Package 'iraceplot'

November 27, 2024

Title Plots for Visualizing the Data Produced by the 'irace' Package **Version** 2.0.0

Description Graphical visualization tools for analyzing the data produced by 'irace'. The 'iraceplot' package enables users to analyze the performance and the parameter space data sampled by the configuration during the search process. It provides a set of functions that generate different plots to visualize the configurations sampled during the execution of 'irace' and their performance. The functions just require the log file generated by 'irace' and, in some cases, they can be used with user-provided data.

```
License MIT + file LICENSE
Depends R (>= 4.0.0)
Imports irace (>= 4.0.0), cli, data.table, dplyr, DT, forcats, fs,
     ggforce, ggplot2 (>= 3.3.6), gridExtra, knitr, labeling,
     matrixStats (\geq 0.55), plotly, rlang, rmarkdown (\geq 2.7),
     stats, tibble, tidyr, truncnorm, utils, viridisLite, withr
Suggests testthat (>= 3.0.0)
URL https://auto-optimization.github.io/iraceplot/,
     https://github.com/auto-optimization/iraceplot/
BugReports https://github.com/auto-optimization/iraceplot/issues
Config/testthat/edition 3
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no
Author Manuel López-Ibáñez [aut, cre]
       (<https://orcid.org/0000-0001-9974-1295>),
     Pablo Oñate Marín [aut],
     Leslie Pérez Cáceres [aut] (<a href="https://orcid.org/0000-0001-5553-6150">https://orcid.org/0000-0001-5553-6150</a>)
Maintainer Manuel López-Ibáñez <manuel.lopez-ibanez@manchester.ac.uk>
Repository CRAN
Date/Publication 2024-11-27 09:00:02 UTC
```

2 iraceplot-package

Contents

	iraceplot-package	2
	ablation_plot	3
	boxplot_performance	4
	boxplot_test	ϵ
	boxplot_training	7
	configurations_display	8
	distance_config	9
	parallel_cat	10
	parallel_coord	11
	parameters_summarise	12
	parameters_tree	13
	plot_configurations	14
	plot_experiments_matrix	15
	plot_model	16
	report	17
	sampling_distance	18
	sampling_frequency	19
	sampling_frequency_iteration	20
	sampling_heatmap	21
	sampling_heatmap2	22
	sampling_pie	23
	scatter_performance	24
	summarise_by_configuration	26
	summarise_by_instance	26
	summarise_by_iteration	27
Index		28
irac	eplot-package The iraceplot package: Plots for Visualizing the Data Produced by th	е

Description

Graphical visualization tools for analyzing the data produced by 'irace'. The 'iraceplot' package enables users to analyze the performance and the parameter space data sampled by the configuration during the search process. It provides a set of functions that generate different plots to visualize the configurations sampled during the execution of 'irace' and their performance. The functions just require the log file generated by 'irace' and, in some cases, they can be used with user-provided data.

'irace' Package

ablation_plot 3

Details

boxplot_performance; boxplot_test; boxplot_training; parallel_cat; plot_configurations; parallel_coord; plot_experiments_matrix; plot_model; report; sampling_distance; sampling_frequency; sampling_frequency_iteration; sampling_heatmap2; sampling_heatmap; sampling_pie; scatter_performance; scatter_test; scatter_training;

If you need information about any function you can write: ?name_function

If you need more information, go to the following page: https://auto-optimization.github.io/iraceplot/

Author(s)

Maintainer: Manuel López-Ibáñez <manuel.lopez-ibanez@manchester.ac.uk> (ORCID) Authors:

- Pablo Oñate Marín <pablo.onate.m@gmail.com>
- Leslie Pérez Cáceres < leslie.perez@pucv.cl>(ORCID)

See Also

Useful links:

- https://auto-optimization.github.io/iraceplot/
- https://github.com/auto-optimization/iraceplot/
- Report bugs at https://github.com/auto-optimization/iraceplot/issues

ablation_plot

Create plot from an ablation log

Description

Create plot from an ablation log

```
ablation_plot(
  ablog,
  type = c("mean", "boxplot", "rank"),
  n = 0L,
  ylab = "Mean configuration cost",
  ylim = NULL,
  rotate_labs = TRUE,
  filename = NULL
)
```

boxplot_performance

Argument	S
----------	---

ablog	(list() character(1)) Ablation log object returned by irace::ablation(). Alternatively, the path to an .Rdata file, e.g., "log-ablation.Rdata", from which the object will be loaded.
type	Type of plot. Supported values are "mean" and "boxplot". Adding "rank" will plot rank per instance instead of raw cost value.
n	(integer(1)) Number of steps included in the plot. By default all steps from source to target are included.
ylab	Label of y-axis.
ylim	Numeric vector of length 2 giving the y-axis range.
rotate_labs	(logical(1)) Whether to rotate labels in x-axis. They are rotated by default because they are typically large.
filename	(character(1)) File name to save the plot, for example "~/path/example/filename.png".

Value

```
ggplot2::ggplot() boxplot object
```

Author(s)

Manuel López-Ibáñez

See Also

```
irace::ablation(), irace::plotAblation()
```

Examples

```
ablog <- read_ablogfile(system.file(package="irace", "exdata", "log-ablation.Rdata"))
ablation_plot(ablog)
ablation_plot(ablog, type="boxplot", rotate_labs = FALSE)
ablation_plot(ablog, type="mean,boxplot", rotate_labs = FALSE)
ablation_plot(ablog, type="rank,mean,boxplot", n = 4, rotate_labs = FALSE)
ablog <- system.file(package="iraceplot", "exdata", "log-ablation-autoMOPSODTLZ.Rdata")
ablation_plot(ablog, type="rank,mean,boxplot")</pre>
```

boxplot_performance

Box Plot of the performance of a set of configurations

Description

Creates a box plot that displays the performance of a set of configurations which can be displayed by iteration.

boxplot_performance 5

Usage

```
boxplot_performance(
  experiments,
  allElites = NULL,
  type = c("all", "ibest"),
  first_is_best = TRUE,
  rpd = TRUE,
  show_points = TRUE,
  best_color = "#08bfaa",
  xlab = "Configurations",
  boxplot = FALSE,
  filename = NULL,
  interactive = base::interactive()
)
```

Arguments

experiments matrix()

Experiment matrix obtained from irace training or testing data. Configurations in columns and instances in rows. As in irace, column names (configurations

IDs) should be characters.

allElites List or vector of configuration ids, (default NULL). These configurations should

be included in the plot. If the argument is not provided all configurations in experiments are included. If allElites is a vector all configurations are assumed without iteration unless argument type="ibest" is provided, in which case each configuration is assumed to be from a different iteration. If allElites is a list,

each element of the list is assumed as an iteration.

type String, (default "all") possible values are "all" or "ibest". "all" shows all the

selected configurations showing iterations if the information is provided. "ibest" shows the elite configurations of each iteration, note that the best configuration

is always assumed to be first in the vector of each iteration.

first_is_best Boolean (default TRUE) Enables the display in a different color the best con-

figuration identified as the first one in a vector. If FALSE, all configurations are

shown in the same color.

rpd (logical(1)) TRUE to plot performance as the relative percentage deviation to

best results per instance, FALSE to plot raw performance.

show_points Logical, (default TRUE) TRUE to plot performance points together with the box

plot.

best_color String, (default "#08bfaa") color to display best configurations.

xlab String, (default "Configurations") label for the x axis.

boxplot By default, display a violin plot (ggplot2::geom_violin()). If TRUE, show a

classical boxplot.

 $\label{eq:filename} {\it (character(1))} \ File \ name \ to \ save \ the \ plot, \ for \ example \ "\sim\/path/example/filename.png".$

interactive (logical(1)) TRUE if the report may use interactive features (using plotly::ggplotly(),

plotly::plot_ly() and DT::renderDataTable()) or FALSE if such features

must be disabled. Defaults to the value returned by interactive(),

6 boxplot_test

Details

The performance data is obtained from the experiment matrix provided in the experiments argument. The configurations can be selected using the allElites argument and this argument can be also used to define the iteration of each elite configuration was evaluated.

Value

```
ggplot2::ggplot() boxplot object
```

See Also

```
boxplot_test() boxplot_training()
```

Examples

boxplot_test

Box Plot Testing Performance

Description

Creates a box plot that displays the performance of a set of configurations on the test instances.

Usage

```
boxplot_test(irace_results, type = c("all", "ibest", "best"), ...)
```

Arguments

irace_results The data generated when loading the .Rdata file created by irace (or the filename of that file).

type String, (default "all") possible values are "all", "ibest" or "best". "all" shows all the configurations included in the test, "best" shows the elite configurations of the last iteration and "ibest" shows the elite configurations of each iteration (requires that irace includes the iteration elites in the testing).

Other arguments passed to boxplot_performance().

Details

The performance data is obtained from the test evaluations performed by irace. Note that the testing is not a default feature in irace and should be enabled in the setup (see the irace package user guide for more details).

boxplot_training 7

Value

```
ggplot2::ggplot() boxplot object
```

See Also

```
boxplot_training() boxplot_performance()
```

Examples

boxplot_training

Box Plot Training

Description

Creates a box plot that displays the performance of a set of configurations on the training instances. Performance data is obtained from the evaluations performed by irace during the execution process. This implies that the number of evaluations can differ between configurations.

Usage

```
boxplot_training(
  irace_results,
  iteration = NULL,
  id_configurations = NULL,
  ...
)
```

Arguments

irace_results

The data generated when loading the .Rdata file created by irace (or the filename of that file).

iteration

Numeric, iteration number that should be included in the plot (example: iteration = 5) When no iteration and no id_condigurations are provided, the iterations is assumed to be the last one performed by irace.

The performance data is obtained from the evaluations performed by irace during the execution process. This implies that the number of evaluations can differ between configurations due to the elimination process applied by irace. This plot, consequently, does not provide a complete compaarison of two configurations, for a fair comparison use the test data plot.

id_configurations

Numeric vector, configurations ids whose performance should be included in the plot. If no ids are provided, the configurations ids are set as the elite configuration ids of the selected iteration (last iteration by default) (example: $id_configurations = c(20,50,100,300,500,600,700)$).

... Other arguments passed to boxplot_performance().

Value

```
ggplot2::ggplot() boxplot object
```

See Also

```
boxplot_test() boxplot_performance()
```

Examples

configurations_display

The configurations by iteration and instance

Description

This is a simplified version of the visualization you can obtain with acviz. This function is currently VERY SLOW.

Usage

```
configurations_display(
   irace_results,
   rpd = TRUE,
   filename = NULL,
   interactive = base::interactive()
)
```

Arguments

irace_results
The data generated when loading the .Rdata file created by irace (or the file-

name of that file).

rpd (logical(1)) TRUE to plot performance as the relative percentage deviation to

best results per instance, FALSE to plot raw performance.

filename (character(1)) File name to save the plot, for example "~/path/example/filename.png". interactive (logical(1)) TRUE if the report may use interactive features (using plotly::ggplotly(),

plotly::plot_ly() and DT::renderDataTable()) or FALSE if such features

must be disabled. Defaults to the value returned by interactive(),

distance_config 9

Value

```
ggplot2::ggplot() object
```

Examples

distance_config

Distance between configurations

Description

Calculate the difference between a configuration and the others in the irace data.

Usage

```
distance_config(irace_results, id_configuration, t = 0.05)
```

Arguments

id_configuration

Numeric, configuration id which should be compared to others (example: id_configuration = c(806,809))

t Numeric, (default 0.05) threshold that defines the distance (percentage of the domain size) to consider a parameter value equal to other.

Value

numeric

Examples

NULL

10 parallel_cat

parallel_cat

Parallel Coordinates Category

Description

Parallel categories plot of selected configurations. Numerical parameters are discretized to maximum n_bins intervals. To visualize configurations of other iterations these must be provided setting the argument iterations, groups of configurations of different iterations are shown in different colors. Specific configurations can be selected providing their ids in the id_configurations argument.

Usage

```
parallel_cat(
  irace_results,
  id_configurations = NULL,
  param_names = NULL,
  iterations = NULL,
  by_n_param = NULL,
  n_bins = 3,
  filename = NULL
)
```

Arguments

irace_results

name of that file). id_configurations Configuration ids to be included in the plot. Example: c(20,50,100,300,500,600,700) (character()) Parameters to be included in the plot. Example: c("algorithm", "alpha", "rho", "q0", param_names iterations

The data generated when loading the .Rdata file created by irace (or the file-

Numeric vector, iterations from which configuration should be obtained (exam-

ple: iterations = c(1,4,5))

by_n_param Numeric (optional), maximum number of parameters to be displayed.

n_bins Numeric (default 3), number of intervals to generate for numerical parameters.

filename (character(1)) File name to save the plot, for example "~/path/example/filename.png".

Details

The parameters to be included in the plot can be selected with the param_names argument. Additionally, the maximum number of parameters to be displayed in one plot. A list of plots is returned by this function in several plots are required to display the selected data.

Value

parallel categories plot

parallel_coord 11

See Also

```
parallel_coord() plot_configurations()
```

Examples

parallel_coord

Parallel Coordinates Plot

Description

Parallel coordinates plot of a set of selected configurations. Each line in the plot represents a configuration. By default, the final elite configurations are shown. To visualize configurations of other iterations these must be provided setting the argument iterations, configurations of different iterations are shown in different colors. Setting the only_elites argument to FALSE displays all configurations in the selected iterations, specific configurations can be selected providing their ids in the id_configuration argument.

Usage

```
parallel_coord(
   irace_results,
   id_configurations = NULL,
   param_names = NULL,
   iterations = NULL,
   only_elite = TRUE,
   by_n_param = NULL,
   color_by_instances = TRUE,
   filename = NULL
)
```

Arguments

```
irace_results The data generated when loading the .Rdata file created by irace (or the file-
name of that file).

id_configurations

Configuration ids to be included in the plot. Example: c(20,50,100,300,500,600,700)

param_names (character()) Parameters to be included in the plot. Example: c("algorithm", "alpha", "rho", "q0",
```

12 parameters_summarise

Details

The parameters to be included in the plot can be selected with the param_names argument. Additionally, the maximum number of parameters to be displayed in one plot. A list of plots is returned by this function if several plots are required to display the selected data.

To export the plot to a file, it is possible to do it so manually using the functionality provided by plotly (https://plotly-r.com/exporting-static-images). If a filename is provided, orca server will be used to export the plots and thus, it requires the library to be installed (https://github.com/plotly/orca).

Value

parallel coordinates plot

Examples

parameters_summarise Summarise parameters space

Description

Summarise parameters space

```
parameters_summarise(parameters)
```

parameters_tree 13

Arguments

```
parameters (list()) Parameter space in irace format. See the function irace::readParameters().
```

Value

```
tibble::tibble()
```

Author(s)

Manuel López-Ibáñez

Examples

```
# Read the parameters directly from text.
parameters_tab <- '
a "" i (2, 10)
b "" c (yes, no) | a < 5
c "" o (low, medium, high) | (a == 2) | (b == "yes")
d "" r (a, 50)'
parameters <- irace::readParameters(text=parameters_tab)
parameters_summarise(parameters)</pre>
```

parameters_tree

Print parameter dependencies as a tree

Description

Print parameter dependencies as a tree

Usage

```
parameters_tree(parameters)
```

Arguments

```
parameters (list()) Parameter space in irace format. See the function irace::readParameters().
```

Author(s)

Manuel López-Ibáñez

14 plot_configurations

Examples

```
# Read the parameters directly from text.
parameters_tab <- '
a "" i (2, 10)
b "" c (yes, no) | a < 5
c "" o (low, medium, high) | (a == 2) | (b == "yes")
d "" r (a, 50)
'
parameters <- irace::readParameters(text=parameters_tab)
parameters_tree(parameters)</pre>
```

plot_configurations

Plot parameter configurations using parallel coordinates

Description

Parallel coordinates plot of a set of provided configurations. Each line in the plot represents a configuration. The parameters to be included in the plot can be selected with the param_names argument. Additionally, the maximum number of parameters to be displayed in one plot. A list of plots is returned by this function in several plots are required to display the selected data.

Usage

```
plot_configurations(
  configurations,
  parameters,
  param_names = parameters$names,
  by_n_param = NULL,
  filename = NULL
)
```

Arguments

```
configurations Data frame, configurations in irace format (example: configurations = iraceResults$allConfigurations are iraceResults$allConfigurations = iraceResults
```

Details

To export the plot to a file, it is possible to do it so manually using the functionality provided by plotly (https://plotly-r.com/exporting-static-images). If a filename is provided, orca server will be used to export the plots and thus, it requires the library to be installed (https://github.com/plotly/orca).

Value

parallel coordinates plot

Examples

Description

Creates a heatmap plot that shows all performance data seen by irace. Configurations are shown in the x-axis in the order in which they are created in the configuration process. Instances are shown in the y-axis in the order in which they where seen during the configuration run. This plot gives a general idea of the configuration process progression, the number of evaluations of each configuration show how long they survived in the iterated racing procedure. Rejected configurations are shown with a red X.

Usage

```
plot_experiments_matrix(
   experiments,
   filename = NULL,
   metric = c("raw", "rpd", "rank"),
   show_conf_ids = FALSE,
   interactive = base::interactive()
)
```

Arguments

```
experiments matrix()
Experiment matrix obtained from irace training or testing data. Configurations in columns and instances in rows. As in irace, column names (configurations IDs) should be characters.

filename (character(1)) File name to save the plot, for example "~/path/example/filename.png".
```

16 plot_model

metric Cost metric shown in the plot: "raw" shows the raw values, "rpd" shows relative

percentage deviation per instance and "rank" shows rank per instance.

show_conf_ids (logical(1))

If TRUE, it shows the configuration IDs in the x-axis. The default NA, only shows

them if there are no more than 25.

interactive (logical(1)) TRUE if the report may use interactive features (using plotly::ggplotly(),

plotly::plot_ly() and DT::renderDataTable()) or FALSE if such features

must be disabled. Defaults to the value returned by interactive(),

Value

```
ggplot2::ggplot() object
```

Note

Alternatively, experiments could be the data generated when loading the .Rdata file created by irace (or the filename of that file), from which the experiments matrix will be loaded.

Examples

plot_model

Plot the sampling models used by irace

Description

Display the sampling models from which irace generated parameter values for new configurations during the configurations process.

For categorical parameters a stacked bar plot is created. This plot shows the sampling probabilities of the parameter values for the elite configurations in the iterations of the configuration process.

For numerical parameters a sampling distributions plot of the numerical parameters for the elite configurations of an iteration. This plot shows de density function of the truncated normal distributions associated to each parameter for each elite configuration on each iteration.

```
plot_model(irace_results, param_name, filename = NULL)
```

report 17

Arguments

irace_results The data generated when loading the .Rdata file created by irace (or the file-

name of that file).

param_name String, parameter to be included in the plot, e.g., param_name = "algorithm"

filename (character(1)) File name to save the plot, for example "~/path/example/filename.png".

Value

sampling model plot

Examples

report

Create HTML Report from irace data

Description

This function creates an HTML report of the most relevant irace data. This report provides general statistics and plots that show the best configurations and their performance. Example: https://auto-optimization.github.io/iraceplot/articles/example/report_example.html

Usage

```
report(
  irace_results,
  filename = "report",
  sections = list(experiments_matrix = NULL, convergence = FALSE),
  interactive = base::interactive()
)
```

Arguments

irace_results
The data generated when loading the .Rdata file created by irace (or the file-

name of that file).

filename (character(1)) Filename indicating where to save the report (example: "~/path-to/filename").

sections (list()) List of sections to enable/disable. This is useful for disabling sections

that may cause problems, such as out-of-memory errors. NA means automatically

enable/disable a section depending on the memory required.

interactive (logical(1)) TRUE if the report may use interactive features (using plotly::ggplotly(),

plotly::plot_ly() and DT::renderDataTable()) or FALSE if such features

must be disabled. Defaults to the value returned by interactive(),

18 sampling_distance

Value

filename where the report was created or it opens the report in the default browser (interactive).

Examples

sampling_distance

Sampling distance Plot

Description

The sampling_distance function creates a plot that displays the mean of the distance between the configurations that were executed in each iteration.

For categorical parameters the distance is calculated as the hamming distance, for numerical parameters a equality interval is defined by a threshold specified by argument t and hamming distance is calculated using this interval.

Usage

```
sampling_distance(
  irace_results,
  type = c("boxplot", "line", "both"),
  t = 0.05,
  filename = NULL
)
```

Arguments

irace_results	The data generated when loading the .Rdata file created by irace (or the filename of that file).
type	String, (default "boxplot") Type of plot to be produces, either "line", "boxplot" or "both". The "boxplot" setting shows a boxplot of the mean distance of all configurations, "line" shows the mean distance of the solution population in each iteration, "both" shows both plots.
t	Numeric, (default 0.05) percentage factor that will determine a distance to define equal numerical parameter values. If the numerical parameter values to be compared are v1 and v2 they are considered equal if $ v1-v2 \le ub-1b *t$.
filename	(character(1)) File name to save the plot, for example "~/path/example/filename.png"

sampling_frequency 19

Value

line or box plot

Examples

sampling_frequency

Parameter Frequency and Density Plot

Description

Frequency or density plot that depicts the sampling performed by irace across the iterations of the configuration process. For categorical parameters a frequency plot is created, while for numerical parameters a histogram and density plots are created. The plots are shown in groups of maximum 9, the parameters included in the plot can be specified by setting the param_names argument.

Usage

```
sampling_frequency(
  configurations,
  parameters,
  param_names = NULL,
  n = NULL,
  filename = NULL
)
```

Arguments

```
configurations \ ({\tt data.frame()})
```

Configurations in irace format. Example: iraceResults\$allConfigurations.

parameters (list())

param_names

Parameters object in irace format. If this argument is missing, the first parameter is taken as the iraceResults data generated when loading the .Rdata file created by irace and configurations=iraceResults\$allConfigurations

and parameters = iraceResults\$scenario\$parameters.

Numeric, for scenarios with large parameter sets, it selects a subset of 9 param-

eters. For example, n=1 selects the first 9 (1 to 9) parameters, n=2 selects the

(character()) Parameters to be included in the plot. Example: c("algorithm", "alpha", "rho", "q0",

next 9 (10 to 18) parameters and so on.

filename (character(1)) File name to save the plot, for example "~/path/example/filename.png".

Value

Frequency and/or density plot

Note

If there are more than 9 parameters, a pdf file extension is recommended as it allows to create a multi-page document. Otherwise, you can use the n argument of the function to generate the plot of a subset of the parameters.

Examples

sampling_frequency_iteration

Frequency and Density plot based on its iteration

Description

The function will return a frequency plot used for categorical data (its values are string, show a bar plot) or numeric data (show a histogram and density plot) by each iteration

```
sampling_frequency_iteration(
  irace_results,
  param_name,
  numerical_type = "both",
  filename = NULL
)
```

sampling_heatmap 21

Arguments

Value

Frequency and/or density plot

Examples

sampling_heatmap

Sampling heat map plot

Description

Heatmap that displays the frequency of sampling values of two parameters.

```
sampling_heatmap(
   irace_results,
   param_names,
   sizes = c(0, 0),
   iterations = NULL,
   only_elite = TRUE,
   filename = NULL
)
```

22 sampling_heatmap2

Arguments

The data generated when loading the .Rdata file created by irace (or the fileirace_results name of that file). (character()) Parameters to be included in the plot. Example: c("algorithm", "alpha", "rho", "q0", param_names Numeric vector that indicated the number of intervals to be considered for nusizes merical parameters. This argument is positional with respect to param_names. By default, numerical parameters are displayed using 10 intervals. (example sizes = c(0,10)Numeric vector, iteration number that should be included in the plot (example: iterations iterations = c(1,4,5)) only_elite logical (default TRUE), only print elite configurations. (character(1)) File name to save the plot, for example "~/path/example/filename.png". filename

Value

sampling heat map plot

Examples

sampling_heatmap2

Sampling heat map plot

Description

Heatmap that displays the frequency of sampling values of two parameters.

```
sampling_heatmap2(
  configurations,
  parameters,
  param_names,
  sizes = c(0, 0),
  filename = NULL
)
```

sampling_pie 23

Arguments

configurations Data frame, configurations in irace format (example: configurations = iraceResults\$allConfigurations parameters (list()) Parameter space in irace format. See the function irace::readParameters().

String vector of size 2, names of the parameters that should be included in the plot (example: param_names = c("beta","alpha"))

sizes Numeric vector that indicated the number of intervals to be considered for numerical parameters. This argument is positional with respect to param_names.

By default, numerical parameters are displayed using 10 intervals. (example sizes = c(0,10))

filename (character(1)) File name to save the plot, for example "~/path/example/filename.png".

Value

sampling heat map plot

Examples

sampling_pie Sampling pie plot

Description

This function creates a pie plot of the values sampled of a set of selected parameters. Numerical parameters are discretized to maximum n_bins intervals. The size of the slices are proportional to the number of configurations that have assigned a parameter value within the rank or the value assigned to that slice. Parameters can be selected by providing their names in the param_names argument.

Usage

```
sampling_pie(irace_results, param_names = NULL, n_bins = 3, filename = NULL)
```

Arguments

irace_results The data generated when loading the .Rdata file created by irace (or the filename of that file).

param_names String vector, A set of parameters to be included (example: param_names = c("algorithm","dlb"))

n_bins Numeric (default 3), number of intervals to generate for numerical parameters.

filename (character(1)) File name to save the plot, for example "~/path/example/filename.png".

24 scatter_performance

Value

Sampling pie plot

Examples

scatter_performance

Performance Scatter Plot of Two Configurations

Description

Create a scatter plot that displays the performance of two configurations on a provided experiment matrix. Each point in the plot represents an instance and the color of the points indicates if one configuration is better than the other.

Usage

```
scatter_performance(
   experiments,
   x_id,
   y_id,
   rpd = TRUE,
   filename = NULL,
   interactive = base::interactive(),
   instance_names = NULL
)
scatter_training(irace_results, ...)
```

Arguments

experiments	Experiment matrix obtained from irace training or testing data. Configurations in columns and instances in rows. As in irace, column names (configurations ids) should be characters. Row names will be used as instance names.
x_id, y_id	Configuration IDs for x-axis and y-axis, respectively.
rpd	(logical(1)) TRUE to plot performance as the relative percentage deviation to best results per instance, FALSE to plot raw performance.
filename	(character(1)) File name to save the plot, for example "~/path/example/filename.png".

scatter_performance 25

Details

The performance matrix is assumed to be provided in the format of the irace experiment matrix thus, NA values are allowed. Consequently the number of evaluations can differ between configurations due to the elimination process applied by irace. This plot only shows performance data only for instances in which both configurations are executed.

scatter_training() compares the performance of two configurations on the training instances. The performance data is obtained from the evaluations performed by irace during the execution process.

scatter_test() compares the performance of two configurations on the test instances. The performance data is obtained from the test evaluations performed by irace. Note that testing is not enabled by default in irace and should be enabled in the scenario setup. Moreover, configuration ids provided in x_id and y_id should belong to elite configuration set evaluated in the test (see the irace package user guide for more details).

Value

```
ggplot2::ggplot() object
```

Examples

```
summarise_by_configuration
```

Summarise by configuration

Description

Summarise by configuration

Usage

```
summarise_by_configuration(
  irace_results,
  elites_only = FALSE,
  instances = c("both", "train", "test")
)
```

Arguments

irace_results The data generated when loading the .Rdata file created by irace (or the file-

name of that file).

elites_only (logical(1)) If TRUE, only report the final elite configurations.

instances (character(1)) Select data from the training instances ("train") or from the

test instances if available ("test"). The default is from both ("both").

Value

tibble

Examples

summarise_by_instance Summarise by instance

Description

Summarise by instance

```
summarise_by_instance(irace_results)
```

summarise_by_iteration 27

Arguments

Value

tibble

Examples

```
summarise_by_iteration
```

Summarise by iteration

Description

Summarise by iteration

Usage

```
summarise_by_iteration(irace_results)
```

Arguments

irace_results
The data generated when loading the .Rdata file created by irace (or the filename of that file).

Value

tibble

Examples

Index

```
* automatic
                                                plotly::ggplotly(), 5, 8, 16, 17, 25
    iraceplot-package, 2
                                                plotly::plot_ly(), 5, 8, 16, 17, 25
* configuration
                                                report, 17
    iraceplot-package, 2
* package
                                                sampling_distance, 18
    iraceplot-package, 2
                                                sampling_frequency, 19
* plot
                                                sampling_frequency_iteration, 20
    iraceplot-package, 2
                                                sampling_heatmap, 21
                                                sampling_heatmap2, 22
ablation_plot, 3
                                                sampling_pie, 23
boxplot_performance, 4
                                                scatter_performance, 24
                                                scatter_performance(), 25
boxplot_performance(), 6-8
boxplot_test, 6
                                                scatter_test (scatter_performance), 24
boxplot_test(), 6, 8
                                                scatter_test(), 25
boxplot_training, 7
                                                scatter_training (scatter_performance),
boxplot_training(), 6, 7
                                                         24
                                                scatter_training(), 25
configurations_display, 8
                                                summarise_by_configuration, 26
                                                summarise_by_instance, 26
distance_config, 9
                                                summarise_by_iteration, 27
DT::renderDataTable(), 5, 8, 16, 17, 25
                                                tibble::tibble(), 13
ggplot2::geom_violin(), 5
ggplot2::ggplot(), 4, 6–9, 16, 25
irace::ablation(), 4
irace::plotAblation(), 4
irace::readParameters(), 13, 14, 23
iraceplot(iraceplot-package), 2
iraceplot-package, 2
parallel_cat, 10
parallel_coord, 11
parallel_coord(), 11
parameters_summarise, 12
parameters_tree, 13
plot_configurations, 14
plot_configurations(), 11
plot_experiments_matrix, 15
plot_model, 16
```