Borel Measures and the Lebesgue-Stieltjes Integral

DAVID SNIDER

UNC CHAPEL HILL MATH 753 WITH IDRIS ASSANI

November 30, 2022

Outline

- History
- Borel Measures
 - Definition
 - Characterization of σ -finite Borel measures on \mathbb{R} .
- Application: Lebesgue-Stieltjes Integral
 - Lebesgue-Stieltjes Measure
 - Definition of Integral

History

- Émile Borel (1871-1956)
 - "Sur quelques points de la théorie des fonctions" in 1893.
- Henri Lebesgue (1875-1941)
 - Advised by Borel
 - Used Borel's theory to develop his integration theory
- Thomas Jan Stieltjes (1856-1894)
 - Integration of one function with respect to another

What is it?

Definition

Let X be a topological space. Its Borel sigma algebra $\mathcal{B}(X)$ is the sigma-algebra generated by the open sets of X. A Borel measure is a measure defined on $\mathcal{B}(X)$.

Examples

- $X = \mathbb{R}$. Use $\mu((a,b)) = b a$ and Caratheodory.
- X= unit sphere. Let $\mathcal{T}=$ {intersections of open balls in \mathbb{R}^3 and the sphere}. \mathcal{T} is a basis for the topology of X. For $U\in\mathcal{T}$, define $\mu(U)$ as its surface area. Use Caratheodory.
- $X=\mathbb{R}$. Set $F(x)=e^x$, and let $\mu\left((a,b)\right)=F(b)-F(a)$. Use Caratheodory.

Examples

- $X = \mathbb{R}$. Use $\mu((a,b)) = b a$ and Caratheodory.
- X= unit sphere. Let $\mathcal{T}=$ {intersections of open balls in \mathbb{R}^3 and the sphere}. \mathcal{T} is a basis for the topology of X. For $U\in\mathcal{T}$, define $\mu(U)$ as its surface area. Use Caratheodory.
- $X=\mathbb{R}$. Set $F(x)=e^x$, and let $\mu\left((a,b)\right)=F(b)-F(a)$. Use Caratheodory.

Guiding Questions:

- Relationship between functions and Borel measures.
- Does continuity play a role?

Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is right-continuous if $x_n \to x$ from above implies $f(x_n) \to f(x)$.

In our notation, we say a function $f:\mathbb{R}\to\mathbb{R}$ is increasing if it is nondecreasing.

Theorem

Given a σ -finite Borel measure, one obtains an increasing, right-continuous function via

$$F(x) = \begin{cases} \mu((0,x]) & x > 0 \\ 0 & x = 0 \\ -\mu((-x,0]) & x < 0 \end{cases}$$

Proof.

Let $x_n \to x$ from the right, where $x \ge 0$. Using continuity of measure from above.

$$F(x) = \mu((0, x]) = \mu\left(\bigcap_{n} (0, x_n]\right) = \lim_{n} \mu(0, x_n] = \lim_{n} F(x_n)$$

For the case when x < 0, use continuity of measure from below. It is increasing by monotonicity.

Theorem

If $F: \mathbb{R} \to \mathbb{R}$ is an increasing, right continuous function, there is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) - F(a)$ for all a,b. If G is another function, then $\mu_F = \mu_G$ iff F = G plus a constant.

Proof: Show F gives a σ -finite pre-measure μ_0 . Let $\mathcal A$ be the algebra $\{\bigsqcup_{j=1}^n (a_j,b_j]\}$, where \coprod denotes a union of disjoint sets. We aim to show

$$\mu_0 \left(\bigsqcup_{j=1}^n (a_j, b_j] \right) := \sum_{j=1}^n [F(b_j) - F(a_j)]$$

is a premeasure on \mathcal{A} , where $\mu_0(\emptyset) = 0$ by definition.

Proof (cont'd): Well-definedness of μ_0 : Let $\bigsqcup_1^n(a_j,b_j]=(a,b]$. After relabeling j, we have $a=a_1< b_1=a_2<\ldots< b_n=b$. Then, $\sum_1^n [F(b_j)-F(a_j)]=F(b)-F(a)$. So, if $\bigsqcup_{i=1}^n I_i=\bigsqcup_{j=1}^m J_j$, then

$$\mu_0\left(\bigsqcup_{i=1}^n I_i\right) = \sum_{i=1}^n \mu_0(I_i) = \sum_{i,j} \mu_0(I_i \cap J_j) = \sum_{j=1}^m \mu_0(J_j) = \mu_0\left(\bigsqcup_{j=1}^m J_j\right)$$

Proof (cont'd): WTS $\bigsqcup_1^{\infty} I_i \in \mathcal{A} \implies \mu_0 \left(\bigsqcup_1^{\infty} I_i \right) = \sum_1^{\infty} \mu_0(I_i)$. We have $\bigsqcup_1^{\infty} I_i = \bigsqcup_1^n (a_j, b_j]$. By finite additivity,

$$\mu_0\left(\bigsqcup_{1}^{\infty}I_i\right)=\sum_{j=1}^n\mu_0\left(\bigsqcup_{1}^{\infty}I_i\cap(a_j,b_j]\right)$$
,

If the identity holds for any summand in RHS, then it holds for $\bigsqcup_1^\infty I_i$. So we reduce to the case where $\bigsqcup_1^\infty I_i = (a,b]$.

Proof (cont'd): Let I = (a, b]. We have

$$\mu_0(I) = \mu_0\left(\bigcup_1^n I_i\right) + \mu_0\left(I \setminus \bigcup_1^n I_i\right) \ge \mu_0\left(\bigcup_1^n I_i\right) = \sum_1^n \mu_0(I_i)$$

Let $n \to \infty$ to get $\mu_0\left(\bigsqcup_1^{\infty} I_i\right) \ge \sum_1^{\infty} \mu_0(I_i)$.

For reverse inequality, first assume a and b are finite. Fix $\epsilon>0$. Use right-continuity of F. $\exists \delta>0$ such that $F(a+\delta)-F(a)<\epsilon$ and $\exists \delta_i>0$ such that

- $F(b_i + \delta_i) F(b_i) < \epsilon 2^{-i}$
- Under some relabeling, $\{(a_i, b_i + \delta_i)\}_{i=1}^N$ covers $[a + \delta, b]$
- $b_i + \delta_i \in (a_{i+1}, b_{i+1} + \delta_{i+1})$ for i = 1, ..., N-1

$$\mu_0(I) < F(b) - F(a+\delta) + \epsilon$$

$$\leq F(b_N + \delta_N) - F(a_1) + \epsilon$$

$$= F(b_N + \delta_N) - F(a_N) + \sum_{i=1}^{N-1} [F(a_{i+1}) - F(a_i)] + \epsilon$$

$$\leq F(b_N + \delta_N) - F(a_N) + \sum_{i=1}^{N-1} [F(b_i + \delta_i) - F(a_i)] + \epsilon$$

$$< \sum_{i=1}^{N} [F(b_i) + \epsilon 2^{-1} - F(a_i)] + \epsilon] < \sum_{i=1}^{\infty} \mu_0(I_i) + 2\epsilon$$

Proof (cont'd): When a or b is not finite: Let $a=-\infty$. We notice that for $M<\infty$, the intervals $(a_i,b_i+\delta_i)$ cover [-M,b], so $F(b)-F(-M)\leq \sum_1^\infty \mu_0(I_i)+2\epsilon$. If $b=\infty$, then for $P<\infty$ we obtain $F(P)-F(a)\leq \sum_1^\infty \mu_0(I_i)+2\epsilon$. Let $\epsilon\to 0,M,P\to\infty$.

Proof (cont'd):

- μ_0 is a pre-measure on \mathcal{A}
- μ_0 is σ -finite.
- Using Folland Theorem 1.14, \exists a unique measure on $\mathcal{B}(\mathbb{R})$ that extends μ_0 .
- \bullet F-G=k iff F and G give the same premeasure.

Notice the similarity between the following isomorphisms.

$$\frac{\{F:\mathbb{R}\to\mathbb{R}:F\nearrow,\mathsf{right\text{-}continuous}\}}{\{\mathsf{constant\ functions}\}}\cong\{\sigma\text{-finite\ Borel\ measures\ on\ }\mathbb{R}\}$$

$$\frac{C^1(\mathbb{R})}{\{\text{constant functions}\}} \cong C(\mathbb{R})$$

Questions:

- Why are the conditions on F so strict?
- What if we consider Borel signed measures?

Questions:

- Why are the conditions on F so strict?
- What if we consider Borel signed measures?

Example

Let
$$F(x) = \sin x$$
. What is $\mu_F((0, \infty))$?

Definition

Given interval $[a,b] \subset \mathbb{R}$, with non-negative, Borel measurable f, and increasing, right-continuous g, we define

$$\int_{a}^{b} f dg(x) := \int_{a}^{b} f d\mu_{g},$$

where μ_q is the Lebesgue-Stieltjes measure given by g.

Using the theory of bounded variation, we extend the definition.

Using the theory of bounded variation, we extend the definition.

Definition

Given interval $[a,b]\subset\mathbb{R}$, with bounded, Borel measurable f, and g of bounded variation in [a,b] and right continuous. We decompose g into the difference of two increasing functions g_1-g_2 and define

$$\int_a^b f dg(x) := \int_a^b f dg_1 - \int_a^b f dg_2,$$

Question: Why can't we just define the integral using the Radon-Nikodym derivative?

$$\int_a^b f dg(x) := \int_a^b f \frac{d\mu_g}{d\mu} d\mu$$
?

Question: Why can't we just define the integral using the Radon-Nikodym derivative?

$$\int_a^b f dg(x) := \int_a^b f \frac{d\mu_g}{d\mu} d\mu$$
?

Answer: The Lebesgue-Stieltjes integral is a generalization of the above integral.

Example

Let δ_0 be the Dirac measure on $\mathbb R$ and Δ_0 its CDF. Δ_0 is increasing and right continuous, but we do not have that $\mu_{\Delta_0} << \mu$, the Lebesgue measure. So the Lebesgue-Stieltjes Integral with respect to Δ_0 cannot be defined using a Radon-Nikodym derivative.

An Application of the Lebesgue-Stieltjes Integral

The Lebesgue-Stieltjes Integral allows for a definition of probabilistic concepts when the probability measure is not absolutely continuous with respect to Lebesgue measure.

An Application of the Lebesgue-Stieltjes Integral

The Lebesgue-Stieltjes Integral allows for a definition of probabilistic concepts when the probability measure is not absolutely continuous with respect to Lebesgue measure.

$$E[f(x)] := \int_{-\infty}^{\infty} f(x) d\mu_G(x).$$

References

- "Real Analysis: Modern Techniques and Their Applications."
 Gerald B. Folland.
- MacTutor History of Mathematics Archive
- Abstract from "The Lebesgue-Stieltjes Integral" by M. Carter and B. van Brunt.