Soluciones Completas - Taller Ley de Enfriamiento de Newton

Problema 1: Termómetro en congelador

Se mueve un termómetro de una habitación donde la temperatura es 70°F a un congelador donde está la temperatura 12°F. Después de 30 segundos el termómetro lee 40°F. ¿Qué lee después de 2 minutos?

Paso 1: Aplicamos la Ley de Enfriamiento de Newton:

$$T(t) = T_m + (T_0 - T_m)e^{-kt}$$

Paso 2: Calculamos la constante k:

$$40 = 12 + (70 - 12)e^{-30k}$$

$$28 = 58e^{-30k}$$

$$k \approx 0.0247 \text{ s}^{-1}$$

Paso 3: Calculamos para t = 120 s:

$$T(120) = 12 + 58e^{-0.0247 \times 120}$$

Respuesta: Después de 2 minutos, el termómetro leerá aproximadamente 15°F.

Problema 2: Fluido enfriándose

Un fluido inicialmente a 100°C se coloca afuera en un día en que la temperatura es -10°C, y la temperatura del fluido desciende 20°C en un minuto. Encuentra la temperatura T(t) del fluido para t > 0.

Paso 1: Datos iniciales:

$$T_0 = 100$$
°C, $T_m = -10$ °C, $T(1) = 80$ °C

Paso 2: Calculamos k:

$$80 = -10 + (100 - (-10))e^{-k \times 1}$$

$$90 = 110e^{-k}$$

$$k \approx 0.2007 \text{ min}^{-1}$$

Paso 3: Formulamos la ecuación:

$$T(t) = T_m + (T_0 - T_m)e^{-kt}$$

Respuesta: La temperatura del fluido para t > 0 es:

$$T(t) = -10 + 110e^{-0.2007t} \circ C$$

Problema 3: Termómetro en habitación y exterior

A las 12:00 pm se coloca un termómetro de lectura 10°F en una habitación donde la temperatura es 70°F. Se lee 56°F cuando se coloca afuera, donde la temperatura es 5°F, a las 12:03. ¿Qué lee a las 12:05 pm?

Paso 1: Aplicamos la Ley de Enfriamiento de Newton:

$$T(t) = T_m + (T_0 - T_m)e^{-kt}$$

Paso 2: Calculamos la constante k:

$$56 = 5 + (10 - 5)e^{3k}$$

$$51 = 5e^{-3k}$$

 $k \approx 0.776 \text{ min}^{-1}$

Paso 3: Calculamos para t = 5 minutos:

$$T(5) = 5 + 5e^{-0.776 \times 5}$$

$$T(5) \approx 5.1$$
°F

Respuesta: A las 12:05 pm, el termómetro leerá aproximadamente5.1°F.

Problema 4: Termómetro en habitación

Un termómetro que inicialmente lee 212°F se coloca en una habitación donde la temperatura es 70°F. Después de 2 minutos el termómetro lee 125°F.

a. ¿Qué lee el termómetro después de 4 minutos?

Paso 1: Calculamos k:

$$125 = 70 + (212 - 70)e^{-2k}$$

$$55 = 142e^{-2k}$$

 $k \approx 0.472 \text{ min}^{-1}$

Paso 2: Calculamos para t = 4 minutos:

$$T(4) = 70 + 142e^{-0.472 \times 4} \approx 91.4$$
°F

b. ¿Cuándo leerá el termómetro 72°F?

$$72 = 70 + 142e^{-0.472t}$$

t ≈ 9.05 minutos

c. ¿Cuándo leerá el termómetro 69°F?

$$69 = 70 + 142e^{-0.472t}$$

No tiene solución real. El termómetro nunca alcanzará 69°F (se aproxima a 70°F)

Respuesta:

- a) Después de 4 minutos: 91.4°F
- b) Alcanzará 72°F después de 9.05 minutos
- c) Nunca alcanzará 69°F (se aproxima a 70°F)

Problema 5: Objeto enfriándose

Un objeto con temperatura inicial 150°C se coloca afuera, donde la temperatura es 35°C. Sus temperaturas a 12:15 y 12:20 son 120°C y 90°C, respectivamente.

a. ¿A qué hora se colocó el objeto afuera?

Paso 1: Calculamos k usando los dos puntos:

$$120 = 35 + 115e^{-kt_1}$$

$$90 = 35 + 115e^{-k}t_2$$

$$k \approx 0.0906 \text{ min}^{-1}$$

Paso 2: Calculamos el tiempo inicial:

 $t_1 \approx 3.33$ minutos antes de 12:15 \Rightarrow 12:11:40

b. ¿Cuándo será su temperatura 40°C?

$$40 = 35 + 115e^{-0.0906}t$$

t ≈ 34.9 minutos desde la colocación ⇒ 12:46:30

Respuesta:

- a) El objeto se colocó afuera aproximadamente a las 12:11:40.
- b) La temperatura será 40°C aproximadamente a las 12:46:30.

Problema 6: Objeto en habitación

Un objeto se coloca en una habitación donde la temperatura es 20°C. La temperatura del objeto desciende en 5°C en 4 minutos y en 7°C en 8 minutos. ¿Cuál era la temperatura inicial del objeto?

Paso 1: Planteamos las ecuaciones:

$$T_0 - 5 = 20 + (T_0 - 20)e^{-4k}$$

$$T_0 - 7 = 20 + (T_0 - 20)e^{-8k}$$

Paso 2: Resolvemos el sistema:

$$(T_0 - 27)(T_0 - 20) = (T_0 - 25)^2$$

$$3T_0 = 85$$

$$T_0 \approx 28.33$$
°C

Respuesta: La temperatura inicial del objeto era aproximadamente 28.33°C.

Problema 7: Taza de agua hirviendo

Una taza de agua hirviendo se coloca afuera a la 1:00 pm. Un minuto después la temperatura del agua es 152°F. Después de otro minuto su temperatura es 112°F. ¿Cuál es la temperatura exterior?

Paso 1: Aplicamos la Ley de Enfriamiento de Newton dos veces:

$$152 = T_m + (212 - T_m)e^{-k}$$

$$112 = T_m + (212 - T_m)e^{-2k}$$

Paso 2: Resolvemos el sistema de ecuaciones:

$$(152 - T_m)/(212 - T_m) = e^{-k}$$

$$(112 - T_m)/(212 - T_m) = e^{-2k} = [(152 - T_m)/(212 - T_m)]^2$$

Paso 3: Solución cuadrática para T_m:

$$(112 - T_m)(212 - T_m) = (152 - T_m)^2$$

$$T_m \approx 32^{\circ}F$$

Respuesta: La temperatura exterior es aproximadamente 32°F.

Problema 8: Tanque con solución salina

Un tanque inicialmente contiene 40 galones de agua pura. Se agrega una solución con 1 gramo de sal por galón al tanque a 3 gal/min, y la solución resultante se drena a la misma velocidad. Encuentra Q(t) para t > 0.

Paso 1: Planteamos la ecuación diferencial:

 $dQ/dt = (1 g/gal \times 3 gal/min) - (Q(t)/40 gal \times 3 gal/min)$

dQ/dt = 3 - (3/40)Q

Paso 2: Resolvemos la ecuación diferencial:

$$Q(t) = 40(1 - e^{-3t/40})$$

Respuesta: La cantidad de sal en el tanque es:

$$Q(t) = 40(1 - e^{-3t/40})$$
 gramos

Problema 9: Tanque con solución más concentrada

Un tanque inicialmente contiene 60 galones de agua con 10 libras de sal. Se agrega solución con 0.5 lb/gal a 6 gal/min, y la mezcla sale a 6 gal/min. Encuentra Q(t) para t > 0.

Paso 1: Planteamos la ecuación diferencial:

$$dQ/dt = (0.5 lb/gal \times 6 gal/min) - (Q(t)/60 gal \times 6 gal/min)$$

$$dQ/dt = 3 - Q/10$$

Paso 2: Resolvemos con condición inicial Q(0) = 10 lb:

$$Q(t) = 30 - 20e^{-t/10}$$

Respuesta: La cantidad de sal en el tanque es:

 $Q(t) = 30 - 20e^{-t/10}$ libras

Problema 10: Concentración variable en tanque

Un tanque inicialmente contiene 100 litros de solución salina con concentración 0.1 g/l. Se agrega solución con 0.3 g/l a 5 l/min, y la mezcla sale a 5 l/min. Encontrar K(t).

Paso 1: Cantidad inicial de sal:

$$Q(0) = 100 I \times 0.1 g/I = 10 g$$

Paso 2: Ecuación diferencial:

$$dQ/dt = (0.3 g/l \times 5 l/min) - (Q(t)/100 l \times 5 l/min)$$

$$dQ/dt = 1.5 - Q/20$$

Paso 3: Solución:

$$Q(t) = 30 - 20e^{-t/20}$$

Paso 4: Concentración:

$$K(t) = Q(t)/100 = 0.3 - 0.2e^{t/20} g/I$$

Respuesta: La concentración de sal es:

$$K(t) = 0.3 - 0.2e^{t/20} g/I$$

Problema 11: Tanque con volumen variable

Un tanque de 200 galones inicialmente contiene 100 galones de agua con 20 lb de sal. Se agrega solución con 0.25 lb/gal a 4 gal/min, y la mezcla sale a 2 gal/min. Encuentra la cantidad de sal cuando está por desbordarse.

Paso 1: Tiempo hasta desbordamiento:

dV/dt = 4 - 2 = 2 gal/min

$$V(t) = 100 + 2t = 200 \Rightarrow t = 50 \text{ min}$$

Paso 2: Ecuación diferencial:

$$dQ/dt = (0.25 lb/gal \times 4 gal/min) - (Q(t)/(100 + 2t) \times 2 gal/min)$$

$$dQ/dt = 1 - 2Q/(100 + 2t)$$

Paso 3: Factor integrante:

$$\mu(t) = (100 + 2t)$$

Paso 4: Solución con Q(0) = 20 lb:

$$Q(t) = (100t + t^2 + 2000)/(100 + 2t)$$

Paso 5: Evaluamos en t = 50 min:

$$Q(50) = (5000 + 2500 + 2000)/200 = 47.5 lb$$

Respuesta: Cuando el tanque está a punto de desbordarse contiene47.5 libras de sal.

Problema 12: Tanque con fuga

Se agrega agua a un tanque a 10 gal/min, pero se escapa a razón de 1/5 gal/min por cada galón en el tanque. ¿Cuál es la menor capacidad que puede tener el tanque si el proceso va a continuar indefinidamente?

Paso 1: Planteamos la ecuación de balance:

dV/dt = 10 - (1/5)V

Paso 2: Para continuar indefinidamente, $dV/dt \ge 0$:

 $10 - (1/5)V \ge 0$

V ≤ 50 galones

Respuesta: La menor capacidad que puede tener el tanque es50 galones.

Problema 13: Control de gas nocivo

Un laboratorio produce 13 ft³/min de gas nocivo. Los ventiladores extraen aire fresco a q_2 ft³/min. Encontrar el mínimo q_2 para mantener concentración segura \leq C.

Paso 1: Ecuación de concentración:

 $V dc/dt = 13 - q_2c$

Paso 2: Concentración en estado estacionario:

 $0 = 13 - q_2c \Rightarrow c = 13/q_2$

Paso 3: Condición de seguridad:

 $13/q_2 \le C \Rightarrow q_2 \ge 13/C$

Respuesta: El valor mínimo requerido es $q_2 = 13/C$ ft³/min.

Problema 14: Tanque grande con solución salina

Tanque de 1200 galones con 600 gal iniciales y 40 lb de sal. Entra solución a 6 gal/min (0.5 lb/gal) y sale a 4 gal/min. Encontrar Q(t) antes del desbordamiento.

Paso 1: Tiempo hasta desbordamiento:

$$V(t) = 600 + (6-4)t = 1200 \Rightarrow t = 300 \text{ min}$$

Paso 2: Ecuación diferencial:

$$dQ/dt = (0.5 \times 6) - (Q/(600 + 2t)) \times 4 = 3 - 4Q/(600 + 2t)$$

Paso 3: Factor integrante:

$$\mu(t) = (600 + 2t)^2$$

Paso 4: Solución con Q(0) = 40 lb:

$$Q(t) = (600 + 2t)/2 + C/(600 + 2t)^2$$

$$Q(t) = 300 + t - 93,600,000/(600 + 2t)^2$$

Respuesta: La cantidad de sal es:

 $Q(t) = 300 + t - 93,600,000/(600 + 2t)^2$ libras

Problema 15: Sistema de dos tanques

Tanques T₁ y T₂ interconectados con diferentes flujos de entrada y salida.

a. Ecuación diferencial para Q(t) en T2:

Paso 1: Solución para T1:

$$Q_1(t) = 50(1 - e^{-t/25})$$

Paso 2: Balance para T2:

$$dQ_2/dt = (2Q_1(t)/50) + (2\times2) - (4Q_2(t)/50)$$

$$dQ_2/dt + (2/25)Q_2 = 6 - 2e^{-t/25}$$

b. Solución para Q₂(t):

Paso 3: Factor integrante:

$$\mu(t) = e^{2t/25}$$

Paso 4: Solución general:

$$Q_2(t) = 75 - 50e^{-t/25} - 25e^{-2t/25}$$

c. Límite cuando $t \rightarrow \infty$:

$$\lim Q_2(t) = 75 \text{ lb}$$

Respuesta:

a)
$$dQ_2/dt + (2/25)Q_2 = 6 - 2e^{t/25}$$

b)
$$Q_2(t) = 75 - 50e^{-t/25} - 25e^{-2t/25}$$

c) 75 lb (cuando t $\rightarrow \infty$)

Problema 16: Sistema objeto-recipiente-medio

Objeto (T₀) en recipiente (S₀) en medio (T_m).

a. Constantes de decaimiento distintas (k_{V} , k_{m}):

$$dS/dt = -k_v(S - T_m)$$

$$dT/dt = -k_m(T - S)$$

Solución:

$$S(t) = T_m + (S_0 - T_m)e^{-k_y t}$$

$$T(t) = S(t) + (T_0 - S_0)e^{k_m t}$$

b. Misma constante de decaimiento (k):

$$T(t) = T_m + (T_0 - T_m)e^{-kt}$$

$$S(t) = T_m + (S_0 - T_m)e^{-kt}$$

c. Límites cuando $t \rightarrow \infty$:

$$\lim S(t) = \lim T(t) = T_m$$

Respuesta:

a)
$$S(t) = T_m + (S_0 - T_m)e^{-k_y t}$$
, $T(t) = S(t) + (T_0 - S_0)e^{-k_m t}$

b)
$$S(t) = T_m + (S_0 - T_m)e^{-kt}$$
, $T(t) = T_m + (T_0 - T_m)e^{-kt}$

c) Ambas tienden a T_m cuando t $\rightarrow \infty$

Problema 17: Sistema con conservación de energía

Sistema objeto-medio con intercambio de calor y conservación de energía.

a. Ecuación diferencial solo para T:

Paso 1: De (B):
$$T_m = T_{m0} - (\alpha/\alpha_m)(T - T_0)$$

Paso 2: Sustituir en (A):

$$T' = -k[T - (T_{m0} - (\alpha/\alpha_m)(T - T_0)]$$

$$T' + k(1 + \alpha/\alpha_m)T = k(T_{m0} + (\alpha/\alpha_m)T_0)$$

b. Soluciones para T(t) y T_m(t):

Paso 3: Resolver la ecuación diferencial:

$$T(t) = [\alpha_m T_{m0} + \alpha T_0 + \alpha_m (T_0 - T_{m0}) e^{-k(1 + \alpha/\alpha_m)t}]/(\alpha_m + \alpha)$$

$$T_{m}(t) = T_{m0} - (\alpha/\alpha_{m})(T(t) - T_{0})$$

c. Límites cuando $t \rightarrow \infty$:

$$\lim T(t) = (\alpha_m T_{m0} + \alpha T_0)/(\alpha_m + \alpha)$$

$$Iim T_m(t) = T_{m0}$$

Respuesta:

a) T' + k(1 +
$$\alpha/\alpha_m$$
)T = k(T_{m0} + (α/α_m) T₀)

b) T(t) como se muestra,
$$T_m(t) = T_{m0} - (\alpha/\alpha_m)(T(t) - T_0)$$

c) Límites: T
$$\rightarrow$$
 ($\alpha_m T_{m0}$ + αT_0)/(α_m + α), T_m \rightarrow T_{m0}

Problema 18: Tanque con flujo proporcional

Flujo de entrada αV y salida bV^2 . Encontrar V(t) y lim V(t) cuando $t \rightarrow \infty$.

Paso 1: Ecuación diferencial:

$$dV/dt = \alpha V - bV^2$$

Paso 2: Separar variables e integrar:

$$\int [1/(\alpha V - bV^2)]dV = \int dt$$

$$(1/\alpha)\ln|V/(\alpha - bV)| = t + C$$

Paso 3: Solución general:

$$V(t) = \alpha V_0 e^{\alpha t} / (\alpha - bV_0 + bV_0 e^{\alpha t})$$

Paso 4: Límite cuando $t \rightarrow \infty$:

$$\lim V(t) = \alpha/b$$

Respuesta:

Solución: $V(t) = \alpha V_0 e^{\alpha t} / (\alpha - bV_0 + bV_0 e^{\alpha t})$

Límite: α/b (cuando t $\rightarrow \infty$)

Problema 19: Dos tanques idénticos en serie

Tanques T₁ y T₂ con W galones cada uno, flujo r gal/min y concentración c.

Paso 1: Para T1:

 $dQ_1/dt = r c - (r/W)Q_1$

 $Q_1(t) = c W(1 - e^{-rt/W})$

 $C_1(t) = c(1 - e^{-rt/W})$

Paso 2: Para T2:

 $dQ_2/dt = r C_1(t) - (r/W)Q_2$

 $Q_2(t) = c W[1 - (1 + rt/W)e^{rt/W}]$

 $C_2(t) = c[1 - (1 + rt/W)e^{rt/W}]$

Respuesta:

Concentraciones:

$$C_1(t) = c(1 - e^{rt/W})$$

$$C_2(t) = c[1 - (1 + rt/W)e^{rt/W}]$$

Problema 20: Secuencia infinita de tanques

Tanques $T_1,\,T_2,\,...,\,T_n,\!...$ con flujo r gal/min y concentración c.

a. Concentración en T_n:

Paso 1: Solución general para el n-ésimo tanque:

$$C_n(t) = c[1 - e^{-rt/W} \sum_{k=0}^{n-1} (rt/W)^k/k!]$$

b. Límite cuando $t \rightarrow \infty$:

 $\lim C_n(t) = c \text{ (para todo n)}$

Respuesta:

a)
$$C_n(t) = c[1 - e^{-rt/W} \sum_{k=0}^{n-1} (rt/W)^k/k!]$$

b) $\lim C_n(t) = c \text{ para todo } n$

Problema 21: Dos tanques con intercambio

Tanques T₁ (W₁ litros, C₁ g/l) y T₂ (W₂ litros, C₂ g/l) con intercambio a r l/min.

a. Concentraciones c1(t) y c2(t):

$$dc_1/dt = (r/W_1)(c_2 - c_1)$$

$$dc_2/dt = (r/W_2)(c_1 - c_2)$$

Solución:

$$c_1(t) = C_{prom} + (W_2 \Delta C)/(W_1 + W_2) \; e^{-r(1/W_1 \, + \, 1/W_2)t} \label{eq:c1}$$

$$c_2(t) = C_{prom} \text{ - } (W_1 \Delta C) / (W_1 + W_2) \text{ e}^{\text{-}r(1/W_1 + 1/W_2)t}$$

donde
$$C_{prom} = (W_1C_1 + W_2C_2)/(W_1 + W_2), \Delta C = C_1 - C_2$$

b. Límites cuando $t \rightarrow \infty$:

$$lim c_1(t) = lim c_2(t) = C_{prom}$$

Respuesta:

- a) c1(t) y c2(t) como se muestran
- b) Ambas tienden a $C_{prom} = (W_1C_1 + W_2C_2)/(W_1 + W_2)$

Problema 22: Mezcla no instantánea

Ecuación diferencial: Q' + $(\alpha(t)/150)$ Q = 2, con lim $\alpha(t)$ = 1 cuando $t \rightarrow \infty$.

a. Valor de lim Q(t):

Paso 1: En estado estacionario (t $\rightarrow \infty$):

$$(1/150)Q = 2 \Rightarrow Q = 300$$

b. Confirmación numérica:

Caso (i):
$$\alpha(t) = t/(1 + t)$$

Caso (ii):
$$\alpha(t) = 1 - e^{-t^2}$$

Caso (iii):
$$\alpha(t) = 1 - \sin(e^{-t})$$

Todos convergen a Q = 300 cuando $t \rightarrow \infty$

Respuesta:

- a) $\lim Q(t) = 300$
- b) Se confirma numéricamente para todos los casos

Problema 23: Tanque con capacidad infinita

Considerar el problema de mezcla en un tanque con capacidad infinita, pero sin el supuesto de que la mezcla se agita instantáneamente.

a) Valor límite de K(t):

$$Q' + (\alpha(t)/(t+100))Q = 1$$

Cuando t
$$\rightarrow \infty$$
, $\alpha(t) \rightarrow 1$

$$K(t) = Q(t)/V(t) \approx 1/2$$

b) Confirmación numérica:

Para diferentes $\alpha(t)$, $K(t) \rightarrow 1/2$

Respuesta:

- a) $\lim K(t) = 1/2$
- b) Se confirma numéricamente para todos los casos