

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PROCESS FOR THE HETEROTROPHIC PRODUCTION OF MICROBIAL
PRODUCTS WITH HIGH CONCENTRATIONS OF OMEGA-3 HIGHLY
UNSATURATED FATTY ACIDS

5 **CROSS-REFERENCE TO RELATED APPLICATIONS**

This application is a continuation of U.S. Application Serial No. 10/154,273, filed May 22, 2002, which is a divisional of U.S. Application Serial No. 09/461,709, filed December 14, 1999, which is a continuation-in-part of U.S. Patent Application Serial No. 08/968,628, filed November 12, 1997, now abandoned, which is a continuation of U.S. Patent Application Serial No. 08/461,137, filed June 5, 1995, which issued as U.S. Patent No. 5,688,500, which is a continuation of U.S. Patent Application Serial No. 08/292,490, filed August 18, 1994, which issued as U.S. Patent No. 5,518,918, which is a divisional of U.S. Patent Application Serial No. 07/962,522, filed October 16, 1992, which issued as U.S. Patent No. 5,340,742, which is a continuation-in-part of U.S. Patent Application Serial No. 07/911,760, filed July 10, 1992, which issued as U.S. Patent No. 5,340,594, which is a divisional of U.S. Patent Application Serial No. 07/580,778, filed September 11, 1990, which issued as U.S. Patent No. 5,130,242, which is a continuation-in-part of U.S. Patent Application Serial No. 07/439,093, filed November 17, 1989, now abandoned, which is a continuation-in-part of U.S. Patent Application Serial No. 07/241,410, filed September 7, 20

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 783

1 preventing arteriosclerosis and coronary heart disease, for
alleviating inflammatory conditions and for retarding the
growth of tumor cells. These beneficial effects are a result
5 both of omega-3 HUFAs causing competitive inhibition of
compounds produced from omega-6 fatty acids, and from
beneficial compounds produced directly from the omega-3 HUFAs
themselves (Simopoulos *et al.*, 1986). Omega-6 fatty acids
are the predominant HUFAs found in plants and animals.
10 Currently, a commercially available dietary source of omega-3
HUFAs is from certain fish oils which can contain up to 20-
30% of these fatty acids. The beneficial effects of these
fatty acids can be obtained by eating fish several times a
week or by daily intake of concentrated fish oil.
15 Consequently large quantities of fish oil are processed and
encapsulated each year for sale as a dietary supplement.
However, there are several significant problems with these
fish oil supplements, including bioaccumulation of fat-
soluble vitamins and high levels of saturated and omega-6
20 fatty acids, both of which can have deleterious health
effects.

Another source of omega-3 HUFAS is the microflora
Thraustochytrium and *Schizochytrium* which are discussed in
detail in related U.S. Patent No. 5,130,242. These
25 microflora have the advantages of being heterotrophic and
capable of high levels of omega-3 HUFA production. There
still exists a need however for improved methods for

fermentation of these microflora and identification of improved uses of the microflora product.

Brief Summary of the Invention

5 The present invention is directed to a new process for growing the microflora *Thraustochytrium*, *Schizochytrium*, and mixtures thereof, which includes the growing of the microflora in a culture medium containing non-chloride containing sodium salts, particularly including sodium 10 sulfate. More particularly, a significant portion of the sodium requirements of the fermentation are supplied as a non-chloride containing sodium salt. The present process is particularly useful in commercial production because the chloride content in the medium can be significantly reduced, 15 thereby avoiding the corrosive effects of chloride on fermentation equipment. In addition, the present invention is particularly useful for production of food products for use in aquaculture because *Thraustochytrium* and *Schizochytrium* cultured in such media form much smaller 20 clumps than those cultured in high chloride media and are thus more available as a food source for larval shrimp. In particular, *Thraustochytrium* and *Schizochytrium* cultured in medium containing sodium sulfate can have cell aggregates 25 of an average size of less than about 150 microns in diameter.

A further embodiment of the present invention is the production of a microflora biomass comprising *Thraustochytrium*, *Schizochytrium*, and mixtures thereof which

have an average cell aggregate size of less than about 150 microns. The microflora biomass is useful for aquaculture and in particular, for feeding larval shrimp because the microflora have the primary feed advantages required for 5 shrimp of a high sterol content and a high omega-3 highly unsaturated fatty acid (HUFA) content. Additionally, because of the small cell aggregate size, the microflora can be eaten by the larval shrimp, brine shrimp, rotifers, and mollusks. The present invention further includes a process for the 10 production of these organisms which includes feeding *Thraustochytrium*, *Schizochytrium*, and mixtures thereof, having an average cell size of less than about 150 microns 15 to them.

A further embodiment of the present invention is directed to a food product which is comprised of microflora selected from the group consisting of *Thraustochytrium*, *Schizochytrium*, and mixtures thereof and an additional component selected from the group consisting of flaxseed, rapeseed, soybean, avocado meal, and mixtures thereof. A 20 particular advantage of this food product is that it has a high long chain omega-3 fatty acid content and a high short chain omega-3 fatty chain content from the additional component. In a further embodiment, the food product is produced by extrusion. The extrusion process involves mixing 25 the microflora with the additional component, thereby reducing the moisture content of the food product. The food product is then extruded under heat, thus driving off a significant portion of the reduced moisture. The remaining

amount of the original moisture content is readily removed by air drying or short baking times, thereby reducing the overall energy requirements of drying and the potential degradation of the omega-3 HUFA's by extended drying at high
5 temperatures.

Brief Description of the Figures

Fig. 1 is a graphical representation of HUFA production in newly isolated strains of the invention, represented by ■, and previously isolated strains represented by +. Each point represents a strain, the position of each point is determined by the percent by weight of total fatty acids which were omega-3 HUFAs (abscissa) and the percent by weight of total fatty acids which were omega-6 fatty acids (ordinate). Only those strains of the invention were plotted wherein less than 10.6% (w/w) of total fatty acids were omega-6 and more than 67% of total fatty acids were omega-3.
10
15

Fig. 2 is a graphical representation of HUFA production in newly isolated strains of the invention, represented by ■, and previously isolated strains, represented by +. Each point represents a strain, the position of each point is determined by the percent by weight of total fatty acids which were omega-3 HUFAs (abscissa) and percent of weight of total fatty acids which were eicosapentaenoic acid (EPA C20:5n-3) (ordinate). Only those strains of the invention were plotted wherein more than 67% (w/w) of total fatty acids were omega-3 and more than 7.8% (w/w) of total fatty acids were C20:5n-3.
20
25

Fig. 3 is a graphical representation of omega-3 HUFA composition in newly isolated strains of the invention, represented by \square , and previously isolated strains, represented by $+$. Each point represents a separate strain.

5 Values on the abscissa are weight fraction of total omega-3 HUFAs which were C20:5n-3 and on the ordinate are weight fraction of total omega-3 fatty highly unsaturated acids which were C22:6n-3. Only strains of the invention were plotted having either a weight fraction of C20:5n-3 28% or
10 greater, or a weight fraction of C22:6n-3 greater than 93.6%.

Fig. 4 is a graph showing growth of various newly isolated strains of the invention and previously isolated strains, at 25°C and at 30°C. Growth rates are normalized to the growth rate of strain U-30 at 25°C. Previously
15 isolated strains are designated by their ATCC accession numbers.

Fig. 5 is a graph of total yields of cellular production after induction by nitrogen limitation. Each of ash-free dry weight, total fatty acids and omega-3 HUFAs, as
20 indicated, was plotted, normalized to the corresponding value for strain 28211. All strains are identified by ATCC accession numbers.

Fig. 6 is a graph of fatty acid yields after growth in culture media having the salinity indicated on the abscissa.
25 Strains shown are newly isolated strains S31 (ATCC 20888) (\square) and U42-2 (ATCC 20891) (+) and previously isolated strains, ATCC 28211 (\circ) and ATCC 28209 (Δ). Fatty acid yields are plotted as relative yields normalized to an

arbitrary value of 1.00 based on the average growth rate exhibited by S31 (ATCC 20888) (□) over the tested salinity range.

Fig. 7 is a graph of increases in the omega-3 HUFA content of the total lipids in the brine shrimp, *Artemia salina*, fed Thraustochytrid strain (ATCC 20890) isolated by the method in Example 1. EPA = C20:5n-3; DHA = C22:5n-3.

Fig. 8 is a graph of increases in the omega-3 HUFA content of the total lipids in the brine shrimp, *Artemia salina*, fed Thraustochytrid strain (ATCC 20888) isolated by the method in Example 1. EPA = C20:5n-3; DHA = C22:5n-3.

Detailed Description of the Preferred Embodiments

For purposes of definition throughout the application, it is understood herein that a fatty acid is an aliphatic monocarboxylic acid. Lipids are understood to be fats or oils including the glyceride esters of fatty acids along with associated phosphatides, sterols, alcohols, hydrocarbons, ketones, and related compounds.

A commonly employed shorthand system is used in this specification to denote the structure of the fatty acids (e.g., Weete, 1980). This system uses the letter "C" accompanied by a number denoting the number of carbons in the hydrocarbon chain, followed by a colon and a number indicating the number of double bonds, i.e., C20:5, eicosapentaenoic acid. Fatty acids are numbered starting at the carboxy carbon. Position of the double bonds is indicated by adding the Greek letter delta (Δ) followed by

the carbon number of the double bond; i.e., C₂₀:5omega-
3Δ^{5,8,11,14,17}. The "omega" notation is a shorthand system for
unsaturated fatty acids whereby numbering from the carboxy-
terminal carbon is used. For convenience, n-3 will be used
5 to symbolize "omega-3," especially when using the numerical
shorthand nomenclature described herein. Omega-3 highly
unsaturated fatty acids are understood to be polyethylenic
fatty acids in which the ultimate ethylenic bond is 3 carbons
from and including the terminal methyl group of the fatty
10 acid. Thus, the complete nomenclature for eicosapentaenoic
acid, an omega-3 highly unsaturated fatty acid, would be
C₂₀:5n-3Δ^{5,8,11,14,17}. For the sake of brevity, the double bond
locations (Δ^{5,8,11,14,17}) will be omitted. Eicosapentaenoic acid
is then designated C₂₀:5n-3, Docosapentaenoic acid (C₂₂:5n-
15 3Δ^{7,10,13,16,19}) is C₂₂:5n-3, and Docosahexaenoic acid (C₂₂:6n-
3Δ^{4,7,10,13,16,19}) is C₂₂:6n-3. The nomenclature "highly
unsaturated fatty acid" means a fatty acid with 4 or more
double bonds. "Saturated fatty acid" means a fatty acid with
1 to 3 double bonds.

20 A collection and screening process has been developed
to readily isolate many strains of microorganisms with the
following combination of economically desirable
characteristics for the production of omega-3 HUFAs: 1)
capable of heterotrophic growth; 2) high content of omega-3
25 HUFAs; 3) unicellular; 4) preferably low content of saturated
and omega-6 HUFAs; 5) preferably nonpigmented, white or
essentially colorless cells; 6) preferably thermotolerant
(ability to grow at temperatures above 30°C); and 7)

preferably euryhaline (able to grow over a wide range of salinities, but especially at low salinities). This process is described in detail in related U.S. Patent No. 5,130,242.

Using the collection and screening process, strains of
5 unicellular microflora can be isolated which have fatty acid contents up to about 45% total cellular dry weight percent (%dwt), and which exhibit growth over a temperature range from 15-48°C and grow in a very low salinity culture medium. Many of the very high omega-3 strains are very slow growers.
10 Strains which have been isolated by the method outlined above, and which exhibit rapid growth, good production and high omega-3 HUFA content, have omega-3 unsaturated fatty acid contents up to approximately 12% dwt.

One aspect of the present invention is the growth of
15 *Thraustochytrium*, *Schizochytrium*, and mixtures thereof with high omega-3 HUFA content, in fermentation medium containing non-chloride containing sodium salts and preferably sodium sulfate. More particularly, a significant portion of the sodium requirements of the fermentation are supplied as non-
20 chloride containing sodium salts. For example, less than about 75% of the sodium in the fermentation medium is supplied as sodium chloride, more preferably less than about 50% and more preferably less than about 25%. A particular advantage of the present invention is that the medium provides the source of sodium needed by the microflora to
25 grow in the absence of a significant amount of chloride which can corrode the vessel in which the microflora are being grown and other fermentation or downstream processing

equipment. It has been surprisingly found that microflora of the present invention can be grown at chloride concentrations of less than about 3 g/l, more preferably less than about 500 mg/l, more preferably less than about 5 250 mg/l and more preferably between about 60 mg/l and about 120 mg/l while still attaining high yields of biomass per sugar of about 50% or greater. As discussed below, an additional advantage of the present invention is the production of microflora that are high in omega-3 HUFA 10 content but have a small enough cell aggregate size to be consumed by larval shrimp, brine shrimp, rotifers and mollusks.

Non-chloride containing sodium salts can include soda ash (a mixture of sodium carbonate and sodium oxide), sodium 15 carbonate, sodium bicarbonate, sodium sulfate and mixtures thereof, and preferably include sodium sulfate. Soda ash, sodium carbonate and sodium bicarbonate tend to increase the pH of the fermentation medium, thus requiring control steps to maintain the proper pH of the medium. The concentration 20 of sodium sulfate is effective to meet the salinity requirements of the microflora, preferably the sodium concentration is (expressed as g/l of Na) is greater than about 1.0 g/l, more preferably between about 1.0 g/l and about 50.0 g/l and more preferably between about 2.0 g/l and 25 about 25 g/l.

It has been surprisingly found that fermentation of the strains in the presence of a non-chloride containing sodium salt and particularly, sodium sulfate limits the cell

aggregate size of the strains to less than about 150 microns, preferably less than about 100 microns, and more preferably less than about 50 microns. As used herein, the term cell aggregate size refers to the approximate average diameter of clumps or aggregates of cells in a fermentation medium of a microfloral culture. Typically, greater than about 25 percent of the cell aggregates in a microfloral culture have cell aggregate size below the average size, more preferably greater than about 50 percent and more preferably greater than about 75 percent. Microfloral cells produced in accordance with the present invention meet cell aggregate size parameters described above while in fermentation medium as well as after freezing and/or drying of the biomass if resuspended in liquid or physically agitated, such as by a blender or vortexer. The present process is particularly important for microflora which replicate by successive bipartition (wherein a single cell replicates by dividing into two cells which each divide into two more, etc.) because as cells repeatedly and rapidly undergo this process, the cells tend to clump forming multi-cell aggregates which are often outside the cell aggregate size parameters identified above. *Schizochytrium* replicate by successive bipartition and by forming sporangia which release zoospores. *Thraustochytrium*, however, replicate only by forming sporangia and releasing zoospores. For *Thraustochytrium* which replicate by sporangia/zoospore formation, clumping can be a problem as well, particularly because even though the number of cells in an aggregate may not be as great as

aggregates formed by successive bipartition, the individual cell sizes of *Thraustochytrium* tend to be larger, and thus, clumps of a small number of cells are larger. However, one deposited strain of *Thraustochytrium*, ATCC 26185, has been 5 identified which does not exhibit significant aggregation.

In another aspect of the present invention, it has been found that by restricting the oxygen content of the fermentation medium during the growth of *Thraustochytrium*, *Schizochytrium*, and mixtures thereof, the lipid content of 10 the strains can be increased. The optimum oxygen concentration for lipid production can be determined for any particular microflora by variation of the oxygen content of the medium. In particular, the oxygen content of the fermentation medium is maintained at an oxygen content of 15 less than about 40% of saturation and preferably between about 5% of saturation and about 40% of saturation.

Growth of the strains by the invention process can be effected at any temperature conducive to satisfactory growth of the strains; for example, between about 5°C and about 20 48°C, preferably between about 15°C and about 40°C, and more preferably between about 25°C and about 35°C. The culture medium typically becomes more alkaline during the fermentation if pH is not controlled by acid addition or buffers. The strains will grow over a pH range from 5.0-11.0 25 with a preferable range of about 6.0-8.5.

Various fermentation parameters for inoculating, growing and recovering microflora are discussed in detail in U.S. Patent No. 5,130,242. The biomass harvested from a

fermentation run can be dried (e.g., spray drying, tunnel drying, vacuum drying, or a similar process) and used as a feed or food supplement for any animal whose meat or products are consumed by humans. Similarly, extracted omega-3 HUFAs
5 can be used as a feed or food supplement. Alternatively, the harvested and washed biomass can be used directly (without drying) as a feed supplement. To extend its shelf life, the wet biomass can be acidified (approximate pH = 3.5-4.5) and/or pasteurized or flash heated to inactivate enzymes
10 and then canned, bottled or packaged under a vacuum or non-oxidizing atmosphere (e.g., N₂ or CO₂). The term "animal" means any organism belonging to the kingdom Animalia and includes, without limitation, any animal from which poultry meat, seafood, beef, pork or lamb is derived. Seafood is
15 derived from, without limitation, fish, shrimp and shellfish. The term "products" includes any product other than meat derived from such animals, including, without limitation, eggs or other products. When fed to such animals, omega-3 HUFAs in the harvested biomass or extracted omega-3 HUFAs
20 are incorporated into the flesh, eggs or other products of such animals to increase the omega-3 HUFA content thereof.

A further embodiment of the present invention is the use of the harvested biomass as a food product for larval shrimp, brine shrimp, rotifers and mollusks and in particular, larval shrimp. During the larval stage of development, shrimp larvae are unable to use some food sources because the food source is too large. In particular, at certain stages of development, shrimp larvae are unable

to use a food source having a diameter greater than about 150 microns. Thus, microflora grown in fermentation medium containing a non-chloride sodium salt, and particularly sodium sulfate, as broadly discussed above, are suitable for 5 use as a shrimp food product. As discussed above, microflora grown under such conditions typically have a cell aggregate size less than about 150 microns, preferably less than about 100 microns, and more preferably less than about 50 microns.

A further advantage of the use of microflora of the 10 present invention as a food source for shrimp is that such microflora have a significant sterol content including cholesterol, which is a primary feed requirement for shrimp. The microflora of the present invention typically have a sterol content of preferably at least about 0.1% ash-free 15 dry weight (afdw), more preferably at least about 0.5% afdw, and even more preferably at least about 1.0% afdw. In addition, the microflora of the present invention typically have a cholesterol content of preferably at least about 15% of the total sterol content, more preferably at least about 20 25% of the total sterol content, and even more preferably at least about 40% of the total sterol content. Further, the microfloral biomass of the present invention also provide shrimp with additional nutritional requirements such as omega-6 fatty acids, protein, carbohydrates, pigments and 25 vitamins.

The microbial product of the present invention is of value as a source of omega-3 HUFAs for fish, shrimp and other products produced by aquaculture. The product can be used

as a food product as described above for shrimp; or added directly as a supplement to the feed for shrimp and fish, generally; or it can be fed to brine shrimp or other live feed organisms intended for consumption by an aquacultured organism. The use of such microflora in this manner enables the shrimp farmer to obtain significantly higher growth rates and/or survival rates for larval shrimp and to produce post-larval shrimp which are more hardy and robust.

For most feed applications, the fatty acid content of the harvested cells will be approximately 15-50% dwt with the remaining material being largely protein and carbohydrate. The protein can contribute significantly to the nutritional value of the cells as several of the strains that have been evaluated have all of the essential amino acids and would be considered a nutritionally balanced protein.

A further embodiment of the present invention is the production of a food product using the *Thraustochytrium*, *Schizochytrium*, and mixtures thereof, of the present invention, combined with an additional component selected from the group consisting of rapeseed, flaxseed, soybean and avocado meal. A particular advantage of this embodiment is that the food product contains both short chain omega-3 HUFAs from the additional component and long chain omega-3 HUFAs from the microflora. Food products having flaxseed, rapeseed, soybeans and avocado meal are known to be useful for supplying a source of short chain omega-3 HUFAs and for additionally supplying a source of short chain omega-3 HUFAs,

which can be elongated by the humans and animals that ingest them. Such food products, however, have the disadvantages of having high choline contents from the additional component, which can form primary amines and result in an
5 unpleasant fish smell; and toxic compounds from the additional component, which at high levels can, for example, inhibit the laying of eggs by hens or cause animals to go off of their feed. As such, the food product of the present invention has the advantage of a lowered flaxseed, rapeseed,
10 soy bean or avocado meal content because the organism ingesting the food product does not need high levels of short chain omega-3 HUFAs for the purpose of converting them to long chain HUFAs. Thus, the lowered content of the flaxseed and rapeseed of the food product results in lowered amounts
15 of choline and/or inhibitory toxic compounds present in the food product.

The amount of *Thraustochytrium*, *Schizochytrium*, and mixtures thereof, used in the food product can range from between about 5% to about 95% by weight. The additional
20 component can be present in the food product at a range of between about 5% to about 95% by weight. Additionally, the food product can include other components as well, including grains, supplements, vitamins, binders and preservatives.

In a preferred embodiment, the above food product is
25 produced using an extrusion process. The extrusion process involves mixing the microflora with the additional component, thereby reducing the moisture in the microfloral biomass by the amount of the additional component mixed. The food

product is extruded under heat, thus removing further moisture from the food product. The resulting product which has a low moisture content can be air dried or dried by relatively short baking times thereby reducing the overall energy requirements of drying and the potential degradation of omega-3 HUFAs due to long time periods at high temperatures. In addition, heat from the extrusion process can degrade some of the unwanted toxic compounds commonly found in the additional component which can, for example, inhibit egg laying by hens or cause animals to go off of their feed.

The present invention will be described in more detail by way of working examples. Species meeting the selection criteria described above have not been described in the prior art. By employing these selection criteria, over 25 potentially promising strains have been isolated from approximately 1000 samples screened. Out of the approximate 20,500 strains in the American Type Culture Collection (ATCC), 10 strains were later identified as belonging to the same taxonomic group as the strains isolated. Those strains still viable in the Collection were procured and used to compare with strains isolated and cultured by the disclosed procedures. The results of this comparison are presented in Examples 4 and 5 below.

The most recent taxonomic theorists place Thraustochydrids with the algae or algae-like protists. All of the strains of unicellular microorganisms disclosed and claimed herein are members of the order Thraustochytriales

(Order: Thraustochytriales; Family: Thraustochytriaceae;
Genus: *Thraustochytrium* or *Schizochytrium*). For general
purposes of discussion herein, these microorganisms will be
called microflora to better denote their uncertain exact
5 taxonomic position.

The novel strains identified below were deposited under
the Budapest Treaty on the International Recognition of the
Deposit of Microorganisms for the Purpose of Patent
Procedure. All restrictions on the availability to the
10 public of the materials so deposited will be irrevocably
removed upon the granting of a patent. Each deposit will
be stored for a period of at least five years after the most
recent request for the furnishing of a sample of the
deposited microorganism is received by the American Type
15 Culture Collection (ATCC), and, in any case, for a period
of at least 30 years after the date of the deposit.

Preferred microorganisms of the present invention have
all of the identifying characteristics of the deposited
strains and, in particular, the identifying characteristics
20 of being able to produce omega-3 HUFAs as described herein
and having cell aggregate size characteristics when cultured
under conditions as described herein. In particular, the
preferred microorganisms of the present invention refer to
the following deposited microorganisms and mutants thereof.

25	<u>Strain</u>	<u>ATCC No.</u>	<u>Deposit Date</u>
	<i>Schizochytrium</i> S31	20888	8/8/88
	<i>Schizochytrium</i> S8	20889	8/8/88

The present invention, while disclosed in terms of specific organism strains, is intended to include all such methods and strains obtainable and useful according to the teachings disclosed herein, including all such substitutions, 5 modification, and optimizations as would be available expedients to those of ordinary skill in the art.

The following examples and test results are provided for the purposes of illustration and are not intended to limit the scope of the invention.

10

EXAMPLES

Example 1. Collection and Screening

A 150ml water sample was collected from a shallow,
5 inland saline pond and stored in a sterile polyethylene
bottle. Special effort was made to include some of the
living plant material and naturally occurring detritus
(decaying plant and animal matter) along with the water
sample. The sample was placed on ice until return to the
10 laboratory. In the lab, the water sample was shaken for 15-
30 seconds, and 1-10ml of the sample was pipetted or poured
into a filter unit containing 2 types of filters: 1) on top,
a sterile 47mm diameter Whatman #4 filter having a pore size
about $25\mu\text{m}$; and 2) underneath the Whatman filter, a 47mm
15 diameter polycarbonate filter with about $1.0\mu\text{m}$ pore size.
Given slight variations of nominal pore sizes for the
filters, the cells collected on the polycarbonate filter
range in size from about $1.0\mu\text{m}$ to about $25\mu\text{m}$.

The Whatman filter was removed and discarded. The
20 polycarbonate filter was placed on solid F-1 media in a petri
plate, said media consisting of (per liter): 600ml seawater
(artificial seawater can be used), 400ml distilled water,
10g agar, 1g glucose, 1g protein hydrolysate, 0.2g yeast
extract, 2ml 0.1 M KH_2PO_4 , 1ml of a vitamin solution (A-vits)
25 (Containing 100mg/l thiamine, 0.5mg/l biotin, and 0.5mg/l
cyanocobalamin), 5ml of a trace metal mixture (PII metals,
containing per liter: 6.0g Na_2EDTA , 0.29g $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$, 6.84g
 H_3BO_3 , 0.86 $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$, 0.06g ZnCl_2 , 0.026g $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$, (0.052g

$\text{NiSO}_4\text{H}_2\text{O}$, 0.002g $\text{CuSO}_4\text{5H}_2\text{O}$, and 0.005g $\text{Na}_2\text{MoO}_4\text{2H}_2\text{O}$, and 500mg each of streptomycin sulfate and penicillin-G. The agar plate was incubated in the dark at 30°C. After 2-4 days numerous colonies appeared on the filter. Colonies of 5 unicellular microflora (except yeast) were picked from the plate and restreaked on a new plate of similar media composition. Special attention was made to pick all colonies consisting of colorless white cells. The new plate was incubated at 30°C and single colonies picked after a 2-4 day 10 incubation period. Single colonies were then picked and placed in 50ml of liquid medium containing the same organic enrichments as in the agar plates. These cultures were incubated for 2-4 days at 30°C on a rotary shaker table (100-200 rpm). When the cultures appeared to reach maximal 15 density, 20-40ml of the culture was harvested, centrifuged and lyophilized. The sample was then analyzed by standard, well-known gas chromatographic techniques (e.g., Lepage and Roy, 1984) to identify the fatty acid content of the strain. Those strains with omega-3 HUFAs were thereby identified, 20 and cultures of these strains were maintained for further screening.

Using the collection and screening process outlined above, over 150 strains of unicellular microflora have been isolated which have high omega-3 HUFA contents as a percent 25 of total fatty acids and which exhibit growth over a temperature range from 15-48°C. Strains can also be isolated which have less than 1% (as % of total fatty acids) of the undesirable C20:4n-6 and C22:5n-6 HUFAs for some

applications. Strains with high omega-6 content can also be isolated. Strains of these microflora can be repeatedly isolated from the same location using the procedure outlined above. A few of the newly isolated strains have very similar fatty acid profiles. The possibility that some are duplicate isolates of the same strain cannot be ruled out at present. Further screening for other desirable traits such as salinity tolerance or ability to use a variety of carbon and nitrogen sources can then be carried out using a similar process.

10

Example 2. Maintaining Unrestricted Growth: PO₄ and Yeast Extract

Cells of *Schizochytrium aggregatum* (ATCC 28209) were picked from solid F-1 medium and inoculated into 50ml of FFM medium. (Fuller *et al.*, 1964). This medium contains: seawater, 1000ml; glucose, 1.0g; gelatin hydrolysate, 1.0g; liver extract, 0.01g; yeast extract, 0.1g; PII metals, 5ml; 1ml B-vitamins solution (Goldstein *et al.*, 1969); and 1ml of an antibiotic solution (25g/l streptomycin sulfate and penicillin-G). 1.0ml of the vitamin mix (pH 7.2) contains: thiamine HCl, 200 μ g; biotin, 0.5 μ g; cyanocobalamin, 0.05 μ g; nicotinic acid, 100 μ g; calcium pantothenate, 100 μ g; riboflavin, 5.0 μ g; pyridoxine HCl, 40.0 μ g; pyridoxamine 2HCl, 20.0 μ g; p-aminobenzoic acid, 10 μ g; chlorine HCl, 500 μ g; inositol, 1.0mg; thymine, 0.8mg; orotic acid, 0.26mg; folinic acid, 0.2 μ g; and folic acid, 2.5 μ g. The culture was placed on a rotary shaker (200 rpm) at 27°C. After 3-4 days, 1ml of this culture was transferred to 50ml of each of the following treatments: 1) FFM medium (as control); and 2) FFM

medium with the addition of 250mg/l KH_2PO_4 and 250mg/l yeast extract. These cultures were placed on a rotary shaker (200 rpm) at 27°C for 48 hr. The cells were harvested and the yield of cells quantified. In treatment 1, the final concentration of cells on an ash-free dry weight basis was 616mg/l. In treatment 2, the final concentration of cells was 1675mg/l, demonstrating the enhanced effect of increasing PO_4 and yeast extract concentrations in the culture medium.

10 Example 3. Maintaining Unrestricted Growth: Substitution of Corn Steep Liquor for Yeast Extract

Cells of *Schizochytrium* sp. S31 (ATCC No. 20888) were picked from solid F-1 medium and placed into 50ml of M-5 medium. This medium consists of (on a per liter basis): yeast extract, 1g; NaCl, 25g; $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 5g; KCl, 1g; CaCl_2 , 200mg; glucose, 5g; glutamate, 5g; KH_2PO_4 , 1g; PII metals, 5ml; A-vitamins solution, 1ml; and antibiotic solution, 1ml. The pH of the solution was adjusted to 7.0 and the solution was filter sterilized. Sterile solutions of corn steep liquor (4g/40ml; pH 7.0) and yeast extract (1g/40ml; pH 7.0) were prepared. To one set of M-5 medium flasks, the following amount of yeast extract solution was added: 1) 2ml; 2) 1.5ml; 3) 1ml; 4) 0.5ml; and 5) 0.25ml. To another set of M-5 medium flasks the yeast extract and corn steep liquor solutions were added at the following levels: 1) 2ml yeast extract; 2) 1.5ml yeast extract and 0.5ml corn steep liquor; 3) 1.0ml yeast extract and 1.0ml corn steep liquor; 4) 0.5ml yeast extract and 1.5ml corn steep liquor; and 5) 2ml corn steep liquor. One ml of the culture in F-1 medium was used

to inoculate each flask. They were placed on a rotary shaker at 27°C for 48 hr. The cells were harvested by centrifugation and the yield of cells (as ash-free dry weight) was determined. The results are shown in Table 1.

5 The results indicate the addition of yeast extract up to 0.8g/l of medium can increase the yield of cells. However, addition of corn steep liquor is even more effective and results in twice the yield of treatments with added yeast extract. This is very advantageous for the economic

10 production of cells as corn steep liquor is much less expensive than yeast extract.

Table 1.

	Treatment (Amount Nutrient Supplement Added)	Ash-Free Dry Weight (mg/l)
20	2.0ml yeast ext.	4000
	1.5ml yeast ext.	4420
25	1.0ml yeast ext.	4300
	0.5ml yeast ext.	2780
	0.25ml yeast ext.	2700
30	2.0ml yeast ext.	4420
	1.5ml yeast ext. + 0.5ml CSL*	6560
35	1.0ml yeast ext. + 1.0ml CSL	6640
	0.5ml yeast ext. + 1.5ml CSL	7200
40	2.0ml CSL	7590

*CSL = corn steep liquor

Example 4. Enhanced HUFA Content of Strains Isolated by Method in Example 1 Compared to ATCC Strains (Previously Known Strains)

A battery of 151 newly isolated strains, selected
5 according to the method described in Example 1, were sampled
in late exponential phase growth and quantitatively analyzed
for HUFA content by gas-liquid chromatography. All strains
were grown either in M1 medium or liquid FFM medium,
whichever gave highest yield of cells. M1 medium has the
10 same composition as M5 medium, except that the concentrations
of glucose and glutamate are 1 g/l. Additionally, five
previously isolated *Thraustochytrium* or *Schizochytrium*
species were obtained from the American Type Culture
Collection, representing all the strains which could be
15 obtained in viable form from the collection. These strains
were: *T. aureum* (ATCC No. 28211), *T. aureum* (ATCC No. 34304),
T. roseum (ATCC No. 28210), *T. straitum* (ATCC No. 34473) and
S. aggregatum (ATCC No. 28209). The strains all exhibited
abbreviated growth in conventional media, and generally
20 showed improved growth in media of the present invention,
including M5 medium and FFM medium. The fatty acid
production of each of the known strains was measured as
described, based upon the improved growth of the strains in
media of the invention.

25 Fatty acid peaks were identified by the use of pure
compounds of known structure. Quantitation, in terms of
percent by weight of total fatty acids, was carried out by
integrating the chromatographic peaks. Compounds identified
were: palmitic acid (C16:0), C20:4n-6 and C22:1 (which were

not resolved separately by the system employed), C20:5n-3, C22:5n-6, C22:5n-3, and C22:6n-3. The remainder, usually lower molecular weight fatty acids, were included in the combined category of "other fatty acids." Total omega-3 fatty acids were calculated as the sum of 20:5n-3, 22:5n-3 and 22:6n-3. Total omega-6 fatty acids were calculated as the sum of the 20:4/22:1 peak and the 22:5n-6 peak.

The results are shown in Tables 2-3 and illustrated in Figs. 1-3. From Table 2 it can be seen that large numbers of strains can be isolated by the method of the invention, and that large numbers of strains outperform the previously known strains by several important criteria. For example, 102 strains produced at least 7.8% by weight of total fatty acids C20:5w3, a higher percentage of that fatty acid than any previously known strain. Strains 23B (ATCC No. 20892) and 12B (ATCC No. 20890) are examples of such strains. Thirty (30) strains of the invention produced at least 68% by weight of total fatty acids as omega-3 fatty acids, more than any previously known strain. Strain 23B (ATCC No. 20892) is an example of such strains. Seventy-six (76) strains of the invention yielded not more than 10% by weight of total fatty acids as omega-6 fatty acids, considered undesirable components of the human diet, lower than any previously known strain. Strains 23B (ATCC No. 20892) and 12B (ATCC No. 20890) are examples of such strains. In addition, there are 35 strains of the invention that produce more than 25% by weight of total fatty acids as omega-6 fatty acids, more than any previously known strain. While such

strains may have a more narrow range of uses for dietary purposes, they are useful as feedstock for chemical synthesis of eicosanoids starting from omega-6 fatty acids.

In addition, the data reveal many strains of the invention which produce a high proportion of total omega-3 fatty acids as C22:6n-3. In Table 3, 48 of the strains shown in Table 2 were compared to the previously known strains, showing each of C20:5n-3, C22:5n-3 and C22:6n-3 as percent by weight of total omega-3 content. Fifteen strains had at least 94% by weight of total omega-3 fatty acids as C22:6n-3, more than any previously known strain. Strain S8 (ATCC No. 20889) was an example of such strains. Eighteen strains had at least 28% by weight of total omega-3 fatty acids as C20:5n-3, more than any previously known strain. Strain 12B (ATCC No. 20890) was an example of such strains.

TABLE 2: LIST OF STRAINS AND COMPOSITIONS UNDER STANDARD SCREENING CONDITIONS

C16:0	PER CENT OF TOTAL FATTY ACIDS						Total Omega3	Total Omega6	Strain
	C20:4n6	C20:5n3	C22:5n6	C22:5n3	C22:6n3	Other FA			
30.41	2.01	6.61	3.21	0.21	0.31	40.51	15.11	6.01	21
22.91	0.41	2.31	15.51	0.51	47.01	11.51	49.71	15.91	AICC20009
14.91	6.51	12.01	11.01	0.41	49.71	4.71	62.11	10.31	U10-2
40.31	1.71	3.01	0.61	0.01	0.21	37.41	12.01	10.21	21B
20.71	0.41	7.01	0.01	0.01	1.11	70.11	0.91	0.41	BG1
26.01	5.71	1.51	9.71	0.71	9.71	46.71	11.91	15.41	56A
16.71	1.41	10.01	1.91	2.21	46.41	21.01	50.61	3.31	11A-1
23.71	3.31	10.51	1.91	1.81	29.91	20.91	42.21	5.21	4A-1
10.71	6.91	9.21	11.91	3.21	25.21	24.91	37.51	10.01	12B
15.41	4.21	7.31	9.51	0.91	51.21	11.61	59.31	13.71	AICC20091
22.31	3.91	7.61	23.51	0.51	22.11	20.21	30.21	27.41	S44
14.41	2.31	15.01	10.41	0.71	43.01	5.51	59.41	20.71	U10
22.11	7.01	3.11	12.71	1.01	14.91	30.31	19.01	20.51	59A
10.11	2.31	6.91	9.11	0.01	52.21	10.61	59.91	11.41	U37-2
15.01	3.91	0.01	11.61	1.21	53.31	5.51	63.31	15.51	SS0W
23.71	3.01	6.31	6.91	0.61	43.01	15.61	50.01	10.71	AICC20091
10.01	0.01	0.01	0.01	0.01	0.01	90.01	0.01	0.01	UX
16.61	6.31	11.91	13.31	1.71	43.01	7.31	56.61	19.51	LW9
17.31	2.31	0.41	11.41	0.71	53.61	6.51	62.61	13.61	C32-2
23.01	1.21	6.41	2.51	1.91	34.41	29.81	42.61	3.71	5A-1
17.11	5.21	11.11	7.61	2.21	27.21	29.61	40.41	12.91	BG1
25.41	2.21	9.61	7.01	1.11	46.01	0.01	56.71	9.11	U3
16.91	12.01	6.61	16.21	0.41	25.11	22.81	32.11	20.21	SSB
20.31	2.61	0.61	2.01	2.51	32.41	25.51	43.51	4.61	10A
19.41	0.31	9.01	0.01	0.31	30.41	31.71	40.61	0.31	32D
16.01	16.71	0.61	10.41	0.01	22.51	17.71	31.11	35.11	SSB
10.61	7.71	11.41	3.61	4.31	31.71	22.71	47.41	11.21	SX2
17.01	4.41	16.21	6.41	3.71	33.61	17.81	53.51	10.91	SSB
16.01	2.71	13.01	20.51	1.41	32.31	5.51	54.41	23.31	S49
20.01	8.01	0.91	6.41	1.71	33.91	20.31	44.51	14.41	S3
14.01	0.31	3.71	3.91	0.01	69.91	7.41	73.61	4.21	3A-1
20.11	5.21	12.71	3.21	0.91	20.91	29.01	34.51	8.41	15A
20.91	0.71	0.51	1.01	0.01	35.01	33.01	44.31	1.71	9A-1
15.71	10.21	0.01	13.41	1.51	23.91	26.31	34.31	23.71	S1D
16.21	11.21	7.01	16.41	1.51	20.41	26.51	29.71	27.61	8A-1
20.51	5.51	8.61	4.81	2.71	20.71	29.21	40.01	10.31	13A-1
16.11	13.61	11.11	16.01	0.01	20.41	14.01	39.41	29.61	24D-2
16.91	7.31	16.41	6.11	0.01	40.01	12.41	57.21	13.41	24D-1
16.21	0.01	10.91	1.01	0.01	56.51	15.51	67.41	1.01	3B
17.01	0.01	5.01	2.31	0.01	73.41	2.31	70.31	2.31	SS0S
20.01	4.51	5.81	3.01	1.01	22.71	41.31	29.51	0.41	16B
19.01	14.01	0.31	10.91	0.71	23.91	15.21	32.91	32.91	6A-1
10.01	0.31	10.11	0.01	0.01	40.91	22.71	59.01	0.31	33B

PER CENT OF TOTAL FAULT ACTIVITIES										Total	Total	Strain
C16:0	C18:4w6	C20:5w3	C22:3w6	C22:5w3	C22:6w3	Other FA	Omega 1	Omega 2	Omega 6			
16.71	5.51	14.01	8.51	1.71	31.01	21.01	48.31	13.91	0.11	0.40		
15.01	1.01	11.71	2.11	0.91	62.31	6.91	74.91	3.11	20A			
17.01	10.51	0.11	20.51	0.01	22.11	12.91	30.21	39.01	43B			
16.91	0.01	3.41	2.71	0.01	61.21	15.01	64.61	2.71	1A-1			
15.61	2.71	11.41	10.91	0.81	53.71	4.91	65.91	13.61	041-2			
16.51	0.71	3.91	3.91	0.01	68.41	6.71	72.21	4.61	56B			
14.41	0.91	10.91	2.51	1.01	66.41	3.01	78.31	3.41	46A			
17.61	0.01	2.41	3.31	0.01	66.31	10.41	68.71	3.31	15A-1			
25.01	0.01	3.31	0.01	1.41	53.21	17.11	57.91	0.01	13A			
16.11	10.41	9.01	10.61	0.01	32.31	15.31	41.61	27.01	37B			
16.51	9.11	13.21	6.71	0.01	38.91	15.61	52.11	15.91	43B			
16.11	12.41	12.01	15.71	0.01	30.51	12.51	43.31	20.11	17B			
13.01	0.01	11.51	2.01	0.01	67.01	4.11	78.61	3.61	27A			
17.51	18.61	9.01	19.51	0.01	21.71	13.71	30.71	30.11	46B			
21.41	1.41	18.91	0.01	5.01	43.51	9.91	67.31	1.41	AICC20090			
17.71	0.01	0.61	4.41	0.01	60.21	9.11	60.01	4.41	5A			
17.61	16.01	9.61	10.81	0.01	25.61	12.41	35.21	34.01	28B-2			
14.01	0.91	13.21	1.61	0.01	64.71	5.51	77.91	2.61	27B			
19.51	2.91	16.61	1.11	1.61	30.21	20.11	40.51	4.01	42B			
17.21	0.71	6.81	2.71	0.01	63.01	9.61	69.01	3.41	10B			
14.41	3.51	13.51	26.01	1.01	37.21	4.41	51.61	29.51	54B-2			
16.11	2.21	15.71	21.61	0.01	36.71	7.01	52.41	23.71	20B			
17.31	4.71	14.31	7.21	2.91	30.21	23.51	47.31	11.91	0B			
11.51	3.31	11.31	6.51	1.11	59.91	6.51	72.21	9.01	13B			
16.61	0.71	10.71	1.61	0.01	59.71	10.01	70.41	2.21	26A			
16.11	3.31	13.51	23.01	0.01	30.71	4.71	52.21	27.11	54B			
15.61	0.61	12.11	0.01	0.01	60.21	11.51	72.31	0.61	35B			
19.51	0.01	1.81	3.41	0.01	66.61	9.11	60.01	3.41	42A			
18.91	3.51	12.71	25.01	0.01	35.01	5.01	47.61	20.51	40A			
25.21	3.31	9.31	21.01	0.01	30.31	10.11	39.61	25.11	S50C			
17.61	11.11	13.21	14.11	1.31	20.71	14.01	43.21	25.21	59A			
19.91	0.01	5.51	1.91	0.01	66.01	6.01	72.31	1.91	SUG9			
15.41	3.11	13.21	26.11	0.01	35.01	6.51	49.11	29.11	21B			
10.91	0.71	11.61	0.01	0.01	59.11	9.71	70.71	0.71	2B			
14.11	1.11	12.41	2.01	0.01	65.21	5.21	77.61	3.11	10			
22.21	16.21	6.31	17.71	0.01	10.11	19.51	24.41	33.81	55B			
16.01	1.01	4.51	0.01	0.01	69.51	9.01	74.01	1.01	3A			
17.01	4.31	12.41	29.01	0.01	34.01	2.51	46.41	34.11	9B			
15.41	4.31	8.71	13.21	0.01	53.21	5.11	62.01	17.51	U24			
14.21	3.11	12.01	20.01	1.11	35.21	14.31	48.31	23.21	U20			
16.01	14.61	10.11	16.01	0.61	27.71	14.01	38.51	30.71	200-1			
23.21	1.91	8.31	1.11	2.31	22.71	40.41	33.31	3.01	44B			
24.61	15.01	8.71	16.01	0.01	15.31	19.61	24.01	31.01	S4B			
15.51	0.01	1.31	2.91	0.01	72.71	7.61	74.01	2.91	S5A			
10.41	1.01	5.01	3.01	0.01	66.21	6.41	71.31	3.91	42A			
10.61	15.31	9.41	10.01	0.01	27.31	11.41	36.71	33.31	S1A			
23.51	13.11	7.31	17.91	0.01	26.71	11.41	34.01	31.01	14A-1			
13.31	1.11	14.51	0.91	0.01	64.61	5.61	79.11	2.01	25B			
22.91	2.41	10.31	21.51	0.01	26.51	16.41	36.91	23.91	41A			
16.01	1.01	9.71	2.71	0.01	58.31	11.51	68.01	3.71	24A			
0.41	0.51	14.11	10.21	2.11	27.61	37.01	43.01	10.01	G1A			

PER CENT OF TOTAL FATTY ACIDS								Total Omega3	Total Omega6	Strain
C16:0	C20:4wG	C20:5w3	C22:5w6	C22:5w3	C22:6w3	Other FA				
30.5%	0.0%	7.1%	0.0%	0.0%	0.6%	61.0%	7.7%	0.0%	0.0%	NRNG
10.2%	14.9%	0.0%	10.7%	0.0%	24.4%	15.5%	32.7%	33.6%	17A	
17.4%	2.0%	9.3%	2.0%	0.0%	55.7%	12.7%	65.0%	4.9%	60A	
14.1%	0.0%	13.0%	1.2%	0.0%	67.0%	3.1%	80.0%	2.0%	26B	
17.8%	5.0%	6.9%	15.0%	1.5%	47.4%	6.4%	55.0%	20.0%	AICC20000	
16.0%	0.0%	1.8%	2.0%	0.0%	70.0%	9.4%	72.6%	2.0%	2A	
24.6%	0.0%	4.0%	0.0%	0.0%	49.4%	22.0%	53.4%	0.0%	44A	
17.4%	-1.0%	0.0%	-2.9%	0.0%	55.3%	23.0%	55.3%	-4.6%	14A	
23.3%	1.3%	4.6%	0.0%	0.0%	12.6%	50.4%	17.3%	1.3%	41B	
19.3%	0.0%	1.1%	3.8%	0.0%	66.6%	9.1%	67.0%	3.0%	66A	
10.6%	15.6%	0.0%	17.1%	1.1%	24.6%	14.0%	33.9%	32.7%	11A	
19.0%	5.1%	10.1%	27.2%	0.0%	27.5%	10.6%	37.5%	32.3%	2X	
15.7%	2.4%	14.0%	25.7%	0.0%	36.7%	5.4%	50.0%	20.1%	33A	
14.6%	1.5%	13.5%	0.0%	0.0%	66.0%	4.3%	79.5%	1.5%	AICC20092	

PRIOR STRAINS

PER CENT OF TOTAL FATTY ACIDS								Total Omega3	Total Omega6	Strain
C16:0	C20:4wG	C20:5w3	C22:5w6	C22:5w3	C22:6w3	Other FA				
15.7%	3.9%	3.7%	0.1%	0.0%	55.1%	13.5%	50.0%	12.0%	AICC34J04	
20.2%	1.6%	6.9%	11.4%	0.0%	17.8%	34.1%	24.7%	12.9%	AICC244J3	
15.2%	2.9%	7.7%	9.8%	0.6%	54.6%	9.2%	62.9%	12.7%	AICC20211	
23.2%	10.7%	4.3%	12.6%	1.5%	20.6%	27.0%	26.4%	23.4%	AICC20209	
13.2%	6.3%	6.9%	4.3%	0.0%	60.1%	9.1%	67.0%	10.6%	AICC20210	

TABLE 3: COMPOSITION OF OMEGA 3 FATTY ACID FRACTION

EPA	DPA	DHA	Strain
C20:5n3	C22:5n3	C22:6n3	
44.01	1.11	54.91	21
4.61	0.91	94.51	AICC20002
19.31	0.71	80.01	U40-2
31.91	0.01	60.11	210
87.91	0.01	12.11	BRDG1
12.51	6.11	81.51	56A
17.01	3.71	79.31	11A-1
24.91	4.31	70.01	4A-1
24.41	8.41	67.21	17B
12.21	1.51	86.31	AICC20091
25.11	1.71	73.21	S44
25.21	1.11	73.71	U30
16.21	5.41	70.41	59A
11.51	1.41	87.11	U37-2
14.01	1.91	84.21	550W
12.71	1.31	86.01	AICC20091
---	---	---	UX
21.01	2.91	76.11	LW10
13.41	1.01	85.61	CJ2-2
15.01	4.31	80.71	5A-1
21.41	5.41	67.21	BRDG1
17.01	1.91	81.11	U3
20.51	1.31	70.21	55B
19.01	5.81	74.41	10A
20.11	0.71	79.21	32B
27.01	0.01	72.21	56B
24.11	9.11	66.91	SX2
30.31	6.91	62.01	53B
25.31	2.51	72.21	S49
19.91	3.01	76.31	S3
5.01	0.01	95.01	3A-1
36.91	2.61	60.51	15A
19.31	0.01	80.71	9A-1
25.81	4.41	69.81	51D
26.31	5.01	68.71	8A-1
21.61	6.71	71.71	13A-1
20.01	0.01	72.01	24B-2
20.71	0.01	71.31	24B-1
16.21	0.01	83.01	30
6.31	0.01	93.71	SNGS
19.71	3.31	77.01	16B
25.71	2.11	72.61	6A-1
17.11	0.01	82.91	33B
30.51	3.61	65.91	840
15.61	1.21	83.11	20A

LPA	DPA	WIA	Strain
C20:SwJ	C22:SwJ	C27:GwJ	
26.0I	0.0I	73.2I	43B
5.2I	0.0I	94.0I	1A-1
17.4I	1.2I	81.5I	U41-2
5.4I	0.0I	94.6I	56B
13.9I	1.0I	84.0I	46A
3.5I	0.0I	96.5I	15A-1
5.8I	2.4I	91.0I	13A
22.0I	0.0I	77.7I	37B
25.4I	0.0I	74.6I	43B
27.7I	1.9I	70.3I	17B
14.7I	0.0I	85.3I	27A
29.2I	0.0I	70.0I	46B
20.0I	7.5I	64.5I	AICC20090
0.9I	0.0I	99.1I	5A
27.3I	0.0I	72.7I	20B-2
16.9I	0.0I	83.1I	27B
34.0I	3.4I	62.3I	42B
9.7I	0.0I	90.3I	10B
26.1I	1.9I	71.9I	54B-2
29.9I	0.0I	70.1I	20B
30.1I	6.2I	63.7I	0B
15.6I	1.5I	82.9I	13B
15.2I	0.0I	84.0I	26A
25.9I	0.0I	74.1I	54Z
16.7I	0.0I	83.3I	35B
2.1I	0.0I	97.9I	42A
26.6I	0.0I	73.4I	40A
23.4I	0.0I	76.6I	550C
30.6I	2.9I	66.4I	59A
7.6I	0.0I	92.4I	50G9
27.0I	0.0I	73.0I	21B
16.4I	0.0I	83.6I	2B
15.9I	0.0I	84.1I	1B
25.9I	0.0I	74.1I	55B
6.0I	0.0I	94.0I	3A
26.7I	0.0I	73.3I	9B
14.1I	0.0I	85.9I	U24
24.9I	2.2I	72.9I	U20
26.4I	1.5I	72.1I	20B-1
24.8I	6.9I	60.3I	44B
30.4I	0.0I	63.6I	54B
1.0I	0.0I	98.2I	55A
7.1I	0.0I	92.9I	49A
25.6I	0.0I	74.4I	51A
21.5I	0.0I	70.5I	14A-1
10.4I	0.0I	81.6I	25B
20.1I	0.0I	71.9I	41A
14.3I	0.0I	85.7I	24A
32.3I	4.8I	63.0I	61A
91.6I	0.0I	0.4I	DRDG

EPA	UPA	DIA	Strain
C20:5w3	C22:5w3	C22:6w3	
25.51	0.01	74.31	17A
14.41	0.01	65.61	60A
16.11	0.01	63.91	26B
12.41	2.71	64.91	ATCC20000
2.51	0.01	97.51	2A
7.51	0.01	92.51	44A
0.01	0.01	100.01	14A
20.71	0.01	71.31	41B
1.71	0.01	90.31	66A
24.51	3.11	72.41	11A
26.01	0.01	71.21	2X
27.61	0.01	72.41	33A
17.01	0.01	83.01	ATCC20092

PRIOR STRAINS			
EPA	UPA	DIA	Strain
C20:5w3	C22:5w3	C22:6w3	
6.41	0.01	93.61	ATCC34304
27.91	0.01	72.11	ATCC24473
12.21	1.01	86.01	ATCC20211
16.41	5.61	70.11	ATCC20209
10.31	0.01	89.71	ATCC20210

Fig. 1 illustrates the set of strains, isolated by the method in Example 1, that have more than 67% omega-3 fatty acids (as % of total fatty acids) and less than 10.6% omega-6 fatty acids (as % of total fatty acids). All of the 5 previously known strains had less than 67% omega-3 fatty acids (as % of total fatty acids) and greater than 10.6% omega-6 (as % of total fatty acids).

Fig. 2 illustrates the set of strains, isolated by the method in Example 1, that have more than 67% omega-3 fatty acids (as % of total fatty acids) and greater than 7.5% C20:5n-3 (as % of total fatty acids). All of the previously 10 known strains had less than 67% omega-3 fatty acids (as % of total fatty acids) and less than 7.8% C20:5n-3 (as % of total fatty acids).

15

Example 5. Enhanced Growth Rates of Strains Isolated by Method in Example 1 Compared to ATCC Strains (Previously Known Strains)

Cells of *Schizochytrium* sp. S31 (ATCC No. 20888), 20 *Schizochytrium* sp. S8 (ATCC No. 20889), *Thraustochytrium* sp. S42, *Thraustochytrium* sp. U42-2, *Thraustochytrium* sp. S42 and U30, (all isolated by the method of Example 1) and *Thraustochytrium aureum* (ATCC #28211) and *Schizochytrium aggregatum* (ATCC #28209) (previously known strains) were 25 picked from solid F-1 medium and placed into 50ml of M-5 medium. The pH of the solution was adjusted to 7.0 and the solution was filter sterilized. After three days of growth on an orbital shaker (200 rpm, 27°C), 1-2ml of each culture was transferred to another flask of M-5 medium and placed

on the shaker for 2 days. The cultures (1-2ml) were then transferred to another flask of M-5 medium and placed on the shaker for 1 day. This process ensured that all cultures were in the exponential phase of growth. These later 5 cultures were then used to inoculate two 250ml flasks of M-5 medium for each strain. These flasks were than placed on shakers at 25°C and 30°C, and changes in their optical density were monitored on a Beckman DB-G spectrophotometer (660nm, 1cm path length). Optical density readings were 10 taken at the following times: 0, 6, 10, 14, 17.25, 20.25 and 22.75 hours. Exponential growth rates (doublings/day) were then calculated from the optical density data by the method of Sorokin (1973). The results are presented in Table 4 and illustrated (normalized to the growth of strain U30 at 25°C) 15 in Fig. 4. The data indicate that the strains isolated by the method in Example 1 have much higher growth rates than the previously known ATCC strains at both 25°C and 30°C, even under the optimized phosphate levels essential for continuous growth. Strains of Thraustochytriales isolated from cold 20 Antarctic waters have not been shown to grow at 30°C.

Table 4. Exponential Growth Rate (doublings/day)

Strain	25°C	30°C
S31* (ATCC No. 20888)	8.5	9.4
U40-2*	5.8	6.0
S8* (ATCC No. 20889)	7.1	8.8
S42*	6.6	8.3
U30*	5.5	7.3
28209**	4.6	5.0
28210**	3.5	4.5
28211**	4.2	5.7
34304**	2.7	3.7
24473**	4.6	5.3

* strain isolated by method in Example 1

** previously known ATCC strain

Example 6. Enhanced Production Characteristics (Growth and Lipid Induction) of Strains Isolated by Method in Example 1 Compared to ATCC Strains (Prior Art Strains)

Cells of *Schizochytrium* sp. S31 (ATCC No. 20888), *Schizochytrium* sp. S8 (ATCC No. 20889) (both isolated by the method of Example 1) and *Thraustochytrium aureum* (ATCC #28211) and *Schizochytrium aggregatum* (ATCC #28209) (prior art strains) were picked from solid F-1 medium and placed into 50ml of M-5 medium (see Example 3). The pH of the solution was adjusted to 7.0 and the solution was filter sterilized. After three days of growth on an orbital shaker (200 rpm, 27°C), 1-2ml of each culture was transferred to another flask of M-5 medium and placed on the shaker for 2

days. The ash-free dry weights for each of these cultures were then quickly determined and then 3.29mg of each culture was pipetted into two 250ml erlenmeyer flasks containing 50ml of M-5 medium. These flasks were placed on a rotary shaker 5 (200 rpm, 27°C). After 24 hours 20ml portions of each culture were then centrifuged, the supernatants discarded, and the cells transferred to 250ml erlenmeyer flasks containing 50 ml of M-5 medium without any glutamate (N-source). The flasks were placed back on the shaker, and 10 after another 12 hours they were sampled to determine ash-free dry weights and quantify fatty acid contents by the method of Lepage and Roy (1984). The results are illustrated (normalized to the yields of ATCC No. 28211, previously known strain) in Fig. 5. The results indicate that the strains 15 isolated by the method of Example 1 produced 2-3 times as much ash-free dry weight in the same period of time, under a combination of exponential growth and nitrogen limitation (for lipid induction) as the prior art ATCC strains. In addition, higher yields of total fatty acids and omega-3 20 fatty acids were obtained from strains of the present invention with strains S31 (ATCC No. 20888) producing 3-4 times as much omega-3 fatty acids as the prior art ATCC strains.

25 Example 7. Enhanced Lower Salinity Tolerance and Fatty Acid Production by Strains Isolated by Method in Example 1

Strains of 4 species of Thraustochytrids, *Schizochytrium* sp. S31 (ATCC No. 20888) and *Thraustochytrium* sp. U42-2 (ATCC No. 20891) (both isolated and screened by the method of

Example 1), and *S. aggregatum* (ATCC 28209) and *T. aureum* (ATCC 28210) (obtained from the American Type Culture Collection) were picked from solid F-1 medium and incubated for 3-4 days at 27°C on a rotary shaker (200 rpm). A range 5 of differing salinity medium was prepared by making the following dilutions of M medium salts (NaCl, 25g/l; MgSO₄·7H₂O, 5g/l; KC1, 1g/l; CaCl₂, 200mg/l: 1) 100% (w/v M medium salts; 2) 80% (v/v) M medium, 20% (v/v) distilled water; 3) 60% (v/v) M medium, 40% (v/v) distilled water; 4) 10 40% (v/v) M medium, 60% (v/v) distilled water; 5) 20% (v/v) M medium, 80% distilled water; 6) 15% (v/v) M medium, 85% (v/v) distilled water; 7) 10% (v/v) M medium, 90% (v/v) distilled water; 8) 7% (v/v) M medium, 93% (v/v) distilled water; 9) 3% (v/v) M medium, 97% (v/v) distilled water; 10) 15 1.5% (v/v) M medium, 98.5% (v/v) distilled water. The following nutrients were added to the treatments (per liter): glucose, 5g; glutamate, 5g; yeast ext., 1g; (NH₄)₂SO₄, 200 mg; NaHCO₃, 200 mg; PII metals, 5ml; A-vitamins solution, 1ml; and antibiotics solution, 2ml. Fifty ml of each of 20 these treatments were inoculated with 1ml of the cells growing in the F-1 medium. These cultures were placed on an orbital shaker (200 rpm) and maintained at 27°C for 48 hr. The cells were harvested by centrifugation and total fatty acids determined by gas chromatography. The results 25 are illustrated in Fig. 6. *Thraustochytrium* sp. U42-2 (ATCC No. 20891) isolated by the method of Example 1 can yield almost twice the amount of fatty acids produced by *T. aureum* (ATCC 28211) and over 8 times the amount of fatty acids

produced by *S. aggregatum* (ATCC 28209). Additionally, U42-2 appears to have a wider salinity tolerance at the upper end of the salinity range evaluated. *Schizochytrium* sp. S31 (ATCC No. 20888), also isolated by the method in Example 1, 5 exhibited both a high fatty acid yield (2.5 to 10 times that of the previously known ATCC strains) and a much wider range of salinity tolerance than the ATCC strains. Additionally, *Schizochytrium* sp. S31 (ATCC No. 20888) grows best at very low salinities. This property provides a strong economic 10 advantage when considering commercial production, both because of the corrosive effects of saline waters on metal reactors, and because of problems associated with the disposal of saline waters.

15 Example 8. Cultivation/Low Salinity

Fifty ml of M/10-5 culture media in a 250ml erlenmeyer flask was inoculated with a colony of *Schizochytrium* sp. S31 (ATCC No. 20888) picked from an agar slant. The M/10-5 media contains: 1000ml deionized water, 2.5g NaCl, 0.5g MgSO₄·7H₂O, 20 0.1g KCl, 0.02g CaCl₂, 1.0g KH₂PO₄, 1.0g yeast extract, 5.0g glucose, 5.0g glutamic acids, 0.2g NaHCO₃, 5ml PII trace metals, 2ml vitamin mix, and 2ml antibiotic mix. The culture was incubated at 30°C on a rotary shaker (200 rpm). After 25 2 days the culture was at a moderate density and actively growing. 20ml of this actively growing culture was used to inoculate a 2 liter fermenter containing 1700ml of the same culture media except the concentration of the glucose and glutamate had been increased to 40g/l (M/10-40 media). The

fermenter was maintained at 30°C, with aeration at 1 vol/vol/min, and mixing at 300 rpm. After 48 hr, the concentration of cells in the fermenter was 21.7g/l. The cells were harvested by centrifugation, lyophilized, and 5 stored under N₂.

The total fatty acid content and omega-3 fatty acid content was determined by gas chromatography. The total fatty acid content of the final product was 39.0% ash-free dry weight. The omega-3 HUFA content (C20:5n-3, C22:5n-3 10 and C22:6n-3) of the microbial product was 25.6% of the total fatty acid content. The ash content of the sample was 7.0%.

Example 9. Diversity of Fatty Acid Content

Growth and gas chromatographic analysis of fatty acid production by various strains as described in Example 4 revealed differences in fatty acid diversity. Strains of the present invention synthesized fewer different fatty acids than previously available strains. Lower diversity of fatty acids is advantageous in fatty acid purification since there 20 are fewer impurities to be separated. For food supplement purposes, fewer different fatty acids is advantageous because the likelihood of ingesting unwanted fatty acids is reduced. Table 5 shows the number of different HUFAs present, at concentrations greater than 1% by weight of total fatty acids 25 for previously known strains, designated by ATCC number and various strains of the present invention.

Table 5.

	No. of Different Fatty Acids at 1% or Greater % of Total Fatty Acids
5 Strain	
34304**	8
10 28211**	8
24473**	10
28209**	13
15 28210**	8
S31*	5
20 S8*	6
79B*	6

25 * strain isolated by the method in Example 1

** previously known ATCC strain

30 Example 10. Recovery

Fifty ml of M5 culture media in a 250 ml erlenmeyer flask was inoculated with a colony of *Schizochytrium* sp. S31 (ATCC No. 20888) picked from an agar slant. The culture was incubated at 30°C on a rotary shaker (200 rpm). After 2 days the culture was at a moderate density and actively growing. 20ml of this actively growing culture was used to inoculate a 1 liter fermenter containing 1000ml of the same culture media except the concentration of the glucose and glutamate had been increased to 40g/l (M20 media). The fermenter was maintained at 30°C and pH 7.4, with aeration at 1 vol/min, and mixing at 400 rpm. After 48 hr, the concentration of the cells in the fermenter was 18.5g/l. Aeration and mixing in the fermenter was turned off. Within 2-4 minutes, the

cells flocculated and settled in the bottom 250 ml of the fermenter. This concentrated zone of cells had a cell concentration of 72g/l. This zone of cells can be siphoned from the fermenter, and: (1) transferred to another reactor
5 for a period of nitrogen limitation (e.g., combining the highly concentrated production of several fermenters); or (2) harvested directly by centrifugation or filtration. By preconcentrating the cells in this manner, 60-80% less water has to be processed to recover the cells.

10

Example 11. Utilization of a Variety of Carbon and Nitrogen Sources

Fifty ml of M5 culture media in a 250ml erlenmeyer flask was inoculated with a colony of *Schizochytrium* sp. S31 (ATCC No. 20888) or *Thraustochytrium* sp. U42-2 (ATCC No. 20891)
15 picked from an agar slant. The M5 media was described in Example 3 except for the addition of 2ml vitamin mix, and 2ml antibiotic mix. The culture was incubated at 30°C on a rotary shaker (200 rpm). After 2 days the culture was at
20 a moderate density and actively growing. This culture was used to inoculate flasks of M5 media with one of the following substituted for the glucose (at 5g/l): dextrin,
sorbitol, fructose, lactose, maltose, sucrose, corn starch,
wheat starch, potato starch, ground corn; or one of the
25 following substituted for the glutamate (at 5g/l): gelysate,
peptone, tryptone, casein, corn steep liquor, urea, nitrate,
ammonium, whey, or corn gluten meal. The cultures were incubated for 48 hours on a rotary shaker (200 rpm, 27°C).

The relative culture densities, representing growth on the different organic substrates, are illustrated in Tables 6-7.

Table 6. Utilization of Nitrogen Sources

N-Source	Strains	
	<i>Thraustochytrium</i> sp. U42-2 ATCC No. 20891	<i>Schizochytrium</i> sp. S31 ATCC No. 20888
	+++	+++
glutamate	+++	+++
glycinate	+++	+++
peptone	++	++
tryptone	++	++
casein	++	++
corn steep liquor	+++	+++
urea	+	++
nitrate	++	+++
ammonium	+	+++
whey	+++	+++
corn gluten meal	+++	+++

+++ = high growth
++ = medium growth
+ = low growth
0 = no growth

Table 7. Utilization of Organic Carbon Sources

C-Source		Strains
5	<i>Thraustochytrium</i> sp. U42-2 ATCC No. 20891	<i>Schizochytrium</i> sp. S31 ATCC No. 20888
10	glucose	+++
	dextrin	+++
	sorbitol	+
15	fructose	+
	lactose	+
20	maltose	+++
	sucrose	+
	corn starch	+++
25	wheat starch	+++
	potato starch	+++
30	ground corn	++0

+++ = high growth
 ++ = medium growth
 + = low growth
 0 = no growth

Example 12. Feeding of Thraustochytrid-Based Feed Supplement to Brine Shrimp to Increase Their Omega-3 HUFA Content

Cellular biomass of *Thraustochytrium* sp. 12B (ATCC 20890) was produced in shake flasks in M-5 medium (see Example 3) at 25°C. Cellular biomass of *Thraustochytrium* sp. S31 (ATCC 20888) was produced in shake flasks in M/10-5 medium (see Example 8), at 27°C. The cells of each strain were harvested by centrifugation. The pellet was washed once with distilled water and recentrifuged to produce a 50% solids paste. The resulting paste was resuspended in sea

water and then added to an adult brine shrimp culture as a feed supplement. The brine shrimp had previously been reared on agricultural waste products and as a result their omega-3 HUFA content was very low, only 1.3 - 2.3% of total fatty acids (wild-caught brine shrimp have an average omega-3 HUFA content of 6 - 8% total fatty acids). The brine shrimp (2 - 3/mL) were held in a 1 liter beaker filled with sea water and an airstone was utilized to aerate and mix the culture. After addition of the feed supplement, samples of the brine shrimp were periodically harvested, washed, and their fatty acid content determined by gas chromatography. The results are illustrated in Figs. 7 and 8. When fed the thraustochytrid-based feed supplement as a finishing feed, the omega-3 content of the brine shrimp can be raised to that of wild-type brine shrimp within 5 hours if fed strain 12B or within 11 hours when fed strain S31. The omega-3 HUFA content of the brine shrimp can be greatly enhanced over that of the wild type if fed these feed supplements for up to 24 hours. Additionally, these feed supplements greatly increase the DHA content of the brine shrimp, which is generally only reported in trace levels in wild-caught brine shrimp.

Example 13. Use of Sodium Sulfate in Culture Medium

This example illustrates that omega-3 production and total fatty acid content is not harmed and can be the same or better when using sodium sulfate instead of sodium chloride as the sodium salt in a fermentation medium.

Schizochytrium ATCC No. 20888 was grown in medium, pH 7.0, containing 2.36 grams of sodium per liter of medium, 1.5-3.0 grams of a nitrogen source per liter of medium, and 3.0 grams of glucose per liter of medium. The cells were 5 incubated at 28°C, at 200 rotations per minute, for 48 hours. The results are shown in Table 8.

Table 8. Effect of Sodium Sulfate Compared With Sodium Chloride on Fatty Acid Content

A) Na salt = sodium chloride; N source = sodium glutamate

	N source (g/L)	omega-3 (% dwt)	total fatty acid (% dwt)	biomass yield (g/L)
	3.0	6.0	11.2	1.74
	2.5	5.8	10.8	1.71
20	2.0	5.8	11.0	1.65
	1.5	7.5	20.3	1.39

B) Na salt = sodium chloride; N source = peptone

	N source (g/L)	omega-3 (% dwt)	total fatty acid (% dwt)	biomass yield (g/L)
30	3.0	7.9	21.9	1.34
	2.5	9.4	27.4	1.21
	2.0	6.7	28.9	1.18
	1.5	11.1	42.1	1.16

C) Na salt = sodium sulfate; N source = sodium glutamate

	N source (g/L)	omega-3 (% dwt)	total fatty acid (% dwt)	biomass yield (g/L)
45	3.0	9.3	31.9	1.34
	2.5	10.1	38.6	1.35
	2.0	10.1	41.4	1.30
	1.5	9.5	43.6	1.26

As seen in Table 8, omega-3 and total fatty acid production when using sodium sulfate is comparable to or better than when using sodium chloride as a sodium salt.

5 Example 14. Production of *Schizochytrium* in Low Salinity Culture Medium

This Example illustrates the fermentation of *Schizochytrium* in a low salinity culture medium while maintaining high biomass yields and high omega-3 and fatty acid production.
10

Schizochytrium ATCC No. 20888 was grown in medium, containing 3.33g/l of peptone as a nitrogen source, 5.0g/l of glucose as a carbon source, with varying sodium concentrations. The cells were fermented at 30°C with an inoculum of about 40mg/L dwt for a period of 48 hours. The sodium was supplied as sodium chloride. The results of this run are shown in Table 9.
15

20 Table 9. Production of *Schizochytrium* in Low Salinity Culture Medium

	Na conc. g/L	Cl conc. g/L	Biomass Yield g/L	Fatty acids % dwt	omega-3 % dwt	final glucose g/L
25	4.88	7.12	1.76±0.60	35.4±1.0	10.2±0.6	0.00
	3.90	5.70	1.72±0.67	37.0±0.7	11.1±0.3	0.15
30	2.93	4.27	1.70±0.42	43.0±0.2	12.1±0.1	0.22
	1.95	2.85	1.66±0.57	29.8±0.7	9.3±0.1	1.55
	0.98	1.42	0.40±0.61	10.6±2.4	4.0±1.0	4.31

As can be seen from the results in Table 9, high biomass yields and production of omega-3 fatty acids and total fatty acids can be achieved at sodium concentrations of greater than about 1.0 g/l.
35

Example 15. Cultivation of *Schizochytrium* in Medium with Low Chloride Content

This Example illustrates the fermentation of microflora of the present invention at minimal chloride concentrations 5 while achieving high biomass yields based on starting sugar concentration.

Schizochytrium ATCC No. 20888 was cultured in shake flasks at 200 rpm and 28°C in 50ml aliquots of the following medium. 1000ml deionized water; 1.2g Mg SO₄.7H₂O; 0.067g 10 CaCO₃; 3.0g glucose; 3.0g monosodium glutamate; 0.2g KH₂PO₄; 0.4g yeast extract; 5.0ml PII metals, 1.0 vitamin mix; and 0.1g each of penicillin-G and streptomycin sulfate.. The chloride concentration was varied by adding differing amounts of KCl to each treatment. The potassium concentration in 15 all of the treatments was held constant by additions of potassium citrate. Sodium concentration was either 2.37g/l or 4.0 g/l through addition of sodium sulfate. The results of these fermentations are shown below in Table 10.

20 Table 10. Fermentation of *Schizochytrium* at Minimal Chloride Concentrations

Chloride conc. (mg/L)	Na 2.37 g/L		Na 4.0 g/L	
	Biomass Yield (mg/L)		Biomass Yield (mg/L)	
0.1	198 ± 21		158 ± 48	
7.1	545 ± 120		394 ± 151	
15.1	975 ± 21		758 ± 163	
30.1	1140 ± 99		930 ± 64	
59.1	1713 ± 18		1650 ± 14	
119.1	1863 ± 53		1663 ± 46	
238.1	1913 ± 11		1643 ± 39	

35

As can be seen from the results shown in Table 10, high yields of biomass per sugar can be achieved at low chloride concentrations. For example, at a chloride concentration of greater than 59.1mg/L, yields of greater than 50% are
5 achieved.

Example 16. Variation of Sodium Sulfate Concentration at Low Chloride Concentrations

This Example illustrates the effect of varying sodium
10 sulfate concentration in a fermentation at low chloride concentration.

Schizochytrium ATC 20888 was cultured in shake flasks at 200 rpm and 28°C in 50 ml aliquots of the following medium: 1000ml deionized water; 1.2g MgSO₄.7H₂O; 0.125g KCl; 15 0.067g CaCO₃; 3.0g glucose; 3.0g monosodium glutamate; 0.2g KH₂PO₄; 0.4g yeast extract; 5.0ml PII metals; 1.0ml vitamin mix; and 0.1g each of penicillin-G and streptomycin sulfate. The sodium sulfate concentration was varied in the treatments from 3.0g/l to 30.2g/l. The results of the fermentation runs
20 are shown below in Table 11.

Table 11. Variation of Sodium Sulfate Concentration at Low Chloride Content

25	Sodium Sulfate (g/l)	Biomass yield (g/l)
30	3.0	0.78
	6.0	1.13
	9.1	1.72
	12.1	1.88
	15.1	1.89
	22.7	1.91
35	30.2	1.63

The results shown in Table 11, illustrate that at a low chloride concentration of about 59g/l, high biomass yields from glucose of greater than 50% can be obtained by selection of an appropriate sodium sulfate concentration.