Probability

https://math.mit.edu/~sheffield/fall2023math600.html

帽子

- ▶ n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- ▶ What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^n E_i) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \ldots \pm \frac{1}{n!}$
- ► $1 P(\bigcup_{i=1}^{n} E_i) = 1 1 + \frac{1}{2!} \frac{1}{3!} + \frac{1}{4!} \dots \pm \frac{1}{n!} \approx 1/e \approx .36788$

Condition Prob:

- ▶ Definition: P(E|F) = P(EF)/P(F).
- ▶ Call P(E|F) the "conditional probability of E given F" or "probability of E conditioned on F".
- Nice fact: $P(E_1E_2E_3...E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)...P(E_n|E_1...E_{n-1})$
- ▶ Useful when we think about multi-step experiments.

$$P(E) = P(EF) + P(EF^{c})$$

$$= P(E|F)P(F) + P(E|F^{c})P(F^{c})$$

独立事件:

- ▶ Say E and F are **independent** if P(EF) = P(E)P(F).
- ▶ Equivalent statement: P(E|F) = P(E). Also equivalent: P(F|E) = P(F).

- ► Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.
- ▶ What if coin has *p* probability to be heads?
- Answer: $\binom{n}{k} p^k (1-p)^{n-k}$.
- ▶ Writing q = 1 p, we can write this as $\binom{n}{k} p^k q^{n-k}$
- ► Can use binomial theorem to show probabilities sum to one:
- $ightharpoonup 1 = 1^n = (p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}.$
- Number of heads is **binomial random variable with** parameters (n, p).

np, npq

从伯努利到泊松分布: $np = \lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?
- ▶ Binomial formula: $\binom{n}{k} p^k (1-p)^{n-k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!} p^k (1-p)^{n-k}$.
- ▶ This is approximately $\frac{\lambda^k}{k!}(1-p)^{n-k} \approx \frac{\lambda^k}{k!}e^{-\lambda}$.
- ▶ A **Poisson random variable** X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$.

均值和方差都是 λ

泊松点过程:

- A Poisson point process is a random function N(t) called a Poisson process of rate λ .
- For each $t > s \ge 0$, the value N(t) N(s) describes the number of events occurring in the time interval (s, t) and is Poisson with rate $(t s)\lambda$.
- ► The numbers of events occurring in disjoint intervals are independent random variables.
- Probability to see zero events in first t time units is $e^{-\lambda t}$.
- Let T_k be time elapsed, since the previous event, until the kth event occurs. Then the T_k are independent random variables, each of which is exponential with parameter λ .

Geometric distribution:

- Let X be a geometric with parameter p, i.e., $P\{X = k\} = (1-p)^{k-1}p = q^{k-1}p$ for $k \ge 1$.
- ▶ What is E[X]?
- ▶ By definition $E[X] = \sum_{k=1}^{\infty} q^{k-1}pk$.
- ► There's a trick to computing sums like this.
- Note $E[X-1] = \sum_{k=1}^{\infty} q^{k-1} p(k-1)$. Setting j = k-1, we have $E[X-1] = q \sum_{j=0}^{\infty} q^{j-1} pj = qE[X]$.
- ▶ Kind of makes sense. X-1 is "number of extra tosses after first." Given first coin heads (probability p), X-1 is 0. Given first coin tails (probability q), conditional law of X-1 is geometric with parameter p. In latter case, conditional expectation of X-1 is same as a priori expectation of X.
- ▶ Thus $E[X] 1 = E[X 1] = p \cdot 0 + qE[X] = qE[X]$ and solving for E[X] gives E[X] = 1/(1 q) = 1/p.

$$1/p, q/p^2$$

Negative binomial random variable with parameters (r, p):

Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p. Let X be such that the rth heads is on the Xth toss.

$$P(X=k) = \binom{k-1}{r-1} p^r q^{k-r}$$

Write $X=X_1+X_2+\ldots+X_r$ where X_k is number of tosses (following (k – 1)th head) required to get kth head. Each X_k is geometric with parameter p.

- ▶ Binomial (S_n number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).
- ▶ **Standard normal** approximates law of $\frac{S_n E[S_n]}{\mathrm{SD}(S_n)}$. Here $E[S_n] = np$ and $\mathrm{SD}(S_n) = \sqrt{\mathrm{Var}(S_n)} = \sqrt{npq}$ where q = 1 p.
- **Poisson** is limit of binomial as $n \to \infty$ when $p = \lambda/n$.
- ▶ Poisson point process: toss one λ/n coin during each length 1/n time increment, take $n \to \infty$ limit.
- **Exponential**: time till first event in λ Poisson point process.
- ▶ **Gamma distribution**: time till nth event in λ Poisson point process.
- ▶ Sum of two independent binomial random variables with parameters (n_1, p) and (n_2, p) is itself binomial $(n_1 + n_2, p)$.
- ▶ Sum of n independent geometric random variables with parameter p is negative binomial with parameter (n, p).
- **Expectation of geometric random variable** with parameter p is 1/p.
- **Expectation of binomial random variable** with parameters (n, p) is np.
- ▶ Variance of binomial random variable with parameters (n, p) is np(1 p) = npq.

- ▶ Sum of n independent exponential random variables each with parameter λ is gamma with parameters (n, λ) .
- ▶ Memoryless properties: given that exponential random variable X is greater than T > 0, the conditional law of X T is the same as the original law of X.
- Write $p = \lambda/n$. Poisson random variable expectation is $\lim_{n\to\infty} np = \lim_{n\to\infty} n\frac{\lambda}{n} = \lambda$. Variance is $\lim_{n\to\infty} np(1-p) = \lim_{n\to\infty} n(1-\lambda/n)\lambda/n = \lambda$.
- ▶ Sum of λ_1 Poisson and independent λ_2 Poisson is a $\lambda_1 + \lambda_2$ Poisson.
- ▶ Times between successive events in λ Poisson process are independent exponentials with parameter λ .
- ▶ Minimum of independent exponentials with parameters λ_1 and λ_2 is itself exponential with parameter $\lambda_1 + \lambda_2$.
- ▶ DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- ► This is $\Phi(b) \Phi(a) = P\{a \le X \le b\}$ when X is a standard normal random variable.
- ► Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
- Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we're asking for probability to be over two SDs above mean. This is approximately $1 \Phi(2) = \Phi(-2)$.
- ▶ Roll 60000 dice. Expect to see 10000 sixes. What's the probability to see more than 9800?
- ► Here $\sqrt{npq} = \sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.
- ► And $200/91.28 \approx 2.19$. Answer is about $1 \Phi(-2.19)$.

- Say X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- Mean zero and variance one.
- ► The random variable $Y = \sigma X + \mu$ has variance σ^2 and expectation μ .
- Y is said to be normal with parameters μ and σ^2 . Its density function is $f_Y(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$.
- Function $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$ can't be computed explicitly.
- ▶ Values: $\Phi(-3) \approx .0013$, $\Phi(-2) \approx .023$ and $\Phi(-1) \approx .159$.
- Rule of thumb: "two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean."

Gamma Distribution

- Say X is an **exponential random variable of parameter** λ when its probability distribution function is $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ (and f(x) = 0 if x < 0).
- ightharpoonup For a > 0 have

$$F_X(a) = \int_0^a f(x) dx = \int_0^a \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_0^a = 1 - e^{-\lambda a}.$$

- ► Thus $P\{X < a\} = 1 e^{-\lambda a}$ and $P\{X > a\} = e^{-\lambda a}$.
- Formula $P\{X > a\} = e^{-\lambda a}$ is very important in practice.
- ▶ Repeated integration by parts gives $E[X^n] = n!/\lambda^n$.
- If $\lambda = 1$, then $E[X^n] = n!$. Value $\Gamma(n) := E[X^{n-1}]$ defined for real n > 0 and $\Gamma(n) = (n-1)!$.

- Say that random variable X has gamma distribution with parameters (α,λ) if $f_X(x) = \begin{cases} \frac{(\lambda x)^{\alpha-1}e^{-\lambda x}\lambda}{\Gamma(\alpha)} & x \geq 0\\ 0 & x < 0 \end{cases}$.
- Same as exponential distribution when $\alpha = 1$. Otherwise, multiply by $x^{\alpha-1}$ and divide by $\Gamma(\alpha)$. The fact that $\Gamma(\alpha)$ is what you need to divide by to make the total integral one just follows from the definition of Γ .
- Naiting time interpretation makes sense only for integer α , but distribution is defined for general positive α .

Uniform distribution:

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ Then $E[X] = \frac{\alpha + \beta}{2}$.
- And $Var[X] = Var[(\beta \alpha)Y + \alpha] = Var[(\beta \alpha)Y] = (\beta \alpha)^2 Var[Y] = (\beta \alpha)^2 / 12$.

Independent

We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$$

- When X and Y are discrete random variables, they are independent if $P\{X = x, Y = y\} = P\{X = x\}P\{Y = y\}$ for all x and y for which $P\{X = x\}$ and $P\{Y = y\}$ are non-zero.
- ▶ When X and Y are continuous, they are independent if $f(x,y) = f_X(x)f_Y(y)$.

Sum two independent variables:

- Say we have independent random variables X and Y and we know their density functions f_X and f_Y .
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \leq a\}$.
- ▶ This is the integral over $\{(x,y): x+y \leq a\}$ of $f(x,y)=f_X(x)f_Y(y)$. Thus,

 $P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$ $= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$

- Differentiating both sides gives $f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy.$
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.

Order statistics

- ▶ Consider i.i.d random variables $X_1, X_2, ..., X_n$ with continuous probability density f.
- ▶ Let $Y_1 < Y_2 < Y_3 ... < Y_n$ be list obtained by sorting the X_i .
- In particular, $Y_1 = \min\{X_1, \dots, X_n\}$ and $Y_n = \max\{X_1, \dots, X_n\}$ is the maximum.
- \triangleright What is the joint probability density of the Y_i ?
- Answer: $f(x_1, x_2, \dots, x_n) = n! \prod_{i=1}^n f(x_i)$ if $x_1 < x_2 \dots < x_n$, zero otherwise.
- Let $\sigma:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ be the permutation such that $X_j=Y_{\sigma(j)}$
- ightharpoonup Are σ and the vector (Y_1,\ldots,Y_n) independent of each other?
- Yes.

Expectation:

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X] when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.
- ▶ But what about that delightful "area under $1 F_X$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?
- ▶ Define g(y) so that $1 F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 F_X$.)
- ▶ Choose Y uniformly on [0,1] and note that g(Y) has the same probability distribution as X.
- So $E[X] = E[g(Y)] = \int_0^1 g(y) dy$, which is indeed the area under the graph of $1 F_X$.

Covariance:

General statement of bilinearity of covariance:

$$Cov(\sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{n} b_j Y_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j Cov(X_i, Y_j).$$

► Special case:

$$\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2 \sum_{(i,j): i < j} \operatorname{Cov}(X_i, X_j).$$

Conditional Expectation:

- ▶ Can think of E[X|Y] as a function of the random variable Y. When Y = y it takes the value E[X|Y = y].
- So E[X|Y] is itself a random variable. It happens to depend only on the value of Y.
- ▶ Thinking of E[X|Y] as a random variable, we can ask what *its* expectation is. What is E[E[X|Y]]?
- ▶ Very useful fact: E[E[X|Y]] = E[X].
- In words: what you expect to expect X to be after learning Y is same as what you now expect X to be.
- Proof in discrete case: $E[X|Y=y] = \sum_{x} xP\{X=x|Y=y\} = \sum_{x} x\frac{p(x,y)}{p_Y(y)}$.
- ▶ Recall that, in general, $E[g(Y)] = \sum_{y} p_{Y}(y)g(y)$.
- ► $E[E[X|Y = y]] = \sum_{y} p_{Y}(y) \sum_{x} x \frac{p(x,y)}{p_{Y}(y)} = \sum_{x} \sum_{y} p(x,y)x = E[X].$

Conditional Variance:

- Definition: $Var(X|Y) = E[(X E[X|Y])^2|Y] = E[X^2 E[X|Y]^2|Y].$
- $ightharpoonup \operatorname{Var}(X|Y)$ is a random variable that depends on Y. It is the variance of X in the conditional distribution for X given Y.
- Note $E[Var(X|Y)] = E[E[X^2|Y]] E[E[X|Y]^2|Y] = E[X^2] E[E[X|Y]^2].$
- If we subtract $E[X]^2$ from first term and add equivalent value $E[E[X|Y]]^2$ to the second, RHS becomes Var[X] Var[E[X|Y]], which implies following:
- ▶ Useful fact: Var(X) = Var(E[X|Y]) + E[Var(X|Y)].
- ▶ One can discover X in two stages: first sample Y from marginal and compute E[X|Y], then sample X from distribution given Y value.
- Above fact breaks variance into two parts, corresponding to these two stages.

Moment Generating Function:

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- Then M'(0) = E[X] and $M''(0) = E[X^2]$. Generally, nth derivative of M at zero is $E[X^n]$.
- Let X and Y be independent random variables and Z = X + Y.
- Write the moment generating functions as $M_X(t) = E[e^{tX}]$ and $M_Y(t) = E[e^{tY}]$ and $M_Z(t) = E[e^{tZ}]$.
- ▶ If you knew M_X and M_Y , could you compute M_Z ?
- Py independence, $M_Z(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)$ for all t.
- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- ▶ If $X_1 ... X_n$ are i.i.d. copies of X and $Z = X_1 + ... + X_n$ then what is M_Z ?
- ightharpoonup Answer: M_X^n . Follows by repeatedly applying formula above.
- ► This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.
- ▶ If Z = aX then $M_Z(t) = E[e^{tZ}] = E[e^{taX}] = M_X(at)$.
- ▶ If Z = X + b then $M_Z(t) = E[e^{tZ}] = E[e^{tX+bt}] = e^{bt}M_X(t)$.
- If X is binomial with parameters (p, n) then $M_X(t) = (pe^t + 1 p)^n$.
- ▶ If X is Poisson with parameter $\lambda > 0$ then $M_X(t) = \exp[\lambda(e^t 1)].$
- ▶ If X is normal with mean 0, variance 1, then $M_X(t) = e^{t^2/2}$.
- If X is normal with mean μ , variance σ^2 , then $M_X(t) = e^{\sigma^2 t^2/2 + \mu t}$.
- ▶ If X is exponential with parameter $\lambda > 0$ then $M_X(t) = \frac{\lambda}{\lambda t}$.

- The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- ▶ But characteristic functions have a distinct advantage: they are always well defined for all t even if f_X decays slowly.

Cauchy Distribution

- A standard **Cauchy random variable** is a random real number with probability density $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$.
- There is a "spinning flashlight" interpretation. Put a flashlight at (0,1), spin it to a uniformly random angle in $[-\pi/2,\pi/2]$, and consider point X where light beam hits the x-axis.
- $F_X(x) = P\{X \le x\} = P\{\tan \theta \le x\} = P\{\theta \le \tan^{-1}x\} = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} x.$
- ► Find $f_X(x) = \frac{d}{dx}F(x) = \frac{1}{\pi}\frac{1}{1+x^2}$.

Beta Distribution

- Two part experiment: first let p be uniform random variable [0,1], then let X be binomial (n,p) (number of heads when we toss n p-coins).
- ▶ **Given** that X = a 1 and n X = b 1 the conditional law of p is called the β distribution.
- ▶ The density function is a constant (that doesn't depend on x) times $x^{a-1}(1-x)^{b-1}$.
- That is $f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$ on [0,1], where B(a,b) is constant chosen to make integral one. Can show $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$.
- ► Turns out that $E[X] = \frac{a}{a+b}$ and the mode of X is $\frac{(a-1)}{(a-1)+(b-1)}$.

- Let X_i be an i.i.d. sequence of random variables with finite mean μ and variance σ^2 .
- ▶ Write $S_n = \sum_{i=1}^n X_i$. So $E[S_n] = n\mu$ and $Var[S_n] = n\sigma^2$ and $SD[S_n] = \sigma\sqrt{n}$.
- ▶ Write $B_n = \frac{X_1 + X_2 + ... + X_n n\mu}{\sigma \sqrt{n}}$. Then B_n is the difference between S_n and its expectation, measured in standard deviation units.
- Central limit theorem:

$$\lim_{n\to\infty} P\{a\leq B_n\leq b\}\to \Phi(b)-\Phi(a).$$

Law of Large Numbers

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ▶ Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical* average of the first n trials.
- lntuition: when n is large, A_n is typically close to μ .
- ▶ Recall: **weak law of large numbers** states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.
- ► The **strong law of large numbers** states that with probability one $\lim_{n\to\infty} A_n = \mu$.
- ▶ It is called "strong" because it implies the weak law of large numbers. But it takes a bit of thought to see why this is the case.

Markov chain

- Consider a sequence of random variables $X_0, X_1, X_2, ...$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0, 1, ..., M\}$.
- Interpret X_n as state of the system at time n.
- Sequence is called a **Markov chain** if we have a fixed collection of numbers P_{ij} (one for each pair $i, j \in \{0, 1, ..., M\}$) such that whenever the system is in state i, there is probability P_{ij} that system will next be in state j.
- Precisely, $P\{X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},\ldots,X_1=i_1,X_0=i_0\}=P_{ij}$.
- ► Kind of an "almost memoryless" property. Probability distribution for next state depends only on the current state (and not on the rest of the state history).
- Say Markov chain is **ergodic** if some power of the transition matrix has all non-zero entries.
- Turns out that if chain has this property, then $\pi_j := \lim_{n \to \infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.
- ► This means that the row vector

$$\pi = (\pi_0 \quad \pi_1 \quad \dots \quad \pi_M)$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A = \pi$.

 \blacktriangleright We call π the stationary distribution of the Markov chain.

Markov and Chebyshev Inequalities

Markov's Inequality

If X is any <u>nonnegative</u> random variable, then

$$P(X \ge a) \le \frac{EX}{a}$$
, for any $a > 0$.

Chebyshev's Inequality

If X is any random variable, then for any b>0 we have

$$Pig(|X-EX| \geq big) \leq rac{Var(X)}{b^2}.$$