

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems

PaperID: 4386

Xiangyu Zhao¹, Changsheng Gu², Haoshenglun Zhang² Xiwang Yang², Xiaobing Liu², Hui Liu¹, Jiliang Tang¹

1: Data Science and Engineering Lab, Michigan State University 2: Bytedance

Recommender Systems

- Assisting users in their information-seeking tasks
 - Goal: suggesting items that best fit user's preferences

Music

Video

Social Friends

Location based

Online Ads

Content

Advertising in Recommender Systems

- Goal: maximizing the advertising revenue from advertisers
- Assigning the right ads at the right place to the right consumers

Online Advertising Challenges

Offline and static optimization

guaranteed delivery

real-time bidding

Online Advertising Challenges

Reinforcement learning based online advertising

Challenges:

An Example of Online Advertising Impression

- Three tasks
 - Interpolate an ad?
 - The optimal location?
 - The optimal ad?

- Goals of ad agent
 - Maximizing advertising revenue
 - Minimizing the negative influence of ads on user experience

Definition

- Markov Decision Process (MDP)
 - Advertising agent interacts with environment (users)
- State space S:
 - A state $s_t \in S$ is defined as a user's browsing history before time t and the information of current request at time t

$$s_t = concat(p_t^{rec}, p_t^{ad}, c_t, rec_t)$$

- Action space A:
 - The action $a_t \in A$ is to determine three internally related tasks: interpolate an ad? the optimal location? the optimal ad?

Definition

- Reward R:
 - Income of ad r_t^{ad}
 - Influence of an ad on the user experience r_t^{ex}

$$r_t(s_t, a_t) = r_t^{ad} + \alpha \cdot r_t^{ex}$$
 $r_t^{ex} = \begin{cases} 1 & continue \\ -1 & leave \end{cases}$

- Transition probability P:
 - The state transition from s_t to s_{t+1} after taking the action a_t

$$p(s_{t+1}|s_t, a_t, ..., s_1, a_1) = p(s_{t+1}|s_t, a_t)$$

- Discount factor γ:
 - Discount factor $\gamma \in [0,1]$ is introduced to measure the present value of future reward

Classic DQN Architectures

- Assumptions
 - There are |A| candidate ads for each request
 - The length of the rec-list is L

Novel DQN Architecture

- Three tasks
 - Task 1: Interpolate an ad?
 - Task 2: The optimal location?
 - Task 3: The optimal ad?

Comparison

 The first individual DQN architecture that can simultaneously evaluate the Q-values of multiple levels' related actions

Experimental Settings

Dataset from the short video app Douyin

Table 1: Statistics of the Douyin video dataset.

session 1,000,000	user 188,409	normal video 17,820,066	ad video 10,806,778
session	session	session	rec-list
time	length	ad revenue	with ad
17.980 min	55.032 videos	0.667	55.23%

Metric: accumulated reward of a recommendation session

Overall Performance Comparison

- Baselines
 - Wide & Deep
 - DeepFM
 - GRU4REC
 - Hierarchical DQN

Table 2: Overall performance comparison.

method	reward	improvement	p-value
W&D	9.12	20.17%	0.000
DFM	9.23	18.75%	0.000
GRU	9.87	11.05%	0.000
HDQN	10.27	6.712%	0.002
DEAR	10.96	-	-

Component Study

- DEAR-1: supervised training
- DEAR-2: no RNN
- DEAR-3: classical DQN (b)
- DEAR-4: no Q(s, a) = V(s) + A(s, a) Table 3: Component study results.
- DEAR-5: random ad
- DEAR-6: random location

variant	reward	improvement	p-value
DEAR-1	9.936	10.32%	0.000
DEAR-2	10.02	9.056%	0.000
DEAR-3	10.39	5.495%	0.001
DEAR-4	10.57	3.689%	0.006
DEAR-5	9.735	12.58%	0.000
DEAR-6	9.963	10.01%	0.000
DEAR	10.96	-	-

Conclusion

- A deep RL framework DEAR with a novel DQN architecture for online advertising in recommender systems
- Determine three internally related actions at the same time
 - Interpolate an ad?
 - The optimal location?
 - The optimal ad?
- Simultaneously maximize the revenue of ads and minimize the negative influence of ads on user experience

Future Work

- Jointly optimizes advertising and recommending strategies
- More applications such as video games

Thanks

zhaoxi35@msu.edu

