PROBLEMS FOR CHAPTER 1

1. For a function f(x) it is known that f(1.8) = -1.1664 and f'(1.8) = 3.8880. Find the approximate value of x when f(x) = 0, using Taylor series expansion.

Solution:

$$f(1.8) = -1.1664$$
 $f'(1.8) = 3.8880$

Taylor Series:

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2 f'(a)}{2!} \dots + \frac{(x-a)^n f^n(a)}{n!}$$
Therefore $f(x) = f(1.8) + (x-1.8) f'(1.8) = 0$

$$-1.1664 + 3.8880(x-1.8) = 0$$

$$x = 2.1$$

4. Given the Taylor series expansion of $f(x) = \sin(x)$ about x=0. From the obtain $\sin(\pi/4)$ to an accuracy of 4 digits.

Solution:

$$f(x) = \sin(x)$$
 Taylor series expansion about 0

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2 f''(a)}{2!} \dots + \frac{f^n(a)(x-a)^n}{n!}$$

$$f(a) = \sin 0 = 0$$

$$f'(a) = \cos 0 = 1$$

$$f''(a) = -\sin 0 = 0$$

$$f'''(a) = -\cos 0 = 1$$

therefore,

$$f(x) = 0 + x + 0 - \frac{x^3}{3!} + 0 + \frac{x^5}{5!} \dots$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} \dots$$

$$Sin(\pi/4) = f(\pi/4) = \frac{\pi}{4} - \frac{(\pi/4)^3}{3!} + \frac{(\pi/4)^5}{5!} \dots$$
$$= 0.7071$$

5. In problem 4, obtain the values of $\sin(\pi/4)$ considering 1,2,3,4,5,6,7,8,9 and 10 terms in the Taylor series expansion. The result must converge to the exact value of $1/\sqrt{2}$. Check whether the convergence can be improved using Aitkin's Δ^2 process. Comment on the outcome.

Solution: Considering the first 10 terms of the as shown below

$$f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \frac{x^{13}}{13!} - \frac{x^{15}}{15!} + \frac{x^{17}}{17!} - \frac{x^{19}}{19!}$$

We have formed a table where

$$p_n^* = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

n	$\sin(\pi/4)$	Δ^2
1	0.785398163	0.707068533
2	0.704652651	0.707106990
3	0.707143045	0.707106779
4	0.707106469	0.707106781
5	0.707106782	
6	0.707106781	
7		
8		
9		
10		

- 6. Obtain (1/3)¹⁰ using
 - (i) 4 digit arithmetic (result after each multiplication rounded off to 4 digits).
 - (ii) 6 digit arithmetic
 - (iii) 8 digit arithmetic

Solution: the Table below is obtained by the value rounded up by (1/3)

$$0.1111*(1/3)=0.03702$$
 or $0.3702*10^{-1}$

And the table below is obtained.

(1/3) ⁿ	Actual	4- digit	6 - digit	8 - digit
1	1/3	0.3333	0.333333	0.33333333
2	1/9	0.1111	0.111111	0.11111111
3	1/27	0.3702 x 10 ⁻¹	0.370369 x 10 ⁻¹	0.37037036 x 10 ⁻¹
4	1/81	0.1234 x 10 ⁻¹	0.123456 x 10 ⁻¹	0.12345679 x 10 ⁻¹
5	1/243	0.4113 x 10 ⁻²	0.411521 x 10 ⁻²	0.41152261 x 10 ⁻²
6	1/729	0.1371 x 10 ⁻²	0.137173 x 10 ⁻²	0.13717420 x 10 ⁻²
7	1/2187	0.4569 x 10 ⁻³	0.457244 x 10 ⁻³	0.45724734 x 10 ⁻³
8	1/6561	0.1523 x 10 ⁻³	0.152415 x 10 ⁻³	0.15241578 x 10 ⁻³
9	1/19683	0.5076 x 10 ⁻⁴	0.508048 x 10 ⁻⁴	0.50805259 x 10 ⁻⁴
10	1/59049	0.1692 x 10 ⁻⁴	0.169349 x 10 ⁻⁴	0.16935086 x 10 ⁻⁴

7. Approximate sin(x) using a polynomial

$$P2(x) = a0 + a1 x + a_2 x^2$$

In the range $0 \le x \le \pi/2$, by minimizing the squared error in the range, as the given by

$$E = \int_{0}^{\pi/2} [P^{2}(x) - \sin(x)^{2}] dx$$

The coefficients a₀, a₁ and a₂ are obtained by solving the equation

$$\frac{\partial E}{\partial a_1}$$
 = 0, I=-, 1,2.

Compare $P_2(x)$ with the Taylor series expansion of sin(x) about x = 0, considering only three terms.

Solution: the value of $P_2(x) = a0 + a1 x + a_2x^2$ is obtained by using the least squares method later taught in chapter 4

$$P(x) = a_0 + a_1 x^1 + a_2 x^2$$

Values for $\sin(x)$ in the range $0 \le x \le \pi/2$ are

0	π/6	π/3	$\pi/2$
0	0.5	0.866025	1

The matrix has the form:

$$\begin{bmatrix} n+1 & \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{2} \dots & \sum_{i=0}^{n} x_{i}^{m} \\ \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} \dots & \sum_{i=0}^{n} x_{i}^{m+1} \\ \sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} & \sum_{i=0}^{n} x_{i}^{4} \dots & \sum_{i=0}^{n} x_{i}^{m+2} \\ M & \sum_{i=0}^{n} x_{i}^{m} & \sum_{i=0}^{n} x_{i}^{m+1} & \sum_{i=0}^{n} x_{i}^{m+2} & \sum_{i=0}^{n} x_{i}^{2m} \\ \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ M \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} f(x_{i}) \\ \sum_{i=0}^{n} x_{i} f(x_{i}) \\ \sum_{i=0}^{n} x_{i}^{2} f(x_{i}) \\ M \\ \sum_{i=0}^{n} x_{i}^{m} f(x_{i}) \end{bmatrix}$$

substituting the data gives

$$\begin{bmatrix} 3.1416 & 3.838 & 5.168 \\ 3.838 & 5.168 & 7.366 \\ 5.168 & 7.366 & 10.862 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2.739 \\ 3.554 \\ 4.942 \end{bmatrix}$$

Solving the matrix gives us

$$a_2 = -0.408$$

 $a_1 = 1.330$
 $a_0 = -0.081$

Hence
$$P(x) = -0.408x^2 + 1.33x - 0.081$$

Whereas the taylor series expansion of sin(x) about x=0 from problem 4 is

$$f(x) = 0 + x + 0 - \frac{x^3}{3!} + 0 + \frac{x^5}{5!}$$
 Or
$$f(x) = 0 + x + 0 - 0.16667 \ x^3 + 0 + 0.00833 \ x^5$$