

Algorithms and Data Structures

Laboratory work #1

Michael Kosyakov

Associate Professor

Denis Tarakanov

Assistant

Aglaya Iliina

Associate Professor

hduitmo.ads@yandex.ru

Classes plan

- Problem #1296 "Hyperjump"
- 2. Problem #1155 "Troubleduons"
- 3. Task for homework
- 4. Students prepare solution for problem #1296 and pass Timus tests
- 5. Collecting reports for problem #1296

- Link to the problem's description
 https://acm.timus.ru/problem.aspx?space=1&num=1296&localege=en
- The sequence of integers p_i represents field intensities at different moments in time.
- If the alpha-phase begins at moment i and ends at moment j, then the value of gravity potential accumulated will be equal to the sum of sequence elements at places from i-th to j-th inclusive.
- The only line of output contains the largest possible value of the gravity potential that can be accumulated by a hyperspacecraft during the alpha phase.

N	10
p_1	31
p ₂	-41
p_3	59
p_4	26
p ₅	-53
p_6	58
p ₇	97
p_8	-93
p ₉	-23
p ₁₀	84

- Investigate sample 1
- Find subsequence with greatest sum
- Subsequence can go through the negative value, if it become greater later
- For this sample correct output is 187

m	р	n=1	n=2	
1	31	31	-	
2	-41	-10	-41	
3	59	49	18	
4	26	75	44	
5	-53	22	-9	
6	58	80	49	
7	97	177	146	
8	-93	84	53	
9	-23	61	30	
10	84	145	114	
Max		177	146	

Solution 1. Check all possible subsequences

 We can find maximum from sums of each subsequence

$$Res = \max(\sum_{i=n}^{m} p_i), where \ 1 \le n \le 10, n \le m \le 10$$

- Let's fill the table!
- What are disadvantages of this solution?
- Complexity is O(n²)

- Solution 2. Divide and conquer!
- Paradigm "Divide and conquer" suggests to split the problem on smaller problems, solve them separately and then merge results
- Use recursion
- How to merge?

- Let's check arbitrary subsequence after merge
- Where maximum subsequence can be?
- Case 1. Maximum subsequence lies fully in the left part
- Case 2. Maximum subsequence lies fully in the right part

For one-element subsequence – return this element

Right max = 0

Current max = 0

Otherwise – check "left", "right" and "middle" subsequences

Let's apply these rules

HDU-ITMO Joint Institute 杭州电子科技大学 圣光机联合学院

N	10	Sum	Max
p_1	31	31	31
p ₂	-41	-10=>0	31
p ₃	59	59	59

- Solution 3. Dynamic Kadane's algorithm
- Go through all elements, sum them and save maximum value of sum
- Negative sum is useless, replaced with 0

N	10	Sum	Max
p_1	31	31	31
p ₂	-41	-10=>0	31
p_3	59	59	59
p_4	26	85	85
p ₅	-53	32	85
p_6	58	90	90
p ₇	97	187	187
p ₈	-93	94	187
p ₉	-23	71	187
p ₁₀	84	155	187

- Solution 3. Dynamic Kadane's algorithm
- Go through all elements, sum them and save maximum value of sum
- Negative sum is useless, replaced with 0
- Complexity?

Problem #1155 "Troubleduons"

- Link to the problem's description <u>https://acm.timus.ru/problem.aspx?space=1&num=1155&locale=e=en</u>
- Experimental set consists of eight cameras, situated in the vertices of a cube. Cameras are named as A, B, C, ..., H. It is possible to generate or annihilate two troubleduons in neighboring cameras. You should automate the process of removing troubleduons.

Problem #1155 "Troubleduons"

When problem has no solution, and we can return IMPOSSIBLE?

Two sets of vertices: ACFH and BDEG

•
$$A + C + F + H = B + D + E + G$$

Problem #1155 "Troubleduons"

Moving troubleduons between vertices of the same group:

- Vertex G has no triubleduons in adjacent vertices, but vertex E has one (image 1)
- Create troubleduons in vertex and adjacent to both E and G (EF on image 2)
- Annihilate troubleduons for vertices F and G (image 3)
- We "move" troubleduon between vertices G and E

Task for homework

You can solve following problems to get extra 2 points for each problem:

- 1. Problem #1155 "Troubleduons"

 https://acm.timus.ru/problem.aspx?space=1&num=1155&loc_ale=en
 - Solution of this problem was already explained
- 2. Problem #1005 "Stone Pile" https://acm.timus.ru/problem.aspx?space=1&num=1005&locale=en
 - N.B. Report for this problem should contain explanation, what limitations have your algorithm

Current task

- Prepare source code to solve problem #1296 "Hyperjump" https://acm.timus.ru/problem.aspx?space=1&num=1296&loc_ale=en
- 2. Pass tests on Timus system for this problem https://acm.timus.ru/submit.aspx?space=1&num=1296
- 3. Prepare a report with algorithm complexity and explanation Use template.docx to prepare report and send it to hduitmo.ads@yandex.ru with correct subject

Thank you!