

CNN in Images, Speech and Text

"CNN for ALL"

Recap: Turning Point: AlexNet

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification Task:

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca Previous Best: ~25% (CVPR-2011)

AlexNet: ~15 % (NIPS-2012)

Common Pipeline: Till Then

VISION:

SPEECH:

• NLP:

Learn the full pipeline

VISION:

- Pixels \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object

• SPEECH:

- Sample → spectral → band → formant → motif → phone → word

• NLP:

– Character \rightarrow word \rightarrow NP/VP/.. \rightarrow Clause \rightarrow sentence \rightarrow story

Deep Learnt Features

• It's deep if it has more than one stage of non-linear feature transformation.

CNN in speech recognition

Speech Recognition model

Dimitri Palaz, Mathew Magimai-Doss and Ronan Collobert, "Convolutional Neural Networks-based Continuous Speech Recognition using Raw Speech Signal", ICASSP 2015, pp.4295-4299.

Speech Recognition model

Detailed View

Comparing Learnt Filters: WSJ vs. TIMIT

Summary: Layers of a Neural Network

- Based on the connection pattern and operations, we can think of a layer in a Neural Network as:
 - Convolutional
 - A Layer can have multiple Channels
 - Non-Linear (often not drawn)
 - Max-Pooling
 - Fully Connected
 - Soft Max

This is often repeated multiple times

CNN in text classification

Convolution

- n-word sliding window over the sentence
- Learning to identify indicative ngrams in the input
- Filter transforms a window of k words into a scalar value
- Several filters applied to capture properties of the words in the window

HIERARCHICAL CONVOLUTIONS

 This approach can be extended to hierarchy of convolutional layers

 Increase in depth of CNN leads to capture increasingly larger effective windows for a sentence

 Dilated convolutions help in learning the relationship between Non-Adjacent words

Pooling

- Pooling operation combines the vectors from the different windows into a single dimensional vector
- By taking the max or the average value
- The intention is to focus on the most important features
- Each filter extracts a different indicator from the window
- Pooling operation zooms in on the important indicators

Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification, Yoon Kim

Case Study

Text Classification with CNNs

NLP with CNN

- Problem: Classification of Questions
 - Data: Various questions labeled based on the type
 - Labels: Abbreviation, Entity,
 Description, Human,
 Location and Numeric value.
- Process the data: Remove punctuations etc.
- Represent the Sentence as a 2D array with word embeddings
- Train the CNN
- Use the trained model for Testing

Is there an inherent hierarchy in natural images?

Can you identify any structure or common elements in these images?

CIFAR10 dataset
Image source:
CIFAR-10 image
classification with
Keras ConvNetGiuseppe
Bonaccorso

Hierarchy of visual elements

Parts of images: one step down the hierarchy

D., and Rob Fergus. 2014. "Visualizing and

Understanding Convolutional Networks.

Even lower down the hierarchy

Even lower down the hierarchy:

Textures and colours

Image source:

Zeiler, Matthew D., and Rob Fergus. 2014. "Visualizing and Understanding Convolutional Networks. *ECCV 2014*,

Image source:

Zeiler, Matthew D., and Rob Fergus. 2014. "Visualizing and Understanding Convolutional

Hierarchy in face images?

Highest level: whole faces, identities

Face parts

Still Smaller: Textures? Even more uniform

Do CNNs work in a similar way?

Convolution as Part Search

Higher level filters

- If we create a filter for each pattern we want to recognize, there will be too many variations!
- Utilize image hierarchy

Image-level variation is high

Part-level variation is low

Image sources:

- 1. CIFAR 10 CIFAR-10 image classification with Keras ConvNet Giuseppe Bonaccorso
- 2. Zeiler, Matthew D., and Rob Fergus. 2014. "Visualizing and Understanding Convolutional Networks. ECCV 2014

Visualizing CNNs

- CNNs are cool © but some of the below questions need answers before we move forward:-
- How do I interpret the learned filters?
- What is it that stimulates/excites a neuron?
- How do I decide the architecture or improve existing ones?

Source: Krizhevsky et.al. NIPS'12

Visualizing the first conv. layer is possible but how about the later layers.

Composition of filters

Visualizing CNNs

A. How do I interpret the learned filters?

Source: Zeiler e.t. al. ECCV'14

Early Layers Converge Faster

Figure: Evolution of randomly chosen subset of model features generated using deconvnet through training at epoch 1, 2, 5, 10, 20, 30, 40, 64.

Example: Classification of Documents

Examples

What does it look for faces?

What type of image causes a convolutional filter to give a high activation?

Low-level features

Mid-level features

High-level features

FACE IN THE ERA OF DEEP LEARNING 52

Results: face recognition

CNNs: Summary

Deep Learnt Features

• It's deep if it has more than one stage of non-linear feature transformation.

Summary

Thanks!!

Questions?