

PROTOKÓŁ POMIAROWY DO LABORATORIUM PODSTAW ELEKTRONIKI

Rok akademicki 2020/2021	TEMAT: Prawo Ohma		
Kierunek studiów:			
Semestr:		Wykonawcy:	
Grupa:			
Data wykonania:		Podpis:	

1. Spis aparatury pomiarowej

Tabela 1. Wykaz aparatury pomiarowej stosowanej podczas wykonywania ćwiczenia

Urządzenie	Тур	Numer	Klasa
Multimetr cyfrowy			
Multimetr cyfrowy			
Dekada indukcyjna			
Zasilacz napięcia stałego			
Autotransformator			

2. Zadania i wyniki pomiarowe

UWAGA!

Nie włączać zasilania! Włączenie zasilania może nastąpić TYLKO w obecności prowadzącego, po uprzednim sprawdzeniu przez niego obwodu pomiarowego. Niestosowanie się do zasad bezpieczeństwa będzie skutkować usunięciem z zajęć.

2.1 Pomiar prądów i napięć w układzie prądu stałego

Niniejsze ćwiczenie polega na sprawdzeniu prawa Ohma dla prądu stałego. W tym celu należy:

- Zmontować układ zgodnie z rys. 2.1, gdzie dekada indukcyjna została przedstawiona jako rezystor R oraz cewka L
- Zaciski A i B podpiąć do zasilacza napięcia stałego (nie włączać zasilacza)
- Zawołać prowadzącego w celu sprawdzenia obwodu
- Po sprawdzeniu i akceptacji obwodu pomiarowego przez prowadzącego, można włączyć zasilanie i przystąpić do pomiarów
- Przy danej indukcyjności należy ustawić napięcie zasilające większe od zera
- Zmierzyć prąd i napięcie przy pomocy multimetrów cyfrowych
- Zmienić napięcie zasilające i powtórzyć czynności zawarte w poprzednim punkcie
- Powyższe pomiary należy wykonać dla przynajmniej trzechróżnych wartości indukcyjności
- Po zakończeniu pomiaru należy skręcić napięcie na zasilaczu do zera i wyłączyć zasilanie

Tabela 2.1 Wyniki pomiarów i obliczeń dla prądu stałego

	1			1
L	U _z V]	U	I	R=U/I
[H]	V]	[V]	[mA]	[Ω]
1	1	ı	i e	1

L – wartość indukcyjności

 U_z – napięcie zasilające

U – wskazanie woltomierza

I – wskazanie miliamperomierza

R – rezystancja obliczona na podstawie pomiarów R=U/I

2.2 Pomiar prądów i napięć w układzie prądu przemiennego

Niniejsze ćwiczenie polega na sprawdzeniu prawa Ohma dla prądu zmiennego. W tym celu należy:

- Zmontować układ zgodnie z rys. 2.1, gdzie dekada indukcyjna została przedstawiona jako rezystor R oraz cewka L
- Pokrętło autotransformatora skręcić na zero woltów
- Zawołać prowadzącego w celu sprawdzenia obwodu
- Po sprawdzeniu i akceptacji obwodu pomiarowego przez prowadzącego, można włączyć zasilanie i przystąpić do pomiarów
- Przy danej indukcyjności zaciski A i B podpiąć do autotransformatora i ostrożnie zwiększyć napięcie tak, aby prąd nie przekroczył 100mA
- Zmierzyć prąd i napięcie przy pomocy multimetrów cyfrowych
- Zmienić napięcie zasilające i powtórzyć czynności zawarte w poprzednim punkcie
- Powyższe pomiary należy wykonać dla tych samych wartości indukcyjności co w pierwszej części ćwiczenia (tj. pomiarów przy prądzie stałym)
- Po zakończeniu pomiaru należy skręcić napięcie na autotransformatorze do zera, wyłączyć zasilanie i rozmontować układ pomiarowy

Tabela 2.2 Wyniki pomiarów i obliczeń dla prądu przemiennego

L [H]	U [V]	l [mA]	$X_L=2\pi fL$ [Ω]	Z ₁ =U/I [Ω]	$Z_2=V(R^2+X_L^2)$ [Ω]	$\delta = Z_1 - Z_2 /Z_2 \cdot 100$ [%]
[]						

L – wartość indukcyjności

U – wskazanie woltomierza

I – wskazanie miliamperomierza

R – rezystancja obliczona w poprzednim punkcie

X_L – reaktancja indukcyjna

f – częstotliwość prądu przemiennego

Z₁, Z₂ – impedancja wyznaczona z obliczeń na podstawie pomiaru (Z₁) i teorii (Z₂)

 $[\]delta$ – błąd względny pomiaru

3. Zagadnienia do opracowania

W sprawozdaniu należy:

- Zamieścić wszystkie niezbędne schematy oraz (jeżeli jest taka potrzeba) teoretyczne charakterystyki
- Obliczyć rezystancję obciążenia w układzie z prądem stałym R=U/I
- Obliczyć Impedancję obciążenia w układzie z prądem przemiennym Z₁=U/I
- Obliczyć teoretyczną wartość reaktancji według wzoru X_L=2πfL
- Obliczyć teoretyczną wartość impedancji według wzoru Z₂=V(R²+X_L²)
- Obliczyć błąd względny dla impedancji według wzoru $\delta = |Z_1-Z_2|/Z_2*100\%$
- Zamieścić wszystkie niezbędne wzory oraz podać przynajmniej jeden przykład wykonanych obliczeń
- Odpowiedzieć na pytania
 - o Jak brzmi prawo Ohma
 - Dlaczego w wykonanym ćwiczeniu wzór U/I daje różne wyniki dla prądu stałego i zmiennego (od czego to zależy) – należy zwrócić uwagę, że zarówno w przypadku prądu zmiennego jak i stałego mierzona była cewka o tej samej indukcyjności
 - Jak wyprowadzić wzór na impedancję Z₂
 - o Jakie jest fizyczne znaczenie impedancji i reaktancji
 - Skąd się bierze i od czego zależy reaktancja indukcyjna