Motor Armature Resistance

Name: Group 510 Date: 30/09 - 2015

Purpose

The superpose of the test is to measure the Armature resistance R_a .

Setup

Input a diagram of the test setup:

List of Equipment

Example of list of equipment:

Instrument	AAU-no.	Type
Multimeter 1	60764	Fluke 189 True RMS
Multimeter 2	60769	Fluke 189 True RMS
Power Supply (0 - 32 V) (0 - 10 A)	77076	Ea - ps 7032 - 100
Clamp for fixing the motor	03039	

Procedure

- 1. Turn on the two multimeters and choose Voltage and Ampere setting respectively.
- 2. Fix the motor shaft so it does not turn.
- 3. Choose the first current value (0.5 A) on the current limiting of the power supply.
- 4. Turn on the power supply and adjust the current limiting in accordance with the ampere meter.
- 5. Repeat the two previous steps for each measurement of 0.5 A increments up to 5 A.
- 6. Switch the poles of the power supply and repeat the measurements in the negative direction.

Results

Input (A)	Output (V)
-5.0	-0.07
-4.5	-0.14
-4.0	-0.20
-3.5	-0.27
-3.0	-0.36
-2.5	-0.43
-2.0	-0.54
-1.5	-0.59
-1.0	-0.65
-0.5	-0.71

Input (A)	Output (V)
0.5	0.16
1.0	0.34
1.5	0.53
2.0	0.62
2.5	0.64
3.0	0.75
3.5	0.78
4.0	0.80
4.5	0.83
5.0	0.88

Figure 0.1: Plot of test results

The slope of the fitted curve yields: $R_a=0.17\Omega$

Motor Armature Inductance

Name: Group 510 Date: 30/09 - 2015

Purpose

The superpose of the test is to measure the Armature inductance L_a .

Setup

Input a diagram of the test setup:

List of Equipment

Instrument	AAU-no.	Type
Power Supply $(0 - 32 \text{ V}) (0 - 10 \text{ A})$	77076	Ea - ps 7032 - 100
AC/DC Current Clamp (Output: 100 mV/A)	78550	FLUKE i30s
Oscilloscope	64672	Agilent DSO6034A
Clamp for fixing the motor	03039	

Procedure

- 1. Fix the motor shaft so it does not turn.
- 2. Start with the power supply disconnected and turn on the oscilloscope.
- 3. On the oscilloscope press the "mode"-key choose the "normal"-option and push the "single"-key.
- 4. To prevent false triggering on the oscilloscope set the trigger value to ¹ mV with the turn-key.
- 5. To give the motor a pulse of 5 V, put the power supply to 5 V and connect it.
- 6. Insert a USB-pin in the oscilloscope and press the save key to extract the data.

Results

Insert graph²

¹FiXme Note: input value from extracted data

²FiXme Note: Insert graph

Tachometer Constant

Name: Group 510 Date: 30/09 - 2015

Purpose

The superpose of the test is to measure verify that tachometer constant (in V) is 0.030 multiplied by the motor constant.

Setup

Setup

List of Equipment

Instrument	AAU-no.	Type
Power Supply $(0 - 32 \text{ V}) (0 - 10 \text{ A})$	77076	Ea - ps 7032 - 100
Multimeter	60764	Fluke 189 True RMS
Tachometer motor measurement stand	08772	
Optical tachometer	08246	Shimpo DT-205

Procedure

- 1. Adjust voltage of power supply till you reach 6 V on the multimeter over the tachometer.
- 2. Measure the RPM with the Optical tachometer.

Results

Measured: 1933 RPM We use the measured RPM to verity a tachometer constant of 0.03:

$$\frac{1933}{60} \cdot 2 \cdot \pi \cdot 0.03 = 6.07 \approx 6$$
 [V] (1)

Generator Constant

Name: Group 510 Date: 30/09 - 2015

Purpose

The purpose of the test is to find the generator constant K_e by measuring the motor voltages, currents and velocities, in several steady states.

Setup

Setup

List of Equipment

Instrument	AAU-no.	Type
Multimeter 1	60764	Fluke 189 True RMS
Multimeter 2	60769	Fluke 189 True RMS
Power Supply $(0 - 32 \text{ V}) (0 - 10 \text{ A})$	77076	Ea - ps 7032 - 100
Optical tachometer	08246	Shimpo DT-205

Procedure

- 1. Turn on the two multimeters and put them in ampere and voltage mode respectively.
- 2. Apply 1 V by use of the voltage mode multimeter
- 3. Read out the current value from the ampere mode multimeter
- 4. Read out RPM of the motor using the optical tachometer.
- 5. Repeat the past 3 steps up to 7 V in 1 V increments.

Results

Input (V)	Output (A)	Output (RPM)
1	1.7	3684
2	2.2	8063
3	2.6	12021
4	3.3	16746
5	4.1	21966
6	4.8	26420
7	5.6	31447