MAT300 CURVES AND SURFACES

Julia Sánchez Sanz

DigiPen Institute of Technology Europe julia.sanchez@digipen.edu

Spring 2020

Bezier curves

Motivation for reparametrization

Polar forms

Motivation: review

We saw how to obtain two Bezier curves by subdivision.

$$\gamma(t) = \sum_{i=0}^{n} P_i B_i^n(t), \quad t \in [0, 1]$$
 (1)

- ullet select a point $ar t \in (0,1)$ for the subdivision
- construct two curves

$$\gamma_1(t) = \sum_{i=0}^n P_i B_i^n(t), \quad t \in [0, \overline{t}] \qquad \gamma_2(t) = \sum_{i=0}^n P_i B_i^n(t), \quad t \in [\overline{t}, 1]$$

• reparametrize the curves for obtaining their Bezier representation

$$\gamma_1(s) = \sum_{i=0}^n ar{P}_i B_i^n(s), \;\; s \in [0,1] \qquad \gamma_2(s) = \sum_{i=0}^n \hat{P}_i B_i^n(s), \;\; s \in [0,1]$$

the reparametrization is based on selecting new control points.

Motivation: new problems

Given a polynomial curve $\gamma:[0,1]\to\mathbb{R}^2$ defined as

$$\gamma(t) = (p(t), q(t)) \tag{2}$$

where $p, q \in P_n$. What are the control points of its Bezier representation?

$$\gamma(t) = (-1 + t - 2t^2 + t^3, -2 + 4t^2 - t^3)$$

Motivation: new problems

Given a polynomial curve $\gamma:[a,b]\to\mathbb{R}^2$ defined as

$$\gamma(t) = (p(t), q(t)) \tag{3}$$

where $p, q \in P_n$. What are the control points of its Bezier representation?

$$\gamma(t) = (-1 + t - 2t^2 + t^3, -2 + 4t^2 - t^3)$$
 $t \in [-1, 2]$

Motivation: new problems

Given a Bezier curve $\gamma(t) = \sum_{i=0}^{n} P_i B_i^n(t), t \in [0,1],$

what is the Bezier representation of $\hat{\gamma}(t) = \sum_{i=0}^{n} P_i B_i^n(t), t \in [a, b]$?

what are the control points of such a Bezier curve?

$$\hat{\gamma}(s) = \sum_{i=0}^{n} \hat{P}_{i} B_{i}^{n}(s), \ s \in [0,1]$$
 (4)

Affine functions

Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be affine if $f(x) = \alpha x + \beta$.

Affine functions satisfy

$$f((1-t)a + tb) = (1-t)f(a) + tf(b)$$
(5)

Remark: the above notation denotes a reparametrization x = (1 - t)a + tb

Proof:

$$f((1-t)a+tb) = \alpha((1-t)a+tb) + \beta = (1-t)\alpha a + t\alpha b + \beta = (1-t)\alpha a + t\alpha b + \beta(1-t+t) = (1-t)(\alpha a + \beta) + t(\alpha b + \beta) = (1-t)f(a) + tf(b)$$

Affine functions preserve barycentric coordinates.

Polar forms

Definition

A polar form $F[u_1, u_2, \dots, u_n]$ for a polynomial $p \in P_n$ is a multivariable multivalued function satisfying:

Symmetry

$$F[u_{\sigma_1}, u_{\sigma_2}, \dots, u_{\sigma_n}] = F[u_1, u_2, \dots, u_n]$$
 (6)

for $(\sigma_1, \sigma_2, \dots, \sigma_n)$ any permutation of the set $\{1, 2, \dots, n\}$

Construction by substitution

$$F[t, t, \dots, t] = p(t) \tag{7}$$

Affinity: the function

$$F[u_1, u_2, \dots, x, \dots, u_n] \tag{8}$$

is affine for x and for every position, being the other u_i constants.

Examples of polar forms

We select the space: P_3

•
$$p(t) = 1$$
 has polar form $F[u_1, u_2, u_3] = 1$

$$ullet$$
 $p(t)=t$ has polar form $F[u_1,u_2,u_3]=rac{u_1+u_2+u_3}{3}$

•
$$p(t)=t^2$$
 has polar form $F[u_1,u_2,u_3]=rac{u_1u_2+u_1u_3+u_2u_3}{3}$

•
$$p(t) = t^3$$
 has polar form $F[u_1, u_2, u_3] = u_1 u_2 u_3$

Show that the above polar forms satisfy the properties in the definition

whiteboard

More examples of polar forms

We select the space: P_4

- p(t) = 1 has polar form $F[u_1, u_2, u_3, u_4] = 1$
- p(t) = t has polar form $F[u_1, u_2, u_3, u_4] = \frac{u_1 + u_2 + u_3 + u_4}{4}$
- $p(t)=t^2$ has $F[u_1,u_2,u_3,u_4]=\frac{u_1u_2+u_1u_3+u_1u_4+u_2u_3+u_2u_4+u_3u_4}{6}$
- $p(t) = t^3$ has $F[u_1, u_2, u_3, u_4] = \frac{u_1 u_2 u_3 + u_1 u_2 u_4 + u_1 u_3 u_4 + u_2 u_3 u_4}{4}$
- $p(t) = t^4$ has polar form $F[u_1, u_2, u_3, u_4] = u_1 u_2 u_3 u_4$

The above polar forms satisfy the properties in the definition

Polar forms of the standard basis for P_n

$$p(t) = t^j$$
 for $j = 0, 1, \dots, n$ therefore $F[u_1, u_2, \dots, u_n]$

- For p(t) = 1 then $F[u_1, u_2, \dots, u_n] = 1$, otherwise:
- Take the set $\{u_1, u_2, \dots, u_n\}$ and from this set do the $\binom{n}{j}$ combinations of j elements.
- Multiply the elements of each combination and sum the result.
- Divide the result by the number of j-combinations $\binom{n}{j}$

Example: obtain the polar forms of the standard basis for P_5 .

Polar form of an arbitrary polynomial

Consider the space P_n and its standard basis $\{1, t, t^2, \dots, t^n\}$

We denote with $F_j := F_j[u_1, u_2, \dots, u_n]$ the polar form for $p(t) = t^j$

The polar form of a polynomial $p(t) = a_0 + a_1t + a_2t^2 + ... + a_nt^n$ is given by

$$F[u_1, u_2, \dots, u_n] = a_0 F_0 + a_1 F_1 + a_2 F_2 + \dots + a_n F_n$$
 (9)

Example: obtain the polar form of $p(t) = 2 - 3t + 4t^2$ in P_2

$$F_0 = 1$$
, $F_1 = rac{u_1 + u_2}{2}$, $F_2 = u_1 u_2$ then

$$F = 2F_0 - 3F_1 + 4F_2 = 2 - 3\left(\frac{u_1 + u_2}{2}\right) + 4u_1u_2$$

Example: obtain the polar form of $p(t) = 2 - 3t + 4t^2$ in P_3 whiteboard

Polar forms for Bernstein polynomials

We select the space: P_2

•
$$B_0^2(t) = \left(\begin{array}{c} 2 \\ 0 \end{array} \right) (1-t)^2 t^0$$
 has polar form $F[u_1,u_2] = (1-u_1)(1-u_2)$

•
$$B_1^2(t) = \begin{pmatrix} 2 \\ 1 \end{pmatrix} (1-t)^1 t^1$$
 has polar form $F[u_1, u_2] = (1-u_1)u_2 + (1-u_2)u_1$

•
$$B_2^2(t) = {2 \choose 2} (1-t)^0 t^2$$
 has polar form $F[u_1, u_2] = u_1 u_2$

Show that the above polar forms satisfy the properties in the definition

whiteboard

Polar forms of the Bernstein basis for P_n

$$p(t) = \binom{n}{j} (1-t)^{n-j} t^j$$
 for $j = 0, 1, \ldots, n$ therefore $F[u_1, u_2, \ldots, u_n]$

• Take the set $U = \{u_1, u_2, \dots, u_n\}$ and from this set do the

$$\binom{n}{n-j}$$
 combinations of $n-j$ elements.

• For each combination $\{u_{\sigma_1},\ldots,u_{\sigma_{n-j}}\}$ construct a product $\prod_{k=1}^{n-j}(1-u_{\sigma_k}) \text{ and multiply it by the elements that are in}$

$$U\setminus\{u_{\sigma_1},\ldots,u_{\sigma_{n-j}}\}.$$

Sum the result of each combination.

Example: obtain the polar forms of the Bernstein basis for P_3 .

Polar form of a polynomial in Bernstein basis

Consider the space P_n and its Bernstein basis $\{B_0^n, B_1^n, B_2^n, \dots, B_n^n\}$

We denote with $F_j := F_j[u_1, u_2, \dots, u_n]$ the polar form for $B_j^n(t)$

The polar form of a polynomial $p(t) = a_0 B_0^n + a_1 B_1^n + a_2 B_2^n + \ldots + a_n B_n^n$ is given by

$$F[u_1, u_2, \dots, u_n] = a_0 F_0 + a_1 F_1 + a_2 F_2 + \dots + a_n F_n$$
 (10)

Theorem

The polar form of a polynomial $p \in P_n$ exists and is unique.