Analiza studije razumijevanja rijeci

Grupa **sudo**3 May 2017

Opis eksperimenta

Nad velikim brojem ispitanika proveden je eksperiment razumijevanja engleskog jezika. Ispitanicima su dana dva zadatka te su oba ponavljana više puta. Prvi zadatak (dalje: **A**) bavi se prepoznavanjem ispravne rijeci, prilikom cega je ispitanik za zadani niz znakova morao odrediti radi li se o ispravnoj rijeci engleskog jezika, a drugi zadatak (dalje: **B**) se bavi pravilnim izgovaranjem zadane rijeci. Za svaku rijec i svakog ispitanika mjereno je vrijeme rjesavanja svakog zadatka, te niz podataka o ispitaniku.

Ishodi eksperimenta

Cilj eksperimenta je nauciti kako mjerene velicine ispitanika utjecu na vrijeme potrebno za rjesavanje pojedinih zadataka. Na temelju tih podataka moze se odgovoriti na neka zanimljiva pitanja poput: utjece li dob na brzinu rjesavanja zadataka, kako na brzinu rjesavanja utjece duljina zadane rijeci, je li rijec kraca ukoliko se cesce pojavljuje, itd.

Skup podataka

Za odredivanje ishoda eksperimenta potreban nam je skup podataka eksperimenta. Programski jezik R sadrzi skup podataka vec provedenog eksperimenta te nam dopusta ukljucivanje tog skupa te analizu podataka. Podaci se nalaze u paketu languageR. Nakon instaliranja paketa, podaci se mogu ucitati naredbom require(languageR) te dohvatiti s naredbom data(english). Kompletno dohvacanje i ukljucivanje podataka prikazano je kodom ispod.

```
require(languageR, quietly = TRUE)
data(english)
```

Podaci se sada mogu koristiti naredbom english, npr. deskriptivna statistika moze se dobiti naredbom summary(english), a pregled prvih par redova podataka moze se pregledati naredbom head(english).

Ishodi eksperimenta

Prikaz najbitnijih značajki

U studiji je sudjelovao jednak broj mladih i starih, tj. 2284 svakih. Ispitane rijeci su bile imenice u 2604 slucaja, a glagoli u 1664. Prosjecno vrijeme rjesavanja prvog zadatka je 6.55 sekundi, a drugog 6.32 sekunde.

```
mean(english$RTlexdec)
```

```
## [1] 6.550097
mean(english$RTnaming)
```

[1] 6.322505

boxplot(english\$RTnaming)

hist(english\$LengthInLetters)

Histogram of english\$LengthInLetters


```
#summary(english)
summary(english$AgeSubject)
```

old young ## 2284 2284

plot(english\$WordCategory)

#head(english)

Utjecaj dobi na brzinu rjesavanja

Pitamo se utjece li dobna razlika izmedu starijih i mladih ispitanika na brzinu rjesavanja zadataka? Usporedujuci srednje vrijednosti logaritama vremena za rjesavanje A i B zadataka mladih i starijih ispitanika te gledajuci dijagrame, mozemo zakljuciti da su mladi u prosjeku brze rjesavali oba zadatka. t-testom potvrdujemo nas zakljucak.

```
young = english[english$AgeSubject == "young", ] # mladi
old = english[english$AgeSubject == "old", ] # stari

# vrijeme potrebno mladima za rjesavanje prvog zadatka
RTlexdec_young = young[, "RTlexdec"]

# vrijeme potrebno starijima za rjesavanje prvog zadatka
RTlexdec_old = old[, "RTlexdec"]

# vrijeme potrebno mladima za rjesavanje drugog zadatka
RTnaming_young = young[, "RTnaming"]

# vrijeme potrebno starijima za rjesavanje drugog zadatka
RTnaming_old = old[, "RTnaming"]

plot(RTlexdec_young, col = 'blue',
```

```
ylim = c(min(english$RTlexdec), max(english$RTlexdec)),
ylab = "Vrijeme za prvi zadatak")

points(RTlexdec_old, col='red')
```



```
plot(RTnaming_young, col = 'blue',
    ylim = c(min(english$RTnaming), max(english$RTnaming)),
    ylab = "Vrijeme za drugi zadatak")

points(RTnaming_old, col='red')
```



```
# testiranje jednakosti varijance prije t-testa
var.test(RTlexdec_young, RTlexdec_old)
##
## F test to compare two variances
##
```

```
## F test to compare two variances
##
## data: RTlexdec_young and RTlexdec_old
## F = 0.84625, num df = 2283, denom df = 2283, p-value = 6.737e-05
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7795831 0.9186270
## sample estimates:
## ratio of variances
## 0.8462542

t.test(RTlexdec_young, RTlexdec_old, alt = "two.sided", var.equal = FALSE)
```

```
##
## Welch Two Sample t-test
##
## data: RTlexdec_young and RTlexdec_old
## t = -67.468, df = 4534.6, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2281642 -0.2152787
## sample estimates:
## mean of x mean of y</pre>
```

6.439237 6.660958

S obzirom da smo dobili malu p-vrijednost, odbacujemo hipotezu da su vremena rjesavanja prvog zadatka jednaka za mlade i starije dobne skupine.

Prepoznatljivost rijeci s obzirom na frekvenciju pojavljivanja

Zanima nas jesu li rijeci koje se vise pojavljuje prepoznatljivije? Racunamo korelaciju između prepoznatljivosti rijeci i njenog pojavljivanja u tekstovima. Dobivamo korelaciju ~0.8, sto nam potvrđuje da su te dvije stavke povezane, tj. rijeci koje se vise pojavljuju su prepoznatljivije. To također vidimo i iz dijagrama rasipanja.

cor(english\$Familiarity, english\$WrittenFrequency)

[1] 0.7912556

plot(english\$Familiarity, english\$WrittenFrequency)

Utjecaj glasa prvog slova na prepoznatljivost rijeci

Je li rijec koja pocinje na samoglasnik u odnosu na suglasnik ljudima prepoznatljivija? Uzimamo skup rijeci koje pocinju sa samoglasnikom, te skup rijeci koje pocinju sa suglasnikom te racunamo srednju vrijednost. Kod samoglasnika dobivamo srednju vrijednost 4.0, a kod suglasnika 3.79, sto bi nas moglo dovesti do zakljucka da rijeci koje pocinju sa samoglasnikom su prepoznatljivije. No testiranjem putem t-testa sa razinom signifikantnosti 5% zakljucujemo da ne postoji razlika između prepoznatljivosti rijeci koje pocinju samoglasnikom u odnosu na one koje pocinju suglasnikom.

```
firstVowel = english[english$CV == "V",] #rijeci koje pocinju sa samoglasnikom
firstConsonant = english[english$CV == "C",] # rijeci koje pocinju sa suglasnikom
mean(firstConsonant$Familiarity)

## [1] 3.789892
mean(firstVowel$Familiarity)

## [1] 4.002951
hist(firstConsonant$Familiarity)
```

Histogram of firstConsonant\$Familiarity

hist(firstVowel\$Familiarity)

Histogram of firstVowel\$Familiarity

prije testiranja t-testom trebamo zakljuciti jesu li varijance jednake u oba slucaja
var.test(firstConsonant\$Familiarity, firstVowel\$Familiarity)

```
##
##
   F test to compare two variances
##
## data: firstConsonant$Familiarity and firstVowel$Familiarity
## F = 0.78386, num df = 4445, denom df = 121, p-value = 0.04732
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5971133 0.9971773
## sample estimates:
## ratio of variances
Zakljucujemo da varijance nisu jednake (omjer ~0.78) te u t-testu stavljamo var.equal = FALSE.
t.test(firstVowel$Familiarity, firstConsonant$Familiarity, alt = "two.sided", var.equal = FALSE)
##
   Welch Two Sample t-test
##
##
## data: firstVowel$Familiarity and firstConsonant$Familiarity
## t = 1.8008, df = 126.26, p-value = 0.07412
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.02107685 0.44719441
## sample estimates:
```

```
## mean of x mean of y
## 4.002951 3.789892
```

[1] 3.686722

Na temelju male p-vrijednosti odbacujemo hipotezu H0 i zakljucujemo da ne postoji razlika u prepoznatljivosti rijeci koje pocinju samoglasnikom u odnosu na one koji pocinju suglasnikom.

Prepoznatljivost glagola u odnosu na imenice

Ukoliko nademo prepoznatljivosti glagola te prepoznatljivosti imenica, s obzirom da imamo veliku kolicinu podataka, mozemo provesti z-test nad prepoznatljivostima te uz alternativnu hipotezu da je prepoznatljivost jedne vrste rijeci veca od prepoznatljivosti druge zakljucujemo (uz razinu signifikantnosti 5%) da postoji razlika u prepoznatljivosti. Na temelju provjera srednjih vrijednosti zakljucujemo da su imenice prepoznatljivije od glagola.

```
require(BSDA, quietly = TRUE)
##
## Attaching package: 'BSDA'
## The following object is masked from 'package:datasets':
##
##
       Orange
verb_familiarity = english[english$WordCategory == "V", ]$Familiarity
noun_familiarity = english[english$WordCategory == "N", ]$Familiarity
verb_sd = sd(english[english$WordCategory == "V", ]$Familiarity)
noun_sd = sd(english[english$WordCategory == "N", ]$Familiarity)
z.test(verb_familiarity, y = noun_familiarity, alternative = "two.sided", sigma.x = verb_sd, sigma.y = :
##
##
   Two-sample z-Test
## data: verb_familiarity and noun_familiarity
## z = 8.5172, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2300737 0.3676125
## sample estimates:
## mean of x mean of y
   3.985565 3.686722
mean(verb_familiarity)
## [1] 3.985565
mean(noun_familiarity)
```

Zavisnost broja pojavljivanja rijeci u velikoj zbirci tekstova i duljine rijeci

Testiramo nezavisnost na ove dvije varijable i ocekujemo da su one povezane jer rijeci "i", "ili", "ako", itd. se cesce pojavljuju od neke dugacke rijeci. Provodimo hi-kvadrat test nezavisnosti s razinom signifikantnosti 5% te dobivamo p-vrijednost manju od 5% i zakljucujemo da su te dvije varijable povezane.

```
chisq.test(english$WrittenFrequency, english$LengthInLetters, simulate.p.value = TRUE)
```

```
##
## Pearson's Chi-squared test with simulated p-value (based on 2000
## replicates)
##
## data: english$WrittenFrequency and english$LengthInLetters
## X-squared = 11681, df = NA, p-value = 0.0004998
```

Logisticka regresija

Ucimo modele logisticke regresije da predvidaju varijablu WordCategory na temelju prediktorskih varijabli RTlexdec i RTnaming (obje te pojedinacno).

```
model1 = glm(WordCategory ~ RTlexdec + RTnaming, data = english, family = binomial())
summary(model1)
```

```
##
## Call:
  glm(formula = WordCategory ~ RTlexdec + RTnaming, family = binomial(),
##
       data = english)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
##
  -1.0552
           -0.9643 -0.9219
                               1.3964
                                         1.6145
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                 2.5912
                            1.3046
                                      1.986 0.04701 *
## RTlexdec
                -0.8996
                            0.3046
                                    -2.953 0.00314 **
## RTnaming
                 0.4339
                            0.2661
                                      1.630 0.10301
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 5991.7
                              on 4567
                                        degrees of freedom
## Residual deviance: 5982.0 on 4565
                                        degrees of freedom
## AIC: 5988
##
## Number of Fisher Scoring iterations: 4
```

Koristimo test omjera izglednosti da testiramo postoji li znacajna razlika u kvaliteti ovih modela. Testirat cemo postoji li razlika između modela na razini znacajnosti 95% tako sto cemo testirati nultu hipotezu da nema razlike. U prvom slucaju nam p-vrijednost ispadne veca od 0.05, pa ne mozemo odbaciti nultu hipotezu. U drugom slucaju nam p-vrijednost ispadne manja od 0.05, pa nultu hipotezu odbacujemo. AIC je mjera prilagodbe modela i kod nje manja vrijednost znaci bolji model. S obzirom na to da je kod nasih modela AIC mjera jako velika, mozemo zakljuciti da modeli nisu jako dobri.

```
model2 = glm(WordCategory ~ RTlexdec, data = english, family = binomial())
summary(model2)
```

```
##
## Call:
## glm(formula = WordCategory ~ RTlexdec, family = binomial(), data = english)
```

```
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
## -1.0218 -0.9596 -0.9260 1.3977
                                       1.5591
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                           1.2912
## (Intercept) 2.8646
                                    2.219 0.02651 *
## RTlexdec
               -0.5225
                           0.1972 -2.650 0.00805 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 5991.7 on 4567 degrees of freedom
## Residual deviance: 5984.7 on 4566 degrees of freedom
## AIC: 5988.7
##
## Number of Fisher Scoring iterations: 4
anova(model1, model2, test= "LRT")
## Analysis of Deviance Table
##
## Model 1: WordCategory ~ RTlexdec + RTnaming
## Model 2: WordCategory ~ RTlexdec
   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
         4565
                  5982.0
         4566
                  5984.7 -1 -2.6643 0.1026
model3 = glm(WordCategory ~ RTnaming, data = english, family = binomial())
summary(model3)
##
## Call:
## glm(formula = WordCategory ~ RTnaming, family = binomial(), data = english)
##
## Deviance Residuals:
                    Median
      Min
                1Q
                                  3Q
                                          Max
## -0.9709 -0.9604 -0.9405
                                       1.4473
                             1.4094
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.4868
                          1.0899
                                   0.447
                                             0.655
               -0.1651
                           0.1724 -0.958
## RTnaming
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 5991.7 on 4567 degrees of freedom
## Residual deviance: 5990.8 on 4566 degrees of freedom
## AIC: 5994.8
## Number of Fisher Scoring iterations: 4
```

```
anova(model1, model3, test = "LRT")
## Analysis of Deviance Table
##
## Model 1: WordCategory ~ RTlexdec + RTnaming
## Model 2: WordCategory ~ RTnaming
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          4565
                   5982.0
          4566
                   5990.8 -1 -8.8029 0.003007 **
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Primjer predvidanja i sanse za dva podatka iz skupa. U prvom slucaju je predvidanje tocno, a u drugom nije.
test1 = english[5,]
p1 = predict(model1, test1, type = "response")
p2 = predict(model2, test1, type = "response")
p3 = predict(model3, test1, type = "response")
test2 = english[3055,]
p4 = predict(model1, test2, type = "response")
p5 = predict(model2, test2, type = "response")
p6 = predict(model3, test2, type = "response")
odds1 = p1/(1-p1)
odds2 = p4/(1-p4)
```