

UNIVERSITÄT BAYREUTH Physik

Theoretische Mechanik

Stoffsammlung

von Moritz Schramm

Inhaltsverzeichnis

1	Grundlagen		
	1.1	Koordinatensysteme	1
	1.2	Newtonsche Gesetze	2
	1.3	Erhaltungssätze	2
	1.4	Raum-Zeit Symmetrien	3
	1.5	System von Massepunkten	4
	1.6	Beschleunigte Bezugssysteme	4
2	Lagrange Formalismus		
	2.1	Lagrange Gleichungen 1. Art	5
	2.2	Lagrange Gleichungen 2. Art	6
	2.3	Hamiltonsches Prinzip	7
	2.4	Eichtransformation	7
	2.5	Noether Theorem	7
3	Variationskalkül		
	3.1	Euler Lagrange Gleichung	8
	3.2	Variation mit Nebenbedingungen	9
	3.3	Variation mit mehreren Variablen	9
4	Zentralpotenzial		
	4.1	Herleitung Bewegungsgleichungen und Lösung	10
	4.2	Verschiedene Zentralpotenziale	11
	4.3	Keplerproblem	11
5	Starre Körper		
	5.1	Raumfestes Inertialsystem und körperfestes Koordinatensysteme	12
	5.2	Eulersche Winkel	12
	5.3	Trägheitstensor	12
6	Kleine Schwingungen		13
	6.1	Bewegungsgleichungen	13
7	Har	miltonformalismus	14
8	Spe	zielle Relativitätstheorie	15

Grundlagen

1.1 Koordinatensysteme

Definition 1. Basisvektoren

Bei gegebenen Koordinaten $\mathbf{r}=(\theta_1,\theta_2,\theta_3)^T$ werden die Basisvektoren wie folgt berechnet:

$$\mathbf{e}_{\theta_i} = \left| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\theta_i} \right|^{-1} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\theta_i} \qquad i = 1, 2, 3$$

Definition 2. Koordinatendarstellungen

1. Kartesische Koordinaten

$$\mathbf{r} = \left(\begin{array}{c} x \\ y \\ z \end{array}\right)$$

2. **Zylinderkoordinaten** mit $det(J) = \rho$

$$\mathbf{r} = \begin{pmatrix} \rho \cos \phi \\ \rho \sin \phi \\ z \end{pmatrix} \qquad \begin{aligned} \mathbf{r} &= \rho \mathbf{e}_{\rho}(\phi) + z \mathbf{e}_{z} \\ \dot{\mathbf{r}} &= \dot{\rho} \mathbf{e}_{\rho} + \rho \dot{\phi} \mathbf{e}_{\phi} + \dot{z} \mathbf{e}_{z} \\ \ddot{\mathbf{r}} &= (\ddot{\rho} - \rho \dot{\phi}^{2}) \mathbf{e}_{\rho} + (2\dot{\rho}\dot{\phi} + \rho \ddot{\phi}) \mathbf{e}_{\phi} + \ddot{z} \mathbf{e}_{z} \end{aligned}$$

3. Kugelkoordinaten mit $det(J) = r^2 \sin \theta$

$$\mathbf{r} = \begin{pmatrix} r \sin \theta \cos \phi \\ r \sin \theta \sin \phi \\ r \cos \theta \end{pmatrix} \qquad \mathbf{r} = r\mathbf{e}_r(\theta, \phi) \\ \dot{\mathbf{r}} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_\theta + r\sin \theta \dot{\phi}\mathbf{e}_\phi$$

$$\ddot{\mathbf{r}} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta)\mathbf{e}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta)\mathbf{e}_\theta + (2\dot{r}\dot{\phi}\sin\theta + 2r\dot{\theta}\dot{\phi}\cos\theta + r\ddot{\phi}\sin\theta)\mathbf{e}_\phi$$

1.2 Newtonsche Gesetze

Satz 1. Newtonsche Gesetze

1. Ein kräftefreier Körper bewegt sich mit konstanter Geschwindigkeit

 $\mathbf{F} = 0 \implies \mathbf{v} = \text{const}$

2. Kraft ist Masse mal Beschleunigung

 $\mathbf{F} = m\mathbf{a}$

3. Der Kraft, mit der die Umgebung auf einen Massepunkt wirkt, entspricht stehts eine gleich große, gegengerichtete Kraft, mit der der Massepunkt auf seine Umgebung wirkt.

 $\mathbf{F}_{actio} = -\mathbf{F}_{reactio}$

Zusätze:

- 1. Kräfte wirken (meist) entlang einer Wirkungslinie
- 2. Superpositionsprinzip: $\mathbf{F}_{tot} = \sum_{i} \mathbf{F}_{i}$

1.3 Erhaltungssätze

Satz 2. Impulserhaltung

Impuls:

$$\mathbf{p} = m\mathbf{v}$$

Damit folgt:

$$\dot{\mathbf{p}} = \mathbf{F} = 0 \implies \mathbf{p} = \text{const}$$

Satz 3. Drehimpulserhaltung

Drehimpuls:

$$\mathbf{l} = \mathbf{r} \times \mathbf{p} = m\mathbf{r} \times \dot{\mathbf{r}}$$

Drehmoment:

$$\mathbf{M} = \mathbf{r} \times \mathbf{F} = m\mathbf{r} \times \ddot{\mathbf{r}}$$

Drehimpuls und Drehmoment hängen vom Ursprung des Koordinatensystems ab! Es folgt:

$$\mathbf{i} = \mathbf{M} = 0 \implies \mathbf{l} = \text{const}$$

Satz 4. Energieerhaltung

Arbeit: $dW = \mathbf{F} \cdot d\mathbf{r} \implies W = \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$

Leistung: $P = \frac{\mathrm{d}W}{\mathrm{d}t} = \mathbf{F} \cdot \dot{\mathbf{r}}$

Konservative Kraft $\iff \nabla \times \mathbf{F} = 0$

Kinetische Energie: $T = \frac{m}{2}\dot{\mathbf{r}}^2$

Potenzielle Energie bei konservativen Kräften: $\mathbf{F} = -\nabla U(\mathbf{r})$

Für konservative Kräfte gilt Energieerhaltung: E = T + U = const

1.4 Raum-Zeit Symmetrien

Formel 5. Allgemeine Galilei Transformation

$$x'_{i} = \alpha_{ij}x_{j} - v_{i}t - a_{i} \text{ und } t' = t - t_{0}$$
$$\dot{x}'_{i} = \alpha_{ij}\dot{x}_{j} - v_{i}$$
$$F'_{i} = \alpha_{ij}F_{i}$$

Aktive Galilei Transformation: In einem IS werden 2 physikalische Systeme betrachtet

Passive Galilei Transformation: Dasselbe physikalische System wird von 2 Beobachtern IS und IS' betrachtet

Kovarianz: Newtonsche Gesetze haben in jedem IS dieselbe Form

Invarianz: Bewegung unter Galilei Transformation gleich

Satz 6. Fundamentale Eigenschaften der Raum-Zeit

Abgeschlossene Systeme sind unter folgenden Operationen invariant (symmetrisch): Translation in der Zeit oder im Raum, konstante Rotation im Raum und Bewegung mit konstanter Geschwindigkeit relativ zum IS. Damit folgen die Eigenschaften für $v \ll c$:

- □ Homogenität der Zeit ⇒ Energieerhaltung
- □ Homogenität des Raums ⇒ Impulserhaltung
- □ Isotropie des Raums ⇒ Drehimpulserhaltung
- \Box Relativität der Raum-Zeit $\Rightarrow \dot{\mathbf{R}}t \mathbf{R} = 0$

1.5 System von Massepunkten

Definition 3. Schwerpunkt, Gesamtimpuls und Energieerhaltung

Schwerpunkt:

$$\mathbf{R} = \frac{1}{M} \sum_{i=1}^{N} m_i \mathbf{r}_i$$

Damit folgt der Gesamtimpuls $\mathbf{P}=M\mathbf{R}$ und der Gesamtdrehimpuls $\mathbf{L}=\sum_i \mathbf{l}_i$ mit dem Gesamtdrehmoment $\mathbf{M}=\dot{\mathbf{L}}.$

Im abgeschlossenen System wirken keine äußeren Kräfte und es gilt:

$$P = const$$
 $L = const$ $M = 0$

Die kinetische Energie ist mit $T = \sum_i \frac{m_i}{2} \dot{\mathbf{r}}_i^2$ gegeben und wenn alle inneren und äußeren Kräfte konservativ sind, ist die Energie erhalten.

1.6 Beschleunigte Bezugssysteme

Definition 4. Linear beschleunigtes BS

Für ein linear beschleunigtes BS gilt $\mathbf{r}(t) = \mathbf{r}'(t) + \frac{\mathbf{a}t^2}{2}$

Daraus folgen die Bewegungsgleichungen im unbeschleunigten und beschleunigten System:

$$m\ddot{\mathbf{r}} = 0$$
 $m\ddot{\mathbf{r}}' = -m\mathbf{a}$

 $-m\mathbf{a}$ bezeichnet dabei die Trägheitskraft.

Definition 5. Rotierendes BS

Bei einem rotierenden BS dreht sich das BS um eine Achse $\vec{\omega} = \frac{d\vec{\varphi}}{dt}$. Dadurch gilt:

$$\dot{\mathbf{r}} = \dot{\mathbf{r}}' + \vec{\omega} \times \mathbf{r}$$

$$m\ddot{\mathbf{r}}' = -2m\left(\vec{\omega} \times \dot{\mathbf{r}}'\right) - m\,\vec{\omega} \times \left(\vec{\omega} \times \mathbf{r}'\right)$$

Wobei $-2m(\vec{\omega} \times \dot{\mathbf{r}}')$ die Corioliskraft und $-m\vec{\omega} \times (\vec{\omega} \times \mathbf{r}')$ die Zentrifugalkraft ist.

4

Lagrange Formalismus

2.1 Lagrange Gleichungen 1. Art

Definition 6. Zwangsbedingungen

Eine Zwangsbedingung schränkt die Koordinaten auf eine Bahn oder Ebene ein. Eine holonome Zwangsbedingung hat folgende Form:

$$q(\mathbf{r},t)=0$$

Falls die Zwangsbedingung unabhängig von t ist, nennt man sie skleronom, ansonsten rheonom.

Definition 7. Lagrange Gleichungen 1. Art

Eine Zwangsbedingung wird durch eine Zwangskraft $\mathbf{Z} = \lambda(t) \nabla g(\mathbf{r}, t)$ sichergestellt. Für R Zwangsbedingungen und N Teilchen ergeben sich die Lagrange Gleichungen 1. Art zu:

$$m_n \ddot{x}_n = F_n + \sum_{\alpha=1}^R \lambda_{\alpha}(t) \frac{\partial g_{\alpha}(x_1, ..., x_{3N}, t)}{\partial x_n}$$

Für ein Teilchen und nur eine Zwangsbedingung also:

$$m\ddot{\mathbf{r}} = \mathbf{F} + \mathbf{Z} = \mathbf{F} + \lambda(t)\nabla q(\mathbf{r}, t)$$

Impuls und Drehimpuls sind erhalten wenn $\mathbf{F} + \mathbf{Z} = 0$ gilt. Außerdem gilt für die Energie:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\sum_{\alpha} \lambda_{\alpha} \frac{\partial g_{\alpha}}{\partial t} \implies E = \text{const wenn } \forall \alpha : \frac{\partial g_{\alpha}}{\partial t} = 0$$

Methode 1. Allgemeins Vorgehen um 1. Art zu lösen

- 1. Formulierung der Zwangsbedingungen durch $g_{\alpha} = 0$
- 2. Aufstellen der Lagrange Gleichungen 1. Art
- 3. Elimination der λ_{α} indem $\frac{\mathrm{d}^2 g_{\alpha}}{\mathrm{d} t^2}$ berechnet wird
- 4. Lösung der Bewegungsgleichungen
- 5. Bestimmung der Integrationskonstanten
- 6. Bestimmung der Zwangskräfte mit $\mathbf{Z} = \lambda(t)\nabla g(\mathbf{r}, t)$

2.2 Lagrange Gleichungen 2. Art

Definition 8. Verallgemeinerte Koordinaten

Mit R Zwangsbedingungen hat ein System noch f=3N-R Freiheitsgrade. Diese werden mit verallgemeinerten Koordinaten $q_1,...,q_f$ dargestellt. Dazu ist eine Transformation

$$x_n = x_n(q_1, ..., q_f, t) = x_n(q, t)$$

notwendig. Die Zwangsbedingungen sowie die kinetische Energie $T=\sum_n \frac{m}{2}\dot{x}_n^2$ und die potenzielle Energie können dann mit verallgemeinerten Koordinaten formuliert werden:

$$T(q, \dot{q}, t)$$
 $U(q, t)$ $g_{\alpha}(q, t) = 0$

Definition 9. Lagrange Gleichungen 2. Art

Die Lagrange Funktion wird wie folgt definiert:

$$\mathcal{L}(q, \dot{q}, t) = T(q, \dot{q}, t) - U(q, t)$$

Eine Koordinate q_k heißt zyklisch, falls $\frac{\partial \mathcal{L}}{\partial q_k} = 0$.

Der verallgemeinerte (oder auch kanonische) Impuls ist $p_k = \frac{\partial \mathcal{L}}{\partial \dot{q}_k}$.

Die Lagrange Gleichungen 2. Art sind dann f DGLs 2. Ordnung:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_k} = \frac{\partial \mathcal{L}}{\partial q_k}$$

2.3 Hamiltonsches Prinzip

Definition 10. Wirkungsfunktional

Das Wirkungsfunktional ist wie folgt definiert:

$$S[q] = \int_{t_1}^{t_2} \mathrm{d}t \, \mathscr{L}(q, \dot{q}, t)$$

Das Prinzip der kleinsten Wirkung ($\delta S[q] = 0$) führt als Variationsproblem wieder zu den Lagrange Gleichungen.

2.4 Eichtransformation

Satz 7. Eichtransformation

Verschiedene Lagrange Funktionen führen zu denselben Bewegungsgleichungen:

$$\delta \int_{t_1}^{t_2} \mathrm{d}t \, \mathscr{L} = \delta \int_{t_1}^{t_2} \mathrm{d}t \, \mathscr{L}^* = 0$$

wenn z.B. $\mathcal{L}^* = \text{const} \cdot \mathcal{L}$ oder $\mathcal{L}^* = \mathcal{L} + \text{const.}$ Allgemein führen alle Lagrange Funktionen auf dieselben Bewegungsgleichungen bei folgender Form:

$$\mathscr{L}^*(q,\dot{q},t) = \mathscr{L}(q,\dot{q},t) + \frac{\mathrm{d}}{\mathrm{d}t}f(q,t)$$

2.5 Noether Theorem

Satz 8. Erhaltungsgröße des Noether Theorems

Das Noether Theorem besagt, wie aus Symmetrien Erhaltungsgrößen folgen. Betrachte dazu folgende Transformation:

$$q_i^* = q_i + \varepsilon \psi_i(q, \dot{q}, t) + \mathcal{O}(\varepsilon^2)$$

$$t^* = t + \varepsilon \varphi(q, \dot{q}, t) + \mathcal{O}(\varepsilon^2)$$

Bei der starken Annahme, dass die zwei Wirkungsfunktionale gleich sind $(S^*[q^*(t^*)] = S[q(t)])$ ergibt sich die folgende Erhaltungsgröße:

$$Q(q, \dot{q}, t) = \sum_{i=1}^{f} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \psi_i + (\mathcal{L} - \sum_{i=1}^{f} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i) \varphi = \text{const}$$

Variationskalkül

3.1 Euler Lagrange Gleichung

Definition 11. Funktional

Ein Funktional weißt jeder Funktion y einen Wert zu und hat meist die Form:

$$J[y] = \int_{x_1}^{x_2} dx \, F(x, y, y')$$

Meistens integriert man über eine Zeit dt oder eine Länge ds und nutzt dann $v=\frac{\mathrm{d}s}{\mathrm{d}t}$ und d $s^2=\mathrm{d}x^2+\mathrm{d}y^2 \ \Rightarrow \ \mathrm{d}s=\mathrm{d}x\sqrt{1+y'^2}$

Satz 9. Euler Lagrange Gleichungen

Um das y(x) zu finden, bei dem J extremal wird, stellt man die Euler Lagrange Gleichungen auf:

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y'} = \frac{\partial F}{\partial y}$$

Falls $\frac{\partial F}{\partial y}=0$ vereinfacht sich die Gleichung zu:

$$\frac{\partial F}{\partial y'} = \text{const}$$

Falls $\frac{\partial F}{\partial x}=0$ vereinfacht sich die Gleichung zu (Beltrami Identität):

$$y'\frac{\partial F}{\partial y'} - F = \text{const}$$

3.2 Variation mit Nebenbedingungen

Satz 10. Isoperimetrische Nebenbedingungen

Eine isoperimetrische Nebenbedinung hat die Form

$$K[y] = \int_{x_1}^{x_2} dx \, G(x, y, y')$$

Bei R Nebenbedingungen ergibt sich die neue Funktion

$$F^*(x, y, y') = F - \sum_{i=1}^{R} \lambda_i G_i$$

y(x) lässt sich mit F^* und der Euler-Lagrange Gleichung bestimmen.

Satz 11. Holonome Nebenbedingungen

Eine holonome Nebenbedingung hat die Form

$$g(y,x) = 0$$

Diesmal gilt für R Nebenbedingungen:

$$F^*(x, y, y') = F - \sum_{i=1}^{R} \lambda_i(x)g_i$$

3.3 Variation mit mehreren Variablen

Formel 12. Mehrere unabhängige und abhängige Variablen

$$I[y_1, ..., y_n] = \int dx_1 ... dx_m F(x_1, ..., x_m, y_1, ..., y_n, Y_{11}, ..., Y_{nm})$$

mit:
$$y_i = y_i(x_1, ..., x_m)$$
 $Y_{ij} = \frac{\partial y_i}{\partial x_j}$ $i = 1, ..., n$

Damit ergeben sich dann die Euler-Lagrange Gleichungen:

$$\sum_{i=1}^{m} \frac{\partial}{\partial x_{i}} \left(\frac{\partial F}{\partial Y_{ij}} \right) = \frac{\partial F}{\partial y_{i}} \qquad i = 1, ..., n$$

Zentralpotenzial

4.1 Herleitung Bewegungsgleichungen und Lösung

Formel 13. Herleitung der Bewegungsgleichungen

Mit der Schwerpunkt und Relativkoordinate lässt sich die Lagrangefunktion entkoppeln:

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}, \quad \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2 \ \Rightarrow \ \mathscr{L} = \mathscr{L}_1(\mathbf{R}, \dot{\mathbf{R}}) + \mathscr{L}_2(\mathbf{r}, \dot{\mathbf{r}})$$

 ${\bf R}$ ist zyklisch, damit ist der Schwerpunktimpuls erhalten und es folgt: ${\bf R}(t) = {\bf A}t + {\bf B}$. Die Lagrange Gleichungen liefern die Bewegungsgleichungen für die Relativbewegung. Durch die Rotations- und Zeitsymmetrie folgt aber Drehimpuls- und Energieerhaltung, wodurch sich insgesamt eine DGL 1. Ordnung ergibt (jeweils für φ und ρ wenn ${\bf r}$ in Zylinderkoordinaten dargestellt wird).

Drehimpulserhaltung:

$$l = \mu \rho^2 \dot{\varphi} \qquad \Rightarrow \varphi(t)$$

Energieerhaltung:

$$E = \frac{\mu}{2}\dot{\rho}^2 + \frac{l}{2\mu\rho^2} + U(\rho)$$

Mit $\frac{d\varphi}{d\rho} = \frac{\partial \varphi}{\partial t} \frac{dt}{d\rho}$ folgt:

$$\varphi(\rho) = \varphi_0 + \int_{\rho_0}^{\rho} d\rho' \frac{l/\rho'^2}{\sqrt{2\mu(E-U) - l^2/\rho'^2}}$$

4.2 Verschiedene Zentralpotenziale

Definition 12. Wichtige Potenziale

- 1. Harmonischer Oszillator: $U(\rho) = \alpha(\rho \rho_0)^2 \Rightarrow$ gebundene Bewegung
- 2. $U(\rho)=-\alpha/\rho$ (z.B. Gravitations- oder elektrostatisches Potenzial) Falls $\alpha<0$ ist das Potenzial rein repulsiv, die Bewegung also ungebunden. Falls $\alpha>0$ ist die Bewegung gebunden wenn E<0, bei E>0 ist die Bewegung ungebunden.

4.3 Keplerproblem

Definition 13. Parameter einer Ellipse

Exzentrizität ε und Paramter p ergeben die Ellipsengleichung

$$p = \frac{l^2}{\mu \alpha}$$
 $\varepsilon = \sqrt{1 + \frac{2El^2}{\mu \alpha^2}}$ \Rightarrow $\frac{p}{\rho} = 1 + \varepsilon \cos \varphi$

Es gilt:

 $\Box \varepsilon = 0 \Rightarrow \text{Kreis}$

 $\Box \varepsilon < 1 \Rightarrow \text{Ellipse}$

 $\Box \varepsilon = 1 \Rightarrow Parabel$

 $\Box \varepsilon > 1 \Rightarrow \text{Hyperbel}$

Große Halbachse a, kleine Halbachse b:

$$a = \frac{p}{1 - \varepsilon^2}$$
 $b = \frac{p}{\sqrt{1 - \varepsilon^2}}$ \Rightarrow $\frac{(x + a\varepsilon)^2}{a^2} + \frac{y^2}{b^2} = 1$

Satz 14. Keplersche Gesetze

- 1. Die Planetenbahnen sind Ellipsen mit der Sonne als Brennpunkt
- 2. Ein Fahrstrahl überstreicht bei gleicher Zeit die gleiche Fläche
- 3. Die Quadrate der Umlaufdauern sind proportional zu den Kuben der großen Halbachse

11

Starre Körper

- 5.1 Raumfestes Inertialsystem und körperfestes Koordinatensysteme
- 5.2 Eulersche Winkel
- 5.3 Trägheitstensor

Kleine Schwingungen

6.1 Bewegungsgleichungen

Hamiltonformalismus

Definition 14. Hamilton-Funktion

$$H(q, p, t) = \sum_{i=1}^{f} \dot{q}_i(q, p, t) p_i - \mathcal{L}(q, \dot{q}(q, p, t), t)$$

mit dem verallgemeinerten Impuls $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$

Formel 15. Hamilton-Gleichungen

$$\dot{p}_k = -\frac{\partial H}{\partial q_k}$$

$$\dot{q}_k = \frac{\partial H}{\partial p_k}$$

Im Gegensatz zu den f DGLs 2. Ordnung im Lagrangeformalismus erhält im Hamiltonformalismus 2f DGLs 1. Ordnung.

Satz 16. Energieerhaltung

Falls in der kinetischen Energie die generalisierte Geschwindigkeit nur quadratisch vorkommt und die potenzielle Energie nur von den generalisierten Koordinaten abhängt, gilt:

$$H(q, p, t) = T + U = E$$

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t} \quad \text{und damit} \quad \frac{\partial \mathcal{L}}{\partial t} = 0 \ \Rightarrow \ H = \mathrm{const}$$

Spezielle Relativitätstheorie