Wspomaganie decyzji w warunkach ryzyka

Bartłomiej Krawczyk, 310774

Zadanie

Rozważamy następujące zagadnienie planowania produkcji: Przedsiębiorstwo wytwarza 4 produkty P_1, P_2, P_3, P_4 na następujących maszynach:

- 4 szlifierkach,
- 2 wiertarkach pionowych,
- 3 wiertarkach poziomych,
- 1 frezarce
- 1 tokarce.

Wymagane czasy produkcji 1 sztuki produktu (w godzinach) w danym procesie obróbki zostały przedstawione w poniższej tabeli:

proces	P1	P2	Р3	P4
Szlifowanie	0.4	0.6	-	_
Wiercenie pionowe	0.2	0.1	-	0.6
Wiercenie poziome	0.1	-	0.7	-
Frezowanie	0.06	0.04	-	0.05
Toczenie	-	0.05	0.02	-

Dochody ze sprzedaży produktów (w zł/sztukę) modelują składowe wektora losowego $R=(R_1,R_2,R_3,R_4)^T$. Wektor losowy R opisuje 4-wymiarowy rozkład t-Studenta z 4 stopniami swobody, którego wartości składowych zostały zawężone do przedziału [5; 12]. Parametry μ oraz Σ niezawężonego rozkładu t-Studenta są następujące:

$$\mu = \begin{bmatrix} 9\\8\\7\\6 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 16 & -2 & -1 & -3\\-2 & 9 & -4 & -1\\-1 & -4 & 4 & 1\\-3 & -1 & 1 & 1 \end{bmatrix}$$

Istnieją ograniczenia rynkowe na liczbę sprzedawanych produktów w danym miesiącu:

miesiąc	P1	P2	P3	P4
Styczeń	200	0	100	200
Luty	300	100	200	200
Marzec	0	300	100	200

Jeżeli w danym miesiącu jest sprzedawany produkt P_1 lub P_2 , to musi być również sprzedawany produkt P_4 w liczbie sztuk nie mniejszej niż suma sprzedawanych produktów P_1 i P_2 .

Istnieje możliwość składowania do 200 sztuk każdego produktu w danym czasie w cenie 1 zł/sztukę za miesiąc. Aktualnie firma nie posiada żadnych zapasów, ale jest pożądane mieć po 50 sztuk każdego produktu pod koniec marca.

Przedsiębiorstwo pracuje 6 dni w tygodniu w systemie dwóch zmian. Każda zmiana trwa 8 godzin. Można założyć, że każdy miesiąc składa się z 24 dni roboczych.

- 1. Zaproponować jednokryterialny model wyboru w warunkach ryzyka z wartością średnią jako miarą zysku. Wyznaczyć rozwiązanie optymalne.
- 2. Jako rozszerzenie powyższego zaproponować dwukryterialny model zysku i ryzyka z wartością średnią jako miarą zysku i odchyleniem przeciętnym jako miarą ryzyka. Dla decyzji $x \in Q$ odchylenie przeciętne jest definiowane jako $\delta(x) = \sum_{t=1}^{T} |\mu(x) r_t(x)| p_t$, gdzie $\mu(x)$ oznacza wartość średnią, $r_t(x)$ realizację dla scenariusza t, p_t prawdopodobieństwo scenariusza t.
 - Wyznaczyć obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko–zysk.
 - Wskazać rozwiązania efektywne minimalnego ryzyka i maksymalnego zysku. Jakie odpowiadają im wartości w przestrzeni ryzyko–zysk?
 - Wybrać trzy dowolne rozwiązania efektywne. Sprawdzić czy zachodzi pomiędzy nimi relacja dominacji stochastycznej pierwszego rzędu. Wyniki skomentować, odnieść do ogólnego przypadku.

Jednokryterialny model wyboru w warunkach ryzyka z wartością średnią jako miarą zysku

Analityczne sformułowanie modelu

Model jednokryterialny ma za zadanie opisać proces produkcyjny przedsiębiorstwa. Pozwoli on na optymalizację zysków z produkcji, zarządzanie sprzedażą oraz efektywne magazynowanie produktów.

Dochody ze sprzedaży produktów modelują składowe wektora losowego R. W przypadku jednokryterialnego modelu wyboru w warunkach ryzyka bazującym na maksymalizacji wartości oczekiwanej zysku możemy przyjąć oczekiwane dochody ze sprzedaży poszczególnych produktów jako oczekiwane wartości wektora R.

W przypadku funkcji liniowej (jaką jest suma) wartość oczekiwana sumy jest równa sumie wartości oczekiwanych. Pozwala to na wyliczenie całkowitego zysku jako sumę oczekiwanych wartości zysków ze sprzedaży produktów w czasie pomniejszoną o sumaryczne oczekiwane koszty magazynowania produktów.

Wartość oczekiwana zawężonego rozkładu t-Studenta wektora losowego R

Zmienna losowa R ma niestandardowy rozkład t-Studenta z 4 stopniami swobody zawężony do przedziału [5; 12]. Rozkład t-Studenta jest ciągły, więc wartość oczekiwana na przedziale domkniętym jest taka sama jak na przedziale otwartym. Wartości oczekiwane wektora R zostały policzone ze wzoru:

$$E(R) = \mu + \sigma \frac{\Gamma((v-1)/2)((v+a^2)^{-(v-1)/2} - (v+b^2)^{-(v-1)/2})v^{v/2}}{2(F_v(b) - F_v(a))\Gamma(v/2)\Gamma(1/2)} dla \ v > 1$$

gdzie:

- $\Gamma(.)$ funkcja gamma Eulera,
- μ wartość oczekiwana niezawężonego rozkładu t-Studenta:

$$\mu = \begin{bmatrix} 9 \\ 8 \\ 7 \\ 6 \end{bmatrix}$$

- Σ - macierz kowariancji niezawężonego rozkładu t-Studenta:

$$\Sigma = \begin{bmatrix} 16 & -2 & -1 & -3 \\ -2 & 9 & -4 & -1 \\ -1 & -4 & 4 & 1 \\ -3 & -1 & 1 & 1 \end{bmatrix}$$

- $\alpha = 5$ lewy kraniec przedziału,
- $\beta = 12$ prawy kraniec przedziału,
- R_i rozkłady poszczególnych składowych wektora R:

$$R_1 \sim Tt_{(5;12)}(9, 16; 4)$$

$$R_2 \sim Tt_{(5;12)}(8, 9; 4)$$

$$R_3 \sim Tt_{(5;12)}(7, 4; 4)$$

$$R_4 \sim Tt_{(5;12)}(6, 1; 4)$$

3

•
$$a = \frac{\alpha - \mu}{\sigma}, b = \frac{\beta - \mu}{\sigma}$$

Wyliczona wartość oczekiwana rozkładu wartości po podstawieniu do wzoru:

 $E(R_1) = 8.6274568376001$ $E(R_2) = 8.304864144322744$ $E(R_3) = 7.605077266035032$ $E(R_4) = 6.421595377441505$

Ostatecznie wychodzi, że oczekiwane dochody ze sprzedaży poszczególnych produktów wynoszą odpowiednio:

produkt	oczekiwany dochód ze sprzedaży
P1	8.6274568376001 zł/sztukę
P2	8.304864144322744 zł/sztukę
P3	7.605077266035032 zł/sztukę
P4	6.421595377441505 zł/sztukę

Specyfikacja problemu decyzyjnego

Przyjęta konwencja:

- UPPER_CASE nazewnictwo zbiorów i stałych parametrów,
- snake_case nazewnictwo zmiennych decyzyjnych,
- pojedyncze litery nazewnictwo poszczególnych elementów należących do zbioru.

Dostępne zbiory

- $PRODUCTS = \{P_1, P_2, P_3, P_4\}$ zbiór produktów,
- PROCESSES zbiór procesów,

 $PROCESSES = \{szlifowanie, wiercenie_pionowe, wiercenie_poziome, frezowanie, toczenie\}$

- $MONTHS = \{stycze\'n, luty, marzec\}$ zbiór dostępnych miesięcy,
- $MONTH_PREDECESSORS = \{(grudzie\acute{\mathbf{n}}, stycze\acute{\mathbf{n}}), (stycze\acute{\mathbf{n}}, luty), (luty, marzec)\}$ zbiór miesięcy oraz ich poprzedników.

Parametry

- HOURS IN A SHIFT = 8 zmiany trwają po 8h,
- NUMBER_OF_SHIFTS = 2 przedsiębiorstwo pracuje w systemie dwóch zmian,
- $WORKING_DAYS_IN_A_MONTH = 24$ każdy miesiąc składa się z 24 dni roboczych,
- $WORKING_HOURS_IN_A_MONTH = 384$ całkowita liczba przepracowanych godzin w miesiącu,

$$WORKING\ HOURS\ IN\ A\ MONTH =$$

 $HOURS_IN_A_SHIFT*NUMBER_OF_SHIFTS*WORKING_DAYS_IN_A_MONTH$

- $PRODUCT_STORAGE_LIMIT = 200$ przedsiębiorstwo ma możliwość składowania do 200 sztuk każdego produktu,
- MONTHLY PRODUCT STORAGE COST = 1 cena składowania produktu to 1 zł/sztukę,
- $PRODUCT_MINIMAL_LEFT_OVER = 50$ pożądany zapas każdego produktu pod koniec marca to 50 produktów,
- $PROCESS_TOOLS[p]$ dla $p \in PROCESSES$ liczba maszyn pozwalających na równoległe wytwarzanie w ramach danego procesu p:

szlifowanie 4 wiercenie pionowe 2	$p \in PROCESSES$	$PROCESS_TOOLS[p]$
wiercenie pionowe 2	szlifowanie	4
"Torochio_prono "C	wiercenie_pionowe	2
wiercenie_poziome 3	wiercenie_poziome	3
frezowanie 1	frezowanie	1
toczenie 1	toczenie	1

• $PRODUCTION_TIME[i][p]$ dla $p \in PRODUCTS$, $i \in PROCESSES$ - wymagany czas produkcji 1 sztuki produktu (w godzinach) w danym procesie obróbki:

$\overline{PRODUCTION_TIME[i][p]}$	P1	P2	Р3	P4
szlifowanie	0.4	0.6	-	-
wiercenie_pionowe	0.2	0.1	-	0.6
wiercenie_poziome	0.1	-	0.7	-
frezowanie	0.06	0.04	-	0.05
toczenie	-	0.05	0.02	-

• $EXPECTED_INCOME_PER_PRODUCT[p]$ dla $p \in PRODUCTS$ - średni dochód ze sprzedaży produktów (w zł/sztukę):

$p \in PRODUCTS$	$EXPECTED_INCOME_PER_PRODUCT[p]$
P1	$E(R_1)$
P2	$E(R_2)$
P3	$E(R_3)$
P4	$E(R_4)$

• $SELL_LIMIT[m][p]$ dla $p \in PRODUCTS$, $m \in MONTHS$ - ograniczenia rynkowe na liczbę sprzedawanych produktów w danym miesiącu:

SELL_LIMIT	P1	P2	Р3	P4
styczen	200	0	100	200
luty	300	100	200	200
marzec	0	300	100	200

Zmienne decyzyjne

- production[p][m] dla $p \in PRODUCTS$, $m \in MONTHS$ ilość danego produktu p wytworzona w ciągu miesiąca m,
- sale[p][m] dla $p \in PRODUCTS,$ $m \in MONTHS$ oczekiwana ilość produktu p, która powinna zostać sprzedana w ciągu miesiąca m,
- $left_over[p][m]$ $dla\ p \in PRODUCTS,\ m \in MONTHS \cup \{grudzie\acute{n}\}$ ilość produktu p, która pozostanie w magazynie na koniec miesiąca m,
- *income* zmienna reprezentująca oczekiwany całkowity dochód. Dodanie tej zmiennej pozwala na uproszczenie funkcji oceny.

Ograniczenia

• Czas produkcji wszystkich przedmiotów w miesiącu nie może przekroczyć dostępności maszyn w miesiącu:

$$\forall m \in MONTHS, i \in PROCESSES$$
:

$$\Sigma_{p \in PRODUCTS}$$
 (production[p][m] * PRODUCTION_TIME[i][p]) \leq WORKING HOURS IN A MONTH * PROCESS TOOLS[i]

• Pozostałości ze sprzedaży są różnicą sumy produktów przechowywanych z poprzedniego miesiąca, produktów wyprodukowanych oraz sprzedanych:

$$\forall (s,c) \in MONTH_PREDECESSORS, \ p \in PRODUCTS:$$

$$left_over[p][c] = production[p][c] + left_over[p][s] - sale[p][c]$$

• Firma na początku stycznia nie posiada żadnych zapasów, więc pozostałości przedmiotów z grudnia są równe 0:

$$\forall p \in PRODUCTS : left_over[p][grudzie\acute{\mathbf{n}}] = 0$$

 Oczekiwanym dochodem całkowitym jest suma wartości oczekiwanych ze sprzedaży poszczególnych produktów w różnych miesiącach pomniejszonym o sumaryczne koszty magazynowania produktów w tym czasie:

$$income = \Sigma_{p \in PRODUCTS, \ m \in MONTHS}$$

$$(sale[p][m] * EXPECTED_INCOME_PER_PRODUCT[p] - left \ over[p][m] * MONTHLY \ PRODUCT \ STORAGE \ COST)$$

• Ograniczenia rynkowe na liczbę sprzedawanych produktów w danym miesiącu nie mogą zostać przekroczone:

$$\forall p \in PRODUCTS, \ m \in MONTHS: \ sale[p][m] <= SELL_LIMIT[m][p]$$

• Produkt P_4 w danym miesiącu musi być sprzedawany w liczbie sztuk nie mniejszej niż suma sprzedawanych produktów P_1 i P_2 :

$$\forall m \in MONTHS: sale[P_4][m] \geq sale[P_1][m] + sale[P_2][m]$$

- Istnieje możliwość składowania do $PRODUCT_STORAGE_LIMIT$ sztuk każdego produktu na koniec miesiąca:

$$\forall p \in PRODUCTS, \ m \in MONTHS: \ left_over[p][m] \leq PRODUCT_STORAGE_LIMIT$$

- Pożądane jest, aby pod koniec marca firma posiadała po $PRODUCT_MINIMAL_LEFT_OVER$ sztuk każdego produktu:

$$\forall p \in PRODUCTS : left \ over[p][marzec] > PRODUCT \ MINIMAL \ LEFT \ OVER$$

• Produkcja poszczególnych produktów w miesiącu nie może być negatywna:

$$\forall p \in PRODUCTS, m \in MONTHS : production[p][m] >= 0$$

• Sprzedaż poszczególnych produktów w miesiącu nie może być negatywna:

$$\forall p \in PRODUCTS, m \in MONTHS : sale[p][m] >= 0$$

• Pozostałości w magazynach na koniec miesiąca nie mogą być negatywne:

$$\forall p \in PRODUCTS, m \in MONTHS : left over[p][m] >= 0$$

Produkty są niepodzielne - produkcja, sprzedaż i pozostałości muszą być całkowitoliczbowe:

$$\forall p \in PRODUCTS, \ m \in MONTHS : \ production[p][m] \in \mathbb{N}$$

$$\forall p \in PRODUCTS, \ m \in MONTHS: \ sale[p][m] \in \mathbb{N}$$

$$\forall p \in PRODUCTS, \ m \in MONTHS : \ left \ over[p][m] \in \mathbb{N}$$

gdzie, \mathbb{N} - zbiór liczb naturalnych.

Funkcja oceny

Firma chce osiągnąć największy oczekiwany zysk. Maksymalizujemy oczekiwany dochód z produkcji, zatem funkcją oceny jest:

max(income)

Sformułowanie modelu

Testy poprawności implementacji

Wyniki

Znalezione rozwiązanie efektywne prowadzi do oczekiwanego zysku równego 11806.90 zł.

Zmienne decyzyjne dla tego rozwiązania wynoszą odpowiednio:

• Produkcja:

production	P1	P2	Р3	P4
styczen luty	200 200	0	100 200	200 200
marzec	50	250	150	250

- Sprzedaż:

sale	P1	P2	Р3	P4
styczen luty	200 200	0 0	100 200	200 200
marzec	0	200	100	200

• Magazynowane produkty pod koniec miesiąca:

left_over	P1	P2	Р3	P4
grudzien	0	0	0	0
styczen	0	0	0	0
luty	0	0	0	0
marzec	50	50	50	50

Dwukryterialny model zysku i ryzyka z wartością średnią jako miarą zysku i odchyleniem przeciętnym jako miarą ryzyka

Analityczne sformułowanie modelu

Specyfikacja problemu decyzyjnego

Zbiory

- SCENARIOS = {1, 2, ..., 100} zbiór liczb reprezentujących numer scenariusza,
- $DEVIATION_MULTIPLIERS = \{1, -1\}$ pomocniczy zbiór pozwalający na uproszczenia zapisu realizacji odchyłek.

Parametry

• $SCENARIOS_NO = 100$ - liczba wszystkich testowanych scenariuszy,

Pozbywamy się wcześniej ustalonych parametrów $EXPECTED_INCOME_PER_PRODUCT$ oraz wszystkich ograniczeń, w których te parametry były wykorzystane. Tym razem definiujemy zysk oddzielnie dla każdego scenariusza:

• $SCENARIOS_INCOME_PER_PRODUCT[s][p]$ dla $s \in SCENARIOS$, $p \in PRODUCTS$ - wygenerowane z obciętego rozkładu t-studenta wartości zarobków dla poszczególnych produktów.

Zmienne decyzyjne

Zmienna income została zastąpiona przez zysk wyliczany dla poszczególnych scenariuszy:

- $scenario_income[s]$, $s \in SCENARIOS$ całkowity zysk osiągnięty w przypadku danego scenariusza s,
- deviation[s][d], $s \in SCENARIOS$, $d \in DEVIATION_MULTIPLIERS$ macierz dodatnich i ujemnych odchyłek zarobków z poszczególnych scenariuszy od średniej zarobków na bazie wszystkich scenariuszy. Wartości tych odchyłek są potrzebne przy wyliczaniu wartości bezwzględnej różnicy zysków ze scenariuszy i średnich zysków,
- mad_risk (MAD ang. Mean Absolute Deviation) miara ryzyka wyliczona na bazie przeciętnego odchylenia zysku ze scenariuszy i średniego zysku.

Ograniczenia

• Dochodem dla danego scenariusza jest różnica dochodu ze sprzedaży oraz kosztu magazynowania:

$$scenario_income[s] = \sum_{p \in PRODUCTS, m \in MONTHS} sale[p][m] *SCENARIOS_INCOME_PER_PRODUCT[s][p] - left_over[p][m] *SCENARIOS_INCOME_PER_PRODUCT[s][p] - left_over[p] - left_over[p][m] *SCENARIOS_INCOME_PER_PRODUCT[s][p] - left_over[p] - left$$

• Średni zysk jest wyliczany jako średnia zarobków ze wszystkich scenariuszy:

$$average_income = 1/SCENARIOS_NO * \sum_{s \in SCENARIOS} scenario_income[s]$$

• Wyliczenie pomocniczych odchyłek:

 $\forall s \in SCENARIOS: \sum d \in DEVIATION_MULTIPLIERS deviation[s][d]*d = average_income - scenario_income[s][d]*d = average_income[s][d]*d = average_income[s][d]*d$

 Ustalenie przeciętnego odchylenia, jako średniej wartości bezwzględnej odchyleń zysków ze scenariuszy i średniego zysku:

$$mad_risk = 1/SCENARIO_NO * \sum_{s \in SCENARIOS, d \in DEVIATION_MULTIPLIERS} deviation[s, d]$$

Funkcje oceny

Sformułowanie modelu

Testy poprawności implementacji

Wyniki

Wyznaczyć obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-zysk.

W celu wyznaczenia możliwych rozwiązań efektywnych dwukryterialnego zadania w przestrzeni ryzyko-zysk podzielono zadanie na kilka mniejszych zadań optymalizacyjnych.

Chcąc zwizualizować rozwiązania poszczególnych zadań na wykresie został zdefiniowany nowy parametr $MIN_AVERAGE_INCOME$ oraz zostało dodane dodatkowe ograniczenie na średni poziom zysku:

$$average_income >= MIN_AVERAGE_INCOME$$

Iteracja po równo odległych osiągalnych poziomach zysku z zakresu [-200; 11553] pozwala zwizualizować te rozwiązania efektywne w przestrzeni.

Dla tak zdefiniowanych poszczególnych zadań została ustalona funkcja oceny na minimalizację miary ryzyka:

$minmad_risk$

Na wykresie zostały przedstawione 119 rozwiązania efektywne zadania:

Rysunek 1: Obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-zysk

Wskazać rozwiązania efektywne minimalnego ryzyka i maksymalnego zysku. Jakie odpowiadają im wartości w przestrzeni ryzyko–zysk?

typ wartość	zysk	ryzyko
minimalne ryzyko	-200	0
maksymalny zysk	11553	735.498

Rozwiązania te zostały osiągnięte poprzez ustalenie funkcji celu odpowiednio na minimalizację ryzyka w pierwszym przypadku i maksymalizację zysku w drugim przypadku. Następnie, aby zapobiec wyborze nie efektywnego rozwiązania ustalono poziom ryzyka (w pierwszym przypadku) i zysku (w drugim przypadku) na stały poziom ustalony w poprzednim kroku i uruchomiono ponownie optymalizację. Tym razem w pierwszym przypadku maksymalizując zysk przy stałym ryzyku i w drugim przypadku minimalizując ryzyko przy stałym zysku.

Wybrać trzy dowolne rozwiązania efektywne. Sprawdzić czy zachodzi pomiędzy nimi relacja dominacji stochastycznej pierwszego rzędu. Wyniki skomentować, odnieść do ogólnego przypadku.

Rysunek 2: Dystrybuanta dla 3 rozwiązań