Лабораторная работа 5

Модель хищник - жертва

Саттарова Вита Викторовна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	8
5	Сравнение Julia и OpenModelica	16
6	Выводы	17
Список литературы		18

List of Figures

2.1	Задание	5
4.1	Задачи и решения Julia	9
4.2	Код график начальные условия y(x) Julia	10
4.3	График начальные условия y(x) Julia	10
4.4	Код график начальные условия x(t) y(t) Julia	11
4.5	График начальные условия x(t) y(t) Julia	11
4.6	Код график стационарное состояние x(t) y(t) Julia	12
4.7	График стационарное состояние x(t) y(t) Julia	13
4.8	Задача модель начальные условия OpenModelica	13
4.9	График начальные условия x(t) y(t) OpenModelica	14
4.10	График начальные условия y(x) OpenModelica	14
4.11	Задача модель стационарное состояние OpenModelica	15
4.12	График стационарное состояние x(t) y(t) OpenModelica	15

1 Цель работы

Построить, используя Julia и OpenModelica, модель хищник-жертва (модель Лотки-Вольтерры) с заданными параметрами, начальными условиями и найти стационарное состояние системы, построить графики: зависимости численности хищников от численности жертв, изменения популяции хищников и популяции жертв при заданных начальных условиях, - а также, найдя стационарное состояние системы, показать с помощью графика отсутствие изменений в популяциях хищников и жертв в стационарном состоянии.

2 Задание

Вариант 66 Задание. (рис. fig. 2.1)

Вариант 66

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.51x(t) + 0.046x(t)y(t) \\ \frac{dy}{dt} = 0.41y(t) - 0.036x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=6,\ y_0=22$. Найдите стационарное состояние системы.

Figure 2.1: Задание

3 Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник - жертва» — модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв и хищников зависят только от времени.
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает.
- 3. Естественные смертность жертвы и рождаемость хищника считаются несущественными.
- 4. Эффект насыщения численности обеих популяций не учитывается.
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников.

Уравнение изменения численности жертв имеет следующий вид:

(1)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax(t) - bx(t)y(t).$$

Уравнение изменения численности хищников имеет следующий вид:

(2)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = -cy(t) + dx(t)y(t).$$

В этой модели x – число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству

жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв - -bxy, но способствует увеличению популяции хищников dxy в правой части уравнения.

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние, всякое же другое начальное состояние приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в начальное состояние. Стационарное состояние системы из уравнений (1) и (2) - положение равновесия, не зависящее от времени решение, будет в точке: $x_0 = \frac{c}{d}, y_0 = \frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0) = x_0, y(0) = y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.

Более подробно см. в справочнике на сайте ТУИС на странице курса "Математическое моделирование" [1] [@mm:lab5].

4 Выполнение лабораторной работы

1. Написала код задач для модели с заданными начальными условиями - 1, для вычисления стационарного состояния модели - 2, и подготовила результаты для представления на Julia. (рис. fig. 4.1)

```
using DifferentialEquations
using Plots
xx = 6
yy = 22
a = 0.51
b = 0.046
c = 0.41
d = 0.036
xxx = c / d
yyy = a / b
function F(du, u, p, t)
   x, y = u
    du[1] = -a*u[1] + b*u[1]*u[2]
    du[2] = c*u[2] - d*u[1]*u[2]
end
# Задача
prob1 = ODEProblem(F, [xx, yy], (0.0, 40.0))
prob2 = ODEProblem(F, [xxx, yyy], (0.0, 40.0))
# Решение задачи
sol1 = solve(
 prob1,
 dtmax=0.1
sol2 = solve(
  prob2,
  dtmax=0.1
X1 = [u[1]  for u  in sol1.u]
Y1 = [u[2]  for u  in sol1.u]
X2 = [u[1]  for u  in sol2.u]
Y2 = [u[2]  for u  in sol2.u]
```

Figure 4.1: Задачи и решения Julia

1. Создала график зависимости численности хищников от численности жертв

для модели с заданными начальными условиями. (рис. fig. 4.2)

```
plt11 = plot(
    dpi=300,
    title="Зависимость числа хищников от числа жертв",
    legend=true)

plot!(
    plt11,
    X1,
    Y1,
    xlabel="Жертвы",
    ylabel="Хищники",
    label="Y(x)",
    color=:red)

plt11
```

Figure 4.2: Код график начальные условия у(x) Julia

1. Сам график зависимости численности хищников от численности жертв для модели с заданными начальными условиями. (рис. fig. 4.3)

Figure 4.3: График начальные условия y(x) Julia

1. Создала график изменения популяций жертв и хищников по времени для модели с заданными начальными условиями. (рис. fig. 4.4)

```
plt12 = plot(
  dpi=300,
  title="Изменение численности хищников и жертв",
  legend=true)
plot!(
  plt12,
  sol1.t,
 X1,
  xlabel="Время",
  ylabel="Популяции",
  label="Изменение численности жертв",
  color=:blue)
plot!(
 plt12,
  sol1.t,
 Y1,
  label="Изменение численности хищников",
  color=:green)
plt12
```

Figure 4.4: Код график начальные условия x(t) y(t) Julia

1. Сам график изменения популяций жертв и хищников по времени для модели с заданными начальными условиями. (рис. fig. 4.5)

Figure 4.5: График начальные условия x(t) y(t) Julia

1. Создала график, показывающий отсутствие изменения численности популяций жертв и хищников в стационарном состоянии системы. (рис. fig. 4.6)

```
plt21 = plot(
  dpi=300,
  title="Изменение численности хищников и жертв",
  legend=true)
plot!(
  plt21,
  sol2.t,
  X2,
  xlabel="Время",
 ylabel="Популяции",
  label="Изменение численности жертв",
  color=:blue)
plot!(
  plt21,
  sol2.t,
  label="Изменение численности хищников",
  color=:green)
plt21
```

Figure 4.6: Код график стационарное состояние x(t) y(t) Julia

1. Сам график, показывающий отсутствие изменения численности популяций жертв и хищников в стационарном состоянии системы. (рис. fig. 4.7)

Figure 4.7: График стационарное состояние x(t) y(t) Julia

1. Написала код модели с заданными начальными условиями на OpenModelica. (рис. fig. 4.8)

```
🖶 🊜 🧮 🚺 Доступный на запись
                        Model Вид Текст lab51 D:/tempmodels/lab51.mo
      model lab51
      Real x;
      Real y;
      Real a = 0.51;
      Real b = 0.046;
      Real c = 0.41;
      Real d = 0.036;
      initial equation
      x = 6;
     y = 22;
      equation
      der(x) = -a*x + b*x*y;
      der(y) = c*y - d*x*y;
 13
      end lab51;
```

Figure 4.8: Задача модель начальные условия OpenModelica

1. Создала график изменения популяций жертв и хищников по времени для модели с заданными начальными условиями. (рис. fig. 4.9)

Figure 4.9: График начальные условия x(t) y(t) OpenModelica

1. Создала график зависимости численности хищников от численности жертв для модели с заданными начальными условиями. (рис. fig. 4.10)

Figure 4.10: График начальные условия у(х) OpenModelica

1. Написала код модели в стационарном состоянии на OpenModelica. (рис. fig. 4.11)

```
📭 🊜 🧧 🕦 | Доступный на запись | Model | Вид Текст | lab52 | D:/tempmodels/lab52.mo
     model lab52
  1
  2
     Real x;
  3
     Real y;
  4
     Real a = 0.51;
     Real b = 0.046;
     Real c = 0.41;
     Real d = 0.036;
     initial equation
  9
     x = c / d;
10
     y = a / b;
11
     equation
     der(x) = -a*x + b*x*y;
13
     der(y) = c*y - d*x*y;
     end lab52;
14
15
```

Figure 4.11: Задача модель стационарное состояние OpenModelica

1. Создала график, показывающий отсутствие изменения численности популяций жертв и хищников в стационарном состоянии системы. (рис. fig. 4.12)

Figure 4.12: График стационарное состояние x(t) y(t) OpenModelica

5 Сравнение Julia и OpenModelica

Результаты получились одинаковые, однако на Julia можно было строить одновременно модель с разными начальными условиями, в то время как на OpenModelica их необходимо было создавать в отдельных файлах. Также в Julia необходимо было в формате кода задать начальные параметры и создать графики, тогда как на OpenModelica для этого используется графический интерфейс. В связи с этим, код на OpenModelica намного короче, чем на Julia.

6 Выводы

В результате работы удалось на Julia и OpenModelica:

- 1. создать модель хищник-жертва (модель Лотки-Вольтерры) с заданными параметрами и начальными условиями;
- 2. найти стационарное состояние системы;
- 3. построить графики: зависимости численности хищников от численности жертв, изменения популяции хищников и популяции жертв при заданных начальных условиях;
- 4. показать с помощью графика отсутствие изменений в популяциях хищников и жертв в стационарном состоянии.

Список литературы

[1] Справочная информация для лабораторной работы 5 в ТУИС на курсе "Математическое моделирование" URL: https://esystem.rudn.ru/pluginfile.php/1971660/mod_resource/con