1. Voevodsky's connectivity theorem for \mathbb{P}^1 -spectra

The following is from an email from Aravind to me concerning the proof of the connectivity theorem for \mathbb{P}^1 spectra.

Most of the proof appears in Morel's Trieste notes (in the section on the homotopy t-structure for P^1 -spectra). First you prove a connectivity result for P^1 -stable homotopy sheaves by using Morel's S^1 -stable connectivity theorem and studying what happens under G_m loops and G_m -suspension: suspension preserves connectivity, and Morel shows that taking G_m -loops has the effect of making a "contraction". Then, you globalize this.

Our goal is to prove theorem 4.14 of [Voev98], which should be restated in terms of \mathbb{P}^1 -spectra.

Theorem 1.1. Let X be a pointed smooth scheme over $\operatorname{Spec}(k)$ where k is an infinite field. Let \mathcal{Y} be a pointed space. Then for any $n > \dim(X)$, and any integer m

$$\mathcal{SH}(k)(\Sigma^{\infty}X, S^n \wedge \mathbb{G}_m^m \wedge \Sigma^{\infty}\mathcal{Y}) = 0.$$

Remark 1. We can formulate the theorem by using homotopy sheaves. Indeed, if we can show that for any pointed space \mathcal{Y} is -1 connected, i.e., the homotopy sheaves $\pi_{n+\alpha m}^{\mathbb{A}^1}(\mathcal{Y})$ vanish for $n \leq -1$, the result will follow, as

$$\begin{split} \mathcal{SH}(k)(\Sigma^{\infty}X,S^n \wedge \mathbb{G}_m^m \wedge \Sigma^{\infty}\mathcal{Y}) &= \mathcal{SH}(k)(S^{-n} \wedge \mathbb{G}_m^{-m} \wedge \Sigma^{\infty}X,\Sigma^{\infty}\mathcal{Y}) \\ &= \pi_{-n-m\alpha}^{\mathbb{A}^1}(X). \end{split}$$

and by the connectivity theorem, this will vanish whenever -n < 0, i.e., whenever n > 0. This is a stronger statement than [Voev98, theorem 4.14].

The line of attack is then to show that for a pointed space \mathcal{Y} , the S^1 suspsension spectrum $\Sigma_s^{\infty} \mathcal{Y}$ in the stable model category is -1 connected. Then we establish the first connectivity theorem which ensures the \mathbb{A}^1 localization of $\Sigma_s^{\infty} \mathcal{Y}$ is -1 connected. Finally, we show that inverting \mathbb{G}_m does not affect the connectivity, i.e., $\Sigma_t^{\infty} \Sigma_s^{\infty} \mathcal{Y}$ is again -1 connected.

Remark 2. A construction of Ayoub [?] shows that this statement is false over general Noetherian base schemes S. But is indeed true over (infinite?) fields.

2. Assumptions from previous lectures

2.1. Facts about Nisnevich topology. Points and neighborhoods. Distinguished squares determine the topology. Relation to etale, zariski, and fpqc topology.

Proposition 2.1. [Mor04, 2.4.1] Let M be a sheaf of abelian groups on Sm/k, and let $X \in \text{Sm}/k$ with Krull dimension d. Then whenever n > d, $H_{Nis}^n(X; M) = 0$.

Proposition 2.2. [Mor04, 2.4.1] For any $X \in \text{Sm}/k$, and for any $x \in X(k)$, there is an isomorphism of pointed sheaves of sets in the Nisnevich topology

$$X/(X - \{x\}) \cong \mathbb{A}^n/(\mathbb{A}^n - \{0\}).$$

2.2. Homotopy purity, connectedness calculations.

Proposition 2.3. Weak *n*-connectedness is equivalent to *n*-connectedness

Proof. Details? \Box

Proposition 2.4. If V is an irreducible, smooth k-scheme, and $U \subseteq V$ is a dense open subset, the space $L_{\mathbb{A}^1}(V/U)$ is 0-connected.

Proof. Seems to use that local structure of spaces is given by $\mathbb{A}^n/(\mathbb{A}^n - \{0\}) \wedge L_+$. How do all the reductions work? Also uses some results specific to working over perfect fields. \square

2.3. S^1 -spectra.

Definition 2.5. Let $\operatorname{Spt}_s(k)$ denote the category of S^1 -spectra of spaces $\Delta^{op}\operatorname{Shv}(\operatorname{Sm}/k)$. We first endow this category with the projective model structure, i.e., a map $f: E \to F$ is a weak equivalence iff for any n the map $f_n: E_n \to F_n$ is a w.e.; a map $f: E \to F$ is a fibration iff for all n the map $f_n: E_n \to F_n$ is a fibration. The cofibrations are characterized by the property that $f: E \to F$ is a cofib iff $f_0: E_0 \to F_0$ is a cofib and for any $n \ge 1$

This model structure does not actually invert $S^1 \wedge -$. To accomplish this, we must localize with respect to the stable equivalences.

Definition 2.6. A map $f: E \to F$ of S^1 -spectra is a stable equivalence iff for any $n \in \mathbb{Z}$ the induced map of homotopy sheaves $\pi_n(f): \pi_n(E) \to \pi_n(F)$ is an isomorphism.

The stable model category structure on $\operatorname{Spt}_s(k)$ is given by declaring the weak equivalences to be the stable weak equivalences, and the cofibrations to be the same as those for the projective model structure. This is indeed a left Bousfield localization, but we will not describe it further as such.

Definition 2.7. Let $\operatorname{Spt}_s^{\mathbb{A}^1}(k)$ denote the category of S^1 spectra endowed with the stable model category structure localized at the collection of maps $\{\Sigma^{\infty}U_+ \wedge \mathbb{A}^1 \to \Sigma^{\infty}U_+ | U \in \operatorname{Sm}/k\}$.

Let $\mathcal{SH}^{S^1}(k)$ denote the homotopy category associated to $\operatorname{Spt}_s^{\mathbb{A}^1}(k)$. We will use $\mathcal{SH}_s^{S^1}(k)$ to denote the homotopy category of $\operatorname{Spt}_s(k)$.

Remark 3. There is a functor L^{∞} on the category of S^1 spectra which is similar to the unstable construction.

So we can use the functor L^{∞} as an \mathbb{A}^1 localization functor. To be precise, we let $\operatorname{Spt}_s^{\mathbb{A}^1loc}(k)$ be the subcategory of $\operatorname{Spt}_s(k)$ consisting of the \mathbb{A}^1 local spectra. We may equip $\operatorname{Spt}_s^{\mathbb{A}^1loc}(k)$ with a model structure with weak equivalences the \mathbb{A}^1 weak equivalences, the cofibrations are the stable cofibrations, and the fibrations are what they have to be.

The functor $L^{\infty}: \operatorname{Spt}_{s}(k) \to \operatorname{Spt}_{s}^{\mathbb{A}^{1}loc}(k)$ is left adjoint to the inclusion functor, and is a left Quillen functor. The homotopy category of $\operatorname{Spt}_{s}^{\mathbb{A}^{1}loc}(k)$ is categorically equivalent to $\mathcal{SH}^{S^{1}}(k)$. [Mor05, Corollary 4.2.3].

For spectra E and F, we may compute $[E, F]^{\mathbb{A}^1} := \mathcal{SH}^{S^1}(k)(E, F)$ by calculating $[L^{\infty}E, L^{\infty}F]^{\mathbb{A}^1}$. Note that this is $\mathcal{SH}_s^{S^1}(k)(E, L^{\infty}F)$ by using the adjunction. If we assume E is cofibrant and $L^{\infty}F$ is fibrant, we get the formula

$$[E, F]^{\mathbb{A}^1} = \operatorname{Spt}_{\mathfrak{s}}(k)(E, L^{\infty}F).$$

Definition 2.8. Let E be an S^1 spectrum of spaces. Let π_n denote the sheaf obtained by taking the colimit of the directed system $\pi_{n+r}(E_r)$ in $\underline{Ab}(\mathrm{Sm}/k, Nis)$. That is,

$$\pi_n(E) = \operatorname{colim}_r \pi_{n+r}(E_r).$$

In particular, for a $U \in \text{Sm}/k$, we have

$$\pi_n(E)(U) = \operatorname{colim}_r \pi_{n+r}(E_r)(U).$$

Definition 2.9. An S^1 -spectrum E is said to be n-connected if for any $m \leq n$, the homotopy sheaves $\pi_m(E)$ are trivial.

Definition 2.10. There is a left Quillen functor $\Sigma_s^{\infty} : \operatorname{Spc}_{\bullet} \to \operatorname{Spt}_s(k)$ given by $(\Sigma^{\infty} \mathcal{Y})_n = (S^1)^{\wedge n} \wedge \mathcal{Y}$ with the evident bonding maps. The right adjoint to this functor is given by "evaluation at 0", i.e., $\Omega^{\infty}(E) = E_0$.

Remark 4. The right derived functor $R\Omega^{\infty}: \mathcal{SH}^{S^1}_s(k) \to \mathcal{H}_{\bullet}(k)$ is given by the formula

$$R\Omega^{\infty}(E) = \operatorname{colim}_i \Omega^i_s E_i.$$

This comes from the fact that fibrant S^1 spectra are exactly the Ω spectra, and the description of the fibrant replacement functor.

Remark 5. We also get a left Quillen functor $\Sigma_s^{\infty} : \operatorname{Spc}_{\bullet}^{\mathbb{A}^1}(k) \to \operatorname{Spt}_s^{\mathbb{A}^1}(k)$ given by the same formula as above.

What is the fibrant replacement functor in $\operatorname{Spt}_s^{\mathbb{A}^1}(k)$?

Remark 6. The stable homotopy category is symmetric monoidal, with smash product \land and internal hom <u>Hom</u>. Using symmetric spectra, one can give these constructions on the category of spectra.

The stable homotopy category is a triangulated category.

Proposition 2.11. Let $U \in \text{Sm}/k$, $n \in \mathbb{Z}$, and $M \in \underline{\text{Ab}}(\text{Sm}/k)$. Then there is a canonical isomorphism

$$H_{Nis}^n(U;M) \to \mathcal{SH}^{S^1}(\Sigma^{\infty}U_+, HM[n]).$$

Proof. This is [Mor05, Lemma 3.2.3].

2.4. t-structures.

Definition 2.12. Let \mathfrak{C} be a triangulated category. A t-structure on \mathfrak{C} is a pair of full subcategories $(\mathfrak{C}_{\geq 0}, \mathfrak{C}_{\leq 0})$ which satisfies

- (1) For any $X \in \mathfrak{C}_{>0}$ and any $Y \in \mathfrak{C}_{<0}$, $\operatorname{Hom}_{\mathfrak{C}}(X, Y[-1]) = 0$.
- (2) $\mathfrak{C}_{\geq 0}[1] \subseteq \mathfrak{C}_{\geq 0}$ and $\mathfrak{C}_{\leq 0}[-1] \subseteq \mathfrak{C}_{\leq 0}$

(3) for any $X \in \mathfrak{C}$ there exists a distinguished triangle

$$Y \to X \to Z \to Y[1]$$

for which $Y \in \mathfrak{C}_{>0}$, $Z \in \mathfrak{C}_{<0}[-1]$..

The heart of a t-structure is the full subcategory given by $\mathfrak{C}_{>0} \cap \mathfrak{C}_{<0}$.

Definition 2.13 (t-structure on $\mathcal{SH}_s^{S^1}(k)$). Define $\mathcal{SH}_s^{S^1}(k)_{\geq 0}$ to be the full subcategory of $\mathcal{SH}_s^{S^1}(k)$ consisting of objects E such that $\pi_n(E) = 0$ whenver n < 0.

Define $\mathcal{SH}_s^{S^1}(k)_{\leq 0}$ to be the full subcategory of $\mathcal{SH}_s^{S^1}(k)$ consisting of objects E such that $\pi_n(E) = 0$ whenver n > 0.

Theorem 2.14. The triple $(\mathcal{SH}_s^{S^1}(k), \mathcal{SH}_s^{S^1}(k)_{\geq 0}, \mathcal{SH}_s^{S^1}(k)_{\leq 0})$ is a *t*-structure on $\mathcal{SH}_s^{S^1}(k)$.

2.5. Connectivity results.

Proposition 2.15. [Mor03, Lemma4.2.4] The functor $L^{\infty} : \operatorname{Spt}_{s}^{S^{1}}(k) \to \operatorname{Spt}_{s,\mathbb{A}^{1}}^{S^{1}}(k)$ identifies the \mathbb{A}^{1} -localized S^{1} stable homotopy category with the homotopy category of \mathbb{A}^{1} -local S^{1} spectra.

Theorem 2.16 (S^1 stable connectivity theorem). Let $E \in \mathcal{SH}_s^{S^1}(k)$, and suppose that whenever n < 0 the sheaf $\pi_n E = 0$. Then for all n < 0, $\pi_n L_{\mathbb{A}^1} E = 0$.

Theorem 2.17. The pair $(\mathcal{SH}_{>0}^{S^1}(k), \mathcal{SH}_{<0}^{S^1}(k))$ is a t-structure on the category $\mathcal{SH}^{S^1}(k)$.

Definition 2.18. Strictly \mathbb{A}^1 invariant sheaf of Abelian groups.

If M is strictly \mathbb{A}^1 invariant sheaf of groups, define the Eilenberg-MacLane spectrum HM associated to it.

Proposition 2.19. HM is \mathbb{A}^1 local iff M is strictly \mathbb{A}^1 invariant.

Proposition 2.20. The heart of the homotopy t structure is equivalent to the category of strictly \mathbb{A}^1 invariant sheaves.

3. Inverting
$$\mathbb{G}_m \wedge -$$
; \mathbb{P}^1 spectra

3.1. \mathbb{G}_m suspension and loops. We always consider \mathbb{G}_m to be pointed at 1 unless otherwise specified.

Definition 3.1. On the category $\operatorname{Spt}_s(k)$ equipped with the motivic stable model category structure, there is a functor $\Sigma_t(-) = \mathbb{G}_m \wedge -$ given by $\Sigma_t(E)_n = \mathbb{G}_m \wedge E_n$ with the evident structure maps.

Smashing with \mathbb{G}_m is also a functor on the unstable category of pointed spaces, and we give it the same name Σ_m .

Definition 3.2. The functor Σ_m on $\operatorname{Spc}_{\bullet}(k)$ has a right adjoint denoted Ω_t . It is given by the formula $\Omega_t \mathcal{X} = \operatorname{\underline{Hom}}_{\bullet}(\mathbb{G}_m, \mathcal{X})$.

The functor Σ_t on $\operatorname{Spt}_s^{S^1}(k)$ also has a right adjoint Ω_t given by the internal hom functor, i.e., $\Omega_t E = \operatorname{\underline{Hom}}(\Sigma^\infty \mathbb{G}_m, E)$.

Proposition 3.3. The functor Σ_t is a left Quillen functor on $\operatorname{Spt}_s(k)$ and on $\operatorname{Spt}_s^{\mathbb{A}^1}(k)$. Furthermore, Σ_t is an exact functor on $\mathcal{SH}^{S^1}(k)$.

Lemma 3.4. Let $E \in \operatorname{Spt}_s^{\mathbb{A}^1}(k)$ be a -1 connected spectrum. Then $\Sigma_t E$ is again -1 connected.

Proof. The claim is clear when $E = \Sigma_s^{\infty} \mathcal{X}$ a pointed space, since $\Sigma_t E = \Sigma_s^{\infty} \mathbb{G}_m \wedge \mathcal{X}$ is still a suspension spectrum, and so -1 connected.

Now consider a general -1 connected spectrum E. By [Mor05, Lemma 3.3.4], E is weak equivalent to hocolim E^i where $E^0 = *$, and for each n, there is a family $X_{\alpha} \in \text{Sm}/k$ and natural numbers $n_{\alpha} \geq 0$ for which

$$\vee_{\alpha} \Sigma_{s}^{\infty} X_{\alpha,+}[n_{\alpha}-1] \to E^{n-1} \to E^{n}$$

is an exact triangle. An induction argument establishes that $\Sigma_t E^n$ is still -1 connected for all n; hence $\Sigma_t E = \text{hocolim } \Sigma_t E^n$ is also -1 connected. Should $\Sigma_t E$ fail to be \mathbb{A}^1 -local, we may simply apply L^{∞} to get an \mathbb{A}^1 -local representative of $\Sigma_t E$. By the connectivity theorem, $L^{\infty} \Sigma_t E$ will again be -1 connected.

3.2. Contraction in Ab(Sm/k, Nis), category of pointed sheaves of sets.

Definition 3.5. Let G be sheaf of pointed sets on Sm/k. The contraction of G is the sheaf $G_{-1} = G_{con}$ given by the formula

$$U \in \operatorname{Sm}/k \mapsto \ker(G(X \times \mathbb{G}_m) \xrightarrow{ev_1} G(X))$$

Where the map ev_1 is the map induced by $ev_1 : \operatorname{Spec}(k) \to \mathbb{G}_m$, i.e., $k[x, x^{-1}] \to k$ given by $x \mapsto 1$.

Note that indeed G_{-1} is a sheaf since it is the kernel of the morphism of sheaves $G(-) \to G(-\times \mathbb{G}_m)$. The sheaf $G(-\times \mathbb{G}_m)$ may also be written as $\underline{\text{Hom}}(\mathbb{G}_m, G)$ when we think of G as a space.

Proposition 3.6. If G is the trivial sheaf of abelian groups, then so is its contraction G_{-1} .

Proposition 3.7. Contraction is an exact functor on the category $\underline{\mathrm{Ab}}(\mathrm{Sm}/k, Nis)$. Furthermore, for any sheaf $G \in \underline{\mathrm{Ab}}(\mathrm{Sm}/k, Nis)$ and any $X \in \mathrm{Sm}/k$, $G(\mathbb{G}_m \times X) = G_{-1}(X) \oplus G(X)$.

Proof. Functoriality can be established by using the universal property of kernels.

To show exactness, let $F \to G \to H$ be a short exact sequence of sheaves. We must show $F_{-1} \to G_{-1} \to H_{-1}$ is still exact. It suffices to check exactness at the level of stalks.

Since $id = ev_1 \circ \pi : G(X) \to G(X \times \mathbb{G}_m) \to G(X)$, we have $ev_1 : G(-) \to G(-\times \mathbb{G}_m)$ is a surjection on all smooth schemes. Hence ev_1 is an epimorphism. For a Nisnevich point x of X, The following commutative diagram then establishes the exactness of the contraction by the 3x3 lemma.

The second point follows since $\pi: X \times \mathbb{G}_m \to X$ induces a section of the evaluation at 1 map $ev_1: G(X \times \mathbb{G}_m) \to G(X)$.

3.3. Homotopy sheaves of $\underline{Hom}(\mathbb{G}_m, E)$.

Proposition 3.8. If G is a sheaf of Abelian groups, then $G_{-1} \cong \underline{\text{Hom}}_{\bullet}(\mathbb{G}_m, G)$. Hence contraction is right adjoint to $- \wedge \mathbb{G}_m$. The claim is also true for pointed sheaves of sets.

Proof. For this category, $\underline{\mathrm{Hom}}_{\bullet}(\mathbb{G}_m, G)$ and G_{-1} both have sections at X given by $\ker(ev_1 : G(X \times \mathbb{G}_m) \to G(X))$. See description of pointed internal hom for this.

Remark 7. If G is a sheaf of Abelian groups, we may consider G as a space by declaring $G_n = G$ for all n and giving identity maps for the structure maps. In particular, G is a pointed space at 0.

We can then realize the contraction as a \mathbb{G}_m loop space $G_{-1}(X) = \underline{\mathrm{Hom}}_{\bullet}(\mathbb{G}_m, G)(X)$.

Remark 8. Construction of canonical map $\pi_n(\underline{\text{Hom}}(\mathbb{G}_m, E)) \to \pi_n(E)_{-1}$ for an S^1 spectrum E.

First observe that for any $U \in \text{Sm}/k$ and any $n \in \mathbb{Z}$ there is a map

$$\operatorname{Spt}_s(k)(S^n \wedge \Sigma_s^{\infty} U_+ \wedge \Sigma^{\infty} \mathbb{G}_m, E) \times \operatorname{Spc}(k)(U, \mathbb{G}_m) \to \pi_0(E)(U)$$

given by sending (f, α) to the composition

$$\Sigma^{\infty}_{s}U_{+} \overset{\mathrm{id} \wedge \Sigma^{\infty}_{s} \alpha}{\rightarrowtail} S^{n} \wedge \Sigma^{\infty}_{s}U_{+} \wedge \Sigma^{\infty}_{s}\mathbb{G}_{m} \longrightarrow E.$$

Hence there is a map of sheaves

$$\pi_n(\underline{\operatorname{Hom}}(\mathbb{G}_m, E)) \times \mathbb{G}_m \to \pi_n(E).$$

Does this map descend to the smash? Yes, since if either map is a constant map, then so is the composition.

We thus get a map of sheaves of pointed sets

$$\pi_n(\operatorname{Hom}(\mathbb{G}_m, E)) \wedge \mathbb{G}_m \to \pi_n(E)$$

But by the adjunction $-\wedge \mathbb{G}_m \dashv \underline{\mathrm{Hom}}_{\bullet}(\mathbb{G}_m, -)$ on $\mathrm{Spc}_{\bullet}(k)$ we have a morphism

$$\pi_n(\underline{\operatorname{Hom}}(\mathbb{G}_m, E)) \to \underline{\operatorname{Hom}}_{\bullet}(\mathbb{G}_m, \pi_n(E)) = \pi_n(E)_{-1}.$$

Why is it a map of sheaves of abelian groups?

Remark 9. If E = HM is an Eilenberg-MacLane spectrum associated to a strictly \mathbb{A}^1 invariant sheaf of abelian groups M, we show

$$\pi_n(\underline{\operatorname{Hom}}(\mathbb{G}_m, HM)) \to \underline{\operatorname{Hom}}_{\bullet}(\mathbb{G}_m, \pi_n(HM)) = \pi_n(HM)_{-1}.$$

is an isomorphism by showing $\underline{\mathrm{Hom}}(\mathbb{G}_m, HM)$ is an Eilenberg-MacLane spectrum.

Lemma 3.9. Let $M \in \underline{\mathrm{Ab}}(\mathrm{Sm}/k)$. Then $K(M,r)_{-1} \simeq K(M_{-1},r)$.

Proof. Let $X \in \text{Sm}/k$. The simplicial set $K(M,r)_{-1}(X)$ by the fibration¹

$$K(M,r)_{-1}(X) \to K(M,r)(\mathbb{G}_m \times X) \to K(M,r)(X).$$

There is thus a long exact sequence of homotopy groups, which ammounts to

$$\pi_r K(M,r)_{-1}(X) \longrightarrow \pi_r K(M,r)(\mathbb{G}_m \times X) \longrightarrow \pi_r K(M,r)(X) \longrightarrow \pi_{r-1} K(M,r)_{-1}(X).$$

¹Is this actually a fibration? We may assume K(M,r) is always fibrant, but I don't see why ev_1 is a fibration. Can I work with the "derived contraction"? This argument works for that.

The remaining homotopy groups are evidently trivial. As $\pi_r K(M,r)(\mathbb{G}_m \times X) \to \pi_r K(M,r)(X)$ is surjective, we see $\pi_{r-1}K(M,r)_{-1}(X) = 0$. Therefore,

$$\pi_n K(M, r)_{-1}(X) = \begin{cases} 0 & \text{if } n \neq r \\ M_{-1}(X) & \text{if } n = r \end{cases}.$$

We conclude that $K(M,r)_{-1} \simeq K(M_{-1},r)$.

Proposition 3.10. For $M \in \underline{\mathrm{Ab}}_{st\mathbb{A}^1}(\mathrm{Sm}/k)$, the spectrum $\underline{\mathrm{Hom}}(\mathbb{G}_m, HM)$ is weak equivalent to $H(M_{-1})$.

Proof. Since $\mathbb{P}^1 = S^1 \wedge \mathbb{G}_m$ in $\mathcal{H}_{\bullet}(k)$, we have $\Sigma^{\infty} \mathbb{P}^1[-1] = \Sigma^{\infty} \mathbb{G}_m$. Therefore

$$\begin{split} \mathcal{SH}_{s}^{S^{1}}(k)(\Sigma^{\infty}\mathbb{G}_{m}, HM[n]) &= \mathcal{SH}_{s}^{S^{1}}(k)(\Sigma^{\infty}\mathbb{P}^{1}[-1], HM[n]) \\ &= \mathcal{SH}_{s}^{S^{1}}(k)(\Sigma^{\infty}\mathbb{P}^{1}, HM[n+1]) \\ &= \tilde{H}_{Nis}^{n+1}(\mathbb{P}^{1}; M). \end{split}$$

As the cohomological dimension of \mathbb{P}^1 is less than or equal to 1, we then have $\tilde{H}_{Nis}^{n+1}(\mathbb{P}^1; M) = 0$ for all $n \neq 0$.

Now² for $U \in \text{Sm}/k$, we calculate for $n \neq 0$

$$\pi_{n} \underline{\operatorname{Hom}}(\mathbb{G}_{m}, HM)(U) = \mathcal{SH}_{s}^{S^{1}}(k)(S^{n} \wedge \Sigma^{\infty}\mathbb{G}_{m} \wedge \Sigma^{\infty}U_{+}, HM)$$

$$= \operatorname{colim}_{r} \mathcal{H}_{\bullet}^{S}(k)(S^{n+r} \wedge U_{+}, \underline{\operatorname{Hom}}_{\bullet}(\mathbb{G}_{m}, K(M, r)))$$

$$= \operatorname{colim}_{r} \pi_{n+r}(K(M, r)_{-1})(U)$$

$$= \operatorname{colim}_{r} \pi_{n+r}(K(M_{-1}, r))(U)$$

$$= \operatorname{colim}_{r} 0$$

$$= 0.$$

To establish the second point, we calculate for $U \in \text{Sm}/k$

$$\pi_0 \underline{\operatorname{Hom}}(\mathbb{G}_m, HM)(U) = \mathcal{SH}_s^{S^1}(k)(\Sigma^{\infty}\mathbb{G}_m \wedge \Sigma^{\infty}U_+, HM)$$

$$= \operatorname{colim}_r \mathcal{H}_{\bullet}^s(k)(S^r \wedge U_+, \underline{\operatorname{Hom}}_{\bullet}(\mathbb{G}_m, K(M, r)))$$

$$= \operatorname{colim}_r \pi_r(K(M, r)_{-1})(U)$$

$$= \operatorname{colim}_r \pi_r(K(M_{-1}, r))(U)$$

$$= \operatorname{colim}_r M_{-1}(U)$$

$$= M_{-1}(U)$$

$$= \pi_0 H(M_{-1})(U).$$

We now know that the associated homotopy sheaves $\pi_n \underline{\text{Hom}}(\mathbb{G}_m, HM)$ and $\pi_n H(M_{-1})$ agree for all n. So they are weak equivalent by [Mor05, Lemma 3.2.5].

An alternate argument to see $H(M_{-1}) \cong \underline{\text{Hom}}(\mathbb{G}_m, HM)$ would be to use the identification of the heart of the homotopy t-structure.

²Given the following argument, is the part before this necessary? Does this argument actually work?

OK, so since $(-)_{-1}$ is defined as a kernel/equalizer in both $\underline{\mathrm{Ab}}(\mathrm{Sm}/k)$ and in $\mathcal{SH}_s^{S^1}(k)$ $\underline{\mathrm{Hom}}(\mathbb{G}_m, -)$ is also defined by the analogous equalizer, since $\pi_0 \dashv H(-)$ on the heart $\pi(k)$ we get that $H(M_{-1}) \cong \underline{\mathrm{Hom}}(\mathbb{G}_m, HM)$.

Proposition 3.11. For any spectrum $E \in \mathcal{SH}^{S^1}(k)$, the homotopy sheaves of $\underline{\text{Hom}}(\mathbb{G}_m, E)$ are calculated by $\pi_n(\underline{\text{Hom}}(\mathbb{G}_m, E)) \cong \pi_n(E)_{-1}$

Proof. Reduce to the case of Eilenberg-MacLane spectra by using the Postnikov tower. Need $\operatorname{Hom}(\mathbb{G}_m, -)$ to be exact functor on $\mathcal{SH}^{S^1}(k)$. Is it? Details?

3.4. Inverting $\mathbb{G}_m \wedge -$; (\mathbb{G}_m, S^1) bi-spectra. The functor Σ_t on $\operatorname{Spt}_s(k)$ is a left Quillen functor. We may therefore apply the general machinery of [H-Spt] to create a model category in which Σ_t is invertible. The construction of Hovey may be described as (\mathbb{G}_m, S^1) bispectra.

Definition 3.12. A (\mathbb{G}_m, S^1) bi-spectrum of spaces over k consists of a bigraded family of spaces $E_{i,j}, i, j \geq 0$, equipped with structure maps $\sigma_{i,j} : S^1 \wedge E_{i,j} \to E_{i,j+1}$ and $\mu_{i,j} : \mathbb{G}_m \wedge E_{i,j} \to E_{i+1,j}$ for which the following diagram commutes .

$$S^{1} \wedge \mathbb{G}_{m} \wedge E_{i,j} \xrightarrow{S^{1} \wedge \tau_{i,j}} S^{1} \wedge E_{i+1,j}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Remark 10. Note that a (\mathbb{G}_m, S^1) bispectrum is just a \mathbb{G}_m -spectrum of S^1 -spectra. So we may therefore equip it with the projective stable model structure we get from this perspective. We may therefore think of a (\mathbb{G}_m, S^1) bi-spectrum $E_{i,j}$ as a sequence of S^1 spectra $E_{i,*}$.

Definition 3.13. Let E be a (\mathbb{G}_m, S^1) bispectrum. Define the bigraded stable homotopy presheaf $\tilde{\pi}_{n+m\alpha}$ by the formula

$$U \in \operatorname{Sm}/k \mapsto \operatorname{colim}_r \mathcal{H}_{\bullet}(k)(S^{n+r} \wedge \mathbb{G}_m^{r+m} \wedge U_+, E_{r,r}).$$

Morel's notation is $\tilde{\pi}_n(E)_m = \tilde{\pi}_{n-m\alpha}$. We may also write $\tilde{\pi}_{n,m}(E) = \tilde{\pi}_{n-m+m\alpha}(E)$. We denote the associated Nisnevich sheaf by $\pi_{n+m\alpha}(E)$.

Proposition 3.14. If is E a (\mathbb{G}_m, S^1) bispectrum, the presheaf of homotopy groups may also be calculated as

$$\tilde{\pi}_{n+m\alpha}E(U) = \operatorname{colim}_{s,r} \mathcal{H}_{\bullet}(k) (\mathbb{G}_m^{s+m} \wedge S^{n+r} \wedge U_+, E_{r,s}).$$

[DLØRV, p 217]

Definition 3.15. A morphism $f: E \to F$ of (\mathbb{G}_m, S^1) bispectra is an \mathbb{A}^1 stable weak equivalence if the following induced map is an isomorphism for all $U \in \text{Sm}/k$.

$$f_*: \tilde{\pi}_{n+m\alpha}(E)(U) \to \tilde{\pi}_{n+m\alpha}(F)(U)$$

Definition 3.16. A morphism $f: E \to F$ of (\mathbb{G}_m, S^1) bispectra is an \mathbb{A}^1 stable cofibration if $f_0: E_{0,*} \to F_{0,*}$ is a cofibration of S^1 spectra and the map $P.O. \to F_{n+1}$ is a cofibration in the following diagram.

Proposition 3.17. The category $\operatorname{Spt}_{s,t}^{\mathbb{A}^1}(k)$ of (\mathbb{G}_m, S^1) bispectra with \mathbb{A}^1 stable weak equivalences and \mathbb{A}^1 stable cofibrations is a model category. Denote the associated homotopy category of $\operatorname{Spt}_{s,t}^{\mathbb{A}^1}(k)$ by $\mathcal{SH}(k)$.

Proposition 3.18. The fibrant bi-spectra are the Ω_t -spectra. [H-Spt, Theorem 3.4]

Proposition 3.19. There is a left Quillen functor $\Sigma_t^{\infty} : \operatorname{Spt}_s^{\mathbb{A}^1}(k) \to \operatorname{Spt}_{s,t}^{\mathbb{A}^1}(k)$ given by $(\Sigma_t^{\infty} E)_{i,j} = \mathbb{G}_m^i \wedge E_j$ with bonding maps

$$S^1 \wedge \mathbb{G}_m^i \wedge E_j \longrightarrow \mathbb{G}_m^i \wedge S^1 \wedge E_j \longrightarrow \mathbb{G}_m \wedge E_{j+1}$$

and

$$\mathbb{G}^m \wedge \mathbb{G}_m^i \wedge E_j \to \mathbb{G}_m^{i+1} E_j$$
.

The right adjoint to Σ_t^{∞} is denoted by Ω_t^{∞} and is given by $\Omega_t^{\infty}(E) = E_{0,*}$.

The right derived functor $R\Omega_t^{\infty}(E)$ is given by the formula

$$R\Omega_t^{\infty}(E) = \operatorname{colim}_i \Omega_t^i E_{i,*}.$$

Proof.

3.5. Connectivity of (\mathbb{G}_m, S^1) bispectra.

Definition 3.20. A (\mathbb{G}_m, S^1) bispectrum E is said to be n-connected if for all $k \leq n$ and all $m \in \mathbb{Z}$, the homotopy sheaves $\pi_{k+m\alpha}E$ vanish.

Lemma 3.21. Consider $E = \sum_{t=0}^{\infty} \sum_{s=0}^{\infty} \mathcal{X}$ for some pointed space \mathcal{X} . Then E is -1 connected.

Proof. We calculate for n < 0

$$\begin{split} \mathcal{SH}(k)(S^n \wedge \mathbb{G}_m^m \wedge \Sigma^\infty U_+, E) &= \mathcal{SH}(k)(S^n \wedge \Sigma^\infty U_+, \Omega_t^m E) \\ &= \mathcal{SH}^{S^1}(k)(S^n \wedge \Sigma^\infty U_+, R\Omega_t^\infty \Omega_t^m E) \\ &= \mathcal{SH}^{S^1}(k)(S^n \wedge \Sigma^\infty U_+, \operatorname{colim}_i \Omega_t^{i+m} \Sigma_t^i \Sigma_s^\infty X) \\ &= \operatorname{colim} \mathcal{SH}^{S^1}(k)(S^n \wedge \Sigma^\infty U_+, \Omega_t^{m+i} \Sigma_t^i \Sigma_s^\infty X) \\ &= 0 \end{split}$$

as Ω_t preserves connectivity, as does Σ_t for suspension spectra.

Proposition 3.22. Let $E \in \operatorname{Spt}_s^{\mathbb{A}^1}(k)$. Consider $\Sigma_t^{\infty} E \in \operatorname{Spt}_{s,t}^{\mathbb{A}^1}(k)$. If E is -1 connected, then so too is $\Sigma_t^{\infty} E$.

Proof. We calculate

$$\pi_{n+m\alpha}(\Sigma_t^{\infty} E) = \pi_n(R\Omega_t^{\infty} \Omega_t^m \Sigma_t^{\infty} E)$$

$$= \pi_n(\operatorname{colim}_i \Omega_t^{m+i} \Sigma_t^i E)$$

$$= \operatorname{colim}_i \pi_n(\Sigma_t^i E)_{-(m+i)}$$

$$= 0.$$

This follows since $\Sigma_t E$ is -1 connected whenever E is -1 connected, and the effect of Ω_t^{m+i} on homotopy sheaves is contraction.

3.6. t-structure on SH(k).

Definition 3.23. Let $\mathcal{SH}(k)_{\geq 0}$ denote the full subcategory of $\mathcal{SH}(k)$ given by bispectra E satisfying $\pi_{n+m\alpha}E = 0$ whenever n < 0.

Let $\mathcal{SH}(k)_{\leq 0}$ denote the full subcategory of $\mathcal{SH}(k)$ given by bispectra E satisfying $pi_{n+m\alpha}E=0$ whenever n>0.

Theorem 3.24. The triple $(\mathcal{SH}(k), \mathcal{SH}(k)_{>0}, \mathcal{SH}(k)_{<0})$ defines a t-structure.

Proof. What needs to be done:

- (1) Let $E \in \mathcal{SH}(k)_{\geq 0}$ and $F \in \mathcal{SH}(k)_{\leq 0}$. Show $\mathcal{SH}(k)(E, F[-1]) = 0$.
- (2) Let $E \in \mathcal{SH}(k)_{\geq 0}$ and $F \in \mathcal{SH}(k)_{\leq 0}$. Show $E[1] \in \mathcal{SH}(k)_{\geq 0}$ and $F[-1] \in \mathcal{SH}(k)_{\leq 0}$. This is clear by invertibility of [1] in $\mathcal{SH}(k)$.

(3) Given $E \in \mathcal{SH}(k)$, construct $E_{\geq 0}$ and $E_{< 0}$ which fit into an exact triangle

$$E_{\geq 0} \to E \to E_{< 0} \to E_{\geq 0}[1].$$

Definition 3.25. A homotopy module over k is a pair (M_*, μ_*) consisting of a \mathbb{Z} graded strictly \mathbb{A}^1 invariant sheaf M_* and an isomorphism $\mu_n : M_n \cong (M_{n+1})_{-1}$.

Lemma 3.26. If E is a bi-spectrum, then

$$R\Omega_t^{\infty}E \to \underline{\mathrm{Hom}}(\mathbb{G}_m, R\Omega_t^{\infty}(E \wedge \mathbb{G}_m))$$

is an isomorphism.

Lemma 3.27. Let $E \in \mathcal{SH}(k)$. For a fixed $n \in \mathbb{Z}$, the collection $\pi_n(E)_m$ forms a homotopy module.

Lemma 3.28. If (M_*, μ_*) is a homotopy module over k, then there is a (\mathbb{G}_m, S^1) bispectrum HM_* with $(HM_*)_{n,n} = K(M_n, n)$ with evident structure maps.

Theorem 3.29. The heart of the t-structure $(\mathcal{SH}(k), \mathcal{SH}(k)_{\geq 0}, \mathcal{SH}(k)_{\leq 0})$ is denoted $\pi_*^{\mathbb{A}^1}(k)$ and is equivalent to the category of homotopy modules. The equivalence is given explicitly by the functors $\pi_0(-)_*$ and H(-).

References

- [A-1974] Adams, J.F., Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics, (1974).
- [B] Blander, Benjamin, Local Projective Model Structures on Simplicial Presheaves. K-Theory, 24 (2001) 283–301.
- [DHI] Dugger, Dan; Hollander, Sharon; Isaksen, Dan, Hypercovers and simplicial presheaves.
- [DLØRV] Dundas, B.; Levine, M.; Østvær, P.; Röndigs, O.; Voevodsky, V., *Motivic Homotopy Theory*. Springer (2000).
- [Hir] Phillip, Hirschhorn, Model Categories and Their Localization. AMS (2003).
- [H-Mod] Hovey, Mark, Model Categories. online preprint (1991).
- [H-Spt] Hovey, Mark, Spectra and symmetric spectra in general model categories. journal? (2001).
- [J] Jardine, J.F., Simplicial presheaves. Journal of Pure and Applied Algebra, 47 (1987) 35–87.
- [Mor03] Morel, Fabien, An introduction to \mathbb{A}^1 homotopy theory.
- [Mor04] Morel, Fabien, On the motivic π_0 of the sphere spectrum. NATO science series.
- [Mor05] Morel, Fabien, The stable \mathbb{A}^1 connectivity theorems. preprint (2004).
- [Voev98] Voevodsky, Vladimir. A¹-Homotopy Theory. Doc. Math. J., (1998) pp. 579–604.