

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

MELEOURNE, VICTORIA

AERODYNAMICS NOTE 398

(12)49

HIGH SPEED AERODYNAMIC CHARACTERISTICS OF THE GAFOPH AEROFOIL

TIC FILE COPI

by

B. D. FAIRLIE

Approved for Public Release.

008 650

DTC ELECTE DEC 29 1981

D

C COMMONWEALTH OF AUSTRALIA 1980

COPY No 13

SEPTEMBER 1980

81 12 29 014

Avail and/or

Special

Dist

AR-002-223

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

AERODYNAMICS NOTE 398

HIGH SPEED AERODYNAMIC CHARACTERISTICS OF THE GAFOPH AEROFOIL

by

B. D. FAIRLIE

SUMMARY

Transonic wind tunnel tests are reported on a two-dimensional model of the GAF0PH aerofoil. The tests covered Mach numbers in the range 0.5 to 0.85 and angles of incidence from -3° to above maximum lift coefficient. Tests were conducted both with natural transition and with transition artificially fixed. Maximum lift coefficient was found to lie just below 0.8 for most of the Mach number range and was followed by a fairly gentle stall. Drag rise Mach number was found to lie between 0.75 and 0.76 for lift coefficients up to 0.4. A leading edge separation bubble was found on the upper surface of the aerofoil for angles of incidence greater than $2\frac{1}{2}^{\circ}$.

DOCUMENT CONTROL DATA SHEET

1. Document Num!	oers				2.	Sec	urity	Class	ificat	ion			
(a) AR Number							Com				::		
AR-002-223							Uncl	assific	ed				
(b) Document S			:			, ,	Title			n:			
Aerodynamic		398					Uncl	-					
(c) Report Num ARL-Aero-		8					Sum: Uncl			olatio	n:		
3. Title: HIGH SF GAF0PH			IAM!	IC C	HAR.	ACT	ERIS	TIC	S OF	THI	E		
4. Personal Author Fairlie, B. D.	:				5.	Wri	umei tten, lished	Febr	uary,				
					6.	Тур	e of	Repo	rt an	d Per	riod C	Cover	ed:
7. Corporate Author Aeronautical Res		aboratorie	:s		8.		erenc Task		mber	s			
9. Cost Code: 54 7710						(b)	Spon	sorin	g Ag	ency:	:		
10. Imprint (Publish Aeronautical Re Melbourne	_				11.		npute le(s) a		_)):	, 	
12. Release Limitation Approved for Pu			ent):				-		· ·				
12.0 Overseas:	N.O.	P.R.	1	A		В		С		D		E	
13. Announcement I No Limitations	imitatio	ons (of the	info	rmati	on on	this	page):					<u></u>
14. Descriptors: Aerodynamic dra Airfoils			Rey:	nolds	num	ber				Cosat 0101	i Coo	ies:	
Transonic wind t	unnels		Pitcl	hing						_			
16	••)		AB	STR	ACT								
Transonic wing uerofoil. The tests from -3° to about transition and with	covered ve maxi	Mach num mum lift	bers coeffi	in the	range Test	e 0;5 s we	to 0, re co	. _. 85 a nduci	nd an ed b	gles o	of inc oith n	idenc atura	e il

CONTENTS

	Page No.
NOTATION	1
1. INTRODUCTION	1
2. TEST DETAILS	1
2.1 Section Definition	1
2.2 Model Details and Accuracy	1
2.3 Wind Tunnel	1
2.4 Measuring Equipment	1
2.5 Transition Fixing	2
2.6 Test Programme	2
3. WIND TUNNEL WALL INTERFERENCE	2
4. RESULTS AND DISCUSSION	3
5. CONCLUSIONS	4
6. REFERENCES	
TABLE 1	
FIGURES	
APPENDIX A	
DISTRIBUTION	

NOTATION

- A Area of aerofoil section in x z plane.
- b Breadth of tunnel.
- C_D Drag coefficient = (drag force)/qS.
- C_L Lift coefficient = (lift force)/qS.
- C_m Pitching moment coefficient = (pitching moment about c/4)/qSc.
- c Aerofoil chord (see 2.1).
- E Universal empirical blockage factor.
- G Ratio of corrected to uncorrected kinetic pressure.
- H Free stream total pressure.
- h Height of tunnel.
- M Free stream Mach number.
- po Free stream static pressure.
- q Free stream kinetic pressure = $\gamma/2 p_0 M^2$.
- Re Reynolds number based on chord (c).
- S Aerofoil area $(b \times c)$.
- t Aerofoil maximum thickness.
- U Free stream velocity.
- x Chordwise coordinate, origin at leading edge.
- y Spanwise coordinate, origin at mid-span.
- z Aerofoil thickness coordinate, origin at chord line.
- α Angle of incidence.
- β Prandtl-Glauert compressibility factor = $(1 M^2)^{1/2}$.
- y Ratio of specific heats, taken to be 1.4.
- δ_0 Lift interference parameter associated with stream direction.
- δ_1 Lift interference parameter associated with stream line curvature.

Subscripts

- f Denotes free-air (corrected) values.
- o Denotes zero lift value.

1. INTRODUCTION

At the request of the Aircraft Industry Study Group, (A.I.S.G.), transonic wind-tunnel tests have been carried out on a two-dimensional aerofoil section denoted GAF0PH. The tests covered Mach numbers in the range 0.5 to 0.85 and angles of incidence from below zero lift to above stall. Measurements included three components of forces and moments (lift, drag and pitching moment) and the determination of buffet boundaries. The tests were conducted during December 1979 and January 1980.

2. TEST DETAILS

2.1 Section Definition

The ordinates of the aerofoil section are presented in Table 1. These ordinates are identical with those supplied by the A.I.S.G. except in the vicinity of the trailing edge. To obtain a practical shape for manufacture, the trailing edge was cropped to give a trailing edge thickness of $0 \cdot 10$ mm ($z/c = 0 \cdot 0007$). This was attained by ending the section at $x/c = 0 \cdot 997$ rather than continuing to the sharp trailing edge at x/c = 1.000. All aerodynamic coefficients are however based on the full theoretical chord (c).

2.2 Model Details and Accuracy

Studies of wind tunnel wall interference in the A.R.L. transonic tunnel have indicated that for two-dimensional aerofoil tests at subsonic speeds, the largest model for which interference corrections can be confidently applied has a chord of 150 mm. This chord length, which gives a value of chord to tunnel height ratio of 0.185, was found to be the largest which avoids the appearance of uncorrectable streamline curvature effects.

Based on these considerations, a model of GAF0PH was manufactured with a theoretical chord of 150 mm. The model was cast in epoxy resin over a steel spine using a development of the wax mould technique described in Reference 2. Measured profile errors for the completed model are plotted in Figure 1. Overall dimensional errors are generally within ± 0.075 mm (± 0.0005 c) and local waviness is well within the usual tolerances.

2.3 Wind Tunnel

All tests were carried out in the ARL variable pressure transonic wind tunnel. The test section fitted for these tests had solid sid, walls and longitudinally slotted top and bottom walls (open area ratio 16.5% at the model location), with dimensions at the model location of h = 813 mm, b = 533 mm (Fig. 2). Mach number was derived from measurements of the pressure in the plenum chamber surrounding the test section, and in the entry to the contraction, assuming these to be the static and total pressures of the test section flow respectively.

The model completely spanned the width of the test section (apart from small gaps at each side wall) giving an aspect ratio of 3.05. It was supported by means of integral end tongues which extended through each sidewall. These tongues were mounted on a pair of three-component strain-gauge balances measuring lift, drag and pitching moment. To avoid air leakage through the sidewalls, each strain-gauge balance was housed in an airtight enclosure.

2.4 Measuring Equipment

Angles of incidence were derived from a digitizer driven directly from rotating frames in the side walls carrying the strain-gauge balances. To correct for stream angularity, the tunnel

stream direction was determined at the beginning of the tests from measurements with the model both upright and inverted. Strain gauge outputs were monitored by the tunnel A-C excited self balancing equipment.

All transducer outputs were processed by the tunnel PDP8/I computer data processing system. Angles of incidence were corrected for balance deflections, strain gauge outputs reduced to coefficient form (including correction for the effect of the weight of the model), and all outputs displayed and printed in real time. The data were also recorded on magnetic tape for further processing by the central site computer.

During the major part of the tests, buffet was detected from observation of the "flap" meters of the strain gauge equipment. These meters indicate the oscillatory component of each channel of strain gauge outputs by monitoring the average departure from nulled conditions.³ An independent check was performed on this indication by replacing the A.C. excitation of the strain gauge balances with a D.C. source and displaying the resulting waveform on a cathode ray oscilloscope. In both cases, the pitching moment channel was found to give the most sensitive indication of buffet onset.

2.5 Transition Fixing

Tests were conducted both with natural transition and with transition fixed by spanwise bands of roughness particles. These roughness bands consisted of carborundum particles attached to both upper and lower surfaces of the model by a thin (0.03 mm) layer of lacquer. The bands were located at x/c = 0.05 and were 0.015 c wide, with a particle coverage of 10-20%; particle size was 0.15 mm.

2.6 Test Programme

The test programme was as requested and was the same for both natural transition and transition fixed. Mach numbers were in the range $0.5 \le M \le 0.85$ at increments of 0.05. The range of angle of incidence was $-3^{\circ} \le \alpha \le 11^{\circ}$ at 1° increments. The maximum angle of incidence was varied somewhat with Mach number to ensure that the stall was adequately covered. Buffet boundaries were also determined for the complete range of Mach number.

The Reynolds number employed for these tests was chosen such that the maximum available Reynolds number was utilized at the highest Mach number (0.85), and approximately constant Reynolds number maintained for all other Mach numbers by adjusting tunnel starting pressures. Due to tunnel temperature variations during a run, the Reynolds number (based on chord) would vary slightly, the values being in the range $1.20\pm0.06\times10^6$. In addition, two representative runs were made at a Mach number of 0.55 to investigate the effects of varying Reynolds number; one at half the Reynolds number of the main body of tests (0.60×10^6) , and the other at the maximum available Reynolds number (1.64×10^6) at that Mach number.

3. WIND TUNNEL WALL INTERFERENCE

The effect of wind tunnel wall interference on the subsonic testing of two-dimensional aerofoils in the A.R.L. transonic tunnel has been the subject of a detailed investigation reported in Reference 1. This report proposed a semi-empirical correction scheme which was shown to produce corrected results close to being free of interference effects, at least while the flow over the aerofoil remains attached. This scheme, which is summarized below, has been applied to all the present results.

Corrections to Mach number and angle of incidence are determined from

$$M_f = M + \Delta M$$

$$\Delta M = (1 + 0.2 M^2) \frac{EA_e}{\beta^3 h^2}$$

$$A_e = A (1 + 1.2\beta t/c)$$

where

and E is a universal constant with a value 1 of -1.25.

$$\alpha_f = \alpha + \Delta \alpha$$

where

$$\Delta\alpha = \begin{pmatrix} c \\ \dot{h} \end{pmatrix} \delta_0 C_L + \begin{pmatrix} c \\ \dot{h} \end{pmatrix}^2 \frac{\delta_1}{\beta} \left(\frac{C_L}{4} + C_m \right)$$

and δ_0 and δ_1 are lift interference parameters having values ¹ of -0.16 and -0.05 respectively. Corrections to measured quantities are then given by

$$C_{Lf} = (C_L + \Delta C_L) G$$

where

$$\Delta C_L = -\frac{\pi}{2} \left(\frac{c}{h}\right)^2 \frac{\delta_1}{\beta^2}$$

$$C_{mf} = (C_m + \Delta C_m) G$$

where

$$\Delta C_m = -\frac{\Delta C_L}{4}$$

and

$$C_{Df} = (C_D + \Delta C_D) G$$

where

$$\Delta C_D = \left(\frac{c}{h}\right) \delta_0 C_{L^2}$$

Note that G is the ratio of corrected to uncorrected kinetic pressure and is given by

$$G = \frac{1}{1 + (2 - M^2) \frac{EA_e}{R^3h^2}}$$

It should also be noted that an extra term is usually included in the expression for ΔC_D to take account of longitudinal buoyancy forces experienced by the model due to longitudinal velocity gradients. However for a model of the chord length used in these tests, this term contributes less than 0.2% to drag and has therefore been ignored.

The results from tests both with and without transition fixed are tabulated in Appendix A. In each case, uncorrected as well as corrected values are presented.

4. RESULTS AND DISCUSSION

The variation of lift coefficient with incidence for tests both with and without transition fixing are presented in Figure 3. It should be noted that in this figure, as in all further figures, the corrected results are presented. It is apparent that the aerofoil exhibits a fairly gentle stall with maximum lift coefficients of about 0.8. For Mach numbers less than 0.74 the shape of the natural transition curves are consistently different from those with transition fixed. Up to an angle of incidence of approximately $2\frac{1}{4}$ °, the natural transition curves show a significant increment in lift: for higher incidences the two curves have substantially similar shapes. This behaviour is consistent with the appearance in both cases of a laminar separation bubble close to the leading edge at an angle of incidence of $2\frac{1}{4}$ °. Below this angle the natural transition case retains a laminar boundary layer for some distance downstream from the leading edge resulting in small increase in lift coefficient. This leading edge separation is visible in the flow visualization photographs of Figure 4, laminar separation occurring at about 1-2% chord with turbulent reattachment just upstream of the transition trip.

For the two highest Mach numbers, the natural transition curves are quite different from those with transition fixed. It seems likely that at these higher Mach numbers no leading edge bubble would form due to a reduction of the magnitude of the adverse pressure gradient. The natural transition curves will also exhibit nonlinearities due to laminar shock-wave/boundary-layer interactions.

In Figure 3 the positions of buffet boundaries are marked by vertical lines on each curve. These boundaries were derived from observations of oscillations in the pitching moment output channel of the strain gauge balances. Buffet boundaries for both natural transition and transition fixed cases agree quite closely. Figure 5 presents oscilloscope traces recorded from the pitching moment channel with the strain gauge balances excited from a D.C. source. The onset of buffet is quite distinct at the lower Mach numbers, being quite severe at M=0.69. At the two highest Mach numbers however, the buffet boundary is less clearly defined, the general level of background noise having risen quite distinctly.

The effect of Reynolds number on lift coefficient is presented in Figure 6. Over the range of Reynolds numbers investigated, this effect is quite small, the major differences being a slight increase in both lift curve slope and maximum lift coefficient with increasing Reynolds number.

The variation of lift curve slope (at zero lift) with Mach number is plotted in Figure 7. Despite the different characteristics exhibited by the natural transition curves at low incidence, the lift curves slopes for both natural transition and transition fixed are in good agreement.

Pitching moment coefficient is plotted against incidence in Figure 8 for natural transition and in Figure 9 for transition fixed. Once again the natural transition curves exhibit a discontinuity associated with the formation of the leading edge bubble at an incidence of 2½°. At the highest Mach numbers the effect of shock wave—boundary-layer interaction is clearly visible. The variation of pitching moment coefficient with Mach number for the transition fixed case is presented in Figure 10.

Figure 11 presents the variation of drag coefficient with incidence. As would be expected, the natural transition case exhibits lower values of drag throughout most of the tested range due to the existence of a laminar boundary layer on the lower surface. When laminar boundary layers remain on both surfaces (before the leading edge bubble formation), the natural transition curves exhibit even lower drag values. At high Mach numbers however, the appearance of shock wave—laminar boundary layer interactions produce higher drags for the natural transition case. These effects are also clearly visible in Figure 12 which presents the variation of drag coefficient with Mach number. The drag rise Mach number (arbitrarily defined as the Mach number at which the drag has risen by 0.002 above its value at M = 0.5) derived from these curves remains between 0.75 and 0.76 for values of lift coefficient up to 0.40. The effect of fixing transition on drag rise Mach number is quite small.

The effect of Reynolds number on drag coefficient is presented in Figure 13. Once again, over the range of Raynolds numbers considered, the effect is quite small. Values of zero lift drag for the transition fixed case are plotted against Reynolds number in Figure 14. Also plotted in this figure is the variation of the turbulent mean kin-friction drag coefficient on an insulated flat plate for the same Mach number (0.55). The aerofoil results maintain a fairly constant increment above this curve, and this figure should thus allow an approximate extrapolation of zero-lift drag to flight Reynolds numbers.

5. CONCLUSIONS

Transonic wind tunnel tests have been conducted on a two-dimensional model of an aerofoil designated GAF0PH. The tests covered Mach numbers in the range $0.5 \le M \le 0.85$ and angles of incidence from -3° to above maximum lift coefficient. Tests were conducted both with natural transition and with transition artificially fixed.

The results indicate that the aerofoil has a fairly gentle stall with a value of maximum lift coefficient just below 0.8 for most of the Mach number range. A leading edge separation bubble was found to exist on the upper surface of the aerofoil for angles of incidence greater than $2\frac{1}{2}^{\circ}$. This separation bubble produced characteristic non-linearities in the behaviour of lift and pitching moment coefficients for the tests with natural transition. Drag rise Mach numbers were found to lie between 0.75 and 0.76 for values of lift coefficient up to 0.4.

REFERENCES

1. Fairlie, B. D. and Pollock, N. Evaluation of wall interference effects in a two-dimensional transonic wind tunnel by subsonic linear theory.

A.R.L.-Aero-Report-151, 1979.

2. Collins, D. J.

An inexpensive technique for the fabrication of two-dimensional wind tunnel models.

Rev. Sci. Inst. Vol. 44, 1973.

是一种,这种是一个人,也是一种,我们就是一种,我们就是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一种人,也是一种人,也是一种人,也是一种人,也是

3. Pollock, N. Operating and maintenance manual for Pollock-Lording strain gauge equipment.

A.R.L.-Aero-Tech. Memo.-301, 1976.

TABLE 1

X (inches)	2 upper	z lower	X (inches)	z upper	z lower
(inches)	(inches)	(inches)	(inches)	(inches)	(inches)
0.000000	0.000000	0.000000	0.726564	0.246486	-0·173 2 02
0.000300	0.006528	-0.006438	0.754932	0.249984	-0.175974
0.001200	0.013194	-0.012846	0.783780	0.253428	-0.178806
0.002700	0.019992	0.019218	0.813108	0.256812	-0.181698
0.004800	0.026886	-0 ⋅025524	0.842916	0.260136	-0·184650
0.007500	0.033846	-0·031752	0.873186	0.263400	-0.187674
0.010794	0.040848	-0·037878	0.903918	0.266598	-0·190758
0.014688	0.047856	0.043878	0.935118	0.269724	~0.193914
0.019182	0.054846	-0.049740	0.966762	0.272784	-0.197136
0.024276	0.061788	-0.055434	0.998862	0.275778	-0·200430
0.029964	0.068652	-0.060942	1.031400	0.278700	-0.203796
0.036246	0.075396	-0.066240	1.064376	0.281550	-0·207228
0.043122	0.082002	-0·071304	1.097790	0.284322	-0·210732
0.050592	0.088434	0.076110	1 · 131624	0.287028	-0.214308
0.058656	0.094650	-0.080640	1 · 165884	0.289662	-0.217944
0.067308	0.100632	-0.084870	1 · 200558	0.292218	-0.221610
0.076554	0.106380	-0.088818	1 · 235646	0.294708	-0.225282
0.086388	0.111900	-0.092496	1.271136	0.297132	-0.228948
0.096804	0.117204	-0.095922	1 · 307022	0.299484	-0.232578
0.107814	0.122310	-0.099120	1 · 343298	0.301770	-0.236154
0.119400	0.127236	-0.102114	1 · 379964	0.303984	-0.239664
0.131568	0.131994	-0.104922	1.417008	0.306138	-0.243090
0.144324	0.136608	80 ت 0 - 107	1 · 454424	0.308226	-0.246408
0.157650	0.141096	-0.110100	1 492206	0.310248	-0·249612
0.171558	0.145476	-0.112512	1 · 530348	0.312204	-0.252690
0·186036 0·201084	0·149760 0·153972	-0·114840 -0·117102	1 · 568850 1 · 607694	0·314100 0·315930	- 0 · 255624 0 · 258396
0.201004	0.158124	-0·11/102 -0·119316	1.646874	0.313930	-0·256390 -0·261000
0.232896	0.162240	-0·119510 -0·121506	1.686396	0.317700	-0·263442
0.249648	0.166326	-0.123690	1.726236	0.321054	-0·265686
0.266964	0.170382	-0.125874	1 · 766400	0.322644	-0.267738
0.284838	0.174408	-0·128052	1 · 806876	0.324168	-0.269580
0.303270	0.178410	-0.130230	1.847652	0.325638	-0.271212
0.322254	0.182376	-0.132414	1 · 888734	0.327048	-0.272622
0.341790	0.186318	0.134610	1.930098	0.328398	-0.273804
0.361872	0.190236	-0.136818	1.971750	0.329688	-0.274752
0.382500	0.194130	-0.139038	2.013672	0.330924	-0.275460
0.403674	0.197994	-0.141276	2 055864	0.332106	-0.275922
0.425382	0.201846	-0.143538	2.098314	0.333228	-0.276132
0.447624	0 · 205674	-0·145824	2.141016	0.334290	0.276102
0.470400	0 · 209484	-0.148134	2 · 183964	0.335268	-0·275838
0 · 493704	0.213276	-0.150468	2 · 227146	0.336150	-0.275346
0.517530	0.217056	0.152838	2 · 270550	0.336936	0.274638
0.541878	0.220818	0.155238	2.314182	C·337608	-0.27372 6
0.566742	0.224568	−0·157674	2.358018	0.338154	-0·27261 <i>6</i>
0.592122	0.228306	-0·160146	2 · 402058	0.338574	-0·27132 6
0.618012	0.232014	0.162660	2 · 446296	0.338856	-0.269862
0.644400	0.235692	-0·165216	2.490714	0.338988	-0.268224
0.671292	0.239334	-0.167826	2.535312	0.338976	-0.26643 €
0.698682	0.242934	0.170484	2.580078	0.338808	-0.264491
	1	l	2 · 625000	0.338478	-0.262422

TABLE 1 (Continued)

7.	z upper	z lower	x	z upper	z lower
(inches)	(inches)	(inches)	(inches)	(inches)	(inches)
2.670072	0.337986	-0.260208	4.890732	0.148548	-0.093480
2.715288	0.337326	-0.257880	4.929468	0.143556	-0.090246
2.760636	0.336498	-0·255426	4.967772	0.138606	-0.087042
2.806104	0.335508	-0·252870	5.005620	0.133692	-0.083874
2.851686	0.334338	-0·250218	5.043000	0.128814	-0.080748
2.897370	0.333000	-0·247464	5.079894	0.123984	-0.077652
2.943150	0.333000	-0·244626	5.116302	0.119208	-0.074598
2.989014	0.331494	-0·241704	5.152194	0.114474	-0.071586
3.034956	0.327966	-0.238710	5.132194	0.109800	-0.068616
3·034956 3·080964	0.327900	-0·235644	5.222400	0.105186	-0.065688
		ł i		0.100632	-0·062802
3 · 127026	0.323754	-0·232518	5 256684		-0·059964
3.173130	0.321402	-0.229332	5 290398	0.096138	-0·057174
3.219270	0.318882	-0·226086	5 323530	0.091716	-0.057174 -0.054432
3 · 265440	0.316200	-0.222798	5 356068	0.087360	-0.034432 -0.051744
3.311622	0.313356	-0.219463	5 388000	0.083082	-0.031744 -0.049104
3.357810	0.310356	-0·216090	5.419302	0.078876	-
3 · 403992	0.307200	-0·212676	5 • 449962	0.074754	-0·046518
3 · 450156	0.303894	-0·209238	5.479974	0.070710	-0.043986
3.496296	0.300438	-0.205764	5 · 509308	0.066750	-0·04150ŝ
3 · 542400	0.296838	-0.202272	5 · 537964	0.062880	-0·039084
3 · 588456	0.293100	-0.198750	5.565912	0.059094	-0.036726
3 · 634452	0.289218	-0.195216	5.593152	0.055410	-0.034422
3 · 680376	0.285210	-0.191670	5.619654	0.051816	-0.032184
3 · 726222	0.281082	-0.188106	5 • 645412	0.048318	-0.030006
3.771972	0.276834	-0.184530	5.670408	0.044922	-0.027894
3.817620	0.272490	-0.180948	5 · 694630	0.041634	~0.025842
3 · 863160	0.268044	-0.177360	5 · 718054	0.038448	-0.023862
3 · 908568	0.263514	0.173766	5.740668	0.035370	-0.021948
3 · 953838	0.258906	-0.170166	5 · 762454	0.032406	-0.020106
3 · 998964	0.254220	0.166572	5 · 783400	0.029550	-0.018336
4.043928	0.249468	-0.162972	5.803488	0.026814	~0.016632
4.088718	0.244650	0.159372	5.822700	0.024192	-0.015006
4.133322	0.239784	-0.155778	5.841024	0.021696	-0.013458
4 • 177734	0.234864	0.152190	5.858442	0.019320	-0.011982
4.221936	0.229902	-0.148608	5.874936	0.017070	~0.010590
4.265916	0.224904	-0·145038	5.890488	0.014946	-0.009270
4 · 309668	0 219870	-0.141474	5.905086	0.012954	-0.008034
4.353174	0.214806	-0.137922	5.918706	0.011100	-0.006882
4 · 396422	0 · 209724	-0·134382	5.931336	0.009372	-0.005814
4 · 439400	0.204618	-0.130860	5.942964	0.007788	0.004830
4 · 482096	0.199506	-0.127350	5.953560	0.006342	-0.003930
4 · 524498	0.194382	-0.123858	5.963118	0.005034	−0.003120
4 · 566594	0.189252	-0.120390	5.971620	0.003876	-0.002400
4.608366	0.184122	0-116940	5.979042	0.002862	-0.001776
4 · 649808	0.178992	-0·113508	5.985372	0.001998	-0.001236
4.690908	0.173874	-0·110106	5.990592	0.001284	-0.000798
4.731642	0.168774	0.106722	5.994678	0.000726	-0.000450
4.772004	0.163680	-0.103368	5.997624	0.000324	-0.000204
4.811982	0.158610	-0.100044	5.999406	0.000084	-0.000048
4.851564	0.153564	-0.096744	6.000000	0.000000	0.000000
	1		1		1

 $\Delta Z = Measured ordinate - Table 1 ordinate$

FIG. 1 MODEL PROFILE ERRORS

FIG. 2 DETAILS OF SLOTTED TEST SECTION

FIG. 3 VARIATION OF LIFT COEFFICIENT WITH INCIDENCE: COMPARISON BETWEEN TRANSITION FIXED AND NATURAL TRANSITION

FIG. 4 SURFACE FLOW VISUALIZATION

FIG. 5 BUFFET BOUNDARY OSCILLOSCOPE TRACES

FIG. 5 (Cont.)

FIG. 6 EFFECT OF REYNOLDS NUMBER ON LIFT COEFFICIENT TRANSITION FIXED AT 5% CHORD

FIG. 7 VARIATION OF LIFT CURVE SLOPE WITH MACH NUMBER, COMPARISON BETWEEN TRANSITION FIXED AND NATURAL TRANSITION

1 #

FIG. 8 VARIATION OF PITCHING MOMENT COEFFICIENT WITH INCIDENCE.NATURAL TRANSITION

FIG. 8 VARIATION OF PITCHING MOMENT COEFFICIENT WITH INCIDENCE TRANSITION FIXED AT 5% CHORD

FIG. 10 VARIATION OF PITCHING MOMENT COEFFICIENT WITH MACH NUMBER. TRANSITION FIXED AT 5% CHORD

FIG. 11 VARIATION OF DRAG COEFFICIENT WITH INCIDENCE: COMPARISON BETWEEN TRANSITION FIXED AND NATURAL TRANSITION

FIG. 12 VARIATION OF DRAG COEFFICIENT WITH MACH NUMBER: COMPARISON BETWEEN TRANSITION FIXED AND NATURAL TRANSITION

FIG. 13 EFFECT OF REYNOLDS NUMBER OF DRAG COEFFICIENT, TRANSITION FIXED AT 5% CHORD

FIG. 14 VARIATION OF ZERO LIFT DRAG COEFFICIENT WITH REYNOLDS NUMBER. TRANSITION FIXED AT 5% CHORD

APPENDIX A Tabulated Results

GAFOPH AEROFOIL

	DRAG	0.0152	•	•	,	•	•	.015			770.	0.0266	.032		0.0397	.051	774	֓֝֓֜֝֜֜֜֝֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֡֓֓֡֓֜֜֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֓֜֜֡֓֡֓֡֓֡֓֡֡֡֓֡֡֡֡֡֡	. 105	. 138	! 	0.1620	7	71710	0.0122
۵	PITCH	-0.0233	.021			3 7	•	-0.0167	c	j	•	ö	•		-0.0010	0.0025	9700	0.0017	-0.0201	-0.0418		-0.0660		-0.0720	5
UNCORRECTED	LIFT	-0.2026	-0.1135	-0.0208	7070		0.1555	0.2493	0777	, I + 2 · 0	0.4351	0.5140	0.5957		.67	74)	0.7551	7.7	; :	7093		1479'D	0.0622
5	INCID		•	•		•	0.99	2.00		•	•	S. 00		•	7.06	A. 04		4.00	10.02	11.07		C		12.47	-0.02
	MACH	4	S	101	1 4	n ·	0.499	0.499	•	•	•	0.500	•	•					0.500		•	4	•	0.499	'n
·	PRAG	0.0141	5	10.00	5	5	5	0.0136		.01	.01	0.0188	.02		0.0261			0.0584	0.0922	4010	7071.0	4 7 6	•	0.1610	0.0122
٥	PITCH	-0.0244	40000		-0.020-	-0.0175	-0.0186	-0.0178		-0.0164	-0.0143	-0.0106	7700-0-		001		ָ כוריים בוריים	.001	-0.0212		いなつ・	1	-0.00.0-	-0.0736	-0.0192
CORRECTED	LIFT	205	777	71110	170.	. 063	.157		•	•	•	0.5205	,	•	8 7	֓֞֜֜֜֜֜֝֜֜֜֜֝֓֜֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֡֓֜֜֜֓֓֡֓֜֡֓֡֓֡֓֡֓	16/:	.781	0.7647		. 745	1	U. /183	0.6377	0.0630
	INCID	7		- c	٠. ح	4	0.72	¥	•	4.	.2	4.10	0		4	9 1	•	9	8,69	•	-	i	0.7	1.8	-0.13
	MACH	07	· ·	· •	.47	. 49	767.0	0	-	. 49	67.	767 U	. 0	+ + •	•	•	*	67	707	•	. 49		49	64	0.495
	REYN	ć	7 (5	. 25	255	1.245	č	77.	.25	25	470	- 4	7	ò	77.	. 23	76	270	17.	. 25	,	. 24	.24	1.245
	SER	C	7 I	ข	4	ľ	•	•	_	40	0	, Ç							- u		16				13

GAFOPH AEROFOIL

	DRAG	0.0484	0.0151	27770	1110.0	0.0124		0.0148		•	0.0213		0.0339	ò	1447	4460.0	1,000.0	0.1114	0.1408	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1001.0	0.1789
-	PITCH	7150 0-		ָבְיבָיבְיבִיבְיבִיבְיבִיבְיבִיבְיבִיבְיבִיבְיבִיבְיבְיבִיבְיבִיבְיבְיבְיבִיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיב	70707	-0.0187	;	-0.0176	0.0159	0410	701010	0000.0-	-0.0036		10000	.0000	2000.					-0.0682
UNCORRECTED	LIFT	-0.2435	-0.1167	-0.00.0	7,70.0	0.1629	1	.2572	3539	1777		0100	0.6207	•	0.470	•	`,	. 7387	.7337			0.6743 -
5	INCID	-3.04	-2.01	-1.04	-0.05	1.01		•			70.	-	6.65	7.04	, a	0 0	, C	2	11.01	0 0		12.97
	MACH	0.551	550	249	550	20	U	ý	54	75		שור שור	Ų	7	075	֓֞֜֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֓֡֓֡֓֡֓֡֓֓֡֓֡֓	, ,	, U+U	549	875) (. 140
	DRAG	0.0139	0.0123	0.0115	0.0113	0.0117		10.	.014	.015	0.0184			0.0296	0.0428	2.0468	00000			0.1493	•	0.1000
0.	PITCH	-0.0249	-0.0230	-0.0217	-0.0208	-0.0199	0 C C C	001010	-0.0171	-0.0143	-0.0099	7700 0-		0.0004	0.0045	-0.0008		•	-0.0518	-0,0660		•
CORRECTE	LIFT	-0.2164	-0.1183	-0.0276	0.0656	0.1651	0.2607	•	•	•	0.5419	•	•	0.7085	0.7724	-				0.7202		
	INCID	2.6	80	1.01	0.16	.73	'n	ונ	•	?	4.10	6		40	6.73	7	1	·t	•	10.74	1	•
	MACH	0.545	'n	ญ์	ņ	'n	54	!	4.	. 54	0.545	154		.54	0.543	.54	.54	, W	.	0.542	675	1
	REYN	1.648	.64	. 64	. 63	. 63	.64	7		• 64	1.648	.64		1.633	.63	.63	.63	17	3	1.635	.63	
	SER	34	Ω; Θ	36	37	38	39	07	? :	4.1	45	43		44	45	46	47	87) 1	64	0) }

GAFOPH AEROFOIL

	DRAG	0.0163 0.0138 0.0126	0.0122	0.0159	0.0227	0.0344	0.0585	0.1163	0.1593
a	PITCH	-0.0232 -0.0214 -0.0203	-0.0191 -0.0184	-0.0175	-0.0141 -0.0099	-0.0052	0.0035	-0.0237 -0.0530	-0.0691 -0.0188
UNCORRECTED	LIFT	-0.2072 -0.1163 -0.0259	0.0651		0.4437		0.7430		0.6408
5	INCID		0.01	3.01	4.04 5.03	6.02	80.05	10.05	11.99
	MACH	0.551	0.551	0.550	0.550	0.550	0.550	0.549	0.551
	DRAG	0.0151 0.0135 0.0127	0.0122	0.0141	0.0169	0.0235	0.0422	0.1008	0.1483
Q	PITCH	-0.0244 -0.0226 -0.0215	-0.0203 -0.0196	-0.0187	-0.0152	-0.0063	0.0025	-0.0249	-0.0708
CORRECTED	LIFT		0.0660		0.4498	0.6142	0.7531	0.7480	0.6496
	INCID	66 48 99	-0.12 0.72	υ. 4.	3.26	ָר אַ		9.78	10.87 -0.12
	MACH	0.545	. v.	54.	0.544	4 ሊ	40.	0.543	0.545
	REYN	1.202 1.207 1.199	44	üü	1.207	<i>i</i> , <i>i</i>	. 20	1.202	1.204
	SER	148 149 150	មា មា	ST IS	155 156	וע) וע	שי עווין	161	163 164

GAFOPH AEROFOIL TRANSITION FIXED AT 5% CHORD

	DRAG	0.0190	7770	0.010	0.0140	0.0138	0.0146		7111		0.0196	0.0230	7800	1070'0	0.0358		0.0458	440	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	0.0872	, 120	147	3 - -		0.1576	0.1635	
6	PITCH	81.00 D	0000	-0.0220	-0.020-	-0.0189	0.0484	7070.0	1170	-0.01/0	-0.0165	-0.0144		-0.0104	-0.0059		200		700.	-0.0118	.041	770	.001			-0.0723	
UNCORRECTED	LIFT	0	7607.	-0.1082	.0234	0408	02.47	1001		0,2469	3409	7627	1101	.5172	0.5929	 - }	C	5 (ö	0.7339	¢	9 (2569.0		•	0.5817	
Š	INCID	•	~3.04	-2.02	-1.03	0	50.00	C. 44	1	1.99	2.00		4.04	5,02	7.00					9.01			10.99		4	12.97	
	MACH	;	. 551	0.551	550	1 4	שרני.	551		10	10	> E	n	1		`	1	0,250	0.549	07'S U		0.220	0.551) 	4	0.00 0.00 0.00	<u>.</u>
	DRAG		0.0179	116				0.0140		٠.	יי	٠	٦	, -	0,070,0	•		0.0324	270	7770	01.0.0	, 106	174	•	•	0.1400	7
<u>م</u>	PITCH	•	10 0250	0,770	10.00.01	-0.021/	-0.0201	-0.0196		τ	-0.0102	-0.0177	-0.0156		-0.0120	~0.0070		-n. nn34	7700		-0.0129	-0.0432	5270	10.003	1	-0.0726	-0.0/40
CORRECTE	191		Cacc	10.4000	107	.0237	.0616	1560		1	0.2503	0.3456	2017	1000	0.5243	0.6010		2787 U	1010	0.7311	0,7439	7112		0.0647		0.6112	. 589
	GIJNI	41221	•	0	1.83	66.0	77.0	22.0	•		ທ໌	4	, (٧.	٣.	4.96		Q	ĎΙ	92.9	<u>_</u>	r	- 1	ĸ,		10.93	1.9
	2	Ę.	į	ŭ.	ŭ	5.	יע	11110	֡֝֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		.54	75	1	• V4	.54	0.544	 		Ų.	0.543	.54	U	ņ	,54		.54	0.545
		REYN		٠,	9	. 4	פי	0.601	•		9	! 4	Ö	₽.	4	707 0	•	(9,	99	7	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֜֜֓֜֓֜	9,	0.604	 	4	0.607
		0 2.		54	u^u	٠ ، د ا	0 I	25	υ 20		ů,	· (2	61	7.7	1 1	3		49	7.5	1 4	00	29	48)	69	20

GAFDPH AEROFOIL TRANSITION FIXED AT 5% CHORD

	DRAG	n.0172	0.0141	0.0126	0.0122	0.0135		0.0162	0.0194	0.0233	0.0292	0.0376		0.4502	0.0668		90.0	0.1777	0.1456		0.0119	
•	PITCH	17CU 0-	-0.0225	-0.0209	-0.0196	-0.0189		-0.0176	-0,0163	-0.0134	0800 0-		-0.00.0-	C	ם כ) (_		٦		-0.0198	
UNCORRECTED	LIFT	(-0.4144	-0.0243	0.0632	0.1604)	2569	3585	8C87	1760	2000.0	0.6183	100	1,449.0	0.7463	0.7397	0.7221	0.6912		0.0650	
Š	INCID		. 5.01	3 6	֓֞֡֓֞֞֞֓֓֓֓֞֞֜֜֡֓֓֡֓֡֡֡	֓֞֞֜֝֞֜֞֜֓֓֓֓֓֓֓֓֓֓֞֜֟֜֓֓֓֓֓֓֡֓֡֓֡֓֓֞֓֞֜֡֞֜֡֡֞֡֓֡֓֡֡֓֡֡֡֡֡֡֡	•					5.02		1				10.04	. ~	•	-0.02	
	HACH		0.601				115.0	707	7007	100.0	0,600	0.400	0.598		0.601	0.602	0.800	604	700	•	0.598	
	DRAG			0.0138					0.0144	0.0157	0.0173	0.0208	0,0263		0.0358	0.0505	7470	45000	0,10/0	Ū	0110	
	PITCH		-0.0257	-0.0238	-0.0222	9	-0.0202	1	-0.0189	-0.0176	-0.0146	-n.n092	-0.0031			, .	, ر		7	-0.0616	1	-0.0211
CORRECTED	. 161			0.1209			0.1628		0,2607	0.3639	7657 0	2477	0.2424	0.027	2402	7017.0	U. (2/2)	0.7508	0.7329	0.7015		0.0660
	4	OTONI	9.5	, eQ	6.0	7	0.71		'n	۲	; (, ,	4.00	•	•	٠ ا		~	8.77	~		-0.13
		MACH	704	100	705		0.592		ď	ים יע	7 (֭֭֓֞֞֝֓֞֓֞֓֓֓֓֞֓֓֓֓֟֝֞֓֓֓֡֟֟֝֓֓֓֡֓֟֟֓֓֓֓֡֟	0.543	. 59	(3	59	.59	, IU	0.593		0.591
		REYN	?	1,6	3 6	֚֓֞֝֝֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֡֝֟֜֓֓֓֓֓֓֓֡֓֡֓֓֓֓֡֓֡֡֝	1.202	•	(7	, ZL	.20	1.206	.28		. 20	. 20	֭֓֞֜֜֜֝֝֓֜֜֝֓֜֜֝֓֜֜֜֜֜֝֓֓֓֓֜֜֜֜֜֜֜֜֜֜֜֜֜		7.000		1.201
		SER		N	NI	ו מי	131	7	1	m	m	m	m	137		10	۱ ۲) ·	•	7 7 7	r	145

GAFOPH AEROFOIL

	DRAG	0.0185 0.0146 0.0128 0.0127	0.0139 0.0167 0.0202 0.0246 0.0319	0.0425 0.0556 0.0752 0.0999	0.1490
۵	PITCH	-0.0276 -0.0237 -0.0220 -0.0220	-0.0197 -0.0179 -0.0160 -0.0118	0.0014 0.0072 0.0009 -0.0155	-0.0599
UNCORRECTED	LIFT	-0.2189 -0.1232 -0.0216 -0.0212	0.1667 0.2657 0.3680 0.4645	0.6604 0.7422 0.7536 0.7397	0.7015
5	INCID	-3.03 -2.03 -0.96 -0.96	1.01 2.00 3.01 4.01 5.04	6.04 7.05 8.06 9.05	11.00
	MACH	0.651 0.649 0.654 0.650 0.651	0.649 0.650 0.649 0.649	0.651 0.651 0.652 0.650	0.650
	DRAG	0.0173 0.0143 0.0129 0.0128 0.0124	0.0132 0.0147 0.0163 0.0183 0.0227	0.0297 0.0394 0.0587 0.0844 0.1103	0.1357
Q	PITCH	-0.0292 -0.0252 -0.0235 -0.0235	-0.0212 -0.0193 -0.0174 -0.0132	0.0002 0.0061 -0.0003 -0.0169	-0.0618 -0.0226
CORRECTED	LIFT	-0.2226 -0.1252 -0.0220 -0.0216 0.0655	0.1695 0.2701 0.3741 0.4722 0.5704	0.6714 0.7546 0.7662 0.7520	0.7132
	INCID	-2.64 -1.81 -0.92 -0.92	0.72 1.53 2.36 3.19 4.05	6.73 7.75 7.75 8.73	9.77
	MACH	0.643 0.641 0.646 0.642 0.643	0.641 0.642 0.641 0.641	0.643 0.643 0.644 0.642	0.642
	REYN	1.219 1.206 1.215 1.209 1.211	1.206 1.206 1.206 1.206 1.212	1.211 1.214 1.209 1.209	1.209
	SER	9999 9932 1000	96 97 98 99	101 102 103 104 105	106 107

GAFOPH AEROFOIL

				CORRECTED	Q :			5	UNCORRECTED	.	
SER	REYN	MACH	INCID	LIFT	PITCH	DRAG	MACH	INCID	LIFT	PITCH	DRAG
	4	69	9	-0.2331	-0.0323	0.0192	0.702	02	-0.2287	-0.0305	0.0205
	× -	69	1.7	.133	-0.0281	٥	0.700	-2.02	-0.1312	-0.0264	0.0159
	, K	69	6.0	-0.0266	-0.0250	0	0.701	66	-0.0261	-0.0233	0.0136
		69	0.7	0.0685	-0.0228		0.700	02	0.0672	-0.0211	0.0133
76	1.181	0.689		0.1727	-0.0215	J	0.699	0.99	0.1695	-0.0198	0.0148
1	4	7	ď	777	-0.0194		0.701	1.99	0.2725	-0.0178	0.0179
- a		6	. "	0.3876	-0,0163		0.701	3.01	0.3803	7	0.0216
9 0		3		767	-0.0103		0.699	4.03	0.4855	7	0.0271
` X	7	. 68			-0.0030	U	669.0	5.03	0.5948	9	0.0362
8 1	1.183	0.689	4.81	0.7131	0.0036	u	0.699	9.02	0.6998	0.0049	0.0497
	4	89	9.	806		•	0.699	7.07	0.7918	0.0077	0.0672
	18	69.	Ó	0.8077	0.0067	0,0660	0.700	8.06			0.0841
	1	69	7	731		0	0.703	9.02		-0,0239	0.1081
	18	69	~	738		0	0.701	10.03			0.1328
98	1.183	0.689	9.74	0.7376	-0.0621	0.1404	0.699	11.01		-0.0599	0.1543
87	1.186	0.689	-0.15	0.0642	-0.6231	0.0128	0.699	-0.04	0.0630	-0.0214	0.0127

GAFOPH AEROFOIL TRANSITION FIXED AT 5% CHORD

	DRAG		7910.0	0.0133	0.0148	0.0181	0.0225	0.0306	0.0438	0.0601	0.0770	0.0948	0.1138	0.1358	0.1555	0.1762	0.0125
	PITCH	-0.0347	-0.0291	-0.0224	-0.0210	'n		N						0491			7
UNCORRECTED	LIFT	.2497	1,467	0.0657	1758	.2846	0.3995	.5248	.6341	0.6973	_	•		0.6737	_	0.6781	
5	INCID	-	70.7-			2.00	3.02	4.03	5.03	9.04	7.04	8.04	9.04	9	11.00	11.96	-0.03
	MACH	0.750				0.750	0.751	0.750	0.750	0.750				0.750			0.750
	DRAG	0.0198	0.0134	0.0130	0.0141	0.0139	0.0180	0.0226	D.0322	0.0462	•			0.1241	0.1447	0.1649	0.0126
e	PITCH	-0.0369	-0.031Z	-0.0244	-0.0230	-0.0204	-0.0157	-0.0089	-0.0053	-0.0056	-0.0097	-0.0167	-0.0142	.05	-0.0569	-0.0781	-0.0247
CORRECTED	LIFT	-0.2554		0.03/0		0.2910		0.5367	0.6485	0.7131	0.7344	0.7638	0.7126	0.5890	0.6738		0.0671
	INCID	2	//	14.	79.0	ij	2.32	7.	٥.	10	.7	. 7	80	8.82	€0	0.7	-0.14
	MACH	0.738	 . !	27.	.73	.73	0.739	.73	.73	.73	.73	.73	.73	0.738	.73	.73	0.738
	REYN	1.142	.10	11.	.14	.13	1.145	. 14	.14	.14	. 14	. 14	. 14	1.145	.14	. 14	1.142
	SER	12					58 80							65			89

GAFOPH AEROFOIL

TRANSITION FIXED AT 5% CHORD

				CORRECTED	<u>a</u>			Š	UNCORRECTED	•	
6 2	REYN	MACH	INCID	LIFT	PITCH	DRAG	MACH	INCID	LIFT	PITCH	DRAG
ç	,	7	, c	-0.3022	-0.0402	0.0212	0.801		-0.2938	-0.0374	0.0234
7 !) h	15.45	9	0.0193	0.800	-2.04	-0.1510	-0.0294	0.0196
? ·	71.	9 0	- 0	10.0443	7	0.0163	0.800		-0.0402	-0.0258	0.0160
4 1	71.	. 40	•	0.0472	-0.0263	0.0146	0.801		0.0653	-0.0238	0.0144
3 S	1.127	0.783	79.0	0.1866	7	0.0157	0.800		0.1815	-0.0225	0.0164
	ŗ	1	7	7007	-0.033	0.0182	0.800	1.99	0.3012	-0.0208	0.0206
	 	2	•	- 000.0	, ,	7200	0.801		0.4174	-0.0194	0.0284
	. 13	2	7	0.4243	0170.0-	0.020	700		0 49A2	-0.0177	0.0394
	. 12	. 78	**	0.5123	7	0.0320	664.0		70/10	1444	01.20 D
	. 13	.78	4.07	0.5605	-0.018	0.0451	0.800		0.110	1910.0	1070
41	1.130	0.783	6	0.6039	-0.0211	0.0596	0.800	6.03	7/90.0	7010-0-	
	ţ	1	0	8677 0	-0.0251	0.0750	0.799		0.6252	-0.0227	0.0853
4 .	1.130	707.0	7.0	27570		0.0917	0.802	8.01	0.6642	-0.0272	0.1032
	2 !	֓֞֜֜֜֜֜֓֓֓֓֜֜֜֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֡֓֜֡֡	י פ	300.0	C450	1400	0.799	0	0.7163	-0.0355	0.1233
	. 1 . 1	?	•	70770		1280	0.801	10	0.6528	-0.0436	0.1392
	. 13	0/.	0	+1.0.0		1071.0		, 4	7444	-0 0427	0.1541
46	. 13	. 78	6	0.6288	-0.0660	0.1456	0.001	2			
	7	7.8	0	0.6011	-0.0759	0.1600	0.800	11.96	0.5845	-0.0724	0.1671
	7	•	• (•	4747	00L U				0.1843
	. 13	/9	11.90	10.0.0	00.0						0.0437
64	1.129	0.785	0.1	0.0662	-0.0268	0.0134	700.0	;	•	2440.0	

GAFOPH AEROFOIL TRANSITION FIXED AT 5% CHORD

	DRAG	0.0356	0.0306	0.0295	0.0252	0.0265	0.0304	0.0386	777	7740.D	0.0609	0.0748		0.0912	0.1084	0.1289	1510		0.1656	0.1776
6	PITCH	-0.0330	-0.0253	-0.0200	-0.0176	-0.0183	-0.0192	-0 0100	7700	-6.0211	-0.0221	47.00.0-		-0.0271	-0.0332	-0.0414	4050 0-		-0.06/3	-0.0828
UNCORRECTED	LIFT	_		_		0.1243	0.2118	7080	0.2077	0.3717	0.4316	7045 n	1111	0.5427	0.5958	0.6624	7777	10000	0.6802	0.6387
5	INCID				-0.01		1.99	0	10.0	4.00	2.00	7	•	7.	8.01	6	C	•	11.00	11.96
	MACH	0.852	0.851	0.853	0.851	0.851	0.849		709.0	0.849	0.851	# 7# C	0.010	0.850	0.851	0.850		7.00.0	0.851	0.849
	DRAG	0.0349	0.0308	0.0303	0.0259	0.0268	0000		0.03/1	0.0448	0.0569	6070	0.0043	0.0846	0.1005	1180	1011	0.1395	0.1562	0.1699
٥	PITCH	-0.0366	-0.0286	-0.0232	-0.0207	-0.0214	7000	2770.0-	-0.0231	-0.0243	-0.0253	77.00	-0.0266	-0.0305	47EU U-	C 10 C 1	7710.01	-0.0549	-0.0718	-0.0877
CORRECTED	LIFT	-0.2472		7550.0	9950.0	.1291	040	0.2177			7877		0.5144	0.5437					0.7067	0.6632
	INCID	2.6	,		` C	0	•	Ó	'n	۲	76.7	•	۲.	C	9 0	•	0	۲.	9.80	10.84
	MACH	82				0.826	6	70.	.82	2	7000	70.	. 82	6		70.	70.	.82	0.826	0.825
	REYN	14	77	11.	* 7	1.143	,	. 14	.14	7 7	7111	. 14	. 14	7	•	. 14	. 14	14	1.147	1.145
	SER					18							23						2 8	29

GAFOPH AEROFOLL TRANSITION FREE

		1400	D T T	0.0123	0	0		0.0089		0.0113	0.0153	0.0193	0.0236	0.00	į	0.0368	0.0492	0.0725	0.1050	0.1360	•	0.1569 0.1700
	E 0	ATTE							7070		2010.0	2410.01	-0.0075)		900	.0017	200	-0246	-0.0484		-0.0674
	UNCORRECTED	LIFT		o d			• •	•	0.2622	0.3361	0567	0.5073	0.5885	1	7627 0	97/9.0	1011 C	0///	6297.0	u. 7638	בירר מ	-
•	>	INCID				-0.01			2.00		4.04	5.01	6.02		7.04	8.03	70.0	10.01	70.01	70.11	12.00	
		MACH		244		0.500	0.501		0.500	0.500	0.500	0.500	0.499		665	200	66		9	•		0.200
		DRAG	0.0446	0.0103	0.0096	0.0080	0.0081	7	0.0093	0.0120	0.0140	0.0160	0.0187		0.0234	0.0328	0.0547	0.0882	0.1194	•	0.1419	0.1570
ED		#3 T.	-0.0262	-0.024	7	7	-u.u223	-0 0242	24.00	4710.01	***************************************	10.0163	5		9900.0				-0.0498		.0634	-0.0689
CORRECTED	1157			-0.0913		0.0814		0.2655	0.3404	0.4304	0.5127	0.5959		4811	7577	7077	2000	97// 0	1732		7436	C118.
	INCID		-2.7	40.0		0.70		יריי יריי	4.	S	~	4.99				7	7	2 4	0	5	11.78	
	MACH		54.		7 0	0.496		0.495	64.	.49	.49	49		. 45	49	49	49	767.0	•	307 T	0.495	!
	REYN	ć	1,6	1.224	. 22	.22		1.224	77	77	.22	22	ò	7	22	22	22	_		.22	1.227	
	SEX		ת נ	140	•		•	774		•	٠.	•	٠,	г、	/ 1	n 1	^	~		153	NJ.	

GAFOPH AEROFOIL TRANSITION FREE

	DRAG	0.0130	0.0097	0.0085	0.0094	0.0118	0.0160	0.0203	0.0253	D.0317		0.0420	1900.0	0.0523	0.1122	0.1393	,	0.1605
_	PITCH	-6.0266			-0.0218	-0.0204					1			-0.0051		-0.0498		-0.0695
UNCORRECTED	LIFT	-0.1855				0.2671		0,4338	0.5192	0.5983		0.6823				0.7323		0.7105
385	INCID	-3.03	•		66.0	1.99	3.00	4.02	5.03	6.02		7.04						12.03
	HACH	0.552				0.549	0.549	C. 5. C.	0.549	978		0.549	0.548	0,551	0.550	0.549		0.549
	DRAG	0.0121	0,0106	0.00,0	0,0086	7000	0.007	0710.0	0110	0.0173		0.0282	0.0397	0.540	20000	7764	0.1213	0.1467
۵	РІТСН	-0.0279	-0.0261	-0.0240 -0.0240	-0.0230	7700	0170.0-	-0.11/0	0440	0110.0-	-0,000	-0.0024	70000	2700.0	10.000	-0.0232	į	-0.0712
CORRECTED	LIFT				0.1765	1	0.2707	0.3484	1,4347	0,5263	0,6064	0 4014	01/0.0	77.70	70//-0	0.7460	0.7423	0.7202
_	INCID		.85	יים יים	0.69	I	'n.	4	ď	4.12	ρ,	q	ů,	•	9	8.73	,	10.79
	AACH	546	54	40,	0.545		,5%	.54	, 12.	0.543	5.	ì	4	, 54 4	1 2.	0,344	,54	0.543
	N	. 24	.22	.21	1.217	•	.21	,21	,22	1.214	, 33	,	.21	.21	,21	Ġ	1.214	1.214
	9 7 9	4	4 44	~	122	4	N	N	N	127	N		3	m	m	רו	133	כיו

GAFOPH AEROFOIL TRANSITION FREE

				CORRECTED	Q:			5	UNCORRECTED	Q:	
SER	REYN	MACH	INCID	LIFT	PITCH	DRAG	MACH	INCID	LIFT	PITCH	DRAG
	.21	.59	2.7		-0.0304	.013	0.600	-3.04	-0.1911	-0.0290	0.0143
100	1.212	0.593	-1.04	-0.0046	-0.0265	0.0110	0.600	-1.02	.0010	-0.0251	0.0097
	.21	.59	0.1	0.0875	-0.0257	0.0088	0.601	-0.02	0.0862	-0.0243	0.0089
0	.21	.59	9.	0.1814	-0.0243	0.0088	0.601	0.98	0.1787	-0.0239	0,0097
0	.21	.59	ij	0.2819	-0.0228	0.0100	0.600	1.99	0.2777	-0.0215	0.0122
	.21	. 59	'n	0.3580	-0.0174	0.0129	0.600	3.01	.3527	-0.0161	0.0165
105	1.214	0.594	3.24	0.4501	-0.0138	0.0154	0.601	4.02	0.4435	-0.0126	0.0212
0	.21	. 59	۲.	0.5402	-0.0000	0.0188	0.601	5.05	.5322	-0.0078	0.0272
0	.21	. 59	0	0.6262	-0.0030	0.0241	0.599	9.04	0.6170	-0.0019	0.0353
	.21	.59	40	0.7056	0.0013	0.0327	0.600	7.05	0.6952	0,0024	0.0469
110	1.220	0.595	6.74	0.7599	0.0022	0.0482	0.602	8.06	0.7487	0.0033	0.0646
4-4	.21	. 59	۲.	0.7594	-0.0009	0.0718	0.599	9.04	0.7482	0.0002	0.0879
4	.21	.59	.,	0.7363	-0.0329	0.1040	0.599	10.04	0.7255	-0.0315	0.1188
	.21	. 59	90	0.6926	-0.0316	0.1261	0.599	11.01	0.6824	-0.0302	0.1388
114	1.215	0.592	10.78	0.6911	-0.0722	0.1506	0.599	11.97	0.6809	-0.0704	0.1630

GAFOPH AEROFOIL TRANSITION FREE

9.76 0.7213 -0.0557 0.1330 0.621 11.00 0.707 0.0557 0.1668 10.79 0.6995 -0.0734 0.1543 0.649 11.99 0.6881 -0.0713 0.1668

GAFOPH AEROFOIL TRANSITION FREE

				CORRECTED	03			5	UNCORRECTED	Q:	
SER	REYN	MACH	INCID	LIFT	PITCH	DRAG	MACH	INCID	LIFT	PITCH	DRAG
09	. 18	. 68	2.6	-0.2029	-0.0373	0.0154	0.699	-3.04	-0.199£	-0.0354	0.0164
61	1.183	0.691	-1.86	-0.1012	-0.0337	0.0118	0.701	-2.04	-0.0993		0.0119
6 2	. 18	. 69	1.0	.001		0.0099	0.700	1	0.0019	•	
63	. 18	. 69	0.1	0.1049	•	0.0091	0.700		0.1029	-0.0283	
79	. 18	.69	•	0.1993	-0.0279	0.0000	0.700	0.98	0.1956	-0.0262	0.0100
	. 18	.68	4.	.30	.025	0.0104		1.99	0.3010	-0.0239	
	1.184	0.691	2.33	0.3903	-0.0178	0.0139	0.701	•	0.3830	-0.0162	
	. 18	69.	7.	•	.011	0.0170				-0.0098	
	. 18	.68	o.	0.6035	.003	0.0224	•	5.04	•	-0.0025	
69	40	69.	₩.	0.7086	0.0027	0.0320		•	0.6953	0.0040	0.0462
20	. 18	69.	.7	. 785	•	0.0448	0.700	7.06	0.7705	0.0077	0.0621
71	1.183	0.689	6.58	0.8554	0.0026	0.0631	0.699	8.06	0.8394	0.0039	
72	. 18	69.		.737	-0.0270			•	0.7238	-0.0253	
73	. 18	.68	7:	.749	•	0.1164	•	10.02	0.7354	-0.0459	0.1312
74	. 18	. 69	.7	0.7446	-0.0615	•	0.700	11.01	0.7306	-0.0593	0.1534
73	1.186	0.690	10.76	0.7174	-0.0625	0.1583	0.700	11.99	0.7040	-0.0603	0.1711

GAFOPH AEROFOIL TRANSITION FREE

EYN MACH INCID LIFT PITCH DRAG MACH INCID LIFT PITCH DRAG 1468 0.738 -2.65 -0.2196 -0.0421 0.0170 0.750 -3.04 -0.2147 -0.0396 0.0135 1463 0.735 -1.01 0.0049 -0.0378 0.0132 0.754 -0.0247 -0.0337 0.0103 1468 0.739 -1.01 0.0049 -0.0349 0.0103 0.750 0.1049 -0.0337 0.0103 1468 0.736 0.62 0.2115 -0.0304 0.0103 0.750 0.96 0.2068 -0.0339 0.0103 1468 0.736 0.62 0.2115 -0.0304 0.0103 0.750 0.96 0.2068 -0.0339 0.0103 1468 0.738 1.42 0.3293 -0.0283 0.0146 0.750 4.03 0.420 0.0148 1771 0.738 3.08 0.6577 -0.0094 0.0293 0.750 <				CORRECTED	<u>e</u>			3	UNCORRECTED	<u>e</u>	
68 0.738 -2.65 -0.2196 -0.0421 0.0170 0.750 -3.04 -0.2147 -0.0398 0.0132 0.746 -2.04 -0.1026 -0.0356 0.0132 0.735 -1.01 0.0049 -0.0378 0.0132 0.751 -1.01 0.0048 -0.0357 0.01319 0.753 -1.01 0.0049 -0.0349 0.01111 0.751 -0.02 0.1119 -0.0319 0.0138 0.739 0.22 0.0116 0.0100 0.750 0.750 0.98 0.2068 -0.0283 0.0138 0.738 2.27 0.4295 -0.018 0.0146 0.750 3.01 0.4200 -0.0170 0.750 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7244 -0.0074 0.725 3.01 0.7	Z	MACH	INCID	LIFT	PITCH	DRAG	MACH	INCID	LIFT	PITCH	DRAG
68 0.738 -2.65 -0.1049 -0.0378 0.0113 0.748 -2.04 -0.1026 -0.0356 0.0378 0.0131 0.751 -1.01 0.0048 -0.0327 0.0139 0.735 -1.01 0.0049 -0.0349 0.0111 0.751 -1.01 0.0048 -0.0337 0.0139 0.739 -0.21 0.1144 -0.0344 0.0103 0.751 -0.02 0.1119 -0.0319 0.0139 0.738 0.62 0.2115 -0.0364 0.0109 0.750 1.99 0.3220 -0.0263 0.0138 2.27 0.4295 -0.0189 0.0146 0.750 3.01 0.4200 -0.0170 0.01738 3.08 0.6577 -0.0091 0.0293 0.750 3.01 0.4200 -0.0170 0.01738 3.08 0.6577 -0.0091 0.0293 0.750 5.03 0.6529 -0.0074 0.01739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7244 -0.0074 0.0739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7248 -0.00110 0.750 7.05 0.7241 -0.0074 0.0750 7.05 0.7241 -0.0074 0.0750 7.05 0.7241 -0.0074 0.0750 7.00 0.750 7.05 0.0074 0.0750 7.00 0.750 7.00 0.05110 0.0750 7.00 0.0593 0.0614 0.752 8.03 0.7248 -0.00110 0.750 7.00 0.0593 0.00110 0.751 10.09 0.6957 -0.00110 0.751 10.09 0.6957 -0.00110 0.751 10.09 0.6957 -0.00511 0.0751 10.77 0.7702 0.0011 0.7707 0.0001 0.7707 0.7707 0.7707 0.0001 0.7707 0.7707 0.7707 0.0001 0.0707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.0001 0.0001 0.0707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.0001 0.0707 0.0707 0.0707 0.0707 0.7707 0.7707 0.0001 0.0707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.0001 0.0707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.0001 0.0707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.7707 0.0001 0.0707 0.7		1	٠	•		Č	-	3.04	-0.2147	-0.0398	
63 0.736 -1.85 -0.1049 -0.0378 0.0111 0.751 -1.01 0.0048 -0.0327 0.68 0.739 -1.01 0.0049 -0.0349 0.0111 0.751 -1.01 0.0048 -0.0319 0.0139 0.751 -0.02 0.1119 -0.0319 0.0139 0.751 -0.02 0.1119 -0.0319 0.0139 0.751 -0.02 0.1119 -0.0319 0.0319 0.751 -0.02 0.1119 -0.0319 0.0319 0.751 -0.03 0.750 0.96 0.2068 -0.0263 0.0319 0.738 2.27 0.4295 -0.0189 0.0146 0.750 3.01 0.4200 -0.0170 0.738 3.08 0.6577 -0.018 0.0195 0.750 4.03 0.5411 -0.0170 0.738 3.08 0.6577 -0.0091 0.0293 0.750 5.03 0.6529 -0.0074 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7244 -0.0074 0.0750 3.03 0.6529 -0.0074 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7244 -0.00110 0.751 0.751 0.759 0.750 -0.0213 0.7541 0.750 0.750 0.750 0.7541 0.0074 0.0074 0.752 0.0313 0.7541 0.755 0.0313 0.755 0.750 0.751 0.750 0.0511 0.750 0.751 10.98 0.6937 -0.0621 0.751 10.98 0.6937 -0.0627 0.1423 0.751 10.98 0.6855 -0.0700 0.	Ò	0.73	7.0	_			. r	70.0	-0 4024	035	
68 0.739 -1.01 0.0049 -0.0349 0.0111 0.751 -1.01 0.0048 -0.0337 0.739 -0.21 0.1144 -0.0340 0.0103 0.751 -0.02 0.1119 -0.0319 0.739 -0.21 0.1144 -0.0304 0.0103 0.750 0.98 0.2068 -0.0283 0.738 0.62 0.2115 -0.0304 0.0109 0.750 1.99 0.3220 -0.0283 0.738 2.27 0.4295 -0.0189 0.0146 0.750 3.01 0.4200 -0.0170 0.738 3.08 0.5534 -0.0118 0.0195 0.750 4.03 0.5411 -0.0100 0.739 4.77 0.7406 -0.0091 0.0293 0.750 5.03 0.5411 -0.0100 0.750 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7241 -0.0110 0.751 0.739 4.77 0.7864 -0.0128 0.0613 0.752 8.03 0.7241 -0.0074 0.750 0.751 0.759 9.78 0.754 0.0523 0.0814 0.752 8.03 0.7267 -0.0311 0.751 0.739 8.78 0.7126 -0.0332 0.0814 0.752 8.03 0.7208 -0.0311 0.751 0.739 9.78 0.6993 -0.0527 0.1423 0.751 10.98 0.6837 -0.0601 0.751 0.737 10.777 0.7020 -0.0727 0.1423 0.751 10.98 0.6837 -0.0500 0.751 0.737 10.77 0.7020 -0.0727 0.1423 0.751 10.98 0.6855 -0.0700 0.751 0.737 10.77 0.7020 -0.0727 0.1423 0.749 11.97 0.6865 -0.0700 0.751	4	0.73	1.8	0		0.0132	•	10.7			
68 0.739 -0.21 0.1144 -0.0340 0.0103 0.751 -0.02 0.1119 -0.0319 0.0739 0.739 0.622 0.2115 -0.0340 0.0100 0.750 0.96 0.2068 -0.0263 0.0263 0.738 0.622 0.2115 -0.0304 0.0119 0.750 1.99 0.3220 -0.0263 0.0150 0.738 2.27 0.4295 -0.0189 0.0146 0.750 3.01 0.4200 -0.0170 0.738 3.08 0.5534 -0.0118 0.0195 0.750 4.03 0.5411 -0.0170 0.738 3.08 0.6577 -0.0091 0.0293 0.750 4.03 0.5411 -0.0170 0.750 4.77 0.7406 -0.0091 0.0293 0.750 4.03 0.5411 -0.0110 0.750 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7241 -0.0074 0.0750 0.751 0.751 0.754 -0.0110 0.751 0.751 0.752 8.03 0.7595 -0.0213 0.751 0.753 8.78 0.7126 -0.0533 0.1001 0.751 10.98 0.6837 -0.0519 0.751 10.98 0.6837 -0.0519 0.751 10.77 0.737 10.77 0.7020 -0.0727 0.1423 0.754 11.97 0.6865 -0.0700 0.777	٠ (7		0700		0.0111	~	,	0.0048	.032	
68 0.739 -0.21 0.1144 -0.0344 0.0103 0.750 0.96 0.2066 -0.0263 0.68 0.738 0.62 0.2115 -0.0304 0.0100 0.750 1.99 0.3220 -0.0263 0.65 0.738 1.42 0.3293 -0.0283 0.0149 0.750 1.99 0.3220 -0.0263 0.65 0.738 2.27 0.4295 -0.018 0.0195 0.750 3.01 0.4200 -0.0170 0.750 0.738 3.08 0.5534 -0.0148 0.0195 0.750 4.03 0.5411 -0.0100 0.738 3.08 0.6677 -0.0091 0.0293 0.750 5.03 0.6529 -0.0074 0.750 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7244 -0.0074 0.750 0.750 5.03 0.6529 -0.0074 0.750 0.737 5.69 0.7864 -0.0128 0.0643 0.751 6.05 0.7244 -0.0110 0.751 0.752 8.03 0.7295 -0.0213 0.740 6.62 0.8178 -0.0233 0.0814 0.752 8.03 0.7298 -0.0311 0.750 0.751 10.09 0.6967 -0.0519 0.751 10.79 8.78 0.6993 -0.0544 0.1229 0.751 10.98 0.6837 -0.0601 0.737 10.77 0.7020 -0.0727 0.1617 0.779 11.97 0.6865 -0.0700 0.737 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.737 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.737 0.737 10.77 0.7020 -0.0727 0.1617	•	?\.D	יים				· P	c	1119	.031	.010
168 0.738 0.62 0.2115 -0.0304 0.0100 0.750 0.98 0.2208 -0.0263 0.0168 0.738 2.27 0.4295 -0.0189 0.0146 0.750 1.99 0.3220 -0.01263 0.0165 0.738 2.27 0.4295 -0.0189 0.0146 0.750 3.01 0.4200 -0.0170 0.738 3.08 0.5534 -0.0118 0.0195 0.750 4.03 0.5411 -0.0100 0.171 0.738 3.08 0.6477 -0.0091 0.0293 0.750 5.03 0.6529 -0.0077 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7241 -0.0107 0.171 0.737 5.69 0.7864 -0.0128 0.0613 0.779 7.05 0.7241 -0.0074 0.171 0.737 5.69 0.737 0.784 -0.0233 0.0814 0.752 8.03 0.7895 -0.0213 0.171 0.739 8.78 0.7126 -0.0332 0.1001 0.751 10.08 0.6957 -0.0519 0.171 0.739 9.78 0.6993 -0.0527 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0172 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1423 0.7493 0.7498 0.6855 -0.0700 0.1423	4	0.73	0.2	0.1144		0.0103	17:0	•			770
58 0.738 1.42 0.3293 -0.0283 0.0146 0.750 1.99 0.3220 -0.0263 0.0146 0.750 3.01 0.4200 -0.0170 0 55 0.738 2.27 0.4295 -0.0188 0.0195 0.750 3.01 0.4200 -0.0170 0 71 0.738 3.08 0.5534 -0.0118 0.0195 0.750 4.03 0.5411 -0.0100 0 71 0.7406 -0.0091 0.0293 0.751 6.05 0.7244 -0.0074 0 68 0.739 4.77 0.7406 -0.0128 0.0643 0.754 7.05 0.7244 -0.0074 0 70 0.740 6.62 0.8178 -0.0128 0.0644 0.754 7.05 0.7244 -0.0074 0 70 0.740 6.62 0.8178 -0.0233 0.0814 0.752 8.03 0.7298 -0.0311 0 70 7.78 0.78	9	0.73	•	0.2115	7	0.0100	0.750	•	•	•	10.
168 0.738 1.42 0.3273 -0.0189 0.0146 0.750 3.01 0.4200 -0.0170 0.145 0.738 2.27 0.4295 -0.0189 0.0146 0.750 4.03 0.5411 -0.0100 0.171 0.738 3.08 0.5534 -0.0118 0.0195 0.750 4.03 0.5411 -0.0100 0.171 0.738 3.88 0.6677 -0.0091 0.0293 0.750 5.03 0.6529 -0.0074 0.170 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7244 -0.0074 0.170 0.737 5.69 0.7864 -0.0128 0.0613 0.752 8.03 0.7295 -0.0071 0.750 0.7595 -0.0071 0.750 0.7595 -0.0213 0.750 0.750 0.750 0.7595 -0.0213 0.750 0.750 0.750 0.750 0.0511 0.750 0.750 0.750 0.750 0.750 0.0511 0.750 0.7		1	•	1		0440	-	•	0.3220	•	
165 0.738 2.27 0.4295 -0.0189 0.0146 0.750 3.01 0.7201 0.01701 0.738 3.08 0.5534 -0.0118 0.0195 0.750 5.03 0.5511 -0.0100 0.738 3.08 0.6677 -0.0091 0.0293 0.750 5.03 0.6529 -0.0074 0.171 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7241 -0.0074 0.170 0.737 5.69 0.7864 -0.0128 0.0613 0.752 8.03 0.7690 -0.0213 0.170 0.738 7.76 0.7371 -0.0332 0.1001 0.750 9.03 0.7208 -0.0213 0.171 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1627 0.1617 0.751 10.98 0.6855 -0.0700 0.171	16	0.73	4	0.3273	ו						
171 0.738 3.08 0.5534 -0.0118 0.0195 0.750 4.03 0.5411 -0.0110 0.738 3.08 0.6577 -0.0091 0.0293 0.750 5.03 0.6529 -0.0074 0.750 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7244 -0.0074 0.751 0.751 6.05 0.7244 -0.0074 0.751 0.751 6.05 0.7244 -0.0074 0.751 0.751 6.05 0.7244 -0.0074 0.751 0.751 0.752 8.03 0.7295 -0.0071 0.751 0.752 8.03 0.7295 -0.0213 0.170 0.738 7.76 0.7371 -0.0332 0.1001 0.752 8.03 0.7208 -0.0311 0.751 0.759 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.751 0.759 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.751 0.757 10.77 0.7520 -0.0727 0.1423 0.751 10.98 0.6855 -0.0700 0.751 10.77 0.7865 -0.0727 0.1617 0.751 10.98 0.6865 -0.0700 0.751 0.751 10.77 0.7520	7	7.7	2	0.4295	O	0.0146	0.750	3.01			
171 0.738 3.88 0.6677 -0.0091 0.0293 0.750 5.03 0.6529 -0.0074 0.171 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7244 -0.0074 0.170 0.737 5.69 0.7864 -0.0128 0.0613 0.749 7.05 0.7690 -0.0110 0.170 0.740 6.62 0.8178 -0.0233 0.0814 0.752 8.03 0.7995 -0.0213 0.170 0.738 7.76 0.7371 -0.0332 0.1001 0.750 9.03 0.7208 -0.0311 0.171 0.739 8.78 0.7126 -0.0332 0.1001 0.751 10.00 0.6967 -0.0319 0.171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1423 0.751 10.98 0.6855 -0.0700 0.0	0 1	7 6	, C	7144 0	9	0.0195	0.750	4.03			•
71 0.738 3.88 0.6677 -0.0071 0.0473 0.751 6.05 0.7241 -0.0074 0.70 0.739 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7241 -0.0074 0.70 0.739 4.77 0.7864 -0.0128 0.0613 0.752 8.03 0.7995 -0.0213 0.7995 0.770 0.740 6.62 0.8178 -0.0233 0.0814 0.752 8.03 0.7995 -0.0213 0.770 0.739 8.78 0.7371 -0.0332 0.1001 0.750 9.03 0.7208 -0.0311 0.770 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.98 0.6967 -0.0519 0.751 0.751 10.98 0.6967 -0.0519 0.751 10.98 0.6837 -0.0601 0.771 0.737 10.77 0.7020 -0.0727 0.1423 0.749 11.97 0.6865 -0.0700 0.771	~	2.5	ָ טַ	777	5 (0.750	A. D.A.			
68 0.737 4.77 0.7406 -0.0091 0.0440 0.751 6.05 0.7490 -0.0110 0.757 5.69 0.7864 -0.0128 0.0613 0.752 8.03 0.7995 -0.0213 0.7797 0.752 8.03 0.7995 -0.0213 0.77995 -0.0213 0.77995 -0.0213 0.77995 -0.0213 0.77995 -0.0213 0.77995 -0.0311 0.779 0.7738 7.76 0.7371 -0.0332 0.1001 0.750 9.03 0.7208 -0.0311 0.779 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.779 0.751 10.98 0.6837 -0.0601 0.771 0.737 10.77 0.7020 -0.0727 0.1423 0.754 11.97 0.6865 -0.0700 0.0771 0.737 10.77 0.7020 -0.0727 0.1617 0.7697	~	0.73	40	0.6677	7	0.0273					
168 0.737 5.69 0.7864 -0.0128 0.0613 0.749 7.05 0.7690 -0.0110 0.170 0.752 8.03 0.7995 -0.0213 0.170 0.752 8.03 0.7995 -0.0213 0.170 0.738 7.76 0.7371 -0.0332 0.1001 0.750 9.03 0.7208 -0.0311 0.170 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1617 0.769 11.97 0.6865 -0.0700 0.171	17	0.73	7	0.7406	P	.044	0.751	6.63			•
68 0.737 5.69 0.7864 -0.0128 0.0613 0.749 7.05 0.7690 -0.0110 0.70 0.740 6.62 0.8178 -0.0233 0.0814 0.752 8.03 0.7995 -0.0213 0.71 0.738 7.76 0.7371 -0.0332 0.1001 0.750 9.03 0.7208 -0.0311 0.70 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.71 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.71 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.71	-			•							
168 0.757 5.57 0.8178 -0.0233 0.0814 0.752 8.03 0.7995 -0.0213 0.170 0.740 6.62 0.8178 -0.0233 0.0814 0.750 9.03 0.7208 -0.0311 0.171 0.739 8.78 0.7126 -0.0344 0.1229 0.751 10.00 0.6967 -0.0519 0.171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.171	•	1	7	787	_		0.749	_	0.7690		•
170 0.740 6.62 0.8178 -0.0233 0.1001 0.750 9.03 0.7208 -0.0311 0.171 0.738 7.76 0.7371 -0.0332 0.1001 0.751 10.00 0.6967 -0.0519 0.170 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.00	Ð	2D	о ·	010	•		0.752	Q(0.7995		
171 0.738 7.76 0.7371 -0.0332 0.1001 0.750 7.03 0.7208 -0.0311 0.71 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.0	17	0.74	9.9	719	j		1 (1)) (100		
171 0.739 8.78 0.7126 -0.0544 0.1229 0.751 10.00 0.6967 -0.0519 0.170 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6837 -0.0601 0.171 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.	. !	7	7 7	777	c		0.750	•	0.7/0		•
170 0.739 8.78 0.726 -0.0527 0.1423 0.751 10.98 0.6837 -0.0601 0. 171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.98 0.6857 -0.0601 0. 171 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0	_	21.0	• • • • • • • • • • • • • • • • • • • •	• () (0.754	7	0.6967		-
171 0.739 9.78 0.6993 -0.0627 0.1423 0.751 10.78 0.685 -0.0700 0	17	0.73	`. 0	71/	j			, ,	7747		
171 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.1	1	17 U	9.7	669	ö		0.73	ב כ	200.	;	_
171 0.737 10.77 0.7020 -0.0727 0.1617 0.749 11.97 0.6865 -0.0700 0.1			•	!							
	4	0.7	10.7	0.7020	-0.072	_	0.749		0.6865		0.1734
	•)									

GAFOPH AEROFOIL

-
u
Œ
ū
•
7
2
-
•
۲
Ŀ
U
2
4
_
٥
۰
-

	DRAG	0.0194	0.0174	0.0134	0.0129	0.0143	0.0197	0.0279	0.0404	0.0571	7770	***	0.0883	0.1100	۳.	0.1408	0.1542	0.1717
۵	PITCH	-0.0442	-0.0380	-0.0361	-0.0369	-0.0343	7	7	-0.0301	7	•	/ tsn . n -	-0.0313	-0.0407	-0.0414	-0.0562	-0.0619	-0.0724
UNCORRECTED	LIFT	-0.2751	-0.1112	0.0051	0.1210	0.2246	0.3472	0.4598	0.5432	0.6186		0.6/62	0.6742	0.7218	0.7222	0.6806	0.6388	0.6426
3	INCID	80	90	-1.02	2	0.97	2.00	2.99	4.00	5.00		6.01	•	8.03	•	•	10.97	11.97
	MACH	0.801	0.801	0.800	0.801	0.801	0.800	0.799	0.800	0.800		0.799	0.799	0.800	0.801	0.800	0.801	0.801
	DRAG	0.0175	0.0174	0.0137	0.0127	0.0130	0.0164	0.0220	0.0321	0.645		0.0617	0.0761	0.0962	0.1118	0.1294	0.1448	0.1625
٥	PITCH	-0.0471	-0.0408	-0.0388	-0.0396	-0.0370	-0.0363	-0.0341	-0.0327	0720 0-	00000	-0.0374	-0.0339	-0.0435	-0.0442	-0.0593	-0.0652	-0.0759
CORRECTED	LIFT		1144	.0052	1244	.2310	0.3570	4778	788	7727	•	0.6973	0.6932	0.7423	n. 7428	6669	0.6570	0.6609
	INCID		1.8		0.2	0.58	M	+	70.7	9 0	•	∞.	≪0				9.85	10.84
	MACH	78	78	7.8	78	0.784	.78	7.8	787	9 0	0	. 78	7.8) (C	. 7		0.784	0.784
	REYN	. 16	15		16	1.155	1		•	1	. 16	15	, L	1 7		. 10	1.163	1.163
	SER					52						30					3 5	36

GAFOPH AEROFOIL TRANSITION FREE

	DRAG	0.0349	0.0273	•	•	•		.032	0.0394	.051	770	ָם פוס	.083		0.0959	0.1110	0.1349	0.1532	1777	0.101/		0.1786	
_	PITCH	-0.0265	-0.0373	-0.0368	0.033	-0.0301		-0.0303	-0.0333	9010 0-		-0.0456	-0.0483		-0.0404	-0.0411	-0.0541	A 14 0-		-0.0000		-0.0795	
UNCORRECTED	LIFT	-0.2816	-0.1143	-0.0037	0.0712	0.1465		0.2244	0.3242	6007	7071.0	0.5130	0.5700	1	0.5916	0.6220	0.6918		0.120	0.6546		0.6613	
5	INCID	-3.06	-2.03	-1,00	-0.04	0.99		2.00	0.0	•	•	4.98	4.00	•	7.00	A. OO						11.97	
	MACH	•	0.850			•	,	0.851		•	•	0.848	1	•	0.850	•		•	•	•	•	0.850	
	DRAG	0,0334	, 02	0.0281	0.0276	0.275		0748		0.03/3	0.0479	0.0604	7470		8780	400.0	1701.0	0.1230	0.1412	07.74		0.1701	
_	PITCH	-0.0298	-0.0409	7070 0-	9440	4660	-0.0-	Ċ	0000.0-	-0.0368	-0.0436	7670 0-	10.00	-U.U523	C	•	-0.0447	•		3 C	•	-0.0843	
CORRECTED	LIFT	<u>_</u>	-0.1187	, ,	., .		0.1322	1	0.2352	0.3336	7717 U	700	•	0.5922		0.6145	0.6461	0.7184	0.7579		0.6/34	0.6869	
	INCID	c R	Ÿ 4		יי סכ	٦,	١.	•	1.61	4.	ç		?	0	1	<u>,</u>	9.90	7		•	ю,	10.81	•
	MACH	•	0.023	70.	.82	. 82	.82		0.826	.82		70.	.82	N		.82	0.825	, A	, 1 (70.	.82	808	•
	S S	: (1.191	. 19	. 18	. 19	. 18		. 19	0	• 1	. 19	. 18	1.193		. 19	1.193	2	- 1	. 19	. 19		
	ŭ	1	7	מ	4	ın	9		7	. a	0	٥-		44		12	7	. •	† (t,	16) <u>T</u>

DISTRIBUTION

	Copy 140.
USTRALIA	
Department of Defence	
Central Office	
Chief Defence Scientist	1
Deputy Chief Defence Scientist	2
Superintendent, Science and Technology Programs	3
Australian Defence Scientific and Technical Representative (UK)	_
Counsellor, Deferce Science (USA) Joint Intelligence Organisation	4
Defence Library	5
Document Exchange Centre, D.I.S.B.	6-22
DGAD (NCO)	23-26
Aeronautical Research Laboratories	
Chief Superintendent	27
Library	28
Superintendent — Aerodynamics Division	29
Divisional File — Aerodynamics	30
Author: B. D. Fairlie	31
Transonic Aerodynamics Group	32–35
Materials Research Laboratories	
Library	36
Defence Research Centre, Salisbury	
Library	37
Central Studies Establishment	
Information Centre	38
Engineering Development Establishment	
Library	39
RAN Research Laboratory	
Library	40
Navy Office	
Naval Scientific Adviser	41
Army Office	
Army Scientific Adviser	42
Royal Military College Library	43
Air Force Office	
Aircraft Research and Development Unit, Scientific Flight Group	44
Air Force Scientific Adviser	45
Technical Division Library DGAIRENG	46 47
HQ Support Command (SENGSO)	48
RAAF Academy, Point Cook	49
•••••• • 100000111/j 1 01111 000N	-42

Department of Productivity Government Aircraft Factories	50
Manager	51
Library	52
Mr K. Sayers	53
Mr P. Hughes	54
Mr D. Pilkington	-
•	55-62
Spares	