CS61c Summer 2014 Discussion 10 – Synchronous Digital Systems and Boolean Algebra

July 23, 2014

1 Logic Gates

1. Label the following logic gates:

not, and, or, xor, nand, nor, xnor

- 2. Convert the following to boolean expressions:
 - (a) NAND $\bar{A}\bar{B} + \bar{A}B + A\bar{B}$
 - (b) XOR $\bar{A}B + A\bar{B}$
 - (c) XNOR $\bar{A}\bar{B} + AB$
- 3. Create an AND gate using only NAND gates.

4. How many different two-input logic gates can there be? How many n-input logic gates? A truth table with n inputs has 2^n rows. Each logic gate has a 0 or a 1 at each of these rows. Imagining a function as a 2^n -bit number, we count 2^{2^n} total functions, 04 16 in the case of n=2

2 State

1. Fill out the timing diagram for the circuit below:

2. Fill out the timing diagram for the circuit below:

3 Boolean Logic

$$\bullet \ A + \bar{A} = 1$$

•
$$0B = 0$$

$$\bullet \ (A+B)(A+C) = A+BC$$

•
$$1 + A = 1$$

•
$$B\bar{B}=0$$

•
$$\overline{AB} = \overline{A} + \overline{B}$$

$$\bullet$$
 $A + AB = A$

$$\bullet \ A + \bar{A}B = A + B$$

•
$$\overline{A+B} = \bar{A}\bar{B}$$

 $1. \ \, \text{Minimize the following boolean expressions:}$

(a) Standard:
$$(A+B)(A+\bar{B})C$$

$$(AA + A\bar{B} + AB + B\bar{B})C = (A + A(\bar{B} + B))C = AC$$

(b) Grouping & Extra Terms:
$$\bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + A\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{B}C + A\bar{B}C$$

$$\begin{split} \bar{A}\bar{C}(\bar{B}+B) + A\bar{C}(\bar{B}+B) + AC(\bar{B}+B) &= \bar{A}\bar{C} + A\bar{C} + AC \\ &= \bar{A}\bar{C} + A\bar{C} + A\bar{C} + AC \\ &= (\bar{A}+A)C + A(\bar{C}+C) \\ &= A + \bar{C} \end{split}$$

(c) DeMorgan's: $\overline{\mathbf{A}(\bar{B}\bar{C}+BC)}$

$$\overline{A(\bar{B}\bar{C} + BC)} = \bar{A} + \overline{\bar{B}\bar{C}} + BC$$

$$= \bar{A} + \overline{\bar{B}\bar{C}}\overline{B}\overline{C}$$

$$= \bar{A} + (B + C)(\bar{B} + \bar{C})$$

$$= \bar{A} + B\bar{C} + \bar{B}C$$