Confusion Matrix

A confusion matrix is a table used to evaluate the performance of a classification model. It provides a detailed breakdown of correct and incorrect predictions for each class.

		Predicted class		
		Classified positive	Classified negative	
Actual class	Actual positive	TP	FN	TPR: TP TP + FN
	Actual negative	FP	TN	FPR: TN TN + FP
		Precision: TP TP + FP	Accuracy: TP + TN TP + TN + FP + FN	

Where:

- TP (True Positives): Correctly predicted positive cases
- TN (True Negatives): Correctly predicted negative cases
- FP (False Positives): Incorrectly predicted as positive (Type I error)
- FN (False Negatives): Incorrectly predicted as negative (Type II error)

Key Benefits:

- Shows exactly where the model is making mistakes
- Reveals class-specific performance patterns
- Foundation for calculating other metrics
- Helps identify if model has bias toward certain classes

Precision, Recall, F1-Score

Precision

Formula: TP / (TP + FP)

Precision answers: "Of all the positive predictions made, how many were actually correct?"

- High precision = Low false positive rate
- Critical when the cost of false positives is high
- Example: Email spam detection (you don't want important emails marked as spam)

Recall (Sensitivity)

Formula: TP / (TP + FN)

Recall answers: "Of all the actual positive cases, how many did we correctly identify?"

- High recall = Low false negative rate
- Critical when the cost of missing positives is high
- Example: Medical diagnosis (you don't want to miss actual diseases)

F1-Score

Formula: 2 × (Precision × Recall) / (Precision + Recall)

The F1-score is the harmonic mean of precision and recall:

- Balances both precision and recall
- Useful when you need a single metric that considers both
- Particularly valuable with imbalanced datasets
- Ranges from 0 to 1, where 1 is perfect

Precision-Recall Tradeoff: There's typically an inverse relationship between precision and recall. Adjusting the classification threshold can shift this balance:

- Lower threshold → Higher recall, lower precision
- Higher threshold → Higher precision, lower recall

When Accuracy is Misleading

Accuracy = (TP + TN) / (TP + TN + FP + FN) = Correct Predictions / Total Predictions

Problem Scenarios:

1. Biased Datasets

Example: Disease detection where 95% of patients are healthy

- A model that always predicts "healthy" achieves 95% accuracy
- But it has 0% recall for actually detecting the disease
- Accuracy masks the model's complete failure at its primary task

2. Unequal Misclassification Costs

Example: Fraud detection

- Missing fraud (false negative) costs much more than flagging legitimate transaction (false positive)
- High accuracy might hide poor performance on the critical minority class

3. Multi-class Imbalance

Example: Text classification with 10 categories where one category represents 80% of data

- Model might perform well on the dominant class but poorly on others
- Overall accuracy appears good but specific class performance is poor

4. Context-Dependent Performance Requirements

Example: Medical screening vs. final diagnosis

- Screening: High recall crucial (don't miss cases)
- Final diagnosis: High precision crucial (don't overtreat)
- Same accuracy could represent very different utility

Better Alternatives:

- Use precision, recall, and F1-score for imbalanced datasets
- Consider area under ROC curve (AUC-ROC) for threshold-independent evaluation
- Examine per-class metrics separately
- Use domain-specific cost functions when misclassification costs vary
- Consider balanced accuracy: (Sensitivity + Specificity) / 2