

MRIV

CSE TEST - OCTOBER 2008

YEAR 12 - CHEMISTRY

Written test 2

SOLUTIONS BOOK

SECTION A - Multiple choice questions (20 marks)

11	2	19	20
ပ	O	٧	∢
13	41	52	16
۵	∢	∢	ω
6	10	£	12
Q	æ	۵	O
τO	9	7	œ
Ω	∢	4	00
←	73	က	4

Δ \Box ⋖

Question 1 (5 marks)

$c_1V_1 = c_2V_2 = 5.00 \times 25.00 \times 10^3 = 500 \times 10^3 \times c_2$	$c_2 = 0.250 \text{mol L}^{-1}$	$[H+][OH] = 10^{-14}$	$[H+] = 10^{-14}/0.250 = 4 \times 10^{-14}$	pH = $-\log[4 \times 10^{-54}]$ = 13.4

2 marks

In an acidic solution the equilibrium will shift to the left side and the concentration of the yellow HIn will increase. In an alkaline solution the equilibrium will shift to the right side and the concentration of the blue In will increase. ن

1 mark

2 marks

Question 2 (7marks)

	_	sereasi			
Effect on the concentration of O ₂	None	Increases Descreoss	Increases	Increases	Decreases
Effect on the number of moles of O ₂	None	Increases	Increases	Decreases	Decreases
Net shift	None	Left	Left	Right	Right
Change to the system	Addition of nitrogen gas at constant volume	Decrease in pressure	Increase in temperature	Volume is halved	Steam is removed

5 marks

© INCORPORATED ASSOCIATION OF REGISTERED TEACHERS OF VICTORIA 2008 IARTV PAPERS ARE COPYRIGHT AND MAY NOT BE REPRODUCED IN WHOLE OR IN PARTY. CSE IS THE BUSINESS MAME OF MRTV

82CHE12AS

2 marks

Question 3 (7 marks)

	Primary cell	Secondary	Fuel cell
		cell	
Reactants are supplied			>
continuously			
Cell reactions are able to be		` `	
reversed			
Redox reactions are involved	,	>	>
at the anode and cathode		•	
Cells contain an electrolyte	`	>	>
A CONTRACTOR OF THE CONTRACTOR			
Products of discharge remain		>	
in contact with electrode			
Mass of the cell remains	>	>	>
constant during discharge			
Direct conversion of chemical	`	>	>
energy to efectrical energy			

Question 4 (8 marks)

mark
Υ
_
2H ₂ O(I)
4e · ↓
+
4H ⁺ (aq)
+
O ₂ (g)
. <u></u>
ri,

1 mark

b.
$$CH_3OH(aq) + H_2O(i) \rightarrow CO_2(g) + 6H'(aq) + 6e^-$$
 1 m

ii. $C_2H_5OH(aq) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$

b.
$$CH_3OH(aq) + H_2O(l) \rightarrow CO_2(g) + 6H'(aq) + 6e$$
 1 mark c. $n(C_2H_3OH) = 100/46.0$

c.
$$n(C_2H_5OH) = 100/46.0$$
 $n(C_2) = 100/46.0 \times 2$ $m(C_2) = 2 \times 100/46 \times 44.0 = 191$ g $n(CH_5OH) = 100/32.0$ $n(CH_5OH) = 100/32.0$ $n(CO_2) = n(CH_5OH)$ $m(CO_2) = 100/32 \times 44.0 = 138$ g Ethanol produces the greater mass of carbon dioxide per 100 g of fuel.

1 mark 1 mark

ii. Cost of fuel, cost of cell, availability of fuel, high operating temperatures

i. More efficient conversion of chemical into electrical energy Non-polluting in terms of emissions and noise

ਰ

3 marks

Question 5 (5 marks)

a. to c.

1 mark
Ag(s)
1
+ 6
Ag⁺(aq)
÷

3 marks

ej.	e. Protection of metals from corrosion by galvanising, chrome plating etc.	c 1 mark
Ques	Question 6 (10 marks)	
ė	a. A and B	1 mark
±i	b. i. Fe(s) \rightarrow Fe ²⁺ (aq) + 2 e ⁻ Fe ³⁺ (aq) + e ⁻ \rightarrow Fe ²⁺ (aq)	1 mark

1 mark

1 mark	1 mark
Soluble and unreactive with oxidant and reductant.	Platinum or Carbon(graphite)
.≥	. >

Question 7 (8 marks)

a,	$E = 4.18 \times m \times \Box T = 4.18 \times 100 \times 52.8 = 22070\mathrm{J}$	2 marks
ď	$n(C_4H_{10}) = 0.8/58.0 \text{ mol}$	
	Enthalpy = 22 070 x 58.0/0.8 J = 1600 kJ mol^{-1}	2 marks
ပ	Theoretical value = 2874 kJ mol^{-1}	
	% energy = 1600/2874 x 100 = 55.7%	2 marks
Ġ.	Yes, it would be greater because there will be no energy loss to	
	surroundings or container and complete combustion will occur.	2 marks

Quest

ன் ம் ப் ப்

	1 mark	1 mark	1 mark	ereas 1 mark
estion 8 (5 marks)	High temperatures	. Low temperatures	Catalyst to lower activation energy and so increases the reaction rate.	 Alkanes because they have weak inter-molecular dispersion/forces whereas alkanols exhibit H-bonding.

Increases because an increase in chain length increases the amount of combustion products.

Question 9 (9 marks)

a. Formula NH3 Industrial Hab process b. Raw N ₂ a				
		H2SO4	HNOs	Ç,¥.
1	Haber Process	Contact Process	Ostwald Process	Cracking Process
motoriale	N ₂ and H ₂	S and O ₂ or air or	NH ₃ and air and	C ₂ H ₆ and other
Halalais		SO ₂	H ₂ O	alkanes
c. Key N ₂ (N ₂ (g) + 3H ₂ (g) ⇒	$2SO_2(g) + O_2(g)$	4NH ₃ (g) + 5O ₂ (g)	C ₂ H ₆ (g)⇒C ₂ H ₄ (g) +
Reaction 2NI	2NH ₃ (g)	⇒ 2SO ₃ (g)	⇒4NO(g)+6H ₂ O(g)	H ₂ (g) or similar
d. Reaction Spe	Specific	Specific	Specific	Specific explanation
conditions exp	explanation of	explanation of	explanation of	of steam cracking
bre	pressures,	pressures,	pressures,	referring to
ter	temperatures and	temperatures and	temperatures and	pressures,
cate	catalyst etc used.	why catalyst etc	why catalyst etc	temperatures and
		nsed.	used.	catalyst etc used.
e. Uses Mar	Manufacture of	Production of	Manufacture of	Plastic items,
fert	fertiliser,	superphosphate	fertiliser,	industrial ethanol,
det	detergents,	and car batteries	explosives etc	pharmaceuticals
exb	explosives etc	etc		
f. Waste Des	Desulfurisation,	Use of by-product	Emissions source	Recycle unreacted
management Liqu	Liquidifaction of	waste SO ₂ from	of photochemical	ethane. Emitted gase
_	CO ₂ , energy	smeltering instead	smog, Industrial	can cause
effi	efficiency in terms	of burning of	conditions such as	photochemical smog.
ojo	of operating	elemental sulfur.	heat exchangers,	Desulfurisation, by-
65	conditions.	Monitor of waste	optimum reaction	products used, use of
Wa	Waste heat	gas emission.	conditions.	heat evolved to
Den	recycled	Waste heat	Catalytic	generate more high-
		recycled.	decomposition of	pressure steam.

a.1 mark b.1 mark c.1 mark d.3 marks e.1 mark f.2 marks

A 15 incorrect; we usually talk about a solid catalyst with increasing surface area to increase rate of reaction. Note reactions & products are gaseous.

BOTH BTC will decrease rate of reachon.
Only D increases reachon rate.

Question 2 A.

AH for reverse reaction is -520 kgmol-1 EA = 700-520 = 180 kg/mol-1

. . ANS=A .

$$keq = \frac{[PCI_3][CI_2]}{[PCI_5]} = \frac{0.19 \times 0.19}{0.01}$$

= 3.61 M.

O4) Acid + Base $\rightleftharpoons 420$ $\Delta H = -Ve$ OR $H^{\dagger}_{lag} + OH^{\dagger}_{lag} \rightleftharpoons 420$ $\Delta H = \bigcirc$

Ionisation of water is endothermic (reverse react)

As temp, increases, there is a net forward reachan producing more Ht. pH decreases.

ANS = B.

OS) D. catalyst increases rate of forward/backward reac'

(26) H2CO3 (ag) +H2O(1) = HCO3 (ag) + H3O1
Initial effect. Increase in OH OH reacts with H+, thus
decreasing [H+]

opposing effect: increase in CHT]
netshift to right ANS = B

Q7) $n(OH^{-}) = 2\times5.00\times10^{-5} \text{ mole}$ $CCOH^{-}) = \frac{2\times5\times10^{-5}}{0.01L} = 0.01M.$

[HT] $LOH^{-}J = 10^{-14}$ at 25°C refer to d. book let $LHJ = \frac{10^{-14}}{.01} = 10^{-12}$

PH = 12.

ANS = D.

Q8) pH=5:. $CH^{\dagger}J=10^{-5}$ From D. Booklet $EHOBY+H_{20} = OBY^{-}+EH_{30}^{\dagger}$ $K_a = \frac{COBY^{-}JCH_{30}^{\dagger}J}{CHOBYJ} = 2.4\times10^{-9}$

$$\begin{bmatrix}
 HOBVJ &= (OB) - J LH30 + J \\
 2.4 \times 10^{-9}
 \end{bmatrix}$$

$$LH + J &= (OB) - J = 10^{-5}$$

$$(HOBV) &= (10^{-5})^{2}$$

$$2.4 \times 10^{-9}$$

$$= 1 \times 10^{-10}$$

$$2.4 \times 10^{-9}$$

$$= 0.042 M$$

ANS = C.

ATB-non-renewable. Fiel cell Hz must be supplied

P93.

Q107 A.

Q11) when calibrated electrically temp rises when substance is added tempfalls.

ANS = A .

Q12)
$$n(H_2) = \frac{2.20}{2} = 1.10 \text{ mole} \quad n(O_2) = \frac{16}{32} = 0.5 \text{ mole}$$

Oz 15 Lim. Reagent.

$$0.5 \text{ mole of } 0_2 - \frac{572}{2} = -286 \text{ KJ}$$

ANS - B.

ANS = C.

Pg4. Q14) C Q15) D.Booklet (A) need a swang oxidant to oxidise Cu to Cu2+ eg Iz r Cu. Q16) Discharging; ensell is O exidation occurs. ·. Pb+SO42- -> PBO4 +2e-Ans = A... n (Na)=ne) $n(AI) = \underline{n(e^-)}$... $n(mg) = \underline{n(e^-)}$ ANS = C. C+ te- -> C (318) Br te- ->B At re- ->A Ct is the strongest oxidant: ANS = D. Anode (F) 2C1- -> C/2 +2e-Q19) D.Booklet 2420+2e- = 42+20H-Cathode (-) ANS = D. (e-) Q20) Q=1xt = 278 × 26 0.0749 mole = nle-) = 7228C D. Booklet Ca2t, rze- -> Ca(1) molten electrolysis! $n(Ca) = \frac{n(e^{-})}{2} = 0.03745 \text{ mole}$ m((a) = 0.03745+40 = 1.499 ANS = (A)