How to design Dust Sensor

2013 Mar.

To begin with

- To make sure basic information of GP2Y1010AU0F
 - Refer to presentation of "Dust Sensor "total 13page w/o cover page
 - Circuit
 - Variation => Calibration
 - Mechanical Design Consideration
 - Power consumption
- Document
 - Spec
 - Application Note
 - Temperature Drift
 - Reliability

Standard Operation

Finish product: Air purifying system

No-Dust Condition: Set tentative No Dust Vout

3

Confidential

SHARP

How to update? No-Dust Vout

When starting air purifying system as finish product, air cleaner, "No-Dust Vout" should be updated accordingly as following conditions;

No Dust check when starting

1, When starting air purifying system like fun-rotation,
comparing Real Dust Vo with No Dust Vo(tentative one) which was set before shipment.
if Real Vo < No Dust Vo => replace the Real Vo to No Dust Vo
=> Then this will be the latest No Dust Vo

More clean condition

2, When operating if find the cleaner condition such as Real Vo < No Dust Vo, => replace the Real Vo to No Dust Vo => Then this will be the latest No Dust Vo

Compensation of unexpected incident

3, When operating if find steady Vo for long term, => replace the Real Vo to No Dust Vo => Then this will be the latest No Dust Vo

Proposal of calibration for no-dust condition

Data of monitor

sample

process

Sharp makes monitor sample (3pcs)

Monitor sample

Measuring monitor sample

@ tentative no-dust condition

Mo-Vout @tentative no-dust

- Monitor sample has data of Vout vs. Dust density
- Data should be shown low density condition such as 0 to 0.1mg/m3.

TEST BOX

@manufacture

Product

Manufacture can use this monitor sample and set initial tentative no-dust condition

Monitoring the value of monitor sample and convert the Vout to

initial tentative no-dust condition for mass production board of Manufacture.

0.14

GP2Y1010AU Dust density vs Output voltage

Convert Pr-Vout @ tentative no-dust condition to **Real no-dust Vout** by calibration as follows; Real No-Dust Vout = Pr-Vout @ tentative no dust - delta V

Measuring Product

@ tentative no-dust condition

Pr-Vout @tentative no-dust

Dust density (mg/m³)

Variation

- Calibration
 - No-Dust Vo
 - Refresh/Update as latest cleaner condition
 - Dust Density Vo = Real-Dust Vo No-Dust Vo
 - Value of Dust Density can be used for set thresh level of starting fan rotation or segmentation of the Dust density level on Display
- Compensation
 - Temperature Drift
 - Normalize the value for compensation: from 0 to 50 degree C
 - Please refer to attached graph of temperature drift
 - Time Aging
 - **♦** TBD
 - can be ignorable?

Vout @ No-Dust condition vs. Temperature

Impact of contamination for Sensor Output

-<u>Test concept</u>

-To measure the impact of contamination for Sensor Output

-Test Method

- -Take the date of K(Sensitivity) and Vout @ no-Dust for the sensor
- -Set the sensor in the test box (W50 x H50 x D50cm).
- -Smoke 1pcs of Cigarette completely and pour the smoke into the test box.

And keep the condition for 20 minutes. => It's the one cycle.

-Repeat above process for N times and take the date of K(Sensitivity) and Vout @ no-Dust for the sensor

Variation of Vout(sensitivity) (%) = (K(Sensitivity) after N times)/Initial K(Sensitivity)

Variation of Vout @ No-dust (%) = (Vout @ No-dust after N times/Initial Vout @ No-dust)

-Note

- -This is acceleration test, so it can be equivalent to the real condition of smoking at room.
 - -Real condition of cigarette smoke = (Size of room) / (size of the test box) X (smoked cigarettes)
 - -For ex. Size of room($3.6m \times 3.6m \times 2.4m$)/($0.5m \times 0.5m \times 0.5m$) $\times 300 = 74,649$ pcs It can be equivalent to 3,732 days with 20pcs smoking a day.

