تبسيط الدوائر المنطقية باستخدام خرائط كارنوف

محاضرة 6

By: Zahra Elashaal

1

خرائط كـــارنوف Karnaugh Maps

- مخطط كارنو (Karnaugh Map)، أو K-Map اختصاراً، هو عبارة عن طريقة أخرى
 للتعبير عن المعلومات الموجودة في جدول الصدق أويمكن اعتبارها صيغة مختلفة لجدول
 الحقيقة.
- والهدف من استخدام المخطط هو تسهيل عملية اكتشاف التشابهات ما بين الحدود و جمع الحدود المتشابه.
 - عدد مربعاتها 2ⁿ حيث n عدد المتغيرات.
 - كل مربع يمثل حد أصغر
 - كل مرَّبعين متجاورين يختلفان في متغير واحد فقط.
 - المربعات المتجاورة (أفقياً أو عمودياً فقط) يمكن دمجها في صورة أبسط بشرط أن يكون عددها 2 أو 4 أو 8 او 16
 - بحيث يتم استبعاد المتغير المتذبذب

2

TGS126

عدد الخلايا في خريطة كارنوف يعتمد على عدد المتغيرات (المدخلات)

عدد الخلايا او المربعاتها هو 2ⁿ حيث n عدد المتغيرات

1- خريطة كارنوف لمتغيرين: لوكان هناك متغيرين هما (A,B) فإن خريطة كارنوف تحتوي فقط على أربعة إحتمالات (00,01,10,11) وبالتالي لهما أربع مربعات وكل مربع منها بمثل حد من حواصل الضرب الأربعة كالتالى:

A	В	Y	- n
0	0	$\overline{A} \overline{B}$	B B
0	1	Ā B∕	$\overline{\mathbf{A}}$ $\overline{\mathbf{A}}\overline{\mathbf{B}}$ $\overline{\mathbf{A}}\mathbf{B}$
1	0	$A\overline{B}$ AB	$A A \overline{B} AB$
1	1	A B	
	•		

يتم تمثيل المتغير بإحتمالية 0 و1 رأسياً وأفقياً. لاحظ أن المتغير A يظهر مكملاً في الصف 0 وغير مكمل في الصف 1

3

خطوات تمثيل دالة ذات متغيرين في خريطة كارنوف

1- نرسم الخريطة والتي تحتوي على أربعة مربعات تمثل جميع الاحتمالات الممكنة لمتغيرات الدخل A,B

2- وضع واحد في كل مربع ينتمي للدالة.

3- تجميع كل مربعين متجاوريين أفقياً أو رأسياً حيث يحتوي كل منها على واحد.

4- تبسيط المربعات المتجاورة إلى متغيرات ثابتة

4

ملاحظات محمة

عدد المربعات التي يمكن ضمها يجب أن تكون 1 أو 2 أو 4 (قوى 2) وذلك لمتغيرين حيث:

- يمثل المربع الواحد حداً مؤلفاً من متغيرين.
- يمثل مربعان متجاوران حداً مؤلفاً من حرف واحد.
- يمثل أربعة مربعات متجاورة الدالة التي تساوي 1.

6

التبسيط باستخدام مخططات كارنو (Karnaugh Maps)

مخطط كارنو لمتغيرين:

سنقوم بتحويل جدول الصواب التالي، و الذي يحتوي على متغيري دخل هما B، A إلى مخطط كارنو في متغيرين

#	A	В	x			
0	0	0	1			
1	0	1	0			
2	1	0	0			
3	1	1	1			

7

بسط الدوال المنطقية التالية:

$$E(x,y) = \overline{x}y + xy$$

$$F(x,y) = \overline{x}y + \overline{x}\overline{y}$$

$$X \qquad 0 \qquad 1$$

$$0 \qquad 1 \qquad 1$$

E(x,y)=Y

X	Y	F	E	Minterm	
0	0	1	0	\mathbf{m}_0	$\overline{X}\overline{Y}$
0	1	1	1	m ₁	XY
1	0	0	0	m ₂	ΧŸ
1	1	0	-1		vv

 $F(x,y)=\overline{x}$

8

2- خريطة كارنوف لثلاث متغيرات

لوكان هناك ثلاث متغيرات هما (A,B,C) فإن خريطة كارنوف تحتوي فقط على ثمانية

إحتالات وبالتالي لهما ثمانية مربعات كالتالي: n=2 عدد الخلايا هو n=2 عدد الخلايا

#	A	В	С	Minterm	
0	0	0	0	\mathbf{m}_0	ĀBC
1	0	0	1	\mathbf{m}_1	ĀBC
2	0	1	0	\mathbf{m}_2	ĀBC
3	0	1	1	\mathbf{m}_3	ABC
4	1	0	0	m ₄	ABC
5	1	0	1	m ₅	ABC
6	1	1	0	m ₆	ABC
7	1	1	1	m ₇	ABC

10

2- خريطة كارنوف لثلاث متغيرات

نلاحظ بأن حدود حواصل الضرب ليست مرتبة بمتتابعة ثنائية:

110 - 010 - 001 - 000

ولكن تترتب بحيث أنه عند الانتقال من مربع لمربع آخر مجاور يتغير واحد فقط من المتغيرين من 0 إلى 1 أو العكس.

تعتبر الخريطة موضوعة على سطح أسطوانة حيث تتلامس الحافتان اليمني واليسرى

 $B\overline{C}$

 \mathbf{m}_2

 \mathbf{m}_6

 $\overline{\mathbf{B}}\mathbf{C}$

 \mathbf{m}_1

 \mathbf{m}_{5}

 \mathbf{m}_3

 \mathbf{m}_{7}

 $\overline{\mathbf{BC}}$

 \mathbf{m}_0

Α

Α \mathbf{m}_{4} لتكوين مربعات متجاورة فمثلاً:

m تعتبر مجاورة لـ m

 m_{α} تعتبر مجاورة ل m_{α}

11

ملاحظات مهمة

عدد المربعات التي يمكن ضمها يجب أن تكون 1 أو 2 أو 4 أو 8 (قوى 2) وذلك لثلاثة متغيرات حيث:

- يمثل المربع الواحد حداً مؤلفاً من ثلاثة حروف.
- يمثل مربعان متجاوران حداً مؤلفاً من حرفين.
- يمثل أربعة مربعات متجاورة حداً من حرف واحد.
- تمثل ثمانية مربعات متجاورة الدالة التي تساوي 1.

12

2- خريطة كارنوف لثلاث متغيرات

من جدول الصدق ارسم خريطة كارنوف لإيجاد المعادلة.

#	A	В	C	F	Minterm	
0	0	0	0	0	\mathbf{m}_0 \overline{ABC}	
1	0	0	1	0	$\mathbf{m}_1 \overline{A}\overline{B}C$	
2	0	1	0	1	$\mathbf{m}_2 \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}}$	
3	0	1	1	1	\mathbf{m}_3 $\overline{A}BC$	
4	1	0	0	1	\mathbf{m}_4 $\mathbf{A}\mathbf{\overline{B}}\mathbf{\overline{C}}$	
5	1	0	1	1	\mathbf{m}_{5} $\mathbf{A}\overline{\mathbf{B}}\mathbf{C}$	
6	1	1	0	0	\mathbf{m}_6 AB \overline{C}	
7	1	1	1	0	m ₇ ABC	

13

 $F(x,y,z) = \overline{y} + y\overline{z}$ المعادلة السابقة ليست في ابسط صورة لان

المجموعات لم تؤخد بطريقة صحيحة

 $F(x,y,z) = \overline{y} + \overline{z}$

بسط الدوال المنطقية التالية:

$$F(x,y,z) = \sum (3,4,6,7)$$

 $F(x,y,z) = x\overline{z} + yz$

14

بسط الدوال المنطقية التالية:

A	В	C	F	Minterm	
0	0	0	0	\mathbf{m}_0	ĀBC
0	0	1	0	m ₁	ĀBC
0	1	0	0	m ₂	ĀBC
0	1	1	1	m ₃	ABC
1	0	0	1	m ₄	ABC
1	0	1	0	m ₅	ABC
1	1	0	1	m ₆	ABC
1	1	1	1	m ₇	ABC

15

بسط الدوال المنطقية التالية:

A	В	C	F	Minterm	
0	0	0	1	\mathbf{m}_0	ĀBC
0	0	1	0	m ₁	ĀBC
0	1	0	1	m ₂	ĀBC
0	1	1	0	m ₃	ĀBC
1	0	0	1	m ₄	ABC
1	0	1	1	m ₅	ABC
1	1	0	1	\mathbf{m}_6	ABC
1	1	1	0	m ₇	ABC

 $F(A, B, C) = \overline{C} + A\overline{B}$

16

بسط الدالة التالية باستخدام خرائط كارنوف:

$$F(A, B, C) = \overline{AC} + \overline{AB} + A\overline{BC} + BC$$

الحل بالطريقة الاولى:

• نحاول استكمال كتابة المعادلة بعدد متغيرات الادخال لكل حد وفي الحالين: حالة يكون المتغير الاضافي منبت وحالة يكون المتغير الاضافي منفي

$$F(A, B, C) = \overline{A} \, \overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}B\overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}BC$$

$$F(A, B, C) = \overline{ABC} + \overline{ABC}$$

$$F(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$F(A,B,C) = \Sigma(1,2,3,5,7)$$

الحل بعد التبسيط

$$F(A,B,C) = C + \overline{A}B$$

17

بسط الدالة التالية باستخدام خرائط كارنوف:

 $F(A, B, C) = \overline{A}C + \overline{A}B + A\overline{B}C + BC$

الحل بالطريقة الثانية:

• الحل بطريقة اخرى وذلك برسم كل حد مباشرة في خريطة كارنوف كما يلي:

18

20

خرائط كارنوف لأربعة متغيرات

- لأربعة متغيرات يوجد ستة عشر مربع مخصصة لحواصل الضرب.
- الصفوف والأعمدة مرقمة بمتتابعة بحيث يتغير متغير واحد فقط قيمته بين صفين أو عمودين متجاورين.
- يتم تعريف المربعات المتجاورة بأنها المربعات الموجودة جنبا إلى جنب كما ان الخريطة تعتبر موضوعة على سطح تتلامس فيه الحافتان العليا والسفلى وأيضا اليمنى واليسرى لتكوين مربعات متجاورة.

2 ⁿ =	2 ⁴ =	= 16	هو	الخلايا	عدد	n=4
------------------	-------------------------	-------------	----	---------	-----	-----

CD AB	$\overline{\mathbf{C}}\overline{\mathbf{D}}$	$\overline{\mathbf{C}}_{\mathbf{p}}$	CD	$C\overline{\overline{\mathbf{p}}}$
	\mathbf{m}_0	\mathbf{m}_1	\mathbf{m}_3	\mathbf{m}_2
$\overline{\mathbf{A}}\overline{\mathbf{B}}_{00}$	ĀĒCD	ĀBCD	ĀĒCD	ĀĒCD
	m ₄	\mathbf{m}_{5}	m ₇	\mathbf{m}_{6}
AB	ĀBCD	ĀBCD	ABCD	$\overline{A}BC\overline{D}$
01	4	5	7	6
	m ₁₂	\mathbf{m}_{13}	\mathbf{m}_{15}	m ₁₄
AB 11	ABCD 12	ABCD	ABCD ₁₅	ABCD 14
	m ₈	m ₉	m ₁₁	m ₁₀
$\mathbf{A}_{10}^{\overline{\mathbf{B}}}$	ABCD ₈	ABCD 9	ABCD	\overline{ABCD}
l	0	9	11	10

21

	A	В	C	D	Mint	erms
	0	0	0	0	m_0	ĀBCD
	0	0	0	1	m_1	ĀBCD
	0	0	1	0	m_2	ĀBCD
	0	0	1	1	m_3	ĀĒCD
	0	1	0	0	m_4	ĀBCD
	0	1	0	1	m_5	ĀBCD
	0	1	1	0	m_6	ĀBCD
	0	1	1	1	m_7	ABCD
	1	0	0	0	m_8	ABCD
	1	0	0	1	m_9	ABCD
	1	0	1	0	m ₁₀	$A\overline{B}C\overline{D}$
	1	0	1	1	m ₁₁	\overline{ABCD}
	1	1	0	0	m ₁₂	ABCD
	1	1	0	1	m ₁₃	ABCD
	1	1	1	0	m ₁₄	$ABC\overline{D}$
4	1	1	1	1	m	ABCD

خرائط كارنوف لأربعة متغيرات

CD AB	$\overline{C}\overline{D}$	$\overline{\mathbf{C}}\mathbf{D}$	CD	$C\overline{\overline{D}}$
	\mathbf{m}_0	\mathbf{m}_1	\mathbf{m}_3	\mathbf{m}_2
AB	\overline{ABCD}_{0}	ĀBCD	ĀBCD ₃	$\overline{A}\overline{B}C\overline{D}_{2}$
_	m ₄	\mathbf{m}_{5}	m ₇	\mathbf{m}_{6}
AB	ABCD	ĀBCD	ĀBCD	ĀBCD
	4	5	7	6
	m ₁₂	\mathbf{m}_{13}	m ₁₅	m ₁₄
AB	$AB\overline{C}\overline{D}_{12}$	ABCD	ABCD ₁₅	ABCD ₁₄
	\mathbf{m}_8	\mathbf{m}_{9}	m ₁₁	${\bf m}_{10}$
ΑB	\overline{ABCD}_{8}	ABCD 9	ABCD	ABCD
	Ü		- 11	10

22

ملاحظات محمة

عدد المربعات التي يمكن ضمها يجب أن تكون 1 أو 2 أو 4 أو 8 أو 16 (قوى 2) وذلك لأربعة متغبرات حيث:

- يمثل المربع الواحد حد حاصل ضرب مؤلف من أربعة حروف.
 - يمثل مربعان متجاوران حداً مؤلفاً من ثلاثة حروف.
 - يمثل أربعة مربعات متجاورة حداً من حرفين.
 - تمثل ثمانية مربعات متجاورة حداً من حرف واحد.
 - ثمثل ستة عشر مربعاً متجاورة الدالة التي تساوي 1.

23

24

26

اختصر الدالة المنطقية التالية: $F(A,B,C,D) = \overline{A}\overline{B}\overline{C} + \overline{B}C\overline{D} + \overline{A}BC\overline{D} + A\overline{B}\overline{C}$ $F(A,B,C,D) = \overline{ABCD} + \overline{ABCD}$ \mathbf{C} $\overline{\mathbf{C}}\mathbf{D}$ CD \overline{CD} $\overline{\mathbf{A}}\overline{\mathbf{B}}$ 0 $F(A, B, C, D) = \overline{BD} + \overline{BC} + \overline{ACD}$ AB 0 0 0 AB 0 0 0 0 A-0 D

28

الدول غير المحدده بالكامل (Incompletely Specified Functions) Don't Care Conditions الحالات المجهولة

في بعض الحالات تكون قيمة الدالة مجهولة أو مستحيلة الحدوث، أو أن مخرجاتها غير معلوم ما اذا كان 0 او 1 ففي مثل هذه الحالات يعرف خرج الدالة بأنه غير محم (Don't Cares) ويرمز إليها بالرمز x حيث أنها تساعدنا في الحل بحيث:

- لا يتوجب علينا تغطية المربعات التي تحتوي على x بالكامل،

- وإذا احتجنا لاستخدامها نستخدمها مع المربعات التي تحتوي على قيمة 1 لتجميعها في مجموعات من قوى (2).

مثالا على ذلك: في نظام التشفير BCD العشرة أرقام الأولى فقط مستخدمة بينها الستة الأخرى لا يمكن حدوثها وبهذا سوف نعتبرها حالات محملة Don't Care

29

مثال: يوضح طريقة ظهور القيم غير المحددة في جداول الصواب، وفي مخططات كارنو، وفي التعبيرات المنطقية المكتوبة في صورة مجموع الحدود الصغرى SOP وفي صورة مضروب الحدود الكبري POS

#	¥	A	B	C	y
	9	0	0	0	0
1	ı	0	0	1	1
2	2	0	1	0	1
3	3	0	1	1	0
	1	1	0	0	1
1 5	5	1	0	1	×
(5	1	1	0	0
17	7	1	1	1	×

$$y = f(A, B, C) = \sum m (1,2,4) + \sum d (5,7)$$
$$y = f(A, B, C) = \prod M(0,3,6) \cdot \prod d (5,7)$$

30

بسط الدالة المنطقية (F (A,B,C,D التي تعطي الخرج يساوي 1 عندما تكون شفرة الـ BCD أكبر من أو تساوى 5. القيم التي أكبر من أو تساوي 5 CD هي من 5 إلى 9 في نظام BCD $\overline{\mathbf{C}}\overline{\mathbf{D}}$ $\overline{\mathbf{C}}\mathbf{D}$ AB CD \overline{CD} وباقي الحالات بعد ذلك هي مستحيلة ونرمز لها بالرمز X 0 $\overline{\mathbf{A}}\overline{\mathbf{B}}$ 0 $\overline{\mathbf{A}}\mathbf{B}$ 0 1 F(A, B, C, D) = A + BD + BCB X X AB X A $A\overline{B}$ Χ X Ď

32

No	A	В	C	D	Y
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	X
11	1	0	1	1	X
12	1	1	0	0	X
13	1	1	0	1	X
14	1	1	1	0	X
15	1	1	1	1	X

من جدول الصدق قم بكتابة التعبير المنطقي لمتغير الخرج Y في صورة:

1- مجموع الحدود الصغرى SOP

2- مضروب الحدود الكبرى POS

ثم قم بتبسيط المعادلات باستخدام خرائط كلينوف

صورة مجموع الحدود الصغرى SOP:

$$Y(A,B,C,D) = \sum m(1,2,5,6,9) + \sum d(10,11,12,13,14,15)$$

صورة مضروب الحدود الكبرى POS:

$$Y(A,B,C,D) = \prod M(0,3,4,7,8) \ . \prod d(10,11,12,13,14,15)$$

33

							نوف:	خرائط کار	ستخدام خ	ادلات بان	بيط المع	نبس
N	lo	A	В	C	D	Y		5	ــتخدام خ غری 9 <mark>0</mark> 0	حدود الٰص	جموع ال	- م
(0	0	0	0	0	0						
	1	0	0	0	1	1		$\mathbf{Y}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) = \overline{\mathbf{C}}\mathbf{D} + \mathbf{C}\overline{\mathbf{D}}$				
	2	0	0	1	0	1	CD		_	<u> </u>		
	3	0	0	1	1	0	AB	$\overline{\mathbf{C}}\overline{\mathbf{D}}$	$\overline{\mathbf{C}}\mathbf{D}$	CD	\overline{CD}	
	4	0	1	0	0	0		·				
-	5	0	1	0	1	1	$\overline{\mathbf{A}}\overline{\mathbf{B}}$	0	1	0	1	
(6	0	1	1	0	1		0	1	3	2	
	7	0	1	1	1	0		0		0		
	8	1	0	0	0	0	AB	0	1	0	1	
	9	1	0	0	1	1	_	4	5	7	6	
1	10	1	0	1	0	X	4.70	X	X	X	X	
1	11	1	0	1	1	X	A AB		X		X	
1	12	1	1	0	0	X	'	12	13	15	14	\vdash
1	13	1	1	0	1	X	$A\overline{B}$	0	1	Х	х	
1	14	1	1	1	0	X	Ab	8				
1	15	1	1	1	1	X	_	8	9	11	10	J
									Г)		

34

(استخدام خائما کا نمف		وا ال	
	No	A	В	C	D	Y	استخدام خرائط کارنوف: کبری POS	لعادلات ا الحدود ال	مضروب مضروب	ببر -2
	0	0	0	0	0	0	$\mathbf{Y}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})=($	(C + D).	$(\overline{C} + \overline{D})$)
İ	1	0	0	0	1	1			C C	
	2	0	0	1	0	1	CD			
	3	0	0	1	1	0	$AB \qquad \overline{C}\overline{D} \qquad \overline{C}D$	CD	\overline{CD}	_
	4	0	1	0	0	0				
	5	0	1	0	1	1	$\overline{\mathbf{A}}\overline{\mathbf{B}}$ 0 1	0	1	
	6	0	1	1	0	1				
	7	0	1	1	1	0				
	8	1	0	0	0	0	$\overline{\mathbf{A}}\mathbf{B} = \begin{bmatrix} 0 & 1 \end{bmatrix}$	0	1	В
	9	1	0	0	1	1		X	X	
	10	1	0	1	0	X	AR X X			
	11	1	0	1	1	X	AB X X			
	12	1	1	0	0	X	A	+		┦
	13	1	1	0	1	X	$\mathbf{A}_{\mathbf{A}\overline{\mathbf{B}}} = 0$	X	X	
	14	1	1	1	0	X	AD C			
	15	1	1	1	1	X		\		J
	_							$^{\dagger}\mathbf{D}$		_

36