

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 5-Minimizarea și sinteza funcțiilor logice

Algebra booleană și logica digitală

- □ Hărți Karnaugh
- Quine McCluskey
- Maparea în tehnologie a funcțiilor logice folosind:
 - ŞI-NU
 - SAU_NU
 - XOR
 - PLA

Diagramele Karnaugh

- constituie o matrice de pătrate cu proprietatea ca două celule vecine corespund unor mintermi adiacenţi.
- doi vectori sunt adiacenţi dacă diferă valoric printr-un singur bit
- în diagramă se marchează acei mintermi care au valoarea logică 1 în tabelul de adevăr

Construcție diagrame Karnaugh

Diagrame Karnaugh pentru funcții logice cu 3 variabile a, b, c

Construcție diagrame Karnaugh

construcţia diagramelor Karnaugh pentru o funcţie logică cu 4 variabile de intrare

d

Minimizarea folosind diagrame Karnaugh

- □ Dacă la o astfel de grupare nu mai pot fi adăugaţi mintermi înseamnă că s-a obţinut un implicant prim.
- Dacă un anumit implicant prim conţine cel puţin un minterm care nu poate apare în alt implicanţi primi atunci acesta este un implicant prim esenţial
- Ecuaţia minimizată va conţine toţi implicanţii primi esenţiali, si uneori si implicanţi primi neesenţiali, astfel încât toate celule marcate cu 1 logic să fie acoperite

Diagrame Karnaugh

<i>x</i> ₁	x_0	y_1	<i>y</i> ₀	Greater Than	Equal	Less Than
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Truth Table

10

Less-than Function

Trum Table

Slides by Philip Pham, University of California, Irvine

Diagrame Karnaugh – don't care

- Nu toate funcţiile logice sunt definite complet.
- Pentru unele valori ale variabile de intrare funcţia este nu specificată (funcţia are "valoarea" don't care - d)
- Pt."d" în diagrama Karnaugh se va lua în considerare valoarea care ne convine pentru d (0 sau 1) a.î. să permită o acoperire mai largă a minternilor.

a	b	c	p	q
0	0	0	0	1
0	0	1	1	0
0	1	0	1	d
0	1	1	d	1
1	0	0	0	d
1	0	1	0	0
1	1	0	d	0
1	1	1	1	1
	Tab	elul	5.3	

Funcțiile p și q pot fi scrise și altfel:

$$p = f(a,b,c) = \sum (1;2;7) + \sum d(3;6)$$
$$q = f(a,b,c) = \sum (0;3;7) + \sum d(2;4)$$

$$p = b + \overline{a}c$$
$$q = \overline{b}\overline{c} + bc$$

Metoda Karnaugh

- □ Avantaje:
 - metodă relativ simplă ce se pretează în cazul în care avem puţine variabile logice
 - metodă vizuală greu de automatizat → greu de dificil de inclus în software specializate de sinteză
- Dezavantaje:
 - când numărul variabilelor de intrare este mai mare de cinci, metoda este foarte greoaie

Minimizare: metoda Quine McCluskey

- este o metodă tabelară;
- mai laborioasă pentru un număr mic de variabile de intrare;
- elimină în bună măsură dezavantajele metodei Karnaugh:
 - Poate fi inclusă în programe specializate de sinteză;
 - Permite o abordare sistematică pentru funcții cu mai multe variabile de intrare;

Metoda Quine McCluskey

Studiu de caz

Să se minimizeze următoarea funcţie logică prin metoda Quine-McCluskey:

$$f1(a,b,c,d) = \sum (1,3,4,5,6,9,11,12,13)$$

- mintermi sunt grupaţi într-un tabel funcţie de numărul de variabile nenegate conţinute.
- aranjarea se va face în ordine crescatoare.
- o funcție cu patru variabile de intrare poate avea cinci grupe de minterm:
- □ grupa 0: numai minterm-ul 0,
- □ grupa 1 : mintermi 1, 2, 4 și 8,
- □ grupa 2 : mintermi 3, 5, 6, 9, 10, 12,
- □ grupa 3 va conţine mintermi 7, 11, 13 şi 14,
- ☐ grupa 4 va conţine minterm-ul 15.

Quine McCluskey

$$f1(a,b,c,d) = \sum (1,3,4,5,6,9,11,12,13)$$

Pasul 1:

- În tabel se trec doar minterm-ii a căror valoare în tabelul de adevăr este 1
- Ex. considerat: 1, 3, 4, 5, 6, 9, 11, 12, 13
- □ grupa 0: numai minterm-ul 0,
- □ grupa 1 : mintermi 1, 2, 4 şi 8,
- □ grupa 2 : mintermi 3, 5, 6, 9, 10, 12,
- □ grupa 3 va conţine mintermi 7, 11, 13 şi 14,
- ☐ grupa 4 va conţine minterm-ul 15.

Quine McCluskey

 $f1(a,b,c,d) = \sum (1,3,4,5,6,9,11,12,13)$

Pasul 1:

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	
1	4	0	1	0	0	
	3	0	0	1	1	
	5	0	1	0	1	
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
	13	1	1	0	1	

- ☐ fiecare minterm din grupă i se se compară cu fiecare minterm din grupa i+1
- Se verifică condiţia de adiacenţă (să difere doar printr-o singură variabilă logică)
- Dacă doi mintermi verifică condiţia de adiacenţă atunci:
 - se înlocuieşte variabila care diferă cu o liniuţă
 - grupul de doi mintermi va fi trecut în grupa i.
 - în tabelul precedent se bifează toţi mintermii care au fost grupaţi. Această observaţie este importantă în vederea ultimului pas.

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	
1	4	0	1	0	0	
	3	0	0	1	1	
	5	0	1	0	1	
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	••
	5	0	1	0	1	
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
2	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
	1,3	0	0	-	1	
	1,5	0	-	0	1	
1	1,9	-	0	0	1	
1	4,5	0	1	0	-	
	4,6	0	1	-	0	
	4,12	-	1	0	0	
	3,11	-	0	1	1	
	5,13	-	1	0	1	
2	9,11	1	0	-	1	
	9,13	1	-	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
	1,3	0	0	-	1	
	1,5	0	-	0	1	
1	1,9	-	0	0	1	
1	4,5	0	1	0	•	
	4,6	0	1	•	0	
	4,12	-	1	0	0	
	3,11	-	0	1	1	
	5,13	-	1	0	1	
2	9,11	1	0	-	1	
	9,13	1	-	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	0 0
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
	1,3	0	0	-	1	
	1,5	0	ı	0	1	
1	1,9	-	0	0	1	
1	4,5	0	1	0	1	
	4,6	0	1	ı	0	
	4,12	ı	1	0	0	
	3,11	ı	0	1	1	
	5,13	1	1	0	1	
2	9,11	1	0	-	1	
	9,13	1	•	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	•••
	12	1	1	0	0	
2	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	••
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	000
1	4	0	1	0	0	• •
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	• •
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
	1,3	0	0	-	1	
	1,5	0	ı	0	1	
1	1,9	-	0	0	1	
1	4,5	0	1	0	-	
	4,6	0	1	-	0	
	4,12	•	1	0	0	
	3,11	ı	0	1	1	
	5,13	-	1	0	1	
2	9,11	1	0	ı	1	
	9,13	1	-	0	1	
	12,13	1	1	0	•	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	• •
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	0 0
	12	1	1	0	0	
2	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
	1,3	0	0	•	1	
	1,5	0	ı	0	1	
1	1,9	ı	0	0	1	
1	4,5	0	1	0	-	
	4,6	0	1	-	0	
	4,12	ı	1	0	0	
	3,11	1	0	1	1	
	5,13	1	1	0	1	
2	9,11	1	0	ı	1	
	9,13	1	•	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	• •
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	0 0
	12	1	1	0	0	
2	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	• •
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	0 0
	12	1	1	0	0	0 0
2	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
	1,3	0	0	-	1	
	1,5	0	ı	0	1	
1	1,9	ı	0	0	1	
1	4,5	0	1	0	•	
	4,6	0	1	ı	0	
	4,12	١	1	0	0	
	3,11	ı	0	1	1	
	5,13	1	1	0	1	
2	9,11	1	0	ı	1	
	9,13	1	-	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	• •
	3	0	0	1	1	••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	• •
	12	1	1	0	0	00
3	11)	1	0	1	1	• •
3	13	1	1	0	1	

Grupa	i]	Mintermi	a	b	С	d	Bifare
		1,3	0	0	ı	1	
		1,5	0	ı	0	1	
1		1,9	ı	0	0	1	
1		4,5	0	1	0	ı	
		4,6	0	1	ı	0	
		4,12	ı	1	0	0	
		3,11	1	0	1	1	
		5,13	1	1	0	1	
2		9,11	1	0	ı	1	
		9,13	1	-	0	1	
		12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	• •
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	••
	12	1	1	0	0	••
	11)	1	0	1	1	••
3	13	1	1	0	1	• •

Pasul 2 se repetă recursiv până NU se mai pot forma grupări pe baza adicenţei!

Quine McCluskey

Important:

Toţi termenii nebifaţi din tabelele construite până acum sunt implicanţi primi!

□ nou tabel:

- prima coloană: grupările obţinute care sunt implicanţii primi
- Celelalte coloane toți mintermii conținuți de implicanții primi
- în dreptul fiecărui implicant prim se bifează minterm-ii care îi conţine

Implicanți					Mi	nter	mi			
primi	acoperiți	1	3	4	5	6	9	11	12	13
ābd	4,6			X		X				

- □ Dacă un minterm este conţinut de un singur implicant prim→ implicant prim esenţial;
- Expresia minimizată a funcției conține:
 - implicanții primi esențiali,
 - implicanţi primi selectaţi astfel încât acoperirea de mintermi cu fiecare implicant adăugat să fie maximă.

Grupă	Mintermi	a	b	c	d	Bifare
	1,3	0	0	ı	1	X
	1,5	0	ı	0	1	X
1	1,9	•	0	0	1	X
1	4,5	0	1	0	ı	X
	4,6	0	1	ı	0	
	4,12	-	1	0	0	X
	3,11	•	0	1	1	X
	5,13	•	1	0	1	X
2	9,11	1	0	ı	1	X
	9,13	1	-	0	1	X
	12,13	1	1	0	-	X

Grupă	Mintermi	a	b	c	d	Bifare
	1,3,9,11	-	0	-	1	
1	1,5,9,13	-	-	0	1	
	4,5,12,13	-	1	0	-	

$$f1(a,b,c,d) = \overline{a}b\overline{d} + \overline{b}d + b\overline{c}$$

Implicanți	Mintermi		Mintermi							
primi	acoperiți	1	3	4	5	6	9	11	12	13
_abd	4,6			X		X				
<u></u> bd ⋅	1,3,9,11	X	X				X	X		
-cd	1,5,9,13	X	1		X		X			X
<i>b</i> c̄	4,5,12,13			X	X				X	X

Implicant prim esențial (singur pe coloană)

Quine McCluskey Funcții incomplet specificate

- se vor parcurge primii doi paşi ca şi în cazul funcţiilor complet specificate cu următoarea precizare:
 - mintermii care au valori nespecificate (valoarea d) în tabelul de adevăr vor fi trecuţi în tabele ca şi cei cu valoarea 1, putând fi grupaţi pe baza adiacenţei.
 - Pentru evidenţierea mintermilor cu valoarea d, aceştia vor fi marcaţi cu o "*" în tabel.

Quine McCluskey Funcții incomplet specificate

☐ Pasul 3:

tabelul de conţine în coloanele mintermilor doar acei mintermi care au valoarea 1, nu şi minterm-ii care au valoare nespecificată (d).

Quine McCluskey Funcții incomplet specificate

□ Ex.:

$$f2(a,b,c,d) = \sum (1,5,7,9,13,15) + \sum d(8,10,11,14)$$

Pasul 2:

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	Χ
1	8*	1	0	0	0	Х
	5	0	1	0	1	X
2	9	1	0	0	1	X
	10*	1	0	1	0	X
	7	0	1	1	1	X
2	11*	1	0	1	1	X
3	13	1	1	0	1	X
	14*	1	1	1	0	X
4	15	1	1	1	1	X

Grupă	Mintermi	a	b	c	d	Bifare
	1,5	0	-	0	1	X
1	1,9	-	0	0	1	X
1	8*,9	1	0	0	-	X
	8*,10*	1	0	-	0	X
	5,7	0	1	-	1	X
	5,13	-	1	0	1	X
2	9, 11*	1	0	-	1	X
	9,13	1	ı	0	1	X
	10*,11*	1	0	1	-	X
	10*,14*	1	ı	1	0	X
	7,15	-	1	1	1	X
3	11*,15	1	-	1	1	X
	13,15	1	1	-	1	X
	14*,15	1	1	1	-	X

Pasul 2:

Grupă	Mintermi	a	b	С	d	Bifare
	1,5	0	-	0	1	X
1	1,9	-	0	0	1	X
1	8*,9	1	0	0	-	X
	8*,10*	1	0	ı	0	X
	5,7	0	1	ı	1	X
	5,13	•	1	0	1	X
2	9, 11*	1	0	1	1	X
2	9,13	1	ı	0	1	X
	10*,11	1	0	1	ı	X
	10*,14*	1	-	1	0	X
	7,15	-	1	1	1	X
2	11*,15	1	1	1	1	X
3	13,15	1	1	-	1	X
	14*,15	1	1	1	-	X

Grupă	Mintermi	a	b	c	d	Bif
1	1,5,9,13	ı	•	0	1	
1	8*,9,10*,11*	1	0	ı	ı	
2	5,7,13,15	•	1	-	1	
	9,11*,13,15	1	ı	•	1	
	10*,11*,14*,15	1	ı	1	ı	

Pasul 3:

Implicanți	Mintermi	Mintermi							
primi	acoperiți	1	5	7	9	13	15		
- cd	1,5,9,13	X	X		X	X			
аБ	8*,9,10*,11*				X				
bd	5,7,13,15		X	X		X	X		
ad	9,11*,13,15	-			X	X	X		
ac	10*,11*,14*,15						X		

$$f2(a,b,c,d) = \overline{c}d + bd$$

Maparea funcțiilor logice în tehnologie folosind diferite porți

- Maparea funcțiilor logice într-o anumită tehnologie → transformarea expresiilor booleene într-o schemă logică care conține numai porțile logice parte din biblioteca de porți a tehnologiei respective
- Pentru tehnologia bazată pe array-uri de porți:
 - Pas 1- conversie înlocuirea porților din ecuația logică a funcției implemente cu porți din gate array
 - Pas 2 optimizare eliminarea porțiilor invertoare
 - Pas 3 decompoziție înlocuirea porților cu n-intări cu porți cu m-intrări disponibile în gate array

Conversie și optimizare

Decompoziție: descompunerea unei porți ȘI cu 10 intrări folosind porți ȘI cu 3 intrări

Translatarea SOP și POS în ȘI-NU (NAND) și SAU-NU (NOR)

Implementarea funcției folosind o bibliotecă de porți custom

- Biblioteca: conține porți cu întârzieri și cost (nr.de tranzistori) diferit
- Maparea folosind o bibliotecă custom pp. "rescrierea" schemei folosind biblioteca respectivă de porți
- ☐ Se urmărește:
 - Minimizarea delay-ului pe căile critice
 - Minimizarea costului pentru celelalte

Procedura de conversie pentru o bibliotecă custom de porți

Exemplu:

Sinteza funcţiilor combinaţionale porţi SAU – EXCLUSIV

SAU-EXCLUSIV este comutativă, asociativă și distributivă față de operația **ŞI**.

$$A \oplus B = B \oplus A$$

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C$$

$$A \cdot (B \oplus C) = A \cdot B \oplus A \cdot C$$

comutativitate

asociativitatea

distributivitate fata de ŞI

$$A \oplus A = 0$$

$$A \oplus 0 = A$$

$$A \oplus 1 = \overline{A}$$

$$A \oplus \overline{A} = 1$$

Există anumite funcţii combinaţionale care nu se pot minimiza, în a căror reprezentare pe diagrama V-K unu-rile şi zero-urile sunt plasate "în tablă de şah" şi care pot fi realizate cu porţi logice SAU – EXCLUSIV.

Sinteza funcţiilor combinaţionale porţi SAU – EXCLUSIV

Exemplu: să se realizeze cu porți logice **SAU- EXCLUSIV** sinteza funcției:

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

