Predicting Cardiovascular Disease

•••

Jonathan Murthy

Research Question

What model both explains the most variance and can most accurately predict whether or not a patient will have

Cardiovascular disease?

The Data

Source: https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

Features: Age (cont), Gender (cat), Height cm (cont), Weight kg (cont), Blood Pressure (cont), Cholesterol(cat), Glucose (cat), Smoker (cat), Alcohol use (cat), Active (cat)

Target: Cardio (binary)

Cleaning the Data

- Outliers

- Blood Pressure

- Weight and Height

Exploratory Data Analysis

Feature Selection

- Full Feature Set
- SelectKBest
 - K = 10
- PCA
 - $n_{\text{components}} = 10$

Logistic Regression

- Default Parameters
- Clean Data:
 - All features
 - R-squared: 0.7239
 - F1: 0.7029
 - PCA
 - R-squared: 0.7290
 - F1: 0.7076
 - KBest
 - R-squared: 0.7284
 - F1: 0.7080

- Default Parameters
- Full Data:
 - All features
 - R-squared: 0.7216
 - F1: 0.7097
 - PCA
 - R-squared: 0.7217
 - F1: 0.7065
 - KBest
 - R-squared: 0.7243
 - F1: 0.713

Random Forest

- Default Parameters
- Clean Data:
 - All features
 - R-squared: 0.6981
 - F1: 0.6786
 - PCA
 - R-squared: 0.6913
 - F1: 0.6736
 - KBest
 - R-squared: 0.6983
 - F1: 0.6793

- Default Parameters
- Full Data:
 - All features
 - R-squared: 0.6976
 - F1: 0.6842
 - PCA
 - R-squared: 0.6989
 - F1: 0.6834
 - KBest
 - R-squared: 0.6955
 - F1: 0.6835

KNN

- N_neighbors = 5, weights= 'distance'
- Clean Data:
 - All features
 - R-squared: 0.6799
 - F1: 0.6674
 - PCA
 - R-squared: 0.6844
 - F1: 0.6761
 - KBest
 - R-squared: 0.6814
 - F1: 0.6707

- N_neighbors = 5, weights= 'distance'
- Clean Data:
 - All features
 - R-squared: 0.6853
 - F1: 0.66683574
 - PCA
 - R-squared: 0.6853
 - F1: 0.6804
 - KBest
 - R-squared: 0.6817
 - F1: 0.6775

Gradient Boost Classifier

- N_estimators: 200
- Max_depth: 2
- Loss function: deviance
- Clean Data:
 - All features
 - R-squared: 0.7333
 - F1: 0.7202
 - PCA
 - R-squared: 0.7326
 - F1: 0.7202
 - KBest
 - R-squared: 0.7380
 - F1: 0.7245

- N_estimators: 200
- Max_depth: 2
- Loss function: deviance
- Clean Data:
 - All features
 - R-squared: 0.7369
 - F1: 0.7268
 - PCA
 - R-squared: 0.7336
 - F1: 0.7213
 - KBest
 - R-squared: 0.7343
 - F1: 0.7280

Conclusion

The Gradient Boosting Classifier explained the most variance in the dataset as well as having the highest fl score.

Some of the other models were overfitting.

Practical Use

- Can be used to classify whether or not a patient is at risk of cardiovascular disease

Shortcomings

There could be more interesting features for predicting cardiovascular disease (e.g. socioeconomic data, time series data, geographical/regional data, education, more lab tests)

- Computational limitations. More powerful computation could allow for more observations