

Universidad de Costa Rica Programa de Posgrado en Ingeniería Eléctrica Maestría Académica en Ingeniería Eléctrica

SP-2136 Programación Avanzada Propuesta Formalización Proyecto

Alumno: Carlos Benavides Víquez

1. Descripción general del problema que van a solucionar ya sea parcial o totalmente con el uso del paralelismo.

El objetivo del proyecto es acelerar el proceso de predicción del riesgo de fractura ósea utilizando datos de DXA (absorciometría de rayos X de energía dual) y Senior Fitness Test (SFT) mediante el uso de un modelo de "Support Vector Machine" (SVM).

Este análisis implica el manejo de volúmenes potencialmente grandes y dinámicos de datos médicos relacionados con la densidad mineral ósea (BMD) y resultados de pruebas físicas que se correlacionan con el riesgo de fractura, como por ejemplo la fuerza muscular y el equilibrio.

El problema principal es que el entrenamiento del modelo SVM con estos datos es computacionalmente costoso y se requiere una solución que permita procesar y entrenar el modelo de manera eficiente para obtener resultados en tiempos razonables.

2. Breve justificación del porque es necesaria la implementación del paralelismo en el problema planteado.

La implementación del paralelismo es sumamente conveniente debido a la naturaleza intensiva en tiempo de los cálculos involucrados en el preprocesamiento de los datos (escalado y selección de características), así como en el entrenamiento del modelo SVM.

Utilizar paralelismo permitirá dividir las tareas computacionales (como la normalización de los datos, la validación cruzada y la selección de características) entre múltiples núcleos de procesamiento, lo que acelerará significativamente el proceso de análisis. Esto es crucial para manejar datasets grandes y para realizar pruebas iterativas de

hiperparámetros, lo que es típico en proyectos de aprendizaje automático.

3. Especificar claramente cuál es la funcionalidad, código, algoritmos que van a paralelizar.

La primera parte del procesamiento de datos necesaria para el análisis del riesgo de fractura es la **normalización/estandarización de los datos DXA y SFT.**

Esto implica que cada característica (BMD, fuerza, agilidad, etc.) se escale simultáneamente en múltiples núcleos de procesamiento.

Por ejemplo, para cada paciente se pueden tener los siguientes datos

Metric	Value	
Hip BMD	0.85 g/cm ²	
Spine BMD	0.90 g/cm ²	
Femur BMD	0.82 g/cm ²	
Lean Mass	40 kg	
Fat Mass	25%	
Bone Mass	2.5 kg	
Chair Stand Test	12 stands	
8-Foot Up-and-Go	6.5 seconds	
Arm Curl Test	15 curls	
6-Minute Walk Test	500 meters	
Chair Sit-and-Reach	-3 cm	
Back Scratch Test	2 cm gap	

Y luego del proceso de normalizacion/estandarizado, los datos lucirían de la siguiente manera:

Metric	Scaled Value
Hip BMD	1.5109662
Spine BMD	0.65465367
Femur BMD	0.50709255
Lean Mass	0.16903085
Fat Mass	-0.4472136
Bone Mass	0.4472136
Chair Stand Test	0.4472136

Metric	Scaled Value
8-Foot Up-and-Go	-0.19911699
Arm Curl Test	0.50709255
6-Minute Walk Test	0.16903085
Chair Sit-and-Reach	-1.34164079
Back Scratch Test	-0.4472136

Este proceso de normalización/estandarización debe realizarse para **n** pacientes (potencialmente miles) y es posible que esta operacion se deba repetir varias veces con datos nuevos y probando diferentes tipos/mètodos de estandarización de datos.

4. Posible bibliotecas o lenguajes de programación paralela a utilizar. Tomando en cuenta si esutilizando memoria compartida, memoria distribuida o ambos

Lenguaje: El código se implementará en C, dada su eficiencia y capacidad para manejar operaciones a bajo nivel y aprovechar al máximo los recursos de hardware. **Libreria**: OpenMP por su simplicidad y conveniencia para el manejo de este tipo de problemas que no requieren memoria destribuida, y que pueden resolverse eficientemente con memoria compartida