Benchmark-quality time dependent transport solutions using a moving mesh

William Bennett
Ryan McClarren
University of Notre Dame

$$x = -\infty$$

$$x = 0$$

$$x = \infty$$

Radiation transport

Radiative transfer

$$\frac{\partial E}{\partial t} = \sigma_a \left(\phi - T^4 \right) \quad \text{and Transport}$$

Rad-hydro

Punting on this one — not this PhD

Radiation source

 $x = -\infty$

 $x = \infty$

Radiation transport: a few solutions exist

Radiative transfer: one solution exists

Rad-hydro: no solutions

Transport results — Square pulse

t=1

Figure 3: Log-log square pulse convergence results at t=1 increasing number of spatial cells (left) with solution plot(right)

Transport results — Gaussian pulse

t=1

Figure 3: Log-linear Gaussian pulse convergence results at t=1 increasing order of the basis (left) with solution plot(right)

Radiative transfer results — Square pulse

Figure 3: Log-linear square pulse with material coupling convergence results at t=1 increasing order of basis (left) with solution plot(right)

Papers and presentations

- [1] Bennett, W., & McClarren, R. G. (2021). Self-similar solutions for high-energy density radiative transfer with separate ion and electron temperatures. *Proceedings of the Royal Society A*, 477(2249), 20210119.
- [2] Bennett, W., & McClarren, R. G. (2022). Benchmarks for infinite medium, time dependent transport problems with isotropic scattering. *Journal of Computational and Theoretical Transport*, *51*(4), 205-221.
- [3] Bennett, W., & McClarren, R. G. (2023). Benchmark solutions for radiative transfer with a moving mesh and exact uncollided source treatments. *arXiv preprint arXiv:2301.02596*.
- [4] Bennett, W., & McClarren, R. G. (2023). Accurate solutions to time dependent transport problems with a moving mesh and exact uncollided source treatments. *Annals of Nuclear Energy*, 180, 109474.