(2)
$$T(n) = 9T(n/3) + n$$

$$T(1)=1$$

(4)
$$\begin{cases} T(n) = T(n-1) + \log 3^n \\ T(1) = 1 \end{cases}$$

$$\begin{cases} T(n) = 5T(n/2) + (n\log n)^2 \\ T(1) = 1 \end{cases}$$

(6)
$$\begin{cases} T(n) = 2T(n/2) + n^2 \log n \\ T(1) = 1 \end{cases}$$

$$(T(1)=1)$$

$$\binom{7}{7} \binom{T(n) = T(n-1) + 1/n}{T(1) = 1}$$

(8)
$$T(n) = T(n-1) + \log n$$
,估计 $T(n)$ 的阶.

$$T(n) = n^{2} + (n-1)^{2} + \cdots + 1$$

$$= \frac{n(n+1)(2n+1)}{b} = \theta(n^2)$$

且Cizl (3) 假版 Yk<n, ICi>4C, sit, TCk)SCik.

$$\leq C_1 \frac{n}{2} + C_1 \frac{n}{4} + C_1$$

$$\leq C_i \cap T(n) = O(n)$$

保め サトcn. sit. T(k)をk

(5)
$$(nlogn)^2 = O(n^{log25-2})$$
 : $T(n) = \Theta(n^{log25})$

1.21 设原问题的规模是 n,从下述三个算法中选择一个最坏情况下时间复杂度最低的算法,简要说明理由.

算法 A: 将原问题划分规模减半的 5 个子问题,递归求解每个子问题,然后在线性时间将子问题的解合并得到原问题的解.

算法 B: 先递归求解 2 个规模为 n-1 的子问题,然后在常量时间内将子问题的解合并.

算法 C: 将原问题划分规模为 n/3 的 9 个子问题,递归求解每个子问题,然后在 $O(n^3)$ 时间将子问题的解合并得到原问题的解.

B:
$$T(n) = 2T(n-1) + O(1) = O(2^n)$$

Complexity Bounds

For each blank, indicate whether Ai is in O, Ω , or Θ of Bi. More than one space per row can be valid.

Α	В	0	Ω	Θ
10 <i>n</i>	n	✓	✓	✓
10	n	✓	メ	X
n ²	2 <i>n</i>	×	✓	メ
n ²⁰²¹	2 ⁿ	√	*	K
n ^{log 9}	9 ^{log n}	V	V	V
log(n!)	$\log(n^n)$	V	v	٧
$(3/2)^n$	$(2/3)^n$	X	✓	X
3 ⁿ	2 ⁿ	×	v	X
$n^{1/\log n}$	1	V	~	Y
log ⁵ n	n ^{0.5}	4	X	χ
n ²	4 ^{log n}	V	v	V
n ^{0.2}	$(0.2)^n$	X	V	ኦ
log log n	$\sqrt{\log n}$	V	ナ	メ
$\log(\sqrt{n})$	$\sqrt{\log n}$	V	メ	X

(b)
$$\sum_{j=1}^{n} \frac{n}{j=i+1} = \frac{n}{\sum_{j=1}^{n} \frac{(z+n-i+1)(n-i)}{z}} = \sum_{j=0}^{n-1} \frac{i(i+3)}{z}$$

$$\geqslant \sum_{j=0}^{n-1} \frac{1}{z^2} = \frac{(n-1)\cdot n\cdot (zn-1)}{z \times b}$$

$$= O(n^3)$$