Languages

COMPSCI 3331

Languages: Outline

- Languages: definitions and examples.
- Language operations.
- Proofs involving Languages.

What is a language?

Natural Languages

- Natural languages are governed by rules, exceptions ...
- Different alphabets to represent written words.
- Not very formal.
- Very complex.

Programming Languages: C++, Java, Basic, etc.

- Easier to "understand" (parsing).
- Well-defined: we can determine what is and is valid.

Formal Languages

We will deal with **formal languages**:

- A symbolic representation of a language.
- Does not necessarily have any communicative value.
- Some formal languages do represent something meaningful.
 - e.g., Language of Java identifiers.
- Allows formal reasoning (proofs).

Where do we use formal languages?

- Lexical analysis: convert a program from sequences of characters to units (variable names, keywords, numeric literals, etc.)
- Parsing: build an internal representation of a program (parse tree)
- Compiler Optimization: optimize code to speed execution
- Compiling and interpreting.

Formal Languages: Alphabets and Words

Let Σ be a **finite** set of symbols. $\Sigma = \{a, b, c, \dots\}$.

- The symbols a, b, c, \ldots are called **letters**.
- ightharpoonup The set Σ of letters is called an **alphabet**.

A word over an alphabet Σ is finite sequence of letters from Σ :

- ▶ If $\Sigma = \{a, b, c\}$, then *babc* is a word over Σ.
- If Σ is Unicode, then α übí is a word over Σ.
- So are Western, computer and

```
for (i=0; i<=10; i++) \{ n = n*i; \}
```

We will usually denote letters by a, b, c, d, e and words by w, x, y, z or α, β, γ .

Formal Languages

- The empty word is the word with no letters.
- ▶ It is denoted by ε .
- ightharpoonup (Other sources may use λ or Λ .)

Length: The length of a word is the number of letters in the word. We denote the length of a word w by |w|.

- e.g., |abc| = 3, |aabaab| = 6.
- ▶ The empty word has length zero: $|\varepsilon| = 0$.

Sometimes need to refer to the number of times a letter appears in a word.

- $|w|_c$ is the number of times c appears in w.
- e.g., $|cbaabcc|_b = 2$

Operations on words

Concatenation: given two words x, y, xy is the sequence of all letters in x followed by all the letters of y.

$$ightharpoonup x = abba, y = caa.$$

Note that $w\varepsilon = w$ for all words w. $\varepsilon \sim \infty$

Repetition: x^i is the concatenation of i copies of x:

epetition:
$$x'$$
 is the concatenation of i copies of x

$$ightharpoonup w^0 = \varepsilon$$

$$\triangleright$$
 $w^i = w^{i-1}w$ for all $i \ge 1$

Relations on words

Given words w, x, y, z:

- ightharpoonup if w = xyz then y is a **subword** of w.
- ightharpoonup if w = xy then x is a **prefix** of w.
- ightharpoonup Also in this case, y is a **suffix** of w.

$$M = abnahc$$
 $M = ha$

Reversal

If w is a word, then w^R is the reversal of the word w, where the letters appear in the reverse order.

For all words $x, y, (xy)^R = y^R x^R$.

Formal Languages

Given an alphabet Σ , the **set of all words** over Σ is denoted Σ^*

- 1. If $\Sigma = \{a, b, c\}$, then $\Sigma^* = \{\varepsilon, a, b, c, \underline{aa}, \underline{ab}, \underline{ac}, \underline{ba}, \underline{bb}, \underline{bc}, \underline{ca}, \underline{cb}, \underline{cc}, \underline{aaa}, \underline{aab}, \dots\}$.
- 2. If $\Sigma = \{a\}$, then $\Sigma^* = \{\varepsilon, a, aa, aaa, aaaa, ..., \}$.
- 3. If $\Sigma = \emptyset$, then $\Sigma^* = ?$.

Formal Languages

Languages: A language (over an alphabet Σ) is any set of words over Σ , i.e., any subset $L \subseteq \Sigma^*$ is a language.

For $\Sigma = \{a, b\}$, we have $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$. Here are some examples of languages over Σ :

- $ightharpoonup L = \{a, ba\}$ is a language. It is finite.
- ► $L = \{x \in \{a, b\}^* : |x| \le 100\}.$
- L = $\{\varepsilon, ab, aabb, aaabbb, aaaabbbb, ...\}$ is an infinite language. It consists of all words of the form a^nb^n for some $n \ge 0$. $L = \{a^nb^n : n \ge 0\}$

More Formal Languages

Let
$$\Sigma = \{0, 1\}$$
.

Let *L* be the set of all words which are binary encodings of the positive integers that do **not** go to zero under repeated application of the Collatz function.

Let $\Sigma = \text{UNICODE}$.

Let $L \subseteq \Sigma^*$ be the set of all Java programs which compute π to 1,000,000 places.

Some descriptions of languages are more useful than others.

Some Special Languages

- \triangleright 0: the language containing no words at all;
- $ightharpoonup \{ arepsilon \}$: the language consisting of one word arepsilon (the word with no symbols).
 - ALWAYS REMEMBER: the last two languages are different!
 - Σ⁺: all non-empty words (i.e., all of Σ* except ε).
 Σ* itself is a language.

What Can We Do with Languages?

What can we do with languages?

- classify them: how difficult are they?
- ▶ Use to model things: e.g., $\Sigma = \{S,R,A,...\}$. $L \subseteq \Sigma^*$: sequence of possible events under given communication protocols.
- **combine them**: language operations.

Language Operations

- What is an operation?
- Example: arithmetic operations: addition, multiplication, exponentiation.
- If $L_1, L_2 \subseteq \Sigma^*$ are languages, then we can combine them using the operations
 - ▶ union: $L_1 \cup L_2 = \{x \in \Sigma^* : x \in L_1 \text{ or } x \in L_2\}.$
 - ▶ intersection: $L_1 \cap L_2 = \{x \in \Sigma^* : x \in L_1 \text{ and } x \in L_2\}.$
 - ▶ difference: $L_1 L_2 = \{x \in \Sigma^* : x \in L_1 \text{ and } x \notin L_2\}.$

Language Operations

Complement: If $L \subseteq \Sigma^*$ is a language, then $\overline{L} \subseteq \Sigma^*$ is the complement of L.

- $ightharpoonup \overline{L} = \Sigma^* L.$
- e.g., if $\Sigma = \{a\}$ and $L = \{a^i : i \text{ is even.}\}$ then $\overline{L} = \{a^i : i \text{ is odd.}\}.$

Language Operations: Concatenation

If $L_1, L_2 \subseteq \Sigma^*$ are languages, then

$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}.$$

 L_1L_2 is the **concatenation** of L_1 and L_2 .

Example:
$$L_1 = \{ab, a, b\}, L_2 = \{\varepsilon, b\}.$$

Special Concatenations

- riangleright concatenation with the empty language: $L\emptyset = ?$
- concatenation with the language consisting of empty word: $L\{\varepsilon\} = ?$

Laws involving Concatenation

$$L_1(L_2L_3) = (L_1L_2)L_3$$

 $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$
 $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$

Powers of Languages

Powers of Languages:

- $L^2 = LL$.
- e.g., $L = \{a, b, aa\}$.
- $L^2 = ?$

Powers of Languages

- $L^n = L^{n-1}L$ for $n \ge 2$; $(L^1 = L)$.
 - ▶ We also define $L^0 = \{\varepsilon\}$.
 - ▶ Definition of L^*, L^+ :

$$L^* = \bigcup_{i \geq 0} L^i$$

$$L^+ = \bigcup_{i \geq 1} L^i$$

▶ We call the operation L^* Kleene star (or Kleene closure).

Powers and Kleene star

- ▶ If $x \in L^*$, then $x \in L^n$ for some $n \ge 0$.
- What does such an x look like?
- ▶ x is the result of concatenating n strings from L together: $x = x_1 x_2 \cdots x_n$ where $x_i \in L$.
- \triangleright Each of these x_i can be the same, or different.

Powers and Kleene star: Examples

- ▶ If $L = \{a, b\}$, then L^n is all words over $\{a, b\}$ of length n.
- ▶ If $L = \{a, ba\}$, then L^* contains the words:

```
arepsilon, and arepsilon
```

Proofs involving Languages

Languages are sets; certain proof techniques are typically used.

- **to show** $L_1 = L_2$, we need to show that (a) $L_1 \subseteq L_2$ and (b) $L_2 \subseteq L_1$.
- ▶ **to show** $L_1 \subseteq L_2$, a proof would follow the general pattern: "Let $x \in L_1$ be arbitrary. Then (use some property of words in L_1). Therefore, $x \in L_2$."

Other proofs on languages are proofs by induction, usually on the length of words in the language.

Problems vs Languages

- In this course, we will focus on languages (sets of words over an alphabet).
- We will consider a lot of decisions about languages
 - Is a word in a language?
 - How difficult is a language?
- But languages can represent complex problems through encoding.
- Provides a different, consistent way to think about problems: through the language they encode.

Encodings

- "Is a number prime?" vs.
 - $\{x \in \{0,1\}^* : x \text{ is a prime number in binary. }\}$
- Compute the intersection of two lists" vs $\{L1\#L2\#L3 : L1, L2, L3 \text{ are lists and } L1 = L2 \cap L3\}$
- ► "Does a C++ program compile without errors?" vs {x : x is a C++ program that compiles successfully.}

£ 10,11,101,...}

Encodings

- Encoding a problem as a language means membership is important.
 - Membership: "is the word x in the language?"
- Encodings are up to us anything can be encoded (data structures, programs, ...)
- Encodings don't change how hard a problem is: e.g., if you can solve a problem, then you can determine membership in an encoded language.