

Unsupervised Learning for Underwater Image Restoration

Katherine Skinner

Robotics Institute

University of Michigan

Motivation

Bleached coral

Healthy coral

Reference: The Ocean Agency/XL Caitlin Seaview Survey

Expectation...

Photo: Volodymyr Goinyk

...vs. Reality

Photo: Australian Centre for Field Robotics (ACFR)

Underwater Image Formation

Attenuation and backscattering lead to range-dependent image degradation

Hog Reef, Bermuda

Abstraction of underwater image formation

Computer Vision Challenges: Photometric Consistency

Assumptions used on land break down underwater due to rangedependent water column effects

Model-based vs. Data-driven

Model-based

- Explicit rules
- Interpretable
- Structured solutions
- Limited complexity

Varying environmental conditions

Abstraction of underwater image formation

Model-based vs. Data-driven

Data-driven

- Complex systems
- Training data
- Labels
- "Black box"

> Lack of ground truth

Reference: Favio Vázquez

- Integrate structure and insight from model-based approaches to enable unsupervised learning
- Hybrid model-based, data driven approach

Generative Adversarial Networks (GANs)

Reference: I. J. Goodfellow, et al. "Generative adversarial networks," NIPS, 2014.

5/22/2019 Katherine A. Skinner

Generative Adversarial Networks (GANs)

Reference: I. J. Goodfellow, et al. "Generative adversarial networks," NIPS, 2014.

5/22/2019 Katherine A. Skinner 15

Generating Realistic Underwater Images

Stage G-I: Attenuation

$$G_{1,C} = I_{air,C}e^{-\beta_C\Delta z}$$

 Δz = Distance along line of sight

 β_{C} = Effective wideband atten. coeff.

I = Image

C = Color channel

Stage G-II: Backscattering

Generating Realistic Underwater Images

Underwater Image Restoration Network

Experiments

Results

Color Consistency

Monocular Depth Estimation

Results for WaterGAN depth estimation

UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery

Katherine A. Skinner, Junming Zhang, Elizabeth Olson and Matthew Johnson-Roberson, "UWStereoNet: Unsupervised learning for depth estimation and color correction of underwater stereo imagery." Submitted to ICRA, 2019.

Unsupervised Learning for Stereo Vision

5/22/2019 Katherine A. Skinner

Disparity Estimation

$$Loss = \alpha_1 L_{disp_init} + \alpha_2 L_{disp_ref}$$

$$L_{disp_init} = \beta_1 L_{disp_warp} + \beta_2 L_{consist} + \beta_3 L_{reg}$$

$$L_{disp_ref} = \gamma_1 L_{disp_warp} + \gamma_2 L_{consist} + \gamma_3 L_{smooth}$$

Junming Zhang

Raw Stereo Images | Feature Extraction | Cost Volume | Initial Estimation | Refinement | Disparity Estimation

Color Correction

$$Loss = \theta_1 L_{gray} + \theta_2 L_{IQ} + \theta_3 L_{color_warp} + \theta_4 L_{color_cyc} + \theta_5 L_{disp_ref}$$

Concatenation Layer

Experiments

Results

Towards Real-Time Underwater 3D Reconstruction with Stereo Cameras

Overview

Reference: T. Whelan, et. al, "ElasticFusion: Dense SLAM Without A Pose Graph." RSS, 2015.

Experiments

Results

Input RGBD

Results

Summary

- Lack of ground truth
 - → Leverage physics-based models, geometry, and image processing constraints
- System integration of learning-based approaches
 - → Modular approaches vs. end-to-end learning

Future Directions

- Eliminating the need for hand-labelled data
 - Generating synthetic data through augmentation
 - Training from simulated data
 - Automated labelling with multi-modal datasets
- Generalizability
- Open source data and benchmark evaluation

Thank you!

