Etapa judeţeană — soluţii şi barem orientativ, clasa a XI-a

Problema 1. (a) Dați un exemplu de două matrice A și B din $\mathcal{M}_2(\mathbb{R})$, astfel încât

$$A^2 + B^2 = \left(\begin{array}{cc} 2 & 3\\ 3 & 2 \end{array}\right).$$

(b) Arătați că, dacă A și B sunt două matrice din $\mathcal{M}_2(\mathbb{R})$, astfel încât $A^2 + B^2 = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$, atunci ele nu comută, $AB \neq BA$.

(b) Dacă matricele A și B ar comuta, atunci $A^2 + B^2 = (A + iB)(A - iB)$, deci

$$|\det(A + iB)|^2 = \det(A + iB)\det(A - iB) = \det(A^2 + B^2) = \det\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} = -5 < 0,$$

contradicție. 4 puncte

Problema 2. (a) Arătați că, dacă $f: \mathbb{R} \to \mathbb{R}$ este o funcție, astfel încât funcțiile $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(x) + f(2x), și $h: \mathbb{R} \to \mathbb{R}$, h(x) = f(x) + f(4x), sunt continue pe \mathbb{R} , atunci și f este continuă pe \mathbb{R} .

(b) Daţi un exemplu de funcţie discontinuă $f: \mathbb{R} \to \mathbb{R}$, care are următoarea proprietate: există un interval $I \subset \mathbb{R}$, astfel încât, oricare ar fi a în I, funcţia $g_a: \mathbb{R} \to \mathbb{R}$, $g_a(x) = f(x) + f(ax)$, este continuă pe \mathbb{R} .

(b) Functia $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0, \end{cases}$$

Problema 3. (a) Fie A o matrice din $\mathcal{M}_2(\mathbb{C})$, $A \neq aI_2$, oricare ar fi $a \in \mathbb{C}$. Arătați că o matrice X din $\mathcal{M}_2(\mathbb{C})$ comută cu matricea A, adică AX = XA, dacă și numai dacă există două numere complexe α și α' , astfel încât $X = \alpha A + \alpha'I_2$.

(b) Fie A, B şi C trei matrice din $\mathcal{M}_2(\mathbb{C})$, astfel încât $AB \neq BA$, AC = CA şi BC = CB. Arătați că C comută cu orice matrice din $\mathcal{M}_2(\mathbb{C})$.

Soluție. (a) Este evident că dacă X are forma din enunț, atunci X comută cu A. Reciproc, fie $A = \begin{pmatrix} a_1 & a_2 \\ a'_1 & a'_2 \end{pmatrix}$ și $X = \begin{pmatrix} x_1 & x_2 \\ x'_1 & x'_2 \end{pmatrix}$. Condiția AX = XA implică

$$a_2 x_1' = a_1' x_2, (1)$$

$$(a_1 - a_2')x_2 + a_2(x_2' - x_1) = 0, (2)$$

$$(a_1 - a_2')x_1' + a_1'(x_2' - x_1) = 0. (3)$$

Întrucât A nu este de forma aI_2 , $a \in \mathbb{C}$, sau cel puţin unul dintre elementele a_2 , a'_1 este nenul sau $a_2 = a'_1 = 0$ şi $a_1 \neq a'_2$.

În primul caz, fie $a_2 \neq 0$ — dacă $a_1' \neq 0$, procedăm în mod analog. Exprimând pe x_1' din relația (1) și pe x_2' din relația (2), rezultă

$$X = \frac{x_2}{a_2}A + \left(x_1 - \frac{a_1}{a_2}x_2\right)I_2.$$

În fine, dacă $a_2=a_1'=0$ și $a_1\neq a_2'$, atunci relația (2) implică $x_2=0$, iar relația (3) implică $x_1'=0$ și rezultă

$$X = \frac{x_1 - x_2'}{a_1 - a_2'} A + \frac{a_1 x_2' - a_2' x_1}{a_1 - a_2'} I_2.$$

Problema 4. Fie $f: \mathbb{N} \to \mathbb{N}^*$ o funcție strict crescătoare. Arătați că:

- (a) Există un şir descrescător de numere reale, strict pozitiv, $(y_n)_{n\in\mathbb{N}}$, convergent la 0, astfel încât $y_n \leq 2y_{f(n)}$, oricare ar fi $n \in \mathbb{N}$;
- (b) Dacă $(x_n)_{n\in\mathbb{N}}$ este un şir descrescător de numere reale, convergent la 0, atunci există un şir descrescător de numere reale, $(y_n)_{n\in\mathbb{N}}$, convergent la 0, astfel încât $x_n \leq y_n \leq 2y_{f(n)}$, oricare ar fi $n \in \mathbb{N}$.
- Soluţie. (a) Întrucât f(0) > 0 şi f este strict crescătoare, rezultă că f(n) > n, oricare ar fi $n \in \mathbb{N}$. Considerăm şirul strict crescător $(n_k)_{k \in \mathbb{N}}$ de numere naturale, definit prin $n_0 = 0$ şi $n_k = f(n_{k-1}), k \in \mathbb{N}^*$ monotonia acestui şir rezultă din proprietatea precedentă a lui f. Definim apoi şirul descrescător $(y_n)_{n \in \mathbb{N}}, y_n = 2^{-k}, n_k \le n < n_{k+1}, k \in \mathbb{N}$ monotonia şi convergența la 0 ale acestui şir sunt evidente.

(b) În mod evident, $x_n \geq 0$, oricare ar fi $n \in \mathbb{N}$, deoarece $(x_n)_{n \in \mathbb{N}}$ este descrescător şi convergent la 0.

Reamintim şirul strict crescător $(n_k)_{k\in\mathbb{N}}$ de numere naturale, definit la punctul (a): $n_0=0$ şi $n_k=f(n_{k-1}),\ k\in\mathbb{N}^*$. Definim apoi şirul descrescător $(z_k)_{k\in\mathbb{N}}$ de numere reale pozitive, $z_0=x_1$ şi $z_k=\max{(x_{n_k},z_{k-1}/2)},\ k\in\mathbb{N}^*$ — monotonia acestui şir rezultă inductiv, folosind monotonia şirurilor $(n_k)_{k\in\mathbb{N}}$ şi $(x_n)_{n\in\mathbb{N}}$. În plus, $(z_k)_{k\in\mathbb{N}}$ este convergent la 0: dacă există o infinitate de indici k, astfel încât $z_k=x_{n_k}$, atunci convergența la 0 a lui $(z_k)_{k\in\mathbb{N}}$ rezultă din

monotonia sa şi convergența la 0 a lui $(x_n)_{n\in\mathbb{N}}$; iar dacă există doar un număr finit de indici k, astfel încât $z_k=x_{n_k}$, atunci $z_k=z_{k-1}/2$ de la un rang încolo şi din nou $(z_k)_{k\in\mathbb{N}}$ converge la 0.

În fine, definim şirul $(y_n)_{n \in \mathbb{N}}$, $y_n = z_k$, $n_k \le n < n_{k+1}$, $k \in \mathbb{N}$. Monotonia şi convergenţa la 0 ale acestui şir rezultă din proprietățile corespunzătoare ale şirului $(z_k)_{k \in \mathbb{N}}$.