(1) Let (X, d) be a metric space. A set $A \subseteq X$ is said to be closed if $X \setminus A$ is open. Then prove the following property. If $A \subseteq X$ is closed, then A contains all its limit points.

(1) Pf. If
$$A = X$$
 is closed. Let $Nr(x) := \{y \mid d(x,y) < r\}$
by definition $X \setminus A$ is open.

Let A' be all the limit points of A. by definition $\forall x \in A'$. $\forall r > 0$. $\exists y \in A$. $Nr(x) \cap A \setminus \{x\} \neq \emptyset$

If
$$A' \setminus A \neq \emptyset$$
. Suppose $x_0 \in A' \setminus A = X \setminus A$

Hen
$$\exists r_0 > 0$$
 s.t. $Nr_0(x_0) \subset X \setminus A$

i.e. let
$$r_1 = \frac{1}{2}r_0$$
 $N_{r_1}(x_0) \cap A \setminus \{x_0\} \subset N_{r_1}(x_0) \cap A = \emptyset$

this contradicts with the fact that Xo is a limit point of A.

So our assumption is false.

$$A' \setminus A = \phi$$
 i.e. $A' \subset A$.

(2) Prove that $\sqrt{2}$ is irrational.

$$\exists p.q. \in \mathbb{Z}$$
 s.t. $\sqrt{2} = \frac{p}{q}$ and $ged(p,q) = 1$

$$\Rightarrow 2q^2 = p^2 \Rightarrow 2|p^2$$

$$2g^2 = 4k^2 \Rightarrow 2 | g^2$$

so g must be even
so $gcd(p.q) > 2$. contradiction.
so $Jz \notin \mathbb{Q}$.

(3) Prove that ℚ is not closed in ℝ. (Hint: Problem (5) in Assignment 4 may be used here)

we have $Q' \subseteq Q$ (by conclusion of (1))

Claim. J≥∈ Q'\Q

In Hw4. Ps (6) I showed that

$$\forall x \in \mathbb{R}$$
. $\forall \varepsilon > 0$. $\exists q \in \mathbb{Q}$ s.t. $q < x < q + \varepsilon$
i.e. $x - \varepsilon < q < x$

but
$$\sqrt{2} \notin \mathbb{Q}$$
 (conclusion of (2))

then $Q' \neq Q$.

 \Box