CH=CH-COOCH₃.

1. A compound of Formula I:

Formula I

its prodrug form or a pharmaceutically acceptable salt thereof, wherein:

 R^1 represents OH, COOH, COO- C_{1-4} alkyl, CH₂OR¹⁰, SO₂-OH, O-SO₂-OH, O-SO₂-OC₁₋₄ alkyl, OP(O)(OH)₂, or OPO₃C₁₋₄ alkyl;

 R^2 , R^3 , R^4 , and R^5 independently at each occurrence represent H, SH, OR^{10} , halogen, $COOR^{10}$, $CONR^{11}R^{12}$, optionally substituted heterocyclyl, $C_{4\cdot14}$ cycloalkyl- $C_{1\cdot4}$ alkyl, $C_{1\cdot4}$ alkyl aryl, optionally substituted $C_{1\cdot14}$ straight chain, branched or cyclo alkyl, $NR^{10}R^{24}$, 4-carbamimidoylphenylazo, (2-morpholin-4-ylethylcarbamoyl)methoxy, 4-carbamimidoylphenylcarbamoyl, $N=CH-N(CH_3)_2$, 1,3-dioxo-1,3-dihydroisoindol-2-yl, toluene-4-sulfonylamino, 3-(4-carbamimidoylphenylcarbamoyl)-4-hydroxyphenylsulfanyl, $O(CH_2)_5COOC_2H_5$, $O(CH_2)_5COOH$, $(CH_2)_{1\cdot4}-NR^{33}R^{34}$, $(CH_2)_{1\cdot4}-COOR^{33}$, $O-(CH_2)_{1\cdot3}-CO$ -het, $O-(CH_2)_{1\cdot2}-NH-CO$ -aryl, $O-(CH_2)_{0\cdot2}-NR^{10}-CO-NR^{10}R^{33}$, $O-(CH_2)_{0\cdot2}-C(O)-NR^{33}R^{34}$, $O-(CH_2)_{1\cdot4}-COOR^{10}$, $O-(CH_2)_{1\cdot3}$ -het- R^{32} , O-optionally substituted cycloalkyl, $O-(CH_2)_{1\cdot4}-NR^{10}-COO$ -t-butyl, $O-(CH_2)_{1\cdot4}-NR^{10}R^{33}$. $O-(CH_2)_{1\cdot4}-NR^{10}-COO$ -coptionally substituted aryl, $O-(CH_2)_{1\cdot4}-NR^{10}-COO$ -coptionally substituted het, $O-(CH_2)_{1\cdot4}-NR^{10}-CO$

alternatively R² and R³, R³ and R⁴, or R⁴ and R⁵ taken together form

 R^6 , R^9 and R^{53} independently at each occurrence represents H, halogen, cyano, C_{1-4} alkyl, C_{1-4} halogenated alkyl, NO_2 , O-aryl or OR^{11} ; alternatively R^6 and R^{53} taken together form

 R^7 and R^8 independently at each occurrence represent OH, CF₃, H, COOH, NO₂, C_{1.4} alkyl, OC_{1.4} alkyl, O-aryl, halogen, cyano, or a basic group selected from guanidino, NH(CH=NH)NH₂, C(=NH)N(R^{10})₂, C(=NH)-NH-NH₂, C(=O)N(R^{10})₂, 2-imidazoline, N-amidinomorpholine,

N-amidino piperidine, 4-hydroxy-N-amidino piperidine, N-amidino pyrrolidine, tetrahydro pyrimidine, C(O)CH₂NH₂, C(O)NHCH₂CN, NHCH₂CN, and thiazolidin-3-yl-methylideneamine; with the proviso that only one of R⁷ and R⁸ represent a basic group;

 R^{10} independently at each occurrence represents H, $(CH_2)_{0:2}$ -aryl, $C_{1:4}$ halo alkyl, or $C_{1:14}$ straight chain, branched or cyclo alkyl, and alternatively, when one atom is substituted with two R^{10} groups, the atom along with the R^{10} groups can form a five to 10 membered ring structure;

 X_1, X_2, X_3 and X_4 independently at each occurrence represent a carbon or a nitrogen atom;

 R^{11} and R^{12} independently at each occurrence represent H or $C_{1:4}$ alkyl;

 R^{13} represents H, OH, bromo, methyl, OC_{1-4} alkyl, OAr, OC_{5-10} cycloalkyl, OCH_2CN , $O(CH_2)_{1-2}NH_2$, OCH_2COO-C_{1-4} alkyl or

$$C - CO - N$$

R²⁰ represents H or OH;

 R^{24} represents R^{10} , $(CH_2)_{1-4}$ -optionally substituted aryl, $(CH_2)_{0-4}OR^{10}$, $CO-(CH_2)_{1-2}-N(R^{10})_2$,

 $CO(CH_2)_{1.4}$ - OR^{10} , $(CH_2)_{1.4}$ - $COOR^{10}$, $(CH_2)_{0.4}$ - $N(R^{10})_2$, SO_2R^{10} , COR^{10} , $CON(R^{10})_2$,

 $(CH_2)_{0\text{-}4}\text{-}aryl\text{-}COOR^{10},\,(CH_2)_{0\text{-}4}\text{-}aryl\text{-}N(R^{10})_2,\,or\,(CH_2)_{1\text{-}4}\text{-}het\text{-}aryl;$

 $R^{28} \text{ represents } (CH_2)_{1\cdot 2} - Ph - O - (CH_2)_{0\cdot 2} - het - R^{30}, C(O) - het, CH_2 - Ph - CH_2 - het - (R^{30})_{1\cdot 3};$

 $(CH_2)_{1-4}$ -cyclohexyl- R^{31} , CH_2 -Ph-O-Ph- $(R^{30})_{1-2}$, CH_2 - (CH_2OH) -het- R^{30} , CH_2 -Ph-O-cycloalkyl- R^{31} ,

CH₂-het-C(O)-CH₂-het-R³⁰, or CH₂-Ph-O-(CH₂)-O-het-R³⁰;

R³⁰ represents SO₂N(R¹⁰)₂, H, NHOH, amidino, or C(=NH)CH₃:

R³¹ represents R³⁰, amino-amidino, NH-C(=NH)CH₃ or R¹⁰;

 R^{32} represents H, C(O)-CH₂-NH₂, or C(O)-CH(CH(CH₃)₂)-NH₂;

 R^{33} and R^{34} independently at each occurrence represent R^{10} , $(CH_2)_{0-4}$ -Ar, optionally substituted aryl,

 $(CH_2)_{0.4}$ optionally substituted heteroaryl, $(CH_2)_{1.4}$ -CN, $(CH_2)_{1.4}$ -N(R¹⁰)₂, $(CH_2)_{1.4}$ -OH,

 $(CH_2)_{1-4}$ -SO₂-N(R¹⁰)₂;

alternatively, R³³ and R³⁴ along with the nitrogen atom that they are attached to forms a 4 to 14 atom ring structure selected from tetrahydro-1H-carboline; 6,7-Dialkoxyoxy-2-substituted 1,2,3,4-tetrahydro-isoquinoline,

$$N$$
 R^{35} or N

R³⁵ represents R¹⁰, SO₂-R¹⁰, COR¹⁰, or CONHR¹⁰;

E represents a bond, $S(O)_{0-2}$, O or NR^{10} ;

Q, Q¹, Q², Q³, L¹, L², L³ and L⁴ independently at each occurrence represent N-natural amino acid side chain, CHR¹⁰, O, NH, S(O)₀₋₂, N-C(O)-NHR¹⁰, SO₂-N(R¹⁰)₂, N-C(O)-NH-(CH₂)₁₋₄-R²⁶, NR¹⁰, N-heteroaryl, N-C(=NH)-NHR¹⁰, or N-C(=NH)C₁₋₄ alkyl;

R²⁶ represents OH, NH₂, or SH;

 R^{51} and R^{52} independently represent COOH, CH_2OH , CH_2COOH , COOR, CH_2COOR , alkyl or $CO-NH_2$; alternatively

 R^{51} and R^{52} taken together represent =0, =S, =CH₂ or =NR¹⁰;

 R^{53} represents H, halogen, cyano, C_{1-4} alkyl, C_{1-4} halogenated alkyl, NO_2 , O-aryl or OR^{11} ; with the proviso that at least two of X_1 , X_2 , X_3 and X_4 represent a carbon atom, and when any of X_1 , X_2 , X_3 and X_4 represent a nitrogen atom the corresponding substituent does not exist.

Please delete Claims 20-27 and Claims 9, 18, 19 and 28-31, subject to the filing of a divisional patent application.

No new matter is added by this Amendment. Support for 4-carbamimidoylphenylazo, (2-morpholin-4-ylethylcarbamoyl)methoxy, 4-carbamimidoyl-phenylcarbamoyl, N=CH-N(CH₃)₂, 1,3-dioxo-1,3-dihydroisoindol-2-yl, toluene-4-sulfonylamino, 3-(4-carbamimidoylphenylcarbamoyl)-4-hydroxyphenylsulfanyl, $O(CH_2)_5COOC_2H_5$ and $O(CH_2)_5COOH$ within the definition of R^2 , R^3 , R^4 ,