4

Binary Numbers

- Digits are 1 and 0
 - > 1 = true
 - \rightarrow 0 = false
- MSB most significant bit
- LSB least significant bit
- Bit numbering:

```
MSB LSB
101100101011100
15 0
```

Binary Numbers

- Each digit (bit) is either 1 or 0
- Each bit represents a power of 2:

Table 1-3 Binary Bit Position Values.

Every binary number is a sum of powers of 2

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
20	1	28	256
21	2	2 ⁹	512
22	4	2 ¹⁰	1024
23	8	2 ¹¹	2048
24	16	2 ¹²	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	2 ¹⁴	16384
27	128	2 ¹⁵	32768

Translating Binary to Decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

$$dec = (D_{n-1} \times 2^{n-1}) + (D_{n-2} \times 2^{n-2}) + \dots + (D_1 \times 2^1) + (D_0 \times 2^0)$$

D = binary digit

binary 00001001 = decimal 9:

$$(1 \times 2^3) + (1 \times 2^0) = 9$$

Translating Unsigned Decimal to Binary

- Repeatedly divide the decimal integer by 2.
- Each remainder is a binary digit in the translated value:

Division	Quotient	Remainder
37 / 2	18	1
18 / 2	9	0
9/2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

37 = 100101

Binary Addition

 Starting with the LSB, add each pair of digits, include the carry if present.

			Cá	arry:	1				
	0	0	0	0	0	1	0	0	(4)
+	0	0	0	0	0	1	1	1	(7)
	0	0	0	0	1	0	1	1	(11)
bit position:	7	6	5	4	3	2	1	0	

Integer Storage Sizes

Standard sizes:

Table 1-4 Ranges of Unsigned Integers.

Storage Type	Range (low–high)	Powers of 2
Unsigned byte	0 to 255	0 to $(2^8 - 1)$
Unsigned word	0 to 65,535	0 to $(2^{16} - 1)$
Unsigned doubleword	0 to 4,294,967,295	0 to $(2^{32} - 1)$
Unsigned quadword	0 to 18,446,744,073,709,551,615	0 to $(2^{64} - 1)$

What is the largest unsigned integer that may be stored in 20 bits?

Large Measurements

- Kilobyte (KB), 2¹⁰ bytes
- Megabyte (MB), 2²⁰ bytes
- Gigabyte (GB), 2³⁰ bytes
- Terabyte (TB), 2⁴⁰ bytes
- Petabyte, 2⁵⁰ bytes
- Exabyte, 2⁶⁰ bytes
- Zettabyte, 2⁷⁰ bytes
- Yottabyte, 280 bytes
- Googol, 10¹⁰⁰

Hexadecimal Integers

Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Translating Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits.
- Example: Translate the binary integer 00010110101011110010100 to hexadecimal:

1	6	A	7	9	4
0001	0110	1010	0111	1001	0100

Converting Hexadecimal to Decimal

• Multiply each digit by its corresponding power of 16:

$$dec = (D_3 \times 16^3) + (D_2 \times 16^2) + (D_1 \times 16^1) + (D_0 \times 16^0)$$

• Hex 1234 equals $(1 \times 16^3) + (2 \times 16^2) + (3 \times 16^1) + (4 \times 16^0)$, or decimal 4,660.

• Hex 3BA4 equals $(3 \times 16^3) + (11 * 16^2) + (10 \times 16^1) + (4 \times 16^0)$, or decimal 15,268.

Powers of 16

Used when calculating hexadecimal values up to 8 digits long:

16 ⁿ	Decimal Value	16 ⁿ	Decimal Value
16 ⁰	1	16 ⁴	65,536
16 ¹	16	16 ⁵	1,048,576
16 ²	256	16 ⁶	16,777,216
16 ³	4096	16 ⁷	268,435,456

Converting Decimal to Hexadecimal

Division	Quotient	Remainder
422 / 16	26	6
26 / 16	1	A
1 / 16	0	1

decimal 422 = 1A6 hexadecimal

Hexadecimal Addition

- Divide the sum of two digits by the number base (16).
- The quotient becomes the carry value, and the remainder is the sum digit.

Important skill: Programmers frequently add and subtract the addresses of variables and instructions.

Hexadecimal Subtraction

When a borrow is required from the digit to the left, add 16 (decimal) to the current digit's value:

Practice: The address of var1 is 00400020. The address of the next variable after var1 is 0040006A. How many bytes are used by var1?

Signed Integers

- The highest bit indicates the sign.
- 1 = negative, 0 = positive

If the highest digit of a hexadecimal integer is > 7, the value is negative. Examples: 8A, C5, A2, 9D

Forming the Two's Complement

Bitwise NOT of the number and add 1

Starting value	00000001
Step 1: reverse the bits	11111110
Step 2: add 1 to the value from Step 1	11111110 +00000001
Sum: two's complement representation	11111111

Note that 00000001 + 11111111 = 00000000

4

8-bit Two's Complement Integers

sign									
bit									
0	1	1	1	1	1	1	1	=	127
0	0	0	0	0	0	1	0	=	2
0	0	0	0	0	0	0	1	=	1
0	0	0	0	0	0	0	0	=	0
1	1	1	1	1	1	1	1	=	-1
1	1	1	1	1	1	1	0	=	-2
1	0	0	0	0	0	0	1	=	-127
1	0	0	0	0	0	0	0	=	-128

8-bit two's complement integers

Binary

Binary Subtraction

- When subtracting A B, convert B to its two's complement
- Add A to (-B)

Advantages for 2's complement:

- No two 0's
- Sign bit
- Remove the need for separate circuits for add and sub

Ranges of Signed Integers

The highest bit is reserved for the sign. This limits the range:

Storage Type	Range (low–high)	Powers of 2
Signed byte	-128 to +127	-2^7 to $(2^7 - 1)$
Signed word	-32,768 to +32,767	-2^{15} to $(2^{15} - 1)$
Signed doubleword	-2,147,483,648 to 2,147,483,647	-2^{31} to $(2^{31} - 1)$
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2^{63} to $(2^{63} - 1)$

•

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2^k$

Examples of Fractional Binary Numbers

Value Representation

5-3/4 101.11₂ 2-7/8 10.111₂

63/64 0.111111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111..., just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0ε

Representable Numbers

- Limitation
 - \triangleright Can only exactly represent numbers of the form $x \times 2^y$
 - Other numbers have repeating bit representations

```
Value Representation
```

```
1/3 0.01010101[01]...<sub>2</sub>
1/5 0.001100110011[0011]...<sub>2</sub>
1/10 0.0001100110011[0011]...<sub>2</sub>
```

Converting Real Numbers

Binary real to decimal real

$$110.011_2 = 4 + 2 + 0.25 + 0.125 = 6.375$$

Decimal real to binary real

$$0.5625 \times 2 = 1.125$$
 first bit = 1
 $0.125 \times 2 = 0.25$ second bit = 0
 $0.25 \times 2 = 0.5$ third bit = 0
 $0.5 \times 2 = 1.0$ fourth bit = 1
 $4.5625 = 100.1001_2$