## \* Weighted Zone Scoring:

- Document is divided into xones
- For a query q and a document d, weighted zone scoving assigns to pair (qid) a scove in range [0,1] by computing a linear combination of zone scores.
- For a set of documents, each document has I zones.
- Let g,, -, g, E[0,1] such that £;=, g: =1
- +;=1, Si be the boolean score denoting a match between 9, and 9th zone.

S'= 1, 16 all query term occur in that zone otherwise si=0.

- Meighted zone scove => 2 == g: xs:

## \* learning weights for zone scoring:

- How to determine meights gi for weighted zone scorings.
- These weights are learned using training examples

that have been judged editorially.

- There is a set of training examples each of which is a tuple of a query q, a document of and a selevance judgement for d on q.

| Chap #06                     |                                                    |
|------------------------------|----------------------------------------------------|
| Scoring, Term Weig           | hting Date                                         |
| 2- Vector Spai               | re Model.                                          |
|                              |                                                    |
| Ranked Retrieval             | Unranked Retrieval.                                |
|                              | O System retrieves flat result on with no ranking. |
| O System retrieves document  | O System retrieves plat result                     |
| wit ranking order            | with no ranking.                                   |
| @ Assign scoves to each      | @ Binary criterion for deciding                    |
| term. for matching           | relevance.                                         |
|                              |                                                    |
| 3 Supports free lext queries | 3 9 mgo need has to be - (ranslated                |
| as well as boolean queries.  | into boolean queries.                              |
|                              |                                                    |
| * Parametric Search :        |                                                    |
| No ments in to               |                                                    |
| - Documents contain  - Bata  |                                                    |
|                              | - data contated well                               |
| document.                    | n data associated with each                        |
|                              | date of publication etc                            |
|                              | one of publication on                              |
| -> Provides search bosed o   | n parameter.                                       |
|                              | · Colorinate ·                                     |
| -> Parametric search consis  | ts as usual of postings                            |
| intersection and we co       | an merge postings by                               |
| standard inverted in         | dexas as well as parametric                        |
| n                            | ice indepes.                                       |

| ST   SB   Score                                     | 3                           |
|-----------------------------------------------------|-----------------------------|
| 7 0 9                                               | Date                        |
|                                                     |                             |
| score (dig) =                                       | ST => gt title (9)          |
| 9.5, (d, q)+ (1-9)5B                                | (dig) S8 => g8   body (1-g) |
|                                                     |                             |
| essor of scoring function                           |                             |
| $\mathcal{E}(g, \phi_j) = (\mathcal{H}(g, \phi_j))$ | (d;, q;) - score(d;, q;))   |
| where & = editorial                                 | relevance judgement         |
| quantix                                             | ed to 0,1                   |
| Total error = 2, & (                                | $(P_{i})$                   |
|                                                     |                             |
| 29 Training examples                                | no, = relevant,             |
| noz = irrelevant                                    |                             |
| 57 = 0 , 58 = 1                                     |                             |
|                                                     |                             |
| error = (r(d,9) -                                   |                             |
| majerror = 11 - (1-9)                               | )}~mo.                      |
|                                                     |                             |
| moz error = [0 - (1 - 8                             | 9) no.                      |
|                                                     |                             |
| Total error = (1 (1-                                | g)] no, + [0-(1-g)] no;     |
|                                                     | 723 201 - 1 217 205         |
|                                                     |                             |
|                                                     |                             |

| ON +  |  |   |
|-------|--|---|
| Date_ |  | - |

When using meighted zone scoring, is it necessary for all zones to use same Boolean function?

Ans No,

Boolean score for title zone could be 1 when alleast half of the query terms occur in the zone and O otherwise. Boolean score for body zone could be I when all query lerms occur in the Gody & O other wise.

Author zone g, = 0.2, title zone g2 = 0.31 , body zone 93 = 0.49. Distinct scores?

1 if appears in all zones. ANS

> 0.51 % appears in author & title zone. 0.69 9 " " 4 3 body zone 0.8 4 4 + title 2 4

- No. of occurrences of term - 1 in document - How many times term appear in a document? - Denoted by tftid

| ON +  |  |  |   |
|-------|--|--|---|
| Date_ |  |  | _ |

\* Socument Frequency:
- No. of documents that contains term to

- Denoted by Stt

\* Collection Frequency:

- Total no of occurrences of a term in the whedion

\* Bag of words model:

- A document is represented as a bag of words.
- Ordering of terms in a document is ignored.
- Cordains no of occurrences of each term.

ey "Mary is quicker than John" is identical to "John is quicker than mary".

\* Inverse document frequency:

- Used to scale document frequency.

where N= Jotal mo. of documents in a collection.

- idt of vare lerm will be high
- idt of frequent lerm will be low.

\* Weighting Scheme:

- Combination of term frequency & inverse document frequency to produce a composite weight for each term in each document.

tf-idftid - tftid\*idft.

- Assigns a weight to a term t in document d.

O highest -> -L occurs many times within a

small no -> o documents.

Doner -> 1 occurs fewer times in a document

3 lowest - 1 occurs virtually in all documents.

Score (q,d) - 2 tf-idftid.

Note: edf of term es always fenite.

idf < LogN - never becomes infinity.

dftid > always greater than 1.

\* Vector Space Model.

- The representation of a set of documents as vectors in a common vector space is known as the vector space model.
- Used for IR operations including scoring documents on a query adocument classification and document clustering.

-> Dot product := .

- V(d) => 9t is a vector derived from document d, with one component for each dictionary term
- Set of documents in a collection then viewed as a set of vectors in vector space, having one axis, for each term.
- 9t loses the relative ordering of -lesms in each document.
- Similarily between two documents is calculated using Cosine Similarily of the vector.

  Sim(d1, d2) = V(d1). V(d2) = dot product

  endidean

  lengths. IV(d1) II. V(d2)

bot product of two vector  $\vec{x}$  and  $\vec{y}$   $\underbrace{\sharp_{i-1}^{m} \chi_{i} y_{i}}$ Let  $\vec{J}(d) = document$  vector for d. M = components for d  $\vec{V}_{i}(d) \dots \vec{V}_{m}(d)$ Euclidean length =  $\int \underline{\xi_{i-1}^{m} V_{i}^{2}(d)}$ 

sim(d1, d2) =  $\hat{V}(d_1)$ .  $\hat{V}(d_2)$  $\hat{V}(d_1) = \hat{V}(d_1)$  went vector  $\hat{V}(d_1)$ 

77777777777

| example   | boc1 | pood | 5003 | 1 30  |
|-----------|------|------|------|-------|
| can       | 27   | 4    | 24   | 199   |
| auto      | 3    | 33   | 0    |       |
| insurance | 0    | 3 3  | 29   | 100   |
| best      | 14   | 0    | 17   | 10000 |

Euclidean length for  $d_1 = \sqrt{2} = \sqrt{2}(d)$   $d_1 = \sqrt{(27)^2 + (3)^2 + (14)^2} = 30.56$   $d_2 = 46.84$   $d_3 = 41.30$ 

Date\_

Query as a vector:

- Query can also be represented as a document vector similar la document Only -lerms present in a query are

non-zero vector for the query.

score (and) = V(a). V(d) 17(a)111(d)

\* Advantages of VSM

- O Simple model based on Linear algebra
- 1 Jern vieights not binary
- 3 Allows partial matching
- 1 Pank documents according to their relevance.

\* Disadvantages of VSM

- O loses ordering of terms.
- Assumes -terms are statistically independent substrings might results in false positive match
- 9 We cannot search phrases

## (Food for thoughts) Chap # 06.

1 Arswer pg # 7,8

@ Terms; dil, Pakistan, jan, hum, sub, Ki, aux

|           | 1  | T d. I | da | dŦ | id f  | EF, midf | tf2xidf | tf3*idf |  |
|-----------|----|--------|----|----|-------|----------|---------|---------|--|
|           | di | 0      | 1  | 1  | 0.477 | 0        | 0       | 0.477   |  |
| dil.      | 2  | 0      | 1  | 2  | 0.176 | 0.352    | 0       | 0.176   |  |
| dil       | 0  | 1      | 0  | 1  | 0.477 | 0        | 0.417   | 0       |  |
| hum       | 2  | 1      | 1  | 3  | 0     | 0        | 0       | 0       |  |
| jan<br>Ki | 0  | 1      | 0  | 1  | 0.477 | 0        | 0.477   | 0       |  |
| Pakistan  | 2  | 1      | 2  | 3  | 0     | 0        | 0       | 0       |  |
| sub       | 0  | 1      | 0  | 1  | 0.477 | 0        | 10.477  | 0       |  |

Query: dil jan Pakistan.

| += | df | 1++1d+      |                                         |
|----|----|-------------|-----------------------------------------|
| 0  | 1  | 0           |                                         |
| 1  | 2  | 0.176       |                                         |
| 0  | 1  | 0           |                                         |
| 1  | 3  | 0           |                                         |
| 0  | 1  | 0           |                                         |
| 1  | 3  | 0           |                                         |
| 0  | 1  | 0           |                                         |
|    | 0  | 0 1 2 0 1 3 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |



Date\_ Idf = log | N ) Idt = log IdF = 0 Idf will be 0 if term appears in all documents. Because dft,d ≥ 1

idf < log N

dft,d → Yeh kbhi b zero nhi

lage istye finites hoga istye finite.

nice