

# Metabolic fitness landscapes predict the evolution of antibiotic resistance

Fernanda Pinheiro <sup>1,3</sup>, Omar Warsi <sup>2,3</sup>, Dan I. Andersson <sup>2</sup> and Michael Lässig <sup>1</sup> Andersson <sup>2</sup> And Michael Lässig <sup>1</sup> Andersson <sup>2</sup> And Michael Lässig <sup>2,3</sup>

JC August 26th 2022 Almo and Filip

#### **Motivation**

Predictions of antibiotic resistance evolution is of major medical interest

 Metabolic models of drug action and resistance for ribosome-targeting antibiotics are well established (Greulich et al. 2019 Mol Sys Biol.)

Unclear, how resistance affects cell growth at different drug levels

→ Study aim: Comparison of model predictions with empirical data

#### The metabolic fitness model



Key idea: drug action + resistance evolution → coupled perturbation

drug affects translational capacity ( $\kappa_t$ ) resistance affects nutritional capacity ( $\kappa_n$ ) Fitness=growth rate ( $\lambda$ )

# Selection experiment: Luria-Delbrück assay

- wt *E. coli* strain
- LB (rich) and glycerol (minimal) medium
- streptomycin at different conc.
- 8 colonies/condition for WGS and growth rate measurement

$$G(d) = \lambda(d)/\lambda_0^{\text{wt}}$$



mutation

82% of all membrane mutations are sequenced only in a single clone but the sequence of the seq









# Max. fitness prediction match empirical data

$$G_{
m c}(arepsilon) = rac{arepsilon(q^{
m wt}+1)}{arepsilon q^{
m wt}+2}$$



# Predicting resistance mechanisms depending on drug level



### in rich medium:

low level: increasing ribosomal units #



intermediate: mutations decreasing import

high: mutations of drug-target

### Fitting model to stress-response mutations in minimal environment



# Predicting resistance mechanisms depending on drug level



### in minimal medium:

membrane mutation are more costly in minimal medium



 mutation in stress response already at low to intermediate drug levels

high: mutation in drug-target

#### Discussion

 Metabolic fitness models predict the optimal resistance mechanism to depend not only on the drug level but also on nutrient conditions

 Trade-off functions can be regarded as Pareto fronts constraining the simultaneous optimization of drug resistance and growth in a drug-free medium

Thank you for your attention

| Gene          | Protein<br>location              | Pathway                                                           | Pathway function                                                            | Likely functional effect of mutation                |  |
|---------------|----------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|--|
|               |                                  | Methylerythritol-<br>phosphate pathway                            | Precursor for<br>ubiquinol/ubiquinone<br>biosynthesis pathway               | Reduced ubiquinol /<br>ubiquinone levels            |  |
| dxs           | Cytoplasm                        | Methylerythritol-<br>phosphate pathway                            | Precursor for<br>ubiquinol/ubiquinone<br>biosynthesis pathway               | Reduced ubiquinol /<br>ubiquinone levels            |  |
| cydA-<br>mngB | Inner<br>membrane                | NADH – cytochrome<br>oxidase electron transfer                    | Cytochrome bd-I ubiquinol Reduced cydA expression                           |                                                     |  |
| cydB          | Inner<br>membrane                | NADH – cytochrome<br>oxidase electron transfer                    | Cytochrome bd-I ubiquinol<br>oxidase subunit 2                              |                                                     |  |
| ndh           | Inner<br>membrane                | NADH – cytochrome<br>oxidase electron transfer                    | Quinone oxidoreductase<br>enzyme                                            | Impaired cytochrome<br>oxidase                      |  |
| ubiA          | Inner<br>membrane                | Ubiquinone biosynthesis<br>pathway                                | Ubiquinone biosynthesis                                                     | Reduced ubiquinol /<br>ubiquinone levels            |  |
| ubiI          | Cytoplasm                        | Ubiquinone biosynthesis<br>pathway                                | Ubiquinone biosynthesis                                                     | Reduced ubiquinol /<br>ubiquinone levels            |  |
| ubiH          | Cytoplasm                        | Ubiquinone biosynthesis<br>pathway                                | Ubiquinone biosynthesis                                                     | Reduced ubiquinol /<br>ubiquinone levels            |  |
| ubiK          | Cytoplasm /<br>Inner<br>membrane | Ubiquinone biosynthesis pathway                                   | Ubiquinone biosynthesis                                                     | Reduced ubiquinol /<br>ubiquinone levels            |  |
| atpG          | Inner<br>membrane                | ATP biosynthesis<br>pathway                                       | ATP synthase subunit involved in ATP synthesis                              | Impaired ATP synthesis                              |  |
| hemC          | Cytoplasm                        | Heme biosynthesis pathway                                         | Synthesis of cofactors for ubiquinol oxidases ( <i>cydA</i> , <i>cydB</i> ) | Reduced ubiquinol /<br>ubiquinone levels            |  |
| arcB          | Cytoplasm /<br>inner<br>membrane | NADH – cytochrome<br>oxidase electron transfer,<br>other pathways | Positive regulator of cydA expression 52,53                                 | Reduced cydA<br>expression                          |  |
| selB          | Cytoplasm                        | Electron transfer                                                 | Translation factor, insertion of seleno-cysteine into membrane peptides     | Modification of<br>membrane-bound<br>dehydrogenases |  |
| ratA          | Cytoplasm                        |                                                                   | Ribosome associated toxin / ubiquinone-binding protein                      | Reduced ubiquinone levels                           |  |

| Mutant | d <sub>LD</sub><br>dwt | $W = \frac{\lambda_0}{\lambda_0^{\text{wt}}}$ | $\frac{d_*}{d_*^{\text{wt}}}$ | $\frac{\lambda_*}{\lambda_*^{\text{wt}}}$ | Mutant | $\varepsilon = \frac{\gamma_{\text{in}}}{\gamma_{\text{in}}^{\text{wt}}}$ |                  | Yout<br>Yout    |
|--------|------------------------|-----------------------------------------------|-------------------------------|-------------------------------------------|--------|---------------------------------------------------------------------------|------------------|-----------------|
| number |                        |                                               |                               |                                           | number |                                                                           |                  |                 |
| 1      | 0.9                    | 0.87 (0.83, 0.91)                             | 3.90, (3.22, 4.60)            | 1.68, (1.26, 2.19)                        | 1      | 0.43 (0.38, 0.49)                                                         | 3.               | 01 (1.58, 4.80) |
| 2      | 0.9                    | 0.82 (0.78, 0.86)                             | 3.34, (3.21, 3.45)            | 1.73, (1.60, 1.82)                        | 2      | 0.51 (0.47, 0.56)                                                         | 3.06 (2          | 2.55, 3.30)     |
| 3      | 0.9                    | 0.93 (0.89, 0.96)                             | 2.65, (2.51, 2.76)            | 1.40, (1.31, 1.49)                        | 3      | 0.52 (0.49, 0.57)                                                         | 1.96 (1.71       | , 2.21)         |
| 4      | 0.9                    | 0.63 (0.61, 0.66)                             | 0.74, (0.70, 0.78)            | 0.15, (0.14, 0.16)                        | 4      | 0.20 (0.19, 0.22)                                                         | 0.02 (0.02, 0    | .03)            |
| 5      | 0.9                    | 0.88 (0.84, 0.92)                             | 1.39, (1.28, 1.51)            | 1.36, (1.23, 1.54)                        | 5      | 0.99 (0.90, 1.08)                                                         | 1.88 (1.52, 2.1  | 39)             |
| 6      | 0.9                    | 1.00 (0.96, 1.04)                             | 0.42, (0.40, 0.44)            | 0.30, (0.28, 0.32)                        | 6      | 0.70 (0.66, 0.76)                                                         | 0.09 (0.08, 0.1  | 0)              |
| 7      | 0.9                    | 0.22 (0.20, 0.25)                             | 2.68, (2.49, 2.92)            | 0.36, (0.30, 0.45)                        | 7      | 0.13 (0.11, 0.17)                                                         | 0.13 (0.09, 0.2  | 1)              |
| 8      | 1.8                    | 0.72 (0.68, 0.77)                             | 3.04, (2.84, 3.19)            | 0.99, (0.89, 1.06)                        | 8      | 0.32 (0.30, 0.36)                                                         | 0.99 (0.79, 1.1) | 3)              |
| 9      | 1.8                    | 0.87 (0.83, 0.92)                             | 3.59, (3.32, 3.83)            | 2.64, (2.14, 3.19)                        | 9      | 0.72 (0.59, 0.93)                                                         | 7.12 (4.56, 10.2 | 0)              |
| 10     | 1.8                    | 0.52 (0.50, 0.55)                             | 0.06, (0.06, 0.07)            | 0.01, (0.01, 0.01)                        | 10     | 0.15 (0.13, 0.15)                                                         | 0.00 (0.00, 0.00 | ))              |
| 11     | 1.8                    | 0.78 (0.76, 0.82)                             | 2.93, (2.82, 3.03)            | 1.04, (0.99, 1.09)                        | 11     | 0.35 (0.33, 0.38)                                                         | 1.07 (0.98, 1.18 | -               |
| 12     | 1.8                    | 0.63 (0.60, 0.67)                             | 3.27, (3.10, 3.42)            | 0.70, (0.64, 0.75)                        | 12     | 0.21 (0.20, 0.24)                                                         | 0.49 (0.41, 0.57 | 0               |
| 13     | 1.8                    | 0.72 (0.68, 0.76)                             | 3.40, (3.22, 3.58)            | 0.91, (0.85, 0.96)                        | 13     | 0.27 (0.24, 0.29)                                                         | 0.83 (0.72, 0.92 |                 |
| 14     | 1.8                    | 0.92 (0.87, 0.97)                             | 4.05, (3.79, 4.27)            | 2.01, (1.75, 2.41)                        | 14     | 0.45 (0.42, 0.62)                                                         | 4.14 (3.07, 5.81 | )               |
| 15     | 1.8                    | 0.88 (0.84, 0.93)                             | 1.80, (1.44, 2.12)            | 1.31, (1.04, 1.53)                        | 15     | 0.67 (0.62, 0.95)                                                         | 1.76 (1.09, 2.35 | )               |
| 16     | 3.7                    | 0.68 (0.63, 0.74)                             | 5.91, (5.23, 6.58)            | 2.08, (1.59, 2.67)                        | 16     | 0.34 (0.27, 0.48)                                                         | 4.51 (2.54, 7.12 | )               |
| 17     | 3.7                    | 0.49 (0.47, 0.53)                             | 6.65, (6.32, 6.94)            | 1.03, (0.93, 1.13)                        | 17     | 0.15 (0.14, 0.17)                                                         | 1.08 (0.87, 1.27 | )               |
| 18     | 3.7                    | 0.60 (0.56, 0.64)                             | 6.73, (6.17, 7.41)            | 0.97, (0.85, 1.07)                        | 18     | 0.15 (0.11, 0.17)                                                         | 0.95 (0.72, 1.15 | )               |
| 19     | 3.7                    | 0.68 (0.66, 0.71)                             | 3.91, (3.73, 4.07)            | 0.74, (0.69, 0.79)                        | 19     | 0.19 (0.17, 0.21)                                                         | 0.55 (0.48, 0.62 |                 |
| 20     | 3.7                    | 0.51 (0.48, 0.54)                             | 6.65, (6.35, 6.92)            | 1.06, (0.96, 1.16)                        | 20     | 0.16 (0.14, 0.18)                                                         | 1.13 (0.93, 1.33 | )               |
| 21     | 3.7                    | 0.58 (0.55, 0.61)                             | 4.71, (4.47, 4.94)            | 0.69, (0.63, 0.75)                        | 21     | 0.14 (0.13, 0.16)                                                         | 0.48 (0.40, 0.56 |                 |
| 22     | 3.7                    | 0.58 (0.54, 0.61)                             | 4.75, (4.50, 5.02)            | 0.76, (0.70, 0.82)                        | 22     | 0.16 (0.14, 0.18)                                                         | 0.58 (0.49, 0.68 |                 |
| 23     | 3.7                    | 0.57 (0.54, 0.61)                             | 5.94, (5.51, 6.39)            | 0.77, (0.67, 0.87)                        | 23     | 0.13 (0.11, 0.16)                                                         | 0.60 (0.46, 0.75 | _               |





