Department of Computer Science University of Bristol

COMS30030 Image Processing and Computer Vision

Lecture 11

Basics of Classical Object Detection

Example Algorithm: Viola & Jones' Real-time Method (2001)

Training Data

Positive Samples (e.g. FACE) ... $(x_i, y_i = 1), w_i = 1$

Source: MDPI

Negative Samples (e.g. NO-FACE) ... $(x_i, y_i = 0)$, $w_i = 1$

Training Data

Positive Samples (e.g. FACE) ... $(x_i, y_i = 1), w_i = 1$

Source: MDPI

Negative Samples (e.g. NO-FACE) ... $(x_i, y_i = 0)$, $w_i = 1$

Overview of Adaboost

Adaboost Algorithm (from Viola & Jones 2001)

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}$, $\frac{1}{2l}$ for $y_i = 0$, 1 respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_i which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.
- Choose the classifier, h_t, with the lowest error ε_t.
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

Adaboost Algorithm (from Viola & Jones 2001)

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}$, $\frac{1}{2l}$ for $y_i = 0$, 1 respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_i which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.
- Choose the classifier, h_t, with the lowest error ε_t.
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

Visualisation

Performance Considerations (Training or Testing)

Performance Considerations (Training or Testing)

Example Algorithm: Viola & Jones' Real-time Method (2001)

Conclusion

- Object detection is hard
- Object detectors learn from lots of data
- The Viola-Jones method:
 - 1. Propose regions
 - 2. Calculate features
 - 3. Train a classifier