

6 Verteilungen

Grundbegriffe

Zufallsexperiment = wiederholbarer Vorgang mit bekannter Menge an Ergebnissen

- Beispiel 1: einmaliges Würfeln mit einem fairen Würfel
- Beispiel 2: Befragung eines Grundschülers zu seinem gestrigen Medienkonsum

Zufallsvariable = Beschreibung des Ergebnisses eines Zufallsexperiments mit einer reellen Zahl; jeder Wert der Zufallsvariable tritt mit einer bestimmten Wahrscheinlichkeit ein

- Beispiel 1: $X = \text{Augenzahl des Würfels}, X \in \{1, 2, 3, 4, 5, 6\}$
- Beispiel 2: Y = gestern verbrachte Zeit an Handy, PC und Fernseher in Stunden, $Y \in [0, 24)$

Diskrete Zufallsvariable = Zufallsvariable, die eine abzählbare Menge von Werten annehmen kann

Die Zufallsvariable X im obigen Beispiel 1 ist diskret

Stetige Zufallsvariable = Zufallsvariable, die jeden beliebigen Wert in einem Intervall oder in einer Menge von Intervallen annehmen kann

- Die Zufallsvariable Y im obigen Beispiel 2 ist stetig (wenn mit beliebiger Genauigkeit
- gemessen wird)

• Jede diskrete Zufallsvariable hat eine Massefunktion f(x) (=Wahrscheinlichkeitsfunktion). Diese gibt an, mit welcher Wahrscheinlichkeit die Zufallsvariable welchen Wert annimmt.

$$f(1) = P(X = 1) = \frac{1}{6}$$

$$f(2) = \frac{1}{6}$$

$$f(3) = \frac{1}{6} \qquad f(5) = \frac{1}{6}$$

$$f(4) = \frac{1}{6} \qquad f(6) = \frac{1}{6}$$

Bernoulli-/Binomialverteilung

Bernoulli-Verteilung: Eine Variable mit zwei Ausprägungen. Die Wahrscheinlichkeit für das eine Ereignis ist p, für das andere dementsprechend 1-p

- Münze: Wappen oder Zahl, p = 0.5
- eine Eins würfeln: p = 1/6

• ...

```
Python:
```

import random
random.choices(population=[0,1], weights=[0.2, 0.8])

Exkurs: Zufallszahlen mit Numpy

Zuerst einen Zufallsgenerator erstellen

```
import numpy as np
z_gen = np.random.default_rng()
```

Optional einen seed angeben. Dieser startet den Zufallsgenerator an einem speziellen Punkt. Damit lassen sich die gleichen Zahlen bei einem weiteren Durchlauf generieren.

```
z_gen = np.random.default_rng(seed=42)
```

Dann eine oder mehrere Zufallszahlen ziehen. Für jede Verteilung gibt es eine Funktion.

```
df["x"] = z_gen.binomial(n=1, p=0.5, size=100)
```


Binomial-Verteilung: Mehrfaches (unabhängiges) Ausführen eines Bernoulli-Experiments

- Anzahl Wappen bei 3x Werfen einer Münze
- Anzahl Sechsen bei 10x Werfen eines Würfels

Binomialverteilung

Die Wahrscheinlichkeit für eine Anzahl (X=k) kann direkt über diese Massefunktion berechnet werden:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k}$$

- Was ist die Wahrscheinlichkeit für 2x Wappen bei 3x Werfen einer Münze?
- Was ist die Wahrscheinlichkeit für 4x Sechs bei 10x Werfen eines Würfels?

Die Wahrscheinlichkeit für bis zu einer Anzahl (x <= k) kann als Summe der einzelnen Wahrscheinlichkeiten berechnet werden

$$p_{\leq k} = p_0 + p_1 + \dots + p_k$$

Fasst man diese Werte als Funktion, in die man die Parameter n, p und k einsetzt, auf, nennt man diese (kumulierte) Verteilungsfunktion.

$$F(n; p; k) = p_{\le k} = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$$

Verteilungsfunktionen (CDF = cumulative distribution function) sind ein allgemeines Prinzip in der Stochastik und es gibt sie für jede Verteilung.

Binomialverteilung

Die Verteilungsfunktion an Wert k entspricht "höchstens k Mal". Über die Gegenwahrscheinlichkeit lässt sich auch "mindestens k Mal" berechnen.

Achtung: Das Gegenteil von \leq (*kleiner oder gleich*) ist > (*echt größer*)

$$P(X \ge k) = P(X > k - 1) = 1 - P(X \le k - 1) = 1 - p_{k-1}$$

- Was ist die Wahrscheinlichkeit für höchstens 2x Wappen bei 3x Werfen einer Münze?
- Was ist die Wahrscheinlichkeit für mindestens 4x Sechs bei 10x Werfen eines Würfels?

Binomialverteilung in Python

Das Package scipy bzw. dessen Untermodul scipy.stats bietet zu vielen Verteilungen die entsprechenden kumulierten Verteilungsfunktionen. Installation mit conda install scipy

```
import scipy.stats
# Wahrscheinlichkeit für höchstens 2x Wappen bei 3x Werfen
scipy.stats.binom.cdf(k=2, n=3, p=0.5)
# Wahrscheinlichkeit für mindestens 4x Sechser bei 10x Würfeln
1 - scipy.stats.binom.cdf(k=3, n=10, p=1/6)
# Wahrscheinlichkeit für 2 bis 4 Sechser bei 10x Würfeln
scipy.stats.binom.cdf(k=4, n=10, p=1/6) -
     scipy.stats.binom.cdf(k=1, n=10, p=1/6)
```


Wird n immer größer, dann nähert sich die Binomialverteilung der **Normalverteilung** an (Faustregel: ab n=30)

Die Normalverteilung ist der wichtigste Verteilungstyp für stetige Zufallsvariablen (d.h. kontinuierliche Werte)

Eine Normalverteilung wird durch zwei Parameter beschrieben, dem Erwartungswert (\sim Mittelwert) μ (griechisch my) und der Standardabweichung σ (griechisch sigma)

Die **Standard-Normalverteilung** hat μ =0 und σ =1, man schreibt auch N(0,1)

Normalverteilung

Alle Normalverteilungen haben folgende Charakteristika:

- glockenförmig
- Symmetrisch
- Modus, Median und Mittelwert fallen zusammen.
- Die Verteilung n\u00e4hert sich asymptotisch der x-Achse (geht also von ∞ bis + ∞).
- Extreme Ereignisse sind stets möglich, aber sehr unwahrscheinlich

Erzeugen normalverteilter Stichproben

```
n = 1000
normal_0_1 = z_gen.normal(loc=0, scale=1, size=n)
normal_5_1 = z_gen.normal(loc=5, scale=1, size=n)
normal_0_5 = z_gen.normal(loc=0, scale=5, size=n)

df = pd.DataFrame({"N(0,1)":normal_0_1, "N(5,1)":normal_5_1, "N(0,5)":normal_0_5})

df.describe()
```


Auch für die Normalverteilung gibt es eine kumulierte Verteilungsfunktion

```
import scipy.stats
scipy.stats.norm.cdf(0.55,0,1)
# 0.70884
# ca. 70% der Werte sind kleiner als 0,55

# Umkehrfunktion der CDF = Quantilsfunktion
# Für welchen Wert liegen x% darunter
# PPF = percent point function
scipy.stats.norm.ppf(0.7, 0, 1)
```


Es gilt allgemein: Die kumulierte Verteilungsfunktion ist die Umkehrfunktion der Quantilsfunktion

Z-Transformation

Für die Standardnormalverteilung ($\mu=0~|~\sigma=1$) gibt es Nachschlagetabellen, bei welchen Werten (sog. Z-Werte) welche kumulierten Wahrscheinlichkeiten vorliegen. Daher kann es nützlich sein, normalverteilte Variablen zu Standardisieren. Diese standardisierung nennt man Z-Transformation.

Erwartungswert der Population

$$Z = \frac{x - \mu}{\sigma}$$

Standardnormalverteilte Zufallsvariable

Standardabweichung der Population