Assignment 3 Bayesian and Decision Networks

Mehmet Enes Erciyes, 68906 Computer Engineering

Question 1

The joint distribution for the Bayesian Network is as follows:

$$P(D, A, S, T) = P(D) * P(A) * P(S|A, D) * P(T|S)$$

Question 2

To use variable elimination for this inference problem, we first need to find the initial factors.

$$P(S|T=+t) = \sum_{d,a} P(d) * P(a) * P(S|a,d) * P(+t|S)$$

Initial Factors:

- f₁(D) = P(D)
 f₂(A) = P(A)
- $f_3(S,A,D) = P(S|A,D)$

COMP 341 Assignments

•
$$f_4(t,S) = P(+t|S)$$

Variable Elimination:

1. Join f_1 and f_3

When we do the join, we get a new factor $f_5(S, A, D)$

A	D	S	$f_5(S, A, D)$
+0	a	+s	0.04
+0	a	-S	0.16
+0	n	+s	0.25
+0	n	-S	0.25
+0	d	+s	0.21
+0	d	-S	0.09
-0	a	+s	0.08
-0	a	-S	0.12
-0	n	+s	0.35
-0	n	-S	0.15
-0	d	+s	0.27
- O	d	-S	0.03

2. Sum out *D*

Getting $f_6(A, S)$

A	S	$f_6(A,S)$
+0	+s	0.5
+0	-S	0.5
- 0	+s	0.7
- O	-S	0.3

3. Join f_6 and f_2

Getting $f_7(A, S)$

\mathbf{A}	S	$f_7(A,S)$
+0	+s	0.3
+0	-S	0.3
- 0	+s	0.28
- O	-S	0.12

4. Sum out A

S	$f_8(S)$
+s	0.58
-S	0.42

5. Join f_4 and f_8

Getting $f_9(S)$

S	$f_8(S)$
+s	0.551
-S	0.0798

6. Normalize to get P(S|T = +t)

S	P(S T = +t)
+s	≅0.873
-S	≅0.127

Therefore, the query

$$P(S = +s|T = +t) \approx 0.873$$

Question 3

$$P(S) = \sum_{d,a,t} P(d) * P(a) * P(S|a,d) * P(t|S)$$

This query is very similar to the query in the previous question. If we reorder the summation, we can get:

$$P(S) = \sum_{d,a} P(d) * P(a) * P(S|a,d) * \sum_{t} P(t|S)$$

By definition of the conditional probabilities, the summation of P(t|S) over T equals 1. Therefore, the query simplifies to

$$P(S) = \sum_{d,a} P(d) * P(a) * P(S|a,d)$$

In fact, this query is solved in the previous question until step 5. The distribution over S in **step 4** equals P(S)

S	$f_8(S)$
+s	0.58
-S	0.42

Therefore,

$$P(S = +g) = 0.58$$

Question 4

$$EU(Buy) = P(S = +g) * U(+g,+b) + P(S = -g) * U(-g,+b)$$

$$EU(\neg Buy) = P(S = +g) * U(+g,-b) + P(S = -g) * U(-g,-b)$$

From the results of the previous question:

$$EU(Buy) = 0.58 * 5000 + 0.42 * -6000 = 380$$

 $EU(\neg Buy) = 0$

Question 5

This is a value of information problem.

$$VPI(T) = \left[\sum_{t} P(t) * MEU(B|t)\right] - MEU(Buy)$$

To find this expression, we need to first find MEU(Buy|T)

$$EU(Buy \mid T) = P(S = +g \mid T) * U(+g,+b) + P(S = -g \mid T) * U(-g,+b)$$

$$EU(\neg Buy \mid T) = P(S = +g \mid T) * U(+g, -b) + P(S = -g \mid T) * U(-g, -b)$$

It is easily seen that $EU(\neg Buy \mid T) = 0$. For finding $EU(Buy \mid T)$, we need to do a few more calculations.

We can calculate this expected utility using the query P(S|T=+t) from the second question and finding P(S|T=-t).

$$P(S|T = -t) = \propto P(S, -t) = P(S) * P(-t|S)$$

From this equation, we can find the joint distribution of P(S, -t) as:

S	P(S, -t)
+s	0.029
-S	0.3402

When we normalize this distribution:

S	$P(S \mathbf{T}=-t)$
+s	0.079
-S	0.921

From this calculation, $EU(B \mid T)$ is a distribution over T and B:

T	В	$U(B \mid T)$
+t	Buy	3603
-t	Buy	-5131
+t	¬Buy	0
-t	¬Buy	0

From this, we find that MEU(B|T) is as follows:

For
$$T = +t$$
; optimal action is Buy and $MEU(B|T) = 3603$
For $T = -t$; optimal action is $Not\ Buy$ and $MEU(B|T) = 0$

Now that we found $U(Buy \mid T)$, we only need to find P(T) and then we will be ready to find the VPI.

To find P(T), we can join the tables of P(S, -t) above and P(S, +t) from the second question and then marginalize over S.

S	T	P(S,T)
+s	+t	0.551
+s	-t	0.029
-S	+t	0.0798
-S	-t	0.3402

From this joint distribution:

T	P(T)	

+t	0.6308
-t	0.3692

Using the maximum expected utilities, prior maximum expected utility, and the probabilities of T, we get:

$$VPI(T) = 0.6308 * 3603 + (0.3692 * (0)) - 380 = 1892.77$$

Therefore, the maximum amount of money to pay for tests is this.

Question 6

In rejection sampling (likelihood weighting method), we first set the weight w = 1.0, then start sampling in the given order. When we come across an evidence variable $E_i = e_i$, we set the weight w to $w = w * P(e_i | Parents(E_i))$

A	D	S	T	Weight
+0	d	+s	+t	W = P(A = +o) * P(T = +t S = +s) = 0.6 * 0.95
				= 0.57
+0	d	+s	+t	w = P(A = +o) * P(T = +t S = -s) = 0.6 * 0.19
				= 0.114

Question 7

In Gibbs sampling, we arbitrarily sample a non-evidence variable X_i using the distribution of that variable conditioned on the current values of the variables in the Markov blanket of X_i . The Markov blanket of a random variable in a BN contains the variable, its parents, children, and the parents of its children. This can be seen in the following computations:

$$P(S|A,D,T) = \frac{P(S,A,D,T)}{P(A,D,T)}$$

$$P(S|A, D, T) = \frac{P(D) * P(A) * P(S|D, A) * P(T|S)}{\sum_{S} P(D) * P(A) * P(S|D, A) * P(T|S)}$$

$$P(S|A,D,T) = \frac{P(S|D,A) * P(T|S)}{\sum_{S} P(S|D,A) * P(T|S)}$$

Given the sample $\{A = -o, D = n, S = +s, T = -t\}$,

COMP 341 Assignments

$$P(S|-o, n, -t) = \frac{P(S|n, -o) * P(-t|S)}{\sum_{S} P(S|n, -o) * P(-t|S)}$$

First let us calculate the denominator:

$$\sum_{s} P(s|n,-o) * P(-t|s) = (0.7 * 0.05) + (0.3 * 0.81) = 0.278$$

The distribution in the numerator divided by 0.32 (the distribution to sample S from) becomes:

S	Gibbs sample distribution
+s	0.126
-S	0.874