The Serverless Application Analytics Framework: Reproducible Performance for Performance Modeling

Robert Cordingly School of Engineering and Technology University of Washington Tacoma WA USA rcording@uw.edu

Wen Shu School of Engineering and Technology University of Washington Tacoma WA USA shuwen12@uw.edu

Wes J. Lloyd School of Engineering and Technology University of Washington Tacoma WA USA wlloyd@uw.edu

RAM (tenants)	2	256MB (13)	512	MB (6)	1024MB	(3)	2048MB (1)
KAW (tenants)		Avg runtim	e (ms), % Erro	or, RMSE,	deg	of freedom
CPU v2→v3	18	8173,5%, 199, 127		<u>1.3%,</u> 1. 58	3741, 0.1 36.0, 2		2580, -0.4%, 18.2, 155
CPU v2→v4	10	6532,1% <u>,</u> 224, 151		, -0.3%, 7, 414	4218, 0.0 102, , 4		2447, -0.3%, 14.4, 265
CPU v3→v4	1	7524,4%, 181, 127		08%, 7, 58	3575, 0.2 43.6, 2		2487,54%, 18.5, 155
0011 / 0.0 4)		CPU v2	2	CP	<u>U v3</u>		CPU v4
CPU (v2,3,4)	Ì	Avg runti	ime (n	ns), % E	rr, RMSE,	deg	of freedom
256(13)→512(6)		Avg runti 10324, 0.2 199, 41	8%.	8189,	rr, RMSE, -0.13%, 0, 58	_	of freedom 722, 0.076%, 41.1, 151
	3)	10324, 0.2	8%, 4 4%,	8189, 48. 3731,	-0.13%,	77	722, 0.076%,
<u>256(13)→512(6)</u>	-	10324, 0.2 199, 41 5252, -0.6	8%. 4 4%. 6 8%.	8189, 48. 3731, 22. 2578,	-0.13%, 0, 58 -0.44%,	38	722, 0.076%, 41.1, 151 94, -0.0049%,

PERFORMANCE MODEL RESULTS SCNMT2 WORKLOADS TABLE III. PERFORMANCE MODEL RESULTS SCSMT2 WORKLOADS

RAM	25	6MB (13)	512M	B (6)	1024MB	(3)	2048MB (1)
(tenants)		Avg runtir	ne (ms)	, % Erro	or, RMSE, o	deg (of freedom
CPU v2→v3		20,59%, 73, 1414	20840, 728,		10174,0.5 373, 32		4699, .205%, 321, 1739
CPU v2→v4		62,65%, 37, 1613	20829, 2875,		9831, 4.30 1290, 44		5052, 3.16%, 732, 2938
CPU v3→v4		39, .24%, 33, 1414	22212, 403,		10585,09 318, 32		5173,388%, 507, 1739
CDU (-2.2.		CPU	v2	CI	PU v3		CPU v4
CPU (v2,3,4	•)	Avg ru	ntime (n	ns), % E	rr, RMSE,	deg	of freedom
256(13)→512(6)	35216, 0 8389, 4), -0.39%, 5, 652		711, 0.0476%, 725, 1613
256(13) →102	4(3)	14645, 0 2625, 4			8, -1.02%, 8, 325		049, 1.212%, 838, 1613
256(13)→2048	(1)	5004, 3			0.401%,		639, 3.38%,

TABLE II. PERFORMANCE MODEL RESULTS SCMT2 WORKLOADS

RAM	25	6MB (13)	<u>512M</u>	B (6)	1024MB	(3)	2048MB (1)
(tenants)	4	Avg runtir	ne (ms).	% Erro	or, RMSE, o	deg	of freedom
CPU v2→v3		174,7% <u>,</u> 59, 127	23440, 286		10239,5		6450,63%, 115, 157
CPU v2→v4		62,38%, 87, 151	27281, 2912		13373,-1.5 1516, 40		7240, 1.84%, 954, 266
CPU v3→v4		94, 127	25074, 283		11090,.43 174, 28		7011, 4.66%, 900, 157
CDII (v2 2	0	CPU	<u>v2</u>	CI	PU v3		CPU v4
CPU (v2,3,4	<u>4)</u>			_		deg	CPU v4 of freedom
CPU (v2,3,4 256(13)→512(ntime (n .370%,	ns), % E			
	<u>6)</u>	Avg ru 48053, -	ntime (n .370%, 414 .032%,	23439 26 10239	Err, RMSE, 0.557%,	24	of freedom 936, -0.49%,

TABLE IV. PERFORMANCE MODEL RESULTS SCNMT2 AWS→IBM

RAM (tenants)	256MB (13 / 32)	512MB (6 / 16)	1024MB (3 / 8)	2048MB (1 / 4)
ream (teriants)	Avg runtime	e (ms), % Erro	or, RMSE, deg	of freedom
AWS v2 →	n/a	17666,-4.3%,	8013,-3.37%,	4340,-2.38%,
IBM 2.0 GHz	n/a	1196, 142	665, 236	559, 139
AWS v2→	n/a	16231,-4.1%,	7794,-1.37%,	3639,-0.70%,
IBM 2.1 GHz	II/d	1991, 369	674, 395	186, 265
AWS v2→	30124,-4.49%,	13960, .13%,		2920,166%,
IBM 2.2GHz	1752, 171	1176, 99	287, 49	41.49, 42
AWS v2→	24864, -2.7%,	12437,-5.5%,	6641, 3.76%,	2549, 3.47%,
IBM 2.6 GHz	2298, 200	2357, 85	633, 70	187, 24

Deleted: Abstract-Next generation software built for the cloud has recently embraced serverless computing platforms that leverage containers and microservices to form resilient, loosely coupled systems that are observable, easy to manage, and extend. Serverless architectures enable decomposing software into independent components packaged and run using isolated containers or microVMs. This decomposition approach enables application hosting using very finegrained cloud infrastructure enabling cost savings as deployments are billed granularly for resource use. Adoption of serverless platforms promise reduced hosting costs while achieving high availability, fault tolerance, and dynamic elasticity. These benefits are offset by pricing obfuscation, as performance variance from CPU heterogeneity, multitenancy, and provision variation obscure the true cost of hosting applications with serverless platforms. Where determining hosting costs for traditional VM-based application deployments simply involves accounting for the number of VMs and their uptime, predicting hosting costs for serverless applications can be far more complex. To address these challenges, in this paper we introduce the Serverless Application Analytics Framework (SAAF) that supports profiling FaaS workload performance, resource utilization, and infrastructure to enable accurate performance predictions. We demonstrate the use of Linux CPU time accounting principles and multiple regression to estimate function runtime with <~2% error across heterogeneous CPUs, alternate memory settings. and to alternate FaaS platforms.

Keywords— Serverless Computing, Function-as-a-Service, Performance Evaluation, Performance Modeling, Resource Contention, Multitenancy

Deleted: <#>SAAF RUNTIME, RESOURCE UTILIZATION, AND CONFIGURATION METRICS: 'A' INDICATES RAW AND DELTA
VERSIONS ARE PROVIDED, '* INDICATES FIELD GENERATED BY THE FAAS RUNNER

Formatted: Font: 7 pt

Formatted: table head, Left, Indent: First line: 0", Space

Deleted: TO PRODUCE FAAS WORKLOAD RUNTIME PREDICTIONS WE PROFILED OUR WORKLOADS ON A SINGLE SOURCE PLATFORM, AND GENERATED REGRESSION MODELS TO CONVERT CPUUSR AND CPUIDLE TO A VARIETY OF TARGET... [3]

Deleted: <#>EXPERIMENTAL RESULTS

<#>To evaluate our research questions, we profiled the workloads described in Table 2 on source and targe platforms described in Table 3. We deployed AWS Lambda

Formatted: Font: 8 pt

Formatted: Font: 8 pt, Do not check spelling or grammar

Formatted: Font: 8 pt, Do not check spelling or grammar

Formatted: Font: 8 pt, Do not check spelling or grammar

Formatted: Font: 8 pt, Do not check spelling or grammar

Formatted: Indent: First line: 0.2"

Page 1: [2] Deleted Robert W. Cordingly 11/21/19 10:02:00 PM Page 1: [3] Deleted Robert W. Cordingly 11/21/19 10:01:00 PM Page 1: [4] Deleted Robert W. Cordingly 11/21/19 10:01:00 PM	Page 1: [1] Deleted	Robert W. Cordingly	11/21/19 10:01:00 PM
•	Page 1: [2] Deleted	Robert W. Cordingly	11/21/19 10:02:00 PM
Page 1: [4] Deleted Robert W. Cordingly 11/21/19 10:01:00 PM	Page 1: [3] Deleted	Robert W. Cordingly	11/21/19 10:01:00 PM
	Page 1: [4] Deleted	Robert W. Cordingly	11/21/19 10:01:00 PM