_{\overline{p}}^{1}$	about to move over another surface. Ans: Static or
145.	The magnitude of the acceleration of moving object	limiting friction
	is equal to theAns: Gradient of a ¹⁵⁵ .	The angle which the resultant (total reaction) makes
	velocity time graph	with the normal, reaction, if the normal reaction, N
146.	Which is used to measure the inner diameter of a	and the frictional force Fr are compounded into a
	test-tube? Ans: A pair of calipers.	single force is Ans: Angle of friction
147.	The set of scalar quantities areAns: 156.	The hockey puck is given an initial speed of 20m/s on
	Length, mass and time	a frozen pond. The puck remains on the ice and slides
148.	A body of mass 5kg is acted upon by a horizontal	120m before coming to rest, determine the coefficient
	force of 20N. Calculate the acceleration produced	of kinetic friction between puck and ice? Ans: 0.170
	if the first force is opposed by a second force of 5N 157.	A car of mass 1.40×10^3 kg being towed has a net
	Ans: 3.0m/s^2	forward force of $4.50 \times 10^3 N$ applied to it, the car

	temperature at which the plug will fit exactly into a 185.	Which of the following is a vector quantity (a) Speed
	hole of constant diameter 2.499cm? Ans: 8.3°C.	(b) Distance (c) Energy (d) Momentum (d) Time Ans:
176.	is a process that occurs at constant pressure?	Momentum (D)
	Ans: Isobaric or Isopiestic process 186.	If a constant force of 16N acts on a body of 4kg for
177.	is a process that occurs at constant volume?	2sec. What change in the velocity would be produced
	Ans: Isochoric/isovolumic process	on the body' Ans: 8.0ms ¹
178.	is a process that occurs at constant 187.	Find the magnitude of the resultant of two vectors of
	temperature? Ans: Isothermal process	magnitude 5N and 12N respectively inclined at 90° to
179.	is a process that occurs without any transfer of	each other? Ans: 13N
	heat Ans: Radiation process/Adiabatic process 188.	Which of the following has the same unit as a force?
180.	Two rules of an ideal gas are compressed slowly and	(a) Power (b) Work (c) Force (d) Impulse €
	isothermally from a volume 0.4m^3 to 0.1m^3 at a	Momentum Ans: Force (c)
	temperature of 27°C. How much work is done? 189.	Which of the following will reduce the frequency of
	[R=8.3] Ans: -6918J	oscillation of a simple pendulum? Ans: Decreasing the
181.	A stone is thrown from P and follows a parabolic path.	length of the string
	The highest point reached is T. The vertical 190.	A body of mas 10kg falls from a height of 5m above
	component of acceleration of the stone is Ans:	the ground. What is the kinetic energy of the body just
	The same at P and T	before it strikes the ground? Ans: 500J
182.	Four identical railway trucks, each of mass m, and 191.	An elastic string of length X is classifiably stretched
	coupled together and rest on a smooth horizontal truck.	through a length e' by a force F, the area of the cross-
	A fifth truck of mass 2m and moving at 5ms ⁻¹ collides	section of the string is A, and it young modules is E.
	and couples with the stationary trucks. After impact,	which of the following expression in correct?
	the speed of the truck is V, where V is equal to Ans:	Ans: $F = \frac{EAe}{X}$
	$\frac{5}{3}ms^{-2}$ 192.	Which of the following is of 1 st Newton's law of
183.	The following are quantities associated with a body	motion Ans: INERTIAL
	performing S.H.M? Ans: The accelerating force acting 193.	
	on the body and the acceleration of the body	measure the internal diameter of a test-tube?
184.	A bead, X resting on a smooth horizontal surface is	Ans: A pair of calipers
	connected to two identical spring and is made to 194.	
	oscillate to and for along the line of springs. When the	circle, it has an acceleration that isAns: Constant
	bead passes through the central position, its energy is	in magnitude and varying in direction
	Ans: All kinetic energy. 195.	
	-	tower with an initial velocity of 20ms ⁻¹ , if the ball took

210.

a total of 6sec to reach the ground, what is the height 206. of the tower? Ans: 60m

- 196. What is the period of a simple pendulum which makes60 oscillations in one minute? Ans: 1.0sec207.
- 197. A spring of force constant 500Nm⁻¹ is acted upon by a constant force of 50N. Calculate the potential energy stored in the spring? Ans: 2.50J.
- 198. Two forces each of 6N acts on the opposite sides of a rectangle plate as shown in the diagram. What is the 209. magnitude of the couple acting on the plate

0.4m Ans: 1.2Nm.

- 199. The slope of a straight line displacement graph indicates the ______Ans: Uniform velocity 211.
- 200. A man exerts the greatest pressure on the floor of a room if he_____ Ans: Stands on the toes of one 212. foot
- 201. The motion of a body is simple harmonic if the

 _____Ans: Acceleration is always directed to a 213.
 fixed point and proportional to its distance from the fixed point
- 202. _____best describes orthogonality of vectors?

 Ans: 90^0 214.
- 203. A ball of mass 0.4kg moving at 10ms⁻¹ collides with another ball of equal mass at rest. Calculate their ²¹⁵. common velocity if the two balls move off together after the impact? Ans: 5.0ms⁻¹
- 204. A force of 20N acts on a body of mass 4kg in a ²¹⁶. medium where resistance is 2.0Nkg⁻¹. Calculate the acceleration of the body? Ans: 3.0ms⁻²
- 205. In which of the following is mechanical work being done? Ans: A girl chewing a piece of chewing gum 217.

Which of the following is not an S.I basic unit?

- (a) Metre (b) Kilogram (c) Newton (d) Second
- (e) Compere Ans: Newton

The thickness of the central portion of a thin converging lens can be determined most accurately by

Ans: A micrometer screw guage

Which of the following is a displacement Ans: 10metre south

A body starts from rest and accelerates uniformly at a rate of 5m/s². Calculate its velocity after moving 90m? Ans. 30m/s

An orange falling vertically downwards falls with Ans: constant acceleration

When a body is moving with a constant force Ans: Its acceleration in constant

Two forces 10N and 6N act in opposite directions on a body of mass 20kg. calculate the acceleration of the body? Ans: $\frac{1}{5} m/s^2$

A train traveling at 30m/s overcomes a friction resistance, of 100N while moving, what is the power of the engine? $\left[1hp = \frac{3}{4} kw\right]$ Ans: 4.0h.p

The coefficient of friction between a perfectly smooth body and a very rough body is ___Ans: Zero

If U is upthrust and V is viscous force, when terminal speed is reached, by a falling body, we have ____Ans: mg - v - u = 0

If P is the momentum of an object of mass m, then the expression $p^2/_m$ has the dimension of ____Ans:

Energy

A locomotive develops a power of $5x10^5$ w, if the total frictional force is $2x10^4$ N, the maximum speed in ms⁻¹ is ____Ans: 25m/s.

218.	A car turns a corner on a slippery road at a constant 229.	Which of the following is the correct statement of
	speed of 10ms ⁻¹ . If the coefficient of friction is 0.5, the	Boyle's law? Ans: The volume of a fixed mass of gas
	minimum radius of the arc in 'm' in which the car	is inversely proportional to its pressure at constant
	turns is Ans: 20m	temp. C i.e. $V\alpha \frac{1}{p}$
219.	Which of the following sequences describes the 230. operation of internal combustion energy Ans: Induction, compression, power and exhaust. (ICPE) 231.	The vaccum in the thermos flask prevents heat loss by Ans: Conduction and convection One a day when the humidity of the air is very high,
220.	Sensible heat and latent heat differ in their sensitivity	evaporation from a water pond will
	toAns: Temperature changes	Ans: Be slow
221.	A thermometer with an arbitrary scale, S, of equal 232.	The volume of a gas is 76cm ³ at 27 ⁰ C and 800mHg
	division registers -40° S at the ice point and 80° S at the	pressure, what is its volume at STP? Ans: 72.8cm ³ .
	steam point. What is the thermometer reading when it 233 .	Which of the following colour of surface will radiate
222	registers 50°S Ans: 75°C	heat energy best? Ans: Black
222.	A copper rod is 3m long at a certain temperature 234. calculate its length for a temperature rise of 100k if the	The normal body temperature of a human being isAns: 36.9°C
	expansivity of copper is $17 \ X \ 10^{-6} K^{-1}$ Ans: 3.0051m 235.	The unit of linear expansivity isAns:K ⁻¹
223.	A cube of volume V, made of a metal of linear 236.	The quantity of heat required to raise the temperature
	expansivity is warmed through a temperature of t. The	of a body by one degree celcius is defined as its
224	increase in the volume of the cube is? Ans: $3\alpha vt$	Ans: Thermal capacity
224.	How long does it take a 800-W heater to raise the 237. temperature of 2kg of water from 20°C to 60°C	How long will it take to heat 3kg of water from 28°C
	(specific heat capacity of water = $4200JK^{-1}K^{-1}$) Ans:	to 88°C in an electric kettle taking 6A from a 220V
	420sec.	supply? (specific heat capacity of water is 4180J/kgk)
225.	The absolute temperature of a perfect gas is	Ans: $9\frac{1}{2}$ minutes
	proportional to the averageAns: Kinetic energy ²³⁸ .	The heat required to change 1kg of ice at 0°C to water
	of the molecules	at the same temperature is theAns: Specific latent
226.	A room is heated by means of a charcoal fire. A man	heat of fusion
	in the room standing away from the friction is warmed ²³⁹ .	One is able to smell food from a distance because
	byAns: Radiation	Ans: The molecules of air are in constant
227.	Which of the following instruments may be used to	motion
	measure relative humidity? Ans: Hygrometer 240.	Which of the following does not need a medium for
228.	The design of the thermostat of an electric iron is	heat transfer? Ans: Radiation
	based on theAns: expansion of metals when ²⁴¹ .	The silvered walls of a vaccum flask minimize loss of
	heated.	heat due toAns: Radiation only

242.	Palm oil from bottle flows out more easily after 255	6. Which of the following has greatest penetrating
	warming becauseAns: Friction between the oil	power? Ans: Gamma ray
	layers is reduced. 256	6. What part of camera corresponds to the iris?
243.	In a thermos flask, heat loss by radiation is minimized	Ans: Diaphragm
	by theAns: Silvered surfaces 257	7. Total internal reflection will not occur when light
244.	Petrol quickly dries off when split on the floor because	travels from Ans: Water to glass
	itAns: Has a low boiling point 258	B. Primary colours areAns: Blue, green and red
245.	0.8kJ of heat is supplied to a metal of mass 300g to 259	2. The portion of the spectrum which most produces the
	raise its temperature from 30°C to 7°C. calculate the	sensation of heat is the portion where we have
	heat capacity of the metal? Ans: $3.2x10^2 Jk^{-1}$	Ans: Infrared.
246.	Physical properties shared by both radio waves and 260	Which of the following properties in not associated
	sound waves are Ans: Both can be reflected and	with sound waves? Ans: Polarization
	diffracted 261	. The ability of a wave to spread around corners is
247.	Sound waves can be diffracted because they are	Ans: Diffraction
	Ans: Longitudinal 262	2. The amplitude of a sound wave determines
248.	Which of the following phenomenon can not be	Ans: Loudness.
	explained by the wave theory of light? Ans: Photo 263	8. Which of the following indicates a change of state of
	electric effect	matter? Ans: Melting
249.	Which of the following statements about sound waves 264	The tendency of a body to remain at rest or to continue
	is not correct? Ans: can be polarized	its state of uniform motion is calledAns: Inertia
250.	Which of the following groups of electro magnetic 265	Which of the following types of motion is mos
	waves is in order of increasing frequency? Ans: radio	predominant in the molecules of a gas? Ans: Random
	waves, visible light, infrared radiation. 266	6. Which of the following equations represent the
251.	The change in the direction of a wave due to a change	distance travelled by a body falling freely under
	in velocity isAns: Refraction	gravity? Ans: $S = \frac{gt^2}{2}$
252.	Which of the following waves is an electromagnetic 267	L
	waves? Ans: X-rays	distributed equally in all directions
253.	A wave whose frequency is 0.4H travels 54m in 268	
	9seconds. The distance between adjacent crest	1
	isAns: 15m	object moving in a circular track
254.	A hunter at 400m from a cliff fires a gun and hears an	č
	echo 2.4sec after, what is the speed of the sound? Ans:	They are sun and wind.
	340ms ⁻¹ .	O. The motion of a ball spinning on its axis is? Ans: Rotational
		AUS. KOMHODM

271.	An orange at rest falls freely from a height of 10m to 283.	A music compact disc does 45 revolutions in one
	the ground. Calculate the time taken to reach the	minute, calculate its angular velocity in red/sec Ans:
	ground? Ans: 1.4sec	0.75⊼
272.	A body performing uniform circular motion has 284.	A cold water tap supplies water at 20°C and a hot
	constant speed and varying velocity because Ans: The	water tap at 80°C. To obtain warm water at 40°C, the
	direction of motion changes	ratio of the mass of cold water to that of hot water to
273.	Potential and Kinetic energies are known collectively	be mixed isAns: 2:1
	asAns: Mechanical energy 285.	Two liquids X and Y having the same mass are
274.	The mode of heat transfer in which energy is carried	supplied with the same quantity of heat. If the
	from one end of a body to another without any	temperature rise in X is twice that of Y, the ratio of the
	material movement of the body	specific heat capacity of X to that of Y isAns: 1:2
	Ans: Conduction 286.	A solid that changes directly into a gas upon heating is
275.	A liquid begins to boil when its saturated vapour	said to have undergone? Ans: Sublimation
	pressure isAns: Equal to the atmospheric 287.	Food cooks faster in a pressure cooker than in an
	pressure	ordinary cooking pot because Ans: (i) The
276.	A fixed mass of gas of volume 313cm ³ at temperature	boiling point of water is greater than 100°C in the
	of 40°C is heated to 60°C at a constant pressure.	pressure cooker (ii) The vapour pressure is higher in
	Calculate its new volume Ans: 333cm ³ .	the pressure cooker.
277.	Which of the following symbols represent the S.I. unit 288.	On a hot and sunny day, the most comfortable colour
	of power Ans: W	of attire isAns: White
278.	What type of motion is generally performed by the 289.	The heat from the sum reaches the earth's surface by
	molecules of a liquid in a container? Ans: Random	the process ofAns: Radiation
279.	In simple harmonic motion, the angular velocity is 290.	Which of the following phenomena can not be
	inversely proportional to theAns: Period	explained by the molecular theory of matter?
280.	A car of mass 80kg moves in a circular track of radius	Ans: Radiation
	100m. if the velocity of the car is 20m/s, calculate the 291.	Two identical kettles X and Y are filled with water at
	centripetal force acting on the car Ans: 320N	100°C. The outside surface of X is painted black while
281.	Which of the following dimensions is for Kinetic	that of Y is polished, thenAns: X cools faster
	energy. Ans: ML ² T ⁻² .	because a blackened surface radiates heat faster than a
282.	A body is dropped from a height 50m above the	polished surface
	ground neglecting air resistance, calculate the time 292.	Cooking pots are usually made of metals because
	taken by the body to reach the ground $(g = 9.8 \text{ms}^{-1})$	metalsAns: Are good conductors of heat
	Ans: 3.2sec	

- A house whose roof is painted white feels cooler on a hot day then one whose roof is painted black because
 Ans: White is a better reflector of heat than black.
- 294. A bottle of perfume is opened in one corner of a room 303. and the scent is soon picked up in another part of the room. The perfume moves through the air in the room by ____Ans: Diffusion.
- 295. Determine the increase in pressure that is required to decrease the volume 1m^3 of water to $2x10^{-4}\text{m}^3$, if the bulk modulus of water is $2x10^9\text{Nm}^{-2}$. Ans: $2x10^5\text{pa}$
- 296. The Joule (J) as the unit of work is equivalent to

 _____Ans: Nm or Kgms⁻².
- 297. A steel wire of length 20m is stretched to 20.0/m by the application of a stretching force of 50N. what should be the stretching force so that its length may become 20.05m within its elastic limit? Ans: 250N
- 298. Elasticity can best be defined as _____Ans: the ability of an object to resist deformation under the action of an external force.
- 299. the speed of ocean waves is proportional to the acceleration due to gravity (g) wavelength (λ) and density (ρ) of the wave such that $c = Kg^x \lambda^y \rho^z$, where K is a dimension less constant. The correct equation for the speed of the ocean wave is given as _____ Ans: $C = K\sqrt{g\lambda}$
- 300. A force of 10N is applied to push a mass of 2kg along a straight horizontal level. What is the acceleration of the body? Ans: 5m/s².
- 301. The temperature 45° C is the same as (a) 25° F (b) 57° F (c) 81° F (d) 113° F

The correct option is D

302. The lower fixed point corresponds to a length of 20mm on the stem of a thermometer while the upper fixed point corresponds to 160mm, the temperature

corresponding to a length of 48 mm is (a) 20.0° C (b) 30.0° C (c) 41.7° C (d) 50.0° C

The correct option is A

O3. The ice and steam points on a thermometer corresponds to X and 80 mm respectively. A temperature of 60° C corresponds to 52 mm on the thermometer. The value of X is

(a) 4mm (b) 8mm (c) 10mm (d) 20mm

The correct option is C

- 304. The two fixed points in a thermometer are 60 mm apart. When the thermometer reads 48 mm above the ice point, the temperature is (a) 80°C (b) 72°C (c) 60°C (d) 48°C **The correct option is A**
- 305. The ice and steam points on a temperature scale are 50mm and 190mm respectively. The reading on this scale when the temperature is 70°C is (a) 98mm (b) 138mm (c) 140mm (d) 148mm

The correct option is D

306. A thermometer with an arbitrary scale Y registers - $50^{0}Y$ at the lower fixed point and + $70^{0}Y$ at the supper fixed point. The Celsius temperature corresponding to $30^{0}Y$ is (a) $42.9^{0}C$ (b) $50.0^{0}C$ (c) $66.7^{0}C$ (d) $75.0^{0}C$

The correct option is C

307.

308.

The temperature of -93°C corresponds to an absolute temperature of (a) 366K (b) 293K (c) 283K (d) 180K

The correct option is D

A faulty mercury-in-glass thermometer has 1.5° C and 103.0° C as its ice and steam points respectively. When the true temperature is 40° C the reading on the thermometer is (a) 42.7° C (b) 42.1° C (c) 40.6° C (d) 39.1° C**The correct option is B**

309. A platinum resistance thermometer has resistances of 5.25Ω and 9.75Ω at 0^{0} C and 100^{0} C respectively.

317.

320.

When the resistance is 9.25Ω , the temperature is (a) 63.6° C (b) 66.7° C (c) 75.0° C (d) 84.6° C

The correct option is B

310. A constant volume gas thermometer indicates a pressure of 250 mm Hg at the ice point and 750mm Hg at the steam point. The temperature when the thermometer indicates a pressure of 450 mm Hg is (a) 40K (b) 233K (c) 313K (d) 333K

The correct option is C

- 311. A thermocouple works on the principle of
 - (a) Variation of emf with temperature
 - (b) Variation of *volume* with temperature
 - (c) Variation of *resistance* with temperature
 - (d) Variation of *pressure* with temperature

The correct option is A

- 312. A wire of length 5 m is heated from a temperature of 318. 10°C to 60°C. If it undergoes a change of length of 20mm, the linear expansivity of the wire is (a) 8x10⁻⁴K⁻¹ (b) 4 x 10⁻⁴K⁻¹ (c) 8 x 10⁻⁵ K⁻¹ (d) 4 x 10⁻⁵K⁻¹ **The correct option is C**
- 313. A metal rod of length L is subjected to a temperature 319. rise θ . If its final length is 1.05L, its linear expansivity is (a) $\frac{1.05}{\theta}$ (b) $\frac{1}{1.050}$ (c) $\frac{1}{20L}$ (d) $\frac{1}{200}$

The correct option is D

314. A telegraph wire of length 100.0 m at 30° C has a linear expansivity of $2 \times 10^{-5} \text{K}^{-1}$. The length of the wire at a temperature of -10° C is (a) 100.08m (b) 100.04m (c) 99.96m (d) 99.92m

The correct option is D

315. A steel bridge is 500 m in length. If the temperature varies from a day-time high of 30° C to a night-time low of 5° C, and the linear expansivity of steel is 1.2 $\times 10^{-5}$ K⁻¹, the daily variation in the length of the bridge

is (a) 0.15cm (b) 1.50cm (c) 15.00cm (d) 1,500cm

The correct option is C

316. The linear exapnsivity of aluminium is approximately twice that of steel. A piece of aluminium and a piece of steel undergo the same increase in length per degree rise in temperature. The ratio of the original length of aluminium to that of steel is (a) 0.05 (b) 1.0 (c) 1.5 (d) 2.0 **The correct option is A**

Steel bars each 2 m long, are used to construct a rail line. The linear expansivity of steel is 1.2 x 10-5K⁻¹ and the maximum daily variation in temperature is 40°C. The safety gap that must be left between successive bars is (a) 0.48mm (b) 0.96mm (c) 4.80mm

(d) 9.60mm The correct option is B

The diameter of a steel plug is $2.5 \,\mathrm{cm}$ at $25^{0} \,\mathrm{C}$. If the linear expansivity of steel is $1.2 \,\mathrm{x} \, 10^{-5} \,\mathrm{K}^{-1}$, the temperature at which the plug will fit exactly into a hole of constant diameter $2.499 \,\mathrm{cm}$ is (a) $-30.3^{0} \,\mathrm{C}$ (b) $-8.3^{0} \,\mathrm{C}$ (c) $8.3^{0} \,\mathrm{C}$ (d) $33.3^{0} \,\mathrm{C}$ The correct option is B

Which of the following diagrams correctly illustrates the shape of a bimetallic strip made of brass and iron after heating?

A square plate of side 10cm is made of a metal of linear expansivity $2x \cdot 10^{-5} \text{K}^{-1}$. As the plate is heated from 30°C to 100°C , the area of one face of the plate will increase to

(a) 100.1cm² (b) 100.3cm² (c) 101.4cm² (d) 102.8cm²

328.

330.

331.

332.

The correct option is B

321. A metal cube of volume V and linear expansivity α is heated through a temperature rise of T. The increase in volume of the cube is (a) $3\alpha VT$ (b) $2\alpha VT$ (c) αVT (d) 327. $\alpha VT/3$

The correct option is A

322. A metal cube of side 5 cm and linear expansivity 2x 10^{-5}K^{-1} is moved from an ice-water mixture into boiling water. The increase in the volume of the cube is (a) 0.25cm^3 (b) 0.50cm^3 (c) 0.75cm^3 (d) 1.50cm^3

The correct option is C

323. A glass bottle of initial volume 2 x 10⁴ cm3 is heated from 20⁰C to 50⁰C. If the linear expansivity of glass is ³²⁹. 9 x10⁻⁶K⁻¹, the volume of the bottle at 50⁰C is (a) 20,005.4cm³ (b) 20,008.1cm³ (c) 20,013.5cm³ (d) 20,016.2cm³

The correct option is D

324. A glass flask of volume 1,00cm³ filled with mercury is heated from 30°C to 80°C. If the cubic expansivity of glass and mercury are 2.4 x 10⁻⁴K⁻¹ and 1.8 x 10⁻⁴K¹ respectively, the apparent increase in volume of mercury is (a) 3.0cm³ (b) -30cm³ (c) 9.0cm³ (d) 12.0cm³

The correct option is B

325. A density bottle of volume 500 cm³ is filled with a liquid and heated from 20°C to 60°C. If 7.5cm³ of liquid is expelled, the apparent cubic expansivity of the liquid is

(a) $7.50 \times 10^{-5} \text{K}^{-1}$ (b) $1.88 \times 10^{-4} \text{K}^{-1}$ (c) $3.75 \times 10^{-5} \text{K}^{-1}$ (d) $7.50 \times 10^{-4} \text{K}^{-1}$

The correct option is C

326. A brass ball of volume 1,000mm³ is moved from room temperature (30 $^{\circ}$ C) to an ice-water mixture at 0 $^{\circ}$ C. If the linear expansivity of brass is 2 x 10 $^{-5}$ K⁻¹, the new

volume of the ball is (a) 1,001.8cm³ (b) 1,000.6mm³ (c) 999.4mm³ (d) 988.2mm³

The correct option is D

A fixed mass of gas occupies a volume of 1,200cm³ at a temperature of 27^oC. The change in volume as the gas is cooled at constant pressure to 0^oC is (a) 108cm³ (b) 216cm³ (c) 273cm³ (d) 300cm³

The correct option is A

A gas occupies a certain volume at 27°C. If it is heated at constant pressure, its volume is exactly doubled at a temperature of (a) 54°C (b) 219°C (c) 327°C (d) 600°C

The correct option is C

A fixed mass of gas at standard temperature and pressure is heated at constant volume. The temperature at which its pressure becomes equal to 228 cm of mercury is (a) 819°C (b) 546°C (c) 273°C (d) 0°C

The correct option is B

A gas occupies a volume of 819 cm^3 at 0°C . If the gas is cooled at constant pressure, the temperature at which its volume drops to 480cm^3 is (a) -113°C (b) -56.5°C (c) 0°C (d) 160°C

The correct option is A

A certain mass of gas exerts a pressure of 20Nm⁻² at a temperature of 127^oC. If the gas is heated while maintaining its volume constant, the pressure exerted by the gas at 254^oC is

(a) 10.00Nm^{-2} (b) 26.35 Nm^{-2} (c) 45.8 Nm^{-2} (d) 32.7 Nm^{-2}

The correct option is B

A tyre is pumped to a pressure of 30 Nm⁻² at 27^oC. When the tyre heats up to 54^oC the new pressure, assuming no change in volume, is (a) 60.0 Nm⁻² (b) 54.0 Nm⁻² (c) 45.8 Nm⁻² (d) 32.7 Nm⁻²

The correct option is D

339.

340.

333. An air bubble of volume 1cm³ initially at a depth of 15m below the water surface rises to the surface. If the 338. atmospheric pressure is equal to 10m of water, the volume of the bubble just before it reaches the water surface is (a) 0.25cm³ (b) 0.67cm³ (c) 1.50cm³ (d) 2.50cm³

The correct option is D

334. The equation $P^aV^bT^c = \text{constant reduces to } Boyle's$ law if (a) a = 1, b = 0 and c = 0 (b) a = 1, b = 1 and c = 0 (c) a = 0, b = 0 and c = 1 (d) a = 1, b = 1 and c = 1

The correct option is B

335. The equation in question 334 reduces to *Charles' law* if (a) a = 1, b = 0 and c = 1(b) a = 0, b = 1 and c = 1(c) a = 0, b = 1 and c = -1(d) a = 1, b = 1 and c = 0

The correct option is C

336. The product of pressure (P) and volume (V) has the unit of (a) Force (b) Power (c) Impulse (d) Work

The correct option is D

337. In an experiment on gases the pressure (P) of the gas is plotted against the reciprocal of the volume $\left(\frac{1}{V}\right)$ of the gas at constant temperature. Which of the following graphs correctly illustrates the relationship between P and I/V?

(b)

At the absolute zero of temperature

- I. Thermal motion ceases
- II. The pressure of a gas is zero
- III. The mass of a gas is zero
- IV. Ice melts

Which of the above statements are correct?

(a) I and II only (b) III and IV only (c) I, II and III only (d) II, III and IV only

The correct option is A

A fixed mass of gas occupying a certain volume has its pressure reduced to 25 percent of its original value while the temperature is maintained constant. The ratio of the new volume to the original volume is (a) 2:1 (b) 1:2 (c) 1:4 (d) 4:1

The correct option is D

A little quantity of air is trapped on top of the mercury column in a barometer. When the volume of the trapped air is 7.5cm³ and the atmospheric pressure is 76cm, the barometer reads 74.0cm. When the volume of the trapped air is 10cm³ and the barometer reads 73.0cm, the correct atmospheric pressure is (a) 75.5cm (b) 75.0cm (c) 74.5cm (d) 74.0cm

The correct option is C

The volume of a certain mass of gas is doubled while its absolute temperature is halved. The pressure of the gas (a) Remains unchanged (b) Is halved (c) Increases by a factor of 4 (d) Decrease by a factor of 4 **The correct option is D**

A certain mass of gas is trapped in a tube of volume V at a temperature of 27^{0} C. If the pressure on the gas is doubled such that its volume is reduced to 75 percent of its original value, the new temperature of the gas is (a) -73.0^{0} C (b) 40.5^{0} C (c) 177.0^{0} C (d) 450.0^{0} C

The correct option is C

343. The pressure of a fixed mass of gas is reduced from three atmospheres to 1 atmosphere. While its temperature increases from -73°C to 127°C. The ratio of the final volume of the gas to its initial volume is (a) 6:1 (b) 1:6 (c) 3:2 (d) 2:3

The correct option is A

344. A certain mass of gas at -123 $^{\circ}$ C occupies a volume of 10m^3 under a pressure of 4 x 10^5 NM $^{-2}$. If the gas occupies a volume of 20m^3 at 27° C. its pressure is (a) $8 \times 10^5 \text{Nm}^{-2}$ (b) $4 \times 10^5 \text{Nm}^{-2}$ (c) $2 \times 10^5 \text{Nm}^{-2}$ (d) $1 \times 10^5 \text{Nm}^{-2}$

The correct option is B

345. A certain mass of gas occupies a volume of 3 x 10^4Nm^3 at 31^0Cunder a pressure of 76 cm of mercury. When the pressure is reduced to 50cm of mercury and the temperature is increased to 127^0C , its volume is (a) $3 \times 10^4 \text{ cm}^3$ (b) $4 \times 10^4 \text{ cm}^3$ (c) $6 \times 10^4 \text{ cm}^3$ (d) $1.2 \times 10^5 \text{ cm}^3$

The correct option is C