CIM

B11901027 王仁軒

Outline

- Analog vs Digital
- ■Analog CIM structure
 - Optimization techniques for analog designs
- □ Digital CIM structure
 - Optimization techniques for digital designs
- Overall comparison among 3 papers

Analog CIM Structure

- Typical analog CIM Structure
 - Require DAC & ADC

Optimization for Analog Designs

- Analog multiplication requires DAC
 - Current source may consume lots of power

Differential output Current source are always on

> Single-ended output ____ Can turn off current source

- □ Not using DAC
 - Digital multiplication

Require shift and sum to do n-bit x n-bit from 1-bit x 1-bit

Optimization for Analog Designs

□ADC is required

■ Reuse of Capacitors

Optimization for Analog Designs

■ Skipping iterations

127

Input has 32 1's

Partial sum < 32

Skip first few iterations

saves time

■Interleaving (memory cell)

RBL length = L Parasitic caps = C

Digital CIM Structure

- Typical digital CIM design
 - Serial input

Digital multiplication (1b input x 4b weight)

Optimization for Digital Designs

- □ Increase throughput
 - Increase input BW

Serial input
Require bit-precision+1 cycles

Parallel input
Require bit-precision/4+1 cycles

- □ High BW input memory
 - In order to support MAC pipeline

Optimization for Digital Designs

■ Bit-flexibility & Adder tree optimization

Overall Comparison

		\downarrow	
	2021/Analog	2023/Analog	2022/Digital
Throughput TOPS (1b x 1b)	Cxcle time? < 1.30	1.31 ← Freq ir	el input 98.3 ncrease lining MAC+ Adds
Energy Efficiency TOPS/W (1b x 1b)	293	291 ←	oc? → 625
Area Efficiency TOPS/mm2 (1b x 1b)	23.01 ← D/	AC → 27.7 ← Adden	r tree → 10.49

10