SARCASM DETECTION using deep learning

Hareetima Sonkar (Group-7)

Problem Description

- Sarcasm is a complex sentiment expressed using intensified positive or positive words typically intended to convey a negative connotation.
- The challenge lies in interpreting sarcastic content correctly, especially in Natural Language Processing (NLP) and sentiment analysis.
- Our goal is to build a model that can recognize and understand sarcastic behaviour and patterns in text

1. Business Problem

Misinterpreting sarcasm can lead to inaccurate sentiment analysis, which can adversely affect businesses in various ways:

- Customer Feedback
- Public Relations
- Brand Reputation Management
- Social Media Monitoring
- Ad Campaign Analysis

2. Solution Description

1. Data Collection, Preprocessing & Cleaning:

- Data Loading
- Duplicate Removal, Removing null values etc.
- Data Summary
- removing punctuations, stopwords, etc.
- Visualizations
- Descriptive Statistics

2. Text Tokenization and Padding

- TensorFlow's Keras
- Padding type = 'post'

3. Model Training

- Model Architecture
- Data Splitting
- Training

4. Model Evaluation

- Performance Metrics
- Visualizations

5. Prediction

- The dataset contains text comments labelled as sarcastic (1) or non-sarcastic (0).
- Each comment is a short piece of text sourced from social media or other platforms [Reddit].
- Dataset size: 1million (approx.)

Examples:

0	LOOOOOL brrraxxxxton					
0	Ahh did not know that I rarely use that playstyle so I was just going off spellbuff alone					
0	Hes becoming a mene like Dicks out for Harambe					
1	If it wasnt for the invention of the coin flip Avilo would never lose					
0	I laughed so hard at how fucking stupid that was					
1	If the officer carried an extra gun this wouldnt have happened					
1	If it doesnt do well in Japan it doesnt matter anywhere else					
0	miere si rahat					
1	Becuase Hillary is a beacon of honesty					
1	Just wait for wretched eye with void burn that will be fun					
0	You can with adequate regulation					

3. Dataset Description

4. Data Visualization

• Dataset Split:

• Label-wise Split:

5. Data Preprocessing

Text to lowercase; removing punctuations, duplicates, null values; new column for cleaned text; etc.

6. Tokenization and Embedding Techniques

- **Tokenization**: The text data is tokenized using the **Keras Tokenizer**.
- Embedding: The model uses an Embedding layer to convert tokens into dense vectors

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 60, 200)	2,000,000
global_max_pooling1d (GlobalMaxPooling1D)	(None, 200)	Ø
dense (Dense)	(None, 40)	8,040
dropout (Dropout)	(None, 40)	0
dense_1 (Dense)	(None, 20)	820
dropout_1 (Dropout)	(None, 20)	0
dense_2 (Dense)	(None, 10)	210
dropout_2 (Dropout)	(None, 10)	0
dense_3 (Dense)	(None, 1)	11

Confusion Matrix:

Classification Report:

Classification	Report:			
	precision	recall	f1-score	support
Not Sarcastic	0.65	0.77	0.71	38919
Sarcastic	0.78	0.67	0.72	48102
accuracy			0.72	87021
macro avg	0.72	0.72	0.71	87021
weighted avg	0.73	0.72	0.72	87021

