(21.50l)
(i) 
$$\frac{1+2j}{2-j} = \frac{\sqrt{5} |\tan(2)|}{\sqrt{5} |\tan(2)|} = 1 |\tan(2)| - \tan(\frac{1}{2})| = 1 |q_0| = j$$

$$\frac{J(1-3j)}{(3-2j)(5+4j)} = \frac{1}{J_{13}} \frac{J_{10}}{J_{13}} \cdot 2 \frac{J_{0}}{J_{0}} + tan^{-1}(-3) - tan^{-1}(-3) - tan^{-1}(-3)$$

$$= 0.137 [13.47]^{\circ}$$

(i) 
$$G(s) = \frac{k}{(s+1)(s+2)}$$
  $H(s) = 1$  ,  $k=1$ 

Stjw 
$$\Rightarrow$$
 GH(jw) =  $\frac{1}{(1+jw)(2+jw)}$ . =  $\frac{1}{1+w^2}$  [tan'the]  $\frac{1}{1+w^2$ 

$$(2 \omega \rightarrow \omega \rightleftharpoons) |GH(j\omega)| = \frac{1}{\omega^2} \Rightarrow Re$$

$$(3 \omega \rightarrow \omega \rightleftharpoons) |GH(j\omega)| = \frac{1}{\omega^2} \Rightarrow Re$$

$$(4 \omega \rightarrow \omega \rightleftharpoons) |GH(j\omega)| = -2\tan^2(\omega) = -180^\circ$$

$$G(s) = \frac{k(s+3)}{(s+1)(s+3)}$$
  $H(s) = 1$   $k=1$ 

$$G(s) = \frac{k(s+3)}{(s+1)(s+2)}, H(s) = 1, k=1$$

$$G(s) = \frac{(s+1)(s+2)}{(s+1)(s+2)}, H(s) = 1, k=1$$

$$G(s) = \frac{(s+1)(s+2)}{(s+1)(s+2)}, H(s) = 1, k=1$$

$$G(s) = \frac{1 \cdot (s+2)}{(s+1)(s+2)}, H(s) = 1$$

$$G(s) = \frac{1 \cdot (s+3)}{(s+1)(s+2)}, H(s) = 1$$

$$G(s) = \frac{1 \cdot (s+3)}{(s+3)(s+2)}, H(s) = 1$$

$$G(s) = \frac{1 \cdot (s+3)}{(s+3)(s+3)}, H(s) = 1$$

$$G(s) =$$



23 sol GH(5) =  $\frac{27k}{(5+3)^3}$ , k=1  $\frac{27}{(3+jw)^3} = \frac{27(5-3)^3}{(3+3^2)^3(3+3a^3(\frac{3}{3}))} = \frac{27}{(3+3^2)^3(3+3a^3(\frac{3}{3}))} = \frac{27}{(3+3^2)^3(3+3a^3(\frac{3}{3}))} = \frac{27}{(3+3^2)^3(3+3a^3(\frac{3}{3}))} = \frac{27}{(3+3^2)^3(3+3a^3(\frac{3}{3}))} = \frac{27}{(3+3a^3(\frac{3}{3}))} = \frac{27}{(3+3a^3(\frac{3}{3})} = \frac{27}{(3+3a^3(\frac{3})}) = \frac{27}{(3+3a^3(\frac{3})})} = \frac{27}{(3+3a^3(\frac{3})})}$  $\begin{array}{ccc}
O & W = 0 & \Leftrightarrow & GH(j_0) = 1[0] \\
O & W \Rightarrow W & \Leftrightarrow & GH(j_w) = 0 [-2]0
\end{array}$ Nguist sketch: (i)  $G(s) = \frac{k}{(s+1)(s+2)(s+3)}$ ,  $H(s) = \frac{1}{s+3}$  k=10, 40, 100  $GH(fw) = \frac{k}{(3(1)(1)(1))} = \frac{kL^2}{1}$ 24.50 =  $\frac{k}{\int ... \int ... \int -tan^{2}(\omega) - tan^{2}(\frac{\omega}{2}) - tan^{2}(\frac{\omega}{3})}$ Nyquist Sketch : Im, Was Campus



• Tutor 7-2,

Q4 (Ti) sol 1 GM = GH(jw) W=JII

$$= \left(\begin{array}{c} k \\ \hline \end{array}\right) = \begin{bmatrix} J \\ J \end{bmatrix}$$

$$= \frac{J_{12} \cdot J_{15} \cdot J_{20}}{R} = \frac{60}{R},$$

For 
$$k=10$$
  $\varphi_0$   $100$ .  
then  $GM = 6$   $1.5$   $0.6$   
Bastable unstable

(1). 
$$k=10$$
 W=  $\iff$   $\frac{10}{52/5}\sqrt{10} = 1$   
(2).  $k=40$  W = 2.73  $\iff$   $\frac{10}{52/5}\sqrt{10} = 1$   
(3).  $k=100$  W =  $9.14$   $\iff$   $9.88$   $\approx 1$ 

(2) (i) : GH(s) = (SH)(S+2)., (ii) : GH(jw) = (Hjw)2(1+j\frac{1}{2}). => Hjw Hj\frac{1}{2} \frac{1}{2}.

 $(ii) \quad GH(s) = \frac{k(s+3)}{(s+1)(s+2)} \quad k = 1$   $GH(j_{11}) = \frac{1}{11j_{11}} \cdot \frac{1}{1+j_{12}} \cdot \frac{1}{2} \cdot \frac{3}{3} \left(1+j_{13}^{14}\right).$   $20 \log_{10}(13) = 9.54 \text{ JB}$ 

(See the Pie-1 in next Page),

Qb. GH(jw) = 27 (+jw)3.

PM=180° GM=20 dB

(See the Piczin next page)

(See the Pic-3 in next page).

For Q5



For Q6



For Q7

