Artigo 4: "An Extensive Comparative Study of Cluster Validity Indices" (Arbelaitz et al., 2013)

1. Introdução

Os algoritmos de agrupamento (ou clustering) são amplamente utilizados em diversas áreas, como bioinformática, mineração de dados, aprendizado de máquina e visão computacional. Entretanto, não existe um algoritmo de clustering universalmente ótimo para todos os problemas. A escolha do número de clusters e a avaliação da qualidade das partições geradas por esses algoritmos são desafios centrais.

Este artigo apresenta uma análise comparativa abrangente de **índices de validade de cluster (Cluster Validity Indices, CVIs)**, explorando como diferentes índices internos podem ser utilizados para avaliar a qualidade das partições geradas. Os CVIs internos medem a qualidade de um agrupamento considerando a **coesão intra-cluster** (objetos dentro de um cluster são semelhantes) e a **separação inter-cluster** (os clusters são bem separados).

Os principais objetivos do artigo incluem:

- 1. Identificar quais índices apresentam desempenho consistente em diferentes cenários.
- 2. Analisar os pontos fortes e limitações dos CVIs internos.
- 3. Fornecer recomendações práticas para a escolha de índices em diferentes condições de agrupamento.

2. Objetivo do Estudo

O estudo se propõe a responder as seguintes questões:

- Quais CVIs são mais adequados para diferentes estruturas de dados, como clusters esféricos, alongados ou sobrepostos?
- Como os índices internos se comportam em presença de ruído e alta dimensionalidade?
- Existe um índice que apresente desempenho consistente em todos os cenários?

3. Metodologia

3.1 Dados Utilizados

1. Conjuntos de Dados Sintéticos:

- Gerados com diferentes características, como forma dos clusters (esféricos, alongados) e níveis de sobreposição.
- Variação nos parâmetros: número de clusters (KK), dimensionalidade, e ruído.

2. Conjuntos de Dados Reais:

- Selecionados de repositórios como UCI Machine Learning Repository.
- Exemplos: Iris, Wine, e Glass.

3.2 Algoritmos de Clustering

Os CVIs foram avaliados em partições geradas por três algoritmos de clustering:

- k-means: Otimiza a coesão intra-cluster, assumindo clusters esféricos.
- Ward: Baseado na redução da variância intra-cluster em cada fusão.
- Agrupamento Hierárquico: Utilizando critérios como ligação média (average-linkage).

3.3 Índices de Validade Interna Avaliados

Foram analisados 30 CVIs internos, incluindo:

• Índice de Silhueta (S(i)S(i)):

```
S(i)=b(i)-a(i)\max(a(i),b(i))S(i) = \frac{b(i)-a(i)}{\max(a(i),b(i))}
```

Onde:

- a(i)a(i): Distância média de ii para os pontos do mesmo cluster.
- b(i)b(i): Distância mínima de ii para pontos de outros clusters.
- Índice de Dunn:

```
 D= min1 \le i < j \le kdist(Ci,Cj) max1 \le kdiam(Ck)D = \frac{1 \le i \le j \le k} \text{ (C_i, C_j)}{\max_{1 \le k} \text{ (C_k)}}
```

Onde:

- dist(Ci,Cj)\text{dist}(C_i, C_j): Distância mínima entre clusters CiC_i e CjC_j.
- diam(Ck)\text{diam}(C_k): Diâmetro do cluster CkC_k.
- Índice de Davies-Bouldin (DB):

```
DB=1K\sum i=1K\max j\neq i\sigma i+\sigma j dist(Ci,Cj)DB= \frac{1}{K} \sum_{i=1}^K \max_{j} \left(Ci,C_j\right)B= \frac{1}{K} \sum_{i=1}^K \max_{j}\left(C_i,C_j\right)B
```

Onde:

- σi\sigma_i: Dispersão do cluster CiC_i.
- Índice de Calinski-Harabasz (CH):

```
CH = tr(BK)tr(WK) \cdot n - KK - 1CH = \frac{tr}{(B_K)}{\text{tr}(W_K)} \cdot r - K}{K-1}
```

Onde:

- tr(BK)\text{tr}(B_K): Soma das distâncias inter-clusters.
- tr(WK)\text{tr}(W_K): Soma das distâncias intra-cluster.

4. Resultados Experimentais

4.1 Desempenho Geral

- **Índice de Silhueta**: Mostrou-se o mais consistente, destacando-se em cenários com clusters esféricos e baixa sobreposição.
- **Índice de Dunn**: Eficaz para clusters bem separados, mas sensível ao ruído.
- Davies-Bouldin e Calinski-Harabasz: Ótimos para clusters esféricos, mas apresentam limitações com alta dimensionalidade.

4.2 Impacto de Parâmetros

1. Número de Clusters (KK):

• Índices como Silhueta e CH são robustos para variações em KK.

2. Ruído:

• Ruído significativo reduz a eficácia de quase todos os CVIs, com exceção do CH.

3. Dimensionalidade:

 Alta dimensionalidade prejudica o desempenho de índices baseados em distâncias, como DB e Dunn.

5. Conclusões

1. Não há um índice universalmente superior:

• A escolha do CVI depende da estrutura dos dados e das características dos clusters.

2. Recomendações Práticas:

- Utilize o **Índice de Silhueta** para clusters esféricos e pouca sobreposição.
- Use o Calinski-Harabasz em cenários com alta dimensionalidade e sem ruído extremo.

3. **Perspectivas Futuras**:

- Estudar a adaptação dos índices para dados de alta dimensionalidade.
- Explorar métodos híbridos que combinem os pontos fortes de diferentes índices.

6. Exemplo Prático

6.1 Cenário

Dados de exemplo com dois clusters esféricos:

```
X = \{(1,1),(2,2),(1,2),(10,10),(11,11),(10,11)\}X = \{(1,1),(2,2),(1,2),(10,10),(11,11),(10,11)\}X
```

Aplicamos o **k-means** e calculamos o Índice de Silhueta.

6.2 Implementação em Python

```
from sklearn.metrics import silhouette_score
from sklearn.cluster import KMeans

# Dados
X = [[1, 1], [2, 2], [1, 2], [10, 10], [11, 11], [10, 11]]

# Aplicar k-means
kmeans = KMeans(n_clusters=2, random_state=0)
labels = kmeans.fit_predict(X)

# Calcular indice de silhueta
silhouette = silhouette_score(X, labels)
print(f"indice de Silhueta: {silhouette}")
```

6.3 Implementação em C

```
#include <stdio.h>
#include <math.h>

double calculate_silhouette(double distances[][6], int labels[], int n, int k) {
   double silhouette = 0.0;
```

```
for (int i = 0; i < n; i++) {
         double a = 0.0, b = INFINITY;
         int cluster = labels[i];
         // Calcular a(i)
         for (int j = 0; j < n; j++) {
              if (labels[j] == cluster && i != j) {
                  a += distances[i][j];
         a /= n - 1;
         // Calcular b(i)
         for (int c = 0; c < k; c++) {
              if (c != cluster) {
                  double dist_sum = 0.0, count = 0;
                  for (int j = 0; j < n; j++) {
                       if (labels[j] == c) {
                           dist_sum += distances[i][j];
                           count++;
                       }
                  }
                  double avg_dist = dist_sum / count;
                  if (avg_dist < b) b = avg_dist;</pre>
              }
         }
         silhouette += (b - a) / fmax(a, b);
    return silhouette / n;
}
int main() {
    int labels[6] = \{0, 0, 0, 1, 1, 1\};
    double distances[6][6] = {
         {0, 1, 1.4, 12.7, 14.1, 13.4},
{1, 0, 1.4, 12.7, 14.1, 13.4},
{1.4, 1.4, 0, 12.7, 14.1, 13.4},
         {12.7, 12.7, 12.7, 0, 1, 1.4},
{14.1, 14.1, 14.1, 1, 0, 1.4},
         {13.4,
13.4, 13.4, 1.4, 1.4, 0}, };
double silhouette = calculate_silhouette(distances, labels, 6, 2);
printf("Índice de Silhueta: %.2f\n", silhouette);
return 0;
}
```