Preliminary Amendment

Page 3

Amendments to the Claims:

The following claims will replace all prior versions of the claims in this

application (in the unlikely event that no claims follow herein, the previously pending

claims will remain):

Listing of the Claims

1. (Original) A global positioning system (GPS) terminal positioning method in

a GPS satellite-invisible area by using a GPS terminal, a plurality of location

detectors (LDs) for applying and sending offsets, respectively, a position

determination entity (PDE) for controlling a position determination of the GPS

terminal and an LD mapping server including a location information associated

database, comprising the steps of:

(a) allowing the GPS terminal in which a positioning request is received to

obtain a reference pilot signal of a base transceiver station or a repeater and LD pilot

signals generated from the location detectors;

(b) if the reference pilot signal or the LD pilot signals are received with a

strength not smaller than a predetermined value, transmitting information on the

reference pilot signal or the LD pilot signals to the PDE;

(c) calculating a chip-based pseudo noise code phase from the information on

the reference pilot signal or the LD pilot signals transmitted to the PDE;

(d) if the pseudo noise code phase calculated at step (c) is a phase of one of

position pseudo noise codes allocated for the position determination, transmitting the

pseudo noise code phase to the LD mapping server; and

Preliminary Amendment

Page 4

(e) obtaining location information on the GPS terminal by using the pseudo

noise code phase transmitted to the LD mapping server.

2. (Original) The method of claim 1, wherein the position pseudo noise codes

are predetermined in a CDMA (code division multiple access) system.

3. (Original) The method of claim 1, wherein at least two position pseudo

noise codes are predetermined.

4. (Original) The method of claim 1, wherein the LD pilot signals are

generated by applying offsets to the position pseudo noise codes, respectively.

5. (Original) The method of claim 1, wherein each of the offsets is not larger

than 64 chips.

6. (Original) The method of claim 1, wherein, if two position pseudo noise

codes are predetermined, the difference between respective offsets to be added in

the LD pilot signals is not larger than 128 chips.

7. (Original) The method of claim 1, wherein the difference between

respective offsets to be added in the LD pilot signals generated from each LD

corresponds to a unique identifier for differentiating said each LD from the other LDs.

Preliminary Amendment

Page 5

8. (Original) The method of claim 1, wherein the LD pilot signals are

transmitted with a strength which is lower than that of the reference pilot signal.

9. (Original) The method of claim 1, wherein, at step (b), the GPS terminal

transmits the information on the reference pilot signal or the LD pilot signals to the

PDE by using a "Provide_Pilot_Phase_Measurement" message defined by an

Interim Standard (IS) -801-1 standard.

10. (Original) The method of claim 1, wherein, at step (b), the predetermined

value is T DROP.

11. (Original) The method of claim 1, wherein, at step (b), the information on

the reference pilot signal transmitted from the GPS terminal is at least one of a

pseudo noise code phase of the reference pilot signal, the strength of the reference

pilot signal and a measurement error of the pseudo noise code phase.

12. (Original) The method of claim 1, wherein the information on the LD pilot

signals transmitted from the GPS terminal is at least one of a pseudo noise code

phase of each LD pilot signals, the strength of each LD pilot signal and a

measurement error of the pseudo noise code phase.

13. (Currently Amended) The method of claim 11-or-12, wherein the phase is

measured and transmitted on a 1/16 chip basis.

Preliminary Amendment

Page 6

14. (Original) The method of claim 1, wherein, in the location information

associated database, the difference between respective offsets to be added in the

LD pilot signals generated from each LD corresponds to the. location information

including an address, a name, a floor or a representative shop of its corresponding

building.

15. (Original) The method of claim 1, wherein the GPS terminal includes PDA

(Personal Digital Assistant), cellular phone, PCS (Personal Communication Service)

phone, hand-held PC (Personal Computer), GSM (Global System for Mobile) phone,

W-CDMA (Wideband CDMA) phone, EV-DO (Evolution Data Only) phone, EV-DV

(Evolution Data and Voice) phone and MBS (Mobile Broadband System) phone.

16. (Original) The method of claim 1, wherein the PDE performs the position

determination with A-GPS algorithm by using GPS satellite information received from

the GPS terminal and, if it is impossible to perform the position determination, the

steps (a) to (e) are processed.

17. (Original) A global positioning system (GPS) terminal positioning system

in a GPS satellite-invisible area, comprising:

a plurality of location detectors (LDs) for applying preset offsets to position

pseudo noise codes predetermined in a code division multiple access (CDMA)

system, respectively, to generate and send LD pilot signals;

a GPS terminal, if a positioning request is received, for obtaining a reference

pilot signal of a base transceiver station or a repeater and the LD pilot signals and, if

Preliminary Amendment

Page 7

the reference pilot signal or the LD pilot signals are received with a strength not

smaller than a predetermined value, for transmitting information on the reference

pilot signal or the LD pilot signals;

a position determination entity (PDE) for calculating a chip-based pseudo

noise code phase from the information on the reference pilot signal or the LD pilot

signals received from the GPS terminal and, if the calculated pseudo noise code

phase is a phase of one of position pseudo noise codes, transmitting the calculated

pseudo noise code phase; and

a LD mapping server for generating location information of the GPS terminal

by using the pseudo noise code phase received from the PDE.

18. (Original) The system of claim 17, wherein at least two position pseudo

noise codes are predetermined.

19. (Original) The system of claim 17, wherein each of the offsets is not larger

than 64 chips.

20. (Original) The system of claim 17, wherein, if two position pseudo noise

codes are predetermined, the difference between respective offsets to be added in

the LD pilot signals is not larger than 128 chips.

21. (Original) The system of claim 17, wherein the difference between

respective offsets to be added in the LD pilot signals generated from each LD

corresponds to a unique identifier for differentiating said each LD from the other LDs.

Preliminary Amendment

Page 8

22. (Original) The system of claim 17, wherein the LD pilot signals are

transmitted with a strength which is lower than that of the reference pilot signal.

23. (Original) The system of claim 17, wherein the GPS terminal transmits the

information on the reference pilot signal or the LD pilot signals to the PDE by using a

"Provide Pilot Phase Measurement" message defined by an Interim Standard (IS) -

801-1 standard.

24. The system of claim 17, wherein the predetermined value is T_DROP.

25. (Original) The system of claim 17, wherein the information on the

reference pilot signal transmitted from the GPS terminal is at least one of a pseudo

noise code phase of the reference pilot signal, the strength of the reference pilot

signal and a measurement error of the pseudo noise code phase.

26. (Original) The system of claim 17, wherein the information on the LD pilot

signals transmitted from the GPS terminal is at least one of a pseudo noise code

phase of each LD pilot signal, the strength of each LD pilot signal and a

measurement error of the pseudo noise code phase.

27. (Currently Amended) The system of claim 25-or 26, wherein the phase is

measured and transmitted on a 1/16 chip basis.

Preliminary Amendment

Page 9

28. (Original) The system of claim 17, wherein the LD mapping server

includes a location information associated database in which the difference between

• •

respective offsets to be added in the LD pilot signals generated from each LD

corresponds to the location information including an address, a name, a floor or a

representative shop of its corresponding building.

29. (Original) The system of claim 17, wherein the GPS terminal includes PDA

(Personal Digital Assistant), cellular phone, PCS (Personal Communication Service)

phone, hand-held PC (Personal Computer), GSM (Global System for Mobile) phone,

W-CDMA (Wideband CDMA) phone, EV-DO (Evolution Data Only) phone, EV-DV

(Evolution Data and Voice) phone and MBS (Mobile Broadband System) phone.

30. (Original) The system of claim 17, further comprising GPS satellites for

transmitting, to the GPS terminal, navigation data required to calculate the position of

the GPS terminal by using A-GPS algorithm or C-GPS algorithm.

31. (New) The method of claim 12, wherein the phase is measured and

transmitted on a 1/16 chip basis.

32. (New) The system of claim 26, wherein the phase is measured and

transmitted on a 1/16 chip basis.