

MEDINA WHARF

COWES, ISLE OF WIGHT

GENERIC QUANTITATIVE RISK ASSESSMENT

MARCH 2013

MEDINA WHARF

COWES, ISLE OF WIGHT

GENERIC QUANTITATIVE RISK ASSESSMENT

MARCH 2013

Project Code: R/PDEMedinaWharf.9

Prepared by: Antony Platt

Approved by: Rasmus Palmgren
Issue Date: March 2013 (V2)

Status: FINAL

MEDINA WHARF, COWES, ISLE OF WIGHT GENERIC QUANTITATIVE RISK ASSESSMENT

Contents

0. 1.		DUCTION4
••	1.1	INSTRUCTION4
	1.2	LEGAL CONTEXT4
	1.3	METHODOLOGY5
	1.4	PROPOSED USE6
	1.5	REPORT SCOPE AND LIMITATIONS6
	1.6	PREVIOUS REPORTS REVIEWED7
2.	-	MINARY RISK ASSESSMENT10
	2.1	SITE LOCATION AND DESCRIPTON10
	2.2	SITE HISTORY11
	2.3	DOCUMENTATED GROUND CONDITIONS12
	2.4	ENVIRONMENTAL DATA SEARCH13
	2.5	DEPARTMENT OF ENVIRONMENT – INDUSTRY PROFILES14
	2.6	NOTICES OF MODIFICATION OF WASTE DISPOSAL LICENCE
		CONDITIONS14
	2.7	CONSULTATION WITH REGULATORS15
	2.8	OUTLINE CONCEPTUAL SITE MODEL16
	2.9	CONCLUSIONS OF PRELIMINARY RISK ASSESSMENT (PRA)16
3.	FIELD	NORK SUMMARY OF SCOPE AND RATIONALE17
	3.1	PROPOSED INVESTIGATION STRATEGY17
	3.2	RATIONALE AND SUMMERY OF SCOPE18
	3.3	MONITORING19

	3.4	SITE INVESTIGATION STANDARDS20	
4.	GROU	ND CONDITIONS ENCOUNTERED	21
	4.1	SOIL CONDITIONS21	
	4.2	OBSTRUCTIONS23	
	4.3	GROUNDWATER CONDITIONS23	
	4.4	VISUAL / OLFACTORY EVIDENCE OF CONTAMINATION25	
	4.5	GROUND GAS25	
5.	GENE	RIC RISK ASSESSEMNT	26
	5.1	CONTAMINATION ASSESSMENT METHODOLOGY26	
	5.2	SOIL ASSESSMENT29	
	5.3	LEACHATE ASSESSMENT31	
	5.4	GROUNDWATER ASSESSMENT34	
	5.5	GROUND-GAS ASSESSMENT36	
6.	CONC	EPTUAL SITE MODEL	38
	6.1	SOURCES38	
	6.2	PATHWAYS39	
	6.3	RECEPTORS39	
	6.4	RISK ASSESSMENT PROCEDURE40	
	6.5	POLLUTANT LINKAGE DISCUSSION AND MITIGATION	
		MEASURES44	
7.	CONC	LUSIONS AND RECOMMENDATIONS	47

MEDINA WHARF, COWES, ISLE OF WIGHT GENERIC QUANTITATIVE RISK ASSESSMENT

List of Tables

Table 2.1.	Data search results	13
	Outline conceptual model	
Table 3.1	•	
Table 4.1	Summary of encountered ground conditions	
Table 6.1	·	
Table 6.2		
Table 6.3	Level of severity for potential hazard	
Table 6.4		
Table 6.5	Level of risk for potential hazard definition	
	Pollutant Linkage Assessment	

List of Figures and Appendices

FIGURE 1: SITE LOCATION PLAN

FIGURE 2: INVESTIGATION LOCATION PLAN

FIGURE 3: CONCEPTUAL SITE MODEL

FIGURE 4: INVESTIGATION LOCATION PLAN ON 1897 OS MAP

APPENDIX A: REPORT CONDITIONS

APPENDIX B: ENVIROCHECK REPORT

APPENDIX D: ENGINEERING LOGS

APPENDIX E: GENERIC ASSESSMENT CRITERIA

APPENDIX F: SOIL, LEACHATE AND GROUNDWATER SCREENING SUMMARY

APPENDIX G: CHEMICAL ANALYSIS RESULTS

APPENDIX H: MONITORING DATA

0. EXECUTIVE SUMMARY

Brief Current Site Status	The initial brief was to undertake a site investigation and assessment to identify any ground contamination issues that may affect the proposed development. This report provides an assessment of the identified and potential ground conditions of the site, with regard to the proposed works in accordance with the Model Procedures for the Management of Land Contamination (CLR 11), published by the Environment Agency. The Site is located close to the western shore of the River Medina on the Isle
and History	of Wight and is approximately two kilometres to the south of the centre of Cowes. The Site extends to approximately 2.1 Ha and is currently largely covered with sparse grasses, scrub and dense overgrowth. There are no physical features on the ground to delineate the eastern and southern boundaries of the Site with a belt of trees being close to the western boundary. There is a coal yard and depot adjacent to the northwest of the Site which comprises an area of concrete hardstanding (45m x 110m). The area is largely flat with no infrastructure other than a portion of an old concrete surfaced area that is associated with the adjacent coal yard. The Site currently lies between 8.0 - 8.5m AOD at the northern end and between 9.5 - 10.0m AOD at the southern end, compared to the adjacent surface water level which varies between approximately -2.0m AOD and 1.8mAOD.
	According to the Ordnance Survey maps provided from 1864 to 2012 scales 1:2,500, 1:10,000, 1:1,250, 1:10,560, the northeast half of the Site comprised mud flats of the River Medina until they were reclaimed as managed oyster beds in the late 1800s with a bund constructed around the perimeter of the beds to control the water level. The southeast of the Site was solid land sloping up from the oyster beds to the railway embankment that formed the western Site boundary. The oyster beds appear to have fallen into disuse during the 1930s and are shown to be largely marshy by 1947. Active filling of the Site appears from the historical maps to have started during the 1960s and took place from the northwest corner of the Site. By 1987 the Site appears to have been predominantly filled and the concrete slab in the northwest corner of the Site and beneath the coal yard is shown to be present.
Geology	Reference to the British Geological Survey (BGS) Map (Sheet 330, Lymington, Scale 1:50,000) indicates the landfill material beneath the Site to directly overlie superficial deposits of Alluvium (clay, silt, sand and gravel) over the bedrock geology of the Headon Beds and Osborne Beds (Undifferentiated) (clay, silt and sand) and a relatively thin layer of Bembridge Limestone Formation over the Headon Beds and Osborne Beds in the southwest corner of the Site. The Bembridge Marl Formation (calcareous mud) is identified to be present to the west of the Site above the Bembridge Limestone Formation.
Hydrogeology	The Environment Agency Groundwater Vulnerability Map (Sheet 52 Southern Hampshire, Scale 1:100,000) indicates the Site to be overlying a Secondary A aquifer in the superficial deposits, interpreted as Alluvium, and Secondary A aquifers in the bedrock geology, interpreted as both the Headon Beds and Osborne Beds and the Bembridge Limestone Formation. The Bembridge Marl Formation to the west is classified as an unproductive stratum. The Site is not located within a Groundwater Source Protection Zone.
Hydrology	The nearest identified surface water feature is the River Medina which is close to the eastern boundary of the Site and flows in a general northerly direction. It is likely that the River Medina is in hydraulic continuity with the base of the landfill beneath the Site.

Ground Investigation Ground Conditions	Site investigation works were undertaken by Mayer Brown between the 3 rd and 18 th December 2012. The fieldworks for the ground investigation comprised 5no. cable percussive boreholes to a maximum depth of 19.1mbgl and 9no. window sample boreholes, using a combination of Geoprobe and Terrier rigs, to a maximum depth of 11.4mbgl, with gas / water standpipe installations in all cable percussive boreholes and 5no. of the window sample boreholes. The ground conditions at the Site comprise:
	 All boreholes were drilled through the waste of the underlying landfill, which varied in thickness from approximately 4.0m in the southwest to approximately 10.8m in the northeast. The landfill predominantly comprised a gravelly clay matrix with bands of sandy ash and clinker gravel with frequent anthropogenic inclusions including concrete, brick, plastic sheeting, asbestos cement sheeting, timber, glass and metal. BH107-109 terminated within this material.
	 Alluvium, comprising very soft grey silty clay, was encountered directly beneath the waste material in BH102, BH2 and BH3, which were situated in the area of the main former oyster bed. This Alluvium had a maximum recorded thickness of 4.8m in BH3 in the northeast of the Site. BH102 terminated within this material.
	• Headon Beds and Osborne Beds, comprising firm to stiff light grey mottles orange brown slightly silty clay with small shell fragments, were encountered directly beneath the waste in the southern and western boreholes and directly beneath the Alluvium in the north and eastern boreholes. Limestone was encountered within this material at 11.6mbgl in BH1. This material formed the basal layer for the majority of boreholes with a maximum proven thickness of 4.0mbgl. The full thickness of the stratum was not proven.
	• Groundwater was encountered at 11.6mbgl (-3.57mAOD) and 7.7mbgl (0.43mAOD) in BH1 and BH3, respectively, during the site investigation. Groundwater was recorded at variable depths across the Site but generally appears to follow the profile of the upper surface of the Headon Beds and Osborne Beds in the southwest of the Site. This appears to be more consistent with pockets of perched water retained above the low permeability natural strata rather than a consistent flowing water body within the waste. The groundwater levels in BH2 and BH3 in the northeast of the Site are relatively consistent over the monitoring period and are likely to be in continuity with each other and retained above the low permeability Alluvium in the former oyster beds.
	The data do not indicate an obvious groundwater flow direction across the Site although mobile water within the landfill is likely to migrate towards the former oyster bed basins in the north and east of the Site.
	• Monitoring of four boreholes (BH1, BH2, BH101 and BH102) over a 7hr tidal period during the investigation showed no change in groundwater depth with a 3.8m tidal variation. This indicates that the groundwater beneath the Site is not tidally influenced and is unlikely to be in significant hydraulic continuity with the River Medina. This is likely to be largely to do with the former oyster bed bunds continuing to prevent significant water movement between the landfill and the River, with an additional influence of the 15m of non-waste fill material (likely to be clay) placed between the waste and the River during the construction of the landfill.

Ground Contamination Assessment

- Asbestos containing materials were encountered within the near surface waste and capping material.
- Low concentrations of TPH were encountered in shallow soils that could impact buried services.
- Several heavy metals, petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs) and several inorganic compounds were identified in groundwater samples and leachate samples of the solid waste material at concentrations with the potential to detrimentally impact sensitive environmental receptors. However, as the monitoring data, the construction of the landfill and the residual structures associated with the former oyster beds use of the Site indicate that there is no significant hydraulic continuity between the groundwater beneath the Site and the River Medina, a significant pollutant linkage is not considered to be present between the impacted groundwater and the River.
- Generally slightly elevated concentrations of carbon dioxide and flammable gas as methane were recorded in the boreholes across the Site with locally highly elevated concentrations (BH1). No measurable ground gas flow rates were recorded. A ground gas regime classification of Characteristic Situation 2 is therefore considered appropriate for the Site with no need for further monitoring.

Recommendations

In order to mitigate the risks associated with the significant pollutant linkages the following mitigation measures are recommended:

- Any Site won material reused in the construction of the proposed bunds and redevelopment of the Site should be handled in controlled conditions and capped following placement and any of the present Site material exposed during the redevelopment should be capped during the redevelopment to prevent the release of asbestos fibres.
- Suppliers of buried services for the development, particularly water supply pipes, should be provided with the data from this document to allow the appropriate material selection.
- As the only buildings proposed for the development are portacabin structures, the design of the structures (i.e. raised above the ground) are considered to be sufficiently protected from ground gas by design with no additional protection measures recommended. Any other enclosed spaces within the development must be sufficiently ventilated.
- Contractors on Site should wear appropriate PPE to mitigate the risks from the chemical and physical impacts to the Made Ground at the Site, particularly asbestos.

These mitigation measures, as with any such mitigation or remedial measures, are subject to agreement with the regulatory authority, be it the Local Authority for human health related issues or the Environment Agency for environmental issues.

This sheet is intended to provide a summary only of the initial indicative assessment study of the Site in relation to ground contamination. It does not provide a definitive engineering analysis for the purposes of costing or construction, and is subject to the limitation of the agreed brief.

1. INTRODUCTION

1.1 INSTRUCTION

Mayer Brown Ltd. was commissioned by PDE Consulting Ltd. on behalf of Eurovia Roadstone Ltd. in October 2012 to undertake a Ground Condition Assessment of a former landfill located at Medina Wharf, Cowes, Isle of Wight (the Site).

The initial brief was to undertake a site investigation and assessment to identify any ground contamination issues that may affect the Site. This report provides an assessment of the identified and potential ground conditions of the Site, with regard to the proposed works in accordance with the Model Procedures for the Management of Land Contamination (CLR 11), published by the Environment Agency.

This report is prepared in line with the agreed brief and is subject to the report conditions shown in Appendix A.

1.2 LEGAL CONTEXT

Part IIA of the Environmental Protection Act 1990 (inserted by Section 57 of the Environment Act 1995) provides a regime for the control of specific threats to health or the environment from land contamination. In accordance with the Act and the statutory guidance document 'The Contaminated Land (England) Regulations 2000', the definition of contaminated land is intended to embody the concept of risk assessment. Within the meaning of the Act, land is only "contaminated land" where it appears to the Regulatory Authority, by reason of substances within or under the land, that:

- Significant harm is being caused, or there is a significant possibility of such harm being caused; or
- Pollution of controlled waters is being, or is likely to be, caused."

Inherent in this definition is the requirement for contamination risk assessment to be undertaken on a site specific basis, as the potential for harm is determined by the Site's end use and its specific environmental setting.

The guidance defines "risk" as the combination of:

- The probability, or frequency, of occurrence of a defined hazard (for example, exposure of a property to a substance with the potential to cause harm); and
- The magnitude (including the seriousness) of the consequences.

1.3 METHODOLOGY

This report has been prepared in accordance with published Environment Agency guidance ('Model Procedures for the Management of Land Contamination – Contaminated Land Report (CLR) 11'). CLR 11 provides the technical framework for structured decision making about land contamination and builds on previous work carried out under the Contaminated Land Research Programme (of the former Department of the Environment). CLR 11 has adopted and refined the well recognised methodology and terminology that has been used in contaminated land risk assessment for a number of years.

1.3.1. Pollutant linkage concept

In the context of land contamination, there are three essential elements to any risk:

- A contaminant source a substance that is in, on or under the land and has the
 potential to cause harm or to cause pollution of controlled waters.
- A **receptor** in general terms, something that could be adversely affected by a contaminant, such as people, an ecological system, property, or a water body.
- A pathway a route or means by which a receptor can be exposed to, or affected by, a contaminant.

Each of these elements can exist independently, but they create a risk only where they are linked together, so that a particular contaminant affects a particular receptor through a particular pathway. This kind of linked combination of contaminant—pathway—receptor is described as a pollutant linkage.

1.3.2. Conceptual model

An important thread throughout the overall process of risk assessment is the need to formulate and develop a **conceptual model** for the Site, which supports the identification and assessment of pollutant linkages. A conceptual model represents the characteristics of the Site in diagrammatic or written form that shows the possible relationships between contaminants, pathways and receptors (pollutant linkages).

1.3.3. Risk assessment

CLR 11 advocates a phased approach to risk assessment comprising the following in order, as necessary:

Preliminary Risk Assessment – a desk study consisting of a review of documentary, anecdotal and site walk over evidence.

Generic Quantitative Risk Assessment (GQRA) - comparison of contaminant concentrations obtained from site investigation with generic assessment criteria.

Detailed Quantitative Risk Assessment (DQRA) - comparison of contaminant concentrations obtained from site investigation with site-specific assessment criteria.

This document constitutes a Preliminary and Generic Quantitative Risk Assessment.

1.4 PROPOSED USE

The proposed development is an asphalt plant together with associated ancillary facilities including: mobile cold recycling plant, mobile crusher, weighbridges, offices, lorry park, storage bays, workshop, access and use of the existing wharf.

The intention is to re-grade the surface of the old landfill site to form appropriate falls to control surface water and then 'cap off' using primary/recycled aggregates, topped with asphalt or concrete.

Screening bunds are proposed to be located on the eastern, southern and western boundaries along with shrub and tree planting. It is currently intended that approximately one third of the material to form the bunds would be obtained from the re-grading of the Site, provided the recovered material is suitable for use.

This assessment has been undertaken on the basis of this proposed use and a change in Site use from that currently proposed may result in the need for re-assessment of risk criteria and the conclusions and recommendations resulting from the risk assessment could therefore significantly change.

1.5 REPORT SCOPE AND LIMITATIONS

This report is based upon a review of readily available historical and current information, our own geological and hydrogeological map library, the recent site investigation data detailed herein, and information from an environmental database search.

The report presents an interpretation of the borehole and laboratory data provided by the Mayer Brown Site Investigation undertaken between the 3rd and 18th December 2012. In addition, this report outlines the basic ground conditions encountered in the exploratory holes and the results of any monitoring of ground installations. This information has been collated, processed and used to provide an interpretation of the ground conditions, with recommendations on potential ground contamination risks for the proposed development.

The recommendations and opinions expressed in this report are based on the strata observed in the exploratory holes, the results of the Site and laboratory tests, and information obtained as part of the desk study or provided by others. Mayer Brown takes no responsibility for conditions that have not been revealed by the exploratory holes, or which occur between them. Whilst every effort has been made to interpret the conditions between investigation locations, such information is only indicative and liability cannot be accepted for its accuracy. Information provided from other sources is taken in good faith and Mayer Brown cannot guarantee its accuracy.

The information contained in this report is intended for the use of Eurovia Roadstone Ltd. Mayer Brown can take no responsibility for the use of this information by any other party or for uses other than that described in this report.

1.6 PREVIOUS REPORTS REVIEWED

1.6.1. Author Unknown, *Medina Wharf – South, Soil Pit Survey of Old Tip Site Area*, (March 1993).

This document comprises a plan of the Site indicating the locations of nine trial pits on a regular grid pattern across the southern half of the landfill (all south of the existing concrete slab) and a series of hand written trial pit logs and photographs. The trial pits were all machine excavated to a depth of 4.0mbgl (to approx. 6.0mAOD to 7.5mAOD). The document does not contain any chemical or geotechnical testing results or assessment.

1.6.2. PDE Consulting Ltd., *Risk Assessment for a Proposed Development at Medina Wharf*, (March 2012).

This geo-environmental assessment was commissioned by Eurovia Roadstone Ltd. to support the planning application for the proposed asphalt plant. The report comprises a Preliminary and Generic Quantitative Risk Assessment and describes a trial pit investigation and gas spike survey undertaken by PDE in March 2012.

The investigation comprised the excavation of eight machine excavated trial pits across the proposed development area to depths of 2.0mbgl and recovery of soil/waste samples from 2.0m in each of the trial pits. The samples were submitted to a UKAS accredited laboratory for solid and leachate testing for a broad suite of potential contaminants. However, due to the samples being delivered to the laboratory in bulk bags, the total petroleum hydrocarbon (TPH) results for the solid samples are indicative only and are not covered by the laboratories accreditation. The remainder of the analysis is understood to be accredited.

The report concludes that the soil analysis results did not show any exceedance of the generic assessment criteria used and the leachate results compared favourably with most of the Environmental Quality Standards such that the Site is not considered to cause a significant risk to groundwater, surface water of the development.

A gas spike survey was undertaken at 21no locations across the proposed development area and showed no elevated concentrations of flammable gas as methane and slightly elevated concentrations of carbon dioxide.

In conjunction with the material encountered in the trial pits, the report therefore concludes that the potential for the Site to produce significant concentrations of methane or carbon dioxide gas in the future is very low.

Regulatory Review

This report was reviewed by the Isle of Wight Council's retained consultant, WPA Consultants Ltd., who identified various concerns with the report. These included:

- Not sampling from the horizons that pose the greatest potential risk to receptors,
- Not using CLEA compliant assessment criteria when SGV's are not available,
- Gas spiking, which is not considered best practice for ground gas assessment,
- Gas monitoring not compliant with good practice such as CIRIA C665.

WPA therefore recommended that the PRA be substantially revised and that further site investigation and risk assessment is required.

1.6.3. BCL Consultant Hydrogeologists Ltd., *Water Resources & Hydrogeology Assessment*, (March 2012).

This predominantly desk based assessment was commissioned by Eurovia Roadstone Ltd. to support the planning application for the proposed asphalt plant. It includes a baseline review of the Site setting, geology, hydrogeology and hydrology of the Site and the surrounding area, incorporating a review of potential sources of contamination and identification of potentially sensitive receptors. However, the report does not assess the risks or impact of the landfill on the surrounding water environment.

It was noted, however, that the report includes confirmation from the Environment Agency that there are no groundwater or surface water abstractions in the vicinity of the Site.

1.6.4. Author Unknown, Medina Wharf South Site Development Plans 1993 - 2001

This document is a compilation of options, sketches and costs for re-profiling the surface of the Site in 1993 and a letter relating to the development potential of the Site in 2001, with reference to the introduction of the Register of Contaminated Land. A series of photographs of the Site being re-graded are also included.

The document indicates that works were required to finish off the landfill in 1993. The photos are consistent with the sketches indicating that fill was placed on the landfill post 1993 to bring it to its current level.

2. PRELIMINARY RISK ASSESSMENT

2.1 SITE LOCATION AND DESCRIPTON

The Site is located close to the western shore of the River Medina on the Isle of Wight and is approximately two kilometres to the south of the centre of Cowes.

The Site extends to approximately 2.1 Ha and is currently largely covered with sparse grasses, scrub and dense overgrowth. There are no physical features on the ground to delineate the eastern and southern boundaries of the Site with a belt of trees being close to the western boundary. There is a coal yard and depot adjacent to the northwest of the Site which comprises an area of concrete hardstanding (45m x 110m).

The Site is currently not in use after being infilled over an extended period of time. The historic landfill upon which the Site and coal yard sit extends across a rectangular block of land measuring roughly 275 m (length) by 125 m (width), the long axis being aligned north-south. The historic landfill is delimited by the main river to the east, a cycle path / footpath to the west and muddy inlets / tributary streams to the north and south. The area is largely flat with no infrastructure other than a portion of an old concrete surfaced area that is associated with the adjacent coal yard. The Site currently lies between 8.0 - 8.5m AOD at the northern end and between 9.5 - 10.0m AOD at the southern end, compared to the adjacent surface water level which is understood to vary between approximately -1.99m AOD (low water at Cowes) and 1.81mAOD (high water at Cowes).

The land to the west of the cycle path is predominantly put to agricultural use. Upstream from the muddy inlets (mentioned above), the streams are bordered by woodland: Bottom Copse alongside the more northerly stream; and Calving Close Copse adjacent to the southerly watercourse.

To the north of the landfill, the active wharf is under the control of PD Port Services and is leased to a number of separate businesses with mixed use, including: grain silos operated by Isle of Wight Grain Storage Limited (closest proximity to the Site), ballast washing plant run by Isle of Wight Aggregates Limited (mid-wharf) and yard/buildings occupied by marine engineers, Mackley Construction (northern end of wharf, furthest from the landfill) and bulk cargo handling by PD Port Services.

The River Medina lies close to the eastern boundary of the Site and has a number of ecological designations. These include: the 'Solent Maritime' Special Conservation Area, the 'Southampton Water and Solent Marshes' Important Bird Area and Medina 'Shellfish Area'.

The area to the south of the Site (as well as the opposite side of the river) is also an important habitat. It is designated as the 'Solent and Southampton' Ramsar Site and Special Protection Area and the 'Medina Estuary' Site of Special Scientific Interest.

2.2 SITE HISTORY

According to the Ordnance Survey maps provided from 1864 to 2012 scales 1:2,500, 1:10.000, 1:1,250, 1:10,560 the northeast half of the Site comprised mud flats of the River Medina until they were reclaimed as managed oyster beds in the late 1800s with a bund constructed around the perimeter of the beds to control the water level. The southeast of the Site was solid land sloping up from the oyster beds to the railway embankment that formed the western Site boundary. A spur to the railway line is also evident to the north of the Site, across the current Site access track, from at least 1898 that extends to a jetty on the River Medina approximately 500m to the north of the Site. The oyster beds appear to have fallen into disuse during the 1930s and are shown to be largely marshy by 1947.

Active filling of the Site appears from the historical maps to have started during the 1960s and took place from the northwest corner of the Site, as shown on the map extract from 1966/67. However, a modification notice to the Waste Disposal Licence (1979) for the Site indicates that the landfill was licenced from 1977, although this may not have been the original licence. A gasworks, understood to have been opened during the 1920s, was present on the opposite bank of the River Medina during the period that waste was initially deposited on Site.

By 1987 the Site appears to have been predominantly filled and the concrete slab in the northwest corner of the Site and beneath the coal yard is shown to be present. However, landfilling operations are known to have continued in to the 1990s from the available waste licence records.

The railway line adjacent to the western Site boundary and the spur to the north were closed in the 1960s but the embankment remained and is now the cycle path / footpath to the west of the Site. The level of the railway embankment appears to have largely dictated the surface level of the landfill.

2.3 DOCUMENTATED GROUND CONDITIONS

Ground conditions recorded in readily available sources are summarised below.

2.3.1. Geology

Reference to the British Geological Survey (BGS) Map (Sheet 330, Lymington, Scale 1:50,000) indicates the landfill material beneath the Site to directly overlie superficial deposits of Alluvium (clay, silt, sand and gravel) over the bedrock geology of the Headon Beds and Osborne Beds (Undifferentiated) (clay, silt and sand) and a relatively thin layer of Bembridge Limestone Formation over the Headon Beds and Osborne Beds in the southwest corner of the Site. The Bembridge Marl Formation (calcareous mud) is identified to be present to the west of the Site above the Bembridge Limestone Formation.

2.3.2. Hydrogeology

The Environment Agency Groundwater Vulnerability Map (Sheet 52 Southern Hampshire, Scale 1:100,000) indicates the Site to be overlying a Secondary A aquifer in the superficial deposits, interpreted as the Alluvium, and Secondary A aquifers in the bedrock geology, interpreted as both the Headon Beds and Osborne Beds and the Bembridge Limestone Formation. The Bembridge Marl Formation to the west is classified as an unproductive stratum.

Unproductive strata are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.

Secondary A aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers. However, the Secondary A aquifers in the vicinity of the Site are understood from the BCL Water Resources and Hydrogeology Assessment to be mainly low permeability.

The Site is not located within a Groundwater Source Protection Zone.

2.3.3. Hydrology

The nearest identified surface water feature is the River Medina that is approximately 20m from the eastern boundary of the Site and flows in a general northerly direction.

2.3.4. Radon

Radon is a naturally occurring radioactive gas which may be harmful to human health. Radon is generally released into the atmosphere in areas underlain by granite and limestone. Harmful concentrations of radon may build up if it becomes trapped in an enclosed space such as a building. National Radiological Protection Board data presented within the Landmark Envirocheck Report indicates that the percentage of houses exceeding the Action Levels for Radon in this area is less than 1%.

Therefore, the British Geological Survey recommends that radon protection measures are not necessary in new dwellings or extensions.

2.4 ENVIRONMENTAL DATA SEARCH

A search of an environmental database was undertaken together with information from various other organisations as part of the desk study and is summarised in the following sections.

The following summary is generally limited to locations within 250m of the Site boundaries unless it is considered that installations or activities beyond that range could potentially have an impact on the Site or be affected by the redevelopment of the Site.

Table 2.1. Data search results

Discharge consents	There are 6no recorded discharge consents located within 250m of the Site. These relate to discharge of surface water, trade effluent and treated sewage effluent from industrial facilities to the northeast and east of the Site to the River Medina, downstream of the Site.
Pollution incidents	There are 2no recorded pollution incidents within 250m of the Site. These relate to minor incidents of diesel and waste oil release to the Medina Estuary in the early 1990s.
Water abstractions	There are no surface water or groundwater abstractions located within 1.25km of the Site.
Fuel Stations	There are no fuel station sites within 250m of the Site.
Landfill Sites	As mentioned in the Site history and Site description sections, a historical landfill is identified beneath the Site. The entries in the environmental data search indicate that the Site accepted construction, demolition, domestic, commercial and industrial waste.

The Site is located in an area which is not affected by coal mining. The following ground hazards were identified:

Compressible ground stability hazards - Moderate

Collapsible ground stability hazards - No Hazard

Ground dissolution stability hazards - No Hazard

Landslide ground stability hazard -Very Low

Shrinking or swelling clay ground stability hazard – Moderate

Running sand ground stability hazards - Low

2.5 DEPARTMENT OF ENVIRONMENT – INDUSTRY PROFILES

The Industry Profile 'Waste recycling, treatment and disposal sites: landfills and other waste treatment or waste disposal sites' produced by the Department of the Environment identifies the potential of the following containments to be found on the potential landfill area of the Site although their likelihood of being present in the ground is dependent on the material deposited within the landfill:

- Heavy metals and metal compounds
- PAHs
- Oil/fuel hydrocarbons
- PCBs
- Inorganic compounds (including sulphur and asbestos)

2.6 NOTICES OF MODIFICATION OF WASTE DISPOSAL LICENCE CONDITIONS

Two Notices of Modification of the Waste Disposal Licence for the refuse tip beneath the Site were obtained and presented within the PDE Risk Assessment report (see Appendix C).

The first dates from June 1979 and refers to changes to the licence granted in October 1977. The Notice states that the facility was licenced to accept up to 40 Tonnes of domestic and commercial waste (untreated), 5 Tonnes of non-hazardous industrial waste (potentially combustible), 5 Tonnes of non-hazardous industrial waste (inert and non-flammable) and 40 Tonnes of waste from the construction industry per day.

Other conditions in the notice include a requirement to not deposit further waste within 15m of the high water level on the west back of the River Medina and that the final layer deposited shall be to a depth not less than one metre and kept clear of materials likely to interfere with final restoration or subsequent cultivation. The finished level of the Site was also not to be higher than the level of the adjoining land to the west.

The second Notice dates from July 1990 and also refers to the original Waste Disposal Licence granted in October 1977. This Notice states that the landfill can receive solid, non-toxic soils, clays, rubbles, construction and demolition waste and semi-solid clean slurry from the ballast washing plant adjacent to the Site. The condition to not deposit waste within 15m of the high water level on the west bank of the River Medina is still present but an agreed plan for the finished Site levels is referred to in place of the reference to the level of the adjacent land.

2.7 CONSULTATION WITH REGULATORS

The production of this Preliminary Risk Assessment is largely based on the comments received from the regulatory authorities and their consultants following the previous submission of data with the planning application for the development.

2.7.1. Isle of Wight Council

Isle of Wight Council was also contacted by PDE in February 2012 for any information held in relation to land contamination associated with the Site. A response was received on the 10th February 2012 and stated that only patchy information was available and that the Council could not vouch for its accuracy. It also stated that waste regulation moved out of Council control in around 1996 and is now the responsibility of the Environment Agency (EA). Details of the relevant EA office were also provided.

2.7.2. Environment Agency

Following the response from the Isle of Wight Council, PDE contacted the EA with a similar request. The EA responded by email on the 1st March 2012 stating that the Isle of Wight Council issued a waste disposal licence for the tip on the 13th October 1977, which was modified in 1979 and 1990. The email goes on to state that no records of the waste tipped or the final date the site ceased accepting waste are available and that a lot of the file comprises large proposed final contour plans and permit administration correspondence. The EA also provided the copies of the modification notices discussed previously.

2.8 OUTLINE CONCEPTUAL SITE MODEL

On the basis of the above, a number of possible pollutant linkages have been identified at the Site, which are summarised in Table 2.2.

Table 2.2 Outline conceptual model

Source	Pathway	Receptor
Ground-gas potentially originating from underlying landfill and natural soils	Vertical migration of ground gas leading to accumulation in confined spaces and inhalation	Buildings on-site and future construction workers & occupiers/users of the Site
	Direct dermal contact	Construction workers
Landfill potentially containing	Ingestion Inhalation	Occupiers/users of the Site
hydrocarbons, heavy metals and inorganic compounds	Vertical migration	Secondary aquifer
	Lateral and vertical migration	River Medina and ecologically protected areas
		Construction workers
Made ground potentially impacted with asbestos containing materials	Inhalation	Occupiers/users of the Site
Containing materials		Occupiers/users of adjacent land
Soils potentially impacted with hydrocarbons, heavy metals	Direct dermal contact Ingestion	Construction workers
and inorganic compounds as a result of the adjacent coal yard	Inhalation	Occupiers/users of the Site

2.9 CONCLUSIONS OF PRELIMINARY RISK ASSESSMENT (PRA)

The preliminary risk assessment identified a number of possible pollutant linkages that required further investigation and assessment. Consequently, a generic quantitative risk assessment was undertaken, incorporating a geo-environmental and geotechnical site investigation designed to address the potential pollutant linkages identified in the outline conceptual model and compare the chemical analysis results with generic assessment criteria.

3. FIELDWORK SUMMARY OF SCOPE AND RATIONALE

3.1 PROPOSED INVESTIGATION STRATEGY

A proposed investigation strategy was prepared and issued to the regulators with a copy of the Preliminary Risk Assessment for review and comment in November 2012. The investigation strategy was accepted in principal and the following scope of works was undertaken in December 2012.

Subsequent to the completion of the investigation works, local residents have made representations to the Isle of Wight Council with regard to the proposed investigation strategy primarily querying the number of boreholes, the borehole spacing and the spatial distribution of the boreholes. The main concerns appear to relate to the majority the borehole locations being situated along the southern and eastern boundaries of the Site, adjacent to the River Medina, and the need for accurate positional records of the boreholes. The concerns stated are that a) contaminant concentrations decrease with increased distance from a central source of contamination and would therefore be lower towards the edges of the landfill and b) as the landfill was built on a former oyster bed with bunds to retain water, locating the boreholes through the bunds at the periphery of the Site would give unrepresentative samples.

The details of the investigation rationale are given below; however, the concerns raised by the residents can be addressed as follows:

The landfill as a whole is considered a potential source of contamination and an assumption of a central source of contamination within the landfill and decreasing concentrations towards the edges would not be consistent with the conceptual model of the Site. It is envisaged that mobile contamination within the heterogeneous waste mass will follow preferential migration pathways to the lowest elevation low permeability horizons within and beneath the landfill. Overall, this low horizon is likely to be the alluvial silt and clay base of the former oyster beds or the Headon and Osborne Beds, although pockets of contamination are also anticipated within the body of the waste due to the periodic clay capping of the waste during the latter stages of the landfill operation. Immobile contamination with obviously remain where it was placed.

As noted in the representations by the local residents, the bunds associated with the former oyster beds align with the southern and eastern most boundaries of the landfill (high water mark) and appear from historical maps to vary in width from approximately 4m to 15m.

It is also understood that a condition of the landfill license was a requirement to not deposit waste within 15m of the high water level on the west back of the River Medina. However, none of the boreholes have been located within this distance from the high water mark as the application boundary is approximately 20m from the high water level on the west back of the River Medina and all of the boreholes are within the Site. The boreholes have also been surveyed and their positions overlaid on the 1897 map of the Site to illustrate the relationship between the borehole locations and the former oyster beds and are presented as Figure 4.

3.2 RATIONALE AND SUMMERY OF SCOPE

Site investigation works were undertaken by Mayer Brown between the 3rd and 18th December 2012.

- 2no. windowless sample boreholes (BH101-102) to a maximum depth of 11.4mbgl drilled with a Geoprobe rig.
- 7no. windowless sample boreholes (BH103-109) to a maximum depth of 8.0mbgl drilled with a Terrier rig.
- 5no. cable percussive boreholes (BH1-5) to a maximum depth of 19.1mbgl.
- Collection of representative samples to undergo chemical laboratory testing as detailed in later sections of this report.
- Installation of 10no. gas / water monitoring standpipes.

Windowless sampling was considered to be the most appropriate at this stage for obtaining samples for contamination testing. The Geoprobe rig was initially selected as it allows a greater depth of investigation to be achieved than using a Terrier rig. However, due to soft surface ground conditions, the van mounted Geoprobe rig proved to be unsuitable and was replaced by the Terrier rig.

5no cable percussive boreholes were drilled along the eastern, western and southern boundaries of the Site, primarily for geotechnical purposes. This drilling technique is not considered to be suitable for obtaining reliable samples for chemical analysis due to the high risk of cross contamination, particularly when water is added to aid the drilling process, but it is considered to be the most appropriate technique for geotechnical testing and provided suitable conditions for the installation of ground gas and groundwater monitoring wells.

The rationale for the investigation is presented below in Table 3.1.

Table 3.1 Exploratory hole location rationale

Location	Rational	Max Depth (mbgl)
BH101- 109	Windowless sample boreholes drilled on an approximate 60m regular grid non-targeted sampling pattern to assess the nature and stratigraphy of the subsurface materials across the Site and allow the collection of representative samples for chemical analysis. Installation of ground gas and water monitoring standpipes to allow for ground gas assessment where viable. Windowless sample boreholes were located in the vicinity of the cable percussive boreholes to allow a correlation between the soil sampling and the well installations in the cable percussive boreholes as the cable percussive boreholes were anticipated to be provide well installations to the required depths.	11.40
BH1-5	It was intended that these boreholes penetrate the Alluvium beneath the landfill and prove the bedrock geology of the Headon Beds and Osborne Beds to a sufficient thickness that they can be confirmed to be natural and not reworked deposits. The boreholes were installed with monitoring wells suitable for assessing the ground gas risks associated with the landfill waste and the underlying Alluvium and for assessing groundwater contamination in the vicinity of the River Medina at the anticipated deepest parts of the landfill.	19.1

BH1-3, BH102 and BH106-109 were located within the former oyster beds while BH101, BH103-105 and BH4-5 were installed within the area of the former slope between the former railway line to the west (now a cycle way) and the oyster beds.

The layout of the exploratory positions is presented in Figures 2 in relation to the current Site layout and in Figure 4 in relation to the 1897 Ordnance Survey map that identified the layout of the former oyster beds prior to the landfill.

3.3 MONITORING

Four monitoring return visits to the Site were considered appropriate to provide initial data for this assessment. The visits were undertaken on the 19th December 2012 and the 7th, 15th and 22nd January 2013, in accordance with the recommendations for gas risk assessment presented in CIRIA C665. Groundwater samples were also obtained during the first monitoring visit.

Additional groundwater level monitoring was undertaken of selected wells on the 17th December, during the investigation works, over a 7hr period to determine if there is a tidal influence on the groundwater beneath the Site.

3.4 SITE INVESTIGATION STANDARDS

Methods employed during the investigation were generally undertaken in accordance with BS10175 and BS5930.

4. GROUND CONDITIONS ENCOUNTERED

4.1 SOIL CONDITIONS

Ground conditions encountered during the recent ground investigation were broadly consistent with those identified in the published literature and comprised Made Ground (landfill waste material) locally over Alluvium over Headon Beds and Osborne Beds to the full depth of the investigation.

Variations in strata thicknesses are summarised in Table 4.1 below, engineering logs are presented in Appendix D.

Table 4.1 Summary of encountered ground conditions

	Made Ground		Alluvium		НВОВ		
Location	From (mbgl)	Thickness (m)	From (mbgl)	Thickness (m)	From (mbgl)	Thickness (m)	
BH1	GL	6.80		N/E	6.80	>4.80	
BH2	GL	9.40	9.40	4.00	13.40	>2.80	
BH3	GL	10.80	10.80	4.80	15.60	>3.50	
BH4	GL	6.50	N/E		6.50	>3.70	
BH5	GL	4.00	N/E		4.00	>3.20	
BH101	GL	6.00	N/E		6.00	>2.00	
BH102	GL	9.30	9.30	>2.10	N	N/E	
BH103	GL	7.50	N/E		7.50	>0.50	
BH104	GL	4.10	N/E		4.10	>2.90	
BH105	GL	4.20	N/E		4.20	>1.80	
BH106	GL	6.00	N/E		6.00	>1.00	
BH107	GL	>8.00	N/E		N	I/E	
BH108	GL	>8.00	N/E		N	I/E	
BH109	GL	>8.00	N/E N/E		I/E		

GL = Ground Level

N/E = Not Encountered

4.1.1. Made Ground/Landfill Waste

All boreholes were drilled through the waste of the underlying landfill, which varied in thickness from approximately 4.0m in the southwest to approximately 10.8m in the northeast. The landfill predominantly comprised a gravelly clay matrix with bands of sandy ash and clinker gravel and frequent anthropogenic inclusions including concrete, brick, plastic sheeting, asbestos cement sheeting, timber, glass and metal.

In general, more clay was encountered in the upper parts of the waste than the lower parts, which is consistent with the understanding from the landfill license conditions (1977) that the waste be covered with a layer of non-putrescible or stabilised material throughout the working period each day and that the final capping layer be not less than 1.0m deep and be free from materials likely to interfere with final restoration or subsequent cultivation. The observed clay is likely to have been used for both these purposes but is less likely to have been used in the older, deeper parts of the landfill.

BH107-109 were terminated within this material at the practical limit of the Terrier windowless sampler rig.

4.1.2. Alluvium

Alluvium, comprising very soft grey silty clay, was encountered directly beneath the waste material in BH102, BH2 and BH3, which were situated in the area of the main former oyster bed. This Alluvium had a maximum recorded thickness of 4.8m in BH3 in the northeast of the Site.

BH102 was terminated within this material at the practical limit of the Geoprobe windowless sampler rig.

4.1.3. Headon Beds and Osborne Beds

Headon Beds and Osborne Beds, comprising firm to stiff light grey mottled orange brown slightly silty clay with small shell fragments, were encountered directly beneath the waste in the southern and western boreholes and directly beneath the Alluvium in the north and eastern boreholes. Limestone was encountered within this material at 11.6mbgl in BH1. This material formed the basal layer for the majority of boreholes with a maximum proven thickness of 4.0mbgl. The full thickness of the stratum was not proven.

In the southwest of the Site, the profile of the upper surface of the Headon Beds and Osborne Beds appears to follow the former slope between the former railway line to the west of the Site and the former oyster beds in the east and in the northeast of the Site follows the river channel beneath the former oyster beds and the Alluvium, sloping down towards the north.

BH1 and BH106 appear from Figure 4 to be located within the southernmost former oyster bed. However, both of these boreholes encountered the Headon Beds and Osborne Beds directly beneath the waste with no identified Alluvium. It is therefore considered likely that the conditions encountered are representative of the base of the former slope or what appears to be a former access track along the edge of the former oyster beds.

4.2 OBSTRUCTIONS

No obstructions were encountered during the drilling of the boreholes on this Site.

4.3 GROUNDWATER CONDITIONS

4.3.1. During Investigation

Groundwater was encountered at 11.6mbgl (-3.57mAOD) and 7.7mbgl (0.43mAOD) in BH1 and BH3, respectively, during the site investigation. The groundwater ingress in BH1 was associated with striking limestone at 11.6mbgl with the water rising to 8.8mbgl (-0.77mAOD) after 20mins.

The groundwater ingress in BH3 coincided with a layer of sandy ash and clinker gravel overlying the alluvial clay and rose to 6.5mbgl (1.63mAOD) after 20mins. This groundwater was cased off as part of the drilling technique as the borehole progressed into the underlying Alluvium and Headon Beds and Osborne Beds and the borehole remained dry to the termination of the borehole at 19.1mbgl (-10.97mAOD).

Notable groundwater was not encountered within the Alluvium or Headon Beds and Osborne Beds in any of the other boreholes. This indicates that locally, with the exception of the limestone encountered in BH1, despite being officially classified as Secondary Aquifers, the Alluvium and Headon Beds and Osborne Beds in the vicinity of the Site can be considered to be effectively unproductive strata and are unlikely to allow significant groundwater migration. Moreover, the 4.8m of recorded clay overlying the limestone in BH1 is considered to act as an effective aquiclude between the limestone and the landfill.

4.3.2. Tidal Monitoring

Monitoring of four boreholes (BH1, BH2, BH101 and BH102) over an approximate 7hr period (08:50hrs to 15:40hrs) on the 17th December 2012, during the site investigation, showed no change in groundwater levels with tidal variation. This indicates that the groundwater beneath the Site is not tidally influenced and is unlikely to be in significant hydraulic continuity with the River Medina.

This is likely to be largely to do with the former oyster bed bunds continuing to prevent significant water movement between the landfill and the River, with an additional influence of the 15m of non-waste fill material (likely to be clay) placed between the waste and the River during the construction of the landfill.

Note: Low water on this date at Cowes was predicted to be at a level of -1.99mAOD at 07:04hrs and high water was predicted to be at a level of 1.81mAOD at 13:56hrs. Although the monitoring period did not cover a complete tidal cycle, it is considered to have covered a sufficient portion of the cycle, spanning the high water level, to have identified a tidal influence on the groundwater beneath the Site.

4.3.3. Groundwater Monitoring

Groundwater was recorded during the monitoring rounds at variable depths across the Site but generally appears to follow the profile of the upper surface of the Headon Beds and Osborne Beds in the southwest of the Site.

Water levels in BH101, BH103-105 and BH4-5 varied between 0.05m and 1.42m above the upper surface of the Headon Beds and Osborne Beds with variations within each well over the four monitoring rounds of between 0.02m and 0.38m. Notably, the highest and lowest variations in groundwater levels within individual boreholes over the four monitoring rounds were recorded in adjacent boreholes BH5 (0.38m variation) and BH105 (0.02m variation), BH105 being located approximately 15m to the east of BH5 in the southwest corner of the Site. This appears to be more consistent with pockets of perched water retained above the low permeability natural strata rather than a consistent flowing water body within the waste, particularly as BH103, towards the centre of the Site was recorded to be dry throughout the four monitoring rounds.

The groundwater levels in BH2 and BH3 in the northeast of the Site are relatively consistent over the monitoring period with variations of 0.06m and 0.05m, respectively over the four monitoring rounds and are likely to be in continuity with each other and retained above the low permeability Alluvium in the former oyster beds. These monitored groundwater levels are also broadly consistent with the water strike during the drilling of BH3. As BH2 and BH3 appear to be in hydraulic continuity with minimal variation in groundwater levels over the monitoring period, it is reasonable to conclude that BH3 is also not tidally influenced.

During the tidal monitoring undertaken on the 17th December 2012 and the first round of water monitoring following the completion of the investigation the groundwater levels in BH1 were recorded to be 2.00mAOD and 2.02mAOD, respectively, with no measurable tidal variation. The subsequent three monitoring rounds recorded groundwater levels in this well of between 1.17mAOD and 1.29mAOD. The groundwater monitored in this well therefore does not appear to be in significant hydraulic continuity with that monitored in BH2 and BH3, which is consistent with the apparent bund shown between the oyster beds on the 1897 map and as BH1 appears from the ground conditions encountered to be outside of the southern oyster bed. The monitored groundwater levels in BH1 also appear to be generally below the upper boundary of the Headon Beds and Osborne Beds. This data indicates that the groundwater levels in BH1 are likely to be primarily governed by variations in the water level in the limestone encountered at the base of the borehole rather than being in consistent continuity with the other groundwater bodies within the landfill or the River Medina.

The data do not indicate an obvious groundwater flow direction across the Site although mobile water within the landfill is likely to eventually migrate towards the former oyster bed basins in the north and east of the Site.

4.4 VISUAL / OLFACTORY EVIDENCE OF CONTAMINATION

Ash and clinker sand and gravel were noted throughout the landfill waste. Localised fragments of asbestos cement sheeting were also observed within the body of the waste and on the ground surface. Localised swarf fragments were also observed within the body of the waste, which are often accompanied with oil when disposed of, although evidence of oil with the swarf was only observed at approximately 9.0mblg in BH102 and between 2.5mbgl and 2.9mbgl in BH107.

4.5 GROUND GAS

A ground gas assessment for the Site was conducted as part of the scope of works, involving four rounds of ground gas monitoring of the installed wells, in accordance with the recommendations of CIRIA C665.

5. GENERIC RISK ASSESSEMNT

5.1 CONTAMINATION ASSESSMENT METHODOLOGY

In order to assess the human health and environmental risks posed by potential contaminants within the underlying soils and groundwater, Mayer Brown undertook an initial screen of the laboratory results using generic assessment criteria. Generic assessment criteria (GAC) are contaminant concentration values used for comparison purposes to assess the risk associated with contaminant concentrations found on site and are derived using non-site-specific information.

5.1.1. Soils

In order to assess the soil analyses results with regard to potential human health risks, Mayer Brown have adopted generic assessment criteria derived in accordance with the UK framework set out in the most recent CLR (Contaminated Land Report) documents. Ongoing research by the EA is being undertaken to produce toxicology reports (TOX series) for each of the contaminants identified within the CLR framework and then to produce published Soil Guideline Values (SGVs) using the Contaminated Land Exposure Assessment (CLEA) Model.

To date, SGVs have been published for only a limited suite of contaminants, with SGVs derived for each contaminant for three different land use scenarios namely:

- residential;
- allotments; and
- commercial and industrial.

Where available, published Soil Guideline Values (SGV) have been adopted. Where SGVs are not available, Mayer brown has adopted the generic assessment criteria published by LQM/CIEH (second edition) and EIC/AGS/CL:AIRE, generated using the CLEA v1.06 software and associated handbook. As further guidance is developed, it would be appropriate to review the Tier 1 screening process.

A full list of the GACs together with an indication of the method used for their derivation is provided in Appendix E. GACs applicable to commercial/industrial end use have been used for the assessment of the Site. Contaminant concentrations below the GACs are considered not to warrant further risk assessment. However, concentrations of contaminants above the GACs may require further consideration through statistical analysis, if appropriate, or further detailed assessment using site specific data.

Assessment framework

In regards to human health, the CLEA model states that, 'the contamination is assumed to be at or within 1m of the surface' (CLR10 pg10). It is considered that at depths greater than 1m, the probability of human exposure via the direct contact pathways are significantly reduced, leaving inhalation of volatile compounds as the dominant pathway with regard to human health risks. Typically, volatile compounds only significantly affect the indoor inhalation pathway. Therefore, for the purposes of statistical analysis, data from the top 1.0 to 1.5m is used for assessment of risks to human health via direct contact pathways in accordance with the CLEA model, dependant on proposed future Site levels.

Statistical analysis

The CLEA guidelines state that for each contaminant, the upper 95th percentile confidence limit on the mean measured concentration (95%UCL) should be calculated and this value should be compared to the GAC. Maximum value tests should also be performed in accordance with the method outlined in Annex 1 of CLR7.

The objective of these tests is to decide whether the maximum concentration observed should be treated as an outlier or whether it can reasonably be considered to come from the same underlying population as the other samples.

Annex 1 of CLR 7 describes a simplistic method for calculation of the 95%UCL value based on the arithmetic mean of the sample distribution, assuming the contaminant concentrations fall within a normal distribution. However, it is known that contaminant concentrations often tend towards other distribution forms.

Therefore, in order to calculate what are considered to be more representative 95%UCL values, the contaminant concentrations have first been assessed to determine if each contaminant distribution is closer to a normal or another distribution. If a dataset was found to be normally distributed, the arithmetic mean was used to calculate the 95%UCL using the 'One sample t-test' as described in CLR 7. If the distribution was determined to be significantly removed from normal, the one-sided Chebychev Theorem was used to calculate the 95%UCL. Constituent non-detects were assigned a value equal to the reported analytical laboratory limit of detection, considered reasonably conservative in accordance with CLR principles. Any identified outliers are excluded from the datasets used in calculation of the 95%UCL value, with justification.

5.1.2. Groundwater

Groundwater analyses, where undertaken, shall be assessed by direct comparison with the freshwater Environmental Quality Standards (EQS), or, in the absence of EQSs, UK or WHO Drinking Water Standards or other appropriate guidance values. For certain compounds, the EQS is quoted as a range of values based on the alkalinity of the water, where the measured concentration lies within this range, the results are interpreted qualitatively. The guideline values selected as appropriate GACs for each contaminant are presented in Appendix E.

5.1.3. Leachate

Leachate analyses, where undertaken, shall be assessed in the same manner as the groundwater samples. The guideline values selected as appropriate GACs for each contaminant are presented in Appendix E.

5.1.4. Ground gas

The criteria used to assess the ground gas monitoring results, where monitored, have been taken from the following guidance documents:

- Assessing risks posed by ground gases to buildings, CIRIA Report C665, 2007
- Code of practice for the characterisation and remediation from ground gas in affected developments, British Standard BS 8485, 2007

The values recorded at the Site have been compared to guideline values given in CIRIA Report C665, (2007) 'Assessing risks posed by ground gases to buildings'.

The frequency and period of monitoring is assessed based on the gas generation potential of the source material and the sensitivity of the development, in accordance with Table 5.5 of CIRIA C665.

These typical monitoring recommendations vary between four sets of readings over a one month period for a commercial development and a very low generation potential source to 24 rounds over 24 months for a residential property and a very high generation potential source. However, these are recognised as typical recommendations that may require fewer or additional readings depending on Site specific circumstances.

Where possible, monitoring rounds are undertaken during a range of atmospheric conditions to enable their influence on gas conditions to be assessed. As monitoring over the recommended periods is frequently impractical on development sites, the monitoring rounds undertaken are conducted during the worst case conditions (e.g. low and falling atmospheric pressure) during the time available, as far as reasonably practicable, in order to limit the level of uncertainty resulting from the reduced monitoring period. It may, however, be appropriate to raise the Characteristic Situation to account for uncertainties on a site by site basis.

The Characteristic Situation for a monitoring location is determined using the worst case gas screening value for methane or carbon dioxide from all of the monitoring rounds at that location. Following the precautionary principal, the most stringent of the Characteristic Situations for the monitoring locations within the Site is generally used to classify the Site as a whole.

5.2 SOIL ASSESSMENT

5.2.1. General

A total of 9no. near surface soil samples collected during the site investigation were submitted to a UKAS accredited laboratory for analysis for a suite of heavy metals, phytotoxic metals (harmful to plants), phenols, speciated polyaromatic hydrocarbons (PAHs), fractionated total petroleum hydrocarbons (TPH), BTEX compounds and several inorganic parameters. An additional sample of suspected asbestos containing material was also submitted for asbestos analysis only. The results of the laboratory analyses are summarised in Appendix F, in which they are compared to the relevant generic assessment criteria. A full set of all the laboratory test certificates is presented as Appendix G.

The range of potentially hazardous contaminants present on the Site can be wide and varied and the suite has been chosen to reflect both commonly found contaminants and others indicated by research to have a significant risk of being present. It is, however, possible that others may exist for which analyses have not been carried out or which were outside the scope of completed exploratory holes.

The decision to recommend acceptability or a requirement for remediation is based on the evaluation of a number of factors which when combined present a statutory or nonstatutory risk that may require remedial action.

5.2.2. Heavy metals

The majority of the heavy metals included in the analysis of the near surface samples recovered from boreholes constructed across the Site were identified at concentrations well below the relevant GACs. However, a single substantially elevated concentration of nickel was identified in the samples from 0.5mbgl in BH105. There was no obvious source of the nickel impact in the Made Ground although it appears to be localised to BH105. BH105 and the surrounding area is proposed to be covered by a new earth bund. Therefore nickel and heavy metals in general are not considered to represent a significant source of contamination with regard to human health.

Arsenic and locally antimony and chromium were also identified at concentrations above the Water Regulations Advisory Scheme material selection threshold levels for buried services in several of the near surface Made Ground samples across the Site. Arsenic, antimony and chromium are therefore considered to represent a significant source of contamination with regard to buried services.

5.2.3. Phytotoxic metals

The phytotoxic metals included in the soil analysis were identified at concentrations well below the relevant GACs in all of the soil samples recovered from boreholes constructed across the Site. Therefore phytotoxic metals are not considered to represent a significant source of contamination with regard to human health.

5.2.4. Petroleum hydrocarbons

Total petroleum hydrocarbon (TPH) concentrations recorded in near surface soil samples recovered from boreholes constructed across the Site were below relevant GACs in all of the soil samples analysed. Therefore, TPH is not considered to represent a significant source of contamination with regard to human health receptors.

However, concentrations of TPH exceed the Water Regulations Advisory Scheme material selection threshold levels for buried services in all but two of the near surface soil samples from across the Site. TPH is therefore considered to represent a significant source of contamination to any proposed buried services.

5.2.5. Polyaromatic hydrocarbons (PAHs)

Polyaromatic hydrocarbons (PAHs) concentrations recorded in soil samples recovered from boreholes constructed across the Site were below the relevant GAC. Therefore, PAH is not considered to represent a significant source of contamination with regard to human health receptors.

Total PAH concentrations also did not exceed the Water Regulations Advisory Scheme material selection threshold levels for buried services. PAHs are therefore not considered to represent a significant source of contamination with regard to buried services.

5.2.6. BTEX compounds and MTBE

Concentrations of BTEX compounds in soil samples recovered from boreholes across the Site are well below relevant GACs. Therefore, BTEX compounds and MTBE are not considered to represent a significant source of contamination with regard to human health.

5.2.7. Inorganics

The concentrations of free cyanide fell below laboratory detection limits in all of the soil samples analysed.

The pH of all of the soil samples analysed was within the natural 5-9 range.

Asbestos containing materials (Chrysotile and Amosite fibres) were identified within two of the soil samples recovered and analysed and fragments of asbestos cement sheeting were observed within the body of the landfill waste and on the Site surface. The sample of fibrous insulation from 3.6mbgl in BH108 that was sampled separately was identified to contain non-asbestos fibres. It is likely that the asbestos containing material present was deposited as part of the landfill operation. It is therefore likely that additional asbestos containing materials could be encountered during the development of the Site. Asbestos containing materials are therefore considered to represent a significant source of contamination with regard to human health.

5.3 LEACHATE ASSESSMENT

5.3.1. General

A total of 13no. samples of the landfill waste, 1no. sample of the Alluvium and 4no. samples of the Headon Beds and Osborne Beds collected during the site investigation were also analysed for a suite of heavy metals, phytotoxic metals (harmful to plants), phenols, speciated polyaromatic hydrocarbons (PAHs), fractionated total petroleum hydrocarbons (TPH), BTEX compounds and several inorganic parameters. The results of the laboratory analyses are summarised in Appendix F, in which they are compared to the relevant generic assessment criteria. A full set of all the laboratory test certificates is presented as Appendix G.

5.3.2. Heavy metals

The majority of the heavy metals included in the analysis of the samples analysed were identified at concentrations well below the relevant GACs. However, significantly elevated barium concentrations were identified in 8no. of the leachate samples from the landfill waste and in the sample of Alluvium (9.3-11.4mbgl in BH102). An isolated elevated nickel concentrations was also identified in the landfill waste sample from 2.5-2.9mbgl in BH107. The sample of the Alluvium also contained significantly elevated concentrations of arsenic, mercury and selenium, above the relevant GACs. The samples from the Headon Beds and Osborne Beds did not show any significantly elevated heavy metal concentrations.

These results indicate a greater number of elevated heavy metal concentrations in the Alluvium sample than in any of the samples of landfill waste material. This is considered to be either the result of the majority of the heavy metals already having leached out of the waste into the surface of the Alluvium, which is not considered likely given the tendency of water to become perched within the landfill rather than flowing through it, or that these contaminants were present in the Alluvium prior to the landfilling of the Site.

It is understood from historical sources referred to in correspondence with the Isle of Wight Council as *County Press 22nd November 1913 page 5 Cowes Harbour Commissioner* (although not confirmed by Mayer Brown) that the River Medina was condemned and all oyster fishing prohibited due to the oysters being unfit for human consumption. It is possible that these elevated heavy metal concentrations in the Alluvium contributed to the oysters being condemned as unfit for human consumption. If this is the case, it is likely that the Alluvium to the east of the Site, outside of the former oyster bed bunds, also contains elevated concentrations of these metals from the same time period.

Based on the limited uses of barium, it is considered likely that the barium concentrations present in the samples of landfill waste are the result of the use of rat poisons on the landfill, although no records have been identified confirming the use of barium based rat poisons on Site.

Therefore heavy metals are considered to represent a significant source of contamination with regard to environmental receptors.

5.3.3. Phytotoxic metals

The phytotoxic metals included in the soil analysis were identified at concentrations well below the relevant GACs in the majority of the samples analysed. However, concentrations of boron, slightly in excess of the relevant GAC were recorded in two of the landfill waste samples and in the Alluvium sample. Therefore phytotoxic metals are not considered to represent a significant source of contamination with regard to environmental receptors.

5.3.4. Petroleum hydrocarbons

Total petroleum hydrocarbon (TPH) concentrations recorded in the samples analysed were generally below relevant GACs with the majority also below laboratory detection limits. However, a single concentration of EC12-16 range aromatic hydrocarbons was identified to be slightly above the relevant GAC in a sample that corresponded with evidence of oil and swarf during the investigation. Therefore, TPH is not considered to represent a significant source of contamination with regard to environmental receptors.

5.3.5. Polyaromatic hydrocarbons (PAHs)

Polyaromatic hydrocarbons (PAHs) concentrations recorded in the samples were marginally above the relevant GACs for several PAHs. These concentrations are representative of the more mobile PAH compounds and were present in the majority of landfill waste samples, the Alluvium sample and one of the samples from the Headon Beds and Osborne Beds. However, as these exceedances are only marginal, PAHs are not considered to represent a significant source of contamination with regard to environmental receptors.

5.3.6. BTEX compounds and MTBE

Concentrations of BTEX compounds in the samples analysed were well below relevant GACs. Therefore, BTEX compounds and MTBE are not considered to represent a significant source of contamination with regard to environmental receptors.

5.3.7. Inorganics

Sulphate concentrations were substantially elevated in the samples from 3.8-8.0mbgl in BH107 and 1.1-6.0mbgl in BH108.

Ammonia as NH4 was identified in excess of the relevant GAC in all of the landfill waste samples and the Alluvium sample.

Sulphate and ammonia are therefore considered to represent significant sources of contamination in relation to environmental receptors.

5.4 GROUNDWATER ASSESSMENT

5.4.1. General

A total of 6no. groundwater samples collected during the first monitoring round were analysed for a suite of heavy metals, phytotoxic metals (harmful to plants), phenols, speciated polyaromatic hydrocarbons (PAHs), fractionated total petroleum hydrocarbons (TPH), BTEX compounds and several inorganic parameters. The results of the laboratory analyses are summarised in Appendix F, in which they are compared to the relevant generic assessment criteria. A full set of all the laboratory test certificates is presented as Appendix G.

5.4.2. Heavy metals

The majority of the heavy metals included in the analysis of the samples analysed were identified at concentrations well below the relevant GACs. However, elevated barium concentrations were identified in the samples from BH1, BH2, BH3 and BH5, marginally elevated concentrations of mercury were identified in BH3 and BH104 and a marginally elevated concentration of selenium was identified in BH1. As the concentrations of mercury and selenium only slightly exceed the GACs these heavy metals are not considered to represent a significant source of contamination with regard to environmental receptors. However, barium is considered to represent a significant source of contamination with regard to environmental receptors.

5.4.3. Phytotoxic metals

The majority of the phytotoxic metals included in the analysis of the samples analysed were identified at concentrations well below the relevant GACs. However, elevated boron concentrations were identified in the samples from BH1 and BH3. Boron is therefore considered to represent a significant source of contamination with regard to environmental receptors.

5.4.4. Petroleum hydrocarbons

Highly elevated petroleum hydrocarbon (TPH) concentrations were recorded in the sample from BH4 with lower but substantially elevated concentrations also identified in the other five samples above the relevant GACs. These impacts predominantly comprise long chain, comparatively viscous, EC21-35 aliphatic and EC16-35 aromatic fractions. It appears that the majority of the volatile fractions were either not present initially in the hydrocarbons on Site or have degraded.

No obvious sources of this TPH contamination were noted in the soil and leachate analysis results although it is likely from the observations during the site investigation that at least a proportion of the TPH present in the groundwater is the result of oil associated with the swarf deposits in the landfill. The highly elevated TPH concentration in BH4 is considered to be in large part the result of the hydrocarbons present being dissolved in a relatively small quantity of perched groundwater rather than necessarily denoting a more significant source of contamination than the other impacts on Site. The samples in from BH2 and BH3 are considered to be the only samples representative of a substantial groundwater body within the landfill.

Therefore, the TPH impact present beneath the Site, particularly represented by BH2 and BH3, is considered to represent a significant source of contamination with regard to environmental receptors.

5.4.5. Polyaromatic hydrocarbons (PAHs)

Polyaromatic hydrocarbons (PAHs) concentrations were recorded in all of the samples above the relevant GACs for several PAHs with the highest concentrations present in the samples from BH2 and BH3. These elevated PAH concentrations are therefore considered to be associated with the TPH impacts and should be considered and assessed as such. Therefore, PAHs are also considered to represent a significant source of contamination with regard to environmental receptors.

5.4.6. BTEX compounds and MTBE

Concentrations of BTEX compounds in the samples analysed were below the limits of detection and well below relevant GACs. Therefore, BTEX compounds and MTBE are not considered to represent a significant source of contamination with regard to environmental receptors.

5.4.7. Inorganics

Sulphate concentrations were elevated in the samples from BH3, BH4 and BH104. This indicates that elevated sulphate concentrations are present on Site that could present a minor source of contamination with regard to environmental receptors.

Ammonia as NH4 was also identified at elevated concentrations above the relevant GAC in all of the samples analysed with the highest concentrations identified in BH2 and BH3.

Sulphate and ammonia are therefore considered to represent a significant source of contamination with regard to environmental receptors.

5.5 GROUND-GAS ASSESSMENT

The presence and concentrations of ground gases in the installed monitoring wells were monitored in accordance with CIRIA C665 on four occasions between the 19th December 2012 and 22nd January 2013 by Mayer Brown Ltd. The monitoring results are presented in Appendix H.

During all four gas monitoring rounds, steady state flow rates of <0.1/hr were recorded in all wells.

Elevated concentrations of carbon dioxide, up to 17.1% by volume, and flammable gas as methane, at a steady state of up to 27.6% by volume, were detected in the wells installed during the Mayer Brown investigation.

The recorded concentrations and flow rates for the Site indicate a classification of Characteristic Situation 2 (low risk) for the Site is an appropriate classification, based on the data available. This characterisation is based on the concentrations of both carbon dioxide and flammable gas as methane generally exceeding the recommended additional factors/typical maximum concentrations in CIRIA C665 in eight of the ten wells although the Gas Screening Values (GSVs) fell well below the boundary between Characteristic 1 and 2 at all locations.

It is noted that four rounds over a one month period have been undertaken, which is the recommended monitoring programme for a low sensitivity (commercial) end use on a site with a very low gas generation potential and that this Site would not be classed as being of very low gas generating potential.

However, as at least one monitoring round has been undertaken during low and falling atmospheric pressure conditions and as no measurable gas flow rates have been recorded during any of the monitoring rounds, it is considered highly unlikely that a sufficient gas flow rate and increase in measured concentrations would be recorded during longer term monitoring to warrant increasing the classification of the gas regime from Characteristic Situation 2 to 3.

In addition, the only buildings proposed on the Site are portacabin style structures that are considered to be protected from ground gas by design (i.e. being raised above the ground).

It is therefore considered that further monitoring will not provide any significant additional data that would alter the proposed design of the development. Further monitoring is therefore not recommended to support the proposed development.

6. CONCEPTUAL SITE MODEL

The proposed development for the Site is an asphalt plant together with associated ancillary facilities including: mobile cold recycling plant, mobile crusher, weighbridges, portacabin offices, lorry park, storage bays, workshop, access and use of the existing wharf.

The intention is to re-grade the surface of the old landfill site to form appropriate falls to control surface water and then 'cap off' using primary/recycled aggregates, topped with asphalt or concrete.

Screening bunds are proposed to be located on the eastern, southern and western boundaries along with shrub and tree planting. It is currently intended that approximately one third of the material to form the bunds would be obtained from the re-grading of the Site, provided the recovered material is suitable for use.

6.1 SOURCES

The outline conceptual model, formed from the results of the preliminary risk assessment, highlighted several potential contaminant sources relating to the past and present uses of the Site. The results of the site investigation and chemical result screening have allowed these potential sources to be characterised and refined. The following identifies the contaminant impacts considered to be present as a result of the works undertaken to this stage.

6.1.1. On-Site - Historic and Current

- Asbestos containing materials within the near surface landfill material, with regard to human health receptors.
- Ground gases (methane and carbon dioxide) generated from the landfill material and natural material beneath the Site, with regard to human health receptors.
- Barium, nickel, sulphate and ammonia within the landfill material, with regard to environmental receptors.
- Barium, mercury, arsenic, selenium and ammonia within the Alluvium, with regard to environmental receptors.
- Barium, boron, TPH and PAH impact to groundwater, with regard to environmental receptors.

 Reduced quality near surface landfill material slightly impacted with TPH, antimony, arsenic and chromium, with regard to buried services.

It should be noted that additional sources of contamination may become apparent during the development of the Site.

6.1.2. Off-Site – Historic and Current

None.

6.2 PATHWAYS

The key environmental pathways and exposure routes by which potentially toxic substances can reach the identified potential receptors are considered to be:

6.2.1. Indirect

- Accumulation of vapours/gases in enclosed spaces.
- Lateral migration of leachate to surface water.

6.2.2. Direct

- Direct contact.
- Ingestion.
- Inhalation of contaminated dust.
- Inhalation of ground-gas.
- Inhalation of fibres.

6.3 RECEPTORS

Receptors that may be affected by the potential contamination are:

6.3.1. Human

- Future construction workers and occupiers/users of the Site.
- Users of adjacent land and River.

6.3.2. Environmental

- New buried services.
- River Medina and associated mudflats, including ecological designations.

6.4 RISK ASSESSMENT PROCEDURE

By considering the sources, pathways and receptors (pollutant linkages), an assessment of the human health/ environmental risks is made with reference to the significance and degree of the risk. This assessment is based on consideration of whether the source contamination can reach a receptor and hence whether it is of major or minor significance.

The risk assessment has been undertaken with reference to BS10175:2001 and CIRIA Document C552: Contaminated Land Risk assessment 'A Guide to Good Practice'. The risk assessment has been carried out by assessing the severity of the potential consequence, taking into account both the potential magnitude of the hazard and the sensitivity of the target, based on the categories given overleaf.

Table 6.1 Sensitivity of receptor

Category	Examples			
High	Residential with gardens/Groundwater Source Protection Zone			
Medium	Residential without gardens/Principal (Major) Aquifer/sensitive watercourse			
Low	Commercial and industrial use/Secondary (Minor) Aquifer			
Very Low	Construction and maintenance workers/non-sensitive watercourse			

Table 6.2 Magnitude of impact

Category	Examples
Gross Impact	Heavily contaminated gasworks or industrial site, hazardous waste landfill
Moderate Impact	Major leaks and spills from fuel infrastructure (e.g. petrol stations), domestic waste landfill
Slight Impact	Minor leaks and spills from fuel infrastructure, 'inert' waste landfills
No Impact	No identified or suspected contamination

Table 6.3 Level of severity for potential hazard

	Sensitivity of receptor						
Magnitude of Impact	High	High Medium Low Very Low					
Gross Impact	Severe	Medium	Mild	Minor			
Moderate Impact	Medium	Mild	Minor	Minor			
Slight Impact	Mild	Minor	Minor	Minor			
No Impact	Minor	Minor	Minor	Minor			

The likelihood of an event (probability) takes into account both the presence of the hazard and target and the integrity of the pathway and has been assessed based on the categories given below.

Table 6.4 Probability of risk definition

Category	Definition
High likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor
Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term
Low likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so
Unlikely	Pollutant linkage may be present, but the circumstances under which harm would occur are improbable

The potential severity of the risk and the probability of the risk occurring have been combined in accordance with the following matrix in order to give a level of risk for each potential hazard.

Table 6.5 Level of risk for potential hazard definition

Probability of risk	Potential severity				
	Severe	Medium	Mild	Minor	
High Likelihood	Very high	High	Moderate	Low/ Moderate	
Likely	High	Moderate	Low/ Moderate	Low	
Low likelihood	Moderate	Low/ Moderate	Low	Very low	
Unlikely	Low/ Moderate	Low	Very low	Very low	

The assessment is discussed below in terms of plausible pollutant linkages. A complete assessment of the pollutant linkages is presented in Table 6.6 overleaf.

A description of these risk classifications and likely action required are given in CIRIA 552 as:

<u>Very high risk</u> – High probability that severe harm could arise to a designated receptor from an identified hazard OR there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in substantial liability. Urgent investigation and remediation are likely to be required.

<u>High risk</u> – Harm is likely to arise to a designated receptor from an identified hazard. This risk, if realised, is likely to result in substantial liability. Urgent investigation is required and remedial works may be necessary in the short term and are likely over the long term.

Moderate risk – It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation is normally required to clarify risks and to determine potential liability. Some remedial works may be required in the long term.

<u>Low risk</u> – It is possible that harm could arise to a designated receptor from an identified hazard but it is likely that this harm, if realised, would at worst normally be mild.

<u>Very low risk</u> – It is a low possibility that harm could arise to a designated receptor. In the event of such harm being realised it is not likely to be severe.

 Table 6.6
 Pollutant Linkage Assessment

Source	Pathway	Receptor	Severity	Likelihood	Risk Level
Ground-gas originating from underlying landfill material and natural strata	Vertical migration of ground gas leading to accumulation in confined spaces and inhalation	Portacabin buildings on-site and future construction workers & occupiers/users of the Site	Medium	Unlikely	Low
		Construction workers	Medium	Likely	Moderate
Landfill material impacted with asbestos containing materials	Inhalation of fibres	Future Site users	Medium	Unlikely	Low
materials		Adjacent land and water users	Medium	Unlikely	Low
Landfill material impacted with heavy metals and inorganic compounds	Vertical migration of leachate and lateral migration of groundwater leading to direct contact	River Medina and ecologically protected areas	Minor	Unlikely	Very Low
Heavy metal and hydrocarbon impact to groundwater within landfill	Direct contact Ingestion Inhalation	River Medina and ecologically protected areas	Mild	Unlikely	Very Low
Shallow landfill material impacted with hydrocarbons and heavy metals	Direct contact	Buried Services	Minor	Likely	Low

6.5 POLLUTANT LINKAGE DISCUSSION AND MITIGATION MEASURES

6.5.1. Ground gas

The assessment of the Site has indicated that a Characteristic Situation 2 classification is appropriate for the Site with gas protection measures usually recommended for new developments. However, as the Site is proposed for industrial use and it is understood that the proposed buildings will be of a portacabin style, the buildings are considered to be suitably removed from the ground gas risk by being raised above the ground. No additional gas protection measures are therefore recommended. However, if any additional enclosed spaces are included in the development, they will require ventilation and gas protection measures.

6.5.2. Asbestos containing materials

It is understood that the proposed development will be surrounded by earth bunds with approximately one third of the material for these bunds being Site won. It is also understood that the remainder of the Site will be surfaced with asphalt or concrete. Any Site won material reused in the construction of the proposed bunds and redevelopment of the Site should be handled in controlled conditions and capped following placement and any of the present Site material exposed during the redevelopment should be capped during the redevelopment to prevent the release of asbestos fibres. It is recommended that the Site won material used in the bunds is segregated from the unimpacted imported material by a membrane to prevent contamination of the imported material and, where possible, is encapsulated within the unimpacted imported material.

Appropriate PPE should be worn by Site workers during ground works and appropriate measures should be put in place during the development to prevent asbestos fibres from becoming airborne and migrating off Site.

It is envisaged that the development of the Site with hard standing and incorporation of these recommendations will decrease the risks associated with the pollutant linkage between the asbestos on Site and the adjacent land and water users from the conditions that currently exist on Site.

6.5.3. Hydrocarbon and heavy metal impact to groundwater

A significant TPH and PAH impact with barium and boron is present beneath the Site, particularly within the groundwater body represented by BH2 and BH3, that could represent a significant source of contamination with regard to environmental receptors such as the River Medina.

However, it is apparent from the monitoring data discussed previously in this document that there is no significant hydraulic continuity between the groundwater monitored within the landfill beneath the Site and the River Medina. This is considered to be due in large part to the bunds of the former oyster beds continuing to inhibit water migration and the licensing of the landfill incorporating a requirement to not place waste material within 15m of the high water mark of the River Medina.

A viable pollutant linkage between the impacted groundwater within the landfill and the River Medina is therefore not considered to be present and the risk associated with this linkage has therefore been assessed to be very low.

6.5.4. Heavy metals and inorganic compounds in landfill material

Barium, nickel, sulphate and ammonia have been identified with the potential to leach out of the landfill waste material at concentrations that could potentially be detrimental to environmental receptors such as the River Medina. However, in order to come into contact with the River, the contaminants would need to be leached out of the waste material by infiltration of surface water, which will be reduced by the hard standing of the proposed development, before entering perched groundwater bodies within the landfill waste, which do not appear to be in consistent continuity with each other. As discussed above, the groundwater within the landfill is also not in significant hydraulic continuity with the River Medina. Therefore a viable pollutant linkage between the impacted landfill waste and the River Medina is not considered to be present and the risk associated with this linkage has therefore been assessed as very low.

6.5.5. Heavy metals and inorganic compounds in Alluvium

Barium, mercury, arsenic, selenium and ammonia have also been identified with the potential to leach out of the upper parts of the Alluvium directly beneath the landfill at concentrations that could potentially be detrimental to environmental receptors such as the River Medina. This impacted material is considered to be in direct contact with the groundwater body retained by the former oyster beds but is not considered to be subject to significant flow through of water that would encourage leaching.

The potential therefore exists for contaminants to leach from the Alluvium to the groundwater within the landfill but as stated above, there is not considered to be a viable pollutant linkage between this groundwater and the River Medina. The risk associated with this linkage has therefore been assessed to be very low.

6.5.6. Buried services

The concentrations of TPH, antimony, chromium and arsenic identified in the near surface soils across the Site have the potential to detrimentally affect the integrity of buried services. Advice should be sought from the suppliers of services to determine appropriate material selection for the identified conditions.

7. CONCLUSIONS AND RECOMMENDATIONS

The Preliminary Risk Assessment of the Site identified potential pollutant linkages relating to soil and made ground of reduced quality in several areas of the site. The subsequent intrusive site investigation and associated Generic Quantitative Risk Assessment revealed a reduced number of pollutant linkages that may need to be addressed as part of the development.

In order to mitigate the risks associated with these linkages the following mitigation measures are recommended:

- Any Site won material reused in the construction of the proposed bunds and redevelopment of the Site should be handled in controlled conditions and capped following placement and any of the present Site material exposed during the redevelopment should be capped during the redevelopment to prevent the release of asbestos fibres.
- Suppliers of buried services for the development, particularly water supply pipes, should be provided with the data from this document to allow the appropriate material selection.
- As the only buildings proposed for the development are portacabin structures, the design of the structures (i.e. raised above the ground) are considered to be sufficiently protected from ground gas by design with no additional protection measures recommended. Any other enclosed spaces within the development must be sufficiently ventilated with gas protection masures.
- Contractors on Site should wear appropriate PPE to mitigate the risks from the chemical and physical impacts to the Made Ground at the Site, particularly asbestos.

These mitigation measures, as with any such mitigation or remedial measures, are subject to agreement with the regulatory authority, be it the Local Authority for human health related issues or the Environment Agency for environmental issues.

It is recommended that any removal and disposal of sub-soil arisings and/or groundwater from the Site should be undertaken in a controlled manner to a licensed facility, with due regard to Duty of Care responsibilities. In addition, an appropriate degree of health and safety provision should be incorporated to protect both the Site workers and the general public alike.

During any ground works, it is recommended that skin contact with soils is kept to a minimum in accordance with good working practice / specific control measures and the HSE guidance document 'Protection of Workers and the General Public During the Development of Contaminated Land', 1991.

This map is reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. Licence No - (100002189)

Mayer Brown Limited Lion House Oriental Road Woking Surrey GU22 8AR Telephone 01483 750 508 Fax 01483 750 437 wokingoffice@mayerbrown.co.uk www.mayerbrown.co.uk

EUROVIA ROADSTONE LTD

MEDINA WHARF, COWES, ISLE OF WIGHT SITE LOCATION PLAN

scale	NTS@A4	drawn by	AP	checked by	' RP
date	OCTOBER 2	012	cad file		

0

FIGURE 1

This map is reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. Licence No - (100002189)

Mayer Brown Limited Lion House Oriental Road Woking Surrey GU22.8AR Telephone 01483 750 508 Fax 01483 750 437 wokinooffice@mayerbrown.co.uk www.mayerbrown.co.uk EUROVIA ROADSTONE LTD

MEDINA WHARF, COWES, ISLE OF WIGHT INVESTIGATION LOCATION PLAN

scale	NTS@A4	drawn by	AP	checked by	' RP
date	JANUARY 2	013	cad file		
drawl	ng number				rev.

0

FIGURE 2

Mayer Brown Limited Lion House Oriental Road Woking Surrey GU22 8AR Telephone 01483 750 058 Fax 01483 750 437 wokingoffice@mayerbrown.co.uk www.mayerbrown.co.uk EUROVIA ROADSTONE LTD

project

MEDINA WHARF, ARCTIC ROAD, COWES, ISLE OF WIGHT

CONCEPTUAL SITE MODEL

scale NTS@A4 drawn by AP checked by RP

date JANUARY 2012 cad file

drawing number rev.

FIGURE 4: INVESTIGATION LOCATION PLAN ON 1897 OS MAP	

This map is reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. Licence No - (100002189)

Mayer Brown Limited Lion House Oriental Road Woking Surrey GUJ2 BAR Telephone 0 1483 75 0 58 Fax 01483 750 437 wokingoffice@mayerbrown.co.uk www.mayerbrown.co.uk EUROVIA ROADSTONE LTD

MEDINA WHARF, COWES, ISLE OF WIGHT INVESTIGATION LOCATION PLAN ON 1897 OS MAP

scale	NTS@A4	drawn by	AP	checked by	RP
date	JANUARY	2013	cad file		
drawing number					ev.
FIGURE 4					0

This report is produced solely for the benefit of **Eurovia Roadstone Ltd** and no liability is accepted for any reliance placed on it by any other party unless specifically agreed in writing otherwise.

This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

This report is based on a visual site inspection, study of readily accessible referenced historical records, information supplied by those parties noted in the text and preliminary discussions with local and Statutory Authorities. Some of the opinions are based on unconfirmed data and information and are presented in good faith without exhaustive clarification. Where ground contamination is suspected but no physical site test results are available to confirm this, the report must be regarded as initial advice only, and further assessment should be undertaken prior to detailed activities related to the site. Where test results undertaken by others have been made available these can only be regarded as a limited sample. The possibility of the presence of contaminants, not revealed by this research cannot be discounted.

Whilst confident in the findings detailed within this report because there are no exact UK definitions of these matters, being subject to risk analysis, we are unable to give categoric assurances that they will be accepted by Authorities or Funds etc. without question, as such bodies may have unpublished, often more stringent objectives. This report is prepared for the proposed uses stated in the report and should not be used in a different context without reference to Mayer Brown Ltd. In time improved practices or amended legislation may necessitate a re-assessment.

The report is necessarily limited to those aspects of land contamination specifically reported on and no liability is accepted for any other aspect especially concerning gradual or sudden pollution incidents that may occur. The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous use and abuse of the site and adjacent sites. The report concentrates on the site as defined in the report and provides an opinion on surrounding sites. If migrating pollution or contamination (past or present) exists this can only practically be better assessed following extensive on and off site intrusive investigations and monitoring.

APPENDIX C: NOTICES OF MODIFICATION OF WASTE DISPOSAL LICENCE **CONDITIONS**

R9331

CONTROL OF POLLUTION ACT 1974

SECTION 7

Notice of Modification of Waste Disposal Licence Conditions

P D Wharfage and Transport Ltd
Riverway
Newport
Isle of Wight

WHEREAS on 13 October 1977 the ISLE OF WIGHT COUNTY COUNCIL (hereinafter called "the Authority") granted to you a Waste Disposal Licence relating to Refuse Tip, South of Medina Wharf, Cowes Isle of Wight

subject to the conditions set out therein

NOTICE is HEREBY GIVEN that the Authority modifies the said conditions as follows:

Condition No 1 remains unchanged.

Conditions 2 to 17 inclusive are revoked and replaced by the new conditions 1A to 26 set out in the attached schedule Ref. WDA 93331.

Such modification shall take effect on forthwith

at

DATED

June 1979 . (Signed)

(Designation) County Secretary and Solicitor

Isle of Wight County Council County Hall NEWPORT Isle of Wight PO30 1UD

N.B. - The person served with this notice may appeal against the authority's decision to the Secretary of State within six months or such longer period as the Secretary of State may allow.

(See notes overleaf.)

APPEALS

If a licence holder is aggrieved by the decision of the Waste Disposal Authority in modifying conditions specified in a disposal licence he may appeal to the Secretary of State in accordance with Section 10 of the Control of Pollution Act 1974. Appeals may be notified within six months of the date of this notice to the Secretary, Department of the Environment, Waste Disposal Division, Queer Anne's Chambers, 28 Broadway, London SWIH 9JU. The Secretary of State has power to allow a longer period for the giving of notice of an appeal but he will not normally be prepared to exercise this power unless there are special circumstances which excuse the delay in giving notice of an appeal.

Where a notice giving the authority's decision to modify a disposal licence includes a statement that for the purpose of preventing pollution of water or danger to public health Section 10 (2) of the Control of Pollution Act should not apply to the decision, the notification of an appeal against the decision will not of itself render the decision ineffective pending determination of the appeal.

If you consider that such a statement has been unreasonably included in the notice of decision you may apply, under Section 10(3) of the Control of Pollution Act, to the Secretary of State to determine whether the authority's action was unreasonable or not (the address to write to is as given above). If the Secretary of State determines that the authority acted unreasonably in including such a statement, the authority's decision will become ineffective while an appeal is pending and you will be entitled to recover compensation from the authority in respect of any loss you have suffered in consequence of the statement. Any dispute as to your entitlement to compensation or its amount shall be determined by arbitration.

SCHEDULE Ref: WDA 9331

Grid Ref: SZ 501 941

No deposit of waste shall take place unless at least one month previously a working plan, giving details of the proposed conduct of operations at the site, has been submitted to the Waste Disposal Authority, and the licence holder shall notify the Waste Disposal Authority of any proposed change in the actual conduct of operations from the proposals shown in the plan, as altered by any previously notified changes, at least one month before the proposed change is implemented.

The types and quantities of wastes deposited daily at the site shall not exceed the following:-

Solids (Tonnes)

Α	Domestic and commercial waste - untreated	40
В	Non-hazardous industrial waste - potentially	
	combustible	5
	 inert and non-flammable 	5
C	Waste from the construction industry	40

- No deposit shall take place until a suitable access road has first been provided within the site. The road shall be maintained to the reasonable satisfaction of the Waste Disposal Authority.
- No deposit shall take place until a site control office has been provided on the site.
- No deposit shall take place until a site identification board of durable material and finish has been displayed at the site entrance, showing the hours when the site is open and giving the name of the site, the name, address and telephone number of the operator and of the Waste Disposal Authority responsible for issuing the site licence.
- No further deposit of waste shall be made within 15 metres of the high water level on the west bank of the River Medina estuary. No deposit of waste shall take place in the area designated "Area to be filled" on the plan submitted with the licence application until water courses on the site have been diverted, culverted or otherwise protected to the reasonable satisfaction of the Southern Water Authority.
- No deposit shall take place until suitable facilities have been provided for storing and maintaining equipment used on the site.
- No deposit shall take place until movable screens have been provided at intervals near operational areas having regard to wind direction so as to ensure that paper and other materials are contained on the site. Materials arrested by such screens shall be removed and disposed of as necessary to maintain the efficiency of the screens and the tidiness of the site.
- No deposit shall take place until gates and fencing have been provided to the satisfaction of the Waste Disposal Authority so as to reasonably prevent unauthorised access to the site.
- 10 The site shall be adequately manned and supervised during working hours.
- Solid waste shall be compacted and formed into a layer not exceeding 2.5 metres (8 feet) deep as soon as possible after deposit and not later than at the end of the working day on which the waste is received.

The waste shall either (a) be deposited on the surface of the site behind the face and partially compacted by a tractor or other compacting machine before being pushed over the face or it shall (b) be deposited on the ground forming the base of the site or on a previous layer in front of the face and shall be formed into a compacted layer by being pushed upwards and driven over by a tractor or other compacting machine. 13 Before covering, working faces or flanks shall be compacted to form gradients not steeper than 1 in 3. 14 Material used for landfill other than that which is wholly non-putrescible shall, subject to the traction needs of vehicles operating at the working face, be covered progressively with suitable non-putrescible or stabilised material throughout the working period each day, so that by the end of each day all exposed surfaces and flanks and face shall have been covered to a depth of not less than 15 centimetres (6 inches). All large articles such as furniture, crates and hollow containers likely to cause voids shall be crushed, broken up or flattened and covered each day by other wastes in such a position that they are not within one metre (3 feet) of the surface of two metres (6 feet) of the flanks or face. 16 Waste other than inert material shall not be deposited in water. Not less frequently than once a week any loose waste which may be lying on the site shall be gathered and disposed of in such a way as to keep the site tidy. 18 No waste material shall be burnt within the boundaries of the site, and a fire at the site shall be regarded as an emergency and immediate action shall be taken to extinguish it. All outbreaks of fire shall be notified forthwith to the disposal authority. 19 Precautions shall be taken to deal effectively with any vermin and insects on the site. 20 A record shall be kept of the types and quantities of waste deposited at the site. 21 The terms of the site licence shall be made known to any person who is given responsibility for the management or control of the site and a copy of this shall be displayed at the site control office. 22 Each layer of waste and covering material shall be laid to a fall to encourage surface water runoff. 23 Until final restoration, completed areas of landfilling shall be graded and maintained in a tidy condition and where necessary action shall be taken to control or destroy weeds. 24 The final layer deposited shall be subject to the minimum compaction and shall, to a depth of not less than one metre (3 feet), be kept free of materials likely to interfere with final restoration or subsequent cultivation. This final layer shall not bring the finished level of the site to a higher level than the adjoining land to the west. 25 Not less than 14 days notice shall be given to the Waste Disposal Authority of the date on which landfilling is to commence or recommence in the event of a temporary cessation for a period in excess of three months. 26 Any temporary cessation of operations for a period in excess of three months shall be notified to the Waste Disposal Authority. - 2 -

The second of th

CONTROL OF POLLUTION ACT 1974

Section 7(i)

Notice of Modication of Waste Disposal Licence Conditions

To: Mr E Elsom

General Manager

Corralls Gubbins & Bull

Riverway Newport

Isle of Wight PO30 5QB

WHEREAS on 13 October 1977 the Isle of Wight County Council (hereinafter called "the Authority") granted to you a Waste Disposal Licence relating to Refuse Tip, South of Medina Wharf, Cowes, Isle of Wight and whereas the licence was modified on 7 June 1979 subject to the conditions set out therein

AND WHEREAS on 23 January 1990 you applied to the Authority to modify the said conditions

NOTICE IS HEREBY GIVEN that the Authority modifies the said conditions as follows:-

Previous Conditions 1 to 26 are hereby revoked and replaced by Conditions 1 to 3 in the Schedule attached to and forming part of this Notice.

Such modifications shall take effect forthwith

Dated: 9 July 1990

(Signed)

(Designation)

y & Sohellor

Isle of Wight County Council County Hall Newport Isle of Wight PO30 1UD

NB The person served with this Notice may appeal against the Authority's decision to the Secretary of State within six months or such longer period as the Secretary of State may allow (See notes).

CS	ADMIN
DCS	P.TRANS
AGS(C)	TR.EDN.
ACS(SS)	LIGHT
121	UL 1990 /
CESM	I BRANK
	B KAN Validado

1 Site Facilities

- 1.1 The layout of the site shall be as shown on drawing number WDP 9/2, which is attached to and forms part of this licence.
- 1.2 A boundary fence will be maintained along the part of the site bordering the public cycle track and the tree line (between the cycle track and the site) along the south western sector of the site. This fence will be a minimum of 1.3 metres in height, and will be constructed of metal chain link mesh with a maximum mesh gap of 8cms. The fence will be mounted on wooden, concrete or metal posts spaced at intervals not exceeding 3 metres.
- 1.3 All litter which may accumulate against either side, or both sides of the fence, will be removed as often as is necessary to maintain the cleanliness of the fence.
- 1.4 A site access road between the Wharf plant yard and the site entrance will be maintained to a minimum width of 3.5 metres and to a hard surface utilising suitable clinker, ballast or hardcore. Any ruts, depressions or pot-holes will be reinstated as soon as is practicable, but within one week from the date of discovery of the defect. A stockpile of suitable road repair material will be held available on site for this purpose at all times.
- 1.5 Mud, grit, etc, caused by vehicles leaving the site, shall not be allowed to accumulate on any part of the public highways outside the entrance to the Wharf plant yard. Any mud, grit, etc. which is deposited shall be cleared immediately upon deposit, by the utilisation of whatever means or equipment may be necessary to maintain the cleanliness of the public highways.
- 1.6 A site control office and weighbridge shall be provided between the entrance to the Wharf plant yard and the entrance to the landfill area. The site control office shall be located in a position to ensure that all vehicles entering and leaving the site are weighed and monitored.
- 1.7 All vehicles intending to use the landfill site must halt in the Wharf plant yard, and obtain authorisation from the landfill site manager or supervisor before proceeding to the landfill site.
- 1.8 Secondary site tracks giving temporary access to active tipping areas will be maintained to a hard surface using suitable hardcore, etc. Any significant ruts, depressions or potholes will be reinstated as soon as is practicable, but within one month from the date of discovery.
 - A stockpile of suitable repair material will be kept available on site for this purpose at all times.
- 1.9 No fuel oil or other discharge fluids for vehicular use will be stored on site. No discharge of fluids from vehicles on site will be permitted.

2 Types of Waste

2.1 The following types of waste only will be accepted at the site:-

- Solid, non-toxic, soils, clays and rubbles, arising from construction, demolition or excavation works, defined as controlled industrial waste under Schedule 3(6) and 3(7) of the Collection and Disposal of Waste Regulations 1988.
- b) Semi-solid clean sand/grit/water slurry, having a minimum solids content of 50%, arising from ballast washing operations in the Wharf plant adjacent to the landfill site only, (defined as controlled industrial waste under Section 30 of Control of Pollution Act 1974 and Schedule 3(6) of the Collection and Disposal of Waste Regulations 1988). The maximum quantity of semisolid slurry (under (a) above) which will be deposited on site during any three monthly periods will not exceed 18184 litres (4000 gallons).

3 Site Operation

- 3.1 The site shall be available for the receipt of waste between 7.30 am 6.00 pm daily. Any use of the site outside these hours will be permitted only by prior notification to, and with the prior agreement of, the Waste Disposal Authority.
- 3.2 The site shall be supervised at all times during periods of operation or when the adjacent Wharf plant is open, to ensure that:
 - a) No unauthorised access is gained;
 - b) Wastes are deposited in a controlled manner;
 - c) No unpermitted materials are landfilled.
- 3.3 Solid wastes (as per category 2.1 (a) above only) deposited on site shall be spread and compacted at least weekly to ensure that:-
 - a) No voids occur;
 - Significant volumes of standing surface water are avoided;
 - An overall tidy appearance is maintained.
- 3.4 Solid wastes (as per category 2.1(a) above) deposited on site shall be spread and compacted, using a suitable machine, no later than the end of the day on which they are deposited. Such wastes shall be covered immediately following spreading and compaction with a layer of inert material (inert soil, clay, clean rubble) to a minimum depth of 15cms.
- 3.5 The depth of layer of waste (as per category 2.1(a) above) shall not, after initial spreading and compaction, exceed 2.5 metres.
- 3.6 Slurry waste (as per category 2.1(b) above) will only be deposited into pre-prepared excavated lagoons of a depth not exceeding 60cms. Slurry reception lagoons shall be securely bundled using impervious clay material to prevent liquid run-off. Lagoons shall not be filled to a depth exceeding 40cms. No liquid run off from the lagoon is permissible.

- 3.7 Slurry reception lagoons (as per 3.6 above) will not be excavated into any area of the site containing wastes (as per category 2.1(a) above) such that wastes would be disposed of on any completed area of landfill.
 - 3.8 No wastes will be deposited within 15 metres of the high water level on the west bank of the river Medina, or within 15 metres of the waters' edge in the inlet to the south of the site.
 - 3.9 A weekly check will be made of the boundary fence along the western side of the site, and any fly-tipped wastes discovered to have been deposited over the fence will be cleared immediately.
 - 3.10 Working faces and clanks shall be formed into gradients not exceeding 1 in 3. Completed flanks and/or other areas of landfill shall not exceed a gradient on 1 in 10.
 - 3.11 With the exception of any liquid contained within purposely built lagoons, surface water will not be allowed to accumulate on faces, flanks or completed/dormant areas of landfill.
 - Any large accumulation of surface water on areas about to be infilled shall be drained prior to the deposit of any wastes if wastes other than clean soil, clay or rubble is to be deposited on those areas.
 - 3.12 No wastes or litter shall be burnt within the site, and immediate emergency action will be taken to extinguish any fire detected.
 - 3.13 Action will be taken as and if necessary to control vermin/insect infestation at the site.
 - 3.14 Completed flanks and areas of infill shall be covered with a final layer of clean soil to a minimum depth of 90cms. This final layer shall be subjected to a minimum of compaction.
 - 3.15 At least weekly, a check will be made of the entire site (including the Medina West Bank) and any loose waste which may be lying on the surface shall be gathered and/or covered so as to maintain the tidiness of the site.
 - 3.16 An accurate record will be kept of all loads being deposited. This record will identify:-
 - A description of the load (eg mixed builder's wastes, soil, rubble, timber, paper, metal, etc.);
 - b) The date of deposit;
 - c) The weight (tonnes) of the load.

Records as above will be submitted on a monthly basis to the Waste Disposal Authority, even if a 'NIL' return is involved for any monthly period.

- 3.17 The terms of the site licence shall be made known and understood to all persons having managerial or supervisory responsibility for the site, and to all site operatives, users or sub-contractors.
- 3.18 The final contours of the site will be as shown on drawing No. WDP 9/2, and the site shall be progressively filled to achieve restoration as quickly as possible in accordance with the agreement made with the company in April 1987.

NOTES

APPEALS

If a licence holder is aggrieved by the decision of the waste disposal authority in modifying conditions specified in a disposal licence he may appeal to the Secretary of State in accordance with Section 10 of the Control of Pollution Act 1974. Appeals must be notified within six months of the date of this notice to the Secretary, Department of the Environment Waste Disposal Division, Queen Anne's Chambers, 28 Broadway, London, SW1H 9JU (for sites in England) or to the Secretary, Welsh Office, Local Government Division, 13th Floor, Pearl Assurance House, Greyfriars Road, Cardiff, CF1 3RT (for sites in Wales). The Secretary of State has power to allow a longer period for the giving of notice of appeal but he will not normally be prepared to exercise this power unless there are special circumstances which excuse the delay in giving notice of an appeal.

Where a notice giving the authority's decision to modify a disposal licence includes a statement that for the purpose of preventing pollution of water or danger to public health Section 10(2) of the Control of Pollution Act should not apply to the decision, the notification of an appeal against the decision will not of itself render the decision ineffective pending determination of the appeal.

If you consider that such a statement has been unreasonably included in the notice of decision you may apply under Section 10(3) of the Control of Pollution Act to the Secretary of State to determine whether the authority's action was unreasonable or not (the address to write to is given above). If the Secretary of State determines that the authority acted unreasonably in including such a statement the authority's decision will become ineffective while an appeal is pending and you will be entitled to recover compensation from the authority in respect of any loss that you have suffered in consequence of the statement. Any dispute as to your entitlement to compensation or its amount shall be determined by arbitration.

(m=	W	indow Sam	pler	В	oreh	nole	Re	CO	rd	Sheet 1 of		ВН	101
		Location: ina Wharf		Clie		oadsto	one Ltd			Co-or 45003		es: 94093	.67
Equipment: Geoprobe					ng: n (m): - eter (mn	n): -	OD (m): 9.44			1		03/12/ e: 03/12	
Strat	um D	escription	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm)	Sample Type	Depth (m)		In Situ 1 Resul		Ва	allation and ackfill etails
MADE GROUND (Soft grey gravelly sandy CLAY with indistinct bands of sandy fine to coarse angular ash and clinker GRAVEL and occasional plastic bags and glass fragments. Gravel is fine to coarse angular to sub-rounded flint, brick, concrete and chalk.) (Landfill Waste) Firm greenish grey mottled orange brown CLAY with occasional organic matter and frequent small shells. (Headon Beds and Osborne Beds)			6.00	(iiioo)	Берит (тт)	ES ES	GL-1.0						
with occasional organic matter and frequent small			- - - - - - - - - - - - - - - - - - -					-					
Borehole Complete	ed at 8	.0mbgl		- -					-				
				- - - - -					- - - - - - -				
Key D Disturbed Sample	R 00mbal			<u> </u>	Ground Date	water Strike Time		vation: Casing F Depth (m)					
ES Environmental Sa B Bulk Sample U Undisturbed Sam	30mm sta and plain from 6.0ml 3mbgl to 0	ndpip pipe f ogl to SL.	e install rom 0.3ı 0.3mbgl	ed mbgl		11111111	(m)	(m)	(m)	(mins)	(m)		
✓ Water Strike ▼ Standing Level	Undisturbed Sample Hand Vane to 0.7magl. Filter grave bentonite pellets from 0						Drilled By Subadra	y:	Logge AP	ed By:	CI RI	necked	Ву:

(m=	W	indow Sam	nole	Re	CO	rd	Sheet 1 of		Bł	H102			
		Location: ina Wharf		Clie	nt: ovia Ro	padsto	one Ltd			Co-or 45010			4.41
Equipment:				Casir			OD (m):			Start	Date:	03/12	2/12
Geoprobe					n (m): - eter (mn	n): -	8.07			Finish	Date	e: 03/1	12/12
		escription	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ T Result		Ins E	stallation and Backfill Details
MADE GROUND (Soft with indistinct bands angular ash and clink metal fragments. Grav to sub-rounded flint, k Waste)	of san er GR. /el is f	dy fine to coarse AVEL and occasional					ES	GL-1.0 1.0-6.6					
								-					
MADE GROUND (Brown gravelly fine to coarse ash SAND and occasional swarf fragments with a hydrocarbon sheen. Gravel is fine to coarse angular ash and clinker.) (Landfill Waste)				- - - - - - - - - - - - - -			ES	6.6-9.3					
Very soft grey silty CL		-			ES	9.3-11.4	- - -						
Borehole Complete	<u> </u>	11.40					1			_			
Key					Ground		Obser	vations	S Duri	ing D	rilling		
V Hand Vane	11.40mbgl 30mm sta and plain from 8.0ml 0mbgl to 0	ndpip pipe f ogl to iL.	e install rom 1.0 1.0mbgl	ed mbgl	Date	Strike Time	Depth (m)	Depth (m)	to (m)	Over tim (mins)	Depth sealed (m)		
✓ Water Strike▼ Standing Level	Undisturbed Sample Hand Vane Water Strike to 1.0magl. Filter gravel fr bentonite pellets from 1.0magl. bentonite pellets from 1.0magl.						Drilled By Subadra		Logge AP	d By:	Cł RF		d By:

(m=	Window Sai	mpler	oreh	nole	Re	CO	rd	Shee 1 of		ВІ	1103	
	Site Location: Medina Wharf		Clie	nt: ovia Ro	padsto	one Ltd			I	rdina 89.29	tes: , 9406	2.46
Equipment: Terrier				ng: n (m): - eter (mn	n): -	OD (m): 9.47					: 12/12 e: 12/1	
Strati	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Resu		Ins	stallation and Backfill Details
MADE GROUND (Soft and orange brown grabands of sandy fine to clinker GRAVEL and casbestos cement shee fragments. Gravel is fi sub-rounded flint, brick Waste) Firm grey slightly graves sub-angular to sub-rounded flint, brick waste)		-7.50			ES ES	0.5	- 1,1,· - 3,5,· - 2,1,· - 2,1,· - 6,3,·	3,3,2,3 (1,1,1,1 (1,1,1,1,1 1,1=225 1,2,1,1 (3,2,2,2 ((C) (C)			
		- - -				-	- - -					
Key	l			<u> </u>	Ground	water (
D Disturbed Sample	at 8.00mbal			Ţ	Date	Strike Time	Strike (Casing Depth	Rising to		ne Depth sealed	
ES Environmental Sample B Bulk Sample J Undisturbed Sample I Undisturbed Sample Trom 5 9mbgl to 0 5mbgl and pla				rom ().5i	mbal I			(m)	(m)	(m)	(3)	(m)
 ✓ Water Strike ▼ Standing Level 	Undisturbed Sample Hand Vane Water Strike from 5.9mbgl to 0.5mbgl and to 1.0magl. Filter gravel from bentonite pellets from 0.5mbg					Drilled B DJ Drillin	y: I	Logge AP	d By:		hecke P	d By:

(ma)	nole	Re	CO	rd	Sheet:		BH104					
	Location: ina Wharf		Clie		padsto	ne Ltd			Co-ore 45005		s:)4037.30	
Equipment: Terrier				n (m): -		OD (m): 10.06					2/12/12 12/12/12	٦
Stratum D	Description	Legend	Depth (m)	Reduced Level	Casing Diameter (mm)	Sample Type	Depth (m)	Τ	In Situ To	est	Installation and Backfill	ıl
MADE GROUND (Soft to firngrey gravelly CLAY with oc Gravel is fine to coarse ang flint, brick and concrete.) (Limits) MADE GROUND (Soft to firns) slightly sandy gravelly orgatocasional plastic, ceramic Gravel is fine to coarse ang flint, brick and concrete.) (Limits) MADE GROUND (Redish brick) coarse ash SAND with occast fragments. Gravel is fine to and clinker.) (Landfill Wasted) Firm light brown mottled gravel is fine to coarse ang flint. (Headon Beds and Oster light brown mottled light CLAY. (Headon Beds and Coarse and Clay)	m light brown and light casional oyster shells. Jular to sub-rounded andfill Waste) m dark grey and brown anic CLAY with and timber fragments. Jular to sub-rounded andfill Waste) own gravelly fine to asional glass coarse angular ash as coarse angular ash as coarse angular ash as corne Beds) let grey slightly silty		(m)	Level (mOD)	(mm) Depth (m)	ES ES	0.5 2.5 3.5	- 1,3, - 1,3, - 5,12 - 2,2,	Result 1=150,1,1 2,2,6,4 (C) 2,13,12,11 3,3,3,3,3 (C) 3,4,5,5 (C)	(C) ,11 (C)	Backfill Details	
			 - - - 7.00						2,1,3,2 (C)		PHALPH	***************************************
Borehole Completed at 7	.0mbgl		- - - - - - - - - - - -						, ,_,,=j= (v	•		
Key D Disturbed Sample ES Environmental Sample B Bulk Sample U Undisturbed Sample V Hand Vane ☑ Water Strike ▼ Standing Level	7.00mbgl 30mm sta and plain from 6.0ml 5mbgl to 6	pipe f	rom 0.5ı	mbgl l,	Ground Date Drilled B	Strike Time	Strike Depth (m)	Casing R Depth	ising to (m)	g Drilling er time seal (m)	th ed)	

(m=	Window Sam	CO	rd	Shee 1 of		BH10)5					
mayer brown	Site Location: Medina Wharf		Clie		oadsto	one Ltd			1	rdinat 93.33,	es: 93998.27	7
Equipment: Terrier				ng: n (m): - eter (mn	n): -	OD (m): 8.77					12/12/12 e: 12/12/1	
Strat	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Resu		Installa and Back Deta	d fill
grey gravelly CLAY w and metal fragments. angular to sub-round (Landfill Waste)	to firm light brown and light vith occasional glass, timber Gravel is fine to coarse ed flint, brick and concrete.)		-1.90			ES	0.5					
MADE GROUND (Very soft dark grey gravelly organic CLAY with occasional timber, glass and chipboard fragments. Gravel is fine to coarse angular to sub-rounded flint, brick and concrete.) Landfill Waste) Firm to stiff light brown mottled light grey slightly silty CLAY with frequent small shell fragments. Headon Beds and Osborne Beds)						ES	3.0	-				
silty CLAY with frequ					ES	4.5						
Borehole Complete	ed at 6.0mbgl											
Key D Disturbed Sample ES Environmental Sample U Undisturbed Sam V Hand Vane	6.00mbgl I 30mm sta I and plain from 6.0m 5mbgl to 0	pipe f bgl to	e install rom 0.5r 0.5mbgl	ed nbgl	Ground Date	Strike Time				ing Drilli Over time (mins)		
✓ Water Strike ▼ Standing Level			=			Drilled By		Logge AP	ed By:	CI	hecked B	y:

(m=	Window Sam	nole	Re	CO	rd	Shee 1 of		В	H106			
mayer brown	Site Location: Medina Wharf		Clie	nt: ovia Ro	oadsto	one Ltd			Co-oi 45013			8.67
Equipment: Terrier			Casir	h (m): -		OD (m): 8.03			Start			
	m Description	Legend	Diam Depth (m)	Reduced Level	Casing Diameter (mm)	Sample Type	Depth		Finis In Situ	Test	In	stallation and Backfill
MADE GROUND (Soft t grey slightly sandy gra timber, straw, glass an	o firm light brown and dark ivelly CLAY with occasional d plastic. Gravel is fine to rounded flint, brick and ste)		6.00	(mOD)	Depth (m)	ES ES	(m) 0.5 1.0-6.0		Result			Details Details
Firm light brown mottle CLAY. (Headon Beds a	ed light grey slightly silty nd Osborne Beds)		7.00			ES	6.0-7.0	\- - - - -				
Borehole Completed	i at 7.0mbgl		- - - - - - - - - - -									
Key D Disturbed Sample ES Environmental Sample U Undisturbed Samply V Hand Vane ✓ Water Strike ▼ Standing Level	·	7.0mbgl gs.				Ground Date Drilled B	Strike Time	Obser Strike Depth (m) Logge	Casing I Depth (m)	Rising to (m)	Over tir (mins	per Depth sealed (m)

(m=	Window Sam	CO	rd	Shee 1 of		ВН	1107					
mayer brown	Site Location: Medina Wharf		Clie		padsto	one Ltd				rdina 70.56	tes: , 94151	.11
Equipment: Terrier				ng: n (m): - eter (mn	n): -	OD (m): 8.10					: 17/12/ :e: 17/1	
Strat	tum Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Resu		В	allation and ackfill etails
greenish grey slightly with occasional glass	t to firm light brown and y sandy silty gravelly CLAY s and ceramic fragments. se angular to sub-rounded ete.) (Landfill Waste)					ES	0.5	-				
slightly clayey fine to fabric and glass fragi coarse angular to sul ash.) (Landfill Waste)	b-rounded flint, brick and		- - - - 3.20			ES	2.5-2.9	- - - - -				
fabric and glass fragments. Gravel is fine to coarse angular to sub-rounded flint, brick and ash.) (Landfill Waste) Hydrocarbon odour between 2.5mbgl and 2.9mbgl MADE GROUND (Soft greenish grey slightly gravelly CLAY with occasional glass fragments and organic material. Gravel is fine to coarse angular to sub-rounded flint, brick and concrete.) (Landfill Waste) MADE GROUND (Soft to firm dark grey and brown sandy very gravelly CLAY with occasional glass and swarf fragments. Gravel is fine to coarse angular to sub-rounded flint, brick and concrete.) (Landfill Waste)			3.80			ES	3.8-8.0	- - - - - - - - - - - - - - - - - - -				
Borehole Complete		- - - - - - - -										
Key	Remarks:					Ground						
D Disturbed Sampl ES Environmental S B Bulk Sample U Undisturbed Sam V Hand Vane	ample 2. Backfilled with arising					Date	Strike Time	Depth (m)	Depth (m)	to (m)	Over time (mins)	sealed (m)
✓ Water Strike ✓ Standing Level						Drilled B		Logge AP	ed By:		hecked P	Ву:

(m=	Window Sam	Vindow Sampler Bo							Sheet 1 of		BH108
mayer brown	Site Location: Medina Wharf		Clie	nt: ovia Ro	oadsto	ne Ltd				dinate 17.82, 9	s: 14238.00
Equipment: Terrier				n (m): -		OD (m): 7.10					7/12/12
		<u> </u>	Diam Depth	eter (mr	Casing	Sample		1	In Situ		17/12/12 Installation
	um Description	Legend	(m)	Level (mOD)	(mm) Depth (m)	Туре	Depth (m)		Resul		and Backfill Details
gravelly CLAY with fa	brown slightly sandy bric, glass, ceramic, swarf,		E					}			
	tion and plastic fragments. se angular to sub-rounded		F			ES	0.5	-			
flint, brick and concre		\bowtie						1			
Dark grey from 1.1mb	gl		-			ES	1.1-6.0	-			
			-					1			
			-					-			
			ļ.								
								1			
		\bowtie	F]			
			E					1			
			-					-			
						ES	3.6	1			
			ļ					1			
			ŀ					-			
			[]			
			t					_			
			}					-			
No recovery between	6.0mbgl and 8.0mbgl		<u>-</u> .								
,			}					-			
			-					1			
			}					-			
			-]			
		\bowtie						1			
			8.00					-			
Borehole Complete	ed at 8.0mbgl	XXXXXX						-			********
			-					-			
			-]			
			_					1			
			F					-			
			<u> </u>					1			
			<u> </u>								
Key	Key Remarks:			1		Ground		Obser	vation	s Durir	ng Drilling
D Disturbed Sample ES Environmental Sa	e 1. Borehole complete at ample 2. Backfilled with arising	8.0mbgl ıs.				Date	Strike Time	Depth (m)	Depth (m)	to (m) (er time Depth sealed (m)
B Bulk Sample U Undisturbed Sam		•									
V Hand Vane					}	Drilled B	<u> </u> у: Т	Logae	ed By:	Che	ecked By:
▼ Standing Level						DJ Drillin		AP	,.	RP	

(m=	Window Sam	pler	Bo	oreh	nole	Re	CO	rd	Shee 1 of		В	H109
mayer brown	Site Location: Medina Wharf		Clie		oadsto	ne Ltd			1	rdina 76.35	tes: , 9420	9.82
Equipment: Terrier				ng: n (m): - eter (mn	n): -	OD (m): 8.10					: 17/1: te: 17/	I
Strat	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Resu		In	stallation and Backfill Details
gravelly CLAY with or fragments. Gravel is f	to firm light brown very ccasional ceramic pipe ine to coarse angular to ck and concrete.) (Landfill		- 2.10			ES	0.5	-				
MADE GROUND (Soft to firm dark grey sandy very gravelly CLAY with occasional glass, timber and metal fragments. Gravel is fine to coarse angular to sub-rounded flint, brick and concrete.) (Landfill Waste) No recovery between 6.0mbgl and 7.0mbgl						ES	2.1-6.0					
	No recovery between 6.0mbgl and 7.0mbgl		7.60				-	-				
MADE GROUND (Dark red slightly clayey sandy fine to medium ash GRAVEL (Landfill Waste) Borehole Completed at 8.0mbgl			8.00 - - - - - - - -				-					
Key	Remarks:					Ground	water					
ES Environmental Sa B Bulk Sample U Undisturbed Sam	Disturbed Sample S Environmental Sample Bulk Sample Undisturbed Sample					Date	Time	Depth (m)	Depth (m)	to (m)	(mins	ne Depth sealed (m)
V Hand Vane ☑ Water Strike ▼ Standing Level	S Environmental Sample Bulk Sample Undisturbed Sample Hand Vane Water Strike					Drilled B		Logge AP	ed By:	C R		ed By:

(m)	Cable	Percus	ssive	В	ore	hol	e Re	ecc	ord	Sheet 1 of		BH1	
mayer brown	Site Location Medina Whar			Clie	nt: ovia Ro	oadsto	one Ltd				dinate 39.15,	es: 94025.58	3
Equipment: Cable Percussive Rig					າ (m): 10		OD (m): 8.03					13/12/12 : 13/12/1	
			I		eter (mr	n): 150 Casing	-	ı	ı	Fillisi	Date		
	um Description		Legend	Depth (m)	Reduced Level (mOD)	Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ 1 Resul		Installa and Backf Detai	tion fill s
MADE GROUND (Soft slightly sandy gravell			\bowtie	-					-				
timber, ceramic and prine to coarse angular	lastic fragments	. Gravel is							_				
and concrete.) (Landf		mint, brick	\bowtie				B1	1.0	-	.=	(0)		
			\bowtie	-			БІ	1.0	1,1=	150,1=1	50,1 (S)		
			\bowtie	-					-				
			\bowtie	-									
			\bowtie				B2	2.0 -	- 4,3,	3,3,1,2 (S	S)		
			\bowtie	-]				
			\bowtie	-					-				
			\bowtie	F			В3	3.0	1,1,4	4,3,1,2 (C	;)		
]				
								4.0 -		1,1,2,2 (0	:)		
MADE CROUND (Soft	ADE GROUND (Soft to firm greenish grey and							1.0		1,1,2,2 (-,		
brown silty CLAY with	n occasional she]				
chalk and ash fragme	nts.)		\bowtie	-					-				
				L			U4	5.0-5.45	50				
			\bowtie	-			D6	5.45	-				
			\bowtie				50	0.40					
			\bowtie						-				
			\bowtie	- -6.50									
Soft to firm becoming			 *x*x*x	-				6.5	1,1,:	2,1,2,3 (C	;)		
mottled light grey slig Beds and Osborne Be	, , ,	(Headon											
	,			-					_				
				-					-				
				-			U7	8.0-8.45	_ 20 _				
				_			D8	8.45	-				
						▼	<u>,</u>		_				
				-					-				
]				
							D9	9.50	- 1,1,2	2,3,3,5 (S)		
		<u>-</u> .]						
Key Remarks:							Ground		Obser	vation	s Duri	ng Drillir	## ng
D Disturbed Sample	D Disturbed Sample 1. Borehole complete at 11.6mbg					ا ما	Date	Strike Time	Strike Depth (m)	Casing F Depth (m)	Rising to (m)	ver time (mins)	epth aled m)
B Bulk Sample U Undisturbed Sam	Bulk Sample from 11.6mbgl to 1.0mbgl and p					0mbgl			11.6	10.0		20	
V Hand Vane ✓ Water Strike	bentonite	pellets from 1.	Ombgl to C	šĽ.	~ყי,		D.::: : =						
▼ Standing Level							Drilled B DJ Drillir	y: ig	Logge AP	a By:	Ch RP	ecked B	y:

(m=	Cable Percus	ord	Sheet: 2 of 2	2	ВН1							
mayer brown	Site Location: Medina Wharf		Clie		oadsto	one Ltd			Co-ord 450139		: 4025.58	
Equipment:			Casir	ng:		OD (m):			Start D	ate: 1	3/12/12	┪
Cable Percussive Rig				h (m): 10 leter (mn		8.03			Finish	Date:	13/12/12	
Strat	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Te Results		Installati and Backfil Details	ı
			11.60		. ∇	U10 B11	11.0- 11.35 11.35- 11.55	- 65 - 8,17	′=60mm,50)=40mm		
Key		Ground	water Strike				l g Drilling					
D Disturbed Sample ES Environmental Sa	D Disturbed Sample 1. Borehole complete at 11.6mbgl							Strike Depth (m)	Casing Ri Depth (m) (sing to (n m)	er time Dep	th led i)
B Bulk Sample U Undisturbed Sam V Hand Vane	from 11.6mbgl to 1.0mbg to GL. Filter gravel from bentonite pellets from 1.0	I and plair 11.6mbgl to 0	n pipe to 1.0r SL.	from 1.0	L			11.6	10.0	3.8 2	D	
✓ Water Strike▼ Standing Level						Drilled B DJ Drillir		Logge AP	ed By:	Che RP	cked By	:

(m)	Cable Percus	ssive	B	orel	hol	e Re	ecc	ord	Shee 1 of		вн	2
mayer brown	Site Location: Medina Wharf		Clie		oadsto	one Ltd			Co-o 4501		tes: , 94115	.83
Equipment: Cable Percussive Rig			Casir Deptl Diam	ng: n (m): 10 eter (mn) n): 150	OD (m): 7.86					: 14/12/ :e: 14/12	
Strat	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Resu		Inst Ba D	allation and ackfill etails
with indistinct bands angular ash and clink metal fragments. Grav	grey gravelly sandy CLAY of sandy fine to coarse ter GRAVEL and occasional vel is fine to coarse angular brick and concrete.) (Landfill				Depth (m)	B2 B3	1.0 2.0 4.0 5.0	- 4,5, - 3,3, - 2,2, - 2,2, - 1,2,	50,1,1,1, 5,7,8,6 ((2,2,2,2 ((1,1,1,2 ((2,2,2,3 ((2,4,3,2 (((c) (c) (c)		
Soft to firm dark grey	silty CLAY. (Alluvium)		9.40			B5	9.50		1=150,1,	1 (C)		
Key	Remarks:					Ground	lwater	Obser	vation	s Du	ring Dri	lling
D Disturbed Sample		16.2mbgl			İ	Date	Strike Time	Strike Depth	Casing Depth	Rising	Over time (mins)	Depth sealed
ES Environmental Sa B Bulk Sample U Undisturbed Sam V Hand Vane	from 16.2mbgl to 1.0mb	d 50mm sta gl and plain 16.2mbgl .0mbgl to 0	indpip n pipe to 1.0r SL.	e install from 1.0 nbgl,	Ombgl							
✓ Water Strike▼ Standing Level						Drilled B DJ Drillir		Logge AP	d By:	R	hecked P	By:

(m=	Cable Percus	ssive	B	ore	hole	e Re	ecc	ord	Sheet 2 of	t: 2	BH2
mayer brown	Site Location: Medina Wharf		Clie		oadsto	ne Ltd				rdinate	es: 94115.83
Equipment:			Casir	ng: n (m): 10		OD (m):			Start	Date:	14/12/12
Cable Percussive Rig			Diam	eter (mr	n): 150	7.86			Finisl	h Date	: 14/12/12
	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ T		Installation and Backfill Details
Soft to firm dark grey (continued)	silty CLAY. (Alluvium)					U6 D7	11.0- 11.45 11.45 11.45	- - - - 15 - - - - - 1=1	50,1,1,2,:	2 (C)	
Stiff grey mottled oral (Headon Beds and Os	nge brown silty CLAY. sborne Beds)					U8 B9	14.0- 14.45- 14.45- 14.65	- - - 30 - - - - - - - - - - - - - - -	6,6,7,7 (S	S)	
Borehole Complete	ed at 16.2mbgl						-	- - - - - - - - - - - - - - - - - - -			
Key D Disturbed Sample ES Environmental Sa B Bulk Sample U Undisturbed Sam V Hand Vane ☑ Water Strike	ample 2. Backfilled with slotted from 16.2mbgl to 1.0mbg	16.2mbgl 50mm sta gl and plaii 16.2mbgl (0mbgl to 0	andpip n pipe to 1.0r SL.	e install from 1.0 nbgl,		Date	Strike Time	Strike Depth (m)	Casing F Depth (m)	Rising O to (m)	ng Drilling over time Depth sealed (mins)
✓ Water Strike▼ Standing Level						Drilled By: Logge DJ Drilling AP		ed By:	Ch RP	ecked By:	

	Cá	able Percus	ssive	В	orel	hol	e Re	ecc	ord	Shee 1 of	et: 2	вн	3
mayer brown		Location: ina Wharf		Clie	nt: ovia Ro	padsto	one Ltd				rdina 78.89	tes: , 94204.	.55
Equipment:				Casir			OD (m):			Star	Date	: 14/12/	12
Cable Percussive Rig				Depti	n (m): 11 eter (mn	l.3 n): 150	8.13			Finish Date: 17/12/1			2/12
Strat	um C	Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Resu		Ba	allation and ackfill etails
MADE GROUND (Soft CLAY with indistinct I coarse angular ash a occasional plastic bat fragments. Gravel is f sub-rounded flint, brid (Landfill Waste)	bands nd clin gs, tin fine to	nker GRAVEL and nber, metal and glass coarse angular to			(mou)	Depth (m)	B1 B2 B3 B4	1.0 2.0 4.0 5.0		50,1=15 4,3,3,3 (2,4,6,7 (50,1,2,3 2,1,2,2 (2,3,2,3 (C) C) C) C)	De	
				- - -			В8	9.50	2,2,	2,2,1,2 ((C)		
Key		Remarks:	<u> </u>				Ground	u water	U Obser	vatio	ns Du	<u> </u>	lling
D Disturbed Sample	19.1mbgl				Date	Strike Time	Strike Depth	Casing Depth	Rising	Over time (mins)	Depth sealed		
ES Environmental Sa B Bulk Sample U Undisturbed Sam V Hand Vane	•	2. Backfilled with slotted from 19.1mbgl to 1.0mbg to GL. Filter gravel from bentonite pellets from 1.0	50mm sta Il and plair 19.1mbgl t 0mbgl to 0	ndpip n pipe to 1.0r SL.	e install from 1.0 nbgl,	led Ombgl			(m) 7.7	(m) 6.5	(m) 6.5	20	(m)
✓ Water Strike▼ Standing Level							Drilled B DJ Drillir	y: ng	Logge AP	ed By:		hecked P	Ву:

(m=	Ca	able Percus	ssive	В	ore	hol	e Re	ecc	ord	Sheet 2 of	:: 2	ВН3
mayer brown	Site Med	Location: lina Wharf		Clie		oadsto	one Ltd			Co-or 45007		es: 94204.55
Equipment:				Casir			OD (m):			Start	Date:	14/12/12
Cable Percussive Rig				Diam	h (m): 10 eter (mr	n): 150	8.13			Finish	n Date	e: 17/12/12
Strat	um E	Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ 1 Resul		Installation and Backfill Details
				-					-			
				10.80					-			
Soft to firm dark grey	silty (CLAY. (Alluvium)					U9	11.0-	20			
				}			B10	11.45 11.45- 11.65	4			
				-					1			
			[-]-]-]			
				L.					1			
				}					4			
				}			D11	12.5	1,1,	,1,1,1,2 (S	5)	
			<u></u>	<u> </u>					1	. , , , ,	•	
				Ĺ]			
]			
				}					4			
				-					4			
				-					┨			
							U12 B13	14.0- 14.45 14.45- 14.65	24			
								14.65]			
				-					4			
				-					4			
				-					┨			
				<u> </u>					1			
			<u> </u>	15.60			D14	15.5	1,3	5,10,12,8	(S)	
Stiff grey mottled ora				-					4			
(Headon Beds and Os	SDOTTIE	e beas)						-	4			
				}					1			
				-					1			
]			
				-			U15	17.0-	- 33			
				}			B16	17.45 17.45- 17.65	4			
			[}					1			
]			
			[-]-]-	L .					1			
				-					4			
				}			U17	18.5- 18	.9 40			
				†			B18	18.9- 19	1			
				- -19.10]			
Borehole Complete	ed at 1	 I9.1mbgl	f-5.5.5.			1			4			Person Derivati
		-		}					+			
				 					1			
				Ľ.					1			
		Γ				Ц,	C==::::		<u> </u>		- P	ing Daillian
Key	Remarks:							Strike				ing Drilling
D Disturbed Sample ES Environmental Sa		Borehole complete at 2. Backfilled with slotter from 19.1mbgl to 1.0mb to GL. Filter gravel from bentonite pellets from 1.	19.1mbgl d 50mm sta	ındpin	e install	led	Date	Time	Depth (m)	Depth (m)		Over time (mins) Depth sealed (m)
B Bulk Sample	•	from 19.1mbgl to 1.0mb	gl and plain	n pipe	from 1.0	0mbgl				7.7	6.5	6.5 20
V Hand Vane	ihie	bentonite pellets from 1	.0mbgl to 0	šĽ.	yı,							
✓ Water Strike▼ Standing Level							Drilled B DJ Drillir		Logge AP	ed By:	CI RI	necked By:

(m=	Cable Percus	ssive	В	orel	hol	e Re	9CC	ord	Shee 1 of	t: 1	ВН	4
mayer brown	Site Location: Medina Wharf		Clie		padsto	one Ltd			Co-o 4500		tes: , 94096.	16
Equipment:			Casir	ng: n (m): 7		OD (m):			Start	Date	: 17/12/	12
Cable Percussive Rig		1	Diam	eter (mn		9.38			Finis	h Dat	e: 17/12	
	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Resu		Ba	allation and ckfill etails
with indistinct bands angular ash and clink						B1	1.0	- - - - - 5,7,6	8,5,4,4 (C)		
						B2	2.0 -	- - - - -	5,7,7,5 (C)		
			-			В3	3.0	- - 2,2,: - -	1,1,2,1 (C)		
			- -			B4	4.0 -	- 2,1,	1,2,1,2 (C)		
						B5	5.0	- 1,1= 	225,1,1			
	ottled orange brown CLAY nic matter and frequent small and Osborne Beds)		- 6.50 - - - - -				6.5 8.0-8.4	1,1, <i>t</i>	1,1,2,1 ((C)		
			-				8.4-8.6	- - - - -				
Borehole Complete	ed at 10.2mbgl		- - - - 10.20			D9	9.50	1,2,2	2,2,3,3 (S)		
Key	Remarks:					Ground						
D Disturbed Sample ES Environmental Sa B Bulk Sample U Undisturbed Sam V Hand Vane ▼ Water Strike ▼ Standing Level	2. Backfilled with slotted from 10.2mbgl to 1.0mbg	gl and plair 10.2mbgl t	n pipe to 1.0r	e install from 1.0 nbgl,	0mbgl	Date Drilled B DJ Drillin		Depth (m) Logge	(m)	(m)	Over time (mins)	(m)

(m=	Cable Percus	ssive	B	orel	hol	e Re	ord	Sheet: 1 of 1		BH5	5	
mayer brown	Site Location: Medina Wharf		Clie	nt: ovia Ro	oadsto	one Ltd			Co-ord 450078			54
Equipment: Cable Percussive Rig			Casir Depti Diam	ng: n (m): 4 eter (mn		OD (m): 9.10			Start Da		-	
	um Description	Legend	Depth (m)	Reduced Level (mOD)	Casing Diameter (mm) Depth (m)	Sample Type	Depth (m)		In Situ Tes Results	st	Instal ar Bac Det	lation nd kfill ails
grey gravelly CLAY w and metal fragments.	to firm light brown and light ith occasional glass, timber Gravel is fine to coarse ed flint, brick and concrete.)		4.00			B1	2.0 - 2.5-2.8 3.0	- 10,1 - (c)	5,5,3,3 (C) 5=15mm,5i	0=25mm		
Firm to stiff light brow silty CLAY with freque (Headon Beds and Os		7.20			U2 B3 D4 U5	4.0-4.4 - 4.4-4.6 5.0 - 6.5-6.95	- - - -	3,2,2,3 (S)				
Borehole Complete	d at 7.2mbgl		- - - - - - - - -									
Key D Disturbed Sample ES Environmental Sa B Bulk Sample U Undisturbed Sam V Hand Vane ▼ Water Strike ▼ Standing Level	2. Backfilled with slotted from 7.2mbgl to 1.0mbg	d 50mm sta I and plain 7.2mbgl to	indpip pipe f 0 1.0m	e install rom 1.0r bgl, ben	nbgl tonite	Ground Date Drilled B DJ Drillir	Strike Time	Observ Strike (Depth (m) Logge	Casing Ris Depth t (m) (r	ing Ove o (m	g Drill r time ins)	Depth sealed (m)

APPENDIX E: GENERIC ASSESSMENT CRITERIA

SOIL - TIER ONE HUMAN HEALTH SCREENING VALUES

Status	End Use	Issue No	Issue Date
ISSUE	Commercial / Industrial	1	01/09/10

		SC			
		1%	2.5%	6%	SOURCE
Determinand	Units				
pH			<5, >9		
Asbestos	%		Presence		
HEAVY METALS/METALLOIDS					
Arsenic Cadmium	mg/kg		640 230		SGV SGV
Chromium (III)	mg/kg mg/kg		30.400		CIEH/LQM SSV
Chromium (VI)	mg/kg		35		CIEH/LQM SSV
Lead Mercury (Elemental)	mg/kg mg/kg		750	108	SGV Report 10 SGV
Mercury (Inorganic)	mg/kg		3640	•	SGV
Mercury (Methyl)	mg/kg		-	410	SGV
Nickel Selenium	mg/kg mg/kg		1800 13000		SGV SGV
Berylium	mg/kg		420		CIEH/LQM SSV
Boron	mg/kg		192000 3160		CIEH/LOM SSV
Vanadium Copper	mg/kg mg/kg		71,700		CIEH/LQM SSV CIEH/LQM SSV
Zinc	mg/kg		665,000		CIEH/LQM SSV
GENERAL INORGANICS					
Easily Liberatable Cyanide (free)	mg/kg		36		Acute effects infant 1 dose 3g soil
HE EDA DDIODITY PALL			1		
US EPA PRIORITY PAHs Acenaphthene	mg/kg	85,000	98,000	100,000	CIEH/LQM SSV
Acenaphthylene	mg/kg	84,000	97,000	100,000	CIEH/LQM SSV
Anthracene Ponzo(a) Anthracene	mg/kg	530,000 90	540,000 95	540,000 97	CIEH/LQM SSV CIEH/LQM SSV
Benzo(a)Anthracene Benzo(b)fluoranthene	mg/kg mg/kg	100	100	100	CIEH/LQM SSV
Benzo(k)fluoranthene	mg/kg	140	140	140	CIEH/LQM SSV
Benzo(g,h,i)perylene Benzo(a)Pyrene	mg/kg mg/kg	650 14	660	660 14	CIEH/LQM SSV CIEH/LQM SSV
Chrysene	mg/kg	140	140	140	CIEH/LQM SSV
Di-benzo(a,h)anthracene	mg/kg	13	13	13	CIEH/LQM SSV
Fluoranthene Fluorene	mg/kg mg/kg	23,000 64,000	23,000 69,000	23,000 71,000	CIEH/LQM SSV CIEH/LQM SSV
Indeno(1,2,3-cd)pyrene	mg/kg	60	61	62	CIEH/LQM SSV
Naphthalene	mg/kg	200	480 22,000	1,100 23,000	CIEH/LQM SSV CIEH/LOM SSV
Phenanthrene Pyrene	mg/kg mg/kg	22,000 54,000	54,000 54,000	23,000 54,000	CIEH/LQM SSV CIEH/LQM SSV
Total PAHs	mg/kg	No Sum	No Sum	No Sum	
Chlorinated Solvents					+
1,2-Dichloroethane (DCE)	mg/kg	0.71	1	1.8	CIEH/LQM SSV
1,1,1-Trichloroethane (111 TCA)	mg/kg	700	1,400	3,100	CIEH/LQM SSV
1,1,1,2-Tetrachloroethane (1112 PCA) 1,1,2,2-Tetrachloroethane (1122 PCA)	mg/kg mg/kg	120 290	260 580	590 1,200	CIEH/LQM SSV CIEH/LQM SSV
Tetrachloroethene (PCE)	mg/kg	130	8.7	660	CIEH/LQM SSV
Tetrachloromethane (Carbon Tetrachloride)	mg/kg	3 12	6.6	15 55	CIEH/LQM SSV CIEH/LOM SSV
Trichloroethene (TCE) Trichloromethane (Chloroform)	mg/kg mg/kg	110	190	370	CIEH/LQM SSV
Vinyl Chloride	mg/kg	0.063	0.081	0.12	CIEH/LQM SSV
Phenolics					-
Phenol	mg/kg		-	3200	SGV
TPH Aliphatic >C5-6	mg/kg	3,400	6,200	13,000	CIEH/LQM SSV
TPH Aliphatic >C6-8	mg/kg	8,300	18,000	42,000	CIEH/LQM SSV
TPH Aliphatic > C8-10	mg/kg	2,100	5,100	12,000	CIEH/LOM SSV
TPH Aliphatic >C10-12 TPH Aliphatic >C12-16	mg/kg mg/kg	10,000 61,000	24,000 83,000	49,000 91,000	CIEH/LQM SSV CIEH/LQM SSV
TPH Aliphatic >C16-35	mg/kg	1000000#	1000000#	1000000#	CIEH/LQM SSV
TPH Aliphatic >C35-44 TPH Aromatic >EC5-7 (Benzene)	mg/kg	1000000# 28	1000000# 50	1000000# 95	CIEH/LQM SSV CIEH/LOM SSV
TPH Aromatic >EC5-7 (Benzene) TPH Aromatic >EC7-8	mg/kg mg/kg	59,000	110,000	190,000	CIEH/LQM SSV
TPH Aromatic >EC8-10	mg/kg	3,700	8,600	18,000	CIEH/LQM SSV
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16	mg/kg mg/kg	17,000 36,000	29,000 37,000	34,500 37,800	CIEH/LQM SSV CIEH/LQM SSV
TPH Aromatic >EC16-21	mg/kg	28,000	28,000	28,000	CIEH/LQM SSV
TPH Aromatic >EC21-35	mg/kg	28,000	28,000	28,000	CIEH/LOM SSV
TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70	mg/kg mg/kg	28,000 28,000	28,000 28,000	28,000 28,000	CIEH/LQM SSV CIEH/LQM SSV
Total TPH	mg/kg	No Sum	No Sum	No Sum	
PTEV			1	95	SGV
BTEX Benzene	mg/kg	-			
Benzene Toluene	mg/kg	-	-	4400*	SGV
Benzene Toluene Ethylbenzene	mg/kg mg/kg		-	4400* 2800*	SGV SGV
Benzene Toluene	mg/kg	• • •	-	4400*	SGV

- NOTES

 1) Compare individual samples values against Soil Screening Values (SSV). If exceedences are noted consider further in relation to averaging areas and statistical analysis.
- 2) These values are for initial screening for potential risk to human health only. They are not remediation thresholds. Screening for other receptors to be done separately as appropriate for the site, e.g. for water, ecology, building materials.
- 3) Screening criteria denoted with an asterix (*) were capped at the lower vapour/aqueous saturation limits for Tier 1 human health risk assessment purposes and consideredconservative. Where concentrations are recorded at levels greater that the SSV, free phase (NAPL) contamination may be present and should be considered qualitatively. Further information to support the interpretation of assessment criteria that exceed theoretical soil saturation limits is provided in Section 4.12 of the CLEA Software Handbook (SR4).
- 4) Screening criteria denoted with hash (#) were capped at 1000000mg/kg. It is noted that aesthetic (e.g. odour) and other site specific factors may also be relevant when providing advice relating to
- 5) SSVs are given here only for commonly encountered chemical constituents listed above.
- 6) SSVs derived for certain constituents may be low in relation to standard laboratory Limits of Detection (LoD). It is the responsibility of the project engineer to check with the laboratory that appropriate detection limits can be achieved. As a target, an LoD would be no larger than 10% of the SSV, but this is not practicable for some constituents. Clearly an LoD greater than the SSV would prevent use of this SSV screening and/or be interpreted as if all samples exceeded the SSV.
- 7) Human Health Soil Screening Values (SSV) were calculated using a Soil Organic Matter (SOM) value of 1.0%, 2.5% and 6%. This is equivanet to an Fraction Organic Carbon (FOC) values of approx. 0.6%, 1.45% and 3.5% respectively (For reference FOC = 0.58*SOM). Note that some soils have different SOM/FOC, which may give require more stringent SSVs for organic compounds. It is the responsibility of the project engineer to check the SOM with the site specific conditions.
- 8) In general, SSVs above 100mg/kg are rounded down to 3 significant figures. Similarly, SSVs below 100mg/kg are rounded down to 2 significant figures

WATER QUALITY STANDARDS

Choose water quality standard based on receptors identified at the site.

Eg in groundwater Source Protection Zone or near any drinking water supply, use DWS. If near ecological receptor/river etc, use freshwater EQS, if site is near coast use saline EQS. If more than one applicable use lowest, if in doubt use TSV (defined as lowest of freshwater EQS and UK DWS).

Name of Determinand	TSV freshwater (Tier 1 Screening Value) Defined as most conservative of DWS and freshwater EQS	Origin of TSV	Drinking Water Standards 2000	Fresh water EQS	Marine water EQS	
	All units μg/l unless otherwise st	ated	All	units µg/l unless otherwise stated		
Electrical Conductivity (μS/cm) PH	2500	UK Drinking Water Standard EQS	2500	6-9	7-8.5	
Dissolved O ₂	6-9 50% >7-9	Freshwater Fish Directive	6.5 - 10	-	-	
Suspended solids SOD	25000 3000 salmonid, 6000 cyprinid	Freshwater Fish Directive Freshwater Fish Directive	-	-	-	
bamectin	0.01 (AA)	EQS	-	0.01 (AA)	0.003 (AA)	
Acrylamide Aldrin	0.1 0.01 (AA)	UK Drinking Water Standard EQS	0.1 0.03	- 0.01 (AA)	0.01 (AA)	
lluminium	pH <6.5 then 10 (MAC) > 6.5 then 15 (AA) or 25 (MAC)	EQS	200	pH <6.5 then 10 (MAC) > 6.5 then 15 (AA) or 25 (MAC)	15 (AA)	
Ammonium (NH ₄)	300 0.02	draft EQS EQS	500(MAC)	300 (draft wfd report dept on alkalinity & altitude) 0.02	0.02	
antimony Arsenic	5 10	UK Drinking Water Standard UK Drinking Water Standard	5 10	- 50 (AA)	25 (AA)	
ktrazine kzamethiphos	2 (AA) 0.02 (AA)	EQS EQS	-	2 (AA) 0.02 (AA)	2 (AA) 0.02 (AA)	
zinphos-methyl	0.01 (AA)	EQS	0.1	0.02 (AA) 0.01 (AA)	0.02 (AA) 0.01 (AA)	
arium	100	Surface Water Abstraction Directive DW1 limit	-	-	-	
entazone lenzene	500 (AA) 1	EQS UK Drinking Water Standard	1	500 (AA) 30 (AA)	500 (AA) 30 (AA)	
lenzo-a-pyrene liphenyl	0.01 25 (AA)	EQS EQS	0.01	0.03 25 (AA)	0.03 25 (AA)	
oron romine	1000 2 (AA)	UK Drinking Water Standard EQS	1000	2000 (AA) 2 (AA)	7000 (AA) 10 (MAC)	
romate romoxynil	10 100 (AA)	UK Drinking Water Standard EQS	10	- 100 (AA)	100	
ronopol (Pyceze) admium	70 (MAC) 5 (AA)	SEPA EQS for aquaculture EQS	- 5	70 (MAC) 5 (AA)	- 2.5 (AA)	
arbendazim arbon tetrachloride (CT)	0.1 (AA) 12 (AA)	EQS EQS	-	0.1 (AA) 12 (AA)	0.1 (AA) 12 (AA)	
hloride (Water Soluble)	250000 (AA) 2 (AA)	EQS EQS	250000	250000 (AA) 2 (AA)	10 (AA)	
hlorfenvinphos hloroform	0.03 (AA)	EQS	-	0.03 (AA)	0.03 (AA)	
chloro-3-methyl phenol	12 (AA) 40 (AA)	EQS EQS	-	12 (AA) 40 (AA)	12 (AA) 40 (AA)	
hloronitrotoluenes (Total - all omers)	10 (AA)	EQS	-	10 (AA)	10 (AA)	
-chlorophenol hlorpropham	50 (AA) 10 (AA)	EQS EQS	0.1	50 (AA) 10 (AA)	50 (AA) 10 (AA)	
hlorothalonil hlorotoluron	0.1 (AA) 2 (AA)	EQS EQS	-	0.1 (AA) 2 (AA)	0.1 (AA) 2 (AA)	
hlorpyrifos	0.002 (AA) EQS 1 EQS 2	EQS	-	0.002 (AA) EQS 1 EQS2	0.001 (AA) 15 (AA)	
hromium	0-50mg CaCO3 /l 5 150 50-100mg CaCO3/l 10 175			0-50mg CaCO3 /l 5 150 50-100mg CaCO3/l 10 175	,	
	100-150mg CaCO3/I 20 200 150-200mg CaCO3/I 20 200	EQS	50	100-150mg CaCO3/l 20 200 150-200mg CaCO3/l 20 200		
	200-250mg CaCO3/l 50 250			200-250mg CaCO3/l 50 250		
opper	>250mg/l CaCO3/l 50 250 EQS 1 EQS 2			>250mg/l CaCO3/l 50 250 EQS 1 EQS2	5 (AA)	
	0-50mg CaCO3/I 1 1 50-100mg CaCO3/I 6 6			0-50mg CaCO3/l 1 1 50-100mg CaCO3/l 6 6		
	100-150mg CaCO3/l 10 10 150-200mg CaCO3/l 10 10	EQS	2000	100-150mg CaCO3/l 10 10 150-200mg CaCO3/l 10 10		
	200-250mg CaCO3/l 10 10 >250mg CaCO3/l 28 28			200-250mg CaCO3/l 10 10 >250mg CaCO3/l 28 28		
cobalt (dissolved)	3 (AA) 0.01 (AA)	EQS EQS	-	3 (AA) 0.01 (AA)	3 (AA) 0.03 (AA)	
yanide yfluthrin (total)	1 0.001 (AA)	EQS EQS	50	1 0.001 (AA)	0.001 (AA)	
ypermethrin ,4-D (ester) (In Statutory	0.0002 (AA)	EQS	-	0.0002 (AA)	0.0002 (AA)	
istrument not stated that as otal')	1 (AA)	EQS		1 (AA)	1 (AA)	
4-D (non-ester) (In Statutory	1 (00)	LQU		1 (00)	1 (۸۸)	
strument not stated that as otal')	40 (AA)	EQS	-	40 (AA)	40 (AA)	
DT (Total- all 4 isomers) DDT (total)	0.025 (AA) 0.01 (AA)	EQS EQS	-	0.025 (AA) 0.01 (AA)	0.025 (AA0 0.01 (AA)	
emetons iazinon	0.05 (AA) 0.03 (AA)	EQS EQS	-	0.05 (AA) 0.03 (AA)	0.05 (AA) 0.03 (AA)	
ichlorobenzenes (sum of all omers)	20 (AA)	EQS	-	20 (AA)	20 (AA)	
2-dichloroethane (total) ichloromethane	3 (AA) 2000 (AA)	UK Drinking Water Standard EQS	3 -	10 (AA) 2000 (AA)	10 (AA) 2000 (AA)	
,4-dichlorophenol ichlorvos	20 (AA) 0.001 (AA)	EQS EQS	-	20 (AA) 0.001 (AA)	20 (AA) 0.04 (AA)	
ieldrin (total)	0.01 (AA) 0.001 (AA)	EQS EQS	0.03	0.01 (AA) 0.001 (AA)	0.01 (AA) 0.005 (AA)	
imethoate	1 (AA)	EQS	<u>:</u>	1 (AA)	1 (AA)	
imethoate iuron	1 (AA) 2 (AA)	EQS EQS	-	1 (AA) 2 (AA)	1 (AA) 2 (AA)	
oramectin DTA	0.001 (AA)	EQS	-	0.001 (AA)	0.001 (AA)	
ethylenediaminetetraacetic cid)	400 (AA)	EQS	-	400 (AA)	400 (AA)	
mamectin benzoate ndosulphan	0.22 (ng/l) (AA) 0.003 (AA)	SEPA EQS for aquaculture EQS	-	0.22 (ng/l) (AA) 0.003 (AA)	0.763 (AA) 0.003 (AA)	
ndrin (total) pichlorohydrin	0.005 (AA) 0.1	EQS UK Drinking Water Standard	- 0.1	0.005 (AA) -	0.005	
γα-Ethinyloestradiol thylbenzene	0.0001 n(AA) 20 (AA)	PNEC EQS	-	0.0001 n(AA) 20 (AA)	0.0001 (AA) 20 (AA)	
enchlorphos enitrothion	0.03 (AA) 0.01 (AA)	EQS EQS	- 0.1	0.03 (AA) 0.01 (AA)	0.03 (AA) 0.01 (AA)	
ucofuron (total) uoranthene	0.1 0.02	UK Drinking Water Standard EQS	0.1	1 0.02	1 0.002	
uoride	<50 mg CaCO3/I = 1000	EQS	1500	<50 mg CaCO3/I = 1000	5000	
ormaldehyde	>50 mg CaCO3/I = 5000 5 (AA)	EQS EQS	25	>50 mg CaCO3/l = 5000 5 (AA)	-	
eptachlor eptachlor epoxide	0.03 (AA)] 0.03 (AA)	UK Drinking Water Standard UK Drinking Water Standard	0.03 (AA) 0.03(AA)	-	-	
exachlorobenzene (total) exachlorobutadiene (total)	0.03 (AA) 0.1 (AA)	EQS EQS	-	0.03 (AA) 0.1 (AA)	0.03 (AA 0.1 (AA)	
exachlorocyclohexane (total)	0.1 (AA)	EQS		0.1 (AA)	0.02 (AA)	
ydrogen sulphide Indissociated)	0.25 (AA)	EQS	_	0.25 (AA)	10 (MAC)	
xynil (total) on (dissolved)	10 (AA) 200	EQS EQS	- 200	10 (AA) 1000 (AA)	10 (AA0 1000 (AA)	
odrin (total)	0.005 (AA)	EQS	-	0.005 (AA)	0.005 (AA)	
rermectin	2 (AA) 0.0001 (AA)	EQS EQS	-	2 (AA) 0.0001 (AA)	2 (AA) 0.001 (AA)	
ead (Dissolved)	EQS1 EQS2 0-50mg CaCO3/l 4 50	EQS	-	EQS1 EQS2 0-50mg CaCO3/I 4 50	25 (AA)	
	50-100mg CaCO3/I 10 125 100-150mg CaCO3/I 10 125			50-100mg CaCO3/l 10 125 100-150mg CaCO3/l 10 125		
	150-200mg CaCO3/I 20 250 200-250mg CaCO3/I 20 250			150-200mg CaCO3/l 20 250 200-250mg CaCO3/l 20 250		
				200-250mg CaCO3/I		

Name of Determinand	TSV freshwater (Tier 1 Screening Value) Defined as most conservative of DWS and freshwater EQS	Origin of TSV	Drinking Water Standards 2000	Fresh water EQS	Marine water EQS
	All units μg/l unless otherwise st			units μg/l unless otherwise stated	
Linuron Malathion	0.1 0.01 (AA)	UK Drinking Water Standard EQS	0.1	2 (AA) 0.01 (AA)	2 (AA) 0.02 (AA)
Malachite Green Mancozeb	0.5 (AA) 2 (AA)	EQS EQS	-	0.5 (AA) 2 (AA)	0.5 (AA) 2 (AA)
Manganese (Dissolved) Maneb	30 (AA) 3 (AA)	EQS EQS	50	30 (AA) 3 (AA)	3 (AA)
MCPA (S-ethyl (4-chloro-2-	, ,			, ,	
nethylphenoxy)ethanethioate)	0.1 0.1	UK Drinking Water Standard UK Drinking Water Standard	0.1 0.1	pH<7 = 12 pH>7 = 80	80 (AA) 2
Mecoprop Mercury	20 (AA) 1 (AA)	EQS EQS	- 1	20 (AA) 1 (AA)	20 (AA) 3 (AA)
Methiocarb Methylphenols (0.3 2-MP, 0.2	0.01 (AA)	EQS	-	0.01 (AA)	0.01 (AA)
3-MP, 1 4-MP) (=cresols) Mevinphos	100 (AA) 0.02 (MAC)	EQS EQS	-	100 (AA) 0.02 (MAC)	100 (AA) -
Naphthalene Nickel (Dissolved)	10 (AA) EQS 1 EQS 2	EQS EQS	-	10 (AA) EQS 1 EQS 2	5 (AA) 30 (AA)
	0-50mg CaCO3/l 50 50 50-100mg CaCO3/l 100 100	EQS EQS	20	0-50mg CaCO3/I 50 50 50-100mg CaCO3/I 100 100	(/
	100-150mg CaCO3/I 150 150	EQS		100-150mg CaCO3/I 150 150	
	200-250mg CaCO3/l 200 200	EQS EQS		200-250mg CaCO3/I 200 200	
	>250mg CaCO3/l 200 200	EQS Surface Water Abstraction Directive		>250mg CaCO3/l 200 200	
litrates (NO ₃)	50000 10 salmonid, 30 cyprinid	DW1 limit Freshwater Fish Directive	500	-	<u> </u>
lonyl phenol ITA (Nitrilotriacetic acid)	1 (AA)	EQS	-	1 (AA)	1 (AA)
octyl phenol	1000 (AA) 1 (AA)	EQS EQS	-	1000 (AA) 1 (AA)	3000 (AA) 1(AA)
7β-Oestradiol Imethoate	0.001 (AA) 0.01 (AA)	PNEC EQS	-	- 0.01 (AA)	-
AH: (Sum of: lenzo(b) fluoranthene lenzo(k)fluoranthene lenzo(ghi)perylene					
ndeno(1,2,3-cd)pyrene) CSDs (flucofuron and	0.1	UK Drinking Water Standard	0.1	-	-
ulcofuron) (total)	0.05 0.1	EQS UK Drinking Water Standard	- 0.1	0.05 1.5 (AA)	0.05 1.5 (AA)
entabromodiphenylether entachlorophenol	0.1 0.5 0.1	EQS UK Drinking Water Standard EQS	- 0.1	0.5 2 (AA)	0.5 2 (AA)
'ermethrin (total)	0.1	UK Drinking Water Standard EQS	0.1	2 (AA) 0.01	2 (AA) 0.01
esticides (sum of Parathion, -HCH and Dieldrin)	0.5	UK Drinking Water Standard	0.5	-	
Other' pesticides Phenol	0.1 (AA) 0.5	UK Drinking Water Standard UK Drinking Water Standard	0.1 (AA) 0.5	- 30 (AA)	- 30 (AA)
imethyl phthalate (DMP)	800 (AA) 200 (AA)	EQS EQS	-	800 (AA) 200 (AA)	800 (AA) 200 (AA)
i-butyl phthalates (DBPs)	8 (AA)	EQS	-	8 (AA)	8 (AA)
utylbenzyl phthalate (BBP) i-octyl phthalates (DOPs)	20 (AA) 20 (AA)	EQS EQS	-	20 (AA) 20 (AA)	20 (AA) 20 (AA)
i(2ethylhexyl)phthalate hthalates	8 See above, no total, by indivdual phthalate only	WHO DWS WHO DWS	-	-	
irimicarb irimiphos-methyl	1 (AA) 0.015 (AA)	EQS EQS	-	1 (AA) 0.015 (AA)	1 (AA) 0.015 (AA)
rochloraz	4 (AA) 0.03 (AA)	EQS EQS	-	4 (AA) 0.03 (AA)	4 (AA) 0.03 (AA)
ropetamphos ropyzamide	100 (AA)	EQS	-	100 (AA)	100 (AA)
ilver (Total dissolved)	0.05 (AA)	EQS Surface Water Abstraction Directive -	-	0.05 (AA)	0.5 (AA)
ielenium imazine	10 (AA) 2 (AA)	DW1 limit EQS	10 -	- 2 (AA)	2 (AA)
ulcofuron (total)	25	EQS	-	25	25
ulphate	250,000	Surface Water Abstraction Directive -	-	400000 (AA)	-
urfactants	200	DW1 limit	-	200	-
tyrene ecnazene (Total)	50 (AA) 1 (AA)	EQS EQS	-	50 (AA) 1 (AA)	50 (AA) 1 (AA)
eflubenzuron (Calicide) etrachloroethylene (PCE)	6 (ng/l) 10 (AA)	SEPA EQS for aquaculture EQS	-	6 (ng/l) 10 (AA)	2 10 (AA)
etrachloroethene and richloroethene	10	UK Drinking Water Standard	10	-	
etrachloromethane hiabendazole	3 5 (AA)	UK Drinking Water Standard EQS	3 -	- 5 (AA)	- 5 (AA)
in	25 (AA)	EQS		25 (AA)	10 (AA)
oluene PH:	50 (AA)	EQS	-	50 (AA)	40 (AA)
liphatic EC C5-C6 liphatic EC>C6-C8	15000 15000	WHO DWS WHO DWS	15000 15000	-	
liphatic EC>C8-C10 liphatic EC>C10-C12	300 300	WHO DWS WHO DWS	300 300		-
liphatic EC>C12-C16	300 300*	WHO DWS WHO DWS	300 300*	-	-
liphatic EC>C21-C35	300*	WHO DWS	300*	20 (**)	
romatic EC C6-C7	1 (Benzene) 50 (Toluene)	UK Drinking Water Standard EQS	-	30 (AA) 50 (AA)	30 (AA) 40 (AA)
romatic EC>C8-C10 romatic EC>C10-C12	20 (Ethylbenzene) 100	EQS WHO DWS	100	20 (AA) -	20 (AA) -
romatic EC>C12-C16 romatic EC>C16-C21	100 90	WHO DWS WHO DWS	100 90		
romatic EC>C21-C35	90 0.25 (AA)	WHO DWS EQS	90	- 0.25 (AA)	0.25 (AA)
riazophos ributyltin cmpds	0.005 (AA) 0.02 (MAC)	EQS EQS	-	0.005 (AA) 0.02 (MAC)	0.005 (AA) 0.002 (MAC)
ributyltin	0.02 (MAC)	EQS	-	0.02 (MAC)	0.002 (MAC)
ributyl phosphate richlorobenzene	50 (AA) 0.4 (AA)	EQS EQS	- -	50 (AA) 0.4 (AA)	50 (AA) 0.4 (AA)
,1,1-trichloroethane ,1,2-trichloroethane	100 (AA) 400 (AA)	EQS EQS	-	100 (AA) 400 (AA)	100 (AA) 300 (AA)
richloroethene rifluralin	10 (AA) 0.1 (AA)	EQS EQS	-	10 (AA) 0.1 (AA)	10 (AA) 0.1 (AA)
rihalomethanes (sum of hloroform, bromoform,	y y			5 (,	J (101)
ibromochloromethane and	400	LIK Drinkin - Water Constant	400		
romodichloromethane) riphenyltin cmpds (Total)	100 0.02 (MAC)	UK Drinking Water Standard EQS	100	- 0.02 (MAC)	0.008 (MAC)
riphenyltin and its derivatives	0.02 (MAC)	EQS	<u>-</u>	0.02 (MAC)	0.008 (MAC)
anadium (Total)	EQS1 EQS2 0 - 50mg CaCO3/l 20 20	EQS	-	EQS1 EQS2 0 - 50mg CaCO3/l 20 20	100 (AA)
	50-100mg CaCO3/l 20 20			50-100mg CaCO3/I 20 20	
	100-150mg CaCO3/l 20 20 150-200mg CaCO3/l 20 20			100-150mg CaCO3/l 20 20 150-200mg CaCO3/l 20 20	
	200-250mg CaCO3/I 60 60 >250mg CaCO3 /I 60 60			200-250mg CaCO3/I 60 60 >250mg CaCO3 /I 60 60	
finyl Chloride (VC) (ylenes	0.5 30 (AA)	UK Drinking Water Standard EQS	0.5	- 30 (AA)	- 30 (AA)
inc	EQS1 EQS2 0-50mg CaCO3/l 8 75	EQS	-	EQS1 EQS2 0-50mg CaCO3/l 8 75	40 (AA)
	50-100mg CaCO3/I 50 175			50-100mg CaCO3/l 50 175	
	100-150mg CaCO3/I 75 250 150-200mg CaCO3/I 75 250			100-150mg CaCO3/I 75 250 150-200mg CaCO3/I 75 250	
	200-250mg/l CaCO3/l 75 250			200-250mg/l CaCO3/l 75 250	

All units $\mu g/I$ unless otherwise stated

Air units grif unites orderwise stated
Use these values for initial assessment of all water and leachate results

AA = Annual Average

MAC = Maximum Concentration

EQS 1 - derived to protect the most sensitive aquatic life (Salmonid (game) fish)

EQS 2 - derived to protect less sensitive aquatic life (Cyprinid (coarse) fish)

TSVs - Tier 1 Screening Values

TSVs listed above defined as most conservative of DWS and EQS assuming potable water supply and river ecosystems are receptors at site.

References.

EQS (Environmental Quality Standards) and SEPA EQS for regulation of aquaculture
Technical Guidance Manual for Licensing Discharges to Water: Annex G Environmental Quality Standards (EQS) List http://www.sepa.org.uk/pdf/guidance/water/annexes/annex_g.pdf

Surface Water Abstraction Directive
UK EA Website
http://www.environment-agency.gov.uk/yourenv/eff/1190084/water/213872/577394/577773/?version=1&lang=_e Water Supply (Water Quality) Regulations 2000: UK Government drinking water standards applicable at consumers tap

Freshwater Fish Directive: UK government webpage http://www.environment-agency.gov.uk/yourenv/eff/1190084/water/213902/576076/

1989 Drinking water Standards: UK government webpage http://www.opsi.gov.uk/si/si1989/Uksi_19891147_en_12.htm

WHO: World Health Organisation drinking water standards
Petroleum Products in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality, WHO (WHO/SDE/WSH/05.08/123)
http://www.who.int/water-sanitation-health/dwq/chemicals/Petroleum%20Productsrev071105.pdf

ADDENDIVE: SOIL LEACHATE AND CDOUNDWATED SCREENING SUMMARY
APPENDIX F: SOIL, LEACHATE AND GROUNDWATER SCREENING SUMMARY

Sample Point / Determinands		Relevant Commercial Quality Standards		BH101	BH102	BH 103	BH 104	BH 105	BH106	BH107	BH108	BH109	BH108
Depth				0.00-1.00	0.00-1.00	0.50-	0.50-	0.50-	0.50-	0.50-	0.50-	0.50-	3.60-
HEAVY METALS	1% SOM	2.5% SOM mg/kg	6% SOM										
Antimony		7500 (4)		0.963	0.766	6.45	1.38	4.54	0.839	7.5	28.2	1.55	-
Arsenic		640		37.7	15.9	21.1	11.9	18.8	12.6	24.7	31.8	15.8	-
Barium		22000 (4)		88.6	122	199	120	142	85.4	112	318	133	-
Beryllium Cadmium		420 230		0.909	0.806 0.51	2.1 0.72	1.21 0.52	1.08 0.56	0.808	1.25 1.88	1.13	1.15 0.08	-
Chromium (III)		30400		20.6	19.1	39.6	25.5	186	25.3	20.1	1460	27.8	-
Lead		750 (3)		106	171	225	67.4	123	45.7	458	414	135	-
Mercury (Inorganic)		3640		0.273	0.45	0.846	0.666	<0.14	0.219	0.541	0.282	0.946	-
Molybdenum Nickel		17000 (4) 1800		1.49	0.697	1.86	0.573	1.38 8450.0	0.693	1.57	31.5	0.85	-
Selenium		13000		20.9	22.8	61.3 1.48	36.9 <1	<1	<1	25.3	201.0	21.8	-
PHYTOTOXIC METALS		mg/kg											
Copper		71700		32.3	33.2	200	22.8	184	20	49.7	237	62	-
Zinc Boron		665000 192000		91.4	100	225	96.7	219	99.4	189	803	114	-
ORGANICS		mg/kg		1.38	1.05	1.67	<1	1.53	<1	<1	1.29	<1	-
Phenols	NA	NA	3200	<0.035	< 0.035	< 0.035	< 0.035	<0.035	< 0.035	< 0.035	< 0.035	< 0.035	-
Polycyclic Aromatic Hydrocabons		mg/kg											
Naphthalene	200	480	1100	0.128	0.0293	0.0234	<0.009	<0.009	0.0447	0.0138	0.0464	0.0292	-
Acenaphthylene Acenaphthene	84000 85000	97000 98000	100000	0.268 0.0566	0.0479	0.0166 <0.008	<0.012	<0.012	0.0517 <0.008	<0.012	0.0781	<0.012	-
Fluorene	64000	69000	71000	0.0811	0.0248	<0.008	<0.008	<0.008	0.0209	<0.008	0.100	<0.01	-
Phenanthrene	22000	22000	23000	0.858	0.477	0.112	<0.015	<0.015	0.242	<0.015	2.44	0.146	-
Anthracene	530000	540000	540000	0.361	0.188	0.0253	<0.016	<0.016	0.136	<0.016	0.671	0.0349	-
Fluoranthene Pyrene	23000 54000	23000 54000	23000 54000	3.12	1.07 0.886	0.224	<0.017 <0.015	0.0398	1.04	<0.017 <0.015	3.66 2.95	0.377	-
Benzo(a)anthracene	90	95	97	1.87	0.598	0.193	<0.015	< 0.014	0.71	<0.015	1.56	0.34	
Chrysene	140	140	140	1.42	0.534	0.135	<0.01	0.0172	0.643	<0.01	1.3	0.184	-
Benzo(b)fluoranthene	100	100	100	2.77	0.746	0.137	<0.015	0.0206	0.811	<0.015	1.73	0.189	-
Benzo(k)fluoranthene	140 14	140 14	140 14	0.935	0.258	0.0524	<0.014	<0.014	0.404	<0.014	0.744	0.0917	-
Benzo(a)pyrene Indeno(123cd)pyrene	60	61	62	2.29 1.24	0.52 0.262	0.12	<0.015 <0.018	0.0212 <0.018	0.801 0.435	<0.015 <0.018	1.59 0.85	0.17	-
Dibenzo(a,h)anthracene	13	13	13	0.338	0.0858	<0.023	<0.023	<0.023	0.145	<0.023	0.233	0.0292	-
Benzo(ghi)perylene	650	660	660	1.49	0.323	0.0903	<0.024	<0.024	0.507	<0.024	1.06	0.136	-
Total PAHs		NA		20.2	6.08	1.31	<0.118	0.132	7.08	<0.118	19.3	2.02	-
TPH Aliphatics		mg/kg											
EC C5-C6	3400	6200	13000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
EC>C6-C8	8300	18000	42000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
EC>C8-C10	2100	5100	12000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
EC>C10-C12	10000	24000	49000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
EC>C12-C16 EC>C16-C21	61000 1000000	83000 1000000	91000 1000000	4.77 11.6	6.66 10.6	8.17 4.96	<0.1 <0.1	7.83 13.2	18.7 18.9	3.41 2.43	4.7 10.7	2.25 1.44	-
EC>C21-C35	1000000	1000000	1000000	76.6	54.2	31.6	12	144	16.7	7.09	88.4	13.2	-
EC>C35-C44	1000000	1000000	1000000	38.5	34.1	15.7	<0.1	59.2	2.05	1.05	25.5	4.27	-
Total Aliphatics		NA		93	71.4	44.8	12	165	54.2	12.9	104	16.9	-
Aromatics EC C5-C7	28	50	95	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
EC>C7-C8	59000	110000	190000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
EC>C8-C10	3700	8600	18000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.0148	<0.01	-
EC>C10-C12	17000	29000	34500	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
EC>C12-C16 EC>C16-C21	36000 28000	37000 28000	37800 28000	5.92 21	5.48 14.1	4.3 15	<0.1 0.573	3.1 13.6	8.5 15.7	2.02	3 19.9	2.6 15.5	-
EC>C21-C35	28000	28000	28000	149	63.1	53.2	6.85	89.6	61.5	7.94	102	66.6	-
EC>C35-C44	28000	28000	28000	101	34.6	19.9	<0.1	38.8	19.1	3.73	39.7	29.5	-
Total Aromatics		NA		176	82.7	72.5	7.43	106	85.7	12	125	84.7	-
"Total" Hydrocarbons (C5-C44) MTBE	7900 (4)	NA 13000 (4)	24000 (4)	408 <0.005	223 <0.005	153 <0.005	19.4 <0.005	369 <0.005	161 <0.005	29.7 <0.005	294 <0.005	135 <0.005	-
Benzene	NA	NA	95	<0.003	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Toluene	NA	NA	4400	<0.002	<0.002	0.00254	<0.002	<0.002	<0.002	<0.002	0.0057	<0.002	-
Ethylbenzene m.p. Vylonos	NA NA	NA NA	2800	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.00342	<0.003	-
m,p-Xylenes o-Xylene	NA NA	NA NA	3200 2600	<0.006 <0.003	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.00912 <0.003	<0.006	-
INORGANICS		mg/kg		40.000	45.000	40.000	45.000	40.000	45.000	40.000	45.000	40.000	
W/S Sulphate as SO4 (g/l)		NA		0.933	0.0602	0.0768	1.57	0.233	0.0242	0.226	0.0526	0.053	-
Ammoniacal Nitrogen, exchangeable as NH4		NA		<15	<15	<15	<15	<15	<15	<15	<15	202	-
Free Cyanide pH (pH Units)	-	36 (5) <5, >9		<1 8.49	<1 8.29	<1 8.48	<1 7.83	<1 8.39	<1 8.34	<1 8.39	<1 8.33	<1 7.47	-
Asbestos		-0, 20		0.49	0.29	0.40	1.03	0.39	0.34	0.39	0.33	1.41	-
Asbestos Screen		Presence		NFD	NFD	Chrysotile	NFD	NFD	NFD	NFD	Amosite	NFD	NFD
Fractional Organic Carbon													
Fractional Organic Carbon SOM (%)		NA NA		0.0111 1.914	0.0196 3.379	<0.1 17.241	0.00577 0.995	0.0168 2.897	0.0154	0.0454 7.828	<0.1 17.241	0.0194 3.345	-
30 N (%)	l	NA		1.914	ა.3/9	17.241	U.995	∠.697	2.655	7.828	17.241	ა.345	-

SUM (%)

1. CLEA Soil Guideline Value (CLEA v. 1.09)

1. CMC CIEH GAC (2nd Edition)

2. SGV Report 10

3. SGV Report 10

4. EIC/AGS/CL/AIRE GAC (CLEA v. 1.06)

5. Acute effects infant 1 dose 3g soil

NA Not available
NFD No ACM Detected

1. NPP. No Detection Possible (see laboratory certificates)

ND None Detected

Compiled by: AP Mayer Brown Ltd

Sample Point / Determinands	TSV	BH101	BH101	BH102	BH102	BH102	BH 103	BH 103	BH 104	BH 104	BH 104	BH 105	BH 105	BH106	BH106	BH107	BH107	BH108	BH109
HEAVY METALS	ug/l	1.00-6.00	6.00-8.00	1.00-6.60	6.60-9.30	9.30-11.40	0.50-3.00	3.00-7.50	2.50-	3.50-	4.80-	3.00-	4.50-	1.00-6.00	6.00-7.00	2.50-2.90	3.80-8.00	1.10-6.00	2.10-6.00
Antimony	NA	4.729	<0.16	5.682	2.54	11.8	6.945	1.887	11.97	4.793	0.198	3.512	<0.16	1.164	1.492	0.632	10.94	3.592	24.42
Arsenic Barium	10 (2) 100 (4)	5.824	0.972	3.116	2.88 511	37.23	5.901	4.944	6.819	4.504	0.737	2.011	0.433	9.492	3.105	3.444	3.71	8.791	5.143
Bervllium	NA	139.2	37.19 <0.07	41.97 <0.07	<0.07	108.3 <0.07	175.5 <0.07	256.4	250.8 <0.07	72.52 <0.07	13.28 <0.07	142.2 <0.07	22.19 <0.07	4.64 <0.07	92.61	366.8 <0.07	64.28 <0.07	266.1	92.97
Cadmium	5 (1)	0.203	<0.07	0.157	<0.1	1.075	<0.07	<0.07	0.156	<0.07	<0.07	0.134	<0.07	<0.07	<0.1	0.384	0.157	<0.07	<0.07
Chromium (total)	250 (1)	1.303	1.371	3.728	2.41	11.88	1.444	1.032	3.452	1.467	0.811	1.357	0.825	4.342	1.461	2.027	2.094	1.767	2.32
Lead	250 (1)	0.295	0.161	0.706	0.051	0.919	0.175	0.174	0.244	0.146	8.066	0.05	0.079	0.069	0.454	0.36	0.743	0.4	0.513
Mercury	1 (1)	< 0.02	< 0.02	< 0.02	< 0.02	3358	< 0.02	< 0.02	80.59	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Molybdenum	NA	94.69	22.12	85.85	32.1	179.9	36.64	21.71	65.34	74.07	0.869	93.69	0.375	10.76	8.531	17.09	128.8	19.69	49.88
Nickel Selenium	200 (1)	6.728 5.019	1.456 2.756	3.262 1.919	2.49 1.22	7.099	3.804 2.867	4.791 5.135	8.307 1.864	3.976 1.581	2.065	6.883 0.897	2.448 0.961	2.012 4.464	3.233 4.287	217.3 6.033	22.26 2.902	5.321 1.679	4.437 2.54
PHYTOTOXIC METALS	10 (4) ug/l	5.019	2.756	1.919	1.22	41.2	2.867	5.135	1.864	1.581	1.4/8	0.897	0.961	4.464	4.287	6.033	2.902	1.679	2.54
Copper	1-28 (1)	8.21	1.946	11.13	1.34	23.04	5.118	3.472	3.004	1.382	1.623	4.341	2.434	10.5	12.15	3.103	6.014	2.752	16.29
Zinc	75-500 (1)	17.45	0.669	11.88	4.95	13.79	19.08	1.293	3.073	6.167	1.18	1.582	9.833	0.565	5.779	24.72	57.53	4.094	16.02
Boron	1000 (1)	354.8	42.41	835.7	353	1051	209.7	550.5	270.7	308.3	13.04	411.3	89.9	46.04	66.55	454	1288	978.3	1068
ORGANICS	ug/l																		
Phenol	30 (1)	<0.5	<0.5	<0.5	6.64	<0.5	<0.5	<0.5	<0.5	<2.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.26	<0.5
Cresols	NA	<0.5	<0.5	< 0.5	33.5	<0.5	<0.5	< 0.5	<0.5	25.2	<0.5	<0.5	<0.5	<0.5	<0.5	0.62	< 0.5	1.19	< 0.5
Xylenols 1 Napthol	NA NA	<0.5	<0.5	<0.5	19.9 11.7	<0.5	<0.5	0.88	<0.5	122	13.2	<0.5	<0.5	<0.5	<0.5	0.83	2.52	2.47	3.32
2.3.5 Trimethyl-Phenol	NA NA	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	11.7	<0.5 <0.5	<0.5 <0.5	<0.5 0.93	<0.5 <0.5	<2.5 19.8	<0.5 1.85	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 2.81	<0.5	<0.5
Phenois Total	30 (1)	<0.64	<0.64	<0.64	18.3	<0.64	<0.64	1.81	<0.64	19.8	20.4	<0.64	<0.64	<0.64	<0.64	1.45	5.33	13.4	5.69
Speciated TPH	ug/l																		
Aliphatics																			
EC C5-C6	15000 (5)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EC>C6-C8	15000 (5)	<10	<10	<10	<10	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EC>C8-C10	300 (5)	<10	<10	<10	22	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EC>C10-C12 EC>C12-C16	300 (5) 300 (5)	<10 <10	<10 <10	<10 <10	89 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	11 <10	<10 <10	<10 <10	<10 <10
EC>C12-C16 EC>C16-C21	300 (5)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EC>C21-C35	300* (5)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Total Aliphatics	NA	<10	<10	<10	121	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Aromatics								•									•		
EC C6-C7	30 (Benzene)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EC>C7-C8	50 (Toluene)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EC>C8-C10	20 (Ethylbenzene)	<10	<10	<10	17	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EC>C10-C12 EC>C12-C16	100 (5) 100 (5)	<10 54	<10 <10	<10 <10	59 137	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 18	<10 <10	<10 14	<10 <10
EC>C16-C21	90 (5)	<10	<10	<10	76	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	20	<10	<10	<10
EC>C21-C35	90 (5)	<10	<10	<10	21	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Total Aromatics	NA	<10	<10	<10	311	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Total TPH	NA	<10	<10	<10	432	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
BTEX	ug/l																		
MTBE	NA	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Benzene Toluene	30 (1) 50 (1)	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4
Ethylbenzene	20 (1)	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5
m & p Xylene	30 (1)	<8	<8	<8	<8	<8	<8	<8	<8	<s <8</s 	<8	<8	<8	<8	<8	<8 <8	<8	<8	<8
o Xylene	30 (1)	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Polyaromatic Hydrocabons	ug/l																		
Naphthalene (aq)	10 (1)	<0.1	0.197	<0.1	1.100	0.175	<0.1	<0.1	<0.1	<0.1	0.102	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (aq)	NA	0.250	0.144	0.172	<0.075	0.180	0.019	<0.015	0.028	0.057	<0.015	0.038	0.028	0.066	0.026	0.064	0.324	0.870	0.107
Acenaphthylene (aq)	NA 0.00 (4)	<0.011	0.013	<0.011	< 0.055	0.015	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.017	0.035	<0.011
Fluoranthene (aq)	0.02 (1)	0.161	0.073	0.257	<0.085	0.088	0.025	0.024	0.053	0.051	<0.017	0.209	<0.017	0.056	<0.017	0.044	0.213 0.021	0.525	0.098
Anthracene (aq) Phenanthrene (aq)	0.02 (1) NA	0.107	0.610	<0.022	<0.075	0.092	<0.015	<0.015 <0.022	<0.015 <0.022	0.020 <0.022	<0.015 <0.022	<0.022	<0.015	0.015 <0.022	<0.015	<0.015 <0.022	<0.021	0.081 <0.022	<0.015 <0.022
Fluorene (aq)	NA NA	0.022	0.197	0.113	<0.11	0.301	<0.022	<0.022	<0.022	0.042	<0.022	0.053	0.017	<0.022	<0.022	<0.022	0.089	0.378	0.014
Chrysene (aq)	NA NA	0.014	0.021	0.023	<0.065	<0.013	<0.013	0.015	<0.013	<0.013	<0.013	0.038	<0.013	<0.013	<0.013	<0.013	0.018	0.034	0.014
Pyrene (aq)	NA	0.120	0.083	0.203	< 0.075	0.065	0.022	0.030	0.059	0.034	< 0.015	0.162	< 0.015	0.083	<0.015	0.051	0.189	0.420	0.117
Benzo(a)anthracene (aq)	NA	< 0.017	<0.017	<0.017	<0.085	<0.017	<0.017	<0.017	< 0.017	<0.017	< 0.017	0.030	<0.017	<0.017	<0.017	< 0.017	<0.017	0.025	<0.017
	NA	< 0.023	<0.023	<0.023	<0.115	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023
*Benzo(b)fluoranthene (aq)		< 0.027	<0.027	< 0.027	<0.135	<0.027	<0.027	<0.027	<0.027	<0.027	< 0.027	<0.027	<0.027	<0.027	<0.027	< 0.027	<0.027	<0.027	< 0.027
*Benzo(b)fluoranthene (aq) *Benzo(k)fluoranthene (aq)	NA 0.03(1)			0.011	< 0.045	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	0.021	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
*Benzo(b)fluoranthene (aq) *Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq)	0.03(1)	<0.009			-0.00			< 0.016	< 0.016	<0.016	< 0.016	<0.016	<0.016	<0.016	<0.016	< 0.016	< 0.016	< 0.016	< 0.016
*Benzo(b)fluoranthene (aq) *Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq) Dibenzo(a,h)anthracene (aq)	0.03(1) NA	<0.016	<0.016	<0.016	<0.08			<0.01E								~0.01E			NO.010
*Benzo(b)fluoranthene (aq) *Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq) Dibenzo(a,h)anthracene (aq) *Benzo(g,h,i)perylene (aq)	0.03(1) NA NA	<0.016 <0.016	<0.016 <0.016	<0.016 <0.016	<0.08	<0.016	<0.016	<0.016	<0.016						<0.016	<0.016			< 0.014
*Benzo(b)fluoranthene (aq) *Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq) Dibenzo(a,h)anthracene (aq)	0.03(1) NA	<0.016	<0.016	<0.016				<0.016 <0.014 <0.08	<0.016 <0.014 <0.08	<0.016 <0.014 <0.08	<0.014	<0.014	<0.014	<0.016 <0.014 <0.08	<0.016 <0.014 <0.08	<0.016 <0.014 <0.08	<0.016 <0.014 <0.08	<0.014	<0.014
"Benzo(b)fluoranthene (aq) "Benzo(k)fluoranthene (aq) Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq) Dibenzo(a,h)anthracene (aq) "Benzo(g,h,i)perylene (aq) "Indeno(1,2,3-cd)pyrene (aq) Total 4 PAHs Total 16 PAHs	0.03(1) NA NA NA	<0.016 <0.016 <0.014	<0.016 <0.016 <0.014	<0.016 <0.016 <0.014	<0.08 <0.07	<0.016 <0.014	<0.016 <0.014	<0.014	<0.014	<0.014	<0.014		<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	
"Benzo(b)fluoranthene (aq) "Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq) Dibenzo(a,h)anthracene (aq) "Benzo(g,h,i)perylene (aq) "Indeno(1,2,3-cd)pyrene (aq) "Total 4 PAHs Total 16 PAHs NORGANICS	0.03(1) NA NA NA O.1 (2) NA mg/l	<0.016 <0.016 <0.014 <0.08 0.918	<0.016 <0.016 <0.014 <0.08 1.422	<0.016 <0.016 <0.014 <0.08 0.854	<0.08 <0.07 <0.4 1.570	<0.016 <0.014 <0.08 0.001	<0.016 <0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 0.632	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 0.870	<0.014 <0.08 2.367	<0.08 0.351
"Benzo(b)fluoranthene (aq) "Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq) Dibenzo(a,h)anthracene (aq) "Benzo(a,h),iperylene (aq) "Indeno(1,2,3-cd)pyrene (aq) "Indeno(1,2,3-cd)pyrene (aq) Total 4 PAHs Total 16 PAHs NORGANICS Sulphate	0.03(1) NA NA NA O.1 (2) NA mg/l 400 (1)	<0.016 <0.016 <0.014 <0.08 0.918	<0.016 <0.016 <0.014 <0.08 1.422 241.8	<0.016 <0.016 <0.014 <0.08 0.854	<0.08 <0.07 <0.4 1.570	<0.016 <0.014 <0.08 0.001 252.6	<0.016 <0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247 216.1	<0.014 <0.08 <0.247	<0.014 <0.08 <0.247	<0.014 <0.08 0.632 312.8	<0.014 <0.08 <0.247 398.1	<0.014 <0.08 <0.247 51.5	<0.014 <0.08 <0.247 78.4	<0.014 <0.08 <0.247 86.2	<0.014 <0.08 0.870 656.6	<0.014 <0.08 2.367 593.8	<0.08 0.351 183.3
"Benzo(b)flucranthene (aq) "Benzo(k)flucranthene (aq) Benzo(k)flucranthene (aq) Benzo(a,h)anthracene (aq) "Benzo(a,h)anthracene (aq) "Benzo(a,h)apryenie (aq) "Indeno(1,2,3-cdjpyrene (aq) Total 4 PAHs Total 16 PAHs INORGANICS Sulphate Total Cyanide	0.03(1) NA NA NA O.1 (2) NA mg/l 400 (1) 0.05 (2)	<0.016 <0.016 <0.014 <0.08 0.918 338.4 <0.05	<0.016 <0.016 <0.014 <0.08 1.422 241.8 <0.05	<0.016 <0.016 <0.014 <0.08 0.854 141.4 <0.05	<0.08 <0.07 <0.4 1.570 12.9 <0.05	<0.016 <0.014 <0.08 0.001 252.6 <0.05	<0.016 <0.014 <0.08 <0.247 68.1 <0.05	<0.014 <0.08 <0.247 300 <0.05	<0.014 <0.08 <0.247 216.1 <0.05	<0.014 <0.08 <0.247 102.4 0.15	<0.014 <0.08 <0.247 142.4 <0.05	<0.014 <0.08 0.632 312.8 <0.05	<0.014 <0.08 <0.247 398.1 <0.05	<0.014 <0.08 <0.247 51.5 <0.05	<0.014 <0.08 <0.247 78.4 <0.05	<0.014 <0.08 <0.247 86.2 <0.05	<0.014 <0.08 0.870 656.6 <0.05	<0.014 <0.08 2.367 593.8 <0.05	<0.08 0.351 183.3 <0.05
"Benzo(b)flucranthene (ap) "Benzo(b)flucranthene (ap) Benzo(a)pyrene (aq) Dbenzo(a,h)arithracene (aq) "Benzo(a,h)pyrene (aq) "Indenof,1,2,3-od)pyrene (aq) "Indenof,1,2,3-od)pyrene (aq) Total 4 PAHs Total 16 PAHs NORGANICS Sulphate Total Cyanide Total Armonia as NH4	0.03(1) NA NA NA O.1 (2) NA mg/l 400 (1)	<0.016 <0.016 <0.014 <0.08 0.918 338.4 <0.05 2.35	<0.016 <0.016 <0.014 <0.08 1.422 241.8 <0.05 <0.3	<0.016 <0.016 <0.014 <0.08 0.854 141.4 <0.05 2.53	<0.08 <0.07 <0.4 1.570 12.9 <0.05 1.05	<0.016 <0.014 <0.08 0.001 252.6 <0.05 9.77	<0.016 <0.014 <0.08 <0.247 68.1 <0.05 11.25	<0.014 <0.08 <0.247 300 <0.05 16.84	<0.014 <0.08 <0.247 216.1 <0.05 13.11	<0.014 <0.08 <0.247 102.4 0.15 13.11	<0.014 <0.08 <0.247 142.4 <0.05 <0.3	<0.014 <0.08 0.632 312.8 <0.05 6.96	<0.014 <0.08 <0.247 398.1 <0.05 <0.3	<0.014 <0.08 <0.247 51.5 <0.05 0.40	<0.014 <0.08 <0.247 78.4 <0.05 3.28	<0.014 <0.08 <0.247 86.2 <0.05 1.53	<0.014 <0.08 0.870 656.6 <0.05 8.87	<0.014 <0.08 2.367 593.8 <0.05 31.24	<0.08 0.351 183.3 <0.05 10.40
"Benzo(b)flucranthere (ap) "Benzo(b)flucranthere (ap) Benzo(a)pyrene (aq) Denzo(a)pyrene (aq) Denzo(a)pyrene (aq) "Indend 1,2,3-cd)pyrene (aq) Total 4 PAHs Total 16 PAHs NORGANICS Sulphate Total 7 Cyraride Total 4 Amnonia as NH4 Chloride	0.03(1) NA NA NA O.1 (2) NA mg/l 400 (1) 0.05 (2)	<0.016 <0.016 <0.014 <0.08 0.918 338.4 <0.05 2.35 128.6	<0.016 <0.016 <0.014 <0.08 1.422 241.8 <0.05 <0.3	<0.016 <0.016 <0.014 <0.08 0.854 141.4 <0.05 2.53 46.7	<0.08 <0.07 <0.4 1.570 12.9 <0.05 1.05 74.7	<0.016 <0.014 <0.08 0.001 252.6 <0.05 9.77 4126.9	<0.016 <0.014 <0.08 <0.247 68.1 <0.05 11.25 72.4	<0.014 <0.08 <0.247 300 <0.05 16.84 171.5	<0.014 <0.08 <0.247 216.1 <0.05 13.11 5.9	<0.014 <0.08 <0.247 102.4 0.15 13.11 27	<0.014 <0.08 <0.247 142.4 <0.05 <0.3 36.2	<0.014 <0.08 0.632 312.8 <0.05 6.96 26.9	<0.014 <0.08 <0.247 398.1 <0.05 <0.3 61.2	<0.014 <0.08 <0.247 51.5 <0.05 0.40 15.7	<0.014 <0.08 <0.247 78.4 <0.05 3.28 93	<0.014 <0.08 <0.247 86.2 <0.05 1.53 611.3	<0.014 <0.08 0.870 656.6 <0.05 8.87	<0.014 <0.08 2.367 593.8 <0.05 31.24 24.9	<0.08 0.351 183.3 <0.05 10.40 32
"Benzo(b)flucranthene (ap) "Benzo(b)flucranthene (ap) Benzo(a)pyrene (aq) Dbenzo(a,h)arithracene (aq) "Benzo(a,h)pyrene (aq) "Indenof,1,2,3-od)pyrene (aq) "Indenof,1,2,3-od)pyrene (aq) Total 4 PAHs Total 16 PAHs NORGANICS Sulphate Total Cyanide Total Armonia as NH4	0.03(1) NA NA NA O.1 (2) NA mg/l 400 (1) 0.05 (2) 0.3 (1)	<0.016 <0.016 <0.014 <0.08 0.918 338.4 <0.05 2.35	<0.016 <0.016 <0.014 <0.08 1.422 241.8 <0.05 <0.3	<0.016 <0.016 <0.014 <0.08 0.854 141.4 <0.05 2.53	<0.08 <0.07 <0.4 1.570 12.9 <0.05 1.05	<0.016 <0.014 <0.08 0.001 252.6 <0.05 9.77	<0.016 <0.014 <0.08 <0.247 68.1 <0.05 11.25	<0.014 <0.08 <0.247 300 <0.05 16.84	<0.014 <0.08 <0.247 216.1 <0.05 13.11	<0.014 <0.08 <0.247 102.4 0.15 13.11	<0.014 <0.08 <0.247 142.4 <0.05 <0.3	<0.014 <0.08 0.632 312.8 <0.05 6.96	<0.014 <0.08 <0.247 398.1 <0.05 <0.3	<0.014 <0.08 <0.247 51.5 <0.05 0.40	<0.014 <0.08 <0.247 78.4 <0.05 3.28	<0.014 <0.08 <0.247 86.2 <0.05 1.53	<0.014 <0.08 0.870 656.6 <0.05 8.87	<0.014 <0.08 2.367 593.8 <0.05 31.24	<0.08 0.351 183.3 <0.05 10.40

Waste HBOB Waste Waste Alluvium Waste Waste Waste Waste Waste Waste Waste Waste HBOB Was

Mayer Brown Ltd Compiled by: AP

Sample Point / Determinands	TSV	BH1	BH2	ВН3	BH4	BH5	BH104
HEAVY METALS	ug/l	6.02	6.03	6.33	5.08	2.97	3.87
Antimony	NA	0.761	2.35	5.98	0.969	2.6	1.18
Arsenic	10 (2)	8.07	<0.12	<0.12	1.42	4.15	7.36
Barium	100 (4)	157	643	598	28.8	120	50.3
Beryllium	NA 5 (4)	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
Cadmium Chromium (total)	5 (1) 250 (1)	<0.1 11.7	0.281 19.9	0.194 19.4	<0.1 5	<0.1 6.03	<0.1 5.46
Lead	250 (1)	0.697	2.44	2.55	0.707	0.238	4.73
Mercury	1 (1)	0.592	<0.02	1.77	0.393	0.943	1.11
Molybdenum	NA	5.65	19.2	20.5	2.21	2.68	11.7
Nickel	200 (1)	7.51	16.8	13.6	11.3	7.25	18.8
Selenium	10 (4)	16	<0.39	<0.39	1.41	0.894	4.87
PHYTOTOXIC METALS Copper	ug/l 1-28 (1)	1.38	7.47	4.32	2.16	1.23	3.17
Zinc	75-500 (1)	7.58	26.8	38.4	17.8	10.6	8.52
Boron	1000 (1)	1770	997	2140	338	179	152
ORGANICS	ug/l						
Phenol	30 (1)	<0.5	0.64	<0.5	<0.5	<0.5	<0.5
Cresols	NA	<0.5	<0.5	<0.5	<0.5	<0.5	0.93
Xylenols	NA NA	<0.5	<0.5	0.97	<0.5	<0.5	<0.5
1 Napthol 2.3.5 Trimethyl-Phenol	NA NA	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Phenois Total	30 (1)	<0.64	0.64	0.97	<0.64	<0.64	1.59
Speciated TPH	ug/l						
Aliphatics							
EC C5-C6	15000 (5)	<10	<10	<10	<10	<10	<10
EC>C6-C8	15000 (5)	<10	<10	<10	<10	<10	<10
EC>C8-C10	300 (5) 300 (5)	<10	<10	<10	<10	<10	<10
EC>C10-C12 EC>C12-C16	300 (5)	11 29	<10 73	<10 28	<10 <10	<10 28	<10 23
EC>C16-C21	300* (5)	159	268	102	<10	108	244
EC>C21-C35	300* (5)	1970	2760	596	295	1470	2280
Aromatics) ,						
EC C6-C7	30 (Benzene)	<10	<10	<10	<10	<10	<10
EC>C7-C8	50 (Toluene)	<10	<10	<10	<10	<10	<10
EC>C8-C10	20 (Ethylbenzene)	14	<10	<10	<10	<10	<10
EC>C10-C12 EC>C12-C16	100 (5) 100 (5)	<10 30	<10 44	<10 50	<10 <10	<10 21	<10 14
EC>C16-C21	90 (5)	100	512	307	1280	130	87
EC>C21-C35	90 (5)	576	2480	967	17200	871	555
Total TPH	NA	2930	6150	2060	18800	2640	3210
BTEX	ug/l						
MTBE	NA 20 (1)	<3	<3	<3	<3	<3	<3
Benzene Toluene	30 (1) 50 (1)	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4	<7 <4
Ethylbenzene	20 (1)	<5	<5	<5	<5	<5	<5
m & p Xylene	30 (1)	<8	<8	<8	<8	<8	<8
o Xylene	30 (1)	<3	<3	<3	<3	<3	<3
Polyaromatic Hydrocabons	ug/l						
Naphthalene (aq)	10 (1)	0.404	0.67	1.35	0.107	0.204	0.213
Acenaphthene (aq) Acenaphthylene (aq)	NA NA	0.963 0.143	3.56 1.86	6.26 0.532	0.122 0.155	0.266 0.548	0.129 0.154
Fluoranthene (aq)	0.02 (1)	15.6	1.86	68.8	5.08	18.2	5.63
Anthracene (aq)	0.02 (1)	1.7	14.8	15.8	0.616	1.71	0.635
Phenanthrene (aq)	NA	9.69	39.5	41.9	1.55	5.28	2.52
Fluorene (aq)	NA	0.909	3.31	6.87	0.14	0.334	0.243
Chrysene (aq)	NA	10.4	83.1	46.3	4.22	15	6.1
Pyrene (aq)	NA NA	12.6	107	56.2	4.79	17.3	5.04
Benzo(a)anthracene (aq) *Benzo(b)fluoranthene (aq)	NA NA	9.57	83.2	46.4	4.1	14.1	4.36
*Benzo(k)fluoranthene (aq)	NA NA	13.5 12.2	96.6 90.9	44.8 53.4	5.42 5.23	20.6 18.7	9.58 6.97
Benzo(a)pyrene (aq)	0.03(1)	13.8	117	64.1	6.58	24	8.05
Dibenzo(a,h)anthracene (aq)	NA NA	3.35	22.6	11.3	1.31	4.74	1.88
*Benzo(g,h,i)perylene (aq)	NA	8.94	70.9	35.5	4.38	16.9	6.27
*Indeno(1,2,3-cd)pyrene (aq)	NA	8.18	66	31.4	4	15.2	5.47
Total 4 PAHs	0.1 (2)	42.82	324.4	165.1	19.03	71.4	28.29
Total 16 PAHs	NA mg/l	122	919	531	47.8	173	63.2
INORGANICS Sulphate	mg/l 400 (1)	171	372	610	879	122	834
Total Cyanide	0.05 (2)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Ammonia as NH4	0.3 (1)	4.95	24.8	45.1	0.633	0.696	7.68
Chloride	= -	454	12000	7630	184	40.3	256
Total Alkalinity as CaCO3	NA	4840	1650	1270	4410	2140	14500
pH (pH Units)	6.0-9.0 (1)	7.46	7.02	7.42	7.39	7.21	6.96

- 1. Freshwater EQS

- UK Drinking Water Standard
 1989 Drinking Water Standard
 Surface Water Abstraction Directive DW1 limit
- Surface Water Abstraction Directive DWT Infinit
 Surface Water Abstraction Directive DWT Infinit
 Petroleum Products in Drinking-water, Background document for development of WHO Guidelines for Drinking-water
 Quality, WHO (WHO/SDE/MSH/05.08/123)
 Dutch integrated SRC value
 AA Annual Average

Mayer Brown Ltd Compiled by: AP

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Mayer Brown Ltd Lion House Oriental Road Woking Surrey GU22 8AR

Attention: Antony Platt

CERTIFICATE OF ANALYSIS

 Date:
 20 December 2012

 Customer:
 H_MAYERBROW_WOK

Sample Delivery Group (SDG): 121207-92

Your Reference:

Location: Medina Report No: 206604

We received 7 samples on Friday December 07, 2012 and 7 of these samples were scheduled for analysis which was completed on Thursday December 20, 2012. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

CERTIFICATE OF ANALYSIS

Validated

121207-92 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

206604 Superseded Report:

Received Sample Overview

Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
BH101		0.00 - 1.00	03/12/2012
BH101		1.00 - 6.00	03/12/2012
BH101		6.00 - 8.00	03/12/2012
BH102		0.00 - 1.00	03/12/2012
BH102		1.00 - 6.60	03/12/2012
BH102		6.60 - 9.30	03/12/2012
BH102		9.30 - 11.40	03/12/2012
	BH101 BH101 BH101 BH102 BH102 BH102	BH101 BH101 BH101 BH102 BH102 BH102	BH101 0.00 - 1.00 BH101 1.00 - 6.00 BH101 6.00 - 8.00 BH102 0.00 - 1.00 BH102 1.00 - 6.60 BH102 6.60 - 9.30

Only received samples which have had analysis scheduled will be shown on the following pages.

CERTIFICATE OF ANALYSIS

Validated

121207-92 SDG: Job:

H_MAYERBROW_WOK-34

Location: Medina Customer:

Mayer Brown Ltd

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Client Reference:		Attention	: An	tony Pla	tt			
SOLID Results Legend X Test	Lab Sample	No(s)	6623859	6623860	6603860	6623865	6623866	6623868
No Determination Possible	Custome Sample Refe		BH101	BH101	BH101	BH102	BH102	ВН102
	AGS Refere	nce						
	Depth (m		0.00 - 1.00		5 00 - 8 00 - 8 00 0 0 0 0 0 0 0 0 0 0 0			9.30 - 11.40
	Containe	r	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 250g Amber Jar (AL 1kg TUB	400g Tub (ALE214) 250g Amber Jar (AL 400g Tub (Al F214)	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB
Alkalinity Filtered as CaCO3	All	NDPs: 0 Tests: 5			×	x	X	x
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 5		x	x	X	X	X
Ammonium Soil by Titration	All	NDPs: 0 Tests: 2	x		X			
Anions by Kone (soil)	All	NDPs: 0 Tests: 2	X		X			
Anions by Kone (w)	All	NDPs: 0 Tests: 5		x	x	X	X	X
Asbestos Identification (Soil)	All	NDPs: 0 Tests: 2	x		x			
Boron Water Soluble	All	NDPs: 0 Tests: 2	X		X			
CEN 2:1 Readings	All	NDPs: 0 Tests: 4		x	x	X		X
CEN 8:1 Readings	All	NDPs: 0 Tests: 4		x	x	X		x X
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 7	×	×	x x	×	X	X
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 5		×	×	x	X	X
EPH CWG (Aliphatic) Aqueous GC (W)	All	NDPs: 0 Tests: 5		×	×	×	X	x
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 2	x		x			
EPH CWG (Aromatic) Aqueous GC (W)	All	NDPs: 0 Tests: 5		x	x	X	X	X
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 2	X		X			
								$\overline{}$

Validated

R/PDEMEDINA.9 121207-92 SDG: Location: Medina Order Number:

Mayer Brown Ltd Job: H_MAYERBROW_WOK-34 Customer: 206604 Report Number: Client Reference: Attention: Antony Platt Superseded Report:

Client Reference:		Attention	_	An	tony	Plat	ι				_	_
SOLID Results Legend X Test	Lab Sample I	No(s)		6623859	6623860	2005200		6623863	0023800		6623866	6623868
No Determination Possible	Custome Sample Refei			BH101	BH101	0		BH102	BHIOZ		BH102	BH102
	AGS Refere	nce										
	Depth (m)		0.00 - 1.00	1.00 - 6.00	0.00 - 0.00	2	0.00 - 1.00	1.00 - 0.00		6.60 - 9.30	9.30 - 11.40
	Containe	r	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215) 400g Tub (ALE214)	250g Amber Jar (AL 1kg TUB	1kg TUB	250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB
GRO by GC-FID (S)	All	NDPs: 0 Tests: 2		X				X				
GRO by GC-FID (W)	All	NDPs: 0 Tests: 5			X)	<u>(</u>		X	X		×
Low Level Phenols by HPLC (W)	All	NDPs: 0 Tests: 5			X)	<mark>(</mark>		X	X		×
Mercury Unfiltered	All	NDPs: 0 Tests: 5			X)	<mark>(</mark>		X	X		×
Metals by iCap-OES (Soil)	Antimony	NDPs: 0 Tests: 2	X				X					
	Arsenic	NDPs: 0 Tests: 2	X				X					
	Barium	NDPs: 0 Tests: 2	X				X					
	Beryllium	NDPs: 0 Tests: 2	X				X					
	Cadmium	NDPs: 0 Tests: 2	X				X					
	Conner	NDPs: 0 Tests: 2	X				X					
	Copper	NDPs: 0 Tests: 2	X				X					
	Mercury	NDPs: 0 Tests: 2	X				X					
	Molybdenum	NDPs: 0 Tests: 2 NDPs: 0	X				X					
	Nickel	Tests: 2	X				X					
		Tests: 2	X				X					

Validated

Superseded Report:

121207-92 SDG: Location: Medina Order Number:

R/PDEMEDINA.9 Mayer Brown Ltd Job: H_MAYERBROW_WOK-34 Customer: 206604 Report Number:

Job: F Client Reference:	I_MAYERBROW_WOK-34	Customer Attention		layer l ntony					
SOLID			9	n 0	66	66	66	66	66
Results Legend	Lab Sample	No(s)	000	6623860	6623862	6623863	6623865	6623866	6623868
X Test	_								
No Determination Possible	Custome Sample Refe			BH101	BH101	BH102	BH102	BH102	BH102
	AGS Refere	nce							
	Depth (m			1.00 - 6.00		0.00 - 1.00		6.60 - 9.30	9.30 - 11.40
	Containe	er	400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	400g Tub (ALE214) 250g Amber Jar (AL	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB
Metals by iCap-OES (Soil)	Selenium	NDPs: 0 Tests: 2							
	Zinc	NDPs: 0	X			X			
	Zille	Tests: 2	X			X			
NRA Leachate	All	NDPs: 0 Tests: 1						x	
PAH by GCMS	All	NDPs: 0 Tests: 2	X			X			
PAH Spec MS - Aqueous (W) All	NDPs: 0 Tests: 5		X	X		X	X	X
рН	All	NDPs: 0 Tests: 2	x			x			
pH Value	All	NDPs: 0 Tests: 5		X	X		X	X	X
Phenols by HPLC (S)	All	NDPs: 0 Tests: 2	x			X			
Sample description	All	NDPs: 0 Tests: 7	x	X	X	X	X	x	x
Total Organic Carbon	All	NDPs: 0 Tests: 2	x			x			
TPH CWG (W)	All	NDPs: 0 Tests: 5		X	X		X	X	X
TPH CWG GC (S)	All	NDPs: 0 Tests: 2	x			x			
									_

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

206604

Superseded Report:

Sample Descriptions

Grain Sizes

very fine	<0.063mm	fine	0.063mm - 0.1mm m	nedium 0.1mr	n - 2mm coa	arse 2mm - 10	Omm very co	arse >10m
Lab Sample	No(s) Custor	ner Sample Re	ef. Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
662385	9	BH101	0.00 - 1.00	Light Brown	Sandy Clay	0.063 - 0.1 mm	Stones	Brick
662386	0	BH101	1.00 - 6.00	Dark Brown	Clay	0.063 - 0.1 mm	None	Stones
662386	2	BH101	6.00 - 8.00	Green	Clay	0.063 - 0.1 mm	None	Stones
662386	3	BH102	0.00 - 1.00	Light Brown	Clay	<0.063 mm	Stones	Brick
662386	5	BH102	1.00 - 6.60	Dark Brown	Silty Clay	0.063 - 0.1 mm	None	Stones
662386	6	BH102	6.60 - 9.30	Dark Brown	Sandy Clay	0.063 - 0.1 mm	None	Stones
662386	8	BH102	9.30 - 11.40	Grey	Clay	<0.063 mm	N/A	N/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

SDG: 121207-92 Location: Medina Order Number: R/PDEMEDINA.9

Job: H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd Report Number: 206604
Client Reference: Attention: Antony Platt Superseded Report:

Part	_							_		
Part		•	Customer Sample R	BH101	BH102	E	3H102			
Second Company Seco			Donth (m)	0.00 4.00	0.00 4.00		0 000			
December										
Part	* Subcontracted test.		Date Sampled							
Second Part	70 recovery or the surrogate standa			. 07/12/2012	. 07/12/2012	07/				
Component Comp	results of individual compounds wi	ithin								
Composition Columbin Columb	(F) Trigger breach confirmed	Lovery	Lab Sample No.(s)	6623859	6623863	66	323866			
Amontonical Nilogent, entropy and the control problem of the control		100011								
Marchanter Color Marc						_				
Albanishty Nation as Carcol 1980			TM024							
			T14040	M	l N		405			
Pieneris Total Detected 90.036 MoS 100.05 100		<2 mg/	I I III043				135			
Month Mont		40.005	TM000 (0)	10.005	40.00F					
Ammonical Nilogen as NAT MAN BARA laceth (%) 1 Minor (TM062 (S)							
NIAS NRA bacch			// TN4000	M	N.	_	. 007			
Particular Namogen as \$0.00 and \$1.00		<0.2 mg	/1 11/1099				.987			
Net Al Reach Corporation		<0.2 ma	// TM000				1.05			
Fraction Organic Carbon (PGCS) PH		<0.5 mg	/1 110099				1.05			
FOCO PH		<0.002	TM122	0.0111	0.0106					
PH	_	~0.002	- 1 IVI 132			"				
Mathemy (diss.fill) NRA 40,0001		1 nH	TM133			T		 	+	
Antimory (Ids. BI) NPA leach	P11		1101133			4				
Reach mg mg mg mg mg mg mg m	Antimony (diss filt) NRA		6 TM152	IVI	N.	_	00254		 	
Assentic (idss.fit) NRA except mg/l	1 · · · · · · · · · · · · · · · · · · ·		1,11102			J				
Bearlin Misch Mi			2 TM152			0	00288			
Barlum (diss.fill) NRA co.0000 co.00000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000	` '		1101102			0.	3200			
leach			3 TM152			٢	.511			
Beryllium (diss.filt) NRA co.0001 mm/s2 mm/s co.0001 mm/s2 co.0001 co.0001 mm/s2 co.0001 co.00			1111102				.011			
Reach			7 TM152			<0	.00007			
Boron (diss.fit) NRA leach 40,0094 TM152 M152 M1	The state of the s									
Cadmium (diss.fili) NRA co.0001 TM152 co.0001	Boron (diss.filt) NRA leach		TM152			C	.353			
Isach	,									
leach	Cadmium (diss.filt) NRA	<0.0001	TM152			<c< td=""><td>.0001</td><td></td><td></td><td></td></c<>	.0001			
Isach	leach	mg/l								
Copper (diss.filt) NRA leach Co.00002 TM152 Company TM152 Company Co.00002	Chromium (diss.filt) NRA	<0.0002	2 TM152			0.0	00241			
Lead (diss,filt) NRA leach 0,00002 TM152 mg/m 0,000051	leach	mg/l								
Lead (diss.filt) NRA leach	Copper (diss.filt) NRA	<0.0008	5 TM152			0.0	00134			
Molybdenum (diss.filt)		mg/l								
Molybdenum (diss.filt) Molybdenum (diss.filt) Molybdenum (diss.filt) NRA leach Molybdenum Molybde	Lead (diss.filt) NRA leach		2 TM152			0.0	00051			
NRA leach mg/l mg										
Nickel (diss.filt) NRA leach co.00015 mg/l co.00049 mg/l co.00049 co.00122			4 TM152			0.	.0321			
Selenium (diss.filt) NRA co.00039 TM152 mg/l co.00039 mg/l co.00039 mg/l co.00039										
Selenium (diss.filt) NRA co.00039 TM152 co.00034 co.0003	Nickel (diss.filt) NRA leach		5 TM152			0.0	00249			
Beach mg/l										
Zinc (diss.filt) NRA leach mg/ls	, ,		9 IM152			0.0	00122			
Cyanide, Free 1 mg/kg TM153 <1 m/kg M m/m			4 714450				20405		-	
Cyanide, Free	∠inc (diss.filt) NKA leach		i IM152			0.0	JU495			
Mathimony Color TM181 Color Mathimony Color TM181 Color Mathimony Color Mathimony Color Mathimony Mathimony Color Colo	Cyanida Fras		G TM450	-4	-1			-	+	
Antimony <0.6 mg/kg	Cyaniue, Free	<1 mg/k	y 11V1153			4				
Marsenic	Antimony	~ ∩ €	TM/101			/1		-	+	
Arsenic Co.6 mg/kg	, and more		1 101 10 1			#				
Barium	Arsenic		ΤΜ1Ω1			7			+	
Barium	7 11 3 6 1 11 6		1 101 10 1			4				
Beryllium	Barium		TM181							
Beryllium			1141101			#				
Cadmium	Bervllium		TM181							
Cadmium <0.02 mg/kg						4				
Chromium	Cadmium		TM181							
Chromium <0.9 mg/kg			"			1				
Copper	Chromium		TM181							
Copper <1.4 mg/kg					N	Л				
Marcury	Copper	<1.4	TM181							
Lead <0.7 mg/kg					N	1				
Mercury <0.14 mg/kg	Lead	<0.7	TM181							
mg/kg M <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						1				
Molybdenum <0.1 mg/kg TM181 mg/kg 1.49 # # # 0.697 # # Nickel <0.2 TM181	Mercury		TM181							
mg/kg # <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						1				
Nickel <0.2 TM181 20.9 22.8	Molybdenum		TM181							
	No. 1. 1					#				
mg/kg M M	Nickel		ГМ181							
		тід/кд		M.	<u> </u>	/			1	

Validated

SDG: 121207-92 Location: Medina Order Number: R/PDEMEDINA.9

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd
 Report Number:
 206604

 Client Reference:
 Attention:
 Antony Platt
 Superseded Report:

# 15	Results Legend SO17025 accredited.		Customer Sample R	BH101	BH102	BH102		
M n	CERTS accredited.							
diss.filt D	queous / settled sample. issolved / filtered sample.		Depth (m)	0.00 - 1.00	0.00 - 1.00	6.60 - 9.30		
* S	otal / unfiltered sample. ubcontracted test.		Sample Type Date Sampled	Soil/Solid 03/12/2012	Soil/Solid 03/12/2012	Soil/Solid 03/12/2012		
	recovery of the surrogate standal heck the efficiency of the method.		Sampled Time		07/12/2012			
re	esults of individual compounds wi amples aren't corrected for the rec	thin	Date Received SDG Ref	07/12/2012 121207-92	121207-92	07/12/2012 121207-92		
(F) T	rigger breach confirmed	.overy	Lab Sample No.(s)	6623859	6623863	6623866		
Compone	ample deviation (see appendix)	LOD/Unit	AGS Reference S Method					
Seleniur		<1 mg/k		<1	<1			
Ocicinal		- Ting/i	ig TWITOT	#	#			
Zinc		<1.9	TM181	91.4	99.6			
		mg/kg		М	М			
	(tot.unfilt) NRA	<0.0000	2 TM183			<0.00002		
leach		mg/l						
Sulphate	e NRA leach	<2 mg/	TM184			12.9		
Chlorida	NRA leach	<2 mg/	/I TM184			74.7		
Cilionae	: INCA leach	~2 IIIg/	1 1101104			/4./		
Nitrate a	as N NRA leach	<0.067	7 TM184			<0.0677		
		mg/l						
Boron, v	vater soluble	<1 mg/k	g TM222	1.38	1.05			
				М	М			
Cyanide	, Total NRA leach	<0.05	TM227			<0.05		
10/-4	alukia Ostobar	mg/l	T140 10	0.000	0.0000			
	oluble Sulphate 2:1 Extract	<0.008 g/l	TM243	0.933	0.0602			
	(low level) NRA	<0.000	5 TM255	M	M	0.00664		
leach	(IOW IEVEI) IVIVA	mg/l	I IVIZOO			0.00004		
	(low level) NRA	<0.000	5 TM255			0.0335		
leach	` '	mg/l						
	s (low level) NRA	<0.000	5 TM255			0.0199		
leach		mg/l						
	ol (low level) NRA	<0.000	5 TM255			0.0117		
leach	imethylphenol (low	mg/l <0.000	5 TM255			0.0183		
	RA leach		1 101255			0.0163		
	detected 5	<0.0006	4 TM255			0.127		
	ed Phenols by	mg/l	200			J		
pH NRA	leach	<1 pH	TM256			8.15		
		Units						

Validated

Superseded Report:

R/PDEMEDINA.9 121207-92 SDG: Location: Medina Order Number:

Attention:

Mayer Brown Ltd H_MAYERBROW_WOK-34 206604 Job: **Customer:** Report Number: Antony Platt

Client Reference:

Cilen	t Reference:			Attention:	Antony Platt		Superseded Rep	ort:	
PAH b	y GCMS								
	Results Legend ISO17025 accredited.		Customer Sample R	BH101	BH102				
М	mCERTS accredited.								
	Aqueous / settled sample. Dissolved / filtered sample.		Depth (m)	0.00 - 1.00	0.00 - 1.00				
tot.unfilt	Total / unfiltered sample.		Sample Type	Soil/Solid	Soil/Solid				
	Subcontracted test. % recovery of the surrogate standa	ard to	Date Sampled Sampled Time	03/12/2012	03/12/2012				
	check the efficiency of the method.	. The	Date Received	07/12/2012	07/12/2012				
	results of individual compounds wi samples aren't corrected for the re-		SDG Ref	121207-92	121207-92				
(F)	Trigger breach confirmed		Lab Sample No.(s)	6623859	6623863				
	Sample deviation (see appendix)		AGS Reference						
Compor		LOD/Un				_			
	ne-d12 %	%	TM218	110	104				
recove									
Naphth	alene	<0.00		0.128	0.0293				
		mg/kg	1		М	М			
Acenap	hthylene	<0.01	2 TM218	0.268	0.0479				
		mg/kg	1		М	М			
Acenar	hthene	<0.00		0.0566	0.0289				
		mg/kg			М	М			
Fluorer	16	<0.01		0.0811	0.0248				
i idolci		mg/kg							
Dhana	athrono				M 0.477	М			
Phenar	ıııırene	<0.01		0.858	0.477				
		mg/kg			M	М			
Anthrac	cene	<0.01		0.361	0.188				
		mg/kg			М	М			
Fluorar	nthene	<0.01		3.12	1.07				
		mg/kg	,		М	М			
Pyrene		<0.01		3	0.886	\neg			
,		mg/kg			М	М			
Benz(a)anthracene	<0.01		1.87	0.598	\dashv			
Denz(a)anunacene	mg/kg				М			
Chm.c.s					M 0.524	IVI			
Chryse	ne	<0.01		1.42	0.534				
		mg/kg			M	М			
Benzo(b)fluoranthene	<0.01		2.77	0.746				
		mg/kg			M	М			
Benzo(k)fluoranthene	<0.01		0.935	0.258				
		mg/kg)		М	М			
Benzo(a)pyrene	<0.01	5 TM218	2.29	0.52				
,	71.7	mg/kg			м	М			
Indeno	(1,2,3-cd)pyrene	<0.01		1.24	0.262				
	(1,2,0 00,0).00	mg/kg			м	М			
Dibenz	o(a,h)anthracene	<0.02		0.338	0.0858	IVI			
DIDCHZ	o(a,rr)aritiracerie	mg/kg			м	М			
Ponzo/	a h i\nondono	<0.02		1.49	0.323	IVI			
Delizo(g,h,i)perylene	mg/kg							
DALLT	otal Detected				M	М			
USEPA		<0.11		20.2	6.08				
USEPA	1 10	mg/kg	1			-			
						_			
						П			
						_			
								<u> </u>	
			+						
			+		+				
			_		+	-			
						_			
			 						
			+						

Validated

R/PDEMEDINA.9 121207-92 SDG: Location: Medina Order Number: **Customer:**

Job: H_MAYERBROW_WOK-34 Client Reference:

Attention:

Mayer Brown Ltd Antony Platt

206604 Report Number:

Superseded Report:

PAH Spec MS - Aqueou	s (W)			•		
Results Legend # ISO17025 accredited.		Customer Sample R	BH102			
M mCERTS accredited. aq Aqueous / settled sample.						
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	6.60 - 9.30 Soil/Solid			
* Subcontracted test. ** % recovery of the surrogate standard	and to	Date Sampled	03/12/2012			
check the efficiency of the method	. The	Sampled Time Date Received	07/12/2012			
samples aren't corrected for the re		SDG Ref Lab Sample No.(s)	121207-92 6623866			
1-4&+§@ Sample deviation (see appendix)		AGS Reference				
Component	LOD/Unit		0.0044			
Naphthalene (aq) NRA leach	<0.000° mg/l	1 TM178	0.0011			
Acenaphthene (aq) NRA leach	<0.00001	TM178	<0.000075			
Acenaphthylene (aq) NRA leach	<0.00001	TM178	<0.000055			
Fluoranthene (aq) NRA leach	<0.00001	TM178	<0.000085			
Anthracene (aq) NRA leach	<0.00001	TM178	<0.000075			
Phenanthrene (aq) NRA leach	<0.00002	TM178	<0.00011			
Fluorene (aq) NRA leach	<0.00001	TM178	<0.00007			
Chrysene (aq) NRA leach	<0.00001	TM178	<0.000065			
Pyrene (aq) NRA leach	<0.00001		<0.000075			
Benzo(a)anthracene (aq) NRA leach	<0.00001		<0.000085			
Benzo(b)fluoranthene (aq) NRA leach	<0.00002		<0.000115			
Benzo(k)fluoranthene (aq) NRA leach	<0.00002	TM178	<0.000135			
Benzo(a)pyrene (aq) NRA leach	<0.00000	TM178 9	<0.000045			
Dibenzo(a,h)anthracene (aq) NRA leach	<0.00001	_	<0.00008			
Benzo(g,h,i)perylene (aq) NRA leach	<0.00001		<0.00008			
Indeno(1,2,3-cd)pyrene (aq) NRA leach	<0.00001		<0.00007			
PAH, Total Detected USEPA 16 (aq) NRA	<0.00024	TM178	0.00157			

Validated

R/PDEMEDINA.9 206604 121207-92 SDG: Location: Medina Order Number: Job: H_MAYERBROW_WOK-34 **Customer:**

Client Reference: Attention: Mayer Brown Ltd Antony Platt Superseded Report:

Report Number:

TPH CWG (S)				•		
Results Legend		Customer Sample R	BH101	BH102		
# ISO17025 accredited.			Billot	511102		
M mCERTS accredited. aq Aqueous / settled sample.						
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.00 - 1.00 Soil/Solid	0.00 - 1.00 Soil/Solid		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	03/12/2012	03/12/2012		
** % recovery of the surrogate standa		Sampled Time				
check the efficiency of the method. results of individual compounds wi		Date Received	07/12/2012	07/12/2012		
samples aren't corrected for the red		SDG Ref	121207-92 6623859	121207-92 6623863		
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	0023039	0023003		
Component	LOD/Unit					
GRO Surrogate %	%	TM089	67	69		
recovery**	/0	110009	07	09		
	0.014	T14000	0.044	20044		
GRO >C5-C12	<0.044	TM089	<0.044	<0.044		
	mg/kg					
Methyl tertiary butyl ether	<0.005	TM089	<0.005	<0.005		
(MTBE)	mg/kg		#	#		
Benzene	<0.01	TM089	<0.01	<0.01		
	mg/kg		M	М		
Toluene	<0.002	TM089	<0.002	<0.002		
	mg/kg		М	М		
Ethylbenzene	<0.003	TM089	<0.003	<0.003		
1 3 3 3 3 3 3 3 3 3 3	mg/kg		M	M		
m,p-Xylene	<0.006	TM089	<0.006	<0.006		
m,p Aylone	mg/kg	1 IVIOUS				
a Vylana		TM000	M 60.003	M 60 003		
o-Xylene	<0.003	TM089	<0.003	<0.003		
	mg/kg		M	M		
sum of detected mpo	<0.009	TM089	<0.009	<0.009		
xylene by GC	mg/kg					
sum of detected BTEX by	<0.024	TM089	<0.024	<0.024		
GC	mg/kg					
Aliphatics >C5-C6	<0.01	TM089	<0.01	<0.01		
'	mg/kg					
Aliphatics >C6-C8	<0.01	TM089	<0.01	<0.01		
/ inpriduce > GG GG	mg/kg	1111000	-0.01	10.01		
Aliphatics >C8-C10	<0.01	TM089	<0.01	<0.01		
Aliphatics >Co-C TO		1 101009	\0.01	\0.01		
	mg/kg					
Aliphatics >C10-C12	<0.01	TM089	<0.01	<0.01		
	mg/kg					
Aliphatics >C12-C16	<0.1	TM173	4.77	6.66		
	mg/kg					
Aliphatics >C16-C21	<0.1	TM173	11.6	10.6		
	mg/kg					
Aliphatics >C21-C35	<0.1	TM173	76.6	54.2		
'	mg/kg					
Aliphatics >C35-C44	<0.1	TM173	38.5	34.1		
/ inpriduce * GGG G T T	mg/kg	1	00.0	0		
Total Aliphatics >C12-C44	<0.1	TM173	132	106		
Total Aliphatics >C12-C44	mg/kg	1101173	132	100		
Aromatics >EC5-EC7	<0.01	TM089	<0.01	<0.01		
	mg/kg					
Aromatics >EC7-EC8	<0.01	TM089	<0.01	<0.01		
	mg/kg					
Aromatics >EC8-EC10	<0.01	TM089	<0.01	<0.01		
	mg/kg					
Aromatics >EC10-EC12	<0.01	TM089	<0.01	<0.01		
	mg/kg					
Aromatics >EC12-EC16	<0.1	TM173	5.92	5.48		
7 WOTHCHICO - 2012 2010	mg/kg	1	0.02	0.10		
Aromatics >EC16-EC21	<0.1	TM173	21	14.1		
Alomatics >EC 10-EC21		1101173	21	14.1		
1	mg/kg	T14470	110	20.4		
Aromatics >EC21-EC35	<0.1	TM173	149	63.1		
	mg/kg					
Aromatics >EC35-EC44	<0.1	TM173	101	34.6		
	mg/kg					
Aromatics >EC40-EC44	<0.1	TM173	46.7	16.1		
	mg/kg					
Total Aromatics	<0.1	TM173	276	117		
>EC12-EC44	mg/kg		=: =			
Total Aliphatics >C5-35	<0.1	TM173	93	71.4		
1.5tai / iiipi iatios / 00-00	mg/kg	1101173	33	/ 17		
Total Aramatics > CE 25		TM472	176	99.7		
Total Aromatics >C5-35	<0.1	TM173	176	82.7		
T 1 1 1 1 1 2	mg/kg		000	4		
Total Aliphatics &	<0.1	TM173	269	154		
Aromatics >C5-35	mg/kg					

Validated

Superseded Report:

R/PDEMEDINA.9 121207-92 SDG: Location: Medina Order Number: Job: Antony Platt

Attention:

Mayer Brown Ltd H_MAYERBROW_WOK-34 206604 **Customer:** Report Number:

Client Reference:

TPH CWG (S)					 	
Results Legend # ISO17025 accredited.	Cı	ustomer Sample R	BH101	BH102		
M mCERTS accredited. aq Aqueous / settled sample.						
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.00 - 1.00 Soil/Solid	0.00 - 1.00 Soil/Solid		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	03/12/2012	03/12/2012		
** % recovery of the surrogate standa check the efficiency of the method.	The	Sampled Time Date Received	07/12/2012	07/12/2012		
results of individual compounds wi samples aren't corrected for the rec	coverv	SDG Ref	121207-92	121207-92		
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)	l I	Lab Sample No.(s) AGS Reference	6623859	6623863		
Component	LOD/Units					
Total Aliphatics &	<0.1	TM173	408	223		
Aromatics >C5-C44	mg/kg					
	<u> </u>				 	
]

Validated

R/PDEMEDINA.9 121207-92 SDG: Location: Medina Order Number: Mayer Brown Ltd

H_MAYERBROW_WOK-34 Job: Client Reference:

Customer: Attention: Antony Platt

206604 Report Number:

Superseded Report:

TPH CWG (W)						
Results Legend # ISO17025 accredited.		Customer Sample R	BH102			
M mCERTS accredited. aq Aqueous / settled sample.						
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	6.60 - 9.30 Soil/Solid			
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	03/12/2012			
** % recovery of the surrogate standa check the efficiency of the method.	. The	Sampled Time Date Received	07/12/2012			
results of individual compounds wi samples aren't corrected for the re-		SDG Ref	121207-92			
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s)	6623866			
Component	LOD/Unit	AGS Reference				
GRO Surrogate %	%	TM245	82			
recovery** NRA leach			-			
Methyl tertiary butyl ether	<0.003	3 TM245	<0.003			
(MTBE) NRA leach	mg/l					
Benzene NRA leach	<0.007	' TM245	<0.007			
T. NDA.	mg/l	T14045	2 22 4			
Toluene NRA leach	<0.004 mg/l	TM245	<0.004			
Ethylbenzene NRA leach	<0.005	5 TM245	<0.005			
Early is on Zerie 141 & Cleasin	mg/l	7 11.1210	10.000			
m,p-Xylene NRA leach	<0.008	3 TM245	<0.008			
	mg/l					
o-Xylene NRA leach	<0.003	TM245	<0.003			
	mg/l					
Sum of detected Xylenes	<0.011	TM245	<0.011			
NRA leach	mg/l	TM045	40.000			
Sum of detected BTEX NRA leach	<0.028 mg/l	3 TM245	<0.028			
Aliphatics >C5-C6 NRA	<0.01	TM245	<0.01			
leach	mg/l					
Aliphatics >C6-C8 NRA	<0.01	TM245	<0.01			
leach	mg/l					
Aliphatics >C8-C10 NRA	<0.01	TM245	0.022			
leach	mg/l					
Aliphatics >C10-C12 NRA leach	<0.01	TM245	0.089			
Aliphatics >C12-C16 (aq)	mg/l <0.01	TM174	<0.01			
NRA leach	mg/l	1101174	<0.01			
Aliphatics >C16-C21 (aq)	<0.01	TM174	<0.01			
NRA leach	mg/l					
Aliphatics >C21-C35 (aq)	<0.01	TM174	<0.01			
NRA leach	mg/l					
Total Aliphatics >C12-C35	<0.01	TM174	<0.01			
(aq) NRA leach Total Aliphatics &	mg/l <0.01	TM174	0.234			
Aromatics >C12-C35	mg/l	1101174	0.234			
Aromatics >EC5-EC7	<0.01	TM245	<0.01			
NRA leach	mg/l					
Aromatics >EC7-EC8	<0.01	TM245	<0.01			
NRA leach	mg/l					
Aromatics >EC8-EC10	<0.01	TM245	0.017			
NRA leach Aromatics >EC10-EC12	mg/l <0.01	TM245	0.059			
NRA leach	mg/l	1101245	0.059			
Aromatics >EC12-EC16	<0.01	TM174	0.137			
(aq) NRA leach	mg/l					
Aromatics >EC16-EC21	<0.01	TM174	0.076			
(aq) NRA leach	mg/l					
Aromatics >EC21-EC35	<0.01	TM174	0.021			
(aq) NRA leach	mg/l	T1474	0.004			
Total Aromatics >EC12-EC35 (aq) NRA	<0.01 mg/l	TM174	0.234			
Total Aliphatics >C5-C35	<0.01	TM174	0.121			
(aq) NRA leach	mg/l		J <u>-</u> '			
Total Aromatics >C6-C35	<0.01	TM174	0.311			
(aq) NRA leach	mg/l					
Total Aliphatics &	<0.01	TM174	0.432			
Aromatics >C5-35 (aq)	mg/l					
Total Aliphatics >C5-C12	<0.01	TM245	0.121			
NRA leach Total Aromatics	mg/l <0.01	TM245	0.077			
>EC5-EC12 NRA leach	<0.01 mg/l	I IVIZ45	0.077			

Validated

SDG: 121207-92

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina

Customer:

Order Number:

: R/PDEMEDINA.9 r: 206604

Report Number: Superseded Report:

Attention: Antony Platt Superseded Re

Asbestos Identification - Soil

Mayer Brown Ltd

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH101 0.00 - 1.00 SOLID 03/12/2012 00:00:00 121207-92 6623859 TM048	19/12/12	Paul Poynton	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH102 0.00 - 1.00 SOLID 03/12/2012 00:00:00 121207-92 6623863 TM048	19/12/12	Paul Poynton	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Medina

Mass Sample taken (kg) 0.236

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Site Location Medina Moisture Content Ratio (%) 34.7 Dry Matter Content Ratio (%) 74.2

Case	
SDG	121207-92
Lab Sample Number(s)	6623860
Sampled Date	03-Dec-2012
Customer Sample Ref.	BH101
Depth (m)	1.00 - 6.00
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea EN 12457-3 at L/S	
	m	g/l	mg,	/kg	using DS	LIV 12437-3 dt L/3	10 1/ Ng
Arsenic	0.00582	0.0153	0.0116	0.14	0.5	2	25
Barium	0.139	0.0167	0.278	0.334	20	100	300
Cadmium	0.000203	<0.0001	0.000406	<0.001	0.04	1	5
Chromium	0.0013	0.00164	0.0026	0.0159	0.5	10	70
Copper	0.00821	0.00334	0.0164	0.0401	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0947	0.0137	0.189	0.248	0.5	10	30
Nickel	0.00673	0.00179	0.0134	0.0247	0.4	10	40
Lead	0.000295	0.000145	0.00059	0.00166	0.5	10	50
Antimony	0.00473	0.00432	0.00945	0.0438	0.06	0.7	5
Selenium	0.00502	0.00229	0.01	0.0267	0.1	0.5	7
Zinc	0.0175	0.00042	0.0349	0.0276	4	50	200
Chloride	129	10.9	257	270	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	338	29.9	676	722	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	7.633	9.815
, ,,	7.000	0.010
Conductivity (µS/cm)	968.00	140.10
Temperature (°C)	19.50	16.00
\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\)		
Volume Leachant (Litres)	0.289	1.400
Volume of Eluate VE1 (Litres)	0.242	
volume of Elaate VET (Elaco)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

ANC to pH 4 (mol/kg)

Validated

121207-92 SDG:

Client Reference:

Job: H_MAYERBROW_WOK-34

Location: **Customer:**

Medina

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report:

Inert Waste

Landfill

R/PDEMEDINA.9

206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3

Client Reference Mass Sample taken (kg) 0.236 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location** 34.7 Moisture Content Ratio (%) 74.2 **Dry Matter Content Ratio (%)**

Case	
SDG	121207-92
Lab Sample Number(s)	6623860
Sampled Date	03-Dec-2012
Customer Sample Ref.	BH101
Depth (m)	1.00 - 6.00

Landfill Waste Acceptance Criteria Limits

> Stable Non-reactive Hazardous Waste in Non-Hazardous Landfill

Hazardous Waste Landfill

Solid Waste Analysis

Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance leader	-
	m	g/l	mg,	/kg	using 65	EN 1245/-3 at L/5	10 I/ Kg
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	2.22	0.282	4.43	5.47	-	-	-
Phenol by HPLC (W)	<0.0005	0.00077	<0.000999	0.00664	-	-	-
Total Ammonium as NH4	2.35	<0.3	4.7	3.22	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.0999	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	1.08	<0.0677	2.16	1.48	-	-	-
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Boron	0.355	0.157	0.709	1.84	-	-	-
Total Alkalinity Filtered as CaCO3	30	38.5	60	373	-	-	-
Phenols Total of 5 Speciated by HPLC (W)	<0.00064	0.00077	<0.00128	0.00664	-	-	-
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	0	0.000131	0.000499	0.00147	-	-	-
Acenaphthylene by GCMS	<0.000011	0.0000156	<0.000022	0.000135	-	-	-
Fluoranthene by GCMS	0	0.000202	0.000323	0.00196	-	-	-
Anthracene by GCMS	0	0.000103	0.000214	0.00104	-	-	-
Phenanthrene by GCMS	0	0.000476	0.0000445	0.00414	-	-	-
Fluorene by GCMS	0	0.000154	0.000488	0.00167	-	-	-
Chrysene by GCMS	0	0.0000287	0.0000278	0.000266	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	7.633	9.815
Conductivity (µS/cm)	968.00	140.10
Temperature (°C)	19.50	16.00
Volume Leachant (Litres)	0.289	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

121207-92 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: **Customer:**

Medina

Mayer Brown Ltd Antony Platt

Order Number: Report Number:

206604 Superseded Report:

R/PDEMEDINA.9

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Attention:

Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.236	Moisture Content Ratio (%)	34.7
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	74.2
Particle Size <4mm	>95%		

Case					Landf	ill Waste Acce	ptance
SDG	121207-92					Criteria Limits	i
Lab Sample Number(s)	6623860						
Sampled Date	03-Dec-2012					Stable Non-reactive	
Customer Sample Ref.	BH101				Inert Waste Landfill	Hazardous	Hazardous Waste Landfill
Depth (m)	1.00 - 6.00	'			Landilli	Waste in Non- Hazardous	waste Landilli
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-		
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance lea S EN 12457-3 at L/S	_

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		or compliance lea	•
	m	g/l	mg	/kg	using BS EN 12457-3 at L/S 10 l/kg		
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.000153	0.000239	0.00148	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	0.0000208	<0.00018	0.000179	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.00014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	0	0.00128	0.00183	0.0123	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	< 0.003	<0.003	<0.006	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	0.054	0.047	0.108	0.48	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	7.633	9.815
Conductivity (µS/cm)	968.00	140.10
Temperature (°C)	19.50	16.00
Volume Leachant (Litres)	0.289	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121207-92 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.236	Moisture Content Ratio (%)	34.7

Particle Size <4mm

74.2 Mass of dry sample (kg) 0.175 **Dry Matter Content Ratio (%)** >95%

Case	
SDG	121207-92
_ab Sample Number(s)	6623860
Sampled Date	03-Dec-2012
Customer Sample Ref.	BH101
Depth (m)	1.00 - 6.00
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A ₂ 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test		•
n	mg/l		/kg	using BS EN 12457-3 at L/S 10 1/kg		
<0.007	<0.007	<0.014	<0.07	-	-	-
<0.004	<0.004	<0.00799	<0.04	-	-	-
<0.005	<0.005	<0.00999	<0.05	-	-	-
<0.008	<0.008	<0.016	<0.08	-	-	-
<0.003	< 0.003	<0.006	<0.03	-	-	-
<0.011	<0.011	<0.022	<0.11	-	-	-
<0.028	<0.028	<0.056	<0.28	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
0.054	0.019	0.108	0.238	-	-	-
<0.01	0.028	<0.02	0.242	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
0.054	0.047	0.108	0.48	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
	 <0.007 <0.004 <0.005 <0.008 <0.011 <0.028 <0.01 <0.01 <0.054 <0.01 	C2 eluate C8 eluate mg/l	G2 eluate A2 leached mg/I mg <0.007 <0.014	C2 conte in 2.1 eluate A2 conte ieached A2-10 conte ieached mg/kg conc ieached cond ieached cond ieached cond ieached <td>C2 Color in 2-1 eluate C8 eluate A2 2-1 cone leached leached A2-10 cone leached leached Limit values using BS wg/kg <0.007</td> <0.004	C2 Color in 2-1 eluate C8 eluate A2 2-1 cone leached leached A2-10 cone leached leached Limit values using BS wg/kg <0.007	C2 eluate C8 content in c1 eluate C8 eluate Eluate

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	7.633	9.815
Conductivity (µS/cm)	968.00	140.10
Temperature (°C)	19.50	16.00
Volume Leachant (Litres)	0.289	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121207-92 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	BULTS		REF: BS EN 12	457/3
Client Reference		Site Location	Medina	
Mass Sample taken (kg)	0.227	Moisture Content Ratio (%)	29.3	
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	77.3	
Particle Size <4mm	>95%			

Case					Landfi	II Waste Acce	ptance
SDG	121207-92	Criteria Limit			s		
Lab Sample Number(s)	6623862						
Sampled Date	03-Dec-2012					Stable Non-reactive Hazardous Waste in Non- Hazardous	Hazardous Waste Landfill
Customer Sample Ref.	BH101				Inert Waste		
Depth (m)	6.00 - 8.00				Landfill		
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-	•			-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached	Limit values for compliance leaching test		
	n	ng/l	mg	g/kg	using BS	EN 12457-3 at L/S	10 i/kg
Arsenic	0.000972	0.000882	0.00195	0.00893	0.5	2	25
Barium	0.0372	0.0246	0.0744	0.26	20	100	300
Cadmium							_

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea	
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 l/kg		
Arsenic	0.000972	0.000882	0.00195	0.00893	0.5	2	25
Barium	0.0372	0.0246	0.0744	0.26	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00137	0.000703	0.00274	0.0078	0.5	10	70
Copper	0.00195	<0.00085	0.0039	<0.0085	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0221	0.0139	0.0443	0.149	0.5	10	30
Nickel	0.00146	0.000591	0.00291	0.00691	0.4	10	40
Lead	0.000161	0.000153	0.000322	0.00154	0.5	10	50
Antimony	<0.00016	0.000764	<0.00032	0.00676	0.06	0.7	5
Selenium	0.00276	0.00133	0.00552	0.0149	0.1	0.5	7
Zinc	0.000669	0.000734	0.00134	0.00727	4	50	200
Chloride	30.9	3.1	61.8	63.1	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	242	32.2	484	564	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.318	7.857
Conductivity (µS/cm)	604.00	443.00
Temperature (°C)	18.90	18.40
Volume Leachant (Litres)	0.299	1.400
Volume of Eluate VE1 (Litres)	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference	
Mass Sample taken (kg)	0.227
Mass of dry sample (kg)	0.175
Particle Size <4mm	>95%

Site LocationMedinaMoisture Content Ratio (%)29.3Dry Matter Content Ratio (%)77.3

ase	
SDG	121207-92
Lab Sample Number(s)	6623862
Sampled Date	03-Dec-2012
Customer Sample Ref.	BH101
Depth (m)	6.00 - 8.00
Solid Waste Analysis	
Total Organic Carbon (%)	
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached	Limit values for compliance leaching using BS EN 12457-3 at L/S 10 l/k		•	
	m	mg/l		mg/kg		using 65 EN 12457-3 at L/5 10 I/kg		
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-	
Total Ammonia as NH3	<0.2	<0.2	<0.4	<2	-	-	-	
Phenol by HPLC (W)	<0.0005	0.00126	<0.001	0.0111	-	-	-	
Total Ammonium as NH4	<0.3	<0.3	<0.6	<3	-	-	-	
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-	
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-	
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-	
Nitrate as N	0.526	<0.0677	1.05	<0.677	-	-	-	
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-	
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-	
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-	
Boron	0.0424	0.0326	0.0849	0.337	-	-	-	
Total Alkalinity Filtered as CaCO3	55	43	110	444	-	-	-	
Phenols Total of 5 Speciated by HPLC	<0.00064	0.00126	<0.00128	0.0111	-	-	-	
(W)								
PAH Spec MS - Aqueous (W)	,							
Naphthalene by GCMS	0	0.000119	0.000395	0.00128	-	-	-	
Acenaphthene by GCMS	0	0.0000807	0.000288	0.00088	-	-	-	
Acenaphthylene by GCMS	0	0.0000115	0.0000256	0.000116	-	-	-	
Fluoranthene by GCMS	0	0.0000726	0.000146	0.000727	-	-	-	
Anthracene by GCMS	0	0.0000487	0.000168	0.000528	-	-	-	
Phenanthrene by GCMS	0	0.000274	0.00122	0.00313	-	-	-	
Fluorene by GCMS	0	0.0000776	0.000395	0.000914	-	-	-	
Chrysene by GCMS	0	<0.000013	0.0000423	<0.00013	-	-	-	
	<u> </u>				-	-		

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.318	7.857
Conductivity (µS/cm)	604.00	443.00
Temperature (°C)	18.90	18.40
Volume Leachant (Litres)	0.299	1.400
Volume of Eluate VE1 (Litres)	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

20/12/2012 16:17:35 16:17:29 20/12/2012

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

Report Number: 206604 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.227 Mass of dry sample (kg) 0.175 Site Location Medina Moisture Content Ratio (%) 29.3 Dry Matter Content Ratio (%) 77.3

Particle Size <4mm	>95%		_				
Case					Landf	ill Waste Acce	ptance
SDG	121207-92					Criteria Limits	;
Lab Sample Number(s)	6623862						
Sampled Date	03-Dec-2012					Stable	
Customer Sample Ref.	BH101				Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	6.00 - 8.00				Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-	•			_	<u>-</u>	<u>-</u>
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		es for compliance lea S EN 12457-3 at L/S	•
	n	ng/l	mg	ı/kg	using B	5 EN 1245/-5 at L/5	10 1/ kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.0000543	0.000166	0.000576	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.00046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	_	_	_

Eluate Analysis	C2 eluate	C8 eluate	A2 leached	A2-10 conc ⁿ leached	Limit values for compliance leaching test		
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 l/kg		
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.0000543	0.000166	0.000576	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.00014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	0	0.000738	0.00285	0.00817	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	0	-	0	-	-	-
MTBE GC-FID	< 0.003	<0.003	<0.006	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.318	7.857
Conductivity (µS/cm)	604.00	443.00
Temperature (°C)	18.90	18.40
Volume Leachant (Litres)	0.299	1.400
Volume of Eluate VE1 (Litres)	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121207-92

Mass of dry sample (kg)

Particle Size <4mm

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina
Customer: Mayer F

Attention:

0.175

>95%

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report:

77.3

R/PDEMEDINA.9

206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.227 Site Location Medina Moisture Content Ratio (%) 29.3

Dry Matter Content Ratio (%)

Landfill Waste Acceptance Case **Criteria Limits SDG** 121207-92 Lab Sample Number(s) 6623862 Stable **Sampled Date** 03-Dec-2012 Non-reactive Inert Waste Hazardous **Customer Sample Ref.** BH101 Hazardous Landfill Waste Landfill Waste in Non-Depth (m) 6.00 - 8.00Hazardous Landfill **Solid Waste Analysis** Total Organic Carbon (%) S

Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		es for compliance lea S EN 12457-3 at L/S	-
	m	ıg/l	mg	/kg			
TPH CWG (W)							
Benzene by GC	<0.007	< 0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.00801	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
o Xylene by GC	<0.003	<0.003	<0.006	<0.03	-	-	-
			i				

Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.00801	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
o Xylene by GC	<0.003	< 0.003	<0.006	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
Total Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
Total Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.318	7.857
Conductivity (µS/cm)	604.00	443.00
7 (1 /		
Temperature (°C)	18.90	18.40
Volume Leachant (Litres)	0.299	1.400
Volume of Eluate VE1 (Litres)	0.202	
(,	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer I
Attention: Antony

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report: 20000

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF : BS EN 12457/3

Client Reference

Mass Sample taken (kg) 0.233

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Site LocationMedinaMoisture Content Ratio (%)33.1Dry Matter Content Ratio (%)75.2

Particle Size \4IIIII	29570				
Case			Landfi	ill Waste Acce	
BDG	121207-92			Criteria Limits	
ab Sample Number(s)	6623865				
Sampled Date	03-Dec-2012			Stable Non-reactive Hazardous Waste in Non- Hazardous	
Customer Sample Ref.	BH102		ert Waste Landfill		
Depth (m)	1.00 - 6.60	,	Lanum		
Total Organic Carbon (%)			_	<u>-</u>	
Fotal Organic Carbon (%)	-		_	-	
oss on Ignition (%)	-		-	-	
Sum of BTEX (mg/kg)	-		-	-	
Sum of 7 PCBs (mg/kg)	-		-	-	
Mineral Oil (mg/kg)	-		-	-	
PAH Sum of 17 (mg/kg)	-		-	-	
pH (pH Units)		l e e e e e e e e e e e e e e e e e e e			
	-		-	-	
ANC to pH 6 (mol/kg)	-		-	-	

Eluate Analysis	C ₂ Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1 eluate	A2 2:1 conc ⁿ leached	A2-10 Cumulative concn leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	m	g/l	mg,	/kg			
Arsenic	0.00312	0.0019	0.00623	0.0203	0.5	2	25
Barium	0.042	0.0407	0.0839	0.409	20	100	300
Cadmium	0.000157	<0.0001	0.000314	<0.001	0.04	1	5
Chromium	0.00373	0.00114	0.00745	0.0142	0.5	10	70
Copper	0.0111	0.00323	0.0223	0.0409	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0859	0.0179	0.172	0.253	0.5	10	30
Nickel	0.00326	0.00159	0.00652	0.0177	0.4	10	40
Lead	0.000706	0.000401	0.00141	0.00434	0.5	10	50
Antimony	0.00568	0.00505	0.0114	0.0511	0.06	0.7	5
Selenium	0.00192	0.000605	0.00384	0.00748	0.1	0.5	7
Zinc	0.0119	0.00119	0.0238	0.0235	4	50	200
Chloride	46.7	2	93.4	68.5	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	141	77	283	840	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.733	8.261
Conductivity (µS/cm)	636.00	310.00
Temperature (°C)	19.40	20.10
Volume Leachant (Litres)	0.292	1.400
Volume of Eluate VE1 (Litres)	0.232	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

20/12/2012 16:17:35 16:17:29 20/12/2012

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.233 Moisture Content Ratio (%) Dry Matter Content Ratio (%) 75.2

Particle Size <4mm	>95%						
Case					Landf	ill Waste Acce	ptance
SDG	121207-92					Criteria Limits	•
Lab Sample Number(s)	6623865					l	
Sampled Date	03-Dec-2012					Stable	
Customer Sample Ref.	BH102				Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	1.00 - 6.60				Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance lea	
	m	ıg/l	mg	/kg	using B	S EN 12457-3 at L/S	10 I/Kg
Manager I Indikanan							

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea N 12457-3 at L/S	•
	m	g/l	mg,	/kg	using 65 i	IN 12457-5 at L/5	10 i/ kg
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	2.4	0.555	4.79	7.55	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Total Ammonium as NH4	2.53	0.588	5.06	7.98	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	0.0728	<0.135	<0.677	-	-	-
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Boron	0.836	0.275	1.67	3.36	-	-	-
Total Alkalinity Filtered as CaCO3	165	95	330	1030	-	-	-
Phenols Total of 5 Speciated by HPLC	<0.00064	<0.00064	<0.00128	<0.0064	-	-	-
(W)							
PAH Spec MS - Aqueous (W)	1						
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	0	0.000242	0.000343	0.00234	-	-	-
Acenaphthylene by GCMS	<0.000011	0	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.000263	0.000514	0.00262	-	-	-
Anthracene by GCMS	0	0.000153	0.00015	0.00145	-	-	-
Phenanthrene by GCMS	<0.000022	0.000551	<0.000044	0.00491	-	-	-
Fluorene by GCMS	0	0.000163	0.000226	0.00157	-	-	-
Chrysene by GCMS	0	0.0000297	0.000046	0.000289	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.733	8.261
Conductivity (µS/cm)	636.00	310.00
Temperature (°C)	19.40	20.10
Volume Leachant (Litres)	0.292	1.400
Volume of Eluate VE1 (Litres)	0.232	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

20/12/2012 16:17:35 16:17:29 20/12/2012

Validated

121207-92 SDG:

SDG

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Attention:

121207-92

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.233	Moisture Content Ratio (%)	33.1
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	75.2
Particle Size <4mm	>95%		
Case			Landfill Waste Acceptance
SDG	121207-92		Criteria Limits

Lab Sample Number(s)	6623865
Sampled Date	03-Dec-2012
Customer Sample Ref.	BH102
Depth (m)	1.00 - 6.60
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

0.000202 0 <0.000023 <0.000027	0.000407 <0.00034	/kg 0.00202	using bs	EN 12457-3 at L/S	10 1/ kg
0 <0.000023		0.00202			
0 <0.000023		0.00202			
<0.000023	<0.000034	0.00202	-	-	-
	0.00001	<0.00017	-	-	-
<0.000027	<0.000046	<0.00023	-	-	-
	<0.000054	<0.00027	-	-	-
0.0000206	0.0000223	0.000196	-	-	-
<0.00016	<0.000032	<0.00016	-	-	-
<0.00016	<0.000032	<0.00016	-	-	-
<0.00014	<0.000028	<0.00014	-	-	-
0.00165	0.00171	0.0157	-	-	-
-	-	-	-	-	-
<0.003	<0.006	<0.03	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
<0.01	<0.02	<0.1	-	-	-
	<0.02	-0.1			
<0.01		~ U.T	-		
	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01	<0.01	<0.003	<0.003

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.733	8.261
Conductivity (µS/cm)	636.00	310.00
Temperature (°C)	19.40	20.10
Volume Leachant (Litres)	0.292	1.400
Volume of Eluate VE1 (Litres)	0.232	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121207-92

Case

SDG

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

121207-92

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 206604

Landfill Waste Acceptance

Criteria Limits

Report Number: 20660 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	BULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.233	Moisture Content Ratio (%)	33.1
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	75.2
Particle Size <4mm	>95%		

Lab Sample Number(s)	6623865
Sampled Date	03-Dec-2012
Customer Sample Ref.	BH102
Depth (m)	1.00 - 6.60
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	n	mg/l		g/kg	using BS EN 12457-3 at L/S 10 I/kg		
TPH CWG (W)							
Benzene by GC	<0.007	< 0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.008	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
Xylene by GC	< 0.003	< 0.003	<0.006	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
romatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
otal Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
otal Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
otal Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.733	8.261
Conductivity (µS/cm)	636.00	310.00
Temperature (°C)	19.40	20.10
Volume Leachant (Litres)	0.292	1.400
Volume of Eluate VE1 (Litres)	0.232	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina K-34 Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	BULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.275	Moisture Content Ratio (%)	57.2
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	63.6

Particle Size <4mm	>95%					
Case				Landf	ill Waste Acce	ptance
SDG	121207-92				Criteria Limits	;
Lab Sample Number(s)	6623868					
Sampled Date	03-Dec-2012				Stable	
Customer Sample Ref.	BH102			Inert Waste	Non-reactive Hazardous	Hazardous Waste Landfi
Depth (m)	9.30 - 11.40			Landfill	Waste in Non- Hazardous	Waste Land
Solid Waste Analysis		ı				
Total Organic Carbon (%)	-			-	-	-
Loss on Ignition (%)	-			-	-	-
Sum of BTEX (mg/kg)	-			-	-	-
Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg)	-			-	-	-
PAH Sum of 17 (mg/kg)				-	-	-
	-			-	-	-
pH (pH Units) ANC to pH 6 (mol/kg)	- -			-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		•
	m	g/l	mg,	/kg			10 I/ Kg
Arsenic	0.0372	0.0271	0.0745	0.282	0.5	2	25
Barium	0.108	0.00753	0.217	0.186	20	100	300
Cadmium	0.00108	0.000149	0.00215	0.00251	0.04	1	5
Chromium	0.0119	0.00286	0.0238	0.0385	0.5	10	70
Copper	0.023	0.00517	0.0461	0.0713	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.18	0.0637	0.36	0.765	0.5	10	30
Nickel	0.0071	0.00422	0.0142	0.0454	0.4	10	40
Lead	0.000919	0.00066	0.00184	0.00688	0.5	10	50
Antimony	0.0118	0.00717	0.0236	0.0767	0.06	0.7	5
Selenium	0.0412	0.00812	0.0824	0.118	0.1	0.5	7
Zinc	0.0138	0.00441	0.0276	0.0544	4	50	200
Chloride	4130	672	8260	10500	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	253	70.4	505	904	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.530	8.417
Conductivity (µS/cm)	11,120.00	2,090.00
Temperature (°C)	18.90	19.90
Volume Leachant (Litres)	0.250	1.400
Volume of Eluate VE1 (Litres)	0.192	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
Mcerts Certification does not apply to leachates
20/12/2012 16:17:35

16:17:29 20/12/2012

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report: 2000

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESUL	.TS					REF : BS	EN 12457
Client Reference			Site Location		Medin	а	
Mass Sample taken (kg)	0.275		Moisture Conte	nt Ratio (%)	57.2		
Mass of dry sample (kg)	0.175		Dry Matter Cont		63.6		
Particle Size <4mm	>95%			(70)			
Case					Landfi	ill Waste Acce	ptance
SDG	121207-92					Criteria Limits	•
Lab Sample Number(s)	6623868					1	
Sampled Date	03-Dec-2012					Stable	
Customer Sample Ref.	BH102				Inert Waste	Non-reactive Hazardous	Hazardous
-					Landfill	Waste in Non-	Waste Landfill
Depth (m)	9.30 - 11.40					Hazardous Landfill	
Solid Waste Analysis							
Total Organic Carbon (%)	-				-	-	<u> </u>
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-					-	-
pH (pH Units)	-				-	-	
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	-				-	-	-
ANO to pit 4 (monkg)							
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		es for compliance lea	-
	m	g/I	mg,	/kg	using B	S EN 12457-3 at L/S	10 I/Kg
Mercury Unfiltered	3.36	<0.00002	6.72	<0.0002	-	-	-
Total Ammonia as NH3	9.22	1.59	18.5	24.3	-	-	-
Phenol by HPLC (W)	<0.0005	0.00075	<0.001	0.00668	-	-	-
Total Ammonium as NH4	9.77	1.68	19.5	25.7	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	<0.0677	<0.135	<0.677	-	-	-
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Napthol by HPLC (W) 2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Boron	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Total Alkalinity Filtered as CaCO3	1.05	0.654	2.1	6.98	-	-	-
Phenols Total of 5 Speciated by HPLC	386000	110	772000	424000	-	-	-
(W)	<0.00064	0.00075	<0.00128	0.00668	-	-	-
PAH Spec MS - Aqueous (W)			•				
Naphthalene by GCMS	0	0.000127	0.000351	0.00132	-	-	-
Acenaphthene by GCMS	0	0.000076	0.00036	0.000874	-	-	-
Acenaphthylene by GCMS	0	0.0000117	0.0000301	0.000121	-	-	-
Fluoranthene by GCMS	0	0.000271	0.000176	0.00251	-	-	-
Anthracene by GCMS	0	0.0000155	0.000184	0.000239	-	-	-
Phenanthrene by GCMS	0	0.0000500	0.000604	0.000793			

Leach Test Information	2:1	8:1
Date Prepared	10-Dec-2012	11-Dec-2012
pH (pH Units)	8.530	8.417
Conductivity (µS/cm)	11,120.00	2,090.00
Temperature (°C)	18.90	19.90
Volume Leachant (Litres)	0.250	1.400
Volume of Eluate VE1 (Litres)	0.192	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

0

0

< 0.000013

0.0000509

0.0000295

0.000101

20/12/2012 16:17:35

Phenanthrene by GCMS

Fluorene by GCMS

Chrysene by GCMS

0.000601

0.000224

<0.000026

0.000783

0.000386

0.000895

Validated

SDG: 121207-92

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

0K-34 Customer: Mayer I

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

per: 206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Medina **Site Location** Mass Sample taken (kg) **Moisture Content Ratio (%)** 57.2 0.275 63.6 Mass of dry sample (kg) 0.175 **Dry Matter Content Ratio (%)** Particle Size <4mm >95% **Landfill Waste Acceptance** Case **Criteria Limits** SDG 121207-92

Lab Sample Number(s)	6623868
Sampled Date	03-Dec-2012
Customer Sample Ref.	BH102 9.30 - 11.40
Depth (m)	
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A ₂ 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 I/kg		
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.000262	0.00013	0.00241	-	-	-
Benz(a)anthracene by GCMS	<0.000017	0.00004	<0.000034	0.000357	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	0.000038	<0.000046	0.000338	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	0.0000556	<0.000054	0.000495	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	0.0000514	<0.00018	0.000458	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	0.0000331	<0.000032	0.000295	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	0.000018	<0.000028	0.000161	-	-	-
PAH 16 EPA Total by GCMS	0	0.00118	0.00206	0.0116	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	< 0.003	<0.006	< 0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1	
Date Prepared	10-Dec-2012	11-Dec-2012	
pH (pH Units)	8.530	8.417	
Conductivity (µS/cm)	11,120.00	2,090.00	
Temperature (°C)	18.90	19.90	
Volume Leachant (Litres)	0.250	1.400	
Volume of Eluate VE1 (Litres)	0.192		

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121207-92 SDG

Client Reference:

Job: H_MAYERBROW_WOK-34

Location: Medina **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Medina **Client Reference** Site Location 57.2 Mass Sample taken (kg) 0.275 Moisture Content Ratio (%)

Mass of dry sample (kg) 0.175 **Dry Matter Content Ratio (%)** 63.6 Particle Size <4mm >95% **Landfill Waste Acceptance** Case

Criteria Limits SDG 121207-92 Lab Sample Number(s) 6623868 Stable Sampled Date 03-Dec-2012 Non-reactive Inert Waste Hazardous **Customer Sample Ref.** BH102 Hazardous Landfill Waste Landfill Waste in Non-Depth (m) 9.30 - 11.40 Hazardous Landfill **Solid Waste Analysis** Total Organic Carbon (%) Loss on Ignition (%)

Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 conc ⁿ leached	Limit values for compliance leaching test		•
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 l/kg		
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.008	<0.04	-	-	=
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
o Xylene by GC	< 0.003	<0.003	<0.006	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
Total Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total	<0.01	<0.01	-	-	-	-	-
Aromatics) >C5-C35							
Total Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
	I						

Leach Test Information	2:1	8:1	
Date Prepared	10-Dec-2012	11-Dec-2012	
pH (pH Units)	8.530	8.417	
Conductivity (µS/cm)	11,120.00	2,090.00	
Temperature (°C)	18.90	19.90	
Volume Leachant (Litres)	0.250	1.400	
Volume of Eluate VE1 (Litres)	0.192		

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates 20/12/2012 16:17:35

Validated

121207-92 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry	Surrogate
ASB_PREP			Sample ¹	Corrected
PM001		Preparation of Samples for Metals Analysis		
PM023	Leaching test method for the Assessment of Contaminated Land: Interim NRA Guidance. National Rivers Authority R & D note 301. (1994).	Leaching Procedure for NRA Leachates		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM114		Leaching Procedure for CEN Two Stage BatchTest 2:1/8:1 Cumulative		
TM024	Method 4500A & B, AWWA/APHA, 20th Ed., 1999	Determination of Exchangeable Ammonium and Ammoniacal Nitrogen as N by titration on solids		
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer		
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate		
TM243		Mixed Anions In Soils By Kone		
TM245	By GC-FID	Determination of GRO by Headspace in waters		
TM255		Determination of Low Level Phenols in Waters and Leachates by HPLC		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		
TM321		Organic matter Content of Soil By Titration		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

SDG:

Job:

CERTIFICATE OF ANALYSIS

Validated

121207-92 Client Reference:

H_MAYERBROW_WOK-34

Location: Medina Mayer Brown Ltd **Customer:** Attention: Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Test Completion Dates

	100t Gompletion Bates						
Lab Sample No(s)	6623859	6623860	6623862	6623863	6623865	6623866	6623868
Customer Sample Ref.	BH101	BH101	BH101	BH102	BH102	BH102	BH102
AGS Ref.							
Depth	0.00 - 1.00	1.00 - 6.00	6.00 - 8.00	0.00 - 1.00	1.00 - 6.60	6.60 - 9.30	9.30 - 11.40
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
Alkalinity Filtered as CaCO3		17-Dec-2012	17-Dec-2012		14-Dec-2012	14-Dec-2012	14-Dec-2012
Ammoniacal Nitrogen		17-Dec-2012	17-Dec-2012		17-Dec-2012	17-Dec-2012	17-Dec-2012
Ammonium Soil by Titration	18-Dec-2012			18-Dec-2012			
Anions by Kone (soil)	18-Dec-2012			18-Dec-2012			
Anions by Kone (w)		15-Dec-2012	15-Dec-2012		15-Dec-2012	17-Dec-2012	15-Dec-2012
Asbestos Identification (Soil)	20-Dec-2012			20-Dec-2012			
Boron Water Soluble	18-Dec-2012			18-Dec-2012			
CEN 2:1 Leachate (2 Stage)		10-Dec-2012	10-Dec-2012		10-Dec-2012		10-Dec-2012
CEN 2:1 Readings		12-Dec-2012	12-Dec-2012		12-Dec-2012		12-Dec-2012
CEN 8:1 Leachate (2 Stage)		12-Dec-2012	12-Dec-2012		12-Dec-2012		12-Dec-2012
CEN 8:1 Readings		13-Dec-2012	14-Dec-2012		14-Dec-2012		14-Dec-2012
Cyanide Comp/Free/Total/Thiocyanate	18-Dec-2012	17-Dec-2012	17-Dec-2012	18-Dec-2012	17-Dec-2012	17-Dec-2012	17-Dec-2012
Dissolved Metals by ICP-MS		14-Dec-2012	14-Dec-2012		14-Dec-2012	17-Dec-2012	14-Dec-2012
EPH CWG (Aliphatic) Aqueous GC (W)		16-Dec-2012	16-Dec-2012		16-Dec-2012	17-Dec-2012	16-Dec-2012
EPH CWG (Aliphatic) GC (S)	19-Dec-2012			19-Dec-2012			
EPH CWG (Aromatic) Aqueous GC (W)		16-Dec-2012	16-Dec-2012		16-Dec-2012	17-Dec-2012	16-Dec-2012
EPH CWG (Aromatic) GC (S)	19-Dec-2012			19-Dec-2012			
GRO by GC-FID (S)	17-Dec-2012			17-Dec-2012			
GRO by GC-FID (W)		18-Dec-2012	14-Dec-2012		18-Dec-2012	17-Dec-2012	18-Dec-2012
Low Level Phenols by HPLC (W)		18-Dec-2012	18-Dec-2012		18-Dec-2012	19-Dec-2012	18-Dec-2012
Mercury Unfiltered		17-Dec-2012	17-Dec-2012		17-Dec-2012	18-Dec-2012	17-Dec-2012
Metals by iCap-OES (Soil)	19-Dec-2012			19-Dec-2012			
Nitrite by Kone (w)		17-Dec-2012	17-Dec-2012		17-Dec-2012	17-Dec-2012	17-Dec-2012
NRA Leachate						13-Dec-2012	
PAH by GCMS	17-Dec-2012			17-Dec-2012			
PAH Spec MS - Aqueous (W)		17-Dec-2012	17-Dec-2012		17-Dec-2012	17-Dec-2012	17-Dec-2012
рН	14-Dec-2012			17-Dec-2012			
pH Value		14-Dec-2012	14-Dec-2012		14-Dec-2012	14-Dec-2012	14-Dec-2012
Phenols by HPLC (S)	18-Dec-2012			18-Dec-2012			
Sample description	14-Dec-2012	12-Dec-2012	12-Dec-2012	14-Dec-2012	12-Dec-2012	12-Dec-2012	12-Dec-2012
Total Organic Carbon	20-Dec-2012			20-Dec-2012			
TPH CWG (W)		11-Dec-2012	11-Dec-2012		11-Dec-2012	17-Dec-2012	11-Dec-2012
TPH CWG GC (S)	19-Dec-2012			19-Dec-2012			

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Order Number: Mayer Brown Ltd Report Number: Antony Platt

R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth:** 0.00 - 1.00 6680489

Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6399254-6680489 19/12/2012 08:09:46 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth:** 0.00 - 1.00 6680510 Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6399207-6680510 19/12/2012 08:40:01 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 0.970 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

206604 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 6.00 - 8.00 6653429

Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6399343-6653429 15/12/2012 16:00:26 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 0.010 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Antony Platt

R/PDEMEDINA.9 206604 Report Number:

Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.00 6653452 Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6399314-6653452 15/12/2012 15:41:39 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 0.008 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth**: 9.30 - 11.40 6653454 Sample ID :

BH102 Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6399439-6653454 15/12/2012 16:19:16 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 0.012 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.60 6653505 Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6399385-6653505 15/12/2012 16:38:05 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 0.009 Multiplier

Validated

121207-92 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth**: 9.30 - 11.40 6663059 Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: Date Acquired : Units : 6413846-6663059 15/12/12 15:26:14 PM ppb

Dilution CF

Validated

SDG: 121207-92 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer E

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Chromatogram

 Analysis:
 EPH CWG (Aliphatic) Aqueous GC (W)
 Sample No : Sample ID : BH101
 6.663153 BH101
 Depth : 6.00 - 8.00

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6413792-6663153
Date Acquired : 15/12/12 15:44:57 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

206604 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.60 6663168

Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: Date Acquired : Units : 6413819-6663168 15/12/12 16:03:24 PM ppb

Dilution CF 0.008 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Report Number: Superseded Report:

R/PDEMEDINA.9

206604

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.00 6663248

Attention:

Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Antony Platt

Sample Identity: Date Acquired : Units : 6413765-6663248 15/12/12 16:21:56 PM ppb

Dilution CF

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Antony Platt

R/PDEMEDINA.9 206604 Report Number:

Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 6.60 - 9.30 6675045

Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: Date Acquired : Units : 6424527-6675045 17/12/12 13:41:20 PM ppb

Dilution CF

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth:** 0.00 - 1.00 6680489 Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6399255-6680489 19/12/2012 08:09:46 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

1.000 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth:** 0.00 - 1.00 6680510 Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6399208-6680510 19/12/2012 08:40:01 PM

Sample Identity: Date Acquired : Units : ppb

Dilution CF 1.000 Multiplier

Validated

121207-92 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

206604 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 6.00 - 8.00 6653429

Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6399344-6653429 15/12/2012 16:00:26 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 0.010 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

206604

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.00 6653452

Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6399315-6653452 15/12/2012 15:41:39 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Mayer Brown Ltd Order Number:

R/PDEMEDINA.9 206604

Report Number: Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth**: 9.30 - 11.40 6653454 Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Antony Platt

6399440-6653454 15/12/2012 16:19:16 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 0.012 Multiplier

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

206604 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.60 6653505

Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6399386-6653505 15/12/2012 16:38:05 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

Validated

SDG: 121207-92 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Medir Customer: Mayer

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis:EPH CWG (Aromatic) Aqueous GC (W)Sample No :
Sample ID :6663059
BH102Depth :
9.30 - 11.40

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (Cl2 - C40)

Sample Identity: 6413847-6663059
Date Acquired : 15/12/12 15:26:14 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

SDG: 121207-92 **Job**: H_MAYERI

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina Customer: Mayer

 Medina
 Order

 Mayer Brown Ltd
 Repoil

 Antony Platt
 Super

Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report: 200004

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 6663153 Depth: 6.00 - 8.00

Sample ID : BH101

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6413793-6663153
Date Acquired : 15/12/12 15:44:57 PM
Units : ppb

Units : ppb
Dilution :
CF : 1

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

206604 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.60 6663168 Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: Date Acquired : Units : 6413820-6663168 15/12/12 16:03:24 PM ppb

Dilution CF 0.008 Multiplier

Validated

SDG: 121207-92 **Job:** H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Me

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 206604

Report Number: 206604 Superseded Report:

Chromatogram

 Analysis:
 EPH CWG (Aromatic) Aqueous GC (W)
 Sample No : Sample ID : BH101
 6663248
 Depth : 1.00 - 6.00

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6413766-6663248
Date Acquired : 15/12/12 16:21:56 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Report Number: Superseded Report:

206604

R/PDEMEDINA.9

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 6.60 - 9.30 6675045

Sample ID : BH102

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Antony Platt

Sample Identity: Date Acquired : Units : 6424528-6675045 17/12/12 13:41:20 PM ppb

Dilution CF

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Order Number: Mayer Brown Ltd Antony Platt

Superseded Report:

R/PDEMEDINA.9 206604

Chromatogram

Analysis: GRO by GC-FID (S) Sample No : 6675286 **Depth:** 0.00 - 1.00

Sample ID : BH101

Validated

121207-92 SDG: Job:

Analysis: GRO by GC-FID (S)

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina Mayer Brown Ltd **Customer:**

Attention:

Order Number:

R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Antony Platt

Sample No : 6675347 **Depth:** 0.00 - 1.00

Sample ID : BH102

Validated

SDG: 121207-92 **Job**: H_MAYERI

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Sample No:** 6644468 **Depth:** 6.00 - 8.00

Sample ID: BH101

Validated

SDG: 121207-92 **Job**: H_MAYERI

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Sample No:** 6662229 **Depth:** 1.00 - 6.60

Sample ID: BH102

Validated

SDG: 121207-92 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Antony Platt

Order Number: Mayer Brown Ltd

Superseded Report:

R/PDEMEDINA.9 206604

Chromatogram

Analysis: GRO by GC-FID (W) 6662259 Sample No : **Depth:** 6.00 - 8.00

Attention:

Sample ID : BH101

Validated

SDG: 121207-92 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Depth:** 9.30 - 11.40 Sample No : 6662268

Validated

121207-92 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Superseded Report: R/PDEMEDINA.9

206604

Chromatogram

Analysis: GRO by GC-FID (W) 6662270 Sample No : **Depth:** 1.00 - 6.00

Sample ID : BH101

Validated

SDG: 121207-92 Job:

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Customer: Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Depth: 6.60 - 9.30 Sample No : 6666829

Sample ID : BH102

Location:

Validated

SDG: 121207-92 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Depth:** 9.30 - 11.40 Sample No : 6682838

Sample ID : BH102

Validated

SDG: 121207-92 **Job**: H_MAYERI

Client Reference:

H_MAYERBROW_WOK-34

Location: N
Customer: N

Attention:

Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 206604

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Sample No:** 6682849 **Depth:** 1.00 - 6.60

Sample ID : BH102

Validated

SDG: 121207-92 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina Mayer Brown Ltd **Customer:**

Attention:

Order Number:

Superseded Report:

R/PDEMEDINA.9 206604

Antony Platt

Chromatogram

Analysis: GRO by GC-FID (W) Sample No : 6682866 **Depth:** 1.00 - 6.00

Sample ID : BH101

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

121207-92 Location: R/PDFMFDINA 9 SDG Medina Order Number: H MAYERBROW WOK-34 206604 Job: Report Number:

Client Reference:

Mayer Brown Ltd **Customer:** Attention: Antony Platt

Superseded Report:

Appendix General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed
- 4. With respect to turnaround, we will always endeayour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No The quantity of asbestos present is not determined unless Determination Possible. specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture
- 13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, and Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol)
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method transmitted/polarised microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Orodoblte	Blue Asbestos
Fibrous Adindite	=
Fibrous Anthophylite	=
FibrousTremdile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

CH5 3US
Tel: (01244) 528700
Fax: (01244) 528701
email: mkt@alcontrol.com
Website: www.alcontrol.com

Mayer Brown Ltd Lion House Oriental Road Woking Surrey GU22 8AR

Attention: Antony Platt

CERTIFICATE OF ANALYSIS

Date:08 January 2013Customer:H MAYERBROW WOK

Sample Delivery Group (SDG): 121217-21

Your Reference:

Location: Medina Report No: 207731

We received 10 samples on Friday December 14, 2012 and 10 of these samples were scheduled for analysis which was completed on Tuesday January 08, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

SDG: Job: Client Reference: 121217-21 H_MAYERBROW_WOK-34 Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
6675508	BH 103		0.50	12/12/2012
6675503	BH 103		0.50 - 3.00	12/12/2012
6675502	BH 103		3.00 - 7.50	12/12/2012
6675500	BH 104		0.50	12/12/2012
6675507	BH 104		2.50	12/12/2012
6675504	BH 104		3.50	12/12/2012
6675505	BH 104		4.80	12/12/2012
6675509	BH 105		0.50	12/12/2012
6675510	BH 105		3.00	12/12/2012
6675501	BH 105		4.50	12/12/2012

Only received samples which have had analysis scheduled will be shown on the following pages.

09:49:18 08/01/2013

Client Reference:

CERTIFICATE OF ANALYSIS

Validated

Superseded Report:

R/PDEMEDINA.9 121217-21 SDG: Location: Medina Order Number: Job: H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd Report Number: 207731 Antony Platt

		Attention				ony											_	_	oupe
SOLID Results Legend X Test	Lab Sample I	No(s)			8075708	6675503		6675502		6675500	6675507	000	6675504	6675505		6675509		6675510	6675501
N No Determination Possible	Customer Sample Reference		-	BH 103	BH 103		BH 103	<u>.</u>	BH 104	BH 104	-	BH 104	BH 104		BH 105		BH 105	BH 105	
	AGS Refere	nce																	
	Depth (m	-				0.50 - 3.00		3.00 - 7.50		0 50	2.50		3 A	4.80		0.50		3.00	4.50
	Containe	r	250g Amber Jar (AL	400g Tub (ALE214)	802 VOC (ALED15)	250g Amber Jar (AL	1kg TUB	250g Amber Jar (AL	400g Tub (ALE214)	1kg IUB	250g Amber Jar (AL	1kg TUB	1kg IUB	250g Amber Jar (AL	250g Amber Jar (AL	400g Tub (ALE215)	1kg TUB	250g Amber Jar (AL	400g Tub (ALE214)
Alkalinity Filtered as CaCO3	All	NDPs: 0 Tests: 7				X	X			×		X	×				X		X
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 7			7	X	X			×		X	×				X		X
Ammonium Soil by Titration	All	NDPs: 0 Tests: 3		X					x							x			
Anions by Kone (soil)	All	NDPs: 0 Tests: 3	X					2	(x				
Anions by Kone (w)	All	NDPs: 0 Tests: 7			1	X	X			X		X	X				X	_	X
Asbestos Identification (Soil)	All	NDPs: 0 Tests: 3		X					X							X		+	
Boron Water Soluble	All	NDPs: 0 Tests: 3	X					2	(X				
CEN 2:1 Readings	All	NDPs: 0 Tests: 7				X	X			×	2	X	×				X	+	X
CEN 8:1 Readings	All	NDPs: 0 Tests: 7				X	X			×	2	X	×				X	+	X
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 10		X		X	X		X	×	<u> </u>	X	×			X	X	+	X
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 7			1	x	X			X		X	×				X		x
EPH CWG (Aliphatic) Aqueous GC (W)	All	NDPs: 0 Tests: 7			1	X	X			×		X	×				X		x
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 3	X					3	(x			+	
EPH CWG (Aromatic) Aqueous GC (W)	All	NDPs: 0 Tests: 7				X	X			X		X	×				X	+	X
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 3	X					2	(X				

Client Reference:

CERTIFICATE OF ANALYSIS

Validated

Superseded Report:

R/PDEMEDINA.9 121217-21 SDG: Location: Medina Order Number: Job: H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd Report Number: 207731 Antony Platt

Client Reference:	ı	Attention			,	Platt							Supe								
SOLID Results Legend X Test	Lab Sample I	No(s)		6675508	6675503	6675502	6675500	6675507	6675504	6675505	6675509	6675510	6675501								
No Determination Possible	Customer Sample Reference			Possible Customer					Customer					BH 103	BH 104	BH 104	BH 104	BH 104	BH 105	BH 105	BH 105
	AGS Reference																				
	Depth (m)				0.50 - 3.00		0.50			4.80	0.50										
	Containe	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	400g Tub (ALE214) 250g Amber Jar (AL									
GRO by GC-FID (S)	All	NDPs: 0 Tests: 3		x			×				×										
GRO by GC-FID (W)	All	NDPs: 0 Tests: 7			X	X		X	X	X		X	X								
Low Level Phenols by HPLC (W)	All	NDPs: 0 Tests: 7			x	x		X	x	X		X	X								
Mercury Unfiltered	All	NDPs: 0 Tests: 7			x	X		X	X	X		X	X								
Metals by iCap-OES (Soil)	Antimony	NDPs: 0 Tests: 3	x				X				X										
	Arsenic	NDPs: 0 Tests: 3	X				X				X										
	Barium	NDPs: 0 Tests: 3	X				x				x										
	Beryllium	NDPs: 0 Tests: 3	X				x				x										
	Cadmium	NDPs: 0 Tests: 3	X				X				X										
	Chromium	NDPs: 0 Tests: 3	X				X				X										
	Copper	NDPs: 0 Tests: 3	X				X				x										
	Lead	NDPs: 0 Tests: 3	X				x				x										
	Mercury	NDPs: 0 Tests: 3	X				X				X										
	Molybdenum	NDPs: 0 Tests: 3	X				x				x										
	Nickel	NDPs: 0 Tests: 3	X				x				x										

Validated

R/PDEMEDINA.9 121217-21 SDG: Location: Medina Order Number: H_MAYERBROW_WOK-34 Mayer Brown Ltd 207731 Job: **Customer:** Report Number: Client Reference: Attention: Antony Platt Superseded Report:

Client Reference:		Attentior	1:	An	ton	y P	latt											S	upe			
SOLID				о		၈	0		о		ກ	6		o		6		ກ	6			
Results Legend	Lab Sample	No(s)		6675508		6675503	6675502		6675500	0	6675507	6675504		6675505		6675509		6675510	6675501			
X Test									_			_		о. 								
No Determination Possible		Customer Sample Reference					BH 103	!	BH 103	BH 103		BH 104		RH 104	BH 104		BH 104		BH 105		BH 105	BH 105
	AGS Reference																					
	Depth (r	n)		0.50		0.50 - 3.00	3.00 - 7.50		0.50		2.50	3.50		4.80		0.50		3 00	4.50			
	Contain	er	250g Amber Jar (AL	60g VOC (ALE215)	1kg TUB	250a Amber Jar (AL	250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215)	1kg TUB	250g Amher Jar (Al	250g Amber Jar (AL	1kg TUB	250g Amber Jar (AL	3500 Ambor Igr (Al	60g VOC (ALE215)	1kg TUB	250g Amber Jar (AL 250g Amber Jar (Al	400g Tub (ALE214)			
Metals by iCap-OES (Soil)	Selenium	NDPs: 0 Tests: 3	П	T												Ī		Ī	Γ			
	Zinc	NDPs: 0	X					X						2	X							
		Tests: 3	X					X						2	X			T	T			
PAH by GCMS	All	NDPs: 0 Tests: 3	X					X						1	×							
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 7			X)	(X)	<u> </u>	x				X		X			
рН	All	NDPs: 0 Tests: 3	,	«				2	K						×	<u>.</u>		<u> </u>				
pH Value	All	NDPs: 0 Tests: 7			X)	K			X	>	<u>(</u>	X		Ī		X		X			
Phenois by HPLC (S)	All	NDPs: 0 Tests: 3)	K				2	K						×	<u>.</u>						
Sample description	All	NDPs: 0 Tests: 10	x			X	X	X			x	x		X Z	K			x x				
Total Organic Carbon	All	NDPs: 8 Tests: 2	N			N	N	X			N	N		N	×			N				
Total Organic Carbon (Asb)	All	NDPs: 0 Tests: 1	X																			
TPH CWG (W)	All	NDPs: 0 Tests: 7			X)	K			X)	<u>(</u>	X				X		X			
TPH CWG GC (S)	All	NDPs: 0 Tests: 3	x					X						2	×			T				

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number:

Superseded Report:

R/PDEMEDINA.9

207731

Sample Descriptions

Grain Sizes

very fine	<0.06	53mm	fine	0.063mm - 0.1r	nm me	edium	0.1mm	- 2mm	coarse	2mm - 1	0mm	very coa	rse >10mm						
Lab Sample	e No(s)	Custon	ner Sample Re	ef. Depth	(m)	Co	lour	Descripti	ion	Grain size	Incl	usions	Inclusions 2						
667550	02		BH 103	3.00 -	7.50	Dark	Brown	N/A		0.1 - 2 mm	Sto	ones	Brick						
6675503			BH 103	0.50 -	3.00	Grey		Sandy Clay Loam		0.1 - 2 mm	Sto	ones	Brick						
667550	6675508		BH 103	0.5	0	Light	Brown	Clay	0	.063 - 0.1 mm	N	one	Stones						
667550	00		BH 104	0.5	0	В	eige	Silty Cla	ay	<0.063 mm	١	N/A	N/A						
667550	04		BH 104	3.5	0	Dark	Brown	Loamy Sa	and	0.1 - 2 mm	Glass	& Stones	Concrete/Aggre gate						
667550	05	BH 104		BH 104		BH 104		BH 104		4.8	0	Light	Brown	Clay	0	.063 - 0.1 mm	N	one	None
667550	07		BH 104	2.5	0	В	ack	N/A		0.1 - 2 mm	Sto	ones	Brick						
667550	01		BH 105	4.5	0	Light	Brown	Clay		.063 - 0.1 mm	N	one	None						
667550	09		BH 105	0.5	0	Light	Brown	Clay	0	.063 - 0.1 mm	N	one	Stones						
66755	10		BH 105	3.0	0	G	rey	Sandy Cl Loam	•	0.1 - 2 mm	Sto	ones	Vegetation						

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

121217-21 SDG:

Location: Medina Mayer Brown Ltd Job: H_MAYERBROW_WOK-34 **Customer:**

Client Reference:

Attention: Antony Platt Order Number: Report Number:

R/PDEMEDINA.9 207731

Superseded Report:

Ollent Reference.			Attention. An	torry i fatt		Ouperseded Repo	
Results Legend		Sustomer Sample R	DU 400	DU 404	DU 405		
		ustomer sample R	BH 103	BH 104	BH 105		
# ISO17025 accredited. M mCERTS accredited.							
aq Aqueous / settled sample.		Depth (m)	0.50	0.50	0.50		
diss.filt Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid		
tot.unfilt Total / unfiltered sample. * Subcontracted test.							
		Date Sampled	12/12/2012	12/12/2012	12/12/2012		
** % recovery of the surrogate standa		Sampled Time					
check the efficiency of the method.		Date Received	14/12/2012	14/12/2012	14/12/2012		
results of individual compounds w		SDG Ref	121217-21	121217-21	121217-21		
samples aren't corrected for the re-	covery			6675500	6675509		
(F) Trigger breach confirmed		Lab Sample No.(s)	6675508	6675500	6675509		
1-4&+§@ Sample deviation (see appendix)		AGS Reference					
Component	LOD/Units						
Component	LOD/OIIIIS	Welliou					
Ammoniacal Nitrogen,	<15	TM024	<15	<15	<15		
exchangeable as NH4	mg/kg		M	M	M		
Phonolo Total Detected	<0.035	TMO62 (C)	<0.035	< 0.035	< 0.035		
Phenols, Total Detected		TM062 (S)	<0.035	<0.035	<0.035		
monohydric	mg/kg		@ M	@ M	@ M		
			W IVI				
Fraction Organic Carbon	<0.002 -	- TM132		0.00577	0.0168		
(FOC)				#	#		
pH	1 pH	TM133	8.48	7.83	8.39		
Pil		1101100					
	Units		M	M	M		
Ounded From	.4	TN4450					
Cyanide, Free	<1 mg/k	g TM153	<1	<1	<1		
	I	1	М	М	@ M		
Antimony	<0.6	TM181	6.45	1.38	4.54		
I and the second second	mg/kg	1	#	#	#		
Arsenic	<0.6	TM181	21.1	11.9	18.8		
	mg/kg		M	M	M		
Barium	<0.6	TM181	199	120	142		
Darium		1 101 10 1					
	mg/kg		#	#	#		
B							
Beryllium	<0.01	TM181	2.1	1.21	1.08		
I i	mg/kg	1	М	М			
					M		
Cadmium	<0.02	TM181	0.716	0.522	0.562		
1							
	mg/kg		M	M	M		
Chromium		TM404					
Chromium	<0.9	TM181	39.6	25.5	186		
	mg/kg		М	М	М		
_							
Copper	<1.4	TM181	200	22.8	184		
''	ma/ka						
	mg/kg		M	M	M		
Lead	<0.7	TM181	225	67.4	123		
Load		1101101					
	mg/kg		M	M	M		
N4		T14404					
Mercury	<0.14	TM181	0.846	0.666	<0.14		
	mg/kg		М	М	М		
Molybdenum	<0.1	TM181	1.86	0.573	1.38		
,							
	mg/kg		#	#	#		
Nickel	<0.2	TM181	61.3	36.9	8450		
HORCI		1101101					
I	mg/kg	1	M	M	M		
Selenium		TM181	1.48	<1	<1		
Selenium	<1 mg/kg	I LALIAL	1.48	<u> </u>	<u> </u>		
I	I	1	#	#	#		
-							
Zinc	<1.9	TM181	225	96.7	219		
I							
	mg/kg		M	М	M		
Boron, water soluble	<1 mg/k	TM222	1.67	<1	1.53		
Boron, water soluble	- i iiig/K	1 171222					
I	I	1	M	M	M		
Water Caluble College	z0.000	TN 40 40					
Water Soluble Sulphate	<0.008	TM243	0.0768	1.57	0.233		
as SO4 2:1 Extract	g/l	1	М	М	М		
				IVI	IVI		
Fraction Organic Carbon	<0.1 -	TM321	<0.1				
(FOC)	I	1					
(1 00)							
	I	1					
	I	1					
	I	1					
	I	1					
		_					
	I	1					
	I	1					
	I	1					
	I	1					
		_					
	I	1					
	I	1					
	I	1					
	I	1					
	I	1					
	I	1					
	I	1					
	<u> </u>						
	I	1					
	I	1					
		+					
	I	1					
	l						
T. Control of the Con	l .	1			l		

Validated

R/PDEMEDINA.9 SDG: 121217-21 Location: Medina Order Number:

H_MAYERBROW_WOK-34 Mayer Brown Ltd 207731 **Customer:** Report Number: Attention: Antony Platt Superseded Report:

Client Reference:

Client Reference:			Attention:	An	tony Platt		Superseded Repo	л.	
PAH by GCMS									
Results Legend		Customer Sample R	BH 103		BH 104	BH 105			
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.50 Soil/Solid		0.50 Soil/Solid	0.50 Soil/Solid			
Subcontracted test. Frecovery of the surrogate stands check the efficiency of the method. results of individual compounds w samples aren't corrected for the re- Trigger breach confirmed 148+§© Sample deviation (see appendix)	. The ithin	Date Sampled Sampled Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	12/12/2012 14/12/2012 121217-21 6675508		12/12/2012 	12/12/2012 14/12/2012 121217-21 6675509			
Component	LOD/Unit								
Perylene-d12 % recovery**	%	TM218	89.2		102	83.4			
Naphthalene	<0.009 mg/kg		0.0234	М	<0.009 @ M	<0.009 M			
Acenaphthylene	<0.012 mg/kg		0.0166	М	<0.012 @ M	<0.012 M			
Acenaphthene	<0.008 mg/kg		<0.008	М	<0.008 @ M	<0.008 M			
Fluorene	<0.01 mg/kg	TM218	<0.01	М	<0.01 @ M	<0.01			
Phenanthrene	<0.015 mg/kg		0.112	М	<0.015 @ M	<0.015 M			
Anthracene Fluoranthene	<0.016 mg/kg <0.017		0.0253	М	<0.016 @ M <0.017	<0.016 M 0.0398			
Pyrene	<0.017 mg/kg <0.015		0.224	М	<0.017 @ M <0.015	0.0398 M 0.0335			
Benz(a)anthracene	<0.015 mg/kg <0.014		0.193	М	<0.015 @ M <0.014	0.0335 M <0.014			
Chrysene	mg/kg <0.01	TM218	0.112	М	0.014 @ M	0.0172			
Benzo(b)fluoranthene	mg/kg <0.015		0.137	М	@ M	0.0206			
Benzo(k)fluoranthene	mg/kg <0.014		0.0524	М	@ M	<0.014			
Benzo(a)pyrene	mg/kg <0.015		0.12	М	@ M <0.015	0.0212			
Indeno(1,2,3-cd)pyrene	mg/kg <0.018		0.069	М	@ M <0.018	<0.018			
Dibenzo(a,h)anthracene	mg/kg <0.023		<0.023	М	@ M <0.023	<0.023			
Benzo(g,h,i)perylene	mg/kg <0.024	TM218	0.0903	М	@ M <0.024	<0.024			
PAH, Total Detected	mg/kg <0.118		1.31	М	@ M <0.118	0.132			
USEPA 16	mg/kg								

Validated

121217-21 SDG:

Job: H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Client Reference:

Client Reference:			Attention: An	tony Platt		Superseded Repo	л	
TPH CWG (S)								
Results Legend		Customer Sample R	BH 103	BH 104	BH 105			
# ISO17025 accredited. M mCERTS accredited.								
aq Aqueous / settled sample.		Depth (m)	0.50	0.50	0.50			
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	0.50 Soil/Solid	0.50 Soil/Solid	0.50 Soil/Solid			
* Subcontracted test.		Date Sampled	12/12/2012	12/12/2012	12/12/2012			
** % recovery of the surrogate standa		Sampled Time						
check the efficiency of the method. results of individual compounds wi	The thin	Date Received	14/12/2012	14/12/2012	14/12/2012			
samples aren't corrected for the red		SDG Ref	121217-21 6675508	121217-21 6675500	121217-21 6675509			
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	0073300	0073300	0073303			
Component	LOD/Uni							
		_	00	400	00			
GRO Surrogate %	%	TM089	62	100	83			
recovery**								
GRO >C5-C12	<0.044		<0.044	<0.044	<0.044			
	mg/kg							
Methyl tertiary butyl ether	< 0.005	TM089	<0.005	<0.005	<0.005			
(MTBE)	mg/kg		@#	@#	@#			
Benzene	<0.01	TM089	<0.01	<0.01	<0.01			
Bonzone	mg/kg		@ M	@ M	@ M			
Talvana								
Toluene	<0.002		0.00254	<0.002	<0.002			
	mg/kg		@ M	@ M	@ M			
Ethylbenzene	<0.003	3 TM089	<0.003	<0.003	<0.003			
	mg/kg		@ M	@ M	@ M			
m,p-Xylene	<0.006	TM089	<0.006	<0.006	<0.006			
,	mg/kg		@ M	@ M	@ M			
o-Xylene	<0.003	_	<0.003	<0.003	<0.003			
o Aylene	mg/kg							
			@ M	@ M	@ M			
sum of detected mpo	<0.009	9 TM089	<0.009	<0.009	<0.009			
xylene by GC	mg/kg							
sum of detected BTEX by	<0.024	F TM089	<0.024	<0.024	<0.024			
GC	mg/kg							
Aliphatics >C5-C6	<0.01	TM089	<0.01	<0.01	<0.01			
	mg/kg							
Aliphatics >C6-C8	<0.01	TM089	<0.01	<0.01	<0.01			
Aliphatics > 00-00		110000	٧٥.٥١	٧٥.٥١	\0.01			
11.1.1	mg/kg	T14000	0.04	0.04	0.04			
Aliphatics >C8-C10	<0.01	TM089	<0.01	<0.01	<0.01			
	mg/kg							
Aliphatics >C10-C12	<0.01	TM089	<0.01	<0.01	<0.01			
	mg/kg							
Aliphatics >C12-C16	<0.1	TM173	8.17	<0.1	7.83			
	mg/kg		•	• • • • • • • • • • • • • • • • • • • •				
Aliphatics >C16-C21	<0.1	TM173	4.96	<0.1	13.2			
Aliphatics >C 16-C21		1101173	4.90	~ U.1	13.2			
	mg/kg							
Aliphatics >C21-C35	<0.1	TM173	31.6	12	144			
	mg/kg							
Aliphatics >C35-C44	<0.1	TM173	15.7	<0.1	59.2			
	mg/kg							
Total Aliphatics >C12-C44	<0.1	TM173	60.4	12	224			
Total 7 inplication 3 12 3 11	mg/kg		00.1					
Assessation > FOF FO7			-0.04	40.04	40.04			
Aromatics >EC5-EC7	<0.01		<0.01	<0.01	<0.01			
	mg/kg							
Aromatics >EC7-EC8	<0.01		<0.01	<0.01	<0.01			
	mg/kg							
Aromatics >EC8-EC10	<0.01	TM089	<0.01	<0.01	<0.01			
	mg/kg							
Aromatics >EC10-EC12	<0.01	_	<0.01	<0.01	<0.01			
, a official of 2 C 10° LO 12	mg/kg		~0.01	\0.01	١٠.٥١			
Aramatics : 5040 5040		_	4.0	.0.4	0.4			
Aromatics >EC12-EC16	<0.1	TM173	4.3	<0.1	3.1			
	mg/kg							
Aromatics >EC16-EC21	<0.1	TM173	15	0.573	13.6]
	mg/kg							
Aromatics >EC21-EC35	<0.1	TM173	53.2	6.85	89.6			
	mg/kg							
Aromatics >EC35-EC44	<0.1	TM173	19.9	<0.1	38.8			
/ HOITIQUES / LOSS-E044			ש.שו	~0.1	30.0			
	mg/kg	_						
Aromatics >EC40-EC44	<0.1	TM173	7.34	<0.1	14.2			
	mg/kg							
Total Aromatics	<0.1	TM173	92.4	7.42	145			
>EC12-EC44	mg/kg							
Total Aliphatics >C5-35	<0.1	TM173	44.8	12	165			
- 5ta. 7 iii.p.10000 - 50 00	mg/kg		11.0	'-	100			
Total Aromatics >C5-35	<0.1	TM173	72.5	7.43	106			
Total Atomatics >05-35			12.5	1.45	100			
	mg/kg	_	=		:			
Total Aliphatics &	<0.1	TM173	117	19.4	271			
Aromatics >C5-35	mg/kg							

Validated

R/PDEMEDINA.9 121217-21 SDG: Location: Medina Order Number: Job:

H_MAYERBROW_WOK-34 Mayer Brown Ltd 207731 **Customer:** Report Number: Attention: Antony Platt Superseded Report:

Client Reference:

TPH CWG (S)							
Results Legend # ISO17025 accredited.	Cı	ustomer Sample R	BH 103	BH 104	BH 105		
M mCERTS accredited.							
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.50 Soil/Solid	0.50 Soil/Solid	0.50 Soil/Solid		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	12/12/2012	12/12/2012	12/12/2012		
** % recovery of the surrogate standa check the efficiency of the method.		Sampled Time Date Received	14/12/2012	14/12/2012	14/12/2012		
results of individual compounds wi samples aren't corrected for the rec	ithin	SDG Ref	121217-21	121217-21	121217-21		
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)	····, ı	Lab Sample No.(s)	6675508	6675500	6675509		
Component	LOD/Units	AGS Reference Method					
Total Aliphatics &	<0.1	TM173	153	19.4	369		
Aromatics >C5-C44	mg/kg						
]
						1	

CERTIFICATE OF ANALTSIS

Validated

R/PDEMEDINA.9 121217-21 SDG: Location: Medina Order Number: H_MAYERBROW_WOK-34 Mayer Brown Ltd 207731 Job: **Customer:** Report Number: Client Reference: Attention: Antony Platt Superseded Report:

Asbestos Identification - Soil

Asbestos identification - 3011											
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH 103 0.50 SOLID 12/12/2012 00:00:00 121217-21 6675508 TM048	28/12/12	Kevin Bowron	Loose fibres in soil	Not Detected (#)	Trace (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH 104 0.50 SOLID 12/12/2012 00:00:00 121217-21 6675500 TM048	28/12/12	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH 105 0.50 SOLID 12/12/2012 00:00:00 121217-21 6675509 TM048	28/12/12	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

Page 11 of 94

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number:

207731 Superseded Report:

R/PDEMEDINA.9

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 124
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.235	Moisture Content Ratio (%)	34.3
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	74.5
Particle Size <4mm	>95%		

Case					Landfi	II Waste Acce	ptance
SDG	121217-21					Criteria Limits	;
Lab Sample Number(s)	6675501						
Sampled Date	12-Dec-2012					Stable Non-reactive	
Customer Sample Ref.	BH 105				Inert Waste Landfill	Hazardous	Hazardous Waste Landfill
Depth (m)	4.50				Landilli	Waste in Non- Hazardous	waste Landilli
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 cond	Λο 4ο		es for compliance lea S EN 12457-3 at L/S	•
	m	ıg/l		mg/kg	9		- , ,
Arsenic	0.000433	0.000172	0.000866	0.00201	0.5	2	25

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values		
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 l/kg		
Arsenic	0.000433	0.000172	0.000866	0.00201	0.5	2	25
Barium	0.0222	0.0175	0.0444	0.18	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.000825	0.000662	0.00165	0.0068	0.5	10	70
Copper	0.00243	0.001	0.00487	0.0116	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.000375	0.00135	0.00075	0.0124	0.5	10	30
Nickel	0.00245	0.000585	0.0049	0.00789	0.4	10	40
Lead	0.000079	0.000077	0.000158	0.000772	0.5	10	50
Antimony	<0.00016	<0.00016	<0.00032	<0.0016	0.06	0.7	5
Selenium	0.000961	<0.00039	0.00192	<0.0039	0.1	0.5	7
Zinc	0.00983	0.000801	0.0197	0.0179	4	50	200
Chloride	61.2	6.2	122	122	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	398	67.1	796	1030	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.258	8.024
Conductivity (µS/cm)	927.00	231.00
Temperature (°C)	20.10	20.40
Volume Leachant (Litres)	0.290	1.400
Volume of Eluate VE1 (Litres)	0.192	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121217-21 SDG

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: **Customer:**

Medina

Mayer Brown Ltd Antony Platt

Order Number: Report Number:

74.5

Inert Waste

Landfill

R/PDEMEDINA.9

207731 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Medina **Client Reference Site Location** 34.3 Mass Sample taken (kg) 0.235 Moisture Content Ratio (%)

Dry Matter Content Ratio (%)

Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Case **SDG** 121217-21 Lab Sample Number(s) 6675501

Attention:

Landfill Waste Acceptance Criteria Limits

Sampled Date 12-Dec-2012 **Customer Sample Ref.** BH 105 Depth (m) 4.50

Stable Non-reactive Hazardous Hazardous Waste Landfill Waste in Non-Hazardous Landfill

Solid Waste Analysis

Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

_	_	
_	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		for compliance lea EN 12457-3 at L/S	•
	m	ng/l	mg,	/kg	using bo	EN 1245/-5 at L/5	10 1/ kg
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	<0.2	<0.2	<0.4	<2	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Total Ammonium as NH4	<0.3	<0.3	<0.6	<3	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	<0.0677	<0.135	<0.677	-	-	-
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Boron	0.0899	0.042	0.18	0.473	-	-	-
Total Alkalinity Filtered as CaCO3	100	55	200	599	-	-	-
Phenols Total of 5 Speciated by HPLC	<0.00064	<0.00064	<0.00128	<0.0064	-	-	-
(W)							
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	0	<0.000015	0.000056	<0.00015	-	-	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Anthracene by GCMS	<0.000015	<0.00015	<0.00003	<0.00015	-	-	-
Phenanthrene by GCMS	<0.000022	<0.000022	<0.000044	<0.00022	-		-
Fluorene by GCMS	0	<0.000014	0.0000349	<0.00014	-	-	-
Chrysene by GCMS	<0.000013	<0.000013	<0.000026	<0.00013	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.258	8.024
Conductivity (µS/cm)	927.00	231.00
Temperature (°C)	20.10	20.40
Volume Leachant (Litres)	0.290	1.400
Volume of Eluate VE1 (Litres)	0.192	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121217-21 SDG:

PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Antony Platt

Order Number: Mayer Brown Ltd

Report Number: Superseded Report:

R/PDEMEDINA.9 207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Medina **Site Location**

Mass Sample taken (kg) 0.235 Mass of dry sample (kg) 0.175 Particle Size <4mm >95% **Moisture Content Ratio (%)** 34.3 74.5 **Dry Matter Content Ratio (%)**

		, and the second	
Case		Land	ill Waste Acce
SDG	121217-21		Criteria Limit
Lab Sample Number(s)	6675501		
Sampled Date	12-Dec-2012		Stable Non-reactive
Customer Sample Ref. Depth (m)	BH 105	Inert Waste Landfill	Hazardous
	4.50	Landilli	Waste in Non- Hazardous
.			Landfill
Solid Waste Analysis			
Total Organic Carbon (%)	-	-	-
Loss on Ignition (%)	-	-	-
Sum of BTEX (mg/kg)	-	-	-
Sum of 7 PCBs (mg/kg)	-	-	-
Mineral Oil (mg/kg)	-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		for compliance lead EN 12457-3 at L/S	
	m	g/l	mg	/kg	using 65 i	EN 12457-3 at L/S	10 I/ Kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	<0.000015	<0.000015	<0.00003	<0.00015	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.00016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.00016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.00014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	<0.000247	<0.000247	<0.000494	<0.00247	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	< 0.003	<0.003	<0.006	< 0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.258	8.024
Conductivity (µS/cm)	927.00	231.00
Temperature (°C)	20.10	20.40
Volume Leachant (Litres)	0.290	1.400
Volume of Eluate VE1 (Litres)	0.192	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

Validated

121217-21 SDG:

Client Reference:

SDG

Job:

H_MAYERBROW_WOK-34

121217-21

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9 207731 Report Number:

Criteria Limits

Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.235	Moisture Content Ratio (%)	34.3
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	74.5
Particle Size <4mm	>95%		
Case			Landfill Waste Acceptance

Lab Sample Number(s)	6675501
Sampled Date	12-Dec-2012
Customer Sample Ref.	BH 105
Depth (m)	4.50
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		•
	n	ng/l	mg	ı/kg	using bs	EN 12457-5 at L/S	10 I/Kg
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.008	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
o Xylene by GC	< 0.003	< 0.003	<0.006	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
Total Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
Total Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)		
' ' '	8.258	8.024
Conductivity (µS/cm)	927.00	231.00
Temperature (°C)	20.10	20.40
Volume Leachant (Litres)	0.290	1.400
Volume of Eluate VE1 (Litres)	0.192	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27

Validated

121217-21 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: **Customer:**

Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	REF : BS EN 12457/3		
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.233	Moisture Content Ratio (%)	33
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	75.2

· · · · · · · · · · · · · · · · · · ·			,			
Particle Size <4mm	>95%					
Case					ill Waste Acce	-
SDG	121217-21				Criteria Limits	•
Lab Sample Number(s)	6675502					
Sampled Date	12-Dec-2012				Stable Non-reactive	
Customer Sample Ref.	BH 103			Inert Waste Landfill	Hazardous	Hazardous Waste Landfill
Depth (m)	3.00 - 7.50			Landilli	Waste in Non- Hazardous	waste Landilli
Solid Waste Analysis		I			Landfill	
Total Organic Carbon (%)	-			-	-	-
Loss on Ignition (%)	-			-	-	-
Sum of BTEX (mg/kg)	-			-	-	-
Sum of 7 PCBs (mg/kg)	-			-	-	-
Mineral Oil (mg/kg)	-			-	-	-
PAH Sum of 17 (mg/kg)	-			-	-	-
pH (pH Units)	-			-	-	-
ANC to pH 6 (mol/kg)	-			-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg		
	m	g/l	mg,	/kg	using b3	EN 12457-5 at L/5	10 I/ Kg
Arsenic	0.00494	0.00129	0.00988	0.018	0.5	2	25
Barium	0.256	0.102	0.512	1.23	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00103	0.000985	0.00206	0.00991	0.5	10	70
Copper	0.00347	0.0046	0.00694	0.0444	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0217	0.0116	0.0434	0.13	0.5	10	30
Nickel	0.00479	0.00421	0.00958	0.0429	0.4	10	40
Lead	0.000174	0.000218	0.000348	0.00212	0.5	10	50
Antimony	0.00189	0.00333	0.00377	0.0313	0.06	0.7	5
Selenium	0.00514	0.000945	0.0103	0.0152	0.1	0.5	7
Zinc	0.00129	0.0177	0.00258	0.154	4	50	200
Chloride	172	7.8	343	304	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	300	210	600	2220	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.152	8.135
Conductivity (µS/cm)	1,295.00	578.00
Temperature (°C)	20.00	20.50
Volume Leachant (Litres)	0.292	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates 08/01/2013 09:49:27

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

21 Location: RBROW_WOK-34 Customer:

Medina Mayer Brown Ltd Antony Platt

Attention:

Order Number: Report Number: R/PDEMEDINA.9 207731

Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.233	Moisture Content Ratio (%)	33
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	75.2
Particle Size <4mm	>95%		

Farticle Size \4iiiii	- 33 /0						
Case					Landfill Waste Acceptance		
SDG	121217-21					Criteria Limits	•
Lab Sample Number(s)	6675502						
Sampled Date	12-Dec-2012					Hazardous I	
Customer Sample Ref.	BH 103				Inert Waste		Hazardous
Depth (m)	3.00 - 7.50				Landfill	Waste in Non-	Waste Landfill
Dopan (iii)	0.00 7.00					Hazardous Landfill	
Solid Waste Analysis							
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A ₂ 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached	Limit values for compliance leaching tes using BS EN 12457-3 at L/S 10 l/kg		
	m	ıg/l	mg	ı/kg	using D	5 EN 12457 5 dt 275	, 10 i, kg
Mercury Unfiltered	<0.00002	0.0000537	<0.00004	0.000463	-	-	-
Total Ammonia as NH3	15.9	3.06	31.7	48.3	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Total Ammonium as NH4	16.8	3.24	33.7	51.2	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.0999	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	0.141	<0.135	1.21	-	-	-
Xylenols by HPLC (W)	0.00088	<0.0005	0.00176	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	_	_	_

	m	ıg/l	mg/kg		using B3 EN 12437-3 at E/3 10 1/K		10 1/ kg
Mercury Unfiltered	<0.00002	0.0000537	<0.00004	0.000463	-	-	-
Total Ammonia as NH3	15.9	3.06	31.7	48.3	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Total Ammonium as NH4	16.8	3.24	33.7	51.2	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.0999	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	0.141	<0.135	1.21	-	-	-
Xylenols by HPLC (W)	0.00088	<0.0005	0.00176	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	0.00093	<0.0005	0.00186	<0.005	-	-	-
Boron	0.551	0.13	1.1	1.88	-	-	-
Total Alkalinity Filtered as CaCO3	115	95	230	978	-	-	-
Phenols Total of 5 Speciated by HPLC (W)	0.00181	<0.00064	0.00362	<0.0064	-	-	-
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	<0.000015	0.0000558	<0.00003	0.000481	-	-	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.0000322	0.0000482	0.000311	-	-	-
Anthracene by GCMS	<0.000015	<0.000015	<0.00003	<0.00015	-	-	-
Phenanthrene by GCMS	<0.000022	<0.000022	<0.000044	<0.00022	-	-	-
Fluorene by GCMS	<0.000014	0.0000161	<0.000028	<0.00014	-	-	-
Chrysene by GCMS	0	<0.000013	0.0000297	<0.00013	-	-	-
			I				

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.152	8.135
Conductivity (µS/cm)	1,295.00	578.00
Temperature (°C)	20.00	20.50
Volume Leachant (Litres)	0.292	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
Mcerts Certification does not apply to leachates
08/01/2013 09:49:27

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 207731

er: 20773

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

	OLIV 10.1	COMOLATIV	E IWO OTAC	E BATCH TE			
WAC ANALYTICAL RESUL	TS					REF : BS	EN 12457
Client Reference			Site Location		Medin	ıa	
Mass Sample taken (kg)	0.233		Moisture Conte	nt Ratio (%)	33		
	0.175				75.2		
Mass of dry sample (kg)			Dry Matter Cont	terit Ratio (%)	75.2		
Particle Size <4mm	>95%						
Case					Landf	ill Waste Acce	ptance
SDG	121217-21					Criteria Limits	•
Lab Sample Number(s)	6675502						
Sampled Date	12-Dec-2012					Stable	
· ·					Inert Waste	Non-reactive	Hazardous
Customer Sample Ref.	BH 103				Landfill	Hazardous Waste in Non-	Waste Landfill
Depth (m)	3.00 - 7.50					Hazardous Landfill	
Solid Waste Analysis		1					
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units) ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
and to provide the		ı					
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance lea	-
	m	ıg/l	mg	/kg	using B	SS EN 12457-3 at L/S	10 l/kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.000037	0.0000605	0.000361	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	=	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.000018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS Indeno(123cd)pyrene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
PAH 16 EPA Total by GCMS	<0.00014	<0.00014	<0.000028	<0.00014	-	-	-
TPH CWG (W)	<0.000247	<0.000247	<0.000494	<0.00247	-	-	-
Surrogate Recovery	_	_	_	_	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.006	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Leach Test Information	2:1	8:1					
Date Prepared	40 D 0040	20-Dec-2012					
pH (pH Units)	19-Dec-2012 8.152	8.135					
Conductivity (µS/cm)	1,295.00	578.00					
T (00)	1,200.00	5, 5.55					

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates 08/01/2013 09:49:27

20.00

0.292

0.242

09:49:18 08/01/2013

Temperature (°C)

Volume Leachant (Litres)

Volume of Eluate VE1 (Litres)

20.50

1.400

Validated

REF: BS EN 12457/3

SDG: 121217-21

Casa

PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer F

Medina Mayer Brown Ltd Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 207731

Landfill Waste Accentance

Attention: Antony Platt Superseded Ro
CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference

Mass Sample taken (kg) 0.233

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Site LocationMedinaMoisture Content Ratio (%)33Dry Matter Content Ratio (%)75.2

ase	
SDG	121217-21
Lab Sample Number(s)	6675502
Sampled Date	12-Dec-2012
Customer Sample Ref.	BH 103
Depth (m)	3.00 - 7.50
S 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
0(7 DOD. (//)	
Sum of 7 PCBs (mg/kg)	-

C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached			
m	ıg/l	mg	/kg	using BS EN 12457-3 at L/S 10 I/kg		10 1/ Kg
<0.007	<0.007	<0.014	<0.07	-	-	-
<0.004	<0.004	<0.00799	<0.04	-	-	-
<0.005	<0.005	<0.00999	<0.05	-	-	-
<0.008	<0.008	<0.016	<0.08	-	-	-
< 0.003	< 0.003	<0.006	<0.03	-	-	-
<0.011	<0.011	<0.022	<0.11	-	-	-
<0.028	<0.028	<0.056	<0.28	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
	 color 	C2 eluate C8 eluate mg/l	C2 eluate C8 eluate A2 leached mg/I mg <0.007 <0.014 <0.004	C2 conte-ma.1 eluate A2 intended A2-10 conce leached mg/kg conce leached wg/kg conce leached conce leached mg/kg conce leached <	C2 concentral eluate C8 concentral eluate A2 2.1 concentral eached Limit values using BS I mg/I mg/kg Limit values using BS I mg/kg Limit values using BS I mg/kg concentral elached kg limit values using BS I concentral elached mg/kg concentral elached kg limit values using BS I concentral elached mg/kg Limit values using BS I Limit values using BS I concentral elached concentral elached Limit values using BS I concentral elached concentral elached Limit values using BS I concentral elached Limit values using BS I Limit values using BS I concentral elached Limit values using BS I Limit val	C2 conto mg/l C8 eluate A2 leached A2-10 leached A2-10 leached Limit values for compliance lea using BS EN 12457-3 at L/S mg/l mg/kg <0.007 <0.007 <0.014 <0.007 - - <0.004

Leach Test Information	2:1	8:1
		00.5
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.152	8.135
Conductivity (µS/cm)	1,295.00	578.00
Temperature (°C)	20.00	20.50
Volume Leachant (Litres)	0.292	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

Validated

121217-21 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Medina **Site Location**

Mass Sample taken (kg) 0.218 Mass of dry sample (kg) 0.175 Particle Size <4mm >95% **Moisture Content Ratio (%)** 24.2 80.5 **Dry Matter Content Ratio (%)**

)	121217-21
Lab Sample Number(s)	6675503
Sampled Date	12-Dec-2012
Customer Sample Ref.	·
Depth (m)	
Solid Waste Analysis	
Total Organic Carbon (%)	-
oss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	m	g/l	mg/kg		using B3 LN 12437-3 at L/3 10 1/kg		
Arsenic	0.0059	0.00109	0.0118	0.0181	0.5	2	25
Barium	0.176	0.0679	0.351	0.841	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00144	0.000707	0.00289	0.00817	0.5	10	70
Copper	0.00512	0.00246	0.0102	0.0286	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0366	0.00507	0.0734	0.0979	0.5	10	30
Nickel	0.0038	0.0022	0.00762	0.0244	0.4	10	40
Lead	0.000175	0.000122	0.00035	0.0013	0.5	10	50
Antimony	0.00695	0.00284	0.0139	0.0345	0.06	0.7	5
Selenium	0.00287	<0.00039	0.00574	0.0043	0.1	0.5	7
Zinc	0.0191	0.000798	0.0382	0.0354	4	50	200
Chloride	72.4	3.2	145	136	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	68.1	36.3	136	411	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.020	8.293
Conductivity (µS/cm)	861.00	214.00
Temperature (°C)	20.00	20.40
Volume Leachant (Litres)	0.308	1.400
Volume of Eluate VE1 (Litres)	0.262	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Validated

121217-21 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Medina

Mass Sample taken (kg) 0.218 Mass of dry sample (kg) 0.175 Particle Size <4mm >95% **Site Location Moisture Content Ratio (%)** 24.2 80.5 **Dry Matter Content Ratio (%)**

ase	
SDG	121217-21
Lab Sample Number(s)	6675503
Sampled Date	12-Dec-2012
Customer Sample Ref.	BH 103
Depth (m)	0.50 - 3.00
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	

Hazardous Waste Landfill

Cona tracto / manyoro						
-						
-						
-						
-						
-						
-						
-						
-						
-						

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A 2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg	
	m	g/l	mg,	/kg	using 63 Liv 12437-3 at 1/3 10 1/kg	
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002		-
Total Ammonia as NH3	10.6	3.14	21.3	42.6		
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005		-
Total Ammonium as NH4	11.3	3.32	22.5	45.1		-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5		
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005		-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007		-
Nitrate as N	<0.0677	0.121	<0.136	1.03		-
Xylenols by HPLC (W)	<0.0005	0.00109	<0.001	0.00927		-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005		-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005		-
Boron	0.21	0.0504	0.42	0.743		-
Total Alkalinity Filtered as CaCO3	185	75	370	915		-
Phenols Total of 5 Speciated by HPLC	<0.00064	0.00109	<0.00128	0.00927		-
(W)						
PAH Spec MS - Aqueous (W)						
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001		-
Acenaphthene by GCMS	0	<0.000015	0.0000387	<0.00015	<u> </u>	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011		
Fluoranthene by GCMS	0	<0.000017	0.0000509	<0.00017	<u> </u>	-
Anthracene by GCMS	<0.000015	<0.000015	<0.00003	<0.00015		-
Phenanthrene by GCMS	<0.000022	<0.000022	<0.000044	<0.00022		-
Fluorene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014		-
Chrysene by GCMS	<0.000013	<0.000013	<0.000026	<0.00013		=

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.020	8.293
Conductivity (µS/cm)	861.00	214.00
Temperature (°C)	20.00	20.40
Volume Leachant (Litres)	0.308	1.400
Volume of Eluate VE1 (Litres)	0.262	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

Validated

121217-21 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

207731 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 1245
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.218	Moisture Content Ratio (%)	24.2
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	80.5
Particle Size <4mm	>95%		

	33,3						
Case					Landi	fill Waste Acce	ptance
SDG	121217-21					Criteria Limits	3
Lab Sample Number(s)	6675503						
Sampled Date	12-Dec-2012					Stable	
Customer Sample Ref.	BH 103				Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	0.50 - 3.00	-			Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance leas SS EN 12457-3 at L/S	•
	n	mg/l		ı/kg	using t	55 EN 12457-5 at L/S	10 1/ Kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	<0.000015	0.0000435	<0.00015	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.00046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	*0.000007	10.000007	10.0000544	-0.00007			

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 conc ⁿ leached		or compliance lead	•
	mg/l		mg	/kg	using BS EI	N 12457-3 at L/S	LO I/kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	<0.000015	0.0000435	<0.00015	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.00017	< 0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.0000541	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.00016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	<0.000247	<0.000247	<0.000495	<0.00247	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.00601	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	0.01	<0.01	0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	0.025	<0.01	0.0501	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.020	8.293
Conductivity (µS/cm)	204.00	211.22
Conductivity (µ5/cm)	861.00	214.00
Temperature (°C)	20.00	20.40
Volume Leachant (Litres)	0.308	1.400
\/-\:\/\\\\\\\\\\\\\\\\\	5.555	
Volume of Eluate VE1 (Litres)	0.262	·

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

: 207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	BULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.218	Moisture Content Ratio (%)	24.2
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	80.5
Particle Size <4mm	>95%		

Particle Size <4mm	>95%					
Case				Landf	ill Waste Acce	ptance
SDG	121217-21				Criteria Limits	;
Lab Sample Number(s)	6675503					
Sampled Date	12-Dec-2012				Stable	
Customer Sample Ref.	BH 103			Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	0.50 - 3.00			Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis		l			Landfill	
Total Organic Carbon (%)	-			-	-	-
Loss on Ignition (%)	-			-	-	-
Sum of BTEX (mg/kg)	-			-	-	-
Sum of 7 PCBs (mg/kg)	-			-	-	-
Mineral Oil (mg/kg)	-			-	-	-
PAH Sum of 17 (mg/kg)	-			-	-	-
pH (pH Units)	-			-	-	-
ANC to pH 6 (mol/kg)	-			-	-	-
ANC to pH 4 (mol/kg)	-			-	-	-

C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A ₂ 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached			
m	ig/l	mg	g/kg	using BS	EN 12457-3 at L/5	10 I/Kg
<0.007	<0.007	<0.014	<0.07	-	-	-
<0.004	<0.004	<0.00801	<0.04	-	-	-
<0.005	<0.005	<0.01	<0.05	-	-	-
<0.008	<0.008	<0.016	<0.08	-	-	-
< 0.003	<0.003	<0.00601	<0.03	-	-	-
<0.011	<0.011	<0.022	<0.11	-	-	-
<0.028	<0.028	<0.0561	<0.28	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
0.025	<0.01	0.0501	<0.1	-	-	-
0.025	<0.01	0.0501	<0.1	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
0.016	<0.01	0.032	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
	 c0.007 c0.004 c0.008 c0.003 c0.011 c0.028 c0.01 	C2 eluate C8 eluate mg/l	C2 eluate C8 eluate A2 leached mg/I mg/I mg/I mg/I leached mg/I leached mg/I leached mg/I leached mg/I leached mg/I <0.004	C2 conte ma.1 eluate A2 2.1 conte leached mg/ls mg/kg conen leached conen leached mg/kg conen leached mg/kg conen leached conen leached mg/kg conen leached conen leached <th< td=""><td>C2 content in 2.1 eluate C8 eluate A2 eluate A2 eluate A2-10 eached leached A2-10 elached leached Limit values using BS Limit values using BS C0.007 <0.004 <0.007 - <0.004</td> <0.00801</th<>	C2 content in 2.1 eluate C8 eluate A2 eluate A2 eluate A2-10 eached leached A2-10 elached leached Limit values using BS Limit values using BS C0.007 <0.004 <0.007 - <0.004	C2 Collect In 2.1 eluate C8 C8 Eluate C8 C8 C8 C8 C8 C8 C8 C

2:1	8:1
19-Dec-2012	20-Dec-2012
8.020	8.293
861.00	214.00
20.00	20.40
0.308	1.400
0.262	
	19-Dec-2012 8.020 861.00 20.00 0.308

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
Mcerts Certification does not apply to leachates
08/01/2013 09:49:27

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS			REF : BS EN 1245
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.234	Moisture Content Ratio (%)	33.7
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	74.8
Particle Size <4mm	>95%		

Case					Landfil	I Waste Acce	ptance
SDG	121217-21				(Criteria Limits	
Lab Sample Number(s)	6675504						
Sampled Date	12-Dec-2012					Stable	
Customer Sample Ref.	BH 104				Inert Waste Landfill	Non-reactive Hazardous	Hazardous Waste Landfill
Depth (m)	3.50				Landfill	Waste in Non- Hazardous	waste Landfill
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A ₂ 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		for compliance lea	-
	m	g/l	mg	ı/kg	using BS EN 124		10 1/ Ng
Arsenic	0.0045	0.00121	0.00901	0.017	0.5	2	25
Barium	0.0725	0.106	0.145	1.01	20	100	300

Eluate Analysis	C ₂ Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea	
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 l/kg		
Arsenic	0.0045	0.00121	0.00901	0.017	0.5	2	25
Barium	0.0725	0.106	0.145	1.01	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00147	0.00097	0.00293	0.0104	0.5	10	70
Copper	0.00138	0.00155	0.00276	0.0153	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0741	0.0107	0.148	0.201	0.5	10	30
Nickel	0.00398	0.00462	0.00795	0.0452	0.4	10	40
Lead	0.000146	0.000039	0.000292	0.000549	0.5	10	50
Antimony	0.00479	0.0033	0.00959	0.0352	0.06	0.7	5
Selenium	0.00158	0.000496	0.00316	0.00657	0.1	0.5	7
Zinc	0.00617	0.00483	0.0123	0.0503	4	50	200
Chloride	27	<2	54	40.1	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	102	258	205	2350	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.167	7.774
Conductivity (µS/cm)	534.00	648.00
Temperature (°C)	20.00	20.80
Volume Leachant (Litres)	0.291	1.400
Volume of Eluate VE1 (Litres)	0.242	
		i e

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 207731

Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	BULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.234	Moisture Content Ratio (%)	33.7
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	74.8
Particle Size <4mm	>95%		

Farticle Size \4iiiii	- 33 /0						
Case		_			Landf	ill Waste Acce	-
SDG	121217-21					Criteria Limits	•
Lab Sample Number(s)	6675504						
Sampled Date	12-Dec-2012					Stable	
Customer Sample Ref.	BH 104				Inert Waste	Hazardous	Hazardous Waste Landfill
Depth (m)	3.50				Landfill	Waste in Non-	
Deptii (iii)	3.30					Hazardous Landfill	
Solid Waste Analysis							
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		es for compliance lea S EN 12457-3 at L/S	
	m	ng/l	mg	ı/kg	using D	5 EN 12457 5 dt 275	, 10 i/ kg
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	12.4	5.94	24.7	69	-	-	-
Phenol by HPLC (W)	<0.0025	<0.0005	<0.005	<0.00797	-	-	-
Total Ammonium as NH4	13.1	6.29	26.2	73	-	-	-
Total Cyanide (W)	0.15	<0.05	0.3	<0.5	-	-	-
Cresols by HPLC (W)	0.0252	<0.0005	0.0504	0.0375	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	<0.0677	<0.135	<0.677	-	-	-
Xylenols by HPLC (W)	0.122	<0.0005	0.243	0.181	-	-	-
Napthol by HPLC (W)	<0.0025	<0.0005	<0.005	<0.00707	_	_	_

	m	g/I	mg,	/kg			
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	12.4	5.94	24.7	69	-	-	-
Phenol by HPLC (W)	<0.0025	<0.0005	<0.005	<0.00797	-	-	-
Total Ammonium as NH4	13.1	6.29	26.2	73	-	-	-
Total Cyanide (W)	0.15	<0.05	0.3	<0.5	-	-	-
Cresols by HPLC (W)	0.0252	<0.0005	0.0504	0.0375	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	<0.0677	<0.135	<0.677	-	-	-
Xylenols by HPLC (W)	0.122	<0.0005	0.243	0.181	-	-	-
Napthol by HPLC (W)	<0.0025	<0.0005	<0.005	<0.00797	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	0.0198	<0.0005	0.0396	0.0294	-	-	-
Boron	0.308	0.097	0.617	1.28	-	-	-
Total Alkalinity Filtered as CaCO3	150	105	300	1120	-	-	-
Phenols Total of 5 Speciated by HPLC	0.197	<0.00064	0.394	0.293	-	-	-
(W)							
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	< 0.001	-	-	-
Acenaphthene by GCMS	0	<0.000015	0.000114	<0.00015	-	-	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.000105	0.000102	0.00097	-	-	-
Anthracene by GCMS	0	0.000059	0.00004	0.000532	-	-	-
Phenanthrene by GCMS	<0.000022	0.000112	<0.000044	0.000954	-	-	-
Fluorene by GCMS	0	0.0000171	0.0000848	0.000209	-	-	-
Chrysene by GCMS	<0.00013	0.0000202	<0.000026	0.000172	-	-	-

2:1	8:1
	00.5
19-Dec-2012	20-Dec-2012
8.167	7.774
534.00	648.00
20.00	20.80
0.291	1.400
0.242	
	19-Dec-2012 8.167 534.00 20.00 0.291

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.234 Mass of dry sample (kg) 0.175 Particle Size <4mm REF: BS EN 12457/3 Medina Moisture Content Ratio (%) 33.7 Dry Matter Content Ratio (%) 74.8

Case						II Waste Acce	-
SDG	121217-21					Criteria Limits	5
Lab Sample Number(s)	6675504						
Sampled Date	12-Dec-2012					Stable	
Customer Sample Ref.	BH 104				Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	3.50				Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance lea	
	m	g/l	mg	/kg	using b.	using BS EN 12457-3 at L/S 10 l/kg	
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.000109	0.0000676	0.000978	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 conc ⁿ leached	Limit values for compliance le		•	
	mg/l		mg,	/kg	using BS EN 12457-3 at L/S 10 l/kg			
PAH Spec MS - Aqueous (W)								
Pyrene by GCMS	0	0.000109	0.0000676	0.000978	-	-	-	
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-	
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-	
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-	
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-	
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-	
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-	
Indeno(123cd)pyrene by GCMS	<0.000014	<0.00014	<0.000028	<0.00014	-	-	-	
PAH 16 EPA Total by GCMS	<0.000247	0.000422	<0.000494	0.00359	-	-	-	
TPH CWG (W)								
Surrogate Recovery	-	-	-	-	-	-	-	
MTBE GC-FID	<0.003	<0.003	<0.006	<0.03	-	-	-	
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-	
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-	
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-	
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-	

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.167	7.774
Conductivity (µS/cm)	534.00	648.00
Temperature (°C)	20.00	20.80
Volume Leachant (Litres)	0.291	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121217-21

PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg)

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd
Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Medina Mass Sample taken (kg) 0.234 Moisture Content Ratio (%) 33.7

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Moisture Content Ratio (%) 33.7

Dry Matter Content Ratio (%) 74.8

	121217-21		II Waste Acce Criteria Limits
ab Sample Number(s) 6675504			
	12-Dec-2012		Stable Non-reactive
r Sample Ref. BH 104	Inert Waste Landfill	Hazardous	
	3.50	Landini	Waste in Non- Hazardous
Analysis			Landfill
irbon (%)	-	-	-
n (%)	-	-	-
		_	
EX (mg/kg)	-		-
EX (mg/kg) PCBs (mg/kg)	-	-	-

ANC to pH 4 (mol/kg)					-	-
C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		•	•
m	g/l	mg	/kg	using b3	LN 12437-3 at L/3	10 i/ kg
,						
<0.007	<0.007	<0.014	<0.07	-	-	-
<0.004	<0.004	<0.008	<0.04	-	-	-
<0.005	<0.005	<0.01	<0.05	-	-	-
<0.008	<0.008	<0.016	<0.08	-	-	-
<0.003	<0.003	<0.006	< 0.03	-	-	-
<0.011	<0.011	<0.022	<0.11	-	-	-
<0.028	<0.028	<0.056	<0.28	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
	C2 eluate m <0.007 <0.004 <0.005 <0.008 <0.003 <0.011 <0.028 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	C2 eluate C8 eluate	C2 eluate C8 eluate A2 leached mg/I mg <0.007	C2 dollo-lim2.1 eluate A2 leached A2-10 concome leached mg/kg concome leached wg/kg concome leached concome leached mg/kg concome leached concome leached concome leached mg/kg concome leached concome leached		

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.167	7.774
Conductivity (µS/cm)	534.00	648.00
Temperature (°C)	20.00	20.80
Volume Leachant (Litres)	0.291	1.400
Volume of Eluate VE1 (Litres)	0.242	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

121217-21 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.247 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location Moisture Content Ratio (%)** 40.9 71 **Dry Matter Content Ratio (%)**

Case	
SDG	121217-21
Lab Sample Number(s)	6675505
Sampled Date	12-Dec-2012
Customer Sample Ref.	BH 104
Depth (m)	4.80

Landfill Waste Acceptance Criteria Limits

Stable Non-reactive

Inert Waste Landfill	Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
-	-	-
-	-	-
_	_	_

Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg		
	m	g/l	mg,	/kg	using DS	LIV 12437-3 dt L/3	10 1/ Ng
Arsenic	0.000737	0.000197	0.00147	0.00259	0.5	2	25
Barium	0.0133	0.00789	0.0265	0.0851	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.000811	0.000864	0.00162	0.00858	0.5	10	70
Copper	0.00162	0.00114	0.00324	0.012	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.000869	0.000915	0.00174	0.00909	0.5	10	30
Nickel	0.00207	0.000623	0.00413	0.00789	0.4	10	40
Lead	0.00807	0.000092	0.0161	0.0101	0.5	10	50
Antimony	0.000198	<0.00016	0.000396	<0.0016	0.06	0.7	5
Selenium	0.00148	<0.00039	0.00295	<0.0039	0.1	0.5	7
Zinc	0.00118	0.000547	0.00236	0.0062	4	50	200
Chloride	36.2	3.1	72.3	69.2	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	142	19.9	284	340	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.161	8.146
Conductivity (µS/cm)	522.00	121.30
Temperature (°C)	20.20	20.40
Volume Leachant (Litres)	0.278	1.400
Volume of Eluate VE1 (Litres)	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates 08/01/2013 09:49:27

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.247 Moisture Content Ratio (%) Mory Sample (kg) Dry Matter Content Ratio (%) 71

, , , ,			•	` ,			
Particle Size <4mm	>95%						
Case					Landf	fill Waste Acce	ptance
SDG	121217-21					Criteria Limits	•
	6675505						
Lab Sample Number(s)						Stable	
Sampled Date	12-Dec-2012					Non-reactive	
Customer Sample Ref.	BH 104				Inert Waste Landfill	Hazardous	Hazardous Waste Landfill
Depth (m)	4.80				Lanum	Waste in Non- Hazardous	waste Landini
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-	I			-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-		
ANC to pH 4 (mol/kg)	-				-		
Eluate Analysis	C ₂ Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1 eluate	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance lea SS EN 12457-3 at L/S	
	m	ıg/l	mg	/kg	u3.119 L	,	- 10 1/ Ng
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	<0.2	<0.2	<0.4	<2	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Total Ammonium as NH4	<0.3	<0.3	<0.599	<3	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.0999	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	0.00051	<0.000999	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	0.116	<0.135	1.03	-	-	-
Xylenols by HPLC (W)	0.0132	<0.0005	0.0263	0.0152	-	-	-
Napthol by HPLC (W)	<0.0005	0.00075	<0.000999	0.00663	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	0.00185	<0.0005	0.0037	<0.005	-	-	-
Boron	0.013	<0.0094	0.026	<0.094	-	-	-

Phenol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005	-	-	-
Total Ammonium as NH4	<0.3	<0.3	<0.599	<3	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.0999	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	0.00051	<0.000999	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	0.116	<0.135	1.03	-	-	-
Xylenols by HPLC (W)	0.0132	<0.0005	0.0263	0.0152	-	-	-
Napthol by HPLC (W)	<0.0005	0.00075	<0.000999	0.00663	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	0.00185	<0.0005	0.0037	<0.005	-	-	-
Boron	0.013	<0.0094	0.026	<0.094	-	-	-
Total Alkalinity Filtered as CaCO3	105	50	210	563	-	-	-
Phenols Total of 5 Speciated by HPLC	0.0204	0.00146	0.0407	0.0364	-	-	-
(W)							
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	0	< 0.0001	0.000204	<0.001	-	-	-
Acenaphthene by GCMS	<0.000015	0.0000449	<0.00003	0.000397	-	-	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	<0.000017	0.0000502	<0.000034	0.000444	-	-	-
Anthracene by GCMS	<0.000015	<0.000015	<0.00003	<0.00015	-	-	-
Phenanthrene by GCMS	<0.000022	0.0000333	<0.000439	0.000295	-	-	-
Fluorene by GCMS	<0.000014	0.0000179	<0.000028	0.000158	-	-	-
Chrysene by GCMS	<0.000013	0.0000204	<0.000026	0.00018	-	-	-
	I		I				

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.161	8.146
Conductivity (µS/cm)	522.00	121.30
Temperature (°C)	20.20	20.40
Volume Leachant (Litres)	0.278	1.400
Volume of Eluate VE1 (Litres)	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

Report Number: 207731 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference

Mass Sample taken (kg)

Mass of dry sample (kg)

Particle Size <4mm

>95%

Site LocationMedinaMoisture Content Ratio (%)40.9Dry Matter Content Ratio (%)71

		Lai	Landfill Waste Acceptar	
	121217-21		Criteria Limits	
Number(s)	6675505			
Date	12-Dec-2012		Stable Non-reactive	
Sample Ref.	BH 104	Inert Waste	Hazardous	
epth (m)	4.80	Landfill	Waste in Non- Hazardous	
			,	
anic Carbon (%)	-	-	-	
gnition (%)	-	-	-	
BTEX (mg/kg)	-	-	-	
f 7 PCBs (mg/kg)	-	-	-	
al Oil (mg/kg)	-	-	-	
Sum of 17 (mg/kg)	-	-	-	
	_	-	-	
H Units)				
d Units) o pH 6 (mol/kg) o pH 4 (mol/kg)	-	-	-	

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	m	g/l	mg,	/kg	using 65 E	N 12457-3 at L/S	10 I/ Kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	<0.000015	0.0000473	<0.00003	0.000418	-	-	-
Benz(a)anthracene by GCMS	<0.000017	0.0000179	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.0000459	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.0000539	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	<0.000247	<0.000247	<0.000493	<0.00247	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.00599	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.161	8.146
Conductivity (µS/cm)	522.00	121.30
Temperature (°C)	20.20	20.40
Volume Leachant (Litres)	0.278	1.400
Volume of Eluate VE1 (Litres)	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27

Validated

121217-21 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Medina **Site Location** Mass Sample taken (kg) 0.247

Mass of dry sample (kg) 0.175 Particle Size <4mm >95% **Moisture Content Ratio (%)** 40.9 71 **Dry Matter Content Ratio (%)**

	121217-21	Lai	Landfill Waste Acceptar Criteria Limits			
umber(s)	6675505					
	12-Dec-2012		Stable Non-reactive			
mple Ref.	BH 104		ert Waste Hazardous	Inert Waste Hazardous	Hazardous	Haz Wast
epth (m)	4.80	Lanum	Waste in Non- Hazardous	Waste I		
aste Analysis			Landfill			
anic Carbon (%)	-	-	-			
gnition (%)	-	-	-			
BTEX (mg/kg)	-	-	-			
7 DCDa (ma/ka)	_	-	-			
7 PCBs (mg/kg)						
l Oil (mg/kg)	-		-			

ANC to pH 4 (mol/kg)					-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative concn leached		for compliance lead EN 12457-3 at L/S	-
	m	g/l	mg	/kg	using BS	EN 12457-5 at L/S	10 i/kg
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.00799	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.00999	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
o Xylene by GC	<0.003	<0.003	<0.00599	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.0559	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
Total Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
Γotal Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
		00.5
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.161	8.146
Conductivity (µS/cm)	522.00	121.30
Temperature (°C)	20.20	20.40
Volume Leachant (Litres)	0.278	1.400
Volume of Eluate VE1 (Litres)	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27

pH (pH Units) ANC to pH 6 (mol/kg)

Validated

121217-21 SDG:

Client Reference:

Job:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number:

R/PDEMEDINA.9 207731

Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.213	Moisture Content Ratio (%)	21.9
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	82

Particle Size <4mm	>95%						
Case					Landf	ill Waste Acce	ptance
SDG	121217-21					Criteria Limits	i
Lab Sample Number(s)	6675507						
Sampled Date	12-Dec-2012					Stable	
Customer Sample Ref.	BH 104				Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	2.50				Landfill	Waste in Non- Hazardous	Waste Landfill
						Landfill	
Solid Waste Analysis		ı					
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	=	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	=	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance lea S EN 12457-3 at L/S	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Dinch Limit values for complian			
	m	g/l	mg/kg		using BS EN 12457-3 at L/S 10 l/kg		10 1/ Kg	
Arsenic	0.00682	0.00115	0.0137	0.0173	0.5	2	25	
Barium	0.251	0.0439	0.502	0.652	20	100	300	
Cadmium	0.000156	<0.0001	0.000312	<0.001	0.04	1	5	
Chromium	0.00345	0.00144	0.00691	0.0165	0.5	10	70	
Copper	0.003	0.00219	0.00601	0.0227	2	50	100	
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2	
Molybdenum	0.0653	0.00763	0.131	0.136	0.5	10	30	
Nickel	0.00831	0.00136	0.0166	0.0207	0.4	10	40	
Lead	0.000244	0.000491	0.000489	0.00466	0.5	10	50	
Antimony	0.012	0.00486	0.024	0.0559	0.06	0.7	5	
Selenium	0.00186	0.000429	0.00373	0.00577	0.1	0.5	7	
Zinc	0.00307	0.00619	0.00615	0.0587	4	50	200	
Chloride	5.9	<2	11.8	<20	800	15000	25000	
Fluoride	-	-	-	-	10	150	500	
Sulphate (soluble)	216	52.4	433	692	1000	20000	50000	
Total Dissolved Solids	-	-	-	-	4000	60000	100000	
Total Monohydric Phenols (W)	-	-	-	-	1	-	-	
Dissolved Organic Carbon	-	-	-	-	500	800	1000	

Leach Test Information	2:1	8:1
Data Danasad		04 Day 0040
Date Prepared	19-Dec-2012	21-Dec-2012
pH (pH Units)	8.107	7.945
Conductivity (µS/cm)	782.00	175.50
Temperature (°C)	20.20	20.50
Volume Leachant (Litres)	0.312	1.400
Volume of Eluate VE1 (Litres)	0.140	
		ĭ

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

Validated

REF: BS EN 12457/3

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

Report Number: 207731 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference

Mass Sample taken (kg) 0.213

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Site LocationMedinaMoisture Content Ratio (%)21.9Dry Matter Content Ratio (%)82

Case	
SDG	121217-21
Lab Sample Number(s)	6675507
Sampled Date	12-Dec-2012
Customer Sample Ref.	BH 104
Depth (m)	2.50
0 11 1144 (
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
oH (pH Units)	-
ANC to pH 6 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		•
	m	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 I/Kg	
Mercury Unfiltered	0.0000806	-	0.000161	-	-	-	-
Total Ammonia as NH3	12.3	0.607	24.7	18.1	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Total Ammonium as NH4	13.1	0.643	26.3	19.3	-	-	-
Total Cyanide (W)	<0.05	-	<0.1	-	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	0.0991	<0.136	0.889	-	-	-
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Boron	0.271	0.0181	0.542	0.441	-	-	-
Total Alkalinity Filtered as CaCO3	190	-	380	-	-	-	-
Phenols Total of 5 Speciated by HPLC	<0.00064	<0.00064	<0.00128	<0.0064	-	-	-
(W)							
PAH Spec MS - Aqueous (W)	,						
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	0	0.0000635	0.0000559	0.000606	-	-	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.0000651	0.000107	0.000641	-	-	-
Anthracene by GCMS	<0.000015	<0.000015	<0.00003	<0.00015	-	-	-
Phenanthrene by GCMS	<0.000022	0.000034	<0.000044	0.000313	-	-	-
Fluorene by GCMS	<0.000014	0.0000152	<0.000028	0.00014	-	-	-
Chrysene by GCMS	<0.000013	<0.000013	<0.000026	<0.00013	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	21-Dec-2012
pH (pH Units)	8.107	7.945
O		
Conductivity (µS/cm)	782.00	175.50
Temperature (°C)	20.20	20.50
Volume Leachant (Litres)	0.312	1.400
Volumo Ecachant (Elitos)	0.312	1.400
Volume of Eluate VE1 (Litres)	0.140	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

ANC to pH 4 (mol/kg)

Validated

121217-21 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

207731 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	BULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.213	Moisture Content Ratio (%)	21.9
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	82
Particle Size <4mm	>95%		
			I ISH M. A. A.
Case			Landfill Waste Acceptance

SDG	121217-21					Criteria Limits	
Lab Sample Number(s)	6675507						
Sampled Date	12-Dec-2012					Stable	
Customer Sample Ref.	BH 104				Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	2.50				Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
	Conc ⁿ in 2:1	Conc ⁿ in 8:1	A 2:1 conc ⁿ	Cumulative			

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		or compliance lead	•
	mg/l		mg,	/kg	using BS EN 12457-3 at L/S 10 l/kg		
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.0000579	0.000118	0.00058	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.0000541	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	<0.000247	<0.000247	<0.000495	<0.00247	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.00601	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
		24.5
Date Prepared	19-Dec-2012	21-Dec-2012
pH (pH Units)	8.107	7.945
Conductivity (µS/cm)	782.00	175.50
Temperature (°C)	20.20	20.50
Volume Leachant (Litres)	0.312	1.400
Volume of Eluate VE1 (Litres)	0.140	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RES	BULTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.213	Moisture Content Ratio (%)	21.9
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	82

Particle Size <4mm	>95%						
Case				Landfill Waste Acceptance			
SDG	121217-21					Criteria Limits	;
Lab Sample Number(s)	6675507						
Sampled Date	12-Dec-2012					Stable	
Customer Sample Ref.	BH 104				Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	2.50				Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		es for compliance lea	

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative concn leached	Limit values for compliance leaching test		
	m	ıg/l	mg	g/kg	using BS	EN 12457-3 at L/S	10 l/kg
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.00801	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
Xylene by GC	<0.003	<0.003	<0.00601	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.0561	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	-	<0.02	-	-	-	-
Aromatics >EC16-EC21	<0.01	-	<0.02	-	-	-	-
Aromatics >EC21-EC35	<0.01	-	<0.02	-	-	-	-
Total Aromatics >EC12-EC35	<0.01	-	<0.02	-	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
Total Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
Γotal Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	21-Dec-2012
pH (pH Units)	8.107	7.945
Conductivity (µS/cm)	782.00	175.50
Temperature (°C)	00.00	00.50
remperature (C)	20.20	20.50
Volume Leachant (Litres)	0.312	1.400
Volume of Eluate VE1 (Litres)	0.140	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27

Validated

REF: BS EN 12457/3

121217-21 SDG:

Client Reference:

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Job: H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Attention:

Client Reference Mass Sample taken (kg) 0.243 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location** Moisture Content Ratio (%) 38.9 72 **Dry Matter Content Ratio (%)**

Case	
SDG	121217-21
Lab Sample Number(s)	6675510
Sampled Date	12-Dec-2012
Customer Sample Ref.	BH 105
Depth (m)	3.00
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg		-
	m	g/l	mg,	/kg	using b3	LN 12437-3 at L/3	10 1/ kg
Arsenic	0.00201	0.000648	0.00402	0.00844	0.5	2	25
Barium	0.142	0.0729	0.284	0.829	20	100	300
Cadmium	0.000134	<0.0001	0.000268	<0.001	0.04	1	5
Chromium	0.00136	0.000851	0.00271	0.00924	0.5	10	70
Copper	0.00434	0.00145	0.00868	0.0187	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0937	0.0277	0.187	0.372	0.5	10	30
Nickel	0.00688	0.00386	0.0138	0.043	0.4	10	40
Lead	0.00005	0.000049	0.0001	0.000492	0.5	10	50
Antimony	0.00351	0.00131	0.00703	0.0163	0.06	0.7	5
Selenium	0.000897	0.000453	0.00179	0.00517	0.1	0.5	7
Zinc	0.00158	0.00106	0.00316	0.0114	4	50	200
Chloride	26.9	2	53.8	55.9	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	313	187	626	2050	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.020	8.272
Conductivity (µS/cm)	861.00	476.00
Temperature (°C)	20.00	20.50
Volume Leachant (Litres)	0.282	1.400
Volume of Eluate VE1 (Litres)	0.252	
` '	0.202	1.400

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates 08/01/2013 09:49:27

Validated

SDG: 121217-21

Client Reference:

Job: H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd
Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

: 207731

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) Mass of dry sample (kg) O.243 Moisture Content Ratio (%) Dry Matter Content Ratio (%) 72 Particle Size <4mm >95%

Case					Landfill Waste Acceptance			
SDG	121217-21					Criteria Limits		
Lab Sample Number(s)	6675510							
Sampled Date	12-Dec-2012					Stable Non-reactive		
Customer Sample Ref.	BH 105				Inert Waste	Hazardous	Hazardous	
Depth (m)	3.00				Landfill	Waste in Non- Hazardous	Waste Landfill	
Solid Waste Analysis						Landfill		
Total Organic Carbon (%)	-				-	<u>-</u>	-	
Loss on Ignition (%)	-				-	-	-	
Sum of BTEX (mg/kg)	-				-	-	-	
Sum of 7 PCBs (mg/kg)	-				-	-	-	
Mineral Oil (mg/kg)	-				-	-	-	
PAH Sum of 17 (mg/kg)	-				-	-	-	
pH (pH Units)	-				-	-	-	
ANC to pH 6 (mol/kg)	-				-	-	-	
ANC to pH 4 (mol/kg)	-				-	-	-	
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	conc ⁿ Limit values for compliant		•	
	m	g/l	mg,	/kg	using b	S EN 12457-3 at L/S	10 1/ kg	
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-	
Total Ammonia as NH3	6.56	0.809	13.1	16.4	-	-	-	
Phenol by HPLC (W)	<0.0005	<0.001	<0.001	<0.00928	-	-	-	
Total Ammonium as NH4	6.96	0.856	13.9	17.3	-	-	-	
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-	
Cresols by HPLC (W)	<0.0005	0.00332	<0.001	0.0284	-	-	-	
Beryllium	<0.00007	< 0.00007	<0.00014	<0.0007	-	-	-	
Nitrate as N	0.122	<0.0677	0.243	<0.677	-	-	-	
Xylenols by HPLC (W)	<0.0005	0.0509	<0.001	0.436	-	-	-	
Napthol by HPLC (W)	<0.0005	<0.001	<0.001	<0.00928	-	-	-	
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	0.0054	<0.001	0.0462	-	-	-	
Boron	0.411	0.0844	0.823	1.31	-	-	-	
Total Alkalinity Filtered as CaCO3	130	75	260	829	-	-	-	
Phenols Total of 5 Speciated by HPLC	<0.00064	0.0596	<0.00128	0.51	-	-	-	
(W)								
PAH Spec MS - Aqueous (W)	_			<u> </u>				
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-	
Acenaphthene by GCMS	0	0.0000387	0.0000758	0.000386	-	-	-	

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.020	8.272
Conductivity (µS/cm)	861.00	476.00
Temperature (°C)	20.00	20.50
Volume Leachant (Litres)	0.282	1.400
Volume of Fluate VF1 (Litres)	0.252	

<0.000011

0

0

<0.000022

0

0

< 0.000011

0.000171

0.0000193

<0.000022

< 0.000014

< 0.000013

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27 09:49:18 08/01/2013

Acenaphthylene by GCMS

Fluoranthene by GCMS

Phenanthrene by GCMS

Anthracene by GCMS

Fluorene by GCMS

Chrysene by GCMS

< 0.000022

0.000419

0.000163

<0.000044

0.000105

0.0000756

< 0.00011

0.00177

0.000283

< 0.00022

<0.00014

< 0.00013

Validated

SDG: 121217-21

PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer B

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

Report Number: 207731 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Medina

Mass Sample taken (kg) 0.243

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Site LocationMedinaMoisture Content Ratio (%)38.9Dry Matter Content Ratio (%)72

Case		
SDG	121217-21	
Lab Sample Number(s)	6675510	
Sampled Date	12-Dec-2012	
Customer Sample Ref. Depth (m)	BH 105	
	3.00	
Solid Waste Analysis		
Total Organic Carbon (%)	-	
Loss on Ignition (%)	-	
Sum of BTEX (mg/kg)	-	
Sum of 7 PCBs (mg/kg)	-	
Mineral Oil (mg/kg)	-	

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	n	ng/l	mg	/kg	using BS E	N 1245/-3 at L/5	10 1/ kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.000187	0.000324	0.00183	-	-	-
Benz(a)anthracene by GCMS	0	<0.00017	0.0000594	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	0	<0.000009	0.0000414	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	0	0.000416	0.00126	0.00447	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.006	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Data Drangrad		20-Dec-2012
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.020	8.272
Conductivity (µS/cm)	861.00	476.00
Temperature (°C)	20.00	20.50
Volume Leachant (Litres)	0.282	1.400
Volume of Eluate VE1 (Litres)	0.252	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121217-21 SDG:

Client Reference:

Mass of dry sample (kg)

Particle Size <4mm

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Job: H_MAYERBROW_WOK-34 Location: Medina

Customer:

Attention:

0.175

>95%

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

207731 Superseded Report:

72

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Medina **Client Reference Site Location** 38.9 Mass Sample taken (kg) 0.243 Moisture Content Ratio (%)

Dry Matter Content Ratio (%)

Landfill Waste Acceptance Case **Criteria Limits SDG** 121217-21 Lab Sample Number(s) 6675510 Stable Sampled Date 12-Dec-2012 Non-reactive Inert Waste Hazardous **Customer Sample Ref.** BH 105 Hazardous Landfill Waste Landfill Waste in Non-Depth (m) 3.00 Hazardous Landfill **Solid Waste Analysis** Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) pH (pH Units)

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg		
	m	g/l	mg	/kg	using bs	EN 1245/-3 at L/5	10 I/ Kg
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.008	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
o Xylene by GC	< 0.003	<0.003	<0.006	< 0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
Total Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
Total Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	19-Dec-2012	20-Dec-2012
pH (pH Units)	8.020	8.272
Conductivity (µS/cm)	861.00	476.00
Temperature (°C)	20.00	20.50
Volume Leachant (Litres)	0.282	1.400
Volume of Eluate VE1 (Litres)	0.252	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

08/01/2013 09:49:27

Validated

R/PDEMEDINA.9 121217-21 SDG: Location: Medina Order Number:

H_MAYERBROW_WOK-34 Mayer Brown Ltd 207731 Job: **Customer:** Report Number: Client Reference: Attention: Antony Platt Superseded Report:

Notification of NDPs (No determination possible)

Date Received: 17/12/2012 09:14:31

Sample No	Customer Sample Ref.	Depth (m)	Test	Comment
6675501	BH 105	4.50	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos
6675502	BH 103	3.00 - 7.50	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos
6675503	BH 103	0.50 - 3.00	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos
6675504	BH 104	3.50	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos
6675505	BH 104	4.80	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos
6675507	BH 104	2.50	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos
6675508	BH 103	0.50	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos
6675510	BH 105	3.00	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos

Validated

121217-21 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina

Antony Platt

Customer:

Attention:

Order Number: Mayer Brown Ltd

Report Number: Superseded Report: R/PDEMEDINA.9 207731

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrog Correc
ASB_PREP			Sample '	Correc
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM114		Leaching Procedure for CEN Two Stage BatchTest 2:1/8:1 Cumulative		
TM024	Method 4500A & B, AWWA/APHA, 20th Ed., 1999	Determination of Exchangeable Ammonium and Ammoniacal Nitrogen as N by titration on solids		
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer		
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate		
TM243		Mixed Anions In Soils By Kone		
TM245	By GC-FID	Determination of GRO by Headspace in waters		
TM255		Determination of Low Level Phenols in Waters and Leachates by HPLC		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		
TM321		Organic matter Content of Soil By Titration		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C.

NA = not applicable.

Validated

121217-21 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

207731 Superseded Report:

Test Completion Dates

rest completion bates										
Lab Sample No(s)	6675502	6675503	6675508	6675500	6675504	6675505	6675507	6675501	6675509	6675510
Customer Sample Ref.	BH 103	BH 103	BH 103	BH 104	BH 104	BH 104	BH 104	BH 105	BH 105	BH 105
AGS Ref.										
Depth	3.00 - 7.50	0.50 - 3.00	0.50	0.50	3.50	4.80	2.50	4.50	0.50	3.00
Туре	SOLID									
Alkalinity Filtered as CaCO3	03-Jan-2013	03-Jan-2013			03-Jan-2013	03-Jan-2013	03-Jan-2013	03-Jan-2013		03-Jan-2013
Ammoniacal Nitrogen	03-Jan-2013	03-Jan-2013			03-Jan-2013	03-Jan-2013	03-Jan-2013	03-Jan-2013		03-Jan-2013
Ammonium Soil by Titration			02-Jan-2013	02-Jan-2013					02-Jan-2013	
Anions by Kone (soil)			27-Dec-2012	28-Dec-2012					27-Dec-2012	
Anions by Kone (w)	03-Jan-2013	03-Jan-2013			03-Jan-2013	03-Jan-2013	04-Jan-2013	04-Jan-2013		03-Jan-2013
Asbestos Identification (Soil)			28-Dec-2012	28-Dec-2012					28-Dec-2012	
Boron Water Soluble			28-Dec-2012	29-Dec-2012					28-Dec-2012	
CEN 2:1 Leachate (2 Stage)	19-Dec-2012	19-Dec-2012			19-Dec-2012	19-Dec-2012	20-Dec-2012	19-Dec-2012		19-Dec-2012
CEN 2:1 Readings	21-Dec-2012	21-Dec-2012			21-Dec-2012	21-Dec-2012	27-Dec-2012	21-Dec-2012		21-Dec-2012
CEN 8:1 Leachate (2 Stage)	21-Dec-2012	21-Dec-2012			21-Dec-2012	21-Dec-2012	27-Dec-2012	21-Dec-2012		21-Dec-2012
CEN 8:1 Readings	02-Jan-2013	02-Jan-2013			07-Jan-2013	02-Jan-2013	02-Jan-2013	02-Jan-2013		02-Jan-2013
Cyanide Comp/Free/Total/Thiocyanate	03-Jan-2013	03-Jan-2013	27-Dec-2012	28-Dec-2012	03-Jan-2013	03-Jan-2013	03-Jan-2013	03-Jan-2013	27-Dec-2012	03-Jan-2013
Dissolved Metals by ICP-MS	03-Jan-2013	03-Jan-2013			03-Jan-2013	03-Jan-2013	04-Jan-2013	04-Jan-2013		03-Jan-2013
EPH CWG (Aliphatic) Aqueous GC (W)	04-Jan-2013	04-Jan-2013			04-Jan-2013	04-Jan-2013	04-Jan-2013	04-Jan-2013		04-Jan-2013
EPH CWG (Aliphatic) GC (S)			28-Dec-2012	03-Jan-2013					28-Dec-2012	
EPH CWG (Aromatic) Aqueous GC (W)	04-Jan-2013	04-Jan-2013			04-Jan-2013	04-Jan-2013	04-Jan-2013	04-Jan-2013		04-Jan-2013
EPH CWG (Aromatic) GC (S)			28-Dec-2012	03-Jan-2013					28-Dec-2012	
GRO by GC-FID (S)			30-Dec-2012	28-Dec-2012					28-Dec-2012	
GRO by GC-FID (W)	02-Jan-2013	29-Dec-2012			29-Dec-2012	29-Dec-2012	02-Jan-2013	29-Dec-2012		02-Jan-2013
Low Level Phenols by HPLC (W)	07-Jan-2013	07-Jan-2013			08-Jan-2013	07-Jan-2013	07-Jan-2013	07-Jan-2013		08-Jan-2013
Mercury Unfiltered	04-Jan-2013	04-Jan-2013			04-Jan-2013	04-Jan-2013	04-Jan-2013	04-Jan-2013		04-Jan-2013
Metals by iCap-OES (Soil)			28-Dec-2012	29-Dec-2012					28-Dec-2012	
Nitrite by Kone (w)	03-Jan-2013	03-Jan-2013			03-Jan-2013	03-Jan-2013	03-Jan-2013	03-Jan-2013		03-Jan-2013
PAH by GCMS			02-Jan-2013	03-Jan-2013					02-Jan-2013	
PAH Spec MS - Aqueous (W)	03-Jan-2013	03-Jan-2013			03-Jan-2013	03-Jan-2013	04-Jan-2013	03-Jan-2013		03-Jan-2013
pH			28-Dec-2012	28-Dec-2012					28-Dec-2012	
pH Value	02-Jan-2013	02-Jan-2013			02-Jan-2013	02-Jan-2013	03-Jan-2013	02-Jan-2013		02-Jan-2013
Phenols by HPLC (S)			03-Jan-2013	03-Jan-2013					02-Jan-2013	
Sample description	21-Dec-2012	21-Dec-2012	21-Dec-2012	27-Dec-2012	21-Dec-2012	21-Dec-2012	21-Dec-2012	20-Dec-2012	21-Dec-2012	21-Dec-2012
Total Organic Carbon				02-Jan-2013					02-Jan-2013	
Total Organic Carbon (Asb)			02-Jan-2013							
TPH CWG (W)	20-Dec-2012	20-Dec-2012			20-Dec-2012	20-Dec-2012	21-Dec-2012	20-Dec-2012		20-Dec-2012
TPH CWG GC (S)			30-Dec-2012	03-Jan-2013					28-Dec-2012	

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt Superseded Report:

R/PDEMEDINA.9 Order Number: Report Number: 207731

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth**: 0.50 6713514 Sample ID : BH 103

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6447788-6713514 27/12/12 23:33:16 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 1 1.040 Multiplier

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Report Number: Antony Platt

R/PDEMEDINA.9

207731

Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth**: 0.50 6713574 Sample ID : BH 105

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (Cl2 - C40)

6447812-6713574 27/12/12 23:54:10 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 1 1.010 Multiplier

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth**: 0.50 6718437 Sample ID : BH 104

> Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6447544-6718437 Date Acquired : 03/01/13 00:54:20

Units ppb Dilution CF 1 Multiplier 1.010

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer E

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis:EPH CWG (Aliphatic) Aqueous GC (W)Sample No :
Sample ID :6704814
BH 104Depth :
BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6451216-6704814
Date Acquired : 04/01/13 01:18:10 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) **Depth:** 3.00 - 7.50 Sample No : 6704975

Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: Date Acquired : Units : 6451174-6704975 04/01/13 00:59:30 PM

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Depth: 0.50 - 3.00 Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : 6705053 Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6452158-6705053 03/01/2013 21:52:23 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 Location: SDG:

Job: H_MAYERBROW_WOK-34 **Customer:** Client Reference: Attention: Antony Platt

R/PDEMEDINA.9 Order Number: Mayer Brown Ltd Report Number: 207731 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) **Depth**: 3.50 Sample No : 6705101 Sample ID : BH 104

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6451188-6705101 03/01/2013 21:33:19 PM ppb Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report:

R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) **Depth**: 3.00 Sample No : 6705115

Attention:

Sample ID : BH 105

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6451157-6705115 03/01/2013 21:14:04 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report:

R/PDEMEDINA.9 207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth**: 4.50 6705138 Sample ID : BH 105

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6451202-6705138 03/01/2013 20:55:05 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

1 0.009 Multiplier

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Antony Platt Superseded Report:

R/PDEMEDINA.9 Report Number: 207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) **Depth**: 3.50 Sample No : 6721640 Sample ID : BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6464443-6721640 03/01/2013 20:36:04 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth**: 4.50 6721643 Sample ID : BH 105

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6464472-6721643 03/01/2013 20:17:03 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Order Number: Mayer Brown Ltd Antony Platt

R/PDEMEDINA.9 Report Number:

207731 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) **Depth**: 3.00 Sample No : 6721648 Sample ID : BH 105

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6464386-6721648 03/01/2013 19:58:06 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:** Mayer Brown Ltd

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : Depth: 4.80 6721654 Sample ID : BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Antony Platt

6464503-6721654 03/01/2013 19:39:11 PM ppb

Sample Identity: Date Acquired : Units :

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer E

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 6721664 Depth: 0.50 - 3.00

Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6464530-6721664 Date Acquired : 03/01/2013 19:20:16 PM Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Attention:

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) **Depth:** 3.00 - 7.50 Sample No : 6721669

Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: Date Acquired : Units : 6464415-6721669 03/01/2013 19:01:10 PM ppb

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth**: 2.50 6732037 Sample ID : BH 104

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: Date Acquired : Units : 6451136-6732037 04/01/2013 15:11:44 PM ppb

Validated

121217-21 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Mayer Brown Ltd Order Number:

Report Number:

R/PDEMEDINA.9 207731

Antony Platt Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth**: 2.50 6732054 Sample ID : BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6472233-6732054 04/01/2013 15:30:24 PM

Sample Identity: Date Acquired : Units : ppb Dilution CF

0.008 Multiplier

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth**: 0.50 6713514 Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6447789-6713514 27/12/12 23:33:16 PM ppb Sample Identity: Date Acquired : Units :

Dilution 1 1.040 Multiplier

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth**: 0.50 6713574 Sample ID : BH 105

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6447813-6713574 27/12/12 23:54:09 PM ppb Sample Identity: Date Acquired : Units :

Dilution 1 1.010 Multiplier

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Report Number: Antony Platt Superseded Report:

R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth**: 0.50 6718437 Sample ID : BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6447545-6718437 Date Acquired : 03/01/13 00:54:19

Units ppb Dilution CF 1 Multiplier 1.010

Validated

SDG: 121217-21

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Media
Customer: Maye

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis:EPH CWG (Aromatic) Aqueous GC (W)Sample No :
Sample ID :6704814
BH 104Depth :
BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6451217-6704814
Date Acquired : 04/01/13 01:18:10 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

SDG: 121217-21

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Me Customer: Ma

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 6704975 Depth: 3.00 - 7.50

Sample ID: BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6451175-6704975
Date Acquired : 04/01/13 00:59:30 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121217-21 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Antony Platt

Report Number:

R/PDEMEDINA.9 207731

Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 0.50 - 3.00 6705053

Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6452159-6705053 03/01/2013 21:52:23 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 0.008 Multiplier

Attention:

Client Reference:

CERTIFICATE OF ANALYSIS

Validated

121217-21 Location: SDG:

Job: H_MAYERBROW_WOK-34

Customer: Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number:

R/PDEMEDINA.9

207731 Superseded Report:

Chromatogram

Depth: 3.50 Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6705101

Sample ID : BH 104

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6451189-6705101 03/01/2013 21:33:19 PM ppb

Sample Identity: Date Acquired : Units :

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: M Customer: M

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 6705115 Depth: 3.00

Sample ID: BH 105

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6451158-6705115
Date Acquired : 03/01/2013 21:14:04 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121217-21 SDG:

Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

207731 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth**: 4.50 6705138 Sample ID : BH 105

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6451203-6705138 03/01/2013 20:55:05 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

207731 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : Depth: 3.50 6721640 Sample ID : BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: Date Acquired : Units : 6464444-6721640 03/01/2013 20:36:04 PM ppb

Validated

121217-21 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 207731

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth**: 4.50 6721643

Attention:

Sample ID : BH 105

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6464473-6721643 03/01/2013 20:17:03 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Order Number: Mayer Brown Ltd Antony Platt

Report Number:

207731

R/PDEMEDINA.9

Superseded Report:

Chromatogram

Depth: 3.00 Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6721648 Sample ID :

Attention:

BH 105

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6464387-6721648 03/01/2013 19:58:06 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : Depth: 4.80 6721654 Sample ID : BH 104

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6464504-6721654 03/01/2013 19:39:11 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Depth: 0.50 - 3.00 Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6721664

Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6464531-6721664 03/01/2013 19:20:16 PM ppb

Sample Identity: Date Acquired : Units :

Job:

CERTIFICATE OF ANALYSIS

Validated

121217-21 SDG:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Depth: 3.00 - 7.50 Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6721669

Sample ID : BH 103

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: Date Acquired : Units : 6464416-6721669 03/01/2013 19:01:10 PM ppb

Dilution CF

Attention:

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

_WOK-34 Location:
Customer:
Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W)
Sample No: 6732037
Sample ID: 8H 104

Sample ID: BH 104

Alcontrol/Geochem Analytical Services
Speciated TPH - AROM (C12 - C40)

Sample Identity: 6451137-6732037
Date Acquired : 04/01/2013 15:11:44 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121217-21 SDG:

Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: **Customer:**

Order Number: Mayer Brown Ltd Report Number: Antony Platt Superseded Report:

R/PDEMEDINA.9

207731

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth**: 2.50 6732054 Sample ID : BH 104

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6472234-6732054 04/01/2013 15:30:25 PM

Sample Identity: Date Acquired : Units : ppb

Validated

121217-21 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9 207731

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (S) **Depth**: 0.50 Sample No : 6718682

Sample ID : BH 104

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Antony Platt

Attention:

Order Number:

R/PDEMEDINA.9 207731

Superseded Report: 207

Chromatogram

 Analysis:
 GRO by GC-FID (S)
 Sample No: 6718704
 Depth: 0.50

Sample ID: BH 105

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: OK-34 Customer: Attention:

Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 207731

Report Number: 20773 Superseded Report:

Chromatogram

 Analysis:
 GRO by GC-FID (S)
 Sample No: 6724017
 6724017
 Depth: 0.50

Sample ID: BH 103

Validated

SDG: 121217-21 **Job**: H_MAYER

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

4 Customer: Attention:

Location:

Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 207731

Superseded Report: 2077

Chromatogram

Sample No: 6722637 Depth: 3.50

Validated

SDG: 121217-21 Job:

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

Sample No : **Depth:** 0.50 - 3.00 6722638

Sample ID : BH 103

Validated

SDG: 121217-21 Job:

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9

207731 Superseded Report:

Chromatogram

6722641 **Depth:** 3.00 - 7.50 Sample No :

Sample ID : BH 103

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Me Customer: Ma

Attention:

Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

207731

Chromatogram

 $\textbf{Analysis:} \quad \mathsf{GRO} \; \mathsf{by} \; \mathsf{GC-FID} \; (\mathsf{W}) \qquad \qquad \mathbf{Sample} \; \mathbf{No:} \qquad \qquad \mathsf{6722645} \qquad \qquad \mathbf{Depth:} \qquad \mathsf{4.80}$

Sample ID : BH 104

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 207731

Superseded Report:

Chromatogram

 Analysis:
 GRO by GC-FID (W)
 Sample No: 6722651
 6722651
 Depth: 4.50

Sample ID: BH 105

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 207731

Superseded Report: 2077

Chromatogram

 Analysis:
 GRO by GC-FID (W)
 Sample No: 6722655
 6722655
 Depth: 3.00

Sample ID: BH 105

Validated

SDG: 121217-21 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention: Antony Platt

Medina Order Number: Mayer Brown Ltd

Superseded Report:

R/PDEMEDINA.9 207731

Chromatogram

Analysis: GRO by GC-FID (W) **Depth**: 2.50 Sample No : 6722692

Sample ID : BH 104

Validated

SDG: 121217-21

Job: H_MAYERBROW_WOK-34
Client Reference:

Customer: Attention:

Location:

Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 207731

Superseded Report: 20773

Chromatogram

 Analysis:
 GRO by GC-FID (W)
 Sample No: 6722695
 6722695
 Depth: 2.50

Validated

SDG: 121217-21 **Job**: H_MAYER

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention:

mp-Xylene o-Xylene

Toluene

Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9

Report Number: 207731 Superseded Report:

Chromatogram

Sample No: 6722724 **Depth**: 3.00

Sample ID: BH 105

6722724_GRO_W.DATA - HP6850 Signal 1

Validated

SDG: 121217-21 **Job**: H_MAYER

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

34 Customer: Attention:

Location:

Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9

Report Number: 207731 Superseded Report:

Chromatogram

Sample No: 6722728 Depth: 0.50 - 3.00

Validated

SDG: 121217-21 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9 207731

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Depth**: 3.50 Sample No : 6722731

Sample ID : BH 104

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 207731

Superseded Report:

Chromatogram

 Analysis:
 GRO by GC-FID (W)
 Sample No: 6722733
 6722733
 Depth: 4.50

Sample ID: BH 105

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 207731

Report Number: 20773
Superseded Report:

Chromatogram

 Analysis:
 GRO by GC-FID (W)
 Sample No: 6722735
 6722735
 Depth: 4.80

Sample ID: BH 104

Validated

SDG: 121217-21 **Job**: H_MAYER

Client Reference:

H_MAYERBROW_WOK-34

Toluene

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 207731

Superseded Report: 20773

Chromatogram

 Analysis:
 GRO by GC-FID (W)
 Sample No : Sample ID : BH 103
 6722813 BH 103
 Depth : 3.00 - 7.50

6722813_GRO_W.DATA - HP6850 Signal 1

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG: 121217-21 Location: Medina Order Number: R/PDEMEDINA.9

Job: H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd Report Number: 207731
Client Reference: Attention: Antony Platt Superseded Report:

Appendix General

- 1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.
- $9.\ \mbox{NDP}$ -No determination possible due to insufficient/unsuitable sample
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. **Surrogate recoveries** -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Orodoblite	Blue Asbestos
Fibrous Adindite	=
FibrousAnthophylite	=
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Mayer Brown Ltd Lion House Oriental Road Woking Surrey GU22 8AR

Attention: Antony Platt

CERTIFICATE OF ANALYSIS

Date: 10 January 2013

Customer: H MAYERBROW WOK

Sample Delivery Group (SDG): 121220-104

Your Reference:

Location:MedinaReport No:208101

We received 11 samples on Thursday December 20, 2012 and 11 of these samples were scheduled for analysis which was completed on Thursday January 10, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

SDG: 121220-104 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
6700145	BH106		0.50	17/12/2012
6700147	BH106		1.00 - 6.00	17/12/2012
6700149	BH106		6.00 - 7.00	17/12/2012
6700151	BH107		0.50	17/12/2012
6700153	BH107		2.50 - 2.90	17/12/2012
6700154	BH107		3.80 - 8.00	17/12/2012
6700156	BH108		0.50	17/12/2012
6700160	BH108		1.10 - 6.00	17/12/2012
6700158	BH108		3.60	17/12/2012
6700161	BH109		0.50	17/12/2012
6700162	BH109		2.10 - 6.00	17/12/2012

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

 SDG:
 121220-104
 Location:
 Medina
 Order Number:
 R/PDEMEDINA.9

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd
 Report Number:
 208101

Job: H_MAYE Client Reference:	ERBROW_WOK-34	Custome Attention			Brow Platt	n Ltd								umber: led Report:
SOLID Results Legend X Test	Lab Sample	No(s)	6700145	6700147	6700149	6700151	6700153	6700154	6700156	6700160	6700158	6700161	6700162	
No Determination Possible	Custome Sample Refe		ВН106	ВН106	ВН106	ВН107	ВН107	BH107	ВН108	BH108	BH108	ВН109	вн109	
	AGS Refere	ence												
	Depth (n	1)	0.50	1.00 - 6.00	6.00 - 7.00	0.50	2.50 - 2.90	3.80 - 8.00	0.50	1.10 - 6.00	3.60	0.50	2.10 - 6.00	
	Containe	er	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (Al	250g Amber Jar (AL 1kg TUB	
Alkalinity Filtered as CaCO3	All	NDPs: 0 Tests: 6		X	X			X		X			X	
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 6		X	X		X	X		X			X	
Ammonium Soil by Titration	All	NDPs: 0 Tests: 4	X		^	X		^	X	^		X		
Anions by Kone (soil)	All	NDPs: 0 Tests: 4	x			X			X			X		
Anions by Kone (w)	All	NDPs: 0 Tests: 6		x	X		X	X		X			X	
Asbestos Identification (Soil)	All	NDPs: 0 Tests: 5	x			x			x		X	x		
Boron Water Soluble	All	NDPs: 0 Tests: 4	X			X			x		,	x		
CEN 2:1 Readings	All	NDPs: 0 Tests: 6		X	X		X	X		X			X	
CEN 8:1 Readings	All	NDPs: 0 Tests: 6		X	X		X	X		X			X	
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 10	X	X	X	x	X	X	×	X		x	X	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 6		X	X		X	X		X			X	
EPH CWG (Aliphatic) Aqueous GC (W)	All	NDPs: 0 Tests: 6		x	x		X	X		X			x	
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 4	x			X			X			x		
EPH CWG (Aromatic) Aqueous GC (W)	All	NDPs: 0 Tests: 6		X	X		X	X		X			X	
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 4	x			X			X		2	x		

Validated

 SDG:
 121220-104
 Location:
 Medina
 Order Number:
 R/PDEMEDINA.9

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd
 Report Number:
 208101

 Client Reference:
 Attention:
 Antony Platt
 Superseded Report:

		Attentior	-			ony															ersec			
SOLID Results Legend X Test	Lab Sample	No(s)			6700145	6/0014/		6700149		6700151	6700153	6700453	6700154			6700156	6700160	6700158		6700161	6700162			
No Determination Possible	Custome Sample Refe				BH106	BH106		BH106		BH107	BHIO		BH107		!	BH108	BH108	BH108		BH109	BH109			
	AGS Refere	ence																						
	Depth (m)				0.50						6.00 - 7.00		0.50	2.50 - 2.90		3.80 - 8.00			0.50		3.60		0.50	.00
	Containe	er	250g Amber Jar (AL	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (AL 1kg TUB	1kg TUB	250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL 1kg TUB	1kg IUB	250g Amber Jar (AL	250g Amber Jar (AL	400g Tub (ALE214)	60a VOC (ALE215)	250g Amber Jar (AL	250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215) 400g Tub (ALE214)	250g Amber Jar (AL 1kg TUB			
GRO by GC-FID (S)	All	NDPs: 0 Tests: 4	Ė		x					X						X				X				
GRO by GC-FID (W)	All	NDPs: 0 Tests: 6				X	X				X	×	<u> </u>)	(X			
Low Level Phenols by HPLC (W)	All	NDPs: 0 Tests: 6	F			X	X				X	×	<u> </u>)	(X			
Mercury Unfiltered	All	NDPs: 0 Tests: 6	F			x	X				X	×	<u> </u>)	(X			
Metals by iCap-OES (Soil)	Antimony	NDPs: 0 Tests: 4	X						X					X					X					
	Arsenic	NDPs: 0 Tests: 4	x						X					X					X					
	Barium	NDPs: 0 Tests: 4	X						X					X					x					
	Beryllium	NDPs: 0 Tests: 4	x						X					X					x					
	Cadmium	NDPs: 0 Tests: 4	x						X					X					X					
	Chromium	NDPs: 0 Tests: 4	X						X					X					X					
	Copper	NDPs: 0 Tests: 4	X						X					X					X					
	Lead	NDPs: 0 Tests: 4	X						X					X					x					
	Mercury	NDPs: 0 Tests: 4	x						X					x					X					
	Molybdenum	NDPs: 0 Tests: 4	x						X					X					X					
	Nickel	NDPs: 0 Tests: 4	x						X					X					X					

Validated

R/PDEMEDINA.9 SDG: 121220-104 Location: Medina Order Number: Job: H_MAYERBROW_WOK-34 Mayer Brown Ltd 208101 **Customer:** Report Number: Client Reference: Attention: Antony Platt Superseded Report:

Client Reference:		Attention	1:	Ant	ony	Plati									5	upe	ersec
SOLID Results Legend X Test	Lab Samp	ole No(s)		6700145	6700147	6700149		6700151	6700153	6700154		6700156	6700160	6700158		6700161	6700162
No Determination Possible	Custo Sample Ro			BH106	ВН106	BH106		BH107	BH107	BH107		BH108	BH108	BH108		BH109	BH109
	AGS Ref	erence															
	Depth	ı (m)		0.50	1.00 - 6.00	6.00 - 7.00		0.50	2.50 - 2.90	3.80 - 8.00		0.50	1.10 - 6.00	3.60		0.50	2.10 - 6.00
	Conta	iiner	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	400g Tub (ALE214) 250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	250g Amber Jar (AL 1kg TUB	400g Tub (ALE214) 250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL 1kg TUB
Metals by iCap-OES (Soil)	Selenium	NDPs: 0 Tests: 4	x				X				X				X		
PAH by GCMS	Zinc	NDPs: 0 Tests: 4 NDPs: 0 Tests: 4	X				X				X				X		
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 6	X		X	X	X	2	×.	X	X		X		X		X
рН	All	NDPs: 0 Tests: 4		X			X				X				X	<u> </u>	
pH Value	All	NDPs: 0 Tests: 6			X	x			×	x			X				X
Phenols by HPLC (S) Sample description	All	NDPs: 0 Tests: 4 NDPs: 0	2	X			×				X				X		
Total Organic Carbon	All	Tests: 10	x		X	X	X		X	X	X		X		X		X
Total Organic Carbon (Asb)	All	NDPs: 0	X				X								X		
TPH CWG (W)	All	NDPs: 0 Tests: 6			X	X		,	×.	X	X		X				X
TPH CWG GC (S)	All	NDPs: 0 Tests: 4	X				X				X				X		

Validated

SDG: 12 **Job**: H_

Client Reference:

121220-104 H_MAYERBROW_WOK-34 Location: Customer: Attention:

Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Sample Descriptions

Grain Sizes

very fine	<0.063mm	fine	0.063mm - 0.1mm	medium	0.1mm	- 2mm	coarse	2mm - 1	0mm ve	ry coarse	>10mm
Lab Sample	No(s) Cust	omer Sample Ro	ef. Depth (m)	Co	olour	Description	ı G	rain size	Inclusion	ns I	nclusions 2
670014	15	BH106	0.50	Dark	Brown	Clay	<().063 mm	Stones		Brick
670014	17	BH106	1.00 - 6.00	Dark	Brown	Silty Clay	0.06	33 - 0.1 mm	Vegetatio	on	Stones
670014	6700149		6.00 - 7.00	Ligh	t Brown	Clay	0.06	33 - 0.1 mm	None		Stones
670015	6700151 E		0.50	Ligh	t Brown	Silty Clay	0.06	33 - 0.1 mm	Stones		None
670015	53	BH107	2.50 - 2.90	Dark	Brown	Loamy Sand	d 0.	1 - 2 mm	Vegetatio	on C	rushed Brick
670015	54	BH107	3.80 - 8.00	Dark	Brown	Loamy Sand	d 0.	1 - 2 mm	Fibres	C	rushed Brick
670015	56	BH108	0.50	Dark	Brown	Sandy Loan	n 0.	1 - 2 mm	Glass & Sto	ones	Brick
670016	60	BH108	1.10 - 6.00	(Grey	N/A	0.	1 - 2 mm	N/A		None
670016	61	BH109	0.50	Ligh	t Brown	Silty Clay	0.06	63 - 0.1 mm	Stones		None
670016	52	BH109	2.10 - 6.00	Dark	Dark Brown Loamy S		d 0.	1 - 2 mm	Glass & Sto	ones C	rushed Brick

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

SDG: 121220-104

Location: Medina Mayer Brown Ltd Job: H_MAYERBROW_WOK-34 Customer:

Client Reference:

Attention: Antony Platt Order Number: Report Number:

R/PDEMEDINA.9 208101

Superseded Report:

Results Legend	(Customer Sample R	BH106	BH107	BH108	BH109		
# ISO17025 accredited. M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50	0.50	0.50	0.50		
tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid		
* Subcontracted test. ** % recovery of the surrogate standa	rd to	Date Sampled Sampled Time	17/12/2012	17/12/2012	17/12/2012	17/12/2012		
check the efficiency of the method.	The	Date Received	20/12/2012	20/12/2012	20/12/2012	20/12/2012		
results of individual compounds wi samples aren't corrected for the rec		SDG Ref	121220-104	121220-104	121220-104	121220-104		
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s)	6700145	6700151	6700156	6700161		
Component	LOD/Units	AGS Reference Method						
Ammoniacal Nitrogen,	<15	TM024	<15	<15	<15	202		
exchangeable as NH4	mg/kg	1101024		~15 M				
Phenois, Total Detected	<0.035	TM062 (S)	<0.035	<0.035	<0.035	<0.035		
monohydric	mg/kg	11002 (3)						
	<0.002	- TM132	@ M 0.0154	@ M 0.0454	@ M	@ M 0.0194		
Fraction Organic Carbon (FOC)	\0.002	- 1101132						
	1 nU	TM133	# 0.24	9.20	0.22	7.47		
pH	1 pH Units	1101133	8.34	8.39	8.33			
Cupride Free		TN450	<1 M	M	<1 M	M		
Cyanide, Free	<1 mg/k	g TM153		<1		<1		
A makimus a may .	40.0	TN404	@ M	@ M	@ M	@ M		
Antimony	<0.6	TM181	0.839	7.5	28.2	1.55		
Argonia	mg/kg	TM404	12.6	24.7	21.0	15.9		
Arsenic	<0.6	TM181	12.6	24.7	31.8	15.8		
Parium	mg/kg	TM404	95.4	M	210	122		
Barium	<0.6	TM181	85.4	112	318	133		
D on diliver	mg/kg	T14404	4	4.05	4.42	4.45		
Beryllium	<0.01	TM181	0.808	1.25	1.13	1.15		
On desirant	mg/kg	TNACA	M	M	M	M		
Cadmium	<0.02	TM181	0.0323	1.88	1.81	0.0819		
	mg/kg		M	М	M	M		
Chromium	<0.9	TM181	25.3	20.1	1460	27.8		
_	mg/kg		M	М	M	M		
Copper	<1.4	TM181	20	49.7	237	62		
	mg/kg		M	M	M	M		
Lead	<0.7	TM181	45.7	458	414	135		
	mg/kg		M	М	M	M		
Mercury	<0.14	TM181	0.219	0.541	0.282	0.946		
	mg/kg		М	M	M	M		
Molybdenum	<0.1	TM181	0.693	1.57	31.5	0.85		
	mg/kg		#	#	#	#		
Nickel	<0.2	TM181	22.2	25.3	201	21.8		
	mg/kg		М	M	M	M		
Selenium	<1 mg/k	g TM181	<1	<1	<1	<1		
			#	#	#	#		
Zinc	<1.9	TM181	99.4	189	803	114		
	mg/kg		M	М	M	M		
Boron, water soluble	<1 mg/k	g TM222	<1	<1	1.29	<1		
			M	М	M	M		
Water Soluble Sulphate	<0.008	TM243	0.0242	0.226	0.0526	0.053		
as SO4 2:1 Extract	g/l		M	М	M	M		
Fraction Organic Carbon	<0.1 -	TM321			<0.1			
(FOC)								
		+						
		+						
		+						
		+						

Validated

SDG: 121220-104 Location: Medina Order Number: R/PDEMEDINA.9

Job: H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd Report Number: 208101

Client Reference: Attention: Antony Platt Superseded Report:

PAH by GCMS

PAH by GCMS	_							
Results Legend # ISO17025 accredited.		Customer Sample R	BH106	BH107	BH108	BH109		
M mCERTS accredited. aq Aqueous / settled sample.		Donath (ms)	0.50	0.50	0.50	0.50		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.50 Soil/Solid	0.50 Soil/Solid	0.50 Soil/Solid	0.50 Soil/Solid		
* Subcontracted test.		Date Sampled	17/12/2012	17/12/2012	17/12/2012	17/12/2012		
** % recovery of the surrogate standa check the efficiency of the method.		Sampled Time Date Received	20/12/2012	20/12/2012	20/12/2012	20/12/2012		
results of individual compounds with samples aren't corrected for the re-		SDG Ref	121220-104	121220-104	121220-104	121220-104		
(F) Trigger breach confirmed	,	Lab Sample No.(s)	6700145	6700151	6700156	6700161		
1-4&+§@ Sample deviation (see appendix)	LOD/Unit	AGS Reference Method						
Component Perylene-d12 %	%	TM218	88.9	82.1	96.2	68		
recovery**	/0	TIVIZIO	00.9	02.1	90.2	00		
Naphthalene	<0.009	TM218	0.0447	0.0138	0.0464	0.0292		
	mg/kg		@ M	@ M	@ M	@ M		
Acenaphthylene	<0.012	TM218	0.0517	<0.012	0.0781	<0.012		
	mg/kg	=1.12.12	@ M	@ M	@ M	@ M		
Acenaphthene	<0.008 mg/kg	TM218	<0.008	<0.008	0.188	0.0116		
Fluorene	<0.01	TM218	@ M 0.0209	@ M <0.01	@ M 0.17	@ M <0.01		
	mg/kg		@ M	@ M	@ M	@ M		
Phenanthrene	<0.015	TM218	0.242	<0.015	2.44	0.146		
	mg/kg		@ M	@ M	@ M	@ M		
Anthracene	<0.016	TM218	0.136	<0.016	0.671	0.0349		
Fluorenthe	mg/kg	T14040	@ M	@ M	@ M	@ M		
Fluoranthene	<0.017 mg/kg	TM218	1.04	<0.017	3.66	0.377		
Pyrene	<0.015	TM218	@ M 1.09	@ M <0.015	@ M 2.95	@ M 0.34		
, j.c.ic	mg/kg	1101210	0 M	~0.013 @ M	2.93 @ M	0.54 @ M		
Benz(a)anthracene	<0.014	TM218	0.71	<0.014	1.56	0.177		
	mg/kg		@ M	@ M	@ M	@ M		
Chrysene	<0.01	TM218	0.643	<0.01	1.3	0.184		
Daniel (IVII)	mg/kg	TM040	@ M	@ M	@ M	@ M		
Benzo(b)fluoranthene	<0.015 mg/kg	TM218	0.811	<0.015	1.73 @ M	0.189		
Benzo(k)fluoranthene	<0.014	TM218	@ M 0.404	@ M <0.014	0.744	@ M 0.0917		
(- /	mg/kg	1	@ M	@ M	@ M	@ M		
Benzo(a)pyrene	<0.015	TM218	0.801	<0.015	1.59	0.17		
	mg/kg		@ M	@ M	@ M	@ M		
Indeno(1,2,3-cd)pyrene	<0.018	TM218	0.435	<0.018	0.85	0.103		
Dibenzo(a,h)anthracene	mg/kg <0.023	TM218	@ M 0.145	@ M <0.023	@ M 0.233	@ M 0.0292		
Diberizo(a,ii)antinacene	mg/kg	TIVIZIO	0.143 @ M	~0.023 @ M	0.233 @ M	0.0292 @ M		
Benzo(g,h,i)perylene	<0.024	TM218	0.507	<0.024	1.06	0.136		
	mg/kg		@ M	@ M	@ M	@ M		
PAH, Total Detected	<0.118	TM218	7.08	<0.118	19.3	2.02		
USEPA 16	mg/kg							
		+						
								

Validated

SDG: 121220-104

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Customer: Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 208101

TPH CWG (S)

TDU CWC (C)			Attention. An	torry i latt		Опретосией пере		
TPH CWG (S) Results Legend		Customer Sample B	DUMOC	D11407	DUMOO	DUMOO		
# ISO17025 accredited.	(Customer Sample R	BH106	BH107	BH108	BH109		
M mCERTS accredited. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.		Depth (m)	0.50	0.50	0.50	0.50		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid 17/12/2012	Soil/Solid 17/12/2012	Soil/Solid 17/12/2012	Soil/Solid 17/12/2012		
** % recovery of the surrogate standa	ard to	Sampled Time						
check the efficiency of the method		Date Received	20/12/2012	20/12/2012	20/12/2012	20/12/2012		
results of individual compounds w samples aren't corrected for the re		SDG Ref	121220-104	121220-104	121220-104	121220-104		
(F) Trigger breach confirmed	·	Lab Sample No.(s)	6700145	6700151	6700156	6700161		
1-4&+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Units							
GRO Surrogate %	%	TM089	97	83	87	97		
recovery**								
GRO >C5-C12	<0.044	TM089	<0.044	<0.044	<0.044	<0.044		
	mg/kg							
Methyl tertiary butyl ether	<0.005	TM089	<0.005	<0.005	<0.005	<0.005		
(MTBE)	mg/kg	1111000			@#	@#		
<u> </u>		TM000	@#	@#				
Benzene	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
	mg/kg		@ M	@ M	@ M	@ M		
Toluene	<0.002	TM089	<0.002	<0.002	0.0057	<0.002		
	mg/kg		@ M	@ M	@ M	@ M		
Ethylbenzene	< 0.003	TM089	< 0.003	< 0.003	0.00342	< 0.003		
,	mg/kg		@ M	@ M	@ M	@ M		
m,p-Xylene	<0.006	TM089	<0.006	<0.006	0.00912	<0.006		
п,р хуюне	mg/kg	I IVIOUS						
a Vylana		TN4000	@ M	@ M	@ M	@ M		
o-Xylene	<0.003	TM089	<0.003	<0.003	<0.003	<0.003		
	mg/kg		@ M	@ M	@ M	@ M		
sum of detected mpo	<0.009	TM089	<0.009	<0.009	0.00912	<0.009		
xylene by GC	mg/kg							
sum of detected BTEX by	<0.024	TM089	<0.024	<0.024	<0.024	<0.024		
GC	mg/kg							
Aliphatics >C5-C6	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
Aliphatics >C5-C0		110009	~ 0.01	~ 0.01	~ 0.01	~ 0.01		
	mg/kg							
Aliphatics >C6-C8	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
	mg/kg							
Aliphatics >C8-C10	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
	mg/kg							
Aliphatics >C10-C12	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
7 mpriduod * 0 10 0 12	mg/kg	1111000	-0.01	10.01	10.01	-0.01		
Alimbetics > C42 C4C		TN4470	40.7	2.44	4.7	2.25		
Aliphatics >C12-C16	<0.1	TM173	18.7	3.41	4.7	2.25		
	mg/kg							
Aliphatics >C16-C21	<0.1	TM173	18.9	2.43	10.7	1.44		
	mg/kg							
Aliphatics >C21-C35	<0.1	TM173	16.7	7.09	88.4	13.2		
	mg/kg							
Aliphatics >C35-C44	<0.1	TM173	2.05	1.05	25.5	4.27		
7 mpriduod * 000 0 1 1	mg/kg	'''''	2.00	1.00	20.0	1.21		
Tatal Allahadian 2010 011		T14470	50.0	4.4	400	04.0		
Total Aliphatics >C12-C44	<0.1	TM173	56.3	14	129	21.2		
	mg/kg							
Aromatics >EC5-EC7	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
	mg/kg							
Aromatics >EC7-EC8	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
	mg/kg							
Aromatics >EC8-EC10	<0.01	TM089	<0.01	<0.01	0.0148	<0.01		
	mg/kg	1555	.0.01	.0.01	0.0110	.0.01		
Aramatica > F040 F040		TN4000	40 O4	10.04	10.01	40.04		
Aromatics >EC10-EC12	<0.01	TM089	<0.01	<0.01	<0.01	<0.01		
	mg/kg							
Aromatics >EC12-EC16	<0.1	TM173	8.5	2.02	3	2.6		
	mg/kg							
Aromatics >EC16-EC21	<0.1	TM173	15.7	2.05	19.9	15.5		
	mg/kg							
Aromatics >EC21-EC35	<0.1	TM173	61.5	7.94	102	66.6		
	mg/kg	''''''	01.0	7.04	102	00.0		
Aromatics > FC2F FC44		TM470	10.1	2.72	20.7	20 E		
Aromatics >EC35-EC44	<0.1	TM173	19.1	3.73	39.7	29.5		
	mg/kg							
Aromatics >EC40-EC44	<0.1	TM173	6.8	1.33	14.8	10.8		
	mg/kg							
Total Aromatics	<0.1	TM173	105	15.7	165	114		
>EC12-EC44	mg/kg							
Total Aliphatics >C5-35	<0.1	TM173	54.2	12.9	104	16.9		
Total Aliphatics >00-30	mg/kg	1101173	J ↑ .∠	14.3	104	10.5		
Total Aromatica > 05.05		TN4470	05.7	40	405	047		
Total Aromatics >C5-35	<0.1	TM173	85.7	12	125	84.7		
	mg/kg							
Total Aliphatics &	<0.1	TM173	140	24.9	229	102		
Aromatics >C5-35	mg/kg							

Validated

R/PDEMEDINA.9 SDG: 121220-104 Location: Medina Order Number: Job:

Mayer Brown Ltd H_MAYERBROW_WOK-34 208101 **Customer:** Report Number: Attention: Antony Platt Superseded Report:

Client Reference:

TPH CWG (S)							
Results Legend	С	ustomer Sample R	BH106	BH107	BH108	BH109	
# ISO17025 accredited. M mCERTS accredited.							
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50	0.50	0.50	0.50	
tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
* Subcontracted test. ** % recovery of the surrogate stand	ard to	Date Sampled Sampled Time	17/12/2012	17/12/2012	17/12/2012	17/12/2012	
check the efficiency of the method results of individual compounds w	i. The	Date Received	20/12/2012	20/12/2012	20/12/2012	20/12/2012	
samples aren't corrected for the re	covery	SDG Ref	121220-104 6700145	121220-104 6700151	121220-104 6700156	121220-104 6700161	
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference					
Component	LOD/Units						
Total Aliphatics &	<0.1	TM173	161	29.7	294	135	
Aromatics >C5-C44	mg/kg						
		_					

Validated

SDG: 121220-104

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina

Customer:

Attention:

Mayer Brown Ltd

Antony Platt

Order Number: R/PDEMEDINA.9

Report Number: 208101 Superseded Report:

Asbestos Identification - Soil

			M21	Je3103	iaentiti	Cation	- 3011				
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH106 0.50 SOLID 17/12/2012 00:00:00 121220-104 6700145 TM048	07/01/13	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH107 0.50 SOLID 17/12/2012 00:00:00 121220-104 6700151 TM048	07/01/13	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH108 0.50 SOLID 17/12/2012 00:00:00 121220-104 6700156 TM048	07/01/13	Lauren Sargeant	Loose fibres in soil	Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH108 3.60 SOLID 17/12/2012 00:00:00 121220-104 6700158 TM048	10/01/13	Kevin Bowron	·	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH109 0.50 SOLID 17/12/2012 00:00:00 121220-104 6700161 TM048	07/01/13	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

Validated

REF: BS EN 12457/3

121220-104 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.244 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location Moisture Content Ratio (%)** 39.6 71.6 **Dry Matter Content Ratio (%)**

ase	
3	121220-104
ab Sample Number(s)	6700147
ampled Date	17-Dec-2012
Customer Sample Ref.	BH106
Depth (m)	1.00 - 6.00
Solid Waste Analysis	
otal Organic Carbon (%)	-
oss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
um of 7 PCBs (mg/kg)	-
lineral Oil (mg/kg)	-
AH Sum of 17 (mg/kg)	-
H (pH Units)	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1 eluate	A2 2:1 conc ⁿ leached	A2-10 Cumulative concn leached		for compliance lea EN 12457-3 at L/S	•
	m	g/l	mg,	/kg		,	. , 3
Arsenic	0.00949	0.00701	0.019	0.0731	0.5	2	25
Barium	0.00464	0.00127	0.00929	0.0168	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00434	0.00127	0.00869	0.0164	0.5	10	70
Copper	0.0105	0.00421	0.021	0.0496	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0108	0.00117	0.0215	0.0233	0.5	10	30
Nickel	0.00201	0.000534	0.00403	0.00711	0.4	10	40
Lead	0.000069	0.000042	0.000138	0.000453	0.5	10	50
Antimony	0.00116	0.000479	0.00233	0.00561	0.06	0.7	5
Selenium	0.00446	0.00123	0.00894	0.0161	0.1	0.5	7
Zinc	0.000565	<0.00041	0.00113	<0.0041	4	50	200
Chloride	15.7	-	31.4	-	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	51.5	5.6	103	111	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	27-Dec-2012	02-Jan-2013
pH (pH Units)	9.871	10.360
Conductivity (µS/cm)	244.00	11.20
Temperature (°C)	20.90	18.90
Volume Leachant (Litres)	0.281	1.400
Volume of Eluate VE1 (Litres)	0.262	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2013 11:58:57

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Validated

REF: BS EN 12457/3

SDG: 121220-104

PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg)

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 208101

Superseded Report: 20010

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Customer:

Attention:

Client Reference	
Mass Sample taken (kg)	0.244
Mass of dry sample (kg)	0.175
Particle Size <th>>95%</th>	>95%

Site LocationMedinaMoisture Content Ratio (%)39.6Dry Matter Content Ratio (%)71.6

Case		Lan	dfill Waste Acceptance		
SDG	121220-104		Criteria Limit	Criteria Limits	
Lab Sample Number(s)	6700147				
Sampled Date	17-Dec-2012		Stable Non-reactive	Hazardous Waste Landfill	
Customer Sample Ref.	BH106	Inert Waste Landfill	Hazardous		
Depth (m)	1.00 - 6.00	Landilli	Waste in Non- Hazardous	vvaste Landiii	
Solid Waste Analysis			Landfill		
Total Organic Carbon (%)	-	-	-	-	
Loss on Ignition (%)	-	-	-	-	
Sum of BTEX (mg/kg)	-	-	-	-	
Sum of 7 PCBs (mg/kg)	-	-	-	-	
Mineral Oil (mg/kg)	-	-	-	-	

ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea EN 12457-3 at L/S	•
	m	g/l	mg	/kg	20		
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	0.381	<0.2	0.763	<2	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Total Ammonium as NH4	0.404	<0.3	0.808	<3	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	1.15	-	2.31	-	-	-	-
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Boron	0.046	0.0234	0.0922	0.261	-	-	-
Total Alkalinity Filtered as CaCO3	55	55	110	550	-	-	-
Phenols Total of 5 Speciated by HPLC	<0.00064	<0.00064	<0.00128	<0.0064	-	-	-
(W)							
PAH Spec MS - Aqueous (W) Naphthalene by GCMS	0.0004	0.0004	0.0000	2.224	l		
Acenaphthene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthylene by GCMS	0	<0.000015	0.000132	<0.00015	-	-	-
1 7 7	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.0000249	0.000112	0.000288	-	-	-
Anthracene by GCMS	0	<0.000015	0.0000305	<0.00015	-	-	-
Phenanthrene by GCMS	<0.000022	<0.000022	<0.000044	<0.00022	-	-	-
Fluorene by GCMS	<0.00014	<0.000014	<0.000028	<0.00014	-	-	-
Chrysene by GCMS	<0.000013	<0.000013	<0.000026	<0.00013	-	-	-

2:1	8:1
27-Dec-2012	02-Jan-2013
9.871	10.360
244.00	11.20
20.90	18.90
0.281	1.400
0.262	
	27-Dec-2012 9.871 244.00 20.90 0.281

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

Hazardous

Waste Landfill

SDG: 121220-104

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer I

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number:

Inert Waste

Landfill

R/PDEMEDINA.9 208101

Superseded Report: 20810

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Medina Mass Sample taken (kg) 0.244 Moisture Content Ratio (%) 39.6

Mass of dry sample (kg) 0.175
Particle Size <4mm >95%

Moisture Content Ratio (%) 39.6

Dry Matter Content Ratio (%) 71.6

 Case

 SDG
 121220-104

 Lab Sample Number(s)
 6700147

 Sampled Date
 17-Dec-2012

 Customer Sample Ref.
 BH106

 Depth (m)
 1.00 - 6.00

Criteria Limits

Non-reactive

Hazardous

Waste in Non-

Hazardous

Landfill Waste Acceptance

Solid Waste Analysis

Total Organic Carbon (%)
Loss on Ignition (%)
Sum of BTEX (mg/kg)

 Loss on Ignition (%)

 Sum of BTEX (mg/kg)

 Sum of 7 PCBs (mg/kg)

 Mineral Oil (mg/kg)

 PAH Sum of 17 (mg/kg)

 pH (pH Units)

 ANC to pH 6 (mol/kg)

 ANC to pH 4 (mol/kg)

	Lanum	
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-

	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ	Cumulative	Limit values fo	r compliance lea	ahina kaak
Eluate Analysis				leached		r compliance lea 12457-3 at L/S	-
	m	g/l	mg,	/kg			. , ,
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.0000821	0.000166	0.000822	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	< 0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.000018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	<0.000247	<0.000247	<0.000494	<0.00247	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.00601	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	27-Dec-2012	02-Jan-2013
pH (pH Units)	9.871	10.360
Conductivity (µS/cm)	244.00	11.20
Temperature (°C)	20.90	18.90
Volume Leachant (Litres)	0.281	1.400
Volume of Eluate VE1 (Litres)	0.262	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

121220-104 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.244 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location Moisture Content Ratio (%)** 39.6 71.6 **Dry Matter Content Ratio (%)**

Case	
SDG	121220-104
ab Sample Number(s)	6700147
Sampled Date	17-Dec-2012
Customer Sample Ref.	BH106
Depth (m)	1.00 - 6.00
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-

C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test		
n	ng/l	mg	g/kg	using 65	EN 12457-3 at L/5	10 I/ Kg
<0.007	<0.007	<0.014	<0.07	-	-	-
<0.004	<0.004	<0.00801	<0.04	-	-	-
<0.005	<0.005	<0.01	<0.05	-	-	-
<0.008	<0.008	<0.016	<0.08	-	-	-
< 0.003	<0.003	<0.00601	<0.03	-	-	-
<0.011	<0.011	<0.022	<0.11	-	-	-
<0.028	<0.028	<0.056	<0.28	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	-	<0.02	-	-	-	-
<0.01	-	<0.02	-	-	-	-
<0.01	-	<0.02	-	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
	<pre></pre>	C2 eluate C8 eluate mg/l	G2 eluate A2 leached mg/I mg c0.007 <0.014 <0.0004	C2 conts in 2.1 eluate C8 conts in 3.1 eluate A2 2.1 conts leached A2-10 conts leached mg/kg concs leached wg/kg concs leached concs leached mg/kg concs leached concs leached concs leached mg/kg concs leached concs leached	C2 content in 2.1 eluate C8 eluate A2 eluate A2 eluate A2-10 elached leached Limit values using BS mg/kg Limit values using BS Limit values using BS Limit values using BS Conce leached mg/kg Limit values using BS Conce leached mg/kg Limit values using BS Conce leached Limit values using BS Conce leached Limit values using BS Limit values Limit values	C2 eluate C8 eluate C8 eluate C8 eluate Eluate C8 eluate Elu

Leach Test Information	2:1	8:1
Date Prepared	27-Dec-2012	02-Jan-2013
pH (pH Units)	9.871	10.360
, ",		
Conductivity (µS/cm)	244.00	11.20
Temperature (°C)	20.90	18.90
Volume Leachant (Litres)	0.004	4 400
Volume Leachant (Littles)	0.281	1.400
Volume of Eluate VE1 (Litres)	0.262	
	0.202	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2013 11:58:57

ANC to pH 4 (mol/kg)

Validated

SDG: 121220-104

Particle Size <4mm

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

Customer:

Attention:

>95%

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESU	JLTS		REF : BS EN 12457/3
Client Reference		Site Location	Medina
Mass Sample taken (kg)	0.248	Moisture Content Ratio (%)	41.5
Mass of dry sample (kg)	0.175	Dry Matter Content Ratio (%)	70.7

Landfill Waste Acceptance Case **Criteria Limits SDG** 121220-104 Lab Sample Number(s) 6700149 Stable **Sampled Date** 17-Dec-2012 Non-reactive Inert Waste Hazardous **Customer Sample Ref.** BH106 Hazardous Landfill Waste Landfill Waste in Non-Depth (m) 6.00 - 7.00Hazardous Landfill **Solid Waste Analysis** Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) pH (pH Units)

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	m	g/l	mg/kg		using B3 EN 12437-3 at L/3 10 1/kg		10 1/ kg
Arsenic	0.00311	0.00126	0.0062	0.0145	0.5	2	25
Barium	0.0926	0.0445	0.185	0.493	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00146	0.00148	0.00292	0.0147	0.5	10	70
Copper	0.0122	0.0028	0.0243	0.0374	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.00853	0.00528	0.017	0.056	0.5	10	30
Nickel	0.00323	0.00169	0.00646	0.0184	0.4	10	40
Lead	0.000454	0.00466	0.000907	0.0424	0.5	10	50
Antimony	0.00149	0.00155	0.00298	0.0154	0.06	0.7	5
Selenium	0.00429	0.000851	0.00856	0.0119	0.1	0.5	7
Zinc	0.00578	0.00438	0.0115	0.0452	4	50	200
Chloride	93	6.6	186	152	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	78.4	32.2	157	368	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.599	7.410
Conductivity (µS/cm)	642.00	205.00
Temperature (°C)	19.70	17.10
Volume Leachant (Litres)	0.277	1.400
Volume of Eluate VE1 (Litres)	0.130	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

SDG: 121220-104

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report:

Inert Waste

Landfill

R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference

Mass Sample taken (kg) 0.248

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Site LocationMedinaMoisture Content Ratio (%)41.5Dry Matter Content Ratio (%)70.7

Case	
SDG	121220-104
Lab Sample Number(s)	6700149
Sampled Date	17-Dec-2012
Customer Sample Ref.	BH106
Depth (m)	6.00 - 7.00

Landfill Waste Acceptance Criteria Limits

Stable Non-reactive

Hazardous

Wasto in Non.

Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Hazardous Landfill	
-	-
-	-
-	-
-	-

Hazardous

Waste Landfill

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compli using BS EN 12457-3	•
	m	g/l	mg,	/kg	using 65 EN 12457-3	5 at L/5 10 1/kg
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002		-
Total Ammonia as NH3	3.1	1.73	6.18	18.7		-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005		-
Total Ammonium as NH4	3.28	1.84	6.55	19.8		-
Total Cyanide (W)	<0.05	<0.05	<0.0999	<0.5		-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005		-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007		-
Nitrate as N	<0.0677	0.0905	<0.135	0.814		-
Xylenols by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005		-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005		-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.000999	<0.005		-
Boron	0.0666	0.0315	0.133	0.35		-
Total Alkalinity Filtered as CaCO3	140	85	280	905		-
Phenols Total of 5 Speciated by HPLC (W)	<0.00064	<0.00064	<0.00128	<0.0064		-
PAH Spec MS - Aqueous (W)						
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001		-
Acenaphthene by GCMS	0	0.0000161	0.0000513	0.000171		-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011		-
Fluoranthene by GCMS	<0.000017	0.0000626	<0.000034	0.000563		-
Anthracene by GCMS	<0.000015	0.0000253	<0.00003	0.000228		-
Phenanthrene by GCMS	<0.000022	0.0000876	<0.000044	0.000788		-
Fluorene by GCMS	<0.000014	0.0000153	<0.000028	<0.00014		-
Chrysene by GCMS	<0.000013	<0.000013	<0.000026	<0.00013	-	-

Leach Test Information	2:1	8:1
		20.1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.599	7.410
Conductivity (µS/cm)	642.00	205.00
Temperature (°C)	19.70	17.10
Volume Leachant (Litres)	0.277	1.400
Volume of Eluate VE1 (Litres)	0.130	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121220-104

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd
Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

Report Number: 208101 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.248 Moisture Content Ratio (%) Mass of dry sample (kg) 0.175 Dry Matter Content Ratio (%) 70.7

Particle Size <4mm	>95%					
Case		·	·	Landf	ill Waste Acce	ptance
SDG	121220-104				Criteria Limits	;
Lab Sample Number(s)	6700149					
Sampled Date	17-Dec-2012				Stable Non-reactive	
Customer Sample Ref.	BH106			Inert Waste Landfill	Hazardous	Hazaro
Depth (m)	6.00 - 7.00			Landfill	Waste in Non- Hazardous	Waste L
Solid Waste Analysis						
Total Organic Carbon (%)	-			-	-	-
Loss on Ignition (%)	-			-	-	-
Sum of BTEX (mg/kg)	-			-	-	-
Sum of 7 PCBs (mg/kg)	-			-	-	-
Mineral Oil (mg/kg)	-			-	-	-
PAH Sum of 17 (mg/kg)	-					
pH (pH Units) ANC to pH 6 (mol/kg)	-			-		
ANC to pH 4 (mol/kg)	-			-	-	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	m	g/l	mg	/kg	using 55 EN 12457-5 at 2/5 10 1/1		10 1/ Kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	<0.000015	0.0000607	<0.00003	0.000546	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.00017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.0000539	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	<0.000247	0.000268	<0.000494	<0.00247	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.00599	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
		20.1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.599	7.410
Conductivity (µS/cm)	642.00	205.00
Temperature (°C)	19.70	17.10
Volume Leachant (Litres)	0.277	1.400
Volume of Eluate VE1 (Litres)	0.130	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

Hazardous

Waste Landfill

121220-104 SDG:

Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report:

Inert Waste

Landfill

R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.248 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location** 41.5 **Moisture Content Ratio (%)** 70.7 **Dry Matter Content Ratio (%)**

Case	
SDG	121220-104
Lab Sample Number(s)	6700149
Sampled Date	17-Dec-2012
Customer Sample Ref.	BH106
Depth (m)	6.00 - 7.00
Solid Waste Analysis	

Landfill Waste Acceptance Criteria Limits Stable

Non-reactive

Hazardous

Waste in Non-Hazardous

Solid Waste Alialysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Landfill

C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
m	g/l	mg	ı/kg			
<0.007	<0.007	<0.014	<0.07	-	-	-
<0.004	<0.004	<0.00799	<0.04	-	-	-
<0.005	<0.005	<0.00999	<0.05	-	-	-
<0.008	<0.008	<0.016	<0.08	-	-	-
< 0.003	<0.003	<0.00599	< 0.03	-	-	-
<0.011	<0.011	<0.022	<0.11	-	-	-
<0.028	<0.028	<0.0559	<0.28	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
	C2 eluate m <0.007 <0.004 <0.005 <0.008 <0.003 <0.011 <0.028 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	C2 eluate C8 eluate	C2 eluate C8 eluate A2 leached mg/I mg c < 0.007 < 0.014 <0.004	C2 conte-ma.1 eluate A2 conte-ma.1 leached A2-10 conce-leached mg/kg conce-leached wg/kg conce-leached conce-leached mg/kg conce-leached conce-leached kg/kg kg/kg kg/kg kg/kg kg/kg kg/kg k	C2 contain an an eluate A2 2.1 contain leached A2-10 contain leached Limit values to using BS E mg/kg Limit values to using BS E with values to using BS E x 0.007 < 0.014 < 0.07 - <0.004	C2 Solito Institute C8 Solito Institute C9 Solito Institute C9 Solito Concrete C9 C9 C9 C9 C9 C9 C9 C

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.599	7.410
Conductivity (µS/cm)	642.00	205.00
Temperature (°C)	19.70	17.10
Volume Leachant (Litres)	0.277	1.400
Volume of Eluate VE1 (Litres)	0.130	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

R/PDEMEDINA.9

208101

121220-104 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Order Number: Mayer Brown Ltd

Report Number: Antony Platt Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.219 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location Moisture Content Ratio (%)** 25.3 79.8 **Dry Matter Content Ratio (%)**

ase	
BDG	121220-104
Lab Sample Number(s)	6700153
Sampled Date	17-Dec-2012
Customer Sample Ref.	BH107
Depth (m)	2.50 - 2.90
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		-
	mg/l		mg,	/kg	using 65 EN 12457-5 at L/S 10 I/kg		
Arsenic	0.00344	0.000895	0.00689	0.0128	0.5	2	25
Barium	0.367	0.108	0.734	1.47	20	100	300
Cadmium	0.000384	<0.0001	0.000769	<0.001	0.04	1	5
Chromium	0.00203	0.00228	0.00406	0.0224	0.5	10	70
Copper	0.0031	<0.00085	0.00621	<0.0085	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0171	0.0113	0.0342	0.122	0.5	10	30
Nickel	0.217	0.0348	0.435	0.624	0.4	10	40
Lead	0.00036	0.000235	0.000721	0.00254	0.5	10	50
Antimony	0.000632	0.000877	0.00127	0.0084	0.06	0.7	5
Selenium	0.00603	0.000809	0.0121	0.016	0.1	0.5	7
Zinc	0.0247	0.00952	0.0495	0.118	4	50	200
Chloride	611	70.3	1220	1520	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	86.2	87.1	173	870	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000
-							

Leach Test Information	2:1	8:1
Data Barrana I		00 1 0040
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	7.710	7.169
Conductivity (µS/cm)	2,180.00	637.00
Temperature (°C)	20.70	20.30
Volume Leachant (Litres)	0.306	1.400
Volume of Eluate VE1 (Litres)	0.200	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2013 11:58:57

pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Validated

REF: BS EN 12457/3

121220-104 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.219 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location Moisture Content Ratio (%)** 25.3 79.8 **Dry Matter Content Ratio (%)**

Case		Landfi	II Waste Acc
SDG	121220-104		Criteria Limit
ab Sample Number(s)	6700153		
ampled Date	17-Dec-2012		Stable Non-reactive Hazardous
ustomer Sample Ref.	BH107	Inert Waste Landfill	
Pepth (m)	2.50 - 2.90	Landilli	Waste in Non- Hazardous
			Landfill
Solid Waste Analysis			
Fotal Organic Carbon (%)	-	-	-
oss on Ignition (%)	-	-	-
Sum of BTEX (mg/kg)	-	-	-
Sum of 7 PCBs (mg/kg)	-	-	-
Mineral Oil (mg/kg)	-	-	-
PAH Sum of 17 (mg/kg)	-	-	-
pH (pH Units)	-	_	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lead	•
	m	mg/l		/kg	using BS EN 12457-3 at L/S 10 l/kg		
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	1.45	<0.2	2.89	2.19	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	
Total Ammonium as NH4	1.53	<0.3	3.06	<3	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	0.00062	<0.0005	0.00124	<0.005	-	-	
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	<0.0677	0.0833	<0.136	0.707	-	-	-
Xylenols by HPLC (W)	0.00083	0.00083	0.00166	0.0083	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Boron	0.454	0.148	0.909	1.95	-	-	-
Total Alkalinity Filtered as CaCO3	160	165	320	1640	-	-	-
Phenols Total of 5 Speciated by HPLC	0.00145	0.00083	0.0029	0.00924	-	-	-
(W)			<u></u>				
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	0	0.000104	0.000128	0.00098	-	-	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.0000663	0.0000872	0.000629	-	-	-
Anthracene by GCMS	<0.000015	0.0000212	<0.00003	0.00018	-	-	-
Phenanthrene by GCMS	<0.000022	0.0000691	<0.000044	0.000587		-	-
Fluorene by GCMS	<0.000014	0.0000351	<0.000028	0.000298	-	-	-
Chrysene by GCMS	<0.000013	<0.000013	<0.000026	<0.00013	-	-	-

Leach Test Information	2:1	8:1
D. I. D I		00 1 0040
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	7.710	7.169
Conductivity (µS/cm)	2,180.00	637.00
Temperature (°C)	20.70	20.30
Volume Leachant (Litres)	0.306	1.400
Volume of Eluate VE1 (Litres)	0.200	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2013 11:58:57

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Validated

SDG: 121220-104 **Job**: H_MAYERB

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina
Customer: Mayer F

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.219 Moisture Content Ratio (%) Particle Size <4mm >95% REF: BS EN 12457/3 Medina Moisture Content Ratio (%) 79.8 Particle Size <4mm >95%

Case					Landf	ill Waste Acce	ptance
SDG	121220-104					Criteria Limits	6
Lab Sample Number(s)	6700153						
Sampled Date	17-Dec-2012					Stable	
Customer Sample Ref.	BH107				Inert Waste	Non-reactive Hazardous	Hazardous Waste Landfill
Depth (m)	2.50 - 2.90				Landfill	Waste in Non- Hazardous	
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached		es for compliance lea S EN 12457-3 at L/S	
	n	ng/l	mg	/kg	using b	3 LN 12437-3 at L/3	5 10 1/ kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.0000561	0.000103	0.000554	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.000018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-

Eluate Analysis	C2 eluate	C8 eluate	A2 leached	A2-10 conc ⁿ leached	Limit values for compliance leaching test		
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 l/kg		
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.0000561	0.000103	0.000554	-	-	-
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	<0.000009	<0.000009	<0.00018	<0.00009	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000014	<0.00014	<0.000028	<0.00014	-	-	-
PAH 16 EPA Total by GCMS	<0.000247	0.000352	<0.000494	0.00299	-	-	-
TPH CWG (W)							
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	<0.003	<0.006	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	0.011	<0.01	0.022	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	0.038	0.043	0.0761	0.422	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	7.710	7.169
Conductivity (µS/cm)	2,180.00	637.00
Temperature (°C)	20.70	20.30
Volume Leachant (Litres)	0.306	1.400
Volume of Eluate VE1 (Litres)	0.200	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121220-104

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina
Customer: Mayer I

Attention:

Mayer Brown Ltd
Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Medina Mass Sample taken (kg) 0.219 Moisture Content Ratio (%) 25.3

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Moisture Content Ratio (%) 25.3

Dry Matter Content Ratio (%) 79.8

Case		Land	dfill Waste Acce	ptano
	121220-104		Criteria Limit	S
ber(s)	6700153			
	17-Dec-2012		Stable Non-reactive	Haza Waste
	BH107	Inert Waste	Hazardous	
Depth (m)	2.50 - 2.90	Landfill	Waste in Non- Hazardous	vva
			Landfill	
	-	-	-	
	-	-	-	
	-	-	-	
	-	-	-	
	-	-	-	
	-	-	-	

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test		
	mg/l		mg/kg		using BS EN 12457-3 at L/S 10 l/kg		
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.00801	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
o Xylene by GC	<0.003	< 0.003	<0.006	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	0.018	0.018	0.036	0.18	-	-	-
Aromatics >EC16-EC21	0.02	0.025	0.04	0.242	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	0.038	0.043	0.0761	0.422	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
Total Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) > C5-C35	<0.01	<0.01	-	-	-	-	-
Total Aliphatics C5-C12	0.025	<0.01	0.05	<0.1	-	-	-
Total Aromatics C6-C12	0.01	<0.01	0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	7.710	7.169
Conductivity (µS/cm)	2,180.00	637.00
Temperature (°C)	20.70	20.30
Volume Leachant (Litres)	0.306	1.400
Volume of Eluate VE1 (Litres)	0.200	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2013 11:58:57

pH (pH Units)
ANC to pH 6 (mol/kg)
ANC to pH 4 (mol/kg)

Validated

SDG: 121220-104

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina
Customer: Mayer E

Attention:

Antony Platt

Mayer Brown Ltd

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Medina

Mass Sample taken (kg) 0.235

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Site LocationMedinaMoisture Content Ratio (%)33.9Dry Matter Content Ratio (%)74.7

Case	se	
SDG	121220-104	
Lab Sample Number(s)	6700154	
Sampled Date	17-Dec-2012	
Customer Sample Ref.	BH107	
Depth (m)	3.80 - 8.00	
Solid Waste Analysis		
Total Organic Carbon (%)	-	
Loss on Ignition (%)	-	
Sum of BTEX (mg/kg)	-	
Sum of 7 PCBs (mg/kg)	-	
Mineral Oil (mg/kg)	-	
PAH Sum of 17 (mg/kg)	-	
pH (pH Units)		

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea	
	m	g/l	mg,	/kg	using BS EN 12457-3 at L/S 10 l/kg		
Arsenic	0.00371	0.000785	0.00743	0.012	0.5	2	25
Barium	0.0643	0.065	0.129	0.649	20	100	300
Cadmium	0.000157	<0.0001	0.000314	<0.001	0.04	1	5
Chromium	0.00209	0.0016	0.00419	0.0167	0.5	10	70
Copper	0.00601	0.00142	0.012	0.0207	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.129	0.0364	0.258	0.496	0.5	10	30
Nickel	0.0223	0.00628	0.0446	0.0857	0.4	10	40
Lead	0.000743	0.000154	0.00149	0.00238	0.5	10	50
Antimony	0.0109	0.00446	0.0219	0.0538	0.06	0.7	5
Selenium	0.0029	0.000567	0.00581	0.009	0.1	0.5	7
Zinc	0.0575	0.014	0.115	0.202	4	50	200
Chloride	50	4.2	100	107	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	657	136	1310	2100	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	7.966	7.862
Conductivity (µS/cm)	1,489.00	444.00
Temperature (°C)	20.60	20.10
Volume Leachant (Litres)	0.291	1.400
Volume of Eluate VE1 (Litres)	0.195	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2013 11:58:57

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Validated

REF: BS EN 12457/3

121220-104 SDG:

Job:

Client Reference:

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference	
Mass Sample taken (kg)	0.235
Mass of dry sample (kg)	0.175
Particle Size <4mm	>95%

Medina **Site Location** Moisture Content Ratio (%) 33.9 **Dry Matter Content Ratio (%)** 74.7

Case	
DG	121220-104
ab Sample Number(s)	6700154
Sampled Date	17-Dec-2012
Customer Sample Ref.	BH107
Depth (m)	3.80 - 8.00
Calid Masta Analysis	
Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg		•
	m	g/l	mg,	mg/kg		IN 12457-5 at L/5	10 1/ kg
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	8.38	0.978	16.8	20.4	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Total Ammonium as NH4	8.87	1.04	17.8	21.6	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	0.178	<0.0677	0.356	<0.677	-	-	-
Xylenols by HPLC (W)	0.00252	<0.0005	0.00504	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	0.00281	<0.0005	0.00563	<0.005	-	-	-
Boron	1.29	0.259	2.58	4.06	-	-	-
Total Alkalinity Filtered as CaCO3	205	105	410	1190	-	-	-
Phenols Total of 5 Speciated by HPLC	0.00533	<0.00064	0.0107	0.00761	-	-	-
(W)							
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	0	0.0000381	0.000648	0.000789	-	-	-
Acenaphthylene by GCMS	0	<0.000011	0.0000339	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.0000686	0.000425	0.000892	-	-	-
Anthracene by GCMS	0	<0.000015	0.000042	<0.00015	-	-	-
Phenanthrene by GCMS	<0.000022	<0.000022	<0.000044	<0.00022	-	-	-
Fluorene by GCMS	0	<0.000014	0.000177	<0.00014	-	-	-
Chrysene by GCMS	0	<0.000013	0.0000361	<0.00013	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	7.966	7.862
Conductivity (µS/cm)	1,489.00	444.00
Temperature (°C)	20.60	20.10
Volume Leachant (Litres)	0.291	1.400
Volume of Eluate VE1 (Litres)	0.195	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121220-104 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Antony Platt

Order Number: Mayer Brown Ltd

Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESUL	TS					REF : BS	EN 1245
Client Reference			Site Location		Medin	a	
Mass Sample taken (kg)	0.235		Moisture Conte	nt Ratio (%)	33.9		
Mass of dry sample (kg)	0.175		Dry Matter Cont		74.7		
			Dry Matter Com	terit Ratio (%)	74.7		
Particle Size <4mm	>95%						
Case					Landfi	ill Waste Acce	ptance
SDG	121220-104					Criteria Limits	
Lab Sample Number(s)	6700154						
						Stable	
Sampled Date	17-Dec-2012					Non-reactive	
Customer Sample Ref.	BH107				Inert Waste Landfill	Hazardous	Hazardous Waste Land
Depth (m)	3.80 - 8.00				Lanum	Waste in Non- Hazardous	waste Lanui
Solid Waste Analysis						Landfill	
Fotal Organic Carbon (%)	-	I			-	-	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg)	-				-	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
DH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	-				-	-	-
(
Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		es for compliance lea S EN 12457-3 at L/S	_
	m	ıg/l	mg	/kg			
PAH Spec MS - Aqueous (W)		0.0000011	0.000070	0.000704			
Pyrene by GCMS Benz(a)anthracene by GCMS	0	0.0000611	0.000379	0.000794	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	-	-	-
Benzo(k)fluoranthene by GCMS	<0.000023	<0.000023 <0.000027	<0.000046 <0.0000541	<0.00023	-	-	-
Benzo(a)pyrene by GCMS	<0.000027 <0.000009	<0.000027	<0.0000541	<0.00027 <0.00009	<u> </u>	<u> </u>	
Dibenzo(ah)anthracene by GCMS	<0.000009	<0.000016	<0.000018	<0.00009		-	
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016			
Indeno(123cd)pyrene by GCMS	<0.000010	<0.000014	<0.000032	<0.00010			
PAH 16 EPA Total by GCMS	0	<0.000247	0.00174	<0.00247		_	
TPH CWG (W)		0.0002	0.00111	0.002			
Surrogate Recovery	-	-	-	-	-	-	-
MTBE GC-FID	<0.003	< 0.003	<0.00601	< 0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Leach Test Information	2:1	8:1					

Leach Test Information 2:1 8:1 Date Prepared 03-Jan-2013 21-Dec-2012 pH (pH Units) 7.966 7.862 Conductivity (µS/cm) 1,489.00 444.00 Temperature (°C) 20.10 20.60 Volume Leachant (Litres) 0.291 1.400 Volume of Eluate VE1 (Litres) 0.195

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121220-104 **Job:** H MAYERB

Client Reference:

Particle Size <4mm

ANC to pH 4 (mol/kg)

H_MAYERBROW_WOK-34

>95%

Location: Medina

Customer:

Attention:

Mayer Brown Ltd

Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.235 Moisture Content Ratio (%) Dry Matter Content Ratio (%) 74.7

Landfill Waste Acceptance Case **Criteria Limits SDG** 121220-104 Lab Sample Number(s) 6700154 Stable Sampled Date 17-Dec-2012 Non-reactive Inert Waste Hazardous **Customer Sample Ref.** BH107 Hazardous Landfill Waste Landfill Waste in Non-Depth (m) 3.80 - 8.00Hazardous Landfill Solid Waste Analysis Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg)

C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		•
m	ıg/l	mg	ı/kg			10 i/kg
<0.007	<0.007	<0.014	<0.07	-	-	-
<0.004	<0.004	<0.00801	<0.04	-	-	-
<0.005	< 0.005	<0.01	<0.05	-	-	-
<0.008	<0.008	<0.016	<0.08	-	-	-
< 0.003	< 0.003	<0.00601	<0.03	-	-	-
<0.011	<0.011	<0.022	<0.11	-	-	-
<0.028	<0.028	<0.0561	<0.28	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	-	-	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
<0.01	<0.01	<0.02	<0.1	-	-	-
	 <0.007 <0.004 <0.005 <0.008 <0.003 <0.011 <0.028 <0.01 	Columb C	No.007 No.007 No.014	No.007 No.007 No.014 No.007	Country Coun	No.000

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	7.966	7.862
Conductivity (µS/cm)	1 100 00	111.00
Conductivity (µ5/cm)	1,489.00	444.00
Temperature (°C)	20.60	20.10
Volume Leachant (Litres)	0.291	1.400
Valume of Flueta VF1 (Litros)		
Volume of Eluate VE1 (Litres)	0.195	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

121220-104 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report:

Inert Waste

Landfill

R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.256 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location** 46.2 Moisture Content Ratio (%) 68.4 **Dry Matter Content Ratio (%)**

Case	
SDG	121220-104
Lab Sample Number(s)	6700160
Sampled Date	17-Dec-2012
Customer Sample Ref.	BH108
Depth (m)	1.10 - 6.00

Landfill Waste Acceptance Criteria Limits

Stable

Non-reactive Hazardous Hazardous Waste Landfill Waste in Non-Hazardous Landfill

Solid Waste Analysis	
Total Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	

,						
		l e				
otal Organic Carbon (%)	-				-	-
ess on Ignition (%)	-				-	-
um of BTEX (mg/kg)	-				-	-
Sum of 7 PCBs (mg/kg)	-				-	-
/lineral Oil (mg/kg)	-				-	-
PAH Sum of 17 (mg/kg)	-				-	-
oH (pH Units)	-				-	-
ANC to pH 6 (mol/kg)	-				-	-
ANC to pH 4 (mol/kg)	-				-	-
						
	Conc ⁿ in 2:1	Conc ⁿ in 8:1	a 2:1 conc ⁿ	Cumulative		

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea	
	m	g/l	mg,	/kg	using b3	LIV 12437-3 at L/3	10 1/ kg
Arsenic	0.00879	0.00187	0.0176	0.0259	0.5	2	25
Barium	0.266	0.19	0.532	1.98	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00177	0.0019	0.00353	0.0188	0.5	10	70
Copper	0.00275	0.00135	0.0055	0.015	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0197	0.00791	0.0394	0.0914	0.5	10	30
Nickel	0.00532	0.00498	0.0106	0.0502	0.4	10	40
Lead	0.0004	0.000092	0.0008	0.00124	0.5	10	50
Antimony	0.00359	0.00347	0.00718	0.0348	0.06	0.7	5
Selenium	0.00168	0.00075	0.00336	0.00847	0.1	0.5	7
Zinc	0.00409	0.00518	0.00818	0.0506	4	50	200
Chloride	24.9	<2	49.8	26	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	594	298	1190	3290	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

Leach Test Information	2:1	8:1
Date Prepared	04.00040	03-Jan-2013
Date i repared	21-Dec-2012	03-3a11-2013
pH (pH Units)	8.273	7.596
Conductivity (µS/cm)	1,411.00	755.00
Temperature (°C)	20.50	20.10
Volume Leachant (Litres)	0.269	1.400
Volume of Eluate VE1 (Litres)	0.160	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

Hazardous Waste Landfill

121220-104 SDG:

H_MAYERBROW_WOK-34 Job: Client Reference:

Location: Medina **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Medina **Site Location** Mass Sample taken (kg) **Moisture Content Ratio (%)** 46.2 0.256

68.4 Mass of dry sample (kg) 0.175 **Dry Matter Content Ratio (%)** Particle Size <4mm >95%

Attention:

Case		Land	fill Waste Acce
SDG	121220-104		Criteria Limits
Lab Sample Number(s)	6700160		
Sampled Date	17-Dec-2012		Stable Non-reactive
Customer Sample Ref.	BH108	Inert Waste Landfill	Hazardous
Depth (m)	1.10 - 6.00	Landilli	Waste in Non-

Solid Waste Analysis	
Total Organic Carbon (%)	_
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea EN 12457-3 at L/S	-
	m	ıg/l	mg	/kg	using bo	EN 12457-5 at L/5	10 1/ kg
Mercury Unfiltered	<0.00002	-	<0.00004	-	-	-	-
Total Ammonia as NH3	29.5	4.7	58.9	72.8	-	-	-
Phenol by HPLC (W)	0.00226	<0.0005	0.00452	<0.005	-	-	-
Total Ammonium as NH4	31.2	4.98	62.5	77.2	-	-	-
Total Cyanide (W)	< 0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	0.00119	<0.0005	0.00238	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	0.676	<0.0677	1.35	0.705	-	-	-
Xylenols by HPLC (W)	0.00247	<0.0005	0.00494	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	0.00262	<0.0005	0.00524	<0.005	-	-	-
Boron	0.978	0.184	1.96	2.67	-	-	-
Total Alkalinity Filtered as CaCO3	185	140	370	1450	-	-	-
Phenols Total of 5 Speciated by HPLC	0.0134	<0.00064	0.0268	0.014	-	-	-
(W)							
PAH Spec MS - Aqueous (W) Naphthalene by GCMS	10.0004	<0.0001	10.0000	10.004			
Acenaphthene by GCMS	<0.0001	******	<0.0002	<0.001	-	-	-
Acenaphthylene by GCMS	0	0.00108	0.00174	0.0106	-	-	-
Fluoranthene by GCMS	0	0.0000862	0.0000705	0.000802	-	-	-
	0	0.000722	0.00105	0.00699	-	-	-
Anthracene by GCMS	0	0.0000608	0.000162	0.000632	-	-	-
Phenanthrene by GCMS	<0.000022	<0.000022	<0.000044	<0.00022	-	-	-
Fluorene by GCMS	0	0.000105	0.000755	0.00137	-	-	-
Chrysene by GCMS	0	0.0000492	0.0000677	0.000474	=	-	-

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.273	7.596
Conductivity (µS/cm)	1,411.00	755.00
Temperature (°C)	20.50	20.10
Volume Leachant (Litres)	0.269	1.400
Volume of Eluate VE1 (Litres)	0.160	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

SDG: 121220-104

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

208101

Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESUL	Te					DEE . De	EN 12457
	15						EN 1245
Client Reference			Site Location		Medin	ıa	
Mass Sample taken (kg)	0.256		Moisture Conte	nt Ratio (%)	46.2		
Mass of dry sample (kg)	0.175		Dry Matter Con	tent Ratio (%)	68.4		
Particle Size <4mm	>95%						
Case					l andf	ill Waste Acce	ntance
SDG	121220-104				Landi	Criteria Limits	•
							•
Lab Sample Number(s)	6700160						
Sampled Date	17-Dec-2012					Stable Non-reactive	
Customer Sample Ref.	BH108				Inert Waste Landfill	Hazardous	Hazardous Waste Landfi
Depth (m)	1.10 - 6.00				Landini	Waste in Non- Hazardous	Waste Lanun
Solid Waste Analysis						Landfill	
Total Organic Carbon (%)	-				-	<u>-</u>	-
Loss on Ignition (%)	-				-	-	-
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	-				-	-	-
Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
	0 51 04	0 11 04		Cumulative			
Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 conc ⁿ leached		es for compliance lea	-
	m	ig/l	mg	ı/kg	using B	S EN 12457-3 at L/S	6 10 I/kg
PAH Spec MS - Aqueous (W)							
Pyrene by GCMS	0	0.000599	0.000839	0.00578	-	-	-
Benz(a)anthracene by GCMS	0	0.0000437	0.0000496	0.000415	-	-	-
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	-	-	-
Benzo(k)fluoranthene by GCMS Benzo(a)pyrene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	-	-	-
Dibenzo(ah)anthracene by GCMS	<0.000009	<0.000009	<0.000018	<0.00009	-	=	-
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	-	-	-
Indeno(123cd)pyrene by GCMS	<0.000016	<0.000016	<0.000032 <0.000028	<0.00016	-	-	-
PAH 16 EPA Total by GCMS	<0.000014	<0.000014		<0.00014	-	-	-
TPH CWG (W)	0	0.00275	0.00473	0.027	-	-	-
Surrogate Recovery	_	_	_	_	_	<u>-</u>	_
MTBE GC-FID	<0.003	<0.003	<0.006	<0.03	-	-	-
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics & Aromatics >C12-C35	0.014	<0.01	0.028	<0.1	-	-	-
Aromatics C6-C7 Aromatics >C7-C8	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.1 <0.1	-	-	-
Leach Test Information	2:1	8:1	_				
Date Prepared	21-Dec-2012	03-Jan-2013					
pH (pH Units)	8.273	7.596					

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates 10/01/2013 11:58:57

1,411.00

20.50

0.269

0.160

755.00

20.10

1.400

11:58:36 10/01/2013

Conductivity (µS/cm)

Volume Leachant (Litres)

Volume of Eluate VE1 (Litres)

Temperature (°C)

Validated

121220-104 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3 Client Reference Medina **Site Location** Mass Sample taken (kg) 0.256

Mass of dry sample (kg) 0.175 >05%

Moisture Content Ratio (%) 46.2 68.4 **Dry Matter Content Ratio (%)**

Particle Size <4mm	>95%					
Case		·	·	 Landf	ill Waste Acce	ptance
SDG	121220-104				Criteria Limits	;
Lab Sample Number(s)	6700160					
Sampled Date	17-Dec-2012				Stable	
Customer Sample Ref.	BH108			Inert Waste	Non-reactive Hazardous	Hazardous
Depth (m)	1.10 - 6.00			Landfill	Waste in Non- Hazardous	Waste Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	<u>.</u>	•		_	<u>-</u>	<u>-</u>
Loss on Ignition (%)	-			-	-	-
Sum of BTEX (mg/kg)	-			-	-	-
Sum of 7 PCBs (mg/kg)	-			-	-	-
Mineral Oil (mg/kg)				-	-	-
	-					
PAH Sum of 17 (mg/kg)	- -			-	-	-
:	- -			-	-	- -
PAH Sum of 17 (mg/kg)	- - -					

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 concn leached		for compliance lead	
	n	ng/l	mg	g/kg	using BS	EN 12457-3 at L/S I	LU I/ Kg
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.008	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
Xylene by GC	< 0.003	< 0.003	<0.006	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
romatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	0.014	<0.01	0.028	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	0.014	<0.01	0.028	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
otal Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
otal Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
otal Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.273	7.596
Conductivity (µS/cm)	1,411.00	755.00
Temperature (°C)	20.50	20.10
Volume Leachant (Litres)	0.269	1.400
Volume of Eluate VE1 (Litres)	0.160	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

REF: BS EN 12457/3

121220-104 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina

Antony Platt

Customer:

Attention:

Mayer Brown Ltd

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.222 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location Moisture Content Ratio (%)** 26.9 78.8 **Dry Matter Content Ratio (%)**

Sampled Date 17-Dec-2012 Stable Non-reactive Hazardous Waste in Non-Hazardous Landfill Non-reactive Hazardous Waste in Non-Hazardous Landfill Non-reactive Hazardous Waste in Non-Hazardous Landfill Non-reactive Hazardous Landfill N	Case		Lar	dfill Waste Acce	ptance
Sampled Date 17-Dec-2012	SDG	121220-104		Criteria Limits	5
Inert Waste Landfill	Lab Sample Number(s)	6700162			
Customer Sample Ref. BH109 Inert Waste Landfill Hazardous Waste in Non-Hazardous Landfill Hazardous Waste in Non-Hazardous Landfill Hazardous Waste in Non-Hazardous Landfill Hazardous Waste Landfill Hazardous Waste In Non-Hazardous Landfill Hazardous Landfill	Sampled Date	17-Dec-2012			
Depth (m) 2.10 - 6.00 Hazardous Landfill	Customer Sample Ref.	BH109		Hazardous	Hazardo
Companie Carbon (%) - - - - - - - - -	Depth (m)	2.10 - 6.00	Lanum		Waste Lai
Loss on Ignition (%)	Solid Waste Analysis				
Loss on Ignition (%)	Solid Waste Analysis				
Sum of BTEX (mg/kg) -	-	-	_	<u>-</u>	<u>-</u>
Mineral Oil (mg/kg) - PAH Sum of 17 (mg/kg) - pH (pH Units) -	Total Organic Carbon (%)	- -	-	- -	-
PAH Sum of 17 (mg/kg)	Total Organic Carbon (%) Loss on Ignition (%)				
oH (pH Units)	Fotal Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg)		-	-	-
	Fotal Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)	-	-	- -	-
ANC to pH 6 (mol/kg)	Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg)	-	- - -	- -	- - -
	Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg)	-	- - -	- -	- - -

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	A2-10 Cumulative concn leached		for compliance lea EN 12457-3 at L/S	•
	m	g/l	mg,	/kg			
Arsenic	0.00514	0.002	0.0103	0.024	0.5	2	25
Barium	0.093	0.0894	0.186	0.898	20	100	300
Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
Chromium	0.00232	0.00245	0.00464	0.0243	0.5	10	70
Copper	0.0163	0.00924	0.0326	0.101	2	50	100
Mercury Dissolved (CVAF)	-	-	-	-	0.01	0.2	2
Molybdenum	0.0499	0.019	0.0998	0.23	0.5	10	30
Nickel	0.00444	0.00187	0.00888	0.022	0.4	10	40
Lead	0.000513	0.000352	0.00103	0.00373	0.5	10	50
Antimony	0.0244	0.0137	0.0489	0.151	0.06	0.7	5
Selenium	0.00254	0.000886	0.00508	0.011	0.1	0.5	7
Zinc	0.016	0.00395	0.032	0.055	4	50	200
Chloride	32	2.3	64	61.2	800	15000	25000
Fluoride	-	-	-	-	10	150	500
Sulphate (soluble)	183	38.2	367	569	1000	20000	50000
Total Dissolved Solids	-	-	-	-	4000	60000	100000
Total Monohydric Phenols (W)	-	-	-	-	1	-	-
Dissolved Organic Carbon	-	-	-	-	500	800	1000

2:1	8:1
	00 1
21-Dec-2012	03-Jan-2013
8.197	8.136
747.00	233.00
20.60	18.60
0.303	1.400
0.185	
	21-Dec-2012 8.197 747.00 20.60 0.303

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121220-104 SDG:

Job: H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9 208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3

Client Reference Mass Sample taken (kg) 0.222 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location Moisture Content Ratio (%)** 26.9 78.8 **Dry Matter Content Ratio (%)**

Case
SDG 121220-104
Lab Sample Number(s) 6700162
Sampled Date 17-Dec-2012
Customer Sample Ref. BH109
Depth (m) 2.10 - 6.00
Solid Waste Analysis
Total Organic Carbon (%)
Total Organic Carbon (%) - Loss on Ignition (%) -
Loss on Ignition (%)
oss on Ignition (%) - Sum of BTEX (mg/kg) -

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lea	•
	n	ng/l	mg,	/kg	using BS EN 12457-3 at L/S 10 l/kg		10 1/ kg
Mercury Unfiltered	<0.00002	<0.00002	<0.00004	<0.0002	-	-	-
Total Ammonia as NH3	9.82	2.52	19.7	34.6	-	-	-
Phenol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Total Ammonium as NH4	10.4	2.67	20.8	36.6	-	-	-
Total Cyanide (W)	<0.05	<0.05	<0.1	<0.5	-	-	-
Cresols by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
Beryllium	<0.00007	<0.00007	<0.00014	<0.0007	-	-	-
Nitrate as N	0.724	0.344	1.45	3.93	-	-	-
Xylenols by HPLC (W)	0.00332	<0.0005	0.00664	<0.005	-	-	-
Napthol by HPLC (W)	<0.0005	<0.0005	<0.001	<0.005	-	-	-
2.3.5 Trimethyl-Phenol by HPLC (W)	0.00237	<0.0005	0.00474	<0.005	-	-	-
Boron	1.07	0.226	2.14	3.35	-	-	-
Total Alkalinity Filtered as CaCO3	185	90	370	1020	-	-	-
Phenols Total of 5 Speciated by HPLC	0.00569	<0.00064	0.0114	0.00732	-	-	-
(W)							
PAH Spec MS - Aqueous (W)							
Naphthalene by GCMS	<0.0001	<0.0001	<0.0002	<0.001	-	-	-
Acenaphthene by GCMS	0	<0.000015	0.000213	<0.00015	-	-	-
Acenaphthylene by GCMS	<0.000011	<0.000011	<0.000022	<0.00011	-	-	-
Fluoranthene by GCMS	0	0.0000497	0.000195	0.000559	-	-	-
Anthracene by GCMS	<0.00015	<0.00015	<0.00003	<0.00015	-	-	-
Phenanthrene by GCMS	<0.000022	<0.000022	<0.000044	<0.00022	-		-
Fluorene by GCMS	0	<0.000014	0.0000285	<0.00014	-	-	-
Chrysene by GCMS	0	0.0000199	0.000032	0.000194	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.197	8.136
Conductivity (µS/cm)	747.00	233.00
Temperature (°C)	20.60	18.60
Volume Leachant (Litres)	0.303	1.400
Volume of Eluate VE1 (Litres)	0.185	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2013 11:58:57 11:58:36 10/01/2013

pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Validated

SDG: 121220-104

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

Landfill Waste Acceptance

Report Number: 208101 Superseded Report:

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Medina Mass Sample taken (kg) 0.222 Moisture Content Ratio (%) 26.9

Mass of dry sample (kg) 0.175

Particle Size <4mm >95%

Case

Moisture Content Ratio (%) 26.9

Dry Matter Content Ratio (%) 78.8

SDG	121220-104
Lab Sample Number(s)	6700162
Sampled Date	17-Dec-2012
Customer Sample Ref.	BH109
Depth (m)	2.10 - 6.00
Solid Waste Analysis	
otal Organic Carbon (%)	-
Loss on Ignition (%)	-
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	-
Mineral Oil (mg/kg)	-
PAH Sum of 17 (mg/kg)	-
pH (pH Units) ANC to pH 6 (mol/kg)	<u>-</u>
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C2 Conc ⁿ in 2:1	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg
	mg/l		mg	/kg	using 65 EN 12457-3 at L/S 10 I/kg
PAH Spec MS - Aqueous (W)					
Pyrene by GCMS	0	0.0000755	0.000234	0.000808	
Benz(a)anthracene by GCMS	<0.000017	<0.000017	<0.000034	<0.00017	
Benzo(b)fluoranthene by GCMS	<0.000023	<0.000023	<0.000046	<0.00023	
Benzo(k)fluoranthene by GCMS	<0.000027	<0.000027	<0.000054	<0.00027	
Benzo(a)pyrene by GCMS	<0.000009	0.0000141	<0.00018	0.000123	
Dibenzo(ah)anthracene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	
Benzo(ghi)perylene by GCMS	<0.000016	<0.000016	<0.000032	<0.00016	
Indeno(123cd)pyrene by GCMS	<0.000014	<0.000014	<0.000028	<0.00014	
PAH 16 EPA Total by GCMS	0	<0.000247	0.000702	<0.00247	
TPH CWG (W)					
Surrogate Recovery	-	-	-	-	
MTBE GC-FID	<0.003	<0.003	<0.006	<0.03	
Aliphatics C5-C6	<0.01	<0.01	<0.02	<0.1	
Aliphatics >C6-C8	<0.01	<0.01	<0.02	<0.1	
Aliphatics >C8-C10	<0.01	<0.01	<0.02	<0.1	
Aliphatics >C10-C12	<0.01	<0.01	<0.02	<0.1	
Aliphatics >C12-C16	<0.01	<0.01	<0.02	<0.1	
Aliphatics >C16-C21	<0.01	<0.01	<0.02	<0.1	
Aliphatics >C21-C35	<0.01	<0.01	<0.02	<0.1	
Total Aliphatics >C12-C35	<0.01	<0.01	<0.02	<0.1	
Total Aliphatics & Aromatics >C12-C35	<0.01	<0.01	<0.02	<0.1	
Aromatics C6-C7	<0.01	<0.01	<0.02	<0.1	
Aromatics >C7-C8	<0.01	<0.01	<0.02	<0.1	

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.197	8.136
Conductivity (µS/cm)	747.00	233.00
Temperature (°C)	20.60	18.60
Volume Leachant (Litres)	0.303	1.400
Volume of Eluate VE1 (Litres)	0.185	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121220-104 SDG: Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/3

Client Reference Mass Sample taken (kg) 0.222 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

Medina **Site Location** Moisture Content Ratio (%) 26.9 78.8 **Dry Matter Content Ratio (%)**

Sampled Date 17-Dec-2012 Stable Non-reactive Hazardous Waste in Non-Hazardous Landfill Non-reactive Hazardous Waste in Non-Hazardous Landfill Non-reactive Hazardous Waste in Non-Hazardous Landfill Non-reactive Hazardous Landfill N	Case		Lar	dfill Waste Acce	ptance
Sampled Date 17-Dec-2012	SDG	121220-104		Criteria Limits	5
Inert Waste Landfill	Lab Sample Number(s)	6700162			
Customer Sample Ref. BH109 Inert Waste Landfill Hazardous Waste in Non-Hazardous Landfill Hazardous Waste in Non-Hazardous Landfill Hazardous Waste in Non-Hazardous Landfill Hazardous Waste Landfill Hazardous Waste In Non-Hazardous Landfill Hazardous Landfill	Sampled Date	17-Dec-2012			
Depth (m) 2.10 - 6.00 Hazardous Landfill	Customer Sample Ref.	BH109		Hazardous	Hazardous Waste Land
Companie Carbon (%) - - - - - - - - -	Depth (m)	2.10 - 6.00	Lanum		
Loss on Ignition (%)	Solid Waste Analysis				
Loss on Ignition (%)	Solid Waste Analysis				
Sum of BTEX (mg/kg) -	-	-	_	<u>-</u>	<u>-</u>
Mineral Oil (mg/kg) - PAH Sum of 17 (mg/kg) - pH (pH Units) -	Total Organic Carbon (%)	- -	-	- -	-
PAH Sum of 17 (mg/kg)	Total Organic Carbon (%) Loss on Ignition (%)				
oH (pH Units)	Fotal Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg)		-	-	-
	Fotal Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)	-	-	- -	-
ANC to pH 6 (mol/kg)	Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg)	-	- - -	- -	- - -
	Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg)	-	- - -	- -	- - -

Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc ⁿ in 8:1	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached		for compliance lead	
	n	ng/l	mg	g/kg	using BS EN 12457-3 at L/S 10 I/I		LU I/Kg
TPH CWG (W)							
Benzene by GC	<0.007	<0.007	<0.014	<0.07	-	-	-
Toluene by GC	<0.004	<0.004	<0.008	<0.04	-	-	-
Ethylbenzene by GC	<0.005	<0.005	<0.01	<0.05	-	-	-
m & p Xylene by GC	<0.008	<0.008	<0.016	<0.08	-	-	-
Xylene by GC	< 0.003	< 0.003	<0.006	<0.03	-	-	-
Sum m&p and o Xylene by GC	<0.011	<0.011	<0.022	<0.11	-	-	-
Sum of BTEX by GC	<0.028	<0.028	<0.056	<0.28	-	-	-
Aromatics >EC8 -EC10	<0.01	<0.01	<0.02	<0.1	-	-	-
romatics >EC10-EC12	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC12-EC16	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC16-EC21	<0.01	<0.01	<0.02	<0.1	-	-	-
Aromatics >EC21-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aromatics >EC12-EC35	<0.01	<0.01	<0.02	<0.1	-	-	-
Total Aliphatics >C5-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
otal Aromatics >C6-C35 Aqueous	<0.01	<0.01	-	-	-	-	-
TPH (Total Aliphatics + Total Aromatics) >C5-C35	<0.01	<0.01	-	-	-	-	-
otal Aliphatics C5-C12	<0.01	<0.01	<0.02	<0.1	-	-	-
otal Aromatics C6-C12	<0.01	<0.01	<0.02	<0.1	-	-	-

Leach Test Information	2:1	8:1
Date Prepared	21-Dec-2012	03-Jan-2013
pH (pH Units)	8.197	8.136
Conductivity (µS/cm)	747.00	233.00
Temperature (°C)	20.60	18.60
Volume Leachant (Litres)	0.303	1.400
Volume of Eluate VE1 (Litres)	0.185	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

Notification of NDPs (No determination possible)

Date Received: 20/12/2012 14:25:25

Sample No	Customer Sample Ref.	Depth (m)	Test	Comment
6700156	BH108	0.50	Total Organic Carbon	Unsuitable for analysis due to potential Asbestos

Validated

SDG: 121220-104

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: Medina

Customer:

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surre
ASB_PREP			oanipic	
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM114		Leaching Procedure for CEN Two Stage BatchTest 2:1/8:1 Cumulative		
TM024	Method 4500A & B, AWWA/APHA, 20th Ed., 1999	Determination of Exchangeable Ammonium and Ammoniacal Nitrogen as N by titration on solids		
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer		
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate		
TM243		Mixed Anions In Soils By Kone		
TM245	By GC-FID	Determination of GRO by Headspace in waters		
TM255		Determination of Low Level Phenols in Waters and Leachates by HPLC		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		
TM321		Organic matter Content of Soil By Titration		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C.

NA = not applicable.

Validated

SDG: 121220-104

Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number:

R/PDEMEDINA.9

208101 Superseded Report:

Test Completion Dates

Lab Sample No(s) Customer Sample Ref. Customer Samp					piotio.	· Dato					
AGS Ref. Depth	Lab Sample No(s)	6700145	6700147	6700149	6700151	6700153	6700154	6700156	6700158	6700160	6700161
AGS Ref. Depth Type No.	Customer Sample Ref.	BH106	BH106	BH106	BH107	BH107	BH107	BH108	BH108	BH108	BH109
Depth Type											
Alkalinity Filtered as CaCO3	AGS Ref.										
Alkalinity Filtered as CaCO3	Depth	0.50	1.00 - 6.00	6.00 - 7.00	0.50	2.50 - 2.90	3.80 - 8.00	0.50	3.60	1.10 - 6.00	0.50
Ammoniacal Nitrogen 09-Jan-2013 09-Jan	Туре	SOLID									
Amionim Soil by Titration 04-Jan-2013 09-Jan-2013 09-J	Alkalinity Filtered as CaCO3		06-Jan-2013	08-Jan-2013		08-Jan-2013	08-Jan-2013			08-Jan-2013	
Anions by Kone (soil) 09-Jan-2013 09-J	Ammoniacal Nitrogen		09-Jan-2013	09-Jan-2013		09-Jan-2013	09-Jan-2013			09-Jan-2013	
Anions by Kone (w) Anions by Kone (w) Anions by Kone (w) 08-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 08-Jan-2013 08-Jan-	Ammonium Soil by Titration	04-Jan-2013			02-Jan-2013			02-Jan-2013			04-Jan-2013
Asbestos Identification (Soil) 08-Jan-2013 08-Jan-20	Anions by Kone (soil)	09-Jan-2013			08-Jan-2013			09-Jan-2013			09-Jan-2013
Boron Water Soluble	Anions by Kone (w)		09-Jan-2013	09-Jan-2013		09-Jan-2013	09-Jan-2013			09-Jan-2013	
CEN 2:1 Leachate (2 Stage) 27-Dec-2012 02-Jan-2013 02-Jan-2013 02-Jan-2013 02-Jan-2013 04-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 09-Jan-2013 07-Jan-2013	Asbestos Identification (Soil)	08-Jan-2013			08-Jan-2013			08-Jan-2013	10-Jan-2013		08-Jan-2013
CEN 2:1 Readings 03-Jan-2013 04-Jan-2013 07-Jan-2013 07-Jan-2013 09-Jan-2013	Boron Water Soluble	04-Jan-2013			04-Jan-2013			04-Jan-2013			04-Jan-2013
CEN 8:1 Leachate (2 Stage) 03-Jan-2013 04-Jan-2013 07-Jan-2013 09-Jan-2013 09-Jan-	CEN 2:1 Leachate (2 Stage)		27-Dec-2012	02-Jan-2013		02-Jan-2013	03-Jan-2013			02-Jan-2013	
CEN 8:1 Readings	CEN 2:1 Readings		03-Jan-2013	04-Jan-2013		04-Jan-2013	04-Jan-2013			04-Jan-2013	
Cyanide ComplFree/Total/Thiocyanate 03-Jan-2013 08-Jan-2013 09-Jan-2013 07-Jan-2013 07-Jan-2013 <t< td=""><td>CEN 8:1 Leachate (2 Stage)</td><td></td><td>03-Jan-2013</td><td>04-Jan-2013</td><td></td><td>04-Jan-2013</td><td>04-Jan-2013</td><td></td><td></td><td>04-Jan-2013</td><td></td></t<>	CEN 8:1 Leachate (2 Stage)		03-Jan-2013	04-Jan-2013		04-Jan-2013	04-Jan-2013			04-Jan-2013	
Dissolved Metals by ICP-MS 08-Jan-2013 09-Jan-2013	CEN 8:1 Readings		04-Jan-2013	07-Jan-2013		07-Jan-2013	07-Jan-2013			07-Jan-2013	
EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) GC (S) 07-Jan-2013 10-Jan-2013 10-Jan-20	Cyanide Comp/Free/Total/Thiocyanate	03-Jan-2013	08-Jan-2013	09-Jan-2013	03-Jan-2013	09-Jan-2013	09-Jan-2013	03-Jan-2013		09-Jan-2013	03-Jan-2013
EPH CWG (Aliphatic) GC (S) 07-Jan-2013 07-	Dissolved Metals by ICP-MS		08-Jan-2013	09-Jan-2013		09-Jan-2013	09-Jan-2013			09-Jan-2013	
EPH CWG (Aromatic) Aqueous GC (W) 09-Jan-2013 10-Jan-2013 10-Jan-2013 10-Jan-2013 10-Jan-2013 EPH CWG (Aromatic) GC (S) 07-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 GRO by GC-FID (S) 06-Jan-2013 05-Jan-2013 07-Jan-2013 07-Jan-2013 07-Jan-2013 GRO by GC-FID (W) 05-Jan-2013 09-Jan-2013 07-Jan-2013 09-Jan-2013 09-Jan-2013 Low Level Phenols by HPLC (W) 08-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Mercury Unfiltered 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Metals by iCap-OES (Soil) 08-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH by GCMS 05-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH Spec MS - Aqueous (W) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PH Value 07-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013	EPH CWG (Aliphatic) Aqueous GC (W)		09-Jan-2013	10-Jan-2013		10-Jan-2013	10-Jan-2013			10-Jan-2013	
EPH CWG (Aromatic) GC (S) 07-Jan-2013 07-J	EPH CWG (Aliphatic) GC (S)	07-Jan-2013			07-Jan-2013			07-Jan-2013			07-Jan-2013
GRO by GC-FID (S) 06-Jan-2013 07-Jan-2013 09-Jan-2013	EPH CWG (Aromatic) Aqueous GC (W)		09-Jan-2013	10-Jan-2013		10-Jan-2013	10-Jan-2013			10-Jan-2013	
GRO by GC-FID (W) 05-Jan-2013 07-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013	EPH CWG (Aromatic) GC (S)	07-Jan-2013			07-Jan-2013			07-Jan-2013			07-Jan-2013
Low Level Phenois by HPLC (W) 08-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Mercury Unfiltered 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Metals by iCap-OES (Soil) 08-Jan-2013 04-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 Nitrite by Kone (w) 07-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH by GCMS 05-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH Spec MS - Aqueous (W) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 pH Value 07-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 Phenols by HPLC (S) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Sample description 02-Jan-2013 27-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012	GRO by GC-FID (S)	06-Jan-2013			04-Jan-2013			04-Jan-2013			06-Jan-2013
Mercury Unfiltered 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Metals by iCap-OES (Soil) 08-Jan-2013 04-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 Nitrite by Kone (w) 07-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH by GCMS 05-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH Spec MS - Aqueous (W) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PH Value 07-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 Phenols by HPLC (S) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Sample description 02-Jan-2013 27-Dec-2012 29-Dec-2012 28-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 29-Dec-2012 29-Dec-2	GRO by GC-FID (W)		05-Jan-2013	07-Jan-2013		07-Jan-2013	07-Jan-2013			07-Jan-2013	
Metals by iCap-OES (Soil) 08-Jan-2013 04-Jan-2013 08-Jan-2013 08-Jan-2013 Nitrite by Kone (w) 07-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH by GCMS 05-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 PAH Spec MS - Aqueous (W) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 pH 04-Jan-2013 04-Jan-2013 04-Jan-2013 04-Jan-2013 04-Jan-2013 pH value 07-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 Phenols by HPLC (S) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Sample description 02-Jan-2013 27-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012	Low Level Phenols by HPLC (W)		08-Jan-2013	09-Jan-2013		09-Jan-2013	09-Jan-2013			09-Jan-2013	
Nitrite by Kone (w) 07-Jan-2013 09-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 09-Jan-2013 08-Jan-2013 09-Jan-2013 09-Jan-201	Mercury Unfiltered		09-Jan-2013	09-Jan-2013		09-Jan-2013	09-Jan-2013			09-Jan-2013	
PAH by GCMS 05-Jan-2013 09-Jan-2013	Metals by iCap-OES (Soil)	08-Jan-2013			04-Jan-2013			08-Jan-2013			08-Jan-2013
PAH Spec MS - Aqueous (W) 09-Jan-2013 04-Jan-2013 04-Jan-2013 04-Jan-2013 04-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 09-Jan-2013 09-Jan-2	Nitrite by Kone (w)		07-Jan-2013	09-Jan-2013		09-Jan-2013	09-Jan-2013			09-Jan-2013	
pH 04-Jan-2013 04-Jan-2013 04-Jan-2013 04-Jan-2013 04-Jan-2013 pH Value 07-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 Phenois by HPLC (S) 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 09-Jan-2013 Sample description 02-Jan-2013 27-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012	PAH by GCMS	05-Jan-2013			09-Jan-2013			09-Jan-2013			09-Jan-2013
pH Value 07-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 08-Jan-2013 09-Jan-2013	PAH Spec MS - Aqueous (W)		09-Jan-2013	09-Jan-2013		09-Jan-2013	09-Jan-2013			09-Jan-2013	
Phenois by HPLC (S) 09-Jan-2013 09-Jan-2013 <td>рН</td> <td>04-Jan-2013</td> <td></td> <td></td> <td>04-Jan-2013</td> <td></td> <td></td> <td>04-Jan-2013</td> <td></td> <td></td> <td>04-Jan-2013</td>	рН	04-Jan-2013			04-Jan-2013			04-Jan-2013			04-Jan-2013
Sample description 02-Jan-2013 27-Dec-2012 29-Dec-2012 28-Dec-2012 29-Dec-2012 29-Dec-2012 <td>pH Value</td> <td></td> <td>07-Jan-2013</td> <td>08-Jan-2013</td> <td></td> <td>08-Jan-2013</td> <td>08-Jan-2013</td> <td></td> <td></td> <td>08-Jan-2013</td> <td></td>	pH Value		07-Jan-2013	08-Jan-2013		08-Jan-2013	08-Jan-2013			08-Jan-2013	
Total Organic Carbon 08-Jan-2013 08-Jan-2013 08-Jan-2013 Total Organic Carbon (Asb) 08-Jan-2013 08-Jan-2013 TPH CWG (W) 02-Jan-2013 03-Jan-2013 03-Jan-2013	Phenols by HPLC (S)	09-Jan-2013			09-Jan-2013			09-Jan-2013			
Total Organic Carbon (Asb) 08-Jan-2013 TPH CWG (W) 02-Jan-2013 03-Jan-2013 03-Jan-2013		02-Jan-2013	27-Dec-2012	27-Dec-2012	29-Dec-2012	28-Dec-2012	28-Dec-2012	29-Dec-2012		28-Dec-2012	29-Dec-2012
TPH CWG (W) 02-Jan-2013 03-Jan-2013 03-Jan-2013 03-Jan-2013 03-Jan-2013		08-Jan-2013			08-Jan-2013						08-Jan-2013
	. ,							08-Jan-2013			
TPH CWG GC (S) 07-Jan-2013 07-Jan-2013 07-Jan-2013	. ,		02-Jan-2013	03-Jan-2013		03-Jan-2013	03-Jan-2013			03-Jan-2013	
	TPH CWG GC (S)	07-Jan-2013			07-Jan-2013			07-Jan-2013			07-Jan-2013

Lab Sample No(s)	6700162	
Customer Sample Ref.	BH109	
•		
AGS Ref.		
Depth	2.10 - 6.00	
Туре	SOLID	
Alkalinity Filtered as CaCO3	08-Jan-2013	
Ammoniacal Nitrogen	09-Jan-2013	
Anions by Kone (w)	09-Jan-2013	
CEN 2:1 Leachate (2 Stage)	02-Jan-2013	
CEN 2:1 Readings	04-Jan-2013	
CEN 8:1 Leachate (2 Stage)	04-Jan-2013	
CEN 8:1 Readings	07-Jan-2013	
Cyanide Comp/Free/Total/Thiocyanate	09-Jan-2013	
Dissolved Metals by ICP-MS	09-Jan-2013	
EPH CWG (Aliphatic) Aqueous GC (W)	10-Jan-2013	
EPH CWG (Aromatic) Aqueous GC (W)	10-Jan-2013	
GRO by GC-FID (W)	07-Jan-2013	
Low Level Phenols by HPLC (W)	09-Jan-2013	
Mercury Unfiltered	09-Jan-2013	
Nitrite by Kone (w)	09-Jan-2013	
PAH Spec MS - Aqueous (W)	09-Jan-2013	
pH Value	08-Jan-2013	
Sample description	28-Dec-2012	
TPH CWG (W)	03-Jan-2013	

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Order Number: Mayer Brown Ltd Report Number: Antony Platt Superseded Report:

R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth**: 0.50 6730355 Sample ID : BH107

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6469914-6730355 Date Acquired : 07/01/13 12:40:00 PM Units : ppb

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth**: 0.50 6730746 Sample ID :

BH108

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40) 6469949-6730746 07/01/13 11:49:42 PM ppb

Sample Identity: Date Acquired : Units :

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth**: 0.50 6730770 Sample ID : BH109

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6469984-6730770
Date Acquired : 07/01/13 12:09:36 PM
Units : ppb

Validated

SDG: Job: Client Reference: 121220-104 H_MAYERBROW_WOK-34 Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) GC (S) Sample No : **Depth**: 0.50 6731268 Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6469840-6731268 04/01/2013 15:54:30 PM Sample Identity: Date Acquired : Units :

ppb

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention:

Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 208101

Report Number: 20810 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 6732029 Depth: 1.00 - 6.00

Sample ID: BH106

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6470022-6732029
Date Acquired : 08/01/13 02:04:29 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) **Depth:** 2.50 - 2.90 Sample No : 6739111

Sample ID : BH107

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6470068-6739111 08/01/2013 20:15:09 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 1 0.008 Multiplier

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 2.10 - 6.00 6739119

Sample ID : BH109

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6470123-6739119 08/01/2013 19:56:10 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 1 0.008 Multiplier

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 3.80 - 8.00 6739121

Sample ID : BH107

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6470087-6739121 08/01/2013 20:34:26 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 6.00 - 7.00 6739126

Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6470049-6739126 08/01/2013 20:53:27 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

1 0.011 Multiplier

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 1.10 - 6.00 6739129

Sample ID : BH108

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6470108-6739129 08/01/2013 19:37:10 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

1 0.008 Multiplier

Validated

121220-104 SDG:

Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.00 6739165

Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6488426-6739165 08/01/2013 19:18:11 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 1 0.008 Multiplier

Validated

SDG: 121220-104

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer E

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 6741688 Depth: 1.10 - 6.00

Sample ID : BH108

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6491307-6741688
Date Acquired : 09/01/13 20:23:01 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 6741693 Depth: 3.80 - 8.00

Sample ID: BH107

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6491255-6741693
Date Acquired : 09/01/13 19:08:14 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : **Depth:** 2.10 - 6.00 6741696

Sample ID : BH109

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: Date Acquired : Units : 6491334-6741696 09/01/13 19:26:52 PM ppb

Dilution CF

0.009 Multiplier

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 6741698 Depth: 6.00 - 7.00

Sample ID: BH106

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6491137-6741698
Date Acquired : 09/01/13 19:45:29 PM
Units : ppb

Units : ppb
Dilution :
CF : 1

Validated

SDG: 121220-104 **Job:** H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Me Customer: Ma

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 6741701 Depth: 2.50 - 2.90

Sample ID: BH107

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6491200-6741701 Date Acquired : 09/01/13 20:04:08 PM Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121220-104 SDG:

Job:

H_MAYERBROW_WOK-34 Client Reference:

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth**: 0.50 6730355 Sample ID : BH107

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6469915-6730355
Date Acquired : 07/01/13 12:40:00 PM
Units : ppb

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth**: 0.50 6730746 Sample ID : BH108

Attention:

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6469950-6730746 07/01/13 11:49:42 PM ppb Sample Identity: Date Acquired : Units :

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth**: 0.50 6730770 Sample ID : BH109

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6469985-6730770 07/01/13 12:09:36 PM ppb Sample Identity: Date Acquired : Units :

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) GC (S) Sample No : **Depth**: 0.50 6731268 Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6469841-6731268 04/01/2013 15:54:30 PM Sample Identity: Date Acquired : Units :

ppb

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Med Customer: May

Attention:

Medina
Mayer Brown Ltd
Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 6732029 Depth: 1.00 - 6.00

Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6470023-6732029
Date Acquired : 08/01/13 02:04:28 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121220-104 SDG: Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 2.50 - 2.90 6739111

Sample ID : BH107

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6470069-6739111 08/01/2013 20:15:10 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 0.008 Multiplier

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 2.10 - 6.00 6739119 Sample ID : BH109

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6470124-6739119 08/01/2013 19:56:10 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 1 0.008 Multiplier

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

Chromatogram

Depth: 3.80 - 8.00 Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6739121

Sample ID : BH107

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6470088-6739121 08/01/2013 20:34:25 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

1 0.008 Multiplier

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 6.00 - 7.00 6739126

Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6470050-6739126 08/01/2013 20:53:28 PM ppb

Sample Identity: Date Acquired : Units :

Validated

SDG: 121220-104

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9

Report Number: 208101 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No: 6739129 Depth: 1.10 - 6.00

Sample ID : BH108

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6470109-6739129
Date Acquired : 08/01/2013 19:37:10 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 1.00 - 6.00 6739165

Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6488427-6739165 08/01/2013 19:18:12 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 1 0.008 Multiplier

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 1.10 - 6.00 6741688 Sample ID : BH108

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: Date Acquired : Units : 6491308-6741688 09/01/13 20:23:01 PM ppb

Dilution CF 1 0.008

Validated

SDG: 121220-104

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Med Customer: May

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

 Analysis:
 EPH CWG (Aromatic) Aqueous GC (W)
 Sample No : Sample ID : BH107
 6741693
 Depth : 3.80 - 8.00

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6491256-6741693
Date Acquired : 09/01/13 19:08:14 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.008

Validated

SDG: 121220-104

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer:

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) **Sample No:** 6741696 **Depth:** 2.10 - 6.00

Sample ID: BH109

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6491335-6741696
Date Acquired : 09/01/13 19:26:52 PM
Units : ppb

Units : ppb
Dilution :
CF : 1
Multiplier : 0.009

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : **Depth:** 6.00 - 7.00 6741698 Sample ID : BH106

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: Date Acquired : Units : 6491138-6741698 09/01/13 19:45:29 PM ppb

Attention:

Dilution CF 1 0.008 Multiplier

Validated

121220-104 SDG:

Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: R/PDEMEDINA.9

208101 Superseded Report:

Chromatogram

Depth: 2.50 - 2.90 Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6741701

Sample ID : BH107

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: Date Acquired : Units : 6491201-6741701 09/01/13 20:04:08 PM ppb

Dilution CF

1 0.008 Multiplier

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Me Customer: Ma

Attention:

Medina Or Mayer Brown Ltd Re Antony Platt Su

Order Number: Report Number:

R/PDEMEDINA.9 208101

Superseded Report:

Chromatogram

 Analysis:
 GRO by GC-FID (S)
 Sample No: 6731378
 Depth: 0.50

Validated

SDG: 121220-104 **Job**: H_MAYERB

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Order Number:

Report Number:

R/PDEMEDINA.9 208101

Client Reference: Attention: Antony Platt Superseded Report:

Chromatogram

 Analysis:
 GRO by GC-FID (S)
 Sample No: 6731401
 6731401
 Depth: 0.50

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Order Number:

R/PDEMEDINA.9 208101

Superseded Report: 20810

Chromatogram

Antony Platt

 Analysis:
 GRO by GC-FID (S)
 Sample No: 6738167
 Depth: 0.50

Attention:

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMEDINA.9

208101

Chromatogram

 Analysis:
 GRO by GC-FID (S)
 Sample No: 6738168
 6738168
 Depth: 0.50

Validated

SDG: 121220-104 **Job**: H_MAYERB

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Attention:

Order Number:

R/PDEMEDINA.9 208101

Superseded Report: 20810

Chromatogram

Antony Platt

 Sample No :
 6734369
 Depth :
 1.00 - 6.00

 Sample ID :
 BH106

BH106 6734369_GRO_W.DATA - Chem 39 FID

Validated

SDG: 121220-104 **Job**: H_MAYERB

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Attention:

Order Number:

R/PDEMEDINA.9 208101

Superseded Report: 2081

Chromatogram

Antony Platt

Sample No: 6734398 **Depth**: 2.50 - 2.90

Validated

SDG: 121220-104 **Job:** H_MAYERB

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Attention:

Order Number:

R/PDEMEDINA.9 208101

Superseded Report:

Chromatogram

Antony Platt

Sample No: 6734403 **Depth**: 3.80 - 8.00

Validated

SDG: 121220-104 **Job**: H_MAYERB

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number: Report Number: R/PDEMEDINA.9 208101

Report Number: 20810 Superseded Report:

Chromatogram

Sample No: 6734406 **Depth**: 1.10 - 6.00

Validated

SDG: 121220-104 **Job:** H_MAYERB

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 208101

Superseded Report: 208

Chromatogram

Sample No: 6734408 **Depth**: 2.10 - 6.00

Validated

SDG: 121220-104 **Job:** H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Customer: Attention: Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 208101

Report Number: 2081 Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Sample No:** 6734413 **Depth:** 6.00 - 7.00

Validated

SDG: 121220-104 **Job**: H_MAYERB

Analysis: GRO by GC-FID (W)

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Attention:

Order Number:

R/PDEMEDINA.9 208101

Superseded Report: 20810

Chromatogram

Antony Platt

Sample No: 6734978 **Depth**: 1.00 - 6.00

Validated

SDG: 121220-104 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina **Customer:**

Attention:

Order Number: Mayer Brown Ltd Report Number: Antony Platt

Superseded Report:

R/PDEMEDINA.9 208101

Chromatogram

Analysis: GRO by GC-FID (W) 6740640 Sample No : **Depth:** 1.10 - 6.00

Validated

SDG: 121220-104 **Job**: H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina
Customer: Mayer Brown Ltd

Attention:

Order Number:

R/PDEMEDINA.9 208101

Superseded Report: 20

Chromatogram

Antony Platt

Analysis: GRO by GC-FID (W) **Sample No:** 6740643 **Depth:** 6.00 - 7.00

Validated

SDG: 121220-104 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: Medina Mayer Brown Ltd **Customer:**

Attention:

Order Number:

Superseded Report:

R/PDEMEDINA.9

208101

Chromatogram

Analysis: GRO by GC-FID (W) Sample No : 6740650 Depth: 3.80 - 8.00

Antony Platt

Validated

SDG: 121220-104 **Job:** H_MAYERB

Client Reference:

H_MAYERBROW_WOK-34

Location: Me Customer: Ma

Attention:

Medina Mayer Brown Ltd Antony Platt Order Number:

R/PDEMEDINA.9 208101

Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) **Sample No:** 6740653 **Depth:** 2.50 - 2.90

Validated

SDG: 121220-104 Job:

Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:**

Attention:

Medina Mayer Brown Ltd Antony Platt

Order Number:

R/PDEMEDINA.9

208101 Superseded Report:

Chromatogram

Analysis: GRO by GC-FID (W) Sample No : 6740659 **Depth:** 2.10 - 6.00

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

R/PDEMEDINA 9 121220-104 Location: Medina Order Number:

SDG H MAYERBROW WOK-34 Mayer Brown Ltd 208101 **Customer:** Report Number: Antony Platt

Attention:

Appendix General

Client Reference:

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed
- 4. With respect to turnaround, we will always endeayour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No The quantity of asbestos present is not determined unless Determination Possible. specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture
- 13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, and Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol)
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

Superseded Report:

- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using (Hawarden) in-house method of transmitted/polarised Alcontrol Laboratories microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using (Hawarden) in-house method transmitted/polarised Alcontrol Laboratories microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Orodoblite	Blue Asbestos
Fibrous Adindite	=
Fibrous Anthophylite	=
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Mayer Brown Ltd Lion House Oriental Road Woking Surrey GU22 8AR

Attention: Antony Platt

CERTIFICATE OF ANALYSIS

Date: 14 January 2013

Customer: H MAYERBROW WOK

Sample Delivery Group (SDG): 121221-72

Your Reference:

Location: Medina Report No: 208352

This report has been revised and directly supersedes 208275 in its entirety.

We received 6 samples on Friday December 21, 2012 and 10 of these samples were scheduled for analysis which was completed on Monday January 14, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

SDG: Location: R/PDEMedina.9 121221-72 Order Number: H_MAYERBROW_WOK-34 208352 Job: **Customer:** Mayer Brown Ltd Report Number: Client Reference: Attention: Antony Platt Superseded Report: 208275

Received Sample Overview

Lab Sample No(s) 6707276	Customer Sample Ref. BH1	AGS Ref.	Depth (m)	Sampled Date 19/12/2012
6707279	BH2			19/12/2012
6707283	ВН3			19/12/2012
6707287	BH4			19/12/2012
6707291	BH5			19/12/2012
6707294	BH104			19/12/2012

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

SDG: 121221-72 Location: Order Number: R/PDEMedina.9 Job: H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd 208352 Report Number: Client Reference: Attention: Antony Platt Superseded Report: 208275

Client Reference:		Attention	:	Α	∖nto	ny F	Platt											
LIQUID																		٦
Results Legend	Lab Sample I	No(s)			670		670			670			6707287		6707291		3	670
_		(-)			6707276		6707279			6707283			7287		7291		1	6707294
X Test																		
No Determination Possible	Custome Sample Refei	BH1		BH1	BH2		BH3		BH3	D I		B 5		BH5	BH104		RH104	
	AGS Reference																	
	Depth (m																	
	Containe	r	1l green glass bottle	1lplastic (ALE221)	Vial (ALE297)	11 green glass bottle	Vial (ALE297)	1l green glass bottle	1lplastic (ALE221)	Vial (ALE297)	11 green glass bottle	1Inlastic (Al E221)	Vial (ALE 297)	1 plastic (ALE2:21)	Vial (ALE297)	1l green glass bottle	1lplastic (ALE221)	\/i≥I /∆I E2Q7)
Alkalinity as CaCO3	All	NDPs: 0				T					1		1			П	1	٦
		Tests: 6		X)	(X	+		X	+	X	(X	-
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 6		X		>	<u> </u>		X			x		X	<u> </u>		X	_
Anions by Kone (w)	All	NDPs: 0 Tests: 6		X		>	<u>(</u>		X		-	X		×	<u> </u>		X	_
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 6	X		2	x		X			X)	(x		
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 6		X)	<u>(</u>		X		2	x		X	<u>(</u>		X	
EPH CWG (Aliphatic) Aqueous GC (W)	All	NDPs: 0 Tests: 6	X			X		X			X)	(X		
EPH CWG (Aromatic) Aqueous GC (W)	All	NDPs: 0 Tests: 6	X		2	×		x			X)	(X		
GRO by GC-FID (W)	All	NDPs: 0 Tests: 6			X		x			X			x		X			X
Low Level Phenois by HPLC (W)	All	NDPs: 0 Tests: 6	x		2	X		x			X)	(x		_
Mercury Unfiltered	All	NDPs: 0 Tests: 6	x		2	×		X			X)	(X		
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 6	x		2	×		x			x)	(X		
pH Value	All	NDPs: 0 Tests: 6		x		>	<u> </u>		x			x		×	<u> </u>		X	
TPH CWG (W)	All	NDPs: 0 Tests: 6	x		2	×		x			x)	(X		

Validated

SDG: 121221-72

Job: H_MAYERBROW_WOK-34
Client Reference:

Location: | Customer: |

Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report:

R/PDEMedina.9 208352 208275

Results Legend		Customer Sample Ref.	BH1	BH2	BH3	BH4	BH5	BH104
# ISO17025 accredited. M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)						
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012
** % recovery of the surrogate standa		Sampled Time	19/12/2012	19/12/2012	19/12/2012	19/12/2012	19/12/2012	19/12/2012
check the efficiency of the method. results of individual compounds w		Date Received	21/12/2012	21/12/2012	21/12/2012	21/12/2012	21/12/2012	21/12/2012
samples aren't corrected for the re-		SDG Ref	121221-72 6707276	121221-72 6707279	121221-72 6707283	121221-72 6707287	121221-72 6707291	121221-72 6707294
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	0101210	0101219	0/0/200	0101201	0/0/291	0/0/254
Component	LOD/Unit							
Alkalinity, Total as CaCO3	<2 mg/l	TM043	4840	1650	1270	4410	2140	14500
/ intaininty, 1 otal as success	g,.		#	#	#	#	#	#
Ammoniacal Nitrogen as NH3	<0.2 mg/	/I TM099	4.68	23.4	42.6	0.597	0.657	7.25
· · · · · · · · · · · · · · · · · · ·	'		#	#	#	#	#	#
Ammoniacal Nitrogen as NH4	<0.3 mg/	/I TM099	4.95	24.8	45.1	0.633	0.696	7.68
	''		#	#	#	#	#	#
Antimony (diss.filt)	<0.16 µg	/I TM152	0.761	2.35	5.98	0.969	2.6	1.18
, , , , , ,			#	#	#	#	#	#
Arsenic (diss.filt)	<0.12 µg	/I TM152	8.07	<0.12	<0.12	1.42	4.15	7.36
,			#	#	#	#	#	#
Barium (diss.filt)	<0.03 µg	/I TM152	157	643	598	28.8	120	50.3
	J pg	02	#	#	#	#	#	#
Beryllium (diss.filt)	<0.07 µg	/I TM152	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
,	🎜 9	52	#	#	#	#	#	#
Boron (diss.filt)	<9.4 µg/	TM152	1770	997	2140	338	179	152
	J. 1 Mg/	02	#	#	#	#	#	#
Cadmium (diss.filt)	<0.1 µg/	TM152	<0.1	0.281	0.194	<0.1	<0.1	<0.1
Gadiniani (dibb.iiit)	.о.т ру	1111102	#	#	#	#	#	#
Chromium (diss.filt)	<0.22 µg	/I TM152	11.7	19.9	19.4	5	6.03	5.46
Gineman (discinity	. v.zz pg	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#	#	#	,	#	#
Copper (diss.filt)	<0.85 µg	/I TM152	1.38	7.47	4.32	2.16	1.23	3.17
Copper (diss.iiit)	νο.ου μ9	/1 1101132	#	/. - /	4.52	#	1.25	5.17 #
Lead (diss.filt)	<0.02 µg	/I TM152	0.697	2.44	2.55	0.707	0.238	4.73
Lead (diss.iiit)	-0.02 μg	/1 1101132	0.097 #	2.44	2.55	0.707 #	0.230	4.75
Molybdenum (diss.filt)	<0.24 µg	/I TM152	5.65	19.2	20.5	2.21	2.68	11.7
Morybuerium (diss.iiit)	-0.24 μg	/1 1101132	J.03 #	#	20.5	Z.Z1 #	2.00	#
Nickel (diss.filt)	<0.15 µg	/I TM152	7.51	16.8	13.6	11.3	7.25	18.8
rviolici (diss.iiit)	-0.10 μg	// ////JZ	#	#	#	#	#	#
Selenium (diss.filt)	<0.39 µg	/I TM152	16	<0.39	<0.39	1.41	0.894	4.87
Seleman (diss.iiit)	-0.59 μg	/1 1101132	#	4	~0.5 9 #	1.41	0.03 4 #	4.07
Zinc (diss.filt)	<0.41 µg	/I TM152	7.58	26.8	38.4	17.8	10.6	8.52
Ziric (diss.iiit)	~υ.41 μg	/1 1101132	7.36	20.0	30.4 #	#	10.0	0.5 <u>2</u> #
Mercury (tot.unfilt)	<0.02 µg	/I TM183	0.592	<0.02	1.77	0.393	0.943	1.11
wercary (tot.urinit)	-0.02 μg	/1 1101103	0.552	\0.0Z	1.77	0.555	0.545	1.11
Sulphate	<2 mg/l	TM184	171	372	610	879	122	834
Sulphate	12 mg/i	1101104	#	#	#	#	#	#
Chloride	<2 mg/l	TM184	454	12000	7630	184	40.3	256
Gilloride	12 mg/i	TWIOT	#	#	#	#	#	#
Nitrate as N	<0.0677	TM184	0.184	<0.0677	<0.0677	0.245	<0.0677	0.114
	mg/l	1111104	0.104	0.0077 @#	<0.0077 @#	0.243	~0.0077 @#	0.114
Cyanide, Total	<0.05 mg	/l TM227	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Syamos, rotar	-0.00 mg	,. I IVIZZI	Q#	Q#	~0.03 @#	Q#	~0.03 @#	\0.03 @#
Phenol (low level)	<0.5 µg/	TM255	<0.5	0.64	<0.5	<0.5	<0.5	<0.5
onor (ion lovel)	-υ.υ μg/	. 1101200	,0.0	0.04	٠٠.٥	,0.0	٠٠.٥	٠٠.٥
Cresols (low level)	<0.5 µg/	TM255	<0.5	<0.5	<0.5	<0.5	<0.5	0.93
CIOSOIS (IOW IGVGI)	-υ.υ μg/	. I IVIZUU	``	``	٧٠.٥	``	٧.٥	0.00
Xylenols (low level)	<0.5 µg/	TM255	<0.5	<0.5	0.97	<0.5	<0.5	<0.5
A STOTION (104 10 VOI)	-υ.υ μg/	. 1101200	,0.0	,0.0	0.07	,0.0	٠٠.٥	٠٠.٠
1-Napthol (low level)	<0.5 µg/	TM255	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1 Hapaioi (IOW IGVGI)	-υ.υ μg/	. I IVIZUU	``	``	٧٠.٥	``	٧.٥	٧.٠
2,3,5-Trimethylphenol (low	<0.5 µg/	TM255	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
level)	-υ.υ μg/	. 1101200	,0.0	,0.0	٠٠.٥	,0.0	٠٠.٥	٠٠.٠
Sum of detected 5 Speciated	<0.64 µg	/I TM255	<0.64	0.64	0.97	<0.64	<0.64	1.59
Phenols by HPLC (W)	-υ.υ μ9	,. I IVIZOO	٠٠.٠٠	0.04	0.07	٠٠.٠٠	·V.U-	1.00
pH	<1 pH Un	its TM256	7.46	7.02	7.42	7.39	7.21	6.96
P'''	- i pi i Ull	I IVIZUU	7.46 @#	7.02 @#	7.42 @#	7.59 @#	7.21 @#	0.90 @#
			<u>@</u> #	<u>@</u> #	₩ #	<u>@</u> #	<u>@</u> #	<u>@</u> #

Validated

SDG: 121221-72 Location: Order Number: R/PDEMedina.9 Job: H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd 208352 Report Number: Client Reference: Attention: Antony Platt Superseded Report: 208275

PAH Spec MS - Aqueous	s (W)				•					
Results Legend	(11)	Customer Sample Ref.	BH1		BH2	BH3		BH4	BH5	BH104
# ISO17025 accredited. M mCERTS accredited.										
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	<u></u>			<u> </u>		<u></u>		· · ·
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Water(GW/SW) 19/12/2012		Water(GW/SW) 19/12/2012	Water(GW/SV 19/12/2012	/)	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012
** % recovery of the surrogate standa check the efficiency of the method.		Sampled Time	21/12/2012		21/12/2012	21/12/2012		21/12/2012	21/12/2012	21/12/2012
results of individual compounds wi samples aren't corrected for the re-	ithin	Date Received SDG Ref	121221-72		121221-72	121221-72		121221-72	121221-72	121221-72
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s)	6707276		6707279	6707283		6707287	6707291	6707294
Component	LOD/Units	AGS Reference Method								
Naphthalene (aq)	<0.1 µg/l	TM178	0.404		0.67	1.35		0.107	0.204	0.213
			@)#	@#		@#	@‡		@#
Acenaphthene (aq)	<0.015 µg/	/I TM178	0.963		3.56	6.26		0.122	0.266	0.129
A	40.044	// TM470	0.442) #	@#	0.532	@#	@ # 0.155	0.548	@#
Acenaphthylene (aq)	<0.011 µg/	/I TM178	0.143 @	۰#	1.86 @#	0.532	@#	0.155		0.154 @#
Fluoranthene (aq)	<0.017 µg/	/I TM178	15.6	, π	117	68.8	ω, π	5.08	18.2	5.63
` "			@) #	@#		@#	@#	@#	@#
Anthracene (aq)	<0.015 µg/	/I TM178	1.7		14.8	15.8		0.616	1.71	0.635
- · · · · · ·			@) #	@#		@#	@#		@#
Phenanthrene (aq)	<0.022 µg/	/I TM178	9.69 @	۰#	39.5	41.9	@#	1.55	5.28	2.52 @#
Fluorene (aq)	<0.014 µg/	/I TM178	0.909	<i>;</i> #	@ # 3.31	6.87	@#	@ # 0.14	0.334	0.243
(@) #	@,#		@#	@#		@#
Chrysene (aq)	<0.013 µg/	/I TM178	10.4		83.1	46.3		4.22	15	6.1
			@)#	@#		@#	@#		@#
Pyrene (aq)	<0.015 µg/	/I TM178	12.6	. ,,	107	56.2	0 "	4.79	17.3	5.04
Benzo(a)anthracene (aq)	<0.017 µg/	/I TM178	9.57)#	@ # 83.2	46.4	@#	@ # 4.1	@# 14.1	@ # 4.36
Derizo(a)antinacene (aq)	νο.στη μαγ	1101170	0.57 @) #	03.2 @#	70.4	@#	@#		4.50 @#
Benzo(b)fluoranthene (aq)	<0.023 µg/	/I TM178	13.5		96.6	44.8	<u></u>	5.42	20.6	9.58
			@)#	@#		@#	@‡	@#	@#
Benzo(k)fluoranthene (aq)	<0.027 µg/	/I TM178	12.2		90.9	53.4		5.23	18.7	6.97
Ponzo(o)nyrono (og)	<0.009 µg/	/I TM170	13.8) #	@# 117	64.1	@#	@ ‡ 6.58	@# 24	@#
Benzo(a)pyrene (aq)	<υ.υυθ μg/	/I TM178	[13.0	۰#	0 #	04.1	@#	0.50		8.05 @#
Dibenzo(a,h)anthracene (aq)	<0.016 µg/	/I TM178	3.35	, π	22.6	11.3	ω, π	1.31	4.74	1.88
	, •		@) #	@#		@#	@#	@#	@#
Benzo(g,h,i)perylene (aq)	<0.016 µg/	/I TM178	8.94		70.9	35.5		4.38	16.9	6.27
1 1 (400 1)	.0.044	// TN4470	@) #	@#	04.4	@#	@ #		@#
Indeno(1,2,3-cd)pyrene (aq)	<0.014 µg/	/I TM178	8.18 @	۰#	66 @#	31.4	@#	4 @#	15.2 @#	5.47 @#
PAH, Total Detected USEPA 16	<0.247 µg/	/I TM178	122	, π	919	531	ω π	47.8	173	63.2
(aq)	, •		(0	@	@		@	@	@	@
				-						
				\exists						
				_						
				\dashv						
				_						
				\dashv						
				_						
				\dashv						
				\neg						
				\dashv						
		1		_						

Validated

SDG: 121221-72 Location: Order Number: R/PDEMedina.9 H_MAYERBROW_WOK-34 Customer: Mayer Brown Ltd 208352 Job: Report Number: Client Reference: Attention: Antony Platt Superseded Report: 208275

TPH CWG (W)								
Results Legend # ISO17025 accredited.		Customer Sample Ref.	BH1	BH2	BH3	BH4	BH5	BH104
M mCERTS accredited. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type						
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012	Water(GW/SW) 19/12/2012
** % recovery of the surrogate standa check the efficiency of the method.		Sampled Time	21/12/2012	21/12/2012	21/12/2012	21/12/2012	21/12/2012	21/12/2012
results of individual compounds with samples aren't corrected for the re-	ithin	Date Received SDG Ref	121221-72	121221-72	121221-72	121221-72	121221-72	121221-72
(F) Trigger breach confirmed	Lovery	Lab Sample No.(s)	6707276	6707279	6707283	6707287	6707291	6707294
1-4&+§@ Sample deviation (see appendix) Component	LOD/Unit	AGS Reference Method						
GRO Surrogate % recovery**	%	TM245	101	98	102	104	103	106
GRO Surrogate % recovery	/0	1101243	101	90	102	104	105	100
GRO >C5-C12	<50 µg/l	TM245	58	<50	<50	<50	<50	<50
			@#	@,#	@#	@#	@#	@#
Methyl tertiary butyl ether	<3 µg/l	TM245	<3	<3	<3	<3	<3	<3
(MTBE)			@#	@#	@#	@#	@#	@#
Benzene	<7 µg/l	TM245	<7	<7	<7	<7	<7	<7
T	.4 //	TN10.15	@#	@#	@#	@#	@#	@#
Toluene	<4 µg/l	TM245	<4 @,#	<4 @#	<4 @#	<4 @#	<4 @#	<4 @#
Ethylbenzene	<5 µg/l	TM245	<u>@</u> #	<u>@</u> #	<5	<u>@</u> #	<u>@</u> #	<5
Eurybenzene	10 μg/1	TIVIZ-TO	@#	@#	@#	@#	@#	@#
m,p-Xylene	<8 µg/l	TM245	<8	<8	<8	<8	<8	<8
			@#	@#	@#	@#	@#	@#
o-Xylene	<3 µg/l	TM245	<3	<3	<3	<3	<3	<3
			@#	@#	@#	@#	@#	@#
Sum of detected Xylenes	<11 µg/l	TM245	<11	<11	<11	<11	<11	<11
Corre of data at all DTEV	400 //	TMOAF	@	@	@	@	@	@
Sum of detected BTEX	<28 µg/l	TM245	<28 @	<28 @	<28 @	<28 @	<28 @	<28 @
Aliphatics >C5-C6	<10 µg/l	TM245	<10	<10	<10	<10	<10	<10
7 dipridates 7 00 00	110 µg/1	TIVIZ-TO	@	@	@	@	@	@
Aliphatics >C6-C8	<10 µg/l	TM245	<10	<10	<10	<10	<10	<10
·			@	@	@	@	@	@
Aliphatics >C8-C10	<10 µg/l	TM245	<10	<10	<10	<10	<10	<10
			@	@	@	@	@	@
Aliphatics >C10-C12	<10 µg/l	TM245	11	<10	<10	<10	<10	<10
Aliabetics > C12 C16 (cs)	-10 · · ~//	TM174	<u>@</u> 29		<u>@</u> 28	<10 <10	<u>@</u> 28	23
Aliphatics >C12-C16 (aq)	<10 µg/l	1101174	29	73	20	~10	20	23
Aliphatics >C16-C21 (aq)	<10 µg/l	TM174	159	268	102	<10	108	244
(,	1,5					·		
Aliphatics >C21-C35 (aq)	<10 µg/l	TM174	1970	2760	596	295	1470	2280
Total Aliphatics >C12-C35 (aq)	<10 µg/l	TM174	2160	3100	726	295	1600	2550
Aromatics >EC5-EC7	410 //	TMOAF	-10	-10	-10	-10	-40	-10
Alomatics >EC5-EC7	<10 µg/l	TM245	<10 @	<10 @	<10 @	<10 @	<10 @	<10 @
Aromatics >EC7-EC8	<10 µg/l	TM245	<10	<10	<10	<10	<10	<10
7 Homation 207 200	i io pg/i	1111210	@	@	@	@	@	@
Aromatics >EC8-EC10	<10 µg/l	TM245	14	<10	<10	<10	<10	<10
			@	@	@	@	@	@
Aromatics >EC10-EC12	<10 µg/l	TM245	<10	<10	<10	<10	<10	<10
A	.40 "	T14-1	@	@	@	@	@	@
Aromatics >EC12-EC16 (aq)	<10 µg/l	TM174	30	44	50	<10	21	14
Aromatics >EC16-EC21 (aq)	<10 µg/l	TM174	100	512	307	1280	130	87
740matics - 2010 2021 (aq)	110 µg/1	111174	100	012	307	1200	100	0,
Aromatics >EC21-EC35 (aq)	<10 µg/l	TM174	576	2480	967	17200	871	555
\ "								
Total Aromatics >EC12-EC35	<10 µg/l	TM174	706	3040	1320	18500	1020	656
(aq)								
Total Aliphatics & Aromatics	<10 µg/l	TM174	2930	6150	2060	18800	2640	3210
>C5-35 (aq)								
		-						
	<u> </u>							

Validated

SDG: 121221-72 **Job:** H_MAYERBROW_WOK-34

Client Reference:

Location: Customer: Attention:

Mayer Brown Ltd Antony Platt Order Number: Report Number: Superseded Report:

R/PDEMedina.9 208352 208275

Table of Results - Append	İΧ
---------------------------	----

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate		
TM245	By GC-FID	Determination of GRO by Headspace in waters		
TM255		Determination of Low Level Phenols in Waters and Leachates by HPLC		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C.

Validated

SDG: 121221-72 Location: Order Number: R/PDEMedina.9 H_MAYERBROW_WOK-34 Mayer Brown Ltd 208352 Job: **Customer:** Report Number: Client Reference: Attention: Antony Platt Superseded Report: 208275

Test Completion Dates

				-		
Lab Sample No(s)	6707276	6707279	6707283	6707287	6707291	6707294
Customer Sample Ref.	BH1	BH2	BH3	BH4	BH5	BH104
AGS Ref.						
Depth						
Туре	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Alkalinity as CaCO3	07-Jan-2013	07-Jan-2013	04-Jan-2013	07-Jan-2013	04-Jan-2013	07-Jan-2013
Ammoniacal Nitrogen	09-Jan-2013	09-Jan-2013	09-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013
Anions by Kone (w)	11-Jan-2013	11-Jan-2013	11-Jan-2013	11-Jan-2013	11-Jan-2013	11-Jan-2013
Cyanide Comp/Free/Total/Thiocyanate	02-Jan-2013	02-Jan-2013	02-Jan-2013	02-Jan-2013	02-Jan-2013	02-Jan-2013
Dissolved Metals by ICP-MS	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013
EPH CWG (Aliphatic) Aqueous GC (W)	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013
EPH CWG (Aromatic) Aqueous GC (W)	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013
GRO by GC-FID (W)	05-Jan-2013	05-Jan-2013	05-Jan-2013	05-Jan-2013	05-Jan-2013	05-Jan-2013
Low Level Phenols by HPLC (W)	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013
Mercury Unfiltered	07-Jan-2013	07-Jan-2013	07-Jan-2013	07-Jan-2013	07-Jan-2013	07-Jan-2013
Nitrite by Kone (w)	11-Jan-2013	11-Jan-2013	11-Jan-2013	11-Jan-2013	11-Jan-2013	11-Jan-2013
PAH Spec MS - Aqueous (W)	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013
pH Value	07-Jan-2013	07-Jan-2013	07-Jan-2013	07-Jan-2013	07-Jan-2013	07-Jan-2013
TPH CWG (W)	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013	10-Jan-2013

Validated

Location: R/PDEMedina.9 SDG: 121221-72 Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : Depth: 6720217 Sample ID :

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

BH104

6478560-6720217 09/01/2013 20:22:08 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 1 0.008 Multiplier

Validated

Location: R/PDEMedina.9 SDG: 121221-72 Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : 6720315 Depth:

Sample ID : BH5

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6478545-6720315 09/01/2013 21:38:27 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 0.008 Multiplier

Validated

Location: R/PDEMedina.9 SDG: 121221-72 Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : Depth: 6721624

Sample ID : BH2

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6478476-6721624 09/01/2013 21:09:50 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

Validated

Location: R/PDEMedina.9 SDG: 121221-72 Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : 6721653 Depth:

Sample ID : вн3

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6478502-6721653 09/01/2013 22:07:11 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

1 0.008 Multiplier

Validated

SDG: 121221-72 Job: Client Reference:

H_MAYERBROW_WOK-34

Location: **Customer:** Attention:

Mayer Brown Ltd Antony Platt

Order Number: Report Number: Superseded Report: R/PDEMedina.9 208352 208275

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No : Depth: 6721683 Sample ID : BH1

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

6478438-6721683 09/01/2013 22:36:07 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 0.008 Multiplier

Validated

R/PDEMedina.9 SDG: 121221-72 Location: Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aliphatic) Aqueous GC (W) Sample No: 6721844 Depth:

Sample ID : BH4

Alcontrol/Geochem Analytical Services Speciated TPH - SATS (C12 - C40)

Sample Identity: 6478526-6721844 Date Acquired : 09/01/13 22:53:00

Units : Dilution : CF : 1 Multiplier : 1.000

Validated

Location: SDG: 121221-72 Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Client Reference: Attention: Antony Platt

R/PDEMedina.9 Order Number: Report Number: 208352 Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : Depth: 6720217

Sample ID : BH104

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6478561-6720217 09/01/2013 20:22:08 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

Validated

Location: SDG: 121221-72 Job: H_MAYERBROW_WOK-34 **Customer:** Client Reference:

Mayer Brown Ltd Attention: Antony Platt

R/PDEMedina.9 Order Number: Report Number: 208352 Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6720315 Depth: Sample ID : BH5

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6478546-6720315 09/01/2013 21:38:27 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF 0.008 Multiplier

Validated

Location: R/PDEMedina.9 SDG: 121221-72 Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : Depth: 6721624

Sample ID : BH2

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6478477-6721624 09/01/2013 21:09:50 PM ppb

Sample Identity: Date Acquired : Units :

Dilution CF 0.008 Multiplier

Validated

Location: R/PDEMedina.9 SDG: 121221-72 Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6721653 Depth: Sample ID :

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

вн3

6478503-6721653 09/01/2013 22:07:12 PM ppb Sample Identity: Date Acquired : Units :

Dilution CF 1 0.008 Multiplier

Validated

R/PDEMedina.9 SDG: 121221-72 Location: Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : Depth: 6721683 Sample ID : BH1

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

6478439-6721683 09/01/2013 22:36:08 PM ppb

Sample Identity: Date Acquired : Units : Dilution CF

Validated

Location: R/PDEMedina.9 SDG: 121221-72 Order Number: Job: H_MAYERBROW_WOK-34 **Customer:** Mayer Brown Ltd Report Number: 208352 Client Reference: Attention: Antony Platt Superseded Report: 208275

Chromatogram

Analysis: EPH CWG (Aromatic) Aqueous GC (W) Sample No : 6721844 Depth :

Sample ID : BH4

Alcontrol/Geochem Analytical Services Speciated TPH - AROM (C12 - C40)

Sample Identity: 6478527-6721844 Date Acquired : 09/01/13 22:53:00

Units :
Dilution :
CF : 1
Multiplier : 1.000

Validated

SDG: 121221-72 H_MAYERBROW_WOK-34 Client Reference:

Location: Mayer Brown Ltd **Customer:** Attention: Antony Platt

Order Number: Superseded Report: 208275

R/PDEMedina.9 208352

Chromatogram

Analysis: GRO by GC-FID (W) Sample No : 6734727 Depth:

Validated

R/PDEMedina.9

208352

208275

 SDG:
 121221-72
 Location:
 Medina
 Order Number:

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd
 Report Number:

 Client Reference:
 Attention:
 Antony Platt
 Superseded Report:

Chromatogram

Validated

R/PDEMedina.9

208352

208275

 SDG:
 121221-72
 Location:
 Medina
 Order Number:

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd
 Report Number:

 Client Reference:
 Attention:
 Antony Platt
 Superseded Report:

Chromatogram

Validated

 SDG:
 121221-72
 Location:
 Medina
 Order Number:
 R/PDEMedina.9

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd
 Report Number:
 208352

 Client Reference:
 Attention:
 Antony Platt
 Superseded Report:
 208275

Chromatogram

Validated

 SDG:
 121221-72
 Location:
 Medina

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd

 Client Reference:
 Attention:
 Antony Platt

Order Number: R/PDEMedina.9
Report Number: 208352
Superseded Report: 208275

Chromatogram

Validated

 SDG:
 121221-72
 Location:
 Medina

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd

 Client Reference:
 Attention:
 Antony Platt

Order Number: R/PDEMedina.9
Report Number: 208352
Superseded Report: 208275

Chromatogram

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

 SDG:
 121221-72
 Location:
 Medina
 Order Number:
 R/PDEMedina.9

 Job:
 H_MAYERBROW_WOK-34
 Customer:
 Mayer Brown Ltd
 Report Number:
 208352

 Client Reference:
 Attention:
 Antony Platt
 Superseded Report:
 208275

Appendix General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. **Surrogate recoveries** -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brown Asbestos
Cro a dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to usAnthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

SITE/REF: Medina Wharf						General S	ite comments	
DATE: 19/12/2012			1	of1.		MG - Made Ground, AL - Alluviur	n, HO - Headon Beds and Osborne	
OPERATOR(S): RP						Beds		mayer brown
Ambient Conditions:	Barometric Pressure (mb)	CH ₄ (%v/v)	CO ₂ (%v/v)	0 ₂ (%v/v)	PID (ppm)			
Before Monitoring	1018	<0.1	<0.1	21.3	-		EQUIPMENT	
After Monitoring	1015	<0.1	<0.1	21.3	-	Instrument / Model Type	Serial Number	Comments
Atmospheric Pressure Trend	: Falling					GA2000 Gas Analyser	GA12820	
Ground Conditions:	Wet					Standard Dipmeter	79301	
Weather Conditions:	Doining							

Ground Gas Note: "0" readings to be recorded as instrument detection limit

Borehole ID Time	Flow (I/hr)	Relative Pressure	re Steady	· -	O ₂ (%v/v)	IPPAK (.H.	% of Lower	CO (ppm)	1)	. I I PID (DDM)	DID (nnm)		nse Zone	Response	Gas screening	Gas screening	
ID	Time	Flow (I/III)	(mb)	CH ₄ (%v/v)	(%v/v)	O ₂ (/8V/V)	(%v/v)	Limit	СО (ррпі)	(ppm)	(%)	PID (ppili)	From (mbgl)	To (mbgl)	Strata	value CH ₄	value CO ₂
BH101	09:45	<0.1	-	<0.1	<0.1	20.3	-	-	-	-	78.8	-	0.3	6.0	MG,HO	0.0001	0.0001
BH102	09:55	<0.1	-	<0.1	8.0	10.3	-	-	-	-	88.8	-	1.0	7.0	MG,AL	0.0001	0.0008
BH103	10:05	<0.1	-	3.1	4.8	0.9	-	-	-	-	91.2	-	0.5	5.9	MG,HO	0.0031	0.0048
BH104	10:10	<0.1	-	0.2	1.5	16.2	-	-	-	-	88.8	-	0.6	6.0	MG,HO	0.0002	0.0015
BH105	10:15	<0.1	-	0.1	0.1	20.2	-	-	-	-	79.8	-	1.0	6.0	MG,HO	0.0001	0.0001
BH1	10:20	<0.1	-	0.4	5.4	6.8	-	-	-	-	87.9	-	1.0	11.6	MG,HO	0.0004	0.0054
BH2	10:25	<0.1	-	<0.1	2.6	12.9	-	-	-	-	87.9	-	1.0	16.2	MG,AL,HO	0.0001	0.0026
ВН3	10:30	<0.1	-	1.6	5.5	3	-	-	-	ı	90.8	-	1.0	19.1	MG,AL,HO	0.0016	0.0055
BH4	10:35	<0.1	-	9.3	5.2	0.4	-	-	-	-	85.0	-	1.0	10.2	MG,HO	0.0093	0.0052
BH5	10:40	<0.1	-	4.8	6.8	1.3	-	-	-	-	87.1	-	1.0	7.2	MG,HO	0.0048	0.0068

Groundwater

Borehole	Standing Water	Installation Base Dip	Free Phase LNAPL	Free Phase DNAPL		Wate	r Quality Ind	dicators		Well	Purge	
ID	Level (mbgl)	(mbgl)	Thickness (m)	Thickness (m)	Eh	EC	рН	DO	Temp	Volume (I)	Volume (I)	Comments (samples)
BH101	5.65	6.00	-	-	-	-	-	-	-	0.25	10	wv, gb, pb
BH102	6.37	7.00	=	-	-	-	-	-	-	0.45	10	wv, gb, pb
BH103	DRY	5.90	=	-	-	-	-	-	-	N/A	-	-
BH104	3.74	6.00	-	-	-	•	-	-	-	1.60	10	wv, gb, pb
BH105	4.16	6.00	-	-	-	-	-	-	-	1.30	10	wv, gb, pb
BH1	6.78	11.60	-	-	-	-	-	-	-	9.46	28	wv, gb, pb
BH2	6.09	16.20	-	•	-	=	-	-	-	19.84	60	wv, gb, pb
ВН3	6.37	19.10	-	-	-	-	-	-	-	24.98	75	wv, gb, pb
BH4	6.03	10.20	-	-	-	-	-	-	-	8.18	25	wv, gb, pb
BH5	3.04	7.20	=	-	-	-	-	-	-	8.16	24	wv, gb, pb

Well volume (I) = $(3.14 \text{ x (hole diameter (m)/2})^2 \text{ x (base dip (m) - standing water level (m)))}x1000$ (2l/m in 50mm well)

Gas screening value = gas concentration (%) x gas flow rate (l/hr)

SITE/REF: Medina Wharf						General Site	e comments		
DATE: 07/01/2013			1	of1.		MG - Made Ground, AL - Alluvium	, HO - Headon Beds and Osborne		
OPERATOR(S): RP						Beds			may
Ambient Conditions:	Barometric Pressure (mb)	CH ₄ (%v/v)	CO ₂ (%v/v)	0 ₂ (%v/v)	PID (ppm)				
Before Monitoring	1030	<0.1	<0.1	21.3	-		EQUIPMENT		
After Monitoring	1030	<0.1	<0.1	21.3	_	Instrument / Model Type	Serial Number	Comm	nents

GA2000 Gas Analyser

Standard Dipmeter

Ground Gas Note: "0" readings to be recorded as instrument detection limit

Falling

Raining

Wet

Borehole	Time	Flow (I/hr)	Relative Pressure	Steady	CO ₂	O ₂ (%v/v)	Peak CH ₄	% of Lower	CO (ppm)	H ₂ S	Balance	PID (ppm)		nse Zone	Response	Gas screening	Gas screening
ID	Tittle	FIOW (I/III)	(mb)	CH ₄ (%v/v)	(%v/v)	O ₂ (/6V/V)	(%v/v)	Limit	CO (ppiii)	(ppm)	(%)	PID (ppili)	From (mbgl)	To (mbgl)	Strata	value CH ₄	value CO ₂
BH103	10:05	<0.1	-	1.5	6.2	8.0	-	-	-	-	91.5	-	0.5	5.9	MG,HO	0.0015	0.0062
BH104	10:10	<0.1	•	<0.1	0.1	20.6	-	-	-	ı	79.1	-	0.6	6.0	MG,HO	0.0001	0.0001
BH105	10:15	<0.1	-	4.4	7.4	0.7	-	-	-	-	87.7	-	1.0	6.0	MG,HO	0.0044	0.0074
BH1	10:20	<0.1	-	25	17.1	0.2	-	-	-	-	57.7	-	1.0	11.6	MG,HO	0.025	0.0171
BH2	10:25	<0.1	-	<0.1	2.8	5.7	-	-	-	-	91.4	-	1.0	16.2	MG,AL,HO	0.0001	0.0028
ВН3	10:30	<0.1	-	5.8	6.1	0.6	-	-	-	-	87.6	-	1.0	19.1	MG,AL,HO	0.0058	0.0061
BH4	10:35	<0.1	•	0.7	5.5	0.8	-	-	-	ı	93.2	-	1.0	10.2	MG,HO	0.0007	0.0055
BH5	10:40	<0.1	-	<0.1	<0.1	20.8	-	-	-	-	78.9	-	1.0	7.2	MG,HO	0.0001	0.0001

GA12820

79301

Groundwater

Atmospheric Pressure Trend:

Ground Conditions:

Weather Conditions:

Borehole	Standing Water	Installation Base Dip	Free Phase LNAPL	Free Phase DNAPL		Wate	r Quality Ind	dicators		Well	Purge	
ID	Level (mbgl)	(mbgl)	Thickness (m)	Thickness (m)	Eh	EC	pН	DO	Temp	Volume (I)	Volume (I)	Comments (samples)
BH103	DRY	•	-	•	•	•	-	-	-	-	-	-
BH104	-	-	=	-	-	•	-	-	-	-	-	-
BH105	4.17											
BH1	6.86	-	-	-	-	-	-	-	-	-	-	-
BH2	6.03	-	-	-	-	-	-	-	-	-	-	-
BH3	6.35	-	-	-	-	1	-	-	-	-	-	-
BH4	6.03	-	-	-	-	-	-	-	-	-	-	-
BH5	3.25	-	-	-	-	-	-	-	-	-	-	-

Well volume (I) = $(3.14 \text{ x (hole diameter (m)/2})^2 \text{ x (base dip (m) - standing water level (m))} x 1000 (2l/m in 50mm well)$

Gas screening value = gas concentration (%) x gas flow rate (l/hr)

er brown

SITE/REF: Medina Wharf						General S	ite comments	
DATE: 15/01/2013			1	of1.		MG - Made Ground, AL - Alluviun	n, HO - Headon Beds and Osborne	
OPERATOR(S): RP						Beds		mayer brown
Ambient Conditions:	Barometric Pressure (mb)	CH ₄ (%v/v)	CO ₂ (%v/v)	0 ₂ (%v/v)	PID (ppm)			
Before Monitoring	1016	<0.1	<0.1	21.4	-		EQUIPMENT	
After Monitoring	1016	<0.1	<0.1	21.4	-	Instrument / Model Type	Serial Number	Comments
Atmospheric Pressure Trend:	Falling					GA2000 Gas Analyser	GA12820	
Ground Conditions:	Wet					Standard Dipmeter	79301	
Moother Conditions:	Dry and cold	1						

Ground Gas Note: "0" readings to be recorded as instrument detection limit

Borehole	Time	Flow (I/hr)	Relative Pressure	Steady	CO ₂	O ₂ (%v/v)	Peak CH ₄	Explosive		H ₂ S	Balance	DID (nnm)		nse Zone	Response	Gas screening	Gas screening
ID	Tittle	FIOW (I/III)	(mb)	CH ₄ (%v/v)	(%v/v)	O ₂ (/8V/V)	(%v/v)	Limit	СО (ррпі)	(ppm)	(%)	PID (ppm)	From (mbgl)	To (mbgl)	Strata	value CH ₄	value CO ₂
BH101	11:05	<0.1	-	0.9	4.6	2.5	-	-	-	-	92.6	-	0.3	6.0	MG,HO	0.0009	0.0046
BH102	11:35	<0.1	1	<0.1	3.5	9.6	-	-	-	-	86.3	-	1.0	7.0	MG,AL	0.0001	0.0035
BH103	11:30	<0.1	1	1.7	7.2	1.6	-	-	-	-	89.5	-	0.5	5.9	MG,HO	0.0017	0.0072
BH104	11:10	<0.1	-	<0.1	0.1	18.5	-	-	-	-	80.1	-	0.6	6.0	MG,HO	0.0001	0.0001
BH105	11:20	<0.1	1	2.8	5.6	8.4	-	-	-	-	83.8	-	1.0	6.0	MG,HO	0.0028	0.0056
BH1	11:25	<0.1	1	27.5	14.4	1.7	-	-	-	-	56.5	-	1.0	11.6	MG,HO	0.0275	0.0144
BH2	11:40	<0.1	-	<0.1	3.8	5.1	-	-	-	-	91.4	-	1.0	16.2	MG,AL,HO	0.0001	0.0038
ВН3	11:45	<0.1	1	4.1	6	0.9	•	-	-	ı	89.2	-	1.0	19.1	MG,AL,HO	0.0041	0.0060
BH4	11:00	<0.1	-	1.0	4.8	2.1	-	-	-	-	92.8	-	1.0	10.2	MG,HO	0.0010	0.0048
BH5	11:15	<0.1	-	0.1	0.1	20.4	-	-	-	-	79.1	-	1.0	7.2	MG,HO	0.0001	0.0001

Groundwater

Borehole	Standing Water	Installation Base Dip	Free Phase LNAPL	Free Phase DNAPL		Wate	r Quality Ind	dicators		Well	Purge	
ID	Level (mbgl)	(mbgl)	Thickness (m)	Thickness (m)	Eh	EC	рН	DO	Temp	Volume (I)	Volume (I)	Comments (samples)
BH101	5.63	•	-	-	-	-	-	-	-	=	=	
BH102	6.31	-	-	-	-	-	-	-	-	-	-	
BH103	DRY	-	-	-	-	-	-	-	-	-	-	
BH104	3.8	-	-	-	-	-	-	-	-	-	-	
BH105	4.15	-	-	-	-	-	-	-	-	-	-	
BH1	6.74	-	-	-	-	-	-	-	-	-	-	
BH2	6.03	-	-	-	-	-	-	-	-	-	-	
ВН3	6.32	-	-	-	-	-	-	-	-	-	-	
BH4	6.02	-	-	-	-	-	-	-	-	-	-	
BH5	2.87	-	-	-	-	=	-	-	-	-	-	

Well volume (I) = $(3.14 \text{ x (hole diameter (m)/2})^2 \text{ x (base dip (m) - standing water level (m))}x1000$ (2l/m in 50mm well)

Gas screening value = gas concentration (%) x gas flow rate (l/hr)

									_		4
SITE/REF:	Medina Wharf						General Sit	e comments			<u>K</u>
DATE:	22/01/2013			1	of1.		MG - Made Ground, AL - Alluvium	, HO - Headon Beds and Osborne			,
PERATOR	R(S): RP						Beds			maye	r brow
Ambient Co	nditions:	Barometric Pressure (mb)	CH ₄ (%v/v)	CO ₂ (%v/v)	0 ₂ (%v/v)	PID (ppm)					
Before Moni	itoring	1003	<0.1	<0.1	21.3	-		EQUIPMENT	-		
After Monito	ring	1001	<0.1	<0.1	21.3	-	Instrument / Model Type	Serial Number		Comments	

GA2000 Gas Analyser

Standard Dipmeter

GA12820

79301

Ground Gas Note: "0" readings to be recorded as instrument detection limit

Falling Wet

Slight rain

Borehole ID	Time	Flow (I/hr)	Relative Pressure (mb)	Steady CH ₄ (%v/v)	CO ₂ (%v/v)	O ₂ (%v/v)		% of Lower Explosive Limit	CO (ppm)	H ₂ S (ppm)	Balance (%)	PID (ppm)	Response Zone		Response	Gas screening	Gas screening
													From (mbgl)	To (mbgl)	Strata	value CH ₄	value CO ₂
BH101	10:35	<0.1	=	0.5	5.9	1.7	0.5	-	-	-	91.9	-	0.3	6.0	MG,HO	0.0005	0.0059
BH102	11:05	<0.1	-	<0.1	2.3	14.9	<0.1	-	-	-	82.7	-	1.0	7.0	MG,AL	0.0001	0.0023
BH103	11:00	<0.1	-	2.5	6.2	0.4	2.5	-	-	-	90.9	-	0.5	5.9	MG,HO	0.0025	0.0062
BH104	10:40	<0.1	=	9.8	5.3	0.5	9.8	-	-	-	84.6	-	0.6	6.0	MG,HO	0.0098	0.0053
BH105	10:50	<0.1	-	4.9	7.3	0.4	4.9	-	-	-	87.5	-	1.0	6.0	MG,HO	0.0049	0.0073
BH1	10:55	<0.1	-	27.6	16.8	0.5	16.8	-	-	-	55.1	-	1.0	11.6	MG,HO	0.0276	0.0168
BH2	11:10	<0.1	-	<0.1	4.7	4.2	<0.1	-	-	-	91.3	-	1.0	16.2	MG,AL,HO	0.0001	0.0047
ВН3	11:15	<0.1	-	3.0	5.4	1.6	3	-	-	-	90.5	-	1.0	19.1	MG,AL,HO	0.0030	0.0054
BH4	10:30	<0.1	-	1.1	4.7	2.1	1.1	-	-	-	93	-	1.0	10.2	MG,HO	0.0011	0.0047
BH5	10:45	<0.1	-	12.6	12.4	0.3	12.6	-	-	-	74.9	-	1.0	7.2	MG,HO	0.0126	0.0124

Groundwater

Atmospheric Pressure Trend:

Ground Conditions:

Weather Conditions:

Borehole	Standing Water	Installation Base Dip (mbgl)	Free Phase LNAPL Thickness (m)	Free Phase DNAPL Thickness (m)	Water Quality Indicators				Well	Purge		
ID	Level (mbgl)				Eh	EC	pН	DO	Temp	Volume (I)	Volume (I)	Comments (samples)
BH101	5.65	•	-	ı	-	-	=	-	-	-	-	
BH102	6.37	-	-	•	-	•	-	-	-	-	-	
BH103	DRY	-	=	-	-	-	-	-	-	-	-	
BH104	3.74	-	-	-	-	-	-	-	-	-	-	
BH105	4.16	-	-	-	-	-	-	-	-	-	-	
BH1	6.78	-	=	-	-	-	-	-	-	-	-	
BH2	6.09	-	-	-	-	-	-	-	-	-	-	
BH3	6.37	-	=	-	-	-	-	-	-	-	-	
BH4	6.03	-	-	-	-	-	-	-	-	-	-	
BH5	3.04	-	-	-	-	-	-	-	-	-	-	

Well volume (I) = $(3.14 \text{ x (hole diameter (m)/2})^2 \text{ x (base dip (m) - standing water level (m))} x 1000 (2l/m in 50mm well)$

Gas screening value = gas concentration (%) x gas flow rate (l/hr)

Site Name:	Medina Wharf	Operative(s): AP
Date:	17/12/2012	Low Water: 07:04 High Water: 13:56
Water levels in	meters below ground level (mbgl)	Measurements with standard dip meter

BH:	101	ВН	11	BH2			
Time	Water Level	Time	Water Level	Time	Water Level		
08:50	5.66	08:50	6.03	08:50	6.02		
10:15	5.66	10:15	6.03		6.02		
12:15	5.66	12:15	6.03	12:15	6.02		
13:55	5.66	13:55	6.03		6.02		
15:40	5.66	15:40	6.03	15:40	6.02		
BH	102						
Time	Water Level	Time	Water Level	Time	Water Level		
08:50	6.28						
10:15	6.28						
12:15							
13:55	6.28						
15:40	6.28						

