Mesterséges Intelligencia

Mesterséges neurális hálózatok alapjai

FONTOS

- Az alábbi anyag munkavázlat, hibákat tartalmazhat. Amennyiben hibát találnak, kérem, a portálon keresztül üzenetben jelezzék, hogy melyik heti előadás, vagy jegyzet melyik részében, milyen hibát véltek felfedezni!
- Az anyagok kizárólag a Széchenyi István Egyetem 2021-2022 tavaszi félévében Mesterséges Intelligencia kurzust felvett hallgatói számára készültek, kizárólag az adott félév kurzusaihoz használható fel!
- Az alábbi hivatkozásokon megnyitott minden fájl automatikusan begyűjti a hallgató különböző egyedi azonosítóit, mely alapján beazonosítható lehet. Ennek megfelelően a hivatkozásokat ne osszák meg egymással (különösen a kurzust nem hallgatókkal), mert abból az egyedi azonosítók visszakereshetők és a személyazonosság meghatározható!
- Az alábbi anyagra vonatkozóan minden jog fenntartva!
- Az anyagok bármely részének vagy egészének nyomtatása, másolása, megosztása, sokszorosítása, terjesztése, értékesítése módosítással vagy módosítás nélkül egyaránt szigorúan tilos!

A lecke főbb témakörei

- Biológiai neurális hálózatok
 - Neuronok és működésük
- Mesterséges neuron modell
- Perceptron modell
- Radiális bázisfüggvény neurális hálózatok
- Celluláris neurális hálózatok
- Kohonen-hálók

Biológiai neurális hálózatok

Biológiai neurális hálózatok

- Az állatokban (így az emberekben is) megtalálható ideghálózat
- A fejlettebb állatok idegrendszerei nagyon összetettek, jellemzően két fő részre osztják
 - a központi idegrendszerre
 - · része az agy és a gerincvelő
 - a környéki idegrendszerre
 - például a szomatikus és az autonóm idegrendszer is tartozik

Biológiai neurális hálózatok

- Maga az idegszövet két fő sejtcsoport alkotja
 - egyrészt az idegsejtek, vagyis a neuronok
 - amely az ingerület kezelésére szolgál
 - másrészt a gliasejtek
 - melyek többek között a támasztásért és az agy takarítási funkcióiért is felelősek
- Az összetett, intelligens viselkedési minták létrehozásában a neurális hálózatnak van szerepe, melyet az idegsejtek szinapszisokon keresztüli kommunikációja valósít meg

Biológiai neuron

Biológiai neuron

- A neuronok tipikus felépítése
 - a sejttest,
 - melyben található a sejtmag,
 - sejttestből ágaznak ki a dendritek,
 - melyek az ingerületek (vagyis az információ) felvételét teszik lehetővé
 - valamint az axonok,
 - melyeken keresztül továbbításra kerül a dendritek által felvett információ
 - Az axonokat jellemzően egy zsírban gazdag, úgynevezett myelinhüvely védi
- az idegrendszer alapegységének tekinthetők
- az információ áramlásáért és feldolgozásáért felelősek

- Az emberi tudat és intelligencia az agyat alkotó megközelítőleg 90 (~+/-10) milliárd neuron és az e neuronok közötti kapcsolatok révén áll elő.
- Nagyon sokáig úgy tartották, hogy a neuronok az egyetlen olyan sejtek, melyekből nem keletkezik új az idősebb korban
 - a legújabb megfigyelések felnőttek esetében is alátámasztották új idegsejtek létrejöttét

Biológiai neuronok főbb típusai

Biológiai neuronok főbb típusai

- Az idegrendszer különböző területein megtalálható, eltérő célú neuronok nagyon változatos jellemzőkkel bírnak, mind megjelenésben, mind biokémiai tulajdonságait tekintve.
- Többféle csoportosítás létezik

Biológiai neuronok főbb típusai

- Struktúra szempontjából
 - · unipoláris neuronok
 - melyek az egyszerűbb állatokban, rovarokban a leggyakoribbak
 - pszeudounipoláris neuronok
 - a szenzoros neuronok, melyek fizikai és kémiai jelek érzékelésére szolgálnak (például a hőérzet, vagy az ízérzékelés)
 - jellemzően ketté ágazó axonnal rendelkeznek
 - bipoláris neuronok
 - pszudounipoláris neuronokhoz hasonlóan jellemzően a szaglás és látás érzékelésében játszanak szerepet
 - motoros neuronok az agytól a gerincig és a gerinctől az izmokig, szervekig találhatóak meg az idegrendszerünkben,
 - multipoláris poláris neuronok
 - egy axonnal és számos dendrittel rendelkeznek.

Szinapszis

Szinapszis

- A neuronok szinapszisok révén alakítanak ki kapcsolatokat egymás között
 - lehetnek elektromos átvitelűek, a sejtmembránok közötti ioncsatornák révén,
 - vagy kémiaiak, az akciópotenciál (idegsejtek polarizációja és depolarizációja) hatására kibocsátott neurotranszmitterek révén,
 - melyek főként az idegrendszerben termelődő ingerületátvivő anyagok,
 - mint például dopamin, szerotonin vagy az oxitocin és az adrenalin és a dendriteken található különböző receptorok által továbbítják az információt.

- Az első biológiai neuronok működését modellező (mesterséges neuron) egység
- küszöbérték-logikai egység
- McCulloch és Pitts alkották meg
- durva modellje a (biológiai) neuronoknak
 - számos lényegi jellemzőt nem vesz figyelembe
 - azonban szerénysége ellenére viszonylag erős kifejezőerővel bír
- Alapvetően a bemenetekből, a kimenetből, valamint a feldolgozó egységből áll.

- bemenetén a többi neurontól (vagy bemenettől) származó értékek
 - · lényegében a szinapszist reprezentálja
- amennyiben több neuront kapcsolunk össze, akkor e kapcsolatok erősségét (a különböző neuronok kimenetéhez rendelt) súlytényezőkkel szokás reprezentálni.

- A feldolgozó egység határozza meg a mesterséges neuron kimenetét a bemenetek függvényében
- Az eredeti TLU modellben egy egyszerű küszöbfüggvényt alkalmaztak
- Ha a bemenetek (súlyozott)összege eléri a küszöb szintjét, akkor a kimeneten 1-es jelenik meg, ellenkező esetben 0 az eredmény
- A gyakorlatban azonban neuron kimenetének kiszámításához a szignumfüggvényt szokás alkalmazni,
 - vagyis megnézzük, hogy nemnegatív-e a (súlyozott)bemenetek összegének és a küszöbértéknek a különbsége

Tipikus aktivációs függvények

Tipikus (hagyományos) aktivációs függvények

- önmagában egy nagyon primitív műveletet végző egység
- e módon működő neuronokat különböző konfigurációk (topológiák, architektúrák) szerint lehet egymáshoz kapcsolni
- együttesen már komplexebb problémák leírására is alkalmassá teszi
- A hálózatba kötött TLU-k képesek lineárisan szeparálható problémák megoldására
- Lineárisan szeparálhatónak tekintjük az Euklideszi térben lévő pontok két halmazát, ha létezik legalább egy olyan pont, egyenes, sík, vagy hipersík, amelynek egyik oldalán az egyik halmaz elemei, míg a másik oldalán a másik halmaz elemei találhatók.

- Topológia szerint alapvetően négy fő csoportba oszthatóak a neurális hálók:
 - az egyrétegű (single-layer), előrecsatolt (feedforward) hálózatok
 - az egyrétegű, visszacsatolt (recurrent, feedback, vagy interactive) hálózatok
 - · a többrétegű (multilayer), előrecsatolt hálózatok
 - a többrétegű, visszacsatolt hálózat
- A mesterséges neurális hálózatok esetén az azonos szinten lévő neuronokat úgynevezett rétegekbe (layer) rendezik
- Amennyiben a hálózatnak egyetlen bemeneti és egyetlen kimeneti rétege van, akkor egyrétegű hálózatról beszélünk
- Többrétegű hálók esetében a bemeneti- és kimeneti rétegek közötti összes többi réteget rejtett réteg(ek)nek hívjuk, melyekből több is lehet a hálózatban
- Rétegenként a neuronok száma eltérő lehet
- Az előrecsatolt hálózatok esetén a bemeneti réteg felől szigorúan csak a kimeneti réteg irányába halad az információ, míg visszacsatolt hálózatoknál az egyes neuronok kimenete az azonos, vagy korábbi rétegek bementére is rá lehet kötve, vagyis az információ visszacsatolásra kerül.

Tipikus (hagyományos) topológiák

egyrétegű előrecsatolt

egyrétegű visszacsatolt

többrétegű előrecsatolt

többrétegű visszacsatolt

- Sekély, vagyis shallow hálónak nevezik a (jellemzően) maximum egyetlen rejtett réteggel rendelkező modelleket
- A modern népszerű megoldások esetén az úgynevezett mély (deep) neurális hálók a modell architektúrájára utalnak
 - a mély megoldások jellemzően jóval több rejtett réteggel rendelkeznek
- Természetesen ugyanannyi neuron felhasználásával készíthető sekély és mély hálózati topológia is
 - a vizsgálatok megmutatták, hogy a több réteggel rendelkező megoldások komplexebb modellek megalkotására is képesek.
- Természetesen a fentiektől eltérő, más jellegű hálózati topológiák is megfigyelhetőek a területen, mint például az Elman, Jordan, vagy a versengő (competitive) hálók. A topológia nagyban meghatározza a neurális háló által modellezhető problémák körét.

- a mesterséges neurális hálózatok valóban könnyen implementálható, egyszerű alkotóelemekből felépülő, nagyon hatékony modell megalkotására képesek
- A mesterséges neuronok változatos működése, összekapcsolásaik elrendezése, valamint a rendszer paraméterei egyaránt hatással vannak a hálózat által reprezentált modellre (vagyis lényegében a tudásra)
- E jellemzők (neuron típus, háló elrendezése, súlytényezők stb.) ideális meghatározása azonban egy nagyon bonyolult folyamat
 - egyes neurális hálózatok esetén ez csak kompromisszumok révén oldható meg
 - jellemzően a háló tanulási folyamata során történik.

- A neurális hálózatoknál is alkalmazott gépi tanulás technikák alapvetően három fő kategóriába sorolhatók (paradigma szerint)
 - (1) felügyelt (supervised);
 - (2) nem felügyelt (unsupervised);
 - illetve (3) megerősítéses (reinforcement) tanulás

- A tanulás módja alapján két fő csoportba sorolhatóak a neurális hálózatoknál használt tanuló algoritmusok:
 - (1) a struktúra;
 - illetve (2) a paraméter tanulás.

- A tanulási megoldások további szempontok szerint is csoportosítható, mint például a tanulás lefolyása:
 - (1) online;
 - (2) offline

- 1958, Rosenblatt
 - Cornell Egyetem
- tanulni is képes neurális hálózat
- hardverként is kivitelezésre került
- nem más, mint egy előrecsatolt, egyrétegű, TLUkból álló hálózat

- Többrétegű perceptron (Multi-Layer Perceptron, MLP)
 - a be- és kimeneti rétegeken túl legalább egy, vagy több rejtett réteggel is rendelkezik
 - Kezdetben a perceptronok is bináris működésűek voltak (a TLU-hoz hasonlóan)
 - belátható, hogy kizárólag lineáris neuron modellek esetén meghatározható egy ekvivalens be- és kimeneti rétegből álló háló
 - Rájöttek, hogy az aktivációs függvény lecserélésével sokkal komplexebb modelleket is megalkothatnak
 - különösképp a szigmoid átviteli függvényt (és a hasonló függvényt, mint a hiperbolikus tangens) kezdték alkalmazni (de az eredeti perceptron bináris kimenetű)
 - Ez lett általánosan az előrecsatolt neurális háló (Feed Forward Neural Network, FFNN)

- A rétegek számával sokkal komplexebb műveletek végrehajtására is képessé váltak a perceptronok
 - · nagy népszerűségre tettek szert.
- Azonban a leírható modellek bonyolultságával együtt egy új probléma is megjelent
 - az ideális paraméterek (bias és/vagy súlytényezők, küszöb értékek) megtalálása
 - · különösen nagy rétegszám esetén.
- Az akkori hardverek kapacitása nem tette lehetővé, hogy az ilyen mély hálók esetén hatékonyan megtalálják az ideális paramétereket, ami jelentősen visszavetette az ilyen típusú megoldások alkalmazását (sokan a tartóvektor-gépek, support vector machine felé fordultak, melyek esetén könnyebb az ideális paraméterek meghatározása).

- A leggyakoribb alkalmazások a különböző osztályozási feladatok területén figyelhetők meg,
 - beszéd- és képfelismerés külön kiemelendő
- Bebizonyították, hogy az MLP-k univerzális approximátororok
 - tetszőleges nem lineáris függvény közelíthető meg elégséges neuronszám esetén, így regresszió analízis segítségével alkothatók modellek

Radiális Bázisfüggvény Hálók

Celluláris Neurális Hálózatok

- Chua és Yang, 1988
- Egyszerű analóg feldolgozóegységek (cellák) hálózata
 - Természetesen diszkrét rendszereken is megvalósítják
 - Képes a boole-függvények kifejezésére, de akkori elterjedésének oka a masszívan párhuzamos architektúra, ami nagyon gyors jelfeldolgozást tett lehetővé
 - Gyakran alkalmazták kamerákba ágyazott számítógépeken különböző jelfeldolgozási célokra, másodpercenként több tízezer képkockát képes feldolgozni
- Számos változata létezik

Celluláris Neurális Hálózatok

- Minden cella kapcsolatban áll a közvetlen szomszédjával
- A legjellemzőbb elrendezés a 2-Dimenziós, de más megoldások is fellelhetőek a szakirodalomban

Celluláris neurális hálózatok

Celluláris Neurális Hálózatok

- Chua és Yang, 1988
- Egyszerű analóg feldolgozóegységek (cellák) hálózata
 - Természetesen diszkrét rendszereken is megvalósítják
 - Képes a boole-függvények kifejezésére, de akkori elterjedésének oka a masszívan párhuzamos architektúra, ami nagyon gyors jelfeldolgozást tett lehetővé
 - Gyakran alkalmazták kamerákba ágyazott számítógépeken különböző jelfeldolgozási célokra, másodpercenként több tízezer képkockát képes feldolgozni
- Számos változata létezik

Celluláris Neurális Hálózatok

- Minden cella kapcsolatban áll a közvetlen szomszédjával
- A legjellemzőbb elrendezés a 2-Dimenziós, de más megoldások is fellelhetőek a szakirodalomban

Önszervező, Kohonen hálók

- Az önszervező (vagy önrendező) hálók (Self-Organizing Map, SOM)
- elméletét Teuvo Kohonen mutatta be 1981-ben
- Sokdimenziós adatok hatékony vizualizálására alkalmas
 - a dimenziók egy hálóba (map) redukálása (diszkretizálása) révén
 - · csökkenti az adat mennyiségét a hasonlóságok alapján
 - megőrzi a legfontosabb topológiai információkat és a metrikus kapcsolatokat az elsődleges adatelemek között
- Gondolhatunk rá úgyis, mint egy absztrakciós eljárásra
- A leggyakrabban 2-dimenziós kimenetű (vagyis a redukált adathalmazú, a hálójú) formában találkozhatunk vele, de előfordul 1-, vagy ritkábban akár több-dimenziós változat is

- az agyban is megfigyelhető jelenségre vezethető vissza
 - azonos érzékelésért felelős neuronok egymáshoz nagyon közeli területen helyezkednek el
 - és az azonos, vagy nagyon hasonló stimulusra (pl. orientáció, frekvencia) aktiválódó neuronok az adott területen belül is egymáshoz közel helyezkednek el
- A Kohonen hálók esetén a bemeneti réteg (vagy vektor) minden elemét hozzákötjük a háló minden neuronjához (csomópontok, vagy node-ok a számítási, vagy computational rétegben)
 - · lényegében teljesen összekötött rétegről van szó
- A neuronok itt nem rendelkeznek semmilyen feldolgozási funkcióval
- a bemeneti vektor értékei és az egyes neuronok súlytényezői közötti eltérést veszi figyelembe
- Az a súlytényező kerül kiválasztásra, amelyik a legkisebb diszkriminancia értékkel rendelkezik, ahol a diszkriminanciafüggvény leggyakrabban Euklideszi távolság, azonban lehet másféle is, mint például a koszinusz távolság.

- A tanításhoz egy kezdeti súlytényező konfigurációt kell létrehozni
- jellemzően ezres nagyságrendű mintakészletre van szükség
 - tanulási ciklus során egyet-egyet véletlenszerűen kiválasztva átadunk a hálónak
 - Az adott minta vektorhoz legjobban illeszkedő súlyokkal rendelkező csomópontot (Best Matching Unit, BMU, legjobban illeszkedő egység, vagy győztes neuron) megkeressük a diszkriminanciafüggvény segítségével,
 - majd úgy módosítjuk a súlyt, hogy az még jobban hasonlítson a mintához (vagyis csökkenjen a diszkriminancia értéke)
 - Nem csak a BMU súlytényezőjét módosítjuk, hanem az azzal szomszédos neuronokét is, szintén úgy, hogy jobban illeszkedjen az aktuális mintához, azonban a végrehajtható módosítás (tanulás) mértéke a BMU-tól való távolsággal fordítottan arányos
 - Ez a folyamat ismétlődik
 - a tanulás előrehaladtával a súlytényező egyre kisebb mértékű módosítását engedjük csak meg, a figyelembe vett szomszédos csomópontok száma is csökken
 - Erre azért van szükség, hogy kezdetben gyors, jelentős változások mehessenek végbe, majd egyre kisebb, finomhangolás jellegű módosítások történjenek.

- Számos területen alkalmaz(t)ák nem felügyelt tanulási képessége miatt
 - az olyan területeken, mint a klaszterezés, vizualizálás, adatszervezés, jellemzés és felfedezés
- Több változata is fellelhető a szakirodalomban,
 - Learning Vector Quantization (LVQ)
 - felügyelt tanítást igénylő feladatok esetén is alkalmazzák, mint például az osztályozás és mintafelismerés.

Felhasznált források

- · https://www.asimovinstitute.org/neural-network-zoo-prequel-cells-layers/
- · https://www.asimovinstitute.org/neural-network-zoo/
- . M. L. Minsky and S. A. Papert, Perceptrons (expanded edition), The MIT Press, 1988.
- L. Fausett, Fundamentals of Neural Networks: architectures, algorithms, and applications, Prentice-Hall, 1994.
- R. Callan, The Essence of Neural Networks, Prentice Hall, 1999.
- S. Haykin, Neural Networks: A Comprehensive Foundation (2nd edition), Prentice-Hall, 1999.
- J. E. Moody and C. Darken, Fast learning in networks of locally-tuned processing units, Neural Computation, 1(2), pp. 281-294, 1989.
- L. O. Chua and L. Yang, Cellular neural networks: Theory. IEEE Transactions on circuits and systems, 35(10), pp. 1257-1272, 1988.
- T. Kohonen, The self-organizing map, Proceedings of the IEEE, 78(9), pp. 1464-1480, 1990.