Due Week 1 and 2

Reference: 1. L. N. Trefethen and D. Bau: Numerical Linear Algebra, SIAM, 1997

Reading: Review what you learned from your Linear Algebra classes.

1. (a) Let M be the matrix of data points

$$M = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \end{bmatrix}.$$

What are M^TM and MM^T ?

- (b) Prove that if A is any matrix, then A^TA and AA^T are symmetric. (Recall that a matrix M is symmetric if $M = M^T$.)
- 2. (1.4-Trefethen & Bau) Let f_1, \ldots, f_8 be a set of functions defined on the interval [1,8] with the property that for any numbers d_1, \ldots, d_8 , there exists a set of coefficients c_1, \ldots, c_8 such that

$$\sum_{j=1}^{8} c_j f_j(i) = d_i, \qquad i = 1, \dots, 8.$$

- (a) Show that d_1, \ldots, d_8 determine c_1, \ldots, c_8 uniquely.
- (b) Let A be the 8×8 matrix representing the linear mapping from data d_1, \ldots, d_8 to coefficients c_1, \ldots, c_8 . What is the i, j entry of A^{-1} ?
- 3. (1.3-Trefethen & Bau) We say that a square or rectangular matrix R with entries r_{ij} is upper-triangular if $r_{ij} = 0$ for i > j. Show that if R is a nonsingular $m \times m$ upper-triangular matrix, then R^{-1} is also upper-triangular. (Note that the analogous result also holds for lower-triangular matrices.)
- 4. Recall that a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, is said to have full rank if its columns are linearly independent, i.e., for \mathbf{a}_j the jth column of A, $c_1\mathbf{a}_1 + \ldots + c_n\mathbf{a}_n = 0 \Longrightarrow c_1 = \ldots = c_n = 0$. Show that A has full rank if and only if no two distinct vectors are mapped to the same vector.