Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6 Linguagens Livres do Contexto**
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

- 1.1 Introdução
 - 1.1.1 Sintaxe e Semântica
 - 1.1.2 Abordagem
- 1.2 Conjuntos, Relações e Funções
- 1.3 Noções de Lógica
- 1.4 Técnicas de Demonstração
- 1.5 Indução

1.1 Introdução

◆ Teoria das Linguagens Formais

- desenvolvida na década de 1950
- objetivo inicial
 - * desenvolver teorias relacionadas com as linguagens naturais
- entretanto, logo foi verificado que era importante
 - * estudo de linguagens artificiais
 - em especial, para as linguagens originárias da Computação e Informática
- desde então, desenvolveu-se significativamente

Exemplos de aplicações

- análise léxica e análise sintática de linguagens de programação
- modelagem de circuitos lógicos ou redes lógicas
- modelagem de sistemas biológicos

• ...

Mais recentemente

- animações
- hipertextos e hipermídias
- linguagens não-lineares
 - * planares
 - * espaciais
 - * n-dimensionais

- 1.1 Introdução
 1.1.1 Sintaxe e Semântica
 1.1.2 Abordagem
- 1.2 Conjuntos, Relações e Funções
- 1.3 Noções de Lógica
- 1.4 Técnicas de Demonstração
- 1.5 Indução

1.1.1 Sintaxe e Semântica

Linguagens Formais

- problemas sintáticos das linguagens
- Importante apresentar os conceitos de
 - sintaxe e semântica
- ♦ Historicamente, o problema sintático
 - reconhecido antes do problema semântico
 - primeiro a receber um tratamento adequado
 - tratamento mais simples que os semânticos

◆ Conseqüência

- grande ênfase à sintaxe
- levando à idéia de que questões das linguagens de programação
 - * resumiam-se às questões da sintaxe

◆ Teoria da sintaxe possui construções matemáticas

- bem definidas e universalmente reconhecidas
- exemplo: Gramáticas de Chomsky

Linguagem de programação (ou qq modelo matemático) pode ser vista como uma entidade

- livre, sem qualquer significado associado
- juntamente com uma interpretação do seu significado

Sintaxe

- trata das propriedades livres da linguagem
- exemplo: verificação gramatical de programas

Semântica

- objetiva dar uma interpretação para a linguagem
- exemplo: significado ou valor para um determinado programa

◆ Consequentemente, a sintaxe:

- manipula símbolos
- sem considerar os seus correspondentes significados

Mas, para resolver qualquer problema real

- necessário dar uma interpretação semântica aos símbolos
- exemplo: estes símbolos representam os inteiros

◆ Sintaticamente "errado"

- não existe tal noção de programa
- simplesmente não é um programa da linguagem

Sintaticamente válido ("correto")

• pode não ser o programa que o programador esperava escrever

◆ Programa "correto" ou "errado"

se o mesmo modela adequadamente o comportamento desejado

Limites entre a sintaxe e a semântica

- nem sempre são claros
- exemplo: ocorrência de um nome em um programa
- entretanto, em linguagens artificiais
 - * distinção entre sintaxe e semântica é (em geral) óbvia

Análise léxica

- tipo especial de análise sintática
- centrada nas componentes básicas da linguagem
- portanto, também é ênfase das Linguagens Formais

- 1.1 Introdução1.1.1 Sintaxe e Semântica1.1.2 Abordagem
- 1.2 Conjuntos, Relações e Funções
- 1.3 Noções de Lógica
- 1.4 Técnicas de Demonstração
- 1.5 Indução

1.1.2 Abordagem

Centrada no tratamento sintático

- linguagens lineares abstratas
- com fácil associação às linguagens da Computação e Informática

Clasificação dos formalismos

- Operacional
- Axiomático
- Denotacional

Operacional

Autômato ou uma máquina abstrata

- estados
- instruções primitivas
- especificação de como cada instrução modifica cada estado

Máquina abstrata

- suficientemente simples
- para não permitir dúvidas sobre a execução de seu código

Também é dito um formalismo Reconhecedor

• análise de uma entrada para verificar se é "reconhecida"

Principais máquinas

- Autômato Finito
- Autômato com Pilha
- Máquina de Turing

Axiomático

- Associam-se regras
 - às componentes da linguagem
- Regras permitem afirmar
 - o que será verdadeiro após a ocorrência de cada cláusula
 - considerando-se o que era verdadeiro antes da ocorrência
- ◆ Também é dito um formalismo Gerador
 - verifica se um elemento da linguagem é "gerado"

◆ Abordagem é sobre Gramáticas

- Regulares
- Livres do Contexto
- Sensíveis ao Contexto
- Irrestritas

Denotacional

- Ou Funcional
- Define-se um domínio
 - caracteriza o conjunto de palavras admissíveis na linguagem
 - funções, em geral, composicionais (horizontalmente)
 - valor denotado por uma construção
 - * especificado em termos dos valores denotados por suas subcomponentes
- ◆ Abordagem restrita às Expressões Regulares
- ◆ Também é dito um formalismo Gerador
 - é simples inferir ("gerar") as palavras da linguagem

- 1.1 Introdução
 - 1.1.1 Sintaxe e Semântica
 - 1.1.2 Abordagem
- 1.2 Conjuntos, Relações e Funções
- 1.3 Noções de Lógica
- 1.4 Técnicas de Demonstração
- 1.5 Indução

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6 Linguagens Livres do Contexto**
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões