INTRODUCTION TO GGPLOT2

Code Club - 5th May 2022 Olivia Johnson

OUTLINE FOR TODAY

- Quick recap of last week
- Basic structure of ggplot
- Scatter plot
- Distribution plots
- Practise plotting!

QUICK RECAP

- Summary statistics calculated across groupings
 - df %>% group_by(species) %>% summarise(mean=mean())
- Create new columns and overwrite existing ones
 - df %>% mutate(new column = what you want)
- Replace character strings (equivalent of find and replace)
 - str_replace_all(string, pattern, replacement)
- Apply a function across specific columns (only in dplyr functions)
 - across(.cols=X, .fns = ~function)


```
# A tibble: 150 x 7
   sample_number sepal_length sepal_width petal_length_percent_number petal_width date_collected
                                                                                                          species
           <db1>
                         <db1>
                                     <db1>
                                                                  <db1>
                                                                               <dbl> <dttm>
                                                                                                          <chr>
                           5.1
                                       3.5
                                                                    1.4
                                                                                 0.2 2022-04-06 00:00:00 setosa
                                                                                 0.2 2022-04-07 00:00:00 setosa
                          4.9
                                                                    1.4
                          4.7
                                                                    1.3
                                                                                 0.2 2022-04-09 00:00:00 setosa
                                       3.2
                                       3.1
                                                                    1.5
                          4.6
                                                                                 0.2 2022-04-10 00:00:00 setosa
                           5
                                       3.6
                                                                    1.4
                                                                                 0.2 2022-04-11 00:00:00 setosa
                                                                    1.7
                                                                                 0.4 2022-04-12 00:00:00 setosa
                           5.4
                                       3.9
                          4.6
                                       3.4
                                                                    1.4
                                                                                 0.3 2022-04-13 00:00:00 setosa
               8
                           5
                                       3.4
                                                                    1.5
                                                                                 0.2 2022-04-14 00:00:00 setosa
               9
                                       2.9
                                                                   NA
                                                                                 0.2 2022-04-15 00:00:00 setosa
                           4.4
              10
                           4.9
                                      NA
                                                                    1.5
                                                                                     2022-04-16 00:00:00 setosa
                                                                                NA
# ... with 140 more rows
```

> df

OUR DATASET

We have a nice clean dataset, now we want to visualise it!


```
ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) +
<GEOM_FUNCTION>()

Mappings - x, y, col, size etc

GEOM FUNCTION - specify what type of plot
```

```
> df
# A tibble: 150 x 7
   sample_number sepal_length sepal_width petal_length_percent_number petal_width date_collected
                                                                                                          species
           <db1>
                         <db1>
                                     <db1>
                                                                  <db1>
                                                                               <dbl> <dttm>
                                                                                                          <chr>
                           5.1
                                       3.5
                                                                    1.4
                                                                                 0.2 2022-04-06 00:00:00 setosa
                           4.9
                                                                    1.4
                                                                                 0.2 2022-04-07 00:00:00 setosa
                                                                    1.3
                          4.7
                                       3.2
                                                                                 0.2 2022-04-09 00:00:00 setosa
                                                                    1.5
                           4.6
                                       3.1
                                                                                 0.2 2022-04-10 00:00:00 setosa
                           5
                                       3.6
                                                                    1.4
                                                                                 0.2 2022-04-11 00:00:00 setosa
                           5.4
                                                                    1.7
                                                                                 0.4 2022-04-12 00:00:00 setosa
                                       3.9
                           4.6
                                                                                 0.3 2022-04-13 00:00:00 setosa
                                       3.4
                                                                    1.4
               8
                           5
                                       3.4
                                                                    1.5
                                                                                 0.2 2022-04-14 00:00:00 setosa
               9
                           4.4
                                       2.9
                                                                   NA
                                                                                 0.2 2022-04-15 00:00:00 setosa
              10
                           4.9
                                      NA
                                                                    1.5
                                                                                     2022-04-16 00:00:00 setosa
```

WHAT DO WE WANT TO PLOT

... with 140 more rows

```
# A tibble: 150 x 7
   sample_number sepal_length sepal_width petal_length_percent_number petal_width date_collected
                                                                                                          species
           <db1>
                         <db1>
                                     <db1>
                                                                  <db1>
                                                                               <dbl> <dttm>
                                                                                                          <chr>
                           5.1
                                       3.5
                                                                    1.4
                                                                                 0.2 2022-04-06 00:00:00 setosa
                           4.9
                                                                    1.4
                                                                                 0.2 2022-04-07 00:00:00 setosa
                                                                    1.3
                           4.7
                                       3.2
                                                                                 0.2 2022-04-09 00:00:00 setosa
                                                                    1.5
                           4.6
                                       3.1
                                                                                 0.2 2022-04-10 00:00:00 setosa
                           5
                                       3.6
                                                                    1.4
                                                                                 0.2 2022-04-11 00:00:00 setosa
                           5.4
                                                                    1.7
                                                                                 0.4 2022-04-12 00:00:00 setosa
                                       3.9
                           4.6
                                       3.4
                                                                    1.4
                                                                                 0.3 2022-04-13 00:00:00 setosa
               8
                           5
                                       3.4
                                                                    1.5
                                                                                 0.2 2022-04-14 00:00:00 setosa
               9
                           4.4
                                       2.9
                                                                   NA
                                                                                 0.2 2022-04-15 00:00:00 setosa
              10
                           4.9
                                      NA
                                                                    1.5
                                                                                     2022-04-16 00:00:00 setosa
                                                                                NA
```

> df

... with 140 more rows

WHAT DO WE WANT TO PLOT

```
# A tibble: 150 x 7
   sample_number sepal_length sepal_width petal_length_percent_number petal_width date_collected
                                                                                                         species
           <db1>
                         <db1>
                                     <db1>
                                                                  <db1>
                                                                              <dbl> <dttm>
                                                                                                         <chr>
                           5.1
                                       3.5
                                                                    1.4
                                                                                0.2 2022-04-06 00:00:00 setosa
                           4.9
                                                                    1.4
                                                                                0.2 2022-04-07 00:00:00 setosa
                                                                    1.3
                           4.7
                                       3.2
                                                                                0.2 2022-04-09 00:00:00 setosa
                                                                    1.5
                           4.6
                                       3.1
                                                                                0.2 2022-04-10 00:00:00 setosa
                           5
                                       3.6
                                                                    1.4
                                                                                0.2 2022-04-11 00:00:00 setosa
                           5.4
                                                                    1.7
                                                                                0.4 2022-04-12 00:00:00 setosa
                                       3.9
                                                                                0.3 2022-04-13 00:00:00 setosa
                           4.6
                                       3.4
                                                                    1.4
               8
                           5
                                       3.4
                                                                    1.5
                                                                                0.2 2022-04-14 00:00:00 setosa
               9
                                       2.9
                                                                   NA
                                                                                0.2 2022-04-15 00:00:00 setosa
                           4.4
              10
                           4.9
                                      NA
                                                                    1.5
                                                                                     2022-04-16 00:00:00 setosa
```

> df

... with 140 more rows

WHAT DO WE WANT TO PLOT

Start by looking at sepal length x sepal width

```
ggplot(data = df, aes(x=sepal_length, y=sepal_width)) +
geom_point()
```

- Start by looking at sepal length x sepal width

 ggplot(data = df, aes(x=sepal_length,
 y=sepal_width)) +

 geom_point()
- No clear trend, but we could see how species affects the data

Start by looking at sepal length x sepal width

```
ggplot(data = df, aes(x=sepal_length, y=sepal_width, col = species)) +
geom_point()
```

- Start by looking at sepal length x sepal width
 ggplot(data = df, aes(x=sepal_length,
 y=sepal_width, col = species)) +
 geom_point()
- Looks like increase in sepal length with sepal width, when look on species level.

FACETS

- · Can use facets to separate out data by a variable.
- Can use facet_wrap or facet grid

```
plot = ggplot(data = df, aes(x=sepal_length, y=sepal_width, col =
species)) +
geom_point() +
facet_grid("species")
```

FACETS

```
plot +
facet_grid("species")
```


TREND LINE

plot +

geom_smooth()+

facet_grid("species")

 Not a straight line, but can specify in the geom function.

TREND LINE

```
plot = plot +

geom_smooth(method="lm")+

facet_grid("species")
```

 Not a straight line, but can specify in the geom function.

TIDY PLOT

- Relabel axes
- Remove redundant species label

TIDY PLOT

- Relabel axes
- Remove redundant species label

RELABEL AXES

• Can use labs(x="label", y="label")
plot +
labs(x="Sepal Length (cm)", y="Sepal
Width (cm)")

REMOVE REDUNDANT LABELS

Don't need key on left edge

```
plot +
labs(x="Sepal Length (cm)", y="Sepal
Width (cm)")+
```

theme(legend.position="none")

DISTRIBUTIONS

Good to look at distribution of a specific variable
 ggplot(df)+
 geom_boxplot(aes(x=species, y=petal_width))

DISTRIBUTIONS

• Good to look at distribution of a specific variable
ggplot(df)+
 geom_boxplot(aes(x=species, y=petal_width))
ggplot(df)+

geom_violin(aes(x=species, y=petal_width))

SAVING PLOTS

ggsave("plot.jpg", plot = plot, width = 5, height = 5)

SUMMARY

- Create scatter plots
- Plot distributions
- Facet data
- Tidy plots

Data Visualization with ggplot2:: CHEAT SHEET

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system. and geoms-visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

Complete the template below to build a graph.

stat = <STAT>, position = <POSITION>) +

<COORDINATE_FUNCTION>+

<FACET_FUNCTION> +

<SCALE FUNCTION> <THEME FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer.

qplot(x = cty, y = hwy, data = mpg, geom = "point") Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

last_plot() Returns the last plot

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

a + geom_blank() (Useful for expanding limits)

a + geom_path(lineend="butt", linejoin="round" x, y, alpha, color, group, linetype, size

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept=0, slope=1)) b + geom hline(aes(vintercept = lat))

b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(yend=lat+1, xend=long+1)) b + geom_spoke(aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin") x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot() x, y, alpha, color, fill

c + geom_freqpoly() x, y, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

discrete

d <- ggplot(mpg, aes(fl))</pre>

d + geom_bar() x, alpha, color, fill, linetype, size, weight

TWO VARIABLES

continuous x, continuous y e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

e + geom_point(), x, y, alpha, color, fill, shape, e + geom_quantile(), x, y, alpha, color, group, linetype, size, weigh

e + geom_rug(sides = "bl"), x, y, alpha, color,

e + geom_smooth(method = lm), x, y, alpha, color, fill, group, linetype, size, weigh

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE), x, y, label, alpha, angle, color, family, fontface, hjust,

discrete x , continuous y f <- ggplot(mpg, aes(class, hwy))

f + geom_col(), x, y, alpha, color, fill, group, linetype, size

f+geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

f + geom_dotplot(binaxis = "y", stackdir = "center"), x, y, alpha, color, fill, group

f + geom_violin(scale = "area"), x, y, alpha, color, fill, group, linetype, size, weight

discrete x , discrete y

g <- ggplot(diamonds, aes(cut, color))

g + geom_count(), x, y, alpha, color, fill, shape, size, stroke

continuous bivariate distribution h <- ggplot(diamonds, aes(carat, price))

h + geom bin2d(binwidth = c(0.25, 500))x, y, alpha, color, fill, linetype, size, weight

x, y, alpha, colour, group, linetype, size

h + geom_hex() x, y, alpha, colour, fill, size

h + geom_density2d()

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom_area() x, y, alpha, color, fill, linetype, size

i + geom_line() x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

visualizing error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) i <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))</pre>

j + geom_crossbar(fatten = 2) x, y, ymax, ymin, alpha, color, fill, group, linetype,

j + geom_errorbar(), x, ymax, ymin, alpha, color, group, linetype, size, width (also geom_errorbarh())

j + geom_linerange() x, ymin, ymax, alpha, color, group, linetype, size

j + geom_pointrange() x, y, ymin, ymax, alpha, color, fill, group, linetype,

data <- data.frame(murder = USArrests\$Murder. state = tolower(rownames(USArrests))) map <- map_data("state") k <- ggplot(data, aes(fill = murder))

interpolate=FALSE)

x, y, alpha, fill

k + geom_map(aes(map_id = state), map = map)
+ expand_limits(x = map\$long, y = map\$lat), map_id, alpha, color, fill, linetype, size

THREE VARIABLES

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))l <- ggplot(seals, aes(long, lat)) l + geom_raster(aes(fill = z), hjust=0.5, vjust=0.5,

l + geom_contour(aes(z = z)) x, y, z, alpha, colour, group, linetype, size, weight

I + geom_tile(aes(fill = z)), x, y, alpha, color, fill, linetype, size, width

Cheat sheets available online

https://www.rstudio.com/resour ces/cheatsheets/

