FMI, Info, Anul I

Logică matematică și computațională

Seminar 8

(S8.1) Să se aducă următoarele formule la cele două forme normale prin transformări sintactice:

(i)
$$((v_0 \to v_1) \land v_1) \to v_0$$
;

(ii)
$$(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3)$$
.

Demonstraţie:

(i) Avem:

$$((v_0 \to v_1) \land v_1) \to v_0 \sim \neg((\neg v_0 \lor v_1) \land v_1) \lor v_0 \qquad \text{(înlocuirea implicației)}$$

$$\sim \neg(\neg v_0 \lor v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (\neg \neg v_0 \land \neg v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (v_0 \land \neg v_1) \lor \neg v_1 \lor v_0, \qquad \text{(reducerea dublei negații)}$$

iar ultima formulă este în FND. Mai departe, obținem:

$$(v_0 \wedge \neg v_1) \vee \neg v_1 \vee v_0 \sim ((v_0 \vee \neg v_1) \wedge (\neg v_1 \vee \neg v_1)) \vee v_0 \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1 \vee v_0) \wedge (\neg v_1 \vee \neg v_1 \vee v_0) \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1) \wedge (\neg v_1 \vee v_0), \qquad \text{(idempotență)}$$

iar ultima formulă este în FNC. De asemenea, ultima formulă este echivalentă și cu:

$$v_0 \vee \neg v_1$$
,

care este şi în FND, şi în FNC.

(ii) Avem:

$$(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3) \sim \neg(v_1 \vee \neg v_4) \vee (\neg \neg v_2 \vee v_3)$$
 (înlocuirea implicațiilor)
$$\sim \neg(v_1 \vee \neg v_4) \vee v_2 \vee v_3$$
 (reducerea dublei negații)
$$\sim (\neg v_1 \wedge \neg \neg v_4) \vee v_2 \vee v_3$$
 (de Morgan)
$$\sim (\neg v_1 \wedge v_4) \vee v_2 \vee v_3,$$
 (reducerea dublei negații)

iar ultima formulă este în FND. Mai departe, obținem:

$$(\neg v_1 \wedge v_4) \vee v_2 \vee v_3 \sim ((\neg v_1 \vee v_2) \wedge (v_4 \vee v_2)) \vee v_3 \qquad \text{(distributivitate)}$$
$$\sim (\neg v_1 \vee v_2 \vee v_3) \wedge (v_4 \vee v_2 \vee v_3), \qquad \text{(distributivitate)}$$

iar ultima formulă este în FNC.

(S8.2) Să se aducă formula $\varphi = (v_0 \to v_1) \to v_2$ la cele două forme normale trecându-se prin funcția booleană asociată (i.e. metoda tabelului).

Demonstrație: Alcătuim tabelul de valori al funcției asociate $F_{\varphi}: \{0,1\}^3 \to \{0,1\}$, precum și a funcției $\neg \circ F_{\varphi}$.

x_0	x_1	x_2	$x_0 \rightarrow x_1$	$F_{\varphi}(x_0, x_1, x_2) := (x_0 \to x_1) \to x_2$	$\neg F_{\varphi}(x_0, x_1, x_2)$
1	1	1	1	1	0
1	1	0	1	0	1
1	0	1	0	1	0
1	0	0	0	1	0
0	1	1	1	1	0
0	1	0	1	0	1
0	0	1	1	1	0
0	0	0	1	0	1

Obţinem, aşadar, uitându-ne pe liniile cu 1 de pe coloana valorilor lui F_{φ} şi aplicând raţionamentul din demonstraţiile Teoremelor 2.75 şi 2.77, că o formă normală disjunctivă a lui φ este:

$$(v_0 \wedge v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge v_2),$$

iar uitându-ne pe liniile cu 0 de pe coloana valorilor lui F_{φ} şi aplicând raționamentul din demonstrațiile Teoremelor 2.76 și 2.77, obținem că o formă normală conjunctivă a lui φ este:

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor v_1 \lor v_2).$$

Alternativ, ne putem uita pe liniile cu 1 de pe coloana valorilor lui $\neg \circ F_{\varphi} = F_{\neg \varphi}$ pentru a obține (ca mai sus) următoarea formă normală disjunctivă a lui $\neg \varphi$:

$$(v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge \neg v_2),$$

iar, pe urmă, aplicând Propoziția 2.71.(ii), obținem că o formă normală conjunctivă a lui $\neg \neg \varphi$, și deci a lui φ , este:

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor v_1 \lor v_2).$$

(S8.3) Să se demonstreze Teorema de completitudine tare - versiunea 2, dar fără a se folosi, precum în curs, Teorema de completitudine tare - versiunea 1.

Demonstrație: Fie $\varphi \in Form$, $\Gamma \subseteq Form$. Avem că:

(S8.4) Să se arate că Teorema de completitudine tare - versiunea 2 implică Teorema de completitudine tare - versiunea 1.

Demonstraţie: Fie $\Gamma \subseteq Form$. Vrem să arătăm că Γ este consistentă dacă și numai dacă Γ este satisfiabilă. Avem că:

(S8.5)

- (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
- (ii) Găsiți o mulțime infinită de formule care nu este semantic echivalentă cu nicio mulțime finită de formule.

Demonstrație:

(i) Fie Γ o mulţime de formule ca în enunţ. Dat fiind că Γ este satisfiabilă, admite un model şi fie acesta e. Pe de altă parte, dat fiind că Γ este finită, există un $n \in \mathbb{N}$ cu proprietatea că $\bigcup_{\varphi \in \Gamma} Var(\varphi) \subseteq \{v_0, v_1, \dots, v_n\}$.

Fie, atunci, pentru orice $k \in \mathbb{N}$, câte o funcție $e_k : V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e_k(x) := \begin{cases} e(x), & \text{dacă } x \in \{v_0, \dots, v_n\} \\ 1, & \text{dacă } x \in \{v_{n+1}, \dots, v_{n+k}\} \\ 0, & \text{altfel.} \end{cases}$$

Atunci, pentru $k \neq l$ avem $e_k \neq e_l$. Prin urmare, $\{e_k \mid k \in \mathbb{N}\}$ este o mulţime numărabilă. Pentru orice $k \in \mathbb{N}$ şi $\varphi \in \Gamma$, aplicând Propoziţia 2.14 pentru φ , e şi e_k , avem că $e_k^+(\varphi) = e^+(\varphi) = 1$, deci $e_k \models \varphi$.

Am obţinut astfel că $\{e_k \mid k \in \mathbb{N}\} \subseteq Mod(\Gamma)$. Aşadar, $Mod(\Gamma)$ este infinită.

(ii) Considerăm $\Gamma := V = \{v_n \mid n \in \mathbb{N}\}$, o mulțime infinită de formule. Demonstrăm că Γ nu este echivalentă cu nicio mulțime finită de formule. Observăm că o evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă și numai dacă $e(v_n) = 1$ pentru orice $n \in \mathbb{N}$ dacă și numai dacă e este funcția constantă 1. Prin urmare, $Mod(\Gamma) = \{1\}$.

Fie acum Δ o mulțime finită de formule. Avem două cazuri:

- (a) Δ nu este satisfiabilă. Atunci $Mod(\Delta) = \emptyset$.
- (b) Δ este satisfiabilă. Atunci aplicăm (i) pentru a concluziona că $Mod(\Delta)$ este infinită.

În ambele cazuri, obținem că $Mod(\Delta) \neq Mod(\Gamma)$, deci Γ nu este echivalentă cu Δ .