# Trading Infinite Memory for Uniform Randomness in Timed Games\*

Krishnendu Chatterjee<sup>1</sup>, Thomas A. Henzinger<sup>1,2</sup>, and Vinayak S. Prabhu<sup>1</sup>

<sup>1</sup> EECS, UC Berkeley <sup>2</sup> CCS, EPFL

{c\_krish, vinayak}@eecs.berkeley.edu, tah@epfl.ch

Abstract. We consider concurrent two-player timed automaton games with  $\omega$ -regular objectives specified as parity conditions. These games offer an appropriate model for the synthesis of real-time controllers. Earlier works on timed games focused on pure strategies for each player. We study, for the first time, the use of randomized strategies in such games. While pure (i.e., nonrandomized) strategies in timed games require infinite memory for winning even with respect to reachability objectives, we show that randomized strategies can win with finite memory with respect to all parity objectives. Also, the synthesized randomized real-time controllers are much simpler in structure than the corresponding pure controllers, and therefore easier to implement. For safety objectives we prove the existence of pure finite-memory winning strategies. Finally, while randomization helps in simplifying the strategies required for winning timed parity games, we prove that randomization does not help in winning at more states.

### 1 Introduction

Timed automata [2] are models of real-time systems in which states consist of discrete locations and values for real-time clocks. The transitions between locations are dependent on the clock values. Timed automaton games [9,1,7,13,12] are used to distinguish between the actions of several players (typically a "controller" and a "plant"). We shall consider two-player timed automaton games with  $\omega$ -regular objectives specified as parity conditions. The class of  $\omega$ -regular objectives can express all safety and liveness specifications that arise in the synthesis and verification of reactive systems, and parity conditions are a canonical form to express  $\omega$ -regular objectives [19]. The construction of a winning strategy for player 1 in such games corresponds to the controller synthesis problem for real-time systems [11,16,17,20] with respect to achieving a desired  $\omega$ -regular objective.

The issue of *time divergence* is crucial in timed games, as a naive control strategy might simply block time, leading to "zeno" runs. Such invalid solutions have often been avoided by putting strong syntactic constraints on the cycles

<sup>\*</sup> This research was supported in part by the NSF grants CCR-0208875, CCR-0225610, CCR-0234690, by the Swiss National Science Foundation, and by the Artist2 European Network of Excellence.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 87–100, 2008.

<sup>©</sup> Springer-Verlag Berlin Heidelberg 2008

of timed automaton games [17,4,13,5], or by semantic conditions that discretize time [14]. Other works [16,11,6,7] have required that time divergence be ensured by the controller—a one-sided, unfair view in settings where the player modeling the plant is allowed to block time. We use the more general, semantic and fully symmetric formalism of [9,15] for dealing with the issue of time divergence. This setting places no syntactic restriction on the game structure, and gives both players equally powerful options for advancing time, but for a player to win, she must not be responsible for causing time to converge. It has been shown in [15] that this is equivalent to requiring that the players are restricted to the use of receptive strategies [3,18], which, while being required to not prevent time from diverging, are not required to ensure time divergence. More formally, our timed games proceed in an infinite sequence of rounds. In each round, both players simultaneously propose moves, with each move consisting of an action and a time delay after which the player wants the proposed action to take place. Of the two proposed moves, the move with the shorter time delay "wins" the round and determines the next state of the game. Let a set  $\Phi$  of runs be the desired objective for player 1. Then player 1 has a winning strategy for  $\Phi$  if she has a strategy to ensure that, no matter what player 2 does, one of the following two conditions hold: (1) time diverges and the resulting run belongs to  $\Phi$ , or (2) time does not diverge but player-1's moves are chosen only finitely often (and thus she is not to be blamed for the convergence of time).

The winning strategies constructed in [9] for such timed automaton games assume the presence of an infinitely precise global clock to measure the progress of time, and the strategies crucially depend on the value of this global clock. Since the value of this clock needs to be kept in memory, the constructed strategies require *infinite memory*. In fact, the following example (Example 2) shows that infinite memory is necessary for winning with respect to reachability objectives. Besides the infinite-memory requirement, the strategies constructed in [9] are structurally complicated, and it would be difficult to implement the synthesized controllers in practice. Before offering a novel solution to this problem, we illustrate the problem with an example of a simple timed game whose solution requires infinite memory.

Example 1 (Signaling hub). Consider a signaling hub that both sends and receives signals at the same port. At any time the port can either receive or send a signal, but it cannot do both. Moreover, the hub must accept all signals sent to it. If both the input and the output signals arrive at the same time, then the output signal of the hub is discarded. The input signals are generated by other processes, and infinitely many signals cannot be generated in a finite amount of time. The time between input signals is not known a priori. The system may be modeled by the timed automaton game shown in Figure 1. The actions  $b_1$  and  $b_2$  correspond to input signals, and  $a_1$  and  $a_2$  to output signals. The actions  $b_i$  are controlled by the environment and denote input signals; the actions  $a_i$  are controlled by the hub and denote signals sent by the hub. The clock x models the time delay between signals: all signals reset this clock, and signals can arrive or be sent provided the value of x is greater than 0, ensuring that there is a



Fig. 1. A timed automaton game

positive delay between signals. The objective of the hub controller is to keep sending its own signals, which can be modeled as the generalized Büchi condition of switching infinitely often between the locations p and q (ie., the LTL objective  $\Box(\Diamond p \land \Diamond q)$ ).

Example 2 (Winning requires infinite memory). Consider the timed game of Figure 1. We let  $\kappa$  denote the valuation of the clock x. We let the special "action"  $\bot$  denote a time move (representing time passage without an action). The objective of player 1 is to reach q starting from  $s_0 = \langle p, x = 0 \rangle$  (and similarly, to reach p from q). We let  $\pi_1$  denote the strategy of player 1 which prescribes moves based on the history r[0..k] of the game at stage k. Suppose player 1 uses only finite memory. Then player 1 can propose only moves from a finite set when at  $s_0$ . Since a zero time move keeps the game at p, we may assume that player 1 does not choose such moves. Let  $\Delta > 0$  be the least time delay of these finitely many moves of player 1. Then player 2 can always propose a move  $\langle \Delta/2, b \rangle$  when at  $s_0$ . This strategy will prevent player 1 from reaching q, and yet time diverges. Hence player 1 cannot win with finite memory; that is, there is no hub controller that uses only finite memory. However, player 1 has a winning strategy with infinite memory. For example, consider the player 1 strategy  $\pi_2$  such that  $\pi_2(r[0..k]) = \langle 1/2^{k+2}, a_1 \rangle$  if  $r[k] = \langle p, \kappa \rangle$ , and  $\pi_2(r[0..k]) = \langle 1, \bot \rangle$  otherwise.  $\Box$ 

In this paper we observe that the infinite-memory requirement of Example 1 is due to the determinism of the permissible strategies: a strategy is *deterministic* (or *pure*) if in each round of the game, it proposes a unique move (i.e., action and time delay). A more general class of strategies are the randomized strategies: a *randomized* strategy may propose, in each round, a probability distribution of moves. We now show that in the game of Example 2 finite-memory randomized winning strategies do exist. Indeed, the needed randomization has a particularly simple form: player 1 proposes a unique action together with a time interval from which the time delay is chosen uniformly at random. Such a strategy can be implemented as a controller that has the ability to wait for a randomly chosen amount of time.

Example 3 (Randomization instead of infinite memory). Recall the game in Figure 1. Player 1 can play a randomized memoryless strategy  $\pi_3$  such that  $\pi_3(\langle p, \kappa \rangle) = \langle \mathsf{Uniform}((0, 1 - \kappa(x))), a_i \rangle$ ; that is, the action  $a_i$  is proposed to take place at a time chosen uniformly at random in the interval  $(0, 1 - \kappa(x))$ . Suppose player 2 always proposes the action  $b_i$  with varying time delays  $\Delta_j$  at round j.

Then the probability of player-1's move being never chosen is  $\prod_{j=1}^{\infty} (1 - \Delta_j)$ , which is 0 if  $\sum_{j=1}^{\infty} \Delta_j = \infty$  (see [8] for the proof). Interrupting moves with pure time moves does not help player 2, as  $1 - \frac{\Delta_j}{1 - \kappa(x)} < 1 - \Delta_j$ . Thus the simple randomized strategy  $\pi_3$  is winning for player 1 with probability 1.

Previously, only deterministic strategies were studied for timed games; here, for the first time, we study randomized strategies. We show that randomized strategies are not more powerful than deterministic strategies in the sense that if player 1 can win with a randomized strategy, then she can also win with a deterministic strategy. However, as the example illustrated, randomization can lead to a reduction in the memory required for winning, and to a significant simplification in the structure of winning strategies. Randomization is therefore not only of theoretical interest, but can improve the implementability of synthesized controllers. It is for this reason that we set out, in this paper, to systematically analyze the trade-off between randomization requirements (no randomization; uniform randomization; general randomization), memory requirements (finite memory and infinite memory) and the presence of extra "controller clocks" for various classes of  $\omega$ -regular objectives (safety; reachability; parity objectives).

Our results are as follows. First, we show that for safety objectives pure (no randomization) finite-memory winning strategies exist. Next, for reachability objectives, we show that pure (no randomization) strategies require infinite memory for winning, whereas uniform randomized finite-memory winning strategies exist. We then use the results for reachability and safety objectives in an inductive argument to show that uniform randomized finite-memory strategies suffice for all parity objectives, for which pure strategies require infinite memory (because reachability is a special case of parity). In all our uses of randomization, we only use uniform randomization over time, and more general forms of randomization (nonuniform distributions; randomized actions) are not required. This shows that in timed games, infinite memory can be traded against uniform randomness. Finally, we show that while randomization helps in simplifying winning strategies, and thus allows the construction of simpler controllers, randomization does not help a player in winning at more states, and thus does not allow the construction of more powerful controllers. In other words, the case for randomness rests in the simplicity of the synthesized real-time controllers, not in their expressiveness.

We note that in our setting, player 1 (i.e., the controller) can trade infinite memory also against finite memory together with an extra clock. We assume that the values of all clocks of the plant are observable. For an  $\omega$ -regular objective  $\Phi$ , we define the following winning sets depending on the power given to player 1: let  $\llbracket \Phi \rrbracket_1$  be the set of states from which player 1 can win using any strategy (finite or infinite memory; pure or randomized) and any number of infinitely precise clocks; in  $\llbracket \Phi \rrbracket_2$  player 1 can win using a pure finite-memory strategy and only one extra clock; in  $\llbracket \Phi \rrbracket_3$  player 1 can win using a pure finite-memory strategy and no extra clock; and in  $\llbracket \Phi \rrbracket_4$  player 1 can win using a randomized finite-memory strategy and no extra clock. Then, for every timed automaton game, we have  $\llbracket \Phi \rrbracket_1 = \llbracket \Phi \rrbracket_2 = \llbracket \Phi \rrbracket_4$ . We also have  $\llbracket \Phi \rrbracket_3 \subseteq \llbracket \Phi \rrbracket_1$ , with the subset inclusion being in general strict. It can be shown that at least one bit of memory

is required for winning of reachability objectives despite player 1 being allowed randomized strategies. We do not know whether memory is required for winning safety objectives (even in the case of pure strategies).

## 2 Timed Games

In this section we present the definitions of timed game structures, runs, objectives, strategies and the notions of sure and almost-sure winning in timed game structures.

**Timed game structures.** A timed game structure is a tuple  $\mathcal{G} = \langle S, A_1, A_2, \Gamma_1, \Gamma_2, \delta \rangle$  with the following components.

- -S is a set of states.
- $A_1$  and  $A_2$  are two disjoint sets of actions for players 1 and 2, respectively. We assume that  $\bot \notin A_i$ , and write  $A_i^{\bot}$  for  $A_i \cup \{\bot\}$ . The set of moves for player i is  $M_i = \mathbb{R}_{\geq 0} \times A_i^{\bot}$ . Intuitively, a move  $\langle \Delta, a_i \rangle$  by player i indicates a waiting period of  $\Delta$  time units followed by a discrete transition labeled with action  $a_i$ .
- $-\Gamma_i: S \mapsto 2^{M_i} \setminus \emptyset$  are two move assignments. At every state s, the set  $\Gamma_i(s)$  contains the moves that are available to player i. We require that  $\langle 0, \bot \rangle \in \Gamma_i(s)$  for all states  $s \in S$  and  $i \in \{1, 2\}$ . Intuitively,  $\langle 0, \bot \rangle$  is a time-blocking stutter move.
- $-\delta: S \times (M_1 \cup M_2) \mapsto S$  is the transition function. We require that for all time delays  $\Delta, \Delta' \in \mathbb{R}_{\geq 0}$  with  $\Delta' \leq \Delta$ , and all actions  $a_i \in A_i^{\perp}$ , we have  $(1) \langle \Delta, a_i \rangle \in \Gamma_i(s)$  iff both  $\langle \Delta', \perp \rangle \in \Gamma_i(s)$  and  $\langle \Delta \Delta', a_i \rangle \in \Gamma_i(\delta(s, \langle \Delta', \perp \rangle))$ ; and (2) if  $\delta(s, \langle \Delta', \perp \rangle) = s'$  and  $\delta(s', \langle \Delta \Delta', a_i \rangle) = s''$ , then  $\delta(s, \langle \Delta, a_i \rangle) = s''$ .

The game proceeds as follows. If the current state of the game is s, then both players simultaneously propose moves  $\langle \Delta_1, a_1 \rangle \in \Gamma_1(s)$  and  $\langle \Delta_2, a_2 \rangle \in \Gamma_2(s)$ . The move with the shorter duration "wins" in determining the next state of the game. If both moves have the same duration, then the move of player 2 determines the next state.<sup>1</sup> We use this setting as our goal is to compute the winning set for player 1 against all possible strategies of player 2. Formally, we define the *joint destination function*  $\delta_{\rm jd}: S \times M_1 \times M_2 \mapsto S$  by

$$\delta_{\mathsf{jd}}(s,\langle \varDelta_1,a_1\rangle,\langle \varDelta_2,a_2\rangle) = \begin{cases} \delta(s,\langle \varDelta_1,a_1\rangle) & \text{if } \varDelta_1 < \varDelta_2; \\ \delta(s,\langle \varDelta_2,a_2\rangle) & \text{if } \varDelta_2 \leq \varDelta_1. \end{cases}$$

The time elapsed when the moves  $m_1 = \langle \Delta_1, a_1 \rangle$  and  $m_2 = \langle \Delta_2, a_2 \rangle$  are proposed is given by  $\mathsf{delay}(m_1, m_2) = \min(\Delta_1, \Delta_2)$ . The boolean predicate  $\mathsf{blame}_i(s, m_1, m_2, s')$  indicates whether player i is "responsible" for the state change from s to s' when the moves  $m_1$  and  $m_2$  are proposed. Denoting the opponent of player i by  $\sim i = 3 - i$ , for  $i \in \{1, 2\}$ , we define

<sup>&</sup>lt;sup>1</sup> Alternatively, we can define the next state to be determined nondeterministically in the case of ties, without changing our results. We give the player-2 move priority only to simplify the presentation.

$$\mathsf{blame}_i(s, \langle \Delta_1, a_1 \rangle, \langle \Delta_2, a_2 \rangle, s') = (\Delta_i \leq \Delta_{\sim i} \land \delta(s, \langle \Delta_i, a_i \rangle) = s').$$

**Runs.** A run of the timed game structure  $\mathcal G$  is an infinite sequence  $r=s_0, \langle m_1^0, m_2^0 \rangle, s_1, \langle m_1^1, m_2^1 \rangle, \ldots$  such that  $s_k \in S$  and  $m_k^k \in \Gamma_i(s_k)$  and  $s_{k+1} = \delta_{\mathsf{jd}}(s_k, m_1^k, m_2^k)$  for all  $k \geq 0$  and  $i \in \{1, 2\}$ . For  $k \geq 0$ , let  $\mathsf{time}(r, k)$  denote the "time" at position k of the run, namely,  $\mathsf{time}(r, k) = \sum_{j=0}^{k-1} \mathsf{delay}(m_1^j, m_2^j)$  (we let  $\mathsf{time}(r, 0) = 0$ ). By r[k] we denote the (k+1)-th state  $s_k$  of r. The run prefix r[0..k] is the finite prefix of the run r that ends in the state  $s_k$ . Let Runs be the set of all runs of  $\mathcal G$ , and let FinRuns be the set of run prefixes.

**Objectives.** An *objective* for the timed game structure  $\mathcal{G}$  is a set  $\Phi \subseteq \mathsf{Runs}$  of runs. We will be interested in the classical reachability, safety and parity objectives. Parity objectives are canonical forms for  $\omega$ -regular properties that can express all commonly used specifications that arise in verification.

- Given a set of states Y, the reachability objective  $\mathsf{Reach}(Y)$  is defined as the set of runs that visit Y, formally,  $\mathsf{Reach}(Y) = \{r \mid \text{ there exists } i \text{ such that } r[i] \in Y\}$ .
- Given a set of states Y, the *safety* objective consists of the set of runs that stay within Y, formally,  $\mathsf{Safe}(Y) = \{r \mid \text{ for all } i \text{ we have } r[i] \in Y\}.$
- Let  $\Omega: S \mapsto \{0, \dots, k-1\}$  be a parity index function. The parity objective for  $\Omega$  requires that the maximal index visited infinitely often is even. Formally, let  $\mathsf{InfOften}(\Omega(r))$  denote the set of indices visited infinitely often along a run r. Then the parity objective defines the following set of runs:  $\mathsf{Parity}(\Omega) = \{r \mid \max(\mathsf{InfOften}(\Omega(r))) \text{ is even } \}.$

A timed game structure  $\mathcal{G}$  together with the index function  $\Omega$  constitute a parity timed game (of index k) in which the objective of player 1 is  $\mathsf{Parity}(\Omega)$ . We use similar notations for reachability and safety timed games.

Strategies. A strategy for a player is a recipe that specifies how to extend a run. Formally, a probabilistic strategy  $\pi_i$  for player  $i \in \{1,2\}$  is a function  $\pi_i$  that assigns to every run prefix r[0..k] a probability distribution  $\mathcal{D}_i(r[k])$  over  $\Gamma_i(r[k])$ , the set of moves available to player i at the state r[k]. Pure strategies are strategies for which the state space of the probability distribution of  $\mathcal{D}_i(r[k])$  is a singleton set for every run r and all k. We let  $\Pi_i^{\mathsf{pure}}$  denote the set of pure strategies for player i, with  $i \in \{1,2\}$ . For  $i \in \{1,2\}$ , let  $\Pi_i$  be the set of strategies for player i. Given two strategies  $\pi_1 \in \Pi_1$  and  $\pi_2 \in \Pi_2$ , the set of possible outcomes of the game starting from a state  $s \in S$  is denoted Outcomes $(s, \pi_1, \pi_2)$ . Given strategies  $\pi_1$  and  $\pi_2$ , for player 1 and player 2, respectively, and a starting state s we denote by  $\Pr_s^{\pi_1,\pi_2}(\cdot)$  the probability space given the strategies and the initial state s.

**Receptive strategies.** We will be interested in strategies that are meaningful (in the sense that they do not block time). To define them formally we first present the following two sets of runs.

- A run r is time-divergent if  $\lim_{k\to\infty} time(r,k) = \infty$ . We denote by Timediv the set of all time-divergent runs.

- The set Blameless<sub>i</sub>  $\subseteq$  Runs consists of the set of runs in which player i is responsible only for finitely many transitions. A run  $s_0$ ,  $\langle m_1^0, m_2^0 \rangle$ ,  $s_1$ ,  $\langle m_1^1, m_2^1 \rangle$ , ... belongs to the set Blameless<sub>i</sub>, for  $i = \{1, 2\}$ , if there exists a  $k \geq 0$  such that for all  $j \geq k$ , we have  $\neg \text{blame}_i(s_i, m_1^j, m_2^j, s_{i+1})$ .

A strategy  $\pi_i$  is receptive if for all strategies  $\pi_{\sim i}$ , all states  $s \in S$ , and all runs  $r \in \mathsf{Outcomes}(s,\pi_1,\pi_2)$ , either  $r \in \mathsf{Timediv}$  or  $r \in \mathsf{Blameless}_i$ . Thus, no what matter what the opponent does, a receptive strategy of player i cannot be responsible for blocking time. Strategies that are not receptive are not physically meaningful. A timed game structure  $\mathcal G$  is  $\mathit{well-formed}$  if both players have receptive strategies. We restrict our attention to well-formed timed game structures. We denote  $\Pi_i^R$  to be the set of receptive strategies for player i. Note that for  $\pi_1 \in \Pi_1^R, \pi_2 \in \Pi_2^R$ , we have  $\mathsf{Outcomes}(s,\pi_1,\pi_2) \subseteq \mathsf{Timediv}$ .

Sure and almost-sure winning modes. Let  $\operatorname{Sure}_1^{\mathfrak{G}}(\Phi)$  (resp. AlmostSure $_1^{\mathfrak{G}}(\Phi)$ ) be the set of states s in  $\mathfrak{G}$  such that player 1 has a receptive strategy  $\pi_1 \in \Pi_1^R$  such that for all receptive strategies  $\pi_2 \in \Pi_2^R$ , we have  $\operatorname{Outcomes}(s,\pi_1,\pi_2) \subseteq \Phi$  (resp.  $\operatorname{Pr}_s^{\pi_1,\pi_2}(\Phi)=1$ ). Such a winning strategy is said to be a sure (resp. almost sure) winning receptive strategy. In computing the winning sets, we shall quantify over  $\operatorname{all}$  strategies, but modify the objective to take care of time divergence. Given an objective  $\Phi$ , let  $\operatorname{TimeDivBl}_1(\Phi)=(\operatorname{Timediv}\cap\Phi)\cup(\operatorname{Blameless}_1\setminus\operatorname{Timediv})$ , i.e.,  $\operatorname{TimeDivBl}_1(\Phi)$  denotes the set of paths such that either time diverges and  $\Phi$  holds, or else time converges and player 1 is not responsible for time to converge. Let  $\operatorname{Sure}_1^{\mathfrak{G}}(\Phi)$  (resp.  $\operatorname{AlmostSure}_1^{\mathfrak{G}}(\Phi)$ ) be the set of states in  $\mathfrak{G}$  such that for all  $s\in\operatorname{Sure}_1^{\mathfrak{G}}(\Phi)$  (resp.  $\operatorname{AlmostSure}_1^{\mathfrak{G}}(\Phi)$ ), player 1 has a strategy  $\pi_1\in\Pi_1$  such that for all strategies  $\pi_2\in\Pi_2$ , we have  $\operatorname{Outcomes}(s,\pi_1,\pi_2)\subseteq\Phi$  (resp.  $\operatorname{Pr}_s^{\pi_1,\pi_2}(\Phi)=1$ ). Such a winning strategy is said to be a sure (resp. almost sure) winning for the non-receptive game. The following result establishes the connection between Sure and  $\operatorname{Sure}$  sets.

**Theorem 1.** [15] For all well-formed timed game structures  $\mathfrak{G}$ , and for all  $\omega$ -regular objectives  $\Phi$ , we have  $\underline{\mathsf{Sure}}_1^{\mathfrak{G}}(\mathsf{TimeDivBl}_1(\Phi)) = \mathsf{Sure}_1^{\mathfrak{G}}(\Phi)$ .

We now define a special class of timed game structures, namely, timed automaton games.

**Timed automaton games.** Timed automata [2] suggest a finite syntax for specifying infinite-state timed game structures. A *timed automaton game* is a tuple  $\mathcal{T} = \langle L, C, A_1, A_2, E, \gamma \rangle$  with the following components:

- L is a finite set of locations.
- C is a finite set of clocks.
- $-A_1$  and  $A_2$  are two disjoint sets of actions for players 1 and 2, respectively.
- $-E \subseteq L \times (A_1 \cup A_2) \times \mathsf{Constr}(C) \times L \times 2^C$  is the edge relation, where the set  $\mathsf{Constr}(C)$  of clock constraints is generated by the grammar:  $\theta ::= x \le d \mid d \le x \mid \neg \theta \mid \theta_1 \wedge \theta_2$ , for clock variables  $x \in C$  and nonnegative integer constants d. For an edge  $e = \langle l, a_i, \theta, l', \lambda \rangle$ , the clock constraint  $\theta$  acts as a guard on the clock values which specifies when the edge e can be taken,

and by taking the edge e, the clocks in the set  $\lambda \subseteq C$  are reset to 0. We require that for all edges  $\langle l, a_i, \theta', l', \lambda' \rangle, \langle l, a_i, \theta'', l'', \lambda'' \rangle \in E$  with  $l' \neq l''$ , the conjunction  $\theta' \wedge \theta''$  is unsatisfiable. This requirement ensures that a state and a move together uniquely determine a successor state.

 $-\gamma: L \mapsto \mathsf{Constr}(C)$  is a function that assigns to every location an invariant for both players. All clocks increase uniformly at the same rate. When at location l, each player i must propose a move out of l before the invariant  $\gamma(l)$  expires. Thus, the game can stay at a location only as long as the invariant is satisfied by the clock values.

A clock valuation is a function  $\kappa: C \mapsto \mathbb{R}_{\geq 0}$  that maps every clock to a non-negative real. The set of all clock valuations for C is denoted by K(C). A state  $s = \langle l, \kappa \rangle$  of the timed automaton game  $\mathcal{T}$  is a location  $l \in L$  together with a clock valuation  $\kappa \in K(C)$  such that the invariant at the location is satisfied, that is,  $\kappa \models \gamma(l)$ . We let S be the set of all states of  $\mathcal{T}$ . Given a timed automaton game  $\mathcal{T}$ , the definition of an associated timed game structure  $[\![\mathcal{T}]\!]$  is standard  $[\![g]\!]$ . We shall restrict our attention to randomization over time — a random move of a player will consist of a distribution over time over some interval I, denoted  $\mathcal{D}^I$ , together with a discrete action  $a_i$ .

Clock region equivalence. We use the standard clock-region equivalence relation from the theory of timed automata [2] (the formal definition is being ommited here as it is fairly standard). We denote two clock-region equivalent clock valuations  $\kappa_1, \kappa_2$  by  $\kappa_1 \cong \kappa_2$ . Two states  $\langle l_1, \kappa_1 \rangle, \langle l_2, \kappa_2 \rangle \in S$  are clock-region equivalent, denoted  $\langle l_1, \kappa_1 \rangle \cong \langle l_2, \kappa_2 \rangle$ , iff  $l_1 = l_2$  and  $\kappa_1 \cong \kappa_2$ . A clock region is an equivalence class of states with respect to  $\cong$ . There are finitely many clock regions; more precisely, the number of clock regions is bounded by  $|L| \cdot \prod_{x \in C} (c_x + 1) \cdot |C|! \cdot 2^{|C|}$ .

For a state  $s \in S$ , we write  $\operatorname{Reg}(s) \subseteq S$  for the clock region containing s. For a run r, we let the region sequence  $\operatorname{Reg}(r) = \operatorname{Reg}(r[0]), \operatorname{Reg}(r[1]), \cdots$ . Two runs r, r' are region equivalent if their region sequences are the same. Given a distribution  $\mathcal{D}_{\mathsf{states}}$  over states, we obtain a corresponding distribution  $\mathcal{D}_{\mathsf{reg}} = \operatorname{Reg}_d(\mathcal{D}_{\mathsf{states}})$  over regions as follows: for a region R we have  $\mathcal{D}_{\mathsf{reg}}(R) = \mathcal{D}_{\mathsf{states}}(\{s \mid s \in R\})$ . An  $\omega$ -regular objective  $\Phi$  is a region objective if for all region-equivalent runs r, r', we have  $r \in \Phi$  iff  $r' \in \Phi$ . A strategy  $\pi_1$  is a region strategy, if for all prefixes  $r_1$  and  $r_2$  such that  $\operatorname{Reg}(r_1) = \operatorname{Reg}(r_2)$ , we have  $\operatorname{Reg}_d(\pi_1(r_1)) = \operatorname{Reg}_d(\pi_1(r_2))$ . The definition for player 2 strategies is analogous. Two region strategies  $\pi_1$  and  $\pi'_1$  are region-equivalent if for all prefixes r we have  $\operatorname{Reg}_d(\pi_1(r)) = \operatorname{Reg}_d(\pi'_1(r))$ . A parity index function  $\Omega$  is a region parity index function if  $\Omega(s_1) = \Omega(s_2)$  whenever  $s_1 \cong s_2$ . Henceforth, we shall restrict our attention to region objectives.

Encoding time divergence by enlarging the game structure. Given a timed automaton game  $\mathcal{T}$ , consider the enlarged game structure  $\widehat{\mathcal{T}}$  with the state space  $\widehat{S} \subseteq S \times \mathbb{R}_{[0,1)} \times \{\text{TRUE}, \text{FALSE}\}^2$ , and an augmented transition relation  $\widehat{\delta}: \widehat{S} \times (M_1 \cup M_2) \mapsto \widehat{S}$ . In an augmented state  $\langle s, \mathfrak{z}, tick, bl_1 \rangle \in \widehat{S}$ , the component  $s \in S$  is a state of the original game structure  $[\![\mathcal{T}]\!]$ ,  $\mathfrak{z}$  is value of a fictitious clock z which gets reset to 0 every time it hits 1, or if a move of player 1 is chosen,

tick is true iff z hit 1 at last transition and  $bl_1$  is true if player 1 is to blame for the last transition. Note that any strategy  $\pi_i$  in  $[\![\mathcal{T}]\!]$ , can be considered a strategy in  $\widehat{\mathcal{T}}$ . The values of the clock z, tick and  $bl_1$  correspond to the values each player keeps in memory in constructing his strategy. Any run r in  $\widehat{\mathcal{T}}$  has a corresponding unique run  $\widehat{r}$  in  $\widehat{\mathcal{T}}$  with  $\widehat{r}[0] = \langle r[0], 0, \text{FALSE}, \text{FALSE} \rangle$  such that r is a projection of  $\widehat{r}$  onto  $\widehat{\mathcal{T}}$ . For an objective  $\Phi$ , we can now encode time-divergence as: TimeDivBl( $\Phi$ ) = ( $\square \diamondsuit tick \to \Phi$ )  $\wedge$  ( $\neg \square \diamondsuit tick \to \diamondsuit \square \neg bl_1$ ). Let  $\widehat{\kappa}$  be a valuation for the clocks in  $C \cup \{z\}$ . A state of  $\widehat{\mathcal{T}}$  can then be considered as  $\langle \langle l, \widehat{\kappa} \rangle, tick, bl_1 \rangle$ . We extend the clock equivalence relation to these expanded states:  $\langle \langle l, \widehat{\kappa} \rangle, tick, bl_1 \rangle \cong \langle \langle l', \widehat{\kappa}' \rangle, tick', bl'_1 \rangle$  iff  $l = l', tick = tick', bl_1 = bl'_1$  and  $\widehat{\kappa} \cong \widehat{\kappa}'$ . For every  $\omega$ -regular region objective  $\Phi$  of  $\widehat{\mathcal{T}}$ , we have TimeDivBl( $\Phi$ ) to be an  $\omega$ -regular region objective of  $\widehat{\mathcal{T}}$ .

We now present a lemma that states for region  $\omega$ -regular objectives region winning strategies exist, and all strategies region-equivalent to a region winning strategy are also winning.

**Lemma 1.** Let  $\mathfrak{T}$  be a timed automaton game and  $\widehat{\mathfrak{T}}$  be the corresponding enlarged game structure. Let  $\widehat{\Phi}$  be an  $\omega$ -regular region objective of  $\widehat{\mathfrak{T}}$ . Then the following assertions hold.

- There is a pure finite-memory region strategy  $\pi_1$  that is sure winning for  $\widehat{\Phi}$  from the states in  $\underline{\operatorname{Sure}}_1^{\widehat{\mathfrak{I}}}(\widehat{\Phi})$ .
- If  $\pi_1$  is a pure region strategy that is sure winning for  $\widehat{\Phi}$  from  $\underline{\mathsf{Sure}}_1^{\widehat{\jmath}}(\widehat{\Phi})$  and  $\pi'_1$  is a pure strategy that is region-equivalent to  $\pi_1$ , then  $\pi'_1$  is a sure winning strategy for  $\widehat{\Phi}$  from  $\underline{\mathsf{Sure}}_1^{\widehat{\jmath}}(\widehat{\Phi})$ .

Note that there is an infinitely precise global clock z in the enlarged game structure  $\widehat{\mathcal{T}}$ . If  $\mathcal{T}$  does not have such a global clock, then strategies in  $\widehat{\mathcal{T}}$  correspond to strategies in  $\mathcal{T}$  where player 1 (and player 2) maintain the value of the infinitely precise global clock in memory (requiring infinite memory).

# 3 Safety: Pure Finite-Memory Strategies

In this section we show the existence of pure finite-memory sure winning strategies for safety objectives in timed automaton games. Given a timed automaton game  $\mathcal{T}$ , we define two functions  $P_{>0}: C \mapsto \{\text{TRUE}, \text{FALSE}\} \text{ and } P_{\geq 1}: C \mapsto \{\text{TRUE}, \text{FALSE}\} \}$ . For a clock x, the values of  $P_{>0}(x)$  and  $P_{\geq 1}(x)$  indicate if the clock x was greater than 0 or greater than or equal to 1 respectively, during the last transition (excluding the originating state). Consider the enlarged game structure  $\widetilde{\mathcal{T}}$  with the state space  $\widetilde{S} = S \times \{\text{TRUE}, \text{FALSE}\} \times \{\text{TRUE}, \text{FALSE}\}^C \times \{\text{TRUE}, \text{FALSE}\}^C$  and an augmented transition relation  $\widetilde{\delta}$ . A state of  $\widetilde{\mathcal{T}}$  is a tuple  $\langle s, bl_1, P_{>0}, P_{\geq 1} \rangle$ , where s is a state of  $\mathcal{T}$ , the component  $bl_1$  is TRUE iff player 1 is to be blamed for the last transition, and  $P_{>0}, P_{\geq 1}$  are as defined earlier. The clock equivalence relation can be lifted to states of  $\widetilde{\mathcal{T}}: \langle s, bl_1, P_{>0}, P_{\geq 1} \rangle \cong_{\widetilde{A}} \langle s', bl'_1, P'_{>0}, P'_{\geq 1} \rangle$  iff  $s \cong_{\mathcal{T}} s'$ ,  $bl_1 = bl'_1, P_{>0} = P'_{>0}$  and  $P_{\geq 1} = P'_{>1}$ .

**Lemma 2.** Let  $\mathfrak{I}$  be a timed automaton game, and  $\widetilde{\mathfrak{I}}$  be the corresponding enlarged game. Then player 1 has a receptive strategy from a state s iff  $\langle s, \cdot \rangle \in$  $\underline{\mathsf{Sure}}_1^{\widetilde{\mathfrak{I}}}(\Phi^*), \text{ where } \Phi^* = \Box \Diamond (bl_1 = \mathtt{TRUE}) \to \bigvee_{X \subseteq C} (\bigwedge_{x \in X} \Diamond \Box (x > c_x) \land \phi_X),$ 

$$\phi_{X} = (\bigwedge_{x \in C \backslash X} \Box \Diamond (x = 0)) \land \begin{pmatrix} \left( \bigvee_{x \in C \backslash X} \Box \Diamond ((P_{>0}(x) = \mathtt{TRUE}) \land (bl_{1} = \mathtt{TRUE})) \right) \\ \lor \\ \left( \bigvee_{x \in C \backslash X} \Box \Diamond ((P_{\geq 1}(x) = \mathtt{TRUE}) \land (bl_{1} = \mathtt{FALSE})) \right) \end{pmatrix}.$$

The clause  $\bigwedge_{x \in X} \Diamond \Box(x > c_x)$  specifies which clocks escape beyond their maximum values (and are never reset). The rest of the clocks hence thus be reset infinitely often in a time diverging run, this is specified by the clause  $\bigwedge_{x \in C \setminus X} \Box \Diamond$ (x=0). Suppose we have  $(\bigvee_{x\in C\setminus X}\Box\diamondsuit((P_{\geq 1}(x)=\text{TRUE})\land(bl_1=\text{FALSE}))$ . Then clearly time diverges as some clock x goes from 0 to 1 infinitely often. Suppose we have  $(\bigvee_{x\in C\setminus X}\Box\diamondsuit((P_{>0}(x)=\text{TRUE})\land(bl_1=\text{TRUE}))$ . We note that if a player can take a move from  $\widetilde{s}$  to a region  $\widetilde{R}$  where the value of some clock x is such that  $0 < x \le c_x$ , then there is some clock  $y \in C$  (possibly different from x) such that the player can take a move from  $\tilde{s}$  to the region  $\tilde{R}$  such that the value of y will be more than 1/2 (and less than or equal to  $c_y$ ). Thus, in this case, some clock goes from 0 to 1/2 infinitely often and time diverges. It turns out that these conditions are also required. The full proof can be found in [8].

**Theorem 2.** Let  $\mathcal{T}$  be a timed automaton game and  $\widetilde{\mathcal{T}}$  be the corresponding enlarged game. Let Y be a union of regions of  $\mathfrak{T}$ . Then the following assertions hold.

- 1.  $\operatorname{Sure}_{1}^{\widetilde{\mathfrak{I}}}(\Box Y) = \underline{\operatorname{Sure}_{1}^{\widetilde{\mathfrak{I}}}}((\Box Y) \wedge \Phi^{*})$ , where  $\Phi^{*}$  is as defined in Lemma 2. 2. Player 1 has a pure, finite-memory, receptive, region strategy that is sure winning for the safety objective Safe(Y) at every state in  $Sure_1^{\widetilde{T}}(\Box Y)$ .

#### Reachability: Randomized Finite-Memory Strategies 4

We have seen in Example 2 that pure sure winning strategies require infinite memory in general for reachability objectives. In this section, we shall show that uniform randomized almost-sure winning strategies with finite memory exist. This shows that we can trade-off infinite memory with uniform randomness.

Let  $S_R$  be the destination set of states that player 1 wants to reach. We only consider  $S_R$  such that  $S_R$  is a union of regions of  $\mathcal{T}$ . For the timed automaton T, consider the enlarged game structure of T. We let  $\hat{S}_R = S_R \times$  $\mathbb{R}_{[0,1]} \times \{\text{TRUE}, \text{FALSE}\}^2$ . From the reachability objective (denoted  $\text{Reach}(S_R)$ ) we obtain the reachability parity objective with index function  $\Omega_R$  as follows:  $\Omega_R(\langle s, \mathfrak{z}, tick, bl_1 \rangle) = 1$  if  $tick \vee bl_1 = \text{TRUE}$  and  $s \notin S_R$  (0 otherwise). We assume the states in  $S_R$  are absorbing. We let  $\widehat{S}_R = S_R \times \mathbb{R}_{[0,1]} \times \{\text{TRUE}, \text{FALSE}\}^2$ . We now present a  $\mu$ -calculus characterization for the sure winning set (using only pure strategies) for player 1 for reachability objectives. We first translate the reachability objective to a parity objective of index 2 (the  $\mu$ -calculus expression will use the parity index function).

**Lemma 3.** For a timed automaton game  $\Upsilon$ , with the reachability objective  $S_R$ , consider the enlarged game structure  $\widehat{\Upsilon}$ , and the corresponding reachability parity function  $\Omega_R$ . Then we have that  $\underline{\mathsf{Sure}}_1(\mathsf{TimeDivBl}(\mathsf{Reach}(S_R))) = \underline{\mathsf{Sure}}_1(\mathsf{Parity}(\Omega_R))$ .

The controllable predecessor operator for player 1,  $\mathsf{CPre}_1: 2^{\widehat{S}} \mapsto 2^{\widehat{S}}$ , defined formally by  $\widetilde{s} \in \mathsf{CPre}_1(Z)$  iff  $\exists m_1 \in \widehat{\varGamma}_1(\widehat{s}) \ \forall m_2 \in \widehat{\varGamma}_2(\widehat{s}) . \widehat{\delta}_{\mathsf{jd}}(\widehat{s}, m_1, m_2) \subseteq Z$ . Informally,  $\mathsf{CPre}_1(Z)$  consists of the set of states from which player 1 can ensure that the next state will be in Z, no matter what player 2 does. From Lemma 3 it follows that the sure winning set can be described as the  $\mu$ -calculus formula:  $\mu Y \nu X \left[ (\Omega^{-1}(1) \cap \mathsf{CPre}_1(Y)) \cup (\Omega^{-1}(0) \cap \mathsf{CPre}_1(X)) \right]$ . The winning set can then be computed as a fixpoint iteration on regions of  $\widehat{\mathfrak{I}}$ . We can also obtain a pure winning strategy  $\pi_{\mathsf{pure}}$  of player 1 as in [10]. Note that this strategy  $\pi_{\mathsf{pure}}$  corresponds to an infinite-memory strategy of player 1 in the timed automaton game  $\mathfrak{I}$ , as she needs to maintain the value of the clock z in memory.

To compute randomized finite-memory almost-sure winning strategies, we will use the structure of the  $\mu$ -calculus formula. Let  $Y^* = \mu Y \nu X$   $\left[ (\Omega^{-1}(1) \cap \mathsf{CPre}_1(Y)) \cup (\Omega^{-1}(0) \cap \mathsf{CPre}_1(X)) \right]$ . The iterative fixpoint procedure computes  $Y_0 = \emptyset \subseteq Y_1 \subseteq \cdots \subseteq Y_n = Y^*$ , where  $Y_{i+1} = \nu X$   $\left[ (\Omega^{-1}(1) \cap \mathsf{CPre}_1(Y_i)) \cup (\Omega^{-1}(0) \cap \mathsf{CPre}_1(X)) \right]$ . We can consider the states in  $Y_i \setminus Y_{i-1}$  as being added in two steps,  $T_{2i-1}$  and  $T_{2i}(=Y_i)$  as follows:

1.  $T_{2i-1} = \Omega^{-1}(1) \cap \mathsf{CPre}_1(Y_{i-1})$ .  $T_{2i-1}$  is clearly a subset of  $Y_i$ . 2.  $T_{2i} = \nu X \left[ T_{2i-1} \cup (\Omega^{-1}(0) \cap \mathsf{CPre}_1(X)) \right]$ . Note  $(T_{2i} \setminus T_{2i-1}) \cap \Omega^{-1}(1) = \emptyset$ .

Thus, in odd stages we add states with index 1, and in even stages we add states with index 0. The rank of a state  $\hat{s} \in Y^*$  is j if  $\hat{s} \in T_j \setminus \bigcup_{k=0}^{j-1} T_k$ . The set  $S_R$  is a union of regions of  $\mathfrak{T}$ .  $T_0 = T_1 = \emptyset$ , and  $T_2$  contains the states in  $\hat{S}_R$  together with the states where  $tick = bl_1 = \text{FALSE}$ , and from where player 1 can ensure that the next state is either in  $\hat{S}_R$ , or the next state continues to have  $tick = bl_1 = \text{FALSE}$ ; formally  $T_2 = \nu X(\Omega^{-1}(0) \cap \mathsf{CPre}_1(X))$ . Henceforth, when we refer to a region R of  $\mathfrak{T}$ , we shall mean the states  $R \times \mathbb{R}_{[0,1]} \times \{\mathsf{TRUE}, \mathsf{FALSE}\}^2$  of  $\widehat{\mathfrak{T}}$ .

**Lemma 4.** Let  $T_2 = \nu X(\Omega^{-1}(0) \cap \mathsf{CPre}_1(X))$ . Then player 1 has a (randomized) memoryless strategy  $\pi_{\mathsf{rand}}$  such that she can ensure reaching  $\widehat{S}_R \subseteq \Omega^{-1}(0)$  with probability 1 against all receptive strategies of player 2 from all states  $\widehat{s}$  of a region R such that  $R \cap T_2 \neq \emptyset$ . Moreover,  $\pi_{\mathsf{rand}}$  is independent of the values of the global clock, tick and  $bl_1$ .

We now present the main proof ideas for Lemma 4. For a set T of states, we shall denote by  $\operatorname{Reg}(T)$  the set of states that are region equivalent in  $\mathfrak{T}$  to some state in T. The proof first shows that from every state  $\widehat{s}$  in  $\operatorname{Reg}(T_2 \setminus \widehat{S}_R)$ , either a) player 1 has a move to  $\widehat{S}_R$ , or b) the invariant of the location of  $\widehat{s}$  is closed, such that time can progress from  $\widehat{s}$  to the endpoint without the clock z crossing 1, and with player 2 having no moves outside of  $\operatorname{Reg}(T_2 \setminus \widehat{S}_R)$ . From every state in  $\operatorname{Reg}(T_2 \setminus \widehat{S}_R)$ , the strategy  $\pi_{\mathsf{pure}}$  prescribes a move to either  $\widehat{S}_R$ , or to the

right endpoint of the invariant of the location if it is right closed (effectively relinquishing the move to player 2). If player 1 relinquishes the move in such a manner, then so does  $\pi_{\text{rand}}$ . If  $\pi_{\text{pure}}$  prescribes a move to  $\widehat{S}_R$ , there is an earliest destination region  $\widehat{R}'$  for player 1 to come to  $\widehat{S}_R$ , and a corresponding interval I of times which takes her to  $\widehat{R}'$ . If this interval is left closed, then  $\pi_{\text{rand}}$  chooses this leftmost endpoint. If I is not left closed, then  $\pi_{\text{rand}}$  proposes a randomized move, with the time being distributed uniformly at random over  $(\alpha_l, \alpha_l + 1/2]$  where  $\alpha_l$  is the leftmost endpoint of I. We then show that if player 2 plays with a receptive strategy, then if player 1 plays a randomized move infinitely often, then a randomized move with  $\alpha_l = 0$  must occur infinitely often. Finally, we demonstrate that for this randomized move (of  $\alpha_l = 0$ ) that player 1 plays infinitely often, the probability of it not being chosen against a receptive strategy of player 2 is 0. The full proof can be found in [8].

The following lemma states that if for some state  $s \in \mathcal{T}$ , we have  $(s, \mathfrak{z}, tick, bl_1) \in T_{2i+1}$ , for some i, then for some  $\mathfrak{z}', tick', bl_1'$  we have  $(s, \mathfrak{z}', tick', bl_1') \in T_{2i}$ . Then in Lemma 6 we present the inductive case of Lemma 4. The proof of Lemma 6 is similar to the base case i.e., Lemma 4.

**Lemma 5.** Let R be a region of  $\mathbb{T}$  such that  $R \cap T_{2i+1} \neq \emptyset$ . Then  $R \cap T_{2i} \neq \emptyset$ .

**Lemma 6.** Let R be a region of  $\mathfrak{T}$  such that  $R \cap T_{2i} \neq \emptyset$ , and  $R \cap T_j = \emptyset$  for all  $2 \leq j < 2i$ . Then player 1 has a (randomized) memoryless strategy  $\pi_{\mathsf{rand}}$  to go from R to some R' such that  $R' \cap T_j \neq \emptyset$  for some j < 2i with probability 1 against all receptive strategies of player 2. Moreover,  $\pi_{\mathsf{rand}}$  is independent of the values of the global clock, tick and  $bl_1$ .

Once player 1 reaches the target set, she can switch over to the finite-memory receptive strategy of Lemma 2. Thus, using Lemmas 2, 4, 5, and 6 we have the following theorem.

**Theorem 3.** Let  $\mathcal{T}$  be a timed automaton game, and let  $S_R$  be a union of regions of  $\mathcal{T}$ . Player 1 has a randomized, finite-memory, receptive, region strategy  $\pi_1$  such that for all states  $s \in \mathsf{Sure}_1(\mathsf{Reach}(S_R))$ , the following assertions hold: (a) for all receptive strategies  $\pi_2$  of player 2 we have  $\Pr_s^{\pi_1,\pi_2}(\mathsf{Reach}(S_R)) = 1$ ; and (b) for all strategies  $\pi_2$  of player 2 we have  $\Pr_s^{\pi_1,\pi_2}(\mathsf{TimeDivBl}_1(\mathsf{Reach}(S_R))) = 1$ .

# 5 Parity: Randomized Finite-Memory Strategies

In this section we show that randomized finite-memory almost-sure strategies exist for parity objectives. Let  $\Omega: S \mapsto \{0,\dots,k\}$  be the parity index function. We consider the case when k=2d for some d, and the case when k=2d-1, for some d can be proved using similar arguments. Given a timed game structure  $\mathcal{T}$ , a set  $X \subsetneq S$ , and a parity function  $\Omega: S \mapsto \{0,\dots,2d\}$ , with d>0, let  $\langle \mathcal{T}',\Omega'\rangle = \mathsf{ModifyEven}(\mathcal{T},\Omega,X)$  be defined as follows: (a) the state space S' of  $\mathcal{T}'$  is  $\{s^{\perp}\} \cup S \setminus X$ , where  $s^{\perp} \notin S$ ; (b)  $\Omega'(s^{\perp}) = 2d-2$ , and  $\Omega' = \Omega$  otherwise; (c)  $\Gamma'_i(s) = \Gamma_i(s)$  for  $s \in S \setminus X$ , and  $\Gamma'_i(s^{\perp}) = \Gamma_i(s^{\perp}) = \mathbb{R}_{\geq 0} \times \bot$ ; and (d)  $\delta'(s,m) = \delta(s,m)$  if  $\delta(s,m) \notin S \setminus X$ , and  $\delta'(s,m) = s^{\perp}$  otherwise. We

will use the function ModifyEven to play timed games on a subset of the original structure. The extra state, and the modified transition function are to ensure well-formedness of the reduced structure. We will now obtain receptive strategies for player 1 for the objective Parity( $\Omega$ ) using winning strategies for reachability and safety objectives. We consider the following procedure.

- 1.  $T_0 = T$ , and i := 0;
- 2. Compute  $X_i = \mathsf{Sure}_1^{\mathfrak{T}_i}(\diamondsuit(\varOmega^{-1}(2d))).$
- 3. Let  $\langle \mathfrak{T}_i', \Omega' \rangle = \mathsf{ModifyEven}(\mathfrak{T}_i, \Omega, X_i)$ ; and let  $Y_i = \mathsf{Sure}_1^{\mathfrak{T}_i'}(\mathsf{Parity}(\Omega'))$ . Let  $L_i = S_i \setminus Y_i$ , where  $S_i$  is the set of states of  $\mathfrak{T}_i$ .
- 4. Compute  $Z_i = \mathsf{Sure}_1^{\mathfrak{T}_i}(\Box(S_i \setminus L_i))$ .
- 5. Let  $(\mathfrak{T}_{i+1}, \Omega) = \mathsf{ModifyEven}(\mathfrak{T}, \Omega, S \setminus Z_i)$  and i := i + 1.
- 6. Go to step 2, unless  $Z_{i-1} = S_i$ .

It can be shown that (a) when the above procedure terminates, then we have  $(S \setminus Z_i) \cap \mathsf{Sure}_1^{\mathfrak{I}}(\mathsf{Parity}(\Omega)) = \emptyset$ , and (b) there is a randomized, finite-memory, receptive, region almost-sure winning strategy for every state in  $Z_i$ , provided that player 1 has access to imprecise clock events such that between any two events, some time more than  $\Delta$  passes for a fixed real  $\Delta > 0$ . Player 1 only uses the clock events to observe the passage of some amount of time greater than  $\Delta$  (it does not have access to the exact amount of time that passes). The details of the winning strategy can be found in [8].

**Theorem 4.** Let  $\mathcal{T}$  be a timed automaton game, and let  $\Omega$  be a region parity index function. Suppose that player 1 has access to imprecise clock events such that between any two events, some time more than  $\Delta$  passes for a fixed real  $\Delta > 0$ . Then, player 1 has a randomized, finite-memory, receptive, region strategy  $\pi_1$  such that for all states  $s \in \text{Sure}_1(\text{Parity}(\Omega))$ , the following assertions hold: (a) for all receptive strategies  $\pi_2$  of player 2 we have  $\Pr_s^{\pi_1,\pi_2}(\text{Parity}(\Omega)) = 1$ ; and (b) for all strategies  $\pi_2$  of player 2 we have  $\Pr_s^{\pi_1,\pi_2}(\text{TimeDivBI}_1(\text{Parity}(\Omega))) = 1$ .

Finally, the following theorem shows that though randomization can get rid of infinite memory with respect to almost-sure winning, it does not help to win in more states, and hence that the set of sure and almost-sure winning states coincide for  $\omega$ -regular objectives.

**Theorem 5.** Consider a timed automaton game and an  $\omega$ -regular objective  $\Phi$ . For every state  $s \notin \mathsf{Sure}_1^{\mathsf{T}}(\Phi)$ , every real  $\varepsilon > 0$ , and every randomized strategy  $\pi_1 \in \Pi_1$  for player 1, there is a pure strategy  $\pi_2^{\varepsilon} \in \Pi_2^{\mathsf{pure}}$  for player 2 such that  $\Pr_s^{\pi_1,\pi_2^{\varepsilon}}(\mathsf{TimeDivBl}_1(\Phi)) \leq \varepsilon$ .

### References

- Adler, B., de Alfaro, L., Faella, M.: Average reward timed games. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 65–80. Springer, Heidelberg (2005)
- Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

- 3. Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–88. Springer, Heidelberg (1997)
- Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)
- Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–160. Springer, Heidelberg (2004)
- Bouyer, P., D'Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 180–192. Springer, Heidelberg (2003)
- Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)
- Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Trading infinite memory for uniform randomness in timed games. Technical Report UCB/EECS-2008-4, EECS Department, University of California, Berkeley (January 2008)
- de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)
- de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinitestate games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 536–550. Springer, Heidelberg (2001)
- 11. D'Souza, D., Madhusudan, P.: Timed control synthesis for external specifications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer, Heidelberg (2002)
- 12. Faella, M., La Torre, S., Murano, A.: Automata-theoretic decision of timed games. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 94–108. Springer, Heidelberg (2002)
- 13. Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: LICS 2002, pp. 167–176. IEEE Computer Society, Los Alamitos (2002)
- Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theoretical Computer Science 221, 369–392 (1999)
- Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Heidelberg (2006)
- Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)
- 17. Pnueli, A., Asarin, E., Maler, O., Sifakis, J.: Controller synthesis for timed automata. In: Proc. System Structure and Control, Elsevier, Amsterdam (1998)
- 18. Segala, R., Gawlick, R., Søgaard-Andersen, J.F., Lynch, N.A.: Liveness in timed and untimed systems. Inf. Comput. 141(2), 119–171 (1998)
- 19. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Vol. 3, Beyond Words, ch. 7, pp. 389–455. Springer, Heidelberg (1997)
- Wong-Toi, H., Hoffmann, G.: The control of dense real-time discrete event systems.
  In: Proc. of 30th Conf. Decision and Control, pp. 1527–1528 (1991)