

Optimasi Klasik (Analitik dan Numerik)

agungsetiabudi@ub.ac.id

Optimasi Analitik

- Optimasi klasik secara analitik menggunakan turunan adalah pendekatan matematis untuk menemukan nilai maksimum atau minimum dari suatu fungsi secara eksak.
- Metode ini sangat berguna dalam berbagai bidang, seperti ekonomi, teknik, dan kecerdasan buatan.

Konsep Dasar

Misalkan kita memiliki fungsi tujuan f(x) yang ingin kita optimalkan (maksimum atau minimum). Langkah utama dalam optimasi analitik menggunakan turunan adalah:

1. Menentukan Turunan Pertama (f'(x))

Titik ekstrem terjadi ketika turunan pertama fungsi sama dengan nol:

$$f'(x) = 0$$

Titik-titik ini disebut titik kritis.

2. Menentukan Jenis Ekstremum

Setelah mendapatkan titik kritis, kita menganalisisnya dengan menggunakan:

- \circ Turunan Kedua (f''(x)):
 - Is Jika f''(x) > 0 di titik kritis, maka titik tersebut adalah minimum lokal.
 - Is Jika f''(x) < 0 di titik kritis, maka titik tersebut adalah maksimum lokal.
- \circ Alternatif lain adalah menggunakan **Uji Derivatif Pertama**, yaitu mengevaluasi tanda dari f'(x) sebelum dan sesudah titik kritis.

Contoh 1: Memaksimalkan Fungsi Kuadratik

Hitunglah nilai optimum dari: $f(x) = -x^2 + 4x + 5$

• Langkah 1: Hitung Turunan Pertama

$$\circ f'(x) = -2x + 4$$

 \circ Set f'(x) = 0 untuk mencari titik kritis:

$$\circ -2x + 4 = 0$$

$$\circ x = 2$$

• Langkah 2: Gunakan Turunan Kedua untuk Klasifikasi

$$\circ f''(x) = -2$$

 \circ Karena f''(x) < 0, maka titik x = 2 adalah **maksimum lokal**.

Langkah 3: Menentukan Nilai Maksimum

 \circ Substitusi x=2 ke dalam fungsi:

$$f(2) = -(2)^2 + 4(2) + 5 = -4 + 8 + 5 = 9$$

 \circ Jadi, maksimum lokal terjadi di x=2 dengan nilai maksimum f(2)=9.

Optimasi dengan Metode Lagrange

- Metode Lagrange digunakan untuk menyelesaikan masalah optimasi dengan kendala.
- Dalam banyak kasus, kita ingin memaksimalkan atau meminimalkan suatu fungsi $f(x,y,\ldots)$ dengan kendala berupa persamaan $g(x,y,\ldots)=0.$

Konsep Dasar

Diberikan fungsi tujuan:

dengan kendala:

$$g(x,y)=0$$

• kita memperkenalkan **fungsi Lagrange**:

$$\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

ullet di mana λ disebut sebagai **multiplikator Lagrange**.

Langkah-langkah optimasi dengan Lagrange:

1. Hitung turunan parsial dari \mathcal{L} terhadap setiap variabel dan set sama dengan nol:

$$\frac{\partial \mathcal{L}}{\partial x} = 0, \quad \frac{\partial \mathcal{L}}{\partial y} = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = 0$$

- 2. Selesaikan sistem persamaan untuk x, y, λ .
- 3. Tentukan nilai optimal dari f(x,y).

Contoh: Memaksimalkan Fungsi dengan Kendala

• Misalkan kita ingin memaksimalkan:

$$f(x,y) = xy$$

• dengan kendala:

$$x + y = 10$$

Langkah 1: Buat Fungsi Lagrange

$$\mathcal{L}(x, y, \lambda) = xy + \lambda(10 - x - y)$$

Langkah 2: Hitung Turunan Parsial

•
$$\frac{\partial \mathcal{L}}{\partial x} = y - \lambda = 0$$

•
$$\frac{\partial \mathcal{L}}{\partial y} = x - \lambda = 0$$

•
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 10 - x - y = 0$$

Langkah 3: Selesaikan Sistem Persamaan

• Dari $y-\lambda=0$ dan $x-\lambda=0$, kita peroleh: $y=\lambda, \quad x=\lambda$

• Substitusi ke kendala:

$$x + y = 10 \Rightarrow \lambda + \lambda = 10 \Rightarrow 2\lambda = 10 \Rightarrow \lambda = 5$$

• Sehingga:

$$x = 5, y = 5$$

Langkah 4: Hitung Nilai Maksimum

•
$$f(5,5) = 5 \times 5 = 25$$

Optimasi Numerik: Gradient Descent

- Gradient Descent adalah metode optimasi numerik yang digunakan untuk menemukan minimum suatu fungsi dengan mengupdate parameter secara iteratif berdasarkan gradiennya.
- Metode ini sangat populer dalam machine learning dan deep learning untuk meminimalkan fungsi loss.

Konsep Dasar Gradient Descent

- Diberikan fungsi yang ingin diminimalkan: f(x)
- Gradient Descent menggunakan aturan update sebagai berikut: $x_{t+1} = x_t \alpha \nabla f(x_t)$
- di mana:
 - $\circ x_t$ adalah nilai parameter pada iterasi ke-t,
 - $\circ \alpha$ adalah **learning rate**, yang menentukan seberapa besar langkah perpindahan,
 - $\circ \nabla f(x_t)$ adalah **gradien** dari fungsi terhadap x, yang menunjukkan arah perubahan tercepat.

Variasi Gradient Descent

- 1. **Batch Gradient Descent** Menggunakan seluruh dataset untuk menghitung gradien setiap iterasi.
- 2. **Stochastic Gradient Descent (SGD)** Menggunakan satu contoh data secara acak untuk setiap iterasi.
- 3. **Mini-Batch Gradient Descent** Kombinasi antara batch dan stochastic, menggunakan subset kecil dari dataset.

Contoh dan Penyelesaian

• Misalkan kita ingin meminimalkan fungsi:

$$f(x) = x^2 - 4x + 4$$

• Langkah 1: Hitung Gradien

Gradien dari fungsi ini adalah:

$$abla f(x) = rac{d}{dx}(x^2 - 4x + 4) = 2x - 4$$

• Langkah 2: Inisialisasi Parameter

Misalkan kita mulai dari $x_0=6$ dan memilih **learning rate** lpha=0.1.

• Langkah 3: Iterasi Update

Gunakan rumus Gradient Descent:

$$x_{t+1}=x_t-lpha(2x_t-4)$$

Lakukan iterasi hingga nilai x konvergen.

Gradient Descent untuk $f(x) = x^2 - 4x + 4$

- Grafik di atas menunjukkan jalur iterasi Gradient Descent menuju titik minimum di x=2.
- Titik awal di x=6 secara bertahap bergerak turun mengikuti gradien hingga mencapai nilai minimum global (2,0).

Metode Newton

 Metode ini menggunakan pendekatan kuadratik untuk mempercepat konvergensi dibandingkan dengan Gradient Descent. Aturannya adalah:

$$ullet x_{t+1} = x_t - rac{f'(x_t)}{f''(x_t)}$$

- di mana:
 - $\circ x_t$ adalah nilai pada iterasi ke-t,
 - $\circ f'(x_t)$ adalah **turunan pertama** dari fungsi (gradien),
 - $f''(x_t)$ adalah **turunan kedua** dari fungsi (Hessian jika multivariabel).

Contoh dan Penyelesaian

Misalkan kita ingin menemukan minimum dari:

$$f(x) = x^2 - 4x + 4$$

Langkah 1: Hitung Turunan

• Turunan pertama:

$$f'(x) = 2x - 4$$

• Turunan kedua:

$$f''(x) = 2$$

Langkah 2: Gunakan Metode Newton

• Gunakan formula:

$$x_{t+1} = x_t - rac{2x_t - 4}{2}$$

Langkah 3: Iterasi

• Misalkan kita mulai dari $x_0 = 6$, iterasi pertama:

$$x_1 = 6 - \frac{2(6)-4}{2} = 6 - \frac{12-4}{2} = 6 - 4 = 2$$

Karena dalam satu iterasi sudah mencapai minimum, ini menunjukkan **konvergensi sangat cepat**, dibandingkan Gradient Descent yang memerlukan beberapa iterasi.

Gradient Descent untuk $f(x) = x^2 - 4x + 4$

- ullet Grafik di atas menunjukkan iterasi metode Newton, yang langsung mencapai minimum di x=2 hanya dalam satu langkah.
- Ini membuktikan bahwa metode Newton memiliki **konvergensi** sangat cepat, terutama untuk fungsi dengan turunan kedua yang tidak berubah (konstan).

Optimasi dalam Regresi Linear

• Regresi linear adalah teknik yang digunakan untuk memodelkan hubungan antara variabel independen X dan variabel dependen y. Modelnya memiliki bentuk:

- y = wX + b
- di mana:
 - \circ w adalah koefisien regresi (slope),
 - b adalah intercept (bias),
 - $\circ X$ adalah data input.

• Untuk mendapatkan w dan b, kita meminimalkan fungsi **Mean** Squared Error (MSE):

$$ullet J(w,b) = rac{1}{m} \sum_{i=1}^m (y_i - (wx_i + b))^2$$

Optimasi Parameter: Gradient Descent vs Newton's Method

- Kita akan membahas **dua metode optimasi numerik** untuk menemukan nilai w dan b yang optimal:
- **Gradient Descent**: Melakukan update bertahap berdasarkan gradien fungsi loss.

Optimasi dengan Gradient Descent

Turunan Fungsi Loss

Untuk melakukan optimasi dengan **Gradient Descent**, kita perlu menghitung turunan parsial dari fungsi MSE terhadap w dan b:

$$ullet rac{\partial J}{\partial w} = -2\sum_{i=1}^m x_i(y_i - (wx_i + b))$$

$$ullet rac{\partial J}{\partial b} = -2\sum_{i=1}^m (y_i - (wx_i + b))$$

Aturan Update

Update parameter dilakukan dengan:

$$ullet w_{t+1} = w_t - lpha rac{\partial J}{\partial w}$$

$$ullet b_{t+1} = b_t - lpha rac{\partial J}{\partial b}$$

• di mana α adalah **learning rate**.