Honerale 4

414pl

() E(+) = E(y+ch)dx E/H)=PS(U+U+cdxuxt)dx = PSIR ULLY A SIR UXX MEDX + LICHE X=00] = f ((Uzuzz - Cuzuxx) dx = p Sp U4 [U4 - cdux] dx - PSR Ut (-(Nt) dx = - CP (IR had x <0 (ponded r <0). It rko, every decreasing.

(If r>o, every increasing.)

$$\partial a$$
) $u_t = -\partial k$, $u_x = -\partial x$, $u_{xx} = -\partial$.

$$U_t = kuxx$$
 as $dk = kGd$

On
$$O$$
, $u(x,0) = 1-x^2$
 $u_x(x,0) = -2x$, $u_x(x,0) = 0$
 $EVT: u(-1,0) = u(1,0) = 0$
 $u(0,0) = 1$

On(a),
$$U(-1,t) = -\partial t$$

 $V_t(-1,t) = -\partial t \times O$ for all t , decreasing.
 $U(-1,T) = -\partial t$

3a) $u(x_1a) = 4x - 4x^a$ $u_{x}|_{x,0} = 4 - 8x$, $u_{x}|_{x,0} = 0$ $u_{x} = 1/d$. $u_{x}|_{x,0} = 2$ $u_{x}|_{x,0} = 0$ $u_{x}|_{x,0} = 0$

By the string Max. principle, we get OLUMATICAL + +>0, CLXCI

Bed v(x, +) = u(1-x,+) of $V_t = U_t(1-x,t)$, $V_{xx} = U_{xx}(1-x,t)$ and $V_t = U_t(1-x,t)$, $V_{xx} = U_{xx}(1-x,t)$ $V_t - kU_{xx} = U_t(1-x,t) - kU_{xx}(1-x,t)$

Converting the IVP (x) = 0. $V(X_1) = U(1-x_1) + (1-x_1) + (1-$

This is the same NP.
By uniqueners, u(x,t) \times x \in Lo117, t20.

3c) $u_t = u_{xx}$ and $\int u_{x} dx = \int u_{xx} dx$ $u_{x} = u_{xx}$ and $\int u_{x} dx = \int u_{xx} dx$ $= \int_{0}^{1} d_{x} \left(\frac{u^{2}}{u^{2}} \right) dx = u_{xx} \left(\frac{u_{x}}{u^{2}} \right) - \int_{0}^{1} u_{x} dx dx = u_{xx} dx$

4. USV => V-UZO.

Set U = V - U. Clearly u solve $U_1 = kU_{XX}$.

and we have the IVP $SU_1 = kU_{XX}$ $SU_2 = kU_{XX}$ $SU_3 = 0$, $0 = k = kU_{XX}$ $SU_3 = 0$, $0 = k = kU_{XX}$ $SU_3 = 0$, $0 = k = kU_{XX}$ $SU_3 = 0$, $0 = kU_{XX}$ $SU_3 = 0$, $0 = kU_{XX}$ $SU_4 = kU_{XX}$ $SU_3 = 0$, $0 = kU_{XX}$ $SU_3 = 0$,