Predicting Customer Churn Based on User Data

Providing Predictive Models and Data Insights to Aide in Targeted Marketing and Improve Customer Retention

Background: Business Problem

- For a subscription based business, customer churn refers to customers canceling their service
- The churn rate must be lower than the new subscriber rate for the company to grow
- Accurately predicting customer churn is critical for business projections and long term success
- Segmenting customers who have a high churn probability is very valuable to the marketing team to deploy targeted efforts to increase customer retention

Hypothetical Client

- KKbox is the biggest music streaming service in East Asia with a large library of Asian pop music
- Users can stream unlimited numbers of songs from their smartphones or other devices in exchange for a monthly fee
- Basically, it's Taiwanese Spotify

Data

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 9 columns):
              object
msno
date
              int64
num 25
              int64
              int64
num 50
              int64
num 75
num 985
              int64
num 100
              int64
              int64
num unq
total secs
             float64
dtypes: float64(1), int64(7), object(1)
memory usage: 1.5 GB
```

- Kaggle provided their anonymized user data on the competition page.
- There were 4 different types of csv data tables: train/test, members, transactions, and user logs
- One column they all have in common is User ID (MSNO)
- Train/test and members files are indexed by User ID, while transactions and user logs are indexed by date
- Transactions file contain ~ 20 million records (@1.61 GB) and user logs file contains ~ 200 million (@ 22.4 GB) records
- This presents a challenge as most any laptop/desktop does not have enough RAM to hold these files in memory if using python packages such as Pandas taught in this course

Data Description (columns)

- Train/test
 - User ID
 - o Churn (0 or 1)
- Members
 - User ID
 - Age
 - Gender
 - Registration method
 - Registration Date
- Transactions
 - o Date
 - User ID
 - Payment method
 - Days in pay period

- Payment plan list price
- Actual amount payed
- Auto renew (0 or 1)
- Membership expire date
- Cancellation (0 or 1)
- User Logs
 - Date
 - User ID
 - # of Songs played to 0-25%
 - # of Songs played to 25-50%
 - # of Songs played to 50-75%
 - # of Songs played to 75-98.5%
 - # of Songs played to 100%
 - # of unique songs played
 - Total seconds played

Exploratory Data Analysis


```
city
      12.250000
       7.203390
       6.147186
       5.772137
       7.023411
7
       3.875969
       6.539510
       5.450237
10
       3.021148
11
       5.825243
       5.300353
       5.732616
14
       6.224490
15
       5.050973
16
       3.773585
17
       5.535055
18
       3.641457
19
      28.571429
20
       0.000000
21
       4.803493
       5,416051
Name: churn percentage, dtype: float64
```

EDA con'td

EDA con'td

EDA con'td

Correlation Matrix (Pearson R)

	city	bd	registered_via	is_churn	num_25	num_50	num_75	num_985	num_100	num_unq	total_secs	days_logged
city	1.000000	-0.020445	0.045767	-0.022499	0.001224	0.001040	-0.006339	0.001040	-0.000279	-0.000679	-0.002455	0.003994
bd	-0.020445	1.000000	0.209202	-0.071810	-0.089061	-0.090175	-0.086469	-0.090175	0.022526	-0.040294	0.010269	-0.035512
registered_via	0.045767	0.209202	1.000000	-0.073980	-0.031941	-0.031360	-0.021466	-0.031360	0.010942	-0.007058	0.007218	-0.019007
is_churn	-0.022499	-0.071810	-0.073980	1.000000	0.005029	0.003880	0.013094	0.003880	-0.022791	-0.013198	-0.022951	-0.046399
num_25	0.001224	-0.089061	-0.031941	0.005029	1.000000	0.533542	0.422364	0.533542	0.069331	0.414502	0.118600	0.021858
num_50	0.001040	-0.090175	-0.031360	0.003880	0.533542	1.000000	0.591780	1.000000	0.078209	0.325399	0.143024	0.032062
num_75	-0.006339	-0.086469	-0.021466	0.013094	0.422364	0.591780	1.000000	0.591780	0.102863	0.301384	0.173186	0.031214
num_985	0.001040	-0.090175	-0.031360	0.003880	0.533542	1.000000	0.591780	1.000000	0.078209	0.325399	0.143024	0.032062
num_100	-0.000279	0.022526	0.010942	-0.022791	0.069331	0.078209	0.102863	0.078209	1.000000	0.783419	0.982416	0.076924
num_unq	-0.000679	-0.040294	-0.007058	-0.013198	0.414502	0.325399	0.301384	0.325399	0.783419	1.000000	0.819015	0.068628
total_secs	-0.002455	0.010269	0.007218	-0.022951	0.118600	0.143024	0.173186	0.143024	0.982416	0.819015	1.000000	0.080310
days_logged	0.003994	-0.035512	-0.019007	-0.046399	0.021858	0.032062	0.031214	0.032062	0.076924	0.068628	0.080310	1.000000

Data Wrangling

Data Wrangling

Out[12]:

msno	is_churn	bd	registration_init_time	num_25	num_50	num_75	num_985	num_100	num_unq		city_22.0	registered_via_0.0
DZaolqOUAZPsH1q0teWCg=	1	28.0	20131223.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
Udr+E+3+oewvweYz9cCQE=	1	20.0	20131223.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
hiRnAVvgibMyazbCxvWPcg=	1	18.0	20131227.0	5.166667	1.833333	1.500000	1.833333	8.000000	15.000000		0	0
/GCG2Ecrogbc2Vy5YhsfhQ=	1	0.0	20140109.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
Jw/XKpMgrEMdG2edFOxnA=	1	35.0	20140125.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
D99M5vYB3CN2HzkEY+eM=	1	0.0	20140126.0	1.500000	0.000000	0.000000	0.000000	2.750000	5.000000		1	0
LjFoxD1EcKYCc76F5IAWw=	1	0.0	20140129.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
4dXMLk0jOn65d7a8tQ2Eds=	1	28.0	20140202.0	0.500000	0.166667	0.166667	0.166667	33.500000	17.666667		0	0
Jbsz0MXw3kay/1AIZCq3EbI=	1	21.0	20140212.0	14.857143	2.285714	1.571429	2.285714	46.285714	63.142857		0	0
eN3oaNmhdmTkoof2iRYEE=	1	0.0	20140228.0	47.500000	2.833333	0.166667	2.833333	21.666667	61.666667	1	0	0
Cezv5KBK7+DMujNibYgylrs=	1	0.0	20140307.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
K1Bc6g+7LFKzoNf+zIJtDoQ=	1	0.0	20140323.0	1.500000	1.000000	1.500000	1.000000	16.833333	21.333333		0	0
FerqTEgmno3x7Rc7YGwzw=	1	32.0	20140324.0	3.000000	1.285714	0.857143	1.285714	10.285714	14.285714		0	0
CVYPdek7K4Leu+aqbCRo8=	1	0.0	20140402.0	5.000000	2.000000	0.500000	2.000000	40.000000	32.125000		0	0
Z9gChiSR4tWP4lvJGdxSM=	1	21.0	20140407.0	3.000000	1.600000	1.800000	1.600000	90.000000	91.200000		0	0
siKwhz0Za0yU2GIQtKa1JFk=	1	20.0	20140415.0	14.666667	4.000000	1.500000	4.000000	2.500000	21.666667		0	0
TsxP0VrzDsfB0Hdth12gqQE=	1	0.0	20140420.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
ucgyuT2i8JIiJ87bOlsxtFvBw=	1	0.0	20140425.0	15.000000	2.500000	2.500000	2.500000	27.000000	44.000000		0	0
VnjzY7U1G24mVFNdzGNQ=	1	29.0	20140510.0	6.571429	1.285714	1.000000	1.285714	21.142857	27.857143		0	0
0fme2pHLE2y+RJ3eGcLT0k=	1	0.0	20140515.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0	0
PASPI IRY2V50+waV/FDhnV-	1	0.0	20140605.0	3 333333	1 000000	0.500000	1 000000	14 166667	17 022222		0	0

Model Selection

The evaluation metric for this competition is Log Loss

$$logloss = -rac{1}{N}\sum_{i=1}^{N}\left(y_i\log(p_i) + (1-y_i)\log(1-p_i)
ight)$$

Log loss of random guessing = ln(0.5) = 0.693Log loss of hypothetical perfect model = 0.0

Regression

- o MSPE
- o MSAE
- o R Square
- Adjusted R Square

Classification

- o Precision-Recal
- o ROC-AU
- o Accuracy
- Log-Loss

Unsupervised Models

- Rand Index
- Mutual Information

Others

- CV Error
- Heuristic methods to find K
- BLEU Score (NLP)

Model Performance: Random Forest

AUC: 0.9861211554440634

Confusion Matrix [[174343 2371] [2621 14857]]

Evaluation Set:

#check log loss
log_loss(y_test,y_pred_prob)

Competition Scoring:

0.30744

0.09625370790222848

Model Performance: Logistic Regression with Grid Search Hyperparameter Optimization

Confusion Matrix [[174087 2627] [4606 12872]]

Evaluation Set:

#check log loss
log_loss(y_test,y_pred_prob)

0.13416865382929385

Competition Scoring:

0.26963

AUC: 0.930369867332425

Model Performance: Logistic Regression- ridge regression penalty with LASSO regression selected features (final model)

AUC: 0.8817120310353784

Confusion Matrix

[[173671 3043] [10788 6690]]

Evaluation Set:

Competition Scoring:

#check log loss
log_loss(y_test,y_pred_prob)

0.1738358467535548

0.13673

Features: LASSO Regression with All Features

Coefficient Value

Feature

Features: Ridge Regression with All Features

Feature

Random Forest Feature Importance

Final Model Feature Coefficients

	features	model_coefficients
0	is_auto_renew	-4.052154
1	is_cancel	5.375505
2	registered_via_0.0	0.317831
3	registered_via_3.0	-0.394750
4	registered_via_4.0	-0.274589
5	registered_via_7.0	0.210269
6	registered_via_9.0	-0.119956
7	registered_via_13.0	0.286762
8	gender_0	-0.219702
9	gender_female	0.151013
10	gender_male	0.094256

Recommendation to Client:

- Apply targeting marketing strategies to customers with high churn probability
- Consider features of users that have significance to churning when implementing product improvements