EE23BTECH11054 - Sai Krishna Shanigarapu*

Gate EC 2022

54. In a circuit, there is a series connection of an ideal resistor and an ideal capacitor. The conduction current (in Amperes) through the resistor is $2\sin\left(t+\frac{\pi}{2}\right)$. The displacement current (in Amperes) through the capacitor is _____.

- (A) $2\sin(t)$
- (B) $2\sin\left(t+\pi\right)$ (C) $2\sin\left(t+\frac{\pi}{2}\right)$

 $(GATE\ EC\ 2022)$

Solution:

Parameter	Description	Value
I_c	Conduction Current	$2\sin\left(t+\frac{\pi}{2}\right)$
A	Cross-sectional area	

TABLE I PARAMETERS

Parameter	Description	Formula
Q	Charge	$\int I_c dt$
D	Electric Displacement	$\frac{Q}{A}$
J_D	Displacement current density	$\frac{\partial D}{\partial t}$
I_D	Displacement current	$J_D \times A$

TABLE II FORMULAE

S Domain	Time Domain	
$\frac{1}{s}$	$u\left(t ight)$	
$\frac{-s}{a^2+s^2}$	$-\cos\left(at\right)$	
$\frac{a}{a^2+s^2}$	$\sin{(at)}$	
$\frac{1}{s+a}$	e^{-at}	
TABLE III		

Laplace transforms

$$\mathcal{L}\left[\int f(t) dt\right] = \int_0^\infty \left[\int f(t) dt\right] e^{-st} dt \qquad (1)$$

$$= \int_0^\infty u dv \quad \text{where} \begin{cases} u = \int f(t) dt \\ dv = e^{-st} dt \end{cases} \qquad (2)$$

$$= uv - v \int du \qquad (3)$$

$$= \frac{1}{s} \int f(t) dt|_0 + \frac{1}{s} \int_0^\infty f(t) e^{-st} dt \qquad (4)$$

$$\implies \frac{1}{s} \int f(t) dt|_0 + \frac{1}{s} F(s) \qquad (5)$$

Fig. 1. Circuit 1

From Table II, Table III and eq (5)

$$I_c(s) = \frac{2s}{s^2 + 1} \tag{6}$$

$$Q_c(s) = \frac{2}{s(s^2 + 1)} \tag{7}$$

$$D(s) = \frac{1}{A} \left(\frac{2}{s(s^2 + 1)} \right) \tag{8}$$

$$J_D(s) = \frac{2}{A} \left(\frac{1}{s^2 + 1} \right) \tag{9}$$

$$I_D(s) = \frac{2}{s^2 + 1}$$
 (10)

$$\implies I_D = 2\sin t$$
 (11)

From figure 2, phase of I_d is $\frac{\pi}{2}$

$$\therefore I_d = 2\sin\left(t + \frac{\pi}{2}\right) \tag{12}$$

 \therefore (C) is correct.

Fig. 2. Phasor plot

Fig. 3. plot of I_d vs time