CSE3502 – INFORMATION SECURITY MANAGEMENT

Review 1

ANDROID MALWARE ANALYSIS

Prof. In-Charge:

Dr. Vimala Devi

Team Details:

Harshit Mishra (19BCE0799)

Alokam Nikhitha (19BCE2555)

Shreeyam Sharma (19BCE2700)

Abstract:

Android is an open-source Operating System with more than a billion users. The amount of sensitive information produced be these technologies are rapidly increasing, which attracts a large number of audiences to develop tools and techniques to acquire that information or to disrupt the device's smooth operation. Despite several solutions being able to guarantee an adequate level of security, day by day the hacker's skills continues to grow, so it remains a permanent challenge for security tools developers to ensure the security of an android powered device.

As a response, several members of the research community are using artificial intelligence tools for android security, particularly machine learning techniques to classify between healthy or malicious android application.

In this project, we will implement a static framework and machine learning to do this classification.

Problem Statement and Objective:

Android is an open-source operating system for mobile devices, televisions automobiles and smart watches with more than a billion users. Therefore, it opens a wide array of attack vectors targeting the user information.

For the protection of the information and devices, android has several security mechanisms; the most relevant are: a sandbox environment at the kernel level to prevent access to the file system and other resources; an API of permissions that controls the privileges of the applications in the device; security mechanisms at the applications development level; and a digital distribution platform (Google play store), where the processes are implemented to limit the dissemination of malicious code.

Each application is compiled in an Android Application Package [APK] file, which includes the code of the application in ". dex" files, resources and the AndroidManifest.xml file. This latter is an important element, since it provides most of the information of the security features and configuration of each application. It also includes the information of the API regarding permissions, activities, services, content providers and the receiving broadcasts.

There are several tools and techniques for the analysis of threats for this operating system. Between the most representative, we have static analysis and dynamic analysis.

Static Analysis:

Static analysis is a technique that assesses behaviour in the source code, the data, or the binary files without the direct execution of the application. Its complexity has increased due to the experience that cybercriminals have gained in the development of applications. However, it has been demonstrated that it is possible to avoid this using obfuscation technique.

Dynamic Analysis:

Dynamic analysis is a set of methods that studies the behaviour of the malware in execution through gesture simulations. In this technique, the process in execution, the user interface, the network connections and sockets opening are analysed. Alternatively, there already exist some technique to avoid the processes performed by dynamic analysis, where the malware has the capacity to detect sandbox-like environments and to stop its malicious behaviour.

Literature Survey:

Paper	Problem and	Proposed	Limitations
_	Objective	Methodology	
Machine Learning	They had same	In this work, they	This process is
with Dynamic	problem statement as	have proposed a	highly time
Analysis	of ours. They wanted	DrodDolphin named	consuming because
	to study the	dynamic malware	it works only when
Wen-Chieh Wu	malicious	analysis framework	the malicious
and Shih-Hao	applications in an	which leverages the	execution takes
Hung	android environment	technologies of	place.
	through sandbox	GUI-based testing,	r
October-2014	technique.	big data analysis,	The process can be
	Smartphones are	and machine	bypassed by
Association for	getting more and	learning to detect	knowing when a
Computing	more popular	malicious Android	sandbox
Machinery	nowadays with	Applications. The	environment is
	various kinds of	automatics testing	being set-up, which
	applications to make	tools were able to	detects if a dynamic
	one's life more	extract useful static	analysis is currently
	convenient. The	and dynamic	being executed.
	malwares in use	features from their	The APK can take
	currently steals	training datasets and	up to 5 minutes to
	users' information.	were able to classify	detect its execution
	Some of them might	an application as	which further delays
	send SMS or make	benign, that is safe,	the execution
	telephonic calls	or malicious, that is	process.
	which can results in	unsafe.	process.
	additional charges	diliburo.	
	employed by		
	network provider		
	without one actually		
	knowing the reason.		
	Thus, the detection		
	of a malware is very		
	critical to ensure		
	ones' safety and		
	privacy.		
A Machine	With the recent	They used an open-	Their model is
Learning	emergence of mobile	source project,	limited to just the
Approach to	platforms capable of	named Androgaurd	permissions (built-in
Android Malware	executing	to extract features	and non-standard),
Detection	increasingly complex	from packaged	and configurations
	software and the	Android	of the input
Jusitn Sahs and	rising ubiquity of	Applications	applications. There
Latifur Khan	using mobile	(APKs). They then	are many potential
	platforms in sensitive	used these extracted	sources of
April-2014	applications such as	features to train a	information rich
	banking, there is a	One-Class Support	features which their
	rising danger	Vector Machine	system lacked.
	1	· · · · · · · · · · · · · · · · · · ·	-j stem mened.

European	associated with	(SVM) using Scikit	Further, the
Intelligence and	malware targeted at	Learn framework	malicious
Security Informatics	mobile devices. The	which provides a	applications can
Conference	problem of detecting	convenient interface	easily by-pass this
	such malware	to LIBSVM. The	process of testing by
	presents unique	classifier then	obfuscation process.
	challenge due to the	classified the	The process
	limited resources	applications into	although is very fast,
	available and limited	being safe or not	it is not the most
	privileges granted to	based on their	reliable one to be
	the user.	permissions that	worked with.
		they seek on the	
		android platform.	
		The main idea was	
		to classify most of	
		the data as positive	
		and classify a few	
		negative only if it is	
		sufficiently different	
		from the training	
		data, making it ideal	
An Android	Android Malicious	for their purpose.	The weeking of
An Android Malicious Code	Code has increased	This paper proposed a Dendritic Cell	The working of
Detection Method	dramatically and the	Algorithm (DCA),	proposed system works only if they
Based on Improved	technology of	which is an Android	can access the
DCA algorithm	reinforcement is	malware algorithm	Android Packaging
DCA algorithm	increasingly	that has a higher	(APKs) of a
Chundong Wang,	powerful. Due to the	detection rate, does	particular
Zhiyuan Li,	development of code	not need to modify	application.
Liangyi Gong,	obfuscation and	the system, and	It requires a large
Xiulian Mo, Hong	polymorphic	reduces the impact	number of APKs to
Yang and Yi Zhao	deformation	of code obfuscation	deliver optimal
8	technology, the	to a certain degree.	working. With less
February-2017	current android	This algorithm is	than 400 APKs the
	malicious code static	applied to an	accuracy of model
Entropy-Based	detection method	Android malware	stood at a mere
Applied	whose feature	detection method	92%. With around
Cryptography and	selected is the	based on oriented	750 APKs it went to
Enhanced Security	semantic of	Dalvik disassembly	a count of 97%.
for Future IT	application sources	sequence and	Hence we need large
Environments	code cannot	application interface	number of APKs for
	completely extract	(API) calling	it to work
	malware's code	sequence. Through	accurately.
	features. The	the designed	
	Android malware	experiments, the	
	static detection	effectiveness of this	
	methods whose	method is verified	
	features used are	for the detection of	
	only obtained from	Android Malware.	

	the	This is a dynamic	
	AndroidManifest.xml	implementation	
	files are easily	approach which	
	affected by useless	studies the execution	
	permissions.	phase of an	
		application and	
		classifies them as	
		safe or not based on	
		it.	
Machine Learning	Malware have been	In the work, they	Their approach had
Aided Android	used as a means for	have proposed two	few limitations. For
Malware	conducting cyber	Machine Learning	permission-based
Classification	attacks for decades.	based approaches	approach they
	With adoption of	for static analysis of	reported an F-score
N Milosevic, A	smartphones, which	the mobile	of 87% for single
Dehghantanha and	stores lots of private	applications: one	machine learning
k Choo	and confidential	based on	algorithm. This
	information, made	permissions, while	means there are
Februray-2017	them an important	the other based on	chances that some
	target for malware	source code analysis	malware loaded
White Rose	developers. Android	that utilizes a bag of	applications were
university	as the dominant	word representation	not classified as
Consortium	mobile operating	model. Their source-	such and some
	system has always	code based	benign applications
	been an interesting	classification	are classified as
	platform for malware	achieved F-score of	malicious.
	developers and lots of Android malware	95.1%, while the	Also, the False
	species are infecting	approach that used permission names	Negative rates in their case is high,
	vulnerable users	only performed with	which means that
	everyday which	F-measure of 89%.	the detection rate of
	make manual	Their approach	malware
	malware forensics	provides a method	applications was low
	would assist cyber	for automated static	and this possessed a
	forensics	code analysis and	potential
	investigators in their	malware detection	vulnerability in
	fight against	with high accuracy	classification due to
	malicious programs.	and reduces	this alarming false
		smartphone malware	negative rates.
		analysis time.	
Droid permission	Android is the most	In this work, they	The dataset that they
Miner: Mining	popular operating	have proposed a	used was biased
Prominent	system that has held	static analysis of	towards benign
permissions for	its root stronger than	android malware	labels, the ratio
Android Malware	any other OS in the	files by mining	being 2:3, that is
Analysis	global smart phone	prominent	40% malicious and
43.54	market. The genuine	permissions. The	60% benign. This
AM Aswini and P	Android applications	proposed technique	suggests that the
Vinod	are available at the	is implemented by	results of theirs is
	android market	extracting	not totally trust

November-2014

The fifth international Conference on the Applications of Digital Information and Web Technologies (ICADIWT)

whereas third party applications are also developed progressively each day. Due to its ease of modifiability and open-source nature, there is a greater chance for the malicious code to be injected to the android applications. Also, the third-party applications have led to the proliferation of the malicious software. Android devices are vulnerable to threats and some of the noticeable vulnerabilities are Denial of Service Attacks, execution of code by the attackers using Android debugger bridge (adb), stack-based buffer overflow resulting in arbitrary code execution, memory corruption to gain root privileges, SQL injection to retrieve useful information,

etc.

permissions from 436 .apk files. Feature pruning is carried out to investigate the impact of feature length on accuracy. The prominent features that give way to lesser misclassification are determined using Bi-normal separation (BNS) and Mutual Information (MI) feature selection techniques. Results suggested that Droid permission miner can be used to preliminary classification of Android Package files.

worthy because of label biasness and attribute disorder. Although the biased label ratio is not very high and it can still be considered for research purposes. They have employed various feature selection processes which makes it difficult for anyone to keep track of mathematical explanation for a newbie. Despite deploying these many features selection processes, the accuracy of their best proposed model stands at a mere 81.56% which is only good for study purposes but can't be used commercially or implemented functionally.