

proof of Hahn-Banach theorem

Canonical name ProofOfHahnBanachTheorem

Date of creation 2013-03-22 13:31:58 Last modified on 2013-03-22 13:31:58

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 8

Author paolini (1187)

Entry type Proof Classification msc 46B20 Consider the family of all possible extensions of f, i.e. the set \mathcal{F} of all pairings (F, H) where H is a vector subspace of X containing U and F is a linear map $F: H \to K$ such that F(u) = f(u) for all $u \in U$ and $|F(u)| \leq p(u)$ for all $u \in H$. \mathcal{F} is naturally endowed with an partial order relation: given $(F_1, H_1), (F_2, H_2) \in \mathcal{F}$ we say that $(F_1, H_1) \leq (F_2, H_2)$ iff F_2 is an extension of F_1 that is $H_1 \subset H_2$ and $F_2(u) = F_1(u)$ for all $u \in H_1$. We want to apply Zorn's Lemma to \mathcal{F} so we are going to prove that every chain in \mathcal{F} has an upper bound.

Let (F_i, H_i) be the elements of a chain in \mathcal{F} . Define $H = \bigcup_i H_i$. Clearly H is a vector subspace of V and contains U. Define $F: H \to K$ by "merging" all F_i 's as follows. Given $u \in H$ there exists i such that $u \in H_i$: define $F(u) = F_i(u)$. This is a good definition since if both H_i and H_j contain u then $F_i(u) = F_j(u)$ in fact either $(F_i, H_i) \leq (F_j, H_j)$ or $(F_j, H_j) \leq (F_i, H_i)$. Notice that the map F is linear, in fact given any two vectors $u, v \in H$ there exists i such that $u, v \in H_i$ and hence $F(\alpha u + \beta v) = F_i(\alpha u + \beta v) = \alpha F_i(u) + \beta F_i(v) = \alpha F(u) + \beta F(v)$. The so constructed pair (F, H) is hence an upper bound for the chain (F_i, H_i) because F is an extension of every F_i .

Zorn's Lemma then assures that there exists a maximal element $(F, H) \in \mathcal{F}$. To complete the proof we will only need to prove that H = V.

Suppose by contradiction that there exists $v \in V \setminus H$. Then consider the vector space $H' = H + Kv = \{u + tv : u \in H, t \in K\}$ (H' is the vector space generated by H and v). Choose

$$\lambda = \sup_{x \in H} \{ F(x) - p(x - v) \}.$$

We notice that given any $x, y \in H$ it holds

$$F(x) - F(y) = F(x - y) \le p(x - y) = p(x - v + v - y) \le p(x - v) + p(y - v)$$

i.e.

$$F(x) - p(x - v) \le F(y) + p(y - v);$$

in particular we find that $\lambda < +\infty$ and for all $y \in H$ it holds

$$F(y) - p(y - v) \le \lambda \le F(y) + p(y - v).$$

Define $F' \colon H' \to K$ as follows:

$$F'(u + tv) = F(u) + t\lambda.$$

Clearly F' is a linear functional. We have

$$|F'(u+tv)| = |F(u)+t\lambda| = |t||F(u/t)+\lambda|$$

and by letting y = -u/t by the previous estimates on λ we obtain

$$F(u/t) + \lambda \le F(u/t) + F(-u/t) + p(-u/t - v) = p(u/t + v)$$

and

$$F(u/t) + \lambda \ge F(u/t) + F(-u/t) - p(-u/t - v) = -p(u/t + v)$$

which together give

$$|F(u/t) + \lambda| \le p(u/t + v)$$

and hence

$$|F'(u+tv)| \le |t|p(u/t+v) = p(u+tv).$$

So we have proved that $(F', H') \in \mathcal{F}$ and (F', H') > (F, H) which is a contradiction.