题型 1 "a≥f(x)"型

例1 若函数 $f(x)=\ln x+ax^2-2$ 在区间 $\left(\frac{1}{2},2\right)$ 内存在单调增区间,则实数 a 的取值范围是()

A.
$$(-\infty, -2]$$
 B. $\left(-\frac{1}{8}, +\infty\right)$ C. $\left(-2, -\frac{1}{8}\right)$ D. $(-2, +\infty)$

【答案】 D

【解析】根据题意得 $f(x) = \frac{1}{x} + 2ax$,因为 f(x)在区间 $\left(\frac{1}{2}, 2\right)$ 内存在单调增区间,所以 f(x) > 0 在 $\left(\frac{1}{2}, 2\right)$ 内有解,即 $\frac{1}{x} + 2ax > 0$ 元 $a > -\frac{1}{2x^2}$ 在 $\left(\frac{1}{2}, 2\right)$ 内有解,故存在 $x \in \left(\frac{1}{2}, 2\right)$,使得 $a > -\frac{1}{2x^2}$.令 $g(x) = -\frac{1}{2x^2}$,则 g(x)在 $\left(\frac{1}{2}, 2\right)$ 上单调递增,所以 $g(x) \in \left(-2, -\frac{1}{8}\right)$,故 a > -2.

变式 已知函数 $f(x) = \frac{e^x}{x} - mx(e 为自然对数的底数)$,若 f(x) < 0 在 $(0, +\infty)$ 上有解,则 实数 m 的取值范围是()

$$A.\,(e,\ +\infty)\qquad B.\,(-\,\infty\,,\ e)\qquad C.\,\left(\frac{e^2}{4},\ +\infty\right)\qquad D.\,\left(-\,\infty\,,\ \frac{e^2}{4}\right)$$

【答案】 C

【解析】由 $f(x) = \frac{e^x}{x} - mx < 0$ 在 $(0, +\infty)$ 上有解,可得 $m > \frac{e^x}{x^2}$ 在 $(0, +\infty)$ 上有解.令 g(x) $= \frac{e^x}{x^2}$,x > 0 ,则 m > g(x)min.由 $g'(x) = \frac{(x-2) e^x}{x^3}$,则当 0 < x < 2 时,g'(x) < 0 ,函数 g(x)单调递减;当 x > 2 时,g'(x) > 0 ,函数 f(x)单调递增,故当 x = 2 时,函数 g(x)取得最小值 $g(2) = \frac{e^2}{4}$,故 $m > \frac{e^2}{4}$.

题型 2 " $f(x) \ge g(x)$ "型

囫2 已知函数 $f(x) = \frac{1}{2} x^2 - \ln x$, $g(x) = -\frac{2}{3} x^3 + x^2$, 求证: 当 x > 1 时,函数 f(x)的图象 恒在函数 g(x)的图象的上方.

【解析】 令 $h(x)=f(x)-g(x)=\frac{2}{3}x^3-\frac{1}{2}x^2-\ln x$,

则
$$h'(x) = 2x^2 - x - \frac{1}{x} = \frac{2x^3 - x^2 - 1}{x} = \frac{(x-1)(2x^2 + x + 1)}{x}$$
,

因为 x>1,所以 h'(x)>0,

所以 h(x)在 $(1, +\infty)$ 上单调递增.

又因为 $h(1) = \frac{1}{6} > 0$,所以 f(x) > g(x),

故当 x>1 时,f(x)的图象恒在 g(x)图象的上方.

变式 已知函数 $f(x) = a \ln (1+x) - b \ln (1-x) + a - b$ 在点(0, f(0))处的切线方程为 y = 2x.

- (1) 求 f(x)的解析式;
- (2) 求证: 当 $x \in (-1, 0)$ 时, $f(x) < x + \frac{x^3}{3}$.

【解析】 $(1) f(x) = a \ln (1+x) - b \ln (1-x) + a - b$,

故
$$f(x) = \frac{a}{1+x} + \frac{b}{1-x}$$
,

由 k=f(0), 得 a+b=2.

由 f(0)=0, 得 a-b=0, 解得 a=b=1,

故 $f(x) = \ln (1+x) - \ln (1-x)$.

(2) 原命题等价于任意 $x \in (-1, 0)$, $f(x) - \left(x + \frac{x^3}{3}\right) < 0$,

则
$$F'(x) = \frac{x^4 + 1}{1 - x^2}$$
.

当 $x \in (-1, 0)$ 时,F'(x) > 0,函数 F(x)在(-1, 0)上单调递增,

F(x) < F(0) = 0,故任意 $x \in (-1, 0)$, $f(x) < x + \frac{x^3}{3}$.

题型 3 " $f(x_1) \geqslant g(x_2)$ "型

囫3 已知函数 $f(x) = \frac{e^x}{2x}$, $g(x) = -x^2 + 2x + a - 1$, 若任意 x_1 , $x_2 \in (0, +\infty)$, 都有 $f(x_1) \ge g(x_2)$ 恒成立,则实数 a 的取值范围为()

A.
$$(-\infty, e)$$
 B. $(-\infty, e]$

C.
$$\left(-\infty, \frac{e}{2}\right]$$
 D. $\left(-\infty, \frac{e}{2}\right)$

【答案】 C

【解析】 $f(x) = \frac{e^x}{2x}$, $g(x) = -x^2 + 2x + a - 1$, 若任意 x_1 , $x_2 \in (0, +\infty)$, 都有 $f(x_1) \geqslant g(x_2)$ 恒成立,则 $f(x)_{\min} \geqslant g(x)_{\max} (x \in (0, +\infty))$, $f'(x) = \frac{e^x (x-1)}{2x^2}$,当 0 < x < 1 时,f'(x) < 0 , f(x) 单调递减;当 x > 1 时,f'(x) > 0 , f(x) 单调递增,故 f(x) 的最小值为 $f(1) = \frac{e}{2}$. 又因为 $g(x)_{\max} = a$,所以 $a \le \frac{e}{2}$. 故实数 a 的取值范围为 $\left(-\infty, \frac{e}{2}\right]$.

变式 已知函数 $f(x)=e^x$, $g(x)=\ln\left(e^x+\frac{1}{e^x}\right)$.若任意 $x_1\in(0,+\infty)$, 存在 $x_2\in\mathbb{R}$, 使得 $f(2x_1)+mf(x_1)-g(x_2)>0$ 成立,求实数 m 的取值范围.

【解析】 $g(x) = \ln\left(e^x + \frac{1}{e^x}\right) \ge \ln 2$,当且仅当 x = 0 时取等号,由题意,任意 $x_1 \in (0, +\infty)$,存在 $x_2 \in \mathbb{R}$,使得 $f(2x_1) + mf(x_1) > g(x_2)$ 成立,即任意 $x_1 \in (0, +\infty)$,e $2x_1 + mex_1 > \ln 2$ 等价于 $m > \frac{\ln 2}{ex_1}$ $-ex_1$ 对任意 $x_1 \in (0, +\infty)$ 恒成立.

令 $t=ex_1$,则 t>1,且 $m>\frac{\ln 2}{t}-t$ 对 t>1 恒成立.

设 $h(t) = \frac{\ln 2}{t} - t(t > 1)$, 易知 h(t)在 $(1, +\infty)$ 内单调递减,所以 $h(t) < \ln 2 - 1$ 等价于 $m > \ln 2 - 1$,

所以 m 的取值范围为[$\ln 2-1$, $+\infty$).

方法提炼:

对于恒成立与能成立问题,如果是单变量问题,一般情况下采取分离参变量转化为相应 最值问题等方法.如果是两个变量或多个变量问题时,一般先把其中一个变量当成变量,其 余变量当成是常量,这样就把问题转化为单变量的常规题.

一、 单项选择题(每个5分,共20分)

1. 已知 $f(x)=(ax-1)e^x+1$,若 f(x)在定义域内单调递减,则 a 的值为(

A. 0 B. 1 C. 2 D. 3

【答案】 A

【解析】原问题等价于 f(x)的导函数 $f(x) \le 0$ 恒成立. 因为 $f(x) = (ax-1)e^x + 1$,所以 $f(x) = (ax+a-1)e^x$.因为 $e^x > 0$,所以若要使 $f(x) \le 0$ 恒成立,则 a = 0.

2. 若不等式 $2x \ln x \ge -x^2 + ax$ 对 $x \in [1, +\infty)$ 恒成立,则实数 a 的取值范围是()

A. $(-\infty, 0)$ B. $(-\infty, 1]$

C. $(0, +\infty)$ D. $[1, +\infty)$

【答案】 B

【解析】 由 $2x \ln x \ge -x^2 + ax$, $x \in [1, +\infty)$, 可知 $a \le 2\ln x + x$.设 $h(x) = 2\ln x + x$, $x \in [1, +\infty)$, 则 $h'(x) = \frac{2}{x} + 1 > 0$, 所以函数 h(x)在 $[1, +\infty)$ 上单调递增,所以 $h(x)_{min} = h(1)$ = 1,所以 $a \le h(x)_{min} = 1$.故 a 的取值范围是 $(-\infty, 1]$.

3. 设 a 为正实数,函数 $f(x)=x^3-3ax^2+2a^2$,若存在 $x\in[a, 2a]$, f(x)>0,则 a 的取值范围是()

A. $(1, +\infty)$ B. (0, 1)

C.
$$\left(\frac{1}{2}, +\infty\right)$$
 D. $\left(0, \frac{1}{2}\right)$

【答案】B

【解析】 因为 $f(x)=3x^2-6ax=3x(x-2a)$, $a \le x \le 2a$ 时,若 $f(x) \le 0$,当且仅当 x=2a 时取等号,故 f(x)在[a, 2a]上单调递减.因为存在 $x \in [a, 2a]$, f(x)>0,所以 $f(a)=-2a^3+2a^2>0$,故 0<a<1.

4. 已知函数 f(x)=x+a, $g(x)=x \ln x+1$, 若存在 $x_1 \in [1, 5]$, 对任意 $x_2 \in \left[\frac{1}{e^2}, e\right]$, 都有 $f(x_1)=g(x_2)$, 则实数 a 的取值范围是(_____)

A.
$$\left(-4+e, -\frac{1}{e}\right)$$
 B. $(-\infty, -4+e]$

C.
$$[-4+e, -\frac{1}{e}]$$
 D. $\left[-\frac{1}{e}, +\infty\right)$

【答案】 C

【解析】 易知 f(x)的值域为 $[1+a, 5+a].g'(x)=\ln x+1, x\in [\frac{1}{e^2}, e], 当 x\in [\frac{1}{e^2}, \frac{1}{e}]$ 时,g'(x)<0,g(x)单调递减;当 $x\in [\frac{1}{e}, e]$ 时,g'(x)>0,g(x)单调递增, $g(\frac{1}{e^2})=1-\frac{2}{e^2}$, $g(\frac{1}{e})=1-\frac{1}{e}$,g(e)=e+1,故 $g(x)_{max}=e+1$, $g(x)_{min}=1-\frac{1}{e}$,g(x)的值域为 $\left[1-\frac{1}{e}, 1+e\right]$. 根据题意,存在 $x_1\in [1, 5]$,对任意 $x_2\in [\frac{1}{e^2}, e]$,都有 $f(x_1)=g(x_2)$,相当于 g(x)的值域是 f(x) 值域的子集,则 $1-\frac{1}{e}\geqslant 1+a$,且 $1+e\leqslant 5+a$,得 $-4+e\leqslant a\leqslant -\frac{1}{e}$.

二、 多项选择题(每个5分,共15分)

5. 已知函数 $f(x) = \frac{1}{3} x^3 - 2x^2 + 3x + c$,若对任意 $x \in [0, 2]$, $f(x) \le c^2 - \frac{2}{3}$ 恒成立, 则实数 c 的可能取值是()

A.
$$-1$$
 B. $\frac{5}{2}$ C. 2 D. $-\frac{1}{2}$

【答案】 ABC

【解析】 $f(x) = \frac{1}{3} x^3 - 2x^2 + 3x + c$, $f'(x) = x^2 - 4x + 3 = (x - 1)(x - 3)$. 令 f(x) > 0,解得 x < 1 或 x > 3; 令 f(x) < 0,解得 1 < x < 3,所以函数 f(x)在区间[0, 1)上单调递增,在区间(1, 2]上单调递减,所以 $f(x)_{\max} = f(1) = \frac{4}{3} + c$. 若对任意 $x \in [0, 2]$, $f(x) \le c^2 - \frac{2}{3}$ 恒成立,则 $f(1) \le c^2 - \frac{2}{3}$,即 $\frac{4}{3} + c \le c^2 - \frac{2}{3}$,整理可得 $c^2 - c - 2 \ge 0$,解得 $c \le -1$ 或 $c \ge 2$. 结合选项知 A,B,C 符合题意.

6. 已知函数 $f(x)=x-\frac{2}{x}$, $g(x)=a\cos\frac{\pi x}{2}+5-2a(a>0)$.给出下列四个命题,其中是真命题的为()

- A. 若存在 $x \in [1, 2]$,使得 f(x) < a 成立,则 a > -1
- B. 若任意 $x \in \mathbb{R}$, 使得 g(x) > 0 恒成立,则 0 < a < 5
- C. 若任意 $x_1 \in [1, 2]$, 任意 $x_2 \in \mathbb{R}$, 使得 $f(x_1) > g(x_2)$ 恒成立,则 a > 6
- D. 若任意 $x_1 \in [1, 2]$, 存在 $x_2 \in [0, 1]$, 使得 $f(x_1) = g(x_2)$ 成立,则 $3 \le a \le 4$

【答案】 ACD

【解析】 对选项 A,只需 f(x)在[1,2]上的最小值小于 a,易知 f(x)在[1,2]上单调递增,所以 $f(x)_{\min}=f(1)=1-\frac{2}{1}=-1$,所以 a>-1,故 A 为真;对选项 B,只需 g(x)的最小值大于 0,因为 $a\cos\frac{\pi x}{2}\in[-a,a]$,所以 $g(x)_{\min}=-a+5-2a=5-3a>0$,所以 $0<a<\frac{5}{3}$,故 B 为 假;对选项 C,只需 f(x)在[1,2]上的最小值大于 g(x)的最大值, $f(x)_{\min}=-1$, $g(x)_{\max}=a+5-2a=5-a$,即 -1>5-a,a>6,故 C 为真;对选项 D,只需 $g(x)_{\min}\leqslant f(x)_{\min}$, $g(x)_{\max}\geqslant f(x)_{\max}$, $f(x)_{\max}=f(2)=2-\frac{2}{2}=1$,所以当 $x_1\in[1,2]$ 时, $f(x_1)\in[-1,1]$,当 $x\in[0,1]$ 时, $\frac{\pi x}{2}\in\left[0,\frac{\pi}{2}\right]$,所以 g(x)在[0,1]上单调递减, $g(x)_{\min}=g(1)=5-2a$, $g(x)_{\max}=g(0)=5-a$,所以 $g(x)\in[5-a]$

 $[5-2a \le -1, 2a, 5-a]$,由题意得 $[5-2a \le -1, 5-a \ge 1]$ 等价于 $3 \le a \le 4$,故 D 为真.

7. 已知命题 p: 已知函数 $f(x) = \frac{x^3}{3} - \frac{a+1}{2} x^2 + ax + 1 (a \in \mathbb{R})$,若当 $a \in I$ 时,任意 x_1 , $x_2 \in [0, 2]$, $|f(x_1) - f(x_2)| \leq \frac{2}{3}$ 恒成立,则下列说法不正确的有(____)

A. 当 I=(1, 2)时, 命题 p 是真命题

B. 当
$$I=\left(1,\frac{5}{4}\right)$$
 时,命题 p 是真命题

C. 当
$$I=\left(\frac{4}{5}, 2\right)$$
 时,命题 p 是真命题

D. 当
$$I=\left(1,\frac{5}{3}\right)$$
 时,命题 p 是真命题

【答案】 BD

【解析】 命题 p 为真,只需当 $x \in [0, 2]$ 时, $f(x)_{max} - f(x)_{min} \le \frac{2}{3}$.只需考查当 1 < a < 2 时的情况,由 $f'(x) = x^2 - (a+1)x + a = (x-1)(x-a)$.易知 f(x)在[0, 1]上单调递增,在[1, a]上单调递减,在[a, 2]上单调递增。由于 $f(2) - f(0) = \frac{2}{3}$,所以只需 $\begin{cases} f(1) \le f(2) \\ f(a) \ge f(0) \end{cases}$,即

$$\begin{cases} a \leqslant \frac{5}{3}, \\ a \leqslant 3, \end{cases}$$
 所以 $1 < a \leqslant \frac{5}{3}$.故选 BD.

三、 填空题(每个5分,共15分)

8. 若关于 x 的不等式 $x^3-ax^2+1 \ge 0$ 在[-1, 1]上恒成立,则实数 a 的取值范围是

【答案】 (一∞, 0]

【解析】 当 x=0 时,原不等式显然成立, $a \in \mathbb{R}$. 当 $x \neq 0$ 时,由原不等式可得 $a \leq x + \frac{1}{x^2}$,令 $h(x) = x + \frac{1}{x^2}$,一1 $\leq x \leq 1$ 且 $x \neq 0$,则 $h'(x) = 1 - \frac{2}{x^3} = \frac{x^3 - 2}{x^3}$,易得函数 h(x)在[-1,0)上单调递增,在(0,1]上单调递减,故当 x = -1 时,h(x)取得最小值 h(-1) = 0,所以 $a \leq 0$. 9.已知函数 $f(x) = e^x - ax$,若存在实数 $x \in (0, +\infty)$,使得 $f(x) \leq 0$ 成立,则实数 a 的取值范围是______.

【答案】 [e, +∞)

【解析】依题意,条件等价于存在实数 $x \in (0, +\infty)$,使得 $a \ge \frac{e^x}{x}$ 成立. 令 $g(x) = \frac{e^x}{x}$ ($x \ne 0$),则 $g'(x) = \frac{e^x(x-1)}{x^2}$, $x \in (0, +\infty)$. 当 0 < x < 1 时, g'(x) < 0,函数 f(x) 单调递减, 当 x > 1 时, g'(x) > 0,函数 f(x) 单调递增, 所以 $g(x)_{min} = g(1) = e$,所以 $a \ge e$.

10. 若 x ∈ [0, 1]时, $e^x - |2x - a| \ge 0$, 则 a 的取值范围为_____.

【答案】 [2ln 2-2, 1]

【解析】 由题意得 $2x-e^x \le a \le 2x+e^x$ 对任意 $x \in [0, 1]$ 恒成立,令 $f(x)=2x-e^x$, $g(x)=2x+e^x$,因为 $f'(x)=2-e^x$ 在 [0, 1] 单调递减,且 $f(\ln 2)=0$,所以 f(x) 在 $[0, \ln 2]$ 上单调

递增,在(ln 2, 1)上单调递减,所以 $a \ge f(x)_{max} = f(\ln 2) = 2\ln 2 - 2$.又因为 $g(x) = 2x + e^x$ 在[0, 1]上单调递增,所以 $a \le g(x)_{min} = g(0) = 1$,所以 a 的取值范围为[2ln 2-2, 1].

四、解答题(第11,12题各15分,第13题20分,共50分)

- 11. 已知函数 $f(x) = \ln x ax(a \in \mathbb{R})$.
- (1) 当 a=2 时,求函数 f(x)的极值;
- (2) 若对任意 $x \in (0, +\infty)$, f(x) < 0 恒成立, 求 a 的取值范围.

【解析】 (1) 当 a=2 时, $f(x)=\ln x-2x$, $f'(x)=\frac{1}{x}-2=\frac{1-2x}{x}$ (x>0).令f'(x)=0,得 $x=\frac{1}{2}$.

当 x 变化时,f(x),f'(x)的变化情况如下表:

x	$\left(0, \frac{1}{2}\right)$	$\frac{1}{2}$	$\left(\frac{1}{2}, +\infty\right)$
f'(x)	+	0	_
f(x)	增	极大值	减

所以 f(x)在 $\left(0, \frac{1}{2}\right)$ 上单调递增,在 $\left(\frac{1}{2}, +\infty\right)$ 上单调递减,极大值为 $f\left(\frac{1}{2}\right) = -\ln 2 - 1$,无极小值.

(2) 对任意 x∈(0, +∞), f(x)<0 恒成立

$$\vec{\pi}\left(\frac{\ln x}{x}\right)_{\max} < a, x \in (0, +\infty).$$

$$\Leftrightarrow h(x) = \frac{\ln x}{x}$$
, $h'(x) = \frac{1 - \ln x}{x^2}$.

当 $x \in (0, e)$ 时, h'(x) > 0, h(x)单调递增;

当 x∈(e, +∞)时, h'(x)<0, h(x)单调递减.

所以
$$h(x)_{\text{max}} = h(e) = \frac{1}{e}$$
 ,所以 $a > \frac{1}{e}$.

- 12. 已知 $f(x) = kx \sin 2x + a \sin x(k, a)$ 为实数).
- (1) 当 k=0, a=2 时, 求 f(x)在[0, π]上的最大值;
- (2) 当 k=4 时,若 f(x)在 R 上单调递增,求 a 的取值范围.

【解析】 (1) 当 k=0, a=2 时, $f(x)=-\sin 2x+2\sin x$,

$$f'(x) = -2\cos 2x + 2\cos x = -4\cos^2 x + 2\cos x + 2 = -2(2\cos x + 1)(\cos x - 1).$$

当x变化时,f(x),f'(x)在[0, π]上的变化情况如下表:

x	$\left(0, \frac{2\pi}{3}\right)$	$\frac{2\pi}{3}$	$\left(\frac{2\pi}{3}, \pi\right)$
f'(x)	+	0	
f(x)	增	极大值	减

所以当 $x = \frac{2\pi}{3}$ 时,f(x)取得极大值,也是最大值,即 $f(x)_{\text{最大值}} = f\left(\frac{2\pi}{3}\right) = \frac{3\sqrt{3}}{2}$.

(2) 若 f(x)在 R 上单调递增,则 $f(x)=4-2(2\cos^2 x-1)+a\cos x\ge 0$ 对任意 $x\in R$ 恒成立,得 $4\cos^2 x-a\cos x-6\le 0$.

设 $t = \cos x \in [-1, 1]$, $g(t) = 4t^2 - at - 6$,

则 $g(t) \le 0$ 在[-1, 1]上恒成立,由二次函数 g(t)的图象知 $\begin{cases} g(-1) \le 0, \\ g(1) \le 0, \end{cases}$ 解得一

2≤*a*≤2.

- 13. 己知函数 $f(x) = x^2 \ln x$.
- (1) 讨论 f(x)的单调性;
- (2) 若关于x的不等式f(x)- $ax+1 \ge 0$ 恒成立,求实数a的取值范围.

【解析】 (1) 由已知得 $f(x) = 2x \left(\ln x + \frac{1}{2} \right)$, x > 0.

$$\diamondsuit f(x) = 0$$
,得 $x = \frac{\sqrt{e}}{e}$.

当 $0 < x < \frac{\sqrt{e}}{e}$ 时,f'(x) < 0,f(x)在 $\left(0, \frac{\sqrt{e}}{e}\right)$ 上单调递减;

当
$$x>\frac{\sqrt{e}}{e}$$
 时, $f'(x)>0$, $f(x)$ 在 $\left(\frac{\sqrt{e}}{e},+\infty\right)$ 上单调递增.

综上,f(x)的单调减区间为 $\left(0, \frac{\sqrt{e}}{e}\right)$,单调增区间为 $\left(\frac{\sqrt{e}}{e}, +\infty\right)$.

(2) 因为 $f(x) - ax + 1 \ge 0$ 恒成立,即 $x^2 \ln x - ax + 1 \ge 0$ 恒成立,等价于 $a \le x \ln x + \frac{1}{x}$ 恒成立.

$$\Leftrightarrow g(x) = x \ln x + \frac{1}{x}$$
, $\emptyset g'(x) = \ln x + 1 - \frac{1}{x^2}$.

令
$$h(x) = \ln x + 1 - \frac{1}{x^2}$$
 ,则 $h'(x) = \frac{1}{x} + \frac{2}{x^3} > 0$ 在 $(0, +\infty)$ 上恒成立.

所以 $g'(x) = \ln x + 1 - \frac{1}{x^2}$ 在(0, + ∞)上单调递增.

因为 g'(1)=0,

所以当 0 < x < 1 时,g'(x) < 0,g(x)在(0, 1)上单调递减;

当 x>1 时,g'(x)>0,g(x)在(1, +∞)上单调递增.

所以 $g(x)_{min} = g(1) = 1$,所以 $a \le g(x)_{min} = 1$.

综上, a 的取值范围是($-\infty$, 1].