Chapter 6 Point Estimation

Often in statistics, we want to estimate parameters of a population distribution

For example, we may want to estimate p, the true proportion of certain electrical components which are defective. Say we get a sample of 25 components, and 4 are defective. We use our sample to estimate p. For the estimator, we write \hat{p} , "p hat".

$$\hat{p} = .16 = \frac{4}{25}$$

This is an example of a point estimate.

"theta"

A point estimate for a parameter 0 is a single number that is a sensible value for 0. It is obtained by selecting a suitable statistic and computing its value from the sample data. The selected statistic is called the point estimator of 0.

Example |: We want to study the breakdown voltage for pieces of epoxy resin. We believe the breakdown voltages are normally distributed*, but we don't know the mean μ or variance σ^2 . We get a sample $x_1,...,x_n$. What are some possible point estimators for μ ? What are some point estimators for σ^2 ?

Point Estimators for
$$\mu$$
:

Sample mean \overline{X} , $\overline{x} = \frac{x_1 + x_2 + ... + x_n}{n}$

Sample median \widetilde{X}

Bin (25, p)

Point Estimators for T2:

$$\sqrt{\alpha v}(X) = E[X^{2}] - E[X]^{2}, \qquad \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\hat{\sigma}^{2} = S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\hat{\sigma}^{3} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Unbiased Estimators: A point estimator $\hat{\Theta}$ is an unbiased estimator of Θ if $E[\hat{\Theta}] = \Theta$ for every possible value of Θ . If $\hat{\Theta}$ is not unbiased, $E[\hat{\Theta}] - \Theta$ is called the <u>bias</u> of $\hat{\Theta}$.

Example 2: Let X~Bin (n,p). Say we know the value of n, but not p

We estimate $\hat{p} = \frac{X}{n}$. Is \hat{p} an unbiased estimator of p?

$$E[\hat{p}] = E[\frac{X}{n}] = \frac{1}{n} E[X] = \frac{1}{n} \cdot np = p$$

$$|bokup mean of Bin(n,p) distribution$$

So \hat{p} is an unbiased estimator for p.

Example 3: Say certain reaction times are uniformly distributed from 0 to 0. We collect a sample $X_1,...,X_n$ and estimate $\hat{O} = \max(X_1,...,X_n)$. Explain how we can know \hat{O} is biased without doing calculations.

All of data
$$X_1, ..., X_n$$
 is less than Θ

so $\hat{\Theta} = \max(X_1, ..., X_n)$ is also less than Θ .

So $E[\hat{\Theta}] < \Theta$.

Principle of Unbiased Estimation: When choosing among several different estimators for O, select one that is unbiased.

Proposition: Let $X_1,...,X_n$ be a random sample from a distribution with mean μ and variance σ^2 . Then the estimator

$$\hat{C}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

is unbiased for estimating σ^2 . $E[\hat{\tau}^2] = \sigma^2$.

Also \overline{X} is an unbiased estimator for μ . $\overline{F}[\overline{X}] = \mu$.

Example 4: Suppose we have samples of the growth of two types of trees

over 1 year. X1, X2, ..., X5 are measurements of the growth of 5 trees of

the first type, with mean μ , and variance σ^2 . $Y_1, ..., Y_n$ are measurements

of 7 trees of the second type with mean 1/12 and the same variance or2.

Let
$$\overline{X} = \frac{X_1 + ... + X_5}{5}$$
 and $\overline{Y} = \frac{Y_1 + ... + Y_5}{7}$

Assume X, ..., X5, Y1, ..., Y7 are all independent.

Let S_1^2 be the sample variance of the X_i 's and S_2^2 be the sample variance of the Y_i 's.

- a) Show that $\overline{X} \overline{Y}$ is an unbiased estimator of $\mu \mu_2$.
- b) For which value of k is $\hat{\sigma}^2 = k(S_1^2 + S_2^2)$ an unbiased estimator for σ^2 ?

a)
$$E[X - \overline{Y}] = E[X] - E[\overline{Y}] = M_1 - M_2$$
. So $X - \overline{Y}$ is unbiased for estimating $M_1 - M_2$

b)
$$\mathbb{E}\left[k\left(S_1^2 + S_2^2\right)\right] = k\left(\mathbb{E}\left[S_1^2 + S_2^2\right]\right) = k\left(\mathbb{E}\left[S_1^2\right] + \mathbb{E}\left[S_2^2\right]\right) = k\left(\sigma^2 + \sigma^2\right)$$

=
$$2k\sigma^2$$

Want this to be σ^2 . $2k=1$, $k=\frac{1}{2}$.

The <u>Standard Error</u> of an Estimator $\hat{\Theta}$ is its standard deviation $\sigma_{\hat{\Theta}} = \sqrt{Var(\hat{\Theta})}$. This represents a typical deviation between the estimate and the value of Θ .

Example 5: Find the standard error of $\hat{O} = \overline{X} - \overline{Y}$ from Example 4.

$$Var(\overline{X} - \overline{Y}) = Var(\overline{X}) + Var(-\overline{Y}) = Var(\overline{X}) + (-1)^{2} Var(\overline{Y})$$

$$= Var(\overline{X}) + Var(\overline{Y})$$

$$= Var(\overline{X}) + Var(\overline{Y})$$

$$= \frac{\sigma^{2}}{5} + \frac{\sigma^{2}}{7} = \frac{12}{35} \sigma^{2}$$

$$SE(\overline{X}-\overline{Y})=\sqrt{Var(\overline{X}-\overline{Y})}=\sqrt{\frac{12}{35}\sigma^2}=\sqrt{\frac{12}{35}\sigma}$$