CMSE 820 HW4

This HW is due on Oct 6th at 11:59 pm.

Question 1: For the statistical view of PCA, finish the proof for the theorem of Principal Components of a Random Vector assuming there is no repeated eigenvalues. Namely, you need to prove u_2 is indeed the second eigenvector of Σ_x and then generalize it to the rest of u_i .

Question 2: Suppose A is a symmetric real matrix $\in \mathbb{R}^{n \times n}$, and $\lambda_i(A)$ is the *i*th largest eigen value of A. Prove that

a.

$$\lambda_1(A) = \max_{\|v\|_2^2 = 1} v^T A v.$$

b.

$$\lambda_n(A) = \min_{\|v\|_2^2 = 1} v^T A v.$$

Question 3: Prove the Weyl's inequality: For symmetric real matrices $A, E \in \mathbb{R}^{n \times n}$. For $1 \le k \le n$,

$$\lambda_k(A) + \lambda_n(E) \le \lambda_k(A + E) \le \lambda_k(A) + \lambda_1(E),$$

where $\lambda_i(M)$ represents the *i*th largest eigenvalue of matrix M. Hint:you can apply the Courant-Fishcer theorem to prove it.

Theorem[Courant-Fishcer] For a symmetric real matrix $A \in \mathbb{R}^{n \times n}$ and $1 \leq k \leq n$, we have

$$\lambda_k(A) = \max_{\dim(V) = k} \min_{v \in V: ||v|| = 1} v^T A v; \lambda_k(A) = \min_{\dim(V) = n - k + 1} \max_{v \in V: ||v|| = 1} v^T A v$$

Question 4: Face recognition using PCA. In this exercise you will use a small subset of the Yale B dataset, which contains photos of ten individuals under various illumination conditions. Specifically, you will use only images from the first three individuals under ten different illumination conditions. Download the file YaleB-Dataset.zip. This file contains the image database along with the MATLAB function loadimage.m. Decompress the file and type help loadimage at the MATLAB prompt to see how to use this function.

- a. Write your own code for PCA (you can use any program language).
- b. Apply PCA with d=2 to all 10 images from individual
 - 1. Plot the mean face μ and the first two eigenfaces u_1 and u_2 . What do you observe?
 - 2. Plot $\mu + a_i u_i$ for $a_i = -\sigma_i, -0.8\sigma_i, -0.6\sigma_i, \dots, 0.6\sigma_i, 0.8\sigma_i, \sigma_i$ with $i \in \{1, 2\}$. Here, σ_i is the standard deviation of $y_{[i]}$ (the *i*th principal component). What do the first two principal components capture?

. Repeat for individuals 2 and 3. $\,$