Titre: Documentation des grandeurs de Code_Aster

Date: 25/04/2012 Page: 1/8 Responsable : Jacques PELLET Clé: U2.01.04 Révision: 8946

Documentation of the quantities of Code_Aster

Résumé:

Description of the quantities associated with the fields being able to be created by the commands of Code_Aster.

Titre : Documentation des grandeurs de Code_Aster

Responsable : Jacques PELLET

Date : 25/04/2012 Page : 2/8 Clé : U2.01.04 Révision : 8946

The following table has three columns. The name of the quantities appears in the left column (classified alphabetically).

Each quantity is separated from following by a white line.

On the first line of a quantity, one finds the type of this quantity (reality: R, complex: C,...)

One lists then the names of the components of this quantity (column 2) and one makes a small comment on each one of them.

Standard CORR_R	CORR_R: R CORR	Corrosion Standard
CORTOSION CRRU_R CRRU_R CRRU_R CRRU_R CRRU_R CRRU_R CRRU_R	CRRU_R: R SIGL SIGT SIGLT CRIL CRIT CRILT CRILT	Rupture criteria for multi-layer shells composite Forced following the 1st direction of orthotropy Forced following the 2nd direction of orthotropy Shearing stress Rupture criterion following the first direction of orthotropy Rupture criterion following the second direction of orthotropy Rupture criterion in shears following LT Criterion of Tsai-Hill
DBEL_R DBEL_R	Type: R dB	Décibel acoustic Décibel
DEPL_C	Type: C	See DEPL_R
DEPL_R	Standard: R	Displacement (unknown for the mechanical phenomenon)
DEPL R	DX	translation according to OX
DEPL_R	DY	translation according to OY
DEPL_R	DZ	translation according to OZ
DEPL_R	DRX	rotation around OX
DEPL_R	DRY	rotation around OY
DEPL_R	DRZ	rotation around OZ
DEPL_R	GRX	warping (for a beam element)
DEPL_R	PRES	Degree of freedom of pressure
DEPL_R	TEMP	Degree of freedom of temperature
DEPL_R	PHI	Angle of cracking
DEPL_R	DH	Hydraulic diamtere
DEPL_R	GONF	Swelling for quasi-incompressible elements
DEPL_R	UI2	Warping and ovalization in mode 2 for pipes
DEPL_R	VI2	Warping and ovalization in mode 2 for pipes
DEPL_R	WI2	Warping and ovalization in mode 2 for pipes
DEPL_R		
DEPL_R	UI3	Warping and ovalization in mode 3 for the pipes
DEPL_R	VI3	Warping and ovalization in mode 3 for pipes
DEPL_R	WI3	Warping and ovalization in mode 3 for pipes
DEPL_R	 D1	Drojection of the translation on vector D1y D1y D1y
DEPL_R	D1	Projection of the translation on vector D1X, D1Y, D1Z
DEPL_R DEPL R	D2 D3	Projection of the translation on vector D2X, D2Y, D2Z Projection of the translation on vector D3X, D3Y, D3Z
DEPL_K DEPL R	D1X, D1Y,	Component according to XYZ vector (see D1)
211 11 11	D1Z, D11,	Component according to A I Z vector (see D1)
DEPL_R	D2X, D2Y, D2Z	Component according to $\ X\ Y\ Z$ vector (see D2)

Titre : Documentation des grandeurs de Code_Aster Date : 25/04/2012 Page : 3/8
Responsable : Jacques PELLET Clé : U2.01.04 Révision : 8946

•		0.0 : 02.0 1.0 ;
DEPL_R D3X		omponent according to XYZ vector (see $D3$)
DEPL_R PTO		tagnation pressure of fluid in THM
DERA_R Typeradiality DER. stresses DER. DERA_R IND.	A_R D O A_R D O DCHA lo	cal indicators of discharge and loss of local CHA_V indicating of total discharge with the deviator of local CHA_T indicating of total discharge with total stresses admeter (1.2) or discharges (- 1 elastic, -2 plasticization if kinematic ardening) for VMIS ISOT *
DERA_R VAL	_DCHA va	alue from abusive discharge (one would have plasticized with a kinematic
VAL_DCHA DER. VAL_DCHA DER. DERA_R X13 VAL_DCHA DER. VAL_DCHA DER.	ki A_R	nematical tensor uses for the computation of IND_DCHA and kinematical 22 tensor uses for the computation of IND_DCHA and kinematical 33 tensor uses for the computation of IND_DCHA and kinematical 12 tensor uses for the computation of IND_DCHA and VAL_DCHA nematical tensor uses for the computation of IND_DCHA and kinematical 23 tensor uses for the computation of IND_DCHA and indicating ADI_V of loss of radiality with the norm of Von Mises (deviative) dicating of error of integration due to non-radiality
DURT_R Type		itialisation of the computation of hardness associated with metallurgy alue with hardness
ENER_R TOT. ENER_R TRA ENER_R TOR ENER_R MEM ENER_R BEN ENER_R FLE ENER_R FLE ENER_R PLA	ALE to C_COM er SION er BRANE er DING er X_Y er N_XY er N_XY er er er er	nergy in traction and compression hergy in torsion hergy out of membrane hergy in bending Y hergy in bending Z hergy in plane XZ hergy according to DX
EPSI_R Typ EPSI_R EPX EPSI_R EPY EPSI_R EPZ EPSI_R EPX EPSI_R EPX EPSI_R EPX	X ε Y ε Z ε Y ε	train xxx strain of a continuum xyy strain of a continuum xxy strain of a continuum xxy strain of a continuum xxy strain of a continuum xxx strain of a continuum
EPSI_R EYY EPSI_R EYY EPSI_R EXY	$^{ m Z}$ $arepsilon$ sh	strain of a continuum nell: generalized strains nell: generalized strains nell: generalized strains
EPSI_R KXX EPSI_R KYY	sh sh	nell: generalized strains nell: generalized strains

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

shell: generalized strains

KXY

EPSI R

COUC_	ASICI	default
Titre : Documenta	ation des grand	leurs de Code_Aster Date : 25/04/2012 Page : 4/8
Responsable : Jac	cques PELLET	Clé : U2.01.04 Révision : 8946
FDCT D	GAX	chall, ganaralized strains
EPSI_R EPSI R	GAY	shell: generalized strains shell: generalized strains
_		<u> </u>
EPSI_R	EPX	beam: strain according to the axis of beam
EPSI_R EPSI R	KY KZ	beam: curvature according to axis Y
EPSI R	INVA 2	beam: curvature according to axis Z second invariant of strain tensor
EPSI R	PRIN 1	principal strain of the tensor direction 1
EPSI R	PRIN 2	principal strain of the tensor direction 2
EPSI R	PRIN 3	principal strain of the tensor direction 3
EPSI R	INVA 2SG	second signed invariant of voluminal
strain	EPSI R	DIVU Strain in THM
tensor	1101_1	DIVO GUANTINI TTIWI
ERRE_R	Type: R	Analysis the error of discretization
ERRE_R	ERREST	absolute error in mechanics estimated on element
ERRE_R	NUEST	relative error in mechanics estimated on element
ERRE_R	SIGCAL	normalizes energy of the stresses on element
ERRE_R	TERMRE	absolute error of the voluminal term in mechanics estimated on element
ERRE_R	TERMR2	relative error of the voluminal term in mechanics estimated on element
ERRE_R	TERMNO	absolute error of the normal term in mechanics and thermal estimated on element
ERRE R	TERMN2	relative error of the normal term in mechanics estimated on element
ERRE_R	TERMSA	absolute error of the term of jump in mechanics and thermal estimated on element
ERRE_R	TERMS2	relative error of the term of jump in mechanics and in thermal estimated on element
ERRE_R	TERMS1	term of normalization of the term of jump in thermal
ERRE_R	ERTABS	absolute error for thermal
ERRE_R	ERTREL	relative error for thermal
ERRE_R	TERMVO	absolute error of the voluminal term in thermal estimated on element
ERRE_R	TERMV2	relative error of the voluminal term in thermal estimated on element
ERRE_R	TERMV1	term of normalization of the voluminal term in thermal
ERRE_R	TERMFL	absolute error of the term of flow in thermal estimated on element
ERRE_R	TERMF2	relative error of the term of flow in thermal estimated on element
ERRE_R	TERMF1	term of normalization of the term of flow in thermal
ERRE_R	TERMEC	absolute error of the term of exchange in thermal estimated on element
ERRE_R	TERME2	relative error of the term of exchange in thermal estimated on element
ERRE_R	TERME1	term of normalization of the term of exchange in thermal
ERRE_R	ESTERG1	1st estimate of total error (stability)
ERRE_R	ESTERG2	2nd estimate of total error (duality)
ERRE_R	ERHMME_L	error in residue in space for hm - mechanical equation the - local one in time
ERRE_R	ERHMMEDL	error in residue in space for $\ensuremath{\mathit{hm}}$ - derived mechanical equation the - local one in time
ERRE_R	ERHMHY_L	error in residue in space for $\ensuremath{\mathit{hm}}$ - hydraulic equation the - local one in time for
rddr d	FDUMME C	the steady one - indicator not boosté
ERRE_R	ERHMME_G	error in residue in space for hm - mechanical equation - total in time
ERRE_R	ERHMMEDG	error in residue spaces some for \ensuremath{hm} - derived mechanical equation the - total one in time
ERRE_R	ERHMHY_G	error in residue in space for $\ hm$ - hydraulic equation the - total one in time for the steady one - indicator boosté
ERRE R	ERRETPS	error in residue in time
ERRE_R	TAILLE	cuts meshes
FACY_R	Type: R	Quantity related to fatigue with great numbers of cycles, multiaxial loading
FACY_R	DTAUM1	first value of the half-amplitude max of the shears in critical plane
FACY_R	VNM1X, Y,	components of the normal vector to the critical plane corresponding to

Titre : Documentation des grandeurs de Code_Aster

Date : 25/04/2012 Page : 5/8
Responsable : Jacques PELLET

Date : 25/04/2012 Page : 5/8
Clé : U2.01.04 Révision : 8946

	-	
	Z	dtaum1
FACY_R	SINMAX1	normal maximum stress with the critical plane corresponding to \(dtaum1\)
stress	FACY_R	SINMOY1 mean norm with the critical plane corresponding to \(dtaum 1\)
FACY_R	EPNMAX1	normal maximum strain with the critical plane corresponding to \(dtaum1\)
FACY R	EPNMOY1	normal average strain with the critical plane corresponding to \(dtaum1\)
FACY R	SIGEQ1	equivalent stress associated with dtaum1
FACY R	NBRUP1	many cycles before fracture, function of sigeq1 and a curve of Wöhler
FACY R	ENDO1	damage associated with $nbrup1$ ($endo1=1/nbrup1$)
FACY R	DTAUM2	second value with the half-amplitude max with the shears in critical plane
FACY R		components of the normal vector to the critical plane corresponding to
	Z	dtaum2
FACY R		
FACY R	ENDO2	damage associated with $nbrup2$ ($endo2=1/nbrup2$)
_	-	damage accordated with normp2 (enac2 11mormp2)
FLUX_R	Type: R	vectorial Flux of heat in a material point of the continuous field: $\Phi = -\lambda \nabla T$
Following	FLUX_R	FLUX component OX of Φ
following	FLUX_R	FLUY component OY of Φ
component	- FLUX R	FLUZ following OZ of Φ
	_	flow on a point of the higher face of shells
FLUX_R	FLUX_SUP	·
FLUX_R	FLUY_SUP	flow on a point of the higher face of shells flow on a point of the higher face of shells
FLUX_R	FLUZ_SUP	flow on a point of the lower face of shells
FLUX_R FLUX R	FLUX_INF FLUY INF	flow on a point of the lower face of shells
FLUX R	FLUZ_INF	flow on a point of the lower face of shells
r nox_r	rhoz_inr	now on a point of the lower face of shells
G	Type: R	Rate of refund of energy and stress intensity coefficients
G G	Type: R GTHETA	Rate of refund of energy and stress intensity coefficients rate of energy restitution
		rate of energy restitution
G	GTHETA	rate of energy restitution stress intensity factor KI
G G	GTHETA K1	rate of energy restitution
G G	GTHETA K1	rate of energy restitution stress intensity factor KI
G G G	GTHETA K1 K2	rate of energy restitution stress intensity factor KI stress intensity factor $K2$
G G G GEOM_R	GTHETA K1 K2 Type: R	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss)
G G G GEOM_R GEOM_R	GTHETA K1 K2 Type: R X	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX
G G G G GEOM_R GEOM_R GEOM_R	GTHETA K1 K2 Type: R X Y	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY
G G G G GEOM_R GEOM_R GEOM_R following GEOM_R	GTHETA K1 K2 Type: R X Y GEOM_R W	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration
G G G G GEOM_R GEOM_R GEOM_R following GEOM_R	GTHETA K1 K2 Type: R X Y GEOM_R W	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss
G G G G GEOM_R GEOM_R GEOM_R following GEOM_R HYDR_R HYDR_R	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization OX (and OX if not: OX OX OX OX OX OX OX OX
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and O if not: O
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2	rate of energy restitution stress intensity factor Kl stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (0 . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and 0 if not: $det\ NHN > 0$) Première direction of localization Deuxième direction of localization
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2 DIR3	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and O if not: O det O
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2	rate of energy restitution stress intensity factor Kl stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (0 . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and 0 if not: $det\ NHN > 0$) Première direction of localization Deuxième direction of localization
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2 DIR3	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and O if not: O det O
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2 DIR3 DIR4	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and O if not: O
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2 DIR3 DIR4 Type: R	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is OY Z coordinated OZ (O . if models it is OY Z coordinated OZ (O . if models it is OY Z coordinated OZ (O . if models it is OY Z coordinated OZ (O . if models it is OY Z coordinated OZ (O . if models it is OY Z coordinated OZ (O . if models it is OY Z coordinated OZ (OY Z coordinated OZ
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2 DIR3 DIR4 Type: R INFC_R	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (O . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and O if not: O O O Première direction of localization Deuxième direction of localization Troisième direction of localization Quatrième direction of localization Informations relating to indicating CONT of contact clearance between the slave node and the mesh Master associated
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2 DIR3 DIR4 Type: R INFC_R CLEARANCE	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (0 . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization (and 0 if not: $det\ NHN > 0$) Première direction of localization Deuxième direction of localization Troisième direction of localization Quatrième direction of localization Informations relating to indicating CONT of contact clearance between the slave node and the mesh Master associated multiplier with Lagrange and norm of RN
G G G G G G G G G G G G G G G G G G G	GTHETA K1 K2 Type: R X Y GEOM_R W Type: R HYDR Type: R INDICE DIR1 DIR2 DIR3 DIR4 Type: R INFC_R CLEARANCE RN	rate of energy restitution stress intensity factor KI stress intensity factor $K2$ Géométrie (of a node or a point of Gauss) coordinated following OX coordinated according to OY Z coordinated OZ (0 . if models it is 2D) Weight of the point of Gauss Field of hydration Hydratation Indicateur of localization Critère being worth 1 if localization (and 0 if not: $det\ NHN > 0$) Première direction of localization Deuxième direction of localization Troisième direction of localization Quatrième direction of localization Informations relating to indicating CONT of contact clearance between the slave node and the mesh Master associated multiplier with Lagrange and norm of RN

GLIY

GLI

INFC R

INFC R

Titre : Documentation des grandeurs de Code_Aster Date : 25/04/2012 Page : 6/8
Responsable : Jacques PELLET Clé : U2.01.04 Révision : 8946

normalizes tangent displacement in y for each connection

normalizes tangent displacement for each component

INFC_R	GTT	normalizes tangent displacement for each component
connection	INFC_R	RTAX x of the forces of adherent nodes
INFC_R	RTAY	component y of the forces of adherent nodes
INFC_R	RTAZ	component z of the forces of adherent nodes
INFC_R	RTGX	component x of the forces of slipping nodes
INFC_R	RTGY	component y of the forces of slipping nodes
INFC R	RTGZ	component z of the forces of the nodes slipping
INFC R	X-ray	component x of the sum rn rtg and rta
- INFC R	RY	component y of the sum rn rtg and rta
INFC R	RZ	component z of the sum rn rtg and rta
INFC R	R	normalizes r tot
INFC_K	IX	Hormanzes I_tot
PRES_C	Type: C	See Standard
PRES_R	PRES_R: R	Loading surface applied to a mechanical model (PRES, CISA) Inconnue of a problem of acoustics: (pressure, velocity of the fluid)
PRES R	PRES	value of pressure
PRES R	CISA	shears applied to edge of a model 2D
PRES R	VX	velocity of the fluid following OX
PRES R	VY	velocity of the fluid following OY
PRES R	VZ	velocity of the fluid following OZ
PRES R	LAGR	parameter of Lagrange due to the dualisation of boundary conditions
TRES_R	HAGIN	parameter of Lagrange due to the dualisation of boundary conditions
RCCM_R	Type: R	Quantities for the RCCM B3600
RCCM_R	C1	value stress index
RCCM_R	C2	value stress index
RCCM_R	C3	value stress index
RCCM_R	K1	value stress index
RCCM_R	K2	value stress index
RCCM_R	K3	value standard
stress index	RCCM_R	TYPE of mesh
RCCM_R	E	elasticity modulus with temperature of computation
RCCM_R	E_AMBI	elasticity modulus with ambient temperature
RCCM_R	NU	Poisson's ratio to ambient temperature
RCCM_R	ALPHA	coefficient of thermal expansion with ambient temperature
RCCM_R	E_REFE	modulus Young of reference
RCCM_R	SM	acceptable equivalent stress of material
RCCM_R	M_KE	constant of material
RCCM_R	N_KE	constant of material
RCCM_R	IY	main moment of inertia compared to Y
RCCM_R	ΙZ	main moment of inertia compared to Z
RCCM_R	D	diameter of pipework
RCCM R	EP	thickness of pipework
RCCM_R	SN	amplitude of variation of linearized stresses
RCCM_R	SALT	amplitude of stress
RCCM_R	U_TOTAL	factor of standard
use	RCCM_R	TYPEKE of computation of Que: either KE_MECA, or K2_MIXTE
RICE_TRA		Quantities resulting from the computation of growth of cavities in ductility fracture
RICE_TRA	TRIAX	rate of triaxiality on mesh
RICE_TRA	RSR0	growth rate
		and this was site in a White shipe. Translationally the provide improved in a supplier in whater are in south and in

Titre : Documentation des grandeurs de Code_Aster

Date : 25/04/2012 Page : 7/8

Responsable : Jacques PELLET

Date : 25/04/2012 Page : 7/8

Clé : U2.01.04 Révision : 8946

RICE_TRA	VOLU	volume taken into account number of mesh
RICE_TRA RICE_TRA	NUMEMA DEPSEQ	variation of equivalent plastic strain
SIEF_C	Type: C	See Standard
SIEF_R	_	Stress state (or of internal force)
SIEF_R	SIXX	σ_{xx} forced in a continuum
SIEF_R	SIYY	σ_{yy} forced in a continuum
SIEF_R	SIZZ	σ_{zz} forced in a continuum
SIEF_R	SIXY	σ_{xy} forced in a continuum
SIEF_R	SIXZ	$\sigma_{\scriptscriptstyle xz}$ forced in a continuum
SIEF_R	SIYZ	$\sigma_{_{yz}}$ forced in a continuum
SIEF_R	N	normal force
SIEF_R	VY	following shearing force Y (internal forces of the beams)
SIEF R	VZ	following shearing force Z (internal forces of the beams)
SIEF R	MT	twisting moment following X
SIEF R	MFY	bending moment following Y
SIEF_R	MFZ	bending moment following Z
SIEF R	BX	bimoment (beam with warping)
SIEF R	NXX	internal forces of internal
shells	SIEF R	NYY forces of shells
SIEF R	NXY -	internal forces internal
shells	SIEF_R	MXX forces of shells
SIEF R	MYY -	internal forces of internal
shells	SIEF_R	MXY forces of shells
SIEF R	QX _	internal forces of internal
shells	SIEF R	QY forces of shells
SIEF R	_	generalized stresses for "under-integrated" element QUAD4 of
_		modelizations C_PLAN_SI and D_PLAN_SI
SIEF_R	FX	forces for the discrete ones, beams, bars in total reference
SIEF_R	FY	forces for the discrete ones, beams, bars in total reference
SIEF_R	FZ	forces for the discrete ones, beams, bars in total reference
SIEF_R	MX	forces for the discrete ones, beams, bars in total reference
SIEF_R	MY	forces for the discrete ones, beams, bars in total reference
SIEF_R	MZ	forces for the discrete ones, beams, bars in total reference
SIEF_R	VMIS	von Mises stress
SIEF_R	TRESCA	forced of Tresca
SIEF_R	PRIN_1	principal stress direction 1
SIEF_R	PRIN_2	principal stress direction 2
SIEF_R	PRIN_3	principal stress direction 3
SIEF_R	VMIS_SG	von Mises stress signed by the trace of sigma
SIEF_R	SN	forced in the section of beam due to normal force
SIEF_R	SVY	forced in the section of beam due to shearing force Vy
SIEF_R	SVZ	forced in the section of beam due to shearing force Vz
SIEF_R	SMT	forced in the section of beam due to twisting moment Mx
SIEF_R	SMFY	forced in the section of beam due to bending moment My
SIEF_R	SMFZ	forced in the section of beam due to bending moment Mz
SIEF_R	TRIAX	rate of triaxiality
SIEF_R	SI_ENDO	equivalent stress of damage
SIEF_R	FSTAB [72]	forces of stabilization

Titre : Documentation des grandeurs de Code_Aster

Date : 25/04/2012 Page : 8/8
Responsable : Jacques PELLET

Date : 25/04/2012 Page : 8/8
Clé : U2.01.04 Révision : 8946

SOUR_R SOUR_R SOUR_R	Type: R SOUR VNOR	Source voluminal of real type value of the voluminal source applied to a mesh key word SOURCE of command AFFE_CHAR_THER value the normal velocity applied to a face key word VITE FACE of command AFFE CHAR MECA
CDMA D	Timo. D	
SPMA_R	Type: R	Computation of the extremums of a field on a section of pipe
SPMA_R	MIN, extreme	MAX values of a field on all the points of integration of a section pipe
SPMA_R	NCOUMIN, NCOUMAX	numbers of the layers carrying out the minimum and maximum
SPMA_R	NSECMIN, NSECMAX	numbers of the sectors carrying out the minimum and maximum
SPMA_R	NPCOUMIN NPCOUMAX	numbers of the points of integration on the layers carrying out the min and max
SPMA_R	NPSECMIN NPSECMAX	numbers of the points of integration on the sectors carrying out the min and max
TEMP_C	Type: C	See Standard
TEMP_R	TEMP_F: K8	See Standard
TEMP_R	TEMP_R: R	Temperature (unknown of the thermal phenomenon)
TEMP_R	TEMP	temperature
TEMP_R	TEMP_INF TEMP SUP	temperature on face lower (shells) temperature on face higher (shells)
TEMP_R	TEME_SOF	temperature on race migner (sirens)
VARI_R	Type: R	Intern variables
VARI_R	V1, Vn	the number and the meaning of the intern variables is specific to each behavior model. Refer to the reference document relating to the behavior used on the mesh considered. In the case of elements with N "subpoints" of integration, such as the shells, the pipes, the beams multi - fibers, in each point of Gauss, the number of intern variables will be equal to the product $n \times m$, m being the number of intern variables of the behavior.
Standard VNOR_C	VNOR_C: C VNOR	normal Velocity applied to a face of mesh (acoustic) value normal velocity
WEIBULL cleavage fracture	Type: R WEIBULL	Model of Beremin for forced DSIGWB of Weibull