ADS2 — Weekplan Randomized I (Exam Notes & Solutions)

Title	Date	Author	Sources used		Week plan filename
ADS2 — Randomized I Notes & Solutions	2025-10-23 (Europe/ Copenhagen)	ADS2 Copilot	Weekplan images: weekplan-1.png (p.1), weekplan-2.png (p.2); Slides: slides-1.pngslides-7.png; Textbook: Kleinberg & Tardos,		
Algorithm Design, 13.3, 13.5), pp. 70	weekplan-1.png; weekplan-2.png				

Coverage Table

Weekplan ID	Canonical ID	Title/Label (verbatim)	Assignment Source	Text Source	Status
1	_	Randomized print [w]	weekplan-1.png §1	KT §13.3 (expectation), slides-1.png	Solved
2	_	[w] Expected values	weekplan-1.png §2	KT §13.3 pp. 719–723; slides-2.png	Solved
3	KT §13.5	Analysis of Selection (phase redefined)	weekplan-1.png §3	KT §13.5 pp. 727–733; slides-3.png	Solved
4	_	Christmas party at DTU (exam 2015): Find student with most cookies	weekplan-1.png §4 + Alg.2	KT §13.3 (records/ indicators); slides-4.png	Solved
5	_	Boxes of beer	weekplan-1.png §5 → weekplan-2.png §5.1–5.4	KT §13.3 (geometric/ linearity)	Solved
6*	_	Nuts and bolts (G. J. E. Rawlins)	weekplan-2.png bottom (label shows "5"; treated as 6)	KT §13.5 (quicksort idea); slides-5.png	Solved

MISMATCH note (plan numbering): The week plan lists two items with number "5". We treat "**Nuts and bolts**" as **Exercise 6** for contiguity. All items 1–6 are covered.

General Methodology and Theory

- **Toolkit:** indicators, linearity $E\left[\sum X_i\right] = \sum E[X_i]$; geometric waiting time ($\mathrm{Geom}(p)$): E[T] = 1/p (failures-before-success variant has E[F] = (1-p)/p); union bound; random partition arguments; harmonic numbers $H_n = \sum_{i=1}^n 1/i = \Theta(\log n)$.
- Randomized selection (KT §13.5): pick a random splitter; expected linear time via phases. With phase threshold ratio ho < 1 and probability lpha > 0 to pick a "central" splitter each iteration, expected iterations/phase = 1/lpha and total $O\Bigl(\sum_j n
 ho^j\Bigr) = O(n)$.
- Records in a random permutation: $\Pr[\operatorname{record} \text{ at position } i] = 1/i$, so $E[\#\operatorname{records}] = H_n$.

Notes

- **Slides-first alignment:** All solutions follow the slide logic for indicators, geometric RVs, selection phases, and randomized quicksort; KT Ch.13 is cited as an alternative view where it differs in constants (e.g., 3/4 vs 2/3 phase ratios).
- **Conventions:** Uniform $\operatorname{rand}(1,10)$ draws are independent; cookies counts are all distinct (as stated); boxes-of-beer has exactly k beer boxes.

Solutions

Exercise 1 — Randomized print [w]

Assignment Source: weekplan-1.png §1 — Algorithm 1: RandomizedPrint(i).

Text Source: KT §13.3 (geometric), slides-1.png.

- Let $p = \Pr[\text{stop on a test}] = \Pr[\text{two equal in } \{1..10\}] = 1/10$. The stars printed equal the number of failures (inequalities) before first success.
- 1.1 $\Pr[\text{exactly 3 stars}] = (1-p)^3 p = (9/10)^3 \cdot (1/10) = 729/10000.$
- 1.2 E[stars] = (1-p)/p = (9/10)/(1/10) = 9.

Verification: independent trials; geometric model applies; boundary case p=1/10 checked digit-by-digit.

Transfer Pattern: Geometric waiting time \rightarrow cue: "repeat until equality"; mapping: trial=condition check, success=equality.

Answer: $\Pr[3] = 0.0729; E = 9.$

Exercise 2 — [w] Expected values

Assignment Source: weekplan-1.png §2.

Text Source: KT §13.3 pp. 719–723; slides-2.png.

• 2.1
$$E[X]=2\cdot \frac{1}{3}+5\cdot \frac{1}{2}+8\cdot \frac{1}{6}=\frac{4}{6}+\frac{15}{6}+\frac{8}{6}=\frac{27}{6}=\frac{9}{2}=4.5.$$
• 2.2 Indicator $I\in\{0,1\}:E[I]=0\cdot\Pr[I=0]+1\cdot\Pr[I=1]=\Pr[I=1].$

Transfer Pattern: *Linearity of expectation* \rightarrow cue: mixture of discrete values or indicators.

Answer: $E[X] = 4.5; E[I] = \Pr[I = 1].$

Exercise 3 — KT §13.5 — Analysis of Selection (phase redefined)

Assignment Source: weekplan-1.png §3.

Text Source: KT §13.5 pp. 727-733; slides-3.png.

- Phase definition (plan): phase j has size in $(n(2/3)^j, n(2/3)^{j+1}]$. Call a splitter central if at least a third of elements lie on each side.
- **Probability of central:** exactly n/3 ranks (between $\lceil n/3 \rceil$ and $\lceil 2n/3 \rceil$) $\rightarrow \alpha = 1/3$.
- **Per-phase iterations:** geometric with $p = \alpha \Rightarrow E[\text{iters/phase}] = 1/p = 3$.
- Per-iteration work in phase $j: O(n(2/3)^j)$.
- Total expected time: $\sum_{j\geq 0} 3\cdot c\, n(2/3)^j=3cn\cdot rac{1}{1-2/3}=9cn=O(n)$.

Alternative Approach (KT): Using 3/4 -central elements gives factor 2 iters/phase; same linear bound. **Pitfalls:** redefining "central" inconsistently; forgetting independence across iterations.

Transfer Pattern: Randomized selection \rightarrow cues: "random splitter", "expected linear"; mapping: choose splitter \rightarrow partition \rightarrow recurse on one side.

Answer: Yes. With the 2/3 phase definition, expected time remains O(n).

Exercise 4 — Christmas party at DTU (exam 2015)

Assignment Source: weekplan-1.png §4 + Algorithm 2.

Text Source: KT §13.3 (records), slides-4.png.

Algorithm (from plan): scan students in a **random order**; update at line (*) when you see a new maximum.

- 4.1 Pr[(*)] executes at last iteration Pr[[] = Pr[] = Pr
- **4.2** Let $X_i = \mathbf{1}[(*) \text{ executes at iteration } i]$. Then $\Pr[X_i = 1] = 1/i$ (position i is a record w.p. 1/i).
- 4.3 $E[\#(*)] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n 1/i = H_n$.

Verification: distinct cookie counts ⇒ total order; random permutation symmetry.

Transfer Pattern: Records in permutations → cues: "random order, count maxima updates".

Answer: (4.1) 1/n ; (4.2) 1/i ; (4.3) H_n .

Exercise 5 — Boxes of beer (n boxes, k with beer)

Assignment Source: weekplan-1.png §5 and weekplan-2.png §5.1-5.4.

Text Source: KT §13.3; slides-5.png.

Deterministic baseline (open B1, B2, ... until first beer):

- **5.1 Best-case:** 1 (B1 has beer).
- ullet 5.2 Worst-case: n-k+1 (all n-k empties first, then first beer). Assumes $k\geq 1$.

Randomized v1 (with replacement): Each trial picks a uniform $i \in \{1..n\}$, independent, until a beer is found.

• 5.3 Expected time: geometric with success $p=k/n \Rightarrow E[T]=n/k$. Worst case (over randomness): unbounded (no finite upper bound on trials).

Randomized v2 (without replacement): Each round pick a previously unopened box uniformly; stop at *first beer.* Let **E** be the set of empties, |E|=n-k . For each empty $e\in E$, define indicator $X_e=$ $\mathbf{1}[e ext{ opened before any beer}]$; total opened $X=1+\sum_{e\in E}X_e$.

- **5.4.1 Worst-case:** still n-k+1 (open all empties first).
- (i) Express X : $X = 1 + \sum_{e \in E} X_e$.
- ullet (ii) $E[X_e]$: Among the k+1 boxes (the empty e plus all k beer boxes), the earliest in the random order is uniform $\Rightarrow E[X_e] = \Pr[X_e = 1] = 1/(k+1)$.
- (iii) E[X] : $E[X] = 1 + \sum_{e \in E} E[X_e] = 1 + (n-k) \cdot \frac{1}{k+1} = \frac{n+1}{k+1}$. (iv) Expected running time: $\boxed{(n+1)/(k+1)}$.

Pitfalls: mixing "with" vs "without" replacement; forgetting the +1 for the successful beer opening. **Transfer Pattern:** Search until first marked item → cues: "k successes in n positions", "random order". **Manswer:** Best 1 , worst n-k+1 ; randomized-with-replacement: E=n/k , worst unbounded; randomized-without-replacement: E=(n+1)/(k+1) , worst n-k+1 .

Exercise 6 — Nuts and bolts (G. J. E. Rawlins)

Assignment Source: weekplan-2.png (bottom). Text Source: Slides & KT §13.5 (quicksort idea).

Problem. Match each of N nuts to its unique bolt when only *cross* comparisons are allowed (you may compare nut vs bolt; never nut vs nut or bolt vs bolt).

Method (quicksort-style partitioning):

```
Algorithm: match_nuts_and_bolts
Input: sets NUTS=\{n1..nN\}, BOLTS=\{b1..bN\}; comparator cmp\{n, b\} \in \{<, =, >\}
Output: matched pairs (n_i ↔ b_j) for all i
procedure solve(NUTS, BOLTS):
  if |NUTS| ≤ 1: return NUTS paired with BOLTS
  pick pivot nut n★ uniformly at random
  // partition bolts using n★
  B<, B=, B> \leftarrow partition BOLTS by cmp(n\bigstar, b)
  let b★ be the unique bolt in B=
  // partition nuts using b★
  N<, N=, N> \leftarrow partition NUTS by cmp(n, b\bigstar)
  // recurse on corresponding sides
  solve(N<, B<); output (n \bigstar, b \bigstar); solve(N>, B>)
```

```
return
// Time (expected): O(N log N); Space: O(log N) recursion
```

Why it works: each partition uses only legal cross-comparisons; pivot nut matches exactly one bolt b_{\star} ; subproblems are proper; random pivot gives the usual quicksort recurrence.

Verification: at every step, invariants hold—no nut/bolt crosses to the wrong side; sizes of corresponding partitions match.

Variant Drill: choose bolt pivot first; symmetric algorithm, same bound.

Alternative Approach: deterministic linear-time selection for pivots yields $O(N \log N)$ worst-case (more complex).

Transfer Pattern: Quicksort partition with cross-type comparator \rightarrow cues: "two dual sets, only cross comparisons".

Answer: Expected running time $O(N\log N)$; all pairs matched.

Puzzle

You draw i.i.d. uniform integers in $\{1, \dots, 100\}$ until you see a repeat. What is the expected number of draws? (Hint: birthday process; coupon-collector with stopping at first collision.)

Answer sketch: $E pprox \sqrt{\frac{\pi}{2} \cdot 100} \, pprox 12.53$ (Poisson birthday approximation).

Summary

- Core identities: indicators + linearity; geometric waiting times; harmonic records H_n .
- Algorithms: randomized selection stays linear even with 2/3 phase thresholds; scan-max records problem yields $\Pr[\operatorname{record} \ \operatorname{at} \ i] = 1/i$; nuts-and-bolts via quicksort partitions \rightarrow expected $O(n \log n)$.
- Beer boxes: deterministic worst n-k+1 ; random with replacement E=n/k (unbounded worst); without replacement E=(n+1)/(k+1) .
- Notation: $H_n, E[\cdot], \mathbf{1}[\cdot], \rho, \alpha$.

Slides are the primary authority; KT Ch.13 cited for background and constants.