ExaMath Groups	Mathematics Exam Class: LS	Prepared by: Ahmad Amouri Edited by: Randa Chehade	
Number of questions: 2	Sample 03 – year 2023	Name:	
Number of questions: 3	Duration: 1½ hours	N°:	

- إن هذا النموذج أعد بشكل تطوعى من المؤلف دون أي مقابل بهدف تأمين مادة هدفها تدريبي فقط.
- حقوق التأليف محفوظة للمؤلف ويستطيع الزملاء الأعزاء والأحباء التلامذة الإستفادة منه فنيا وتعليميا بأي طريقة ممكنة مع حفظ الحقوق تقديرا للجهد المبذول في التأليف .
 - يمنع منعا باللمقاربة هذا النموذَّج بشكل مادي بأي طريقة من الطرق فهو نموذج مجاني بالمطلق وهدفه الخدمة العامة فقط
- لا توجد صفة رسمية لمضمون النّموذج فهو اُجتهاد شخصي للمؤلف ولا علاقة لّه بأي شّكل من الأشكال بأي لجان رسمية وغيرها، ومستوى النموذج مستقل كليا عن مستوى الإمتحان الرسمي المفترض ، فهدف النموذج تدريبي محض.
- This exam consists of three problems inscribed on two pages.
- The use of a non-programmable calculator is allowed.

$I - (4 \frac{1}{2} points)$

A student in LS section answered a math quiz in Logarithmic function.

The quiz consists of five independent parts. He got 3 over 5 (1 mark for each answer).

The parts of the quiz and the student's answers are shown below.

Quiz:		Answers
<u>——</u>	1)]0;+∞[
Let f be the function defined by $f(x) = \frac{1 - \ln x}{\ln x + 1}$.	-,	J .
1) The domain of definition of f is:	2)	$\lim_{x \to +\infty} f(x) = -1$
$2) \lim_{x \to +\infty} f(x) =$		7
3) The representative curve of f is above the line of	3)	-;- <u>1</u>
equation $y = 2$ for $x \in$		$\left[e^{\frac{1}{3}} \right]$
4) The value of the expression		
$A = f\left(\frac{1}{\sqrt{e}}\right) + \ln\left(5 - 2\sqrt{6}\right) + \ln\left(5 + 2\sqrt{6}\right) =$	4)	A=0
(40)	5)	$\begin{bmatrix} 1 \\ \cdot 1 \end{bmatrix}$

Indicate with justification, the parts answered correctly by the student and then correct the wrong answers.

$II - (6 \frac{1}{2} points)$

Consider two urns U and V:

U contains 7 balls: 4 red, 2 white and 1 black

V contains 8 balls: 3 red, 2 white and 3 black

Consider a perfect die whose 6 faces are numbered: 1; 1; 1; 2; 2; 3.

Part A

We roll this die.

- If we obtain a face numbered 1, we draw successively with replacement **three** balls from the urn U.
- If we obtain a face numbered 2, we draw simultaneously **three** balls from the urn V.
- If we obtain a face numbered 3, we select **one** ball from **each** urn.

Consider the following events:

A: « The obtained face of the die is numbered 1 ».

B: « The obtained face of the die is numbered 2 ».

C: « The obtained face of the die is numbered 3 ».

R: « Among the drawn balls we obtain exactly 2 red balls ».

- 1) Calculate P(A), P(B) and P(C).
- 2) a) Show that $P(R \cap A) = \frac{72}{343}$ then calculate $P(R \cap B)$ and $P(R \cap C)$.
 - **b)** Deduce P(R).
- 3) Consider the event M: « The drawn balls have the same color ».
 - **a)** Show that $P(M) = \frac{2879}{16464}$.
 - **b)** Calculate $P(M \cup B)$.
 - c) The drawn balls don't have the same color. Calculate the probability that the die shows an odd number.

Part B

In this part all balls of the two urns U and V are placed in a new urn W.

The player selects successively without replacement 3 balls from the urn W.

The player scores +1 point for each selected white ball, -1 point for each selected black ball, and 0 point for each selected red ball.

Calculate the probability of obtaining three balls where the sum of scored points is equal to zero.

III – (9 points)

Part A

Consider the function g that is defined over \mathbb{R} by: $g(x) = (2x - 1)e^{-x+1} - 1$.

- 1) Calculate $\lim_{x \to -\infty} g(x)$ and $\lim_{x \to +\infty} g(x)$.
- 2) Calculate g'(x), then set up the table of variations of g.
- 3) Prove that the equation g(x) = 0 admits on \mathbb{R} exactly two roots one of them is 1 and the other is α such that $2.2 < \alpha < 2.4$.
- 4) Study the sign of the function g for all real numbers x.

Part B

Consider the function f that is defined over \mathbb{R} by $f(x) = (4x + 2)e^{-x+1} + 2x - 1$.

Let (C) be its representative curve in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) Calculate $\lim_{x \to a} f(x)$ and f(2).
- 2) a) Calculate $\lim_{x \to \infty} f(x)$, then prove that the line (d) of equation y = 2x 1 is an asymptote to (C).
 - **b)** Study, according to the values of x, the relative position of (C) and (d).
- 3) Prove that f'(x) = -2g(x), then set up the table of variations of f.
- 4) Prove that (C) admits an inflection point I whose coordinates is to be determined.
- 5) Write an equation of the tangent (T) to (C) at point I.
- 6) Show that $f(\alpha) = \frac{4\alpha^2 + 3}{2\alpha 1}$
- 7) Draw (d), (T) and (C) (take $\alpha \approx 2.3$).

QI	Answers	4 ½ pts.
1)	f is defined for $\begin{cases} x > 0 \\ \ln x \neq -1 \end{cases}; \begin{cases} x > 0 \\ x \neq e^{-1} \end{cases}; \begin{cases} x > 0 \\ x \neq \frac{1}{e} \end{cases}$ Then the domain of definition of f is	3/4
2)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1 - \ln x}{\ln x + 1} = \lim_{x \to +\infty} \frac{-\frac{1}{x}}{\frac{1}{x}} = -1.$ This part is answered correctly.	3/4
3)	$f(x) - 2 = \frac{1 - \ln x}{\ln x + 1} - 2 = \frac{1 - \ln x - 2 \ln x - 2}{\ln x + 1} = \frac{-1 - 3 \ln x}{\ln x + 1}.$ $\frac{1}{e} \qquad \frac{1}{e} \qquad \frac{1}{e^{\frac{1}{3}}}$ $\frac{-1 - 3 \ln x}{\ln x + 1} \qquad + \qquad 0 \qquad -$ $\frac{-1 - 3 \ln x}{\ln x + 1} \qquad - \qquad 0 \qquad + \qquad +$ $\frac{-1 - 3 \ln x}{\ln x + 1} \qquad - \qquad 0 \qquad +$ The representative curve of f is above line of equation $y = 2$ for $\frac{-1 - 3 \ln x}{\ln x + 1} > 0$; that is for $x \in \frac{1}{e}; \frac{1}{e^{\frac{1}{3}}}$. This part is answered correctly.	1
4)	$A = f\left(\frac{1}{\sqrt{e}}\right) + \ln\left(5 - 2\sqrt{6}\right) + \ln\left(5 + 2\sqrt{6}\right) = \frac{1 - \ln\left(\frac{1}{\sqrt{e}}\right)}{\ln\left(\frac{1}{\sqrt{e}}\right) + 1} + \ln\left[\left(5 - 2\sqrt{6}\right) \times \left(5 + 2\sqrt{6}\right)\right]$ $= \frac{1 + \ln\left(\sqrt{e}\right)}{-\ln\left(\sqrt{e}\right) + 1} + \ln\left(25 - 24\right) = \frac{1 + \frac{1}{2}}{-\frac{1}{2} + 1} + \ln 1 = \frac{\frac{3}{2}}{\frac{1}{2}} + 0 = 3. \text{ This part is answered wrongly.}$	1
5)	$f'(x) = \frac{-\frac{(\ln x + 1)}{x} \cdot \frac{(1 - \ln x)}{x}}{(\ln x + 1)^2} = \frac{-\ln x - 1 - 1 + \ln x}{x}$ belongs to its domain. $f \text{ is continuous and strictly decreasing over its domain, and in particular over } \begin{bmatrix} 1;e^2 \end{bmatrix}$ $f(1) = \frac{1 - \ln 1}{\ln 1 + 1} = \frac{1 - 0}{0 + 1} = 1.$ $f(e^2) = \frac{1 - \ln (e^2)}{\ln (e^2) + 1} = \frac{1 - 2 \ln e}{2 \ln e + 1} = \frac{1 - 2}{2 + 1} = -\frac{1}{3}.$ Thus $f([1;e^2]) = [f(e^2); f(1)] = [-\frac{1}{3}; 1].$ This part is answered correctly.	1

$P(C) = \frac{1}{6}.$ $P(R \cap A) = P(R/A) \times P(A) = \frac{3!}{2!} P(RR\overline{R}) \times \frac{1}{2} = \frac{3!}{2!} \times \frac{4}{7} \times \frac{4}{7} \times \frac{3}{7} \times \frac{1}{2} = \frac{72}{343}.$ $A.2)a) P(R \cap B) = P(R/B) \times P(B) = P(2R \& 1\overline{R}) \times \frac{1}{3} = \frac{C_3^2 \times C_5^1}{C_8^3} \times \frac{1}{3} = \frac{5}{56}.$ $P(R \cap C) = P(R/C) \times P(C) = \frac{4}{7} \times \frac{3}{8} \times \frac{1}{6} = \frac{1}{28}.$ $A.2)b) P(R) = P(R \cap A) + P(R \cap B) + P(R \cap C) = \frac{72}{343} + \frac{5}{56} + \frac{1}{28} = \frac{919}{2744}.$ $P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = \frac{P(M/A) \times P(A) + P(M/B) \times P(B) + P(M/C) \times P(C) = \frac{1}{2879} \times \frac{1}{7} \times$	½ pts.
$P(C) = \frac{1}{6}.$ $P(R \cap A) = P(R / A) \times P(A) = \frac{3!}{2!} P(RR\overline{R}) \times \frac{1}{2} = \frac{3!}{2!} \times \frac{4}{7} \times \frac{4}{7} \times \frac{3}{7} \times \frac{1}{2} = \frac{72}{343}.$ $P(R \cap B) = P(R / B) \times P(B) = P(2R \& 1\overline{R}) \times \frac{1}{3} = \frac{C_3^2 \times C_5^1}{C_8^3} \times \frac{1}{3} = \frac{5}{56}.$ $P(R \cap C) = P(R / C) \times P(C) = \frac{4}{7} \times \frac{3}{8} \times \frac{1}{6} = \frac{1}{28}.$ $P(R) = P(R \cap A) + P(R \cap B) + P(R \cap C) = \frac{72}{343} + \frac{5}{56} + \frac{1}{28} = \frac{919}{2744}.$ $P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = \frac{P(M / A) \times P(A) + P(M / B) \times P(B) + P(M / C) \times P(C)}{\left[\left(\frac{4}{7}\right)^3 + \left(\frac{2}{7}\right)^3 + \left(\frac{1}{7}\right)^3\right] \times \frac{1}{2} + \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} + \left[\left(\frac{4}{7} \times \frac{3}{8}\right) + \left(\frac{2}{7} \times \frac{2}{8}\right) + \left(\frac{1}{7} \times \frac{3}{8}\right)\right] \times \frac{1}{6} = \frac{2879}{16464}.$ $A.3)b) P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}.$	
$P(R \cap A) = P(R/A) \times P(A) = \frac{3!}{2!} P(RR\overline{R}) \times \frac{1}{2} = \frac{3!}{2!} \times \frac{4}{7} \times \frac{4}{7} \times \frac{3}{7} \times \frac{1}{2} = \frac{72}{343}.$ $P(R \cap B) = P(R/B) \times P(B) = P(2R \& 1\overline{R}) \times \frac{1}{3} = \frac{C_3^2 \times C_5^1}{C_8^3} \times \frac{1}{3} = \frac{5}{56}.$ $P(R \cap C) = P(R/C) \times P(C) = \frac{4}{7} \times \frac{3}{8} \times \frac{1}{6} = \frac{1}{28}.$ $P(R) = P(R \cap A) + P(R \cap B) + P(R \cap C) = \frac{72}{343} + \frac{5}{56} + \frac{1}{28} = \frac{919}{2744}.$ $P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = \frac{P(M/A) \times P(A) + P(M/B) \times P(B) + P(M/C) \times P(C) = \frac{1}{28} \times \frac{4}{7} \times \frac{4}{7} \times \frac{3}{8} \times \frac{1}{7} \times \frac{1}{7} \times \frac{3}{8} \times \frac{1}{7} \times \frac{1}{7} \times \frac{3}{8} \times \frac{1}{7} \times \frac{1}{7} \times \frac{3}{8} \times \frac{1}{7} \times \frac{1}{16464}.$ $P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}.$	3/4
A.2)a) $P(R \cap A) = P(R/A) \times P(A) = \frac{1}{2!} P(RRR) \times \frac{1}{2} = \frac{1}{2!} \times \frac{1}{7} \times \frac{1}{7} \times \frac{1}{2} = \frac{3}{343}.$ $P(R \cap B) = P(R/B) \times P(B) = P(2R \& 1\overline{R}) \times \frac{1}{3} = \frac{C_3^2 \times C_5^1}{C_8^3} \times \frac{1}{3} = \frac{5}{56}.$ $P(R \cap C) = P(R/C) \times P(C) = \frac{4}{7} \times \frac{3}{8} \times \frac{1}{6} = \frac{1}{28}.$ A.2)b) $P(R) = P(R \cap A) + P(R \cap B) + P(R \cap C) = \frac{72}{343} + \frac{5}{56} + \frac{1}{28} = \frac{919}{2744}.$ $P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = \frac{1}{343} + $	
$P(R \cap C) = P(R/C) \times P(C) = \frac{4}{7} \times \frac{3}{8} \times \frac{1}{6} = \frac{1}{28}.$ A.2)b) $P(R) = P(R \cap A) + P(R \cap B) + P(R \cap C) = \frac{72}{343} + \frac{5}{56} + \frac{1}{28} = \frac{919}{2744}.$ $P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = P(M/A) \times P(A) + P(M/B) \times P(B) + P(M/C) \times P(C) = \left[\left(\frac{4}{7} \right)^3 + \left(\frac{2}{7} \right)^3 + \left(\frac{1}{7} \right)^3 \right] \times \frac{1}{2} + \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} + \left[\left(\frac{4}{7} \times \frac{3}{8} \right) + \left(\frac{2}{7} \times \frac{2}{8} \right) + \left(\frac{1}{7} \times \frac{3}{8} \right) \right] \times \frac{1}{6} = \frac{2879}{16464}.$ A.3)b) $P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}.$	3/4
A.2)b) $P(R) = P(R \cap A) + P(R \cap B) + P(R \cap C) = \frac{72}{343} + \frac{5}{56} + \frac{1}{28} = \frac{919}{2744}.$ P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = $P(M / A) \times P(A) + P(M / B) \times P(B) + P(M / C) \times P(C) =$ $\left[\left(\frac{4}{7} \right)^3 + \left(\frac{2}{7} \right)^3 + \left(\frac{1}{7} \right)^3 \right] \times \frac{1}{2} + \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} + \left[\left(\frac{4}{7} \times \frac{3}{8} \right) + \left(\frac{2}{7} \times \frac{2}{8} \right) + \left(\frac{1}{7} \times \frac{3}{8} \right) \right] \times \frac{1}{6} = \frac{2879}{16464}.$ A.3)b) $P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}.$	3/4
A.3)a) $P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = P(M \mid A) \times P(A) + P(M \mid B) \times P(B) + P(M \mid C) \times P(C) = \left[\left(\frac{4}{7} \right)^3 + \left(\frac{2}{7} \right)^3 + \left(\frac{1}{7} \right)^3 \right] \times \frac{1}{2} + \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} + \left[\left(\frac{4}{7} \times \frac{3}{8} \right) + \left(\frac{2}{7} \times \frac{2}{8} \right) + \left(\frac{1}{7} \times \frac{3}{8} \right) \right] \times \frac{1}{6} = \frac{2879}{16464}.$ A.3)b) $P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}.$	1/2
A.3)a) $P(M) = P(M \cap A) + P(M \cap B) + P(M \cap C) = P(M \mid A) \times P(A) + P(M \mid B) \times P(B) + P(M \mid C) \times P(C) = \left[\left(\frac{4}{7} \right)^3 + \left(\frac{2}{7} \right)^3 + \left(\frac{1}{7} \right)^3 \right] \times \frac{1}{2} + \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} + \left[\left(\frac{4}{7} \times \frac{3}{8} \right) + \left(\frac{2}{7} \times \frac{2}{8} \right) + \left(\frac{1}{7} \times \frac{3}{8} \right) \right] \times \frac{1}{6} = \frac{2879}{16464}.$ A.3)b) $P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}.$	1/2
A.3)a) $ \left[\left(\frac{4}{7} \right)^3 + \left(\frac{2}{7} \right)^3 + \left(\frac{1}{7} \right)^3 \right] \times \frac{1}{2} + \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} + \left[\left(\frac{4}{7} \times \frac{3}{8} \right) + \left(\frac{2}{7} \times \frac{2}{8} \right) + \left(\frac{1}{7} \times \frac{3}{8} \right) \right] \times \frac{1}{6} = \frac{2879}{16464}. $ A.3)b) $ P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}. $	
$\left[\left(\frac{4}{7} \right)^3 + \left(\frac{2}{7} \right)^3 + \left(\frac{1}{7} \right)^3 \right] \times \frac{1}{2} + \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} + \left[\left(\frac{4}{7} \times \frac{3}{8} \right) + \left(\frac{1}{7} \times \frac{3}{8} \right) \right] \times \frac{1}{6} = \frac{2879}{16464}.$ $A.3)b) P(M \cup B) = P(M) + P(B) - P(M \cap B) = \frac{2879}{16464} + \frac{1}{3} - \frac{C_3^3 + C_3^3}{C_8^3} \times \frac{1}{3} = \frac{8171}{16464}.$	1
	1
$P(\overline{B}/\overline{M}) = P(\overline{B} \cap \overline{M}) = P(\overline{B} \cap \overline{M}) = P(\overline{B} \cup \overline{M}) = 1 - P(B \cup M) - 8293$	1/2
A = D(M) = D(M	3/4
To get zero sum, means to select 3 red balls each carrying 0 point or to select 1 white ball, 1 black ball and 1 red ball carrying +1; -1 and 0 point respectively.	
Thus P (sum of secred points is equal to zero) =	1
$P(RRR) + \frac{3!}{1! \times 1! \times 1!} P(WBR) = \frac{A_7^3}{A_{15}^3} + \frac{3!}{1! \times 1! \times 1!} \times \frac{A_4^1 \times A_4^1 \times A_7^1}{A_{15}^3} = \frac{21}{65}.$	

QIII		Answers			9 pts.
A 1)	$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (2x - 1)e^{-x + 1} - \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (2x - 1)e^{-x + 1} - \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (2x - 1)e^{-x + 1} - \lim_{x \to +\infty} g(x) = \lim_{x$	$-1 = -\infty \times e^{+\infty} = -0$ -1 = 0 - 1 = -1;	∞.		1/4
All	since $\lim_{x \to +\infty} (2x-1)e^{-x+1} = \lim_{x \to +\infty} \frac{(2x-1)e^{-x+1}}{(2x-1)e^{-x+1}}$	$\frac{2x-1}{e^{x-1}} = \lim_{x \to +\infty} \frac{2}{e^{x-1}}$	$_{\overline{1}}=0$.		1/2
	$g'(x) = 2e^{-x+1} - (2x-1)e^{-x+1} =$	$(3-2x)e^{-x+1}$, sa	ame sign as $(3-2x)$) since $e^{-x+1} > 0$	
	for every $x \in \mathbb{R}$.				
	Table of variations of g :	I	1.5		
4.20	X	$-\infty$	1.5	$+\infty$	
A.2)	g'(:	x) +	0	_	
	g(x	x) -∞	$2e^{-\frac{1}{2}}-1$	-1	

	• Over] $-\infty$;1.5[, g is continuous, strictly increasing and changes its sign from	
	negative $(-\infty)$ to positive $(2e^{-\frac{1}{2}}-1)$ then the equation $g(x)=0$ admits a unique	
	solution over $]-\infty;1.5[$.	
	• Over $]1.5;+\infty[$, g is continuous, strictly decreasing and changes its sign from	
A.3)	positive $(2e^{-\frac{1}{2}}-1)$ to negative (-1) then the equation $g(x)=0$ admits a unique	1
	solution α over $]1.5;+\infty[$	
	• In addition: $g(1) = 0$, then 1 is a root.	
	Then the equation $g(x) = 0$ admits exactly two solutions 1 and α .	
	• $g(2.2) \approx 0.024 > 0$ and $g(2.4) \approx -0.063 < 0$, therefore $2.2 < \alpha < 2.4$.	
	• Over $]-\infty;1[$, g increases from negative $(-\infty)$ to positive (0) ,	
	thus $g(x) < 0$ over $]-\infty;1[$.	
	• Over $]1;\alpha[$, g increases from positive (0) to positive $(2e^{-\frac{1}{2}}-1)$ then decreases	
	from positive $(2e^{-\frac{1}{2}}-1)$ to positive (0), thus $g(x) > 0$ over $]1;\alpha[$.	
A.4)	• Over $]\alpha; +\infty[$, g decreases from positive (0) to negative (-1) ,	1
	thus $g(x) < 0$ over $\alpha; +\infty$.	
	Conclusion: • $g(x) < 0$ for $x \in]-\infty; 1[\cup]\alpha; +\infty[$.	
	• $g(x) < 0$ for $x \in]-\infty, [0]\alpha, +\infty[$. • $g(x) = 0$ for $x \in \{1; \alpha\}$.	
	• $g(x) > 0$ for $x \in [1, \alpha]$. • $g(x) > 0$ for $x \in [1, \alpha[$.	
	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (4x + 2)e^{-x+1} + 2x - 1 = -\infty + \infty = -\infty.$	
B.1)	$f(2) \approx 6.68$.	1/2
	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (4x + 2)e^{-x+1} + 2x - 1 = 0 + \infty = +\infty$	
	since $\lim_{x \to +\infty} (4x + 2)e^{-x+1} = \lim_{x \to +\infty} \frac{(4x + 2)H.R}{e^{x-1}} = \lim_{x \to +\infty} \frac{4}{e^{x-1}} = 0.$	
B.2)a)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3/4
	$\lim_{x \to +\infty} \left[f(x) - y_{(d)} \right] = \lim_{x \to +\infty} \left[(4x+2)e^{-x+1} + 2x - 1 - 2x + 1 \right] = \lim_{x \to +\infty} (4x+2)e^{-x+1} = 0,$	
	thus the line (d) of equation $y = 2x - 1$ is an oblique asymptote to (C).	
	$f(x) - y_{(d)} = (4x + 2)e^{-x+1}$, same sign as $(4x + 2)$ since $e^{-x+1} > 0$ for every $x \in \mathbb{R}$.	
B.2)b)	• $f(x) - y_{(d)} < 0$ for $x < -\frac{1}{2}$; (C) is below (d) if $x \in \left[-\infty; -\frac{1}{2}\right]$.	
		3/4
	• $f(x)-y_{(d)} > 0$ for $x > -\frac{1}{2}$; (C) is above (d) if $x \in \left] -\frac{1}{2}$; $+\infty \right[$.	
	• $f(x) - y_{(d)} = 0$ for $x = -\frac{1}{2}$; (C) cuts (d) at point of coordinates $\left(-\frac{1}{2}; -2\right)$.	
	$f'(x) = 4e^{-x+1} - (4x+2)e^{-x+1} + 2 = -(4x-2)e^{-x+1} + 2 = -2[(2x-1)e^{-x+1} - 1]$	
B.3)	=-2g(x), verified.	1 1/4
	$f'(x)$ and $g(x)$ have opposite sign over \mathbb{R} .	

	Table of variations of f :	
	$\begin{vmatrix} x & -\infty & 1 & \alpha & +\infty \\ f'(x) & + & 0 & - & 0 & + \end{vmatrix}$	
	$ f(x) \qquad \qquad \uparrow $	
	$\int -\infty \int f(\alpha) d\alpha$	
	$f''(x) = -2g'(x) = -2(3-2x)e^{-x+1} = 2(2x-3)e^{-x+1}$, same sign as $(2x-3)$ since	
	$e^{-x+1} > 0$ for every $x \in \mathbb{R}$.	
	$f''\left(\frac{3}{2}\right) = 0$; $f\left(\frac{3}{2}\right) = 8e^{-\frac{1}{2}} + 2$.	
D A)	$\left[\int_{0}^{\infty} \left(\frac{1}{2} \right)^{-3} e^{-\frac{\pi}{2}} \right] = 8e^{-\frac{\pi}{2}} + 2.$	1/
B.4)	f'' vanishes at $x = \frac{3}{2}$ and abanges its sign, thus (C) admits an inflaction point	1/2
	f" vanishes at $x = \frac{3}{2}$ and changes its sign, thus (C) admits an inflection point	
	$(3 \ 0 \ \frac{1}{2} \ 2)$	
	I whose coordinates are $\left(\frac{3}{2}; 8e^{-\frac{1}{2}} + 2\right)$.	
	(3)(3)(3)(2) 1 (2) 1	
	$(T): y = f'\left(\frac{3}{2}\right)\left(x - \frac{3}{2}\right) + f\left(\frac{3}{2}\right); f\left(\frac{3}{2}\right) = 8e^{-\frac{1}{2}} + 2 \text{ and } f'\left(\frac{3}{2}\right) = -4e^{-\frac{1}{2}} + 2.$	
B.5)		1/2
,	Thus $(T): y = \left(-4e^{-\frac{1}{2}} + 2\right)\left(x - \frac{3}{2}\right) + 8e^{-\frac{1}{2}} + 2$; $(T): y = \left(-4e^{-\frac{1}{2}} + 2\right)x + 14e^{-\frac{1}{2}} - 1$.	
	$\alpha(\alpha) = 0 \cdot (2\alpha - 1)e^{-\alpha + 1} = 1 - 0 \cdot e^{-\alpha + 1} = 1$	
	$g(\alpha) = 0; (2\alpha - 1)e^{-\alpha + 1} - 1 = 0; e^{-\alpha + 1} = \frac{1}{2\alpha - 1}.$ $f(\alpha) = (4\alpha + 2)e^{-\alpha + 1} + 2\alpha - 1 = \frac{4\alpha + 2}{2\alpha - 1} + 2\alpha - 1 = \frac{4\alpha + 2 + (2\alpha - 1)^2}{2\alpha - 1}$	
D.O	$4\alpha + 2 + (2\alpha - 1)^2$	1/
B.6)	$f(\alpha) = (4\alpha + 2)e^{-\alpha + 1} + 2\alpha - 1 = \frac{1}{2\alpha - 1} = \frac{1}{2\alpha - 1} = \frac{1}{2\alpha - 1}$	1/2
	$\frac{4\alpha + 2 + 4\alpha^2 - 4\alpha + 1}{4\alpha^2 + 3} = \frac{4\alpha^2 + 3}{4\alpha^2 + 3}.$	
	${2\alpha-1}$ ${}$ ${2\alpha-1}$.	
	(T) 8 (C) /	
	,/(d)	
	7	
	6	
	5	
	4 /	
B.7)		1 ½
	-1 0 / 1 2 3 4 X	
	17/	
	I	i