

Test

Předmět	Matematický proseminář (verze 2019) Zima 2019 – Prezenční forma Matematický proseminář (verze 2019) Zima 2019 – Kombinovaná forma	Maximum za test: 100 bodů
Název testu	Závěrečný test	Celkem za test:
Jméno a příjmení		
Datum		Opravil(a):
Počet příloh		

Zadání - varianta 5

1. příklad

Množiny M, N, P znázorněte na číselné ose a určete $M \cup P$ a $N \cap M$.

1.
$$M = (-3; 6), N = \langle -5; 3 \rangle, P = (2; 8)$$

2.
$$M = \{x \in \mathbb{R} : -5 \le x < -2\}, N = \{x \in \mathbb{R} : |x| \le 2\}, P = \mathbb{R}^+$$

2. příklad

Vypočtěte:

$$2. |-6 - (-2)| - |-1 - 5| =$$

3. 20% ze 8 je

$$4.(-2^2+2)^2=$$

$$5. \ \frac{2}{5} + \frac{1}{4} - \frac{9}{60} =$$

Řešte rovnice (nezapomeňte na zkoušku):

1.
$$3(x-2) + 5 = 17$$

2.
$$\frac{x+1}{4} - \frac{x-6}{6} = 1$$

3.
$$|x-3|=5$$

$$4.\ 2x^2 - 4x = 6$$

5.
$$5 - \sqrt{x+1} = x$$

Řešte soustavu rovnic (nezapomeňte na zkoušku a správný zápis výsledku):

$$2x - 3y = -16$$

$$3x - 2y = -14$$

5. příklad

Řešte nerovnice:

1.
$$2 + 3x \ge 7x - 2$$

$$2. \ 5x^2 - 15 > 0$$

$$3. \ x^2 - 3x - 4 \le 0$$

Pro následující výrazy určete podmínky, je-li to nutné, a výrazy zjednodušte.

1.
$$(4a^4b^{-5}c^{-3}) \cdot (3a^{-4}b^2c^4) =$$

$$2. \frac{3rs + 9s - 2r - 6}{3rs - 2r - 9s + 6} =$$

3.
$$\left(\frac{1}{c} + \frac{1}{d}\right) : \left(\frac{1}{c} - \frac{1}{d}\right) =$$

7. příklad

Doplňte věty:

1.	Součet	velikostí	vnitřních	úhlů	trojúheln	íku je	stupňů.

2. Pro každý trojúhelník platí, že jeho těžiště leží na průsečíku ______

4. Délka kružnice o poloměru r se vypočte ze vztahu ______ .

5. Určete počet všech průsečíků n navzájem různých přímek (tj. žádné dvě nejsou rovnoběžky).

6. Kolik os souměrnosti má kosočtverec? _____

7. Objem hranolu o hranách a, b, c vypočteme ze vztahu ______.

8. Hranol s podstavou pravidelného osmiúhelníku má 2 podstavy a _____ bočních stěn.

9. Uveďte všechny možnosti pro vzájemnou polohu dvou kružnic v rovině, pro každou možnost uveďte počet společných bodů.

vzua	iaieno	st od (ivou ri	iznobě	zek je/	/Jsou

Pro uvedené funkce určete definiční obor, obor hodnot, význačné body a načrtněte graf. (Význačné body má každá funkce jiné - jedná se například o průsečík(y) s osou x, průsečík s osou y, vrchol, střed, minima, maxima a podobně.)

- 1. $f_1 : y = -3x + 2$
- 2. $f_2: y = \frac{1}{x-4} + 1$
- 3. $f_3: y = x^2 2$
- 4. f_4 : y = |2x + 2|
- 5. $f_5: y = \sin(x + 1)$
- 6. $f_6: y = 2\cos x + 2$
- 7. f_7 : $y = e^X 3$
- 8. $f_8: y = \log_{10}(x+2)$
- 9. $f_9 : y = tgx$
- 10. f_{10} : $y = \cot gx$