

FIRST SEMESTER 2020-21 COURSE HANDOUT

Date: 17.08.2020

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : CS F111

Course Title : Computer Programming

Instructor-in-Charge: Dr. Pratik Narang

Instructor(s) : Dr. Pratik Narang (pratik.narang@pilani.bits-pilani.ac.in)
Tutorial/Practical Instructors: Dr. Pratik Narang (pratik.narang@pilani.bits-pilani.ac.in)

- **1. Course Description:** The primary goals of the course are to introduce:
- Basic representation of data and how to process data using the representation inside a computer.
- Techniques for specifying data, operations on data, and problem solving using C programming language.
- Systematic techniques and approaches for constructing programs.
- **2. Scope and Objective of the Course:** The course covers the following topics: Basic Model of a Computer; Problem Solving Basic Computing Steps and Flow. Programming Constructs Expressions, Statements, Conditionals, Iterators/Loops, Functions/Procedures; Data Types Primitive Types, Tuples, Lists/Arrays, Pointers and Dynamically Allocated Data. Input output and Files.
- **3. Text Books**: **T1**: Hanly, J.R. and E.B. Koffman. *Problem Solving and Program Design in C(7/e)*. Pearson Education, 2013.
- **4. Reference Books: R1**: Patt, Yale. <u>Introduction to Computing Systems</u>: <u>From bits & gates</u> to C &beyond (2/e). McGraw Hill Education, 2017.

The authors take a bottom-up approach to introduce computers and computing.

R2: Forouzan, B.A. and Richard F. Gilberg . <u>Computer science A structured programming approach using C</u> (3/e). Cengage Learning, 2007.

The book gives a fairly comprehensive overview of C, with several example programs.

R3: Gottfried, B.S. and Jitender Chhabra. <u>Programming with C (Schaum's Outlines Series,</u> 3/e). McGraw Hill Education, 2017.

Another beginner's book on C programming, with lots of drill exercises and programs.

R4: Kernighan, B.W and Dennis Ritchie. <u>The C Programming Language</u> (2/e). Pearson Education India, 2015.

Considered the ultimate treatise on C, it conveys the philosophy and practice of C very tersely, but is pitched at an advanced beginner level.

- **R5:** Das, S. <u>Unix: Concepts and Applications</u> (4/e). McGraw Hill Education, 2017. *Provides a great introduction to using Unix commands.*
- **R6:** Das, Sumitabha. <u>Computer Fundamentals and C Programming.</u> New Delhi, India: McGraw Hill Education. (2018)

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

5. Course Plan:

Module No.	Lecture Session	Reference	Learning outcomes	
01	Introduction to Programming; need for programming; overview of computers and computing	T1: 1.1-1.3		
02	Useful Unix commands for compiling and running programs	Class notes, R5	Students can write simple C programs, compile and execute them in a Unix environment	
03-04	How to express a problem using flowcharts, using prime number problem as an example	Class Notes		
05-06	A programming example using	T1: 2.4;		
05 00	standard input and output	Class notes		
07-10	Internal representation of data; IEEE floating point representation	R1: 2.7.2	-	
11-13	Data Types; variable names; sizes, constants and declarations	T1: 2.1-2.2	Students can evaluate arithmetic expressions and specify the exact internal data representation.	
14-17	Statements – if else, if else if, switch Loops – while; dowhile; for; break and continue	T1: 4.1-4.3, 4.7-4.8, 5.1- 5.2, 5.4-5.8	Given an iterative or conditional, students would be able to use the loop constructs / ifelse construct appropriately.	
18-20	Functions and program structure; return types; scope rules; header files	T1: 3.1, 3.4-3.5, 6.1-6.4, 10.1-10.4	Given a complex problem statement, students will be able to logically break down	
21-27	Pointers and function arguments; call by value; call by reference; pointer arithmetic; arrays of pointers; string manipulation	T1: 6.1, 8.1- 8.5	into simpler modules involving pointers and arrays, and write a modular program using functions.	
28-30	Multidimensional arrays; pointers vs. multidimensional Arrays	T1: 7.8-7.9, 13.7		

_				
	31-34	Structures, Array of Structures	T1: 10.1-10.4	Students will be able to
				create user-defined
		File handling, Recursion, Command	T1: 2.3, 11.1,	data types pertaining
	35-38	Line Arguments	9.1-9.5	to a given problem,
			Class Notes	create and manipulate
				data structures using
	20.40	Dynamic memory management;	T1: 13.1-13.4	dynamic memory
-	39-40	linked lists	Class Notes	management, and
				handle text files.

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Test 1	30 min	15	Sep10 – Sep 20	TBA
Test 2	30 min	15	Oct 9 – Oct 20	TBA
Test 3	30 min	15	Nov 10 – Nov 20	TBA
Practical Sessions	110 Min. weekly	20	Continuous	Open-book
Comprehensive Exam	120 min	35	8/12 AN	TBA

- 7. Chamber Consultation Hour: To be announced in the lecture sessions.
- **8. Notices:** All announcements will be done through online platforms such as Nalanda or Microsoft Teams. More details shall be shared in the lecture sessions.
- **9. Make-up Policy:** Make-ups for regular laboratory sessions and assessments held therein are not awarded. Make-ups are generally considered only for medical emergencies leading to hospitalization (or a personal emergency of similar nature). The decision by the Instructor-in-Charge regarding granting make-ups shall be final.

10. Note:

Award of grades would be guided in general by the histogram of marks. If a student does not give sufficient opportunity for being assessed, either by missing a component entirely or by not applying oneself to the task seriously, he/she may be awarded 'NC' report.

Instructor-in-charge CS F111