TP2 Algoritmos genéticos Sistemas de Inteligencia Artificial ITBA 2023 Q1

Grupo 4

Integrantes

Gaspar Budó Berra

Marcos Dedeu

Santiago Hadad

Bruno Squillari

Marcus Galea Jacobsen

CONTENIDO

Ejercicio 1

Representación de imágenes en ASCII

Ejercicio 2

Mezcla de colores

Representación de imágenes en ASCII

Suponemos que todas las imágenes CUADRADAS son blanco y negro.

Genotipo:

- Usamos lo caracteres _ / \ | y el espacio en blanco.
- A la imagen original la dividimos en una matriz de 3Nx3N con valores 1 o 0.
- En cada posición de la imagen original que haya color negro, la marcamos con un 1. Si no, la marcamos con un 0.
- Para dibujar el caracter, utilizamos una matriz 3x3, según los ejemplos de la siguiente diapositiva.

Representación de imágenes en ASCII

Representa

Espacio

Alelos:

Representa

Representa Representa

Representa

Cromosoma ejemplo:

Configuración del Algoritmo Genético

Población Inicial: Suponemos una Matriz compuesta aleatoriamente por estas matrices de 3x3.

Fitness: La cantidad de bits que están bien ubicados menos los que están mal ubicados.

Método de Selección: Torneos determinísticos

Cruza: Cruza uniforme.

Mutación: Multigen limitada

Condición de corte: Por tiempo o por la siguiente ecuación, donde epsilon es la similitud a la imágen que queremos alcanzar.

$$-\varepsilon < fitness - MaxFitness < \varepsilon$$

Ejercicio 2

Mezcla de colores

- Colores = vectores rgb.
- Similitud entre colores:
 - Mínima distancia entre los vectores rgb.

Implementación

Genotipo

ullet Se utilizan las proporciones: G

$$Gen = (p_1, p_2, p_3, \dots)$$

$$p_i \in [0,1] \wedge \sum_i p_i = 1$$

Combinación lineal:

$$(r,g,b)=p_1\cdot (r_1,g_1,b_1)+p_2\cdot (r_2,g_2,b_2)+p_3\cdot (r_3,g_3,b_3)...$$

Fitness

Definimos fitness o función de adaptabilidad como:

$$f(\vec{p_1}, \vec{p_2}) = \sqrt{3 \cdot 255^2} - |\vec{p_1} - \vec{p_2}|$$

Rango de fitness posibles = [0, 461.67]

Algoritmos de selección:

- Elite
- Por ruleta
- Torneos probabilísticos
- Torneos deterministicos

Algoritmos de Mutación:

- Multigen limitada
- Multigen uniforme
- Completa

Algoritmo de cruza:

Cruza uniforme

Aclaraciones para la cruza y la mutación

Cruza:

Mutación:

Condición de corte

Por cantidad de iteraciones: 2000 iteraciones máximo.

- igstar **Por estructura:** 25 iteraciones sin cambios ightarrow Solución estancada
 - \circ Definimos una cota con ϵ = 10:

$$-\epsilon < MaxFitness - PrevMaxFitness < \epsilon$$

Análisis y resultados

Selección + Mutación: Parámetros

Fijos:

- Tamaño de la población: N = 20
- \triangleright Cantidad de hijos en cada iteración: K = 15
- ightharpoonup Probabilidad de mutación: $P_{M} = 0.5$
- ightharpoonup Cantidad de participantes en los torneos: $N_T = 15$
- ightharpoonup Umbral para el torneo probabilístico: η = 0.5

Selección + Mutación: Parámetros

Fijos:

> Paleta de colores:

Selección + Mutación: Parámetros

Variables:

- Métodos de selección
- Métodos de mutación

Resultados: Cantidad de Iteraciones

Resultados: Aptitud máxima

Resultados: Ejemplo visual

Objetivo

Elite & Uniform mutation

Probabilistic Tournament & Complete

Selección + Mutación: Conclusiones

- ★ Mejores resultados con Elite.
- ★ Sin máximos locales, si no uno global.
- ★ La mutación multigénica limitada obtiene mejores resultados.

Población + Hijos generados: Parámetros

Parámetros fijos:

- Probabilidad de mutación: P_M = 0.5
- Selección Elite
- Multigen multigénica limitada
- Misma paleta inicial y color objetivo.

Población + Hijos generados: Parámetros

Parámetros variables:

- > Tamaño de la población:
 - \circ $N \in [20, 200, 800, 1000]$

- Cantidad de hijos generados:
 - \circ $K \in [N * p : p \in [0.1, 0.5, 1]]$

Población + Hijos: resultados

Población + Hijos: resultados

Poblacion + Hijos: Conclusiones

- A mayor cantidad de hijos generados, menor cantidad de iteraciones.
- Incrementar el tamaño de la población incrementa la aptitud máxima.
- A partir de cierto tamaño tiende a ser constante.

Probabilidad de mutación: Parámetros

Parametros fijos:

- Selección Elite
- Multigen uniforme
- Misma paleta inicial y color objetivo.
- Tamaño de la población: N = 200
- Cantidad de hijos en cada iteración: K = 200

Probabilidad de mutación: Parámetros

Parametros Variables:

Probabilidad de mutación

$$P_{M} \in \{0.1, 0.2, ... 1\}$$

Probabilidad de mutación: Resultados

Probabilidad de mutación: Resultados

Probabilidad de mutación: Conclusiones

★ Variar la probabilidad de mutación usando elite, no tiene un gran impacto.