Advanced Mathematics: The Method of Differentiation of Multivariate Functions and Its Applications

Wuhan University

Lai Wei

March 9, 2025

Advanced Mathematics:	The Method of	f Differentiation	of Multivariate	Functions	and Its
Lai Wei	A	Applications			

目录

1			基本概念	1
	1.1	平面点	集	1
		1.1.1	坐标平面	1
		1.1.2	平面点集	1
		1.1.3	邻域	1
		1.1.4	聚点	2
		1.1.5	由点集所属类的特征分类	2
	1.2	多元函	数的概念	3
		1.2.1	二元函数	3
		1.2.2	值域	3
		1.2.3	推广	3
		1.2.4	自然定义域	3
		1.2.5	二元函数的图形	4
	1.3	多元函	数的极限	4
		1.3.1	二元函数的极限	4

1 多元函数的基本概念

1.1 平面点集

1.1.1 坐标平面

建立了坐标系的平面。二元有序实数组(x,y) 的全体,即 $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R} = \{(x,y) \mid x,y \in \mathbf{R}\}$ 就表示坐标平面。

1.1.2 平面点集

坐标平面上具有某种性质P的点的几何,称作平面点集,记作

$$E = \{(x, y) \mid (x, y)$$
 具有某种性质 $P\}$

1.1.3 邻域

设 $P_0(x_0,y_0)$ 是xOy平面上一点, δ 是某一正数,与点 $P_0(x_0,y_0)$ 距离小于 δ 的点P(x,y)的 全体,称为 P_0 的 δ 邻域,记作 $U(P_0,\delta)$,即

$$U(P_0, \delta) = \{(x, y) \mid |PP_0| < \delta\}$$

或

$$U(P_0, \delta) = \left\{ (x, y) \mid \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \right\}$$

注意

1. 点 P_0 的去心邻域,记作 $\mathring{U}(P_0,\delta)$,即

$$\overset{\circ}{U}(P_0, \delta) = \{P \mid 0 < |PP_0| < \delta\}$$

2. 若不强调 δ , 也可记作 $U\left(P_{0}\right)$, $\stackrel{\circ}{U}\left(P_{0}\right)$

利用点与点集的关系,可知 若有一点 $P \in \mathbf{R}^2$,任意点集 $E \subset \mathbf{R}^2$

- 1. 内点: $\exists U(P)$, 使 $U(P) \subset E$, 则P为E的内点。
- 2. 外点: $\exists U(P)$, 使 $U(P) \cap E = \phi$, 则P为E的内点。
- 3. 边界点: $\forall U(P)$, 若U(P) 即有属于E的点,又有不属于E的点,则P为E的边界点。
- 4. E的边界: E的边界点的全体,记作 ∂E

1.1.4 聚点

如果对于任意给定的 $\delta>0$,点P的去心邻域 $\overset{\circ}{U}$ (P,δ) 内总有E 中的点,那么称P是E的聚点。

例如,若 $E = \{(x,y) \mid 1 < x^2 + y^2 \le 2\}$ 。则 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 2$ 都是E的聚点。

1.1.5 由点集所属类的特征分类

- 1. 开集: 若点集E中的所有点都是E的内点,则称E为开集;
- 2. 闭集: 若点集E的边界 $\partial E \in E$, 则称E为闭集。

例如, $\{(x,y) \mid 1 < x^2 + y^2 < 2\}$ 为开集, $\{(x,y) \mid 1 \leq x^2 + y^2 \leq 2\}$ 为闭集, $\{(x,y) \mid 1 < x^2 + y^2 \leq 2\}$

- 1. 连通集: 如上图(a);
- 2. 非连通集: 如上图(b)。
- 1. 开区域(也简称区域): 连通的开集;
- 2. 闭区域: 开区域连同其边界一起构成的点集。

如 $\{(x,y) \mid 1 < x^2 + y^2 < 2\}$ 为(开)区域; $\{(x,y) \mid 1 \le x^2 + y^2 \le 2\}$ 为闭区域。

- 1. 有界集: 对于集合E,若 $\exists r > 0$,使 $E \subset U(0,r)$,则称E是有界的。(就是说能找到一个"圆"把集合E包裹起来)
- 2. 无界集: 若一个集合不是有界集,则称其为无界集。

例如, $\{(x,y) \mid x+y>0\}$ 为无界开区域; $\{(x,y) \mid x+y\geq 0\}$ 为无界闭区域。

1.2 多元函数的概念

1.2.1 二元函数

设D是 \mathbf{R}^2 的一个非空子集,称映射 $f: D \to \mathbf{R}$ 为定义在D上的二元函数,通常记为

$$z = f(x, y), (x, y) \in D$$

$$(1.1)$$

或

$$z = f(P), P \in D \tag{1.2}$$

1.2.2 值域

上述定义中,与自变量x和y的一对值(即二元有序实数组)(x,y) 相对应的因变量z的值,也称为f在点(x,y)处的函数值,记作f(x,y),即z=f(x,y) 函数值f(x,y)的全体所构成的集合为函数f的值域,记作f(D),即

$$f(D) = \{ z \mid z = f(x, y), (x, y) \in D \}$$
(1.3)

1.2.3 推广

三元函数: $u = f(x, y, z), (x, y, z) \in D$; n元函数: $u = f(x_1, x_2, x_3, \dots, x_n), (x_1, x_2, x_3, \dots, x_n) \in D$

1.2.4 自然定义域

使算式有意义的点的集合。

例如 $z=\ln{(x+y)}$ 的自然定义域为 $D=\{(x,y)\mid x+y>0\}$ 。 $z=\arcsin{(x+y)}$ 的自然定义域为 $D=\{(x,y)\mid x^2+y^2\leq 1\}$ 。

1.2.5 二元函数的图形

设函数z=f(x,y)的定义域为D。对于任意取定的点 $P(x,y)\in D$,对应的函数值为z=f(x,y)。这样,以x为横坐标,y为纵坐标和 z=f(x,y)为竖坐标在空间就确定一点M(x,y,z)。当x,y遍取D上的一切点时,得到一个空间点集

$$\{(x, y, z) \mid z = f(x, y), (x, y) \in D\}$$
(1.4)

这个点集称为二元函数 $z=f\left(x,y\right)$ 的图形,通常我们也说二元函数的图形是一张曲面。

例如,由空间解析几何知道,线性函数z = ax + by + c 的图形是一张平面,而函数 $z = x^2 + y^2$ 的图形是旋转抛物面。

1.3 多元函数的极限

1.3.1 二元函数的极限

如果在 $P(x,y) \to P_0(x_0,y_0)$ (即 $|PP_0| = \sqrt{(x-x_0)^2+(y-y_0)^2} \to 0$)过程中,对应的函数值无限接近于一个确定的常数A,那么就说A是函数f(x,y)当 $(x,y) \to (x_0,y_0)$ 时的极限。

定义: " $\varepsilon - \delta$ "语言

设二元函数 f(P) = f(x,y) 的定义域为 D, $P_0(x_0,y_0)$ 是D的聚点。如果存在常数A, 对于任意给定的正数 ε , 总存在正数 δ , 使得当点 $P(x,y) \in D \cap \ddot{U}(P_0,\delta)$ 时,都有

$$|f(P) - A| = |f(x, y) - A| < \varepsilon \tag{1.5}$$

成立,那么就称常数A为函数f(x,y)当 $(x,y) \rightarrow (x_0,y_0)$ 的极限,记作

$$\lim_{P \to P_0} f(P) = A \tag{1.6}$$

或

$$f(P) \to A (P \to P_0) \tag{1.7}$$

注意:

- 1. P_0 是D的聚点;
- 2. 证明过程中,核心在于寻找 $\delta = \delta(\varepsilon)$ 。