Deep Log-polar networks

Comparison to SITHCon

SITHCon

- Principal operation is log-compression of time series to create f(t, i)
 - i indexes tau_star

 Learned 1D convolution over tau_star, then maxpooling

DeepLP

- Principal operation is log-compression of space across rays from a set of angles θ to create f(x, y, i, j)
 - i indexes tau_star
 - j indexes theta
 - Learned 2D convolution over tau_star+theta, then maxpooling.

single tau_star axis

many tau_star axes

Fig. 2. Rotation and Scaling transformations to a Euclidean image can be read as horizontal and vertical shift respectively, after a log-polar transformation. The log-polar transformation translates rotation and scale in Euclidean images into vertical and horizontal translations (respectively) in the log-polar model.

(figure from Remmelzwaal et al.)

Computing Log-polar transform

Each (τ^*, θ) pair has a corresponding Cartesian coordinate (x'_{ij}, y'_{ij}) :

$$x_{ij}' = \tau_i^\star \cos \theta_j = (1+c)^i \tau_{\min} \cos \theta_j$$

$$y'_{ij} = (1+c)^i \tau_{\min} \sin \theta_j$$

Get f(x, y, i, j) by:

- Taking the inner product with a window: iSITH in τ^* direction, a Gaussian in the orthogonal direction, with peak at (x'_{ij}, y'_{ij})
- Could also take the average of all pixels in the "pie slice" centered at (x'_{ij}, y'_{ij}) , or use bilinear interpolation to get value at (x'_{ij}, y'_{ij})

LPConv Layer

 Log-polar coordinate transform is computed at every point in the image, resulting in a tensor of size

H x W x C_1 x N_tau x N_theta

After conv and pooling, the size is
H x W x C_2 x 1 x 1

Computation of log-polar feature map at a single pixel (x, y)

(figure from Su et al., a similar approach but without convolution or max-pooling)

Results on MNIST and RotMNIST

Train small, models (13.5K params) on MNIST, test on rot/scaled/translated images. Comparison of different ways to reduce spatial dimension in last layer (control = choose center pixel). Full max-pooling over only tau dimension.

Note: The rotation-invariant tests are with small ntau and tau_max (to reduce on training time). Scale invariance suffers, though.

Using two models, with 148k and 81k parameters, respectively:

- Training and testing on both RotMNIST gives **98.5%** accuracy for the large model and **97.3%** for the medium model
- Training on only MNIST, then testing on RotMNIST gives 97.8% and 97.4% accuracy

rotation invariance out-of-the-box from training on non-augmented MNIST