Airline PK airline_id INT INT Airport id Security check PK INT Airport_name VARCAR(255) airline_code VARCHAR(10) security_check_id INT FK Country VARCHAR(100) passenger_id VARCHAR(255) check_results VARCHAR(20) State VARCHAR(100) VARCHAR(100) country created TIMESTAMP VARCHAR(100) City created TIMESTAMP updated TIMESTAMP TIMESTAMP Created TIMESTAMP updated TIMESTAMP Updated Flight Booking INT PK flight id PK booking_id INT FK INT alirline_id FK INT passenger_id FK departure_airport_id INT FK flight_id INT Booking changes status VARCHAR(50) FK arrival_airport_id INT PK booking_changes_id VARCHAR(100) booking_platform VARCHAR(10) departing_gate FK booking_id INT ticket_price VARCHAR(10) arriving_gate changed_time VARCHAR(50) TIMESTAMP sheduled_arrival TIMESTAMP changed_information VARCHAR(50) TIMESTAMP updated actual_departure TIMESTAMP TIMESTAMP sheduled_arrival actual_arrival TIMESTAMP TIMESTAMP created Boarding passes updated TIMESTAMP PK pass_id INT FK booking_id INt U INT seat Passenger TIMESTAMP boarding_time PK INT passenger_id TIMESTAMP created VARCHAR(100) first_name updated TIMESTAMP VARCHAR(100) last_name VARCHAR(10) Baggage DATE date_of_birth PK baggage_id INT citizenship_country VARCHAR(100) FK booking_id INT weight(kg) INT residence_country VARCHAR(100) TIMESTAMP VARCHAR(50) created passport_number Checking created TIMESTAMP updated TIMESTAMP PK checking_id INT updated TIMESTAMP FK booking_id INT FK passenger_id INT VARCHAR(100) check_results

TIMESTAMP

TIMESTAMP

created updated

FKforeign key PKprimary

 PKprimary key
U-unique

How I created the tables and the ER diagram

First, I started by reading the system description about the international airport. The text explained that the system must keep information about airports, airlines, flights, passengers, bookings, boarding passes, baggage, baggage checks, and security checks. From this description, I decided what entities I need for my database. These entities are: Airport, Airline, Flight, Passenger, Booking, BookingLeg, BoardingPass, Baggage, BaggageCheck, and SecurityCheck.

Second, for each entity I wrote a list of attributes. For example, the **Passenger** entity has passenger_id (primary key), first_name, last_name, passport_number, date_of_birth, citizenship_country, and residence_country. The **Flight** entity has flight_id (primary key), flight_number, airline_id (foreign key), departure_airport_id (foreign key), arrival_airport_id (foreign key), and times of departure and arrival. For every entity I wrote which attribute is the primary key (PK) and which are foreign keys (FK). I also thought about data types, like INT, VARCHAR, DATE, and TIMESTAMP.

Third, I applied normalization rules. I checked that every table depends only on its primary key. I removed repeating groups and separated information into correct tables. For example, information about airports is in the Airport table, information about airlines is in the Airline table, and information about flights is in the Flight table. This helps to avoid redundancy and keep the database in the third normal form (3NF).

After that, I used **draw.io** to make the ER diagram. I created one block for each entity. Inside each block, I wrote the attributes. I marked primary keys with "PK" and foreign keys with "FK". Then I connected the entities with lines. I used crow's foot symbols to show the relationships: one-to-one, one-to-many, or many-to-many. For example, one passenger can have many bookings, and one booking can have many booking legs.

I also created a small legend in the diagram. The legend explains the meaning of PK, FK, and the symbols for relationships.

Finally, I exported my diagram from draw.io as a PNG file. I inserted this PNG image into my report. Under the diagram, I added this text description to explain step by step how I created the tables and why I designed the database this way. Then I exported the whole report as PDF.