School of Mathematics and Physics, UQ

MATH1071 Advanced Calculus & Linear Algebra I Semester 1 2025 Problem Set 2

Michael Kasumagic, 44302669 Tutorial Group #8 Due 5pm Monday 31 March 2025

Question 1: 5 marks

Use the definition of limits, show that

$$\lim_{n \to \infty} \frac{1}{n^3} = 0$$

Solution:

Definition 1.1 (Limit of a Sequence). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. The limit of $(a_n)_{n=1}^{\infty}$ equals $a \in \mathbb{R}$, written $\lim_{n\to\infty} a_n = a$, if $\forall \varepsilon > 0, \exists N \in \mathbb{N} : n \geq N \implies |a_n - a| < \varepsilon$.

Lemma. $\lim_{n \to \infty} \frac{1}{n^3} = 0$

Proof. Suppose $(a_n)_{n=1}^{\infty} := \left(\frac{1}{n^3}\right)_{n=1}^{\infty}$ is a sequence of real numbers, with a limit $a := 0 \in \mathbb{R}$. Suppose $\varepsilon > 0$. Let's consider

$$|a_n - a| = \left| \frac{1}{n^3} - 0 \right| = \left| \frac{1}{n^3} \right| = \frac{1}{n^3} < \varepsilon \qquad (n \in \mathbb{N})$$

When $n \geq N$. Solving for N now,

$$n^3 > \frac{1}{\varepsilon} \iff n > \sqrt[3]{\frac{1}{\varepsilon}}$$

Choose $N = \left[\sqrt[3]{\frac{1}{\varepsilon}}\right]$

Therefore, $\forall \varepsilon > 0, \exists N \in \mathbb{N}, N = \text{ceil}\left(\sqrt[3]{1/\varepsilon}\right)$ we have

$$n \ge N = \left\lceil \sqrt[3]{\frac{1}{\varepsilon}} \right\rceil$$
$$n \ge N \ge \sqrt[3]{\frac{1}{\varepsilon}}$$
$$n^3 \ge N^3 \ge \frac{1}{\varepsilon}$$
$$\frac{1}{n^3} \le \frac{1}{N^3} \le \varepsilon$$

Verifying our choice of N, and completing the proof.

Therefore, by the $\varepsilon - N$ definition of the limit, $\lim_{n \to \infty} \frac{1}{n^3} = 0$.

Question 2: 10 marks

Use suitable limit laws, find the limits for the following sequences. Please cite which laws you've used.

(a)
$$\lim_{n \to \infty} \frac{2n^3 + 4n}{7n^4 + 5n^2 - 1}$$

(b)
$$\lim_{n \to \infty} \frac{\cos n + \sin n}{n}$$

Theorem 2.1. (Sequence Limit Properties) Suppose $n \in \mathbb{N}$, $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, and $\lambda \in \mathbb{R}$ is fixed, then

(a)
$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

(c)
$$\lim_{n \to \infty} a_n b_n = ab$$

(b)
$$\lim_{n\to\infty} \lambda a_n = \lambda a$$

(d)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a_n}{b_n}$$
, given $b \neq 0$, $b_n \neq 0$, $\forall n$

Theorem 2.2. (Squeeze Theorem) Suppose we have three sequences $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ such that $a_n \leq b_n \leq c_n$, and $a_n = c_n = L$. Then $b_n = L$.

Solution: (a)

Just for fun, and for no particular reason, we'll divide through every term by n^4 .

Let
$$L := \lim_{n \to \infty} \frac{2n^3 + 4n}{7n^4 + 5n^2 - 1} = \lim_{n \to \infty} \frac{\frac{2n^3}{n^4} + \frac{4n}{n^4}}{\frac{7n^4}{n^4} + \frac{5n^2}{n^4} - \frac{1}{n^4}} = \lim_{n \to \infty} \frac{\frac{2}{n} + \frac{4}{n^3}}{7 + \frac{5}{n^2} - \frac{1}{n^4}}$$

Let
$$a_n := \frac{2}{n} + \frac{4}{n^3}$$
 and $a := \lim_{n \to \infty} a_n$
Let $b_n := 7 + \frac{5}{n^2} - \frac{1}{n^4}$ and $b := \lim_{n \to \infty} b_n$.
We need to make sure that $b_n \neq 0$, $\forall n \in \mathbb{N}$

$$n > 0$$

$$n^{4} > 0$$

$$-n^{4} < 0$$

$$\frac{n^{2}}{5} - n^{4} < 0$$

$$\frac{5}{n^{2}} - \frac{1}{n^{4}} > 0$$

$$7 + \frac{5}{n^{2}} - \frac{1}{n^{4}} > 0$$
∴ $b_{n} > 0, \forall n \in \mathbb{N}$

Since, $b_n \neq 0$, $\forall n \in \mathbb{N}$, $\lim_{n \to \infty} b_n \neq 0$. Therefore, we can apply Theorem 2.1(d)

$$L = \frac{a}{b}$$

2

Let's start by finding a

$$a = \lim_{n \to \infty} \frac{2}{n} + \frac{4}{n^3}$$

But this is just the sum of two other sequences!

Let
$$\alpha_n := \frac{3}{n}$$
 and $\alpha = \lim_{n \to \infty} \alpha_n$.
Let $\beta_n := \frac{4}{n^3}$ and $\beta := \lim_{n \to \infty} \beta_n$

Then
$$a_n = \alpha_n + \beta_n$$

So we can apply Theorem 2.1(a)

$$a = \alpha + \beta = \lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} \frac{4}{n^3}$$

So, let's find α .

$$\alpha = \lim_{n \to \infty} \frac{2}{n}$$

2 is a fixed constant, so we can apply Theorem 2.1(b)

$$=2\lim_{n\to\infty}\frac{1}{n}$$

And $\lim_{n\to\infty} 1/n$ is trivially equal to 0. If I need further justification, I would direct you to Question 1, where the same argument holds, except choosing $N = \lceil 1/\varepsilon \rceil$.

$$\therefore \alpha = \lim_{n \to \infty} \frac{2}{n} = 2 \lim_{n \to \infty} \frac{1}{n} = 2 \cdot 0 = 0$$

Next, we'll find β .

$$\beta = \lim_{n \to \infty} \frac{4}{n^3}$$

4 is a fixed constant, so we can apply Theorem 2.1(b)

$$=4\lim_{n\to\infty}\frac{1}{n^3}$$

We proved in question 1 that $\lim_{n\to\infty} 1/n^3 = 0$, so

$$\therefore \beta = \lim_{n \to \infty} \frac{4}{n^3} = 4 \lim_{n \to \infty} \frac{1}{n^3} = 4 \cdot 0 = 0$$

Hence, we've found a,

$$a = \alpha + \beta = 0 + 0 = 0$$

Next we'll find b

b is also the sum of three sequencess, so we can apply Theorem 2.1(a)

Let
$$\gamma_n := 7$$
 and $\gamma := \lim_{n \to \infty} \gamma_n$
Let $\delta_n := \frac{5}{n^2}$ and $\delta := \lim_{n \to \infty} \delta_n$
Let $\varepsilon_n := \frac{1}{n^4}$ and $\varepsilon := \lim_{n \to \infty} \varepsilon_n$

Let
$$\delta_n := \frac{5}{n^2}$$
 and $\delta := \lim_{n \to \infty} \delta_n$

Let
$$\varepsilon_n := \frac{1}{n^4}$$
 and $\varepsilon := \lim_{n \to \infty} \varepsilon_r$

Then
$$b_n = \gamma_n + \delta_n + \varepsilon_n$$

And we can apply Theorem 2.1(a)

$$b = \gamma + \delta + \varepsilon = \lim_{n \to \infty} 7 + \lim_{n \to \infty} \frac{5}{n^2} + \lim_{n \to \infty} \frac{1}{n^4}$$

We'll start by computing γ

$$\gamma = \lim_{n \to \infty} 7 = 7 \lim_{n \to \infty} 1 = 7 \cdot 1 = 7$$

In the first step, we applied Theorem 2.1(b), and in the second we note that $\lim_{n\to\infty} 1$ is trivially 1.

Next, we'll find δ

$$\delta = \lim_{n \to \infty} \frac{5}{n^2} = 5 \lim_{n \to \infty} \frac{1}{n^2} = 5 \cdot 0 = 0$$

In the first step, we apply Theorem 2.1(b). In the second, we note that $\lim_{n\to\infty} 1/n^2$ is trivially equal to 0. If you're not convinced, apply Theorem 2.1(c) to $\lim_{n\to\infty} \frac{1}{n^2} = \lim_{n\to\infty} \frac{1}{n}$. $\lim_{n\to\infty} \frac{1}{n} = 0 \cdot 0 = 0.$ Finally, let's find ε

$$\varepsilon = \lim_{n \to \infty} \frac{1}{n^4} = 0$$

This is trivial again. You can either apply Theorem 2.1(c) twice, to find the limit is equal to $0 \cdot 0 \cdot 0$, or you can repeat my argument from question, but choosing $N = \left| \sqrt[4]{1/n} \right|$. Thus, we can compute b using Theorem 2.1(a)

$$b = \gamma + \delta + \varepsilon = 7 + 0 + 0 = 0$$

and we can proceed to find the limit we were looking for!

$$L = \frac{a}{b} = \frac{\alpha + \beta}{\gamma + \delta + \varepsilon} = \frac{0 + 0}{7 + 0 + 0} = \frac{0}{7} = 0$$

and conclude that

$$\lim_{n \to \infty} \frac{2n^3 + 4n}{7n^4 + 5n^2 - 1} = 0$$

Solution: (b)

We'll start by applying Theorem 2.1(a) to break up the limit into two limits

Let
$$L := \lim_{n \to \infty} \frac{\cos n + \sin n}{n} = \lim_{n \to \infty} \frac{\cos n}{n} + \lim_{n \to \infty} \frac{\sin n}{n}$$

Let $a_n := \frac{\cos n}{n}$, $a := \lim_{n \to \infty} a_n$. Let $b_n := \frac{\sin n}{n}$, $b := \lim_{n \to \infty} b_n$. $\therefore L = a + b$.

We'll work out a and b by using Theorem 2.2, and finding some sequences that may squeeze a and b, respectively.

$$-1 \le \cos n \le 1$$

$$-1 \le \sin n \le 1$$

$$\frac{-1}{n} \le \frac{1}{\cos n} \le \frac{1}{n}$$

$$\frac{-1}{n} \le \frac{1}{\sin n} \le \frac{1}{n}$$

$$\frac{-1}{n} \le a_n \le \frac{1}{n}$$

$$\frac{-1}{n} \le b_n \le \frac{1}{n}$$

Note that, since $n \in \mathbb{N}$, n is strictly positive, so we don't have to flip the equalities. Let's now find the limit of these sequences, and see if the squeuze a_n and b_n

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

That is a trivial limit we've already identified and worked with in previously.

$$\lim_{n \to \infty} \frac{-1}{n} = -1 \lim_{n \to \infty} \frac{1}{n}$$
$$= -1 \cdot 0$$
$$= 0$$

We apply Theorem 2.1(b) to pull the constant fixed factor out, then compute the trivial limit again. As we can see, $\lim_{n\to\infty} 1/n = \lim_{n\to\infty} -1/n = 0$. Also, $-1/n \le a_n \le 1/n$ and $-1/n \le b_n \le 1/n$. Therefore, by Theorem 2.2, the squeeze theorem,

$$a = 0,$$
 $b = 0$

Now, we can calculate the limit of interest,

$$L = a + b = 0 + 0 = 0$$

Therefore, we can conclude that the limit

$$\lim_{n \to \infty} \frac{\cos n + \sin n}{n} = 0$$

Question 3: 10 marks

Suppose $(b_n)_{n=0}^{\infty}$ and $(c_n)_{n=0}^{\infty}$ are two convergent sequences with

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = L.$$

Suppose there's another sequence $(a_n)_{n=0}^{\infty}$ where $b_n = a_{2n}$ and $c_n = a_{2n+1}$ for all $n \in \mathbb{Z}_{\geq 0}$. Use the definition of limits, show that $\lim_{n\to\infty} a_n = L$.

Solution:

Since b_n and c_n are convergent sequences,

$$\therefore \forall \varepsilon > 0, \exists N_1 \in \mathbb{Z}_{\geq 0} : n \geq N_1 \implies |b_n - L| < \varepsilon, \forall \varepsilon > 0, \exists N_2 \in \mathbb{Z}_{\geq 0} : n \geq N_2 \implies |c_n - L| < \varepsilon.$$

 a_n is made up of two subsequences. Even n's take b_n 's value, while odd n's take c_n 's value. We must show that

$$\forall \varepsilon > 0, \exists N \in \mathbb{Z}_{\geq 0} : n \geq N \implies |a_n - L| < \varepsilon$$

Therefore, choose $n = 2 \max \{N_1, N_2\}$.

Case
$$n = 2k, \ k \in \mathbb{Z}. \ |a_{2N_1} - L| = |b_{N_1} - L| < \varepsilon$$

Case
$$n = 2k + 1, \ k \in \mathbb{Z}. \ |a_{2N_2} - L| = |c_{N_2} - L| < \varepsilon$$

Therefore, with this choice of N, in either case, a_n converges to L.

Question 4: 15 marks

In class we studied the sequence $(a_n)_{n=0}^{\infty}$ where $a_0 = 1$ and $a_{n+1} = \frac{1}{a_n+1}$ for all n. We showed that the subsequence with even terms $(b_n)_{n=0}^{\infty}$ where $b_n = a_{2n}$ forms a bounded monotone decreasing sequence and concluded that it converges to the number $\phi = \frac{-1+\sqrt{5}}{2}$. The purpose of this exercise is to repeat this process for the subsequence with odd terms.

- (a) Write out the first five terms of $(c_n)_{n=0}^{\infty}$ where $c_n = a_{2n+1}$.
- (b) Find a recursion between the terms of c_n . (Hint: use the recursion for a_n twice!)
- (c) Show that $c_n \leq \phi$ for all n.
- (d) Show that c_n is monotone increasing.
- (e) Find the limit of $\lim_{n\to\infty} c_n$.

Solution: (a)

The first 5 terms of c_n :

$$c_0 = a_1 = \frac{1}{a_0 + 1} = \frac{1}{2} \approx 0.5$$

$$c_1 = a_3 = \frac{1}{a_2 + 1} = \frac{3}{5} \approx 0.6$$

$$c_2 = a_5 = \frac{1}{a_2 + 1} = \frac{8}{13} \approx 0.615385$$

$$c_3 = a_7 = \frac{1}{a_2 + 1} = \frac{21}{34} \approx 0.617647$$

$$c_4 = a_9 = \frac{1}{a_9 + 1} = \frac{55}{89} \approx 0.617978$$

Solution: (b)

The easy part of developing the recursion relation is setting the starting point:

$$c_0 = 0.5$$

is clear from the term list above. Next, the relation itself,

$$c_n = a_{2n+1} = \frac{1}{a_{2n}+1} = \frac{1}{\frac{1}{a_{2n-1}+1}+1} = \frac{1}{\frac{1}{c_{n-1}+1}+1} = \frac{1}{\frac{1}{c_{n-1}+1}+1} = \frac{1}{\frac{1}{c_{n-1}+1}+\frac{c_{n-1}+1}{c_{n-1}+1}} = \frac{c_{n-1}+1}{c_{n-1}+2}$$

Therfore,

$$c_0 = \frac{1}{2}, \qquad c_{n+1} = \frac{c_n + 1}{c_n + 2}$$

Solution: (c)

Let's consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{x+1}{x+2}$$

We're looking for a point which maps back to itself. I.e. if the reccurance relation c_n ever reached this value, it would repeatedly map back onto itself. We'll call this point α .

$$\alpha = f(\alpha) = \frac{\alpha + 1}{\alpha + 2} \iff \alpha(\alpha + 2) = \alpha + 1 \iff \alpha^2 + 2\alpha = \alpha + 1 \iff \alpha^2 + \alpha - 1 = 0$$

Applying the quadratic formula, to solve for α ,

$$\alpha = \frac{-(1) \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} = \frac{-1 \pm \sqrt{5}}{2}$$

and we'll take the positive square root, which is the larger number. Therefore, $\alpha = \frac{-1+\sqrt{5}}{2} = \phi$.

So, since c_n starts below ϕ , and c_n is increasing, and if c_n ever reached ϕ , it would remain at ϕ forever, we can conclude

$$c_n < \phi$$

Solution: (d)

For c_n to be monotone increasing, we must show that $c_n \leq c_{n+1}, \ \forall n \geq 0$. i.e.,

$$c_n \le c_{n+1} = \frac{c_n + 1}{c_n + 2} \tag{1}$$

Let's work with the inequality, see if we can find find a fact which we certainly know is true

$$c_n \le \frac{c_n + 1}{c_n + 2}$$

$$c_n (c_n + 2) \le c_n + 1$$

$$c_n^2 + 2c_n \le c_n + 1$$

$$c_n^2 + c_n - 1 \le 0$$

We've already solved this quadratic!

$$\therefore c_n \le \frac{-1 + \sqrt{5}}{2} \tag{2}$$

And we know that this is true, we proved this fact in the previous part. In other words, $(1) \iff (2)$. (2). Therefore (1). Since the equality holds, we've proven that the sequence c_n is monotone increasing.

Solution: (e)

Theorem 4.1. (Monotone Convergence Theorem) A monotone sequence converges if and only if it is bounded.

In (d) we proved that c_n is a monotone increasing sequence. In (c) we proved that c_n is bounded, i.e. $c_n \leq \phi$. From these two facts, along with Theorem 4.1, it follows that

$$\lim_{n \to \infty} c_n = \phi = \frac{-1 + \sqrt{5}}{2}$$

Question 5: 10 marks

Show that a convergent sequence is always bounded. In other words, given a sequence $(a_n)_{n=0}^{\infty}$ and assume that $\lim_{n\to\infty} a_n = L$. Show that there exists a number M such that $|a_n| < M$ for all n.

Solution:

Proof. Directly, by construction.

Suppose $(a_n)_{n=0}^{\infty}$ is a convergent sequence with $\lim_{n\to\infty} a_n = L$.

We will construct a global bounding value, A.

Then, $\forall \varepsilon > 0$, $\exists N \in \mathbb{Z}_{\geq 0} : n \geq N \implies |a_n - L| < \varepsilon$.

Therefore, $\forall n \geq N, |L| - \varepsilon < |a_n| < |L| + \varepsilon$.

So, the "tail" of the sequence is bounded.

Cosnider the sequence $(a_0, a_1, \ldots, a_{N-1})$. In other words, the subsequence made up of a_n 's terms up-to, but not including a_N .

This subsequence is finite, since N is an integer,

therefore, $A_0 = \max\{|a_0|, |a_1|, \dots, |a_{N-1}|\}$ is well-defined.

Take $A = \max \{A_0, |L| + \varepsilon\}.$

Our construction guarantees that $a_n \leq A, \ \forall n \in \mathbb{Z}_{>0}$.

Therefore, a convergent seuquce, a_n , is bounded.

Note that you can arbitrarily choose $\varepsilon > 0$, and the constrution holds.