Cơ sở và số chiều của không gian vector

Hà Minh Lam hmlam@math.ac.vn

2021-2022

Tóm tắt

- Hệ sinh và hệ độc lập tuyến tính
 - Tổ hợp tuyến tính
 - Hệ sinh
 - Hệ độc lập tuyến tính
- Cơ sở và số chiều
 - Cơ sở của một không gian vector
 - Số chiều của một không gian vector

Tóm tắt

- Hệ sinh và hệ độc lập tuyến tính
 - Tổ hợp tuyến tính
 - Hê sinh
 - Hệ độc lập tuyến tính
- Cơ sở và số chiều
 - Cơ sở của một không gian vector
 - Số chiều của một không gian vector

Định nghĩa

Cho không gian vector V và các vector $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong V.

Ta nói vector **u** là một tổ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.$$

Định nghĩa

Cho không gian vector V và các vector $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong V.

Ta nói vector **u** là một tổ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.$$

•
$$V = \mathbb{R}^3$$
, $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$.
• $\mathbf{u} = (-2, 5, 8) = -2\mathbf{e}_1 + 5\mathbf{e}_2 + 8\mathbf{e}_3$

Định nghĩa

Cho không gian vector V và các vector $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong V.

Ta nói vector **u** là một tổ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{u}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k.$$

- $V = \mathbb{R}^3$, $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$. • $\mathbf{u} = (-2, 5, 8) = -2\mathbf{e}_1 + 5\mathbf{e}_2 + 8\mathbf{e}_3$
- $V = \mathbb{R}^3$, $\mathbf{v}_1 = (0, 1, 2)$, $\mathbf{v}_2 = (1, 0, 3)$. $\mathbf{u} = (-1, 2, 1) = 2\mathbf{v}_1 - \mathbf{v}_2$

Định nghĩa

Cho không gian vector V và các vector $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ trong V.

Ta nói vector **u** là một tổ hợp tuyến tính của các vector $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ nếu tồn tại các vô hướng c_1, c_2, \dots, c_k sao cho:

$$\mathbf{u}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k.$$

- $V = \mathbb{R}^3$, $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$. • $\mathbf{u} = (-2, 5, 8) = -2\mathbf{e}_1 + 5\mathbf{e}_2 + 8\mathbf{e}_3$
- $V = \mathbb{R}^3$, $\mathbf{v}_1 = (0, 1, 2)$, $\mathbf{v}_2 = (1, 0, 3)$. $\mathbf{u} = (-1, 2, 1) = 2\mathbf{v}_1 - \mathbf{v}_2$
- $V = M_{2,2}$, $A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 0 \\ 1 & 3 \end{pmatrix}$ $P = \begin{pmatrix} 0 & 8 \\ 2 & 1 \end{pmatrix} = A + 2B - C$.

Ví dụ: $V = \mathbb{R}^3$, $\mathbf{v}_1 = (1,2,3)$, $\mathbf{v}_2 = (0,1,2)$, $\mathbf{v}_3 = (-1,0,1)$ và $\mathbf{u} = (1,1,1)$. Hỏi \mathbf{u} có phải là một tổ hợp tuyến tính của $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$?

Ví dụ: $V = \mathbb{R}^3$, $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (0, 1, 2)$, $\mathbf{v}_3 = (-1, 0, 1)$ và $\mathbf{u} = (1, 1, 1)$. Hỏi \mathbf{u} có phải là một tổ hợp tuyến tính của \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 ?

Ta cần tìm các số thực x, y, z sao cho $x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 = \mathbf{u}$. Việc này tương đương với giải hệ pttt sau:

$$\begin{cases} x & -z = 1 \\ 2x + y & = 1 \\ 3x + 2y + z = 1 \end{cases}$$

Hệ có vô số nghiệm: $x=1+t, y=-1-2t, z=t, t\in\mathbb{R}$. Chọn chẳng hạn t=1, ta được một biểu diễn của \mathbf{u} dưới dạng tổ hợp tuyến tính của $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$:

$$u = 2v_1 - 3v_2 + v_3$$
.

H. M. Lam Cơ sở và số chiều 2021-2022 5 / 28

Ví dụ: $V = \mathbb{R}^3$, $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (0, 1, 2)$, $\mathbf{v}_3 = (-1, 0, 1)$ và $\mathbf{w} = (1, -2, 2)$. Hỏi \mathbf{w} có phải là một tổ hợp tuyến tính của \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 ?

6/28

Ví dụ: $V = \mathbb{R}^3$, $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (0, 1, 2)$, $\mathbf{v}_3 = (-1, 0, 1)$ và $\mathbf{w} = (1, -2, 2)$. Hỏi \mathbf{w} có phải là một tổ hợp tuyến tính của $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$?

Ta cần tìm các số thực x, y, z sao cho $x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 = \mathbf{w}$. Việc này tương đương với giải hệ pttt sau:

$$\begin{cases} x & -z = 1 \\ 2x + y & = -2 \\ 3x + 2y + z = 2 \end{cases}$$

Hệ vô nghiệm. Do đó \mathbf{w} không là một tổ hợp tuyến tính của $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

H. M. Lam Cơ sở và số chiều 2021-2022 6 / 28

Tóm tắt

- Hệ sinh và hệ độc lập tuyến tính
 - Tổ hợp tuyến tính
 - Hệ sinh
 - Hệ độc lập tuyến tính
- Cơ sở và số chiều
 - Cơ sở của một không gian vector
 - Số chiều của một không gian vector

Định nghĩa và ví dụ

Cho V là một không gian vector.

Định nghĩa

Tập hợp $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ được gọi là một hệ sinh (hay tập hợp sinh) của V nếu mọi vector $\mathbf{v} \in V$ đều là một tổ hợp tuyến tính của các vector trong S.

Định nghĩa và ví dụ

Cho V là một không gian vector.

Định nghĩa

Tập hợp $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ được gọi là một hệ sinh (hay tập hợp sinh) của V nếu mọi vector $\mathbf{v} \in V$ đều là một tổ hợp tuyến tính của các vector trong S.

Ví dụ:

- Tập hợp $\{(1,0),(0,1)\}$ là một hệ sinh của \mathbb{R}^2 .
- Tập hợp $\{(1,0,0),(0,1,0),(0,0,1)\}$ là một hệ sinh của \mathbb{R}^3 .
- Tập hợp $\{1, x, x^2\}$ là một hệ sinh của P_2 .
- Tập hợp $\{(1,2,3),(0,1,2),(-2,0,1)\}$ là một hệ sinh của \mathbb{R}^3 .
- Tập hợp $\{(1,2,3),(0,1,2),(-1,0,1)\}$ không phải là một hệ sinh của \mathbb{R}^3 (xét $\mathbf{w}=(1,-2,2)$).

H. M. Lam Cơ sở và số chiều 2021-2022 8 / 28

Không gian con sinh bởi một tập hợp

Cho V là một không gian vector và $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subset V$. Đặt span(S) là tập hợp tất cả các tổ hợp tuyến tính của các vector trong S:

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

Không gian con sinh bởi một tập hợp

Cho V là một không gian vector và $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subset V$. Đặt span(S) là tập hợp tất cả các tổ hợp tuyến tính của các vector trong S:

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

Định lý

Tập hợp span(S) là một không gian con của V. Đó là không gian con bé nhất (theo nghĩa bao hàm) của V chứa S (nói cách khác, nếu W là một không gian con của V và $S \subset W$ thì span(S) $\subset W$).

H. M. Lam Cơ sở và số chiều 2021-2022 9 / 28

Không gian con sinh bởi một tập hợp

Cho V là một không gian vector và $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subset V$. Đặt span(S) là tập hợp tất cả các tổ hợp tuyến tính của các vector trong S:

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

Định lý

Tập hợp span(S) là một không gian con của V. Đó là không gian con bé nhất (theo nghĩa bao hàm) của V chứa S (nói cách khác, nếu W là một không gian con của V và $S \subset W$ thì span(S) $\subset W$).

Ví dụ: Xét không gian \mathbb{R}^3 .

- Nếu $\mathbf{v}_1 \neq \mathbf{0}$, $span\{\mathbf{v}_1\}$ là đường thắng có phương \mathbf{v}_1 .
- Nếu \mathbf{v}_1 và \mathbf{v}_2 không cùng phương, $span\{\mathbf{v}_1,\mathbf{v}_2\}$ là mặt phẳng chứa \mathbf{v}_1 và \mathbf{v}_2 .
- Nếu $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ không cùng phương, không đồng phẳng thì $span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3$.

Tóm tắt

- Hệ sinh và hệ độc lập tuyến tính
 - Tổ hợp tuyến tính
 - Hê sinh
 - Hệ độc lập tuyến tính
- Cơ sở và số chiều
 - Cơ sở của một không gian vector
 - Số chiều của một không gian vector

Ví dụ: so sánh hai hệ sinh

Trong \mathbb{R}^3 , xét $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (0, 1, 2)$, $\mathbf{v}_3 = (-1, 0, 1)$ và xét không gian con $W = span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

 $\mbox{Vi } \textbf{v}_1 = 2\textbf{v}_2 - \textbf{v}_3 \mbox{ nên } span\left\{\textbf{v}_1,\textbf{v}_2,\textbf{v}_3\right\} = span\left\{\textbf{v}_2,\textbf{v}_3\right\}.$

Giữa hai hệ sinh $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ và $\{\mathbf{v}_2, \mathbf{v}_3\}$ của W, hệ sinh thứ hai "nhỏ" hơn.

H. M. Lam Cơ sở và số chiều 2021-2022 11 / 28

Ví dụ: so sánh hai hệ sinh

Trong \mathbb{R}^3 , xét $\mathbf{v}_1 = (1, 2, 3), \mathbf{v}_2 = (0, 1, 2), \mathbf{v}_3 = (-1, 0, 1)$ và xét không gian con $W = span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

 $\forall i \ \textbf{v}_1 = 2\textbf{v}_2 - \textbf{v}_3 \ \text{n\'en } span\left\{\textbf{v}_1,\textbf{v}_2,\textbf{v}_3\right\} = span\left\{\textbf{v}_2,\textbf{v}_3\right\}.$

Giữa hai hệ sinh $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ và $\{\mathbf{v}_2, \mathbf{v}_3\}$ của W, hệ sinh thứ hai "nhỏ" hơn.

Nhưng đó liệu đã phải là hệ sinh "nhỏ" nhất?

Hệ độc lập tuyến tính

Định nghĩa

Tập hợp $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ được gọi là độc lập tuyến tính nếu phương trình

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_k\mathbf{v}_k=\mathbf{0}$$

chỉ có nghiệm tầm thường $(x_i = 0)$. Ngược lại, nếu phương trình trên có nghiệm không tầm thường thì S được gọi là phụ thuộc tuyến tính.

Hệ độc lập tuyến tính

Định nghĩa

Tập hợp $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ được gọi là độc lập tuyến tính nếu phương trình

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_k\mathbf{v}_k=\mathbf{0}$$

chỉ có nghiệm tầm thường $(x_i = 0)$. Ngược lại, nếu phương trình trên có nghiệm không tầm thường thì S được gọi là phụ thuộc tuyến tính.

Chú ý:

- Đắng thức $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_k\mathbf{v}_k = \mathbf{0}$ được gọi là một *ràng buộc tuyến tính* của S.
- Nếu các $x_i = 0$ với mọi i thì ràng buộc tuyến tính được gọi là tầm thường, nếu tồn tại một $x_i \neq 0$ thì ràng buộc tuyến tính được gọi là không tầm thường.

Ví dụ:

 $\begin{tabular}{ll} \bullet & \{(1,2,3),(0,1,2),(-1,0,1)\} \ phụ thuộc tuyến tính. \\ \end{tabular}$

- $\{(1,2,3),(0,1,2),(-1,0,1)\}$ phụ thuộc tuyến tính.
- $\{(1,2,3),(0,1,2),(-2,0,1)\}$ độc lập tuyến tính.

- $\{(1,2,3),(0,1,2),(-1,0,1)\}$ phụ thuộc tuyến tính.
- ② $\{(1,2,3),(0,1,2),(-2,0,1)\}$ độc lập tuyến tính.
- $\{1+x-2x^2, 2+5x-x^2, x+x^2\} \text{ phụ thuộc tuyến tính.}$ $(\text{do } 2(1+x-2x^2)+(-1)(2+5x-x^2)+3(x+x^2)=0)$

Ví dụ:

- $\{(1,2,3),(0,1,2),(-1,0,1)\}$ phụ thuộc tuyến tính.
- ② $\{(1,2,3),(0,1,2),(-2,0,1)\}$ độc lập tuyến tính.

13 / 28

Giả sử $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}$ là một ràng buộc tuyến tính không tầm thường. Giả sử $c_k\neq 0$.

H. M. Lam Cơ sở và số chiều 2021-2022 14 / 28

Giả sử $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}$ là một ràng buộc tuyến tính không tầm thường. Giả sử $c_k\neq 0$.

Khi đó \mathbf{v}_k là một tổ hợp tuyến tính của các vector còn lại:

$$\mathbf{v}_k = -\frac{c_1}{c_k}\mathbf{v}_1 - \frac{c_2}{c_k}\mathbf{v}_2 - \cdots - \frac{c_{k-1}}{c_k}\mathbf{v}_{k-1}.$$

Giả sử $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}$ là một ràng buộc tuyến tính không tầm thường. Giả sử $c_k\neq 0$.

Khi đó \mathbf{v}_k là một tổ hợp tuyến tính của các vector còn lại:

$$\mathbf{v}_k = -\frac{c_1}{c_k}\mathbf{v}_1 - \frac{c_2}{c_k}\mathbf{v}_2 - \cdots - \frac{c_{k-1}}{c_k}\mathbf{v}_{k-1}.$$

Định lý

Tập hợp $S=\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}$ $(k\geq 2)$ là phụ thuộc tuyến tính nếu và chỉ nếu một trong các vector \mathbf{v}_i là một tổ hợp tuyến tính của các vector còn lại

H. M. Lam Cơ sở và số chiều 2021-2022 14 / 28

Giả sử $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}$ là một ràng buộc tuyến tính không tầm thường. Giả sử $c_k\neq 0$.

Khi đó \mathbf{v}_k là một tổ hợp tuyến tính của các vector còn lại:

$$\mathbf{v}_k = -\frac{c_1}{c_k}\mathbf{v}_1 - \frac{c_2}{c_k}\mathbf{v}_2 - \cdots - \frac{c_{k-1}}{c_k}\mathbf{v}_{k-1}.$$

Định lý

Tập hợp $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ $(k \geq 2)$ là phụ thuộc tuyến tính nếu và chỉ nếu một trong các vector \mathbf{v}_i là một tổ hợp tuyến tính của các vector còn lại

Hệ quả

- Hai vector v₁, v₂ là phụ thuộc tuyến tính nếu và chỉ nếu một trong hai vector là bội của vector còn lại.
- Nếu S chứa 0 thì S phụ thuộc tuyến tính.
- Nếu S chứa một tập hợp phụ thuộc tuyến tính T thì S cũng phụ thuôc tuyến tính.

Tóm tắt

- Hệ sinh và hệ độc lập tuyến tính
 - Tổ hợp tuyến tính
 - Hê sinh
 - Hê độc lập tuyến tính
- Cơ sở và số chiều
 - Cơ sở của một không gian vector
 - Số chiều của một không gian vector

Định nghĩa

Cho V là một không gian vector. Tập hợp $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ được gọi là một cơ sở của V nếu:

- S là một hệ sinh của V;
- 2 S độc lập tuyến tính.

Định nghĩa

Cho V là một không gian vector. Tập hợp $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ được gọi là một cơ sở của V nếu:

- S là một hệ sinh của V;
- 2 S độc lập tuyến tính.

Chú ý: Định nghĩa này thừa nhận rằng V có một hệ sinh hữu hạn. Điều này không phải lúc nào cũng đúng, nhưng trong phần còn lại của môn học, chúng ta chỉ xét những không gian *hữu hạn sinh*.

Ví dụ:

• $\{(1,0),(0,1)\}$ là một cơ sở, gọi là cơ sở chính tắc của \mathbb{R}^2 .

- $\{(1,0),(0,1)\}$ là một cơ sở, gọi là *cơ sở chính tắc* của \mathbb{R}^2 .
- $\{(1,-1),(1,2)\}\$ là một cơ sở của \mathbb{R}^2 .

- $\{(1,0),(0,1)\}$ là một cơ sở, gọi là cơ sở chính tắc của \mathbb{R}^2 .
- $\{(1,-1),(1,2)\}$ là một cơ sở của \mathbb{R}^2 .
- $\{(1,0,0),(0,1,0),(0,0,1)\}\$ là cơ sở chính tắc của \mathbb{R}^3 .

Cơ sở của một không gian vector

- $\{(1,0),(0,1)\}$ là một cơ sở, gọi là cơ sở chính tắc của \mathbb{R}^2 .
- ② $\{(1,-1),(1,2)\}$ là một cơ sở của \mathbb{R}^2 .
- $\{(1,0,0),(0,1,0),(0,0,1)\}\$ là cơ sở chính tắc của \mathbb{R}^3 .
- 4 $\{1, x, x^2\}$ là cơ sở chính tắc của P_2 .

Cơ sở của một không gian vector

- $\{(1,0),(0,1)\}\$ là một cơ sở, gọi là cơ sở chính tắc của \mathbb{R}^2 .
- $\{(1,-1),(1,2)\}\$ là môt cơ sở của \mathbb{R}^2 .
- $\{(1,0,0),(0,1,0),(0,0,1)\}\$ là cơ sở chính tắc của \mathbb{R}^3 .
- $\{1, x, x^2\}$ là cơ sở chính tắc của P_2 .
- của $M_{2,2}$.

Định lý

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi vector của V đều có thể biểu diễn được một cách duy nhất dưới dạng tổ hợp tuyến tính của S.

Định lý

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi vector của V đều có thể biểu diễn được một cách duy nhất dưới dạng tổ hợp tuyến tính của S.

Chứng minh:

• Biểu diễn được: do S là hệ sinh.

Định lý

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi vector của V đều có thể biểu diễn được một cách duy nhất dưới dạng tổ hợp tuyến tính của S.

Chứng minh:

- Biểu diễn được: do S là hệ sinh.
- Duy nhất: Giả sử một vector \mathbf{u} nào đó có hai cách biểu diễn dưới dạng tổ hợp tuyến tính của S là $\mathbf{u} = \sum c_i \mathbf{v}_i = \sum c_i' \mathbf{v}_i$. Suy ra $\sum (c_i c_i') \mathbf{v}_i$ là một ràng buộc tuyến tính của S. Do S độc lập tuyến tính nên ràng buộc tuyến tính này là tầm thường, tức là $c_i = c_i'$ với moi i.

Định lý

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi vector của V đều có thể biểu diễn được một cách duy nhất dưới dạng tổ hợp tuyến tính của S.

Chứng minh:

- Biểu diễn được: do S là hệ sinh.
- Duy nhất: Giả sử một vector \mathbf{u} nào đó có hai cách biểu diễn dưới dạng tổ hợp tuyến tính của S là $\mathbf{u} = \sum c_i \mathbf{v}_i = \sum c_i' \mathbf{v}_i$. Suy ra $\sum (c_i c_i') \mathbf{v}_i$ là một ràng buộc tuyến tính của S. Do S độc lập tuyến tính nên ràng buộc tuyến tính này là tầm thường, tức là $c_i = c_i'$ với moi i.

Chú ý: Chiều ngược lại của định lý cũng đúng (chứng minh: bài tập).

Ví dụ: Trong \mathbb{R}^3 , xét $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}.$

- **①** Chứng minh rằng S là một cơ sở của \mathbb{R}^3 .
- ② Viết $\mathbf{w} = (1,0,0)$ dưới dạng tổ hợp tuyến tính của S.

Ví dụ: Trong \mathbb{R}^3 , xét $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}.$

- **1** Chứng minh rằng S là một cơ sở của \mathbb{R}^3 .
- ② Viết $\mathbf{w} = (1,0,0)$ dưới dạng tổ hợp tuyến tính của S.

Giải:

1 Xét vector $\mathbf{u} = (a, b, c)$ bất kỳ trong \mathbb{R}^3 . Phương trình $x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 = \mathbf{u}$ tương đương với hệ phương trình tuyến tính:

$$\begin{cases} x & -2z = a \\ 2x + y & = b \\ 3x + 2y + z = c \end{cases}$$

Ma trận hệ số của hệ này khả nghịch, nên hệ có nghiệm duy nhất với mọi a,b,c.

Do đó mọi vector ${\bf u}$ có thể biểu diễn một cách duy nhất dưới dạng tổ hợp tuyến tính của S, có nghĩa S là một cơ sở của \mathbb{R}^3 .

Ví dụ: Trong \mathbb{R}^3 , xét $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}.$

- **1** Chứng minh rằng S là một cơ sở của \mathbb{R}^3 .
- ② Viết $\mathbf{w} = (1,0,0)$ dưới dạng tổ hợp tuyến tính của S.

Giải:

1 Xét vector $\mathbf{u} = (a, b, c)$ bất kỳ trong \mathbb{R}^3 . Phương trình $x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 = \mathbf{u}$ tương đương với hệ phương trình tuyến tính:

$$\begin{cases} x & -2z = a \\ 2x + y & = b \\ 3x + 2y + z = c \end{cases}$$

Ma trận hệ số của hệ này khả nghịch, nên hệ có nghiệm duy nhất với mọi a,b,c.

Do đó mọi vector \mathbf{u} có thể biểu diễn một cách duy nhất dưới dạng tổ hợp tuyến tính của S, có nghĩa S là một cơ sở của \mathbb{R}^3 .

② Giải hệ trên với a=1,b=0,c=0 ta được x=-1,y=2,z=-1. Vậy $\mathbf{w}=-\mathbf{v}_1+2\mathbf{v}_2-\mathbf{v}_3.$

Định lý

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi hệ có nhiều hơn n vector của V đều phụ thuộc tuyến tính.

Định lý

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi hệ có nhiều hơn n vector của V đều phụ thuộc tuyến tính.

Chứng minh: Giả sử $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ với m > n. Ta cần tìm các số x_1, \dots, x_m không đồng thời bằng 0 sao cho:

$$x_1\mathbf{u}_1+\cdots+x_m\mathbf{u}_m=\mathbf{0}. \tag{1}$$

Vì S là một cơ sở nên mỗi vector \mathbf{u}_j $(j=1,\ldots,m)$ đều biểu diễn được (duy nhất) dưới dạng tổ hợp tuyến tính của S:

$$\mathbf{u}_j = a_{1,j}\mathbf{v}_1 + \cdots + a_{n,j}\mathbf{v}_n.$$

Thay vào (1) và nhóm các hệ số của từng \mathbf{v}_i lại với nhau, ta thu được:

H. M. Lam Cơ sở và số chiều 2021-2022 20 / 28

$$b_1\mathbf{v}_1+\cdots+b_n\mathbf{v}_n=\mathbf{0}\,,$$

ở đó

$$b_i = a_{i,1}x_1 + \cdots + a_{i,m}x_m,$$

với mọi $i = 1, \ldots, n$.

Vì S độc lập tuyến tính nên $b_1 = \cdots = b_n = 0$, hay:

$$\begin{cases} a_{1,1}x_1+\cdots+a_{1,m}x_m = 0\\ \dots\\ a_{n,1}x_1+\cdots+a_{n,m}x_m = 0. \end{cases}$$

Hệ này có số ẩn $(m \, \text{ẩn})$ lớn hơn số phương trình $(n \, \text{phương trình})$ nên có nghiệm không tầm thường.

Hệ quả

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi cơ sở của V có đúng n vector.

Hệ quả

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi cơ sở của V có đúng n vector.

- Vì cơ sở chính tắc của \mathbb{R}^3 có 3 vector nên:
 - Hệ $\{(1,2,3),(-1,0,2),(2,4,0),(5,9,-1)\}$ là phụ thuộc tuyến tính;
 - Hệ $\{(3,2,1),(7,-1,4)\}$ không phải là một cơ sở của \mathbb{R}^3 .

Hệ quả

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian vector V thì mọi cơ sở của V có đúng n vector.

- Vì cơ sở chính tắc của \mathbb{R}^3 có 3 vector nên:
 - Hệ $\{(1,2,3),(-1,0,2),(2,4,0),(5,9,-1)\}$ là phụ thuộc tuyến tính;
 - Hệ $\{(3,2,1),(7,-1,4)\}$ không phải là một cơ sở của \mathbb{R}^3 .
- Vì cơ sở chính tắc của P_3 có 4 vector nên:
 - Hệ $\left\{1,1+x,1-x^2,x+x^2+x^3,x-2x^3\right\}$ là phụ thuộc tuyến tính;
 - Hệ $\{2x, x^2, 3x^3\}$ không phải là một cơ sở của P_3 .

Tóm tắt

- Hệ sinh và hệ độc lập tuyến tính
 - Tổ hợp tuyến tính
 - Hê sinh
 - Hệ độc lập tuyến tính
- Cơ sở và số chiều
 - Cơ sở của một không gian vector
 - Số chiều của một không gian vector

Định nghĩa

Nếu không gian vector V có một cơ sở gồm n vector thì ta nói V là một không gian vector hữu hạn chiều với số chiều bằng n, và viết $\dim(V) = n$. Ta quy ước rằng $\dim(\{\mathbf{0}\}) = 0$.

Định nghĩa

Nếu không gian vector V có một cơ sở gồm n vector thì ta nói V là một không gian vector hữu hạn chiều với số chiều bằng n, và viết $\dim(V) = n$. Ta quy ước rằng $\dim(\{\mathbf{0}\}) = 0$.

- $\dim(\mathbb{R}^n) = n$.
- $\dim(P_n) = n + 1$.
- $\dim(M_{m,n}) = m \times n$.

Mênh đề

Nếu dim(V) = n và W là một không gian con của V thì:

- W hữu han chiều.
- \bigcirc dim $(W) \leq n$.

Mệnh đề

 $N\acute{e}u \dim(V) = n \ va \ W \ la một không gian con của V thì:$

- W hữu hạn chiều.
- \bigcirc dim $(W) \leq n$.

Ý tưởng: Để tìm số chiều của một không gian con, ta tìm một cơ sở (hệ sinh độc lập tuyến tính) của không gian con đó.

Ví dụ:

• Trong \mathbb{R}^3 , xét không gian con $U = \{(a, b - a, b) \mid a, b \in \mathbb{R}\}$ (bài tập: chứng minh U là một không gian con của \mathbb{R}^3). Tìm số chiều của U.

- Trong \mathbb{R}^3 , xét không gian con $U = \{(a, b a, b) \mid a, b \in \mathbb{R}\}$ (bài tập: chứng minh U là một không gian con của \mathbb{R}^3). Tìm số chiều của U.
 - Với mọi $\mathbf{u} = (a, b a, b) \in U$, ta có $\mathbf{u} = a(1, -1, 0) + b(0, 1, 1)$.
 - Từ đó $S=\{(1,-1,0),(0,1,1)\}$ là một hệ sinh của U.
 - Mặt khác, S độc lập tuyến tính (vì sao?), do đó S là một cơ sở của U.
 - Vậy dim(U) = 2.

- Trong \mathbb{R}^3 , xét không gian con $U = \{(a, b a, b) \mid a, b \in \mathbb{R}\}$ (bài tập: chứng minh U là một không gian con của \mathbb{R}^3). Tìm số chiều của U.
 - Với mọi $\mathbf{u} = (a, b a, b) \in U$, ta có $\mathbf{u} = a(1, -1, 0) + b(0, 1, 1)$.
 - Từ đó $S = \{(1, -1, 0), (0, 1, 1)\}$ là một hệ sinh của U.
 - Mặt khác, S độc lập tuyến tính (vì sao?), do đó S là một cơ sở của U.
 - Vậy $\dim(U) = 2$.
- Trong \mathbb{R}^4 , xét $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(-1, 2, 5, 0), (3, 0, 1, -2), (-5, 4, 9, 2)\}$. Đặt W = span(S). Tìm dim(W).

Ví dụ:

- Trong \mathbb{R}^3 , xét không gian con $U = \{(a, b a, b) \mid a, b \in \mathbb{R}\}$ (bài tập: chứng minh U là một không gian con của \mathbb{R}^3). Tìm số chiều của U.
 - Với mọi $\mathbf{u} = (a, b a, b) \in U$, ta có $\mathbf{u} = a(1, -1, 0) + b(0, 1, 1)$.
 - Từ đó $S = \{(1, -1, 0), (0, 1, 1)\}$ là một hệ sinh của U.
 - Mặt khác, S độc lập tuyến tính (vì sao?), do đó S là một cơ sở của U.
 - Vậy dim(*U*) = 2.
- Trong \mathbb{R}^4 , xét $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(-1, 2, 5, 0), (3, 0, 1, -2), (-5, 4, 9, 2)\}$. Đặt W = span(S). Tìm dim(W).
 - Phương trình $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ có nghiệm không tầm thường, chẳng hạn $x_1 = 2, x_2 = -1, x_3 = -1$, do đó S không độc lập tuyến tính và không phải một cơ sở của W.
 - Vì $\mathbf{v}_3 = 2\mathbf{v}_1 \mathbf{v}_2$ nên $span(S) = span(\{\mathbf{v}_1, \mathbf{v}_2\})$, hay $S' = \{\mathbf{v}_1, \mathbf{v}_2\}$ là một hệ sinh của W.
 - S' độc lập tuyến tính (vì sao?) nên S' là một cơ sở của W.
 - Vậy $\dim(W) = 2$.

26 / 28

Ví dụ:

• Gọi W là không gian con của $M_{2,2}$ gồm các ma trận đối xứng cấp 2. Tìm $\dim(W)$.

Ví du:

• Goi W là không gian con của $M_{2,2}$ gồm các ma trân đối xứng cấp 2. Tim $\dim(W)$.

• Ta viết
$$W = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$
 và

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = aP_1 + bP_2 + cP_3.$$

- Có thể chứng minh {P₁, P₂, P₃} là đôc lập tuyến tính.
- Vây $\dim(W) = 3$.

Cơ sở và số chiều 2021-2022 27 / 28

Cơ sở và số chiều

Định lý

Trong một không gian vector n chiều:

- 1 Mọi hệ độc lập tuyến tính gồm n vector là một cơ sở.
- 2 Mọi hệ sinh gồm n vector là một cơ sở.