MaaS の形式化

野田五十樹

2020/06/26 | 利用申告とその価値の形式化

第1章 利用申告とその価値

1.1 利用申告モデル

利用申告 1 $s_{a}(d)$ を以下のように定義する。

利用申告
$$s_a(\mathbf{d})$$
 : 実デマンド \mathbf{d} を発生する確率 (1.1.1)

$$\vec{\tau}$$
 $\vec{\tau}$ $\vec{\tau}$

$$t$$
 : 利用時刻 $(1.1.4)$

$$n$$
 : 乗車人数 $(1.1.6)$

また、未申告者を含む利用者全員の利用申告の集合(申告集合)を以下のように定義する。

申告集合
$$\mathbf{S} = \{s_a | a \in \mathbf{A}\}$$
 (1.1.7)

$$S(D)$$
 : デマンド集合 D が発生する確率 (1.1.8)

$$D$$
: $\{d_a|a\in A\}$: 全員分のデマンド (1.1.9)

ただし、未申告は、情報量(曖昧さ)最大となる分布としておく。

運行計画 π は、運行台数の配分、配車アルゴリズムなどの組であるとする。

実デマンド D に対する運行の評価関数を u とする。

 $u(\pi|\mathbf{D})$: 運行計画 π でデマンド 集合 \mathbf{D} をさばいた時の評価。ベクトル or スカラ(1.1.10)

これに対して、申告集合 S に対する予測評価関数は、以下のように定義できる。

$$\hat{U}(\pi|\mathbf{S}) = \oint u(\pi|\mathbf{D})\mathbf{S}(\mathbf{D})d\mathbf{D}$$
 (1.1.11)

この予測評価関数に基づいて、最適運行計画を以下のように定義する。

$$\check{\pi}(\mathbf{S}) = \arg\max_{\pi} \hat{U}(\pi|\mathbf{S}) \tag{1.1.12}$$

ある利用者エージェント a 申告更新 $s_a \to s_a'$ とは、a の利用申告を、 s_a から s_a' に変更することとする。この申告更新を含んだ申告集合の変化は、以下のようになる。

$$S' = S - \{s_a\} + \{s_a'\} \tag{1.1.13}$$

¹statement

1.1. 利用申告モデル

これらに基づき、申告更新 $s_a \to s_a'$ の価値 v は、以下のように表す。

$$v(s_a \to s_a') = v(\mathbf{S} \to \mathbf{S}') \tag{1.1.14}$$

$$= \hat{U}(\check{\pi}'|\mathbf{S}') - \hat{U}(\check{\pi}|\mathbf{S}) \tag{1.1.15}$$

$$\check{\pi}' = \check{\pi}(\mathbf{S}') \tag{1.1.16}$$

$$\check{\pi} = \check{\pi}(\mathbf{S}) \tag{1.1.17}$$

関連図書