Problem Formulation

- An operator in charge of a network covering a highway has been receiving complains from its subscribers regarding "QoS".
- The company expects even more subscribers in the future and is consequently worried about the situation!
- So, the objective of this project is to simulate the network to determine if the system guarantees the QoS which is measured by:
 - blocked calls <2%
 - dropped calls <1%

- Facts: The Network
 - The company owns 20 base stations
 - Each base station covers a range of 2 km
 - There is no overlapping cells. Where the reach of one base station ends, the reach of the next base station starts
 - Each base station has 10 channels
 - A 40 km long (one-way) highway is covered by the base stations

- Facts: Dropped or Blocked Call
 - Handovers: When a subscriber making calls cross cell boundaries, the channel being used must be released and a new channel has to be acquired.
 - If a channel is not available in the new base station during handover the call is *dropped*.
 - If no channels exist in a base station when a new call is initialized that call is blocked.

- Input data
 - The company has provided the following measurements (traces):
 - Call initiation times and their first base stations
 - Call durations
 - Car speeds
 - (optional) Use input analysis methods to determine probability distributions for:
 - Call inter-arrival times
 - Call initiation base stations
 - Call durations
 - Car speeds

Read the following paper for simulation input analysis: http://www.informs-sim.org/wsc10papers/006.pdf

- Model Assumption
 - The highway is one-way
 - Each cell has a rectangular reach and the cells do not overlap (e.g., where the reach of base station 1 ends, base station 2 starts).
 - Cars maintain the same speed during a call
 - The position of the car initiating a call in a cell is uniformly distributed along the section of the highway covered by the base station.

Read the following page for sampling uniform distribution http://en.wikipedia.org/wiki/Uniform distribution (continuous)#Sampling from a uniform distribution

- Event & States
 - Three types of events:
 - Call initiation [time, speed, station, position, duration]
 - Call termination [time, station]
 - Call handover [time, speed, next_station, remaining_duration]
 - State for each base station:
 - Channel status,
 - 10 channels (busy/free)
 - Statistics:
 - Number of Handovers
 - Number of Dropped calls
 - Number of Blocked calls

- Test & Evaluation
 - Run your simulator using trace (and optionally, distributions)
 - Run your simulator multiple times, each with a warm-up period. Then calculate the average values and indicate the statistical significance.
 - Discuss how you determine the "warm up period"

Read the following paper for simulation output analysis: http://www.informs-sim.org/wsc07papers/009.pdf

- Project Requirements
 - Federated simulation
 - Source federate
 - Creates federation
 - Generates calls either based on the input trace file or probability distributions
 - Base stations federates
 - Each simulates four contiguous base stations
 - Interactions
 - between source and base stations federates
 - » One way, for getting the initiated calls
 - between base stations federates
 - » One way, for handing over calls
 - Time management
 - Federates are all time-managed
 - Event-driven time advancement should be used
 - Data distribution management (optional)
 - Using DDM to make sure interactions are received only by the required federates (e.g., if a call is initiated at base station 5, only should the federate that simulates base station 5 receive the interaction from the source federate)

Project Requirements

- Software
 - Portico RTI (http://porticoproject.org/index.php?title=Main Page), or
 - Open HLA (http://ohla.sourceforge.net/)

Hardware

Network of PCs

- Report

- Design and implementation of your simulation
- Pseudo-code (or flow-chart) of the event handling functions
- Input analysis (optional)
- Summary of simulation results
- No more than 10 pages
- Due on 2 Nov 2012 (week 11)

Demo

- Demonstrates the working of your distributed simulation
- Presentation on 6 Nov 2012 (week 12)