2001/2003

Hard Functional Equation Problems

Notation: \mathbb{N} denotes the set of positive integers, \mathbb{W} denotes the set of nonnegative integers, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of positive real numbers, and \mathbb{Q} denotes the set of rational numbers.

- 1. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x)f(y) f(xy) = x + y for all $x, y \in \mathbb{R}$.
- 2. Find all functions $f: \mathbb{Z} \to \mathbb{R}$ such that $f(0) \neq 0$, $f(1) = \frac{5}{2}$, and f(x)f(y) = f(x+y) + f(x-y) for all $x, y \in \mathbb{Z}$.
- 3. Find all continuous functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that f(xy) = 2f(x)f(y), for all $x, y \in \mathbb{R}^+$.
- 4. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x+f(y)) = f(x) + y for all $x, y \in \mathbb{R}$.
- 5. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that xf(y) yf(x) = (x y)f(xy) for all $x, y \in \mathbb{R}$.
- 6. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x f(y)) = 1 x y for all $x, y \in \mathbb{R}$.
- 7. Find all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that f(1) = 2 and f(xy) = f(x)f(y) f(x+y) + 1 for all $x, y \in \mathbb{Q}$.
- 8. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that f(n+k) + f(n-k) = 2f(k)f(n) for all integers n and k, and there exists an integer N for which $|f(n)| \leq N$ for all n.
- 9. $f: \mathbb{N} \to \mathbb{W}$ is a function such that f(m+n) f(m) f(n) equals 0 or 1 for all $m, n \in \mathbb{N}$. Also, f(2) = 0, f(3) > 0, and f(9999) = 3333. Determine f(1982). (1982 IMO, Question 1)
- 10. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that f(xf(y)) = yf(x) for all $x, y \in \mathbb{R}^+$ and $f(x) \to 0$ as $x \to \infty$.

 (1983 IMO)
- 11. $f: \mathbb{N} \to \mathbb{W}$ is a function such that
 - (a) f(mn) = f(m) + f(n) for all $m, n \in \mathbb{N}$.
 - (b) f(n) = 0 whenever the units digit of n is 3.
 - (c) f(10) = 0.

Determine the value of f(1985).

(Proposed for the 1985 IMO)

12. Find all functions $f: \mathbb{W} \to \mathbb{W}$ such that f(m+f(n)) = f(f(m)) + f(n) for all $m, n \in \mathbb{W}$.

or fit out provided to the heart open what s

 \cdot , which is the constant \hat{x}_{ij} , \hat{x}_{ij} , \hat{x}_{ij} , \hat{x}_{ij} , \hat{x}_{ij}

/1000 TMO O

13. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions satisfying the equation f(x+y)+f(x-y)=2f(x)g(y) for all $x,y \in \mathbb{R}$. Prove that if f(x) is not identically zero, and if $|f(x)| \leq 1$ for all x, then $|g(y)| \leq 1$ for all y.

(1972 IMO, Question 5)

- 14. Find all polynomials P in two variables, with the following properties:
 - (a) For a positive integer n and all real $t, x, y, P(tx, ty) = t^n P(x, y)$.
 - (b) P(b+c,a) + P(c+a,b) + P(a+b,c) = 0 for all real a, b, c.
 - (c) P(1,0) = 1.

(1975 IMO, Question 6)

- 15. Let $f: \mathbb{N} \to \mathbb{N}$ be a function such that f(n+1) > f(f(n)) for each $n \in \mathbb{N}$. Prove that f(n) = n for each n.

 (1977 IMO, Question 6)
- 16. The set of all positive integers is the union of two disjoint subsets $\{f(1), f(2), f(3), \ldots\}$, and $\{g(1), g(2), g(3), \ldots\}$ where $f(1) < f(2) < f(3) < \ldots$, $g(1) < g(2) < g(3) < \ldots$, and g(n) = f(f(n)) + 1 for all $n \ge 1$. Determine f(240). (1978 IMO, Question 6)
- 17. The function f(x, y) satisfies
 - (a) f(0,y) = y + 1.
 - (b) f(x+1,0) = f(x,1).
 - (c) f(x+1,y+1) = f(x,f(x+1,y)).

Determine the value of f(4, 1981).

(1981 IMO, Question 6)

18. $f: \mathbb{N} \to \mathbb{N}$ is a function such that $f(n^2 f(m)) = m(f(n))^2$, for all $m, n \in \mathbb{N}$. Determine the least possible value of f(1998).

(1998 IMO, Question 6).