

Week4

Naive bayes classifier

Types

Random forests

Params

Gradient Boosted Decision Trees

Neural networks

Data leakage

Detecting data leakage

Minimising Data Leakage

Unsupervised learning

Transformations

Density estimation

Dimensionality reduction

PCA

Manifold learning algorithms

Clustering

K-means

Agglomerative clustering

DBSCAN: Density Based Special Clustering of Applications with Noise

Clustering evaluation

Naive bayes classifier

- Simple probabilistic model.
- Naive because it assumes that each future from a given class, is conditionally independent from the others.
- The metric for train and evaluation don't have to be the same.
- Highly efficient learning and prediction.
- Generalisation performance may worse than more complex learning models.
- · Works with high dimensional data.

- Simple efficient parameter estimation.
- Their confidence estimates for predictions are not very accurate.
- Useful as baselines

Types

- Bernoulli (useful for text)
 - Binary features (eg word presence/absence)
- Multinomial (useful for text)
 - Discrete features (eg word count)

Gaussian

- · continous/real-valued features
- During training, for each feature in each class, calculates mean, std.
- For each sample, it recalculates mean and std and assigns the class that it more close to the training set class values.
- Assumes that the data for each class was generated with a class specific guassian distribution.
- Predicting the class, mathematically corresponds with estimating the prob. of the gaussian distribution that generated that sample.
- For a binary case, the decision boundary is parabolic.
- Useful for high dimensional sets.

Random forests

- Using ensembles is useful because by using different small models that tend to overfit in specific parts of the data. When averaging them all, the result is less overfitting.
- No need for preprocessing.
- Easily parallelized on CPUs.
- May be difficult to interpret by humans

- Not good for very high dimensional sparse data (like text).
- This idea used with trees, results in random forests.
- For classification: RandomForestClassifier
- For regression: RandomForestRegressor.
- Steps:
 - The data for each tree is selected randomly (with replacement) → called bootstrap sample.
 - 2. The features for each tree are also selected randomly (max_features param).
 - 3. Select number of trees (n_estimator param).
 - 4. The the splits are calculated as with standard decision trees, only that for a small set of features (those in that tree).
 - 5. Pred:
 - 1. For regression, the prediction is the mean of the individual tree prediction.
 - For classification: each tree gives a proba for each class.Probabilities are averaged across trees and the the class with the highest probability is assigned.
- Setting max_features = 1, leads to forests with diverse, complex trees. If max_features is close toe the true number of features, it will lead to similar forests with simple trees.

Params

- n_estimators: number of trees to use in ensamble (default:10).
 - Should be larger for larger datasets to reduce overfitting (but uses more
- max_features: has a strong effect on performance. Influences the diversity
 of trees in the forest.
 - Default works well in practice, but adjusting may lead to some further gains.

- max_depth: controls the depth of each tree(default:None.Splits until all leaves are pure).
- n_jobs: how many cores to use in parallel during training.
- Choose a fixed setting for the random_state parameter if you need reproducible results.

Gradient Boosted Decision Trees

- Creates small (shallow) trees
- Each tree attempts to correct errors from the previous stage (tree).
- n_estimators is also used (number of trees)
- The learning rate controls how hard each new tree tries to correct mistakes from previous tree.
 - High LR: more complex trees (more emphasis on correction).
 - Low LR: Less through in correcting mistakes from previous trees.
- It makes box-like decision boundaries (like most tree-based algos)
- Pros:
 - Often best off-the-shelf accuracy on many problems.
 - Using model for prediction requires only modest memory and is fast.
 - Doesn't require careful normalization of features to perform well.
 - Like decision trees, handles a mixture of feature types.

• Cons:

- Like random forests, the models are often difficult for humans to interpret.
- Requires careful tuning of the learning rate and other parameters.
- Training can require significant computation.
- Like decision trees, not recommended for text classification and other problems with very high dimensional sparse features, for accuracy and computational cost reasons.

Parameters:

- n_estimators: sets # of small decision trees to use (weak learners) in the ensemble.
- learning_rate: controls emphasis on fixing errors from previous iteration.
- The above two are typically tuned together.
- n_estimators is adjusted first, to best exploit memory and CPUs during training, then other parameters.
- max_depth is typically set to a small value (e.g. 3-5) for most applications.

Neural networks

- There is regularization (alpha) like L2.
- Features must be normalized.
- Pros: They form the basis of state-of-the-art models and can be formed into advanced architectures that effectively capture complex features given enough data and computation.
- Cons:
 - Larger, more complex models require significant training time, data, and customization.

- Careful preprocessing of the data is needed.
- A good choice when the features are of similar types, but less so when features of very different types.

Parameters:

- Hidden_layer_sizes: sets the number of hidden layers (number of elements in list), and number of hidden units per layer (each list element). *Default:* (100).
- alpha: controls weight on the regularization penalty that shrinks weights to zero. *Default: alpha = 0.0001*.
- activation: controls the nonlinear function used for the activation function, including: 'relu' (default), 'logistic', 'tanh'.

Data leakage

- Introducing information about the target during training that would not legitimately be available during actual use.
- When the data you're using to train contains information about what you're trying to predict.

Leakage in training data:

- Performing data preprocessing using parameters or results from analyzing the entire dataset: Normalizing and rescaling, detecting and removing outliers, estimating missing values, feature selection.
- Time-series datasets: using records from the future when computing features for the current prediction.
- Errors in data values/gathering or missing variable indicators (e.g. the special value 999) can encode information about missing data that reveals information about the future.

Leakage in features:

 Removing variables that are not legitimate without also removing variables that encode the same or related information (e.g. diagnosis info may still exist in patient ID).

- Reversing of intentional randomization or anonymization that reveals specific information about e.g. users not legitimately available in actual use.
- Any of the above could be present in any external data joined to the training set.

Detecting data leakage

Before building the model

- Exploratory data analysis to find surprises in the data
- Are there features very highly correlated with the target value?

After building the model

- Look for surprising feature behavior in the fitted model.
- Are there features with very high weights, or high information gain?
- Simple rule-based models like decision trees can help with features like account numbers, patient IDs
- Is overall model performance surprisingly good compared to known results on the same dataset, or for similar problems on similar datasets?

Limited real-world deployment of the trained model

- Potentially expensive in terms of development time, but more realistic
- Is the trained model generalizing well to new data?

Minimising Data Leakage

Perform data preparation within each cross-validation fold separately

- Scale/normalise data, perform feature selection, etc. within each fold separately, not using the entire dataset.
- For any such parameters estimated on the training data, you must use those same parameters to prepare data on the corresponding held-out test fold.

With time series data, use a timestamp cutoff

- The cutoff value is set to the specific time point where prediction is to occur using current and past records.
- Using a cutoff time will make sure you aren't accessing any data records that were gathered after the prediction time, i.e. in the future.

Before any work with a new dataset, split off a final test validation dataset

- if you have enough data...
- Use this final test dataset as the very last step in your validation
- Helps to check the true generalisation performance of any trained models

Unsupervised learning

Transformations

Processes that extract or compute information

Density estimation

- Calculates a continuous probability density over the feature space given a set of discrete samples in such space.
- An area is delimited and a probability is given to each observation, for belonging to such area.

Dimensionality reduction

- Finds an approximate version of your dataset using fewer features.
- Used for exploring and visualising a dataset to understand grouping or relationships. Often visualized using a 2-dimensional scatterplot.
- Also used for compression, finding features for supervised learning

PCA

- Take the data points and finds the rotation so the dimensions are statistically uncorrelated.
- Features should be normalised with standard scale.

 pca.components_ shows which feature was more correlated with each component.

Manifold learning algorithms

- Try to find low dimensional structures in a high dimensional feature space. Useful for visualization in 3d/2d.
- t-SNE: A powerful manifold learning method that finds a 2D projection trying to preserve information about neighbours in the original space.

Clustering

• Find groups in the data. Data points within the same cluster should be 'close' or 'similar' in some way.

- Hard clustering: Each data point belongs to one cluster
- Soft or fuzzy clustering: Each data point os assigned a weight, score or probability of membership for each cluster.

K-means

- Pick number of clusters k you want to find.
 Then pick k random points to serve as an initial guess for the cluster centers.
- 2. Step A: Assign each data point to the nearest cluster center.
- 3. Step B: Update each cluster center by replacing it with the mean of all points assigned to that cluster (in step A).
- 4. Repeat steps A and B until the centers converge to a stable solution.

Note: Min-Max scaling should be use on the features

- Works well for simple clusters that are same size, well-separated, globular shapes.
- Does not do well with irregular, complex clusters.
- Variants of k-means like k-medoids can work with categorical features.

Agglomerative clustering

- 1. Each data point is in its own cluster.
- 2. The most similar two clusters are merged to form a new cluster.

Linkage Criterias:

- 1. Ward's method: Least increase in total variance (around cluster centroids)
- 2. Average linkage: Average distance between clusters.
- 3. Complete linkage: Max distance between clusters.

3. Step 2 is repeated until a condition is met. In sklearn the condition is the preselected number of clusters.

DBSCAN: Density Based Special Clustering of Applications with Noise

- Unlike k-means, you don't need to specify # of clusters
- · Relatively efficient can be used with large datasets
- Identifies likely noise points
- Two main parameters: min_samples & eps.
 - eps kinda controls the number of clusters, although ths is not explicit.

Feature 1

- The idea is to analize the density in different regions
 - More dense regions, are named as **core samples**. For a given data point, if there are min_samples other data points that lie within a

distance of eps, that given point is labeled as a core sample. Then all core samples that are with a distance of eps units apart, are put into the same cluster.

- Points that are not within any cluster, are considered as **noise**.
- Points that are within an eps unit of other points, but are not core points themselves, are termed **boundary points**.
- If the features are scaled using normalized scaling or min-max, finding the correct eps value is usually easier.
- A label of -1 in sklearn, means that the data point was classified as noise.

Clustering evaluation

- With ground truth, existing labels can be used to evaluate cluster quality.
- Without ground truth, evaluation can difficult: multiple clusterings may be plausible for a dataset.
- Consider task-based evaluation: Evaluate clustering according to performance on a task that does have an objective basis for comparison.
- Example: the effectiveness of clustering-based features for a supervised learning task.
- Some evaluation heuristics exist (e.g. silhouette) but these can be unreliable.