lesuay, ivoverriber 10, 2020	0.33 AW											
	5.	4	In	definite	Int	igral_	and	He	Net	change	There	<u></u>
First	+	<u></u>		1. x) 01 = 02 0 x	\sim	(- A - 10						
1116	J	1	WIM	distingu	Y ~	Dea my						

f (x) dx 5.1 Definite Intigral

- Indefinite integral

- It is a function F(x) = f(x)

 $\int f(x) dx \qquad \text{where} \qquad \int f(x) dx = \overline{f}(x)$

- It is a number

dx (x3+c) = x2
leinche (more) (x2 dx = x3 + C

Table of Indefinite integrals

() (cfw)dx = c fw)dx

 $\bigoplus \int e^{x} dx = e^{x} + c$

 $\int S_{\text{In}}(x) dx = -(\sigma S(x) + c$

() Sec (+) dx = tan(x) + (

(7) See(x) tam(x) dx = See(x) + (

(8) $\int dx = tan^{-1}(x) + c$

d | | = ___

$$\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{x^2+1}$$

$$\int S(mh(x)) = (ash(x) + c$$

$$\int_{-\infty}^{\infty} dx = |w|x| + c$$

$$\int_{b}^{x} dx = \frac{b^{x}}{b^{x}} + c$$

$$(3c(x)(x)(x)) = -(3c(x)+c)$$

$$\int \int \frac{1}{\sqrt{1-x^2}} dx = \sin(x) + c$$