B4: Google's Software-Defined WAN Paper Reading

Log Creative

2021年10月17日

论文

Chi-Yao Hong et al. "B4 and after: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in Google's Software-Defined WAN". In: *Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication*. SIGCOMM '18. Budapest, Hungary: Association for Computing Machinery, 2018, pp. 74–87. ISBN: 9781450355674. DOI: 10.1145/3230543.3230545. URL: https://doi.org/10.1145/3230543.3230545

B4

Google 私有广域网后端

B4

Google 私有广域网后端

SLO

简介 ○●

Service Level Objectives 服务级别协议

表示 30 天滑动窗口内的网络连接可用性和带宽可用性。

服务级别	应用举例	SLO需求
SC4	搜索广告、DNS、WWW	99.99%
SC3	照片服务后端、邮件	99.95%
SC2	广告数据库拷贝	99.90%
SC1	搜索索引拷贝	99%
SC0	批量传输	

表: SLO

SLO

简介 ○●

Service Level Objectives 服务级别协议

表示 30 天滑动窗口内的网络连接可用性和带宽可用性。

服务级别	应用举例	SLO需求
SC4	搜索广告、DNS、WWW	99.99%
SC3	照片服务后端、邮件	99.95%
SC2	广告数据库拷贝	99.90%
SC1	搜索索引拷贝	99%
SC0	批量传输	

表: SLO

SLO

简介 ○●

Service Level Objectives 服务级别协议

表示 30 天滑动窗口内的网络连接可用性和带宽可用性。

服务级别	应用举例	SLO需求
SC4	搜索广告、DNS、WWW	99.99%
SC3	照片服务后端、邮件	99.95%
SC2	广告数据库拷贝	99.90%
SC1	搜索索引拷贝	99%
SC0	批量传输	

表: SLO

扁平结构

不利于扩展和可用性

之前的 B4 若想增加容量,需要在地理限界内增加站点。但这会带来:

- ❶ 增加了中央流量控制优化算法的运行时间。
- 2 对交换机有限的流表空间增加压力。
- 3 使得容量管理变得复杂并给应用开发者造成麻烦。

扁平结构

不利于扩展和可用性

之前的 B4 若想增加容量,需要在地理限界内增加站点。但这会带来:

- 增加了中央流量控制优化算法的运行时间。
- 2 对交换机有限的流表空间增加压力。
- 3 使得容量管理变得复杂并给应用开发者造成麻烦。

为了解决这个问题,引入 supernode 和两层架构。

层级架构

容量不对等问题

B4 中 6-20% 的地理级连接仍然会在 $\geq 5\%$ 的时间内有容量不对等情形。

Fraction of site-level links with >x% asymmetry

$$\frac{\mathsf{avg}_{\forall i} C_i {-} \mathsf{min}_{\forall i} C_i}{\mathsf{avg}_{\forall i} C_i}$$

图: 地理级流量不对等

图: 对等

不对等的后果

大幅减少系统效率

7/14

不对等的后果

大幅减少系统效率

图: 不对等示例 c=4

不对等的后果

大幅减少系统效率

图: 不对等示例 c=12

使用 sidelink 可以提高不对等时的带宽利用率。但是仍然需要考虑相关的协议问题,比如有些数据不可分割、MAC 地址不可变化,以及死循环问题,转换隧道可能是原子操作,以任意顺序应用 TE 更新会导致这种死循环率上升,

简介

高效交换规则管理

Merchant 交换机只支持有限的匹配和哈希规则。

Saturn

第一代 B4 网络结构

图: Saturn 站点

名称	Saturn
部署年	2010
类型	数据中心
交换机芯片	24×10G
每站点机箱数	6 / 8
站点容量 (Tbps)	5.12 EX 2.56 INTER
每站点交换机箱数	4
控制域数量	

表: Saturn 站点

Jumpgate: JPOP

仅传输站点

名称	JPOP
部署年	2013
类型	POP
交换机芯片	16×40G
每站点机箱数	20
超级节点交换机数	24
站点容量 (Tbps)	10.24
每站点交换机箱数	4
控制域数量	2

表: JPOP 站点

图: JPOP 站点

Jumpgate: Stargate

数据中心级

名称	Stargate
部署年	2014
类型	数据中心
交换机芯片	32×40G
每站点机箱数	192
超级节点交换机数	48
站点容量 (Tbps)	81.92
每站点交换机箱数	8
控制域数量	4

表: Stargate 站点

Jumpgate: Stargate

数据吞吐量大带来的好处

图: 交换机与交换 机箱

图: 减少 BGP 复杂度

