I Introdução

Nesse trabalho iremos discutir o método de Hamilton-Jacobi para sistemas Hamiltonianos, aplicado ao problema de 3 corpos de Euler.

O problema de 3 corpos de Euler se refere ao sistema em que um corpo sofre atração gravitacional de duas massas fixas. Se as duas massas fixas estão na reta x, nas posições x=-c e x=c, então a Lagrangeana desse sistema pode ser escrita como:

$$L = \frac{m}{2} (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{k_1}{r_1} + \frac{k_2}{r_2}$$

$$r_1 = |\mathbf{r} - \mathbf{R}_1| \qquad r_2 = |\mathbf{r} - \mathbf{R}_2|$$
(I.1)

Sendo ${\bf r}$ a posição da massa, e ${\bf R}_1,\,{\bf R}_2$ a posição das massas fixas, e $r_1=\sqrt{(x-c)^2+y^2+z^2}$ e $r_2=\sqrt{(x+c)^2+y^2+z^2}$ em coordenadas cartesianas.

No que segue, iremos analisar o movimento bidimensional do sistema, excluindo termos dependentes da coordenada z e vamos tomar m=1. O problema apresenta dois focos de atração gravitacional de forma que faz sentido utilizar coordenadas elípticas:

$$x = c \cosh \xi \cos \eta$$

$$y = c \sinh \xi \sin \eta$$
 (I.2)
$$\xi \ge 0 \qquad 0 \le \eta < 2\pi$$

A expressão de r_1 em coordenadas elípticas é:

$$(x-c)^2 + y^2 = c^2 \left(\underbrace{\cosh^2 \cos^2 \eta}_{(1+\sinh^2 \xi) \cos^2 \eta} - 2\cosh \xi \cos \eta + 1 \right) + c^2 \sinh^2 \xi \sin^2 \eta = c^2 \left(\sinh^2 \xi + \cos^2 \eta - 2\cosh \xi \cos \eta + 1 \right)$$

Utilizando $\sinh^2\xi+1=\cosh^2\xi$ temos $(x-c)^2+y^2=c^2(\cosh\xi-\cos\eta)^2$. Como \cosh é sempre maior que 1 temos $\sqrt{(x-c)^2+y^2}=|c(\cosh\xi-\cos\eta)|=c(\cosh\xi-\cos\eta)$. Similarmente para r_2 temos:

$$r_1 = c(\cosh \xi - \cos \eta) \qquad r_2 = c(\cosh \xi + \cos \eta) \tag{1.4}$$

Também queremos obter \dot{x} e \dot{y} :

$$\dot{x} = \dot{\xi}c \sinh \xi \cos \eta - \dot{\eta}c \cosh \xi \sin \eta \qquad \dot{y} = \dot{\xi}c \cosh \xi \sin \eta + \dot{\eta}c \sinh \xi \cos \eta \Rightarrow$$

$$\dot{x}^2 + \dot{y}^2 = \dot{\xi}^2 c^2 (\sinh^2 \xi \cos^2 \eta + \cosh^2 \xi \sin^2 \eta) + \dot{\eta}^2 c^2 (\cosh^2 \xi \sin^2 \eta + \sinh^2 \xi \cos^2 \eta) =$$

$$\dot{\xi}^2 c^2 (\sin^2 \eta + \sinh^2 \xi) + \dot{\eta}^2 c^2 (\sin^2 \eta + \sinh^2 \xi) = c^2 (\sin^2 \eta + \sinh^2 \xi) (\dot{\xi}^2 + \dot{\eta}^2)$$
(1.5)

Onde usamos $\cosh^2 \xi = \sinh^2 \xi + 1$. O termo $\sin^2 \eta + \sinh^2 \xi$ pode ser escrito $\cosh^2 \xi - \cos^2 \eta$, que nos leva a Lagrangeana:

$$L = \frac{c^2}{2}(\cosh^2 \xi - \cos^2 \eta)(\dot{\xi}^2 + \dot{\eta}^2) + \frac{k_1}{c(\cosh \xi - \cos \eta)} + \frac{k_2}{c(\cosh \xi + \cos \eta)}$$
(I.6)

Tomando $p_{\xi}=rac{\partial L}{\partial \dot{\xi}}$ e $p_{\eta}=rac{\partial L}{\partial \dot{\eta}}$:

$$p_{\xi} = c^2(\cosh^2 \xi - \cos^2 \eta)\dot{\xi}$$
 $p_{\eta} = c^2(\cosh^2 \xi - \cos^2 \eta)\dot{\eta}$ (1.7)

E isolando $\dot{\eta}$ e $\dot{\xi}$ obtemos:

$$\dot{\eta}p_{\eta} + \dot{\xi}p_{\xi} = \frac{p_{\xi}^{2} + p_{\eta}^{2}}{c^{2}(\cosh^{2}\xi - \cos^{2}\eta)}$$

$$-L = -\frac{p_{\xi}^{2} + p_{\eta}^{2}}{2c^{2}(\cosh^{2}\xi - \cos^{2}\eta)} - \frac{k_{1}}{c(\cosh\xi - \cos\eta)} - \frac{k_{2}}{c(\cosh\xi + \cos\eta)}$$
(I.8)

E com $H=\dot{\xi}p_{\xi}+\dot{\eta}p_{\eta}-L$ temos:

$$H(p_{\xi}, p_{\eta}, \xi, \eta) = \frac{p_{\xi}^2 + p_{\eta}^2}{2c^2(\cosh^2 \xi - \cos^2 \eta)} - \frac{k_1}{c(\cosh \xi - \cos \eta)} - \frac{k_2}{c(\cosh \xi + \cos \eta)}$$
(I.9)

Ou, reescrevendo:

$$-\frac{k_1}{c(\cosh\xi - \cos\eta)} - \frac{k_2}{c(\cosh\xi + \cos\eta)} = -\frac{2c(\cosh^2\xi + \cos^2\eta)k_1}{2c^2(\cosh^2\xi - \cos^2\eta)} - \frac{2c(\cosh\xi - \cos\eta)k_2}{2c^2(\cosh^2\xi - \cos^2\eta)}$$
(I.10)

E juntando termos de ξ e termos de η temos:

$$H = \frac{1}{2c^{2}(\cosh^{2}\xi - \cos^{2}\eta)} \Big[p_{\xi}^{2} + p_{\eta}^{2} - 2ck_{1}(\cosh\xi + \cos\eta) - 2ck_{2}(\cosh\xi - \cos\eta) \Big]$$

$$= \frac{1}{2c^{2}(\cosh^{2}\xi - \cos^{2}\eta)} \Big[(p_{\xi}^{2} - 2c(k_{1} + k_{2})\cosh\xi) + (p_{\eta}^{2} - 2c(k_{1} - k_{2})\cos\eta) \Big]$$
(I.11)

Obtemos a forma mais simples¹:

$$H = \frac{H_{\xi} + H_{\eta}}{\cosh^2 \xi - \cos^2 \eta}$$

$$H_{\xi} = \frac{1}{2c^2} \left(p_{\xi}^2 - 2c(k_1 + k_2) \cosh \xi \right) \qquad H_{\eta} = \frac{1}{2c^2} \left(p_{\eta}^2 - 2c(k_1 - k_2) \cos \eta \right)$$
(I.12)

O método de Hamilton-Jacobi, que utilizaremos para encontrar o movimento do sistema, consiste em encontrar uma transformação canônica que leva (\mathbf{p},\mathbf{q}) para (\mathbf{P},\mathbf{Q}) , e leva a Hamiltoniana $H(\mathbf{p},\mathbf{q})$ para uma Hamiltoniana modificada $K(\mathbf{P},\mathbf{Q})=0$, de forma que nas novas coordenadas o sistema pode ser resolvido trivialmente. A função geradora dessa transformação canônica $S(\mathbf{q},\mathbf{P})$ satisfaz:

$$K(\mathbf{P}, \mathbf{Q}, t) = H(\mathbf{p}(\mathbf{P}, \mathbf{Q}), \mathbf{q}(\mathbf{P}, \mathbf{Q}), t) + \frac{\partial S}{\partial t}$$
 (I.13)

$$\mathbf{p} = \nabla_{\mathbf{q}} S \tag{I.14}$$

$$\mathbf{Q} = \nabla_{\mathbf{P}} S \tag{I.15}$$

$$\det\left(\frac{\partial^2 S}{\partial q_j \partial P_i}\right) \neq 0 \tag{I.16}$$

Que nos leva à equação de Hamilton-Jacobi:

$$H(\nabla_{\mathbf{q}}S, q, t) + \frac{\partial S}{\partial t} = 0 \tag{I.17}$$

Como o sistema após a transformação canônica tem Hamiltoniana K=0, as coordenadas e momentos (\mathbf{P},\mathbf{Q}) são todas constantes e utilizamos a notação $\alpha_i=P_i(0)$ e $S=S(\mathbf{q},\boldsymbol{\alpha},t)$. Resolvendo a equação de Hamilton-Jacobi encontramos S que nos permite encontrar (\mathbf{p},\mathbf{q}) em função das coordenadas (\mathbf{P},\mathbf{Q}) , que sabemos que são constantes.

Quando a Hamiltoniana é independente do tempo (como no problema estudado), e é possível tomar um caso especial da função geradora S definida em função da energia E que é conservada:

$$S(\mathbf{q}, \boldsymbol{\alpha}, t) = W(\mathbf{q}, \boldsymbol{\alpha}) - E(\boldsymbol{\alpha})t \tag{I.18}$$

Com isso a equação de Hamilton-Jacobi vira:

$$H(\nabla_{\mathbf{q}}W,\mathbf{q}) = E(\boldsymbol{\alpha}) \tag{I.19}$$

A função W pode ser utilizada para encontrar a função geradora S, e W é também uma função geradora, de outra transformação canônica.

Nesse texto seguimos as exposições de Fasano, Marmi [1] (páginas 413-430) e de Iro [2] (páginas 397-418).

 $^{^1}$ Essa passagem é feita incorretamente em Iro [2] (página 413). Na referência, a definição de H_ξ e H_η não recuperam a Hamiltoniana original apresentada na Equação (14.53) dessa referência. A definição apresentada aqui de H_ξ e H_η recuperam a Hamiltoniana original apresentada na nossa Equação (1.9), que coincide com a Hamiltoniana da referência (Equação (14.53)).

II Separação de variáveis em coordenadas elípticas

Para um sistema de Hamiltoniana igual a (I.12) a equação de Hamilton-Jacobi fica:

$$\frac{H_{\xi} + H_{\eta}}{\cosh^{2} \xi - \cos^{2} \eta} + \frac{\partial S}{\partial t} = 0 \Leftrightarrow H_{\xi} + \cosh^{2} \xi \frac{\partial S}{\partial t} = -H_{\eta} + \cos^{2} \eta \frac{\partial S}{\partial t}$$
 (II.1)

A equação pode ser resolvida por separação de variáveis se tomarmos:

$$S(\mathbf{q}, \boldsymbol{\alpha}) = W_1(\xi, \alpha_{\xi}) + W_2(\eta, \alpha_{\eta}, \alpha_{\xi}) - E(\alpha_{\eta}, \alpha_{\xi})t$$
(II.2)

A equação de Hamilton-Jacobi é então:

$$H_{\xi} - E \cosh^2 \xi = -H_{\eta} - E \cos^2 \eta \equiv B \tag{II.3}$$

O lado esquerdo só depende de ξ , o lado direito só depende de η , então para que sejam iguais $\forall \, (\xi,\, \eta)$, B deve ser uma constante. Substituindo $H=H(\nabla_{\bf q}S,{\bf q})\Rightarrow H_\xi=H(\frac{\partial S}{\partial \xi},q_\xi),\, H_\eta=H_\eta(\frac{\partial S}{\partial \eta},\eta)$:

$$\left(\frac{\partial W_1}{\partial \xi}\right)^2 - 2c(k_1+k_2)\cosh\xi - 2c^2E\cosh^2\xi = -\left(\frac{\partial W_2}{\partial \eta}\right)^2 + 2c(k_1-k_2)\cos\eta - 2c^2E\cos^2\eta = 2c^2B \quad \text{(II.4)}$$

Que nos leva às soluções:

$$W_{1} = \int_{0}^{\xi} \left[2c^{2}B + \left(2c^{2}E\cosh x + 2c(k_{1} + k_{2}) \right)\cosh x \right]^{\frac{1}{2}} dx$$

$$W_{2} = \int_{0}^{\eta} \left[-2c^{2}B - \left(2c^{2}E\cos x - 2c(k_{1} - k_{2}) \right)\cos x \right]^{\frac{1}{2}} dx$$
(II.5)

Onde, B, E, k_1 , k_2 e c são constantes que dependem do problema. k_1 , k_2 estão relacionados à constantes universais e a massa de cada corpo fixo; c determina a posição de cada massas fixa no referencial utilizado; e por fim B e E são constantes de movimento, dependendo das condições iniciais do sistema.

As duas integrais acima são integrais elípticas e não possuem expressão fechada em termos de funções elementares. Portanto, na prática, para obter o movimento do sistema precisamos lançar mão de métodos numéricos.

Note que W_1 e W_2 dependem das constantes E, $2c^2B$ além de uma das coordenadas ξ ou η , consistente com o fato de que a função geradora depende das coordenadas originais ${\bf q}$ e dos momentos transformados ${\bf P}$, estes últimos sendo constantes. Portanto, podemos escrever $S({\bf q},{\bf P},t)=S(\xi,\eta,E,2c^2B)$, e temos ${\bf Q}=(\frac{\partial S}{\partial E},\frac{\partial S}{\partial(2c^2B)})$. Disso, temos:

III Hamiltoniana transformada e solução do sistema

As Equações (II.5) nos dão a função geradora S que é solução da equação de Hamilton-Jacobi, $S=W_1+W_2-Et$. No entanto, a função $W\equiv W_1+W_2$ também é uma função geradora de uma transformação canônica², em particular como $\frac{\partial W}{\partial t}=0$, temos que $K^W=H(\nabla_{\bf q}W,{\bf q},t)=E$:

$$H(\nabla_{\mathbf{q}}W, \mathbf{q}, t) + \frac{\partial S}{\partial t} = 0 \Leftrightarrow H(\nabla_{\mathbf{q}}W, \mathbf{q}, t) = E(\boldsymbol{\alpha})$$
(III.1)

Onde $W=W(\mathbf{q},\alpha)$ e α são os momentos novos, e são constantes. Como a nova Hamiltoniana é $E(\alpha)$ então as coordenadas conjugadas a α são cíclicas e $\alpha(t)=\alpha(0)$. Além disso, as coordenadas conjugadas β satisfazem $\dot{\beta}=\frac{\partial E}{\partial \alpha}=\gamma(\alpha)$, como os α_i são constantes, então vale $\beta(t)=\gamma t+\beta(0)$. Sempre podemos tomar $E(\alpha)=\alpha_1$ de forma que as coordenadas novas satisfazem $\beta_1=t+\beta_1(0)$ e $\beta_i=\beta_i(0)$ para $i\neq 1$.

No nosso problema W depende de duas constantes E e $2c^2B$, que são os dois momentos transformados $(P_1,P_2)=(\alpha_1,\alpha_2)=(E,2c^2B)$. A Hamiltoniana transformada é $E(\pmb{\alpha_1})=\alpha_1=E$, e por fim as coordenadas transformadas são $(\beta_1,\beta_2)=(t+\beta_1(0),\beta_2(0))=(\frac{\partial W}{\partial E},\frac{\partial W}{\partial (2c^2B)})$. Juntando tudo obtemos:

$$\beta_1 = \frac{\partial W}{\partial E} \Leftrightarrow t + \beta_1(0) = \frac{\partial W_1}{\partial E} + \frac{\partial W_2}{\partial E}$$

$$\beta_2 = \frac{\partial W}{\partial (2c^2 B)} \Leftrightarrow \beta_2(0) = \frac{\partial W_1}{\partial (2c^2 B)} + \frac{\partial W_2}{\partial (2c^2 B)}$$
(III.2)

 $^{^2}$ Impor que o determinante de $\frac{\partial^2 S}{\partial \mathbf{q} \partial \mathbf{P}}$ seja não nulo equivale a impor o mesmo sobre $\frac{\partial^2 W}{\partial \mathbf{q} \partial \mathbf{P}}$, e ambas dependem das mesmas variáveis \mathbf{q} e $\mathbf{P} = \boldsymbol{\alpha}$. A primeira condição garante que são ambas funções geradoras, e como dependem das mesmas variáveis são funções geradoras de mesma espécie.

Como W_1 , W_2 são integrais que dependem de constantes, e das coordenadas originais ξ , η , e o lado esquerdo das igualdades acima só dependem de constantes ou do tempo, então basta inverter as equações acima para obter as soluções $\xi(t)$ e $\eta(t)$, a não ser por constantes, que são determinadas pelas condições iniciais utilizadas (note que temos 4 constantes $(E,2c^2B,\beta_1(0),\beta_2(0))$ para 4 graus de liberdade (p_ξ,p_η,ξ,η)). Na prática isso deve ser feito numericamente, pois W_1 e W_2 não têm expressão em termos de funções elementares.

IV Separação de variáveis com potencial genérico

Podemos considerar uma Hamiltoniana independente do tempo com um potencial do tipo $V(\xi,\eta)=\frac{a(\xi)+b(\eta)}{c^2(\cosh^2\xi-\cos^\eta)}$, e mostrar que um problema desse tipo é sempre separável.

Além de mostrar que o problema que expômos acima é um caso particular de uma classe mais geral de problemas sepáraveis, o nosso interesse maior é enfatizar como o procedimento de separação de variáveis fornece constantes de movimento de maneira muito direta.

Com o potencial considerado a Hamiltoniana tem a forma:

$$H(p_{\xi}, p_{\eta}, \xi, \eta) = \frac{1}{c^2(\cosh^2 \xi - \cos^2 \eta)} \left(\frac{1}{2m} p_{\xi}^2 + \frac{1}{2m} p_{\eta}^2 + a(\xi) + b(\eta) \right) \tag{IV.1}$$

Tomando $S=W_1(\xi,\alpha_\xi)+W_2(\eta,\alpha_\eta,\alpha_\xi)-Et$ a equação de Hamilton-Jacobi é:

$$H(\nabla_{\mathbf{q}}S,\mathbf{q}) = E \Leftrightarrow \frac{1}{2mc^2(\cosh^2\xi - \cos^2\eta)} \left[\left(\frac{\partial W_1}{\partial \xi} \right)^2 + \left(\frac{\partial W_2}{\partial \eta} \right)^2 + 2ma(\xi) + 2mb(\eta) \right] = E \tag{IV.2}$$

Multiplicando os dois lados por $2mc^2(\cosh^2\xi-\cos^2\eta)$ e reorganizando termos:

$$2mc^2E\cosh^2\xi - \left(\frac{\partial W_1}{\partial \xi}\right)^2 - 2ma(\xi) = 2mc^2E\cos^2\eta + \left(\frac{\partial W_2}{\partial \eta}\right)^2 + 2mb(\eta) \tag{IV.3}$$

O lado direito da equação depende só de ξ e o lado direito só de η . Logo, para que a igualdade seja válida para todo par (ξ, η) é necessário que os dois lados sejam constantes.

Qualquer processo de separação de variáveis visa concluir que duas funções distintas são constantes, mas no caso do método de Hamilton-Jacobi, encontramos funções constantes que dependem de W_1 , W_2 e de coordenadas do sistema, nos permitindo utilizar as expressões $\frac{\partial W_i}{\partial q_i} = p_i$ para encontrar constantes de movimento:

$$2mc^{2}E\cosh^{2}\xi - p_{\xi}^{2} - 2ma(\xi) = e_{1} = cte.$$
 (IV.4)

$$2mc^{2}E\cos^{2}\eta + p_{\eta}^{2} + 2mb(\eta) = e_{1} = cte.$$
 (IV.5)

A Equação (IV.3) nos leva à solução formal para a equação de Hamilton-Jacobi, basta isolar $\frac{\partial W_1}{\partial \xi}$ ou $\frac{\partial W_2}{\partial \eta}$ e integrar os dois lados. Em muitos problemas o método de separação de variáveis leva rapidamente a constantes de movi-

Em muitos problemas o método de separação de variáveis leva rapidamente a constantes de movimento usuais, sem necessidade de invocar explicitamente simetrias, leis de conservação ou o teorema de Noether. Por exemplo no caso do problema de Kepler, podemos aplicar um método similar de separação de variáveis em coordenadas esféricas, podendo concluir que o momento angular total é conservado e que o momento conjugado a coordenada azimutal ϕ é conservado. Ambas essas afirmações podem ser verificadas a partir das simetrias do sistema: o potencial central leva a conservação do momento angular total, enquanto a simetria cilindrica leva a conservação de uma das componentes do momento angular, nomeadamente p_{ϕ} .

Mais detalhes sobre o método de Hamilton-Jacobi aplicado ao problema de Kepler podem ser encontrados em Fasano, Marmi [1] (páginas 466-471) e em Lemos [3] (páginas 306-308)

Referências

- [1] Fasano, A., Marmi, S. (2006). Analytical Mechanics: An Introduction. OUP Oxford.
- [2] Iro, H. (2015). A modern approach to classical mechanics. World Scientific Publishing Company.
- [3] Lemos, N. A. (2013). Mecânica analítica. Editora Livraria da Fisica.