Estadística bayesiana

Tarea 1

Fecha de entrega: 19 de septiembre

- 1. Suponer que se tiene una urna con 100 bolas, de las cuales 100 n son blancas y n son negras y donde n se distribuye uniformemente en $\{0, \ldots, 100\}$. Si en el primer intento se saca una bola blanca y no se regresa a la urna, obtener la probabilidad (utilizando el aprendizaje bayesiano) de que la siguiente bola sea blanca.
- 2. Utilizando el clasificador naive Bayes, diseñar un filtro de spam para la base de datos *SMSSpams.txt*, para esto se recomienda utilizar el 80% de la muestra para entrenar el clasificador y probarlo en el 20% restante. Es importante notar que los signos, símbolos y caracteres numéricos pueden no incluirse en el análisis, así como el hecho de que la capitalización es irrelevante para el proceso de aprendizaje.
- 3. Considerar X_1, \ldots, X_n una subcolección finita de una sucesión de variables aleatorias intercambiables tales que

$$f(x_1, \dots, x_n) = n! \left(1 + \sum_{i=1}^n x_i\right)^{-(n+1)}$$
.

Utilizando el teorema de representación de Bruno de Finetti mostrar que se pueden representar como una colección de variables condicionalmente independientes e idénticamente distribuidas con distribución común exponencial.

- 4. Demuestre que para toda sucesión intercambiable, $\{X_i\}_{i=1}^{\infty}$, se tiene que $Cov(X_i, X_j) \geq 0$. (Hint: Considerar primero el caso finito).
- 5. Sea X_1, \ldots, X_n una colección de variables intercambiables, tales que dado θ se considera que $X_i \mid \theta \stackrel{\text{iid}}{\sim} Po(\theta)$. Suponer además que $\theta \sim Ga(\alpha, \beta)$.
 - (a) Encuentre la distribución posterior de $\theta \mid \mathbf{x}^{(n)}$.
 - (b) Muestre que la media posterior se puede escribir como un promedio ponderado de la media a priori y el estimador máximo verosímil de θ .

- (c) Finalmente, sea X_{n+1} una observación futura. Encuentre la distribución predictiva, así como la media y la varianza de $X_{n+1} \mid \mathbf{x}^{(n)}$.
- 6. Suponer que $X \mid \mu \sim N(\mu, \sigma^2)$ y $Y \mid \mu, \delta \sim N(\mu + \delta, \sigma^2)$ donde σ^2 es conocida y X y Y son condicionalmente independientes dado μ y δ .
 - (a) Encuentre la distribución conjunta de X y Y dado μ y δ .
 - (b) Considerando la distribución impropia $f(\mu, \delta) \propto 1$, encuentre la distribución posterior de μ y δ . ¿Son independientes $\mu \mid X, Y$ y $\delta \mid X, Y$?
 - (c) Encuentre la distribución marginal de $\delta \mid X, Y$.
 - (d) Encuentre la distribución marginal de $\mu \mid X, Y$.
 - (e) Considerando una nueva observación $Z \mid \mu, \delta \sim N(\mu \delta, \sigma^2)$, con Z condicionalmente independiente de X y Y dado μ y δ . Encuentre la distribución predictiva de $Z \mid X, Y$.
- 7. Sea X_1, \ldots, X_n una colección de variables aleatorias condicionalmente independientes dado θ , tal que se asume que $X_i \mid \theta \stackrel{\text{iid}}{\sim} U(0, \theta)$. Donde $\theta \sim \text{Pareto}(\alpha, \beta)$, esto es, para $\theta > \beta$ se tiene que

$$f(\theta) = \frac{\alpha \beta^{\alpha}}{\theta^{\alpha+1}}.$$

Obtén la distribución posterior. ¿Es una familia conjugada?

- 8. Sea X_1, \ldots, X_n una secuencia intercambiable, tales que $X_i \mid \theta \stackrel{\text{iid}}{\sim} N(\mu, \theta)$ con μ conocida. Encuentre la familia conjugada para θ y especifique la distribución posterior.
- 9. Sea X_1, \ldots, X_n una secuencia intercambiable, tales que las X_i son condicionalmente independientes e idénticamente distribuidas dado un parámetro θ . Para las siguientes familias de distribuciones encontrar la distribución de Jeffreys y la distribución posterior de θ .
 - (a) $X_i \mid \theta \sim Ber(\theta)$
 - (b) $X_i \mid \theta \sim Po(\theta)$
 - (c) $X_i \mid \theta \sim Exp(\theta)$
 - (d) $X_i \mid \theta \sim Maxwell(\theta)$, cuya densidad está dada por

$$f(x \mid \theta) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \theta^{\frac{3}{2}} x_i^2 \exp\left(-\frac{\theta x_i^2}{2}\right), \quad x > 0$$

- 10. Sea X_1, \ldots, X_n una secuencia intercambiable, tales que $X_i \mid \theta \stackrel{\text{iid}}{\sim} Exp(\theta)$, donde $\mathbb{E}(X_i \mid \theta) = \theta^{-1}$.
 - (a) Encuentre la distribución inicial de Jeffreys y comenta si es impropia.
 - (b) Deriva la distribución posterior.
 - (c) Considerando $\phi = \log(\theta)$, obtén la distribución de Jeffreys para ϕ mediante los siguientes métodos:
 - i. Expresando $\mathcal{L}(\theta)$ como $\mathcal{L}(\phi)$
 - ii. Transformando la distribución de Jeffreys de θ directamente a la de ϕ .

Actividades de DataCamp

Realizar los siguientes cursos

- 1. Fundamentals of Bayesian Data Analysis in R
- 2. Introduction to Data Visualization with ggplot2
- 3. Intermediate Data Visualization with ggplot2