Gratis Onderwerp:
 Datum:
Week 2
2) Trigram probability = P (wn wn-zwn-1) = ((wnwn-1 wn-2)
C(wn-2wn-1)
P(Sam) I am) = 0.5
3) P(cs) i want chinese food (157) =
P(il(s)) P(wontli) P(chinese wont) P(food chinese) P(s) food
$= 0.25 \times 0.33 \times 0.0065 \times 0.52 \times 0.68 = 1,896 \times 10^{-4}$
Gaccording to Figure 3.2
$= 0.19 \times 0.21 \times 0.0029 \times 0.052 \times 0.000 = 2,406 \times 10^{-6}$
4 according to Figure 3.7
1) From Equation 3.17 from the book:
PP(w) = P(w, w2 wn) - 1/N
For training set, unigram perplexity is:
PP(w) = [(91)31 (100) 9] -1/100 = 1,64919
For test set, unigram perplexity is:
$PP(w) = \left[\left(\frac{9}{10} \right)^{9} \left(\frac{1}{10} \right)^{1} \right]^{-1/10} = 1,38415$
going to be lower compared to calculation followed
the test set is a going to be lower compared to calculation followed by Equation 3.17 since mostly, the next number will be zero.

Onderwerp: ______

Week	- 4:				
3)		Trans	Hion p	robabilis	ty table
	DET	NOUN	PRON	VERB	END
start	0.1	0.4	0,1	0.2	
DET	- 1	0.4		0.00001	0.01
PRON	- 1	0.01		0.5	0.33
VERB	0.01	-	0.1		0.33
NouN	0.001		0.001	-	0.33

Emission probability toble hem | slapen 2í5 209 PRON 0.75 0.99 VERB 0.05 0.99 0.8 0.01 0.01 0,2 0,2 NOUN

collegeblok Underwerp: Datum: Week 5 root subj det det 1) 5 black cat follows a The mouse Tamod 057 root det det noir chat suit une souris anod 065 2) When we assume above is golden: UAS = 9-2 LAS= 7-2 When we assume below is golden: $LAS = \frac{5-2}{8}$ $UAS = \frac{8-3}{8} = \frac{5}{8}$ Since UAS = nodes with correct parent and total nodes LAS = nodes with correct parent and edge label total nodes

C occurs between B and D in linear order without being dominated by B. (see week 5 slides, page 16 - projectivity).

3. There is no need to continue with CLE algorithm since above graph is already a valid dependency tree.