Applicazioni lineari iniettive, suriettive, biettive e isomorfismi, composte #GAL

Definizione:

L : V->W è iniettiva se $\underline{v_1} \neq \underline{v_2} => L(\underline{v_1}) \neq L(\underline{v_2})$ equivalentemente, se $L(\underline{v_1}) = L(\underline{v_2}) => \underline{v_1} = \underline{v_2}$

Esempio:

L : V->W definita da L(v) = 4v è iniettiva

Esempio:

$$T_a: R^2 -> R^2 \text{ dove } A = (1 \ 2)$$

$$T_a(1) = (3) = T_a(-1)$$

$$1 \quad 6 \quad 2$$

Proposizione:

L : V->W applicazione lineare iniettiva $<=> ker(L) = {\underline{0}_V}$ (ker(L) =

$\{ \underline{v} \in V : L(\underline{v}) = \underline{0} \} \subseteq V)$ Dimostrazione:

=> supponiamo L iniettiva dimostriamo $ker(L) = {\underline{0}_{V}}$

Sia
$$\underline{v} \in \ker(L) => L(\underline{v}) = \underline{0}_W = L(\underline{0}_V) = (iniettiva) => \underline{v} = \underline{0}_V => \ker(L) =$$

{<u>0</u>,,}

<= supponiamo ker(L) = $\{\underline{0}_{V}\}$, dimostriamo L iniettiva

Siano
$$\underline{v_1}$$
, $\underline{v_2} \in V$ t.c. $L(\underline{v_1}) = L(\underline{v_2})$
=> $L(\underline{v_1}) - L(\underline{v_2}) = \underline{0}_W = (lineare) => L(\underline{v_1} - \underline{v_2}) = \underline{0}_W => \underline{v_1} - \underline{v_2} = ker(L)$
=(per ipotesi)= $\{\underline{0}_V\}$

$$\Rightarrow \underline{v}_1 - \underline{v}_2 = \underline{0}_V \Rightarrow \underline{v}_1 = \underline{v}_2 \Rightarrow L \text{ iniettiva}$$

Corollario:

Sia A ∈Mat(m,n)

$$T_a:R^n->R^m \text{ è iniettiva} <=> \ker(T_a)=\{\underline{0}\}<=> \ker(A)=\{\underline{0}\}<=> \dim \ker(A)=0 <=(\text{nullit} a+rango)=> \operatorname{rk}(A)=n$$

$$T_a \text{ iniettiva} <=> \operatorname{rk}(A)=n$$

Esempio:

$$n > m => T_a : R^n -> R^m$$
 non è mai iniettiva

Osservazione:

In generale L : V->W qualsiasi $\underline{v_1}$, ..., $\underline{v_n} \in V$ L.I. $\neq > L(\underline{v_1})$, ..., $L(\underline{v_n}) \in W$ L.I.

Proposizione:

sia L : V->W iniettiva qualsiasi $\underline{v_1}$, ..., $\underline{v_n} \in V$ L.I. => $L(\underline{v_1})$, ..., $L(\underline{v_n}) \in W$ L.I.

Dimostrazione:

 $\begin{aligned} & \text{supponiamo } c_1 L(\underline{v_1}) + ... + c_n L(\underline{v_n}) = \underline{0}_W \text{ per qualche } c_i \in R \text{ =(applicazione lineare)} \\ & \text{lineare)} => L(c_1 \underline{v_1} + ... + c_n \underline{v_n}) = \underline{0}_W \text{ =>} \\ & => (c_1 \underline{v_1} + ... + c_n \underline{v_n}) = \underline{0}_W \text{ =>} (c_1 \underline{v_1} + ... + c_n \underline{v_n}) = \text{ker}(L) \text{ =(iniettività)} => \\ & \text{ker}(L) = \underline{0}_V \text{ =>} (c_1 \underline{v_1} + ... + c_n \underline{v_n}) = \underline{0}_V \text{ =>} \\ & (v_i \text{ LI}) => c_1 = ... = c_n = 0 \end{aligned}$

Corollario:

se L : V->W iniettiva, $H \subseteq V$ sottospazio => dimH = dimL(H)

Dimostrazione:

$$\{b_1, ..., b_n\}$$
 base di $H => \{L(b_1), ..., L(b_n)\}$ base di $L(H)$

Definizione:

L: V->W è suriettiva se Im(L) = W

Esempio:

 $L: \mathbb{R}^2 -> \mathbb{R}^2$ definita da $L(x \ y) = (x+y \ 0)$ non è suriettiva, (0 1) $\not\in Im(L)$

Corollario:

L: V->W applicazione lineare

L suriettiva <=> dimIm(L) = dimW

Corollario:

sia A ∈Mat(m,n)

 $T_a: R^n -> R^m$ è suriettiva $<=> dimIm(T_a) = dimR^m <=> dimCol(A) = m <=> rk(A) = m$

Esempio:

se n < m => $T_a : R^n -> R^m$ non è mai suriettiva

Definizione:

un'applicazione lineare L : V->W è un isomorfismo se L è biettiva (o biunivoca) ovvero iniettiva e suriettiva

Intuitivamente:

se L : V->W isomorfismo allora V e W hanno la stessa struttura di spazio vettoriale e L "traduce" V in W

Esempio:

L : Mat(n,1)->Mat(1,n) definitiva da $L(\underline{v}) = \underline{v}^t$ è un isomorfismo Corollario:

sia A \in Mat(m,n) $T_a : R^n -> R^m$ è un isomorfismo <=> m = n = rk(A)

Esempio:

$$L: R^2 -> R^2$$
 definita da $L(x \ y) = (x+y \ x-y)$ è un isomorfismo infatti $L = T_a$ dove A(1 1; 1 -1) $rk(A) = 2$

Proposizione:

sia L : V->W un isomorfismo, $\underline{v_1}$, ..., $\underline{v_n} \in V$, $H,K \subseteq V$ sottospazi

- 1. dimV = dimW
- 2. dimH = dimL(H)
- 3. L(H+K) = L(H) + L(K)
- 4. $L(H \cap K) = L(H) \cap L(K)$
- 5. $\underline{v_1}$, ..., $\underline{v_n}$ sono LI/generatori/base <=> $L(\underline{v_1})$, ..., $L(\underline{v_n})$ sono LI/generatori/base

Definizione:

Osservazione:

M·L è un'applicazione lineare

Osservazione:

$$R^{n} - (T_{a}) -> R^{m} - (T_{b}) -> R^{p}$$
 dove $A \in Mat(m,n) \in B \in Mat(p,m)$
=> $BA \in Mat(p,n) => T_{ba} : R^{n} -> R^{p} T_{b} \cdot T_{a} = T_{ba}$