Equivalencia en lógica proposicional

Clase 5

IIC 1253

Prof. Sebastián Bugedo

Outline

Obertura

Equivalencia lógica

Conjuntos funcionalmente completos

Modelación

Epílogo

Primer Acto: Fundamentos Inducción y lógica

Playlist Primer Acto

Playlist del curso: DiscretiWawos

Además sigan en instagram:

@orquesta_tamen

Sintaxis de la lógica proposicional

Sea P un conjunto de variables proposicionales

Definición

Dado P, se define $\mathcal{L}(P)$ como el menor conjunto que satisface

- 1. Si $p \in P$, entonces $p \in \mathcal{L}(P)$
- 2. Si $\varphi \in \mathcal{L}(P)$, entonces $(\neg \varphi) \in \mathcal{L}(P)$
- 3. Si $\varphi, \psi \in \mathcal{L}(P)$ y $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, entonces $(\varphi \star \psi) \in \mathcal{L}(P)$

Cada $\varphi \in \mathcal{L}(P)$ es una fórmula proposicional

Notemos que $\mathcal{L}(P)$ se define **inductivamente** a partir de un P fijo

Visualizando la semántica: mundos posibles

Consideremos los conectivos básicos y sus tablas de verdad

р	q	$(\neg p)$	$(p \land q)$	$(p \lor q)$	$(p \rightarrow q)$	$(p \leftrightarrow q)$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Ejercicio

Considere un conjunto de variables proposicionales $P = \{p_1, \dots, p_n\}$.

- ¿Cuántas valuaciones diferentes existen para variables en P?
- **U** ¿Cuántas tablas de verdad diferentes hay en $\mathcal{L}(P)$?

Los números 2ⁿ y 2^{2ⁿ} nos acompañarán por siempre en computación

Visualizando la semántica: mundos posibles

Consideremos los conectivos básicos y sus tablas de verdad

p	q	$(\neg p)$	$(p \wedge q)$	$(p \lor q)$	$(p \rightarrow q)$	$(p \leftrightarrow q)$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Comparemos con una fórmula particular $\varphi = (\neg((\neg p) \land (\neg q)))$

$$\begin{array}{c|cccc} p & q & \varphi \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

¿Se parece a alguna tabla de verdad conocida?

Objetivos de la clase

- Demostrar equivalencias lógicas sencillas
- □ Determinar si un conjunto es funcionalmente completo
- □ Aplicar la lógica para modelación

Outline

Obertura

Equivalencia lógica

Conjuntos funcionalmente completos

Modelación

Epílogo

Definición

Dos fórmulas $\varphi, \psi \in \mathcal{L}(P)$ son lógicamente equivalentes si para toda valuación σ , se tiene que $\sigma(\varphi) = \sigma(\psi)$, denotándolo como $\varphi \equiv \psi$.

Las fórmulas equivalentes comparten semántica teniendo diferente sintaxis

Ejemplo

Demostremos que

$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

Para esto, podemos mostrar las tablas de verdad de ambas fórmulas con variables en $P = \{p, q, r\}$

р	q	r	$(p \land q) \land r$	$p \wedge (q \wedge r)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Como sus tablas de verdad son iguales, concluimos que son equivalentes.

Más aún, este resultado muestra que el conectivo \wedge es asociativo

Mediante tablas de verdad se prueba una serie de leyes de equivalencia

Proposición (leyes de equivalencia)

Para fórmulas proposicionales $\varphi, \psi, \theta \in \mathcal{L}(P)$ se cumple

1. Doble negación

$$\neg(\neg\varphi)\equiv\varphi$$

2. Leyes de De Morgan

$$\neg(\varphi \land \psi) \equiv (\neg\varphi) \lor (\neg\psi)$$
$$\neg(\varphi \lor \psi) \equiv (\neg\varphi) \land (\neg\psi)$$

3. Conmutatividad

$$\varphi \wedge \psi \equiv \psi \wedge \varphi$$
$$\varphi \vee \psi \equiv \psi \vee \varphi$$

Proposición (leyes de equivalencia)

Para fórmulas proposicionales $\varphi, \psi, \theta \in \mathcal{L}(P)$ se cumple

4. Asociatividad

$$\varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta$$
$$\varphi \vee (\psi \vee \theta) \equiv (\varphi \vee \psi) \vee \theta$$

5. Distributividad

$$\varphi \wedge (\psi \vee \theta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \theta)$$
$$\varphi \vee (\psi \wedge \theta) \equiv (\varphi \vee \psi) \wedge (\varphi \vee \theta)$$

6. Idempotencia

$$\varphi \land \varphi \equiv \varphi$$
$$\varphi \lor \varphi \equiv \varphi$$

Proposición (leyes de equivalencia)

Para fórmulas proposicionales $\varphi, \psi, \theta \in \mathcal{L}(P)$ se cumple

7. Absorción

$$\varphi \wedge (\varphi \vee \psi) \equiv \varphi$$
$$\varphi \vee (\varphi \wedge \psi) \equiv \varphi$$

8. Implicancia material

$$\varphi \to \psi \equiv (\neg \varphi) \lor \psi$$

9. Doble implicancia

$$\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$$

Demuestre las leyes enunciadas.

¿Se puede demostrar que → es asociativo?

Consideraciones...

Desde ahora

- Omitiremos paréntesis externos
- Omitiremos paréntesis asociativos
- Omitiremos cualquier paréntesis que no produzca ambigüedad
- La negación tendrá precedencia sobre los conectivos binarios:

$$((\neg p) \lor q) \land (\neg r)$$
 lo escribiremos como $(\neg p \lor q) \land \neg r$

Usaremos operadores generalizados por simplicidad:

$$\bigvee_{i=1}^{n} \varphi_{i} = \varphi_{1} \vee \dots \vee \varphi_{n}$$

$$\bigwedge_{i=1}^{n} \varphi_{i} = \varphi_{1} \wedge \dots \wedge \varphi_{n}$$

¿Por qué es ilegal usar los operadores generalizados con $n = \infty$?

Outline

Obertura

Equivalencia lógica

Conjuntos funcionalmente completos

Modelación

Epílogo

Tenemos una fórmula $\varphi \in L(P)$, con $P = \{p, q, r\}$, y lo único que conocemos de ella es que cumple la siguiente tabla de verdad:

p	q	r	φ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

¿Podemos construir una fórmula equivalente a φ ?

Ejemplo

	р	q	r	φ		р	q	r	φ
σ_1	0	0	0	1		1			
σ_2	0	0	1	0	σ_6	1	0	1	0
σ_3	0	1	0	0	σ_7	1	1	0	0
	0				σ_8	1	1	1	1

Estrategia:

- Codificar cada valuación σ tal que $\sigma(\varphi)$ = 1
- Combinar dichas codificaciones mediante disyunción

Con esto, proponemos la siguiente fórmula equivalente a φ

$$\underbrace{\left(\left(\neg p\right) \wedge \left(\neg q\right) \wedge \left(\neg r\right)\right)}_{\sigma_{1}} \vee \underbrace{\left(\left(\neg p\right) \wedge q \wedge r\right)}_{\sigma_{4}} \vee \underbrace{\left(p \wedge \left(\neg q\right) \wedge \left(\neg r\right)\right)}_{\sigma_{5}} \vee \underbrace{\left(p \wedge q \wedge r\right)}_{\sigma_{8}}$$

Podemos generalizar esta idea para n variables

Consideremos el conectivo *n*-ario siguiente

	p_1	p_2	 p_{n-1}	p_n	φ
σ_1	0	0	 0	0	$\sigma_1(arphi)$
σ_2	0	0	 0	1	$\sigma_2(arphi)$
÷	:	÷	 :	÷	÷
σ_{2^n}	1	1	 1	1	$\sigma_{2^n}(arphi)$

Para cada σ_j con $j \in \{1, ..., 2^n\}$ consideremos la siguiente fórmula:

$$\varphi_j = \left(\bigwedge_{\substack{i=1...n\\ \sigma_j(\rho_i)=1}} p_i \right) \wedge \left(\bigwedge_{\substack{i=1...n\\ \sigma_j(\rho_i)=0}} (\neg p_i) \right)$$

La fórmula φ_i codifica la j-ésima valuación

	p_1	p_2	 p_{n-1}	p_n	φ
σ_1	0	0	 0	0	$\sigma_1(\varphi)$
σ_2	0	0	 0	1	$\sigma_2(arphi)$
:	:	÷	 :	÷	÷
σ_{2^n}	1	1	 1	1	$\sigma_{2^n}(arphi)$

Ahora tomamos la disyunción de las valuaciones que satisfacen a arphi

$$\bigvee_{\substack{j=1\dots 2^n\\\sigma_j(\varphi)=1}}\varphi_j=\bigvee_{\substack{j=1\dots 2^n\\\sigma_j(\varphi)=1}}\left(\left(\bigwedge_{\substack{i=1\dots n\\\sigma_j(\varphi_i)=1}}p_i\right)\wedge\left(\bigwedge_{\substack{i=1\dots n\\\sigma_j(\varphi_i)=0}}\left(\neg p_i\right)\right)\right)$$

La fórmula resultante es equivalente a φ

Teorema

Para toda tabla de verdad existe una fórmula equivalente.

Corolario

Para toda tabla de verdad existe una fórmula equivalente que solo usa símbolos $\neg, \land y \lor$.

Definición

Un conjunto de conectivos lógicos se dice funcionalmente completo si toda fórmula en $\mathcal{L}(P)$ es lógicamente equivalente a una fórmula que sólo usa esos conectivos.

Ejemplo

Ya demostramos que el conjunto $C = \{\neg, \land, \lor\}$ es funcionalmente completo, pues para toda fórmula φ , se tiene que

$$\varphi \equiv \bigvee_{\substack{j=1\dots 2^n\\ \sigma_j(\varphi)=1}} \left(\left(\bigwedge_{\substack{i=1\dots n\\ \sigma_j(\rho_i)=1}} p_i \right) \wedge \left(\bigwedge_{\substack{i=1\dots n\\ \sigma_j(\rho_i)=0}} (\neg p_i) \right) \right)$$

Ejercicios

- 1. Demuestre que $\{\neg, \land\}$, $\{\neg, \lor\}$ y $\{\neg, \rightarrow\}$ son funcionalmente completos.
- 2. Demuestre que {¬} no es funcionalmente completo. (propuesto ★)
- 3. ¿Es $\{\land, \lor, \rightarrow, \leftrightarrow\}$ funcionalmente completo? (propuesto \bigstar)

Ejercicio 1.

Demostraremos que $\{\neg, \rightarrow\}$ es funcionalmente completo.

Como sabemos que $C = \{\neg, \land, \lor\}$ es funcionalmente completo, demostraremos por inducción que toda fórmula construida usando sólo los conectivos anteriores es lógicamente equivalente a otra fórmula que solo usa $\neg y \rightarrow$. Con esto, queda demostrado que $C' = \{\neg, \rightarrow\}$ es funcionalmente completo.

- BI: Si $\varphi = p$, con $p \in P$, la propiedad se cumple trivialmente.
- HI: Supongamos que $\varphi, \psi \in L(P)$, que sólo usan conectivos en C, son tales que $\varphi \equiv \varphi'$ y $\psi \equiv \psi'$, donde φ', ψ' sólo usan conectivos en C'.

Es crucial la dirección. Queremos probar que $C' = \{\neg, \rightarrow\}$ es F.C. por lo que debemos usar los símbolos de C' para expresar los de C

Ejercicio 1.

- HI: Supongamos que $\varphi, \psi \in L(P)$, que sólo usan conectivos en C, son tales que $\varphi \equiv \varphi'$ y $\psi \equiv \psi'$, donde φ', ψ' sólo usan conectivos en C'.
- TI: Consideraremos una fórmula θ construida con los pasos inductivos para los operadores en C. Tenemos tres casos que analizar:
 - $\theta = (\neg \varphi)$
 - $\theta = \varphi \wedge \psi$
 - $\theta = \varphi \vee \psi$

Ejercicio 1.

- **TI:** Consideraremos una fórmula θ construida con los pasos inductivos para los operadores en C.
 - $\theta = (\neg \varphi) \stackrel{HI}{=} (\neg \varphi')$, y como φ' sólo usa conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.
 - $\theta = \varphi \wedge \psi \stackrel{HI}{\equiv} \varphi' \wedge \psi'$

Usando las leyes de doble negación, De Morgan y de implicancia:

$$\theta \equiv \neg(\neg(\varphi' \land \psi')) \equiv \neg((\neg\varphi') \lor (\neg\psi')) \equiv \neg(\varphi' \to (\neg\psi'))$$

Y como φ', ψ' sólo usan conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

Ejercicio 1.

- **TI:** Consideraremos una fórmula θ construida con los pasos inductivos para los operadores en C.
 - $\theta = \varphi \lor \psi \stackrel{HI}{\equiv} \varphi' \lor \psi'$

Usando la ley de implicancia:

$$\theta \equiv (\neg \varphi') \rightarrow \psi'$$

Y como φ', ψ' sólo usan conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

Luego, por inducción estructural se concluye que para toda fórmula con símbolos solo de C, existe una fórmula equivalente con símbolos en C'.

Ejercicio 2. (propuesto ★)

Demostraremos que $\{\neg\}$ no es funcionalmente completo.

Dado $P = \{p\}$, demostraremos por inducción que toda fórmula en L(P) construida usando sólo p y \neg es lógicamente equivalente a p o a $\neg p$. Como ninguna de estas fórmulas es equivalente a $p \land \neg p$, se concluye que $\{\neg\}$ no puede ser funcionalmente completo.

Demostraremos la propiedad

$$P(\varphi) := \varphi$$
 es equivalente a p o a $\neg p$

- **BI:** Si $\varphi = p$, con $p \in P$, la propiedad se cumple trivialmente.
- HI: Supongamos que $\varphi \in L(P)$ construida usando sólo p y ¬ es equivalente a p o a ¬p.

Esta demostración es "negativa"... daremos un caso en que no se cumple la definición de funcionalmente completo

Ejercicio 2. (propuesto ★)

■ **TI:** El único caso inductivo que tenemos que demostrar es $\psi = \neg \varphi$, pues sólo podemos usar el conectivo \neg .

Por **HI**, sabemos que para toda valuación σ se cumple que $\sigma(\varphi) = \sigma(p)$ o $\sigma(\varphi) = \sigma(\neg p)$. Podemos hacer una tabla de verdad:

$$\begin{array}{c|cc}
\varphi & \psi = \neg \varphi \\
\hline
p & \neg p \\
\neg p & p
\end{array}$$

Concluimos que ψ es equivalente a p o a $\neg p$.

Por lo tanto, por el argumento dado al principio, tenemos que $\{\neg\}$ no es funcionalmente completo.

Outline

Obertura

Equivalencia lógica

Conjuntos funcionalmente completos

Modelación

Epílogo

Definición

Una fórmula φ es satisfacible si existe una valuación σ tal que $\sigma(\varphi)$ = 1.

Ejemplo

Las siguientes fórmulas son satisfacibles:

$$(p \lor q) \to r$$
$$p \to \neg p$$

Las siguientes fórmulas no son satisfacibles:

$$p \land \neg p$$
$$(p \lor q) \leftrightarrow \neg (p \lor q)$$

Una fórmula es satisfacible si hay algún "mundo" en el cual es verdadera

El problema de satisfacibilidad

Problema de satisfacibilida (SAT)

Sea φ una fórmula proposicional. El problema de satisfacibilidad consiste en determinar si φ es satisfacible o no.

Este es un problema central en computación

- Permite resolver problemas fuera de la lógica...
- ... usando modelación en lógica proposicional

¿Es un problema difícil? ¿Cómo se resuelve?

Modelación en lógica proposicional

Ejercicio

Sea M un mapa conformado por n países. Decimos que M es 3-coloreable si se pueden pintar todos los países con 3 colores sin que ningún par de países adyacente tenga el mismo color. En otras palabras, los países vecinos deben tener colores distintos.

Dado un mapa M, construya una fórmula $\varphi \in \mathcal{L}(P)$ tal que M es 3-coloreable si y sólo si φ es satisfacible.

La fórmula φ debe **codificar** los requisitos y estructura del problema

Ejercicio (mapa 3-coloreable)

Sea M el mapa. Consideremos la lista de países $\{1, 2, ..., n\}$ y una lista de pares de países adyacentes $A = \{(i, j), (k, m), ...\}$.

Seguiremos la siguiente estrategia para resolver el problema

- 1. Definición de variables proposicionales
 - · Variables predefinidas por el problema
 - Variables que hay que asignar
- 2. Construcción de restricciones a través de fórmulas proposicionales
- 3. Demostración de que φ cumple lo pedido (si y solo si)

Ejercicio (mapa 3-coloreable)

Primero, definimos las variables proposicionales. Usamos dos tipos de variables:

Para $1 \le i, j \le n$ definimos

$$p_{ij} = \begin{cases} 1 & \text{si } i \text{ es adyacente con } j \\ 0 & \text{si no} \end{cases}$$

Observamos que cada p_{ij} se conoce de antemano una vez que conocemos el mapa M. Debemos **inicializarlas**.

Análogamente, para $1 \le i \le n$ definimos

$$r_i$$
 b_i g_i

que valen 1 si el país i es pintado rojo, azul o verde respectivamente, y 0 en caso contrario. Estas variables deben ser **determinadas** para resolver el problema.

¿Qué restricciones son naturales para este problema?

Ejercicio (mapa 3-coloreable)

Para representar el problema vamos a definir φ como la conjunción de las siguientes fórmulas.

"Cada país tiene uno y solo un color"

$$\varphi_{C} = \bigwedge_{i=1}^{n} \left(\left(r_{i} \vee b_{i} \vee g_{i} \right) \wedge \left(r_{i} \rightarrow \left(\neg b_{i} \wedge \neg g_{i} \right) \right) \wedge \left(b_{i} \rightarrow \left(\neg r_{i} \wedge \neg g_{i} \right) \right) \right) \wedge \left(g_{i} \rightarrow \left(\neg r_{i} \wedge \neg b_{i} \right) \right)$$

"Países adyacentes deben tener colores distintos"

$$\varphi_{D} = \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{n} \left(p_{ij} \to \left((r_{i} \to \neg r_{j}) \land (b_{i} \to \neg b_{j}) \land (g_{i} \to \neg g_{j}) \right) \right)$$

Ejercicio (mapa 3-coloreable)

■ Inicializamos las variables conocidas por la instancia M del problema

$$\varphi_M = \bigwedge_{(i,j)\in A} p_{ij} \wedge \bigwedge_{(i,j)\notin A} \neg p_{ij}$$

Entonces, nuestra fórmula será la conjunción de las fórmulas anteriores:

$$\varphi = \varphi_C \wedge \varphi_D \wedge \varphi_M$$

Ahora demostraremos que M es 3-coloreable si y sólo si φ es satisfacible.

Debemos demostrar dos direcciones

Ejercicio (mapa 3-coloreable)

(⇒) **P.D.** Si M es 3-coloreable, entonces φ es satisfacible.

Supongamos que M es 3-coloreable. Luego, existe una coloración válida para M.Construimos una valuación σ según

$$\sigma(p_{ij}) = \begin{cases} 1 & \text{si } i, j \text{ son adyacentes en } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(r_i) = \begin{cases} 1 & \text{si } i \text{ es rojo en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(b_i) = \begin{cases} 1 & \text{si } i \text{ es azul en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(g_i) = \begin{cases} 1 & \text{si } i \text{ es verde en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

Esta dirección consiste en construir una valuación que satisface φ

Ejercicio (mapa 3-coloreable)

- (⇒) (continuación) Ahora verificamos que $\sigma(\varphi)$ = 1:
 - $\sigma(\varphi_C)$: para cada país i, se debe cumplir que $\sigma(r_i) = 1$, o que $\sigma(g_i) = 1$, o que $\sigma(b_i) = 1$, y solo una de estas, por construcción de σ . Luego, es claro que $\sigma(\varphi_C) = 1$.
 - $\sigma(\varphi_D)$: para cada combinación de países i,j, sabemos que $\sigma(\rho_{ij})=1$ solo cuando los países son adyacentes. Entonces, como en φ_D tenemos una implicancia, solo nos preocuparemos de los pares de países adyacentes. En el consecuente de la implicancia, sabemos que si por ejemplo $\sigma(r_i)=1$, se debe cumplir que $\sigma(r_j)=0$, dado que construimos σ a partir de una 3-coloración. Para las otras dos implicancias, sabemos que el lado izquierdo va a ser falso (por la fórmula φ_C), y por lo tanto todo el lado derecho se hace verdadero, y entonces $\sigma(\varphi_D)=1$. El análisis para cuando i es de otro color es análogo.

Ejercicio (mapa 3-coloreable)

- (⇒) (continuación)
 - $\sigma(\varphi_M)$: por construcción de σ es claro que $\sigma(\varphi_M)$ = 1, dado que la construimos precisamente como esta fórmula, asignando 1 a pares de países adyacentes y 0 a los que no.

Finalmente, como φ es la conjunción de las fórmulas anteriores, concluimos que $\sigma(\varphi) = 1$, y entonces φ es satisfacible.

La dirección opuesta comienza suponiendo que φ es satisfacible

Ejercicio (mapa 3-coloreable)

(\Leftarrow) **P.D.** Si φ es satisfacible, entonces M es 3-coloreable.

Supongamos que φ es satisfacible. Luego, existe una valuación σ tal que $\sigma(\varphi) = 1$, y por construcción $\sigma(\varphi_C) = \sigma(\varphi_D) = \sigma(\varphi_M) = 1$. Usaremos esta valuación para colorear el mapa.

En primer lugar, como $\sigma(\varphi_C)=1$, sabemos que para cada i, $\sigma(r_i\vee g_i\vee b_i)=1$, y por lo tanto cada país tiene asignado al menos un color. Sin pérdida de generalidad, supongamos que $\sigma(r_k)=1$, es decir, pintamos el país k rojo. Como también se cumple que $\sigma(r_k\to (\neg g_k\wedge \neg b_k))=1$, necesariamente $\sigma(g_k)=0$ y $\sigma(b_k)=0$, y por lo tanto cada país tiene un único color.

Esta dirección busca deducir la **existencia** de una coloración a partir de la valuación

Ejercicio (mapa 3-coloreable)

(←) (continuación)

En segundo lugar, como $\sigma(\varphi_M)=1$, sabemos que si i,j son adyacentes en M, $\sigma(p_{ij})=1$, y si no lo son, $\sigma(p_{ij})=0$. Ahora, en $\sigma(\varphi_D)=1$, solo nos interesa el primer caso (dado que en el segundo no podemos concluir nada de la implicancia). Tomemos entonces i,j adyacentes, y sin pérdida de generalidad supongamos que $\sigma(r_i)=1$. Como $\sigma(r_i\to\neg r_j)=1$ para todo j adyacente a i, necesariamente $\sigma(r_j)=0$, y entonces los países adyacentes no pueden estar pintados del mismo color.

Concluimos que usando los colores asignados por φ a través de r_i, g_i, b_i , podemos 3-colorear M.

Otros conceptos asociados a satisfacibilidad

Definición

Una fórmula φ es una contradicción si no es satisfacible; es decir, para toda valuación σ se tiene que $\sigma(\varphi) = 0$.

Ejemplo

 $p \wedge \neg p$

Definición

Una fórmula φ es una tautología si para toda valuación σ se tiene que $\sigma(\varphi)$ = 1.

Ejemplo

 $p \vee \neg p$

 $p \leftrightarrow p$

Otros conceptos asociados a satisfacibilidad

Definición

Una fórmula φ es una **tautología** si para toda valuación σ se tiene que $\sigma(\varphi)$ = 1.

Podemos definir la equivalencia lógica de una manera alternativa:

Teorema

Dos fórmulas $\varphi, \psi \in L(P)$ son lógicamente equivalentes si $\varphi \leftrightarrow \psi$ es una tautología.

Demuestre el teorema (★)

Outline

Obertura

Equivalencia lógica

Conjuntos funcionalmente completos

Modelación

Epílogo

Objetivos de la clase

- Demostrar equivalencias lógicas sencillas
- □ Determinar si un conjunto es funcionalmente completo
- □ Aplicar la lógica para modelación