

Lightweight Wavelet-based Transformer for Image Super-resolution

Jinye Ran and Zili Zhang*

College of Computer and Information Science, Southwest University, Chongqing 400715, China

Introduction

Problem Definition

- Super-resolution (SR) aims to recover a highresolution (HR) image from a low-resolution (LR) image counterpart.
- Pursuing the SR quality of the model while ignoring the lightweight problem.

Main Challenge

- Generally, model scale and model quality are a trade-off issue.
- How to get a better SR quality on an acceptable model scale?

Introduction

Contribution

- A Lightweight Transformer Backbone (LTB) is designed to implicitly mine self-similarity information in images to ensure SR quality.
- The mapping from LR to HR is fitted on the wavelet domain, while the stability of the inverse wavelet transform is guaranteed by Wavelet Coefficient Enhancement Backbone (WCEB).
- Achieve competitive results on multiple publicly available benchmarks.

Overall Architecture

$$F_{0} = f_{1*1}(f_{3*3}(I_{LR}))$$

$$I^{W} = concat(SWT(F_{0}))$$

$$F_{L} = \phi^{5}(\psi(\phi^{8}(f_{group}(I^{W}))))$$

$$F_{A}, F_{H}, F_{V}, F_{D} = split(F_{L})$$

$$F^{W} = concat(\sigma_{A,H,V,D}(F_{A}, F_{H}, F_{V}, F_{D}))$$

$$F_{D} = ISWT(F^{W})$$

$$I_{SR} = f_{Deconv}(f_{3*3}(F_{d})) + f_{up}(I_{LR})$$

Lightweight Transformer Backbone

$$S_{m1} = f_{partitioning}(f_{reduction}(S_i))$$

$$S_{m2} = MHA(Norm(S_{m1})) + S_{m1}$$

$$S_o = f_{reverse}(MLP(Norm(S_{m2})) + S_{m2})$$

Similarity Matching Block

$$p_{i1c,j1c} = \arg\max_{p_{i2,j2}} \langle \frac{p_{i1,j1}}{\|p_{i1,j1}\|}, \frac{p_{i2,j2}}{\|p_{i2,j2}\|} \rangle$$

 $s.t. \quad |i1-i2|+|j1-j2| \neq 0$

- Wavelet Transform
 - Stationary wavelet transform
 - Inverse stationary wavelet transform
 - Advantages of wavelet transform

- Wavelet coefficient Enhancement Backbone
 - Different Asymmetric Block for different wavelet coefficients
 - Different wavelet coefficients' channel redundancy
 - Different wavelet coefficients' structure information

Evaluation

- Benchmark
 - Set5, Set14, BSD100, Urban100, Manga109
- Qualitative evaluation
 - PSNR/SSIM
 - ×2 ×3 ×4
- Quantitative evaluation
 - Subjective visual

VDSR

LapSRN

SRFBN-S

WTSR (Ours)

Table 1. Quantitative results of WTSR compared with other lightweight superresolution network, the best model performance is highlighted and the second performance is underlined.

Methods	Scales	cales Params	Set5	Set14	BSD100	Urban100	Manga109
Methods	ocates		PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
Bicubic		-	33.66/0.930	30.24/0.869	29.56/0.843	26.88/0.840	30.30/0.934
SRCNN[32]		8K	36.66/0.954	32.45/0.907	31.36/0.888	29.50/0.895	35.60/0.966
FSRCNN[6]		13K	37.00/0.956	32.63/0.909	31.53/0.892	29.88/0.902	36.67/0.971
VDSR[15]		666K	37.53/0.959	33.03/0.912	31.90/0.896	30.76/0.914	37.22/0.975
DWSR[8]		374K	37.43/0.957	33.07/0.911	31.80/0.894	31.46/0.916	-/-
LapSRN[19]	x2	813K	37.52/0.959	32.99/0.912	31.80/0.895	30.41/0.910	37.27/0.974
MemNet[31]		678K	37.78/0.960	33.28/0.914	32.08/0.898	31.31/0.920	37.72/0.974
CARN-M[2]		412K	37.53/0.958	33.26/0.914	31.92/0.896	31.23/0.919	-/-
SRFBN-S[20]		483K	37.78/0.960	33.35/0.916	32.00/0.897	31.41/0.921	38.06/0.976
WDRM S[23]		244	27.03/0.061	32 12/0-016	22.08/0.808	21.80/0.001	
WTSR		528K	37.95/0.961	33.51/0.915	32.09/0.893	31.91/0.928	38.42/0.976
вісцоїс	••		30.3970.808	21.55/0.174	21.21/0.739	24.46/0.735	26.95/0.856
SRCNN[32]		8K	32.75/0.909	29.30/0.822	28.41/0.786	26.24/0.799	30.48/0.912
FSRCNN[6]		13K	33.18/0.914	29.37/0.824	28.53/0.791	26.43/0.808	31.10/0.921
VDSR[15]		666K	33.66/0.921	29.77/0.831	28.82/0.798	27.14/0.828	32.01/0.934
DWSR[8]		374K	33.82/0.922	29.83/0.831	-/-	-/-	-/-
LapSRN[19]	x3	813K	33.81/0.922	29.79/0.833	28.82/0.798	27.07/0.828	32.21/0.935
MemNet[31]		678K	34.09/0.925	30.00/0.835	28.96/0.800	27.56/0.838	32.51/0.937
CARN-M[2]		412K	33.99/0.924	30.08/0.837	28.91/0.800	27.55/0.839	-/-
SRFBN-S[20]		483K	34.20/0.926	30.10/0.837	28.96/0.801	27.66/0.842	33.02/0.94
WDRM S[93]		36614	3448/0.025	30.14/0.237	-06-06/0-500	97-93/9-844	
WTSR		558K	34.27/0.925	30.12/0.836	28.98/0.802	27.69/0.841	33.11/0.941
Bicubic	• •		28.42/0.810	26.00/0.703	25.96/0.668	23.14/0.658	24.89/0.787
SRCNN[32]		8K	30.48/0.863	27.50/0.751	26.90/0.710	24.52/0.722	27.58/0.856
FSRCNN[6]		13K	30.72/0.866	27.61/0.755	26.98/0.715	24.62/0.728	27.90/0.861
VDSR[15]		666K	31.35/0.884	28.01/0.767	27.29/0.725	25.18/0.752	28.83/0.887
DWSR[8]		374K	31.39/0.883	28.04/0.767	27.25/0.724	25.26/0.755	-/-
LapSRN[19]	x4	813K	31.54/0.885	28.09/0.770	27.32/0.728	25.21/0.756	29.09/0.890
MemNet[31]		678K	31.74/0.889	28.26/0.772	27.40/0.728	25.50/0.763	29.42/0.894
CARN-M[2]		412K	31.92/0.890	28.42/0.776	27.44/0.730	25.62/0.769	-/-
SRFBN-S[20]		483K	31.98/0.892	28.45/0.778	27.44/0.731	25.71/0.772	29.91/0.901
WDR24 S[03]		- 466H4 -	82.62/0.660	20.17/0.774	-07-47/0-700	25.82/0.000	
WTSR		593K	32.16/0.895	28.57/0.781	27.56/0.735	26.03/0.784	30.44/0.908

Ablation

- Ablation on different Wavelet Transform
 - None
 - DWT
 - SWT
- Ablation on different LTB
 - Similarity Matching Block
 - Efficient Transformer Encoder's partitioning size
 - Efficient Transformer Encoder's order
- Ablation on WCEB
 - Different number of WECM
 - Different type of WECM

Table 2. Comparisons on PSNR/SSIM of WTSR with different wavelet transform. Best results are highlighted.

Wavelet Transform Parar		PSNR/SSIM						
Type	Params	Set5	Set14	BSD100	Urban100	Manga109		
None	593K	32.01/0.893	27.47/0.781	27.51/0.734	25.84/0.777	20.22/0.905		
DWT	593K	27.56/0.790	25.51/0.682	25.54/0.647	22.69/0.635	24.19/0.767		
SWT	593K	32.16/0.895	28.57/0.781	27.56/0.735	26.03/0.784	30.44/0.908		

Table 3. Comparisons on PSNR/SSIM of WTSR with different network of LTB. Best results are highlighted. The number after T indicates the partitioning size of ET encoder, S represents SMB, and the arrow denotes the direction of data flow.

The Network	Params	PSNR/SSIM							
of LTB		Set5	Set14	BSD100	Urban100	Manga109			
$T5 \rightarrow T5$	567K	31.92/0.892	27.43/0.779	27.46/0.734	25.78/0.777	30.06/0.904			
$T8 \rightarrow T8$	569K	31.96/0.892	28.46/0.779	27.48/0.733	25.79/0.776	30.09/0.904			
$T5 \rightarrow T8$	568K	31.97/0.893	28.44/0.779	27.48/0.733	25.79/0.776	30.04/0.903			
$T8 \rightarrow T5$	568K	32.00/0.893	28.47/0.779	27.50/0.733	25.87/0.778	30.11/0.904			
$T8 \rightarrow S \rightarrow T5$	593K	32.16/0.895	28.57/0.781	27.56/0.735	26.03/0.784	30.44/0.908			

Table 4. Study the effect of each WCEB on PSNR/SSIM, Best results are high-lighted.

WCEM To-	pe Params	PSNR / SSIM					
WCEM Type		Set5	Set14	BSD100	Urban100	Manga109	
None	416K	31.91 / 0.892	28.44 / 0.778	27.47 / 0.732	25.75 / 0.7735	29.92 / 0.901	
A	482K	32.01 / 0.893	28.42 / 0.779	27.48 / 0.734	25.80 / 0.7782	29.99 / 0.924	
A + H	519K	32.06 / 0.894	28.54 / 0.780	27.52 / 0.733	25.91 / 0.7791	30.27 / 0.905	
A + H + V	556K	32.10 / 0.894	28.54 / 0.781	27.54 / 0.735	25.97 / 0.7823	30.31 / 0.907	
A + H + V + D	593K	32.16/0.895	28.57/0.781	27.56/0.735	26.03/0.784	30.44/0.908	

Potential Limitations

- Processing images at arbitrary resolution
 - Before the wavelet-based transformer, there is a fill operation that fills the resolution of the image to an
 integer multiple of the partitioning size. Although this does not increase the number of parameters in the
 wavelet-based transformer, it slightly affects the runtime of the model.
- Hyperparametric sensitivity
 - According to the existing experimental data, WTSR is very sensitive to the hyperparameters of the model, which is not conducive to the rapid iteration of the project.

Conclusions

- A lightweight network called WTSR is proposed to extend the application scenarios of super-resolution algorithm.
- In the WTSR, many useful components include LTB, SMB and WCEB, have been proposed to balance the size and accuracy of the network.
- In the future, we will extend the proposed WTSR to specific mobile devices.