CSC-222: Data Structures (Theory)

General Information

Course Number	CSC-222
Credit Hours	3+1 (Theory Credit Hour = 3, Lab Credit Hours = 1)
Prerequisite	CSC-102, Programming Fundamentals
Course Coordinator	Not Specified

The objective of this course is to make students familiar with the concepts of the way data is stored inside the computer and its manipulation using different algorithms. Students will learn different data structures such as an array, stack, queue, link list, trees, graphs, sorting algorithm, etc. Since Programming fundamentals is the pre-requisite of this course, therefore, in class we would be using java language to implement all the data structures. However, students may use any programming

Course Objectives

lan	ດນາລ	σe
Ian	gua	gc

Catalog Description

CSC-222		
CBC-222		

Course Content

Week No		Chapters
	1. Topics	•
1	 Introduction to the course Elementary data structures Arrays ○ Review of single-dimension arrays ○ Concept and implementation of 2D arrays Manipulating matrices using arrays Basic concepts of Multi-dimensional arrays What is the data structure? ○ Need for data structures ○ What are the limitations of Arrays? 	

2	• Linked lists o Arrays vs. Linked list
	 Types of linked list o Singly-linked list o Circular singly linked list o Doubly linked list o Circular doubly linked list Defining the Node class Linked Lists Functions Printing linked list in reverse order using recursion
3-4	• Applying dictionary operations on linked lists \circ Traversing a linked list \circ Inserting new node
	 at the head at any location ○ Searching a node ○ Removing a node from the head from anywhere • Clearing a linked list
5	 Introduction to Queues The Queue data structure Application of queues Array Representation of Queue of Algorithm for the Addition of an Element to the Queue Algorithm for Deletion of an Element to the Queue
	 Dynamic Representation of Queues Using Linked Lists Circular Queue-Array Representation

6	The FIFO structure	
	Queue operations	
	Extended queue operations	
	 Dictionary operations on queues 	
	The priority queues	
	The LIFO structure	
	Introduction to the stack data structure	
	Applications of stack	
	Stack operations	
	Stack specifications List and arrays	
	Stacks o Reversing a list	
	 Stack implementation	
	 Methods of stack o Push o Pop 	
	Push down stack	
	1 usii uowii stack	
7	What is algorithm?	
	Complexity of algorithm	
	• Time complexity o	
	Space complexity	
	Analosia of algorithms	
	Big O Notation o Best-case	
	analysis o Worst-case	
	analysis	
	Average-case analysis	
8-9	Trees Introduction	
	Tree terminology	
	Tree Traversal	
	 Concept of Binary Trees 	
	Why use binary trees	
	Basic Operations	
	Complete Binary Tree	
	Priority Queues: Heaps	
	• Max-Heap	
	First Mid Term Examination	
10-11	Concept of Binary Search trees and how they	
	work	
	Finding a node in a binary search tree Inserting a node	
	Inserting a node Propagatively traversing the trace in In order	
	 Recursively traversing the tree in In order, Pre and Postorder 	
	110 and 1 obtoined	

	Applications of tree traversing in sorting	
12	 Deleting a node in a Binary Tree with all three cases The efficiency of Binary Trees Handling duplicate nodes in BST Applications of BST Time complexity 	
13	AVL Trees • Balance Factor • Cases(I,II,III, IV)	
14	 Simple sorting ○ Understanding why sorting is important ○ Bubble sort ○ Selection sort ○ Insertion sort ○ Merge Sort 	
15	 Hashing Applications of Hashing Direct Address Chain based Scheme Hash Tables 	
16	Introduction to Graph data structureBFSDFSSpanning Tree	
	Project	01-Dec-22

Text Book

1. Data Structures & Algorithms in Java by Robert Lafore

Reference Material

- 1. C++ Plus Data Structures, 3rd edition, Nell Dale.
- 2. Think Data Structures: Algorithms and Information Retrieval in Java by Allen B. Downey

Course Learning Outcomes

Course Learning O	outcomes ((CLO)	
-------------------	------------	-------	--

		Demonstrate the knowledge of linear and non-linear data structures such as an array, list, queue, stack, trees, and graphs.
	2	Implement algorithms for the efficient representation and manipulation of data.
=	3	Analyze different data structures to identify errors and predict the output.

CLO-SO Map

		SO IDs										
CLO ID	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CLO 1	1	0	0	0	0	0	0	0	0	0	0	
CLO 2	0	0	1	0	0	0	0	0	0	0	1	
CLO 3	0	1	0	1	0	0	0	0	0	0	0	

Approvals

Prepared By	Syed Muzamil Hussain Shah
Approved By	Not Specified
Last Update	09/09/2022