

Flavor #2

Let X(train) and	$y^{(\text{train})}$ be the training set. and $y^{(\text{train})}$ into $[X^{(\text{subtrain})}, X^{(\text{valid})}]$ and $(y^{(\text{subtrain})}, y^{(\text{valid})})$
respectively	
Run early stoppi	ng (algorithm 7.1) starting from random θ using $X^{(subtrain)}$ and using data and $X^{(valid)}$ and $y^{(valid)}$ for validation data. This
updates 0.	
$\epsilon \leftarrow J(\theta, X^{(anbt)})$	(subtrain) $y(\text{subtrain}) > \epsilon do$
	ain) and $y(train)$ for n steps.
end while	
	900 0* away
dontth	10w 0* away
Woight sh	arine - > Same
- 100	
O	
	B 0 6 10 0
66	0 0-0 0 0 0
6	0 1 0
G	
C	0/3
- 6	0
	MS le also a repulsizar
	This is also a repulsizar over fitting discont happen
(adresser	ial)
1 1	Van Jaa'Mim
2 TO WEB	S-20 la
	Szegede
2014	XX rightly classified

goodfellow 2014, explaining adversial -- a composition of functions but relu type functions composed can be incredibly linear most of the time

a heavily linear function will look like a lin. comb. of weights

a close neibourhood can be W.(x + epsilon) (x,w and e are vectors)

	It works for not all examples of is normally hieraurise before also NOT comparing with linear polynomial & exponential; we are just say in linearity itself makes values grow! Compared to sigmoid etc.
	(we are also NOT) compaine with linear
	polynomial l'exponential; we are just saying
	linearity itself makes values grows
	Compared to sigmoid etc.
	SVMs are also linear but have love decision
	SVMs one also lives but have love decision supposes, so her don't face this problems.
	V
	=> Training on adversarial examples makes model More robust
	U More Robust
_	