ЛАБОРАТОРНАЯ РАБОТА 33

ПРОВЕРКА ЗАКОНА МАЛЮСА

Выполнил студент гр	Ф.И.О	-
Подпись преподавателя	дата	
(обязательна после окончания эксперимента)		

<u>Цель работы</u>: ознакомление с явлением поляризации света и экспериментальная проверка закона Малюса.

Описание установки

В данной работе источником естественного света является лампочка, свет которой последовательно проходит через два поляризатора. Первый поляризатор пропускает плоско-поляризованный свет со световым вектором \vec{E} и с интенсивностью $I_0 \sim \vec{E}^2$. Второй поляризатор (анализатор)

можно вращать вокруг направления распространения света, меняя угол α между осями пропускания поляризаторов в пределах $0 \le \alpha \le 360^{\circ}$. Согласно закону Малюса анализатор пропустит свет с величиной светового вектора $E_{||} = E \cos \alpha$ и с интенсивностью $I = I_0 \cos^2 \alpha$. (*)

Прошедший через анализатор свет попадает на фотодиод, в цепи которого находится милли-амперметр. Величина фототока, измеряемого миллиамперметром, пропорциональна интенсивности прошедшего через анализатор света или освещенности фотодиода $E \sim I$. Реальные поляризаторы пропускают часть естественного света и минимальная освещенность фотодиода отлична от нуля.

Порядок выполнения работы

- 1. Включить установку.
- 2. При вращении анализатора меняется интенсивность прошедшего через него света, пропорциональная освещенности фотодиода и пропорциональная току, текущему через фотодиод. Поэтому измерительный прибор, измеряющий фототок, проградуирован в единицах освещенности Е и является люксметром прибором, измеряющим освещенность.

Вращая анализатор, надо определить и записать как наибольшее значение показываемой прибором освещенности E_{max} , так и наименьшее значение освещенности E_{min} . При этом надо также записать значение угла α_0 на лимбе анализатора, соответствующее E_{max} , которое соответствует началу отсчета углов α в законе Малюса (*).

3. Если α_1 – показания угла поворота на лимбе анализатора, то следует установить указатель лимба на значении $\alpha_1 = \alpha_0$ (люксметр покажет максимальную освещенность E_{max}), а затем, поворачивая лимб анализатора через каждые 15° до 360° ($\alpha_1 = \alpha_0 + 15^{\rm o}$, $\alpha_1 = \alpha_0 + 30^{\rm o}$, ..., $\alpha_1 = \alpha_0 + 360^{\rm o}$), записывать показания люксметра, соответствующие углу поворота $\alpha = \alpha_1 - \alpha_0$, в таблицу 1.

E	$E_{\max} = \dots, E_{\min} = \dots$ Таблица 1													
	α, град	0	15	30	45	60	75	90	105	120	135	150	165	180
	Освещенность Е, лк													
	α, град	195	210	225	240	255	270	285	300	315	330	345	360	
	Освещенность Е, лк													

4. Согласно закону Малюса одинаковым значениям $\cos^2\alpha$ должны соответствовать одинаковые значения освещенности. Их следует перенести из таблицы 1 в таблицу 2. При этом для учета систематической ошибки, связанной с неполной (частичной) поляризацией света, пропускаемой системой из поляризатора и анализатора, следует из каждого результата вычесть минимальное значение освещенности E_{min} , и в таблицу 2 записать уже разность $E^*=E-E_{min}$.

Таблина 2.

$\cos^2 \alpha =$		$\cos^2 \alpha =$		$\cos^2 \alpha =$									
α,	Е*, лк	α,	Е*, лк	α,	Е*, лк								
град		град		град		град		град		град		град	
0		15		30		45		60		75		90	
180		165		150		135		120		105		270	
360		195		210		225		240		255			
		345		330		315		300		285			
E* _{cp} =		E* _{cp} =		E* _{cp} =		E* _{cp} =		E* _{cp} =		E*cp =		E* _{cp} =.	

- 5. Для всех углов α , указанных в этой таблице в одном столбце величина $\cos^2\alpha$ будет одинакова. Для значений освещенности E^* , соответствующей этой величине $\cos^2\alpha$, надо найти и занести в таблицу 2 среднее значение E^*_{cp} .
- 6. По данным таблицы 2 построить график зависимости $E^*_{cp} = f\left(\cos^2\alpha\right)$, который должен быть прямой линией в случае выполнения закона Малюса (*).

Контрольные вопросы к лабораторной работе № 33

- 1. Почему световую волну описывают единственным световым вектором?
- 2. В каком направлении движется световая волна, в которой вектор \vec{E} направлен вдоль оси y, а вектор \vec{H} вдоль оси x?
- 3. Атомы испускают поляризованное излучение. Как образуется естественный свет?
- 4. Чем отличается естественный и плоско-поляризованный свет?
- 5. Каким образом поляризатор превращает естественный свет в плоско-поляризованный? Имеются ли другие способы получения плоско-поляризованного света из естественного?
- 6. Как изменится интенсивность естественного света после прохождения поляризатора?
- 7. Сформулируйте закон Малюса.
- 8. Естественный свет с интенсивностью I_0 падает на систему из трех поляризаторов. Оси пропускания крайних поляризаторов 1 и 3 скрещены под углом 90° , а ось центрального поляризатора 2 образует угол α с осью поляризатора 1 (см. рис.А). Свет с какой интенсивностью I выйдет из этой системы? При какой величине угла α эта интенсивность будет максимальной и чему равна $I_{\rm max}$?

9. Как определить степень поляризации частично-поляризованного света? Вычислите её величину по полученным в работе результатам измерений. 10. Чему равна степень поляризации смеси из плоско-поляризованного света с интенсивностью I и естественного света с интенсивностью I/2?

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт.: Т. 2: Электричество. Колебания и волны. Волновая оптика СПб., М., Краснодар: Лань, 2008. §98.
- 2. Колмаков Ю.Н., Пекар Ю.А., Лежнева Л.С. Электромагнетизм и оптика,- изд. Тул Γ У. 2010, гл.10 §§1,3.