P55 1

考虑为期一年的一张保险单,若投保人在投保后一年内因意外死亡,则公司赔付 20 万元,若投保人其他原因死亡,则公司赔付 5 万元,若投保人在投保期末生存,则公司无需付给任何费用,若投保人在一年内因意外死亡的概率为 0.0002,因其他原因死亡的概率为 0.0010,求公司赔付金额的分配律?

解:由题意知,投保人不死亡的概率为 1-0.0002-0.0010 = 0.9988

故赔付金额的分配律为:

X 金额(万元)	0	5	20
Р	0.9988	0.0010	0.0002

P568

甲、乙二人投篮,投中的概率分别为0.6,0.7,今各投三次,求:

(1)

两人投中次数相等的概率.

解:由题意,二人投中次数的分配律分别为:

甲:

Х	0	1	2	3
р	0. 4^3	3*(0.6*0.4*0.4)	3*(0.6*0.6*0.4)	0.6^3

乙:

Υ	0	1	2	3
р	0. 3^3	3*(0.7*0.3*0.3)	3*(0.7*0.7*0.3)	0.7^3

二人投中次数相等的概率为:

 $[0.4^3 * 0.3^3] + [3*(0.6*0.4*0.4) * 3*(0.7*0.3*0.3)] + [3*(0.6*0.6*0.4) * 3*(0.7*0.7*0.3)] + [0.6^3*0.7^3]$

- = 0.064 * 0.027 + 0.288 * 0.189 + 0.432 * 0.441 + 0.216 * 0.343
- = 0.001728 + 0.054432 + 0.190512 + 0.074088
- = 0.32076

(2)

甲比乙投中次数多的概率.

解:P(X=1)*P(Y<1) + P(X=2)*P(Y<2)+P(X=3)*P(Y<3)

- = 0.288*0.027 + 0.441*(0.027+0.189) + 0.216*(0.027+0.189+0.441)
- = 0.007776 + 0.093312 + 0.141912
- = 0.243

P57 15

保险公司在一天内承保了 5000 张同年龄,为期一年的保险单,每人一份,在合同有效期内若投保人死亡,则公司需赔付 3 万元,该年龄段的死亡率为 0.0015,且各投保人是否死亡相互独立。求该公司对于这批投保人的赔付总额不超过 30 万元的概率(利用泊松定理计算).

解:设 X 为合同有效期内投保人的死亡人数,则分布率为:

 $P(X=k) = [e \land (-\lambda) * \lambda \land k]/k!$

其中, λ = 5000*0.0015 = 7.5, k = 0,1,2,...,5000, 赔付总额不超过 30 万元,即死亡人数不超过 10

则该概率为:

$$\sum_{k=0}^{10} [e^{(-7.5)} * 7.5^k]/k!$$

P57 19

以 X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分钟计), X 的分布函数是:

$$F_X(x) = \begin{cases} 1 - e^{-0.4x} , x > 0, \\ 0 , x \le 0. \end{cases}$$

求下述概率:

(1) P{至多 3 分钟}

$$P\{X <= 3\} = F_X(3) = 1 - e^{-0.4*3}$$

(2) P{至少 4 分钟}

$$P{X>4} = 1 - F_X(4) = 1 - e^{-0.4*4}$$

(3) P{3 分钟至 4 分钟之间}

$$P\{X <= 4\} - P\{X <= 3\} = e^{-0.4*3} - e^{-0.4*4}$$

(4) P{至多 3 分钟或至少 4 分钟}

$$1 - [P\{X < =4\} - P\{X < =3\}] = 1 - e^{-0.4 \times 3} + e^{-0.4 \times 4}$$

(5) P{恰好 2.5 分钟}

$$P{X = 2.5} = 0$$

P58 27

某地区 18 岁女青年的血压(收缩压,以 mmHg 计)服从 N(110, 12²)分布,在该地区任选一个 18 岁女青年,测量她的血压 X,求:

(1) P{X<=105}, P{100<X<=120}

$$P\{X <= 105\} = \Phi((105-110)/12) = \Phi(-5/12) = 1 - \Phi(5/12) = 1 - \Phi(0.4167) = 0.3372$$

$$P\{100 < X <= 120\} = P\{X <= 120\} - P\{X <= 100\} = \Phi((120-110)/12) - \Phi((100-110)/12) = 0.7967 - 1 + 0.7967$$

$$= 0.5934$$

(2) 确定最小的 x , 使 P{X>x}<=0.05.

$$P{X>x} = 1 - P{X
= $\Phi((x - 110)/12)$$$

查表得 (x-110)/12 = 1.65 则:

X = 129.8