Eddie Aguilar

1-10 of 105 rows

Which carrier has the worst delays? Challenge: can you disentangle the effects of bad airports vs. bad carriers? Why/why not? (Hint: think about flights %>% group_by(carrier, dest) %>% summarise(n()))

Previous 1 2 3 4 5 6 ... 11 Next

For each plane, count the number of flights before the first delay of greater than 1 hour.

Grouping by multiple variables

When you group by multiple variables, each summary peels off one level of the grouping. That makes it easy to progressively roll up a dataset. Run the code below and inspect each result to see how its grouping criteria has changed (the grouping criteria is displayed at the top of the tibble).

Brainstorm at least 5 different ways to assess the typical delay characteristics of a group of flights. Consider the following scenarios:

- . A flight is 15 minutes early 50% of the time, and 15 minutes late 50% of the time.
- · A flight is always 10 minutes late.
- · A flight is 30 minutes early 50% of the time, and 30 minutes late 50% of the time.
- 99% of the time a flight is on time. 1% of the time it's 2 hours late.

Which is more important: arrival delay or departure delay?

```
R Code Start Over Q Hint

1 group_by(flights, flight) %>%
2 summarise(fif_mins_early = mean(arr_delay == -15, na.rm = TRUE),
3 fif_mins_late = mean(arr_delay == 15, na.rm = TRUE),
4 ten_mins_late = mean(arr_delay == 10, na.rm = TRUE),
5 thir_mins_early = mean(arr_delay == -30, na.rm = TRUE),
6 thir_mins_late = mean(arr_delay == 30, na.rm = TRUE),
7 no_delay = mean(arr_delay == 0, na.rm = TRUE),
8 two_hous_late = mean(arr_delay == 120, na.rm = TRUE))
9
10
```

flight <int></int>	fif_mins_early <dbl></dbl>	fif_mins_late <dbl></dbl>	ten_mins_late <dbl></dbl>	thir_mins_early <dbl></dbl>	thir_mins_late <dbl></dbl>	no_delay <dbl></dbl>
1	0.021520803	0.010043042	0.005738881	0.005738881	0.005738881	0.014347202
2	0.039215686	0.019607843	0.000000000	0.000000000	0.000000000	0.039215686
3	0.009554140	0.006369427	0.015923567	0.015923567	0.003184713	0.025477707
4	0.035805627	0.010230179	0.007672634	0.012787724	0.002557545	0.020460358
5	0.012345679	0.006172840	0.009259259	0.021604938	0.000000000	0.006172840
6	0.029126214	0.004854369	0.004854369	0.029126214	0.000000000	0.004854369
7	0.016949153	0.004237288	0.000000000	0.008474576	0.004237288	0.012711864
8	0.05555556	0.008547009	0.021367521	0.000000000	0.000000000	0.017094017
9	0.013157895	0.013157895	0.019736842	0.000000000	0.000000000	0.019736842
10	0.016393443	0.016393443	0.032786885	0.000000000	0.000000000	0.016393443
-10 of 1,000 rows 1-7 of 8 columns Previous 1 2 3 4						6 100 Nex

N108UW

Come up with another approach that will give you the same output as not_cancelled %>% count(dest) and not_cancelled %>% count(tailnum, wt = distance) (without using count()).

32070

√ Exercise 6

What does the sort argument to count() do. When might you use it?

```
R Code Start Over

1 ?count
2
3 # En TRUE, mostrará los grupos más grandes primero
4
```

Exercise 7

Look at the number of cancelled flights per day. Is there a pattern? Is the proportion of cancelled flights related to the average delay?

```
`summarise()` has grouped output by 'year', 'month'. You can override using the `.groups` argument.
```

