TO PASS 75% or higher

Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

1/1 point

- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
- f(1) = 5, f(2) = 8, and <math>f(10) = 40.
- $\bigcirc \ f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$
- $\bigcirc \ f(a)=4a,$ for each $a\in A$

✓ Correct

A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

Suppose that $T:A \to Y$ is the function which gives T(a) = + if person a tests positive and T(a) = - if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person \boldsymbol{a} if we have a false positive?

- $\bigcirc T(a) = \text{ and } D(a) = H$
- \bigcirc T(a) = + and D(a) = H
- $\bigcirc T(a) = + \operatorname{and} D(a) = S$
- $\bigcirc \ T(a) = \text{ and } D(a) = S$

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3. Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the graph of g?

1/1 point

- \bigcirc (0, -1)
- \bigcirc (2, -1)
- \bigcirc (-1,0)
- \bigcirc (1,0)

✓ Correc

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is $\mathbf{p} \in \mathbb{R}$ is $\mathbf{p} \in \mathbb{R}$.

4.	Let the point $A=(2,4).$ Which of the following graphs does $\it not$ contain the point $\it A$?	1/1 point
	\bigcirc The graph of $g(x)=x+2$	
	lacktriangledown The graph of $h(x)=x-1$	
	\bigcirc The graph of $s(x)=x^2$	
	\bigcirc The graph of $f(x)=2x$	
	$ \begin{tabular}{ll} \checkmark & \textbf{Correct} \\ & \textbf{The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1\neq 4$, so the point $(2,4)$ is not on the graph of h.} \end{tabular} $	
5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1/1 point
	\bigcirc h is a strictly increasing function	
	All statements are correct	
	lacktriangledown h is a strictly decreasing function	
	$\bigcirc \ \ h$ is neither a strictly increasing function nor a strictly decreasing function.	
	\checkmark Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$	
	Since the graph of \boldsymbol{h} is a line with negative slope, this is in fact true!	
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	1/1 point
	Which of the following is a possible value for $f(3.7)$?	
	\bigcirc -3	
	17	
	O 14.7	
	\checkmark Correct	
	Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies that.	