

Combinatorial glycopeptides

 O_1 , O_2 , O_3 = Glycosylation sites

 R_1 to R_5 = Side chains that create site specificity

Figure 1

A CYCLIC MUC1 PEPTIDE

Figure 2

R. Rao KOGANTY et al. Ser. No. 09/842,873 RANDOMLY GENERATED GLYCOPEPTIDE COMBINATORIAL LIBRARIES

THE SIMPLEST CYCLIC PEPTIDE

A SOLUBLE VERSION OF THE ABOVE (with C₁₄ lipid)

Figure 4

Figure 5

AN EXAMPLE OF A CYCLIC PEPTIDE FOR RANDOM GLYCOSYLATIONS SOLUBILITY OF SUCH PEPTIDES MAY BE ENHANCED BY HYDROPHOBIC GROUPS

Figure 6

Figure 7. Carbohydrate structures found on cancer mucins

Functional Demonstration of Glycopeptide Library With Well Characterized Monocional Antibodies

Figure 8