例 4. 按照下面状态图设计电路

1) 确定状态及状态表

状态数

确定

FF 个数

n FFs $\rightarrow 2^n$ 状态

 $2^{n-1} \le$ 状态数 $\le 2^n \rightarrow n$ FFs

状态表 (根据状态图)

X/Z

X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	ф	ф	ф
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	ф	ф	ф
1	1	0	1	1	0
1	1	1	0	0	1

2)选择 FF (K-map, 圈 1)

2# FF 选择 JK-FF

$$Q_2^{n+1} = \overline{X}Q_2^n + X\overline{Q_1}^n$$

$$Q_2^{n+1} = J_2 \bar{Q}_2^n + \bar{K}_2 Q_2^n$$

$$Q_{2}^{n+1}$$
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{2}^{n}
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{2}^{n}
 Q_{3}^{n}
 Q_{4}^{n}
 Q_{5}^{n}
 $Q_$

找到 $J_2 = ?$ $K_2 = ?$

不能按上面方法圈,必须圈成 $Q_2^{n+1} = Q_2^{n+1} = Q_2^{n+1}$

$$Q_{2}^{n+1} = X\overline{Q}_{2}^{n} + (\overline{X} + \overline{Q}_{1}^{n})Q_{2}^{n}$$

$$= X\overline{Q}_{2}^{n} + \overline{X}\overline{Q}_{1}^{n}Q_{2}^{n}$$

$$\therefore \begin{cases} J_{2} = X \\ K_{2} = XQ_{1}^{n} \end{cases}$$

- 能找到系数 (控制变量) 时尽量 化简
- 找不到系数时,牺牲化简也要找到系数

1# FF

X	Q_2^n	Q_1^n	$Q_2^{n+1}Q_1^{n+1}Z$
0	0	0	0 0 0
0	0	1	ффф
0	1	0	1 0 0
0	1	1	1 1 0
1	0	0	1 0 0
1	0	1	ффф
1	1	0	1 1 0
1	1	1	0 0 1

JK-FF

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n$$
$$= X Q_2^n \overline{Q}_1^n + \overline{X} Q_1^n$$

$$\therefore \begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

输出 Z

$$Z = XQ_1^n$$

电路

$$\begin{cases} J_2 = X \\ K_2 = XQ_1^n \end{cases}$$

$$\begin{cases} J_1 = XQ_2^n \\ -1 \end{cases}$$

$$K_1 = X$$

3) 讨论: 01 状态

分析卡诺图 K-map

$$XQ_2^nQ_1^n = 001$$
, (Z=0)
Next state $Q_2^{n+1}Q_1^{n+1} = 01$, $XQ_2^nQ_1^n = 101$ 时, (Z=1)
Next state $Q_2^{n+1}Q_1^{n+1} = 10$,

实现自启动

$Z X_{Q}$	Q_2^n 00	01	11	10
0	0	0	0	0
1	0	0	1	1

要分析输出的物理意义(即电路功能)是否正确

此电路为可控模3加 法计数器

X=0,保持原状态X=1,作加法计数

输出Y=1,为进位输出

显然自启动之后电路功能出现错误

应该将X=1时01状态的输出设为0,次态为00

在设计电路时

X=0,保持原状态 X=1,作加法计数(从0开始)

在填状态表时不能填 ф

状态表

X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	1	1	0
1	1	1	0	0	1

例5. 设计一个自动贩售饮料机的逻辑电路。它的投币口每次 只能投入一枚五角或一元的硬币。投入一元五角钱硬币后,机 器会自动给出一杯饮料;投入两元(两个一元)硬币后,在给 出饮料的同时找回一枚五角硬币

解:

输入: {投入 ¥ 1.0, A=1 投入 ¥ 0.5, B=1 Y=1Z=1

状态:

S₀:初始(未投币)

3个 状态 S₁:投入¥0.5

S₂: 投入¥1.0 (一个¥1.0 或两个¥0.5)

再投入 Ψ 0.5, 返回 S_0 , 输出 Y=1, Z=0

再投入¥ 1.0, 返回 S_0 , 输出 Y=1, Z=1

(找回¥0.5)

AB/YZ

A: ¥ 1.0

B: Y=0.5

Y: 饮料

Z: 找钱

S₀:初始

 $S_1 : \Psi 0.5$

 $S_2 : Y = 1.0$

S₀: 投入¥0.5, S₁

S₀: 投入¥ 1.0, S₂

S₁: 投入¥ 0.5, S₂

S₁: 投入¥ 1.0, S₀

S₂: 投入¥ 0.5, S₀ 饮料

S₂: 投入¥ 1.0, S₀ 饮料 和 找钱

状态表

Q_1^{n+}	$^{1}Q_{0}^{\prime}$	<i>i</i> +1	YZ
0	0	0	0
0	1	0	0
1	0	0	0
Φ	Φ	Φ	Φ
0	1	0	0
1	0	0	0
0	0	1	0
Φ	Φ	Φ	Φ
1	0	0	0
0	0	1	0
0	0	1	1
Φ	Φ	Φ	Φ
Φ	Φ	Φ	Φ
Φ	Φ	Φ	Φ
Φ	Φ	Φ	Φ
	 Q₁ 0 0 1 Φ Φ Φ Φ Φ Φ 	0 0 0 1 1 0 Ф Ф 0 1 1 0 0 0 Ф Ф 1 0 0 0 0 0 Ф Ф Ф Ф	Q1 Q0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 Φ Φ Φ 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< th=""></td<>

$$Q_1^{n+1} = BQ_0 + A\overline{Q}_1\overline{Q}_0 + \overline{A} \cdot \overline{B}Q_1$$

$$Y = AQ_0 + AQ_1 + BQ_1$$

$$Q_0^{n+1} = B\overline{Q}_1 \cdot \overline{Q}_0 + \overline{A} \cdot \overline{B}Q_0$$

$$Z = AQ_1$$

用 D-FF

$$D_{1} = BQ_{0} + A\overline{Q}_{1}\overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{1}$$

$$D_{0} = B\overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{0}$$

$$Y = AQ_0 + AQ_1 + BQ_1$$
$$Z = AQ_1$$

由电路得到状态图

在电路处于"11" 状态时,

若 AB = 00 (无输入), $Q_1Q_0 = 11$, 电路不能自启动;

若*AB* = 01 或 10, 电路可以自启动, 但是找钱系统出错;

A: ¥ 1.0

B: Y=0.5

Y: 饮料

Z: 找钱

所以,电路初始工作时,应首先将 \overline{R}_{D}

设置为低电平,电路状态从 "00" 开始。

电路状态图应设计成

状态表

$A B Q_1^n Q_0^n$	Q_1^n	^{+1}Q	0 0	YZ
0 0 0 0	0	0	0	0
0 0 0 1	0	1	0	0
0 0 1 0	1	0	0	0
0 0 1 1	1	1	0	0
0 1 0 0	0	1	0	0
0 1 0 1	1	0	0	0
0 1 1 0	0	0	1	0
0 1 1 1	0	1	0	0
1 0 0 0	1	0	0	0
1 0 0 1	0	0	1	0
1 0 1 0	0	0	1	1
1 0 1 1	1	0	0	0
1 1 0 0	Φ	Φ	Φ	Φ
1 1 0 1	Φ	Φ	Φ	Φ
1 1 1 0	Φ	Φ	Φ	Φ
1 1 1 1	Φ	Φ	Φ	Φ

§6.4 计数器 Counter

• 计数器的功能

记录*CLK* 个数的电路,可以用来计数、分频,此外还可以对系统定时、顺序控制等操作。

· 计数器的分类

按时钟控制方式分类: 异步, 同步

按计数功能分类:加法计数,减法计数,可逆计数

按数制分类: 二进制计数器, 非二进制计数器(任意

进制计数器)

例:时序电路如图所示,已知CLK脉冲波形,画出

$Q_0 \sim Q_2$ 的波形

功能:计数、分频、定时

§ 6.4.1 集成计数器 74161

74161: 二进制同步模16加法计数器, 异步清0功能

符号

IEEE

数据输入 $D_3 D_2 D_1 D_0$

异步清零 *CLR*

控制端 $ENT(ET, CT_T)$ $ENP(EP, CT_p)$

预置端 \overline{LOAD} (\overline{LD})

进位输出 RCO(CO)

74161 功能表

\overline{CLR}	\overline{LD}	ENT	ENF	P CLK	$ D_0 D_1 D_2 D_3 $	功能
0	X	X	X	X	XXXX	Direct set 0
1	0	X	X	1	$D_0D_1D_2D_3$	Load 预置
		0 X			X X X X X X X X	保持 RCO=0 保持
1	1	1	1	1	XXXX	M-16 计数

$$RCO = ENT \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0$$

计数时, *ENT* = 1:

当
$$Q_3Q_2Q_1Q_0 = 11111$$
时, $RCO = 1$
其他时刻, $RCO = 0$

$$Q_3Q_2Q_1Q_0 = 0000$$

 $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0$

74161 IEEE 符号

例1: 用 74161 实现模11加法计数器

方法1: 预置归0法 (\overline{LD})

$$ENT = ENP = 1$$
, $\overline{CLR} = 1$, $D_3D_2D_1D_0 = 0000$

最大状态 1010 最大状态中1端连入一个与非门

输出 $\rightarrow L\overline{D}$

$$0 \rightarrow 9$$
,与非门 = 1 (\overline{LD} =1),计数

 10^{th} *CLK* 到来, $Q_3Q_2Q_1Q_0=1010$, $\overline{LD}=0$

 11^{th} *CLK* 到来, $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0 = 0000$

方法 2: 预置补数法

0000~1111 16 个状态

0000~1010 11 **个状态** 5 (0101) ~ 15 (1111) 11 个状态

状态图

方法 3: 反馈归 0 法 (CLR)

$$ENT = ENP = \overline{LD} = 1$$
 $D_3D_2D_1D_0 = \Phi \Phi \Phi \Phi$
 $Q_3Q_2Q_1Q_0 = 1011$
与其门 $\rightarrow C\overline{LR}$

状态图

方法1较优,用 \overline{LD} 端归0