Model Theory

November 15, 2018

CONTENTS	2
CONTENTS	2

Contents

1	Langauges and structures	3
2	Terms, formulae, and their interpretations	5
3	Theories and Elementarity	9
4	Two relational structures	14
5	Compactness	20
6	Saturation	25
7	The Monster Model	31
8	Example class 1	33
	8.1 Question 3	33
	8.2 Question 4	33
	8.3 Question 5	33
	8.4 Question 6	33
	8.5 Question 7	33
	8.6 Question 8	34

1 Langauges and structures

Definition. (1.1) A language L consists of:

- \bullet (i) a set \mathcal{F} of function symbols, and for each $f \in \mathcal{F}$, a positive integer n_f , the arity of f;
- \bullet (ii) a set \mathcal{R} of relation symbols, and for each $R \in \mathcal{R}$, a positive integer n_R , the arity of R;
- \bullet (iii) a set \mathcal{C} of constant symbols.

Note that each of the above three sets can be empty.

Example. $L = \{\{\cdot, -1\}, \{1\}\}$ where \cdot is a binary function, -1 is a unary function, and 1 is a constant. We call this L_{gp} (language of groups); $L_{lo} = \{<\}$, where < is a binary relation (linear order).

Definition. (1.2)

Given a language L, say, an L-structure consists of:

- (i) a set M, the domain;
- (ii) for each $f \in \mathcal{F}$, a function $f^M : M^{n_f} \to M$;
- (iii) for each $R \in \mathcal{R}$, a relation $R^M \subseteq M^{n_R}$;
- (iv) for each $c \in \mathcal{C}$, an element $c^M \in M$.

 f^M, R^M, c^M are called the *interpretation* of f, R, c respectively.

Notation. (1.3)

We often fail to distinguish between the symbols in the language L and their interpretations in a L-structure, if the context allows.

We may write $\mathcal{M} = \langle M, \mathcal{F}, \mathcal{R}, \mathcal{C} \rangle$.

Example. (1.4)

(a) $\mathcal{R} = \langle \mathbb{R}^+, \{\cdot, -1\}, 1 \rangle$ is an L_{gp} -structure.

 $\mathcal{Z} = \langle \mathbb{Z}, \{+, -\}, 0 \rangle$ is also an L_{gp} -structure (here + is a binary and - is the unary negation function).

 $Q = \langle \mathbb{Q}, \langle \rangle$ is an L_{lo} structure ($\langle \rangle$ is the interpretation of relation).

Definition. (1.5)

Let L be a language, let \mathcal{M} and \mathcal{N} be L-structures.

An embedding of \mathcal{M} into \mathcal{N} is an injection $\alpha: M \to N$ that preserves the structure:

(i) For all $f \in \mathcal{F}$, and $a_1, ..., a_{n_f} \in M$,

$$\alpha(f^{M}(a_{1},...,a_{n_{f}})) = f^{N}(\alpha(a_{1}),...,\alpha(a_{n_{f}}))$$

(ii) For all $R \in \mathcal{R}$, and $a_1, ..., a_{n_R} \in M$,

$$(a_1, ..., a_{n_R}) \in R^M \iff (\alpha(a_1), ..., \alpha(a_{n_R})) \in R^N$$

Note that this is an if and only if.

(iii) For all $c \in \mathcal{C}$, we need

$$\alpha(c^M) = c^N$$

As anyone could expect, a surjective embedding $\mathcal{M} \to \mathcal{N}$ is also called an isomorphism of \mathcal{M} onto \mathcal{N} .

(1.6) Exercise. Let G_1, G_2 be groups, regarded as L_{gp} -structures. Check that $G_1 \cong G_2$ in the usual algebra sense, if and only if there is an isomprhism $\alpha: G_1 \to G_2$ in the sense of above definition 1.5.

2 Terms, formulae, and their interpretations

In addition to the symbols of L, we also have:

- (i) infinitely many variables, $\{x_i\}_{i\in I}$;
- (ii) logical connectives, \land , \neg (also express \lor , \rightarrow , \leftrightarrow);
- (iii) quantifier \exists (also express \forall);
- (iv) punctuations (,).

Definition. (2.1)

L-terms are defined recursively as follows:

- any variable x_i is a term;
- any constant symbol is a term;
- for any $f \in \mathcal{F}$,

$$f(t_1,...,t_{n_f})$$

for any terms $t_1, ..., t_{n_f}$ is a term;

• nothing else is a term.

Notation: we write $t(x_1,...,x_n)$ to mean that the variables appearing in t are among $x_1, ..., x_n$.

Example. In $\mathcal{R} = \langle \mathbb{R}, \cdot, -1, 1 \rangle$,

- $(\cdot(x_1, x_2), x_3)$ is a term $(x_1 \cdot x_2) \cdot x_3)$;
- $(\cdot(1,x_1))^{-1}$ is a term $(1\cdot x)^{-1}$.

Definition. (2.2)

If \mathcal{M} is an L-structure, to each L-term $t(x_1,...,x_k)$ we assign a function

$$t^M:M^k\to M$$

defined as follows:

- (i) If $t = x_i, t^M[a_1, ..., a_k] = a_i;$ (ii) If t = c is a constant, $t^M[a_1, ..., a_k] = c^m;$
- (iii) If $t = f(t_1(x_1, ..., x_k), ..., t_{n_f}(x_1, ..., x_k)),$

$$t^{M}(a_{1},...,a_{k})=f^{M}(t_{1}^{M}(a_{1},...,a_{k}),...,t_{n_{f}}^{M}(a_{1},...,a_{k}))$$

—Lecture 2—

No lecture this friday (12th Oct)! Will have an extra one on Monday 22 Oct at 12 (MR12).

First example class: Monday 29th Oct at 12.

Info on course and notes on http:

users.mct.open.ac.uk/sb27627/MT.html (it seems that it only comes after lecture, and is hand-written, so this notes still continues), or google Silvia Barbina MCT and follow link Part III Model Theory on lecturer's homepage.

Remark. (The lecture forgot about this last time) Any language L includes an equality symbol =.

Last time we assigned a function t^m . In L_{gp} , the term $x_2 \cdot x_3$ can be described as, say $t_1(x_1, x_2, x_3), t_2(x_1, x_2, x_3, x_4), \dots$

Then the term $x_2 \cdot x_3$ can be assigned to functions $t_1^M : M^3 \to M : (a_1, a_2, a_3) \to (a_2 \cdot a_3)$, or $t_2^M : M^4 \to M : (a_1, a_2, a_3, a_4) \to (a_2 \cdot a_3)$. These syntactic things are not really important – we just have to know that there is a corresponding action for each term.

We now define the *complexity* of a term t to be the number of symbols of L occurring in t.

Fact (2.3): Let \mathcal{M} and \mathcal{N} be L-structures, and let $\alpha : \mathcal{M} \to \mathcal{N}$ be an embedding. For any L-term $t(x_1, ..., x_k)$ and $a_1, ..., a_k \in \mathcal{M}$, we have

$$\alpha(t^{M}(a_{1},...,a_{k})) = t^{N}(\alpha(a_{1}),...,\alpha(a_{k}))$$

Proof. Prove by induction on complexity of t.

Let $\bar{a} = (a_1, ..., a_k)$ and $\bar{x} = (x_1, ..., x_l)$. Then:

- (i) if $t = x_i$ a variable, then $t^M(\bar{a}) = a_i$, and $t^N(\alpha(a_1), ..., \alpha(a_k)) = \alpha(a_i)$, so the conclusion holds;
- (ii) if t = c is a constant, then $t^M(\bar{a}) = c^M$, and $t^N(\alpha(\bar{a})) = c^N$ by definition of a term. The key here is that, since α is an embedding we have $\alpha(c^M) = c^N$; (iii) if $t = f(t_1(\bar{x}, ..., t_{n_f}(\bar{x})))$, then

$$\alpha(f^{M}(t_{1}^{M}(\bar{a}),...,t_{n_{f}}(\bar{a}))) = f^{N}(\alpha(t_{1}^{M}(\bar{a})),...,\alpha(t_{n_{f}}^{M}(\bar{a})))$$

as α is an embedding. But $t_1(\bar{x}),...,t_{n_f}(\bar{x})$ have lower complexity than t, so the inductive hypothesis applies.

Exercise (2.4): conclude the proof of the above fact. (Actually is it not done?)

Definition. (2.5)

The set of $atmoic\ formulas$ of L is defined as follows:

- (i) if t_1, t_2 are L-terms, then $t_1 = t_2$ is an atomic formula;
- (ii) if R is a relation symbol, and $t_1, ..., t_{n_R}$ are L-terms, then $R(t_1, ..., t_{n_R})$ is an atomic formula;
- (iii) nothing else is an atomic formula.

Definition. (2.6)

The set of L-formulas is defined as follows:

- (i) any atomic formula is an L-formula;
- (ii) if ϕ is an L-formula, then so is $\neg \phi$;
- (iii) if ϕ and ψ are L-formulas, then so is $\phi \wedge \psi$;
- (iv) if ϕ is an L-formula, for any $i \geq 1$, $\exists x_i \phi$ is a formula;
- (v) nothing else is a formula (note that \forall can be constructed by \neg and \exists).

Example. In L_{gp} , $x_1 \cdot x_1 = x_2$, or $x_1 \cdot x_2 = 1$ are both atomic formulas; $\exists x_1(x_1 \cdot x_2) = 1$ is an L-formula, but (obviously) not atomic.

A variable occurs freely in a formula if it does not occur within the scope of a quantifier \exists . We sometimes also say that the variable is free (from Part II Logic and Sets). Otherwise we say the variable is free (from Part II Logic and Sets).

We'll use the convention that no variable occurs both freely and as a bound variable in the same formula.

A sentence is a formula with no free variables. For example, $\exists x_1 \exists x_2 (x_1 \cdot x_2 = 1)$ is an L_{gp} -sentence.

Notation: $\phi(x_1,...,x_k)$ means that the free variables in ϕ are among $x_1,...,x_k$.

Now we introduce a long and inductive (and also in logic and sets) definition for which sentences are true:

Definition. (2.7)

Let $\phi(x_1,...,x_k)$ be an *L*-formula, let \mathcal{M} be an *L*-structure, and let $\bar{a}=a_1,...,a_k$ be elements of \mathcal{M} .

We define $\mathcal{M} \vDash \phi(\bar{a})$ (syntactic implication, read as M models $\phi(\bar{a})$) as follows: (i) if ϕ is $t_1 = t_2$, then $\mathcal{M} \vDash \phi(\bar{a}) \iff t_1^M(\bar{a}) = t_2^M(\bar{a})$;

(ii) if ϕ is $R(t_1, ..., t_{n_R})$, then $\mathcal{M} \models \phi(\bar{a})$ iff

$$\left(t_1^M(\bar{a}),...,t_{n_R}^M(\bar{a})\right) \in R^M$$

- (iii) if ϕ is a conjunction, say $\psi \wedge \chi$, then $\mathcal{M} \vDash \phi(\bar{a})$ iff $\mathcal{M} \vDash \psi(\bar{a})$ and $\mathcal{M} \vDash \chi(\bar{a})$; (iv) if ϕ is $\exists x_j \chi(x_1, ..., x_k, x_j)$ (where we'll assume that x_j is not one of the free variables $x_1, ..., x_k$), then $\mathcal{M} \vDash \phi(\bar{a})$ iff there exists $b \in \mathcal{M}$ s.t. $\mathcal{M} \vDash \chi(a_1, ..., a_k, b)$;
- (v) (lecture forgets this, this should probably be more in front rather than in the end) if ϕ is $\neg \psi$, then $\mathcal{M} \vDash \phi(\bar{a})$ iff $\mathcal{M} \not\vDash \psi(\bar{a})$.

Example. Consider $\mathcal{R} = \langle \mathbb{R}^*, \cdot, -1, 1 \rangle$, the multiplicative group of non-negative reals, and suppose we have $\phi(x_1) = \exists x_2(x_2 \cdot x_2 = x_1)$, then $\mathcal{R} \models \phi(1)$, but $\mathcal{R} \not\models \phi(-1)$.

Notation (2.8) (useful abbreviations, closer to real life. The precise formulas are not that important – the abbreviations mean what we expect in real life):

- $\phi \lor \psi$ for $\neg(\neg \phi \land \neg \psi)$;
- $\phi \to \psi$ for $\neg \phi \lor \psi$;
- $\phi \leftrightarrow \psi$ for $(\phi \to \psi) \land (\psi \to \phi)$;
- $\forall x_i \phi \text{ for } \neg \exists x_i (\neg \phi).$

Proposition. (2.9)

Let \mathcal{M} and \mathcal{N} be L-structures, and let $\alpha: \mathcal{M} \to \mathcal{N}$ be an embedding.

Let $\phi(\bar{x})$ be an atomic(!) formula, and $\bar{a} \in M^{|\bar{x}|}$, here $|\bar{x}|$ means the length of the tuple \bar{x} (from now on, when we write a tuple like \bar{a} , we will assume that it has the correct length without explicitly stating that), then

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(\alpha(\bar{a}))$$

Question: if ϕ is an L-formula, not necessarily atomic, does (2.9) still hold? (the answer is no!)

—Lecture 3—

Lecturer wants to reiterate that her email address is silvia.barbina@open.ac.uk. Just bring the work along. Unfortunately lecturer doesn't have an office here, so

no pigeonhole.

Check website for example sheet 1!

Additional assumption: assume the set of variables in a language are indexed by a linearly ordered set.

In definition 2.7 we defined what it means for $\mathcal{M} \vDash \phi(\bar{a})$, in particular we defined: if $\phi \equiv \neg \chi$, then $\mathcal{M} \vDash \phi(\bar{a})$ iff $\mathcal{M} \nvDash \chi(\bar{a})$. Here by $\mathcal{M} \vDash \phi(\bar{a})$ we mean $\mathcal{M} \vDash \neg \chi(\bar{a})$, and $\chi(\bar{a})$ is shorter than $\phi(\bar{a})$, so this definition by induction works.

Now let's go back to a sketch proof of (2.9).

Proof. There are two cases:

- $\phi(\bar{x})$ is of the form $t_1(\bar{x}) = t_2(\bar{x})$ where t_1, t_2 are terms. Use Fact (2.3). (exercise on example sheet)
- $\phi(\bar{x})$ is of the form $R(t_1(\bar{x}),...,t_{n_R}(\bar{x}))$. Then $\mathcal{M} \vDash R(t_1(\bar{a}),...,t_{n_R}(\bar{a}))$ if and only if ... (lecturer says work this out by yourself. Basically the induction step).

Proposition. (2.10)

Exercise: show that prop (2.9) holds if $\phi(\bar{x})$ is a formula without quantifiers (a quantifier-free formula).

(I guess that also suggests when does it not hold for general formulas – see below).

Example. (2.11, Do embeddings preserve all formulas? No.)

Let $\mathcal{Z} = (\mathbb{Z}, <)$ an L_{lo} -structure, $\mathcal{Q} = (\mathbb{Q}, <)$ also an L_{lo} -structure. Then

$$\alpha: \mathbb{Z} \to \mathbb{Q}$$
$$n \to n$$

is an embedding (check). But:

$$\phi(x_1, x_2) \equiv \exists x_3 (x_1 < x_3 \land x_3 < x_2)$$

Now $Q \vDash \phi(1,2)$ but $\mathcal{Z} \not\vDash \phi(1,2)$.

Fact (2.12) (From now on we'll stop saying that \mathcal{M}, \mathcal{N} are L-structures etc to save time) Let $\alpha: \mathcal{M} \to \mathcal{N}$ be an isomorphism. Then if $\phi(\bar{x})$ is an L-formula, and $\bar{a} \in \mathcal{M}^{|\bar{x}|}$, then

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(\alpha(\bar{a}))$$

The proof is left as an exercise (another one).

3 Theories and Elementarity

This is where the core materials begin.

Throughout this chapter, let L be a language, \mathcal{M}, \mathcal{N} be L-structures.

Definition. (3.1)

An L-theory T is a set of L-sentences.

 \mathcal{M} is a model of T if $\mathcal{M} \vDash \sigma$ for all $\sigma \in T$. We write $\mathcal{M} \vDash T$.

The class of all the models of T is written Mod(T).

The theory of \mathcal{M} is the set

$$Th(\mathcal{M}) = \{ \sigma : \sigma \text{ is an } L - \text{sentence and } \mathcal{M} \models \sigma \}$$

Example. (3.2)

Let T_{gp} be the set of L_{gp} -sentences:

(i) $\forall x_1 x_2 x_3 (x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3);$

(ii) $\forall x_1(x_1 \cdot 1 = 1 \cdot x_1 = x_1);$

(iii) $\forall x_1(x_1 \cdot x_1^{-1} = x_1^{-1} \cdot x_1 = 1)$. Clearly, for a group $G, G \vDash T_{gp}$ (as they are just the group axioms). However, for a specific group G, clearly the theory of it, Th(G) is lartger than T_{qp} .

Definition. (3.3)

 \mathcal{M} and \mathcal{N} are elementarily equivalent if $Th(\mathcal{M}) = Th(\mathcal{N})$.

We write $\mathcal{M} \equiv \mathcal{N}$.

Clearly, if $\mathcal{M} \simeq \mathcal{N}$ (\simeq means isomorphism), then $\mathcal{M} \equiv \mathcal{N}$.

But if \mathcal{M} and \mathcal{N} are not isomorphic, establishing whether $\mathcal{M} \equiv \mathcal{N}$ can be highly non-trivial!

We'll see $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$ as L_{lo} -structures(!).

Definition. (3.4)

(i) An embedding $\beta: \mathcal{M} \to \mathcal{N}$ is elementary if for all formulas $\phi(\bar{x})$ and $\bar{a} \in M^{|\bar{x}|}$,

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(\beta(\bar{a}))$$

- (ii) If $M \subseteq N$, and $id : \mathcal{M} \to \mathcal{N}$ is an embedding, then \mathcal{M} is a substructure of
- (iii) If $M \subseteq N$ and $id : \mathcal{M} \to \mathcal{N}$ is an elementary embedding (just accept it without thinking of what it actually means in reality), then \mathcal{M} is said to be an elementary substructure of \mathcal{N} , written as $\mathcal{M} \preceq \mathcal{N}$.

Example. (3.5)

Let $\mathcal{M} = [0, 1] \subseteq \mathbb{R}$, an L_{lo} -structure where < is the usual order;

Let $\mathcal{N} = [0, 2] \subseteq \mathbb{R}$, also an L_{lo} -structure with the same <.

Then $\mathcal{M} \simeq \mathcal{N}$ as L_{lo} -structures. So $\mathcal{M} \equiv \mathcal{N}$ (since they are isomorphic).

Also, $\mathcal{M} \subseteq \mathcal{N}$ (read as is a substructure of), since the ordering < coincides on \mathcal{M} and \mathcal{N} . However, $\mathcal{M} \nleq \mathcal{N}$, since if we pick the formula $\phi(x) \equiv \exists y (x < y)$, then $\mathcal{N} \vDash \phi(1)$, but $\mathcal{M} \not\vDash \phi(1)$.

Definition. (3.6)

Let \mathcal{M} be an L-structure, $A \subseteq M$, then

$$L(A) = L \cup \{c_a : a \in A\}$$

(where c_a are constant symbols). An interpretation of \mathcal{M} as an L-structure extends to an interpretation of \mathcal{M} as an L(A)-structure in the obvious way, i.e. $c_a^M = a$.

In this context, the elements of A are called *parameters*.

If \mathcal{M} and \mathcal{N} are two structures, and $A \subseteq M \cap N$, then

$$\mathcal{M} \equiv_A \mathcal{N}$$

where we mean \mathcal{M}, \mathcal{N} satisfy exactly the same L(A) sentences.

—Lecture 4—

Reminder: we have a lecture next Monday (22nd Oct)!

Proposition. It turns out that, $\mathcal{M} \preceq \mathcal{N} \iff \mathcal{M} \equiv_M \mathcal{N}$ (where M is the domain of \mathcal{M}).

Lemma. (3.8, Tarski-Vaught test)

Let \mathcal{N} be an L-structure, let $A \subseteq \mathcal{N}$. The following are equivalent:

- (i) A is the domain of a structure \mathcal{M} s.t. $\mathcal{M} \preceq \mathcal{N}$;
- (ii) if $\phi(x) \in L(A)$ (with an abuse of notations $\phi(x, c_{a_1}, ..., c_{a_n}) = \phi(x, a_1, ..., a_n)$), if $\mathcal{N} \models \exists x \phi(x)$, then $\mathcal{N} \models \phi(b)$ for some $b \in A$.

Proof. (i) \Longrightarrow (ii): Suppose $\mathcal{N} \vDash \exists x \phi(x)$. Then by elementarity, $\mathcal{M} \vDash \exists x \phi(x)$, and so $\mathcal{M} \vDash \phi(b)$ for $b \in \mathcal{M}$. So (again by elementarity), $\mathcal{N} \vDash \phi(b)$.

(ii) \Longrightarrow (i): This is the harder direction. First we prove that A is the domain of a substructure $\mathcal{M} \subseteq \mathcal{N}$.

By Sheet 1 Q4, it suffices to check:

- (a) For each constant $c, c^N \in A$;
- (b) For each function symbol $f, f^N(\bar{a}) \in A$ (for all $\bar{a} \in A^{n_R}$);

For (a), use property (ii) with $\exists x(x=c)$.

For (b), use property (ii) with the formula $\exists x((\bar{a}) = x)$.

So we now have $\mathcal{M} \subseteq \mathcal{N}$, and domain of \mathcal{M} is A. But we actually want to prove that $\mathcal{M} \preceq \mathcal{N}$. Now let $\chi(\bar{x})$ be an L-formula.

We want to show that for $\bar{a} \in A^{|\bar{x}|} \mathcal{M} \models \chi(\bar{a}) \iff \mathcal{N} \models \chi(\bar{a})$ (*).

By induction on the complexity of $\chi(\bar{x})$:

- if $\chi(\bar{x})$ is atomic, (*) follows from $\mathcal{M} \subseteq \mathcal{N}$ (since \mathcal{M} is a substructure!);
- if $\chi(\bar{x})$ is $\neg \psi(\bar{x})$ or $\chi(\bar{x})$ is $\psi(\bar{x}) \wedge \xi(\bar{x})$, it's a straightforward induction;
- (interesting case) if $\chi(\bar{x}) = \exists y \psi(\bar{x}, y)$ where $\psi(\bar{x}, y)$ is an *L*-formula, suppose that $\mathcal{M} \vDash \chi(\bar{a})$, then $\mathcal{M} \vDash \exists y \psi(\bar{a}, y)$, hence $\mathcal{M} \vDash \psi(\bar{a}, b)$ for some $b \in A = \text{dom}(\mathcal{M})$ (this is the definition of truth).

But then $\mathcal{N} \vDash \psi(\bar{a}, b)$ by inductive hypothesis, so $\mathcal{N} \vDash \chi(\bar{a})$.

Now let $\mathcal{N} \vDash \chi(\bar{a})$, i.e. $\mathcal{N} \vDash \exists y \psi(\bar{a}, y)$ (we find a witness for it). By property (ii), $\mathcal{N} \vDash \psi(\bar{a}, b)$ for some $b \in A = \text{dom}(\mathcal{M})$.

Again by inductive hypothesis, we have $\mathcal{M} \models \psi(\bar{a}, b)$, and so in particular, $\mathcal{M} \models \chi(\bar{a})$ as it has got a witness there.

Remark. (3.9)

Even more assumptions: let's assume that the set of variables is countably infinite. Then:

• the cardinality of the set of L-formulas is $|L| + \omega$ (where by |L| we mean

the number of symbols. For example, $|L_{gp}| = 3$, $|L_{lo}| = 1$), where we abuse another notation that we use ω as cardinals (rather than ordinals) (note that the formulas are just strings of finite length);

• if A is a set of parameters in some structure, the cardinality of the set L(A) is $|A| + |L| + \omega$, where by + here we merely mean $\max\{|L|, |A|, \omega\}$ (instead of addition), and same for the + above.

Definition. (3.10)

Let λ be an ordinal. Then a chain of length λ of sets is a sequence $\langle M_i : i < \lambda \rangle$, where $M_i \subseteq M_j$ for all $i \leq j < \lambda$.

A chain of L-structures is a seequence: $\langle \mathcal{M}_i : i < \lambda \rangle$ s.t. $\mathcal{M}_i \subseteq \mathcal{M}_j$ (note that it's substructure here) for $i \leq j < \lambda$.

The union of this chain is the L-structure \mathcal{M} defined as follows:

- the domain is $\bigcup_{i<\lambda} M_i$ (when you think of this, you can always start with the case $\lambda = \omega$);
- for constants c, $c^M = c^{M_i}$ for any $i < \lambda$ (this is well defined, because of the substructure condition above);
- if f is a function symbol, $\bar{a} \in M^{|n_f|}$ (why the mod sign here), $f^M \bar{a} = f^{M_i} \bar{a}$ where i is s.t. $\bar{a} \in M_i^{|n_f|}$;
- if R is a relation symbol, then $R^M = \bigcup_{i \leq \lambda} R^{M_i}$.

Theorem. (3.11, Downward Löwenheim-Skolem theorem)

(Recall that in part II Logic and Set Theory we had the countable version of this)

Let \mathcal{N} be an L-structure, and $|\mathcal{N}| \geq |L| + \omega$. Let $A \subseteq \mathcal{N}$. Then for every cardinal λ s.t. $|L| + |A| + \omega \leq \lambda \leq |\mathcal{N}|$, there is $\mathcal{M} \preccurlyeq \mathcal{N}$ s.t.

(i) $A \subseteq M$;

(ii) $|\mathcal{M}| = \lambda$.

(It helps to think about the case $|A| = \omega$ and |N| is uncountable.) A quick example how this could be useful (we'll go very sloppy here): think of $(\mathbb{C}, +, \cdot, -, \cdot^{-1}, 0, 1)$ as a field. Consider $\mathbb{Q} \subseteq \mathbb{C}$ (both as subset and substructure). Note that algebraic closeness is a property of \mathbb{C} . By downward Löwenheim-

Skolem, there is a substructure in C that contains \mathbb{Q} that is also algebraically closed (apparently, the set of algebraic numbers).

Proof. We build a chain $\langle A_i : i < \lambda \rangle$, with $A_i \subseteq N$, s.t. $|A_i| = \lambda$. (our goal: define an elementary substructure with domain $M = \bigcup_{i < \omega} A_i$).

Base case: Let $A_0 \subseteq N$ be such that $A \subseteq A_0$ and $|A_0| = \lambda$.

Successors: At stage i + 1, assume A_i has been built, with $|A_i| = \lambda$.

Let $\langle \phi_k(x) : k < \lambda \rangle$ be an enumeration of those $L(A_i)$ -formulas such that $\mathcal{N} \vDash \exists x \phi_k(x)$. Let a_k be such that $\mathcal{N} \vDash \phi_k(a_k)$, and let $A_{i+1} = A_i \cup \{a_k : k < \lambda\}$ (basically, with those witnesses added). Then $|A_{i+1}| = \lambda$ (note that we haven't increased the size).

Now let $M = \bigcup_{i < \omega} A_i$ (note the subscript range). We use lemma (3.8) to show that M is the domain of $\mathcal{M} \leq \mathcal{N}$, and $|M| = \lambda$. We're running out of time, so we'll continue next Monday.

—Lecture 5—

Solutions to worksheet 1: either take along to lecture on Friday, or email them to silvia.barbina@open.ac.uk.

Let's continue with the proof:

Start with $A_0 \subset N$, $A \subseteq A_0$, $|A_0| = l$. The idea is to define $\langle A_i : i < \omega \rangle$ so that $M = \bigcup_{i < \omega} A_i$ satisfies (ii) via the TV test (3.8).

List all formulas $\phi(x, \bar{a})$ (\bar{a} is a tuple in A_0), and $\mathcal{N} \vDash \phi(b, \bar{a})$ for some b.

Add each such b to A_0 (one for each such ϕ).

Let $A_1 = A_0 \cup \{ \text{ all thes } b$'s $\}$.

Repeat for formulas $\phi(x, \bar{a})$ where \bar{a} is in $A_1,...$

Eventually, $\langle A_i : i < \omega \rangle$ is such that $M = \bigcup_{i < \omega} A_i$ is as required (i.e. M is the domain of some elementary substructure of \mathcal{N} that we need).

We claim that M satisfies condition (ii) in Lemma (3.8): Let $\mathcal{N} \models \exists x \psi(x, \bar{a})$, where \bar{a} is a tuple in M. Then \bar{a} is a finite tuple, so there is an i s.t. \bar{a} is in A_i .

Then A_{i+1} , by construction, contains b s.t. $\mathcal{N} \vDash \phi(b, \bar{a})$. But $A_{i+1} \subseteq M, b \in M$. Then apply (3.8) we're done.

4 Two relational structures

Definition. (4.1, dense linear orders)

A linear order is an $L_{lo} = \{<\}$ -structure such that:

- (i) $\forall x \neg (x < x);$
- (ii) $\forall xyz((x < y \land y < z) \rightarrow x < z);$
- (iii) $\forall xy((x < y) \lor (y < x) \lor x = y)$ (total).

A linear order is *dense* if, in addition, it also satisfies:

- (iv) $\exists xy(x < y);$
- (v) $\forall xy, (x < y \rightarrow \exists z (x < z \land z < y))$ (density).

A linear order has no endpoints if, in addition,

(vi) $\forall x (\exists y (x < y) \land \exists z (z < x)).$

We use T_{dlo} to denote the theory that includes all axioms (i) to (vi), and T_{lo} is the theory that includes axioms (i) to (iii) only.

Remark. (iv) and (v) imply that if $\mathcal{M} \models T_{dlo}$, then $|\mathcal{M}| \ge \omega$.

Definition. (4.2)

If $\mathcal{M}, \mathcal{N} \vDash T_{lo}$, then an injective map $p : A \subseteq M \to N$ is a partial embedding if $\mathcal{M} \vDash a < b \implies \mathcal{N} \vDash p(a) < p(b)$.

In particular, if $|\operatorname{dom}(p)| < \omega$, then p is a finite partial embedding.

Lemma. (4.3, extension lemma)

Take a linear order $\mathcal{M} \models T_{lo}$, and a dense linear endpoints $\mathcal{N} \models T_{dlo}$, and let $p: M \to N$ be a finite partial embedding. Then if $c \in \mathcal{M}$, there is a finite partial embedding \hat{p} s.t. $p \subseteq \hat{p}$ and $c \in \text{dom}(\hat{p})$.

(we can always add one extra element in our embedding.)

Proof.

Case 1: c is greater than all elements in dom(p). In that case, pick an element $d \in \mathcal{N}$ s.t. d > b for all $b \in img(p)$;

Case 2: $a_i < c < a_{i+1}$ where $a_i, a_{i+1} \in \text{dom}(p)$. Then we choose $\mathcal{N} \models p(a_i) < d < p(a_{i+1})$, where d is chosen appropriately by density (here's the case why we

need \mathcal{N} to be dense;

Case 3: c is less than all elements in dom(p). This is similar to case 1.

Note that the ability to extend by one point allows us to embed any finite linear order into a dense linear order without endpoints. \Box

Theorem. (4.4)

Let $\mathcal{M}, \mathcal{N} \models T_{dlo}$ s.t. $|\mathcal{M}| = |\mathcal{N}| = \omega$. Let $p : A \subseteq M \to N$ be a finite partial embedding.

Then there is an isomorphism $\pi: \mathcal{M} \to \mathcal{N}$ s.t. $p \subseteq \pi$.

Proof. Enumerate M, N, say $M = \langle a_i : i < \omega \rangle$, $N = \langle b_i : i < \omega \rangle$ (sequences of elements).

We define, inductively, a chain of finite partial embedding $\langle p_i : i < \omega \rangle$ (idea: $\pi = \bigcup_{i < \omega} p_i$).

Let's start with $p_0 = p$. At stage i + 1, suppose we are given p_i . We want to include a_i in dom p_{i+1} , and b_i in the $img(p_{i+1})$.

(Lecturer calls this a back and forth method) Forth step: By lemma 4.3, we can extend p_i to $p_{i+\frac{1}{2}}$ such that $a_i \in \text{dom}(p_{i+\frac{1}{2}})$;

Back step: By lemma 4.3 again applied to $(p_{i+\frac{1}{2}})^{-1}$ to include $b_i \in \text{dom}(p_{i+1}^{-1})$ (i.e. in the range of p_{i+1}).

We claim that p_{i+1} extends p_i as required.

Let $\pi = \bigcup_{i < \omega} p_i$. Then (check) π is an isomorphism (i.e. order-preserving bijection).

Definition. (4.5)

An L-theory is consistent if there is L-structure \mathcal{M} s.t. $\mathcal{M} \models T$.

If T is a theory in L and ϕ is an L-sentence, then $T \vdash \phi$ (read as T entails ϕ , note that this has nothing to do with syntactic implication) if for all \mathcal{M} such that $\mathcal{M} \vDash T$, we have $\mathcal{M} \vDash \phi$.

Finally, an L-theory T is complete if for all L-sentences ϕ , either $T \vdash \phi$ or $T \vdash \neg \phi$ (see part II Logic and Set Theory).

For example, T_{dlo} is complete.

—Lecture 6—

Definition. (4.6)

A theory T in a countable language with a (infinitely) countable model is ω -categorical if any two countable models of T are isomorphic.

Corollary. (4.7 of theorem (4.4))

 T_{dlo} is ω -categorical.

Proof. If $\mathcal{M}, \mathcal{N} \models T_{dlo}$, $|\mathcal{M}| = |\mathcal{N}| = \omega$, then ϕ (the empty map) is a finite partial embedding. But by theorem (4.4) we get $\mathcal{M} \simeq \mathcal{N}$.

(We can also use any $\{\langle a, b \rangle\}$ where $a \in \mathcal{M}$ and $b \in \mathcal{M}$ as initial finite partial embedding).

Theorem. (4.8)

(erratum 26th Oct 2018: lecturer wants to add a condition T has no finite models.

Then the problem with (4.11) is fixed.)

If T is an ω -categorical theory in a countable language, then T is complete.

Proof. Let $\mathcal{M} \models T$ and ϕ be an L-sentence.

If $\mathcal{M} \models \phi$, suppose $\mathcal{N} \models T$. Then by theorem (3.11) (Downward Lowenheim-Skolem), there are $\mathcal{M}' \preceq \mathcal{M}$, $\mathcal{N}' \preceq \mathcal{N}$ s.t. $|\mathcal{M}'| = |\mathcal{N}'| = \omega$.

But $\mathcal{M}' \simeq \mathcal{N}'$ (by ω -categoricity), so in particular $\mathcal{M}' \equiv \mathcal{N}'$, and so $\mathcal{N}' \models \phi$. By elementarity, $\mathcal{N} \models \phi$.

The case $\mathcal{M} \vDash \neg \phi$ is similar.

(Think about if T could have a finite model.)

Corollary. (4.9)

 T_{dlo} is complete.

Definition. (4.10)

If \mathcal{M} , \mathcal{N} are L-structures, a map f such that $\mathrm{dom}(f) \subseteq M$ (the domain of \mathcal{M}), and $img(f) \subseteq N$ is a (partial) elementary map if for all L-formulas $\phi(\bar{x})$ and $\bar{a} \in (\mathrm{dom}(f))^{|\bar{x}|}$, then

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(f(\bar{a}))$$

Remark. (4.11)

A map f is elementary iff every finite restriction of f is elementary.

(Why? For forward, if $f_0 \subseteq f$ is a finite restriction that is not elementary, then for some formula $\phi(\bar{x})$, $\bar{a} \in \text{dom}(f_0)$, the above equivalence doesn't hold; but then that equivalence doesn't hold for f either; contradiction; for backward, if f is not elementary, then the above equivalence fails on a finite tuple, so the above equivalence fails on some finite restriction.)

Proposition. (4.12)

Let $\mathcal{M}, \mathcal{N} \models T_{dlo}$, and let $p : A \subseteq M \to N$ be a partial embedding. Then p is elementary.

Proof. By remark (4.11), it suffices to consider p finite.

By Downward L-S theoem (3.11), we choose $\mathcal{M}', \mathcal{N}'$ such that

- (i) $|\mathcal{M}'| = |\mathcal{N}'| = \omega$;
- (ii) $\mathcal{M}' \preceq \mathcal{M}, \, \mathcal{N}' \preceq \mathcal{N};$
- (iii) $dom(p) \subseteq M', img(p) \subseteq N'$.

Now p is a finite partial embedding between countable models, so p extends to an isomorphism $\pi: \mathcal{M}' \to \mathcal{N}'$.

In particular, π is an elemntary map between \mathcal{M} and \mathcal{N} .

Corollary. (4.13)

 $(\mathbb{Q},<) \preccurlyeq (\mathbb{R},<).$

Proof. Use proposition (4.12) with $id: \mathbb{Q} \to \mathbb{R}$.

Definition. (4.14)

(See Part II Logic and Set Theory)

Let $L_{gph} = \{R\}$, where R is a binary relation symbol.

An L_{gph} -structure is a graph if

- (i) $\forall x \neg R(x,x)$;
- (ii) $\forall xy(R(x,y) \leftrightarrow R(y,x))$.

An L_{gph} -structure is a random graph if it is a graph such that the following axiom-schema (r_n) hold:

$$\forall x_0...x_n, y_0...y_n, (\bigwedge_{i,j=0}^n x_i \neq y_j \rightarrow \exists z (\bigwedge_{i=0}^n (z \neq x_i) \land (z \neq y_i) \land R(z,x_i) \land \neg R(z,y_i)))$$

(iii) $\exists xy(x \neq y)$.

Remark. (similar to what is mentioned in the link above)

A random graph is infinite. Given a finite subset, we can always find a vertex that is connected to every vertex in the subset (likewise for not connected).

Fact. (4.15)

There is a random graph.

Proof. Let the domain be ω , let $i, j \in \omega$ such that i < j. Write j as a sum of distinct powers of 2. Then $\{i, j\}$ is an edge iff 2^i appears in the sum.

As an exercise, prove that ω with this definition of R is indeed a random graph.

Definition. (4.16, or more precisely just notations)

 $T_{gph} = \{\text{axioms (i), (ii)}\}, T_{rg} = T_{gph} \cup \{(\text{iii}), (r_n) : n \in \omega\}.$ If $\mathcal{M}, \mathcal{N} \models T_{gph}$, a partial embedding is an injection $p : A \subseteq M \to N$ s.t. $\mathcal{M} \vDash R(p(a), p(b)) \iff \mathcal{N} \vDash R(a, b) \text{ for all } a, b \text{ in the domain.}$

Lemma. (4.17)

Let $\mathcal{M} \vDash T_{gph}, \mathcal{N} \vDash T_{rg}$, let $p : A \subseteq M \to N$ be a finite partial embedding, and let $c \in M$.

Then there is a map $\hat{p}: \hat{A} \subseteq M \to N$ such that \hat{p} is a partial embedding, $c \in \operatorname{dom} \hat{p}, \, p \subseteq \hat{p}.$

(This is like another extension lemma.)

We'll prove this next time.

—Lecture 7—

Last time we defined what a random graph is (in this course). We also defined what is a partial embedding in this theory (just preserves all edges). Let's continue with the proof of the lemma now. Let $c \in M$, $c \notin \text{dom}(p)$.

Find $d \in N$ such that $\mathcal{N} \models R(d, p(a)) \iff \mathcal{M} \models R(c, a)$.

Theorem. (4.18)

Let $\mathcal{M}, \mathcal{N} \models T_{rg}$ and $|\mathcal{M}| = |\mathcal{N}| = \omega$, and $P : A \subseteq M \to N$ is a finite partial embedding.

Then $\mathcal{M} \simeq \mathcal{N}$, by an isomorphism that extends p.

Proof. Same as proof of Theorem (4.4) (there is only one model of T_{dlo} up to isomorphism), but with lemma (4.17) instead of lemma (4.3).

Corollary. (4.19)

 T_{rg} is ω -categorical (see definition (4.6) – this is just a restatement of the theorem above) and complete.

In particular, every finite partial embedding between models of T_{rg} is an elementary map.

Remark. The unique (up to isomorphism) model of T_{rg} is the countable random graph, or the Rado graph.

It is universal w.r.t. finite and countable graphs (i.e. it embeds all).

Another nice property (which you are not required to see this immediately – it is far from trivial) *ultrahomogeneous*, i.e. every isomorphism between finite substructures extends to an automorphism of the whole graph.

Google *David Marker's* book, or *Tent-Ziegler*. Warning: both of them contain a lot of typos.

5 COMPACTNESS

5 Compactness

Definition. (5.1)

Suppose we have a L-theory T.

(i) T is finitely satisfiable if every finite subset of sentences in T has a model.

20

- (ii) T is maximal if for all L-sentences σ , either $\sigma \in T$ or $\neg \sigma \in T$.
- (iii) T has the witness property (WP): if for all $\phi(x)$ (L-formula with 1 free variable), there is a constant $c \in \mathcal{C}$ s.t.

$$(\exists x \phi(x) \to \phi(c)) \in T$$

Lemma. (5.2)

If T is maximal and finitely satisfiable (we'll sometimes use f.s. from now onwards), and ϕ is an L-sentence, and $\triangle \subseteq T$ and $\triangle \vdash \phi$, then $\phi \in T$. (Prove it by yourself)

Lemma. (5.3)

Let T be a maximal, f.s. theory with WP. Then T has a model.

Moreover, if λ is a cardinal and $|\mathcal{C}| \leq \lambda$ (\mathcal{C} is the set of constants in L), then T has a model of size at most λ .

Proof. Let \mathcal{C} be the constants of L. Let $c, d \in \mathcal{C}$, define $c \sim d$ iff $c = d \in T$.

We claim that \sim is an equivalence relation: reflexivity and symmetry are trivial; for transitivity, let $c \sim d$ and $d \sim e$. Then $c = d \in T$ and $d = e \in T$. Then by the lemma $c = e \in T$ as it is implied by the two sentences. So $c \sim e$.

Notation: we'll use $c/\sim = c^*$ to denote the equivalence class of c.

Now define a structure \mathcal{M} whose domain is $\mathcal{C}/\sim=M$. Clearly, $|M|\leq \lambda$ if $|\mathcal{C}|\leq \lambda$.

We must define interpretations in \mathcal{M} for symbols for L:

- If $c \in \mathcal{C}$, then $c^m = c^* (= c/\sim)$;
- If $R \in \mathcal{R}$ is a relation symbol, we define $R^{\mathcal{M}} = \{(c_1^*, ..., c_{n_R}^*) : R(c_1, ..., c_{n_R}) \in T\}$.

We have to check that $R^{\mathcal{M}}$ is well-defined: suppose $\bar{c}, \bar{d} \in \mathcal{C}^{n_R}$ and suppose $c_i \sim d_i$ for each i, i.e. $c_i = d_i \in T$ for every $i = 1, ..., n_R$. However, now

$$R(\bar{c}) \in T \iff R(\bar{d}) \in T$$

by maximality of T and the previous lemma. So that $R^{\mathcal{M}}$ is well defined.

• If $f \in \mathcal{F}$ is a function symbol, then $f\bar{c} = d \in T$ for some $d \in \mathcal{C}$: this is because $\exists x (f(\bar{c}) = x) \in T$ by maximality and f.s..

Then define $f^{\mathcal{M}}(\bar{c}^*) = \bar{d}^*$ (obvious notation).

We also have to check this is well-defined. Lecturer decides to left this to us. Now we claim that the terms behave nicely as what the theory says, i.e. if $t(x_1,...,x_n)$ is an L-term and $c_1,...,c_n,d\in\mathcal{C}$, then $t(c_1,...,c_n)=d\in T\iff t^{\mathcal{M}}(c_1^*,...,c_n^*)=d^*$.

- ullet \Longrightarrow : by induction on the complexity of T (lecturer decided to leave this as another exercise).
- \Leftarrow : Assume $t^{\mathcal{M}}(c_1^*,...,c_n^*)=d^*$. Then $t(c_1,...,c_n)=e\in T$ for some constant e (why? As our theory is maximal, it has to say what the result is when we apply

t to these terms). We then use \implies to get that $t^{\mathcal{M}}(c_1^*,...,c_n^*)=e^*$.

But then $d^* = e^*$, i.e. $d = e \in T$. So by lemma (5.2), the sentence implied by these two sentences, $t(c_1,...,c_n)=d\in T$.

The last massive claim: for all L-formulas $\phi(\bar{x})$ and $\bar{c} \in \mathcal{C}^{|\bar{x}|}$, we have

$$\mathcal{M} \vDash \phi(\bar{c}) \iff \phi(\bar{c}) \in T$$

The proof is by induction on complexity of $\phi(\bar{x})$ (The lecturer decided to leave yet another proof to us - lots of work to be done here. Lecturer is speeding up!).

—Lecture 8—

Lemma. (5.4)

Let T be a f.s. L-theory. Then there are $L^* \supseteq L$ and a f.s. $T^* \supseteq T$ such that:

- (i) $|L^*| = |L| + \omega$;
- (ii) any L^* -theory extending T^* has WP.

Proof. Define $\langle L_i : i < \omega \rangle$ a chain of languages containing L and s.t. $|L_i| =$ $|L| + \omega$, and $\langle T_i : i < \omega \rangle$ of f.s. theories s.t. $\forall i \ T_i$ is an L_i -theory, and $T_i \supseteq T$.

- Base step: $L_0 = L$ and $T_0 = T$.
- At stage i+1, L_i and T_i are given. List all L_i -formulas $\phi(x)$ (one free variable x) and let $L_{i+1} = L_i \cup \{c_\phi : \phi(x) \text{ is an } L_i\text{-formula}\}.$

For all $\phi(x)$ (L_i -formula), let Φ_{ϕ} be the L_{i+1} -sentence $\exists x \phi(x) \to \phi(c_{\phi})$.

Then $T_{i+1} := T_i \cup \{\Phi_{\phi} : \phi(x) \text{ is } L_i\text{-formula}\}.$

Claim: T_{i+1} is f.s.. Why is that? Let's take a finite subset $\triangle \subseteq T_{i+1}$. Then $\triangle = \triangle_0 \cup \{\Phi_{\phi_2}, ..., \Phi_{\phi_n}\} \text{ where } \triangle_0 \subseteq T_i.$

Let $\mathcal{M} \vDash \triangle_0$ (\mathcal{M} is an L_i -structure; it exists because T_i is f.s.).

We define an L_{i+1} -structure \mathcal{M}' with domain M (of \mathcal{M}). Define the integration of new constants as follows: if $\mathcal{M} \models \exists x \phi(x)$, then $c_{\phi}^{\mathcal{M}'} = a$ for any $a \in \mathcal{M}$ s.t.

Otherwise, $c_{\phi}^{\mathcal{M}'}$ is arbitrary. Then $\mathcal{M}' \models \triangle$.

Now let $L^* = \bigcup_{i < \omega} L_i$, $T^* = \bigcup_{i < \omega} T_i$.

By our construction, any extension of T^* has WP (check), and T^* is f.s. $(\triangle \subseteq f^{in})$ T^* , then $\triangle \subseteq T_i$ for some i).

Lemma. (5.5)

If T is f.s., there exists a maximal f.s. $T' \supseteq T$ (of underlying language L).

Proof. Let $I := \{S : S \text{ is a f.s. } L\text{-theory s.t. } T \subseteq S\}.$

I is partially ordered by inclusion.

If $\langle C_i : i < \lambda \rangle$ is a chain in I, then $\bigcup_{i < \lambda} C_i$ is an upper bound for the chain: it is f.s. $(\triangle \subseteq \cup C_i \text{ is s.t. } \triangle \subseteq C_i)$.

Then by Zorn's lemma, I has a maximal element (w.r.t. \subseteq).

We claim that the maximal element T' of I is the required extension of T (check that \forall L-sentences σ , $\sigma \in T'$ or $\neg \sigma \in T'$).

22

Theorem. (5.6, Compactness)

If T is a f.s. L-theory, and $\lambda \ge |L| + \omega$, then there is $\mathcal{M} \models T$ s.t. $|\mathcal{M}| \le \lambda$. (See part II Logic and Set Theory for the finite case).

Proof. (sketch)

Extend T to T^* , an L^* -theory that is f.s., and s.t. any $S \supseteq T^*$ has WP (by lemma (5.4)).

By lemma (5.5), we can extend this T^* to a maximal f.s. theory T'; and by the lemma T' would have WP since it is an extension of T^* .

Now T' is maximal and f.s., so we can use lemma (5.3) to show that there is a model $\mathcal{M} \models T'$. Then in particular, $\mathcal{M} \models T$ (check $\mathcal{M} \leq \lambda$).

Definition. (5.7)

Let L be a language. Then an L-type $p(\bar{x})$ is a set of L-formulas whose free variables are in \bar{x} (and $\bar{x} = \langle x_i : i < \lambda \rangle$).

• An *L*-type is *satisfiable* if there is an *L*-structure \mathcal{M} and an assignment $\bar{a} \in \mathcal{M}^{|\bar{x}|}$ s.t. $\mathcal{M} \models \phi(\bar{a})$ for all $\phi(\bar{x}) \in p(\bar{x})$ (we also say $p(\bar{x})$ is *consistent*, and \bar{a} realizes $p(\bar{x})$ in \mathcal{M}).

We write $\mathcal{M} \vDash p(\bar{a})$, or $\mathcal{M}, \bar{a} \vDash p(\bar{x})$.

We also say that $p(\bar{x})$ is satisfied in \mathcal{M} .

• A type $p(\bar{x})$ is finitely satisfiable if every finite subset of p(x) is satisfiable (we may say p(x) is finitely consistent).

Remark. An L-type may be finitely satisfiable in a model \mathcal{M} (by this we mean every finite subset is satisfiable in \mathcal{M}), but not satisfiable in \mathcal{M} .

Example. Let $\mathcal{M} = (\mathbb{N}, <)$. Let $\phi_n(x)$ say there are at least n elements less than x, and $p(x) := \{\phi_n(x) : n < \omega\}$.

Is p(x) finitely satisfiable in \mathcal{M} ? Yes; but obviously p(x) is not satisfiable in \mathcal{M} .

Theorem. (5.8)

Every finitely satisfiable *L*-type $p(\bar{x})$ is satisfiable (not necessarily in the original model, of course).

Proof. Let $\bar{x} = \langle x_i : i < \lambda \rangle$, let $\langle c_i : i < \lambda \rangle$ be new constants (not in L). Expand L to $L' = L \cup \{c_i : i < \lambda\}$. Then $p(\bar{c})$ is an L'-theory, and theorem (5.6) applied to $p(\bar{c})$ gives the desired conclusion (think).

—Lecture 9—

Example class 2: 19th November, Monday.

Lemma. (5.9)

Let \mathcal{M} be a structure, let $\bar{a} = \langle a_i : i < \lambda \rangle$ enumerate \mathcal{M} . Let

$$q(\bar{x}) = \{\phi(\bar{x}) : \mathcal{M} \vDash \phi(\bar{a})\}\$$

where $|\bar{x}| = \lambda$.

Then $q(\bar{x})$ is satisfiable in \mathcal{N} iff there is $\beta: \mathcal{M} \to \mathcal{N}$ that is an elementary embedding.

5 COMPACTNESS 23

Proof. If $q(\bar{x})$ is satisfiable in \mathcal{N} , there is $\bar{b} \in N^{|\bar{x}|}$ s.t. $\mathcal{N} \models \phi(\bar{b})$ for all $\phi(\bar{x}) \in q(\bar{x})$.

Then $\beta: a_i \to b_i$ $(i < \lambda)$ is an elementary embedding (β preserves, for example, atomic formulas of the form $f(a_{i_1}, ..., a_{i_n}) = a_{i_{n+1}}$, so it is an embedding.) More generally, for any $\phi(\bar{x})$ (*L*-formula),

 $\mathcal{M} \vDash \phi(\bar{a}) \text{ iff } \mathcal{N} \vDash \phi(\bar{b}), \text{ but } \beta(\bar{a}) = \bar{b}.$

Conversely, if $\beta: \mathcal{M} \to \mathcal{N}$ is elementary, then $\beta(\bar{a})$ satisfies $q(\bar{x})$ in \mathcal{N} .

Remark. The above is usually stated as (diagram lemma): Let $Th(\mathcal{M}_M)$ be a theory in L(M), $\mathcal{N} \models Th(\mathcal{M}_M)$, then \mathcal{M} embeds elementarily in \mathcal{N} .

Remark. (5.10)

We can consider types in L(A), where $A \subseteq \mathcal{M}$.

In particular, we can consider A = M the whole domain of \mathcal{M} .

Types of this kind are said to have parameters in A (or to be over A).

If $p(\bar{x})$ is a type over M, then there is a \bar{a} , an enumeration of M, and a type $p'(\bar{x}, \bar{z})$ where the \bar{z} are new constants, $|\bar{z}| = |\bar{a}|$, and $p(\bar{x}) = p'(\bar{x}, \bar{a})$.

Theorem. (5.11)

If \mathcal{M} is a structure, and p(x) is a type in L(M) that is finitely satisfiable in \mathcal{M} , then $p(\bar{x})$ is satisfiable in some \mathcal{N} such that $\mathcal{M} \preceq \mathcal{N}$.

Example. Consider $\mathcal{M} = (\mathbb{Q}, <)$, and let $\langle a_i : i < \omega \rangle$ a sequence in \mathbb{Q} that converges to $\sqrt{2}$ from below, and let $\langle b_i : i < \omega \rangle \subseteq \mathbb{Q}$ tend to $\sqrt{2}$ from above. Let $\phi_m(x) \equiv a_n < x < b_n$. Then let $p(x) = \{\phi_n(x) \text{ s.t. } n < \omega\}$.

Then p(x) is an $L(\mathbb{Q})$ -type which is finitely satisfiable in \mathbb{Q} . But p(x) is not satisfiable in \mathcal{M} .

It is, however, satisfiable in $(\mathbb{R},<)$ which contains $(\mathbb{Q},<)$ as an elementary substructure.

(we can actually also use the example about natural numbers in last lecture – just need to add an ∞ .)

Proof. (of 5.11)

Let $\langle a_i : i < \lambda \rangle$ enumerate \mathcal{M} , and let $q(\bar{x}) := \{\phi(\bar{z}) : \mathcal{M} \models \phi(\bar{a})\}$, where $|\bar{z}| = \lambda$ and the z_i are new variables (so not among the \bar{x}).

Write $p(\bar{x})$ as $p'(\bar{x}, \bar{a})$ for some $p'(\bar{x}, \bar{z})$ (an L-type).

We claim that $p'(\bar{x}, \bar{z}) \cup q(\bar{z})$ is finitely satisfiable in \mathcal{M} : this is because $p'(\bar{x}, \bar{a})$ is finitely satisfiable by hypothesis and $q(\bar{z})$ is realized by \bar{a} .

Then, by theorem (5.8) (compactness for types), $p'(\bar{x}, \bar{z}) \cup q(\bar{z})$ is satisfiable.

That is, there is \mathcal{N} and $\bar{b} \in \mathcal{N}^{|\bar{z}|}$ and $\bar{c} \in \mathcal{N}^{|\bar{x}|}$ such that $\mathcal{N} \models p'(\bar{c}, \bar{b}) \cup q(\bar{b})$.

In particular, $\mathcal{N} \vDash q(\bar{b})$. Then by lemma (5.9), $\beta : \mathcal{M} \to \mathcal{N}$ by $a_i \to b_i$ is an elementary embedding.

5 COMPACTNESS 24

(Get $\mathcal{N}' \simeq \mathcal{N}$ s.t. $\mathcal{M} \preccurlyeq \mathcal{N}'$, $\mathcal{M} \simeq \beta(\mathcal{M})$.)

Theorem. (5.12, Upward Löwenheim-Skolem theorem) (See part II Logic and Set theory for the (countable?) case) Let \mathcal{M} be s.t. $|\mathcal{M}| \geq \omega$. Then for any $\lambda \geq |\mathcal{M}| + |L|$, there is \mathcal{N} s.t. $\mathcal{M} \preccurlyeq \mathcal{N}$ with $|\mathcal{N}| = \lambda$.

Proof. Let $\bar{x} = \langle x_i : i < \lambda \rangle$ a tuple of distinct variables.

Let $p(\bar{x}) = \{x_i \neq x_j : i < j < \lambda\}$. Then $p(\bar{x})$ is finitely consistent in \mathcal{M} . So by theorem (5.11), $p(\bar{x})$ is realized in some \mathcal{N} that is an elementary extension of \mathcal{M} , and $|\mathcal{N}| \geq \lambda$.

Then by downward L-S theorem (3.11) we could have $|\mathcal{N}| = \lambda$.

6 Saturation

Definition. (6.1)

Let λ be an infinite cardinal, let $|\mathcal{M}| \geq \omega$. Then \mathcal{M} is λ -saturated if \mathcal{M} realizes every type p(x) (with one free variable) such that:

- (i) p(x) has parameters in $A \subseteq \mathcal{M}$ and $|A| < \lambda$;
- (ii) p(x) is finitely consistent in \mathcal{M} .

We say \mathcal{M} is *saturated* if it is $|\mathcal{M}|$ -saturated.

Question: can \mathcal{M} be λ -saturated if $\lambda > |\mathcal{M}|$? If so, \mathcal{M} would satisfy f.s. types in $L(\mathcal{M})$.

(Hint: we could use $p(x) = \{x \neq a_i : i < |\mathcal{M}|\}$ where $\langle a_i : i < |\mathcal{M}| \rangle$ enumerates \mathcal{M} . This could not be satisfiable.)

—Lecture 10—

Definition. (6.2)

Let \mathcal{M} be an L-structure, $A \subseteq M$, \bar{b} a tuple of in M, possibly infinite. The type of \bar{b} over A is the following L(A)-type:

$$tp_{\mathcal{M}}(\bar{b}/A) = \{\phi(\bar{x}) \in L(A) : \mathcal{M} \vDash \phi(\bar{b})\}$$

(i.e. all the L(A)-formulas that, when plugged in \bar{b} , can be implied by \mathcal{M}). \mathcal{M} is often omitted if it's clear from the context.

Remark. (6.3)

- (i) $tp_{\mathcal{M}}(\bar{b}/A)$ is complete, i.e. for every L(A) formula $\phi(\bar{x})$, either $\phi(\bar{x}) \in tp(\bar{b}/A)$ or $\neg \phi(x) \in tp(\bar{b}/A)$ (clear).
- (ii) If $\mathcal{M} \preceq \mathcal{N}$, then for $A \subseteq M$, and \bar{b} a tuple,

$$tp_{\mathcal{M}}(\bar{b}/A) = tp_{\mathcal{N}}(\bar{b}/A)$$

(elementary embeddings preserve truth of formulas.)

Fact. (6.4, elementary maps and types)

Recall definition (4.10):

- (i) If $f: A \subseteq \mathcal{M} \to \mathcal{N}$ is a (partial) elementary map, then in particular, f preserves L-sentences, so $\mathcal{M} \equiv \mathcal{N}$.
- (ii) If $\mathcal{M} \equiv \mathcal{N}$, then ϕ , the empty map, is an elementary map (only required to preserve sentences).
- (iii) If $f: A \subseteq \mathcal{M} \to \mathcal{N}$ is elementary, and \bar{a} is an enumeration of A = dom(f), then (obviously, ϕ denotes the empty set here)

$$tp(\bar{a}/\phi) = tp(f(\bar{a})/\phi)$$

More generally: if $f: \mathcal{M} \to \mathcal{N}$ (we'll stop writing $f: A \subseteq \mathcal{M} \to \mathcal{N}$ for elementary maps now) is elementary and there is $A \subseteq M \cap N$ s.t. $A \subseteq \text{dom}(f)$, $f|_A = id$ (f fixes A pointwise), then for every tuple \bar{b} in dom(f),

$$tp_{\mathcal{M}}(\bar{b}/A) = tp_{\mathcal{N}}(f(\bar{b}), A)$$

(iv) Let \bar{a} enumerate $A \subseteq M$, A = dom(f) where $f : \mathcal{M} \to \mathcal{N}$ is elementary. Let $p(\bar{x}, \bar{a})$ be a type in L(A) that is finitely satisfiable in \mathcal{M} .

Then $p(\bar{x}, f(\bar{a}))$ is finitely satisfiable in \mathcal{N} : with massive abuse of notations, let $\begin{aligned} & \{\phi_1(\bar{x},\bar{a}),...,\phi_n(\bar{x},\bar{a})\} \subseteq p(\bar{x},\bar{a}). \\ & \text{By f.s. of } p(\bar{x},\bar{a}), \, \mathcal{M} \vDash \exists \bar{x} \bigwedge_{i=1}^n \phi_i(\bar{x},\bar{a}). \\ & \text{Then } \mathcal{N} \vDash \exists \bar{X} \bigwedge_{i=1}^n \phi_i(\bar{x},f(\bar{a})) \text{ by elmentarity of } f. \end{aligned}$

(Does $p(\bar{x}, \bar{a})$ satisfiable in \mathcal{M} imply $p(\bar{x}, f(\bar{a}))$ satisfiable in \mathcal{N} ? The answer is no – this doesn't hold in the infinite case.)

(Note that we haven't really discussed about the existence of saturated models. The general result is that given any model with size λ we could extend it elementarily to a model that is λ^+ saturated, but we'll have no control over the size of the extended model unless we assume some more subtle things (Lecturer was unsure of that)).

Theorem. (6.5)

Let \mathcal{N} be s.t. $|\mathcal{N}| \geq \lambda \geq |L| + \omega$. The following are equivalent:

- (i) \mathcal{N} is λ -saturated;
- (ii) if $\mathcal{M} \equiv \mathcal{N}, b \in M$ and $f: \mathcal{M} \to \mathcal{N}$ partial elementary s.t. $|\operatorname{dom} f| < \lambda$, then there is partial elementary $\bar{f} \supseteq f$ such that $b \in \text{dom}(\bar{f})$;
- (iii) If $p(\bar{z})$ is an L(A)-type where $|\bar{z}| \leq \lambda$, and $|A| < \lambda$ and $p(\bar{z})$ is finitely satisfiable in \mathcal{N} , then $p(\bar{z})$ is satisfiable in \mathcal{N} .

Proof. (i) \Longrightarrow (ii): Let $f: \mathcal{M} \to \mathcal{N}$ be as in (ii), and let $b \in M$. The idea is the following: look at the type of b over M, and then prove that the corresponding type in \mathcal{N} is realized in \mathcal{N} .

Let \bar{a} be an enumeration of dom(f), so $|\bar{a}| < \lambda$. Let $p(x/\bar{a}) = tp_{\mathcal{M}}(b/\bar{a})$.

Then $p(x/\bar{a})$ is finitely satisfiable in \mathcal{M} , hence $tp(x/f(\bar{a}))$ is f.s. in \mathcal{N} (6.4 (iv)). Since $|f(\bar{a})| < \lambda$ and \mathcal{N} is λ -saturated, $tp(x/f(\bar{a}))$ is realized in \mathcal{N} by some c. Then $f \cup \{\langle b, c \rangle\}$ is the required extension.

 $(\mathcal{M} \vDash \phi(b, \bar{a}) \iff \mathcal{N} \vDash \phi(c, f(\bar{a})), \text{ so } f \text{ preserves the truth}).$

(ii) \Longrightarrow (iii): (idea?: Let $p(\bar{z})$ be as in (iii), $p(\bar{z})$ is f.s. in \mathcal{N} . Then by (5.11), $p(\bar{z})$ is realized in some elementary extension \mathcal{M}' of \mathcal{N} , by some tuple \bar{a} (where $|\bar{a}| = |\bar{z}|$).

But now we can shrink $|\mathcal{M}'|$ by downward L-S theorem: there is $\mathcal{M} \preceq \mathcal{M}'$ such that $A \cup \bar{a} \subseteq M$, where A is the parameter set of the type.)

—Lecture 11—

Let $p(\bar{z})$ be as in (iii), \mathcal{M} is s.t. $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \models p(\bar{b})$. The identity map $id_A : \mathcal{M} \to \mathcal{N}$ is partial elementary.

Idea: build $\langle f_i : i < |\bar{b}| \rangle$ of p elementary maps. Then $\cup f_i$ is partial elementary, and $\bar{b} \in \text{dom } \bigcup_{i < |\bar{a}|} f_i$.

Let $f_0 = id_A$. At stage i + 1, use (ii) to put b_i in dom (f_{i+1}) .

At limit stages $\mu < \lambda$, let $f_{\mu} = \bigcup_{i < \mu} f_i$.

Then $f(\bar{b})$ satisfies $p(\bar{z})$ in \mathcal{N} .

(iii)
$$\implies$$
 (i) is trivial.

Corollary. (6.6)

If \mathcal{M} and \mathcal{N} are saturated, and $\mathcal{M} \equiv \mathcal{N}$, and $|\mathcal{M}| = |\mathcal{N}|$, then every elmentary map $f : \mathcal{M} \to \mathcal{N}$ extends to an isomorphism.

In particular, these two structures are isomorphic (since the empty map ϕ is an elementary map).

Proof. Use theorem 6.5(ii) to extend $f: \mathcal{M} \to \mathcal{N}$ to an isomorphism by backand-forth (similar to that in random graphs), taking unions at limit stages. \square

Corollary. (6.7)

Models of T_{dlo} and T_{rg} are ω -saturated.

Proof. In chapter 4 we proved that we can do one point extensions for partial elmentary maps for both of the cases (4.3 and 4.17).

So $(\mathbb{Q}, <)$ ω -saturated.

Is $(\mathbb{R},<)$ ω_1 -saturated? No – for example, the type $p(x):=\{x>q:q\in\mathbb{Q}\}$ is not realized).

Definition. (6.8)

An isomorphism $\alpha: \mathcal{N} \to \mathcal{N}$ is called an *automorphism*.

The automorphism of \mathcal{N} form a group denoted by $\operatorname{Aut}(\mathcal{N})$.

If $A \subseteq N$, then $\operatorname{Aut}(\mathcal{N}/A)$ for the subgroup of $\operatorname{Aut}(\mathcal{N})$ that fixes A pointwise, i.e. $\{\alpha \in \operatorname{Aut}(\mathcal{N}) : \alpha|_A = id\}$.

Definition. (6.9^1)

(i) An L-structure \mathcal{N} is λ -universal if for every $\mathcal{M} \equiv \mathcal{N}$ s.t. $|\mathcal{M}| \leq \lambda$, there is elementary embedding $\beta : \mathcal{M} \to \mathcal{N}$.

In particular, β would be an isomorphism between \mathcal{M} and its image in \mathcal{N} , i.e. \mathcal{N} contains a copy of \mathcal{M} .

 \mathcal{N} is universal if it is $|\mathcal{N}|$ -universal.

(ii) \mathcal{N} is λ -homogeneous if every elementary map $f: \mathcal{N} \to \mathcal{N}$ s.t. $|f| < \lambda$ extends to an automorphism of \mathcal{N} .

Theorem. (6.10)

Let \mathcal{N} be s.t. $|\mathcal{N}| \geq |L| + \omega$. The following are equivalent:

- (i) \mathcal{N} is saturated;
- (ii) \mathcal{N} is universal and homogeneous.

¹In some texts the definition of this is a bit different – sometimes they use λ^+ -universality for our λ -universality here. Homogeneity is sometimes called *strong homogeneity*. *Ultrahomogeneity* concerns partial embeddings instead of (partial) elementary maps.

Proof. (i) \Longrightarrow (ii): Assume \mathcal{N} is saturated, let $\mathcal{M} \equiv \mathcal{N}$ and s.t. $|\mathcal{M}| \leq |\mathcal{N}|$. Then let \bar{a} enumerate M, let $p(\bar{x}) = tp(\bar{a}/\phi)$. Then $p(\bar{x})$ is f.s. in \mathcal{M} . We claim that $p(\bar{x})$ is also f.s. in \mathcal{N} : let $\{\phi_1(\bar{x}),...,\phi_m(\bar{x})\}$, so $\mathcal{M}\exists \bar{x}\bigwedge_{i=1}^n \phi_i(\bar{x})$; but note that this is a sentence, so $\mathcal{N} \vDash \exists \bar{x} \bigwedge \phi_i(\bar{x})$ as well. Now since $|\bar{x}| \leq |\mathcal{N}|$, n realizes $p(\bar{x})$ since it's saturated (6.5 (iii)). Homoegeneity follows from (6.6).

Conversely, we show that if $\mathcal{M} \equiv \mathcal{N}, b \in M, f : \mathcal{M} \to \mathcal{N}$ elementary s.t. $|f| < |\mathcal{N}|$, then there is $\hat{f} \supseteq f$ elementary and contains b in its domain (i.e. we can extend f to be defined on b).

(Find?) $\alpha \in \operatorname{Aut}(\mathcal{N})$ extending $\beta(\operatorname{dom}(f)) \to img(f)$.

(see lecturer's scanned notes for more details – tbd.)

Definition. (6.11)

Let \bar{a} be a tuple in \mathcal{N} and $A \subseteq N$. The *orbit of* \bar{a} over A is the set

$$O_{\mathcal{N}}(\bar{a}/A) = \{\alpha(\bar{a}) : \alpha \in \operatorname{Aut}(\mathcal{N}/A)\}\$$

If $\phi(\bar{x})$ is an L(A)-formula, then

$$\phi(\mathcal{N}) := \{ \bar{a} \in N^{|\bar{x}|} : \mathcal{N} \vDash \phi(\bar{a}) \}$$

(called the set defined by $\phi(\bar{x})$).

A set is definable over A if it is defined by some L(A)-formula.

There are analogous notions of a type defining a set, and a set being type-definable – lecturer will say more about this next time.

—Lecture 12—

Remark. (6.12)

If \bar{a} and \bar{b} are tuples in \mathcal{N} and $|\bar{a}| = |\bar{b}|$, and $A \subseteq N$, then the following are

equivalent:

(i) $tp_{\mathcal{N}}(\bar{a}/A) = tp_{\mathcal{N}}(\bar{b})/A;$

(ii) $\{\langle a_i, b_i \rangle : i < |\bar{a}| \} \cup id_A$ is an elementary map.

Proposition. (6.13)

Let $\bar{\mathcal{N}}$ be λ -homogeneous, $A\subseteq \mathcal{N}$ s.t. $|A|<\lambda$. Let \bar{a} be a tuple in \mathcal{N} s.t. $|\bar{a}|<\lambda$. Then

$$O_{\mathcal{N}}(\bar{a}/A) = p(\mathcal{N})$$

where $p(\bar{x}) = tp_{\mathcal{N}}(\bar{a}/A)$.

Proof. If $\alpha(\bar{a}) = \bar{b}$ where $\alpha \in \operatorname{Aut}(\mathcal{N}/A)$, then $tp_{\mathcal{N}}(\bar{A}/A) = tp_{\mathcal{N}}(\bar{b}/A)$. If $tp_{\mathcal{N}}(\bar{b}/A) = tp_{\mathcal{N}}(\bar{a}/A)$, then $\{\langle a_i, b_i : i < |\bar{a}|\} \cup id_A$ is elementary, and by homogeneigy it extends to $\alpha \in \operatorname{Aut}(\mathcal{N})$, and in particular, $\alpha \in \operatorname{Aut}(\mathcal{N}/A)$. \square

7 The Monster Model

Given a complete theory T with an infinite model, we work in a saturated structure $U(\mathbb{M})$ that is a model of T and it is sufficiently large that any other model of T we might be interested in is an elementary substructure of U. (I is an expository device – see Tent/Ziegler fo details – also Marker(v?)).

Definition. (7.1, terminologies and conventions)

When working in U,

- $\phi(\bar{x})$ holds means $U \vDash \forall \bar{x} \phi(\bar{x})$;
- $\phi(\bar{x})$ is consistent means $U \vDash \exists \bar{x} \phi(\bar{x})$;
- the type $p(\bar{x})$ is consistent/satisfiable if $U \vDash \exists \bar{x} p(\bar{x})$;
- a cardinality λ is small if $\lambda < |U|$ (we usually denote |U| by κ).
- a model is $\mathcal{M} \leq U$ s.t. $|\mathcal{M}|$ is small.

Conventions:

- tuples have small lengths (unless otherwise specified);
- formulas have parameters in U;
- types have parameters in small sets;
- definable sets have the form $\phi(U)$ for some formula $\phi(\bar{x})$ in L(U);
- type definable ests have form p(U) for some type $p(\bar{x}, A)$ where $|A| < \kappa$;
- Orbits and types of tuples are within U, so $tp(\bar{a}/A)$ means $tp_U(\bar{a}/A)$; O(a/A) means $O_U(a/A)$;
- if $p(\bar{x}), q(\bar{x})$ are types, we write, for example, $p(x) \to q(x)$ to mean $p(\mathcal{N}) \subseteq q(\mathcal{N})$ (think of p(x) as infinite conjunction of formulas).

Fact. (7.2)

Let $p(\bar{x})$ be a satisfiable L(A)-type, $q(\bar{x})$ be a satisfiable L(B)-type such that $p(\bar{x}) \to \neg q(\bar{x})$, that is, $p(\bar{x})$ and $q(\bar{x})$ have no realizations in common. Then there are $\bigwedge_{i=1}^n \phi_i(\bar{x})$ where $\phi_i(\bar{x}) \in p(\bar{x})$, and $\bigwedge_{i=1}^m \psi_i(\bar{x})$ where $\psi_i(\bar{x}) \in q(\bar{x})$ s.t.

$$\bigwedge_{i=1}^{n} \phi_i(\bar{x}) \to \neg (\bigwedge_{i=1}^{m} \psi_i(\bar{x}))$$

Proof. We know $p(\bar{x}) \cup q(\bar{x})$ is not realized in U. By saturation of U, this cannot be finitely satisfiable, i.e. there are $\{\phi_i(\bar{x}),...,\phi_n(\bar{x})\} \subseteq p(\bar{x}), \{\psi_1(\bar{x}),...,\psi_m(\bar{x})\} \subseteq q(\bar{x})$ such that the union is not satisfiable. Then

$$\bigwedge \phi_i(\bar{x}) \to \neg \bigwedge (\psi_i(\bar{x}))$$

Remark. (7.3)

Let $\phi(U, \bar{b})$ be s.t. $\phi(\bar{x}, \bar{z})$ is an *L*-formula, $\bar{b} \in U^{|\bar{z}|}$. If $\alpha \in \operatorname{Aut}(U)$, then

$$\alpha[\phi(U, \bar{b})] = \{\alpha(\bar{a}) : \phi(\bar{a}, \bar{b}), \bar{a} \in U^{|\bar{x}|}\}$$
$$= \{\alpha(\bar{a}) : \phi(\alpha(\bar{a}), \alpha(\bar{b})), \ldots\}$$
$$= \phi(U, \alpha(\bar{b}))$$

So $\operatorname{Aut}(U)$ acts on the definable sets in a natural way (similarly for type-definable sets).

Definition. (7.4)

A set $D \subseteq U^{\lambda}$ is invariant under $\operatorname{Aut}(U/A)$ (invariant over A) if $\alpha(D) = D$ for every $\alpha \in \operatorname{Aut}(U/A)$.

Equivalently, for all $\bar{a} \in D$, $O(a/A) \subseteq D$.

If $\bar{a} \in D$, $q(\bar{x}) = tp(a/A)$ and $\bar{b} \models q(\bar{x})$, then $b \in D$.

 $(tp(\bar{b}/A) = tp(\bar{a}/A) \text{ and } \bar{b} \models q(\bar{x}), \text{ so there's } \alpha \in \text{Aut}(U/A) \text{ s.t. } \alpha(\bar{a}) = \bar{b} \text{ by homogeneity of } U).$

Hence another equivalent formulation of invariance over A is: for all $\bar{a} \in D$, if $\bar{b} \equiv_A \bar{a}$, then $\bar{b} \in D$.

Proposition. (7.5)

Let $\phi(\bar{x})$ be an L(U)-formula. The following are equivalent:

- (i) $\phi(\bar{x})$ is equivalent to some L(A)-formula $\psi(\bar{x})$;
- (ii) $\phi(U)$ is invariant over A.

Proof. (i) \implies (ii) is clear (set-wise invariance);

(ii) \Longrightarrow (i) This is the more interesting direction. Let $\phi(\bar{x}, \bar{z})$ be an L-formula s.t. $\phi(U, \bar{b})$ is invariant over A (for $\bar{b} \in U^{|z|}$).

Let $q(\bar{z}) = tp(\bar{b}/A)$. If $\bar{c} \models q(\bar{z})$, then there is (by homogeneity), $\alpha \in \operatorname{Aut}(U/A)$ s.t. $\alpha(\bar{b}) = \bar{c}$. Then

$$\phi(U, \bar{b}) = \alpha(\phi(U, \bar{b})) = \phi(U, \bar{c})$$

by invariance and (7.3) respectively. Hence $q(\bar{z}) \to \forall \bar{x} [\phi(\bar{x}, \bar{z}) \leftrightarrow \phi(\bar{x}, \bar{b})]$. By (an argument similar to 7.2) there is $\theta(\bar{z}) \in q(\bar{z})$ s.t. $\theta(\bar{z}) \to \forall \bar{x} [\phi(\bar{x}, \bar{z}) \leftrightarrow \phi(\bar{x}, \bar{z})]$. Then $\theta(\bar{z})$ is an L(A)-formula, and $\exists z [\theta(\bar{z}) \land \phi(\bar{x}, \bar{z})]$ defines $\phi(U, \bar{b})$.

8 Example class 1

8.1 Question 3

(i) if $\phi(\bar{x})$ is universal (i.e. $\forall \bar{y}\psi(\bar{x},\bar{y})$ where $\psi(\bar{x},\bar{y})$ is quantifier-free), then $\mathcal{N} \vDash \phi(\beta(\bar{a})) \implies \mathcal{M} \vDash \phi(\bar{a})$.

(ii) Consider $\mathcal{N} = (\{\frac{n}{2} : n \in \mathbb{Z}\}, +)$. Assume for a X that $\phi(x)$ exists. Then $\mathcal{M} \models \phi(1)$ as 1 is odd. Now consider $\beta : M \to N$ defined by $n \to \frac{n}{2}$; it's an isomorphism between \mathcal{M} and \mathcal{N} ; Also, $id : \mathcal{M} \to \mathcal{N}$ is an embedding. In particular, if $\mathcal{M} \models \phi(1)$, then $\mathcal{N} \models \phi(1)$; but $\mathcal{M} \equiv \mathcal{N}$ by the isomorphism, so $\mathcal{N} \models \forall x(\phi(x) \leftrightarrow \forall y(y+y \neq x))$, however that is not true in \mathcal{N} .

8.2 Question 4

- (i) \Longrightarrow (ii): $id:A\to N$ is an embedding.
- (ii) \implies (i): Define structure on A: $c^{\mathcal{M}} = c^{\mathcal{N}}$, $R^{\mathcal{M}} = R^{\mathcal{N}} \cap A^{n^R}$, and similar for functions.

8.3 Question 5

Prove that $\mathcal{M} \preceq \mathcal{N} \iff \mathcal{M} \equiv_M \mathcal{N}$, where $L(M) = L \cup \{c_a : a \in M\}$. It should be clear that everything follows from the fact that, $\mathcal{M} \models \phi(\bar{a})$ as an L-structure iff $\mathcal{M} \models \phi(c_{a_1}, ..., c_{a_n})$ as an L(M)-structure.

8.4 Question 6

We have $[0,1] \equiv [0,2]$ (seen in lectures, as they are isomorphic as L_{lo} -structures. However, $[0,1] \not\preccurlyeq [0,2]$ as 1 has a property in LHS which it doesn't have in RHS. Instead, $(0,1) \preccurlyeq (0,2)$. It's best to use part (i): If \mathcal{M}, \mathcal{N} are s.t. $A \subseteq M \cap N$,

then
$$\mathcal{M} \equiv_A \mathcal{N} \iff \mathcal{M} \equiv_B \mathcal{N} \text{ for every } B \subseteq^{fin} A$$
.

Select finite $B \subseteq (0,1) \cap (0,2)$, and show $(0,1) \equiv_B (0,2)$.

Induction on complexity of formulas are not strictly necessary; instead if we can find an isomorphism that fixes the elements of B then we're done.

Say $B = \{b_0, ..., b_n\}$, where $b_m \ge b_i \forall b_i \in B$. We can just send every $x \le b_n$ in (0,1) to the same x in (0,2), and rescale the interval (x,1) to match (x,2), which gives an isomorphism.

8.5 Question 7

Let $\phi(\bar{x})$ be a formula and $\bar{a} \in M_i^{|\bar{x}|}$. It's required to prove that $\mathcal{M}_i = \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(\bar{a})$. By induction on $\phi(\bar{x})$: if $\phi(\bar{x})$ is atomic, claim follows from $\mathcal{M}_i \subseteq \mathcal{N}$ (substructure); \wedge and \neg are also easy induction;

For existential formula $\phi(\bar{x}) \equiv \exists sy\psi(\bar{x}, y)$, if $\mathcal{M} \vDash \exists y\psi(\bar{a}, y)$, then $\mathcal{M} \vDash \psi(\bar{a}, b)$ for b in some \mathcal{M}_i , so $\mathcal{N} \vDash \psi(\bar{a}, b)$;

Conversely, if $\mathcal{N} \vDash \exists y \psi(\bar{a}, y)$, then $\mathcal{N} \vDash \psi(\bar{a}, b)$ for $b \in \mathcal{N}$. But then \bar{a}, b are in some \mathcal{M}_j for some finite j; as a result, by inductive hypothesi $\mathcal{M}_j \vDash \exists y \psi(\bar{a}, y)$. But then $\mathcal{M}_i \vDash \exists y \psi(\bar{a}, y)$ by elementarity.

Alternatively, use T-V test.

8.6 Question 8

(Lecturer is assuming CH here......) First show that $(\mathbb{Q} + \mathbb{R}) \not\cong (\mathbb{R}, <)$. Then for any $U \models T_{dlo}$ with $|U| = \lambda > 2^{\aleph_0}$. Then prove $(\mathbb{Q} + \mathbb{R} + U) \not\cong \mathbb{R} + U$.