Dr. Chih-Li Sung

Department of Statistics and Probability, Michigan State University email: sungchih@msu.edu website: https://chihli.github.io/

Experience

Assistant Professor

2018 - Present

Department of Statistics and Probability, Michigan State University, U.S.A.

Visiting Assistant Professor

May - July, 2022

Department of Statistics, National Cheng Kung University, Taiwan

Graduate Research Assistant

2014 - 2018

Georgia Institute of Technology, U.S.A.

Research Assistant

2013 - 2014

Academia Sinica, Taiwan

Statistical Engineer

2010 - 2013

Walsin Lihwa Corp., Taiwan

Education

Ph.D. in Industrial Engineering

2014 - 2018

Major in Statistics, Minor in Computer Science

Georgia Institute of Technology, U.S.A.

Thesis title: Contributions to binary-output computer experiments and large-scale computer experiments

Advisors: Profs. C. F. Jeff Wu and Benjamin Haaland

M.S. in Statistics

2008 - 2010

National Tsing Hua University, Taiwan

B.S. in Applied Mathematics

2004 - 2008

National Tsing Hua University, Taiwan

Research Interests

Computer Experiments, Experimental Designs, Uncertainty Quantification, Machine Learning, Big Data, and Applications of Statistics in Engineering

Grants

• NSF DMS 2113407 (**PI**, 07/01/2021 - 06/30/2024, \$142,009), Collaborative Research: Efficient Bayesian Global Optimization with Applications to Deep Learning and Computer Experiments. This project is in collaboration with Dr. Ying Hung at Rutgers University.

Publications

† Joint first authors

- 13. **Sung**, **C.-L.** and Hung, Y. (2023+). Efficient calibration for imperfect epidemic models with applications to the analysis of COVID-19, *Journal of the Royal Statistical Society: Series C*, accepted.
- 12. **Sung**, **C.-L.**[†], Wang, W.[†], Cakoni, F., Harris, I., and Hung, Y. (2024). Functional-input Gaussian processes with applications to inverse scattering problems. *Statistica Sinica*, accepted.
- Zhou, M., Chen, W., Su, X., Sung, C.-L., Wang, X., and Ren, Z. (2023). Data-driven modeling of general fluid density under subcritical and supercritical conditions. AIAA Journal, 61(4), 1519-1531.

- Sung, C.-L., Haaland, B., Hwang, Y., and Lu, S. (2023). A clustered Gaussian process model for computer experiments. Statistica Sinica, 33(2), 893-918.
- Sung, C.-L., Barber, B. D., and Walker, B. J. (2022). Calibration of inexact computer models with heteroscedastic errors, SIAM/ASA Journal on Uncertainty Quantification, 10(4), 1733-1752.
- 8. Sung, C.-L. (2022). Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak. *Annals of Applied Statistics*, 16(4), 2505-2522.
- Sung, C.-L.[†], Hung, Y.[†], Rittase, W., Zhu, C., and Wu, C. F. J. (2020). Calibration for computer experiments with binary responses and application to cell adhesion study. *Journal of the American Statistical Association*, 115(532), 1664-1674.
- Sung, C.-L.[†], Hung, Y.[†], Rittase, W., Zhu, C., and Wu, C. F. J. (2020). A generalized Gaussian process model for computer experiments with binary time series. *Journal of the American Statistical Association*. 115(530), 945-956.
- Sung, C.-L.[†], Wang, W.[†], Plumlee, M., and Haaland, B. (2020). Multi-resolution functional ANOVA for large-scale, many-input computer experiments. *Journal of the American Statistical Association*. 115(530) 908-919.
- Chang, Y.-H., Zhang, L., Wang, X., Yeh, S.-T., Mak, S., Sung, C.-L., Wu, C. F. J., and Yang, V. (2019). Kernel-smoothed proper orthogonal decomposition-based emulation for spatiotemporally evolving flow dynamics prediction. AIAA Journal, 57(12), 5269-5280.
- Mak, S.[†], Sung, C.-L.[†], Yeh, S.-T., Wang, X., Chang, Y.-C., Joseph, V. R., Yang, V., and Wu, C. F. J. (2018). An efficient surrogate model for emulation and physics extraction of large eddy simulations. *Journal of the American Statistical Association*, 113(524):1443-1456. (SPES Award from ASA in 2019)
- Yeh, S.-T., Wang, X., Sung, C.-L., Mak, S., Chang, Y.-H., Wu, C. F. J., and Yang, V. (2018). Data-driven analysis and mean flow prediction using a physics-based surrogate model for design exploration. AIAA Journal, 56(6):2429-2442.
- 1. **Sung, C.-L.**, Gramacy, R. B., and Haaland, B. (2018). Potentially predictive variance reducing subsample locations in local Gaussian process regression. *Statistica Sinica*, 28(2):577-600.

Submitted Papers

5. Heo, J.[†], **Sung, C.-L.** (2023). Active learning for a recursive non-additive emulator for multi-fidelity computer experiments, submitted.

- 4. Sung, C.-L., Song, Y., and Hung, Y. (2023). Advancing inverse scattering with surrogate modeling and Bayesian inference for functional inputs, submitted.
- 3. Sung, C.-L., Wang, W., Ding, L., and Wang, X. (2023). Mesh-clustered Gaussian process emulator for partial differential equation systems, submitted.
- 2. Sung, C.-L., Ji, Y., Tang, T., and Mak, S. (2022). Stacking designs: designing multi-fidelity computer experiments with target predictive accuracy, submitted.
- 1. Lin, W.-A.[†], **Sung, C.-L.**, and Chen, R.-B. (2022). Category tree Gaussian process for computer experiments with many-category qualitative factors and application to cooling system design, revision submitted. (C. Z. Wei Memorial Award from CIPS in 2022)

[†] supervised student

Conference Proceedings

- 3. Li, Y., Wang, X., Mak, S., **Sung, C.-L.**, Wu, C. F. J., and Yang, Y. (2018). Novel perspectives of spatial flame transfer function identification and thermo-acoustic instability analysis. In *Proceedings of the 2018 AIAA Propulsion and Energy Forum*.
- Li, Y., Wang, X., Mak, S., Sung, C.-L., Wu, C. F. J., and Yang, Y. (2018). Uncertainty quantification of flame transfer function under a Bayesian framework. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting.
- Chang, Y.-H., Zhang, L., Wang, X., Yeh, S.-T., Mak, S., Sung, C.-L., Wu, C. F. J., and Yang, Y. (2017). Spatial-temporal flow dynamics prediction with large design space via data-driven analysis and LES-based surrogate model. In *ILASS-Americas* 29th Annual Conference on Liquid Atomization and Spray Systems.

Editorial Services

• Associate Editor

- Technometrics 2022 - present

- Computational Statistics & Data Analysis 2021 - present

Teaching

- Instructor, Michigan State University
 - STT481: Capstone in Statistics 2018, 2019, 2020, 2021, 2022, 2023 Student evaluation (average of SIRS form; 1 is the best and 5 is the worst):

2018 Fall	2019 Spring	2019 Fall	2020 Spring	2020 Fall
1.638	1.537	1.680	1.665	1.612
2021 Spring	2021 Fall	2022 Spring	2022 Fall	2023 Spring
1.598	1.713	1.392	1.919	1.560

- STT801: Design of Experiments

2021, 2022, 2023

Student evaluation (average of SIRS form; 1 is the best and 5 is the worst):

2021 Spring	2022 Spring	2023 Spring	
1.340	1.498	1.205	

• Graduate Teaching Assistant, Georgia Institute of Technology

ISYE6413: Design and Analysis of Experiments
ISYE3770: Statistics and Applications
January 2017
August 2015

Mentorship

• Ph.D. Students

STT: Department of Statistics and Probability at MSU

- Romain Boutelet (STT)	2023-present
- Chun-Yi Chang (STT)	2022-present
- Junoh Heo (STT)	2021-present
- Wei-Ann Lin (<i>NCKU</i> , primary advisor: Prof. Ray-Bing Chen)	2019-present

• Masters-level Students

- Haojun Yang (STT)	2021-2022
- Chun-Yi Chang (STT , Current position: Ph.D. student at MSU)	2021-2022
- Kun Xia (STT)	2021-2022
- Wei Chen (Florida Tech, Primary advisor: Prof. Xingjian Wang)	2020-2021

- Ashton Pallottini (STT, Current position: Ph.D. student at U. of Chicago) 2019-2020 - Jinwon Park (STT)2019-2019 • Undergraduate-level Students - Noah Jankowski (STT) 2021-2022 • MSU IMPACTS Trainees - Duncan Boren (BMB, primary advisor: Prof. Josh Vermaas) 2022-present - Joshua Kaste (*Plant Biology*, primary advisor: Prof. Yair Shachar-Hill) 2020-2021 - Zi Li (*ECE*, in progress) - Xuran Wang (CEPSE, in progress) - Haoxiang Feng (STT, in progress) STT: Department of - Yao Song (Statistics, Rutgers University, in 2023) Probability at MSU - Anirban Samaddar (STT, in 2023) - Mookyong Son (STT, 2023) - Abhijnan Chattopadhyay (STT, 2022). Decode phenome-genome interactions: a data science approach. - Runze Su (STT, 2022). Machine learning towards data with complex structures. - Ibrahim Kekec (Economics, 2021). Essays on discrete multivalued treatments with endogeneity and heterogeneous counterfactual errors. - Juna Goo (STT, 2020). A spatio-temporal model for white matter tractography in diffusion tensor imaging. - Wei Chen (Florida Tech, master thesis, 2020). A modified peng-robinson cubic equation of state based on Bayesian framework. • IMS New Researchers Travel Award April 2023 Institute of Mathematical Statistics • Full Membership in Sigma Xi October 2021 The Scientific Research Honor Society • Statistics in Physical Engineering Sciences (SPES) Award August 2019 American Statistical Association • Alice and John Jarvis, Ph.D. Student Research Award April 2018 (Honorable Mention) Stewart School of ISyE, Georgia Tech • Best Student Poster Winner October 2017 (1st Prize) Georgia Statistics Day, Emory University • Best Student Poster Winner June 2017 ISBIS Meeting, the IBM Watson Research Center • Spring Research Conference Travel Award May 2016 SRC, Illinois Institute of Technology • Hacklytics: Go Back Home Safe April 2016 (3rd Place) Data Science at Georgia Tech

August 2015

June 2010

• Government Scholarship to Study Abroad

Dr. Chen Wen-Chen Memorial Foundation

• Dr. Chen Wen-Chen Statistics Science Thesis Award

Ministry of Education, Taiwan

Dissertation

Committee

Statistics and

Service

Awards

Software

- 6. Sung, C.-L. (2023). mcGP: Mesh-clustered Gaussian process. R package version 0.1.
- 5. Sung, C.-L. (2022). HetCalibrate: Calibration of Inexact Computer Models with Heteroscedastic Errors. R package version 0.2.
- 4. Sung, C.-L. (2022). GPcluster: Clustered Gaussian Process. R package version 0.1.
- Sung, C.-L. (2019). MRFA: Fitting and Predicting Large-Scale Nonlinear Regression Problems using Multi-Resolution Functional ANOVA (MRFA) Approach. R package version 0.4.
- 2. Sung, C.-L. (2018). calibrateBinary: Calibration for Computer Experiments with Binary Responses. R package version 0.1.
- 1. Sung, C.-L. (2017). binaryGP: Fitting and Predicting a Gaussian Process Model with (Time-Series) Binary Response. R package version 0.2.

Talks

Invited talks are boldfaced

2023

- 1. Seminar, TAMIDS, Texas A&M University (August). Stacking designs: designing multi-fidelity computer experiments with target predictive accuracy.
- 2. Industry 4.0 Technology Implementation workshop (August). Statistical emulation, calibration, and optimization for digital twin.
- 3. EcoSta 2023, Tokyo, Japan (August). Functional-input Gaussian processes with applications to inverse scattering problems.
- 4. **ISI World Statistics Congress 2023** (July). mcGP: mesh-clustered Gaussian process emulator for partial differential equation systems.
- 5. ICSA Applied Statistics Symposium 2023 (June). Stacking designs: designing experiments for multi-fidelity modeling with confidence.
- 6. Spring Research Conference 2023 (May). Stacking designs: designing experiments for multi-fidelity modeling with confidence.
- 7. Seminar, University of St Andrews, Scotland (January). When epidemic models meet statistics: understanding COVID-19 outbreak.

• 2022

- 1. AISC 2022, UNC Greensboro (October). Functional-input Gaussian processes with applications to inverse scattering problems.
- 2. **Seminar, Virginia Tech** (September). Stacking designs: designing multi-fidelity computer experiments with confidence.
- 3. JSM 2022 Conference, Washington DC (August). When epidemic models meet statistics: understanding the impact of weather and government interventions on COVID-19 outbreak.
- 4. Seminar, Academia Sinica, Taiwan (July). Stacking designs: designing experiments for multi-fidelity modeling with confidence.
- 5. EcoSta 2022, Kyoto, Japan (June). Stacking designs: designing experiments for multi-fidelity modeling with confidence.
- 6. Seminar, National Tsing Hua University, Taiwan (May). When epidemic models meet statistics: understanding COVID-19 outbreak.

• 2021

- 1. **INFORMS 2021 Conference** (October). Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak.
- 2. JSM 2021 Conference (August). Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak.

- 3. **JSM 2021 Conference** (August). *Multi-level emulator for multi-fidelity simulations*.
- 4. UQ Seminar, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (January). Computer experiments with binary time series and applications to cell biology: modeling, emulation and calibration.

2020

- 1. JSM 2020 Conference (August). Calibration of inexact computer models with heteroscedastic errors.
- 2. Seminar, University of California, Los Angeles (February). Multi-resolution functional ANOVA for large-scale, many-input computer experiments.
- 3. Colloquium, Michigan State University (January). Applications of computer experiments: emulation and calibration.

• 2019

- 1. **INFORMS 2019 Conference** (October). A clustered Gaussian process model with an application to solar irradiance emulation.
- 2. **INFORMS 2019 Conference** (October). Multi-resolution functional ANOVA for large-scale, many-input computer experiments.
- 3. ICOSDA 2019 (October). Exploiting variance reduction potential in local Gaussian process search.
- 4. ICISE 2019 (June). Multi-resolution functional ANOVA for large-scale, manyinput computer experiments.
- 5. EcoSta 2019 (June). Exploiting variance reduction potential in local Gaussian process search.
- 6. The 28th South Taiwan Statistics Conference (June). Exploiting variance reduction potential in local Gaussian process search.
- 7. Seminar, Academia Sinica, Taiwan (June). Multi-resolution functional ANOVA for large-scale, many-input computer experiments.
- 8. Seminar, National Tsing Hua University, Taiwan (May). Computer Experiments with Binary Time Series and Applications to Cell Biology: modeling, estimation and calibration.
- 9. Research Colloquium, Purdue University (February). Applications of computer experiments: emulation and calibration.

2018

- 1. **INFORMS 2018 Conference** (October). An efficient surrogate model for emulation and physics extraction of large eddy simulations.
- 2. Workshop on Computer Experiments, Academia Sinica, Taiwan (July). Calibration for computer experiments with binary responses.
- 3. SIAM UQ (April). Calibration for computer experiments with binary responses.

2017

- 1. INFORMS 2017 Conference (October). A generalized Gaussian process model for computer experiments with binary time series.
- 2. Georgia Statistics Day, Emory University (October). A generalized Gaussian process model for computer experiments with binary time series (poster presentation).
- 3. JSM 2017 Conference (July). Multi-resolution functional ANOVA for large-scale, many-input computer experiments.
- 4. ISBIS Meeting (June). Multi-resolution functional ANOVA for large-scale, manyinput computer experiments (poster presentation).

- 5. SPUQ Workshop (May). A generalized Gaussian process model for computer experiments with binary time series (poster presentation).
- 6. NAE Regional Meeting (April). Surrogate modeling and data-driven physics extraction of large-eddy simulations (poster presentation).

• **2016**:

- 1. ICSA Symposium (June). Potentially predictive variance reducing subsample locations in local Gaussian process regression.
- 2. SRC Conference (May). Potentially predictive variance reducing subsample locations in local Gaussian process regression.