

Tuto Brightway – Part 1 Téo Lavisse

PhD Student in CEA & GSCOP 01/10/2024

Program

1. Theory of BW

- A matrix approach
- Architecture
- Activities & exchanges
- Performing a LCA in BW

2. Practice

- Setup your project
- Database import
- LCA: simple, comparative, multicategory
- Data visualization (simple)
- Contribution analysis
- Uncertainties

Tuto Brightway begginer 01 octobre 2024

Bright what?

Actors

Main contributors:

Chris Mutel (Ecoinvent, ex-PSI)

Tomas Navarrete Gutiérrez (LIST)

Romain Sacchi (PSI)

Bernhard Steubing (Leiden)

Adrian Haas (VSHN)

ecoinvent

Efficient

Peer recognition

Code

Compatibility

References:

- Society → Départ de Sentier https://www.d-d-s.ch/
 Article → Mutel, Chris. (2017) https://doi.org/10.21105/joss.00236
- Documentation → https://docs.brightway.dev/en/latest/ et le blog de développement de Cmutel : https://chris.mutel.org/
 Code → https://github.com/brightway-lca
 Tuto (Notebook) a short selection :
- - https://github.com/brightway-
 - lca/brightway2/blob/master/notebooks/Getting%20Started%20with%20Brightway2.ipynb https://github.com/maximikos/Brightway2_Intro/blob/master/BW2_tutorial.ipynb

 - https://github.com/PoutineAndRosti/Brightway-Seminar-2017/blob/master/Day%201%20AM/2%20-%20BW%20structure%20and%20first%20LCAs.ipynb
 - If unsolvable problems → https://stackoverflow.com/ with label 'Brightway" (very quick answer)

Tuto Brightway begginer

LCA in BW can be summed up by this equation (matrix vision):

$$h = C \cdot B \cdot A^{-1} \cdot f$$

To go further. Scott Matthews et al. « LCA Book ». In Life Cycle Assessment. Quantitative Approaches for Decisions That Matter. Carnegie Mellon University, 2014. EcoSD, Advanced LCA Methodologies & Tools: Uncertainties & Impact Assessment, 2020 http://www.teaching.industrialecology.uni-freiburg.de/

Tuto Brightway begginer

Let's assume $Y = {Y_1 \choose Y_2}$ with Y_1 the final fuel production and Y_2 electricity production, and $X = {X_1 \choose X_2}$ is a scaling factor that represents the production capacity. We can write :

Equation can be rewrite with matrix:

$$\begin{cases} 20X_1 - 2X_2 = Y_1 \\ 0X_1 + 10X_2 = Y_2 \end{cases}$$
$$A \cdot X = Y \iff X = A^{-1} \cdot Y$$

A is the **technosphere matrix**→ Rows = flows ; Columns = Activities

Pl P2
$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$A = \begin{bmatrix} 20 & -2 \\ 0 & 10 \end{bmatrix} \qquad \text{Fuel}$$
Electricity

$$A^{-1} = \begin{bmatrix} 0.05 & 0.01 \\ 0 & 0.1 \end{bmatrix}$$

Exercise: If we want to produce 1000 kWh, how much fuel do I need?

Reminder:
$$\begin{cases} 20X_1 - 2X_2 = Y_1 \\ 0X_1 + 10X_2 = Y_2 \end{cases} (2)$$

Answer:

Produce 1000 kWh
$$\rightarrow$$
 Y = $\begin{bmatrix} 0 \\ 1000 \end{bmatrix}$ \Rightarrow X = $\begin{bmatrix} 10 \\ 100 \end{bmatrix}$

Which means I need to do 10× the P1-process to do 100× the P2-process (to get 1000 kWh),

If we add the **biosphere matrix B**, which represents the emissions for each process, we get **b,** the life cycle inventory (i.e. all elementary flows to meet the demand f)

$$\mathbf{b} = B \cdot A^{-1} \cdot Y$$

with :
$$B = \begin{bmatrix} -50 & 0 \\ 2 & 0.1 \\ 10 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 20 & -2 \\ 0 & 10 \end{bmatrix}$$

columns -> activities (ie. the process)
rows -> intermediary flows (for A) or elementary flows (for B).

Exercise: What are the emissions that result from the production of 1000 kWh?

Reminder:

$$B = \begin{bmatrix} -50 & 0 \\ 2 & 0.1 \\ 10 & 1 \end{bmatrix}$$

Answer:

Produce 1000 kWh
$$\Rightarrow$$
 Y = $\begin{bmatrix} 0 \\ 1000 \end{bmatrix}$ \Rightarrow X = $\begin{bmatrix} 10 \\ 100 \end{bmatrix}$ \Rightarrow b = $B \cdot X = B \cdot A^{-1} \cdot Y$

Numerical application : $b = \begin{bmatrix} -500 \\ 30 \\ 200 \end{bmatrix}$ which means we will extract 500L of crude oil and emits 30kg SO₂ and 200kg CO₂

Knowing the LCI, we can add the **characterization matrix C**, that contains the characterization factor for each elementary flows

$$h = C B \cdot A^{-1} \cdot f$$

Flows	Life (years)	CF of GWP100 IPCC 2014 [2007]
CO ₂	5 - 200	1[1]
CH ₄	12	28 [25]
N ₂ O	114	310 [298]
SF ₆	3200	23 900 [22 800]

1kg CH_4 emitted \rightarrow same effect as 28 kg of CO_2 over a 100 years.

→ Unit of GWP is kg CO2 eq

GWP (IPCC 2014)				
]	↓			
C =	Γ 1 <u>]</u>	—	CO_2	
	28 310	←—	CH ₄	
	310	•	N_2O	
	$\lfloor () \rfloor$	←	others	

Exercise: What would be the GWP 100 for 1000 kWh with P2 with the method IPCC 2014? (assuming only CO2 has effect on climate change during the process)

Reminder:

Answer:

Produce 1000 kWh
$$\rightarrow$$
: $b = \begin{bmatrix} -500 \\ 30 \\ 200 \end{bmatrix}$

$$C = \begin{bmatrix} 1 \\ 28 \\ 310 \\ \dots \end{bmatrix}$$

Assuming only CO2 has effect on climate change during the process, we have

$$h = C \cdot b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -500 \\ 30 \\ 200 \end{bmatrix} = 200 \text{ kg CO2eq pour 1000 kWh}$$

Go back to our main equation :

s = supply array, what is needed to supply my functional unit

$$h = C \cdot B \cdot A^{-1} \cdot f$$

b = life cycle inventory, all the elementary flows to meet my demand

h represents the characterized impacts for one impact category

Boundary Nature / Anthroposphere

Nomenclature:

 $f = final demand vector [p \times 1]$

A = technosphere matrix $[p \times q]$

B= biosphere matrix $[r \times q]$

C = characterization matrix $[p \times q]$

h = characterised inventory matrix [1]

columns \rightarrow activities/process [q] rows \rightarrow intermediary flows for A [p] or elementary flows for B [r]

Architecture

Project

A project acts is a container for a set of *databases* and *LCIA methods*. Each project is independent, and has its own copy of all data. Projects have their own metadata and user preferences.

Database

A inventory database is a generic container for datasets, but most of the time will include activities and exchanges.

Activity

A node in the supply chain graph. Includes transforming activities, biosphere flows, and other custom types.

Exchange

An edge between two nodes in the supply chain graph.

Method

A impact assessment method stores data about characterisation factors. It is normally just a list of biosphere flows and characterisation factors, with or without uncertainty, but can also be regionalised or dynamic.

Other objects

Projects also include normalisation and weighting factors, as well as project-specific code.

- Data in Brightway2 is structured in a hierarchy.
- At the top level, we have projects.
 - → contains **database** and ICIA **methods**
 - → totally independent of other projects
 - → saved as subdirectories in the file system
- The database contain the activities connected with exchanges

NB: BW and Activity Browser share the same projects/databases

01 octobre 2024

Activities = **nodes** in the database

- → include transforming and market/product activities (technoshere or intermediary flows)
- → but also biosphere flows (biosphere flows)

Exchanges = edges between two nodes → inputs or outputs of several types :

- biosphere: consumption of resource or emissions,
- technosphere process,
- production : output amount

Linking activity datasets within and between databases requires a **unique identifier or a code** = a string of numbers and letters

```
In [7]: activity[0], activity[1]
Out[7]: ('ecoinvent 3.2 cutoff', 'ab2f7a551a06a59de9191065128233e4')
In [8]: activity == ('ecoinvent 3.2 cutoff', 'ab2f7a551a06a59de9191065128233e4')
Out[8]: True
```

<u>cea</u>

01 octobre 2024

LCA in BW

- . Translate the functional unit into a demand array
- E. Find the right parameter arrays, and ask matrix builder for matrices
- 3. Solve the linear system As=F
- . Multiply the result by the LCIA CFs, if a LCIA method is present


```
NMC111 pack=[NMC111 pack for NMC111 pack in eidb if
                  'market for battery, Li-ion, NMC111, rechargeable, prismatic' in str(NMC111_pack)][0]
      fu_NMC={NMC111_pack.key:1}
      fu_NMC
     {('ecoinvent 3.8_cutoff_ecoSpold02', 'bb7113838446330b7ffd1d91f72a1201'): 1}
[14]: list_methods = [method for method in bw.methods if "CML v4.8 2016"
                       in str(method) and not "no LT" in str(method)]
      list_methods[1]
[14]: ('CML v4.8 2016', 'climate change', 'GWP 100a')
[16]: lca = bw.LCA(fu NMC, list methods[1])
      lca.lci()
      lca.lcia()
      print("La fabrication d'1kg de pack NMC111 émet {:f}{}"
             .format(lca.score,bw.Method(list methods[1]).metadata['unit']))
      La fabrication d'1kg de pack NMC111 émet 16.739185kg CO2-Eq
```

Climate change (kg CO2 @ kg kg terto bre 2024

Practice

Tuto Brightway begginer 01 octobre 2024

17

Installation

All resources and documentation can be found in open-source on Github and official website:

- > Collaborative tool whose evolution and improvement are open to all
- > Installation guide
- > Tutorial
- Practical examples
- Open-access code

<u>Installation a bit tricky, but here are the main steps</u>

- Procedure detailed on https://docs.brightway.dev/en/latest/content/installation/index.html
- A simplified installation can be set up while executing the .bat file which create a dedicated environment bw_lca and install libraries all at once, in a compatible and stable version (see README.md for the detailed instructions)

<u>cea</u>

Python distribution: anaconda, mamba, miniforge3... Libraries: **Environment** ab Libraries: **Environment** bw_lca brightway==2.3 brightway = = 2.4.6bwio==0.8.12 activity-browser==2.10.1 **BW project** tuto **Methods Database:** ecoinvent 3.9.1 cutoff; example_db; biosphere3 Activities, exchanges... **Parameters BW project** my_project_perso **Methods Database:** ecoinvent 3.10 cutoff; battery_pack; biosphere3 Activities, exchanges... **Parameters**

Setup:

- ✓ Create a working directory on your computer (/Documents/tuto_bw/ for instance)
- ✓ Clone the repository or copy/Paste *tutoBW_beginner_TL.ipynb* in your working directory

Open Jupyter:

- ✓ Open a anaconda/miniconde console
- ✓ Run conda activate bw_lca (replace bw_lca with the environment name where bw is installed)
- ✓ Open a Jupyter interface: run *jupyter lab* or any compatible IDE (VScode...)
- ✓ A web (localhost) window open with Jupyter interface
- ✓ Dig into your folder to reach your working directory
- ✓ Open up the Notebook *tutoBW_beginner_TL.ipynb*
- ✓ Best practice: when over, go in *File/Shut down* to properly turn off the server. (or you can also *Ctrl + C* in the console to force it to stop)

Thank you for your attention

Teo Lavisse

3rd year PhD Student

CEA Liten & GSCOP

teo.lavisse@cea.fr