〈알고리즘 실습〉 - 그래프 순회

※ 입출력에 대한 안내

- 특별한 언급이 없으면 문제의 조건에 맞지 않는 입력은 입력되지 않는다고 가정하라.
- 특별한 언급이 없으면, 각 줄의 맨 앞과 맨 뒤에는 공백을 출력하지 않는다.
- 출력 예시에서 □는 각 줄의 맨 앞과 맨 뒤에 출력되는 공백을 의미한다.
- 입출력 예시에서 → 이 후는 각 입력과 출력에 대한 설명이다.

[문제 1 1 (DFS) 입력으로 주어지는 그래프의 DFS 순회 결과를 출력하는 프로그램을 작성하시오.

입력 그래프의 성질:

- n (1 ≤ n ≤ 100) 개의 정점과 m (1 ≤ m ≤ 1,000) 개의 간선으로 구성
- 정점은 1 ~ n 사이의 정수로 번호가 매겨져 있고, 정점의 번호는 모두 다름
- 모든 간선은 **무방향 간선**이고, 한 정점에서 임의의 다른 정점으로 가는 경로는 반드시 존재

구현 조건:

- 그래프는 **인접리스트 구조**를 사용하여 표현해야 한다.
- 인접 정점의 조사 순서
 - 정점 u의 인접 정점(or 부착 간선)들을 번호가 작은 정점부터 조사한다. (즉, 아래 DFS 의사 코드의 for 문(☜)에서 인접 정점들을 번호가 작은 정점부터 큰 순서대로 조사하라. 조사 순서에 따라 방문 결과가 달라질 수 있음에 유의할 것)

```
DFS(u)
{ u 방문;
for u의 인접 정점들 w에 대해서 ➡
if (w를 아직 방문하지 않았으면)
DFS(w);
}
```

입출력:

- 입력
 - 첫 줄에 정점의 개수 n, 간선의 개수 m, 순회 시작 정점 번호 s가 주어진다.
 - 이후 m개의 줄에 한 줄에 하나씩 간선의 정보(간선의 양 끝 정점 번호)가 주어진다. 간선은 임의의 순서로 입력되고, 중복 입력되는 간선은 없다. (무방향 간선이므로 간선 (u, v)와 (v, u)는 동일한 간선으로 취급)

○ 출력

- 출발정점 s에서 출발하는 DFS의 방문 순서대로 정점 번호를 출력한다.

입력 예시 1	줄력 예시 1
5 7 1 → n = 5, m = 7, s = 1	1
1 2	2
1 4	3
5 1	4
3 5	5
4 3	
3 1	
2 3	

입력 예시 2

출력 예시 2

8	12	7	\mapsto	n	=	8,	m	=	12,	s	=	7	7
1													2
2	4												1
4	7												3
3	6												6
6	1												4
7	6												5
7	8												8
1	3												
2	7												
1	4												
2	5												
7	5												

[문제 2] (BFS) 입력으로 주어지는 그래프의 BFS 순회 결과를 출력하는 프로그램을 작성하시오.

입력 그래프의 성질:

○ 문제 **1**과 동일

구현 조건:

- 그래프는 **인접행렬 구조**를 사용하여 표현해야 한다.
- 인접 정점의 조사 순서
 - 문제 1과 동일하게 정점의 인접 정점(or 부착 간선)들을 번호가 작은 정점부터 조사한다.

입출력:

○ 입력 : 문제 **1**과 동일

○ 출력 : 출발정점 s에서 출발하는 BFS의 방문 순서대로 정점 번호를 출력한다.

입력 예시 1

출력 예시 1

$691 \mapsto \mathbf{n} = 6$	m = 9, s = 1	1
3 5		2
1 3		3
4 1		4
2 3		5
3 4		6
6 4		
3 6		
1 2		
2 5		

입력 예시 2

출력 예시 2

8 12 4 → n = 8, m = 12, s = 4 1 2 2 4 4 7 3 6 6 1 7 6 7 8 1 3 2 7 1 4 2 5 7 5		
2 4 4 7 3 6 6 1 7 6 7 8 1 3 2 7 1 4 2 5	$8 12 4 \rightarrow n = 8, m = 12, s = 4$	4
4 7 7 3 6 3 6 1 6 7 6 5 7 8 8 1 3 2 1 4 2	1 2	1
3 6 6 1 7 6 7 8 1 3 2 7 1 4 2 5	2 4	2
6 1 7 6 7 8 1 3 2 7 1 4 2 5	4 7	7
7 6 5 7 8 8 1 3 2 2 7 1 1 4 2		
7 8 1 3 2 7 1 4 2 5	6 1	
1 3 2 7 1 4 2 5	7 6	5
2 7 1 4 2 5	7 8	8
1 4 2 5	1 3	
2 5	2 7	
	1 4	
7 5	2 5	
	7 5	

