P2P

SAD

Peer to Peer (P2P) Networks

- Favored structure
 - All nodes are born equal (peers)
 - No node is a "server"
 - Self organization
 - In some structures, nodes specialize
- ULTIMATE GOAL
 - Use resources of all network nodes efficiently
 - Storage, Processing power, etc...
 - Note that this goal does not necessarily impose structure...

Peer to Peer (P2P) Networks

- But also
 - Scale
 - Resilience
- Decentralized structure?
 - Various approaches

P2P: Availability of resources

Centralized elements

- Make resilience suffer
 - Failure of servers
 - Failure of disks
- Approaches?
 - Element replication,
 - □ Server replication forming clusters
 - □ Disk replication (RAID arrays)
 - Mixture
- ...However
 - Even clustering approaches do not remedy this fully
 - □ Network failures toward the cluster...
 - □ Need network redundancy too

P2P: Availability of resources

- Decentralized approach
 - However, for resilience
 - Still needs replication
 - ☐ failures may occur
 - Access to a resource does not depend on any single failure
 - But it may depend on a specific failure
 - Unless judicious replication is used
 - □ Replication on agents with failures unlikely correlated
 - Access to different resources from different agents do not interfere with each other

Generic P2P Classification

- Centralized
 - E.g. SETI@HOME
 - Long stretch to call this a P2P
- Mediated/Hybrid
 - Centralized location
 - Decentralized access
- Decentralized
 - True P2P
 - Usually via overlay networks
 - Structured/Unstructured
 - Decentralized location & access

Distributed Search

Distributed Search

Super peers

- ▶ Kazaa/Gnutella
 - Gnutella: self-organizing

P2P: Overlay Networks

- ▶ P2P applications need to
 - Track identities & IP addresses of peers
 - May be many and may have significant churn
 - Route messages among peers
 - If you do not keep track of all peers, this is multi-hop
- In sum: P2P systems need to maintain a network
 - To make operations sufficiently performant

→ The OVERLAY network

- ▶ P2P system creates this overlay differently, but
 - Peers doing both naming and routing
 - ▶ IP network becomes the low level transport

Some takeaways from experience

- Mediated approach performs well in many cases
 - Scale is not a problem
 - Reliability can be addressed with replication of some sort
 - Networking can be made resilient too.
- However...
 - Not always feasible: Performance not often key issue!
 - ... liability... tampering...

Some takeaways from experience

- Things that flood-based systems...
 - ...do well
 - Organic scaling
 - Decentralization of visibility and liability
 - Finding popular stuff
 - ...do poorly
 - Finding unpopular stuff
 - More flooding necessary
 - Vulnerabilities: data poisoning, tracking, etc.
 - Guarantees about anything (answer quality, privacy, etc.)

