本节内容

定点数

原码除法运算

本节总览

除法运算的思想

原码除法: 恢复余数法

原码除法: 加减交替法(不恢复余数法)

补码除法: 加减交替法

王道24考研交流群: 769832062

除法运算

手算除法(十进制)

r 进制:
$$K_n K_{n-1} \dots K_2 K_1 K_0 K_{-1} K_{-2} \dots K_{-m}$$

= $K_n \times r^n + K_{n-1} \times r^{n-1} + \dots + K_2 \times r^2 + K_1 \times r^1 + K_0 \times r^0 + K_{-1} \times r^{-1} + K_{-2} \times r^{-2} + \dots + K_{-m} \times r^{-m}$

 $0.211 \div 0.985 = ?$

你怎么这个亚子

_	0.214	
85 J	211	
	000	
	2110	
	1970	
	1400	
	985	
4.	4150	
	3940	
_	210	

0.214 =
$$2 \times 10^{-1} + 1 \times 10^{-2} + 4 \times 10^{-3}$$

0.985 = 985×10^{-3}

$$0.985 \times 0.214 = (985 \times 2 \times 10^{-4}) + (985 \times 1 \times 10^{-5}) + (985 \times 4 \times 10^{-6})$$

$$=0.1970 + 0.00985 + 0.00394$$

$$0.211 = 0.985 * 0.214 + 0.000210$$

举个票子

手算除法 (二进制)

符号位

绝对值

两个正数相除

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,求x/y

 $(0.1011 \times 2^4) \div (0.1101 \times 2^4)$

$$\begin{array}{c|c} 0.1101 \\ \hline 01101 & 0.1101 \\ \hline 00000 & 0.0000 \\ \hline 10110 & 0.1011 \\ \hline 01101 & 0.01010 \\ \hline 01101 & 0.010010 \\ \hline 01010 & 0.000101 \\ \hline 00000 & 0.00001010 \\ \hline 01101 & 0.0001010 \\ \hline 00000 & 0.0000000 \\ \hline 10100 & 0.00001101 \\ \hline 01101 & 0.00001101 \\ \hline 01101 & 0.00000111 \\ \hline \end{array}$$

规律:忽略小数点,每确定一位商,进行一次减法,得到4位余数,在余数末尾补0,再确定下一位商。确定5位商即可停止(机器字长为5位)

x/y结果为0.1101,余数为0.0000111

穿越:运算器的基本组成

运算器

运算器:用于实现算术运算(如:加减乘除)、逻辑运算(如:与或非)

ACC: 累加器,用于存放操作数,或运算结果。

MQ: 乘商寄存器,在乘、除运算时,用于存放操作数或运算结果。

X: 通用的操作数寄存器,用于存放操作数

ALU: 算术逻辑单元,通过内部复杂的电路实现算数运算、逻辑运算

Accumulator

Multiple-Quotient Register

Arithmetic and Logic Unit

		- 5/1			7.7/
<u> </u>		加	减	乘	除
	ACC	被加数、和	被减数、差	乘积高位	被除数、余数
	MQ			乘数、乘积低位	商
0	X	加数	减数	被乘数	除数
			-7/1/	-///	-///

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 手算时,每一 位商取0/1 是通 01101 / 01011 00000 过判断当前余 10110 数和除数的大 01101 小确定的 10010 01101 01010 00000 10100 01101 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = x_s⊕y_s

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\not=\downarrow} \rightarrow ACC$ 01101 01011+10011 = 11110 01010 00000 10100 01101 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\nmid h} \rightarrow ACC$ 01101 01011+10011 = 1111001010 00000 相减结果 10100 是个负数, 01101 说明应该 0111 上商0

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位= $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

	0.1101	
01101	/ 01011	
	00000	恢复余数:
	10110	(ACC)+(除数)→ACC
	01101	(ACC) (例数) ZACC
	10010	
	01101	$(ACC)+[- y]_{\nmid h} \rightarrow ACC$
	01010	01011+10011 = 1 1110
	00000	
	10100	(ACC)+ $[y]_{\nmid h} \rightarrow$ ACC
	01101	1 1110+01101 = 0 1011
	0111	

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位= $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位=x_s⊕y_s

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

 $\begin{array}{r}
0.1101 \\
01011 \\
00000 \\
\hline
10110 \\
01101 \\
\hline
01010 \\
01101 \\
\hline
01010 \\
00000 \\
\hline
10100 \\
01101 \\
\hline
01111
\end{array}$

ACC、MQ整体 "逻辑左移"。 ACC高位丢弃, MQ低位补0

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\not=\downarrow} \rightarrow ACC$ 01101 10110+10011 = **0**1001 01010 00000 10100 01101 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\nmid h} \rightarrow ACC$ 01101 10110+10011 = **0**1001 01010 00000 相减结果 10100 是个正数, 01101 上商1是 0111 没错滴~

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 10110 10010 01101 01010 00000 10100 01101 01111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = x_s⊕y_s

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\not=\downarrow} \rightarrow ACC$ 01101 10010+10011 = **0**0101 01010 00000 10100 01101 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\nmid h} \rightarrow ACC$ 01101 10010+10011 = **0**0101 01010 00000 相减结果 10100 是个正数, 01101 上商1是 0111 没错滴~

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01011 00000 10110 10110 01101 01010 01010 00000 10100 01101 01111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = x_s⊕y_s

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\not=\downarrow} \rightarrow ACC$ 01101 01010+10011 = 1110101010 00000 10100 01101 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\not=\downarrow} \rightarrow ACC$ 01101 01010+10011 = 1110101010 00000 相减结果 10100 是个负数, 01101 不该上商1 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\nmid k}=0.1101$, $[-|y|]_{\nmid k}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 恢复余数: 10110 (ACC)+(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\not=\downarrow} \rightarrow ACC$ 01101 01010+10011 = 1110101010 00000 $(ACC)+[|y|]_{\nmid h} \rightarrow ACC$ 10100 **1**1101+01101 = **0**1010 01101 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位=x_s⊕y_s

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01011 000000 10110 10010 01101 01010 00000 10100 01101 01111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}}=0.1101$, $[-|y|]_{\frac{1}{2}}=1.0011$

符号单独处理:符号位 = $x_s \oplus y_s$

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

0.1101 01101 / 01011 00000 求余数: 10110 (ACC)-(除数)→ACC 01101 10010 $(ACC)+[-|y|]_{\not=\downarrow} \rightarrow ACC$ 01101 10010+10011 = 00111 01010 00000 相减结果 10100 是个正数, 01101 应上商1 0111

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\begin{subarray}{l} |x| = 0.1101 \end{subarray}}$, $[-|y|]_{\begin{subarray}{l} |x| = 1.0011 \end{subarray}}$

符号单独处理:符号位=x_s⊕y_s

数值位取绝对值进行除法计算

实现方法:上商0/1,得到余数,余数末尾补0

计算机很傻,会先默认上商1,如果 搞错了再改上商0。并"恢复余数"

王道24考研交流群: 769832062

原码除法:恢复余数法(手算)

符号位

绝对值

我有一个新思路 能否不恢复余数?

符号位与数值位分开处理

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\begin{subarray}{l} |x| = 0.1101 \end{subarray}}$, $[-|y|]_{\begin{subarray}{l} |x| = 0.1101 \end{subarray}}$, $[-|y|]_{\begin{subarray}{l} |x| = 0.1101 \end{subarray}}$

左移n次,上商n+1次 最后一次上商余数不左移

原码除法:恢复余数法(手算)

我有一个新思路

能否不恢 复余数?

符号位

绝对值

符号位与数值位分开处理

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码恢复余数法求x/y

$$|x|=0.1011$$
, $|y|=0.1101$, $[|y|]_{\frac{1}{7}}=0.1101$, $[-|y|]_{\frac{1}{7}}=1.0011$

若余数为负,则可直接商0,并让余数左移1位再加上|除数|

原码除法:加减交替法 又名:不恢 复余数法

符号位与数值位分开处理

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码加减交替除法求x/y

|x|=0.1011, |y|=0.1101, $[|y|]_{\frac{1}{2}h}=0.1101$, $[-|y|]_{\frac{1}{2}h}=1.0011$

若余数为负, 则可直接商 0, 让余数 左移1位再 加上|除数|, 得到下一个 新余数

若余数为正, 则商1,让 余数左移1 位再减去 |除数|,得 到下一个新 余数

、数为负 ,	被	皮除数/余数	数	商	ACC	MQ
J直接商 让余数	$+[- y]_{ eq h}$	0.1011 1.0011			01011	00000
多1位再		1.1110		0	11110	00000
二 除数 , 引下一个	左移 +[y] _补	1.1100			11100	00000
⋛数		0.1101	`	01	01001	00001
、数为正 ,	左移	1.0010	C		10010	00010
、致/⅓止,/ ਗ੍ਰੀ,让	+[- y] _补	1.0011	<u>,</u> 0			
女左移1		0.0101		011	00101	00011
事减去	左移 +[- y] _补	0.101 0 1.0011	若余数为负,		01010	00110
数 ,得	A LIPIN	1.1101	一 需商0,并	0110	11101	00110
女	左移	1.1010	+[[y] _补 得到 正确余数		11010	01100
	+[火]补	0.1101 0.0111		01101	00111	01101
王道24考研交流		0.0111		01101		1 3 3

 $Q_s = x_s \oplus y_s = 0 \oplus 0 = 0$ 得x/y=+0.1101余0.0111×2⁻⁴

注: 余数的正负性与商相同

恢复余数法: 当余数为负时商0, 并+|除数|,再左移,再-|除数|

加减交替法: 当余数为负时商0, 并左移,再+|除数|

原码除法:加减交替法 又名:不恢 复余数法

符号位与数值位分开处理

设机器字长为5位(含1位符号位,n=4),x=0.1011,y=0.1101,采用原码加减交替除法求x/y

|x|=0

=0.1011 , [$y = 0.1101, [y]_{1/2} = 0$	$[- y]_{\nmid h} = 1.0011$	$Q_{ m s} = x_{ m s}$	$\oplus y_s = 0 \oplus 0 = 0$
	被除数/余数	商		=+0.1101
	0.1011		余0.0	111×2^{-4}
+[- y] _补	1.0011		→ ロケ 水と ・ ロケ 水と ・	
	1 1110	. 0	被除数- 除数 =新余数	N

+[- y] _补	1.0011		
	1.1110		0
左移	1.1100		
$+[y]_{i}$	0.1101		
	0.1001	_	01
左移	1.0010		
⊥ Γ (ω)1	1 0011		

·[- y]*	1.0011	700	
All the state of t	0.0101		011
- TH	0.4040		

左移 +[- y] _补	0.1010 1.0011	若余数为负,	
	1.1101	一 需商0,并	0110
左移	1.1010	+[y] _补 得到 正确余数	
± E(0.11	0 1101	业 侧	

0.1101

01101 0.0111

加/减n+1次,每次加减确定一位商; 左移n次(最后一次加减完不移位) 最终可能还要再多一次加

王道考研/CSKAOYAN.COM

王道24考研交流群: 769832062

+[|y|]补