Références: Intégrales généralisées ou impropres.

Référence1: REGLE DE RIEMANN.

- 1) L'intégrale $\int_{a>0}^{+\infty} \frac{dt}{t^{\alpha}}$ est convergente ssi $\alpha>1$, (il ya pb au $v(+\infty)$ seulement). 2) L'intégrale $\int_{a}^{+\infty} \frac{dt}{(b-t)^{\alpha}}$ est convergente ssi $\alpha<1$, (il ya pb au $v(b^{-})$ seulement).

- 3) L'intégrale $\int_{-\infty}^{b<0} \frac{dt}{|t|^{\alpha}}$ est convergente ssi $\alpha > 1$, (il ya pb au $v(-\infty)$ seulement).
- 4) L'intégrale $\int_{a>-\infty}^{b} \frac{dt}{(t-a)^{\alpha}}$ est convergente ssi $\alpha < 1$, (il ya pb au $v(a^+)$ seulement).

Référence 2 : REGLE EXPONENTIELLE.

Pour $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}^*$.

L'intégrale $\int\limits_{-\infty}^{+\infty} x^{\alpha}e^{\beta x}dx$ converge ssi $\beta<0$ et α quelconque.

Référence 3: REGLE DE BERTRAND.

- 1) L'intégrale $\int_{a>1}^{+\infty} \frac{dx}{x^{\alpha} \log^{\beta} x}$ est convergente ssi $[(\alpha > 1, \ \beta \text{ quelconque}) \text{ ou } (\alpha = 1 \text{ et } \beta > 1)]$. 2) L'intégrale $\int_{0}^{+\infty} \frac{dx}{x^{\alpha} \log^{\beta} x}$ est convergente ssi $[(\alpha < 1, \ \beta \text{ quelconque}) \text{ ou } (\alpha = 1 \text{ et } \beta > 1)]$.

Référence 4:

Soient les intégrales impropres suivantes: $\int_{-\infty}^{+\infty} \frac{\sin(kt)}{t^{\alpha}} dt \int_{-\infty}^{+\infty} \frac{\cos(kt)}{t^{\alpha}} dt, \ k \in \mathbb{R}^*.$

1

- 1) Elles sont convergentes ssi $\alpha > 0$.
- 2) Elles sont absolument convergentes ssi $\alpha > 1$.
- 3) Elles sont semi-convergentes ssi $\alpha \in]0,1]$.