3.Sitzung

09.07.2021

Imbalanced-Data

Welches ist die passende Metrik?

- 1. Too good to be true -> imbalanced data bedarf ein paar spezieller Überlegungen
- 2. Wiederholung der wichtigsten Metriken
- 3. AUC

Eine kurze Überlegung zum Test-Set

4. imbalanced data sollte kein zufälliges Test-Set haben

Strategien für imbalanced data

- 5. Oversample Minority-class: SMOTE, etc
- 6. Undersample Majority-class
- 7. do both: oversample Minority-class and undersample Majority-class
- 8. gewichte Minority-class stärker
- 9. behandle Minority-class wie outlier

Kernel Methods

Support-Vektor-Machine

10. Verstehe die charakteristische Gleichung: Warum skalieren SVMs schlecht?

Kernel-Trick

- 11. Unterschiedliche Klassen sind in höheren Dimensionen trennbar
- 12. Wirkliche Projektion in höhere Dimensionen
- 13. Implizite Projektion in höhere Dimensionen

Kernel als Similarity-Measure

- 14. Verstehe die beiden Sichtweisen: non-lineares Ähnlichkeits-Mass vs. implizite Projektion und euklidsche Distanz
- 15. einfache Kernel-Regression mit Kernels zur Bestimmung der neighborhood
- 16. Dot-Product als Ähnlichkeits-Mass: cosine-similarity

Auto-ML

Hyper-Parameter-Tuning

- 17. Nachteile von Algorithmen mit vielen Parametern verstehen
- 18. Bayesian Optimization: surrogate function, acquisition function, objective function
- 19. Auto-Sklearn / SMAC als ein Beispiel für Hyper-Parameter-Tuning
- 20. Verstehe die wichtigsten Parameter von Auto-Sklearn

Brute-Force

- 21. autogluon.tabular als brute-force approach
- 22. Wiederhole Stacking, Bagging, Catboost

Genetic Programming

23. TPOT als ein Vertreter von Genetic Programming

Ungefähre Abschätzung der Möglichkeiten der Ansätze

24. Verschiedene Ansätze von AutoML bewerten können

Clustering

Ungenauigkeit von Cluster-Lösungen

- 25. Optimale Anzahl von Clustern unbekannt
- 26. Distanz-Basierende Verfahren sind anfällig auf unterschiedliche Skalierung
- 27. viele verschieden Cluster-Lösungen

Spectral-Clustering als Graph-Ansatz

- 28. Eigenwert-Ansatz mit Hilfe der Laplacian
- 29. Tf-Idf wiederholen; normierte Vektoren
- 30. cosine-similarity ist dot-product ist Korrelationskoeffizient r
- 31. approximate-nearest-neighbors zur Konstruktion des symmetrischen Graphen

DB-Scan als Dichte-basiertes Verfahren

32. Ungefähres Verständnis dieses Ansatzes