# MA204: Mathematics IV Partial Differential Equation (First Order PDE)

### Introduction

We now move our attention to the quasi-linear PDE given by the equation

$$a(x, y, z)z_x + b(x, y, z)z_y = c(x, y, z).$$
 (1)

**Method of characteristics:** Following the method of characteristics for semilinear equations, we obtain the characteristic equations for (1) as

$$\frac{dx}{dt} = a(t),$$

$$\frac{dy}{dt} = b(t),$$

$$\frac{dz}{dt} = c(t),$$

along a solution curve  $C: \vec{r}(t)$  for the integral surface F(x, y, z) = 0.

# Method of Lagrange

#### Theorem

If u = u(x, y, z) and v = (x, y, z) are two given functions of x, y, and z and if F(u, v) = 0, where F is an arbitrary function of u and v, then z = z(x, y) satisfies a first order PDE

$$\frac{\partial(u,v)}{\partial(y,z)}z_x + \frac{\partial(u,v)}{\partial(z,x)}z_y = \frac{\partial(u,v)}{\partial(x,y)},$$

where

$$\frac{\partial(u,v)}{\partial(x,y)} = \left| \begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right|.$$

#### Proof.

An idea of the proof will be discussed in the class.



# Method of Lagrange

#### Theorem

The general solution of the quasi-linear equation

$$a(x,y,z)z_x + b(x,y,z)z_y = c(x,y,z)$$

is given by

$$F(u(x,y,z),v(x,y,z))=0,$$

where F is an arbitrary function of u and v with  $u(x, y, z) = c_1$  and  $v(x, y, z) = c_2$  are two linearly independent solutions of the equations

$$\frac{dx}{a(x,y,z)} = \frac{dy}{b(x,y,z)} = \frac{dz}{c(x,y,z)}.$$

#### Proof.

An idea of the proof will be discussed in the class.



**Problem:** Solve the following PDEs:

(a) 
$$(x^2 - y^2 - z^2)z_x + 2xyz_y = 2xz$$

**Problem:** Solve the following PDEs:

(a) 
$$(x^2 - y^2 - z^2)z_x + 2xyz_y = 2xz$$

(b) 
$$(y + zx)z_x - (x + yz)z_y + (y^2 - x^2) = 0$$

**Problem:** Solve the following PDEs:

(a) 
$$(x^2 - y^2 - z^2)z_x + 2xyz_y = 2xz$$

(b) 
$$(y + zx)z_x - (x + yz)z_y + (y^2 - x^2) = 0$$

(c) 
$$xzz_x + yzz_y = xy$$

## Integral surface passing through a given curve

We have already a method to find the general solution or integral surface of a quasilinear PDE using the method of Lagrange.

In certain cases, we need to find an integral surface for a PDE passigng through a particular curve.

Suppose the general solution for the quasilinear PDE

$$a(x,y,z)z_x + b(x,y,z)z_y = c(x,y,z)$$

is F(u(x, y, z), v(x, y, z)) = 0, where  $u(x, y, z) = c_1$  and  $v(x, y, z) = c_2$  are two linearly independent solutions of

$$\frac{dx}{a(x,y,z)} = \frac{dy}{b(x,y,z)} = \frac{dz}{c(x,y,z)}.$$

Suppose we want to find the integral curve for the given PDE passing through the curve C given by the parametric equation

$$x(0) = x(\tau), y(0) = y(\tau), \text{ and } z(0) = z(\tau).$$

## Integral surface passing through a given curve

Thus we must have

$$u(x(\tau), y(\tau), z(\tau)) = c_1$$
 and  $v(x(\tau), y(\tau), z(\tau)) = c_2$ .

We then eliminate the parameter  $\tau$  from these two equations, and obtain an relation of the form  $F(c_1, c_2) = 0$ .

Finally, we replace the constants  $c_1$  and  $c_2$  from the expressions of the general solution of the given PDE.

**Problem:** Find the equation of the integral surface for the PDE  $2y(z-3)z_x + (2x-z)z_y = y(2x-3)$  passing through the circle  $x^2 + y^2 = 2x, z = 0$ .

## Integral surface passing through a given curve

Thus we must have

$$u(x(\tau), y(\tau), z(\tau)) = c_1$$
 and  $v(x(\tau), y(\tau), z(\tau)) = c_2$ .

We then eliminate the parameter  $\tau$  from these two equations, and obtain an relation of the form  $F(c_1, c_2) = 0$ .

Finally, we replace the constants  $c_1$  and  $c_2$  from the expressions of the general solution of the given PDE.

**Problem:** Find the equation of the integral surface for the PDE  $2y(z-3)z_x + (2x-z)z_y = y(2x-3)$  passing through the circle  $x^2 + y^2 = 2x, z = 0$ .

**Problem:** Find the integral surface for the PDE  $yz_x + xz_y = z - 1$  passing through the curve  $x^2 + y^2 = z$ , y = 2x.

## Surfaces orthogonal to a given system of surfaces

We now talk about an application of 1st order PDE in finding orthogonal surfaces to a given system of surfaces.



Note that f(x, y, z) = c is the given family of surfaces, and u = u(x, y) is orthogonal surface to the given family of surfaces.

## Surfaces orthogonal to a given system of surfaces

Suppose a one pararmeter family of surfaces is given by the equation

$$f(x,y,z)=c. (2)$$

We want to find a system of surfaces which cut each of the surface of (2) at a right angle.

Let the system of surfaces which cut each of (2) at a right angle be

$$z = \phi(x, y) \text{ or } F(x, y, z) = \phi(x, y) - z.$$
 (3)

Since both the surfaces (2) and (3) intersect orthogonally, at a point of intersection (x, y, z), we must have that their respective normals are perpendicular.

As a result, we have

$$\nabla f \cdot \nabla F = f_x F_x + f_y F_y + f_z F_z = 0 \text{ or } f_x z_x + f_y z_y = f_z. \tag{4}$$

Note that (4) is a quasilinear PDE, which can be solved for F using the method of Lagrange.

**Problem:** Find the system of surfaces orthogonal to the family of surfaces given by  $x(x^2 + y^2 + z^2) = cy^2$ .

**Problem:** Find the system of surfaces orthogonal to the family of surfaces given by  $x(x^2 + y^2 + z^2) = cy^2$ .

**Problem:** Find the family of surfaces passing through the hyperbola  $x^2 - y^2 = a^2$ , z = 0 and orthogonal to the family of surfaces given by  $z = cxy(x^2 + y^2)$ .

## Thank you

# Thank You!!