Mercedes-Benz

March 8, 2024

0.1 Mercedes-Benz Greener Manufacturing

3

0

0

0

0

0

0

0

0

0

0

Objective-You are required to reduce the time that cars spend on the test bench. Others will work with a dataset representing different permutations of features in a Mercedes-Benz car to predict the time it takes to pass testing. Optimal algorithms will contribute to faster testing, resulting in lower carbon dioxide emissions without reducing Mercedes-Benz's standards.

```
[1]: # Importing the required libraries
     import numpy as np
     import pandas as pd
     from sklearn.decomposition import PCA
     import matplotlib.pyplot as plt
     import seaborn as sns
     import matplotlib.pyplot as plt
     import warnings
     warnings.filterwarnings('ignore')
[2]: # Importing the data
     train = pd.read_csv('train.csv')
     test = pd.read_csv('test.csv')
[6]:
    train.head()
[6]:
        ID
                     X0 X1
                             X2 X3 X4 X5 X6 X8
                                                     X375
                                                            X376
                                                                   X377
                                                                         X378
                                                                                X379
                                                                                       \
     0
             130.81
                      k
                             at
                                     d
                                            j
                                                         0
                                                                0
                                                                      1
                                                                             0
                                                                                   0
                                  a
                                        u
                                               0
     1
         6
              88.53
                                     d
                                                         1
                                                               0
                                                                      0
                                                                             0
                                                                                   0
                      k
                         t
                             av
                                  е
                                        у
                                           1
                                               0
     2
         7
              76.26
                                  С
                                     d
                                        X
                                            j
                                                         0
                                                               0
                                                                      0
                                                                             0
                                                                                   0
                     az
                          W
                              n
                                               х
     3
         9
              80.62
                                  f
                                     d
                                        x
                                           1
                                                         0
                                                                0
                                                                      0
                                                                             0
                                                                                   0
                     az
                         t
                              n
                                               е
        13
              78.02
                     az
                          v
                              n
                                  f
                                     d
                                        h
                                           d
                                               n
                                                         0
                                                               0
                                                                      0
                                                                             0
                                                                                   0
               X382
                            X384
                                   X385
        X380
                     X383
            0
                  0
                         0
     0
                               0
                                      0
     1
            0
                  0
                         0
                               0
                                      0
     2
            0
                  1
                         0
                               0
                                      0
```

[5 rows x 378 columns]

```
[4]: test.head()
 [4]:
         ID
             X0 X1
                    X2 X3 X4 X5 X6 X8
                                         X10
                                                 X375
                                                        X376
                                                              X377
                                                                     X378
                                                                           X379
                                                                                 X380
                                                     0
                                                           0
                                                                  0
                                                                              0
             az
                      n
                         f
                            d
                               t
                                   a
                                      W
                                           0
                                                                        1
          2
                                           0
                                                     0
                                                           0
                                                                  1
                                                                        0
                                                                              0
      1
              t
                 b
                     ai
                         a
                            d
                               b
                                   g
                                      У
                                                                                     0
                                                           0
                                                                  0
      2
                         f
                                           0
                                                     0
                                                                        1
                                                                              0
                                                                                     0
          3
                            d
             az
                 V
                     as
                               a
                                   j
                                      j
      3
                 1
                         f
                            d
                                  1
                                           0
                                                     0
                                                           0
                                                                  0
                                                                        1
                                                                              0
                                                                                     0
             az
                      n
                               Z
                                     n
                                                           0
                                                                  0
                            d y
                                           0
                                                     1
                                                                                     0
                 S
                     as
                         С
         X382 X383
                     X384
                            X385
      0
            0
                   0
                         0
                               0
      1
            0
                   0
                         0
                               0
      2
            0
                   0
                         0
                               0
      3
            0
                   0
                         0
                               0
            0
                  0
                         0
                               0
      [5 rows x 377 columns]
 [7]: train.columns
 [7]: Index(['ID', 'y', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8',
             'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
             'X385'],
            dtype='object', length=378)
 [8]: test.columns
 [8]: Index(['ID', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8', 'X10',
             'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
             'X385'],
            dtype='object', length=377)
 [9]: train.shape
 [9]: (4209, 378)
[10]: test.shape
[10]: (4209, 377)
[12]: # Collect the Y values into an array
      y_train = train['y'].values
```

```
y_train
[12]: array([130.81, 88.53, 76.26, ..., 109.22, 87.48, 110.85])
[13]: # Understanding the data types:
      cols = [c for c in train.columns if 'X' in c]
      print('Number of features: {}'.format(len(cols)))
      print('Feature types:')
      train[cols].dtypes.value_counts()
     Number of features: 376
     Feature types:
[13]: int64
                368
     object
      dtype: int64
[14]: # Count the data in each of the columns
      counts = [[], [], []]
      for c in cols:
          typ = train[c].dtype
          uniq = len(np.unique(train[c]))
          if uniq ==1:
              counts[0].append(c)
          elif uniq == 2 and typ ==np.int64:
              counts[1].append(c)
          else:
              counts[2].append(c)
      print('Constant features: {} Binary feature: {} Categorical features: {}\n'
       .format(*[len(c) for c in counts]))
      print('Constant features:',counts[0])
      print('Categorical features:', counts[2])
     Constant features: 12 Binary feature: 356 Categorical features: 8
     Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289',
     'X290', 'X293', 'X297', 'X330', 'X347']
     Categorical features: ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
[15]: # Splitting the data
      usable_columns = list(set(train.columns) - set(['ID','y']))
      y_train = train['y'].values
      id_test = test['ID'].values
      x_train = train[usable_columns]
      x_test = test[usable_columns]
```

Checking for null values and unique values for train and test data

```
[20]: x_train.isnull().any().any()
[20]: False
[21]: x test.isnull().any().any()
[21]: False
          Label Encoding the Categorical Values
[22]: for column in usable_columns:
          cardinality = len(np.unique(x_train[column]))
          if cardinality == 1:
               x_train.drop(column, axis=1) # column with only one
               # value is useless so we drop it.
              x_test.drop(column, axis=1)
          if cardinality >2: # Column is categorical
              mapper = lambda x: sum([ord(digit) for digit in x])
              x_train[column] = x_train[column].apply(mapper)
               x_test[column] = x_test[column].apply(mapper)
      x_train.head()
[22]:
         X315
               X111
                      X156
                            X124
                                  X207
                                         X218
                                               X17
                                                     X164
                                                                 X31
                                                                         X34
                                                                              X357
                                                           X74
      0
                         1
                                0
                                      0
                                            0
                                                  0
                                                        0
                                                                   1
                                                                           0
                                                                                  0
      1
            0
                   1
                         1
                               0
                                      0
                                            0
                                                  0
                                                        0
                                                             1
                                                                   1
                                                                           0
                                                                                  0
      2
            0
                   1
                         0
                               0
                                      0
                                            1
                                                  1
                                                        0
                                                             1
                                                                   1
                                                                           0
                                                                                  0
      3
            0
                   1
                         0
                               0
                                      0
                                            1
                                                  0
                                                        0
                                                             1
                                                                   1
                                                                           0
                                                                                  0
      4
            0
                   1
                         0
                                0
                                      0
                                            1
                                                  0
                                                             1
                                                                   1
                                                                           0
                                                                                  0
         X383
               X220
                      X350
                            X77
                                  X329
                                        X270
                                              X150
                                                     X69
      0
            0
                   1
                         0
                              0
                                     1
                                           0
                                                  1
                                                       0
      1
            0
                         0
                              0
                                     1
                                           0
                                                  1
                                                       0
      2
            0
                   1
                              0
                                     0
                                           0
                                                       0
                         1
                                                  1
      3
                                     0
            0
                   1
                         1
                              0
                                           0
                                                  1
                                                       0
      4
            0
                         1
                                           0
                                                  1
      [5 rows x 376 columns]
[23]: # Make sure the data is changed into numerical values
      print('feature dtypes:')
      x_train[cols].dtypes.value_counts()
```

feature dtypes:

```
[23]: int64 376 dtype: int64
```

0.3 Perform dimensionality reduction.

```
[24]: n_{comp} = 12
      pca = PCA(n_components = n_comp,random_state = 420)
      pca2_results_train = pca.fit_transform(x_train)
      pca2_results_test = pca.transform(x_test)
[28]: pca2_results_train
[28]: array([[-49.08156207, -4.90948084, -17.25085325, ..., 1.65805072,
                0.93297242,
                            1.67842477],
             [-48.94680383, -7.22674339, -13.7631947, ..., -0.21428893,
                0.10899682, 0.44965265],
             [ 92.62761708, 31.9940341 , -26.17503456, ..., -0.62195786,
                2.92596081, -0.52732605],
             [89.47970814, 20.44554421, 48.11999819, ..., -1.27196174,
               -0.2873013 , 2.00806385],
             [ 96.97110845, 31.50977186, 49.20059282, ..., 0.14366004,
               -0.9797229 , 0.99172893],
             [-17.21024322, -14.22166025, 55.38091289, ..., -0.28904432,
               -0.31653098, 0.69155615]])
[26]: pca2_results_test
[26]: array([[ 9.22615149e+01, 3.29260839e+01, -3.01130736e+01, ...,
             -4.11418166e-01, 3.62103016e+00, -1.20767016e+00],
             [-3.48622379e+01, 6.87132606e+00, -3.74760829e+01, ...,
               6.09270156e-01, -6.95837529e-01, -4.24915489e-01],
             [ 4.36560426e+01, -5.05939489e+01, -6.10591086e+01, ...,
             -3.20457644e-01, 2.60144467e+00, -1.53760386e+00],
             [-2.52437784e+01, -2.63794193e+01, 5.40742341e+01, ...,
               6.03526031e-01, 2.61277676e-02, 3.67039655e-02],
             [ 4.53823778e+01, -6.38062446e+01, 3.58666036e+01, ...,
             -9.15188266e-01, -6.72303829e-01, 5.15228832e-01],
             [-4.23807477e+01, -2.52862351e+01, 6.10815522e+01, ...,
             -2.98851963e-01, -9.77085229e-01, 5.35179833e-02]])
```

0.4 Predict your test_df values using XGBoost.

```
[29]: # Training Using XGBoost
      import xgboost as xgb
      from sklearn.metrics import r2_score
      from sklearn.model_selection import train_test_split
[30]: x_train,x_val,y_train,y_val = train_test_split(pca2_results_train, y_train,u
       otest size=0.2, random state=4242)
[31]: d_train = xgb.DMatrix(x_train, label = y_train)
      d_val = xgb.DMatrix(x_val,label = y_val)
      # dtest = xqb.DMatrix(x test)
      d_test = xgb.DMatrix(pca2_results_test)
[32]: params = {}
      params['Objective'] = 'reg:linear'
      params['eta'] = 0.02
      params['max_depth'] = 4
      def xgb_r2_score(preds, dtrain):
          labels = dtrain.get_label()
          return 'r2', r2_score(labels, preds)
      watchlist = [(d_train, 'train'),(d_val,'valid')]
      clf = xgb.train(params, d_train, 1000, watchlist, early_stopping_rounds=50,
                     feval=xgb_r2_score, maximize=True, verbose_eval=10)
     [10:00:42] WARNING: ../src/learner.cc:627:
```

[10:00:42] WARNING: ../src/learner.cc:627: Parameters: { "Objective" } might not be used.

This could be a false alarm, with some parameters getting used by language bindings but

then being mistakenly passed down to XGBoost core, or some parameter actually being used

but getting flagged wrongly here. Please open an issue if you find any such cases.

```
[0] train-rmse:99.14834 train-r2:-58.35295 valid-rmse:98.26297 valid-r2:-67.63754
[10] train-rmse:81.27653 train-r2:-38.88428 valid-rmse:80.36433 valid-r2:-44.91014
[20] train-rmse:66.71610 train-r2:-25.87403 valid-rmse:65.77334 valid-r2:-29.75260
```

[30] train-rmse:54.86912	train-r2:-17.17722	valid-rmse:53.89136
valid-r2:-19.64525		
[40] train-rmse:45.24709	train-r2:-11.36097	valid-rmse:44.22323
valid-r2:-12.90218	0 7 46700	1:1 00 07000
[50] train-rmse:37.44854 valid-r2:-8.40630	train-r2:-7.46723	valid-rmse:36.37628
[60] train-rmse:31.14584	train-r2:-4.85695	valid-rmse:30.02266
valid-r2:-5.40738	11din 12. 4.00000	Valla limbe.ou.uzzou
[70] train-rmse:26.08417	train-r2:-3.10795	valid-rmse:24.91510
valid-r2:-3.41273		
[80] train-rmse:22.04312	train-r2:-1.93371	valid-rmse:20.83068
valid-r2:-2.08453		
[90] train-rmse:18.84671	train-r2:-1.14458	valid-rmse:17.59609
valid-r2:-1.20097		
[100] train-rmse:16.33297	train-r2:-0.61065	valid-rmse:15.07907
valid-r2:-0.61633		
[110] train-rmse:14.39787	train-r2:-0.25161	valid-rmse:13.14761
valid-r2:-0.22878		
[120] train-rmse:12.92938	train-r2:-0.00932	valid-rmse:11.69322
valid-r2:0.02804		
[130] train-rmse:11.81501	train-r2:0.15717	valid-rmse:10.61718
valid-r2:0.19869	+	1:1 0 04077
[140] train-rmse:10.98634 valid-r2:0.31034	train-r2:0.27125	valid-rmse:9.84977
[150] train-rmse:10.37862	train-r2:0.34964	valid-rmse:9.31622
valid-r2:0.38303	train 12.0.54304	valid imse.9.51022
[160] train-rmse:9.92636	train-r2:0.40509	valid-rmse:8.95744
valid-r2:0.42964	5141H 12.0.10000	Valla 1mb0.0.00111
[170] train-rmse:9.59382	train-r2:0.44428	valid-rmse:8.71413
valid-r2:0.46020		
[180] train-rmse:9.34595	train-r2:0.47263	valid-rmse:8.55244
valid-r2:0.48005		
[190] train-rmse:9.15988	train-r2:0.49342	valid-rmse:8.44786
valid-r2:0.49269		
[200] train-rmse:9.01715	train-r2:0.50908	valid-rmse:8.38564
valid-r2:0.50013		
[210] train-rmse:8.91491	train-r2:0.52015	valid-rmse:8.34641
valid-r2:0.50480		
[220] train-rmse:8.82930	train-r2:0.52932	valid-rmse:8.32277
valid-r2:0.50760		
[230] train-rmse:8.76269	train-r2:0.53640	valid-rmse:8.30887
valid-r2:0.50924		7:1 0.00400
[240] train-rmse:8.71004	train-r2:0.54195	valid-rmse:8.30193
valid-r2:0.51006	+i0:0 F4690	1:-1
[250] train-rmse:8.66384 valid-r2:0.51070	train-r2:0.54680	valid-rmse:8.29649
[260] train-rmse:8.62535	train-r2:0.55082	valid-rmse:8.29381
valid-r2:0.51102	014111 12.V.0000Z	valla impe.u.23001
Valla 12.0.01102		

[270] train-rmse:8.59332	train-r2:0.55414	valid-rmse:8.29034	
valid-r2:0.51143	0 0 55700	1:1 0.00706	
[280] train-rmse:8.56503 valid-r2:0.51171	train-r2:0.55708	valid-rmse:8.28796	
[290] train-rmse:8.53976	train-r2:0.55969	valid-rmse:8.28659	
valid-r2:0.51187			
[300] train-rmse:8.51381	train-r2:0.56236	valid-rmse:8.28935	
valid-r2:0.51155			
[310] train-rmse:8.48420	train-r2:0.56540	valid-rmse:8.28632	
valid-r2:0.51190			
[320] train-rmse:8.46249	train-r2:0.56762	valid-rmse:8.28691	
valid-r2:0.51183			
[330] train-rmse:8.43999	train-r2:0.56991	valid-rmse:8.28423	
valid-r2:0.51215			
[340] train-rmse:8.41568	train-r2:0.57239	valid-rmse:8.28313	
valid-r2:0.51228			
[350] train-rmse:8.38980	train-r2:0.57501	valid-rmse:8.28000	
valid-r2:0.51265			
[360] train-rmse:8.36332	train-r2:0.57769	valid-rmse:8.27881	
valid-r2:0.51279			
[370] train-rmse:8.33579	train-r2:0.58047	valid-rmse:8.27188	
valid-r2:0.51360			
[380] train-rmse:8.31223	train-r2:0.58284	valid-rmse:8.27152	
valid-r2:0.51365			
[390] train-rmse:8.29179	train-r2:0.58488	valid-rmse:8.27227	
valid-r2:0.51356			
[400] train-rmse:8.26806	train-r2:0.58726	valid-rmse:8.26870	
valid-r2:0.51398			
[410] train-rmse:8.23972	train-r2:0.59008	valid-rmse:8.26509	
valid-r2:0.51440			
[420] train-rmse:8.21456	train-r2:0.59258	valid-rmse:8.26054	
valid-r2:0.51494			
[430] train-rmse:8.18769	train-r2:0.59524	valid-rmse:8.26058	
valid-r2:0.51493			
[440] train-rmse:8.16357	train-r2:0.59762	valid-rmse:8.26004	
valid-r2:0.51499			
[450] train-rmse:8.13851	train-r2:0.60009	valid-rmse:8.26038	
valid-r2:0.51496			
[460] train-rmse:8.11633	train-r2:0.60227	valid-rmse:8.26123	
valid-r2:0.51486			
[470] train-rmse:8.09531	train-r2:0.60433	valid-rmse:8.25834	
valid-r2:0.51519			
[480] train-rmse:8.07090	train-r2:0.60671	valid-rmse:8.25674	
valid-r2:0.51538			
[490] train-rmse:8.05218	train-r2:0.60853	valid-rmse:8.25828	
valid-r2:0.51520		1.1 0.05750	
[500] train-rmse:8.02514	train-r2:0.61116	valid-rmse:8.25752	
valid-r2:0.51529			

```
[510]
           train-rmse:7.99972
                                   train-r2:0.61361
                                                           valid-rmse:8.25632
     valid-r2:0.51543
                                    train-r2:0.61553
     [520]
            train-rmse:7.97983
                                                           valid-rmse:8.25644
     valid-r2:0.51542
                                                           valid-rmse:8.25607
     [530]
            train-rmse:7.95794
                                    train-r2:0.61764
     valid-r2:0.51546
            train-rmse:7.95286
                                    train-r2:0.61813
                                                           valid-rmse:8.25679
     valid-r2:0.51538
[33]: p_test = clf.predict(d_test)
[35]: sub = pd.DataFrame()
     sub['ID'] = id_test
     sub['y'] = p_test
     sub.to_csv('test_df.csv', index = False)
     sub.head(10)
[35]:
        ID
     0
        1
             83.153229
     1
        2
            96.980148
        3 82.968224
     2
     3
            76.981483
     4
        5 112.925842
     5
            91.509911
     6 10 100.502510
     7 11
            93.808548
     8 12 117.162224
     9 14 95.924377
 []:
```