Métodos de Apoio à Decisão Algoritmo do Simplex

João Pedro Pedroso

2021/2022

- Aulas passadas:
 - Formulação em programação matemática
 - 1. variáveis
 - 2. restrições
 - 3. objetivo
 - Exemplos em otimização linear
- ► Hoje:
 - Algoritmo do simplex para programação linear

Resolução gráfica

maximize
$$25x_B + 30x_C$$
 subject to
$$x_B/200 + x_C/140 \le 40$$

$$0 \le x_B \le 6000$$

$$0 \le x_C \le 4000$$

Modelo AMPL

Modelo

```
1  var xb;
2  var xc;
3
4  maximize z: 25*xb + 30*xc;
5
6  subject to
7  hours: xb/200 + xc/140 <= 40;
8
9  capB: 0 <= xb <= 6000;
10  capC: 0 <= xc <= 4000;</pre>
```

Visualização gráfica: região admissível

Visualização gráfica: linhas de isolucro

Visualização gráfica: ótimo

Algoritmo do Simplex

Algoritmos do século XX

Computing in Science and Engineering, volume 2, no. 1, 2000: 10 algorithms with the greatest influence on the development and practice of science and engineering in the 20th century:

- Metropolis Algorithm for Monte Carlo
- Simplex Method for Linear Programming
- Krylov Subspace Iteration Methods
- The Decompositional Approach to Matrix Computations
- The Fortran Optimizing Compiler
- QR Algorithm for Computing Eigenvalues
- Quicksort Algorithm for Sorting
- Fast Fourier Transform
- ► Integer Relation Detection
- ► Fast Multipole Method

(sem ordem particular)

Método do simplex

- Desenvolvido para a resolução de problemas de otimização lineares
- Proposto por George Dantzig (década '40, sec.XX)
- Previamente: método da programação linear, Leonid Kantorovich em 1939 (um método não "computacional" tinha sido proposto por Fourier)
- Hoje em dia: muitas aplicações, incluindo em otimização inteira

Algoritmos para programação linear

- Vimos como resolver problemas com duas variáveis graficamente
- Para problemas com mais de duas variáveis, é necessário utilizar um algoritmo
- Na prática, o algoritmo mais utilizado é o do simplex
 - permite a resolução de problemas com muitos milhares de variáveis e restrições
 - funciona através da análise e movimentos em pontos extremos (vértices) da região admissível
 - há problemas particulares em que não é eficiente: pode demorar tempo exponencial em termos do tamanho do problema, a encontrar a solução
 - para problemas "pequenos" (<< 1000000 variáveis/restrições), geralmente é mais rápido do que algoritmos "eficientes" (e é o mais utilizado)

Noções preliminares: conjuntos convexos, pontos extremos

- Um conjunto S é convexo se para qualquer par de pontos do conjunto, o segmento de reta que os une está completamente contido em S
- ➤ A região admissível de qualquer problema linear é um conjunto convexo
- ▶ Um ponto *P* diz-se um ponto extremo de um conjunto *S* se para qualquer segmento de reta que esteja completamente contido em *S* e que contenha *P*, se verifica que *P* é um ponto extremo desse segmento de reta

Noções preliminares: poliedro, polítopo

- Em espaços de dimensão superior a dois:
 - ao conjunto de pontos que satisfazem uma desigualdade linear chama-se um semi-espaço
- A intersecção de semi-espaços é chamada um poliedro
- ► Um poliedro limitado é um polítopo

Num espaço de dimensão n, um polítopo com n + 1 vértices é um simplex

Método do simplex: visualização

Forma standard de um problema linear

- ► Na forma standard de um problema linear:
 - 1. todas as restrições são equações
 - 2. todas as variáveis são não-negativas
- Preliminar para a utilização do algoritmo do simplex
- Permite fazer uma análise da solução obtida

Exemplo

maximizar	$z = 4x_1 + 3x_2$	
sujeito a	$x_1 + x_2$	≤ 40
	$2x_1 + x_2$	≤ 60
	x_1, x_2	≥ 0

como colocá-lo na forma standard?

Redução à forma standard: variáveis de desvio

- variável de desvio: quantidade de recurso correspondente a uma restrição que não é utilizada
 - ightharpoonup exemplo: $s_1 = 40 x_1 x_2 \Rightarrow x_1 + x_2 + s_1 = 40$
 - o mesmo para a segunda restrição
- ▶ as restrições são satisfeitas sse $s_i \ge 0, \forall i$

maximizar
$$z = 4x_1 + 3x_2$$
 maximizar $z = 4x_1 + 3x_2$
sujeito a $x_1 + x_2 \le 40$ sujeito a $x_1 + x_2 + s_1 = 40$
 $2x_1 + x_2 \le 60$ $2x_1 + x_2 + s_2 = 60$
 $x_1, x_2 \ge 0$ $x_1, x_2, s_1, s_2 \ge 0$

Forma standard

$$\max / \min z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

sujeito a $a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n = b_1$
 $a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n = b_2$
 \ldots
 $a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n = b_m$
 $x_1, x_2, \ldots, x_n \ge 0$

- todas as restrições são equações (i.e., igualdades)
- todas as variáveis são não negativas
 - ▶ se no problema original $x_i \le 0$ → substituir por $-y_i, y_i \ge 0$
 - ▶ se no problema original x_i é livre (não tem restrição de sinal) → substituir por $y_i^+ - y_i^-, y_i^+, y_i^- \ge 0$

Variáveis básicas e não básicas

- Considere-se o sistema anterior Ax = b, com m equações lineares e n variáveis
- uma solução básica é obtida fazendo
 - \triangleright n-m variáveis iguais a 0
 - resolvendo o sistema para as restantes variáveis, que são chamadas as variáveis básicas
- Exemplo: determinar todas as soluções básicas para o sistema

$$x_1 + x_2 = 3$$

 $- x_2 + x_3 = -1$

Soluções admissíveis

- Def: a uma solução básica do problema na forma standard em que todas as variáveis são não-negativas chama-se solução básica admissível
- Teorema 1: A região admissível de qualquer problema de programação linear (PL) é um conjunto convexo. Se o PL tem uma solução única, deverá haver um ponto extremo da região admissível que é ótimo.
- Teorema 2: Para qualquer PL, há um único ponto extremo da região admissível correspondendo a cada solução básica admissível. Há pelo menos uma solução básica admissível correspondendo a cada ponto extremo da região admissível
- Def: soluções básicas admissíveis adjacentes: para um PL com m restrições, duas soluções básicas dizem-se adjacentes se os seus conjuntos de variáveis básicas têm m — 1 variáveis em comum.

Definições prévias

- Problema linear na forma standard:
 - 1. todas as restrições são equações
 - 2. todas as variáveis são não-negativas:
- Sistema de equações na forma canónica: cada equação tem uma variável com
 - 1. coeficiente 1 nessa equação
 - 2. coeficiente 0 em todas as outras equações
- Forma linha zero da função objetivo:

$$z - c_1 x_1 - c_2 x_2 - \ldots - c_n x_n = 0$$

Algoritmo do simplex: descrição geral

- 1. Converter o problema à forma standard.
- 2. Determinar uma solução básica admissível (SBA).
- 3. Verificar se a SBA é ótima; se sim, STOP.
- Se não, passar para outra SBA, adjacente à anterior mas com um melhor objetivo, utilizando operações algébricas elementares.
- 5. Começar uma nova iteração (passo 3).

Algoritmo do simplex para problemas de maximização

- 1. Converter o problema à forma standard.
- 2. Determinar uma solução básica admissível (SBA):
 - todas as restrições <</p>
 - termos do lado direito todos positivos.
 - lacktriangle então variável de desvio $s_i \longrightarrow$ variável da base para a linha i
 - caso contrário: utilizar outra estratégia.
- 3. Variáveis não-básicas têm todas coeficientes > 0 na linha 0?
 - se sim, então a solução é ótima.
 - se não: escolher a variável que tem o coeficiente mais negativo para entrar na base (heurística).
- 4. Passar de uma SBA para outra adjacente mas com um melhor objetivo:
 - 4.1 Determinar o valor máximo da variável que entra na base tal que todas as variáveis da base se mantenham não negativas.
 - 4.2 Por o sistema na forma canónica:
 - variável que entra: coeficiente 1 na linha limitante; a variável da base associada a essa linha sai da base
 - eliminar a variável que entra na base de todas as outras linhas.
- 5. Começar uma nova iteração, a partir do passo 3.

Exemplo

Uma companhia de mobiliário fabrica secretárias, mesas, e cadeiras. O fabrico de cada tipo de móvel requer madeira e dois tipos de trabalho especializado: acabamentos e carpintaria. A quantidade de cada destes recursos necessárias para o fabrico de cada móvel são as seguintes:

Recurso	Secretárias	Mesas	Cadeiras		
madeira	8 tábuas	6 tábuas	1 tábuas		
acabamentos	4 horas	2 horas	1.5 horas		
carpintaria	2 horas	1.5 horas	0.5 horas		

Dispõe-se de 48 tábuas, 20 horas de acabamentos, e 8 horas de carpintaria. O preço de venda é de 60 euros para secretárias, 30 euros para mesas, e 20 euros para cadeiras. Admite-se que as vendas de secretárias e de cadeiras são ilimitadas, mas que não se consegue vender mais de 5 mesas.

Como todos os recursos foram já comprados, pretende-se estabelecer o plano de produção que maximiza a receita.

Formulação

$$\begin{array}{lll} \text{maximizar } z = \!\! 60x_1 + 30x_2 + 20x_3 \\ \text{sujeito a } 8x_1 + 6x_2 + x_3 & \leq 48 \\ 4x_1 + 2x_2 + 1.5x_3 & \leq 20 \\ 2x_1 + 1.5x_2 + 0.5x_3 & \leq 8 \\ x_2 & \leq 5 \\ x_1, x_2, x_3 & \geq 0 \end{array}$$

Forma standard (introdução de variáveis de desvio):

Resolução pelo algoritmo do simplex

- Por inspeção verifica-se que se $x_1 = x_2 = x_3 = 0$ o sistema fica forma canónica.
- \triangleright $VNB_1 = \{x_1, x_2, x_3\}$
- $VB_1 = \{z, s_1, s_2, s_3, s_4\}.$
- $> x_1 = x_2 = x_3 = 0 \implies z = 0, s_1 = 48, s_2 = 20, s_3 = 8, s_4 = 5.$

Iteração 1

"Quadro do simplex" correspondente à formulação anterior:

	z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	rhs	vb
linha0	1	-60	-30	-20	0	0	0	0	0	z = 0
linha1	0	8	6	1	1	0	0	0	48	$s_1 = 48$
linha2	0	4	2	1.5	0	1	0	0	20	$s_2 = 20$
linha3	0	2	1.5	0.5	0	0	1	0	8	$s_3 = 8$
linha4	0	0	1	0	0	0	0	1	5	$s_4 = 5$

- rhs = right hand side, termo do lado direito (termo independente);
- ▶ vb = valor da variável da base associada à linha.

Notas:

- 1. Linha zero: $z = 0 + 60x_1 + 30x_2 + 20x_3 \Rightarrow$ se se aumentar o valor de x_1, x_2, x_3 aumenta-se z (a solução básica atual não é ótima).
- 2. Escolhemos a variável com maior coeficiente nessa equação para entrar na base, e passamos à iteração seguinte.

Iteração 2

- Aumentando o valor de x₁ aumentamos o valor do objetivo;
- Mas não podemos aumentar x₁ indefinidamente...
- Para a solução se manter admissível: todas as variáveis ≥ 0 .
- Nesta solução, vemos que:

linha 1:
$$s_1 = 48 - 8x_1 \longrightarrow x_1 \le 6$$
 para manter $s_1 \ge 0$
linha 2: $s_2 = 20 - 4x_1 \longrightarrow x_1 \le 5$ para manter $s_2 \ge 0$
linha 3: $s_3 = 8 - 2x_1 \longrightarrow x_1 \le 4$ para manter $s_3 \ge 0$
linha 4: $s_4 = 5$ (independente de x_1)

- $ightharpoonup x_1$ máximo é 4, e a linha limitante é a linha $3 \Rightarrow s_3$ sai da base;
- Colocando o sistema na forma canónica:

$$VB_2 = \{z, s_1, s_2, x_1, s_4\}, VNB_2 = \{s_3, x_2, x_3\}$$

	z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄	rhs	vb
										z = 240
linha1	0	0	0	-1	1	0	-4	0	16	$s_1 = 16$
linha2	0	0	-1	0.5	0	1	-2	0	4	$s_2 = 4$
linha3	0	1	0.75	0.25	0	0	0.5	0	4	$x_1 = 4$
linha4	0	0	1	0	0	0	0	1	5	$s_4 = 5$

Iteração 3

Aumentando x_3 aumentamos o valor do objetivo; essa variável vai entrar na base.

linha 1:
$$s_1=16+x_3$$
 x_3 não restringido linha 2: $s_2=4-0.5x_3\rightarrow x_3\leq 8$ para manter $s_2\geq 0$ linha 3: $x_1=4-0.25x_3\rightarrow x_3\leq 16$ para manter $x_1\geq 0$ linha 4: $s_4=5$ (independente de x_1)

▶ Linha limitante: linha $2 \Rightarrow s_2$ sai da base.

$$VB_3 = \{z, s_1, x_3, x_1, s_4\}, \ VNB_3 = \{s_3, x_2, s_2\}$$

	z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	rhs	vb
linha0	1	0	5	0	0	10	10	0	280	z = 280
linha1	0	0	-2	0	1	2	-8	0	24	$s_1 = 24$
linha2	0	0	-2	1	0	2	-4	0	8	$x_3 = 8$ $x_1 = 2$
linha3	0	1	1.25	0	0	-0.5	1.5	0	2	$x_1 = 2$
linha4	0	0	1	0	0	0	0	1	5	$s_4 = 5$

- ightharpoonup Linha zero: $z = 280 5x_2 10s_2 10s_3$
- ► Aumentando o valor de qualquer variável que não está na base, o valor de z irá piorar; portanto, a solução atual é ótima.
- Plano de produção ótimo: 2 secretárias 0 mesas e 8 cadeiras

Custos reduzidos

- Coeficiente das variáveis de decisão na linha 0 (no quadro ótimo): custo reduzido.
- Custo reduzido de uma variável (não básica) no quadro ótimo:
 - quantidade em que o objetivo diminuiria se se aumentasse o valor da variável em uma unidade, em relação à solução ótima (maximização).
- Válido se não implicar alterações no conjunto das variáveis da base (se todas as variáveis básicas continuarem não negativas).
- ▶ Neste exemplo: o custo reduzido de x₂ é 5.
 - Se se produzisse uma mesa, em vez da produção ótima de zero, a receita diminuiria em 5 euros.
 - Verificar que se $x_2 = 1$ todas as variáveis básicas se mantêm positivas.)

Variáveis de desvio

- Valor de uma variável de desvio na solução ótima: quantidade de recurso que não é utilizada, na restrição correspondente.
- ► No exemplo, na solução ótima:
 - todas as horas de carpintaria e acabamentos são utilizadas $(s_1 = s_3 = 0;$ as restrições correspondentes são ativas)
 - há 24 tábuas que não são utilizadas ($s_1 = 24$)
 - existe procura para 5 mesas adicionais ($s_4 = 5$)

Apoio na Internet

Para programas interativos com o algoritmo do simplex, ver as páginas:

- ▶ http://www.phpsimplex.com/simplex/simplex.htm?l=en
- https:
 //vanderbei.princeton.edu/JAVA/pivot/simple.html
- https://www.mathstools.com/section/main/simplex_ online_calculator

Noções estudadas

- Forma standard de um problema linear
- Forma canónica de um problema linear.
- Variáveis de desvio
- Soluções admissíveis
- Variáveis básicas e não básicas
- Algoritmo do simplex para programação linear
- Custos reduzidos

Próxima aula

- ► Algoritmo do simplex: método do *Big M*
- Análise de sensibilidade: visualização em problemas com duas variáveis.