Pravděpodobnost a statistika - zkoušková písemka 15.5.2014

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Hokejisté jistého týmu vyšlou během utkání (hraného pouze na tři třetiny, tj. bez prodloužení) na branku průměrně 30 střel, přičemž průměrně každá desátá střela skončí gólem (všechny střely i góly přicházejí vzájemně zcela nezávisle na sobě). Určete pravděpodobnost, že

- a) během prvních dvou třetin padnou maximálně 3 góly ze strany tohoto týmu,
- b) během poslední třetiny vyšlou hokejisté tohoto týmu na branku minimálně 15 střel, přičemž žádná z nich neskončí gólem,
- c) na první gól tohoto týmu budou diváci čekat alespoň 30 hracích minut (pozn.: jedna třetina má 20 hracích minut),
- d) z prvních deseti střel tohoto týmu padnou maximálně 2 góly,
- e) nejpozději pátá střela tohoto týmu v utkání skončí gólem.

Úloha 2. Hromadného školení řidičů se zúčastnili zaměstnanci dvou firem, přičemž z firmy A dorazilo dvakrát více zaměstnanců než z firmy B. Mezi zaměstnanci firmy A bylo 25% žen, mezi zaměstnanci firmy B bylo 50% žen. Určete pravděpodobnost, že

- a) náhodně vybraná žena je z firmy A.
- b) náhodně vybraný muž je z firmy B.
- c) náhodně vybraný zaměstnanec na školení je žena.
- d) mezi 75 náhodně vybranými zaměstnancemi na školení je aspoň 30 žen. (Použijte CLV.)
- e) v pěti náhodně vybraných zaměstnancích z firmy A je maximálně jeden muž. (Spočtěte bez použití CLV.)

Úloha 3. U jistého druhu rostliny byly na 10 různých kusech naměřeny následující výšky (v cm):

93 | 103 | 97 | 101 | 97 | 112 | 103 | 104 | 107 | 103

- a) Nakreslete histogram a empirickou distribuční funkci těchto dat.
- b) Odhadněte z histogramu, jaké rozdělení má výška těchto rostlin.
- c) Odhadněte z dat střední hodnotu a rozptyl tohoto rozdělení (hint: $\sum x_i = 1020$, $\sum (x_i \bar{x})^2 = 264$).
- d) Statisticky otestujte (na libovolné hladině), zda je střední výška rostliny je 1m.
- e) Jaká je souvislost mezi teoretickou a empirickou distribuční funkcí?

Úloha 4. U dvou různých algoritmů třídění náhodných, stejně dlouhých posloupností bylo sledováno, zda doba třídění nepřesáhne zvolený limit. Statistika je následující:

	úspěšný	neúspěšný
algoritmus 1	40	10
algoritmus 2	20	30

- a) Určete marginální rozdělení náhodného vektoru (X,Y), kde X popisuje úspěšnost zpracování (X=1 pro úspěch a X=0 pro neúspěch), a Y popisuje zvolený algoritmus (Y=1 pro algoritmus 1 a Y=2 pro algoritmus 2).
- b) Statisticky otestujte na hladině 5%, zda je úspěšnost třídění závislá na zvoleném algoritmu.
- c) Statisticky otestujte na hladině 1%, zda počet úspěšných a neúspěšných výsledků byl přibližně stejný.
- d) Jsou počty úspěšných a neúspěšných výsledků nezávislé? Odpověď řádně zdůvodněte.
- e) Definujte **obecně** nezávislost diskrétních náhodných veličin X a Y.