Date
09/11/21
Q. find the complex exponential fourier Sories represented
Of the following signals —
Solinia Comparing with $x(t) = A\cos\omega_0 t$ we get — fundamental freq. $\omega = 2\omega_0$ $x(t) = \frac{2}{n-2}a_n e^{\frac{1}{2}n\omega_0 t}$ [Complex Fourier Series]
Fundamental freq. w = 2 wo
Now, = = an exhapt Complex rounces Senter
Now $x(t) = 4\cos \lambda u_0 t = \sum_{n=-\infty}^{\infty} a_n e^{jn \lambda u_0 t}$
$00 4\cos 2\omega_0 t = 2\left[\cos 2\omega_0 t + j\sin 2\omega_0 t + \cos 2\omega_0 t - j\sin 2\omega_0 t\right]$ $= 2\left[e^{j2\omega_0 t} + e^{-j2\omega_0 t}\right]$ $= 2e^{j2\omega_0 t} + 2e^{-j2\omega_0 t}$
$= 2 \left[e^{\frac{1}{4}\omega_0 t} + e^{\frac{1}{4}\omega_0 t} \right]$ $= 2 e^{\frac{1}{4}\omega_0 t} + 2 e^{-\frac{1}{4}\omega_0 t}$
- RE TRE
of The complex fourier coefficients for 4000 200 t are -
of The complex fourier coefficients for $4\cos 2\omega_0 \pm ane$ $a_{-1} = 2 \text{and} a_1 = 2 a_2 = 0 , n \neq 1$
(b) $x(t) = \cos^2 t$
Solm: Coiven, $cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $n(t) = cos^2 t$ $sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2}$
$n(t) = \cos^2 t$ $\sin \phi = \frac{e^4 - e^4}{2}$
$= \times \kappa(t) = \frac{1 + \cos \lambda t}{\lambda}$ $= \times \kappa(t) = \frac{1}{\lambda} + \frac{\cos \lambda t}{\lambda}$
$=> \times (E) = 12 \times 12$
Hers fundamental angular frequency of cost is Wo = 2.
Mero fundamental angular frequency of cost is $\omega_0 = 2$. $one x(t) = \cos^2 t = \sum_{n=\infty}^{\infty} a_n e^{in\omega_n t} = \sum_{n=\infty}^{\infty} a_n e^{in2t}$
By Euler's formula,
$\chi(t) = \cot^{2}t$ $= \chi(t) = \left(\frac{e^{it} + e^{-it}}{a}\right)^{2}$
$=$ \times $(4) = ($

$$= \frac{1}{2} \times (t) = \frac{1}{2} + \frac{1}{4} \cdot e^{-3t} + \frac{1}{4} \cdot e^{-3t}$$

$$= \frac{1}{2} \times (t) = \frac{1}{2} + \frac{1}{4} \cdot e^{-3t} + \frac{1}{4} \cdot e^{-3t}$$

$$= \frac{1}{2} \times (t) = \frac{1}{2} + \frac{1}{4} \cdot e^{-3t} + \frac{1}{4} \cdot e^{-3t}$$

$$= \frac{1}{2} \times (t) = \frac{1}{2} \cdot e^{-3t} \times e^{-3t} \times e^{-3t}$$

$$= \frac{1}{2} \cdot e^{-3t} \times e^{-3t} \times e^{-3t} \times e^{-3t}$$

$$= \frac{1}{2} \cdot e^{-3t} \times e^{-3t} \times e^{-3t} \times e^{-3t}$$

$$= \frac{1}{2} \cdot e^{-3t} \times e^{-3t} \times e^{-3t} \times e^{-3t}$$

$$= \frac{1}{2} \cdot e^{-3t} \times e^{-3t} \times e^{-3t} \times e^{-3t} \times e^{-3t}$$

$$= \frac{1}{2} \cdot e^{-3t} \times e^$$