Section 1: Sets

The following are common sets we will see in this chapter:			
N : The set of natural numbers	These are numbers that can answer counting problems. ($\mathbb{N}=0,1,2,3,$)		
$\mathbb{Z}_{}$: The set of integers	$(\mathbb{Z}=,-3,-2,-1,0,1,2,3,)$		
Q : The set of rational numbers	These are characterized as ratios of integers such as $1/2$, $-17/4$, or $3/1$		
ℝ : The set of real numbers	These can be thought of as decimal numbers with possibly unending strings of digits after the decimal point.		

1. Match numbers to sets (___/3

For the following numbers, which set(s) do they belong to?

	IN	Z	Q	IR
10				
-5				
12 / 6				
π				
2.40				

- 2. List three numbers that are in the set of integers \mathbb{Z} , (___/1) but not in the set of natural numbers \mathbb{N} .
- 4. List three numbers that are in the set of real numbers \mathbb{R} , (___/1) but not in the set of rational numbers \mathbb{Q} .

Section 2: Subsets

Subsets and existence within sets:	
x exists in A	The notation $x \in A$ means "x is an element of A", which means that x is one of the members of set A.
A is a subset of B	A is a subset of B (written as $A \subseteq B$) if every element in A is also an element in B. Formally, this means that for every x , if $x \in A$, then $x \in B$.
A is equal to B	A is equal to B (simply written A = B) means that A and B have exactly the same members. This is expressed formally by saying, " $A \subseteq B$ and $B \subseteq A$ ".
Empty set	A set that contains no elements is called an <i>empty set</i> , and is denoted by $\{\ \}$ or \emptyset .
The universal set	For any given discussion, all the sets will be subsets of a larger set called the <i>universal set</i> or <i>universe</i> , for short. We commonly use the letter U to denote this set.

5. Given these sets,	(/	9)
or diven these sets,		~,

$$U = \{1, 2, 3, 4, 5, 6\}$$

$$B = \{ 2, 2 \}$$

 $D = \{ 1, 4 \}$

$$A = \{ 1, 1, 2, 2, 2, 4, 4 \}$$

$$C = \{ 1, 2, 4, 5, 6 \}$$

$$E = \{ 6, 5, 4, 2, 1 \}$$

a) Which are the true statements?

3.
$$U\subseteq \emptyset$$

4.
$$C \subseteq U$$

7.
$$B\subseteq \mathbb{Z}$$

8.
$$B\subseteq D$$

b) Fill in the blanks with either \subseteq (is a subset of), $\not\subseteq$ (not a subset of), or = (equal (___/6) to) for the following:

Section 3: Intersections, unions, and differences

The intersection of A and B $A \cap B$	Is the set that contains those elements common to both A and B. In set-builder notation, we write: $A \cap B = \{ x \in U : x \in A \land x \in B \}$
The union of A and B $A \cup B$	Is the set that contains those elements in either set A or B. In set-builder notation, we write; $A \cup B = \{ x \in U : x \in A \lor x \in B \}$
The difference of A and B $A-B$	Is the set that contains those elements in A which are not in B. In set-builder notation, we write: $A-B = \{ x \in U : x \in A \land x \notin B \}$
Disjoint	Sets A and B are <i>disjoint</i> if $A \cap B = \emptyset$
Complement A'	Given a set A with elements from the universe U, the complement of A (written A') is the set that contains those elements of the universal set U which are not in A. That is, $A' = U - A$.

Venn diagrams are used to visually represent relationships between sets. Set A and Set B (or more) are drawn as overlapping, and the shaded-in region is the resulting *set* based on any *intersections*, *unions*, *complements* or *differences*.

6. Color in the following Venn diagrams to match the statements:

(___/9)

a) $A \cap B$

b) $A \cap C$

c) $(A \cap B) \cup (A \cap C)$

d) $B \cup C$

e) $A \cap (B \cup C)$

f) B-C

g) B'

h) $(A \cup B) - B$

i) $A \cup (B-C)$

7. Given the following sets, verify each statement.

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 $A = \{1, 3, 5\}$ $B = \{1, 2, 3, 4\}$ $C = \{1, 2, 5, 6, 10\}$

It might help to write out each subset (e.g., $B \cup C$) as you go.

a) Verify
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 (___/1)

b) Verify
$$(A \cup B)' = A' \cap B'$$
 (___/1)

c) Verify
$$A \cap (A \cup B) = A$$
 (___/1)

Section 4: Set-builder notation

	o try to list every element of a set. We use <i>set-builder notation</i> to tre two different forms of set-builder notation:	describe
	iption is of the form, "The set of all x in U such that x is". perty of x, which determines whether an element of U is or is not	
	even integers: $\{x \in \mathbb{Z} : x=2y \text{ for some } y \in \mathbb{Z} \}$ real numbers bigger than 10: $\{x \in \mathbb{R} : x>10 \}$	
	on is of the form, "All numbers of the form, where x is in s rt will be some equation (like "2x" for even).	et D",
	integers that are multiples of 3: { $3k : k \in \mathbb{Z}$ } berfect square integers: { $m^2 : m \in \mathbb{N}$ }, or { $m^2 : m \in \mathbb{Z}$	}
8. Write the following	statement in form description and property description set-not	tation:
a) The set of all odd in	ntegers.	(/2)
1. Let's use <i>x</i> as our va	ariable.	
2. What set does it belo (This is LEFT OF THE : for RIGHT OF THE : for form	or prop description and	
3. In English, what is <i>x</i> (<i>This is RIGHT OF THE : f</i>		
4. How do you write ar (This is LEFT OF THE : for	on odd integer, using x as the variable: or form description.)	
Property Description: ({ set : property })	Form Description: ({ form : set })	
b) The set of all even i	integers.	(/2)
Property Description:	Form Description:	

9. Convert the following from property description to form description:

a) { $x \in \mathbb{N} : x \text{ is twice a perfect square }}$ (___/2)

We will be writing the form description with relation to *y*, rather than *x*.

- 1. If *y* is our variable to-be-squared, how do you write x in terms of y? (x is twice a perfect square)
- 2. If the variable *y* is a square-root of a perfect square, which set must it be part of? ($\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}$)
- 3. Write the equation (without x, in terms of y) as the left-hand side, and the set that y belongs in as the right-hand side:

b) {
$$x \in \mathbb{Q} : x = 2^m \text{ for some } m \in \mathbb{Z}$$
 } (___/2)

We will be writing the form description with relation to m, rather than x.

- 1. What is the equation for *x*?
- 2. What is the set that *m* exists in?
- 3. Write the equation (without x, in terms of m) as the left-hand side, and the set that m belongs in as the right-hand side:

c) { $x \in \mathbb{Z}$: x is the product of two consecutive integers } (___/2)

We will be writing the form description with relation to z, rather than x.

- 1. Write "x is the product of two consecutive integers", using z as the variable for the integer (and z+1) for its next item.
- 2. What set does *z* belong in?
- 3. Write the equation (without x, in terms of z) as the left-hand side, and the set that z belongs in as the right-hand side: