AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF CLAIMS:

1-19. (cancelled)

20. (currently amended) A protein crystal comprising consisting of: the processivity clamp factor of DNA polymerase, and a peptide of about 3 to about 30 amino acids, in particular of about 16 amino acids, said peptide comprising all or part of the processivity clamp factor binding sequence of a processivity clamp factor binding sequence of a processivity clamp factor interacting protein, such as prokaryotic Pol I, Pol II, Pol III, Pol IV, Pol V, MutS, ligase I, α subunit of DNA polymerase, UmuD or UmuD', or cukaryotic pol ε, pol δ, pol η, pol t, pol κ,

a processivity clamp factor of DNA polymerase that is the β subunit of DNA polymerase polymerase III of *Escherichia coli* and has the amino acid sequence of SEQ ID NO 5; and

a peptide of 16 amino acids having the amino acid sequence of VTLLDPQMERQLVLGL (SEQ ID NO: 1),

wherein said protein crystal is triclinic and has cell dimensions of: a = 41.23 Å, b = 65.22 Å, c = 73.38 Å, α = 73.11°, β = 85.58°, and γ = 85.80°.

21-22. (cancelled)

- 23. (currently amended) A The protein crystal according to claim 2220, characterized the bysaid protein crystal having atomic coordinates such as obtained by the X-ray diffraction of said protein crystal, said atomic coordinates being represented in Figure 1.
- 24. (currently amended) A The protein crystal according to claim $\frac{2220 \text{ or } 23}{\text{characterized the by thesaid protein crystal}}$ having atomic coordinates representing the peptide and the peptide binding site of the β subunit of DNA polymerase III of Escherichia coli, and wherein said atomic coordinates are being as follows:

ATOM 4045 N LEU B 155 5.874 17.816 22,109 1.00 1.00 В 16.359 22.087 1.00 1.00 ATOM 4046 CA LEU B 155 6.029 В 1.00 ATOM 4047 CB LEU B 155 5.055 15.686 23.064 1.00 В ATOM 4048 CG **LEU B 155** 5.260 16.046 24.536 1.00 1.00 В 4049 CD1 LEU B 155 4.256 15.237 25.360 1.00 1.00 В ATOM 4050 **LEU B 155** 6.686 15.757 24.980 1.00 1.00 В ATOM CD2 MOTA 4051 C **LEU B 155** 5.808 15.776 20.682 1.00 1.00 В 4052 0 **LEU B 155** 6.177 14.613 20.431 1.00 1.00 В ATOM 9.112 11.246 22.902 1.00 4177 N THR B 172 1.00 ATOM CA THR B 172 8.212 10.730 23.917 1.00 1.00 В ATOM 4178 8.776 11.014 25.344 1.00 1.00 4179 THR B 172 MOTA CB 7.931 10.400 26.328 1.00 1.00 в THR B 172 ATOM 4180 OG1 8.870 25.619 1.00 1.00 В 4181 CG2 THR B 172 12.532 ATOM THR B 172 6.805 11.269 23.709 1.00 1.00 В ATOM 4182 C 6.588 12.352 23.145 1.00 1.00 В THR B 172 ATOM 4183 0 4.562 10.770 26.397 1.00 1.00 В ATOM 4192 N GLY B 174 3.992 10.745 27.737 1.00 1.00 В ATOM 4193 CA GLY B 174 3.762 9.337 ATOM 4194 С GLY B 174 28.266 1.00 1.00 В ATOM 4195 0 GLY B 174 3.667 9.141 29.489 1.00 1.00 В ATOM 4196 N HIS B 175 3.650 8.349 27.375 1.00 1.00 В 4197 CA HIS B 175 3.440 6.953 27.796 1.00 1.00 В ATOM HIS B 175 2.313 6.309 26.977 1.00 1.00 В ATOM 4198 CB 0.992 6.997 27.119 1.00 1.00 В MOTA 4199 CG HIS B 175 0.106 7.435 26.193 4200 CD2 HIS B 175 1.00 1.00 ATOM ND1 HIS B 175 0.420 7.255 28.345 1.00 1.00 В ATOM 4201 4202 CE1 HIS B 175 -0.763 7.817 28.170 1.00 1.00 В ATOM 4203 NE2 HIS B 175 -0.977 7.938 26.875 1.00 1.00 ATOM 4.706 6.135 27.641 1.00 1.00 HIS B 175 В 4204 MOTA С 4.990 5.212 28.403 1.00 1.00 В 4205 0 HIS B 175 ATOM 1.00 18.76 5.481 6.461 26.617 ARG B 176 В ATOM 4206 N В CA ARG B 176 6.711 5.768 26.422 1.00 18.30 ATOM 4207 25.398 6.575 4.633 1.00 19.53 ATOM 4208 CB ARG B 176 В 1.00 22.88 ATOM 4209 CG ARG B 176 6.329 5.094 23.954 В 4.876 4.888 23.657 ATOM 4210 CD ARG B 176 1.00 22.11 В ATOM 4211 NE ARG B 176 4.435 5.312 22.314 1.00 22.09 В ATOM 4212 CZ ARG B 176 4.555 4.591 21.202 1.00 20.17 В 4213 NH1 ARG B 176 5.159 3.403 21.213 1.00 17.04 В ATOM 3.914 4.977 1.00 20.02 В MOTA 4214 NH2 ARG B 176 20.120 4215 ARG B 176 7.684 6.807 25.902 1.00 17.30 ATOM С MOTA 4216 O ARG B 176 7.255 7.860 25.374 1.00 18.10

ATOM	4217	N	LEU B	177	8.957	6.504	26.080	1.00	17.97	В
MOTA	4218	CA	LEU B	177	10.049	7.360	25.633	1.00	17.85	В
MOTA	4219	CB	LEU B	177	10.664	8.095	26.827	1.00	18.29	В
ATOM	4220	CG	LEU B		11.921	8.955	26.611		16.28	В
ATOM	4221	CD1	LEU B		11.819	10.163	27.559		19.52	В
ATOM	4222		LEU B		13.191	8.172	26.839		19.12	В
ATOM	4223	C	LEU B		11.110	6.517	24.964 25.281		18.45	В
ATOM ATOM	4224 4710	О И	LEU B		11.291 11.254	5.329 17.279	27.890	1.00	18.33	B B
ATOM	4711	CD	PRO B		9.987	16.826	27.286	1.00	1.00	В
ATOM	4712	CA	PRO B		11.660	16.404	28.997	1.00	1.00	В
ATOM	4713	CB	PRO B		10.688	15.230	28.874	1.00	1.00	В
ATOM	4714	CG	PRO B	242	9.448	15.869	28.336	1.00	1.00	В
ATOM	4715	С	PRO B	242	13.124	15.947	28.987	1.00	1.00	В
ATOM	4716	0	PRO B		13.728	15.748	27.925	1.00	1.00	В
ATOM	4748	N	ARG E		16.133	11.840	33.560	1.00	1.00	В
ATOM	4749	CA	ARG B		15.239	11.808	34.707 34.984	1.00	1.00 1.00	B B
ATOM ATOM	4750 4751	CB CG	ARG E		14.755 15.880	13.227 14.252	35.113	1.00	1.00	В
ATOM	4752	CD	ARG E		16.443	14.295	36.529	1.00	1.00	В
ATOM	4753	NE	ARG E		15.374	14.318	37.524	1.00	1.00	В
ATOM	4754	CZ	ARG E		14.316	15.126	37.477	1.00	1.00	В
MOTA	4755	NH1	ARG E	246	14.169	15.992	36.481	1.00	1.00	В
ATOM	4756	NH2	ARG E		13.396	15.067	38.430	1.00	1.00	В
ATOM	4757	С	ARG E		14.022	10.889	34.566	1.00	1.00	В
ATOM	4758	0	ARG E		13.384	10.536	35.560	1.00	1.00	В
ATOM ATOM	4759 4760	N CA	VAL E		13.695 12.553	10.532 9.675	33.327 33.018	1.00	1.00	B B
ATOM	4761	CB	VAL E		12.061	9.942	31.585	1.00	1.00	В
ATOM	4762	CG1			10.930	8.991	31.216	1.00	1.00	В
ATOM	4763	CG2	VAL E	247	11.624	11.391	31.462	1.00	1.00	В
MOTA	4764	С	VAL E		12.962	8.218	33.133	1.00	1.00	В
MOTA	4765	0	VAL E		12.125	7.334	33.308	1.00	1.00	В
MOTA	4996	N	PHE E		-7.702 -6.698	-1.352	24.244 25.300	1.00	1.00	B B
ATOM ATOM	4997 4998	CA CB	PHE E		-7.318	-1.155 -1.432	26.663	1.00 1.00	1.00	В
ATOM	4999	CG	PHE E		-8.431	-0.459	27.021	1.00	1.00	В
ATOM	5000		PHE E		-8.142	0.882	27.268	1.00	1.00	В
ATOM	5001	CD2	PHE E	278	-9.760	-0.869	27.021	1.00	1.00	В
MOTA	5002	CE1			-9.177	1.816	27.508	1.00	1.00	В
MOTA	5003	CE2		278	-10.795	0.052	27.258	1.00	1.00	В
ATOM	5004	CZ	PHE E		-10.496 -5.403	1.391 -1.957	27.500 25.131	1.00	$1.00 \\ 1.00$	B B
ATOM ATOM	5005 5006	C O	PHE E		-4.356	~1.582	25.677	1.00	1.00	В
ATOM	5332	N	ASN E		0.635	-2.143	27.431	1.00	1.00	В
ATOM	5333	CA	ASN E		-0.051	-1.983	26.158	1.00	1.00	В
MOTA	5334	CB	ASN E	320	-0.055	-0.504	25.796	1.00	1.00	В
MOTA	5335	CG	ASN E		-0.561	-0.259	24.407	1.00	1.00	В
MOTA	5336	OD1	ASN E		-0.226	-0.997	23.481	1.00	1.00	В
ATOM	5337 5338	C ND2	ASN E		-1.362 0.927	0.791 -2.745	24.242 25.249	1.00	1.00 1.00	B B
ATOM ATOM	5339	o	ASN E		2.093	-2.350	25.102	1.00	1.00	В
ATOM	5353	N	TYR E		2.932	-0.853	22.482	1.00	1.00	В
ATOM	5354	CA	TYR F	323	4.110	-0.088	22.908	1.00	1.00	В
MOTA	5355	CB	TYR E		3.878	0.590	24.259	1.00	1.00	В
MOTA	5356	CG	TYR E		2.813	1.668	24.294	1.00	1.00	В
MOTA	5357		TYR E		2.397 1.458	2.314 3.374	23.127	1.00	1.00 1.00	B B
ATOM ATOM	5358 5359		TYR E		2.284	2.093	23.170 25.509	1.00	1.00	В
ATOM	5360	CE2			1.354	3.166	25.567	1.00	1.00	В
ATOM	5361	CZ		3 323	0.957	3.790	24.399	1.00	1.00	В
ATOM	5362	ОН	TYR I		0.112	4.886	24.453	1.00	1.00	В
MOTA	5363	С		323	5.327	-1.018	23.041	1.00	1.00	В
MOTA	5364	0		323	6.468	-0.646	22,726	1.00	1.00	В
ATOM	5519	N	VAL		3.837	-1.100	39.291	1.00	1.00	B B
ATOM ATOM	5520 5521	CA CB	VAL I		3.324 2.676	0.227 0.818	39.030 40.318	1.00 1.00	1.00	B
ATOM	5521 5522		VAL I		1.474	-0.026	40.725	1.00	1.00	В
ATOM	5523		VAL I		3.687	0.847	41.456	1.00	1.00	В
ATOM	5524	C	VAL I		4.405	1.163	38.512	1.00	1.00	В
ATOM	5525	0		3 3 4 4	4.199	2.365	38.405	1.00	1.00	В
ATOM	5532	N		346	7.618	2.153	35.615		21.53	В
ATOM	5533	CA		346	8.060 8.655	2.002 3.320	34.239 33.722		21.50	B B
ATOM	5534	CB	SEK I	3 346	0.033	3.320	55.122	1.00	21.7/	D

ATOM	5535	OG	SER E	346	9.793	3.703	34.474	1.00 26.08	В
ATOM	5536	С	SER E	346	9.107	0.914	34.106	1.00 20.70	В
ATOM	5537	0	SER E	346	9.755	0.521	35.078	1.00 21.55	В
ATOM	5632	N	VAL E	360	11.730	3.546	27.545	1.00 1.00	В
ATOM	5633	CA	VAL E	360	11.023	3.501	28.812	1.00 1.00	В
						4.794		1.00 1.00	
MOTA	5634	CB	VAL E		11.276		29.641		В
ATOM	5635	CG1	VAL E	360	10.448	4.742	30.934	1.00 1.00	В
ATOM	5636	CG2	VAL E	360	12.753	4.923	29.937	1.00 1.00	В
									В
ATOM	5637	С	VAL E		9.562	3.381	28.501		
ATOM	5638	0	VAL E	360	9.008	4.188	27.753	1.00 1.00	В
ATOM	5639	N	VAL E	361	8.905	2.372	29.069	1.00 19.72	В
ATOM	5640	CA	VAL E		7.488	2.188	28.831	1.00 18.92	В
ATOM	5641	CB	VAL E	361	7.216	0.872	28.069	1.00 18.99	В
MOTA	5642	CG1	VAL E	361	5.743	0.769	27.716	1.00 18.31	В
ATOM	5643	CG2	VAL E		8.065	0.839	26.786	1.00 17.76	В
ATOM	5644	С	VAL E	361	6.793	2.100	30.167	1.00 19.47	В
ATOM	5645	0	VAL E	361	7.232	1.362	31.038	1.00 16.90	В
									В
MOTA	5646	N	MET E		5.737	2.885	30.318		
ATOM	5647	CA	MET E	362	4.962	2.882	31.540	1.00 1.00	В
ATOM	5648	CB	MET E	3 3 6 2	4.226	4.206	31.682	1.00 1.00	В
						4.589			
ATOM	5649	CG	MET E		3.918		33.122	1.00 1.00	В
ATOM	5650	SD	MET E	3 362	5.405	4.806	34.163	1.00 1.00	В
MOTA	5651	CE	MET E	3 3 6 2	4.575	4.880	35.731	1.00 1.00	В
		c	MET E		3.949	1.731	31.471	1.00 1.00	В
ATOM	5652								
MOTA	5653	0	MET E	3 362	3.385	1.438	30.410	1.00 1.00	В
ATOM	5654	N	PRO E	3 3 6 3	3.698	1.069	32.599	1.00 1.00	В
									В
ATOM	5655	CD	PRO E		4.521	1.025	33.818	1.00 1.00	
MOTA	5656	CA	PRO E	3 3 6 3	2.729	-0.038	32.579	1.00 1.00	В
MOTA	5657	CB	PRO E	3 3 6 3	3.155	-0.883	33.776	1.00 1.00	В
							34.754	1.00 1.00	В
MOTA	5658	CG	PRO E		3.665	0.160			
ATOM	5659	С	PRO E	3 363	1.272	0.395	32.672	1.00 1.00	В
MOTA	5660	0	PRO E	3 3 6 3	0.959	1.574	32.811	1.00 1.00	В
			MET E		0.368	-0.568	32.537	1.00 1.00	В
MOTA	5661	N							
ATOM	5662	CA	MET E	3 364	-1.037	-0.272	32.674	1.00 1.00	В
MOTA	5663	CB	MET E	364	-1.780	-0.391	31.332	1.00 1.00	В
	5664	CG	MET E		-1.636	-1.670	30.568	1.00 1.00	В
ATOM									
ATOM	5665	SD	MET E	3 364	-2.386	-1.510	28.872	1.00 1.00	В
ATOM	5666	CE	MET F	3 3 6 4	-4.155	-1.253	29.308	1.00 1.00	В
ATOM	5667	С	MET E		-1.602	-1.218	33.725	1.00 1.00	В
ATOM	5668	0	MET E	3 3 6 4	-0.999	-2.251	34.035	1.00 1.00	В
ATOM	5669	N	ARG I	3 3 6 5	-2.732	-0.836	34.307	1.00 1.00	В
ATOM	5670	CA	ARG F		-3.383	-1.655	35.324	1.00 1.00	В
ATOM	5671	CB	ARG E	365	-4.029	-0.756	36.394	1.00 1.00	В
MOTA	5672	CG	ARG E	3 365	-4.785	-1.490	37.505	1.00 1.00	В
ATOM	5673	CD	ARG F	3 3 6 5	-3.859	-2.316	38.398	1.00 1.00	В
ATOM	5674	NE	ARG I		-4.571	-2.956	39.505	1.00 1.00	В
ATOM	5675	CZ	ARG I	3 3 6 5	-3.984	-3.707	40.434	1.00 1.00	В
ATOM	5676	NH1	ARG I	3 3 6 5	-2.678	-3.913	40.385	1.00 1.00	В
									В
ATOM	5677	NH2	ARG E		-4.698	-4.247	41.418	1.00 1.00	
ATOM	5678	С	ARG I	3 365	-4.459	-2.492	34.648	1.00 1.00	В
ATOM	5679	0	ARG I	3 365	-5.449	-1.961	34.150	1.00 1.00	В
	5680	N	LEU I		-4.267	-3.801	34.609	1.00 41.59	В
MOTA									
MOTA	5681	CA	LEU I	366	-5.272	-4.665	33.996	1.00 44.25	В
MOTA	5682	CB	LEU I	3 3 6 6	-4.615	-5.908	33.366	1.00 45.24	В
ATOM	5683	CG	LEU I		-3.640	-5.701	32.202	1.00 45.46	В
									_
ATOM	5684	CDT	LEU E	3 366	-4.331	-5.029	31.031	1.00 47.09	В
ATOM	5685	CD2	LEU F	3 366	-2.489	-4.856	32.678	1.00 46.71	В
ATOM	5686	С	LEU I	366	-6.263	-5.080	35.092	1.00 45.55	В
ATOM	5687	0	LEU I		-6.424	-6.296	35.333	1.00 46.32	В
ATOM	5688	TXO	LEU I	3 366	-6.868	-4.169	35.704	1.00 46.33	В
ATOM	5689	CB	ARG (-5.663	0.205	32.737	0.76 1.00	С
ATOM	5690	CG	ARG (-7.073	-0.397	32.771	0.76 1.00	С
ATOM	5691	CD	ARG (2 10	-7.748	-0.383	31.408	0.76 1.00	С
ATOM	5692	NE	ARG (-8.728	-1.462	31.268	0.76 1.00	С
									č
ATOM	5693	CZ	ARG		-9.992	-1.301	30.875	0.76 1.00	
ATOM	5694	NH1	ARG (2 10	-10.464	-0.093	30.582	0.76 1.00	С
ATOM	5695		ARG (-10.779	-2.365	30.749	0.76 1.00	С
MOTA	5696	С	ARG (-4.106	2.152	32.497	0.76 1.00	C
MOTA	5697	0	ARG (2 10	-3.278	1.863	33.369	0.76 1.00	С
ATOM	5698	N	ARG (-6.417	2.186	31.464	0.76 1.00	С
ATOM	5699	CA	ARG (-5.587	1.727	32.625	0.76 1.00	С
MOTA	5700	N	GLN (2 11	-3.805	2.853	31.408	0.76 1.00	С
ATOM	5701	CA	GLN (-2.458	3.321	31.094	0.76 1.00	С
									c
ATOM	5702	CB	GLN (2 11	-2.423	3.866	29.662	0.76 1.00	L

ATOM 5703 CG GLN C -1.047 29.231 0.76 11 4.361 1.00 MOTA 5704 3.245 CD GLN C 11 -0.039 29.174 0.76 1.00 С ATOM 5705 OE1 GLN C 11 -0.2632.232 28.494 0.76 1.00 5706 ATOM NE2 GLN C 11 1.082 3.415 29.876 1.00 С 0.76 32.038 С ATOM 5707 GLN C -1.895С 11 4.396 0.76 1.00 5708 GLN C C ATOM 0 11 -2.4945.467 32.217 0.76 1.00 С MOTA 5709 N LEU C 12 -0.7324.111 32.618 0.76 1.00 С MOTA 5710 CA LEU C 12 -0.065 5.046 33.519 0.76 1.00 С ATOM 5711 CB LEU C 12 0.754 4.277 34.561 0.76 1.00 ATOM 5712 CG LEU C 12 -0.036 3.305 35.450 0.76 1.00 С ATOM 5713 CD1 LEU C 12 0.907 2.681 36.468 0.76 1.00 ATOM 5714 CD2 LEU C 12 -1.184 4.040 36.153 0.76 1.00 С 5.948 ATOM 5715 LEU C 12 0.845 32.680 0.76 1.00 MOTA 5716 LEU C 1.111 5.653 1.00 12 31.510 0.76 5717 1.317 33.273 MOTA VAL C 7.044 0.76 1.00 С MOTA 5718 ÇA VAL C 13 2.166 7.987 32.543 0.76 1.00 VAL C ATOM 5719 CB 1.473 9.371 32.386 0.76 1.00 MOTA 5720 CG1 VAL C 13 0.217 9.239 31.523 0.76 1.00 5721 CG2 VAL C 1.113 9.929 33.750 0.76 1.00 MOTA 13 MOTA 5722 VAL C 33.174 1.00 13 3.542 8.211 0.76 5723 3.740 8.050 ATOM VAL C 13 34.381 0.76 1.00 ATOM LEU C 4.498 8.596 32.339 1.00 С 5724 N 14 0.76 ATOM 5725 CA LEU C 14 5.860 8.846 32.803 0.76 1.00 C 6.836 8.819 1.00 C ATOM 5726 CB LEU C 14 31.619 0.76 С MOTA 5727 CG LEU C 14 6.972 7.481 30.889 0.76 1.00 7.705 С ATOM 5728 CD1 LEU C 14 7.666 29.557 0.76 1.00 MOTA 5729 CD2 LEU C 14 7.744 6.495 31.769 0.76 1.00 С 6.010 ATOM 5730 LEU C 14 10.186 33.517 0.76 1.00 ATOM 5731 0 LEU C 14 5.238 11.126 33.284 0.76 1.00 С MOTA 5732 N GLY C 15 7.000 10.263 34.396 0.76 1.00 ATOM 5733 GLY C 15 7.264 11.510 35.090 0.76 1.00 C CA 5734 GLY C 15 8.263 12.275 34.234 0.76 1.00 MOTA GLY C 9.472 12.210 1.00 ATOM 5735 0 15 34.462 0.76 LEU C 7.750 12.995 ATOM 5736 33.241 0.76 1.00 ATOM 5737 CA LEU C 16 8.576 13.756 32.306 0.76 1.00 7.732 5738 LEU C 14.157 31.094 0.76 1.00 ATOM CB 16 ATOM LEU C 16 7.258 12.955 30.269 0.76 1.00 C 5739 CG 5740 13.411 29.171 0.76 1.00 C CD1 LEU C 16 6.303 ATOM 8.467 С LEU C 29,690 0.76 1.00 ATOM 5741 CD2 16 12.233 14.982 32.898 0.76 1.00 C ATOM 5742 C TEU C 16 9.263 32,231 ATOM 5743 0 LEU C 16 10.182 15.515 0.76 1.00 C OXT LEU C С ATOM 5744 16 8.870 15.398 34.009 0.76 1.00 END

wherein atoms 4045 to 5688 represent the peptide binding site, and atoms 5689 to 5748 represent the peptide of SEQ ID NO 1, said atoms 4045 to 5688 being comprised in the peptide binding site delimited by the amino acids 155 to 364 of the β subunit of DNA polymerase III of *Escherichia coli*, said peptide binding site having the amino acid sequence of SEQ ID NO 7.

- 25. (currently amended) A method to obtain a the protein crystal as defined inof claim 20, said method comprising—the following steps:
- mixing a solution of processivity clamp factor of DNA polymerase the β subunit of DNA polymerase polymerase III of

Escherichia coli having the amino acid sequence of SEQ ID NO 5, with a solution of a the peptide of about 3 to about 30 amino acids, in particular of about 16 amino acids having the amino acid sequence of VTLLDPQMERQLVLGL (SEQ ID NO: 1), said peptide comprising all or part of the processivity clamp factor binding sequence of a processivity clamp factor interacting protein, such as prokaryotic Pol I, Pol II, Pol III, Pol IV, Pol V, MutS, ligase I, α subunit of DNA polymerase, UmuD or UmuD', or eukaryotic pol c, pol δ , pol η , pol t, pol κ , and with a solution of MES 2-(N-morpholino)ethane sulfonic acid (MES) at pH 6.0 0.2 M, CaCl₂ 0.2 M, PEG 400 60%, to obtain a crystallisation drop,

- letting the crystallisation drop concentrate against a solution of MES pH $6.0\ 0.1\ M$, CaCl $_2\ 0.1\ M$, PEG $400\ 30\%$, by vapour diffusion, to obtain a protein crystal.

26-37. (cancelled)