MaLo	_	Marc Ludevid	405401
SS 2021	Übungsblatt 02	Andrés Montoya	405409
2. Mai 2021		Til Mohr	405959

E-Test

Aufgabe 2

- (a) Aus der VL wissen wir, dass $\{\neg, \land\}$ funktional vollständig ist.
 - $\neg x \equiv m(x, x, x, x)$
 - $x \wedge y \equiv m(x, x, y, m(x, x, x, x))$

Da $\{\neg, \land\}$ funktional vollständig ist und wir dies mit $\{m\}$ darstellen können, ist auch $\{m\}$ funktional vollständig.

- (b) Wir zeigen mittels Induktion, dass die Boolsche Funktion \neg sich nicht aus $\{\rightarrow, u, 1\}$ darstellen lässt.
 - I.A. Konstante 1

Ausgangsvariable $x \in \tau$

I.S. $\varphi = \psi \to \vartheta$, falls ψ und ϑ bereits gebildete Formeln sind $\varphi = u(\psi, \vartheta, \lambda)$, falls ψ , ϑ und λ bereits gebildete Formeln sind

Hieraus erkennt man jedoch, dass φ nie ¬ darstellen kann, da: $1 \to x \equiv x \to x \equiv x \equiv u(1,1,x) \equiv u(1,x,1) \equiv u(x,1,1) \equiv u(x,x,x)$

und

$$x \to 1 \equiv 1 \equiv u(1, x, x) \equiv u(x, 1, x) \equiv u(x, x, 1)$$

Aus diesem Grund ist $\{\rightarrow, u, 1\}$ nicht funktional vollständig.

(c) Für $f \in B^n$ beliebig gilt laut Aufgabenstellung, dass f nicht monoton, also gibt es $a, b \in \{0, 1\}^n$ mit $a \le b$ für die gilt: $f(a) \not\le f(b)$, also f(a) > f(b) bzw. f(a) = 1 und f(b) = 0. Sei ein Paar a, b gegeben die diese Bedingung erfüllen. Wenn es mehrere gibt wähle eins, sodass b minimal ist wenn dieses als Binärzahl interpretiert wird. Da a und b nicht gleich sind (andernfalls wäre f(a) = f(b)) gilt a < b und somit gibt es einen Index $0 \le i < n$ sodass $a_i < b_i$. Dementsprechen ist $a_i = 0$ und $b_i = 1$.

Außerdem wissen wir, dass aufgrund der Minimalität von b, wenn man b so zu $b_{i=0}$ abwandelt dass man an der Stelle mit Index i eine 0 einfügt, dann $f(b_{i=0}) = 1$. Beweis: Andernfalls wäre $a, b_{i=0}$ ebenfalls ein Paar, für das sowohl $a \le b_{i=0}$, wegen $a_i = 0$, als auch $f(a) \le f(b_{i=0})$ gilt, weil $f(b_{i=0}) = 0$ wäre. $b_{i=0}$ ist als Binärzahl kleiner als b was der Voraussetzung widerspricht, dass b minimal gewählt wurde.

Schließlich definieren wir die Funktion $b': \{0,1\} \to \{0,1\}$ sodass $b'(X) = f(b_{i=X})$ wobei $b_{i=X}$ ein abgeändertes b ist, wobei b_i auf den Wert X gesetzt wurde.

Wir wissen also:

- $b'(1) \equiv 0$, denn für jedes Paar a, b für das die Bedingungen der nicht-Monotinie gelten, $b_i = 1$ sein muss. Somit ist b'(1) = f(b) denn b wird nicht abgeändert.
- $b'(0) \equiv 1$, denn wenn $b'(0) \equiv 0$ gelten würde, $a, b_{i=0}$ ein Paar wäre das die Bedingung der nicht-Monotonie erfüllt und somit b nicht minimal im Sinne einer binären Zahl wäre.

Es gilt also:

$$\neg X = b'(X)$$

Somit haben wir die Negation aus b' und implizit aus f abgeleitet und somit ist die gegebene Menge funktional vollständig.

(a)

$$M_0 = \emptyset$$

 $M_1 = \{B\}$
 $M_2 = \{B, D\}$
 $M_3 = \{B, D, F, A\}$
 $M_4 = \{B, D, F, A\} := M$

Der Algorithmus terminiert.

Das Minimale Modell ist: $\Im:A\mapsto 1, B\mapsto 1, C\mapsto 0, D\mapsto 1, E\mapsto 0, F\mapsto 1$

(b) Φ ist offensichtlich äquivalent zu $\Phi' := \{X \to Y, X \land Z \to Y\}$ und ψ äquivalent zu $\psi' := (X \to X) \land (X \to Y) \land (X \to Z) = (X \to Y) \land (X \to Z)$

 Φ' besteht also nur aus Horn-Formeln und ψ' selber ist eine Horn-Formel.

Da $\Phi \models \psi$ bzw. $\Phi' \models \psi'$ genau dann gilt, wenn jedes Modell von Φ' auch ein Modell von ψ' ist, und wir hier eben nur Horn-Formeln haben, gilt $\Phi \models \psi$ eben auch genau dann, wenn das minimale Modell von Φ dem von ψ entspricht.

Der Markierungsalgorithmus liefert uns für alle Horn-Formeln das minimale Modell $\mathfrak{I}: X,Y,Z\mapsto 0.$ Also gilt $\Phi\models\psi.$

(a)
$$\varphi = \bigwedge_{i=1}^n \varphi_i$$
 mit $\varphi_i = \begin{cases} (\bigwedge_{j=1}^{m_i-1} X_{i,j}) \to X_{i,m} \\ \bigwedge_{j=1}^{m_i} X_{i,j} \end{cases}$.
Offensichtlich gilt für ein $\mathfrak{I} \models \varphi$ auch $\mathfrak{I} \models \varphi_i$ für alle i in φ .

Sei nun $\mathfrak{I}_1 \models \varphi$, $\mathfrak{I}_2 \models \varphi$. Für jedes i in φ unterscheiden wir nun 2 Fälle:

- Falls für alle $1 \leq j \leq m_i$ gilt: $\mathfrak{I}_1(X_{i,j}) = 1 = \mathfrak{I}_2(X_{i,j})$, dann ist auch $(\mathfrak{I}_1 \cap$ $\mathfrak{I}_2(X_{i,j}) = 1$, we shalb $\mathfrak{I}_1 \cap \mathfrak{I}_2 \models \varphi_i$ stimmt.
- Falls für ein $1 \leq j \leq m_i$ gilt: $\mathfrak{I}_1(X_{i,j}) = 0$ oder $\mathfrak{I}_2(X_{i,j}) = 0$, dann ist auch $(\mathfrak{I}_1 \cap \mathfrak{I}_2)(X_{i,j}) = 0$, weshalb $\mathfrak{I}_1 \cap \mathfrak{I}_2 \models \varphi_i$ stimmt.

Also gilt $\mathfrak{I}_1 \cap \mathfrak{I}_2 \models \varphi_i$ für alle i in φ , we halb auch $\mathfrak{I}_1 \cap \mathfrak{I}_2 \models \varphi$ gelten muss.

(b) Da Horn-Formeln unter Schnitt abgeschlossen sind, muss es auch immer ein eindeutiges kleinstes Modell zu einer Horn-Formel φ geben: Gäbe es kein eindeutiges kleinstes Modell, sondern 2 voneinander verschiedene minimale Modelle $\mathfrak{I}_1,\mathfrak{I}_2$ so wäre $\mathfrak{I}_1\cap\mathfrak{I}_2\not\models$ φ , da $\Im_1 \cap \Im_2 \leq \Im_1$ und $\Im_1 \cap \Im_2 \leq \Im_2$, jedoch \Im_1, \Im_2 minimal sind, also insbesondere $\mathfrak{I}_1 \cap \mathfrak{I}_2$ nicht minimal.

Widerspruch!

Es muss immer ein eindeutiges kleinstes Modell zu einer Horn-Formel φ geben!

• $\mathfrak{I}_1:T,R,U\mapsto 1;S\mapsto 0$ und $\mathfrak{I}_2:T,S,R\mapsto 1;U\mapsto 0$ sind Modelle von φ_1 , jedoch ist $\mathfrak{I}_1 \cap \mathfrak{I}_2 : T, R \mapsto 1; S, U \mapsto 0$ kein Modell von φ_1 . Da jedoch Horn-Formeln unter Schnitt abgeschlossen sind, ist φ_1 nicht äquivalent zu einer Horn-Formel.

> $\varphi_2 \equiv (\neg A \to (B \lor C)) \land (\neg B \to (A \lor C)) \land (\neg C \to (A \lor B))$ $\equiv (A \lor B \lor C) \land (A \lor B \lor C) \land (A \lor B \lor C)$ $\equiv A \vee B \vee C$

Auch dies ist offensichtlich keine Horn-Formel aus derselben Begründung. Zudem darf eine Klausel in einer Horn-Formel höchstens ein positives Literal vorkommen. Hier sind es aber 3.

- (a) (i) Diese Aussage ist richtig. Wie oben bereits gesagt, gilt $\Phi \models \psi$ offensichtlich für alle $\psi \in \Psi$, wenn $\Phi \models \bigwedge \Psi$ gilt. Also muss auch für jedes $\Psi_0 \subseteq \Psi \Phi \models \psi_0$ für alle $\psi_0 \in \Psi_0$ gelten, also auch $\Phi \models \Psi_0$.
 - (ii) Diese Aussage ist falsch. Sei $\Phi = \Psi = \{X\}$ und $\Psi_0 = \{X, \neg X\}$. Es gilt zwar $\Phi \models \Psi$, jedoch nicht $\Phi \models \Psi_0$!
- (b) Angenommen Φ ist erfüllbar und es gilt $\Phi \models \psi$. Dann gibt es also ein Modell \Im zu Φ , welches auch Modell von ψ ist. Dann kann aber $\Phi \models \neg \psi$ nicht gelten, da dieses Modell \Im kein Modell von $\neg \psi$ sein kann. Dies führt zum Widerspruch. Also kann Φ nicht erfüllbar sein.
- (c) Da $\Psi_i \cap \Psi_{i+1} = \Psi_{i+1}$ für alle $i \in \mathbb{N}$, ist $\bigcap_{i \in \mathbb{N}} \Psi_i \models \vartheta$

Aufgabe 6

 $\Phi := \{X_u \oplus X_v | \{u, v\} \in E\}$

Falls Φ erfüllbar ist, dann gibt es ein Modell \Im für Φ . Für alle $v \in V$ gilt dann:

Falls $\mathfrak{I}(X_v) = 0$, dann ist $v \in W_0$.

Falls $\mathfrak{I}(X_v) = 1$, dann ist $v \in W_1$.

G ist genau dann bipartit, wenn Φ erfüllbar ist. Nach dem Kompaktheitssatz ist Φ genau dann erfüllbar, wenn jede endliche Teilmenge Φ_0 von Φ erfüllbar ist, also jeder endliche Teilgraph von G bipartit ist.

Folglich ist G genau dann erfüllbar, wen jeder endliche Teilgraph von G bipartit ist.