LAST NAME

MCGILL ID#

FIRST NAME

SIGNATURE

- Only Faculty standard calculator accepted
- No cellphone allowed
- Show all your work

- Clearly indicate your final answer with the SI unit and multiplier
- You have 45 minutes to complete this quiz

Question 1: Consider the 100 μ F capacitor (C = 100 μ F) shown below along with the diagram illustrating the current i(t) flowing through the capacitor. A constant current of 20 mA flows through the capacitor up to time t = 2 ms. At that time t = 2 ms, the current drops to 10 mA until time t = 4 ms. For t > 4 ms, the current is 0 A. The capacitor is initially charged at t = 0 ms and has a voltage of 3 V across it. Answer the following questions.

- a) At what time t will the capacitor have a charge separation of 350 μ C ($q = 350 \mu$ C)? [2 pt]
- b) What is the instantaneous power at t = 1 ms? [2 pt]
- c) What is the energy stored as electric potential energy U(t) in the capacitor at time t = 5 ms? [2 pt]

a)
$$V(t) = V(t_0) + \frac{1}{C} \int_{t_0}^{t} (t) dt$$
 and $g : CV$ and $c : dq$

at $t : 0ms$ $g(0) = 100 \mu F \cdot 3V = 300 \mu C$

at $t : 2ms$ $V(2ms) = 3V + 1$
 $|00\mu F|_{t_0}^{t_0} = 20mA dt = 3V + 20mA$. $2ms = 3.4V$
 $g(2ms) = 100 \mu F \cdot 3.4V = 340 \mu C$

at $t : 4ms$ $V(4ms) = 3.4V + 100 \mu F$. $340 \mu C$

at $t : 4ms$ $V(4ms) = 3.4V + 100 \mu F$. $340 \mu C$
 $t - 2msi = 9 - CV(2ms) = 350 \mu C - 340 \mu C = 1ms$
 $t - 2msi = 9 - CV(2ms) = 350 \mu C - 340 \mu C = 1ms$
 $t - 3msi$

b) $p(t) = i(t) \cdot v(t)$ $v(4ms) = 3V + 100 \mu F$
 $t - 3msi$
 $t -$

Question 2: The circuit shown below is a common operational amplifier (op-amp) circuit. Answer the following questions.

- a) Using the ideal op-amp model, derive the expression for the voltage gain v_{out}/v_{in} as a function of the two resistors R_A and R_F . [1 pt]
- b) The op-amp circuit above is configured as a non-inverting amplifier. Using the ideal op-amp model, the voltage gain is $v_{out}/v_{in} = 1 + R_F/R_A$ as you found in part a). Choose resistance values for resistors R_A and R_F to design the op-amp circuit such that the voltage gain is $+8 \ V/V$ and the total power absorbed by the two resistors is 500 μ W when $v_{out} = 2 \ V$. [2 pt]
- c) Using the practical op-amp circuit model simplified by setting the input resistance to infinity $(R_i \to \infty)$ and the output resistance to zero $(R_o = 0 \Omega)$, what is the output voltage value v_{out} if $R_A \to \infty$, $R_F \to 0 \Omega$, $v_{in} = 5 V$, and the open-loop gain A is 15 V/V? [2 pt]
- d) In the circuit described in part c), what is the output voltage value v_{out} using the ideal op-amp model? [1 pt]

b)
$$\frac{Vout}{Vin} = 1 + \frac{RF}{RA} = + 8 \frac{V}{V} \rightarrow \frac{RF}{RA} = 7 : RF = 7RA + 2 \cdot Vin = \frac{1}{8} \frac{Vout}{4} = \frac{1}{4} \frac{V = 0.25V}{Vin}$$
 $\frac{Vin}{Vin} = \frac{Vin}{RA} = \frac{Vin}{RA} = \frac{Vin}{RA} = \frac{Vin - Vout}{RF} = \frac{(Vin - Vout)^2}{RF} = \frac{(Vin - Vout)^2}{RF} = \frac{(0.25V)^2}{RA} + \frac{(0.25 - 2V)^2}{RA} = \frac{500 \times 10^{-16}}{RA}$
 $\frac{0.4325 + 3.0425 = 500 \times 10^{-16}}{RA} = \frac{(0.25V)^2}{RA} = \frac{(0.25$

