Peptide Syntheses

from chapter(s) in tl	ne recommended text
-----------------------	---------------------

A. Introduction

H-Met-Phe-OH

H-Met-Met-OH

H-Phe-Phe-OH

H-Phe-Met-OH

dipeptide

dipeptide

dipeptide

dipeptide

diketopiperazine

symmetrical diketopiperazine

unsymmetrical diketopiperazine

would also

impractical synthesis

N- protect one of the fragments and *C*- protect the other.

Reactions Of Protected Amino Acids

P-Met-Gly-P'

P-Phe-CI + H-Pro-P' ->

P-Phe-Pro-P'

Illustrative Protection: BOC/^tBu

N-BOC Protected Amino Acids amines amines.

with trifluoroacetic (TFA) acid.

carbocation

carbon dioxide.

amino acid

Give the products of the following reactions

unstable carbamate

undesirable HSiEt₃

Tyr / Trp

usually

-CO₂

amino acid carbocation

OBn

C-Protection Of Amino Acids With ^tBu-Groups

by-product cation Ac-Met-O[†]Bu

1-Adamantyl esters cannot are

Activation Of N-Protected Amino Acids

too *reactive* for using *carbodiimide* reagents ie dicyclohexylurea, because the by-products can be protonated and are water-soluble.

BOC-Phe-O

BOC-Phe-Ala-O^tBu

by-product

The Epimerization Problem

epimerize) epimeric products.

difficult to separate

azlactone.

is driven by aromatic stabilization in the product and simultaneous loss carbamate.

more

Strategies In Solution Phase Syntheses That Avoid Epimerization

will

will tend to

BOC-Ile-Val-Ala-OBu

more prone to racemization

circle the one amino acid in one of these structures that is most vulnerable to epimerization

are

C- to N- direction

B. Solid Phase Peptide Syntheses

are mixed with is usually required easier to purify advantages of

are not optimally

C-terminus.

 S_N2 reaction

BOC-Pro-OH

TFA often in the presence of a scavenger; this does not

N-terminus

$$H_2N$$
 O
 O
 O

BOC-Ser(O^tBu)-OH

$$H_2N$$
 O
 O
 Bu

HF and scavengers

BOC-LGGFM-support

H-LGGFM-OH

C. Side-chain Protection Of Amino Acids

may

is required.

undesirable desirable

protection required?

no

Phe

protection required?

yes

Asn

protection required?

yes

Gln

D. The FMOC Approach

protection required?

Cys

HF

base labile via *TFA*.

FMOC-Glu([†]Bu)-OH

FMOC-Lys(BOC)-OH

FMOC-Ser([†]Bu)-OH