

- Prelegerea 9.2 - Advanced Encryption Standard - AES

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Scurt istoric

2. Construcție

3. Securitatea sistemului AES

▶ ianuarie 1997 - NIST anunță competiția pentru selecția unui nou sistem de criptare bloc care să înlocuiască DES;

- ianuarie 1997 NIST anunță competiția pentru selecția unui nou sistem de criptare bloc care să înlocuiască DES;
- septembrie 1997 15 propuneri: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and Twofish;

- ianuarie 1997 NIST anunță competiția pentru selecția unui nou sistem de criptare bloc care să înlocuiască DES;
- septembrie 1997 15 propuneri: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and Twofish;
- ▶ 1998, 1999 au loc 2 workshop-uri în urma carora ramân 5 finalişti: MARS, RC6, Rijndael, Serpent, Twofish;

- ianuarie 1997 NIST anunță competiția pentru selecția unui nou sistem de criptare bloc care să înlocuiască DES;
- septembrie 1997 15 propuneri: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and Twofish;
- ▶ 1998, 1999 au loc 2 workshop-uri în urma carora ramân 5 finalişti: MARS, RC6, Rijndael, Serpent, Twofish;
- octombrie 2000 după un al treilea workshop se anunță câștigătorul: Rijndael.

[Google Scholar - User profiles]

[http://keccak.noekeon.org/team.html]

Rijndael = Rijmen + Daemen

► AES este o rețea de substituție - permutare pe 128 biți care poate folosi chei de 128, 192 sau 256 biți;

- ▶ AES este o rețea de substituție permutare pe 128 biți care poate folosi chei de 128, 192 sau 256 biți;
- Lungimea cheii determină numărul de runde:

Lungime cheie (biţi)	128	192	256
Număr runde	10	12	14

- ► AES este o rețea de substituție permutare pe 128 biți care poate folosi chei de 128, 192 sau 256 biți;
- Lungimea cheii determină numărul de runde:

Lungime cheie (biţi)	128	192	256
Număr runde	10	12	14

► Folosește o matrice de octeți 4 × 4 numită **stare**;

- ► AES este o rețea de substituție permutare pe 128 biți care poate folosi chei de 128, 192 sau 256 biți;
- Lungimea cheii determină numărul de runde:

Lungime cheie (biţi)	128	192	256
Număr runde	10	12	14

- ► Folosește o matrice de octeți 4 × 4 numită **stare**;
- ▶ Starea inițială este mesajul clar $(4 \times 4 \times 8 = 128)$;

- ▶ AES este o rețea de substituție permutare pe 128 biți care poate folosi chei de 128, 192 sau 256 biți;
- Lungimea cheii determină numărul de runde:

Lungime cheie (biţi)	128	192	256
Număr runde	10	12	14

- ► Folosește o matrice de octeți 4 × 4 numită **stare**;
- ▶ Starea inițială este mesajul clar ($4 \times 4 \times 8 = 128$);
- Starea este modificată pe parcursul rundelor prin 4 tipuri de operații: AddRoundKey, SubBytes, ShiftRows, MixColumns;

- ▶ AES este o rețea de substituție permutare pe 128 biți care poate folosi chei de 128, 192 sau 256 biți;
- Lungimea cheii determină numărul de runde:

Lungime cheie (biţi)	128	192	256
Număr runde	10	12	14

- ► Folosește o matrice de octeți 4 × 4 numită **stare**;
- ▶ Starea inițială este mesajul clar ($4 \times 4 \times 8 = 128$);
- Starea este modificată pe parcursul rundelor prin 4 tipuri de operații: AddRoundKey, SubBytes, ShiftRows, MixColumns;
- leşirea din ultima rundă este textul criptat.

Rijndael Animation - CrypTool Project:

[http://www.cryptool.org/en/]

- Să ne reamintim exemplul de rețea de substituție permutare prezentat în cursurile anterioare:
 - 1. XOR cu cheia de rundă;
 - 2. aplicarea S-box-urilor pentru a obține confuzie;
 - 3. amestecarea biților pentru a obține difuzie.

- ► AES este o rețea de substituție permutare:
 - AddRoundKey: XOR cu cheia de rundă;
 - SubBytes: fiecare octet este înlocuit de un alt octet conform tabelei de substituție S-box (unică pentru AES!);
 - ShiftRows şi MixColumns: amestecarea biţilor presupune mai mult decât o simplă permutare, folosind o transformare liniară pe biţi.

Securitatea sistemului AES

- Singurele atacuri netriviale sunt asupra AES cu număr redus de runde:
 - ► AES-128 cu 6 runde: necesită 2⁷² criptări;
 - ► AES-192 cu 8 runde: necesită 2¹⁸⁸ criptări;
 - ▶ AES-256 cu 8 runde: necesită 2²⁰⁴ criptări.

Securitatea sistemului AES

- Singurele atacuri netriviale sunt asupra AES cu număr redus de runde:
 - ▶ AES-128 cu 6 runde: necesită 2⁷² criptări;
 - ▶ AES-192 cu 8 runde: necesită 2¹⁸⁸ criptări;
 - ▶ AES-256 cu 8 runde: necesită 2²⁰⁴ criptări.
- Nu există un atac mai eficient decât căutarea exhaustivă pentru AES cu număr complet de runde.

Securitatea sistemului AES

- Singurele atacuri netriviale sunt asupra AES cu număr redus de runde:
 - ► AES-128 cu 6 runde: necesită 2⁷² criptări;
 - ► AES-192 cu 8 runde: necesită 2¹⁸⁸ criptări;
 - ► AES-256 cu 8 runde: necesită 2²⁰⁴ criptări.
- Nu există un atac mai eficient decât căutarea exhaustivă pentru AES cu număr complet de runde.

"It is free, standardized, efficient, and highly secure." (J.Katz, Y.Lindell, Introduction to Modern Cryptography)

Important de reținut!

- ► AES este standard actual NIST;
- AES are la bază algoritmul Rijndael, fiind o rețea de substituție-permutare;
- Pentru AES cu număr complet de runde nu se cunoaște nici un atac mai eficient decât căutarea exhaustivă.