Hemorrhagic Shock Model

Ibrahim Al-Akash, Ruth Hong, Leanne Long, Riya Pagilla, Andrew Sun, Alice Tian, Sam Wu

Why Model Blood Flow?

Hemorrhagic Shock

A decrease in intravascular volume from **blood loss** that compromises **cardiovascular function**.

Hemorrhagic Shock: Motivation

1.5 Million Deaths Worldwide

3rd Leading Cause of Death in the US

Hemorrhagic Shock: Class II

Hemorrhagic Shock in Blood Loss %

Class I: 0-15%

Class II: 15%-30%

Class III: 30%-40%

Class IV: over 40%

Hemorrhagic Shock: Class II

- Track physiological changes without overcomplications
- Guide treatment interventions early on

Model Objectives

- Determine blood flow characteristics
- Determine component concentrations
- Determine response to hemorrhagic shock

Model Development

Physiological Response

Organs and Components

Components

Organs

The Model

Steady-state and Dynamic

Assumptions

- Model the heart as the left and right side
 - Left: splitter
 - Right: mixer
- No leaks in the organs
- Blood is well mixed
- The liver, kidneys, and brain receive fully oxygenated blood during steady state
- The only reactions in the body are aerobic cellular respiration and glycogenolysis

Model Review

ical ns

Blc Me

Blood Flow Mechanics Model

l nt

Fundamental Equations

Navier-Stokes Equations

 $rac{\partial m{u}}{\partial t} +
ho(m{u} \cdot m{\nabla})m{u} + m{\nabla}P - \mathbf{div}(\mu m{D}(m{u})) = m{f}$ Conservation of Linear Momentum

$$\mathbf{div} \boldsymbol{u} = 0$$

Conservation of Mass

OD Lumped Parameter Simplification

$$L\frac{d\hat{Q}}{dt} + R\hat{Q} + P_2 - P_1 = 0$$

Conservation of Linear Momentum

$$C\frac{d\hat{p}}{dt} + Q_2 - Q_1 = 0$$

Conservation of Mass

0D

1D

The Circuit Model

Hydraulic	Electric Analog
Pressure (P)	Voltage (V)
Flow Rate (Q)	Current (I)
Blood Volume (V)	Charge (Q)
Blood Viscosity	Resistance <i>R</i>
Blood Inertia	Inductance L
Mass Storage	Capacitance <i>C</i>

Recall:
$$\begin{cases} L\frac{d\hat{Q}}{dt}+R\hat{Q}+P_2-P_1=0\\ C\frac{d\hat{p}}{dt}+Q_2-Q_1=0 \end{cases}$$

Circulatory Circuit

Model Review

Biochemical Model

Venous component concentrations are mixed before recycling into the circuit

Modeling Perturbation

<u>Same basic equation</u> for O₂, CO₂, and glucose generation/consumption

Used to inform

- Changes in cardiac output
- Blood flow distribution

Change in Consumption Rate

$$\dot{C}_{cons} = k * \dot{C}_{cons,0}$$

Scaling Factor Calculation

$$k = m \frac{V_{blood}}{V_{blood,0}} + b$$

Different for each organ & component modeled

Biological Model

Model Review

ical ns

Final Output

l nt

Healthy Output

Flow rate is <u>pulsatile</u>, meaning it changes with each beat of the heart.

Blood Loss and Recovery

Blood volume and heart rate recover after 72-100 hours.

O2 Perfusion to Organs

At <u>5 hours</u>, hemorrhagic shock occurs.

The brain <u>loses a</u>
<u>smaller percentage</u> of O₂
as compared to the liver and kidneys.

RBC and Platelet Recovery

RBC and platelet recovery take longer than other components

Arterial Concentrations

Arterial Concentrations

Respiratory Concentration

Respiratory Quotient increases after hemorrhagic shock.

This is reflected in the steeper drop in O₂ concentration.

Results

Interpretation and Importance

Limitations and Future Improvements

- Improve accuracy of flow model
- Human models and further research
- Further work to include all classes of hemorrhagic shock

Conclusions

- Recovery time for almost all components within 100 hrs
- 98% accuracy in blood flow rates compared to literature values
- Blood flow characteristics
 - Body recovers by diverting blood to critical organs
- Component characteristics
 - Rise in glucose levels
 - Platelets and RBC recovery takes longer
- Guide treatment with this information

Acknowledgements

- Dr. Ramos
- Ming Cao
- Maria Barra
- Jenny Park

Bibliography

- Hooper N, Armstrong TJ. Hemorrhagic Shock. [Updated 2022 Sep 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470382/
- Longo DL, Cannon JW, Hemorrhagic Shock. N Engl J Med. 2018;378(4):370-379. doi:https://doi.org/10.1056/NEJMra1705649
- Silverthorn DU, Johnson BR, Ober WC, Ober CE, Impagliazzo A, Silverthorn AC. Human Physiology: An Integrated Approach. Eighth edition. Pearson Education, Inc; 2019.
- Armentano RL, Cabrera Fischer EI, Cymberknop LJ. Biomechanical Modeling of the Cardiovascular System. IOP Publishing; 2019.
- Holzrichter D, Meiss L, Behrens S, Mickley V. The rise of blood sugar as an additional parameter in traumatic shock. Arch Orthop Trauma Surg. 1987;106(5):319-322. doi:10.1007/BF00454341
- Lautt WW. Hepatic Circulation: Physiology and Pathophysiology. Colloq Ser Integr Syst Physiol Mol Funct. 2009;1(1):1-174. doi:10.4199/C00004ED1V01Y200910ISP001
- Arias CF, Arias CF. How do red blood cells know when to die? R Soc Open Sci. 4(4):160850. doi:10.1098/rsos.160850 Marieb EN, Hoehn K. Human Anatomy & Physiology. 9th ed. Pearson; 2013.
- Pretini V, Koenen MH, Kaestner L, et al. Red Blood Cells: Chasing Interactions. Front Physiol. 2019;10:945. doi:10.3389/fphys.2019.00945
- Wannberg M, Miao X, Li N, Wikman A, Wahlgren CM. Platelet consumption and hyperreactivity coexist in experimental traumatic hemorrhagic model. Platelets. 2020;31(6):777-783. doi:10.1080/09537104.2019.1678120
- Wright PD, Henderson K. Cellular glucose utilization during hemorrhagic shock in the pig. Surgery. 1975;78(3):322-333.

Bibliography

- Winkelmann M, Butz AL, Clausen JD, et al. Admission blood glucose as a predictor of shock and mortality in multiply injured patients. SICOT-J. 2019;5:17. doi:10.1051/sicotj/201901.
- Formaggia L, Quarteroni A, Veneziani A, eds. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer; 2009.
- D'Angelo C, Papelier Y. Mathematical modelling of the cardiovascular system and skeletal muscle interaction during exercise. Cancès E, Gerbeau JF, eds. ESAIM Proc. 2005;14:72-88. doi:10.1051/proc:2005007
- Otto, S, Day, T. Solving Linear Equations: Red Blood Cell Production. https://www.zoology.ubc.ca/~bio301/Bio301/Lectures/Lecture17/Overheads.html.

Model in Summary

Hemodynamic Model

Ibrahim Al-Akash, Ruth Hong, Leanne Long, Riya Pagilla, Andrew Sun, Alice Tian, Sam Wu

Appendix

Organs

Blood flow rate

Function

Relevance

Response

Central pump

100 BPM → 120 BPM

Brain

Nervous control

Major consumer of components

Directs response

Lungs

Exchange of O₂ and CO₂

Supplies O₂

20 → 24 breaths per minute

Organs

Function

Relevance

Response

Liver

Extracts nutrients

Glucose metabolism

Increased glucose production

Kidneys

Filters waste products

Blood filtration

Increased HR →
Decreased glomerular
filtration rate (GFR)

Other

Generates/consumes components

Generates/consumes RBCs & platelets

Increased production and release of RBCs & platelets

Components

Red Blood Cells

45% of blood by volume

Defines severity of shock

30% Blood volume loss

Platelets

<1% of blood by volume

Crucial due to blood clotting abilities

Initial loss then increase in platelets

Response

Function

Relevance

Components

Function

O2Inhaled from surroundings

Relevance

Aerobic cellular respiration

Response

Respiratory rate increases

CO2

Exhaled as waste product

Aerobic cellular respiration

Respiratory quotient increases

Glucose

Main source of energy

Used in metabolic processes

Hypermetabolic response → rise in blood glucose levels

Simplifying Assumptions

Assuming Poiseuille Flow and Perfectly Cylindrical Vessel

$$L\frac{d\hat{Q}}{dt} + R\hat{Q} + P_2 - P_1 = 0$$

$$C\frac{d\hat{p}}{dt} + Q_2 - Q_1 = 0$$

4 Unknowns: \hat{Q}, \hat{p}, P_1 and Q_2

2 Equations: **Underspecified**

$$R=rac{8\mu l}{\pi r_0^4}$$
 Resistance induced to the flow by the blood viscosity

$$L=rac{
ho l}{\pi r_0^2}$$
 Inertial term in the momentum equation

$$C=rac{3\pi r_0^3 l}{2Eh_0}$$
 Mass storage term in the mass conservation law due to compliance of vessel

$$\hat{p} pprox P_1, \quad \hat{Q} pprox Q_2$$
 Eliminates two unknowns to become a correctly specified system of equations

$$Crac{dP_1}{dt}+Q_2=Q_1,$$
 Reduced equations 2 Unknowns: P_1 and Q_2 $Lrac{dQ_2}{dt}+RQ_2-P_1=P_2$ 2 Equations: Correctly Specified

Biochemical Dynamics

Venous Concentration of Chemical Species

$$[C]_v = \sum_{i \in \{sm, sp, o\}} \frac{\dot{Q}_i}{\dot{Q}_a} [C]_{v,i}$$

V- tissue volume,

A- stoichiometric coefficient matrix

ψ- reaction rate vector

c- concentration of the species

Arterial Concentration of Chemical Species

$$V_i \frac{\mathrm{d}\mathbf{c}_i}{\mathrm{d}t} = \mathbf{A}\boldsymbol{\psi}_i(\mathbf{c}_i, t) + \mathbf{b}_i(\mathbf{c}_i, \mathbf{c}_{a,i}, \dot{Q}_i, t)$$

$$\mathbf{b}_i(\mathbf{c}_i, \mathbf{c}_{a,i}, \dot{Q}_i, t) = \dot{Q}_i(\mathbf{c}_{a,i} - \boldsymbol{\sigma}_i.\mathbf{c}_i)$$

b- mass transfer term

O- blood flow rate

σ- partition coefficient

i- the compartment of interest, such as kidneys, liver, brain, spleen. etc.