HW 4 – Exploring Common Topics in Health Research News

Shivangi Mundhra | SUID - 842548148

For the three algorithms, kMeans, LDA and BERTopic, I did not sample the data from the given dataset of 10,000 headlines from health research press releases posted on the EurekAlert! Website. All headlines were included in all training all models to explore the common themes of health research news by applying kMeans, LDA, and BERTopic algorithms.

kMeans

Number of clusters –

I used k = 10 to begin with. It resulted in 10 clusters of which cluster #2 was the largest with 4,322 instances. The labels are as below. After using the elbow method to find the best k, I received k = 9 because the slope decreased at k = 9. I used this with sBERT and received below labelled clusters.

Labels –

cluster#	kMeans (k = 1 sBERT (k = 9)					
1 Coronavirus		Research and study findings				
2	Tobacco	Depression and Mental Health				
3	Unsure	Obesity				
4	Brain	Pregnancy				
5 Obesity		Cancer				
6 Heart Health		Ifectious disease Pandemic				
7 Breast cancer		Cognitive Diseases				
8 Hysteria		Heart Health				
9 Stroke		Tobacco				
10	Heart Health	,				

There was a lot of overlap in records between the clusters in kMean (10) algorithm but the sBERT model resulted in precise results. The records included in each cluster centered around a specific topic.

LDA

Number of clusters –

I used number of topics = 15.

Labels -

The below table shows the top 10 words for each label in the SVM model.

Topic#	Topic
1	Adult care
2	Research and findings
3	Heart Risks

4	Sickness caused	by					
	pollution						
5	Orthopedic ailments						
6	Cancer						
7	STDs						
8	Tests and breakthroughs						
9	Organs						
10	Blood related						
11	Parenthood						
12	Unsure						
13	Covid-19						
14	Meals						
15	Brain						

BERTopic

I received 198 topic using BERTopic. Obviously, it is difficult to label all of these. The below chart shows the intertopic Distance Map obtained from BERTopic.

Below is the table of labels.

topic#	topic	topic#	topic	topic#	topic	topic#	topic
1	breast		adhd		leukemia		transfusions
2	dementia	51	older	100	pulmonary	149	sitting
3	preterm	52	ptsd	101	expectancy	150	exercise
4	diabetes	53	migraine	102	sepsis	151	valve
5	tobacco	54	pancreatic	103	bladder	152	violence
6	gut	55	arthritis	104	kidney	153	american
7	alcohol	56	osteoarthriti	105	preterm	154	aneurysm
8	prostate	57	epilepsy	106	media	155	football
9	heart	58	end	107	heat	156	radiation
10	opioid	59	mental	108	cystic	157	celiac
11	eye	60	errors	109	breast	158	toxicity
12	hiv	61	medical	110	cervical	159	dengue
13	antibiotic	62	trials	111	fibrillation	160	secondhand
14	heart	63	statins	112	zika	161	lymphoma
15	liver	64	hot	113	arrest		autoimmune
16	tumor	65	stimulation	114	traumatic	163	cocaine
17	vitamin	66	apnea	115	withdrawal	164	incontinence
18	stroke		back	116	fruit	165	tamoxifen
19	colorectal	68	pregnancy	117	reconstructio	166	alcohol
20	lung		preeclampsia		sleep	167	coffee
	obesity		ebola		spinal	168	dismissing
22	asthma	71	smoking		psoriasis		appendicitis
23	hip		depression	121	falls		hepatitis
24	cannabis		fat	122	breast		clock
25	covid	74	hpv	123	postpartum	172	nsclc
	food		hearing		exercise	173	mindfulness
27	brain		gun	125	pain	174	particulate
	flu		dialysis		depressed		violent
29	autism		kidney		thyroid		smokers
30	pressure		gestational		hands	177	hiv
	malaria		childhood		copd		burnout
32	sleep		clots		ketamine		thinners
	schizophreni	82	mammograp	131	older	180	antidepressa
	hepatitis		eating		salt		gout
	melanoma		meat		nurses		radionuclide
36	ovarian		road	134	fitness		knee
	bariatric		obesity		medicaid		chocolate
	sexual		esophageal		stents		muscular
	exercise		neck		breastfeedin		fatigue
	kidney		racial		walking		media
41		90			gender		transplant
	allergy		testosterone		financial		shoulder
	parkinson		readmission		older		coronavirus
	plastic		delirium		work		pet
	sclerosis		dna		erectile		diet
	sugar		omega		organ		abuse
	suicide		countries		anesthesia		pollution
	pollution		concussion		parasite		body
	cholesterol _		tooth		eczema _		rebuilding
43	andiesteror [38	10011	147	CCECIIIG .		obesity
							depression

Ethic Statement

There are certainly overlaps in many of the clusters in probably all these models. We understand that all these health topics are sensitive and sometimes controversial. The idea is to create a best estimate for research and study purposes and not to slight any article about any disease that we may have missed to cast light on.

Conclusion

The effectiveness and precision by which BERTopic classifies all these headlines so fast is impressive. None of the other models produce such a fine distinction between headlines of topics. Plus BERTopic also eliminates the manual effort to guesstimate the number of clusters which makes it more desirable.