CS162

Operating Systems and Systems Programming Lecture 17

Performance Storage Devices, Queueing Theory

> March 22, 2017 Prof. Ion Stoica http://cs162.eecs.Berkeley.edu

Review: Basic Performance Concepts

- Response Time or Latency: Time to perform an operation(s)
- Bandwidth or Throughput: Rate at which operations are performed (op/s)
 - Files: mB/s, Networks: mb/s, Arithmetic: GFLOP/s
- Start up or "Overhead": time to initiate an operation
- Most I/O operations are roughly linear in *n* bytes - Latency(n) = Overhead + n/Bandwidth

3/2217 CS162 ©UCB Spring 2017

Lec 17.2

- 1995 Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
 - Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
 - Trapped electrons distinguish between I and 0
- No moving parts (no rotate/seek motors)
 - Eliminates seek and rotational delay (0.1-0.2ms access time)
 - Very low power and lightweight
 - Limited "write cycles"
- Rapid advances in capacity and cost ever since! CS162 ©UCB Spring 2017

Lec 17.3

SSD Architecture – Writes

- Writing data is complex! ($\sim 200 \mu s 1.7 ms$)
 - -Can only write empty pages in a block
 - Erasing a block takes ~ 1.5ms
 - -Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some % of capacity
- Rule of thumb: writes 10x reads, erasure 10x writes

Typical NAND Flash Pages and Blocks

https://en.wikipedia.org/wiki/Solid-state drive

3/2217 CS162 ©UCB Spring 2017 Lec 17.5

Amusing calculation: is a full Kindle heavier than an empty one?

- Actually, "Yes", but not by much
- Flash works by trapping electrons:
 - So, erased state lower energy than written state
- Assuming that:
 - Kindle has 4GB flash
 - $-\frac{1}{2}$ of all bits in full Kindle are in high-energy state
 - High-energy state about 10-15 joules higher
 - Then: Full Kindle is 1 attogram (10-18 gram) heavier (Using $E = mc^2$)
- Of course, this is less than most sensitive scale can measure (it can measure 10^{-9} grams)
- Of course, this weight difference overwhelmed by battery discharge, weight from getting warm,
- According to John Kubiatowicz (New York Times, Oct 24, 2011)

CS162 ©UCB Spring 2017 3/2217 Lec 17.6

SSD Summary

- Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:
 - » Very light weight, low power, silent, very shock insensitive
 - Read at memory speeds (limited by controller and I/O bus) No longer

true!

- Cons
 - Small storage (0.1-0.5x disk), expensive (3-20x disk)
 - » Hybrid alternative: combine small SSD with large HDD
 - Asymmetric block write performance: read pg/erase/write pg
 - » Controller garbage collection (GC) algorithms have major effect on performance
 - Limited drive lifetime
 - » I-10K writes/page for MLC NAND
 - » Avg failure rate is 6 years, life expectancy is 9–11 years
- These are changing rapidly!

3/2217 CS162 ©UCB Spring 2017 Lec 17.7

What Goes into Startup Cost for I/O? Syscall overhead Operating system processing Startup cost Controller Overhead (fixed overhead) Device Startup Performance of ohns link with 10 ms startur Mechanical latency for a disk - Media Access + Speed of light + Routing for network Queuing (next topic) CS162 ©UCB Spring 2017 3/2217 Lec 17.8

So how do we model the burstiness of arrival? • Elegant mathematical framework if you start with exponential distribution - Probability density function of a continuous random variable with a mean of $1/\lambda$ $- f(x) = \lambda e^{-\lambda x}$ - "Memoryless" Likelihood of an event occurring is independent of how long mean arrival interval (1/λ) 0,6 we've been waiting 0.5 Lots of short arrival 0.4 intervals (i.e., high 0.3 0.2 instantaneous rate) 0.1 Few long gaps (i.e., low instantaneous rate) $\times (\lambda)$ 3/2217 CS162 ©UCB Spring 2017 Lec 17.13

A Little Queuing Theory: An Example (2/2)

- Questions:
 - How utilized is the disk (server utilization)? Ans:, $u = \lambda T_{ser}$
 - What is the average time spent in the queue? Ans: T_q
 - What is the number of requests in the queue? Ans: L_q
 - What is the avg response time for disk request? Ans: $T_{sys} = T_q + T_{ser}$
- Computation:
- λ (avg # arriving customers/s) = 10/s
- T_{ser} (avg time to service customer) = 20 ms (0.02s)
- u (server utilization) = $\lambda \times T_{ser} = 10/s \times .02s = 0.2$
- T_q (avg time/customer in queue) = $T_{ser} \times u/(1 u)$ = 20 × 0.2/(1-0.2) = 20 × 0.25 = 5 ms (0 .005s)
- L_a (avg length of queue) = $\lambda \times T_a = 10/s \times .005s = 0.05s$
- T_{sys} (avg time/customer in system) $=T_q + T_{ser} = 25$ ms

7/2217 CS162 ©UCB Spring 2017 Lec 17.3

A Little Queuing Theory: An Example (1/2)

- Example Usage Statistics:
 - User requests 10 x 8KB disk I/Os per second
 - Requests & service exponentially distributed (C=1.0)
 - Avg. service = 20 ms (From controller + seek + rotation + transfer)
- Ouestions:
 - How utilized is the disk (server utilization)? Ans:, $u = \lambda T_{ser}$
 - What is the average time spent in the queue? Ans: T
 - What is the number of requests in the queue? Ans: La
 - What is the avg response time for disk request? Ans: $T_{sys} = T_0 + T_{ser}$

Lec 17.30

3/2217 CS162 ©UCB Spring 2017

Queuing Theory Resources

- Resources page contains Queueing Theory Resources (under Readings):
 - Scanned pages from Patterson and Hennessy book that gives further discussion and simple proof for general equation: https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
 - A complete website full of resources: http://web2.uwindsor.ca/math/hlynka/gonline.html
- Some previous midterms with queueing theory questions
- Assume that Queueing Theory is fair game for Midterm III

3/2217 CS162 @UCB Spring 2017 Lec 17.32

When is Disk Performance Highest?

- When there are big sequential reads, or
- When there is so much work to do that they can be piggy backed (reordering queues—one moment)
- OK to be inefficient when things are mostly idle
- Bursts are both a threat and an opportunity
- <your idea for optimization goes here>
 - Waste space for speed?
- Other techniques:
 - Reduce overhead through user level drivers
 - Reduce the impact of I/O delays by doing other useful work in the meantime

Lec 17.34

3/2217 CS162 ©UCB Spring 2017

Summary

- Disk Performance:
 - Queuing time + Controller + Seek + Rotational + Transfer
 - Rotational latency: on average ½ rotation
 - Transfer time: spec of disk depends on rotation speed and bit storage density
- Devices have complex interaction and performance characteristics
 - Response time (Latency) = Queue + Overhead + Transfer
 - \Rightarrow Effective BW = BW * T/(S+T)
 - HDD: Queuing time + controller + seek + rotation + transfer
 - SDD: Queuing time + controller + transfer (erasure & wear)
- Systems (e.g., file system) designed to optimize performance and reliability
 - Relative to performance characteristics of underlying device
- Bursts & High Utilization introduce queuing delays
- Queuing Latency:
 - M/M/I and M/G/I queues: simplest to analyze
 - As utilization approaches 100%, latency $\rightarrow \infty$

$$T_q = T_{ser} \times \frac{1}{2}(1+C) \times \frac{u}{1-u}$$

3/2217 CS162 @UCB Spring 2017

Lec 17.38