StuDocu.com

Homework 7 - November 3, 2016. Questions.

Intermediate Statistics (Carnegie Mellon University)

Homework 7 36-705

Due: Thursday November 3 by 3:00

- 1. Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. Let $\theta = \mu/\sigma$. Construct an asymptotic 1α confidence interval for θ .
- 2. Suppose that $X_1, \ldots, X_n \sim N(\mu, \Sigma)$ are multivariate Normal, where $X_i \in \mathbb{R}^k$. Assume that Σ is known. Let

$$C_n = \left\{ \mu : (\overline{X}_n - \mu)^T \Sigma^{-1} (\overline{X}_n - \mu) \le t \right\}.$$

Find t so that C_n is a $1-\alpha$ confidence set for μ .

Hint: We can write $X_i = \mu + \Sigma^{1/2} \epsilon_i$ where $\epsilon_i \sim N(0, I)$ and I is the $k \times k$ identity matrix.

3. Let $X_1, \ldots, X_n \sim F$. Recall that the empirical cdf is

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n I(X_i \le t).$$

Suppose that Let $t_1 < t_2 < \cdots < t_k$ be k fixed points on the real line. Let

$$Z_n = \sqrt{n} \Big(F_n(t_1) - F(t_1), \dots, F_n(t_k) - F(t_k) \Big).$$

Show that

$$Z_n \rightsquigarrow N(\mathbf{0}, \Sigma)$$

where $\mathbf{0} = (0, \dots, 0)$ and Σ is a $k \times k$ matrix with $\Sigma_{jk} = F(t_j \wedge t_k) - F(t_j)F(t_k)$.

4. Let $X_1, \ldots, X_n \sim \text{Exponential}(\theta)$. Find the size α , asymptotic, LRT test for

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$.

By inverting the test, construct an asymptotic $1-\alpha$ confidence set for θ . Now construct the $1-\alpha$ Wald confidence interval for θ .

5. Let $X_1, \ldots, X_n \sim \operatorname{Possion}(\lambda_1)$ and let $Y_1, \ldots, Y_m \sim \operatorname{Possion}(\lambda_2)$. Find an asymptotic $1 - \alpha$ confidence interval for $\lambda_1 - \lambda_2$.