NED UNIVERSITY OF ENGINEERING & TECHNOLOGY {SSIC- SE (PP)} BATCH-2021-TE (BCIT) FALL SEMESTER BATCH-2020 Handout #2 P&S (MT-331)

RANDOM VARIABLE

The probability distribution of the discrete random variable X is Find the mean of X.

$$f(x) = {3 \choose x} \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)^{3-x}, \quad x = 0, 1, 2, 3.$$

Roulette wheel is divided in to 6 sectors of unequal area marked with the no's 1, 2, 3, 4, 5, & 6. The wheel is spun & X is the random variable the number on which the wheel stops. The probability of X is as follows:

X	1	2	3	4	5	6
P(X=x)	1/16	3/16	k	1/4	3/16	1/16

Find the value of 'k' and find (i) E(3x-5)

(ii)
$$E^{(6x^2+6x-10)}$$

- 3. Suppose that an antique jewelry dealer is interested in purchasing a gold necklace for which the probabilities are 0.22, 0.36, 0.28, and 0.14, respectively, that she will be able to sell it for a profit of \$250, sell it for a profit of \$150, break even, or sell it for a loss of \$150. What is her expected profit?
- 4. An attendant at a car wash is paid according to the number of cars that pass through. Suppose the probabilities are 1/12, 1/12, 1/14, 1/6, and 1/6, respectively, that the attendant receives \$7, \$9, \$11, \$13, \$15, or \$17 between 4:00 P.M. and 5:00 P.M. on any sunny Friday. Find the attendant sexpected earnings for this particular period.
- 5. The random variable X, representing the number of errors per 100 lines of software code, has the

Following probability distribution: find the variance of X.

- Suppose that the probabilities are 0.4, 0.3, 0.2, and 0.1, respectively, that 0, 1, 2, or 3 power failures will strike a
 certain subdivision in any given year. Find the mean and variance of the random variable X representing the
 number of power failures striking this subdivision.
- 7. For a laboratory assignment, if the equipment is working, the density function of the observed outcome X is

$$f(x) = \begin{cases} 2(1-x), & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find the variance and standard deviation of X.

8. The length of time, in minutes, for an airplane to obtain clearance for takeoff at a certain airport is a random variable Y = 3X −2, where X has the density function

$$f(x) = \begin{cases} \frac{1}{4}e^{-x/4}, & x > 0\\ 0, & \text{elsewhere} \end{cases}$$

Find the mean and variance of the random variable Y .

Shumaila Usman (Assistant professor) (Mathematics Department)

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY {SSIC- SE (PP)} BATCH-2021-TE (BCIT) FALL SEMESTER BATCH-2020

Handout #2 P&S (MT-331)

9. The total time, measured in units of 100 hours, that a teenager runs her hair dryer over a period of one year is a continuous random variable X that has the density function

$$f(x) = \begin{cases} x, & 0 < x < 1, \\ 2 - x, & 1 \le x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Evaluate the mean of the random variable $Y = 60X^2 + 39X$, where Y is equal to the number of kilowatt hours expended annually.

10. The total number of hours, measured in units of 100 hours, that a family runs a vacuum cleaner over a Period of one year is a continuous random variable X that has the density function. Find the probability that over a period of one year, a family runs their vacuum cleaner

$$f(x) = \begin{cases} x, & 0 < x < 1, \\ 2 - x, & 1 \le x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

- Less than 120 hours
- Between 50 and 100 hours.

11. The proportion of people who respond to a certain mail-order solicitation is a continuous random variable X that has the density function

$$f(x) = \begin{cases} \frac{2(x+2)}{b}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- Show that P(0 < X < 1) = 1.
- Find the probability that more than 1/4 but fewer than 1/2 of the people contacted will respond to this type of solicitation.
- 12. A continuous random variable X that can assume values between x = 2 and x = 5 has a density function given by f(x) = 2(1 + x)/27. Find
 - I. P(X <4)
 - II. P (3 ≤X <4).
 - Find F(x), and use it to evaluate P (3 ≤X <4).
- 13. Consider the density function

$$f(x) = \begin{cases} k\sqrt{x}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- I. Evaluate k.
- (b) Find F(x) and use it to evaluate P(0.3 < X < 0.6).
- 14. Suppose that the error in the reaction temperature, in °C, for a controlled laboratory experiment is a continuous random variable X having the probability density function

$$f(x) = \begin{cases} \frac{x^3}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Verify that f(x) is a density function.

Shumaila Usman (Assistant professor) (Mathematics Department)

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY {SSIC-SE (PP)} BATCH-2021-TE (BCIT) FALL SEMESTER BATCH-2020 Handout #2 P&S (MT-331)

Find P $(0 < X \le 1)$. H.

For the density function, find F(x), and use it to evaluate $P(0 < X \le 1)$. III.

15. Compute $P(\mu - 2\sigma < X < \mu + 2\sigma)$, where X has the density function

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

16. The number of messages sent per hour over a computer network has the following distribution:

x = number of messages	10	11	12	13	14	15
f(x)	0.08	0.15	0.30	0.20	0.20	0.07

Determine the mean and standard deviation of the number of messages sent per hour.

17. The monthly demand for transistors is known to have the following probability distribution.

5 Demand (n) : Probability (P): 0.10 0.15 0.20 0.25 0.18 0.12

Determine the expected demand for transistors. Also obtain the variance?

18. Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is

$$f(x) = \begin{cases} \frac{20.00^{\circ}}{x^3}, & x > 100, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected life of this type of device.

19. The density function of the time Z in minutes between calls to an electrical supply store is given by

$$f(z) = \frac{1}{10} \exp(-\frac{z}{10})$$
; $z > 0$

What is the mean time between calls?

What is the variance in the time between calls? ïi.

What is the probability that the time between calls exceeds the mean? iii.