7. Functions

Terence Sim

"
$$f(x) = x^2 \times (b - x) = d$$
."
Treatise on Algebra
Sharaf al-Din al-Tusi

Reading

Functions •000000

Chapter 3.7, 3.8 of Campbell.

Chapter 1.3, 7.1 — 7.3 of Epp.

Functions 000000

> Let f be a relation such that $f \subseteq S \times T$. Then f is a function from S to T, denoted $f: S \to T$ iff

$$\forall x \in S, \exists y \in T \ (x \ f \ y \land (\forall z \in T \ (x \ f \ z \rightarrow y = z)))$$

Notation for uniqueness

Functions 0000000

$$\exists ! x \in T \ p(x) \equiv \exists x \in T \ (p(x) \land \forall y \in T \ (p(y) \to x = y)).$$

Definition 7.1.1 becomes:

Let f be a relation such that $f \subseteq S \times T$. Then f is a function from S to T, denoted $f: S \to T$ iff

$$\forall x \in S, \exists ! y \in T (x f y).$$

Let $f: S \to T$ be a function. We write f(x) = y (or $x \mapsto y$) iff $(x, y) \in f$. The relation notation is x f y.

Functions 0000000

Every dot in S must have exactly one outgoing arrow.

Is this a function?

Functions

0000•00

Functions

Let $f: S \to T$ be a function. Let $x \in S$. Let $y \in T$ such that f(x) = y. Then x is called a pre-image of y.

Definition 7.1.3

Let $f: S \to T$ be a function. Let $y \in T$. The inverse image of y is the set of all its pre-images: $\{x \in S \mid f(x) = y\}$.

Definition 7.1.4

Let $f: S \to T$ be a function. Let $U \subseteq T$. The inverse image of U is the set that contains all the pre-images of all elements of U: $\{x \in S \mid \exists y \in U, \ f(x) = y\}.$

Definition 7.1.5

Let $f: S \to T$ be a function. Let $U \subseteq S$. The restriction of f to U is the set: $\{(x,y) \in U \times T \mid f(x) = y\}$.

Example:

Functions

- The pre-image of c is 3.
- The inverse image of b is $\{1, 2\}$.
- The inverse image of $\{a, d\}$ is \emptyset .
- The inverse image of T is $\{1, 2, 3\}$.
- The restriction of f to $\{2,3\}$ is $\{(2,b),(3,c)\}$.

7.2.1. Injective

Definition 7.2.1

Let $f: S \to T$ be a function. f is injective iff

$$\forall y \in T, \ \forall x_1, x_2 \in S \ ((f(x_1) = y \land f(x_2) = y) \to x_1 = x_2).$$

We also say that f is an injection or that f is one-to-one.

Every dot in T has at most one incoming arrow.

7.2.2. Surjective

Definition 7.2.2

Let $f: S \to T$ be a function. f is surjective iff

$$\forall y \in T, \exists x \in S \ (f(x) = y).$$

We also say that f is a surjection or that f is onto.

Every dot in T has at least one incoming arrow.

7.2.3. Bijective

Definition 7.2.3

Let $f: S \to T$ be a function. f is bijective iff f is injective and f is surjective. We also say that f is a bijection.

Every dot in T has exactly one incoming arrow.

Proposition 7.2.4

Let $f: S \to T$ be a function and let f^{-1} be the inverse relation of f from T to S. Then f is bijective iff f^{-1} is a function.

This Proposition tells us when the inverse of a function exists.

(Need to prove: if f is bijective then f^{-1} is a function)

- 1. Assume that *f* is bijective:
- 2. Then *f* is surjective by definition of bijective.
- 3. Thus $\forall y \in T$, $\exists x (x f y)$ by definition of surjective.
- 4. Thus $\forall y \in T$, $\exists x (y f^{-1} x)$ by definition of the inverse relation.
- 5. Also, *f* is injective by definition of bijective.
- 6. Thus $\forall y \in T$, $\forall x_1 \in S$, $\forall x_2 \in S$ ($(x_1 f y \land x_2 f y) \rightarrow x_1 = x_2$) by definition of injective.
- 7. So $\forall y \in T, \forall x_1 \in S, \forall x_2 \in S((y f^{-1} x_1 \land y f^{-1} x_2) \rightarrow x_1 = x_2)$ by definition of inverse relation.
- 8. This means the x in Line 4 is unique.
- 9. Thus f^{-1} is a function by definition of function.

. . .

Proof: backward direction

(Need to prove: if f^{-1} is a function then f is injective.)

- 10. Assume f^{-1} is a function:
- 11. Suppose f is not injective.
- 12. Then $\exists y \in T, \exists x_1, x_2 \in S \ (x_1 \ f \ y \land x_2 \ f \ y \land x_1 \neq x_2)$ by definition of injective.
- 13. Thus $\exists y \in T, \exists x_1, \exists x_2 \in S \ (y \ f^{-1} \ x_1 \land y \ f^{-1} \ x_2 \land x_1 \neq x_2)$ by definition of the inverse relation.
- 14. Therefore f^{-1} is not a function. Contradiction.
- 15. Therefore f is injective.

. . .

Proof cont'd

(Need to prove: if f^{-1} is a function then f is surjective.)

- 16. Assume f^{-1} is a function:
- Suppose f is not surjective: 17.
- Then $\exists y \in T, \forall x \in S \sim (f(x) = y)$ by definition of surjective. 18.
- Thus $\exists y \in T, \forall x \in S \sim (y f^{-1} x)$ by definition 19. of the inverse relation.
- Therefore f^{-1} is not a function. Contradiction. 20.
- 21. Therefore *f* is surjective.
- 22. Hence f is bijective, by Lines 15,21.
- 23. Hence f is bijective iff f^{-1} is a function.

7.3. Composition

Composition

Proposition 7.3.1

Let $f: S \to T$ be a function. Let $g: T \to U$ be a function. The composition of f and g, $g \circ f$, is a function from S to U.

Note that $(g \circ f)(x)$ means g(f(x)).

Proof.

- 1. Let $f: S \to T$ be a function
- 2. Let $g: T \to U$ be a function.
- 3. Therefore $g \circ f$ is a relation on the sets S and U by Definition 8.2.8 (Composition of relations).
- 4. Therefore $\forall x \in S, \exists ! y \in T \ (x \ f \ y)$ by Definition 7.1.1.
- 5. Therefore $\forall y \in T, \exists ! z \in U \ (y \ g \ z)$ by Definition 7.1.1.
- 6. Therefore $\forall x \in S, \exists ! z \in U (x (g \circ f) z)$ by Steps (4), (5) and by Definition 8.2.8
- 7. Therefore $g \circ f$ is a function from S to U by Steps (3) and (6).

7.3.2. Identity

Composition 00000

Definition 7.3.2 (Identity function)

Given a set A, define a function \mathcal{I}_A from A to A by:

$$\forall x \in A \ (\mathcal{I}_A(x) = x)$$

This is the identity function on A.

Let $f: A \to A$ be an injective function on A. Then $f^{-1} \circ f = \mathcal{I}_A$.

Composition 00000

Proof omitted.

Notice that $f \circ f^{-1} = f^{-1} \circ f = \mathcal{I}_A$ if, and only if, f^{-1} is also a function. That is, if, and only if, f is bijective according to Proposition 7.2.4.

Generalization

Definition 7.3.4

An (n-ary) operation on a set A is a function $f: \prod_{1}^{n} A \to A$. n is called the arity or degree of the operation.

Definition 7.3.5

A unary operation on a set A is a function $f: A \rightarrow A$.

Definition 7.3.6

A binary operation on a set A is a function $f: A \times A \rightarrow A$.

7.4.1 Exercises

Exercise 1

Define $f: \mathbb{R} \to \mathbb{R}$ by

$$\forall x \in \mathbb{R}, \quad f(x) = 4x - 1$$

Is f one-to-one (injective)? Prove or give a counter-example.

To prove one-to-one, according to Definition 7.2.1, we need to show:

$$\forall x_1, x_2 \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2$$

Proof:

- 1. For any $x_1, x_2 \in \mathbb{R}$:
- If $f(x_1) = f(x_2)$:
- 3. Then $4x_1 - 1 = 4x_2 - 1$, by definition of f.
- Then $x_1 = x_2$, by basic algebra.
- 5. Hence f is indeed one-to-one.

Define $f: \mathbb{R} \to \mathbb{R}$ by $\forall x \in \mathbb{R}$, f(x) = 4x - 1.

Define $h: \mathbb{Z} \to \mathbb{Z}$ by $\forall n \in \mathbb{Z}$, h(n) = 4n - 1.

Is f onto? Is h onto? Prove or give a counter-example.

From Definition 7.2.2, to prove that a function $F:X\to Y$ is onto, we need to show that:

$$\forall y \in Y, \ \exists x \in X \ (F(x) = y)$$

Proof: (by Construction)

- 1. Take any $y \in \mathbb{R}$.
- 2. Let x = (y + 1)/4.
- 3. Then $x \in \mathbb{R}$ because real numbers are closed under addition and division.
- 4. Thus $f(x) = f\left(\frac{y+1}{4}\right)$, by substitution.
- 5. = $4\left(\frac{y+1}{4}\right) 1$, by definition of f.
- 6. = (y + 1) 1 = y, by basic algebra.
- 7. Thus f is onto.

However, for h, if we attempt the same proof, we will arrive at $n=\frac{m+1}{4}$.

This n may not be an integer, even if m is. For example, let m=0, then $n=\frac{1}{4}$. This allows us to give a counter-example.

Disproof by counterexample:

- 1. Let y = 0.
- 2. Suppose $\exists n \in \mathbb{Z}$ such that h(n) = y:
- Then 4n-1=0, by substitution.
- Thus $n = \frac{1}{4}$, by basic algebra.
- Thus $n \notin \mathbb{Z}$. Contradiction.
- 6. Hence, $\exists y \in \mathbb{Z}$ such that $\forall n \in \mathbb{Z}(h(n) \neq y)$.
- 7. Hence h is not onto.

7.5. Summary

- A function is a special case of a relation.
- Important function properties of functions are: injective, surjective and bijective.
- The inverse of a function exists only iff it is bijective.
- Functions may be composed, just like relations.