

Circuit Theory and Electronics Fundamentals

Lecture 20: MOS Amplifiers

- Common source amplifier
 - OP, Gain, input and output impedances
- Common drain amplifier
 - OP, Gain, input and output impedances

The common source amplifier

Goal: amplify voltage

Common (to input and output) Source

Transistor must operate in the Saturation Region:

$$v_O = v_{DS} > V_{GS} - V_T$$

Supply voltage (active circuit)

<u>Superposition of DC and AC</u> <u>components</u>

$$v_I = V_I + v_i$$

$$v_O = V_O + v_O$$

Separate DC (operating point) and AC (incremental) analyses

The common source amplifier Operating Point (OP) analysis

Supply voltage (active circuit)

Mesh analysis

$$\begin{cases} -V_I + V_{GS} = 0 (meshG) \\ R_D I_D + V_O - V_{DD} = 0 (meshD) \end{cases}$$

$$V_{O} = V_{DD} - R_{D}I_{D}$$
 $I_{D} = k(V_{I} - V_{T})^{2}$
 $V_{O} = V_{DD} - R_{D}k(V_{I} - V_{T})^{2}$

Non linear model!

<u>Saturation Region</u> condition:

$$v_{DS} = V_O > v_{GS} - V_T = v_I - V_T$$

The common source amplifier Incremental analysis: gain

Compute incremental parameters after OP

$$g_{m} = \frac{2I_{D}}{V_{I} - V_{T}}$$

$$r_{o} \approx \frac{\lambda^{-1}}{I_{D}}$$

$$v_{o} = -g_{m}(r_{o}||R_{D})v_{i}$$

$$A_{V} = \frac{v_{o}}{v_{i}} = -\frac{g_{m}}{1/r_{o}} + \frac{1}{R_{D}} \approx -g_{m}R_{D}$$

Gain is negative and moderately high $(I_D compared to v_I - v_T)$

Gain is temperature Dependent due to V_T !

ID increases with the temperature

The common source amplifier Input impedance

Apply Input Voltage

Measure Input Current

- If you are the source S you are happy to know that Z_1 is infinite in practice there's a small impedance due to the gate capacitance
- In the above circuit Z_1 is independent of the load , which is good!
- A wide range of sources can be connected
- However a very high gate voltage v_s may damage the thin oxide gate
- By convention, Z_1 is often given for when the load is absent (short-circuit for current and open-circuit for voltage)

The common source amplifier: output impedance

- If you are the load L, you want to know Z_0 ; if Z_0 does not combine with Z_L the connection may fail and damage may occur!
- Z_o is depends on the source S.
- The nature of the dependence must be stated; otherwise you don't know what you are connecting to.
- By convention, Z_0 is given for when the source is off (short-circuit for voltage and open-circuit for current)

Apply Output Voltage

Measure Output Current

Feed-forward amplifier incremental model

- Amplifier fully characterized by 3 parameters
- Thévenin equivalent at output (A_V, Z_O)
- Equivalent impedance at input (Z_i)

The common source amplifier with degeneration

Goal: linearise DC gain, improve temperature dependency

The common source amplifier with degeneration: OP

Mesh analysis

$$\begin{cases} -V_{I} + V_{GS} + R_{S}I_{D} = 0 \text{ (mesh G)} \\ -R_{D}I_{D} + V_{DD} - V_{O} = 0 \text{ (mesh D)} \end{cases}$$

$$\begin{cases} -V_{I} + V_{GS} + R_{S}I_{D} = 0 \\ -R_{D}I_{D} + V_{DD} - V_{O} = 0 \end{cases}$$

$$\begin{cases} -V_{I} + V_{T} + \sqrt{\frac{I_{D}}{k}} + R_{S}I_{D} = 0 \\ I_{D} = \frac{V_{DD} - V_{O}}{R_{D}} \end{cases}$$

$$V_{DS} > V_{GS} - V_{T}$$

Last condition must be verified for Transistor to be saturated.

Imposes upper limit on v

 $I_D = k(V_{GS} - V_T)^2$

The common source amplifier with degeneration: OP

$$\begin{cases} -V_I + V_T + \sqrt{\frac{I_D}{k}} + R_S I_D = 0 \\ I_D = \frac{V_{DD} - V_O}{R_D} \end{cases}$$

$$V_{O} = -\frac{R_{D}}{R_{S}}(V_{I} - V_{T}) - \frac{R_{D}}{R_{S}}\sqrt{\frac{4}{kR_{S}}(V_{I} - V_{T}) + \frac{1}{4k^{2}R_{S}^{2}}} + V_{DD} - \frac{1}{2kR_{S}}$$

Quadratic but still nasty to solve!

Valid for large signals also. Linear term in v_1 more important than term in $sqrt(v_1)$

The common source amplifier with degeneration: gain (1)

Almost similar to BJT's common emitter with

$$\begin{cases} r_{\pi} = \infty & \Leftrightarrow \begin{cases} g_{\pi} = 0 \\ R_{B} = 0 \end{cases} \\ \end{cases}$$

The common source amplifier with degeneration: gain (2)

$$\frac{v_o}{v_i} = R_D \frac{R_S - g_m r_\pi r_o}{(r_o + R_D + R_S)(R_B + r_\pi + R_S) + g_m R_S r_o r_\pi - R_S^2}$$

$$r_\pi \rightarrow \infty, R_B = 0 \Rightarrow \frac{v_o}{v_i} = -\frac{g_m R_D r_o}{r_o + R_D + R_S + g_m R_S r_o}$$

$$r_o \rightarrow \infty \Rightarrow \frac{v_o}{v_i} = -\frac{g_m R_D}{1 + g_m R_S}$$

$$g_m R_S \gg 1 \Rightarrow \frac{v_o}{v_i} = -\frac{R_D}{R_S}$$

Degenerated common source amp.: input impedance

$$Z_i = \frac{V_i}{i_g}$$

$$i_q = 0$$

$$Z_i = \infty$$

$$Z_i = \frac{1}{j \, \omega C_{qs}}$$

Small parasitic capacitance → high input impedance

Degenerated common source amplifier: output impedance

Almost similar to BJT's common emitter with

$$\begin{cases} r_{\pi} = \infty \\ R_{B} = 0 \end{cases} \Leftrightarrow \begin{cases} g_{\pi} = 0 \\ R_{B} = 0 \end{cases}$$

Degenerated common source amplifier: output impedance

$$Z_{o} = R_{D} || \frac{r_{o}[(R_{B} + r_{\pi}) || R_{S}]}{r_{o} || r_{\pi} + R_{B} || R_{S} || \frac{r_{\pi} + R_{B}}{g_{m} r_{\pi}}}$$

$$r_{\pi} \rightarrow \infty$$
, $R_{B} = 0 \Rightarrow Z_{o} = R_{D} || \frac{r_{o} R_{S}}{r_{o} || R_{S} || \frac{1}{g_{m}}}$

$$Z_{o} = R_{D} || r_{o} R_{S} (\frac{1}{r_{o}} + \frac{1}{R_{S}} + g_{m})$$

$$Z_o = R_D ||(R_S + r_o + g_m R_S r_o)|$$

$$r_o \rightarrow \infty \Rightarrow Z_o = R_D$$

A high R_D is important for high gain but makes Z_O high... :-(

Common source amplifier problem

Problem: because Z_0 is high, a common load Z_L gets a small voltage only!

$$v_o = \frac{Z_L}{Z_L + Z_O} A_V v_i$$

This output voltage divider wastes the high voltage gain A_v :-(

TÉCNICO The common drain amplifier

Goal: supply enough current to load

Common (to input and output) drain

Supply voltage (active circuit)

Superposition of DC and AC components

$$v_I = V_I + v_i$$

$$v_O = V_O + v_O$$

Separate DC (operating point) and AC (incremental) analyses

The common drain amplifier: operating point

Mesh analysis

$$\begin{cases} -V_I + V_{GS} + R_S I_D = 0 \\ V_O = R_S I_D \end{cases}$$

$$V_{GS} - V_T = \sqrt{\frac{I_D}{k}}$$

$$V_O = V_i - V_T + \frac{1}{2} \left(\sqrt{\frac{4}{kR_S}} (V_I - V_T) + \frac{1}{k^2 R_S^2} + \frac{1}{2 k R_S} \right)$$

Emitter follows base voltage with constant difference V_{ON}

Source Follower Circuit

The common drain amplifier: voltage gain

$$g_{\pi} = 0$$

$$g_{s} = \frac{1}{R_{s}}$$

$$g_{o} = \frac{1}{r_{o}}$$

$$g_{\pi} = 0$$

$$\frac{v_o}{v_i} = \frac{g_m}{g_s + g_o + g_m} \approx 1$$

$$g_s, g_o \ll g_m$$

Use BJT model with infinite input resistance

The common collector amplifier: input impedance

$$Z_{I} = \frac{v_{i}}{i_{i}}$$

$$i_{i} = 0$$

$$Z_{I} = \infty$$

Use BJT model with infinite input impedance

The common collector amplifier: output impedance

$$g_{\pi}=0$$

Use BJT model with infinite input resistance

$$Z_O = \frac{v_o}{i_o} = \frac{1}{g_s + g_o + g_m}$$

$$g_s, g_o \ll g_m \Rightarrow Z_O \approx \frac{1}{g_m}$$
 LOW!

Common collector amplifier: solves current supply

Common Source

$$v_o = \frac{Z_L}{Z_L + Z_O} A_V v_i$$

Common Drain

 $A_{V} \approx 1$

 $Z_{O} \ll Z_{L}$

Depends On Z₁!
$$A_V' = \frac{Z_L}{Z_L + Z_O} A_V$$

Depends
$$i_o = \frac{v_o}{Z_L} = \frac{A_V}{Z_L + Z_O} v_i$$

Effective Gain

Load Current

$$A_V' \approx 1$$
 Unaffected by $Z_I!$

$$i_o = \frac{v_o}{Z_L} = \frac{A_V}{Z_L} v_i$$
Unaffected by $Z_o!$

Good voltage amplifier

- Input is voltage
- Output is voltage
- Z₁ should be high to not degrade input voltage
- Z_o should be low to not degrade output signal
- A_V should be high because we want to amplify

Good Voltage Amplifier: High A_v , High Z_i , Low Z_o !

Conclusion

- MOSFET amplifiers presented
- Common source amplifier
 - High gain, input and output impedances
 - High output impedance not good for voltage amplifier
- Common drain amplifier
 - Low gain, high input impendance and low output impedances
 - Low gain is not good for voltage amplifier
- Combining common source and common drain stages results in a good voltage amplifier design