MSnbase, efficient R-based access and

manipulation of raw mass spectrometry data

Laurent Gatto.*,† Sebastian Gibb.‡ and Johannes Rainer¶

†de Duve Institute, Université catholique de Louvain, Brussels, Belgium

‡Department of Anaesthesiology and Intensive Care of the University Medicine Greifswald,

Germany

¶Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck,

Bolzano, Italy

E-mail: laurent.gatto@uclouvain.be

Abstract

We present version 2 of the MSnbase R/Bioconductor package. MSnbase provides

infrastructure for the manipulation, processing and visualisation of mass spectrometry

data. Here we present how the new on disk infrastructure allows the handling of

hundreds on commodity hardware and present some application of the package.

Introduction

Mass spectrometry is a powerful technology to assays chemical and biological samples. It is

used routinely, with well characterised protocol, as well a development platform, to improve

on existing methods and devise new ones to analyse ever more complex sample in greater

details. The complexity and diversity of mass spectrometry yields data that is itself complex

and often times of considerable size, that requires non trivial processing before producing

1

interpretable results. This is particularly relevant, and can constitue a significant challenge for method developers that, in addition to the development of sample processing and mass spectrometry methods, need to process and analyse these new data to demonstrate the improvement in their technical and analytical work.

There exists a very diverse catalogue of software tools to explore, process and interpret mass spectrometry data. These range from low level software libraries such as vendor libraries, jmzML (ref), proteowizard (ref), ... that are aimed at programmers to develop new applications, to user-oriented applications, such as ProteomeDiscoverer, MaxQuant, ... that provide a limited and fixed set of functionality. The former are used through application programming interfaces exclusively, while the latter generally featuring graphical user interfaces (GUI).

TODO: Give examples of libraries re-used in user/gui focused application...

In this software note, we present version 2 of the MSnbase¹ R/Bioconductor software package. MSnbase offers a platform that lies between low level libraries and end-use software. It provides a flexible command line environment for metabolomics and proteomics mass spectrometry-based application, that allows a detailed step-by-step processing, analysis and exploration of the data and development of novel computational mass spectrometry methods.

Software functionality

On disk backend

Efficient low level access: in memory vs on disk mode (using mzR), benchmarking, used in ms-based proteomics and metabolomics.

Use cases

Example applications:

- visualisation - large scale data analyses (metabolomics, Johannes) - boxcar prototyping

Discussion

To address (from guidelines):

- potential for reuse: see^{2-4} for examples.
- general limitations
- system limitations
- end-user documentation
- developer documentation
- sample data
- benchmark data set
- availability
- license information
- system requirements

Collaborative development, 11 contributors since creation (see blog post).

Count packages depending on MSnbase.

Future developments.

The version of MSnbase used in this manuscritp is version 2.10.0. The main features presented here were available since version 2.0.

Acknowledgement

The authors thank the various contributors and users who have provided constructuve input and feedback that have helped, over the years, the improvement of the package. The authors declare no conflict of interest.

References

- (1) Gatto, L.; Lilley, K. S. MSnbase an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. *Bioinformatics* **2012**, *28*, 288–9.
- (2) Wieczorek, S.; Combes, F.; Lazar, C.; Giai Gianetto, Q.; Gatto, L.; Dorffer, A.; Hesse, A. M.; CoutÃi, Y.; Ferro, M.; Bruley, C.; Burger, T. DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. *Bioinformatics* **2017**, 33, 135–136.
- (3) Griss, J.; Vinterhalter, G.; Schwämmle, V. IsoProt: A Complete and Reproducible Workflow To Analyze iTRAQ/TMT Experiments. *J Proteome Res* **2019**, *18*, 1751–1759.
- (4) Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. *Anal Chem* **2006**, *78*, 779–87.