Longest Substring

The Problem

Return the **length** of the **longest** substring **without repeating characters** in s.

Creating Hashtable - O(1)

```
let hashtable = {};
let hashtable = new Object();
```

Inserting to Hashtable - O(1)

```
hashtable.key1 = "value";
hashtable["key2"] = "value";
```

Accessing Values in a Hashtable - O(1)

```
console.log(hashtable.key1);
console.log(hashtable["key2"]);
```

Deleting in Hashtable - O(1)

```
delete hashtable.key1;
delete hashtable["key2"];
```

Finding Max/Min - O(1)

```
let max_val = Math.max(2, 3);
let min val = Math.min(2, 3);
```

Sliding Window

A sliding window looks like the following:

```
[i, j]
```

Sliding Window

To solve this problem, we use the following sliding window:

```
[i, j)
```

```
0 1 2 3 4
a b b a b
[i, j) = ???
```

[i, j) = [0, 0) # of elements = ???

$$[i, j) = [0, 0)$$
 # of elements = 0

$$[i, j) = [1, 4)$$
 set $= \{b, c, d\}$

 Maintain a set of characters in the current window

- Maintain a set of characters in the current window
- Iterate if j < s.length and i <
 s.length</pre>
- Check if s [j] is in the set

- Maintain a set of characters in the current window
- Iterate if j < s.length and i <
 s.length</pre>
- Check if s [j] is in the set
- If no, slide j further

-
- Iterate if j < s.length and i < s.length</pre>
- Check if s [j] is in the set
- If no, slide j further
- If yes, slide i to the right

-
- If yes, slide i to the right
- At some point, the set captures the required substring (why?)

[i, j) = [0, 0) set $= \{\}$

Does the set contain <u>a</u>?

L = 0

$$[i, j) = [0, 0)$$
 set = {}

Does the set contain <u>a</u>?

No

$$[i, j) = [0, 0)$$
 set $= \{\}$

$$L = O$$

Does the set contain <u>a</u>?

$$[i, j) = [0, 0)$$
 set $= \{\}$

$$L = 0$$

$$[i, j) = [0, 1)$$
 set = $\{a\}$

Does the set contain **b**?

$$[i, j) = [0, 1)$$
 set $= \{a\}$

Does the set contain $\underline{\boldsymbol{b}}$?

No

L = 1

$$[i, j) = [0, 1)$$
 set = $\{a\}$

Does the set a $\underline{\boldsymbol{b}}$ b a b contain $\underline{\boldsymbol{b}}$?

- No
- Slide j

[i, j) = [0, 1) set $= \{a\}$

L = 1

$$[i, j) = [0, 2)$$
 set $= \{a, b\}$

Does the set contain **b**?

$$[i, j) = [0, 2)$$
 set $= \{a, b\}$

```
Does the set a b b a b contain b?

• Yes

O 1 2 3 4

a b b a b

↑
```

$$[i, j) = [0, 2)$$
 set $= \{a, b\}$

Does the set a b $\underline{\boldsymbol{b}}$ a b contain $\underline{\boldsymbol{b}}$?

- Yes j
- Slide i

$$[i, j) = [1, 2)$$
 set $= \{a, b\}$

Does the set a b $\underline{\boldsymbol{b}}$ a b contain $\underline{\boldsymbol{b}}$?

- Yes
- Slide i

$$[i, j) = [1, 2)$$
 set $= {a, b}$

Does the set a b z contain b?

- Yes
- Slide i

0 1 2 3 4 a b **b** a b

[i, j) = [1, 2) set $= \{b\}$

Does the set a b contain **b**?

- 0 1 2 3 4 a b **b** a b
- 1
- Yes
- Slide i

j ↑

$$[i, j) = [1, 2)$$
 set $= \{b\}$

L=1

$$[i, j) = [1, 2)$$
 set $= \{b\}$

$$[i, j) = [1, 2)$$
 set $= \{b\}$

$$[i, j) = [2, 2)$$
 set = {}

$$[i, j) = [2, 2)$$
 set = {}

$$[i, j) = [2, 2)$$
 set = {}

$$[i, j) = [2, 3)$$
 set = $\{b\}$

$$[i, j) = [2, 3)$$
 set = $\{b\}$

$$[i, j) = [2, 4)$$
 set $= \{b, a\}$

$$[i, j) = [3, 4)$$
 set = $\{a\}$

$$[i, j) = [3, 5)$$
 set $= \{a, b\}$

```
0 1 2 3 4 5
                  a b b a b
Did you see
that L
                                      L=2
captures the
required
length at
some point? [i, j) = [3, 5) set = \{a, b\}
```

$$[i, j) = [0, 0)$$
 set $= \{\}$

$$[i, j) = [0, 0)$$
 set $= \{\}$

$$[i, j) = [0, 1)$$
 set $= \{p\}$

$$[i, j) = [0, 2)$$
 set $= \{p, w\}$

$$[i, j) = [0, 3)$$
 set $= \{p, w, k\}$

$$[i, j) = [0, 4)$$
 set $= \{p, w, k, e\}$

$$[i, j) = [1, 4)$$
 set $= \{p, w, k, e\}$

$$[i, j) = [1, 4)$$
 set $= \{w, k, e\}$

$$[i, j) = [2, 4)$$
 set $= \{ \frac{w}{k}, k, e \}$

$$[i, j) = [2, 4)$$
 set $= \{k, e\}$

$$[i, j) = [2, 5)$$
 set $= \{k, e, w\}$

$$[i, j) = [3, 5)$$
 set $= \{k, e, w\}$

$$[i, j) = [3, 5)$$
 set $= \{e, w\}$

$$[i, j) = [4, 5)$$
 set $= \{e, w\}$

$$[i, j) = [4, 5)$$
 set $= \{w\}$

$$[i, j) = [5, 5)$$
 set $= \{ w \}$

$$[i, j) = [5, 5)$$
 set = {}

$$[i, j) = [5, 6)$$
 set $= \{w\}$

Runtime?

O(n)

Runtime?

O(n)

Why?

Runtime?

O(n)

Why?

Hint: how many times did we access each element?

Runtime?

O(n)

Why?

Hint: how many times did we access each element? **2**

Runtime?

O(n)

Why does it work?

What does pointer i do?

Why does it work?

What does pointer i do?

 It indicates the start of a substring that we are checking now

```
0 1 2 3 4
a b c a b
i ↑
```

```
0 1 2 3 4
a b c a b
i ↑

i ↑
```

Checks: "ab"

```
0 1 2 3 4
a b c a b
i ↑

i ↑
```

```
0 1 2 3 4
a b c a b
i ↑

i ↑
```

Invalid Checks: "abca"

When i moves, we finished checking all substrings that begin **with** s [0]

Did we need to check "abcab"?

Did we need to check "abcab"?

No

Now we start checking substrings that begin with s [1]

Why didn't we check "b" and "bc"?

Why didn't we check "b" and "bc"?

0 1 2 3 4
a b c a b
i ↑

<u>Recall...</u>

Why didn't a b c a b we check "b" $\stackrel{1}{}$ and "bc"?

Recall...

Valid

Why didn't a b c a b we check "b" $\stackrel{1}{}$ and "bc"?

Recall...

Why didn't a b c a b we check "b" $\stackrel{1}{}$ and "bc"?

Recall...

Invalid

Why didn't we check "b" and "bc"?

Recall...

 We knew there was a valid substring with length 3 from previous moves