GP-06-05-2023

Hengde Ouyang

2023-06-05

1. GP independent sampling with true MH ratio

Indeed, when we increase our iteration, we will eventually see the convergence pattern.

Function

```
MH_GP_Sampling <- function(Y,delta,tau,</pre>
                         A, beta0, sigma0, var.prop,
                         m,B,eta,K,
                         Wmat_option=0){
  accept_beta = 0
  accept_lambda = 0
  beta = beta0
  lambda = lambda0
  sigma = sigma0
  # What we want to record
  BETA = matrix(0,m,dim(A)[1])
  LAMBDA = matrix(0,m,dim(A)[2])
  C_stat = c()
  # For safety m>B
  if (B>m){
    B = 0
  }
  # O means we use Harrell C statistics
  # 1 means we use Uno C statistics
  if (Wmat_option==0){
    Wmat <- HarrellC_Wmat(Y, delta, tau)</pre>
  }else if (Wmat_option==1){
    Wmat <- UnoC_Wmat(Y, delta, tau)</pre>
  }else{ # Other Possible C index..
```

```
Wmat <- HarrellC_Wmat(Y, delta, tau)</pre>
}
for (i in 1:m){
 # Sample beta from proposal distribution
 beta.p = t(rmvnorm(1,beta,var.prop))
 # Compute theta from current and last iteration
 theta.p = beta.p
 theta = beta
 # Compute C-statistics from current and last iteration
 HC.p = HarrellC(theta.p, Wmat)
 HC = HarrellC(theta, Wmat)
 # Record C-statistics from last iteration
 C_{stat} = c(C_{stat}, HC)
 # Compute log of MH ratio
 lrMH = eta*log(HC.p) +
       dmvnorm(as.numeric(beta.p),beta0,K,log=T)-
       eta*log(HC) -
       dmvnorm(as.numeric(beta),beta0,K,log=T)
   if (log(runif(1))<lrMH){</pre>
     beta = beta.p
     accept_beta = accept_beta + 1
   BETA[i,] = beta
  # Compute log of MH lambda ratio
 lambda.p = exp(t(rnorm(dim(A)[2],log(lambda),rep(1,dim(A)[2]))))
 lambda.p = as.vector(lambda.p)
 K.p = matrix_K(A,lambda.p)
 lrMH_lambda = dmvnorm(as.numeric(beta),beta0,K.p,log=T)+
              sum(dgamma(lambda.p,alpha0,v0,log = T)) -
              dmvnorm(as.numeric(beta),beta0,K,log=T) -
              sum(dgamma(lambda,alpha0,v0,log = T))
```

```
if (log(runif(1))<lrMH_lambda){</pre>
       lambda = lambda.p
      K = K.p
      accept_lambda = accept_lambda + 1
     LAMBDA[i,] = lambda
 if (B == 0){
   return(list(BETA=BETA,
             LAMBDA = LAMBDA,
              accept_beta=accept_beta/m,
              accept_lambda=accept_lambda/m,
              C_stat = C_stat))
 }else{
   return(list(BETA=BETA[-c(1:B),],
              LAMBDA = LAMBDA[-c(1:B),],
              accept_beta=accept_beta/m,
              accept_lambda=accept_lambda/m,
              C_{stat} = C_{stat}[-c(1:B)])
 }
}
```

Try using lung data set first

The number of observetions is relatively small in this dataset.

```
B = 200
eta = length(Y)
Wmat_option = 0
var.prop = diag(0.01, dim(A)[1])
K = as.matrix(matrix_K(A,lambda0))
alpha0 = 1
v0 = 1
system.time({
  result_GP1 = MH_GP_Sampling(Y,delta,tau,
                        A,beta0,sigma0,var.prop,
                        m,B,eta,K,
                        Wmat_option)
})
##
      user system elapsed
## 1253.78
             23.10 1495.66
```

Indeed, when we increase our iteration, we will eventually see the convergence pattern.

Figure 1

Since our β in Gaussian Process is a nx1 vector, we randomly choose four β_j to see what their patterns look like

```
par(mfrow=c(2,2))
index = sample(1:length(Y),size = 4)
hist(result_GP1$BETA[,index[1]],xlab=paste(expression(beta),index[1]),
    main = "")
hist(result_GP1$BETA[,index[2]],xlab=paste(expression(beta),index[2]),
    main = "")
hist(result_GP1$BETA[,index[3]],xlab=paste(expression(beta),index[3]),
    main = "")
hist(result_GP1$BETA[,index[4]],xlab=paste(expression(beta),index[4]),
    main = "")
```



```
xlab = "Iteration",
ylab = paste(expression(beta),index[4]),main = "")
```


Potential Problem:

1.

The C statistics in each iteration will converge eventually. However, when we get the average theta (average beta in each iteration), and then compute the C index. We will get a very high C index!.

```
Wmat = HarrellC_Wmat(Y,delta,tau)
HarrellC(colMeans(result_GP1$BETA),Wmat)
```

[1] 0.9564311

Even though we never see such a high C index in each iteration (Figure 1)

Overfitting problem?

Analysis:

When we sample lambda, the algorithm seems to prefer small values of lambda..

colMeans(result_GP1\$LAMBDA)

```
## [1] 0.03040511 0.03985660 0.02912638 0.03273807 0.04145842 0.05000484 0.12100906 ## [8] 0.02498908
```

Recall what lambda represents:

$$K(x_i,x_j) = \sum_{k=1}^p \frac{(x_{ik}-x_{jk})^2}{\lambda_k}$$

Lambda is usually considered as lengthscale. When it's close to 0, it implies a mode "wiggy" function.

Based on my understanding, a "wiggy" model implies that it fits the training data well but predict poorly in the testing data..

2.

The Computational Issue still remains when increase the number of observations.

In our function, we cannot avoid calculating the determinant of kernel function.

In the lung data (n=167), the problem is not that big.

system.time({determinant(K)})

```
## user system elapsed
## 0 0 0 0
```

But in the gbsg data (n = 686), the problem is a big issue.

```
## user system elapsed
## 1.14 0.02 1.29
```

And we need to calculate it in each iteration! (e.g. if m=3600, that means we have to run the function for at least one hour)

(The running result for gbsg data will be shown in another file)

Continue Investigating This Week!