

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

TRABAJO PRÁCTICO Nº6: DERIVADAS

Determinar la razón de cambio promedio de la función f(x)=3x+1 en el intervalo [3;7]

2. La siguiente tabla exhibe la posición de un ciclista.

t (en segundos)	0	1	2	3	4	5
d (en metros)	0	1,4	5,1	10,7	17,7	25,8

a) Hallar la velocidad promedio para los intervalos: i) [1;3] ii) [2;5]

b) Utilizar el gráfico de d como una función del tiempo (t) para estimar la velocidad instantánea cuando t=3 s.

3. Si se lanza una pelota al aire con una velocidad de 40pies/s, su altura en pies, después de t segundos, se expresa por $y = 40t - 16t^2$.

a) Encontrar la velocidad promedio para el periodo que se inicia cuando t=2 y dura 0,5s.

b) Determinar la velocidad instantánea cuando t=2.

4. El costo (en dólares) de producir x unidades de cierto artículo es: $C(x) = 5000 + 10x + 0.05x^2$

a) Hallar la razón de cambio promedio de C con respecto a x, cuando se cambia el nivel de producción:

i) de x= 100 a x=105 ii) de x=100 a x=101

b) Encontrar la razón de cambio instantánea de C con respecto a x cuando x=100 (conocida como costo marginal).

5. Encontrar la función derivada de las siguientes funciones en el punto a través de la definición de derivada:

a)
$$f(x) = 3 - 2x + 4x^2$$
 b) $f(x) = \frac{2x+1}{x+3}$ c) $f(x) = x^4 - 5x$ d) $f(x) = \frac{x^2+1}{x-2}$ e) $f(x) = \sqrt{3x+1}$ f) $f(x) = \frac{1}{\sqrt{x+2}}$

b)
$$f(x) = \frac{2x+1}{x+3}$$

$$c) f(x) = x^4 - 5x$$

d)
$$f(x) = \frac{x^2+1}{x-2}$$

e)
$$f(x) = \sqrt{3x + 1}$$

$$f) f(x) = \frac{1}{\sqrt{x+2}}$$

6. Analizar si existe la derivada de las siguientes funciones en el punto indicado.

a)
$$f(x) = \begin{cases} x \ sen\left(\frac{1}{x}\right) & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$$
 b) $f(x) = |x - 6|$ en x=6 c) $f(x) = \sqrt[3]{(x+1)^2}$ en x=-1

b)
$$f(x) = |x - 6|$$
 en x=6

c)
$$f(x) = \sqrt[3]{(x+1)^2}$$
 en x=-1

7. Derivar aplicando reglas

a)
$$y = -\pi + x^2$$

a)
$$y = -\pi + x^2$$
 b) $y = 5x^4 - \sqrt[3]{x^2 + \frac{1}{x^5}}$ c) $y = 3x \cdot sen x$ d) $y = \sqrt{x} \cdot \ln x$ e) $y = \frac{\tan x}{\ln x}$

c)
$$y = 3x \cdot sen x$$

d)
$$y = \sqrt{x} \cdot \ln x$$

e)
$$y = \frac{\tan x}{\ln x}$$

8. Determinar los valores de a y b para la función $h(x) = \begin{cases} x^3 - x & \text{si } x < 0 \\ ax + b & \text{si } x > 0 \end{cases}$ se continua y derivable en x=0

9. Derivar las siguientes funciones compuestas.

a)
$$y = cos^{-2}(x^3)$$

b)
$$y = \sqrt[5]{\cos x}$$

c)
$$y = \sqrt{x \cdot \ln(7x)}$$

d)
$$y = ln\left(\sqrt{3x} - \frac{1}{2}x^2\right)$$

e)
$$y = tg[x^2 \cdot (8 - 5x)^{-1}]$$

f)
$$y = \sqrt{\frac{\cos x - 1}{\sin x}}$$

g)
$$y = \left(\frac{3x^{-2}}{a^{2}-9}\right)^{4}$$

a)
$$y = cos^{-2}(x^3)$$
 b) $y = \sqrt[5]{cosx}$ c) $y = \sqrt{x \cdot \ln(7x)}$ d) $y = \ln\left(\sqrt{3x} - \frac{1}{2}x^2\right)$ e) $y = tg[x^2 \cdot (8 - 5x)^{-1}]$ f) $y = \sqrt{\frac{\cos x - 1}{sen \, x}}$ g) $y = \left(\frac{3x^{-2}}{e^x - 9}\right)^4$ h) $y = \ln\left[\frac{5x - x^2}{\sqrt{10x}}\right] + \tan(2x + 7)$ i) $y = \sqrt{\frac{1 - sen \, x}{1 + sen \, x}}$ j) $y = \cos\left(\frac{x + 1}{2x - 1}\right)$

$$y = \sqrt{\frac{1 - sen x}{1 + sen x}}$$

$$j) y = \cos\left(\frac{x+1}{2x-1}\right)$$

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

10. Aplicar el método de derivación logarítmica

a)
$$y = e^{(x^2+3)}$$

b)
$$v = x^{\sqrt{x}}$$

a)
$$y = e^{(x^2+3)}$$
 b) $y = x^{\sqrt{x}}$ c) $y = [sen (5x)]^{cosx}$ e) $y = \frac{e^{(-\frac{5x}{2})}}{x^2}$

e)
$$y = \frac{e^{\left(-\frac{5x}{2}\right)}}{x^2}$$

f)
$$y = x^3 \cdot (2x - 1)^{(-3x)}$$

11. Encontrar las derivadas de las siguientes funciones a través de sus funciones inversas.

a)
$$y = arc \cos x$$

b)
$$v = arc ta x$$

c)
$$y = Arg Sh x$$

a)
$$y = arc \cos x$$
 b) $y = arc tg x$ c) $y = Arg Sh x$ d) $y = \sqrt{2x + 5}$

12. a) Encontrar las derivadas segundas de las funciones:

a.1)
$$f(x) = 3sen(5x)$$

a.1)
$$f(x) = 3sen(5x)$$
 a.2) $g(x) = \sqrt{x^2 - 3}$

b) Hallar la derivada de tercer orden de $f(x) = 3x^3 + 7x^2 - 5x + 4$

c) Dada la función $f(x) = \ln\left(\frac{x}{4}\right)$, hallar la derivada de orden cuatro

13. Aplicaciones físicas de la derivada:

I) El espacio recorrido por un móvil viene dado por la función $e(t) = 3t^2 - t + 1$. El espacio se mide en metros y el tiempo en segundos.

a) Hallar la ecuación de la velocidad

b) ¿Cuál es la velocidad al inicio del recorrido? ¿y para t=2,5s?

c) Encontrar la ecuación de la aceleración

14. Aplicaciones geométricas de la derivada:

a) Calcular los puntos en que la tangente a la curva $y = x^3 - 3x^2 - 9x + 5$ es paralela al eje OX.

b) Se ha trazado una recta tangente a la curva y=x3, cuya pendiente es 3 y pasa por el punto (0,-2). Hallar el punto de tangencia.

c) Hallar los puntos de la curva $f(x) = x^4 + 7x^3 + 13x^2 + x + 1$, para los cuales la recta tangente a ella forma un ángulo de 45º con el eje de abscisas.

15. Encontrar las derivadas de las siguientes funciones dadas de manera implícitas.

a)
$$x^2 + xy = 1$$

b)
$$y^2 = x\sqrt{x^2 + 1}$$

c)
$$x^2 = \frac{x-y}{x^2}$$

a)
$$x^2 + xy = 1$$
 b) $y^2 = x\sqrt{x^2 + 1}$ c) $x^2 = \frac{x - y}{x + y}$ d) $e^x \sin y + e^y \cos x = 1$

e)
$$\tan(2x - 5y) = \sqrt{3x} + y^2$$

e)
$$\tan(2x - 5y) = \sqrt{3x} + y^4$$
 f) $\sin(x - 2y) = \cos(3x + y^2)$

Hallar las derivadas de las siguientes funciones paramétricas.

a)
$$f(t) = \begin{cases} x = e^t \\ y = 2e^{-t} \end{cases}$$

b)
$$f(t) = \begin{cases} x = sen(2t) \\ y = \cos(t^3) \end{cases}$$

a)
$$f(t) = \begin{cases} x = e^t \\ y = 2e^{-t} \end{cases}$$
 b) $f(t) = \begin{cases} x = sen(2t) \\ y = \cos(t^3) \end{cases}$ c) $f(t) = \begin{cases} x = 8\cos^3 t \\ y = 8sen^3 t \end{cases}$

Ejercicios Complementarios

1. El tamaño de una población de un centro minero al tiempo t (medido en años), está dado por la función: $P(t) = 1000 + 100 t - 120 t^2$. Determinar la tasa de crecimiento promedio entre los tiempos t y (t+ Δ t).

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

- 2. Un estanque de cría de peces que ha sido atacado por una enfermedad y la cantidad de peces muertos en función al tiempo (en semanas) viene dada por la expresión: $N(t)=400(t-4)^2$. Calcular la tasa de mortalidad en el instante t₀=3,5 semanas
- 3. Sean f y g dos funciones cualesquiera derivables en x = 0. Sabiendo que: f(0) = 2 , g(0) = 1 , f'(0) = 1 y g'(0) = 0, determinar: (g - f)'(0) = 2, $(f \cdot g)'(0)$ y $(\frac{1}{4}f)(0) = 2$
- 4. Analizar la derivabilidad de las siguientes funciones en el punto indicado.

a)
$$y = |x - 2|$$
 en x=2

b)
$$y = x^{2/3}$$
 en x=0

a)
$$y = |x - 2|$$
 en x=2 b) $y = x^{2/3}$ en x=0 c) $y = \begin{cases} -x & x < 0 \\ x^2 & x > 0 \end{cases}$ en x=0

5. Derivar aplicando reglas:

a)
$$h(t) = t^2 - \frac{4}{t^3}$$

b)
$$y = \frac{4x^3 + 3x^2}{x}$$

c)
$$y = \frac{x^3(3x^2+4)}{x^2}$$

a)
$$h(t) = t^2 - \frac{4}{t^3}$$
 b) $y = \frac{4x^3 + 3x^2}{x}$ c) $y = \frac{x^3(3x^2 + 4)}{x^2}$ d) $y = x(x^2 + 1)$

e)
$$y = 2\sqrt{x} - \frac{5}{6}\sqrt[3]{x}$$

$$f) y = 5\sqrt{x} + 5\cos x$$

e)
$$y = 2\sqrt{x} - \frac{5}{6}\sqrt[3]{x}$$
 f) $y = 5\sqrt{x} + 5\cos x$ g) $y = (x^2 + 2x)(x + 1)$

$$h) y = x^3 \cdot tg x$$

i)
$$y = \sqrt{x}(x^2 - 1)$$

h)
$$y = x^3 \cdot \lg x$$
 i) $y = \sqrt{x}(x^2 - 1)$ j) $y = \sec x \cdot (x^2 + 1)$ k) $y = \frac{\sec x}{x^2}$

k)
$$y = \frac{sen x}{x^2}$$

6. Analizar la derivabilidad de las siguientes funciones, indicando en qué puntos no son derivables y explicar por qué.

a)
$$y = \frac{x}{|x|}$$

b)
$$f(x) = \begin{cases} -7.5x + 4.5 & \text{si } x \le 4 \\ x^2 - 1 & \text{si } x > 4 \end{cases}$$

7. Derivar las siguientes funciones compuestas.

$$a) y = sen^{-1}(x)$$

b)
$$y = \ln(3x - 2)$$

a)
$$y = sen^{-1}(x)$$
 b) $y = \ln(3x-2)$ c) $y = (x^2 - 2x^3 + 5)^4$

d)
$$y = ln \left[\frac{(4x+7)^3}{\sqrt{2x-1}} \right]$$

e)
$$y = tg\left(\frac{x^2}{2x+1}\right)$$

d)
$$y = ln \left[\frac{(4x+7)^3}{\sqrt{2x-1}} \right]$$
 e) $y = tg \left(\frac{x^2}{2x+1} \right)$ f) $y = \sqrt[3]{sen x}$ g) $y = ctg(3-7x)$

$$h) y = \cos\left(\frac{x+1}{2x-1}\right)$$

i)
$$y = \ln\left(\frac{x - e^2}{3x^2}\right)$$

h)
$$y = \cos\left(\frac{x+1}{2x-1}\right)$$
 i) $y = \ln\left(\frac{x-e^2}{3x^2}\right)$ j) $y = [\ln(3x)]^5$ k) $y = \sqrt[4]{x^2 - 2x + 3}$

1)
$$y = (3x^4 + x - 2)^{-3}$$

I)
$$y = (3x^4 + x - 2)^{-3}$$
 m) $y = \ln[\cos(x^5 + 3x)]$ n) $y = x^3 \tan^2(5x)$ ñ) $y = \frac{e^{x^3} \sin x}{3x^2 - 1}$

o)
$$y = \sqrt{x + \sqrt{x}}$$

o)
$$y = \sqrt{x + \sqrt{x}}$$
 p) $y = \sqrt{2x + 1} \cdot \sqrt[3]{3x - 1}$ q) $y = \sec \frac{x^2 + 1}{x^2 - 1}$ r) $y = \cos (6x^2 + 1)$

r)
$$y = \cos (6x^2 + 1)$$

- 8. La función $f(t) = 70 \left(t^{\frac{1}{3}} + 1\right)$, donde f(t) se mide en cantidad de personas y t en horas representa la forma en que propaga una noticia. Calcular la velocidad con que se está propagando la misma, a las dos horas desde el inicio del evento.
- 9. Hallar la función derivada de cada una de las siguientes funciones y redúzcala a la mínima expresión:

a)
$$f(x) = \sqrt{\frac{x+3}{x+2}}$$

b)
$$f(x) = \frac{3x+8}{(2x+4)^2}$$

10. Utilizar derivación logarítmica para hallar las derivadas de las siguientes funciones:

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

a)
$$y = 3 + e^{2x}$$

a)
$$y = 3 + e^{2x}$$
 b) $y = (senx)^{(cosx+1)}$ c) $y = (ln x)^{x^2+3}$

c) y =
$$(\ln x)^{x^2+3}$$

11. Halle las derivadas de las siguientes funciones a través de sus inversas:

a)
$$v = \sqrt{5x}$$

b)
$$y = arc sen x$$

c)
$$y = Arg Chx$$

12. a) Dada la función y = 2x2 - 3x3 + 4x, halle su derivada de cuarto orden.

b) Halle la derivada de orden tres de la función $y = sen(\pi x)$

c) Halle la función derivada segunda de las siguientes funciones: i) $y = (x+3)^3$ ii) $y = \sqrt{x^5-5}$

13. Calculen los valores de a, b, c y d en $f(x) = ax^3 + bx^2 + cx + d$ si se verifica que f(0) = 4, f'(0) = 2, f''(0) = -3y f'''(0) = 8.

14. Encontrar la pendiente de la recta tangente a la gráfica de la función en el punto dado.

a)
$$f(x) = 3 - 5x$$
 en $(-1; 8)$

b)
$$g(x) = x^2 - 9$$
 en $(2; -5)$

15. Se bombea gas a un globo esférico a razón de 6m3/min. Si la presión se mantiene constante. ¿Cuál es la velocidad con la que cambia el radio del globo cuando el diámetro mide 120 cm?