

pst-optic

Lenses and Mirrors – examples; v.1.00

February 11, 2009

Documentation by **Herbert Voß**

Package author(s):
Manuel Luque
Herbert Voß

Contents 2

Contents

I. Lenses	4
1. A simple colored System	4
2. A Magnifier	5
3. Two Lenses	6
4. Real Image	7
5. Virtual Image	8
6. A Microscope	9
7. Telescope	10
8. Lightspeed measured by Foucault	11
II. Mirrors	12
9. High Beam Light	12
10Low Beam Light	13
III. Refraction	14
11.Vertical Medium	14
12Horizontal Medium	15
13Parallel Rays and a sloping medium	16
14A Prisma	17
15A Prisma for Dispersion	17
16Refration with different Angles	19
17Great difference in the Refractionsnumbers	20
18.Total Reflection	21
19.Total Reflection with a sloping medium	22
IV. Spherical Optic	23
20Refraction at a Spherical Surface 20.1Simple Example	23 23

Contents		3

20.2Height of an Image	24
21.Thin Convergent Lenses	25
22.Thick Convergent Lenses	26
23.Thin Divergent Lenses	27
24.Thick Divergent Lenses	28
25.\mirrorCVG	29
26\mirrorDVG	30

Part I. Lenses

1. A simple colored System

- $\overline{AB} = 2 \text{ cm}$
- $\overline{OA} = -10 \text{ cm}$
- $\overline{OF'} = 3,333 \text{ cm}$
- $\overline{\text{XO}} = 2 \text{ cm}$


```
\begin{pspicture}(-8.5,-3)(8.5,3)
\rput(0,0){\lens[focus=3.333,0A=-10,AB=2,X0=2,xLeft=-8.5,xRight=8.5,rayColor=red]}
\rput(0,0){\lens[focus=3.333,0A=-10,AB=2,X0=2,xLeft=-8.5,xRight=8.5,rayColor=red]}
\rput(0,0){\L1)(BY){END} \psBeforeLine[length=2](BY)(L2){START}
\rput(0,0){\lens[focus=3.333,0A=-10,AB=2,X0=2,xLeft=-8.5,xRight=8.5,rayColor=red,arrowsize=0.2]}
\rend{pspicture}
```

2. A Magnifier 5

2. A Magnifier


```
\begin{pspicture}(-8,-5)(8,3)
        \t (0,0) \leq (
            \psline[linewidth=0.5pt](xLeft)(xRight)}
        \poline{1.5} \po
        \psOutLine[length=5.5,linestyle=none](B')(L1){END1}
        \psBeforeLine[length=6,linestyle=none](L2)(B'){START}
        \pspolygon[style=rayuresJaunes,linestyle=none](B)(L1)(END1)(START)(L2)
        \psline[linewidth=1.5\pslinewidth,arrowinset=0]{->}(A)(B)
        \uput[270](A){A} \uput[90](B){B}
        \label{linewidth=1.5} $$ \left[ linewidth = 1.5 \right] (A') (B') $$ $$ \left[ linewidth = 1.5 \right] (A') (B') $$
        \psset{linecolor=red,arrowsize=0.2}
       \pcline[nodesepB=-4](B)(0)% Mittelpunktstrahl
       \psline[linecolor=red,linestyle=dashed](B)(B')% ruckwaertige Verlaengerung
       \Arrows(B)(0)%
                                                                                                                         Mittelpunktstrahl
      s\psOutLine[length=2,arrows=->](B)(0){END6}% Mittelpunktstrahl
       \psline(B)(I)(F')\psOutLine(I)(F'){END2}\Arrows(I)(F')\Arrows(B)(I)
    \psOutLine[length=1,linestyle=dashed](I')(B'){END3}
 19\psline[linestyle=dashed](B)(F)\psline(B)(I')\Arrows[arrows=->>](B)(I')
psline[linestyle=dashed](B')(I')\psline[linestyle=dashed](B')(I)
2 \ps0utLine[length=2,arrows=->>](B')(I'){END4}\ps0utLine[length=4](B')(I'){END5}
22 \rput(8,0) {\psset{linecolor=black}\eye}
23 \end{pspicture}
```

3. Two Lenses

3. Two Lenses

This is a simple system with two lenses, where the \lens macro is used only once. The second lense (the left one) is drawn by the \psline macro.


```
\begin{pspicture}(-8,-5)(8,3)
 \t (0,0) \leq [lensScale=0.6, drawing=false, focus=1.5, 0A=-1, X0=5, nameF={}, nameFi={}, AB=-1]
   \psline[linewidth=1pt](xLeft)(xRight)} %image intermediaire A1B1 au foyer F'1
 \psline{->}(4,0)(4,-1) %lentille 2
 \ \psline[linewidth=2\pslinewidth,linecolor=blue]{<->}(5,1.5)(5,-1.5)
 %On place les points essentiels
 \poode(-6,0){01} \poode(-6,2.5){E1L1} \poode(-6,-2.5){E2L1}
 \poline{(4,0){A1} \poline{(4,-1){B1}}}
 \rayInterLens(01)(B1){5}{Inter1L2}%intersection de 01 avec la lentille L2
 \pcline[nodesepB=-2](Inter1L2)(01)%rayon venant de l'infini jusqu'e la lentille L2
 \Parallel(B1)(01)(E1L1){Blinfty}%rayon parallele au precedent et passant par E1L1
 \Parallel(B1)(01)(E2L1){B2infty}%rayon passant par E2L2
 %intersection de la droite passant par E1L1 et B1 avec la lentille L2
 \rayInterLens(E1L1)(B1){5}{InterE1B1L2}\psline(E1L1)(InterE1B1L2)
 %intersection de la droite passant par E2L2 et B1 avec la lentille L2
 \rayInterLens(E2L1)(B1){5}{InterE2B1L2}
 \psline(E2L1)(InterE2B1L2)
 \psline[linestyle=dashed]{->}(A')(B')\psline[linestyle=dashed](InterE1B1L2)(B')
 \psline[linestyle=dashed](InterE2B1L2)(B')\psline[linestyle=dotted](B')(0)
2∮\psOutLine[length=3](B')(InterE1B1L2){END}\psBeforeLine[length=3](InterE2B1L2)(B'){START}
 \pspolygon[style=rayuresJaunes,linestyle=none](Blinfty)(E1L1)(InterE1B1L2)%
   (END)(START)(InterE2B1L2)(E2L1)(B2infty)
23 \uput[90](A'){$\mathrm{A'}$}\uput[270](B'){$\mathrm{B'}$}
24\uput[90](A1){$\mathrm{A_1}$}\uput[270](B1){$\mathrm{B_1}$}
23 \uput [225] (01) {01} \uput [45] (0) {02} \uput [90] (F) {$\mathrm{F_2}$}
24\uput{0.4}[150](F'){$\mathrm{F'_2}$}\uput{0.6}[90](A1){$\mathrm{F'_1}$}
psline[linecolor=red](Blinfty)(E1L1)(InterE1B1L2)(END)
\psline[linecolor=red](B2infty)(E2L1)(InterE2B1L2)(START)
29 \rput(8,0) {\eye}
 \psline[linewidth=2\pslinewidth,linecolor=blue,arrowsize=0.2,arrowinset=0.5]{<-->}(-6,-2.5)(-6,2.5)
 \end{pspicture}
```

4. Real Image

4. Real Image

5. Virtual Image

5. Virtual Image

6. A Microscope 9

6. A Microscope


```
\begin{pspicture}(-7.5,-5.5)(7.5,3)
\rput(0,0) {\lens[focus=1.5,0A=-2,AB=0.5,X0=-5,lensGlass=true,lensWidth=0.4,
    yBottom=-4,yTop=4,drawing=false,lensScale=0.4,nameF=F_1,nameFi=F'_1]
   \psline[linewidth=1pt](xLeft)(xRight)}
\pnode(! X0 1){UPlens1} \pnode(! X0 -1){DOWNlens1}
\Transform
\rput(0,0){\lens[focus=2,X0=3,lensGlass=true,lensWidth=0.4,yBottom=-4,yTop=4,drawing=false,
             nameF=F_2,nameFi=F'_2,spotF=90,spotFi=90]}
\psline{->}(A1)(B1)\psline{->}(A'1)(B'1)\uput[270](A1){A}\uput[90](B1){B}
\t [270] (B'1) {\rm A'1} {\rm B_1} 
{\psset{linecolor=red}
 \rayInterLens(I11)(B'1){3}{Inter1L2}\rayInterLens(B1)(01){3}{Inter2L2}
 \prootember \pro
 \psline(B1)(DOWNlens1)(Inter4L2)
 \psset{length=5}
 \Parallel(B'1)(0)(Inter3L2){BlinftyRigth}\Parallel(B'1)(0)(Inter4L2){B2inftyRigth}
 \Parallel(B'1)(0)(Inter2L2){B3inftyRigth}\Parallel(B'1)(0)(Inter1L2){B3inftyRigth}
 {\psset{length=-5,linestyle=dashed}
   \Parallel(B'1)(0)(Inter3L2){BlinftyLeft}\Parallel(B'1)(0)(Inter4L2){B2inftyLeft}
   \Parallel(B'1)(0)(Inter2L2){B3inftyLeft}\Parallel(B'1)(0)(Inter1L2){B3inftyLeft}
   \protect\operatorname{pcline}[\operatorname{nodesep=6}](B'1)(0)
 \pspolygon[style=rayuresJaunes,linestyle=none](B1)(UPlens1)(Inter3L2)%
       (BlinftyRigth)(B2inftyRigth)(Inter4L2)(D0WNlens1)
 \psline(B1)(UPlens1)(Inter3L2)(B1inftyRigth)\psline(B2inftyRigth)(Inter4L2)(D0WNlens1)(B1)}
\rput(7,0){\eye}
\end{pspicture}%
```

7. Telescope

7. Telescope

\telescope[mirrorFocus=10,posMirrorTwo=8,yBottom=-8]

\telescope[mirrorFocus=6,posMirrorTwo=5,yBottom=-5]

8. Lightspeed measured by Foucault

1849 Foucault (1819-1868) determines with the following configuration the speed of the light. \Leftrightarrow S \Rightarrow


```
\begin{pspicture}(-8,-3.2)(7,4.5)
\rput(0,0){\lens[lensWidth=1,lensGlass=true,lensHeight=6,focus=4,drawing=false,AB=2.5]}
{\psset{linewidth=0.5pt,linestyle=dashed,arrowsize=5pt,arrows=|<->|}
 psline(-8,0)(4,0)\pcline(-7.75,-3)(0,-3)\lput*{:U}{2f}
 \cline(0,-3)(4,-3)\lput*{:U}{f}\pcline(7,0)(7,4)\lput*{:U}{f}
 \c(4,5)(5,5)\left(1+{:U}{s}\right)(5.25,2.3)(5.25,2.8)\left(1+{:U}{s}\right)
\uput[90](0,3){\Large L}\uput[45](-7.7,3){\Large B}\uput[45](-7.7,-2){\Large E}
\t [270](3, -0.5) \Large D\t [-45](4,0) \Large A=F\t [270](3,2) \Large S
\uput[90](4,4){\Large Sp}\uput[90](3.5,3.25){\Large B'}\uput[0](6.3,2.25){\Large B''}
\displaystyle \left[-90\right](6,1.1)\left(-7.55,2.3\right)(0.5)\left(-90\right)(0.5)\left(-9.5,2.3\right)(1)
\rput{210}(F'){\mirrorTwo}
{\psset{fillstyle=solid,fillcolor=lightgray}
 \t \{210\} (4,2.5) {\psframe (-1,0) (1,0.2)} \psframe (-8,-3) (-7.75,3)
psframe(3,4)(3.8,4.2) psframe(4.2,4)(5,4.2)
{\psset{linewidth=1pt,linecolor=red,arrows=->,arrowsize=5pt}
 \arrowLine[linecolor=blue, arrowOffset=-0.2](F')(4,2.5){2}
 \arrowLine[linecolor=blue,arrowOffset=-0.2](4,2.3)(6,2.3){1}
 \q isk(6,2.3){2pt}
 \arrowLine(4,4)(F'){3}\arrowLine[linecolor=blue,arrowOffset=-0.2](I)(F'){2}
 \label{linecolor} $$\operatorname{F'}(I)_{2}\circ[\operatorname{linecolor=blue,arrow}](-7.75,2.5)(I)_{3}$
 \arrowLine(I)(-7.75,2.5){3}}
\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
\mbox{multido} {r=1.3+0.2} {12} {\psline} (6.1,\r) (6.5,\r)}
\end{pspicture}
```

Sp chink;

D rotating mirror;

L collecting lens;

E end mirror;

S half diaphanous mirror;

M scale

9. High Beam Light

Part II. Mirrors

9. High Beam Light


```
begin{pspicture}(-1.5, -5.5) (10,5.5)

rput(0,0) {beamLight[drawing=false,mirrorDepth=4.75,mirrorWidth=0.1,mirrorHeight=10,linecolor=lightgray]}

makeatletter

pst@getcoor{Focus}\pst@tempf

psset{linewidth=1pt,linecolor=red}

multido{\n=60+5}{18}{%

mirrorCVGRay[linecolor=red,mirrorDepth=4.75,mirrorHeight=10,linewidth=1pt](Focus)(!%

/XF \pst@tempf pop \pst@number\psxunit div def \n\space cos XF add \n\space sin neg){Endd1}

psOutLine[arrows=->,length=.25](Endd1)(Endd1''){Endd2}%

mirrorCVGRay[linecolor=red,mirrorDepth=4.75,mirrorHeight=10,linewidth=1pt](Focus)(!%

/XF \pst@tempf pop \pst@number\psxunit div def \n\space cos XF add \n\space sin ){End1}

psOutLine[arrows=->,length=.25](End1)(End1''){End2}}

makeatletter

longth=10,linewidth=1pt](Focus)(!%

/XF \pst@tempf pop \pst@number\psxunit div def \n\space cos XF add \n\space sin ){End1}

psOutLine[arrows=->,length=.25](End1)(End1''){End2}}

makeatletter

longth=10,linewidth=10,linewidth=1pt](Focus)(!%

/XF \pst@tempf pop \pst@number\psxunit div def \n\space cos XF add \n\space sin ){End1}

psOutLine[arrows=->,length=.25](End1)(End1''){End2}}
```

10. Low Beam Light

10. Low Beam Light


```
\begin{pspicture}(-1.5,-5)(10,5)
\rput(0,0){\beamLight[drawing=false,mirrorDepth=4.75,mirrorWidth=0.1,mirrorHeight=10,linecolor=
    lightgray]}
\psset{linewidth=1pt,linecolor=red}
\multido{\n=70+5}{20}{%
    \psline(2.75,-0.2)(! \n\space cos 2.75 add \n\space sin )
    \mirrorCVGRay[linecolor=red,mirrorDepth=4.75,mirrorHeight=10,linewidth=1pt](2.75,-0.2)%
    (! \n\space cos 2.75 add \n\space sin ){End1}
    \psOutLine[arrows=->,length=.25](End1)(End1''){End2}}
\end{pspicture}
```

11. Vertical Medium

Part III. Refraction

11. Vertical Medium


```
\begin{pspicture}[showgrid=true](-5,-3)(5,3)
 \poode(-1, -2.5) {A} \\ pnode(1, -2.5) {B} \\ pnode(1, 2.5) {C} \\ pnode(-1, 2.5) {D}
 % \rotateFrame(A)(B)(C)(D){10}
 \uput[-135](A){A}\uput[-45](B){B}\uput[45](C){C}\uput[135](D){D}
 \pspolygon[fillcolor=lightgray,fillstyle=solid,linecolor=blue](A)(B)(C)(D)
 \ensuremath{\mbox{refractionRay}(-3,-3)(-2,-2)(D)(A){1}{1.5}{END}}
 \psset{linecolor=red,linewidth=2pt,arrowsize=5pt,arrows=->}
 \arrowLine(-3,-3)(END){2}\ABinterCD(END)(END')(C)(B){Out}
 \arrowLine(END)(Out){1}\refractionRay(END)(Out)(C)(B){1.5}{1}{0}
 \arrowLine(Q)(Q'){1}\psOutLine[length=2](Q)(Q'){End}
 \rcdot{refractionRay(-3,0)(-2,0)(A)(D){1}{1.5}{END}}
 \psset{linecolor=green,linewidth=2pt,arrowsize=5pt,arrows=->}
 \arrowLine(-3,0)(END){2}\ABinterCD(END)(END')(C)(B){Out}
 \arrowLine(END)(Out){1}\refractionRay(END)(Out)(C)(B){1.5}{1}{0}
 \arrowLine(Q)(Q'){1}\psOutLine[length=2](Q)(Q'){End}
 \refractionRay(-3,3)(-2,2)(D)(A){1}{1.5}{END}
\psset{linecolor=blue,linewidth=2pt,arrowsize=5pt,arrows=->}
2 \arrowLine(-3,3)(END){2}\ABinterCD(END)(END')(C)(B){Out}
22\arrowLine(END)(Out){1}\refractionRay(END)(Out)(C)(B){1.5}{1}{Q}
23 \land (Q) (Q') \{1\} \land (Q) (Q') \{End\}
24 \end{pspicture}
```

12. Horizontal Medium

12. Horizontal Medium


```
\begin{pspicture}[showgrid=true](-5,-4)(5,3)
 \poode(-2.5,-1) {A}\poode(2.5,-1) {B}\poode(2.5,1) {C}\poode(-2.5,1) {D}
 %\rotateFrame(A)(B)(C)(D){10}
 \displaystyle \left[-135\right](A)\{A\} \left[-45\right](B)\{B\} \left[45\right](C)\{C\} \left[135\right](D)\{D\}
 \pspolygon[fillcolor=lightgray,fillstyle=solid,linecolor=blue](A)(B)(C)(D)
 \ensuremath{\mbox{refractionRay}(-3,3)(-2,2)(C)(D){1}{1.5}{END}}
 \psset{linecolor=red,linewidth=2pt,arrowsize=5pt,arrows=->}
 \arrowLine(-3,3)(END){2}\ABinterCD(END)(END')(B)(A){0ut}
 \arrowLine(END)(Out){1}\refractionRay(END)(Out)(B)(A){1.5}{1}{0}
 \arrowLine(Q)(Q'){1}\psOutLine[length=2](Q)(Q'){End}
 \rcfractionRay(0,3)(0,1)(C)(D){1}{1.5}{END}
 \psset{linecolor=green,linewidth=2pt,arrowsize=5pt,arrows=->}
 \arrowLine(0,3)(END){2}\ABinterCD(END)(END')(A)(B){Out}
 \arrowLine(END)(Out){1}\refractionRay(END)(Out)(B)(A){1.5}{1}{0}
 \arrowLine(Q)(Q'){1}\psOutLine[length=2](Q)(Q'){End}
 \rcmath{\mbox{refractionRay}(3,3)(2,2)(C)(D)\{1\}\{1.5\}\{END\}}
 \psset{linecolor=blue,linewidth=2pt,arrowsize=5pt,arrows=->}
 \arrowLine(3,3)(END){2}\ABinterCD(END)(END')(B)(A){Out}
22\arrowLine(END)(Out){1}\refractionRay(END)(Out)(B)(A){1.5}{1}{0}
23 \land (Q) (Q') \{1\} \land (Q) (Q') \{End\}
 \end{pspicture}
```

13. Parallel Rays and a sloping medium


```
\text{\left{\text{linecolor=red,linewidth=2pt,arrowsize=5pt,arrows=->}}
\text{\text{\text{welline}}{\text{\text{linecolor=red,linewidth=2pt,arrowsize=5pt,arrows=->}}
\text{\text{\text{\text{linecolor}=\text{\text{\text{linecolor}}{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te
```

14. A Prisma 17

14. A Prisma


```
\begin{pspicture}[showgrid=true](-7,0)(5,6)
\pnode(-3,1){A}\pnode(1,1){B}\pnode(-1,5){C}\uput[-135](A){A}\uput[-45](B){B}\uput[30](C){C}
\pspolygon[fillcolor=lightgray,fillstyle=solid,linecolor=blue](A)(B)(C)
\psset{linecolor=red,linewidth=2pt,arrowsize=5pt,arrows=->}
\multido{\rA=0.6+0.2,\rB=1.5+0.2}{7}{%
\refractionRay(-6,\rA)(-4,\rB)(C)(A){1}{1.5}{END}\arrowLine(-6,\rA)(END){2}
\ABinterCD(END)(END')(C)(B){0ut}\arrowLine(END)(0ut){1}
\refractionRay(END)(0ut)(C)(B){1.5}{1}{0}\psline(Q)(Q')\ps0utLine[length=3](Q)(Q'){End}}
\end{pspicture}
```

15. A Prisma for Dispersion

The following figure shows the light dispersion with realistic values for the refractions numbers of the different light colors.

	darkblue	bluegreen	yellow	red	darkred
n for glass	1.528	1.523	1.517	1.514	1.511

16. Refration with different Angles


```
\begin{pspicture}[showgrid=true](-6,-5)(6,5)
\pnode(-6,-1){A}\pnode(6,-1){B}\pnode(6,1){C}\pnode(-6,1){D}
\uput[-135](A){A}\uput[-45](B){B}\uput[30](C){C}\uput[135](D){D}
\pspolygon[fillcolor=lightgray,fillstyle=solid,linecolor=blue](A)(B)(C)(D)
\psline[linewidth=0.5pt](0,-5)(0,5)
\psset{linecolor=red,linewidth=1.5pt,arrowsize=5pt,arrows=->}
\multido{\n=30+5}{25}{%
\refractionRay(5;\n)(0,1)(C)(D){1}{1.5}{END}\arrowLine(5;\n)(END){2}
\ABinterCD(END)(END')(B)(A){0ut}\arrowLine(END)(0ut){1}
\refractionRay(END)(0ut)(B)(A){1.5}{1}{Q}\psline(Q)(Q')\ps0utLine[length=3](Q)(Q'){End}}
\end{pspicture}
```

17. Great difference in the Refractionsnumbers


```
begin{pspicture}[showgrid=true](-5,-1)(2,6)
  \pnode(0,0){A}\pnode(2,0){B}\pnode(2,5){C}\pnode(0,5){D}\rotateFrame(A)(B)(C)(D){45}
  \uput[-135](A){A}\uput[-40](B){B}\uput[45](C){C}\uput[135](D){D}
  \pspolygon[fillcolor=lightgray,fillstyle=solid,linecolor=blue](A)(B)(C)(D)
  \refractionRay(-2.5,-1)(-2,1)(A)(D){1}{4}{END}
  \uput[-35](B) \uput[-25](B) \uput[-
```

18. Total Reflection 21

18. Total Reflection

19. Total Reflection with a sloping medium

Part IV. Spherical Optic

20. Refraction at a Spherical Surface

20.1. Construction for finding the position of the image point P' of a point object P formed by refraction at a sperical surface

20.2. Construction for determining the height of an image formed by refraction at a sperical surface

21. Thin Convergent Lenses

If the two spherical surfaces are close enough we can call such a lense a **thin lens**. The following figure shows the behaviour of such a lense with real rays.


```
\psset{xunit=0.75cm}
\begin{pspicture*}[showgrid=true](-10,-4)(10,4)
\rput(0,0){\lensSPH[lensType=CVG,lensHeight=7,lensWidth=1.25,yBottom=-5,yTop=5,xLeft=-12,xRight =12,%
AB=2,0A=-9,refractA=1,refractB=2,drawing=true,rayColor=red]}
\end{pspicture*}
```

22. Thick Convergent Lenses

There is no real image possible.


```
\begin{pspicture}(-10,-4)(10,4)
\rput(0,0){\lensSPH[lensType=CVG,lensHeight=7,lensWidth=2,yBottom=-5,yTop=5,xLeft=-12,xRight=12,%

AB=2,0A=-9,refractA=1,refractB=2,drawing=true,rayColor=red]}
\end{pspicture}
```

23. Thin Divergent Lenses

If the two spherical surfaces are close enough we can call such a lense a **thin lens**. The following figure shows the behaviour of such a lense with real rays.


```
\begin{pspicture*}[showgrid=true](-6,-3)(6,3)
\rput(0,0){\lensSPH[lensType=DVG,lensWidth=0.1,lensDepth=0.2,AB=1,OA=-5,drawing=true,rayColor=red
]}
\end{pspicture*}
```

24. Thick Divergent Lenses

There is no real image possible.


```
\begin{pspicture*}[showgrid=true](-6,-3)(6,3)
\rput(0,0){\lensSPH[lensType=DVG,lensWidth=1,lensDepth=1,AB=1,OA=-5,drawing=true,rayColor=red]}
\end{pspicture*}
```

25. \mirrorCVG

25. \mirrorCVG


```
begin{pspicture*}[showgrid=true](-1,-5)(8,5)

rput(0,0){\mirrorCVG[mirrorType=SPH,drawing=false,yBottom=-4,yTop=4,mirrorHeight=8,mirrorDepth=3]
   \qdisk(Center){2pt}\qdisk(Focus){2pt}
   \uput[-90](Center)\{Center}\uput[-90](Focus){F}\psline(0)(xRight)}

\multido{\rA=-3.50+0.25}{5}{%
   \mirrorCVGRay[mirrorType=SPH,linecolor=red](6,\rA)(4,\rA){E}
   \psoutLine[linecolor=red,length=4](E')(E''){EEnd}}

\multido{\rA=-2.25+0.25}{19}{%
   \ABinterSPHLens(6,\rA)(4,\rA)(Center){Ptemp}
   \reflectionRay[mirrorType=SPH](5,\rA)(Ptemp){E}
   \psline[linecolor=red](6,\rA)(Ptemp)(E)\psOutLine[linecolor=red,length=6](Ptemp)(E){EEnd}}

\multido{\rA=2.50+0.25}{5}{%
   \mirrorCVGRay[mirrorType=SPH,linecolor=red](6,\rA)(4,\rA){E}
   \psOutLine[linecolor=red,length=4](E')(E''){EEnd}}

\end{pspicture*}
```

26. \mirrorDVG

26. \mirrorDVG


```
begin{pspicture*}[showgrid=true](-5,-5)(8,5)
rput(0,0){%
    \mirrorDVG[mirrorType=SPH,drawing=false,yBottom=-4,yTop=4,mirrorHeight=8,mirrorWidth=0.25,
    mirrorDepth=2.5]
    \qdisk(Center){2pt}\qdisk(Focus){2pt}\uput[-90](Center){C}\uput[-90](Focus){F}
    \psline(xLeft)(xRight)}
    \multido{\rA=-3.00+0.25}{25}{%
     \ABinterSPHLens(7,\rA)(4,\rA)(Center){Ptemp}\reflectionRay[mirrorType=SPH](5,\rA)(Ptemp){E}
    \arrowLine[linecolor=red,linewidth=1.5pt](7,\rA)(Ptemp){1}
    \psline[linecolor=red,arrows=->,linewidth=1.5pt](Ptemp)(E)
    \ps0utLine[linecolor=red,length=6,linewidth=1.5pt,arrows=->](Ptemp)(E){EEnd}
    \ps0utLine[linecolor=red,length=3,linestyle=dashed,linewidth=0.5pt](E)(Ptemp){EEnd}}
    \end{pspicture*}
```

Index

\mathbf{A}	− \lensSPHRay, 23, 24
AB, 25–28	- \mirrorCVG, 29
\ABinterCD, 14-17, 23, 24	<pre>- \mirrorCVGRay, 12, 13</pre>
\ABinterSPHLens, 29, 30	- \mirrorDVG, 30
\arrowLine, 14-17	- \Parallel, 9
\Arrows, 5, 6	- \polygon, 16
	- \psBeforeLine, 4-9
В	- \psline, 6
\beamLight, 12, 13	- \ps0utLine, 4-9, 12, 13, 17
	- \rayInterLens, 6, 9
C	
CVG, 25, 26	- \refractionRay, 14-17, 29, 30
	- \telescope, 10
D	\mirrorCVG, 29
DVG, 27, 28	\mirrorCVGRay, 12, 13
	mirrorDepth, <mark>13</mark>
E	\mirrorDVG, <mark>30</mark>
\eye, <mark>5, 6</mark>	mirrorHeight, <mark>13</mark>
T/	mirrorType, <mark>29, 30</mark>
K	
Keyword	P
– AB, 25–28	\Parallel, 9
– length, <mark>14</mark>	\polygon, <mark>16</mark>
- lensType, <mark>25-28</mark>	\psBeforeLine, $4-9$
– mirrorDepth, <mark>13</mark>	\psline, 6
<pre>- mirrorHeight, 13</pre>	\ps0utLine, 4-9, 12, 13, 17
<pre>- mirrorType, 29, 30</pre>	
 refractA, 25, 26 	R
 refractB, 25, 26 	\rayInterLens, 6, 9
	refractA, <mark>25, 26</mark>
L	refractB, <mark>25, 26</mark>
length, <mark>14</mark>	\refractionRay, 14-17, 29, 30
\lens, 5-9	
\lensSPH, 23, 24, 27, 28	S
\lensSPHRay, 23, 24	SPH, 29, 30
lensType, <mark>25–28</mark>	_
	T
M	\telescope, 10
Macro	• 7
- \ABinterCD, 14-17, 23, 24	V
- \ABinterSPHLens, 29, 30	Value
- \arrowLine, 14-17	- CVG, 25, 26
-\Arrows, 5, 6	– DVG, <mark>27</mark> , <mark>28</mark>
- \beamLight, 12, 13	– SPH, <mark>29</mark> , <u>30</u>
- \eye, 5, 6	
- \lens, 5-9	
- \lensSPH, 23, 24, 27, 28	
- (LEIISUFII, 40, 44, 47, 40	