草稿区

任课教师:

专业:

年级:

学号:

成绩:

姓名:

一、(10分) 设 G_1 与 G_2 为 $\mathbb R$ 中的两个稠密开集. 证明: $G_1 \cap G_2$ 仍在 $\mathbb R$ 中稠密.

得分

三、(15分)证明: ℝ上的单调函数一定为可测函数.

得分

四、 (15分) 设 f 在闭区间 [a,b] 上是有界变差函数, g 在区间 $(-\infty,+\infty)$ 上满足Lipschitz 条件, 也即是: 存在常数 L>0, 使得

 $|g(x) - g(y)| \le L|x - y|, \quad \forall x, y \in (-\infty, +\infty).$

试证明: $g \circ f$ 在 [a,b] 上是有界变差函数.

得分

五、 (15分) 设函数列 $\{f_n\}_{n=1}^\infty$ 在可测集 E 上依测度收敛于 f,且对于任意的 $n \in \mathbb{N}$ 均有 $f_n(x) \leq f_{n+1}(x), \quad \text{a.e. } x \in E.$

证明: $\{f_n(x)\}_{n=1}^{\infty}$ 在 E 上几乎处处收敛于 f(x).

得分 六、 (15分) 证明: $\lim_{n\to\infty} \int_0^\infty (1+\frac{x}{n})^{-n} x^{-\frac{1}{n}} dx = 1.$

七、 (15分) 设 f 为定义在 $[1, +\infty)$ 上的可测函数,且对于任一个正整数 n,函数 f 均在 [n, n+1) 上 Lebesgue 可积. 令 $a_n = \int_{[n,n+1)} f dm$.

(1) 证明: 若 f 在 $[1, +\infty)$ 上可积,则级数 $\sum_{n=1}^{\infty} |a_n|$ 收敛.

- (2) 举例说明第一问的逆命题不成立.