# Optimality and Sub-optimality of Principal Component Analysis for Spiked Random Matrices

#### Amelia Perry MIT

Joint work with:

Alex Wein (MIT), Afonso Bandeira (Courant/CDS), Ankur Moitra (MIT)

#### Wigner Matrix

$$rac{1}{\sqrt{n}}W\in\mathbb{R}^{n imes n}$$
 symmetric,  $W_{ij}\sim\mathcal{N}\left(0,1
ight)$ 

#### Wigner Matrix

$$rac{1}{\sqrt{n}}W\in\mathbb{R}^{n imes n}$$
 symmetric,  $W_{ij}\sim\mathcal{N}\left(0,1
ight)$ 



E. P. Wigner, AoM 1958.

V. A. Marchenko, L. A. Pastur, M.S 1967.

#### Wigner Matrix

$$rac{1}{\sqrt{n}}W\in\mathbb{R}^{n imes n}$$
 symmetric,  $W_{ij}\sim\mathcal{N}\left(0,1
ight)$ 



#### Wishart Matrix

$$\frac{1}{N} \sum_{k=1}^{N} y_k y_k^T \\ y_k \sim \mathcal{N}(0, I_n)$$

E. P. Wigner, AoM 1958.

V. A. Marchenko, L. A. Pastur, M.S 1967.

#### Wigner Matrix

$$rac{1}{\sqrt{n}}W\in\mathbb{R}^{n imes n}$$
 symmetric,  $W_{ij}\sim\mathcal{N}\left(0,1
ight)$ 



#### Wishart Matrix

$$\frac{1}{N} \sum_{k=1}^{N} y_k y_k^T \\ y_k \sim \mathcal{N}\left(0, I_n\right)$$



E. P. Wigner, AoM 1958.

V. A. Marchenko, L. A. Pastur, M.S 1967.

#### **Spiked Wigner Matrix**

$$Y = \frac{1}{\sqrt{n}}W + \lambda xx^{T}$$

$$\frac{1}{\sqrt{n}}W \text{ Wigner, } ||x|| = 1.$$

J. Baik, G. Ben Arous, S. Péché, AoP 2005.

D. Feral, S. Péché, CMP 2006.

#### **Spiked Wigner Matrix**

$$Y = \frac{1}{\sqrt{n}}W + \lambda xx^{\mathsf{T}}$$
$$\frac{1}{\sqrt{n}}W \text{ Wigner, } ||x|| = 1.$$



# Visible on the largest eigenvalue when

#### $\lambda > 1$

- J. Baik, G. Ben Arous, S. Péché, AoP 2005.
- D. Feral, S. Péché, CMP 2006.

#### **Spiked Wigner Matrix**

$$Y = \frac{1}{\sqrt{n}}W + \lambda xx^{T}$$

$$\frac{1}{\sqrt{n}}W \text{ Wigner, } ||x|| = 1.$$



# Visible on the largest eigenvalue when

$$\lambda > 1$$

- J. Baik, G. Ben Arous, S. Péché, AoP 2005.
- D. Feral, S. Péché, CMP 2006.

#### Wishart Matrix

$$\begin{aligned} Y &= \frac{1}{N} \sum_{k=1}^{N} y_k y_k^T \\ y_k &\sim \mathcal{N}\left(0, I_n + \frac{\beta x x^T}{}\right), \ \|x\| = 1 \end{aligned}$$

#### **Spiked Wigner Matrix**

$$Y = \frac{1}{\sqrt{n}}W + \lambda xx^{\mathsf{T}}$$
$$\frac{1}{\sqrt{n}}W \text{ Wigner, } ||x|| = 1.$$



Visible on the largest eigenvalue when

$$\lambda > 1$$

- J. Baik, G. Ben Arous, S. Péché, AoP 2005.
- D. Feral, S. Péché, CMP 2006.

#### Wishart Matrix

$$\begin{aligned} Y &= \frac{1}{N} \sum_{k=1}^{N} y_k y_k^T \\ y_k &\sim \mathcal{N}\left(0, I_n + \frac{\beta x x^T}{2}\right), \ \|x\| = 1 \end{aligned}$$



Visible on the largest eigenvalue when

$$|\beta| > \sqrt{\gamma}$$
,  $\gamma = \frac{n}{N}$ ,  $\beta \in [-1, \infty)$ 

▶ Detection: distinguish reliably (error prob  $\rightarrow$  0)  $Y \sim \frac{1}{\sqrt{n}}W \text{ (Wigner)} \quad \text{vs} \quad Y \sim \frac{1}{\sqrt{n}}W + \lambda xx^T$ 

- ▶ Detection: distinguish reliably (error prob  $\rightarrow$  0)  $Y \sim \frac{1}{\sqrt{n}}W$  (Wigner) vs  $Y \sim \frac{1}{\sqrt{n}}W + \lambda xx^T$
- ▶ Recovery: nontrivial correlation with truth:  $\langle x, \hat{x} \rangle > \epsilon$

- ▶ Detection: distinguish reliably (error prob  $\rightarrow$  0)  $Y \sim \frac{1}{\sqrt{n}}W$  (Wigner) vs  $Y \sim \frac{1}{\sqrt{n}}W + \lambda xx^T$
- ▶ Recovery: nontrivial correlation with truth:  $\langle x, \hat{x} \rangle > \epsilon$
- ▶ PCA solves both detection and recovery above threshold  $\lambda > 1$  (Wigner)

- ▶ Detection: distinguish reliably (error prob  $\rightarrow$  0)  $Y \sim \frac{1}{\sqrt{n}}W$  (Wigner) vs  $Y \sim \frac{1}{\sqrt{n}}W + \lambda xx^T$
- ▶ Recovery: nontrivial correlation with truth:  $\langle x, \hat{x} \rangle > \epsilon$
- ▶ PCA solves both detection and recovery above threshold  $\lambda > 1$  (Wigner)
- Are they statistically possible below the threshold?

- ▶ Detection: distinguish reliably (error prob  $\rightarrow$  0)  $Y \sim \frac{1}{\sqrt{n}}W$  (Wigner) vs  $Y \sim \frac{1}{\sqrt{n}}W + \lambda xx^T$
- ▶ Recovery: nontrivial correlation with truth:  $\langle x, \hat{x} \rangle > \epsilon$
- ▶ PCA solves both detection and recovery above threshold  $\lambda > 1$  (Wigner)
- Are they statistically possible below the threshold?
- ▶ Need a prior on the spike  $x \in \mathbb{R}^n$

▶ Detection: distinguish reliably (error prob  $\rightarrow$  0)

$$Y \sim rac{1}{\sqrt{n}} W$$
 (Wigner) vs  $Y \sim rac{1}{\sqrt{n}} W + \lambda x x^T$ 

- ▶ Recovery: nontrivial correlation with truth:  $\langle x, \hat{x} \rangle > \epsilon$
- ▶ PCA solves both detection and recovery above threshold  $\lambda > 1$  (Wigner)
- ► Are they statistically possible below the threshold?
- ▶ Need a prior on the spike  $x \in \mathbb{R}^n$ 
  - unit sphere
  - ▶ i.i.d. ±1
  - ▶ sparse ±1

Hypothesis testing power Recovery quality





**Optimal** 1.0 0.8 **PCA** 0.6 0.4 0.2 3.0 0.5 1.0 1.5 2.0 2.5 "PCA is sub-optimal"

Hypothesis testing power Recovery quality

Hypothesis testing power Recovery quality **Optimal** 1.0 0.8 **PCA** 0.6 0.4 0.2 0.5 1.0 1.5 2.0 2.5 3.0 "PCA is sub-optimal"

This talk: focus on detection threshold (also hypothesis testing bounds, recovery threshold)

#### Our Results: 3 Scenarios

 PCA achieves optimal threshold (e.g. Wigner with spherical or Rademacher prior)

#### Our Results: 3 Scenarios

 PCA achieves optimal threshold (e.g. Wigner with spherical or Rademacher prior)

2. Can beat PCA with an efficient algorithm (e.g. non-Gaussian Wigner)

#### Our Results: 3 Scenarios

 PCA achieves optimal threshold (e.g. Wigner with spherical or Rademacher prior)

2. Can beat PCA with an efficient algorithm (e.g. non-Gaussian Wigner)

3. Can beat PCA, but only with an inefficient algorithm (e.g. sparse priors, Wishart)

▶ Sequence of distributions  $P_n$  is contiguous to  $Q_n$  if for any sequence of events  $A_n$ ,

$$\lim_{n\to\infty}Q_n\left(A_n\right)=0\quad\Rightarrow\quad\lim_{n\to\infty}P_n\left(A_n\right)=0.$$

▶ Sequence of distributions  $P_n$  is contiguous to  $Q_n$  if for any sequence of events  $A_n$ ,

$$\lim_{n\to\infty}Q_n(A_n)=0\quad\Rightarrow\quad\lim_{n\to\infty}P_n(A_n)=0.$$

▶ If distributions are contiguous, there is no reliable test to distinguish them.

▶ Sequence of distributions  $P_n$  is contiguous to  $Q_n$  if for any sequence of events  $A_n$ ,

$$\lim_{n\to\infty}Q_n\left(A_n\right)=0\quad\Rightarrow\quad\lim_{n\to\infty}P_n\left(A_n\right)=0.$$

▶ If distributions are contiguous, there is no reliable test to distinguish them.

*Proof*: Let  $A_n$  be the event that distinguisher says ' $P_n$ '.



▶ Sequence of distributions  $P_n$  is contiguous to  $Q_n$  if for any sequence of events  $A_n$ ,

$$\lim_{n\to\infty}Q_n\left(A_n\right)=0\quad\Rightarrow\quad\lim_{n\to\infty}P_n\left(A_n\right)=0.$$

▶ If distributions are contiguous, there is no reliable test to distinguish them.

*Proof*: Let  $A_n$  be the event that distinguisher says ' $P_n$ '.

#### Theorem (Second Moment)

If 
$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2=O(1)$$
, then  $P_n$  is contiguous to  $Q_n$ .

▶ Sequence of distributions  $P_n$  is contiguous to  $Q_n$  if for any sequence of events  $A_n$ ,

$$\lim_{n\to\infty}Q_n\left(A_n\right)=0\quad\Rightarrow\quad\lim_{n\to\infty}P_n\left(A_n\right)=0.$$

▶ If distributions are contiguous, there is no reliable test to distinguish them.

*Proof*: Let  $A_n$  be the event that distinguisher says ' $P_n$ '.

#### Theorem (Second Moment)

If 
$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2=O(1)$$
, then  $P_n$  is contiguous to  $Q_n$ .

▶ Sequence of distributions  $P_n$  is contiguous to  $Q_n$  if for any sequence of events  $A_n$ ,

$$\lim_{n\to\infty}Q_n(A_n)=0\quad\Rightarrow\quad\lim_{n\to\infty}P_n(A_n)=0.$$

Theorem (Second Moment)

If 
$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2=O(1)$$
, then  $P_n$  is contiguous to  $Q_n$ .

Proof:

▶ Sequence of distributions  $P_n$  is contiguous to  $Q_n$  if for any sequence of events  $A_n$ ,

$$\lim_{n\to\infty}Q_n(A_n)=0\quad\Rightarrow\quad\lim_{n\to\infty}P_n(A_n)=0.$$

#### Theorem (Second Moment)

If  $\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 = O(1)$ , then  $P_n$  is contiguous to  $Q_n$ .

Proof:

$$\underbrace{\int_{A_n} dP_n}_{P_n(A_n)} = \int_{A_n} \frac{dP_n}{dQ_n} dQ_n \le \left(\underbrace{\int_{A_n} \left(\frac{dP_n}{dQ_n}\right)^2 dQ_n}_{\le \mathbb{E}_{Q_n} \left(\frac{dP_n}{dQ_n}\right)^2}\right)^{\frac{1}{2}} \left(\underbrace{\int_{A_n} dQ_n}_{Q_n(A_n)}\right)^{\frac{1}{2}}$$

L. Le Cam, 1960.

# Case 1: PCA is optimal

► Taking  $P_n : \frac{1}{\sqrt{n}}W + \lambda xx^T$  with  $x \sim \mathcal{X}$ , and  $Q_n : \frac{1}{\sqrt{n}}W$ 

<sup>[</sup>MRZ15] A. Montanari, D. Reichman, O. Zeitouni, NIPS 2015.

► Taking  $P_n : \frac{1}{\sqrt{n}}W + \lambda xx^T$  with  $x \sim \mathcal{X}$ , and  $Q_n : \frac{1}{\sqrt{n}}W$ 

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 = \mathbb{E}_{x,x'\sim\mathcal{X}} \exp\left(\frac{\lambda^2 n}{2}\langle x,x'\rangle^2\right)$$

► Taking  $P_n : \frac{1}{\sqrt{n}}W + \lambda xx^T$  with  $x \sim \mathcal{X}$ , and  $Q_n : \frac{1}{\sqrt{n}}W$ 

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 = \mathbb{E}_{x,x'\sim\mathcal{X}} \exp\left(\frac{\lambda^2 n}{2}\langle x,x'\rangle^2\right)$$

▶ E.g. if the prior  $\mathcal{X}$  is uniform on the unit sphere (and  $\lambda < 1$ ):

► Taking  $P_n : \frac{1}{\sqrt{n}}W + \lambda xx^T$  with  $x \sim \mathcal{X}$ , and  $Q_n : \frac{1}{\sqrt{n}}W$ 

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 = \mathbb{E}_{x,x'\sim\mathcal{X}} \exp\left(\frac{\lambda^2 n}{2}\langle x,x'\rangle^2\right)$$

▶ E.g. if the prior  $\mathcal{X}$  is uniform on the unit sphere (and  $\lambda < 1$ ):

$$\lim_{n\to\infty} \mathbb{E}_{x,x'\sim\mathcal{X}} \ \exp\left(\frac{\lambda^2 n}{2}\langle x,x'\rangle^2\right) = \left(1-\lambda^2\right)^{-\frac{1}{2}} < \infty$$

► Taking  $P_n : \frac{1}{\sqrt{n}}W + \lambda xx^T$  with  $x \sim \mathcal{X}$ , and  $Q_n : \frac{1}{\sqrt{n}}W$ 

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 = \mathbb{E}_{x,x'\sim\mathcal{X}} \exp\left(\frac{\lambda^2 n}{2}\langle x,x'\rangle^2\right)$$

▶ E.g. if the prior  $\mathcal{X}$  is uniform on the unit sphere (and  $\lambda < 1$ ):

$$\lim_{n\to\infty} \mathbb{E}_{\mathbf{x},\mathbf{x}'\sim\mathcal{X}} \ \exp\left(\frac{\lambda^2 n}{2}\langle \mathbf{x},\mathbf{x}'\rangle^2\right) = \left(1-\lambda^2\right)^{-\frac{1}{2}} < \infty$$

The distributions are contiguous below the spectral threshold [MRZ15]

► Taking  $P_n : \frac{1}{\sqrt{n}}W + \lambda xx^T$  with  $x \sim \mathcal{X}$ , and  $Q_n : \frac{1}{\sqrt{n}}W$ 

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 = \mathbb{E}_{x,x'\sim\mathcal{X}} \exp\left(\frac{\lambda^2 n}{2}\langle x,x'\rangle^2\right)$$

▶ E.g. if the prior  $\mathcal{X}$  is uniform on the unit sphere (and  $\lambda < 1$ ):

$$\lim_{n\to\infty} \mathbb{E}_{\mathbf{x},\mathbf{x}'\sim\mathcal{X}} \ \exp\left(\frac{\lambda^2 n}{2}\langle \mathbf{x},\mathbf{x}'\rangle^2\right) = \left(1-\lambda^2\right)^{-\frac{1}{2}} < \infty$$

The distributions are contiguous below the spectral threshold [MRZ15]

▶ Same can be shown for the Wishart case [OMH13]

## Wigner Second Moment

► Taking  $P_n : \frac{1}{\sqrt{n}}W + \lambda xx^T$  with  $x \sim \mathcal{X}$ , and  $Q_n : \frac{1}{\sqrt{n}}W$ 

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 = \mathbb{E}_{x,x'\sim\mathcal{X}} \exp\left(\frac{\lambda^2 n}{2}\langle x,x'\rangle^2\right)$$

▶ E.g. if the prior  $\mathcal{X}$  is uniform on the unit sphere (and  $\lambda < 1$ ):

$$\lim_{n\to\infty} \mathbb{E}_{\mathbf{x},\mathbf{x}'\sim\mathcal{X}} \ \exp\left(\frac{\lambda^2 n}{2} \langle \mathbf{x},\mathbf{x}'\rangle^2\right) = \left(1-\lambda^2\right)^{-\frac{1}{2}} < \infty$$

The distributions are contiguous below the spectral threshold [MRZ15]

► Same can be shown for the Wishart case [OMH13]

But what about when we know more about the spike?

# Wigner, Rademacher Prior

$$Y \sim \frac{1}{\sqrt{n}}W$$
 (Wigner) vs  $Y \sim \frac{1}{\sqrt{n}}W + \lambda x x^T$ ,  $x \sim \mathrm{Unif}\left\{\pm\frac{1}{\sqrt{n}}\right\}^n$ .

## Wigner, Rademacher Prior

$$Y \sim \frac{1}{\sqrt{n}}W$$
 (Wigner) vs  $Y \sim \frac{1}{\sqrt{n}}W + \lambda x x^T$ ,  $x \sim \mathrm{Unif}\left\{\pm\frac{1}{\sqrt{n}}\right\}^n$ .

Still Contiguous for  $\lambda < 1$ 

## Wigner, Rademacher Prior

$$Y \sim rac{1}{\sqrt{n}}W$$
 (Wigner) vs  $Y \sim rac{1}{\sqrt{n}}W + \lambda x x^T$ ,  $x \sim \mathrm{Unif}\left\{\pmrac{1}{\sqrt{n}}
ight\}^n$ .

Contiguity argument goes through for a general class of priors!

$$\mathbb{E}_{Q_n} \left( \frac{dP_n}{dQ_n} \right)^2 = \mathbb{E} \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \qquad x, x' \sim \mathcal{X}$$

$$\mathbb{E}_{Q_n} \left( \frac{dP_n}{dQ_n} \right)^2 = \mathbb{E} \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \qquad x, x' \sim \mathcal{X}$$
$$= \int_0^\infty \Pr \left[ \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \ge t \right] dt$$

$$\mathbb{E}_{Q_n} \left( \frac{dP_n}{dQ_n} \right)^2 = \mathbb{E} \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \qquad x, x' \sim \mathcal{X}$$

$$= \int_0^\infty \Pr \left[ \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \ge t \right] dt$$

$$= 2 \int_0^\infty \Pr \left[ \langle x, x' \rangle \ge \sqrt{\frac{2 \log t}{\lambda^2 n}} \right] dt$$

$$\mathbb{E}_{Q_n} \left( \frac{dP_n}{dQ_n} \right)^2 = \mathbb{E} \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \qquad x, x' \sim \mathcal{X}$$

$$= \int_0^\infty \Pr \left[ \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \ge t \right] dt$$

$$= 2 \int_0^\infty \Pr \left[ \langle x, x' \rangle \ge \sqrt{\frac{2 \log t}{\lambda^2 n}} \right] dt$$

$$= 2 \int_0^1 \Pr \left[ \langle x, x' \rangle \ge u \right] \exp \left( \frac{\lambda^2 n}{2} u^2 \right) \lambda^2 n u du$$

$$\mathbb{E}_{Q_n} \left( \frac{dP_n}{dQ_n} \right)^2 = \mathbb{E} \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \qquad x, x' \sim \mathcal{X}$$

$$= \int_0^\infty \Pr \left[ \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \ge t \right] dt$$

$$= 2 \int_0^\infty \Pr \left[ \langle x, x' \rangle \ge \sqrt{\frac{2 \log t}{\lambda^2 n}} \right] dt$$

$$= 2 \int_0^1 \Pr \left[ \langle x, x' \rangle \ge u \right] \exp \left( \frac{\lambda^2 n}{2} u^2 \right) \lambda^2 n u du$$

$$\to 2 \int_0^1 \lambda^2 n u \exp \left[ n \left( \frac{\lambda^2}{2} u^2 - R(u) \right) \right] du$$

Rate function:  $R(u) = \lim_{n \to \infty} \frac{-1}{n} \log \Pr[\langle x, x' \rangle \ge u]$ 

$$\begin{split} \mathbb{E}_{Q_n} \left( \frac{dP_n}{dQ_n} \right)^2 &= \mathbb{E} \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \quad x, x' \sim \mathcal{X} \\ &= \int_0^\infty \Pr \left[ \exp \left( \frac{\lambda^2 n}{2} \langle x, x' \rangle^2 \right) \geq t \right] dt \\ &= 2 \int_0^\infty \Pr \left[ \langle x, x' \rangle \geq \sqrt{\frac{2 \log t}{\lambda^2 n}} \right] dt \\ &= 2 \int_0^1 \Pr \left[ \langle x, x' \rangle \geq u \right] \exp \left( \frac{\lambda^2 n}{2} u^2 \right) \lambda^2 n \, u \, du \\ &\to 2 \int_0^1 \lambda^2 n \, u \exp \left[ n \left( \frac{\lambda^2}{2} u^2 - R(u) \right) \right] du \end{split}$$

Rate function: 
$$R(u) = \lim_{n \to \infty} \frac{-1}{n} \log \Pr \left[ \langle x, x' \rangle \ge u \right]$$

In other words:  $\Pr[\langle x, x' \rangle \geq u] \approx \exp(-n R(u))$ 

$$\mathbb{E}_{Q_n} \left( \frac{dP_n}{dQ_n} \right)^2 \rightarrow 2 \int_0^1 \lambda^2 n \, u \exp \left[ n \left( \frac{\lambda^2}{2} u^2 - R(u) \right) \right] du$$

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 \rightarrow 2\int_0^1 \lambda^2 n \, u \exp\left[\frac{n}{2}\left(\frac{\lambda^2}{2}u^2 - R(u)\right)\right] du$$

▶ Bounded iff  $\frac{\lambda^2}{2}u^2 - R(u) < 0$  for all  $u \in (0,1)$ 

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 \rightarrow 2\int_0^1 \lambda^2 n \, u \exp\left[\frac{n}{2}\left(\frac{\lambda^2}{2}u^2 - R(u)\right)\right] du$$

- ▶ Bounded iff  $\frac{\lambda^2}{2}u^2 R(u) < 0$  for all  $u \in (0,1)$
- How big a parabola can you fit underneath the rate function?

$$\mathbb{E}_{Q_n}\left(\frac{dP_n}{dQ_n}\right)^2 \rightarrow 2\int_0^1 \lambda^2 n \, u \exp\left[\frac{n}{2}\left(\frac{\lambda^2}{2}u^2 - R(u)\right)\right] du$$

- ▶ Bounded iff  $\frac{\lambda^2}{2}u^2 R(u) < 0$  for all  $u \in (0,1)$
- How big a parabola can you fit underneath the rate function?
- ▶ E.g. Rademacher prior  $(\pm 1)$  has  $R(u) = \log 2 h\left(\frac{1+u}{2}\right)$  where  $h(p) = -p \log p (1-p) \log(1-p)$



Case 2: PCA can be efficiently beaten

## What if noise is not Gaussian?

$$Y = \frac{1}{\sqrt{n}} \mathbf{W} + \lambda x x^T$$

 $x \sim \text{Unif}\{\mathbb{S}^{n-1}\}, \ W \in \mathbb{R}^{n \times n}$  but  $W_{ii} \sim p(w)$  such that  $\mathbb{E}w = 0, \ \mathbb{E}w^2 = 1.$ 

D. Feral, S. Péché, CMP 2006.

T. Tao, V. Vu, MAoRMT 2012.

#### What if noise is not Gaussian?

$$Y = \frac{1}{\sqrt{n}} \mathbf{W} + \lambda x x^T$$

$$x \sim \text{Unif}\{\mathbb{S}^{n-1}\}, \ W \in \mathbb{R}^{n \times n}$$
 but  $W_{ii} \sim p(w)$  such that  $\mathbb{E}w = 0$ ,  $\mathbb{E}w^2 = 1$ .

**Universality**: spectral properties are unchanged...

D. Feral, S. Péché, CMP 2006.

T. Tao, V. Vu, MAoRMT 2012.

## Can you tell which one is which?

For 
$$W_{ij} \sim \text{Unif}(\pm 1)$$
,  $\lambda < 1$ 

$$W + \lambda \sqrt{n} x x^T$$
 vs  $W$ 

## Can you tell which one is which?

For 
$$W_{ij} \sim \text{Unif}(\pm 1)$$
,  $\lambda < 1$ 

$$W + \lambda \sqrt{n} x x^T$$
 vs  $W$ 

```
-1.0000
          1.0000
                    -1.0000
                              -1.0000
                                         1.0000
                                                   -1.0000
1.0000
          1.0000
                    1.0000
                              -1.0000
                                        -1.0000
                                                    1.0000
-1.0000
          1.0000
                    1.0000
                              -1.0000
                                        -1.0000
                                                  -1.0000
-1.0000
          -1.0000
                    -1.0000
                             1.0000
                                        -1.0000
                                                   1.0000
1.0000
          -1.0000
                    -1.0000
                              -1.0000
                                        -1.0000
                                                  1.0000
-1.0000
          1.0000
                    -1.0000
                              1.0000
                                        1.0000
                                                    1.0000
```

VS

```
-0.9988
          1.0011
                    -1.0007
                               -0.9997
                                          0.9990
                                                    -1.0014
 1.0011
          1.0010
                    0.9993
                               -0.9997
                                         -1.0010
                                                     0.9987
-1.0007
          0.9993
                    1.0004
                               -1.0002
                                         -0.9994
                                                    -0.9991
-0.9997
          -0.9997
                    -1.0002
                               1.0001
                                         -1.0002
                                                     0.9997
 0.9990
          -1.0010
                    -0.9994
                               -1.0002
                                         -0.9991
                                                    1.0012
-1.0014
          0.9987
                    -0.9991
                                0.9997
                                         1.0012
                                                     1.0017
```

## Can you tell which one is which?

For 
$$W_{ij} \sim \text{Unif}(\pm 1)$$
,  $\lambda < 1$ 

$$W + \lambda \sqrt{n} x x^T$$
 vs  $W$ 

```
-1.0000
          1.0000
                    -1.0000
                              -1.0000
                                         1.0000
                                                  -1.0000
1.0000
          1.0000
                    1.0000
                              -1.0000
                                        -1.0000
                                                   1.0000
-1.0000
         1.0000
                   1.0000
                              -1.0000
                                        -1.0000
                                                  -1.0000
-1.0000
         -1.0000
                    -1.0000
                             1.0000
                                        -1.0000
                                                  1.0000
1.0000
         -1.0000
                   -1.0000
                              -1.0000
                                        -1.0000
                                                 1.0000
-1.0000
          1.0000
                    -1.0000
                             1.0000
                                       1.0000
                                                   1.0000
```

VS

```
-0.9988
          1.0011
                    -1.0007
                               -0.9997
                                          0.9990
                                                   -1.0014
 1.0011
          1.0010
                    0.9993
                               -0.9997
                                         -1.0010
                                                     0.9987
-1.0007
          0.9993
                    1.0004
                               -1.0002
                                         -0.9994
                                                   -0.9991
-0.9997
          -0.9997
                    -1.0002
                              1.0001
                                         -1.0002
                                                     0.9997
 0.9990
          -1.0010
                    -0.9994
                               -1.0002
                                         -0.9991
                                                    1.0012
-1.0014
          0.9987
                    -0.9991
                                0.9997
                                         1.0012
                                                    1.0017
```

Let's restrict ourselves to when the density p(w) is smooth.

$$f(Y_{ij}) = f(W_{ij} + \lambda \sqrt{n}x_ix_j)$$

$$f(Y_{ij}) = f(W_{ij} + \lambda \sqrt{n}x_ix_j)$$
  
 
$$\approx f(W_{ij}) + f'(W_{ij}) \lambda \sqrt{n}x_ix_j$$

$$f(Y_{ij}) = f(W_{ij} + \lambda \sqrt{n}x_ix_j)$$

$$\approx f(W_{ij}) + f'(W_{ij})\lambda \sqrt{n}x_ix_j$$

$$\approx f(W_{ij}) + \mathbb{E}[f'(W_{ij})]\lambda \sqrt{n}x_ix_j - (f'(W_{ij}) - \mathbb{E}f'(W_{ij}))\lambda \sqrt{n}x_ix_j$$

$$f(Y_{ij}) = f(W_{ij} + \lambda \sqrt{n}x_ix_j)$$

$$\approx f(W_{ij}) + f'(W_{ij}) \lambda \sqrt{n}x_ix_j$$

$$\approx f(W_{ij}) + \mathbb{E}[f'(W_{ij})] \lambda \sqrt{n}x_ix_j - (f'(W_{ij}) - \mathbb{E}f'(W_{ij})) \lambda \sqrt{n}x_ix_j$$

$$\approx f(W_{ij}) + \mathbb{E}[f'(W_{ij})] \lambda \sqrt{n}x_ix_j.$$

If noise drawn from non-Gaussian p(w): we will beat PCA by applying some function  $f: \mathbb{R} \to \mathbb{R}$  entrywise to our matrix  $Y = W + \lambda \sqrt{n}xx^{\top}$ , followed by PCA.

$$f(Y_{ij}) = f(W_{ij} + \lambda \sqrt{n}x_ix_j)$$

$$\approx f(W_{ij}) + f'(W_{ij}) \lambda \sqrt{n}x_ix_j$$

$$\approx f(W_{ij}) + \mathbb{E}[f'(W_{ij})] \lambda \sqrt{n}x_ix_j - (f'(W_{ij}) - \mathbb{E}f'(W_{ij})) \lambda \sqrt{n}x_ix_j$$

$$\approx f(W_{ij}) + \mathbb{E}[f'(W_{ij})] \lambda \sqrt{n}x_ix_j.$$

▶ It is (close to) a new spiked Wigner matrix with

$$\lambda' = rac{\lambda \mathbb{E} f'\left(W_{ij}\right)}{\sqrt{\mathbb{E} f^2\left(W_{ij}\right)}}.$$

If noise drawn from non-Gaussian p(w): we will beat PCA by applying some function  $f: \mathbb{R} \to \mathbb{R}$  entrywise to our matrix  $Y = W + \lambda \sqrt{n}xx^{\top}$ , followed by PCA.

$$f(Y_{ij}) = f(W_{ij} + \lambda \sqrt{n}x_{i}x_{j})$$

$$\approx f(W_{ij}) + f'(W_{ij}) \lambda \sqrt{n}x_{i}x_{j}$$

$$\approx f(W_{ij}) + \mathbb{E}[f'(W_{ij})] \lambda \sqrt{n}x_{i}x_{j} - (f'(W_{ij}) - \mathbb{E}f'(W_{ij})) \lambda \sqrt{n}x_{i}x_{j}$$

$$\approx f(W_{ij}) + \mathbb{E}[f'(W_{ij})] \lambda \sqrt{n}x_{i}x_{j}.$$

▶ It is (close to) a new spiked Wigner matrix with

$$\lambda' = \frac{\lambda \mathbb{E}f'\left(W_{ij}\right)}{\sqrt{\mathbb{E}f^2\left(W_{ij}\right)}}.$$

Calculus of variations gives optimal choice of f:

$$f(w) = \frac{-p'(w)}{p(w)}$$



Figure: Dashed: p(w), Solid: f(w) = -p'(w)/p(w)

Related: T. Lesieur, F. Krzakala, L. Zdeborová, Allerton 2015; F. Krzakala, J. Xu, L. Zdeborová, 2016.











Figure: Dashed: p(w), Solid: f(w) = -p'(w)/p(w)

$$\qquad \text{New threshold at } \lambda = \frac{1}{\sqrt{F_\rho}}, \quad F_\rho = \mathbb{E}_p \left(\frac{p'(w)}{p(w)}\right)^2 \geq 1.$$

Related: T. Lesieur, F. Krzakala, L. Zdeborová, Allerton 2015; F. Krzakala, J. Xu, L. Zdeborová, 2016.





Figure: Dashed: p(w), Solid: f(w) = -p'(w)/p(w)

New threshold at 
$$\lambda = \frac{1}{\sqrt{F_p}}, \quad F_p = \mathbb{E}_p \left(\frac{p'(w)}{p(w)}\right)^2 \geq 1.$$

$$F_p = \mathbb{E}_p \left( \frac{p'(w)}{p(w)} \right)^2 \ge 1.$$
Gaussian is hardest:  $F_p = 1$ .

Related: T. Lesieur, F. Krzakala, L. Zdeborová, Allerton 2015: F. Krzakala, J. Xu. L. Zdeborová, 2016.





Figure: Dashed: p(w), Solid: f(w) = -p'(w)/p(w)

New threshold at  $\lambda=\frac{1}{\sqrt{F_p}}, \quad F_p=\mathbb{E}_p\left(\frac{p'(w)}{p(w)}\right)^2\geq 1.$  Gaussian is hardest:  $F_p=1.$ 

▶ Theorem: detection is impossible below this threshold!

Related: T. Lesieur, F. Krzakala, L. Zdeborová, Allerton 2015;
F. Krzakala, J. Xu, L. Zdeborová, 2016.

# Case 3: PCA can be inefficiently beaten

# Spiked Wishart model, Rademacher prior

$$\frac{1}{N} \sum_{k=1}^{N} y_k y_k^T$$

$$y_k \sim \mathcal{N}\left(0, I_n\right) \qquad \text{vs} \qquad y_k \sim \mathcal{N}\left(0, I_n + \beta x x^T\right), \ x \sim \text{Unif}\left\{\pm \frac{1}{\sqrt{n}}\right\}^n$$

# Spiked Wishart model, Rademacher prior

$$\frac{1}{N} \sum_{k=1}^{N} y_k y_k^T$$

$$y_k \sim \mathcal{N}\left(0, I_n\right) \qquad \text{vs} \qquad y_k \sim \mathcal{N}\left(0, I_n + \beta x x^T\right), \ x \sim \text{Unif}\left\{\pm \frac{1}{\sqrt{n}}\right\}^n$$

PCA is optimal for spherical prior: contiguous for  $|\beta| < \sqrt{\gamma}$  [OMH13].

## Spiked Wishart model, Rademacher prior

$$\frac{1}{N} \sum_{k=1}^{N} y_k y_k^T$$

$$y_k \sim \mathcal{N}\left(0, I_n\right) \qquad \text{vs} \qquad y_k \sim \mathcal{N}\left(0, I_n + \beta x x^T\right), \ x \sim \text{Unif}\left\{\pm \frac{1}{\sqrt{n}}\right\}^n$$

PCA is optimal for spherical prior: contiguous for  $|\beta| < \sqrt{\gamma}$  [OMH13].

For Rademacher prior, something surprising happens:

## Spiked Wishart model, Rademacher prior

$$\frac{1}{N} \sum_{k=1}^{N} y_k y_k^T$$

$$y_k \sim \mathcal{N}\left(0, I_n\right) \qquad \text{vs} \qquad y_k \sim \mathcal{N}\left(0, I_n + \beta x x^T\right), \ x \sim \text{Unif}\left\{\pm \frac{1}{\sqrt{n}}\right\}^n$$

PCA is optimal for spherical prior: contiguous for  $|\beta| < \sqrt{\gamma}$  [OMH13].

For Rademacher prior, something surprising happens:

▶ If  $\frac{n}{N} = \gamma < \frac{1}{3}$  then the models are contiguous for  $|\beta| < \sqrt{\gamma}$ 

### Spiked Wishart model, Rademacher prior

$$rac{1}{N} \sum_{k=1}^{N} y_k y_k^T$$
  $y_k \sim \mathcal{N}\left(0, I_n + \beta x x^T\right), \ x \sim \mathrm{Unif}\left\{\pm rac{1}{\sqrt{n}}\right\}^n$ 

PCA is optimal for spherical prior: contiguous for  $|\beta| < \sqrt{\gamma}$  [OMH13].

For Rademacher prior, something surprising happens:

- ▶ If  $\frac{n}{N} = \gamma < \frac{1}{3}$  then the models are contiguous for  $|\beta| < \sqrt{\gamma}$
- ▶ But...for  $\gamma > 0.698$  a computationally inefficient procedure distinguishes the two models for some  $\beta \in (-\sqrt{\gamma}, 0)$  (below the spectral threshold).

<sup>[</sup>OMH13] A. Onatski, M. J. Moreira, M. Hallin, AoS 2013.

### Spiked Wishart model, Rademacher prior

$$rac{1}{N} \sum_{k=1}^{N} y_k y_k^T$$
  $y_k \sim \mathcal{N}\left(0, I_n\right)$  vs  $y_k \sim \mathcal{N}\left(0, I_n + \beta x x^T\right), \ x \sim \mathrm{Unif}\left\{\pm rac{1}{\sqrt{n}}\right\}^n$ 

PCA is optimal for spherical prior: contiguous for  $|\beta| < \sqrt{\gamma}$  [OMH13].

For Rademacher prior, something surprising happens:

- ▶ If  $\frac{n}{N} = \gamma < \frac{1}{3}$  then the models are contiguous for  $|\beta| < \sqrt{\gamma}$
- ▶ But...for  $\gamma > 0.698$  a computationally inefficient procedure distinguishes the two models for some  $\beta \in (-\sqrt{\gamma}, 0)$  (below the spectral threshold).

Is there a computational gap?

## Rademacher Spiked Wishart, Negative $\beta$



- ▶ PCA: succeeds above the line
- ▶ inefficient algorithm: succeeds above the line
- contiguity lower bound: impossible below the line

▶ Goal:  $P_n$  contiguous to  $Q_n$ :  $Q_n(A_n) \to 0 \Rightarrow P_n(A_n) \to 0$ 

J. Banks, C. Moore, J. Neeman, P. Netrapalli, COLT 2016.

▶ Goal:  $P_n$  contiguous to  $Q_n$ :  $Q_n(A_n) \to 0 \Rightarrow P_n(A_n) \to 0$ 

Sufficient to show  $\tilde{P}_n$  is contiguous to  $Q_n$ , where  $\tilde{P}_n$ ,  $P_n$  agree with prob 1 - o(1)

J. Banks, C. Moore, J. Neeman, P. Netrapalli, COLT 2016.

- ▶ Goal:  $P_n$  contiguous to  $Q_n$ :  $Q_n(A_n) \to 0 \Rightarrow P_n(A_n) \to 0$
- ▶ Sufficient to show  $\tilde{P}_n$  is contiguous to  $Q_n$ , where  $\tilde{P}_n$ ,  $P_n$  agree with prob 1 o(1)

▶ Choose  $\tilde{P}_n$  to make  $\mathbb{E}_{Q_n}\left(\frac{d\tilde{P}_n}{dQ_n}\right)^2$  small

J. Banks, C. Moore, J. Neeman, P. Netrapalli, COLT 2016.

▶ Goal:  $P_n$  contiguous to  $Q_n$ :  $Q_n(A_n) \to 0 \Rightarrow P_n(A_n) \to 0$ 

▶ Sufficient to show  $\tilde{P}_n$  is contiguous to  $Q_n$ , where  $\tilde{P}_n$ ,  $P_n$  agree with prob 1 - o(1)

▶ Choose  $\tilde{P}_n$  to make  $\mathbb{E}_{Q_n} \left( \frac{d\tilde{P}_n}{dQ_n} \right)^2$  small

Condition away from rare bad events

J. Banks, C. Moore, J. Neeman, P. Netrapalli, COLT 2016.

J. Banks, C. Moore, R. Vershynin, J. Xu, 2016.

▶ Sparsity  $\rho \in [0,1]$ 

J. Banks, C. Moore, R. Vershynin, J. Xu, 2016.

▶ Sparsity  $\rho \in [0,1]$ 

Prior 
$$\mathcal{X}_{\rho}$$
: i.i.d.  $x_i \sim \frac{1}{\sqrt{\rho n}} \left\{ \begin{array}{ll} +1 & \text{w.p. } \rho/2 \\ -1 & \text{w.p. } \rho/2 \\ 0 & \text{w.p. } 1-\rho \end{array} \right.$ 

J. Banks, C. Moore, R. Vershynin, J. Xu, 2016.

▶ Sparsity  $\rho \in [0,1]$ 

Prior 
$$\mathcal{X}_{\rho}$$
: i.i.d.  $x_i \sim \frac{1}{\sqrt{\rho n}} \left\{ egin{array}{ll} +1 & \text{w.p. } 
ho/2 \\ -1 & \text{w.p. } 
ho/2 \\ 0 & \text{w.p. } 1-
ho \end{array} \right.$ 

▶  $P_n$ : spiked Wigner with prior  $\mathcal{X}_{\rho}$ ,  $Q_n$ : unspiked

J. Banks, C. Moore, R. Vershynin, J. Xu, 2016.

- ▶ Sparsity  $\rho \in [0,1]$
- Prior  $\mathcal{X}_{\rho}$ : i.i.d.  $x_i \sim \frac{1}{\sqrt{\rho n}} \left\{ \begin{array}{ll} +1 & \text{w.p. } \rho/2 \\ -1 & \text{w.p. } \rho/2 \\ 0 & \text{w.p. } 1-\rho \end{array} \right.$
- ▶  $P_n$ : spiked Wigner with prior  $\mathcal{X}_{\rho}$ ,  $Q_n$ : unspiked
- $ightharpoonup ilde{P}_n$ : change prior to  $ilde{\mathcal{X}}_{
  ho}$ : condition on close-to-typical proportion of nonzeros

J. Banks, C. Moore, R. Vershynin, J. Xu, 2016.

- ▶ Sparsity  $\rho \in [0,1]$
- ▶ Prior  $\mathcal{X}_{\rho}$ : i.i.d.  $x_i \sim \frac{1}{\sqrt{\rho n}} \left\{ \begin{array}{ll} +1 & \text{w.p. } \rho/2 \\ -1 & \text{w.p. } \rho/2 \\ 0 & \text{w.p. } 1-\rho \end{array} \right.$
- ▶  $P_n$ : spiked Wigner with prior  $\mathcal{X}_{\rho}$ ,  $Q_n$ : unspiked
- $ightharpoonup ilde{P}_n$ : change prior to  $ilde{\mathcal{X}}_{
  ho}$ : condition on close-to-typical proportion of nonzeros



Figure:  $\rho = 0.2$ 

J. Banks, C. Moore, R. Vershynin, J. Xu, 2016.

## Sparse Rademacher: Results



- ▶ unconditioned
- conditioned
- noise-conditioned (upcoming)
- replica prediction (truth)

3 scenarios:

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- 3 scenarios:
  - PCA optimal (Wigner with spherical or Rademacher prior)

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- 3 scenarios:
  - PCA optimal (Wigner with spherical or Rademacher prior)
  - ► PCA beaten efficiently (non-Gaussian Wigner)

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- 3 scenarios:
  - PCA optimal (Wigner with spherical or Rademacher prior)
  - ► PCA beaten efficiently (non-Gaussian Wigner)
  - ► PCA beaten inefficiently (Rademacher Wishart; sparse Rademacher Wigner)

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- 3 scenarios:
  - PCA optimal (Wigner with spherical or Rademacher prior)
  - ► PCA beaten efficiently (non-Gaussian Wigner)
  - ► PCA beaten inefficiently (Rademacher Wishart; sparse Rademacher Wigner)
- Second moment method: simple, widely-applicable technique for lower bounds.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- 3 scenarios:
  - PCA optimal (Wigner with spherical or Rademacher prior)
  - ► PCA beaten efficiently (non-Gaussian Wigner)
  - ► PCA beaten inefficiently (Rademacher Wishart; sparse Rademacher Wigner)
- Second moment method: simple, widely-applicable technique for lower bounds.
- General formulation in terms of rate functions of priors.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization." 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- 3 scenarios:
  - PCA optimal (Wigner with spherical or Rademacher prior)
  - ► PCA beaten efficiently (non-Gaussian Wigner)
  - ► PCA beaten inefficiently (Rademacher Wishart; sparse Rademacher Wigner)
- Second moment method: simple, widely-applicable technique for lower bounds.
- General formulation in terms of rate functions of priors.
- Conditioning method: cut out rare events with an extreme effect on second moment

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

▶ Is it possible to match the replica prediction with a simple method? Or are there fundamental limits to these methods?

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- Is it possible to match the replica prediction with a simple method? Or are there fundamental limits to these methods?
- ► In Case 3, are there true statistical-to-computational gaps, or can some method detect or recover efficiently?

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- Is it possible to match the replica prediction with a simple method? Or are there fundamental limits to these methods?
- In Case 3, are there true statistical-to-computational gaps, or can some method detect or recover efficiently?
- Can we establish sum-of-squares lower bounds for these computational problems?

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- Is it possible to match the replica prediction with a simple method? Or are there fundamental limits to these methods?
- In Case 3, are there true statistical-to-computational gaps, or can some method detect or recover efficiently?
- Can we establish sum-of-squares lower bounds for these computational problems?
- ▶ Is there a connection between SOS lower bounds and replica predictions of hardness?

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+

- Is it possible to match the replica prediction with a simple method? Or are there fundamental limits to these methods?
- In Case 3, are there true statistical-to-computational gaps, or can some method detect or recover efficiently?
- Can we establish sum-of-squares lower bounds for these computational problems?
- ▶ Is there a connection between SOS lower bounds and replica predictions of hardness?

#### Thanks! Questions?

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization," 2016.

A. Perry, A. S. Wein, A. S. Bandeira, A. Moitra, "Statistical limits of spiked tensor models," 2016+