Shortest Path (Negative)

Bellman-Ford

Is Dijkstra Algorithm always correct?

Shortest Path with Negative Length

- What if edges may have negative weight?
- Distance: 5 3 + 10 = 12

Shortest Path with Negative Length

- What if edges may have negative weight?
- Distance: 5 3 + 10 = 12

Can we still use Dijkstra?

Try Dijkstra on this small graph?

Can we still use Dijkstra?

- Try Dijkstra on this small graph?
- The Fake SPT we get
- It is not True SPT because

$$- dist_T(3) = 3 > dist(3) = 5 - 3 = 2$$

But we have proved it???

What we have proved (last lecture)

- We can explore an SPT.
- Choose the closest vertex.
- {1} is an **SPT**.
- 3 is the closest vertex.

We should have something wrong in the proof!

Go back to the proof!

Prove $dist_T(v) \leq dist(v)$ AGAIN!

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin}} \operatorname{dist}_T(u)$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to x \to v < dist_T(v)$
- $dist_T(x)$ is a part of $s \to x \to v$
- $dist_T(x) < dist_T(v)$
- Contradiction!

Prove $dist_T(v) \leq dist(v)$ **AGAIN!**

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin}} dist_T(u)$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to x \to v < dist_T(v)$
- $dist_T(x)$ is a part of $s \to x \to v$
- $= dist_T(x) < dist_T(v)$
- Contradiction!

Prove $dist_T(v) \leq dist(v)$ AGAIN!

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin}} dist_T(u)$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to x \to v < dist_T(v)$
- $dist_T(x)$ is a part of $s \to x \to v$
- $dist_T(x) < dist_T(v)$
- Contradiction!

New solution Bellman-Ford!

Another view of the problem

- Dijkstra
 - If we update 3 into SPT,
 - dist(3) needn't be updated any more!
 - We only need to update others!
- Now
 - It is not correct.
 - It can be updated by dist(2) 3.
- Simply solution
 - Don't chose vertex 3.
 - Keep updating everyone!

Another view of the problem

- Conclusion
- Dijkstra is very clever
 - It follows a clever order
 - Each edge can be only used once in updating.
- Now the order is not true
- We can only be stupid.

Bellman-Ford

Bellman-Ford

```
Function bellman_ford(G, s)
dist[s] = 0, dist[x] = \infty \text{ for other } x \in V
\text{while } \exists dist[x] \text{ is updated}
\text{for each } (u, v) \in E
dist[v] = \min\{dist[v], dist[u] + d(u, v)\}
```


Problem

Will it terminate? What is the running time.

Correctness of Bellman-Ford

Lemma 1

After k rounds, dist(v) is the shortest distance of all k-edge-path.

Proof

paths with at most *k* edges.

- Base case:
 - After 0 rounds, dist[s] is the shortest distance of all **0-edge-path**.
- Induction:
 - Suppose it is true for k-1 rounds.
 - Consider a k-edge-path of v: $(s, u_1, u_2, ..., u_{k-1}, v)$.

Proof

• Induction:

- Suppose it is true for k-1 rounds.
- Consider a k-edge-path of v: $(s, u_1, u_2, ..., u_{k-1}, v)$.
- By hypothesis: $dist[u_{k-1}] \le d(s, u_1, u_2, \dots, u_{k-1})$
- By Bellman-Ford: $dist[u_k] \le d(s, u_1, u_2, ..., u_{k-1}) + d(u_{k-1}, v)$

Correctness of Bellman-Ford

Observation 2

The shortest distance of all |V|-edge-path can not be shorter than the shortest distance of all (|V| - 1) -edge-path unless there is a Negative Cycle.

Proof

- |V|-edge-path must contains a cycle
- If the cycle is not negative, go through it do not make the distance smaller.

Negative Cycle

- What if G has a negative cycle?
- The shortest distance become not well defined!
- The shortest distance can as small as we want!

Correctness of Bellman-Ford

Lemma 1

After k rounds, dist(v) is the shortest distance of all k-edge-path.

Observation 2

The shortest distance of all |V|edge-path can not be shorter
than the shortest distance of all (|V| - 1) -edge-path unless
there is a Negative Cycle.

Conclusion

After |V| - 1 rounds, dist(v) is the **shortest distance**, otherwise G has a **Negative Cycle**.

 $O(|V|\cdot |E|)$

Refine The Algorithm

Run |V| rounds updating, If distance become shorter in the |V|-th round, output negative cycle, otherwise, output distance.

Today's goal

- Learn why Dijkstra is wrong when edge is negative.
 - Learn to find a counter example.
 - Learn to point out the **problems** in the proof.
- Learn Bellman-Ford
 - What kind of graphs make it correct?
 - Why we only need to consider this kind of graphs?