

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Currently amended) A multilayer ceramic electronic part having an external electrode(s) formed from a thermosetting conductive paste which is then cured, said thermosetting conductive paste comprising conductive particles having a high melting point of 400°C or more, metal powder having a melting point of 300 °C or less and a thermosetting resin(s), and wherein the metal powder having a melting point of 300°C or less is present in an amount by weight based on the total weight of said conductive particles having a high melting point and said metal powder having a melting point of 300°C or less, of from 5% to 17.6%.

Claim 2. (original) The multilayer ceramic electronic part according to claim 1, wherein the total content of said conductive particles having a high melting point and said metal

powder having a melting point of 300 °C or less in said thermosetting conductive paste is in the range of 70 to 95% by weight relative to the total weight of said conductive particles having a high melting point, said metal powder having a melting point of 300 °C or less, and said resin(s).

Claim 3. (Cancelled)

Claim 4. (Currently amended) A multilayer ceramic electronic part obtained according to a method comprising the steps of:

(1) providing a thermosetting conductive paste comprising conductive particles having a high melting point of 400°C or more, metal powder having a melting point of 300 °C or less and a thermosetting resin(s), and a ceramic composite body which is to be provided with an external electrode(s);

(2) printing or applying said thermosetting conductive paste on or to a surface(s) where an internal electrode(s) of said ceramic composite body is led out; and

(3) maintaining said ceramic composite body obtained in the step (2) at a temperature of 80 °C to 400 °C for a period of

one to sixty minutes so as to cure said thermosetting conductive paste and form the external electrode(s); and wherein the metal powder having a melting point of 300°C or less is present in an amount by weight based on the total weight of said conductive particles having a high melting point and said metal powder having a melting point of 300°C or less, of from 5% to 17.6%.

Claim 5. (original) The multilayer ceramic electronic part according to claim 4, wherein said conductive particle in said external electrode(s) makes a diffused junction with a metal of said internal electrode(s) of said multilayer ceramic composite body.

Claim 6. (Previously presented) The multilayer ceramic electronic part according to claim 4, wherein said multilayer ceramic electronic part is selected from the group consisting of a capacitor, a capacitor array, a thermistor, a varistor, an LC composite part, a CR composite part, an LR composite part, and an LCR composite part.

Claim 7. (Canceled)