Modèles de base en assurance de dommages

Étienne Marceau

École d'actuariat Université Laval, Québec, Canada

2018-11-07

Faculté des sciences et de génie École d'actuariat

Avant-propos

Avant-propos

Source pour le contenu des diapos :

■ [Cossette and Marceau, 2018].

Calculs et illustrations :

- Toutes les calculs et les illustrations ont été réalisés dans le langage R grâce au logiciel GNU R mis à disposition par le R Project.
- Les codes R ont été conçus dans l'environnement de développement intégré RStudio.

Avant-propos

Le logiciel GNU R et les bibliothèques sont disponibles sur le site du R Project et du Comprehensive R Archive Network (CRAN) :

https://cran.r-project.org/.

L'environnement RStudio est disponible sur le site suivant :

https://www.rstudio.com/products/rstudio/download/.

Packages R recommandés :

ActuaR polynom statmod copula pracma stats lifecontingencies psych SuppDists MASS cubature Deriv VGAM flexsury

Table des matières I

- Avant-propos
- 2 Mécanisme d'assurance
- 3 Outils de base
- 4 Mesures de risque et primes
 - Généralités
 - Mise en place
 - Espérances tronquées
 - Prime stop-loss
 - Fonction quantile
 - Théorème de la fonction quantile
 - Méthode inverse de simulation et méthode Monte-Carlo
 - Théorème Transformation intégrale de la probabilité
 - Fonction croissante
 - Mesures VaR et TVaR
 - Évaluation de la VaR et méthode Monte Carlo
 - Évaluation de la TVaR et méthode Monte Carlo

Table des matières II

- Logiciel R
- Illustration numérique
- 5 Mutualisation des risques d'assurance
 - Généralités
 - Transformée de Laplace-Stieltjes
 - Fonction de génératrice de probabilité
 - Méthodes d'approximation
 - Simulation d'une fonction d'un nombre fini de v.a.
 - Propriétés désirables des mesures de risque
 - Autres propriétés désirables

Illustration numérique

- Mesure VaR
- Mesure TVaR
- Preuve no1 de la sous-additivité de la TVaR
- Preuve no2 de la sous-additivité de la TVaR
- Portefeuille homogène de risques d'assurance

Table des matières III

- Mesure de risque invariante à la distribution
- 6 Définition de X
 - Généralités
 - Espérance de X
 - Variance de X
 - Fonction de répartition de X
 - TLS de X
 - Algorithme de simulation
- 7 Distributions de fréquence
 - Généralités
 - Loi de Poisson
 - Loi binomiale négative
- 8 Généralisation des lois de fréquence
 - Lois Poisson-mélange
 - Loi Poisson-gamma ou binomiale négative
- 9 Distributions de sévérité

Table des matières IV

- Généralités
- Caractéristiques générales
- Loi exponentielle
- Loi gamma
- Loi Erlang
- Loi lognormale
- Loi Pareto
- Comparaison des lois gamma, lognormale et de Pareto
- 10 Illustration numérique
- Mutualisation en assurance dommages
 - Généralités
 - Loi Poisson composée
- Références

Les opérations d'une compagnie d'assurance dommages sont brièvement résumées ci-dessous:

- Souscription et tarification
- 2 Renouvellement et tarification
- Gestion et paiement des sinistres
- 4 Réserves en assurance dommages
- 5 Solvabilité et allocation de capital

Les actuaires interviennent dans chacune de ces étapes

Pour un résumé sur les opérations d'une compagnie d'assurance en lien avec les interventions des actuaires, voir, e.g, [Frees, 2015].

Les calculs pour la tarification, les réserves, la solvabilité et l'allocation de capital reposent sur des modèles de risque (en assurance dommages).

Étapes de la modélisation :

- Données
- 2 Choix du modèle : estimation et calibration
- Quantification : primes et mesures de risques
- 4 Décisions

Gestion des risques (du point de vue de l'assuré) :

- Identification des risques
- Risque transféré vs risque auto-géré
- Risque transféré à un assureur
- Prime demandée par un assureur

Contrat d'assurance :

- Identification des périls couverts par le contrat d'assurance
- Modélisation des coûts éventuels pour un contrat
- Calculs de la prime

L'ensemble de la procédure pour déterminer la prime d'un contrat d'assurance dommages est appellée "tarification".

Les coûts pour un contrat sont modélisés par une v.a. X.

La prime Π est calculée à partir du modèle choisi pour la v.a X selon des principes de prime.

Les mesures de risque peuvent être considérés à titre de principes de prime.

Dans le contexte de la tarification d'un contrat d'assurance, l'espérance de la v.a. X est considérée comme la prime pure pour le contrat.

Aperçu global de la procédure de tarification ([Parodi, 2014]) :

FIGURE 1.8

The high-level pricing process. Our elementary example in Section 1.1 contains these steps, albeit in a rudimentary form.

Aperçu détaillé de la procédure de tarification ([Parodi, 2014]) :

FIGURE 6.1

The risk costing subprocess according to the frequency/severity approach. The main difference between this and the simple example is that frequency and severity are analysed separately and are then combined with, for example, a Monte Carlo simulation. Note that in practice there will be many variations to this simple process, but it is fair to say that this is the "vanillad version of the frequency/severity approach."

Outils de base

Outils de base

La modélisation des risques en actuariat, en général, et en actuariat pour l'assurance général reposes à la fois sur des notions de probabilité et des méthodes statistiques.

Comme on le verra, le modèle fondamental pour les coûts en assurances dommages repose sur deux composantes :

- nombre de sinistres (v.a. positives discrètes, pour les modèles sur période fixe, ou processus aléatoires de comptage, pour les modèles dynamiques)
- montant d'un sinistre (v.a. positive, généralement continue)

Dans les prochaines sections, on présente les définitions de certaines outils de la théorie des probabilité, en introduisant les notions actuarielles qui s'y rattachent.

Les méthodes statistiques seront introduites plus tard.

Outils de base

On aborde les notions suivantes :

- Fonction stop-loss
- Fonction quantile
- Mesures de risque
- Méthodes de simulation

Mesures de risque et primes

En actuariat, les coûts d'un contrat, d'une ligne d'affaires, ou d'un portefeuille sont représentés par une $v.a.\ X$, appelée risque.

Dans le contexte de l'assurances dommages, la v.a. X, qui représente les coûts d'un contrat d'assurance, est positive.

Le contrat d'assurance formalise le transfert d'un risque (v.a. X) de l'assuré vers l'assureur.

En contrepartie, l'assureur demande à l'assuré de lui verser une prime (constante) $\Pi(X)$.

Mesures de risque et primes

Généralités

En émettant plusieurs contrats, l'assureur constitue un portefeuille de risques, représentés par des v.a. $X_1,...,X_n$.

Les v.a. $X_1,...,X_n$ peuvent être indépendantes ou dépendantes.

Les coûts d'assurance (souscription) de l'assureur résultent de la somme des v.a. $X_1,...,X_n$:

$$S = X_1 + ... + X_n$$
.

D'un point de vue de l'actuaire de l'assureur, les enjeux en lien avec les opérations d'assurance sont les suivants :

- modéliser à la fois les coûts (risques $X_1,...,X_n$) des différents contrats d'assurances émis par la compagnie d'assurance ;
- modéliser la structure de dépendance régissant les interactions entre ces v.a.;
- modéliser les coûts (risque global, v.a S) qui résultent de la mutualisation des coûts des contrats d'assurance.

Pour mesurer quantitativement le risque d'un contrat ou d'un portefeuille de contrats d'assurance, on a recours à une mesure de risque $\varsigma(Y)$, où Y=X (pour un contrat) et Y=S pour un porefeuille,

Deux exemples importants d'application d'une mesure de risque :

Tarification : la mesure de risque est utilisée pour calculer la prime :

$$\Pi(X) = \varsigma(X);$$

Solvabilité : la mesure de risque sert à calculer le capital associé au portefeuiille :

$$capital(S) = \varsigma(S);$$

Mesures de risque et primes

Généralités

L'actuaire de l'assureur doit aussi veiller à modéliser d'autres risques, tels que les risques de taux d'intérêt, de crédit, ou de risques opérationnels.

Pour faciliter la présentation, on s'intéresse dans cet exposé à la modélisation de la $v.a.\ X$ dans le contexte de l'assurance dommages.

Mise en place

Soit une v.a. positive X représentant le risque d'un contrat ou d'un portefeuille.

Notations de bases :

■ Fonction de répartition :

$$F_X(x) = \Pr(X \le x), x \ge 0;$$

■ Espérance (si elle existe) :

$$E[X] = \int_0^\infty x \mathrm{d}F_X(x);$$

■ En actuariat, la prime pure correspond à E[X].

Définition 1

Soit une v.a. X avec $E[X] < \infty$. Les espérances tronquées sont définies par

$$E[X \times 1_{\{X>d\}}] = \int_d^\infty x dF_X(x),$$

et

$$E[X \times 1_{\{X \le d\}}] = \int_{-\infty}^{d} x dF_X(x),$$

où $d \in \mathbb{R}$.

Relation:

$$E[X \times 1_{\{X > d\}}] + E[X \times 1_{\{X \le d\}}] = E[X \times (1_{\{X > d\}} + 1_{\{X \le d\}})] = E[X].$$

Espérance tronquées

Lorsque X est une v.a. continue, les expressions de $E[X \times 1_{\{X>d\}}]$ et $E[X \times 1_{\{X\leq d\}}]$ deviennent

$$E[X \times 1_{\{X > d\}}] = \int_d^\infty x f_X(x) dx,$$

et

$$E[X \times 1_{\{X \le d\}}] = \int_{-\infty}^{d} x f_X(x) dx,$$

où $d \in \mathbb{R}$.

Exemple 1

Soit $X \sim Exp(\beta)$ dont la fonction de densité est $f_X(x) = \beta e^{-\beta x}$, $x \in \mathbb{R}^+$. On obtient

$$E\left[X \times 1_{\{X \le d\}}\right] = \int_0^d x f_X(x) dx$$
$$= \int_0^d x \beta e^{-\beta x} dx = -de^{-\beta d} + \frac{1}{\beta} \left(1 - e^{-\beta d}\right).$$

On a aussi

$$E\left[X \times 1_{\{X > d\}}\right] = \int_{d}^{\infty} x f_X\left(x\right) dx = \frac{1}{\beta} + de^{-\beta d} - \frac{1}{\beta} \left(1 - e^{-\beta d}\right)$$
$$= de^{-\beta d} + \frac{1}{\beta} e^{-\beta d}. \quad \Box$$
 (1)

Exemple 2

Soit la v.a. continue positive
$$X \sim Ga(\alpha,\beta)$$
 où $f_X(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\beta x}$, $x \in \mathbb{R}^+$. De plus, $F_X(x) = H\left(x;\alpha,\beta\right)$ et $\overline{F}(x) = \overline{H}\left(x;\alpha,\beta\right)$. On obtient
$$E\left[X \times 1_{\{X \leq d\}}\right] = \int_0^d x \frac{\beta^a}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\beta x} \mathrm{d}x$$

$$= \frac{\alpha}{\beta} \int_0^d \frac{\beta^{\alpha+1}}{\Gamma(\alpha+1)} x^{\alpha+1-1} \mathrm{e}^{-\beta x} \mathrm{d}x$$

$$= \frac{\alpha}{\beta} H\left(d;\alpha+1,\beta\right) = E\left[X\right] H\left(d;\alpha+1,\beta\right).$$

On déduit que

$$E[X \times 1_{\{X>d\}}] = E[X] - E[X \times 1_{\{X \le d\}}]$$

$$= E[X](1 - H(d; \alpha + 1, \beta))$$

$$= E[X]\overline{H}(d; \alpha + 1, \beta). \square$$

2) WAL

La prime *stop-loss*, appélée aussi fonction *stop-loss*, est fréquemment utilisée en actuariat

Définition 2

Soit une v.a. X avec $E[X] < \infty$. La fonction stop-loss $\pi_X(d)$ correspond à

$$\pi_X(d) = E\left[\max\left(X - d; 0\right)\right],\tag{3}$$

 $où d \in \mathbb{R}$.

Relation : Soit une v.a. positive X avec $E[X] < \infty$.

$$\pi_X(0) = E[X].$$

Prime stop-loss et espérance tronquée : Comme

$$\max(X - d; 0) = X \times 1_{\{X > d\}} - d \times 1_{\{X > d\}},$$

on déduit

$$\pi_X(d) = E[X \times 1_{\{X > d\}}] - d \times \overline{F}_X(d),$$

où $d \in \mathbb{R}$.

Si la v.a. X obéit à une loi continue, (3) devient

$$\pi_X(d) = \int_d^\infty (x - d) f_X(x) dx. \tag{4}$$

De plus, si la v.a. X est continue positive, l'expression (4) pour la fonction stop-loss devient

$$\pi_X(d) = \int_d^\infty \overline{F}_X(x) \, \mathrm{d}x.$$

Exemple 3

Soit la v.a. $X \sim Exp(\beta)$. La fonction stop-loss est donnée par $\pi_d(X) = E\left[\max(X-d;0)\right]$ $= \int_d^\infty \overline{F}_X(x) \mathrm{d}x$ $= \int_d^\infty \mathrm{e}^{-\beta x} \mathrm{d}x$ $= \frac{1}{\beta} \mathrm{e}^{-\beta d}. \ \Box$

Exemple 4

Soit la v.a. $X \sim Ga(\alpha,\beta)$.

La fonction stop-loss est donnée par

$$\pi_{d}(X) = E\left[\max(X - d; 0)\right]$$

$$= E\left[X \times 1_{\{X > d\}}\right] - d\overline{F}_{X}(d)$$

$$= E\left[X\right]\overline{H}(d; \alpha + 1, \beta) - d\overline{H}(d; \alpha, \beta),$$

for $d \ge 0$. \square

Si la v.a. X=Kh $(h\in\mathbb{R}^+)$ où K obéit à une loi discrète dont le support est \mathbb{N} et si $d=hk_0$ avec $k_0\in\mathbb{N}$, on a

$$\pi_{X}\left(d\right) = \sum_{k=0}^{\infty} \max\left(kh - k_{0}h; 0\right) f_{X}\left(kh\right) = h \sum_{k=k_{0}+1}^{\infty} \overline{F}_{X}\left(kh\right).$$

Les définitions de plusieurs mesures de risque reposent en grande partie sur la fonction quantile.

On débute avec la définition de base de la fonction quantile.

Définition 3

Soit la v.a. X avec fonction de répartition F_X . On définit la fonction inverse F_X^{-1} de F_X par

$$F_X^{-1}(u) = \inf \left\{ x \in \mathbb{R} : F_X(x) \ge u \right\},\,$$

pour $u \in (0,1)$.

La fonction quantile de X correspond à la fonction inverse F_X^{-1} .

Mesures de risque et primes

Fonction quantile

Si la v.a. X est continue, alors F_X^{-1} correspond à la seule valeur x_u telle que $F_X(x_u) = u$.

Pour certaines lois continues, il est possible d'obtenir une expression fermée pour la fonction quantile.

Autrement, on a recours à des méthodes d'optimisation numérique pour évaluer la valeur $F_X^{-1}(u)$ pour une valeur fixée $u \in (0,1)$.

Exemple 5

Soit la v.a. $X \sim Exp(\beta)$ dont la fonction de répartition est $F_X(x) = 1 - e^{-\beta x}$, $x \ge 0$.

L'expression fermée de la fonction quantile est déterminée en isolant x dans la relation $F_X(x) = u$, $u \in (0,1)$.

On obtient $F_X^{-1}(u) = -\frac{1}{\beta} \ln (1-u)$. \square

Théorème de la fonction quantile - Énoncé

Théorème 1

Théorème de la fonction quantile Soit une v.a. X avec fonction de répartition F_X et fonction quantile F_X^{-1} . Soit une v.a. $U \sim U(0,1)$. Alors, la fonction de répartition de $F_X^{-1}(U)$ est F_X , i.e., $F_X^{-1}(U) \sim X$.

On fait la preuve en deux étapes.

Étape no1 - v.a. continues

On suppose que la v.a. X est continue.

Comme les évènements $\left\{F_X^{-1}\left(U\right) \le x\right\}$ et $\left\{U \le F_X\left(x\right)\right\}$ coı̈ncident, alors on a

$$\Pr\left(F_X^{-1}\left(U\right) \le x\right) = \Pr\left(U \le F_X\left(x\right)\right).$$

De la fonction de répartition de $U \sim U(0,1)$, on déduit

$$\Pr\left(F_X^{-1}\left(U\right) \le x\right) = \Pr\left(U \le F_X\left(x\right)\right) = F_X\left(x\right).$$

Étape no2 - cas général

Maintenant, on considère le cas général incluant le cas précédent mais aussi le cas d'une v.a. X dont la fonction de répartition peut avoir des sauts et des portions horizontales . Le cas des v.a. discrètes est aussi inclus.

On doit vérifier que les évènements $\left\{F_X^{-1}\left(U\right) \leq x\right\}$ et $\left\{U \leq F_X\left(x\right)\right\}$ coı̈ncident.

Étape no2 - cas général (suite)

D'abord, on suppose que $x \ge F_X^{-1}(u)$, pour $u \in (0,1)$.

Puisque

$$F_X^{-1}(u) = \inf \{ y \in \mathbb{R}, F_X(y) \ge u \},$$

alors $F_X(x) \ge u$, pour $u \in (0,1)$.

Bref, on a $x \ge F_X^{-1}(u) \Rightarrow F_X(x) \ge u$, pour $u \in (0,1)$.

Étape no2 - cas général (suite)

Ensuite, on suppose que $F_X(x) \ge u$, ce qui implique

$$x \ge F_X^{-1}(u) = \inf \left\{ y \in \mathbb{R}, F_X(y) \ge u \right\},\,$$

pour $u \in (0,1)$.

Puisque les évènements $\left\{F_X^{-1}\left(U\right) \le x\right\}$ et $\left\{U \le F_X\left(x\right)\right\}$ coı̈ncident, on a

$$\Pr\left(F_X^{-1}\left(U\right) \le x\right) = \Pr\left(U \le F_X\left(x\right)\right) = F_X\left(x\right).$$

Illustration:

Figure: Fonction de répartition avec un saut et une partie horizontale.

Théorème de la fonction quantile - Représentation

Soit une v.a. X avec une fonction de répartition F et une fonction quantile F^{-1} .

Soit une v.a. $U \sim Unif(0,1)$.

Selon ce théorème, on peut représenter la v.a. X comme suit :

$$X = F^{-1}(U).$$
 (5)

La représentation en (5) est fort utile.

Par exemple, la méthode de simulation inverse découle de la représentation en (5).

Théorème de la fonction quantile - Espérance

On suppose $E[X] < \infty$. En utilisant la représentation en (5), on a

$$E[X] = E[F^{-1}(U)] = \int_0^1 F^{-1}(u) du.$$
 (6)

De plus, soit une fonction φ tel que $E[\varphi(X)] < \infty$. Alors, on a

$$E[\varphi(X)] = E[\varphi(F^{-1}(U))] = \int_0^1 \varphi(F^{-1}(u)) du.$$
 (7)

Les résultats en (6) et (7) servent à justifier la méthode Monte Carlo.

Méthode inverse de simulation et méthode Monte Carlo

Soit une v.a. X avec une fonction de répartition ${\cal F}_X$ et une fonction quantile ${\cal F}_X^{-1}$.

Soit une v.a. $U \sim Unif(0,1)$ dont on simule m réalisations $U^{(1)},...,U^{(m)}$ à l'aide d'un générateur de nombres pseudo-aléatoires.

Algorithme 1

Méthode inverse de simulation :

- Simuler m réalisations $U^{(1)},...,U^{(m)}$ de la v.a. $U \sim Unif(0,1)$.
- Simuler m réalisations $X^{(1)},...,X^{(m)}$ de la v.a. X avec les m réalisations $U^{(1)},...,U^{(m)}$:

$$X^{(j)} = F_X^{-1}(U^{(j)})$$
 (théorème de la fonction quantile),

pour j = 1,...,m.

Méthode inverse de simulation et méthode Monte Carlo

Soit une v.a. X avec une fonction de répartition F_X et une fonction quantile F_X^{-1} .

Idée de la méthode Monte-Carlo :

- Contexte : Soit une fonction φ tel que $E[\varphi(X)] < \infty$.
- But : Évaluer e ζ = $E[\varphi(X)]$.
- Appliquer le théorème de la fonction quantile

$$\zeta = E[\varphi(X)] = E[\varphi(F_X^{-1}(U))] = \int_0^1 \varphi(F_X^{-1}(u)) du.$$

- Approximer l'intégrale $\zeta = \int_0^1 \varphi(F_X^{-1}(u)) du$ par une moyenne empirique.
- Convergence de la moyenne empirique vers ζ en vertu d la loi des grands nombres.

Méthode inverse de simulation et méthode Monte Carlo

Algorithme 2

Méthode Monte-Carlo :

- Simuler m réalisations $X^{(1)},...,X^{(m)}$ de la v.a. X.
- Calculer l'approximation $\tilde{\zeta}_m$ de ζ = $E[\varphi(X)]$ avec

$$\tilde{\zeta}_m = \frac{1}{m} \times \sum_{j=1}^m \varphi(X^{(j)})$$

Par la loi des grands nombres, l'approximation $\tilde{\zeta}_m$ converge vers ζ avec probabilité 1 quand le nombre m de réalisations tend vers ∞ .

Méthode inverse de simulation et méthode Monte Carlo

La variance de $\tilde{\zeta}$ est

$$\operatorname{Var}\left(\tilde{\zeta}\right) = \frac{1}{m} \operatorname{Var}\left(\varphi\left(X\right)\right).$$

En vertu du théorème central limite, l'erreur $\left(\tilde{\zeta}-\zeta\right)$ est approximativement normale avec moyenne 0 et écart type $\frac{\sqrt{\mathrm{Var}(\varphi(X))}}{\sqrt{m}}$.

Cela signifie que la qualité de l'approximation obtenue par simulation s'améliore d'un facteur d'ordre \sqrt{m} .

Le terme $\frac{\sqrt{\operatorname{Var}(\varphi(X))}}{\sqrt{m}}$ est habituellement appelé l'erreur standard.

Méthode inverse de simulation et méthode Monte Carlo

Souvent, comme ${\rm Var}\,(\varphi\,(X))$ ne peut pas être évaluée avec exactitude, on l'estime à l'aide de l'estimateur échantillonnal classique

$$\widehat{\operatorname{Var}}(\varphi(X)) = \frac{1}{m-1} \sum_{j=1}^{m} \left(\varphi(X^{(j)}) - \widetilde{\zeta} \right)^{2}. \tag{8}$$

On se base sur la distribution asymptotique de l'erreur $(\tilde{\zeta}-\zeta)$ afin de construire un intervalle de confiance de niveau α (e.g. 95 %) pour $\tilde{\zeta}$ dont les bornes sont fournies par

$$\tilde{\zeta}\pm\frac{\sqrt{\mathrm{Var}\left(\varphi\left(X\right)\right)}}{\sqrt{m}}\Phi^{-1}\left(1-\frac{\alpha}{2}\right).$$

Généralement, comme la valeur $\sqrt{\mathrm{Var}\left(\varphi\left(X\right)\right)}$ ne peut pas être obtenue, on utilise (8) pour calculer les bornes de l'intervalle de confiance

$$\tilde{\zeta}\pm\frac{\sqrt{\widehat{\operatorname{Var}}\left(\varphi\left(X\right)\right)}}{\sqrt{m}}\Phi^{-1}\left(1-\frac{\alpha}{2}\right).$$

Théorème 2

Transformation intégrale de la probabilité Soit une v.a. continue X avec une fonction de répartition F_X et une fonction quantile F_X^{-1} . Alors, $F_X(X) \sim Unif(0,1)$.

Le Théorème 2 est fréquemment utilisé dans le contexte de la théorie des copules.

Note : L'expression "transformation intégrale de la probabilité" est utilisée par la Revue Canadienne de Statistique pour traduire l'expression anglaise "probability integral transform".

53

Selon la proposition suivante, la fonction quantile d'une transformation croissante d'une v.a. s'exprime comme cette transformation de la fonction quantile de cette v.a.

Proposition 1

Soit une v.a. X. Si φ est une fonction croissante, alors on a $F_{\varphi(X)}^{-1}(u) = \varphi(F_X^{-1}(u)),$ (9)

pour $u \in (0,1)$.

Mesures VaR et TVaR

La mesure Value at Risk (VaR) est une mesure de risque très populaire en actuariat et en gestion des risques.

Définition 4

Soit $0 < \kappa < 1$. La mesure VaR avec un niveau de confiance κ associée à la v.a. X est définie par $VaR_{\kappa}(X) = F_X^{-1}(\kappa)$.

Ainsi, la probabilité que la v.a. X prenne une valeur supérieure à la VaR est moindre ou égale à $1-\kappa$.

Mesures VaR et TVaR

Toutefois, la mesure VaR ne donne pas d'information sur le comportement de la distribution au delà de la VaR.

Par exemple, pour une v.a. continue X et pour κ = 99.99%, cela signifie qu'il y a une probabilité de 0.01% que la v.a. X prenne une valeur qui est supérieure à $VaR_{99.99\%}(X)$ sans nous préciser l'ampleur de la valeur que X peut prendre si elle excède la VaR.

La mesure *Tail Value at Risk* (TVaR) est proposée comme une alternative à la mesure VaR.

Définition 5

Soit $0 \le \kappa < 1$. La mesure TVaR avec un niveau de confiance κ est définie par

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X) du, \qquad (10)$$

avec $TVaR_0(X) = \int_0^1 VaR_u(X) du = E[X].$

Proposition 2

Soit une v.a. X avec $E[X] < \infty$. Alors, à partir de (10), on déduit les deux expressions suivantes :

1 Expression avec la prime stop-loss :
$$TVaR_{\kappa}(X) = VaR_{\kappa}(X) + \frac{1}{1-\kappa}\Pi_{X}(VaR_{\kappa}(X)) \tag{11}$$

Expression avec l'espérance tronquée :

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + \frac{1}{1-\kappa} VaR_{\kappa}(X) (F_X(VaR_{\kappa}(X)) - \kappa). \quad (12)$$

Preuve

Démonstration de (11). On a

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X) du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{u}(X) - VaR_{\kappa}(X) + VaR_{\kappa}(X)) du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{u}(X) - VaR_{\kappa}(X)) du + \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{\kappa}(X)) du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (F_{X}^{-1}(u) - VaR_{\kappa}(X)) du + \frac{1}{1-\kappa} VaR_{\kappa}(X) (1-\kappa)$$

$$= \frac{1}{1-\kappa} E\left[\max(F_{X}^{-1}(U) - VaR_{\kappa}(X); 0)\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[\max(X - VaR_{\kappa}(X); 0)\right] + VaR_{\kappa}(X) (Th. Fn. Quantile)$$

pour $\kappa \in (0,1)$.

Preuve

Démonstration de (2). De (11), on déduit

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E\left[\max(X - VaR_{\kappa}(X); 0)\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[(X - VaR_{\kappa}(X)) \times 1_{\{X > VaR_{\kappa}(X)\}}\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]$$

$$-\frac{1}{1-\kappa} VaR_{\kappa}(X) \times E\left[1_{\{X > VaR_{\kappa}(X)\}}\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]$$

$$-\frac{1}{1-\kappa} (VaR_{\kappa}(X) \times (1 - F_X(VaR_{\kappa}(X))) - (1 - \kappa)VaR_{\kappa}(X))$$

$$= \frac{1}{1-\kappa} \left\{ E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right] + VaR_{\kappa}(X)(F_X(VaR_{\kappa}(X)) - \kappa) \right\}$$

pour $\kappa \in (0,1)$.

Mesures VaR et TVaR

Soit une v.a. continue X.

Alors, on a

$$(F_X(VaR_{\kappa}(X)) - \kappa) = 0.$$

De (2), on déduit

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}], \tag{13}$$

pour $\kappa \in (0,1)$.

Exemple 6

Soit la v.a. $X \sim Exp(\beta)$, avec

$$VaR_{\kappa}(X) = F_X^{-1}(1-\kappa) = -\frac{1}{\beta}\ln(1-\kappa).$$

Or,

$$\Pi_X(VaR_{\kappa}(X)) = \frac{1}{\beta} e^{-\beta VaR_{\kappa}(X)} = \frac{1-\kappa}{\beta}.$$

De (11), on déduit

$$TVaR_{\kappa}(X) = VaR_{\kappa}(X) + \frac{1}{\beta}. \square$$

62

4 日 ト 4 周 ト 4 ヨ ト 4 ヨ ト

Exemple 7

Soit la v.a. $X \sim Ga(\alpha,\beta)$ où F_X^{-1} n'a pas de forme fermée.

La fonction quantile de la loi gamma est fournie dans le logiciel R.

Avec (2) et (13), on obtient

$$TVaR_{\kappa}(X) = \frac{E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]}{1 - \kappa} = \frac{E\left[X\right]\overline{H}\left(VaR_{\kappa}(X); \alpha + 1, \beta\right)}{1 - \kappa}.$$

Évaluation de la VaR et méthode Monte Carlo

Soit une v.a. X dont on a produit m réalisations $X^{(1)}$, ..., $X^{(m)}$. Une approximation de F_X est fournie à l'aide de la fonction de répartition empirique définie par

$$F^{(m)}(x) \simeq \frac{1}{m} \sum_{j=1}^{m} 1_{\{X^{(j)} \le x\}}.$$
 (14)

Puisque $F^{(m)}$ est une fonction de répartition associée à une distribution discrète, il en découle que l'approximation de $VaR_{\kappa}\left(X\right)$ est

$$VaR_{\kappa}(X) \simeq F^{(m)-1}(\kappa) = \inf \left\{ X^{(j)}, i = 1, 2, ..., m ; F^{(m)}(X^{(j)}) \ge \kappa \right\}.$$

Évaluation de la TVaR et méthode Monte Carlo

Soit le vecteur de réalisations classées en ordre croissant de X, que l'on note par $\left(X^{[1]},...,X^{[m]}\right)$.

On fixe j_0 tel que $F^{(m)-1}(\kappa) = X^{[j_0]}$.

En utilisant les expressions (10) et (2) pour la TVaR conjointement avec (14), l'approximation de $TVaR_{\kappa}(X)$ correspond à

$$TVaR_{\kappa}(X)$$

$$\simeq \frac{1}{1-\kappa} \left(\frac{1}{m} \sum_{j=1}^{m} X^{(j)} \times 1_{\{X^{(j)} > F^{(m)-1}(\kappa)\}} \right)$$

$$+ \frac{1}{1-\kappa} \left(F^{(m)-1}(\kappa) \left(F^{(m)} \left(F^{(m)-1}(\kappa) \right) - \kappa \right) \right)$$

$$\simeq \frac{1}{1-\kappa} \left(\frac{1}{m} \sum_{j=j_{0}+1}^{m} X^{[j]} + X^{[j_{0}]} \left(F^{(m)} \left(X^{[j_{0}]} \right) - \kappa \right) \right).$$

Supposons que $m \times \kappa$ est un entier.

Alors cet entier est j_0 . Il en résulte que $\left(F^{(m)}\left(X^{[j_0]}\right) - \kappa\right) = 0$ et (15) devient

$$TVaR_{\kappa}(X) \simeq \frac{1}{m(1-\kappa)} \sum_{j=1}^{m} X^{(j)} \times 1_{\{X^{(j)} > X^{[j_0]}\}}$$

= $\frac{1}{m-j_0} \sum_{j=j_0+1}^{m} X^{[j]},$

ce qui correspond à la moyenne des $m-j_0$ plus grandes réalisations de X .

Proposition 3

Soit une v.a. X avec fonction de répartition F_X . Soit une suite de v.a. i.i.d. X_1 , ..., X_n où $X_i \sim X$, i=1,2,...,n. Alors, on a

$$TVaR_{\kappa}(X) = \lim_{n \to \infty} \frac{\sum_{j=[n\kappa]+1}^{n} X^{[j]}}{[n(1-\kappa)]} (p.s.), \tag{16}$$

où $\lfloor u \rfloor$ correspond à la partie entière de u.

Preuve

Voir la preuve de la proposition 4.1 dans [Acerbi and Tasche, 2002] ainsi que le développement aux pages 1494 et 1495 de cet article.

Lois continues paramétriques et logiciel R :

- Loi uniforme : dunif(), punif(), qunif(), runif();
- Loi exponentielle : dexp(), pexp(), qexp(), rexp();
- Loi gamma : dgamma(), pgamma(), qgamma(), rgamma();
- Loi lognormale : dlnorm(), plnorm(), qlnorm(), rlorm().

Lois discrètes paramétriques et logiciel R :

- Loi Poisson : dpois(), ppois(), qpois(), rpois();
- Loi binomiale négative : dnbinom(), pnbinom(), qnbinom(), rnbinom().

Illustration numérique

Illustration numérique à faire en classe.

Mutualisation des risques d'assurance

Mutualisation des risques d'assurance

Généralités

Les opérations d'assurance sont fondées sur la possibilité de mutualiser les risques d'assurance.

On considère un portefeuille de n risques $X_1,...,X_n$.

Le risque global correspond à aux coûts totaux du portefeuille définis par la v.a.

$$S = \sum_{i=1}^{n} X_i.$$

Les coûts totaux espérés du portefeuille sont donnés par

$$E[S] = \sum_{i=1}^{n} E[X_i].$$

Mutualisation des risques d'assurance

Généralités

Le calcul de $\varsigma(S)$ requiert d'évaluer F_S .

L'évaluation de F_S représente un défi important.

Les risques $X_1,...,X_n$ peuvent être indépendants ou dépendants entre eux, ce qui a un impacte sur l'évaluation de F_S .

On peut recourir à la transformée de Laplace-Stietjes et la fonction génératrice de probabilité pour identifier la loi de S ou évaluer F_S .

Définition 6

Soit une v.a. positive X. La transformée de Laplace-Stieltjes (TLS) de la v.a. X est définie par l'espérance suivante :

$$\mathcal{L}_X(t) = E[e^{-tX}] = \int_0^\infty e^{-tx} dF_X(x), \tag{17}$$

pour $t \in [0, \infty)$.

Remarques:

- Puisque la v.a. X est positive, l'espérance en (17) est finie pour tout t > 0.
- Alors, \mathcal{L}_X existe peu importe la loi de v.a. X.

Transformée de Laplace-Stieltjes

Le résultat suivant permet d'identifier la TLS d'une somme de v.a. indépendantes.

Il est aussi utile pour l'évaluation numérique de F_S .

Proposition 4

Soit les v.a. indépendantes $X_1,...,X_n$ dont les TLS sont $\mathcal{L}_{X_i}(r)$, pour i=1,...,n. On définit la v.a. $S=X_1+...+X_n$. Alors, la TLS de la v.a. S est donnée par

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times ... \times \mathcal{L}_{X_{n}}(t),$$

pour $t \in [0, \infty)$.

Preuve

La TLS de la v.a.
$$S$$
 est donnée par
$$\mathcal{L}_S(t) = E[\mathrm{e}^{-tS}] = E[\mathrm{e}^{-t(X_1 + \ldots + X_n)}]$$
$$= E[\mathrm{e}^{-tX_1} \times \ldots \times \mathrm{e}^{-tX_n}]$$
$$= E[\mathrm{e}^{-tX_1}] \times \ldots \times E[\mathrm{e}^{-tX_n}] \ [v.a. \ indépendantes]$$
$$= \mathcal{L}_{X_1}(t) \times \ldots \times \mathcal{L}_{X_n}(t),$$

pour $t \in [0,\infty)$.

Exemple 8

Soit les v.a. indépendantes $X_1,...,X_n$ avec $X \sim Gamma(\alpha_i,\beta)$, pour i=1,2,...,n.

Alors, la TLS de la v.a. S est donnée par

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times ... \times \mathcal{L}_{X_{n}}(t)$$

$$= \left(\frac{\beta}{\beta + t}\right)^{\alpha_{1}} \times ... \times \left(\frac{\beta}{\beta + t}\right)^{\alpha_{n}} = \left(\frac{\beta}{\beta + t}\right)^{\alpha_{1} + ... + \alpha_{n}}$$

pour $t \in [0, \infty)$.

On déduit que $S \sim Gamma(\alpha_1 + ... + \alpha_n, \beta)$.

Fonction de génératrice de probabilité

Soit une v.a. discrète positive X dont le support est $\mathbb{N} = \{0,1,2,...\}$.

La fonction de masse de probabilité (f.m.p.) est notée par

$$f_X(k) = \Pr(X = k), k \in \mathbb{N}.$$

On introduit la notion de fonction génératrice de probabilité (fgp) pour une v.a. discrète positive.

La fgp est à la fois une espérance d'une fonction de la v.a. X et une série de puissances.

La fgp est utile dans les aspects de la modélisation et des différents calculs à effectuer en actuariat.

Fonction de génératrice de probabilité

Définition 7

La fonction génératrice de probabilités (fgp) de la $v.a.\ X$ est définie par

$$\mathcal{P}_X(r) = E[r^X] = \sum_{k=0}^{\infty} f_X(k) r^k,$$

pour tout nombre complexe r tel que $|r| \le 1$ (en particulier pour des nombres réels $r \in [0,1]$).

La fonction de génératice de probabilité (f.g.p.) de la v.a. X permet de représenter la f.m.p. de la v.a. M sous la forme d'une série de puissances.

Les coéfficients de cette série de puissances correspondent aux valeurs de la fonction de masse de probabilité.

Propriétés :

- $\blacksquare \mathcal{P}_X(0) = f_X(0)$
- $P_X(1) = 1.$

On retrouve les coefficients (i.e., les valeurs de la fonction de masse de probabilité de la v.a. X) de la fgp en utilisant le théorème suivant.

Théorème 3

Fonction de masse de probabilité. La valeur de $f_X(k)$ est calculée à partir de $\mathcal{P}_X(t)$ avec

$$f_X(k) = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}r^k} \mathcal{P}_X(r) \bigg|_{r=0}.$$
 (18)

La fgp d'une v.a. discrète positive X définit la distribution de cette v.a. :

- Soit deux v.a. discrètes positives X et Y dont \mathcal{P}_X et \mathcal{P}_Y sont identiques.
- Alors, selon le Théorème 3, les v.a. X et Y ont la même distribution.

Fonction de génératrice de probabilité

Le résultat suivant permet d'identifier la fgp d'une somme de v.a. discrètes indépendantes.

Il est aussi utile pour l'évaluation numérique de F_S .

Proposition 5

Soit les v.a. discrètes positives (avec support \mathbb{N}) indépendantes $X_1,...,X_n$ dont les fgp sont $\mathcal{P}_{X_i}(r)$, pour i=1,...,n. On définit la v.a. $S=X_1+...+X_n$. Alors, la fgp de la v.a. S est donnée par $\mathcal{P}_S(r)=\mathcal{P}_{X_1}(r)\times...\times\mathcal{P}_{X_n}(r)$,

 $\textit{pour } r \in [0,1].$

Preuve

La fgp de la v.a.
$$S$$
 est donnée par
$$\mathcal{P}_S(r) = E[r^S] = E[r^{X_1 + \ldots + X_n}]$$

$$= E[r^{X_1} \times \ldots \times r^{X_n}]$$

$$= E[r^{X_1}] \times \ldots \times E[r^{X_n}] \text{ [v.a. indépendantes]}$$

$$= \mathcal{P}_{X_1}(r) \times \ldots \times \mathcal{P}_{X_n}(r),$$

pour $r \in [0,1]$.

Exemple 9

Soit les v.a. indépendantes $X_1,...,X_n$, avec $X_i \sim Pois(\lambda_i)$, pour i=1,...,n. On définit la v.a. $S=X_1+...+X_n$.

Alors, la fgp de la v.a. S est donnée par

$$\mathcal{P}_{S}(r) = \mathcal{P}_{X_{1}}(r) \times ... \times \mathcal{P}_{X_{n}}(r)$$

$$= e^{\lambda_{1}(r-1)} \times ... \times e^{\lambda_{n}(r-1)}$$

$$= e^{\lambda_{1}(r-1)+...+\lambda_{n}(r-1)} = e^{(\lambda_{1}+...+\lambda_{n})(r-1)},$$

pour $r \in [0,1]$.

On déduit que $S \sim Pois(\lambda_1 + ... + \lambda_n)$.

Méthodes d'approximation

Généralement, on ne parvient pas à identifier la loi de S.

On doit recourir à des méthodes d'approximation :

- Méthodes d'approximation basées sur les moments ;
- Méthodes numériques basées sur des relations récursives ;
- Méthodes basées sur la simulation Monte-Carlo.

Les méthodes numériques basées sur des relations récursives sont présentées plus loin.

Simulation d'une fonction d'un nombre fini de v.a.

Soit une v.a. Z qui est définie en fonction des v.a. $X_1,...,X_n$ i.e. $Z = \phi(X_1,...,X_n)$.

La forme explicite de la fonction de répartition F_Z ne peut être obtenue et on peut produire des réalisations de $X_1,...,X_n$.

La procédure pour simuler la réalisation j, $Z^{(j)}$ (j = 1,...,m), de la v.a. Z est décrite comme suit.

Simulation d'une fonction d'un nombre fini de v.a.

Algorithme 3

Simulation d'une fonction de v.a.

- **1** Étape 1. On simule les réalisations de $\left(X_1^{(j)},...,X_n^{(j)}\right)$ de $(X_1,...,X_n)$.
- **2 Étape 2**. On évalue $Z^{(j)} = \phi(X_1^{(j)},...,X_n^{(j)})$.

On répète pour j = 1, 2, ..., m.

Un exemple de fonction intéressante pour analyser le comportement aléatoire du risque global d'un portefeuille d'assurance est

$$\phi(x_1,...,x_n) = \sum_{i=1}^n x_i.$$

Simulation d'une fonction d'un nombre fini de v.a.

Illustration numérique à faire en classe.

Propriétés désirables des mesures de risque

Les mesures de risque peuvent être utilisées dans différents contextes, notamment :

- item calcul du capital pour un portefeuille ;
- calcul de la prime pour un contrat d'assurance ;
- outils de comparaison.

On présente les propriétés désirables d'une mesure de risque ς_{κ} .

Propriété 1

Homogénéité. Soient un risque X et un scalaire $a \in \mathbb{R}^+$. Une mesure ς_{κ} est homogène si

$$\varsigma_{\kappa}(aX) = a\varsigma_{\kappa}(X),$$

pour $0 < \kappa < 1$.

Une modification d'unité monétaire apportée au risque X conduit à une modification du même ordre pour la valeur obtenue avec la mesure de risque.

Propriété 2

Invariance à la translation. Soient un risque X et un scalaire $a \in \mathbb{R}$. Une mesure ς_{κ} est invariante à la translation si

$$\varsigma_{\kappa}(X+a) = \varsigma_{\kappa}(X) + a,$$

pour $0 < \kappa < 1$.

Par exemple, pour la v.a. perte définie par $L = X - \pi$ où π correspond à la prime associée à X, il est justifié d'avoir $\varsigma_{\kappa}(L) = \varsigma_{\kappa}(X) - \pi$.

Propriétés désirables des mesures de risque

Propriété 3

Monotonocité. Soient deux risques X_1 et X_2 tels que $\Pr\left(X_1 \leq X_2\right) = 1$. Une mesure ς_{κ} est monotone si $\varsigma_{\kappa}\left(X_1\right) \leq \varsigma_{\kappa}\left(X_2\right)$,

pour $0 < \kappa < 1$.

- Prime : Si le risque X_2 est plus dangereux que le risque X_1 , il est raisonnable que la mesure de risque mène à une prime plus pour le risque X_2 qui plus élevée que celle qui est calculée pour le risque X_1 .
- Capital : Si le risque X_2 est plus dangereux que le risque X_1 , il est raisonnable que la mesure de risque conduise à un capital pour le risque X_2 supérieur à celui calculé pour le risque X_1 .

Propriété 4

Sous-additivité. Soient n risques $X_1,...,X_n$. La mesure ς_{κ} est sous-additive si

$$\varsigma_{\kappa}(X_1 + \dots + X_n) \le \varsigma_{\kappa}(X_1) + \dots + \varsigma_{\kappa}(X_n),$$

pour $0 < \kappa < 1$.

La propriété de sous-additivité est très importante relativement à la mutualisation des risques.

Propriétés désirables des mesures de risque

Il est intéressant d'examiner le bénéfice de mutualisation qui résulte de la mise en commun des risques $X_1, \, ..., \, X_n.$

Le bénéfice de mutualisation est défini par

$$B_{\kappa}^{\varsigma}(S) = \sum_{i=1}^{n} \varsigma_{\kappa}(X_{i}) - \varsigma_{\kappa}(S)$$

Comme la mutualisation des risques est le fondement de l'assurance, il est souhaitable que $B^{\varsigma}_{\kappa}\left(S\right)$ soit positif.

Soit ς une mesure sous-additive. Alors, on observe

$$B_{\kappa}^{\varsigma}(S) = \sum_{i=1}^{n} \varsigma_{\kappa}(X_{i}) - \varsigma_{\kappa}(S) \ge 0,$$

pour tout $\kappa \in (0,1)$.

Propriétés désirables des mesures de risque

La notion de mesure cohérente a été introduite par [Artzner et al., 1999].

Definition 1

Mesure de risque cohérente. On dit qu'une mesure de risque ς_{κ} est cohérente si les propriétés 1, 2, 3 et 4 sont satisfaites.

Autres propriétés désirables des mesures de risque

Dans la littérature actuarielle (voir e.g. [Denuit et al., 2006]), les trois propriétés suivantes sont aussi jugées désirables.

Autres propriétés désirables des mesures de risque

Propriété 5

Marge de risque non excessive. La mesure ς_{κ} ne doit pas induire une marge de risque excessive. Si $X \le x_{\max}$, alors on a $\varsigma_{\kappa}(X) \le x_{\max}$, pour $0 < \kappa < 1$.

- Prime : Il est injustifié d'exiger une prime supérieure au montant maximal que les coûts d'un risque ou d'un portefeuille peut prendre.
- Capital : Il est injustifié de détenir un capital en excédent du montant maximal que les coûts d'un risque ou d'un portefeuille peut prendre.

Autres propriétés désirables des mesures de risque

Propriété 6

Marge de risque positive. On doit avoir $\varsigma_{\kappa}(X) \ge E[X]$, pour $0 < \kappa < 1$.

- Prime : Le capital minimum doit être supérieure à la prime pure sinon il y aura ruine certaine.
- Capital : Le capital minimum doit excéder les coûts espérés sinon il y aura ruine certaine.

Autres propriétés désirables des mesures de risque

Propriété 7

Marge de risque justifiée. Soit a une constante quelconque. On doit toujours avoir $\varsigma_{\kappa}(a) = a$, pour $0 < \kappa < 1$.

- Prime : Il n'est pas approprié de demander une prime différente de *a* si les coûts pour un contrat correspondent à la constante *a*.
- Capital : Il n'est pas justifié de détenir un capital différent de *a* si les coûts pour un portefeuille correspondent à la constante *a*.

Mesure VaR

La mesure VaR satisfait aux propriétés suivantes :

- Invarance à la translation ;
- Homogénéité ;
- Monotonicité :
- Elle n'introduit pas une marge de risque excessive ;
- Elle n'introduit pas une marge de risque injustifiée.

La mesure VaR ne satisfait pas aux propriétés suivantes :

- Sous-additivité ;
- Elle n'introduit pas une marge de risque positive pour tout $\kappa \in (0,1)$.

Exemple 10

Soient les v.a. indépendantes X_1 et X_2 où $X_i \sim Exp(0.1)$. On sait que $X_1 + X_2 \sim Erlang(2,0.1)$. Il est clair avec les valeurs de $VaR_{\kappa}\left(X_1 + X_2\right)$ et $VaR_{k}\left(X_1\right) + VaR_{k}\left(X_2\right)$ qui sont fournies dans le tableau suivant que la mesure VaR n'est pas sous-additive :

κ	0.1	0.2	0.5	0.8	0.9
$VaR_k(X_1) + VaR_k(X_2)$	0.2107	0.4463	1.3863	3.2189	4.6052
$VaR_k\left(X_1+X_2\right)$	0.5318	0.8244	1.6783	2.9943	3.8897

Mesure TVaR

La mesure TVaR satisfait aux propriétés suivantes :

- Invarance à la translation ;
- Homogénéité ;
- Monotonicité :
- Sous-additivité ;
- Elle n'introduit pas une marge de risque excessive ;
- Elle introduit une marge de risque positive pour tout $\kappa \in (0,1)$;
- Elle n'introduit pas une marge de risque injustifiée.

[Embrechts and Wang, 2015] proposent 7 preuves de la sous-additivité de la TVaR.

On présente 2 d'entre elles.

Preuve no1 de la sous-additivité de la TVaR

On suit la démonstration fournie dans [McNeil et al., 2015].

Soit une suite de v.a. i.i.d. X_1 , ..., X_n où $X_i \sim X$, i = 1, 2, ..., n.

Pour un entier m tel que $1 \le m+1 \le n$, l'égalité suivante est vérifiée

$$\sum_{j=m+1}^{n} X^{[j]} = \sup \left\{ X_{i_{m+1}} + \dots + X_{i_n}; 1 \le i_{m+1} \le \dots \le i_n \le m+1 \right\}.$$

Preuve no1 de la sous-additivité de la TVaR

Soit un couple de v.a. (X,Y) dont la fonction de répartition est désignée par $F_{X,Y}$.

Soient la suite de couple de v.a. i.i.d. (X_1,Y_1) , (X_2,Y_2) , ..., (X_n,Y_n) où $(X_i,Y_i) \sim (X,Y)$ pour i=1,2,...n.

Preuve no1 de la sous-additivité de la TVaR

On définit S = X + Y et $S_i = X_i + Y_i$, pour i = 1, 2, ..., n.

Par la Proposition 3, on a

$$TVaR_{\kappa}(S) = \lim_{n \to \infty} \frac{\sum_{j=\lfloor n\kappa \rfloor+1}^{n} S^{\lfloor j \rfloor}}{\lfloor n(1-\kappa) \rfloor}$$
 (p.s.),

où $S^{[1]} \leq S^{[2]} \leq \ldots \leq S^{[n-1]} \leq S^{[n]}$ sont les statistiques d'ordre de S_1 , ..., S_n et $\lfloor a \rfloor$ correspond à la partie entière de a.

On a

$$\begin{split} \sum_{j=[n\kappa]+1}^{n} S_{j:n} &= \sup \left\{ S_{i_{[n\kappa]+1}} + \ldots + S_{i_n}; 1 \leq i_{[n\kappa]+1} \leq \ldots \leq i_n \leq [n\kappa] + 1 \right\} \\ &\leq \sup \left\{ X_{i_{[n\kappa]+1}} + \ldots + X_{i_n}; 1 \leq i_{[n\kappa]+1} \leq \ldots \leq i_n \leq [n\kappa] + 1 \right\} \\ &+ \sup \left\{ Y_{i_{[n\kappa]+1}} + \ldots + Y_{i_n}; 1 \leq i_{[n\kappa]+1} \leq \ldots \leq i_n \leq [n\kappa] + 1 \right\} \\ &= \sum_{j=[n\kappa]+1}^{n} X_{j:n} + \sum_{j=[n\kappa]+1}^{n} Y_{j:n}. \end{split}$$

Il suffit de diviser par $[n(1-\kappa)]$ et de faire tendre $n \to \infty$ et on déduit le résultat voulu en appliquant la Proposition 3.

Preuve no2 de la sous-additivité de la TVaR

On a

$$TVaR_{\kappa}\left(X\right)=\inf_{x\in\mathbb{R}}\left\{ arphi\left(x
ight)
ight\}$$

ce qui signifie

$$TVaR_{\kappa}(X) \leq \varphi(x)$$
, pour tout $x \in \mathbb{R}$.

Ainsi, pour $\alpha \in (0,1)$, on a

$$TVaR_{\kappa}\left(\alpha\times X+\left(1-\alpha\right)\times Y\right)\leq x+\frac{1}{1-\kappa}\pi_{\alpha\times X+\left(1-\alpha\right)\times Y}\left(x\right),\text{ pour tout }x\in\mathbb{R}.$$

On choisit

$$x_{\alpha} = \alpha \times VaR_{\kappa}(X) + (1 - \alpha) \times VaR_{\kappa}(Y)$$

Preuve no2 de la sous-additivité de la TVaR

On a

$$TVaR_{\kappa} (\alpha \times X + (1 - \alpha) \times Y)$$

$$\leq x_{0} + \frac{1}{1 - \kappa} \pi_{\alpha \times X + (1 - \alpha) \times Y} (x_{0})$$

$$= x_{0} + \frac{1}{1 - \kappa} \times E \left[\max (\alpha \times X + (1 - \alpha) \times Y - x_{0}; 0) \right]$$

$$= \alpha \times VaR_{\kappa} (X) + (1 - \alpha) \times VaR_{\kappa} (Y)$$

$$+ \frac{1}{1 - \kappa} \times E \left[\max (\alpha \times X + (1 - \alpha) \times Y - \alpha \times VaR_{\kappa} (X) + (1 - \alpha) \times VaR_{\kappa} (Y); 0) \right].$$

La fonction

$$E\left[\max\left(W;0\right)\right]$$

est convexe.

Preuve no2 de la sous-additivité de la TVaR

Alors, on a

$$TVaR_{\kappa} (\alpha \times X + (1 - \alpha) \times Y)$$

$$\leq \alpha \times VaR_{\kappa} (X) + (1 - \alpha) \times VaR_{\kappa} (Y)$$

$$+ \frac{1}{1 - \kappa} \times E \left[\max (\alpha \times X + (1 - \alpha) \times Y - \alpha \times VaR_{\kappa} (X) + (1 - \alpha) \times VaR_{\kappa} (Y); 0) \right]$$

$$= \alpha \times VaR_{\kappa} (X) + (1 - \alpha) \times VaR_{\kappa} (Y)$$

$$+ \frac{1}{1 - \kappa} \times E \left[\max (\alpha \times (X - VaR_{\kappa} (X)) + (1 - \alpha) \times (Y - VaR_{\kappa} (Y)); 0) \right]$$

$$\leq \alpha \times VaR_{\kappa} (X) + (1 - \alpha) \times VaR_{\kappa} (Y)$$

$$+ \frac{1}{1 - \kappa} \times \alpha E \left[\max (X - VaR_{\kappa} (X); 0) \right]$$

$$+ \frac{1}{1 - \kappa} \times (1 - \alpha) E \left[\max (Y - VaR_{\kappa} (Y); 0) \right]$$

$$= \alpha \times VaR_{\kappa} (X) + \frac{1}{1 - \kappa} \times \alpha E \left[\max (X - VaR_{\kappa} (X); 0) \right]$$

$$+ (1 - \alpha) \times VaR_{\kappa} (Y) + \frac{1}{1 - \kappa} \times (1 - \alpha) E \left[\max (Y - VaR_{\kappa} (Y); 0) \right]$$

Preuve no2 de la sous-additivité de la TVaR

La relation est vraie pour $\alpha = \frac{1}{2}$:

$$TVaR_{\kappa}\left(\frac{1}{2} \times X + \left(1 - \frac{1}{2}\right) \times Y\right)$$

$$\leq \frac{1}{2} \times VaR_{\kappa}\left(X\right) + \frac{1}{1 - \kappa} \times \frac{1}{2} E\left[\max\left(X - VaR_{\kappa}\left(X\right); 0\right)\right]$$

$$+ \left(1 - \frac{1}{2}\right) \times VaR_{\kappa}\left(Y\right) + \frac{1}{1 - \kappa} \times \left(1 - \frac{1}{2}\right) E\left[\max\left(Y - VaR_{\kappa}\left(Y\right); 0\right)\right]$$

Avec la propriété d'homogénéité de la TVaR, on a

$$\begin{split} \frac{1}{2}TVaR_{\kappa}\left(X+Y\right) & \leq & \frac{1}{2}\times VaR_{\kappa}\left(X\right) + \frac{1}{1-\kappa}\times\frac{1}{2}E\left[\max\left(X-VaR_{\kappa}\left(X\right);0\right)\right] \\ & + \frac{1}{2}\times VaR_{\kappa}\left(Y\right) + \frac{1}{1-\kappa}\times\frac{1}{2}E\left[\max\left(Y-VaR_{\kappa}\left(Y\right);0\right)\right] \end{split}$$

On multiplie par "2" et on obtient le résultat désiré.

Portefeuille homogène de risques d'assurance

Soit un portefeuille homogène de n risques d'assurance (indépendants ou pas) $X_1,...,X_n$, avec $X_i \sim X$, pour i=1,2,...,n, avec fonction de répartition F_X , TLS \mathcal{L}_X , et espérance $E[X] < \infty$.

Les coûts d'assurance du portefeuille sont définis par la v.a. $S_n = \sum_{i=1}^n X_i.$

On définit la part allouée à chaque risque par la v.a. W_n où

$$W_n = \frac{1}{n}S_n = \frac{1}{n}\sum_{i=1}^n X_i.$$

La v.a. W_n correspond à la part attribuée à la suite d'un partage / allocation équitable des coûts du portefeuille parmi les membres du portefeuille.

Comme ce partage résulte de la mutualisation, il est intéressant de LAVAL comparer le comportement de la part W_n à celui d'un risque \mathbb{R}^n

Portefeuille homogène de risques d'assurance

Espérance de W_n : on a

$$E[W_n] = E[X],$$

pour tout $n \in \mathbb{N}^+$.

 VaR de W_n : puisque la VaR est une mesure homogène, on a

$$VaR_{\kappa}(W_n) = VaR_{\kappa}\left(\frac{1}{n}S_n\right) = \frac{1}{n}VaR_{\kappa}(S_n),$$

pour tout $n \in \mathbb{N}^+$.

Portefeuille homogène de risques d'assurance

TVaR de W_n :

■ Puisque la TVaR est une mesure homogène et sous-additive, on a

$$TVaR_{\kappa}(W_n) = TVaR_{\kappa}\left(\frac{1}{n}S_n\right) = \frac{1}{n}TVaR_{\kappa}(S_n)$$

$$\leq \frac{1}{n}\sum_{i=1}^n TVaR_{\kappa}(X_i) = \frac{1}{n}n \times TVaR_{\kappa}(X)$$

$$= TVaR_{\kappa}(X),$$

pour tout $n \in \mathbb{N}^+$.

Alors, le bénéfice de mutualisation par risque positif, e.g.,

$$B_{\kappa}^{\varsigma}(W_n) = \varsigma_{\kappa}(X) - \varsigma_{\kappa}(W_n) \ge 0,$$

pour tout $n \in \mathbb{N}^+$.

Variance de W_n :

- Hypothèses additionnelles :
 - $Var(X) < \infty$;
 - ► $Cov(X_i, X_j) = Cov(X_1, X_2) \in [-\frac{1}{n} Var(X), \infty)$ pour $i \neq j \in \{1, 2, ..., n\}.$
- On a

$$Var(W_n) = \frac{1}{n}Var(X) + \frac{n-1}{n}Cov(X_1, X_2),$$

pour tout $n \in \mathbb{N}^+$.

Portefeuille homogène de risques d'assurance

Limites de la variance de W_n :

- Hypothèses additionnelles :
 - $Var(X) < \infty$;

►
$$Cov(X_i, X_j) = Cov(X_1, X_2) \in [0, \infty)$$
 pour $i \neq j \in \{1, 2, ..., n\}$.

■ Si les v.a. $X_1,...,X_n$ mutuellement indépendantes, on a

$$\lim_{n\to\infty} Var(W_n) = 0$$

- ⇒ "diversification complète du risque d'assurance".
- Sinon, on a

$$\lim_{n \to \infty} Var(W_n) = Cov(X_1, X_2) \ge 0$$

⇒ "diversification incomplète du risque d'assurance".

Portefeuille homogène de risques d'assurance

TLS de W_n :

On a

$$\mathcal{L}_{W_n}(t) = E[e^{-tW_n}] = E[e^{-\frac{t}{n}S_n}] = \mathcal{L}_{S_n}(\frac{t}{n}),$$

pour tout $n \in \mathbb{N}^+$.

- Hypothèse additionnelle :
 - Les v.a. $X_1,...,X_n$ sont indépendantes.
 - On a

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}(\frac{t}{n}) = (\mathcal{L}_X(\frac{t}{n}))^n,$$

pour tout $n \in \mathbb{N}^+$.

Portefeuille homogène de risques d'assurance

TLS de W_n et loi des grands nombres pour risques indépendants :

- Hypothèse additionnelle : v.a. $X_1,...,X_n$ indépendantes.
- Loi des grands nombres (sans supposer $Var(X) < \infty$) :
 - ▶ Pour tout $n \in \mathbb{N}^+$, on a

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}(\frac{t}{n}) = (\mathcal{L}_X(\frac{t}{n}))^n.$$

On utilise l'approximation

$$\mathcal{L}_{W_n}(t) = (\mathcal{L}_X(\frac{t}{n}))^n \approx (1 - \frac{t}{n}E[X])^n$$

▶ On prend la limite pour $n \to \infty$

$$\lim_{n\to\infty} \mathcal{L}_{W_n}(t) = \lim_{n\to\infty} \left(1 - \frac{t}{n} E[X]\right)^n = e^{-tE[X]}$$

Conclusion : W_n converge en distribution vers la v.a. Z où $\Pr(Z = E[X]) = 1$.

Portefeuille homogène de risques d'assurance

Soit les v.a. i.i.d. X_1 , ..., X_n , avec $X_i \sim X \sim Gamma(\alpha,\beta)$ (i = 1,2,...,n).

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}\left(\frac{t}{n}\right)$$

$$= \left(\mathcal{L}_X\left(\frac{t}{n}\right)\right)^n$$

$$= \left(\frac{\beta}{\beta + \frac{t}{n}}\right)^{n \times \alpha}$$

$$= \left(\frac{n\beta}{n\beta + t}\right)^{n \times \alpha}$$

pour $t \in [0,1]$.

Alors, on a

Portefeuille homogène de risques d'assurance

On déduit que

$$W_n \sim Gamma(n\alpha, n\beta)$$

pour $n \in \mathbb{N}^+$.

Portefeuille homogène de risques d'assurance

Comme prévu, on observe

$$E[W_n] = \frac{\alpha n}{\beta n} = \frac{\alpha}{\beta} = E[X]$$

et

$$Var(W_n) = \frac{\alpha n}{(\beta n)^2} = \frac{1}{n} \times \frac{\alpha}{\beta^2} \le \frac{1}{n} \times Var(X),$$

pour $n \in \mathbb{N}^+$.

Illustration numérique

Illustration numérique à faire en classe.

Mesure de risque invariante à la distribution

Une mesure de risque ς est dite distribution-invariante (*law invariant*) si la mesure dépend uniquement de la distribution de la v.a. X.

Soit deux v.a. X_1 et X_2 avec F_{X_1} = F_{X_2} = F_X . Alors, pour une mesure distribution-invariante on a

$$\varsigma\left(X_{1}\right)=\varsigma\left(X_{2}\right).$$

Entre d'autres termes, une mesure de risque est "distribution-invariante" si elle attribue la même valeur à deux contrats (ou pertes) ayant la même loi de probabilité (voir, e.g., [Frittelli and Gianin, 2005]).

Les mesures VaR et TVaR sont distribution-invarantes.

Généralités

Soit la v.a. X représentant les coûts pour un risque en assurances dommages.

Exemples pour X:

- coûts pour un contrat d'assurances dommages (auto, habitation, risques divers)
- coûts pour un contrat d'assurances commerciales
- coûts totaux pour une ligne d'affaire
- coûts totaux pour une classe de risque

Expressions équivalentes :

- Assurances non-vie
- Assurances IARD (Incendie, Accident, Risque Divers)
- Assurances générales

Convention pour une somme aléatoire : $\sum_{k=1}^{0} a_k = 0$.

La v.a. X est définie selon une somme aléatoire, i.e.,

$$X = \sum_{k=1}^{M} B_k. {19}$$

Définitions :

- lacktriangle v.a. discrète positive M: nombre de sinistres (fréquence);
- v.a. positive B_k : montant du kième sinistre, k = 1, 2, ...

Dénominations pour la v.a. M:

- v.a. de fréquence;
- v.a. de comptage ;
- v.a. de dénombrement.

Hypothèses:

- $\underline{B} = B_k, k \in \mathbb{N}^+$: suite de v.a. iid, $B_k \sim B, k \in \mathbb{N}^+$;
- \blacksquare la v.a. M et la suite B sont indépendantes .

Interprétation :

- On suppose l'indépendance mutuelle entre les montants de sinistres.
- On suppose que les montants de sinistres ont le même comportement aléatoire.
- On suppose que le nombre de sinistres et les montants "ne s'influence pas mutuellement".

Proposition 6

Espérance de la v.a. X.

- Hypothèse additionnelle : $E[M] < \infty$ et $E[B] < \infty$.
- Alors, on a

$$E[X] = E[M] \times E[B]. \tag{20}$$

Preuve

L'espérance de la v.a. X est obtenue en conditionnant sur la v.a. de dénombrement M :

$$E[X] = E_M[E[X|M]]$$

Or, on a $E[X|M] = M \times E[B]$. Finalement, on conclut $E[X] = E[M \times E[B]] = E[M]E[B]$.

Interprétation :

■ En actuariat, l'espérance de la v.a. X correspond à la prime pure pour le contrat d'assurance.

Proposition 7

- Hypothèse additionnelle : $E[M^2] < \infty$ et $E[B^2] < \infty$.
- Alors, on a

$$Var(X) = E[M] \times Var(B) + Var(M) \times (E[B]^{2}).$$
 (21)

Preuve

La variance de la v.a. X est obtenue en conditionnant sur la v.a. de dénombrement M :

$$Var(X) = E_M[Var(X|M)] + Var_M(E[X|M]).$$

Selon les hypothèses du modèle, on a

$$Var(X|M) = M \times Var(B).$$

Ensuite,

$$Var(X) = E[M \times Var(B)] + Var(M \times E[B]).$$

On conclut que

$$Var(X) = E[M] \times Var(B) + Var(M) \times (E[B]^2).$$

Proposition 8

La fonction de répartiton de la v.a. X est donnée par

$$F_X(x) = f_M(0) + \sum_{k=1}^{\infty} f_M(k) F_{B_1 + \dots + B_k}(x),$$
 (22)

pour $x \in [0, \infty)$.

Preuve

...

Proposition 9

La TLS de la v.a. X est donnée par

$$\mathcal{L}_X(t) = \mathcal{P}_M(\mathcal{L}_B(t)), \tag{23}$$

pour $t \in [0, \infty)$.

Preuve

...

Algorithme de simulation

٠.

Distributions de fréquence

Distributions de fréquence

Généralités

En actuariat, les principales lois pour la v.a. de fréquence sont les lois de Poisson, binomiale et binomiale négative.

Les lois de X correspondantes sont alors appelées lois Poisson composée, binomiale composée et binomiale négative composée.

Comme la loi de Poisson est au cœur de la modélisation des risques en assurance IARD, on s'intéresse aussi aux extensions de cette loi obtenues par mélange.

Distributions de fréquence

Loi de Poisson

La loi de Poisson est fondamentale en actuariat, en particulier en assurance dommages :

- Notation : $M \sim Pois(\lambda)$
- Paramètre : $\lambda > 0$
- Support : $k \in \mathbb{N}$
- Fonction de masse de probabilité : $\Pr(M = k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- Espérance : $E[M] = \lambda$
- Variance : $Var(M) = \lambda$
- Fgp : $\mathcal{P}_M(r) = \exp{\{\lambda(r-1)\}}, r \in [0,1]$

La loi binomiale négative est une extension de la loi de Poisson :

- Notation : $M \sim BN(r,q)$
- Paramètres : $r \in \mathbb{R}^+, q \in (0,1)$
- Support : $k \in \mathbb{N}$
- Fonction de masse de probabilité :

$$\Pr(M = k) = {r+k-1 \choose k} (q)^r (1-q)^k$$

- Espérance : $E[M] = r\frac{1-q}{q}$
- Variance : $Var(M) = r\frac{1-q}{q^2} = \frac{E[M]}{q} \ge E[M]$
- Fgp : $\mathcal{P}_M(t) = \left(\frac{q}{1-(1-q)t}\right)^r$, $t \in [0,1]$

Généralités

Il est possible de procéder de différentes façons pour généraliser les trois principales lois discrètes : mélange de la loi de Poisson ; modication de la masse à 0 ; et composition.

Lois Poisson-mélange

Souvent, dans les applications pratiques, la loi de Poisson n'offre pas une description adéquate du comportement des données. Dans ces circonstances, les lois Poisson-mélange jouent un rôle important dans la modélisation du comportement de la fréquence.

Lois Poisson-mélange

Soit une v.a. Θ positive de telle sorte que $E\left[\Theta\right]$ = 1, $\operatorname{Var}\left(\Theta\right)<\infty$ et $M_{\Theta}\left(t\right)$ existe. La v.a. Θ influence la v.a. M de la façon suivante. On suppose que la loi conditionnelle de M est donnée par $(M|\Theta=\theta)\sim Pois\left(\lambda\theta\right)$ avec $\lambda>0$. Cela signifie que $E\left[M|\Theta\right]=\Theta\lambda$, $\operatorname{Var}\left(M|\Theta\right)=\Theta\lambda$ et $\mathcal{P}_{M|\Theta}\left(t\right)=E\left[t^{M}|\Theta\right]=\mathrm{e}^{\Theta\lambda(t-1)}$.

Lois Poisson-mélange

On peut s'imaginer que M correspond au nombre de sinistres pour un contrat d'assurance automobile. Comme on ne connaît pas les habitudes de conduite du conducteur, on introduit une incertitude quant au paramètre de la loi de Poisson.

Quelle est la loi de M ? Tout d'abord, en conditionnant sur Θ , on constate que

$$E[M] = E_{\Theta}[E[M|\Theta]] = E[\Theta\lambda] = \lambda \times 1 = \lambda.$$
 (24)

Puis, en conditionnant à nouveau sur Θ , on obtient

$$\operatorname{Var}(M) = E_{\Theta} \left[\operatorname{Var}(M|\Theta) \right] + \operatorname{Var}_{\Theta} \left(E \left[M|\Theta \right] \right)$$
$$= E \left[\Theta \lambda \right] + \operatorname{Var}_{\Theta} \left(\Theta \lambda \right) = \lambda + \lambda^{2} \operatorname{Var}_{\Theta} \left(\Theta \right). \tag{25}$$

Lois Poisson-mélange

En poursuivant l'interpétration fournie plus haut, l'incertitude quant au comportement du conducteur n'affecte pas l'espérance mais son influence conduit à une variance de M qui est supérieure à son espérance. Ainsi, la présence du mélange ajoute de la surdispersion par rapport à la loi de Poisson dans le comportement du nombre de sinistres.

Lois Poisson-mélange

On identifie la loi de M par l'intermédiaire de sa f.g.p. qui est donnée par

$$\mathcal{P}_{M}(t) = E\left[t^{M}\right] = E_{\Theta}\left[E\left[t^{M}|\Theta\right]\right] = E\left[e^{\Theta\lambda(t-1)}\right] = M_{\Theta}\left(\lambda\left(t-1\right)\right). \tag{26}$$

La v.a. Θ peut être discrète ou continue. Si la v.a. Θ est continue positive avec une fonction de densité f_{Θ} alors la fonction de masse de probabilité de M est donnée par

$$\Pr(M = k) = \int_0^\infty e^{-\lambda \theta} \frac{(\lambda \theta)^k}{k!} f_{\Theta}(\theta) d\theta, \ k \in \mathbb{N}^+.$$

Autrement, si la v.a. Θ est discrète avec support $\mathbb{N}^+,$ la fonction de masse de probabilité de M est donnée par

$$\Pr(M = k) = \sum_{\theta=1}^{\infty} e^{-\lambda \theta} \frac{(\lambda \theta)^k}{k!} \Pr(\Theta = \theta), k \in \mathbb{N}^+.$$

Lois Poisson-mélange

Le choix de la loi de Θ a un impact important sur le comportement de la v.a. M.

On examine trois cas particuliers de loi Poisson-mélange : la loi Poisson-gamma (ou binomiale négative), la loi Poisson-inverse gaussienne et la loi Poisson-lognormale.

Loi Poisson-gamma ou binomiale négative

Soit une v.a. $\Theta \sim Ga\left(\alpha = r, \beta = r\right)$ de telle sorte que $E\left[\Theta\right] = \frac{r}{r} = 1$, $Var\left(\Theta\right) = \frac{r}{r^2} = \frac{1}{r}$ et $M_{\Theta}\left(t\right) = \left(\frac{r}{r-t}\right)^r$. Alors, la v.a. M obéit à la loi Poisson-gamma, notée $M \sim P - Ga\left(\lambda, r\right)$.

Loi Poisson-gamma ou binomiale négative

En fait,la loi Poisson-gamma correspond à la loi binomiale négative. À partir de (24), (25) et (26), on obtient $E[M] = \lambda$, $Var(M) = \lambda + \frac{\lambda^2}{2}$ et

$$\mathcal{P}_M(t) = \left(\frac{r}{r-s}\right)^r = \left(\frac{1}{1-\frac{\lambda}{r}(t-1)}\right)^r. \tag{27}$$

Loi Poisson-gamma ou binomiale négative

En fixant $\frac{\lambda}{r} = \frac{1-q}{q}$ (ce qui implique $q = \frac{1}{1+\frac{\lambda}{r}}$), on retrouve la première paramétrisation de la loi binomiale négative où

$$\mathcal{P}_M(t) = \left(\frac{1}{1 - \frac{1-q}{q}(t-1)}\right)^r = \left(\frac{q}{1 - (1-q)t}\right)^r,$$

avec $E[M] = \lambda = r \frac{1-q}{q}$ et

$$\operatorname{Var}(M) = \lambda + \frac{\lambda^2}{r} = r \frac{1 - q}{q^2}.$$

Loi Poisson-gamma ou binomiale négative

Dans l'exemple suivant, on illustre l'impact du choix des paramètres r et q de la loi binomiale négative sur le comportement aléatoire des coûts d'un contrat d'assurance.

Loi Poisson-gamma ou binomiale négative

Début de l'exemple. Les coûts pour une ligne d'affaires sont définis par la v.a. $X \sim BNComp\left(r,q;F_B\right)$, avec $B \sim Exp\left(\beta=1\right)$. Les paramètres r et q de la v.a. de fréquence M sont fixés de telle sorte que $E\left[M\right]=200$. On considère 4 couples de valeurs pour $\left(r,q\right)$: $\left(1,\frac{1}{201}\right)$, $\left(2,\frac{1}{101}\right)$, $\left(5,\frac{1}{41}\right)$ et $\left(25,\frac{1}{9}\right)$.

Loi Poisson-gamma ou binomiale négative

Dans le tableau suivant, on indique les valeurs de $VaR_{0.5}\left(X\right)$, $VaR_{0.995}\left(X\right)$, $TVaR_{0.5}\left(X\right)$ et $TVaR_{0.995}\left(X\right)$:

r	q	$VaR_{0.5}\left(X ight)$	$VaR_{0.995}(X)$	$TVaR_{0.5}(X)$	$TVaR_{0.995}$ (X
1	$\frac{1}{201}$	138.320	1063.959	339.320	1264.95
2	$\frac{1}{101}$	167.509	748.435	306.217	861.41
5	$\frac{1}{41}$	186.499	511.316	271.108	567.14
25	$\frac{1}{9}$	196.973	332.139	235.481	352.00

Loi Poisson-gamma ou binomiale négative

Pour une valeur de κ fixée, on observe que la valeur de $TVaR_{\kappa}\left(X\right)$ augmente lorsque le paramètre r diminue (de telle sorte que l'espérance du nombre de sinistres reste identique). Fin de l'exemple.

Loi Poisson-gamma ou binomiale négative

On observe également

$$\lim_{r \to \infty} E[M] = \lambda$$

$$\lim_{r \to \infty} \operatorname{Var}(M) = \lim_{r \to \infty} \lambda + \frac{\lambda^{2}}{r} = \lambda$$

$$\lim_{r \to \infty} \mathcal{P}_{M}(t) = \lim_{r \to \infty} \left(\frac{1}{1 - \frac{\lambda}{r}(t - 1)}\right)^{r} = e^{\lambda(t - 1)}.$$
 (28)

Loi Poisson-gamma ou binomiale négative

D'après (28), si $r \to \infty$ de telle sorte que l'espérance de M reste égale λ , la variance de M tend vers λ et la loi de M tend vers la loi de Poisson de paramètre λ .

Loi Poisson-gamma ou binomiale négative

Début de l'exemple. Soient les v.a. M_1 , ..., M_5 où

$$M_i \sim BN\left(r = r_i, q = \left(1 + \frac{2}{r_i}\right)^{-1}\right), i = 1, 2, 3, 4,$$

avec r_1 = 0.5, r_2 = 1, r_3 = 2, r_4 = 100, et $M_5 \sim Pois (\lambda$ = 2) de telle sorte que $E\left[M_i\right]$ = 2, i = 1,2,...,5.

Loi Poisson-gamma ou binomiale négative

Dans le tableau ci-dessous, on fournit les valeurs de la fonction de masse de probabilité pour les cinq v.a.:

k	$f_{M_1}(k)$	$f_{M_2}\left(k\right)$	$f_{M_3}\left(k\right)$	$f_{M_4}(k)$	$f_{M_5}\left(k\right)$
0	0.447214	0.333333	0.250000	0.138033	0.135335
1	0.178885	0.222222	0.250000	0.270653	0.270671
2	0.107331	0.148148	0.187500	0.267999	0.270671
3	0.071554	0.098765	0.125000	0.178668	0.180447
4	0.050088	0.065844	0.078125	0.090209	0.090224
5	0.036063	0.043896	0.046875	0.036791	0.036089
10	0.008461	0.005781	0.002686	0.000049	0.000038
15	0.002273	0.000761	0.000122	0.000000	0.000000
20	0.000646	0.000100	0.000005	0.000000	0.000000

Loi Poisson-gamma ou binomiale négative

Quand la valeur de r augmente, les valeurs des fonctions de masse de probabilité tendent comme prévu vers celles de la loi de Poisson. \Box Fin de l'exemple.

Le choix de la distribution du montant d'un sinistre est crucial dans la modélisation du risque X.

En actuariat, on a généralement recours à une loi continue avec un support compris dans \mathbb{R}^+ pour modéliser le comportement aléatoire du montant d'un sinistre.

Dans la majorités des contextes d'application en assurance dommage et en assurance maladie, les distributions des montants de sinistre possède une asymétrie positive.

Caractéristiques générales

Par convention, les distributions pour les montants de sinistres sont continues et positives.

Pour l'analyse des durées de vie et de la distribution du montant d'un sinistre, on a recours à la fonction d'excès-moyen (espérance de durée de vie résiduelle en analyse des durées de vie) que l'on définit par

$$e_X(d) = E[X - d|X > d] = \frac{\pi_X(d)}{1 - F_X(d)}.$$
 (29)

Cette fonction est notamment utile dans l'analyse graphique effectuée lors de l'estimation des paramètres de lois continues.

Loi exponentielle

- Notation : $X \sim Exp(\beta)$
- Paramètre : $\beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f_X(x) = \beta e^{-\beta x}$
- Fonction de répartition : $F_X(x) = 1 e^{-\beta x}$
- Fonction de survie : $\overline{F}_X(x) = e^{-\beta x}$
- Espérance : $E[X] = \frac{1}{\beta}$
- Variance : $Var(X) = \frac{1}{\beta^2}$
- TLS : $\mathcal{L}_X(t) = \frac{\beta}{\beta + t}$, $t > -\beta$
- Moments d'ordre k : $E\left[X^k\right] = \left(\frac{1}{\beta}\right)^k k!$
- Mesure $VaR: VaR_{\kappa}(X) = -\frac{1}{\beta}\ln(1-\kappa)$
- Mesure $TVaR: TVaR_{\kappa}(X) = VaR_{\kappa}(X) + E[X]$
- Fonction stop-loss : $\pi_X(d) = \frac{1}{\beta} e^{-\beta d} = E[X]\overline{F}(d)$
- Fonction d'excès-moyen : $e_X(d) = \frac{1}{\beta}$

Loi gamma

La loi Gamma est une extension de la loi exponentielle.

Elle est fréquemmment utilisée en actuariat.

- Notation : $X \sim Ga(\alpha,\beta)$
- Paramètres : $\alpha > 0, \beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, x > 0$
- Fonction de répartition : notée $H\left(x;\alpha,\beta\right)$, forme non explicite pour $\alpha \notin \mathbb{N}^+$
- Fonction de survie : notée $\overline{H}(x;\alpha,\beta)$, forme non explicite pour $\alpha \notin \mathbb{N}^+$
- Espérance : $E[X] = \frac{\alpha}{\beta}$
- Variance : $Var(X) = \frac{\alpha}{\beta^2}$

■ TLS :
$$\mathcal{L}_X(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$$
, $t > -\beta$

- $\qquad \qquad \text{Moments d'ordre } k: E\left[X^k\right] = \frac{\prod\limits_{i=0}^{k-1}(\alpha+i)}{\beta^k}$
- Mesure VaR: outil d'optimisation si $\alpha \neq 1$
- Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \frac{\alpha}{\beta} \overline{H}(VaR_{\kappa}(X); \alpha+1,\beta)$
- Fonction *stop-loss* : $\pi_d(X) = \frac{\alpha}{\beta}\overline{H}(d;\alpha+1,\beta) d\overline{H}(d;\alpha,\beta)$
- Fonction d'excès-moyen : $e_d(X) = \frac{\alpha}{\beta} \frac{\overline{H}(d;\alpha+1,\beta)}{\overline{H}(d;\alpha,\beta)} d$

Loi gamma

Courbes de la fonction de densité pour la loi gamma avec α = 0.5, 1, 5, 100 de telle sorte que l'espérance est égale à 5.

Fonction de densité de la loi gamma

Loi gamma

Si on suppose que $B \sim Gamma(\alpha,\beta)$, on obtient des formes fermées pour $F_X(x)$, $TVaR_\kappa(X)$, et $\Pi_X(x)$: (...)

Loi Erlang

La loi Erlang est un cas particulier de la loi gamma, avec $\alpha \in \mathbb{N}^+$.

- Notation : $X \sim Erl(n,\beta)$
- Paramètres : $n \in \mathbb{N}^+$, $\beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f(x) = \frac{\beta^n}{\Gamma(n)} x^{n-1} e^{-\beta x}$
- Fonction de répartition : $F_X(x) = 1 e^{-\beta x} \sum_{j=0}^{n-1} \frac{(\beta x)^j}{j!}$
- Fonction de survie : $\overline{F}_X(x) = e^{-\beta x} \sum_{j=0}^{n-1} \frac{(\beta x)^j}{j!}$
- Espérance : $E[X] = \frac{n}{\beta}$
- Variance : $Var(X) = \frac{n}{\beta^2}$

Loi Erlang

- Fonction génératrice des moments : $\mathcal{M}_X(t) = \left(\frac{\beta}{\beta t}\right)^n, \ t < \beta$
- Moments d'ordre k : $E\left[X^k\right] = \frac{\prod\limits_{i=0}^{k-1}(n+i)}{\beta^k}$
- Mesure VaR: outil d'optimisation si $n \neq 1$
- Mesure TVaR: $TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \frac{n}{\beta} \left(e^{-\beta VaR_{\kappa}(X)} \sum_{j=0}^{n} \frac{(\beta VaR_{\kappa}(X))^{j}}{j!} \right)$
- Fonction $stop-loss: \pi_d(X) = \frac{n}{\beta}\overline{H}(d; n+1,\beta) d\overline{H}(d; n,\beta)$
- Fonction d'excès-moyen : $e_d\left(X\right) = \frac{n}{\beta} \frac{\overline{H}(d;n+1,\beta)}{\overline{H}(d;n,\beta)} d$

Loi lognormale

La loi lognormale est fréquemment utilisée en actuariat, notamment pour la modélisation des montants de sinistres dans la modélisation des montants de sinistres en assurance dommage (e.g. IARD ou non-vie), et en gestion quantitative des risques. Son mode est supérieur à 0 et son coefficient d'asymétrie est positif. Sa fonction d'excès moyen est croissante. Avec ces deux paramètres, elle possède une très grande flexibilité pour la modélisation.

Loi lognormale

Notation : $X \sim LN(\mu, \sigma^2)$

Paramètres : $-\infty < \mu < \infty, \sigma^2 > 0$

Support : $x \in \mathbb{R}^+$

Fonction de densité : $f(x) = \frac{1}{x\sqrt{2\pi}\sigma}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$

Fonction de répartition : $F(x) = \Phi(\frac{\ln(x) - \mu}{\sigma})$

Espérance : $E[X] = e^{\mu + \frac{\sigma^2}{2}}$

Variance : $\operatorname{Var}(X) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right)$

Fonction génératrice des moments : forme non analytique

Moments d'ordre k : $E[X^k] = e^{k\mu + k^2 \frac{\sigma^2}{2}}$

Espérance tronquée : $E\left[X \times 1_{\{X \le d\}}\right] = \exp(\mu + \sigma^2/2)\Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})$

Mesure $VaR: VaR_{\kappa}(X) = \exp(\mu + \sigma VaR_{\kappa}(Z))$ Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa}e^{\mu+\sigma^2/2}(1-\Phi(VaR_{\kappa}(Z)-\sigma))$$

Fonction *stop-loss*:

$$\pi_d(X) = e^{\mu + \sigma^2/2} (1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})) - d[1 - \Phi(\frac{\ln d - \mu}{\sigma})]$$

Fonction d'excès-moyen :

$$e_d(X) = \frac{1}{\left[1 - \Phi(\frac{\ln d - \mu}{\sigma})\right]} e^{\mu + \sigma^2/2} \left(1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})\right) - d$$

Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \mathrm{e}^{\mu + \sigma^2/2} \Phi\big(\frac{\ln d - \mu - \sigma^2}{\sigma}\big) + d\big[1 - \Phi\big(\frac{\ln d - \mu}{\sigma}\big)\big]$$

La loi de Pareto est aussi une loi fondammentale en actuariat pour la modélisation des montants de sinistres. Elle possède 2 paramètres et elle est fréquemment utilisée pour la modélisation des sinistres de montants élevés. Avec un mode se trouvant à 0, son espérance existe si $\alpha>1$ et sa variance existe si $\alpha>2$. Le moment d'ordre n existe à la condition que n0. Parmi ses caractéristiques importantes, on mentionne aussi que sa fonction d'excédent moyen est linéaire et croissante.

Loi Pareto

Notation : $X \sim Pa(\alpha, \lambda)$ Paramètres : $\alpha > 0, \ \lambda > 0$

Support : $x \in \mathbb{R}^+$

Fonction de densité : $f(x) = \frac{\alpha \lambda^{\alpha}}{(\lambda + x)^{\alpha+1}}$

Fonction de répartition : $F(x) = 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

Fonction de survie : $\overline{F}(x) = \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

Espérance (pour $\alpha > 1$) : $E[X] = \frac{\lambda}{\alpha - 1}$

Variance (pour $\alpha > 2$) : Var $(X) = \frac{\alpha \lambda^2}{(\alpha - 1)^2 (\alpha - 2)}$

Fonction génératrice des moments : n'existe pas

Moments d'ordre
$$k$$
 (pour $\alpha > k \in \mathbb{N}^+$): $E\left[X^k\right] = \frac{\lambda^k k!}{\prod\limits_{i=1}^k (\alpha - i)}$

Moments d'ordre
$$k$$
 : $E\left[X^k\right] = \frac{\lambda^k \Gamma(k+1) \Gamma(\alpha-k)}{\Gamma(\alpha)},$ si $-1 < k < \alpha$

Espérance tronquée (pour $\alpha > 1$) :

$$E\left[X\times 1_{\left\{X\leq d\right\}}\right] = \frac{\lambda}{\alpha-1}\left(1-\frac{\lambda^{\alpha-1}}{\left(\lambda+d\right)^{\alpha-1}}\right) - d\left(\frac{\lambda}{\lambda+d}\right)^{\alpha}$$

Mesure
$$VaR: VaR_{\kappa}(X) = \lambda \left((1 - \kappa)^{-\frac{1}{\alpha}} - 1 \right)$$

Mesure
$$TVaR$$
 (pour $\alpha > 1$): $TVaR_{\kappa}(X) = \lambda \left(\frac{\alpha}{\alpha - 1} (1 - \kappa)^{-\frac{1}{\alpha}} - 1\right)$

Fonction stop-loss (pour $\alpha > 1$) : $\pi_d(X) = \frac{\lambda}{\alpha - 1} (\frac{\lambda}{\lambda + d})^{\alpha - 1}$

Fonction d'excès-moyen (pour
$$\alpha > 1$$
) : $e_d(X) = \frac{\lambda + d}{\alpha - 1}$, si $\alpha > 1$ Espérance limitée (pour $\alpha > 1$) : $E\left[\min\left(X;d\right)\right] = \frac{\lambda}{\alpha - 1}\left[1 - \left(\frac{\lambda}{\lambda + d}\right)^{\alpha - 1}\right]$

Comparaison des lois gamma, lognormale et de Pareto

Dans le prochain exemple, on compare les lois gamma, lognormale et de Pareto dont les 2 paramètres sont fixés de telle sorte que leur espérance et leur variance soient identiques. On illustre notamment que l'espérance et la variance d'une v.a. n'offre qu'une connaissance partielle et très limitée du comportement aléatoire de cette dernière, car il existe une panoplie de lois satisfaisant ces deux contraintes.

Comparaison des lois gamma, lognormale et de Pareto

Soient les v.a. B_1 , B_2 et B_3 représentant le montant d'un sinistre dont l'espérance et la variance sont 3 et 18 où

$$B_1 \sim LN\left(\ln(3) - \frac{\ln(3)}{2}, \ln(3)\right),$$

 $B_2 \sim Ga(1/2,1/6)$ et $B_3 \sim Pa(3,6)$.

Distributions de sévérité

Comparaison des lois gamma, lognormale et de Pareto

L'impact du choix de la loi sur les valeurs des mesures VaR et TVaR est significatif comme on l'observe dans les deux tableaux ci-dessous :

κ	$VaR_{\kappa}\left(B_{1}\right)$	$VaR_{\kappa}\left(B_{2}\right)$	$VaR_{\kappa}\left(B_{3}\right)$
0	0	0	0
0.5	1.7321	1.3648	1.5595
0.95	9.7119	11.5244	10.2865
0.99	19.8392	19.9047	21.8495
0.995	25.7685	23.6383	29.0882

κ	$TVaR_{\kappa}\left(B_{1}\right)$	$TVaR_{\kappa}\left(B_{2}\right)$	$TVaR_{\kappa}\left(B_{3}\right)$
0	3	3	3
0.5	5.1163	5.5720	5.3393
0.95	16.5211	16.7460	18.4298
0.99	30.1768	25.3475	35.7743
0.995	37.9774	29.1421	46.6323

Distributions de sévérité

Comparaison des lois gamma, lognormale et de Pareto

Par conséquent, il est important, pour obtenir des résultats adéquats, de connaître la distribution du montant de sinistre.

Illustration numérique

Illustration numérique

Illustration numérique à faire en classe.

Mutualisation en assurance dommages

Mutualisation en assurance dommages

Généralités

On examine les coûts d'un portefeuille constitué de contrats d'assurance dommages.

On considère un cas particulier.

La proposition suivante contient un résultat important en actuariat.

Proposition 10

Soient les v.a. indépendantes X_1 , ..., X_n où $X_i \sim PComp\left(\lambda_i; F_{B_i}\right), i=1,2,...,n.$

Alors,
$$S = \sum_{i=1}^{n} X_{i} \sim PComp\left(\lambda_{S}, F_{C}\right)$$
, où $\lambda_{S} = \sum_{i=1}^{n} \lambda_{i}$ et
$$F_{C}\left(x\right) = \frac{\lambda_{1}}{\lambda_{S}} F_{B_{1}}\left(x\right) + \frac{\lambda_{2}}{\lambda_{S}} F_{B_{2}}\left(x\right) + \ldots + \frac{\lambda_{n}}{\lambda_{S}} F_{B_{n}}\left(x\right).$$

La TLS de X_i est donnée par

$$\mathcal{L}_{X_i}(t) = \mathcal{P}_{M_i}(\mathcal{L}_{B_i}(t)) = e^{(\{\lambda_i(\mathcal{L}_{B_i}(t)-1)\})}, \qquad (i = 1, 2, ..., n).$$

L'expression de la TLS de $S = \sum_{i=1}^{n} X_i$ est $\mathcal{L}_S(t) = E\left[e^{tS_n}\right] = E\left[e^{t\left(\sum_{i=1}^{n} X_i\right)}\right] = \prod_{i=1}^{n} M_{X_i}(t)$ $= \prod_{i=1}^{n} e^{\lambda_i \left(\mathcal{L}_{B_i}(t) - 1\right)} = e^{\left(\left\{\lambda_S(\mathcal{L}_C(t) - 1)\right\}\right)},$

en posant
$$\lambda_S = \lambda_1 + ... + \lambda_n$$
 et

$$\mathcal{L}_{C}(t) = \frac{\lambda_{1}}{\lambda_{S}} \mathcal{L}_{B_{1}}(t) + \frac{\lambda_{2}}{\lambda_{S}} \mathcal{L}_{B_{2}}(t) + \dots + \frac{\lambda_{n}}{\lambda_{S}} \mathcal{L}_{B_{n}}(t).$$
 (30)

On déduit de (30) que la distribution de C est un mélange des distributions de B_1 , ..., B_n . D'après (30), cela implique que F_C est une combinaison convexe de F_{B_1} ,..., F_{B_n} , soit

une combinaison convexe de
$$F_{B_1},...,F_{B_n}$$
, soit
$$F_C\left(x\right) = \frac{\lambda_1}{\lambda_S}F_{B_1}\left(x\right) + \frac{\lambda_2}{\lambda_S}F_{B_2}\left(x\right) + ... + \frac{\lambda_n}{\lambda_S}F_{B_n}\left(x\right).$$

Comme

$$\mathcal{L}_{S}(t) = e^{\lambda_{S}(\mathcal{L}_{C}(t)-1)} = \mathcal{P}_{N}(\mathcal{L}_{C}(t))$$
(31)

est la TLS d'une loi Poisson composée, on déduit de (31) que $S = \sum_{i=1}^{n} X_i \sim PComp(\lambda_S, F_C)$ telle que

$$S = \begin{cases} \sum_{k=1}^{N} C_k, \ N > 0 \\ 0, \ N = 0 \end{cases} ,$$

avec les hypothèses usuelles, $N = \sum_{i=1}^{n} M_i \sim Pois(\lambda_S)$ et $C_k \sim C$ pour $k \in \mathbb{N}^+$.

Une interprétation de ce résultat fondamental en actuariat est fournie dans la remarque suivante.

Remarque 1

Le risque global s'analyse en considérant le portefeuille comme une seule entité. Il importe peu de savoir de quel assuré (risque) provient un sinistre. Comme S obéit à une loi Poisson composée, tous les résultats liés à cette loi sont valides pour ce cas particulier. Pour que ce résultat soit valide, il n'est pas nécessaire de supposer que les v.a. M_1, M_2, \ldots, M_n soient identiquement distribuées ou que les v.a. B_1, B_2, \ldots, B_n soient identiquement distribuées.

Références

Références |

- Acerbi, C. and Tasche, D. (2002).

 On the coherence of expected shortfall.

 Journal of Banking & Finance, 26(7):1487–1503.
- Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.

 Mathematical finance, 9(3):203–228.
- Cossette, H. and Marceau, E. (2018).

 Mathématiques actuarielles du risque: modèles, mesures de risque et méthodes quantitatives.
- Denuit, M., Dhaene, J., Goovaerts, M., and Kaas, R. (2006). Actuarial theory for dependent risks: measures, orders and models.

John Wiley & Sons.

Références II

- Embrechts, P. and Wang, R. (2015).
 Seven proofs for the subadditivity of expected shortfall.

 Dependence Modeling, 3(1).
- Frees, E. W. (2015).

 Analytics of insurance markets.

 Annual Review of Financial Economics, 7:253–277.
- Frittelli, M. and Gianin, E. R. (2005).

 Law invariant convex risk measures.

 In Advances in mathematical economics, pages 33–46. Springer.
- McNeil, A. J., Frey, R., and Embrechts, P. (2015).

 Quantitative risk management: Concepts, techniques and tools.

 Princeton University Press.

Références III

Parodi, P. (2014).

Pricing in general insurance.

CRC Press.

