Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

- Recall order- and set-based definitions of Shapley values in ML
- Interpret predictions via additive Shapley decomposition
- Understand SHAP as surrogate-based model
- Understand SHAP properties

SHAPLEY VALUES IN ML - A SHORT RECAP

Shapley values (order definition): Average over marginal contributions across all permutations of feature indices $\tau \in \Pi$:

$$\phi_{j}(\mathbf{x}) = \frac{1}{p!} \sum_{\tau \in \Pi} \hat{f}_{S_{j}^{\tau} \cup \{j\}}(\mathbf{x}_{S_{j}^{\tau} \cup \{j\}}) - \hat{f}_{S_{j}^{\tau}}(\mathbf{x}_{S_{j}^{\tau}})$$
marginal contribution of feature *j*

- For each permutation τ , determine coalition S_i^{τ} : features before j in τ
- ullet In \hat{f}_S , features not in S are marginalized (e.g., replaced by random imputations)
- Compute marginal contribution of adding j to S_i^{τ} via the difference above
- Average over all p! permutations (in practice, over M << p!)

SHAPLEY VALUES IN ML - A SHORT RECAP

Shapley values (order definition): Average over marginal contributions across all permutations of feature indices $\tau \in \Pi$:

$$\phi_j(\mathbf{x}) = rac{1}{
ho!} \sum_{ au \in \Pi} \hat{f}_{S_j^ au \cup \{j\}}(\mathbf{x}_{S_j^ au \cup \{j\}}) - \hat{f}_{S_j^ au}(\mathbf{x}_{S_j^ au})$$
marginal contribution of feature j

- In \hat{t}_S , features not in S are marginalized (e.g., replaced by random imputations)
- Compute marginal contribution of adding j to S_i^{τ} via the difference above
- Average over all p! permutations (in practice, over M << p!)

Alternative (set definition): Average marginal contribution over all subsets. weighted by their relative number of appearances in permutations:

$$\phi_j(\mathbf{x}) = \sum_{S \subseteq \{1, \dots, p\} \setminus \{j\}} \frac{|S|!(p-|S|-1)!}{p!} \left[\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{f}_S(\mathbf{x}_S) \right].$$

SHAPLEY VALUES IN ML - EXAMPLE

Example (Bike sharing data):

- Train random forest using humidity (hum), temperature (temp), windspeed (ws)
- Consider observation of interest **x** with prediction $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction $\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})] = 4515$
- Compute exact Shapley value for **x** for feature hum:

s	$\mathcal{S} \cup \{j\}$	Îs	$\hat{f}_{\mathcal{S} \cup \{j\}}$	weight
Ø	hum	4515	4635	2/6
temp	temp, hum	3087	3060	1/6
ws	ws, hum	4359	4450	1/6
temp, ws	temp, ws, hum	2623	2573	2/6

$$\Rightarrow \phi_{\mathsf{hum}}(\mathbf{x}) = \tfrac{2}{6}(4635 - 4515) + \tfrac{1}{6}(3060 - 3087) + \tfrac{1}{6}(4450 - 4359) + \tfrac{2}{6}(2573 - 2623) = 34$$

$$\Rightarrow$$
 Analogously $\phi_{\mathrm{temp}}(\mathbf{x}) = -1654,\,\phi_{\mathrm{ws}}(\mathbf{x}) = -322$

FROM SHAPLEY VALUES TO SHAP

Shapley value interpretation (for x):

- hum (+34) pushes prediction *above* baseline (= average prediction).
- ◆ temp (-1654) and ws (-322) pull prediction below baseline.
- Together, they explain full deviation from average prediction.

FROM SHAPLEY VALUES TO SHAP

Shapley value interpretation (for x):

- hum (+34) pushes prediction above baseline (= average prediction).
- temp (-1654) and ws (-322) pull prediction below baseline.
- Together, they explain full deviation from average prediction.

Actual prediction: 2572.67;

Shapley-based additive decomposition of prediction for **x** gives insights on how features shift prediction from baseline $\mathbb{E}(\hat{t})$:

$$\frac{\hat{f}(\mathbf{x})}{\text{actual prediction}} = \underbrace{\phi_0}_{\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{X})]} + \sum_{j \in \{\text{hum,temp,ws}\}} \phi_j(\mathbf{x})$$

$$2573 = 4515 + (34 - 1654 - 322) = 4515 - 1942$$

 \sim Like a LM evaluated at **x**: global intercept ϕ_0 plus per-feature contributions $\phi_i(\mathbf{x})$.

SHAP Motivation: Can we efficiently estimate this Shapley-based additive decomposition of $\hat{f}(\mathbf{x})$ using a surrogate model (while preserving Shapley axioms)?

SHAP FRAMEWORK Lundberg et al. 2017

SHAP expresses the prediction of **x** as a sum of contributions from each feature:

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z_j'$$

- $z'_i = 1$: feature j is "present" \Rightarrow use x_i in model evaluation
- $z'_i = 0$: feature j is "absent" \Rightarrow influence of x_i is removed via marginalization over a reference distribution

SHAP FRAMEWORK Lundberg et al. 2017

SHAP expresses the prediction of **x** as a sum of contributions from each feature:

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z_j'$$

- $\mathbf{z}' \in \{0,1\}^p$: simplified binary input referring to a coalition (coalition vector)
- $z'_i = 1$: feature j is "present" \Rightarrow use x_i in model evaluation
- $z_i' = 0$: feature j is "absent" \Rightarrow influence of x_i is removed via marginalization over a reference distribution

SHAP as a theoretical framework: Fit a surrogate model $g(\mathbf{z}')$ satisfying Shapley axioms and recovering $\hat{f}(\mathbf{x})$ when all features are "present":

$$\hat{f}(\mathbf{x}) = g(\mathbf{1}) = \phi_0 + \sum_{j=1}^p \phi_j$$

Evaluation of $g(\mathbf{z}')$: Let $S = \{j : z'_i = 1\}$ be the active coalition. Then:

- $g(\mathbf{z}') \approx \mathbb{E}[\hat{f}(\mathbf{X}) \mid \mathbf{X}_S = \mathbf{x}_S]$ (conditional expectation)
- $g(\mathbf{z}') \approx \mathbb{E}_{\mathbf{X}_{-S}}[\hat{f}(\mathbf{x}_S, \mathbf{X}_{-S})]$ (marginal expectation, i.e., PD function)
- Note: Practical implementations (e.g., KernelSHAP) use the marginal expectation, approximated via random imputations from background data.

SHAP FRAMEWORK • Lundberg et al. 2017

SHAP defines an additive surrogate $g(\mathbf{z}')$ over a binary simplified input $\mathbf{z}' \in \{0, 1\}^p$:

z'(k): coalition vector subset of features
$$g\left(\mathbf{z}'^{(k)}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j'^{(k)}$$

$$\phi_j: \mathbf{feature\ attribution}$$
 marginal effect of j in coalition

SHAP FRAMEWORK • Lundberg et al. 2017

SHAP defines an additive surrogate $g(\mathbf{z}')$ over a binary simplified input $\mathbf{z}' \in \{0, 1\}^p$:

$$g(\mathbf{z}'^{(k)})$$
: approx. prediction $g\left(\mathbf{z}'^{(k)}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j'^{(k)}$

Additive Feature Attribution

Next: How do we estimate the Shapley values ϕ_i efficiently?

 ϕ_i : Shapley value

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{p} \phi_j z'_j$$

Local accuracy corresponds to the **axiom of efficiency** in Shapley game theory

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z'_j$$

Missingness

$$z_j'=0\Longrightarrow \phi_j=0$$

Intuition: A "missing" feature (whose value is imputed) gets an attribution of zero

PROPERTIES

Local Accuracy

$$\hat{f}(\mathbf{x}) = g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{\rho} \phi_j z_j'$$

Missingness

$$z_j'=0\Longrightarrow \phi_j=0$$

Consistency (Let $\mathbf{z}_{-j}^{\prime(k)}$ refer to $z_{j}^{\prime(k)}=0$)

For any two models \hat{f} and \hat{f}' , if for all inputs $\mathbf{z}'^{(k)} \in \{0,1\}^p$

$$\hat{f}_{x}'\left(\mathbf{z}'^{(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}'^{(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}'^{(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}'^{(k)}\right) \Longrightarrow \phi_{j}\left(\hat{f}', \mathbf{x}\right) \geq \phi_{j}(\hat{f}, \mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays the same, the Shapley value also increases or stays the same

From consistency the Shapley axioms of additivity, dummy and symmetry follow

