МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Параллельные алгоритмы»

Тема: Параллельное умножение матриц

Студент гр. 0303	Бодунов П.А.
Преподаватель	 Сергеева Е.И.

Санкт-Петербург

2023

Цель работы.

Изучить умножение матриц на видеокарте.

Задание.

- 1) Реализовать умножение матриц на видеокарте при помощи OpenCL
- 2) Сравнить время работы умножения матриц на видеокарте со временем работы на CPU при помощи алгоритма Штрассена.

Выполнение работы.

Был реализован класс Matrix, который содержит атрибуты: количество строк и столбцов, а так же матрица преобразованная в строку.

Так же класс Matrix имеет следующие методы: умножения, сравнения, присваивания и вывод.

Так же был реализован kernel умножения матриц для GPU mult_matrix.

Функция create_device обнаруживает вычислительное устройство.

Функция build_program считывает из файла mandekbrot.cl исполняемый код и преобразует в программу.

Функция invoke kernel запускает kernel.

Для алгоритма Штрассена возьмём постоянное количество потоков равное 7.

Результаты зависимости времени работы программы от размерности матрицы для алгоритма Штрассена и для алгоритма вычисления на видеокарте представлены в табл. 1.

Таблица 1 — Зависимость времени работы программы от размерности матрицы

	Время выполнения в мкс.		
Размерность матрицы	GPU	Алгоритм Штрассена	
32	1	1	
64	1	4	
128	2	11	
256	2	64	
512	12	386	

1024	137	2567
2048	847	18207
4096	6292	149555

Исходя из результатов таблицы 1, время умножения матриц на GPU много меньше, чем на CPU при помощи алгоритма Штрассена но на маленьких матрицах аремя выполнения примерно одинаковое.

Выводы.

В процессе выполнения лабораторной работы было изучено умножение матриц при помощи OpenCL и практически реализован данный алгоритм. Так же было выяснено, что умножение матриц на видеокарте намного быстрее, чем на процессоре.