

Using Public Data to Forecast USDA Farm Subsidies

Derek Araujo • Insight Data Science • Fall 2017

Crop Subsidies: ~ \$25 B annually

US Gov:

- Budgeting

Insurers:

Subsidy = risk mitigation

Data Challenges:

- Unknown time of loss →
 - Unknown sale price, vol.
- Per county: subsidy is sparse/noise-dominated
- → Aggregate for each crop:
 - Monthly bins
 - Avg subsidy (all counties)
 - Focus on drought events (\$\$)
- → Few data points for forecasting

Model-Driven Feature Engineering:

Two models:

- ARIMA: Auto-Regressive Integrated Moving Average (no engineering)
- XGBoost Regression Tree: > 600 engineered features

Methodology:

- <u>Target</u>: log(Avg Monthly Subsidy)
- Hyperparams: grid search
- <u>Validation</u>: walk-forward forecast, expanding window
- XGB: examine feature importance

Results: Cotton

ARIMA:

XGB Regressor:

Results: Cotton

ARIMA:

XGB Regressor:

Utility Assessment / Improvements:

- Wide error bars; but indicative of trend
- <u>Find missing data</u>: (volume, date of sale)
- Other paths forward:
 - ARIMA → ARIMAX (add exogenous variables)
 - Feature selection / PCA

About Derek:

Harvard College A.B., Physics

Harvard Law School J.D.

Columbia University Ph.D., Physics

Inflationary Big Bang Cosmology