

Integrating Knowledge Graphs With Logic Tensor Networks

Master's Degree in Mathematical Engineering

Nicola Di Salvatore (318236)

November 25, 2024

Table of Contents

1 Introduction

- **▶** Introduction
- Background
- Methodologies
- Experimental Results
- ▶ Conclusior

Introduction

1 Introduction

- **Neuro-Symbolic Artificial Intelligence:** fields of artificial intelligence which integrates neural (data-driven) and symbolic (logic-driven) approaches;
- Scene Graph Generation: generates triples (subject, object, relationship) that
 describe an image (i.e., (dog, surfboard, on));
- **Knowledge bases:** repositories of structured information (i.e. Wordnet, ConceptNet, Visual Genome):
- Knowledge embeddings: representation of knowledge base entities and relationships as vectors (i.e. ConceptNet Numberbatch);
- Logic Tensor Networks: framework to inject prior knowledge in neural networks;
- **Entity Alignment:** association of corresponding elements among different knowledge bases;
- First-Order Logic Statements: input for logic tensor networks framework;
- Objective of the thesis: improve Visual Genome scene graphs by injecting prior knowledge from ConceptNet through logic tensor networks framework.

Table of Contents

2 Background

- ▶ Introduction
- **▶** Background
- Methodologies
- Experimental Results
- ▶ Conclusion

Knowledge Bases and Knowledge Embeddings

2 Background

- **WordNet:** lexical knowledge base, where the core elements are synsets, characterized by:
 - a concept, with its definition and part-of-speech (noun, verb, preposition, adverb);
 - set of lemmas: individual words with the same meaning as the synset;
 - relations with other synsets;
- **ConceptNet:** common-sense knowledge base structured as a graph (nodes are concepts, relationships are edges. The main relationships considered are:
 - Antonym/Synonym: connects concepts with opposite/identical meanings;
 - CapableOf/NotCapableOf: indicates that a concept can/can't do the linked concept;
 - InstanceOf and IsA: connect a concept to its category;
- Numberbatch: associates each ConceptNet concept with a 300-dimensional array;
- **Visual Genome:** dataset made of 108,077 images annotated with:
 - Objects: main entities present in an image;
 - Attributes: entities that describe properties or qualities of objects;
 - Relationships: connect two objects with verbs or prepositions;
 - Synsets: represent categories of objects, attributes and relationships;

Logic Tensor Networks

2 Background

- Real-Logic, the first-order logic language, has a signature (that is, the list of non-logical symbols) composed of the following elements:
 - C: set of constants symbols c (e.g. $img_1, img_2, ..., img_n$);
 - $-\mathcal{F}$: set of functions symbols, which transform one or more elements into another;
 - $-\mathcal{P}$: set of predicates symbols, representing relationships or properties;
 - $-\mathcal{X}$: set of variables symbols, that can assume different values.
- Grounding: associates each signature element to a numerical value:
 - $\mathcal{G}(c)$ ∈ \mathbb{R}^n : grounding of variables c ∈ \mathcal{C} by a real-valued vector in \mathbb{R}^n ;
 - $-\mathcal{G}(f): \mathbb{R}^{n \cdot \alpha(f)} \to \mathbb{R}^n$: grounding of functions $f \in \mathcal{F}$;
 - $\ \mathcal{G}(p): \mathbb{R}^{n\cdot \alpha(p)}
 ightarrow [0,1]$: grounding of predicates $p\in \mathcal{P}$.
- Let Θ be the set of parameters for the grounding functions. Logic Tensor Networks objective can be stated as an optimization problem:

$$\Theta^* = \arg \max_{\Theta} \mathcal{G} \left(\bigwedge_{\phi \in K} \phi \middle| \Theta \right) - \lambda \|\Theta\|_2^2,$$

- ► Introduction
- Background
- ► Methodologies
- Experimental Results
- ▶ Conclusion

The **alignment process** links each Visual Genome **object, attribute, relationship** (and, in particular, their **list of synsets**) to the most similar ConceptNet **concept**;

FOL Statements Generation I

3 Methodologies

The following legend is used:

- \mathcal{O}, \mathcal{P} : sets of objects/attributes and relationships in Visual Genome;
- \mathcal{O}' , \mathcal{P}' : set of objects/attributes and relationships classes;
- \mathcal{O}_{x}^{+} : set of hypernyms of the object/attribute x (found using the *IsA* relation in Conceptnet);
- $\mathcal{L}_{\mathcal{O}}$, $\mathcal{L}_{\mathcal{P}}$, $\mathcal{L}_{\mathcal{O}'}$, $\mathcal{L}_{\mathcal{P}'}$: labels sets of \mathcal{O} , \mathcal{P} , \mathcal{O}' , \mathcal{P}' ;
- \mathcal{E}_{l_g} , \mathcal{N}_{l_g} : set of relationships labels $l_{g'}$, where g' is a synonym, antonym of g (through the Synonym, Antonym relation in ConceptNet and further filtering using the similarity among embeddings);
- $\mathcal{PD}_{z'}$, $\mathcal{PR}_{z'}$, $\mathcal{ND}_{z'}$: the subset of $l_{\mathcal{O}'}$ containing objects/attributes labels that compose the positive, positive range, negative domain of the relationship z', obtained by using Visual Genome objects/attributes and Conceptnet relations CapableOf, IsA, NotCapableOf.

FOL Statements Generation II

3 Methodologies

Using the notation previously introduced, the first categories of axioms that have been built are the following:

- Ontological Axioms:
 - For Visual Genome relationships:

If
$$z' \in \mathcal{O}_z^+ \cap \mathcal{P}'$$
, $l_z \in \mathcal{L}_{\mathcal{P}}$, $l_{z'} \in \mathcal{L}_{\mathcal{P}'}$, $\forall x, y \in \mathcal{O}$, $(l_z(x, y) \to l_{z'}(x, y))$
Example: $\forall x, y \in \mathcal{O}$, $(/c/en/inside(x,y) \to /c/en/near(x,y))$;

- Equivalence Axioms:
 - For Visual Genome relationships:

If
$$z \in \mathcal{P}$$
, $l_z \in \mathcal{L}_{\mathcal{P}}$, $l_{z'} \in \mathcal{E}_{l_z}$, $\forall x, y \in \mathcal{O}$, $(l_z(x, y) \leftrightarrow l_{z'}(x, y))$
Example: $\forall x, y \in \mathcal{O}$, (fight(x, y) \leftrightarrow battle(x, y));

- Negative (or Mutual Exclusivity) Axioms:
 - For Visual Genome relationships:

If
$$z, z' \in \mathcal{P}, \ l_z \in \mathcal{N}_{l_{z'}}, \ \forall x, y \in \mathcal{O}, \ (\neg l_z(x, y) \lor \neg l_{z'}(x, y))$$

Example: $\forall x, y \in \mathcal{O}, \ (\neg \text{c/en/sit}(x,y) \lor \neg \text{c/en/walk}(x,y));$

FOL Statements Generation III

3 Methodologies

• Positive Domain Axioms:

If
$$z' \in \mathcal{P}', \ \forall x, y \in \mathcal{O}, \ \left(l_{z'}(x,y) \to \bigvee_{l_{x'} \in \mathcal{PD}_{z'}} \ l_{x'}(x)\right)$$

Example: $\forall x, y \in \mathcal{O}, \ (\c/en/wear(x,y) \to \c/en/biped(x) \lor \c/en/person(x) \lor \c/en/being(x) \lor \c/en/animal(x));$

• Positive Range Axioms:

If
$$z' \in \mathcal{P}'$$
, $\forall x, y \in \mathcal{O}$, $\left(l_{z'}(x, y) \to \bigvee_{l_{\gamma'} \in \mathcal{PR}_{z'}} l_{\gamma'}(y)\right)$
Example: $\forall x, y \in \mathcal{O}$, (/c/en/wear(x,y) \to /c/en/surface(y) \lor /c/en/tool(y) \lor /c/en/physical_object(y) \lor /c/en/substance(y));

• Negative Domain Axioms:

If
$$z' \in \mathcal{P}', \forall x, y \in \mathcal{O}, \ \left(l_{z'}(x,y) \to \bigwedge_{l_{x'} \in \mathcal{ND}_{z'}} \neg l_{x'}(x)\right)$$

Example: $\forall x, y \in \mathcal{O}, \ (\c/en/wear(x,y) \to \neg/c/en/heavier_than_air(x)).$

FOL Statements Generation IV

3 Methodologies

- 1. The set $S_{l_{x'}}$ of the semantically similar relationships to z' is built;
- 2. For each $l_z \in \mathcal{S}_{l_{z'}}$ all the couples subject-relationships $\langle x, z \rangle$ are searched in Visual Genome, and the labels l_x of those subjects are added to the set $\mathcal{PD}_{z'}$;
- 3. For each $l_z \in \mathcal{S}_{l_{z'}}$ all the triples of the form l_x "CapableOf" l_z are extracted from ConceptNet and added to the set $\mathcal{PD}_{z'}$;
- 4. For each $l_z \in \mathcal{PD}_{z'}$, all the hypernyms of l_z (obtained through the ConceptNet relationship *IsA*) are added to $\mathcal{PD}_{z'}$;
- 5. The frequency of each $l_z \in \mathcal{PD}_{z'}$ is calculated and the label representing the 0.9-quantile is stored ;
- 6. The set $\mathcal{PD}_{z'}$ is filtered maintaining only the elements in \mathcal{O}' and with a frequency higher than the threshold (the 0.9-quantile) calculated in step 5.

Table of Contents

- ► Introduction
- Background
- Methodologies
- ► Experimental Results
- ▶ Conclusion

Alignment

Figure: Best similarity for objects/attributes and relationships

FOL Statements Generation I

FOL Statements Generation II

4 Experimental Results

Table: First-Order Logic Axioms Count For Images

	Mean	Standard Deviation	25th Perc.	75th Perc.
PD	572.42	243.30	351.00	774.00
PR	518.96	181.20	417.00	660.00
PD - CapableOf	24.57	10.48	18.00	34.00
ND - NotCapableOf	0.97	0.65	1.00	1.00
Negative	355.64	172.27	233.00	494.00
Ontological	35.54	24.65	16.00	50.00
Equivalence	0.08	0.28	0.00	0.00
Total	1507.38	590.76	1154.00	1976.00

FOL Statements Generation III

Figure: Image From Visual Genome

FOL Statements Generation IV

- Positive Domain Axioms:
 - /c/en/wear(x, y) → /c/en/biped(x) ∨ /c/en/person(x) ∨ /c/en/being(x) ∨ /c/en/animal(x),
- Positive Range Axioms:
 - /c/en/next(x, y) → /c/en/surface(y) ∨ /c/en/tool(y) ∨ /c/en/physical_object(y) ∨ /c/en/substance(y)
- Positive Domain Using CapableOf Axioms:
 - /c/en/transport(x, y) → /c/en/artifact(x) ∨ /c/en/machine(x) ∨ /c/en/physical_object(x) ∨ /c/en/vehicle(x).
- Negative Domain using NotCapableOf:
 - /c/en/laugh(x, y) → ¬/c/en/substance(x) ∧ ¬/c/en/food(x) ∧ ¬/c/en/fuel(x) ∧ ¬/c/en/good(x),
- Ontological Axioms:
 - $/c/en/man(z) \rightarrow /c/en/being(z)$,
- Negative Axioms:
 - − ¬/c/en/preditor(x) ∨ ¬/c/en/physical_object(x),

FOL Statements Generation V

4 Experimental Results

Axioms obtained by integrating the domain/range axioms with the ontological ones. They allow to visualize better the results:

- Positive domain axioms:
 - $/c/en/wear(x, y) \rightarrow /c/en/man(x)$,
 - /c/en/have(x, y) \rightarrow /c/en/car(x) \vee /c/en/van(x) \vee /c/en/building(x),
 - /c/en/behind(x, y) \rightarrow /c/en/van(x) \lor /c/en/car(x),
 - /c/en/along(x, y) \rightarrow /c/en/bicycle(x) \lor /c/en/van(x) \lor /c/en/car(x),
- Positive range axioms:
 - c/en/wear(x, y) \rightarrow /c/en/car(y),
 - $/c/en/have(x, y) \rightarrow /c/en/building(y) \lor /c/en/window(y),$
 - /c/en/transport(x, y) \rightarrow /c/en/car(y) \lor /c/en/building(y),
 - /c/en/next(x, y) \rightarrow /c/en/road(y) \lor /c/en/car(y) \lor /c/en/building(y).
- Positive domain using CapableOf axioms:
 - $/c/en/transport(x, y) \rightarrow /c/en/car(x)$.

Table of Contents 5 Conclusion

- ► Introduction
- Background
- ▶ Methodologies
- ► Experimental Results
- **▶** Conclusion

Automatic generation of first-order logic statements:

- **Positive Domain** and **Positive Range** Axioms: high cardinality, high density in images (572 and 519 for the image on average);
- **Positive Domain Using** *CapableOf* Axioms: medium cardinality, medium density in images (25 for image on average);
- **Negative Domain**: low cardinality, using the ConceptNet relationship *NotCapableOf*, medium density in images (1 for image on average);
- Ontological axioms: high cardinality, low density in images, used to link objects/attributes with their hypernyms;
- **Negative** (or **Mutual Exclusivity**) Axioms: high cardinality, high density in images, high specificity
- **Equivalence** Axioms: medium cardinality, low density in images, help to associate one concept with another.

- Inserting axioms into neural networks through logic tensor networks;
- Generating range and domain sets for couples \(\subject\), \(relationship\)\ and \(\lambda object\), \(relationship\)\ (for example, \(/c/en/tool\) is in the set \(\mathcal{PR}_{\lambda/(c/en/being,/c/en/wear\range)}\);
- inserting other categories of first-order logic axioms, such as inverse axioms (i.e. $\forall x, y \in \mathcal{O}$, (/c/en/inside(x,y) \leftrightarrow /c/en/outside(y,x));
- Building the sets \mathcal{PD} , \mathcal{PR} , \mathcal{ND} , \mathcal{NR} without a deterministic algorithm, but with first-order logic axioms containing new LTN predicates such as:

```
\forall x \in \mathcal{O}, \ \forall x' \in \mathcal{O}', \ \forall z \in \mathcal{P}, \ \forall z' \in \mathcal{P}':
HasKnowledgeBaseLinkForDomain(x,z) \land SemanticallySimilar(z',z)
\land InHierarchy(x,x') \implies InDomain(x',z')
```


Integrating Knowledge Graphs With Logic Tensor Networks

Thank you for listening!
Any questions?