Categorical: Ordinal and multinomial logistic regression

Table of contents

_	Goals 1.1 Goals	1 1
2	Three or more categories 2.1 Three or more categories	2
3	Multinomial logistic regression 3.1 Multinomial logistic regression	3
4	Ordinal logistic regression 4.1 Ordinal logistic regression	8
5	Summary 5.1 Summary	14 14

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- Extend logistic regression to 3 or more categories
 - Ordered categories (ordinal)
 - Unordered categories (nomimal)
- Probability of "event" (vs "not event")

- 3+ categories
 - * How does that work?

2 Three or more categories

2.1 Three or more categories

2.1.1 Central tendency

- Nominal: Unordered categories
 - Central tendency: **Mode**
 - * Most common response
- Ordinal: Ordered categories
 - Central tendency: **Median**
 - * 50th percentile: Half of responses higher, half lower

2.1.2 Multiple categories

- Won't deal with median or mode
 - Instead: *Probability* of each category
 - Compare different probabilities
- What do we compare?
 - Everything to everything?
 - Everything to one category?
 - Something else?

2.1.3 Multinomial and ordinal logistic regression

- Multinomial logistic regression
 - No order to categories: Vanilla, chocolate, strawberry
 - Compare all categories to a **reference category**
- Ordinal logistic regression
 - Categories are ordered: Disagree \rightarrow Neutral \rightarrow Agree
 - Compare each category to all higher (or all lower, depending on software) categories

3 Multinomial logistic regression

3.1 Multinomial logistic regression

3.1.1 Multinomial logistic regression

- Outcome: Nominal
 - Department: Psychology, Epidemiology, Statistics, Business
 - Religion: Christian, Jewish, Muslim
 - Ice cream flavor: vanilla, chocolate, strawberry
- Distribution: Multinomial (generalized binomial to more than 2)
- Link function: Logit

3.1.2 Multiple equations

- Multiple equations for this model
 - With a categories, you have (a-1) equations
 - Actually same as logistic: 2 categories $\rightarrow 2-1=1$ equation
- One category is "reference" category
 - All other categories are compared to the reference category
 - A bit like dummy codes, but outcome instead of predictor

3.1.3 Example: Multinomial logistic regression

- Amyloid dataset in ${\bf Stat2Data}$ package
 - Abeta: Amyloid- β in posterior cingulate cortex (pmol/g tissue)
 - Group:
 - * mAD = Alzheimer's disease
 - * MCI = mild cognitive impairment
 - * NCI = no cognitive impairment

3.1.4 Frequencies: Amyloid dataset

Var1	Freq	Prob
mAD	17	0.298
MCI	21	0.368
NCI	19	0.333

3.1.5 Figure: Amyloid dataset

3.1.6 Multiple equations

- 3 groups: mAD, MCI, NCI
 - $-a=3 \rightarrow a-1=2$ equations
 - * mAD is reference
 - * Equation 1: MCI vs mAD
 - * Equation 2: NCI vs mAD
- Mutually exclusive, so $p_{m_AD} + p_{MCI} + p_{NCI} = 1$
 - Everyone is in exactly 1 Group
 - Never anything else, never multiple options

3.1.7 Multinomial logistic regression equations

$$\ln\left(\frac{\hat{p}_{MCI}}{\hat{p}_{mAD}}\right) = b_{0,2.1} + b_{1,2.1}Abeta$$

$$ln\left(\frac{\hat{p}_{NCI}}{\hat{p}_{mAD}}\right) = b_{0,3.1} + b_{1,3.1}Abeta$$

- Notation: predictor, numerator category, denominator category
 - All coefficients are different across equations

3.1.8 Example: Output

weights: 9 (4 variable)
initial value 62.620900
final value 57.318323
converged

Call:

multinom(formula = Group ~ Abeta, data = Amyloid)

Coefficients:

(Intercept) Abeta MCI 1.319761 -0.002092564 NCI 1.231750 -0.002128210

Std. Errors:

(Intercept) Abeta MCI 0.5583894 0.0008282646 NCI 0.5666824 0.0008558914

Residual Deviance: 114.6366

AIC: 122.6366

3.1.9 Example: Coefficients and p-values

• Coefficients for the model

	(Intercept)	Abeta
MCI	1.320	-0.002
NCI	1.232	-0.002

 \bullet *p*-values for the model

	(Intercept)	Abeta
MCI	0.018	0.012
NCI	0.030	0.013

3.1.10 Example: Confidence intervals

	2.5 %.MCI	97.5 %.MCI	2.5 %.NCI	97.5 %.NCI
(Intercept)	0.225	2.414	0.121	2.342
Abeta	-0.004	0.000	-0.004	0.000

3.1.11 Example: Multinomial logistic regression equations

$$ln\left(\frac{\hat{p}_{MCI}}{\hat{p}_{mAD}}\right) = b_{0,2.1} + b_{1,2.1}Abeta = 1.32 + (-0.00209)Abeta$$

$$ln\left(\frac{\hat{p}_{NCI}}{\hat{p}_{mAD}}\right) = b_{0,3.1} + b_{1,3.1}Abeta = 1.232 + (-0.00213)Abeta$$

• Slopes are not the same across the two equations

3.1.12 Example: Multinomial logistic regression equations

- One regression coefficient **per predictor**, per equation
 - Abeta has a certain effect on the probability of having **mild impairment** vs Alzheimer's $(b_{1,2,1})$
 - Abeta has a different effect on the probability of having no impairment vs Alzheimer's $(b_{1,3,1})$
 - Here, the values are **very** close

3.1.13 Example: Interpretation

- Interpret as in (binary) logistic regression, except
 - Binary logistic regression: "success" vs "not success"
 - Here: Numerator category vs denominator category
 - * Subset of total number of categories

3.1.14 Example: Interpretation

- Odds interpretation of intercept
 - Odds of MCI vs mAD = $e^{b_{0,2.1}} = e^{1.32} = 3.743$
 - * Abeta = 0: Odds of MCI is 3.743 times higher than odds of mAD
 - · With no amlyoid- β , you're much more likely to have mild impairment than Alzheimer's
 - Odds of NCI vs mAD = $e^{b_{0,3.1}} = e^{1.232} = 3.427$
 - * Abeta = 0: Odds of NCI is 3.427 times higher than odds of mAD
 - · With no amlyoid- β , you're much more likely to have no impairment than Alzheimer's

3.1.15 Example: Interpretation

- Odds interpretation of effect of Abeta
 - Odds ratio for MCI vs mAD = $e^{b_{1,2.1}} = e^{-0.0020926} = 0.99791$
 - * < 1: More Abeta means lower odds of MCI (relative to mAD)
 - · More amyloid- β means more likely to have Alzheimer's
 - Odds ratio for NCI vs mAD = $e^{b_{1,3.1}} = e^{-0.0021282} = 0.99787$
 - * < 1: More Abeta means lower odds of NCI (relative to mAD)
 - · More amyloid- β means more likely to have Alzheimer's

3.1.16 Important note 1

Warning

- With 3 categories, there are **3 possible comparisons**
 - The third comparison is *redundant* (similar to dummy codes)
 - * But we can calculate it
 - $\cdot \ b_{1,2.3} = b_{1,2.1} b_{1,3.1}$
 - · Or re-order the outcome and re-run

3.1.17 Important note 2

🔔 Warning

- Most statistical presentations: Last category as reference
 - SPSS and SAS: Last category as the reference (default)
 - R (and here): **First** category as the reference
 - * How is it different?
 - · You'll get the "missing" third comparison instead
 - · Some signs will flip because you're making the opposite order comparison: $\frac{\hat{p}_{MCI}}{\hat{p}_{mAD}}$ vs $\frac{\hat{p}_{mAD}}{\hat{p}_{MCI}}$

3.1.18 Some difficulties

- There are many regression coefficients to interpret
 - For 3 outcome categories and 1 predictor
 - * 4 coefficients to interpret
 - More coefficients with more predictors
 - * (a-1) more coefficients for each added predictor

4 Ordinal logistic regression

4.1 Ordinal logistic regression

4.1.1 Ordered categorical outcomes

- Outcome categories have a natural ordering or progression
 - Make some *simplifications* to multinomial logistic regression model
- Ordinal logistic regression model is
 - Much easier to interpret
 - Better power
 - A few additional assumptions

4.1.2 Ordinal logistic regression

- Outcome: Ordinal
 - Dose of treatment: low, medium, high
 - Rankings: 1st, 2nd, 3rd, 4th
 - Education: high school, some college, college grad, graduate
 - Likert scales: agree, neutral, disagree
- Distribution: Binomial
- Link function: Cumulative logit
 - This model is also called the "cumulative logit model"

4.1.3 Multiple equations

- Multiple equations for this model
 - With a categories, you have (a-1) equations
- Take advantage of the **ordering** of categories
 - Category 1 then category 2 then category 3
 - * Category 1 vs all higher
 - * Categories 1 and 2 vs all higher

4.1.4 Multiple equations

- 3 groups: mAD, MCI, NCI
 - $-a=3 \rightarrow a-1=2$ equations
 - * Ordered: mAD then MCI then NCI
 - * Equation 1: mAD vs all higher
 - * Equation 2: mAD and MCI vs all higher
- Mutually exclusive, so $p_{m_AD} + p_{MCI} + p_{NCI} = 1$
 - Everyone is in exactly 1 Group
 - Never anything else, never multiple options

4.1.5 Ordinal logistic regression equations

$$ln\left(\frac{\hat{p}_{mAD}}{\hat{p}_{MCI}+\hat{p}_{NCI}}\right) = b_{0,1} + -b_1Abeta$$

$$ln\left(\frac{\hat{p}_{mAD}+\hat{p}_{MCI}}{\hat{p}_{NCI}}\right) = b_{0,12} + -b_1Abeta$$

- All slopes are the same across equations
 - Intercepts are still different

4.1.6 Example: Output

Call:

polr(formula = Group ~ Abeta, data = Amyloid, Hess = TRUE)

Coefficients:

Value Std. Error t value Abeta -0.001671 0.0006333 -2.639

Intercepts:

Walue Std. Error t value mAD|MCI -1.6689 0.4323 -3.8602 MCI|NCI 0.0729 0.3618 0.2014

Residual Deviance: 116.6483

AIC: 122.6483

4.1.7 Example: Coefficients and p-values

	Value	Std. Error	t value	p value
Abeta	-0.002	0.001	-2.639	0.008
mAD MCI	-1.669	0.432	-3.860	0.000
MCI NCI	0.073	0.362	0.201	0.840

4.1.8 Example: Confidence intervals

• Only get CIs for the **slope**, not intercepts

2.5 % 97.5 % -0.002961670 -0.000509697

4.1.9 Important note 1

Warning

- Remember in logistic regression when I mentioned that the model is sometimes presented as

 - $-\hat{p} = \frac{1}{1 + e^{-(b_0 + b_1 X)}}$ With a negative sign?
- Ordinal logistic regression in R does a *similar* thing
 - Use the **negative** of the **slope(s)** for interpretation
 - All metrics
- SPSS and SAS have their own weird approaches to this
 - Results do not match across R, SPSS, SAS

4.1.10 Example: Ordinal logistic regression equations

$$ln\left(\frac{\hat{p}_{mAD}}{\hat{p}_{MCI} + \hat{p}_{NCI}}\right) = b_{0,1} + -b_1Abeta = 1.669 + (0.002)Abeta$$

$$ln\left(\frac{\hat{p}_{mAD} + \hat{p}_{MCI}}{\hat{p}_{NCI}}\right) = b_{0,12} + -b_1Abeta = -0.073 + (0.002)Abeta$$

• Slopes are the same across the two equations

4.1.11 Example: Ordinal logistic regression equations

- One regression coefficient per predictor
 - Abeta has a certain effect on the probability of having Alzheimer's vs (mild or no cognitive impairment) (b_1)
 - Abeta has the same effect on the probability of having (Alzheimer's or mild cognitive impairment) vs no cognitive impairment (b_1)
- This assumption is called the **proportional odds assumption**
 - A predictor has the same effect on **changing categories** regardless of which categories you are switching between

4.1.12 Example: Interpretation

- Interpret as in (binary) logistic regression, except
 - Binary logistic regression: "success" vs "not success"
 - Here: Numerator category or categories vs denominator category or categories
 - * All categories

4.1.13 Example: Interpretation

- Odds interpretation of intercept
 - Odds of mAD vs (MCI and NCI) = $e^{b_{0,1}} = e^{-1.669} = 0.188$
 - * Abeta = 0: Odds of mAD is 0.188 times odds of MCI and NCI
 - · With no amlyoid- β , you're less likely to have Alzheimer's than (mild impairment or no impairment)
 - Odds of (mAD and MCI) vs NCI = $e^{b_{0,12}} = e^{0.073} = 1.076$
 - * Abeta = 0: Odds of mAD and MCI is 1.076 times odds of NCI
 - · With no amlyoid- β , you're more likely to have (Alzheimer's or mild impairment) than no impairment

4.1.14 Example: Interpretation

- Odds interpretation of effect of Abeta
 - Odds ratio for Abeta: $e^{-b_1} = e^{0.002} = 1.002$
 - * > 1: More Abeta means
 - · Higher odds of mAD relative to (MCI and NCI)
 - · More amyloid- β means more likely to have Alzheimer's
 - · Higher odds of (mAD and MCI) relative to NCI
 - · More amyloid- β means more likely to have Alzheimer's or mild impairment

4.1.15 Important note 2

🛕 Warning

- Note that **R** orders the outcome categories in **alphabetical** order by default
 - Just happens to corresponds to highest to lowest severity in this example
 - If that's not true in your dataset
 - * Manually re-order levels (e.g., forcats)
 - * Recode the outcome to numbers with the correct order

4.1.16 Figure: Proportional odds (conceptual, not to scale)

4.1.17 Proportional odds

- The slope (e.g., b_1) is the same regardless of going from mAD to MCI or from MCI to NCI
 - Regardless of which "threshold" you are crossing
- Proportional odds simplifies things compared to the multinomial logistic regression model
 - Fewer coefficients

- Predictors have the same effect on changing categories regardless of which categories

4.1.18 Testing proportional odds

- Manually split outcome into
 - mAD vs all higher
 - mAD and MCI vs all higher
 - * Run logistic regression on each
 - * If proportional odds holds, **slopes** in both models are very close

term	estimate	estimate
Abeta	0.002	0.001

4.1.19 Testing proportional odds

- An easier but "not completely statistically correct" approach (Hosmer & Lemeshow, page 304)
 - Likelihood ratio test comparing the multinomial and ordinal logistic regression models
 - $-\ \chi^2(1)=2.012, p=0.156$
 - * Test is NS, so use the simpler model (ordinal)

5 Summary

5.1 Summary

5.1.1 Summary of this week

- Extend binary logistic regression to 3+ categories
 - Unordered = Multinomial logistic regression
 - * A LOT of coefficients to estimate
 - * Reference category
 - Ordered = Ordinal logistic regression
 - * Simpler model with fewer coefficients
 - * Proportional odds assumption

5.1.2 Next week

- Models for count outcomes
 - Poisson regression
 - Overdispersed Poisson regression

 - Negative binomial regressionExcess zeroes versions of these models