Från labb 3:

6.4 Vi vill ha goda approximationer till integralvärdena I_1 och I_{∞} där

$$I_1 = \int_0^1 \frac{30}{1 + x^4 + \sqrt{1 + x^3}} dx$$
 och $I_\infty = \int_0^\infty \frac{30}{1 + x^4 + \sqrt{1 + x^3}} dx$.

- a) Beräkna I_1 med trapetsregeln med en extrapolation. Välj steget så att minst två siffrors noggrannhet erhålls.
- b) Ange en algoritm för beräkning av I_{∞} med sikte på fem korrekta decimaler.

Kombinationsproblem:

UPPGIFT 1:

Använd Matlabs fzero för att bestämma roten till x=cos(x).

UPPGIFT 2:

Givet tabellen nedan:

+					+
x	2	4	7	9	
+					
У					
+					+

- a) Skriv ett Matlab-program som interpolerar alla punkterna med ett enda polynom och sedan beräknar polynomets värde i x=8.
- b) Skriv ett Matlab-program som MKV-anpassar ett andragradspolynom till alla punkterna och sedan beräknar polynomets värde i x=8.
- c) Vi antar nu att tabellens y-värde för x=7 har fått ett litet skrivfel. Det ligger ganska nära det angivna tabellvärdet men är inte korrekt. Skriv ett Matlab-program som beräknar det y-värde för x=7 som krävs för att det MKV-anpassade andragradspolynomet ska ge värdet y=3 i x=8.

Tips: Använd gärna Matlabs polyfit, polyval och fzero!

Tentaexempel

1. (2p) Givet en funktion f(x) och en steglängd h gäller att

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f^{(3)}(x) - \frac{h^4}{120}f^{(5)}(x) + \mathcal{O}(h^6). \tag{1}$$

Derivatan till f uppskattas som $f'(x) \approx \frac{1}{2h}(f(x+h) - f(x-h))$. Denna uppskattning har noggrannhetsordning p, där (1p)

$\prod p = 1$	$\prod p = 3$	p = 5

Detta innebär att (1p)

	Antalet	korrekta	decimaler	ökar	med	en	faktor	2p	när	h	halveras.
--	---------	----------	-----------	------	-----	----	--------	----	-----	---	-----------

 \Box Felet med steglängd h/2 är en faktor 2p mindre än felet med steglängd h.

 \square Antalet korrekta decimaler ökar med en faktor p när h halveras.

 \square Felet med steglängd h/2 är en faktor p^2 mindre än felet med steglängd h.

 \square Antalet korrekta decimaler fördubblas när h minskar med en faktor p.

 \square Felet med steglängd h/2 är en faktor 2^p mindre än felet med steglängd h.

9. (2p)	Tre steg har tagits med en iterativ metod för ekvationslösning. Approximationen i des tre steg har ett fel som ges av vektorn				
	e = [0.9824	0.2456	0.0614]		
	Vad har metoden	för konverg	ensordning? (1p)		
	\square 0		3	6	
			\square 4	7	
	\square 2		<u> </u>	Metoden konvergerar inte.	
	En bra gissning av	v felet i näs	ta steg ges av (1p)		
			0.0038	0.0154	
	0.0307		0.0603	0.1595	
	0.2216		0.3070	0.4431	

2. (13p) Till en tabell med 20 mätpunkter (x_i, y_i) vill man anpassa en funktion på formen

$$y = e^{ax}(b\cos(\omega x) + cx^2) + d$$

- a) (4p) Antag att a=1 och $\omega=\pi$. Skriv ett Matlabprogram som med minstakvadratmetoden beräknar värden på parametrarna b, c och d. (De 20 mätpunkterna har värden men står inte med här i tentatexten. Markera bara var i programmet de 20 mätpunkterna ska läggas in).
- b) (2p) Kan parametrarna b, c och d beräknas om man sätter a=0 och $\omega=0$? (Glöm inte motiveringen!).
- c) (7p) Skriv ett Matlabprogram som med minstakvadratmetoden beräknar värden på alla parametrarna, dvs $a,\ b,\ c,\ d$ och ω . (Markera bara var i programmet de 20 mätpunkterna ska läggas in).

1. (12p) Givet integralen

$$I(k) = \int_{-1}^{1} \frac{\cos \pi x}{x^2 + k^2} dx, \quad k > 0,$$
(1)

- a) (3p) Beräkna en approximation till I(0.5) med hjälp av trapetsregeln och 4 lika stora delintervall.
- b) (4p) Formulera en algoritm, gärna i form av ett Matlab-program, som givet ett värde på k beräknar en approximation till I(k) med hjälp av trapetsregeln och N lika stora delintervall, där N är ett godtyckligt positivt heltal.
- c) (5p) Vi vill nu bestämma k så att

$$I(k) = k. (2)$$

Formulera en algoritm, gärna i form av ett Matlab-program, som givet en startgissning för k löser ekvationen (2). Din lösning ska använda sig av algoritmen som du formulerade i (b)-uppgiften och N skall enkelt kunna ändras.

För full poäng på uppgift 1 får du inte använda färdiga, inbyggda Matlab-funktioner för ekvationslösning eller integration.

4. (2p) Följande MATLAB-kod är given:

```
a = 1
b = 2
while abs(b-a)>0.0001
    c = b - (b-a)*(sqrt(b^2+1)-2)/(sqrt(b^2+1)-sqrt(a^2+1))
    a = b
    b = c
end
```

Vilken numerisk metod är detta en implementering av?

Trapetsmetoden	<u>Minstakvadratmetoden</u>
Simpsons metod	Polynominterpolation
Newtons metod	Rombergs metod
Sekantmetoden	Intervallhalveringsmetoden