

A Sketch-Based Approach To Video Retrieval Using Qualitative Features

Koustav Ghosal and Anoop Namboodiri

Center for Visual Information Technology
IIIT Hyderabad, India

IT Hyderabad

Content Based Video Retrieval

Different Form Of Queries:

Text Example Sketch

Text Based Query:

Video Search from Youtube

- "Coke Studio Pakistan"
- " Markov random Field Daphne Koller"
- "Rohit Sharma's Double Century"

Metadata: Tags, Comments etc.

Content Based Video Retrieval

Different Form Of Queries:

Text Example Sketch

Example Based Query: Video Google¹

Input:

Image or Objects of interest

Output:

Relevant Shots or Key Frames

Sivic et al, ICCV 2003

Content Based Video Retrieval

Different Form Of Queries:

Text Example Sketch

Video Q 1

Surveillance ²

- Chen and Chang: Fifth ACM international conference on Multimedia. ACM, 1997.
- Hu et al : PAMI 2006

Sketch vs Text/Example based

"A diving video where the diver does a somersault before going down ... "

Example is not always available.

"A pool shot where the player strikes from below and the white ball moves north-east, then north west then south-west and finally strikes another ball. The second ball drops inside the pocket ..."

Sketch vs Text/Example based

Challenges

Background Extraction

- Camera Motion
- Occlusion
- Illumination
- Background Noise
- and many more...

Perceptual Variability

Users perceive the same motion differently

Qualitative vs Quantitative Feature Space

Approximations instead of absolute numeric values to remove perceptual variability

Qualitative Spatio-Temporal Features

Features that capture "how" (qualitative) objects moved rather than "how much" (quantitative)

Problem Statement

• The Problem Statement: Modelling the query (user sketch) and original trajectories using "qualitative" features instead of "quantitative" features to remove perceptual variability.

• **Assumption**: Trajectories are available for a set of videos.

Aspects of Motion

- Shape: Linear and non-linear sub-trajectories.
- Direction: Similar in shape but have different directions
- Scale: Different scales of same motion

Shape: Circle Based Features

$$J = \min_{x_0, y_0, r} \sum_{i=1}^{n} x_i^2 + y_i^2 - 2x_0 x_i - 2y_0 y_i + x_0^2 + y_0^2 + r^2$$

$$S = (x_{\mu}, y_{\mu}, r, m, s)$$

 (x_{μ}, y_{μ}) , r = Center, Radius

m = Slope

S = Normalized Length

K- Means, Bag-Of-Motion

Trajectory = Histogram of motion-segments = Loss of temporal Information !!

Direction And Scale

Trajectory
$$\underline{=} (\alpha_1, \alpha_2, \dots, \alpha_n)$$

$$\alpha_k = sin(\theta_k) \dots \text{(1)}$$

Trajectory
$$= (d_1, d_2, \dots, d_n)$$

$$d_k = \text{Distance from mean } \dots \text{(2)}$$

Summary of Features

- 1. Bag-Of-Motion
- 2. Ordered Motion Segments

$$(s_1, s_2, \dots, s_m)$$
 where $s_k = (x_\mu, y_\mu, r, m, s)$

- 3. Change of Direction $(\alpha_1, \alpha_2, \dots, \alpha_n)$
- 4. Change of Scale (d_1, d_2, \ldots, d_n)

Both For User-Sketches and Videos

Dataset

100 Synthetic videos and 100 pool videos

Foreground

Kalman Filter Tracking

M- Segments

- Data was collected from 50 different users
- Interval of 6 hours between video and sketch

Cascade

Results: An example query

BOM

Sequence of BOM

Sequence of Directions

Sequence of Scales

Results

Synthetic

Precision - Recall

Top K Accuracy

Results

Mean Reciprocal rank

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{\operatorname{rank}_i}$$

Pool

Synthetic

Summary

- Strengths
 - Unconstrained Query: No initial frame
 - Qualitative Features: Robust to user-level variations
 - A novel retrieval strategy : Cumulative Scoring Mechanism
- Limitations
 - Dependency: A strong trajectory extraction algorithm
 - Not generic: Doesn't work for videos where motion is not the most salient feature

Future Work

- Finding new features to expand the scope of this representation to more generic videos
- Using additional information about object color and shape to refine the search
- Generating consistent tracks from videos with camera motion and large perspective variations

Thank you

