Add WeChat powcoder

CSC373

Assignment Project Exam Help

https://powcoder.com Week 6: Add WeChat powcoder Linear Programming

> Illustration Courtesy: Kevin Wayne & Denis Pankratov

Assignment Project Exam Help Announcement powcoder

- ACM ICPC Qualification Round
- Oct 24, 3-8pm EST

Assignment Project Exam Help

- Sign up at: https://www.teach.cs.toronto.edu/~acm/
 https://powcoder.com
- Top 9 participants doi: Me Chose prove possent U of T at the regional contest (broken into three teams of 3 each)

Assignment Project Exam Help Recap Add WeChat powcoder

- Network flow
 - Ford-Fulkerson algorithm
 - Ways to make the running time polynomial
 - > Correctness signment. Project Exam Help
 - > Applications:
 - https://powcoder.com
 - $\stackrel{\circ}{A} \text{Multiple sources/sinks} We Chat\ powcoder$
 - Circulation
 - Circulation with lower bounds
 - Survey design
 - Image segmentation
 - Profit maximization

Assignment Project Exam Help Brewery Example Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
 - > Per unit resource the property of the premise are as given below

https://powcoder.com

A 1 1 117 (1)									
Beverage	(pounds)	Hop (ounces)	WCOCET (pounds)	Profit (\$)					
Ale (barrel)	5	4	35	13					
Beer (barrel)	15	4	20	23					
constraint	480	160	1190						

Example Courtesy: Kevin Wayne

Brewery Example weder

	Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)								
	Ale (barrel)	5	4	35	13								
E	Beer (barrel)	15	4	20	23								
	constraint	480	160	1190	objecti	ive fu	nction	TT	1				
	Assignment Project Exam Help												
•	• Suppose it produces A units of ale and Bunits powcoder.com ^{Ale} Beer units of ale and Bunits powcoder.com ^{Ale}												
	of bee			ld We			×		+	23 <i>B</i>			Profit
•	Then	we wa	nt to s	olve		Po	s. t.	5A	+	15 <i>B</i>	≤	480	Corn
	this program			OIVC				4A	+	4 <i>B</i>	≤	160	Hops
	tilis þ	iografi	1.				1	35A	+	20 <i>B</i>	≤	1190	Malt
								A	,	B	2	0	
										1			
					constrai	nt /				\			

373F20 - Nisarg Shah

decision variable

Linear Function powcoder

- $f: \mathbb{R}^n \to \mathbb{R}$ is a linear function if $f(x) = a^T x$ for some $a \in \mathbb{R}^n$
 - > Example: $f(x_1, x_2) = 3x_1 5x_2 = \binom{3}{-5}^T \binom{x_1}{x_2}$
- Linear objektive iment Project Exam Help
- Linear constraints:
 - > g(x) = c, where $g:\mathbb{R}$:/powcoder.com
 - > Line in the plane (or a hyperplane in \mathbb{R}^n) > Example: $5x_1 + 7x_2 = 10$

Assignment Project Exam Help Linear Function powcoder

• Geometrically, a is the normal vector of the line(or hyperplane) represented by $a^Tx = c$

Assignment Project Exam Help

https://powcoder.com $^{T}x = c$

Add WeChatpowcoder

а

Assignment Project Exam Help Linear Inequality

• $a^T x \le c$ represents a "half-space"

Assignment Project Exam Help

Linear Programminger

 Maximize/minimize a linear function subject to linear equality/inequality constraints

Assignment Project Exam Help

Could be min

https://powcoder.com

Linear objective!

Objective function den we That powcoder

Constraints

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

Linear constraints: inequalities

Assignment Project Exam Help Geometrically powcoder

Assignment Project Exam Help Back to Brewery Example

Assignment Project Exam Help Back to Brewery Example

Assignment Project Exam Help Optimal Solution At A Vertex

 Claim: Regardless of the objective function, there must be a vertex that is an optimal solution

Convexity WeChat powcoder

- Convex set: S is convex if $x, y \in S, \lambda \in [0,1] \Rightarrow \lambda x + (1 \lambda)y \in S$
- Vertex: A point which cannot be written as a strict convex combination of any two points in the set Help
- Observation: Fepsible region of der Leisna convex set

Assignment Project Exam Help Optimal Solution At A Vertex

- Intuitive proof of the claim:
 - > Start at some point x in the feasible region
 - > If x is not a vertex:
 - \circ Find a diagraph of square that prints within a again if d and -d directions are within the feasible region
 - Objective must not decrease in at least one of the two directions
 - o Follow that direction until you reach a new point x for which at least one more constraint is "tight".
 - > Repeat until we are at a vertex Chat powcoder

Assignment Project Exam Help LP, Standard Formulation

- Input: $c, a_1, a_2, ..., a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - \triangleright There are n variables and m constraints
- Goal:

Assignment Project Exam Help

Maximize $c^T x$ https://powcoder.com
Subject to $a_1^T x \le b_1$

n variables

Add WeChat powcoder

m constraints

$$a_m^T x \le b_m$$

 $x \ge 0$

n more constraints

Assignment Project Exam Help LP, Standard Matrix Form

- Input: $c, a_1, a_2, ..., a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - > There are n variables and m constraints
- Goal:

Assignment Project Exam Help Convert to Standard Form

- What if the LP is not in standard form?
 - ➤ Constraints that use ≥

$$\circ a^T x \ge b \Leftrightarrow -a^T x \le -b$$
Assignment Project Exam Help

> Constraints that use equality

$$\circ a^{T}x = b \Leftrightarrow a_{h}^{T}x + b_{s}^{T}/a_{h}^{T}x + b_{h}^{T}x + b_{h$$

- Objective function is a minimization
 - \circ Minimize $c^T x$ Adminimize $c^T x$ powcoder
- Variable is unconstrained
 - \circ x with no constraint \Leftrightarrow Replace x by two variables x' and x'', replace every occurrence of x with x' - x'', and add constraints $x' \ge 0$, $x'' \ge 0$

Assignment Project Exam Help LP Transformation Example

Assignment Project Exam Help Optimal Solution powcoder

- Does an LP always have an optimal solution?
- No! The LP can. "fail" for two reasons: Assignment Project Exam Help 1. It is infeasible, i.e. $\{x \mid Ax \leq b\} = \emptyset$

 - \circ E.g. the set of constraints is $\{x_1 \le 1, -x_1 \le -2\}$ nttps://powcoder.com 2. It is *unbounded*, i.e. the objective function can be made arbitrarily large (for maximization) or small (for minimization) \circ E.g. "maximize x_1 subject to $x_1 \ge 0$, powcoder
- But if the LP has an optimal solution, we know that there must be a vertex which is optimal

Assignment Project Exam Help Simplex Algorithm Charles Project Exam Help

let v be any vertex of the feasible region while there is a neighbor v' of v with better objective value: set $v = v' \mathbf{Assignment} \mathbf{Project} \mathbf{Exam} \mathbf{Help}$

- https://powcoder.com
 Simple algorithm, easy to specify geometrically
- Worst-case runnangdines bapapantial der
- Excellent performance in practice

Assignment Project Exam Help Simplex: Geometric View

let v be any vertex of the feasible region while there is a neighbor v^\prime of v with better objective value: set $v=v^\prime$

Assignment Project Exam Help Algorithmic Implementation

Assignment Project Exam Help How Do We Implement This?

- We'll work with the slack form of LP
 - > Convenient for implementing simplex operations
 - > We want to maximize z in the slack form, but for now, forget about the maximaxing phiestive Project Exam Help

https://powcoder.com

Standard formi WeChat powSlack form:

Maximize
$$c^T x$$
 $z = c^T x$
Subject to $Ax \le b$ $s = b - Ax$
 $x \ge 0$ $s, x \ge 0$

Assignment Project Exam Help Slack FormweChat powcoder

maximize
$$2x_1 - 3x_2 + 3x_3$$
 subject to
$$x_1 + x_2 - x_3 \leq 7$$

$$-x_1 - A x_2 = x_3 = P_1^7 \text{ oject Exam Help}$$

$$x_1, x_2, x_3 = 0$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$$

$$x_1 + x_2 - x_3 = 0$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$$

Slack FormweChat powcoder

$$z = 2x_1 - 3x_2 + 3x_3$$

 $x_4 = 7 - x_1 - x_2 + x_3$
 $x_5 = -7 + x_1 + x_2 - x_3$
 $x_6 = 4 - \text{Assign} \text{ ent Project Exam Help}$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

https://powcoder.com

Nonbasic Variables

Add WeChat powcoder

maximize

$$2x_1 - 3x_2 + 3x_3$$

subject to

$$x_5 = -7 + x_1 + x_2 - x_3$$

Basic Variables
$$\begin{cases} x_4 = 7 - x_1 - x_2 + x_3 \\ x_5 = -7 + x_1 + x_2 - x_3 \\ x_6 = 4 - x_1 + 2x_2 - 2x_3 \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Assignment Project Exam Help Simplex: Step 1 powcoder

- Start at a feasible vertex
 - > How do we find a feasible vertex?
 - \rightarrow For now, assume $b \ge 0$ (each $b_i \ge 0$)
 - o In this cases signments i Project Exam Help
 - \circ In the slack form, this means setting the nonbasic variables to 0
 - > We'll later see what po do por wege derices a

Add WeChat powcoder Standard form: Slack form:

Maximize
$$c^T x$$
 $z = c^T x$
Subject to $Ax \le b$ $s = b - Ax$
 $x \ge 0$ $s, x \ge 0$

Simple: Step 2 hat powcoder

What next? Let's look at an example

Assignment Project Exam Help
$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$
 $x_6 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

- To increase the Adde We Chat powcoder
 - > Find a nonbasic variable with a positive coefficient
 - This is called an entering variable
 - See how much you can increase its value without violating any constraints

Simple: Step 2 hat powcoder

Try to increase!

$$z = 3x_1 + x_2 + 2x_3$$

Assignment Project Exam Help

 $x_4 = 30 - x_1$ https://powcoder.com ≤ 30
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \longrightarrow x_1 \le 24/2 = 12$
 $x_6 = 36 - 4x_1$ -Add WeChat powcoder.

 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Tightest obstacle!

This is because the current values of x_2 and x_3 are 0, and we need $x_4, x_5, x_6 \ge 0$

Simple: Step 2 hat powcoder

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 -$ **Assignment Project Exam Help**
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$ Tightest obstacle
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge$ https://powcoder.com

- Solve the tightest obstacle for the nonbasic variable Add WeChat powcoder $x_1 = 9 \frac{x_2}{4} \frac{x_3}{2} \frac{x_6}{4}$
 - Substitute the entering variable (called pivot) in other equations
 - \circ Now x_1 becomes basic and x_6 becomes non-basic
 - $\circ x_6$ is called the *leaving variable*

Assignment Project Exam Help Simplex: Step 2 hat powcoder

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - Assignment-Project Exam Help \frac{3x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge \frac{1}{2}$$

Add WeChat powcoder

- After one iteration of this step:
 - > The basic feasible solution (i.e. substituting 0 for all nonbasic variables) improves from z=0 to z=27

Repeat!

Simplex: Step 2 powcode

Entering variable Try to increase!

Leaving variable Tightest obstacle!

Assignment Project Exam Help Simplex: Step 2 hat powcoder

Entering variable Try to increase!

$$z = \frac{111}{4} + \frac{x_2}{16} - A_8^{x_5} ign \frac{11x_6}{16} nt \text{ Project Exam Help} \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} \frac{5x_6}{6} - \frac{5x_6}{3}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_5}{8} \frac{1000}{8} - \frac{5x_6}{8} + \frac{x_1}{8} - \frac{x_2}{3} + \frac{x_2}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} \text{ Add}_{16}^{x_6} WeChat powerder} - \frac{x_3}{2} + \frac{x_5}{2} .$$

$$x_1, x_2, x_3, x_4, x_5, x_6 > 0$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$$

Leaving variable Tightest obstacle!

Assignment Project Exam Help Simplex: Step 2 Powcoder

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$
Assignment Project Exam Help
$$x_2 = 4 - \frac{x_3}{3} - \frac{x_5}{3} + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 = 4 - \frac{x_3}{3} - \frac{x_6}{3} + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_5 + \frac{x_6}{3}$$

$$x_6 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_5 + \frac{x_6}{3}$$

$$x_6 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_5 + \frac{x_6}{3}$$

$$x_6 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{3}$$

$$x_2 + \frac{x_6}{3}$$

$$x_3 + \frac{x_6}{3}$$

$$x_4 + \frac{x_6}{3}$$

$$x_5 + \frac{x_6}{3}$$

$$x_6 + \frac{x_6}{3}$$

$$x_1 + \frac{x_6}{$$

- There is no leaving variable (nonbasic variable with positive coefficient).
- What now? Nothing! We are done.
- Take the basic feasible solution ($x_3 = x_5 = x_6 = 0$).
- Gives the optimal value z = 28
- In the optimal solution, $x_1 = 8$, $x_2 = 4$, $x_3 = 0$

Assignment Project Exam Help Simplex Querview Charpowcoder

- What if the entering variable has no upper bound?
 - > If it doesn't appear in any constraints, or only appears in constraints where it can go to ∞
 - > Then z can a soi gottomento recijecth to kais nultiel pded
- What if pivoting design to the constant in z?
 - > Known as degeneracy, and can lead to infinite loops
 - > Can be prevented by the bingt powered brandom amount in each coordinate
 - Or by carefully breaking ties among entering and leaving variables,
 e.g., by smallest index (known as Bland's rule)

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

Assignment Project Exam Help

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

Assignment Project Exam Help

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

Assignment Project Exam Help

 $\operatorname{\mathsf{Min}} \sum_i z_i$ s.t. $a_1^T x + s_1 + d_2 d_2$ we Chat powered ets = 0, z = |b|

$$-a_2^T x - s_2 + z_2 = -b_2$$

$$-a_m^T x - s_m + z_m = -b_m$$

 $x, s, z \geq 0$

Remember: the RHS is now positive

What now?

https://powcoder.com/ Solve LP₄ using simplex with the initial basic solution

- If its optimum value is 0, extract a basic feasible solution x^* from it, use it to solve LP_1 using simplex
- If optimum value for LP_4 is greater than 0, then LP_1 is infeasible

- We assumed $b \ge 0$, and then started with the vertex x = 0
- What if this assumption does not hold?

Assignment Project Exam Help

 LP_1 $\operatorname{Max} c^T x$ $\operatorname{s.t.} a_1^T x \leq b_1$ $a_2^T x \leq b_2$ \vdots $a_m^T x \leq b_m$ $x \geq 0$

https://powcoder.com Solve LP2 using simplex with

$$a_2^T x + s_2 + z_2 = b_2$$

:

$$a_m^T x + s_m + z_m = b_m$$

$$x, s \ge 0$$

the initial basic feasible solution x = s = 0, z = b if its optimum value is 0, extract a basic feasible solution x^* from it, use it to solve LP_1 using simplex

• If optimum value for LP_2 is greater than 0, then LP_1 is infeasible

 Curious about pseudocode? Proof of correctness? Running time analysis?

Assignment Project Exam Help
• See textbook for details, but this is NOT in syllabus!

https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help Running Time hat powcoder

Notes

- Number of vertices of a polytope can be exponential in the number of constraints
 - o There are examples meete simple take expansified in eif you choose your pivots arbitrarily
 - No pivot rule known which guarantees polynomial running time
- > There are other algorithms which run in polynomial time
 - o Ellipsoid method interior point method wooder
 - \circ Ellipsoid uses $O(mn^3L)$ arithmetic operations, where L = length of input
 - But no known strongly polynomial time algorithm
 - Number of arithmetic operations = poly(m,n)

 Suppose you design a state-of-the-art LP solver that can solve very large problem instances

- Assignment Project Exam Help
 You want to convince someone that you have this new technology without showing the forde
 - > Idea: They can give you very large LPs and you can quickly return the optimal solution Add WeChat powcoder
 - Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

$$\max x_1 + 6x_2$$

$$x_1 \leq 200$$

$$\text{Assignment Project Exam Help}$$

$$x_1 + x_2 \leq 400$$

$$\text{https://pq,weader.com}$$

- Suppose I tell you that $(x_1, x_2) \neq (y_0, y_0)$ is optimal with objective value 1900
- How can you check this?
 - Note: Can easily substitute (x_1, x_2) , and verify that it is feasible, and its objective value is indeed 1900

```
x_1 \le 200 x_2 \le 300 • Claim: (x_1, x_2) = (100,300) is x_1 + x_2 \le 400 • Ssignmoptin abject to bjective 1900 x_1 + x_2 \le 400 • https://powcoder.com
```

- Any solution that satisfies these propulates also satisfies their positive combinations
 - > E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
 - > Try to take combinations which give you $x_1 + 6x_2$ on LHS

$$x_1 \le 200$$

$$x_2 \le 300$$
 • Claim: $(x_1, x_2) = (100,300)$ is
$$x_1 + x_2 \le 400$$
 • Assignmentin abject to bject ivelocity 1900
$$x_1, x_2 \ge 0$$
 • https://powcoder.com

- first constraint Add Worldheither Pays poler
 - $x_1 + 6x_2 \le 200 + 6 * 300 = 2000$
 - > This shows that no feasible solution can beat 2000

$$x_1 \le 200$$
 $x_1 \le 300$ • Claim: $(x_1, x_2) = (100,300)$ is $x_2 \le 300$ Assignmentin abject to bjective 1900 $x_1 + x_2 \le 400$ https://powcoder.com

- 5*second constraint Walchatongwander
 - $> 5x_2 + (x_1 + x_2) \le 5 * 300 + 400 = 1900$
 - > This shows that no feasible solution can beat 1900
 - No need to proceed further
 - We already know one solution that achieves 1900, so it must be optimal!

- Introduce variables y_1, y_2, y_3 by which we will be multiplying the three constraints
 - Note: These need not be integers. They can be reals.

Assignment Project Exam Help

Multiplier Inequality https://powcoder.com
$$_{200}$$
 Add WeChat powcoder.

• After multiplying and adding constraints, we get: $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

Multiplier Inequality
$$y_1 x_1 \leq 200$$

$$y_2 x_2 \leq 300$$

Assignment Project Exam Help

> We have:

$$(y_1 + y_3)x_1 + h(y_3 + y_3)x_2 + 400y_3$$

- > What do we wantedd WeChat powcoder
 - $y_1, y_2, y_3 \ge 0$ because otherwise direction of inequality flips
 - \circ LHS to look like objective $x_1 + 6x_2$
 - In fact, it is sufficient for LHS to be an upper bound on objective
 - So we want $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 6$

Multiplier Inequality
$$y_1 x_1 \leq 200$$

$$y_2 x_2 \leq 300$$

Assignment Project Exam Help

> We have:

$$(y_1 + y_3)x_1 + h(y_3 + y_3)x_2 + h(y_3 + y_3)x_4 + h(y_3 + y_3)x_1 + h(y_3 + y_3)x_2 + h(y_3 + y_3)x_3 + h(y_3 + y_3$$

> What do we wantedd WeChat powcoder

$$y_1, y_2, y_3 \ge 0$$

$$y_1 + y_3 \ge 1, y_2 + y_3 \ge 6$$

 \circ Subject to these, we want to minimize the upper bound $200y_1 + 300y_2 + 400y_3$

Multiplier Inequality $y_1 x_1 \leq 200$ $y_2 x_2 \leq 300$

Assignment Project Exam Help

> We have:

$$(y_1 + y_3)x_1 + h(tps: //p)$$
 we collect. $+ (300)y_2 + 400y_3$

- > What do we wantedd WeChat powcoder
 - o This is just another LP!
 - Called the dual
 - Original LP is called the primal

$$\min 200y_1 + 300y_2 + 400y_3$$
$$y_1 + y_3 \ge 1$$
$$y_2 + y_3 \ge 6$$

 $y_1, y_2, y_3 > 0$

PRIMAL DUAL

$$\max_{x_1 + 6x_2} x_1 \leq 200 \qquad \qquad \min_{200y_1 + 300y_2 + 400y_3} x_1 \leq 200 \qquad \qquad \min_{x_1 + x_2 \leq 400} 200y_1 + 300y_2 + 400y_3 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 400 \qquad \qquad \lim_{x_1 + x_2 \leq 400} 200y_1 + x_2 \leq 10 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x$$

- > The problem of verifying optimality is another LP (y_1, y_2, y_3) that you can find, the objective value of the dual is an
 - upper bound on the objective value of the primal
 - \circ If you found a specific (y_1, y_2, y_3) for which this dual objective becomes equal to the primal objective for the (x_1, x_2) given to you, then you would know that the given (x_1, x_2) is optimal for primal (and your (y_1, y_2, y_3) is optimal for dual)

PRIMAL DUAL

$$\max_{x_1 + 6x_2} x_1 \leq 200 \qquad \qquad \min_{200y_1 + 300y_2 + 400y_3} x_1 \leq 200 \qquad \qquad \min_{x_1 + x_2 \leq 400} 200y_1 + 300y_2 + 400y_3 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 400 \qquad \qquad \lim_{x_1 + x_2 \leq 400} 200y_1 + x_2 \leq 10 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \max_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_1 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x_2 + x_2 \leq 100 \\ \min_{x_1 + x_2 \leq 400} x$$

- The problem of verifying optimality is another LP
 Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to
 - o Issue 1: But...but...if I can t solve large LPS, how will I solve the dual to verify if optimality of (x_1, x_2) given to me?
 - You don't. Ask the other party to give you both (x_1, x_2) and the corresponding (y_1, y_2, y_3) for proof of optimality
 - o Issue 2: What if there are no (y_1, y_2, y_3) for which dual objective matches primal objective under optimal solution (x_1, x_2) ?
 - As we will see, this can't happen!

Primal LP

Dual LP

$$\max \mathbf{c}^T \mathbf{x}$$

$$\min \mathbf{y}^T \mathbf{b}$$

Assignment Project Exam Help

$$\mathbf{x} \ge 0$$
 $\mathbf{y} \ge 0$ https://powcoder.com

Add WeChat powcoder

> General version, in our standard form for LPs

Primal LP

Dual LP

$$\max \mathbf{c}^T \mathbf{x}$$

$$\min \mathbf{y}^T \mathbf{b}$$

Assignment Project Exam Help

$$\mathbf{x} \ge 0$$
 $\mathbf{y} \ge 0$ https://powcoder.com

- $\circ c^T x$ for any feasible $x \leq y^T b$ for any feasible y
- o If there is (x^*, y^*) with $c^T x^* = (y^*)^T b$, then both must be optimal
- \circ In fact, for optimal (x^*, y^*) , we claim that this must happen!
 - Does this remind you of something? Max-flow, min-cut...

Assignment Project Exam Help Weak Duality Chat powcoder

Primal LP

Dual LP

$$\max \mathbf{c}^T \mathbf{x}$$

$$\min \mathbf{y}^T \mathbf{b}$$

Assignment Project Exam Help

$$\mathbf{x} \ge 0$$
 https://powcoder.com

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem: WeChat powcoder
 - > For any primal feasible x and dual feasible y, $c^Tx \le y^Tb$
- Proof:

$$c^T x \le (y^T A)x = y^T (Ax) \le y^T b$$

Assignment Project Exam Help Strong Quality Powcoder

Primal LP Dual LP $\max \mathbf{c}^T \mathbf{x} \qquad \min \mathbf{y}^T \mathbf{b}$

Assignment Project Exam Help

$$\mathbf{x} \ge 0$$
 $\mathbf{y} \ge 0$ https://powcoder.com

- Strong duality theorem:
 - > For any primal optimal W and last potwiso d $e^T x^* = (y^*)^T b$

Assignment Project Exam Help Strong Duality Proofer

This slide is not in the scope of the course

- Farkas' lemma (one of many, many versions):
 - > Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists signmant Project Exambledp

https://powcoder.com

- Geometric intuited WeChat powcoder
 - \rightarrow Define image of A = set of all possible values of Ax
 - > It is known that this is a "linear subspace" (e.g. a line in a plane, a line or plane in 3D, etc)

Assignment Project Exam Help Strong Duality Proofer

This slide is not in the scope of the course

- Farkas' lemma: Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$ Assignment Project Exam Help

1) Image of A contains a point $\frac{b + b}{b} \frac{b}{p} \frac{b}{p}$

Assignment Project Exam Help

Strong Quality powcoder

This slide is not in the scope of the course

Primal LP

Dual LP

$$\max \mathbf{c}^T \mathbf{x}$$

$$\min \mathbf{y}^T \mathbf{b}$$

Assignment Project Exam Help

$$\mathbf{x} \ge 0$$
 $\mathbf{y} \ge 0$ https://powcoder.com

- Strong duality theorem:
 - > For any primal optical Weddat power $(y^*)^T b$
 - > Proof (by contradiction):
 - o Let $z^* = c^T x^*$ be the optimal primal value.
 - \circ Suppose optimal dual objective value $> z^*$
 - o So there is no y such that $y^TA \ge c^T$ and $y^Tb \le z^*$, i.e.,

$$\begin{pmatrix} -A^T \\ h^T \end{pmatrix} y \le \begin{pmatrix} c \\ z^* \end{pmatrix}$$

Assignment Project Exam Help

Strong Quality powcoder

This slide is not in the scope of the course

> There is no y such that $\begin{pmatrix} -A^T \\ h^T \end{pmatrix} y \leq \begin{pmatrix} c \\ z^* \end{pmatrix}$

$$\binom{-A^T}{b^T} y \le \binom{c}{z^*}$$

 \triangleright By Farkas' lemma, there is x and λ such that

$$(x^T \lambda) \begin{pmatrix} -A^T \end{pmatrix} = 0, x \ge 0, \lambda \ge 0, -x^T c + \lambda z^* < 0$$

Assignment Project Exam Help

- \triangleright Case 1: $\lambda > 0$
 - Note: $c^T x > \lambda h \tan 84 x / powao.der.com$
 - o Divide both by λ to get $A\left(\frac{x}{\lambda}\right) = b$ and $c^T\left(\frac{x}{\lambda}\right) > z^*$ Contradicts optimality of z^*
- \triangleright Case 2: $\lambda = 0$
 - We have Ax = 0 and $c^Tx > 0$
 - \circ Adding x to optimal x^* of primal improves objective value beyond $z^* \Rightarrow$ contradiction

Assignment Project Exam Help Exercise: Formulating LPs

- A canning company operates two canning plants (A and B).
 S1: 200 tonnes at \$11/tonne
 \$2: 310 tonnes at \$10/tonne
 \$3: 420 tonnes at \$9/tonne
- Three suppliers of fresh fruits: -- 'Assignment Project Exam Help
- Shipping costs in the sowcoder: com 52 2 2.5

Plant B

- Selling price: \$50/tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit

Assignment Project Exam Help Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
 - A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirent to jet of the period of the
 - > The brewery cannot produce positive amounts of both A and B
 - > Goal: maximize https://powcoder.com

Add WeChat powcoder

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

Assignment Project Exam Help Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
 - A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirentent enterpe condition selection below
 - \succ The brewery can only produce C in integral quantities up to 100
 - > Goal: maximize https://powcoder.com

Add WeChat powcoder

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

Assignment Project Exam Help Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
 - A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirentent enterpe condition selection below
 - > Goal: maximize profit, but if there are multiple profit-maximizing solutions, then..https://powcoder.com
 - Break ties to choose those with the largest quantity of A
 - \circ Break any further the largest quantity of B

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

Assignment Project Exam Help More Tricks_{eChat powcoder}

- Constraint: $|x| \leq 3$
 - \triangleright Replace with constraints $x \le 3$ and $-x \le 3$
 - \triangleright What if the constraint is $|x| \ge 3$?
- Objective: Assignment Project Exam Help
 - > Add a variable t https://powcoder.com > Add the constraints $t \ge x$ and $t \ge -x$ (so $t \ge |x|$)

 - > Change the objective to the coder
 - > What if the objective is to maximize 3|x| + y?
- Objective: minimize max(3x + y, x + 2y)
 - \rightarrow Hint: minimizing 3|x|+y in the earlier bullet was equivalent to minimizing max(3x + y, -3x + y)

