1 Clase 1

1.1 Info de la materia

Mail del profesor. daniel.penazzi@unc.edu.ar Temas a ver.

- · Coloreo de grafos
- Flujos en network
- Matchings
- Códigos de correción de errores
- P-NP (Complejidad computacional)
- Inteligencia artifical

La materia tiene tres partes: teórico, práctico y proyecto de programación. Solo la parte práctica tiene promoción (se explica abajo). El final tiene parte teórica y parte práctica. La parte teórica es demostrar uno de tres teoremas dados a priori. La parte práctica tiene ejercicios de demostración o pensamiento y de resolución de problemas.

La parte práctica se promociona si se aprueban los dos parciales, con cualquer nota ≥ 4 . De promocionarlo, la parte práctica del final no es necesaria.

El proyecto de programación tiene dos partes. La primera es leer un grafo y cargar los datos al programa. La segunda es un problema de coloreo de grafos. La fecha de entrega de la parte uno es en dos o tres semanas a partir de hoy (13/03). La parte importante es la parte 2.

La biliografía está en el programa 2023.

1.2 Grafos

Definition 1 *Una grafo es una* 2-*upla* G = (V, E) *con* V *un conjunto cualquiera* (*finito*) $y E \subseteq \{A \subseteq V : |A| = 2\}$

Nota. La restricción de finitud es sólo de esta materia.

Los elementos de V se llaman vértices o nodos. Los elementos de E se llaman lados o aristas. Por convención, a menos que digamos lo contrario, es que |V| = n y |E| = m.

Definition 2 Un camino en un grafo G = (V, E) es una sucesión de vértices v_1, \ldots, v_r , con $v_i \in V$ para todo i, tal que $\{v_j, v_{j+1}\} \in E$ para todo $1 \le j < r$.

Dado un camino v_1, \ldots, v_r , si $v_1 = x, v_r = y$, decimos que es un camino de x a y. Para todo G = (V, E) definimos la relación binaria

$$\sim := \{(x, y) \in V^2 : \text{ existe un camino de } x \text{ a } y \}$$

Es decir, $x \sim y$ denota la relación de que existe un camino entre x e y. Es trivial comproabar que \sim es una relación de equivalencia. Cada clase de equivalencia a/\sim con $a\in V$ se llama una componente conexa de G.

Definition 3 Decimos que G es conexo si y solo si tiene una sola componente conexa. Es decir, si $|V \sim | = 1$.

El profesor no mencionó esto pero es lindo recordar (si alguien ha cursado lógica) que el conjunto de clases de equivalencia A/R de un conjunto a sobre una relación binaria R puede en sí mismo darse como un grupo de grafos disconexos. Por ejemplo, abajo se dan los grafos de un espacio cociente con siete clases de equivalencia; cada par de vértices unidos por un lado corresponde a dos elementos equivalentes.

Fíjense que de esto se sigue un dato curioso (aunque tal vez irrelevante): Si G = (V, E) es un grafo conexo con n vértices, el grafo que describe la clase de equivalencia de V es K_n .

Definition 4 Decimos que un grafo H = (W, F) es un subgrafo de G = (V, E) si $W \subseteq V, F \subseteq E$.

A veces usamos $H \subseteq G$ para decir "H es un subgrafo de G", pero no debe entenderse por esto que H y G son conjuntos.

Observe que no todo $W \subseteq V, F \subseteq E$ satisfacen que (W, F) es un grafo. Por ejemplo, si $F = \emptyset$ tenemos $F \subseteq E$, pero F no cumple la propiedad de que todos sus elementos sean conjuntos con cardinalidad 2.

Definition 5 (Densidad) Decimos que un grafo es denso si $m = O(n^2)$. Decimos que un grafo es raro si m = O(n).

Random fact. Recuerde que "raro" no sólo significa "inusual" sino que es el antónimo de "denso". La etimología inglesa es más interesante: La palabra *Weird* (raro) significaba, en la edad media, destino. Por eso, en la balada medieval *True Thomas*, se lee "Weird shall never daunton me": El destino nunca ha de asustarme. Se debe a una antigua leyenda nórdica en la cual las *Weird sisters*, diosas terribles, tejían el destino de los hombres. Si le da curiosidad:

https://en.wikipedia.org/wiki/Threewitches

Definition 6 Dado G = (V, E), si $x \in V$, $\Gamma(x) := \{y \in V : \{x, y\} \in E\}$ se llama el vecindario de x.

Si $y \in \Gamma(x)$, decimos que y es un vecino de x. El grado de x, denotado d(x), es la cantidad de vecinos de x; es decir, $d(x) = |\Gamma(x)|$. Usamos $\delta = \min \{d(x) : x \in V\}$ y $\Delta = \max \{d(x) : x \in V\}$. Si $\delta = \Delta$ se dice que G es regular. Por ejemplo, los grafos cíclicos y los completos son regulares.

1.3 Repaso de BFS y DFS

A completar.

1.4 Los grafos K_n y C_n

• K_n : El grafo completo en n vértices se define

$$K_n = (\{1, 2, \dots, n\}, \{\{x, y\} : x, y \in \{1, 2, \dots, n\}\})$$

Es el grafo de n elementos donde todos los vértices están conectados unos con otros. Resulta que que $m = \binom{n}{2}$. Lo cual implica que $m = O(n^2)$.

• C_n: El grafo cíclico

$$C_n = (1, 2, \dots, n, \{12, 23, 34, \dots, (n-1)n, n1\})$$

Una observación es que $C_3 = K_3$; pero de allí en adelante difieren.

1.5 Coloreo de grafos

Definition 7 *Un coloreo propio de G* = (V, E) *con k colores es una función*

$$C: V \mapsto A$$

$$con |A| = k \ y \ tal \ que \ xy \in A \Rightarrow C(x) \neq C(y).$$

Intuitivamente, un coloreo asigna *k* propiedades a los vértices de modo tal que ningún par de grafos adyacentes cumple la misma propiedad.

Nota. Hace unos meses escrbí un algoritmo de coloreo en C. Es el segundo algoritmo dado en esta entrada:

https://slopezpereyra.github.io/2023-10-29-Hamiltonian/

No prometo que sea muy prolijo o esté bien explicado; ya en general uno es tonto y encima de tonto no sabe de grafos. Pero tal vez a alguien le sirva, qué se yo.

Definition 8 El número cromático de un grafo G = (V, E) es

$$\chi(G) = \min_k \left(\exists \ coloreo \ propio \ de \ G \ con \ k \ colores \right)$$

No se conoce un algoritmo polinomial que calcule $\chi(G)$. El proyecto será dar un algoritmo polinomial que se aproxime a χ .

1.6 Un algoritmo greedy de coloreo

Damos un algoritmo que colorea un grafo G con vértices v_1, \ldots, v_n y colores c_1, c_2, \ldots, c_n . Para que el algoritmo funcione, los colores y los vértices deben tener un orden (en nuestro caso dado por los subíndices).

Invariante del algoritmo. Los coloreos parciales son propios. Es decir, a medida que se va coloreando iterativamente el grafo, en cada paso el coloreo resultante debe ser propio.

Pasos del algoritmo.

- (1) $C(v_1) = c_1$.
- (2) $C(v_k)$ = mínimo color que mantenga un coloreo propio (que satisfaga el invariante).

1.7 Acotando χ

Generalmente nos interesa encontar $\chi(G)$ dado un grafo G = (V, E). Damos unas pautas y observaciones generales para acotar $\chi(G)$ y así facilitar su hallazgo.

Lemma 1 Si existe un coloreo propio de G = (V, E) con k colores, entonces $\chi(G) \le k$.

Proof. Es trivial por definición de χ (χ es el mínimo k en el conjunto de los coloreos posibles de G con k colores).

El lema significa que para acotar χ por arriba solo basta dar un coloreo con k colores.

Lemma 2 Si H es un subgrafo de G, $\chi(H) \leq \chi(G)$.

Este lema nos dice que podemos acotar χ por abajo si encontramos un subgrafo de G cuyo número cromático es conocido. Es fácil ver que $\chi(K_r) = r$ para todo r > 1. Es menos directo pero en clase se demostró que

$$\chi(C_r) = \begin{cases} 2 & r \mod 2 \equiv 0 \\ 3 & r \mod 2 \equiv 1 \end{cases}$$

Esto, en combinación con el último lema, nos dice que podemos acotar $\chi(G)$ por abajo simplemente observando si G contiene algún C_r o K_r como subgrafo. En el caso C_r , la cota inferior dada en el caso par, con $\chi(C_r) = 2$, es trivial (todo grafo necesita al menos dos colores). Por eso nos quedamos con el siguiente teorema:

Theorem 1 Sea G = (V, E) un grafo. Si $C_r \subseteq G$ con r impar entonces $\chi(G) \ge 3$. Si $K_r \subseteq G$ entonces $\chi(G) \ge r$.

Theorem 2 Si $\chi(G) \geq 3$, entonces G contiene un ciclo impar.

Proof. Damos una prueba algorítmica. Llamamos a a este algoritmo "bipartito" o "2-color". En tiempo polinomial, determina si G se puede colorear con dos colores; si $\chi(G) = 2$ da un coloreo, de otro modo devuelve un ciclo impar que es subgrafo de G. (El profe no llegó a dar la prueba.)

1.8 ¿Para qué acotar χ ? Para encontar χ !

En general no es fácil mostrar que $\chi(G) = \varphi$ de manera directa. Uno puede mostrar entonces que $\varphi_l \leq \chi(G) \leq \varphi_u$ usando las acotaciones vistas antes. Si sucede que $\varphi_l = \varphi_u$ qué bonito hemos encontrado $\chi(G)$. Si este no es el caso de igual modo estamos restringiendo el espacio de soluciones posibles. Por ejemplo, si $3 \leq \chi(G) \leq 4$, tenemos que $\chi(G) = 3$ o $\chi(G) = 4$, y a veces es fácil ver (y demostrar) cuál de los casos es correcto.