Tutanal sheet 3

(1)
$$f(t) = e^{kt}$$
 $L\{e^{kt}\} = \int_{0}^{e^{-st}} e^{kt} dt = \lim_{T \to \infty} \int_{0}^{t} e^{-(s-k)t} dt$
 $= \lim_{T \to \infty} \frac{-1}{s-k} \left[e^{-ts-k} \right]_{0}^{T} = \frac{1}{s-k} \left(1 - \lim_{T \to \infty} e^{-(s-k)T} \right)$

(hus $L\{e^{kt}\} = \frac{1}{s-k}$ provided that, for real k ,

 $\sigma = Re(s) > k$. If k is complex then we require $R(s) > Re(k)$.

Thus we have the Laplace transform pair

Thus we have the Laplace transform part
$$f(t) = e^{kt}$$

$$\begin{cases} Re(s) > Re(k) \end{cases}$$

$$f(s) = \frac{1}{s-k}$$

Since $\exp(jat) = \cos at + j \sin at$ we may unite $g(t) = \sin at = Im e^{jat} & g(t) = \cos at = Re e^{jat}$ from the result of d1 with k = ja we have $f(e^{jat}) = \frac{1}{s-ja}$ $f(e^{jat}) = \frac{1}{s-ja}$ $f(e^{jat}) = \frac{1}{s-ja}$

$$= \frac{s+ja}{s^2+a^2} \quad Re(s) > 0$$

Thus equating real and viaginary parts and assuming that s is real we have

$$L\{sinat\} = Im L\{e^{jat}\} = \frac{a}{s^2 + a^2}$$

$$L\{cor, at\} = Re L\{e^{jat}\} = \frac{s}{s^2 + a^2}$$

which also held for complex s with Re(s) > 0.

2) Since
$$2\{x, y(t) + By(t)\} = \int_{0}^{\infty} x(t) + By(t)\} e^{-st} dt$$

$$= \int_{0}^{\infty} x(t) e^{-st} dt + \int_{0}^{\infty} y(t) e^{-st} dt$$

$$= \alpha \int_{0}^{\infty} y(t) e^{-st} dt + \beta \int_{0}^{\infty} y(t) e^{-st} dt$$

we have $2\{x, y(t)\} + B_{2}(t)\} = \alpha \int_{0}^{\infty} x(t) + \beta \int_{0}^{\infty} y(t) e^{-st} dt$

we have $2\{x, y(t)\} + B_{2}(t)\} = \alpha \int_{0}^{\infty} x(t) + \beta \int_{0}^{\infty} y(t) e^{-st} dt$

if $y(t) = y(t) + \beta \int_{0}^{\infty} y(t) = \beta \int_{0}^{\infty} x(t) + \beta \int_{0}^{\infty} y(t) e^{-st} dt$

if $y(t) = y(t) = \beta \int_{0}^{\infty} x(t) + \beta \int_{0}^{$

3 Since
$$\mathcal{L}\left\{e^{ab}g(t)\right\} = \int_{0}^{\infty} e^{ab}g(t)e^{-st}dt = \int_{0}^{\infty} g(t)e^{-(s-a)t}dt$$

and $\mathcal{L}\left\{f(t)\right\} = \int_{0}^{\infty} g(t)e^{-st}dt = f(s)$ Re(s) > σ_{c}

we see that

 $\mathcal{L}\left\{e^{ab}g(t)\right\} = f(s-a)$ $\mathcal{R}e(s-a) > \sigma_{c}$

or $Re(s) > \sigma_{c} + Re(a)$

i. from Q_{c} are have that $\mathcal{L}\left\{t\right\} = \frac{1}{s^{2}}$ $Re(s) > 0$

So $\mathcal{L}\left\{te^{-2t}\right\} = f(s+2) = \left[f(s)\right]_{s-s+1}$ $Re(s) > 0 - 2$
 $= \frac{1}{(s+2)^{2}}$ $Re(s) > -2$

4) $\mathcal{L}\left\{g(t)\right\} = f(s) = \int_{0}^{\infty} e^{-st}g(t)dt$

for $\mathcal{L}\left\{tsii3t\right\}$ given that

 $\mathcal{L}\left\{tsii3t\right\} = f(s) = \frac{d^{n}}{ds^{n}}\int_{0}^{\infty} e^{-st}dt = \int_{0}^{\infty} \int_{0}^{\infty} e^{-st}f(t)dt$
 $\mathcal{L}\left\{tsii3t\right\} = f(s) = \frac{1}{s^{2}+q}$ $Re(s) > 0$

we have that

 $\mathcal{L}\left\{tsii3t\right\} = \frac{d^{n}}{ds} = \frac{6s}{(s^{2}+q)^{2}}$ $Re(s) > 0$

For $\mathcal{L}\left\{t^{2}e^{t}\right\}$ given that $\mathcal{L}\left\{e^{t}\right\} = f(s) = \frac{1}{s-1}$ $Re(s) > 1$
 $\mathcal{L}\left\{t^{2}e^{t}\right\}$ given that $\mathcal{L}\left\{e^{t}\right\} = f(s) = \frac{1}{s-1}$ $Re(s) > 1$
 $\mathcal{L}\left\{t^{2}e^{t}\right\}$ given that $\mathcal{L}\left\{e^{t}\right\} = f(s) = \frac{1}{s-1}$ $Re(s) > 1$
 $\mathcal{L}\left\{t^{2}e^{t}\right\}$ given that $\mathcal{L}\left\{e^{t}\right\} = f(s) = \frac{1}{s-1}$ $Re(s) > 1$
 $\mathcal{L}\left\{t^{2}e^{t}\right\}$ given that $\mathcal{L}\left\{e^{t}\right\} = f(s) = \frac{1}{s-1}$ $Re(s) > 1$

but we would have used the first shift howen.

 $=\frac{2}{(s-1)^3}$ Re(s) > 1

(5)
$$\mathcal{L}\{\frac{df}{dk}\} = \int_{0}^{\infty} e^{-st} df dk$$

& on integrating by parts we have

 $\mathcal{L}\{\frac{df}{dk}\} = [e^{-st}f(t)]_{0}^{\infty} + s\int_{0}^{\infty} e^{-st} f(t) dt$
 $= -f(0) + sf(s)$

so $\mathcal{L}\{\frac{df}{dk}\} = sf(s) - f(0)$
 $\mathcal{L}\{\frac{df}{dk}\} = \int_{0}^{\infty} e^{-st} \frac{df}{dk} dt = [e^{-st} \frac{df}{dk}]_{0}^{\infty} + s\int_{0}^{\infty} e^{-st} \frac{df}{dk} dt = -[\frac{df}{dk}]_{k=0}^{k} + s\mathcal{L}\{\frac{df}{dk}\}_{k=0}^{k}$
 $= -[\frac{df}{dk}]_{k=0}^{k} + s[sf(s) - f(0)]$

from $\mathcal{L}\{\frac{df}{dk}\} = s^{s}f(s) - sf(0) - [\frac{df}{dk}]_{k=0}^{k} = s^{s}f(s) - sf(0) - f^{(1)}(0)$

& in several $\mathcal{L}\{f^{(n)}(t)\} = s^{n}f(s) - \sum_{i=1}^{m} s^{n-i}f^{(i-1)}(0)$

6 Writing $g(t) = \int_0^t f(\tau) d\tau$ we have $\frac{dg}{dt} = f(t)$ g(0) = 0 taking laplace brunsforms f(t) = f(t) = f(t) which from above gives f(t) = f(t) = f(t) = f(t) = f(t) which gives the required result.

Starting with
$$f(t) = t^3 + \sin 2t$$

 $f(s) = \mathcal{L}\{t^3\} + \mathcal{L}\{\sin 2t\}$
 $= \frac{6}{5^4} + \frac{2}{5^2 + 4}$
Thus $\mathcal{L}\{\int_0^t (\tau^3 + \sin 2\tau) d\tau\} = \frac{1}{5} F(s) = \frac{6}{5^5} + \frac{2}{5(s^2 + 4)}$

(a) Resolving into partial fractions
$$\frac{1}{(5+3)(5-2)} = \frac{-1/5}{5+3} + \frac{1/5}{5-2}$$
Using the result $\mathcal{L}'\{1/(5+a)\} = e^{-at} \& \text{ the linearity}$

$$property$$

$$\mathcal{L}''\{(5+3)(5-2)\} = -\frac{1}{5}\mathcal{L}''\{\frac{1}{5+3}\} + \frac{1}{5}\mathcal{L}''\{\frac{1}{5-2}\}$$

$$= -\frac{1}{5}e^{-3t} + \frac{1}{5}e^{2t}$$

(c) Smidarly
$$\mathcal{L}'\left\{\frac{2}{s^{2}+6s+13}\right\} = \mathcal{L}'\left\{\frac{2}{(s+3)^{2}+4}\right\} = \left[\frac{2}{s^{2}+2^{2}}\right]_{s\to s+3}$$
A since $2/(s^{2}+2^{2}) = \mathcal{L}\left\{\sin 2\epsilon\right\}$ the shift theorem gives
$$\mathcal{L}'\left\{\frac{2}{s^{2}+6s+13}\right\} = e^{-3t}\sin 2t$$

(8) Using Kirchhoff's current law

current =
$$\frac{Cd(exp(jnwot) - y)}{dt} = \frac{\frac{y}{R}}{R}$$

i. $\frac{Cexp(jnwot)}{jnwo} - \frac{Cdy}{dt} = \frac{\frac{y}{R}}{R}$

+ o | | R y-(t)

d esterning for K
$$K + RCKJNW0 = RCJNW0 = K = \frac{RCJNW0}{1 + RCJNW0}$$

From
$$\left(\frac{d}{dt}\left(x(t)-y(t)\right)=\frac{y}{R}\right)$$

$$RC\frac{dn}{dt}=RC\frac{dy}{dt}+\frac{y}{dt}$$

Taking Laplace bromsforms & arruning reso initial anditions $RC_s \times (s) = RC_s \times (s) + Y(s)$

(a) Applying Kerikhoff's second law to the circuit gives
$$Ri + L\frac{di}{dt} + \frac{1}{c} \int i dt = e(t)$$

or, using i = dq

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{c}q = e(t)$$

& substituting the given values for R,C, L & e(F) $\frac{d^2q}{dt^2} + 160 \frac{dq}{dt} + 10^4 q = 20$

Taking laplace transforms $(s^2 + 160s + 104) Q(s) = [sq(0) + \dot{q}(0)] + 160q(0) + \frac{20}{5}]$

where Q(s) is the transform of q(F)

We are Wid that g(0)=0 & g(0)= i(0)=0 80 the equation is recluded to

$$(s^2 + 160s + 104) Q(s) = \frac{20}{s}$$

at is
$$Q(s) = \frac{20}{5(s^2 + 160s + 10^4)} = \frac{1/500}{5} = \frac{1}{500} = \frac{5 + 160}{5} = \frac{1}{5} = \frac{5 + 413 \times 60}{5^2 + 60^2} = \frac{1}{500} = \frac{1}{5} = \frac{5 + 413 \times 60}{5^2 + 60^2} = \frac{1}{500} = \frac{1}{5} = \frac{5 + 413 \times 60}{5^2 + 60^2} = \frac{1}{500} = \frac{1}{5} = \frac{1$$

& taking inverse bransfams & making we of the shift Chevren

$$q(t) = \frac{1}{500} \left(1 - e^{-80t} \cos 60t - \frac{4}{3} e^{-80t} \sin 60t \right)$$

& the resulting current is given by $i(t) = \frac{dq}{dt} = \frac{1}{3}e^{-80t}\sin 60t$

By Newton's (and

$$F_{1}(t) = K_{2}(t) = F_{1}(t) = K_{2}(t)$$
 $M_{2}(t) = F_{1}(t) = F_{1}(t) = F_{1}(t)$
 $M_{2}(t) = F_{1}(t) = F_{1}(t) = F_{2}(t)$
 $M_{2}(t) = F_{1}(t) = F_{2}(t) = F_{2}(t)$
 $M_{2}(t) = F_{2}(t) = F_{2}(t) = F_{2}(t)$
 $M_{2}(t) = G_{2}(t) = G_{2}(t) = G_{2}(t)$
 $M_{2}(t) = G_{2}(t)$
 $M_$

$$= \frac{1}{5^2 + 25} - \frac{50}{(5^2 + 25)^2}$$

$$= \frac{1}{5} \mathcal{L} \left\{ \sin 5t \right\} - \frac{50}{(5^2 + 25)^2}$$

So taking inverse Laylane transforms of
$$X(s) = \frac{20}{(s^2+25)^2}$$

gues $x(t) = \frac{2}{25} \left(\sin 5t - 5t \cos 5t \right)$

Because of the term toos 5t the response is unbounded on too so. This arises because in this case the applied force $F(t) = 4 \sin 5t$ is in remance with the system.

(1) (a) There are three major regions
$$1: 0 \le t \le 1 \qquad y(t) = \int_{-\infty}^{\infty} (4)(2)$$

region 1:
$$0 \le t \le 1$$
 $y(t) = \int_{0}^{t} (4)(2) dt = 8t$
region 2: $1 \le t \le 2$ $y(t) = \int_{0}^{t} (4)(2) dt = 8$
region 3: $2 \le t \le 3$ $y(t) = \int_{0}^{t} (4)(2) dt = 8(3-t)$

$$y(t) = \int_{t-1}^{2} (4)(2)dt = 8(3-t)$$

(b) the only the
$$y(t) = h(t) = x(t)$$

$$= 48(t-1) + (28(t) + 28(t-4))$$

$$= 88(t-1) + 86(t) + 88(t-1) + 8(t-4)$$

$$= 88(t-1) + 88(t-5)$$

$$y(t) = 88(t-1) + 88(t-5)$$

(c) There a five major regions

region 1:
$$O(t(1)) y(t) = \int_0^t h(t) x(t-t) dt = Shaded area in (a)$$

$$= \frac{1}{2}(t)(4t) = 4t^2$$

region 2: $I(t(2)) y(t) = \int_0^t h(t) x(t-t) dt = area 1 + area 2$

in (b)

$$= \frac{t-1}{2}(-4(t-1)+4) + \frac{1}{2}(1)(4)$$

i. the area of a trapezion + area of a bringle

The rest of the solution proceeds in the same manner.

Using equation (2.8)

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Drawing diagrams:

From which, $h(t-\tau)=2(t-\tau)$ provided $t-1 < \tau < t$ - the equation of a straight line. The convolution in the region $0 \le t < 1$:

$$y(t) = \int_{0}^{t} (1) 2(t-\tau) d\tau$$

$$= 2 \int_{0}^{t} (t-\tau) d\tau$$

The convolution in the region $1 \le t \le 2$:

$$y(t) = \int_{(t-1)}^{1} (1) 2(t-\tau) d\tau$$

$$= 2 \int_{(t-1)}^{1} (t-\tau) d\tau$$

$$= t(2-t)$$

Solution:

New input x(t). The new input can be described as the addition of the old input (which we shall call $x_1(t)$) and a delayed and inverted version of the old input which we shall call $x_2(t)$ as illustrated

below:

$$\frac{x(t)}{1}$$

$$\frac{1}{1.1.5}$$

$$\frac{0}{1.1.5}$$

Thus

$$x(t) \approx x_1(t) + x_2(t)$$

and

$$y(t) = h(t)*x(t)$$

= $h(t)*x_1(t) + h(t)*x_2(t)$

 $= y_1(t) + y_2(t)$

 $y_1(t)$ has already been evaluated and in the first part of the question. $x_2(t)$ is a delayed and invertiversion of $x_1(t)$

$$x_2(t) = -x_1(t-12)$$

Thus $y_1(t)$ is a delayed and inverted version of $y_1(t)$

 $y_2(t) = -y_1(t-1/2)$

This gives the result that:
$$y(t) = y_1(t) - y_1(t-12)$$

Thus for $1/2 \le t < 3/2$

$$y_2(t) = -(t-1/2)^2$$

and for $3/2 \le t < 5/2$

$$v_2(t) = -(t - 1/2)(2 - (t - 1/2))$$

elsewhere $y_2(t) = 0$ The complete solution for y(t) becomes:

y(6)=-((-1/2)(2-(6-1/2))

for 5/2 < t

for
$$0 \le t < 1$$
?.

$$y(t) = t^2$$

$$y(t) = t^2$$
for $2 \le t < 1$

$$y(t) = t^2 - (t - i\gamma)^2$$

for $1 \le t < 3/2$

$$y(t) = t(2-t) - (t-1/3)^2$$

for 3/2 $\le t < 2$

for
$$3/2 \le t < 2$$

$$y(t) = t(2-t) - (t-1/2)(2-(t-1/2))$$
for $2 \le t < 5/2$