

Kinetics: Second-Order Kinetics

1. Consider the data collected for the reaction

 $A \rightarrow products$

[A], M	Time, s
3.50	0
2.42	5
1.69	12
1.26	20
1.15	23

Determine the order of the reaction.

2. A second-order reaction has a rate constant of $2.50 \times 10^{-3} \, \text{M}^{-1} \text{s}^{-1}$. The reaction starts with a concentration of reactant of 1.25 M. What is the concentration of the reactant after 40 seconds?

Kinetics: Collision Theory

- 1. Which one of the following statements is *false* concerning collision theory of chemical kinetics?
 - a. Molecules collide in order to react. As the concentration increases, the number of collisions per second increases, therefore the rate of reaction increases.
 - b. Every collision between the correct molecules will result in a reaction.
 - c. As temperature increases, the reaction rate increases. This is because more molecules have enough kinetic energy to overcome the activation energy barrier.
 - d. In comparing two first-order reactions with different activation energies but the same initial concentrations, the reaction with the greater activation energy will have a slower rate of reaction.

UK. Advanced Chemistry Practice Problems

2. Consider the following diagram and select the true statement.

Reaction Progress

- a. The variable X represents activation energy and can be positive or negative, depending upon the reaction.
- b. The variable Y represents activation energy and can be positive or negative, depending upon the reaction.
- c. The variable X represents activation energy and is always a positive value.

The variable Y represents activation energy and is positive only for endothermic reactions.

