Complexidade de Algoritmos (parte 2)

Prof. Jefferson T. Oliva

Algoritmos e Estrutura de Dados II (AE23CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Análise de Algoritmos
- Cálculo do Tempo de Execução

Introdução

- Aula anterior: análise assintótica
 - O
 - Ω
 - Θ
- Taxas de crescimento

Sumário

- Para proceder a uma análise de algoritmos e determinar as taxas de crescimento, necessitamos de um modelo de computador e das operações que executa
- Assume-se o uso de um computador tradicional, em que as instruções de um algoritmo são executadas sequencialmente
 - Com memória infinita, por simplicidade

- Repertório de instruções simples: soma, multiplicação, comparação, atribuição, etc
 - Por simplicidade e viabilidade da análise, assume-se que cada instrução demora exatamente uma unidade de tempo para ser executada, ou seja, O(1)
 - Operações complexas, como inversão de matrizes e ordenação de valores, não são realizadas em uma única unidade de tempo
 - Operações complexas devem ser analisadas em partes

- Considera-se somente o algoritmo e suas entradas (de tamanho n)
- Para uma entrada de tamanho n, pode-se calcular o tempo de execução para os seguintes casos
 - Melhor caso $(T_{melhor}(n))$
 - Caso médio $(T_{media}(n))$
 - Pior caso $(T_{pior}(n))$
 - $T_{melhor}(n) \le T_{media}(n) \le T_{pior}(n)$
- Atenção: para mais de uma entrada, essas funções teriam mais de um argumento

7

- Geralmente, utiliza-se somente a análise do pior caso $(T_{pior}(n))$
 - Análise do melhor caso é de pouco interesse prático
 - O tempo médio pode ser útil, principalmente em sistemas executados rotineiramente
 - Dá mais trabalho calcular o tempo médio
 - Na análise do pior caso é verificado o máximo de esforço computacional que deve ser utilizado para o processamento da entrada

8

```
int busca(int x, int v[], int n) {
1.    int i;
2.    for (i = 0; i < n; i++)
3.        if (x == v[i])
4.        return i;
5.    return -1;
}</pre>
```

```
int busca(int x, int v[], int n) {
1.    int i;
2.    for (i = 0; i < n; i++)
3.    if (x == v[i])
4.    return i;
5.    return -1;
}</pre>
```

- Como a linha 1 é apenas uma declaração de variável, a mesma não entra na contagem
- Na linha 2, desconsiderando as linhas 3 e 4, podem ser realizadas até 2n + 2 operações (pior caso)
- Na linha 3 são realizadas um total de n comparações (o comando está dentro do laço for)

```
int busca(int x, int v[], int n) {
1.    int i;
2.    for (i = 0; i < n; i++)
3.        if (x == v[i])
4.        return i;
5.    return -1;
}</pre>
```

- Por fim, a linha 4 (item localizado) ou 5 (caso o item não seja localizado) será executada
 - Melhor caso e caso médio: a instrução da linha 4 será executada, que é o retorno da posição do item encontrado, ou seja, uma unidade de tempo
 - Pior caso: a instrução da linha 5 será executada

```
int busca(int x, int v[], int n) {
1.    int i;
2.    for (i = 0; i < n; i++)
3.        if (x == v[i])
4.        return i;
5.    return -1;
}</pre>
```

- Análise de complexidade para os três casos (melhor, médio e pior):
 - $T_{melhor}(n) = 4$ (iniciar a variável i, comparar i com n, comparar x com v[i] e retornar i)
 - $T_{media}(n) = \frac{3n}{2} + 2$ (estimativa "aproximada", ou seja, supondo que geralmente, a chave procurada esteja ao redor do meio do arranjo)
 - $T_{pior}(n) = 3n + 3$ (quando a chave não é encontrada)

```
int busca(int x, int v[], int n) {
1.    int i;
2.    for (i = 0; i < n; i++)
3.        if (x == v[i])
4.        return i;
5.    return -1;
}</pre>
```

- Análise de complexidade para os três casos (melhor, médio e pior):
 - Melhor caso: $\Omega(1)$ ou $O_{\mathsf{melhor}}(1)$
 - Caso médio: $O_{\text{médio}}(n)$
 - Pior caso $O_{pior}(n)$ ou O(n)
 - Dizemos que a complexidade do algoritmo acima é de O(n) (geralmente, o que nos interessa é o pior caso)

- Idealmente, para um algoritmo qualquer de ordenação de vetores com n elementos:
 - Qual a configuração do vetor que você imagina que provavelmente resultaria no melhor tempo de execução?
 - E qual resultaria no pior tempo?
- Outro exemplo de problema: soma da subsequência máxima
 - Dada uma sequência de inteiros (possivelmente negativos)
 a₁, a₂, ..., a_n encontre o valor da máxima soma de quaisquer números de elementos consecutivos
 - Se todos os inteiros forem negativos, o algoritmo deve retornar O como resultado da maior soma
 - Por exemplo, para a entrada -2, 11, -4, 13, -5 e -2, a resposta $(a_2 + a_3 + a_4)$

- Assim como o problema de ordenação, há diversos algoritmos propostos para encontrar a subsequência máxima:
 - Alguns são mostrados abaixo juntamente com seus tempos de execução (n é o tamanho da entrada):

Algoritmo	1	2	3	4
tempo	$O(n^3)$	$O(n^2)$	$O(n \log n)$	O(n)
n = 10	0,00103	0,00045	0,00066	0,00034
n = 100	0,47015	0,01112	0,00486	0,00063
n = 1.000	448,77	1,1233	0,05843	0,00333
n = 10.000	-	111,13	0,68631	0,03042
n = 100.000	-	-	8,0113	0,29832

- Deve-se notar que:
 - Para entradas pequenas, todas as implementações rodam num piscar de olhos
 - Para entradas grandes, o melhor algoritmo é o 4
 - Os tempos não incluem o tempo requerido para leitura dos dados de entrada

• Gráfico (n vs. milisegundos) das taxas de crescimentos dos quatro algoritmos com entradas entre 10 e 100

• Gráfico (n vs. segundos) das taxas de crescimentos dos quatro algoritmos para entradas maiores crescimento

Sumário

- Existem basicamente 2 formas de estimar o tempo de execução de programas e decidir quais são os melhores:
 - Empiricamente
 - Teoricamente
- É desejável e possível estimar qual o melhor algoritmo sem ter que executá-los: função da análise de algoritmos

 Supondo que as operações simples demoram uma unidade de tempo para executar e a linguagem de programação utilizada é a C, considere o programa abaixo para calcular o resultado de

$$\sum_{i=1}^{n} i^3$$

- Início
- declare soma parcial numérico;
- 3 soma_parcial \leftarrow 0; 1 instrução
- para $i \leftarrow 0$ até n faça
- 5 soma_parcial ← soma_parcial+i*i*i;
- escreva(soma_parcial);
- Fim

$$\sum_{i=1}^{n} i^3$$

- 3 1 unidade de tempo
- 4 1 unidade para iniciação de i, n+1 unidades para testar se i=n e n unidades para incrementar i=2n+2
- 5 4 unidades (1 da soma, 2 das multiplicações e 1 da atribuição) executada n vezes (pelo comando "para") = 4n unidades
- 6 1 unidade para escrita
- Custo total: 6n + 4, ou seja, a função é O(n)!
 - Também podemos dizer que a complexidade do algoritmo acima é $\Theta(n)$, já que não há distinção entre o pior e o melhor caso

- Ter que realizar todos esses passos para cada algoritmo (principalmente algoritmos grandes) pode se tornar uma tarefa cansativa
- Em geral, como se dá a resposta em termos do big-oh, costuma-se desconsiderar as constantes e elementos menores dos cálculos
- No exemplo anterior:
 - A linha 3 soma_parcial ← 0 é insignificante em termos de tempo
 - É desnecessário ficar contando 2, 3 ou 4 unidades de tempo na linha 5 soma_parcial ← soma_parcial + i * i * i
 - O que realmente dá a grandeza de tempo desejada é a repetição na linha 4 "para i ← 1 até n faça"

- Regras para o cálculo de execução
 - Repetições: tempo dos comandos dentro da repetição (incluindo testes) vezes o número de vezes que é executada

```
para i \leftarrow 0 até n faça x += 1;
1(ini i)+n(1(++)+1(i< n)+1(x+=))+1(falso) = 3n+2
```

- Regras para o cálculo de execução
 - Repetições: tempo dos comandos dentro da repetição (incluindo testes) vezes o número de vezes que é executada
 - No exemplo abaixo são realizadas 3n+2 operações (uma unidade para iniciar i+n* (incremento na variável i+ uma comparação + atribuição na variável x) + uma última comparação, que é o momento em que a variável i atinge o valor de n), ou seja, o seu custo é O(n)
 - Por mais que o operador += seja equivalente a duas operações (uma atribuição e uma soma), o mesmo é contado como uma unidade

```
para i \leftarrow 0 até n faça x += 1;
```

- Regras para o cálculo de execução
 - Repetições: tempo dos comandos dentro da repetição (incluindo testes) vezes o número de vezes que é executada
 - ullet No exemplo abaixo também são realizadas 3n+2 operações

```
i \leftarrow 0
enquanto i < n faça
x += 1;
i += 1;
```

1(ini i)+n(1(i< n)+2(+=))+1(falso loop)=3n+2

- Regras para o cálculo de execução
 - Repetições aninhadas
 - A análise é feita de dentro para fora
 - Tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições
 - Exemplo de fragmento de código com custo de $O(n^2)$

```
para i \leftarrow 0 até n faça
para j \leftarrow 0 até n faça
k \leftarrow k + 1;
```

```
1 (\text{ini i}) + \text{Ninterno} (1 (\text{i} < n) + 1 (\text{soma k}) + 1 (\text{atribuição k}) + 1 (\text{j} + +)) + 1 (\text{do flaso}) = 4n + 2 \text{ for interno}
1 (\text{ini i}) + \text{Nexterno} (1 (\text{i} < n) + (4n + 2 \text{ do for interno}) + 1 (\text{i} + +)) + 1 (\text{do falso}) = 4n + 4n^2 + 2 \text{ for externo e result final O(n^2) ou Theta (n^2)}
```

- Regras para o cálculo de execução
 - Repetições aninhadas

```
para i \leftarrow 0 até n faça para j \leftarrow 0 até n faça k \leftarrow k+1;
```

- Nas duas últimas linhas do código acima (laço interno), são realizadas 4n + 2 operações: uma atribuição para a variável j + n * (uma atualização de j + mais uma comparação entre i e n + uma atribuição na variável k + uma soma na variável k)
- A operação acima é realizada n vezes, ou seja, o total de operações no fragmento de código acima é $n*(4n+2+2)+2=4n^2+4n+2$

- Regras para o cálculo de execução
 - Comandos consecutivos
 - E a soma dos tempos de cada um, o que pode significar o máximo entre eles
 - O exemplo abaixo é $O(n^2)$ apesar da primeira repetição ser O(n)

```
para i \leftarrow 0 até n faça k \leftarrow 0;
para i \leftarrow 0 até n faça para j \leftarrow 0 até n faça k \leftarrow k+1;
```

 $4n^2+4n+2+3n+2 = 4n^2+7n+4$

- Regras para o cálculo de execução
 - Se... então... senão:
 - Para uma cláusula condicional, o tempo de execução nunca é maior do que o tempo do teste (então) mais o tempo do senão
 - Em outras palavras, a complexidade é comando que leva o maior tempo
 - O exemplo abaixo é O(n) no pior caso e $\Omega(1)$ no melhor caso: se i < j

```
então i \leftarrow i+1 melhor caso omega de 3 --> entra no se Omeg(1)--> constante senão para k \leftarrow 0 até n faça i \leftarrow i * k; pior caso
```

1(se) + 1(ini k) +n(1(k<n)+1(atribição i)+1(i*k)+1(k++))+1(falso)

 Chamadas de sub-rotinas: uma sub-rotina deve ser analisada primeiro e depois ter suas unidades de tempo incorporadas ao programa/sub-rotina que a chamou

 Exercício 1: Estime quantas unidades de tempo são necessárias para rodar o algoritmo abaixo:

```
void função1(int v[], int n) {
2
        int i, j, auxA, auxB;
6
        i=1:
        while (i <= n){
5
               v[i-1] += 0;
6
               i = i + 1:
0
8
        for (i = 0; i < n; i++)
9
                for (j = 0; j < n; j++)
1
                       v[i] += v[i] + i + i;
  1(\text{ini i}) + n(1(\text{i} <= n) + 1(\text{i-}1 \text{ do vet}) + 1(+=) + 1(=) + 1(+)) + 1(\text{falso}) = 5n + 2
  //agui acaba a parte antes do for agora soma com o do for :
  for interno 1(ini j)+n(1(j< n)+1(+=)+2(+)+1(j++))+1(falso) = 5n+2
  for externo 1(ini i)+n(1(i< n)+for interno + 1(i++))+1(falso) = 5n^2+4n+2
  soma o do while com o dp for = 5n^2+9n+4
```

- Resolução do exercício 1:
 - Linha 3: inicialização de i: 1 operação
 - **2** Linhas 4–7: 5n + 1
 - n*(1 comparação + 1 subtração (v[i-1]) + 1 atribuição com soma (+=) em v+1 atribuição e 1 soma em i): 5n operações
 - ullet Última comparação (quando i>n): 1 operação
 - **3** Linhas 9–10 (*loop interno*): 5n+1
 - Inicialização de j: 1 operação
 - n * (1 comparação + 3 operações em A (1 atribuição e duas somas) + 1 incremento em j): 5n operações
 - Última comparação (quando j > n): 1 operação
 - 4 Linhas 8-10: $5n^2 + 4n + 2$
 - Inicialização de i 1 operação
 - n * (1 comparação + 5n + 2 (for interno) + 1 atribuição em i): $5n^2 + 4n \text{ operações}$
 - Última comparação (quando i > n): 1 operação
 - **5** Soma dos itens 1, 2 e 3: $1 + 5n + 1 + 5n^2 + 4n + 2 = 5n^2 + 9n + 4$
 - Complexidade: $O(n^2)$

 Exercício 2: Estime quantas unidades de tempo são necessárias para rodar o algoritmo abaixo:

```
void função2(int n) {
      int i, j, auxA, auxB;
      i=0:
                                3(inicialização var)+(n+1//pg i=0)(4) +1 =4n+8 //while
      auxA = 0;
5
      auxB=0;
                                for interno
                                1+(n+1)(5)+1=5n+7
6
      while (i <= n){
                                1+(n+1)(1+5n+7+1)+1=2+5n^2+9n+5n+9=5n^2+14n+11
0
            auxA += 1;
8
            i = i + 1;
9
1
      for (i = 0; i \le n; i++)
•
            for (j = 0; j \le n; j++)
                 auxB += (auxA - i + i);
12
```

- Resolução do exercício 2:
 - **1** Linhas 3-9: 4n + 8
 - Inicialização de i, auxA, AuxB: 3 operações
 - (n+1) * (1 comparação + 1 atribuição em auxA + 1 atribuição e 1 soma em i): <math>4n+4 operações
 - ullet Última comparação (quando i>n): 1 operação
 - 2 Linhas 11-12 (loop interno): 5n+7
 - Inicialização de j: 1 operação
 - (n+1) * (1 comparação + 3 operações em auxB (1 atribuição e duas somas) + 1 incremento em <math>j): 5n+5 operações
 - Última comparação (quando j > n): 1 operação
 - 3 Linhas 10-12: $5n^2 + 14n + 11$
 - Inicialização de i: 1 operação
 - (n+1) * (1 comparação + 5n + 7 (for interno) + 1 atribuição emi): $5n^2 + 14n + 9 \text{ operações}$
 - Última comparação (quando i > n): 1 operação
 - 4 Soma dos itens 1 e 3 $5n^2 + 18n + 19$
 - Complexidade: $O(n^2)$

Referências I

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Clifford, S. Algoritmos: teoria e prática. Elsevier, 2012.

Horowitz, E., Sahni, S. Rajasekaran, S. Computer Algorithms. Computer Science Press, 1998.

Rosa, J. L. G.
Análise de Algoritmos - parte 1. SCC-201 — Introdução à Ciência da Computação II.
Slides. Ciência de Computação. ICMC/USP, 2016.

Ziviani, N.
Projeto de Algoritmos - com implementações em Java e C++.
Thomson, 2007.