Principles of Cryptography: Part 5

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

NPTEL

References

- J. Kurose, K. Ross, "Computer Networking: A Top Down Approach", Sixth Edition, Pearson Education, 2013
- C. Kaufman, R. Perlman, M. Speciner, "Network Security:
 Private Communication in a Public World", Pearson Education,
 2nd edition, 2002

NPTEL

Diffie-Hellman Algorithm

- Public key cryptosystem
- Was invented before RSA
- Unlike RSA, cannot be used for encryption or to create digital signatures
- Allows two individuals, say Alice and Bob, to agree on a shared secret key, even though they can only exchange messages that can be overheard by intruders
- After they have agreed upon a shared key, it can be used for communication using symmetric-key cryptography

Diffie-Hellman Algorithm (contd.)

- There are numbers p and g, where
 - $\Box p$ is a large (e.g., 2048-bit) prime number
 - $\Box g$ is a number less than p
- p and g can be publicly known
 - \square e.g.: Alice may choose p and g and send them over the channel to Bob (p and g may be overheard by intruders)
- Then each of Alice and Bob independently chooses a large number less than p at random and keeps it secret
 - \square Let S_A and S_B denote Alice's and Bob's secret number, respectively, where $S_A < p$ and $S_B < p$

Diffie-Hellman Algorithm (contd.)

- Alice computes $T_A = g^{S_A} \mod p$; Bob computes $T_B = g^{S_B} \mod p$
- Alice sends T_A to Bob and Bob sends T_B to Alice
- Alice computes $T_B^{S_A} \mod p$ and Bob computes $T_A^{S_B} \mod p$
- Theorem: $T_B^{S_A} \mod p = T_A^{S_B} \mod p$
- Proof:
 - $\Box LHS = (g^{S_B} \mod p)^{S_A} \mod p = (g^{S_B})^{S_A} \mod p = g^{S_AS_B} \mod p$
 - \square Similarly, RHS = $g^{S_AS_B} \mod p$
- Thus, both Alice and Bob agree on the same number $g^{S_AS_B} \mod p$ (which is the shared key)
- **Terminology**: S_A and T_A are known as Alice's private and public key, respectively; S_B and T_B are known as Bob's private and public key, respectively

Example

- p = 23; g = 5• $S_A = 4$; $S_B = 3$
- Then T_A :
 - **4**
- *T_B*:
 - **1**0
- $T_A^{S_B} \mod p$:
 - **1**8
- $T_B^{S_A} \mod p$:
 - **1**8
- In this example, the shared key is 18

Security of Diffie-Hellman

- Even though an intruder may know $g, p, T_A = g^{S_A} \mod p$ and $T_B = g^{S_B} \mod p$:
 - \square computationally infeasible for him/ her to calculate $g^{S_AS_B} \mod p$
- Problem of finding S_A using g, p and g^{S_A} mod p known as "Discrete Logarithm Problem"
- If intruder could compute discrete logarithms efficiently, then he/ she could find S_A , S_B and hence $g^{S_AS_B} \mod p$ efficiently
- However, no efficient algorithm for finding discrete logarithms is known

Additional Requirements on p and g

- The security of Diffie-Hellman is compromised unless p and g satisfy the following additional properties:
- 1) $g^x \mod p$ must not equal 1, unless x is a multiple of (p-1)
 - ☐ Reason:
 - o If $g^x \mod p = 1$ for a small value of x, then to find S_A using $g^{S_A} \mod p$ by brute force, an intruder only needs to try out a small number of values of S_A
 - E.g., if $g^3 \mod p = 1$, then $g^4 \mod p = g \mod p$, $g^5 \mod p = g^2 \mod p$, $g^6 \mod p = 1$, $g^7 \mod p = g \mod p$, etc.
- 2) $\frac{(p-1)}{2}$ must also be prime
 - ☐ A prime that satisfies this property called "safe prime"
 - ☐ Reason:
 - If this property not satisfied, it may be possible to efficiently compute discrete logarithms using "Pohlig-Hellman algorithm" (details omitted)

Man-in-the-Middle Attack

- Diffie-Hellman algorithm insecure when there can be an intruder ("man-in-the-middle") on the channel between Alice and Bob, who can modify messages sent from Alice to Bob or vice-versa
- Suppose g and p publicly known
- When Alice receives T_B , there is no way for her to find out whether:
 - ☐ it was really sent by Bob or not
 - ☐ it was modified during transit from Bob to Alice
- Similar uncertainty when Bob receives T_A

Man-in-the-Middle Attack (contd.)

• In fig., Mallory is intruder who performs man-in-the-middle attack

- At end of attack:
 - \square Alice has secret shared key $g^{az} \mod p$ with Mallory
 - \square Bob has secret shared key $g^{bz} \mod p$ with Mallory
- However, Alice and Bob think that they have secret shared key with each other

Man-in-the-Middle Attack (contd.)

- After intruder has performed man-in-the-middle attack:
 - when Alice sends an encrypted message to Bob, intruder can read it and modify it before forwarding it to Bob
 - ☐similarly can read and modify messages from Bob to Alice
- Hence, the above form of the Diffie-Hellman algorithm is only secure against "passive attacks", in which the intruder just watches messages being transmitted between Alice and Bob

Defences Against Man-in-the-Middle Attack

- Suppose after completing the Diffie-Hellman algorithm, Alice encrypts and transmits the established shared key to Bob to prove that she is indeed Alice
- Will Bob be able to detect man-in-the-middle attack?
- No:
 - ☐ the intruder can encrypt and send the shared key established between himself/ herself and Bob to Bob
 - ☐ Bob will think it was sent by Alice

Defences Against Man-in-the-Middle Attack (contd.)

- Suppose p and g are public
- Recall: S_B and T_B are known as Bob's private and public key, respectively
- The public key of every user is stored in a database like a telephone directory
- When Alice wants to establish a secret key with Bob, she just looks up T_B and computes $T_B^{S_A} \mod p$; Bob looks up T_A and computes $T_A^{S_B} \mod p$
- Recall that $T_B^{S_A} \mod p = T_A^{S_B} \mod p$; thus, Alice and Bob have agreed upon this shared secret key
- Does this defence work?
 ☐ Yes
- Later we will study how the database in which public keys are stored (called "Public Key Infrastructure (PKI)") can be implemented