

Микропроцессорные устройства обработки сигналов

Лекция L05 «Сигнальные микропроцессоры»

http://vykhovanets.ru/course67/

Обработка сигналов

Процессор общего назначения

Intel Nehalem microarchitecture

Умножение со сложением

MAC – Multiply and Accumulate A – Accumulator

ALU – Arithmetic and Logic UnitMUX – Multiplexor

Сигнальные микропроцессоры

- **1967ВН044** 32-разр. ЦОС, 230 МГц, КМОП 0,18 мкм (Миландр)
- **1890ВМ7Я** 32-разр. ЦОС, 200 МГц, КМОП 0,18 мкм (НИИСИ РАН)
- 1901BЦ1Т 2 ядра: 16-разр. ЦОС и 32-разр. RISC ARM, 100 МГц, КМОП 0,18 мкм (Миландр)
- **1892ВМ7Я** 5 ядер: 4 ядра 32-разр. ЦОС, 32-разр. RISC MIPS, 200 МГц, КМОП 0,13 мкм (НПЦ ЭЛВИС)
- **1879ВМ8Я** 5 ядер: 4 ядра 64-разр. ЦОС, 32-разр. RISC ARM, 1000 МГц, КМОП 0,28 мкм (НТЦ Модуль)

1901ВЦ1Т

Глоссарий - применение

- SRAM Static Random Access Memory (статическая память)
- DMA Direct Memory Access (прямой доступ к памяти)
- RTC Real Time Clock (часы реального времени)
- BKP, OSC Васкир (архивирование), Oscillator (генератор)
- PLL Phase Locked Loop (фазовая автоподстройка)
- IWDG Independent Watch Dog (сторожевой таймер)
- WWDG Windowed Watch Dog (оконный сторожевой таймер)
- DSP Digital Signal Processing (цифровая обработка сигнала)
- AHB Advanced High-performance Bus (внутренняя шина)
- McBSP Multichannel Buffered Serial Port (последовательный порт)
- SPI Serial Peripheral Interface (последовательный интерфейс)
- UART Universal Asynchronous Receiver-Transmitter (асин. интерф.)
- SDIO Security Digital Input Output (интерфейс SD- карты)
- GPIO General-Purpose Input-Output (вх.-вых. общего назначения)
- ADC, DAC Analog-to-Digital Converter, Digital-to-Analog Converter
- MIPS Microprocessor without Interlocked Pipeline Stages

1967BH044

CLU – Communication Logic Unit (декодеры)

SHIFT – Shifter (сдвигатель)

Сигнальные процессоры С55х

Микропроцессор TMS320C5515

- Тактовая частота 60 (75, 100, 120) МГц
- Напряжение питания ядра 1,05 и 1,30 В
- Мощность потребления 18,0-26,4 мВт
- Быстродействие 240 миллионов команд
- Конвейер 12 стадий, 2 команды параллельно
- Данные с фиксированной запятой 16, 32, 40 бит

TMS320C5505

TEXAS INSTRUMENTS

- Встроенная основная память 320 КБ
- Встроенная постоянная память 128 КБ
- Внешняя память до 16 МБ
- Периферийные устройства DMA, I2C, SPI, I2S, UART, USB, MMC/SD, GPIO, SAR, LCD

Корпус

Питание

Состав микропроцессора

Глоссарий - процессор

- DSP Digital Signal Processor (цифровой сигнальный процессор)
- **CPU** Central Processing Unit (центральное процессорное устройство, центральный процессор)
- Core ядро, центральная часть
- Bus шина, магистраль
- MMR Memory Mapped Register (регистр отображенный в память)
- INT Interrupt (прерывания)
- RTC Real-Time Clock (часы реального времени)
- PLL Phase-Locked Loop (ФАПЧ фазовая автоподстройка частоты)
- LDO Low-Drop Out (линейный регулятор с низким падением напряжения)
- JTAG Joint Test Action Group (специализированный аппаратный интерфейс для тестирования и отладки сложных дискретных устройств)
- FFT Fast Fourier Transform (быстрое преобразование Фурье)

Глоссарий - память

- RAM Random Access Memory (память со случайным доступом, ОЗУ оперативное запоминающее устройство, основная память)
- SRAM Static RAM (статическая основная память)
- mSDRAM Mobile Synchronous Dynamic RAM (мобильная синхронная динамическая память со случайным доступом)
- DARAM Dual Access RAM (двухвходовая основная память)
- SARAM Single Access RAM (одновходовая основная память)
- ROM Read Only Memory (память только для чтения, ПЗУ постоянное запоминающее устройство)
- **EEPROM** Electrically Erasable Programmable ROM (электрически стираемое перепрограммируемое ПЗУ, флэш-память)
- NOR Flash Not-OR Flash (флэш-память на элементах ИЛИ-НЕ)
- NAND Flash Not-AND Flash (флэш-память на элементах И-НЕ)
- EMIF External Memory Interface (внешний интерфейс памяти)
- DMA Direct Memory Access (прямой доступ к памяти)
- EHPI Enhanced Host-Port Interface (интерфейс с другим процессором)

Глоссарий - ввод-вывод

- GPIO General Purpose Input-Output (входы-выходы общего назначения)
- SPI Serial Port Interface (интерфейс последовательного порта)
- UART Universal Asynchronous Receiver-Transmitter (универсальный асинхронный приёмопередатчик)
- I²C Inter-Integrated Circuit (межмикросхемный интерфейс)
- I²S Integrated Inter-chip Sound (интегрированный межмикросхемный звук)
- LCD Liquid crystal display (жидкокристаллический дисплей)
- USB Universal Serial Bus (универсальная последовательная шина)
- MMC/SD Multi Media Card / Secure Digital (мультимедийная карта/ карта / безопасная цифровая карта)
- SAR Successive Approximation Register (регистр последовательного приближения)
- McBSP Multichannel buffered serial ports (многоканальный буферизированный последовательный порт)

Ядро микропроцессора

Тройное чтение, двойная запись

Адресные пространства

000000h	× ×		1		
00000011	Внутре	енняя ммг	192 байта	0000h	Управление простоем (Idle Control)
0000C0h			1	0C00h	Канал прямого доступа DMA0
	Внутренняя DARAM		64ĸ6-192	0D00h	Канал прямого доступа DMA1
- 1			100	0E00h	Канал прямого доступа DMA2
010000h			1	0F00h	Канал прямого доступа DMA3
	Внутренняя SARAM		256к6	1000h	Интерфейс внешней памяти EMIF
050000h				1800h	Таймер Timer0
	Внешняя синхронная СS0-1			1840h	Таймер Timer1
			8М6 - 320к6	1880h	Таймер Timer2
				1900h	Часы реального времени RTC
800000h	Внешняя асинхронная CS2			1A00h	Контроллер I2С
			4M6	1B00h	Контроллер UART
C00000h			l	1C00h	Управление микропроцессором
	Внешняя асинхронная СS3		2M6	2800h	Контроллер I2S0
	внешняя асинхронная СЭЗ		0	2900h	Контроллер I2S1
E00000h	Внешняя асинхронная CS4		1	2A00h	Контроллер I2S2
			1M6	2B00h	Контроллер I2S3
	- Marie - 111 111			2E00h	Контроллер LCD
F00000h	Внешняя асинхронная СS5			3000h	Контроллер SPI
			1М6 - 128к6	3A00h	Контроллер MMC/SD0
p-00-00-00-00-00				3B00h	Контроллер MMC/SD1
FE0000h	DOM	D	1	7000h	Аналого-цифровой преобразователь SAR
	ROМ Резерв		128кб	8000h	Контроллер USB
FFFFFFh	(MPNMC=0)	(MPNMC=1)		FFFFh	Контроллер озв
			•		

Циклы чтения-записи 1

Цикл	Шина/маг.	Описание	
Выборка команды	PAB/PB	32-битное чтение из адресного пространства памяти программ	
Короткое чтение данных	DAB/DB	16-битное чтение регистра, памяти, пространства ввода-вывода	
Короткая запись данных	EAB/EB	16-битная запись в регистр, память, пространство ввода-вывода	
Длинное чтение данных	DAB/(CB, DB)	32-битное чтение регистра или памяти	
Длинная запись данных	EAB/(EB, FB)	32-битная запись в регистр или память	
Двойное чтение данных	DAB/DB, CAB/CB	Два 16-битных чтения регистра (памяти, ввода-вывода) и памяти	
Двойная запись EAB/EB, данных FAB/FB		Две 16-битных записи регистра (памяти, ввода-вывода) и памяти	

Циклы чтения-записи 2

Цикл	Шина/маг.	Описание
Короткое чтение и короткая запись	DAB/DB, EAB/EB	16-битное чтение памяти и 16-битная запись в память
Длинное чтение и длинная запись	DAB/(CB, DB) EAB/(EB, FB)	32-битное чтение памяти и 32-битная запись в память
Короткое чтение памяти и коэф.	DAB/DB, BAB/BB	16-битное чтение памяти и 16-битное чтение коэффициентов
Короткое чтение памяти и длинное чтение коэф.	DAB/DB, BAB/BB	16-битное чтение памяти и 32-битное чтение коэффициентов
Двойное чтение памяти и короткое чтение коэф.	DAB/DB, CAB/CB, BAB/BB	Два 16-битных чтения память и 16-битное чтение коэффициентов
Двойное чтение памяти и длинное чтение коэф.	DAB/DB, CAB/CB, BAB/BB	Два 16-битных чтения памяти и 32-битное чтение коэффициентов

Постоянная память

FE0000h	Встроенные подрограммы	
FF8000h	Загрузчик программ	
FFFA00h	Таблица синусов	
FFFC00h	Заводской тест	
FFFF00h	Таблица векторов прерываний	
FFFFFCh	Идентификационный код	

•	FF6CD6h	void hwafft_br(long *in, long *out, unsigned len);
•	FF6CEAh	unsigned hwafft_8pts(long *in, long *out, unsigned fft, unsigned scale);
•	FF6DD9h	unsigned hwafft_16pts(long *in, long *out, unsigned fft, unsigned scale);
•	FF6F2Fh	unsigned hwafft_32pts(long *in, long *out, unsigned fft, unsigned scale);
•	FF7238h	unsigned hwafft_64pts(long *in, long *out, unsigned fft, unsigned scale);
•	FF73CDh	unsigned hwafft_128pts(long *in, long *out, unsigned fft, unsigned scale);
•	FF75DEh	unsigned hwafft_256pts(long *in, long *out, unsigned fft, unsigned scale);
•	FF77DCh	unsigned hwafft_512pts(long *in, long *out, unsigned fft, unsigned scale);
•	FF7A56h	unsigned hwafft_1024pts(long *in, long *out, unsigned fft, unsigned scale)

Загрузка

- По сигналу RESET вызывается процедура обработки прерывания с вектором 0FFFF00h.
- Сброс периферийных устройств.
- Последовательная проверка загрузочных устройств (NOR-флэш, NAND-флэш, SPI EEPROM, I²C EEPROM, MMC/SD, USB) на наличие сигнатуры загрузки.
- Копирование загрузочных данных в память.
- Переход в точку входа, заданную в загрузочных данных.

Загрузочные данные

Сигнальные микропроцессоры

Процессоры Texas Instruments

Time

Память

