| Sprawozdanie - elementy inteligencji obliczeniowej (EIO) |                  |
|----------------------------------------------------------|------------------|
| Prowadzący:                                              | Grupa: <b>L9</b> |
| mgr inż. Anna Labijak-Kowalska                           | L9               |
| Temat Ćwiczeń:                                           | •                |
| Klasyfikator <b>K-Means</b>                              |                  |
| Autorzy:                                                 |                  |
| Daniel Zdancewicz [145317]                               |                  |

# 1 Wstęp - Cel Ćwiczenia

Celem ćwiczenia była implementacja klasyfikatora K-Means.

## 2 Implementacja algorytmu k-means

```
def k_means(points, /, *, n_clusters: int, iterations: int, tolerance: float):
  def distance(x, y):
    return np.sqrt(np.sum((x - y) ** 2, axis=1))
  centroids = np.random.uniform(
    np.min(points, axis=0),
    np.max(points, axis=0),
    size=(n_clusters, points.shape[1])
  )
  labels = []
  previous = centroids
  for i in range(iterations):
    labels = np.argmin([
      distance(centroid, points) for centroid in centroids
    ], axis=0)
    centroids = np.array([
      np.mean(points[labels == label], axis=0)
      if np.sum(labels == label)
      else centroids[label]
      for label in range(n_clusters)
    ])
    if np.all(np.abs(previous - centroids) < tolerance):</pre>
      print(f"k-means algorithm early stopped at: {i}")
      break
```

```
previous = centroids
return (labels, centroids)
```

#### 2.1 Odczyt i preprocessing

Odczyt odbywa się przy wykorzystaniu metody reader z biblioteki csv.

Normalizacja odbyła się poprzez wykorzystanie metody fit\_transform dostępnej w sklearn.preprocessing.StandardScaler wykonany na wartościach numerycznych.

```
def preprocess(points):
    return skp.StandardScaler().fit_transform(points)

def read_file(path: str):
    with open(path) as file:
    return preprocess(tuple(csv.reader(file)))
```

### 2.2 Inicjalizaja - przypadkowe centroidy

Przy rozpoczęciu algorytmu są wybierane przypadkowe punkty jako początkowe wybrane środki centroidów.

```
def k_means(points, /, *, n_clusters: int, iterations: int, tolerance: float):
    ...
    centroids = np.random.uniform(
        np.min(points, axis=0),
        np.max(points, axis=0),
        size=(n_clusters, points.shape[1])
    )
```

### 2.3 Kryterium zatrzymania - Maksymalna liczba iteracji

Kryterium zatrzymania zostało zaimplementowane poprzez zatrzymanie iteracji treningowych po osiągnięciu pewnej liczbie naturalnej podanej przez parametr iterations.

```
def k_means(points, /, *, n_clusters: int, iterations: int, tolerance: float):
    ...
# Kryterium zatrzymania.
for i in range(iterations):
    ...
```

## 2.4 Kryterium zatrzymania - Zbieżność centroidów

Kryterium zbieżności jest zaimplementowane zatrzymanie pętli treningowej po osiągnieciu pewnej zbieżności określonej pewną liczbą rzeczywistą podanej przez parametr tolerance.

```
def k_means(points, /, *, n_clusters: int, iterations: int, tolerance: float):
    ...
    previous = centroids
    for i in range(iterations):
        ...
        # Kryterium zatrzymania - Pokrycie.
        if np.all(np.abs(previous - centroids) < tolerance):
            print(f"k-means algorithm early stopped at: {i}")
            break
        previous = centroids</pre>
```

## 3 Użycie algorytmu na zbiorze mouse.csv oraz cereal.csv

### 3.1 Weryfikacja poprawności - mouse.csv

Zbiór danych mouse.csv dostarczony wcześniej przez prowadzącego opisuje punkty poprzez 2 kolumny wskazujące koordynaty x i y.

- Pierwsza kolumna Koordynat X punktu.
- Druga kolumna Koordynat X punktu.

Poprawność została przetestowana poprzez zbliżenia uzyskanych grup przez klasyfikator z biblioteki sklearn oraz przez klasyfikator z implementacji własnej.



Rysunek 1: Centroidy uzyskane przez scikit dla n clusters = 3



Rysunek 2: Centroidy uzyskane przez implementację własną dla n $\,$  clusters = 3

Jak widać na podanych obrazach widać ten sam rozkład centroidów co może oznaczać poprawność algorytmu.

#### 3.2 Tworzenie grup na bazie cerreal.csv

Zbiór danych cereal.csv dostarczony wcześniej przez prowadzącego opisuje 16 parametrów, z których opuszczone zostały kolumny name oraz mfr. te były znormalizowane przez MinMaxScaler dostępny przez sklearn.preprocessing.

Grupowanie odbywa się przez

#### 3.3 Przykładowe standardowe wyjście

- calories : 55.56% - protein : 39.44%

- fat : 26.67% - sodium : 52.69% - fiber : 23.61% - carbo : 64.93% - sugars : 50.17% : 41.79% - potass - vitamins : 36.81% - shelf : 97.22% weight : 59.58% - cups : 36.80% - rating : 34.48%

#### - Centroid No. '1'

: 0.00% - type - calories : 55.91% - protein : 10.00% - fat : 20.00% : 53.12% - sodium - fiber : 3.57% - carbo : 56.25% : 78.44% - sugars : 13.52% - potass - vitamins : 25.00% - shelf : 35.00% weight : 50.00% - cups : 50.52% - rating : 13.54%

#### - Centroid No. '2'

: 14.29% - type - calories : 41.13% - protein : 36.19% - fat : 9.52% - sodium : 42.04% - fiber : 12.48% : 73.41% - carbo - sugars : 20.83% - potass : 23.02% - vitamins : 16.67% - shelf : 21.43% weight : 44.43% - cups : 56.30% rating : 47.32%

#### 3.4 Wnioski

Jak widać centroidy tworzą skupienia wokół kilku atrybutów. Wyróżnione zostały te, które przekroczyły wagę 0.5~(50%).

- Formują się 3 centroidy: Duży(36), Średni(20) i Średni (21).
- Pierwszy Duży(36) klasyfikacja płatków ze skupieniem na wagę, węglowodany, i na której półce się znajdowały:

```
- calories -55.56\%.
```

```
- sodium - 52.69%.
```

$$- \text{ carbo} - 64.93\%.$$

$$-$$
 sugars  $-$  50.17%.

$$-$$
 shelf  $-$  97.22%.

- weight -59.58%.
- Drugi Średni(20) klasyfikacja płatów z dużą zawartością cukrów:

```
- calories - 55.91%.
```

$$-$$
 sodium  $-$  53.12%.

$$- cups - 50.52\%$$
.

- Trzeci Średni(21) klasyfikacja płatków z dużą zawartością węglowodanów:
  - carbo 73.41%.
  - cups 56.30%.

Jak widać wspólne, ważne są kalorie, węglowodany oraz cups czyli wielkość jednej porcji.