ЮВ	ый раздел	Баллов: 13 из 20
×	Кубит может хранить следующие данные	0 из:
•	или ноль или единицу	×
0	ноль и единицу одновременно	
0	все возможные значения между нулем и единицей одноврем	енно
0	кубиты не хранят данные	
Трав	ильный ответ	
•	кубиты не хранят данные	
×	Кубит в суперпозиции	0 из
•	находится одновременно в состояниях ноль и единица	×
0	является аналогом генератора случайных чисел	
0	находится одновременно во всех промежуточных состояниях	
0	находится в неустойчивом равновесии	
lpas	ильный ответ	
•	является аналогом генератора случайных чисел	
×	Аргументация имеет целью	0 из
•	побуждение реципиента к действиям	×
0	согласие и желание реципиента изменить свое мнение	
0	распространение знаний	
	принуждение к размышлениям	

1	Силлогизмы Аристотеля это пример	1 из 1
0	правдоподобных рассуждений	
0	индукции	
•	дедукции	/
0	абдукции	
~	Метод правдоподобных рассуждений это	1 из 1
0	пример демонстративной аргументации	
0	строгое математическое доказательство	
•	всего лишь способ приближения к истине	~
~	Информированный поиск на дереве решений это разновидность	1 из 1
•	эвристической аргументации	1
0	диалоговой аргументации	
0	игры с ненулевой суммой	
	демонстрационной аргументации	

×	Вероятность может базироваться на	0 из 1
	оценке рисков	×
	отношении между верой в виде гипотезы, и данными, подтверждающим это	· ~
	логических рассуждениях	
	симметрии исходов	
	статистике	~
Пра	вильный ответ	
~	симметрии исходов	
~	статистике	
\checkmark	отношении между верой в виде гипотезы, и данными, подтверждающим	и это
0	выбор каждой очередной вершины, стоимость достижения которой минимальна выбор вершины с минимальной стоимостью перемещения к ней	
•	выбор вершины с наилучшей эвристикой, которая показывает оценку расстояния до целевой вершины	~
×	Эвристики для жадного поиска и поиска А*	0 из 1
0	могут быть одной и той же	
•	обязательно разные	×
Пра	вильный ответ	

✓ Декларативность языка Prolog означает, что предикаты	1 из 1
О должны размещаться в строгом порядке	
могут размещаться в произвольном порядке	~
о могут размещаться в произвольном порядке, но их нужно декларировать заранее	
О должны декларироваться в любом месте	
Можно ли предикат выхода из рекурсии размещать после предикатов, использующих рекурсию?	1 из 1
О нет да	
можно, если указать все необходимые условия	~
✓ Допущение открытого мира означает, что	1 из 1
 возможно только то, что утверждается в явном виде 	
отрицание факта не означает отсутствие решения	
отсутствие данных равносильно отсутствию решения	
возможно всё, что не отрицается явным образом	~

/	Проблемы Semantic Web	1 из 1
	туманные перспективы коммерциализации	~
	необходимость использования мощных СУБД даже на мобильных устрориствах	
	отсутствие надежных средств хранения больших данных	
	необходимость шифрования всех данных	
	необходимость дублирования каналов передачи данных	
	необходимость передачи больших данных даже для простых запросов	
V	сложность формализации знаний	~
~	Нейронная сеть при выходе за пределы обученной области	1 из 1
0	экстраполирует значения	
0	выдает константы, зафиксированные на границе обученной области	
•	выдает непредсказуемые значения	~
0	выдает ошибку	
/	Как связаны нейронная сеть и машинное обучение?	1 из 1
0	Это синонимы	
•	Машинное обучение используется для обучения нейронной сети	~
	Ничего общего	
0		

V C	Сеть GRNN это	1 из 1
O M	иножественная линейная регрессия	
O 14	квадратичная регрессия	
● K	кусочная аппроксимация функции	~
() a	аппроксимация с помощью логистического сигмоида	
O 8	аппроксимация функцией гиперболического тангенса	
	еть Хопфилда реализует функцию, наиболее близкий аналог оторой в дискретной математике	1 из 1
O 1	шифратор	
()	дешифратор	~
0 0	счетчик	
\bigcirc \circ	сумматор	
O k	компаратор	
× y	инфикация данных это	0 из 1
O r	приведение к единому масштабу	
O F	приведение к одинаковым единицам измерения	
0	очистка от аномалий	
(e) r	приведение к одинаковой разрядности	×
O r	преобразование лингвистических переменных в численные	
Прави	льный ответ	
n	риведение к одинаковым единицам измерения	

выполняет свертку пикселей для компактного хранения изображений