3.1.1 Kinematics Learning outcomes Additional guidance Learners should be able to demonstrate and apply their knowledge and understanding of: displacement, instantaneous speed, average M0.1, M1.4, M3.7, M3.9 speed, velocity and acceleration HSW10, 12 graphical representations of displacement, M3.6 speed, velocity and acceleration HSW3 Using data-loggers to analyse motion. Displacement-time graphs; velocity is gradient M3.4, M3.7 Learners will also be expected to estimate the area Velocity-time graphs; acceleration is gradient; displacement is area under graph. under non-linear graphs. M3.5, M4.3 (6) M - Compare displacement, distance, speed and velocity (7) S - Calculate average and instantaneous speed (8) C - Interpret distance and displacement time graphs 0:00:00 Lesson 1. Speed and velocity **STARTER:** Compare and contrast displacement and distance velocity and speed HWK (due next lesson): Complete summary questions p26 Kilo 10³ Mega 10 When is the speed of an object Giga different from the velocity? 🥳 Key distance point displacement velocity Speed has no direction has a direction has magnitude X

0 1 2 3 4 5 6 7 8 9 10

Time/s

How can we find this gradient

Gradient = $\Delta y / \Delta x =$

accurately?

0 10 20 30 40 50 60 70 80 90 100

time/s

Gradient = $\Delta y / \Delta x =$

- (7) S Calculate average and instantaneous speed
- (8) C Interpret distance and displacement time graphs

Bolt's 100m races. Time elapsed /s every 10m*

Bolt	10	20	30	40	50	60	70	80	90	100
2008	1.83	2.87	3.78	4.65	5.5	6.32	7.14	7.96	8.79	9.69
2009	1.89	2.88	3.78	4.64	5.47	6.29	7.10	7.92	8.75	9.58

Olympic final, Beijing World Champs, Berlin

Kilo 10³

Mega 10

Ex: Find Usain bolts maximum speed.

Giga

compare this to his average speed.

- (6) M Compare displacement, distance, speed and velocity
- (7) S Calculate average and instantaneous speed
- (8) C Interpret distance and displacement time graphs

Average and instantaneous velocity.

Average velocity = Change in displacement time taken

$$V = \frac{\Delta s}{\Delta t}$$

Ex: What can you say about the magnitude of the velocity of an object compared to the magnitude of the speed?

The magnitude of the **instantaneous** velocity is always **equal** to the magnitude of the **instantaneous** speed.

Average speed and average velocity can have different magnitudes.

Instantaneous velocity = Gradient of a displacement time graph.

▲ Figure 4 Velocity can be determined from the gradient of the displacement time graph

- (8) C Interpret distance and displacement time graphs

Displacement time graphs

Displacement time graphs can have a negative gradient as the object can decrease its overall displacement from the starting position.

The value of displacement can also go negative. What does this mean?

▲ Figure 3 A displacement-time graph for a car journey

🥳 Key

Discussion activity:

How many sections could you split this into to describe?

Describe the motion for each section

