p 進数の初歩

2017年4月7日

1 導入

次の式を見てください。

$$-1 = 1 + 2 + 2^{2} + 2^{3} + 2^{4} + \dots$$

$$-1/2 = 1 + 3 + 3^{2} + 3^{3} + 3^{4} + \dots$$

$$\sqrt{-1} = 2 + 5 + 2 \cdot 5^{2} + 5^{3} + 3 \cdot 5^{4} + 4 \cdot 5^{5} + \dots$$

実数や複素数として考えるとこの式は間違いです。なぜなら右辺は $+\infty$ に発散するからです。しかし、p 進数の世界ではこれらは完全に正しい式です。一つ目は 2 進数、二つ目は 3 進数、三つ目は 5 進数として成り立ちます。

p 進数とはなんでしょうか。一言でいえば p 進数の全体 \mathbb{Q}_p は有理数全体 \mathbb{Q} を p 進距離と呼ばれる距離によって完備化した空間であり、それに四則演算の構造を入れたものです。ここに p は素数です。

つまり、各素数 p ごとに実数とは異なる数の世界 \mathbb{Q}_p があるのです。各 \mathbb{Q}_p は \mathbb{Q} を含んでいます。

$$\mathbb{Q}_2,\mathbb{Q}_3,\mathbb{Q}_5,\mathbb{Q}_7,\mathbb{Q}_{11},\cdots\supset\mathbb{Q}\subset\mathbb{R}$$

これから \mathbb{Q}_p を定義し、その性質を見ていきます。この発表が終わる頃には皆さんに最初の 3 つの式を納得していただけるだろうと期待しています。

2 p 進数の定義

p 進数を定義するには、p 進距離を導入する必要があります。そこでまず、数学でいう距離とは何なのか定義します。

定義 1 (距離空間). X を集合, d を $X \times X$ から $\mathbb R$ への写像とする。任意の $x,y,z \in X$ について次を満たすものとする。

- 1. $d(x,y) \ge 0$
- 2. $d(x,y) = 0 \iff x = y$
- 3. d(x, y) = d(y, x)

4. $d(x,z) \le d(x,y) + d(y,z)$

このとき、dをX上の距離関数という。

また (X,d) あるいは単に X を距離空間という。

たとえば、 $\mathbb Q$ で d(x,y)=|x-y| と定義すると $(\mathbb Q,d)$ は距離空間です。確認しましょう。同じ集合でも距離の入れ方は一つとは限りません。実際、これから $\mathbb Q$ に |x-y| とは異なる p 進距離 d_p を定めます。以下 p を素数とします。

定義 2 (p 進付値). 整数 $n \neq 0$ の素因数分解を

$$n = \pm p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

とする。このとき n の p 進付置を

$$v_p(n) = \begin{cases} e_i & (\exists i, p = p_i) \\ 0 & (\text{otherwise}) \end{cases}$$

で定める。

有理数 x = m/n $(m, n \in \mathbb{Z}, m, n \neq 0)$ の p 進付置を

$$v_p(x) = v_p(m) - v_p(n)$$

で定める。(これは well-defined である)

定義 3 (p 進絶対値). 有理数 $x \neq 0$ の p 進絶対値を

$$|x|_p = p^{-v_p(x)}$$

で定める。0 に対しては

$$|0|_p = 0$$

と定める。

定義 4(p 進距離). 有理数 x,y の p 進距離を

$$d_p(x,y) = |x - y|_p$$

で定める。

p 進距離が距離関数になることは確認する必要があります。

しかし、その前に p 進距離がどういう距離か説明します。 p 進距離は p でたくさん割れれば割れるほど 0 に近いという距離です。実際、

$$d_2(1,0) = 1, d_2(2,0) = 1/2, d_2(4,0) = 1/4, d_2(8,0) = 1/8...$$

となります。

命題 5. 任意の $a,b \in \mathbb{Q}$ について

- 1. $v_p(ab) = v_p(a) + v_p(b)$
- 2. $v_p(a+b) \ge \min\{v_p(a), v_p(b)\}\$

証明. あとで

命題 6. 任意の $a,b \in \mathbb{Q}$ について

- 1. $|a|_p \geq 0$
- 2. $|a|_p = 0 \iff a = 0$
- 3. $|ab|_p = |a|_p |b|_p$
- 4. $|a+b|_p \le \max\{|a|_p, |b|_p\}$

証明. 1 と 2 は明らかである。3 と 4 は命題 5 から従う。

命題 6 の 4 を p 進絶対値の非アルキメデス性といいます。

定理 7. d_p は $\mathbb Q$ 上の距離関数である。

証明. あとで

 \mathbb{Q}_p は \mathbb{Q} を p 進距離によって完備化した空間だと述べました。そこで完備化を説明する必要があります。そのために、点列の収束、コーシー列、完備性という概念を説明します。

定義 8 (点列の収束). (X,d) を距離空間、 $\{x_n\}_{n\in\mathbb{N}}$ を X の点の列とする。このとき $\alpha\in X$ が存在して

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow d(x_n, \alpha) < \epsilon$$

を満たすとき、X の点列 $\{x_n\}_{n\in\mathbb{N}}$ は α に収束するといい、

$$\lim_{n \to \infty} x_n = \alpha$$

と書く。

定義 9 (コーシー列). (X,d) を距離空間、 $\{x_n\}_{n\in\mathbb{N}}$ を X の点の列とする。

 $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow d(x_n, x_N) < \epsilon$

を満たすとき、 $\{x_n\}_{n\in\mathbb{N}}$ はコーシー列であるという。

定義より収束列は明らかにコーシー列です。しかし逆は成り立つとは限りません。

定義 ${f 10}$ (完備). (X,d) を距離空間とする。X の任意のコーシー列が収束するとき X は完備であるという。

定義 ${f 11}$ (稠密性). (X,d) を距離空間とする。 $S\subset X$ が次の条件を満たすとき、 S は X において稠密であるという。

$$\forall x \in X, \forall \epsilon > 0, \exists y \in S, d(x, y) < \epsilon$$

たとえば d をユークリッド距離とすると (\mathbb{R},d) は完備ですが、 (\mathbb{Q},d) は完備ではありません。 完備ではない距離空間も、それに点を付け加えて完備にすることができます。すなわち次が成立します。

定理 ${f 12}$ (完備化). (X,d) を距離空間とする。このとき距離空間 $(ilde{X}, ilde{d})$ であって次を満たすものがある。

- 1. $X \subset \tilde{X}$
- 2. \tilde{d} の $X \times X$ への制限は d に等しい
- $3. \ ilde{X}$ は完備である
- 4.~X は $ilde{X}$ 上稠密である

 (\tilde{X},\tilde{d}) を (X,d) の完備化という。

証明の概略。X のコーシー列全体をC(X) と書き、C(X) に次の同値関係を入れる。

$$\{x_n\} \sim \{y_n\} \iff \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow d(x_n, y_n) < \epsilon$$

そして $\tilde{X} = C(X)/\sim$ とおく。また

$$\tilde{d}(\{x_n\}, \{y_n\}) = \lim_{n \to \infty} d(x_n, y_n)$$

とおく。このとき (\tilde{X},\tilde{d}) が定理の条件を満たす。

定義 13. (\mathbb{Q}, d_p) の完備化を $(\mathbb{Q}_p, \tilde{d_p})$ と書く。

これで距離空間としての \mathbb{Q}_p は定義されました。 \mathbb{Q}_p の元のことを p 進数といいます。しかし四則演算がまだ定義されていません。四則演算 (のうち和・差・積) は次のように定義します。

定義 14. \mathbb{Q}_p に和・差・積を次のように定義する。

 $ilde{x}, ilde{y} \in \mathbb{Q}_p$ に対して \mathbb{Q} の点列 $\{x_n\}, \{y_n\}$ で $x_n o ilde{x}, y_n o ilde{y}(n o \infty)$ となるものをとる。このとき

$$\tilde{x} + \tilde{y} = \lim_{n \to \infty} (x_n + y_n)$$

$$\tilde{x} - \tilde{y} = \lim_{n \to \infty} (x_n - y_n)$$

$$\tilde{x}\tilde{y} = \lim_{n \to \infty} (x_n y_n)$$

と定める。

これらは well-defined です。たとえば和の場合、 $\{x_n\}, \{y_n\}$ が収束するとき $\{x_n+y_n\}$ も収束します。また、 \tilde{x}, \tilde{y} に対してそれに収束する $\{x_n\}, \{y_n\}$ の取り方は無数にありますが、その取り方によらず $\lim_{n\to\infty}(x_n+y_n)$ の値は定まります。

こうして定義した演算に関して \mathbb{Q}_p は環になります。

定義 15 (環). 集合 A とその上の二項演算 + 、について、元 $0,1\in A$ が存在して次を満たすとき $(A,+,\cdot)$ あるいは単に A を環という。

任意の $x, y, z \in A$ に対して

- 1. 0 + x = x
- 2. $\exists x' \in A, x + x' = 0$
- 3. x + (y + z) = (x + y) + z
- 4. x + y = y + x
- $5. \ 1 \cdot x = x$
- 6. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 7. $x \cdot y = y \cdot x$
- 8. $x \cdot (y+z) = x \cdot y + x \cdot z$

 \mathbb{Q}_p は環であるだけではなく体でもあります。

定義 16 (体). 集合 K が環であって次を満たすとき K を体という。

任意の $x \in A, x \neq 0$ に対して $x \cdot x' = 1$ となる $x' \in K$ がある。

定理 17. \mathbb{Q}_p は体である。

証明. 環であることは $\mathbb Q$ が環であることと、 $\mathbb Q_p$ の演算の定義より出る。たとえば結合法則 $\tilde x+(\tilde y+\tilde z)=(\tilde x+\tilde y)+\tilde z$ は Q の点列 $\{x_n\},\{y_n\},\{z_n\}$ で $x_n o \tilde x,y_n o \tilde y,z_n o \tilde z(n o\infty)$ となるものをとるとき

$$\tilde{x} + (\tilde{y} + \tilde{z}) = \lim_{n \to \infty} (x_n + (y_n + z_n))$$
$$= \lim_{n \to \infty} ((x_n + y_n) + z_n)$$
$$= (\tilde{x} + \tilde{y}) + \tilde{z}$$

というように示せる。

任意の 0 でない元 \tilde{x} について $\tilde{x'}$ が存在して $\tilde{x}\tilde{x'}=1$ となることは、 $\tilde{x'}=\lim_{n\to\infty}1/x_n$ とおけば示せる。 (ただしこの極限が存在することを示す必要がある)

 \mathbb{Q} に定義されていた p 進絶対値を \mathbb{Q}_p に拡張します。

定義 18. $\tilde{x} \in \mathbb{Q}_p$ に対して

$$|\tilde{x}|_p = \tilde{d}_p(\tilde{x}, \tilde{0})$$

と定める。

命題 19. 任意の $\tilde{a}, \tilde{b} \in \mathbb{Q}_p$ について

- 1. $|\tilde{a}|_p \geq 0$
- 2. $|\tilde{a}|_p = 0 \iff \tilde{a} = \tilde{0}$
- 3. $|\tilde{a}\tilde{b}|_p = |\tilde{a}|_p |\tilde{b}|_p$
- 4. $|\tilde{a} + \tilde{b}|_p \le \max\{|\tilde{a}|_p, |\tilde{b}|_p\}$

証明.1と.2は定義より出る.3と.4は命題.6の.3と.4の極限をとればよい.8

 \mathbb{Q}_p において、和、差、積、商は連続写像になります。このことの証明は省きます。

定義 20. $\mathbb{Z}_p=\{ ilde{x}\in\mathbb{Q}_p\mid | ilde{x}|_p\leq 1\}$ と定め、 \mathbb{Z}_p の元を p 進整数という。

命題 19 より 0,1 は p 進整数であり p 進整数同士の和、差、積は p 進整数となります。よって \mathbb{Z}_p は環となります。

3 p 進数の性質

以降、 $\tilde{d_p}$ をチルダなしの d_p で書き、 \mathbb{Q}_p の元も \tilde{x} ではなく x のような文字を使います。 今、等比数列の和の公式より

$$(1-p^{n+1})/(1-p) = 1 + p + p^2 + \dots + p^n$$

です。 \mathbb{Q}_p において両辺を $n \to \infty$ とすると $p^{n+1} \to 0$ なので、

$$1/(1-p) = 1 + p + p^2 + \dots$$

となります。ここに p=2,3 を代入すると最初の 3 つの式のうちの二つ

$$-1 = 1 + 2 + 2^{2} + 2^{3} + 2^{4} + \dots \text{ (in } \mathbb{Q}_{2})$$
$$-1/2 = 1 + 3 + 3^{2} + 3^{3} + 3^{4} + \dots \text{ (in } \mathbb{Q}_{3})$$

が示せました!

非アルキメデス性から次の重要な事実が出ます。

命題 21. $\{a_n\}$ を \mathbb{Q}_p の点列とする。このとき

$$\Sigma_{n=1}^{\infty}a_n$$
が収束 $\iff \lim_{n \to \infty}a_n = 0$

証明. \Rightarrow は \mathbb{R} のときと同じ証明でよい。

$$(=) |a_{m+1} + a_{m+2} + \dots a_n|_p \le \max\{|a_{m+1}|_p, |a_{m+2}|_p, \dots, |a_n|_p\}$$
 より出る。

命題 21 から次の事実が従います。

命題 **22.** $k \in \mathbb{Z}, a_k, a_{k+1}, \dots \in \mathbb{Z}, 0 \le a_i < p-1$ のとき級数

$$\sum_{i=k}^{\infty} a_k p^k \tag{1}$$

は \mathbb{Q}_p において収束する。

k=0 である場合、 $\Sigma_{i=0}^{\infty}a_kp^k$ を $(\dots a_3a_2a_1a_0)_{(p)}$ とも書きます。たとえば $-1=(\dots 1111)_{(2)}$ 。

 \mathbb{Q}_p の元が式 (2) のように表せるとき、その表示を p 進展開といいます。

 \mathbb{Q} の元は p 進展開可能であることを見ましょう。

aをpと互いに素な整数とします。このとき初等整数論(あるいは初等群論)の事実より

$$p^k \equiv 1 \pmod{a}$$

となる $k \in \mathbb{N}$ が存在します。すると

$$p^k - 1 = ab$$

です。これを変形すると

$$\frac{1}{a} = \frac{-b}{1 - p^k}$$

$$= -b(1 + p^k + p^{2k} + \dots + p^{nk} + \dots)$$

となります。-b も p 進展開して積を計算すれば 1/a の p 進展開が得られます。

例. 1/5 の 2 進展開を求める。 $2^4 - 1 = 15 = 3 \cdot 5$ である。

$$\frac{1}{5} = \frac{-3}{1 - 2^4}
= -3(1 + 2^4 + 2^8 + \dots + 2^{4n} + \dots)
= -(1 + 2)(1 + 2^4 + 2^8 + \dots + 2^{4n} + \dots)
= -(1 + 2^1 + 2^4 + 2^5 + 2^8 + 2^9 + \dots)
= -(\dots 00110011)_{(2)}
= (\dots 11001101)_{(2)}
= 1 + 2^2 + 2^3 + 2^6 + 2^7 + 2^{10} + 2^{11} + \dots$$

この例から任意の $\mathbb Q$ の元は p 進展開可能であることが推察できます。 実は次の事実が知られています。

定理 23. 任意の \mathbb{Q}_p の元 $(\neq 0)$ は一意的に p 進展開可能。 つまり任意の $x \in \mathbb{Q}_p - \{0\}$ について $k \in \mathbb{Z}$, $a_k, a_{k+1}, \dots \in \mathbb{Z}, 0 \le a_i < p-1, a_k \neq 0$ が一意的に存在して

$$x = \sum_{i=k}^{\infty} a_k p^k \tag{2}$$

となる。このとき $v_p(x) = p^{-k}$ 。

証明はしません。証明の鍵となるものは

- p 進絶対値の離散性
- \mathbb{Q} が \mathbb{Q}_p において稠密であること

です。

4 ヘンゼルの補題

参考文献

- [1] 彌永昌吉・彌永健一『集合と位相 』岩波書店
- [2] 雪江明彦『整数論 1 初等整数論から p 進数へ』日本評論社