

EMISSIONS TEST REPORT

Report Number: 100058757BOX-016a Project Number: G100058757

Report Issue Date: 12/15/2010

Product Designation: Shower with DECT 6.0 Intercom/phone plus radio; Base Unit

Standards: CFR47 FCC Part 15 Subpart D:2010 "Unlicensed Personal

Communications Service Devices"

CFR47 FCC Part 15 Subpart B:2010 "Unintentional Radiators"

IC RSS-213 Issue 2 December 2005 "2 GHz Licence-exempt Personal

Communications Service Devices (LE-PCS)"

IC ICES-003 Issue 4 February 2004 "Digital Apparatus"

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719

Client: Sensasia Shower Products 600 Old State Road 419 Winter Springs, FL 32708

Report prepared by

Report reviewed by

Nicholas Abbondante/Senior Project Engineer

Michael F. Murphy / Staff Engineer, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Occupied Bandwidth (CFR47 Part 15.323(a); ANSI C63.17 Sub-Clause 6.1.3 & 6.1.2; IC RSS-213 6.4)	Pass
7	Peak Transmit Power and RF Exposure (CFR47 Parts 1.1307(b), 1.1310, 2.1091, 2.1093, 15.319(c & e & i); ANSI C63.17 Sub-Clause 6.1.2 & 4.3.1 & Annex A; IC RSS-213 6.5; IC RSS-102; IC RSS-Gen)	Pass
8	Power Spectral Density (CFR47 Part 15.319(d); ANSI C63.17 Sub-Clause 6.1.5; IC RSS-213 6.6)	Pass
9	Automatic Discontinuation of Transmission (CFR47 Part 15.319(f); IC RSS-213 4.3.4(a))	Pass
10	Emissions Inside the Sub-Bands, Conducted (CFR47 Part 15.323(d.1); ANSI C63.17 Sub-Clause 6.1.6; IC RSS-213 6.7.2)	Pass
11	Emissions Outside the Sub-Bands, Conducted (CFR47 Part 15.323(d.2); ANSI C63.17 Sub-Clause 6.1.6; IC RSS-213 6.7.1)	Pass
12	Emissions Outside the Sub-Bands, Radiated (CFR47 Part 15.323(d.2); ANSI C63.17 Sub-Clause 6.1.6; IC RSS-213 6.7.1)	Pass
13	Receiver Radiated Spurious Emissions (CFR47 Part 15.109; IC RSS-213 6.8; IC RSS-Gen 4.10, 6.0, 7.2.3)	Pass
14	AC Mains Conducted Emissions (CFR47 Part 15.207; IC RSS-Gen 7.2.2)	Pass
15	Frame Repetition Stability (CFR47 Part 15.323(e.1); ANSI C63.17 Sub-Clause 6.2.2; IC RSS-213 4.3.4(c))	Pass
16	Frame Period and Jitter (CFR47 Part 15.323(e.2); ANSI C63.17 Sub-Clause 6.2.3; IC RSS-213 4.3.4(c))	Pass
17	Carrier Frequency Stability (CFR47 Part 15.323(f.1, f.2, f.3); ANSI C63.17 Sub-Clause 6.2.1.1, 6.2.1.2, 6.2.1.3; IC RSS-213 6.2)	Pass

Intertek

Section	Test full name	Result
18	Monitoring Threshold (CFR47 Part 15.323(c2, c5); ANSI C63.17 Sub-Clause 7.3.1(b), 7.3.2; IC RSS-213 4.3.4(b)(2, 5.1 & 9))	Pass
19	FCC LIC Selection / IC LIC Confirmation with 6dB Power Measurement Resolution (CFR47 Part 15.323(c5); ANSI C63.17 Sub-Clause 7.3.3; IC RSS-213 4.3.4(b)(5.2)	Pass
20	Monitoring Time (CFR47 Part 15.323(c1); ANSI C63.17 Sub-Clause 7.3.4; IC RSS-213 4.3.4(b)(1))	Pass
21	Maximum Transmit Period (CFR47 Part 15.323(c3); ANSI C63.17 Sub-Clause 8.2.2; IC RSS-213 4.3.4(b)(3))	Pass
22	System Acknowledgement (CFR47 Part 15.323(c4); ANSI C63.17 Sub-Clause 8.1 / 8.2; IC RSS-213 4.3.4(b)(4))	Pass
23	Random Waiting Interval (CFR47 Part 15.323(c6); ANSI C63.17 Sub-Clause 8.1.2 & 8.1.3; IC RSS-213 4.3.4(b)(6))	Pass
24	Monitoring Bandwidth (CFR47 Part 15.323(c7.1); ANSI C63.17 Sub-Clause 7.4; IC RSS-213 4.3.4(b)(7.1))	Pass
25	Maximum/Monitoring Reaction Time (CFR47 Part 15.323(c7.2); ANSI C63.17 Sub-Clause 7.5; IC RSS-213 4.3.4(b)(7.2))	Pass
26	Monitoring Antenna (CFR47 Part 15.323(c8); ANSI C63.17 Clause 4; IC RSS-213 4.3.4(b)(8))	Pass
27	Duplex Connections (CFR47 Part 15.323(c10); ANSI C63.17 Sub- Clause 8.3; IC RSS-213 4.3.4(b)(10))	N/A
28	Co-Located Devices (CFR47 Part 15.323(c11); ANSI C63.17 Sub-Clause 8.4; IC RSS-213 4.3.4(b)(11))	N/A
29	Revision History	

Intertek

Report Number: 100058757BOX-016a Issued: 12/15/2010

3 Client Information

This EUT was tested at the request of:

Company: Sensasia Shower Products

600 Old State Road 419 Winter Springs, FL 32708

Contact: Mr. Alec Phillips Telephone: 407-414-4192

Fax: N/A

Email: alec@siana.us

4 Description of Equipment Under Test

Equipment Under Test								
Description	Manufacturer	Model Number	Serial Number					
Shower with DECT 6.0 Sensasia Shower Intercom/phone plus Products radio, Base Unit		Independence1 Base	#4					

Receive Date:	03/26/2010	
Received Condition:	Good	
Test Start Date:	06/15/2010	
Type:	Prototype in Good	
	Condition	

Description of Equipment Under Test (provided by client)

The EUT is a cordless telephone base unit that is part of the Independence1 system. It has an integral antenna with 0 dBi gain.

Equipment Under Test Power Configuration							
Rated Voltage Rated Current Rated Frequency Number of Phases							
120V 0.1A 60Hz 1							

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	The EUT was powered from 120VAC/60Hz and was set to operate in TBR6 mode. The R&S CMD-60 was used to control the channel of operation as well as the traffic and datastream. A temporary 50 Ohm antenna port was affixed to the EUT in order to perform conducted testing.
2	

5 System Setup and Method

	Cables							
ID	Description	Length (m)	Shielding	Ferrites	Termination			
	Power Cable	1.9	None	None	Metal/360 Jack			
				_				

Support Equipment							
Description	Manufacturer	Model Number	Serial Number				
6V DC Power Supply	N/L	DM-SC060058	0934E				
Independence1 Handset Unit	Sensasia Shower Products	Independence1	#4				
Independence1 Shower Panel Unit	Sensasia Shower Products	Independence1	#4				

5.1 Method:

Tested using ANSI C63.17:2006 and ANSI C63.4:2003 for guidance.

5.2 EUT Block Diagram:

6 Occupied Bandwidth

6.1 Method

Tests are performed in accordance with CFR47 Part 15.323(a); ANSI C63.17 Sub-Clause 6.1.3 & 6.1.2; and IC RSS-213 6.4.

TEST SITE: 10m Chamber Building

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011

Software Utilized:

Name	Manufacturer	Version	
DECT 6.0 Test Suite V2.15	Intertek	V2.15	

6.3 Results:

The sample tested was found to Comply.

6.4 Setup Photographs:

6.5 Test Data:

Limits: $50kHz \le EBW \le 2.5MHz$, where EBW = Emission Bandwidth

FCC Method (26 dB Bandwidth)

Results - Traffic Carrier

Channel	Channel Frequency (MHz)	Emission Bandwidth	Figures	Measured BW (MHz)	Verdict
Lowest	1921.536	26 dB down	1A	1.49	PASS
Highest	1928.448	26 dB down	1D	1.7	PASS

Channel	Channel Frequency (MHz)	Measuring Signal Level	Figures	Measured Frequency (MHz)	Reference				
		Peak Level		1921.54101	15.319d				
		6 dB down	1B	1921.076					
Lowest	1921.536	1921.536	6 db down		1921.96185	15.323c7			
				12 dB down	1C	1920.936	10.02367		
		12 dB down		Z UD UDWIT TO	1922.152232				
		Peak Level		1928.46303	15.319d				
	1928.448 6 dB down 12 dB down	6 dB dow	6 dB down	6 dD down	6 dR down	6 dB down	1E	1927.968	
Highest		1928.448	O GLD GOWIT	1928.91393	15.323c7				
		12 dB down 15	12 dR down 1E	12 dB down 1F -	1927.858	15.52507			
			12 dB dowi1		1929.054212				

Industry Canada Method (20 dB Bandwidth)

Results - Traffic Carrier

Channel	Channel Frequency (MHz)	Emission Bandwidth	Figures	Measured BW (MHz)	Verdict
Middle	1924.992	20 dB down	1M	1.41	PASS

Channel	Channel Frequency (MHz)	Measuring Signal Level	Figures	Measured Frequency (MHz)	Reference
		Peak Level		1925.00703	15.319d
	Middle 1924.992	6 dB down	1N	1924.542	
Middle				1925.48799	15.323c7
	12 dB down	10	1924.402	13.323.7	
		12 db down	10	1925.598212	

Date: 4.NOV.2010 19:51:16 1A - Channel 1; 26 dB Bandwidth

Date: 4.NOV.2010 19:57:10

1B - Channel 1: 6 dB

1B - Channel 1; 6 dB Bandwidth

Date: 4.NOV.2010 19:54:26 1C - Channel 1; 12 dB Bandwidth

Date: 4.NOV.2010 19:59:27 1D - Channel 5; 26 dB Bandwidth

Date: 4.NOV.2010 20:01:37 1E - Channel 5; 6 dB Bandwidth

Date: 4.NOV.2010 20:03:56 1F - Channel 5; 12 dB Bandwidth

Date: 4.NOV.2010 20:06:30 1G - Channel 3; 20 dB Bandwidth

Date: 4.NOV.2010 20:08:34 1H - Channel 3; 6 dB Bandwidth

Ambient Temperature:

Atmospheric Pressure:

Relative Humidity:

21 °C

38 %

989 mbars

Deviations, Additions, or Exclusions: None

No

Pretest Verification w/

BB Source:

7 Peak Transmit Power and RF Exposure

7.1 Method

Tests are performed in accordance with CFR47 Part 15.319(c & e); ANSI C63.17 Sub-Clause 6.1.2 & 4.3.1; and IC RSS-213 6.5.

TEST SITE: 10m Chamber Building

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011

Software Utilized:

Name	Manufacturer	Version
DECT 6.0 Test Suite V2.15	Intertek	V2.15

7.3 Results:

The sample tested was found to Comply.

7.4 Setup Photographs:

7.5 Test Data:

Peak Transmit Power Limit (P_{max}):

[X]	Manufacturer declares that the directional transmit power reduction is required.	gain of the antenna is less than or equal to 3dBi. No peak
	$P_{\text{max}} = 5 \log_{10} B - 10 \text{ dBm}$	when G _A ≤3dBi
[]	Manufacturer declares that the directional power shall be reduced by dB.	gain of the antenna is greater than 3dBi. The peak transmit
` '	$P_{\text{max}} = 5 \log_{10} B - 10 \text{ dBm} - (G_A - 3 \text{dBi})$	when G _A > 3dBi

Where

B = Emission Bandwidth (26dB down BW) in Hz

G_A = EUT Antenna Gain: <u>0</u> dBi

Results - Traffic Carrier

85% AC Voltage (102VAC/60Hz)

Channel	Channel Frequency (MHz)	Figures	Measured Peak Transmission Power (dBm)	Limit (dBm)	Verdict
Lowest	1921.536	2A	15.9	20.87	PASS
Middle	1924.992	2B	15.58	20.75	PASS
Highest	1928.448	2C	15.44	21.15	PASS

100% AC Voltage (120VAC/60Hz)

10070718 Voltage (120 V7.6700112)					
Channel	Channel Frequency (MHz)	Figures	Measured Peak Transmission Power (dBm)	Limit (dBm)	Verdict
Lowest	1921.536	2D	15.9	20.87	PASS
Middle	1924.992	2E	15.58	20.75	PASS
Highest	1928.448	2F	15.44	21.15	PASS

115% AC Voltage (138VAC/60Hz)

Channel	Channel Frequency (MHz)	Figures	Measured Peak Transmission Power (dBm)	Limit (dBm)	Verdict
Lowest	1921.536	2G	15.9	20.87	PASS
Middle	1924.992	2H	15.58	20.75	PASS
Highest	1928.448	21	15.44	21.15	PASS

Date: 4.NOV.2010 21:52:44

2A - Channel 1 Peak Transmit Power (102V/60Hz AC)

Date: 4.Nov.2010 21:51:38
2B - Channel 3 Peak Transmit Power (102V/60Hz AC)

Date: 4.Nov.2010 21:53:58

2C - Channel 5 Peak Transmit Power (102V/60Hz AC)

Date: 4.Nov.2010 21:46:36 2D - Channel 1 Peak Transmit Power (120V/60Hz AC)

Date: 4.NOV.2010 21:48:56 2E - Channel 3 Peak Transmit Power (120V/60Hz AC)

Date: 4.NOV.2010 21:47:42 2F - Channel 5 Peak Transmit Power (120V/60Hz AC)

Date: 4.NOV.2010 21:56:35
2G - Channel 1 Peak Transmit Power (138V/60Hz AC)

Date: 4.Nov.2010 21:58:08
2H - Channel 3 Peak Transmit Power (138V/60Hz AC)

Date: 4.NOV.2010 21:55:31

2I - Channel 5 Peak Transmit Power (138V/60Hz AC)

Note that the EUT is a base station device that is used in a Mobile Configuration. The maximum measured output power was 15.90 dBm (38.9 mW) and the antenna gain is stated by the manufacturer to be 0 dBi. Therefore, the EUT generates 15.90 dBm (38.9 mW) EIRP peak, and with a duty cycle of \sim 4%, the average EIRP is 1.6 mW and the minimum safe distance where the power density equals the General Occupation RF exposure limit of 1 mW/cm² is 0.35 cm.

Section 1.1310 and RSS-102 4.0 Combined Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Limits for Occupational/Controlled Exposures						
1500-100,000	137	0.364	5.0	6		
(B) Limits for General Population/Uncontrolled Exposure						
1500-100,000	61.4	0.163	1.0	30		

f = frequency in MHz

Date: 10.NOV.2010 21:12:24

386.9 us burst length (using maxhold)

Date: 10.NOV.2010 21:13:33
10 ms Burst Interval (Frame Period)

Intertek

Report Number: 100058757BOX-016a Issued: 12/15/2010

Date: 10.NOV.2010 21:14:02

10 Bursts in 100ms

	Nicholas Abbondante	Test Date:	11/04/2010, 11/10/2010
Test Personnel:	NNA		
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213		
Input Voltage:	120V/60Hz		
Pretest Verification w/		Ambient Temperature:	21 °C
BB Source:	No	Relative Humidity:	38 %
		Atmospheric Pressure:	989 mbars

Deviations, Additions, or Exclusions: None

8 Power Spectral Density

8.1 Method

Tests are performed in accordance with CFR47 Part 15.319(d); ANSI C63.17 Sub-Clause 6.1.5; and IC RSS-213 6.6.

TEST SITE: 10m Chamber Building

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011

Software Utilized:

Name	Manufacturer	Version
DECT 6.0 Test Suite V2.15	Intertek	V2.15

8.3 Results:

The sample tested was found to Comply.

8.4 Setup Photographs:

8.5 Test Data:

Limits: Measured value ≤3mW/ 3kHz, or (4.8 dBm / 3 kHz)

Results - Traffic Carrier

Channel	Channel Frequency (MHz)	Figures	Measured Power Spectral Density (dBm/3kHz)	Limit (dBm/3 kHz)	Verdict
Lowest	1921.536	3A & 3B	-9.59	4.8	Pass
Middle	1924.992	3C & 3D	-10.68	4.8	Pass
Highest	1928.448	3E & 3F	-9.97	4.8	Pass

The minimum Pulse Duration, 385 us, shown in plot 3G, was used for the averaging period as a worst-case.

Date: 4.NOV.2010 23:04:38

3A - Channel 1 Power Spectral Density Waveform

3B - Channel 1 Power Spectral Density Results

Date: 4.NOV.2010 23:17:26
3C - Channel 3 Power Spectral Density Waveform

3D - Channel 3 Power Spectral Density Results

Date: 4.NOV.2010 23:14:48
3E - Channel 5 Power Spectral Density Waveform

3F - Channel 5 Power Spectral Density Results

Relative Humidity:

Atmospheric Pressure:

38 %

989 mbars

Deviations, Additions, or Exclusions: None

No

BB Source:

9 Automatic Discontinuation of Transmission

9.1 Method

Tests are performed in accordance with CFR47 Part 15.319(f); and IC RSS-213 4.3.4(a).

TEST SITE: 10m Chamber Building

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
None						

9.3 Results:

The sample tested was found to Comply.

9.4 Test Data:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Results

	Test	Reaction of EUT	Verdict
1	Switch-off companion device	В	Pass
2	On hook by companion device	В	Pass
3	Remove power from companion device	Α	Pass
4	Switch-off device	NA	Pass
5	On hook device	A	Pass
6	Remove power from device	В	Pass

- A Connection break down, cease of transmit
- B Connection break down, EUT transmits signaling information
- C Connection break down, counter part transmits signaling information
- [X] The manufacturer declares that the EUT can automatically discontinue transmission in case of either absent information to transmit or operational failure.

Please find the manufacturer attestation in exhibit FCC15D_App-SD_Form2.doc

Test Personnel:	N/A	Test Date:	N/A
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213	_	
Input Voltage:	N/A		
Pretest Verification w/		Ambient Temperature:	N/A °C
BB Source:	N/A	Relative Humidity:	N/A %
•		Atmospheric Pressure:	N/A mbars

Deviations, Additions, or Exclusions: None

10 Emissions Inside the Sub-Bands, Conducted

10.1 Method

Tests are performed in accordance with CFR47 Part 15.323(d.1); ANSI C63.17 Sub-Clause 6.1.6; and IC RSS-213 6.7.2.

TEST SITE: 10m Chamber Building

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011

Software Utilized:

Name	Manufacturer	Version
DECT 6.0 Test Suite V2.15	Intertek	V2.15

10.3 Results:

The sample tested was found to Comply.

10.4 Setup Photographs:

10.5 Test Data:

Limit: Emissions inside the 1920-1930 MHz band shall be attenuated below the transmit power permitted for that device, as follows:

- 30 dB between the frequencies 1B and 2B measured from the centre of the occupied bandwidth;
- 50 dB between the frequencies 2B and 3B measured from the centre of the occupied bandwidth; and
- 60 dB between the frequencies 3B and band edge, where B is the occupied bandwidth in hertz.

Results - Traffic Carrier

Channel	Channel Frequency (MHz)	Figures	Verdict
Lowest	1921.536	4A	Pass
Middle	1924.992	4B	Pass
Highest	1928.448	4C	Pass

Date: 27.NOV.2010 18:41:30

4A - Channel 1 Emissions Inside the Sub-Band

Date: 27.Nov.2010 18:36:23
4B - Channel 3 Emissions Inside the Sub-Band

Test Personnel:

Product Standard:
Input Voltage:

Pretest Verification w/
BB Source:

No

FCC Part 15 Subpart D; IC
RSS-213
120V/60Hz

Test Levels: N/A

Ambient Temperature: 24 °C
Relative Humidity: 18 %

Atmospheric Pressure: 997 mbars

Deviations, Additions, or Exclusions: None

11 Emissions Outside the Sub-Bands, Conducted

11.1 Method

Tests are performed in accordance with CFR47 Part 15.323(d.2); ANSI C63.17 Sub-Clause 6.1.6; and IC RSS-213 6.7.1.

TEST SITE: 10m Chamber Building

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
AMP41	Dual Directional Coupler	Amplifier Research	DC7144A	305090	04/20/2010	04/20/2011
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/10/2010	08/10/2011
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010

^{* -} ROS001 was used for testing on 11/27/2010 only

11.3 Results:

The sample tested was found to Comply.

11.4 Setup Photographs:

11.5 Test Data:

Limit: Emissions outside the 1920-1930 MHz band shall be attenuated below a reference power of 112 milliwatts (-9.5 dBW) by at least:

- 30 dB between the band edges and 1.25 MHz above and below the band edges; (- 9.5dBm)
- 50 dB between 1.25 MHz and 2.5 MHz above or below the band edges; and (-29.5 dBm)
- 60 dB at 2.5 MHz or greater above or below the band edges (-39.5 dBm).

Date: 27.NOV.2010 18:44:42

Channel 1, Lower Band Edge

Date: 27.NOV.2010 18:29:40 Channel 5 I

Channel 5, Upper Band Edge

Date: 7.DEC.2010 22:48:34
30 MHz - 1 GHz Conducted Emissions, Channel 1

Date: 7.DEC.2010 22:50:37 1 - 1.9175 GHz Conducted Emissions, Channel 1

Date: 9.DEC.2010 23:01:26 1.9325 - 20 GHz Conducted Emissions, Channel 1

Date: 7.DEC.2010 22:54:44
30 MHz - 1 GHz Conducted Emissions, Channel 3

Date: 7.DEC.2010 22:52:15 1 - 1.9175 GHz Conducted Emissions, Channel 3

Date: 9.DEC.2010 23:09:20 1.9325 - 20 GHz Conducted Emissions, Channel 3

Date: 7.DEC.2010 22:57:19
30 MHz - 1 GHz Conducted Emissions, Channel 5

Date: 7.DEC.2010 23:01:31 1 - 1.9175 GHz Conducted Emissions, Channel 5

Date: 9.DEC.2010 23:26:23 1.9325 - 20 GHz Conducted Emissions, Channel 5

Test Personnel:	Nicholas Abbondante	Test Date:	11/27/2010 12/07/2010 12/09/2010
rest reisonner.	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213		
Input Voltage:	120V/60Hz		
Pretest Verification w/		Ambient Temperature:	24, 23, 22 °C
	No	Relative Humidity:	18, 16, 12 %
•		Atmospheric Pressure:	997, 987, 1016 mbars

Deviations, Additions, or Exclusions: None

12 Emissions Outside the Sub-Bands, Radiated

12.1 Method

Tests are performed in accordance with CFR47 Part 15.323(d.2); ANSI C63.17 Sub-Clause 6.1.6; and IC RSS-213 6.7.1.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Intertek

Report Number: 100058757BOX-016a | Issued: 12/15/2010

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 \text{ dB}\mu\text{V/m}$

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF =
$$10^{(32\ dB_{\mu}V\ /\ 20)}$$
 = 39.8 $\mu V/m$

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	·			PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			7HS-			
REA006	18GHz High Pass Filter	Reactel, Inc	18G/40G K11	(06)1	04/19/2010	04/19/2011
			7HSX-			
~REA004	3GHz High Pass Filter	Reactel, Inc	3G/18G-S11	06-1	12/06/2010	12/06/2011
EMC04	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	02/04/2010	02/04/2011
			3m Track B			
145-416	Cables 145-400 145-408 145-402 145-404	Huber + Suhner	cables	multiple	08/31/2010	08/31/2011
			NSP4000-			
PRE9	100MHz-40GHz Preamp	MITEQ	NFG	1260417	04/19/2010	04/19/2011
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/10/2010	08/10/2011
HORN3	HORN ANTENNA	EMCO	3115	9610-4980	03/22/2010	03/22/2011
			10m Track A			
145-410	Cables 145-400 145-406 145-407 145-405 145-403	Huber + Suhner	Cables	multiple	08/31/2010	08/31/2011
145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	09/24/2010	09/24/2011
145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	07/20/2010	07/20/2011

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3
Excel 2003	Microsoft	(11.8326.8324) SP3
EMI Boxborough.xls	Intertek	08/27/2010

12.3 Results:

The sample tested was found to Comply.

12.4 Setup Photographs:

Transmit Mode, 30-1000 MHz

Transmit Mode, 30-1000 MHz

Transmit Mode, 1-4 GHz

Transmit Mode, 4-18 GHz

Transmit Mode 18-20 GHz

12.5 Test Data:

In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed the limits of 47CFR15.209. Measurement shall be made as a radiated test.

See the Peak Transmit Power section for duty cycle measurements.

Test Information

Test Details User Input

Project: Sensasia G100058757

Test Notes: 994mB; Base; Channel 1; Vertical Polarity

Temperature: 21c Humidity: 40%

Tested by: Nicholas Abbondante
Test Started: Nov 5 2010 19:36

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor

CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Intertek

Report Number: 100058757BOX-016a Issued: 12/15/2010

Measureu.	×ι									
Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
59.646 M	16.03	7.265	- 25.905	30.00	-13.97	1	27	1.70	QP	120 k
196.514 M	11.70	12.333	- 24.434	33.00	-21.30	1	211	1.45	QP	120 k
214.249 M	17.29	10.900	- 24.446	33.00	-15.71	1	307	1.30	QP	120 k
283.428 M	15.91	13.400	- 24.529	36.00	-20.09	1	18	1.36	QP	120 k

Test Information

Test Details User Input

Project: Sensasia G100058757

Test Notes: 994mB; Base; Channel 1; Horizontal Polarity

Temperature: 21c Humidity: 40%

Tested by: Nicholas Abbondante
Test Started: Nov 5 2010 20 : 11

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

 Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

> AF = Antenna Factor CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
199.372 M	11.11	12.700	- 24.406	33.00	-21.89		265	2.11	QP	120 k

Test Information

Test Details User Input

Project: Sensasia G100058757

Test Notes: 994mB; Base; Channel 3; Vertical Polarity

Temperature: 21c Humidity: 40%

Tested by: Nicholas Abbondante
Test Started: Nov 5 2010 20: 45

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

 Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

> AF = Antenna Factor CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level*(dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
62.163 M	17.20	7.516	- 25.877	30.00	-12.80	1	238	2.07	QP	120 k
103.090 M	10.54	11.065	- 25.551	33.00	-22.46	1	140	1.58	QP	120 k
159.025 M	10.77	12.581	- 24.838	33.00	-22.23	1	317	1.70	QP	120 k
228.105 M	8.90	11.224	- 24.489	36.00	-27.10	1	43	2.48	QP	120 k

Test Information

Test Details User Input

Project: Sensasia G100058757

Test Notes: 994mB; Base; Channel 3; Horizontal Polarity

Temperature: 21c Humidity: 40%

Tested by: Nicholas Abbondante
Test Started: Nov 5 2010 20 : 28

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

 Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

> AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
197.888 M	10.86	12.462	- 24.420	33.00	-22.14		251	1.19	QP	120 k

Test Information

Test Details User Input

Project: Sensasia G100058757

Test Notes: 994mB; Base; Channel 5; Vertical Polarity

Temperature: 21c Humidity: 40%

Tested by: Nicholas Abbondante
Test Started: Nov 5 2010 21 : 19

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

 Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

> AF = Antenna Factor CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
62.199 M	18.05	7.520	- 25.877	30.00	-11.95	I	32	1.49	QP	120 k
158.951 M	15.87	12.579	- 24.838	33.00	-17.13	1	291	1.40	QP	120 k
196.553 M	14.69	12.342	- 24.433	33.00	-18.31	1	53	1.51	QP	120 k
283.430 M	15.38	13.400	- 24.529	36.00	-20.62	1	16	1.93	QP	120 k

Test Information

Test Details User Input

Project: Sensasia G100058757

Test Notes: 994mB; Base; Channel 5; Horizontal Polarity

Temperature: 21c Humidity: 40%

Tested by: Nicholas Abbondante
Test Started: Nov 5 2010 21:57

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

 Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

> AF = Antenna Factor CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
135.536 M	11.57	13.757	- 25.112	33.00	-21.43		302	1.96	QP	120 k

Intertek

Report Number: 100058757BOX-016a Issued: 12/15/2010

Intertek

Radiated Emissions

Company: Sensasia Model #: Base Antenna & Cables: Ν Bands: N, LF, HF, SHF Antenna: HORN3 V3m 03-22-2011.txt HORN3 H3m 03-22-2011.txt

Serial #: #4 Cable(s): 3mTrackB 145-416 08-31-2011.txt NONE.

Engineers: Nicholas Abbondante NONE Location: 10m Chamber Barometer: DAV004 Filter:

Project #: G100058757 Date(s): 11/10/10

Standard: FCC Part 15 Subpart C 15.209 34% 1013mB Temp/Humidity/Pressure: 21c

Receiver: R&S ESI (145-128) 08-10-2011 Limit Distance (m): 3 PreAmp: PRE9 04-19-2011.txt Test Distance (m): 3

PreAmp Used? (Y or N): Voltage/Frequency: 120V/60Hz Frequency Range: 1-4 GHz Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

1 oak. i i	· Quadi i	Jan. Qi Ave	rage. Att C	TRIVIO. TRIVIC	7, INI - INON	oc i looi, ixe	- 1 (OO(110t)	o Dana, Do	inawiatii aci	lotou us itt	J V V / V D V V	_	
	Ant.			Antenna	Cable	Pre-amp	Distance					Ī	
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
	1	Note: Averag	e obtained	from peak r	eading usir	ig 28.2 dB a	verage fact	or for 3.869	% duty cycl	е		Ī	
					Note: Base	Channel 1						Ī	
PK	V	1917.500	31.62	27.45	5.10	0.00	0.00	64.17	74.00	-9.83	1/3 MHz	Ī	
AVG	V	1917.500	3.42	27.45	5.10	0.00	0.00	35.97	54.00	-18.03	1/3 MHz	Ī	
PK	V	3843.072	29.51	32.58	7.43	0.00	0.00	69.52	74.00	-4.48	1/3 MHz	RB	RB
AVG	V	3843.072	1.31	32.58	7.43	0.00	0.00	41.32	54.00	-12.68	1/3 MHz	RB	RB
					Note: Base	Channel 3							
PK	V	3850.000	30.02	32.58	7.45	0.00	0.00	70.05	74.00	-3.95	1/3 MHz	RB	RB
AVG	V	3850.000	1.82	32.58	7.45	0.00	0.00	41.85	54.00	-12.15	1/3 MHz	RB	RB
					Note: Base	Channel 5							
PK	Н	1932.500	30.89	27.58	5.10	0.00	0.00	63.57	74.00	-10.43	1/3 MHz	ĺ	
AVG	Ι	1932.500	2.69	27.58	5.10	0.00	0.00	35.37	54.00	-18.63	1/3 MHz		
PK	Η	3857.000	30.65	32.53	7.47	0.00	0.00	70.65	74.00	-3.35	1/3 MHz	RB	RB
AVG	Н	3857.000	2.45	32.53	7.47	0.00	0.00	42.45	54.00	-11.55	1/3 MHz	RB	RB

Intertek

Special Radiated Emissions

Company: Sensasia Antenna & Cables: HF Bands: N, LF, HF, SHF Model #: Base Antenna: HORN3 V3m 03-22-2011.txt HORN3 H3m 03-22-2011.txt

Serial #: #4 Cable(s): 3mTrackB 145-416 08-31-2011.txt NONE.

Engineers: Nicholas Abbondante Location: 10m Chamber Barometer: DAV004 Filter: REA004

Project #: G100058757 Date(s): 11/10/10

Standard: FCC Part 15 Subpart C 15.209 Temp/Humidity/Pressure: 21c 34% 1013mB

PreAmp Used? (Y or N): Y Voltage/Frequency: Fresh Battery Frequency Range: 4-18GHz
Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)
Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Peak: Pl	K Quasi-P	eak: QP Ave	rage: AVG	RMS: RMS	S; NF = Noise			ed Band; Ba	indwidth dei	noted as Ri	BW/VBW	-	
	Ant.	1		Antenna	Cable	Pre-amp	Distance			1			
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
		Note: Averag	e obtained	from peak i	eading usir	ng 28.2 dB a	verage fact	tor for 3.869	% duty cycl	е			
		_		•	Note: Base	Channel 1							
PK	V	5764.608	39.97	34.47	9.19	28.99	0.00	54.65	74.00	-19.35	1/3MHz		
AVG	V	5764.608	11.77	34.47	9.19	28.99	0.00	26.45	54.00	-27.55	1/3MHz	Ī	
PK	V	7686.144	36.87	36.47	10.78	27.95	0.00	56.18	74.00	-17.82	1/3MHz	RB	RB
AVG	V	7686.144	8.67	36.47	10.78	27.95	0.00	27.98	54.00	-26.02	1/3MHz	RB	RB
PK	Н	9607.680	34.10	39.11	12.17	26.91	0.00	58.47	74.00	-15.53	1/3MHz		
AVG	Н	9607.680	5.90	39.11	12.17	26.91	0.00	30.27	54.00	-23.73	1/3MHz		
PK	Н	11529.216	34.08	39.22	13.61	26.61	0.00	60.29	74.00	-13.71	1/3MHz	RB	RB
AVG	Н	11529.216	5.88	39.22	13.61	26.61	0.00	32.09	54.00	-21.91	1/3MHz	RB	RB
PK	V	13450.752	33.97	40.30	15.31	26.49	0.00	63.09	74.00	-10.91	1/3MHz		
AVG	V	13450.752	5.77	40.30	15.31	26.49	0.00	34.89	54.00	-19.11	1/3MHz		
PK	V	15372.288	33.07	39.99	16.79	26.58	0.00	63.27	74.00	-10.73	1/3MHz	RB	RB
AVG	V	15372.288	4.87	39.99	16.79	26.58	0.00	35.07	54.00	-18.93	1/3MHz	RB	RB
PK	Н	17293.824	34.20	43.23	17.25	27.50	0.00	67.18	74.00	-6.82	1/3MHz	Ī	
AVG	Н	17293.824	6.00	43.23	17.25	27.50	0.00	38.98	54.00	-15.02	1/3MHz		
	•	•		•	Note: Base	Channel 3		•	-	•	•		
PK	V	5775.000	40.54	34.46	9.23	28.98	0.00	55.24	74.00	-18.76	1/3MHz	Ī	
AVG	V	5775.000	12.34	34.46	9.23	28.98	0.00	27.04	54.00	-26.96	1/3MHz		
PK	V	7700.000	38.26	36.48	10.79	27.94	0.00	57.59	74.00	-16.41	1/3MHz	RB	RB
AVG	V	7700.000	10.06	36.48	10.79	27.94	0.00	29.39	54.00	-24.61	1/3MHz	RB	RB
PK	V	9625.000	34.20	39.18	12.19	26.90	0.00	58.66	74.00	-15.34	1/3MHz	Ī	
AVG	V	9625.000	6.00	39.18	12.19	26.90	0.00	30.46	54.00	-23.54	1/3MHz		
PK	Н	11550.000	33.44	39.24	13.59	26.61	0.00	59.66	74.00	-14.34	1/3MHz	RB	RB
AVG	Н	11550.000	5.24	39.24	13.59	26.61	0.00	31.46	54.00	-22.54	1/3MHz	RB	RB
PK	Н	13475.000	33.92	40.38	15.32	26.49	0.00	63.13	74.00	-10.87	1/3MHz		
AVG	Н	13475.000	5.72	40.38	15.32	26.49	0.00	34.93	54.00	-19.07	1/3MHz		
PK	Н	15400.000	33.40	39.75	16.86	26.59	0.00	63.42	74.00	-10.58	1/3MHz	RB	RB
AVG	Н	15400.000	5.20	39.75	16.86	26.59	0.00	35.22	54.00	-18.78	1/3MHz	RB	RB
PK	V	17325.000	34.07	43.36	17.31	27.52	0.00	67.23	74.00	-6.77	1/3MHz]	
AVG	V	17325.000	5.87	43.36	17.31	27.52	0.00	39.03	54.00	-14.98	1/3MHz]	
					Note: Base	Channel 5]	
PK	V	5785.488	39.82	34.44	9.26	28.98	0.00	54.54	74.00	-19.46	1/3MHz		
AVG	V	5785.488	11.62	34.44	9.26	28.98	0.00	26.34	54.00	-27.66	1/3MHz	I	
PK	V	7713.984	38.35	36.49	10.80	27.93	0.00	57.71	74.00	-16.29	1/3MHz	RB	RB
AVG	V	7713.984	10.15	36.49	10.80	27.93	0.00	29.51	54.00	-24.49	1/3MHz	RB	RB
PK	Н	9642.480	34.43	39.22	12.20	26.89	0.00	58.96	74.00	-15.04	1/3MHz]	
AVG	Н	9642.480	6.23	39.22	12.20	26.89	0.00	30.76	54.00	-23.24	1/3MHz	I	
PK	V	11570.976	34.26	39.24	13.57	26.61	0.00	60.46	74.00	-13.54	1/3MHz	RB	RB
AVG	V	11570.976	6.06	39.24	13.57	26.61	0.00	32.26	54.00	-21.74	1/3MHz	RB	RB
PK	V	13499.472	34.50	40.38	15.34	26.49	0.00	63.73	74.00	-10.27	1/3MHz	1	
AVG	V	13499.472	6.30	40.38	15.34	26.49	0.00	35.53	54.00	-18.47	1/3MHz	I	
PK	V	15427.968	33.02	39.62	16.94	26.61	0.00	62.97	74.00	-11.03	1/3MHz	RB	RB
AVG	V	15427.968	4.82	39.62	16.94	26.61	0.00	34.77	54.00	-19.23	1/3MHz	RB	RB
PK	V	17356.464	33.85	43.68	17.38	27.53	0.00	67.38	74.00	-6.62	1/3MHz	I	
AVG	V	17356.464	5.65	43.68	17.38	27.53	0.00	39.18	54.00	-14.82	1/3MHz		

Intertek

Special Radiated Emissions

Company: Sensasia Antenna & Cables: SHF Bands: N, LF, HF, SHF Model #: Base Antenna: EMC04_1M_Vert_2-4-2011.txt EMC04_1M_H_2-4-2011.txt

Serial #: #4 Cable(s): 3mTrackB 145-416 08-31-2011.txt NONE.

Engineers: Nicholas Abbondante Location: 10m Chamber Barometer: DAV004 REA004 Filter: Project #: G100058757 Date(s): 11/10/10

Standard: FCC Part 15 Subpart C 15.209 Temp/Humidity/Pressure: 21c 34% 1013mB

Receiver: R&S ESI (145-128) 08-10-2011 Limit Distance (m): 3 PreAmp: PRE9 04-19-2011.txt Test Distance (m): 3

PreAmp Used? (Y or N): Voltage/Frequency: 120V/60Hz Frequency Range:

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor Fac

I can. I	it Quasi-i	cak. Qi Avei	age. Avo	TRIVIO. TRIVIO,	141 - 14013	e i looi, ixb	- Nestricted	a Danu, Dai	idwidtii deii	oled as IND	VV/ V D V V	_	
	Ant.			Antenna	Cable	Pre-amp	Distance						
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
		Note: Average	e obtained f	rom peak re	eading using	g 28.2 dB av	erage facto	or for 3.8699	% duty cycle	1			
				1	Note: Base	Channel 1							
PK	Н	19215.360	33.00	44.74	18.69	28.42	0.00	68.01	74.00	-5.99	1/3 MHz	RB	RB
AVG	Н	19215.360	4.80	44.74	18.69	28.42	0.00	39.81	54.00	-14.19	1/3 MHz	RB	RB
				1	Note: Base	Channel 3							
PK	V	19250.000	32.41	45.25	18.73	28.44	0.00	67.95	74.00	-6.05	1/3 MHz	RB	RB
AVG	V	19250.000	4.21	45.25	18.73	28.44	0.00	39.75	54.00	-14.25	1/3 MHz	RB	RB
Note: Base Channel 5													
PK	V	19284.960	32.95	45.25	18.76	28.46	0.00	68.50	74.00	-5.50	1/3 MHz	RB	RB
AVG	V	19284.960	4.75	45.25	18.76	28.46	0.00	40.30	54.00	-13.70	1/3 MHz	RB	RB

Nicholas Abbondante Test Date: 11/05/2010, 11/10/2010

NNA Test Personnel:

FCC Part 15 Subpart D; IC See test results Test Levels:

RSS-213 Product Standard:

120V/60Hz Input Voltage: Ambient Temperature: 21, 21 °C

Pretest Verification w/ Relative Humidity: 40, 34 % BB Source: No

Atmospheric Pressure: 994, 1013 mbars

Deviations, Additions, or Exclusions: None

13 Receiver Radiated Spurious Emissions

13.1 Method

Tests are performed in accordance with CFR47 Part 15.109; IC RSS-213 6.8; IC RSS-Gen 4.10, 6.0, 7.2.3, and ANSI C63.4:2003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Intertek

Report Number: 100058757BOX-016a | Issued: 12/15/2010

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ uV/m}$

13.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			3m Track B			
145-416	Cables 145-400 145-408 145-402 145-404	Huber + Suhner	cables	multiple	08/31/2010	08/31/2011
145014	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	01/05/2010	01/05/2011
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/10/2010	08/10/2011
HORN3	HORN ANTENNA	EMCO	3115	9610-4980	03/22/2010	03/22/2011
			10m Track A			
145-410	Cables 145-400 145-406 145-407 145-405 145-403	Huber + Suhner	Cables	multiple	08/31/2010	08/31/2011
145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	09/24/2010	09/24/2011
145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	07/20/2010	07/20/2011

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

13.3 Results:

The sample tested was found to Comply.

13.4 Setup Photographs:

Receive Mode 30-1000 MHz

13.5 Test Data:

Receiver spurious emissions shall comply with the limits specified in CFR47 Part 15.109 and RSS-Gen Table 1.

Test Information

Test Details User Input

Project: Sensasia G100058757
Test Notes: 1006mB; Base Receive Mode

Temperature: 21c Humidity: 43%

Tested by: Nicholas Abbondante
Test Started: Nov 16 2010 23 : 11

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

	~.									
Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
31.827 M	11.05	19.303	- 26.312	30.00	-18.95	1	316	2.47	QP	120 k
137.522 M	8.97	13.497	- 25.088	33.00	-24.03	1	278	2.40	QP	120 k
805.247 M	18.56	21.605	- 23.185	36.00	-17.44	1	18	2.24	QP	120 k

Test Information

Test Details User Input

Project: Sensasia G100058757

Test Notes: 1006mB; Base Receive Mode Horizontal Polarity

Temperature: 21c Humidity: 43%

Tested by: Nicholas Abbondante
Test Started: Nov 16 2010 23 : 38

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
197.858 M	8.86	12.457	- 24.421	33.00	-24.14		105	3.10	QP	120 k
954.352 M	21.11	22.687	- 22.405	36.00	-14.89		273	2.30	QP	120 k

Test Information

Test Details User Input

Project: Sensasia G100058757
Test Notes: Sensasia G100058757
1006mB; Base Receive Mode

Temperature: 21c Humidity: 43%

Tested by: Nicholas Abbondante
Test Started: Nov 16 2010 22 : 27

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor

CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: F	PEAK									
Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
4.982 G	47.13	32.730	- 26.721	74.00	-26.87		43	2.42	PEAK	1 M
5.551 G	49.41	33.548	- 26.067	74.00	-24.59	1	72	1.34	PEAK	1 M
6.158 G	53.08	33.634	- 24.876	74.00	-20.92	1	174	2.94	PEAK	1 M
6.756 G	56.15	34.565	- 25.598	74.00	-17.85		290	1.91	PEAK	1 M
6.946 G	54.79	34.810	- 25.307	74.00	-19.21		187	3.13	PEAK	1 M
9.946 G	54.04	37.832	- 23.754	74.00	-19.96		306	2.46	PEAK	1 M
Measured: A	AVERAGI	≣								
Frequency (Hz)	Level* (dBuV/ m)	AF	PA+CL	Limit(dBuV/ m)	Margin(dBuV/ m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW(Hz)
4.982 G	36.43	32.730	- 26.721	54.00	-17.57	1	43	2.42	AVERAGE	1 M
5.551 G	39.53	33.548	- 26.067	54.00	-14.47	I	72	1.34	AVERAGE	1 M
6.158 G	43.53	33.634	- 24.876	54.00	-10.47	1	174	2.94	AVERAGE	1 M
6.756 G	45.61	34.565	- 25.598	54.00	-8.39		290	1.91	AVERAGE	1 M
6.946 G	45.15	34.810	- 25.307	54.00	-8.85		187	3.13	AVERAGE	1 M
9.946 G	43.32	37.832	- 23.754	54.00	-10.68		306	2.46	AVERAGE	1 M
Test Po	ersonnel:	Nicholas Al	bbondante				Test [Date: 11/1	6/2010	
Product S	_	RSS-213, I	5 Subpart B C RSS-Gen				Test Le	vels: See	test results	
Input Voltage: 120V/60Hz Pretest Verification w/					Ambien	t Tempera	ture: 21 º	С		
BB Source: No					ative Hum neric Press		6 mbars			

Deviations, Additions, or Exclusions: None

14 AC Mains Conducted Emissions

14.1 Method

Tests are performed in accordance with CFR47 Part 15.207; IC RSS-Gen 7.2.2, and ANSI C63.4:2003.

TEST SITE: 10m Chamber Building

<u>The EMC Lab</u> has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

<u>The AMAP Building and Lab</u> includes general lab space that can be used for testing where a shielded/enclosed environment is not required.

Measurement Uncertainty

For conducted emissions, $U_{\it lab}$ (3.2 dB in worst case) < $U_{\it CISPR}$ (3.6 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF Where NF = Net Reading in $dB\mu V$

 $RF = Reading \ from \ receiver \ in \ dB\mu V$

LF = LISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V$$
 UF = $10^{(49.1 \ dB\mu V / 20)} = 285.1 \ \mu V/m$

14.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			ESCI			
			1166.5950K0			
ROS002	9kHz to 3GHz EMI Test Receiver	Rohde & Schwartz	3	100067	03/26/2010	03/26/2011
~CBLBN						
C61	Cable, BNC	N/L	RG-58 C/U	CBLBNC61	09/15/2010	09/25/2011
DS26A	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS26A	09/15/2010	09/15/2011
			9252-50-R-			
145015	LISN: 50 Ohm/50 microHenry	Solar Electronics	24-BNC	971617	01/12/2010	01/12/2011

Software Utilized:

Name	Manufacturer	Version
Excel 2003	Microsoft	(11.8326.8324) SP3
EMI Boxborough.xls	Intertek	08/27/2010

14.3 Results:

The sample tested was found to Comply.

14.4 Setup Photographs:

Base Idle Mode

Base Idle Mode

Base Transmit Mode

Base Transmit Mode

Handset Idle; Charging in Base

Handset Idle; Charging in Base

Handset Transmitting, Charging in Base

Handset Transmitting, Charging in Base

14.5 Data:

AC Line-Conducted Emissions must be below the CFR47 Part 15.207 and IC RSS-Gen 7.2.2 Table 2 Limits.

Intertek

Conducted Emissions

 Company:
 Sensasia
 Receiver:
 R&S ESCI (ROS002) 03-26-2011

 Model #:
 Base
 Cable:
 CBLBNC61_9-15-2011.txt

Serial #: #4

Engineer(s): Nicholas Abbondante

Cable: CBLBNC61_9-15-2011.txt

LISN 1: LISN 145015_line1_1-12-2011.txt

LISN 2: LISN 15_line2_1-12-2011.txt

LISN 2: LISN 15_line2_1-12-2011.txt

 Project #: G100058757
 Date: 11/27/10
 LISN 3: NONE.

 Standard: FCC Part 15 Subpart C 15.207/IC RSS-Gen
 LISN 4: NONE.

Barometer: DAV004 Temp/Humidity/Pressure: 23c 19% 992mB Attenuator: DS26A_9-15-2011.txt

Voltage/Frequency: 120V/60Hz Frequency Range: 150kHz - 30 MHz

Net is the sum of worst-case lisn, cable, & attenuator losses, and initial reading, factors are not shown

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor; Bandwidth denoted as RBW/VBW Reading Reading Reading QP Reading Detector Frequency Line 1 Line 2 Line 3 Line 4 Net Limit Margin Bandwidth MHz dB(uV) dB(uV) dB(uV) dB(uV) Type dB(uV) dB(uV) dΒ Note: Base Idle Mode QP 0.175 16.20 16.50 37.60 64.74 -27.14 9/30 kHz QΡ 9/30 kHz 0.262 9.20 32.43 61.37 -28.94 11.40 QΡ 0.521 10.20 11.40 32.37 56.00 -23.63 9/30 kHz QP 1.312 6.80 6.70 27.83 56.00 -28.17 9/30 kHz QP 7.711 3.40 5.00 26.27 60.00 -33.73 9/30 kHz QP 10.757 -0.60 9/30 kHz 2.20 23.52 60.00 -36.48

		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
				Note: Base	Idle Mode				
AVG	0.175	-1.00	-3.00			20.14	54.74	-34.60	9/30 kHz
AVG	0.262	-2.40	-4.90			18.66	51.37	-32.72	9/30 kHz
AVG	0.521	-0.10	-5.10			20.89	46.00	-25.11	9/30 kHz
AVG	1.312	-2.70	-7.10			18.33	46.00	-27.67	9/30 kHz
AVG	7.711	-4.90	-3.40			17.87	50.00	-32.13	9/30 kHz
AVG	10.757	-7.70	-6.80			14.52	50.00	-35.48	9/30 kHz

Intertek

Conducted Emissions

 Company:
 Sensasia
 Receiver:
 R&S ESCI (ROS002) 03-26-2011

 Model #:
 Base
 Cable:
 CBLBNC61_9-15-2011.txt

 Serial #:
 #4
 LISN 1:
 LISN 11.tlsN 145015_line1_1-12-2011.txt

Engineer(s): Nicholas Abbondante

Location: 10m Chamber

LISN 2: LISN145015_line2_1-12-2011.txt

Project #: G100058757 Date: 11/27/10 LISN 3: NONE. Standard: FCC Part 15 Subpart C 15.207/IC RSS-Gen LISN 4: NONE.

Barometer: DAV004 Temp/Humidity/Pressure: 23c 19% 992mB Attenuator: DS26A_9-15-2011.txt

Voltage/Frequency: 120V/60Hz Frequency Range: 150kHz - 30 MHz

Net is the sum of worst-case lisn, cable, & attenuator losses, and initial reading, factors are not shown

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS: NF = Noise Floor: Bandwidth denoted as RBW/VBW

I cak. i i	Teak. The Quasi-Teak. QT Average. Ave Time. Time, The I woise Floor, Bahawath defloted as NEW/VEW											
		Reading	Reading	Reading	Reading		QP					
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth			
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB				
			N	ote: Base T	ransmit Mod	de						
QP	0.175	16.20	16.40			37.50	64.74	-27.24	9/30 kHz			
QP	0.262	12.30	12.60			33.63	61.37	-27.74	9/30 kHz			
QP	0.521	11.10	14.00			34.97	56.00	-21.03	9/30 kHz			
QP	1.312	12.20	8.80			33.23	56.00	-22.77	9/30 kHz			
QP	7.711	7.00	7.90			29.17	60.00	-30.83	9/30 kHz			
QP	10.757	2.60	2.80			24.12	60.00	-35.88	9/30 kHz			

		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
			N	ote: Base T	ransmit Mod	de			
AVG	0.175	0.80	-2.10			21.94	54.74	-32.80	9/30 kHz
AVG	0.262	0.60	-3.10			21.66	51.37	-29.72	9/30 kHz
AVG	0.521	0.20	-0.30			21.19	46.00	-24.81	9/30 kHz
AVG	1.312	0.80	-5.30			21.83	46.00	-24.17	9/30 kHz
AVG	7.711	-2.00	-1.20			20.07	50.00	-29.93	9/30 kHz
AVG	10.757	-6.30	-6.50			15.04	50.00	-34.96	9/30 kHz

Intertek

Conducted Emissions

 Company:
 Sensasia
 Receiver:
 R&S ESCI (ROS002) 03-26-2011

 Model #:
 Handset
 Cable:
 CBLBNC61_9-15-2011.txt

 Serial #:
 #4
 LISN 1:
 LISN 11:
 LISN 11:
 LISN 12-2011.txt

Engineer(s): Nicholas Abbondante Location: 10m Chamber LISN 2: LISN145015_line2_1-12-2011.txt

 Project #: G100058757
 Date: 11/27/10
 LISN 3: NONE.

 Standard: FCC Part 15 Subpart C 15.207/IC RSS-Gen
 LISN 4: NONE.

Barometer: DAV004 Temp/Humidity/Pressure: 23c 19% 992mB Attenuator: DS26A_9-15-2011.txt

Voltage/Frequency: 120V/60Hz Frequency Range: 150kHz - 30 MHz

Net is the sum of worst-case lisn, cable, & attenuator losses, and initial reading, factors are not shown

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS: NF = Noise Floor: Bandwidth denoted as RBW/VBW

r cak. r r	reak. The Quasi-reak. Qr. Average. Avo. Kino. Kino, Nr. = Noise Floor, Bandwidth denoted as Kbw/vbw											
		Reading	Reading	Reading	Reading		QP					
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth			
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB				
			Note: F	landset Idle	; Charging	in Base						
QP	0.179	16.90	17.10			38.20	64.54	-26.34	9/30 kHz			
QP	0.527	13.60	14.60			35.57	56.00	-20.43	9/30 kHz			
QP	0.980	10.90	10.80			31.91	56.00	-24.09	9/30 kHz			
QP	1.600	9.40	8.60			30.45	56.00	-25.55	9/30 kHz			
QP	7.202	4.90	7.40			28.67	60.00	-31.33	9/30 kHz			
QP	19.360	-4.80	-2.50			18.90	60.00	-41.10	9/30 kHz			

		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
			Note: F	landset Idle	; Charging	in Base			
AVG	0.179	3.10	0.10			24.24	54.54	-30.30	9/30 kHz
AVG	0.527	4.90	0.20			25.89	46.00	-20.11	9/30 kHz
AVG	0.980	2.30	-1.10			23.31	46.00	-22.69	9/30 kHz
AVG	1.600	0.50	-5.10			21.55	46.00	-24.45	9/30 kHz
AVG	7.202	-1.90	-0.30			20.97	50.00	-29.03	9/30 kHz
AVG	19.360	-11.20	-9.90			11.50	50.00	-38.50	9/30 kHz

Intertek

Conducted Emissions

 Company:
 Sensasia
 Receiver:
 R&S ESCI (ROS002) 03-26-2011

 Model #:
 Handset
 Cable:
 CBLBNC61_9-15-2011.txt

 Serial #:
 #4
 LISN 1:
 LISN 15. LISN 145015_line1_1-12-2011.txt

Engineer(s): Nicholas Abbondante Location: 10m Chamber LISN 2: LISN145015_line2_1-12-2011.txt

 Project #: G100058757
 Date: 11/27/10
 LISN 3: NONE.

 Standard: FCC Part 15 Subpart C 15.207/IC RSS-Gen
 LISN 4: NONE.

Barometer: DAV004 Temp/Humidity/Pressure: 23c 19% 992mB Attenuator: DS26A_9-15-2011.txt

Voltage/Frequency: 120V/60Hz Frequency Range: 150kHz - 30 MHz

Net is the sum of worst-case lisn, cable, & attenuator losses, and initial reading, factors are not shown

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS: NF = Noise Floor: Bandwidth denoted as RBW/VBW

Peak: Pr	Peak: PK Quasi-Peak: QP Average: AVG RIVIS: RIVIS; NF = Noise Floor; Bandwidth denoted as RBVV/VBVV											
		Reading	Reading	Reading	Reading		QP					
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth			
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB				
			Note: Hand	set Transm	itting; Charg	ging in Base)					
QP	0.179	12.50	16.70			37.80	64.54	-26.74	9/30 kHz			
QP	0.533	14.00	15.10			36.07	56.00	-19.93	9/30 kHz			
QP	0.968	14.50	11.80			35.51	56.00	-20.49	9/30 kHz			
QP	1.600	13.40	10.90			34.45	56.00	-21.55	9/30 kHz			
QP	6.861	7.90	12.60			33.86	60.00	-26.14	9/30 kHz			
QP	10.077	6.10	6.30			27.61	60.00	-32.39	9/30 kHz			

		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
			Note: Hand	set Transm	itting; Charg	ging in Base)		
AVG	0.179	-2.30	0.10			21.20	54.54	-33.34	9/30 kHz
AVG	0.533	0.60	0.10			21.59	46.00	-24.41	9/30 kHz
AVG	0.968	4.50	-0.40			25.51	46.00	-20.49	9/30 kHz
AVG	1.600	2.50	-2.00			23.55	46.00	-22.45	9/30 kHz
AVG	6.861	0.20	3.70			24.96	50.00	-25.04	9/30 kHz
AVG	10.077	-2.30	-1.90			19.41	50.00	-30.59	9/30 kHz

Nicholas Abbondante Test Date: 11/27/2010

Test Personnel:

FCC Part 15 Subpart D; IC Test Levels: N/A

Pretest Verification w/

Ambient Temperature: 23 °C

BB Source: No Relative Humidity: 19 %
Atmospheric Pressure: 992 mbars

Deviations, Additions, or Exclusions: None

15 Frame Repetition Stability

15.1 Method

Tests are performed in accordance with CFR47 Part 15.323(e.1); ANSI C63.17 Sub-Clause 6.2.2; and IC RSS-213 4.3.4(c).

TEST SITE: 10m Chamber Building

15.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011

Software Utilized:

Name	Manufacturer	Version
DECT 6.0 Test Suite V2.15	Intertek	V2.15

15.3 Results:

The sample tested was found to Comply.

15.4 Setup Photographs:

15.5 Test Data:

Limits:

[] TDD= > Frame frequency drift \leq 50 ppm

[✓] TDMA= > Frame frequency drift ≤ 10 ppm

Results

Maximum Frame Rate Drift (ppm)	Limit (ppm)	Verdict
0	10	Pass

Deviations, Additions, or Exclusions: None

16 Frame Period and Jitter

16.1 Method

Tests are performed in accordance with CFR47 Part 15.323(e.2); ANSI C63.17 Sub-Clause 6.2.3; and IC RSS-213 4.3.4(c).

TEST SITE: 10m Chamber Building

16.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011

Software Utilized:

Name	Manufacturer	Version
DECT 6.0 Test Suite V2.15	Intertek	V2.15

16.3 Results:

The sample tested was found to Comply.

16.4 Setup Photographs:

16.5 Test Data:

Criteria: Frame period shall be equal to 20ms / X, X is a positive whole number.

Limits: Any cases = > Jitter between two frames \leq 25 us

Results

Maximum Jitter (us)	Limit (us)	Verdict
-0.42	± 25	Pass

17 Carrier Frequency Stability

17.1 Method

Tests are performed in accordance with CFR47 Part 15.323(f.1, f.2, f.3); ANSI C63.17 Sub-Clause 6.2.1.1, 6.2.1.2, 6.2.1.3; IC RSS-213 6.2.

TEST SITE: 10m Chamber Building

17.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
				2220 Lot		
145038	AC Power Source (+- 0.7%)	Elgar	3001	313	VBU	Verified
145042	Digital Multi Meter	Fluke	75 series II	55400267	10/09/2010	10/09/2011
			DTS-16-22-			
148039	Thermal Shock Chamber	Cincinnati Sub-Zero	22-S/RAC	00-DT13598	08/30/2010	08/30/2011

Software Utilized:

Name	Manufacturer	Version	
DECT 6.0 Test Suite V1.00	Intertek	V1.00	

17.3 Results:

Intertek

Report Number: 100058757BOX-016a Issued: 12/15/2010

17.5 Test Data:

The freq. deviation relative to the ref. Freq. shall be \leq 10 ppm over an hour.

The freq. deviation relative to the ref. Freq. shall be \leq 10 ppm at the extremes of Power Supply Voltage.

The freq. deviation relative to the ref. Freq. shall be \leq 10 ppm at the temperature extremes.

Test conditions:

Nominal supply voltage: 120 VAC

Extreme temperatures: $\underline{-20}$ \circ to $\underline{+50}$ \circ

Results

Carrier Stability over time

Voltage (VAC)	Temperature (°C)	Measured Frequency Offset Over an hour (in ppm)		Limit (ppm)	Verdict
(VAC)		Max.	Min.		
Nominal	+20°C	1.54	-0.54	±10	Pass

Carrier Stability over Power Supply Voltage

Voltage (VAC)	Temperature (°C)	Measured Frequency Offset (in ppm)	Limit (ppm)	Verdict	
85%	+20°C	0.50			
115%	+20°C	-0.02	±10	Pass	

Carrier Stability over Temperature

Voltage (VAC)	Temperature (°C)	Measured Frequency Offset (in ppm)			
Nominal	[X] -20°C [] Manufacturer Declared	-0.02	Limit (ppm)	Verdict	
Nominal	[X] 50°C [] Manufacturer Declared	-1.06	±10	Pass	

Carrier Frequency Stability Results over Time, Voltage and Temperature

18 Monitoring Threshold

18.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c2, c5); ANSI C63.17 Sub-Clause 7.3.1(b), 7.3.2; and IC RSS-213 4.3.4(b)(2, 5.1, & 9).

TEST SITE: 10m Chamber Building

18.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
ROS004	Vector Signal Generator, 300kHz-3.3GHz	Rohde & Schwartz	SMIQ03B	100338	03/30/2010	03/30/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
147-306	Rental Signal Generator	Rohde & Schwarz	SML03	102824	10/01/2010	10/01/2011
HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	03/26/2010	03/26/2011
HEW63	Generator, Signal	Hewlett Packard	8648C	3847A05291	01/14/2009	01/14/2011
147-333	40Ghz Sweep Generator with options 001 and 004 installed.	Agilent	83640A	3009A00216	05/24/2010	05/24/2011
MIN003	Splitter/Combiner 2-Way DC-2000 MHz	Mini Circuits	ZFRSC-2050	none	12/02/2003	Verified
MIN002	Splitter/Combiner 3-Way 650-1050 MHz	Mini-Circuits	ZN3PD	00337	12/02/2003	Verified
MIN005	Splitter/Combiner 2-Way 10-2000 MHz	Mini Circuits	ZESC-2-11	none	12/02/2003	Verified
MIN006	Splitter/Combiner 2-Way DC-4200 MHz	Mini Circuits	ZFRSC-42	none	12/02/2003	Verified

18.3 Results:

18.5 Test Data:

The test determines the lower and upper threshold of the EUT. The upper threshold is conditionally applicable for LIC systems which have Logically defined a min. of 40 duplex system access channels. Blind slots will be applied in the defining of the number of duplex channels.

Monitoring Threshold (*T*)

 \leq 15 log₁₀ *B* - 184 + *M* - P_{EUT} dBm

FCC

		Emission Bandwidth (MHz)	Peak Transmit Power (dBm)	М	Calculated Threshold Value (dBm)
Traffic	1921.536	1.49	15.9	50	-57.3
Hame	1928.448	1.7	15.44	30	-56.0
The Minimum value of the calculated threshold value (Upper)					-57.3

Where

B = Measured Emission Bandwidth in Hz

M = 30 dB for Lower Monitoring Threshold (T_{L}) or 50 dB for Upper Monitoring Threshold (T_{U})

 P_{EUT} = Measured Peak Transmit Power in dBm

Industry Canada

		Emission Bandwidth (MHz)	Peak Transmit Power (dBm)	М	Calculated Threshold Value (dBm)
Traffic	1924.992	1.41	15.58	50	-57.3
The Minimum value of the calculated threshold value (Upper)					-57.3

Where

B = Measured Emission Bandwidth in Hz

M = 30 dB for Lower Monitoring Threshold (T_{L}) or 50 dB for Upper Monitoring Threshold (T_{U})

 P_{EUT} = Measured Peak Transmit Power in dBm

Results

FCC

	Measured Value (dBm)	Lower Threshold Limit (dBm)	Verdict
Lower Threshold Level	NA	NA	NA

Industry Canada

		Measured Value (dBm)	Lower Threshold Limit (dBm)	Verdict
Lowe	r Threshold Level	NA	NA	NA

<u>CFR47 Part 15.323(c5.1) IC RSS-213 4.3.4(b)(5.1) ANSI C63.17(Sub-clause 7.3.2): Upper Threshold, for EUT w/ No. of Ch>= 40</u>

Results

	Measured Threshold Value (dBm)	Calculated Threshold Limit (dBm)	Verdict
Upper Threshold Level	-60	-51.3	Pass

Nicholas Abbondante Test Date: 11/30/2010

Test Personnel:

FCC Part 15 Subpart D; IC Test Levels: N/A

Pretest Verification w/
BB Source: No Relative Humidity:

Atmospheric Pressure: 22 °C

25 %

1019 mbars

19 FCC LIC Selection / IC LIC Confirmation with 6dB Power Measurement Resolution

19.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c5); ANSI C63.17 Sub-Clause 7.3.3; and IC RSS-213 4.3.4(b)(5.2).

TEST SITE: 10m Chamber Building

19.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
ROS004	Vector Signal Generator, 300kHz-3.3GHz	Rohde & Schwartz	SMIQ03B	100338	03/30/2010	03/30/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
147-306	Rental Signal Generator	Rohde & Schwarz	SML03	102824	10/01/2010	10/01/2011
HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	03/26/2010	03/26/2011
HEW63	Generator, Signal	Hewlett Packard	8648C	3847A05291	01/14/2009	01/14/2011
	40Ghz Sweep Generator with options 001 and 004					
147-333	installed.	Agilent	83640A	3009A00216	05/24/2010	05/24/2011
MIN003	Splitter/Combiner 2-Way DC-2000 MHz	Mini Circuits	ZFRSC-2050	none	12/02/2003	Verified
MIN002	Splitter/Combiner 3-Way 650-1050 MHz	Mini-Circuits	ZN3PD	00337	12/02/2003	Verified
MIN005	Splitter/Combiner 2-Way 10-2000 MHz	Mini Circuits	ZESC-2-11	none	12/02/2003	Verified
MIN006	Splitter/Combiner 2-Way DC-4200 MHz	Mini Circuits	ZFRSC-42	none	12/02/2003	Verified

19.3 Results:

19.5 Test Data:

<u>CFR47 Part 15.323(c5.2) IC RSS-213 4.3.4(b)(5.2) ANSI C63.17(Sub-clause 7.3.3): LIC Selection with 6dB Power Measurement resolution for EUT w/ No. of Ch >= 40</u>

Results

	Tx Channel	Verdict
a. Interference on f1 = TL+7dB, f2 = TL	f2	Pass
b. Interference on f1 = TL, f2 = TL+7dB	f1	Pass
c. Interference on f1 = TL+1dB, f2 = TL-6dB	f2	Pass
d. Interference on f1 = TL-6dB, f2 = TL+1dB	f1	Pass

f1 = 1921.536 MHz f2 = 1928.448 MHz

Nicholas Abbondante Test Date: 11/30/2010

Test Personnel:

5000 0 11501

FCC Part 15 Subpart D; IC
Product Standard: RSS-213

Input Voltage: 120V/60Hz

Pretest Verification w/
BB Source: **No**

Ambient Temperature: Relative Humidity:

Atmospheric Pressure: 1019 mbars

Test Levels:

N/A

22 °C

25 %

20 Monitoring Time

20.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c1); ANSI C63.17 Sub-Clause 7.3.4; and IC RSS-213 4.3.4(b)(1).

TEST SITE: 10m Chamber Building

20.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
ROS004	Vector Signal Generator, 300kHz-3.3GHz	Rohde & Schwartz	SMIQ03B	100338	03/30/2010	03/30/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
147-306	Rental Signal Generator	Rohde & Schwarz	SML03	102824	10/01/2010	10/01/2011
HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	03/26/2010	03/26/2011
HEW63	Generator, Signal	Hewlett Packard	8648C	3847A05291	01/14/2009	01/14/2011
	40Ghz Sweep Generator with options 001 and 004					
147-333	installed.	Agilent	83640A	3009A00216	05/24/2010	05/24/2011
MIN003	Splitter/Combiner 2-Way DC-2000 MHz	Mini Circuits	ZFRSC-2050	none	12/02/2003	Verified
MIN002	Splitter/Combiner 3-Way 650-1050 MHz	Mini-Circuits	ZN3PD	00337	12/02/2003	Verified
MIN005	Splitter/Combiner 2-Way 10-2000 MHz	Mini Circuits	ZESC-2-11	none	12/02/2003	Verified
MIN006	Splitter/Combiner 2-Way DC-4200 MHz	Mini Circuits	ZFRSC-42	none	12/02/2003	Verified

20.3 Results:

20.5 Test Data:

Immediately prior to initiating transmission, devices must monitor the combined time and spectrum windows in which they intend to transmit for a period larger than their frame period.

Results

Test	Channel Used	Verdict
Step 1: With Interference on f1	f2	Pass
Step 2: With Interference on f2	f1	Pass

f1 = 1921.536 MHz f2 = 1928.448 MHz

	Nicholas Abbondante	Test Date:	11/30/2010
Test Personnel:	212		
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213	_	
Input Voltage:	120V/60Hz		
Pretest Verification w/		Ambient Temperature:	22 °C
BB Source:	No	Relative Humidity:	25 %
		Atmospheric Pressure:	1019 mbars

21 Maximum Transmit Period

21.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c3); ANSI C63.17 Sub-Clause 8.2.2; and IC RSS-213 4.3.4(b)(3).

TEST SITE: 10m Chamber Building

21.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
			ESCI 1166.5950K0			
ROS002	9kHz to 3GHz EMI Test Receiver	Rohde & Schwartz	3	100067	03/26/2010	03/26/2011
ROS004	Vector Signal Generator, 300kHz-3.3GHz	Rohde & Schwartz	SMIQ03B	100338	03/30/2010	03/30/2011
MIN006	Splitter/Combiner 2-Way DC-4200 MHz	Mini Circuits	ZFRSC-42	none	12/02/2003	Verified

21.3 Results:

21.5 Test Data:

Occupation of the same combined time and spectrum windows continuously over a period of time longer that 8 hours is not permitted without repeating the access criteria.

Results

	Measured Value (Seconds)	Limit (Seconds)	Verdict
Duration of occupation of the same combined time/spectrum windows	~21,420	28,800	Pass

Interference on communications channel and call Start Time 5:15pm Time of channel switch: 11:12pm

Nicholas Abbondante

Test Personnel: FCC Part 15 Subpart D; IC

Product Standard: RSS-213
Input Voltage: 120V/60Hz

Pretest Verification w/
BB Source: **No**

Test Date: 12/03/2010

Test Levels: N/A

Ambient Temperature: 23 °C
Relative Humidity: 22 %
Atmospheric Pressure: 1001 mbars

22 System Acknowledgement

22.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c4); ANSI C63.17 Sub-Clause 8.1 / 8.2; and IC RSS-213 4.3.4(b)(4).

TEST SITE: 10m Chamber Building

22.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
ROS004	Vector Signal Generator, 300kHz-3.3GHz	Rohde & Schwartz	SMIQ03B	100338	03/30/2010	03/30/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
147-306	Rental Signal Generator	Rohde & Schwarz	SML03	102824	10/01/2010	10/01/2011
HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	03/26/2010	03/26/2011
HEW63	Generator, Signal	Hewlett Packard	8648C	3847A05291	01/14/2009	01/14/2011
	40Ghz Sweep Generator with options 001 and 004					
147-333	installed.	Agilent	83640A	3009A00216	05/24/2010	05/24/2011
MIN003	Splitter/Combiner 2-Way DC-2000 MHz	Mini Circuits	ZFRSC-2050	none	12/02/2003	Verified
MIN002	Splitter/Combiner 3-Way 650-1050 MHz	Mini-Circuits	ZN3PD	00337	12/02/2003	Verified
MIN005	Splitter/Combiner 2-Way 10-2000 MHz	Mini Circuits	ZESC-2-11	none	12/02/2003	Verified
MIN006	Splitter/Combiner 2-Way DC-4200 MHz	Mini Circuits	ZFRSC-42	none	12/02/2003	Verified

22.3 Results:

22.5 Test Data:

An acknowledgement must be received by the initiating transmitter within one second or transmissions must cease.

Periodic Acknowledgements must be received at least every 30 seconds or transmissions must cease.

Channels for control and signaling information transmit continuously < 30 seconds without acknowledgement and without access criteria repeated.

Section I: CFR47 Part 15.323(c4) IC RSS-213 4.3.4(b)(4) ANSI C63.17(Sub-clause 8.1): Timing for EUTs using Control / Signaling Channel Tx

Results

Conditions	TX Duration in seconds	Limit in seconds	Verdict
Time needed to repeat access criteria	1.28s 1.28s 1.28s 1.28s 1.28s	30	Pass

Section II: CFR47 Part 15.323(c4) IC RSS-213 4.3.4(b)(4) ANSI C63.17(Sub-clause 8.2): Timing for EUTs using Comm. Ch. Type Tx

Results

Conditions	TX Duration in seconds	Limit in seconds	Verdict
Activate EUT with companion device off	NA	1	NA
Time needed to cease Traffic Channel	NA	30	NA

Note: the EUT uses Control and Signalling channels. Please find the manufacturer attestation in exhibit FCC15D_App-SD_Form2.doc

	Nicholas Abbondante	Test Date:	11/30/2010
Test Personnel:	2111		
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213		
Input Voltage:	120V/60Hz	-	
Pretest Verification w/		Ambient Temperature:	22 °C
BB Source:	No	Relative Humidity:	25 %
		Atmospheric Pressure:	1019 mbars
Product Standard: Input Voltage: Pretest Verification w/	FCC Part 15 Subpart D; IC RSS-213 120V/60Hz	Ambient Temperature: Relative Humidity:	22 °C 25 %

23 Random Waiting Interval

23.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c6); ANSI C63.17 Sub-Clause 8.1.2 & 8.1.3; and IC RSS-213 4.3.4(b)(6).

TEST SITE: 10m Chamber Building

23.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
ROS004	Vector Signal Generator, 300kHz-3.3GHz	Rohde & Schwartz	SMIQ03B	100338	03/30/2010	03/30/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
147-306	Rental Signal Generator	Rohde & Schwarz	SML03	102824	10/01/2010	10/01/2011
HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	03/26/2010	03/26/2011
HEW63	Generator, Signal	Hewlett Packard	8648C	3847A05291	01/14/2009	01/14/2011
	40Ghz Sweep Generator with options 001 and 004					
147-333	installed.	Agilent	83640A	3009A00216	05/24/2010	05/24/2011
MIN003	Splitter/Combiner 2-Way DC-2000 MHz	Mini Circuits	ZFRSC-2050	none	12/02/2003	Verified
MIN002	Splitter/Combiner 3-Way 650-1050 MHz	Mini-Circuits	ZN3PD	00337	12/02/2003	Verified
MIN005	Splitter/Combiner 2-Way 10-2000 MHz	Mini Circuits	ZESC-2-11	none	12/02/2003	Verified
MIN006	Splitter/Combiner 2-Way DC-4200 MHz	Mini Circuits	ZFRSC-42	none	12/02/2003	Verified

23.3 Results:

23.5 Test Data:

The test **ONLY** applies to a EUT capable of transmitting control and signaling information on its own without companion device.

In the Case where CFR47 Part 15.323(c)(6)/IC RSS-213 4.3.4(b)(6) is NOT implemented,

• Tx restarts on a different Access Ch. if access criteria are not met again

<u>CFR47 Part 15.323(c6) IC RSS-213 4.3.4(b)(6) ANSI C63.17(Sub-clause 8.1.2): Random Waiting Interval</u> <u>NOT implemented</u>

Results

Conditions	TX Channel	Verdict
Interference applied at operating Channel, f1	f2	Pass

Note: the EUT does not implement the Random Waiting Interval of 15.323c(6). Please find the manufacturer attestation in exhibit FCC15D_App-SD_Form2.doc

	Nicholas Abbondante	Test Date:	11/30/2010
Test Personnel:	NNA		
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213		
Input Voltage:	120V/60Hz	_	
Pretest Verification w/		Ambient Temperature:	22 °C
BB Source:	No	Relative Humidity:	25 %
		Atmospheric Pressure:	1019 mbars

24 Monitoring Bandwidth

24.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c7.1); ANSI C63.17 Sub-Clause 7.4; and IC RSS-213 4.3.4(b)(7.1).

TEST SITE: 10m Chamber Building

24.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
None						

24.3 Results:

24.4 Test Data:

The monitoring System BW >= the emission BW of the intended Transmission.

[] Simple Compliance Test:

Interference from Carrier	Reaction of EUT	Verdict
-30% EBW	NA	NA
+ 30% EBW	NA	NA

A - Could Transmit, B - Could not Transmit

[] Detailed Test:

Results

CW Interference from Carrier	Reaction of EUT	Verdict
+ 6 dB	NA	NA
+ 12 dB	NA	NA
- 6 dB	NA	NA
- 12 dB	NA	NA

A - Could Transmit, B - Could not Transmit

Note: the EUT uses the same receiver for monitoring that is used for communication, therefore the monitoring bandwidth requirement is met.

Test Personnel:	N/A	Test Date:	N/A	
Product Standard:	FCC Part 15 Subpart D; IC RSS-213	Test Levels:	N/A	
Input Voltage:	N/A			
Pretest Verification w/		Ambient Temperature:	N/A °C	
BB Source:	N/A	Relative Humidity:	N/A %	
		Atmospheric Pressure:	N/A mbars	

25 Maximum/Monitoring Reaction Time

25.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c7.2); ANSI C63.17 Sub-Clause 7.5; and IC RSS-213 4.3.4(b)(7.2).

TEST SITE: 10m Chamber Building

25.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	Α	06/11/2010	06/11/2011
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	12/04/2009	12/04/2010
ROS003	DECT Test Set	Rohde & Schwartz	CMD60	829902026	03/30/2010	03/30/2011
ROS004	Vector Signal Generator, 300kHz-3.3GHz	Rohde & Schwartz	SMIQ03B	100338	03/30/2010	03/30/2011
NAR003	Directional Coupler 1.7-26.5GHz	Narda / L-3	4227-16	03135	02/26/2010	02/26/2011
			TM40 K1K1			
CBL030	High Frequency Cable 40GHz	Megaphase	80	CBL030	01/04/2010	01/04/2011
147-306	Rental Signal Generator	Rohde & Schwarz	SML03	102824	10/01/2010	10/01/2011
HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	03/26/2010	03/26/2011
HEW63	Generator, Signal	Hewlett Packard	8648C	3847A05291	01/14/2009	01/14/2011
	40Ghz Sweep Generator with options 001 and 004					
147-333	installed.	Agilent	83640A	3009A00216	05/24/2010	05/24/2011
MIN003	Splitter/Combiner 2-Way DC-2000 MHz	Mini Circuits	ZFRSC-2050	none	12/02/2003	Verified
MIN002	Splitter/Combiner 3-Way 650-1050 MHz	Mini-Circuits	ZN3PD	00337	12/02/2003	Verified
MIN005	Splitter/Combiner 2-Way 10-2000 MHz	Mini Circuits	ZESC-2-11	none	12/02/2003	Verified
MIN006	Splitter/Combiner 2-Way DC-4200 MHz	Mini Circuits	ZFRSC-42	none	12/02/2003	Verified

25.3 Results:

25.5 Test Data:

The reaction time is the min. duration of the interference present during the monitoring interval that must be detected by the EUT to determine that the monitored time and spectrum window is occupied.

	Test	Reaction of EUT	Verdict
1	With Interference Pulse > [] 50us [X] 50√ (1.25/ EBW)us	В	Pass
2	With Interference Pulse > [] 35us [X] 35√ (1.25/ EBW)us	В	Pass

A – Could be Connected in at least one channel

B - Could not be Connected in all channels

	Nicholas Abbondante	Test Date:	11/30/2010
Test Personnel:	NNA		
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213		
Input Voltage:	120V/60Hz		
Pretest Verification w/		Ambient Temperature:	22 °C
BB Source:	No	Relative Humidity:	25 %
		Atmospheric Pressure:	1019 mbars

26 Monitoring Antenna

26.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c8); ANSI C63.17 Clause 4; and IC RSS-213 4.3.4(b)(8).

TEST SITE: 10m Chamber Building

26.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
None						

26.3 Results:

The sample tested was found to Comply.

26.4 Test Data:

Criteria: The monitoring system shall use the same antenna used for transmission, or an antenna that

yields equivalent reception at that location.

Conclusion

The monitoring antenna refers to the EUT antenna used to monitor the RF signal on the channel prior to transmission, which

[✓] Same as the transmitting antenna, therefore it complies with the requirement.

Different from the transmitting antenna, tests according to ANSI 63.17 sub-clause 4.7 and 4.9 are needed.

Test Personnel: Test Date: N/A FCC Part 15 Subpart D; IC Test Levels: N/A Product Standard: RSS-213 Input Voltage: N/A Ambient Temperature: N/A °C Pretest Verification w/ N/A % Relative Humidity: BB Source: N/A Atmospheric Pressure: N/A mbars

27 Duplex Connections

27.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c10); ANSI C63.17 Sub-Clause 8.3; and IC RSS-213 4.3.4(b)(10).

TEST SITE: 10m Chamber Building

27.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
None						

27.3 Results:

The sample tested was found to Comply.

27.4 Test Data:

The EUT is exempt from this test as according to the manufacturer, duplex operation is not implemented.

Please find the manufacturer attestation in exhibit FCC15D_App-SD_Form2.doc

Test Personnel:	N/A	Test Date:	N/A
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213		
Input Voltage:	N/A		
Pretest Verification w/		Ambient Temperature:	N/A °C
BB Source:	N/A	Relative Humidity:	N/A %
•		Atmospheric Pressure:	N/A mbars

28 Co-Located Devices

28.1 Method

Tests are performed in accordance with CFR47 Part 15.323(c11); ANSI C63.17 Sub-Clause 8.4; and IC RSS-213 4.3.4(b)(11))

TEST SITE: 10m Chamber Building

28.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due	
None							

28.3 Results:

The sample tested was found to Comply.

28.4 Test Data:

- [\checkmark] Not appropriate as it is Cordless Telephone application and the manufacturer has indicated that a colocated device protocol is not used..
- [] Appropriate as it is Co-located Device, in which the monitoring system will be blocked from the Transmission of a co-located (Within one meter) transmitters of the same system. Please refer to attachment, Section 15.323(c11), for details.

Please find the manufacturer attestation in exhibit FCC15D_App-SD_Form2.doc

Test Personnel:	N/A	Test Date:	N/A
	FCC Part 15 Subpart D; IC	Test Levels:	N/A
Product Standard:	RSS-213		
Input Voltage:	N/A		
Pretest Verification w/		Ambient Temperature:	N/A °C
BB Source:	N/A	Relative Humidity:	N/A %
		Atmospheric Pressure:	N/A mbars

Intertek

Report Number: 100058757BOX-016a Issued: 12/15/2010

29 Revision History

Date	Report Number	Notes
12/15/2010	100058757BOX- 016a	Original Issue
		12/15/2010 100058757BOX-