SEAT WEIGHT MEASURING DEVICE

Patent Number:

JP2000258234

Publication date:

2000-09-22

Inventor(s):

AOKI HIROSHI

Applicant(s):

TAKATA CORP

Requested Patent:

☐ JP2000258234

Application

JP19990061341 19990309

Priority Number(s):

IPC Classification:

G01G19/52; B60N2/44; B60R21/32; B60R22/46;

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a seat weight measuring device capable of highly accurate measurement. SOLUTION: A load sensor comprises a cantilever sensor plate 51 to be elastically deformed at the reception of sensor-impressed loads and a plurality of strain gages 54a and 54c adhered to one surface (a surface subjected to strain measurement) of the cantilever sensor plate 51. The sensor plate 51 is deformed in such a way that tensile strain may be exerted on a few among the plurality of strain gages 54a and 54c and that compressive strain may be on the other when the sensor plate 51 is deformed at the reception of sensor- impressed loads.

Data supplied from the esp@cenet database - I2

TD99-04

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-258234 (P2000 - 258234A)

(43)公開日 平成12年9月22日(2000.9.22)

(51) Int,Cl.7	識別記号	F I デーマコート* (参考)
G 0 1 G 19/5	2	G 0 1 G 19/52 F 3 B 0 8 7
B60N 2/4	4	B 6 0 N 2/44 3 D 0 1 8
B 6 0 R 21/3	2	B 6 0 R 21/32 3 D 0 5 4
22/4	6	22/46
G 0 1 G 3/1	4	G 0 1 G 3/14
		審査請求 未請求 請求項の数7 OL (全 10 頁)
(21)出願番号	特願平11-61341	(71)出願人 000108591
		タカタ株式会社
(22)出願日	平成11年3月9日(1999.3.9)	東京都港区六本木1丁目4番30号
		(72)発明者 青木 洋
		東京都港区六本木1丁目4番30号 タカタ
		株式会社内
		(74)代理人 100100413
		弁理士 渡部 温
		F ターム(参考) 3B087 DE08
		3D018 MAO0
		3D054 AA03 AA14 EE09 EE10 EE28
		EE29 EE31 EE36 FF01 FF02
		PF17

(54) 【発明の名称】 シート重量計測装置

(57)【要約】

【課題】 より高精度の計測が行えるように改良を加え たシート重量計測装置を提供する。

【解決手段】 荷重センサ50は、センサ印加荷重を受 けて弾性変形する片持ち梁のセンサ板51と、その1つ の表面(歪計測面)に固着された複数のストレインゲー ジ54a、54cを有する。センサ印加荷重を受けてセ ンサ板が変形したときに、複数のストレインゲージのう ちの一部に引張歪がかかり他に圧縮歪がかかるようにセ ンサ板を変形させる構成を持つ。

監修 日本国特許庁

10

1

【特許請求の範囲】

【請求項1】 車両用シートの内部又はシートと車体の間に挿入された、シート重量に関連した荷重(モーメントをも含む、以下センサ印加荷重ともいう)を受けてこれを電気信号に変換する荷重センサを備え、シートに座っている乗員の重量を含むシート重量を計測する装置であって;該荷重センサが、センサ印加荷重を受けて弾性変形する片持ち梁のセンサ部材と、該センサ部材の1つの表面(歪計測面)に固着された複数のストレインゲージと、を有し、

センサ印加荷重を受けてセンサ部材が変形したときに、 複数のストレインゲージのうちの一部に引張歪がかかり 他に圧縮歪がかかるようにセンサ部材を変形させる構成 を持つことを特徴とするシート重量計測装置。

【請求項2】 車両用シートの内部又はシートと車体の間に挿入された、シート重量に関連した荷重を受けてこれを電気信号に変換する荷重センサを備え、シートに座っている乗員の重量を含むシート重量を計測する装置であって;該荷重センサが、センサ印加荷重を受けて弾性変形する均一な厚みで部分的に幅の異なるセンサ部材 20と、該センサ部材の1つの表面(歪計測面)に固着されたストレインゲージと、を有し、

センサ部材がセンサ印加荷重を受けたときに、該部材の 歪計瀕面の一部にほぼ均一な表面歪の領域が形成される ようにセンサ板の弾性変形部のたわみ強度が調節されて おり、

上記ストレインゲージが該領域に固着されていることを 特徴とするシート重量計測装置。

【請求項3】 引張及び圧縮の均一表面歪領域がそれぞれ形成され、各々の領域にストレインゲージがそれぞれ 30 固着されていることを特徴とする請求項2記載のシート 重量計測装置。

【請求項4】 車両用シートの内部又はシートと車体の間に挿入された、シート重量に関連した荷重を受けてこれを電気信号に変換する荷重センサを備え、シートに座っている乗員の重量を含むシート重量を計測する装置であって;該荷重センサが、センサ印加荷重を受けて弾性変形する均一な厚みで部分的に幅の異なるセンサ部材と、該センサ部材の1つの表面(歪計測面)に固着された複数のストレインゲージと、を有し、

センサ部材が片持ち梁であり、

一方の端を固定部とし、他方の端をセンサ印加荷重を印加する印加部とし、中央部をストレインゲージ固着部と し、

固定部及び荷重印加部共に補強部材が当てられており、 歪をストレインゲージ固着部に集中させることを特徴と するシート重量計測装置。

【請求項 5】 上記センサ部材の荷重印加部にハーフアームが取り付けられており、

該ハーフアームは、荷重印加部に当てられる比較的剛性 50

の高い本体と、この本体から突出する羽根部と、を有するとともに、

該羽根部に単純荷重 (モーメントでない通常の荷重)の 作用点が設けられており、

該単純荷重がハーフアーム本体を介して上記センサ部材 の荷重印加部に主に曲げモーメントとなって伝わる構造 (折り返し構造)を有し、

上記ハーフアームの折り返し構造でセンサ部材歪計測面 に凹凸歪を付与することを特徴とする請求項4記載のシ ート重量計測装置。

【請求項6】 上記ハーフアームの単純荷重作用点に、 上下荷重以外をスライド式又は回動式に逃す機構が設け られており、

上記センサ板のストレインゲージ固着部が、平面形状に おいてくびれた部分を挟んで対称配置された圧縮・引張 の均一表面歪領域を有することを特徴とする請求項5記 載のシート重量計測装置。

【請求項7】 上記ハーフアームの荷重作用点と上記センサ板の厚さ方向の中心線とがほぼ同一平面上ないしは ±5mm以内の高さ差にあることを特徴とする請求項5記 載のシート重量計測装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両用シートに座っている乗員の重量を含むシート重量を計測する装置に関する。特には、より高精度の計測が行えるように改良を加えたシート重量計測装置に関する。

[0002]

【背景技術】自動車には乗員の安全を確保するための設備としてシートベルトやエアバッグが備えられる。最近では、シートベルトやエアバッグの性能をより向上させるため、乗員の重量(体重)に合わせてそれらの安全設備の動作をコントロールしようという動向がある。例えば、乗員の体重に合わせて、エアバッグの展開ガス量や展開速度を調整したり、シートベルトのプリテンションを調整したりする。そのためには、シートに座っている乗員の重量を何らかの手段で知る必要がある。そのような手段の一例として、シートの下の前後左右4隅にかかる・なり、ロードセル)を配置して、ロードセルにかかる・型で力向荷重を合計することにより乗員の重量を含むシート重量を計測する、との提案がなされている(同一出額人による特願平9-156666号、特願平10-121627号等)。

[0003]

【発明が解決しようとする課題】ところで、耐久性があり高精度で低コストのシート重量計測装置を得るには、低い歪を増幅させる歪検出機構を確立する必要がある。 また、装置の機構中における部品の製作誤差や摩擦力による計測誤差をできるだけなくする必要がある。

【0004】本発明は、このような問題点に鑑みてなさ

3

れたもので、車両用シートに座っている乗員の重量を含むシート重量を計測する装置であって、より高精度の計測が行えるように改良を加えたシート重量計測装置を提供することを目的とする。

[0005]

【課題を解決するための手段及び発明の実施の形態】上記課題を解決するため、本発明の第1態様のシート重量計測装置は、車両用シートの内部又はシートと車体の間に挿入された、シート重量に関連した荷重(モーメントを電気信号に変換する荷重センサを備え、シートに座っている乗員の重量を含むシート重量を計測する装置であって;該荷重センサが、センサ印加荷重を受けて弾性変形する片持ち梁のセンサ部材と、該センサ部材の1つの表面(歪計測面)に固着された複数のストレインゲージをある。を有し、センサ印加荷重を受けてセンサ部材が変形したときに、複数のストレインゲージのうちの一部に引張でがかかり他に圧縮でがかかるようにセンサ部材を変形させる構成を持つことを特徴とする。

【0006】上記引張歪のかかるストレインゲージと圧 20 縮歪のかかるストレインゲージをブリッジ回路上で逆位相に接続することにより、ストレインゲージの歪出力を増大させることができる。そのため、高感度の計測を行うにもかかわらず、センサの歪を低減して長寿命化が図れる。また、ストレインゲージの固着される歪計測面は1つ(例えば板の片面)であるので、スクリーン印刷法などによりストレインゲージや配線層を成膜する場合に、成膜処理が片面で済む。そのためセンサの製造コストを低く抑えることができる。

【0007】本発明の第2態様のシート重量計測装置は、車両用シートの内部又はシートと車体の間に挿入された、シート重量に関連した荷重を受けてこれを電気信号に変換する荷重センサを備え、シートに座っている乗員の重量を含むシート重量を計測する装置であって:該荷重センサが、センサ印加荷重を受けて弾性変形する均一な厚みで部分的に幅の異なるセンサ部材と、該センサ部材の1つの表面(歪計測面)に固着されたストレインゲージと、該部材の歪計測面の一部にほぼ均一な表面歪の領域が形成されるようにセンサ板の弾性変形部のたわみ強度が調節されており、上記ストレインゲージが該領域に固着されていることを特徴とする。

【0008】ほぼ表面歪の均一な領域にストレインゲージを固着(成膜も含む)すれば、ストレンゲージの位置が多少ズレても歪が変わらないので計測誤差とならない。したがって、計測精度を確保しつつ製造工程の品質要求を下げることができる。

【0009】本発明の第3舷様のシート重量計測装置は、車両用シートの内部又はシートと車体の間に挿入された、シート重量に関連した荷重を受けてこれを電気信 50

号に変換する荷重センサを備え、シートに座っている乗員の重量を含むシート重量を計測する装置であって;該荷重センサが、センサ印加荷重を受けて弾性変形する均っな厚みで部分的に幅の異なるセンサ部材と、該センサ部材の1つの表面(歪計測面)に固着された複数のストレインゲージと、を有し、センサ部材が片持ち梁であり、一方の端を固定部とし、他方の端をセンサ印加荷重を印加する印加部とし、中央部をストレインゲージ固着部とし、固定部及び荷重印加部共に補強部材が当てられており、歪をストレインゲージ固着部に集中させることを特徴とする。

【0010】ストレインゲージ固着部に歪を集中させることにより、高感度の計測を行えるとともに他の部分の部品の製作誤差・組立誤差があっても計測誤差が生じることがない。

【0011】この態様においては、上記センサ部材の荷重印加部にハーフアームが取り付けられており、該ハーフアームは、荷重印加部に当てられる比較的剛性の高い本体と、この本体から突出する羽根部と、を有するともに、該羽根部に単純荷重(モーメントでない通常のともに、該羽根部に単純荷重がハーフでない通常のアーム本体を介して上記センサ部材の荷重印加部に主に向ける本体を介して上記センサ部材の荷重印加部に主に付金が好ました。また、上記ハーフアームの折り返し構造でセンサ部がでもからでは回動式に逃す機構が設けられており、上記センサ板のストレインゲージ固着部が、平面形状においてくびれた部分を挟んで対称配置された圧縮・引張の均一表面歪領域を有することが好ましい。

【0012】上下以外の前後や回転モーメント荷重が加わっても凹凸部の歪バランスが変わり上下荷重に対する総合感度は変わらない。水平面内の方向(車体前後方向等)のズレがあっても、あるいはセンサ板に軸重がかかっても圧縮のストレインゲージと引張のストレインゲージで誤差をキャンセルでき、両ストレインゲージの出力を合算した総合感度は誤差のない値となる。

【0013】また、本発明のシート重量計測装置においては、上記ハーフアームの荷重作用点と上記センサ印加の厚さ方向の中心線とがほぼ同一平面上ないしは±5㎜以内の高さ差にあることが好ましい。すなわち、上記作用点に摩擦力(軸力)が作用した場合においても、その摩擦力によりセンサ板をたわませるモーメントのアームが短い。したがって、摩擦力によってセンサ板がたわむ程度が少なく、計測誤差が減る。

【0014】以下、図面を参照しつつ説明する。まず、図9を参照しつつ自動車のシート回りの構造を説明する。図9(A)は、シートを車体に取り付ける部分の構造例を模式的に示す正面断面図である。図9(B)は、側面図である。なお、図中における矢印は以下の方向を

示す。上:車体が水平なときの重力方向上方向、下:同下方向、前:車両前進方向、後:車両後進方向、左:車両前進方向に向かって左、右:同右。

【0015】図9にはシート3が示されている。シート3のシートクッション3a上に人1が座る。シートクッション3aの下面は鋼板製のシートフレーム5によって支持されている。シートフレーム5は、底板5a、横板5c、縦板5e、スライド板5g等の部位からなる。底板5aはシートクッション3aの下面を覆うように広がっている。横板5cは、底板5aの下面の左右側方に沿って延びている。縦板5eは横板5cの下面中央部から垂下している。スライド板5gは、縦板5eの左右に羽根のように突出しており、さらに先端部は上方に屈曲している。

【0016】シートレール7は、シート3の左右の下方に、前後方向に延びるように2本平行して設けられている。シートレール7の断面は、U字型をしており、内部に凹部7cが存在する。この凹部7cの上の口は前後方向に延びる溝7aとなっている。この溝7aにはシートフレーム5の縦板5eが入っている。シートレール7の20凹部7c内には、シートフレーム7のスライド板5gが入っている。スライド板5gはシートレール7内で前後方向にスライド可能である。

【0017】シートレール7の下面にはシート重量計測装置9が連結されている。シート重量計測装置9は、前後方向に延びる細長い箱状の外形をしている。このシート重量計測装置9の詳細については後述する。シート重量計測装置9の下面の前後端部にはシートブラケット11は1が取り付けられている。このシートブラケット11は車体のシート取付部13にポルト等により固定されてい30る。

【0018】図4は、本発明の1実施例に係るシート重量計測装置の全体構成を示す図である。(A)は平面図、(B)は側面断面図、(C)及び(D)は正面断面図である。なお、図2(A)、(B)において後方の約半分の部分は図示省略されている。図5は、図4のシート重量計測装置のほぼ前半分の部分の斜視図である。図6は、センサ板周りの詳細構成を示す一部破断斜視図である。図7は、センサ板の詳細構成を示す平面図である。図8は、センサ板とハーフアームの関係を示す図で 40ある。(A)は平面図、(B)は無荷重状態の側面図、(C)は確度がかかった状態を模式的に示す側面図であ

(C) は荷重がかかった状態を模式的に示す側面図である。

【0019】このシート重量計測装置9は細長いベース21を基体として構成されている。ベース21は、車体に取り付けたときに前後方向に長く延びており、図4(C)、(D)あるいは図5に示すように、正面断面が上向きコの字状の鋼板プレス品である。ベース21の断面の底の部分を底板21cと呼び、底板21cの左右端から90°曲がって上に立ち上がる部分を側板21aと50

呼ぶ。

【0020】ペース側板21aには、図5(A)に最もよく示すように、前後それぞれ2カ所ずつのピン孔21 e、21gが開けられている。各孔21e、21gは、左右の側板21a、21a′に対向して開けられている。端寄りの孔21eは、ペース21の前後端からペース21全長の約1/8程度中央に寄った部位に開けられている。同孔21eは、上下に長く延びる長孔である。この長孔21e内には、ブラケットピン27の端部が入っている。

【0021】プラケットピン27と長孔21eの上下・左右には隙間があって、通常はプラケットピン27が長孔21eの内縁に触れることはない。しかしながら、このシート重量計測装置9(具体的にはピンプラケット25の部分)に過大な荷重がかかったときには、ブラケットピン27が下がって長孔21eの下縁に当たり、超気荷重は荷重センサ(センサ板51、詳細後述)には伝わらない。つまり、ピン27と長孔21eは、センサ板51に加える荷重の上限を制限する機構の一部を構成する。なお、プラケットピン27の主な役割は、ピンプラケット25にかかるシート重量を2アーム23に伝えることである。

【0022】長孔21eのやや中央寄り(ベース21全長の約1/10中央寄りのところ)にはピン孔21gが開けられている。同孔21gには、ベースピン31が貫通している。ベースピン31は、左右のベース側板21a、21a′間を掛け渡すように存在する。ピン31の左右の端部にはリテーナー33が取り付けられており、ベースピン31がベース21に固定されている。なお、ベースピン31は2アーム23の回動中心軸である。

【0023】 2アーム23は、ベース21の内側に配置されている。 2アーム23の平面形状は、中央寄り(図4、5の右寄り)が左右二叉に分かれ(叉部23h)、 端寄りが長方形をしている。 2アーム23の端寄りの半分の部分の左右端部には、上方に90° 折り返された側板23aが形成されている。 叉部23hは単なる平たい板である。 2アーム側板23aは、ベース21の側板21aの内側に沿っている。ただし、両側面23a、21a間には隙間がある。

【0024】 2アーム側板23 aにも2カ所のピン孔23 c、23 eが開けられている。前後端寄りのピン孔23 cにはブラケットピン27が貫通している。ピン孔23 cとブラケットピン27とは、ほとんど摺動しない。中央寄りのピン孔23 eにはベースピン31が貫通している。ベースピン31は、2アーム23の回動中心であり、ピン孔23 eとベースピン31の間では、2アーム23の回動分だけ摺動がある。ベースピン31外周のベース側板21 aと2アーム側板23 aの間には、孔開き円板状のスペーサ35 (図4(D)参照、図5には不図示)がはめ込まれている。

【0025】2アーム23の叉部23hは、ほぼ2アー ム23の全長の半分の長さである。同部23hは、左右 に分かれて前後方向中央寄りに延びており、中央寄りで は巾挟となっている。Zアーム叉部23hの先端の作用 部23jは、図6に示すように、上下のハーフアーム4 1、42の羽根部41a、42aの間にはさまれてい る。ピンプラケット25に荷重がかかると、2アーム2 3 はわずかに回動して(最大約5°)、作用部23 i は ハーフアーム41、42を介してセンサ板51に荷重を 伝える。

【0026】ピンプラケット25は、図4 (C) あるい は図5(B)(拡大図)に示すように断面形状が下向き 略コの字状である。前後方向の長さは、ベース21のほ ぼ1/20とあまり長くない。ピンプラケット25の上 面25aは平らであり、ここに図5に示すシートレール 7 が載る。両者の間は、ポルト締結等により強固に連結 される。

【0027】ピンプラケット25の左右側板25bは同 プラケット25の左右に垂下しており、その下端部は内 側寄りに曲がっている。側板25bはZアーム側板23 aの内側に遊びを持たせて配置されている。側板25b にはピン孔25cが開いている。この孔25cには、ブ ラケットピン27が貫通している。ピン孔25cの寸法 はプラケットピン27の径よりも大きい。両者の隙間に よりシートや車体の寸法誤差や不測の変形を吸収する。

【0028】ピンプラケット25の左右側板25bと左 右の2アーム側板23aの間には、バネ板29がはさま れている。パネ板29は、孔の開いたパネ座金状の部分 を有し、プラケットピン27の外側に隙間を持たせては め込んである。このパネ板29は、ピンプラケット25 を中央方向に付勢するセンタリング機構を構成する。こ のようなセンタリング機構は、ピンプラケット25をス ライド可能範囲の中心付近に極力位置させる。このセン タリング機構の作用により、シート重量計測装置取り付 け後において、スライド機構や回動機構の可動範囲を両 方向(左右、上下、前後)に確保することができる。

【0029】次にセンサ板51周りの構成について説明 する。まずセンサ板51自体の構成を説明する。図7 は、本発明の1実施例に係るシート重量計測装置のセン サ板の構成例を示す図である。図7(A)はセンサ板の 平面図であり、(B)は(A)のストレインゲージ及び 配線部の断面構造を模式的に示す側面断面図であり、

(C) はセンサの回路図である。

【0030】センサ50の母材であるセンサ板 (バネ 材) 51の上には、電気絶縁のための絶縁層 (下絶縁 層)52が形成されている。この絶縁層52の上に配線 層53が選択的に形成されている。さらに、この配線層 53の上に抵抗層54が選択的に形成され、ストレイン ゲージが構成されている。そして、それらの保護膜とし

うに、バネ材51の上に抵抗などの電気回路を直接に積 **層形成しているので、加工コストや組付けコストを低減** でき、さらに耐熱性や耐腐食性を向上できる。

【0031】センサ板51は、全体として二カ所のくび れの入った長方形の板である。センサ板51の中央部に は中心軸孔51aが開けられている。センサ板51の両 端部には、ポルト孔51 bが開けられている。中心軸孔 51 aの周縁から中心軸孔51 aと両ポルト孔51bの 間にかけて、センサ50が形成されている。荷重センサ 10 50の形成領域のうち中心軸孔51aと両ポルト孔51 bの間の領域51cには、両側にV字状にえぐられたく びれが設けられている。このくびれにより、センサ板5 1 が変形する部分が位置的に固定されるため、センサ5 0の表面歪の位置変化も固定され感度が安定となる。

【0032】センサ50は、中心軸孔51aの中心に対 してほぼ左右対称に配置されている。センサ50を構成 する4個の歪抵抗 (ストレインゲージ) は、ポルト孔5 1 b寄り(端寄り)に引張歪側の2個の歪抵抗54a、 54bが配置されており、中心軸孔51a寄り(中央寄 り)に、圧縮歪側の2個の歪抵抗54c、54dが配置 されている。そして、4個の歪抵抗54a、54b、5 4 c、5 4 dは、図4(C)のようなブリッジ回路を形 成するように、配練53a、53b、53c、53dに より接続されている。なお、図中の四角の中に1、2、 3、4の数字が入っているものは端子を示す。

【0033】 歪抵抗54a、54cと歪抵抗54b、5 4 d の間には、感度調整抵抗54 e が配置されている。 なお、歪抵抗54a、54b、54c、54dによって センサ板51の歪を検出する代わりに、静電容量センサ やホール素子等によってセンサ板51のたわみを検出 し、そのたわみを荷重に換算してもよい。

【0034】次にセンサ板51周りの構造を図6、図8 を参照しつつ説明する。センサ板51は、ベース底板2 1 c の中央部において、コラム63上に、座金67、ナ ット68により強固に固定されている。

【0035】ハーフアーム41、42は、前後・上下4 枚組みの部品であって、センサ板51の前後を上下から 挟むように組み込まれている。個々のハーフアーム4 1、42は同じ形状をしているので、上ハーフアーム4 1について説明する。ハーフアーム本体部41cは、長 方形の板状のものであってその中央部には取付孔 4 1 e (図8(B)参照)が開いている。本体部41cの中央 寄りの縁部には、後方(又は前方)及び左右方向に延び る羽根部41aが突設されている。羽根部41aの裏面 には、左右方向に延びる堤状の支点41bが形成されて いる。支点41bの先はやや尖った稜となっている。

【0036】次に、上下ハーフアーム41、42、セン サ板51、2アーム作用部23jの組み立て構造につい て説明する。上ハーフアーム41の本体部41cの下面 ての絶縁層(上絶縁層)55が形成されている。このよ 50 及び下ハーフアーム42の本体部42cの上面はフラッ

トな面であって、センサ板51の表面にビス43でピッ タリ合わせてビス43で固定されている。上下のハーフ アーム41、42の羽根部41a、42aは、支点41 b、42b同士を対向させて向かい合っている。両支点 41 b、42 bの間にはZアーム23の作用部23jが 挟まれている。なお、支点の位置は、2枚のストレイン ゲージ54a、54cあるいは54d、54bのちょう ど中間(センサ板51のくびれ部51c)に位置する。

【0037】シート重量計測装置9のピンプラケット2 5に荷重がかかると、2アーム23がわずかに回動して 10 その作用部23」が上に持ち上げられる。このときのセ ンサ板やハーフアームの様子を模式的に誇張して示すの が図8(C)である。2アーム作用部23jが持ち上げ られると、上ハーフアーム41の支点41bが持ち上げ られる。このため、センサ板51の前後方向端部にモー メントMがかかる。このモーメントMにより、前後方向 端部のストレインゲージ54a、54bは引っ張られ、 中央部のストレインゲージ54c、54dは圧縮され る。これによる各ストレインゲージの抵抗変化を電気信 母として取り出して、センサ板の歪ひいてはピンプラケ 20 ット25にかかる荷重を計測する。

【0038】次に、図1、2、3を参照しつつ本発明の 1 実施例に係るシート重量計測装置のセンサ板周辺の構 造の作用について説明する。図1は、本発明の1実施例 に係るシート重量計測装置のセンサ板周辺の構造の作用 を説明するための図である。(A)は側面図である、

(B) はセンサ板の平面図である、(C) はセンサ板表 面の歪分布を模式的に示すグラフである。なお、図はい ずれもセンサ板の前半部及び中央部を示す。図2は、ハ ーフアームの支点に軸力(前後方向の力)がかかった場 合の作用を説明するための側面図である。図3は、ハー フアームの支点にかかる軸力が計測データに及ぼす影響 を調べたデータのグラフである。

【0039】図1(A)に示すように、Zアーム23は シート重量に応じて上方にわずかに回動し(図4(B) 参照)、ハーフアーム41の羽根部41aの支点41b を持ち上げる。この持ち上げるカWに応じて、ハーフア ーム本体部41cからセンサ板51にモーメントMが伝 わる。モーメントMによりセンサ板51は凹凸にたわ み、表面歪が引張(+)の領域51yと、表面歪が圧縮 40 (-) の領域51zが生じる。

【0040】ここで、上述のように、センサ板51の端 部を上下から挟むハーフアーム41及び42の本体部4 1 c 及び 4 2 c は分厚く剛性が高いので、同部 4 1 c 、 42cによって挟まれているセンサ板51の荷重印加部 51xはほとんど歪まない。また、センサ板51の中央 部(固定部51w)も、剛性の高い座金67やコラム6 3に上下から挟まれているので、同部51wもほとんど 歪まない。

wの間の部分は、図1 (B) に示すように、真中にくび れ部51cを挟んで、二つの略三角形の部分が対向して いる平面形状となっている。この部分には、引張側の均 一表面歪領域51 y と圧縮側の均一表面歪領域51 z が 形成される。領域51y、512には、引張側のストレ インゲージ54a又は圧縮側のストレインゲージ54c が固着されている.

【0042】このため、上記引張歪のかかるストレイン ゲージと圧縮歪のかかるストレインゲージをブリッジ回 路上で逆位相に接続することにより、ストレインゲージ の歪出力を増大させることができる。そのため、高感度 の計測を行うにもかかわらず、センサの歪を低減して長 寿命化が図れる。また、ストレインゲージの固着される **歪計測面はセンサ板51の片面であるので、スクリーン** 印刷法などによりストレインゲージや配線層を成膜する 場合に、成膜処理が片面で済む。そのためセンサの製造 コストを低く抑えることができる。

【0043】また、ほぼ表面歪の均一な領域にストレイ ンゲージを固着(成膜も含む)すれば、ストレンゲージ の位置が多少ズレても歪が変わらないので計測誤差とな らない。したがって、計測精度を確保しつつ製造工程の 品質要求を下げることができる。

【0044】さらに、ストレインゲージ固着部に歪を集 中させることにより、高感度の計測を行えるとともに他 の部分の部品の製作誤差・組立誤差があっても計測誤差 が生じることがない。

【0045】次に、Zアーム23からハーフアームに作 用する軸力について、図2を参照しつつ説明する。前述 のように、2アーム23の作用部23jからは、ハーフ アーム41の羽根部41aの支点41bに力Wが作用す る。この力Wは、ハーフアーム23の構造から、ほとん どが上下方向のカW、である。しかし、一部に水平方向 の成分W。が混在することもありうる。また、2アーム 23の伸びや位置ズレにより、支点41bに横方向の摩 擦力が作用することもあり得る。

【0046】摩擦や変形による力については、2アーム 作用部23〕と支点41bとが軸方向(前後方向)に拘 束されておらず、滑りやすい線接触構造となっているの で、極力ハーフアーム41に軸力がかからない(逃す) ようにすることができる。さらに、軸力W。がかかった 場合においても、引張側のストレインゲージ54aと圧 縮側54cの出力を差し引くことにより、センサ板51 に働く軸方向応力をキャンセルできる。

【0047】この様子を示すのが図3である。図3のグ ラフの横軸はシートにかかる荷重(単位kgf)を表 し、縦軸はストレインゲージの出力(単位mV)を表 す。図中に示す圧縮側及び引張側のストレインゲージの 出力には、荷重の上げ下げに伴うヒステリシスがはっき りと見られる。これは、荷重の上げ下げ時に2アームと 【0041】一方、荷重印加部51xと中央固定部51 50 ハーフアーム間に軸力が生じているためである。しか

シート

し、引張側から圧縮側を差し引いた合計には、ほとんど ヒステリシスが見られず、リニアリティーのよいデータ となっている。これは、上述の軸カキャンセル作用のお かげである。

【0048】すなわち、上下以外の前後や回転モーメント荷重が加わっても凹凸部の歪バランスが変わり、センサの上下荷重に対する総合感度は変わらない。つまり、水平面内の方向(車体前後方向等)のズレがあっても、あるいはセンサ板に軸重がかかっても圧縮のストレインゲージと引張のストレインゲージで誤差をキャンセルで 10 き、両ストレインゲージの出力を合算した総合感度は誤差のない値となる。

【0049】なお、軸力W、があると、センサ板51の中心線とハーフアーム支点41bとの間隔S(図2)がモーメントアームとなって、W、×Sのモーメントがセンサ板51にかかり誤差要因を生むこととなる。そこで、本発明のシート重量計測装置においては、上記ハーフアーム41の荷重作用点41bと上記センサ板51の厚さ方向の中心線とがほぼ同一平面上ないしは±5mm以内の高さ差にあるようにしている。すなわち、上記作用の高さ差にあるようにしている。すなわち、上記作用の高41bに摩擦力(軸力W、)が作用した場合においても、その摩擦力によりセンサ板をたわませるモーメントのアームが短い。したがって、摩擦力によってセンサ板がたわむ程度が少なく、計測誤差が減る。

[0050]

【発明の効果】以上の説明から明らかなように、車両用シートに座っている乗員の重量を含むシート重量を計測する装置において、耐久性があり高精度で低コストのシート重量計測装置を得ることができる。また、装置の機構中における部品の製作誤差や摩擦力による計測誤差の30少ないシート重量計測装置を提供できる。

【図面の簡単な説明】

【図1】本発明の1実施例に係るシート重量計測装置の センサ板周辺の構造の作用を説明するための図である。

(A) は側面図である、(B) はセンサ板の平面図である、(C) はセンサ板表面の歪分布を模式的に示すグラフである。なお、図はいずれもセンサ板の前半部及び中央部を示す。

【図2】ハーフアームの支点に軸力(前後方向の力)が かかった場合の作用を説明するための側面図である。

【図3】ハーフアームの支点にかかる軸力が計測データ に及ぼす影響を調べたデータのグラフである。

【図4】本発明の1実施例に係るシート重量計測装置の 全体構成を示す図である。(A)は平面図、(B)は側 面断面図、(C)及び(D)は正面断面図である。

【図 5】 図 4 のシート重量計測装置のほぼ前半分の部分の斜視図である。

【図 6 】センサ板周りの詳細構成を示す一部破断斜視図である。

【図7】センサ板の詳細構成を示す図である。

【図8】センサ板とハーフアームの関係を示す図である。(A)は平面図、(B)は無荷重状態の側面図、(C)は荷重がかかった状態を模式的に示す側面図であ

(C)は荷重がかかった状態を模式的に示す側面図で』 る。

【図9】(A)は、シートを車体に取り付ける部分の構造例を模式的に示す正面断面図である。(B)は、側面図である。

ľ	符号の説明】
l	人

	• /	0 / 1
10	3a シートクッション	5 シートフレ
	− ∆	
	5 a 底板	5 c 横板
	5 e 縦板	5g スライド板
	5 e 縦板 7 シートレール	7 a 海
	7 c 凹部	9 シート重量
	計測装置	
	11 シートプラケット	13 車体 (シ
	ート取付部)	
	21 ベース	21a 側板
20	21c 底板	21e 長孔(ビ
	ン孔)	
	2 1 g ピン孔	23 Zアーム
	23a 側板 23e ピン孔	23c ピン孔
	23e ピン孔	23h 叉部
	23 j 作用部	25 ピンプラ
	ケット	
	25a 上面	25b 側板
	25c 孔	27 プラケッ
	トピン	
30	29 パネ板	31 ベースピ
	ン	
	33 リテーナー	35 スペーサ
	41 上ハーフアーム	41a,42a
	羽根部	
	41 b 支点	41c, 42c
	本体部	
	4 1 e 取付孔	42 下ハーフ
	アーム	
	43 ピス	50 センサ部
40		51a 中心軸孔
	516 ボルト孔	51c くびれ部
	51w 中央固定部	51x 荷重印加
	,部	
	5 1 y 引張領域	51z 圧縮領域
	52 絶縁層(下絶縁層)	
	53a, 53b, 53c, 53d	
	5.4 抵抗層	5.5 絶縁層
	(上絶縁層)	
	54a, 54b, 54c, 54d	
50	54e 感度調整抵抗	63 コラム

13

67 座金

68 ナット

[図1]

[図3]

[図7]

