

CS 522 ADVANCED DATA MINING FINAL REPORT WIKIPEDIA HIERARCHY EXTRACTION

BY: POOJA HEMANTKUMAR PATEL

TEAM MEMBERS:

KRISHNA BHARADWAJ ANIMESH PATNI

Contents

Α	bst	ract.		. 3			
1.		Intro	oduction	. 3			
2.		Dataset					
	2.:	1.	Data Procurement	. 4			
	2.2	2.	Data Preprocessing	. 4			
	2.3	3.	Feature Engineering	. 4			
3.							
	3.:	1.	TF-IDF	. 6			
	3.2	2.	Bag of Words Representation	. 6			
	3.3	3. Sin	nilarity Calculation	. 6			
		3.3.1	Bottom Up Approach	. 6			
		3.3.2 Top-Down Approach					
		3.3.3 Word2Vec					
4.		Results and Analysis					
5.		Conclusion					

Abstract

In this report we perform extraction of Wikipedia hierarchies. Wikipedia has many articles with about 300 languages which also allows editing an article and hence the content in the articles are very subjective. Considering only the articles which are in English are more than 5 million. These all the articles on Wikipedia are categorized in hierarchy. Hence, each article has its own hierarchy. Our project extracts the hierarchy of the given topic by making using of dataless approach that is used in a paper 'On Dataless Hierarchical Text Classification' by Yangqiu Song and Dan Roth.

1. Introduction

Wikipedia hierarchy Extraction is extracting the hierarchy of the article which is input by the user. This is very helpful for the categorization of the articles and also can be used in information browsing well as it will decrease the time required to browse the required information. So in order to achieve such goals it is very necessary to understand the existing hierarchy of the Wikipedia and also there is requirement to fetch the Wikipedia hierarchy. In our project, we will take input from the user as an article title and then extract the hierarchy of the same.

Topics we used for hierarchy extraction:

We chose the major topics which are very common in day to day life:

- 1. Finance
- 2. Biology
- 3. Politics

Structure for 'Wikipedia Hierarchy Extraction':

Fig. 1. Structure for 'Wikipedia Hierarchy Extraction'

The above diagram shows the major steps that are performed in order to extract the hierarchy of the given input from the user. The vital steps include:

- a. The fetching the existing Wikipedia hierarchies of the top level categories like finance, biology, politics etc.
- b. Then extracting all the articles related to the above topics thereafter preprocessing all the
- c. Fetch the hierarchy by extracting the most similar page at each level

2. Dataset

2.1. Data Procurement

The main source of the data which we used for our project is Wikipedia dumps. The following shows the steps for how the data was fetched and we used :

- a. We downloaded the xml dumps of Wikipedia from https://dumps.wikimedia.org/enwiki/latest/
- b. It has all the information about the hierarchy and the categories which are defined in Wikipedia
- c. Category Tree was formed for the categories which we are using which are 'Finance', 'Politics' and 'Biology' and we put these categories at the top level and hence they are at level 0
- d. The API in python name 'pywikibot' was used to extract the hierarchy
- e. The levels were restricted to two and we did this because as we went down in depth the categories that fetched got irrelevant to the topics at high level
- f. We fetched the tree for each top level categories like finance, biology, politics thereafter the we fetched all the articles which are related to tree which we fetched. These all articles which we get here is our dataset which we used for further experiments

2.2. Data Preprocessing

The following are the steps that we performed to clean the dataset which we are using:

- a. Removing the stop words
- b. Stemming the data
- c. Removed all the lists articles from the corpus ('Lists of Organisms by population')

2.3. Feature Engineering

There was not major requirement for feature engineering in our project. But we added a column in our dataframe named 'Level' in which each entry defines the current level of the article.

0	1	biology	biology is the natural science that involves t	0	biology natural science involves study life it
1	2	quantum biology	quantum biology refers to applications of quan	1	quantum biology refers applications quantum me
3	4	morphology (biology)	morphology is a branch of biology dealing with	2	morphology is a branch of biology dealing with.
4	6	systems biology	systems biology is the computational and mathe	2	morphology branch biology dealing study form s
5	0	paleobiology	paleobiology (uk & canadian english: palaeobio	2	systems biology computational mathematical mod
6	10	cell biology	cell biology or cytology, (from the greek kurto	2	paleobiology uk canadian english palaeobiology
7	12	medione	medicine is the science and practice of the di	2	cell biology cytology greek kytos vessel branc
	14	nutrition	nutrition is the science that interprets the i	2	medicine science practice diagnosis treatment
9	16	astrobiology	astrobiology is the study of the origin, evolu	2	nutrition science interprets interaction nutri.
10	18	chemical biology	chemical biology is a scientific discipline sp	2	astrobiology study origin evolution distribution
11	19	branches of botany	botany is a natural science concerned with the	2	chemical biology scientific discipline spannin
12	21	bionics	bionics is the application of biological metho	2	botany natural science concerned study plants
13	22	evolutionary biology	evolutionary biology is the subfield of biolog.	2	bionics application biological methods systems
14	24	ecology	ecology (from greek alkaç, "house", or "envir	2	evolutionary biology subfield biology studies
15	26	mycology	mycology is the branch of biology concerned wi	2	ecology greek house environment study scientif.
16	28	chronobiology	chronobiology is a field of biology that exami-	2	mycology branch biology concerned study fungi
17	30	sall biology	soil biology is the study of reicrobial and fau	2	chronobiology field biology examines periodic
18	32	physiology	physiology (; from ancient greek φώτις (physis	2	soil biology study microbial faunal activity e
19	34	structural biology	structural biology is a branch of molecular bi	2	physiology ancient greek physis meaning nature.

Fig. 2: Corpus after preprocessing

The following is the word cloud that we made for better visualization of the corpus of the top level hierarchies like finance, biology, politics:

Fig. 3: Politics Wordcloud

Fig. 4: Biology Wordcloud

Fig. 5: Finance Wordcloud

3. Experiment

3.1. TF-IDF

It is the value that let us know how important the article is from all the articles in the corpus which we created for Wikipedia and also the value of it increases as the no. of times the words appears in the document and is adjusted by word frequency.

The tf-idf is given by:

$$tf\text{-}idf(t,d) = tf(t,d) \times idf(t)$$

The idf is defined as shown below:

$$idf(t) = log \frac{n_d}{1 + df(d,t)}$$
.

Where, nd is total # of documents, and df(d,t) is the number of documents that has or includes terms t

3.2. Bag of Words Representation

The BOW of the data we used was created which means that we vectorized the words into numerical features. Hence one of the below can be done for the same:

- Tokenizing: Giving an integer id for each possible token, by tokenizing string using white spaces
- Counting: Counting the token occurences in each document
- Normalizing: weighing the importance of tokens with respect to articles

To get the BOW for our project we used gensim.corpora.dictionary.Dictionary.doc2bow function of python gensim class thereafter converted documents to vectors.

For instance, vec(Finance) = Vec(all articles that fall under finance category)

3.3. Similarity Calculation

For calculating the similarities, we have worked with the following approaches:

- a. Bottom-Up Approach
- b. Top-Down Approach

3.3.1 Bottom Up Approach

The following steps were performed for this approach:

1. An article was fetched in order to compare

- 2. The same was converted to tf-idf representation
- 3. This was then compared to the summary vectors that were created for the top level categories which gave us the category that was most similar at the top level
- 4. Once we get the top level hierarchy, fetch the most similar document by comparing the new article with the corpus containing the articles related to the top level hierarchy
- 5. The article which we obtained was a parent article this is what we assume
- 6. Intermediate corpus was made by fetching only those articles that are above the parent article found above
- 7. The article that is most similar to the parent article obtained in step 5 was found
- 8. Repeat steps 5 to 7 until we reach the top level hierarchy

3.3.2 Top-Down Approach

The following steps were performed for this approach:

- 1. An article was fetched in order to compare
- 2. The same was converted to tf-idf representation
- 3. This was then compared to the summary vectors that were created for the top level categories which gave us the category that was most similar at the top level
- 4. The children which is immediate one of the top level category was fetched and the most similar article among these was found
- 5. Repeat step 4 until we reach the leaf node or till we get the article in the tree

3.3.3. Word2Vec

- 1. We also tried the Word2Vec approach to find the similarity amongst the articles. We converted the corpus as well as the new article into a word2vec representation.
- 2. Computed the Word2Vec using a predefined function Word2Vec under packages "gensim.models".
- 3. Then after that we converted both the word2vec representation into np vectors.
- 4. Computed the cosine similarity, using a predefined function in Python under package:
- "sklearn.metrics.pairwise".
- 5. cosine similarity(vector1, vector2)
- 6. We were not able to go ahead with this approach as the outcomes were not satisfactory.

Upon application of both the methods, we found the top down approach to be more efficient since we don't have to

compare with all the articles from the bottom.

4. Results and Analysis

To analyze our result, we took twenty articles related to one of the top level categories from Wikipedia and extracted the hierarchy by implementing both the top down and bottom up approaches.

The results were then compared with the actual hierarchy that was manually extracted for these 20 articles.

The following were the results obtained –

Titles	Actual	Top Down	Bottom Up	
	Mutual Fund , Investment funds ,	finance, financial services, investment		
Mutual fund	financial services , Finance	fund	finance, financial services, investment fund	
	Hedge Funds , Investment funds ,			
Hedge fund	financial services , Finance	finance,financial risk,venezuela	finance, financial services, investment fund	
Bank	Banking , Finance	finance, financial services, bank	finance,financial services,bank	
Debt collection	debt collection , Finance	finance,debt,debt collection	Debt collection,immortality,hybrid (biology),biology	
Loan	loans , Banking , Finance	finance,debt,loan	Loan,immortality,hybrid (biology),biology	
			Debt bondage,taxonomy (biology),philosophy of	
Debt bondage	debt bondage , debt , finance	finance,debt,debt bondage	biology,biology	
	corruption , financial problems ,			
Corruption	finance	politics,political corruption,corruption	Corruption, biology, natural environment, biology	
		finance,financial services,deposit		
Deposit account	bank deposits , investment , finance	account	Deposit account,immortality,hybrid (biology),biology	
	Quantum Aspects of Life , Quantum	biology,mathematical and theoretical	Quantum Aspects of Life, history of biology, mathematical and	
Quantum Aspects of Life	biology , biology	biology,history of biology	theoretical biology, biology	
Orchestrated objective	Orchestrated objective reduction ,	biology,mathematical and theoretical	Orchestrated objective reduction, immortality, hybrid	
reduction	Quantum biology , biology	biology,immortality	(biology),biology	
Avicide	avicides , biocides , biology	finance,aircraft in fiction,venezuela	Avicide, species, eukaryote, biology	
	artificial ecosystems , ecology ,	biology,mathematical and theoretical		
Geographical feature	natural environment , biology	biology,biologist	Geographical feature, biologist, philosophy of biology, biology	
Election	elections , voting, politics	politics,voting,election	Election, biology, natural environment, biology	
Political violence	political violence , politics	politics, political violence	Political violence, biology, natural environment, biology	
United States				
presidential debates,	political debates , political events ,	politics, voting, united states	United States presidential debates, 2016, history of	
2016	politics	presidential debates, 2016	biology,mathematical and theoretical biology,biology	
	Bankruptcy, Corporate finance,			
Bankruptcy	Finance	finance,debt,debt collection	Bankruptcy,immortality,hybrid (biology),biology	
		biology,mathematical and theoretical		
Bionics	Bionics, Branches of biology, Biology	biology, biology	Bionics, biology, natural environment, biology	
	Algae bioreactor, Biotechnology,	biology,mathematical and theoretical		
Algae bioreactor	Biology	biology,biology	Algae bioreactor, biology, natural environment, biology	
	Biomolecules, Structural Biology,	biology,mathematical and theoretical		
Biomolecule	Biology	biology,taxonomy (biology)	Biomolecule, taxonomy (biology), philosophy of biology, biology	

Fig. 6: Results

From the above table we observe that the top down is a better approach then bottom up for extracting the hierarchy (The hierarchies of the Wikipedia are subjective). Hence there can be articles that has multiple hierarchies and also vice versa that the parent article can also have multiple children.

For example, take 'Election' which we have taken above has following hierarchy:

Election \rightarrow Voting \rightarrow Politics

An alternate hierarchy could be constructed as follows -

Election → Political Events → Politics

If we see both the above hierarchies, both of them makes sense and are correct

5. Conclusion

To conclude, the top down approach gave us the good results for extraction of Wikipedia hierarchy for a given topic. But there are some articles that can have multiple hierarchies for a particular page and this is due to subjective nature of the hierarchies on Wikipedia articles. As we know there can be other ways too for extracting the hierarchy which can be efficient so the future scope will be that we can explore the techniques such as LSA, Word2Vec etc.