Evolutionary Planning and Scheduling Workshop @ ICAPS 2013

Marco Baioletti, Valentina Poggioni, Marc Schoenauer, Vincent Vidal

University of Perugia, Italy INRIA Saclay Île-de-France, France ONERA, Toulouse, France

Hypotheses

- Search space Ω
- Objective function F

(to minimize)

(initialization)

Hill Climbing

- Randomly draw x₀
- Compute F(x₀)
 - (evaluation)
- Loop
 - $-y = Best neighbor(x_{\downarrow})$
 - Compute F(y)
 - $If F(y) < F(x_{+}) x_{++1} = y$ else $X_{t+1} = X_t$

(neighbor structure on Ω)

(accept if improvement)

Hypotheses

- Search space Ω
- Objective function F

(to minimize)

Stochastic Hill Climbing

- Randomly draw x₀
- Compute F(x₀)

(evaluation)

(initialization)

- Loop
 - $-y = Move(x_t)$
 - Compute F(y)
 - $If F(y) < F(x_t) x_{t+1} = y$ else $x_{t+1} = x_t$

(stochastic variation)

(accept if improvement)

Hypotheses

- Search space Ω
- Objective function F

(to minimize)

Stochastic Local Search

- Randomly draw x₀
- Compute F(x₀)
- Loop
 - $-y = Move(x_t)$
 - Compute F(y)
 - $-x_{t+1} = select(x_t, y)$

(initialization)

(evaluation)

(stochastic variation)

(stochastic selection)

Hypotheses

- Search space Ω
- Objective function F

(to minimize)

Stochastic Search

- Randomly draw x₀
- Compute $F(x_0)$

(evaluation)

(initialization)

- Loop
 - $-y^{i} = Move(x_{t}), i=1,..., \lambda$

(stochastic variations)

- Compute $F(y^i) i=1,..., \lambda$
- $X_{t+1} = select(X_t, y^i, i=1,..., \lambda)$ (stochastic selection)

Hypotheses

- Search space Ω
- Objective function F

(to minimize)

Evolutionary Algorithm

- Randomly draw $X_0^1, X_0^2, ..., X_0^\mu$ (initialization)
- Compute $F(x_0^{-1})$, $F(x_0^{-2})$, ..., $F(x_0^{-\mu})$ (evaluation)
- Loop
 - $-y^{i} = Move(x_{t}^{1}, x_{t}^{2}, ..., x_{t}^{\mu}), i=1,..., \lambda$ (stochastic variations)
 - Compute $F(y^i) i=1,..., \lambda$
 - $-X_{t+1} = select(X_t^1, X_t^2, ..., X_t^\mu, y^i, i=1,..., \lambda)$ (stochastic selection)

Evolutionary Algorithms

- Population-based (also distribution based)
- Any search space
- with ad hoc variation operators
 - Crossover (2 parents → offspring)
 - Mutation (1 parent → offspring)
- Any objective/constrts (very weak hypotheses)
- Very costly (number of function evaluations)
- Empirical successes
 - The second best method for any problem
 - The method of choice when everything else has failed

Evolutionary Algorithms

An alternative point of view

- Darwinian Paradigm (crude imitation of)
 - Natural selection (survival of the fittest w.r.t. objective)
 - +Blind variations (from parents to offspring)
 - → Adaptation (i.e., optima of the objective function)

Choice of search space is crucial

Other Bio-inspired Stochastic Algorithms

- Simulated Annealing
 - Proof of convergence (83) ... of no practical use
- Ant Colony Optimization
 - Mainly routing problems
- Particle Swarm Optimization
 - Mainly continuous optimization
- Differential Evolution
 - Mainly continuous optimization
- + an ever growing zoology

Evolutionary Scheduling

- Very active field, e.g., [Dahal, Tan & Cowling (eds), Springer 2007]
 - State-of-the-art performances
- Direct representation:
 - Search in schedule space
 - Strong constraints:
 - Limited variation operators
 - Repair mechanisms
- Indirect representation
 - Constraints handled by a scheduler
 - Search the input space of the scheduler
- Memetic algorithms (hybridization)
- Evolve dispatching rules

Evolutionary Planning

- Not so active
- Usually work in plan space (→ GP problem)
 - GP trees [Koza, 92; Spector, 94]
 - Linear chromosomes
 - Fixed length [Muslea 97]
 - Variable length [Morignot 05, Westerberg 02]
- Issues
 - Many invalid plans
 - Problem-dependent fitness
- Pros: can handle multiple initial states for 1 goal
- Cons: Hardly scales up
- See DaE later, hybridization working in state space

Hot Topics

- Generic Advances in Evolutionary Combinatorial Optimization
 - Multi-objective optimization
 - Complex morphogenesis
- Hybridization
 - "Classical" memetic algorithms
 - Evolving rules for (meta-)heuristics
- Use other bio-inspired algorithms/representations (see later)

Workshop Program

- 14:30 Opening
- 14:40 M. Baioletti, R. Minciarelli, F. Paolucci, V. Poggioni Towards a new generation ACO-Based Planner
- 15:20 X. Li, R. Y. K. Fung Scheduling Single-Armed Cluster Tools with Time Window Constraints Using Differential Evolution Algorithm
- 16:00 Coffee Break
- 16:30 F. Siddiqui, P. Haslum

 Local Search in the Space of Valid Plans
- 17:10 M. Khouadjia, M. Schoenauer, V. Vidal, J. Dréo, P. Savéant Pareto-Based Multiobjective AI Planning
- 17:50 General discussion