Wprowadzenie teoretyczne:

Przypomnij pojęcie funkcji pierwotnie rekurencyjnej oraz definicję funkcji Ackermanna.

Odpowiedź:

Funkcja pierwotnie rekurencyjna, to funkcja którą da się zbudować z funkcji prostych za pomocą ich składania oraz operacji podstawiania i rekursji.

Funkcja Ackermanna A: $IN \times IN \rightarrow IN$ zdefiniowana jest następująco:

$$A(x,y) = \begin{cases} y+1 & \text{dla } x = 0 \\ A(x-1,1) & \text{dla } x > 0 \text{ oraz } y = 0 \\ A(x-1,A(x,y-1)) & \text{dla } x > 0 \text{ oraz } y > 0 \end{cases}$$

Zadanie 1

Wykaż, że następujące funkcje są pierwotnie rekurencyjne:

a.
$$f(x,y) = x \cdot y$$
,
b. $f(x,y) = x^y$ (przyjmujemy, że $0^0 = 1$),
c. $f(x) = x!$
d. $sg(x) = \begin{cases} 1 & dla \ x > 0 \\ 0 & dla \ x = 0 \end{cases}$
e. $x - 1 = \begin{cases} x - 1 & dla \ x > 0 \\ 0 & dla \ x = 0 \end{cases}$
f. $x - y = \begin{cases} x - y & dla \ x \ge y \\ 0 & dla \ x < y \end{cases}$
g. $|x - y|$

Rozwiązanie:

a.
$$f(x,y) = x \cdot y$$
,

funkcja ta może uzyskana z funkcji pierwotnie rekurencyjnych za pomocą operacji rekursji:

$$f(x,0) = 0,$$

 $f(x,y+1) = f(x,y) + x.$

b.
$$f(x,y) = x^{y}$$
 (przyjmujemy, że $0^{0} = 1$),

funkcja ta może uzyskana z funkcji pierwotnie rekurencyjnych za pomocą operacji rekursji:

$$f(x,0) = 1,$$

$$f(x,y+1) = f(x,y) \cdot x.$$

c.
$$f(x) = x!$$

funkcja ta może uzyskana z funkcji pierwotnie rekurencyjnych za pomocą operacji rekursji:

$$f(0) = 1,$$

$$f(x+1) = f(x) \cdot S(x).$$

d.
$$sg(x) = \begin{cases} 1 & dla \ x > 0 \\ 0 & dla \ x = 0 \end{cases}$$

funkcja ta może uzyskana z funkcji prostych za pomocą operacji rekursji:

$$f(0) = Z(0),$$

$$f(x+1) = S(Z(x)).$$

e.
$$x - 1 = \begin{cases} x - 1 & dla & x > 0 \\ 0 & dla & x = 0 \end{cases}$$

funkcja ta może uzyskana z funkcji pierwotnie rekurencyjnych za pomocą operacji rekursji:

$$f(0) = 0,$$

$$f(x+1) = sg(x) \cdot S(f(x)),$$

$$\mathbf{f.} \quad \mathbf{x} \stackrel{\circ}{\longrightarrow} \mathbf{y} = \begin{cases} x - y \ dla \ x \ge y \\ 0 \qquad dla \ x < 0 \end{cases}$$

funkcja ta może uzyskana z funkcji pierwotnie rekurencyjnych za pomocą operacji rekursji:

$$f(x,0) = x,$$

$$f(x,y+1) = f(x,y) \stackrel{\circ}{-} 1,$$

g.
$$|x - y| = (x - y) + (y - x)$$

Zadanie 2

Jakie funkcje otrzymamy za pomocą schematu rekursji podstawiając za g oraz h:

a.
$$f(x)=x$$
, $g(x,y,z)=z^{x}$,

b.
$$f(x)=x$$
, $g(x,y,z)=x^{z}$,

Rozwiązanie:

a.
$$f(x)=x$$
, $g(x,y,z)=z^{x}$,

$$h(x,0) = x \text{ oraz } h(x,y+1) = h(x,y)^x, \text{ czyli}$$

 $h(x,1) = x^x$

$$h(x,2) = (x^x)^x = x^{x^2}$$

indukcyjnie można pokazać, że $h(x,y+1) = (x^{xy})^x = x^{x(y+1)}$

b.
$$f(x)=x$$
, $g(x,y,z)=x^{z}$,

$$h(x,0) = x$$
 oraz $h(x,y+1) = x^{h(x,y)}$, czyli
 $h(x,1) = x^x$

$$h(x,2) = x^{xx}$$

indukcyjnie można pokazać, że $h(x,y+1) = x^{\frac{x}{y+1} + \frac{x}{y+2}}$.

Zadanie 3

Niech A(x,y) oznacza funkcję Ackermana. Uzasadnij, że:

- **a.** A(x+1,y) > y+1,
- **b.** A(x,y+1) > A(x,y),
- **c.** A(x+1,y) > A(x,y),
- **d.** dla ustalonej wartości $x \in IN$ funkcja $A_x(y) = A(x,y)$ jest pierwotnie rekurencyjna.

Rozwiązanie:

a.

Dla x=0 oraz y=0 mamy A(x+1,y) = 2 > 1 = y+1.

Załóżmy, że x=0 oraz (*) A(x+1,y) > y+1 dla wszystkich y=0...k. Wówczas $\underline{A(x+1,k+1)} = A(1,k+1) = A(0,A(1,k)) = A(1,k) + 1 >^{(*)} \underline{k+2}$.

Załóżmy, że x>0, y=0 oraz (*) A(x+1,y) > y+1 dla wszystkich x=0...k oraz dowolnego y. Wówczas $A(k+1+1,0) = A(k+1,1) >^{(*)} 2 > 1$.

Załóżmy, że x>0, y>0 oraz (*) A(x+1,y)>y+1 dla wszystkich x=0...k i dowolnego y oraz dla x=k+1 i y=0...n.

Wówczas $\underline{A(k+1+1, n+1)} = A(k+1, A(k+2,n)) >^{(*)} A(k+2, n) + 1 >^{(*)} \underline{n+2}$.

b.

Dla x=0 oraz y=0 mamy A(x,y+1) = 2 > 1 = A(x,y).

Załóżmy, że x=0.

Wówczas A(x, k+1) = A(0, k+1) = k+2 > k+1 = A(0, k).

Załóżmy, że x>0, y=0.

Wówczas A(k+1,y+1) = A(k+1,1) = A(k,A(k,1)) > (z a.) A(k,1) = A(k+1,0).

Załóżmy, że x>0, y>0.

Wówczas A(k+1, n+1) = A(k, A(k+1,n)) > (z a.) A(k+1, n) + 1 > A(k+1, n).

c.

Dla x=0 oraz y=0 mamy A(x+1,y) = 2 > 1 = A(x,y).

Załóżmy, że x=0 oraz (*) A(x+1,y) > A(x,y) dla wszystkich y=0...k.

Wówczas $A(x+1, k+1) = \underline{A(1, k+1)} = A(0, A(1,k)) = A(1,k) + 1 >^{(*)} A(0,k) + 1 = k+2 = \underline{A(0,k+1)}.$

Załóżmy, że x>0, y=0.

Wówczas A(k+1,0) = A(k,1) > (z b.) A(k,0).

Załóżmy, że x>0, y>0.

Wówczas $A(k+1, n+1) = A(k, A(k+1,n)) > (z \ a. \ oraz \ b.) \ A(k, n+1).$

d.

Dowiedziemy tego indukcyjnie.

Dla x=0 mamy $A_0(y)=A(0,y)=y+1$ jest funkcją pierwotnie rekurencyjną. Załóżmy, że język A_x jest rekurencyjny. Wówczas język A_{x+1} można wyrazić za pomocą rekursji korzystając z funkcji A_x , o której wiemy, że jest pierwotnie rekurencyjna:

$$h(0) = A_x(1)$$

$$h(y+1) = A_x(h(y)),$$

czyli przyjmując za f funkcję stałą równą $A_x(1)$ zaś za g funkcję przyporządkowującą parze (y,h(y)) wartość $A_x(h(y))=A_x(A_{x+1}(y))=A(x,A(x+1,y))=A(x+1,y+1)=A_{x+1}(y+1)$.

Zadania domowe:

A. Wykaż, że następujące funkcje są pierwotnie rekurencyjne:

a.
$$\overline{sg}(x) = \begin{cases} 0 & dla \ x > 0 \\ 1 & dla \ x = 0 \end{cases}$$

- b. max(x,y)
- c. $f(x_1,\ldots,x_n,x_{n+1}) = \sum_{i=1}^{x_{n+1}} g\left(x_1,\ldots,x_n,i\right)$
- d. lh(x) liczba dzielników x, które są liczbami pierwszymi (przyjmujemy lh(0)=0)
- **B.** Niech A(x,y) oznacza funkcję Ackermana. Uzasadnij, że dla ustalonej wartości $y \in IN$ funkcja $A_y(x) = A(x,y)$ jest pierwotnie rekurencyjna.