D
$$T(n) = 3T(\frac{n}{2}) + n^2$$
 $a = 3$ $b = 2$ $f(n) = n^2$
 $a \times b$ are constant of $f(n)$ is function. Market's theorem is applicable

 $c = \log_b a$
 $= \log_2 3 = 1.58$
 $n^c = n^{1.58}$ which is $< n^2$

Care 3 is applicable

 $T(n) = 4T(\frac{n}{2}) + n^2$
 $a = 4$ $b = 2$ $f(n) = n^2$
 $c = \log_b a = \log_b 4 = 2$
 $n^c = n^2 \Rightarrow f(n)$

Care 2 $T(n) = 0$ $n^c \log_n n$
 $T(n) = T(\frac{n}{2}) + 2^n$
 $a = 1$ $b = 2$ $f(n) = 2^n$
 $c = \log_b a = \log_2 1 = 0 \Rightarrow n^c = n^c = 1$
 $f(n) > n^c$

Care 3

 $T(n) = 0$ (2^n)

4)
$$T(n) = 167 \cdot (n_4) + n$$
 $a = 16 \cdot 6 = 4 \cdot f(n) = 4$
 $c = \log a = \log_4 16 = 2$
 $c = \log a = \log_4 16 = 2$
 $c = \log a = \log_4 16 = 2$
 $c = \log a = \log_4 16 = 2$
 $c = \log a = \log_4 16 = 2$

5)
$$T(n) = 16T(n/4) + n$$
 $a = 16 \cdot b = 4 f(n) = 4$
 $C = log_{6}a = log_{4} 16 = 2$
 $h^{C} > f(n)$

and $T(n) = \Theta(n^{2})$

6)
$$T(n) = 2T(\frac{n}{2}) + n \operatorname{dog} n$$
 $a = 2 \quad b = 2 \quad f(n) = n \operatorname{log} n$
 $C = \log_b a = \log_b 2 = 1$
 $n^\circ = n$

Case 3 is applied

 $T(n) = O(n \log_n n)$

7)
$$. \hat{T}(n) = 2T(\frac{n}{2}) + \frac{n}{\log n}$$

 $. q=2 \ b=2 \ f(n) = \frac{n}{\log n}$
 $c = \log_2 2 = 1$
 $n = n$

non polypomial diff between n' b f(n).

... Marter theorn not applicable

8)
$$T(n) = 2T(n) + n^{0.51}$$

 $a = 2$ $b = 4$ $f(n) = n^{0.51}$
 $c = \log_b a = \log_4 2 = 0.5$
 $n^c = n^{0.50}$
 $f(n) > n^c$
Case 3 is applicable
 $T(n) = 0$ $(n^{0.51})$

9)
$$T(n) = 0.5T(\frac{n}{2}) + (n)$$

. $a < 1$... Master theorn is not applicable

10)
$$T(n) = 16T(\frac{n}{4}) + n!$$
 $a = 16 \quad 6 = 4 \quad f(n) = n!$
 $e = \log_{1} 16 = 2$
 $e = n^{2}$
 $f(n) > ne$

Case 3...

 $T(n) = o(n!)$

$$011) T(n) = 4T(\frac{n}{2}) + \log n$$

$$a = 4 b = 2 f(n) = \log n$$

$$C = \log_2 4 = 2$$

$$n^c = n^2$$

$$n^c > f(n)$$

$$caul T(n) = O(n^2)$$

12)
$$T(n) = In T(2) + log n$$

a is not constant so master theorn

not capplicable

13)
$$T(n) = 3T(\frac{n}{2}) + n$$

 $a = 3 \cdot 6 = 2 \quad f(n) = n$
 $c = \log_{1} a = \log_{2} 3 = 1.58$
 $nc = n^{1.58} > f(n)$
 $cax = 1: \quad T(n) = 0 \quad (n^{1.58})$

19)
$$T(n) = 3T(\frac{n}{3}) + \sqrt{n}$$

$$a = 3 \quad b = 3 \quad f(n) = \sqrt{n}$$

$$e = 1$$

$$n^{c} = n > \sqrt{n}$$

$$Cancl. T(n) = 0 (n)$$

15.)
$$T(n) = 4T(\frac{n}{2}) + Cn$$

 $a = 4$ $b = 2$ $f(n) = Cn$
 $n^{\circ} = n^{2} > f(n)$
Case 1 $T(n) = O(n^{2})$

(6)
$$T(n) = 3T(\frac{n}{4}) + n \log n$$

 $a=3$ $b=4$ $f(n) = n \log n$
 $C = \log_{1} a = \log_{4} 3 = 0.3+8$
 $n^{c} = n^{o}.7+8.2 f(n)$
 $caxe 3: T(n) = O(n \log n)$

17)
$$T(n) = 3T(\frac{n}{3}) + \frac{n}{2}$$

$$a = 3 \cdot 6 = 3 \cdot f(n) = \frac{n}{2}$$

$$c = 1 \cdot n^{c} = n > f(n)$$

$$Guse 1: T(n) = \Theta(n)$$

(a)
$$T(n) = 4T(\frac{n}{2}) + n \log n$$

 $C = \log_2 4 = 2$
 $n^c = n^c f(n) = n \log n$
 $n^c > f(n)$
Case 1: $T(n) = O(n^2)$

21)
$$.T(n) = 7T(x_3) + n^2$$

 $a = 7 + b = 3 \cdot f(n) = n^2$
 $c = log_b a = log_3 7 = 1.77$
 $.n^c = n^{1.77} \times f(n)$
Case 3: $T(n) = \Theta(n^2)$

22)
$$T(n) = T(\frac{n}{2}) + n(2-cosn)$$

 $f(n)$ is not regular eferction
So, Marter Theorem not applicable