Knowledge Discovery and Data Mining

Unit #5

Sajjad Haider Spring 2010

Acknowledgement

- Most of the slides in this presentation are taken from course slides provided by
 - Han and Kimber (Data Mining Concepts and Techniques) and
 - Tan, Steinbach and Kumar (Introduction to Data Mining)

Sajjad Haider Spring 2010

Accuracy or Error Rates

- Partition: Training-and-testing
 - use two independent data sets, e.g., training set (2/3), test set(1/3)
 - used for data set with large number of examples

ajjad Haider Spring 2010

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

a: TP (true positive) b: FN (false negative) c: FP (false positive) d: TN (true negative)

Sajjad Haider Spring 2010 4

N/lotrice tor	Dortormanco	Evaluation
IVIELLICS TOT	Performance	Evaluation

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

• Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Sajjad Haider

Spring 2010

5

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Sajjad Haider

Spring 2010

Cost Matrix

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Sajjad Haider Spring 2010

Cost Matrix (Cont'd)

	PREDICTED CLASS			
		True	False	
A CTUAL	True	10	5	
ACTUAL CLASS	False	1	14	

		PREDICTED CLASS		
			True	False
ACTUAL	True	10	3	
ACTU/ CLAS	S	False	3	14

	PREDICTED CLASS		
		True	False
ACTUAL	True	10	6
CLASS	False	0	14

All three confusion matrices have the same accuracy value, i.e., 24 / 30

What if the cost of misclassification is not the same for both type of errors?

Sajjad Haider Spring 2010

Cost Matrix (Cont'd)

	PREDICTED CLASS		
ACTUAL CLASS		True	False
	True	10	5x5
	False	1	14

	PREDICTED CLASS		
		True	False
ACTUAL	True	10	3x5
CLASS	False	3	14

	PREDICTED CLASS		
		True	False
ACTUAL	True	10	6x5
ACTUAL CLASS	False	0	14

Suppose the cost of misclassifying True as False is 5 while the cost of misclassifying False as True is 1.

Accuracy values are: 24/50, 24/42, 24/54

Sajjad Haider

Spring 2010

0

Cost Matrix (Cont'd)

	PREDICTED CLASS		
		True	False
A CTITAL	True	10	5x4
ACTUAL CLASS	False	1	14

	PREDICTED CLASS		
		True	False
ACTUAL	True	10	3x4
CLASS	False	3	14

	PREDICTED CLASS		
		True	False
ACTUAL CLASS	True	10	6x4
	False	0	14

Suppose the cost of misclassifying True as False is **4** while the cost of misclassifying False as True is **1**.

Accuracy values are: 24/45, 24/39, 24/48

Sajjad Haider

Spring 2010

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$
Spring 2010

Sajjad Haider

11

Recall and Precision

Actual	Prediction
Т	Т
Т	F
F	T
F	F
F	Т
Т	Т
Т	T
Т	F
F	Т
Т	Т

Sajjad Haider

Spring 2010

_		_	
Recal	land	Dro	ricion
necai	ıanu		-131011

Actual	Prediction
Т	Т
Т	F
F	Т
F	F
F	Т
Т	Т
Т	Т
Т	F
F	Т
Т	Т
6 " 111 11	•

• Recall = 4 / 6

Sajjad Haider

Spring 2010

13

Recall and Precision

	1	
Actual	Prediction	
Т	Т	
Т	F	
F	T	
F	F	
F	Т	
Т	Т	
Т	Т	
Т	F	
F	Т	
Т	Т	
	•	

Sajjad Haider

- Recall = 4 / 6
- Precision = 4 / 7
- F-Measure = 8 / 13

Spring 2010

Terminology

- True Positive: The number of positive examples correctly predicted by the classification model.
- False Negative: The number of positive examples wrongly predicted as negative by the classification model.
- False Positive: The number of negative examples wrongly predicted as positive by the classification model.
- True Negative: The number of negative examples correctly predicted by the classification model.

Sajjad Haider Spring 2010

Terminology (Cont'd)

- The true positive rate (TPR) or sensitivity is defined as TPR = TP / (TP + FN).
- The true negative rate (TNR) or specificity is defined as TNR = TN / (TN + FP).
- The false positive rate (FPR) is defined as FPR
 = FP / (TN + FP).
- The false negative rate (FNR) is defined as FNR
 = FN / (TP + FN).

Sajjad Haider Spring 2010 16

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Remember that TPR represents "sensitivity" while FPR represents "100 – specificity".

Sajjad Haider Spring 2010 17

How to Construct an ROC curve

P(+ A)	True Class
0.95	+
0.93	+
0.87	-
0.85	-
0.85	-
0.85	+
0.76	-
0.53	+
0.43	-
0.25	+
	0.95 0.93 0.87 0.85 0.85 0.76 0.53 0.43

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

Sajjad Haider Spring 2010

Lift and Gain Charts

- Very commonly used in the marketing research.
- **Lift** is a measure of the effectiveness of a predictive model calculated as the ratio between the results obtained with and without the predictive model.
- A lift chart consists of a lift curve and a baseline
- The greater the area between the lift curve and the baseline, the better the model

Sajjad Haider Spring 2010 2

Example

http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html

Using the response model
 P(x)=100-AGE(x) for
 customer x and the data
 table, construct the
 cumulative gains and lift
 charts. Ties in ranking should
 be arbitrarily broken by
 assigning a higher rank to who
 appears first in the table.

Customer Name	Height	Age	Actual Response
Alan	70	39	N
Bob	72	21	Y
Jessica	65	25	Y
Elizabeth	62	30	Y
Hilary	67	19	Y
Fred	69	48	N
Alex	65	12	Y
Margot	63	51	N
Sean	71	65	Y
Chris	73	42	N
Philip	75	20	Y
Catherine	70	23	И
Amy	69	13	N
Erin	68	35	Y
Trent	72	55	N
Preston	68	25	И
John	64	76	И
Nancy	64	24	Y
Kim	72	31	И
Laura	62	29	Y

Sajjad Haider

Spring 2010

Example: Steps 1 & 2

- 1. Calculate P(x) for each person x
- 2. Order the people according to rank P(x)

Customer Name	P(x)	Actual Response
Alex	88	Y
Amy	87	N
Hilary	81	Y
Philip	80	Y
Bob	79	Y
Catherine	77	N
Nancy	76	Y
Jessica	75	Y
Preston	75	N
Laura	71	Y
Elizabeth	70	Y
Kim	69	И
Erin	65	Y
Alan	61	И
Chris	58	N
Fred	52	N
Margot	49	N
Trent	45	N
Sean	35	Y
John	24	И

Sajjad Haider

Spring 2010

Example: Step 3

- Calculate the percentage of total responses for each cutoff point
 - Response Rate = Number of Responses / Total Number of Responses (10)

Total Customers Contacted	Number of Responses	Response Rate
2	1	10%
4	3	30%
6	4	40%
8	6	60%
10	7	70%
12	8	80%
14	9	90%
16	9	90%
18	9	90%
20	10	100%

Sajjad Haider

Spring 2010

Exercise

• Draw gains and lift charts.

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

Sajjad Haider

Spring 2010