

ЭТИКЕТКА

<u>СЛКН.431232.030 ЭТ</u> Микросхема интегральная 564 ИЕ14В Функциональное назначение – Двоичный/двоично-десятичный 4-х-разрядный реверсивный счетчик с предварительной установкой

Климатическое исполнение УХЛ Схема расположения выводов

Схема электрическая функциональная

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	
1	V – вход разрешения установки	9	$2/_{10}-$ вход двоичный/двоично-десятичный	
2	Q8 – выход четвертого разряда	10	± 1 – вход сложение / вычитание	
3	D8 – вход четвертого разряда	11	Q2 – выход второго разряда	
4	D1 - вход первого разряда	12	D2 – вход второго разряда	
5	РО – вход переноса	13	D4 – вход третьего разряда	
6	Q1 - выход первого разряда	14	Q4 – выход третьего разряда	
7	Р – выход переноса	15	С – вход тактовый	
8	Общий	16	Питание	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B	U _{OL}	-	0,01 0,01
2. Выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IH} = 5 B, U_{IL} = 0B U_{CC} =10 B, U_{IH} = 10 B, U_{IL} = 0B	U _{OH}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	$U_{ m OHmin}$	4,2 9,0	<u>-</u>
5. Входной ток низкого уровня, мкА, при: $U_{CC}\!=\!15~{\rm B}$	I_{IL}	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IH}	-	0,1
7. Выходной ток низкого уровня (по выходам разрядов), мА, при: $U_{CC}=5~B,~U_O=0,5~B$ $U_{CC}=10~B,~U_O=0,5~B$	I _{OL}	0,5 1,0	-
8. Выходной ток низкого уровня (по выходу переноса), мА, при: $U_{CC}=5~B,~U_O=0,5~B$ $U_{CC}=10~B,~U_O=0,5~B$	I_{OL}	0,5 1,0	- -
9. Выходной ток высокого уровня (по выходам разрядов), мА, при: $U_{CC}=5~B,~U_O=4,5~B$ $U_{CC}=10~B,~U_O=9,5~B$	I_{OH}	/-0,5/ /-1,0/	-
10. Выходной ток высокого уровня (по выходу переноса), мА, при: $U_{CC}=5~B,U_0=4,5~B$ $U_{CC}=10~B,U_0=9,5~B$	І _{ОН}	/-0,5/ /-1,0/	- -

Продолжение таблицы 1			
1	2	3	4
$11.\ $ Ток потребления, мк A , при: $U_{CC}=5\ B$ $U_{CC}=10\ B$ $U_{CC}=15\ B$	I_{CC}	- - -	5,0 10,0 20,0
12. Ток потребления в динамическом режиме, мА, при: $U_{CC}=10~B,~f=100~\kappa\Gamma$ ц, $C_L=50~\pi\Phi$	I_{OCC}	-	0,60
13. Время задержки распространения при включении (выключении) от тактового входа к выходу разряда, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$		-	880 320
14. Время задержки распространения при включении (выключении) от тактового входа к выходу переноса, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$		- -	1200 360
15. Время задержки распространения при включении (выключении) от входа «разрешение установки» к выходу разряда, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$	$t_{ m PHL} \ (t_{ m PLH})$	- -	880 320
16. Время задержки распространения при включении (выключении) от входа «разрешение установки» к выходу переноса, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$		- -	1200 360
17. Время задержки распространения при включении (выключении) от входа переноса к выходу переноса, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$		- -	650 230
18. Максимальная тактовая частота, мГц, при: $U_{CC} = 5 \ B, \ C_L = 50 \ п\Phi$ $U_{CC} = 10 \ B, \ C_L = 50 \ п\Phi$	f max	1,5 3,0	- -
19. Входная емкость, п Φ , при: U_{CC} = 10 В	C _I	-	7,5

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- $2.1\,$ Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ не менее $120000\,$ ч.

 Γ амма – процентный ресурс (T_{py}) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных, в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

	4	СВЕД	ЕНИЯ	O	ПРИЕ	МКЕ
--	---	------	------	---	------	-----

Микросхемы 564 ИЕ14В соответствуют техническим условиям бК0.347.064 ТУ 16/02 и признаны годными для эксплуатации.

William Course So I Tiel I'm coolbeicies	101 1	сини теским условии	M 010.5 17.00 1 15 10/02 H
Приняты по			
(извещение, акт и др.)		(дата)	•
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка п	іроиз	ведена	у (дата)
Приняты по	ОТ	(дата)	
Место для штампа ОТК			Место для штампа ВП

Цена договорная

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка. Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.

⁵ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ