洛谷蓝桥杯模拟赛 & 洛谷算法基础赛 #3 讲评

shinzanmono

2025年3月29日

A. 在小小的日历里面数呀数呀数

今天是 2025 年 3 月 29 日,现在我们想知道距离下一个完全平方年的 1 月 1 日还有几天(即从 2025 年 3 月 29 日 0 时到下次完全平方年的 1 月 1 日 0 时)。

A. 在小小的日历里面数呀数呀数

下一个平方年为 2116 年。

首先计算从今天到 2025 年 12 月 31 日的天数,为 278 天。 我们计算 2026 年 1 月 1 日到 2115 年 12 月 31 日的天数。其中 包含 2028, 2032, ..., 2096, 2104, 2108, 2112 共 21 个闰年,共 $365 \times 90 + 21 = 32871$ 天。

将两个值加起来, 共 33149 天, 答案即为 33149。

另解: 在浏览器控制台输入 (Date.parse("2116-01-01

00:00")-Date.parse("2025-03-29 00:00"))/1000/60/60/24

即可:

B. 我是黄色恐龙大将军

对于正整数 n,设 a_n 为 2^n 在十进制下的最高非零位的值, b_n 为 5^n 在十进制下的最高非零位的值,求所有可能的作为 $a_n \times b_n$ 的值的和。

B. 我是黄色恐龙大将军

一个显然的想法是直接打表找规律,发现 $n \le 20$ 的时候答案为 45。然后猜测最终答案也为 45。

考虑证明。设 s_n 为 2^n 的位数, t_n 为 5^n 的位数,则必有 $a_n 10^{s_n-1} \le 2^n < (a^n+1)10^{s_n-1}, b_n 10^{t_n-1} \le 5^n < (b^n+1)10^{t_n-1},$ 两式相乘可得 $a_n b_n \le 10^{n-(s_n+t_n-2)} < (a_n+1)(b_n+1)$ 。而 $n \ne 0$,所以 $n-(s_n+t_n-2)=1$,代入可得:

$$\begin{cases} a_n b_n \le 10 \\ 10 < (a_n + 1)(b_n + 1) = a_n b_n + a_n + b_n + 1 \le 2a_n b_n + 1 \end{cases}$$

即 $5 \le a_n b_n \le 10$,取 n = 9, 4, 7, 3, 5, 1 可取到全部值。

C. 化食欲为动力

给定长度分别为 n, m, k 的三个数组 a, b, c, 对于 $i \le n, j \le m, t \le k$, 求 $a_i \times b_j \mod c_t$ 的最大值。 $n, m, k \le 200$, $a_i, b_j, c_t \le 10^9$

C. 化食欲为动力

首先考虑数据范围支持使用 O(nmk) 的枚举来解决问题。 考虑 $a_i \times b_j$ 的最大值可能达到 10^{18} ,所以要用 64 位整数,即 C++ 中的 long long。

D. 哇, 这就是 5p

有一个序列 a,第 i 个数有 p_i 的概率对结果有 a_i 的贡献,求贡献是 m 的倍数的概率。

 $1 \le n \le 10^5$, $1 \le m \le 1000$.

D. 哇, 这就是 5p

对于 $n \le 15$ 的部分,二进制枚举即可。

对于 $n \leq 1000$ 的部分,考虑 $f_{i,j}$ 表示前 i 个数和为 j 的概率,由于我们只关心模 m 意义下的值,所以可以直接将第二维对 m 取模,转移为 $f_{i,j} \leftarrow (1-p_i) \cdot f_{i-1,j} + p_i \cdot f_{i-1,(j-a_i) \bmod m}$,时空复杂度都为 O(nm)。

我们发现 f_i 的值仅依赖于 f_{i-1} ,所以我们可以对第一维使用滚动数组进行优化,空间复杂度降为 O(m)。

注意不寻常的模数。

E. 投入严厉地本地

在本题中,对于一个字符串x,我们定义:

- |x| 表示 x 的长度,空字符串长度为 0。
- $x_{i\sim j}$ 表示 x 的第 i 个字符到第 j 个字符按顺序连接以后形成的子串,例如 $abcd_{2\sim 4} = bcd$ 。
- $y \neq x$ 的前缀当且仅当存在一个 p 满足 $x_{1\sim p} = y$ 。
- y 是 x 的后缀当且仅当存在一个 p 满足 $x_{p\sim |x|}=y$ 。

字符串的字符集是小写字母集合, 即字符串仅由小写字母构成。

E. 投入严厉地本地

给定两个字符串 s,t,和一个参数 k。此外有一个映射规则集合 $f=\{(\lambda_i,\gamma_i)|i=1,2,3,\dots m\}$ 。其中 λ_i 是长度为 k 的字符串, γ_i 是一个长度为 1 的字符串,或一个空字符串, λ_i 互不相同,m 是映射规则的数量。

已知对于映射规则集合 f, s 可以按如下流程生成字符串 t:

- 2 如果 i > |s|, 生成结束。
- 3 如果存在一个 $j \in [1, m]$ 使得 λ_j 是 $s_{1 \sim i}$ 的后缀,则令 $t := t \circ \gamma_i$,这里 := 表示赋值,。表示字符串拼接。
- 4 如果对任何的 $j \in [1, m]$ 都有 λ_j 不是 $s_{1 \sim i}$ 的后缀,则令 $t := t \circ s_{i \sim i}$ 。
- **5** 令 i := i + 1,返回 2。

现在,给定 s 和由它生成的字符串 t,以及参数 k,你需要给出一个映射规则集合 f,使得 s 按映射规则 f 生成的字符串是 t。

E. 投入严厉地本地

考虑到数据范围很小,而有用字符串的只有 s 的每个前缀的长度为 k 的后缀。我们将这些后缀提取出来,然后通过搜索枚举每个后缀匹配哪些字符,并暴力判断即可。复杂度为 $O((|s|-k)^{|t|}|s||t|\log m)$ 。

F. 扶苏出勤日记

你有两个长度为 n 的序列 a,b,和两个变量 s,c,初始时 s=c=0,你需要找到满足如下操作过程中 s 恒为非负的 d 的最大值。

依次遍历 (a_i,b_i) 进行如下操作。

- $c \leftarrow c + b_i$
- ② 选择一个整数 p 满足 $0 \le p \le c$,令 $c \leftarrow c p$, $s \leftarrow s + p \times a_i$ 。
- $s \leftarrow s d$

F. 扶苏出勤日记

显然答案的存在具有单调性,可以二分答案,考虑如何 check。显然可以想到贪心,对于第 i 个位置,我们不断找到最小的 i 满足 $b_i \neq 0$ 并尽可能将 s 买到恰好不小于 d 就停止。

这个贪心是对的,我们有结论: 当r固定时, $\max_{i=l}^r a_i$ 单调不升。所以我们买最左面的一定是最优决策。

我们需要找到一个方法静态查询区间 a_i 的最大值。可以想到使用单调队列,具体地,维护单调递减的队列,每次扫到一个点 i 的时候,其一定会在队首那天购买,如果他自己就是队首,那么买完以后将其弹出队列即可,这样可以做到复杂度为 $O(n \log V)$ 。也可以使用 st 表,这样总复杂度为 $O(n(\log n + \log V))$ 。

G. 在小小的奶龙山里面挖呀挖呀挖

给定一棵 n 个节点的树,q 次询问,每次求路径上点的乘积的本质不同的质因子个数。

$$1 \le n, q \le 5 \times 10^4$$
, $1 \le V \le 10^5$.

G. 在小小的奶龙山里面挖呀挖呀挖

记 $\pi(n)$ 表示 $1 \sim n$ 中的素数个数,点 u 的父亲为 fa_u ,u 和 v 的最近公共祖先记为 lca(u,v)。设树根为 1,n,q 同阶。

对于 $n \le 100$ 的部分,直接暴力 $O(qn\pi(\sqrt{V}))$ 求解即可。

对于 $n \le 1000$ 的部分,我们发现 $\pi(V)$ 较小,只有大概 10^4 左右,所以设 $f_{u,p}$ 表示 $1 \sim u$ 路径上质因子 p 的出现次数,而 u 到 v 路径上的质因子 p 出现次数为

 $f_{u,p} + f_{v,p} - f_{lca(u,v),p} - f_{fa_{lca(u,v)},p}$ 。 时空复杂度均为 $O(n\pi(V))$ 。 但是其实可以时间多带一个 $\log n$ 也没有关系。

对于 $n \le 50000$ 的部分,我们开不下二维数组,所以考虑将询问离线,对每个质数开一个数组即可通过。此题需要一些基本的卡常技巧,可以将树拍到 DFS 序上,每次遍历时直接迭代搜索,并且将询问离线的时候记录 LCA。

G. 在小小的奶龙山里面挖呀挖呀挖

Bonus: $n, q \le 3 \times 10^5$, $V \le 10^8$ 怎么做。

首先考虑 $> \sqrt{V}$ 的质因子一个数最多出现一个。所以我们可以对于 $> \sqrt{V}$ 的质因子进行树上莫队,时间复杂度 $O(n\sqrt{n})$ 。

对于 $\leq \sqrt{V}$ 的质因子,我们可以使用较小常数的 $O\left(\frac{n\pi(\sqrt{V})}{w}\right)$

的树上静态链查询即可。

需要查询每个数的最大质因子,这个根据实现方法不同可以 $O(n\omega(V))$ 或 $O(n\log V)$ 解决。

H. 吃猫粮的玉桂狗

给定一棵以 1 为根的有根树,有 m 种颜色,t 个限制 (a_i,b_i) ,每种颜色有出现次数上限 c_i 。你需要对每一个结点染一种颜色,设第 i 个结点的颜色为 col_i 。定义合法的染色方式为: 第 i 种颜色出现次数 $\leq c_i$ 且对于每个限制 (a_k,b_k) ,你要保证不存在一对父子结点 (fa_u,u) 满足 $col_{fa_u}=a_k$ 且 $col_u=b_k$ 。

$$n, m \le 50, \quad \left\lfloor \frac{n}{2} \right\rfloor \le c_i \le n_\circ$$

H. 吃猫粮的玉桂狗

对于 (a_i,b_i) 的限制,是比较容易处理的,记 $f_{u,i}$ 表示点 u 染为 颜色 i 个方案数,直接树形 dp 计算就好了。

而这样会导致可能有颜色超出了限制,考虑 c_i 至少为 n 的一半,则至多会有一种颜色超出限制,我们枚举这种颜色 x,并计算 x 的出现次数超过 c_x 的方案数,从答案中减掉即可。计算可以使用树上背包,注意树上背包的写法,在搜索 u 的子节点 v 的时候要先转移再更新 u 的子树大小。

时间复杂度 $O(n^2m^3)$ 。

注意不寻常的模数。