Characterizing the Large-scale Recovery Capabilities of Atacama Large Aperture Submillimeter Telescope (AtLAST)

Université Côte d'Azur

Supervised by:

Dr. Luca Di Mascolo, Kapteyn Astronomical Institute

Dr. Chiara Ferrari, Université Côte d'Azur

Prof. Pasquale Mazzotta, Università degli Studi di Roma "Tor Vergata"

→ Unveiling the (Sub)-Millimeter Sky

The sky as seen by Planck

→ Why Need a Single Dish?

Large Single Dish

- Enhances sensitivity to fainter extended emission
- Maximizes sky coverage in a short time

⇒ Exploring (Sub)mm Universe with AtLAST

→ Key Observational Advantage of AtLAST

→ Main Challenge for Ground-based Observations:

→ Atmospheric Fluctuations in Ground-Based (Sub)mm Observations

→ Atmospheric Fluctuations in Ground-Based (Sub)mm Observations

credit: https://thomaswmorris.com/maria

Morris et al. 2022

→ Motivation: Large-Scale Recovery

- Exploring the ability of such a large aperture single dish telescope to recover extended diffuse emissions under realistic observing conditions.
- Characterizing the impact of different scanning strategies on the telescope's performance in large-scale recovery.

maria

A multipurpose virtual telescope simulator

Van Marrewijk et al. 2024

→ Approach: Generating TOD and Output map with maria

Radio Galaxy 3C288 at z = 0.246 (Bridle et al. 1989)

→ Analysis: Transfer Function Estimation

Transfer function averaged over atmospheric realizations:

$$\overline{T} = \frac{1}{N} \sum_{k=1}^{N} \sqrt{\frac{PS_{\text{output}}(k)}{PS_{\text{input}}(k)}}$$

- → PS_{output}(k) and PS_{input}(k) are the 1D power spectra of the output and input maps respectively
- → N is the number of atmospheric realizations

→ Array Configuration of AtLAST-like Telescope

• Observation:

Observing93 GHz

bandwidth:

frequency:

53 GHz

Frequency

Primary Dish Diameter: 50 m

→ How Single-Dish Scans the Sky?

→ Result: Dependence on Scanning Pattern

• Minor difference in corresponding transfer functions among these scanning patterns.

→ Parameters Defining the Scan Strategy

→ Scanning parameters:

- **♦** Radius
- ◆ Speed
- **♦** Pattern
- ◆ Scan time
- **♦** Sampling Rate

→ Parameters Defining the Scan Strategy

→ Scanning parameters:

Radius $(0.02^{\circ} - 2.5^{\circ})$

Speed $(0.05^{\circ} \text{ s}^{-1} - 4^{\circ} \text{ s}^{-1})$

◆ Pattern : Daisy

♦ Scan time : 10 minutes

◆ Sampling Rate: 50 Hz

→ Result: Dependence on Scanning Radius

- At scanning radius ≥ 0.5° (= 2xFoV),
 the corresponding transfer functions ~ 1
- Below 0.08°, large-scale modes are filter-out.

→ Result: Dependence on Scanning Speed

- At scanning speed
 ≥ 0.8°s⁻¹, the
 corresponding
 transfer functions ~ 1
- Below 0.09°s⁻¹, large-scale modes are attenuated.

→ Conclusion & Future Work

- Simulated an **AtLAST-like configuration** to scan the mock sky under realistic observing conditions and therefore reconstructed the sky signal.
- Characterized the telescope performance in recovering large-scale signal in (sub)mm regime through transfer function.
- Analysed how the choice of the **observing** parameters i.e. scan radius, scan speed and scan pattern can influence recovery of fainter extended emission.

- A potential future extension is to incorporate full 2° FoV (currently considered 0.25°), multichroic detectors and polarization maps.
- The need for a substantial storage capacity and high-performance computing resources to reduce the computational time and support complex analysis.
- A quantitative characterization of the **dependence on detector spacing** for a large focal plane array is required for achieving an instantaneous Nyquist sampling.

APPENDIX

→ Atmospheric Fluctuations at (Sub)mm Wavelengths

Atmospheric Fluctuations (Errard et al. 2015) depend on:

- Wind
- Water vapor
- Turbulence
- Temperature
- **◯** Kolmogorov-Taylor Frozen turbulence hypothesis:

(Kolmogorov, 1941; Taylor, 1938; Morris et al., 2025)

Power spectrum associated with atmospheric fluctuation

$$--- P(f) \propto f^{-8/3}$$

Temporal frequency

- ➤ Lower-frequency atmospheric fluctuations contaminate large-scale (sub)mm signals observed by ground-based observatories
- This limitation leads to the requirement of advanced observational strategies to recover large-scale astronomical signals

→ AtLAST's Site on Llano de Chajnantor Plateau in Atacama:

Atmospheric transmission at several world-class sites for (sub)mm survey

(Klaassen et al. 2020)

→ How Single-Dish Scans the Sky?

→ How Single-Dish Scans the Sky: Daisy Scan

$$\vec{x}_{\text{outer}} = r_{\text{outer}} \sin(\phi_{\text{outer}}) \exp\left(i\frac{\phi_{\text{outer}}}{n_{\text{petals}}}\right),$$

$$\vec{x}_{\text{inner}} = r_{\text{inner}} \sin\left(\phi_{\text{outer}} + \frac{\pi}{2}\right) \exp\left(i\frac{\phi_{\text{inner}}}{n_{\text{petals}}}\right),$$

$$\vec{x}_{scan} = \vec{x}_{outer} + \vec{x}_{inner}$$

RA,
$$Dec = Re[\vec{x}_{scan}], Im[\vec{x}_{scan}],$$

- $r_{inner} = 0.15 r_{outer}$
- $\phi_{\text{inner}} = \sqrt{2} \phi_{\text{outer}}$
- $n_{petals} = 10/\pi$

→ How Single-Dish Scans the Sky: Lissajous Scan

→ Maximum Recoverable Scale (MRS)

$$\theta_{\text{MRS}} = \kappa \frac{\lambda}{L_{\text{min}}}$$

$$D_{\text{SD}} \ge \frac{1.18L_{\min}}{\kappa}$$

Minimum Baseline

→ AtLAST Parameters

Parameter	Value	
Wavelength (λ) range	$0.3 - 10 \mathrm{mm}$	
Primary mirror diameter	$50\mathrm{m}$	
Field of View (FoV)	2° (1°)	
Number of instruments	≥ 5	
Scan speed	3°/s	
Acceleration	$1^{\circ}/\mathrm{s}^2$	
Elevation (EL) range	20°-90°	
Azimuth (AZ) range	±270°	
Mount type	AZ-EL	

→ Dependence on different Input Signals:

→ Confusion Limit

- The "confusion limit" term refers to a limit within which there are many detected sources in an observation that it is hard to spatially distinguish individual sources apart from each other
 - Source distribution in sky fixed

• Gaussian beam

$$\sigma_{conf} \propto \longrightarrow$$
 FWHM of the beam

$$\theta_0$$

Wavelength	ATLAST FWHM (arcsec)	SPIRE FWHM (arcsec)	SPIRE 1σ confusion (mJy)	ATLAST 1σ confusion (mJy)
$250~\mu\mathrm{m}$	1.26	18.2	5.8	0.40
$350 \mu m$	1.76	24.9	6.3	0.45
$500~\mu\mathrm{m}$	2.52	36.3	6.8	0.47

Table A.1: Comparison of ATLAST vs SPIRE confusion noise across wavelengths