Reproduced analysis of FARS data

Kate Huebner, Maggie Weinroth, Colleen Brents
10/27/2017

```
knitr::opts_chunk$set(echo = TRUE, message = FALSE,
                      warning = FALSE, error = FALSE)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggthemes)
load("../data/clean_fars.RData")
source("../R/fars_functions.R")
dim(clean_fars)
## [1] 156413
length(unique(clean_fars$unique_id))
## [1] 25593
summary(clean_fars)
                                            year
##
    unique_id
                           sex
                                                               agecat
                       Male :121072
  Length: 156413
                                              :1999
                                                      < 25 years :39149
##
                                       Min.
  Class : character
                      Female: 35335
                                       1st Qu.:2002
                                                      25--44 years:61235
  Mode : character
                                                      45--64 years:39870
##
                       NA's :
                                       Median:2004
##
                                       Mean
                                              :2004
                                                      65 years + :16108
                                       3rd Qu.:2007
##
                                                      NA's
##
                                       Max.
                                              :2010
##
          drug_type
                        positive_for_drug
## Alcohol
                       Mode :logical
               :25593
## Cannabinoid:26260
                        FALSE: 127597
## Depressant :25988
                        TRUE: 16894
## Narcotic
               :26086
                        NA's :11922
               :26179
## Other
   Stimulant :26307
clean_fars %>%
mutate(year_cat = cut(year, breaks = c(1999, 2002, 2006, 2010),
labels = c("1999-2002", "2003-2006", "2007-2010"),
include.lowest = TRUE, right = TRUE)) %>% filter(!is.na(sex)) %>%
group_by(drug_type, sex, year_cat) %>% summarize(n_non_missing = sum(!is.na(positive_for_drug)),
positive_test = sum(positive_for_drug, na.rm = TRUE),
perc_positive = round(100 * positive_test / n_non_missing, 1)) %% select(drug_type, sex, year_cat, per
unite(sex_year_cat, sex, year_cat) %>%
spread(sex_year_cat, perc_positive) %>%
knitr::kable(col.names = c("Drug type", "F 1999-2002", "F 2003-2006", "F 2007-2010", "M 1999-2002", "M
                             "M 2007-2010"))
```

F 2007-2010

27.1

M 1999-2002

43.2

M 2003-2006

42.9

M 2007-2010

43.3

Drug type

Alcohol

F 1999-2002

26.4

F 2003-2006

24.3

Drug type	F 1999-2002	F 2003-2006	F 2007-2010	M 1999-2002	M 2003-2006	M 2007-2010
Cannabinoid	2.8	5.7	7.3	5.8	10.3	11.8
Depressant	3.4	3.8	4.8	2.0	2.5	3.2
Narcotic	4.2	4.9	7.0	2.2	3.4	4.0
Other	5.6	6.6	7.2	4.3	4.5	4.2
Stimulant	7.2	9.1	8.7	10.5	11.9	9.2

Figure 1: Prevalence of nonalcohol drugs in fatally injured drivers by year and age group

```
nonalcohol_data <- clean_fars %>%
filter(!drug_type == "Alcohol") %>%
select(unique_id, drug_type, year, agecat, positive_for_drug) %>%
filter(!is.na(positive_for_drug)) %>%
filter(!is.na(agecat)) %>%
group_by(year, agecat, unique_id) %>%
summarize(positive_for_drug = any(positive_for_drug)) %>%
ungroup() %>%
group by(year, agecat) %>%
summarize(count = 100*(mean(positive_for_drug)))
nonalcohol_data
## # A tibble: 48 x 3
## # Groups: year [?]
##
      year
                 agecat
                            count
##
                 <fctr>
                            <dbl>
     <int>
## 1 1999 < 25 years 15.618221
## 2 1999 25--44 years 21.592443
## 3 1999 45--64 years 13.725490
## 4 1999 65 years + 7.425743
## 5 2000 < 25 years 23.908046
## 6 2000 25--44 years 24.258760
## 7 2000 45--64 years 19.585253
## 8 2000
             65 years + 9.183673
## 9 2001
             < 25 years 20.612245
## 10 2001 25--44 years 27.706186
## # ... with 38 more rows
plot_1 <- nonalcohol_data %>%
ggplot(aes(x = year, y = count, shape = agecat)) +
geom_line(linetype=1) +
geom_point(aes(shape=agecat), size=2, col="black") +
scale_shape(solid=TRUE) +
labs(x = "Year", y = "Positive for Nonalcohol Drugs, %)", shape = "Age") +
\#scale y continuous(limits = c(0,40), breaks = 10, name = "") +
theme few()
plot_1
```


Figure 2: Prevalence of nonalcohol drugs in fatally injured drivers by year and age group

```
data2 <- clean_fars %>%
filter(!drug_type == "Alcohol") %>%
select(unique_id, drug_type, year, agecat, positive_for_drug) %>%
filter(!is.na(positive_for_drug)) %>%
filter(!is.na(agecat)) %>%
group_by(year, drug_type, unique_id) %>%
summarize(positive_for_drug = any(positive_for_drug)) %>%
ungroup() %>%
group_by(year, drug_type) %>%
summarize(count = 100*(mean(positive_for_drug)))
```

```
## # A tibble: 48 x 3
  # Groups:
               year [?]
                  agecat
##
       year
                             count
                  <fctr>
                             <dbl>
##
      <int>
              < 25 years 15.618221
   1 1999
##
      1999 25--44 years 21.592443
##
       1999 45--64 years 13.725490
##
##
   4
     1999
              65 years + 7.425743
##
   5 2000
              < 25 years 23.908046
##
     2000 25--44 years 24.258760
##
       2000 45--64 years 19.585253
##
   8
      2000
              65 years + 9.183673
       2001
              < 25 years 20.612245
       2001 25--44 years 27.706186
## 10
## # ... with 38 more rows
```

```
plot_2 <- data2 %>%
ggplot(aes(x = year, y = count, shape = drug_type)) +
geom_line(linetype=1) +
geom_point(aes(shape= drug_type), size=2, col="black") +
scale_shape(solid=TRUE) +
labs(x = "Year", y = "Positive for Drugs, %)", shape = "Drug type") +
#scale_y_continuous(limits = c(0,40), breaks = 10, name = "") +
theme_few()
plot_2
```


Figure 3: Prevalence of cannabinoid drugs in fatally injured drivers by year and age group

```
plot data <- clean fars %>%
filter(drug_type == "Cannabinoid") %>%
select(unique_id, drug_type, year, agecat, positive_for_drug) %>%
filter(!is.na(positive_for_drug)) %>%
filter(!is.na(agecat)) %>%
group_by(year, agecat, unique_id) %>%
summarize(positive_for_drug = any(positive_for_drug)) %>%
ungroup() %>%
group_by(year, agecat) %>%
summarize(count = 100*(mean(positive_for_drug)))
plot_data
## # A tibble: 48 x 3
## # Groups:
               year [?]
##
       year
                  agecat
                              count
```

<int>

##

<fctr>

1 1999 < 25 years 8.2429501

<dbl>

```
##
   2 1999 25--44 years 3.9136302
##
   3 1999 45--64 years 1.6806723
             65 years + 0.0000000
##
   4 1999
   5 2000
             < 25 years 11.7241379
##
##
      2000 25--44 years 5.9299191
   7
      2000 45--64 years 2.0737327
##
   8 2000
             65 years +
                         0.5102041
##
             < 25 years
   9 2001
##
                         9.7959184
## 10 2001 25--44 years 6.4432990
## # ... with 38 more rows
plot_3 <- plot_data %>%
ggplot(aes(x = year, y = count, shape = agecat)) +
geom line(linetype=1) +
geom_point(aes(shape=agecat), size=2, col="black") +
scale_shape(solid=TRUE) +
labs(x = "Year", y = "Positive for Cannabiniod, %)", shape = "Age") +
\#scale\_y\_continuous(limits = c(0,40), breaks = 10, name = "") +
theme_few()
plot_3
```


Figure 4: Prevalence of drugs in fatally injured drivers for 1999 and 2010 by drug type

```
#first function table
table1 <- clean_fars %>%
    filter(year %in% c(1999, 2010)) %>%
group_by(drug_type, year) %>%
    summarize(n_non_missing = sum(!is.na(positive_for_drug)),
positive_test = sum(positive_for_drug, na.rm = TRUE),
percent = perc_cis(x = positive_test, n = n_non_missing)) %>%
    select(drug_type, year, percent) %>%
```

```
#unite(year, percent) %>%
spread(key = year, value = percent) %>%
knitr::kable(col.names = c("Drug type", "1999", "2010"))
table1
```

Drug type	1999	2010
Drug type		
Alcohol	$38.7\% \ (37.8\%, 39.5\%)$	39.1% (38.1%, 40%)
Cannabinoid	$4.1\% \ (4\%, \ 4.1\%)$	$11.8\% \ (11.6\%, 12\%)$
Depressant	$2.1\% \ (2.1\%, \ 2.1\%)$	$4.9\% \ (4.8\%, \ 4.9\%)$
Narcotic	$1.8\% \ (1.8\%, \ 1.9\%)$	$5.1\% \ (5.1\%, 5.2\%)$
Other	$3.7\% \ (3.7\%, \ 3.8\%)$	$5.2\% \ (5.1\%, \ 5.2\%)$
Stimulant	8.1%~(8%,8.2%)	$8.6\% \ (8.4\%, 8.7\%)$

Statistics for testing for trend in prevalence of drugs over study years by drug type using Cochran-Armitage trend test

drug	Z	p.value
Alcohol	1.21	0.23
Nonalcohol	11.06	0.00
Narcotic	6.66	0.00
Depressant	4.72	0.00
Stimulant	0.52	0.60
Cannabinoid	13.59	0.00
Other	1.41	0.16

Statistics for testing for trend in prevalence of drugs over study years by drug type using Wald test of logistic regression coeffcient for "year"

drug	z value	$\Pr(> z)$
Alcohol	1.21	0.23
Nonalcohol	11.03	0.00

drug	z value	$\Pr(> z)$
Narcotic	6.63	0.00
Depressant	4.70	0.00
Stimulant	-0.52	0.60
Cannabinoid	13.47	0.00
Other	1.41	0.16