# Computational Microelectronics Lecture 24 Transient

Sung-Min Hong (<a href="mailto:smhong@gist.ac.kr">smhong@gist.ac.kr</a>)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

# Mixed-Mode Simulation

## An example

• Consider a symmetric, abrupt PN junction. Its doping density is  $10^{17}$  cm<sup>-3</sup>. Assume that  $\mu_n=1417$  cm<sup>2</sup>/V sec and  $\mu_p=407.5$  cm<sup>2</sup>/V sec. The area is  $1 \mu m^2$ . The resistor is  $1 k\Omega$ .

Increase the voltage up to 10 V.





## **Convergence behavior**

- When the Jacobian entries for the terminal current ( $I_{cathode}$ ) are neglected,
  - We cannot get the converged solution at 0.8 V. (0.05 V spacing)
- When the Jacobian entries for the terminal current are neglected ( $V_{cathode,internal} = -I_{cathode} \times R_{cathode}$ ),
  - We cannot get the convergence solution at 0.8 V. (0.05 V spacing)
- It is very important to consider  $I_{cathode}$  and  $V_{cathode,internal}$  accurately in the Jacobian matrix.

GIST Lecture

# **Transient Device Simulation**

#### The same rectifier circuit

- The input voltage is increased up to 2 V.
  - -The ramping rate is changed.

- First, let's try 1 V/sec. (Extremely slow)



# Much faster ramping

- The ramping rate is now 1 V/psec. (Extremely fast)
  - -The PN junction cannot respond properly.



## Sinusoidal signal

- We apply a sinusoidal signal whose amplitude is 2 V.
  - -One period is divided into 200 intervals.

- First, 100 MHz



## Sinusoidal signal

- Once again, we try a much higher frequency, 100 GHz.
  - Its first period looks very different from 100 MHz.



# Thank you!