Appendix 1: Math Background

Contents

1	Fréchet Differentiability and Derivative	2
2	Bochner Integral	5
3	Partial Derivative of a Kernel Function	7

1 Fréchet Differentiability and Derivative

We provide details on the Fréchet differentiability and derivative. Throughout this section, we let \mathcal{H} be a real Hilbert space, $J:\mathcal{H}\to\mathbb{R}$ be a map, $\mathcal{B}(\mathcal{H},\mathbb{R})$ denote the collection of all bounded linear operators from \mathcal{H} to \mathbb{R} , and, similarly, $\mathcal{B}(\mathcal{H},\mathcal{H})$ denote the collection of all bounded linear operators from \mathcal{H} to itself.

Definition 1 (Fréchet differentiability and derivative). The map J is said to be (first-order) Fréchet differentiable at $f \in \mathcal{H}$ if there exists an operator $\mathrm{D}J(f) \in \mathcal{B}(\mathcal{H},\mathbb{R})$ such that

$$\lim_{\substack{\|g\|_{\mathcal{H}} \to 0 \\ g \neq 0}} \frac{\left| J(f+g) - J(f) - DJ(f)(g) \right|}{\|g\|_{\mathcal{H}}} = 0,$$
(1)

and the operator $\mathrm{D}J(f)$ is called the *(first-order) Fréchet derivative*. The map J is said to be *(first-order) Fréchet differentiable on* $\mathcal H$ if it is Fréchet differentiable at every $f\in\mathcal H$.

Proposition 1. Suppose J is Fréchet differentiable at $f \in \mathcal{H}$ and the Fréchet derivative DJ(f) exists. Then, DJ(f) is unique.

Remark 1. If J is Fréchet differentiable at $f \in \mathcal{H}$, we then can write

$$J(f+g) = J(f) + DJ(f)(g) + o(||g||_{\mathcal{H}}),$$
(2)

for all $g \in \mathcal{H}$ in a small neighborhood of the origin, where $o(\|g\|_{\mathcal{H}})$ denotes $\frac{o(\|g\|_{\mathcal{H}})}{\|g\|_{\mathcal{H}}} \to 0$ as $\|g\|_{\mathcal{H}} \to 0$. Thus, from (2), we see $J(f) + \mathrm{D}J(f)(g)$ provides the best linear approximation of J in a small neighborhood of f, which is the similar interpretation of the derivative of a real-valued function of a single variable.

Frechét derivative shares many properties of the derivative of a real-valued function of a single variable. The following proposition lists two properties we use in studying the Frechét differentiability and deriving the Frechét derivative of the log-partition functional A in Chapter 2.

Proposition 2. (a) Suppose $J_1, J_2 : \mathcal{H} \to \mathbb{R}$ are Frechét differentiable at $f \in \mathcal{H}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$. Then, $\alpha_1 J_1 + \alpha_2 J_2$ is also Frechét differentiable at $f \in \mathcal{H}$, and

$$D(\alpha_1 J_1 + \alpha_2 J_2)(f) = \alpha_1 D J_1(f) + \alpha_2 D J_2(f).$$

(b) (Chain rule) Suppose $J_1: \mathcal{H} \to \mathbb{R}$ is Frechét differentiable at $f \in \mathcal{H}$ and $J_2: \mathbb{R} \to \mathbb{R}$ is differentiable at $J_1(f)$. Then, $J_2 \circ J_1: \mathcal{H} \to \mathbb{R}$ is Frechét differentiable at $f \in \mathcal{H}$, and

$$D(J_2 \circ J_1)(f) = J_2'(J_1(f))DJ_1(f).$$
(3)

Definition 2 (Fréchet gradient). Suppose $J: \mathcal{H} \to \mathbb{R}$ is Frechét differentiable at $f \in \mathcal{H}$. Since $\mathrm{D}J(f)$ is a bounded linear map from \mathcal{H} to \mathbb{R} , the Riesz-Fréchet representation theorem (Fact 2.24 in Bauschke and Combettes, 2011) implies there exists a unique element $\nabla J(f) \in \mathcal{H}$ such that, for any $g \in \mathcal{H}$,

$$DJ(f)(g) = \langle g, \nabla J(f) \rangle_{\mathcal{H}},$$
 (4)

and $\nabla J(f)$ is called the *Fréchet gradient* of J at f. If J is Fréchet differentiable on \mathcal{H} , the *Fréchet gradient operator* is defined to be $\nabla J: \mathcal{H} \to \mathcal{H}, f \mapsto \nabla J(f)$.

Remark 2. Note that $\mathrm{D}J(f)$ is a bounded linear map from \mathcal{H} to \mathbb{R} , and belongs to the dual space of \mathcal{H} , denoted by \mathcal{H}^* . Since we have $\mathrm{D}J(f)(g) = \langle \nabla J(f), g \rangle_{\mathcal{H}}$, the Riesz-Fréchet representation theorem implies that $\|\mathrm{D}J(f)\|_{\mathcal{H}^*} = \|\nabla J(f)\|_{\mathcal{H}}$, where $\|\cdot\|_{\mathcal{H}^*}$ denotes the norm of the dual space \mathcal{H}^* .

We now extend Definition 1 to higher orders.

Definition 3 (Higher-order Fréchet differentiability and derivatives). Higher-order Fréchet differentiability and derivatives are defined inductively.

In particular, the map J is said to be twice Fréchet differentiable at $f \in \mathcal{H}$ if J itself is Fréchet differentiable at $f \in \mathcal{H}$ and the map $DJ(f) : \mathcal{H} \to \mathbb{R}$ is also Fréchet differentiable at $f \in \mathcal{H}$. The second Fréchet derivative of J at $f \in \mathcal{H}$, denoted by $D^2J(f)$, is an operator from \mathcal{H} to $\mathcal{B}(\mathcal{H},\mathbb{R})$, that satisfies

$$\lim_{\substack{\|g\|_{\mathcal{H}} \to 0 \\ g \neq 0}} \frac{\left\| DJ(f+g) - DJ(f) - D^2J(f)(g) \right\|_{\mathcal{H}^*}}{\|g\|_{\mathcal{H}}} = 0,$$
 (5)

where $\|\cdot\|_{\mathcal{H}^*}$ denotes the norm of the dual space of \mathcal{H} .

The second-order Fréchet gradient, denoted by $\nabla^2 J$, is a bounded linear operator that maps from \mathcal{H} to $\mathcal{B}(\mathcal{H},\mathcal{H})$ and satisfies

$$D^2 J(f)(g)(h) = \langle h, \nabla^2 J(f)(g) \rangle_{\mathcal{H}}, \quad \text{for all } g, h \in \mathcal{H}.$$

In other words, $\nabla^2 J \in \mathcal{B}(\mathcal{H}, \mathcal{B}(\mathcal{H}, \mathcal{H}))$ and $\nabla^2 J(f) \in \mathcal{B}(\mathcal{H}, \mathcal{H})$.

Remark 3. By Proposition 5.1.17 in Denkowski, Migórski, and Papageorgiou (2013), there exists an isometric isomorphism between $\mathcal{B}(\mathcal{H},\mathcal{B}(\mathcal{H},\mathcal{H}))$ and $\mathcal{B}(\mathcal{H}\times\mathcal{H},\mathcal{H})$. Let Φ denote this isometric isomorphism. Then, $\Phi(\nabla^2 J)$ is a map from $\mathcal{H}\times\mathcal{H}$ to \mathcal{H} such that $\Phi(\nabla^2 J)(f,g) = \nabla^2 J(f)(g)$, for all $f,g \in \mathcal{H}$.

2 Bochner Integral

In this section, we present the definition of the Bochner integral, which is the extension of the Lebesgue integral of real-valued functions to the integral of functions taking values in a Banach space. We also present some properties of the Bochner integral that we have used in the dissertation (in particular, in **Chapter 2 and 3**). All materials of this section come from Appendix A.5.3 in Steinwart and Christmann (2008) and Section 3.10 Denkowski, Migórski, and Papageorgiou (2013).

Throughout this section, let \mathcal{E} be a Banach space whose norm is denoted by $\|\cdot\|_{\mathcal{E}}$, and $(\mathcal{X}, \Sigma, \mu)$ be a σ -finite measure space (note that this μ differs from the one in the definition of finite-dimensional and kernel exponential families in **Chapter 2**). We first define the simple function (Definition 4) and the measurable function (Definition 5) in the Banach space setting and then define the Bochner μ -integral (Definition 6).

Definition 4 (\mathcal{E} -valued simple function). A function $s: \mathcal{X} \to \mathcal{E}$ is said to be an \mathcal{E} -valued simple function if there exist $e_1, \dots, e_n \in \mathcal{E}$ and $A_1, \dots, A_n \in \Sigma$ such that

$$s(x) = \sum_{i=1}^{n} \mathbb{1}_{A_i}(x)e_i,$$
 for all $x \in \mathcal{X}$,

where $\mathbb{1}_A$ is the indicator function of the set A, and is equal to 1 if $x \in A$ and to 0, otherwise.

Definition 5 (\mathcal{E} -valued measurable function). A function $f: \mathcal{X} \to \mathcal{E}$ is said to be an \mathcal{E} -valued measurable function if there exists a sequence of \mathcal{E} -valued simple functions, $\{s_m\}_{m\in\mathbb{N}}$, such that

$$\lim_{m \to \infty} ||f(x) - s_m(x)||_{\mathcal{E}} = 0 \tag{6}$$

holds for all $x \in \mathcal{X}$.

Definition 6 (Bochner μ -integral). An \mathcal{E} -valued measurable function $f: \mathcal{X} \to \mathcal{E}$ is said to be $Bochner \mu$ -integrable if there exists a sequence of \mathcal{E} -valued simple functions, $\{s_m\}_{m\in\mathbb{N}}$, such that

$$\lim_{n \to \infty} \int_{\mathcal{X}} \|s_n(x) - f(x)\|_{\mathcal{E}} d\mu(x) = 0.$$
 (7)

In this case, the limit

$$\int_{\mathcal{X}} f(x) d\mu(x) := \lim_{n \to \infty} \int_{\mathcal{X}} s_n(x) d\mu(x)$$

exists and is called the *Bochner integral* of f.

A criterion to check the Bochner μ -integrability is the following.

Proposition 3. A measurable function $f: \mathcal{X} \to \mathcal{E}$ is Bochner μ -integrable if and only if $\int_{\mathcal{X}} ||f(x)||_{\mathcal{E}} d\mu(x) < \infty$.

Finally, we look at some properties of Bochner μ -integral we use.

Proposition 4. The Bochner μ -integral defined above has the following properties:

- (a) The Bochner integral is linear.
- (b) If $f: \mathcal{X} \to \mathcal{E}$ is Bochner μ -integrable, we have

$$\left\| \int_{\mathcal{X}} f(x) d\mu(x) \right\|_{\mathcal{E}} \le \int_{\mathcal{X}} \|f(x)\|_{\mathcal{E}} d\mu(x).$$

(c) Suppose \mathcal{E}' is another Banach space. If $S: \mathcal{E} \to \mathcal{E}'$ is a bounded linear operator and $f: \mathcal{X} \to \mathcal{E}$ is Bochner μ -integrable, then $S \circ f: \mathcal{X} \to \mathcal{E}'$ is also Bochner μ -integrable. In this case, the integral commutes with S, that is,

$$S\left(\int_{\mathcal{X}} f(x) d\mu(x)\right) = \int_{\mathcal{X}} (S \circ f)(x) d\mu(x).$$

3 Partial Derivative of a Kernel Function

In this section, we discuss the partial derivatives of a kernel function of a RKHS and its reproducing property. We follow the development in Section 4.3 in Steinwart and Christmann (2008) and the paper by Zhou (2008). Throughout this section, we let $\mathcal{X} \subseteq \mathbb{R}^d$ be an open set and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

We first consider a real-valued function $f: \mathcal{X} \to \mathbb{R}$. The function f is said to be m-times continuously differentiable if, for all $\alpha := (\alpha_1, \dots, \alpha_d)^{\top} \in \mathbb{N}_0^d$ with

 $|\alpha| := \sum_{i=1}^{d} \alpha_i \le m$ and all $x \in \mathcal{X}$,

$$\partial^{\alpha} f(x) = \frac{\partial^{|\alpha|}}{\partial u_1^{\alpha_1} \cdots \partial u_d^{\alpha_d}} f(u) \bigg|_{u=x},$$

exists, where $u := (u_1, \dots, u_d)^{\top} \in \mathcal{X}$.

We then define the m-times continuous differentiability of the kernel function k.

Definition 7 (m-times continuous differentiability of a kernel function). Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a kernel function and $m \in \mathbb{N}$. We say k is m-times continuously differentiable if $\partial^{\alpha,\alpha}k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ exists and is continuous for all $\alpha := (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$ with $|\alpha| := \sum_{i=1}^d \alpha_i \leq m$, where

$$\partial^{\alpha,\alpha} k(x,y) = \frac{\partial^{2|\alpha|}}{\partial u_1^{\alpha_1} \cdots \partial u_d^{\alpha_d} \partial v_1^{\alpha_1} \cdots \partial v_d^{\alpha_d}} k(u,v) \bigg|_{u=x,v=y}, \quad \text{for all } x,y \in \mathcal{X}.$$

The partial derivative of k is an element in \mathcal{H} and has the reproducing property as k does, as the following proposition states.

Proposition 5 (Partial derivatives of kernels and its reproducing property). Let \mathcal{H} be a RKHS with the kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, and assume k is m-times continuously differentiable on \mathcal{X} . Then,

(a) we have

$$\partial^{\alpha} k(x, \cdot) = \frac{\partial^{|\alpha|}}{\partial u_1^{\alpha_1} \cdots \partial u_d^{\alpha_d}} k((u_1, \cdots, u_d), \cdot) \bigg|_{u=r} \in \mathcal{H}$$
 (8)

for all $u := (u_1, \cdots, u_d)^{\top} \in \mathcal{X}$, and

(b) every $f \in \mathcal{H}$ is m-times continuously differentiable, and, for all $\alpha \in \mathbb{N}_0^d$ with $|\alpha| \leq m$ and all $x \in \mathcal{X}$, the partial derivative reproducing property holds, i.e.,

$$\partial^{\alpha} f(x) = \langle \partial^{\alpha} k(x, \cdot), f \rangle_{\mathcal{H}}, \quad \text{for all } x \in \mathcal{X}.$$
 (9)

In particular, we have $\partial^{\alpha,\alpha}k(x,y) = \langle \partial^{\alpha}k(x,\cdot), \partial^{\alpha}k(y,\cdot) \rangle_{\mathcal{H}}$ for all $x,y \in \mathcal{X}$.

References

Bauschke, Heinz H. and Patrick L. Combettes (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. 1st. Springer Publishing Company. ISBN: 9781441994660.

Denkowski, Zdzisław, Stanisław Migórski, and Nikolaos S Papageorgiou (Dec. 2013).

An Introduction to Nonlinear Analysis: Theory. en. Springer Science & Business Media.

Steinwart, Ingo and Andreas Christmann (Sept. 2008). Support Vector Machines. en. Springer Science & Business Media.

Zhou, Ding-Xuan (Oct. 2008). "Derivative reproducing properties for kernel methods in learning theory". In: *J. Comput. Appl. Math.* 220.1, pp. 456–463.