

Anticipez les besoins en consommation de bâtiments

Formation Data Scientist – Projet 4

Octave POUILLOT

Mai 2023

Sommaire

- Mission
- Présentation du jeu de données
- Nettoyage & Exploration
- Modeling
- Intérêt de ENERGY STAR Score
- Conclusions

Mission

Ville de Seattle, relevés des bâtiments non destinés à l'habitation de 2016

- Prédire les émissions de CO2eq de bâtiments
- Prédire la consommation totale d'énergie de bâtiments
- Evaluer l'intérêt de l'"ENERGY STAR Score"

L'objectif étant de se passer des relevés de consommation annuels futurs.

Présentation du Jeu de données

2016 Building Energy Benchmarking

Présentation du Jeu de données

- 3 376 lignes, 46 colonnes
- Chaque ligne est un bâtiment
- Informations structurelles :
 - Années de construction
 - Adresse
 - Usage
 - Superficie
- Energétiques :
 - Energy Star Score
 - Energie utilisée
 - Emissions

- (Electricité, Gaz fossile, Vapeur, totale, par surface, ...)
- (totale, intensité)

(ville, état, quartier, GPS, ...)

(Totale, Parking, Etages, ...)

(type, principal, secondaire, ...)

Conformité des données (Statut, outliers, commentaires)

Cibles: SiteEnergyUse(kBtu) & TotalGHGEmissions

Nettoyage et Exploration

Prise en main du jeu de données et préparation aux modélisations

Nettoyage et Exploration - Suppression

ComplianceStatus	
Compliant	3211
Default Data	113
Non-Compliant	37
Missing Data	15
Outliers	
Low Outliers	23
High Outliers	9
DefaultData	
• False	3263
• True	113

- Vérification des doublons (aucun)
- Suppression des « ComplianceStatus » NOK
- Suppression des « Outliers » (plus d'outliers)

 Suppression des NaN sur cibles (4 lignes)

Nettoyage et Exploration -Sélection

- Pré-sélection de features
- Taux de remplissage des features
- Suppression des features < 70%
- ENERGYSTAR Score : 74.8 %

Nettoyage et Exploration -Analyse univariée

Dispersions des cibles

TotalGHGEmissions SiteEnergyUse(kBtu)

count	3207.000000	3.207000e+03
mean	122.211886	5.539669e+o6
var	3.044616e+05	4.898833e+14
std	551.534876	2.212364e+07
min	-0.800000	5.713320e+04
25%	9.640000	9.387549e+05
50%	33.920000	1.809587e+06
75%	94.385000	4.277747e+06
max	16870.980000	8.739237e+08

Passage au log

Nettoyage et Exploration -<u>Matrice de corrélation</u>

Quelques « clusters de corrélation »

Suppression des features fortement corrélées & non structurelles :

Suppression ElecBool (tout les bâtiments utilisent de l'électricité)

Nettoyage et Exploration - Matrice de corrélation

Quelques « clusters de corrélation »

Suppression des features fortement corrélées & non structurelles :

Suppression ElecBool (tout les bâtiments utilisent de l'électricité)

Taille finale:

2758 lignes

11 features + 2 targets

Modeling

Consommation d'énergie & Emissions de gaz à effet de serres

Modeling -Préprocessing

- train_test_split : 80% train, random_state
- pipe = model_pipe(preprocessor, regressor)

DummyRegressor : Score: -0,005

Score

(X_test, y_test)

Modeling – <u>Modèles & Grid</u>Search

Modèles

- Ridge Regression
- Lasso Regression
- Elastic Net
- kNN
- SVR
- Neuron Network
- Random Forest
- Adaboost
- XGBoost
- Echelle d'origine
- Echelle logarithmique

GridSearch

- Kfold: 10 folds, shuffle, random_state
- Tableaux modèles & paramètres
- Boucle for (modèle, paramètres)
 - GridSearchCV (modèle, paramètres)
 - Stockage score r2
 - Stockage GridSearch (best_params, best_estimator, ...)

Modeling – <u>Résultats GHG Emissions</u>

Modeling – Résultats GHG Emissions

Score R2: 0.588

Score R2_log2lin: 0.604

Meilleure échelle : Log

Modeling -Résultats Energy Use

Modeling – Résultats Energy Use

Score R2: 0.709

Score R2_log2lin: 0.726

Meilleure échelle : Log

Modeling -Interprétation

GHG Emissions

Energy Use

Intérêt de ENERGY STAR Score

GridSearch avec ES Score

Intérêt de ENERGY STAR Score -Comparaison des scores

XGBoost – Comparaison Sans / Avec ES Score

Intérêt de ENERGY STAR Score -Features Importance

GHG Emissions

Features Importance x1 Restaurant x1 Other x1 Warehouse x1 Large Office x0_Multifamily MR (5-9) x1_Supermarket / Grocery Store -PropertyGFAParking x1_Self-Storage Facility PropertyGFABuilding(s) x3 False x3 True x1_Low-Rise Multifamily x0 Multifamily LR (1-4) x4_False x4_True 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Energy Use

ENERGYSTARScore: 0.008 25^{ème} / 60 ENERGYSTARScore: 0.025 15^{ème} / 60

Conclusions

Conclusions

- Meilleur modèle : XGBoost
- Meilleur échelle : Log
- Axes d'amélioration :
 - Augmenter la taille d'échantillon (années, villes)
 - Ajouter des métriques (Type d'isolation, matériaux, ...)
- ENERGY STAR Score
 - Importance relative
 - Gain vs Complexité?
- Prédictions =/= Mesures