

DESCRIPTION:

The BT134-600D SCR series with the parallel resistor between Gate and Cathode are especially recommended for use on straight hair, igniter, anion generator, etc.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	4	Α
V _{DRM} /V _{RRM}	600/800	V

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40 - 150	$^{\circ}$
Operating junction temperature range		Tj	-40 - 125	$^{\circ}$
Repetitive peak off-state voltage(T _j =25℃)		V _{DRM}	600/800	V
Repetitive peak reverse voltage(T _j =25℃)		V _{RRM}	600/800	V
Non repetitive surge peak Off-state voltage		V _{DSM}	V _{DRM} + 100	V
Non repetitive peak reverse voltage		VRSM	V _{RRM} + 100	V
RMS on-state current	TO-251 (T _C =100°C) TO-220A(Non-Ins)/ TO-220C(T _C =103°C) TO-202-3 (T _C =95°C) SOT-82 /TO-126 (T _C =97°C) TO-92 (T _C =50°C)	I _{T(RMS)}	4	A

Non repetitive surge peak on-sta (full cycle, F=50Hz)	I _{TSM}	25	А	
I ² t value for fusing (tp =10ms)		l ² t	3.1	A^2s
Critical rate of rise of on-state current ($I_G = 2 \times I_{GT}$)	I - II -III	- dl/dt	50	A/µs
	IV		10	
Peak gate current	I _{GM}	2	Α	
Average gate power dissipation		P _{G(AV)}	0.5	W
Peak gate power		P _{GM}	5	W

ELECTRICAL CHARACTERISTICS (T_j=25 °C unless otherwise specified)

Symbol	Test Condition Quadrar	Quadrant		Value			Hoit
		Quaurant		Т	D	E	Unit
lgт	V _D =12V R _L =33Ω	I - II -III	MAX	5	5	10	mA
		IV		5	10	25	
V _{GT}		ALL	MAX		1.3		V
V _{GD}	$V_D=V_{DRM}T_j=125$ °C RL=3.3KΩ	ALL	MIN	0.2		V	
1.	I _G =1.2I _{GT}	I -III-IV	MAX	8	10	20	mA
lL		II		12	15	35	
Ін	I _T =100mA		MAX	5	10	20	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	20	50	100	V/µs
(dV/dt)c	(dl/dt)c=1.1A/ms T _j =125℃		MIN	0.5	1	5	V/µs

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{TM} =5A tp=380μs	T _j =25℃	1.7	V
IDRM	V _D =V _{DRM} V _R =V _{RRM}	T _j =25℃	5	μA
I _{RRM}		T _j =125℃	0.5	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th(j-c)}	junction to case(AC)	TO-251	3.7	
		TO-220A(Non-Ins)/ TO-220C	3.1	°C/W
		TO-202-3	4.5	
		SOT-82/TO-126	4.1	
		TO-92	11.2	

FIG.1: Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms and corresponding value of I^2t ($I - II - III : dI/dt < 50A/\mu s$; $IV : dI/dt < 10A/\mu s$)

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current versus junction temperature

FIG.7: Relative variations of holding current versus junction temperature

FIG.8: Relative variations of latching current versus junction temperature

