Práctica 9: Cambio de variables y aplicaciones

- 1. (Coordenadas polares) Dada $f: \mathbb{R}^2 \to \mathbb{R}$, sean $x = r \cos(\theta)$, $y = r \sin(\theta)$ y $g(r, \theta) = f(x, y)$. Calcular $\frac{\partial g}{\partial r}$ y $\frac{\partial g}{\partial \theta}$ imponiendo condiciones adecuadas de diferenciabilidad sobre f.
- 2. Sean $D^* = \{(r, \theta) : 0 \le r \le 1, 0 \le \theta < 2\pi\}$, $D = \{(x, y) : x^2 + y^2 \le 1\}$ y T la transformación de coordenadas polares a cartesianas, es decir,

$$T(r,\theta) = (x(r,\theta), y(r,\theta)) = (r\cos\theta, r\sin\theta).$$

- (a) Mostrar que $T(D^*) = D$. ¿Es biyectiva T?
- (b) ¿En que transforma T el rectángulo $[r, r + \Delta r] \times [\theta, \theta + \Delta \theta]$?
- (c) Calcular la matriz $DT(r, \theta)$. ¿En que transforma la aplicación dada por esta matriz al rectángulo dado en b)? ¿Y en el caso r = 0?
- (d) Relacionar con la fórmula de cambio de variables en este caso (haciendo los dibujos correspondientes).
- 3. Sean $D_1=\{(r,\theta): 0\leq r\leq 1, 0\leq \theta<4\pi\}$ y T la transformación del ejercicio anterior.
 - (a) Hallar $D = T(D_1)$.
 - (b) Calcular $\int_D (x^2 + y^2) dxdy$ y $\int_{D_1} r^2 J drd\theta$ siendo J el jacobiano de la transformación. ¿Dan igual las dos integrales? ¿Por qué?
- 4. Calcular el área de un círculo de radio r y el área de una elipse con semiejes de longitud a y b.
- 5. (a) Sea T(u,v)=(x(u,v),y(u,v))=(4u,2u+3v). Sea D^* el rectángulo $[0,1]\times[1,2]$. Hallar $D=T(D^*)$ y calcular:

a)
$$\int_D xy \, dxdy$$
 y b) $\int_D (x-y) \, dxdy$

haciendo un cambio de variables para transformarlas en integrales sobre D^* .

- (b) Repetir el ítem anterior para T(u,v) = (u,v(1+u)).
- 6. Sean $T(u,v)=(u^2-v^2,2uv)$ y $D^*=\{(u,v):u^2+v^2\leq 1,u\geq 0,v\geq 0\}$. Hallar $D=T(D^*)$ y calcular su área.

7. Sean T(u, v) y D los del ejercicio anterior. Calcular:

$$\int_{D} \frac{dxdy}{\sqrt{(x^2 + y^2)}}$$

haciendo ese cambio de variables.

- 8. Calcular $\int_D (x^2 + y^2)^{3/2} dxdy$ donde D es el disco de centro en el origen y radio 2.
- 9. Hallar el área dentro de la curva $r = 1 + \sin \theta$.
- 10. Dado el paralelogramo P del plano xy con vértices (0,0), (2,10), (3,17) y (1,7),
 - (a) Hallar una transformación lineal que convierta a P en un rectángulo R del plano uv con vértices opuestos en (0,0) y (4,2).
 - (b) Calcular la integral $\int_P xy\,dxdy$ transformándola en una integral sobre el rectángulo R.
- 11. Es sabido, aunque difícil de demostrar, que una primitiva de la función e^{-x^2} no puede expresarse en términos de las funciones elementales usuales. Esto dificulta el cálculo de $\int_a^b e^{-x^2} dx$. Sin embargo, el siguiente truco notable permite calcular de manera simple la integral impropia

$$I = \int_{-\infty}^{\infty} e^{-x^2} \, dx = \lim_{a \to \infty} \int_{-a}^{a} e^{-x^2} \, dx$$

- (a) Observar que $I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dxdy$
- (b) Calcular la integral de (a) como límite de integrales en círculos utilizando coordenadas polares.
- 12. Hallar el área acotada por la curva dada por la ecuación

$$(x^2 + y^2)^2 = 2a^2(x^2 - y^2).$$

Esta curva se llama lemniscata. ¿Por qué?

- 13. Calcular $\int_A \frac{1}{(x^2+y^2)^2} \, dx dy$, donde A está determinado por las condiciones $x^2+y^2 \le 1$ y $x+y \ge 1$.
- 14. (a) (Coordenadas esféricas) Dada $f: \mathbb{R}^3 \to \mathbb{R}$, sean $x = r\cos(\theta)\sin(\phi)$, $y = r\sin(\theta)\sin(\phi)$, $z = r\cos(\phi)$ y sea

$$g(r, \theta, \phi) = f(x, y, z)$$

Calcular $\frac{\partial g}{\partial r}$, $\frac{\partial g}{\partial \theta}$ y $\frac{\partial g}{\partial \phi}$ imponiendo condiciones adecuadas de diferenciabilidad sobre f.

- (b) (Coordenadas cilíndricas) Dada $f: \mathbb{R}^3 \to \mathbb{R}$, sean $x = r\cos(\theta)$, $y = r\sin(\theta)$ y $g(r, \theta, z) = f(x, y, z)$.

 Calcular $\frac{\partial g}{\partial r}$, $\frac{\partial g}{\partial \theta}$ y $\frac{\partial g}{\partial z}$ imponiendo condiciones adecuadas de diferenciabilidad sobre f.
- 15. Integrar $ze^{x^2+y^2}$ sobre el cilindro dado por $x^2+y^2\leq 4$, $2\leq z\leq 4$.
- 16. Calcular el volumen de un cilindro con base circular de radio r y altura h.
- 17. (a) Calcular el volumen V(R) de una esfera B_R de radio R.
 - (b) Llamando ∂B_R a la superficie del borde de la esfera B_R y $A(\partial B_R)$ a su área, demostrar que $\frac{dV(R)}{dR} = A(\partial B_R)$ y deducir el valor del área de dicha superficie.
- 18. Integrar $x^2+y^2+z^2$ sobre el cilindro dado por $x^2+y^2\leq 2$, $-2\leq z\leq 3$.
- 19. Sea B la bola unitaria, es decir, $B = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$. Calcular:

$$\int_{B}\frac{dxdydz}{\sqrt{2+x^2+y^2+z^2}}.$$

20. Calcular:

$$\int_{S} \frac{dxdydz}{(x^2 + y^2 + z^2)^{3/2}}$$

donde S es el sólido acotado por dos esferas de radios a y b con 0 < b < a y centradas en el origen.

- 21. Calcular $\int_B z\,dxdydz$ donde B es la región sobre el plano xy dentro del cilindro dado por $x^2+y^2\leq 1$ y debajo del cono dado por $z=(x^2+y^2)^{1/2}$.
- 22. Sea E el elipsoide dado por $(x^2/a^2)+(y^2/b^2)+(z^2/c^2)\leq 1$.
 - (a) Hallar el volumen de E.

(b) Calcular
$$\int_{E} [(x^2/a^2) + (y^2/b^2) + (z^2/c^2)] dxdydz$$
.

23. Si un sólido W tiene densidad ρ , su masa está dada por

$$\int_{W} \rho(x, y, z) \, dx dy dz.$$

Hallar la masa del sólido acotado por el cilindro $x^2+y^2=2x$ y el cono $z^2=x^2+y^2$ si la densidad es $\rho=\sqrt{x^2+y^2}$.

24. Sea ρ la densidad de un sólido W. Se definen los primeros momentos de W respecto de los planos coordenados M_{yz}, M_{xz}, M_{xy} , como

$$\int_{W}x\rho(x,y,z)\,dxdydz,\,\int_{W}y\rho(x,y,z)\,dxdydz,\int_{W}z\rho(x,y,z)\,dxdydz,$$

respectivamente y su centro de masa como

$$(\frac{M_{yz}}{M}, \frac{M_{xz}}{M}, \frac{M_{xy}}{M}),$$

donde M es la masa de W. Hallar el centro de masa del cilindro $x^2+y^2\leq 1$, $1\leq z\leq 2$, si la densidad es $\rho=(x^2+y^2)z^2$.

25. Si un sólido W tiene densidad uniforme ρ , el momento de inercia alrededor del eje x esta definido por,

$$I_x = \int_W \rho(y^2 + z^2) \, dx \, dy \, dz$$

y análogamente se definen I_y e I_z . Sea ahora W el sólido con densidad constante acotado por arriba por el plano z=a y por debajo por el cono descripto en coordenadas esféricas por $\phi=k$, donde k es una constante tal que $0< k<\pi/2$. Dar una integral para su momento de inercia alrededor del eje z.

- 26. Hallar el momento de inercia alrededor del eje y para la bola $x^2 + y^2 + z^2 \le R^2$ si la densidad de masa es una constante ρ .
- 27. Dado un sólido W con densidad de masa $\rho(x, y, z)$, la fuerza gravitacional \mathbf{F} que ejerce W sobre una masa m en (x_1, y_1, z_1) está dada por el gradiente de una función V llamada potencial gravitacional, es decir, $\mathbf{F} = -\nabla V$. Este potencial gravitacional está dado por,

$$V(x_1, y_1, z_1) = Gm \int_W \frac{\rho(x, y, z) \, dx \, dy \, dz}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}}$$

donde G es la constante de gravitación universal.

- (a) Hallar el potencial gravitacional sobre una masa m de un planeta esférico con una masa $M=3\ 10^{26} {\rm kg}$, a una distancia de $2\ 10^8 {\rm m}$ de su centro.
- (b) Hallar la fuerza gravitacional ejercida sobre un objeto de 70kg en la posición indicada en a).