Relacije

October 6, 2021

Uređen par elemenata a i b, u oznaci (a, b) je $(a, b) = \{\{a\}, \{a, b\}\},$ gde je a prva komponenta, a b druga komponenta uređenog para.

Napomena:
$$(b, a) = \{\{b\}, \{a, b\}\}\$$
 pa za $a \neq b \Rightarrow (a, b) \neq (b, a)$. $(a, b) = (c, d) \Leftrightarrow a = c \land b = d$.

Dekartov proizvod skupova A i B je skup svih uređenih parova čija je

prva komponenta iz skupa A, a druga komponenta iz skupa B, tj.

$$A \times B = \{(a,b) | a \in A \land b \in B\}.$$

4(1,x)9

Primer:
$$A = \{1, 2, 3\}, B = \{x, y\}$$

 $A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$

 $B \times A = \{(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)\}$ Na osnovu ovog primera može se zaključiti da Dekartov proizvod nije komutativan, tj. $A \times B \neq B \times A$.

Dekartov kvadrat skupa A je $A^2 = A \times A = \{(a_1, a_2) | a_1, a_2 \in A\}.$

Primer:
$$A = \{1, 2, 3\}$$
 $A = \{1, 2, 3\}$ $A = \{1, 2, 3\}$ $A^2 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$.

4 D > 4 D > 4 E > 4 E > E 990

(a, b) 3/44,44 by

(b,a)= 1757,25,959

a+b=) (a1b) + (b1a)

A,B

 $A \times A = A^2$

AXB

49,69=1594

Binarna relacija je bilo koji podskup od $\underline{A \times B}$, tj. $\rho \subseteq A \times B$.

Ako uređen par (x,y) pripada relaciji ρ kaže se da su x i y u relaciji ρ i piše se $(x,y) \in \rho$ ili $x\rho y$.

Binarna relacija skupa A, je bilo koji podskup od A^2 , tj. $\rho \subseteq A^2$.

Kako je $\emptyset \subseteq A^2$ i $A^2 \subseteq A^2$ to su $\underline{\emptyset}$ i \underline{A}^2 sigurno relacije skupa A, i one se nazivaju prazna i puna relacija.

$$\beta \in A \times B$$

$$\beta = \{(1,2)\}$$

$$(1,2) \in \beta$$

$$1 \in \mathbb{Z}$$

$$(x,y) \in \beta$$

Relacije koje imaju konačno mnogo elemenata se mogu zadati na više načina. Neka je $A=\{1,2,3\}$ i $\rho\subseteq A^2$ tada se ρ može zadati na sledeće načine:

$$^{\nearrow}$$
 Nabrajanjem elemenata: $\rho = \{(1,1), (1,2), (1,3), (2,1), (2,2)\}$

$$\nearrow$$
 pomoću drugih relacija: $\rho = \left\{ (x,y) \in A^2 | x^2 + y \leq 6 \right\}$

•	tablično:	ρ	1	2	3
		1	T	Т	Т
		2	Т	Т	\perp
		3	1	T	

grafički.

Relacije koje imaju beskonačno mnogo elemenata mogu se zadati pomoću drugih relacija ili se mogu opisati rečima govornog jezika.

Primer *:
$$A = \{1, 2, 3\}$$

$$\rho_{1} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$$

$$\rho_{2} = \{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)\}$$

$$\rho_{3} = \{(1, 1), (1, 3), (3, 1), (3, 2), (3, 3)\}$$

$$\rho_{4} = \{(1, 2), (1, 3), (2, 2), (2, 3)\}$$
Inverzna relacija relacije ρ je $\rho^{-1} = \{(y, x) \mid (x, y) \in \rho\}$
Primer: Inverzne relacije relacija iz Primera * su:
$$\rho_{1}^{-1} = \{(1, 1), (2, 1), (1, 2), (2, 2), (3, 3)\}$$

$$\rho_{2}^{-1} = \{(2, 1), (3, 1), (2, 2), (3, 2), (2, 3), (3, 3)\}$$

$$\rho_{3}^{-1} = \{(1, 1), (3, 1), (1, 3), (2, 3), (3, 3)\}$$

$$\rho_{4}^{-1} = \{(2, 1), (3, 1), (3, 2)\}$$

$$\rho_{5}^{-1} = \{(1, 1), (2, 1), (3, 1), (2, 2), (3, 2)\}$$

Osnovne osobine binarne relacije ρ skupa $A \neq 0$:

- ► refleksivnost (R): $(\forall x \in A) x \rho x$ $\forall x \in A / (x, x) \in \mathcal{C}$
- ▶ simetricnost (S): $(\forall x, y \in A)(x\rho y \Rightarrow y\rho x)$ $\forall x \in A \mid (x_{i}y) \in f$ $\Rightarrow (y_{i}x) \in f$
- ▶ antisimetricnost (A): $(\forall x, y \in A) (x \rho y \land y \rho x \Rightarrow x = y)$ ili $(\forall x, y \in A) ((x \rho y \land x \neq y) \Rightarrow \rceil (y \rho x)) \quad (\forall x, y \in A) \quad (x, y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (\forall x, y \in A) \quad (x \neq y) \in \beta \quad x \neq y \quad =) \quad (x \neq y) \in \beta \quad$
- ▶ tranzitivnost (**T**): $(\forall x, y, z \in A) ((x \rho y \land y \rho z) \Rightarrow x \rho z)$

$$(\chi^{(\lambda)}) \in \mathcal{A}$$
 $(\chi^{(\lambda)}) \in \mathcal{A}$ $(\chi^{(\lambda)}) \in \mathcal{A}$ $(\chi^{(\lambda)}) \in \mathcal{A}$

イロト 4日 トイヨト イヨト ヨー かくで

$$\begin{cases}
f_{5} = \frac{1}{2}(a_{1}b), (b_{1}c), (c_{1}b) = -NIDE \\
f_{6} = \frac{1}{2}(a_{1}b), (b_{1}c), (c_{1}c) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{7} = \frac{1}{2}(a_{1}b), (b_{1}c), (c_{1}c) = -NIDE \\
f_{7} = \frac{1}{2}(a_{1}b), (b_{1}c), (c_{1}a), (c_{1}c) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{7} = \frac{1}{2}(a_{1}b), (b_{1}a), (c_{1}a), (c_{1}c) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{7} = \frac{1}{2}(a_{1}b), (b_{1}a), (c_{1}a) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{8} = \frac{1}{2}(a_{1}a), (b_{1}b) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{9} = \frac{1}{2}(a_{1}a), (b_{1}b) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{1} = \frac{1}{2}(a_{1}a), (a_{1}b), (b_{1}c), (a_{1}c) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{1} = \frac{1}{2}(a_{1}a), (a_{1}b), (b_{1}c), (a_{1}c) = -NIDE
\end{cases}$$

$$\begin{cases}
f_{1} = \frac{1}{2}(a_{1}a), (a_{1}b), (b_{1}c), (a_{1}c) = -NIDE
\end{cases}$$