Introduction to Digital circuits (CSE3015-01)

Homework # 03

Due Date: 2020-12-10 18:00

Chapter 4

Problem 14 (d)

14. You are to design a driver for an eight-segment display as described below. It has four inputs, a, b, c, d and eight outputs, $X1, \ldots, X8$.

This is to display the decimal equivalent of a 4-bit binary number that is in one's complement format. In one's complement, the following values are coded:

0000	O	1000	-7
0001	1	1001	-6
0010	2	1010	-5
0011	3	1011	-4
0100	4	1100	-3
0101	5	1101	-2
0110	6	1110	-1
0111	7	1111	0

(Note that the minus sign (X8) is lit for -1 to -7, but not for either 0 or for 1 to 7.) Segment X1 may or may not be lit for the digit 6; segment X6 is not lit for digit 7. All inputs are available both complemented and uncomplemented.

d. Implement these functions using a PLA with as few terms as possible. Show a PLA diagram.

Chapter 5

Problem 1 (d)

1. For each of the following state tables, show a state data complete the timing trace as far as possible (even after the input is no longer known).

X d.		q^{\star}		z	
~	q	x = 0	x = 1	x = 0	x = 1
	A	A	В	1	0
	В	C	D	0	0
	C	A	В	0	0
	D	C	D	1	0

Problem 6

- 6. We have a new type of flip flop, with inputs A and B. If A = 0, then $Q^* = B$; if A = 1, $Q^* = B'$.
 - a. Show a state diagram for this flip flop.
 - b. Write an equation for Q^* in terms of A, B, and Q.

Problem 9(a)

Chapter 6

Problem 3(e)

- 3. For each of the following state tables and state assignments, find the flip flop input equations and the system output equation for an implementation using

 i. *D* flip flops
 - ii. JK flip flops

q x = 0 x = 1 x = 0 x = 1	q_1q_2
	0.0
A B D 0 B	0 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1
C A B O D	1 0

Problem 9

9. Design a counter with two JK flip flops, A and B, and one input, x. If x = 0, it counts 1, 3, 0 and repeat; if x = 1, it counts 1, 2, 3 and repeat.
a. Assume that x changes only when it is in state 1 or 3 (in which case there are two combinations which never occur—state 2 and x = 0, and state 0 and x = 1).
b. After building the design of part a (with the two don't cares), what happens if somehow x is 0 in state 2 and what happens if somehow x is 1 in state 0?

Problem 15 (d)

Problem 15 (g)

