UNIVERSITY^{OF} BIRMINGHAM

School of Computer Science

Algorithms and Complexity (Extended)

Week 12 Continuous Assessment

Algorithms and Complexity (Extended)

Week 12 Continuous Assessment

This assessment has a total of 60 marks. You may want to read all the questions before starting to solve them.

Please note that you can only submit a single pdf file as your solutions.

You can use any results (theorems, algorithms, etc.) covered in the module (lectures and assignments).

Question 1

Let $n \ge 3$. Design a $2^n \cdot n^{O(1)}$ time algorithm for Almost Traveling Salesman Problem (Almost-TSP) problem which is defined as follows:

- Input: A set $C = \{c_1, c_2, ..., c_n\}$ of n cities and a distance function dist : $C \times C \to \mathbb{R}^{\geq 0}$. Note that dist(c, c) = 0 for each $c \in C$.
- Output: Return the distance of a tour which minimizes the total distance traveled when starting and ending at c_1 while visiting **exactly** n-2 cities from C.

Explain both the correctness and running time of your algorithm. [20 marks]

Question 2

The function $d: \{0, 1\}^3 \rightarrow \{0, 1\}$ is given by:

$$d(x, y, z) = 1 \iff x = y = 1 \text{ or } x = z = 0$$

(a) Write a CNF computing d(x, y, z).

[5 marks]

- (b) We may build expressions using d and the Boolean constant 0 to compute other Boolean functions. E.g. d(x, x, x) computes the Boolean constant 1, and d(0, 1, x) (which is shorthand for d(0, d(x, x, x), x)) computes $\neg x$.
 - Build expressions using d and 0 computing $x \lor y$ and $x \land y$. [5 marks]
- (c) We may build circuits with non-source nodes labelled by either d or 0, having 3 or 0 incoming edges respectively. Call such circuits {d, 0}-circuits.
 - Using (b), show that any Boolean circuit C (as usual, with non-source nodes labelled \neg , \lor or \land) can be polynomially transformed to a $\{d, 0\}$ -circuit C' computing the same Boolean function, such that depth(C') = O(depth(C)). [5 marks]

Question 3

Recall that the size of a CNF is its number of literal occurrences. A **minimal** CNF computing a Boolean function f is one of smallest size.

Write $\vec{x}=(x_1,\ldots,x_n)$ and $\vec{y}=(y_1,\ldots,y_n)$ and $\vec{z}=(z_1,\ldots,z_n)$. Consider the Boolean function:

$$f(\vec{x}, \vec{y}, \vec{z}) := \bigvee_{i=1}^{n} (x_i \wedge y_i \wedge z_i)$$

Let $\bigwedge_{j=1}^{m} \bigvee L_{j}$ be a **minimal** (i.e. of smallest size) CNF computing $f(\vec{x}, \vec{y}, \vec{z})$, where each L_{j} is a set of literals over $\vec{x}, \vec{y}, \vec{z}$.

- (a) Show that, for fixed Boolean inputs, if $\bigvee L_j = 0$ for some j = 1, ..., m, then $f(\vec{x}, \vec{y}, \vec{z}) = 0$. [5 marks]
- (b) Show that, for fixed Boolean inputs, if $f(\vec{x}, \vec{y}, \vec{z}) = 0$ then, for all i = 1, ..., n, one (or more) of x_i, y_i, z_i is 0. [5 marks]

Question 4

Read the document available at https://canvas.bham.ac.uk/courses/46223/files/10827563. Summarize (in roughly one page) in your own words what you understand about the Exponential Time Hypothesis (ETH).

[15 marks]