

Chpt.6 Sampling and Distribution

第六章 样本及抽样分布

Introduction

概率论:

- □假设(已知)随机变量服从某一分布,研究它的性质、特点与规律,如数字特征、分布函数的特性;
- □人类客观对实践的总结形成了概率论;

但是我们可以问:

- □概率所描述的知识是如何获取的? 比如,假如X服从正态分布,如何获取其参数?
- □实际中,如何判断一个随机变量是否服从某一分布。 比如,如何判断X是否为正态分布?

Introduction

数理统计:

- 随机变量其分布未知或者不完全知道(如:是正态分布,但不知参数),期望通过重复的、独立的观察得到许多数据,以概率论为理论基础,通过对这些数据的分析,估计分布的参数,乃至推断出随机变量的分布。
- □ 统计要进行抽样、需要推断,这些工作形成了一定的理论:统计推断理论.

统计推断的理论基础:

□概率论

描述了一些随机现象,以及研究随机现象的手段;

- □大数定理
 - 1 频率稳定性:事件A发生的频率以概率收敛到概率p

$$\frac{n_A}{n} \xrightarrow{p} p \ (n \to \infty)$$

2 算术均值稳定性: $\frac{1}{n}(X_1 + X_2 + \dots + X_n) \xrightarrow{p} \mu \ (n \to \infty)$

口中心极限定理

大量相互独立的随机因素的综合影响,尽管这诸多的 因素之分布是未知的,但是他们的和服从正态分布。

6.1 样本概念--总体、个体

[定义]:

- □ 对某一数量(或几个)指标进行随机实验、观察,将试验的全部可能的观察值称为总体。
- □ 每个可能的观察值称为<u>个体</u>
- □ 总体中所包含的个体的总数称为总体的<u>容量</u>。容量有限 的称为<u>有限总体</u>,容量为无限的称为<u>无限总体</u>。

总体是对对象某些指标的所有观察的值:

观察全校本科生的身高,得到12000个身高观测值; 扔硬币10000次,观察反正面的情况,得到10000个数值。 由此见到这些值有些会相同的,数目也可以是无限种的。

随机变量与总体的区别:

[1] 随机变量与基本随机事件相对应,随机变量显然只是一组互 异的值,进一步对应每个值(或一个区间)出现的可能性大小 总体是从另一个角度,所有试验结果——罗列出,所以可能出 现大量相等的值。

Example: 随机抛一枚硬币,X表示随机变量,正面为0,反面为1

X	0	1	
р	0.5	0.5	

对此试验进行观察10000次,总体为

序号	1	2	3	4	•••	10000
取值	0	1	0	0	•••	1

随机变量与总体的区别:

[2] 总体中的每个值是对随机变量X的观察值,这样一个总体对应一个随机变量:

总体的研究 ◆ 随机变量的X的研究

随机变量的分布、数字特征就称为总体的分布、数字特征

[3] 总体是从统计的角度看 随机变量是从概率角度看的

问题: 在实际中总体的分布是未知的,如何解决?

途径一: 逐个观察总体中的每个个体

不现实、不可行(具有破坏性、无限则不可能)

途径二: 选取有代表性的个体

不知道总体,难以选择有代表性的个体

抽样:对总体进行一次观察并记录其结果(取值是多种可能),称为一次抽样;对X独立进行n次观察,并将结果按顺序记为 X_1, \dots, X_n

样本: 随机抽取部分个体, 以用于推断总体的特性。

这是从理论上将抽样,实际中一经完成,得到一组实数值, X_1, X_2, \dots, X_n 称为样本值。

从总体中抽取样本必须满足:

- (1) 随机性 为使样本具有充分的代表性,抽样必须是随机的,应使总体中的每一个个体都有同等的机会被抽取到.
- (2) 独立性 各次抽样必须是相互独立的,即每次抽样的结果既不影响其它各次抽样的结果,也不受其它各次抽样结果的影响.

称这种随机的、独立的抽样为简单随机抽样 由此得到的样本称为简单随机样本.

从总体中抽取样本必须满足:

若从总体中进行放回抽样,属于简单随机抽样,得到的样本就是简单随机样本;

若从有限总体中进行不放回抽样,则不是简单随机抽样。

当总体容量N很大而样本容量n较小(n/N≤10%) 时,可近似看作放回抽样,从而可近似看作简单随机抽样,得到的样本也可近似地作为简单随机样本.

6.1 样本概念

从总体中抽取容量为n的样本,就是对代表总体的随机变量X随机地、独立地进行n次观测,每次观测的结果仍可以看作一个随机变量。

n次观测的结果就是n个随机变量: X_1 X_n , 它们相互独立,并与总体X服从相同的分布.

若将样本 X_1 X_n 看作一个n维随机变量(X_1 X_n),则

(1) 当总体X是离散随机变量 $_{I}$ 且概率分布为 $_{I}$ $_{$

$$p(x_1, \dots, x_n) = p(x_1)p(x_2)\cdots p(x_n)$$

(2) 当总体X是连续随机变量 $_{I}$ 且概率密度为f(x)时, (X_{1}, \dots, X_{n}) 的概率密度

$$f(x_1,\dots,x_n) = f(x_1)f(x_2)\dots f(x_n)$$

6.2 统计量

背景:为了对总体X的某些概率特征(分布、均值、方差)作出推断,需要考虑各种适用的样本的,由函数满足的性质进一步得到一定的推断。

如大数定理(辛钦): X_1 X_n 独立同分布,且 $E(X_i)=\mu$,则 $\frac{1}{n}\sum_{i=1}^n X_i \xrightarrow{p} \mu$

样本是总体X的代表和反映,容量为n的样本 X_1 X_n ,可以看作是一个n维随机变量(X_1 X_n),则 $\frac{1}{n}\sum_{i=1}^n X_i \xrightarrow{p} \mu$ 如果有一组样本值 x_1 , x_2 , ..., x_n , 那么我们可以估计得到 $\mu \approx \frac{1}{n}(x_1 + x_2 + \dots + x_n)$

6.2 统计量

来自总体X的n个样本 X_1 X_n 构成n维随机变量 $(X_1...X_n)$, 其函数 $g(X_1, \dots, X_n)$,若其中不含任何未知量,则称其为 <u>统计量</u>。

统计量都是随机变量,由样本 X_1 X_n 的观测值 x_1 x_n ,算得的函数值 $g(x_1, \dots, x_n)$ 是统计量 $g(X_1, \dots, X_n)$ 的观测值.

研究规律得用随机变量

实际应用可以直接用观测值了

常用统计量及其观测值:

(1) 样本均值
$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$$
 观测值为 $\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$

(2) 样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

观测值为
$$s^2 = \frac{1}{n-1} \sum_{k=1}^{n} (x_i - \overline{x})^2$$

(3) 样本标准差
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (X_i - \overline{X})^2}$$

观测值为
$$s = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_i - \bar{x})^2}$$

常用统计量及其观测值:

(4) 样本k阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

观测值为

$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$

(5) 样本k阶中心矩 $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k$

观测值为
$$b_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^k$$

我们来比较一下

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \qquad Y_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

假
$$E(X_i) = \mu$$
 $D(X_i) = \sigma^2$

別
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 $E(\overline{X}) = \mu, \ D(\overline{X}) = \frac{1}{n} \sigma^{2}$ $S^{2} \xrightarrow{P} \sigma^{2}$ $Y_{n}^{2} \xrightarrow{P} \sigma^{2}$ $y_{n}^{2} \approx \sigma^{2}$

假如我们要用样本估计 σ^2 时,用 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

而不用
$$Y_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
 。盖因前者均值为 σ^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_{i}^{2} - 2X_{i}\overline{X} + \overline{X}^{2})$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - 2\overline{X} \frac{1}{n-1} \sum_{i=1}^{n} X_i + \frac{n}{n-1} \overline{X}^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - 2 \frac{n}{n-1} \overline{X}^2 + \frac{n}{n-1} \overline{X}^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - \frac{n}{n-1} \overline{X}^{2}$$

$$E(X_i^2) = D(X_i) + (EX_i)^2 \qquad E(\overline{X}^2) = D(\overline{X}) + (E\overline{X})^2$$

$$E(X_i^2) = \sigma^2 + \mu^2 \qquad E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2$$

$$E(S^{2}) = \frac{1}{n-1} \sum_{i=1}^{n} E(X_{i}^{2}) - \frac{n}{n-1} E(\overline{X}^{2})$$

$$= \frac{n}{n-1} (\sigma^{2} + \mu^{2}) - \frac{n}{n-1} \left(\frac{1}{n} \sigma^{2} + \mu^{2}\right)$$

$$= \sigma^{2}$$

$$Y_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$= \frac{n-1}{n} \bullet \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$= \frac{n-1}{n} S^2$$

$$E(Y_n^2) = \frac{n-1}{n}ES^2$$
$$= \frac{n-1}{n}\sigma^2$$

6.3 抽样分布

样本是随机变量

统计量是样本的函数,从而统计量也是随机变量

统计量的分布称为抽样分布

为什么要研究抽样分布:

- 一般而言,总体分布已知,抽样分布也是知道的,但是确切得 到是困难的;
- 从另外一个角度,我们希望由统计量的分布(特别是在观测值得到后),估计、推断出总体的一些特征。我们希望研究统计分布,以便作出统计推断。

几类抽样分布

□ 样本均值分布 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$\Box$$
 t分布 $t = \frac{X - \mu}{S / \sqrt{n}} \sim t(n-1)$

$$\square$$
 χ^2 分布 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$ $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

$$\square$$
 F分布 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$

注意:以上是对 $X \sim N(\mu, \sigma^2)$ 而言的;取得 n 个样本

一. 样本均值分布

假设总体分布的均值与方差都是已知的,那么我们可以对 来自总体的多个样本的均值做出估计。

假设 X_1, \dots, X_n 是来自总体X的独立样本, 样本均值为

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 。一般情况下我们知道 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \rightarrow N(0, 1)$

假设 X_1, \dots, X_n 是来自正态总体 $X \sim N(\mu, \sigma^2)$ 的独立样本,则样本均值 \overline{X} 服从正态分布 $N(\mu, \frac{\sigma^2}{L})$,标准量服从标准 正态分布 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$

南开大学软件学院

二. t分布

当总体均值与方差已知 $E(X)=\mu, D(X)=\sigma^2$, $\left\{ \begin{array}{ll} X_i \end{array} \right\}$ 是来自总体的独立样本,我们知道 $\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 近似为标准正态分布 $\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ \to N(0,1)

由此可以估计 $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 或 \overline{X} 。

如果其中已知 σ 我们就可以估计 μ ,或者反过来 ρ 知道 μ 估计 σ 。

如果X是正态分布,那就可以确切得到 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

二. t分布

但是如果我们不知道 σ 时,尽管 $\dfrac{X-\mu}{\sigma/\sqrt{n}}$ 可以估计,但还

是无法由此估计μ

可以想到用样本标准差S来代替 σ ,即得到 $\frac{X-\mu}{S/\sqrt{n}}$

但是一般我们根本不知道此服从何种分布,除非是正态 分布。

二. t分布

[定理6.1] 若总体服从正态分布 $X \sim N(\mu, \sigma^2)$, $\{X_i\}, S$

分别是来自总体的样本与样本标准差, $S^2 = \frac{1}{n-1} \sum_{k=1}^{n} (X_i - \overline{X})^2$

那么随机变量 $t = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ 服从自由度为n-1的t分布,记

为 $t \sim t(n-1)$, 其概率密度为:

$$f_t(t) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)\sqrt{(n-1)\pi}} \left(1 + \frac{t^2}{n-1}\right)^{-\frac{n}{2}}, \quad -\infty < t < +\infty$$

Remark1: 其中伽玛函数 $\Gamma(\alpha) = \int_{0}^{\infty} u^{\alpha-1} e^{-u} du$ $(\alpha > 0)$,

有如下性质:

(1)
$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

(2)
$$\Gamma(n) = (n-1)!$$

$$(3) \quad \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Remark2: 由定理可以知道总体为正态分布 $X \sim N(\mu, \sigma^2)$

随机变量 $t = \frac{X - \mu}{S/\sqrt{n}}$ 服从自由度为n-1的 t 分布。

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$
 中如 μ 是非统计量(未知),由对 t 的分析可以

估计出μ,而且是在σ也未知的情况下

Remark 3: t 分布的分布曲线关于 t = 0 对称;

Remark 3: t 分布的形式如上所言。之所以叫做 t 分布是因为在1900年代,Dublin城的W.S.Gosset用笔名"Student"发表了一篇文章提出了该分布。

Remark 5: 由 t 分布的出处,我们可以知道它是对 $\frac{X-\mu}{\sigma/\sqrt{n}}$ 的一个近似,而后者在n无限大时趋近于标准正态分布。故此,可以推测当自由度n无限增大时, t 分布将趋近于标准正态分布 N(0,1), 或者

$$f_t(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \rightarrow \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

分位点

[分位点] 随机变量X, 对一个正数 α ($0 < \alpha < 1$), 满足 $P\{X > x_{\alpha}\} = \alpha \text{ 的值 } X_{\alpha}$ 称为X分布的 α 分位数.

对不同的自由度n及不同的数 α (0< α <1),满足

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} f_{t}(t)dt = \alpha$$

的 $t_{\alpha}(n)$ 值称为t分布的 α 分位数。

由 $f_t(t)$ 的对称性知:

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

$$f_{t}(t) = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{n\pi}} (1 + \frac{t^{2}}{n})^{-\frac{n+1}{2}}, \quad -\infty < t < +\infty$$

注意到: 此与前面的定理有相似之处。

前面定理说
$$X \sim N(\mu, \sigma^2)$$
, 则 $t = \frac{X - \mu}{S/\sqrt{n}} \sim t(n-1)$

Problem: 两者有什么关系吗?

三. χ^2 分布

前面我们更多地讨论了样本均值的分布,关于样本方差有何种分布?

一般的总体不会得到很直接的结果;

对于正态总体 $X \sim N(\mu, \sigma^2)$,则统计量 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ 服从自由度为n的 χ^2 分布. 事实上

$$Y_i = (X_i - \mu) / \sigma \sim N(0,1)$$
 $(i = 1, 2, \dots, n)$

且相互独立,由以下定理知

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 = Y_1^2 + \dots + Y_n^2 \sim \chi^2(n)$$

[定义6.3] 设随机变量 X_1, \dots, X_n 是来自标准正态总体

$$X \sim N(0,1)$$
 的独立样本。 则随机变量 $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$

服从自由度为n的 χ^2 分布, 记为 $\chi^2(n)$, 其概率密度:

$$f_{\chi^{2}}(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x > 0\\ 2^{\frac{n}{2}} \Gamma(\frac{n}{2}), & x \le 0 \end{cases}$$

Remark 1: χ^2 分布具有可加性,也就是说,

$$\chi_1^2 \sim \chi^2(n_1)$$
, $\chi_2^2 \sim \chi^2(n_2)$ 且它们相互独立, 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$

则
$$\chi_1^2 + \chi_2^2 \sim \chi^2 (n_1 + n_2)$$

 $\chi^{2}(x;n) \mid n=1$

Remark 2:
$$\chi^2 \sim \chi^2(n)$$

Remark 2:
$$\chi^2 \sim \chi^2(n)$$

$$\text{If } E(\chi^2) = n \quad , \ D(\chi^2) = 2n$$

对不同的自由度n及不同的数 $\alpha(0 < \alpha < 1)$,满足的

$$P\{\chi^2 > \chi_\alpha^2(n)\} = \int_{\chi_\alpha^2(n)}^\infty f(x) dx = \alpha$$

 $\int \chi^2(x;n)$ 值 $\chi_{\alpha}^{2}(n)$ 称为 χ^{2} 分 布的α分位数。 $\chi^2_{\alpha}(n)$

上面结果的作用:

假设正态分布X~N(μ , σ^2),N个样本 X_1, \dots, X_n 观测值为 x_1, x_2, \dots, x_n , 知道 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ 从22分布

- □ 在μ已知,可估计σ;或反之。
- □ 当均值µ未知时,考虑用 $(n-1)S^2 = \sum_{i=1}^{n} (X_i \overline{X})^2$ 来 代替 $\sum_{i=1}^{n} (X_i - \mu)^2$, 一方面得到分布估计, 另一方面可 以估计σ。

南开大学软件学院

[定理6.4] S²是来自正态总体 $X \sim N(\mu, \sigma^2)$ 的n个样本的方

差,那么
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

四. 二个正态总体的统计量的分布

有时,需要比较来自两个总体的样本的方差, $F = \frac{S_1^2}{S_2^2}$

[定理6.5] 如果 S_1^2 和 S_2^2 是两个 n_1, n_2 独立样本的方 差,来自两个具有相同方差(但是未知)的独立正态总 体,那么 S_1^2/S_2^2 服从参数为 n_1-1, n_2-1 的F分布,记 为 $F \sim F(n_1 - 1, n_2 - 1)$

南开大学软件学院

四. 二个正态总体的统计量的分布

[定理6.6] 若随机变量 $U \sim \chi^2(n_1), V \sim \chi^2(n_2), U与V独立, 则$

随机变量 $F = \frac{U/n_1}{V/n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布,记

为 $F \sim F(n_1, n_2)$, 其概率密度为

$$f_{F}(z) = \begin{cases} \frac{\Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{\Gamma\left(\frac{n_{1}}{2}\right)\Gamma\left(\frac{n_{2}}{2}\right)} n_{1}^{\frac{n_{1}}{2}} n_{2}^{\frac{n_{2}}{2}} \frac{z^{\frac{n_{1}}{2}-1}}{(n_{1}z+n_{2})^{\frac{n_{1}+n_{2}}{2}}} & z>0\\ 0 & z\leq 0 \end{cases}$$

pp. 39 南开大学软件学院

F分布

 $F \sim F(n_1, n_2)$ 其中分子的自由度 n_1 为第一自由度;分母的自由度 n_2 为第二自由度。

Remark 1: 如果 $X \sim F(m, n)$,则 $\frac{1}{X} \sim F(n, m)$ 。

F分布

满足
$$\int_{F_{\alpha}(n_1,n_2)}^{\infty} f(x;n_1,n_2) dx = \alpha, \quad 0 < \alpha < 1$$

称 $F_{\alpha}(n_1, n_2)$ 为F 分布的 α 分位点。

$$F_{\alpha}(n_1, n_2) = \frac{1}{F_{1-\alpha}(n_2, n_1)}.$$

[定理6.7] 设 X_1, X_2, \dots, X_{n_1} 与 Y_1, Y_2, \dots, Y_{n_2} 分别是来自正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的样本,且两个样本独立。

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$$
, $\overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j$ 分别是两个样本的样本均值

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2$$
, $S_2^2 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} (Y_j - \overline{Y})^2$ 是各样本方差

则有:

[1]
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

[2]
$$\frac{S_1^2}{\sigma_1^2} = \frac{S_1^2}{\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$
$$\frac{S_2^2}{\sigma_2^2} = \frac{S_2^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$

[3] 当 σ_1 = σ_2 = σ 时

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

证明:

[1]
$$riangle X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), \quad X_1, X_2, \dots, X_{n_1} \quad riangle$$

 Y_1, Y_2, \dots, Y_{n_2} 分别是来自两个总体的简单样本

$$X_1, X_2, \dots, X_{n_1}$$
的线性组合 $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$ 服从正态分布 $N(\mu_1, \frac{\sigma_1^2}{n_1})$ 同理 $\overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n_1})$

又由于 \overline{X} , \overline{Y} 独立,其组合是正态分布,所以

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

其标准化随机变量
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

[2]
$$\chi_1^2 = \frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1 - 1)$$

 $\chi_2^2 = \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$

由于
$$S_1^2$$
与 S_2^2 独立,

$$\frac{\chi_1^2}{\binom{n_1-1}{\chi_2^2}} \sim F(n_1-1, n_2-1)$$

$$\frac{\chi_2^2}{(n_2-1)}$$

$$\frac{S_1^2}{S_1^2} = \frac{S_1^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\frac{S_2^2}{\sigma_2^2} = \frac{S_2^2}{\sigma_1^2} \sim F(n_2 - 1, n_2 - 1)$$

[3] 随机变量 $U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1)$,由上知,统计量

$$\chi_1^2 = \frac{(n_1 - 1)S_1^2}{\sigma^2} \sim \chi^2(n_1 - 1)$$

$$\chi_2^2 = \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_2 - 1)$$

又由于 S_1^2 与 S_2^2 独立,利用 χ^2 分布的可加性知随机变量

$$V = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

随机变量U,V独立,因此

$$\frac{U}{\sqrt{\frac{V}{n_1 + n_2 - 2}}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$S_{w} = \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}$$

[定理6.8] 假设 X_1, \dots, X_n 是来自正态总体 $X \sim N(\mu, \sigma^2)$

的独立样本,则样本均值 \overline{X} 与样本方差 S^2 独立。

考研的试题中出现过本定理的应用!

南开大学软件学院