1. 从函数表

x	1.0	1.1	1.2
f(x)	0. 2500	0. 2268	0. 2066

出发,利用三点公式计算 $f(x) = \frac{1}{(1+x)^2}$ 在各个结点处的导数值,并估计截断误差.

解:

当 $n=2$ 时,有 $f'(x_k)=L_2'(x_k)+E_2(x_k)$,若 x_0,x_1,x_2 为等距节点,	列出三点公式
距离为 h ,则有	
$L_2'(x_0) = \frac{1}{2h}(-3f_0 + 4f_1 - f_2), E_2(x_0) = \frac{h^2}{3}f^{(3)}(\xi);$	
$L_2'(x_1) = \frac{1}{2h}(-f_0 + f_2), E_2(x_0) = -\frac{h^2}{6}f^{(3)}(\xi);$	
$L_2'(x_2) = \frac{1}{2h}(f_0 - 4f_1 + 3f_2), E_2(x_0) = \frac{h^2}{3}f^{(3)}(\xi);$	
$L_2'(x_0) = \frac{1}{2 \times 0.1} (-3 \times 0.2500 + 4 \times 0.2268 - 0.2066) = -0.2470$	计算导数值
$L_2'(x_1) = \frac{1}{2 \times 0.1} (-0.2500 + 0.2066) = -0.2170$	
$L_2'(x_2) = \frac{1}{2 \times 0.1} (0.2500 - 4 \times 0.2268 + 3 \times 0.2066) = -0.1870$	
$ f^{(3)}(x) = -24(1+x)^{-5} \le 24 \times 1^{-5} = 24$	
$e(x_0) = E_2(x_0) = \frac{h^2}{3} f^{(3)}(\xi) \le \frac{0.01}{3} \times 24 = 0.08$	计算误差限
$e(x_1) \le 0.04$	
$e(x_2) \le 0.08$	

2. 用复合梯形公式和复合辛普森公式计算下列积分.

$$\int_0^{\frac{\pi}{6}} \sqrt{4-\sin^2 t} dt \, (用七个点函数值计算).$$

解:

第一步: 计算各个点的函数值(将整个区间12分)

x	0	$\frac{\pi}{72}$		$\frac{\pi}{36}$		$\frac{3\pi}{72}$	$\frac{\pi}{18}$	$\frac{5\pi}{72}$
f(x)	2	1.99952		1.9	981	1.99574	1.99245	1.98825
$\frac{\pi}{12}$	$\frac{7\pi}{72}$	$\frac{\pi}{9}$	9π 72	<u>τ</u>	$\frac{5\pi}{36}$	$\frac{11\pi}{72}$	$\frac{\pi}{6}$	
1.98318	1.97726	1.97054	1.963	305	1.95484	1.94597	1.93649	

第二步: 使用复合梯形公式和符合辛普森公式计算积分

复合梯形公式

$T = \frac{b-a}{2}[f(a)+f(b)]$	原始梯形公式
$T_n = \frac{h}{2} [f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(x_i)]$	复合梯形公式
计算得 $T_n = 1.03562$	累加求和

复合辛普森公式

$S = \frac{h}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$	原始辛普森公式
$S_n = \frac{h}{6} [f(a) + f(b) + 4 \sum_{i=1}^{n-1} f(x_{i-\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i)]$	复合辛普森公式
计算得 $S_n = 1.03576$	累加求和