# Lecture I-2: Data wrangling

BTBI30081

統計應用方法

2025/2/19

# Data analysis process

- Data import (tidying data)
- 2. Data transformation (data manipulation)
- Data visualization
- 4. Modeling

Each of these steps need their own tools and software to complete

# Bottlenecks in data analysis

- One of the most time-consuming aspects of the data analysis process is "data wrangling" or "data munging"
  - Import, clean and transform messy data into a format that is useful for data visualization and modeling
  - Refer to the first two steps in the data analysis process

# Package: tidyverse

- The tidyverse is a collection of R packages designed for data science
- The core tidyverse includes the packages

| tibble  | simple data frames             |  |  |
|---------|--------------------------------|--|--|
| readr   | read rectangular text data     |  |  |
| dplyr   | a grammar of data manipulation |  |  |
| tidyr   | easily tidy data               |  |  |
| ggplot2 | grammar of graphics            |  |  |
| purrr   | functional programming tools   |  |  |

 tibble, readr, tidyr, dplyr in tidyverse are for data wrangling

# Data import

• The first step in data analysis is importing the data into the R environment

- The are several function in the base package available for reading data
  - read.table sep="" (white space)
  - read.csv sep=";" (comma)
  - read.delim sep="\t" (Tab)
  - These functions are identical except for the "field separator character" are different.
  - If it does not contain an absolute path, the file name is relative to the current working directory, getwd().

# **Example**

We took a poll of our students to obtain (self-reported) height and gender. Our task is to describe this list of heights.

## Different ways to import data into R

- Option I: Download file with your browser to your working directory
- Option 2: Read from within R
- Option 3: Download from within R
- RMD\_example 01-2.1

# Data types

- dat <- read.csv(filename)</li>
  - We make assignments in R:"<-"</li>
  - We put the content of what comes out of read.csv into an object "dat"
  - The data type of dat is "data.frame" one the most widely used data types in R

# Tidy data type: tibble

- tibble (or tbl\_df) is a modern reimagining of the data.frame, keeping what time has proven to be effective, and throwing out what is not
- In tidyverse, all functions adopt and produce tibble one of the unifying features of the tidyverse
- Creating tibble: RMD\_example 01-2.2

# Data import with readr

- We can use the functions in readr package in tidyverse to import data, which will create tibble data type
  - read csv
  - read\_tsc
  - read delim
- RMD\_example 01-2.2

# Data manipulation with base functions

- Extracting columns, Quick review of vectors,
  Coercion
- RMD\_example 01-2.3

# Data manipulation with dplyr

Important dplyr functions to remember

| select()    | select columns           |
|-------------|--------------------------|
| mutate()    | create new columns       |
| filter()    | filter rows              |
| arrange()   | arrange or re-order rows |
| group_by()  | grouping operations      |
| summarise() | summarise values         |

RMD\_example 01-2.4



# Joining two data frames in dplyr

#### Mutating Joins



### dplyr::left\_join(a, b, by = "x1")

Join matching rows from b to a.



Join matching rows from a to b.

Join data. Retain only rows in both sets.

Join data. Retain all values, all rows.

### Filtering Joins

| <b>x1</b> | x2 |
|-----------|----|
| A         | 1  |
| В         | 2  |

dplyr::semi\_join(a, b, by = "x1")

All rows in a that have a match in b.

dplyr::anti\_join(a, b, by = "x1")

All rows in a that do not have a match in b.



| x1 | x2 |
|----|----|
| В  | 2  |
| C  | 3  |

### dplyr::intersect(y, z)

Rows that appear in both y and z.

| x1 | x2 |
|----|----|
| A  | 1  |
| В  | 2  |
| C  | 3  |
| D  | 4  |

### dplyr::union(y, z)

Rows that appear in either or both y and z.



### dplyr::setdiff(y, z)

Rows that appear in y but not z.

### Binding

| x1 | x2 |
|----|----|
| Α  | 1  |
| В  | 2  |
| C  | 3  |
| В  | 2  |
| C  | 3  |
| D  | 4  |

| x1 | x2 | x1 | x2 |
|----|----|----|----|
| A  | 1  | В  | 2  |
| В  | 2  | С  | 3  |
| C  | 3  | D  | 4  |

### dplyr::bind\_rows(y, z)

Append z to y as new rows.

### dplyr::bind\_cols(y, z)

Append z to y as new columns.

Caution: matches rows by position.

## More data transformation with dplyr

 https://rstudio.github.io/cheatsheets/html/datatransformation.html