CSCE 665 Advanced Networking & Security

Guofei Gu

Software Defined Networking

Slides borrowed from Prof.
Jennifer Rexford
at Princeton

The Internet: A Remarkable Story

- Tremendous success
 - From research experiment to global infrastructure
- · Brilliance of under-specifying
 - Network: best-effort packet delivery
 - Hosts: arbitrary applications
- Enables innovation in applications
 - Web, P2P, VoIP, social networks, virtual worlds
- But, change is easy only at the edge... 🕾

Inside the 'Net: A Different Story...

- Closed equipment
 - Software bundled with hardware
 - Vendor-specific interfaces
- Over specified
 - Slow protocol standardization
- Few people can innovate
 - Equipment vendors write the code
 - Long delays to introduce new features

Impacts performance, security, reliability, cost...

Networks are Hard to Manage

- Operating a network is expensive
 - More than half the cost of a network
 - Yet, operator error causes most outages
- Buggy software in the equipment
 - Routers with 20+ million lines of code
 - Cascading failures, vulnerabilities, etc.
- The network is "in the way"
 - Especially a problem in data centers
 - ... and home networks

Creating Foundation for Networking

- A domain, not (yet?) a discipline
 - Alphabet soup of protocols
 - Header formats, bit twiddling
 - Preoccupation with artifacts
- From practice, to principles
 - Intellectual foundation for networking
 - Identify the key abstractions
 - $-\dots$ and support them efficiently
- To build networks worthy of society's trust

Rethinking the "Division of Labor"

Traditional Computer Networks

Forward, filter, buffer, mark, rate-limit, and measure packets

Death to the Control Plane!

- Simpler management
 - No need to "invert" control-plane operations
- Faster pace of innovation
 - Less dependence on vendors and standards
- Easier interoperability
 - Compatibility only in "wire" protocols?
- Simpler, cheaper equipment
 - Minimal software

13

OpenFlow Networks

Data-Plane: Simple Packet Handling

• Simple packet-handling rules

- Pattern: match packet header bits
- Actions: drop, forward, modify, send to controller
- Priority: disambiguate overlapping patterns
- Counters: #bytes and #packets

- 1. src=1.2.*.*, dest=3.4.5.* → drop
- 2. src = *.*.*, dest=3.4.*.* → forward(2)
- 3. src=10.1.2.3, dest=*.*.*.* → send to controller

Unifies Different Kinds of Boxes

Router

- Match: longest destination IP prefix
- Action: forward out a link

Switch

- Match: destination MAC address
- Action: forward or flood

Firewall

- Match: IP addresses and TCP/UDP port numbers
- Action: permit or deny

NAT

- Match: IP address and port
- Action: rewrite address and port

Example OpenFlow Applications

- Dynamic access control
- Seamless mobility/migration
- Server load balancing
- Network virtualization
- Using multiple wireless access points
- · Energy-efficient networking
- · Adaptive traffic monitoring
- Denial-of-Service attack detection

See http://www.openflow.org/videos/

OpenFlow in the Wild

- Open Networking Foundation
 - Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom, and many other companies
- Commercial OpenFlow switches
 - HP, NEC, Quanta, Dell, IBM, Juniper, ...
- Network operating systems
 - NOX, Beacon, Floodlight, OpenDaylight, ONOS, Ryu, Nettle, ONIX, POX, Frenetic
- Network deployments
 - Campuses, and research backbone networks
 - Commercial deployments (e.g., Google backbone)

23

A Helpful Analogy

From Nick McKeown's talk "Making SDN Work" at the Open Networking Summit, April 2012

Heterogeneous Switches

- Number of packet-handling rules
- Range of matches and actions
- Multi-stage pipeline of packet processing
- Offload some control-plane functionality (?)

Controller Delay and Overhead

- Controller is much slower the the switch
- Processing packets leads to delay and overhead
- Need to keep most packets in the "fast path"

Testing and Debugging

- OpenFlow makes programming possible
 - Network-wide view at controller
 - Direct control over data plane
- Plenty of room for bugs
 - Still a complex, distributed system
- Need for testing techniques
 - Controller applications
 - Controller and switches
 - Rules installed in the switches

15

Programming Abstractions

- Controller APIs are low-level
 - Thin veneer on the underlying hardware
- Need better languages
 - Composition of modules
 - Managing concurrency
 - Querying network state
 - Network-wide abstractions
- Ongoing at Princeton
 - http://www.frenetic-lang.org/

32

Conclusion

- Rethinking networking
 - Open interfaces to the data plane
 - Separation of control and data
 - Leveraging techniques from distributed systems
- Significant momentum
 - In both research and industry
- Next time
 - Security in SDN