

第十九章

第十九章

几何光学

勘误:

(2). P133例题19.2, 第三行"左侧18cm" 应为 "左侧21cm".

- (3). P139习题1, "焦距为15mm" 应为 "焦距为15cm".
- (4). P139习题3的参考答案 应为 (1) 285.5mm, (2) 665.5mm.
- (5). P139习题4, 缺少条件(物镜焦距), 无法做, 删去.
- (6). P139习题5,参考答案 应为m=100.

§ 19.1 几何光学基本定律

1. 直线传播定律

2. 反射定律 i=i'

3. 折射定律 $n_1 \sin i = n_2 \sin r$ 折射率越大,角度越小

二、费马原理(最小时间原理)

光沿着光程为极值的路径传播

光学性质均匀的介质中光程 l=nr

$$l=nr$$

不均匀的介质中
$$dl=n(r)dr$$

$$dl = n(r)dr$$

$$l = \int_{A}^{B} n(r) dr$$

费马原理数学式
$$\delta \int_{A}^{B} n(r) dr = 0$$

当光从光密介质 n_1 进入光疏介质 n_2 ,入射角 $r > \theta_c$ (临界角)时,出现全反射.

$$n_1 \sin \theta_c = n_2 \sin 90^\circ \qquad n_1 > n_2$$

$$\sin \theta_c = \frac{n_2}{n_1} \quad n_1 > n_2$$

光纤(光导纤维)

主要特点:

由两种介质构成同 轴圆柱体,多股光纤做 成光缆常用于通信.

损耗低、频带宽、容量大、 抗干扰能力强、保真度高等.

几何光学成像 反射光的成像 透射光的成像

平面镜反射成像

理

P′是光源P的像 物距等于像距

$$s = -s'$$

二、球面镜反射成像

光轴: 光源P与球心C的连线

实像P': 近轴光线形成

球面像差: 非近轴光线引起

1. 镜像公式

几何关系

 \boldsymbol{A}

$$\beta = \alpha + \theta$$

$$\gamma = \beta + \theta$$

$$\alpha + \gamma = 2\beta$$

近轴
$$\begin{cases} \alpha \approx h/s \\ \beta \approx h/R \\ \gamma \approx h/s \end{cases}$$

镜像公式

$$\frac{1}{s} + \frac{1}{s'} = \frac{2}{R}$$

(1) 焦点F、焦距f: $s \to \infty$ 时, s' = f = R/2 s = f = R/2 时, $s' \to \infty$

$$s = f = R/2$$
 时, $s' \rightarrow \infty$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

2. 作图法 横向放大率

作图法:用4条光线确定像的位置

确定Q点像的位置Q'

- 1. 平行光线
- 2. 过焦点
- 3. 过球心
- 4. 到顶点

确定P点像的位置P′

像的性质: 正、倒立; 实、虚像; 放大、缩小

横向放大率:垂直光轴方向上像与物的线度之比

$$m = \frac{P'Q'}{PQ} = -\frac{s'}{s}$$

因为通过V点的光线入射角等于反射角

- 1. 物距: 物与入射光线在界面的同侧, s为正, 实物; 反之, s为负, 虚物.
- 2. 像距: 像与出射光线在界面的同侧, s'为正, 实像; 反之, s'为负, 虚像.
 - 3. 曲率半径R: 曲率中心C与出射光线在界面的同侧,R为正,反之R为负.
 - 4. **焦**距f: F_1 与入射光、 F_2 与出射光线在界面的同侧,f为正,反之f为负.
 - 5. 横向线段: 垂直于光轴的横向线段, 光轴上方为正, 光轴下方为负.

§ 19.4 单球面折射成像

物空间

像空间

折射定律 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ 近轴光线 $n_1 \theta_1 = n_2 \theta_2$

$$\phi = \theta_2 + \beta$$

几何关系
$$\phi = \theta_2 + \beta$$
 $\rightarrow \theta_2 = \phi - \beta$ $\theta_1 = \alpha + \phi$

$$\theta_1 = \alpha + \phi$$

$$n_1(\alpha + \phi) = n_2(\phi - \beta)$$

$$n_1\alpha+n_2\beta=(n_2-n_1)\phi$$

近轴光线 $\alpha \approx \frac{h}{s}$ $\phi \approx \frac{h}{R}$

$$\alpha \approx \frac{h}{s}$$

$$\phi \approx \frac{h}{R}$$

$$\beta \approx \frac{h}{s'}$$

成像公式 高斯公式

$$\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R}$$

单球面折射 成像公式

第一焦点或 物方焦点Fi

物方焦距

$$\frac{n_1}{f_1} + \frac{n_2}{\infty} = \frac{n_2 - n_1}{R}$$

$$f_1 = \frac{n_1}{n_2 - n_1} R$$

第二焦距
$$f_2$$
 $s = \infty$, $s' = f_2$

第二焦点或 像方焦点F。

$$\frac{n_1}{\infty} + \frac{n_2}{f_2} = \frac{n_2 - n_1}{R}$$

$$f_2 = \frac{n_2}{n_2 - n_1} R$$

$$f_1 \neq f_2$$

何:一玻璃球(n=1.5)半径为10厘米,点光源放在球面前 40厘米处, 求近轴光线通过玻璃球后所成的像.

$$\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R}$$

$$\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R} \qquad \frac{1}{40} + \frac{1.5}{s'_1} = \frac{1.5 - 1}{10}$$

$$s_1' = 60 \text{ (cm)}$$

$$s_1' = 60 \text{ (cm)}$$
 $s_2 = d + (-s_1') = 20 + (-60) = -40 \text{ (cm)}$

$$\frac{1.5}{-40} + \frac{1}{s_2'} = \frac{1 - 1.5}{-10}$$

$$s_2' = 11.4 \text{ (cm)}$$

透镜: 由两个球面构成的光学器件.

薄透镜: 厚度可以忽略的透镜.

一、正透镜和负透镜

会聚透镜 正透镜

发散透镜 负透镜

薛透镜成像公式

$$\frac{n_1}{s_1} + \frac{n}{s_1'} = \frac{n-n_1}{R_1}$$

$$\frac{n}{s_2} + \frac{n_2}{s_2'} = \frac{n_2-n}{R_2}$$

设
$$s_2 = d + (-s_1') \approx -s_1', \quad n_1 = n_2 = n_0, s_1 = s, s_2' = s'$$

1. 磨镜者公式
$$\frac{1}{s} + \frac{1}{s'} = \frac{n - n_0}{n_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

注意: R_1 和 R_2 的符号由符号规则确定!

2. 焦距f

第一焦距 f_1

$s=f_1, s'=\infty$

第二焦距f2

$$s = \infty$$
, $s' = f_2$

$$f = f_1 = f_2 = \left[\frac{n - n_0}{n_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \right]^{-1}$$

3. 透镜成像高斯公式 $\frac{1}{S} + \frac{1}{S'} = \frac{1}{f}$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

4. 横向放大率m

$\triangle OPO \otimes \triangle O'P'O$

$$m = \frac{y'}{y} = -\frac{s'}{s}$$

s、s'>0时 为倒立像

薄透镜作图法

- ②过透镜中心的光线;
- ③过第一焦点的光线

§ 19.6 光学器件

人眼的视力: 0.25m~∞

单个正透镜是最简单的放大镜,用于 放大物对人眼的张角.

$$y = 0.25 \tan \theta = f \tan \theta' \approx f \theta' = 0.25 \theta$$

$$m_{\theta} = \frac{\theta'}{\theta} = \frac{0.25}{f}$$

二. 显微镜

可获得较大的放大率以观察微小物体透镜系统.

物镜横向放大率

$$m = -\frac{s_1'}{s_1} \approx -\frac{f_o + \Delta}{s_1} \approx -\frac{S}{f_o}$$

显微镜放大率

$$M = m \times m_{\theta} = -\frac{0.25S}{f_o f_e}$$

事实上 s_1 与 f_0 的差距还是比较大的, $S = f_0 + \Delta$

三.望远镜

物镜第二焦点 F_2 与目镜第一焦点 F_1 '重合. 远处物体的平行光线经物镜在焦点 F_2 处成倒立实像,经目镜后于无限远处成倒立虚像.

成像在无限远

$$\theta_o = -y'/f_o$$
 $\theta_e = y'/f_e$

角放大率

$$oldsymbol{m}_{ heta} = rac{oldsymbol{ heta}_e}{oldsymbol{ heta}_o} = -rac{f_o}{f_e}$$

大学

理

结束

第十九章结束