17. Vektorok skaláris szorzásának tulajdonságai. Mátrixok összeadása és szorzásai, e műveletek tulajdonságai. A szorzatmátrix sorainak és oszlopainak különös tulajdonsága, ESÁ és mátrixszorzás kapcsolata.

1. Vektorok skaláris szorzásának tulajdonságai

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

$$\begin{array}{l} \textbf{P\'elda:} \; \left(\begin{array}{ccc} 1 & 1 & 2 \\ 3 & 0 & 7 \end{array} \right) + \left(\begin{array}{ccc} 2 & 0 & 5 \\ 3 & 5 & 1 \end{array} \right) = \left(\begin{array}{ccc} 3 & 1 & 7 \\ 6 & 5 & 8 \end{array} \right) \\ 7 \cdot \left(\begin{array}{ccc} 6 & 0 & 6 \\ 1 & 6006 & 11 \end{array} \right) = \left(\begin{array}{ccc} 42 & 0 & 42 \\ 7 & 4242 & 77 \end{array} \right) \\ \left(\begin{array}{ccc} 1 & 1 & 2 \\ 3 & 0 & 7 \end{array} \right) + \left(\begin{array}{ccc} 2 & 5 \\ 0 & 7 \\ 1 & 3 \end{array} \right) \; \text{nem \'ertelmes}.$$

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

Köv: Ha
$$A, B, C \in \mathbb{R}^{n \times k}$$
 és $\lambda, \kappa \in \mathbb{R}$, akkor (1) $A + B = B + A$, (2) $(A + B) + C = A + (B + C)$, (3) $\lambda(A + B) = \lambda A + \lambda B$, (4) $(\lambda + \kappa)A = \lambda A + \kappa A$, (5) $\lambda(\kappa A) = (\lambda \kappa)A$, továbbá (6) $(A + B)^{\top} = A^{\top} + B^{\top}$, (7) $\lambda \cdot A^{\top} = (\lambda A)^{\top}$.

Vektorok egymással történő összeszorzását nem értelmeztük eddig. Most fogjuk, de bizonyos korlátokkal. Ehhez először azonos méretű vektorokat tanulunk meg összeszorozni.

2. Mátrixok összeadása és szorzása

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $\underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$ vektorok skaláris szorzata $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \dots + u_n v_n$. Megf: $\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$ esetén (1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$, (2) $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$ ill. (3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$. Megj: (1) Világos, hogy ha $\underline{u} = \underline{0}$ vagy $\underline{v} = \underline{0}$, akkor $\underline{u} \cdot \underline{v} = 0$, ám a fordított következtetés nem igaz, pl $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$. (2) A skaláris szorzás segítségével értelmezhető a vektorhossz és a merőlegesség (akár magasabb dimenzióban is). Megf: A $\underline{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ vektor hossza az $\underline{a}, \underline{b}, \underline{c}$ oldalakkal rendelkező téglatest testátlójának hossza, ami a Pitagorasz-tétel alapján $\|\underline{v}\| = \sqrt{a^2 + b^2 + c^2}$. Ugyanez, másképp felírva: $\|\underline{v}\|^2 = \underline{v} \cdot \underline{v}$. Megj: Az \underline{u} és \underline{v} vektorok merőlegessége azt jelenti, hogy $\|\underline{u}\|^2 + \|\underline{v}\|^2 = \|\underline{u} + \underline{v}\|^2 = (\underline{u} + \underline{v}) \cdot (\underline{u} + \underline{v}) = \underline{u} \cdot \underline{u} \cdot \underline{v} \cdot \underline{v} = \|\underline{u}\|^2 + \|\underline{v}\|^2 + 2\underline{u} \cdot \underline{v}$, innen $\underline{u} \cdot \underline{v} = 0$ adódik. Tehát $\underline{u} \cdot \underline{v} = 0 \iff \underline{u} \perp \underline{v}$.

3. e műveletek tulajdonságai

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

Biz: A skaláris szorzásról tanult azonosság szerint $\lambda(\underline{u} \cdot \underline{v}) = (\lambda \underline{u}) \cdot \underline{v} = \underline{u} \cdot (\lambda \underline{v})$. Ezért mindhárom szorzatban az i-dik sor j-dik eleme az A i-dik sora és B j-dik oszlopa skaláris szorzatának a λ -szorosa ($\forall i, j$ esetén).

4. A szorzatmátrixok sorainak és oszlopainak különös tulajdonsága

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- (2) $A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai $\underline{a}^1, \dots, \underline{a}^k$ és B sorai $\underline{b}_1, \dots, \underline{b}_k$. Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a}^1, \dots, \underline{a}^k$ oszlopok lineáris kombinációja, az együtthatókat pedig a \underline{b}^j oszlop tartamazza.
- (2) Hasonlóan, az *i*-dik sor a $\underline{b}_1, \ldots, \underline{b}_k$ sorok lineáris kombinációja, mégpedig az \underline{a}_i sorban szereplő együtthatókkal.
- (3) Ha a C mátrix minden oszlopa az A oszlopainak lin.komb-ja, akkor C előáll AB alakban. Ha a C mátrix sorai az A sorainak lin.komb-i, akkor C előáll C = BA alakban.

Köv: Ha A' ESÁ-okkal kapható A-ból, akkor A' = BA alakú.

5. ESÁ és mátrixszorzat kapcsolata.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

$$(3) (AB)^{\mathsf{T}} = B^{\mathsf{T}} A^{\mathsf{T}}.$$

Megj: Ha AB és BA is értelmes, akkor $A \in \mathbb{R}^{n \times k}$ és $B \in \mathbb{R}^{k \times n}$. Ekkor $AB \in \mathbb{R}^{n \times n}$ és $BA \in \mathbb{R}^{k \times k}$. Azonban még k = n esetén sem igaz általában, hogy AB = BA. A mátrixszorzás nem kommutatív.

(3)
$$(AB)^{\top} = B^{\top}A^{\top}$$
.

Biz: $(AB)^T$ *j*-dik sorának *i*-dik eleme az A *i*-dik sorának és B *j*-dik oszlopának a skaláris szorzata, ami ugyanaz, mint B^T *j*-dik sorának és A^T *i*-dik oszlopának a skaláris szorzata $(\forall i, j \text{ esetén})$.

(2) A(B+C) = AB + AC ill. (A+B)C = AC + BC.

Biz: Tudjuk, hogy $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$. Ezért A(B+C) ill. AB+AC i-dik sorának j-dik eleme az A i-dik sorának és B és C j-dik oszlopai összegének skaláris szorzata $(\forall i,j$ esetén). A másik disztributivitás a skaláris szorzás $(\underline{u} + \underline{v}) \cdot \underline{w} = \underline{u} \cdot \underline{w} + \underline{v} \cdot \underline{w}$ alakú, másik disztributív azonosságából következik.