CONSTRAINT SATISFACTION PROBLEMS — PART II

Chapter 6

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local search for CSPs

Review: Constraint satisfaction problem

- \square Set of variables $X = \{X_1, X_2, ..., X_n\}$
- $\square \text{ Set of Domains D} = \{D_1, D_2, \dots, D_n\}$
 - □ Each domain **Di** consists of a set of **allowable values** for variable **X**_i.
- □ Set of constraints $C = \{ c_i = (scope_i, rel_i) \mid i=1,...,h \}$
 - scope: subset of X, the variables that are constrained by ci
 - rel_i: is a relation and tells us which simultaneous assignments of values to variables in scope; are allowed

Review: Constraint satisfaction problem

- State: defined by an assignment of values to some or all of the variables, $\{Xi = vi, Xj = vj, ...\}$
- Assignment can be:
 - Consistent: it does not violate any constraints
 - □ Complete: every variable is assigned
 - Partial: only some of the variables are assigned
- Solution: a consistent and complete assignment

3-SAT example

$$(X_1 \lor X_2 \lor X_6) \land (\neg X_1 \lor X_3 \lor X_4) \land (\neg X_4 \lor \neg X_5 \lor X_6) \land (X_2 \lor X_5 \lor \neg X_6)$$

Non-binary CSP:

- Boolean variables: $x_1, ..., x_6$
- Constraints: one for each clause

$$C_1(x_1, x_2, x_6) = \{(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$
 $C_2(x_1, x_3, x_4) = \dots$

Example of CSP: 4-Queens Problem

- Place one queen in <u>each column</u> such that they do not attack each other
- □ Variables: Q1, Q2, Q3, Q4 (one per column)
- \square Domains: Di = [1, 2, 3, 4] (row position of a queen)
- □ Constraints:
 - \square Qi \neq Qj for all i,j (cannot be in the same row)
 - \square $|Qi-Qj| \neq |i-j|$ (cannot be in the same diagonal)

Translate each <u>constraint</u> into a set of <u>allowable values</u> for its variables

E.g., values for (Q1,Q2) are(1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

Example: Cryptarithmetic

- Each letter represents a different digit
- The aim is to find a substitution of digits for letters such that the resulting sum is arithmetically correct
- \square Variables: F, T, U, W, R, O, X_1 , X_2 , X_3
- Domains: {0,1,2,3,4,5,6,7,8,9}
- □ Constraints:
 - □ Alldiff (F,T,U,W,R,O) non i riporti
 - $\bigcirc O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $X_2 + T + T = O + 10 \cdot X_3$
 - $X_3 = F$

Some real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Many real-world problems involve real-valued variables