Classical Isothermal Microcalorimetry (for radionuclidic standardizations)

R. Collé

research chemist (retired)

formerly of NIST (1974 - 2003)

VERMI

Virtual European Radionuclide Metrology Institute Young Researchers Workshop

1-5 December 2003 - Paris

- ... I have not much doubt but that the two standards will be found in very good agreement, but it will be a devil of a mess if they are not.
- ... I think I can compare two nearly equal standards [to] an accuracy of 1 in 1000. I suppose, however, we shall not worry if the agreement of the two standards is within 1 in 300 or 400.

Ernest Rutherford (University of Manchester)
letter to Bertram Boltwood (Yale University)
18 march 1912

Some quick history

1896	radioactivity discovered
1903-4	first primary ("absolute") measurements of radioactivity (?)
	P. Curie & Labord (1903) – first calorimetry of radioactivity
	P. Curie & Dewar (1904) – cryogenic calorimetry at liquid
	water & liquid hydrogen temperatures
	Rutherford & Barnes (1903-4) dual cell & differential
	calorimetry
1914 – 45+	calorimetry was a principal tool for international intercomparison of standards (radium)
1925	Ellis & Wooster – confirmed need for neutrino
> 1950	calorimetry of "special nuclear materials" (power & bombs)
Now!	milli-K calorimetry / quantum bolometry

But you can still do old-fashioned calorimetry

Some references – classical calorimetry

- O.E. Meyers, *Nucleonics* **5** (11), 37 (1949) -- exhaustive review & bibliography of calorimetric measurements of radioactivity up to 1949.
- W.B. Mann, *Encyclopedic Dictionary of Physics*, Pergamon, Oxford (1962) updates Meyer's review to 1958.
- H.L. Callandar, *Proc. Phys. Soc.* **23**, 1 (1910) Peltier effect "radiobalance" for comparison of international standards
- W.B. Mann, Nucl. Instr. Meth. 112, 273 (1973); Appl. Radiat. Isot. 46, 185 (1995) the NIST radiobalance in use from 1953 to 1980s
- H. Ramthun, Nucl. Instr. Meth 112, 265 (1973) GREAT survey of different types of "classical" calorimeters
 - R. Collé, *Appl. Radiat. Isot.* **56**, 223 (2001). Classical isothermal microcalorimetry at cryogenic (8 K) temperatures
 - R. Collé, coming soon ... use of a commercial microcalorimeter

Radionuclidic Microcalorimetry

WHY?

Need to standardize GBq sources
Non-destructive (?)

dual-compensated cryogenic (8 K)
microcalorimeter

Appl. Radiat. Isot. 56, 223-230 (2002)

dual-cell near-isothermal (heat flow) microcalorimeter (303 K)

Recent calorimetric-based standardizations 2000-2003

- verified extant calibration factors for (i) Radiance ³²P "hot-wall" angioplasty balloons and (ii) Novoste old-style, ceramic-cored, ⁹⁰Sr ⁹⁰Y intravascular seeds
 - performed primary standardization for *Novoste*, newgeneration, aluminum-cored ⁹⁰Sr seeds to establish calibration factors
 - primary standardization for ¹⁰³Pd (and for calibration of Theragenics prostate seeds)

Basic relationship between

Activity A

is
$$dH/dt = P = A \hat{E}$$

 \hat{E} = average energy per decay

³ H / ⁵⁵ Fe	0.9 μ W ⋅ GBq -1
¹⁰³ Pd / ¹²⁵	9.
³² P	111.
⁹⁰ Sr- ⁹⁰ Y	181.
²²⁶ Ra	4338.

```
Assumes absorb & measure
ALL ionizing radiation (no
losses)
Iosses)
And no "heat defect" effects
And no chemistry)
(I.e., no chemistry)
```


$$P = dH/dt = -k (T - T_e)$$

$$\uparrow$$
constant

$$T_S = T_R$$

 $P_S = dH/dt = P_R$

CSC "Isothermal Microcalorimeter (IMC)"

port assemblies -- source (absorbers) holders & cells

$$P = V^2/R$$

embedded in source-holder cell

$$P = V^2/R$$

Average 100 points (1 s⁻¹)

 P_{+V} or P_{-V}

mean
$$(P) = 1/2$$
 mean $(P_{+V}) + 1/2$ mean (P_{-V})

var
$$(P) = 1/2$$
 var $(P_{+V}) + 1/2$ var $(P_{-V}) +$ covar $(P_{+V_{+}}, P_{-V_{+}})$
+ autocorr $(P_{+V_{+}}) +$ autocorr $(P_{-V_{+}})$

typical calibration data set

Filliben normality test for calibration data (Novoste seeds)

IMC Lab Book II, p.79

IMC Lab Book II, p.97

combusted ³²P balloon "A"

uncombusted ³²P balloon "C"

Novoste 90 Sr new seeds (Z1+Z2)

Radiance 32P balloon "A" (combusted)

Get $P_{\rm B}$ and $P_{\rm 0}$ from "fit" $P = P_{\rm B} + P_{\rm 0} \exp(-\lambda t)$

Novoste 90Sr-90Y new seeds (16)

requires baseline $P_{\rm B}$ measurement

Standardization results

source batch	number in batch	power (micowatt)	equivalent activity (MBq)
all (Xs + Ys)	16	342.70	1893.2
		342.30	1891.0
		344.41	1902.6
all Xs	8	172,45	952.7
		172.76	954.4
all Ys	8	169.84	938.3
		170.75	943.3
(Z1 + Z2)	2	57.81	319.4
		58.27	321.9
		58.09	320.9

From ion current measurements on individual seeds

X1 -X2 ranged from 114.4 MBq to 121.7 MBq
Y1 -Y2 ranged from 113.9 MBq to 119.9 MBq
$$\pm$$
 1.6 % (k = 2)

Z1 -Z3 ranged from 156.3 MBq to 164.3 MBq \pm 3 % (k = 2)

Destructive assay (by LS) on Z3 agreed with calorimetry *initially* by - 1.1 % (*now* with n = 5 determinations to 0.4 %)

Novoste new-style (Z batch) 90Sr seeds

at power = 60 microwatt

number of determinations	agreement with LS-based destructive assay	
1	1.8 % *	
3	0.7 %	
7	0.4 %	

^{*} typical 1-2 % accuracy for a single determination at this power level

FINDINGS

Got 1 to 2 % agreement w/ extant IC calibrations for both Radiance ³²P balloons
Novoste ⁹⁰Sr-⁹⁰Y seeds (old)

Calibration factors (15 determinations) for Novoste seeds (new) has s.d.m < 0.1% and 1/2range = 0.5 %

Better than 0.5 % agreement between LS-based digestive assay for new-style Novoste ⁹⁰Sr-⁹⁰Y seeds

Replicate measurement uncertainty is about 0.5 % to 1 % or so if can get $P_{\rm B}$ by fit with decay or if one has sufficient replications to get ΔP (with little decay)

Brachytherapy source

used to treat prostate cancer candidate for intravascular use

LS spectrometry – TDCR & CNET

Run 73

1st insertion (brass)

Run 74

2nd insertion (brass)

Run 74 calibration

Run 74 fit

Some concluding thoughts ...

- **Calorimetry is SLOW**
 - needs long time to thermally stabilize typically need multiple determinations different / absorbers / Monte Carlo calc. verifications
- **Calorimetry NOT Necessarily Non-Destructive method**
- NOW, accuracy is in range of \pm 1 or 2 percent Largely due to baseline instabilities and uncertainties in establishing baselines to get ΔP
- Power may be measured very accurately But still need average energy per decay to get Activity

END