CSE 3521: Introduction to Artificial Intelligence

Final Exam Format

- 60 minutes
 - Available for 24 hrs
 - o i.e, you can take it anytime during the day
- Carman Quiz
 - Mixed format: MCQ, T/F, fill-in-the-blanks,
- If you need any special accommodation email me ASAP
 - o tabassum.13@osu.edu

PEAS

PEAS

- Performance measuring the agent's success
- Environment what populates the problem's world?
- Actuators what can the agent act with?
- Sensors how can the agent perceive the world?

Peas: Examples

Agent Type	Perf. Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, minimize costs/lawsuits	Patient, hospital, staff	Display questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answers
Satellite image analysis system	Correct image classification	Downlink from orbiting satellite	Display classification of scene	Color pixel arrays (cameras)
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts, bins	Jointed arm and hand	Camera, joint angle sensors
Refinery controller	Maximize purity, yield, safety	Refinery, operators	Valves, pumps, heaters, displays	Temperature, pressure, chemical sensors
Interactive English tutor	Maximize student's score on test	Set of students, testing agency	Display exercises, suggestions, corrections	Keyboard entry

Rational Agent

What makes an Al agent

• **Agent** – an entity that <u>perceives</u> its environment through <u>sensors</u>, and acts on it with <u>effectors</u> (<u>actuators</u>).

Actions are constrained by Actuators + Environment

Agent Function (policy) – how does it choose the action?

What is a rational AI agent?

 A rational agent always acts to maximize its expected performance measure, given current percept/state

- Rationality ≠ omniscience
 - O There is "uncertainty" in the environment.
 - O That is why we emphasize "expected".

Kinds of Environments

- Six common properties to distinguish environments (not exhaustive)
 - Fully observable vs Partially observable
 - Single agent vs Multiagent
 - O Deterministic vs Stochastic
 - Episodic vs Sequential
 - Static vs Dynamic
 - Discrete vs Continuous

Examples

	Crossword puzzle	Taxi Driving
Observability	Fully	Partially
Deterministic vs Stochastic	Deterministic	Stochastic
Episodic vs Sequential	Sequential	Sequential
Static vs Dynamic	Static	Dynamic
Discrete vs Continuous	Discrete	Continuous
Single vs Multi Agent	Single	Multi

Search

Search

- Types
 - Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
 - Informed Search Methods
 - Greedy Search
 - A* Search

Search Problems

- A search problem consists of:
 - A state space
 - A successor function (with actions, costs)
 - A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe

is a FIFO queue

Iterative Deepening Search

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - ORun a DFS with depth limit 1. If no solution...
 - o Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!
- A Preferred method with <u>large search space</u> and depth of solution not known

Uniform Cost Search (USC)

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Search Heuristics

- A heuristic is
 - o A function that *estimates* how close a state is to a goal
 - o Designed for a particular search problem
 - o Examples: Manhattan distance, Euclidean distance for pathing
 - not the exact "path" distance

Greedy Search

• Expand the node that seems closest...

• What can go wrong?

Bucharest

Sibiu

Does not guarantee the optimal solution

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - o Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

A* Search

UCS

A*

Greedy

A* is a Combination of UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

Propositional Logic

Logic

- For <u>logical</u> agents, knowledge is <u>definite</u>
 - o Each proposition is either "True" or "False"
- Logic has advantage of being simple representation for knowledge-based agents
 - But limited in its ability to handle uncertainty
- We will examine propositional logic and first-order logic

Logical Agent

- Need agent to represent beliefs
 - o "There is a pit in (2, 2) or (3, 1)"
 - o "There is no Wumpus in (2, 2)"
- Need to make inferences
 - o If available information is correct, draw a conclusion that is guaranteed to be correct
- Need representation and reasoning
 - Support the operation of knowledge-based agent

Knowledge Representation

- For expressing knowledge in computer-tractable form
- Knowledge representation language defined by
 - **Syntax**
 - Defines the possible well-formed configurations of sentences in the language
 - **Semantics**
 - Defines the "meaning" of sentences (need interpreter)
 - Defines the truth of a sentence in a world (or model)

The Language of Arithmetic

• Syntax: " $x + 2 \ge y$ " is a sentence

"x2 + y >" is not a sentence

• Semantics: $x + 2 \ge y$ is true iff the number x + 2 is no less than the number y

 $x + 2 \ge y$ is True in a world where x=7, y=1

 $x + 2 \ge y$ is False in a world where x=0, y=6

Inference

- Sentence is <u>valid</u> iff it is true under all possible interpretations in all possible worlds
 - Also called <u>tautologies</u>
 - o "There is a stench at (1,1) or there is not a stench at (1,1)"
 - o "There is an open area in front of me" is not valid in all worlds
- Sentence is <u>satisfiable</u> iff there is some interpretation in some world for which it is true
 - o "There is a wumpus at (1,2)" could be true in some situation
 - o "There is a wall in front of me and there is no wall in front of me" is unsatisfiable

Propositional Logic: Syntax

- Syntax of propositional logic defines <u>allowable</u> sentences
- Atomic sentences consists of a single proposition symbol
 - Each symbol stands for proposition that can be True or False
- Symbols of propositional logic
 - Propositional symbols: P, Q, ... (e.g., "Today is Tuesday")
 - Logical constants: True, False
- Making complex sentences
 - \circ Logical connectives of symbols: \land , \lor , \Leftrightarrow , \Rightarrow , \neg
 - Also have parentheses to enclose each sentence: (...)
- Sentences will be used for inference/problem-solving

Propositional Logic: Syntax

- True, False, S_1 , S_2 , ... are sentences
- If S is a sentence, ¬S is a sentence
 Not (negation)
- $S_1 \wedge S_2$ is a sentence, also $(S_1 \wedge S_2)$
 - And (conjunction)
- $S_1 \vee S_2$ is a sentence
 - Or (disjunction)
- $S_1 \Rightarrow S_2$ is a sentence (e.g., "Today is Tuesday" implies "Tomorrow is Wednesday")
 - Implies (conditional)
- $S_1 \Leftrightarrow S_2$ is a sentence
 - Equivalence (biconditional)

Propositional Logic: Semantics

- Semantics defines the rules for determining the truth of a sentence
 - With respect to a particular model)
 - $\neg S$ is true iff S is false
 - $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
 - $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
 - $S_1 \Rightarrow S_2$ is true iff S_1 is false <u>or</u> S_2 is true (is false iff S_1 is true <u>and</u> S_2 is false) (if S_1 is true, then claiming that S_2 is true, otherwise make no claim)
 - $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true (S_1 same as S_2)

Propositional Inference: Enumeration Method

- Truth tables can test for valid sentences
 - True under all possible interpretations in all possible worlds
- For a given sentence, make a truth table
 - Columns as the combinations of propositions in the sentence
 - Rows with all <u>possible</u> truth values for proposition symbols
- If sentence true in every row, then valid

Example

• Test $(P \wedge H) \Rightarrow (P \vee \neg H)$

P	Н	$P \wedge H$	¬H	(P ∨¬H)	$(P \wedge H) \Rightarrow (P \vee \neg H)$
False	False	False	True	True	True
False	True	False	False	False	True
True	False	False	True	True	True
True	True	True	False	True	True

Inference Rules for Prop. Logic

• Modus Ponens

o From implication and premise of implication, can infer conclusion

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

Inference Rules for Prop. Logic

• And-Elimination

o From conjunction, can infer any of the conjuncts

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$$

Inference Rules for Prop. Logic

• And-Introduction

o From list of sentences, can infer their conjunction

$$\frac{\alpha_1,\alpha_2,\dots,\alpha_n}{\alpha_1\wedge\alpha_2\wedge\cdots\wedge\alpha_n}$$

• Or-Introduction

o From sentence, can infer its disjunction with anything else

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n}$$

- <u>Double-Negation Elimination</u>
 - o From doubly negated sentence, can infer a positive sentence

$$\frac{\neg \neg \alpha}{\alpha}$$

• Unit Resolution

o From disjunction, if one of the disjuncts is false, can infer the other is true

$$\frac{\alpha \vee \beta, \ \ \neg \beta}{\alpha}$$

Resolution

- \circ Most difficult because β cannot be both true and false
- One of the other disjuncts must be true in one of the premises
 - (implication is transitive)

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

$$\begin{array}{ccc} \neg \beta & \text{or} & \beta \\ \frac{\alpha \vee \beta, \neg \beta}{\alpha} & \text{or} & \frac{\neg \beta \vee \gamma, \beta}{\gamma} \\ & \alpha & \text{or} & \gamma \end{array}$$

First Order Logic

Syntax of FOL: Basic Elements

- Constant symbols for specific objects *KingJohn*, 2, *OSU*, ...
- Variables

```
x, y, a, b, ...
```

- Predicate properties (unary) / relations (pairwise or more) Smart(), Brother(), Married(), >, ...
- Functions (return objects)

 Sqrt(), LeftTo(), FatherOf(), ...
- Connectives

$$\wedge \vee \neg \Rightarrow \Leftrightarrow$$

Quantifiers

$$\forall$$
 \exists

Equality

=

Quantifiers

- Currently have logic that allows objects
- Now want to express properties of entire collections of objects
 - Rather than enumerate the objects by name
- Two standard quantifiers
 - O Universal ∀
 - Existential ∃

Properties of Quantifiers

• Important relations

$$\circ \exists x \ P(x) = \neg \forall x \ \neg P(x)$$

$$\circ \forall x \ P(x) = \neg \exists x \neg P(x)$$

$$\circ P(x) \Rightarrow Q(x)$$
 is same as $\neg P(x) \lor Q(x)$

$$\bigcirc \neg (P(x) \land Q(x))$$
 is same as $\neg P(x) \lor \neg Q(x)$

Universal Quantifiers

- $\forall x \ \forall y$ is same as $\forall y \ \forall x \ (\ \forall x,y)$
- $\exists x \exists y$ is same as $\exists y \exists x (\exists x,y)$
- $\exists x \forall y$ is <u>not same</u> as $\forall y \exists x$
 - $\circ \exists y \ Person(y) \land (\forall x \ Person(x) \Rightarrow Loves(x,y))$
 - "There is someone who is loved by everyone"
 - $\forall x \ Person(x) \Rightarrow \exists y \ Person(y) \land Loves(x,y)$
 - "Everybody loves somebody" (not guaranteed to be the same person)

How to do inference in FOPC

- Reduction of first-order inference to propositional inference
- First-order inference algorithms
 - Generalized Modus Ponens
 - oForward chaining ***
 - OBackward chaining ***
 - Resolution-based theorem proving ***

Reduction to Propositional Inference

- Universal Quantifiers (∀)
 - Recall: Sentence must be true *for all* objects in the world (all values of variable)
 - So substituting any object must be valid (Universal Instantiation, UI)
- Example
 - $\circ \forall x \ Person(x) \Rightarrow Likes(x,IceCream)$
 - Substituting: (1), {x/Jack}
 - \circ Person(Jack) \Rightarrow Likes(Jack,IceCream)

- Existential Quantifiers (∃)
 - Recall: Sentence must be true for some object in the world (or objects)
 - Assume we know this object and give it an arbitrary (unique!) name (Existential Instantiation, EI)
 - Known as <u>Skolem constant</u> (SK1, SK2, ...)
- Example
 - $\circ \exists x \ Person(x) \land Likes(x,IceCream)$
 - Substituting: (1), {*x*/*SK1*}
 - Person(SK1) ∧ Likes(SK1,IceCream)
- We don't know who "SK1" is (and usually can't), but we know they must exist

- Multiple Quantifiers
 - No problem if same type $(\forall x,y \text{ or } \exists x,y)$
 - \circ Also no problem if: $\exists x \forall y$
 - There must be some x for which the sentence is true with every possible y
 - Skolem constant still works (for x)
- Problem with $\forall x \exists y$
 - o For every possible x, there must be some y that satisfies the sentence
 - Ocould be different y value to satisfy for each x!
 - Solution Skolem function

Example

```
○ \forall x \exists y \ Person(x) \Rightarrow Loves(x,y)

■ Substitute: (1), \{y/SK1(x)\}

○ \forall x \ Person(x) \Rightarrow Loves(x,SK1(x))

■ Then: (2), \{x/Jack\}

○ Person(Jack) \Rightarrow Loves(Jack,SK1(Jack))
```

• *SK1*(*x*) is *effectively* a function which returns a person that *x* loves. But, again, we can't generally know the specific value it returns.

- Internal Quantifiers
 - Previous rules only work if quantifiers are external (left-most)
 - Consider: $\forall x (\exists y Loves(x,y)) \Rightarrow Person(x)$
 - o "For all x, if there is some y that x loves, then x must be a person"
 - A Skolem function limits the values y could take (to one) and we can't know what it is.
- Need to move the quantifier outward
 - $\circ \forall x (\exists y \ Loves(x,y)) \Rightarrow Person(x)$
 - $\circ \forall x \neg (\exists y \ Loves(x,y)) \lor Person(x) \ (convert \ to \neg, \lor, \land)$
 - $\circ \forall x \forall y \neg Loves(x,y) \lor Person(x) \text{ (move } \neg \text{ inward)}$
 - $\circ \forall x \forall y \ Loves(x,y) \Rightarrow Person(x)$
- Now we can see that we can actually substitute anything for y
- May need to rename variables before moving quantifier left
- Once have non-quantified sentences (from quantified sentences using UI, EI), possible to reduce first-order inference to propositional inference

Forward and Backward Chaining

- Have language representing knowledge (FOL) and inference rules (Generalized Modus Ponens)
 - Now study how a reasoning program is constructed
- Generalized Modus Ponens can be used in two ways:
 - Start with sentences in KB and generate new conclusions (<u>forward chaining</u>)
 - "Used when a new fact is added to database and want to generate its consequences"
 or
 - Start with something want to prove, find implication sentences that allow to conclude it, then attempt to establish their premises in turn (backward chaining)
 - "Used when there is a goal to be proved"

Forward Chaining

- Forward chaining normally triggered by addition of <u>new</u> fact to KB (using TELL)
- When new fact p added to KB:
 - For each rule such that p unifies with a premise
 - If the other premises are known, then add the conclusion to the KB and continue chaining
 - Premise: Left-hand side of implication
 - Or, each term of conjunction on left hand side
 - Conclusion: Right-hand side of implication
- Forward chaining uses unification
 - Make two sentences (fact + premise) match by substituting variables (if possible)
- Forward chaining is <u>data-driven</u>
 - Inferring properties and categories from percepts

Backward Chaining

- Backward chaining designed to find all answers to a question posed to KB (using ASK)
- When a query *q* is asked:
 - o If a matching fact q 'is known, return the unifier
 - For each rule whose consequent q 'matches q
 - Attempt to prove each premise of the rule by backward chaining
- Added complications
 - Keeping track of unifiers, avoiding infinite loops
- Two versions
 - Find <u>any</u> solution
 - Find <u>all</u> solutions

Resolution

- Uses proof by contradiction
 - Referred to by other names
 - Refutation
 - Reductio ad absurdum
- Inference procedure using resolution
 - To prove *P*:
 - Assume P is FALSE
 - Add $\neg P$ to KB
 - Prove a contradiction
 - Given that the <u>KB</u> is known to be <u>True</u>, we can believe that the negated goal is in fact False, meaning that the original goal must be <u>True</u>