Планарные графы

5. Планарные графы

5.1. Определение

Планарным называется неориентированный граф G (множество вершин V и ребёр E), который можно нарисовать на плоскости так, чтобы никакие два ребра не пересекались, кроме общих концов. Такое представление называется *планарным вложением* графа.

5.2. Примеры

- Граф K_4 (полный граф на четырёх вершинах) является планарным.
- Графы K_5 и $K_{3,3}$ не являются планарными (теорема Куратовского, см. ниже).

5.2.1. Планарный пример: K_4

Рис. 1. Планарное вложение полного графа K_4 .

5.2.2. Непланарный пример: K_5

Рис. 2. Попытка вложения полного графа K_5 с неизбежными пересечениями.

5.3. Формула Эйлера

Для связного планарного графа справедлива формула Эйлера:

$$V - E + F = 2,$$

где V = |V(G)| — число вершин, E = |E(G)| — число ребер, а F — число граней (областей плоскости, включая внешнюю).

Пример. В графе K_4 имеем V = 4, E = 6. Рассчитаем F:

$$4-6+F=2 \implies F=4.$$

Действительно, при планарном вложении мы получаем три внутренних треугольника и одну внешнюю область.

5.4. Критерии планарности

- **Теорема Куратовского:** Граф планарен тогда и только тогда, когда он не содержит подграфа, гомоморфного K_5 или $K_{3,3}$.
- **Теорема Вагнера:** Упрощённый критерий: нет миноров K_5 и $K_{3,3}$.

5.5. Свойства и ограничения

1) Для простого планарного графа с $V \ge 3$ всегда выполняется

$$E \le 3V - 6.$$

Если, кроме того, нет треугольников (циклов длины 3), то

$$E \le 2V - 4$$
.

2) Минимальный непланарный граф имеет V=5, E=10 (граф K_5) или V=6, E=9 (граф $K_{3,3}$).

5.6. Применения

- *Географические карты*: раскраска областей так, чтобы соседние области различались цветом (теорема о четырёх красках).
- *Схемотехника*: прокладка дорожек на печатных платах без пересечений.
- Графический дизайн: автоматическая укладка элементов схем и диаграмм.

Источники

- Д.Б. West, Introduction to Graph Theory, Prentice Hall.
- В. Д. Мазурин, Дискретная математика: графы и алгоритмы.
- Википедия: Планарный граф
- Википедия: Теорема Куратовского