

Funções escalares de várias variáveis

Curvas de nível

Objetivos:

- Compreender a noção de curvas de nível e sua relação com o domínio, imagem e gráfico da função;
- Calcular e identificar a curva de nível que passa por um dado ponto.
- Esboçar curvas de nível; Mapa de contorno.

Seja $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, $(x,y)\in D\longmapsto z=f(x,y)\in\mathbb{R}$ Seja $k\in Im(f)$, o conjunto $C_k=\{(x,y)\in D;\quad f(x,y)=k\}\subset D\subset\mathbb{R}^2$ é dito curva de nível de f no nível k.

Figure 1: Relação da curva de nível com o domínio e a imagem da função

Observe que a curva $f(C_k)$ (imagem da curva de nível C_k pela função f(x,y)) é a curva interseção do gráfico da função f com o plano z=k.

Figure 2: Relação da curva de nível com o gráfico da função

Observações:

- (I) $C_k \subset D \subset \mathbb{R}^2$, $f(C_k) \subset G_f \subset \mathbb{R}^3$
- (II) Se f(x,y) é a temperatura no ponto (x,y), então C_k é uma <u>isoterma</u> (pontos de mesma temperatura)
- (III) Se f é energia potencial, então C_k é uma curva equipotencial.

Exemplos

- 1. Seja $f(x,y) = 1 x^2 y^2$. Determine:
 - (a) D_f
 - (b) Im(f)
 - (c) G_f
 - (d) curvas de nível C_k .

Solução

- (a) $D_f = \mathbb{R}^2$
- (b) $Im(f) =]-\infty, 1]$
- (c) $G_f: z=1-x^2-y^2$. Vamos utilizar traços para esboçar G_f . Impondo x=0, obtemos $z=1-y^2$, de modo que a interseção do G_f com plano $yz\ (x=0)$ é uma parábola. Impondo z=0, obtemos o traço $x^2+y^2=1$, que corresponde a uma circunferência no plano xy. Assim, temos a forma da superfície que é chamada de paraboloide.

Figure 3: Gráfico da função $f(x,y) = 1 - x^2 - y^2$

(d) Seja $k \in Im(f) =]-\infty,1].$ Então, a curva de nível C_k é dada por

$$C_k: 1 - x^2 - y^2 = k \Longrightarrow C_k: x^2 + y^2 = 1 - k$$

Para k=1, temos $C_1: x^2+y^2=0 \Longrightarrow x=0, y=0$. Logo, $C_1=\{(0,0)\}$. Para k<1, donde 1-k>0, temos $C_k: x^2+y^2=(\sqrt{1-k})^2$. Assim, as curvas de nível (k<1) são circunferências concêntricas de centro na origem e raio $\sqrt{1-k}$.

Figure 4: Curvas de nível da função $f(x,y)=1-x^2-y^2$

- 2. Seja $z=f(x,y)=\sqrt{1-x^2-y^2}.$ Determine:
 - (a) D_f
 - (b) Im(f)
 - (c) G_f
 - (d) curvas de nível C_k .

Solução

- (a) $D_f: 1-x^2-y^2 \geqslant 0 \Longrightarrow D_f: x^2+y^2 \leqslant 1$ (disco de centro em (0,0) e raio 1)
- (b) Im(f) = [0, 1]
- (c) $G_f: z=\sqrt{1-x^2-y^2}\Rightarrow G_f: z^2=1-x^2-y^2, z\geqslant 0\Longrightarrow G_f: x^2+y^2+z^2=1, z\geqslant 0$ (hemisfério superior de centro em (0,0,0) e raio 1)

Figure 5: Gráfico da função $f(x,y) = \sqrt{1-x^2-y^2}$

(d) Seja $k \in Imf = [0,1]$. A curva de nível correspondente a z = k é

$$C_k: f(x,y) = k$$
 ou $\sqrt{1 - x^2 - y^2} = k$ ou $x^2 + y^2 = 1 - k^2$

Para k = 0, temos $C_0 : x^2 + y^2 = 1$.

Para k = 1, temos $C_1 : x^2 + y^2 = 0$, então $C_1 = \{(0,0)\}.$

Para k, tal que 0 < k < 1, temos circunferência concêntricas de centro na origem e raio $\sqrt{1-k^2}$.

Figure 6: Curvas de nível da função $f(x,y) = \sqrt{1-x^2-y^2}$

Observação: $f(x,y)=-\sqrt{a^2-x^2-y^2}\Rightarrow G_f: z=-\sqrt{a^2-x^2-y^2}.$ Portanto, $\overline{G_f:x^2+y^2}+z^2=a^2,z\leqslant 0$ (hemisfério inferior de centro na origem e raio 1).

- 3. Seja $z = f(x, y) = 1 x^2$. Determine:
 - (a) D_f
 - (b) Im(f)
 - (c) G_f
 - (d) curvas de nível C_k .

Solução

- (a) $D_f = \mathbb{R}^2$
- (b) $Im(f) =]-\infty, 1]$
- (c) $G_f: z=1-x^2$. Observe que a equação do gráfico, $z=1-x^2$, não envolve a variável y. Portanto, qualquer plano vertical y=k (paralelo ao plano xz) intercepta o G_f segundo uma parábola de equação $z=1-x^2$. Assim, G_f é obtido tomando a parábola $z=1-x^2$ no plano xz e movendo-a na direção do eixo y. A superfície é dita cilindro parabólico.

Figure 7: Gráfico da função $f(x,y) = 1 - x^2$

(d) Seja $k \in Im(f) =]-\infty,1]$. A curva de nível correspondente é

$$C_k: 1-x^2=k \Longrightarrow C_k: x^2=1-k>0 \Longrightarrow C_k: x=\pm\sqrt{1-k}$$

Se k = 1, temos $C_1 : x = 0$ (eixo y);

Se
$$k < 1$$
, temos $C_k = \operatorname{reta} x = \sqrt{1-k}$ ou reta $x = -\sqrt{1-k}$

Figure 8: Curvas de nível da função $f(x,y)=1-x^2$

Observação: $f(x,y)=x^2, g(x,y)=a^2-y^2\Longrightarrow {\bf G}_f$ e G_g são cilindros parabólicos.

Figure 9: Cilindros parabólicos

4. Seja $z=f(x,y)=\sqrt{x^2+y^2}.$ Determine:

- (a) D_f
- (b) Im(f)
- (c) G_f
- (d) curvas de nível C_k .

Solução

- (a) $D_f = \mathbb{R}^2$
- (b) $Im(f) = [0, +\infty[$
- (c) $G_f: z=\sqrt{x^2+y^2}$. Fazendo x=0, temos $z=\mid y\mid$, que é a curva interseção do G_f com plano yz. Fazendo $z=c,\ c>0$), temos $x^2+y^2=c^2$, de modo que a interseção do G_f com o plano horizontal z=c é uma circunferência. Assim, temos que G_f é a parte superior do cone.

Figure 10: Gráfico da função $f(x,y) = \sqrt{x^2 + y^2}$

(d) Seja $k\in Im(f)=[0,+\infty[$. Então, a curva de nível correspondente é dada por $C_k:\sqrt{x^2+y^2}=k$ ou $x^2+y^2=k^2$.

Se k = 0, temos $C_0 = \{(0,0)\}.$

Se k > 0 temos circunferências concêntricas na origem e raio k.

Observações:

(i) Os gráficos de $f(x,y)=-\sqrt{x^2+y^2}$, $f(x,y)=a-\sqrt{x^2+y^2}$, $f(x,y)=\sqrt{3(x^2+y^2)}$, $f(x,y)=\sqrt{\frac{x^2+y^2}{3}}$ são partes de cones circulares.

Figure 11: Cones circulares

- (ii) O gráfico de $f(x,y)=\sqrt{ax^2+by^2}, a>0, b>0, a\neq b\Longrightarrow G_f$ é a parte superior do cone elíptico.
- 5. Seja, $z = f(x, y) = y^2 x^2$. Determine:

- (a) D_f
- (b) Im(f)
- (c) G_f
- (d) curvas de nível C_k .

Solução

- (a) $D_f = \mathbb{R}^2$
- (b) $Im(f) = \mathbb{R}^2$
- (c) $G_f: z=y^2-x^2$. Fazendo x=0, o traço no plano yz é a parábola $z=y^2$ com concavidade para cima. Os traços verticais y=k são parábolas $z=k^2-x^2$ com concavidade para baixo. Os traços horizontais $z=k, \quad k>0$, são hipérboles $y^2-x^2=k$ e os tracos horizontais z=-k, k>0, são hipérboles $x^2-y^2=k_0$. Assim, temos o esboço do G_f , dito paraboloide hiperbólico (que tem a forma de uma sela).

Figure 12: Gráfico da função $f(x,y)=y^2-x^2$

(d) Seja $k \in Im(f) = \mathbb{R}$. A curva de nível correspondente é dada por

$$C_k: y^2 - x^2 = k$$

Se k > 0, temos hipérboles com vértices $(0, \pm \sqrt{k})$.

Se k=0, temos duas retas pela origem, y=x e y=-x.

Se k < 0, temos hipérboles com vértices $(\pm \sqrt{-k}, 0)$.

Figure 13: Curvas de nível da função $f(x,y) = y^2 - x^2$

- 6. Seja, $z=f(x,y)=-\sqrt{4-x^2-y^2}$. Determine:
 - (a) A curva de nível que passa pelo ponto $(0, \sqrt{3})$.
 - (b) A reta tangente à curva de nível do item (a) no ponto $(1, \sqrt{2})$. Identifique o vetor velocidade.
 - (c) Esboce em um único gráfico a curva, a reta tangente e a direção do vetor velocidade.

Solução

- (a) Como $f(0,\sqrt{3})=-1$, então a curva de nível é $-\sqrt{4-x^2-y^2}=-1$, isto é, $C_{-1}:x^2+y^2=3$.
- (b) Observe que $f(1,\sqrt{2})=-1$. portanto $(1,\sqrt{2})\in C_{-1}$ e faz sentido calcular a reta tangente a C_{-1} nesse ponto. Caso contrário não existiria.

Uma parametrização de C_{-1} é γ : $\begin{cases} x(t) = \sqrt{3}\cos t \\ y(t) = \sqrt{3}\sin t \end{cases} \text{, } \forall t \in [0,2\pi].$

Portanto, a equação paramétrica da reta seria $\gamma(s_0) + \gamma'(s_0)t$, $\forall t \in \mathbb{R}$, onde s_0 é tal que $\gamma(s_0) = (1, \sqrt{2})$.

$$\text{ ção, } \gamma': \begin{cases} x'(t) = -\sqrt{3} \sec t \\ y'(t) = \sqrt{3} \cos t \end{cases} \text{ , temos que } \gamma'(s_0) = (-\sqrt{3} \cdot \frac{\sqrt{2}}{\sqrt{3}}, \sqrt{3} \cdot \frac{1}{\sqrt{3}})$$

Daí, a equação paramétrica da reta tangente é: $(1, \sqrt{2}) + (-\sqrt{2}, 1)t$, $\forall t \in \mathbb{R}$. O vetor velocidade é $\gamma'(s_0)=(-\sqrt{2},1)$. A direção dele é $\vec{v}=\frac{\gamma'(s_0)}{||\gamma'(s_0)||}=$ $\left(-\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

(c)

Figure 14: Curvas de nível da função $f(x,y)=-\sqrt{4-x^2-y^2}$ que passa pelo ponto $(0,\sqrt{3})$ (em roxo)

Exercícios

- 1. Seja $z = f(x,y) = \sqrt{2y x^2 y^2}$. Determine:
 - (a) D_f
 - (b) Im(f)
 - (c) G_f
 - (d) curvas de nível C_k .
- 2. Seja $z = f(x,y) = 1 x^2, x \geqslant 0, y \geqslant 0$ e $x + y \leqslant 1$. Determine:
 - (a) D_f
 - (b) Im(f)
 - (c) G_f
 - (d) curvas de nível C_k .
- 3. Seja a função $z=f(x,y)=\frac{y}{x-2}$. Determine:
 - (a) D_f
 - (b) Im(f)
 - (c) curvas de nível C_k .
- 4. Seja a funcõo $z=f(x,y)=\frac{x^2}{x^2+y^2}.$ Determine:
 - (a) D_f
 - (b) Im(f)
 - (c) curvas de nível C_k .
- 5. Suponha que $T(x,y)=4x^2+9y^2$ (em C°) represente uma distribuição de temperatura no plano xy. Desenhe a isoterma correspondente à temperatura de 36° C.

- 6. Uma chapa plana de metal está situada em um plano xy, de modo que a temperatura (em $^{\circ}$) no ponto (x,y) é inversamente proporcional a distância da origem.
 - (a) Descreva as isotermas.
 - (b) Se a temperatura no ponto P(4,3) é $40^{\circ}{\rm C}$, ache a equação da isoterma para uma temperatura de $20^{\circ}{\rm C}$.
 - (c) curvas de nível C_k .
- 7. Seja, $z = f(x, y) = \frac{x^2 + y^2}{2y}$.
 - (a) Esboce o mapa de contorno de f.
 - (b) Determine uma equação da reta tangente à curva de nível que passa pelo ponto (0,6) no ponto (-3,3). Identifique o vetor velocidade.
 - (c) Identifique a curva de nível do item (b) no mapa de contorno do item (a). Esboce a reta tangente e a direção do vetor velocidade no mapa de contorno.

Respostas

- 1. (a) $D_f = \{(x,y); x^2 + (y-1)^2 \le 1\}$ (d) $C_0 : x^2 + (y-1)^2 = 1$, $C_1 = 1$
 - (b) Im(f) = [0, 1]
 - (c) $G_f: x^2 + (y-1)^2 + z^2 = 1, 0 \leqslant z \leqslant 1$, semi-esfera.
- (d) $C_0: x^2 + (y-1)^2 = 1$, $C_1 = \{(0,1)\}$. Se 0 < k < 1, temos circunferências concêntricas de centro (0,1) e raio $\sqrt{1-k^2}$.

- 2. (a) D_f :
- D_f

(b) Im(f) = [0, 1]

- ٥
- (c) G_f :

(d) C_k :

- 3. (a) $D_f = \{(x,y); x \neq 2\} = \mathbb{R}^2 \setminus \{ \text{ reta } x = 2 \}$
 - (b) $Im(f) = \mathbb{R}$
 - (c) $C_k: y = k(x-2), x \neq 2.$

4. (a) $D_f = \mathbb{R}^2 - \{(0,0)\}$

(b)
$$Im(f) = [0, 1]$$

(c)
$$C_0: x = 0, y \neq 0;$$
 $C_1: y = 0, x \neq 0;$ $C_k: y = \pm \sqrt{\frac{1-k}{k}}x,$ $x \neq 0, 0 < k < 1.$

- 5. c_{36} : $\frac{x^2}{9} + \frac{y^2}{4} = 1$
- 6. (a) Circunferências com centro em (0,0)

(b)
$$x^2 + y^2 = 100$$

(b) Reta tangente a C_3 em (-3,3) é $(-3,3)+(0,-3)t, \ \forall t\in \mathbb{R}.$ A direção do vetor velocidade é $\vec{v}=(0,-1)$

