

Art of Problem Solving 2008 Iran Team Selection Test

Iran Team Selection Test 2008

Day 1	
1	Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that for each $x, y \in \mathbb{R}$:
	f(xf(y)) + y + f(x) = f(x + f(y)) + yf(x)
2	Suppose that I is incenter of triangle ABC and l' is a line tangent to the incircle. Let l be another line such that intersects AB, AC, BC respectively at C', B', A' . We draw a tangent from A' to the incircle other than BC , and this line intersects with l' at A_1 . B_1, C_1 are similarly defined. Prove that AA_1, BB_1, CC_1 are concurrent.
3	Suppose that T is a tree with k edges. Prove that the k -dimensional cube can be partitioned to graphs isomorphic to T .
Day 2	
4	Let P_1, P_2, P_3, P_4 be points on the unit sphere. Prove that $\sum_{i \neq j} \frac{1}{ P_i - P_j }$ takes its minimum value if and only if these four points are vertices of a regular pyramid.
5	Let $a,b,c>0$ and $ab+bc+ca=1$. Prove that: $\sqrt{a^3+a}+\sqrt{b^3+b}+\sqrt{c^3+c}\geq 2\sqrt{a+b+c}.$
6	Prove that in a tournament with 799 teams, there exist 14 teams, that can be partitioned into groups in a way that all of the teams in the first group have won all of the teams in the second group.
Day 3	
7	Let S be a set with n elements, and F be a family of subsets of S with 2^{n-1} elements, such that for each $A, B, C \in F$, $A \cap B \cap C$ is not empty. Prove that the intersection of all of the elements of F is not empty.

Contributors: Omid Hatami

Art of Problem Solving 2008 Iran Team Selection Test

8	Find all polynomials p of one variable with integer coefficients such that if a and b are natural numbers such that $a+b$ is a perfect square, then $p(a)+p(b)$ is also a perfect square.
9	I_a is the excenter of the triangle ABC with respect to A , and AI_a intersects the circumcircle of ABC at T . Let X be a point on TI_a such that $XI_a^2 = XA.XT$. Draw a perpendicular line from X to BC so that it intersects BC in A' . Define B' and C' in the same way. Prove that AA' , BB' and CC' are concurrent.
Day 4	
10	In the triangle ABC , $\angle B$ is greater than $\angle C$. T is the midpoint of the arc BAC from the circumcircle of ABC and I is the incenter of ABC . E is a point such that $\angle AEI = 90^{\circ}$ and $AE \parallel BC$. TE intersects the circumcircle of ABC for the second time in P . If $\angle B = \angle IPB$, find the angle $\angle A$.
11	k is a given natural number. Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that for each $m,n\in\mathbb{N}$ the following holds:
	$f(m) + f(n) \mid (m+n)^k$
12	In the acute-angled triangle ABC , D is the intersection of the altitude passing through A with BC and I_a is the excenter of the triangle with respect to A . K is a point on the extension of AB from B , for which $\angle AKI_a = 90^{\circ} + \frac{3}{4} \angle C$. I_aK intersects the extension of AD at L . Prove that DI_a bisects the angle $\angle AI_aB$ iff $AL = 2R$. (R is the circumradius of ABC)

Contributors: Omid Hatami