Лабораторная работа №1

Уткина Алина Дмитриевна

Содержание

1	Цель работы	4
2	Выполнение лабораторной работы	5
3	Домашнее задание	9
4	Контрольные вопросы	11
5	Выводы	15

Список иллюстраций

2.1	Источник DVD-образа операционной системы
2.2	Создание новой виртуальной машины
2.3	Оборудование виртуальной машины
2.4	Параметры виртуального жесткого диска
2.5	Запуск установки виртуальной машины
2.6	Настройки установки образа ОС
2.7	Подключение образа гостевой системы
3.1	Версия ядра Linux
3.2	Частота процессора
3.3	Модель процессора
3.4	Объем доступной оперативной памяти
3.5	Тип обнаруженного гипервизора
3.6	Тип файловой системы корневого раздела
3.7	Последовательность монтирования файловых систем
4.1	Информация учетной записи пользователя
4.2	Получение справки по команде
4.3	Перемещение по файловой системе
4.4	Просмотр содержимого каталога
4.5	Определение объёма каталога
4.6	Создание/удаление каталогов/файлов
4.7	Задание определённых прав на файл/каталог
4.8	Просмотр истории команд
4.9	Просмотр файловых систем
4.10	Удаление зависшего процесса

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

Скачиваем с сайта разработчика DVD-образ операционной системы, соответствующий архитектуре компьютера (рис. 2.1).

Рис. 2.1: Источник DVD-образа операционной системы

Создадим новую виртуальную машину в VirtualBox. Для этого укажем имя виртуальной машины, тип операционной системы и версию операционной системы, также укажем путь к iso-образу устанавливаемого дистрибутива (рис. 2.2).

Рис. 2.2: Создание новой виртуальной машины

Укажем размер основной памяти виртуальной машины – 2048МБ и число процессоров, например 1 или 2 (рис. 2.3).

Рис. 2.3: Оборудование виртуальной машины

Зададим размер виртуального диска – 40ГБ (рис. 2.4).

Рис. 2.4: Параметры виртуального жесткого диска

Запустим виртуальную машину и в окне с меню переключимся на строку «Install Rocky Linux», нажмем Enter для запуска установки образа ОС (рис. 2.5).

Рис. 2.5: Запуск установки виртуальной машины

Выберем английский язык интерфейса ОС, проверим часовой пояс, добавим русскую раскладку клавиатуры и ее переключение с помощью сочетания Alt+Shift, добавим поддержку русского языка и в разделе программ укажем в качестве базового окружения Server with GUI, а в качестве дополнения – Development Tools, отключим КDUMP, установим пароль для гоот пользователя и разрешение на ввод пароля для гоот при использовании SSH. Затем зададим локального пользователя с правами администратора и пароль для него (рис. 2.6).

После задания необходимых настроек нажмем на Begin Installation для начала установки образа системы и перезапустим виртуальную машину.

Рис. 2.6: Настройки установки образа ОС

Войдем в ОС под заданной учётной записью. В меню Устройства виртуальной машины подключим образ диска дополнений гостевой ОС (рис. 2.7). После загрузки дополнений Enter и перезагрузим виртуальную машину.

Рис. 2.7: Подключение образа гостевой системы

3 Домашнее задание

Дождемся загрузки графического окружения и откроем терминал. Проанализируем последовательность загрузки системы, выполнив команду dmesg. (Можно просто просмотреть вывод этой команды: dmesg | less). Для поиска информации можно использовать grep: dmesg | grep -i "то, что ищем".

Получим следующую информацию:

- 1. Версия ядра Linux (рис. 3.1);
- 2. Частота процессора (рис. 3.2);
- 3. Модель процессора (рис. 3.3);
- 4. Объем доступной оперативной памяти (рис. 3.4);
- 5. Тип обнаруженного гипервизора (рис. 3.5);
- 6. Тип файловой системы корневого раздела (рис. 3.6);
- 7. Последовательность монтирования файловых систем (рис. 3.7).

Рис. 3.1: Версия ядра Linux

```
[adutkina@adutkina ~]$ dmesg | grep -i "Mhz processor"
[ 0.000006] tsc: Detected 3110.402 MHz processor
```

Рис. 3.2: Частота процессора

```
[adutkina@adutkina ~]$ dmesg | grep -i "CPU0"
[ 0.162704] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10GHz (fa
mily: 0x6, model: 0x8c, stepping: 0x1)
[10747.752379] clocksource: timekeeping watchdog on CPU0: Marking clocksource 't
sc' as unstable because the skew is too large:
```

Рис. 3.3: Модель процессора

```
☐ adutkina@adutkina:- Q ≡ x

[ 0.017634] Memory: 260860K/2096696K available (14342K kernel code, 5536K rwd ata, 10180K rodata, 2792K init, 7524K bss, 141404K reserved, 0K cma-reserved)
```

Рис. 3.4: Объем доступной оперативной памяти

```
[adutkina@adutkina ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] <mark>Hypervisor</mark> detected: KVM
```

Рис. 3.5: Тип обнаруженного гипервизора

```
[adutkina@adutkina ~]$ dmesg | grep -i "filesystem"
[ 2.227378] XFS (dm-0): Mounting V5 Filesystem
[ 3.825689] XFS (sdal): Mounting V5 Filesystem
```

Рис. 3.6: Тип файловой системы корневого раздела

```
[adutkina@adutkina ~]$ dmesg | grep -i "mount"
[ 0.048287] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, line ar)
[ 0.048291] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, line ar)
[ 2.227378] XFS (dm-0): Mounting V5 Filesystem
[ 2.328845] XFS (dm-0): Ending clean mount
[ 2.921726] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 2.933009] systemd[1]: Mounting Huge Pages File System...
[ 2.934728] systemd[1]: Mounting POSIX Message Queue File System...
[ 2.937381] systemd[1]: Mounting Kernel Debug File System...
[ 2.9918384] systemd[1]: Starting Kernel Trace File System...
[ 2.9918384] systemd[1]: Mounted Huge Pages File System.
[ 2.991762] systemd[1]: Mounted Huge Pages File System.
[ 2.992072] systemd[1]: Mounted Huge Pages File System.
[ 2.992073] systemd[1]: Mounted FOSIX Message Queue File System.
[ 2.992479] systemd[1]: Mounted Kernel Debug File System.
[ 2.992479] systemd[1]: Mounted Kernel Trace File System.
[ 2.992479] systemd[1]: Mounting FUSE Control File System...
[ 2.998877] systemd[1]: Mounting Kernel Configuration File System...
[ 2.9998877] systemd[1]: Mounting Kernel Configuration File System...
[ 2.9998877] systemd[1]: Mounting Kernel Configuration File System...
[ 3.825689] XFS (sdal): Mounting VS Filesystem
[ 3.995272] XFS (sdal): Ending clean mount
[ adutkina@adutkina ~]$
```

Рис. 3.7: Последовательность монтирования файловых систем

4 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя? – Учетная запись пользователя содержит имя, пароль и активность учетной записи (рис. 4.1).

Рис. 4.1: Информация учетной записи пользователя

- 2. Команды терминала и примеры их использования:
- для получения справки по команде используется help (рис. 4.2); для перемещения по файловой системе используется cd (рис. 4.3); для просмотра содержимого каталога используется ls (рис. 4.4); для определения объёма каталога можно использовать команду du c ключем -sm (для отображения объема в мегабайтах) (рис. 4.5); для создания каталогов используется mkdir (-р для создания каталога в каталоге), для создания файлов touch, для удаления и каталогов, и файлов можно использовать rm (-г для рекурсивного удаления каталогов) (рис. 4.6); для задания определённых

прав на файл/каталог можно использовать команду chmod (для задания различных прав можно использовать значения в восьмиричной системе, например разрешить все права для пользователя (rwx) - 111 = 7) (рис. 4.7); – для просмотра истории команд используется history (рис. 4.8).

```
[adutkina@adutkina ~]$ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.
-a, --all do not ignore entries starting with .
-A, --almost-all do not list implied . and ..
--author with -l, print the author of each file
-b, --escape print C-style escapes for nongraphic characters
--block-size=SIZE with -l, scale sizes by SIZE when printing them;
e.g., '--block-size=M'; see SIZE format below
-B, --ignore-backups do not list implied entries ending with ~
```

Рис. 4.2: Получение справки по команде

```
[adutkina@adutkina ~]$ cd Downloads/
[adutkina@adutkina Downloads]$ cd ..
[adutkina@adutkina ~]$ cd -
/home/adutkina/Downloads
[adutkina@adutkina Downloads]$ cd ~
[adutkina@adutkina ~]$
```

Рис. 4.3: Перемещение по файловой системе

```
[adutkina@adutkina ~]$ ls
Desktop Documents Downloads Music Pictures Public Templates Videos
```

Рис. 4.4: Просмотр содержимого каталога

```
[adutkina@adutkina ~]$ du -sm
6 .
```

Рис. 4.5: Определение объёма каталога

```
[adutkina@adutkina ~]$ mkdir testdir
[adutkina@adutkina ~]$ touch testdir/test.txt
[adutkina@adutkina ~]$ ls

Desktop Downloads Pictures Templates Videos

Documents Music Public testdir

[adutkina@adutkina ~]$ ls testdir/

test.txt
[adutkina@adutkina ~]$ rm -r testdir
[adutkina@adutkina ~]$ rm -r testdir
[adutkina@adutkina ~]$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos
[adutkina@adutkina ~]$
```

Рис. 4.6: Создание/удаление каталогов/файлов

```
[adutkina@adutkina ~]$ mkdir testdir
[adutkina@adutkina ~]$ touch testdir/test.txt
[adutkina@adutkina ~]$ cd testdir/
[adutkina@adutkina testdir]$ ls -l test.txt
-rw-r--r--. l adutkina adutkina 0 Sep 9 17:21 test.txt
[adutkina@adutkina testdir]$ chmod 000 test.txt
[adutkina@adutkina testdir]$ ls -l test.txt
-------. l adutkina adutkina 0 Sep 9 17:21 test.txt
[adutkina@adutkina testdir]$ chmod 777 test.txt
[adutkina@adutkina testdir]$ chmod 777 test.txt
-rwxrwxrwx. l adutkina adutkina 0 Sep 9 17:21 test.txt
[adutkina@adutkina testdir]$ ls -l test.txt
[adutkina@adutkina testdir]$
```

Рис. 4.7: Задание определённых прав на файл/каталог

```
38 ls
39 mkdir testdir
40 touch testdir/test.txt
41 cd testdir/
42 ls -l test.txt
43 chmod 000 test.txt
44 ls -l test.txt
45 chmod 777 test.txt
46 ls -l test.txt
47 history
[adutkina@adutkina testdir]$
```

Рис. 4.8: Просмотр истории команд

- 3. Что такое файловая система? Файловая система средство организации хранения файлов на каком-либо носителе. Примеры: NTFS (ОС "Windows") разрабатывалась с целью обеспечения скоростного выполнения стандартных операций над файлами (чтение, запись, поиск) и предоставления продвинутых возможностей включая восстановление повреждений файловой системы на больших дисках; Ext3 (ОС "Linux") соблюдает обычные стандарты для файловых систем UNIX-типа, является усовершенствованной файловой системой Ext2, предназначена для дальнейшего развития, сохраняя при этом хорошую производительность;
- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? Для отображения файловых систем можно использовать findmnt, которая отображает целевую точку монтирования (TARGET), исходного устройство (SOURCE), тип файловой системы (FSTYPE) и соответствующие параметры монтирования (OPTIONS) для каждой файловой системы (рис. 4.9);

```
[adutkina@adutkina testdir]$ findmnt
TARGET
                                                   SOURCE
                                                                FSTYPE OPTIONS
                                                   /dev/mapper/rl-root
                                                                xfs rw,relatime,seclabel
 /proc
└/proc/sys/fs/binfmt_misc
                                                  proc proc rw,nosuid,nodev,noexe
systemd-1 autofs rw,relatime,fd=29,pgr
sysfs sysfs rw,nosuid,nodev,noexe
   -/sys/kernel/security
                                                  securityfs
                                                                securit rw,nosuid,nodev,noexe
   -/sys/fs/cgroup
-/sys/fs/pstore
-/sys/fs/bpf
-/sys/fs/selinux
-/sys/kernel/tracing
                                                  cgroup2
                                                                cgroup2 rw,nosuid,nodev,noexe
                                                   pstore
                                                                pstore rw,nosuid,nodev,noexe
                                                  bpf bpf rw,nosuid,nodev,noexe
selinuxfs selinux rw,nosuid,noexec,rela
                                                                tracefs rw,nosuid,nodev,noexe
                                                  tracefs
     /sys/kernel/debug
                                                  debugfs
                                                                debugfs rw,nosuid,nodev,noexe
      sys/kernel/config
                                                   configfs
                                                                configf rw,nosuid,nodev,noexe
                                                                 fusectl rw,nosuid,nodev,noexe
                                                   devtmpfs
                                                                devtmpf rw,nosuid,seclabel,si
                                                                tmpfs rw,nosuid,nodev,secla
devpts rw,nosuid,noexec,rela
   -/dev/shm
                                                   tmpfs
                                                   devpts
```

Рис. 4.9: Просмотр файловых систем

5. Как удалить зависший процесс? – Удалить зависший процесс можно с помощью комбинации Ctrl+C (остановить процесс), Ctrl+Z (приостановить процесс) (рис. 4.10).

```
[adutkina@adutkina testdir]$ gedit test.txt
^Z
[1]+ Stopped gedit test.txt
[adutkina@adutkina testdir]$ gedit test.txt
^C
[adutkina@adutkina testdir]$
```

Рис. 4.10: Удаление зависшего процесса

5 Выводы

В ходе данной лабораторной работы были приобретены практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.