Claims

5

25

30

35

1. A compound of formula (I)

$$L-N \xrightarrow{OR^4} CH_2-N-C \xrightarrow{R^1} R^2 NH_2 \qquad (I),$$

a stereochemically isomeric form thereof, an N-oxide form thereof or a pharmaceutically acceptable acid or base addition salt thereof, wherein R^1 and R^2 taken together form a bivalent radical of formula

wherein in said bivalent radicals one or two hydrogen atoms may be substituted with C_{1-6} alkyl,

R³ is hydrogen or halo;

 R^4 is hydrogen or C_{1-6} alkyl;

20 R⁵ is hydrogen or C₁₋₆alkyl;

L is C₃₋₆cycloalkyl, C₅₋₆cycloalkanone, or C₂₋₆alkenyl, or L is a radical of formula

-Alk-R⁶ (b-1), -Alk-X-R⁷ (b-2), -Alk-Y-C(=O)-R⁹ (b-3), or -Alk-Y-C(=O)-NR¹¹R¹² (b-4),

wherein each Alk is C₁₋₁₂alkanediyl; and

R⁶ is hydrogen, hydroxy, cyano, C₁₋₆alkylsulfonylamino, C₃₋₆cycloalkyl, C₅₋₆cycloalkanone, or Het¹;

 R^7 is hydrogen, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{3-6} cycloalkyl, or Het²;

X is O, S, SO_2 or NR^8 ; said R^8 being hydrogen or C_{1-6} alkyl;

 R^9 is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl, $C_{1\text{-}6}$ alkyloxy or hydroxy;

Y is NR¹⁰ or a direct bond; said R¹⁰ being hydrogen or C₁₋₆alkyl;

R¹¹ and R¹² each independently are hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, or R¹¹ and R¹² combined with the nitrogen atom bearing R¹¹ and R¹² may form a

pyrrolidinyl or piperidinyl ring both being optionally substituted with $C_{1\text{-}6}$ alkyl, amino or mono or di($C_{1\text{-}6}$ alkyl)amino, or said R^{11} and R^{12} combined with the nitrogen bearing R11 and R12 may form a piperazinyl or 4-morpholinyl radical both being optionally substituted with C₁₋₆alkyl; and Het¹ and Het² each independently are selected from furan; furan substituted with C₁₋₆alkyl or halo; tetrahydrofuran; a tetrahydrofuran substituted with C₁₋₆alkyl; a dioxolane; a dioxolane substituted with C₁₋₆alkyl, a dioxane; a dioxane substituted with C₁₋₆alkyl; tetrahydropyran; a tetrahydropyran substituted with C₁₋₆alkyl; pyrrolidinyl; pyrrolidinyl substituted with one or two substituents each independently selected from halo, hydroxy, cyano, or C₁₋₆alkyl; pyridinyl; pyridinyl substituted with one or two substituents each independently selected from halo, hydroxy, cyano, C₁₋₆alkyl; pyrimidinyl; pyrimidinyl substituted with one or two substituents each independently selected from halo, hydroxy, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy, amino and mono and di(C₁₋₆alkyl)amino; pyridazinyl; pyridazinyl substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, C₁₋₆alkyl or halo; pyrazinyl; pyrazinyl substituted with one ore two substituents each independently selected from halo, hydroxy, cyano, C₁₋₆alkyl, C_{1-6} alkyloxy, amino, mono- and di(C_{1-6} alkyl)amino and C₁₋₆alkyloxycarbonyl;

Het1 can also be a radical of formula

5

10

15

20

25

Het¹ and Het² each independently can also be selected from the radicals of formula

 R^{13} and R^{14} each independently are hydrogen or C_{1-4} alkyl.

2. A compound as claimed in claim 1 wherein the -OR⁴ radical is situated at the 3-position of the central piperidine moiety having the trans configuration.

5

- 3. A compound as claimed in claim 1 wherein the -OR⁴ radical is situated at the 4-position of the central piperidine moiety.
- 4. A compound as claimed in any of claims 1 to 3 wherein L is C₃₋₆cycloalkyl or 10 C₂₋₆alkenyl; or L is a radical of formula (b-1), wherein each Alk is C₁₋₆alkanediyl, and R⁶ is hydrogen, hydroxy, cyano, amino, C₁₋₆alkylsulfonylamino, C₃₋₆cycloalkyl or Het1, wherein Het1 is tetrahydrofuran; dioxolane; dioxolane substituted with C₁₋₆alkyl; tetrahydropyran; pyridazinyl substituted with one or more substituents selected from hydroxy, halo and C₁₋₆alkyl; or a radical of formula (c-1), (c-3) or 15 (c-4) wherein R¹³ is C₁₋₄alkyl; or L is a radical of formula (b-2), wherein Alk is $C_{1\text{-}6}$ alkanediyl, X is O, and R^7 is $C_{1\text{-}6}$ alkyl or hydroxy $C_{1\text{-}6}$ alkyl; or L is a radical of formula (b-2), wherein Alk is C₁₋₆alkanediyl, R⁷ is Het² wherein Het² is pyrazinyl substituted with C₁₋₆alkyl, and X is NR⁸ wherein R⁸ is hydrogen or C₁₋₆alkyl; or L is a radical of formula (b-3) wherein Y is a direct bond, and R^9 is C_{1-6} alkyl, hydroxy 20 or C₁₋₆alkyloxy; or L is a radical of formula (b-4) wherein Y is a direct bond, and R¹¹ and R¹² are C₁₋₆alkyl, or R¹¹ and R¹² combined with the nitrogen atom bearing R¹¹ and R¹² form pyrrolidinyl.
- 5. A compound as claimed in claim 4 wherein L is butyl; propyl substituted with methoxy, methylcarbonyl or 2-methyl-1,3-dioxolane; ethyl substituted with 4-methyl-2-pyridazinone or tetrahydropyranyl; or methyl substituted with tetrahydrofuranyl or tetrahydropyranyl.
- 6. A compound as claimed in claim 1 wherein the compound is (trans)-(-)-4-amino-5-chloro-2,3-dihydro-N-[[3-hydroxy-1-(3-methoxypropyl)-4-piperidinyl]methyl]-2,2-dimethyl-7-benzofurancarboxamide; a pharmaceutically acceptable acid addition salt or an N-oxide form thereof.
- 7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound according to any of claims 1 to 6.

- 8. A process for preparing a pharmaceutical composition according to claim 7 wherein a therapeutically active amount of a compound according to any of claims 1 to 6 is intimately mixed with a pharmaceutically acceptable carrier.
- 5 9. A compound according to any of claims 1 to 6 for use as a medicine.
 - 10. A compound of formula (III)

$$H-N \xrightarrow{OR^4} CH_2-N-C \xrightarrow{R^1} R^2 NH_2 \qquad (III);$$

10

a pharmaceutically acceptable acid addition salt thereof or a stereochemically isomeric form thereof, wherein R¹, R², R³, R⁴ and R⁵ are as defined in claim 1 for compounds of formula (I).

- 15 11. A process for preparing a compound of formula (I) wherein
 - a) an intermediate of formula (II) is N-alkylated with an intermediate of formula (III) in a reaction-inert solvent and, optionally in the presence of a suitable base,

$$L-W + H-N \xrightarrow{OR^4} CH_2-N-C \xrightarrow{R^1} R^2$$
(III)
$$R^3$$

20

b) an appropriate ketone or aldehyde intermediate of formula L'=O (IV), said L'=O being a compound of formula L-H, wherein two geminal hydrogen atoms in the C₁₋₁₂alkanediyl moiety are replaced by =O, is reacted with an intermediate of formula (III);

25

$$L'=O + H-N \longrightarrow CH_2-N-C \longrightarrow R^1 \longrightarrow NH_2 \longrightarrow (I)$$

$$(IV) \qquad (III) \qquad R^3$$

c) an intermediate of formula (V) is reacted with an carboxylic acid derivative of formula (VI) or a reactive functional derivative thereof;

d) an intermediate of formula (VII), wherein X is bromo or iodo, is carbonylated in the presence of an intermediate of formula (V) in a reaction-inert solvent in the presence of a suitable catalyst and a tertiary amine, and at a temperature ranging between room temperature and the reflux temperature of the reaction mixture;

wherein in the above reaction schemes the radicals L, R¹, R², R³, R⁴ and R⁵ are as defined in claim 1 and W is an appropriate leaving group;

- e) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into a pharmaceutically acceptable acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.
- 20 12. A process for preparing a compound of formula (III) wherein

5

10

15

25

a) an intermediate of formula (VIII), wherein PG is an appropriate protective group, is reacted with an acid of formula (VI), or an appropriate reactive functional derivative thereof, in a reaction-inert solvent and subsequent deprotection of the protecting group PG yielding compounds of formula (III);

$$PG-N \longrightarrow CH_2-N-H + HO-C \longrightarrow NH_2 \longrightarrow (III)$$

$$(VIII) \qquad (VI) \qquad R^3$$

wherein in the above reaction schemes the radicals L, R¹, R², R³, R⁴ and R⁵ are as defined in claim 1 and W is an appropriate leaving group;

b) or, compounds of formula (III) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (III) is converted into an acid addition salt, or conversely, an acid addition salt of a compound of formula (III) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

5