Logică pentru informatică - note de curs

Universitatea Alexandru Ioan Cuza, Iași Facultatea de Informatică Anul universitar 2022-2023

> Ștefan Ciobâcă Andrei Arusoaie Rodica Condurache Cristian Masalagiu

Cuprins

1	Mot	ivație și introducere	5
2	Stru	acturi și signaturi	7
3	Sint	axa logicii de ordinul I	11
	3.1	Alfabetul	11
	3.2	Termen	12
	3.3	Formule atomice	13
	3.4	Formule de ordinul I	14
	3.5	Paranteze	16
	3.6	Modelarea în \mathbb{LPI} a afirmațiilor din limba română	17
	3.7	Modelarea în \mathbb{LPI} a afirmațiilor despre aritmetică	18
	3.8	Variabilele unei formule	19
	3.9	Domeniul de vizibilitate al unui cuantificator - analogie cu lim-	
		bajele de programare	21
	3.10	Apariții libere și legate ale variabilelor	
		Variabile libere și variabile legate	
		Domeniul de vizibilitate și parantetizarea formulelor	
		Fisă de exerciții	

Capitolul 1

Motivație și introducere

Logica de ordinul I, pe care o vom studia în continuare, este o extensie a logicii propoziționale, extensie care aduce un plus de expresivitate. Expresivitatea adițională este necesară pentru a putea modela anumite afirmații care nu pot fi exprimate în logica propozițională.

În logica propozițională, nu putem exprima într-un mod natural următoarea afirmatie: *Orice om este muritor*.

Pentru a modela o afirmație în logica propozițională, identificăm întâi propozițiile atomice. Apoi asociem fiecărei propoziții atomice o variabilă propozițională. Propozițiile atomice sunt propozițiile care nu pot fi împărțite în alte propoziții mai mici, care să fie conectate între ele prin conectorii logici \neg , \wedge , \vee , \rightarrow și respectiv \leftrightarrow .

Observăm că afirmația Orice om este muritor nu poate fi descompusă în afirmații indivizibile legate între ele prin conectorii logicii propoziționale, după cum este descris mai sus. Așadar, în logica propozițională, afirmația este atomică. Asociem întregii afirmații o variabilă propozițională $p \in A$.

Acum să modelăm afirmația Socrate este om. Evident, acestei a doua afirmații trebuie să îi asociem o altă variabilă propozițională $\mathbf{q} \in A$. Să presupunem că știm că \mathbf{p} și \mathbf{q} sunt adevărate. Formal, știm că lucrăm cu o atribuire $\tau:A\to B$ astfel încât $\tau(\mathbf{p})=1$ și $\tau(\mathbf{q})=1$. Putem trage concluzia ca afirmatia Socrate este muritor este adevărată în atribuirea τ ?

Nu, deoarece afirmației Socrate este muritor ar trebui să îi asociem o a treia variabilă propozițională \mathbf{r} și nu putem trage nicio concluzie asupra lui $\tau(\mathbf{r})$ din faptul că $\tau(\mathbf{p})=1$ și $\tau(\mathbf{q})=1$. Deci, din semantica logicii propoziționale, nu putem trage concluzia că \mathbf{r} este adevărată în orice atribuire în care \mathbf{p} și \mathbf{q} sunt adevărate, în ciuda faptului că, dacă orice om este muritor și Socrate este om atunci sigur Socrate este muritor. Această diferență între realitate și modelarea noastră ne indică faptul că modelarea nu este suficient

de bună.

Logica de ordinul I aduce, în plus față de logica propozițională, noțiunea de cuantificator (existențial sau universal) și noțiunea de predicat. Cuantificatorul universal este notat cu \forall (de la litera A întoarsă – all în limba engleză), iar cuantificatorul existențial este notat cu \exists (de la litera E întoarsă – exists în limba engleză).

Un predicat este o afirmație a cărei valoare de adevăr depinde de zero sau mai mulți parametri. De exemplu, pentru afirmația de mai sus, vom folosi două predicate: 0 și M. Predicatul 0 va fi definit astfel: 0(x) va fi adevărat când x este om. Predicatul M(x) este adevărat când x este muritor. Deoarece predicatele de mai sus au fiecare câte un singur argument/parametru, ele se numesc predicate unare. Predicatele generalizează variabilele propoziționale prin faptul că pot primi argumente. De fapt, variabilele propoziționale pot fi văzute ca predicate fără argumente.

Astfel, afirmația orice om este muritor va fi modelată prin formula

$$(\forall x.(O(x) \rightarrow M(x))),$$

care este citită astfel: $pentru\ orice\ x$, $dacă\ 0\ de\ x$, $atunci\ M\ de\ x$. Afirmația $Socrate\ este\ om\ va\ fi\ modelată\ prin\ formula\ 0(s)$, unde s este o $constant\ a$ prin care înțelegem Socrate, la fel cum prin constanta 0 ne referim la numărul natural zero. De exemplu, 0(s) este adevărat (deoarece s denotă un om), dar 0(l) este fals dacă, spre exemplu, l este o constantă care ține locul cățelului $L\ abus$.

Afirmația Socrate este muritor va fi reprezentată prin M(s) (deoarece constanta s se referă la Socrate). Afirmația M(s) este adevărată deoarece Socrate este muritor; la fel și afirmația M(l) este adevărată.

Vom vedea că în logica de ordinul I, formula M(s) este consecință a formulelor $(\forall x.(O(x) \to M(x)))$ și respectiv O(s). În acest sens, logica de ordinul I este suficient de expresivă pentru a explica din punct de vedere teoretic raționamentul prin care putem deduce că *Socrate este muritor* din faptul că *Orice om este muritor* și din faptul că *Socrate este om*.

Capitolul 2

Structuri și signaturi

Cu siguranță ați întâlnit deja mai multe formule din logica de ordinul I, fără să știți neapărat că aveți de a face cu logica de ordinul I. Fie următoare formulă:

$$\varphi = \Big(\forall x. \big(\forall y. (x < y \rightarrow \exists z. (x < z \land z < y)) \big) \Big).$$

Formula folosește un simbol < căruia îi corespunde un predicat binar < (adică o relație binară) definit astfel: <(x,y) este adevărat dacă x este mai mic strict decât y. Pentru multe predicate binare (inclusiv pentru <), pentru a simplifica scrierea, folosim notația infixată (x < y) în loc de notația prefixată (<(x,y)).

Este formula φ de mai sus adevărată? Formula afirmă că între orice două valori ale variabilelor x, y există o a treia valoare, a variabilei z. Formula este adevărată dacă domeniul variabilelor x, y, z este \mathbb{R} , dar este falsă dacă domeniul este \mathbb{N} (între orice două numere reale există un al treilea, dar între două numere naturale consecutive nu există niciun alt număr natural).

În general, formulele de ordinul I se referă la o anumită structură matematică.

Definiția 1 (Structură matematică). O structură matematică este un triplet S = (D, Pred, Fun), unde:

- D este o multime nevidă numită domeniu;
- fiecare $P \in Pred$ este predicat (de o aritate oarecare) peste mulțimea D;
- fiecare $f \in Fun$ este funcție (de o aritate oarecare) peste mulțimea D.

Iată câteva exemple de structuri matematice:

1.
$$(\mathbb{N}, \{<, =\}, \{+, 0, 1\});$$

Domeniul structurii este mulțimea numerelor naturale. Structura conține două predicate: < și =, ambele de aritate 2. Predicatul < este predicatul $mai\ mic$ pe numere naturale, iar predicatul = este predicatul de egalitate a numerelor naturale.

Funcția binară $+: \mathbb{N}^2 \to \mathbb{N}$ este funcția de adunare a numerelor naturale, iar structura contine și constantele $0 \in \mathbb{N}$ și $1 \in \mathbb{N}$.

2.
$$(\mathbb{R}, \{<, =\}, \{+, -, 0, 1\});$$

Această structură conține două predicate binare, $\langle \text{ și } =, \text{ precum și }$ patru funcții peste \mathbb{R} : funcția binară +, funcția unară - și constantele $0,1\in\mathbb{R}$.

3.
$$(\mathbb{Z}, \{<,=\}, \{+,-,0,1\});$$

Această structură este similară cu structura precedentă, dar domeniul este mulțimea numerelor întregi.

4.
$$(B, \emptyset, \{\cdot, +, \bar{\ }\});$$

Această structură este o algebră booleană, unde domeniul este mulțimea valorilor de adevăr, iar funcțiile sunt cele cunoscute din prima jumătate a semestrului. Astfel de structuri, fără niciun predicat, se numesc structuri algebrice.

5.
$$(\mathbb{R}, \{<\}, \emptyset)$$
.

Această structură conține doar un predicat de aritate 2 (relația $mai\ mic$ peste \mathbb{R}) și nicio funcție. Structurile care nu conțin funcții se numesc structuri relaționale. Structurile relaționale cu domeniul finit se mai numesc baze de date relationale si se studiază în anul 2.

Când avem o formulă de ordinul I și dorim să îi evaluăm valoarea de adevăr, trebuie să fixăm structura în care lucrăm. Revenind la formula de mai devreme:

$$\varphi = \Big(\forall x. \big(\forall y. (x < y \rightarrow \exists z. (x < z \land z < y)) \big) \Big),$$

avem că această formulă este adevărată în structura $(\mathbb{R}, \{<, =\}, \{+, -, 0, 1\})$ (între orice două numere reale distincte există cel puțin un număr real) dar este falsă în structura $(\mathbb{Z}, \{<, =\}, \{+, -, 0, 1\})$ (deoarece nu între orice două numere întregi putem găsi un alt număr întreg – de exemplu între două numere întregi consecutive nu există niciun întreg). În primul caz, domeniul variabilelor x, y, z este \mathbb{R} și simbolului < îi corespunde predicatul $<\subseteq \mathbb{R}^2$. În al doilea caz, domeniul variabilelor x, y, z este \mathbb{Z} și simbolului < îi corespunde predicatul $<\subseteq \mathbb{Z}^2$.

Este posibil ca două structuri diferite să aibă un set de predicate și de funcții cu același nume. De exemplu, chiar structurile de mai devreme, $(\mathbb{R}, \{<,=\}, \{+,-,0,1\})$ și respectiv $(\mathbb{Z}, \{<,=\}, \{+,-,0,1\})$. Deși predicatul $<\subseteq \mathbb{R}^2$ este diferit de predicatul $<\subseteq \mathbb{Z}^2$, ele au același nume: <.

În general, în Matematică și în Informatică, nu facem diferența între un predicat și numele lui, respectiv între o funcție și numele funcției, dar în Logică diferența este extrem de importantă. În particular, dacă ne referim la numele unei funcții vom folosi sintagma simbol funcțional, iar dacă ne referim la numele unui predicat vom folosi sintagma simbol predicativ. De ce este importantă diferența dintre un simbol predicativ și un predicat? Deoarece vom avea (ne)voie să asociem simbolului predicativ diverse predicate, analog modului în care unei variabile într-un limbaj de programare imperativ îi putem asocia diverse valori.

Când ne interesează doar numele funcțiilor și predicatelor (nu și funcțiile și respectiv predicatele în sine), vom utiliza signaturi:

Definiția 2 (Signatură). O signatură Σ este un tuplu $\Sigma = (\mathcal{P}, \mathcal{F})$ unde \mathcal{P} este o mulțime de simboluri predicative și \mathcal{F} este o mulțime de simboluri funcționale. Fiecare simbol s (predicativ sau funcțional) are asociat un număr natural pe care îl vom numi aritatea simbolului și îl vom nota cu ar(s).

Unei signaturi îi putem asocia mai multe structuri:

Definiția 3 (Σ -structuri). Dacă $\Sigma = (\mathcal{P}, \mathcal{F})$ este o signatură, o Σ -structură este orice structură S = (D, Pred, Fun) astfel încât fiecărui simbol predicativ (sau funcțional) îi corespunde în mod unic un predicat (respectiv, o funcție).

Exemplul 4. Fie $\Sigma = (\{P,Q\}, \{f,i,a,b\})$ unde P,Q sunt simboluri predicative de aritate ar(P) = ar(Q) = 2 și f,i,a,b sunt simboluri funcționale cu aritățile: ar(f) = 2, ar(i) = 1 și ar(a) = ar(b) = 0.

Avem că $(\mathbb{R},\{<,=\},\{+,-,0,1\})$ și respectiv $(\mathbb{Z},\{<,=\},\{+,-,0,1\})$ sunt Σ -structuri.

Observație. Dupa cum se poate observa și în Exemplul 4, pentru simboluri predicative (e.g., P, Q) vom utiliza o culoare diferită față de culoarea simbolurilor funcționale (e.g., f, i, a, b). Pentru predicatele și funcțiile din structuri vom utiliza fontul obișnuit pentru formule matematice.

De retinut!

Structură = domeniu + predicate + funcții

Signatură = simboluri predicative + simboluri funcționale

Unei signaturi Σ îi putem asocia mai multe structuri, numite Σ -structuri.

Notație. Mulțimea simbolurilor predicative dintr-o Σ -structură de aritate n este notată cu $\mathcal{P}_n = \{P \mid ar(P) = n\}$, iar mulțimea simbolurilor funcționale de aritate n este notată cu $\mathcal{F}_n = \{f \mid ar(f) = n\}$. Pentru cazul particular n = 0, \mathcal{F}_0 reprezintă mulțimea simbolurilor constante (simboluri funcționale de aritate 0).

Capitolul 3

Sintaxa logicii de ordinul I

În acest capitol vom prezenta sintaxa formulelor din logica cu predicate de ordinul I. Pentru logica de ordinul I limbajul (mulțimea de șiruri de simboluri) este determinat de alegerea unei signaturi Σ . Practic, există mai multe limbaje de ordinul I, câte un limbaj pentru fiecare signatură Σ .

În continuare, vom presupune fixată o signatură Σ cu simboluri predicative \mathcal{P} și simboluri funcționale \mathcal{F} .

3.1 Alfabetul

Ca și formulele din logica propozițională, formulele din logica de ordinul I sunt șiruri de simboluri peste un anumit alfabet. Spre deosebire de logica propozitională, alfabetul este mai bogat și conține următoarele simboluri:

- 1. conectori logici deja cunoscuți: $\neg, \land, \lor, \rightarrow, \leftrightarrow, \bot$, precum și doi cuantificatori: \forall, \exists ;
- 2. variabile: vom fixa o mulțime infinit numărabilă de variabile, notată $\mathcal{X} = \{x, y, z, x', y', x_1, z'', \ldots\}$ (a nu se confunda cu mulțimea variabilelor propoziționale din logica propozițională; sunt două noțiuni fundamental diferite și din acest motiv utilizăm altă culoare pentru a le reprezenta);
- 3. simboluri auxiliare: (,), ., , (,), \emptyset \emptyset \emptyset
- 4. simboluri suplimentare, care sunt specifice fiecărei signaturi $\Sigma = (\mathcal{P}, \mathcal{F})$ în parte: simbolurile funcționale din mulțimea \mathcal{F} și respectiv simbolurile predicative din mulțimea \mathcal{P} .

3.2 Termen

Definiția 5. Mulțimea termenilor, \mathcal{T} , este cea mai mică mulțime care satisface următoarele proprietăți:

- 1. $\mathcal{F}_0 \subseteq \mathcal{T}$ (orice simbol constant este termen);
- 2. $\mathcal{X} \subseteq \mathcal{T}$ (orice variabilă este termen);
- 3. $dacă f \in \mathcal{F}_n \ (cu \ n > 0) \ \text{i} \ t_1, \ldots, t_n \in \mathcal{T}, \ atunci \ f(t_1, \ldots, t_n) \in \mathcal{T} \ (un \ simbol funcțional de aritate n aplicat unui număr de exact n termeni este termen).$

Observație. Deoarece definiția mulțimii termenilor depinde de $\Sigma = (\mathcal{P}, \mathcal{F})$, elementele multimii \mathcal{T} se mai numesc Σ -termeni.

Practic, termenii se construiesc aplicând simboluri funcționale peste simboluri constante și variabile.

Exemplul 6. Fie signatura $\Sigma = (\{P,Q\}, \{f,i,a,b\})$ definită în Exemplul 4, unde ar(P) = ar(Q) = 2, ar(f) = 2, ar(i) = 1, ar(a) = ar(b) = 0. Iată câteva exemple de termeni: a, b, x, y, x₁, y', i(a), i(x), i(i(a)), i(i(x)), f(a,b), i(f(a,b)), f(f(x,a),f(y,y)).

Exercițiul 7. Identificați în lista de mai jos Σ -termenii:

```
    i;
    f(x,x);
    P(a,b);
```

1. i(i(x));

5. i(a, a);

6. f(i(x), i(x));

7. f(i(x,x));

8. a(i(x)).

Termenii (sau, în mod echivalent, termii), sunt notați cu t, s, t_1, t_2, s_1, t' , etc. Deși termenii sunt scriși în mod uzual ca un șir de simboluri, ei au asociat un arbore de sintaxă abstractă definit după cum urmează:

1. dacă t = c și $c \in \mathcal{F}_0$, atunci arb(t) = c

- 2. dacă t = x și $x \in \mathcal{X}$, atunci arb(t) = x
- 3. dacă $t = f(t_1, \ldots, t_n)$ și $f \in \mathcal{F}_n$ $(n > 0), t_1, \ldots, t_n \in \mathcal{T}$, atunci

Observație. Deși formal termenii sunt definiți ca fiind șiruri de simboluri peste alfabetul descris mai sus, aceștia trebuie înțeleși ca fiind <u>arbori</u>. De altfel, în orice software care lucrează cu termeni, aceaștia sunt memorați sub formă de arbori cu rădăcină. Iată arborele atasat termenului f(f(a,i(b)),x):

Exercițiul 8. Calculați arborii de sintaxă pentru termenii din Exemplul 6.

3.3 Formule atomice

Definiția 9 (Formulă atomică). O formulă atomică este orice șir de simboluri de forma $P(t_1, ..., t_n)$, unde $P \in \mathcal{P}_n$ este un simbol predicativ de aritate $n \geq 0$, iar $t_1, ..., t_n \in \mathcal{T}$ sunt termeni. Dacă n = 0, scriem P în loc de P().

Exemplul 10. Continuând Exemplul 6, folosim signatura

$$\Sigma = (\{\mathbf{P},\mathbf{Q}\},\{\mathbf{f},\mathbf{i},\mathbf{a},\mathbf{b}\}),$$

$$\label{eq:under_ar_problem} \begin{split} & \textit{unde } \textit{ar}(P) = \textit{ar}(Q) = 2, \; \textit{ar}(f) = 2, \; \textit{ar}(i) = 1, \; \textit{ar}(a) = \textit{ar}(b) = 0. \\ & \textit{Iată câteva exemple de formule atomice: } P(a,b), P(x,y), Q\big(i(i(x)),f(x,x)\big), \\ & Q(a,b), P\Big(f\big(f(a,i(x)),b\big),i(x)\Big). \end{split}$$

Exercițiul 11. Explicați de ce P(a), P, i(i(x)) nu sunt formule atomice peste signatura din Exemplul 10.

3.4 Formule de ordinul I

Definiția 12 (Formule de ordinul I). *Mulțimea formulelor de ordinul I, notată* LPI, este cea mai mică mulțime astfel incât:

- 1. (cazul de bază) orice formulă atomică este formulă (adică $P(t_1,...,t_n) \in \mathbb{LPI}$ pentru orice simbol predicativ $P \in \mathcal{P}_n$ și orice termeni $t_1,...,t_n \in \mathcal{T}$:
- 2. (cazurile inductive) pentru orice formule $\varphi, \varphi_1, \varphi_2 \in \mathbb{LPI}$, pentru orice variabilă $x \in \mathcal{X}$, avem că:

```
(a) \ \neg \varphi_1 \in \mathbb{LPI};
(b) \ (\varphi_1 \land \varphi_2) \in \mathbb{LPI};
(c) \ (\varphi_1 \lor \varphi_2) \in \mathbb{LPI};
(d) \ (\varphi_1 \to \varphi_2) \in \mathbb{LPI};
(e) \ (\varphi_1 \leftrightarrow \varphi_2) \in \mathbb{LPI};
(f) \ (\forall x.\varphi) \in \mathbb{LPI};
(g) \ (\exists x.\varphi) \in \mathbb{LPI}.
```

Observație. În Definiția 12, regăsim conectorii logici $\neg, \land, \lor, \rightarrow$ și respectiv \leftrightarrow din logica propozițională. Locul variabilelor propoziționale (deocamdată, la nivel sintactic) este luat de simbolurile predicative de aritate 0. Construcțiile $(\forall x.\varphi)$ și $(\exists x.\varphi)$ sunt noi.

Exemplul 13. Continuând Exemplul 6, folosim signatura $\Sigma = (\{P,Q\}, \{f,i,a,b\})$, unde ar(P) = ar(Q) = 2, ar(f) = 2, ar(i) = 1 și ar(a) = ar(b) = 0. Iată câteva exemple de formule din logica de ordinul I:

```
    P(a,b);
    Q(a,b);
    P(a,x);
    ¬P(a,b);
    (P(a,b) ∧ ¬Q(a,b));
    (P(a,b) ∨ ¬Q(x,y));
    (P(a,b) → P(a,b));
    ((P(a,b) → P(a,b)) ↔ (P(a,b) → P(a,b)));
```

9.
$$(\forall x.P(a,x));$$

10.
$$(\exists x. \neg Q(x, y))$$
.

Definiția 14 (Arborele de sintaxă abstractă asociat formulelor din LPI). Formulele au asociat un arbore de sintaxă abstractă definit în cele ce urmează:

1.
$$dac\check{a}\varphi = P(t_1, ..., t_n)$$
, $atunci arb(\varphi) = arb(t_1)$... $arb(t_n)$;

2.
$$dac\breve{a} \varphi = \neg \varphi_1$$
, $atunci \ arb(\varphi) =$

$$arb(\varphi_1);$$

3.
$$dac\check{a} \varphi = (\varphi_1 \wedge \varphi_2)$$
, $atunci \ arb(\varphi) = arb(\varphi_1)$ $arb(\varphi_2)$;

4.
$$dac\check{a} \varphi = (\varphi_1 \vee \varphi_2)$$
, $atunci \ arb(\varphi) = arb(\varphi_1)$ $arb(\varphi_2)$;

5.
$$dac\check{a} \varphi = (\varphi_1 \to \varphi_2)$$
, $atunci \ arb(\varphi) =$

$$arb(\varphi_1)$$

$$arb(\varphi_2);$$

6.
$$dac\check{a} \varphi = (\varphi_1 \leftrightarrow \varphi_2)$$
, $atunci \ arb(\varphi) = arb(\varphi_1)$ $arb(\varphi_2)$;

7.
$$dac\breve{a} \varphi = (\forall x.\varphi_1), \ atunci \ arb(\varphi) =$$

$$arb(\varphi_1);$$
8. $dac\breve{a} \varphi = (\exists x.\varphi_1), \ atunci \ arb(\varphi) =$

$$arb(\varphi_1).$$

Exercițiul 15. Calculați arborele de sintaxă asociat formulelor din Exemplul 13.

3.5 Paranteze

Parantezele (și) sunt folosite pentru a marca ordinea efectuării operațiilor logice (și, sau, not, etc.) În continuare, vom renunța la parantezele care nu sunt necesare, la fel ca în cazul logicii propoziționale: dacă o formulă poate fi interpretată ca un arbore de sintaxă abstractă în două sau mai multe moduri, se vor folosi paranteze pentru a stabili arborele dorit.

De exemplu, $\varphi_1 \vee \varphi_2 \wedge \varphi_3$ ar putea fi înțeleasă ca $((\varphi_1 \vee \varphi_2) \wedge \varphi_3)$ sau ca $(\varphi_1 \vee (\varphi_2 \wedge \varphi_3))$. Pentru a evita scrierea formulelor cu prea multe paranteze, se stabilesc *priorități*. Ordinea priorității operatorilor este:

$$\bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists,$$

unde \neg este cel mai prioritar, iar \exists este cel mai puțin prioritar. Pentru a evita situațiile de ambiguitate (i.e., atunci când există mai multe moduri de a construi arborele de sintaxă), este recomandată folosirea de paranteze suplimentare.

Datorită priorității conectorilor logici, formula $P(a,a) \vee P(b,b) \wedge P(a,b)$ va fi întotdeauna înțeleasă ca $(P(a,a) \vee (P(b,b) \wedge P(a,c)))$ (deoarece \wedge este prioritar față de \vee). Ca analogie, la fel se întâmplă și în cazul aritmeticii: 1+2*3 va fi înteles ca $1+(2\times3)$, deoarece \times are prioritate în fața lui $+(\times$ este similar cu \wedge și + cu \vee).

Exercițiul 16. Scrieți formulele din Exemplul 13 cu cât mai puține paranteze.

În Secțiunea 3.12 vom detalia modul în care cuantificatorii interacționează cu ceilalți conectori logici. Vom vedea că pentru cuantificatori avem niște reguli suplimentare în afară de priorități.

16

3.6 Modelarea în LPI a afirmațiilor din limba română

În această secțiune vom explica care este signatura folosită pentru a modela în logica de ordinul întâi afirmațiile: Orice om este muritor, Socrate este om și respectiv Socrate este muritor.

În primul rând, identificăm predicatele din text. Avem două predicate unare este om și respectiv este muritor. Alegem simbolul predicativ 0 pentru primul predicat și simbolul predicativ M pentru al doilea predicat. De asemenea, în text avem și o constantă: Socrate. Alegem simbolul funcțional s de aritate 0 pentru această constantă. Așadar, pentru a modela afirmațiile de mai sus, vom lucra cu signatura

$$\Sigma = (\{\mathbf{0}, \mathbf{M}\}, \{\mathbf{s}\}),$$

unde 0 și M sunt simboluri predicative de aritate ar(0) = ar(M) = 1, iar s este un simbol funcțional de aritate ar(s) = 0, adică un simbol constant.

Afirmatia orice om este muritor va fi modelată prin formula de ordinul I

$$(\forall x.(O(x) \rightarrow M(x))),$$

al cărei arbore de sintaxă abstractă este:

Afirmația $Socrate\ este\ om\ o\ vom\ modela\ prin\ formula\ atomică\ <math>\mathbb{O}(s),\ iar\ afirmația\ Socrate\ este\ muritor\ o\ vom\ modela\ prin\ formula\ atomică\ <math>\mathbb{M}(s).$

Pentru signatura $\Sigma = (\{0,M\}, \{s\})$ stabilită mai sus, există mai multe Σ -structuri posibile. Un exemplu este structura $S = (D, \{0^S, M^S\}, \{s^S\})$ definită astfel:

17

1. D este mulțimea tuturor ființelor de pe Pământ;

- 2. $O^{S}(x)$ este adevărat pentru orice ființă x care este și om;
- 3. $M^{S}(x)$ este adevărat pentru orice ființă x (toate elementele domeniului sunt muritoare);
- 4. \mathbf{s}^S este Socrate (Socrate, fiind o ființă, aparține mulțimii D).

Anticipând puțin (vom discuta despre semantica formulelor de ordinul I în Capitolul ??), toate cele trei formule discutate în această secțiune, adică $(\forall x.(0(x) \rightarrow M(x)))$, 0(s) și respectiv M(s), sunt adevărate în structura S definită mai sus. De fapt, calitatea raționamentului orice om este muritor; Socrate este om; deci: Socrate este muritor este dată de faptul că formula M(s) este în mod necesar adevărată în orice structură în care formulele O(s) și $(\forall x.(O(x) \rightarrow M(x)))$ sunt adevărate, nu doar în structura S de mai sus.

3.7 Modelarea în \mathbb{LPI} a afirmațiilor despre aritmetică

Fie signatura $\Sigma = (\{<,=\},\{+,-,0,1\})$, unde < și = sunt simboluri predicative de aritate 2, + este simbol funcțional de aritate 2, - este simbol funcțional de aritate 1, iar 0 și 1 sunt simboluri constante. Iată câteva formule care fac parte din limbajul de ordinul I asociat signaturii Σ :

- 1. $(\forall x.(\forall y.(<(x,y) \rightarrow \exists z.(<(x,z) \land <(z,y)))));$
- 2. $(\forall x.(\forall y.(\exists z.(=(+(x,y),z)))));$
- 3. $(\forall x.(<(0,x) \lor =(0,x)));$
- 4. $(\forall x.(\exists y.(=(x,-(y)))));$
- 5. = (+(x,y),z).

De multe ori, în cazul simbolurilor predicative și simbolurilor funcționale binare, se folosește notația infixată (e.g., x < y în loc de <(x, y)). În acest caz, putem scrie formulele de mai sus în felul următor:

- 1. $(\forall x. (\forall y. (x < y \rightarrow \exists z. (x < z \land z < y))));$
- 2. $(\forall x.(\forall y.(\exists z.(x+y=z))));$
- $3. \left(\forall x. (0 < x \lor 0 = x) \right);$

4.
$$(\forall x. (\exists y. (x = -(y))));$$

5.
$$x + y = z$$
.

Două dintre Σ -structurile posibile sunt $S_1 = (\mathbb{R}, \{<, =\}, \{+, -, 0, 1\})$ și $S_2 = (\mathbb{Z}, \{<, =\}, \{+, -, 0, 1\})$, unde predicatele și funcțiile sunt cele cunoscute de la matematică (cu precizarea că – este funcția minus unar).

Anticipând cursul următor referitor la semantica formulelor de ordinul I, prima formulă este falsă în S_2 și adevărată în S_1 . A doua formulă și a patra formulă sunt adevărate atât în S_1 cât și în S_2 . A treia formula este falsă atât în S_1 cât și în S_2 . Valoarea de adevăr a celei de-a cincea formule nu depinde doar de structura în care evaluăm formula, ci și de valorile variabilelor x,y,z. Deoarece variabilele x,y,z nu apar cuantificate în formula numărul 5, acestea se numesc libere. Formula 5 este satisfiabilă atât în structura S_1 cât și în structura S_2 , deoarece în ambele cazuri există valori pentru variabilele x,y,z care să facă formula adevărată (e.g. valorile 1,2,3 pentru x, y și respectiv z).

3.8 Variabilele unei formule

Cu $vars(\varphi)$ notăm variabilele care apar în formula φ . De exemplu, vom avea că $vars((\forall z.(P(x,y)))) = \{x,y,z\}$. Definim funcția $vars: \mathbb{LPI} \to 2^{\mathcal{X}}$ în cele ce urmează.

În primul rând, definim o funcție $vars: \mathcal{T} \to 2^{\mathcal{X}}$ (atenție, domeniul este \mathcal{T}) ca fiind funcția care asociază unui termen (din mulțimea \mathcal{T}) mulțimea variabilelor care apar în acel termen. Toate definițiile care urmează vor fi definiții inductive, care oglindesc definițiile sintactice corespunzătoare. Le vom denumi simplu definiții recursive, fără a mai preciza explicit cazurile de bază sau pe cele inductive. Amintim că $2^{\mathcal{X}}$ denotă mulțimea tuturor submulțimilor lui \mathcal{X} . Totodată, amintim că pentru o signatură fixată Σ , notăm cu \mathcal{P}_n mulțimea simbolurilor predicative de aritate n din Σ , iar cu \mathcal{F}_n mulțimea simbolurilor funcționale de aritate n din Σ .

Definiția 17. Funcția vars : $\mathcal{T} \to 2^{\mathcal{X}}$ este definită recursiv după cum urmează:

- 1. $vars(c) = \emptyset$, $dac \check{a} \ c \in \mathcal{F}_0$ este un simbol constant;
- 2. $vars(x) = \{x\}, dacă x \in \mathcal{X} este o variabilă;$
- 3. $vars(f(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} vars(t_i)$.

Putem acum defini (inductiv, prin imbricare) funcția extinsă și notată omonim, $vars: \mathbb{LPI} \to 2^{\mathcal{X}}$, care asociază unei formule din \mathbb{LPI} mulțimea de variabile ale formulei (adică, variabilele care apar în formulă):

19

Definiția 18. Funcția vars : $\mathbb{LPI} \rightarrow 2^{\mathcal{X}}$ este definită recursiv după cum urmează:

- 1. $vars(P(t_1,...,t_n)) = \bigcup_{i \in \{1,...,n\}} vars(t_i);$
- 2. $vars(\neg \varphi) = vars(\varphi);$
- 3. $vars((\varphi_1 \land \varphi_2)) = vars(\varphi_1) \cup vars(\varphi_2)$;
- 4. $vars((\varphi_1 \vee \varphi_2)) = vars(\varphi_1) \cup vars(\varphi_2);$
- 5. $vars((\varphi_1 \rightarrow \varphi_2)) = vars(\varphi_1) \cup vars(\varphi_2);$
- 6. $vars((\varphi_1 \leftrightarrow \varphi_2)) = vars(\varphi_1) \cup vars(\varphi_2);$
- 7. $vars((\forall x.\varphi)) = vars(\varphi) \cup \{x\};$
- 8. $vars((\exists x.\varphi)) = vars(\varphi) \cup \{x\}.$

Să observăm că variabila x este adăugată corespunzător în mulțimea de variabile care se construiește chiar dacă ea apare doar imediat după simbolurile \exists sau \forall .

Exemplul 19. Fie formula φ :

$$\bigg(\Big(\forall x. \big(P(x,y) \land \exists y. \big(P(z,f(x,y)) \land P(x,y) \big) \Big) \Big) \land P(x,x) \bigg).$$

Avem $vars(\varphi) = \{x, y, z\}.$

Exercițiul 20. Fie signatura $\Sigma = (\{P,Q\}, \{f,i,a,b\})$, unde ar(P) = ar(Q) = 2, ar(f) = 2, ar(i) = 1, ar(a) = ar(b) = 0. Calculați $vars(\varphi)$ pentru fiecare formulă φ de mai jos:

20

- 1. P(x,y);
- 2. Q(a,b);
- 3. P(a,x);
- $4. \neg P(x,z);$
- 5. $(P(x,x) \land \neg Q(x,z));$
- 6. $(P(x, b) \lor \neg Q(z, y));$
- 7. $((P(x,b) \rightarrow P(x,z)) \leftrightarrow (P(x,b) \rightarrow P(a,z)));$
- 8. $(\forall x.P(a,x));$
- 9. $(\exists x. \neg Q(x, y));$
- $\textbf{10. } \left(\left(\exists x. \neg Q(x,y) \right) \wedge \left(\forall y. P(y,x) \right) \right).$

3.9 Domeniul de vizibilitate al unui cuantificator - analogie cu limbajele de programare

Într-un limbaj de programare, putem declara mai multe variabile cu același nume. De exemplu, în C, putem avea următorul cod:

```
/* 1:*/ int f()
/* 2:*/ {
/* 3:*/
           int s = 0;
           for (int x = 1; x \le 10; ++x) {
/* 4:*/
             for (int y = 1; y \le 10; ++y) {
/* 5:*/
/* 6:*/
               s += x * y * z;
               for (int x = 1; x \le 10; ++x) {
/* 7:*/
/* 8:*/
                 s += x * y * z;
/* 9:*/
               }
/* 10:*/
             }
/* 11:*/
/* 12:*/
           return s;
/* 13:*/ }
```

În acest fragment de cod, sunt declarate trei variabile, două dintre variabile având același nume, și anume \mathbf{x} . Domeniul de vizibilitate al variabilei \mathbf{x} declarate la linia 4 este dat de liniile 4-11, iar domeniul de vizibilitate al variabile \mathbf{x} declarată la linia 7 este dat de liniile 7-9. Astfel, orice apariție a numelui \mathbf{x} între liniile 7-9 se referă la cea de-a doua declarație a variabilei, în timp ce orice apariție a numelui \mathbf{x} între liniile 4-11 (cu excepția liniilor 7-9) se referă la prima declarație a lui \mathbf{x} . De exemplu, apariția lui \mathbf{x} de la linia 6 se referă la variabila \mathbf{x} declarată la linia 4. Apariția lui \mathbf{x} de la linia 8 se referă la variabila \mathbf{x} declarată la linia 7.

Liniile 4-11 reprezintă domeniul de vizibilitate al primei declarații a variabilei \mathbf{x} , iar liniile 7-9 reprezintă domeniul de vizibilitate al celei de-a două declarații a variabilei \mathbf{x} .

Un fenomen similar se întâmplă în formulele logicii de ordinul I. De exemplu, în formula $(\forall x. (\forall y. (P(x,y) \land P(x,z) \land (\exists x. P(x,y)))))$, variabila x este cuantificată de două ori (prima dată universal, a doua oară existențial). O cuantificare a unei variabile se numește legare (engl. binding), din motive istorice. O legare este similară, din punctul de vedere al domeniului de vizibilitate, cu definirea unei variabile într-un limbaj de programare.

Astfel, domeniul de vizibilitate D_1 al variabilei \times cuantificate universal este $(\forall y.(P(x,y) \land P(x,z) \land (\exists x.P(x,y))))$, în timp ce domeniul de vizibilitate D_2 al variabilei \times cuantificate existențial este P(x,y):

$$\left(\forall x.\underbrace{\left(\forall y.(P(x,y) \land P(x,z) \land (\exists x.\underbrace{P(x,y)))}\right)}_{D_1}\right)$$

Aparițiile unei variabile cuantificate care sunt prezente în domeniul de vizibilitate al acesteia se numesc *legate*, în timp ce aparițiile din afara domeniului de vizibilitate se numesc *libere*.

3.10 Apariții libere și legate ale variabilelor

În această secțiune vom stabili formal conceptul de apariție/variabilă legată și de apariție/variabilă liberă. Aparițiile libere/legate ale unei variabile în logica de ordinul I sunt, ca o analogie, similare cu variabilele globale/locale într-un limbaj de programare.

Mai departe vom utiliza noțiunea de *arbore de sintaxă abstractă* pentru formulele din logica de ordinul I.

Definiția 21 (Apariție liberă). O apariție liberă a unei variabile x într-o formulă φ este dată de un nod în arborele formulei etichetat cu x și care are proprietatea că, mergând din nod înspre rădăcină, nu întâlnim niciun nod etichetat cu $\forall x$ sau cu $\exists x$.

Definiția 22 (Apariție legată). O apariție legată a unei variabile x întroformulă φ este dată de un nod în arborele formulei etichetat cu x și care are proprietatea că, mergând din nod înspre rădăcină, întâlnim măcar un nod etichetat cu $\forall x$ sau cu $\exists x$.

Cel mai apropiat astfel de nod etichetat cu $\forall x$ sau cu $\exists x$ este cuantificarea care leagă apariția în cauză a variabilei x.

Exemplul 23. Considerăm în continuare formula

$$\varphi = \left(\left(\forall x. \Big(P(x, y) \land \exists y. \big(P(z, f(x, y)) \land P(x, y) \big) \right) \right) \land P(x, x) \right).$$

22

Arborele de sintaxă abstractă al formulei φ este:

În formula φ de mai sus, variabila \times are două apariții libere. Variabila y are o apariție liberă. Variabila z are o apariție liberă. Toate aparițiile libere ale variabilelor în formula φ sunt marcate prin subliniere:

$$\varphi = \left(\left(\forall x. \Big(P(x, \underline{y}) \land \exists y. \big(P(\underline{z}, f(x, y)) \land P(x, y) \big) \right) \right) \land P(\underline{x}, \underline{x}) \right).$$

Toate aparițiile legate ale variabilelor în formula φ sunt marcate prin dublă subliniere în următoarea formulă:

$$\varphi = \left(\left(\forall x. \left(P(\underline{\underline{x}}, y) \land \exists y. \left(P(z, f(\underline{\underline{x}}, \underline{\underline{y}})) \land P(\underline{\underline{x}}, \underline{\underline{y}}) \right) \right) \right) \land P(x, x) \right).$$

Observație. În restul capitolelor vom face o distincție clară între aparițiile (libere sau legate ale) variabilelor într-o formulă și mulțimile variabilelor de acest tip (libere sau legate). Nodurile etichetate cu $\forall x$ și respectiv $\exists x$ nu vor fi considerate ca desemnând nici o apariție liberă, nici o apariție legată a lui x, ci ca fiind simple noduri prin care se fixează/denumește un cuantificator (sau, prin care se leagă variabila x).

23

3.11 Variabile libere și variabile legate

Mulțimea variabilelor unei formule φ care au cel puțin o apariție liberă se notează $free(\varphi)$.

Definiția 24. Funcția free : $\mathbb{LPI} \to 2^{\mathcal{X}}$ este definită recusiv în modul următor:

- 1. $free(P(t_1, \ldots, t_n)) = vars(t_1) \cup \ldots \cup vars(t_n);$
- 2. $free(\neg \varphi) = free(\varphi)$;
- 3. $free((\varphi_1 \wedge \varphi_2)) = free(\varphi_1) \cup free(\varphi_2);$
- 4. $free((\varphi_1 \vee \varphi_2)) = free(\varphi_1) \cup free(\varphi_2);$
- 5. $free((\varphi_1 \to \varphi_2)) = free(\varphi_1) \cup free(\varphi_2);$
- 6. $free((\varphi_1 \leftrightarrow \varphi_2)) = free(\varphi_1) \cup free(\varphi_2);$
- 7. $free((\forall x.\varphi)) = free(\varphi) \setminus \{x\};$
- 8. $free((\exists x.\varphi)) = free(\varphi) \setminus \{x\}.$

Exemplul 25. Pentru formula

$$\varphi = \left(\left(\forall x. \Big(P(x, y) \land \exists y. \big(P(z, f(x, y)) \land P(x, y) \big) \right) \right) \land P(x, x) \right).$$

 $avem\ c\breve{a}\ free(\varphi) = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}.$

Exercițiul 26. Calculați free (φ) pentru fiecare formulă φ din Exercițiul 20.

Cu $bound(\varphi)$ notăm mulțimea variabilelor legate într-o formulă, cu alte cuvinte mulțimea acelor variabile x cu proprietatea că există în formulă cel putin un nod etichetat cu $\forall x$ sau cu $\exists x$.

Definiția 27. Funcția bound : $\mathbb{LPI} \to 2^{\mathcal{X}}$ este definită recursiv astfel:

- 1. $bound(P(t_1,\ldots,t_n)) = \emptyset;$
- 2. $bound(\neg \varphi) = bound(\varphi);$
- 3. $bound((\varphi_1 \wedge \varphi_2)) = bound(\varphi_1) \cup bound(\varphi_2);$
- 4. $bound((\varphi_1 \vee \varphi_2)) = bound(\varphi_1) \cup bound(\varphi_2);$
- 5. $bound((\varphi_1 \to \varphi_2)) = bound(\varphi_1) \cup bound(\varphi_2);$
- 6. $bound((\varphi_1 \leftrightarrow \varphi_2)) = bound(\varphi_1) \cup bound(\varphi_2);$

- 7. $bound((\forall x.\varphi)) = bound(\varphi) \cup \{x\};$
- 8. $bound((\exists x.\varphi)) = bound(\varphi) \cup \{x\}.$

Exercițiul 28. Calculați bound(φ) pentru fiecare formulă φ din Exercițiul 20.

Exercitiul 29. Calculati bound(φ), unde

$$\varphi = \left(\left(\forall \mathsf{x.} \Big(\mathsf{P}(\mathsf{x}, \mathsf{y}) \land \exists \mathsf{y.} \big(\mathsf{P}(\mathsf{z}, \mathsf{f}(\mathsf{x}, \mathsf{y})) \land \mathsf{P}(\mathsf{x}, \mathsf{y}) \big) \right) \right) \land \mathsf{P}(\mathsf{x}, \mathsf{x}) \right).$$

Definiția 30. Variabilele legate ale unei formule φ sunt elementele mulțimii $bound(\varphi)$.

Definiția 31. Variabilele libere ale unei formule φ sunt elementele mulțimii $free(\varphi)$.

Observație. Mulțimile free (φ) și bound (φ) pot avea elemente în comun.

Observație. O variabilă poate avea mai multe apariții într-o formulă.

După cum am precizat anterior, trebuie făcută diferența între o apariție liberă a unei variabile într-o formulă si o variabilă liberă a unei formule. Apariția liberă este indicată printr-un un nod din arborele formulei, în timp ce variabila liberă este un element al multimii \mathcal{X} .

Similar, trebuie făcută diferența între o apariție legată a unei variabile întro formulă i o variabilă legată a unei formule. Apariția legată este indicată de un nod în arborele formulei, în timp ce variabila este un element al mulțimii \mathcal{X} .

3.12 Domeniul de vizibilitate și parantetizarea formulelor

Acum că am înțeles ce este domeniul de vizibilitate a unei variabile legate (apelând și la arborele formulei), putem clarifica un aspect referitor la ordinea de prioritate a conectorilor logici (dacă privim formula doar ca text/cuvânt). Am stabilit deja că ordinea de prioritate este $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$, dar cuantificatorii \forall și \exists interacționează într-un mod mai subtil cu ceilalți conectori logici. Mai precis, textual, o formulă fără paranteze se (re)parantetizează astfel încât domeniul de vizibilitate al fiecărui cuantificator să se extindă cât mai mult spre sp

De exemplu, formula:

$$\forall x.P(x,x) \lor \neg \exists y.P(x,y) \land P(x,x)$$

se parantezează în felul următor:

$$\Big(\forall x. \big(P(x,x) \vee \neg (\exists y. (P(x,y) \wedge P(x,x)))\big)\Big).$$

3.13 Fisă de exerciții

Exercițiul 32. Identificați o signatură pentru afirmațiile de mai jos și apoi modelați aceste afirmații ca formule în logica de ordinul I:

Ion este student. Orice student învață la Logică. Oricine învață la Logică trece examenul. Orice student este om. Există un om care nu a trecut examenul. Deci nu toți oamenii sunt studenți.

Exercițiul 33. Fie structura $S = (\mathbb{R}, \{Nat, Int, Prim, Par, >\}, \{+, 0, 1, 2\}),$ unde Nat, Int, Prim, Par sunt predicate unare cu următoarea semnificatie:

- Nat(u) = u este număr natural;
- Int(u) = u este număr întreg;
- Prim(u) = u este număr prim;
- Par(u) = u este număr par.

Predicatul binar > este relația "mai mare" peste numere reale. Funcția + este funcția de adunare a numerelor reale. Constantele 0,1,2 sunt chiar numerele 0,1,2.

- 1. Propuneți o signatură Σ pentru structura S de mai sus.
- 2. Modelați următoarele afirmații ca formule de ordinul I în signatura asociată structurii S de mai sus:
 - (a) Orice număr natural este și număr întreg.
 - (b) Suma oricăror două numere naturale este număr natural.
 - (c) Oricum am alege un număr natural, există un număr prim care este mai mare decât numărul respectiv.
 - (d) Dacă orice număr natural este număr prim, atunci zero este număr prim.
 - (e) Oricum am alege un număr prim, există un număr prim mai mare decât el.

26

(f) Suma a două numere pare este un număr par.

- (q) Orice număr prim mai mare decât 2 este impar.
- (h) Orice număr prim poate fi scris ca suma a patru numere prime.
- (i) Suma a două numere pare este un număr impar.

Exercițiul 34. Dați exemplu de 5 termeni peste signaturile de la Exercițiul 33 si calculați arborele de sintaxă abstractă al acestor termeni.

Exercițiul 35. Dați exemplu de 5 formule peste signatura de la Exercițiul 33 și calculați arborele de sintaxă abstractă al acestora.

Exercițiul 36. Calculați arborele e sintaxă abstractă al următoarelor formule (indicație: puneți paranteze în jurul formulelor, în ordinea de prioritate a conectorilor):

- 1. $P(x) \vee P(y) \wedge \neg P(z)$;
- 2. $\neg \neg P(x) \lor P(y) \to P(x) \land \neg P(z);$
- 3. $\forall x. \forall y. \neg \neg P(x) \lor P(y) \rightarrow P(x) \land \neg P(z);$
- 4. $\forall x. \forall y. \neg \neg P(x) \lor P(y) \rightarrow \exists x. P(x) \land \neg P(x);$
- 5. $\forall x'. \neg \forall x. P(x) \land \exists y. Q(x, y) \lor \neg Q(z, z) \rightarrow \exists z'. P(z')$.

Exercițiul 37. Marcați aparițiile libere și respectiv aparițiile legate ale variabilelor în formulele de mai jos:

- 1. $\varphi_1 = (\forall x.P(x,x) \land P(x,y)) \land P(x,z);$
- 2. $\varphi_2 = (\forall x.P(f(x,x),i(x)) \land \exists y.(P(x,y) \land P(x,z))).$

Exercițiul 38. Identificați domeniul de vizibilitate, pentru fiecare cuantificator, în formulele φ_1 și φ_2 date în Exercitiul 37.

Exercițiul 39. Găsiți variabilele, variabilele libere și respectiv variabilele legate ale formulelor φ_1 și φ_2 date în Exercițiul 37.

Exercițiul 40. Fie $A = \{p,q,r,\ldots\}$ mulțimea variabilelor propoziționale. Vom considera signatura $\Sigma_{\mathbb{LP}} = (A,\emptyset)$, unde variabilele propoziționale din A sunt simboluri predicative de aritate 0.

- 1. Demonstrați că pentru orice formulă $\varphi \in \mathbb{LP}$ avem $\varphi \in \mathbb{LPI}$ (peste signatura $\Sigma_{\mathbb{LP}}$).
- 2. Demonstrați că pentru orice formulă fără cuantificatori $\varphi \in \mathbb{LPI}$ peste signatura $\Sigma_{\mathbb{LP}}$, avem că $\varphi \in \mathbb{LP}$.