Tutorial Practice Set 2 IT3202 Automata and Compiler design

DFA and NFA Design and Minimization

Batch: B.Tech. IT VI F Deadline: 10/02/2024

Note: Submit before Deadline Discussion: Only selected questions.

- Q1. Obtain a DFA to accept strings of a's and b's having even number of a's and b's.
- Q2. Give Applications of Finite Automata.
- Q3. Obtain a DFA to accept strings of a's and b's starting with the string ab.
- Q4. Draw a DFA to accept string of 0's and 1's ending with the string 011.
- Q5. Write DFA to accept strings of 0's, 1's & 2's beginning with a 0 followed by odd number of 1's and ending with a 2.
- Q6. Convert the following NFA into an equivalent DFA.

Q7. Convert following NFA to DFA using subset construction method.

δ.	0	1
→ p	{p,r}	{q}
q	{r,s}	{p}
*r	$\{p,s\}$	{r}
*s	$\{q,r\}$	_

- Q8. For each of the following languages over the alphabet $\Sigma = \{a, b\}$, give a DFA that recognizes the language:
- (a) $A = \{\epsilon, b, ab\}.$
- (b) For any string $w \in \Sigma^*$, let $n_a(w)$ denote the number of a's in w. For example, n_a (abaaba) = 4. Define the language $B = \{w \in \Sigma^* \mid n_a(w) \bmod 3 = 1\}$, i.e., $w \in B$ if and only if the number of a's in w is 3k+1 for some $k \ge 0$.
- (c) $C = \{w \in \Sigma^* \mid w = \text{saba for some strings} \in \Sigma^* \}$, i.e., C consists of strings that end in aba.
- (d) D = C', where C is the language in the previous part; i.e., D consists of strings that do not end in aba.
- (e) $E = \{w \in \Sigma^* \mid w \text{ begins with b and ends with a} \}$.
- (f) For any string $w \in \Sigma^*$, let $n_b(w)$ denote the number of b's in w. Define the language $F = \{ w \in \Sigma^* \mid n_a(w) \ge 2, n_b(w) \le 1 \}$.
- (g) $G = \{w \in \Sigma^* \mid |w| \ge 2$, second-to-last symbol of w is b}. If string $w = w_1 \ w_2 \dots w_n$ where each $w_i \in \Sigma$, then the second-to-last symbol of w is w_n-1 .
- Q9. Design a DFA recognizing the given languages:

- a) The language of all strings that do not end with 01.
- b) The language of all strings that begin or end with 00 or 11.
- c) The language of all strings containing no more than one occurrence of the string 00. (The string 000 should be viewed as containing two occurrence of 00.)
- d) The language of all strings containing both 00 and 010 as substrings.
- Q10. Automaton recognizing binary numbers that are multiples of 5.
- Q11. How to design a DFA that accepts all binary strings that represent an even number? (e.g., accepts 110, 010, but rejects 111, 010101)
- Q12. Convert the following NFA to DFA {0, 1, 2, 3 are State}

Q13. Convert the following NFA to DFA {0, 1, 2, 3, 4 are State}.

- Q14. Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w \in \Sigma^* \mid w \text{ ends with 00}\}\$ with three states.
 - (b) The language $\{w \in \Sigma^* \mid w \text{ contains the substring 0 101, i.e., } w = x0101y \text{ for some } x, y \in \Sigma^* \}$ with five states.
 - (c) The language { w ∈ Σ* | w contains at least two Os, or exactly two 1s } with six states.
 - (d) The language $\{\varepsilon\}$ with one state.
 - (e) The language 0*1*0*0 with three states.

Q15. Design the equivalent minimize DFA.

