WHAT IS CLAIMED IS:

1. A pharmaceutical composition useful in treating cancer or inflammation in a human, wherein the pharmaceutical composition comprises a pharmaceutically acceptable carrier, diluent or excipient and a compound of formula (I):

$$(R^2)_a$$
 R^3
 R^5
 R^1
 R^5
 R^1

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R³ and R⁴ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷, -C(O)N(R⁷)₂, -N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)R⁷, -R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;

each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof, with the proviso that R¹ can not be unsubstituted phenyl when all of the following occur:

- (i) a is 2 and one R^2 is methoxy in the 6-position of the isoquinolone ring and the other R^2 is methoxy in the 7-position of the isoquinolone ring; and
 - (ii) R³, R⁵ and R⁶ are all hydrogen, and
 - (iii) R⁴ is 3,4-dimethoxybenzyl.
 - 2. The use of a compound of formula (I):

$$(R^2)_a \xrightarrow{R^3} O$$

$$R^5 \qquad (I)$$

$$R^4 \qquad R^6$$

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R³ and R⁴ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷,

-C(O)N(R⁷)₂, -N(R⁷)₂, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)R⁷,

-R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl; each

R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof; to treat cancer in a mammal.

3. The use of a compound of formula (I):

$$(R^2)_a$$
 R^5
 R^5
 R^1
 R^6
 R^1

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

 R^3 and R^4 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;

each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof; to treat inflammation in a mammal.

- 4. The use of any one of Claim 2 or 3 wherein the cancer or inflammation is associated with hyperproliferation or cell survival.
- 5. The use or pharmaceutical composition according to any one of Claim 2 or 3 wherein the cancer or inflammation is associated with the activity of SGK.
 - 6. The use of a compound of formula (I)

$$(R^2)_a \xrightarrow{R^3} O$$

$$R^5 \qquad (I)$$

$$R^4 \qquad R^6$$

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

- each R² is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷, -C(O)N(R⁷)₂, -N(R⁷)₂, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)R⁷, -R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);
- R^3 and R^4 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);
- R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;
- each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;
- each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof; to treat hyperproliferative disorders in a mammal.

7. The use of a compound of formula (I):

$$(\mathbb{R}^2)_a$$
 \mathbb{R}^3
 \mathbb{R}^5
 \mathbb{R}^1
 \mathbb{R}^6
 \mathbb{R}^1

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R² is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷, -C(O)N(R⁷)₂, -N(R⁷)₂, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)R⁷, -R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);

 R^3 and R^4 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;

each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof;

to treat a mammal having a disorder or condition associated with hyperproliferation and cell survival.

- 8. The use of any one of Claims 2-7 wherein the mammal is a human.
- 9. The use of a compound of formula (I):

$$(R^2)_a \xrightarrow{R^3} O$$

$$R^5 \qquad (I)$$

$$R^4 \qquad R^6$$

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R³ and R⁴ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷, -C(O)N(R⁷)₂, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)R⁷, -R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;

each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof;

to treat a mammalian cell; wherein the compound is capable of inhibiting $SGK\alpha$.

- 10. The use of Claim 9 wherein the mammalian cell is treated in vitro.
- 11. The use of Claim 9 wherein the mammalian cell is treated in vivo.
- 12. The use of Claim 9 wherein the inhibition of activity results in a reduction of cell survival.
- 13. The use of Claim 9 wherein the inhibition of activity results in a reduction of cell division.
 - 14. The use of Claim 9, wherein the inhibition of activity results in apoptosis.
- 15. The use of Claim 9, wherein the inhibition of activity results in control of tumour growth.
 - 16. The use of any one of Claims 2-15 wherein R¹ is carbocyclyl.
 - 17. The use of Claim 16 wherein R¹ is aryl.
 - 18. The use of Claim 16 wherein R¹ is cycloalkyl.
 - 19. The use of any one of Claims 2-15 wherein R¹ is heterocyclyl.

20. The use of any one of Claims 2-19 wherein at least one R² is hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkylalkyl or cycloalkylalkenyl.

- 21. The use of any one of Claims 2-19 wherein at least one R² is aryl, aralkyl or aralkenyl.
- 22. The use of any one of Claims 2-19 wherein at least one R² is halo, haloalkyl or haloalkenyl.
- 23. The use of any one of Claims 2-19 wherein at least one R^2 is nitro, cyano, $-N(R^7)_2$, $-N(R^7)C(O)OR^8$, $-N(R^7)C(O)R^7$ or $-R^9-N=N-O-R^8$.
- 24. The use of any one of Claims 2-19 wherein at least one R² is heterocyclyl or heterocyclylalkyl.
- 25. The use of any one of Claims 2-19 wherein at least one R^2 is $-C(O)OR^7$ or $-C(O)N(R^7)_2$.
- 26. The use of any one of Claims 2-19 wherein at least one R^2 is $-OR^7$, $-S(O)_pR^7$ (where p is 0 to 2), or $-S(O)_pN(R^7)_2$ (where p is 0 to 2).
- 27. The use of any one of Claims 2-26 wherein R³ is hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cycloalkyl, cycloalkylalkyl or cycloalkylalkenyl.
 - 28. The use of any one of Claims 2-26 wherein R³ is aryl, aralkyl or aralkenyl.
- 29. The use of any one of Claims 2-26 wherein R^3 is nitro, cyano, $-N(R^7)_2$, $-N(R^7)C(O)OR^8$, $-N(R^7)C(O)R^7$ or $-R^9-N=N-O-R^8$.
- 30. The use of any one of Claims 2-26 wherein R³ is heterocyclyl or heterocyclylalkyl.

31. The use of any one of Claims 2-26 wherein R³ is -C(O)OR⁷ or -C(O)N(R⁷)₂.

- 32. The use of any one of Claims 2-26 wherein R^3 is $-OR^7$, $-S(O)_pR^7$ (where p is 0 to 2) or $-S(O)_pN(R^7)_2$ (where p is 0 to 2).
- 33. The use of any one of Claims 2-32 wherein R⁴ is hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cycloalkyl, cycloalkylalkyl or cycloalkylalkenyl.
 - 34. The use of any one of Claims 2-32 wherein R⁴ is aryl, aralkyl or aralkenyl.
- 35. The use of any one of Claims 2-32 wherein R^4 is nitro, cyano, $-N(R^7)_2$, $-N(R^7)C(O)OR^8$, $-N(R^7)C(O)R^7$ or $-R^9-N=N-O-R^8$.
- 36. The use of any one of Claims 2-32 wherein \mathbb{R}^4 is heterocyclyl or heterocyclylalkyl.
 - 37. The use of any one of Claims 2-32 wherein R^4 is $-C(O)OR^7$ or $-C(O)N(R^7)_2$.
- 38. The use of any one of Claims 2-32 wherein R^4 is $-OR^7$, $-S(O)_pR^7$ (where p is 0 to 2) or $-S(O)_pN(R^7)_2$ (where p is 0 to 2).
- 39. The use of any of one of Claims 2-38 wherein R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl or haloalkyl.
- 40. A method of treating cancer in a mammal, which method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

 R^3 and R^4 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl; each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof.

41. A method of treating inflammation in a mammal, which method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

$$(R^2)_a \xrightarrow{R^3} O$$

$$R^5 \qquad (I)$$

$$R^4 \qquad R^6$$

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

 R^3 and R^4 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)C(O)N(R^7)_2$, $-N(R^7)C(O)OR^8$, $-N(R^7)C(O)R^7$, $-R^9-N=N-O-R^8$, $-S(O)_pR^7$ (where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;

- each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;
- each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain;

as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof.

- 42. The method according to any one of Claim 40 or 41 wherein the cancer or inflammation is associated with hyperproliferation or cell survival.
- 43. The method according to any one of Claim 40 or 41 wherein the cancer or inflammation is associated with the activity of SGK.
- 44. A method of treating hyperproliferative disorders in a mammal, which method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I)

$$(R^2)_a$$
 R^3
 R^5
 R^1
 R^4
 R^6

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R³ and R⁴ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷, -C(O)N(R⁷)₂, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)R⁷, -R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;

- each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;
- each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof.

45. A method of treating a mammal having a disorder or condition associated with hyperproliferation and cell survival, wherein said method comprises administering to the mammal having the disorder or condition a therapeutically effective amount of a compound of formula (I):

$$(R^2)_a$$
 R^3
 R^5
 R^1
 R^4
 R^6

wherein:

a is 0 to 4;

R¹ is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

R³ and R⁴ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷, -C(O)N(R⁷)₂, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)R⁷, -R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;

each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;

each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof.

- 46. The method according to any one of Claims 40-45 wherein the mammal is a human.
 - 47. A method of treating a mammalian cell with a compound of formula (I):

wherein:

a is 0 to 4;

R1 is carbocyclyl or heterocyclyl;

each R^2 is selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, $-OR^7$, $-C(O)OR^7$, $-C(O)N(R^7)_2$, $-N(R^7)_2$, where p is 0 to 2), and $-S(O)_pN(R^7)_2$ (where p is 0 to 2);

- R³ and R⁴ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, halo, haloalkyl, haloalkenyl, nitro, cyano, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, heterocyclyl, heterocyclylalkyl, -OR⁷, -C(O)OR⁷, -C(O)N(R⁷)₂, -N(R⁷)C(O)N(R⁷)₂, -N(R⁷)C(O)OR⁸, -N(R⁷)C(O)R⁷, -R⁹-N=N-O-R⁸, -S(O)_pR⁷ (where p is 0 to 2), and -S(O)_pN(R⁷)₂ (where p is 0 to 2);
- R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, cycloalkyl, cycloalkenyl and heterocyclylalkyl;
- each R⁷ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl;
- each R⁸ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, haloalkyl, haloalkenyl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl and cycloalkylalkenyl; and

R⁹ is a bond or a straight or branched alkylene or alkenylene chain; as a single stereoisomer, a mixture of stereoisomers, or as a racemic mixture of stereoisomers; or as a solvate or polymorph; or as a pharmaceutically acceptable salt thereof, wherein the method comprises administering the compound of formula (I) to a mammalian cell and the compound of formula (I) is capable of inhibiting the activity of SGK within the mammalian cell.

- 48. The method of Claim 47 wherein the mammalian cell is treated in vitro.
- 49. The method of Claim 47 wherein the mammalian cell is treated in vivo.
- 50. The method of Claim 47 wherein the inhibition of activity results in a reduction of cell survival.

51. The method of Claim 47 wherein the inhibition of activity results in a reduction of cell division.

- 52. The method of Claim 47, wherein the inhibition of activity results in apoptosis.
- 53. The method of Claim 47, wherein the inhibition of activity results in control of tumour growth.
- 54. The method or pharmaceutical composition of any one of Claims 1, 40-53 wherein R¹ is carbocyclyl.
 - 55. The method or pharmaceutical composition of Claim 54 wherein R¹ is aryl.
- 56. The method or pharmaceutical composition of Claim 54 wherein R¹ is cycloalkyl.
- 57. The method or pharmaceutical composition of any one of Claims 1, 40-53 wherein R¹ is heterocyclyl.
- 58. The method or pharmaceutical composition of any one of Claims 1,40-57 wherein at least one R² is hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkylalkyl or cycloalkylalkenyl.
- 59. The method or pharmaceutical composition of any one of Claims 1,40-57 wherein at least one R² is aryl, aralkyl or aralkenyl.
- 60. The method or pharmaceutical composition of any one of Claims 1,40-57 wherein at least one R² is halo, haloalkyl or haloalkenyl.

61. The method or pharmaceutical composition of any one of Claims 1, 40-57 wherein at least one R^2 is nitro, cyano, $-N(R^7)_2$, $-N(R^7)C(O)OR^8$, $-N(R^7)C(O)R^7$ or $-R^9-N=N-O-R^8$.

- 62. The method or pharmaceutical composition of any one of Claims 1,40-57 wherein at least one R² is heterocyclyl or heterocyclylalkyl.
- 63. The method or pharmaceutical composition of any one of Claims 1, 40-57 wherein at least one R^2 is $-C(O)OR^7$ or $-C(O)N(R^7)_2$.
- The method or pharmaceutical composition of any one of Claims 140-57 wherein at least one R^2 is $-OR^7$, $-S(O)_pR^7$ (where p is 0 to 2), or $-S(O)_pN(R^7)_2$ (where p is 0 to 2).
- 65. The method or pharmaceutical composition of any one of Claims 1,40-64 wherein R³ is hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cycloalkyl, cycloalkylalkyl or cycloalkylalkenyl.
- 66. The method or pharmaceutical composition of any one of Claims 1,40-64 wherein R³ is aryl, aralkyl or aralkenyl.
- 67. The method or pharmaceutical composition of any one of Claims 1,40-64 wherein R^3 is nitro, cyano, $-N(R^7)_2$, $-N(R^7)C(O)OR^8$, $-N(R^7)C(O)R^7$ or $-R^9-N=N-O-R^8$.
- 68. The method or pharmaceutical composition of any one of Claims 1,40-64 wherein R³ is heterocyclyl or heterocyclylalkyl.
- 69. The method or pharmaceutical composition of any one of Claims 1,40-64 wherein R^3 is $-C(O)OR^7$ or $-C(O)N(R^7)_2$.

70. The method or pharmaceutical composition of any one of Claims 1,40-64 wherein R^3 is $-OR^7$, $-S(O)_pR^7$ (where p is 0 to 2) or $-S(O)_pN(R^7)_2$ (where p is 0 to 2).

- 71. The method or pharmaceutical composition of any one of Claims 1,40-70 wherein R⁴ is hydrogen, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cycloalkyl, cycloalkylalkyl or cycloalkylalkenyl.
- 72. The method or pharmaceutical composition of any one of Claims 1,40-70 wherein \mathbb{R}^4 is aryl, aralkyl or aralkenyl.
- 73. The method or pharmaceutical composition of any one of Claims 1,40-70 wherein R^4 is nitro, cyano, $-N(R^7)_2$, $-N(R^7)C(O)OR^8$, $-N(R^7)C(O)R^7$ or $-R^9-N=N-O-R^8$.
- 74. The method or pharmaceutical composition of any one of Claims 1,40-70 wherein R⁴ is heterocyclyl or heterocyclylalkyl.
- 75. The method or pharmaceutical composition of any one of Claims 1,40-70 wherein R^4 is $-C(O)OR^7$ or $-C(O)N(R^7)_2$.
- 76. The method or pharmaceutical composition of any one of Claims 1,40-70 wherein R^4 is $-OR^7$, $-S(O)_pR^7$ (where p is 0 to 2) or $-S(O)_pN(R^7)_2$ (where p is 0 to 2).
- 77. The method or pharmaceutical composition of any of one Claims 1,40-76 wherein R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, alkyl or haloalkyl.