COMPUTABILITY (09/10/2023)

effective procedure (abjorathm) } existence of non-computable functions computable function

* Effective procedure

sequence of elementary steps imput data me output data

deterministic

function f: {imputs} -> {outputs}

Def.: A function f is computable if there exists o.m algorithm such that the induced function is f.

* GCD (x,y) = greatest common divisor (Euclid's)

* f(m) = { 1 of m 12 brime

* g(m) = mth prime mumber

 $\mu(\omega) = \omega_{\ell}$ quant in It

* $f(m) = \begin{cases} 1 & \text{if } im \text{ to there are exactly } m \text{ comsecutive } 5's \\ 0 & \text{otherwise} \end{cases}$

 $\pi = 3,14 \dots 755552 \dots$ f(4) = 1

So is f computable?

$$\star$$
 g(m) = {1 if π includes at least m digits 5 in a row otherwise

if
$$\pi = 3,14...755552...$$

$$a(4) = 1$$

$$S(3) = 4$$

$$g(2) = 1$$

$$9(4) = 1$$

 $9(3) = 1$
 $9(2) = 1$
 $9(1) = 1$
 $9(0) = 0$

two possibilities

$$\delta(w) = \begin{cases} 0 & \text{otherwise} \\ 1 & \text{if } w \leq K \end{cases}$$

$$g(m) = 1 \quad \forall m$$

Can we use the somme organiemt for f? No

 $f(m) = \begin{cases} 1 & \text{if in TC there are exactly in consecutive 5's} \\ 0 & \text{otherwise} \end{cases}$

Let $A = \{m \mid \text{three one exactly } m \text{ digits } 5 \text{ in a now in } T \}$ and take

function f(m);

if m∈A:

return 1

else

return 0

* Existence of mom-computable functions

- * Characteristics of a "good" also a thim
 - fimite length
 - there exists a computing agent which executes the algorithm
 - -> memory (umbounded)
 - -> discrete steps, determistic, not probabilistic
 - fimite limit to number and power of instrumctions
 - the computation com
 - learnimate after a fimite number of steps ~ output
 - divage (mever terminate) → no output

* Math motation

$$N = \{0, 1, 2, --\}$$

* A,B sets
$$A \times B = \{(a,b) \mid a \in A \mid b \in B\}$$

$$A^{an} = \underbrace{A \times A \times - \cdots \times A}_{a \text{ times}}$$

$$M \times M$$

$$\forall \alpha \in A$$
, $\forall b, b' \in B$ $(\alpha, b), (\alpha, b') \in f \Rightarrow b = b'$

we write
$$f(a) = b$$
 imstead of $(a,b) \in f$

if
$$a \in dom(f)$$
 $f(a) \downarrow$
if $a \in dom(f)$ $f(a) \uparrow$

* Ao, A₁, A₂, ... countable sets => O Ai countable

Idea:

* Existence of mon computable functions

we restrict to unary functions over the notworks $f: IN \to IN$ (partial)

 4 = $q f | f | N \rightarrow N$ set of all functions

Fix a mode ℓ of computation - ℓ set of algorithms \mathcal{A} and given $A \in \mathcal{A}$ \sim $f_A : |N-\bullet|N$

Functions computable in A

$$f_{a} = \{f \mid \text{there exists } A \in A \text{ s.t. } f_{A} = f\}$$

$$= \{f_{A} \mid A \in A\}$$

Clearly 1/2 2 1/2

* Am algorithm is a sequence of instructions from a set I

A = I \cup IxI \cup IxI \cup ...

= $\bigcup_{i>1}$ Im

countable union of countable sets => countable

1A1 & IN1

Now

13/2 () (IN)

* The set of all functions It is not countable Why? Assume that it is so 15/ EIN) ie. we can list elements of & fo f1 f2 f3 _____. fo(0) f(0) f2(0) ___ $f_0(1)$ $f_1(1)$ $f_2(1)$ --. 2 $f_0(z)$ $f_2(z)$ -- change it systemotically 3 ; if I was 1 if 1 mo 1 define d: IN -> IN $A(w) = \begin{cases} 1 & \text{ln}(w) \\ 0 & \text{ln}(w) \end{cases}$ d is a function in 3 so there is mEIN s.t. d = fm \rightarrow if $f_m(m) \downarrow \Rightarrow d(m) \uparrow \neq f_m(m)$ controldiction - o if $f_m(m) \uparrow \Rightarrow d(m) = 0 \neq f_m(m)$ = absurd LD of mot countable 15/2/11/ * Putting things together 9/ = 13 y 2 y 13, (< 1N1 < 13) ⇒

* How many mon-computable functions?