Circulation (2pt)

1. Circulation

Calculer la circulation du champs de gradient ∇f où $f(x,y) = x^2y^3 + \exp(41)$ le long du segment de droite entre le point (7,1) et le point (5,2). On donnera un arrondi à 10^{-2} près.

• 151 ✓

Ici, $\nabla f: \mathbb{R}^2 \to \mathbb{R}$ est, par définition, un champs de gradient. La circulation est donc la différence de potentiel: $f(5,2) - f(7,1) = 5^2 * 2^3 - 7^2 = 151$

Regle de la chaine (3pt)

1. Derivee directionnelle

On pose $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\phi(x,y) = (x+2y,y)$. Sachant que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est différentiable en p = (3,1) et que l'on a $\frac{\partial f}{\partial x}(p) = 2$ et $\frac{\partial f}{\partial y}(p) = 1$. Calculer $D_v(f \circ \phi)(1,1)$ où v = (1,-1).

-3 √

On remarque que ϕ est une application linéaire et est donc égale à sa différentielle. De plus, en applicant la règle de la chaîne on trouve $\nabla f \circ \phi(1,1) = (2*1+1*0,2*2+1*1) = (2,5)$. Enfin, on a $D_v f(p) = d_p f(v) = \langle \nabla f,v \rangle = 2-5 = -3$. Il fallait donc trouver -3.