A.2 Table of Laplace Transforms

f(t)	$\mathcal{L}(f) = F(s)$
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
$\overline{t^n}$	$\frac{n!}{s^{n+1}}$
$e^{\alpha t}$	$\frac{1}{s-\alpha}$
$e^{\alpha t}f(t)$	$F(s-\alpha)$
f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
$\cos(\beta t)$	$\frac{1}{2}$
$\sin(\beta t)$	$ \frac{\beta}{s^2 + \beta^2} $ $ \frac{\beta}{s^2 + \beta^2} $ $ \frac{s}{s} $
$\cosh(\beta t)$	$\frac{s}{s^2 - \beta^2}$
$\sinh(\beta t)$	$ \frac{s^2 - \beta^2}{s^2 - \beta^2} $ $ s - \alpha $
$e^{\alpha t}\cos(\beta t)$	$\frac{s-\alpha}{(s-\alpha)^2+\beta^2}$ β
$e^{\alpha t}\sin(\beta t)$	$\frac{\beta}{(s-\alpha)^2+\beta^2}$
$u_c(t), c > 0$	e^{-cs}/s
$u_c(t)f(t-c), c>0$	$e^{-cs}F(s)$
$\delta(t-c), c > 0$	e^{-cs}
$\int_0^t f(t-\tau)g(\tau) d\tau \doteq f * g$	F(s)G(s)
f(t) with $f(t+T) = f(t)$	$\frac{\int_0^T f(t)e^{-st}dt}{1 - e^{-sT}}$
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$