2

9 10 11

12 13

21

> 48 49

Capabilities: Effects for Free (Supplementary Material with **Proofs**)

ANONYMOUS AUTHOR(S)

ACM Reference format:

Anonymous Author(s). 2017. Capabilities: Effects for Free (Supplementary Material with Proofs). PACM Progr. Lang. 1, 1, Article 1 (January 2017), 7 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 OC PROOFS

LEMMA 1.1 (OC CANONICAL FORMS). Unless the rule used is ε -Subsume, the following are true:

- (1) If $\Gamma \vdash x : \tau$ with ε then $\varepsilon = \emptyset$.
- (2) If $\Gamma \vdash \upsilon : \tau$ with ε then $\varepsilon = \emptyset$.
- (3) If $\Gamma \vdash \upsilon : \{\bar{r}\}\$ with ε then $\upsilon = r$ and $\{\bar{r}\} = \{r\}$.
- (4) If $\Gamma \vdash \upsilon : \tau_1 \rightarrow_{\varepsilon'} \tau_2$ with ε then $\upsilon = \lambda x : \tau.e.$

Proof.

- (1) The only rule that applies to variables is ε -VAR which ascribes the type \emptyset .
- (2) By definition a value is either a resource literal or a lambda. The only rules which can type values are ε -Resource and ε -Abs. In the conclusions of both, $\varepsilon = \emptyset$.
- (3) The only rule ascribing the type $\{\bar{r}\}$ is ε -Resource. Its premises imply the result.
- (4) The only rule ascribing the type $\tau_1 \to_{\varepsilon'} \tau_2$ is ε -ABS. Its premises imply the result.

THEOREM 1.2 (OC PROGRESS). If $\Gamma \vdash e : \tau$ with ε and e is not a value or variable, then $e \longrightarrow e' \mid \varepsilon$, for some e', ε .

PROOF. By induction on $\Gamma \vdash e : \tau$ with ε .

Case: ε -VAR, ε -RESOURCE, or ε -ABS. Then e is a value or variable and the theorem statement holds vacuously.

Case: ε -App. Then $e = e_1 \ e_2$. If e_1 is not a value or variable it can be reduced $e_1 \longrightarrow e'_1 \mid \varepsilon$ by inductive assumption, so $e_1 \ e_2 \longrightarrow e_1' \ e_2 \mid \varepsilon$ by E-App1. If $e_1 = v_1$ is a value and e_2 a non-value, then e_2 can be reduced $e_2 \longrightarrow e_2' \mid \varepsilon$ by inductive assumption, so $e_1 \mid e_2 \longrightarrow v_1 \mid e_2' \mid \varepsilon$ by E-App2. Otherwise $e_1 = v_1$ and $e_2 = v_2$ are both values. By inversion on ε -App and canonical forms, $\Gamma \vdash v_1 : \tau_2 \to_{\varepsilon'} \tau_3$ with \emptyset , and $v_1 = \lambda x : \tau_2.e_{body}$. Then $(\lambda x : \tau.e_{body})v_2 \longrightarrow [v_2/x]e_{body} \mid \emptyset$ by E-App3.

Case: ε -OperCall. Then $e = e_1 \cdot \pi$. If e_1 is a non-value it can be reduced $e_1 \longrightarrow e'_1 \mid \varepsilon$ by inductive assumption, so $e_1.\pi \longrightarrow e_1'.\pi \mid \varepsilon$ by E-OperCall. Otherwise $e_1 = v_1$ is a value. By inversion on ε -OPERCALL and canonical forms, $\Gamma \vdash v_1 : \{r\}$ with $\{r, \pi\}$, and $v_1 = r$. Then $r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$ by

2017. 2475-1421/2017/1-ART1 \$15.00 DOI: 10.1145/nnnnnnnnnnnnnnn

1:2 Anon.

E-OperCall2.

2 3 4

5 6

8 9

14

15

20 21 22

23

29

35 36 37

34

41 42

> 45 46 47

> > 48 49

43

Case: ε -Subsume. If e is a value or variable, the theorem holds vacuously. Otherwise by inversion on ε -Subsume, $\Gamma \vdash e : \tau'$ with ε' , and $e \longrightarrow e' \mid \varepsilon$ by inductive assumption.

LEMMA 1.3 (OC SUBSTITUTION). If $\Gamma, x : \tau' \vdash e : \tau$ with ε and $\Gamma \vdash v : \tau'$ with \emptyset then $\Gamma \vdash [v/x]e :$ τ with ε .

PROOF. By induction on the derivation of Γ , $x : \tau' \vdash e : \tau$ with ε .

Case: ε -Var. Then e = y is a variable. Either y = x or $y \neq x$. Suppose y = x. By applying canonical Forms to the theorem assumption $\Gamma, x : \tau' \vdash e : \tau'$ with \emptyset , hence $\tau' = \tau$. [v/x]y = [v/x]x = v, and by assumption, $\Gamma \vdash \upsilon : \tau'$ with \varnothing , so $\Gamma \vdash [\upsilon/x]y : \tau$ with \varnothing .

Otherwise $y \neq x$. By applying canonical forms to the theorem assumption $\Gamma, x : \tau' \vdash y : \tau$ with \emptyset , so $y : \tau \in \Gamma$. Since [v/x]y = y, then $\Gamma \vdash y : \tau$ with \emptyset by ε -VAR.

Case: ε -Resource. Because e = r is a resource literal then $\Gamma \vdash r : \{r\}$ with \emptyset by canonical forms. By definition [v/x]r = r, so $\Gamma \vdash [v/x]r : \{\bar{r}\}\$ with \varnothing .

Case: ε -APP. By inversion $\Gamma, x : \tau' \vdash e_1 : \tau_2 \to_{\varepsilon_3} \tau_3$ with ε_A and $\Gamma, x : \tau' \vdash e_2 : \tau_2$ with ε_B , where $\varepsilon = \varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$ and $\tau = \tau_3$. From inversion on ε -App and inductive assumption, $\Gamma \vdash [v/x]e_1 : \tau_2 \to_{\varepsilon_3}$ τ_3 with ε_A and $\Gamma \vdash [v/x]e_2 : \tau_2$ with ε_B . By ε -App $\Gamma \vdash ([v/x]e_1)([v/x]e_2) : \tau_3$ with $\varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$. By simplifying and applying the definition of substitution, this is the same as $\Gamma \vdash [v/x](e_1 \ e_2)$: τ with ε .

Case: ε -OperCall. By inversion $\Gamma, x : \tau' \vdash e_1 : \{\bar{r}\}\$ with ε_1 and $\tau = \text{Unit}$ and $\varepsilon = \varepsilon_1 \cup \{r.\pi \mid e_1 : \{\bar{r}\} \mid e_1 : \{\bar{r}\} \mid e_2 : e_3 : e_4 : e_4 : e_4 : e_5 : e_4 : e_5 : e_5 : e_5 : e_6 : e$ $r \in \bar{r}, \pi \in \Pi$ }. By inductive assumption, $\Gamma \vdash [v/x]e_1 : \{\bar{r}\}$ with ε_1 . Then by ε -OperCall, $\Gamma \vdash ([v/x]e_1).\pi : \text{Unit with } \varepsilon_1 \cup \{r.\pi \mid r.\pi \in \overline{r} \times \Pi\}.$ By simplifying and applying the definition of substitution, this is the same as $\Gamma \vdash [v/x](e_1.\pi) : \tau$ with ε .

Case: ε -Subsume. By inversion, $\Gamma, x : \tau' \vdash e : \tau_2$ with ε_2 , where $\tau_2 <: \tau$ and $\varepsilon_2 \subseteq \varepsilon$. By inductive hypothesis, $\Gamma \vdash [v/x]e : \tau_2$ with ε_2 . Then $\Gamma \vdash [v/x]e : \tau$ with ε by ε -Subsume.

Theorem 1.4 (OC Preservation). If $\Gamma \vdash e_A : \tau_A$ with ϵ_A and $e_A \longrightarrow e_B \mid \epsilon$, then $\tau_B <: \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $e_B, \varepsilon, \tau_B, \varepsilon_B$.

PROOF. By induction on the derivation of $\Gamma \vdash e_A : \tau_A$ with ε_A and then the derivation of $e_A \longrightarrow e_B \mid \varepsilon$.

Case: ε -VAR, ε -RESOURCE, ε -UNIT, ε -ABS. Then e_A is a value and cannot be reduced, so the theorem holds vacuously.

Case: ε -APP. Then $e_A=e_1$ e_2 and $\Gamma\vdash e_1:\tau_2\longrightarrow_{\varepsilon_3}\tau_3$ with ε_1 and $\Gamma\vdash e_2:\tau_2$ with ε_2 and $\tau_B=\tau_3$ and $\varepsilon_A = \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$. In each case we choose $\tau_B = \tau_A$ and $\varepsilon_B \cup \varepsilon = \varepsilon_A$.

Subcase: E-App1. Then $e_1 \ e_2 \longrightarrow e_1' \ e_2 \mid \varepsilon$. By inversion on E-App1, $e_1 \longrightarrow e_1' \mid \varepsilon$. By inductive hypothesis and ε -Subsume $\Gamma \vdash v_1 : \tau_2 \longrightarrow_{\varepsilon_3} \tau_3$ with ε_1 . Then $\Gamma \vdash e_1' \ e_2 : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$ by ε -App.

Subcase: E-App2. Then $e_1 = v_1$ is a value and $e_2 \longrightarrow e_2' \mid \varepsilon$. By inversion on E-App2, $e_2 \longrightarrow e_2' \mid \varepsilon$. By inductive hypothesis and ε -Subsume $\Gamma \vdash e_2' : \tau_2$ with ε_2 . Then $\Gamma \vdash v_1 e_2' : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$ by ε -App.

Subcase: E-App3. Then $e_1 = \lambda x : \tau_2.e_{body}$ and $e_2 = v_2$ are values and $(\lambda x : \tau_2.e_{body}) \ v_2 \longrightarrow [v_2/x]e_{body} \mid \varnothing$. By inversion on the rule ε -App used to type $\lambda x : \tau_2.e_{body}$, we know $\Gamma, x : \tau_2 \vdash e_{body} : \tau_3$ with ε_3 . $e_1 = v_1$ and $e_2 = v_2$ are values, so $\varepsilon_1 = \varepsilon_2 = \varnothing$ by canonical forms . Then by the substitution lemma, $\Gamma \vdash [v_2/x]e_{body} : \tau_3$ with ε_3 and $\varepsilon_A = \varepsilon_B = \varepsilon$.

Case: ε -OperCall. Then $e_A = e_1.\pi$ and $\Gamma \vdash e_1 : \{\bar{r}\}$ with ε_1 and $\tau_A = \text{Unit}$ and $\varepsilon_A = \varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\}$.

Subcase: E-OperCall1. Then $e_1.\pi \longrightarrow e_1'.\pi \mid \varepsilon$. By inversion on E-OperCall1, $e_1 \longrightarrow e_1' \mid \varepsilon$. By inductive hypothesis and application of ε -Subsume, $\Gamma \vdash e_1' : \{\bar{r}\}$ with ε_1 . Then $\Gamma \vdash e_1'.\pi : \{\bar{r}\}$ with $\varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\}$ by ε -OperCall.

Subcase: E-OperCall2. Then $e_1 = r$ is a resource literal and $r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$. By canonical forms, $\varepsilon_1 = \emptyset$. By ε -Unit, $\Gamma \vdash \text{unit} : \text{Unit with } \emptyset$. Therefore $\tau_B = \tau_A$ and $\varepsilon \cup \varepsilon_B = \{r.\pi\} = \varepsilon_A$. \square

Theorem 1.5 (OC Single-step Soundness). If $\Gamma \vdash e_A : \tau_A$ with ε_A and e_A is not a value, then $e_A \longrightarrow e_B \mid \varepsilon$, where $\Gamma \vdash e_B : \tau_B$ with ε_B and $\tau_B <: \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $e_B, \varepsilon, \tau_B, \varepsilon_B$.

PROOF. If e_A is not a value then the reduction exists by the progress theorem. The rest follows by the preservation theorem.

Theorem 1.6 (OC Multi-step Soundness). If $\Gamma \vdash e_A : \tau_A$ with ε_A and $e_A \longrightarrow^* e_B \mid \varepsilon$, where $\Gamma \vdash e_B : \tau_B$ with ε_B and $\tau_B <: \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$.

PROOF. By induction on the length of the multi-step reduction.

Case: Length 0. Then $e_A = e_B$ and $\tau_A = \tau_B$ and $\varepsilon = \emptyset$ and $\varepsilon_A = \varepsilon_B$.

Case: Length n+1. By inversion the multi-step can be split into a multi-step of length n, which is $e_A \longrightarrow^* e_C \mid \varepsilon'$, and a single-step of length 1, which is $e_C \longrightarrow e_B \mid \varepsilon''$, where $\varepsilon = \varepsilon' \cup \varepsilon''$. By inductive assumption and preservation theorem, $\Gamma \vdash e_C : \tau_C$ with ε_C and $\Gamma \vdash e_B : \tau_B$ with ε_B , where $\tau_C <: \tau_A$ and $\varepsilon_C \cup \varepsilon' \subseteq \varepsilon_A$. By single-step soundness, $\tau_B <: \tau_C$ and $\varepsilon_B \cup \varepsilon'' \subseteq \varepsilon_C$. Then by transitivity, $\tau_B <: \tau$ and $\varepsilon_B \cup \varepsilon' \cup \varepsilon'' = \varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$.

2 CC PROOFS

LEMMA 2.1 (CC CANONICAL FORMS). Unless the rule used is ε -Subsume, the following are true:

- (1) If $\hat{\Gamma} \vdash x : \hat{\tau}$ with ε then $\varepsilon = \emptyset$.
- (2) If $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}$ with ε then $\varepsilon = \emptyset$.
- (3) If $\hat{\Gamma} \vdash \hat{v} : \{\bar{r}\}\$ with ε then $\hat{v} = r$ and $\{\bar{r}\} = \{r\}$.
- (4) If $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}_1 \rightarrow_{\varepsilon'} \hat{\tau}_2$ with ε then $\hat{v} = \lambda x : \tau.\hat{e}$.

PROOF. Same as for OC.

1:4 Anon.

 Theorem 2.2 (CC Progress). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and \hat{e} is not a value, then $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon$, for some \hat{e}', ε .

PROOF. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -Module. Then $\hat{e} = \text{import}(\varepsilon_s) \ x = \hat{e}_i \ \text{in } e$. If $\hat{e}_i \ \text{is a non-value then } \hat{e}_i \longrightarrow \hat{e}'_i \mid \varepsilon$ by inductive assumption and import $(\varepsilon_s) \ x = \hat{e}_i \ \text{in } e \longrightarrow \text{import}(\varepsilon_s) \ x = \hat{e}'_i \ \text{in } e \mid \varepsilon$ by E-Module1. Otherwise $\hat{e}_i = \hat{v}_i$ is a value and import $(\varepsilon_s) \ x = \hat{v}_i \ \text{in } e \longrightarrow [\hat{v}_i/x] \ \text{annot}(e, \varepsilon_s) \mid \emptyset$ by E-Module2.

Lemma 2.3 (CC Substitution). If $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε and $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}'$ with \varnothing then $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_A : \hat{\tau}$ with ε .

PROOF. By induction on the derivation of $\hat{\Gamma}$, $x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -Module. Then the following are true.

- (1) $\hat{e} = import(\varepsilon_s) x = \hat{e}_i in e$
- (2) $\hat{\Gamma}, y : \hat{\tau}' \vdash \hat{e}_i : \hat{\tau}_i \text{ with } \epsilon_i$
- (3) $y : erase(\hat{\tau}_i) \vdash e : \tau$
- (4) $\hat{\Gamma}, y : \hat{\tau}' \vdash \text{import}(\varepsilon_s) \ x = \hat{e}_i \text{ in } e : \text{annot}(\tau, \varepsilon_s) \text{ with } \varepsilon_s \cup \varepsilon_i$
- (5) $\varepsilon_s = \text{effects}(\hat{\tau}_i) \cup \text{ho-effects}(\text{annot}(\tau, \emptyset))$
- (6) $\hat{\tau}_A = \operatorname{annot}(\tau, \varepsilon)$
- (7) $\hat{\varepsilon}_A = \varepsilon_s \cup \varepsilon_i$

By applying inductive assumption to (2) $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_i : \hat{\tau}_i$ with ε_i . Then by ε -Module $\hat{\Gamma} \vdash$ import(ε_s) $y = [\hat{v}/x]\hat{e}_i$ in e: annot(τ_i, ε_s) with $\varepsilon_s \cup \varepsilon_i$. By definition of substitution, the form in this judgement is the same as $[\hat{v}/x]\hat{e}$.

LEMMA 2.4 (CC Approximation 1). If effects $(\hat{\tau}) \subseteq \varepsilon$ and ho-safe $(\hat{\tau}, \varepsilon)$ then $\hat{\tau} <:$ annot $(\text{erase}(\hat{\tau}), \varepsilon)$.

LEMMA 2.5 (CC Approximation 2). If ho-effects $(\hat{\tau}) \subseteq \varepsilon$ and safe $(\hat{\tau}, \varepsilon)$ then annot (erase $(\hat{\tau}), \varepsilon$) <: $\hat{\tau}$.

PROOF. By simultaneous induction on derivations of safe and ho-safe.

Case: $\hat{\tau} = \{\bar{r}\}\$ Then $\hat{\tau} = \text{annot}(\text{erase}(\hat{\tau}), \varepsilon)$ and the results for both lemmas hold immediately.

Case: $\hat{\tau} = \hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2$, effects($\hat{\tau}$) $\subseteq \varepsilon$, ho-safe($\hat{\tau}$, ε) It is sufficient to show $\hat{\tau}_2 <:$ annot(erase($\hat{\tau}_2$), ε) and annot(erase($\hat{\tau}_1$), ε) $<: \hat{\tau}_1$, because the result will hold by S-Effects. To achieve this we shall inductively apply lemma 1 to $\hat{\tau}_2$ and lemma 2 to $\hat{\tau}_1$.

From effects($\hat{\tau}$) $\subseteq \varepsilon$ we have ho-effects($\hat{\tau}_1$) $\cup \varepsilon' \cup$ effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore effects($\hat{\tau}_2$) \subseteq

 ε . From ho-safe $(\hat{\tau}, \varepsilon)$ we have ho-safe $(\hat{\tau}_2, \varepsilon)$. Therefore we can apply lemma 1 to $\hat{\tau}_2$.

From effects($\hat{\tau}$) $\subseteq \varepsilon$ we have ho-effects($\hat{\tau}_1$) $\cup \varepsilon' \cup$ effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore ho-effects($\hat{\tau}_1$) $\subseteq \varepsilon$. From ho-safe($\hat{\tau}, \varepsilon$) we have ho-safe($\hat{\tau}_1, \varepsilon$). Therefore we can apply lemma 2 to $\hat{\tau}_1$.

 Case: $\hat{\tau} = \hat{\tau}_1 \rightarrow_{\epsilon'} \hat{\tau}_2$, ho-effects $(\hat{\tau}) \subseteq \epsilon$, safe $(\hat{\tau}, \epsilon)$ It is sufficient to show annot(erase $(\hat{\tau}_2), \epsilon$) <: $\hat{\tau}_2$ and $\hat{\tau}_1$ <: annot(erase $(\hat{\tau}_1), \epsilon$), because the result will hold by S-Effects. To achieve this we shall inductively apply lemma 2 to $\hat{\tau}_2$ and lemma 1 to $\hat{\tau}_1$.

From ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ we have effects($\hat{\tau}_1$) \cup ho-effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore ho-effects($\hat{\tau}_2$) $\subseteq \varepsilon$. From safe($\hat{\tau}, \varepsilon$) we have safe($\hat{\tau}_2, \varepsilon$). Therefore we can apply lemma 2 to $\hat{\tau}_2$.

From ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ we have effects($\hat{\tau}_1$) \cup ho-effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore effects($\hat{\tau}_1$) $\subseteq \varepsilon$. From safe($\hat{\tau}, \varepsilon$) we have ho-safe($\hat{\tau}_1, \varepsilon$). Therefore we can apply lemma 1 to $\hat{\tau}_1$.

LEMMA 2.6 (CC ANNOTATION). *If the following are true:*

```
(1) \hat{\Gamma} \vdash \hat{v}_i : \hat{\tau}_i \text{ with } \emptyset
```

- (2) $\Gamma, y : \operatorname{erase}(\hat{\tau}_i) \vdash e : \tau$
- (3) effects($\hat{\tau}_i$) \cup ho-effects(annot(τ, \varnothing)) \cup effects(annot(Γ, \varnothing)) $\subseteq \varepsilon_s$
- (4) ho-safe($\hat{\tau}_i, \varepsilon_s$)

Then $\hat{\Gamma}$, annot (Γ, ε_s) , $y : \hat{\tau}_i \vdash \text{annot}(e, \varepsilon_s) : \text{annot}(\tau, \varepsilon_s)$ with ε_s .

PROOF. By induction on the derivation of Γ , y: erase($\hat{\tau}_i$) \vdash e: τ . When applying the inductive assumption, e, τ , and Γ may vary, but the other variables are fixed.

Case: T-VAR. Then e = x and $\Gamma, y : erase(\hat{\tau}_i) \vdash x : \tau$. Either x = y or $x \neq y$.

Subcase 1: x=y. Then $y: \operatorname{erase}(\hat{\tau}_i) \vdash y: \tau$ so $\tau=\operatorname{erase}(\hat{\tau}_i)$. By $\varepsilon\text{-VAR}$, $y: \hat{\tau}_i \vdash x: \hat{\tau}_i$ with \varnothing . By definition $\operatorname{annot}(x, \varepsilon_s) = x$, so (5) $y: \hat{\tau}_i \vdash \operatorname{annot}(x, \varepsilon_s): \hat{\tau}_i$ with \varnothing . By (3) and (4) we know $\operatorname{effects}(\hat{\tau}_i) \subseteq \varepsilon_s$ and $\operatorname{ho-safe}(\hat{\tau}_i, \varepsilon_s)$. By the approximation lemma, $\hat{\tau}_i <: \operatorname{annot}(\operatorname{erase}(\hat{\tau}_i), \varepsilon_s)$. We know $\operatorname{erase}(\hat{\tau}_i) = \tau$, so this judgement can be rewritten as $\hat{\tau}_i <: \operatorname{annot}(\tau, \varepsilon_s)$. From this we can use $\varepsilon\text{-Subsume}$ to narrow the type of (5) and widen the approximate effects of (5) from \varnothing to ε_s , giving $y: \hat{\tau}_i \vdash \operatorname{annot}(x, \varepsilon_s): \operatorname{annot}(\tau, \varepsilon_s)$ with ε_s . Finally, by widening the context, $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varepsilon_s), \hat{\tau}_i \vdash \operatorname{annot}(x, \varepsilon_s): \operatorname{annot}(\tau, \varepsilon_s)$ with ε_s .

Subcase 2: $x \neq y$. Because $\Gamma, y : \operatorname{erase}(\hat{\tau}_i) \vdash x : \tau$ and $x \neq y$ then $x : \tau \in \Gamma$. Then $x : \operatorname{annot}(\tau, \varepsilon_s) \in \operatorname{annot}(\Gamma, \varepsilon_s)$ so $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash x : \operatorname{annot}(\tau, \varepsilon_s)$ with \emptyset by ε -VAR. By definition $\operatorname{annot}(x, \varepsilon_s) = x$, so $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash \operatorname{annot}(x, \varepsilon_s) : \operatorname{annot}(\tau, \varepsilon_s)$ with \emptyset . Applying ε -Subsume gives $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash \operatorname{annot}(x, \varepsilon_s) : \operatorname{annot}(\tau, \varepsilon_s)$ with ε_s . By widening the context $\hat{\Gamma}$, annot (Γ, ε_s) , $y : \hat{\tau}_i \vdash \operatorname{annot}(\tau, \varepsilon_s)$ with ε' .

Case: T-RESOURCE. Then $\Gamma, y: \text{erase}(\hat{\tau}_i) \vdash r: \{r\}$. By ε -RESOURCE, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon), y: \hat{\tau}_i \vdash r: \{r\}$ with \emptyset . Applying definitions, annot $(r, \varepsilon) = r$ and annot $(\{r\}, \varepsilon_s) = \{r\}$, so this judgement can be rewritten as $\hat{\Gamma}$, annot $(\Gamma, \varepsilon), y: \hat{\tau}_i \vdash \text{annot}(e, \varepsilon_s): \text{annot}(\tau, \varepsilon_s)$ with \emptyset . By ε -Subsume, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau}_i \vdash \text{annot}(e, \varepsilon_s): \text{annot}(\tau, \varepsilon_s)$ with ε_s .

Case: T-ABs. Then $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash \lambda x: \tau_2.e_{body}: \tau_2 \to \tau_3$. Applying definitions, (5) $\operatorname{annot}(e, \varepsilon_s) = \operatorname{annot}(\lambda x: \tau_2.e_{body}, \varepsilon_s) = \lambda x: \operatorname{annot}(\tau_2, \varepsilon_s).\operatorname{annot}(e_{body}, \varepsilon_s)$ and $\operatorname{annot}(\tau, \varepsilon_s) = \operatorname{annot}(\tau_2 \to \tau_3, \varepsilon_s) = \operatorname{annot}(\tau_2, \varepsilon_s) \to_{\varepsilon_s} \operatorname{annot}(\tau_3, \varepsilon_s)$. By inversion on T-ABs, we get the subderivation (6) $\Gamma, y: \operatorname{erase}(\hat{\tau}_i), x: \tau_2 \vdash e_{body}: \tau_2$. We shall apply the inductive assumption to this judgement with an unannotated context consisting of $\Gamma, x: \tau_2$. To be a valid application of the lemma, it is required that $\operatorname{effects}(\operatorname{annot}(\Gamma, x: \tau_2, \emptyset) \subseteq \varepsilon_s$. We already know

1:6 Anon.

effects(annot(Γ , \varnothing)) $\subseteq \varepsilon_s$ by assumption (3). Also by assumption (3), ho-effects(annot($\tau_2 \to \tau_3, \varnothing$)) $\subseteq \varepsilon_s$; then by definition of ho-effects, effects(annot(τ_2, \varnothing)) \subseteq ho-effects(annot($\tau_2 \to \tau_3, \varnothing$)), so effects(annot(τ_2, ε_s)) $\subseteq \varepsilon_s$ by transitivity. Then by applying the inductive assumption to (6), $\hat{\Gamma}$, annot(Γ , ε_s), annot(τ_s, ε_s), τ_s is annot(τ_s, ε_s) is annot(τ_s, ε_s) with τ_s . By τ_s -ABS, τ_s , annot(τ_s, ε_s), τ_s is annot(τ_s, ε_s) annot(τ_s, ε_s) annot(τ_s, ε_s) with τ_s . By applying the identities from (5), this judgement can be rewritten as τ_s , annot(τ_s, ε_s), τ_s is annot(τ_s, ε_s) with τ_s . Finally, by applying τ_s -Subsume, τ_s -Annot(τ_s -Ann

Case: T-APP. Then $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_1 e_2 : \tau_3$ and by inversion $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_1 : \tau_2 \to \tau_3$ and $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_2 : \tau_2$. By applying the inductive assumption to these judgements, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau}_i \vdash \operatorname{annot}(e_1, \varepsilon_2) : \operatorname{annot}(\tau_2, \varepsilon_s) \to_{\varepsilon_s} \operatorname{annot}(\tau_3, \varepsilon_s)$ with ε_s and $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau} \vdash \operatorname{annot}(e_2, \varepsilon_s) : \operatorname{annot}(\tau_2, \varepsilon_s)$ with ε_s . Then by ε -APP, we get $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau} \vdash \operatorname{annot}(e_1, \varepsilon_s)$ annot (ε_s) annot

Case: T-OperCall. Then Γ , y: erase($\hat{\tau}_i$) \vdash $e_1.\pi$: Unit. By inversion we get the sub-derivation Γ , y: erase($\hat{\tau}_i$) \vdash e_1 : { \bar{r} }. Applying the inductive assumption, $\hat{\Gamma}$, annot(Γ , ε), y: $\hat{\tau}_i$ \vdash annot(e_1 , ε_s): annot({ \bar{r} }, ε_s) with ε_s . By definition, annot({ \bar{r} }, ε_s) = { \bar{r} }, so this judgement can be rewritten as $\hat{\Gamma}$, annot(Γ , \emptyset), y: $\hat{\tau}_i$ \vdash e_1 : { \bar{r} } with ε_s . By ε -OperCall, $\hat{\Gamma}$, annot(Γ , \emptyset), y: $\hat{\tau}$ \vdash annot($e_1.\pi$, ε_s): { \bar{r} } with ε_s \cup { \bar{r} . π }. All that remains is to show { \bar{r} . π } \subseteq ε . We shall do this by considering which subcontext left of the turnstile is capturing { \bar{r} }. Technically, $\hat{\Gamma}$ may not have a binding for every $r \in \bar{r}$: the judgement for e_1 might be derived using S-Resources and ε -Subsume. However, at least one binding for some $r \in \bar{r}$ must be present in $\hat{\Gamma}$ to get the original typing judgement being subsumed, so we shall assume without loss of generality that $\hat{\Gamma}$ contains a binding for every $r \in \bar{r}$.

Subcase 1: $\{\bar{r}\} = \hat{\tau}$. By assumption (3), effects $(\hat{\tau}) \subseteq \varepsilon_s$, so $\bar{r}.\pi \subseteq \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\} = \text{effects}(\{\bar{r}\}) \subseteq \varepsilon_s$.

Subcase 2: $r: \{\bar{r}\} \in \text{annot}(\Gamma, \varepsilon_s)$. Then $\bar{r}.\pi \in \text{effects}(\{\bar{r}\}) \subseteq \text{effects}(\text{annot}(\Gamma, \emptyset))$, and by assumption (3) effects(annot(Γ, \emptyset)) $\subseteq \varepsilon_s$, so $\bar{r}.\pi \in \varepsilon_s$.

Subcase 3: $r: \{\bar{r}\} \in \hat{\Gamma}$. Because $\Gamma, y: \operatorname{erase}(\hat{\tau}) \vdash e_1: \{\bar{r}\}$, then $\bar{r} \in \Gamma$ or $r = \tau$. If $r \in \operatorname{annot}(\Gamma, \emptyset)$ then subcase 2 holds. Else $r = \operatorname{erase}(\hat{\tau})$. Because $\hat{\tau} = \{\bar{r}\}$, then $\operatorname{erase}(\{\bar{r}\}) = \{\bar{r}\}$, so $\hat{\tau} = \tau$; therefore subcase 1 holds.

Theorem 2.7 (CC Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{e}_B <: \hat{e}_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$, for some $\hat{e}_B, \varepsilon, \hat{\tau}_B, \varepsilon_B$.

PROOF. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and then the derivation of $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Case: ε -IMPORT. Then by inversion on the rules used, the following are true:

- (1) $\hat{e}_A = \text{import}(\varepsilon_s) \ x = \hat{v}_i \text{ in } e$
- (2) $x : erase(\hat{\tau}_i) \vdash e : \tau$

 $\frac{41}{42}$

```
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
47
```

- (3) $\hat{\Gamma} \vdash \hat{e}_i : \hat{\tau}_i \text{ with } \varepsilon_1$ (4) $\hat{\Gamma} \vdash \hat{e}_A : \text{annot}(\tau, \varepsilon_s) \text{ with } \varepsilon_s \cup \varepsilon_1$
- (5) effects($\hat{\tau}_i$) \cup ho-effects(annot(τ , \emptyset)) $\subseteq \varepsilon_s$
- (6) ho-safe($\hat{\tau}_i, \varepsilon_s$)

Subcase 1: E-Import1. Then import(ε_s) $x = \hat{e}_i$ in $e \longrightarrow \text{import}(\varepsilon_s)$ $x = \hat{e}'_i$ in $e \mid \varepsilon$ and by inversion, $\hat{e}_i \longrightarrow \hat{e}'_i \mid \varepsilon$. By inductive assumption and subsumption, $\hat{\Gamma} \vdash \hat{e}'_i : \hat{\tau}'_i$ with ε_1 . Then by ε -Import, $\hat{\Gamma} \vdash \text{import}(\varepsilon_s)$ $x = \hat{e}'_i$ in $e : \text{annot}(\tau, \varepsilon_s)$ with ε_s .

Subcase 2: E-IMPORT2. Then $\hat{e}_i = \hat{v}_i$ is a value and $\varepsilon_1 = \emptyset$ by canonical forms. Apply the annotation lemma with $\Gamma = \emptyset$ to get $\hat{\Gamma}, x : \hat{\tau}_i \vdash \mathsf{annot}(e, \varepsilon_s) : \mathsf{annot}(\tau, \varepsilon_s)$ with ε_s . From assumption (4) and canonical forms we have $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}_i$ with \emptyset . Applying the substitution lemma, $\hat{\Gamma} \vdash [\hat{v}_i/x] \mathsf{annot}(e, \varepsilon) : \mathsf{annot}(\tau, \varepsilon_s)$ with ε_s . Then $\varepsilon \cup \varepsilon_B = \varepsilon_A = \varepsilon_s$ and $\tau_A = \tau_B = \mathsf{annot}(\tau, \varepsilon_s)$.

Theorem 2.8 (CC Single-step Soundness). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and \hat{e}_A is not a value, then $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, where $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B and $\hat{\tau}_B <: \hat{\tau}_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some \hat{e}_B , ε , $\hat{\tau}_B$, and ε_B .

Theorem 2.9 (CC Multi-step Soundness). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow^* e_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{\tau}_B <: \hat{\tau}_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $\hat{\tau}_B$, ε_B .

PROOF. The same as for OC.