Stochastic Process Assignment II

Zed

March 20, 2016

Problem 1.

Solution. Define RV $N_s^{[k]} := \#$ of trials before obtaining k-consecutive successes, given that we have already had s-consecutive successes in the stack. We want $\mathbb{E}\left[N_0^{[k]}\right]$, and we have

$$N_0^{[k]} = N_0^{[k-1]} + N_{k-1}^{[k]} \tag{1}$$

Define $A := \{\text{The next trial right after we have } k-1 \text{ consecutive successes is again a success}\}$, we can write

$$\mathbb{E}\left[N_{k-1}^{[k]}\right] = \mathbb{E}\left[N_{k-1}^{[k]}; A\right] + \mathbb{E}\left[N_{k-1}^{[k]}; A^{\complement}\right]$$

$$= 1 \cdot p + N_0^{[k]} \cdot (1-p)$$
(2)

Insert back into equation (1) yields

$$\mathbb{E}\left[N_0^{[k]}\right] = \frac{1}{p}\left(1 + \mathbb{E}\left[N_0^{[k-1]}\right]\right) \tag{3}$$

Which is a recursive formula for sequence $\left\{\mathbb{E}\left[N_0^{[k]}\right]:k\geq 1\right\}$. Note $N_0^{[1]}\sim \mathrm{Geometric}(p)$, we solve from recursion that $\mathbb{E}\left[N_0^{[k]}\right]=\sum_{i=1}^k 1/p^i$.

Problem 2.

Solution. By the definition given in the problem, it suffices to show $f_{Y|X}(y,i) = C'e^{-(\alpha+1)y}y^{s+i-1}$, where C' is irrelevant to y.

$$\begin{split} f_{Y|X}(y|i) &:= \frac{f_{X,Y}(i,y)}{p_X(i)} \\ &= \frac{p_{X|Y}(i|y)f_Y(y)}{p_X(i)} \\ &= \frac{1}{p_X(i)} \cdot \frac{e^{-y}y^i}{i!} \cdot Ce^{-\alpha y}y^{s-1} \\ &= \frac{C}{p_X(i)i!} \cdot e^{-(\alpha+1)y}y^{s+i-1} \end{split} \tag{4}$$

Since $\{X=i\}$ is a known condition, $C':=C/p_X(i)i!$ is a constant. By the given definition in the problem, Y|X is Gamma-distributed.

Problem 3.

Solution. Since $T(X) = \sum_{i=1}^{n} X_i$, deterministically we have $t = \sum_{i=1}^{n} x_i$.

$$f_{X,T(X)}(x,t) = \mathbb{P}(X = x, T(X) = t)$$

$$= \mathbb{P}(X = x) \mathbb{P}(T(X) = t | X = x)$$

$$= \mathbb{P}(X = x) \cdot 1$$

$$= f_{X}(x)$$
(5)

(a). When $X \sim \mathcal{N}(\theta, 1)$, $T(X) \sim \mathcal{N}(n\theta, n)$. And the gaussian vector $X \sim \mathcal{N}(\theta, \Sigma)$, where $\theta = [\theta, ..., \theta]$, $\Sigma = I$ is identity matrix.

$$f_{\boldsymbol{X}|T(\boldsymbol{X})}(\boldsymbol{x}|t) = \frac{f_{\boldsymbol{X},T}(\boldsymbol{x},t)}{f_{T}(t)} = \frac{f_{\boldsymbol{X}}(\boldsymbol{x})}{f_{T}(t)}$$

$$= \frac{\exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\theta})\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\theta})^{\top}\right)/\sqrt{(2\pi)^{n}}\det(\boldsymbol{\Sigma})}{\exp(-\frac{1}{2n}(t-n\theta)^{2})/\sqrt{2\pi n}}$$

$$= C\exp\left(\frac{t^{2}}{2n} - \theta t + \frac{n\theta^{2}}{2} - \frac{\boldsymbol{x}\boldsymbol{x}^{\top}}{2} + \theta t - \frac{\boldsymbol{\theta}\boldsymbol{\theta}^{\top}}{2}\right)$$

$$= C\exp\left(\frac{t^{2}}{2n} - \frac{\boldsymbol{x}\boldsymbol{x}^{\top}}{2}\right)$$

$$(6)$$

In which $\boldsymbol{x} = [x_1, x_2, ..., x_n], C := \sqrt{1/(2\pi)^{n-1}}$. Since $f_{\boldsymbol{X}|T}$ is not a function of θ , by definition, T is a sufficient statistic.

(b). Given $X \sim \text{Exp}(\theta)$, we have $T(\boldsymbol{X}) \sim \Gamma(n, \theta)$.

$$f_{\boldsymbol{X}|T(\boldsymbol{X})}(\boldsymbol{x}|t) = \frac{f_{\boldsymbol{X}}(\boldsymbol{x})}{f_{T}(t)} = \frac{\theta^{n} \exp(-\theta \sum_{1}^{n} x_{i})}{\theta \exp(-\theta t)(\theta t)^{n-1}/\Gamma(n)} = \Gamma(n)/t^{n-1}$$
(7)

(c) Given $X \sim \text{Bernoulli}(\theta)$, we have $T(X) \sim \text{Binom}(n, \theta)$.

$$p_{X|T(X)}(x|t) = \frac{p_X(x)}{p_T(t)} = \frac{\theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{n-\sum_{i=1}^{n} x_i}}{\binom{n}{t} \theta^t (1-\theta)^{(n-t)}} = \frac{1}{\binom{n}{t}}$$
(8)

(d) Given $X \sim \text{Poi}(\theta)$, we have $T(X) \sim \text{Poi}(n\theta)$.

$$p_{X|T(X)}(x|t) = \frac{p_X(x)}{p_T(t)} = \frac{e^{-n\theta}\theta^{\sum_{i=1}^{n}x_i}/\prod_{i=1}^{n}x_i!}{e^{-n\theta}(n\theta)^t/t!} = \frac{t!}{n^t \prod_{i=1}^{n}x_i!}$$
(9)

Problem 4.

Solution. (a). Denote $D:=\{\text{The observed person has disease.}\}$, then we are able to interpret the quantities in the illustration as: $\mathbb{P}(D|\{X=x\})=P(x); \mathbb{P}(X=x)=f(x)$. Hence $\mathbb{P}(D\cap\{X=x\})=P(x)f(x)$.

$$\mathbb{P}(\{X = x\}|D) = \frac{\mathbb{P}(D \cap \{X = x\})}{\mathbb{P}(D)}$$

$$= \frac{\mathbb{P}(D \cap \{X = x\})}{\int_{x} \mathbb{P}(D \cap \{X = x\}) dx}$$

$$= \frac{P(x)f(x)}{\int_{x} P(x)f(x)dx}$$
(10)

(b). Just replace D with D^{\complement} , in which $\mathbb{P}\left(D^{\complement} \middle| \{X=x\}\right) = 1 - P(x)$, yields

$$\mathbb{P}\left(\left\{X=x\right\}\middle|D^{\complement}\right) = \frac{(1-P(x))f(x)}{\int_{T}(1-P(x))f(x)dx} \tag{11}$$

(c).
$$\frac{\mathbb{P}(\{X=x\}|D)}{\mathbb{P}(\{X=x\}|D^{\complement})} = \frac{\int_{x} (1-P(x))f(x)dx}{\int_{x} P(x)f(x)dx} \cdot \frac{1}{\frac{1}{P(x)}-1}$$
 (12)

Note that in the first quantity we integrate x out, so it's just a constant. And the second quantity \nearrow whenever $1 \ge P(x) \nearrow$, which finishes the proof.

Problem 5.

Solution. (a). Define RV $N^{[i]} := \#$ of rounds befone 2-consecutive hits when player i shoots first; i = 1, 2. $A_k := \{\text{The target is hitted in the } k^{th} \text{ round.}\}$. Then

$$\mu_{1} := \mathbb{E}\left[N^{[1]}\right] = \mathbb{E}\left[N^{[1]}; A_{1}\right] + \mathbb{E}\left[N^{[1]}; A_{1}^{\complement}\right]$$

$$= \left(\mathbb{E}\left[N^{[1]}; A_{1} \cap A_{2}\right] + \mathbb{E}\left[N^{[1]}; A_{1} \cap A_{2}^{\complement}\right]\right) + \mathbb{E}\left[N^{[1]}; A_{1}^{\complement}\right]$$

$$= \mathbb{E}\left[N^{[1]}\middle| A_{1} \cap A_{2}\right] \mathbb{P}\left(A_{1} \cap A_{2}\right) + \mathbb{E}\left[N^{[1]}\middle| A_{1} \cap A_{2}^{\complement}\right] \mathbb{P}\left(A_{1} \cap A_{2}^{\complement}\right) + \mathbb{E}\left[N^{[1]}\middle| A_{1}^{\complement}\right] \mathbb{P}\left(A_{1}^{\complement}\right)$$

$$= 2p_{1}p_{2} + (\mu_{1} + 2)p_{1}(1 - p_{2}) + (\mu_{2} + 1)(1 - p_{1})$$
(13)

By similar split of $N^{[2]}$, we have

$$\mu_2 = 2p_2p_1 + (\mu_2 + 2)p_1(1 - p_2) + (\mu_1 + 1)(1 - p_2)$$
(14)

Solving the equation system, yields

$$\begin{cases}
\mu_1 = (2 + p_1^2 p_2 - p_1 p_2) / (p_1 p_2 (2 - p_1 - p_2 + p_1 p_2)) \\
\mu_2 = (2 + p_2^2 p_1 - p_1 p_2) / (p_1 p_2 (2 - p_1 - p_2 + p_1 p_2))
\end{cases}$$
(15)

(b). Define RV $X^{[i]} := \#$ of hits befone 2-consecutive hits when player i shoots first; A_i is same event as in (a).

$$h_{1} := \mathbb{E}\left[X^{[1]}\right] = \mathbb{E}\left[X^{[1]}; A_{1}\right] + \mathbb{E}\left[X^{[1]}; A_{1}^{\complement}\right]$$

$$= \left(\mathbb{E}\left[X^{[1]}; A_{1} \cap A_{2}\right] + \mathbb{E}\left[X^{[1]}; A_{1} \cap A_{2}^{\complement}\right]\right) + \mathbb{E}\left[X^{[1]}; A_{1}^{\complement}\right]$$

$$= 2p_{1}p_{2} + (h_{1} + 1)p_{1}(1 - p_{2}) + h_{2}(1 - p_{1})$$
(16)

By similar split of $X^{[2]}$, we have

$$h_2 = 2p_2p_1 + (h_2 + 1)p_1(1 - p_2) + h_1(1 - p_2)$$
(17)

Solving the equation system, yields

$$\begin{cases}
h_1 = (p_1 + p_2 + p_1^2 p_2^2 - p_1 p_2^2) / (p_1 p_2 (2 - p_1 - p_2 + p_1 p_2)) \\
h_2 = (p_1 + p_2 + p_1^2 p_2^2 - p_1^2 p_2) / (p_1 p_2 (2 - p_1 - p_2 + p_1 p_2))
\end{cases}$$
(18)

Problem 6. Verify that following definitions for Poisson process are equivalent. Counting process $\{N(t): t \geq 0\}$ is a poisson process if 1. N(0) = 0, 2. independent increments and

3.
$$\mathbb{P}(N(t+s) - N(s) = n) = e^{-\lambda t}(\lambda t)^n / n!$$

3'
$$\mathbb{P}(N(h+s)-N(s)=1)=\lambda h+o(h); \mathbb{P}(N(h+s)-N(s)\geq 2)=o(h) \text{ for all } s \text{ and } h\to 0.$$

Proof. (3) \Rightarrow (3') is straightforward

$$\mathbb{P}\left(N(h+s) - N(s) = 0\right) = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$\mathbb{P}\left(N(h+s) - N(s) = 1\right) = e^{-\lambda h} \lambda h = (1 - \lambda h + o(h))\lambda h = \lambda h + o(h)$$
(19)

Hence,

$$\mathbb{P}(N(h+s) - N(s) \ge 2) = 1 - \mathbb{P}(N(h+s) - N(s) \in \{0,1\}) = o(h)$$
(20)

Finishes the proof.

(3') \Rightarrow (3) (Step.1) We check MGF $\phi_{N(t)}(x) = \mathbb{E}\left[e^{xN(t)}\right]$ equal to that of Poisson(λt). For clearity of notations, we write $u(x,t) := \phi_{N(t)}(x)$. In particular for fixed \bar{t} , $u(x,\bar{t})$ is MGF of RV $N(\bar{t})$, and a univariate function of u. We further define increment $\Delta_{s,s+t} := N(s+t) - N(s)$, then $N(s) = \Delta_{0,s}$. By independent increment property, $\Delta_{a,b}$, $\Delta_{c,d}$ are independent if $(a,b) \cap (c,d) = \emptyset$.

$$u(x,t+h) = \mathbb{E}\left[e^{x(N(t+h)-N(t))}e^{xN(t)}\right]$$

$$= \mathbb{E}\left[e^{x\Delta_{t,t+h}}e^{x\Delta_{0,t}}\right]$$

$$= u(x,t)\mathbb{E}\left[e^{x\Delta_{t,t+h}}\right]$$

$$= u(x,t)\left[1 - \lambda h + o(h) + e^{x}(\lambda h + o(h)) + o(h)\right]$$

$$= u(x,t)\left[1 - \lambda h + e^{x}\lambda h + o(h)\right]$$
(21)

$$\Rightarrow \frac{u(x,t+h) - u(x,t)}{h} = u(x,t)\lambda(e^x - 1) + \frac{o(h)}{h}$$
(22)

Let $h \to 0$ and note that N(0) = 0, it suffices to solve following Boundary Value Problem

$$\begin{cases}
 u_t(x,t) = u(x,t)\lambda(e^x - 1) \\
 u(x,0) = 1
\end{cases}$$
(23)

It turns out that $u(x,t) = \exp(\lambda t(e^x - 1))$, implies that for every fixed $t \ge 0$, $N(t) \sim \operatorname{Poi}(\lambda t)$. (**Step.2**) Now consider for any $s \ge 0$, $\Delta_{s,s+t} = N(s+t) - N(s) \Rightarrow \Delta_{s,s+t} + \Delta_{0,s} = \Delta_{0,s+t}$, and $\Delta_{s,s+t}, \Delta_{0,s}$ are independent increments; furthermore MGF of $\Delta_{0,s}$ is known to us, which is u(x;s). Hence

$$\phi_{\Delta_{0,s}} \cdot \phi_{\Delta_{s,s+t}} = \phi_{\Delta_{0,s+t}}$$

$$\Rightarrow \phi_{\Delta_{s,s+t}} = \frac{g(x,s+t)}{g(x,s)} = \exp(\lambda t(e^x - 1))$$
(24)

Which implies that $\Delta_{s,s+t} \sim \text{Poi}(\lambda t)$.

Problem 7. $\{T_n : n \geq 1\}$ are i.i.d exponential with mean $\frac{1}{\lambda}$. Define $N(t) := \max\{n : S_n \leq t\}$ where $S_0 = 0$ and $S_n = \sum_{i=1}^n T_i$. Show $\{N(t)\}$ is Poisson process with rate λ .

Proof. (Step.1) We check $S_n \sim \Gamma(n, \lambda)$. Since $\{T_n : n \geq 1\}$ are i.i.d exponential, we consider the MGF of S_n ,

$$\phi_{S_n}(t) = \prod_{i=1}^n \phi_{T_i}(t) = \left(\frac{\lambda}{\lambda - t}\right)^n \tag{25}$$

Which is exactly the MGF of a $\Gamma(n,\lambda)$ RV. Therefore we can write the CDF of S_n as $\sim \Gamma(n,\lambda)$

$$F_{S_n}(t) = \mathbb{P}\left(S_n \le t\right) = 1 - \sum_{i=0}^{n-1} \frac{e^{-\lambda t}(\lambda t)^i}{i!}$$
 (26)

(Step.2) Then we derive the distribution of N(t). By its definition, $\mathbb{P}(N(t) = n) = \mathbb{P}(S_n \le t < S_{n+1}) = \mathbb{P}(\{S_n \le t\} \setminus \{S_{n+1} \le t\})$. It is clear that $\{S_{n+1} \le t\} \subseteq \{S_n \le t\}$ because $S_n \le S_{n+1}$. Hence

$$\mathbb{P}(N(t) = n) = \mathbb{P}(\{S_n \le t\} \setminus \{S_{n+1} \le t\})$$

$$= \mathbb{P}(S_n \le t) - \mathbb{P}(S_{n+1} \le t)$$

$$= F_{S_n}(t) - F_{S_{n+1}}(t)$$

$$= \frac{e^{-\lambda t}(\lambda t)^n}{n!}$$
(27)

Which implies that $N(t) \sim \text{Poi}(\lambda t)$.

(Step.3) We show that $\{N(t): t \geq 0\}$ is of **stationary increments**, and further show that it is of **independent increments**. Define $\Delta_{t_1,t_2} := N(t_2) - N(t_1)$, then in particular we have $\Delta_{0,t} = N(t)$. Still employ same notations for interarrival time and waiting time (i.e. T_n, S_n).

 \forall starting point s > 0, Define $S_n^{[s]} := (S_{n+N(s)} - s)$ i.e. the waiting time of n^{th} event happening **after** s. We have

$$S_n^{[s]} = (S_{N(s)+1} - s) + \sum_{i=2}^n T_{N(s)+i}$$
(28)

Where $S_{N(s)+1}$ is the waiting time of the first event happening after s, we have $S_{N(s)+1} = S_{N(s)} + T_{N(s)+1}$; and $T_{N(s)+i}$ are i.i.d Exponential(λ). We notice that event $\{S_{N(s)+1} > s\}$ i.e. $\{S_1^{[s]} > 0\}$ is surely true¹, since $N(s) + 1^{st}$ event has not yet happened at time s. So for all $t \ge 0$, by **memoryless** property of

¹By saying event E surely true, we mean that $E = \Omega$ (which differs from almost surely true where we only require $\mathbb{P}(E) = 1$). And of course any event with probability 0 or 1 must be independent of anything else.

 $T_{N(s)+1}$:

$$\mathbb{P}\left(T_{N(s)+1} > t\right) = \mathbb{P}\left(T_{N(s)+1} > t + (s - S_{N(s)}) \middle| T_{N(s)+1} > (s - S_{N(s)})\right)
= \mathbb{P}\left(S_{N(s)} + T_{N(s)+1} - s > t \middle| S_{N(s)} + T_{N(s)+1} - s > 0\right)
= \mathbb{P}\left(S_{1}^{[s]} > t \middle| S_{1}^{[s]} > 0\right)
= \frac{\mathbb{P}(\left\{S_{1}^{[s]} > t\right\} \cap \left\{S_{1}^{[s]} > 0\right\})}{\mathbb{P}(S_{1}^{[s]} > 0)}
= \mathbb{P}(S_{1}^{[s]} > t)$$
(29)

Which implies that $S_1^{[s]}$ has identical distribution as $T_{N(s)+1}$, which is Exponential(λ) and is independent w.r.t. T_j , for all $j \neq N(s)+1$. Therefore $S_n^{[s]} = S_1^{[s]} + \sum_{i=2}^n T_{N(s)+i}$ is a summation of n copies of i.i.d Exponential(λ). Hence, $S_n^{[s]} \sim \Gamma(n,\lambda)$ is of identical distribution as S_n (\dagger).

Since $\Delta_{s,s+t} = \max\{n : S_n^{[s]} < t\}$. Note that $\Delta_{0,t} = N(t) = \max\{n : S_n < t\}$ and fact (†), we finish the proof that $\Delta_{0,t}$ and $\Delta_{s,s+t}$ are identically distributed for all $s \ge 0$. (Stationary Increments) Now for any s,t, we have

$$\phi_{\Delta_{0,s}+\Delta_{s,s+t}}(x) = \phi_{\Delta_{0,s+t}}(x)$$

$$= \exp(\lambda(s+t)(e^{x}-1))$$

$$= \exp(\lambda s(e^{x}-1)) \cdot \exp(\lambda t(e^{x}-1))$$

$$= \phi_{\Delta_{0,s}}(x) \cdot \phi_{\Delta_{0,t}}(x)$$

$$= \phi_{\Delta_{0,s}}(x) \cdot \phi_{\Delta_{s,s+t}}(x) \quad (\triangle) \text{(By stationary increments)}$$
(30)

Which implies that $\Delta_{s,s+t}$ and $\Delta_{0,s}$ are independent for all $t,s \geq 0$.

Now for any $a, b, c, d \ge 0$, $(a, b) \cap (c, d) = \emptyset$ and WLOG $a \le b \le c \le d$. $(\triangle) \Rightarrow \Delta_{a,b}, \Delta_{c,d}$ are independent. (Independent Increments)

(Step.4) By stationary increments in step3 and distribution of N(t) in step2, we conclude that

$$\mathbb{P}\left(\Delta_{s,s+t} = n\right) = \mathbb{P}\left(N(t) = n\right) = \frac{e^{-\lambda t}(\lambda t)^n}{n!} \tag{31}$$

Which finishes the proof of defining properties of Poisson process.

Problem 8.

Solution. (a) Denote RV J the type of battery that is drawn, j = 1, 2, ..., n.

$$\mathbb{P}(X \le t) = \sum_{j=1}^{n} \mathbb{P}(X \le t | J = j) \mathbb{P}(J = j)]$$

$$= \sum_{j=1}^{n} (1 - e^{-\lambda_{j}t}) P_{j}$$
(32)

So $\bar{F}_X = \sum_{j=1}^n e^{-\lambda_j t} P_j$ and $f_X(t) = \sum_{j=1}^n \lambda_j e^{-\lambda_j t} P_j$. (b) We want to consider $\mathbb{P}(J=1|X>t)$.

$$\mathbb{P}(J=1|X>t) = \frac{\mathbb{P}(X>t|J=1)\mathbb{P}(J=1)}{\mathbb{P}(X>t)}$$

$$= \frac{e^{-\lambda_1 t} \cdot P_1}{e^{-\lambda_1 t} \cdot P_1 + \sum_{j=2}^n e^{-\lambda_j t} P_j}$$

$$= \frac{P_1}{P_1 + \sum_{j=2}^n e^{(\lambda_1 - \lambda_j)t} P_j}$$
(33)

Since $\lambda_1 \geq \lambda_j$ for all j, $\mathbb{P}(J=1|X>t) \nearrow$ with t. And we also observe that $\mathbb{P}(J=1|X>t) \to 1$ when $t \to \infty$.

Problem 9. Issurance claims are made at times as Poisson process with λ , u.e. time of n^{th} claim is waiting time S_n . Amount C_n associated with each claim has known i.i.d dist with mean μ . So the PV of total insurance payment up to t is

$$D(t) = \sum_{i=1}^{N(t)} e^{-\alpha S_i} C_i$$

Solution.

$$\mathbb{E}\left[D(t)\right] = \sum_{n\geq 0} \mathbb{E}\left[D(t); \{N(t) = n\}\right]$$

$$= \sum_{n\geq 0} \mathbb{E}\left[D(t)|N(t) = n\right] \cdot \mathbb{P}\left(N(t) = n\right)$$

$$= \sum_{n\geq 0} \left(\sum_{i=1}^{n} \mathbb{E}\left[e^{-\alpha S_{i}}C_{i}|N(t) = n\right]\right) \mathbb{P}\left(N(t) = n\right)$$

$$= \sum_{n\geq 0} \left(\sum_{i=1}^{n} \mu \int_{0}^{\infty} e^{-\alpha s} f_{S_{i}|N(t)}(s|n) ds\right) \mathbb{P}\left(N(t) = n\right) \quad \text{(We have } S_{i}|N(t) \sim U(0,t)\text{)}$$

$$= \sum_{n\geq 0} \left(\sum_{i=1}^{n} \frac{\mu}{\alpha t} (1 - e^{-\alpha t})\right) \mathbb{P}\left(N(t) = n\right)$$

$$= \sum_{n\geq 0} \frac{n\mu}{\alpha t} (1 - e^{-\alpha t}) \frac{e^{-\lambda t}(\lambda t)^{n}}{n!}$$

$$= 0 + \sum_{n\geq 1} \frac{n\mu}{\alpha t} (1 - e^{-\alpha t}) \frac{e^{-\lambda t}(\lambda t)^{n}}{n!}$$

$$= \frac{\lambda \mu}{\alpha} (1 - e^{-\alpha t}) \sum_{n\geq 1} \frac{e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!} = \frac{\lambda \mu}{\alpha} (1 - e^{-\alpha t})$$

Problem 10. $\{N(t): t \geq 0\}$ be Poisson process, indep. of $\{X_i\}$ i.i.d with mean μ variance σ^2 . Find \mathbb{C} ov $\left[N(t), \sum_{i=1}^{N(t)} X_i\right]$

Solution. $N(t) \sim \operatorname{Pois}(\lambda t)$, hence $\mathbb{E}[N(t)] = \lambda t$. Denote $S_N := \sum_{i=1}^{N(t)} X_i$. By **Wald's Identity**, $\mathbb{E}[S_N] = \mathbb{E}[N(t)] \mathbb{E}[X_1] = \lambda t \mu$. Then we calculate $\mathbb{E}[N(t)S_N]$:

$$\mathbb{E}\left[N(t)S_{N}\right] = \mathbb{E}\left[\mathbb{E}\left[N(t)\sum_{i=1}^{N(t)}X_{i}\middle|N(t)\right]\right]$$

$$= \mathbb{E}\left[N(t)\sum_{i=1}^{N(t)}\mathbb{E}\left[X\middle|N(t)\right]\right]$$

$$= \mathbb{E}\left[N^{2}(t)\mu\right] = ((\lambda t)^{2} + \lambda t)\mu$$
(35)

Hence \mathbb{C} ov $[N(t), S_N] = \mathbb{E}[N(t)S_N] - \mathbb{E}[S_N]\mathbb{E}[N(t)] = \lambda t \mu$

Problem 11.

Solution. (a) Since $\{X_i\}$ are i.i.d Exponential, we have $\mathbb{E}\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n \mathbb{E}\left[X_i\right] = \frac{1}{\mu^n}$.

$$\mathbb{E}\left[S(t)\right] = s \sum_{n \ge 0} \mathbb{E}\left[\prod_{1}^{N(t)} X_{i} \middle| N(t) = n\right] \cdot \mathbb{P}\left(N(t) = n\right)$$

$$= s \sum_{n \ge 0} \frac{1}{\mu^{n}} \cdot \frac{e^{-\lambda t} (\lambda t)^{n}}{n!}$$

$$= s e^{-\lambda t} \sum_{n \ge 0} \cdot \frac{(\lambda t/\mu)^{n}}{n!} = s e^{-\lambda t + \frac{\lambda t}{\mu}}$$
(36)

(b) Similarly we have $\mathbb{E}\left[\prod_{1}^{n}X_{i}^{2}\right]=\prod_{1}^{n}\mathbb{E}\left[X_{i}^{2}\right]=\left(\frac{2}{\mu^{2}}\right)^{n}$

$$\mathbb{E}\left[S^{2}(t)\right] = s^{2} \sum_{n \geq 0} \mathbb{E}\left[\prod_{1}^{N(t)} X_{i}^{2} \middle| N(t) = n\right] \cdot \mathbb{P}\left(N(t) = n\right)$$

$$= s^{2} \sum_{n \geq 0} \frac{2}{\mu^{2n}} \cdot \frac{e^{-\lambda t} (\lambda t)^{n}}{n!}$$

$$= s^{2} e^{-\lambda t} \sum_{n \geq 0} \cdot \frac{(2\lambda t/\mu^{2})^{n}}{n!} = s e^{-\lambda t + \frac{2\lambda t}{\mu^{2}}}$$
(37)

Problem 12. For a Poisson process show that for s < t,

$$\mathbb{P}\left(N(s) = k | N(t) = n\right) = \binom{n}{k} \left(\frac{s}{t}\right)^k \left(1 - \frac{s}{t}\right)^{n-k}$$

Proof. Define $\Delta_{s,t} := N(t) - N(s)$, it is clear that following two events are equivalent:

$$\{N(s) = k, N(t) = n\} \iff \{N(s) = k, \Delta_{s,t} = n - k\} \ (\dagger)$$

Therefore we have

$$\mathbb{P}(N(s) = k | N(t) = n) = \frac{\mathbb{P}(N(s) = k, N(t) = n)}{\mathbb{P}(N(t) = n)}$$

$$= \frac{\mathbb{P}(N(s) = k, \Delta_{s,t} = n - k)}{\mathbb{P}(N(t) = n)}$$

$$= \frac{\mathbb{P}(N(s) = k) \mathbb{P}(\Delta_{s,t} = n - k)}{\mathbb{P}(N(t) = n)}$$
 (By independent increments.)
$$= \frac{e^{\lambda s}(\lambda s)^k}{k!} \cdot \frac{e^{\lambda (t-s)}(\lambda (t-s))^{n-k}}{(n-k)!} / \frac{e^{\lambda t}(\lambda t)^n}{n!}$$

$$= \frac{n!}{k!(n-k)!} \frac{s^k (t-s)^{n-k}}{t^n} = \binom{n}{k} \left(\frac{s}{t}\right)^k \left(1 - \frac{s}{t}\right)^{n-k}$$

Problem 13.

Solution. (c) By definition of non-homogeneous Poisson process, we known that N(t) is a Poisson RV with rate $m(t) = \int_0^t \lambda(x) dx$; and $\Delta_{s,s+t}$ is a Poisson RV with rate $m(t+s) - m(s) = \int_s^{t+s} \lambda(x) dx$ hence

$$\mathbb{P}(T_1 > t) = \mathbb{P}(N(t) = 0) = e^{-m(t)}$$
(39)

Which implies $F_{T_1}(t) = 1 - e^{-m(t)}$, and $f_{T_1}(t) = \lambda(t)e^{-m(t)}$ for $t \ge 0$. (a,b) Then we derive the distribution of T_2

$$\mathbb{P}(T_{2} > t) = \int_{0}^{\infty} \mathbb{P}(T_{2} > t | T_{1} = s) f_{T_{1}}(s) ds
= \int_{0}^{\infty} \mathbb{P}(\Delta_{s,s+t} = 0) f_{T_{1}}(s) ds
= \int_{0}^{\infty} e^{m(s+t)-m(s)} \lambda(s) e^{-m(s)} ds$$
(40)

(TODO)

Problem 14.

Solution. (a) By the meaning of X, we can define it explicitly as

$$X := \begin{cases} 0 & N(t) = 0, \\ \sum_{i=1}^{N(t)} (t - S_i) & \text{Otherwise.} \end{cases}$$
 (41)

Where N(t) is counting at t, S_i is waiting time of event {The arrival of i^{th} person}. By theorem, we know $S_i|N(t) \sim i.i.d.\mathcal{U}(0,t)$; hence $\mathbb{E}\left[S_i|N(t)\right] = t/2$ for all $i \geq 1$.

$$\mathbb{E}[X|N(t)] = \sum_{i=1}^{N(t)} (t - \mathbb{E}[S_i|N(t)]) = \frac{tN(t)}{2}$$
(42)

(b) $\operatorname{Var}[S_i|N(t)] = (t-0)^2/12 = t^2/12$

$$Var[X|N(t)] = \sum_{i=1}^{N(t)} Var[-S_i|N(t)] = \frac{t^2N(t)}{12}$$
(43)

(3) $N(t) \sim \text{Pois}(\lambda t)$

$$\operatorname{Var}[X] = \mathbb{E}\left[\operatorname{Var}[X|N(t)]\right] + \operatorname{Var}\left[\mathbb{E}\left[X|N(t)\right]\right]$$

$$= \mathbb{E}\left[\frac{t^{2}N(t)}{12}\right] + \operatorname{Var}\left[\frac{tN(t)}{2}\right]$$

$$= \frac{t^{2}\lambda t}{12} + \frac{t^{2}\lambda t}{4} = \frac{t^{3}\lambda}{3}$$
(44)

Problem 15. Calculate \mathbb{C} ov [X(t), X(s)] for compound Poisson: for $\{Y_i\}$ i.i.d and independent of $\{N(t): t \geq 0\}$

$$X(t) := \sum_{i=1}^{N(t)} Y_i$$

Solution. WLOG assume $s \leq t \Rightarrow N(s) \leq N(t)$. And suppose Poisson process accordated with X(t) has rate λ , then by **Wald's Identity**: $\mathbb{E}[X(t)] = \mathbb{E}[N(t)] \mathbb{E}[Y_1]$. It suffices to compute $\mathbb{E}[X(t)X(s)]$

$$\mathbb{E}\left[X(t)X(s)\right] = \mathbb{E}\left[\sum_{i=1}^{N(s)} Y_i^2 + \sum_{(i,j),i\neq j}^{(N(s),N(t))} Y_i Y_j\right]$$

$$= \mathbb{E}\left[N(s)\right] \mathbb{E}\left[Y_1^2\right] + \mathbb{E}\left[\mathbb{E}\left[\sum_{(i,j),i\neq j}^{(N(s),N(t))} Y_i Y_j \middle| (N(s),N(t))\right]\right]$$

$$= \mathbb{E}\left[N(s)\right] \mathbb{E}\left[Y_1^2\right] + \mathbb{E}\left[\sum_{(i,j),i\neq j}^{(N(s),N(t))} \mathbb{E}\left[Y_i Y_j \middle| (N(s),N(t))\right]\right]$$

$$= \mathbb{E}\left[N(s)\right] \mathbb{E}\left[Y_1^2\right] + \mathbb{E}\left[(N(s)N(t) - N(s)) \mathbb{E}^2\left[Y_1\right]\right]$$

$$= \mathbb{E}\left[N(s)\right] \mathbb{Var}\left[Y_1\right] + \mathbb{E}^2\left[Y_1\right] \mathbb{E}\left[N(s)N(t)\right] \quad (\dagger)$$

Since $N(t) = N(s) + \Delta_{s,t}$, $\Delta_{s,t} \sim \text{Pois}(\lambda(t-s))$ and independent wrt N(s). We have $\mathbb{E}[N(s)N(t)] = \mathbb{E}[N^2(s)] + \mathbb{E}[N(s)] \mathbb{E}[N(t-s)]$. Therefore

$$(\dagger) - \mathbb{E}\left[X(t)\right] \mathbb{E}\left[X(s)\right] = \lambda s \mathbb{V} \text{ar}\left[Y_1\right] + \mathbb{E}^2\left[Y_1\right] \left(\lambda^2 s^2 + \lambda s + \lambda s(\lambda t - \lambda s)\right) - \lambda s \lambda t \mathbb{E}^2\left[Y_1\right]$$

$$= \lambda s \left(\mathbb{V} \text{ar}\left[Y_1\right] + \mathbb{E}^2\left[Y_1\right]\right)$$

$$= \lambda s \mathbb{E}\left[Y_1^2\right]$$

$$(46)$$

Generalize this result to arbitrary s, t, we conclude that

$$Cov[X(t), X(s)] = \min\{\lambda s, \lambda t\} \cdot \mathbb{E}\left[Y_1^2\right]$$
(47)