Задача 23

Дайте определения эквивалентных функций, бесконечно малой функции и функций одного порядка. Найдите функцию $g(x)=Cx^a$, эквивалентную функции $f(x)=\sqrt[3]{x^6+3\sqrt[5]{x}}$, при $x\to 0$, $x\to \inf$.

Решение

Определение. бесконечно малые функции a(x) и b(x) называются эквивалентными бесконечно малыми при x->a, если $\lim_{n\to a} \frac{a(x)}{b(x)} = 1$

Таблица эквивалентных б.м. функций при x o 0

1.	$\sin x \sim x$	6.	$\ln(1+x)\sim x$
2.	$\arcsin x \sim x$	7.	$\log_a x \sim \frac{x}{\ln a}$
3.	$tgx \sim x$	8.	$a^x - 1 \sim x \ln a$
4.	$arctgx \sim x$	9.	$e^x - 1 \sim x$
5.	$1-\cos x \sim \frac{x^2}{2}$	10.	$(1+x)^m - 1 \sim mx$

Определение. ϕ ункции a(x) и b(x) называются бесконечно малыми одного порядка малости при x->a, если $\lim_{n\to a} \frac{a(x)}{b(x)} = c$, c! = 0

Определение. функция y = f(x) называется бесконечно малой при x -> a, если $\lim_{n \to a} f(x) = 0$

Примеры:

- 1. $f(x) = (x-1)^2$ бесконечно малая при x -> 1.
- 2. $f(x) = \frac{1}{x}$ бесконечно малая при x -> inf.

Задание

Найдите функцию $g(x) = Cx^a$, эквивалентную функции $f(x) = \sqrt[3]{x^6 + 3\sqrt[5]{x}}$, при x -> 0, x -> inf.

1. х -> 0. Рассмотрим $g(x) = \sqrt[3]{3} \cdot \sqrt[15]{x}$

$$\lim_{n \to 0} \frac{\sqrt[3]{x^6 + 3 \cdot \sqrt[5]{x}}}{\sqrt[3]{x^6 + 3\sqrt[5]{x}}} = \lim_{n \to 0} \frac{\sqrt[3]{\frac{x^6}{x^{1/5}} + 3 \cdot \frac{x^{1/5}}{x^{1/5}}}}{\sqrt[3]{3}} = \lim_{n \to 0} \frac{\sqrt[3]{x^{29/5} + 3}}{\sqrt[3]{3}} = 1$$

- 2. Это значит, что g(x) искомая эквивалентная функция.
- 3. $x \to \inf$, положим $g(x) = x^2 \lim_{n \to \infty} \frac{\sqrt[3]{x^6 + 3 \cdot \sqrt[5]{x}}}{x^2} = \lim_{n \to \infty} \sqrt[3]{1 + 3 \cdot x^{-29/5}} = \lim_{n \to \infty} \sqrt[3]{1 + 3 \cdot x$
- 4. А значит, g(x) искомая эквивалентная функция. Мы красавы!