

De novo genome assembly

Computational Genomics | Lecture 14

Tom Harrop

melbournebioinformatics.org.au

How good is my assembly?

Assembly qualities (jargon!):

- draft
- reference
- chromosome-level
- complete/closed, telomere to telomere (T2T)

High-quality genomes have¹:

- contig N₅₀ length ≥ 1 Mb
- scaffold N_{50} length \geq 10 Mb
- ≥ 90% of sequence assigned to chromosomes
- error rate ≤ 0.01% (1 error in 10,000 bases)

¹ according to the VGP

N_{50} is a contiguity statistic

The sequence length of the shortest contig at 50% of the total genome length

Is this
$$N_{50}$$
 ($N \rightarrow$ number)?
Or L_{50} ($L \rightarrow$ length)?
 N_{50} length?

Naïve N_{50} in python3

```
> #!/usr/bin/env python3
                                            > i = [
                                            + x \ge genome_size * 0.5
                                                for x in np.cumsum(sorted_lengths)
+ import numpy as np
                                                ].index(True)
+ contig_lengths = [
    40, 100, 70, 50, 60, 50, 30]
                                            + print(i)
+ sorted_lengths = sorted(
   contig_lengths,
                                            > sorted_lengths[i]
   reverse=True)
                                            60
+ genome_size = sum(sorted_lengths)
+ print(genome_size)
```

400

How do we know if we have a good assembly?

Metric	Draft	Target	VGP	Finished
Contig N ₅₀	> 10 Kb	> 1 Mb	1-25 Mb	Chr
Scaffold N_{50}	> 100 Kb	> 10 Mb	23-480 Mb	Chr
Gaps	< 10,000	< 1000	75-1500	None
Completeness	> 80%	> 90%	87-98%	100%
Genes (BUSCO)	> 80%	> 90%	82-98%	> 98%
Mappability	> 70%	> 80%	96%	98%

 N_{50} describes the distribution of contig or scaffold sizes. Higher N_{50} means the assembly is in bigger chunks.

- reference genome
- mate pairs
- long reads with a short-read assembly
- proximity ligation
- optical mapping

- reference genome
- mate pairs
- long reads with a short-read assembly
- proximity ligation
- optical mapping
- linkage mapping

- reference genome
- mate pairs
- long reads with a short-read assembly
- proximity ligation
- optical mapping
- linkage mapping

- reference genome
- mate pairs
- long reads with a short-read assembly
- proximity ligation
- optical mapping
- linkage mapping

Summary

Two major approaches to *de novo* assembly:

Short read

- prokaryotes, simple genomes
- relatively cheap
- high accuracy assemblies, but struggles with complex genomes
- assembly algorithms are fast and efficient

Long read

- resolves complicated genomes
- expensive, relatively tricky to generate data
- accuracy a little lower
- assembly is slow and memory-hungry

Scaffolding improves the contiguity in many cases

Hybrid approaches are currently popular