Métodos iterativos para la solución numérica del problema de Cauchy

1. Problema de Cauchy y su solución numérica

El **problema de Cauchy** consiste en determinar una función y(x) que satisfaga una ecuación diferencial ordinaria junto con una condición inicial:

$$\begin{cases} y'(x) = f(x, y(x)), \\ y(x_0) = y_0, \end{cases}$$

donde f(x, y) es una función conocida, x_0 es el punto inicial y y_0 el valor de la solución en dicho punto. En otras palabras, se busca una curva y(x) que no solo cumpla la ecuación diferencial, sino que además pase por el punto (x_0, y_0) .

Sin embargo, en la práctica muchas ecuaciones diferenciales no poseen una solución analítica expresable en forma cerrada. En tales casos, se recurre a una **solución numérica**, la cual permite aproximar los valores de y(x) mediante un proceso iterativo que genera una secuencia de puntos discretos en un intervalo [a, b]:

$$x_j = x_0 + jh, \qquad j = 0, 1, 2, \dots, n,$$

donde $h = \frac{b-a}{n}$ representa el tamaño de paso. En este caso, $x_0 = a$ y $x_n = b$.

Luego, cada valor y_{j+1} se calcula a partir del anterior mediante una relación recursiva de la forma:

$$y_{j+1} = y_j + h \Phi(x_j, y_j, h), \tag{1}$$

donde la función Φ constituye una **aproximación de la pendiente promedio** de la solución en el intervalo $[x_j, x_{j+1}]$. La elección de la expresión para Φ determina el método numérico empleado.

En consecuencia, la solución numérica del problema de Cauchy se construye mediante los pares ordenados:

$$(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n),$$

donde cada $y_j \approx y(x_j)$ representa una estimación de la solución exacta. De esta forma, el método avanza paso a paso, aproximando la trayectoria continua de y(x) a través de un procedimiento iterativo.

La Figura 1 ilustra este proceso para el caso n = 5, donde y(x) representa la solución del problema de Cauchy. Los valores y_j que se presentan en esta figura se obtienen mediante una fórmula iterativa que sigue la estructura general presentada en la ecuación (1).

Figura 1: Representación gráfica del proceso iterativo de aproximación para el problema de Cauchy.

2. Algoritmos para la solución numérica del problema de Cauchy

Método	Fórmula general	Pasos	Orden
Euler	$y_{k+1} = y_k + h f(x_k, y_k)$	1	1
Predictor-Corrector (Heun o Euler mejorado)	$y_{k+1} = y_k + \frac{h}{2}(K_1 + K_2)$ $\begin{cases} K_1 = f(x_k, y_k), \\ K_2 = f(x_k + h, y_k + hK_1) \end{cases}$	1	2
Runge-Kutta de orden 2 (punto medio)	$y_{k+1} = y_k + h K_2$ $\begin{cases} K_1 = f(x_k, y_k), \\ K_2 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}K_1) \end{cases}$	1	2
Runge-Kutta de orden 3	$y_{k+1} = y_k + \frac{h}{6}(K_1 + 4K_2 + K_3)$ $\begin{cases} K_1 = f(x_k, y_k), \\ K_2 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}K_1), \\ K_3 = f(x_k + h, y_k - hK_1 + 2hK_2) \end{cases}$	1	3
Runge-Kutta de orden 4	$y_{k+1} = y_k + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$ $\begin{cases} K_1 = f(x_k, y_k), \\ K_2 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}K_1), \\ K_3 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}K_2), \\ K_4 = f(x_k + h, y_k + hK_3) \end{cases}$	1	4
Método de Taylor de orden p	$y_{k+1} = y_k + h y'(x_k) + \frac{h^2}{2!}y''(x_k) + \dots + \frac{h^p}{p!}y^{(p)}(x_k)$	1	p
Adams-Bashforth de 2 pasos	$y_{k+1} = y_k + \frac{h}{2}(3f_k - f_{k-1})$	2	2
Adams-Bashforth de 3 pasos	$y_{k+1} = y_k + \frac{h}{12}(23f_k - 16f_{k-1} + 5f_{k-2})$	3	3
Adams-Bashforth de 4 pasos	$y_{k+1} = y_k + \frac{h}{24}(55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3})$	4	4

Observaciones:

■ En el método de Taylor, la primera derivada de la solución se expresa como y'(x) = f(x, y), mientras que las derivadas de orden superior se obtienen derivando sucesivamente dicha expresión con respecto a x. En general, se cumple que

$$y^{(k)}(x) = \frac{d^{k-1}}{dx^{k-1}} f(x, y), \qquad k = 1, 2, \dots,$$

donde la función f(x,y) es conocida y proviene de la ecuación diferencial original.

■ En los métodos de Adams-Bashforth se define $f_k = f(x_k, y_k)$, y el número de pasos indica la cantidad de valores previos de y_i que deben conocerse para calcular y_{n+1} .

Por ejemplo, en el método de Adams–Bashforth de **dos pasos** es necesario conocer los valores y_0 y y_1 , donde y_1 puede obtenerse mediante alguno de los métodos de un solo paso presentados en la tabla anterior (por ejemplo, el método de Euler o Runge–Kutta de orden 4).

De manera similar, en el método de Adams-Bashforth de **tres pasos** se requieren los valores y_0 , y_1 y y_2 , los cuales pueden calcularse previamente utilizando alguno de los métodos de un solo paso.

Ejercicio: Implemente computacionalmente los métodos presentados en la tabla anterior para aproximar la solución del siguiente problema de Cauchy:

$$\begin{cases} y'(x) = x + y(x), \\ y(0) = 1, \end{cases}$$

en el intervalo [0,1] utilizando n=6 subintervalos. Compare los resultados obtenidos con la solución analítica $y(x)=2e^x-x-1$, analizando la precisión y el comportamiento de cada método en los puntos obtenidos.