

Chapitre V – La fonction logarithme népérien

 ${\sf Bacomathiques-https://bacomathiqu.es}$

TABLE DES MATIÈRES	
I - Propriétés du logarithme népérien 1. Définition	1 1 2 2
II - Étude de la fonction 1. Limites 2. Dérivée 3. Variations	4 4 5 5
III - Le logarithme décimal	6

I - Propriétés du logarithme népérien

1. Définition

Le **logarithme népérien** est une fonction qui est définie sur $]0;+\infty[$ par :

```
x\mapsto \ln(x)
```

Et on a la relation fondamentale suivante pour tout x > 0 et y réels :

```
\ln(x) = y \iff x = e^y
```

Ainsi, a tout réel **strictement positif** x, la fonction logarithme népérien y associe **son unique antécédent** y par rapport à la fonction exponentielle.

De même pour la fonction exponentielle. On dit que ces fonctions sont des **fonctions réci- proques** (à la manière de sin et arcsin ou cos et arccos).

À LIRE 00

Cette relation peut sembler compliquer à assimiler mais il n'en est rien! Prenons x=0, on a :

 $e^0=1$ (tout réel mis à la puissance zéro vaut un), la relation précédente nous donne $\ln(1)=0$.

Si on prend maintenant x=1, on a : $e^1=e$, on a donc $\ln(e)=1$.

Les relations suivantes sont par conséquent disponibles :

```
Pour tout réel x strictement positif, on a : e^{\ln(x)} = x

Et pour tout réel x, on a : \ln(e^x) = x
```

2. Relations algébriques

Le logarithme népérien a plusieurs propriétés intéressantes qu'il faut connaître. Ainsi, pour tous réels x et y **strictement positifs** :

-
$$\ln(x \times y) = \ln(x) + \ln(y)$$

- $\ln(x^n) = n \times \ln(x)$ pour $n \in \mathbb{Z}$
- $\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$
- $\ln\left(\frac{1}{y}\right) = -\ln(y)$
- $\ln(\sqrt[p]{x}) = \frac{1}{p} \times \ln(x)$ pour $p \in \mathbb{N}^*$

Certaines des ces propriétés peuvent se déduire les unes des autres.

3. Représentation graphique

Voici une représentation graphique de la fonction logarithme népérien :

On voit sur ce graphique plusieurs propriétés données précédemment : ln(1) = 0 et ln(e) = 1 par exemple.

On trace maintenant le graphe de la fonction logarithme népérien, avec celui de la fonction exponentielle. On trace également la droite d'équation y=x:

On remarque plusieurs choses : le graphe de la fonction logarithme népérien est le symétrique de celui de la fonction exponentielle par rapport à la droite y=x et on voit que la fonction logarithme népérien croît moins vite que la fonction puissance qui elle-même croît moins vite que la fonction exponentielle. Cette propriété est importante : c'est la **croissance comparée**.

II - Étude de la fonction

1. Limites

Les limites de la fonction logarithme népérien aux bornes de son ensemble de définition sont :

A RETENIR
$$\P$$

$$-\lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$$

$$-\lim_{\substack{x \to +\infty}} \ln(x) = +\infty$$

Il faut aussi savoir que la fonction puissance "l'emporte" sur le logarithme népérien (voir la partie "Représentation graphique") :

$$-\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{\ln(x)}{x} = 0$$

$$-\lim_{\substack{x \to 0 \\ x > 0}} x \times \ln(x) = 0$$

Une autre limite est à connaître (ainsi que sa démonstration) :

```
\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1
```

DÉMONSTRATION 🥮

La fonction logarithme népérien est définie et continue en x=1, on peut donc écrire :

$$\ln'(1) = \lim_{x \to 1} \frac{\ln(x) - \ln(1)}{x - 1}$$

Ce qui est équivalent à (car on a ln(1) = 0 et ln'(1) = 1) :

$$1 = \lim_{x \to 1} \frac{\ln(x)}{x - 1}$$

On pose y = x - 1 ce qui nous donne finalement :

$$\lim_{y\to 0}\frac{\ln(y-1)}{y}=1$$

2. Dérivée

Soit une fonction u dérivable et **strictement positive** sur un intervalle I, on a pour tout x appartenant à cet intervalle :

A RETENIR
$$\P$$

$$\ln'(u(x)) = \frac{u'(x)}{u(x)}$$

Ainsi, si pour tout $x \in I$ on a u(x) = x:

$$\ln'(x) = \frac{1}{x}$$

3. Variations

Avec la dérivée donnée précédemment ainsi que les limites données, il est désormais possible d'obtenir les variations de la fonction logarithme népérien :

On remarque qu'avec le tableau de variation, il est possible d'obtenir le signe de la fonction (avec le théorème des valeurs intermédiaires).

Ainsi, sur]0;1[, ln est strictement négative et sur]1; $+\infty$ [, $\ln(x)$ est strictement positive et, comme vu précédemment, $\ln(1) = 0$.

On observe également les variations de la fonction : strictement croissante sur son ensemble de définition.

III - Le logarithme décimal

Le logarithme décimal (utilisé en physique-chimie en classe de Terminale S) est défini sur]0; $+\infty$ [par :

À RETENIR 💡

$$\log_{10}(x) = \frac{\ln(x)}{\ln(10)}$$

Et on a les propriétés suivantes :

À RETENIR 💡

À LIRE 99

Ces formules peuvent se retrouver très facilement ! En effet, pour la première : $\log_{10}(10)=\frac{\ln(10)}{\ln(10)}=1.$

$$\log_{10}(10) = \frac{\ln(10)}{\ln(10)} = 1.$$

Et pour la seconde :
$$\log_{10}(10^n) = \frac{n \times \ln(10)}{\ln(10)} = n \times \frac{\ln(10)}{\ln(10)} = n.$$