

Split Q Learning: Reinforcement Learning with Two-Stream Rewards

Baihan Lin^{1,2}, Djallel Bouneffouf², Guillermo Cecchi²

¹ Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
² IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Abstract

Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for a reinforcement learning problem, which extends the standard Q-learning approach to incorporate a two-stream framework of reward processing with biases biologically associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. For AI community, the development of agents that react differently to different types of rewards can enable us to understand a wide spectrum of multi-agent interactions in complex real-world socioeconomic systems. Empirically, the proposed model outperforms Q-Learning and Double Q-Learning in artificial scenarios with certain reward distributions and real-world human decision making gambling tasks. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions and user preferences in long-term recommendation systems.

Human Q Learning

Algo	rithm 1 Human Q-Learning (HQL)
1: 1	For each episode t do
2:	Initialize s
3:	Repeat
4:	$Q(s,a) := \phi_2 Q^+(s,a) + \phi_4 Q^-(s,a)$
5:	action $i_t = \arg \max_i Q_i(t)$, observe $s' \in S$, r^+ and $r^- \in R(s)$
6:	$Q^{+}(s,a) := \phi_1 \hat{Q}^{+}(s,a) + \alpha_t (r^{+} + \gamma max_{a'} \hat{Q}^{+}(s',a') - \hat{Q}^{+}(s,a))$
7:	$Q^{-}(s,a) := \phi_3 \hat{Q}^{-}(s,a) + \alpha_t (r^{-} + \gamma - \max_{a'} \hat{Q}^{-}(s',a') - \hat{Q}^{-}(s,a))$
8:	until s is terminal

Reward Processing Bias

Table 1: Algorithms Parameters										
	ϕ_1	ϕ_2	ϕ_3	ϕ_4						
"Addiction" (ADD)	1 ± 0.1	1 ± 0.1	0.5 ± 0.1	1 ± 0.1						
"ADHD"	0.2 ± 0.1	1 ± 0.1	0.2 ± 0.1	1 ± 0.1						
"Alzheimer's" (AD)	0.1 ± 0.1	1 ± 0.1	0.1 ± 0.1	1 ± 0.1						
"Chronic pain" (CP)	0.5 ± 0.1	0.5 ± 0.1	1 ± 0.1	1 ± 0.1						
"bvFTD"	0.5 ± 0.1	100 ± 10	0.5 ± 0.1	1 ± 0.1						
"Parkinson's" (PD)	0.5 ± 0.1	1 ± 0.1	0.5 ± 0.1	100 ± 10						
"moderate" (M)	0.5 ± 0.1	1 ± 0.1	0.5 ± 0.1	1 ± 0.1						
Standard HQL (SQL)	1	1	1	1						
Positive HQL (PQL)	1	1	0	0						
Negative HQL (NQL)	0	0	1	1						

Clinical Inspirations

From the perspective of evolutionary psychiatry, various mental disorders, including depression, anxiety, ADHD, addiction and even schizophrenia can be considered as "extreme points" in a continuous spectrum of behaviors and traits developed for various purposes during evolution, and somewhat less extreme versions of those traits can be actually beneficial in specific environments. Thus, modeling decision-making biases and traits associated with various disorders may actually enrich the existing computational decision-making models, leading to potentially more flexible and better-performing algorithms.

Reward-Scaling in RL

To explore the computational advantage of our proposed two-stream parametric extension of Q Learning can learn better than the baseline Q Learning, we tested our agents in nine computer games: Pacman, Catcher, FlappyBird, Pixelcopter, Pong, PuckWorld, Snake, WaterWorld, and Monster Kong. In each game, we tested in both stationary and non-stationary environments by rescaling the size and frequency of the reward signals in two streams. Preliminary results suggest that HQL outperform classical Q Learning in the long term in certain conditions (for example, positive-only and normal reward environments in Pacman). Our results also suggests that HQL behaves differently in the transition of reward environments.

Markov Decision Process (MDP) with not-Gaussian rewards

Figure 1: Example bi-modal MDP scenario where HQL performs better than QL and DQL.

	l OI	DQL	SQL	PQL	NQL										
QL	QL	46 : 54	34: 66	72 : 28	44 : 56	SQL		ADD	ADHD	AD	CP	bvFTD	PD	\mathbf{M}	avg wins (%)
DQL	54:46	- TO . 54	34:66	59:41	50:50	29: 71	QL	60:40	65:35	73:27	43: 57	75:25	38: 62	49: 51	0.58
SQL	66:34	66:34	-	77:23	62:38	22: 78	DQL	54:46	80:20	81:19	61:39	77:23	52:48	53:47	0.65
PQL	28: 72	41: 59	23:77	-	45: 55	_	SQL	78:22	94:6	95:5	67:33	89:11	66:34	81:19	0.81
NQL	56:44	50:50	38: 62	55:45	-		avg wins (%)	0.36	0.20	0.17	0.40	0.16	0.48	0.39	_
ave wins $(\%)$	0.49	0.49	0.68	0.34	0.50		avs wills (70)	0.50	0.20	0.17	0.10	0.10	0.10	0.57	1

Figure 2: MDP Task with 100 randomly generated scenarios of Bi-modal reward distributions.

lowa Gambling Task (IGT) with reward-biased mental agents

Table 4: Iowa Gambling Task schemes expected value win per card loss per card Decks scheme Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) A (bad) +100+100 Infrequent: -1250 (p=0.1) B (bad) Frequent: -25 (p=0.1), -75 (p=0.1), -50 (p=0.3) +50 C (good) Infrequent: -250 (p=0.1) +50 D (good) Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) A (bad) +100 +100 Infrequent: -1250 (p=0.1) B (bad) +50 Infrequent: -50 (p=0.5) C (good) Infrequent: -250 (p=0.1) D (good)

Figure 3: Short-term learning curves of different mental agents in IGT scheme 1.

Ongoing directions

- Investigate the optimal reward bias parameters in a series of computer games evaluated on different criteria, for example, longest survival time vs. highest final score.
- Explore the multi-agent interactions given different reward processing bias.
- Tune and extend the proposed model to better capture observations in literature.
- Learn the parameteric reward bias from actual patient data.
- Test the model on both healthy subjects and patients with specific mental conditions.
- Evaluate the merit in two-stream processing in deep Q networks.