

The Principle of Computer System

Hardware/Boftware interface

楼学庆

浙江大学计算机学院

http://10.214.47.99/

Email:hzlou@163.com

联系方式

- 网站:
 - http://10.214.47.99
- 邮箱:
 - <u>hzlou@163.com</u>(不收作业)

Course outline

Name:

Computer Systems

Students:

Undergraduate students in department.

• Score: 4.5

Hours/week: 3.5-2

Total: 88 hours

《计算机系统原理》课程目标

- 利用一个学期,覆盖《逻辑与计算机设计》、《计算机组成》、《体系结构》与《汇编与接口》等计算机硬件系统系列主要课程。作为非计算机技术方向,学习了解掌握计算机硬件、计算机系统方面知识的主要课程。
 - ☆前导课程:《C语言程序设计》

Bits, Bytes, and Integers

15-213: Introduction to Computer Systems 2nd and 3rd Lectures, Sep. 3 and Sep. 8, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

浙江大学计算机学院

For example, can count in binary

Base 2 Number Representation

- Represent 15213₁₀ as 111011011011₂
- Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimal

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Or

■ A | B = 1 when either A=1 or B=1

I	0	1
0	0	1
1	1	1

Not

~A = 1 when A=0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

^	0	1
0	0	1
」 【机学院	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 10101010
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_j = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

- &	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
■ ∧	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 <a>0xBE
 - ~010000012 ca101111102
- ~0x00 @0xFF
 - ~000000002 call11111112
- - 01101001₂ & 01010101₂ < 01000001₂
- 0x69 | 0x55 🖘 0x7D
 - 01101001₂ | 01010101₂ 🖾01111101₂

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&** &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 \@0x00
- !0x00 ∞0x01
- !!0x41 \infty 0x01

- p && *p (avoids null pointer access)

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&**&, ||, !
 - View 0 as "Fall
 - Anything ponzo
 - Alway
 - Early
- Example
 - !0x41 ໔
 - !0x00 ଜ
 - !!0x41
- Watch out for && vs. & (and || vs. |)... one of the more common oopsies in
- **C** programming
- 0x69 && 0x55 < 0x0x01
- p && *p (avoids null pointer access)

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

Undefined	Rehavior

Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Bit

Encoding Integers

Unsigned

$B2U(X) = \sum_{i=1}^{w-1} x_i \cdot 2^{i}$

Two's Complement

$$\sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
short int x = 15213;
short int y = -15213;

C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement Encoding Example (Cont

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	.13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 新江大学之1第机学院

-15213

Numeric Ranges

Unsigned Values

$$UMax = 2^w - 1$$

$$111...1$$

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W					
	8	16	32	64		
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615		
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807		
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808		

Observations

- - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:

Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3 4
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

浙江大学计算机学院

Conversion Visualized

2's Comp. \rightarrow Unsigned

Ordering Inversion

Negative → Big Positive

UMax - 1TMax + 1TMax **TMax** 2's Complement Range **TMin**

UMax

Range

Unsigned

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffixOU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```


Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation	
0	0 U	==	unsigned	
-1	0	<	signed	
-1	0U	>	unsigned	
2147483647	-2147483647-1	>	signed	
2147483647U	-2147483647-1	<	unsigned	
-1	-2	>	signed	
(unsigned)-1	-2	>	unsigned	
2147483647	2147483648U	<	unsigned	
2147483647 08:56:22	(int) 2147483648U 浙江大学计算机学院	>	signed	3
				_

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

$$X' = X_{w-1},...,X_{w-1},X_{w-1},X_{w-2},...,X_0$$


```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex	Hex Binary			
x	15213	3B 6D	00111011 01101101			
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101			
У	-15213	C4 93	11000100 10010011			
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011			

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits

 \mathcal{U}

+ v

True Sum: w+1 bits

u + v

Discard Carry: w bits

 $UAdd_{w}(u, v)$

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

NegOver

1 000...0

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Operands: w bits		u	• • •	
	*	• • •		
True Product: $2*w$ bits $u \cdot v \square$	• • •		• • •	
Discard w bits: w bits	$UMult_w(a)$	(u, v)	• • •	

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

Operands: w bits		и			• • •	
	*	v	П	Ш	• • •	
True Product: $2*w$ bits $u \cdot v$	• • •				• • •	
Discard w bits: w bits	$TMult_{\scriptscriptstyle{W}}(u)$	(u, v)		П	• • •	

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

• $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$

True Product: w+k bits

Discard k bits: w bits

Both signed and unsigned

Operands: w bits

Examples

- u << 3 == u * 8
- u << 5 u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

 $u\cdot 2^k$

Unsigned Power-of-2 Divide with Shift

- **Quotient of Unsigned by Power of 2**
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- *Don't* use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```


Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax

18:56:23 What if cnt is signed and < QAT工大学计算机学院

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

Any given computer has a "Word Size"

- Nominal size of integer-valued data
 - and of addresses
- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
- Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

[]# []# 0

浙江大学计算机学院

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

32-bit Words	64-bit Words	Bytes	Addr.
			0000
Addr =			0001
0000			0002
	Addr =		0003
	0000		0004
Addr =			0005
0004			0006
			0007
			0008
Addr =			0009
0008	Addr		0010
	=		0011
1	8000		0012
Addr =			0013
0012			0014
			0015

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
float	4	4	4	
double	8	8	8	
long double	-	-	10/16	
pointer	4	8	8	

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian			0x100	0x101	0x102	0x103	
			01	23	45	67	
Little Endia	ın		0x100	0x101	0x102	0x103	
			67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```


Representing Pointers

int
$$B = -15213;$$

int *P = &B

Different compilers & machines assign different locations to objects

Representing Strings

char S[6] = "18213";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Integer C Puzzles

Initialization

• x < 0	((x*2) < 0)
• ux >= 0	
• x & 7 == 7	(x << 30) < 0
• ux > -1	
• x > y	-x < -y
• x * x >= 0	
• $x > 0$ && $y > 0$	x + y > 0
• x >= 0	-x <= 0
• x <= 0	-x >= 0
• $(x -x) >> 31 == -1$	
• ux >> 3 == ux/8	

x & (x-1) != 0

• x >> 3 == x/8

Bonus extras

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Binary Number Property

Claim

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} = 2^{w}$$

$$1 + \mathop{\bigcirc}_{i=0}^{w-1} 2^{i} = 2^{w}$$

- w = 0:
 - $1 = 2^0$
- Assume true for w-1:

$$1 + 1 + 2 + 4 + 8 + ... + 2^{w-1} + 2^w = 2^w + 2^w = 2^{w+1}$$

$$= 2^w$$

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```


Malicious Usage /* Declaration of library function memcpy */

```
/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```


Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Mathematical Properties of TAdd

Isomorphic Group to unsigneds with UAdd

- TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

$$TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$$

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

Code Security Example #2

SUN XDR library

Widely used library for transferring data between machines

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```


malloc(ele_cnt * ele_size)

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```


XDR Vulnerability

malloc(ele_cnt * ele_size)

What if:

• Allocation = ??

How can I make this function secure?

Compiled Multiplication Code

C Function

```
long mul12(long x)
{
  return x*12;
}
```

Compiled Arithmetic Operations

```
leaq (%rax,%rax,2), %rax
salq $2, %rax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Compiled Unsigned Division Code

C Function

```
unsigned long udiv8
      (unsigned long x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
shrq $3, %rax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

浙江大学计算机学院

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
long idiv8(long x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testq %rax, %rax
  js L4
L3:
  sarq $3, %rax
  ret
L4:
  addq $7, %rax
  jmp L3
```

Explanation

```
if x < 0
  x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \mathsf{UMult}_{w}(u, v) \leq 2^{w} - 1$$

Multiplication Commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_{w}(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_w(t, UAdd_w(u, v)) = UAdd_w(UMult_w(t, u), UMult_w(t, v))$$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

Isomorphic to ring of integers mod 2^w

Comparison to (Mathematical) Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Floating Point

15-213: Introduction to Computer Systems **4**th Lecture, Sep. 10, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

Bits to right of "binary point" represent fractional powers of 2

Represents rational number: $\sum_{k=1}^{n} b_k \times 2^k$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 101.112

27/8 10.111₂

17/16 1.0111₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

- Use notation 1.0 – ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
Value Representation
```

- **1/3** 0.01010101[01]...2
- **1/5** 0.00110011[0011]...2
- 1/10 0.0001100110011[0011]...₂

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes *E* (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	exp	frac
---	-----	------

Precision options

■ Single precision: 32 bits

Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

Extended precision: 80 bits (Intel only)

1 15-bits 63 or 64-bits

"Normalized" Values

When: exp ≠ 000...0 and exp ≠ 111...1

Exponent coded as a biased value: E = Exp - Bias

- Exp: unsigned value of exp field
- $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

Significand coded with implied leading 1: M = 1.xxx...x2

- xxx...x: bits of frac field
- Minimum when frac=000...0 (M = 1.0)
- Maximum when frac=111...1 (M = 2.0ε)
- Get extra leading bit for "free"

##

Normalized Encoding Example

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = 1.1101101101101_2 x 2^{13}

Significand

$$M = 1.\frac{1101101101_{2}}{1101101101101}_{2}$$

frac= $\frac{1101101101101}{00000000000}_{2}$

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 1101101101101000000000

S

exp

frac

Denormalized Values

- **■** Condition: exp = 000...0
- **Exponent value:** E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: *M* = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- **■** Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- **■** Summary

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only) $v = (-1)^s M 2^E$

	s	exp	frac	E	Value		n: E = Exp - Bias
	0	0000	000	-6	0		d: E = 1 – Bias
	0	0000	001	-6	1/8*1/64	= 1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	= 2/512	010000110 2010
numbers	•••						
	0	0000	110	-6	6/8*1/64	= 6/512	
	0	0000	111	-6	7/8*1/64	= 7/512	largest denorm
	0	0001	000	-6	8/8*1/64	= 8/512	smallest norm
	0	0001	001	-6	9/8*1/64	= 9/512	Silialiest Horili
	•••						
	0	0110	110	-1	14/8*1/2	= 14/16	
	0	0110	111	-1	15/8*1/2	= 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	= 1	
numbers	0	0111	001	0	9/8*1	= 9/8	closest to 1 above
	0	0111	010	0	10/8*1	= 10/8	010000110 1 45010
	•••						
	0	1110	110	7	14/8*128	= 224	
	0	1110	111	7	15/8*128	= 240	largest norm
	0	1111	000	n/a	inf		

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Special Properties of the IEEE Encoding

- **■** FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- **■** IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	_
\$1.50					
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up $(+\infty)$	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

08:56:26

浙江大学计算机学院

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value Value	Binary	Rounded	Action	Rounded
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110_2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11100_{2}	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

Exact Result: $(-1)^s M 2^E$

• Sign s: s1 ^ s2

■ Significand *M*: *M1* x *M2*

Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

Assume *E1* > *E2*

■ Exact Result: (-1)^s M 2^E

- ■Sign *s*, significand *M*:
 - Result of signed align & add
- ■Exponent *E*: *E*1

Get binary points lined up

Fixing

- ■If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

But may generate infinity or NaN

Commutative?

Yes

Associative?

No

Overflow and inexactness of rounding

• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity?

Yes

Every element has additive inverse?

Almost

Yes, except for infinities & NaNs

Monotonicity

Almost

■ $a \ge b \Rightarrow a+c \ge b+c$?

Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?

Yes

But may generate infinity or NaN

Multiplication Commutative?

Yes

Multiplication is Associative?

No

Possibility of overflow, inexactness of rounding

• Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20

1 is multiplicative identity?

No

- Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN

 Almost

Monotonicity

Today: Floating Point

- Background: Fractional binary numbers
- **■** IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float

. 56:27 Will round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Additional Slides

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

- s exp frac

 1 4-bits 3-bits
- Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	1000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

浙江大学计算机学院

Normalize

S	ехр	frac
1	4-bits	3-bits

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

• Round = 1, Sticky = $1 \rightarrow > 0.5$

Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Interesting Numbers

{single,double}

Description	ехр	frac	Numeric Value	
Zero	0000	0000	0.0	
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$	
■ Single $\approx 1.4 \times 10^{-45}$				
■ Double $\approx 4.9 \times 10^{-324}$				
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$	
■ Single $\approx 1.18 \times 10^{-38}$				
■ Double $\approx 2.2 \times 10^{-308}$				
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$	
 Just larger than largest denor 	malized			
One	0111	0000	1.0	
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$	
■ Single $\approx 3.4 \times 10^{38}$				

Double $\approx 1.8 \times 10^{308}$