ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Hydrogen peroxide assisted rapid synthesis of TiO₂ hollow microspheres with enhanced photocatalytic activity

Yang Zheng, Jinghua Cai, Kangle Lv*, Jie Sun, Hengpeng Ye, Mei Li

Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, PR China

ARTICLE INFO

Article history:
Received 15 July 2013
Received in revised form 2 October 2013
Accepted 7 October 2013
Available online 16 October 2013

Keywords: TiO₂ hollow microspheres Photocatalysis Hydrogen peroxide Fluoride-induced self-transformation (FIST)

ABSTRACT

Anatase TiO_2 hollow microspheres (TiO_2 -HMSs) have attracted great attention owing to their versatile applications including photocatalysis, sensing, lithium-ion batteries, drug-delivery carrier and solar energy conversion. However, the synthetic procedures for TiO_2 -HMSs are complex and/or time-consuming. In this paper, rapid synthesis of TiO_2 -HMSs in the presence of TiO_2 -HMSs in the presence of TiO_2 -HMSs is systematically studied by hydrothermal treatment of the mixed solution of TiO_2 -HMSs in the presence of TiO_2 -HMSs is systematically studied by hydrothermal treatment of the mixed solution of TiO_2 -HMSs in the presence of TiO_2 -HMSs found that the diameters of the obtained spherical TiO_2 aggregates decreases with increase in the amount of TiO_2 -HMSs of TiO_2 not only promotes the crystallization of primary anatase TiO_2 nanocrystals, but also induces the hollowing process of TiO_2 microspheres. The prepared TiO_2 -HMSs shows high photocatalytic activity in degradation of TiO_2 -HMSs are anionic dye, under TiO_2 -HMSs hows high photocatalytic activity in degradation and improved adsorption. A proposed formation mechanism was put forward for the rapid formation of TiO_2 -HMSs based on TiO_2 -assisted nucleation, and followed by fluoride-induced self-transformation (FIST).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As one of oxide semiconductor photocatalysts, TiO_2 has proven the most suitable for widespread environmental applications due to its biological and chemical inertness, strong oxidizing power, cost-effectiveness, and long-term stability against photocorrosion and chemical corrosion [1–5]. However, the performance of TiO_2 needs to be improved from the viewpoint of practical applications due to low quantum efficiency [3,6–9].

Recently, TiO₂ hollow structures have attracted great attention due to their high surface-to-volume ratio, lower density, better permeation, and high photocatalytic activity [10–18]. The well-established strategies for fabrication of TiO₂ hollow microspheres (TiO₂-HMSs) including conventional hard-templating [13,19–23] and soft-templating methods [24–27] have been reported. Because of the complexity of the aforementioned templating strategies, the template-free methods, such as fluoride induced self-transformation (FIST) based on Ostwald ripening, have been recently developed to fabricate TiO₂-HMSs [7,12,28–34]. The fabrication of TiO₂-HMSs by FIST has been characterized by the following 4 steps (example using (NH₄)₂TiF₆ as titanium and fluoride source) [35,36]: (1) hydrolysis of titanium salt and nucleation

of metastable TiO_2 nanoclusters (Eq. (1)), (2) spontaneous organization of the incipient nanoclusters into amorphous spherical aggregates in solid form, (3) heterogeneous nucleation of a crystalline thin shell around the amorphous microparticles, and (4) fluoride induced preferential dissolution of the amorphous particle interior and concurrent deposition of a porous crystalline external shell to produce intact hollow microspheres without significant modification in the bulk particle morphology (Eqs. (2) and (3)).

$$TiF_6^{2-} + 2H_2O \rightarrow TiO_2 (amorphous) + 4H^+ + 6F^-$$
 (1)

$$4 H^+ + TiO_2 \, (amorphous) \, + \, 6 F^- \rightarrow \, TiF_6{}^{2-} + 2 H_2 O \, (dissolution) \eqno(2)$$

$$TiF_6{}^{2-} + 2H_2O \, \rightarrow \, 4H^+ + TiO_2(anatase) \, + \, 6F^-(recrystallization)$$

(3)

Yang and Zeng [37] first reported the controlled synthesis of TiO_2 -HMSs via hydrolysis of acidic TiF_4 solution at $200\,^{\circ}C$ for 24 h. Subsequently, a modified synthetic approach involving the hydrothermal treatment of acidic $Ti(SO_4)_2$ solution in the presence of NH₄F at $180\,^{\circ}C$ for $12\,h$ was developed for the fabrication of anatase TiO_2 -HMSs [30]. However, these methods for fabrication of TiO_2 -HMSs are time-consuming and energy-wasting. Rapid

^{*} Corresponding author. Tel.: +86 27 67842752; fax: +86 27 67842752. E-mail addresses: lvkangle@mail.scuec.edu.cn, lvkangle888@163.com (K. Lv).

synthesis of TiO₂-HMSs at low temperature is urgently needed but remains a great challenge [38].

Our group have recently reported the synthesis of high photo-reactive rugby-like TiO₂ hollow nanoparticles (TiO₂-HNPs) by hydrothermal treatment of Ti(OC₄H₉)₄-NH₄HF₂-H₂O₂ mixed solution at 150°C for 10 h [39], and hierarchical TiO2-HMSs assembly by TiO2-HNPs by a simple hydrothermal route in a $Ti(SO_4)_2-NH_4F-H_2O_2$ mixed solution at $180^{\circ}C$ for 3h [40]. Both of these work suggest that H₂O₂ can influence the formation of anatase TiO₂ hollow interiors. In this paper, we reported the rapid fabrication of chain-like anatase TiO2-HMSs assemblies in the presence of H₂O₂ by hydrothermal treatment of the mixed solution of (NH₄)₂TiF₆ and urea ((NH₄)₂CO) at low temperature of 150 °C for only 3 h. The synthesized TiO₂-HMSs show overwhelming better performance than TiO₂ solid microspheres prepared under other identical condition in the absence of H₂O₂. A possible mechanism for the rapid fabrication of TiO₂-HMSs was proposed based on H₂O₂-assisted nucleation and followed by FIST hollowing process.

2. Experimental

2.1. Preparation

Chain-like TiO2-HMSs were prepared by hydrothermal treatment of (NH₄)₂TiF₆ aqueous solution in the presence of urea and H₂O₂. In a typical synthesis, 2.42 g urea (40 mmol) was added into 50 ml solution dissolving 6 mmol (NH₄)₂TiF₆ under vigorous stirring. Then, 30 ml H₂O₂ (40 wt%, 4.4 mol) was dropwise added into the mixed solution, forming a characteristic deep orange solution. The resulted solution was transferred to a 100 ml Teflon-lined autoclave, which was sealed and kept at 150 °C for 3 h. After cooling to room temperature, the obtained precipitate was filtrated. To eliminate the surface adsorbed fluoride ions, the precipitate was washed by 0.1 M NaOH, followed by distilled water until the pH value of the filtrate is about 7 before drying at room temperature [9]. For comparison, a serial samples were also prepared (Table 1). The prepared TiO_2 sample is labeled as S_{x-y} , where suffix "x" and "y" represent the volumes of $H_2O_2(x \text{ ml})$ and the reaction time (y h), respectively. For example, the sample S₃₀₋₃ represents the sample prepared in the presence of 30 ml H₂O₂ at 150 °C for 3 h. Note that the total volume of the mixed solution in hydrothermal reaction is kept the same (80 ml) for all TiO₂ samples.

2.2. Characterization

The X-ray diffraction (XRD) patterns obtained on a D8-advance X-ray diffractometer (German Bruker). The accelerated voltage and applied current were 15 kV and 20 mA, respectively. The average crystalline size of the catalyst was determined according to the Scherrer equation using full width at half maximum data after correcting for the instrumental broadening. The morphology of TiO₂ powders was observed on a transmission electron microscope (TEM)(Tecnai G20, USA) using an acceleration voltage of 200 kV and a field emission scanning electron microscope (FESEM) (S-4800, Hitachi, Japan) with an acceleration voltage of 10 kV, respectively. Nitrogen adsorption-desorption isotherms were obtained on an ASAP 2020 (Micromeritic Instruments, USA) nitrogen adsorption apparatus. All the samples were degassed at 120 °C prior to Brunauer-Emmett-Teller (BET) measurements. The BET specific surface area (S_{BET}) was determined by a multipoint BET method using the adsorption data in the relative pressure P/P_0 range of 0.05-0.30. The desorption isotherm was used to determine the pore size distribution by using the Barret-Joyner-Halenda (BJH)

Fig. 1. XRD patterns of TiO_2 samples for $S_{0-3}(a)$, $S_{1-3}(b)$, $S_{5-3}(c)$, $S_{15-3}(d)$, $S_{30-3}(e)$, respectively.

method. The nitrogen adsorption volume at $P/P_0 = 0.994$ was used to determine the pore volume (PV) and average pore size (APS).

2.3. Evaluation of the photocatalytic activity

A 3W LED lamp (UVEC-4 II, Shenzhen lamplic, China) emitted mainly at 365 nm is used as light source, which is placed outside a Pyrex-glass reactor at a fixed distance (ca. 5 cm). Brilliant Red X-3B (X3B) [3,41,42], an anionic azo dye is used as a probe molecule. During the photocatalytic reaction, the reactor was mechanically stirred at a constant rate. The concentration of TiO₂ was 1.0 g/L, and the initial concentration of X3B was 1.0×10^{-4} mol/L. Before irradiation, the suspensions were sonicated first for 5 min, and then were shaken overnight in the dark to establish the adsorption–desorption equilibrium. At given intervals of irradiation, small aliquots were withdrawn by a syringe, and filtered through a membrane (pore size 0.22 μ m). The concentration of X3B remaining in the filtrate was then analyzed by an Agilent 8451 spectrometer at 510 nm.

3. Results and discussion

3.1. Phase structure and morphology

The phase structure, crystallite size (crystallinity) of TiO₂ are of great importance for its photocatalytic activity [3]. XRD was used to investigate the effect of H₂O₂ and reaction time on the phase structure and crystallinity of TiO₂ samples. As shown in Fig. 1, all X-ray diffraction (XRD) peaks of the aspreparedTiO₂ samples match the anatase phase of TiO₂. The broadening of the diffraction peak at $2\theta = 25.3^{\circ}$ corresponding to (101) plane diffraction for S_{0-3} sample is caused by the small crystallite size and weak crystallization of the sample. It can be seen that the peak intensity of anatase increases with increase in the amount of H₂O₂ from 0 to 30 ml, indicating an enhancement of crystallization [39,40]. Meanwhile, the width of the (101) plane diffraction peaks became narrower, showing an increase in anatase crystallite size (Table 1). The study of Du et al. [43] have proposed that the hydrolyzed TiO₂ clusters can connect with each other through $\equiv Ti \cdot \cdot \cdot O - O \cdot \cdot \cdot Ti \equiv bridge$ in the presence of H₂O₂. Such bounding should facilitate the growth and crystallization of TiO2 particles.

Fig. 2 shows the effect of H_2O_2 on the formation of TiO_2 -HMSs. In the absence of H_2O_2 , only solid spherical TiO_2 aggregates were obtained even extension the reaction time from 3 to 48 h (Fig. 2a and b), reflecting the slow Ostwald ripening (or FIST) process. It can

Table 1Starting materials and XRD characterization results of the photocatalysts.

Catalyst	Starting materials				X3B adsorbed (μmol g ⁻¹) ^a	Crystalline size (nm)	Relative crystallinityb
	(NH ₄) ₂ TiF ₆ (g)	(NH ₄) ₂ CO (g)	$H_2O_2(ml)$	H ₂ O (ml)			
S ₀₋₃	1.19	2.42	0	80	0.10	13.1	1
S ₁₋₃	1.19	2.42	1	79	0.48	17.0	1.07
S ₅₋₃	1.19	2.42	5	75	0.57	17.2	1.11
S ₁₅₋₃	1.19	2.42	15	65	1.91	20.4	1.49
S ₃₀₋₃	1.19	2.42	30	50	2.18	21.8	1.53

^a Amount of X3B dye adsorbed on the surface of TiO₂ before photocatalytic degradation.

also be seen from Fig. 2a that the diameters of the spherical TiO_2 aggregates are in the range of $1-5~\mu m$ with poor monodispersity. However, the morphology of TiO_2 sample was found to evolve from solid to core/shell structured and hollow spherical aggregates with increase in the amount of H_2O_2 under other identical conditions. From the TEM images, it can also be seen that the diameters of the monodisperse TiO_2 microspheres steady decease from about 1.5 to 0.6 μm with increase in the amount of H_2O_2 from 1 ml to 30 ml.

Enhanced crystallization and accelerating the evacuation of spherical TiO_2 aggregates by H_2O_2 were also observed for samples prepared at $150\,^{\circ}\text{C}$ for $10\,\text{h}$ (Fig. S1 and Fig. 3). No TiO_2 -HMSs can be obtained in the absence of H_2O_2 even extension the reaction time to $48\,\text{h}$ (Fig. 2b). However, TiO_2 -HMSs were formed at $150\,^{\circ}\text{C}$ for only $3\,\text{h}$ when $30\,\text{ml}$ H_2O_2 was added (Fig. 2f), reflecting the importance of H_2O_2 on the formation of hollow interiors. Further study shows

Fig. 2. TEM images of TiO₂ samples after hydrothermal treatment at 150 °C for 3 h in the absence (S_{0-3} , a) and presence of 1 ml (S_{1-3} , c), 5 ml (S_{5-3} , d), 15 ml (S_{15-3} , e) and 30 ml (S_{30-3} , f) of H_2O_2 , respectively. Image b is the sample prepared at 150 °C for 48 h in the absence of H_2O_2 (S_{0-48}) for comparison.

that the yield of TiO_2 sample almost keeps unchanged whatever the presence or absence of H_2O_2 . These results indicate that H_2O_2 can enhance the nucleation of TiO_2 precursors, which results in the decrement in diameters of TiO_2 microspheres with increase in the amount of H_2O_2 (Figs. 2 and 3).

Fig. 4 shows the effect of hydrothermal reaction time on the crystallization of TiO_2 sample prepared in the presence of $15 \, \text{ml}$ H_2O_2 . It can be seen that the crystallization of anatase TiO_2 enhances with increasing the reaction time from 3 to $48 \, \text{h}$. Similar results were also found for samples prepared in the presence of $1 \, \text{ml} \, H_2O_2$ (Fig. S2). This is due to the self-transformation of amorphous into anatase TiO_2 -HMSs (Eqs. (1)–(3)). Transformation occurs with retention of the bulk morphology by localized Ostwald ripening (or FIST), where preferential dissolution of the particle interior is coupled to the deposition of a porous external shell of loosely packed nanocrystals [7,35]. This shape evolution can also be clearly seen from the sample prepared in the presence of $1 \, \text{ml} \, H_2O_2$ with extension the reaction time from $3 \, \text{h}$ to $48 \, \text{h}$ (compared Fig. 2c with Figs. $3a \, \text{and} \, 5a, \, \text{b}$).

Fig. 6 shows the SEM images of TiO₂ samples, where the shape evolution from solid microspheres to hollow microspheres can be clearly observed. From Fig. 6d and f, it can be seen that the average crystallite sizes on the outer surface are much larger than these in the inner cores of the core–shell structured TiO₂ microspheres, confirming that the Ostwald ripening is responsible for the formation of TiO₂-HMSs. Inside-out Ostwald ripening is a spontaneous process, which was first described by Wilhelm Ostwald in 1896,

Fig. 3. TEM images of TiO₂ samples after hydrothermal treatment at $150\,^{\circ}$ C for $10\,h$ in the presence of 1 ml (S_{1-10} , a), 5 ml (S_{5-10} , b), 15 ml (S_{15-10} , c) and 30 ml (S_{30-10} , d) of H_2O_2 , respectively.

b Relative anatase crystallinity: the relative intensity of the diffraction peak from the anatase (101) plane (sample S₀₋₃ is used as reference).

Fig. 4. XRD patterns of the TiO_2 samples for S_{15-3} (a), S_{15-10} (b), S_{15-24} (c) and S_{15-48} (d), respectively.

refering to the growth of large precipitates at the expense of smaller precipitates caused by energetic factors [10]. Since the average crystallite sizes in inner cores are smaller than these on the outer surface, nanocrystals in inner cores have a tendency to dissolve, which steadily recrystallize on the outer surface, till the formation of hollow interiors (mass transfer from core to shell).

Fig. 7 depicts the effect of H_2O_2 on the hollowing process of TiO_2 microspheres. It can be seen that H_2O_2 not only enhances the formation of hollow interiors, but also influence the diameters of the resulted TiO_2 -HMSs. In the absence of H_2O_2 , only TiO_2 solid microspheres with poor monodispersity in diameters of about $1-5~\mu m$ can be obtained even extension the reaction time to 48~h (Fig. 2b). However, monodisperse TiO_2 -HMSs in diameters of $0.6~\mu m$ was fabricated after reaction for 3~h in the presence of 30~ml H_2O_2 (Fig. 2f). H_2O_2 can also affect the wall thickness of the obtained TiO_2 -HMSs. Larger amount of H_2O_2 results in the formation of TiO_2 -HMSs with thinner wall thickness (Fig. 6).

3.2. Nitrogen adsorption-desorption isotherms

To get more information about the microstructures of the obtained TiO₂-HMSs, nitrogen adsorption–desorption isotherms were measured. The isotherms of the TiO₂ samples shown in

 Table 2

 Nitrogen adsorption—desorption characterization results of the photocatalysts.

Catalyst	Characterization results					
	S_{BET} (m ² g ⁻¹)	PV (cm ³ g ⁻¹)	APS (nm)			
S ₁₋₃	39.5	0.038	3.8			
S ₁₋₁₀	36.1	0.060	7.1			
S ₁₋₂₄	30.8	0.063	8.2			
S ₁₅₋₃	54.4	0.067	4.9			
S ₁₅₋₁₀	37.2	0.090	9.7			
S ₁₅₋₂₄	38.3	0.082	8.6			

Fig. 8 are of type IV (BDDT classification). The corresponding pore size distribution curves show that TiO2-HMSs of S1-3 only contain small mesopores (about 4 nm), while S_{1-10} and S_{15-10} have both small and larger mesopores (inset of Fig. 8). This is due to the formation of hollow interiors of S_{1-10} and S_{15-10} samples. According to previous reports, a bimodal mesopore size distribution results from two different aggregates in the powders. The hysteresis loop in the lower relative pressure range $(P/P_0 < 0.4)$ is related to finer intra-aggregated pores formed between intraagglomerated primary particles, and that in the higher relative pressure range $(0.4 < P/P_0 < 1)$ is associated with larger interaggregated pores produced by interaggregated secondary particles [26]. H₂O₂ and reaction time exerted significant influence on the pore structure and BET surface areas of the obtained products. The isotherms corresponding to S₁₋₁₀ TiO₂-HMSs show higher absorption at high relative pressures $(P/P_0 \text{ approaching } 1)$ than S₁₋₃ TiO₂ solid microspheres, indicating the formation of macropores and/or an increasing pore volume with extension the reaction time. The PV and APS of the photocatalyst prepared in the presence of 1 ml H_2O_2 increased from 0.038 cm³ g⁻¹ and 3.8 nm (S_{1-3}) to $0.060 \, \text{cm}^3 \, \text{g}^{-1}$ and $7.1 \, \text{nm} \, (\text{S}_{1-10})$, respectively, when the reaction time was increased from 3 h to 10 h (Table 2). The increment of PV and APS is related to the H₂O₂-mediated hollowing of the interior space of TiO₂ microspheres (as shown in Figs. 2c and 3a). The concentration of H₂O₂ can also affect the pore structure of TiO₂-HMSs. The hysteresis loops in the higher relative pressure range $(0.4 < P/P_0 < 1)$ of the samples prepared at 150 °C for 10 h shifted upward with increase in the amount of H_2O_2 from 1 ml to 15 ml, suggesting that the PV of interaggregated pores increased (Table 2) [26]. From Table 2 it can be found that the BET specific areas of the photocatalysts decrease with increase in the amount of H₂O₂ or extension the reaction time. This is due to the enhanced crystallization of TiO₂ samples (Figs. 1, 4 and 6) [39].

Fig. 5. TEM images of TiO₂ samples prepared in the presence of 1 ml of H₂O₂ after hydrothermal treatment at 150 °C for 24 h (a) and 48 h (b), respectively.

Fig. 6. SEM images of TiO_2 samples for S_{1-3} (a and b), S_{1-24} (c and d), S_{15-3} (e and f) and S_{15-24} (g and h), respectively. Black arrows indicate larger crystallites on the outer surface of the core-shell spherical structures in comparison with the smaller crystallites in the inner cores (indicated by white arrows).

3.3. Effect of H_2O_2 on the rapid fabrication of TiO_2 -HMSs

It was found that the solution before hydrothermal reaction is deep orange, which is ascribed to the complexation between H_2O_2 and titanium ions (Eq. (4)). When compared with solvent water, H_2O_2 shows stronger affinity to Ti, which facilitates the hydrolysis of $(NH_4)_2TiF_6$ and followed by the nucleation process during the heat treatment process (Eqs. (5)–(7)). It is understandable that more nucleation centers will form in the presence of higher concentrated H_2O_2 . Therefore, it is not surprising that the diameters of TiO_2 microspheres decrease with increase in the amount of H_2O_2 (Fig. 7).

The complexed H_2O_2 is unstable, which decomposes with increasing reaction time, resulting in the exposure of the surface unsaturated titanium species. These unsaturated titanium atoms

are very active, which are easily dissolved into the solution in the presence of HF (Eq. (2)). According to our previous studies, HF can induce both the dissolution of the particle interior and subsequent mass transfer from the core to the external surface [39,40]. The reactions of Eqs. (1)–(3) most probably occur (FIST).

Why does the surface layer of the amorphous solid particles crystallize first? This is due to the direct contact of this surface layer with the surrounding solution. Increasing the reaction time can enhance the crystallinity of the samples (Fig. 4 and Fig. S2), and facilitates the formation of hollow interiors within solid microspheres (Fig. 6). Why do the hollow particles spontaneously form? This is because the amorphous core is not in equilibrium with the surrounding solution and has a strong tendency to dissolve due to its higher solubility and higher surface energy compared to that of the surface crystalline layer. Therefore, it is not surprising that the

Fig. 7. Scheme illustrating the effect of H_2O_2 on the formation of TiO_2 -HMSs.

interiors of the particles dissolve. This self-transformation is associated with a progressive redistribution of matter from the interior to the exterior by localized Ostwald ripening and the substantial etching caused by F [28.39].

$$(NH4)2TiF6 + xH2O2 = 2NH4F + Ti(O2H)xF4-x + xHF$$
 (4)

$$Ti(O_2H)_xF_{4-x} + (4-x)H_2O = Ti(O_2H)_x(OH)_{4-x} + (4-x)HF$$
 (5)

$$Ti(O_2H)_x(OH)_{4-x} \to (TiO_2)_m \cdots O - O \cdots (TiO_2)_n \tag{6}$$

$$(TiO_2)_m \cdots O - O \cdots (TiO_2)_n \rightarrow TiO_2 (amorphous) + O_2 \uparrow$$
 (7)

3.4. Adsorption and photocatalytic activity of TiO₂-HMSs

To establish the relationship between microstructures and performance of the prepared TiO_2 sample, adsorption and photocatalytic activity of the photocatalyst was evaluated using X3B, an anionic azo dye, as probe molecule, and degradation was performed under UV irradiation ($\lambda \ge 320$ nm).

Some study suggested that preliminary adsorption of substrate on the catalyst surface is a prerequisite for highly efficient oxidation [3,18,21]. In the present study, it was fond that the adsorption

Fig. 8. Nitrogen adsorption–desorption isotherms and the corresponding pore size distributions (inset) of the TiO₂ samples.

Fig. 9. Effect of H_2O_2 (A) and hydrothermal reaction time (B) on the photocatalytic activity of TiO_2 samples using X3B dye as probe under UV irradiation. Inset compares the corresponding rate constants.

of X3B dye on the surface of TiO_2 -HMSs is stronger than on that of solid microspheres. With increase in the hydrothermal reaction time from 3 to 48 h, the adsorption of X3B on the surface of the TiO_2 sample prepared in the presence of 15 ml H_2O_2 steadily increases from $0.10~\mu mol~g^{-1}$ to $2.18~\mu mol~g^{-1}$ (Table 1). The strong adsorption of TiO_2 -HMSs to X3B dye should favor for efficient electron transfer between dye and TiO_2 photocatalyst, and therefore enhance the oxidation, which will be shown below.

Fig. 9A showed the effect of H_2O_2 (0–30 ml) on the photocatalytic activity of TiO_2 samples prepared at $150\,^{\circ}C$ for 3 h. It can be seen that S_{0-3} sample, which was prepared in the absence of H_2O_2 , shows very low photocatalytic activity (rate consistent of only 0.022×10^{-2} min⁻¹). This is ascribed to it's poor crystallization and large diameters (Figs. 1 and 2). The photocatalytic activity of TiO_2 sample was found to steadily increase with increase in the amount of H_2O_2 . The degradation rate constant soared to 1.484×10^{-2} min⁻¹ in suspensions of S_{30-3} sample due to H_2O_2 -mediated enhanced crystallization and formation of the hollow interiors.

Fig. 9B showed the effect of hydrothermal reaction time (3–48 h) on the photocatalytic activity of TiO_2 samples prepared in the presence of 15 ml H_2O_2 at $150\,^{\circ}\text{C}$. It can be seen that the photocatalytic activity of TiO_2 photocatalyst increases with extension the hydrothermal reaction time. The degradation rate constant of X3B in suspensions of S_{15-3} is $1.074\times 10^{-2}\,\text{min}^{-1}$, which is about 4 times higher than that of S_{15-24} (3.922 \times 10⁻² min⁻¹). The enhanced photocatalytic activity can also be ascribed to the formation of $\text{TiO}_2\text{-HMSs}$ (Fig. 6). Although the apparent degradation

rate constant of X3B on $S_{15\text{-}24}$ is smaller than on Degussa P25 TiO_2 (5.557 × 10^{-2} min⁻¹), a well known commercial photocatalyst $(50.0 \,\mathrm{m^2\,g^{-1}})$, both of them show similar normalized photocatalytic activity presented in unit surface area $(1.012 \times 10^{-3} \, \text{min}^{-1} \text{m}^{-2} \, \text{for}$ S_{15-24} and $1.111 \times 10^{-3} \, \text{min}^{-1} \, \text{m}^{-2}$ for P25 TiO₂), also confirming the high photocatalytic activity of the prepared TiO2-HMSs. The enhancement on the photocatalytic activity of TiO2-HMSs is not obvious if further increase in the hydrothermal reaction time from 24 h to 48 h (Fig. 9B). This is because the hollowing process begins to stop after reaction at 150 °C for 24 h (Fig. 6).

Why do the prepared TiO₂-HMSs show superior photocatalytic activity than TiO₂ solid microspheres? This is due to the following reasons. First, good crystallization (Table 1) of TiO2-HMSs is beneficial to reduce the number of defects, thus the recombination rates of photo-generated electrons and holes at the TiO₂-HMSs are smaller. Therefore, it is not surprising that the photocatalytic activity of TiO₂-HNP increased with increasing amount of H₂O₂ due to higher crystallinity. Second, strong adsorption favors for the degradation of the dye. As presented in Table 1, the adsorption of X3B dye on the surface of TiO₂-HMSs is stronger than on that of solid microspheres, which should favor for efficient electron transfer between dye and TiO₂ photocatalyst, and therefore enhance the

It was reported that the photocatalytic activity of anatase TiO₂ could be greatly improved after surface fluorination [3,9]. In the present study, however, the surface-adsorbed fluoride ions have been eliminated before evaluating the photocatalytic activity by washing with 0.1 M NaOH. XPS characterization results confirmed that little fluoride ions (less than 0.3 at%) were detected on the surface of the prepared TiO₂ HMSs (Fig. S3 for S₁₅₋₂₄ sample as an example).

The high photocatalytic activity of TiO2-HMSs has been attributed to multiple reflections of UV-visible light within the interior cavity that facilitates more efficient use of the light source [18]. However, UV-vis diffuse reflectance spectroscopy (DRS) characterization results showed that both solid and hollow TiO₂ microspheres have similar light-harvesting ability (Fig. S4). Therefore, it can be deduced that it is other factor than light absorption that be responsible for the high photocatalytic activity of the prepared TiO2-HMSs.

Further experiment shows that the prepared TiO2-HMSs can be readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and reused than the corresponding nanosized photocatalytic powders due to their large weight and good mobility. Therefore, the prepared TiO₂-HMSs are promising to be used in environmental purification.

4. Conclusions

H₂O₂ plays important role on the formation of TiO₂-HMSs, which not only improves the crystallization of priminary TiO₂ nanocrystallites, but also enhances the hollow process. A formation mechanism based on H₂O₂-assisted nucleation and followed by FIST hollowing process is put forward for the rapid fabrication of TiO₂-HMSs. The prepared TiO₂-HMSs show high photocatalytic activity due to the H₂O₂-mediated enhanced crystallization and improved adsorption to organics. The proposed route for the preparation of TiO₂-HMSs has the merits of being simple, reproducible, and easy to scale-up, which is expected to be widely used in photocatalysis, catalysis, electrochemistry, separation, purification, drug delivery and so on.

Acknowledgements

This work was supported by Program for New Century Excellent Talents in University (NCET-12-0668), National Natural Science Foundation of China (20977114 & 21373275) and Natural Science Foundation of Hubei Province (2011CDA107).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb. 2013.10.011.

References

- [1] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110 (2010) 6503.
- [2] Y. Liu, L.F. Chen, J.C. Hu, J.L. Li, R. Richards, J. Phys. Chem. C 114 (2010) 1641.
- [3] K.L. Lv, X.F. Li, K.J. Deng, J. Sun, X.H. Li, M. Li, Appl. Catal. B 95 (2010) 383.
- [4] S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115 (2011) 13211.
- [5] J. Sun, X. Yan, K.L. Lv, S. Sun, K.J. Deng, D.Y. Du, J. Mol. Catal. A 367 (2013) 31.
- [6] Q.J. Xiang, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 41 (2012) 782.
- [7] K.L. Lv, B. Cheng, J.G. Yu, G. Liu, Phys. Chem. Chem. Phys. 14 (2012) 5349.
- [8] J. Zhang, Q. Xu, Z.C. Feng, M.J. Li, C. Li, Angew. Chem. Int. Ed. 47 (2008) 1766.
- [9] Z.Y. Wang, K.L. Lv, G.H. Wang, K.J. Deng, D.G. Tang, Appl. Catal. B 100 (2010) 378
- [10] X.W. Lou, L.A. Archer, Z.C. Yang, Adv. Mater. 20 (2008) 3987.
- [11] H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu, J. Am. Chem. Soc. 129 (2007) 8406.
- [12] S.W. Liu, J.G. Yu, M. Jaroniec, J. Am. Chem. Soc. 132 (2010) 11914.
- [13] Z.Y. Wang, D.Y. Luan, C.M. Li, F.B. Su, S. Madhavi, F. Boey, X.W. Lou, J. Am. Chem. Soc. 132 (2010) 16271.
- [14] X.L. Wang, H.L. He, Y. Chen, J.Q. Zhao, X.Y. Zhang, Appl. Surf. Sci. 258 (2012) 5863
- [15] S.F. Xie, X.G. Han, Q. Kuang, J. Fu, L. Zhang, Z.X. Xie, L.S. Zheng, Chem. Commun. 47 (2011) 6722.
- [16] L. Chen, L.F. Shen, P. Nie, X.G. Zhang, H.S. Li, Electrochim. Acta 62 (2012) 408.
- [17] Y.Z. Li, T. Kunitake, S. Fujikawa, J. Phys. Chem. B 110 (2006) 13000.
- [18] X.F. Li, K.L. Lv, K.J. Deng, J.F. Tang, R. Su, J. Sun, L.Q. Chen, Mater. Sci. Eng. B 158 (2009)40.
- [19] J.G. Yu, W. Liu, H.G. Yu, Cryst. Growth Des. 8 (2008) 930.
- [20] X.P. Lin, D.M. Song, X.Q. Gu, Y.L. Zhao, Y.H. Qiang, Appl. Surf. Sci. 263 (2012)
- [21] K.L. Lv, J.G. Yu, K.J. Deng, J. Sun, Y.X. Zhao, D.Y. Du, M. Li, J. Hazard. Mater. 173 (2010)539
- [22] S.J. Ding, J.S. Chen, Z.Y. Wang, Y.L. Cheah, S. Madhavi, X. Hu, X.W. Lou, J. Mater. Chem. 21 (2011) 1677
- X.J. Cheng, M. Chen, L.M. Wu, G.X. Gu, Langmuir 22 (2006) 3858.
- [24] X.X. Li, Y.J. Xiong, Z.Q. Li, Y. Xie, Inorg. Chem. 45 (2006) 3493.
- [25] L. Liu, Y.M. Cui, B. Li, X.F. Zhou, W.P. Ding, Appl. Surf. Sci. 256 (2010) 2596.
- [26] J.G. Yu, S.W. Liu, H.G. Yu, J. Catal. 249 (2007) 59.
- [27] A.M. Collins, C. Spickermann, S. Mann, J. Mater. Chem. 13 (2003) 1112.
- [28] J.G. Yu, H.T. Guo, S. Davis, S. Mann, Adv. Funct. Mater. 16 (2006) 2035.
- [29] M. Liu, K.L. Lv, G.H. Wang, Z.Y. Wang, Y.X. Zhao, Y.R. Deng, Chem. Eng. Technol. 33 (2010) 1531.
- [30] Z.Y. Liu, D.D. Sun, P. Guo, J.O. Leckie, Chem. Eur. J (2007) 1851.
- [31] J.G. Yu, J. Zhang, Dalton Trans. 39 (2010) 5860.
- [32] J. Li, H.C. Zeng, J. Am. Chem. Soc. 129 (2007) 15839.
- [33] J.H. Pan, X.W. Zhang, A.J. Du, D.D. Sun, J.O. Leckie, J. Am. Chem. Soc. 130 (2008)
- [34] J.G. Yu, L. Shi, J. Mol. Catal. A 326 (2010) 8.
- [35] S.W. Liu, J.G. Yu, S. Mann, Nanotechnology 20 (2009) 325606.
- [36] S.W. Liu, J.G. Yu, B. Cheng, M. Jaroniec, Adv. Colloid Interf. Sci. 173 (2012) 35.
- [37] H.G. Yang, H.C. Zeng, J. Phys. Chem. B 108 (2004) 3492.
- [38] Q.D. Truong, T.S. Lec, H.T. Hoa, CrystEngComm 14 (2012) 4274.
- [39] K.L. Lv, J.G. Yu, J.J. Fan, M. Jaroniec, CrystEngComm 14 (2011) 7044.
- [40] J.H. Cai, Z.Y. Wang, K.L. Lv, Y. Zheng, J.G. Yu, M. Li, RSC Adv. 3 (2013) 15273.
 [41] K.L. Lv, Y.M. Xu, J. Phys. Chem. B 110 (2006) 6204.
- [42] K.L. Lv, J.C. Hu, X.H. Li, M. Li, J. Mol. Catal. A 356 (2012) 78.
- [43] Y.K. Du, J. Rabani, J. Phys. Chem. B 110 (2006) 6123.