

planetmath.org

Math for the people, by the people.

simple boundary point

Canonical name SimpleBoundaryPoint
Date of creation 2013-03-22 14:23:23
Last modified on 2013-03-22 14:23:23

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 5

Author jirka (4157) Entry type Definition Classification msc 30-00 Classification msc 54-00 **Definition.** Let $G \subset \mathbb{C}$ be a region and $\omega \in \partial G$ (the boundary of G). Then we call ω a simple boundary point if whenever $\{\omega_n\} \subset G$ is a sequence converging to ω there is a path $\gamma \colon [0,1] \to \mathbb{C}$ such that $\gamma(t) \in G$ for $0 \le t < 1$, $\gamma(1) = \omega$ and there is a sequence $\{t_n\} \in [0,1)$ such that $t_n \to 1$ and $\gamma(t_n) = \omega_n$ for all n.

For example if we let G be the open unit disc, then every boundary point is a simple boundary point. This definition is useful for studying boundary behaviour of Riemann maps (maps arising from the Riemann mapping theorem), and one can prove for example the following theorem.

Theorem. Suppose that $G \subset \mathbb{C}$ is a bounded simply connected region such that every point in the boundary of G is a simple boundary point, then ∂G is a Jordan curve.

References

[1] John B. Conway. . Springer-Verlag, New York, New York, 1995.