Tilting Correspondences for Perfectoid Rings

Arnab Kundu

31st July 2020

Master's Thesis Director: Kęstutis Česnavičius

Table of Contents

- Background
- 2 Arc descent
- Sketch of the proof of the results
- 4 Applications

Table of Contents

- Background
- 2 Arc descent
- Sketch of the proof of the results
- 4 Applications

Introduction

Scholze's work on perfectoid.

Theorem (Scholze'12)

For a perfectoid field K with tilit K^{\flat} there is an equivalence of categories

$$f\acute{e}t/K \stackrel{\sim}{\longrightarrow} f\acute{e}t/K^{\flat}.$$

- Scholze'12 for perfectoid Banach K-algebras
- **Kedlaya-Liu'15** Tilting for perfectoid Banach \mathbb{Q}_p -algebras
- Gabber-Ramero'18 Tilting for perfectoid rings
- Bhatt-Morrow-Scholze'18 Perfectoid rings

Perfectoid Ring I

Bhatt-Morrow-Scholze'18

Definition

A ring A is called perfectoid if

- **1** A is ϖ -adically complete with $\varpi^p|p$
- ② $A/\varpi \to A/\varpi^p$ given by $x \mapsto x^p$ is surjective and,

Here the tilt is defined as $A^{\flat} = \lim_{x \mapsto x^p} A/p$ is a perfect ring.

Example

- Perfectoid field K°
- ullet Perfectoid Banach K-algebra R°
- **①** (ϖ -adically) complete Valuation ring V of rank 1 with $\operatorname{Frac}(V)$ alg. clos.

Perfectoid Ring II

Remark

- The tilt is also the limit $A^{\flat} = \lim_{x \mapsto x^p} A/\varpi'$; for any $\varpi''|p$.
- There is an isomorphism of multiplicative monoids

$$A^{\flat} \cong \lim_{x \mapsto x^{\rho}} A.$$

Define $\sharp : A^{\flat} \to A$.

1 There exists ϖ^{\flat} such that $(\varpi^{\flat \sharp}) = (\varpi)$. Defn. does not change.

Algebraic Tilting

Theorem (Česnavičius-Scholze'19)

Let A be a perfectoid ring with tilt A^{\flat} . There is an equivalence of categories

$$\{\textit{Perfectoid Algebras}/A\} \ \longrightarrow \ \{\textit{Perfectoid Algebras}/A^{\flat}\}$$

$$B \longmapsto B^{
abla}$$

Moreover if B is ϖ -adically complete iff B^{\flat} is ϖ^{\flat} -adically complete. If B is a valuation ring (of rank $\leqslant 1$ and algebraically closed fraction field) iff B^{\flat} is the same.

BC-pair I

We fix a perfectoid ring A which is ϖ -adically complete with $\varpi^p|p$. Let $\varpi^\flat \in A^\flat$ such that $(\varpi^{\flat\sharp})=(\varpi)$.

Definition

Let $U \subset \operatorname{Spec}(A)$ and $U^{\flat} \subset \operatorname{Spec}(A^{\flat})$ be two opens such that

$$\mathsf{Spec}\left(A\left[\tfrac{1}{\varpi}\right]\right) \subset U \subset \mathsf{Spec}(A) \qquad \qquad \mathsf{Spec}\left(A^{\flat}\left[\tfrac{1}{\varpi^{\flat}}\right]\right) \subset U^{\flat} \subset \mathsf{Spec}(A^{\flat});$$

$$Z := \operatorname{\mathsf{Spec}}(A) \backslash U$$
 $Z^{\flat} := \operatorname{\mathsf{Spec}}(A^{\flat}) \backslash U^{\flat}$

We assume that $Z \cong Z^{\flat}$ under the homeomorphism induced by

$$A/\varpi \cong A^{\flat}/\varpi^{\flat}$$
.

BC-pair II

Remark

Inspired from the tilting functor of adic spaces.

Example

- ② $U = \operatorname{Spec}(A\left\lceil \frac{1}{\varpi}\right\rceil)$ and $U^{\flat} = \operatorname{Spec}(A^{\flat}\left\lceil \frac{1}{\varpi^{\flat}}\right\rceil)$.

Main Theorems

Theorem (1)

We have a natural equivalence

$$f \operatorname{\acute{e}t}/U \stackrel{\sim}{\longrightarrow} \operatorname{f\acute{e}t}/U^{\flat}.$$

Let G be a commutative affine group with G/A finite étale. Then by tilting we have that G^{\flat} is a commutative affine group with G^{\flat}/A^{\flat} finite étale.

Theorem (2)

There is a natural equivalence

$$R\Gamma_{\text{\'et}}(U,G) \stackrel{\sim}{\longrightarrow} R\Gamma_{\text{\'et}}(U^{\flat},G^{\flat}).$$

Known results

Theorem (?)

$$\operatorname{f\'et} / A \left[rac{1}{\varpi} \right] o \operatorname{f\'et} / A^{\flat} \left[rac{1}{\varpi^{\flat}} \right].$$

Theorem (Česnavičius'19)

$$R\Gamma_{\operatorname{\acute{e}t}}(A\left[rac{1}{arpi}
ight],G)\stackrel{\sim}{\longrightarrow} R\Gamma_{\operatorname{\acute{e}t}}(A^{\flat}\left[rac{1}{arpi^{\flat}}
ight],G^{\flat}).$$

Theorem (Česnavičius-Scholze'19)

Let ${\mathcal F}$ be a constant torsion étale sheaf over U. Then there is a natural equivalence

$$R\Gamma_{\text{\'et}}(U,\mathcal{F}) \stackrel{\sim}{\longrightarrow} R\Gamma_{\text{\'et}}(U^{\flat},\mathcal{F}).$$

Strategy

Use the method from Česnavičius-Scholze'19.

- Reduce to the case of perfectoid rings.
- Prove that there is arc-descent for fét and RΓ_{ét}.
- Using 2. reduce to the case of "special" perfectoid rings.

Table of Contents

- Background
- 2 Arc descent
- 3 Sketch of the proof of the results
- 4 Applications

arc-topology(defn)

Bhatt-Mathew'18

Definition (arc-topology)

A morphism of schemes $X' \to X$ is an *arc-cover* if for every valuation ring V of rank ≤ 1 and a morphism $\operatorname{Spec}(V) \to X$ there exists a valuation V' which is a faithfully flat extension $V \to V'$ such that the following diagram

$$\begin{array}{ccc} \operatorname{Spec}(V') & \longrightarrow & X' \\ & & \downarrow & & \downarrow \\ \operatorname{Spec}(V) & \longrightarrow & X \end{array}$$

is commuatative.

Remark

In the definition we can assume V' is of rank ≤ 1 and $\operatorname{Frac}(V)$ as well as $\operatorname{Frac}(V')$ is algebraically closed.

ϖ -complete arc-topology

A faithfully flat map of valuation rings $V \to V'$ is equivalently a local injective morphism.

Definition (ϖ -complete arc topology)

Let $X = \operatorname{Spec}(A)$ and $X' = \operatorname{Spec}(A')$ and $\varpi \in A$. Then $X' \to X$ is said to be a ϖ -complete arc-cover if for every ϖ -adically complete valuation ring V of rank $\leqslant 1$ and a morphism $\operatorname{Spec}(V) \to X$ there exists a valuation V' which is a faithfully flat extension $V \to V'$ such that the following diagram

is commuatative.

Remark

We can assume that V' is ϖ -adically complete.

Example

Let V be a valuation ring of rank 2 and let $\mathfrak p$ be the prime of height 1. Then $V \to V_{\mathfrak p} \times V/\mathfrak p$ is an arc-cover but not a v-cover.

- Faithfully flat extensions are arc-covers.
- ullet arc-covers are ϖ -complete arc-covers.
- **3** ϖ -complete arc-cover are ϖ' -complete arc-covers for $\varpi|\varpi'$.

(Hyper)descent I

- Let \mathcal{C} be an ∞ -category with all limits. Let $F : \operatorname{Sch}_R \to \mathcal{C}$ be a contravariant functor, where R is a ring.
- Can assume C = Cat, 2-category of categories.
- τ be a Grothendieck topology on a subcategory of Sch_R.

(Hyper)descent II

Definition

Let $f: X' \to X$ be a morphism in Sch_R . Then F is said to satisfy f-descent if there is an equivalence

$$F(X) \xrightarrow{\sim} \lim(F(X') \Longrightarrow F(X' \times_X X') \Longrightarrow \cdots).$$

Then \mathcal{F} is said to satisfy f-hyperdescent if there is an equivalence

$$F(X) \stackrel{\sim}{\longrightarrow} \lim(F(X_0) \stackrel{\longrightarrow}{\Longrightarrow} F(X_1) \stackrel{\longrightarrow}{\Longrightarrow} \cdots)$$

for any hypercover

$$\cdots \Longrightarrow X_1 \Longrightarrow X_0 = X' \longrightarrow X.$$

(Hyper)descent III

Definition

Let τ be a Grothendieck topology on a subcategory of Sch_R. Then F is said to satisfy τ -(hyper)descent if $\mathcal F$ satisfies f-descent for every τ -(hyper)covering $f: X' \to X$.

Remark

If C = Cat, then the above can be written as

$$F(X) \stackrel{\sim}{\longrightarrow} \lim (F(X') \Longrightarrow F(X' \times_X X') \Longrightarrow F(X' \times_X X' \times_X X')).$$

$$F(X) \stackrel{\sim}{\longrightarrow} \lim(F(X_0) \stackrel{\sim}{\Longrightarrow} F(X_1) \stackrel{\sim}{\Longrightarrow} F(X_2))$$

This is a generalisation of descent for fibered categories.

arc-Hyperdescent I

Theorem (Bhatt-Mathew'18)

Let $Qcqs_R$ be the subcategory of qcqs schemes over R. Then fét satisfies arc (hyper)descent in $Qcqs_R$.

Definition

We consider the ∞ -derived category $\mathscr{D}(\Lambda)^{\geqslant 0}$ of bounded below chain complexes over a ring Λ . Let $\mathcal F$ be a sheaf of Λ -modules over Sch_R for the étale topology. Then there is a functor $R\Gamma_{\operatorname{\acute{e}t}}(-,\mathcal F):\operatorname{Sch}_R\to\mathscr{D}(\Gamma)^{\geqslant 0}$ given by $X\mapsto R\Gamma_{\operatorname{\acute{e}t}}(X,\mathcal F)$.

Theorem (Bhatt-Mathew'18)

Let $\mathcal F$ be a torsion étale sheaf on R. There is arc (hyper)descent for $R\Gamma_{\mathrm{\acute{e}t}}(-,\mathcal F)$ in Qcqs_R .

Let A be a ϖ -adically henselian ring(for example A is ϖ -adically complete for $\varpi \in A$). Let ϖ -Henselian be the category of ϖ -adically henselian rings over A.

arc-Hyperdescent II

Theorem

There is ϖ *-complete arc-descent for* fét *in* ϖ *-Henselian.*

Theorem (Česnavičius-Scholze'19)

Let $\mathcal F$ be a torsion sheaf over Sch_R . There is ϖ -complete arc-hyperdescent for $R\Gamma_{\operatorname{\acute{e}t}}(-,\mathcal F)$ in ϖ -Henselian

Table of Contents

- Background
- 2 Arc descent
- 3 Sketch of the proof of the results
- 4 Applications

Strategy

Use the method from Česnavičius-Scholze'19.

- Reduce to the case when either $U = \operatorname{Spec}(A), U^{\flat} = \operatorname{Spec}(A)$ or $U = \operatorname{Spec}(A), U^{\flat} = \operatorname{Spec}(A^{\flat}).$
- Prove that there is arc-descent for fét and $R\Gamma_{\text{\'et}}$.
- Using 2. reduce to the case of "special" perfectoid rings.

Reduce to the case of perfectoid rings

- Can use Zariski coverings of U and U^{\flat} and reduce to quasi-compact opens.
- Reduce to the case when $U = \operatorname{Spec}(A\left[\frac{1}{\varpi}\right]) \cup \operatorname{Spec}(A\left[\frac{1}{f}\right])$ and $U^{\flat} = \operatorname{Spec}(A^{\flat}\left[\frac{1}{\varpi^{\flat}}\right]) \cup \operatorname{Spec}(A^{\flat}\left[\frac{1}{f^{\flat}}\right])$ and then use Beauville–Laszlo gluing.
- Reduce to proving for the case $(U = \operatorname{Spec}(A), U^{\flat} = \operatorname{Spec}(A^{\flat}))$ and $(U = \operatorname{Spec}(A\left[\frac{1}{\varpi}\right]), U^{\flat} = \operatorname{Spec}(A^{\flat}\left[\frac{1}{\varpi^{\flat}}\right])).$

Reduction to special perfectoid rings I

Let A be a perfectoid ring which is ϖ -adically complete $\varpi \in A$ such that $\varpi^p|p$. We need to show that there is a natural equivalence

$$f\acute{e}t/A \longrightarrow f\acute{e}t/A^{\flat},$$

$$\operatorname{f\'et}/A\left[rac{1}{arpi}
ight] \longrightarrow \operatorname{f\'et}/A^{\flat}\left[rac{1}{arpi^{\flat}}
ight].$$

Proposition (CS)

For any ring A with $\varpi \in A$ there is a ϖ -complete arc-hypercover

$$A \longrightarrow A_0 \Longrightarrow A_1 \Longrightarrow \cdots$$

such that $A_r = \prod_{s \in I_r} V_s$, where V_s are ϖ -adically complete valuation rings of rank ≤ 1 with algebraically closed fraction fields.

Reduction to special perfectoid rings II

Proposition (CS)

For any perfectoid ring $A \varpi \in A$ -adically complete with $\varpi^p|p$ the following is a ϖ -complete arc-hypercover

$$A \longrightarrow A_0 \Longrightarrow A_1 \Longrightarrow \cdots$$

iff the following is a ϖ^{\flat} -complete arc hypercover

$$A^{\flat} \longrightarrow A_0^{\flat} \Longrightarrow A_1^{\flat} \Longrightarrow \cdots$$

$$\operatorname{f\'et}/A^{\flat} \longrightarrow \operatorname{f\'et}/A^{\flat}_0 \Longrightarrow \operatorname{f\'et}/A^{\flat}_1 \Longrightarrow \operatorname{f\'et}/A^{\flat}_2$$

Reduction to special perfectoid rings III

$$\operatorname{f\acute{e}t}/A\left[\tfrac{1}{\varpi}\right] \longrightarrow \operatorname{f\acute{e}t}/A_0\left[\tfrac{1}{\varpi}\right] \Longrightarrow \operatorname{f\acute{e}t}/A_1\left[\tfrac{1}{\varpi}\right] \Longrightarrow \operatorname{f\acute{e}t}/A_2\left[\tfrac{1}{\varpi}\right]$$

$$\operatorname{f\acute{e}t}/A^{\flat}\left[\tfrac{1}{\varpi}\right] \longrightarrow \operatorname{f\acute{e}t}/A^{\flat}_{0}\left[\tfrac{1}{\varpi}\right] \Longrightarrow \operatorname{f\acute{e}t}/A^{\flat}_{1}\left[\tfrac{1}{\varpi}\right] \Longrightarrow \operatorname{f\acute{e}t}/A^{\flat}_{2}\left[\tfrac{1}{\varpi}\right]$$

Let $V' = \prod_{i \in I} V_i$ be ϖ -adically complete valuation rings of rank ≤ 1 with algebraically closed fraction fields.

$$f\acute{e}t/V' \longrightarrow f\acute{e}t/V'^{\flat},$$

$$\operatorname{f\'et}/V'\left[rac{1}{arpi}
ight] \longrightarrow \operatorname{f\'et}/V'^{lat}\left[rac{1}{arpi^{lat}}
ight].$$

Reduction to special perfectoid rings IV

Remark

V ϖ -adically complete valuation rings of rank $\leqslant 1$ with algebraically closed fraction fields

- perfectoid
- strict henselian

Consequently $V' = \prod_{i \in I} V_i$

- (CS) perfectoid,
- every étale cover has a section,
- every finite étale cover is a finite disjoint union of an open closed subscheme

Thus finite étale schemes corresponds to idempotents. Thus it reduces to checking

$$\operatorname{Idem}(V') \longrightarrow \operatorname{Idem}(V'^{\flat}),$$

$$\operatorname{Idem}(V'\left[\frac{1}{\varpi}\right]) \longrightarrow \operatorname{Idem}(V'^{\flat}\left[\frac{1}{\varpi^{\flat}}\right]).$$

Reduction to special perfectoid rings V

This can be done because of the isomorphisms

$$V'^{\flat} \cong \lim_{x \mapsto x^p} V',$$

$$V'^{\flat}\left[\frac{1}{\varpi}\right] \cong \lim_{x \mapsto x^{\rho}} V'\left[\frac{1}{\varpi^{\flat}}\right].$$

Table of Contents

- Background
- Arc descent
- 3 Sketch of the proof of the results
- 4 Applications

Applications I

Corollary

Given A be a perfectoid ring which is ϖ -adically complete, where $\varpi \in A$ is such that $\varpi^p|p$, there is an equivalence

$$f\acute{\rm et}/A\left[\frac{1}{\varpi}\right] \stackrel{\sim}{\longrightarrow} f\acute{\rm et}/A^{\flat}\left[\frac{1}{\varpi^{\flat}}\right]. \tag{4.1}$$

In particular, for any Perfectoid Banach K-algebra R(à la Scholze) or \mathbb{Q}_p -algebra (à la Kedlaya-Liu) with an element $\varpi \in R^\circ$ such that there exists $\varpi^\flat \in R^{\circ \flat}$ such that $(\varpi^{\flat \sharp}) = (\varpi)$

$$\operatorname{f\'et}/R^{\circ}\left[rac{1}{\varpi}\right] \longrightarrow \operatorname{f\'et}/R^{\circ \flat}\left[rac{1}{\varpi^{\flat}}\right].$$

Applications II

Corollary

Given a perfectoid ring A which is ϖ -adically complete where $\varpi \in A$ is such that $\varpi^p \mid p$, and commutative group schemes $G \in \text{f\'et}/A\left[\frac{1}{\varpi}\right]$ and $G^\flat \in \text{f\'et}/A^\flat\left[\frac{1}{\varpi^\flat}\right]$ that are identified under the isomorphism of 4.1, there is an equivalence

$$R\Gamma_{\mathrm{\acute{e}t}}(A\left[rac{1}{arpi}
ight],G)\stackrel{\sim}{\longrightarrow} R\Gamma_{\mathrm{\acute{e}t}}(A^{\flat}\left[rac{1}{arpi^{\flat}}
ight],G^{\flat}).$$

Corollary (Česnavičius'19)

For a perfectoid ring A and a commutative, finite, étale $A[\frac{1}{p}]$ -group scheme G of p-power order, $H^i_{\text{\'et}}(A[\frac{1}{p}],G)=0$ for all $i\geqslant 2$

Applications III

Proof.

We have an isomorphism

$$R\Gamma_{\mathrm{\acute{e}t}}(A[rac{1}{p}],G) \stackrel{\sim}{\longrightarrow} R\Gamma_{\mathrm{\acute{e}t}}(A^{\flat}\left[rac{1}{arpi^{\flat}}
ight],G^{\flat}).$$

Then the argument follows from SGA4 which implies in this case that for all $i \ge 2$ we have $H^i_{\text{ét}}(A^{\flat} \begin{bmatrix} \frac{1}{-\flat} \end{bmatrix}, G^{\flat}) = 0$.

Remark

The original proof rests on a non-noetherian version of a comparison result Huber for étale cohomology of a noetherian henselian adic ring with the étale cohomology of its associated affinoid space. Therefore the proof above can be seen as a simplification.

Thank you for your attention!