Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Gráfica

Práctica 9.2

MSc. Vicente Machaca Arceda

19 de junio de 2020

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia de la	Computación Gráfica
	Computación	

PRÁCTICA	\mathbf{TEMA}	DURACIÓN
9.2	Affine transformation	3 horas

1. Competencias del curso

- Dominar tópicos y algoritmos de computación gráfica.
- Solucionar problemas aplicando algoritmos de computación gráfica.

2. Competencias de la práctica

■ Dominar e implementar el algoritmo de computación gráfica Affine transformation.

3. Equipos y materiales

- Python
- Opency
- Matplotlib
- Numpy
- Cuenta en Github

4. Entregables

- Se debe elaborar un informe en Latex donde se responda a cada ejercicio de la Sección 5.
- En el informe se debe agregar un enlace al repositorio Github donde esta el código.
- En el informe se debe agregar el código fuente asi como capturas de pantalla de la ejecución y resultados del mismo.

5. Ejercicios

1. Solucione el problema de la rotación de imágenes al utilizar warpAffine.

Figura 1: Ejemplo del problema de la rotación.

Figura 2: Ejemplo de una rotación adecuada.

2. OpenCV utiliza la función cv2.getAffineTransform(pts1,pts2) para obtener la matriz \mathbf{M} a partir de dos puntos. Implemente su propia versión de la función getAffineTransform

```
img = cv.imread('drawing.png')
rows,cols,ch = img.shape
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv.getAffineTransform(pts1,pts2)
dst = cv.warpAffine(img,M,(cols,rows))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
```


Figura 3: Ejemplo de Shear.