投稿類別:工程技術類

篇名:最精簡電子輪盤電路實作與研析

作者:

樂澤崴。市立楊梅高中。高二資訊科甲班 黃寶興。市立楊梅高中。高二資訊科甲班 黃昱瑋。市立楊梅高中。高二資訊科甲班

指導老師:周達峯 老師

壹、前言

一、研究動機

在高二上的數位邏輯實習課程單元中,有一單元為實驗幸運燈電路,此實習單元為任課教師的自編教材,其電路的運作原理如下:利用 555 IC 設計成無穩態多諧震盪模式,將其輸出脈波送至 7490 計數器 IC 後,透過 7442 十進制解碼 IC 搭配 10 個發光二極體可以依序點亮 LED。

觀察其實驗結果 10 個 LED 只會一直輪流點亮不會停止,於是我們想控制 555 IC 輸出脈波的時間長短,讓輸出端的 LED 可以在 555 停止輸出方波後,停在未知的某一顆的 LED 位置處,這是我想要解決的問題。除此之外,原始電路除了 555 這個提供計數脈波的 IC 元件外,分別使用了 7490 計數器 IC 與 7442 BCD 十進位解碼器 IC。若要將成品商品化的話,在體積要小的原則下,於是想找尋是否有替代方案的元件。針對上述兩個的問題,就是我們想研究這篇小論文的動機。

二、研究方法

- (一) 運用所學過類比電子學中 555 IC 的相關知識,深入分析探討如何利用本身 IC 的功能接腳,完成可停止脈波輸出的功能。
- (二)當555 IC可順利控制其輸出脈波與否,接著如何運用所學過的基本電學RC充放電時間電路,控制脈波輸出的時間長短。
- (三)針對老師所提供的原始電路,找出是否有其他替代元件讓其電路變的更精簡,而原電路功能不變。
- (四)運用所學電子學中電晶體開關電路,搭配 RC 充放電電路,控制 555 IC 接腳,達到脈波輸出的時間長短。

三、研究流程

圖(一) 研究流程(研究者自繪)

貳、正文

一、電子輪盤功能與問題解析

要完成這樣的控制,首先要瞭解 555 這顆 IC 是否有接腳可以直接來控制?如果可以控制的話,接下來要探討的是,當使用者每次按下按鈕都可以讓 LED 停留在不同的位置。只要能夠找出這兩個問題的解決方案,就可以讓原本的電路功能變成更貼近實際生活的電子輪盤。

將按鈕壓下時,RC 電路中的電容開始充電,555 IC 開始輸出脈波,當按鈕彈起,電容開始放電,NE555 持續運作,LED 逐一亮起直到電容放電結束,LED 也會停駐在某一顆未知的位置。

圖(二)電路系統方塊圖(研究者自繪)

二、各系統電路方塊介紹

(一) 開關電路簡單介紹

首先介紹開關電路。如圖(三)本電路需要一個電晶體當作開關使用,並且在電晶體的基極端搭配 RC 充放電迴路。當 SW1 開關閉合的時間愈長,C1 上會充到比較高的電壓。 R1 與 C1 的時間常數決定放電的時間長短,當 SW1 閉合時,電晶體 T1 導通,VF1 端的電壓約為 4.3V,此時 C1 也會開始充電,SW1 閉合時間愈長 C1 充的電壓愈高。當 SW1 放開,此時電晶體 T1 的基極仍有電壓足以讓電晶體保持導通的狀態讓 VF1 持續保持一段時間。可以改變 R1 電阳的大小加速電容放電的速度進而改變電品體 T1 的導通時間。

圖(三) 可控制 555 非穩態脈波輸出次數電路圖(Tina 自繪)

完成上述的實驗之後,經與老師討論後,老師建議此電路可以再精簡,直接把電晶體元件省略,用兩個電阻跟一個電容就可以完成相同的功能,如圖(四)所示:

圖(四)省略 T1 電晶體完成控制 555 非穩態脈波輸出次數電路圖(Tina 自繪)

(二)555 IC 控制接腳功能介紹

如圖(五)中,為 555 IC 的外觀圖,555 IC 為一顆 8 支腳的可計數/可計時的常用類比 IC 元件,相關各接腳定義如下說明:

圖(五)555腳位圖

接腳 1.接地:電源的接地端。

接腳 2.觸發:當輸入電壓低於 1/3 Vcc 時,會使第三腳輸出高態電壓,並讓第七腳的放電電晶體關閉。

接腳 3.輸出:脈波輸出端。其高態輸出電壓 Voh = Vcc - 1.7V,低態輸出電壓 $Vol \le 0.25V$ 。

接腳 4.重置:強迫清除輸入端。當其輸入 0 (1V 以下) 會此輸出變為低態 0,並讓放電電晶體通過,故平常不用時應接 Vcc。

接腳 5.控制電壓:電壓控制震盪的輸入端。他可藉改變上下比較器的參考電壓而改變其 震盪頻率,不用時會被接上 0.1uF 的電容接地以防止干擾。

接腳 6.臨限觸發:當輸入電壓高於 2/3 Vcc 會使輸出變為 0,並讓放電電晶體通過。

接腳 7.放電:放電電晶體的集極,有如開關受觸發與臨限控制。

接腳 8.電源:正常工作電壓在 4.5V ~ 16V 之間。

接下來,介紹 555 IC 的內部結構圖,555 常被用於計數器、脈衝產生器、無穩態多諧振 盪器。555 內部結構是由三顆 5K 歐姆電阻、兩個比較器、一個正反器、一個電晶體、一個 緩衝器所製成如圖(六)所示。

圖(六)555 IC內部結構圖

(三)555 無穩態多諧振盪電路介紹

本電路利用 555 這顆 IC 設計成無穩態多諧震盪模式,透過 RESET 接腳的控制,可以輕易的控制 555 的脈波輸出與否。當 RESET 接腳為高電位此時 555 正常工作可以輸出無穩態的脈波,當 RESET 接腳接近零電位時,555 IC 不工作輸出端為零電位。只要把第一部分的VF 電壓接至 555 的 RESET 接腳就可以完成此系統方塊的功能。以下是在 Tina 軟體中,模擬

最精簡電子輪盤電路實作與研析

實驗結果,SW1 閉合 2 秒,可以觀察的會有脈波輸出,當 SW1 放開時脈波繼續輸出,直到電容放電結束,555 的脈波輸出也停止,實驗分析如圖(七)

圖(七) Tina 軟體模擬脈波輸出圖(設定 10s 為一週期,每次 SW1 閉合 2s)

(四)十進制解碼器介紹

1.利用 7490 IC 與 7442 BCD 解碼 IC 組合而成

(1)7490 內部結構及功能

7490 是一只內含除二及除非同步計數器如圖(八)(三位元漣波二進位上數計數器)三位元漣波上數計數器就是可計數 000、001、010、011、100、 101、110、111 等八種二進位排列狀態的計數器,串接就是除 10 的 BCD 計數器。

圖(八)7490 IC接腳及內部結構圖

(2)7442 功能

7442 是一只 BCD 碼對十進制碼的反向輸出解碼器如圖(九),是一種 4 對 8 的解碼器,解碼器輸入編碼的線數有 n 條,則此解碼器最多可以指定 2 條輸出線動作,而且每一輸出線僅對應輸入端唯一的一組編碼。

圖(九)7442 IC接腳圖

2.利用 4017 IC 單一元件完成

利用 4017 IC 這一顆 IC 就可以完成電子輪盤的功能,只要送脈波到 CP 處,其輸出端 Q0~Q9 接上 LED,將可依序點亮 LED。

(1).4017 內部結構及功能簡單介紹

「4017 是一個內部擁有除 10 強森計數器及 2 進制對 10 進制解碼電路的十進制計數 IC」(楊仁元、李月娥。2002,註五),內部電路圖如(圖十)所示

圖(十)4017內部電路圖

(2).4017 內部強森計數器介紹

強森(Johnson)計數器屬於環形計數器的一種,又稱強森環形計數器,其動作是將一位暫存器的輸出連接到第一級的輸入端,使整個電路形成一個環狀的計數器,計數器使用的是四個 D 型正反器,輸出 Q3 連接到第一級的輸入端。此計數 器的初始值為 1000,使 Q0=1、Q1=0、Q2=0,Q3=0,則此計數器可隨 clock 輸入的脈波而進行環形計數

三、實際麵包板實作及 TinkerCad 模擬電路結果

以下的實驗結果分上下兩個部分呈現,上面兩個實驗結果為實習課程中,用了三個的 IC 元件,所實驗出的結果。下面兩個實驗結果,則是在跟老師討論研究之後,將電晶體元件省略且把 7490 跟 7442 這兩顆 IC 換成 4017 這顆 IC,實驗結果相同。但是,後者所使用的零件數目明顯下降很多。

表一 實驗結果比較

7

四、最精簡後的完整電子輪盤電路圖,如圖(十二)所示:

圖(十二)精簡後,完整電路圖

參、結論

一、心得

測試電路時,遇到許多問題如:最後的輸出不符合結果,找了許久還是找不到錯誤。在老師的建議下,將電路依功能分區塊檢查,首先先檢查 555 無穩態多諧震盪器,是否能正常工作輸出脈波,為了方便檢查則在 555 的輸出端接上一顆 LED,方便觀察。若 555 正常工作的話,LED 會規律的閃爍著,經由這樣的方法,有耐心得重新檢查各元件是否有接錯,終於找到問題所在,改完後 NE555 就可以正常工作了。

當按鈕按下時再彈開後,發現 LED 並不會慢慢停下來,而是彈開過 1 秒後回到 7442 的第三支腳,不管試了幾次都一樣。於是我將 C1 電容重原本的 4.7uf 加大到 1000uf 後,發現電

最精簡電子輪盤電路實作與研析

路要花很長一段時間才會停下來。於是將 1000uf 換成 470uf 後電路就可正常運作,發光二極 體停下的時間也變得比較合理。

二、學習成果

- (一)由本次撰寫小論文過程中,學習到如何先利用 Tina 電路模擬軟體分析,先確認電路的 正確性與否。
- (二)本次的實驗過程中,除利用實際麵包板實作外,也使用了 TinkerCad 電子麵包板實作,使用電子麵包板有其更為快速及便利的優點。
- (三)這次要解決的問題,透過所學及搜尋相關的資料,最後請益老師給予指導協助,學習 到如何解決問題的過程,獲益匪淺。

三、未來方向

本次的是利用數位邏輯的基本 IC 完成電子輪盤的功能,在目前的高二下課程中,教授到電腦繪圖電路板設計、單晶片實習、CPLD 邏輯設計等科目。相信未來,我可以利用這些所學的專業技術,設計出多功能的電子輪盤。

肆、引註資料

註一:蕭柱惠(2015)。數位邏輯實習。新北市:台科大圖書

註二:蕭柱惠(2015)。數位邏輯。新北市:台科大圖書

註三:徐慶堂、黃天祥(2015)。**電子學**I。新北市:台科大圖書

註四:黃仲字、梁正編著(2014)。基本電學Ⅱ。新北市:台科大圖書

註五:楊仁元、李月娥。(2002)。**電子學實習 I**。新北市:龍騰出版