情報演習3今井研

最終回

子安出穂

Noisy Intermediate-Scale Quantum (NISQ)

- Operational error.
- Decoherence error. A qubit can only maintain its state for a limited amount of time due to its fragile nature.
- Crosstalk. The state of a qubit might be corrupted by the simultaneous operations occurring on its neighbor qubits
- Readout error.

Bit flip code (readout error)

 $|000\rangle \Rightarrow |0\rangle$

Decode $|001\rangle \Rightarrow |0\rangle$ $|010\rangle \Rightarrow |0\rangle$ $|100\rangle \Rightarrow |0\rangle$ $|011\rangle \Rightarrow |1\rangle$ $|101\rangle \Rightarrow |1\rangle$ $|110\rangle \Rightarrow |1\rangle$ $|111\rangle \Rightarrow |1\rangle$

Dynamic Decoupling (DD) technique

- Idle-idle qubit, where no operation is applied to its neighbor qubits in parallel.
- Crosstalk-idle qubit, where simultaneous operations are occurring on its neighbor qubits such that the target qubit has a probability of being influenced by crosstalk. CNOT-gate is the dominant crosstalk source.

 \Rightarrow Apply "X-X" or "RZ(π)" gate!

Dynamic Decoupling

	Yang's experiments	My Experiments
Quantum Computer	ibmq_torontoibmq_sydneyibm_manhattan	• ibmq_montreal
graph	 1~57 path graph 1~39 star graph hardware topology graph 	• 5~7 star graph
error correction	 QREM (Quantum Readout Error Mitigation) 	bit flip codeDynamic Decoupling

準備

期待值

$$ra{\psi}A\ket{\psi} = \sum_{i=0}^{2^n-1} a_i |\gamma_i|^2$$

$$\langle A_0^1 A_1^2 A_0^3
angle = ra{\psi} A_0^1 \otimes A_1^2 \otimes A_0^3 \ket{\psi}$$

スタビライザー

$$G_i = X_i \otimes igotimes_{j \in negibor(i)} Z_j$$

グラフ状態
$$G_1\ket{\psi_G}=\ket{\psi_G} \ G_2\ket{\psi_G}=\ket{\psi_G}$$

$$G_n\ket{\psi_G}=\ket{\psi_G}$$

準備

S:注目しているstar graph

N: star graphの頂点数

$$I_S^N := \sqrt{2}(N-1)\langle G_1 \rangle + \sqrt{2} \sum_{i=0}^{\infty} \langle G_i \rangle$$

Classical bound

$$I_S^N \le 2N - 2$$

Quantum Bound

$$I_S^N \le 2\sqrt{2}(N-1)$$

5 star graph

 $\langle G_1 \rangle$: 0.635498046875

 $\langle G_2 \rangle$: 0.80395508

 $\langle G_3 \rangle$: 0.76049805

 $\langle G_4 \rangle$: 0.88183594

 $\langle G_5 \rangle$: 0.83447266

 I_S^5 : 8.234617544579667

Classical Bound: 8

$\langle G_1 \rangle$

#CX-gate: 4

circuit depth: 10

測定值:

$\langle G_n \rangle (n \geq 2)$

#CX-gate: 4

circuit depth: 7

測定値の平均:

6 star graph

 $\langle G_1 \rangle$: 0.603515625

 $\langle G_2 \rangle$: 0.74902344

 $\langle G_3 \rangle$: 0.69018555

 $\langle G_4 \rangle$: 0.84838867

 $\langle G_5 \rangle$: 0.73681641

 $\langle G_6 \rangle$: 0.75537109

 I_S^6 : 9.612923340720634

Classical bound: 10

$\langle G_1 \rangle$

#CX-gate: 5

circuit depth: 10

測定值:

$\langle G_n \rangle (n \geq 2)$

#CX-gate: 5

circuit depth: 7

測定値の平均:

7 star graph

 $\langle G_1 \rangle$: 0.404541015625

 $\langle G_2 \rangle$: 0.5534668

 $\langle G_3 \rangle$: 0.60058594

 $\langle G_4 \rangle$: 0.63085938

 $\langle G_5 \rangle$: 0.55493164

 (G_6) : 0.6340332

 $\langle G_7 \rangle$: 0.58032227

 I_S^7 : 8.459041083530476

Classical bound: 12

$\langle G_1 \rangle$

#CX-gate: 6

circuit depth: 10

測定值:

$\langle G_n \rangle (n \geq 2)$

#CX-gate: 6

circuit depth: 7

測定値の平均:

Calibration of Readout Error

$\langle G_n \rangle (n \geq 2)$ を校正する (bit flip code)

校正前 (平均值)

5 star graph: 0.8226318359 6 star graph: 0.7559570313 7 star graph: 0.5923665365

校正後

5 star graph: 0.468994140625 6 star graph: 0.471923828125 7 star graph: 0.395263671875

→効果なし

(理論値とのズレはbit flipのせいではない?)

$\langle G_1 angle$ を校正する (Dynamic Decoupling by XX)

校正前

5 star graph : 0.635498046875

6 star graph: 0.603515625

7 star graph: 0.404541015625

校正後

5 star graph: 0.24658203125

6 star graph: 0.238037109375

7 star graph: 0.2412109375

→効果なし

$\langle G_n \rangle (n \geq 2)$ を校正する (Dynamic

Decoupling by XX)

校正前

5 star graph: 0.8226318359 (0.78417969 0.8215332 0.85107422 0.83374023)

6 star graph: 0.7559570313 (0.74902344 0.69018555 0.84838867 0.73681641 0.75537109)

7 star graph: 0.5923665365 (0.5534668 0.60058594 0.63085938 0.55493164 0.6340332 0.58032227)

校正後

5 star graph: 0.6336669921875 (0.72631836 0.59936523 0.5222168 0.68676758)

6 star graph: 0.6400390625 (0.64501953 0.72583008 0.59130859 0.53833008 0.69970703)

7 star graph: 0.6059977213541666 (0.60766602 0.71728516 0.59838867 0.52978516 0.48852539 0.69433594)

→効果あり!

$\langle G_1 angle$ を校正する (Dynamic Decoupling by RZ)

校正前

5 star graph: 0.635498046875

6 star graph: 0.603515625

7 star graph: 0.404541015625

校正後

5 star graph: 0.27490234375

6 star graph: 0.256591796875

7 star graph: 0.2724609375

→効果なし

$\langle G_n \rangle (n \geq 2)$ を校正する (Dynamic

Decoupling by RZ)

校正前

5 star graph: 0.8226318359 (0.78417969 0.8215332 0.85107422 0.83374023)

6 star graph: 0.7559570313 (0.74902344 0.69018555 0.84838867 0.73681641 0.75537109)

7 star graph: 0.5923665365 (0.5534668 0.60058594 0.63085938 0.55493164 0.6340332 0.58032227)

校正後

5 star graph: 0.6065673828125 (0.7355957 0.484375 0.47827148 0.72802734)

6 star graph: 0.62646484375 (0.66967773 0.73828125 0.49560547 0.51098633 0.71777344)

7 star graph: 0.5771077473958334 (0.64257812 0.72119141 0.48193359 0.45581055 0.44287109 0.7182617)

→効果あり!

考察

- Readout error は少なくとも bit flipによるものではない
- Crosstalkは恐らく発生していて、Dynamic Decouplingによって発生を減らす ことができる。
- Readout errorはphase flipによるものだと思うので、QREM以外の訂正方法を 探して試してみたい。
- なぜ $\langle G_1 \rangle$ の測定値をDynamic Decouplingによって改善できなかったのか考える。

Reference

- Siyuan Niu, Aida Todri-Sanial, Analyzing Strategies for Dynamical Decoupling Insertion on IBM Quantum Computer (2022), arXiv:2204.14251v1
- Bo Yang, Rudy Raymond, Hiroshi Imai, Hyungseok Chang, Hidefumi Hiraishi, Scalable Bell Inequalities for Quantum Graph States on IBM Quantum Devices (2021), arXiv:2101.10307v1
- Gary J. Mooney, Charles D. Hill & Lloyd C. L. Hollenberg, Entanglement in a 20-Qubit Superconducting Quantum Computer (2019), scientific reports (2019)9:13465
- F. Baccari, R. Augusiak, I. Šupić, J. Tura, A. Acín, Scalable Bell Inequalities for Qubit Graph States and Robust Self-Testing (2020), physical review letters 124, 020402