中山大学本科生期末考试

考试科目:《大学物理》(A卷)

学年学期: 2018 学	年第1学期	姓	名:			
学 院/系:		学	号:			
考试方式: 闭卷/开	·卷	年级-				
考试时长: 120 分针	中	班	别:			
任课老师:						
警示《中山大学	学授予学士学位工	.作细则》第/	\条:"考证	式作弊者,不	授予学士学位	. "
以下为	可试题区域,共2道;	大题,总分 100	分,考生请存	生答题纸上作答	<u> </u>	_
一、选择题(每题 2 分	分,共计 40 分)					
1. 预计 2020 年服役的	的大麦哲伦天文望远镜	镜的口径达到3	0m, 其分辨	能力是正在服	役的口径为2.41	m的哈勃
天文望远镜的[] (A) 8 倍 (B) 12	.5 倍 (C)4 倍	(D) 6.25				
2. 若星光的波长按 55 一点看两星的视线间势		127cm 的大型	望远镜所能分	分辨的两颗星的	最小角距离 $ heta$	(从地上
2.2.10=3.1		5.2	10-5 1	5.2.1	0-7 1	
(A) $3.2 \times 10^{-3} \text{ rad}$	(B) $1.8 \times 10^{-4} \text{ rad}$	、 /		(D) 5.3×10	U rad	
3. 关于单缝夫琅禾费? (A) 狭缝变窄且入射波]。			
(B) 入射波长增大且狭						
(C) 衍射角越大的那些						
(D) 中央明条纹宽度约	J共 E 明余纹的网 后。	,				
4.波长为 400nm 光到				多能观察到级数	坟是[].	
A. 3 级;	B. 2 级;	C.5级;	D. 4 级.			
5.在牛顿环实验中,	平凸透镜和平玻璃板	反的折射率都是	n,其间原为	为空气,后来注	:满折射率为 n'	(n'>n)
的透明液体,则反射光		-				
A. 变密;	B. 变疏;	C. 不变;	D. 不能研	角定.		
6. 在等倾干涉中,薄原	摸厚度 e 连续增加,	则干涉条纹将	-[]			
(A)条纹外冒 (B)条纹内缩						
(C) 不变						
(D) 无法判断						

7. 如图所示, $S_1 \setminus S_2$ 是两个相干光源, 它们到 P 点的距离分别为 r_1 和 r_2 。路径 S_1P 垂直穿过一块厚度为 d_1 , 折射率为 n_1 的介质板,路径垂直穿过厚度为 d_2 ,折射率为 n_2 的另一介质板,其余部分可看作真空,这两条 路径的光程差等于「

- (A) $(r_2 + n_2 d_2) (r_1 + n_1 d_1)$
- (B) $[r_2 + (n_2 1)d_2] [r_1 + (n_1 1)d_1]$
- (C) $(r_2 n_2 d_2) (r_1 n_1 d_1)$
- (D) $n_2 d_2 n_1 d_1 S_2 P$

- 8. 在杨氏双缝干涉实验中,如果将两缝的间距加倍,则干涉条纹的间距[
- (A) 是原来的二分之一;
- (B) 是原来的两倍;
- (C) 是原来的四分之一;
- (D) 是原来的四倍。
- 9. 如图所示的杨氏双缝干涉实验中,光源 S 到缝 S_1 的距离比它到 S_2 的距离略大,现将 S 向右移动一微小距 离,则[]
- (A) 干涉条纹不动, 间距不变
- (B) 干涉条纹不动, 间距变大
- (C) 条纹整体向下平移, 间距不变
- (D) 条纹整体向上平移, 间距不变

- 10. 两个偏振片紧靠在一起将它们放在一盏灯的前面以致没有光通过,如果将其中的一片旋转 180 度, 在旋 转过程中,将会产生下述的哪一种现象[
- A、透过偏振片的光强先增强, 然后又减少到零
- B、透过偏振片的光强光增强, 然后减少到非零的最小值
- C、透过偏振片的光强在整个过程中都增强
- D、透过偏振片的光强先增强,再减弱,然后又增强
- 11. 在点电荷 q 的电场中,选取以 q 为中心、R 为半径的球面上一点 M 作为电势零点,则与点电荷相距为 r(r < R)的 N点的电势为 []

- $(\text{A}) \ \frac{q}{4\pi\,\varepsilon_{\scriptscriptstyle 0} r} \qquad \qquad (\text{B}) \ \frac{q}{4\pi\,\varepsilon_{\scriptscriptstyle 0}} (\frac{1}{r} \frac{1}{R}) \qquad \qquad (\text{C}) \ \frac{q}{4\pi\,\varepsilon_{\scriptscriptstyle 0} (r R)} \qquad \qquad (\text{D}) \ \frac{q}{4\pi\,\varepsilon_{\scriptscriptstyle 0}} (\frac{1}{R} \frac{1}{r})$

12.如图所示为一速率选择器, 在区域 V内有相互垂直的匀强电场和匀强磁场, 区域 V两侧有等高的窄缝 S.

且 $B = 6 \times 10^{-5}$ T, d = 30 cm。现有一束具有不同速率的电子束以垂直于 \vec{E} 和 \vec{B} 的方向从左侧缝进入区域 V若从速率选择器右侧的缝穿出的粒子的速率为3×10⁶ m/s,则电场两端电势差为[

- (A) 200V

- (B) 600V (C) 54V (D) 180V
- 13. 一电荷量为 q 的粒子在均匀磁场中运动,下列说法正确的是[]。
- (A) 只要速度大小相同, 粒子所受的洛伦兹力就相同
- (B) 在速度不变的前提下, 若电荷 q 变为-q, 粒子动量保持不变。
- (C) 粒子进入磁场后, 其动能发生变化。
- (D) 洛伦兹力与速度方向垂直, 对运动的带电粒子不作功。
- 14. (050601A002) 真空中某静电场区域内的电场线是方向相同的平行直线,则在该区域内场强大小 E和电 势 []
- (A) 都是常量 (B) 都不是常量 (C) E 是常量, V 不是常量 (D) E 不是常量, V 是常量 (E) 条件不足, 无法确定
- 15. 一平板电容器充电后断开与电源的连接, 若改变两极板间的距离, 则下述物理量中保持不变的是[
- (A) 电容器的电容量 (B) 两极板间的场强
- (C) 电容器储存的能量 (D) 两极板间的电势差
- 16. 四个带电粒子从相同入射点 0 以相同的速度垂直射入磁感强度垂直纸面向外的均匀磁场,四个带电粒 子的偏转轨迹如图所示。若四个带电粒子所带电荷的电量相同,则图中带负电且质量最大的粒子的运动轨

- (A) 轨迹 *OM* (B) 轨迹 *ON* (C) 轨迹 *OE* (D) 轨迹 *OG*
- 17. 如图所示,两种形状的载流线圈中的电流强度相同,则 O1、O2处的磁感应强度大小关系是[
 - (A) $B_{O_1} < B_{O_2}$; (B) $B_{O_1} > B_{O_2}$;
 - (C) $B_{Q_1} = B_{Q_2}$; (D) 无法判断。

18. 在圆柱形空间内有一磁感强度为 B 的均匀磁场,如图所示。B 的大小以 dB/dt 变化。有两根导线放在磁场中的两个不同位置 ab 和 cd.则这两根金 感应电动势大小关系为[]。

率 速 属棒中的

- (A) $\varepsilon_{ab} = \varepsilon_{cd} \neq 0$
- (B) $\varepsilon_{ab} > \varepsilon_{cd}$
- (C) $\varepsilon_{ab} < \varepsilon_{cd}$
- (D) $\varepsilon_{ab} = \varepsilon_{cd} = 0$
- 19. 如图所示,M、N 为水平面内两根平行的金属导轨,ab 与 cd 为垂直于导轨并可在其上自由滑动的两根 直裸导线,外磁场垂直于水平面向上。当外力使 ab 向右平移时, cd[]
- (A) 不动
- (B) 转动
- (C) 向左移动 (D) 向右移动

- 20. 关于电磁感应, 下列说法错误的是[
 - (A) 将一磁铁迅速或缓慢插入一个由导线组成的闭合电路线圈中, 产生的感应电动势前者(迅速插入) 大;
 - (B) 将一磁铁插入一个不闭合的金属环中,金属环会产生感生电动势,但不能形成感应电流;
- (C) 一个质子通过磁铁附近发生偏转,如果磁铁静止,质子的动能将保持不变;如果磁铁运动,质子的动 能将发生改变;
 - (D) 自感电动势不能大于电源的电动势;瞬时电流不能大于稳定时的电流值。
- 二、计算题(每题 12 分,总分 60 分)
- 1. 如图<1> 所示,A 处是一个缝间间隔为 0.2 mm 的双缝,用一束波长为 λ 的单色光照射双缝,可在距离 A 为 100 cm 处的观测屏上看见明暗相间的干涉条纹, 条纹间隔为 2.95 mm。
- (1) 求出该单色光的波长λ。
- (2) 当用一折射率 n_i 未知, 厚度 e = 0.015 mm 的透明薄片挡住其中位于上方的狭缝时 (如图<2> 所示),

原来的零级明纹移动到了原来第 15 级明纹的位置上,求薄片的折射率 n_1 。

- 2. 波长600 nm 的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级。
- (1) 光栅常数(a + b) 等于多少?

- (2) 透光缝可能的最小宽度a 等于多少?
- (3) 在选定了上述(a + b) 和a 之后,求在衍射角 $-\pi/2 < \varphi < \pi/2$ 范围内可能观察到的全部主极大的级次。
- 3. 半径为 R_1 =1.0cm 的导体球,带有电荷 q =1.0×10⁻¹⁰C ,球外有一个内外半径分别为 R_2 =3.0cm 和 R_3 = 4.0cm 的同心导体球壳,壳上带有电荷 Q =1.1×10⁻⁹C ,试计算:(1)两导体的电势 U_1 和 U_2 ;(2)用导线把球和球壳接在一起后, U_1 和 U_2 分别是多少?(3)若外球接地, U_1 和 U_2 为多少?(取无穷远处为电势零点)
- 4. 电流 /均匀地流过半径为 R的圆柱形长直导线,试计算 /长度导线内的磁场通过图中所示剖面的磁通量。

5. 由两个"无限长"的同轴圆筒状导体所组成的电缆(电荷在表面分布),其间充满磁导率为 μ 的磁介质,电缆中沿内圆筒和外圆筒流过的电流 / 大小相等而方向相反。设内外圆筒的半径分别为 R 和 R ,求电缆单位长度的自感。(下图所示为其中的一小段电缆,长度为 / 。)

