SEMINAR 8+9

Examples of vector spaces.

1) Show that the Abelian group (\mathbb{R}_+^*,\cdot) is an \mathbb{R} -vector space with the external operation * defined by

$$\alpha * x = x^{\alpha}, \ \alpha \in \mathbb{R}, \ x \in \mathbb{R}_{+}^{*}.$$

2) Let V be a K-vector space an let M be a set. Show that V^M is a K-vector space with the pointwise operations on V^M , i.e.

$$(f+g)(x) = f(x) + g(x), \ (\alpha f)(x) = \alpha f(x), \ \forall f, g \in V^M, \ \forall \alpha \in K.$$

- 3) Can one organize a finite set M as a vector space over an infinite field K?
- 4) Let $p \in \mathbb{N}$ be a prime. Can one organize the Abelian group $(\mathbb{Z}, +)$ as a vector space over the field $(\mathbb{Z}_p, +, \cdot)$?
- 5) Which of the following subsets is a subspace in the space mentioned nearby:
 - a) $A = \{(x, y) \in \mathbb{R}^2 \mid ax + by = 0\}, (a, b \in \mathbb{R} \text{ are given}) \text{ in } \mathbb{R}^2;$
 - b) $D = [-1, 1] \text{ in } \mathbb{R}\mathbb{R};$
 - b') $D' = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ in \mathbb{R}^2 ;
 - b") $D'' = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}$ in \mathbb{R}^n ;
 - c) $P_n(\mathbb{R}) = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f \leq n \}$ in $\mathbb{R}[X]$ $(n \in \mathbb{N} \text{ is given});$
 - d) $B = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f = n \}$ in $\mathbb{R}[X]$ $(n \in \mathbb{N} \text{ is given})?$
- 6) Let V be a K-vector space, $A \leq_K V$ and $C_V A = V \setminus A$.
 - i) Is $C_V A$ a subspace in KV?
 - ii) What about $C_V A \cup \{0\}$?
- 7) Let V be a K-vector space, $S \leq_K V$ and $x, y \in V$. We denote $\langle S, x \rangle = \langle S \cup \{x\} \rangle$. Show that if $x \in V \setminus S$ and $x \in \langle S, y \rangle$ then $y \in \langle S, x \rangle$.
- 8) Let V be a K-vector space and $\alpha, \beta, \gamma \in K$, $x, y, z \in V$ such that $\alpha \gamma \neq 0$ and $\alpha x + \beta y + \gamma z = 0$. Show that $\langle x, y \rangle = \langle y, z \rangle$.
- 9) Let V, V' be K-vector spaces, $f: V \to V'$ a linear map, $A \leq_K V$ and $A' \leq_K V'$. Show that:
 - a) $f(A) = \{ f(a) \in V' \mid a \in A \} \leq_K V';$
 - b) $f^{-1}(A') = \{x \in V \mid f(x) \in A'\} \le_K V.$
- 10) In the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}} = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$ we consider

$$\mathbb{R}_o^{\mathbb{R}} = \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is odd}\}, \ \mathbb{R}_e^{\mathbb{R}} = \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is even}\}.$$

1

Show that $\mathbb{R}_o^{\mathbb{R}}$ şi $\mathbb{R}_e^{\mathbb{R}}$ are subspaces of $\mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}} = \mathbb{R}_o^{\mathbb{R}} \oplus \mathbb{R}_e^{\mathbb{R}}$.

11) Show that the property of being a direct summand is transitive.