NANYANG TECHNOLOGICAL UNIVERSITY

MIDTERM I (CA1)

MH1812 – Discrete Mathematics

February 2017		TIME ALLOWED: 40 minutes		
Name:				
Matric. no.:			Tutor group:	

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT TURN OVER PAPER UNTIL INSTRUCTED.
- 2. This midterm paper contains THREE (3) questions.
- 3. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 4. Candidates can write anywhere on this midterm paper.
- 5. This **IS NOT** an **OPEN BOOK** exam.
- 6. Candidates should clearly explain their reasoning when answering each question.

QUESTION 1.

(40 marks)

(a) Which integer $a \in \{0, 1, 2\}$ is congruent to 2017 + 2020 + 2023 modulo 3? (10 marks)

- (b) Write down each integer $a \in \{0, 1, 2, 3\}$ for which there exists an integer n such that $a \equiv n^2 \pmod{4}$? (10 marks)
- (c) Decide whether the set S is closed under the operation Δ when
 - $S = \{\text{even integers}\}\ \text{and}\ \Delta \text{ is subtraction.}\ (10 \text{ marks})$
 - $S = \{\text{frational numbers}\}\ \text{and}\ \Delta \text{ is multiplication.}\ (10 \text{ marks})$

Briefly justify your answers.

QUESTION 2.

(40 marks)

(a) Prove or disprove the following statement (20 marks):

$$(p \land \neg q) \to r \equiv (p \land \neg r) \to q.$$

(b) Decide whether or not the following argument is valid (20 marks):

$$p \to q;$$

$$\neg p \to r;$$

$$\neg (r \land q);$$

$$\therefore \neg p$$

Briefly justify your answer.

7(
$$P \wedge 7r$$
) $Vq = 7P \vee r \vee q$

$$7(P \wedge 7q) \vee r = 7P \vee q \vee r$$

QUESTION 3.

(20 marks)

Consider the domains $X = \mathbb{Z} = \{\text{integers}\}\$ and $Y = \{0,1,2\}$, and the predicate P(x,y) = "3 divides x-y". Determine the truth values of the following statements:

- (a) $\forall x \in X, \exists y \in Y, P(x, y); (10 \text{ marks})$
- (b) $\neg (\forall y \in Y, \exists x \in X, \neg P(x, y))$. (10 marks)

Briefly justify your answers.

b)
$$7 (\forall y \in Y, \exists x \in X, 7 P(X, y)) = \exists y \in Y, \forall x \in X, P(X, y)$$

False as for any y , $P(y, y)$ is F