

محدرسة دلهي الخاصة ذ.م.م. LHI PRIVATE SCHOOL L.L.C. Affiliated to C.B.S.E., DELHI

(Approved & Recognized By Ministry of Education - United Arab Emirates)

PERIODIC TEST I (2023-24)MATHEMATICS Section A(1 mark each)	
2.	Option-d $[5, \infty)$
3.	Option-c- $\frac{5\pi}{6}$
4.	Option-a
Section B(2marks)	
5	{0,2,4,}
6	$\sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) = \sin^{-1}\left(\sin(x + 45)\right) = x + \frac{\pi}{4}$
7	$\sec^2 (\tan^{-1} 2) + \csc^2 (\cot^{-1} 3)$. A= $\tan^{-1} 2$ and B= $\cot^{-1} 3$
	$=\sec^2(A) + \csc^2(B)$
	=15
Section C (3 marks)	
8	$A = P^{-1}Q^{-1}$. $P^{-1} = \frac{adj P}{ P } = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$
	$\therefore Q^{-1} = \frac{\text{adj } Q}{ Q } = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}$
	$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

$$I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ \tan \frac{\alpha}{2} & -\tan \frac{\alpha}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ \tan \frac{\alpha}{2} & -\tan \frac{\alpha}{2} \end{bmatrix}$$

$$and, \quad I - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ -\tan \frac{\alpha}{2} & \tan \frac{\alpha}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ -\tan \frac{\alpha}{2} & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$$\therefore \quad (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix} = \begin{bmatrix} 1 \\ -\tan \frac{\alpha}{2} & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}$$

$$\Rightarrow \quad (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 \\ -t & 1 \end{bmatrix} \begin{bmatrix} 1 - t - t - \frac{\alpha}{2} & -\frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} \\ 1 + \tan^2 \frac{\alpha}{2} & 1 + \tan^2 \frac{\alpha}{2} \end{bmatrix}$$

$$\Rightarrow \quad (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 \\ -t \\ 1 \end{bmatrix} \begin{bmatrix} \frac{1 - t^2}{1 + t^2} & -\frac{2t}{1 + t^2} \\ \frac{2t}{1 + t^2} & \frac{1 - t^2}{1 + t^2} \end{bmatrix}, \text{ where } t = \tan \frac{\alpha}{2}.$$

$$\Rightarrow \quad (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \frac{1 - t^2 + 2t^2}{1 + t^2} & -\frac{2t + t - t^3}{1 + t^2} \\ \frac{-t + t^3 + 2t}{1 + t^2} & \frac{2t^2 + 1 - t^2}{1 + t^2} \end{bmatrix}$$

$$\Rightarrow \quad (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix} = \begin{bmatrix} \frac{1 + t^2}{1 + t^2} & \frac{-t + (1 + t^2)}{1 + t^2} \\ \frac{t + t^2}{1 + t^2} & \frac{1 + t^2}{1 + t^2} \end{bmatrix} = \begin{bmatrix} 1 \\ t \end{bmatrix}$$

$$\Rightarrow \quad (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \frac{1 + t^2}{1 + t^2} & \frac{-t + (1 + t^2)}{1 + t^2} \\ \frac{t + t^2}{1 + t^2} & \frac{1 + t^2}{1 + t^2} \end{bmatrix} = \begin{bmatrix} 1 \\ t \end{bmatrix}$$

$$\Rightarrow \quad (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \frac{1 - t^2}{1 + t^2} & \frac{1 + t^2}{1 + t^2} \\ \frac{t + t^2}{1 + t^2} & \frac{1 + t^2}{1 + t^2} \end{bmatrix} = \begin{bmatrix} 1 \\ t \end{bmatrix}$$

10

R is reflexive.

For every $a \in \mathbb{R}$, $a - a + \sqrt{3} = \sqrt{3} \in \mathbb{S} \Rightarrow (a, a) \in \mathbb{R}$ $\Rightarrow \mathbb{R}$ is reflexive.

R is not symmetric.

Take $a = \sqrt{3}$ and b = 1.

As
$$\sqrt{3} - 1 + \sqrt{3} = 2\sqrt{3} - 1 \in S$$
, $(\sqrt{3}, 1) \in R$.

But
$$1 - \sqrt{3} + \sqrt{3} = 1 \notin S \Rightarrow (1, \sqrt{3}) \notin R$$

 \Rightarrow R is not symmetric.

R is not transitive.

Take
$$a = 1$$
, $b = \sqrt{2}$ and $c = \sqrt{3}$.

As
$$1 - \sqrt{2} + \sqrt{3} \in S$$
, $(1, \sqrt{2}) \in R$.

Also
$$\sqrt{2} - \sqrt{3} + \sqrt{3} = \sqrt{2} \in S$$
, $(\sqrt{2}, \sqrt{3}) \in R$.

But
$$1 - \sqrt{3} + \sqrt{3} = 1 \notin S$$
, $(1, \sqrt{3}) \notin R$.

Thus, $(1, \sqrt{2}) \in R$ and $(\sqrt{2}, \sqrt{3}) \in R$ but $(1, \sqrt{3}) \notin R$ $\Rightarrow R$ is not transitive.

11

Solution. The function f is onto.

Reason: Consider any $n \in \mathbb{N}$ (codomain of f).

Certainly $2n \in \mathbb{N}$ (domain of f). Also 2n is even.

Thus, for all $n \in \mathbb{N}$ (codomain of f), there exists $2n \in \mathbb{N}$ (domain of f) such that

$$f(2n) = \frac{2n}{2} = n \implies f \text{ is onto.}$$

The function f is not one-one.

Reason: As 1, $2 \in \mathbb{N}$ (domain of f) and $f(1) = \frac{1+1}{2} = 1$, $f(2) = \frac{2}{2} = 1$, so that the different elements 1 and 2 of the domain of f have same image 1.

Therefore, f is not one-one. Hence, f is not bijective.

Section D (4 Marks)

1. If ₹15000 is invested in bond X, then the amount invested in bond Y = ₹(35000 - 15000) = ₹20000

Investment A =
$$\begin{bmatrix} 15000 & Y & Y \\ 20000 \end{bmatrix}$$
; B = $\begin{bmatrix} Invest \text{ rate } \\ X & 0.1 \\ Y & 0.08 \end{bmatrix}$

2. The amount of interest received on each bond is given by

AB =
$$[15000\ 20000] \times \begin{bmatrix} 0.1\\0.08 \end{bmatrix}$$

 $= [15000 \times 0.1 + 20000 \times 0.08] = [1500 + 1600] = 3100$

3. Let ₹x be invested in bond X and then ₹(35000 - x) will be invested in bond Y.

Now, total amount of interest is given by

$$[x 35000 - x] \begin{bmatrix} 0.1 \\ 0.08 \end{bmatrix} = [0.1x + (35000 - x) 0.08]$$

But, it is given that total amount of interest = ₹3200

$$\therefore 0.1x + 2800 - 0.08x = 3200$$

$$\Rightarrow$$
 0.02 x = 400 \Rightarrow x = 20000

Thus, ₹20000 invested in bond X and ₹35000 - ₹20000

- = ₹15000 invested in bond Y.
- 4. Let ₹x invested in bond X, then we have

$$x \times \frac{10}{100} = 500 \Rightarrow x = 5000$$

Thus, the amount invested in bond X is ₹5000 and so investment in bond Y be ₹(35000 - 5000) = ₹30000

13

R is not reflexive.

Take
$$a = \frac{1}{2}$$
. As $\frac{1}{2} \le \left(\frac{1}{2}\right)^2$ i.e. $\frac{1}{2} \le \frac{1}{4}$ is false, $\left(\frac{1}{2}, \frac{1}{2}\right) \notin \mathbb{R}$. Therefore, \mathbb{R} is not reflexive.

R is not symmetric.

Take a = 1, b = 2. As $1 \le 2^2$ i.e. $1 \le 4$ is true, $(1, 2) \in \mathbb{R}$.

But $2 \le 1^2$ i.e. $2 \le 1$ is false, $(2, 1) \notin \mathbb{R}$. Therefore, \mathbb{R} is not symmetric.

R is not transitive.

Take
$$a = \frac{1}{3}$$
, $b = -2$ and $c = \frac{1}{2}$.

As
$$\frac{1}{3} \le (-2)^2 i.e.$$
 $\frac{1}{3} \le 4$ is true, $(\frac{1}{3}, -2) \in \mathbb{R}$.

Also
$$-2 \le \left(\frac{1}{2}\right)^2$$
 i.e. $-2 \le \frac{1}{4}$ is true, $\left(-2, \frac{1}{2}\right) \in \mathbb{R}$.

But
$$\frac{1}{3} \le \left(\frac{1}{2}\right)^2$$
 i.e. $\frac{1}{3} \le \frac{1}{4}$ is false, $\left(\frac{1}{3}, \frac{1}{2}\right) \notin \mathbb{R}$.

Therefore, R is not transitive.

b)

The function f is not one-one.

: Since
$$f\left(\frac{1}{2}\right) = \left[\frac{1}{2}\right] = 0$$
 and $f\left(\frac{1}{3}\right) = \left[\frac{1}{3}\right] = 0$, so the two different elements $\frac{1}{2}$, $\frac{1}{3}$ of R

The function f is not onto.

Reason: Range of f = I (set of integers), which is a proper subset of **R** (codomain of f) $\Rightarrow f$ is not onto.

SectionE(5 marks)

14
$$AB = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

$$= 8 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 8I$$
The given system has the unique solution $X = B^{-1}C = \frac{1}{8}AC$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 24 \\ -16 \\ -8 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$$
$$\Rightarrow x = 3, y = -2, z = -1.$$