

Лекции по эконометрике № 6 3 модуль

Обобщенный метод моментов

Демидова

Ольга Анатольевна

https://www.hse.ru/staff/demidova_olga

E-mail:demidova@hse.ru

15.02.2021

План лекции

- 1) Метод моментов
- 2) Обобщенный метод моментов (GMM)
- 3) Применение обобщенного метода моментов для оценки
- параметров уравнения регрессии
- 4) Тестирование качества инструментов
- 5) Пример применения рассмотренных тестов

Метод моментов

Example (Ben Lambert).

$$X_1, \dots, X_n, \quad E(X) = \mu, \quad \text{var}(X) = \sigma^2$$

Method of moments

Analogy principle

$$E(X) = \mu, \frac{1}{n} \sum_{i=1}^{n} X_i = \hat{\mu},$$

$$\operatorname{var}(X) = E(X - \mu)^2 = \sigma^2 \longrightarrow \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2 = \hat{\sigma}^2$$

2 неизвестных параметра и 2 уравнения.

Example (Ben Lambert). $X_1, \dots, X_n, X \sim N(\mu, \sigma^2)$

$$E(X) = \mu, \qquad \frac{1}{n} \sum_{i=1}^{n} X_i = \hat{\mu},$$

$$\operatorname{var}(X) = E(X - \mu)^2 = \sigma^2 \longrightarrow \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2 = \hat{\sigma}^2$$

$$E(X-\mu)^3 = 0 \qquad \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^3 = 0$$

$$E(X - \mu)^4 = 3\sigma^4$$
 $\frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^4 = 3\hat{\sigma}^4$

2 неизвестных параметра и 4 равенства. Нет решения.

$$g_1 = \frac{1}{n} \sum_{i=1}^n X_i - \hat{\mu},$$

$$g_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2 - \hat{\sigma}^2$$

$$g_3 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^3$$

$$g_4 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^4 - 3\hat{\sigma}^4$$

Целевая функция $S = \sum_{j=1}^{4} g_{j}^{2}$

$$S = \sum_{j=1}^4 g_j^2$$

$$S = \sum_{i=1}^4 g_j^2$$

Это не лучший критерий, слагаемые могут быть с разными дисперсиями Лучше критерий:

$$S' = \sum_{i=1}^{4} w_j g_j^2, \quad w_j \propto \frac{1}{\text{var}(g_j)}$$

В общем случае:

$$g'Wg \to \min_{\theta}$$
,

Лучшая матрица W:

$$\mathbf{W}_{\mathrm{opt}} = \left(\mathrm{var}(g(\hat{\theta}_{\mathit{GMM}}))^{-1}, \mathrm{но} \; \hat{\theta}_{\mathit{GMM}} \; \mathit{мы} \; \mathit{не} \; \mathit{знаем} \; ! \right)$$

Итерационная процедура

1ый шаг

$$S = \sum_{i=1}^{4} g_j^2 \longrightarrow \min_{\hat{\mu}, \hat{\sigma}^2},$$

$$\hat{q}' = (\hat{q}_1, \dots, \hat{q}_4)',$$

$$\operatorname{var}^{-1}(\hat{q}) = W$$

2ой шаг

$$S'' = q'Wq \longrightarrow \min_{\hat{\mu}_{GMM}, \hat{\sigma}_{GMM}^2},$$

Обобщенный метод моментов для оценки параметров регрессии

См слайды лекции Т.А.Ратниковой «Обобщенный метод моментов»

Упражнение из A. Colin Cameron and Pravin K. Trivedi, "Microeconometrics Using Stata, Revised Edition", Chapter 6

Зависимая переменная Idrugexp – расходы на лекарства,

Независимые переменные:
hi_empunion – индикатор наличия медицинской страховки от работодателя или профсоюза
totchr - количество хронических заболеваний
age – возраст
female – 1 для женщин и 0 для мужчин
blhisp – 1, если индивид афроамериканец или
латиноамериканец,
linc – логарифм дохода

Пример

Переменная hi_empunion является эндогенной

Для нее предлагается использовать в качестве инструментов переменные

ssiratio - отношение социального дохода индивида к доходу индивида из всех источников lowincome – индикатор низкого дохода multlc – индикатор наличия филиалов у фирмы firmsz – размер фирмы

Пример

Проверка релевантности инструментов

reg hi_empunion ssiratio lowincome multlc firmsz if linc!=0

```
Source | SS df MS Number of obs = 10389
F(4, 10384) = 138.33 > 10
инструменты релевантны
   Model | 123.792669 	 4 	 30.9481673 	 Prob > F 	 = 0.0000
 Residual | 2323.17817 10384 .223726711 R-squared = 0.0506
                                Adj R-squared = 0.0502
    Total \mid 2446.97083 \ 10388 \ .235557454 Root MSE = .473
hi empunion | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    ssiratio | -.2129432 .0129737 -16.41 0.000 -.2383742 -.1875123
 lowincome | -.085222 .012327 -6.91 0.000 -.1093853 -.0610588
     multle |
          .170205 .0201351 8.45 0.000 .1307364 .2096737
            .0032505 .0022089 1.47 0.141 -.0010794 .0075804
     firmsz
                   .0083119 59.64 0.000 .4794289 .5120148
```

12

Пример. Тест Хаусмана

. hausman ivreg ols, constant ---- Coefficients ----(B) sqrt(diag(V_b-V_B)) (b) (b-B) Difference S.E. ivreg ols hi empunion | -.8623417 .0738788 -.9362205 .1758671 totchr .4499069 .4403807 .0095261 .0038483 -.0128661 -.0035295 .0018757 -.0093366 age .0578055 female | -.0175681 -.0753736 .0167383 blhisp | -.2150253 -.1513068 -.0637185 .0169631 .0842253 .0104815 .0737437 .014698 linc 6.753569 5.861131 .8924384 .1760679 cons

b = consistent under Ho and Ha; obtained from ivregress
B = inconsistent under Ha, efficient under Ho; obtained from regress
Test: Ho: difference in coefficients not systematic

$$chi2(7) = (b-B)'[(V b-V B)^{(-1)}](b-B) = 28.34$$

Prob>chi2 = 0.0002, т.е. есть разница в оценках OLS и IV

Пример. Тест Дарбина-Ву-Хаусмана

```
Instrumental variables (2SLS) regression ·······Number of obs = ···10089¶
------Wald-chi2(6)-=-1940.44¶
------Prob->-chi2--=-0.0000¶
------R-squared----=-0.0720¶
------Root-MSE----=-1.312¶
······ldrugexp·|·····Coef.·····Std.·Err.·····z···P>|z|····[95%·Conf.·Interval]¶
·hi empunion·|··-.8623417···.1777945···--4.85···0.000···-1.210813···-.5138708¶
······totchr·|···.4499069···.0103177····43.61···0.000····.4296846····.4701291¶
-----age-|--.0128661---.00266-----4.84--0.000----.0180795---.0076526¶
······female·|··-.0175681···.0302219····-0.58···0.561····-.076802···.0416658¶
------blhisp:|--.2150253--.0378252----5.68--0.000----.2891614---.1408892¶
-----linc-|--.0842253--.0202653----4.16--0.000---.0445059---.1239446¶
-----cons-|---6.753569---.2333782---28.94---0.000----6.296156---7.210982¶
Instrumented: hi empunion¶
Instruments: ...totchr-age-female-blhisp-linc-ssiratio-lowincome-multlc-firmsz¶
. estat endogenous ¶
· Tests of endogeneity¶
··Ho: variables are exogenous¶
··Durbin·(score)·chi2(1)······=··32.043··(p=·0.0000)¶
··Wu-Hausman·F(1,10081)······=··32.1196··(p·=·0.0000)¶
```


Пример. Тест на валидность инструментов

```
ivregress gmm ldrugexp (hi empunion = ssiratio lowincome multle firmsz) totchr age female blhisp line,
wmatrix(robust)
Instrumental variables (GMM) regression Number of obs = 10089
                             Wald chi2(6) = 2042.12,
                             Prob > chi2 = 0.0000
                             R-squared = 0.0829
GMM weight matrix: Robust
                                        Root MSE
                                                    = 1.3043
                  Robust
             Coef. Std. Err. z \rightarrow |z| [95% Conf. Interval]
 ldrugexp |
hi empunion | -.8124043 .1846433 -4.40 0.000 -1.174299
                                                        -.45051
              .449488 .010047 44.74 0.000 .4297962
      totchr
                                                        .4691799
         age | -.0124598 .0027466 -4.54 0.000 -.0178432 -.0070765
      female | -.0104528 .0306889 -0.34 0.733 -.0706019 .0496963
      blhisp | -.2061018 .0382891 -5.38 0.000 -.2811471 -.1310566
        line | .0796532 .0203397 3.92 0.000 .0397882 .1195183
               6.7126 .2425973 27.67 0.000
                                               6.237118
                                                         7.188081
       cons
```

Instrumented: hi empunion

Instruments: totchr age female blhisp linc ssiratio lowincome multle firmsz

estat overid

Test of overidentifying restriction: Hansen's J chi2(3) = 11.5903 (p = 0.0089) — инструменты не валидны

Пример. Тест на валидность других инструментов

```
ivregress gmm ldrugexp (hi empunion = ssiratio multlc) totchr age female blhisp linc, wmatrix(robust)
Instrumental variables (GMM) regression
                                             Number of obs = 10089
                              Wald chi2(6) = 1952.65
                              Prob > chi2 = 0.0000
                              R-squared = 0.0406
GMM weight matrix: Robust
                                         Root MSE
                                                     = 1.3341
               Robust
  ldrugexp |
             Coef. Std. Err. z \rightarrow |z| [95% Conf. Interval]
hi empunion | -.9932795 .2046731 -4.85 0.000 -1.394431 -.5921275
              .4509508 .0103104 43.74 0.000
       totchr |
                                                 .4307428
                                                            .4711588
         age | -.0141509 .0029014 -4.88 0.000 -.0198375 -.0084644
      female | -.0281716 .0321881 -0.88 0.381 -.0912592
                                                           .034916
       blhisp | -.2231048 .0395972 -5.63 0.000 -.3007139 -.1454957
         line | .0944632 .0218959 4.31 0.000 .0515481 .1373783
              6.877821 .2579974 26.66 0.000 6.372155
                                                           7.383486
Instrumented: hi empunion
Instruments: totchr age female blhisp line ssiratio multle
. estat overid
 Test of overidentifying restriction:
```

Hansen's J chi2(1) = 1.04754 (p = 0.3061) – инструменты валидны

Пример. Проверка релевантности других инструментов

. reg hi_empunion ssiratio multlc

Source	SS	df	MS Numb		of obs	=	10,391
	110 116500		56.00000	- F(2, 1	,	=	250.15
Model	112.446792	2	56.223396	31 Prob	> F.	=	0.0000
Residual	2334.81237	10,388	.22476052	29 R-squa	ared	=	0.0459
				— Adj R-	squared	=	0.0458
Total	2447.25917	10,390	.23553986	S2 Root N	1SE	=	.47409
						4	
hi_empunion	Coef.	Std. Err.	t	P> t	[95% Cc	onf.	Interval]
ssiratio	 2345431	.0126097	-18.60	0.000	259260)6	2098257
multlc	.178299	.0198357	8.99	0.000	.139417	12	.2171808
_cons	.4910065	.0083007	59.15	0.000	.474735	55	.5072776

F(2, 10388) = 250.15 > 10 инструменты релевантны

Пример. Сравнение с оценками МНК

. reg ldrugexp hi_empunion totchr age female blhisp linc

Source	SS	df	MS		er of obs	=	10,089
				— F(6,	10082)	=	361.32
Model	3312.06802	6	552.01133	7 Prob	Prob > F		0.0000
Residual	15403.0482	10,082	1.5277770	5 R-sc	R-squared		0.1770
				– Adj	R-squared	=	0.1765
Total	18715.1162	10,088	1.8551859	9 Root	MSE	=	1.236
	l						
	<u></u>						
ldrugexp	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	<pre>Interval]</pre>
hi_empunion	.0738788	.0261088	2.83	0.005	.0227003	}	.1250573
totchr	.4403807	.0095731	46.00	0.000	.4216155	·)	.459146
age	0035295	.001886	-1.87	0.061	0072265)	.0001675
female	.0578055	.0251633	2.30	0.022	.0084803	}	.1071307
blhisp	1513068	.0338083	-4.48	0.000	2175778	}	0850358
linc	.0104815	.0139518	0.75	0.453	0168667	7	.0378298
_cons	5.861131	.1531845	38.26	0.000	5.560858	}	6.161403

Thank you for your attention!

20, Myasnitskaya str., Moscow, Russia, 101000 Tel.: +7 (495) 628-8829, Fax: +7 (495) 628-7931 www.hse.ru