Obliczenia inżynierskie w środowisku MATLAB

Elementarne układy dynamiczne o własnościach chaotycznych

Paweł Wachel

Rozpatrzymy model układu dynamicznego, w którym występuje zjawisko chaosu deterministycznego. Nawiążemy w tym celu do fundamentalnej pracy R. Maya:

May, Robert M. "Simple mathematical models with very complicated dynamics." Nature 261.5560 (1976): 459-467.

Niech X_n oznacza liczebność populacji pewnego gatunku (indeksem n będziemy oznaczać kolejne pokolenia). Analizując charakter zmian liczebności populacji w kolejnych pokoleniach możemy posłużyć się elementarnym modelem:

$$X_{n+1} = rX_n, (1)$$

gdzie $r \geq 0$ to stała, a X_0 to liczebność początkowa (warunek początkowy). Nie trudno zauważyć, że przyjęty model (z całą pewnością zbyt uproszczony) ma następujące własności: a) jeżeli stała r=1, to liczebność populacji nie ulega zmianie w kolejnych pokoleniach; b) jeżeli r < 1, to liczebność maleje (gatunek zanika); c) jeżeli r > 1, to w każdym kolejnym pokoleniu liczebność wzrasta.

Przyjmijmy następnie, że analizowany gatunek dysponuje ograniczonymi zasobami (np. pożywienia, przestrzeni itp.). W takiej sytuacji należy się spodziewać, że współczynnik r jest zmienny w czasie (ozn. r_n) i zależy od X_n . W prostym przypadku możemy np. założyć, że r_n liniowo zależy od X_n , tzn.

$$r_n = b - aX_n. (2)$$

Interpretując powyższy model zauważamy, że jeżeli a=0, to b określa stałą szybkość rozrostu populacji, a więc nie występuje negatywny wpływ ograniczeń w zasobach. Jeżeli natomiast a>0, to im większa jest populacja X_n , tym mniejsza wartość współczynnika r_n , co skutkuje spadkiem tempa przyrostu osobników. Parametr a można więc uznać za czynnik reprezentujący wpływ ograniczenia zasobów.

Wstawiając (2) do (1) otrzymujemy

$$X_{n+1} = (b - aX_n) X_n. (3)$$

Powyższe równanie (po uproszczeniu i normalizacji występujących w nim wielkości) znane jest szeroko w literaturze naukowej pod nazwą odwzorowania logistycznego i przyjmuje postać

$$x_{n+1} = \alpha x_n \left(1 - x_n \right), \tag{4}$$

gdzie $\alpha \in (0,4)$, a x_n jest liczbą z przedziału (0,1), proporcjonalną do liczności populacji w pokoleniu n (dla $x_n = 1$ populacja ginie).

Zadania do wykonania:

Posługując się równaniem (4):

- 1. Zbadać numerycznie ewolucję liczebności populacji dla dowolnie wybranej wartości α z przedziału (0,1) i kilku wybranych wartości początkowych x_0 . Jak zamienia się liczebność w kolejnych pokoleniach? Czy graniczna wartość liczebności zależy od wartości x_0 ?
- 2. Zbadać numerycznie ewolucję liczebności populacji dla dowolnie wybranej wartości α z przedziału (1,2) i kilku wybranych wartości początkowych x_0 . Jak zamienia się liczebność w kolejnych pokoleniach? W jaki sposób graniczna wartość liczebności zależy od wartości x_0 ?
- 3. Zbadać numerycznie ewolucję liczebności populacji dla dowolnie wybranej wartości α z przedziału (2,3) i kilku wybranych wartości początkowych x_0 . Jak zamienia się liczebność w kolejnych pokoleniach? Jaka jest jej wartość graniczna (dla dużych n)?
- 4. Zbadać numerycznie ewolucję liczebności populacji dla dowolnie wybranej wartości α z przedziału $(3, 1 + \sqrt{6})$ i kilku wybranych wartości początkowych x_0 . Jak zamienia się liczebność w kolejnych pokoleniach? Jaka jest jej wartość graniczna (dla dużych n)?
- 5. Przedyskutować zachowanie układu dla wybranego $r \in (3.57; 4.00)$? W jakim sensie możemy tu mówić o wystąpieniu zjawiska chaosu?
- 6. **Diagram bifurkacji.** Dla rozważanego układu dynamicznego skonstruować tzw. diagram bifurkacji, a więc wykres, na którym oś pozioma określa wartość parametru r w zakresie (0,4), a oś pionowa oznacza graniczne wartości liczebności populacji x_n . UWAGA: jeśli dla danej wartości α różnorodne warunki początkowe x_0 prowadziły do kilku wartości granicznych x_{∞} , to wszystkie uzyskane w ten sposób rezultaty należy umieścić na wykresie.

Dokonać interpretacji uzyskanego wykresu. Jakiego rodzaju informacje o rozważanym modelu dynamicznym można z niego uzyskać? W jaki sposób uwidacznia się zjawisko chaosu? Jakiego rodzaju trudności natury praktycznej i teoretycznej wynikają z zaobserwowanych zależności?