Primitiv rekursive Funktionen

Falsche Variante der Subtraktion

$$\mathsf{sub} = \mathbf{pr}\big[0^{(1)}, \mathsf{nf}\langle \pi_1^{(3)}\rangle\big]$$

wesentliche Rekursion (a + 1) - b = (a - b) + 1

$$sub(0, b) = 0$$

$$sub(a + 1, b) = nf(sub(a, b))$$

Warum nicht gewünschte Funktion?

Denn sub(a, b) = a für alle $a, b \in \mathbb{N}$

(trivialer Induktionsbeweis)

4/40

Loop-Berechenbarkeit vs. primitive Rekursion

Ansatz Loop-berechenbar impliziert primitiv rekursiv

- Semantik $||P||_n : \mathbb{N}^n \to \mathbb{N}^n$ Loop-Programm P
- Primitiv rekursive Funktion $f: \mathbb{N}^n \to \mathbb{N}$
- Primitiv rekursive Variante $\|P\|_n$ benötigt Kodierung von \mathbb{N}^n in \mathbb{N} (z.B. Kellerspeicher)

Primitiv rekursive Funktionen

Berechnung für sub(2,1)

$$\begin{aligned} \mathsf{sub}(2,1) &= \mathbf{pr} \big[0^{(1)}, \mathsf{nf} \langle \pi_1^{(3)} \rangle \big] (2,1) \\ &= \mathsf{nf} \langle \pi_1^{(3)} \rangle \Big(\mathbf{pr} \big[0^{(1)}, \mathsf{nf} \langle \pi_1^{(3)} \rangle \big] (1,1), 1, 1 \Big) \\ &= \mathsf{nf} \left(\pi_1^{(3)} \Big(\mathbf{pr} \big[0^{(1)}, \mathsf{nf} \langle \pi_1^{(3)} \rangle \big] (1,1), 1, 1 \Big) \right) \\ &= \mathbf{pr} \big[0^{(1)}, \mathsf{nf} \langle \pi_1^{(3)} \rangle \big] (1,1) + 1 \\ &= \mathsf{nf} \langle \pi_1^{(3)} \rangle \Big(\mathbf{pr} \big[0^{(1)}, \mathsf{nf} \langle \pi_1^{(3)} \rangle \big] (0,1), 0, 1 \Big) + 1 \\ &= \mathsf{nf} \left(\pi_1^{(3)} \Big(\mathbf{pr} \big[0^{(1)}, \mathsf{nf} \langle \pi_1^{(3)} \rangle \big] (0,1), 0, 1 \Big) \right) + 1 \\ &= \mathsf{pr} \big[0^{(1)}, \mathsf{nf} \langle \pi_1^{(3)} \rangle \big] (0,1) + 2 \\ &= 0^{(1)}(1) + 2 = 0 + 2 = 2 \end{aligned}$$

5/40

Loop-Berechenbarkeit vs. primitive Rekursion

Binomialkoeffizient

$$\mathsf{bk2} = \mathbf{pr}\big[\mathsf{0^{(0)}}, \mathsf{add}\langle \pi_1^{(2)}, \pi_2^{(2)}\rangle\big]$$

wesentliche Rekursion $\binom{a+1}{2} = \binom{a}{1} + \binom{a}{2} = a + \binom{a}{2}$

$$bk2(0) = 0$$

 $bk2(a+1) = a + bk2(a)$

Paarung

$$c = \mathsf{add} \big\langle \pi_1^{(2)}, \mathsf{bk2} \big\langle \mathsf{nf} \langle \mathsf{add} \langle \pi_1^{(2)}, \pi_2^{(2)} \rangle \rangle \big\rangle \big\rangle$$

$$c(a,b) = a + bk2(a+b+1) = a + {a+b+1 \choose 2}$$

§7.1 Theorem (Cantorsche Paarungsfunktion)

 $c \colon \mathbb{N}^2 \to \mathbb{N}$ bijektiv

$a \setminus b$	0	1	2	3	4	5
0	0	1	3	6	10	15
1	2	4	7	11	16	22
2	5	8	12	17	23	30
3	9	13	18	24	31	39
4	14	19	25	32	40	49
5	20	26	33	41	50	15 22 30 39 49 60

Georg Cantor (* 1845; † 1918)

- Dtsch. Mathematiker
- Begründer moderner Mengenlehre
- Kardinal- & Ordinalzahlen

8/40

Loop-Berechenbarkeit vs. primitive Rekursion

Dekodierung

• Funktionen $\Pi_1, \Pi_2 \colon \mathbb{N} \to \mathbb{N}$

$$\Pi_1(c(a,b)) = \Pi_1 \begin{pmatrix} a \\ b \end{pmatrix} = a$$

$$\Pi_2(c(a,b)) = \Pi_2 \begin{pmatrix} a \\ b \end{pmatrix} = b$$

• Längere Tupel $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ ebenso dekodierbar

$$a_1 = \Pi_1 \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 $a_2 = \Pi_1 \left(\Pi_2 \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \right)$ $a_3 = \Pi_2 \left(\Pi_2 \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \right)$

Loop-Berechenbarkeit vs. primitive Rekursion

Notizen

- Offenbar $a \le c(a, b)$ und $b \le c(a, b)$ für alle $a, b \in \mathbb{N}$
- Kodierung Paare natürlicher Zahlen möglich

$$\binom{a}{b} = c(a,b)$$

• Erweiterbar auf beliebige *n*-Tupel

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = c \left(a_1, \begin{pmatrix} a_2 \\ \vdots \\ a_n \end{pmatrix} \right) = c \left(a_1, c \left(a_2, \cdots, c (a_{n-1}, a_n) \cdots \right) \right)$$

• Primitiv rekursiv für alle $n \in \mathbb{N}$

9/40

Loop-Berechenbarkeit vs. primitive Rekursion

§7.2 Definition (beschränkter max-Operator; bounded maximum)

Sei $P: \mathbb{N}^{n+1} \to \{0,1\}$ Prädikat und $\max \emptyset = 0$.

$$\max_{P}(a, a_1, \ldots, a_n) = \max \{b \leq a \mid P(b, a_1, \ldots, a_n) = 1\}$$

Notizen

- $\max_{P}(a, a_1, \dots, a_n)$ maximaler Wert $b \leq a$ mit $P(b, a_1, \dots, a_n) = 1$
- Liefert 0 falls kein Wert $b \le a$ Prädikat $P(b, a_1, \dots, a_n)$ erfüllt

§7.3 Theorem

 $\max_{P} : \mathbb{N}^{n+1} \to \mathbb{N}$ primitiv rek. falls $P : \mathbb{N}^{n+1} \to \{0,1\}$ primitiv rek.

Beweis

Offenbar $\max_{P}(0, a_1, \dots, a_n) = 0$ und

$$\max_{P}(a+1,a_1,\ldots,a_n) = \begin{cases} a+1 & \text{falls } P(a+1,a_1,\ldots,a_n) = 1\\ \max_{P}(a,a_1,\ldots,a_n) & \text{sonst} \end{cases}$$

Fallunterscheidung äquivalent zu

$$\max_{P}(a, a_1, \ldots, a_n) + P(a+1, a_1, \ldots, a_n) \cdot (a+1 - \max_{P}(a, a_1, \ldots, a_n))$$

$$\begin{split} \mathsf{max}_P &= \mathbf{pr} \big[\mathbf{0}^{(n)}, \mathsf{add} \langle \pi_1^{(n+2)}, \mathsf{mult} \langle P \langle \mathsf{nf} \langle \pi_2^{(n+2)} \rangle, \pi_3^{(n+2)}, \dots, \pi_{n+2}^{(n+2)} \rangle, \\ &\quad \mathsf{sub} \langle \mathsf{nf} \langle \pi_2^{(n+2)} \rangle, \pi_1^{(n+2)} \rangle \rangle \big\rangle \big] \end{split}$$

12 / 40

Loop-Berechenbarkeit vs. primitive Rekursion

Maximum

$$\max = \operatorname{add}\langle\operatorname{sub}\langle\pi_1^{(2)},\pi_2^{(2)}\rangle,\pi_2^{(2)}\rangle$$

$$\max(a,b) = (a-b) + b$$

2 Fälle: Falls $a \ge b$, dann ist (a - b) + b = a und damit $\max(a, b) = a$. Sonst ist a - b = 0 und damit $\max(a, b) = b$.

Loop-Berechenbarkeit vs. primitive Rekursion

§7.4 Definition (beschränkter ∃-Quantor; bounded ∃-quantifier)

Sei $P \colon \mathbb{N}^{n+1} \to \{0,1\}$ Prädikat

$$\exists_P(a, a_1, \dots, a_n) = \begin{cases} 1 & \text{falls } \exists b \leq a \colon P(b, a_1, \dots, a_n) = 1 \\ 0 & \text{sonst} \end{cases}$$

Notizen

- $\exists_P(a, a_1, \dots, a_n) = 1$, falls $b \le a$ mit $P(b, a_1, \dots, a_n) = 1$ existient
- Liefert 0 falls kein Wert $b \le a$ Prädikat $P(b, a_1, \dots, a_n)$ erfüllt

13 / 40

Loop-Berechenbarkeit vs. primitive Rekursion

§7.5 Theorem

 $\exists_P \colon \mathbb{N}^{n+1} \to \mathbb{N}$ primitiv rekursiv falls $P \colon \mathbb{N}^{n+1} \to \{0,1\}$ primitiv rekursiv

Beweis

Offenbar $\exists_P(0, a_1, \dots, a_n) = P(0, a_1, \dots, a_n)$ und

$$\exists_{P}(a+1,a_{1},\ldots,a_{n}) = \begin{cases} 1 & \text{falls } P(a+1,a_{1},\ldots,a_{n}) = 1 \\ \exists_{P}(a,a_{1},\ldots,a_{n}) & \text{sonst} \end{cases}$$

Fallunterscheidung äquivalent zu

$$\max(P(\alpha+1,a_1,\ldots,a_n),\exists_P(\alpha,a_1,\ldots,a_n))$$

$$\exists_{P} = \mathbf{pr} \left[P\langle 0^{(n)}, \pi_{1}^{(n)}, \dots, \pi_{n}^{(n)} \rangle, \\ \max \langle P\langle \mathsf{nf} \langle \pi_{2}^{(n+2)} \rangle, \pi_{3}^{(n+2)}, \dots, \pi_{n+2}^{(n+2)} \rangle, \pi_{1}^{(n+2)} \rangle \right]$$

Dekodierung Paare $\begin{pmatrix} a \\ b \end{pmatrix}$

• Definiere Prädikat $C \colon \mathbb{N}^3 \to \{0,1\}$ mit Hilfe von c

$$C(a,b,d) = \left(1 - \left(c(a,b) - d\right)\right) \cdot \left(1 - \left(d - c(a,b)\right)\right)$$

- C primitiv rekursiv
- C(a, b, d) = 0 falls c(a, b) > d
- C(a, b, d) = 0 falls c(a, b) < d
- C(a, b, d) = 1 falls c(a, b) = d
- Also C(a, b, d) = 1 gdw. c(a, b) = d

Loop-Berechenbarkeit vs. primitive Rekursion

Dekodierfunktionen

$$C'(b, a, d) = C(a, b, d)$$

$$C' = C(\pi_2^{(3)}, \pi_1^{(3)}, \pi_3^{(3)})$$

$$E'(a, b, d) = \exists_{C'}(b, a, d) = \begin{cases} 1 & \text{falls } \exists y \leq b \colon C(a, y, d) = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\Pi'_1(a, b, d) = \max_{E'}(a, b, d)$$

$$= \max\{x \leq a \mid E'(x, b, d) = 1\}$$

$$= \max\{x \leq a \mid \exists y \leq b \colon C(x, y, d) = 1\}$$

$$= \max\{x \leq a \mid \exists y \leq b \colon c(x, y, d) = d\}$$

16/40

Loop-Berechenbarkeit vs. primitive Rekursion

Dekodierfunktionen

$$E(b, a, d) = \exists_{C}(a, b, d) = \begin{cases} 1 & \text{falls } \exists x \leq a \colon C(x, b, d) = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\Pi'_{2}(a, b, d) = \max_{E}(b, a, d)$$

$$= \max\{y \leq b \mid E(y, a, d) = 1\}$$

$$= \max\{y \leq b \mid \exists x \leq a \colon C(x, y, d) = 1\}$$

$$= \max\{y \leq b \mid \exists x \leq a \colon c(x, y) = d\}$$

Loop-Berechenbarkeit vs. primitive Rekursion

§7.6 Theorem (Dekodierung)

 $\Pi_1 \colon \mathbb{N} \to \mathbb{N}$ und $\Pi_2 \colon \mathbb{N} \to \mathbb{N}$ primitiv rekursiv

Beweis

Beide Funktionen sind primitiv rekursiv da

$$\Pi_1(d) = \Pi_1'(d,d,d)$$
 und $\Pi_2(d) = \Pi_2'(d,d,d)$ für alle $d \in \mathbb{N}$

Da $a \le c(a, b)$ und $b \le c(a, b)$ wird d geeignet dekodiert.

Notiz

• Verwenden Vektornotation und greifen direkt auf Komponenten zu

§7.7 Theorem

Jede Loop-berechenbare Funktion ist primitiv rekursiv

Beweis (1/4)

Zeigen $\operatorname{sem}_P \colon \mathbb{N}^n \to \mathbb{N}$ primitiv rekursiv für jedes Loop-Programm P mit $\max \operatorname{var}(P) = n$ per Induktion über P. Für alle $a_1, \ldots, a_n \in \mathbb{N}$

$$\operatorname{sem}_{P}(a_{1},\ldots,a_{n})=c(b_{1},\ldots,b_{n})$$

$$\iff \|P\|_{n}(a_{1},\ldots,a_{n})=(b_{1},\ldots,b_{n})$$

• Sei *P* Zuweisung $x_i = x_\ell + z$. Dann

$$sem_P(a_1,...,a_n) = c(a_1,...,a_{i-1},a_{\ell}+z,a_{i+1},...,a_n)$$

$$\operatorname{sem}_P = c \langle \operatorname{nf} \langle \pi_2^{(2)} \rangle, \pi_2^{(2)} \rangle$$
 für $n = 2$ und $x_1 = x_2 + 1$

Loop-Berechenbarkeit vs. primitive Rekursion

Beweis (2/4)

• Sei $P = P_1$; P_2 . Dann sem_{P_1} und sem_{P_2} primitiv rekursiv gemäß IH

$$\operatorname{sem}_{P}(a_{1},\ldots,a_{n}) = \operatorname{sem}_{P_{2}}\left(\Pi_{1}(\operatorname{sem}_{P_{1}}(a_{1},\ldots,a_{n})), \ldots \right.$$

$$\Pi_{2}(\cdots\Pi_{2}(\operatorname{sem}_{P_{1}}(a_{1},\ldots,a_{n}))\cdots)\right)$$

$$= \operatorname{sem}_{P_{2}}(b_{1},\ldots,b_{n})$$
mit $\operatorname{sem}_{P_{1}}(a_{1},\ldots,a_{n}) = c(b_{1},\ldots,b_{n})$

$$\operatorname{sem}_P = \left(\operatorname{sem}_{P_2}\langle \Pi_1, \Pi_2 \rangle\right) \langle \operatorname{sem}_{P_1} \rangle \text{ für } n = 2$$

21/40

Loop-Berechenbarkeit vs. primitive Rekursion

Beweis (3/4)

• Sei $P = \text{LOOP}(x_i) \{P'\}$. Dann $\text{sem}_{P'}$ primitiv rekursiv gemäß IH. Definiere Funktion

$$f(0, a_1, ..., a_n) = c(a_1, ..., a_n)$$

 $f(a+1, a_1, ..., a_n) = \operatorname{sem}_{P'}(b_1, ..., b_n)$

wobei $f(a, a_1, \ldots, a_n) = c(b_1, \ldots, b_n)$. Dann ist

$$sem_P(a_1,\ldots,a_n)=f(a_i,a_1,\ldots,a_n)$$

$$\operatorname{sem}_P = \left(\operatorname{pr}\left[c, \left(\operatorname{sem}_{P'}\langle \Pi_1, \Pi_2 \rangle\right) \langle \pi_1^{(4)} \rangle\right]\right) \langle \pi_2^{(2)}, \pi_1^{(2)}, \pi_2^{(2)} \rangle \text{ für } n = i = 2$$

Loop-Berechenbarkeit vs. primitive Rekursion

Beweis (4/4)

20/40

Sei $f \colon \mathbb{N}^k o \mathbb{N}$ Loop-berechenbar via P

 $(k \leq n)$

Für alle $a_1, \ldots, a_k \in \mathbb{N}$

$$f(a_1, ..., a_k) = |P|_k(a_1, ..., a_k)$$

$$= \pi_1^{(n)} (||P||(a_1, ..., a_k, 0, ..., 0))$$

$$= \Pi_1(\text{sem}_P(a_1, ..., a_k, 0, ..., 0))$$

Damit f primitiv rekursiv

§7.8 Lemma

Für alle $k, k' \in \mathbb{N}$ und Loop-Programme P existiert Loop-Programm P' mit $\max \text{var}(P') = n$ und

- $|P'|_k = |P|_k$ (gleiche berechnete Funktion)
- $\pi_i^{(n)}(\|P'\|_n(a_1,\ldots,a_n)) = a_i$ (überschreibt $x_2,\ldots,x_{k'}$ nicht) für alle $2 \le i \le k'$ und $a_1,\ldots,a_n \in \mathbb{N}$

Loop-Berechenbarkeit vs. primitive Rekursion

§7.9 Theorem

Jede primitiv rekursive Funktion ist Loop-berechenbar

Beweis (1/3)

Induktion über Struktur primitiv rekursiver Funktionen

 Basisfunktionen: Trivial Loop-berechenbar (Konstanten, Projektionen, Nachfolger)

25/40 26/40

Loop-Berechenbarkeit vs. primitive Rekursion

Beweis (2/3)

• Sei $f' = f\langle g_1, \dots, g_m \rangle$ Komposition primitiv rekursiver Funktionen f, g_1, \dots, g_m

$$f'(a_1,\ldots,a_n)=f(g_1(a_1,\ldots,a_n),\ldots,g_m(a_1,\ldots,a_n))$$

IH und §7.8 liefern äquivalente Loop-Programme P, P_1, \ldots, P_m die Variablen x_2, \ldots, x_{n+m+1} nicht überschreiben. Folgendes Programm berechnet f'

$$x_{n+m+1}=x_1$$
 (1. Eingabe sichern) P_m ; $x_{n+m}=x_1$; $x_1=x_{n+m+1}$ (Ergebnis sichern; 1. Eingabe setzen) ... P_1 ; $x_2=x_{n+2}$; ...; $x_m=x_{n+m}$ (Eingaben auf Ergebnisse setzen)

Loop-Berechenbarkeit vs. primitive Rekursion

Beweis (3/3)

• Sei $f' = \mathbf{pr}[f, g]$ primitive Rekursion mit primitiv rekursiven Funktionen f und g

$$f'(0, a_1, ..., a_n) = f(a_1, ..., a_n)$$

 $f'(a+1, a_1, ..., a_n) = g(f'(a, a_1, ..., a_n), a, a_1, ..., a_n)$

IH und Lemma §7.8 liefern äquivalente Loop-Programme P_f und P_g die Variablen x_2,\ldots,x_{n+4} nicht überschreiben. Folgendes Programm berechnet f'

$$x_{n+3} = x_1$$
; $x_{n+4} = x_2$ (1. & 2. Eingabe sichern) $x_1 = x_2$; $x_2 = x_3$; \cdots ; $x_n = x_{n+1}$; P_f (Eingaben für f) $x_{n+2} = x_n$; \cdots ; $x_4 = x_2$; $x_3 = x_{n+3}$; $x_2 = 0$ (Eingaben für g) LOOP(x_{n+3}) { P_g ; $x_2 = x_2 + 1$ } (Iterationen zählen)

27/40 28/40

Notizen

- Primitiv rekursive Funktionen total
- <u>Nicht</u> jede While-berechenbaren Funktion primitiv rekursiv (z.B. Ackermann-Funktion nicht primitiv rekursiv)
- Allgemeine Rekursion noch nicht erfasst

29/40

Rekursive partielle Funktionen

Intuition

Berechnung von $\mu f(a_1, \ldots, a_n)$

- 1. Setze $a \leftarrow 0$
- 2. Berechne $f(a, a_1, \ldots, a_n)$
- 3. Liefere **undefiniert** falls $f(a, a_1, ..., a_n)$ undefiniert (Endlosschleife)
- 4. Erhöhe a und zurück zu 2. falls $f(a, a_1, \ldots, a_n) \neq 0$
- 5. Liefere a (falls $f(a, a_1, \dots, a_n) = 0$)

While-Schleife erkennbar

Rekursive partielle Funktionen

§7.10 Definition (μ -rekursiv; μ -recursive)

Genau folgende partielle Funktionen sind μ -rekursiv

- rekursive Basisfunktionen
- Komposition und primitive Rekursion μ -rekursiver Funktionen
- Minimierung $\mu f: \mathbb{N}^n \dashrightarrow \mathbb{N}$ (μ -Operator) μ -rekursiver Funktion $f: \mathbb{N}^{n+1} \dashrightarrow \mathbb{N}$ gegeben für alle $a_1, \dots, a_n \in \mathbb{N}$ durch

$$\mu f(a_1,\ldots,a_n) = \min \big\{ a \in \mathbb{N} \mid f(a,a_1,\ldots,a_n) = 0 \text{ und} \\ \forall b < a \colon f(b,a_1,\ldots,a_n) \text{ definiert} \big\}$$

 $mit min \emptyset = undef$

Keine weiteren partiellen Funktionen μ -rekursiv

Rekursive partielle Funktionen

Überall undefinierte Funktion $\mu 1^{(2)} : \mathbb{N} \to \mathbb{N}$

- $1^{(2)}(a,b) = 1$ für alle $a,b \in \mathbb{N}$
- Also $\mu 1^{(2)}(b) = \text{undef für alle } b \in \mathbb{N}$

Logarithmus

$$Id(13) = [3,7] = 4$$

30/40

ld: $\mathbb{N} \to \mathbb{N}$ μ -rekursiv mit ld(0) = 0 und ld(a) = $\lceil \log_2(a) \rceil$ für alle $a \in \mathbb{N}_+$

- $f(a,b) = b 2^a$ primitiv rekursiv
- (Loop-berechenbar)

• $Id(b) = \mu f(b)$

(kleinstes a mit $2^a > b$)

ld primitiv rekursiv

31/40 32/40

While-Berechenbarkeit vs. Rekursion

§7.11 Theorem

Jede While-berechenbare partielle Funktion ist μ -rekursiv

Beweis

Analog zu Loop-Programm mit neuem dritten Fall

• Sei $P = \text{WHILE}(x_i \neq 0) \{P'\}$. Dann existiert μ -rekursive Funktion semP' gemäß IH. Sei

$$f(0, a_1, \dots, a_n) = c(a_1, \dots, a_n)$$
 $f(a+1, a_1, \dots, a_n) = \text{sem}_{P'}(b_1, \dots, b_n)$
 $g(a, a_1, \dots, a_n) = b_i$
wobei $f(a, a_1, \dots, a_n) = c(b_1, \dots, b_n)$
 $\text{sem}_{P}(a_1, \dots, a_n) = f((\mu a)(a_1, \dots, a_n), a_1, \dots, a_n)$

34/40

While-Berechenbarkeit vs. Rekursion

Notizen

- Verschiedene Berechnungsmodelle & viele weitere existieren
- Alle höchstens Turing-Berechenbarkeit

While-Berechenbarkeit vs. Rekursion

§7.12 Theorem

Jede μ -rekursive partielle Funktion ist While-berechenbar

Beweis

Induktion über Struktur μ -rekursiver partieller Funktionen

• Sei $f' = \mu f$ für μ -rekursive Funktion f. Dann existiert äquivalentes While-Programm P ohne Überschreibung Variablen x_2, \ldots, x_{n+2} . Programm für f'

$$x_{n+2}=0$$
 ; $x_{n+1}=x_n$; \cdots ; $x_2=x_1$; $x_1=0$; P (Eingaben setzen)
WHILE $(x_1 \neq 0)$ { $x_{n+2}=x_{n+2}+1$; $x_1=x_{n+2}$; P } (Iteration erhöhen, Eingaben vorbereiten, weiterer Aufruf) $x_1=x_{n+2}$ (Ergebnis ist Anzahl Iterationen)

36/40

These von Church

§7.13 Hypothese (These von Church; Church's conjecture)

Jede intuitiv berechenbare Funktion ist Turing-berechenbar

Alonzo Church (* 1903: † 1995)

- Amer. Mathematiker und Logiker
- Entwickelte λ-Kalkül (nicht vorgestellt)
- Doktorvater von Stephen Kleene & Alan Turing

© Princeton Universitu

37/40 38/40