$12n_{0435} \ (K12n_{0435})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.59109 \times 10^{70} u^{47} + 3.54965 \times 10^{69} u^{46} + \dots + 6.67625 \times 10^{70} b - 1.64708 \times 10^{71},$$

$$1.45455 \times 10^{70} u^{47} + 1.03237 \times 10^{71} u^{46} + \dots + 1.93611 \times 10^{72} a - 2.56576 \times 10^{72}, \ u^{48} + 18u^{46} + \dots + 13u + 12u^{48} + 2u^{48} + 2u^{48} + \dots + 12u^{48} + 2u^{48} + \dots + 12u^{48} + \dots + 1$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 68 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.59 \times 10^{70} u^{47} + 3.55 \times 10^{69} u^{46} + \dots + 6.68 \times 10^{70} b - 1.65 \times 10^{71}, \ 1.45 \times 10^{70} u^{47} + 1.03 \times 10^{71} u^{46} + \dots + 1.94 \times 10^{72} a - 2.57 \times 10^{72}, \ u^{48} + 18 u^{46} + \dots + 13 u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.00751276u^{47} - 0.0533219u^{46} + \dots - 12.6223u + 1.32521 \\ 0.238322u^{47} - 0.0531683u^{46} + \dots + 12.7021u + 2.46708 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.553394u^{47} - 0.134182u^{46} + \dots + 21.9136u + 6.68234 \\ 0.355711u^{47} - 0.0573944u^{46} + \dots + 21.1330u + 2.83673 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.171681u^{47} - 0.0635417u^{46} + \dots - 0.410390u + 3.71143 \\ 0.377230u^{47} - 0.0534903u^{46} + \dots + 21.6696u + 2.90737 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.01739u^{47} - 0.00588462u^{46} + \dots - 41.8000u - 8.31915 \\ -0.575290u^{47} + 0.0697542u^{46} + \dots - 22.4788u - 3.42421 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.22875u^{47} + 0.234716u^{46} + \dots - 73.9234u - 8.65813 \\ -0.0478120u^{47} + 0.0300471u^{46} + \dots - 4.36142u + 1.13699 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.20137u^{47} + 0.213398u^{46} + \dots - 74.0842u - 8.67754 \\ 0.0502293u^{47} + 0.000898209u^{46} + \dots - 2.60784u + 1.37666 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.442100u^{47} - 0.0756388u^{46} + \dots - 19.3212u - 4.89494 \\ -0.575290u^{47} + 0.0697542u^{46} + \dots - 22.4788u - 3.42421 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.724487u^{47} + 0.0435195u^{46} + \cdots 74.1390u 1.70909$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{48} + 67u^{47} + \dots + 604670586u + 32137561$
c_2, c_5	$u^{48} + 3u^{47} + \dots + 13144u + 5669$
c_3, c_7	$u^{48} + u^{47} + \dots + 12u + 1$
c_4, c_9	$u^{48} + 18u^{46} + \dots + 13u + 1$
c_6, c_{11}	$u^{48} + u^{47} + \dots - 2534u + 1167$
<i>c</i> ₈	$u^{48} - 3u^{47} + \dots + 3u + 1$
c_{10}	$u^{48} + 36u^{47} + \dots - 39u + 1$
c_{12}	$u^{48} + 11u^{47} + \dots + 7155479u + 5008881$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} - 157y^{47} + \dots + 26058532373273318y + 1032822827028721$
c_2, c_5	$y^{48} + 67y^{47} + \dots + 604670586y + 32137561$
c_3, c_7	$y^{48} - 9y^{47} + \dots - 22y + 1$
c_4, c_9	$y^{48} + 36y^{47} + \dots - 39y + 1$
c_6, c_{11}	$y^{48} - 53y^{47} + \dots + 12171488y + 1361889$
<i>c</i> ₈	$y^{48} - 3y^{47} + \dots + 33y + 1$
c_{10}	$y^{48} - 36y^{47} + \dots - 575y + 1$
c_{12}	$y^{48} + 45y^{47} + \dots + 12614337897293y + 25088888872161$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.624375 + 0.790739I		
a = 0.652451 + 0.017302I	3.11335 + 0.59534I	8.72046 - 1.05598I
b = -0.987977 - 0.377013I		
u = -0.624375 - 0.790739I		
a = 0.652451 - 0.017302I	3.11335 - 0.59534I	8.72046 + 1.05598I
b = -0.987977 + 0.377013I		
u = -0.441932 + 0.974715I		
a = -1.49605 - 0.17508I	-3.50502 - 4.85959I	-3.75126 + 8.82096I
b = 0.527184 - 0.376923I		
u = -0.441932 - 0.974715I		
a = -1.49605 + 0.17508I	-3.50502 + 4.85959I	-3.75126 - 8.82096I
b = 0.527184 + 0.376923I		
u = -0.673784 + 0.878510I		
a = -1.13342 - 1.57768I	2.90064 - 5.69851I	8.81108 + 5.67017I
b = 1.000680 - 0.446035I		
u = -0.673784 - 0.878510I		
a = -1.13342 + 1.57768I	2.90064 + 5.69851I	8.81108 - 5.67017I
b = 1.000680 + 0.446035I		
u = -0.032468 + 0.886041I		
a = 0.75785 + 1.61125I	-1.78883 + 1.42161I	-2.69512 - 4.63338I
b = 0.435941 + 0.357265I		
u = -0.032468 - 0.886041I		
a = 0.75785 - 1.61125I	-1.78883 - 1.42161I	-2.69512 + 4.63338I
b = 0.435941 - 0.357265I		
u = 0.846760 + 0.741793I		
a = 0.152370 - 0.285782I	0.97742 + 3.01246I	6.86160 - 7.48318I
b = 0.381842 + 0.020417I		
u = 0.846760 - 0.741793I		
a = 0.152370 + 0.285782I	0.97742 - 3.01246I	6.86160 + 7.48318I
b = 0.381842 - 0.020417I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.655494 + 0.992944I		
a = 0.422584 - 0.642594I	0.46539 + 2.67049I	2.00000 - 1.39704I
b = -0.135634 - 0.580747I		
u = 0.655494 - 0.992944I		
a = 0.422584 + 0.642594I	0.46539 - 2.67049I	2.00000 + 1.39704I
b = -0.135634 + 0.580747I		
u = 0.514823 + 1.094190I		
a = -0.087680 + 0.763881I	-1.61783 + 4.43732I	2.00000 - 5.85728I
b = 0.882038 + 0.252747I		
u = 0.514823 - 1.094190I		
a = -0.087680 - 0.763881I	-1.61783 - 4.43732I	2.00000 + 5.85728I
b = 0.882038 - 0.252747I		
u = 1.227510 + 0.143214I		
a = 0.507883 + 0.381592I	-10.62720 + 0.57436I	0
b = -0.99480 + 1.00630I		
u = 1.227510 - 0.143214I		
a = 0.507883 - 0.381592I	-10.62720 - 0.57436I	0
b = -0.99480 - 1.00630I		
u = 0.058897 + 1.244960I		
a = 0.47320 - 1.49785I	-4.30551 - 1.03154I	0
b = -1.064760 - 0.441088I		
u = 0.058897 - 1.244960I		
a = 0.47320 + 1.49785I	-4.30551 + 1.03154I	0
b = -1.064760 + 0.441088I		
u = -1.257530 + 0.042178I		
a = 0.451983 - 0.394677I	-10.56360 + 7.91020I	0 4.35250I
b = -1.01210 - 0.99277I		
u = -1.257530 - 0.042178I		
a = 0.451983 + 0.394677I	-10.56360 - 7.91020I	0. + 4.35250I
b = -1.01210 + 0.99277I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.081966 + 1.278240I		
a = -0.165976 + 1.161460I	-3.15567 - 4.84062I	0
b = -1.39247 + 0.57052I		
u = -0.081966 - 1.278240I		
a = -0.165976 - 1.161460I	-3.15567 + 4.84062I	0
b = -1.39247 - 0.57052I		
u = -0.135469 + 1.297940I		
a = -0.45559 + 1.67340I	-8.08347 - 4.38691I	0
b = -1.05029 + 1.24464I		
u = -0.135469 - 1.297940I		
a = -0.45559 - 1.67340I	-8.08347 + 4.38691I	0
b = -1.05029 - 1.24464I		
u = -0.037303 + 0.688643I		
a = 1.18323 + 2.50638I	-1.84510 + 1.37647I	-3.10892 - 4.85405I
b = 0.513502 + 0.031469I		
u = -0.037303 - 0.688643I		
a = 1.18323 - 2.50638I	-1.84510 - 1.37647I	-3.10892 + 4.85405I
b = 0.513502 - 0.031469I		
u = -0.238967 + 1.325580I		
a = -0.10468 + 1.41597I	-6.65584 - 1.72851I	0
b = -0.389767 + 1.147250I		
u = -0.238967 - 1.325580I		
a = -0.10468 - 1.41597I	-6.65584 + 1.72851I	0
b = -0.389767 - 1.147250I		
u = 0.076869 + 1.361260I		
a = -0.56627 - 1.73054I	-8.79264 + 3.29679I	0
b = -0.936074 - 0.890702I		
u = 0.076869 - 1.361260I		
a = -0.56627 + 1.73054I	-8.79264 - 3.29679I	0
b = -0.936074 + 0.890702I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.589410 + 0.100511I		
a = 0.567538 - 0.049914I	1.122130 + 0.019409I	9.50095 - 0.01156I
b = -0.746651 - 0.034665I		
u = 0.589410 - 0.100511I		
a = 0.567538 + 0.049914I	1.122130 - 0.019409I	9.50095 + 0.01156I
b = -0.746651 + 0.034665I		
u = -0.501349 + 0.282660I		
a = 1.161770 + 0.357456I	-1.93771 + 1.02545I	-1.89001 - 1.40862I
b = 0.124161 - 0.520948I		
u = -0.501349 - 0.282660I		
a = 1.161770 - 0.357456I	-1.93771 - 1.02545I	-1.89001 + 1.40862I
b = 0.124161 + 0.520948I		
u = 0.21012 + 1.44602I		
a = -0.495221 - 1.182570I	-6.03656 + 5.90639I	0
b = -0.621138 - 0.800411I		
u = 0.21012 - 1.44602I		
a = -0.495221 + 1.182570I	-6.03656 - 5.90639I	0
b = -0.621138 + 0.800411I		
u = 0.67234 + 1.40412I		
a = -0.52296 + 1.53340I	-14.5255 + 6.1758I	0
b = 1.14683 + 0.92820I		
u = 0.67234 - 1.40412I		
a = -0.52296 - 1.53340I	-14.5255 - 6.1758I	0
b = 1.14683 - 0.92820I		
u = -0.61912 + 1.43345I		
a = -0.37937 - 1.57791I	-14.9365 - 14.5337I	0
b = 1.16220 - 0.96300I		
u = -0.61912 - 1.43345I		
a = -0.37937 + 1.57791I	-14.9365 + 14.5337I	0
b = 1.16220 + 0.96300I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.50632 + 1.50428I		
a = 0.688530 - 0.755252I	-15.9240 + 6.7617I	0
b = 0.88540 - 1.18990I		
u = 0.50632 - 1.50428I		
a = 0.688530 + 0.755252I	-15.9240 - 6.7617I	0
b = 0.88540 + 1.18990I		
u = -0.57393 + 1.51903I		
a = 0.650441 + 0.646597I	-15.5031 + 1.2996I	0
b = 0.860711 + 1.121730I		
u = -0.57393 - 1.51903I		
a = 0.650441 - 0.646597I	-15.5031 - 1.2996I	0
b = 0.860711 - 1.121730I		
u = -0.003644 + 0.307346I		
a = 3.59056 - 1.52243I	0.26991 + 4.16666I	3.28056 - 8.29206I
b = 1.030320 + 0.343288I		
u = -0.003644 - 0.307346I		
a = 3.59056 + 1.52243I	0.26991 - 4.16666I	3.28056 + 8.29206I
b = 1.030320 - 0.343288I		
u = -0.136716 + 0.053529I		
a = 2.64684 - 0.41040I	-4.05966 + 3.04369I	7.93184 - 4.57606I
b = 0.880852 + 0.819546I		
u = -0.136716 - 0.053529I		
a = 2.64684 + 0.41040I	-4.05966 - 3.04369I	7.93184 + 4.57606I
b = 0.880852 - 0.819546I		

$$II. \\ I_2^u = \langle -2u^{18} + 2u^{17} + \dots + b - 6, -3u^{19} + 4u^{18} + \dots + a + 6, u^{20} - u^{19} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3u^{19} - 4u^{18} + \dots - 30u^{2} - 6 \\ 2u^{18} - 2u^{17} + \dots - 6u + 6 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -4u^{19} + 4u^{18} + \dots + 2u^{2} - u \\ -4u^{19} + 4u^{18} + \dots - 11u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3u^{19} + 3u^{18} + \dots + 6u - 1 \\ -4u^{19} + 4u^{18} + \dots - 10u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -3u^{19} + 3u^{18} + \dots + u^{2} + 3u \\ u^{19} - 2u^{18} + \dots + 7u - 5 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{19} + u^{18} + \dots - 2u - 5 \\ u^{19} + 2u^{18} + \dots + 34u^{2} + 7 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{19} + 2u^{18} + \dots - 3u - 4 \\ u^{19} + 2u^{18} + \dots + 31u^{2} + 6 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -4u^{19} + 5u^{18} + \dots - 4u + 5 \\ u^{19} - 2u^{18} + \dots + 7u - 5 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes

$$= 5u^{19} - 19u^{18} + 41u^{17} - 102u^{16} + 143u^{15} - 297u^{14} + 330u^{13} - 608u^{12} + 541u^{11} - 904u^{10} + 653u^9 - 1017u^8 + 581u^7 - 856u^6 + 364u^5 - 527u^4 + 139u^3 - 204u^2 + 27u - 40u^2 + 27u^2 +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{20} - 18u^{19} + \dots - 12u + 1$
c_2	$u^{20} + 9u^{18} + \dots + 6u^2 + 1$
c_3	$u^{20} - 5u^{18} + \dots - 6u^2 + 1$
c_4	$u^{20} - u^{19} + \dots - u + 1$
c_5	$u^{20} + 9u^{18} + \dots + 6u^2 + 1$
c_6	$u^{20} - 5u^{18} + \dots - 2u + 1$
c_7	$u^{20} - 5u^{18} + \dots - 6u^2 + 1$
c_8	$u^{20} - 4u^{19} + \dots + 3u + 1$
c_9	$u^{20} + u^{19} + \dots + u + 1$
c_{10}	$u^{20} + 11u^{19} + \dots + 15u + 1$
c_{11}	$u^{20} - 5u^{18} + \dots + 2u + 1$
c_{12}	$u^{20} - 2u^{18} + \dots + 243u + 67$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} - 18y^{19} + \dots + 8y + 1$
c_2, c_5	$y^{20} + 18y^{19} + \dots + 12y + 1$
c_3, c_7	$y^{20} - 10y^{19} + \dots - 12y + 1$
c_4, c_9	$y^{20} + 11y^{19} + \dots + 15y + 1$
c_6, c_{11}	$y^{20} - 10y^{19} + \dots - 6y + 1$
c_8	$y^{20} + 4y^{19} + \dots - 17y + 1$
c_{10}	$y^{20} + 7y^{19} + \dots - 13y + 1$
c_{12}	$y^{20} - 4y^{19} + \dots - 11345y + 4489$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.331553 + 1.017880I		
a = -0.263137 - 0.594468I	-1.07687 - 5.96268I	2.09077 + 8.83123I
b = 1.161910 - 0.350994I		
u = -0.331553 - 1.017880I		
a = -0.263137 + 0.594468I	-1.07687 + 5.96268I	2.09077 - 8.83123I
b = 1.161910 + 0.350994I		
u = -0.709835 + 0.819251I		
a = 1.48006 + 1.76057I	2.17630 - 6.02563I	-0.56028 + 9.12343I
b = -1.044880 + 0.458438I		
u = -0.709835 - 0.819251I		
a = 1.48006 - 1.76057I	2.17630 + 6.02563I	-0.56028 - 9.12343I
b = -1.044880 - 0.458438I		
u = 0.796602 + 0.775891I		
a = -0.547851 - 0.034126I	0.67603 + 2.30760I	0.839526 + 0.812523I
b = -0.616511 + 0.410301I		
u = 0.796602 - 0.775891I		
a = -0.547851 + 0.034126I	0.67603 - 2.30760I	0.839526 - 0.812523I
b = -0.616511 - 0.410301I		
u = 0.419524 + 1.077190I		
a = -0.842248 + 0.809097I	-3.12109 + 3.82990I	-1.85547 - 2.52429I
b = 0.707292 - 0.140260I		
u = 0.419524 - 1.077190I		
a = -0.842248 - 0.809097I	-3.12109 - 3.82990I	-1.85547 + 2.52429I
b = 0.707292 + 0.140260I		
u = -0.291962 + 0.766600I		
a = -1.56953 + 0.25172I	-0.11610 + 3.27114I	-0.199143 - 1.320670I
b = -1.075650 - 0.352178I		
u = -0.291962 - 0.766600I		
a = -1.56953 - 0.25172I	-0.11610 - 3.27114I	-0.199143 + 1.320670I
b = -1.075650 + 0.352178I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.713645 + 0.939894I		
a = -0.698514 - 0.004869I	1.80246 + 0.56778I	0.483242 - 0.636305I
b = 1.066520 + 0.507122I		
u = -0.713645 - 0.939894I		
a = -0.698514 + 0.004869I	1.80246 - 0.56778I	0.483242 + 0.636305I
b = 1.066520 - 0.507122I		
u = 0.825016 + 0.948148I		
a = -0.304719 + 0.539253I	0.15761 + 3.77342I	1.85491 - 8.11212I
b = 0.574355 + 0.561311I		
u = 0.825016 - 0.948148I		
a = -0.304719 - 0.539253I	0.15761 - 3.77342I	1.85491 + 8.11212I
b = 0.574355 - 0.561311I		
u = 0.308877 + 0.668487I		
a = 2.53526 - 2.52532I	-1.51336 - 0.66802I	2.43579 - 3.63747I
b = -0.730517 - 0.250987I		
u = 0.308877 - 0.668487I		
a = 2.53526 + 2.52532I	-1.51336 + 0.66802I	2.43579 + 3.63747I
b = -0.730517 + 0.250987I		
u = 0.126858 + 1.307690I		
a = -0.50102 - 1.66176I	-7.62458 + 3.83881I	-1.21681 - 1.31905I
b = -0.904806 - 1.078820I		
u = 0.126858 - 1.307690I		
a = -0.50102 + 1.66176I	-7.62458 - 3.83881I	-1.21681 + 1.31905I
b = -0.904806 + 1.078820I		
u = 0.070116 + 0.565143I		
a = -0.788301 - 0.715423I	-4.51987 - 2.92216I	-8.87254 + 0.70432I
b = 0.862292 - 0.773239I		
u = 0.070116 - 0.565143I		
a = -0.788301 + 0.715423I	-4.51987 + 2.92216I	-8.87254 - 0.70432I
b = 0.862292 + 0.773239I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{20} - 18u^{19} + \dots - 12u + 1)$ $\cdot (u^{48} + 67u^{47} + \dots + 604670586u + 32137561)$
c_2	$(u^{20} + 9u^{18} + \dots + 6u^2 + 1)(u^{48} + 3u^{47} + \dots + 13144u + 5669)$
c_3	$ (u^{20} - 5u^{18} + \dots - 6u^2 + 1)(u^{48} + u^{47} + \dots + 12u + 1) $
c_4	$(u^{20} - u^{19} + \dots - u + 1)(u^{48} + 18u^{46} + \dots + 13u + 1)$
c_5	$(u^{20} + 9u^{18} + \dots + 6u^2 + 1)(u^{48} + 3u^{47} + \dots + 13144u + 5669)$
c_6	$ (u^{20} - 5u^{18} + \dots - 2u + 1)(u^{48} + u^{47} + \dots - 2534u + 1167) $
c_7	$ (u^{20} - 5u^{18} + \dots - 6u^2 + 1)(u^{48} + u^{47} + \dots + 12u + 1) $
c_8	$ (u^{20} - 4u^{19} + \dots + 3u + 1)(u^{48} - 3u^{47} + \dots + 3u + 1) $
c_9	$ (u^{20} + u^{19} + \dots + u + 1)(u^{48} + 18u^{46} + \dots + 13u + 1) $
c_{10}	$(u^{20} + 11u^{19} + \dots + 15u + 1)(u^{48} + 36u^{47} + \dots - 39u + 1)$
c_{11}	$(u^{20} - 5u^{18} + \dots + 2u + 1)(u^{48} + u^{47} + \dots - 2534u + 1167)$
c_{12}	$(u^{20} - 2u^{18} + \dots + 243u + 67)$ $\cdot (u^{48} + 11u^{47} + \dots + 7155479u + 5008881)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{20} - 18y^{19} + \dots + 8y + 1)$ $\cdot (y^{48} - 157y^{47} + \dots + 26058532373273318y + 1032822827028721)$
c_2, c_5	$(y^{20} + 18y^{19} + \dots + 12y + 1)$ $\cdot (y^{48} + 67y^{47} + \dots + 604670586y + 32137561)$
c_3, c_7	$(y^{20} - 10y^{19} + \dots - 12y + 1)(y^{48} - 9y^{47} + \dots - 22y + 1)$
c_4, c_9	$(y^{20} + 11y^{19} + \dots + 15y + 1)(y^{48} + 36y^{47} + \dots - 39y + 1)$
c_6, c_{11}	$(y^{20} - 10y^{19} + \dots - 6y + 1)$ $\cdot (y^{48} - 53y^{47} + \dots + 12171488y + 1361889)$
<i>c</i> ₈	$(y^{20} + 4y^{19} + \dots - 17y + 1)(y^{48} - 3y^{47} + \dots + 33y + 1)$
c_{10}	$(y^{20} + 7y^{19} + \dots - 13y + 1)(y^{48} - 36y^{47} + \dots - 575y + 1)$
c_{12}	$(y^{20} - 4y^{19} + \dots - 11345y + 4489)$ $\cdot (y^{48} + 45y^{47} + \dots + 12614337897293y + 25088888872161)$