Trabalho de Estatística 02 - Análise de Correlação e Regressão Linear Simples

Pedro Manoel (119210706), Lucas Lima (119210396), Felipe Oliveira (119210148) 10/02/2023

Sumário

1.	Lendo e Analisando os dados	3
	1.1. Importando bibliotecas/pacotes necessários	3
	1.2. Carregando base de dados	3
	1.3. Selecionandos as variáveis de interesse	3
	1.4. a) Análises Descritivas	4
	1.4.1. Resumos estatísticos das variáveis	4
	1.4.2. Boxplots para visualizar a distribuição dos dados	4
	1.4.3. Distribuição univariada para cada variável	8
	1.4.4. Dispersão bivariada para cada variável	12
	1.4.5. Matriz de correlação entre as variáveis	15
	1.5. b) Conclusões e analises sobre os resultados obtidos	15
2.	Análises de Regressão Linear Simples completas	19
	2.1. Modelo de regressão linear simples para gestwks	19
	2.2. Modelo de regressão linear simples para mageyrs	21
	2.3. Modelo de regressão linear simples para mheightcm	
	2.4. Conclusões gerais sobre os resultados dos modelos	
	2.5. Desenvolvendo algumas previsões	

1. Lendo e Analisando os dados

1.1. Importando bibliotecas/pacotes necessários

```
library(haven)
library(dplyr)
library(ggplot2)
library(lmtest)
library(zoo)
library(GGally)
```

1.2. Carregando base de dados

```
dados = read_dta("datasets/chdsmetric.dta")
```

1.3. Selecionandos as variáveis de interesse

```
dados =
  dados %>%
  select(gestwks, mageyrs, mheightcm, bwtkg)

knitr::kable(head(dados), caption="Primeiras linhas da base de dados")
```

Table 1: Primeiras linhas da base de dados

gestwks	mageyrs	mheightcm	bwtkg
37	33	167.64	3.31
41	28	160.02	3.63
39	32	154.94	3.40
39	27	172.72	3.18

gestwks	mageyrs	mheightcm	bwtkg
37	32	170.18	2.40
43	30	160.02	3.90

1.4. a) Análises Descritivas

1.4.1. Resumos estatísticos das variáveis

```
summary(dados)
```

gestwks		mageyrs		mheightcm		bwtkg	
Min.	:29.00	Min.	:15.00	Min.	:144.8	Min.	:1.500
1st Qu	.:39.00	1st Qu	.:21.00	1st Qu	.:160.0	1st Qu	.:3.080
Median	:40.00	Median	:25.00	Median	:162.6	Median	:3.450
Mean	:39.77	Mean	:25.86	Mean	:163.7	Mean	:3.409
3rd Qu	.:41.00	3rd Qu	.:29.00	3rd Qu	.:167.6	3rd Qu	.:3.720
Max.	:48.00	Max.	:42.00	Max.	:180.3	Max.	:5.170

1.4.2. Boxplots para visualizar a distribuição dos dados

Variável gestwks

```
ggplot(dados, aes(x = gestwks, y = factor(1))) +
  geom_boxplot() +
  xlab("Idade Gestacional (em Semanas)") +
  ylab("") +
  ggtitle("Boxplot da Distribuição da Idade Gestacional em Semanas")
```

Boxplot da Distribuição da Idade Gestacional em Semanas

Com base no boxplot acima, da Distribuição da idade Gestacional em Semanas, é possível interpretar que o boxplot é simétrico com 3(três) discrepantes superiores e 4(quatro) inferiores, ou seja, indica a existência de valores extremos na amostra, que podem impactar na análise dos dados, pois não seguem a mesma tendência da maioria dos dados que se encontra perto do segundo quartil que é a mediana. É importante avaliar sua influência antes de tomar decisões baseadas nas informações contidas no gráfico.

Variável mageyrs

```
ggplot(dados, aes(x = mageyrs, y = factor(1))) +
    geom_boxplot() +
    xlab("Idade da Mãe (em Anos)") +
    ylab("") +
    ggtitle("Boxplot da Distribuição da Idade da Mãe")
```

Boxplot da Distribuição da Idade da Mãe

Sobre o boxplot acima, da Distribuição da Idade da Mãe, é correto afirmar que o mesmo é simétrico e não possui discrepantes inferiores e apenas 1(um) discrepante superior, ou seja, indica a existência de valores extremos na amostra, que podem impactar na análise dos dados, pois não seguem a mesma tendência da maioria dos dados que se encontra perto do segundo quartil que é a mediana. É importante avaliar sua influência antes de tomar decisões baseadas nas informações contidas no gráfico.

Variável mheightcm

```
ggplot(dados, aes(x = mheightcm, y = factor(1))) +
  geom_boxplot() +
  xlab("Altura da Mãe (em cm)") +
  ylab("") +
  ggtitle("Boxplot da Distribuição da Altura da Mãe")
```

Boxplot da Distribuição da Altura da Mãe

Com base no boxplot acima, da Distribuição da Altura da Mãe, é possível interpretar que o boxplot é assimétrico positivo, ou seja, quando a linha da mediana está próxima ao primeiro quartil. Também é possível inferir que o boxplot possui 1(um) discrepante superior e 2(dois) discrepantes inferiores, isso indica a existência de valores extremos na amostra, que podem impactar na análise dos dados, pois não seguem a mesma tendência da maioria dos dados que se encontra perto do segundo quartil que é a mediana.

Variável bwtkg

```
ggplot(dados, aes(x = bwtkg, y = factor(1))) +
   geom_boxplot() +
   xlab("Peso da Criança (em kg)") +
   ylab("") +
   ggtitle("Boxplot da Distribuição do peso da criança ao nascer")
```

Boxplot da Distribuição do peso da criança ao nascer

Com base no boxplot acima, da Distribuição do peso da criança ao nascer, é possível interpretar que o boxplot é assimétrico negativo, ou seja, quando a linha da mediana está próxima ao terceito quartil. Também é possível inferir que o boxplot possui 5(cinco) discrepantes superiors e 4(quatro) inferiores, isso indica a existência de valores extremos na amostra, que podem impactar na análise dos dados, pois não seguem a mesma tendência da maioria dos dados que se encontra perto do segundo quartil que é a mediana.

1.4.3. Distribuição univariada para cada variável

Variável gestwks

```
ggplot(data = dados, aes(x = gestwks)) +
  geom_density(fill = "blue", alpha = 0.5) +
  ggtitle("Idade Gestacional em Semanas") +
  xlab("Idade Gestacional (em Semanas)") +
  ylab("Densidade")
```

Idade Gestacional em Semanas

Variável mageyrs

```
ggplot(data = dados, aes(x = mageyrs)) +
  geom_density(fill = "red", alpha = 0.5) +
  ggtitle("Idade da Mãe em Anos") +
  xlab("Idade da Mãe (em Anos)") +
  ylab("Densidade")
```

Idade da Mãe em Anos

Variável mheightcm

```
ggplot(data = dados, aes(x = mheightcm)) +
  geom_density(fill = "green", alpha = 0.5) +
  ggtitle("Altura da Mãe em Centímetros") +
  xlab("Altura da Mãe (em cm)") +
  ylab("Densidade")
```

Altura da Mãe em Centímetros

Variável bwtkg

```
ggplot(data = dados, aes(x = bwtkg)) +
  geom_density(fill = "purple", alpha = 0.5) +
  ggtitle("Peso da Criança ao Nascer em Quilogramas") +
  xlab("Peso da Criança ao Nascer (em kg)") +
  ylab("Densidade")
```

Peso da Criança ao Nascer em Quilogramas

1.4.4. Dispersão bivariada para cada variável

Variável gestwks

```
ggplot(dados, aes(x = gestwks, y = bwtkg)) +
  geom_point() +
  geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
  labs(x = "Idade gestacional (em Semanas)", y = "Peso ao nascer (em kg)")
```


Variável mageyrs

```
ggplot(dados, aes(x = mageyrs, y = bwtkg)) +
  geom_point() +
  geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
  labs(x = "Idade da mãe (em Anos)", y = "Peso ao nascer (em kg)")
```


Variável mheightcm

```
ggplot(dados, aes(x = mheightcm, y = bwtkg)) +
  geom_point() +
  geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
  labs(x = "Altura da mãe (em cm)", y = "Peso ao nascer (em kg)")
```


1.4.5. Matriz de correlação entre as variáveis

A matriz de correlação mostra a relação linear entre as variáveis. Os valores na diagonal principal (1) indicam que a correlação entre uma variável e ela mesma é de 100%, o que é esperado.

As correlações entre as variáveis são medidas pelos valores fora da diagonal principal. Valores próximos a 1 indicam forte correlação positiva, valores próximos a -1 indicam forte correlação negativa e valores próximos a 0 indicam baixa ou nenhuma correlação linear.

cor(dados)

```
gestwksmageyrsmheightcmbwtkggestwks1.000000000.00341331940.047649290.4259589231mageyrs0.0034133191.0000000000.017486180.0009591992mheightcm0.0476492940.01748618281.000000000.2025445934bwtkg0.4259589230.00095919920.202544591.000000000
```

1.5. b) Conclusões e analises sobre os resultados obtidos

Matriz de scatterplot para todas as variáveis

A matriz de scatterplot é uma representação visual que mostra a relação entre duas ou mais variáveis quantitativas. É composta por vários gráficos de dispersão bivariados, onde cada par de variáveis é plotado em um gráfico separado. Essa representação permite analisar rapidamente a relação entre todas as variáveis de interesse em um único gráfico, o que pode ser útil na investigação de relações entre variáveis em conjunto.

```
pairs(dados
       [, c("gestwks", "mageyrs", "mheightcm", "bwtkg")],
       pch = 21,
       bg = c("blue", "red", "green", "yellow"))
```


ggpairs(dados)

Com base nas análises realizadas, é possível identificar algumas tendências na relação entre as variáveis gestwks (idade gestacional), mageyrs (idade da mãe) e mheightcm (altura da mãe) com a variável de resultado bwtkg (peso ao nascer).

A partir da matriz de correlação, dos scatterplots e dos demais gráficos, podemos ver que existe uma correlação positiva moderada entre o peso ao nascer da criança (bwtkg) e a idade gestacional (gestwks), com um valor de correlação de 0,43. Isso significa que, em geral, quanto maior a idade gestacional, maior é o peso ao nascer da criança.

Já a correlação entre a idade da mãe (mageyrs) e o peso ao nascer da criança (bwtkg) é muito baixa, com um valor de correlação de apenas 0,001. Isso sugere que a idade da mãe não tem uma influência significativa sobre o peso ao nascer da criança.

A altura da mãe (mheightcm) também tem uma correlação positiva moderada com o peso ao nascer da criança (bwtkg), com um valor de correlação de 0,20. Isso indica que, em geral, quanto maior a altura da mãe, maior é o peso ao nascer da criança.

Em conclusão, o fator mais relevante ou que melhor pode prever o peso ao nascer da criança é a idade gestacional (gestwks), seguido pela altura da mãe (mheightcm). A idade da mãe (mageyrs) parece ter uma influência muito baixa sobre o peso ao nascer da criança.

Gráfico de dispersão com curva lowess entre gestwks e bwtkg

```
ggplot(data = dados, aes(x = gestwks, y = bwtkg)) +
  geom_point() +
  geom_smooth(method = "loess", formula = y ~ x) +
  ggtitle("Gráfico de Dispersão entre gestwks e bwtkg com Curva Lowess") +
  xlab("Idade Gestacional (em Semanas)") +
  ylab("Peso ao Nascer (em kg)")
```

Gráfico de Dispersão entre gestwks e bwtkg com Curva Lowess

2. Análises de Regressão Linear Simples completas

2.1. Modelo de regressão linear simples para gestwks

Modelo

```
model1 <- lm(bwtkg ~ gestwks, data = dados)</pre>
  summary(model1)
Call:
lm(formula = bwtkg ~ gestwks, data = dados)
Residuals:
    Min
              1Q
                   Median
                                3Q
                                        Max
-1.43502 -0.28249 0.01492 0.28621 1.50992
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.066189  0.365473  -2.917  0.00365 **
gestwks
            0.112530
                       0.009179 12.259 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4486 on 678 degrees of freedom
Multiple R-squared: 0.1814,
                               Adjusted R-squared: 0.1802
F-statistic: 150.3 on 1 and 678 DF, p-value: < 2.2e-16
```

Análise do Modelo

• R-squared: 0.1814, indica que aproximadamente 18% da variação na variável dependente bwtkg pode ser explicada pelo modelo de regressão linear simples com gestwks como variável independente.

- Coeficiente da variável independente gestwks: 0.112530, significa que a cada semana a mais de gestação, o peso ao nascer é previsto aumentar em aproximadamente 0,1125 kg.
- **p-value:** < 2.2e-16, indica que a relação entre gestwks e bwtkg é estatisticamente significativa.

Calculando Intervalo de confiança

```
confint1 <- confint(model1)
  confint1

2.5 % 97.5 %
(Intercept) -1.78378433 -0.3485940
gestwks 0.09450691 0.1305536</pre>
```

Intervalo de confiança de 0.09450691 a 0.1305536, siguinifica que o valor mínimo previsto é 0.09450691 e o valor máximo previsto é 0.1305536. Isso significa que, com 95% de confiança, o verdadeiro valor do coeficiente está entre esses dois valores.

Verificando a linearidade

```
shapiro.test(model1$residuals)

Shapiro-Wilk normality test

data: model1$residuals
W = 0.99716, p-value = 0.2848
```

O teste de Shapiro-Wilk de normalidade sugere que não há evidências suficientes para rejeitar a hipótese de que os resíduos sejam normais, já que o p-valor é de 0,2848, o que é maior que o nível de significância convencional de 0,05. Portanto, a linearidade não é rejeitada com base nesse teste, mas ela pode ser comprovada ao abservar o gráfico de dispersão bivariada dá variável gestwks onde é possível observar uma tendência clara de crescimento.

Verificando a homocedasticidade

```
bptest(model1)

studentized Breusch-Pagan test

data: model1

BP = 2.2613, df = 1, p-value = 0.1326
```

O teste studentized Breusch-Pagan apresentou um p-value de 0,1326, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de homocedasticidade. Isso indica que a variação dos resíduos é constante ao longo da série temporal

Verificando a normalidade dos resíduos

```
shapiro.test(model1$residuals)

Shapiro-Wilk normality test

data: model1$residuals
W = 0.99716, p-value = 0.2848
```

O teste Shapiro-Wilk de normalidade dos resíduos apresentou um p-value de 0,2848, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de que os resíduos sejam normalmente distribuídos. Isso indica que a distribuição dos resíduos é consistente com a normalidade.

Verificando a independência dos erros

```
dwtest(model1)

Durbin-Watson test

data: model1

DW = 2.018, p-value = 0.5936
alternative hypothesis: true autocorrelation is greater than 0
```

O teste Durbin-Watson apresentou um p-value de 0,5936, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de independência dos erros. Isso indica que os erros são independentes uns dos outros, o que é uma suposição importante para a validade dos resultados do modelo.

2.2. Modelo de regressão linear simples para mageyrs

Modelo

```
model2 <- lm(bwtkg ~ mageyrs, data = dados)
summary(model2)</pre>
```

Call:

lm(formula = bwtkg ~ mageyrs, data = dados)

Residuals:

Min 1Q Median 3Q Max -1.90974 -0.32939 0.03974 0.31133 1.76000

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.407e+00 9.204e-02 37.016 <2e-16 ***
mageyrs 8.699e-05 3.483e-03 0.025 0.98
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4958 on 678 degrees of freedom Multiple R-squared: 9.201e-07, Adjusted R-squared: -0.001474 F-statistic: 0.0006238 on 1 and 678 DF, p-value: 0.9801

Análise do Modelo

- R-squared: 9.201e-07, indica que aproximadamente 0% da variação na variável dependente bwtkg pode ser explicada pelo modelo de regressão linear simples com mageyrs como variável independente.
- Coeficiente da variável independente mageyrs: 8.699e-05, significa que a cada ano a mais de idade da mãe, o peso ao nascer é previsto aumentar em aproximadamente 0,000087 kg.
- **p-value:** 0.98, indica que a relação entre mageyrs e bwtkg não é estatisticamente significativa.

Calculando Intervalo de confiança

```
confint2 <- confint(model2)
confint2</pre>
```

2.5 % 97.5 % (Intercept) 3.226237166 3.587676148 mageyrs -0.006751352 0.006925325

Intervalo de confiança de -0.006751352 a 0.006925325, significa que o valor mínimo previsto é -0.006751352 e o valor máximo previsto é 0.006925325. Isso significa que, com 95% de confiança, o verdadeiro valor do coeficiente está entre esses dois valores.

Verificando a linearidade

```
shapiro.test(model2$residuals)

Shapiro-Wilk normality test

data: model2$residuals
W = 0.99644, p-value = 0.1325
```

O teste Shapiro-Wilk de normalidade sugere que não há evidências suficientes para rejeitar a hipótese de que os resíduos sejam normais, com um p-valor de 0,1325, maior que o nível de significância de 0,05. Assim, a linearidade não é rejeitada por este teste, no entanto, concluise que não é linear pois ao abservar o gráfico de dispersão bivariada dá variável mageyrs é posspivel observar que não existe uma tendência clara de crescimento ou decréscimo.

Verificando a homocedasticidade

```
bptest(model2)

studentized Breusch-Pagan test

data: model2
BP = 0.34671, df = 1, p-value = 0.556
```

O teste studentized Breusch-Pagan apresentou um p-value de 0,556, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de homocedasticidade. Isso indica que a variação dos resíduos é constante ao longo da série temporal.

Verificando a normalidade dos resíduos

```
shapiro.test(model2$residuals)

Shapiro-Wilk normality test

data: model2$residuals
W = 0.99644, p-value = 0.1325
```

O teste Shapiro-Wilk de normalidade dos resíduos apresentou um p-value de 0,1325, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese

de que os resíduos sejam normalmente distribuídos. Isso indica que a distribuição dos resíduos é consistente com a normalidade.

Verificando a independência dos erros

```
dwtest(model2)

Durbin-Watson test

data: model2

DW = 1.9863, p-value = 0.4279
alternative hypothesis: true autocorrelation is greater than 0
```

O teste Durbin-Watson apresentou um p-value de 0,4279, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de independência dos erros. Isso indica que os erros são independentes uns dos outros, o que é uma suposição importante para a validade dos resultados do modelo.

2.3. Modelo de regressão linear simples para mheightcm

Modelo

```
model3 <- lm(bwtkg ~ mheightcm, data = dados)</pre>
  summary(model3)
Call:
lm(formula = bwtkg ~ mheightcm, data = dados)
Residuals:
     Min
               1Q
                   Median
                                3Q
                                        Max
-1.89167 -0.31387 0.00833 0.31884 1.81874
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.805332
                                 1.664
                                         0.0965 .
                      0.483849
mheightcm
           0.015910
                      0.002954
                                 5.386 9.97e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4855 on 678 degrees of freedom
Multiple R-squared: 0.04102,
                               Adjusted R-squared: 0.03961
```

F-statistic: 29 on 1 and 678 DF, p-value: 9.968e-08

Análise do Modelo

- R-squared: 0.04102, indica que aproximadamente 4.1% da variação na variável dependente bwtkg pode ser explicada pelo modelo de regressão linear simples com mheightcm como variável independente.
- Coeficiente da variável independente mheightcm: 0.015910, significa que a cada centímetro a mais na altura da mãe, o peso ao nascer é previsto aumentar em aproximadamente 0.015910 kg.
- **p-value:** 9.97e-08, indica que a relação entre mheightcm e bwtkg é estatisticamente significativa, com p-value menor que 0.05.

Calculando Intervalo de confiança

```
confint3 <- confint(model3)
confint3

2.5 % 97.5 %
(Intercept) -0.14469167 1.75535468
mheightcm 0.01010959 0.02171057</pre>
```

Intervalo de confiança de 0.01010959 a 0.02171057, significa que o valor mínimo previsto é 0.01010959 e o valor máximo previsto é 0.02171057. Isso significa que, com 95% de confiança, o verdadeiro valor do coeficiente está entre esses dois valores.

Verificando a linearidade

```
shapiro.test(model3$residuals)

Shapiro-Wilk normality test

data: model3$residuals
W = 0.99684, p-value = 0.2048
```

O teste de Shapiro-Wilk de normalidade dos resíduos apresentou um p-value de 0,2048, o que é maior que o nível de significância convencional de 0,05. Isso sugere que não há evidências suficientes para rejeitar a hipótese de que os resíduos sejam normais, mas ela pode ser comprovada ao abservar o gráfico de dispersão bivariada dá variável mheightem onde é posspivel observar uma tendência leve de crescimento.

Verificando a homocedasticidade

```
bptest(model3)
```

studentized Breusch-Pagan test

```
data: model3
BP = 0.2296, df = 1, p-value = 0.6318
```

O teste studentized Breusch-Pagan apresentou um p-value de 0,6318, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de homocedasticidade. Isso indica que a variação dos resíduos é constante ao longo da série temporal.

Verificando a normalidade dos resíduos

```
shapiro.test(model3$residuals)

Shapiro-Wilk normality test

data: model3$residuals
W = 0.99684, p-value = 0.2048
```

O teste Shapiro-Wilk de normalidade dos resíduos apresentou um p-value de 0,2848, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de que os resíduos sejam normalmente distribuídos. Isso indica que a distribuição dos resíduos é consistente com a normalidade.

Verificando a independência dos erros

```
dwtest(model3)

Durbin-Watson test

data: model3

DW = 2.0357, p-value = 0.6804
alternative hypothesis: true autocorrelation is greater than 0
```

O teste Durbin-Watson apresentou um p-value de 0,6804, o que é maior que o nível de significância de 0,05, sugerindo que não há evidências contra a hipótese de independência dos erros. Isso indica que os erros são independentes uns dos outros, o que é uma suposição importante para a validade dos resultados do modelo.

2.4. Conclusões gerais sobre os resultados dos modelos

De acordo com os resultados dos 3 modelos, o fator mais relevante/associado que pode melhor prever a variável dependente "bwtkg" é "gestwks". Isso porque o coeficiente "gestwks" apresenta o maior valor de t (12.259) e o menor p-valor (menor que 2.2x10^-16) em comparação com os outros fatores "mageyrs" e "mheightcm". Além disso, o modelo com "gestwks" como variável explicativa apresenta o maior valor de R-quadrado ajustado (0,1802).

2.5. Desenvolvendo algumas previsões

Qual seria o peso da criança ao nascer esperado para uma gestação de 24 semanas?

```
gestwks_new <- 24
predict(model1, newdata = data.frame(gestwks = gestwks_new))

1
1.634537</pre>
```

A previsão acima indica que, utilizando o modelo 1, o valor previsto da variável dependente "bwtkg" é de 1.634537 kg quando considerada uma gestação de 24 semanas. Isso significa que, segundo esse modelo, é esperado que um bebê nasça com cerca de 1.63 kg caso a gestação dure 20 semanas. Cabe ressaltar que essa previsão é baseada nas relações entre as variáveis presentes no modelo e não leva em conta outras informações importantes que possam influenciar o peso ao nascer.

Qual seria o peso da criança ao nascer esperado para uma criança nascida de uma mãe com idade de 22 anos?

```
mageyrs_new = 22
predict(model2, newdata = data.frame(mageyrs = mageyrs_new))

1
3.40887
```

A previsão acima indica que, utilizando o modelo 2, o valor previsto da variável dependente "bwtkg" é de 3.40887 kg quando considerado que a mãe possui 22 anos de idade. Isso significa que, segundo esse modelo, é esperado que um bebê nasça com cerca de 3.41 kg caso a mãe possua 22 anos de idade. Cabe ressaltar que essa previsão é baseada nas relações entre as

variáveis presentes no modelo e não leva em conta outras informações importantes que possam influenciar o peso ao nascer.

Qual seria o peso da criança ao nascer esperado para uma criança nascida de uma mãe com altura de 1.73 m?

```
mheightcm_new <- 173
predict(model3, newdata = data.frame(mheightcm = mheightcm_new))

1
3.557776</pre>
```

A previsão acima indica que, utilizando o modelo 3, o valor previsto da variável dependente "bwtkg" é de 3.557776 kg quando considerado que a mãe possui 1.73cm de altura. Isso significa que, segundo esse modelo, é esperado que um bebê nasça com cerca de 3.56 kg caso a mãe possua 1.73cm de altura. Cabe ressaltar que essa previsão é baseada nas relações entre as variáveis presentes no modelo e não leva em conta outras informações importantes que possam influenciar o peso ao nascer.