Geometría Proyectiva - 2° cuatrimestre 2016 PRÁCTICA 1

Aclaración: Notemos \sum a la suma en un espacio vectorial V y \sum^A a la suma en V_A con $A \in V$

- 1. Sea V un espacio vectorial de dimensión n. Un sistema de coordenadas afines en V es un par $S = (A, \{v_1, \ldots, v_n\})$, con si $A \in V$ y $\{v_1, \ldots, v_n\}$ una base de V_A . Notaremos $S = \{A, v_1, \ldots, v_n\}$. Mostrar que son equivalentes las siguientes dos afirmaciones
 - $S = \{A, v_1, \dots, v_n\}$ es un sistema de coordenadas afines en V.
 - $\{v_1 A; \dots, v_n A\}$ es una base de V.

Demostración Por un lado supongamos que $S = \{A, v_1, \dots, v_n\}$ es un sistema de coordenadas afines de V, y veamos que $\mathcal{B} = \{v_1 - A, \dots, v_n - A\}$ es base de V.

Sea
$$0 = \sum_{1 \le i \le n} x_i(v_i - A)$$
, entonces $A = A + \sum_{1 \le i \le n} x_i \cdot (v_i - A) = \sum_{1 \le i \le n} A x_i \cdot A v_i$. Por lo tanto se tiene que

 $0 = \sum_{1 \le i \le n}^A x_i \cdot Av_i$ y como S es un sistema de coordenadas afines en V se tiene que $x_i = 0$ para todo

 $1 \leq i \leq \overline{n}$. Concluímos que \mathcal{B} es linealmente independiente.

Por el teorema de la dimensión, como $n = \dim V = |\mathcal{B}|$ y \mathcal{B} es linealmente independiente, se concluye que \mathcal{B} es base.

Para el otro lado, sea
$$A = \sum_{1 \le i \le n}^A x_i \cdot Av_i = A + \sum_{1 \le i \le n} x_i \cdot (v_i - A)$$
 y por lo tanto $0 = \sum_{1 \le i \le n} x_i \cdot (v_i - A)$.

Como \mathcal{B} es base de V entonces $x_i = 0$ para todo $1 \le i \le n$ y por lo tanto $\{v_1 - A, \dots, v_n - A\}$ es linealmente independiente en V_A ; por el mismo razonamiento de dimensión concluímos que S es un sistema de coordenadas afines en V.

2. Sean V un espacio vectorial de dimensión n y $S = \{A, v_1, \ldots, v_n\}$ un sistema de coordenadas afines en V. Dado $v \in V$, notaremos con $[v]_S$ al vector de coordenadas de v con respecto a la base $\{v_1, \ldots, v_n\}$ de V_A ; esto es, $[v]_S = (a_1, \ldots, a_n)$ si y solo si

$$v = a_1 \cdot_A v_1 +_A \cdots +_A a_n \cdot_A v_n.$$

- Hallar $[v]_S$ en los casos siguientes.
 - $V = \mathbb{R}^3$, $S = \{(2,1,0); (0,1,0), (2,0,1), (0,0,-3)\}$ y v = (0,0,0).
 - $V = \mathbb{R}_2[X], S = \{X^2; X + 1, X^2 + 3X, X^2 + 2\}$ y v = 2X.
 - $V = \mathbb{R}^{2 \times 2}$,

$$S = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$y \ v = \begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}.$$

- Sea $S = \{(0, -2, 1); (1, 0, 0), (0, 1, 0), (0, 0, 1)\}$. Calcular v, sabiendo que $[v]_S = (-2, 0, 4)$.
- Sean $S = \{A, v_1, \dots, v_n\}$ y $S' = \{B, w_1, \dots, w_n\}$ dos sistemas afines en V. Si $v \in V$, expresar $[v]_{S'}$ en función de $[v]_S$.

Demostración 1 Primer item

1a)
$$V = \mathbb{R}^3$$
 $S = \{(2, 1, 0); (0, 1, 0), (2, 0, 1), (0, 0, -3)\}$ y $v = (0, 0, 0)$

Sea $\mathcal{B} = \{(-2,0,0), (0,-1,1), (-2,-1,-3)\}$, por el ejercicio 1 se tiene que \mathcal{B} es una base de \mathbb{R}^3 y notemos que $[t_{-A}(v)]_{\mathcal{B}} = [(-2,-1,0)]_{\mathcal{B}} = (\frac{3}{4},\frac{3}{4},\frac{1}{4})$. Por la teórica tenemos entonces que $[t_A(t_{-A}(v))]_S = [v]_S = (\frac{3}{4},\frac{3}{4},\frac{1}{4})$.

1b)
$$V = \mathbb{R}_2[X]$$
 $S = \{X^2; X+1, X^2+3X, X^2+2\}$ y $v = 2X$

Nuevamente sea $\mathcal{B} = \{-X^2 + X + 1, 3X, 2\}$ que por 1 es base de $\mathbb{R}_2[X]$ y notemos que $[v]_S = [t_{-A}(2X)]_{\mathcal{B}} = [-X^2 + 2X]_{\mathcal{B}} = (1, \frac{1}{3}, -\frac{1}{6}).$

- 1c) Igual
- 1d) Igual
- **2** Sea $\mathcal{B} = \{(1,2,-1),(0,3,-1),(0,2,0)\}$, luego $[(0,-2,1)]_{\mathcal{B}} = (0,-1,\frac{1}{2})$, por lo tanto sabemos de la teórica que $[v]_S = [v-(0,-2,1)]_{\mathcal{B}}$; por lo tanto $[v]_{\mathcal{B}} = (0,-1,\frac{1}{2})+(-2,0,4)$.
- 3 Sea $\mathcal{B} = \{v_1 A, \dots, v_n A\}$ y $\mathcal{B}' = \{w_1 B, \dots, v_n B\}$ y luego $[v]_{S'} = [t_{-B}(v)]_{\mathcal{B}'} = C_{\mathcal{B}',\mathcal{B}}[t_{-B}(v)]_{\mathcal{B}}^t$ por otro lado $[v]_S = [t_{-A}(v)]_{\mathcal{B}}$ y por lo tanto si consideremos t(v) = v + A B se tiene que $[v]_{S'} = C_{\mathcal{B}',\mathcal{B}}[t(t_{-A}(v))]_{\mathcal{B}}^t = C_{\mathcal{B}',\mathcal{B}} \|\phi_t\|_{\mathcal{B}} [t_{-A}(v)]_{\mathcal{B}}^t = C_{\mathcal{B}',\mathcal{B}} \|\phi_t\|_{\mathcal{B}} [v]_S^t$. Donde como $A \neq B$ entonces $\|\phi_t\|_{\mathcal{C}_{\mathcal{B}',\mathcal{B}}} \in GL_3(\mathbb{R})$.
- 3. Sea $m \geq 2$. El conjunto $\{v_1, \ldots, v_m\} \subset V$ es afínmente independiente si $\{v_2 v_1, \ldots, v_m v_1\}$ es linealmente independiente. Probar que son equivalentes las siguientes afirmaciones.
 - a) El conjunto $\{v_1, \ldots, v_m\}$ es afínmente independiente.
 - b) Si $\sum_{i=1}^{m} \lambda_i v_i = 0$ con $\sum_{i=1}^{m} \lambda_i = 0$ entonces $\lambda_i = 0$ para $1 \le i \le m$.
 - c) Dado $1 \leq j \leq m$, el conjunto $\{v_1, \ldots, \hat{v}_j, \ldots, v_m\}$ es linealmente independiente en V_{v_j} .

Demostración Vayasmo de a partes:

- i) \Longrightarrow ii) Sea $0 = \sum_{1 \leq i \leq n} \lambda_i v_i$, luego $0 = \sum_{1 \leq i \leq n} \lambda_i v_i \sum_{1 \leq i \leq n} \lambda_i v_1$ pues $\sum_{1 \leq i \leq n} \lambda_i = 0$. Por lo tanto $0 = \sum_{2 \leq i \leq n} \lambda_i (v_i v_1)$ y como $\{v_1, \dots, v_n\}$ es afinmente independiente se concluye que $\lambda_i = 0$ para todo $2 \leq i \leq n$; finalizamos pues $\sum_{1 \leq i \leq n} \lambda_i = \lambda_1 = 0$.
- ii) \Longrightarrow iii) Notemos que la hipótesis implica que el conjunto $\{(v_1,1),\ldots,(v_m,1)\}$ es linealmente independiente pues si $0=\sum\limits_{1\leq i\leq m}\mu_i(v_i,1)$ entonces se tiene que $\sum\limits_{1\leq i\leq m}\mu_iv_i=0$ y que $\sum\limits_{1\leq i\leq m}\mu_i=0$ luego se tiene que $\mu_i=0$ para todo $1\leq i\leq m$. Por lo tanto $\mathcal{B}=\{v_1-v_j,\ldots,v_{j-1}-v_j,v_{j+1}-v_j,\ldots,v_m-v_j\}$ es linealmente independiente, por 1 se tiene que $\{v_1,\ldots,v_{j-1},v_{j+1},\ldots,v_m\}$ es linealmente independiente en V_{v_i} .
- $iii) \Longrightarrow i$) Por 1 esto vale.
 - 4. Un conjunto $S \subseteq \mathbb{R}^n$ está en posición general si todo subconjunto $A \subseteq S$ de cardinal menor o igual a n+1 es afínmente independiente. Probar que para todo $n \in \mathbb{N}$ el conjunto infinito $S = \{(t, t^2, \ldots, t^n) : t \in \mathbb{R}\} \subseteq \mathbb{R}^n$ está en posicion general en \mathbb{R}^n

Demostración Sea $A \subseteq S$ tal que $|A| = m \le n+1$, luego existen $t_1 \ne \cdots \ne t_m \ne 0$ (error práctica) tal que $A = \{(t_1, \ldots, t_1^n), \ldots, (t_m, \ldots, t_m^n)\}$ y queremos ver que este conjunto es afinmente independiente. Por 3 habíamos visto que esto es equivalente a que el conjunto $\{(1, t_1, \ldots, t_1^n), \ldots, (1, t_m, \ldots, t_m^n)\}$ sea linealmente independiente, que es equivalente a que sea inversible:

$$V = \begin{pmatrix} 1 & t_1 & \dots & t_1^n \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 1 & t_m & \dots & t_m^n \end{pmatrix}$$

Pero como los t_i son diferentes, entonces es sabido que la matriz de Vandermonde es inversible.

- 5. Un subconjunto no vacío M de un espacio vectorial V se dice $variedad\ lineal\ si\ existe\ A\in V$ tal que M es un subespacio de V_A . Probar que, dado M un subconjunto no vacío de V, son equivalentes las siguientes afirmaciones.
 - a) M es una variedad lineal.
 - b) M es un subespacio de V_B para todo $B \in M$.
 - c) $M -_C A$ es un subespacio de V_C para todo $A \in M$ y todo $C \in V$.
 - d) M-A es un subespacio de V para todo $A \in M$.
 - e) M-A es un subespacio de V para algún $A \in M$.
 - f) Existen $A \in V$ y S subespacio de V tales que M = A + S.

Demostración Vayamos de a partes:

- i) \Longrightarrow ii) Sea $B \in M$, como M es variedad lineal existe $A \in V$ tal que M es subespacio de V_A , luego $t_{B-A}(M)$ es subespacio de $t_{B-A}(V_A) = V_B$. Finalizamos notando que como $B \in M$ y M es subespacio de V_A entonces $B A \in M$ y luego $t_{B-A}(M) = M$.
- ii) \Longrightarrow iii) Sean $A \in M$ y $C \in V$, luego M es subespacio de V_A y notando que $M -_C A = M A + C$ tenemos que M A es subespacio de V, luego $t_C(M A) = M -_C A$ es subespacio de V_C
- iii) \Longrightarrow iv) Supongamos que existe un $A \in M$ tal que M-A no es subespacio de V, entonces por definición $t_C(M-A) = M-A+C = M-_C A$ no es subespacio de V_C ; concluímos que M-A es subespacio de V para todo $A \in V$.
- $iv) \Longrightarrow v)$ Trivial
- v) \Longrightarrow vi) Sabemos que existe $A \in M \subseteq V$ tal que M A = S es subespacio de V, luego M = A + S
- $vi) \Longrightarrow i)$ Trivial
 - 6. Sea V un espacio vectorial y $v_1, \ldots, v_k \in V$. Llamamos al subconjunto de V

$$\sigma(v_1, \dots, v_k) := \left\{ \sum_{i=1}^k \lambda_i v_i : \sum_{i=1}^k \lambda_i = 1 \right\}$$

el conjunto de las combinaciones afines de $\{v_1, \ldots, v_k\}$. Probar que $\sigma(v_1, \ldots, v_k)$ es una variedad lineal y que es la menor que incluye a $\{v_1, \ldots, v_k\}$. ¿Qué dimensión tiene?

Demostración Veamos primero que si $a, b \in \sigma(v_1, \ldots, v_n)$ y $\lambda \in \mathbb{R}$ entonces $\lambda a + (1 - \lambda)b \in \sigma(v_1, \ldots, v_n)$.

Para esto existen $\mu_1^a,\dots,\mu_n^a,\mu_1^b,\dots,\mu_n^b$ tal que $a=\sum\limits_{1\leq i\leq n}\mu_i^av_i,b=\sum\limits_{1\leq i\leq n}\mu_i^bv_i;$ luego $\lambda a+(1-\lambda)b=\sum\limits_{1\leq i\leq n}(\lambda\mu_i^a+(1-\lambda)\mu_i^b)v_i$ y $\sum\limits_{1\leq i\leq n}\lambda\mu_i^a+(1-\lambda)\mu_i^b=\lambda\sum\limits_{1\leq i\leq n}\mu_i^a+(1-\lambda)\sum\limits_{1\leq i\leq n}\mu_i^b=\lambda+1-\lambda=1.$ Por lo tanto tenemos que $\lambda a+(1-\lambda)b\in\sigma(v_1,\dots,v_n).$

Sea $A \in V$, $S = \{v - A \mid v \in \sigma(v_1, \dots, v_n)\}$ y $s \in S$; luego $s + A \in \sigma(v_1, \dots, v_n)$ y entonces $\lambda(s + A) + (1 - \lambda)A = \lambda s + A \in \sigma(v_1, \dots, v_n)$; por lo atnot $\lambda s \in S$.

Finalmente, sean $x, y \in S$ y luego $\frac{1}{2}(x+y) + A = \frac{1}{2}(x+A) + \frac{1}{2}(y+A)$ y por lo tanto $\frac{1}{2}(x+y) \in S$; por lo anterior $(x+y) \in S$.

Concluímos que S es un subespacio y entonces M = S + A y por 5 es una variedad lineal.

Claramente es la más chica que contiene a $\{v_1, \ldots, v_n\}$ y finalmente tiene dimensión n-1.

- 7. Hallar un conjunto de generadores afínmente independientes de las siguientes variedades lineales.
 - $M = \{ x \in \mathbb{R}^3 : x_1 x_3 = 2, 2x_1 + x_2 x_3 = 1 \}.$
 - $M = \{ x \in \mathbb{R}^3 : 2x_1 + x_2 = 0 \}.$
 - $M = \{ x \in \mathbb{R}^2 : x_1 x_2 = 2 \ 2x_1 3x_2 = 1 \}.$
 - $M = \{ x \in \mathbb{R}^5 : x_1 x_2 + x_3 x_4 + x_5 = -2 \}.$
 - $M \subseteq \mathbb{R}_2[X]$ la menor variedad lineal que contiene al conjunto

$${4X^2 + 2X, 2X^2 + X, 3X^2 + X + 1, 5X^2 + 2X + 1}.$$

Demostración • $M = \{x \in \mathbb{R}^3 \ / \ x_1 - x_3 = 2, 2x_1 + x_2 - x_3 = 1\}$

Notemos que $A=(2,-3,0)\in M$ y luego M-A=S es un subespacio dado por $S=\left\{x\in\mathbb{R}^3 \ / \ (x_1+2)-x_3=2, 2(x_1+2)+(x_2-3)-x_3=1\right\}=\left\{x\in\mathbb{R}^3 \ / \ x_1-x_3=0, 2x_1+x_2-x_3=0\right\}=\langle (1,-1,1)\rangle$

- Igual
- Igual
- Igual
- $M \subseteq \mathbb{R}_2[X]$ la menor variedad lineal que tiene a $\{4X^2 + 2X, 2X^2 + X, 3X^2 + X + 1, 5X^2 + 2X + 1\}$. Es claro que el conjunto no esa finmente independiente pues $x_2 + v_3 = v_4$, luego $M = 2X^2 + x + \langle 4X^2 + 2X, 3X^2 + X + 1 \rangle$.
- 8. Sea $f: V \longrightarrow V$ una transformación afín $A \in V$ y $g: V_A \longrightarrow V_A$ dada por

$$g(v) = f(v) - f(A).$$

Probar que g es lineal.

Demostración Notemos primero que como f es afín entonces existe $h: V \to V$ transformación lineal y $p \in V$ tal que $f = t_p \circ h$, por otro lado consideremos $t_{-A}: V_A \to V$ dado por $t_{-A}(v+A) = v$.

Sea entonces $v+A \in V_A$, luego $f \circ t_{-A}(v+A) = f(v) = p+h(v)$ y por otro lado $f \circ t_{-A}(A) = p+h(0) = p$; por lo tanto $f \circ t_{-A} = f \circ t_{-A}(A) + h$. Consideremos fionalmente $t : V_p \to V_A$ dado por t(x+p) = x+A, luego $g(v+A) = f \circ t_{-A}(A) + h(v) - f \circ t_{-A}(A) + A = h(v) + A$.

Concluímos que si notamos laa coordenada de una transformación afín $z: V_p \to V_q$ tal que z(v+p) = h(z) + q como [z] = h; se tiene que [g] = h que es lineal, y por ende g es lineal.

En efecto, si $v, w \in V_A$ y $\lambda \in \mathbb{R}$ luego $g(v + \lambda \lambda A w) = g(v + \lambda w + A) = A + h(v + \lambda w) = h(v) + \lambda \lambda h(w) = g(v) + \lambda \lambda A g(w)$.

9. Probar que $f: V \longrightarrow V$ es una transformación afín si y solo si existen $A \in V$ y $g: V \longrightarrow V$ lineal tales que f(v) = g(v) + A. Deducir que f es isomorfismo afín si y solo si g es isomorfismo lineal.

Demostración Para un lado si existe $p \in V$ tal que $f: V \to V_p$ es lineal, entonces $t_{-p} \circ f: V \to V$ es lineal y por lo tanto si llamamos $g = t_{-p} \circ f$ se tiene que $f = t_p \circ g = g + p$.

Para el otro es justamente 8

10. Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ una función que satisface $f(\lambda \cdot x) = \lambda \cdot f(x)$ para cada $x, y \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$. Mostrar que f es una transformación afín.

Demostración Por 9 debemos ver que f(v) - A = g es lineal para A = f(0), por lo tanto veamos f(0). Notemos que $\lambda_x \cdot y = x + \lambda(y - x)$ por lo tanto sabemos que para todos $x, y \in \mathbb{R}^n$ se tiene que $f(x + \lambda(y - x)) = f(x) + \lambda(f(y) - f(x))$.

Sea $x, y \in \mathbb{R}^n$ tal que x = 0, luego $f(\lambda y) = f(\lambda \cdot 0y) = \lambda \cdot f(0) f(y)$ por lo que llamemos p = f(0) debemos probar que $f: V \to V_{f(0)}$ es lineal.

Finalmente si $\lambda = \frac{1}{2}$ entonces queda que $f(\frac{1}{2}(x+y)) = \frac{1}{2}(f(x)+f(y))$ y por lo tanto $f(0) + \frac{1}{2}(f(x+y)-f(0)) = f(\frac{1}{2}(x+y)) = \frac{1}{2}(f(x)+f(y))$ y juntando los extremos $\frac{1}{2}f(x+y) = \frac{1}{2}(f(0)+f(x)+f(y))$ con lo que $f(x+y) = f(x) + \frac{1}{2}(f(x)+f(y))$.

1. Cuádricas

 $\underline{\text{Notaci\'on}} \text{: Dado un polinomio } P$ de grado dos en n variables reales notaremos a la cu\'adrica que genera como

$$C(P) = \{ x \in \mathbb{R}^n : P(x) = 0 \},$$

y a su centro como $\operatorname{cent}(P) = \operatorname{cent}(\mathcal{C}(P))$.

- 11. Sea $\phi: V \times V \longrightarrow \mathbb{R}$ una forma bilineal simétrica. Encontrar una base B de V de modo que la matriz de ϕ en B, $\|\phi\|_B$, sea diagonal.
 - $V = \mathbb{R}^3$, $\|\phi(x)\|_E = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}$, donde E es la base canónica de \mathbb{R}^3 .
 - $V = \mathbb{R}^4, \ \phi(x,y) = 3x_1y_1 + 2x_1y_2 + 2x_2y_1.$
 - $V = \mathbb{R}^3$, $\|\phi(x)\|_B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, donde $B = \{(1, 0, 0), (1, 0, 1), (0, 1, 1)\}$.

Demostración Hay que diagonalizar.

12. Se
a $F:\mathbb{R}^3\longrightarrow\mathbb{R}$ la función cuadrática cuya expresión en la base canónica es

$$F(x) = x_1^2 - x_2^2 + 3x_1x_2 + x_2x_3 - x_1 + 3x_2 - 10.$$

Encontrar la expresión de F en $\mathbb{R}^3_{(1,0,2)}$, $\mathbb{R}^3_{(1,1,5)}$ y $\mathbb{R}^3_{(0,0,1)}$.

Demostración a) Notemos que $\|\phi(x)\|_E = \begin{pmatrix} 1 & 3 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ y por lo visto en la práctica podemos

tomar la simetrización de ϕ tal que $\tilde{\phi}(x,y) := \frac{\phi(x,y) + \phi(y,x)}{2}$ y entonces $\|\tilde{\phi}(x)\|_E = \begin{pmatrix} 1 & \frac{3}{2} & 0 \\ \frac{3}{2} & -1 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$. Además, $\varphi(x) = \frac{1}{2} \langle (-1,3,0), x \rangle$ y c = -10.

Ademas, $\varphi(x) = \frac{1}{2} ((-1, 0, 0), x/y)^2 = -10$

Por lo tanto si A = (1,0,2) entonces $c_A = F(A) = 1 - 0 + 0 + 0 - 1 + 0 - 10 = -10$; además:

$$\phi(X-A,X-A) = (x_1-1,x_2,x_3-2) \cdot \begin{pmatrix} 1 & 3 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot (x_1-1,x_2,x_3-2)^t$$

$$\phi(X-A,X-A) = (x_1-1)^2 + 3(x_1-1)x_2 - x_2^2 + x_2(x_3-2)$$

Y finalmente $\varphi_A = \phi(X - A, A) + \varphi(X - A)$ con lo que:

$$\varphi_A = (x_1 - 1)2x_2 + \frac{1}{2}\langle (-1, 3, 0), x \rangle$$

 $\varphi_A = \frac{1}{2}x_1 + \frac{7}{2}x_2 - 1$

Finalmente entonces $F_A = (x_1 - 1)^2 + 3(x_1 - 1)x_2 - x_2^2 + x_2(x_3 - 2) + x_1 + 7x_2 - 2 - 10$. No pienso hacer en los otros dos puntos...

- 13. Dado un polinomio de grado dos en n variables reales P probar que para cualquier transformación afín inversible f (f(x) = Tx + b con $T \in GL(n, \mathbb{R})$)) vale que:
 - $\operatorname{cent}(P \circ f) = f^{-1}\operatorname{cent}(P)$.
 - $\quad \bullet \quad \mathcal{C}(P \circ f) = f^{-1}\mathcal{C}(P).$

Demostración Vayamos de a partes:

- a) Sea $p \in \text{cent}(P \circ f)$, luego si $P \circ f = \psi_f + 2\varphi_f + c_f$ tenemos que $\|\phi_f\| \cdot p^t = b^t$. Pero $\phi_f(x, y) = \phi(f(x), f(y))$ y por lo tanto si f = Tx + c tenemos que $\|\phi_f\| = T^t \|\phi\| T$. Esto junto nos dice que $T^{-1}b^t = \|\phi\| Tp^t = \|\phi\| g^t$ con $g^t = Tp^t$, o sea que $f(p) \in \text{cent}(P)$. Es claro que todos los pasos eran si y sólo si por ende vale la recíproca tomando $f^{-1} = f$.
- b) Si P(f(v)) = 0 entonces $f(v) \in \mathcal{C}(P)$, y para el otro lado si f(v) es tal que P(f(v)) = 0 entonces $v \in \mathcal{C}(P \circ f)$.
- 14. Dado un polinomio de grado dos en n variables reales P probar que

$$cent(P) = \{ y \in \mathbb{R}^n : \frac{\partial P}{\partial x_i}(y) = 0 \ \forall \ i = 1, \dots, n \}.$$

Demostración Sea $p \in \text{cent}(P)$ si y sólo si $P_p = \psi_p + c_p$, luego $\frac{\partial P}{\partial x_i}(p) = \frac{\partial \psi_p}{\partial x_i}(p) = (x - P) \|\phi\|_{p} + \|\phi\|_{p} \|(x - P)^t|_{P} = 0$.

Recíprocamente si $\frac{\partial P}{\partial x_i}(p) = 0$ entonces P no es lineal en x - P y luego se tiene que $\varphi_p = 0$, o sea $p \in \text{cent}(P)$.

Ahora es en el resto de la guía usar 14 y hacer a lo analisis 1 los puntos de gradiente 0, ya tiene cero gracia hacer la forma a lo keilhauer (sirvio pa las demos)

15. En cada uno de los siguientes casos encontrar el conjunto de centros de la cuádrica Q.

$$Q: x_1^2 + 2x_2^2 - 2x_1x_2 + 2x_2 - 1 = 0$$
 (en \mathbb{R}^2)

$$Q: x_1^2 + 4x_2^2 - 4x_1x_2 + 2x - 4x_2 - 5 = 0$$
 (en \mathbb{R}^2)

$$Q: x_1^2 - 2x_1x_2 + 2x_2^2 + 2x_1 + 3 = 0$$
 (en \mathbb{R}^2)

$$Q: x_1^2 - x_2^2 + x_3^2 + 1 = 0$$
 (en \mathbb{R}^3)

$$Q: x_1^2 + x_2^2 - x_3^2 + 2x_1x_2 + 2x_3 + 1 = 0$$
 (en \mathbb{R}^3)

$$Q: 2x_1^2 - x_2^2 - x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3 + 2x_1 + 4x_2 + 6x_3 - 4 = 0$$
 (en \mathbb{R}^3)

$$Q: x_1^2 + x_2^2 - x_1 x_2 + x_3 - 7 = 0$$
 (en \mathbb{R}^4)

Demostración Para prácticar vamos a llevar a la forma normal a las cuádricas 1 y 6 pues parece que son con y sin centros.

a)
$$Q: x_1^2 + 2x_2^2 - 2x_1x_2 + 2x_2 - 1 = 0$$
 (en \mathbb{R}^2)

Primero notemos que $\nabla F = (2(x_1 - x_2), 4x_2 - 2x_1 + 2)$ y entonces $\nabla F = 0$ si y sólo si:

$$\begin{array}{rcl} x_1 - x_2 & = & 0 \\ 4x_2 - 2x_1 + 2 & = & 0 \end{array}$$

Que pasa si y sólo si $(x_1, x_2) = (-1, -1)$, luego por 14 se tiene que $cent(P) = \{(-1, -1)\}$. Como $F((-1, -1)) = -2 \neq 0$ entonces el centro no está en la cuádrica y estamos en el caso de las esferas. Sea A = (-1, -1), luego por un lado $c_A = F(A) = -2$ y además $\psi_A = \psi(X - A) = (x_1 + 1, x_2 + 1) \begin{pmatrix} 1 & 0 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x_1 + 1 \\ x_2 + 1 \end{pmatrix} = (x_1 + 1)^2 + 2(x_2 + 1)^2 - 2(x_1 + 1)(x_2 + 1)$.

Finalmente, $\varphi_A = \phi(A, X - A) + \varphi(X - A) = (-1, -1)\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\begin{pmatrix} x_1 + 1 \\ x_2 + 1 \end{pmatrix} + (x_2 + 1) = -(x_2 + 1) + (x_2 + 1) = 0$; concluímos que:

$$F_A = (x_1 + 1)^2 + 2(x_2 + 1)^2 - 2(x_1 + 1)(x_2 + 1) - 2$$

Ahora para llevar F_A a la forma normal en vez de diagonalizar $\|\phi\|$ vamos a ver el signo de los autovalores con el método de Pancho, para eso notemos que:

$$\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \xrightarrow{F_2 - > F_2 + F_1} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \xrightarrow{C_2 - > C - 2 + C_1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Entonces sabemos que ambos autovalores son positivos y entonces $F \simeq x_1^2 + x_2^2 - 1$. Ahora supongamos que nos piden la base \mathcal{B} tal que presenta la equivalencia, entonces deeríamos diagonalizar, para eso veamos:

$$\chi(\lambda) = det \begin{pmatrix} \lambda - 1 & +1 \\ +1 & \lambda - 2 \end{pmatrix}$$

$$= (\lambda - 1)(\lambda - 2) - 1$$

$$= \lambda^2 - 3\lambda + 1$$

$$= (\lambda - (\frac{1}{2}(3 + \sqrt{5})))(\lambda - (\frac{1}{2}(3 - \sqrt{5})))$$

Y claramente los autovectores son demasiado feos para analizar.

b) $Q: 2x_1^2 - x_2^2 - x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3 + 2x_1 + 4x_2 + 6x_3 - 4 = 0$ (en \mathbb{R}^3) Nuevamente primero notemos que $\nabla F = (4x_1 + 2x_2 + 2x_3 + 2, -2x_2 + 2x_1 - 2x_3 + 4, -2x_3 + 2x_1 - 2x_2 + 6) = 0$ si y sólo si:

$$4x_1 + 2x_2 + 2x_3 + 2 = 0$$

$$-2x_2 + 2x_1 - 2x_3 + 4 = 0$$

$$-2x_3 + 2x_1 - 2x_2 + 6 = 0$$

si y sólo si:

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix}$$

Y se ve claramente de las condiciones 2 y 3 que el conjunto de soluciones es vacío y entonces la cúadrica no tiene centro. Para ver la equivalencia afín veamos el signo de los autovalores con el método de Pancho:

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix} \xrightarrow{F_3 - F_3 - F_2} \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{C_3 - C_3 - C_2} \begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{F_1 - > F_1 + F_2} \begin{pmatrix} 3 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{C_1 - > C_1 + C_2} \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{F_1 - > F_1 \frac{1}{\sqrt{3}}} \begin{pmatrix} \frac{3}{\sqrt{3}} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{C_1 - > C_1 \frac{1}{\sqrt{3}}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Por lo tanto sabemos que $F \simeq x_1^2 - x_2^2 - 2x_3$.

16. Determinar el conjunto de puntos singulares $Q_S = Q_c \cap Q$ para cada una de las siguientes cuádricas de \mathbb{R}^n .

$$Q: 2x_1^2 + x_2^2 + x_3^2 - 4x_2 + 1 = 0$$
 $(n=3)$

$$Q: x_1^2 - x_2^2 + x_3^2 - 2x_1x_3 - 2x_2x_4 + 4x_4 = 0$$
 (n = 4)

$$Q: x_1^2 - x_2^2 - x_4^2 - 2x_1x_3 + 2x_2x_3 - 2x_3x_4 + x_1 - x_2 + 2x_3 + x_4 = 0$$
 $(n = 4)$

$$Q: x_1x_2 + x_3x_4 + x_5^2 = 0$$
 $(n=5)$

$$Q: x_1^2 - 2x_1 + 1 = 0$$
 $(n=2)$

17. Determinar los $a \in \mathbb{R}$ para los cuales la cuádrica Q de \mathbb{R}^3 de ecuación

$$Q: x_1^2 + (a^2 + 3)x_2^2 + (a^2 - 3)x_3^2 + (2a + 4)x_1x_2 + 2x_1x_3 + x_1 - 2x_2 + 1 = 0$$

tiene centro único.

18. Sean L una recta y Q una cuádrica. Probar que el conjunto $L \cap Q$ bien es vacío, tiene solo un punto, tiene solo dos puntos, o es todo L.