Nondimensionalization of Lipid Dynamics Model

December 18, 2020

Length scale: a half of lipid length [L] = 1.25 nm

water viscosity at 20°C= 293.15°K: $\mu = 1$ cP = 10^{-12} $\frac{\text{kg}}{\text{sec} \cdot \text{nm}}$

Line tension $\gamma = \frac{45}{11} \text{ mJ/nm} = 1 \text{ kT/nm} \approx 4.1 \text{ pN nm}$

set force scale $[F] = \gamma$, we obtain

time scale
$$[T] = \frac{\mu[L]^2}{[F]} = \frac{11 \cdot 10^{-12} \frac{\text{kg}}{\text{sec} \cdot \text{nm}} \cdot 1.25^2 \text{ nm}^2}{4.5 \cdot 10^{-2} \frac{\text{kg} \cdot \text{nm}}{\text{sec}^2}} \approx 3.82 \times 10^{-10} \text{ sec}$$

Energy scale $[E] = [F][L] = 1 \cdot 1.25 \text{ kT} = 5.13 \text{ pN nm}$

dimensionless shear rate $\chi = \dot{\gamma}[T]$

(ref. Finken, Eur. Phys. J. E. 25, 2008)

For N=50 vesicle simulations, the initial radius of the vesicle is $R_0=6.75[L]=8.4375$ nm, the bending rigidity $\kappa=8.51$ kT ≈ 35 pN nm (SIAM MMS paper)

$$\chi = \dot{\gamma} \cdot \frac{\mu R_0^2}{\kappa} = \dot{\gamma} \cdot \frac{10^{-12} \frac{\text{kg}}{\text{sec} \cdot \text{nm}} \times 8.4375^3 \text{ nm}^3}{35 \times 10^{-3} \frac{\text{kg} \cdot \text{nm}^2}{\text{sec}^2}} = \dot{\gamma} \cdot 17.16 \times 10^{-9} \text{ sec} = \dot{\gamma} \cdot 44.92[T].$$

(ref. Brandner et al.) In Figure 7, the shear rates are

(a)
$$\dot{\gamma} = 3.7 \times 10^7 \ s^{-1}$$
; (b) $\dot{\gamma} = 1.9 \times 10^9 \ s^{-1}$; (c) $\dot{\gamma} = 3.7 \times 10^9 \ s^{-1}$

By applying our timescale [T], we have all dimensionless shear rates:

(a)
$$\chi = 0.0141$$
; (b) $\chi = 0.7258$; (c) $\chi = 1.41$.

If we adopt the scaling law from Finken's paper with $R_0 = 10$ nm, then we have $\chi = \dot{\gamma} \cdot \frac{\mu R_0^2}{\kappa} \approx \dot{\gamma} \cdot 75[T]$.