

Tema 1: Paralelismo, Concurrencia y Rendimiento

Un resumen rápido...

Los computadores según Flynn

Según el flujo de instrucciones y datos.

- SI: una instrucción a la vez.
 - SISD: una instrucción solo afecta a un/os datos.
 - Von Neumann, simple **CPUs**
 - SIMD: una instrucción afecta a varios datos distintos.
 - MMX, SSE, AVX, GPU, TPUs,

	SD	MD
SI	SISD	SIMD
MI	MISD	MIMD

Los computadores según Flynn

Según el flujo de instrucciones y datos.

- MI: más de una instrucción al mismo tiempo.
 - MISD: todas las instrucciones afectan al mismo dato o datos.
 - Pipeline processing?
 - MIMD: cada instrucción afecta a unos datos distintos.
 - Multiprocesador, multicomputador, superescalar/VLIW, ...

	SD	MD
SI	SISD	SIMD
MI	MISD	MIMD

Resumen métricas de rendimiento

- Número de procesadores: n ó p
- Tiempo de ejecución: T(n)
- Speedup: $S(n) = \frac{T(1)}{T(n)}$
- Eficiencia: $E(n) = \frac{S(n)}{n}$
- Operaciones: O(n). Si es necesario, asumimos O(1) = T(1).
- Redundancia: $R(n) = \frac{O(n)}{O(1)}$
- Utilización: U(n) = R(n)E(n)
- Calidad del paralelismo: $Q(n) = \frac{S(n)E(n)}{R(n)}$

Perfil de paralelismo

- En cada instante de tiempo, el número de procesadores usados (DOP) para ejecutar un programa.
 - Salvo que se diga lo contrario, asumiremos que se ha calculado con infinitos procesadores.

- Máximo DOP
 - *m*
 - Lo sacamos mirando el gráfico y quedándonos con su <u>máximo</u>
 - OJO: solo si se ha calculado el gráfico con inf. procesadores (o el observado es menor al usado para calcular el gráfico).

$$m = 8$$

Daniel Perdices

- Tiempo a DOP "i":
 - t_i
 - Lo sacamos mirando el gráfico y contando cuántos instantes temporales ha estado exactamente en el valor i
- Trabajo a DOP "i":
 - $W_i = (t_i \cdot i)\Delta$
 - Es el trabajo realizado a DOP=i.

$$t_1 = 2$$
 $t_2 = 4$ $t_4 = 2$ $t_6 = 4$ $t_8 = 2$

$$W_1 = 2$$
 $W_2 = 8$ $W_4 = 8$ $W_6 = 24$ $W_8 = 16$

- Tiempo de ejec. con n ó ∞ procesadores:
 - Solo si se el pérfil de paralelismo se ha calculado con n procesadores. Usualmente, $n = \infty$
 - $T(n) = \sum t_i$.
 - Se puede observar también en el gráfico como la anchura o duración del programa.

$$T(n) = T(\infty) = 16 - 2 = 14$$

 $\sum t_i = 2 + 4 + 2 + 4 + 2 = 14$

- Tiempo de ejec. secuencial
 - $T(1) = \sum t_i \cdot i$
 - Alternativamente, el número total de cuadraditos del gráfico.
- Trabajo total:
 - $W = \sum W_i = \Delta \sum t_i \cdot i$.
 - Salvo por Δ , debe coincidir con T(1) (o contar los cuadraditos).

$$T(1) = 2 \cdot 1 + 4 \cdot 2 + 2 \cdot 4 + 4 \cdot 6 + 2 \cdot 8 = 58$$

$$W = 58 \Delta$$

- Tiempo de ejec. del trabajo a DOP "i" con n procesadores:
 - $t_i(n)$
 - Si n > i:
 - Tenemos procesadores para ejecutar todas las tareas en paralelo.
 - $t_i(n) = t_i$
 - Si n < i:
 - Me faltan procesadores para ejecutar las tareas.
 - $t_i(n) = t_i \cdot \left[\frac{i}{n}\right]$

$$t_1 = 2$$
 $t_1(4) = 2$
 $t_2 = 4$ $t_2(4) = 4$
 $t_4 = 2$ $t_4(4) = 2$
 $t_6 = 4$ $t_6(4) = 4 \cdot 2 = 8$
 $t_8 = 2$ $t_8(4) = 2 \cdot 2 = 4$

- Tiempo de ejec. con n procesadores:
 - $T(n) = \sum t_i(n)$
 - Útil si me acuerdo de las fórmulas anteriores...

$$T(4) = 2 + 4 + 2 + 8 + 4 = 20$$

- Tiempo de ejec. con n procesadores:
 - Si $n \ge m$, $T(n) = T(\infty)$.
 - El ancho del perfil de paralelismo
 - En otro caso, <u>recalculamos</u>
 <u>el perfil de paralelismo</u>
 asumiendo solo n
 procesadores.
 - Salvo que sepamos del grafo de dependencias de las tareas, vamos a asumir que las tareas del siguiente instante temporal dependen de la parte pendiente.

Modelos de carga

- WC o carga fija: W es fijo.
 - · Caso fácil.

•
$$S(n) = \frac{T(1)}{T(n)}$$

Amdahl:
$$S(n) = \frac{W_1 + W_n}{W_1 + W_n/n}$$
;

- TC o tiempo fijo: T(1) = T'(n).
 - El algoritmo 'realiza más trabajo, en el mismo tiempo.

•
$$S(n) = \frac{T'(1)}{T'(n)} = \frac{T'(1)}{T(1)} = \frac{W'}{W}$$

• Recordemos: $T(1) = \frac{W}{\Delta}$.

Gustafson:
$$S(n) = \frac{W_1 + nW_n}{W_1 + W_n}$$

Modelos de carga

- MC o memoria fija: el más genérico
 - Una función G nos va a limitar el speedup.

•
$$S(n) = \frac{W_1 + G(n)W_n}{W_1 + G(n)W_n/n}$$

- Si G(n) < 1: peor que Amdahl.
- Si G(n) = 1: Amdahl.
- Si G(n) = n: Gustafson.
- Si G(n) > n: Mejor que Gustafson.

- Cantidad de trabajo: suma de todos los nodos.
 - W
 - Debería coincidir (salvo por Δ) con T(1)
 - Nos representa el trabajo secuencial.

$$W = 100$$

• Profundidad:

- d
- Longitud del camino crítico (el que suma más).
- Debería coincidir con $el T(\infty) = T(m).$

$$d = 50$$

- Paralelismo medio:
 - $AvgP = \frac{W}{d}$
 - Coincide con:

•
$$S(\infty) = S(m) = \frac{T(1)}{T(\infty)}$$

$$AvgP = S(\infty) = \frac{100}{50} = 2$$

- Perfil de paralelismo
 - Ejecutamos todas las tareas posibles a la vez.
 - Si suponemos que hay $p = \infty$ (ó p = m) procesadores, empezamos todas las tareas cuanto antes
 - En caso contrario (p < m), decidimos un **criterio de** planificación.

