Directions: Please write as neatly as possible and show all of your work for maximum partial credit.

- 1. Indicate whether the given statement is true or false
 - 1. **(T/F)** $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$.
 - 2. **(T/F)** $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$.
 - 3. **(T/F)** $\cos\left(\frac{x}{2}\right) = \frac{1 + \cos(x)}{2}$.
 - 4. **(T/F)** $\sin(\frac{x}{2}) = \pm \sqrt{\frac{1 \cos(x)}{2}}$.
- 2. Derive an identity for $\cot(\frac{x}{2})$.(Hint: The only trig functions in your answer should be $\cos(x)$.)

3. Simplify the following expressions:

1.
$$1 - \frac{\sin^2(x)}{1 - \cos(x)}$$

2.
$$\frac{1-\cot^4(x)}{1-\cot^2(x)}$$

3.
$$\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)$$

4. Verify the following:

1.
$$\tan\left(-\frac{x}{3}\right)\cot\left(\frac{x}{3}\right) = -1$$

$$2. 4\csc(4x) = \frac{\sec(x)\csc(x)}{\cos(2x)}$$

3.
$$\cot\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\alpha}{2}\right) = 2\cot(\alpha)$$

5. Give the exact values for the following:

1.
$$\cos\left(\frac{\pi}{12}\right)$$

$$2. \sin\left(\cos^{-1}\left(\frac{7}{11}\right)\right)$$

3.
$$\cos(\tan^{-1}(\sqrt{5}))$$

6. If $\sec(x) = \sqrt{3}$ and $\sin(x) < 0$, find the exact value of $\tan\left(\frac{x}{2}\right)$.

7. Solve for θ in $4\cos^2(\theta) - 4\sin(\theta) = 5$.

8. **Extra Credit Problem:** Solve for θ in the following equation: $16\sin^4(\theta) - 8\sin^2(\theta) = 1$.