Tópicos em Computação Evolucionária Otimização Multi-objetiva

Computação Natural Gisele L. Pappa

Otimização de Um ou Muitos Objetivos

 Otimização de um objetivo é um caso particular da otimização de múltiplos objetivos

- Grande parte dos problemas requer a otimização de dois ou mais critérios (objetivos)
- Abordagem convencional para tratar desse problema:
 - Agregação de objetivos: Combinar os objetivos em uma fórmula, atribuindo pesos a diferentes objetivos
 - Fitness = 2/3 Objective_1 + 1/3 Objective_2

(assumindo que os objetivos estão normalizados para retornar valores dentro do mesmo intervalo, como 0..1)

- Desvantagens da abordagem convencional
 - Objetivos diferentes são normalmente nãocomensuráveis, isto é, eles medem aspectos diferentes da qualidade de uma solução, que não deveriam ser adicionados ou subtraídos em uma mesma fórmula
 - Retorna uma solução, enquanto em problemas MO pode ser conveniente retornar um conjunto de soluções, representando diferentes configurações (trade-offs) entre os objetivos
- Solução: Algoritmos Multi-Objetivos baseados na dominância de Pareto

 Exige que o algoritmo funcione em dois passos:

1. Busca

- Algoritmos evolucionários ou qualquer outro algoritmo de busca
- Baseada no conceito de dominância de Pareto

2. Tomada de Decisão

 Escolha de uma solução entre o conjunto de soluções retornadas

Dominância de Pareto

- Um solução S₁ domina uma solução S₂ se e apenas se:
 - − S₁ não é pior que S₂ em nenhum objetivo
 - S₁ é obrigatoriamente melhor que S₂ com respeito a pelo menos um objetivo
- O conjunto de soluções não-dominadas é chamado fronte de Pareto

Conceito de Dominância de Pareto

maximize
$$f_1(x_i), f_2(x_i)$$

Conceito de Dominância de Pareto

 Minimizar o custo de produção e o número de bugs encontrados em um programa

Processo de tomada de Decisão

 Após o processo de busca, uma solução deve ser escolhida pelo usuário

Processo de tomada de Decisão

- Deve incluir informações sobre as preferências do usuário, já que isso não é considerado durante a busca do algoritmo
- Essa informação de preferências pode ser fornecida pelo usuário em 3 momentos:
 - A priori gera uma otimização de um objetivo ou baseada em pesos.
 - A posteriori busca encontra múltiplas soluções
 - Progressivamente durante a busca
 - Combinação das 3 anteriores.

Fórmula combinando objetivos

Usuário escolhe pesos para cada objetivo

Algoritmo busca por uma única solução ótima

Retorna uma única solução ao usuário

MO baseada em Pareto

Perspectiva Histórica

Primeiros algoritmos (agregação de funções)	Schaffer (1985) – VEGA Kursawe (1990) –VOES
Clássicos	Fonseca and Fleming (1993) – MOGA Srinivas and Deb (1994) – NSGA Horn, Nafpliotis and Goldberg (1994) – NPGA
Elitistas	Zitzler and Thiele (1999) – SPEA, (2001) – SPEA2 Deb and co-authors (2000) – NSGA-II Knowles and Corne (2000) – PAES, PESA
Incorporação de preferências	Fleisher (2003) – Simulating Annealing Zitzler and Künzli, (2004) – IBEA Emmerich et al. (2005) – SMS-EMOA Zitzler et al. (2008) – SPAM

O que muda em relação a um AG tradicional?

Algoritmos Evolucionários Multiobjetivos

- EAs são bons métodos para encontrar múltiplas soluções presentes no fronte de Pareto em uma única rodada (paralelismo implícito)
- Quando se fala em MOEAs, queremos:
 - Guiar a busca na direção do fronte de Pareto

Fitness

Algoritmos Evolucionários Multiobjetivos

 Manter um conjunto diverso de soluções não-dominadas

Estimar a densidade

 Não deixar que soluções não dominadas sejam perdidas

Elitismo

Algoritmos Evolucionários Multiobjetivos

- Cálculo da fitness e seleção
- 3 esquemas principais de seleção:
 - Seleção de Objetivos "por Troca" (Switching objectives) – a cada seleção, um objetivo diferente é considerado como fitness
 - Seleção por Agregação com parâmetros variados cada objetivo recebe um peso, mas esse peso varia de indivíduo para indivíduo dentro de uma mesma geração
 - Seleção por Pareto cálculo da fitness baseado no conceito de dominância de Pareto- várias abordagens

Perspectiva Histórica

Primeiros algoritmos (agregação de funções)	Schaffer (1985) – VEGA Kursawe (1990) –VOES
Clássicos	Fonseca and Fleming (1993) – MOGA Srinivas and Deb (1994) – NSGA Horn, Nafpliotis and Goldberg (1994) – NPGA
Elitistas	Zitzler and Thiele (1999) – SPEA, (2001) – SPEA2 Deb and co-authors (2000) – NSGA-II Knowles and Corne (2000) – PAES, PESA
Incorporação de preferências	Fleisher (2003) – Simulating Annealing Zitzler and Künzli, (2004) – IBEA Emmerich et al. (2005) – SMS-EMOA Zitzler et al. (2008) – SPAM

Algoritmos Clássicos

- MOGA (Fonseca e Fleming 1993) FFGA
 - Propõe um rank baseado em Pareto
 - Utiliza niching para manter diversidade
- O ranking de um indivíduo é igual ao número de indivíduos na população pelos quais ele é dominado + 1
- Atribui um valor de fitness através de interpolação
- A fitness final é calculada utilizando fitness sharing de todos os indivíduos com o mesmo ranking

Algoritmos Clássicos

Step 2- Sharing

$$FO_i' = \frac{FO_i}{m_i'}$$

M_i é o número de indivíduos no fronte i

Perspectiva Histórica

Primeiros algoritmos (agregação de funções)	Schaffer (1985) – VEGA Kursawe (1990) –VOES
Clássicos	Fonseca and Fleming (1993) – MOGA Srinivas and Deb (1994) – NSGA Horn, Nafpliotis and Goldberg (1994) – NPGA
Elitistas	Zitzler and Thiele (1999) – SPEA, (2001) – SPEA2 Deb and co-authors (2000) – NSGA-II Knowles and Corne (2000) – PAES, PESA
Incorporação de preferências	Fleisher (2003) – Simulating Annealing Zitzler and Künzli, (2004) – IBEA Emmerich et al. (2005) – SMS-EMOA Zitzler et al. (2008) – SPAM

Seleção por Pareto

- As mais populares são as utilizadas no
 - NSGA II (Nondominated Sorting Genetic Algorithms)
 - SPEA 2 (Strength Pareto Evolutionary Algorithm)

- Inicialização anterior ao loop
 - Cria população inicial P₀
 - Ordena P₀ baseda em não-dominância
 - Atribui fitness de acordo com o ranking de dominância: quanto menor o valor, maior a fitness
 - Seleção por torneio
 - Mutação e cruzamento criam Q₀

- Loop principal
 - $-R_t = P_t + Q_t$
 - Ordeno R_t de acordo com dominância
 - Crio P_{t+1} adicionando a ela os melhores indivíduos de R_t
 - Crio Q_{t+1} com seleção por torneio, cruzamento e mutação em P_{t+1}
 - Nesse loop principal, uso tanto o id do fronte quanto crowding distance como critério de seleção.

NSGA-II (Elitism)

NSGA-II - Niching

- Distância por *Crowding*:
 - Usa como métrica a distância média entre dois vizinhos
 - Calcula o perímetro de um cubóide definido pelos 2 vizinhos mais próximos no mesmo fronte
- Seleção por torneio: usa a distância por crowding como métrica de desempate

NSGA-II - Niching

- O *crowding distance* busca estimar a vizinhança de cada indivíduo no espaço de objetivos do problema.
- Ela corresponde ao volume do hupercubo formado pelas soluções imediatamente anteriores e posteriores a cada objetivo f₂

Esquerda

NSGA-II - Niching

```
\begin{array}{ll} \operatorname{crowding-distance-assignment}(\mathcal{I}) \\ \hline l = |\mathcal{I}| & \text{number of solutions in } \mathcal{I} \\ \text{for each } i, \ \operatorname{set} \ \mathcal{I}[i]_{\operatorname{distance}} = 0 & \operatorname{initialize distance} \\ \text{for each objective } m \\ \mathcal{I} = \operatorname{sort}(\mathcal{I}, m) & \text{sort using each objective value} \\ \mathcal{I}[1]_{\operatorname{distance}} = \mathcal{I}[i]_{\operatorname{distance}} = \infty & \text{so that boundary points are always selected} \\ \text{for } i = 2 \operatorname{to} \ (l-1) & \text{for all other points} \\ \mathcal{I}[i]_{\operatorname{distance}} = \mathcal{I}[i]_{\operatorname{distance}} + (\mathcal{I}[i+1].m - \mathcal{I}[i-1].m)/(f_m^{\max} - f_m^{\min}) \end{array}
```



```
\begin{split} R_t &= P_t \cup Q_t \\ \mathcal{F} &= \text{fast-non-dominated-sort}(R_t) \\ P_{t+1} &= \emptyset \text{ and } i = 1 \\ \text{until } |P_{t+1}| + |\mathcal{F}_i| \leq N \\ &= \text{crowding-distance-assignment}(\mathcal{F}_i) \\ P_{t+1} &= P_{t+1} \cup \mathcal{F}_i \\ i &= i+1 \\ \text{Sort}(\mathcal{F}_i, \prec_n) \\ P_{t+1} &= P_{t+1} \cup \mathcal{F}_i [1:(N-|P_{t+1}|)] \\ Q_{t+1} &= \text{make-new-pop}(P_{t+1}) \\ t &= t+1 \end{split}
```

combine parent and offspring population $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2, \ldots)$, all nondominated fronts of R_t until the parent population is filled calculate crowding-distance in \mathcal{F}_i include ith nondominated front in the parent pop check the next front for inclusion sort in descending order using \prec_n choose the first $(N - |P_{t+1}|)$ elements of \mathcal{F}_i use selection, crossover and mutation to create a new population Q_{t+1}

increment the generation counter

Seleção por Pareto

- As mais populares são as utilizadas no
 - NSGA II (Nondominated Sorting Genetic Algorithms)
 - SPEA 2(Strength Pareto Evolutionary Algorithm)

- Trabalha com a população e um conjunto externo de indivíduos
- Conjunto externo: contém todos os indivíduos não-dominados únicos da população
 - Limitado por um tamanho máximo
- Fitness é calculada tanto para indivíduos da população quanto do conjunto externo


```
Gera a população inicial P_0 e um arquivo externo vazio A_0
t=1
Enquanto (t < NumeroGeracoes)
  Calcula a fitness dos individuos em P<sub>t</sub> e A<sub>t</sub>
  A_{t+1} = indivíduos não-dominados em P_t and A_t.
  se (tamanho de A_{t+1} > N) reduza A_{t+1}
  senão
   Insira em A<sub>t+1</sub> com os indivíduos não dominados de P<sub>t</sub> e A<sub>t</sub>.
  se (t > T) retorne A_{t+1}
  Use seleção por torneio (k=2) usando indivíduos de A<sub>t+1</sub>
  Aplique mutação de cruzamento e crie P<sub>t+1</sub>
```

SPEA2- Cálculo da Fitness

- Cada indivíduo i é associado a uma força S
 S(i) = número de indivíduos que i domina
- Fitness bruto R(i)
 - Soma as forças de todos os indivíduos que dominam i (quanto maior, pior)
- Densidade D(i) $D(i) = \frac{1}{\sigma_i^k + 1}$ distância ao k-ésimo vizinho mais próximo no espaço de objetivos
 - Leva à exploração de regiões pouco povoadas

$$F_{SPEA2}(i) = R(i) + D(i)$$

SPEA2: Cálculo do Fitness

Trata as duas exigências em uma única métrica, que deve ser minimizada.

SPEA2 – Atualização da população externa

- População externa tem sempre tamanho N_A (definido pelo usuário)
- Mantêm uma boa cobertura da fronteira de pareto
- Quando ela ainda não está completa
 - Completada com melhores indivíduos dominados (de acordo com fitness)
- Quando está completa
 - Elimina os indivíduos de menor distância a seus k vizinhos mais próximos

NSGA-II e SPEA2

- São os algoritmos mais utilizados
- Ainda considerados estado da arte
- São custosos
 - NSGA-II
 - Ranking por não dominância
 - Crowding distance: ordenação de todos os indivíduos por cada objetivo
 - SPEA2
 - Calcula distâncias entre indivíduos par a par
 - Ordena essas distâncias para encontrar o vizinho mais próximo

Leitura Recomendada

- SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization, E. Zitzler and K. Giannakoglou and D. Tsahalis and J. Periaux and K. Papailiou and T. Fogarty, 2002.
- A fast and elitist multiobjective genetic algorithm: NSGA-II, K Deb, A Pratap, S Agarwal, T Meyarivan, Evolutionary Computation, IEEE Transactions on 6 (2), 182-197