Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Мегафакультет компьютерных технологий и управления Кафедра информатики и прикладной математики

Курсовая работа по предмету Дискретная математика «Синтез комбинационных схем»

Группа: Р3118

Студент: Петкевич Константин Преподаватель: Раков С.В

Условия, при которых f=1: $2 \le |X_1X_2 - X_3X_4X_5| \le 4$ Условия, при которых f=d: $|X_1X_2 - X_3X_4X_5| = 5$

1. Составление таблицы истинности

Таблица истинности заданной функции представлена в таблице 1.

Таблица 1

I аоли N	Х ₁ Х ₂ Х ₃ Х ₄ Х ₅	X_1X_2	$(X_1X_2)_{10}$	X ₃ X ₄ X ₅	$(X_3X_4X_5)_{10}$	$(X_1X_2 - X_3X_4X_5)_{10}$	-	f
0	00000	00	0	000	0	0	0	0
1	00001	01	1	000	0	1	1	0
2	00010	10	2	000	0	2	2	1
3	00011	11	3	000	0	3	3	1
4	00100	00	0	001	1	-1	1	0
5	00101	01	1	001	1	0	0	0
6	00110	10	2	001	1	1	1	0
7	00111	11	3	001	1	2	2	1
8	01000	00	0	010	2	-2	2	1
9	01001	01	1	010	2	-1	1	0
10	01010	10	2	010	2	0	0	0
11	01011	11	3	010	2	1	1	0
12	01100	00	0	011	3	-3	3	1
13	01101	01	1	011	3	-2	2	1
14	01110	10	2	011	3	-1	1	0
15	01111	11	3	011	3	0	0	0
16	10000	00	0	100	4	-4	4	1
17	10001	01	1	100	4	-3	3	1
18	10010	10	2	100	4	-2	2	1
19	10011	11	3	100	4	-1	1	0
20	10100	00	0	101	5	-5	5	d
21	10101	01	1	101	5	-4	4	1
22	10110	10	2	101	5	-3	3	1
23	10111	11	3	101	5	-2	2	1
24	11000	00	0	110	6	-6	6	0
25	11001	01	1	110	6	-5	5	d
26	11010	10	2	110	6	-4	4	1
27	11011	11	3	110	6	-3	3	1
28	11100	00	0	111	7	-7	7	0
29	11101	01	1	111	7	-6	6	0
30	11110	10	2	111	7	-5	5	d
31	11111	11	3	111	7	-4	4	1

2. Представление булевой функции в аналитическом виде

КДНФ: $f = \overline{X}_1 \overline{X}_2 \overline{X}_3 X_4 \overline{X}_5 \lor \overline{X}_1 \overline{X}_2 \overline{X}_3 X_4 X_5 \lor \overline{X}_1 \overline{X}_2 X_3 X_4 X_5 \lor \overline{X}_1 X_2 \overline{X}_3 \overline{X}_4 \overline{X}_5 \lor \overline{X}_1 X_2 X_3 \overline{X}_4 \overline{X}_5 \lor \overline{X}_1 X_2 X_3 \overline{X}_4 \overline{X}_5 \lor \overline{X}_1 \overline{X}_2 \overline{X}_3 \overline{X}_4 \overline{X}_5 \lor \overline{X}_1 \overline{$

 $\begin{array}{l} \text{KKH}\Phi\colon f = (X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5) \; (X_1 \vee X_2 \vee X_3 \vee X_4 \vee \overline{X}_5) \; (X_1 \vee X_2 \vee \overline{X}_3 \vee X_4 \vee X_5) \; (X_1 \vee X_2 \vee \overline{X}_3 \vee X_4 \vee X_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee X_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee X_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee X_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee X_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee X_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_2 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_5) \; (X_1 \vee \overline{X}_3 \vee \overline{X}_4 \vee \overline{X}_$

3. Минимизация булевой функции методом Квайна-МакКласки

• Нахождение максимальных кубов

Таблица 2

№	K ⁰ UN(f)	٧		K ¹ (f)		٧		K ² (f)		٧		Z(f)
1	00010	٧	1	0001x	1-2		1	10x0x	7-14		1	0001x
2	00011	٧	2	x0010	1-9		2	10xx0	8-15		2	x0010
3	00111	٧	3	00x11	2-3		3	1xx10	12-22		3	00x11
4	01000	٧	4	x0111	3-13		4	101xx	14-17		4	x0111
5	01100	٧	5	01x00	4-5		5	1x11x	17-24		5	01x00
6	01101	٧	6	0110x	5-6	٧	6	11x1x	21-24		6	0110x
7	10000	٧	7	1000x	7-8	V					7	1x001
8	10001	٧	8	100x0	7-9	٧					8	110x1
9	10010	٧	9	10x00	7-10	٧					9	10x0x
10	10100	٧	10	10x01	8-11						10	10xx0
11	10101	٧	11	1x001	8-14	٧					11	1xx10
12	10110	٧	12	10x10	9-12	V					12	101xx
13	10111	٧	13	1x010	9-15	٧					13	1x11x
14	11001	٧	14	1010x	10-11	٧					14	11x1x
15	11010	٧	15	101x0	10-12	V						
16	11011	٧	16	101x1	11-13	٧						
17	11110	٧	17	1011x	12-13	V						
18	11111	٧	18	1x110	12-17	٧						
			19	1x111	13-18	٧						
			20	110x1	14-16							
			21	1101x	15-16	٧						
			22	11x10	15-17	٧						
			23	11x11	16-18	٧						
			24	1111x	17-18	٧						

• Составление импликантной таблицы

Таблица 3

	00010	00011	00111	01000	01100	01101	10000	10001	10010	10101	10110	10111	11010	11011	11111
0001x	٧	V													
x0010	٧								٧						
00x11		V	٧												
x0111			٧									٧			
01x00				(∀)	٧										
0110x					٧	(∀)									
1x001								٧							
110x1														٧	
10x0x							٧	٧		٧					
10xx0							٧		٧		٧				
1xx10									٧		٧		٧		
101xx										٧	٧	٧			
1x11x											٧	٧			٧
11x1x								·					٧	٧	٧

• Упрощенная импликантная таблица

Таблица 4

		00010	00011	00111	10000	10001	10010	10101	10110	10111	11010	11011	11111
		A	В	С	D	Е	F	G	Н	I	J	K	L
0001x	Α	٧	٧										
x0010	В	٧					٧						
00x11	C		٧	٧									
x0111	D			٧						٧			
1x001	Е					V							
110x1	F											٧	
10x0x	G				٧	٧		٧					
10xx0	Н				٧		٧		٧				
1xx10	I						٧		V		٧		
101xx	J							٧	٧	٧			
1x11x	K								V	٧			V
11x1x	L										٧	٧	V

• Ядро покрытия

```
T = \{01x00\} \\ \{0110x\}
```

• Определение минимально покрытия

 $Y = (A \ v \ B)(B \ v \ C)(C \ v \ D)(G \ v \ H)(E \ v \ G)(B \ v \ H \ v \ I)(H \ v \ I \ v \ J \ v \ K)(D \ v \ J \ v \ K)(I \ v \ L)(F \ v \ L)$ $(K \ v \ L)$

Y = ADGIL v BCGJL v BCGKL v ADGHL v ADFGIK v BCFGIK v ACGIJL v ACFGIK v ACGIKL v BCDGIL v ACGHJL v ACGHKL v BCDGHL v ABDGJL v ADEHJL v ACEHJL v BCEHJL v ADEFGIJK v ACEFHIJK v BCEFHUJK

• Варианты покрытия

```
C1 = \{T A D G I L\} S1a = 17, S2b = 22
C2 = \{T B C G J K\} S1a = 17, S2b = 22
C3 = \{T B C G K L\} S1a = 17, S2b = 22
C4 = \{T A D G H L\} S1a = 17, S2b = 22
C5 = \{T A D F G I K\} S1a = 21, S2b = 27
C6 = \{T B C F G I K\} S1a = 21, S2b = 27\}
C7 = \{T A C G I J L\} S1a = 20, S2b = 26
C8 = \{T A C F G I K\} S1a = 21, S2b = 27
C9 = \{T A C G I K L\} S1a = 20, S2b = 26
C10 = \{T B C D G I L\} S1a = 21, S2b = 27
C11 = \{T A C G H J L\} S1a = 20, S2b = 26
C12 = \{T A C G H K L\} S1a = 20, S2b = 26
C13 = \{T B C D G H L\} S1a = 21, S2b = 27
C14 = \{T A B D G J L\} S1a = 21, S2b = 27
C15 = \{T A B D G K L\} S1a = 21, S2b = 27
C16 = \{T A D E H J L\} S1a = 21, S2b = 27
C17 = \{T A C E H J L\} S1a = 21, S2b = 27
C18 = \{T B C E H J L\} S1a = 21, S2b = 27
C19 = \{T A D E F G I J K\} S1a = 28, S2b = 36
C20 = \{T A C E F G I J K\} S1a = 28, S2b = 36\}
C21 = \{T B C E F H U J K\} S1a = 28, S2b = 36
```

Минимально покрытие функции – С1

```
Cmin(f) = \{0001x\} \qquad S1a = 17, S1b = 22\{x0111\}\{10x0x\}\{1xx10\}\{11x1x\}
```

Эта функция соответствует МДНФ следующего вида: $f = \overline{X}_1 \, \overline{X}_2 \overline{X}_3 X_4 \vee \overline{X}_2 X_3 X_4 X_5 \vee X_1 \overline{X}_2 \overline{X}_4 \vee X_1 X_4 \overline{X}_5 \vee X_1 X_2 X_4$

4. Определение МКНФ

• Единичные покрытия

		Y	X_4X_5		
		00	01	10	11
X_2X_3	00			1	1
212213	01				1
	10	1			
	11	1	1		
			•		

		X	$4X_5$	
	00	01	10	11
00	1	1	1	
01	d	1	1	1
10		d	1	1
11			d	1

$$X_1 = 0$$
 $X_1 = 1$

$$Cmin(f) = \{0001x\} \qquad S1a = 17, S1b = 22 \\ \{x0111\} \\ \{10x0x\} \\ \{1xx10\} \\ \{11x1x\}$$

МДНФ: $f = \overline{X}_1 \overline{X}_2 \overline{X}_3 X_4 \vee \overline{X}_2 X_3 X_4 X_5 \vee X_1 \overline{X}_2 \overline{X}_4 \vee X_1 X_4 \overline{X}_5 \vee X_1 X_2 X_4$

Можно заметить, что цена покрытия, определенная методом Квайна-Мак-Класки и цена покрытия по картам Карно получилась одинаковая.

• Нулевые покрытия

 $X_1 = 0$

		$\Lambda 4\Lambda$	5	
	00	01	10	11
00				0
01	d			
10	0	d		
11	0	0	d	

 $X_1 = 1$

$$Cmin(\overline{f}) = \{01x1x\} \quad S1a = 14, S1b = 18$$

$$\{00x0x\}$$

$$\{11x0x\}$$

$$\{x10xx\}$$

$$\{x11xx\}$$

 $\text{MKH}\Phi\text{:}\ f = (X_1 \vee \overline{X}_2 \vee \overline{X}_4)\ (X_1 \vee X_2 \vee X_4)\ (\overline{X}_1 \vee \overline{X}_2 \vee X_4)\ (\overline{X}_2 \vee X_3)\ (\overline{X}_2 \vee \overline{X}_3)$

5. Преобразования минимальных форм булевой функции

• Факторизация МДНФ

$$f=\overline{X}_1\,\overline{X}_2\overline{X}_3X_4\vee\overline{X}_2X_3X_4X_5\vee X_1\overline{X}_2\overline{X}_4\vee X_1X_4\overline{X}_5\vee X_1X_2X_4$$
 $Sq{=}22$

Факторизация:

$$\begin{array}{ll} f = \overline{X}_1 \, \overline{X}_2 \overline{X}_3 X_4 \vee \overline{X}_2 X_3 X_4 X_5 \vee X_1 \overline{X}_2 \overline{X}_4 \vee X_1 X_4 \overline{X}_5 \vee X_1 X_2 X_4 &= (Sq{=}22) \\ = \overline{X}_2 X_4 \, (\overline{X}_1 X_3 \vee X_3 X_5) \vee X_1 \, (\overline{X}_2 \overline{X}_4 \vee X_4 \overline{X}_5 \vee X_2 X_4) &= (Sq{=}29) \\ = \overline{X}_2 X_4 \, \overline{X}_3 \, (\overline{X}_1 \vee \overline{X}_5) \vee X_1 \, X_4 \, (X_2 \vee \overline{X}_5 \vee X_2) & (Sq{=}17) \end{array}$$

• Факторизация МКНФ

$$f=(X_1\vee \overline{X}_2\vee \overline{X}_4)\;(X_1\vee X_2\vee X_4)\;(\overline{X}_1\vee \overline{X}_2\vee X_4)\;(\overline{X}_2\vee X_3)\;(\overline{X}_2\vee \overline{X}_3)$$
 $Sq{=}18$

Факторизация:

$$\begin{array}{l} f = (X_{1} \vee \overline{X}_{2} \vee \overline{X}_{4}) \; (X_{1} \vee X_{2} \vee X_{4}) \; (\overline{X}_{1} \vee \overline{X}_{2} \vee X_{4}) \; (\overline{X}_{2} \vee X_{3}) \; (\overline{X}_{2} \vee \overline{X}_{3}) = (Sq{=}18) \\ = X_{1} \; (\overline{X}_{1} \vee \overline{X}_{2} \vee X_{4}) \; (\overline{X}_{2} \vee X_{3}) \; (\overline{X}_{2} \vee \overline{X}_{3}) = X_{1} \; \overline{X}_{2} \; (\overline{X}_{1} \vee \overline{X}_{2} \vee X_{4}) \; (Sq{=}13) \end{array}$$

6. Построение комбинационной схемы