COMP S264F Unit 4: Functions

Dr. Keith Lee
School of Science and Technology
The Open University of Hong Kong

Overview

- What is a function?
- Domain, image, range
- One-to-one, Onto, Bijective
- Inverse function
- Composite function
- Plotting function in Python
- Non-functions
- Some useful functions:
 - >floor, ceiling, exponential, log, mod
- Cardinality of infinite sets: Countable / Uncountable
- Functions with more than 1 argument

Functions

- Let A and B be sets. A function f from A to B is an <u>assignment</u> of exactly one element of B to <u>each</u> element of A.
- We write $\underline{f(a)} = \underline{b}$ if \underline{b} is the element of B assigned to the element \underline{a} of A.

Example: Let $A = \{John, Mary, Peter\}$. Let $B = \{A,B,C,D,E\}$.

Define a function Grade as follows:

Grade(John) = A Grade(Mary) = A Grade(Peter) = D

NB. A function is also called a mapping.

Basic terminology

Consider a function **f** from A to B.

- A is the domain of f.
- B is the codomain of f.
- We write $f: A \rightarrow B$
- If f(a) = b, b is the image of a.
- The <u>range</u> of **f** is the set comprising the images of elements of A.

I.e.,
$$\{b \mid b \in B \text{ and } (\exists a f(a) = b) \}$$
.

Example: Let f_1 be the function from \mathbb{Z} to \mathbb{Z} such that, for every $x \in \mathbb{Z}$, $f_1(x) = x^2$.

Domain = \mathbb{Z} . Range = \mathbb{Z} ?

One-to-one, Onto, Bijective

• A function f is said to be <u>one-to-one</u> (injective) if, for every distinct elements x, y in the domain, $f(x) \neq f(y)$.

- A function f from A to B is said to be <u>onto</u> (surjective) if, for every element b of codomain B, there exists an element a of A such that f(a) = b.
 - >I.e., the range of *f* is exactly B.

• A one-to-one and onto function is also called a <u>one-to-one</u> correspondence, or a <u>bijective</u> function, or a bijection.

Example 1

Consider a function $f_2: \mathbb{Z} \to \mathbb{N}$ such that, for any $a \in \mathbb{Z}$, $f_2(a) = a^2$.

- Is f₂ one-to-one?
- Is f₂ onto?
- If f_2 is one-to-one (injective), then for any $x, y \in \mathbb{Z}$,
 - \rightarrow X \neq Y \Rightarrow f₂(X) \neq f₂(Y)
 - \rightarrow In other words, $f_2(x) = f_2(y) \implies x = y$
- If f_2 is onto (surjective), then for any $b \in \mathbb{N}$, there is $a \in \mathbb{Z}$ such that $f_2(a) = b$.

Example 1 (cont')

Consider a function $f_2: \mathbb{Z} \to \mathbb{N}$ such that, for any $a \in \mathbb{Z}$, $f_2(a) = a^2$.

• Is f₂ one-to-one?

No. Let x = -2 and y = 2.

Then, $f(x) = (-2)^2 = 4$ and $f(y) = 2^2 = 4$.

Therefore, $x \neq y \implies f_2(x) \neq f_2(y)$ is false.

• Is f₂ onto?

No. Let b = 2.

$$b = f_2(a) \implies 2 = a^2$$

 $\Rightarrow a = \sqrt{2} \text{ or } -\sqrt{2}$

Therefore, there does not exist $a \in \mathbb{Z}$ such that $f_2(a) = b$.

Example 2

Consider a function $f_3: \mathbb{Z} \to \mathbb{Z}$ such that, for any $a \in \mathbb{Z}$, $f_3(a) = a-1$.

• Is f₃ one-to-one?

```
Yes. Let x and y such that f_3(x) = f_3(y).

\Rightarrow x-1 = y -1

\Rightarrow x = y
```

• Is f₃ onto?

```
Yes. For any b \in \mathbb{Z},

b = f_3(a) \Rightarrow a-1 = b

\Rightarrow a = b+1

\Rightarrow a \in \mathbb{Z}
```

• Therefore, f₃ is bijective.

Inverse functions

- If **f** is a **bijection** (one-to-one and onto function) from the set A to the set B, then we can define the **inverse** of **f** (denoted by **f** -1) as follows:
 - $> f^{-1}$ is a function from B to A.
 - For every element b of B, $f^{-1}(b) = a$ if and only if f(a) = b.
- 1. Is **f** a bijection?
- 2. Recall that $f_3(a) = a+1$ for any $a \in \mathbb{Z}$. What is the inverse of f_3 ?
- 3. If **f** is <u>not</u> one-to-one, **f** 1 may not be well-defined. Why?
- 4. What happens if f is not an onto function?

Composite functions

Consider two functions

$$g: A \rightarrow B$$
 and $f: B \rightarrow C$.

The composition of f and g, denoted by f o g, is a function from A to C, defined as follows.

For any
$$a \in A$$
, $f \circ g(a) = f(g(a))$.

Note that gof may not be well-defined.

Example: For $x \in \mathbb{R}$, f(x) = 3x + 2 and $g(x) = x^2 + x$.

- f o g (x) = ?
- $g \circ f(x) = ?$
- What is $f_3^{-1} \circ f_3$? $f_3 \circ f_3^{-1}$?

Visualizing a function in Python

We can use the matplotlib and numpy packages in Python.

```
import numpy as np
import matplotlib.pyplot as plt
```

 NumPy is the fundamental package for scientific computing with Python, which provides powerful array objects *ndarray* and functions.

```
• E.g., x1 = np.arange(0, 6, 0.1)
x2 = np.linspace(0, 10, 100)
```

- x1 is a ndarray from 0 to 6 (exclusive) with a step 0.1, i.e., [0, 0.1, 0.2, ...]
- x2 is a ndrray of size 100, evenly spaced over the interval [0, 10].
- Matplotlib is a data visualization library built on NumPy arrays.

```
• E.g., plt.plot(x, np.sin(x)) plt.show()
```

• y = sin(x) is plotted using points (x[0], sin(x[0])), (x[1], sin(x[1])), ...

• We can plot both $y = \sin(x)$ and $y = \cos(x)$, as follows:

Non-functions

- If f(a) = b has more than one value or no value of b for a particular a, then f is a <u>non-function</u> (i.e., not a function).
 - > **f** is just a <u>relation</u> that relates **a** to **b**.

Function or non-function?

- 1. $f: \mathbb{R} \to \mathbb{R}$ such that $x = (f(x))^2$. Non-function. When x = 4, f(x) = 2 or -2.
- 2. $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = \sqrt{x}$. Non-function. f(x) is undefined if x < 0.
- 3. $f: \mathbb{R}^+ \to \mathbb{R}$ such that $f(x) = \sqrt{x}$. Function. f(x) has exactly one value for all $x \in \mathbb{R}^+$.

The floor and ceiling functions

- Floor function: $f(x) = \lfloor x \rfloor$, where $f(x) \in \mathbb{Z}$ and $f(x) \le x < f(x) + 1$
- E.g., $\lfloor 2.3 \rfloor = 2$ $\lfloor -2.3 \rfloor = -3$
- Ceiling function: $f(x) = \lceil x \rceil$, where $f(x) \in \mathbb{Z}$ and $f(x) 1 < x \le f(x)$
- E.g., $\lceil 2.3 \rceil = 3$ $\lceil -2.3 \rceil = -2$

```
x = np.linspace(0, 5, 500)

plt.plot(x, np.floor(x), '-')
plt.plot(x, np.ceil(x), '--')

plt.show()
```


Floor and ceiling properties

Floor	Ceiling
$\lfloor x+1\rfloor = \lfloor x\rfloor +1$	$\lceil x+1 \rceil = \lceil x \rceil + 1$
$\lfloor x - 1 \rfloor = \lfloor x \rfloor - 1$	$\lceil x - 1 \rceil = \lceil x \rceil - 1$
[x] = [x]	if and only if $x \in \mathbb{Z}$
$[x] = \lfloor x \rfloor + 1$	if and only if $x \notin \mathbb{Z}$

- Is the inverse of the floor function well-defined?
- Is the inverse of the ceiling function well-defined?

Exponential Functions

- $f(x) = b^x$ is the exponential function for the <u>base</u> b, where $b \neq 1$ and b > 0.
- $f: \mathbb{R} \to \mathbb{R}^+$
- E.g., when the base b = 2, $f(x) = 2^x$.

Properties: Let a, b $\in \mathbb{R}^+$ s.t. a \neq 1, b \neq 1, and let x, y $\in \mathbb{R}$.

$$a^{x} \times a^{y} = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$a^{0} = 1$$

$$(ab)^{x} = a^{x}b^{x}$$

$$(\frac{a}{b})^{x} = \frac{a^{x}}{b^{x}}$$

$$(a^x)^y = a^{xy} \qquad (\overline{b}) = \overline{b^x}$$

- $a^x = a^y$ if and only if x = y
- For $x \neq 0$, $a^x = b^x$ if and only if a = b

Logarithmic functions (log functions)

- The inverse of an exponential function is called a logarithmic function.
- For b > 0 and b \neq 1, $f(x) = \log_b x$ is equivalent to $x = b^{f(x)}$.
- log_b x is read as <u>log to the base b</u> of x.
- $\mathbf{f}: \mathbb{R}^+ \to \mathbb{R}$
- $\ln x = \log_e x$ (natural log; e = 2.7182... is the Euler's number)
- $lg x = log_2 x$ (binary log)
- log x may equal log₁₀ x or log₂ x depending on context.

We can plot e^x and In x, as follows:

x1 = np.linspace(-8, 2, 100)

x2 = np.linspace(0.01, 8, 100)

```
x3 = np.linspace(-5, 8, 100)
plt.plot(x1, np.exp(x1), '-', label='y=exp(x)')
plt.plot(x2, np.log(x2), '-.', label='y=log(x)')
plt.plot(x3, x3, '--', label='y=x')
plt.legend(loc='upper right')
plt.axis('equal')
                            8
                                                              y=\exp(x)
plt.grid(True)
                                                              y = log(x)
plt.show()
                            6
                                                              y=x
                            4
                            2
                            0
                           -2
                           -4
                             -10.0 -7.5 -5.0 -2.5
                                                0.0
                                                    2.5
                                                         5.0
                                                             7.5
                                                                 10.0
```

Log function properties

```
• log_b(b^x) = x
Proof. Let y = log_b(b^x). Then,
b^y = b^x (by definition of log)
\Rightarrow y = x (by properties of exponential function)
\Rightarrow \log_b(b^x) = x
• \log_b(x^y) = y \log_b x
Proof. Let p = log_b x. Then,
x = b^p (by definition of log)
\Rightarrow x^y = (b^p)^y = b^{py}
\Rightarrow \log_b(x^y) = py (by definition of log)
\Rightarrow \log_b(x^y) = y \log_b x
```

Change of base in log function

•
$$\log_a x = \frac{\log_b x}{\log_b a}$$

Proof. Let $p = \log_a x$, $q = \log_b x$, $r = \log_b a$. By definition of log,

$$x = a^{p}, x = b^{q}, a = b^{r} \implies a^{p} = b^{q}$$

$$\implies (b^{r})^{p} = b^{q}$$

$$\implies b^{rp} = b^{q}$$

$$\implies rp = q$$

$$\implies \log_{b} a \cdot \log_{a} x = \log_{b} x$$

$$\implies \log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$

Let a, b $\in \mathbb{R}^+$ s.t. a \neq 1, b \neq 1, and let x, y, p, q $\in \mathbb{R}$.

•
$$a^x \times a^y = a^{x+y}$$
 • $a^0 = 1$
• $\frac{a^x}{a^y} = a^{x-y}$ • $(ab)^x = a^x b^x$
• $(a^x)^y = a^{xy}$ • $(\frac{a}{b})^x = \frac{a^x}{b^x}$
• $a^x = a^y$ if and only if $x = y$
• For $x \neq 0$, $a^x = b^x$ if and only if $a = b$

- $\log_a(pq) = \log_a p + \log_a q$ $\log_a 1 = 0$
- $\log_a \left(\frac{p}{a}\right) = \log_a p \log_a q \qquad \log_a a^x = x$
- $\log_a p^y = y \log_a p$
- $\log_a x = \log_a y$ if and only if x = y

Modulo functions (mod functions)

- $f(x) = x \mod m$, where m > 0, is the modulo function which is the <u>remainder</u> of the division of x by m.
- Note that

$$f(x) = x - m \lfloor x/m \rfloor$$

We can plot x mod 3, as follows:

```
x = np.linspace(-10, 10, 500)
plt.plot(x, np.mod(x, 3))
plt.show()
```


Mod function properties

- $x \mod m = y \mod m \Leftrightarrow (x y) \mod m = 0$
- $(x+y) \mod m = ((x \mod m) + (y \mod m)) \mod m$
- $(x \times y) \mod m = ((x \mod m) \times (y \mod m)) \mod m$
- Let $a \in \mathbb{R}$ such that a and m are relatively prime. Then, $ax \mod m = ay \mod m \Longrightarrow x \mod m = y \mod m$

Cardinality of infinite sets

- The cardinality of a <u>finite</u> set is the number of elements in the set.
- What about infinite sets? No exact number.
- Two sets A and B are said to have the <u>same cardinality</u> if and only if there is a <u>bijection</u> from A to B.
- Infinite sets are classified as countable or uncountable.
- Definition. A set is said to be <u>countable</u> if it

 - has the same cardinality as the set of natural numbers (i.e., $\mathbb{N} = \{0, 1, 2, 3, ...\}$).
- A set that is not countable is called <u>uncountable</u>.

Countable or not?

• The set of all (OUHK) Computing students who were admitted in the year 2019.

```
• \mathbb{N} = \{0, 1, 2, ...\}
```

- {1, 3, 5, ...} (I.e., the set of all odd positive integers) Consider the following bijection: f(0) = 1, f(1) = 3, ... In general, f(i) = 2i + 1
- Z = the set of all integers (including –ve integers)

Countable or not?

 \mathbb{Z} = the set of all integers (including –ve integers)

• Consider the following bijection: f(0) = 0, f(1) = 1, f(2) = -1, f(3) = 2, f(4) = -2, ...

• In general,
$$f(i) = \begin{cases} (i+1)/2 & \text{if } i \text{ is odd} \\ -i/2 & \text{if } i \text{ is even} \end{cases}$$

Therefore, Z is countable.

Countable or not: the set of all prime integers

- In general, let A be a countable set and let B be a subset of A. Is B countable? Yes.
- Assume B is infinite.
- Since A is countable, there exists a bijection f from \mathbb{N} to A.
- The elements of A can be enumerated (written down) in the order of

$$f(0), f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8), \dots$$

- Assume B is infinite.
- Since A is countable, there exists a bijection f from \mathbb{N} to A.
- The elements of A can be enumerated (written down) in the order of

$$f(0), f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8), \dots$$

• Define a function g from \mathbb{N} to B as follows:

$$f(0), f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8), ...$$

∉B ∈B ∉B ∈B ∈B ∈B ∈B ∈B ∈B ∈B

 $g(0), g(1), g(2), g(3), ...$

B

B

- Precisely, let $a_{-1} = -1$. For any integer $i \ge 0$,
 - let a_i be the smallest integer > a_{i-1} such that f(a_i) ∈ B; and
 - define $g(i) = f(a_i)$.
- E.g., when i = 2, $a_i = 6$.

Claim: g is bijective.

Lemma 1. g is one-to-one.

Proof.

Consider any i, $j \in \mathbb{N}$.

g(i) = g(j)

 \Rightarrow f(a_i) = f(a_i) (as g(i) = f(a_i) and g(j) = f(a_i))

 \Rightarrow $a_i = a_i$ (as f is one-to-one)

 \Rightarrow **i** = **j** (as a_i's are all distinct)

Therefore, g is one-to-one.

Claim: g is bijective.

Lemma 2. g is onto.

Proof.

Consider any element $x \in B$.

As $B \subseteq A$, $x \in A$.

Because f is onto, there exists $i \in \mathbb{N}$ such that f(i) = x.

Let k be the number of elements in $\{f(0), f(1), ..., f(i-1)\} \cap B$.

$$f(0), f(1), f(2), f(3), \dots, f(i-1), f(i), f(i+1), \dots$$
 $\in B$
 $g(0), g(1), \dots, g(k-1), g(k)$

Note that $i \ge k \ge 0$, and $k \in \mathbb{N}$.

As $x \in B$, by definition of g, g(k) = f(i) = x.

Theorem 3. g is bijective.

Proof.

By Lemma 1, g is one-to-one.

By Lemma 2, g is onto.

Therefore, g is bijiective.

- Let A be a countable set and let B be a subset of A.
- Is B countable? Yes, we have formally proven it.
- Is the set of all prime integers countable?

Countable or not: the set of real numbers

Theorem 4. Let R be the set of all real numbers a such that $0 \le a < 1$. Then R is uncountable.

Proof. Suppose R is countable.

Then, there is a bijective function f from \mathbb{N} to \mathbb{R} .

We construct a real number x < 1 as follows: ...

We can show that

- $\mathbf{x} = \mathbf{f}(i)$ for some integer i; and
- $\mathbf{x} \neq \mathbf{f}(i)$ for all integers i.

Then a contradiction occurs. (I.e., if R is countable, then " $\mathbf{x} = \mathbf{f}(i)$ for some integer i" and " $\mathbf{x} \neq \mathbf{f}(i)$ for all integers i".)

Therefore, R is uncountable.

What is x?

- Recall that f is a bijective function from \mathbb{N} to \mathbb{R} . We can enumerate elements of \mathbb{R} in order, e.g.,
- f(0) = 0.111
- f(1) = 0.33333...
- f(2) = 0.5

•

f (0) =	0.	1	1	1		
f (1) =	0.	3	3	3		
f (2) =	0.	5	0	0		
x =	0.	2	4	1		

• $\mathbf{x} = 0.241... \Rightarrow \text{Such } \mathbf{x} \neq \mathbf{f}(i) \text{ for all integers i.}$

What is x?

Notation: For any real number $y \in R$, for any integer $i \ge 0$, let y_i be the (i+1)-th digit after the decimal point.

E.g., Suppose
$$y = 0.101$$
. Then $y_0 = 1$; $y_1 = 0$; $y_2 = 1$; $y_3 = y_4 = ... = 0$

Recall that f is a bijective function from \mathbb{N} to \mathbb{R} . We can enumerate elements of \mathbb{R} in the order of

$$f(0), f(1), f(2), f(3), \dots$$

Define a real number x in R such that for all $i \ge 0$, $x_i \ne f(i)_i$.

- Obviously, $\mathbf{x} \neq \mathbf{f}(i)$ for all integers i.
- On the other hand, x is in R and f is bijective; thus, there exists an integer i such that x = f(i).

Countable or not: the set of real numbers

Corollary 5. The set of real numbers is uncountable.

Proof.

By Theorem 3, if the set of real numbers is countable, then R (which is a subset of real numbers) is also countable.

As Theorem 4 shows that R is uncountable, the set of real numbers is also uncountable. (Modus tollens)

Functions with more than 1 argument

- If f(x) = y, then x is called an <u>argument</u> of f, and y is called a <u>value</u> of f.
- If the domain of **f** is the Cartesian product $A_1 \times A_2 \times ... \times A_n$, then **f** has n arguments.
- $f(x_1, x_2, ..., x_n)$ denotes the value at $(x_1, x_2, ..., x_n)$, where $x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n$.
- **Example:** Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f(x, y) = x+y.