An Incremental Approach to Model Checking Progress Properties

Paper authors: Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, Yan Zhang Slides by Enrico Magnago
April 10, 2022

Context, problem and generic solution

Context

- Finite state discrete transition system: $S := (\bar{i}, \bar{x}, I(\bar{x}), T(\bar{i}, \bar{x}, \bar{x}')).$
- Set of fairness conditions $\mathcal{B} := \{B_1(\bar{x}), \dots, B_l(\bar{x})\}$

Problem

Is the language of S empty? Is there a fair path?

Solution

Look for a "lasso" shaped path.

Fair: overview

Iterate the following steps:

- 1. Obtain a set of states that together satisfy the fairness conditions \mathcal{B} , *skeleton*.
- 2. Check if from the initial states it is possible to reach one of the states of the *skeleton*, (stem).
- 3. Each state of the *skeleton* can reach the following, for some order, (loop).

If we find such *skeleton* states, the stem and the loop, their concatenation is a fair path of S.

Learning

1: find skeleton states

SAT obtain set of states,

UNSAT no fair states then no fair path in S;

2: find stem

SAT trace leading to one of the skeleton states,

UNSAT learn reachability predicate P that separates initial states from current *skeleton* states; collect them into a set \mathcal{P} .

3: find loop

SAT obtain loop between the skeleton states,

UNSAT learn predicate W (wall): all states in the loop must agree on the truth assignment of W; collect them into a set W.

1. Find skeleton states

1. Basic formulation

- For each fairness condition $B \in \mathcal{B}$ create a copy \bar{x}_B of \bar{x} ;
- For each wall $W \in \mathcal{W}$ add a boolean variable c_W : choose the side of the wall.

Every model of the following formulae provides a set of *skeleton* states:

$$\bigwedge_{B \in \mathcal{B}} \left[B(\bar{x}_B) \wedge \bigwedge_{R \in \mathcal{R}} R(\bar{x}_B) \wedge \bigwedge_{W \in \mathcal{W}} (c_W \to W(\bar{x}_B)) \wedge (\neg c_W \to \neg W(\bar{x}_B)) \right]$$

1. Optimisation a: reduce number of skeleton states

Let $j: \mathcal{B} \to \{1 \dots |\mathcal{B}|\}$ map from fairness condition to index.

$$\begin{split} \bigwedge_{B \in \mathcal{B}} \left[B(\bar{x}_{j(B)}) \wedge \bigwedge_{R \in \mathcal{R}} R(\bar{x}_{j(B)}) \wedge \\ & \bigwedge_{W \in \mathcal{W}} (c_W \to W(\bar{x}_{j(B)})) \wedge (\neg c_W \to \neg W(\bar{x}_{j(B)})) \right] \end{split}$$

- The map decides which fairness conditions should be satisfied by the same skeleton state.
- If the map is bijective this formula is equivalent to the previous one.

1. Optimisation b: skeleton states with at least K successors and predecessors

- ullet Reduce number of potential skeletons by considering only those with at least K predecessors and successors;
- all states should remain within the same walls:
- ullet the 2K long unrolling should be either loop-free or loops on the skeleton-state.

2. Find stem

2. Possible formulations

1. Let s_0 be a state of the *skeleton*:

$$reach(S, \bigwedge_{R \in \mathcal{R}} R(\bar{x}), I, s_0)$$

- 2. Repeat 1 for all states in the skeleton;
- 3. Check if the disjunction of all states in the *skeleton* is reachable.

3. Find loop

3. Naive formulation

Let \oplus_n be the sum modulo n.

Simple reachability

$$reach(S, \top, s_i, s_{i \oplus_n 1})$$

if UNSAT, we learn an inductive proof P:

- $s_i \rightarrow P$,
- $P \wedge T \rightarrow P'$,
- $P \to \neg s_{i \oplus_n 1}$

P is a wall: can cross only once from $\neg P$ to P.

3. Consider walls

Create C as follows

for every $W \in \mathcal{W}$ (W is inductive)

- if no W-skeleton exists, add $\neg W'$ to \mathcal{C} ;
- if no $\neg W$ -skeleton exists, add W to \mathcal{C} ;
- otherwise add $W' \to W$ to \mathcal{C} .

Considers only one wall at a time, doesn't try to exclude regions defined by multiple walls.

Cycle query becomes

$$reach(S, \bigwedge_{R \in \mathcal{R}} R \land \bigwedge_{C \in \mathcal{C}} C, s_i, s_{i \oplus_n 1})$$

3. Special case: single state skeleton

• Need to find a non-trivial loop: successor of s_0 can reach s_0 .

$$reach(S, \bigwedge_{R \in \mathcal{R}} R \land \bigwedge_{C \in \mathcal{C}} C, post(S, s_0), s_0)$$

• If we get a proof P, we also need to remove s_0 from the possible skeletons, get unsat core $d \subseteq s_0$ of:

$$s_0 \wedge \neg P \wedge T \wedge \bigwedge_{R \in \mathcal{R}} R \wedge \bigwedge_{C \in \mathcal{C}} C \wedge \neg P'$$

- The wall associated with P now has 2 different sides: P, $\neg P \land \neg d$.
- ullet Otherwise use "optimisation" 1.b: skeleton states in 2K long path.

Extra optimisations

Extra: minimise unreachability proofs

- IC3 proofs are in CNF: large;
- Strengthening weakening loop: reduce number of literals and clauses (MIC algorithm);
- Obtain shorter, more informative proof.

Extra: skeleton-independent proofs

Pick a predicate l (from S), l is a wall if the following formula is UNSAT:

$$l \wedge \bigwedge_{R \in \mathcal{R}} R \wedge \bigwedge_{C \in \mathcal{C}} C \wedge T \wedge \neg l'$$

Motivating example

- Bit-counter with output bit o,
- o becomes \top when all bits are 1 and then remains \top ,
- fairness: $GF \neg o$.

Further generalisation of Infinite

Traces

Reachability between fairness conditions

Re-formulation using reachability

For all $0 \le i < |\mathcal{B}|$ there is no state s in the set of fair states B_i such that s can not reach any of the fair states in the next fair condition $B_{i \oplus_{|\mathcal{B}|} 1}$:

$$\forall i.0 \leq i < |\mathcal{B}| \ \forall s_0 \ \exists s_1 : B_i(s_0) \to reach(S, P, s_0, s_1) \land B_{i \oplus_{|\mathcal{B}|} 1}(s_1)$$

for some predicates ${\cal P}.$

P can include \mathcal{R} and \mathcal{W} .