Case Study Identifying Mobility Pattern in Public Transport

Adityo Hidayat, S.Kom, M.B.A, CISA PT. Gamatechno Indonesia adityo@gamatechno.com

Bus Rapid Transit

PEACE, JUSTICE AND STRONG INSTITUTIONS

Smart Transportation

eTicketing with electronic money integration as part of **sustainable transport system, and developing effective, accountable and transparent transport operators.** Features including Fleet Management Mobile Apps for Passenger, Display Info System on-Bus and in-Shelter

600K Monthly Transactions

4 e-Money Issuers 2 Native Card 2 Concession Card

112 Gate on Shelter 74 Tap on Bus Validator

10M Monthly Transactions

6 e-Money Issuers

224 Shelters292 Access Gate12 Lanes

The Problem

- Earlier days, evaluating the performance of busway corridors were done manually, one of them were using surveys to the passengers
- Processing each pairing transactions to produce origin/destination matrix were also done manually
- Limited analysis due to the large transaction data and manual processing

* Data as of April 2016

 Origin/Destination (O/D) Matrix, a two dimensional table summarizing pairing transaction, transaction at the origin and at the destination.

TUJUAN ASAL	KOR_1	KOR_2	KOR_3	KOR_4	KOR_5	KOR_6	KOR_7	KOR_8	KOR_9	KOR_10
1	27,238	3,074	4,859	3,259	2,299	3,394	1,315	3,169	3,472	763
2	2,971	3,200	3,108	273	1,427	359	470	1,526	632	798
3	5,075	2,547	7,528	429	1,375	688	664	3,089	2,012	409
4	3,447	254	383	5,729	1,289	2,643	616	497	878	1,000
5	2,111	1,293	1,317	1,198	6,780	665	2,973	905	1,116	683
6	4,049	474	660	2,004	746	10,911	524	1,349	2,960	254
7	1,833	704	772	789	3,565	807	2,731	981	3,682	2,590
8	2,689	1,126	2,840	392	864	1,172	665	8,356	3,003	237
9	3,789	645	2,019	796	1,361	2,310	2,472	3,669	15,124	1,337
10	1,010	839	435	1,167	808	274	1,545	302	1,423	4,731
11	388	183	179	181	1,519	95	842	154	335	704
12	883	125	249	102	514	112	160	208	294	370
13	299	107	91	73	203	567	262	117	730	366

 Spatial Trip Generation, vizualize the volume of production dan attraction in the map for each location (shelter, subcorridors, corridors).

 The activity pulse (entry and exit) in each locations (shelter)

 Trip Generation Summary, showing the summary of jumlah production dan attraction in each location on certain time periods.

 Passenger Flow, showing the percentage of passenger's origin heading to certain destination.

Transaction Data

- Tap IN: timestamp and location
- Tap OUT: timestamp and location

The Steps

Extract from transactional RDBMS
Load data into reporting database (NoSQL)

transaction are valid (having data tap IN and OUT)

Tap IN and OUT time difference is less than 4 hours

Only pairing

Process pairing transactions data into O/D Matrix
Process pairing transactions as hierarchical aggregated timeseries

Developing frontend application to
visualize the result
based on
customizable user
input.

Hierarchical Aggregated Time Series

The Results

SUBKORIDOR K-04 Middle

The Results

Mobility Pattern

Electronic Parking Terminals, not only increases the revenue from parking, but also serves as a sensor which provides the mobility pattern of privately owned vehicles

Electronic ticketing from TransJakarta provides the mobility pattern of public transport use

The Idea

224 Shelters292 Access Gate

312 Jakarta485 Bandung

Aha! Let's Collaborate