## Getting and Knowing your Data

```
Step 1. Import the necessary libraries
```

```
import pandas as pd
import numpy as np
```

Step 2. Import the dataset from this address.

```
data = pd.read_csv('/content/chipotle.csv')
```

Step 3. Assign it to a variable called chipo.

```
chipo = pd.read_csv('chipotle.csv')
```

Step 4. See the first 10 entries

## chipo.head(10)

|   | _10 | quantity | item_name                             | choice_description                             | item_price |
|---|-----|----------|---------------------------------------|------------------------------------------------|------------|
| 0 | 1   | 1        | Chips and Fresh Tomato Salsa          | NaN                                            | \$2.39     |
| 1 | 1   | 1        | Izze                                  | [Clementine]                                   | \$3.39     |
| 2 | 1   | 1        | Nantucket Nectar                      | [Apple]                                        | \$3.39     |
| 3 | 1   | 1        | Chips and Tomatillo-Green Chili Salsa | NaN                                            | \$2.39     |
| 4 | 2   | 2        | Chicken Bowl                          | [Tomatillo-Red Chili Salsa (Hot), [Black Beans | \$16.98    |
| 5 | 3   | 1        | Chicken Bowl                          | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou | \$10.98    |
| 6 | 3   | 1        | Side of Chips                         | NaN                                            | \$1.69     |
| 7 | 4   | 1        | Steak Burrito                         | [Tomatillo Red Chili Salsa, [Fajita Vegetables | \$11.75    |
| 8 | 4   | 1        | Steak Soft Tacos                      | [Tomatillo Green Chili Salsa, [Pinto Beans, Ch | \$9.25     |
| 9 | 5   | 1        | Steak Burrito                         | [Fresh Tomato Salsa, [Rice, Black Beans, Pinto | \$9.25     |

Next steps:



View recommended plots

New interactive sheet

Step 5. What is the number of observations in the dataset?

```
chipo.shape
               # rows and columns
```

**→** (4622, 5)

Step 6. What is the number of columns in the dataset?

chipo.shape[1]

**→** 5

Step 7. Print the name of all the columns.

```
chipo.columns
```

Step 8. How is the dataset indexed?

```
chipo.index
```

```
RangeIndex(start=0, stop=4622, step=1)
```

Step 9. Which was the most-ordered item?

```
chipo['item_name'].value_counts().head(1)
```

```
count
item_name
Chicken Bowl 726
dtype: int64
```

Step 10. For the most-ordered item, how many items it was ordered?

```
chipo['quantity'][chipo['item_name'] == 'Chicken Bowl'].sum()
```

<del>→</del> 761

Step 11. What was the most ordered item in the choice\_description column?

```
chipo['choice_description'].value_counts().head(1)
```

```
count
choice_description
[Diet Coke] 134
dtype: int64
```

Step 12. How many items were orderd in total?

```
chipo['order_id'].count()
```

<del>→</del> 4622

Step 13. Turn the item price into a float

## chipo.dtypes

```
order_id int64
quantity int64
item_name object
choice_description object
item_price object
```

dtype: object

return x

```
def price_converter(x):
#    print(x)
    x = x.strip('$')
#    print(x)
    x = float(x)
```

```
chipo['item_price'] = chipo['item_price'].apply(price_converter)
```

chipo.dtypes



## data['item\_price'].head()

| item_ | _price  |
|-------|---------|
| ١     | \$2.39  |
|       | \$3.39  |
| !     | \$3.39  |
|       | \$2.39  |
|       | \$16.98 |
|       |         |

dtype: object

Step 14. How much was the revenue for the period in the dataset?

```
revenue = chipo['item_price'].sum()
revenue
```

**→** 34500.16

Step 15. How many orders were made in the period?

```
total_orders = chipo['order_id'].count()
total_orders
```

<del>→</del> 4622

Step 16. What is the average revenue amount per order?

```
revenue/total_orders
```

**→** 7.464335785374297

Step 17. How many different items are sold?

```
chipo['item_name'].nunique()
```

**→** 50