

FLAGS OF ALL COMMERCIAL NATIONS.

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZIN		£	
AMERICA.	ENGLAND.	EAST COM.	BRT NAVY.	FRANCE:
SW. RO!	SWEDEN	NORWAY	DAN ROL	DENMARK.
011.110.		I NOTHINA!	DAIL III	
X		ŽŠ		
RUS. IMP.	RUSSIA.	RUS.TRAT	POLAND.	BELGIUM.
		X X	Ġ.	
ITALY.	SARDINIA.	SICILY.	ROMAN.	NAPLES.
*4	W		+	
PRU ROS	PRUSSIA.	HANOVER.	SWITZERLAND	HOLLAND.
Ü	F. 10.			Ü
AUS IMP.	AUSTRIA.	SPA. ROL	SPAIN.	PORTUGAL.
	*		(*	Z AND
GREECE.	GRE. ROL	TURK	TURK.IP.	PERSIA.
The state of the s		M		
BRAZIL.	BUS.AYRES.	MEXICO.	VENEZUELA	CHINA.

Pocket-Book

OF

MECHANICS

AND

Engineering.

CONTAINING A MEMORANDUM OF FACTS

AND CONNECTION

OF

Practice and Theory.

BY

JOHN WYNYSTROM, C. E.

Eighth Edition Revised, with additional matter.

PHILADELPHIA:

J. B. LIPPINCOTT & CO.

LONDON: TRUBNER & CO.

1864.

TAISI

Entered according to Act of Congress in the year 1861, by JOHN W. NYSTROM,

in the clerk's Office of the District Court of the United States in and for the Eastern District of Pennsylvania.

PREFACE.

Let every Engineer make his own Pocket-Book as he proceeds in study and practice, it will then suit his particular business. The present work was compiled in this way continually during the Author's professional career. It was originally not intended for publication, but had grown so large in manuscript as to be inconvenient for the pocket, which circumstance combined with repeated requests to publish it, placed it before the public, first in the year 1854. Since that time he has travelled in Europe for nearly five years, collecting such information for the Pocket-Book as to follow up the progress of Engineering profession, and no expense has been spared in attaining that object.

The Author hopes that the introduction of Algebraical formulas instead of written rules will be favourably received. Written rules adopted by English Authors and Engineers are indeed excellent;—but formulas are better,—because they not only tell what is to be done, but at a glance, impress the mind with the complete operation. If all the formulas in this book were explained in words, it would be far too large for the pocket. It is avoided to impose upon Engineers to carry elementary explanations in their pockets which belongs to schoolboys and apprentices.

It is not necessary to understand Algebra for the use of the formulas,—only practise the insertion of numerical values, and perform the arithmetical operations indicated by the particular formula used. The Author has furnished the formulas ready to receive what is given, and refund what is required.

Should there be any letters in formulas not clearly explained refer then to the examples.

ADVERTISEMENT.

THE undersigned is prepared to furnish Drawings and estimates for Propeller Steamers. He designs Engines and Propellers suitable for any desired description of Vessels. Furnishes Drawings of Vessels, with their whole internal arrangements distinctly shown in sections and details of any desired Scale.

Several years of experience in this profession enable him to furnish complete and correct Drawings on very short notice.

It is very important to have full and complete Drawings before the keel of the Vessel is laid, so as to insure unity of action between the Ship and Engine Builders, and to afford a clear understanding in reference to contracts.

The Drawings will contain all new and useful improvements.

JOHN W. NYSTROM,

Civil Engineer,

Letters will be promptly attended to.

Philadelphia.

Mr. Nystrom, the Author of this Pocket-Book, has been connected with me since 1849, as Constructor and Draughtsman, in which capacity he has given the greatest satisfaction. During that time my attention was constantly called to the readiness and accuracy of his calculations, which were made by means of a Pocket-Book then in manuscript. I have frequently requested him to publish it, and am now gratified by receiving its pages in print.

In it there is a Drawing of my Propeller, illustrating the expanding pitch first adopted by me, and now generally used. This is the principle upon which Propellers have been constructed, under my direction by Mr. Nystrom.

R. F. LOPER.

March, 1854.

CONTENTS.

A	
PAGE	PAGE
Accelerated motion 195	Blast furnaces 289
Acceleration, force by - 205	Blast, warm and cold - 289
Acoustics 235	Blowing off salt water - 268
Acres 70	Blowing machines - 286
Addition in algebra 13	Bodies in collision 156
Adhesion on railways - 124	Boilers, steam 280
Adulteration of metals 211	Boilers, weight of 284
Advertisement 55	Boiling point 243
Aerostatic 230	Bolts and nuts 192
Age, moon's 316	Bramah's hydraulic press - 215
Air, composition of 290	Breast wheel, water - 224 Brick 176
Air required for furnaces - 285	
Air pump, dimensions of - 252	Bushel, standard 70
Algebra 13	
Algebraical signs 12	C
Allegation 20 Alloys 183	
Alloys 183	Cables and anchors 166
Almanac, 19th century - 311	Cables, weight, strength, price 165
Alphabets for headings - 326 Anchors and cables - 116	Calculating machine - 55
Anchors and cables - 116 Angular velocity 202	Caloric 240
	Calorimeter in steamboilers - 281
Animal strength 154 Annuities 68	Capacity, measure of 71
Annular double cylinder • 263	Capacity for Caloric - 245 Capacity and weight of balls - 167
Anomalistic year 310	
Anothecaries' weight 71	Capacity of solids 100 Capacity and weight of materials 114
Apothecaries' weight - 71 Apparent time 312	
Area and circum. of circles - 104	Cask, capacity of 102 Cast iron pillars, strength of 163
Area of plane figures - 96	Cast from pipes 186
Area of solids 99	Cast iron pipes 186 Cast iron, produce of 289
Area of solids 99 Arithmetics 11, 292	Cast iron girders 173
Arithmetical progression - 64	Castings, weight of - 167
Astronomy 310	Catenaria = 145, 149
Astronomy 310 Atmosphere 230	
Atmospheric columns - 285	Centre of gravity 206
Atom weight 290	Centre of gyration - 202
Atmospheric columns Atom weight 235 Audibility of sound Avoirdupois weight - 71 Axles and shafts - 175, 181, 182	Centre of oscillation 200
Avoirdupois weight - 71	Centre of percussion - 206 Centrifugal force - 198
Axles and shafts - 175, 181, 182	Centrifugal force 198
20	Chains strongth woight price 165
В	Chain, surveying 70
Balls, piling of 65, 67	Chairs for railways - 170
Balls, weight and capacity of 167	Chain, surveying 70 Chairs for railways - 170 Charge of powder 196
Balloon 233 Barometer 231	Charge in blast furnaces - 289
Barometer 231	Chemistry 290
Bar iron, weight of 187, 189 Barrel, capacity of - 71	Chemical formulas 291
Barrel, capacity of 71	Chemical compounds 290
Beams, solid and compound - 168	Chime of bells 238
Beam, walking 93, 103	Chimneys, height of 281
Beam, strongest from a log - 174	
Bells, ringing 236, 238 Belts, leather 155 Billiard problem 156	
Belts, leather 155	
Billiard problem 156	
Binary compounds 291 Binominal theorem - 22	
Pirmingham wire gauge 191	Coal, weight and bulk of - 283
	Coefficient of vessels - 273
Trest custines 201	COCHECICAL OF ACREES - 5 213

_	
Page	PAGE
Cog wheels 178	Dredging Machines 155
Cohesive strength 164	Dynamical formulas 153
	Dynamics 152
Cold, artificial 244	
Collision of bodies 156	E
Colours 69	E
	Earth, dimension of 298
Combustion of fuel • 283	Eccentrics 266
Compass, mariners' 302	
Composition of air, water - 290	Economy of expansion of steam 257
	Effects of water, natural - 222
Compounds, chemical - 290	Ellipse, construction of 86
Compound interest - 68	" periphery of 94
Compressive strength 162	
	101111111111111111111111111111111111111
	Elliptic mirror 294
Concave and convex lenses - 296	Elasticity of beams 172
Concretes 184, 159	Elevation of external rail - 117
Condenser, fresh water 279	
Condensel, Hesti water - 215	Embankments 120
Condensing water 253	Engineers' command - 269
Conic sections 140	Engines, different kinds of - 265
Conducting power of heat - 243	
	Epact of the year and month 316
Construction of ships - 319	Equation of time 315
Consumption of fuel - 258	Equivalents 290
Cord of wood 176	
Cosecant, natural 133	
Costcant, natural	Evolution 22
Cosine, natural 129	Expansion of air 241
Cotangent, natural 131	" liquids 241
Crank and pin 182	
Cube and cuberoot 23	or solids by new - 220
	" of steam 255
Cubic containts 100	Exponent of vessels 273
Cupola 285	Excavation and embankment . 120
Curvature of the earth 303	
	Eyes, long and near sighted . 293
Curves for railways 116	
Cut off steam 255	
Cut off steam 255	F
Cut off steam 255 Cut off valve 267	_
Cut off steam 255 Cut off valve 267 Cycle, lunar 310	${f F}$
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310	F Faces of the moon 316
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310	F Faces of the moon 316
Cut off steam - - 255 Cut off valve - - 267 Cycle, lunar - - 310 Cycle of the sun - - 310	F Faces of the moon 316 Falling bodies, table of 193
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310	F Faces of the moon 316 Falling bodies, table of 193 Fan or ventilator 288
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 288 Fathom 70
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310	F Faces of the moon 316 Falling bodies, table of 193 Fan or ventilator 288
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 288 Fathom 70 Feedpump 251
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197	Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship 18, 19
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of 312	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship 18, 19 Fire engines 219
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 Day and night, length of - 312 Decimal fractions to yulgar - 125	Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of 312	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship 18, 19 Fire engines 219
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun Cycloid 87, 140, 197 Day and night, length of 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet 318	Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship 18, 19 Fire engines 219 Flags of all nations - 1 Flanges, plate VI 181
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 Day and night, length of 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet 318 Declination of the sun 314	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 288 Fathom 70 Feedpump 251 Fellowship 18, 19 Fire engines 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70	Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154 Flooring, beams in - 169
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154 Flooring, beams in - 169
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 Day and night, length of - 312 Decimal fractions to vulgar - 125 Decimal fractions to vulgar - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 298 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines 219 Flags of all nations - 11 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 288
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs 78	F Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205
Cut off steam 255 Cut off valve 267 Cycle, lunar - 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300	Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154 Flooring, beams in - 169 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses - 296
Cut off steam 255 Cut off valve 267 Cycle, lunar - 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300	F Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wrot' iron shafts 175, 181 Differential calculs - 78 Departure 300 Discount or rebate 18	Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in 169 Flues and pipes, riveted 185 Flues for steam boilers - 282 Fly-wheels - 296 Focal distances of lenses 296 " mirrors 296
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs 78 Departure - 300 Discount or rebate - 18 Displacement of vessels, - 278	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 298 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 296 "" mirrors - 294 Force-pump - 251
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300 Discount or rebate - 18 Distances on the American coast 308	F Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flooring, beams in 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 296 Fore-pump - 251 Foot-valves in air pumps 255
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs 78 Departure 300 Discount or rebate - 18 Displacement of vessels, 278 Distances on the American coast 308 "U.S. railways - 309	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 18 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154 Flooring, beams in - 169 Flues for steam boilers - 282 Fly-wheels 205 Focal distances of lenses 296 ""mirrors - 294 Force-pump - 251 Foot-valves in air pumps - 252 Forgings by steam hammers 159
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300 Discount or rebate - 18 Displacement of vessels, 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 18 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154 Flooring, beams in - 169 Flues for steam boilers - 282 Fly-wheels 205 Focal distances of lenses 296 ""mirrors - 294 Force-pump - 251 Foot-valves in air pumps - 252 Forgings by steam hammers 159
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure 300 Discount or rebate - 18 Displacement of vessels, - 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator 298 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels 205 Focal distances of lenses 296 " " mirrors - 294 Force-pump - 251 Foot-valves in air pumps Forgings by steam hammers 159 Forgings money - 72
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300 Discount or rebate - 18 Displacement of vessels, 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306 " in Europe - 307	Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in 169 Flues and pipes, riveted 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 296 " mirrors - 294 Force-pump - 251 Foot-valves in air pumps 252 Forgings by steam hammers 159 Foreign money - 72 " weights and measures 73 to 76
Cut off steam 255 Cut off valve 267 Cycle, lunar - 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300 Discount or rebate - 18 Displacement of vessels, 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306 " in Europe - 307 " of objects at sea - 307	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels 205 Focal distances of lenses 296 " mirrors - 294 Force-pump - 251 Foot-valves in air pumps - 252 Forgings by steam hammers 159 Foreign money - 72 " weights and measures 73 to 76 Fractions, reduction of - 125
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300 Discount or rebate - 18 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306 " in the world - 306 " of objects at sea - 303 " spherical - 301	Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 181 Floating bodies - 216 Floor mills - 154 Flooring, beams in 169 Flues and pipes, riveted 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 296 " mirrors - 297 Froct-pump - 251 Foot-valves in air pumps 2552 Forgings by steam hammers 159 Foreign money - 72 "weights and measures 73 to 76 Fractions, reduction of - 125 Fresh water condenser - 279
Cut off steam 255 Cut off valve 267 Cycle, lunar - 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300 Discount or rebate - 18 Displacement of vessels, 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306 " in Europe - 307 " of objects at sea - 307	F Faces of the moon 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom 70 Feedpump 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels 205 Focal distances of lenses 296 " mirrors - 294 Force-pump - 251 Foot-valves in air pumps - 252 Forgings by steam hammers 159 Foreign money - 72 " weights and measures 73 to 76 Fractions, reduction of - 125
Cut off steam 255 Cut off valve 267 Cycle, lunar - 310 Cycle of the sun - 310 Cycloid - 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 76 Displacement of vessels, 278 Distances on the American coast 308 " U.S. railways - 309 " in the world - 306 " of objects at sea - 303 " of objects at sea - 301 Distance to the sun - 310	F Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 18 Flags of all nations - 18 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 296 "mirrors - 294 Force-pump - 251 Foot-valves in air pumps - 252 Forgings by steam hammers 159 Foreign money - 72 "weights and measures 73 to 76 Fractions, reduction of - 125 Fresh water condenser - 279 Friction - 160
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure - 300 Discount or rebate - 18 Displacement of vessels, - 278 Distances on the American coast 308 " U. S. railways - 309 " in feurope - 307 " of objects at sea - 303 " spherical - 301 Distance to the sun - 310 Division in Algebra - 14	Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flooring, beams in 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205 For all mirrors - 294 Force-pump - 251 Foot-valves in air pumps Foreign money - 72 " weights and measures 73 to 76 Fractions, reduction of - 125 Fresh water condenser - 279 Friction - 160 Fuel properties of - 288
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wrot' iron shafts 175, 181 Differential calculs 78 Departure 300 Discount or rebate - 18 Displacement of vessels, - 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306 " in Europe - 307 " of objects at sea - 303 " spherical - 301 Distance to the sun - 310 Division in Algebra - 14 Dodecahedron 95	Faces of the mon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 11 Flanges, plate VI 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 296 " mirrors 294 Force-pump - 251 Foot-valves in air pumps 252 Forgings by steam hammers 159 Foreign money - 72 " weights and measures 73 to 76 Fractions, reduction of 125 Fresh water condenser - 279 Friction - 160 Fuel, properties of - 282 Fuel, consumption - 282
Cut off steam 255 Cut off valve 267 Cycle, lunar - 310 Cycle of the sun - 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wro't iron shafts 175, 181 Differential calculs - 78 Departure 300 Discount or rebate - 18 Displacement of vessels, - 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306 " in Europe - 307 " of objects at sea - 303 " spherical - 301 Distance to the sun - 310 Division in Algebra - 14 Doddecahedron - 95 Double cylinder expansion - 264	F Faces of the moon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 1 Flanges, plate VI 181 Floating bodies - 216 Flooring, beams in 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 294 Force-pump - 251 Foot-valves in air pumps Foreign money - 72 " weights and measures 73 to 76 Fractions, reduction of 125 Fresh water condenser - 279 Friction - 160 Fuel, properties of - 285 Fuel, consumption - 258 Fuel, consumption - 258 Fuel, consumption - 258 Fuel, consumption - 258
Cut off steam 255 Cut off valve 267 Cycle, lunar 310 Cycle of the sun 310 Cycloid 87, 140, 197 D Day and night, length of - 312 Decimal fractions to vulgar - 125 Deaf and dumb alphabet - 318 Declination of the sun - 314 Degrees of the earth's circle - 70 Diagram, indicator - 266 Diamond 72 Diameter of wrot' iron shafts 175, 181 Differential calculs 78 Departure 300 Discount or rebate - 18 Displacement of vessels, - 278 Distances on the American coast 308 " U. S. railways - 309 " in the world - 306 " in Europe - 307 " of objects at sea - 303 " spherical - 301 Distance to the sun - 310 Division in Algebra - 14 Dodecahedron 95	Faces of the mon - 316 Falling bodies, table of - 193 Fan or ventilator - 288 Fathom - 70 Feedpump - 251 Fellowship - 18, 19 Fire engines - 219 Flags of all nations - 11 Flanges, plate VI 181 Floating bodies - 216 Flour mills - 154 Flooring, beams in - 169 Flues and pipes, riveted - 185 Flues for steam boilers - 282 Fly-wheels - 205 Focal distances of lenses 296 " mirrors 294 Force-pump - 251 Foot-valves in air pumps 252 Forgings by steam hammers 159 Foreign money - 72 " weights and measures 73 to 76 Fractions, reduction of 125 Fresh water condenser - 279 Friction - 160 Fuel, properties of - 282 Fuel, consumption - 282

CONTENTS.

G	j _
Gallon, standard 70	Joints, proportion of riveted - 283
Gas, motion of in pipes - 235	Jonval's Turbine 227
Gearing, force by 147	_
Geography 298	L
Geography 298 Geometry 84	Lap and lead of slide valves - 266
Geometrical progression 66	Latent heat 240
Girder, compound iron - 169	Lateral strength 168, 171
" cast iron 173 Gold metal 183	Latitude and longitude - 305 Law of gravity 194
Golden number 310	Law of gravity 194 Leap years 311, 314
Governor 199	Leather belts 155
Gravitation 195	Lenses, optical 293
Gravity, specific 210 " centre of 206	Letters for printing 318 Lever 144, 145
Gauge, Birmingham - 191	Lever 144, 145 Light 235
Gyration, centre of 202	Liquid measure 71
	Locomotive traction 123
H	Logarithms 56 Logarithm of numbers 58
	" sine, cosine - 60
Half-trunk cylinders - 264	" tangent, cot 62
Heat, Caloric 283, 240 Helix of a screw 93, 94	Longitude into time 299
Hexahedron 95	Log line, length of 70 Lunar Cycle 310
Hemp rope, weight and price 165	Human Oyoto
High water, time of - 316 Height of the Atmosphere - 231	M
Hodgkinson's formula 162	Magnifying power of lenses - 296
Horse mill 154	Magnifying power of lenses - 296 "Opera-glasses and tel-
Horse power of locomotives - 123	escopes 296
" for work 152 " in machinery - 262	Main slide valve 266
" nominal 260	Manual labor 56
" " actual 263	Mariners' compass 302
Horse, ability of 123 Hose, velocity of water in - 219	Maxima and Minima 82
Hydraulic 218	Mean time 315 Measures and weights 70
Hydraulic mortar 159, 184	Measures, Foreign 73 to 76
" press 215 " paradox 215	Mechanics 144
Hydrodynamics 222	Mean pressure of steam - 256 Meridian altitude, sun's - 311
Hydrometer 214	Men's power 152
Hyperbolical mirror 294	Metacentrum 216
Hyperbola, equation for - 143	Meter, French 73
I	Microscope 293 Mile, statute and nautical - 70
•	Mills, flour, saw, rolling - 154
Icosahedron 95	Mill, wind 234
Inches and feet, plate I 125	Mirrors 293, 294 Momentum in bodies 156
Inclined plane 144, 150 Indicator diagram plate IX 266	Momentum in bodies 156 Momentum, static 144
Indix of refraction 295	Money 72
Injection water 253	Moon 310
Incrustation in boilers 269 Integral calculs 83	Moon's age 316 Moon's faces 316
Interest · · 1768	Mortar and Cements - 159, 184
Interpolation 80	Mortar, piece of ordnance - 197
Involution 21	Motion of bodies 156
Impact of bodies 157 Iron or blast furnaces 289	Multiplication in algebra - 13 Music 237, 239
200	201,200

N	
PAGE	PAGE
Natural sine and cosine 128	Power of water 222
" tangent and cot 130	" of engines 260, 263
" secant and cosec 132	" nominal horse 260
Navigation 300	" actual horse 263
Night and day, length of 312	" of locomotives 123
Nominal horse power - 260	" of men 152
Notation of numbers 11	" of a horse 123
Nuts and bolts 192	" in moving bodies 196
Nystrom's Calculator 55	" definition of 152
	" for steamboats - 276
0	" for different mills 154
	" for punching 285
Octahedron 95	" magnifying 296
Opera glasses 295, 297	" reflecting of heat - 243
Optics 293	Toncoung of near
Ordinates for Railway curves - 115	
Oscillation of Pendulum - 201	
Overshot wheel 225	Printing letters for headings - 318
Overshot wheel 225	Progression, Arithmetical - 64
n	" Geometrical 66
P	Price of materials - 165, 169, 170, 282
	Propellers, screw 270
π, value of, to 127 decimals - 88	Proportion 15, 16
Paddle wheels 278	Provision 77
Paper, drawing and tracing - 69	Pulleys 148
Parabola, to construct a - 87, 143	Pump, air, and feed - 252
Parabolic ships - 319	Punching iron plates 285
Parabolic mirror 294	
" vein 221	Q
Paradox, hydraulic 215	
Pattern makers' rule - 167	Quantity, definition of - x 11
" for castings 167	quality, desiration of - " 11
Peal of eight bells 238	
Pendulum 200	R
Percussion, centre of - 206	
Periphery of an ellipse - 94	Radiating power of heat 243
Permutation 19	Radius of the Earth - 298
Phœnix Iron Co., beams 168	Roads, traction on 122
" Rolled iron 170	Rail, elevation of the outer - 117
Piling of balls and shells - 65, 67	Railroads 115 to 124
Pile-driving 158	Rails, spring of 117
Pipes, motion water in - 218, 228	Railway curves 116
" motion of gas in - 235	Rails, weight and price of - 170
" cast iron, weight of - 186	Rails for streets 170
" and flues, riveted - 185	Ram in pile driving - 158
" steam 254	Range of a cannon ball 197
	Rebate or discount 18
Pitch of propellers 271 " of screws 93	Rectangular beams from a log - 174
" of spirals 87, 94	Reduce inches to feet - 125
" of teeth in gearing 178	Reflecting power of heat 243
Planetary system 313	Refractive indices 295
Plane sailing 300	
Plane inclined 150	
Points on the compass 302	Resultant of forces 147
Polygons 103	Retarded motion 195
Polyhedrons 95	Ringing bells 236
Poncelet's water wheel - 224	Riveted joints, proportion of - 283
	Roebling's wire ropes 165
	Rolled iron, weight, size, price 170, 184
	Rolling mills 154
Ports, steam 254	Roman cement 159
Powder, charge of 196	Roman notation 12
composition of 290	Ropes, strength, weight, price - 165
" forced by 196	Roots, square and cube 23

s	
PAGE	PAGE.
Safety valve 254	Subtraction in algebra 13
Sailing distances - 306, 398	Sun, set and rise 312
Salt water in boilers 268	Cycle of the
Sashbars, iron, for windows - 170 Saturation in boilers 269	" distance to 310 Sun's altitude 311
Saturation in boilers 269 Saw, circular and alternative 154	" declination 314
Saw mill water wheel 225	Superheating steam - 259
Screw jack 151	apparatus 259
" propeller 270	Surface condenser 279
" helix 93, 94	Surveying chain 70
" force by 145, 151	Surface of solids 99
" proportions of 192	_
Secant, natural 132	T
Sections, conic 140	The last to complete the CA
Segments of a circle 110 Shafts, strength of 181	Talon, to construct a 84
Shafts, strength of 181	Tangent, natural 130 logarithm 62
Sheering iron plates 285	Teeth for gearing 178
Ships construction of - 319	Telescope, astronomical - 297
Shrinkage of castings 167	Temperature on the Earth - 242
Sideral year 310	of substances - 243
Signs, Algebraical 12	Tempering steel 183
Simple interest 17	Tetrahedron 95
Simple substances 290	Thermometer 242
Sine and cosine, natural - 128	Threads, number of per inch - 192
105411111111	Thrashing Machine 154
Slide valves 266 Slip of propellers 273	Time of high water 316
Slip of propellers 273 Slope of embankments 120	" apparent 312 " equation of 315
Smelting point 243	" difference in 299
Solders, for bracing 183	Tonnage of vessels 278
Soldiers' steps 152	Tracing paper 69
Solids, capacity of 100	Traction on roads 122
Sound, acoustic 235	Traveling distances - 307, 309
Soundings to low water 317	Triangles, formulas for 134
Specific gravity - 210, 212, 290	different kinds - 85
Specific caloric 244	by diagrams 150
Speed & horse power of steamers 276	Trigonometrical functions - 127
Spherical distances 301 with mirrors 294	Trigonometry, plane 125 spherical - 136
" trigonometry 136	Tropical year 310
Spiral, construction of - 87, 94	Troy weight 71
Spring of rails 117	Tubes, iron, lap welded 282
Square a circle, to 94	Turbines, Jonval's 226
Square and square root - 23	Tuyeres in furnaces x 286
Stability of floating bodies - 216	
Static momentum 144	U
Steam 246	T7 0 . 4 3 3 1 . 3
DOTTETS - 200	U. S. standard weight, measure 70
" condenser 279 engines 265	Undershot water wheel 224
" expansion of 255	v
" hammers 159	· -
" pipes and ports 254	Valves, air pump - ' - 252
" superheated 259	" safety 254
" ship performance 274	" slide 266
" table 248	" blast engines 286
Steel, tempering of 183	Vein of water, contracted - 221
Strength of materials - 162 to 176	parabolic • • 221
Strength of animals 154 Stubends, plate V 181	
Stuffing boxes, plate VI 181	Vessels, resistance to - 274 'tonnage of 278
2 101	210

Page	PAGE
Velocity, angular 202	Weight flat rolled iron 187
" of gas in pipes - 235	copper bolts 190
" of gas in pipes - 235 " of water in pipes - 218, 228	" per square foot - 191
" of men 152	" and capacity - 114, 210
Vibration of pendulum 201	" of castings 167
III III usic 237	Of materials - 151 to 104
Volume expansion 241	" of steam hammers - 159
Vulgar fractions to decimals - 125	" of engines and boilers - 284
	Weirs, water flowing over - 222
W	Western steam boilers 283
	Wheels, paddle 278
Walking beam 93, 103	" water 224
Water colours 69	Wind, force by 233
" composition of 290	" mills 234
composition of - 250	
	" velocity of 232
" power of 222	Window sashes, iron 170
" motion of in pipes - 218, 228	Wire gauge 191
" wheels 222, 225	Wire ropes, strength, price - 165
Wedge, force by 145, 151	Wood, cord of 176
Weight and measure 70	Wrought iron beams 168
and canacity of halls - 167	11.10000:001000000000000000000000000000
of round, square iron 184	Y
66 arrought iron pines - 105	
wrought from pipes - 100	True 3 feet and Inches
cast non pipes 100	Yard, feet and inches 70
" cast iron cylinders - 185	Years, different kinds of - 310

INTRODUCTION.

Quantity is that which can be increased or diminished by augments or abatements of homogeneous parts. Quantities are of two essential kinds, Geometrical and Physical.

1st, Geometrical quantities are those which occupy space; as lines, surfaces, solids, liquids, gases, &c.

2nd, Physical quantities are those which exist in the time but occupy no space, they are known by their character and action upon geometrical quantities; as attraction, light, heat, electricity and magnetism, colours, force, power, &c., &c.

To obtain the magnitude of a quantity we compare it with a part of the same, this part is imprinted in our mind as a unit, by which the whole is measured and conceived. No quantity can be measured by a quantity of another kind, but any quantity can be compared with any other quantity, and by such comparison arises what we call calculation or Mathematics.

MATHEMATICS.

Mathematics is a science by which the comparative value of quantities

are investigated; it is divided into:

1st, Arithmetic,-that branch of Mathematics, which treats of the nature and property of numbers; it is subdivided into Addition, Subtraction, Multiplication, Division, Involution, Evolution and Logarithms.

2nd, Algebra, -- that branch of Mathematics which employs letters to represent quantities, and by that means performs solutions without knowing or noticing the value of the quantities. The subdivisions of Algebra are the same as in Arithmetic.

3rd, Geometry,-that branch of Mathematics which investigates the relative property of quantities that occupies space; its subdivisions are Longemetry, Planemetry, Stereometry, Trigonometry, and Conic Sections.

4th, Differential=calculs,—that branch of Mathematics, which ascertains the mean effect, produced by group of continued variable causes.

5th, Integral-calculs,-the contrary of Differential, or that branch of Mathematics which investigates the nature of a continued variable cause, that has produced a known effect.

ARITHMETIC.

The art of manœuvering numbers, and to investigate the relationship of quantities.

Figures-1, 2, 3, 4, 5, 6, 7, 8, 9. Arabic dignets, about nine hundred years old. Ciphers-0, 0, 0. Sometimes called noughts, it is the beginning of figures and things.

Number is the expression of one or more figures and ciphers.

Integer is a whole number or unit.

Fraction is a part of a number or unit.

When figures are joined together in a number, the relative dignity expressed by each figure, depends upon its position to the others. Thus,

Notation is the setting down of any number by figures and ciphers.

Numeration is the reading of any number in words, from the expression of figures and ciphers.

Characters which describe the operation by numbers (significations).

010001 000001 0 00100010	~~~		of or	,	16 Og	****	,, 0 (0	greejeomeore
= Equality, as 6=	o, re	ads 6	is e	qual :	to 6.			
+ Plus, Addition,						-		3+6=9
- Minus, Subtrac	tion,	-				-		• 6 -2=4
X Multiplication,						-		$3 \times 4 = 12$
+ or : Division,			•					15:5=3
√ Square root, -								√ 9=3
3 Cube root,								3/8=2
*								-8 > 4
< Less,								
~,								0 \ 0

ROMAN NOTATION.

The Romans expressed their numbers by various repetitions and combinations of seven letters in the alphabet; as,

1=I. 2=II. 3=III. 4=IV. 5=V.6=VI. 7=VII. 8=VIII. 9=IX10 = X. 20=XX30=XXX. 40=XL. 50=L. 60=LX. 70=LXX 80=LXXX. 90=XC. 100=C. 500=D, or LO. 1,000=M, or CO.

2,000=MM, or IIOOO. 5,000=V, or LOO.

 $6,000 = \overline{VI}$, or MMM.

 $10,000 = \overline{X}$, or COO.

50,000=L, or LOOD. 60,000=LX, or MMMO.

100,000=C, or COOO.

 $1,000,000 = \overline{M}$, or COOOO.

2,000,000 = MM, or MMOOO.

EXAMPLES.—1854, MDCCCLIV.

524,365, DXXIVCCCLXV.

An imperfection in the Roman Notation consists in that, there is no signification for the cipher as in the Arabic notation.

As often as a character is repeated, so many times is its value repeated.

A less character before a greater diminishes its value, as IV=I from V, or 1 substracted from 5=4.

A less character after a greater increases its value, as XI=X+I, or 10+1=11.

For every O annexed, this becomes 10 times as many.

A bar, thus, — over any number, increases it 1000 times.

ALGEBRA.

In Algebra we employ certain characters or letters to represent quantities. These characters are separated by signs, which describe the operations; and by

that means, simplify the solution.

1. Whatever the value of any quantity may be, it can be represented by a character, as a. Another quantity of the same kind, but of different value, being represented by b. The sum of these two quantities is of the same kind but of different value.

for Addition we have the algebraical sign +, (plus) which, when placed between quantities, denotes they shall be added; as a+b, reads in the algebraical language, "a plus b," or a is to be added to b. Another algebraical sign =, (Equal) denotes that quantities which are placed on each side of this sign, are equal. Let the sum of a and b be denoted by the letter c; then we have,

a+b=c.

This composition is called an algebraical equation. The quantity on each side of the equal sign is called a member, as a+b, is one member, and c, the other. When one of the members contains only one quantity, that member is generally placed on the first side of the equal sign, and its value commonly unknown; but the value of the quantities in the other member being given, as a=4, and b=5, then the practical mode, to insert numerical values in algebraical equations, will appear; as,

Equation, c=a+b, 4+5=9, the value of c.

2. The sum of three quantities a, b, and c, is equal to d, then

Equation, d=a+b+c, 4+5+9=18, the value of d.

3. For **Subtraction** we have the algebraical sign,—, (minus) which, when placed before a quantity, denotes it is to be subtracted as, a—b, reads in the algebraical language "a minus b," or from a, subtract b. Let the difference be denoted by the letter c; and a=8. b=3

Equation, c=a-b, 8-3=5, the value of c.

4. From the sum of a and b, subtract c, and the result will be d: then,

Equation, d=a+b-c, 8+3-5=6, the value of d.

5. When two equal quantities are to be added, as a+a, it is the same as to take one of them twice, and is marked thus 2a. The number 2 is called the coefficient of the quantity a. If there are more than two equal quantities to be added, the coefficient denotes how many there are of them; as,

Equation, - - - a + a = 2a, a + a + a = 3aa + a + a + a = 4ade., de.

When the quantities are separated by the signs, plus, or minus, they are called terms.

6. Multiplication.-When a quantity a, is to be multiplied by another quantity b, then a and b are called factors; and separated by no sign as ab; which denotes that a is to be multiplied by b; but when the values of a and bare expressed by numbers, they are separated by the sign \times (Multiplication); the result from Multiplication is called the product. Let a=8, and b=6, and the product of a and b, to be c, then,

> Equation, c=ab, $8\times6=48$, the value of c.

7. The product of a and b, is to be multiplied by c, and the latter product will be equal to d; then,

> Equation, d=abc, $8\times6\times48=2304$, the value of d.

8. The sum of a and b, is to be multiplied by c, and the product will be d; then,

Equation,
$$d = c \ (a+b)$$
,
 $48 \ (8+6) = 672$ the value of d.

When the sum of two or more quantities is to be multiplied by another quantity, the sum is to be enclosed in parentheses, and denotes itself to be one factor. The other factor is to be placed on the outside of the parentheses, as seen in the preceding example.

9. To the product of a and c, add b, and the result will be d; then,

Equation,
$$d = ac + b$$
, $8 \times 48 + 6 = 390$ the value of d.

Be particular to distinguish the two Examples 8, and 9.

10. The sum of a and b, to be multiplied by the sum of a and c; the product will be d; then,

Equation,
$$d = (a+b) (a+c)$$
, $(8+6) (8+48) = 784$.

11. The sum of c and b, to be multiplied by the difference of c and a; the result will be d; then,

Equation,
$$d = (c+b)(c-a)$$
, $(48+6)(48-8) = 2160$.

12. **Division.**—When a quantity a, is to be separated into b equal parts, the numbers of parts or b, is called the divisor, and the value of each part, is called the quotient. The sum of the parts or the whole quantity a, is called the dividend; a and b, is separated by the sign: (Division); as a: b, reads in the algebraical language, "a divided by b." Let the quotient be denoted by the letter c; and a=18, b=6, then,

Equation,
$$c=a:b$$
, 18:6=3 the quotient c.

In Algebra it is found more convenient to set up Division as a fraction, then it will appear as,

13. Divide a, by c, and the quotient will be b. Then,

Equation,
$$b = \frac{a}{c}$$
, $\frac{18}{3} = 6$ the quotient b.

14. The product of α and b, to be divided by c; and the product will be d. Then,

Equation,
$$d = \frac{ab}{c}$$
, $\frac{18 \times 6}{3} = 36$.

15. The sum of d and b, to be multiplied by c, and the product divided by a; then the result will be c.

Equation,
$$\epsilon = \frac{c \ (d+b)}{a}$$
,
$$\frac{3 \ (36+6)}{18} = 7.$$

16. From the product of a and c, subtract 3b; divide the remainder by the difference of a, and c; the result will be h.

Equation,
$$h = \frac{ac-3b}{a-c}$$
,
$$\frac{18\times3-3\times6}{18-3} = 2.4.$$

An old man said to a smart boy, "How old are you?" to which he replied .-"To seven times my father's age add yours, divide the sum by double the difference of yours and his, and the result will be my age."

Letters will denote. a =the old man's age, b = the father's age,
c = the boy's age. Then,

Equation,
$$c = \frac{7b+a}{2(a-b)}$$
 the boy's age.

Now for any number of years of the old man and the father, will be a corresponding age of the boy; suppose,

a = 73 years the age of the old man, b = 57 years the father's age. Require the boy's age.

$$c = \frac{7 \times 57 + 73}{2(73 - 57)} = 143$$
 years.

PROPORTION.

THE relative value of two quantities, is obtained by dividing one into the other, and the quotient is called the ratio of their relationship. If the ratio of two quantities is equal to the ratio of two other quantities, they are said to be in the same proportion; as,

$$a:b=c:d,$$

reads in the algebraical language "a is to b as c is to d."—a, b, c, and d, are called terms, of which a is the first, b the second, c the third, and d the fourth term. The first and fourth are called "the outer terms," and the second and third, "the inner terms." The whole is called an "analogy," A property in the nature of analogies is, that the product of the outer terms ad, is equal to the product of the inner bc. Suppose a=4, b=9, c=12,

d - 27.

If any one of the four quantities are unknown, its value can be calculated by the other three; as,

$$a = \frac{bc}{d} = \frac{9 \times 12}{27} = 4,$$

$$b = \frac{ad}{c} = \frac{4 \times 27}{12} = 9,$$

$$c = \frac{ad}{b} = \frac{4 \times 27}{9} = 12.$$

$$d = \frac{bc}{a} = \frac{9 \times 12}{4} = 27.$$

16 PROPOS	RTIONS.
To Alternate a Proportion. If $a:b=c:d$, then $a:c=b:d$, and $ad=bc$.	To Inverse a Proportion. If $a:b=c:d$, then $b:a=d:c$, and $bc=ad$.
To Multiply a Proportion. If $a: b = c: d$, then $na: nb = nc: nd$, and $\frac{a}{n}: \frac{b}{n} = \frac{c}{n}: \frac{d}{n}$.	To Reduce a Proportion. If $a:b=c:d$, then $na:nb=mc:md$, and $\frac{a}{n}:\frac{b}{n}=\frac{c}{m}:\frac{d}{m}$.
Compared Proportions. If $a:b=c:d$, and $c:d=e:f$ then $a:b=e:f$.	Continued Proportion. If $a:b=c:d=e:f$, then $af=be=cd$, and $ad=bc$, $cf=de$.
To Compound Proportions. If $a: d=c:d$, and $e: f=g:h$, then $ae: df=cg:dh$.	To Compare Proportions. If $a:b=c:d$, and $e:f=g:h$, then $\frac{a}{e}:\frac{b}{f}=\frac{c}{g}:\frac{d}{h}$.
To Combine a Proportion. If $a:b=c:d$, then $(a+b):b=(c+d):d$, and $d(a+b)=b(c+d)$.	To Combine a Proportion Inversely. If $a:b=c:d$, then $a:b=(a+c):(b+d)$, and $a(b+d=b(a+c)$.
To Dissolve a Proportion. If $a:b=c:d$, then $(a-b):b=(c-d):d$, and $d(a-b)=b(c-d)$.	To Dissolve a Proportion Inversely. If $a:b=c:d$, then $a:b=(a-c):(b-d)$, and $a(b-d)=b(a-c)$.
If $a:b=d:c$, then $a:b=\frac{1}{c}:\frac{1}{d}$, and $\frac{1}{a}:\frac{1}{b}=c:d$. and $ac=bd$.	To Find the mean Proportion. $a: x = x: b$ then $x = \sqrt{ab}$, x is the mean Proportion.
Proportion of Square and Square Root. If $a:b=c:d$, then $a^2:b^2=c^2:d^2$ and $\sqrt{a}:\sqrt{b}=\sqrt{c}:\sqrt{d}$.	Proportion of any Power or Root. If $a:b=c:d$, then $a^n:b^n=c^n:d^n$, and $\sqrt[n]{a}:\sqrt[n]{b}=\sqrt[n]{c}:\sqrt[n]{d}$.

SIMPLE INTEREST.

Interest is a profit on money which is lent for a certain time.

Letters will denote.

c = the standing capital, or lent money.
 r = interest on the capital c,

p = per cent. on 100 in the certain time.

Analogy,
$$c: r = 100: p$$
.

If p is the per cent, on 100, in one year, then t= time in years for the standing capital c, and the interest r.

Analogy,
$$c: r = 100: pt$$
.

From this analogy we obtain the equations,

Interest,
$$r = \frac{cpt}{100}$$
, . • • • 1

Per cent.,
$$p = \frac{100 \, r}{tc}$$
, • • • 2,

Capital,
$$c = \frac{100 \ r}{pt}$$
, - - - 3,

Time in years,
$$t = \frac{100 r}{cp}$$
, • • • • • •

Now for any question in Simple Interest, there is one equation which gives the answer. If the time is given in months, weeks, or days, multiply the 100 correspondingly by 12, 52, 365.

Example 1. What is the interest on \$3789.35, for 3 years and five months, at 6 per cent. per annum?

 $t=3\times12+5=41$ months, from the Equation 1, we have,

Interest,
$$r = \frac{3789.35 \times 6 \times 41}{12 \times 100} = 776.81$$
 Dollars.

Example 2. A capital c=\$469.78, gave an interest r=150.72 dollars, in a time t=4 years and 7 months. Require the per centage per annum? $t=4\times12+7=55$ months, from Equation 2, we have,

Per cent.,
$$p = \frac{12 \times 100 \times 150.72}{469.78 \times 55} = 7 \text{ per cent.}$$

Example 3. What capital is required to give an interest r=345 Dollars in 6 years, at 5 per cent. per annum? From the Equation 3, we have,

Capital,
$$c = \frac{100 \times 345}{5 \times 6} = $1150.$$

Example 4. A capital c=\$2365 shall stand until the interest will be r=550 Dollars, at p=6 per cent. per annum. How long must the capital stand? From the Equation 4, we have,

Time,
$$t = \frac{100 \times 550}{2365 \times 6} = 3.876$$
 years.

 $12 \times 0.876 = 10.512$ months, $4 \times 0.512 = 2.043$ weeks, the time t = 3 years, 10 months, and 2 weeks.

REBATE OR DISCOUNT.

Rebate or **Discount** is an allowance on money, which is paid before due. a = amount of money to be paid in the time t. By agreement the amount is paid with a capital c, at the beginning of the time t, but discounted a Rebate r, at p per cent, so that the interest on the capital c, at p per cent, should be equal to the Rebate r, in the time t. a=c+r.

Now for any question in Rebate or Discount, there is one equation that will give the answer.

Example 5. A sum of money, a = 78460 dollars is to be paid after 3 years and 6 months, but by agreement payment is to be made at the present time. What will be the Rebate at 7 per cent.

the Rebate at 7 per cent.

Rebate,
$$r = \frac{78460 \times 7 \times 3.5}{100+7 \times 3.5} = $15439.91.$$

FELLOWSHIP.

Fellowship, or partnership, is a rule by which companies ascertain each fellow's profit or loss, by their stock. Each fellow's part in the stock is called his share. The sum of shares is called the stock.

Fellowships are of two kinds, Simple and Double.

Simple Fellowship, when there is no regard to the time, the shares or stock is employed. Letters will denote, A = share of either one fellow.

a = profit or loss on the share A. S = stock or the sum of the shares. s = gain or loss on the stock S. Then A:a=S:s. $A = \frac{aS}{a}$ Share, 11, $a=\frac{As}{S}$, . . . Profit or loss. 12, $S = \frac{As}{s}$ Stock. 13, 8 = <u>a8</u>, . . Gain or loss, 14. Example 1. A person had invested A = \$11615, in a stock S = \$64800, which gave a gain of s = 13864. What will be the profit of the person's share?

Profit,
$$a = \frac{11645 \times 13864}{64800} = $2491.45$$

Double Fellowship. When the different shares are employed at a different length of time, each share is multiplied by its time employed, and the product is the effect of the share.

Letters will denote,

t =time for the employed share A. T = meantime for the employed stock S.

e = effect of the share A.

a = profit of the effect e. E =effect of the stock.

s = gain of the effect E. Then.

$$e:a=E:s$$
.

Effect of A,
$$e = \frac{aE}{s}$$
, • • 15, Time, $t = \frac{aE}{As}$, • • 19, Profit of e, $a = \frac{es}{E}$, • • 16, Share, $A = \frac{aE}{ts}$, • • 20, Effect of S, $E = \frac{es}{a}$, • • 17, Meantime, $T = \frac{es}{aS}$, • • 21, Gain of E, $s = \frac{aE}{s}$, • • 18, Stock, $S = \frac{es}{aT}$, • • 22.

Example 2. A canal is to be dug, and requires an effect E = 76850 (men and days) to be accomplished; after that it will give a gain s=12390 Dollars. An employer has A=168 laborers. How many days must those laborers be employed at the canel, that the employer will obtain a profit a=\$5000?

Time,
$$t = \frac{5000 \times 76850}{168 \times 12390} = 184.6 \text{ days.}$$

PERMUTATION.

Permutation is to arrange a number of things in every possible position. It is commonly used in games.

Example 1. How many different values can be written by the three ciphers

 $1\times2\times3=6$ different values, namely,

123, 132, 213, 231, 312, 321.

With any three different ciphers can be written six different values. Any three things can be placed in 6 different positions.

Example 2. How many names can be written by the three syllables mo, ta, la? The answer is,—Motala, Molata, Tamola, Talamo, Lamota, Latamo.

Example 3. How many words can be written by the five syllables, mul, tip, li, ca, tion ?

 $1\times2\times3\times4\times5=120$ words, the answer.

n - p 1 = 1 2 = 2 3 = 6 4 = 24 5 = 120 6 = 720 7 = 5040 8 = 40320 9 = 362880

10 = 3628800 11 = 39916800 12 = 479001600 13 = 6227020800 14 = 87178291200. The accompanying table shows the permutation of different numbers of things up to 14; which will be convenient in the next coming examples in combination

COMBINATION.

Combination is to arrange a less number of things out of a greater, in or my possible position. It is commonly used in games.

Example 1. How many different numbers can be set up by the nine ciphers, 1, 2, 3, 4, 5, 6, 7, 8, 9, and three ciphers in each number?

$$\frac{9\times8\times7}{1\times2\times3}$$
 = 84 different numbers.

Example 2. How many different variations can a player obtain his cards, when the set contains 52 cards, of which he receives 8 at a time?

$$\frac{52\times51\times50\times49\times48\times47\times46\times45}{1\times2\times3\times4\times5\times6\times7\times8} = 752538150 \text{ variations.}$$

If they are four players, and pr.4 = 24, they can play $24 \times 752538150 = 18,060;915,600$ different plays.

If it takes half an hour for each play, and they play 8 hours per day, it will take

 $\frac{18060915600}{2\times8} = 1128807225 \text{ days} = 3;092,622 \text{ years.}$

ALLIGATION.

Alligation is to mix together a number of different things of different price or value, and ascertain the mean value of the mixture; or from a given mean value of a mixture ascertain the proportion and value of each ingredient.

Let the different things be a, b, c, and d, &c., their respective price or value per unit, z, y, x, and w, &c.

A = a+b+c+d &c., the sum of the things.

P = mean value or price per unit of A. Then, AP = az + by + cx + dw + dx.

and

$$P = \frac{az + by + cx + dw + dc}{A}, \qquad \cdot \qquad \cdot \qquad \cdot \qquad 2,$$

1,

Example 1. If 3 gallons of wine at \$1.37 per gallon, 2 at \$2.18, and 5 at \$1.75, be mixed together, what is a gallon worth of the mixture? A = 3+2+5 = 10 gallons.

$$P = \frac{3 \times 1.37 + 2 \times 2.18 + 5 \times 1.75}{10} = $1.72 \text{ per gallon.}$$

Alligation of two ingredients a and b, with their respective prices or value per unit, z and y, z > P > y. A = a + b.

Example 2. A Silver-smith will mix two sorts of silver, one at 54 and one at 64 ents per ounce. How much must be taken of each sort to make the mixture worth 60 cents per ounce. (Formula 3.) P=60. x=54. y=64.

$$a:b=(60-54):(64-60)=6:4$$
, or,

4 ounces at 54 cents; and 6 ounces at 64 cents.

Alligation of three ingredients, a, b, and c, with their prices or value per unit, z, y and x.

$$\begin{array}{lll} a': c' = (P-x): (z-P) & \cdot & \cdot & \cdot & \cdot & 6, \\ a'': b = (P-y): (z-P) & \cdot & \cdot & \cdot & \cdot & 7, \\ b: c'' = (P-x): (y-P) & \cdot & \cdot & \cdot & y > P > x, \\ a = a'+a'', & c = c'+c''. & \cdot & \cdot & \cdot & 8, \end{array}$$

Example 3. A Farmer will mix wheat at 94 cents per bushel, with barley at 72 cents, rye at 64 cents per bushel. How much of each sort must be taken to make the mixture worth 80 cents per bushel?

(Formula 6.) z = 94, y = 72, x = 64, and P = 80.

$$\begin{array}{c} a':c'=(80-64):(94-80)=16:14,\\ a':b=(80-72):(94-80)=8:14.\\ \text{The wheat } a=16+8=24 \text{ bushels at 94 cents per bushel.}\\ \text{``barley}\\ b=14 &\text{```72}\\ \text{''rye} &c=14 &\text{``64} &\text{``} \end{array}$$

Alliquation of four ingredients a, b, c, and d, respective prices or value per unit; z, y, x, and w.

In the same manner, formulæ can be set up for any number of ingredients.

INVOLUTION.

Involution is to multiply a number into itself a number of times; each product is called the power of the number, and the dignity of the power is marked by a small figure called exponent, on the right of the number; thus,

$$32 = 3 \times 3 = 9.$$

 $23 = 2 \times 2 \times 2 = 8.$
 $44 = 4 \times 4 \times 4 \times 4 = 256.$
 $dc., dc., dc.$

Binome is a factor or quantity which contains two terms; as (a+b.)

Binomial-Theorem is the rule which a binome follows, when it is raised to any power.

When a binome is to be multiplied by itself or any other binome, it is set up and performed like the common multiplication by numbers; thus,

Example 1.

$$\begin{array}{c}
 a+b \\
 a+b \\
+ab+b^2
\end{array} | (a+b)(a+b),$$

$$\begin{array}{c}
 a^2+ab \\
 a^2+2ab+b^2 = (a+b)^2,
\end{array}$$

Example 2. Suppose a+b=358746, and a=358000, b=746, then, $(a+b)^2=358746^2$, $||||+a^2=128164000000$, +2ab=534136000, $+b^2=556516$

$$\frac{70^{2}}{128698692516} = (a+b)^{2}.$$
Ex. 3. $(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}.$

 $\begin{array}{ll} Ex.\ 4.\ \langle a+b\rangle^4 = a^4 + aa^3b + 6a^2b^2 + 4ab^3 + b^4, \\ Ex.\ 5.\ \langle a-b\rangle^7 = a^7 - 7a^6b + 21a^5b^2 - 35a^4b^3 + 35a^3b^4 - a^2b^5 + 7ab^7 - b^7. \end{array}$

Here you will discover the peculiarities of the Binomial-Theorem, which is thus expressed in words:

1st. The exponent of the first term a in the power, is equal to the exponent of the binome; and in every successive term, the exponent of a is decreased by 1, until the last term of the exponent of a is 0, and, therefore, disappears, because any quantity raised to no power is equal to 1, thus, $a^0 = 1$ and $a^1 = a$.

2d. In the first term of the power, the exponent of b is 0, and therefore b will first appear in the second term with the exponent 1, and in every successive term the exponent of b is increased by 1, until in the last term the exponent will be equal to the exponent of the binome.

3d. The coefficient of the second term in the power, is equal to the exponent of the binome, and the coefficient of any successive term is equal to the product of the coefficient and exponent of a in the foregoing term, divided by the number of terms before the sought coefficient.

4th. When the second term in the binome is negative, the first term in the power will be positive, the second negative, the third positive, the fourth negative, &c. The odd terms are positive, and the even terms are negative.

5th. The number of terms in the power is one more than the exponent of the binome.

EVOLUTION.

Evolution is the reverse of Involution, or to find the number that has produced a given power. In this case the given power is called the number, and the number which has produced the given power is called the root of the number. The symbol \(\frac{\top}{} \) is generally placed over the number of which the root is to be extracted. The dignity of the root is placed thus \(\frac{\top}{} \) of which the figure \(\frac{3}{} \) is called the index of the root; for the square roots the index \(\frac{2}{} \) is always omitted.

Example 1.
$$\sqrt{9} = 3$$
 because $3^2 = 9$.
" 2. $\sqrt[3]{64} = 4$ because $4^3 = 64$.
" 3. $\sqrt[4]{531441} = 27$ " $27^4 = 531441$.
 $62.$, $62.$, $62.$,

In the accompanying Table are calculated the Squares, Cubes, Square Roots and Cube Roots of any number up to 1600. By means of this Table, there will be easy rules to find the Square Root and Cube Root of numbers exceeding 1600.

Number.	Squares.	Cubes.	√ Roots.	∛ Roots.	Reciprocals.
1	1	1	1.0000000	1.0000000	•100000000
2	4	8	1.4142136	1.2599210	•500000000
3	9	27	1.7320508	1.4422496	•333333333
4	16	64	2.0000000	1.5874011	•250000000
5	25	125	2.2360680	1.7099759	•200000000
6	36	216	2.4494897	1.8171206	•166666667
7	49	343	2.6457513	1.9129312	•142857143
8	64	512	2.8284271	2.0000000	•125000000
9	81	729	3.0000000	2.0800837	•1111111111
10	100	1000	3.1622777	2.1544347	•100000000
11	121	1331	3.3166248	2.2239801	.090909091
12	144	1728	3.4641016	2.2894286	•083333333
13	169	2197	3.6055513	2.3513347	•076928077
14	196	2744	3.7416574	2.4101422	.071428571
15	225	3375	3.8729833	2.4662121	*066666667
16	256	4096	4.0000000	2.5198421	•062500000
17	289	4913	4.1231056	2.5712816	-058823529
18	324	5832	4.2426407	2.6207414	.05555556
19	361	6859	4.3588989	2.6684016	.052631579
20	400	8000	4.4721360	2.7144177	.050000000
21	441	9261	4.5825757	2.7589243	.047619048
22	484	10648	4.6904158	2.8020393	•045454545
23	529	12167	4.7958315	2.8438670	•043478261
24	576	13824	4.8989795	2.8844991	.041666667
25	625	15625	5.0000000	2.9240177	•040000000
26	676	17576	5.0990195	2.9624960	.038461538
27	729	19683	5.1961524	3.0000000	.037037037
28	- 784	21952	5.2915026	3.0365889	•035714286
29	841	24389	5.3851648	3.0723168	•034482759
30	900	27000	5.4772256	3.1072325	•033333333
31	961	29791	5.5677644	3.1413806	•032258065
32	1024	32768	5.6568542	3.1748021	•031250000
33	1089	35937	5.7445626	3.2075343	•030303030
34	-1156	39304	5.8309519	3.2396118	•029411765
35	1225	42875	5.9160798	3.2710663	•028571429
36	1296	46656	6.0000000	3.3019272	•027777778
87	1369	50653	6.0827625	3.3322218	027027027
38	1444	54872	6.1644140	3.3619754	•026315789
39	1521	59319	6.2449980	3.3912114	•025641026
40	1600	64000	6.3245553	3.4199519	*025000000
41	1681	68921	6.4031242	3.4482172	•024390244
42	1764	74088	6.4807407	3.4760266	•023809524
43	1849	79507	6.5574385	3.5033981	*023255814
44 45	1936	85184 91125	6.6332496	3.5303483	*022727273
46	2025 2116	91125	6.7082039	3.5568933	*022222222 *021739130
40	2209	103823	6.7823300 6.8556546	3.5830479	·021739130
48	2304	110592	6.9282032	3.6088261 3.6342411	*020833333
49	2401	117649	7.0000000	3.6593057	020408163
50	2500	125000	7.0000000	3.6840314	•020000000
51	2601	132651	7.1414284	3.7084298	·019607843
52	2704	140608	7.2111026	3.7325111	•019230769
VA I	2102	220000	. 2111020	0 1020111 1	010200109

Number Squares Cubes VRoots 3 Reciprocals		24 India of Squares, Cours, Square and Cone Roots.							
54 2916 157464 7.3484692 3.7797631 -018518519 55 3025 166375 7.4161955 3.8029525 -018181818 57 3249 185193 7.5498344 3.8458611 -017543860 58 3364 195112 7.615731 3.8708766 -017241379 59 3481 205379 7.6811457 3.8929965 -01666667 60 3600 216000 7.7459667 39148676 -01666667 61 3721 226981 7.8102497 3.9304972 -016393443 62 3844 238328 7.8740079 3.9578915 -016129032 63 3969 250047 7.9372539 3.9790571 -015873016 64 4096 262144 8.000000 4.000000 -015625000 65 4225 274625 8.0622577 4.0207256 -015384615 67 4489 300763 81853528 4.0615480 -01492533 68 4624 <th></th> <th></th> <th>_</th> <th>_</th> <th></th> <th></th> <th>-</th>			_	_			-		
55				148877	7.2801099	3.7562858	.018867925		
56					7.3484692	3.7797631			
57 3249 185193 7.5498344 3.8485011 -017543860 58 3364 195112 7.6157731 3:8708766 -017241379 60 3600 216000 7.7459667 3:9148676 -016666667 61 3721 226981 7.7459667 3:934972 -016393443 62 3844 238328 7:8740079 3:9578915 -016129393 63 3969 250047 7:9372539 3:9790571 -015873016 64 4096 262144 8:000000 4:000000 -015625000 65 4225 274625 8:0622577 4:0207256 -015384615 67 4489 300763 8:1853528 4:0615480 -014925373 68 4624 314432 8:2462113 4:0816551 -01476882 69 4761 325509 8:3066239 4:1015661 -014492754 70 4900 343000 8:366003 4:1212853 -014285714 71 5041				166375	7.4161985	3.8029525	•018181818		
58 3364 195112 7-6157731 3-8708766 -017241379 59 3481 205379 7-6811457 3-8929965 -016946153 60 3600 216000 7-7459667 3-9148676 -01669667 61 3721 226981 7-8102497 3-9304972 -016393443 62 3844 238328 7-8740079 3-9578915 -016129032 63 3969 250047 7-9372539 3-9790571 -015873016 64 4096 262144 8-000000 4-000000 -015834615 65 4225 274625 8-0622577 4-0207256 -015384615 66 4456 287496 8-1240384 4-0412401 -015151516 67 4489 300763 8-1853528 4-0615480 -014925373 68 4624 314432 8-2462113 4-0816551 -014705882 70 4900 343000 8-36660239 4-1015661 -01492754 70 49			3136	175616	7.4833148	3.8258624	•017857143		
58 3364 195112 7-6817457 3-8929965 -017241379 59 3481 205379 7-6811457 3-8929965 -016466667 -016666667 -016666667 -016666667 -016666667 -016666667 -016666667 -016666667 -016666667 -016666667 -016686667 -016686667 -016686667 -016393443 -016393443 -016393443 -016393443 -016393443 -016393443 -016393443 -016666667 -016393443 -016393443 -016666667 -016393443 -016693443 -016693443 -016693443 -016693443 -016693443 -016693443 -016666667 -015384615 -0166644 -0096000 -015625000 -015384615 -01666 -015384615 -014705885 -014705885 -014925373 -014925373 -014925373 -014925373 -014925373 -014705885 -014705885 -014925373 -014925573 -014705885 -014925573 -014925573 -014925573 -014925573 -014925573 -014925573 -014925573 -01492574 -01492574 -01492574 -01492574 -01492574 <th>ı</th> <th>57</th> <th>3249</th> <th>185193</th> <th>7.5498344</th> <th>3.8485011</th> <th>.017543860</th>	ı	57	3249	185193	7.5498344	3.8485011	.017543860		
60 3600 216000 7.7459667 3.9148676 0.16666667 61 3721 226981 7.8102497 3.9304972 0.16393443 62 3844 238328 7.8740079 3.9578915 0.16129032 63 3969 250047 7.9372539 3.9790571 0.15873016 64 4096 262144 8.0000000 4.000000 0.15625000 65 4225 274625 8.0622577 4.0207256 0.15384615 66 4356 287496 8.1240384 4.0412401 0.015151515 67 4489 300763 8.1853528 4.0615480 0.14925373 68 4624 314432 8.2462113 4.0816551 0.014925373 69 4761 328509 8.3666203 4.1015661 0.014492754 70 4900 343000 8.3666003 4.121385 0.01482571 71 5041 357911 8.4261498 4.1601676 0.0188889 73 <td< th=""><th></th><th>58</th><th>3364</th><th></th><th>7.6157731</th><th>3.8708766</th><th>.017241379</th></td<>		58	3364		7.6157731	3.8708766	.017241379		
60 3600 216000 7.7459667 3-9148676 -016666667 61 3721 226981 7.8102497 3-9304972 -016393443 62 3844 238328 7.8740079 3-9578915 -016129032 63 3969 250047 7.9372539 3-9790571 -015873016 64 4096 262144 8-0000000 4-000000 -015625000 65 4225 274625 8-0622577 4-0207256 -015384615 66 4356 287496 8-1240384 4-0412401 -015151515 67 4489 300763 8-1853528 4-0615480 -014925373 68 4624 314432 8-2462113 4-0816551 -014705882 69 4761 328509 83066239 4-1015661 -014492754 70 4900 343000 8-3666003 4-1212853 -01484517 71 5041 357911 8-4261498 4-1601676 -013888889 73 53		59	3481						
62 3844 238328 7.8740079 3.9578915 .016129032 63 3969 250047 7.9372539 3.9790571 .015873016 64 4096 262144 8.0000000 4.0000000 .015625000 65 4225 274625 8.0622577 4.0207256 .015384615 66 4356 237496 8.1240384 4.0412401 .015151515 67 4489 300763 8.1853528 4.0615480 .014925373 68 4624 314432 8.2462113 4.0816551 .014705882 69 4761 328509 8.3066239 4.1015661 .014492754 70 4900 343000 8.3666003 4.1212853 .01428571 71 5041 357911 8.4261498 4.1601676 .013888889 73 5329 389017 8.5440037 4.1793390 .013698630 74 5476 405224 8.6023253 4.171633 .013333333 76 5		60	3600						
62 3844 238328 7:8740079 3:9578915 0:16129032 63 3969 250047 7:9372539 3:9790571 0:15873016 64 4096 262144 8:0000000 4:0000000 0:15625000 65 4225 274625 8:0622577 4:0207256 0:15384615 66 4356 287496 8:1240384 4:0412401 0:15151515 67 4489 300763 8:1855528 4:0615480 0:14925373 68 4624 314432 8:2462113 4:0816551 0:14705882 69 4761 328509 8:3066239 4:1015661 0:14492574 70 4900 343000 8:366603 4:1212853 0:14285714 71 5041 357911 8:4261498 4:1408178 0:14084517 72 5184 373248 8:4852814 4:161676 0:13888889 73 5329 389017 8:5440037 4:1793390 0:13698630 74 5		61	3721	226981	7.8102497	3.9304972	.016393443		
63 3969 250047 7:9372539 3:9790571 -015873016 64 4096 262144 8:0000000 4:0000000 -015625000 65 4225 274625 8:0622577 4:0207256 -015384615 66 4356 287496 8:1240384 4:0412401 -015151515 67 4489 300763 8:1853528 4:0615480 -014925373 68 4624 314432 8:2462113 4:0816551 -014705882 69 4761 328509 8:3666203 4:1015661 -014925754 70 4900 343000 8:3666003 4:122853 -014285714 71 5041 357911 8:4261498 4:1408178 -014388889 73 5329 389017 8:5440037 4:1793390 -013698630 74 5476 405224 8:6023253 4:1983364 -013333333 76 5776 438976 8:717979 4:2358236 -0131357895 77	1	62	3844						
64 4096 262144 8·0000000 4·0000000 ·015625000 65 4225 274625 8·0622577 4·0207256 ·015384615 66 4356 287496 8·1240384 4·0412401 ·015151515 67 4489 300763 8·1853528 4·0615480 ·014925373 68 4624 314432 8·2462113 4·0816551 ·014705882 69 4761 328509 8·3066239 4·1015661 ·014492754 70 4900 343000 8·3666003 4·1212853 ·014285714 71 5041 357911 8·4261498 4·1408178 ·014084517 72 5184 373248 8·4852814 4·1601676 ·01388889 73 5229 389017 8·5440037 4·193339 ·013698630 74 5476 405224 8·6023253 4·1983364 ·013513514 75 5625 421875 8·6602540 4·2171633 ·013333333 76 5		63	3969						
65 4225 274625 8·0622577 4·0207256 ·015384615 66 4356 287496 8·1240384 4·0412401 ·015151515 67 4489 300763 8·1853528 4·0615480 ·014925373 68 4624 314432 8·2462113 4·0816551 ·014705882 69 4761 328509 8·3066239 4·1015661 ·0144925754 70 4900 343000 8·3666003 4·1212853 ·014285714 71 5041 357911 8·4261498 4·1408178 ·014084517 72 5184 373248 8·4852814 4·1601676 ·013888889 73 5329 389017 8·5440037 4·1793390 ·013698630 74 5476 405224 8·6023253 4·1983364 ·01351514 75 5625 421875 8·6602540 4·2171633 ·0133333333 76 5776 438976 8·7177979 4·2358236 ·013157895 77 <t< th=""><th>ı</th><th>64</th><th>4096</th><th></th><th></th><th></th><th></th></t<>	ı	64	4096						
66 4356 287496 8·1240384 4·0412401 ·015151515 67 4489 300763 8·1853528 4·0615480 ·014925373 68 4624 314432 8·2462113 4·0816551 ·014705882 69 4761 328509 8·3066239 4·1015661 ·014492754 70 4900 343000 8·3666003 4·1212853 ·014285714 71 5041 357911 8·4261498 4·1408178 ·014084517 72 5184 373248 8·4852814 4·1601676 ·01388889 73 5329 389017 8·5440037 4·1793390 ·013698630 74 5476 405224 8·6023253 4·1983364 ·013513514 75 5625 421875 8·605540 4·2171633 ·01333333 76 5776 438976 8·717999 4·2358236 ·013157895 77 5929 456533 8·749644 4·22643210 ·012987013 78 603	ı	65	4225						
67 4489 300763 8·1853528 4·0615480 ·014925878 68 4624 314432 8·2462113 4·0816551 ·014705882 69 4761 328599 8·3066003 4·1015661 ·014492754 70 4900 343000 8·3666003 4·1212853 ·014285714 71 5041 357911 8·4261498 4·1601676 ·01388889 73 5329 389017 8·5440037 4·1793390 ·013698630 74 5476 405224 8·6023253 4·1983364 ·013513514 75 5625 421875 8·6602540 4·2171633 ·013333333 76 5776 438976 8·7177979 4·2258226 ·013157895 77 5929 456533 8·7749644 4·2543210 ·012987013 78 6084 474552 8·8317609 4·2726586 ·012820513 79 6241 493039 8·8881944 4·2908404 ·012658228 80	ı	66							
68 4624 314422 8·2462113 4·0816551 ·014705882 69 4761 328509 8·3066239 4·1015661 ·014492754 70 4900 343000 8·3666033 4·1015661 ·014492754 71 5041 357911 8·4261498 4·1408178 ·014084517 72 5184 373248 8·4852814 4·1601676 ·013888889 73 5329 389017 8·5440037 4·1793390 ·01369830 74 5476 405224 8·6023253 4·1983364 ·013513514 75 5625 421875 8·6602540 4·2171633 ·013333333 76 5776 438976 8·7177979 4·2358236 ·0135157895 77 5929 456533 8·717979 4·2358236 ·0135157895 77 5929 456533 8·717979 4·2368236 ·012897013 78 6084 474552 8·8317609 4·2796566 ·012897013 79	ı	67	4489						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I								
70 4900 343000 8·3666003 4·1212853 ·014285714 71 5041 357911 8·4261498 4·1408178 ·014084517 72 5184 373248 8·4852814 4·1601676 ·01388889 73 5329 389017 8·5440037 4·1793390 ·013698630 74 5476 405224 8·6023253 4·1983364 ·013513514 75 5625 421875 8·6602540 4·2171633 ·013333333 76 5776 438976 8·7177979 4·2258226 ·013157895 77 5929 456533 8·7749644 4·22543210 ·012987013 78 6084 474552 8·8317609 4·2726586 ·01289013 79 6241 493039 8·8881944 4·2908404 ·01265828 80 6400 512000 8·9442719 4·3088695 ·01250000 81 6561 531441 9·0000000 4·3267487 ·012485193 82 67	ı								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	١								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	١								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1								
103 10609 1092727 10.1488916 4.6875482 .009708738	1								
	1								
104 1 10010 1 1124804 1 10.1980390 1 4.7020094 .009613383	1								
	1	102	10010	1124004	10.1900990	4.1020094	7009019999		

			I OI DECIM		· HIID CODE ROO.	20
Num	ber.	Squares.	Cubes.	√ Roots.	Noots.	Reciprocals.
10.	5	11025	1157625	10.2469508	4.7176940	.009522810
10		11236	1191016	10.2956301	4.7326235	.009433962
10		11449	1225043	10.3440804	4.7474594	•009345794
10		11664	1259712	10.3923048	4.7622032	.009259259
10		11881	1295029	10.4403065	4.7768562	.009174312
110		12100	1331000	10.4880885	4.7914199	.009090909
111		12321	1367631	10.5356538	4.8058995	.009009009
112		12544	1404928	10.5830052	4.8202845	.008928571
113	3	12769	1442897	10.6301458	4.8345881	.008849558
11-		12996	1481544	10.6770783	4.8488076	.008771930
11:	5	13225	1520875	10.7238053	4.8629442	.008695652
110	6	13456	1560896	10.7703296	4.8769990	*008020690
111	7	13689	1601613	10.8166538	4.8909732	.008547009
118	8	13924	1643032	10.8627805	4.9048681	.008474576
119	9	14161	1685159	10.9087121	4.9186847	.008403361
120)	14400	1728000	10.9544512	4.9324242	*008333333
121		14641	1771561	11.0000000	4.9460874	.008264463
122	2	14834	1815848	11.0453610	4.9596757	.008196721
128		15129	1860867	11.0905365	4.9731898	·008130081
124		15376	1906624	11.1355287	4.9866310	.008064516
123		15625	1953125	11.1803399	5.0000000	.008000000
126		15876	2000376	11.2249722	5.0132979	.007936508
127		16129	2048383	11.2694277	5.0265257	*007874016
128		16384	2097152	11·313708 5	5.0396842	.007812500
129		16641	2146689	11.3578167	5.0527743	.007751938
130		16900	2197000 2248091	11.4017543*	5.0657970	•007692308
131		17161		11.4455231	5.0787531	*007633588
132		17424 17689	2299968 2352637	11.4891253	5.0916434	.007575758
133		17956	2406104	11.5325626 11.5758369	5.1044687	•007518797
135		18225	2460375	11.6189500	5·1172299 5·1299278	*007462687
136		18496	2515456	11.6619038	5.1425632	*007407407 *007352941
137		18769	2571353	11.7046999	5.1551367	.007352941
138		19044	2628072	11.7473444	5.1676493	·007246377
139		19321	2685619	11.7898261	5.1801015	*007194245
140		19600	2744000	11.8321596	5.1924941	007142857
141		19881	2803221	11.8743421	5.2048279	007092199
142		20164	2863288	11.9163753	5.2171034	.007042254
143		20449	2924207	11.9582607	5.2293215	•006993007
144		20736	2985984	12.0000000	5.2414828	.006944444
145	,	21025	3048625	12.0415946	5.2535879	.006896552
146		21316	3112136	12.0830460	5.2656374	.006849315
147		21609	3176523	12.1243557	5.2776321	.006802721
148		21904	3241792	12.1655251	5.2895725	.006756757
149		22201	3307949	12.2065556	5.3014592	.006711409
150		22500	3375000	12.2474487	5.3132928	.006666667
151		22801	3442951	12.2882057	5.3250740	.006622517
152		23104	3511008	12.3288280	5.3368033	*006578947
153		23409	3581577	12.3693169	5.3484812	.006535948
154		23716	3652264	12.4096736	5.3601084	.006493506
155		24025	3723875	12.4498996	5.3716854	.006451613
156		24336	3796416	12.4899960	5.3832126	·006410256

26 TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS.					
Number.	Equares.	Cubes.	√ Roots.	Noots.	Reciprocals.
157	24649	386989 3	12.5299641	5.3946907	•006369427
158	24964	3944312	12.5698051	5.4061202	*006329114
159	25281	4019679	12.6095202	5.4175015	*006289308
160	25600	4096000	12.6491106	5·4288352	*006250000
161	25921	4173281	12.6885775	5.4401218	·006211180
162	26244	4251528	12.7279221	5.4513618	*006172840
163	26569	4330747	12.7671453	5.4625556	·006134969
164	26896	4410944	12.8062485	5.4737037	·006097561
165	27225	4492125	12.8452326	5.4848066	*006060606
166	27556	4574296	12.8840987	5.4958647	*006024096
167	27889	4657463	12.9228480	5.5068784	.005988024
168	28224	4741632	12.9614814	5.5178484	.005952381
169	28561	4826809	13.0000000	5.5287748	.005917160
170	28900	4913000	13.0384048	5.5396583	·00588235 3
171	29241	5000211	13.0766968	5.5504991	*005847953
172	29584	5088448	13.1148770	5.5612978	.005813953
173	29929	5177717	13.1529464	5.5720546	.005780347
174	30276	5268024	13.1909060	5.5827702	.005747126
175	30625	5359375	13.2287566	5.5934447	.005714286
176	30976	5451776	13.2664992	5.6040787	.005681818
177	31329	5545233	13.3041347	5.6146724	.005649718
178	31684	5639752	13.3416641	5.6252263	.005617978
179	32041	5735339	13.3790882	5.6357408	.005586592
180	32400	5832000	13.4164079	5.6462162	*00555556
181	32761	5929741	13.4536240	5.6566528	*005524862
182	33124	6028568	13.4907376	5.6670511	*005494505
183	33489	6128487	13.5277493	5.6774114	*005464481
184	33856	6229504	13.5646600	5.6877340	.005434783
185	34225	6331625	13.6014705	5.6980192	*005405405
186	34596	6434856	13.6381817	5.7082675	*005376344
187	34969	6539203	13.6747943	5.7184791	·005347594
188	35344	6644672	13.7113092	5.7286543	.005319149
189	35721	6751269	13.7477271	5.7387936	.005291005
190	36100	6859000	13.7840488	5.7488971	•005263158
191	36481	6967871	13.8202750	5.7589652	.005235602
192	36864	7077888	13.8564065	5.7689982	•005208333
193	37249	7189517	13.8924400	5.7789966	.005181347
194	37636	7301384	13.9283883	5.7889604	•005154639
195	38025	7414875	13.9642400	5.7988900	*005128205
196	38416	7529536	14.00000000	5.8087857	·005102041
197	38809	7645373	14.0356688	5.8186479	.005076142
198	39204	7762392	14.0712473	5.8284867	•005050505
199	39601	7880599	14.1067360	5.8382725	•005025126
200	40000	8000000	14.1421356	5.8480355	.005000000
201	40401	8120601	14.1774469	5.8577660	.004975124
202	40304	8242408	14.2126704	5.8674673	•004950495
203	41209	8365427	14.2478068	5-8771307	·004926108
204	41616	8489664	14.2828569	5.8867653	.004901961
205	42025	8615125	14.3178211	5.8963685	.004878049
206	42436	8741816	14.3527001	5.9059406	.004854369
207	42849	8869743	14.3874946	5.9154817	.004830918
208	43264	8998912	14.4222051	5.9249921	·004807692

٠,						
	Number.	Squares	Cubes.	√ Roots.	³ √ Roots.	Reciprocals.
ı	209	43681	9129329	14.4568323	5.9344721	.004784689
ı	210	44100	9261000	14.4913767	5.9439220	.004761905
ı	211	44521	9393931	14.5258390	5.9533418	.004739336
ı	212	44914	9528128	14.5602198	5.9627320	.004716981
1	213	45369	9663597	14.5945195	5.9720926	.004694836
1	214	45796	9800344	14.6287388	5.9814240	.004672897
1	215	46225	9938375	14.6628783	5.9907264	*004651163
1	216	46656	10077696	14.6969385	6.0000000	.004629630
1	217	47089	10218313	14.7309199	6.0092450	*004608295
1	218	47524	10360232	14.7648231	6.0184617	*004587156
1	219	47961	10503459	14.7986486	6.0276502	*004566210
1	220	48400	10648000	14.8323970	6.0368107	*004545455
١	221	48841	10793861	14.8660687	6.0459435	*004524887
ı	222	49284	10941048	14.8996644	6.0550489	•004504505
ı	223	49729	11089567	14.9331845	6.0641270	*004484305
ı	224	50176	11239424	14.9666295	6.0731779	*004464286
I	225	50625 51076	11390625 1154317 6	15.0000000	6.0824020 •6.0991994	·004444444 ·004424779
1	226		11697083	15.0332964	6.1001702	004424779
1	227 228	51529 51984	11852352	15.0665192 15.0996689	6.1091147	·004405286
۱	228	52441	12008989	15.1327460	6.1180332	.004366812
1	230	52900	12167000	15.1657509	6.1269257	004347826
١	231	53361	12326391	15.1986842	6.1357924	.004329004
1	232	53824	12487168	15.2315462	6.1446337	.004310345
ı	233	54289	12649337	15.2643375	6.1534495	.004291845
1	234	54756	12812904	15.2970585	6.1622401	.004273504
ı	235	55225	12977875	15.3297097	6.1710058	.004255319
١	236	55696	13144256	15.3622915	6.1797466	.004237288
1	237	56169	13312053	15.3948043	6.1884628	.004219409
1	238	56644	13481272	15.4272486	6.1971544	.004201681
1	239	57121	13651919	15.4596248	6.2058218	.004184100
1	240	57600	13824000	15.4919334	6.2144650	*004166667
1	241	58081	13997521	15.5241747	6.2230843	.004149378
1	242	58564	14172488	15.5563492	6.2316797	.004132231
1	243	59049	14348907	15.5884573	6.2402515	*004115226
1	244	59536	14526784	15.6204994	6.2487998	*004098361
1	245	60025 60516	14706125 14886936	15.6524758 15.6843871	6·2573248 6·2658266	*004081633 *004065041
1	$\frac{246}{247}$	61009	15069223	15.7162336	6.2743054	*004065041
1	247	61504	15009223 15252992	15.7480157	6.2827613	004032258
1	249	62001	15438249	15.7797338	6.2911946	.004016064
1	250	62500	15625000	15.8113883	6.2996053	.004000000
1	251	63001	15813251	15.8429795	6.3079935	.003984064
1	252	63504	16003008	15.8745079	6.3163596	.003968254
1	253	64009	16194277	15.9059737	6.3247035	.003952569
1	254	64516	16387064	15.9373775	6.3330256	.003937008
1	255	65025	16581375	15.9687194	6.3413257	.003921569
1	256	65536	16777216	16.0000000	6.3496042	.003906250
1	257	66049	16974593	16.0312195	6.3578611	*003891051
1	258	66564	17173512	16.0623784	6.3660968	•003875969
1	259	67081	17373979	16.0934769	6.3743111	.003861004
1	260	67600.	17576000	16.1245155	6.3825043	003846154
1						

28	28 TABLE OF EQUARES, CUBES, EQUARE AND CUBE ROOTS.					
Number.	Squares.	Cubes.	√ Roots.	³ √ Roots.	Reciprocals.	
261	68121	17779581	16.1554944	6.3906765	•003831418	
262	68644	17984728	16.1864141	6.3988279	·003816794	
263	69169	18191447	16.2172747	6.4069585	·003802281	
264	69696	18399744	16.2480768	6.4150687	•003787879	
265	70225	18609625	16.2788206	6.4231583	·0037735S5	
266	70756	18821096	16.3095064	6.4312276	•003759398	
267	71289	19034163	16.3401346	6.4392767	.003745318	
268	71824	19248832	16.3707055	6.4473057	.003731343	
269	72361	19465109	16.4012195	6.4553148	.003717472	
270	72900	19683000	16.4316767	6.4633041	*003703704	
271	73441	19902511	16.4620776	6.4712736.	.003690037	
272	73984	20123643	16.4924225	6.4792236	.003676471	
273	74529	20346417	16.5227116	6.4871541	.003663004	
274	75076	20570824	16.5529454	6.4950653	.003649635	
275	75625	20796875	16.5831240	6.5029572	.003636364	
276	76176	21024576	16.6132477	6.5108300	.003623188	
277	76729	21253933	16.6433170	6.5186839	.003610108	
278	77284	21484952	16.6783320	6.5265189	.003597122	
279	77841	21717639	16.7032931	6.5343351	•003584229	
280	78400	21952000	16.7332005	6.5421326	.003571429	
281	78961	22188041	16.7630546	6.5499116	•003558719	
282	79524	22425768	16.7928556	6.5576722	•003546099	
283	80089	22665187	16.8226038	6.5654144	•003533569	
284	80656	22906304	16.8522995	6.5731385	.003522127	
285	81225	23149125	16.8819430	6.5808443	•003508772	
286	81796	23393656	16.9115345	6.5885323	*003496503	
287 288	82369 82944	23639903 23887872	16.9410743 16.9705627	6.5962023	·003484321 ·003472222	
289	83521	24137569	17.0000000	6.6038545	003472222	
299	84100	24389000	17.0293864	6.6114890 6.6191060	003460208	
291	84681	24642171	17.0587221	6.6267054	•003436426	
292	85264	24897088	17.0880075	6.6342874	•003424658	
293	85849	25153757	17.1172428	6.6418522	.003412969	
294	86436	25412184	17.1464282	6.6493998	•003401361	
295	87025	25672375	17.1755640	6.6569302	.003389831	
296	87616	25934836	17.2046505	6.6644437	•003378378	
297	88209	26198073	17.2336879	6.6719403	.003367003	
298	88804	26463592	17.2626765	6,6794200	.003355705	
299	89401	26730899	17.2916165	6.6868831	.003344482	
300	90000	27000000	17.3205081	6.6943295	.003333333	
301	90601	27270901	17.3493516	6,7017593	.003322259	
302	91204	27543608	17.3781472	6.7091729	•003311258	
303	91809	27818127	17.4068952	6.7165700	•003301330	
304	92416	28094464	17.4355958	6.7239508	•003289474	
305	93025	28372625	17.4642492	6.7313155	·003278689	
306	93636	28652616	17.4928557	6.7386641	.003267974	
307	94249	28934443	17.5214155	6.7459967	•003257329	
308	94864	29218112	17.5499288	6.7533134	.003246753	
309	95481	29503609	17.5783958	6.7606143	.003236246	
310	96100	29791000	17.6068169	6.7678995	.003225806	
311	96721	30080231	17.6351921	6.7751690	.003215434	
312	97344	30371328	17.6635217	6.7824229	.003205128	

		1 4514	ANAUDO IO	S, CUBES, SQUARE	AND COBE ROOTS	5. ZJ
	Number.	Squares.	Cubes.	√ Roots.	⁸ √ Roots.	Reciprocals.
	313	97969	30664297	17.6918060	6.7896613	.003194883
	314	98596	30959144	17.7200451	6.7968844	.003184713
	315	99225	31255875	17.7482393	6.8040921	.003174603
-	316	99856	31554496	17.7763888	6.8112847	.003164557
	317	100489	31855013	17.8044938	6.8184620	.003154574
	318	101124	32157432	17.8325545	6.8256242	.003144654
ı	319	101761	32461759	17.8605711	6.8327714	.003134796
	320	102400	32768000	17.8885438	6.8399037	.003125000
	321	103041	33076161	17.9164729	6.8470213	•003115265
	322	103684	33386248	17.9443584	6.8541240	.003105590
	323	104329	33698267	17.9722008	6.8612120	.003095975
	324	104976	34012224	18.0000000	6.8682855	.003086420
	325	105625	34328125	18.0277564	6.8753433	.003076923
	326	106276	34645976	18.0554701	6.8823888	.003067485
ı	327	106929	34965783	18.0831413	6.8894188	.003048104
ı	328	107584	35287552	18.1107703	6.8964345	.003048780
ı	329	108241	35611289	18.1383571	6.9034359	.003039514
ı	330	108900	35937000	18-1659021	6.9104232	•003030303
ı	331	109561	36264691	18.1934054	6.9173964	.003021148
ı	332	110224	36594368	18.2208672	6.9243556	.003.012048
ı	333	110889	36926037	18.2482876	6.9313088	.003003003
ı	334	111556	37259704	18.2756669	6.9382321	.002994012
ı	335	112225	37595375	18:3030052	6.9451496	•002985075
ı	336	112896	37933056	18.3303028	6.9520533	•002976190
1	337	113569	38272753	18.3575598	6.9589434	.002967359
Ĭ	338	114244	38614472	18.3847763	6.9658198	•002958580
ı	3 39	114921	38958219	18.4119526	6.9726826	.002949853
ı	340	115600	39304000	18.4390889	6.9795321	.002941176
ı	341	116281	39651821	18.4661853	6.9863681	.002932551
ı	342	116964	40001688	18.4932420	6.9931906	.002923977
	343	117649	40353607	18.5202592	7.0000000	.002915452
ı	344	118336	40707584	18.5472370	7.0067962	.002906977
ı	345	119025	41063625	18.5741756	7.0135791	.002898551
	346	119716	41421736	18.6010752	7.0203490	.002890173
	347	120409	41781923	18.6279360	7.0271058	.002881844
ı	348	121104	42144192	18.6547581	7.0338497	.002873563
ı	349	121801	42508549	18.6815417	7.0405860	.002865330
ı	350	122500	42875000	18.7082869	7.0472987	.002857143
	351	123201	43243551	18.7349940	7.0540041	.002849003
ı	352	123904	43614208	18:7616630	7.0606967	.002840909
ı	353	124609	43986977	18.7882942	7.0673767	•002832861
ı	354	125316	44361864	18.8148877	7.0740440	.002824859
	355	126025	44738875	18.8414437	7.0806988	.002816901
	356	126736	45118016	18.8679623	7.0873411	.002808989
ı	357	127449	45499293	18.8944436	7.0939709	.002801120
	358	128164	45882712	18.9208879	7.1005885	.002793296
	359	128881	46268279	18.9472953	7.1071937	.002785515
	360	129600	46656000	18.9736660	7.1137866	.002777778
	361	130321	47045831	19.0000000	7.1203674	.002770083
	362	131044	47437928	19.0262976	7.1269360	.002762431
	363	131769	47832147	19.0525589	7.1334925	.002754821
	364	132496	48228544	19.0787840	7.1400370	.002747253
				20 0,01010		

00	21121	or Edonus	is, Cobes, Equality	AND CODE 10001	
Number.	Squares:	Cubes.	√ Roots.	∛ Roots.	Reciprocals.
365	133225		19.1049732	7.1465695	•002739726
366	133956		19.1311265	7.1530901	•002732240
367	134689	49430863	19.1572441	7.1595988	.002724796
368	135424	49836032	19.1833261	7.1660957	•002717391
369	136161	50243409	19.2093727	7.1725809	.002710027
370	136900	50653000	19.2353841	7.1790544	.002702703
371	137641	51064811	19.2613603	7.1855162	.002695418
372	138384	51478848	19.2873015	7.1919663	.002688172
373	139129	51895117	19.3132079	7.1984050	•002680965
374	139876	52313624	19.3390796	7.2048322	.002673797
375	140625	52734375	19.3649167	7.2112479	.002666667
376	141376	53157376	19.3907194	7.2176522	.002659574
377	142129	53582633	19.4164878	7.2240450	·002652520
378	142884	54010152	19.4422221	7.2304268	·002645503
379	143641	54439939	19.4679223	7.2367972	.002638521
380	144400	54872000	19.4935887	7.2431565	·002631579
381	145161	55306341	19.5192213	7.2495045	.002624672
382	145924	55742968	19.5448203	7.2558415	.002617801
383	146689	56181887	19.5703858	7.2621675	•002610966
384	147456	56623104	19.5959179	7.2684824	.002604167
385	148225	57066625	19.6214169	7.2747864	.002597403
386	148996	57512456	19.6468827	7.2810794	.002590674
387	149769	57960603	19.6723156	7.2873617	.002583979
388	150544	58411072	19.6977156	7.2936330	.002577320
389	151321	58863869	19.7230829	7.2998936	•002570694
390	152100	59319000	19.7484177	7.3061436	.002564103
391	152881	59776471	19.7737199	7.3123828	•002557545
392	153664	60236288	19.7989899	7.3186114	.002551020
393	154449	60698457	19.8242276	7.3248295	.002544529
394	155236	61162984	19.8494332	7.3310369	*002538071
395	156025 156816	61629875	19.8746069	7.3372339	·002531646 ·002525253
396	157609	62099136	19.8997487	7.3434205	002525255
397	158404	62570773 63044792	19.9248588	7·3495966 7·3557624	·002512563
398 399	159201	63521199	19·9499373 19·9749844	7.3619178	002512505
400	160000	64000000	20.0000000	7.3680630	.002500000
401	160801	64481201	20.0249844	7.3741979	.002493766
402	161604	64964808	20.0499377	7.3803227	002487562
403	162409	65450827	20.0748599	7.3864373	.002481390
404	163216	65939264	20.0997512	7.3925418	.002475248
405	164025	66430125	20.1246118	7.3986363	.002469136
406	164836	66923416	20.1494417	7.4047206	.002463054
407	165649	67419143	20.1742410	7.4107950	.002457002
408	166464	67917312	20.1990099	7.4168595	·002450980
409	167281	68417929	20.2237484	7.4229142	·002444988
410	168100	68921000	20.2484567	7.4289589	·002439024
411	168921	69426531	20.2731349	7.4349938	·002433090
412	169744	69934528	20.2977831	7.4410189	•002427184
413	170569	70444997	20.3224014	7.4470343	•002421308
414	171396	70957944	20.3469899	7.4530399	.002415459
415	172225	71473375	20.3715488	7.4590359	.002409639
416	173056	71991296	20.3960781	7.4650223	•002406846

	Number.	Squares.	Cubes.	√Roots.	Noots.	Reciprocals.
	417	173889	72511713	20.4205779	7.4709991	.002398082
	418	174724	73034632	20.4450483	7.4769664	.002392344
	419	175561	73560059	20.4694895	7.4829242	.002386635
	420	176400	74088000	20.4939015	7.4888724	.002380952
	421	177241	74618461	20.5182845	7.4948113	.002375297
	422	178084	75151448	20.5426386	7.5007406	.002369668
	423	178929	75686967	20.5669638	7.5066607	.002364066
	424	179776	76225024	20.5912603	7.5125715	.002358491
	425	180625	76765625	20.6155281	7.5184730	*002352941
	426	181476	77308776	20.6397674	7.5243652	.002347418
	427	182329	77854483	20.6639783	7.5302482	.002341920
ı	428	183184	78402752	20.6881609	7.5361221	.002336449
ı	429.	184041	78953589	20.7123152	7.5419867	.002331002
ı	430	184900	79507000	20.7364414	7.5478423	.002325581
ı	431	185761	80062991	20.7605395	7.5536888	002320186
ı	432	186624	80621568	20.7846097	7.5595263	.002314815
ı	433	187489	81182737	20.8086520	7.5653548	*002309469
ı	434	188356	81746504	20.8326667	7.5711743	.002304147
ı	435	189225	82312875	20.8566536	7.5769849	.002298851
ı	436	190096	82881856	20.8806130	7.5827865	.002293578
	437	190969	83453453	20.9045450	7.5885793	•002288330
ı	438	191844	84027672	20.9284495	7.5943633	•002283105
ı	439	192721	84604519	20.9523268	7.6001385	.002277904
ı	440	193600	85184000	20.9761770	7.6059049	.002272727
ı	441	194481	85766121	21.0000000	7.6116626	.002267574
ı	442	195364	86350888	21.0237960	7.6174116	.002262443
-	443 444	196249 197136	86938307	21.0475652	7.6231519	*002257336
ı	445	198025	87528384 88121125	21.0713075	7.6288837	*002252252
١	446	198916	88716536	21·0950231 21·1187121	7.6346067 7.6403213	*002247191 *002242152
	447	199809	89314623	21.1423745	7.6460272	002237136
	448	200704	89915392	21.1660105	7.6517247	002237136
1	449	201601	90518849	21.1896201	7.6574138	002232143
ı	450	202500	91125000	21.2132034	7.6630943	.002222222
	451	203401	91733851	21.2367606	7.6687665	.002217295
١	452	204304	92345408	21.2602916	7.6744303	.002212389
١	453	205209	92959677	21.2837967	7.6800857	.002207506
	454	206116	93576664	21.3072758	7.6857328	.002202643
ı	455	207025	94196375	21.3307290	7.6913717	.002197802
	456	207936	94818816	21.3541565	7.6970023	002192982
1	457	208849	95443993	21.3775583	7.7026246	.002188184
1	458	209764	96071912	21.4009346	7.7082388	.002183406
1	459	210681	96702579	21.4242853	7.7188448	.002178649
I	460	211600	97336000	21.4476106	7.7194426	.002173913
I	461	212521	97972181	21.4709106	7.7250325	.002169197
	462	213444	98611128	21.4941853	7.7306141	*002164502
	463	214369	99252847	21.5174348	7.7361877	.002159827
	464 465	215296	99897344	21.5406592	7.7417532	.002155172
	466	216225 217156	100544625	21.5638587	7.7473109	.002150538
1	467	217136	101194696	21.5870331	7.7528606	.002145923
	468	219024	101847563 102503232	21.6101828	7·7584023 7·7639361	.002141328
1	200	ZZVVZ-E	1020002021	21.6333077	1 1099901 1	.002136752
1						

	04	LABL	garanopa to a	· CUBES, EQUARE	AND CUBE MOOTS	•
	Number.	Squares.	Cubes.	√Roots.	∛ Roots.	Reciprocals.
	469	219961	103161709	21.6564078	7.7694620	.002132196
	470	220900	103823000	21.6794834	7.7749801	•002127660
	471	221841	104487111	21.7025344	7.7804904	.002123142
	472	222784	105154048	21.7255610	7.7859928	.002118644
	473	223729	105828817	21.7485632	7.7914875	.002114165
	474	224676	106496424	21.7715411	7.7969745	.002109705
	475	225625	107171875	21.7944947	7.8024538	.002105263
	476	226576	107850176	21.8174242	7.8079254	.002100840
	477	227529	108531333	21.8403297	7.8133892	.002096486
	478	228484	109215352	21.8632111	7.8188456	.002092050
	479	229441	109902239	21.8860686	7.8242942	.002087683
	480	230400	110592000	21.9089023	7.8297353	.002083333
	481	231361	111284641	21.9317122	7.8351688	.002079002
ı	482	232324	111980168	21.9544984	7.8405949	.002074689
ı	483	233289	112678587	21.9772610	7.8460134	.002070393
ı	484	234256	113379904	22.0000000	7.8514244	.002066116
ı	485	235225	114084125	22.0227155	7.8568281	.002061856
ı	486	236196	114791256	22.0454077	7.8622242	.002057613
	487	237169	115501303	22.0680765	7.8676130	.002053388
ı	488	238144	116214272	22.0907220	7.8729944	.002049180
-	489	239121	116930169	22.1133444	7.8783684	.002044990
	490	240100	117649000	22.1359436	7.8837352	.002040816
-	491	241081	118370771	22.1585198	7.8890946	.002036660
1	492	242064	119095488	22.1810730	7.8944468	.002032520
1	493	243049	119823157	22.2036033	7.8997917	·002032320
	494	244036	120553784	22:2261108	7.9051294	·002024291
۱	495	245025	121287375	22.2485955	7.9104599	·002020202
۱	496	246016	122023936	22.2710575	7.9157832	.002016129
١	497	247009	122763473	22.2934968	7.9210994	.002012072
1	498	248004	123505992	22.3159136	7.9264085	.002008032
1	499	249001	124251499	22.3383079	7.9317104	.002004008
1	500	250000	125000000	22.3606798	7.9370053	.002000000
1	501	251001	125751501	22.3830293	7.9422931	.001996008
1	502	252004	126506008	22.4053565	7.9475739	.001992032
1	503	253009	127263527	22.4276615	7.9528477	.001988072
1	504	254016	128024064	22.4499443	7.9581144	.001984127
1	505	255025	128787625	22.4722051	7.9633743	.001980198
1	506	256036	129554216	22.4944438	7.9686271	.001976285
ı	507	257049	130323843	22.5166605	7.9738731	.001972387
1	508	258064	131096512	22.5388553	7.9791122	.001968504
1	509	259081	131872229	22.5610283	7.9843444	.001964637
ł	510	260100	132651000	22.5831796	7.9895697	.001960784
ı	511	261121	133432831	22.6053091	7.9947883	.001956947
1	512	262144	134217728	22.6274170	8.00000000	.001953125
1	513	263169	135005697	22.6495033	8.0052049	.001949318
1	514	264196	135796744	22.6715681	8.0104032	.001945525
1	515	265225	136590875	22.6936114	8.0155946	.001941748
1	516	266256	137388096	22.7156334	8.0207794	.001937984
1	517	267289	138188413	22.7376341	8.0259574	.001934236
1	518	268324	138991832	22.7596134	8.0311287	.001930502
1	519	269361	139798359	22.7815715	8.0362935	.001926782
I	520		140608000	22.8035085	8.0414515	.001923077
ı						

_		LADI	E OF EQUARES,	CUBES, EQUARE	AND CODE 10001	
1	Number.	Squares.	Cubes.	√Roots.	₹ Roots.	Reciprocals.
	521	271411	141420761	22.8254244	8.0466030	.001919386
	522	272484	142236648	22.8473193	8.0517479	.001915709
	523	273529	143055667	22.8691933	8.0568862	.001912046
	524	274576	143877824	22.8910463	8.0620180	.001908397
	525	275625	144703125	22.9128785	8.0671432	*001904762
	526	276676	145531576	22.9346899	8.0722620	*001901141
	527	277729	146363183	22.9564806	8.0773743	* *001897533
	528	278784	147197952	22.9782506	8.0824800	.001893939
	529	279841	148035889	23.0000000	8.0875794	*001890359
1	530	280900	148877001	23.0217289	8.0926723	*001886792
	531	281961	149721291	23.0434372	8.0977589	.001883239
	532	283024	150568768	23.0651252	8.1028390	*001879699
	533	284089	151419437	23.0867928	8.1079128	.001876173
	534	285156	152273304	23.1084400	8.1129803	.001872659
	535	286225	153130375	23.1300670	8.1180414	.001869159
	536	287296	153990656	23.1516738	8.1230962	·00186567 2
	537	288369	154854153	23.1732605	8.1281447	.001862197
	538	289444	155720872	23.1948270	8.1331870	*001858736
	539	290521	156590819	23.2163735	8.1382230	*001855288
	540	291600	157464000	23.2379001	8.1432529	*001851852
	541	292681	158340421	23.2594067	8.1482765	.001848429
	542	293764	159220088	23.2808935	8.1532939	*001845018
	543	294849	160103007	23.3023604	8.1583051	.001841621
	544	295936	160989184	23.3238076	8.1633102	*001838235
	545	297025	161878625	23.3452351	8.1683092	.001834862
	546	298116	162771336	23.3666429	8.1733020	*001831502
	547	299209	163667323	23.3880311	8.1782888	*001828154
	548	300304	164566592	23.4093998	8.1832695	*001824818
	549 550	301401	165469149	23.4307490	8.1882441	*001821494
1	551	302500 303601	166375000 167284151	23·4520788 23·4733892	8.1932127	*001818182
	552	304704	168196608	23.4946802	8.1981753	*001814882
	553	305809	169112377	23.5159520	8·2031319 8·2080825	·001811594 ·001808318
1	554	306916	170031464	23.5372046	8.2130271	001808318
	555	308025	170953875	23.5584380	8.2179657	001803034
	556	309136	171879616	23.5796522	8.2228985	001301802
	557	310249	172808693	23.6008474	8.2278254	·001795332
	558	311364	173741112	23.6220236	8.2327463	001792115
	559	312481	174676879	23.6431808	8.2376614	.001788909
	560	313600	175616000	23.6643191	8.2425706	.001785714
1	561	314721	176558481	23.6854386	8.2474740	.001782531
	562	315844	177504328	23.7065392	8.2523715	.001779359
	563	316969	178453547	23.7276210	8.2572635	.001776199
	564	318096	179406144	23.7486842	8.2621492	.001773050
	565	319225	180362125	23.7697286	8.2670294	.001769912
	566	320356	181321496	23.7907545	8.2719039	.001766784
	567	321489	182284263	23.8117618	8.2767726	.001763668
	568	322624	183250432	23.8327506	8.2816255	.001760563
	569	323761	184220009	23.8537209	8.2864928	.001757469
	570	324900	185193000	23.8746728	8.2913444	.001754386
	571	326041	186169411	23.8956063	8.2961903	.001751313
	572	327184	187149248	23.9165215	8.3010304	.001748252
1						

	24	TABL	E OF SQUARES	, CUBES, SQUARE	AND CUBE ROOTS	•
	Number.	Squares.	Cubes.	√ Roots.	³ √ Roots.	Reciprocals.
	573	328329	188132517	23.9374184	8.3058651	.001745201
-	574	329476	189119224	23.9582971	8.3106941	.001742160
	575	330625	190109375	23.9791576	8.3155175	.001739130
	576	331776	191102976	24.0000000	8.3203353	.001736111
	577	332927	192100033	24.0208243	8.3251475	.001733102
	578	334084	193100552	24.0416306	8.3299542	.001730104
ı	.579	335241	194104539	24.0624188	8.3347553	.001727116
	580	336400	195112000	24.0831891	8.3395509	.001724138
	581	337561	196122941	24.1039416	8.3443410	.001721170
	582	338724	197137368	24.1246762	8.3491256	.001718213
	583	339889	198155287	24.1453929	8.3539047	•001715266
	584	341056	199176704	24.1660919	8.3586784	.001712329
	585	342225	200201625	24.1867732	8.3634466	.001709402
	586	343396	201230056	24.2074369	8.3682095	.001706485
	587	344569	202262003	24.2280829	8.3729668	.001703578
	588	345744	203297472	24.2487113	8.3777188	.001700680
	589	346921	204336469	24.2693222	8.3824653	•001697793
I	590	348100	205379000	24.2899156	8.3872065	.001694915
ı	591	349281	206425071	24.3104996	8.3919428	.001692047
ı	592	350464	207474688	24.3310501	8.3966729	•001689189
	593	351649	208527857	24.3515913	8.4013981	.001686341
	594	352836	209584584	24.3721152	8.4061180	•001683502
١	595	354025	210644875	24.3926218	8.4108326	.001680672
ı	596	355216	211708736	24.4131112	8.4155419	.001677852
ı	597	356409	212776173	24.4335834	8.4202460	*001675042
ı	598	357604	213847192	24.4540385	8.4249448	*001672241
	599	358801	214921799	24.4744765	8.4296383	.001669449
١	600	360000	216000000	24.4948974	8.4343267	.001666667
1	601	361201	217081801	24.5153013	8.4390098	.001663894
ł	602	362404	218167208	24.5356883	8.4436877	.001661130
	603	363609	219256227	24.5560583	8.4483605	.001658375
	604	364816	220348864	24.5764115	8.4530281	.001655629
	605	366025	221445125	24.5967478	8.4576906	•001652893
	606	367236	222545016	24.6170673	8.4623479	.001650165
ı	607	368449	223648543	24.6373700	8.4670001	.001647446
	608	369664	224755712	24.6576560	8.4716471	•001644737
	609	370881	225866529	24.6779254	8.4762892	*001642036
	610	372100	226981000	24.6981781	8.4809261	*001639344
-	611	373321	228099131	24.7184142	8.4855579	•001636661
	612	374544	229220928	24.7386338	8·4901848 8·4948065	.001633987
1	613	375769	230346397	24.7588368	8.4994233	*001631321 *001628664
	614	376996	231475544	24·7790234 24·7991935	8.5040350	001626016
	615	378225	232608375		8.5086417	•001623377
	616	379456	233744896	24.8193473	8.5132435	.001620746
	617 618	380689 381924	234885113 236029032	24·8394847 24·8596058	8.5178403	•001618123
	619	381924	237176659	24.8797106	8.5224331	•001615509
	620	384400	238328000	24.8997992	8.5270189	.001612903
	621	385641	239483061	24.9198716	8.5316009	.001610306
	622	386884	240641848	24.9399278	8.5361780	.001607717
	623	388129	241804367	24.9599679	8.5407501	.001605136
	624		242970624	24.9799920	8.5453173	001602564
	022	2000.01				

			CODED, EQUALE		
Number.	Squares.	Cubes.	√Roots.	∛ Roots.	Reciprocals.
625	390625	244140625	25.0000000	8.5498797	.001600000
626	391876	245134376	25.0199920	8.5544372	*001597444
627	393129	246491883	25.0399681	8.5589899	.001594896
628	394384	247673152	25.0599282	8.5635377	.001592357
629	395641	248858189	25.0798724	8.5680807	.001589825
630	396900	250047000	25.0998008	8.5726189	.001587302
631	398161	251239591	25.1197134	8.5771523	.001534786
632	399424	252435968	25.1396102	8.5816809	001582278
633	400689	253636137	25.1594913	8.5862247	.001579779
634	401956	254840104	25.1793566	8.5907238	.001577287
635	403225	256047875	25.1992063	8.5952380	.001574803
636	404496	257259456	25.2190404	8.5997476	001572327
637	405769	258474853	25.2388589	8.6042525	.001569859
638	407044	259694072	25.2586619	8.6087526	*001567398
639	408321	260917119	25.2784493	8.6132480	.001564945
640	409600	262144000			·001562500
641	410881	263374721	25.2982213	8.6177388	001560062
642	412164	264609288	25.3179778	8.6222248	.001557632
643			25.3377189	8.6267063	
644	413449	265847707	25.3574447	8.6311830	.001555210
645	414736	267089984	25.3771551	8.6356551	.001552795
646	416125	268336125	25.3968502	8.6401226	*001550388
	417316	269585136	25.4165302	8.6445855	.001547988
647	418609	270840023	25.4361947	8.6490437	*001545595
648	419904	272097792	25.4558441	8.6534974	*001543210
649	421201	273359449	25.4754784	8.6579465	.001540832
650	422500	274625000	25.4950976	8.6623911	*001538462
651	423801	275894451	25.5147013	8.6668310	*001536098
652	425104	277167808	25.5342907	8.6712665	*001533742
653	426409	278445077	25.5538647	8.6756974	.001531394
654	427716	279726264	25.5734237	8.6801237	.001529052
655	429025	281011375	25.5929678	8.6845456	.001526718
656	430336	282300416	25.6124969	8.6889630	*001524390
657	431639	283593393	25.6320112	8.6933759	.001522070
658	432964	284890312	25.6515107	8.6977843	•001519751
659	434281	286191179	25.6709953	8.7021882	.001517451
660	435600	287496000	25.6904652	8.7065877	.001515152
661	436921	288804781	25.7099203	8.7109827	•001512859
662	438244	290117528	25.7293607	8.7153734	.001510574
663	439569	291434247	25.7487864	8.7197596	*001508296
664	440896	292754944	25.7681975	8.7241414	.001506024
665	442225	294079625	25.7875939	8.7285187	.001503759
666	443556	295408296	25.8069758	8.7328918	*001501502
667	444899	296740963	25.8263431	8.7372604	*001499250
668	446224	298077632	25.8456960	8.7416246	.001497006
669	447561	299418309	25.8650343	8.7459846	.001494768
670	448900	300763000	25.8843582	8.7503401	.001492537
671	450241	302111711	25.9036677	8.7546913	.001490313
672	451584	303464448	25.9229628	8.7590383	.001488095
673	452929	304821217	25.9422435	8.7633809	.001485884
674	454276	306182024	25.9615100	8.7677192	.001483680
675	455625	307546875	25.9807621	8.7720532	.001481481
676	1 456976	308915776	26.0000000	8.7763830	.001479290
			1		

			,, k (0.202		
Number.	Squares.	Cubes.	√ Roots.	∛ Roots.	Reciprocals.
677	458329	310288733	26.0192237	8.7807084	•001477105
678	459684	311665752	26.0384331	8.7850296	•001474926
679	461041	313046839	26.0576284	8.7893466	.001472754
680	462400	314432000	26.0768096	8.7936593	*001470588
681	463761	315821241	26.0959767	8.7979679	.001468429
682	465124	317214568	26.1151297	8.8022721	.001466276
683	466489	318611987	26.1342687	8.8065722	.001464129
684	467856	320013504	26.1533937	8.8108681	•001461988
685	469225	321419125	26.1725047	8.8151598	•001459854
686	470596	322828856	26.1916017	8.8194474	.001457726
687	471969	324242703	26.2106848	8.8237307	•001455604
688	473344	325660672	26.2297541	8.8280099	•001453488
689	474721	327082769	26.2488095	8.8322850	.001451379
690	476100	328509000	26.2678511	8.8365559	.001449275
691	477481	329939371	26.2868789	8.8408227	•001447178
692	478864	331373888	26.3058929	8.8450854	•001445087
693	480249	332812557	26.3248932	8.8493440	•001443001
694	481636	334255384	26.3438797	8.8535985	·001440922
69.5	483025	335702375	26.3628527	8.8578489	•001438849
696	484416	337153536	26.3818119	8.8620952	•001436782
697	485809	338608873	26.4007576	8.8663375	·001434720
698	487204	340068392	26·4196896	8.8705757	•001432665
699	488601	341532099	26.4386081	8.8748099	•001430615
700	490000	343000000	26.4575131	8.8790400	•001428571
701	491401	344472101	26.4764046	8.8832661	•001426534
702	492804	345948408	26.4952826	8.8874882	•001424501
703	494209	347428927	26.5141472	8.8917063	•001422475
704	495616	348913664 350402625	26.5329983	8.8959204 8.9001304	•001420455
705 706	497025	351895816	26·5518361 26·5706605	8.9043366	*001418440 *001416431
707	499849	353393243	26.5894716	8.9085387	•001414427
708	501264	354894912	26.6082694	8.9127369	•001412429
709	502681	356400829	26.6270539	8.9169311	•001410437
710	504100	357911000	26.6458252	8.9211214	•001408451
711	505521	359425431	26.6645833	8.9253078	•001406470
712	506944	360944128	26.6833281	8.9294902	.001404494
713	508369	362467097	26.7020598	8.9336687	.001402525
714	509796	363994344	26.7207784	8.9378433	.001400560
715	511225	365525875	26.7394839	8.9420140	.001398601
716	512656	367061696	26.7581763	8.9461809	.001396648
717	514089	368601813	26.7768557	8.9503438	.001394700
718	515524	370146232	26.7955220	8.9545029	•001392758
719	516961	371694959	26.8141754	8.9586581	.001390821
720	518400	373248000	26.8328157	8.9628095	·001388889
721	519841	374805361	26.8514432	8.9669570	•001386963
722	521284	376367048	26.8700577	8.9711007	•001385042
723	522729	377933067	26.8886593	8.9752406	•001383126
724	524176	379503424	26.9072481	8.9793766	.001381215
725	525625	381078125	26.9258240	8.9835089	.001379310
726	527076	382657176	26.9443872	8.9876373	•001377410
727	528529	384240583	26.9629375	8.9917620	•001375516
728	529984	385828352	26.9814751	8.9958899	•001373626

	TABL	e of Squares,	CUBES, SQUARE	AND CUBE ROOTS	37
Number	Squares.	Cubes.	√Roots.	³ √Roots.	Reciprocals.
729	- 1	387420489	27.0000000	9.0000000	.001371742
730	531441	389017000	27.0185122	9.0041134	.001369863
731	532900 534361	390617891	27.0370117	9.0082229	•001367989
732	535824	392223168	27.0554985	9.0123288	:001366120
733	537289	393832837	27.0739727	9.0164309	•001364256
734	538756	395446904	27.0924344	9.0205293	.001362398
735	540225	397065375	27.1108834	9.0246239	.001360544
736	541696	398688256	27.1293199	9.0287149	.001358696
737	543169	400315553	27.1477149	9.0328021	.001356852
738	544644	401947272	27.1661554	9.0368857	.001355014
739	546121	403583419	27.1845544	9.0409655	.001353180
740	547600	405224000	27.2029140	9.0450419	.001351351
741	549801	406869021	27.2213152	9.0491142	.001349528
742	550564	408518488	27.2396769	9.0531831	.001347709
743	552049	410172407	27.2580263	9.0572482	.001345895
744	553536	411830784	27.2763634	9.0613098	.001344086
745	555025	413493625	27.2946881	9.0653677	.001342282
746	556516	415160936	27.3130006	9.0694220	.001340483
747	558009	416832723	27.3313007	9.0734726	.001338688
748	559504	418508992	27.3495887	9.0775197	.001336898
749	561001	420189749	27.3678644	9.0815631	.001335113
750	562500	421875000	27.3861279	9.0856030	.001333333
751	564001	423564751	27.4043792	9.0896352	.001331558
752	565504	425259008	27.4226184	9.0936719	:001329787
753	567009	426957777	27.4408455	9.0977010	.001328021
754	568516	428661064	27.4590604	9.1017265	.001326260
755	570025	430368875	27.4772633	9.1057485	.001324503
756	571536	432081216	27.4954542	9.1097669	.001322751
757	573049	433798093	27.5136330	9.1137818	.001321004
758	574564	435519512	27.5317998	9.1177931	.001319261
759	576081	437245479	27.5499546	9.1218010	.001317523
760	577600	438976000	27.5680975	9.1258053	.001315789
761	579121	440711081	27.5862284	9.1298061	.001314060
762	580644	442450728	27.6043475	9.1338034	•001312336
763	582169	444194947	27.6224546	9.1377971	.001310616
764	583696	445943744	27.6405499	9.1417874	.001308901
765	585225	447697125	27.6586334	9.1457742	.001307190
766	586756	449455096	27.6767050	9.1497576	•001305483
767	588289	451217663	27.6947648	9.1537375	•001303781
768	589824	452984832	27.7128129	9.1577139	.001302083
769	591361	454756609	27.7308492	9.1616869	·001300390
770	592900	456533000	27.7488739	9.1656565	.001298701
771	594441	458314011	27.7668868	9.1696225	•001297017
772	595984		27.7848880	9.1735852	•001295337
773	597529	461889917	27.8028775	9.1775445	.001293661
774	599076	463684824	27.8208555	9.1815003	•001291990
775	600625	465484375	27.8388218	9.1854527	•001290323
776	602176	467288576	27.8567766	9.1894018	.001288660
777	603729	469097433	27:8747197	9.1933474	.001287001
778	605284		27.8926514	9.1972897	*001285347
779	606841	472729139	27.9105715	9.2012286	•001283697
780	608400	474552000	27.9284801	9.2051641	.001282051
	1000400	14/4552000	27.9284801	9.2031041	-00128209

	90	21122	d OF DQUARES,	CUBES, EQUARE	AND CODE 10001	
	Number.	Squares.	Cubes.	√ Roots.	∛ Roots.	Reciprocals.
	781	609961	476379541	27.9463772	9.2090962	·001280410
ı	782	611524	478211768	27.9642629	9.2130250	001278772
ı	783	613089	480048687	27.9821372	9.2169505	.001277139
	784	614656	481890304	28.0000000	9.2208726	.001275510
	785	616225	483736625	28.0178515	9.2247914	.001273885
ı	786	617796	485587656	28.0356915	9.2287068	.001272265
ł	787	619369	487443403	28.0535203	9.2326189	·001270648
ı	788	620944	489303872	28.0713377	9.2365277	.001269036
ı	789	622521	491169069	28.0891438	9.2404333	.001267427
ı	790	624100	493039000	28.1069386	9.2443355	·001265823
ı	791	625681	494913671	28.1247222	9.2482344	.001264223
ı	792	627624	496793088	28.1424946	9.2521300	.001262626
ı	793	628849	498677257	28.1602557	9.2560224	.001261034
ı	794	630436	500566184	28.1780056	9.2599114	.001259446
1	795	632025	502459875	28.1957444	9.2637973	.001257862
	796	633616	504358336	28.2134720	9.2676798	.001256281
	797	635209	506261573	28.2311884	9.2715592	.001254705
1	798	636804	508169592	28.2488938	9.2754352	.001253133
1	799	638401	510082399	28.2665881	9.2793081	.001251364
ı	800	640000	512000000	28.2842712	9.2831777	.001250000
1	801	641601	513922401	28.3019434	9.2870444	.001248439
ł	802	643204	515849608	28.3196045	9.2909072	·001246883
1	803	644809	517781627	28.3372546	9.2947671	.001245330
١	804	646416	519718464	28.3548938	9.2986239	.001243781
1	805	648025	521660125	28.3725219	9.3024775	.001242236
ı	806	649636	523606616	28.3901391	9.3063278	.001240695
1	807	651249	525557943	28.4077454	9.3101750	.001239157
1	808	652864	527514112	28.4253408	9.3140190	.001237624
1	809	654481	529475129	28.4429253	9.3178599	.001236094
1	810	656100	531441000	28.46049.89	9.3216975	•001234568
1	811	657721	533411731	28.4780617	9.3255320	.001233046
١	812	659344	535387328	28.4956137	9.3293634	.001231527
1	813	660969	537367797	28.5131549	9.3331916	.001230012
١	814	662596	539353144	28.5306852	9.3370167	.001228501
I	815	664225	541343375	28.5482048	9.3408386	.001226994
I	816	665856	543338496	28.5657137	9.3446575	·001225499
1	817	667489	545338513	28.5832119	9.3484731	.001223990
1	818	669124	547343432	28.6006993	9.3522857	.001222494
	819	670761	549353259	28.6181760	9.3560952	.001221001
1	820	672400	551368000	28.6356421	9.3599016	.001219512
	821	674041	553387661	28.6530976	9.3637049	.001218027
1	822	675684	555412248	28.6705424	9.3675051	.001216545
	823	677329	557441767	28.6879716	9.3713022	•001215067
	824	678976	559476224	28.7054002	9:3750963	.001213592
1	825	680625	561515625	28.7228132	9.3788873	.001212121
1	826	682276	563559976	28.7402157	9.3826752	.001210654
1	827	683929	565609283	28.7576077	9.3864600	.001209190
	828	685584	567663552	28.7749891	9.3902419	.001207729
	829	687241	569722789	28.7923601	9.3940206	.001206273
	830	688900	571787000	28.8097206	9.3977964	•001204819
	831	690561	573856191	28.8270706	9.4015691	•001203369
	832	692224	575930368	28.8444102	9.4053387	.001201923

	ناطه د	E OF SQUARES,	COBES, EQUANE	AND COBE ROOM	. 05
Number	. Squares.	Cubes.	√Roots.	³ √ Roots.	Reciprocals.
833	693889	578009537	28.8617394	9.4091054	.001200480
834	695556	580093704	28.8790582	9.4128690	.001199041
835	697225	582182875	28.8963666	9.4166297	•001197605
836	698896	584277056	28.9136646	9.4203873	.001196172
837	700569	586376253	28.9309523	9.4241420	.001194743
838	702244	588480472	28.9482297	9.4278936	.001193317
839	703921	590589719	28.9654967	9.4316423	.001191895
840	705600	592704000	28.9827535	9.4353800	*001190476
841	707281	594823321	29.0000000	9.4391307	.001189061
842	708964	596947688	29.0172363	9.4428704	·001187648
843	710649	599077107	29.0344623	9.4466072	.001186240
844	712336	601211584	29.0516781	9.4503410	.001184834
845	714025	603351125	29.0688837	9.4540719	.001183432
846	715716	605495736	29.0860791	9.4577999	•001182033
847	717409	607645423	29.1032644	9.4615249	•001180638
848	719104	609800192	29.1204396	9.4652470	.001179245
849	720801	611960049	29.1376046	9.4689661	.001177856
850	722500	614125000	29.1547595	9.4726824	.001176471
851	724201	616295051	29.1719043	9.4763957	.001175088
852	725904	618470208	29.1890390	9.4801061	.001173709
853	727609	620650477	29.2061637	9.4838136	.001172333
854	729316	622835864	29.2232784	9.4875182	.001170960
855	731025	625026375	29.2403830	9.4912200	•001169591
856	732736	627222016	29.2574777	9.4949188	.001168224
857	734449	629422793	29.2745.623	9.4986147	.001166861
858	736164	631628712	29.2916370	9.5023078	•001165501
859	737881	633839779	29.3087018	9.5059980	.001164144
860	739600	636056000	29.3257566	9.5096854	.001162791
861	741321	638277381	29.3428015	9.5133699	.001161440
862	743044	640503928	29.3598365	9.5170515	•001160093
863	744769	642735647	29.3768616	9.5207303	.001158749
864	746496	644972544	29.3938769	9.5244063	·001157407
865	748225	647214625	29.4108823	9.5280794	•001156069
866	749956	649461896	29.4278779	9.5317497	•001154734
867	751689	651714363	29.4448637	9.5354172	•001153403
868	753424	653972032	29.4618397	9.5390818	.001152074
869	755161	656234909	29.4788059	9.5427437	•001150748
870	756900	658503000	29.4957624	9.5464027	•001149425
871	758641	660776311	29.5127091	9.5500589	•001148106
872	760384	663054848	29.5296461	9.5537123	•001146789
873	762129	665338617	29.5465734	9.5573630	•001145475
874	763876	667627624	29.5634910	9.5610108	•001144165
875	765625	669921875	29.5803989	9.5646559	•001142857
876	767376	672221376	29.5972972	9.5682782	•001141553
877	769129	674526133	29.6141858	9.5719377	•001140251
878	770884	676836152	29.6310648	9.5755745	•001138952
879	772641	679151439	29.6479342	9.5792085	•001137656
880	774400	681472000	29.6647939	9.5828397	•001136364
881.	776161	683797841	29.6816442	9.5864682	.001135074
882	777924		29.6984848	9.5900937	•001133787
883	779689	688465387	29.7153159	9.5937169	•001132503
884	1 781456	690807104	29.7321375	9.5973373	•001131222
1					

	40	TABL	E OF EQUARES	, CUBES, SQUARE	AND CUBE ROOT	8.
	Number.	Squares.	Cubes.	√ Roots.	³ √ Roots.	Reciprocals.
ı	885	783225	693154125	29.7489496	9.6009548	.001129944
	886	784996	695506456	29.7657521	9.6045696	•001128668
ı	887	786769	697864103	29.7825452	9.6081817	.001127396
ı	888	788544	700227072	29.7993289	9.6117911	•001126126
ı	889	790321	702595369	29.8161030	9.6153977	.001124859
ı	890	792100	704969000	29.8328678	9.6190017	•001123596
ı	891	793881	707347971	29.8496231	9.6226030	.001122334
ı	892	795664	707932288	29.8663690	9.6262016	.001121076
1	893	797449	712121957	29.8831056	9.6297975	•001119821
1	894	799236	714516984	29.8998328	9.6333907	.001118568
1	895	801025	716917375	29.9165506	9.6369812	·001117818
1	896	802816	719323136	29.9332591	9.6405690	.001116071
1	897	804609	721734273	29.9499583	9.6441542	·001114827
1	898	806404	724150792	29.9666481	9.6477367	·001113586
1	899	808201	726572699	29.9833287	9.6513166	.001112347
ı	900	810000	729000000	30.0000000	9.6548938	•001111111
1	901	811801	731432701	30.0166621	9.6584684	·001109878
1	902	813604	733870808	30.0333148	9.6620403	·001108647
ı	903	815409	736314327	30.0499584	9.6656096	.001107420
١	904	817216	738763264	30.0665928	9.6691762	·001106195
1	905	819025	741217625	30.0832179	9.6727403	.001104972
١	906	820836	743677416	30.0998339	9.6763017	·001103753
1	907	822649	746142643	30.1164407	9.6798604	001102536
١	908	824464	748613312	20.1330383	9.6834166	.001101322
1	909	826281	751089429	30.1496269	9.6869701	.001100110
١	910	828100	753571000	30.1662063	9.6905211	.001098901
1	911	829921	756058031	30.1827765	9.6940694	.001097695
I	912	831744	758550825	30.1993377	9.6976151	•001096491
I	913	833569	761048497	30.2158899	9.7011583	•001095290
١	914	835396	763551944	30.2324329	9.7046989	•001094092
١	915	837225	766060875	30.2489669	9.7082369	.001092896
1	916	839056	768575296	30.2654919	9.7117723	•001091703
١	917	840889	771095213	30.2820079	9.7153051	•001090513
1	918 919	842724 844561	773620632 776151559	30·2985148 30·3150128	9·7188354 9·7223631	*001089325 *001088139
١	919	846400	778688000	30-3150128	9.7258883	·001088139 ·001086957
١	921	848241	781229961	30.3479818	9.7294109	·001030937
١	921	850084	783777448	30.3644529	9.7329309	•001084599
ı	923	851929	786330467	30.3809151	9.7364484	•001083423
1	924	853776	788889024	30.3973683	9.7399634	·001083423
1	925	855625	791453125	30.4138127	9.7434758	·001081081
۱	926	857476	794022776	30.4302481	9.7469857	.001079914
1	927	859329	796597983	30.4466747	9.7504930	.001078749
1	928	861184	799178752	30.4630924	9.7539979	.001077586
ı	929	863041	801765089	30.4795013	9.7575002	.001076426
1	930	864900	804357000	30.4959014	9.7610001	.001075269
1	931	866761	806954491	30.5122926	9.7644974	.001074114
1	932	868624	809557568	30.5286750	9.7679922	.001072961
1	933	870489	812166237	30.5450487	9.7714845	.001071811
1	934	872356	814780504	30.5614136	9.7749743	.001070664
1	935	874225	817400375	30.5777697	9.7784616	.001069519
-	936	876096	820025856	30.5941171	9.7829466	.001068376
1						

_		TABLE	or Equining	AULIO, DEULIA	MILE CODE INCOID	
	Number.	Squares.	Cubes.	√ Roots.	³ √Roots.	Reciprocals.
	937	877969	\$22656953.	30.6104557	9.7854288	.001067236
1	938	879844	825293672	30.6267857	9.7889087	·0010660981
- 1	939	881721	827936019	30.6431069	9.7923861	·001064963
-	940	883600	830584000	30.6594194	9.7958611	.001063830
	941	885481	833237621	30.6757233	9.7993336	•001062699
- [942	887364	835896888	30.6920185	9.8028036	.001061571
1	943	889249	838561807	30.7083051	9.8062711	.001060445
1	944	891136	841232384	30.7245830	9.8097362	.001059322
-	945	893025	843908625	30.7408523	9.8131989	·001058201
-	946	894916	846590536	30.7571130	9.8166591	·001057082
	947		849278123		9.8201169	.001057082
- 1	948	896808		30.7733651	9.8235723	
-		898704		30.7896086		•001054852
	949	900601	854670349	30.8058436	9.8270252	.001053741
-	950	902500	857375000	30.8220700	9.8304757	•001052632
	951	904401	860085351	30.8382879	9.8339238	•001051525
	952	906304	862801408	30.8544972	9.8373695	•001050420
- 1	953	908209	865523177	30.8706981	9.8408127	•001049318
	954	910116	868250664	30.8868904	9.8442536	·001048218
	955	912025	870983875	30.9030743	9.8476920	•001047120
- 1	956	913936	873722816	30.9192477	9.8511280	·001046025
	957	915849	876467493	30.9354166	9.8545617	·001044932
-	958	917764	879217912	30.9515751	9.8579929	.001043841
	959	919681	881974079	30.9677251	9.8614218	.001042753
	960	921600	884736000	30.9838668	9.8648483	.001041667
-	961	923521	887503681	31.0000000	9.8682724	•001040583
	962	925444	890277128	31.0161248	9.8716941	•001039501
	963	927369	893056347	31.0322413	9.8751135	•001038422
	964	929296	895841344	31.0483494	9.8785305	.001037344
- {	965	931225	898632125	31.0644491	9.8819451	.001036269
	966	933156	901428696	31.0805405	9.8853574	•001035197
	967	935089	904231063	31.0966236	9.8887673	.001034126
	968	937024	907039232	31.1126984	9.8921749	•001033058
	969	938961	909853209	31.1287648	9.8955801	.001031992
	970	940900	912673000	31.1448230	9.8989830	•001030928
	971	942841	915498611	31.1608729	9.9023835	·001029866
	972	944784	918330048	31.1769145	9.9057817	.001028807
	973	946729	921167317	31.1929479	9.9091776	.001027749
	974	948676	924010424	31.2089731	9.9125712	•001026694
	975	950625	926859375	31.2249900	9.9159624	·001025641
	976	952576	929714176	31.2409987	9.9193513	·001023641 ·001024590
	977	954529	932574833	31.2569992	9.9227379	·001024590 ·001023541
	978	956484	935441352	31.2729915	9.9261222	*001025541 *001022495
	979	958441	938313739	31.2889757	9.9295042	·001022495
- 1	980	960400	941192000			
	981	962361	9441792000	31.3049517	9.9328839	•001020408
-	982	964324	946966168	31.3209195	9.9362613	•001019168
	993	966289	949862087	31·3368792 31·3528308	9.9396363	•001018330
	984	968256			9.9430092	*001017294
	985	970225	952763904	31.3687743	9.9463797	*001016260
	986		955671625	31.3847097	9.9497479	.001015228
	987	972196		31.4006369	9.9531138	•001014199
-	988	974169		31.4165561	9.9564775	•001013171
	200	19/0144	964430272	31.4324673	9.9598389	.001012146

		Z.110111	or Equation	Cobin, Equalis	IND CODE HOOF)
	Number.	Squares.	Cubes.	√Roots.	³ √ Roots.	Reciprocals.
	989	978121	967361669	31.4483704	9.9631981	.001011122
	990	980100	970299000	31.4642654	9.9665549	.001010101
	991	982081	973242271	31.4801525	9.9699055	.001009082
	992	984064	976191488	31.4960315	9.9732619	.001008065
	993	986049	979146657	31.5119025	9.9766120	.001007049
	994	988036	982107784	31.5277655	9.9799599	.001006036
	995	990025	985074875	31.5436206	9.9833055	.001005025
	996	992016	988047936	31.5594677	9.9866488	.001004016
ı	997	994009	991026973	31.5753068	9.9899900	.001003009
1	998	996004	994011992	31.5911380	9.9933289	.001002004
ı	999	998001	997002999	31.6069613	9.9966656	.001001001
ı	1000	1000000	1000000000	31.6227766	10.0000000	.001000000
	1001	1000201	1003003001	31.6385840	10.0033222	.0009990010
	1002	1004004	1006012008	31.6543866	10.0066622	.0009980040
	1003	1006009	1009027027	31.6701752	10.0099899	.0009970090
ı	1004	1008016	1012048064	31.6859590	10.0133155	.0009960159
	1005	1010025	1015075125	31.7017349	10.0166389	.0009950249
ı	1006	1010036	1018108216	31.7175030	10.0199601	.0009940358
ı	1007	1014049	1021147343	31.7332633	10.0232791	.0009930487
ı	1008	1016064	1024192512	31.7490157	10.0265958	.0009920635
ı	1009	1018081	1027243729	31.7647603	10.0299104	.0009910803
ı	1010	1020100	1030301000	31.7804972	10.0332228	.0009900990
Ĭ	1011	1020121	1033364331	31.7962262	10.0365330	.0009891197
i	1012	1024144	1036433728	31.8119474	10.0398410	.0009881423
ı	1013	1026169	1039509197	31.8276609	10.0431469	.0009871668
	1014	1028196	1042590744	31.8433666	10.0464506	.0009861933
	1015	1030225	1045678375	31.8590646	10.0497521	.0009852217
Ī	1016	10302256	1048772096	31.8747549	10.0530514	.0009842520
	1017	1034289	1051871913	31.8904374	10.0563485	.0009832842
	1018	1036324	1054977832	31.9061123	10.0596435	.0009823183
	1019	1038361	1058089859	31.9217794	10.0629364	.0009813543
	1020	1040400	1061208000	31.9374388	10.0662271	.0009803922
	1021	1042441	1064332261	31.9530906	10.0695156	.0009794319
	1022	1044484	1067462648	31.9687347	10.0728020	.0009784736
	1023	1046529	1070599167	31.9843712	10.0760863	.0009775171
	1024	1048576	1073741824	32.0000000	10.0793684	.0009765625
	1025	1050625	1076890625	32.0156212	10.0826484	0009756098
	1026	1052676	1080045576	32.0312348	10.0859262	.0009746589
	1027	1054729	1083206683	32.0468407	10.0892019	.0009737098
	1028	1056784	1086373952	32.0624391	10.0924755	.0009727626
	1029	1058841	1089547389	32.0780298	10.0957469	.0009718173
	1030	1060900	1092727000	32.0936131	10.0990163	.0009708738
	1031	1062961	1095912791	32.1091887	10.1022835	.0009699321
	1032	1065024	1099104768	32.1247568	10.1055487	.0009689922
	1033	1067089	1102302937	32.1403173	10.1088117	.0009680542
	1034	1069156	1105507304	32.1558704	10.1120726	.0009671180
	1035	1071225	1108717875	32.1714159	10.1153314	.0009661836
	1036	1073296	1111934656	32.1869539	10.1185882	.0009652510
	1037	1075369	1115157653	32.2024844	10.1218428	.0009643202
	1038	1077444	1118386872	32.2180074	10.1250953	.0009633911
	1039	1079521	1121622319	32.2335229	10.1283457	.0009624639
	1040		1124864000		10.1315941	.0009615385

The state of Equation () and the state of t					
Number.	Squares.	Cubes.	√Roots.	³ √ Roots.	Reciprocals.
1041	1083681	1128111921	32-2645316	10.1348403	.0009606148
1042	1085764	1131366088	32.2800248	10.1380845	.0009596929
1043	1087849	1134626507	32-2955105	10.1413266	.0009587738
1044	1089936	1137893184	32.3109888	10.1445667	.0009578544
1045	1092025	1141166125	32.3264598	10.1478047	.0009569378
1046	1094116	1144445336	32.3419233	10.1510406	*0009560229
1047	1096209	1147730823	32.3573794	10.1542744	*0009551098
1048	1098304	1151022592	32.3728281	10.1575062	*0009541985
1049	1100401	1154320649	32.3882695	10.1607359	*0009532888
1050	1102500	1157625000	32.4037035	10.1639636	*0009523810
1051	1104601	1160935651	32.4191301	10.1671893	*0009514748
1052	1106704	1164252608	32.4345495	10.1704129	.0009505703
1053	1108809	1167575877	32.4499615	10.1736344	*0009496676
1054	1110916	1170905464	32.4653662	10.1768539	*9009487666
1055	1113125	1174241375	32.4807635	10.1800714	*0009478673
1056	1115136	1177583616	32.4961536	10.1832868	*0009469697
1057	1117249	1180932193	32.5115364	10.1865002	*0009460738
1058	1119364	1184287112	32.5269119	10.1897116	.0009451796 .0009442871
1059	1121481	1187648379	32.5422802	10.1929209	0009433962
1060 1061	1123600	1191016000 1194389981	32·5576412 32·5729949	10·1961283 10·1993336	0009435902
1062	$1125721 \\ 1127844$	1194509981	32.5883415	10.2025369	.0009416196
1063	1127844	1201157047	32.6035807	10.2057382	.0009407338
1064	1132096	1204550144	32.6190129	10.2089375	.0009398496
1065	1134225	1207949625	32.6343377	10.2121347	.0009389671
1066	1136356	1211355496	32.6496554	10.2153300	.0009380863
1067	1138489	1214767763	32.6649659	10.2185233	.0009372071
1068	1140624	1218186432	32.6802693	10.2217146	.0009363296
1069	1142761	1221611509	32.6955654	10.2249039	.0009354537
1070	1144900	1225043000	32.7108544	10.2280912	*0009345794
1071	1147041	1228480911	32.7261363	10.2312766	.0009337068
1072	1149184	1231925248	32.7414111	10.2344599	*0009328358
1073	1151329	1235376017	32.7566787	10.2376413	*0009319664
1074	1153476	1238833224	32.7719392	10.2408207	.0009310987
1075	1155625	1242296875	32.7871926	10.2439981	*0009302326
1076	1157776	1245766976	32.8024398	10.2471735	*0009293680
1077	1159929	1249243533	32.8176782	10.2503470	*0009285051
1078	1162084	1252726552	32.8329103	10.2535186	*0009276438
1079	1164241	1256216039	32.8481354	10.2566881	*0009267841 *0009259259
1080 1081	1166400 1168561	1259712000 1263214441	32·8633535 32·8785644	10·2598557 10·2630213	0009259259
1081	1170724	1266723368	32.8937684	10.2661850	*0009242144
1082	1170724	1270238787	32.9089653	10.2693467	*0009242144
1084	1175056	1273760704	32.9241553	10.2725065	0009225092
1085	1177225	1277289125	32.9393382	10.2756644	*0009216590
1086	1179396	1280824056	32.9545141	10.2788203	*0009208103
1087	1181569	1284365503	32.9696830	10.2819743	.0009199632
1088	1183744	1287913472	32.9848450	10.2851264	*0009191176
1089	1185921	1291467969	33.00000000	10.2882765	*0009182736
1090	1188100	1295029000	33.0151480	10.2914247	.0009174312
1091	1190281	1298596571	33.0302891	10.2945709	*0009165903
1092	1192464	1302170688	33.0454233	10.2977153	*0009157509

2.4	211000	or Decamby	Conney Datonia.	ALID CODE ACCOUNT	
Number.	Squares.	Cubes.	√Roots.	₹ Roots.	Reciprocals.
1093	1194649	1305751357	33.0605505	10.3008577	.0009149131
1094	1196836	1309338584	33.0756708	10.3039982	.0009140768
1095	1199025	1312932375	33.0907842	10.3071368	.0009132420
1096	1201216	1316532736	33.1058907	10.3102735	.0009124008
1097	1203409	1320139673	33.1209903	10.3134083	.0009115770
1098	1205409	1323753192		10.3165411	.0009113770
1099	1207801		33.1360830	10.3196721	•0009107408
1100		1327373299	33.1511689		•0009099181
1101	1210000	1331000000	33.1662479	10.3228012	
1102	1212201	1334633301	33.1813200	10.3259284	*0009082652
	1214404	1338273208	33.1963853	10.3290537	*0009074410
1103 1104	1216609	1341919727	33.2114438	10.3321770	•0009066183
	1218816	1345572864	33.2266955	10.3352985	.0009057971
1105	1221025	1349232625	33.2415403	10.3384181	.0009049774
1106	1223236	1352899016	33.2565783	10.3415358	.0009041591
1107	1225449	1356572043	33.2716095	10.3446517	.0009033424
1108	1227664	1360251712	33.2866339	10.3477657	•0009025271
1109	1229881	1363938029	33.3016516	10.3508778	•0009017133
1110	1232100	1367631000	33.3166625	10.3539880	.0009009009
1111	1234321	1371330631	33.3316666	10.3570964	•0009000900
1112	1236544	1375036928	33.3466640	10.3602029	·0008992806
1113	1238769	1378749897	33.3616546	10.3633076	.0008984726
1114	1240996	1382469544	33.3766385	10.3664103	.0008976661
1115	1243225	1386195875	33.3916157	10.3695113	·0008968610
1116	1245456	1389928896	33.4065862	10.3726103	.0008960753
1117	1247689	1393668613	33.4215499	10.3757076	.0008952551
1118	1249924	1397415032	33.4365070	10.3788030	.0008944544
1119	1252161	1401168159	33.4514573	10.3818965	.0008936550
1120	1254400	1404928000	33.4664011	10.3849882	.0008928571
1121	1256641	1408694561	33.4813381	1043880781	.0008960607
1122	1258884	1412467848	33.4962684	10.3911661	.0008912656
1123	1261129	1416247867	33.5111921	10.3942527	.0008904720
1124	1263376	1420034624	33.5261092	10.3973366	.0008896797
1125	1265625	1423828125	33.5410196	10.4004192	·0008888889
1126	1267876	1427628376	33.5559234	10.403,4999	.0008880995
1127	1270129	1431435383	33.5708206	10.4065787	.0008873114
1128	1272384	1435249152	33.5857112	10.4096557	.0008865248
1129	1274641	1439069689	33.6005952	10.4127310	.0008857396
1130	1276900	1442897000	33.6154726	10.4158044	*0008849558
1131	1279161	1446731091	33.6303434	10.4188760	.0008841733
1132	1281424	1450571968	33.6452077	10.4219458	.0008833922
1133	1283689	1454419637	33.6600653	10.4250138	*0008826125
1134	1285956	1458274104	33.6749165	10.4280800	*0008818342
1135	1288225	1462135375	33.6897610	10.4311443	•0008810573
1136	1290496	1466003456	83.7045991	10.4342069	.0008802817
1137	1292769	1469878353	33.7174306	10.4372677	•0008795075
1138	1295044	1473760072	33.7340556	10.4403677	*0008787346
1139	1297321	1477648619	33.7490741	10.4433839	*0008779631
1140	1299600	1481544000	33.7638860	10.4464393	•0008771930
1141	1301881	1485446221	33.7786915	10.4494929	•0008764242
1142	1304164	1489355288	33.7934905	10.4525448	·0008756567 ·0008748906
1143 1144	1306449	1493271207	33·8082830 33·8230691	10.4555948 10.4586431	·0008748906 ·0008741259
1144	1308736	1497193984	35.0730081	10.4000431	0003741259

TABLE OF SQUARES, CUBES, SQUARE AND CUBE 10015. 45					
Number.	Squares.	Cubes.	√ Roots.	3 Roots.	Reciprocals.
1145	1311025	1501123625	33.8378486	10.4616896	.0008733624
1146	1313316	1505060136	33.8526218	10.4647343	*0008726003
1147	1315609	1509003523	33.8673884	10.4677773	•0008718396
1148	1317904	1512953792	33.8821487	10.4708158	.0008710801
1149	1320201	1516910949	33.8969025	10.4738579	*0008703220
1150	1322500	1520875000	33.9116499	10.4768955	*0008695652
1151	1324801	1524845951	33.9263909	10.4799314	*0008688097
1152	1327104	1528823808	33.9411255	10.4829656	*0008680556
1153	1329409	1532808577	33.9558537	10.4859980	-0008673027
1154	1331716	1536800264	33.9705755	10.4890286	•0008665511
1155	1334025	1540798875	33.9852910	10.4920575	•0008658009
1156	1336336	1544804416	34.0000000	10.4950847	.0008650519
1157	1338649	1548816893	34.0147027	10.4981101	*0008643042
1158	1340964	1552836312	34.0293990	10.5011337	•0008635579
1159	1343281	1556862679	34.0440890	10.5041556	.0008628128
1160	1345600	1560896000	34.0587727	10.5071757	•0008620690
1161	1347921	1564936281	34.0734501	10.5101942	.0008613244
1162	1350244	1568983528	34.0881211	10.5132109	.0008605852
1163	1352569	1573037749	34.0127858	10.5162259	•0008598452
1164	1354896	1577098944	34.1174442	10.5192391	•0008591065
1165	1357225	1581167125	34.1320963	10.5222506	•0008583691
1166	1359556	1585242296	34.1467422	10.5252604	•0008576329
1167	1361889	1589324463	34.1613817	10.5282685	.0008568980
1168	1364224	1593413632	34.1760150	10.5312749	.0008561644
1169	1366561	1597509809	34.1906420	10.5342795	•0008554320
1170	1368900	1601613000	34.2052627	10.5372825	•0008547009
1171	1371241	1605723211	34.2198773	10.5402837	•0008539710
1172	1373584	1609840448	34.2344855	10.5432832	•0008532423
1173	1375929	1613964717	34.2490875	10.5462810	*0008525149
1174	1378276	1618096024	34.2636834	10.5492771 10.5522715	·0008517888 ·0008510638
1175	1380625	1622234375	34.2782730		·0008503401
1176 1177	$1382976 \\ 1385329$	$\frac{1626379776}{1630532233}$	34.2928564	10.5552642 10.5582552	.0008496177
1178	1387684	1634691752	34·3074336 34·3220046	10.5612445	0008488964
1179	1390041	1638858339	34 32 200 40	10.5642322	.0008481764
1180	1392400	1643032000	34.3511281	10.5672181	.0008471576
1181	1394761	1647212741	34.3656805	10.5702024	.0008467401
1182	1397124	1651400568	34.3802268	10.5731849	.0008460237
1183	1399489	1655595487	34.3947670	10.5761658	.0008453085
1184	1401856	1659797504	34.4093011	10.5791449	.0008445946
1185	1404225	1664006625	34.4238289	10.5821225	.0008438819
1186	1406596	1668222856	34.4383507	10.5850983	.0008431703
1187	1408969	1672446203	34.4528663	10.5880725	.0008424600
1188	1411344	1676676672	34.4673759	10.5910450	.0008417508
1189	1413721	1680914629	34.4818793	10.5940158	.0008410429
1190	1416100	1685159000	34.4963766	10.5969850	.0008403361
1191	1418481	1689410871	34.5108678	10.5999525	.0008396306
1192	1420864	1693669888	34.5253530	10.6029184	.0008389262
1193	1423249	1697936057	34.5398321	10.6058826	.0008382320
1194	1425636	1702209384	34.5543051	10.6088451	•0008375209
1195	1428025	1706489875	34.5687720	10.6118060	.0008368201
1196	1430416	1710777536	34.5832329	10.6147652	.0008361204

-						
N	umber.	Squares.	Cubes.	√Roots.	Noots.	Reciprocals.
	1197	1432809	1715072373	34.5976879	10.6177228	.0008354219
	1198	1435204	1719374392	34.6121366	10.6206788	*0008347245
	1199	1437601	1723683599	34.6265794	10.6236331	*0008340284
	1200	1440000	1728000000	34.6410162	10.6265857	*0008333333
	1201	1442401	1732323601	34.6554469	1.0.6295367	*0008326395
	1202	1444804	1736654408	34.6698716	10.6324860	*0008319468
	1203	1447209	1740992427	34.6842904	10.6354338	*0008312552
	1204	1449616	1745337664	34.6987031	10.6383799	*0008305648
	1205	1452025	1749690125	34.7131099	10.6413244	*0008298755
	1206	1454436	1754049816	34.7275107	10.6442672	.0008293733
	1207	1456849	1758416743	34.7419055	10.6472085	*0008285004
	208	1459264	1762790912	34.7562944	10.6501480	*0008278146
	209	1461681	1767172329	34.7706773	10.6530860	.0008278146
	210	1464100	1771561000	34.7850543	10.6560223	.0008261299
	211	1466521	1775956931	34.7994253	10.6589570	
	212	1468944	1780360128	34.8137904	10.6618902	*0008257638
	213					*0008250825
	214	1471369	1784770597	34.8281495	10.6648217	*0008244023
	215	1473796	1789188344	34.8425028	10.6677516	*0008237232
	216	1476225	1793613375	34.8568501	10.6706799	*0008230453
		1478656	1798045696	34.8711915	10.6736066	*0008223684
	217	1481089	1802485313	34.8855271	10.6765317	*0008216927
	218	1483524	1806932232	34.8998567	10.6794552	*0008210181
	219	1485961	1811386459	34.9141805	10.6823771	*0008203445
	220	1488400	1815848000	34.9284984	10.6852973	*0008196721
	221	1490841	1820316861	34.9428104	10.6882160	.0008190008
	222	1493284	1824793048	34.9571166	10.6911331	*0008183306
	223	1495729	1829276567	34.9714169	10.6940486	*0008176615
	224	1498176	1833764247	34.9857114	10.6969625	*0008169935
	225	1500625	1838265625	35.00000000	10.6998748	*0008163265
	226	1503276	1842771176	35.0142828	10.7027855	*0008156607
	227	1505529	1847284083	35.0285598	10.7056947	*0008149959
	228	1507984	1851804352	35.0428309	10.7086023	*0008143322
	229	1510441	1856331989	35.0570963	10.7115083	.0008136696
	230	1512900	1860867000	35.0713558	10.7144127	*0008130081
	231	1515361	1865409391	35.0856096	10.7173155	.0008123477
	232	1517824	1869959168	35.0998575	10.7202168	*0008116883
	233	1520289	1874516337	35.1140997	10.7231165	*0008110300
		1522756	1879080904	35.1283361	10.7260146	.0008103728
		1525225	1883652875	35.1425568	10.7289112	*0008097166
			1888232256	35.1567917	10.7318062	.0008090615
		1530169	1892819053	35.1710108	10.7346997	.0008084074
			1897413272	35.1852242	10.7375916	.0008077544
		1535121	1902014919	35.1994318	10.7404819	.0008071025
			1906624000	35.2136337	10.7433707	.0008064516
			1911240521	35.2278299	10.7462579	.0008058018
			1915864488	35.2420204	10.7491436	.0008051530
			1920495907	35.2562051	10.7520277	*0008045052
			1925134784	35.2703842	10.7549103	*0008038585
			1929781125	35.2845575	10.7577913	0008032129
			1934434936	35.2987252	10.7606708	*0008025682
			1939096223	35.3128872	10.7635488	.0008019246
1	248	1557504	1943764992	35.3270435	10.7664252	·00080128 21

,		2.12.22	01 240411110,			,
i	Number.	Squares.	Cubes.	√Roots.	∛ Roots.	Reciprocals.
	1249	1560001	1948441249	35.3411941	10.7693001	.0008006405
ı	1250	1562500	1953125000	35.3553391	10.7721735	.0008000000
ı	1251	1565001	1957816251	35.3694784	10.7750453	.0007993605
ı	1252	1567504	1962515008	35.3836120	10.7779156	.0007987220
	1253	1570009	1967221277	35.3977400	10.7807843	.0007980846
	1254	1572516	1971935064	35.4118624	10.7836516	.0007974482
	1255	1575025	1976656375	35.4259792	10.7865173	.0007968127
1	1256	1577536	1981385216	35.4400903	10.7893815	.0007961783
	1257	1580049			10.7922441	
1	1258		1986121593	35.4541958		.0007955449
		1582564	1990865512	35.4682957	10.7951053	.0007949126
1	1259	1585081	1995616979	35.4823900	10.7979649	.0007942812
	1260	1587600	2000376000	35.4964787	10.8008230	.0007936508
1	1261	1590121	2005142581	35.5105618	10.8036797	.0007930214
1	1262	1592644	2009916728	35.5246393	10.8065348	.0007923930
	1263	1595166	2014698447	35.5387113	10.8093884	.0007917656
ı	1264	1597696	2019487744	35.5527777	10.8122404	.0007911392
١	1265	1600225	2024284625	35.5668385	10.8150909	.0007905138
1	1266	1602756	2029089096	35.5808937	10.8179400	.0007898894
١	1267	1605289	2033901163	35.5949434	10.8207876	.0007892660
1	1268	1607824	2038720832	35.6089876	10.8236336	.0007886435
1	1269	1610361	2043548109	35.6230262	10.8264782	.0007880221
	1270	1612900	2048383000	35.6370593	10.8293213	*0007874016
	1271	1615441	2053225511	35.6510869	10.8321629	.0007867821
1	1272	1617984	2058075648	35.6651090	10.8350030	.0007861635
	1273	1620529	2062933417	35.6791255	10.8378416	.0007855460
	1274	1623076	2067798824	35.6931366	10.8406788	.0007849294
1	1275	1625625	2072671875	35.7071421	10.8435144	.0007843137
1	1276	1628176	2077552576	35.7211422	10.8463485	.0007836991
1	1277	1630729	2082440933	35.7351367	10.8491812	.0007830854
1	1278	1633284	2087336952	35.7491258	10.8520125	.0007824726
1	1279	1635841	2092240639	35.7631095	10.8548422	·0007818608
1	1280	1638400	2097152000	35·777087 6	10.8576704	.0007812500
1	1281	1640961	2102071841	35.7910603	10.8604972	.0007806401
1	1282	1643524	2106997768	35.805027 6	10.8633225	.0007800312
1	1283	1646089	2111932187	35.8189894	10.8661454	.0007794232
١	1284	1648656	2116874304	35.8329457	10.8689687	.0007788162
-	1285	1651225	2121824125	35.8468966	10.8717897	.0007782101
	1286	1653796	2126781656	35.8608421	10.8746091	.0007776050
1	1287	1656369	2131746903	35.8747822	10.8774271	.0007770008
1	1288	1658944	2136719872	35.8887169	10.8802436	.0007763975
1	1289	1661521	2141700569	35.9026461	10.8830587	.0007757952
1	1290	1664100	2146689000	35.9165699	10.8858723	.0007751938
1	1291	1666681	2151685171	35.9304884	10.8886845	.0007745933
1	1292	1669264	2156689088	35.9444015	10.8914952	.0007739938
1	1293	1671849	2161700757	35.9583092	10.8943044	.0007733952
	1294	1674436	2166720184	35.9722115	10.8971123	.0007727975
1	1295	1677025	2171747375	35.9861084	10.8999186	.0007722008
	1296	1679616	2176782336	36.00000000	10.9027235	.0007716049
	1297	1682209	2181825073	36.0138862	10.9055269	.0007710100
	1293	1684804	2186875592	36.0277671	10.9083290	.0007704160
-	1299	1687401	2191933899	36.0416426	10.9111296	.0007698229
	1300	1690000	2197000000	36.0555128	10.9139287	.0007692308

_						
	Number.	Squares.	Cubes.	√ Roots.	³ √ Roots.	Reciprocals.
1	1301	1692601	2202073901	36.0693776	10.9167265	•0007686395
-	1302	1695204	2207155608	36.0832371	10.9195228	.0007680492
	1303	1697809	2212245127	36.0970913	10.9223177	.0007674579
1	1304	1700416	2217342464	36.1109402	10.9251111	.0007668712
1	1305	1703025	2222447625	36.1247837	10.9279031	.0007662835
	1306	1795636	2227560616	36.1386220	10.9306937	.0007656968
	1307	1708249	2232681443	36.1524550	10.9334829	.0007651109
	1308	1710864	2237810112	36.1662826	10.9362706	.0007645260
	1309	1713481	2242946629	36.1801050	10.9390569	.0007639419
	1310	1716100	2248091000	36.1939221	10.9418418	.0007633588
	1311	1718721	2253243231	36.2077340	10.9446253	.0007627765
	131 2	1721344	2258403328	36.2215406	10.9475074	.0007621951
1	1313	1723969	2263571297	36.2353419	10.9501880	.0007616446
	1314	1726596	2268747144	36.2491379	10.9529673	.0007610350
1	1315	1729225	2273930875	36.2626287	10.9557451	.0007604563
1	1316	1731856	2279122496	36.2767143	10.9585215	.0007598784
	1317	1734489	2284322013	36.2904246	10.9612965	.0007593014
-	1318	1737124	2289529432	36.3042697	10.9640701	.0007587253
-	1319	1739761	2294744759	36.3180396	10.9668423	.0007581501
1	1320	1742400	2 299968000	36.3318042	10.9696131	.0007575758
	1321	1745041	2305199161	36.3455637	10.9723825	.0007570023
1	1322	1747684	2310438248	36.3593179	10.9751505	.0007564297
1	1323	1750329	2315685267	36.3730670	10.9779171	.0007558579
	1324	1752976	2320940224	36:3868108	10.9806823	.0007552870
1	1325	1755625	2326203125	36.4005494	10.9834462	.0007547170
	1326	1758276	2331473976	36.4142829	10.9862086	.0007541478
1	1327	1760929	2336752783	36.4280112	10.9889696	*0007535795
	1328 1329	1763584 1766241	2342039552 2347334289	36·4417343 36·4554523	10.9917293 10.9944876	·0007530120 ·0007524454
1	1330	1768900	2352637000	36.4691650	10.9972445	0007524454
	1331	1771561	2357947691	36.4828727	11.0000000	.0007513148
1	1332	1774224	2363266368	36.4965752	11.0027541	.0007507508
1	1333	1776889	2368593037	36.5102725	11.0055069	.0007501875
	1334	1779556	2373927704	36.5239647	11.0082583	.0007496252
-	1335	1782225	2379270375	36.5376518	11.0110082	.0007490637
1	1336	1784896	2384621056	36.5513388	11:0137569	.0007485030
1	1337	1787569	2389979753	36.5650106	11.0165041	.0007479432
1	1338	1790244	2395346472	36.5786823	11.0192500	.0007473842
1	1339	1792921	2400721219	36.5923489	11.0219945	.0007468260
1	1340	1795600	2406104000	36.6060104	11.0247377	.0007462687
١	1341	1798281	2411494821	36.6196668	11.0274795	.0007457122
1	1342	1800964	2416893688	36.6333181	11.0302199	.0007451565
1	1343	1803649	2422300607	36.6469144	11.0329590	.0007446016
1	1344	1806336	2427715584	36.6606056	11.0356967	.00074404761
1	1345	1809025	2433138625	36.6742416	11.0384330	.0007434944
	1346	1811716	2438569736	36.6878726	11.0411680	.0007429421
1	1347	1814409	2444008923	36.7014986	11.0439017	.0007423905
	1348	1817104	2449156192	36.7151195	11.0466339	.0007418398
	1349	1819801	2454911549	36.7287353	11.0493649	.0007412898
	1350	1822500	2460375000	36.7423461	11.0520945	.0007407407
	1351	1825201	2465846551	36.7559519	11.0548227	.0007401924
1	1352	1827904	2471326208	36.7695526	11.0575497	.0007396450
1						

	LABLE	or patinitio,	CUBES, DUVANE 2		
Number.	Squares.	Cubes.	√ Roots.	∛ Roots.	Reciprocals.
1353	1330609	2476813977	36.7831483	11.0602752	.0007390983
1354	1833316	2482309864	36-7967390	11.0629994	•0007385524
1355	1836025	2487813875	36.8103246	11.0657222	.0007380074
1356	1838736	2493326016	36.8239053	11.0684437	.0007374631
1357	1841449	2498846293	36.8374809	11.0711639	.0007369197
1358	1844164	2504374712	36.8510515	11.0738828	.0007363770
1359	1846881	2509911279	36.8646172	11.0766003	·0007358352
1360	1849600	2515456000	36.8781778	11.0793165	.0007352941
1361	1852321	2521008881	36-8917335	11.0820314	.0007347539
1362	1855044	2526569928	36.9052842	11.0847449	.0007342144
1363	1857769	2 532139147	36.9188299	11.0874571	.0007336757
1364	1860496	2537716544	36.9323706	11.0901679	•0007331378
1365	1863225	2543302125	36.9459064	11.0928775	.0007326007
1366	1865956	2548895896	36.9594372	11.0955857	.0007320644
1367	1868689	2554497863	36.9729631	11.0982926	•0007315289
1368	1871424	2560108032	36.9864840	11.1009982	.0007309942
1369	1874161	2565726409	37.0000000	11.1037025	•0007304602
1370	1876900	2571353000	37.0135110	11.1064054	.0007299270
1371	1879641	2576987811	37.0270172	11.1091070	•0007293946
1372	1882384	2582630848	37.0405184	11.1118073	•0007288630
1373	1885129	2588282117	37.0540146	11.1145064	•0007283321
1374	1887876	2593941624	37.0675060	11.1172041	.0007278020
1375	1890625	2599609375	37.0899924	11.1199004	.0007272727
1376	1893376	2605285376	37.0944740	11.1225955	•0007267442
1377	1896129 1898884	2610969633	37.1079506	11.1252893	•0007262164
1378 1379	1901641	2616662152 2622362939	37.1214224	11.1279817	*0007256894 *0007251632
1379	1901041	2622362939	37·1348893 37·1483512	11·1306729 11·1333628	*0007251632
1381	1907161	2633789341	37.1483312	11.1360514	*0007240377
1382	1909924	2639514968	37.1752606	11.1387386	.0007231130
1383	1912689	2645248887	37.1887079	11.1414246	.0007230658
1384	1915456	2650991104	37.2021505	11.1441093	·0007225434
1385	1918225	2656741625	37.2155881	11.1467926	.0007220217
1386	1920996	2662500456	37.2290209	11.1494747	0007215007
1387	1923769	2668267603	37.2424489	11.1521555	.0007209805
1388	1926544	2674043072	37.2558720	11.1548350	.0007204611
1389	1929321	2679826869	37.2692903	11.1575133	.0007199424
1390	1932100	2685619000	37.2827037	11.1601903	.0007194245
1391	1934881	2691419471	37.2961124	11.1628659	.0007189073
1392	1937664	2697228288	37.3095162	11.1655403	.0007183908
1393	1940449	2703045457	37.3229152	11.1682134	.0007178751
1394	1943236	2708870984	37.3363094	11.1708852	.0007173601
1395	1946025	2714704875	37.3496988	11.1735558	.0007168459
1396	1948816	2720547136	37.3630834	11.1762250	.0007163324
1397	1951609	2726397773	37.3764632	11.1788930	·0007158196
1398	1954404	2732256792	37.3898382	11.1815598	.0007153076
1399	1957201	2738124199	37.4032084	11.1842252	.0007147963
1400	1960000	2744000000	37.4165738	11.1868894	.0007142857
1401	1962801	2749884201	37.4299345	11.1895523	•0007137759
1402	1965604	2755776808	37.4432904	11.1922139	•0007132668
1403	1968409	2761677827	37.4566416	11.1948743	*0007127584
1404	1971216	2767587264	37.4699880	11.1975334	.0007122507

	00	TABLE	or Equanes,	CUBES, EQUANA 2	THE CODE TOOL	J.
		Squares.	Cubes.	√Roots.	Noots.	Reciprocals.
	1405	1974025	2773505123	37.4833296	11.2001913	.0007117438
8	1406	1976836	2779431416	37.4966665	11.2028479	.0007112376
ı	1407	1979649	2785366143	37.5099987	11.2055032	.0007107321
ı	1408	1982464	2791309312	37.5233261	11.2081573	.0007102273
ı	1409	1985281	2797260929	37.5366487	11.2108101	.0007097232
ı	1410	1988100	2803221000	37.5499667	11.2134617	.0007092199
ı	1411	1990921	2809189531	37.5632799	11.2161120	.0007087172
ı	1412	1993744	2815166528	37.5765885	11.2187611	.0007082153
ı	1413	1996569	2821151997	37.5898922	11.2214089	•0007077141
ı	1414	1999396	2827145944	37.6031913	11.2240054	•0007072136
ı	1415	2002225	2833148375	37.6164857	11.2267007	•0007067138
	1416 1417	2005056	2839159296	37.6297754	11.2293448	.0007062147
ı	1413	2007889	2845178713	37.6430604	11.2319876	•0007057163
ı	1419	2010724 2013561	2851206632	37.6563407	11.2346292	·0007052186 ·0007047216
ı	1420	2013561	2857243059 2863288000	37.6696164 37.6828874	11·2372696 11·2399087	·0007047216 ·0007042254
ı	1421	2010400	2869341461	37.6961536	11.2425465	.0007042254
ı	1422	2022084	2875403448	37.7094153	11.2451831	.0007037293
1	1423	2024929	2881473967	37.7226722	11.2478185	.0007027407
ı	1424	2027776	2887553024	37.7359245	11.2504527	.0007022472
1	1425	2030625	2893640625	37.7491722	11.2530856	.0007017544
١	1426	2033476	2899736776	37.7624152	11.2557173	.0007012623
1	1427	2036329	2905841483	37.7756535	11.2583478	.0007007708
ı	1428	2039184	2911954752	37.7888873	11.2609770	.0007002801
١	1429	2042041	2918076589	37.8021163	11.2636050	.0006997901
ı	1430	2044900	2924207000	37.8153408	11.2662318	.0006993007
ı	1431	2047761	2930345991	37.8285606	11.2688573	.0006988120
ı	1432	2050624	2936493568	37.8417759	11.2714816	.0006983240
1	1433	2053489	2942649737	37.8549864	11.2741047	0006978367
ł	1434	2056356	2948814504	37.8681924	11.2767266	0006973501
١	1435	2059225	2954987875	37.8813938	11.2793472	.0006968641
ı	1436	2062096	2961169856	37.8945906	11.2819666	.0006963788
١	1437	2064969	2967360453	37.9077828	11.2845849	.0006958942
١	1438 1439	2067844	2973559672	37.9209704	11.2872019	.0006954103
۱	1440	2070721	2979767519	37.9341538	11.2898177	.0006949270
I	1441	2073600 2076481	2985984000 2992209121	37·9473319 37·9605058	11·2924323 11·2950457	·0006944444 ·0006939625
1	1442	2079364	3098442888	37.9736751	11.2976579	.0006934813
1	1443	2082249	3004685307	37.9868398	11.3002688	.0006930007
Į	1444	2085136	3010936384	38.00000000	11.3028786	.0006925208
1	1445	2088025	3017196125	38.0131556	11.3054871	.0006920415
1	1446	2080916	3023464536	38.0263067	11.3080945	.0006915629
l	1447	2093809	3029741623	38.0394532	11.3107006	.0006910850
I	1448	2096704	3036027392	38.0525952	11.3133056	.0006906078
1	1449	2099601	3042321849	38.0657326	11.3159094	.0006901312
1	1450	2102500	3048625000	38.0788655	11.3185119	.0006896552
1	1451	2105401	3054936851	38.0919939	11.3211132	.0006891799
1	1452	2108304	3061257408	38.1051178	11.3237134	·0006887052
1	1453	2111209	3067586777	38.1182371	11.3263124	·0006882312
1	1454	2114116	3073924664	38.1313519	11.3289102	.0006877579
-	1455	2117025	3080271375	38.1444622	11.3315067	.0006872852
1	1456	2119936	3086626816	38.1575681	11.3341022	.0006868132
1						

	TADU	or begoinning	CUBES, DQUARE 2	AND COME ROOM	5. 51
Number.	Squares.	Cubes.	√ Roots.	∛ Roots.	Reciprocals.
1457	2122849	3092990993	38.1706693	11.3366964	*0006863412
1458	2125764	3099363912	38.1837662	11.3392894	*0006858711
1459	2128681	3105745579	38.1968585	11.3418813	*0006854010
1460	2131600	3112136000	38.2099463	11.3444719	*0006849315
1461	2134521	3118535181	38.2230297	11.3470614	0006844627
1462	2137444	3124943128	38.2361085	11.3496497	.0006839945
1463	2140369	3131359847	38.2491829	11.3522368	*0006835270
1464	2143296	3137785344	38.2622529	11.3548227	.0006830601
1465	2146225	3144219625	38.2753184	11:3574075	*0006825939
1466 1467	2149156	3150662696 3157114563	38.2883794	11·3599911 11·3625735	*0006821282 *0006816633
1468	2152089 2155024	3163575232	38·3014360 38·3144881	11.3651547	*0006811989
1469	2157961	3170044709	38.3275358	11.3677347	*0006807352
1470	2160900	3176523000	38.3405790	11.3703136	0006802721
1471	2163841	3183010111	38-3536178	11.3728914	*0006798097
1472	2166784	3189506048	38.3666522	11.3754679	0006793478
1473	2169729	3196010817	38.3796821	11.3780433	*0006788866
1474	2172676	3202524424	38.3927076	11.3806175	*0006784261
1475	2175625	3209046875	38.4057287	11.3831906	*0006779661
1476	2178576	3215578176	38.4187454	11.3857625	*0006775068
1477	2181529	3222118333	38.4317577	11.3883332	*0006770481
1478	2184484	3228667352	38.4447656	11.3909028	*0006765900
1479	2187441	3235225239	38.4577691	11.3934712	*0006761325
1480	2190400	3241792000	38.4707681	11.3960384	*0006756757
1481	2193361	3248367641	38.4837627	11.3986045	0006752194
1482	2196324	3254952168	38.4967530	11.4011695	*0006747638
1483	2199289	3261545587	38.5097390	11.4037332	*0006743088
1484	2202256	3268147904	38.5227206	11.4062959	0006738544
1485 1486	2205225 2208196	3274759125	38.5356977	11.4088574	*0006734007 *0006729474
1487	2211169	3281379256 3288008303	38·5486705 38·5616389	11·4114177 11·4139769	0006724950
1488	2214144	3294646272	38.5746030	11.4165349	0006720430
1489	2217121	3301293169	38.5875627	11.4190918	*0006715917
1490	2220100	3307949000	38.6005181	11.4206476	0006711409
1491	2223081	3314613771	38.6134691	11.4242022	*0006706908
1492	2226004	3321287488	38.6264158	11.4267556	0006702413
1493	2229049	3327970157	38-6393582	11.4293079	*0006697924
1494	2232036	3334661784	38.6522962	11.4318591	0006693440
1495	2235025	3341362375	38.6652299	11.4344092	*0006688963
1496	2238016	3348071936	38.6781593	11.4369581	*0006684492
1497	2241009	3354790473	38.6910843	11.4395059	*0006680027
1498	2244004	3361517992	38.7040050	11.4420525	*0006675567
1499	2247001	3368254499	38.7169214	11.4445980	*0006671114
1500	2250000	3375000000	38.7298335	11.4471424	*0006666667
1501 1502	2253001	3381754501	38.7427412	11.4496857	*0006662225
1502	2256004 2259009	3388518008 3395290527	38·7556447 38·7685439	11·4522278 11·4547688	*0006657790 *0006553360
1504	2262016	3402072064	38.7814389	11.4547688	*0006648936
1505	2265025	3408862625	38.7943294	11.4598476	*0006644518
1506	2268036	3415662216	38.8072158	11.4623850	*0006640106
1507	2271049	3422470843	38.8200978	11.4649215	*0006635700
1508		3429288512	38.8329757	11.4674568	.0006631300
1					

	94	LADIII	or Equation	Conso, Debatta	AND CODE 11001	J.
	Number.	10.4	Cubes.	√Roots.	% Roots.	Reciprocals.
	1509	2277081	3436115229	38.8458491	11.4699911	•0006626905
	1510	2280100	3442951000	38.8587184	11.4725242	•0006622517
	1511	2283121	3449795831	38.8715834	11.4750562	.0006618134
1	1512	2286144	3456649728	38.8844442	11.4775871	•0006613757
	1513	2289169	3463512697	38.8973006	11.4801169	.0006609385
ı	1514	2292196	3470384744	38.9101529	11.4826455	.0006605020
ı	1515	2295225	3477265875	38.9230009	11.4851731	•0006600660
ı	1516	2298256	3484156096	38.9358447	11.4876995	•0006596306
	1517	2301289	3491055413	33.9486841	11.4902249	•0006591958
	1518	2304324	3597963832	38.9615194	11.4927491	•0006587615
	1519	2307361	3504881359	38.9743505	11.4952722	•0006583278
	1520	2310400	3511808000	38.9871774	11.4977942	•0006578947
	1521	2313441	3518743761	39.0000000	11.5003151	.0006574622
	1522	2316484	3525688648	39.0128184	11.5028348	.0006570302
	1523	2319529	3532642667	39.0256326	11.5053535	•0006565988
ı	1524	2322576	3539605824	39.0384426	11.5078711	.0006561680
ı	1525	2325625	3546578125	39.0512483	11.5103876	•0006557377
1	1526	2328676	3553559576	39.0640499	11.5129030	•0006553080
1	1527	2331729	3567549552	39.0768473	11.5154173	.0006548788
1	1528	2334784	3560558183	39.0896406	11.5179305	.0006544503
1	1529	2337841	3574558889	39.1024296	11.5204425	.0006540222
١	1530	2340900	3581577000	39.1152144	11.5229535	•0006535948
1	1531	2343961	3588604291	39.1279951	11.5254634	.0006531679
1	1532	2347024	3595640768	39.1407716	11.5279722	•0006527415
1	1533	2350089	3602686437	39.1535439	11.5304799	•0006523157
ı	1534	2353156	3609741304	39.1663120	11.5329865	•0006518905
1	1535	2356225	3616805375	39.1790760	11.5354920	•0006514658
1	1536	2359256	3623878656	39.1918359	11.5379965	·0006510417
1	1537	2362369	3630961153	39.2045915	11.5404998	.0006506181
ı	1538	2365444	3638052872	39.2173431	11.5430021	*0006501951
١	1539	2368521	3645153819	39.2300905	11.5455033	*0006497726
1	1540	2371600	3652264000	39.2428337	11.5480034	·0006493506
١	1541	2374681	3657983421	39.2555728	11.5505025	·0006489293
ı	1542	2377764	3666512088	39.2683078	11.5530004	.0006485084
١	1543	2380849	3673650007	39.2810387	11.5554972	.0006480881
1	1544	2383936	3680797184	39.2937654	11.5579931	.0006476684
١	1545	2387025	3687953625	39.3064880	11.5604878	.0006472492
1	1546	2390116	3695119336	39.3192065	11.5629815	.0006468305
1	1547	2393209	3702294323	39.3319208	11.5654740	.0006464124
١	1548	2396304	3709478592	39.3446311	11.5679655	.0006459948
ı	1549	2399401	3716672149	39.3573373	11.5704559	.0006455778
١	1550	2402500	3723875000	39.3700394	11.5729453	.0006451613
ı		2405601	3731087151	39.3827373	11.5754336	•0006447453
1	1552	2408704	3738308608	39.3954312	11.5779208	.0006443299
1	1553		3745539377	39.4081210	11.5804069	•0006439150
1			3752779464	39.4208067	11.5828919	.0006435006
1			3760028875	39.4334883	11.5853759	·0006430868 ·0006426735
1			3767287616	39.4461658	11.5878588	0006426735
1			3774555693 3781833112	39·4588393 39·4715087	11·5903407 11·5928215	0006422608
1			3789119879	39.4841740	11.5928215	0006418483
1			3796416000	39.4968353	11.5977799	·0006414308
1	1000	2±33000	0190410000	99.#909999 I	11.0011199	0000410230

Number	Squares.	Cubes.	√Roots.	³ √ Roots.	Reciprocals.
1561	-	3803721481	39.5094925		_
1562	2436721 2439844	3811036328	39.5221457	11 6002576 11 6027342	·0006406150 ·0006402049
1563		3818360547	39.5347948		·0006402049 ·0006397953
1564	2442969 2446096	3825641444	39.5474399	11.6052097 11.6076841	.0006393862
1565	2449225	3833037125	39.5600809		.0006389776
1566	2449223	3840389496	39.5727179	11.6101575 11.6126299	*0006385696
1567	2455489	3847751263	39.5853508		*0006381621
1568		3855123432	39.5979797	11.6151012	
1569	$2458624 \\ 2461761$	3862503009	39.6106046	11:6175715	·0006377551 ·0006373486
1570		3862503009	39.6232255	11.6200407 11.6225088	.0006369427
	2464900		39.6358424		
1571	2468041	3877292411	39.6484552	11.6249759	.0006365372
1572	2471184	3884701248	39.6610640	11.6274420	.0006361323
1573	2474329	3892119157 3899547224	39.6736688	11.6299070	.0006357279
1574	2477476	399547224	39.6862696	11.6323710	*0006353240
1575	2480625 2483776	3914430976	39.6988665	11.6348339	.0006349206
1576	2486929	3914430976	39.7114593	11.6372957	·0006345178 ·0006341154
1577		3921887033	39.7240481	11.6397566	
1578	2490084 2493241		39.7366329	11.6422164	.0006337136
1579		3936827539	39.7492138	11.6446751	.0006333122
1580	2496400	3944312000	39.7492138	11.6471329	.0006329114
1581	2499561 2502724	3951805941 3959309368	39.7743636	11.6495895	.0006325111
1582	2502724	3956822287	39.7869325	11.6520452	.0006321113
1583	2509056	3974344704	39.7994976	11.6544998	·0006317119 ·0006313131
1584	2512225	3981876625	39.8120585	11.6569534 11.6594059	
1585 1586	2515396	3989418056	39.8246155	11.6618574	·0006309148 ·0006305170
1587	2518569	3996969003	39.8371686	11.6643079	.0006303170
1588	2513309	4004529472	39.8497177		.0006301197
1589	2524921	4012099469	39.8622628	11.6667574 11.6692058	0006297229
1590	2524321	4014679000	39.8748040	11.6716532	.0006289308
1590	2531281	4027268071	39.8873413	11.6740996	.0006285355
1591	2534464	4034866688	39.8998747	11.6765449	.0006283333
	2537649	4042474857	39.9124041		
1593 1594	2540836	4050092584	39-9249295	11.6789892 11.6814325	·0006277464 ·0006273526
1594	2544025	4057719875	39.9374511	11.6838748	.0006269592
1596	2547216	4065356736	39.9499687	11.6863161	.0006265664
1597	2550409	4073003173	39.9624824	11.6887563	.0006261741
1598	2553604	4080659192	39-9749922	11.6911955	0006257822
1599	2556801	4088324799	39.9874980	11.6936337	.0006257822
1600	2560000	4096000000	40-0000000	11.6960709	.0006250000
1000	1 = 000000	200000000	20 000000	11 0000100	0000200000

To find the Square Root of Numbers exceeding 1600,

 $\begin{array}{lll} Example \ 4. & \ \ Require \ the \ Square \ Root \ of \ 34698. & \ In \ the \ column \ of \ Squares \\ you \ will \ find, & +34969 = 187^2, & +34969 = 187^2, & +34969 = 180^2, \\ -34698 = 186^2, +... & +34969 = 180^2, & +$

$$+34969 = 187^{2},$$

 $-34698 = 186^{2},+...$
 271 divided by

$$-34969 = 187$$
 $-34596 = 180$
 $373 = 000$

373 = 000.727

 $\sqrt{34698} = 186.727$ nearly.

When the number contains Integer and Decimals.

Example 5. Required the Square Root of 7845'45? In the column of Squares you will find.

When the number of ciphers in the integer is even, the number of ciphers taken in the Square column must also be even; but when the number of ciphers in the integer is odd, the number taken in the Square column must also be odd.

To find the Cube Root of Numbers exceeding 1600.

Example 6. Required the Cube Root of 5694958? In the Cube column you will find,

$$\begin{array}{lll} +5735339 = 1793 & +5735339 = 1793 \\ -\underline{5694958} = 1783 & -\underline{5639752} = 1783 \\ \hline 40381 \ divided \ by & \underline{95587} = \text{00} \cdot \text{4225}, \\ & & & & & & & \\ \hline & & & & & & \\ \hline \end{array}$$

When the number contains Integer and Decimals.

Example 7. Required the Cube Root of 4186.586? In the column of Cubes you will find,

$$\begin{array}{c} +4251 \cdot 528 = 16 \cdot 2^3 \\ -4186 \cdot 585 = 16 \cdot 1^3 \cdots \\ \hline 64942 & 4251 \cdot 528 = 16 \cdot 2^3 \\ \hline 78247 = 00 \cdot 083 \\ \sqrt[3]{4186 \cdot 566} = 16 \cdot 183 \text{ nearly}, \end{array}$$

66

66

The following notice must be particularly attended to, when extracting Cube Root of numbers with decimals.

2 ciphers in the integer must be 5, 8, or 11 ciphers in the Cube column. 3 66 3, 6, or 9 66 66 66 66 66 4 4, or 7 66 66 66 66 66 5 5, or 8

66

6, or 9 66 6. 66 66 7. or 10 Example 8. Required the Cube Root of 61358.75? In the Cube column and 8 ciphers you will find,

To find the Fourth Root.

Rule. Extract the Square Root of the number as before described, and of that root extract the Square Root again, then the last is the Fourth root of the number.

Example 9. Required the fourth root of 2469781?

66

66

6

$$\sqrt[4]{2469781} = \sqrt{\sqrt{2469781}} = \sqrt{1571.4463} = 39.6467$$
, the answer.

To find the Sixth Root.

Rule. Find the Cube Root of the number as before described, and of that root extract the Cube Root again, and then the last is the Sixth root of the number.

NYSTROM'S CALCULATOR.

ALL calculations in this POCKET BOOK have been computed by this Instrument. It consists of a silvered brass plate on which are fixed two moveable arms, extending from the centre to the periphery. On the plate are engraved a number of curved lines in such form and divisions, that by their intersection with the arms, numbers are read and problems solved.

The arrangement for trigonometrical calculations is such that it is not necessary to notice sine, cosine, tan, &c., &c., operating only by the angles themselves expressed in degrees and minutes. This makes trigonometrical solutions so easy, that any one who understands Simple Arithmetic, will be able to solve trigonometrical questions.

Calculations are performed by it almost instantly, no matter how complicated they may be, while there is nothing intricate or difficult in its use. The author of this book, who is the inventor, has thoroughly tested its practical utility. Without this instrument not one-tenth of the calculations and tables which he is continually bringing out, could be produced.

ADVERTISEMENT.

THE attention of Engineers, Ship builders, and all whose business requires frequent and extensive calculations, is called to Nystrom's Calculator. *Price* \$20. To be obtained with description by applying to John W. Nystrom, Philadelbhia.

Communications will be promptly attended to.

This Calculator received the First Premium at the Franklin Institute Exhibition.

WM. J. YOUNG,

Mathematical, Optical, and Calculating Machine Manufacturer, 43 N. 7th St., Philadelphia.

LOGARITHMS.

A Log arithm is an exponent of a power to which 10 must be raised to give a certain number, which will be understood by this

The unit of the logarithm is called the characteristic or index, and the decimal part is called the mantissa, the sum of the characteristic and mantissa is the Logarithm. The invariable number 10 is the base for the system of Logarithms.

It is not necessary that the base should be 10, it can be any number, but all the tables of logarithms now in common use, are calculated with 10 to the base.

The nature of logarithms in connection with their numbers are such, that the index of the logarithm is always one less than the number of figures in the number, (when the base of the logarithm is 10,) as,

$$\begin{array}{c} \text{index } 5012 = 3 \\ \text{mantissa } 5012 = 0.7 \\ \text{logarithm } 5012 = \overline{3.7.} \end{array}$$

Let 10 be raised to any power x, and

the power of
$$10^x = a$$
 or $\log a = x$,
the power of $10^x = b$ or $\log b = z$.

Let the product of ab=c and the quotient $\frac{a}{b}=c$.

Any number represented by the letters a, b, c, or a, can be a sower of 10, which exponent is the logarithm for the number. Logarithms are calculated for every number with three figures in the accompanying Table, by which any operation is Multiplication, Division, Involution and Evolution can be performed by simple Addition or Subtraction of Logarithms. Tables of Logarithms are commonly more extensive, and calculated for any number of four or five figures, which would occupy too much room in this book; but by the proportional parts, the logarithm can be found by this Table, to four or five figures. The index of the logarithms do not appear in the Table, only the mantissa. It is easily remembered that the index is one less, than the number of figures in the number; then when the number is only one figure, the index is 0; and when the number is a fraction, the index is negative.

When the logarithm is to be found for a fraction, we commonly have the fraction expressed in a decimal; and then the negative index is equal to the number of ciphers before the first figure, and commonly marked after the mantissa; thus explained in whole numbers and fractions:

In the accompanying Table of Logarithms, for the trigonometrical lines the negative index is marked thus,

 $\log \sin 35^{\circ} 40' = \log 0.58306 = 1.76572.$

To find the Logarithm of Numbers.

Example 1. Find the logarithm of 45.

To 45 in the first column of the Table, answers 65321 in the next column, which is the mantissa; index = 1 because 45 is two figures.

 $\log.45 = 1.65321$, the answer.

Example 2. Find the logarithm of 768?

Opposite 76 in the first column, answers 88536 in the column marked 8 on the top or bottom. Index = 2 because 768 is three figures. $\log.768 = 2.88536.$

Then,

Example 3. Find the Logarithm of 6846?

 $\log_{64 \times 0.6} = 3.83505$ Proportional part,

 $\log_{\bullet} 6846 = 3.835434$ the answer.

To find the number for a given Logarithm.

Example 1. What number answers to the logarithm 3.87157? In the Table you will find in the column of logarithms, that

 $\log.7440 = 3.87157.$ Example 2. What number answers to the logarithm 3.801884?

Given logarithm

3.801884, 3.801400 = log. 6330, Subt. nearest table log. - 7,

6914841 - -Divided by proportional part, 6337 the req. numb.

Multiplication by Logarithms.

Rule. Add together the logarithms of the factors, and the sum is the logarithm of the product.

Example 1. Multiply 425 by 48.

 $\log \cdot 425 = 2.62839$ To Add 48 = 1.68124log. The product. $\log_{10} 20400 = 4.30963$

Example 2. Multiply 79600 by 0.435.

 $\log.79600 = 4.90091,$ То Add. $\log 0.435 = .63848 - 1,$ $\log 34690 = 4.53939$. The product

Division by Logarithms.

Rule. From the logarithm of the dividend subtract the logarithm of the divisor, and the difference is the logarithm of the quotient.

Example 1. Divide 43800 by 368.

From $\log.43800 = 4.64147$ log. 368 = 2.56584, Subtract 119 = 2.07563. The quotient log,

Example 2. Divide 36 by 0.625,

From 36 = 1.55636 $\log \cdot 0.625 = .79588-1.$ Subtract, $\log 57.6 = 1.76048.$ The quotient,

A negative index follows an opposite operation of its mantissa, as if the mantissa is subtracted, add the negative index, and vice versa.

Envolution by Logarithms.

Rulc. Multiply the logarithm of the number by its exponent, and the product is the logarithm of the power of the number.

Involution by Logarithms.

Rule. Divide the logarithm of the number by the index of the root, and the quotient is the logarithm of the root of the number.

LOGARITHM OF NUMBERS, FROM

O TO 1000.

No.	0	1	2	3	4	5	6	7	8	9	Prop.
0	0	00000	30103	47712	60206	69897	77815	84510	90309	95424	
10	00000	00432				02118			03342	03742	415
11	04139	04532	04921	05307	05690	06069	06445	06818	07188	07554	379
12	07918	08278				09691			10721	11059	349
13	11394	11727	12057	12385	12710	13033	13353	13672	13987	14301	323
14	14612	14921	15228	15533	15836	16136	16435	16731	17026	17318	300
15	17609	17897	18184	18469	18752	19033	19312	19590	19865	20139	281
16	20412	20682	20951	21218	21484	21748	22010	22271	22530	22788	264
17	23044	23299	23552	23804	24054	24303	24551	24797	25042	25285	249
18	25527	25767	26007	26245	26481	26717	26951	27184	27415	27646	236
19	27875	28103	28330	28555	28780	29003	29225	29446	29666	29885	223
20	30103	30319	30535	30749	30963	31175	31386	31597	31806	32014	212
21	32221	32428	32633	32838	33041	33243	33445	33646	33845	34044	202
	34242	34439				35218			35793	35983	194
23	36172					37106			37657	37839	185
	38021	38201				38916			39449	39619	177
25	39794	39967	40140	40312	40483	40654	40824	40993	41162	41330	171
26						42324			42813	42975	164
27	43136	43296	43456	43616	43775	43933	44090	44248	44404	44560	158
28	44715	14870	45024	45178	45331	45484	45636	45788	45939	46089	153
29	46239	46389				46982			47421	47567	148
30	47712	47856	48000	48144	48287	48430	48572	48713	48855	48995	143
31	49136	49276	49415	19554	49693	49831	49968	50105	50242	50379	138
32	50515	50650				51188			51587	51719	134
33	51851	51982	52113	52244	52374	52504	52633	52763	52891	53020	130
34	53147	53275				53781			54157	54282	126
35	54406	54530	54654	54777	54900	55022	55145	55266	55388	55509	122
36	55630	55750				56229			56584	56702	119
37	56820	56937	57054	57170	57287	57403	57518	57634	57749	57863	116
38	57978	58092	58206	58319	58433	58546	58658	58771	58883	58995	113
39	59106	59217	59328	59439	59549	59659	59769	59879	59988	60097	110
40	60206	60314	60422	60530	60638	60745	60852	60959	61066	61172	107
41	61278	61384	61489	61595	61700	61804	61909	62013	62117	62221	104
42	62324	62428				32838			63144	63245	102
43	63346	63447	63548	63648	63749	63848	63948	64048	64147	64246	99
44	64345	64443	64542	64640	64738	64836	64933	65030	65127	65224	98
45	65321	65417	65513	65609	65705	65801	65896	65991	66086	66181	96
46	66275	66370	66464	66558	66651	66745	66838	66931	67024	67117	94
47	67209	67302	67394	67486	67577	67669	67760	67851	67942	68033	92
48	68124	68214				68574			68842	68930	90
49	69019	69108	69196	69284	69372	69460	69548	69635	69722	69810	88
50	69897	69983	70070	70156	70243	70329	70415	70500	70586	70671	86
51	70757	70842	70927	71011	71096	71180	71265	71349	71433	71516	84
52	71600	71683				72015			72263	72345	82
53	72427	72509				72835			73078	73158	81.
54	73239	73319				73639			73878	73957	80
55	74036	74115	74193	74272	74351	74429	74507	74585	74663	74771	78
No.	0	1	2	3	4	5	6	7	8	9	Prop-
	4			h ——						L	4

No.	0	1	2	3	4	5	6	7.	8	9	Prop.
56	74818	74896	74973	75050	75127	75204	75281	75358	75434	75511	77
57	75587	75663	75739	75815	75891	75966	76042	76117	76192		75
	76342	76417	76492	76566	76641	76715	76789	76863	76937		74
	77085	77158		77305	77378		77524	77597		77742	73
1	77815			78031	78103		78247	78318	78390		72
	78533	78604		78746	78816	78887	78958	79028		79169	71
	79239	79309		79448		79588	79657	79726		79865	70
	79934			80140	80208		80345	80413	80482		69 68
	80618 81291		81424	S0S21 S1491	80888	80956	\$1023 \$1690	\$1090 \$1756	S1157 S1822		67
	81954			82151	\$1557 \$2216	$81624 \\ 82282$	82347	82412	82477		66
	82607		82736	82801	82866	32232	82994	83058		83187	65
	83250	83314		S3442	83505	83569	83632	83695	83758		64
	83884		84010	84073	84136	34198	84260	84323		84447	63
	84509	84571		84695	84751	84818	\$4880	84941	85003	85064	62
71	85125	85187	85248	85309	85369	35430	85491	85551	85612	85672	61
	85733			85913		86033	86093	86153		86272	60
	86332	83991		86510	86569	86628	86687	86746		86864	59
	86923		87040	87098	87157	87215	87273	87332		87448	
	87506		87621	87679	87737	87794	87852	87906		88024	57
	88081		88195	88252	88309	88366	88422	88479		88592	
	88649		88761	88818	88874	38930	88986	89042		89153	
	89209 89762	89255	\$9320 \$9872	\$9376 \$9927	89431 89982	39487 90036	89542 90091	89597 90145		89707 90254	55 54
	90309		90417	90471	90525	90050	90633	90687		90234	54
81		90902	1	91009	91062	91115		91222		91328	1
	91381		91487	91540		91645	91169 91698	91750		91328	
	91907		92012	92064		92168	92220	92272		92376	
	92427		92531	92582		92685	92737	92788		92890	
	92941		93044	93095		93196	93247	93298		93399	51
86	93449	93500	93550	93601	93651	93701	93751	93802	93852	93902	
	93951		94051	94101	94151	94200	94250	94300	94349	94398	
	94448		94546	94596	94645			94792		94890	49
	94939	94987		95085	95133		95230	95279		95376	48
1	95424		95520	95568	95616	ł	95712	95760		95856	48
	95984			56047	96094	96142	96189	96236		96331	48
	96378 96848		96473	96520	96567	96614	96661	96708	96754		47
	96848	96895	96941 97405	96988 97451	97034 97497	$97081 \\ 97543$	97127 97589	97174 97635		$97266 \\ 97726$	56
	97772		97863	97909	97954	93000	97589	98091	98136		56
	98227	98272		98362	98407	98452	98497	98542		98632	55
	98677	98721	98766	98811	98855	98900	98945	98989		99078	55
	99122		99211	99255	99299	99343	99387	99431		99519	54
99	99563	99607	99651	99694	99738	99782	99825	99869	99913	99956	54
No	0	1	2	3	4	5	6	7	8	9	Prop.
1											

Examples. Find the Logarithm of

Log. 3 ? - - - 0.47712, the ans Log. 54 ? - - - 1.78239, "
Log. 867 ? - . . - 2.93802, " 0.47712, the answer.

Des 0' 10' 20' 30' 40' 50' 60'										
Deg			20'	30'	40'	50'	60'			
0	0:00000	3:46372	3:26475	3:94084	2:06577	2:16268	2:24185	89		
1	2:24185	2:30879	2:36677	2:41791	2:46366	2:50504	2:54281.	88		
2	2:54281	2:57756	2:60973	2:63968	2:66768	2:69399	2:71880	87		
3	2:71880	2:74225	2:76451	2:78567	2:80585	2:82513	2:84358	86		
4	2:84358	2:86128	2:87828	2:89464	2:91040	2:92560	2:94029	85		
5 6	2:94029	2:95449	2:96824	2:98157	2:99449	1:00704	1:01923	84		
7	1:01923	1:03108	1:04262	1:05385	1:06480	1:07548	1:08589	83		
8	1:08589	1:09606	1:10599	1:11569	1:12518	1:13447	1:14355	82		
9	1:14355	1:15249	1:16116	1:16970	1:17807	1:18628	1:19433	81		
10	1:23967	1:20223	1:20999	1:21760	1:22509	1:23244	1:23967	80		
1 1		1:24677	1:25376	1:26063	1:26739	1:27404	1:28059	79		
11	1:28059	1:28704	1:29339	1:29965	1:30581	1:31189	1:31787	78		
12	1:31787	1:32378	1:32959	1:33533	1:34099	1:34657	1:35208	77		
13	1:35208	1:35752	1:36288	1:36818	1:37341	1:37857	1:38367	76		
14	1:38367	1:38871	1:39368	1:39860	1:40345	1:40825	1:41299	75		
15	1:41299	1:41768	1:42231	1:42689	1:43142	1:43590	1:44033	74		
16 17	1:44033	1:44472	1:44905	1:45334	1:45758	1:46178	1:46593	73		
18	1:46593	1:47004	1:47411	1:47814	1:48212	1:48607	1:48998	72		
19	1:48998	1:49385	1:49768	1:50147	1:50523	1:50895	1:51264	71		
20	1:53405	1:51629 1:53750	1:51991	1:52349	1:52704	1:53056	1:53405	70		
1 1			1:54093	1:54432	1:54768	1:55102	1:55432	69		
21	1:55432	1:55760	1:56085	1:56407	1:56726	1:57043	1:57357	68		
22	1:57357	1:57668	1:57977	1:58284	1:58587	1:58889	1:59187	67		
23	1:59187	1:59484	1:59778	1:60070	1:60359	1:60646	1:60931	66		
	1:60931	1:61214	1:61494	1:61772	1:62048	1:62322	1:62594	65		
	1:62594	1:62864	1:63132	1:63398	1:63662	1:63924	1:64184	64		
26 27	1:65704	1:64442 1:65951	1:64698	1:64952	1:65205	1:65455	1:65704	63		
28	1:67160	1:67397	1:66197 1:67632	1:66440	1:66682	1:66922	1:67160	62		
29	1:68557	1:68784	1:69009	1:67866	1:68098	1:68328	1:68557	61		
30	1:69897	1:70115	1:70331	1:69233	1:69456	1:69677	1:69897	60		
1				1:70546	1:70760	1:70773	1:71183	59		
31	1:71183	1:71393	1:71601	1:71808	1:72014	1:72218	1:72421	58		
32	1:72421	1:72622	1:72822	1:73021	1:73219	1:73415	1:73610	57		
33	1:73610	1:73804	1:73997	1:74188	1:74379	1:74568	1:74756	56		
34 35	1:74756	1:74942	1:75128	1:75312	1:75496	1:75678	1:75859	55		
36	1:75859	1:76039	1:76217 1:77267	1:76395	1:76572	1:76747	1:76921	54		
37	1:76921	1:77095 1:78113	1:77207	1:77438	1:77609 1:78608	1:77778 1:78772	1:77946 1:78934	53 52		
38	1:77940	1:78113	1:79255	1:78444	1:78608	1:79730	1:78934	51		
39	1:79887	1:80042	1:80197	1:79413	1:79575	1:80655	1:80806	50		
40	1:80806	1:80956	1:81106	1:81254	1:81401	1:81548	1:81694	49		
41			1:81983	-						
42	1:81694	1:81839	1:81983	1:82126	1:82268	1:82410	1:82551 1:83378	48		
43	1:82551	1:82691	1:82830	1:82968	1:83105	1:83242 1:84045	1:83378	47		
44	1:83378 1:84177	1:83513	1:83047	1:83781	1:83914	1:84821	1:84177	45		
45	1:84177	1:84307	1:84437	1:84300	1:84694	1:84821	1:84948	45		
40		1		1	1			Deg.		
	60'	50'	40'	20'	20'	10'	0'	208		
1			_							

LOGARITHM COSINE.

The negative index is noted by two points, and must always follow an opposite operation to that of the mantissa. If the mantissa is added, subtract the index, and vice versa.

	DUIARTHIAS SINE.										
Dog.	0'	10'	20'	30'	40'	50'	60'				
46	1:85693	1:85815	1:85936	1:86056	1:86175	1:86294	1:86412	43			
47	1:86412	1:86530	1:86647	1:86763	1:86878	1:86993	1:87107	42			
48	1:87107	1:87220	1:87333	1:87445	1:87557	1:87667	1:87778	41			
49	1:87778	1:87887	1:87996	1:88104	1:88212	1:88319	1:88425	40			
50	1:88425	1:88531	1:88636	1:88740	1:88844	1:88947	1:89050	39			
51	1:89050	1:89152	1:89253	1:89354	1:89454	1:89554	1:89653	38			
52	1:89653	1:89751	1:89849	1:89946	1:90043	1:90139	1:90234	37			
53	1:90234	1:90329	1:90424	1:90517	1:90611	1:90703	1:90795	36			
54	1:90795	1:90887	1:90978	1:91068	1:91158	1:91247	1:91336	35			
55	1:91336	1:91424	1:91512	1:94599	1:91685	1:91771	1:91857	34			
56	1:91857	1:91942	1:92026	1:92110	1:92194	1:92276	1:92359	33			
57	1:92359	1:92440	1:92522	1:92602	1:92683	1:92762	1:92842	32			
58	1:92842	1:92920	1:92998	1:93076	1:93153	1:93230	1:93306	31			
59	1:95306	1:93382	1:93457	1:93532	1:93606	1:93679	1:93753	30			
60	1:93753	1:93825	1:93898	1:93969	1:94040	1:9 1111	1:94181	29			
61	1:94181	1:94251	1:94321	1:94389	1:94458	1:94526	1:94593	28			
62	1:94593	1:94660	1:94726	1:94792	1:94858	1:94923	1:94988	27			
63	1:94988	1:95052	1:95115	1:95179	1:95241	1:95304	1:95366	26			
64	1:95366	1:95427		1:95548	1:95608	1:95668	1:95727	25			
65	1:95727	1:95786	1:95844	1:95902	1:95959	1:96016	1:96073	24			
66	1:96073	1:96129	1:96184		1:96294	1:96348	1:96402	23			
67	1:96402	1:96456	1:96509	1:96561	1:96613	1:96665	1:96716	22			
68	1:96716		1:96817		1:96917	1:96966	1:97015	21 20			
69 70	1:97015 1:97298	1:97063	1:97111	1:97158 1:97434	1:97205	1:97252 1:97523	1:97298 1:97567	19			
		1:97344			1:97479	8					
71	1:97567	1:97610	1:97653	1:97695	1:97737	1:97779	1:97820	18			
72	1:97820		1:97901	1:97942	1:97981	1:98020	1:98059	17			
73	1:98059	1:98098	1:98136	1:98173	1:98210	1:98247	1:98284	16			
74 75	1:98284	1:98320	1:98355 1:98561	1:98391 1:98594	1:98425 1:98626	1:98460 1:98658	1:98494 1:98690	15 14			
76	1:98494	1:98528	1:98752	1:98783	1:98813	1:98843	1:98872	13			
77	1:98872	1:98721 1:98901	1:98930	1:98958	1:98986	1:99013	1:99040	12			
78		1:99067	1:99093	1:99119	1:99144	1:99169	1:99194	11			
	1:99194	1:99219	1:99243	1:99266	1:99289	1:99312	1:99335	10			
80	1:99335	1:99357	1:99378	1:99400	1:99421	1:99441	1:99462	9			
81	1:99462	1:99481	1:99501	1:99520	1:99539	1:99557	1:99575	8			
82	1:99575	1:99592	1:99610	1:99626	1:99643	1:99659	1:99675	7			
83	1:99675	1:99690	1:99705	1:99719	1:99734	1:99748	1:99761	6			
84	1:99761	1:99774			1:99811	1:99823	1:99834	5			
85	1:99834	1:99845	1:99855	1:99865	1:99875	1:99885	1:99894	4			
86	1:99894	1:99902	1:99911	1:99918	1:99926	1:99933	1:99940	3			
87	1:99940	1:99946	1:99952	1:99958	1:99964	1:99968	1:99973	2			
88	1:99973	1:99977	1:99981	1:99985	1:99988	1:99991	1:99993	1			
89	1:99993	1:99995	1:99997	1:99998	1:99999	1:99999	1:99999	0			
	60'	50.	40'	30'	20'	10'	0'	Deg.			
			<u>'</u>								

LOGARITHM COSINE.

```
Examples. Find the Logarithms,
Logscine 35° 40'? - - - = 1:76572, the answer.
Logscosine 18° 20'? - - - - = 1:97737, "
```

	1		201				201	
Dog	0'	10'	20'	30'	40'	50'	60'	Deg.
0	3:00000	3:46372	3:76476	3:94085	2:06580	2:16272	2:24192	89
1	2:24192	2:30888	2:36689	2:41806	2:46384	2:50526	2:54308	88
2	2:54308	2:57787	2:61009	2:64009	2:66816	2:69452	2:71939	87
3	2:71939	2:74292	2:76524	2:78648	2:80674	2:82610	2:84464	86
4	2:84464	2:86243	2:87952	2:89598	2:91184	2:92715	2:94195	85
5	2:94195	2:95626	2:97013	2:98357	2:99662	1:00929	1:02162	84
6	1:02162	1:03360	1:04528	1:05665	1:06775	1:07857	1:08914	83
7	1:08914	1:09946	1:10955	1:11942	1:12908	1:13854	1:14780	82
8	1:14780	1:15687	1:16577	1:17449	1:18305	1:19146	1:19971	81
9	1:19971	1:20781	1:21578	1:22360	1:23130	1:23887	1:24631	80
10	1:24631	1:25364	1:26086	1:26796	1:27496	1:28185	1:28863	79
11	1:28865	1:29534	1:30195	1:30846	1:31488	1:32122	1:32747	78
12	1:32747	1:33364	1:33973	1:34575	1:35169	1:35756	1:36336	77
13	1:36336	1:36909	1:37475	1:38035	1:38588	1:39136	1:39677	76
14	1:39677	1:40212	1:40741	1:41265	1:41784	1:42297	1:42805	75
15	1:42805	1:43308	1:43805	1:44298	1:44787	1:45270	1:45749	74
16	1:45749	1:46224	1:46694	1:47160	1:47622	1:48080	1:48553	73
17	1:48533	1:48983	1:49429	1:49872	1:50310	1:50746	1:51177	72
18	1:51177	1:51605	1:52030	1:52452	1:52870	1:53285	1:53697	71
19	1:53697	1:54106	1:54511	1:54914	1:55314	1:55712	1:56106	70
20	1:56106	1:56498	1:56887	1:57273	1:57657	1:58038	1:58417	69
21	1:58417	1:58794	1:59168	1:59539	1:59909	1:60276	1:60641	68
22	1:60641	1:61003	1:61364	1:61722	1:62078	1:62433	1:62785	67
23	1:62785	1:63135	1:63483	1:63830	1:64174	1:64517	1:64858	
24	1:64858	1:65197	1:65534	1.65870	1:66204	1:66536	1:66867	65
25	1:66867	1:67196	1:67523	1:67849	1:68174	1:68496	1:68818	64
26	1:68818	1:69138	1:69456	1:69773	1:70089	1:70403	1:70716	63
27	1:70716	1:71028	1:71338	1:71647	1:71955	1:72262	1:72567	62
28	1:72567	1:72871	1:73174	1:73476	1:73777	1:74076	1:74375	61
29	1:74374	1:74672	1:74968 1:7 6 725	1:75264 1:77014	1:75558	1:75851 1:77590	1:76143 1:77877	60
30	1:76143	1:76435						59
31	1:77877	1:78163	1:78447	1:78731	1:79015	1:79293	1:79578	58
32	1:79578	1:79859	1:80139	1:80418	1:80697	1:80974		57
33	1:81251	1:81527	1:81803	1:82078	1:82352	1:82625	1:82898	56
34	1:82898	1:83170	1:83442	1:83713	1:83983	1:84253	1:84522	55
35	1:84522	1:84791	1:85059	1:85326	1:85593	1:85860	1:86126	54
36	1:86126	1:86391	1:86656	1:86920	1:87184	1:87448	1:87711 1:89281	53
37	1:87711 1:89281	1:87974 1:89541	1:88236 1:89801	1:88498 1:90060	1:88759 1:90319	1:89020 1:90578	1:90836	52 51
38	1:99281	1.91095	1:91352	1:91610	1:90319	1:90578	1:92381	50
39	1:92381	1:92637	1:91332	1:93149	1:93405	1:93661	1:93916	49
40	1:93916	1:94171	1:94497	1:94680	1:94935	1:95189	1:95443	48
41	1:93916	1:94171	1:94497	1:94080	1:94935	1:95189	1:95445	48
42	1:95443	1:95097	1:95926	1:90205	1:90438	1:98712	1:98483	46
	1:98485	1:98736	1:98989	1:97723	1:99494	1:98230	1:00000	45
44	i i							1
Deg.	60'	50'	40'	30'	20'	10′	0'	Deg.

LOGARITHM COTANGENT.

The negative index is noted by two points, and must always follow an opposite operation to that of the mantissa. If the mantissa is added, subtract the index, and vice versa.

ZEVOLDŽIAMO KILIVIAVE								
Deg	0'	10'	20'	30'	40'	50'	60	
45	0.00000	0.00252	0.00505	0.00758	0.01010	0.01263	0.01516	44
46	0.01516	0.01769	0.02022	0.02275	0.02528	0.02781	0.03034	43
47	0.03034	0.03287	0.03541	0.03794	0.04048	0.04302	0.04556	42
48	0.04556	0.04810	0.05064	0.05319	0.05573	0.05828	0.06083	41
49	0.06083	0.06339	0.06594	0.06850	0.07106	0.07362	0.07618	40
50	0.07618	0.07875	0.08132	0.08389	0.08647	0.08904	0.09163	39
51	0.09163	0.09421	0.09680	0.09939	0.10199	0.10458	0.10716	38
52	0.10719	0.10979	0.11240	0.11502	0.11763	0.12025	0.12288	37
53	0.12288	0.12551	0.12815	0.13079	0.13343	0.13608	0.13873	36
54	0.13873	0.14139	0.14406	0.14673	0.14940	0.15208	0.15477	35
55	0.15477	0.15746	0.16016	0.16286	0.16557	0.16829	0.17101	34
56	0.17101	0.17374	0.17647	0.17921	0.18196	0.18472	0.18748	33
57	0.18748	0.19025	0.19302	0.19581	0.19860	0.20140	0.20421	32
58	0.20421	0.20702	0.20984	0.21268	0.21552	0.21836	0.22122	31
59	0.22122	0.22409	0.22696	0.22985	0.23274	0.23564	0.23856	30
60	0.23856	0.24148	0.24441	0.24735	0.25031	0.25327	0.25624	29
61	0.25624	0.25923	0.26222	0.26523	0.26825	0.27128	0.27432	28
62	0.27432	0.27737	0.28044	0.28352	0.28661	0.28971	0.29283	27
63	0.29283	0.29596	0.29910	0.30226	0.30543	0.30861	0.31181	26
64	0.31181	0.31503	0.31826	0.32150	0.32476	0.32803	0.33132	25
65	0.33132	0.33463	0.33795	0.34129	0.34465	0.34802	0.35141	24
66	0.35141	0.35482	0.35825	0.36169	0.36516	0.36864	0.37214	23
67	0.37214	0.37567	0.37921	0.38277	0.38635	0.38996	0.39359	22
68	0.39359	0.39723	0.40090	0.40460	0.40831	0.41205	0.41582	21
69	0.41582	0.41961	0.42342	0.42726	0.43112	0.43501	0.43893	20
70	0.43893	0.44287	0.44685	0.45085	0.45488	0.45893	0.46302	19
71	0.46302	0.46714	0.47129	0.47548	0.47969	0.48394	0.48822	18
72	0.48822	0.49254	0.49689	0.50127	0.50570	0.51016	0.51466	17
73	0.51466	0.51919	0.52377	0.52839	0.53305	0.53775	0.54250	16
74	0.54250	0.54729	0.55213	0.55701	0.56194	0.56692	0.57194	15
75	0.57194	0.57702	0.58215	0.58734	0.59258	0.59787	0.60322	14
76	0.60322	0.60864	0.61411	0.61964	0.62524	0.63090	0.63663	13
77	0.63663	0.64243	0.64830	0.65424	0.66026	0.66635	0.67252	12
78	0.67252	0.67877	0.68511	0.69153	0.69804	0.70465	0.71134	11
79	0.71134	0.71814	0.72503	0.73203	0.73913	0.74635	0.75368	10
80	0.75368	0.76112	0.76869	0.77639	0.78422	0.79218	0.80028	9
81	0.80028	0.80853	0.81694	0.82550	0.83422	0.84312	0.85219	8
82	0.85219	0.86145	0.87091	0.88057	0.89044	0.90053	0.91085	7
83	0.91085	0.92142	0.93224	0.94334	0.95471	0.96639	0.97838	6
84	0.97838	0.99070	1.00337	1.01642	0.02986	1.04373	1.05804	5
85	1.05804	1.07284	1.08815	1.10401	1.12047	1.13756	1.15535	4
86	1.15535	1.17389	1.19325	1.21351	1.23475	1.25707	1.28060	3
87	1.28060	1.30547	1.33184	1.35990	1.38990	1.42212	1.45691	2
88	1.45691	1.49473	1.53615	1.58193	1.63310	1.69111	1.75807	1
89	1.75807	1.83727		2.05914	1.23523	2.53627	0.00000	0
	60′	50'	40'	30'	20'	10'	0'	Deg
			T	a				

LOGARITHM COTANGENT.

Example. Find the Logarithms,
Log.tan. 36° 40'? - - - - = 1:87185, the answer.
Log.tan. 58° 50'? - - - - = 0:21836, "

ARITHMETICAL PROGRESSION.

Arithmetical Progression is a series of numbers, as 2, 4, 6, 8, 10, 12, &c., or 18, 15, 12, 9, 6, 3, in which every successive term is increased or diminished by a constant number.

Letters will denote.

a = the first term of the series.

b =any other term whose number from a is n.

n = number of terms within a and b.

 δ = the difference between the terms. S = the sum of all the terms,

In the series, 2, 5, 8, 11, a = 2, b = 11, n = 4, $\delta = 3$, and S = 26.

When the series is decreasing, take the first term = b and the last term

The accompanying Table contains all the formulas or questions in Arithmetical Progressions, and the nature of the question will tell which formula is to be used.

Formulas for Arithmetical Progressions.

$$a = b - \delta (n-1), \qquad 1, \qquad \delta = \frac{b-a}{n-1}, \qquad 9, \qquad \delta = \frac{b-a}{n-1}, \qquad 10, \qquad \delta = \frac{b-a}{2S-a-b}, \qquad 10, \qquad \delta = \frac{(b+a)(b-a)}{2S-a-b}, \qquad 10, \qquad \delta = \frac{2(S-an)}{n(n-1)}, \qquad 11, \qquad \delta = \frac{2(S-an)}{n(n-1)}, \qquad 11, \qquad \delta = \frac{2(bn-S)}{n(n-1)}, \qquad 12, \qquad \delta = \frac{2(bn-S)}{n(n-1)}, \qquad 12, \qquad \delta = \frac{a+b}{2}, \qquad 13, \qquad \delta = \frac{a+b}{2}, \qquad 13, \qquad \delta = \frac{a+b}{2}, \qquad 14, \qquad \delta = \frac{a+b}{2}, \qquad 14, \qquad \delta = n\left[\frac{b-a}{2}, & -1\right] \qquad 15, \qquad \delta = n\left[\frac{b-b}{2}, & -1\right] \qquad 16, \qquad \delta = \frac{\delta}{2} \pm \sqrt{\left(\frac{\delta}{2} - \frac{\delta}{2}\right)^2 + 2\delta S}, \qquad 17, \qquad \delta = \frac{\delta}{2} \pm \sqrt{\left(\frac{1}{2} - \frac{\delta}{\delta}\right)^2 + 2\delta S}, \qquad 19, \qquad n = \frac{1}{2} + \frac{b}{\delta} \pm \sqrt{\left(\frac{1}{2} + \frac{b}{\delta}\right)^2 - \frac{2S}{\delta}}, \qquad 20,$$

20,

Example 1. A man was engaged to dig a well at one dollar (\$1) for the first foot of the depth of the well, \$1.54 for the second, and \$4 cents more per every successive foot in depth, until he reached the water, which was found at a depth of 25 feet. How much money is due to the man?

This will be answered by the formula 15, in which a=1, d=0.84, and n=25, then the sum,

$$S = 25 \left[1 + \frac{0.84}{2} (25 - 1) \right] = $277 \text{ the answer.}$$

Example 2. A Propeller ship which is to run between Philadelphia and Charleston, cost \$116500, of which the company agreed to pay on account \$14075 at her first trip to Charleston; and per every successive trip, they paid \$650 less than the former. How many trips must the vessel make until she is

fully paid? This will be answered by the formula 20, in which b=\$14075, d=650, and

S = 116500.

$$n = \frac{1}{2} + \frac{14075}{650} - \sqrt{\left(\frac{14075}{650} + \frac{1}{2}\right)^2 - \frac{2 \times 116500}{650}} = 10.6 \text{ or } 11 \text{ trips.}$$

Arithmetical Progressions of a Higher Order.

Arithmetical Progressions are of the first order, when the difference δ is a constant number, but when the difference δ progresses itself with a constant number, the Progression is of the second order.

When the difference δ progresses in a second order, the Progression is of the third order, &c., &c., and is thus explained:

1, 2, 3, 4, 5, 6,
$$n$$
, - . Arith. Prog., first order.
1, 3, 6, 10, 15, 21, . . . $\frac{n(n+1)}{2}$ 2d. order.

1, 4, 10, 20, 35, 56, . .
$$\frac{n(n+1)(n+2)}{2\times 3}$$
, 3d. order.

1, 5, 15, 35, 70, 126, .
$$\frac{n(n+1)(n+2)(n+3)}{2\times 3\times 4}$$
, . . . 4th. order.

Here you will discover that the sum of n terms in one order, is equal to the same nth term in the next higher order. Arithmetical Progressions of the first. second, and third orders, are applied to

PILES OF BALLS AND SHELLS.

Triangular Piling.

Example 1. A complete triangular pile of balls has n=12 balls in each side. Require how many balls in the base, and how many in the whole pile?

In the base, •
$$=\frac{12(12+1)}{2}=78$$
 balls, • • 2d. order.

Whole pile, • • =
$$\frac{12(12+1)(12+2)}{2\times3}$$
 = 364 balls, • • 3d. order.

1, 5, 14, 30, 55, 91, • •
$$\frac{n(n+1)(2n+1)}{2\times 3}$$
, • • • 3d. order.

E

[See Examples 2 and 3 on page 67.]

GEOMETRICAL PROGRESSION.

Geometrical Progression is a series of numbers, as 2:4:8:16:32:&c., or 729:243:81:27:9: &c., in which every successive term is multiplied or divided by a constant factor.

Letters will denote.

a = the first term of the series.

b =any other term whose number from a is n.

n = number of terms within a and b. r = ratio, or the factor by which the terms are multiplied or divided.

S = Sum of the terms.

In the series 1:3:9:27: a=1, b=27, n=4, r=3, S=40.

The accompanying Table contains all the formulas or questions in Geometrical Progressions. The nature of the question will tell which formula is to be used.

Formulas for Geometrical Progressions.

$a = \frac{b}{r^n - 1}, \cdot \cdot 1,$ $a = S - r(S - b), \cdot 2,$	$r = \sqrt[n-1]{\frac{\overline{b}}{a}}, \cdot \cdot 7,$ $r = \frac{S - a}{S - b}, \cdot \cdot 8,$
$a = S \frac{r-1}{r^n-1}, \qquad \qquad 3,$	$ar^n + S - rS - a = 0, 9,$
$b=ar^{n-1}, \cdot \cdot 4,$	$S = \frac{br - a}{r - 1}, \cdot \cdot \cdot 10,$
$b=S-\frac{S-a}{r}, \cdot 5,$	$S=\frac{a(r^n-1)}{r-1}, \cdot \cdot 11,$
$b = S\left(\frac{r-1}{r^n-1}\right)r^{n-1}, \qquad 6,$	$S = \frac{b (r^n - 1)}{(r - 1)r^{n-1}}, \circ 12,$
$n = 1 + \frac{\log b - \log a}{\log x}$, 13,
$n = 1 + \frac{\log b - 1}{\log (S + a) - 1}$	$\frac{\log a}{\log (S-b)}$, • • • 14,
$n = \frac{\log \lceil a + S(r - 1) \rceil}{\log r}$] — log.a, • • • 15,
$n = 1 + \frac{\log b - \log \log \log n}{\log n}$	$\frac{r-S(r-1)}{r}$, 16,
$S = \frac{b \sqrt[n-1]{b} - a \sqrt[n-1]{a}}{\sqrt[n-1]{b} - \sqrt[n-1]{a}}$	a , · · · · · · · · · · · · · · · · · · ·

Example 1. Required the 10th term in the Geometrical Progression 4:12:36...,? Given a = 4, n = 10, and r = 3. We have,

 $b = ar^{n-1} = 4 \times 3^9 = 78732$, the tenth term.

Example 2. Required the sum of the 10 terms in the preceding example?

Formula 11,
$$S = \frac{a(r-1)}{r-1} = \frac{4(310-1)}{2} = 118096$$
, the sum.

Example 3. Insert 6 proportional terms between 3 and 384? Given a = 3, b = 384, and n = 6+2 = 8.

Formula 7.

$$r = \sqrt[n-1]{\frac{b}{a}} = \sqrt[7]{\frac{384}{3}} = 2,$$

then

Example 4. A man had 16 twenty dollar gold pieces, which he agreed to exchange for copper in such a way, that he gets one cent on the first \$20, two on the second, four on the third, and eight on the fourth, &c., &c.; until the sixteen \$20 pieces were covered. How many cents will come on the sixteenth gold piece, and what will be the whole amount of copper on the gold?

In the progression 1:2:4:8: &c., we have,

Given n = 16, r = 2, and a = 1, then,

Formula 4.
$$b = 1 \times 2^{16-1} = \frac{2^{16}}{2} = \frac{4^8}{2} = \frac{16^4}{2} = \frac{256^3}{2} = 32768 \text{ cents, on the}$$

sixteenth piece.

The total sum of cents will be found by the

Formula 10.
$$S = \frac{32768 \times 2 - 1}{2 - 1} = 65535 \text{ cents} = $655.35.$$

Piling of Balls and Shells.- From page 64.]

Example 2. How many balls are contained in a complete square pile, n=10rows?

$$\frac{10(10+1)(2\times10+1)}{2\times3} = \frac{10\times11\times21}{6} = 385 \text{ balls.}$$

Rectangular Piling.

Let m be the number of balls on the top of the complete pile, and n = number of rows in the same, then the number of balls in the whole pile will be,

$$\frac{n(n+1)(2n+3m-2)}{2\times 3}$$
, - 3d. order.

The number of balls in the longest bottom side will be = m+n-1.

Example 3. The rectangular pile having 15 rows and 23 balls on the the top, how many in the whole pile?

$$\frac{15}{2\times3} \frac{(15+1)(2\times15+3\times23-2)}{2\times3} = \frac{15\times16\times67}{6} = 2680 \text{ balls.}$$

Amount.

COMPOUND INTEREST.

Compound Interest is when the Interest is added to the Capital for each year, and the sum is the Capital for the following year.

 $a=c\,(1+p)^n,$ $\mathbf{c} = \frac{a}{(1+p)^n}, \quad \bullet \quad \bullet \quad \bullet$ Capital, $p=\sqrt[n]{\frac{a}{a}}-1$, Per centage,

 $n = \frac{\log a - \log c}{\log (1+p)},$ Number of years,

In these formulas p must be expressed in a fraction of 100.

Example 1. A capital c = 8650 standing with Compound Interest at p = 5per cent. what will it amount to in n = 9 years.

Amount $a = 8650 (1.05)^9 = 13419 \text{ dollars.}$

Example 2. A man commenced business with c=300 dollars, after n=5 years he had a=6375 dollars. At what rate did his money increase, and how soon will he have a fortune of 50000 dollars?

The first question, or the per centage, will be answered by the formula 3.

$$p = \sqrt[5]{\frac{6875}{300}} - 1 = \sqrt[5]{22\cdot9166} - 1 = 0.87$$
, or 87 per cent.

The time from the commencement of business until the fortune is completed. will be answered from the formula 4.

$$n = \frac{log.50000 - log.300}{log.1 \cdot 87} = \frac{4 \cdot 69897 - 2 \cdot 47712}{0 \cdot 2720048} = 8 \cdot 169 \text{ years,}$$

or 8 years and 2 months.

ANNUITIES.

Annuity is a certain sum of money to be paid at regular intervals. A yearly payment or annuity b, is standing for n years, to find the whole amount a at p per cent. Interest.

 $a = bn \left[1 + \frac{p}{2}(n+1) \right]$ Simple Int., Amount. $a = \frac{b}{n} \left[(1+p)^n - 1 \right]$ Comp. Int., -

A yearly payment or annuity b, is to be paid for n years, to find the present worth, or the amount a, which would pay it in full, at the beginning of the time n, deducting p per cent. Interest.

 $a = bn \left[1 - \frac{p}{2} \left(\frac{n+1}{1+nn}\right)\right]$ Simp. Int.,

 $a = \frac{b}{n} \left[1 - \frac{1}{(1+n)^n} \right]$ Comp. Int., • • • 4, Amount,

A debt D, standing for Interest, is diminished yearly by a sum b; to find the debt d after n years, and the time n when it is fully paid? The debt d after n years will be,

$$d = \frac{(Dp - b)(1+p)^n + b}{p}$$
 Comp. Int., • • • 5,

The time n until fully paid will be,

$$n = \frac{\log b - \log (b - Dp)}{\log (1+p)} \qquad \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet$$

If b = Dp then $n = \infty$, or the debt D will never be paid. If b < Dp, the debt D will be increased.

To find the yearly annuity b, which will pay a debt D in n years, at p per cent. Compound Interest?

$$b = \frac{Dp \ (1+p)^n}{(1+p)^n-1}$$
 • • • 7.

PAPER.

1 Ream = 20 quires = 480 sheets. 1 quire = 24 sheets.

Drawing Paper.

Columbier, - 34	×23 inches
Atlas, 33	×26 "
Theorem, 34	×28 "
Double Elephant, 40	×26 "
Antiquarian, - 52	×31 "
Emperor, - 40	×60 "
Uncle Sam, 48	×120 "
	Atlas, 33 Theorem, 34 Double Elephant, 40 Antiquarian, 52 Emperor, 40

Continuous Colossal Drawing Paper, No. A, and No. B, 56 inches wide, and of any required length. No. A, of this paper is excellent for mechanical drawings. Price from 40 to 50 cents per yard.

Tracing Paper. Double Crown.

30 by 20 inches. \ Glazed or Crystal, Double Double Crown, Yellow or Blue Wove. Double Double Crown, 60 "40

Finest French Vegetable Tracing Paper.

Grand Raisin (or Royal) 24 in. by 18. Grand Aigle 40 in. by 27.

Mounted Tracing Paper. This paper is mounted on cloth, and is still transparent; it will take ink and water colours. It is 38 inches wide, and of any required length.

Veilum Writing Cloth,

Adapted for every description of tracing; it is transparent, durable, and strong. It is 18 to 38 inches wide, and of any required length.

SELECTION OF WATER COLOURS.

Blue. Real Ultramarine.

French Blue.

Indigo. Cobalt Blue.

Green. Olive Green.

Yellow. Cadmium.

Gamboge. 10 Ochre.

Red. Carmine. Crimson Lake.

Red. Rose Madder. Light Red.

Brown. Vandyke. Brown Madder.

Black. India Ink. Blue Black.

66 Ivory Black. 66 Lamp Black.

White. Chinese White.

UNITED STATES' STANDARD MEASURES AND WEIGHTS.

MEASURE OF LENGTH.

THE Standard Measure of Length is a brass rod = 1 yard at the temperature of 32° Fahrenheit. The length of a pendulum vibrating seconds in vacuo, at Philadelphia is 1-08614 yards, at + 32° Fahrenheit.

The Surveying Chain is = 22 yards = 66 feet. It consists of 100 links, and each link = 7.92 inches.

ROPES AND CABLES.

1 Cable length = 120 fathoms = 720 feet.

1 fathom = 6 feet.

GEOGRAPHICAL AND NAUTICAL MEASURES.

1 Degree of the great circle of the Earth round the Equator = 69 032 statute miles = 60 Nautical miles.

1 Statute mile = 5280 feet = 0.86875 Nautical miles.

1 Nautical mile = 6037.424 = 1.150 Statute miles.

LOG LINE.

The **Log Line** should be about 150 fathoms long, and 10 fathoms from the Log to the first knot on the line. If half a minute glass is used, it will be 51 feet between each succeeding knot. For 23 seconds glass it will be 47.6 feet = 7.93 fathoms per knot. This is the length of knot by calculation, but practically it is shortened to 7.5 fathoms per knot for 23 seconds glass.

MEASURE OF CAPACITY.

Gallon. The standard Gallon measures 231 cubic inches, and contains 8:38822 pounds Avoirdupois = 58372:1757 grains Troy, of distilled water, at its maximum density 39:39 Fahrenheit, and 30 inches barometer height.

Bushel. The standard Bushel measures 215042 cubic inches = 77-627413 pounds Avoirdupois of distilled water at 39-83° Fahrenheit, barometer 30 inches. Its dimensions are 184 inches inside diameter, 194 inches outside, and 8 inches deep; and when heaped, the cone must not be less than 6 inches high, equal 2747.70 cubic inches for a true cone.

Pound. The standard Pound Avoirdupois is the weight of 27-7015 cubic inches of distilled water, at 39-83° Fahrenheit, barometer 30 inches, and weighed in the air.

MEASURE OF LENGTH.

Miles.	Furlongs.	Chains.	Rods.	Yards.	Feet.	Inches.
0.003125		80 10 1	320 40 4 1 0·181818	1760 220 22 5.5	5280 660 66 16·5	63360 7920 792 198 36
	0.00151515	0.01515151	0.0606060	0·33333 0·0277777	0.083333	12 1

MEASURE OF SURFACE.

Sq. Miles.	Acres	S.Chains.	Sq. Rods.	Sq. Yards.	Sq. Feet.	Sq. Inches.
1 0·001562 0·0001562 0·000009764 0·000000323 0·00000000358 0·000000000025	0·0002066 0·000002296			3097600 4840 484 30·25 1 0·1111111 20·0007716	27878400 43560 4356 272:25 9 1 0:006944	4014489600 696960 69696 39204 1296 144 1

ASURI		

1							
	Cub. Yard.	Barrels.	Bushels.	Cub. Feet.	Pecks.	Gallons.	Cub. Inch
1	1	5.6103	25.2467	27	100.987	201.974	46656
1	0.1782	1	4.5	4.8125	18	36	8316
1	0.03961	0.2222	1	1.2438	4	8	2150.42
1	0.037037	0.2078	0.804	1	3.73809	7.47619	1728
1	0.009902	0.05555	0.25	0.26738	1	2	462
	0.004951	0.02777	0.125	0.13369	0.5	1	231
ı	0.00002143	0.0001202	0.000465	0.0005787	0.0021645	0.004329	1

MEASURE OF LIQUIDS.

Gallon.	Quarts.	Pints.	Gills.	Cub. inch.
1	4	8	32	231
0·25	1	2	8	57:75
0·125	0·5	1	4	28:875
0·03125	0·125	0.25	1	7:2175
0·004329	0·017315	0.03463	0·13858	1

MEASURES OF WEIGHTS.

AVOIRDUPOIS.

Ton.	Cwt.	Pounds.	Ounces.	Drams.	
1	20	2240	35840	573440	
0·05	1	112	1792	28672	
0·00044642	0·0089285	1	16	256	
0·00002790	0·000558	0.0625	1	16	
0·00000174	0·0000348	0.0016	0.0625	1	

TROY.

Pounds.	Ounces.	Dwt.	Grains.	Pound Avoir.
1 0.083333 0.004166 0.0001736 1.215275	12 1 0·05000 0·00208333 14·58333	240 20 1 0-0416666 219-6666	5760 480 24 1	0.822861 0.068571 0.0034285 0.00020571

APOTHECARIES'.

*6	Pounds.	Ounces.	Drams.	Scruples.	Grains.	
	0·08333 0·01041666 0·0034722 0·00017361	12 1 0·125 0·0416666 0·020833	96 8 1 0.3333 0.16666	288 24 3 1 0·05	5760 480 60 20 1	

	DIAMOND.						
Carat.	Grain.	Parts.	Grains. Troy.				
0.25	4	64 16	3·2 0·8				
0.015625	0.0625	1	0.05				
0.3125	1.25	20	1				

GOLD COINS. U. S. STANDARD WEIGHT.

		WEIGHT TROY.		
Name of the Coins	Dollars.	Grains.	Ounces.	
Double Eagle Eagle Half Eagle Three Dollar piece Quarter Eagle Dollar piece Value per Grain Value per Ounce	\$ 20 \$ 10 \$ 5 \$ 3 \$ 2·50 \$ 1 \$ 0·0387596 \$ 18·6046	516 258 129 77-4 64-5 25-8 1 480	1·075 0·5375 0·26875 0·16125 0·134375 0·05375 0·00208333	

SILVER COINS. U. S. STANDARD WEIGHT.

		WEIGHT TROY.						
Name of the Coins.	Cents.	Grains.	Ounces.					
One Dollar	100	384	0.8					
Half Dollar or five Dimes	50	192	0.4					
Quarter Dollar or 21 Dimes	25	96	0.2					
One Dime	10	38-4	0.08					
Half Dime	5	19.2	0.04					
Three Cents piece	3	11.52	0.024					
Value per Grain	0.26041668	1	0.00208333					
Value per Ounce	125	480	1					
Copper Cent	1	168	0.35					
Half Cent	0.5	84	0.175					
Value per Grain	0.00595238	1	0.00208333					
Value per Ounce	2.8571424	480	1					

The Standard fineness of Gold and Silver Coins is one weight of alloy to nine weights of pure metal. The alloy for Gold Coin is Silver and Copper, and Copper for Silver Coin.

Relative value of Foreign Gold and Silver Coins, fixed by the law of the United States.

	Pound Sterling of Great Britain	
1	Shilling	0.242
1	Pound Sterling of Nova Scotia, New Brunswick, Newfoundland and	
1	Canada	
1	Pagoda of India	
î	Real Vellon of Spain	0.05
î	Real Plate of Spain	0.10
1	Rupee Company	0.441
1	Rupee of British India	0.44분
1	Franc of France and Belgium	0.18%
1	Specie Dollar of Sweden and Norway	1.00
	Ducat of Sweden	
	Florin of Netherland	0.40
	Florin of Southern States of Germany	0.40
	Guilder of Netherland	0.40
1	Livre Tournoise of France	0.18

-	·
ı	1 Livre of the Lombardy Venitian Kingdom \$0.16
i	1 Livre of Tuscany
ı	1 Livre of Sardinia
ı	I Milrea of Portugal
ı	1 Milrea of Azores
l	1 Marc Banco of Hamburg
l	1 Rix Dollar or Thaler of Prussia and the Northern States of Germany. 0.69
ł	1 Rix Dollar of Bremen
l	1 Rouble Silver of Russia
į	1 Florin of Austria
	1 Ducat of Naples
	1 Ounce of Sicily 2.40
	1 Tacl of China
	1 Livre of Leghorn

FOREIGN MEASURES OF LENGTH COMPARED WITH AMERICAN.

Places. '	Measures.	Inches.	Places.	Measures.	Inches.		
Amsterdam	Foot	11.14	Malta	Foot	11.17		
Antwerp .	66	11.24	Moscow .	"	13.17		
Bavaria	66	11.42	Naples	Palmo	10.38		
Berlin	66	12.19	Prussia .	Foot	12.36		
Bremen	66	11.38	Persia	Arish	38-27		
Brussels	66	11.45	Rhineland	Foot	12.35		
China .	" Mathematic	13.12	Riga	66	10.79		
66	" Builder's	12.71	Rome	. "	11.60		
46	" Tradesman's	13.32	Russia	"	13.75		
66	" Surveyor's	12.58	Sardinia .	Palmo	9.78		
Copenhagen	46	12.35	Sicily	66	9.53		
Dresden .	46	11.14	Spain	Foot	11.03		
England .	66	12.00		Toesas	66.72		
	Braccio	21.60		Palmo	8.34		
	Pied de Roi	12.79	Strasburgh	Foot	11.39		
	Metre	39.381		66	11.69		
	Foot	19.20	Turin	66	12.72		
	Palmo	9.72	Venice	66	13.40		
	Foot	11.29	Vienna .	66	12.45		
Hanover .	66	11.45	Zurich	66	11.81		
Leipsic	66	11.11	Utrecht .	46	10.74		
Lisbon	66	12.96	Warsaw .	66	14.03		
"	Palmo	8.64					

ENGLISH AND FRENCH MEASURES OF LENGTH.

BRITISH. Yard is referred to a natural standard, which is the length of a pendulum vibrating seconds in vacuo in London, at the level of the sea; measured on a brass rod, at the temperature of 62° Fahrenheit, = 39-1393 Imperial inches.

```
= 12 points .
= 12 lines .
FRENCH. Old System .- 1 Line
                                                            = 0.08884 U.S. inches.
                          1 Inch
                                                            == 1.06604
                                                                                 66
                          1 Foot
                                      == 12 inches .
                                                             = 12.7925
                          1 Toise = 6 feet . = 76°.
1 League = 2280 toises . (comm
1 League = 2000 toises . (post.)
1 Fathom = 5 feet,
                                                               = 76.755
                                                                                 66
                                                              (common.)
         New System .- 1 Millimetre
                                                                    ·03939 U.S. inches.
                                                            ===
                          1 Centimetre
                                                                    *39380
                                                                                 66
                                                           200
                                                                                 66
                          1 Decimetre .
                                                                   3.93809
                                                            ===
                          1 Metre .
                                                                  39.38091
                                                                                 66
                          1 Decametre .
1 Hecatometre
                                                           = 393.80917
                                                                                 66
                                                                                 66
                                                           = 3938.09171
```

FOREIGN ROAD MEASURES COMPARED WITH AMERICAN

Will Million.								
Places.	Measures	Yards.	Places.	Measures.	Yards.			
Arabia	Mile	2148	Hungary .	Mile	9113			
Bohemia .	"	10137	Ireland .	66	3038			
China	Li		Netherlands	"	1093			
Denmark .	Mile	8244	Persia	Parasang	6086			
England .	" Statute	1760	Poland .	Mile, long	8101			
	" Geographical		Portugal .	League	6760			
Flanders .	"	6869	Prussia .	Mile	8468			
France	League, marine		Rome	66	2025			
"	" common		Russia	Verst	1167			
	post		Scotland .	Mile	1984			
Germany .	Mile, long	10126		League, common	7416			
Hamburgh .	"			Mile	11700			
Hanover .	"	11559	Switzerland	"	9153			
Holland .		6395	Turkey .	Berri	1826			

MEASURES OF SURFACE.

FRENCH.	Old System.—1 Square Inch = 1.1364 U.S. inches.	
	1 Arpent (Paris) = 900 square toises.	
	1 Arpent (woodland) = 100 square royal perch	es.
	New System.—1 Arc = 100 square metres.	
	1 Decare == 10 ares.	
	1 Hecatare = 100 ares.	
	1 Square Metre = 1550.85 square inches,	OF
	10.7698 square feet.	
	1 Arc = 1076.98 "	

PODETCH MEASURES OF SHIPPACE COMPARED WITH AMERICAN

FOREIGN MEASURES OF SURFACE COMPARED WITH AMERICAN.							
Places.	Measures.	Sq. Yds.	Places.	Measures.	Sq. Yds.		
Amsterdam	Morgen	9722		Geira	6970		
Berlin	" great			Morgen	3053		
66	" small		Rome	Pezza	3158		
Canary Isles	Fanegada			Dessetina	13066.6		
England .	Acre			Acre	6150		
	Arpent	6179		Fanegada	5500		
	Morgen			Tunneland	5900		
Hanover .	66			Faux	7855		
	Acre			Joch	6889		
Naples	Moggia	3998	Zurich .	Common acre	3875.0		

FOREIGN MEASURES OF CAPACITY.

The Imperial gallon measures 277.274 cubic inches, containing 10 lbs. BRITISH. Avoirdupois of distilled water, weighed in air, at the temperature of 62° degrees, the barometer at 30 inches.

For Grain. 8 bushels = 1 quarter. 1 quarter = 10 2694 cubic feet.

Coal, or heaped measure. 3 bushels = 1 sack.

Inperial bushel = 2218-192 cublc inches.

*Heaped bushel, 194 ins. diam., cone 6 ins. high = 2812-4872 cubic ins.
1 chaldron = 58.658 cubic feet, and weighs 3136 pounds.

1 chaldron (Newcastle) = 5936 pounds.

New System.—1 Litre = 1 cub. decimetre, or 61-074 U. S. cubic inches. Old System.—1 Boisseau = 13 litres = 793-964 cub. ins., or 3-43 galls.

1 Pinte = 0-931 litres, or 56-817 cubic inches. FRENCH.

1 Wine Arroba = 4.2455 gallons. SPANISH. 1 Fanega (common measure) = 1.593 bushels.

* When heaped in the form of a true cone.

FOREIGN LIQUID MEASURES COMPARED WITH AMERICAN

FOREIGN INQUID MEASURES COMPARED WITH AMERICAN.								
Places.	Measures.	Cub. In.	Plac	es.		Measures.	Cub. In.	
Amsterdam .	Anker	2331	Naples .			Wine Barille	2544	
66 .	Stoop	146	66			Oil Stajo	1133	
Antwerp .	"	194	Oporto .			Almude	1555	
Bordeaux	Barrique	14033	Rome .			Wine Barille	2560	
Bremen	Stubgens	194.5	- 66			Oil "	2240	
Canaries	Arrobas	949	66		•	Boccali	80	
Constantinople	Almud	319	Russia .		•	Weddras	752	
Copenhagen .	Anker	2355	66		•	Kunkas	94	
Florence	Oil Barille	1946	Scotland		•	Pint	103.5	
"	Wine "	2427	Sicily		•	Oil Caffiri	662	
France	Litre	61.07	Spain .		•	Azumbres	22.5	
Geneva	Setier	2760	- 66			Quartillos	30.5	
Genoa	Wine Barille	4530	Sweden	•	•	Eimer	4794	
"	Pinte	90.5	66	•		Kanna	159.57	
Hamburgh .	Stubgen	221	Trieste			Orne	4007	
Hanover	"	231	Tripoli			Mattari	1376	
Hungary .	Eimer	4474	Tunis .		•	Oil "	1157	
Leghorn	Oil Barille	1942	Venice		•	Secchio	628	
Lisbon	Almude	1040	Vienna			Eimer	3452	
Malta · · ·	Caffiri	1270	"		•	Maas	86.33	

FOREIGN DRY MEASURES COMPARED WITH AMERICAN.

Formation Divinition Court Attack William Admittant.								
Places.	Measures.	Cub. In.	Places.		Measures.	Cub. In.		
Alexandria .	Rebele	9587	Malta		Salme	16930		
66 .	Kislos	10418	Marseilles		Charge	9411		
Algiers	Tarrie	1219	Milan		Moggi	8111		
Amsterdam	Mudde	6596	Naples .		Tomoli	3122		
" .	Sack	4947	Oporto .		Alquiere	1051		
Antwerp .	Viertel	4705	Persia .		Artaba	4013		
Azores	Alquiere	731	Poland .		Zorzec	3120		
Berlin	Scheffel	3180	Riga		Loop	3978		
Bremen	66	4339	Rome		Rubbio	16904		
Candia	Charge	9288	"		Quarti	4226		
Constantinople	Kislos	2023	Rotterdam		Sach	6361		
Copenhagen	Toende	8489	Russia .		Chetwert	12448		
Corsica	Stajo	6014	Sardinia .		Starelli	2988		
Florence .	Stari	1449	Scotland .		Firlot	2197		
Geneva	Coupes	4739	Sicily		Salme gros	21014		
Genoa	Mina	7382	" .		" generale	16886		
Greece	Medimni	2390	Smyrna .		Kislos	2141		
Hamburgh .	Scheffel	6426	Spain		Catrize	41269		
Hanover .	Malter	6868	Sweden .		Tunna	8940		
Leghorn .	Stajo	1501	Trieste .	•	Stari	4521		
	Sacco	4503	Tripoli .	•	Caffiri	19780		
Lisbon	Alquiere	817	Tunis		66	21855		
"	Fanega	3268	Venice .		Stajo	4945		
Madeira	Alquiere	684	Vienna .		Metzen	3753		
Malaga · ·	Fanaga	3783						

FRENCH MEASURES OF SOLIDITY.

	FRENCH.	1 Cubic Foot					=	2093·470 T	J. S. inches.
1		Decistre .						3.5375	
l		Stere (a cubi					200	25.375	66
l		Decastere .	•	•	•	•	=	353-75	66
ı		1 Stere .					===	61074·664 c	ubic inches.

For the Square and Cubic Measures of other countries, take the length of the measure in Table, page 72, and square or cube it as required.

ENGLISH AND FRENCH MEASURES OF WEIGHT.

BRITISH.	1 troy Grain = .003961 cubic i	inches o	f distilled wa	ter.
-	1 troy Pound = 22.815689 cubic i			
FRENCH.	Old System.—1 Grain		0.8188 gr	ains troy.
	1 Gros · ·	. ==	5S-954S	- 44
	1 Ounce	. =		avoirdupois.
	1 Livre · ·	. =		
	New System Milligramme .	. ==	•01543 t	
	Centigramme .	. =	-15433	66
	Decigramme .	. =	1.54331	"
	Gramme	. =	15.43315	
	Decagramme .	. =	154.33159	66
	Hecatogramme .		1543:3159	66
	1 Millier = 1000 Kil	ogramm	es = 1 ton se	ea weight.
	1 Kilogramme .	. =	2·204737 lbs. a	voirdupois.
	1 Pound avoirdupois	. = (0.4535685 Kild	gramme
	1 Pound troy		0.3732223	"

Note.—In the new French system, the values of the base of each measure viz., Metre, Litre, Stere, Are, and Gramme, are decreased or increased by the following words prefixed to them. Thus,

Milli e	xpresses			expresses		times the value.
Centi	- 66	100th "	Chilio	66	1000	66
Deci	66	10th "	Myrio	"	1000	66
Deca	66	10 times the value.				

FOREIGN WEIGHTS COMPARED WITH AMERICAN.

Places. Weights. Number equal to 100 avoir-dupois 100 avoir-								
Algiers	Places.	Weights.	equal to 100 avoir- dupois			equal to 100 avoir- dupois pounds.		
Genoa	"Alexandria Algiers Amsterdam Antwerp Barcelona Eatavia Bengia Berlin Bologna Brunswick Cairo Candia China Constantinople Copenhagen Corsica Cyprus Damascus Florence Geneva Genoa	Oke Rottoli " Catty Seer Pound " Rottoli " Catty Oke Pound " Rottoli " Rottoli " (" Rottoli " " (" " " " " " " " " " " " " " " " "	85:80 107: 84: 91:8 96:75 112:6 76:78 125:3 90:93 97:14 105. 85:9 90:93 97:14 105. 85:9 105:45 20:85 90:82 13:75 13	Japan Leghorn Leipsic . Leipsic . Lyons Madeira . Macha Morea Naples . Rome . Rotterdam Russia Sicily Smyrna . Sumatra . Sweden . "Tangiers Tripoli Tunis Venice . "Yienna .	Catty Pound "(common) "(silk) " Maund Pound " " " " " Oke Catty Pound " " (miner's) Rottoli; " Pound (heavy) " (light) "	76-92 133-56 97-14 98-81 143-20 33-33 90-79 91-80 110-86 142-85 36-51 35-56 120-68 94-27 89-28 90-79 94-71 89-28 90-79 94-71 89-28 90-79 94-71 89-81 81-81		

						01151	01101					4 4
	Total Rations per week.	Saturday.	Friday.	Thursday.	Wednesday.	Tuesday.	Monday.	Sunday.	Navy Ration.		Component parts of the	
	4		Н	-		H		Н	Beef.			
	లు	-			H		H		Pork.			
1	1			ы				ki)	Flour.		Pou	
	F0 -			6 1-4				83m,	Raisins dried fr	or uit.	Pounds.	
	101-	سزع			61-				Pickles	•		
	н		PO)			BJ)0			Rice.			
	98	14	.14	14	14	14	14	14	Biscuits			
	14	64	63	13	13	13	63	13	Sugar.			
	# KO	12-Jus	64 4	-44		44	nd-Ag	42J	Tea.			
	~7)	1	<u></u>	1	<u>,</u>	-	<u>-</u>	Coffee.	Either.	Ounces	
	7	<u></u>	Н	-	-	1	<u></u>	p=1	Cocoa.			
	4		to .			13			Butter.			
	4		C4			63			Cheese.			
•	\$-2 \$-2	£0}→			PO-		N)-		Beans.		널	
	P3)-4		ko ⊷						Molasses		ractions a Pint.	
	110	—(<3 —(4)	-44	A) .					Vinegar Spirits.		Fractions of a Pint.	
7*	6346		R-Jus	24-	*	\$-)-d	No pros	-44	opirits.			

By the Differential Calculus we ascertain the simultaneous progress of variable quantities depending on one another. The variable quantities are designated by the last letters u, v, x, y, z, and the constant quantities by the first, a, b, c, e, f, of the alphabet. The letter d is placed quantities by the first, a, b, c, c, f, of the alphabet. The letter a is placed before variables to denote the instantaneous progress of that quantity, as dx, and called the differential of x. d reads differential. Let the side of a square be denoted by x and the area by z; when x increases uniformly, z will increase more rapidly. When x = 1, z = 1, but when x = 2, z = 4. When we know the instantaneous increase of x, what will be that of z? If we add, say only a point to the side x, there will be added two lines or 2x to the square. We know that $z = x^2$, the d or increment of the square will be dz = 2x dx, of which dx is the point added to x and z is the two lines added to the square called the differential confliction. 2x is the two lines added to the square, called the differential coefficient. Let v denote the volume of a cube, and x its side, we have $v=x^3$ and $dv=3x^2dx$, which shows that if a point dx is added to x there will be $3x^2$

The d- of any power of a variable is equal to the power diminished by 1, multiplied by the primitive exponent and the product by the d- of the variable. The d- of a constant is = o. When the constant is a factor to the variable it appear unchanged in the d- coefficient, but when a term

it disappears.

I. The d of length u of any line defined by a formula of rectangular co-ordinates x and y, is $du = \sqrt{dx^2 + dy^2}$. II. The d of area z of any plan figure bounded by a curved line and rectangular co-ordinates in dz = y dx, y = ordinate, x = abscissa. III. The d of solidity v of any figure bounded by a plan rotating round its abscissa x, is $dv = \pi y^2 dv$, y = ordinate of the outer line of the plan. IV. The d of surface z of any solid bounded by a plan rotating round its abscissa x, is $dz = 2\pi y du$, in which u = length of the outer edge of the plan.

Successive d's is when the first d' coeff. is considered a function of a

new function.
$$u=a\,x^4.\quad \text{1st. } d\cdot \text{ coeff. } \frac{du}{dx}=4\,a\,x^3,\quad \text{2nd. } d\cdot \text{ coeff. } d\left(\frac{du}{dx}\right)=\frac{d^3u}{dx^2}=12\,a\,x^3,$$
 3d. $d\cdot \text{ coeff. } d\left(\frac{d^2u}{dx^3}\right)=\frac{d^3u}{dx^3}=2\,4\,a\,x, \text{ etc., etc.}$

 d^2y means the second, d^3y the third d^* coefficient of u. dx^2 means the

square of the d of x, etc.

Example 1. The diameter of a sphere increases at a rate of dx = 2.31 inches per second, when x = 9.5 inches, at what rate (dv = ? does the volume v increase? $v = \frac{\pi x^2}{6} = 0.523x^3$. $dv = 0.523x^3x^2 dx = 1.569x^2.31$

= 327.1 cubic inches, the answer.

Example 2. It is found that the displacement of a ship increases as $x^{1.5}$ the draft of water. At the load draft a=18 feet the displacement is T=2000 tons. Required the displacement t=?) when x=12 ft. and how much (dt.?) can the vessel be loaded per dx = 1 inch or 1-12 foot, at that draft.

$$t = \frac{x^{1.5} T}{a^{1.5}} = \frac{12^{1.5} \times 2000}{18^{1.5}} = 1088 \cdot 6 \text{ tons, at } x = 12 \text{ feet draft.}$$

$$dt = \frac{1.5 T x^{\frac{1}{2}} dx}{a^{1.5}} = \frac{1.5 \times 2000 \times 1^{\sqrt{12}}}{18^{1.5} \times 12 \text{ in.}} 11.34 \text{ tons per inch.}$$

The following page contains the differentials of formulas and trigonometrical functions. I means the Naperian logarithm. The common logarithm log, multiplied by 2.302585 gives the Naperian logarithm 1.

FORMULAS. DIFFERENTIALS.	FORMULAS. DIFFERENTIALS.
y=x $dy=dx$, 1	$a^z = a^z l \cdot a dx, \qquad 21$
$y = ax^3 \qquad dy = 2 a x dx, 2$	$d \cdot l \cdot x = \frac{dx}{x} \qquad 22$
$y = x^n \qquad dy = u x^{n-1} dx, 3$	$x l \cdot x \qquad = \qquad (1 + l \cdot x) dx, \qquad 23$
$3 a b x^3 = 9 a b x^2 dx, 4$	$\frac{l \cdot x}{x^n} = \frac{(1 - l \cdot x)dx}{x^{n+1}} 24$
$4 a b^2 x^n = 4 n a b^2 x^{n-1} dx, 5$	$\frac{x}{l \cdot x} = \frac{(l \cdot x - 1) dx}{(l \cdot x)^2} 25$
$a+x^3 = 3x^9 dx, \qquad 6$	$\frac{ay}{\sqrt{x^2+y^2}} = \frac{ayx dx - ax^2 dy}{\sqrt{(x^2+y^2)^3}} 26$
$(a+b)x^2 = 2x(a+b)dx, 7$	$\frac{a-2bx}{(a+bx)^3} = \frac{2b^3x dx}{(a+bx)^3} 27$
$6a b^4 x^3 - c = 18 a b^4 x^2 dx, 8$	$\sqrt{x=x^{1/2}} = \frac{dx}{2\sqrt{x}} 28$
$x+3z^2-v = dx+6z dz-dv, 9$	$(ax+x^2)^n = n(ax+x^2)^{n-1}(a+2x)dx$ 29
$6x^3 + 4ax^2 - 3x = (18x^2 + 8ax - 3)dx, 10$	$\sqrt{a^2 + bx^3} = \frac{bx dx}{\sqrt{a^2 + bx^2}} \qquad 30$
$x v^2 = v dx + 2 x v dv, 11$	$d^{-2}(a x^3) = 6 a x dx^2, 31$
$x v z = x v z \left(\frac{dx}{x} + \frac{dv}{v} + \frac{dz}{z}\right) 12$	$d^{3}(a x^{3}) = 6 a dx^{3}, 32$
$x(x^2-xb^2) = (3x^2-b^3x) dx, 13$	$d^{4}(a x^{3}) = ob a x^{\circ -1} dx^{4} = 0, 33$
$\frac{x^3}{v} = \frac{2 x v dx - x^2 dv}{v^2}, 14$	$\sin v = +\cos v dv, \qquad 34$
$\frac{a}{x} = \frac{a dx}{x^2} $ 15	$cas. v = - \sin v dv, 35$
$\frac{a}{x^n} = \frac{n a x^{n-1} dx}{x^{2n}} 16$	$\tan v = + \frac{dv}{\cos^2 v} 36$
$(a+\sqrt{x})^3 = \frac{3(a+\sqrt{x})^2 dx}{2\sqrt{x}}$ 17	$\cot v = -\frac{dv}{\sin^2 v} 37$
$\left[(a + \sqrt[n]{x})^{\mathfrak{m}} \right] = \frac{m(a + \sqrt[n]{x})^{m-1} dx}{n \sqrt[n]{x}}$	$\sec v = + \frac{\cos v dv}{\cos^2 v} 38$
$\frac{1}{4(a-x)^n} = \frac{dx}{(a-x)^{n+1}} $ 19	$\cos c, v = -\frac{\cos v dv}{\sin^2 v} 39$
$ \frac{2\sqrt{2}ax-x^2}{x} = \frac{2adx}{x\sqrt{2}ax-x^2} 20 $	Tant. for any curve $t=y\sqrt{1+\frac{dx^2}{dy^2}}$ 40

The Integral Calculus is the reverse of the Differential, or to find the original formula of a given differential. The symbol f is placed before the d to denote that the integral is to be taken out of it, or that the original formula is to be found.

The d of $a x^3 = 3 a x^2 dx$, and $\int 3 a x^2 dx = \frac{3 a x^2 + 1}{2} = a x^3$.

Rule to find the integral. Add 1 to the exponent of the variable x in the d^* , divide the d^* by the new exponent, dx will disappear, and the quotient is the integral. The integral f does not effect a constant. A constant term in a formula disappears in its d^* , consequently any integral may have a constant term, whose value is determined by making the variable in the integral = o, when the first member in the formula will be a constant. It is therefore customary to add a constant C to the integral. When it is known that the first member is = o at the same time the variable in d = f is = o, then C = o. When a differential is to be integrated between two limits of the invariable, say x = a and x = b, it is indicated by $\int_a^b .$ or $\int_a^b 3c \, c^2 \, dx = c(b^3 - a^3)$. the d, divide the d by the new exponent, dx will disappear, and the

Successive differentials are accompanied with the same order of integrals, as $ff = 6x dx^2 = f = 3x^2 dx = x^3$.

The integrals of the differentials gives the formula for the problem. Example 3. It is required to find by the calculus a formula for the Example 3. It is required to find by the character a of a right-angled triangle. Proposition II, page 78. $dz = y \, dx$, the formula for the hypothenuse is y = ax, $dz = ax \, dx$, $z = fax \, dx = \frac{ax^2}{2} = \frac{yx}{2}$. or the area z is half the rectangle of the sides x and y.

Example 4. Find a formula for the convex surface z of a cone, whose Example 4. Find a formula for the convex surface z of a cone, whose side is u, and r = r adius of the base? Prop. IV, page 78. $dz = 2\pi r du$, and $z = f2\pi r du = \pi r u$, the answer.

Example 5. Find a formula for the area z of a circle, when it is known that the circumference $y = 2\pi x$? Prop. II, page 78. $dz = y dx = 2\pi x dx$, and $z = f2\pi x dx = \pi x^2$ the answer, x = r adius of the circle.

Example 6. Find a formula for the area z of a parabola of x = abscissa or height, and y = ordinate, or half the base? Formula for a parabola $y = \sqrt{p x}$, in which p = the constant parametric diameter, or $p = \frac{y^3}{x}$. $x = \frac{y^3}{p}, dx = \frac{2}{p} \frac{dy}{p}$ Prop. II, $dz = y dx = \frac{2}{p} \frac{y^3 dy}{p}$ and $z = \int \frac{2}{p} \frac{y^3}{p} dy = \frac{2}{3} \frac{y^3}{p}$ $\frac{2 x \hat{y}}{3}$, the answer, or the area of a parabola is % of the base by the height.

Example 7. Find a formula for the volume v of a paraboloid? Prop. III. $dv = \pi y^2 dx = \frac{2 \pi y^3 dy}{p}$, and $v = \int \frac{2 \pi y^3 dy}{p} = \frac{\pi y^4}{2p}$, but $p = \frac{y^3}{x}$ and $v = \int \frac{2 \pi y^3 dy}{p} = \frac{\pi y^4}{2p}$.

 $\frac{\pi}{9}y^2 x$, the answer.

V. The center of gravity s from the origin of x, of any plan figure bounded by a curved line and rectangular co-ordinates is $s = \frac{f \times y}{s} \frac{ds}{s}$ when z area of the plan.

VI. The center of gravity s from the origin of x of any solid figure is $s = \frac{fx z dx}{r}$, when z = ordinate cross section and v volume of the same.

Example 8. Find a formula for the centre of gravity (s = ?) of a cone. The ordinate cross-section $z = \pi y^2$, and $v = \frac{\pi}{2} y^2 x$, when x = height andy radius of the base of the cone. Prop. VI. $s = \frac{f \, x \, z \, dx}{v} = \frac{3 \int \pi \, x \, y^2 \, dx}{\pi \, y^2 \, x}$ As the center of gravity is not influenced by the proportion of x and y, we can make y=x, when $s=\frac{3 \int \pi \ x^3 \ dx}{\pi \ x^3}=\frac{3 \pi \ x^4}{4 \pi \ x^3}=\frac{3}{4} x$, from the top.

Two variable quantities x and y depended on one another, to find the value of one, when the other is a maxima or minima.

$$\begin{cases} x \\ \text{is a maxima or minima when its} \\ \text{first differential coefficient} \\ y \end{cases} \begin{cases} \frac{dx}{dy} = \mathbf{0}. \\ \frac{dy}{dx} = \mathbf{0}. \end{cases}$$

When the second $d \cdot \operatorname{coef.} \frac{d^3y}{dx^3}$ is positive, y is a minimum, and when negative y is a maximum. The variables may have both maximums and minimums, as formulas will indicate.

Example 1. Find the value of x when y is a maximum or minimum, in the formula $y = x^3 - 12x + 22$? $dy = (3x^2 - 12) dx$. Of which $x = \sqrt{\frac{12}{3}} = 2$ the answer. $\frac{d^2y}{dx^2} = 6x$, which is positive, conse-

quently $y=2^3-12\times 2+22=6$, a minimum, when x=2.

Example 2. It is required to cut out the strongest possible beam of height h and breadth b, from a log of diameter D, fig. 221 page 174? The strength of a beam is in proportion to bh^2 which is to be a maximum. $D^2 = b^2 + h^2, \qquad h^2 = D^2 - b^2, \qquad b h^2 = b (D^2 - h^2), \qquad d(bh^2) = (D^2 - 3 b^2) db.$ $\frac{d(\bar{b}h^2)}{d(\bar{b}h^2)} = D^2 - 3b^2 = 0$, of which the breadth $b = D\sqrt{y_3} = 0.577$ D, and height $h = \sqrt{D^2 - \frac{1}{3}} = D\sqrt{0.6666} = 0.8164 D$, the answer. The second d coef. $\frac{d^2(b\,\dot{h}^2)}{d\,\dot{b}^2} = -6\,b$, which is negative, and therefore $b\,h^2$ is a maximum when b = 0.577 D.

Example 3. It is required to know the proportion of heighth h and diameter D of a cylinder, having the greatest cubic containt v, with the smallest surface 'z including top and bottom? $z = \frac{\pi}{2} D^2 + \pi D h = \frac{2v}{h} + \pi D h$, which is to be a minimum. Set v=1 and D=1, then $z=\frac{2}{h}+\pi h$, and $dz = \left(\pi - \frac{4}{h^2}\right)dh$, $\frac{dz}{dh} = \pi - \frac{4}{h^2} = 0$, when $h = \sqrt{\frac{4}{\pi}} = 1.1284 D$, the answer.

The second d coef. $\frac{d^2z}{dh^2} = +\frac{4\times 2}{h^4}$ which is positive, and z a minimum when h = 1.1284 D.

Maclaurin's Theorem.

Maclaurin's Theorem, explains how to develop into a series a function

with one variable, as
$$u = (u) + \frac{x}{1} \left(\frac{du}{dx}\right) + \frac{x^2}{2} \left(\frac{d^2u}{dx^3}\right) + \frac{x^3}{2 \times 3} \left(\frac{d^3u}{dx^3}\right) \dots + \frac{x^3}{2 \times 3 \times \dots n} \left(\frac{d^nu}{dx^n}\right) \text{ etc.}$$

where the factors in the parenthesis is that which it assumes when x=0.

The function $u = \frac{1}{a+x}$ developed into a series will be $\frac{1}{a+x} = \frac{1}{a} - \frac{x}{a^2} + \frac{x^3}{a^3} - \frac{x^3}{a^4} \dots \frac{x^n}{a^{n+1}}$ etc.

$$\frac{1}{a+x} = \frac{1}{a} - \frac{x}{a^3} + \frac{x^4}{a^3} - \frac{x^6}{a^4} - \frac{x^6}{a^{n+1}} \cdot \text{etc.}$$

Taylor's Theorem.

Taylor's Theorem, explains how to develop into a series a function of the sum or difference of two variable as u = x + y.

the sum or difference of two variable as
$$u = x \perp y$$
.
$$\mathbf{F}(x \pm y) = u \pm \frac{du}{dx}y + \frac{d^2u}{dx^2} \cdot \frac{y^2}{2} \pm \frac{d^2u}{dx^3} \cdot \frac{y^3}{2 \times 3} + \dots \frac{d^2u}{dx^n} \cdot \frac{y^n}{2 \times 3 \dots \times n},$$
where u represents the value of the function when $y = o$.

Interpolation is to insert numerical values between given datas, for constructing tables or empirical formulas expressing the probable relative variation of quantities. Let x and y be two variable quantities depending on one another and measured in simultaneous stages of their progress, as

$$x_1$$
 x_2 x_3 x_4 and x_5
 y_1 y_2 y_3 y_4 and y_5

We have
$$y = Ay_1 + By_2 + Cy_3 + Dy_4 + Ey_5 + &c. - - - 1$$

$$A = \frac{(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5)};$$

$$B = \frac{(x-x_1)(x-x_3)(x-x_4)(x-x_5)}{(x_2-x_1)(x_2-x_2)(x_2-x_4)(x_2-x_5)};$$

$$C = \frac{(x-x_1)(x-x_2)(x-x_4)(x-x_5)}{(x_3-x_1)(x_3-x_2)(x_3-x_4)(x_3-x_5)};$$

$$D = \frac{(x-x_1)(x-x_2)(x-x_4)(x-x_5)}{(x_4-x_1)(x_4-x_2)(x_4-x_5)(x_4-x_5)};$$

$$E = \frac{(x-x_1)(x-x_2)(x-x_4)(x-x_5)}{(x_4-x_1)(x_4-x_2)(x_4-x_5)(x_4-x_5)};$$

$$E = \frac{(x-x_1)(x-x_2)(x-x_3)(x-x_4)}{(x_3-x_1)(x_5-x_2)(x_5-x_3)(x_5-x_4)};$$

The values of the coefficients A,B,C,D, and E, with their given datas, inserted in formula 1 gives an empirical formula for the variation of x and y. The number of observations or given datas of x and y should be one more than the order of progression. In arithmetical progression two observations are sufficient for a correct formula. For all curves in the conic sections, or others which are of the second order, there should be at least three observations. Pressure of steam progresses with the temperature in the 6th order, for which requires seven observations to make a correct formula. When the order of progression is not known, the more observations gives the most correct result.

Example. Let y represent the boiling-point of salt water and x the percentage of salt in solution. It is found in three experiments,

that $x_1=3$, $x_2=18$, $x_3=36$ per cent. salt. when $y_1=213^\circ$, $y_2=219^\circ$, $y_3=226^\circ$ boiling-point.

Find a formula that will give any intermediate value of x and y?

$$A = \frac{(x-18)(x-36)}{(3-18, (3-36)}, \qquad B = \frac{(x-3)(x-36)}{(18-3)(18-36)}, \qquad C = \frac{(x-3)(x-18)}{(36-3)(36-18)},$$

y = 213 A + 219 B + 226 C. y = 0.40729x + 211.78.

GEOMETRY.

DEFINITIONS.

Demonstration is a course of reasoning by which a truth is established. It consists of,

Thesis, the truth to be established, and,

Hypothesis, the foundation for the demonstration.

Axiom is that which is self-evident and requires no demonstration.

Theorem is something to be proved by demonstration.

Postulate is something to be done, but is self evident and requires no demonstration. stration.

Problem is something proposed to be done, and requires demonstration.

Proposition is either a Theorem or a Problem.

Corolary is an obvious consequence deduced from something that has gone

Scolium is a remark on preceding propositions, commonly demonstrated by algebraical formulæ. Lemma is something premised for a following demonstration.

Geometrical Quantities.

Point is a position, but no magnitude.

A Line is length, without breadth or thickness.

A Straight Line is the shortest distance between two points.

Curved line is a length which in every point changes its direction. Superficies, Surface, Area, is that which has length and breadth, but no

thickness.

Plane surface is a plane which coincides with a straight line in every direct

Curved surface is a plane which coincides with a curved line. Solid has length, breadth and thickness.

Circle.

Circle, Cirumference, Periphery, is a curved line drawn on a plane surface, and bounded at a common distance from one point in the plane, (centre.)

Radius is a line* drawn from the centre in a circle to the periphery.

Diameter is a line drawn through the centre to the periphery, or the longest line in a circle.

Chord is any line extending its both ends to the periphery of a circle, and does not go through the centre.

Arc is a part of a periphery.

Circle plane, is a plane surface bounded within a circumference.

Sector is a part of a circle-plane bounded within an arc and two radii.

Segment is a part of a circle plane bounded within a chord and an arc,
Zone is a part of a circle included between two parallel chords.
Lune is the space between the intersecting arcs of two eccentric circles,
Oval is a round figure having one long and one short diameter at right angles

to one another.

Semicircle is a half circle.

Quadrant is a quarter of a circle.

Angles.

Angle is the opening or inclination of two lines which meet in one point. If two radii being drawn from the extremities of a circle arc, to the centre; the arc, is a measure of the angle at the centre.

Right angle is when the opening is a quarter of a circle.

Acute angle is less than a right angle.

Obtuse angle is greater than a right angle.

* Line by itself means a straight line.

Triangles.

Triangle is a figure of three sides. Equilateral Triangle has all its sides equal. Isosceles Triangle has two of its sides equal. Scalene Triangle has all its sides unequal. Right-angled triangle has one right angle. Obtuse-angled triangle, has one obtuse angle. Acute-angled triangle has all its angles acute.

Quadrangles.

Quadrangle is a figure of four sides.

Parallelogram having its opposite sides parallel, and the opposite angles equal.

Square, having its four sides equal, and four right angles.

Rectangle, having its opposite sides equal, and four right angles, Rhombus, laving four equal sides, and opposite angles equal but not right. Rhombus, same as a parallelogram.

Trapezium, having four unequal sides.

Trapezoid, having only two opposite sides parallel.

Gnomon is the space included between the lines forming two similar parallelograms, of which the smaller is inscribed in the larger, so as to have one common angle.

Polygons.

Polygons are plane and rightlined figures.

Regular Polygons are plane figures which inscribe, or circumscribe a circle, and their sides being equal. Polygons are named according to their number of sides, thus,

Trigon has three sides. Octagon has eight sides. Tetragon " four 66 Nonagon 66 66 nine Pentagon " 66 66 66 five Decagon ten Hexagon " 60 66 66 Undecagon eleven six Heptagon " seven 66 66 66 Dodecagon twelve

For properties of Polygons see page 103.

Solids.

Sphere is a solid bounded within a half circle rotating round its diameter.

Spherical segment, (zone) is a part of a sphere cut off by a plane.

Spheroid is a sphere flatted or longed at two opposite sides; as our earth is flatted at the poles, and having one diameter shortest; an egg is longed, and having one diameter longest.

Spindle is a solid bounded within a curved line rotating round its base. Cylinder is a solid bounded within a rectangle rotating round one of its sides,

(axis.) A cylinder has a circle plane to its base.

Cone is bounded within a right-angled triangle rotating round one of its sides that forms the right angle.

Ungula is the bottom part of a Cone or Cylinder, cut off by a plane passing obliquely through the base.

Cube is bounded within six squares.

Parallelopiped is bounded within six parallelograms.

Prism is a solid described by a rightlined plane moving in a straight line, so that the plane forms an angle to its direction line.

Prismoid is a prism cut obliquely at the ends.

Pyramid is bounded between a rightlined plane, and one point at a distance from the plane. The sides of the rightlined plane, are bases of triangles determinating at the aforesaid point, (vertex.)

Perimeter is the sum of all the sides in a figure, plane or solid.

Polyhedrons. See page 95, for properties and names of the five regular polyhedrons.

To construct an ellipse.

With o as a centre, draw two concentric circles with diameters equal to the long and short axes of the desired ellipse. Draw from o any number of radii, A, B, &c. Draw the line B b parallel to n and b b parallel to m, then b' is a point in the desired ellipse.

38. To draw an ellipse with a string.

Having given the two axes, set off from c half the great axis at a and b, which are the two focuses in the ellipse. Take an endless string as long as the three sides in the triangle a, b, c, fix two pins or nails in the focuses one in a, and one in b, lay the string round a, and c, stretch it with a pencil d, which then will describe the desired ellipse.

39.

To draw an ellipse by circle arcs.

Divide the long axis into three equal parts, draw the two circles and where they intersect one another are the centres for the tangent arcs of the ellipse as shown by the figure.

40. To draw an ellipse by circle arcs.

Given the two axes, set off the short axis from A to b, divide b B into three equal parts, set off two of these parts from o towards c and c which are the centres for the ends of the ellipse. Make equilateral triangles on c, when e e will be the centres for the sides of the ellipse. If the long axis is more than twice the short one, this construction will not make a good ellipse.

41. To construct an ellipse.

Given the two axes, set off half the long axis from c to f f, which will be the two focuses in the ellipse. Divide the long axis into any number of parts, say a to be a division point. Take A a as radius and f as centre and describe a circle arc about b, take a B as radius and f as centre describe another circle arc about b, then the intersection b is a point in the ellipse, and so the whole ellipse can be constructed.

42.

To draw an ellipse that will tangent two parallel lines in A and B.

Draw a semicircle on A B, draw ordinates in the circle at right angle to A B, the corresponding and equal ordinates for the cllipse to be drawn parallel to the lines, and thus the elliptic curve is obtained as shown by the figure.

To construct a cycloid.

The circumference C=3:14 D. Divide the rolling circle and base line C into a number of equal parts, draw through the division point the ordinates and abscissas, make a a' =1' a', b b'=2' e_i c c=3' f, then a' b' and c' are points in the cycloid. In the Epicycloid and Hypocycloid the abscissas are circles and the ordinates are radii to one common centre.

44. Evolute of a circle.

Given the pitch p, the angle v, and radius r. Divide the angle v into a number of equal parts, draw the radii and tangents for each part, divide the pitch p into an equal number of equal parts, then the first tangent will be one part, second two parts, third three parts, &c., and so the Evolute is traced.

45. To construct a spiral with compasses and four centres.

Given the pitch of the spiral, construct a square about the centre, with the four sides together equal to the pitch. Prolong the sides in one direction as shown by the figure, the corners are the centres for each arc of the external angles.

46. To construct a Parabola.

Given the vertex A, axis x, and a point P. Draw AB at right angle to x, and BP parallel to x, divide AB and BP into an equal number of equal parts. From the vertex A draw lines to the divisions on B P, from the divisions on A B draw the ordinates parallel to x, the corresponding intersections are points in the parabola.

To construct a Parabola.

Given the axis of ordinate B, and vertex A. Take A as a centre and describe a semicircle from B which gives the focus of the parabola at f. Draw any ordinate y at right angle to the abscissa A x, take a as radius and the focus f as a centre, then intersect the ordinate y, by a circle-arc in P which will be a point in the parabola. In the same manner the whole Parabola is constructed.

48.

To draw an arithmetic spiral.

Given the pitch p and angle v, divide them into an equal number of equal parts say 6. make 01=01, 02=02, 03=03, 04=04, 05=05, and 06=the pitch p; then join the points 1, 2, 3, 4, 5, and 6, which will form the spiral required.

CIRCLE.

The periphery of a circle is divided into 360° (degrees) equal parts, each called a degrée.

One degree = 60' (minutes.) One minute = 60'' (seconds.)

Half a circle (hemisphere) = 180°. Quarter of a circle (quadrant) = 900.

By the accompanying formula any part of the circle can be calculated.

Formula for the Circle.

$$p = \pi d = 3.14d, \quad \cdot \quad \cdot \quad 1, \quad r = \sqrt{\frac{a}{\pi}} = 0.564\sqrt{a}, \quad \cdot \quad 7,$$

$$p = 2\pi r = 6.28r, \quad \cdot \quad \cdot \quad 2, \quad a = \frac{\pi d^2}{4} = 0.785d^2, \quad \cdot \quad \cdot \quad 8,$$

$$p = 2\sqrt{\pi}a = 3.54\sqrt{a}, \quad \cdot \quad \cdot \quad 3, \quad a = \pi r^2 = 3.14r^2, \quad \cdot \quad \cdot \quad 9,$$

$$d = \frac{p}{\pi} = \frac{p}{3.14}, \quad \cdot \quad \cdot \quad 4, \quad a = \frac{p^2}{4\pi} = \frac{p^2}{12.56}, \quad \cdot \quad \cdot \quad 10,$$

$$d = 2\sqrt{\frac{a}{\pi}} = 1.128\sqrt{a}, \quad \cdot \quad 5, \quad a = \frac{pr}{2} = \frac{pd}{4}, \quad \cdot \quad \cdot \quad 11,$$

$$r = \frac{p}{2\pi} = \frac{p}{6.28} \quad \cdot \quad \cdot \quad 6, \quad a = \frac{\pi rd}{2} = 1.57rd, \quad \cdot \quad \cdot \quad 12.$$

 $\pi = 3.1415926535897932384626433832795028841971693993751058209749445923078$ 164062862089986280348253421170679821480865132823066470938446..

 $2_{\pi} = 6.28218530710000$. $3_{\pi} = 9.42477796070000$.

 $4\pi = 12.5663706143000.$ $5\pi = 15.7079632679000.$

 $6\pi = 18.8495559215000$.

 $7\pi = 21.9911485751000.$ $8\pi = 25\cdot1327412887000$.

 $9\pi = 28.2743338823000$. $\frac{1}{5}\pi = 1.57079632679000$

 $\frac{1}{4}\pi = 0.78539816339700$

 $\frac{1}{4}\pi = 1.04719755119600$. $\frac{1}{6}\pi = 0.52359877559800.$

 $\frac{1}{8}\pi = 0.39269908169800.$

 $Y_{12}\pi = 0.26179938779900.$ $\pi = 0.00872667621060.$

= 0.31830988618370.

= 0.63661977236740.

r = radius of the circle.

d = diameter.

p = periphery.

a = area of a circle, or part thereof. b = circle-arc, length of.

Be careful to express all the dimensions by the same unit.as miles, rods, yards, feet, or inches, &c., &c., or else the calculation will be wrong.

Example 1. Fig. 49. The diameter of a circle is 8 feet, 8 inches, how long is the

circumference? Formula 1. $p = \pi d = 3.14 \times 8.666 = 27.211$ feet, the answer.

= 1.27323954473480

= 0.95492965855110.

 $\frac{6}{-} = 1.90965931710220.$

= 3.81971863420440.

= 114.591559026122.

= 9.869650000000000.

= 1.772453000000000.

0.564189000000000

= 0.07957747154500.

Letters denote. c = chord of a segment, length of.

h - height of a segment. s = side of a regular polygon.

v = centre angle. w = polygon angle.

$$r = \frac{b\sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}}{a + b + \epsilon}.$$

$$v = v, \quad w = w,$$

 $w + v = 180^{\circ}, w > v.$

56.

$$D = B + C$$
, $A' + B' + C = 180^{\circ}$, $B = D - C$, $A + B + C = 180^{\circ}$, $A' = A$, $B' = B'$.

57.

$$A + B + C = 180^{\circ},$$

 $A' = A, B' = B.$

58.

$$E + C = A + D = 180^{\circ},$$

 $D = B + c,$
 $E = A + B.$

59.

$$(a+b)^2 = a^2 + 2ab + b^2$$
.

$$(a-b)^2 = a^2 - 2ab + b^2$$
.

$$(a + b) (a - b) = a^a - b^a$$

62.

63.

64.

$$a: c = c: b,$$

$$ab = c^2,$$

$$c = \sqrt{ab}.$$

A B b

65.

$$A:B=a:b.$$

$$a: x = x: a - x,$$

$$x = \sqrt{a^2 + \left(\frac{a}{2}\right)^2 - \frac{a}{2}}$$

$$c^{2} = a^{2} + b^{2},$$

 $a^{2} = c^{2} - b^{2},$
 $b^{2} = c^{2} - a^{2}.$

68. $c^2 = a^2 + b^2 - 2bd,$

$$d = \frac{a^2 + b^2 - c^2}{2b}.$$

 $h = \sqrt{a^2 - d^2}$

 $69. c^3 = a^3 + b^2 + 2bd,$

$$h^{2} = \sqrt{a^{2} - d^{2}},$$

$$d = \frac{c^{2} - a^{2} - b^{2}}{2h}.$$

70.

$$a: b = h: c,$$

$$h = \frac{ac}{b} = \frac{ad}{c},$$

$$d = \frac{c^2}{b} = \frac{ch}{a}$$

71.

$$a: c = d: (b - d),$$

$$d = \frac{ab}{c+a},$$

$$v = v$$
.

$$a: c = b: d,$$

$$ad = bc.$$

$$a: t = t: b,$$

$$t^2 = ab.$$

74.

$$t^{2} = (a + b) (a - b),$$

 $t = \sqrt{a^{2} - b^{2}}.$

75.

$$x = \frac{aR}{R - r}, \quad a = \sqrt{t^2 + (R - r)^2},$$

$$t = \sqrt{a^2 - (R - r)^2}, \quad \sin v = \frac{t}{a}.$$

76.

$$t = \sqrt{a^{3} - (R+r)^{3}},$$

$$a = \sqrt{t^{2} + (R+r)^{2}}.$$

77.

$$V = r - \sqrt{r^2 - \frac{S^2}{4}} \quad l = 2r - V,$$

$$S = 2\sqrt{r^2 - (r - V)^2}, \quad r = \frac{1}{2}(l + V).$$

$$P = \sqrt{\frac{l^2}{n^2} - \pi^2 d^2},$$

$$l = n \sqrt{\pi^2 d^2 + P^2},$$

$$n = \frac{l}{\sqrt{\pi^3 d^2 + P^2}}.$$

79. To find the length of a Spiral. $l = \pi r n = \frac{\pi r^2}{P}, \qquad n = \frac{l}{\pi r} = \frac{r}{P},$

$$P = \frac{\pi r_2}{l} = \frac{r}{n}$$
. $P = Pitch$.

80. To find the length of a Spiral.

$$l=\pi n (R+r),$$

$$l=\frac{\pi}{P}\left(R^2-r^2\right).$$

81. Periphery of an Ellipse.

$$p = 2\sqrt{D^2 + 1.4674d^2}$$

82.

To construct a screw Helix.

83. To square a Circumference.

R = 0.556355 d = 1.1127 r = 0.7071 S. S = 0.785398 d = 1.57079 r = 1.4142 R.d = 1.27322 S = 1.79740 R = 2 r.

84. To square a Circleplane.

R = 0.650744 d = 1.30148 r = 0.7071 S. S = 0.886226 d = 1.77245 r = 1.4142 R.d = 1.12831 S = 1.5367 R = 2 r.

r =Radius of an inscribed Sphere.

R =Radius of circumscribed Sphere.

a = Area of the Polyhedrons.

c = Cubic contents of the Polyhedrons.

s = Side or edge of the Polyhedrons.

96	PLANEMETRY.
\$ \$ \$	90. Square. $\mathbf{a} = \mathbf{s}^2 = 4b^3.$ $\mathbf{a} = 0.7071d^3 = 2.8284 c^3.$
a b	91. Rectangle. $\mathbf{a} = a b,$ $\mathbf{a} = b \sqrt{d^2 - b_2}.$
	92. Triangle. $\mathbf{a} = \frac{b}{2} \frac{h}{2} = \frac{1}{2}b h,$ $\mathbf{a} = \frac{b}{2} \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}.$
a f	93. Triangle. $\mathbf{a} = \frac{1}{2}b h,$ $\mathbf{a} = -\frac{b}{2} \sqrt{a^2 - \left(\frac{c^2 - a^2 - b^2}{2b}\right)^2}.$
h 6	94. Quadrangle. $\mathbf{a} = \frac{1}{2}h(a+b).$
h a c	95. Quadrangle. $\mathbf{a} = \frac{1}{2}(a [h + h'] + b h' + c h).$

Circle Plane.

$$\mathbf{a} = \pi r^2 = 0.785 d^8,$$

$$\mathbf{a} = \frac{p r}{2} = 0.0794 P^2.$$

97.

Circle Ring.

$$\mathbf{a} = \pi (R^2 - r^2) = \pi (R + r)(R - r),$$
 $\mathbf{a} = 0.785(D^2 - d^2).$

98.

Sector.

$$\mathbf{a} = \frac{1}{2}b\,r,$$

$$\mathbf{a} = \frac{\pi\,r^2\,v}{360} = \frac{r_2\,v}{114\cdot5}.$$

99.

Segment.

$$\mathbf{a} = \frac{1}{2} [b \, r - c \, (r - h)],$$

100.

Quadrant.

$$\mathbf{a} = 0.785 \ r^2 = 0.3916 \ c^2$$
.

$$\mathbf{a} = 0.215 \ r^3 = 0.1075 \ c^3$$
.

extremity of space. Required if the last figure is a Circle or a Square?

Sphere.

 $\mathbf{a} = 4 \pi r^2 = 12.56 \ r^2 = \pi \ d^2$.

108.

Forus.

 $a = 4 \pi^2 R r = 39.44 R r$

a = 9.86 D d.

109.

Sphere Sector.

110

Circle Zone.

 $a = 2 \pi r h = \frac{\pi}{4} (c^2 + h^2).$

111.

Cone.

 $\mathbf{a} = \pi R s$,

 $\mathbf{a}=\pi R \sqrt{R^2+h^2}.$

112. Cone.

 $x = \frac{dh}{D-d}, \qquad R = s + \frac{ds}{D-d},$

 $\mathbf{a} = \frac{\pi s}{2}(D+d),$

 $v = \frac{180 D}{R} = \frac{180(D-d)}{s}$.

113. Sphere.

$$\mathbf{c} = \frac{4 \pi r^3}{3} = 4.189 \, r^3,$$

$$\mathbf{c} = \frac{\pi d^3}{6} = 0.523 \, d^3.$$

114. Forus.

$$\mathbf{C} = 2 \, \pi_2 \, R \, r^2 = 19.72 \, R \, r^2,$$

$$\mathbf{c} = 2.463 \ D \ d^3$$

115. Sphere Sector.

$$\mathbf{c} = \frac{2}{3}\pi r^2 h = 2.0944 r^2 h,$$

$$\mathbf{C} = \frac{2}{3} \pi r^2 (r - \sqrt{r^2 - \frac{1}{4} c^2}).$$

116. Zone

$$\mathbf{c} = \pi \, h^2(r - \frac{1}{3} \, h),$$

$$\mathbf{c} = \pi \ h^{3} \left(\frac{c^{2} + 4h^{2}}{8h} - \frac{1}{3}h \right).$$

117. Cone.

$$\mathbf{c} = \frac{\pi \, r^2 \, h}{3} = 1.046 \, r^2 \, h,$$

$$\mathbf{c} = 0.2616 \, d^3 h$$
.

118.

Conic Frustrum.

$$\mathbf{c} = \frac{1}{3} \pi h(R^2 + R r + r^2),$$

$$\mathbf{C} = \frac{1}{12} \pi h(D^2 + D d + d^2)$$

Cylinder.

$$\mathbf{c} = \pi r^2 h = 0.785 d^2 h$$

$$\mathbf{c} = \frac{p^2 h}{4 \pi} = 0.0796 p^2 h.$$

120.

Ellipsoid.

$$\mathbf{c} = 0.424 \, \pi^2 \, R \, r^2 = 4.1847 \, R \, r^3$$

$$\mathbf{c} = 0.053 \, \pi^2 \, D \, d^2 = 0.5231 \, D \, d^2$$

121.

Paraboloid.

$$\mathbf{c} = \frac{1}{2} \pi r^2 h = 1.5707 r^2 h.$$

122.

Pyramid.

$$\mathbf{c} = \frac{1}{6} \mathbf{a} h,$$

$$\mathbb{C} = \frac{n \, s \, h}{6} \sqrt{r^2 - \frac{s^2}{4}}.$$

123. Pyramidic Frustrum.

$$\mathbf{c} = \frac{h}{3}(A + \mathbf{a} + \sqrt{A\mathbf{a}}).$$

124.

Wedge Frustrum.

$$\mathbf{c} = \frac{h \, s}{2} (a + b).$$

125. Cask.
$$c = 1.0453 l(0.4 D^{2} + 0.2 D d + 0.15 d^{2}),$$

$$Gallon = \frac{l}{2200} (4 D^2 + 2 Dd + 1.5 d^2).$$

126. Cylinder Sections.

$$\mathbf{c} = \pi r^2 (l + l' - \frac{2}{3} r),$$

$$\mathbf{c} = \pi \ r^2(l+l') - 2\cdot 1 \ r^3$$

127. Circular Spindle.

$$\mathbf{c} = \pi \left(\frac{1}{6} c^3 - 0.2 d \left[c + \frac{2}{3} \sqrt{c^2 + d^2}\right] \sqrt{d^2 + c^2}\right)$$

Example 1. Fig. 92. The base of a Triangle is b=8 feet, 3 inches, and the height, h=5 feet, 6 inches. What is the area $\mathbf{a}=?$

$$\mathbf{a} = \frac{b \ h}{2} = \frac{8.25 \times 5.5}{2} = 22.6875$$
 square feet.

Example 2. Fig. 98. A Circle Sector having an angle $v = 39^{\circ}$ and the radius $r = 67\frac{2}{3}$ inches. What is the area of the sector $\mathbf{a} = ?$

$$\mathbf{a} = \frac{\pi r^2 v}{360} = \frac{3.14 \times 67.75^2 \times 39^0}{360} = 1562.1 \text{ square feet.}$$

Example 3. Fig. 110. A Spherical Zone having its diameter $c = 18\frac{1}{2}$ inches and height $h = 7\frac{3}{4}$ inches. What is the convex surface of the Zone?

$$\mathbf{a} = \frac{\pi}{4} (c^3 + h^2) = \frac{3.14}{4} (18.5^2 + 7.75^2) = 315.96 \text{ square inches.}$$

Example 4. Fig. 88. Require the radius R of a Sphere that will circumscribe a Dodecahedron with the side s=9 inches.

$$R = 1.36428 \times 9 = 12.27852$$
 inches, the answer.

Example 5. Fig. 118. A Frustrum of a Cone having its bottom diameter D=13inches, the top diameter $d=5\frac{1}{4}$ inches, and the height h=25 inches. What is the cubic contents ${\bf c}=?$

$$\mathbf{e} = \frac{1}{7.2} \pi h (D^2 + D d + d^2) = 0.2618 \times 25 (13^2 + 13 \times 5.25 + 5.25^2) = 20995$$
 cubic inches.

Example 6. Fig. 125. A Cask having its bung diameter D=36 inches, head diameter d=28 inches, and length l=60 inches, (inside measurement) how many gallons of liquid can be contained in the cask l=36 (The gallon l=38) to the

Gallon =
$$\frac{56}{2200} (4 \times 36^2 + 2 \times 36 \times 28 + 1.5 \times 28^2) = 214$$
 gallons.

Example 7. Fig. 50. Require the length of the circle-arc b, when the angle $v=42^{\circ}$, and the radius r=4 feet, 3 inches?

$$b = \frac{\pi r v}{180} = \frac{3.14 \times 4.25 \times 42}{180} = 3.113 \text{ feet.}$$

Example 8. Fig. 52. Require the radius of a circle-arc, whose chord is 9 feet, 4 inches, and height, h=1 foot, 8 inches?

$$r = \frac{c^2 + 4h^2}{8h} = \frac{9 \cdot 33^2 + 4 \times 1 \cdot 66^2}{8 \times 1 \cdot 66} = \frac{98 \cdot 0711}{13 \cdot 28} = 7 \cdot 384 \text{ feet.}$$

Example 9. Fig. 68. The three sides in a triangle being, a=6.42, b=7.75, and c=8.66 feet. How high is the triangle over the base b?

$$d = \frac{a^2 + b^2 - c^2}{2b} = \frac{6 \cdot 42^2 + 7 \cdot 75^2 - 8 \cdot 66^2}{2 \times 8 \cdot 66} = 1 \cdot 5175 \text{ feet,}$$

the height $h = \sqrt{a^2 - d^2} = \sqrt{6.42^2 - 1.5175^2} = 6.24$ feet, the answer.

Example 10. Fig. 77. The radius of a walking beam is, r=8.36 feet, the stroke S=5.5 feet. How much is the vibration V=l

Vibration,
$$V = r - \sqrt{r^2 - \frac{S^2}{4}} = 8.36 - \sqrt{8.36^2 - \frac{5.5^2}{4}}$$

=0.471 feet =5.65 inches $=5.\frac{21}{32}$, the answer.

TABLE OF POLYGONS.

	1	Centre	Polygon	Side	Area	Apotem	Side	Area
Number		Angle w.	Angle v.	= h R.	$= \lambda S^2$.	= h R.	== h r.	$= \lambda r^2$.
o sides					-	-		
in the Polygon.							Λ	A
20178-111		(1333)		((a		I FA
			15/	(\$)	\$ 5/		Λ	All B
	_						2	BUTTO STATE OF THE
Trigon.	3	120°	60°	1.732	0.4330	0.5000	3.4641	5.1961
Tetragon.	4	900	900	1.4142	1.0000	0.7071	2.0000	4.0000
Pentagon.	5	720	1080	1.1755	1.7205	0.8090	1.4536	3.6327
Hexagon.	6	60°	1200	1.0000	2.5980	0.8660	1.1547	3.4640
Heptagon.	7	510437	128017'	0.8677	3.6339	0.9009	0.9631	3:3710
Octagon.	8	450	1350	0.7653	4.8284	0.9238	0.8284	3.3130
Nonagon.	9	400	1400	0.6840	6.1820	0.9396	0.7279	3.2750
Decagon.	10	360	1440	0.6180	7.6942	0.9510	0.6498	3.2490
Undecagon.	11	32°13′	147047'	0.5634	9.3656	0.9595	0.5872	3.2290
Dodecagon.	12	300	1500	0.5176	11.196	0.9659	0.5359	3.2152
	14	25°43′	154017	0.4450	15.334	0.9762	0.4562	3.1935
	15	240	1560	0.4158	17.642	0.9781	0.4250	3.1882
	16	22°30′	157°30′	0.3900	20.128	0.9807	0.4068	3.1824
	18	200	160°	0.3472	25.534	0.9848	0.3526	3.1737
	20	180	162°	0.3130	40.634	0.9877	0.3166	3.1676
	24	150	1650	0.2610	45.593	0.9914	0.2632	3.1596

Explanation of the Table for Polygons.

The number of sides in the polygon is noted in the first column. k = tabular coefficient, to be multiplied as noted on the top of the columns. Example 1. How long is the side of an inscribed Pentagon, when the radius

of the circle is 3 feet, and 4 inches? (4 inches = 0.333 feet.)
3.333×1.1755 = 3.9179 feet, the answer.

Example 2. What is the area of a Heptagon when one of its sides is 13.75 inches $13.75^2 \times 3.6339 = 687.02$ square inches.

104	CIRCUI	TERENCES AND AR	DAIS OF C	IRCLES.	
Circ.	Area.	Circ.	Area	Circ.	Area.
	OTTO N		CTTON !	Diame-	
Diame-		Diame-		ter. (,)	
ter.	V/////	ter.	V////		
1 2 - 0981	.00076	5-115.70	19.635	.1134.55	95.033
94 11 4000	.00306	H16·10	20.629	34.95	97.205
	.01227	1 +16.49	21.647	1 - 35.34	99.402
3926	.02761	16.88	22.690	35.73	101.62
1 -7854	.04908	$\frac{1}{2}$ 17.27	23.758	36.12	103.86
9817	.07669	17.67	24.850	36.52	106.13
18 1.178	.1104	3 - 18.06	25.967	₹ - 36.91	108.43
1.374	1503	18.45	27.108	37.30	110.75
1 · 7854	1963	6-18.84	28.274	12-37.69	113.09
2 1 370	•2485	19.24	29.464	38.09	115.46
1.767	*3067			1 - 38.48	117.85
11 11.963	3712	19.63	30.679	38.87	120.27
$\begin{array}{c c} \frac{16}{3} & 2.159 \\ \frac{3}{4} & 2.356 \end{array}$, 20.02	31.919		122.71
2.356	*4417	20.42	33.183	$\frac{1}{2} - \frac{39.27}{39.66}$	125.18
13 -2.552	*5184	20.81	34.471	39.66	
8 + 2.748	*6013	3 + 21.20	35.784		127.67
1 2.945	·6902	21.57	37.122	13-40.44	130.19
	.7854	7-121.99	38.484		132·73 135·29
3.534	·9940 1·227	1 1 22.38	39.871	1 41·23 41·62	137.88
3.927		22.77	41.282		140.50
4.319	1.484 1.767	23.16	42.718	$\frac{1}{2}$ $\frac{42.01}{42.41}$	143.13
1 4.712	2.073	23.56	44.178	42.80	145.80
B - 5·105 5·497	2.405	23·95 24·34	45.663 47.173	3 42.50 43.19	148.48
	2.761	24.74	48.707	43.58	151.20
2 5·890 6·283	3.141	8 25.13	50.265	14-43.98	153.93
6.675	3.546	25.52	51.848	44.37	156.69
1 - 17.068	3.976	25.91	53.456	1 - 44.76	159.48
7.461	4.430	26.31	55.088	45.16	162.29
7.854	4.908	26.70	56.745	1-45.55	165.13
8.246	5.411	27.09	58.426	45.94	167.98
₹ - 8.639	5.939	₹ - 27·48	60.132	2 - 46.33	170.87
9.032	6.491	27.88	61.862	46.73	173.78
3-9.424	7.068	9-28.27	63.617	15-47.12	176.71
9.817	7.669	128.66	65.396	47.51	179.67
10.21	8.295	1 29.05	67.200	1 47.90	182.65
10.60	8.946	29.45	69.029	48.30	185.66
10.99	9.621	29.84	70.882	1 48.69	188-69
11.38	10.320	30.23	72.759	49.08	191.74
\$ -11·78	11.044	30.63	74.662	3 -49.48	194.82
12.17	11.793	31.02	76.588	49.87	197.93
4-12.56	12.566	10_31.41	78.539	16-150.26	201.06
12.95	13.364	H31.80	80.515	H50.65	204.21
13.35	14.186	1 - 32.20	82.516	1 - 51.05	207.39
13.74	15.033	32.59	84.540	51.44	210.59
14.13	15.904	1 32.98	86.590	1 51.83	213.82
14.52	16.800	· H33·37	88.664	52.22	217.07
3 - 14.92	17.720	₹ +33.77	90.762	3 + 52.62	220.35
15.31	18.665	34.16	92.885	H53·01	223.65
		الملت		-41	
1					

	CIRCU	MFERENCES AND A	LEAS OF C	JIRCLES.	105
Circ.	Area.	Circ.	Area	Circ.	Area.
Diame-	Of the last	Diame-	Common line	Diame-	
ter.	V///////	ter.	V/////////////////////////////////////	ter.	
17 53.40	226.98	23-172.25	415.47	29-[91.10	660.52
H 53.79	230.33	72.64	420.00	91.49	666.22
1 - 54.19	233.70	1 + 73.01	424.55	₹ + 91·89	671.95
54.58	237.10	73.43	429.13	92.28	677.71
1 54.97	240.52	12-173.82	433.73	1 92.67	683.49
H 55·37	243.97	74.21	438.30	93.06	689.29
3 + 55.76	247.45	₹ + 74·61	443.01	3 - 93.46	695.12
56.16	250.94	75.	447.69	93.85	700.98
18-156.54	254.46	24-175.39	452.39	30-94.24	706.86
56.94	258.01	75.79	457.11	94.64	712.76
1 + 57.33	261.58	1 176·18	466.63	1 + 95.03	724.64
57.72	265·18 268·80	3 76·57 76·96	471.43	\$ 95.42 \$ 95.81	730.61
58.11	272.44	1 76.96 77.36	476.25	12-1-95·81 196·21	736.61
\$ -58.90	276.11	£ +77·75	481.10	3 - 96.60	742.64
59.29	279.81	78.14	485.97	4 7 96.99	748.69
19 59.69	283.52	25-78.54	490.87	31-97.38	754.76
60.08	287.27	H78.93	495.79	H97.78	760.86
1 - 60.47	291.03	1 + 79.32	500.74	1 + 98.17	766.99
-60.86	294.83	H79.71	505.71	* H98.56	773.14
1 61.26	298.64	3-80.10	510.70	1-198.96	779.31
61.65	302.48	80.50	515.72	99.35	785.51
3 - 62.04	306.35	₹ + 80·89	520.70	至十99.74	791.73
62.43	310.24	81.28	525.83	H100·1	797.97
20 - 62.83	314.16	26-181.68	530.93	32-1100.5	804.24
63.22	318.09	H82.07	536.04	H100·9	810.54
1 - 63.61	322.06	1 - 82.46	541.18	1 101.3	816.86
64.01	326.05	H82.85	546.35	H101.7	823.21
$\frac{1}{2}$ - 64.40	330.06	3-183.25	551.54	½-H102·1	829.57
3 - 64.79	334·10 338·16	83·64 3 - 84·03	556.76	102.4	835·97 842·39
\$ -\ 65.18 - 65.58	342.25	84.43	567.26	102·8 103·2	848.83
21 - 65.97	346.36	27-84.82	572.55	33-103.6	855:30
66.36	350.49	H85:21	577.87	104.	861.79
1 - 66.75	354.65	1 + 85.60	583.20	104.4	868.30
67.15	358.84	H86.	588.57	# H104·8	874.84
1 67.54	363.05	3-86.39	593.95	105.2	881.41
67.93	367.28	86.78	599.37	105.6	888.00
3 - 68.32	371.54	3 + 87.17	604.80	₹ 106.	894.61
68.72	375.82	H87·57	610.26	H106.4	901.25
22-69.11	380.13	28-187.96	615.75	34-106.8	907.92
69.50	384.46	88.35	621.26	107.2	914.61
1 - 69.90	388.82	1 - 88.75	626.79	₹ 1 107.5	921.32
70.29	393.20	89.14	632.35	H107·9	928.06
1 70.68	397.60	1 1 89·53	637.94	108.3	934.82
H71.07	402.03	89.92	643.54	H108·7	941.60
2 +71.47	406.49	2 190.32	649.18	₹ 109·1	948.41
71.86	410.97	_ [90.71	654.83	1 109.5	955.25

106	CIRCU	MFERENCES AND AF	REAS OF C	HRCLES.	_
Circ.	Area.	Circ.	Area.	Circ.	Area.
	OTTO	Diame-		Diame-	
Diame-		ter. ()		ter.	
""· \					
35 - 109.9	962.11	41-1128.8	1320.2	47-1147.6	1734.9
1110.3	968.99	H129·1	1328.3	148.	1744.1
1 110.7	975.90	1 129.5	1336.4	148.4	1753.4
11111	982.84	H129·9	1344.5	148.8	1762.7
111.5	989.80	130.3	1352.6	149.2	1772.0
H111.9	996.78	H130·7	1360.8	149.6	1781.3
3 - 112.3	1003.7	₹ + 131·1	1369.0	₹ - 150.	1790.7
1112.7	1010.8	131.5	1377.2	150.4	1800.1
36	1017.8	42-1131.9	1385.4	48-150.7	1809.5
113.4	1024.9	132.3	1393.7	150.1	1818.9
1 + 113.8	1032.0	1 132.7	1401.9	量十151.5	1828.4
114.2	1039.1	H 133·1	1410.2	H151·9	1837.9
114.6	1046.3	133.5	1418.6	$\frac{1}{2}$ - $\frac{1}{1}$ 152·3	1847.4
H115.	1053.5	133.9	1426.9	₩152.7	1856.9
3 - 115.4	1060.7	₹ + 134·3	1435.3	₹ 153.1	1866.5
H115·8	1067.9	H134·6	1443.7	153.5	1876.1
37-116.2	1075.2	43-135.	1452.2	49 153.9	1885.7
H116.6	1082.4	135.4	1460.6	154.3	1895.3
1 - 117	1089.7	£ +135·8	1469.1	154.7	1905.0
117.4	1097.1	136.2	1477.6	H155·1	1914.7
117.8	1104.4	136.6	1486.1	155.5	1924.4
H118·2	1111·8 1119·2	137	1494.7	155.9	1934.1
3 - 118.6	1119.2	3 137.4	1503.3	4 + 156.2	1943.9
38 - 119.3	1134.1	137.8	1511·9 1520·5	50 156.6	1953·6 1963·5
119.7	1141.5	138.2	1529.1	50 157.	1903.3
1 - 120.1	1149.0	138.6	1537.8	157.8	1983.1
120.5	1156.6	4 H139·4	1546.5	H158·2	1993.0
120.9	1164.1	139.8	1555.2	158.6	2002.9
121.3	1171.7	H140·1	1564.0	H159.	2012.8
3 - 121.7	1179.3	¥ -1140·5	1572.8	₹ - 159.4	2022.8
122.1	1186.9	140.9	1581.6	159.8	2032.8
39 122.5	1194.5	45-141-3	1590.4	51-160-2	2042.8
122.9	1202.2	141.7	1599.2	H 160·6	2052.8
1 123.3	1209.9	1 +142.1	1608.1	1 + 161.	2062.9
123.7	1217.6	142.5	1617.0	161.3	2072.9
124.	1225.4	$\frac{1}{2}$ 142.9	1625.9	$\frac{1}{2}$ 161.7	2083.0
124.4	1233.1	143.3	1634.9	162.1	2093.2
3 - 124.8	1240.9	₹ · 143·7	1643.8	₹ + 162.5	2103.3
H125·2	1248.7	H144·1	1652.8	162.9	2113.5
40-1125.6	1256.6	46-144.5	1661.9	52 - 163.3	2123.7
126.	1264.5	144.9	1670.9	163.7	2133.9
1 126.4	1272.3	145.2	1680.0	164.1	2144.1
126.8	1280.3	145.6	1689.1	1 164.5	2154.4
127.2	1288·2 1296·2	146.	1698.2	164.9	2164.7
127·6 128·	1304.2	146.4	1707·3 1716·5	3 165.3	2175·0 2185·4
128.4	1312.2	146.8	1725.7	165·7 166·1	2195.4
1204	1012 2		1/45-1	1100.1	4190.1

	OIRC	JMFERENCES AND A	INDIAS OF C	JIICHES.	107
Circ.	Area.	Circ.	Area.	Circ.	Area.
Diame- ter.		Diame- ter.		Diame- ter.	
53-166.5	2206.1	59-1185.3	2733.9	65-1204.2	3318.3
166.8	2216.6	185.7	2745.5	204.5	3331.0
1 167.2	2227.0	1 186.1	2757.1	1 - 204·9	3343.8
H 167·6	2237.5	186.5	2768.8	205.3	3356.7
½-1168·	2248.0	186.9	2780.5	$\frac{1}{2}$ 205.7	3369.5
168.4	2258.5	187.3	2792.2	206.1	3382.4
₹ + 168.8	2269.0	3 + 187·7	2803.9	₹ + 206.5	3395.3
169.2	2279.6	188.1	2815.6	206.9	3408.2
54-169.6	2290.2	60-188.4	2827·4 2839·2	66-207.3	3421·2 3434·1
170.4	2311.4	189.2	2851.0	½ - 208·1	3447.1
170.8	2322.1	H189.6	2862.8	208.5	3460.1
171.2	2332.8	190.	2874.7	1 208.9	3473.2
171.6	2343.5	2 1190.4	2886.6	2 12003	3486.3
₹ 172.	2354.2	3 - 190.8	2898.5	₹ - 209.7	3499.3
172.3	2365.0	191.2	2910.5	210	3512.5
55-172.7	2375.8	61-191.6	2922.4	67-210.4	3525.6
H173·1	2386.6	192	2934.4	H210·8	3538.8
1 -1173.5	2397.4	1 + 192.4	2946.4	₹ + 211·2	3552.0
H173·9	2408.3	192.8	2958.5	H211·6	3565.2
$\frac{1}{2}$ 174·3	2419.2	193.2	2970.5	½- 212·	3578.4
H174.7	2430.1	193.6	2982.6	212.4	3591.7
₹ +175·1	2441.0	£ + 193·9	2994.7	2 + 212·8	3605.0
56 175.5	2452·0 2463·0	H194·3	3006.9	68 213.2	3618.3
56-175.9	2474.0	62 194.7	3019·0 3031·2	68 213.6	3631·6 3645·0
£ -176.7	2485.0	1 - 195.5	3043.4	1 - 214.4	3658.4
177.1	2496.1	195.9	3055.7	214.8	3671.8
177.5	2507.1	196.3	3067.9	1- 215.1	3685.2
177.8	2518.2	H196.7	3080.2	H215.5	3698.7
₹ - 178·2	2529.4	₹ - 197.1	3092.5	₹ - 215 ·9	3712.2
178.6	2540.5	197.5	3104.8	216.3	3725.7
57-1179	2551.7	63-197.9	3117.2	69-1216.7	3739.2
179.4	2562.9	198.3	3129.6	217.1	3752.8
1 +179.8	2574.1	198.7	3142.0	1 + 217.5	3766.4
180.2	2585.4	199	3154.4	217.9	3780.0
180.6	2596.7	199.4	3166.9	218.3	3793.6
181.	2608.0	199.8	3179.4	3 218.7	3807.3
181·4 181·8	2619·3 2630·7	2 + 200·2 200·6	3191·9 3204·4	219·1 219·5	3821.0
58-182.2	2642.0	64-201	3216.9	70-1219.5	3834·7 3848·4
182.6	2653.4	201.4	3229.5	220.3	3862.2
182.9	2664.9	1 - 201.8	3242.1	1 - 220.6	3875.9
183.3	2676.3	202.2	3254.8	1 1221.	3889 8
183.7	2687.8	12-1202.6	3267.4	1 221.4	3903.6
184.1	2699.3	203.	3280.1	H221.8	3917.4
₹ 184·5	2710.8	₹ +203.4	3292.8	3 + 222.2	3931.3
184.9	2722.4	203.8	3305.5	222.6	3945.2
		لك	A		

108	OS CIRCUMFERENCES AND AREAS OF CIRCLES.										
Circ.	Area.	Circ.	Area.	Circ.	Area.						
Diame-		Diame-	(All III)	Diame-							
ter.	V11111111	ter.	Villian .	ter.							
71 - 223	3959.2	77-1241.9	4656.6	83-ri260·7	5410.6						
223.4	3973.1	H242·2	4671.7	261.1	5426.9						
1 223.8	3987.1	1 +242.6	4686.9	£ +261·5	5443.2						
1224.2	4001.1	H243·	4702.1	261.9	5459.6						
224.6	4015.1	243.4	4717.3	1 262.3	5476.0						
1 225	4029.2	H243·8	4732.5	262.7	5492.4						
₹ 1 225.4	4043.2	₹ + 244·2	4747.7	3 + 263.1	5508.8						
225.8	4067.3	244.6	4763.0	263.5	5525.3						
72-1 226.1	4071.5	78-1 245	4778.3	84-1263.8	5541.7						
226.5	4085.6	245.4	4793.7	264.2	5558.2						
1 - 226.9	4099.8	1 + 245.8	4809.0	1 + 264.6	5574.8						
H227·3	4114.0	H246·2	4824.4	1 1265∙	5591.3						
227.7	4128.2	246.6	4839.8	3 - 265.4	5607.9						
H228·1	4142.5	H247·	4855.2	H 265·8	5624.5						
3 - 228.5	4156.7	3 + 247.4	4870.7	3 266.2	5641.1						
228.9	4171.0	247.7	4886.1	1266.6	5657.8						
73 229.3	4185.3	79-248-1	4901.6	85-1267	5674.5						
229.7	4199.7	H248·5	4917.2	267.4	5691.2						
1 - 230.1	4214.1	1 +248.9	4932.7	1 + 267.8	5707.9						
230.5	4228.5	249.3	4948.3	268.2	5724.6						
230.9	4242.9	249.7	4963.9	1-1 269.6	5741.4						
231.3	4257.3	250.1	4979.5	H268.9	5758.2						
3 + 231.6	4271.8	₹ + 250.5	4995.1	3 + 269.3	5775.0						
232	4286.3	H250·9	5010.8	H269·7	5791.9						
74-1232.4	4300.8	80-251.3	5026.5	86-1270.1	5808.8						
H232·8	4315.3	H251·7	5042.2	H270.5	5825.7						
1 - 233.2	4329.9	1 - 252.1	5058.0	1 + 270.9	5842.6						
233.6	4344.5	252.5	5073.7	H271·3	5859.5						
234	4359.1	$\frac{1}{2}$ 252.8	5089.5	₹-H271·7	5876.5						
234.4	4373.8	H253·2	5105.4	H272·1	5893.5						
3 - 234.8	4388.4	₹ - 253.6	5121.2	₹ - 272.5	5910.5						
235.2	4403.1	254.	5137.1	272.9	5927.6						
75 235.6	4417.8	81-1254.4	5153.0	87-1273.3	5944.6						
236•	4432.6	254.8	5168.9	273.7	5961.7						
1 - 236.4	4447.3	1 + 255.2	5184.8	1 - 274.1	5978.9						
236.7	4462.1	255.6	5200.8	274.4	5996.0						
237.1	4476.9	₹ 256.	5216.8	1 274.8	6013.2						
237.5	4491.8	256.4	5232.8	275.2	6030.4						
₹ +237.9	4506.6	₹ - 256.8	5248.8	3 + 275.6	6047.6						
238.3	4521.5	257.2	5264.9	276.	6064.8						
76-1238.7	4536.4	82-1257-6	5281.0	88 - 276.4	6082.1						
239.1	4551.4	258	5297.1	H276·8	6099.4						
239.5	4566.3	258.3	5313.2	1 1 277.2	6116.7						
239.9	4581.3	258.7	5329.4	277.6	6134.0						
$\frac{1}{2}$ 240·3	4596.3	$\frac{1}{2}$ - $\frac{1}{2}$ 259·1	5345.6	278	6151.4						
1240.7	4611.3	H259·5	5361.8	H278·4	6168.8						
241.1	4626.4	₹ +259.9	5378.0	2 + 278.8	6186.2						
1 241.5	4641.5	1260⋅3	5394.3	279.2	6203.6						
1		•	•								

Circ.	Area.	Circ.	Ares.	Circ.	Area.
Diame-	(IIII)	Diame-	(Million)	Diamo-	
ter.		ter.	19////	ter.	
	2227	0007	27000		70000
89 - 279.6	6221.1	93 - 292.1	6792.9	97-1304.7	7389·8 7408·8
1 279.9	6238·6 6256·1	1 292.5	6811.1	305.1	7427.9
280.3	6273.6	½ +292·9 -293·3	6847.8	1 305·5 305·9	7447.0
281.1	6291.2	293.7	6866.1	306.3	7466.2
281.5	6308.8	294.1	6884.5	306.6	7485.3
3 - 281.9	6326.4	3 - 294.5	6902.9	₹ - 307	7504.5
282.3	6344.0	294.9	6921.3	307.4	7523.7
90-282.7	6361.7	94-295.3	6939.7	98-1307.8	7542.9
283.1	6379.4	295.7	6958.2	308.2	7562.2
1 + 283.5	6397.1	1 + 296.	6976.7	1 + 308.6	7581.5
₩ 283.9	6414.8	296.4	6995.2	309.0	7600.8
$\frac{1}{2}$ 284·3	6432.6	296.8	7013.8	1 - 309.4	7620.1
284.7	6450.4	297.2	7032.3	309.8	7639.4
₹ + 285·1	6468.2	₹ + 297.6	7050.9	310.2	7658.8
285.4	6486.0	95——298· 298·4	7069.5	99 - 311.0	7678 ·2 7697 · 7
91-1285.8	6503·8 6521·7	95-298.4	7088.2	311.4	7717.1
1 - 286.6	6539.6	1 - 299.2	7125.5	1 - 311.8	7736.6
287.	6557.6	299.6	7144.3	# H312·1	7756.1
287.4	6575.5	3 300.	7163.0	$\frac{1}{2}$ - 312.5	7775.6
	6593.5	H300.4	7181.8	312.9	7795.2
	6611.5	₹ - 300·8	7200.5	313.3	7814.7
	6629.5	301.2	7219.4	313.7	7834.3
	6647.6	96-301.5	7238.2	100-314.1	7853.9
	6665.7	301.9	7257.1	₩314.5	7853.6
	6683.8	₹ 302·3	7275.9	₹ -H314·9	7893.3
1	6701.9	302.7	7294.9	315.3	7913.1
	6720.0	303.1	7313.8	315.7	7932·7 7942·4
	6738·2 6756·4	303.5	7332·8 7351·7	316·0 316·4	7942.4
	6776.4	303.9	7370.7	316·4 316·8	7991.9
<u> </u>	0110.4	Honzo	1010.11	H 210.9	10010

EXPLANATION OF THE TABLE FOR SEGMENTS, &c.

The chord divided by the height is the gauge in the Table, the quotient in the first column.

k = tabular coefficient, always to be multiplied by the chord.

To find the angle of an arc of a circle.

RULE. Divide the base (chord) of the arc by its height, (sine verse) and find the quotient in the first column. The corresponding number in the second column is the angle of the arc in degrees of the circle.

To find the radius of an arc of a circle.

RULE. Divide the chord of the arc by its height, and find the quotient in the first column. The corresponding number in the third column, multiplied by the chord, is the radius of the arc.

	110		TABLE FO	R SEGMENT	13 &C., OF	A CIRCLE.		
i	Chord div.	Centre	Radius	Cir. Arc.	Area Seg. $a = h c2$.	Surface	Solidity	Chord
Ì	by height.	Angle v.	r = kc	b = h c	a = R c a.	$a = k c^2.$	$C = h c^3$.	c = h r
	The same of the sa	1-55		1				
ľ	(0)	1 - 2 m	ベトラ	6				\leftarrow
					1			
ı	458.08	1	57.296	1.0000	.01091	.78539	.00085	.01744
i	229.18	2	28.649	1.0000	.00218	•78549	.00172	.03490
	152.77	3	19.101	1.0000	.00327	•78462	.00255	.05234
ı	114.57	4	14.327	1.0000	.00436	.78574	.00310	.06978
ı	84.747	5	11.462	1.0001	.00647	.78586	.00401	.08722
ı	76.375	6	9.5530	1.0003	.00741	.78599	.00514	·10466
	65.943	7	8.1902	1.0004	.00910	.78621	.00592	·12208
	57.273	8	7.1678	1.0006	.01089	·78630	.00686	·13950
ı	50.902	9	6.3728	1.0008	.01254	.78665	.00772	·15690
	45.807	10	5.7368	1.0011	.01407	.78695	.00857	·17430
ı	41.203	11	5.2167	1.0013	•01552	•78730	.00964	·19168
ı	38.133	12	4.7834	1.0016	*01695	•78725	.01031	·20904
ı	35.221	13	4.4168	1.0019	.01841	.78791	.01114	•22640
ı	32.742	14	4.1027	1.0023	.02000	.78832	.01199	.24372
	30.514	15	3.8307	1.0027	.02157	•78889	.01288	•26104
	28.601	16	3.5927	1.0029	.02269	1.78909	.01375	.27834
ı	26.915	17	3.3827	1.0034	.02434	·78969	.01462	·295 6 0
	25.412	18	3.1962	1.0039	$\cdot 02592$.79028	.01542	·31286
ı	24.068	19	3.0293	1.0044	.02744	.79084	.01635	•33008
ı	22.860	20	2.8793	1.0048	.02878	.79140	.01722	•34728
ı	21.760	21	2.7440	1.0054	.03040	·79234	·01802	.36446
ı	20.777	22	2.6222	1.0059	.03178	•79300	.01897	*38160
ı	19.862	23	2.5080	1.0066	.03343	•79340	.01984	·39872
ı	19.028	24	2.4050	1.0072	.03493	.79416	.02072	•41582
	18.261	25	2.3101	1.0078	•03639	•79486	.02159	•43286
	17.553	26	2.2233	1.0084	*03784	·79530	.02248	•44990
	16.970	27	2.1418	1.0091	.03970	.79639	.02315	•46688
	16.288	28	2.0673	1.0101	.04115	.79748	.02424	•48384
	15.721	29	1.9969	1.0105	.04230	.79811	.02511	•50076
	15.191	30	1.9319	1.0113	•04385	•79907	.02600	•51762
	14.970	31	1.8710	1.0121	.04476	•78530	•02692	·53446 ·55126
	14.230	32	1.8140	1.0129	.04710	.80098	·02778 ·02866	.56802
	13.796	33	1.7605		.04842	.80181	02866	.58479
	13.382	34	1.7102	1.0146	.04989	·80300 ·80405	02936	60140
	12.994	35	1.6628	1.0155	·05137 ·05311	·80405 ·80531	03046	·61802
	12·733 12·473	36 37	1.6184 1.5758	1.0167	.05401	80622	03137	.63460
	11.931	38	1.5358	1.0174	05628	80022	03220	65112
	11.621	39	1.4979	1.0194	05028	·80850	.03418	.66760
	11.342	40	1.4619	1.0204	.05899	-80987	-03506	.68404
	11.060	41	1.4266	1.0204	.06001	·81046	.03589	•70040
1	10.791	42	1.3952	1.0226	.06196	·81240	.03680	.71672
	10.534	43	1.3643	1.0237	.06359	81377	.03773	·73300
	10.289	44	1.3347	1.0248	.06574	·81505	.03864	.74920
	10.043	45	1.3066	1.0260	.06628	·S1756	.03890	•76536
	9.8303	46	1.2797	1.0272	.06826	.81795	.04050	.78146
	9.6153	47	1.2539	1.0290	.06998	·81939	.04143	•79748
	9.4092	48	1.2289	1.0297	.09138	·82064	.04247	·81346

_								717
1	Chord div.	Centre	Radius	Cir. Arc.	Area Seg.	Surface	Solidity	Chord
1	by height.	Angle v.	r = k c.	b == k c.	$a = k c^{9}$.	$a = k c^2$	$\mathbf{c} = k c^3$.	c = k r.
1								
ł	100	6-42	~~~~	15		ALE COLOR	COMPANDED IN	
1	0	A. 3.	S 7 2	£}	Carrie	C. III Washing	The same	$\langle - \rangle$
1								
ı	0.0119	49	7.005	1.0000	-07000	.00044	•04220	*00000
1	9.2113		1.2057	1.0309	.07290	*82244	*04330	·82938
1	9.0214	50	1.1831	1.0323	•07453	*82384	.04424	·84522
1	8.8387	51	1.1614	1.0336	.07611	*82562	.04519	.86102
1	8.6629	52	1.1406	1.0349	.07758	*82729	.04614	·87674
1	8.4462	53	1.1206	1.0364	•07959	*83363	.04685	.89238
1	8.3306	54	1.1014	1.0378	.08083	*83072	.04805	.90798
1	8.1733	55	1.0828	1.0393	.08246	*83249	.04901	.92348
1	8.0215	56	1.0650	1.0407	.08400	.83422	.05002	.93894
1	7.8750	57	1.0478	1.0422	.08579	·83602	.05098	.95430
1	7.7334	58	1.0313	1.0431	.08680	·S3796	.05191	.96960
1	7.5895	59	1.0154	1.0454	·0SS91	·84064	.05299	.98484
ı		60		1.0470	.09106	·84266	.05400	1.0000
1	7.4565		1.0000					
1	7.3358	61	•98515	1.0486	•09209	*84380	.05466	1.0150
1	7.2118	62	•97080	1.0503	•09375	·84581	.05583	1.0300
1	7.0914	63	•95694	1.0520	•09540	·84791	*05684	1.0450
1	6.9748	64	•94352	1.0537	.09697	*84996	.05784	1.0598
١	6.8616	65	•93058	1.0555	•09865	*85215	.05885	1.0746
-	6.7512	66	•91804	1.0573	·10036	*85441	.05987	1.0892
1	6.6453	67	•90590	1.0591	10201	*85640	.06088	1.1038
-1	6.5469	68	·89415	1.0610	.10367	*85815	.06181	1.1184
	6.4902	69	•88276	1.0629	·10520	*85464	.06201	1.1328
	6.3431	70	.87172	1.0648	.10710	*86350	.06396	1.1471
1	6.2400	71	·86102	1.8668	·10887	.86699	.06515	1.1614
1	6.1553	72	·85065	1.0687	.11046	.86834	.06604	1.1755
-	6.0652	73	·84058	1.0708	·11225	·87081	.06709	1.1896
- 1	5.9773	74	·83082	1.0728	·11385	.87935	.06815	1.2036
	5.8918	75	·82134	1.0749	·11563	87590	.06921	1.2175
-	5.8084	76	·81213	1.0770	·11736	·87853	.07037	1.2313
1			80319	1.0792	·11910	-88120	.07136	1.2450
١	5.7271	77 78	•79449	1.0814	12072	88389	.07244	1.2586
	5.6478							
-	5.5704	79	•78606	1.0836	12281	*88677	.07352	1.2721
1	5.4949	80	•77786	1.0859	12441	*88949	.07462	1.2855
1	5.4254	81	•76988	1.0882	.12660	·89161	.07512	1.2989
	5.3492	82	•76212	1.0905	·12793	*89520	.07683	1.3121
	5.2705	83	•75458	1.0920	·12958	*89958	.07819	1.3252
1	5.2101	84	•74724	1.0953	·13157	•90095	.07907	1.3383
	5.1429	85	•74009	1.0977	·13330	•90420	.07960	1.3512
1	5.0772	86	•73314	1.1012	·13546	•90734	.08102	1.3639
1	5.0134	87	•72637	1.1027	·13704	•91036	.08440	1.3767
1	4.9501	88	•71978	1.1054	·13893	.91363	.08836	1.3893
1	4.8886	89	•71336	1.1079	·14078	.91696	.08450	1.4818
1	4.8216	90	•70710	1.1105	.14279	.92210	.08621	1.4142
1	4.7694	91	•70101	1.1132	•14449	.92352	.08716	1.4265
	4.7117	92	69508	1.1159	.14643	.92476	.08798	1.4387
	4.6615	93	•68930	1.1186	.14817	•92914	.08932	1.4507
1	4.5999	94	•68366	1.1211	15009	·933S5	.09076	1.4627
1	4.5453	95 .	•67817	1.1242	15211	93746	.09197	1.4745
1	4.4845	96	67282	1.1271		.94272	.09348	1.4863
1	4.4040	. 50	01404	1.14/1	10010	04414	02949 ,	1.4009
1								

112		TABLE FO	OR SEGMEN	IS &c., of	A CIRCLE.			
Chord div.	Centre a	Radius	Cir. Arc.	Area Seg.	Surface	Solidity	Chord	Ì
by height.	Angle v.	r = k c.	b = k c.	$a = k c^2$.	$a = k c^2$	$c = k c^3$.	c = h r.	ı
(35)	(AX.		15		CONTRACTOR OF THE PARTY OF THE	TO THE		
101	W. " "	\ r/	RT73	Service and			7	
1		1	~~~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1			
4.4398	97	•66760	1.1300	·15600	•94470	.09442	1.4979	
4.3859	98	•66250	1.1329	.15801	•94852	.09567	1.5094	ı
4.3383	99	•65754	1.1359	•15995	•95236	.09693	1.5208	ı
4.2862	100	•65270	1.1382	·16180	.95682	.09831	1.5321	ı
4.2406	101	•64798	1.1420	.16393	.96011	.09856	1.5432	ı
4.1930	102	•64338	1.1451	•16610	.96412	.10076	1.5543	ı
4.1570	103	•63889	1.1483	·16925	•96568	.10557	1.5652	ł
4.1006	104	•63450	1.1515	.17001	.97246	.10273	1.5760	١
4.0555	105	63023	1.1547	•17204	•97643	.10471	1.5867	ı
4.0113	106	•62607	1.1530	17414	•98067	.10601	1.5973	ı
3.9679	107	.62200	1.1614	17619	•98495	·10735	1.6077	1
3.9252	108	•61803	1.1648	17832	98931	.10870	1.6180	1
3.8832	109	.61416	1.1682	18041	•99376	.11007	1.6282	
3.8419	110	•61039	1.1716	18257	•98827	•11149	1.6383	1
3.8013	111	•60670	1.1752	18472	1.0028	•11284	1.6482	1
3.7612	112	•60325	1.1790	•18696	1.0077	.11426	1.6581	1
3.7221	113	•59960	1.1823	·18900	1.0122	·11566	1.6677	ı
3.6837	114	•59618	1.1859	•19117	1.0169	·11709	1.6773	-
3.6454	115	•59284	1.1897	•19339	1.0218	·11853	1.6867	ł
3.6086	116	•58959	1.1934	•19559	1.0266	·11995	1.6961	1
3.5712	117	•58641	1.1972	·19787	1.0317	.12145	1.7053	1
3.5349	118	•58331	1.2011	•20009	1.0368	12294	1.7143	
3.4992	119	•58030	1.2050	•20227	1.0417	12444	1.7232	
3.4641	120	•57735	1.2089	20453	1.0472	12596	1.7320	
3.4296	121	•57450	1.2130	•20678	1.0525	.12748	1.7407	
3.3953	122	•57168	1.2177	20945	1.0578	12903	1.7492	
3.3616	123	•56895	1.2213	•21175	1.0634	·13060	1.7576	
3.3285	124	•56628	1.2253	•21399	1.0690	·13218	1.7659	ı
3.2940	125	•56370	1.2295	•21538	1.0753	·13391	1.7740	
3.2637	126	•56116	1.2338	•21859	1.0803	·13558	1.7820	
3.2319	127	•55870	1.2381	•22121	1.0862	·13701	1.7898	ı
3.2006	128	•55630	1.2425	•22370	1.0921	·13866	1.7976	1
3.1716	129	•55396	1.2470	22617	1.0974	·14028	1.8051	1
3.1393	130	•55169	1.2515	•22865	1.1040	.14202	1.8126	1
3.1093	131	•54947	1.2561	•23113	1.1104	.14371	1.8199	
3.0805	132	•54732	1.2607	.23372	1.1164	.14537	1.8271	
3.0555	133	•54522	1.2654	•23603	1.1212	.14676	1.8341	
3.0216	134	•54318	1.2701	•23892	1.1295	.14894	1.8410	
2.9777	135	•54120	1.2749	•24198	1.1420	•15209	1.8477	
2.9651	136	•53927	1.2798	•24364	1.1428	.15252	1.8543	
2.9374	137	•53740	1.2847	•24676	1.1495	•15422	1.8608	
2.9115	138	.53557	1.2897	•24938	1.1558	·15605	1.8671	
2.8829	139	•53380	1.2948	.25222	1.1634	·15807	1.8733	
2.8562	140	•53209	1.2999	25485	1.1705	.15996	1.8794	
2.8299	141	•53042	1.3051	25759	1.1777	.16201	1.8853	
2.8038	142	•52881	1.3065	•25936	1.1851	·16381	1.8910	
2.7781	143	•52724	1.3157	26320	1.1925	.16577	1.8966	
2.7527	144	.52573	1.3211	.26604	1.2000	.16776	1.9021	

Chord div.	Centre	Radius	Cir. Arc.	Area Seg.	Surface	Solidity	Chord
by height.	Angle v.	r = k c	b = k c.	$a = k c^2$.	$a = k c^2$	$c = k c^3$.	c = k r.
(I)	6-88	1	16		TO THE	Call De	
10%	* " "	S MY	气ファ		~ /		< /
1		1	1	~~	~	~	~
2.7276	145	•52426	1.3265	•26889	1.2077	·16965	1.9074
2.7002	146	•52284	1.3320	•27196	1.2166	•17209	1.9126
2.6816	147	.52147	1.3377	·27449	1.2219	•17205	1.9176
2.6533	148	.52015	1.3433	·27772	1.2318	•17605	1.9225
2.6301	149	.51887	1.3491	•28168	1.2396	•17809	1.9272
2.6064	150	•51764	1.3549	· 2 8369	1.2476	·18023	1.9318
2.5830	151	.51645	1.3608	·28674	1.2563	·18666	1.9363
2.5598	152	•51530	1.3668	· 2 8983	1.2648	·18751	1.9406
2.5239	153	•51420	1.3729	•29397	1.2801	·18845	1.9447
2.5143	154	•51315	1.3790	· 2 9607	1.2824	•18913	1.9487
2.4919	155	•51214	1.3852	·29928	1.2914	•19147	1.9526
2.4699	156	•51117	1.3919	•30259	1.3004	.19374	1.9563
2.4478	157	•51014	1.3973	•30560	1.3094	•19607	1.9598
2.4262	158	•50936	1.4043	•30905	1.3191	•20029	1.9632
2.4047	159	•50851	1.4109	•31239	1.3287	•20095	1.9663
2.3835	160	•50771	1.4175	•31575	1.3368	•20342	1.9696
2.3613	161	•50695	1.4243	•31931	1.3490	·20609	1.9725
2.3417	162	•50623	1.4311	•32263	1.3583	•20847	1.9753
2.3211	163	•50555	1.4380	•32618	1.3682	•21105	1.9780
2.3004	164	•50491	1.4450	•32969	1.3791	.21371	1.9805
2.2805	165	•50431	1.4520	•33327	1.3895	•21634	1.9829
2.2605	166	•50374	1.4592	•33684	1.4021	•21904	1.9851
2.2408	167	•50323	1.4665	•34048	1.4111	•22177	1.9871
2.2212	168	•50275	1.4739	•34422	1.4222	•21946	1.9890
2.2013	169	•50231	1.4813	•34802	1.4344	•22766	1.9908
2.1826	170	•50191	1.4889	•35230	1.4476	·23028	1.9924
2.1636	171	•50154	1.4966	•35563	1.4565	•23266	1.9938
2.1447	172	•50122	1.5044	•35953	1.4684	•23650	1.9951
2.1271	173	•50093	1.5123	•36337	1.4797	•23900	1.9962
2.1075	174	•50068	1.5202	•36747	1.4927	•24225	1.9972
2.0892	175	•50047	1.5283	•37152	1.5052	•24537	1.9981
2.0710	176	•50030	1.5365	•37562	1.5179	•24856	1.9988
2.0530	177	•50017	1.5448	•37974	1.5308	•25179	1.9993
2.0352	178	•50007	1.5533	•38401	1.5439	•25531	1.9996
2.0175	179	•50002	1.5618	•38828	1.5573	•25840	1.9999
2.0000	180	•50000	1.5707	•39269	1.5708	•26179	2.0000

To find the length of an arc of a circle.

RULE. Divide the chord of the arc by its height, and find the quotient in the first column. The corresponding number in the fourth column multiplied by the chord is the length of the arc.

To find the area of a segment of a circle,

RULE. Divide the chord of the segment by its height, and find the quotient in the first column. The corresponding number in the fifth column multiplied by the square of the chord, is the area of the segment.

Coefficient for Capacity and Weight,

Names of Substances	FFF.	Fii.	iii.	FF2.	F_{i2} .	ii2.	F'3.	i2.
Cubic inches,	1728	12	1	1356	9.42	0.785	903.7	0.523
Cubic feet,	1	694	•58	0.785	549	*41	0.523	3
Gallons,	17.476	0.052	•433	5.868	.408	*34	3.91	226
Water, fresh,	62.5	0.433	0.036	49	0.34	*. 283	32.7	0.019
Water, salt,	64.3	0.445	0.037	50.4	0.35	0.029	33.6	0.02
Oil,	57.5	0.4	0.033	45.1	0.313	0.026	30	0.017
Cast-iron,	450	3.12	0.26	353	2.45	0.204		0.136
Wrought-iron,	487	3.37	0.281	382	2.65	0.221	255	0.147
Steel,	490	3.4	0.283	385	2.67	0.222	257	0.149
Brass,	532	3.68	0.307	417	2.9	0.241	278	0.161
Tin,	456	3.16	0.263	358	2.48	0.207	239	0.138
Lead,	710	4.92	0.41	557	3.87	0.322	371	0.215
Zinc,	440	3.02	0.254	345	2.4	0.5	230	0.133
Copper,	556	3.85	0.321	436	3.03	0.252	291	0.168
Mercury,	850	5.9	0.491	666	4.63	0.385	445	0.257
Stone, common, -	156	1.08	0.09	122	0.85	0.071	82	0.047
Clay, - ·	135	0.936	0.078	106	0.735	0.061	70	0.04
Earth, compact, -	127	0.88	0.0733	99	0.692	0.058	66	0.038
Earth, loose,	95	0.66	0.055	74	0.517	0.043	50	0.029
Oak, dry,	58	0.4	0.033	44	0.316	0.026	30	0.017
Pine,	30	0.208	0.017	24	0.163	0.014	16	0.009
Mahogany,	66	0.457	0.038	52	0.36	0.03	34 28·2	0.02
Charcoal	27.5	0.375	0.016	42 21	0.294	0.024		0.016
Triarcoai,	21.9	0.19	0.010	41	0.19	0.012	14.4	: 0.008

To Find the Weight and Capacity by this Table

RULE. The product of the dimensions in feet or in inches, as noted in the counts, multiplied by the tabular coefficient, is the capacity of the solid, or weight in pounds avoirdupois.

Example 1. A cistern is 6 feet long, 27 inches wide, and 20 inches deep. How many gallons of liquid can be contained in it?

 $6 \times 27 \times 20 \times 0.052 = 16848$ gallons.

 $\it Example~2.$ A cast-iron cylinder is 4.5 feet long, and 7.5 inches diameter. Required the weight of it?

 $4.5 + 7.5^{2} \times 2.45 = 620$ pounds.

				CHILLE						
Angle.		Ordinates.			Angle.			Ordinales.		
W	1. 7.	2. 6.	3. 5.	4. h.	W	1. 7.	2. 6.	3. 5.	4. h.	
	00084	00164	.00193	.00218			.08932	11063	11773	
2	-00191	.00327	.00409	.0043€		05422	.09130	11318	12003	
3	00299	.00522	.00561	.00659	55	.05531	·0930S	11510	12235	
4	00382	.00654	.00818	·00S72	56	05646	.09487	11731	12466	
5	.00437	.00818	.01023	.01091	57	05760	.09673	11950	12698	
6	.00573	.00928	.01228	.01309	58	.05875	.09853	12170	.12932	
7	-00675	.01173	.01432	.01527	59	.05989	.10037	12393	.13162	
8	00764	.01309	.01639	.01746	60	.06094	.10220	.12612	.13397	
9	00845	.01474		.01964	61	.06261	.10427	.12840	.13631	
10	00955	.01637	.02047	.02183	62	.06331	.10593	.13054	.13866	
11	.01053	.01801	.02250	.02402	63	.06451	.10781	.13281	.14101	
12	01146	.01965	.02456	.02620	64	.06570	.10964	13505	•14337	
13	01245	.02129	.02662	·02839	65	·06681	.11101	13765	14573	
14	01284	.02271	.02861	.03058	66	.06805	11342	13956	.14810	
15	01234	.02461	.03081	.03282	67	.06914	11542	.14181	15048	
16	01435	.02625		.03496	68	.07040	11721	14409	15286	
17		02623	·03277 ·03484	03496	69	07040	11721	14409		
18	01630				70				15526	
19	01730	.02956	.03693	.03935	71	07284	12103	14864	15765	
20	01858	.03125	.03996	.04154		07407	12294	15087	16005	
	01922	.03286	.04103	.04374	72	07535	12485	•15323	16245	
21	02022	.03453	.04309	.04594	73	07656	·12685	15555	16487	
22	02119	.03619	.04522	.04814	74	07784	·12877	·15785	•16729	
23	.02215	.03787	.04720	.05034	75	.07912	·13078	·16016	16972	
24	.02311	.03934	.04930	.05255	76	.08040	·13292	16247	17216	
25	02413	.04117	.05138	.05475	77	08168	·13472	16482	17460	
26	02508	.04283	.05346	.05696	78	08297	·13670	16716	17706	
27	02610	.04457	.05552	.05917	79	08426	·13868	.16951	.17951	
28	02708	.04621	.05761	.06139	80	08,560	.14070	·17187	·18198	
29	.02813	.04793	.05970	.06361	81	08695	.14274	·17423	.18445	
30	02911	.04970	.06188	.06582	82	08829	.14477	17660	·18694	
31	03005	.05125	.06386	.06804	83	.08944	.14681	.17901	·18943	
32	03107	.05298	.06596	.07027	84	.09105	.14888	.18140	.19193	
33	.03191	.05464	·06806	.07250	85	.09235	.15120	.18379	.19444	
34	.03310	.05637	.07016	.07477	86	09377	.15304	.18622	.19695	
35	.03412	.05804	.07424	.07695	87	.09518	·15509	.18865	.19946	
36	.03515	.05992	.07452	.07919	88	.09660	.15756	·19108	.20201	
37	.03616	.06147	.07646	.08143	89	.09780	.15931	19350	20555	
38	.03718	.06327	.07858	.08367	90	.09944	.16144	19597	20710	
39	03821	.06492	.08069	.08591	91	10098	.16359	19842	20966	
40	.03905	.06631	.03243	.08816	92	.10240	.16575	20092	21223	
41	.0.1030	.06836	.08494	.09041	93	10384	.16787	•20338	21481	
42	.04133	.07012	.08707	.09266	93	10534	.17005	20589	21740	
43	04133	.07182	.08920	.09492	95	10692	.17224	20837	22000	
44	.04363	.07353	.09130	.09719		10052	17444	21091	22262	
45	04503	.07531	.09346	.09945	96	.10997	17666	21031	22523	
46	04522	.07706	.09562	10172	97	11150	17888	21542	22786	
47	04682	.07894	.09302	10172	98	.11310	18111	21390	23050	
	04833	·08059	.09790	10627	99	11468	.18354	22107	23315	
48					100			22364		
49	04879	.08236	*00207	10856	101	11626	18500	22623	23596	
50		.08413	.00422	.11085	102	11791	18793		23848	
51	05096	.08593	10639	11314	103	11959	19021	•22876	24107	
52	05204	08768	.10855	•11543	104	12116	·19256	23147	•24386	
				-						

RAIL ROAD CURVES.

When Railroads are to be connected by curves, we commonly have given the distance (chord c,) between the two ends oo of the tracks, and the tangential angle v. By these the curve is to be constructed.

Example 1. Fig. 128. The chord C=168 feet, and the tangential angle $v=19^{\circ}30'$. Required the centre angle w=, and the radius R=?

 $w=2(19^{\circ}30')=39^{\circ}$. $R={}^{3}kc=1^{\circ}4979{\times}168=251^{\circ}647$ feet. k= See Table for Segments, &c., of a circle.

By Tangential Angles.

The curve to be laid out by the three tangential angles ror, ron, and noo, each angle = $\frac{1}{3}v = 6^{\circ}$ 30'. Required the chord r = ?The centre angle for the chord r is

 $2\times(6^{\circ}30') = 13^{\circ}$, and $r = {}^{13}k R = 0.2264\times251.647 = 56.974$ feet.

By Angles of Deflexion.

Divide the centre angle w into an even number of parts = z. Set off at o the angle $z = r \circ n$, and bisect it into $r \circ r$ and $r \circ n$,—find the chord r, and sub-chord a, and continue as shown by Figure.

Example 2. Fig. 128. The tangential angle $v = 78^{\circ}$, and the chord C = 638feet. Required the centre-angle w = ? Radius R = ? Chord r = ? and the subchord a = ?

 $w = 2 \times 78^{\circ} = 156^{\circ}$. $R = 156 k c = 0.51117 \times 638 = 326.126$ feet.

Let the curve be laid out by 6 angles of deflexion, and $z = \frac{1}{6} \times 156^{\circ} = 26^{\circ}$, and $r = {}^{26}k R = 0.1499 \times 326.126 = 146.73$ feet. $a = {}^{26}k \ r = 0.4495 \times 146.73 = 66.012 \text{ feet.}$

By Ordinates.

Example 3. Fig. 129. The chord C = 368 feet, and $v = 36^{\circ}$. Required the height $\hat{h}=?$

 $h = \frac{1}{3}C(\operatorname{cosec}.v - \cot.v).$ - - cosec.360 = 1.70130

- - cot.36° = 1.37638 Subtract $h = \overline{0.32492} \times 184 = 59.785$ feet. The height

At x = 92 feet from h. Required the ordinate y?

$$\sin z = \frac{2 \times 92 \sin .36^{\circ}}{368} = 0.2938926 = \sin .17^{\circ} 6'.$$

$$y = \frac{1}{8} \times 368 \left(\frac{\cos .17^{\circ} 6'}{\sin .36^{\circ}} - \cot .36^{\circ} \right) = 45.9448 \text{ feet.}$$

By Sub=Chords.

Example 4. Fig. 130. The ends o and o of the tracks form different angles w and W to the chord C, and therefore must be connected by two curves of different radii, R a d r. The chord C = 869 feet, $w = 38^\circ$, and $W = 86^\circ$. Required the distance from o to the height h, n = ? sub-chord b = ? sub-chord a = ?radii R and r = ?

$$v = \frac{1}{2} \times 38^{\circ} = 19^{\circ}$$
, and $V = \frac{1}{2} \times 86^{\circ} = 43^{\circ}$.
 $n = \frac{869 \text{ tan.} 19^{\circ}}{\text{tan.} 19^{\circ} + \text{tan.} 43^{\circ}} = 20435 \text{ feet.}$

By Eight Ordinates.

Example 5. Fig. 133. Required 8 ordinates for a curve of chord C=710 feet and the centre angle $w = 60^{\circ}$? (See Table on the preceding page.)

> 1st and 7th Ordinates $0.07168 \times 710 = 50.8928$ feet. 2nd " 6th 3rd " 5th $0.11912 \times 710 = 84.5752$ $0.14637 \times 710 = 103.9227$ 66 66 66 4th or height h $0.15526 \times 710 = 110.2346$

By angles of deflexion.

w = 2v, $R = {}^w k C = \frac{1}{2}C$ cosec.v. $r = {}^z k R$, $a = {}^z k r = 2r \sin{\frac{1}{2}z}$.

129.

 $h = \frac{1}{2}C(\csc v - \cot v),$ $y = \frac{1}{2}C(\frac{\cos z}{\sin v} - \cot v),$ $\sin z = \frac{2x \sin v}{\cos z}.$

130. By Sub-chords.

 $n = \frac{C \tan v}{\tan v + \tan V}, \quad h = n \tan V,$ $b = n \sec V, \quad w = 2v$ W = 2V'

131.

Parallel tracks by a reverse curve.

Formulas same as above. The length $o \ o = 2c$, length of a circle arc $l = 0.035v \ R$.

132.

The greatest radius in a reverse curve.

 $w = \frac{1}{2}(V+3v), \quad W = w+V - v,$ $a = w k R, \quad b = w k R,$

 $R = C \sec w (\sin V - \sqrt{\sin^2 V - \cos^2 w}).$

133.

Curve by 8 Ordinates.

The ordinates are calculated in the accompanying Table, the chord C=1 or the unit.

If the angle w is large, or there be some obstacle on the chord C_t find the height h and lay out the curve by two or more sets of 8 ordinates.

By Ordinates and Subchords.

Example 6. Fig. 134. The tangents t being prolonged to where they meet at a, divide that angle into two equal parts, say $W=75^\circ$. Required the tangents t=? external secant S=? chords C=? and the angle w=?Radius of the curve R=1500 feet.

> $t = R \cot .75^{\circ} = 1500 \times 0.26794 = 401.91 \text{ feet.}$ Centre angle $w = 90 - 75^{\circ} = 15^{\circ}$ for half the curve. $S = R \text{ (sec.}15^{\circ}-1) = 1500 \text{ (1.0352} - 1) = 52.8 \text{ feet.}$ The chords $C = k R = 0.26104 \times 1500 = 391.56 \text{ feet.}$

Measure off from a the tangents and the external secant.

Draw the chords CC, and divide them each into eight equal parts. In the table of ordinates under $w=15^{\circ}$ will be found the

1st. 7th. 0.01438×391.56=5.631, 2nd. 6th. 0.02461×391.56=9.636, 3rd. 5th. 0.03081×391.56=12.063, 4th. $0.03282 \times 39.56 = 12.851$

Thus by only four multiplications, 16 ordinates in the curve is obtained. Should there be any obstacles for the chords C. C. as is often the case in excavations and on embankments, a line can be drawn further in on the track parallel to the chord and the ordinates obtained by subtraction, readily understood by the Engineer.

Ellipse by Ordinates.

By this arrangement ellipses can be constructed of any proportions. One of the two axes is divided into 16 equal parts. The ordinates drawn and calculated as shown by the figure 135.

Parallel Tracks by a Semi-Ellipse,

Example 7. Fig. 136. The instrument placed at b and b', divide the angles W and w each into two equal parts, prolong the chords which will meet at a, a point in the curve. Divide the chords each into eight equal parts, and draw the ordinates parallel to the tracks as shown in the figure. The grand chord C is the unit for calculating the ordinates, which latter are alike on both the chords c', c''.

1st 2nd. 3rd. 4th. 5th. 6th. 7th.

0.2058 C 0.2029C $0.1830\,C$ 0.1795C 0.1477C 0.1091C 0.0586 C.

Suppose the grand chord to be C=2050 feet.

Required the length of the 6th ordinate? 0.1091×2050-223.655 feet.

Tracks not Parallel by Elliptic, arc.

Example 8. Fig. 137. Divide the angles W and w each into two equal parts, prolong the subchords until they intersect one another at a, which is a point in the curve. Divide the chord C into eight equal parts, join

a with the 4th division and draw the other ordinates parallel thereto. Suppose the angles are $W=18^{\circ}$ and $w=12^{\circ}$, the centre angle will be 30° for which the ordinates are to be calculated from the table. The chord C=125 feet. Required the 3rd and 5th ordinates? $0.06188 \times 125 = 7.335$ feet.

Springing of Rails.

Example 9. Fig. 138. A rail of L=21 feet is to be curved to a radius of R=1250 feet. Required the spring S=? in sixteenths of an inch.

 $S = \frac{24 \times 21^2}{1250} = 8.47$ sixteenths.

Super Elevation of the External Rail.

Example 10. Fig. 139. A train running M=30 miles per hour on a curve of R=1550 feet radii, the gauge of the track is G=5 feet. Required the angle of inclination v=1 and the super elevation of the external rail h=1

$$tan.v = \frac{30^2}{15 \times 1550} = 0.0237 = tan. \ 1^{\circ} \ 21'.$$

 $h=G \sin 1^{\circ} 21'=5\times 0.02356=0.1178$ feet, or nearly $1\frac{1}{9}$ inches.

It is practically impossible to lay the super elevation to suit the different speeds of trains. If a mean speed is taken, the faster passenger trains will wear the outer rail, and the slow or freight train will wear the inner rail.

By ordinates and subchords.

$$t = R \cot W = R \tan w, W = 90 - w,$$

 $S = R (\sec w - 1) = R (\csc W - 1)$

C = k R. For k, see table of segments. 135.

Ellipse by ordinates.

$$\begin{array}{lll} 1 = 0.4840\,C & 5 = 0.9204\,C \\ 2 = 0.6616\,C & 6 = 0.9682\,C \\ 3 = 0.7808\,C & 7 = 0.9922\,C \\ 4 = 0.8660\,C & 8 = C \text{ the unit.} \end{array}$$

136.

Parallel tracks by elliptic curve:

$$h = \frac{1}{2}C. \quad w = 2v. \quad W = 2V,$$

$$c' = \frac{C \sin W}{2 \sin v}, \quad c'' = \frac{C \sin w}{2 \sin V},$$
See example for ordinates.

137.

Angle of the arc = W + w.

Ordinates to be calculated from the table.

138

$$S = \frac{1.5 L^2}{R} = \text{spring in inches.}$$

$$S = \frac{24 L}{R} = 16$$
ths of an inch.

139.

Inclination of tracks in curves.

$$\tan v = \frac{M^2}{15 R} \cdot h = G \sin v.$$

Meaning of letters, see example.

EXCAVATION AND EMBANKMENT.

Example 1. The Road-way of an excavated channel is r=15 feet, the depth D=9 feet, and the breadth at the top b=46 feet. Require the slope S=?

Formula 6.
$$S = \frac{46.5 - 15}{2 \times 9} = 1.75 \text{ or } 13 \text{ to } 1.5 \text{ or } 1.5$$

Example 2. The Road way is to be r=15, D=18, and the slope $S=1\frac{1}{4}$, Require the breadth b=? and the cross-section A=?

Formula 4.

$$b = 2 \times 18 \times 1.25 + 15 = 60$$
 feet.

Formula 7.

$$A = \frac{18}{2} (60 + 15) = 675$$
 square feet.

Example 3. The Road-way is to be r=16 feet, the slope $S=1\frac{1}{2}$, and the depth D=11 feet. Required the area of Cross-section A=?

Formula 9. $A = 11 (11 \times 1\frac{3}{4} + r) = 357.5$ square feet.

Example 4. The Road-way r=18 feet, slope $S=1\frac{1}{4},\,d=14$ feet 6 inches, and the length from o is l=55 feet. Required the cubic contents ${\bf c}=?$

Formula 11. $\mathbf{c} = 55 \times 14.5 \left(\frac{14.5 \times 1.25}{3} + \frac{18}{2} \right) = 11995.676$ cubic feet, divided by 27 = 444.28 cubic yards.

Example 5. The Road-way is r=16 feet, slope $S=1\frac{1}{4}$ feet, $D=17\cdot 5$, $d=7\cdot 4$ and the length L=100 feet. Required the cubic content C=?

Formula 12, $\mathbf{C} = 100 \left[\frac{1}{5} \left(\frac{17.5^2 + 7.4^2 + 17.5 \times 7.4}{3} \right) + \frac{16}{2} \left(17.5 + 7.4 \right) \right]$ = 44445 cubic feet, or 1645.4 cubic yards.

The computation is executed thus.

$$(163.5 \atop 81.75 \atop 199.2$$
 Slope, add $\frac{1}{2}$

 \times 100 = 44445. cubic feet.

Letters in the Formulas correspond with the Figure.

$$S = \cot v, -1.$$

$$a = D S, -2.$$

$$a = \frac{d}{2}(b+r), -3.$$

$$a = \frac{d}{2}(b+r), -8.$$

$$A = \frac{d}{2}(b+r), -8.$$

$$A = D(D S + r), -9.$$

$$A = d(d S + r), -10.$$

$$S = \frac{d}{D}, -5.$$

$$S = \frac{d}{D}, -5.$$

$$S = \frac{b-r}{2D}, -6.$$

$$S = \frac{b-r}{2D}, -12.$$

Letters Denote,

A and a = Cross-Sections in square feet, of the excavated channel or embankment.

D and d = depth in feet, of the Sections. r = width in feet of the Road-Way.

b = Base in feet of the embankment, or top breadth of the channel.

L =length in feet, between the two Sections A and a.

l = length in feet, from the Section a to the point o where the ground is level with the road.

C = cubic contents in feet, between A and a. c = cubic contents in feet, between a and o. S = slope of the sides. The slope is commonly given in proportions, thus:

"Slope = $1\frac{1}{2}$ to 1," which means, that the side slopes $1\frac{1}{2}$ feet horizontally for 1foot vertical.

v = angle of the slope.

TRACTION ON ROADS.

Letters denote.

F = tractive force in pound avoir., necessary to overcome the rollingfriction, and ascending inclined plains.

M =miles per hour of the train or force F.

T = weight of the load in tons, including the weight of the carriages. On rail-roads T includes the weight of the locomotive and tender.

On ran-roads T includes the weight of the locomotive and tender, t = weight of the locomotive resting on the driving wheels in tons. h = vertical rise in feet per 100 of the inclined roads.
b = base in feet per 100 of the inclined road or plain.
k = tractive coefficient in pound per ton of the load T, as noted in the accompanying Table, under the different conditions of the road.
A = area of one of the two cylinder pistons in a locomotive, in sq. in.
P = mean pressure of steam in lbs. per sq. in. on cylinder pistons.
S = stroke of nistons in feet.

S =stroke of pistons in feet.

D =diameter of driving wheel in feet.

H = actual horse power of a locomotive or the power necessary for the load. About 25 per cent. is allowed for friction and working pumps. f = adherence coefficient of the driving wheels to the rails, in pounds per ton of the weight t.

n = revolutions per minute of driving wheels. d = continued working hours of a horse. v = velocity in feet per second. t' = weight of a horse in pounds.

Example 11. Fig. 140. The area of one of the two cylinder pistons in a locomotive is A=314 square inches, stroke of piston P=2 feet, meanpressure P=80 lbs. per square inch. Driving wheels D=4 feet diameter. Required the tractive force F=? of a locomotive.

$$F = \frac{314 \times 2 \times 80}{4} = 12560$$
 lbs. the answer.

The adhesive force of the driving wheels to the rails, ft, must always be greater than the retractive force of the locomotive, otherwise the wheels will slip on the track.

Example 12. Fig. 141. A locomotive of t=15 tons on an inclined plain rising h=10 feet, and the base b=99.5 feet per 100. f=560, other dimensions being the same as in the preceding example. Required the tractive, retractive and adhesive forces?

Tractive,
$$F = \frac{314 \times 2 \times 80}{4} - 22 \cdot 4 \times 15 \times 10 = 9200 \text{ lbs.}$$

Retractive,

$$F = 22.4 \times 15 \times 10 = 3360 \text{ lbs.}$$

Adhesive,

$$F = \frac{560 \times 15 \times 99.5}{100} = 8358 \text{ lbs.}$$

Consequently the locomotive can ascend the inclined plain with a tractive force of 8358 -3360 = 4998 lbs., without slip in the driving wheels. Example 13. Fig. 142. A train of T = 200 tons is to be drawn M = 20 miles per hour on a horizontal track in good condition, k = 4. Required retractive force F=?

$$F = 200 (4 + \sqrt{20}) = 1694.4 \text{ lbs. the answer.}$$

Example 14. Fig. 143. A train of T=150 tons is to be drawn up an inclined plain of h=9 feet in 100, with a speed of M=16 miles per hour, k=4. Required the necessary horse power of the locomotive H=3

$$H = \frac{16 \times 150}{375} (22.4 \times 9 + 4 + \sqrt{16}) = 1342.144 \text{ horses.}$$

Example 15. Fig. 144. Required the tractive ability F=? of a horse, running M=7 miles per hour, in d=4 continued hours.

$$F = \frac{375}{7\sqrt{4}} = 26.8$$
 lbs. the answer.

142

145.

$$F = \frac{A S P}{D}, \quad n = \frac{28 M}{D},$$

$$H = \frac{A S P n}{11000} = \frac{A S P M}{376 D}.$$
Adhesive force = ft .

141 $F = \frac{A \ S \ P}{D} - 22 \cdot 4th. \quad M = \frac{D \ n}{28},$ Adhesive, $\frac{f \ t \ b}{100} > 22 \cdot 4th.$ retractive.

 $F = T(k + \sqrt{M})$. < f t = Adhesive. $H = \frac{MT}{2\pi E}(k + \sqrt{M}),$

143. $F = T(22 \cdot 4h + k + \sqrt{M}). < \frac{f t b}{100} = \text{Ad.}$ $H = \frac{M}{375} T(22 \cdot 4h + k + \sqrt{M}).$

144. $F = T(k + \sqrt{M})$. v = 1.466 M.

 $F = T(22.4 h + k + \sqrt{M}).$

$$F = \frac{550}{v \sqrt{d}} - \frac{t'h}{100} \quad M = 0.6821 \ v.$$

Example 16. Fig. 145. Required the tractive force F=? of a load $T=5\cdot25$ tons, to be drawn M=2 miles per hour up a turnpike of h=9 feet in 100, the road being newly laid with coarse gravel k=50.

$$F = 5.25 (22.4 \times 9 \times 50 \times \sqrt{2}) = 1328.25 \text{ lbs.}$$

Suppose a horse to weigh t' = 1000 lbs., working continually in d = 1 hour up the turnpike. Required the tractive ability F = ? per horse.

$$F = \frac{375}{2\sqrt{1}} - \frac{1000 \times 9}{100} = 97.5 \text{ lbs.}$$

Traction Coefficient

Number of horses $=\frac{1328\cdot25}{97\cdot5}=13\cdot6$ say 14 horses which will be necessary

for the load under the mentioned circumstances. In these examples it is necessary to take M>1. and d>1.

Traction Coefficient at very slow speed.	κ
On railroads in good condition, carriage axels well lub	ricated. 4
On railroads under ordinary, not very good condition.	
On very smooth stone pavement,	12
On ordinary street pavements in good condition.	20
On street pavements and turnpikes.	30
On turnpikes newlaid with coarse gravel and broken st	tones. 50
On common roads in bad condition.	150
On natural loose ground or sand.	560
Adherence Coefficient,	· · ·
On rails of maximum dryness.	672
" very dry.	560
" under ordinary circumstances.	450
" in wet weather.	315
" with snow or frost.	224
" WITH SHOW OF ITOST.	224

In railway curves, the retractive force is augmented so many per cent., as the whole train occupies degrees in the curve.

To Reduce Inches and Fractions thereof to Decimals of a Foot, and vice versa.

PLATE I.

This is a common decimal scale on which the 12 inches of a foot are laid out. Any length of a foot expressed by inches and the common fractions, intersects its own value in decimals, and are read off as on a common diagonal scale with 10 to the base.

Example 1. How much is $8\frac{1}{4}$ inches in decimals of a foot? Find $8\frac{1}{4}$ inches on the rule, which will be found to intersect 6875 on the decimal scale; or $8\frac{1}{4}$ in = 0.6875 feet.

The first figure 6 is marked at the top and bottom of the scale, the second figure 8 is the eighth vertical (or nearly so) line from 6; the third figure 7 is the seventh horizontal line marked at the ends of the scale, and the fourth figure 5 is the horizontal dotted line between 7 and 8.

For sixteenths see the fine single rule.

Example 2. How much is 0.526 feet in inches? 6 5/16 the answer.

To Reduce Vulgar Fractions into Decimals and vice versa.

PLATE II.

This is a similar arrangement to the preceding one. The vulgar fractions are laid out so that the denominators are marked at the ends of the scale and the nominators on the line that joins the given denominators; by this arrangement the nominator of the vulgar fraction intersects its own value in decimals on the scale. To facilitate the operations it is best to imagine in which quarter the vulgar fraction is; as $\frac{3}{16}$ is in the first, $\frac{3}{8}$ in the second; $\frac{3}{8}$ in the third, and $\frac{43}{18}$ in the fourth quarter, &c., &c.; each rule occupies a quarter of the scale, on which the vulgar fraction is to be found accordingly.

of the scale, on which the valgar raction is to both an example 1. How much is $\frac{9}{16}$ in decimals? On the third rule it will be found at 5625 of decimals, or $\frac{9}{16} = 0.5625$. The first and second figures 56 are marked as described for Plate I, and the third, fourth, &c., &c., figures are written down on the horizontal line of the given

Example 2. What nearest vulgar fraction answers to the decimals 0.39583?

 $\frac{1}{48}$, the answer.

These two diagrams are exceedingly useful in practice. By Plate II, Vulgar Fractions can be added and subtracted.

TRIGONOMETRY.

TRIGONOMETRY is that part of Geometry which treats of Triangles. It is di-

vided into two parts, viz.: plane and spherical.

Plane Trigonometry treats of triangles which are drawn (or imagined to be) on a plane. Spherical Trigonometry treats of the triangles which are drawn (or im-

agined to be) on a sphere.

A triangle contains seven quantities, namely, three sides, three angles, and the surface; when any three of these quantities are given, the four remaining ones can by them be ascertained, (one side or the area must be one of the given quantities) and the operation is called solving the triangle, which is only an ap-

plication of arithmetic on Geometrical objects.

For the foundation of the above mentioned solution, there are assumed eight help quantities which are called *Trigonometrical functions*, and are here denoted with their names and number, corresponding with Figure 1? In the accompanion nying Tables, the functions are calculated at every 10 minutes per degree in the quadrant of the circle represented by Fig. 1? The angle for which the functions are mentioned, is the opening between the two lines 7 and 2, 3, this angle is denoted by the letter C, and the expression sin. C. means the line I compared with the radius r as a unit.

Example 2. Fig. 136. An inclined plane a=150 feet long, and c=27 feet, the height over its base. What is the angle of inclination C=?

Formula 14.
$$sin.C = \frac{c}{a} = \frac{27}{150} = 0.18000.$$

Find 0-18000 in the table of sines, which will be found at 10° 30' which is the angle C nearly.

Example 3. Fig. 137 An oblique angled triangle has the sides c = 27.6 feet, the angle $C = 34^{\circ} 10'$, and the angle $A = 47^{\circ} 40'$. How long is the side a = ?

Formula 1.
$$a = \frac{c \sin A}{\sin C} = \frac{27.6 \times \sin .47^{\circ}}{\sin .34^{\circ}} = 36.33$$
 feet, the answer.

By Logarithms.

Example. 1. Two ships of war notice a strong firing from a castle; in order to be safe, they keep themselves at a distance beyond the reach of the balls from the castle. To measure the distance from the castle, they place the vessels 800 yards from each other, and observe the angles between the castle and the vessels to be $A = 63^{\circ}45'$, $B = 75^{\circ}50'$. What will be the two distances from the castle?

$$C = 180 - 63^{\circ} 45' - 75^{\circ} 50' = 40^{\circ} 25'$$
.

To A the distance will be,

$$b = \frac{c \sin B}{\sin C} = \frac{800 \times \sin .75^{\circ} 50'}{\sin .40^{\circ} 25'} = 1195.75 \text{ yards.}$$

To B the distance will be,

$$a = \frac{c \sin. A}{\sin. C} = \frac{800 \times \sin. 63^{\circ} 45'}{\sin. 40^{\circ} 25'} = 1106^{\circ} 6 \text{ yards.}$$

Example 2. From a window in the lower floor of a house which lays level with the foot of a tower, is observed an angle = 40° to the top of the tower. From another window in the upper story, in the same perpendicular as the lower window, the altitude of the tower is observed to be = 37° 30', which is 18 feet above the lower window.

Then we have A = 90 — 40° = 50°. C = 90+27° 30′ = 127° 30′. B = 180 — 50 — 127° 39′ = 2° 30′.
$$b = 18$$
 feet.

What will be the height of the tower and the distance from it? The distance from the lower window to the top of the tower = c.

$$c = \frac{b \sin.\text{C}}{\sin.\text{B}} = \frac{18 \times \sin.127^{\circ} 35'}{\sin.2^{\circ} 30'} = 327 \cdot 3 \text{ feet.}$$

The height of the tower = h.

$$h = c. \sin A = 327.3 \times \sin 40^{\circ} = 210$$
 feet.

The distance to the tower = d.

$$d = c. \cos A = 327.3 \times \cos 40^{\circ} = 250.8$$
 feet.

1	Sinus	abbreviated	sin.C.
2	Cosinus	66	cos.C.
3	Sinus-versus	46	sinv.C.
4	Cosinus-versus	6	cosv.C.
5	Tangent	66	tan.C.
	Cotangent	"	cot.C.
	Secant	66	sec.C.
	Cosecant	"	cosec.C.

r = Radius of the circle, which is the unit by which the functions are measured.

$$r^2 = \sin^2 C + \cos^2 C.$$

$$\tan C = \frac{\sin C}{\cos C},$$

$$\tan C = \frac{1}{\sin C},$$

$$\tan C = \frac{1}{\cot C},$$

$$\cot C = \frac{\cos C}{\sin C},$$

$$\cot C = \frac{\cos C}{\sin C},$$

$$\cot C = \frac{1}{\tan C},$$

$$\cot C = \frac{1}{\tan C},$$

$$\sec C = \frac{1}{\cos C},$$

$$\sin v \cdot C = \frac{1}{--\cos C},$$

$$\cos v \cdot C = 1 \sin C,$$

$$\sin c \cdot C = \frac{1}{2} v \cdot (\sin^2 C + \sin v^2 C),$$

$$\sin c \cdot C = \frac{1}{\tan C},$$

$$\sin c \cdot C = \frac{1}{\cos C}$$

Positive and Negative Signs.

					_			
Angles.	sin.	cos.	sinv.	CO 1.	tan.	cot.	sec.	cosec.
+00	+0	+1	+0	+1	+0	+∞	+1	+-∞
+900	+1	<u>+</u> 0	+1	+0	<u>+</u> ∞	<u>+</u> 0	<u>+</u> ∞	+1
+1800	<u>+</u> 0	-1	+2	+1	+ 0	∓∞	-1	+∞
°+276°	-1	+0	+1	+2	<u>+</u> ∞	±'.	∓∞	-1
+3600	+0	+1	+0	+1	70	-∞	+1	

When a quantity has reached 0 or ∞ , it has ceased to exist, because it can not be increased or diminished.

Example. What is the length of the secant for an angle of 74° 18'?

Secant C =
$$\frac{1}{\cos_{2} 74^{\circ} 18'} = 3.695$$
.

Natural Sine.

Deg.	0'	10'	20'	30'	40'	50'	60'	li		
0	.00000	.00291	.00581	•00872	.01163	.01454	.01745	89		
1	.01745	.02036	.02326	.02617	.02908	.03199	.03489	88		
2 3	.03489	.03780	.04071	•04361	•04652	•04943	.05233	87		
3	.05233	.05524	.05814	.06104	•06395	.06685	.06975	86		
4	.06975	.07265	.07555	.07845	.08135	.08425	.08715	85		
5	.08715	.09005	.09294	.09584	.09874	•10163	•10452	84		
6	.10452	10742	.11031	•11320	•11609	·11898	12186	83		
7	.12186	12475	12764	•13052	•13340	•13629	•13917	82		
8	.13917	14205	•14493	·14780	•15068	.15356	·15643	81		
9	15643	·15930	.16217	.16504	•16791	17078	·17364	80		
10	17364	.17651	•17937	·18223	·18509	·18795	·19080	79		
11	19080	·19366	·19651	·19936	•20221	·20506	20791	78		
12	20791	21075	·21359	·21643	•21927	.22211	•22495	77		
13	•22495	•22778	·23061	•23344	•23627	•23909	•24192	76		
14	•24192	.24474	•24756	•25038	.25319	·25600	.25881	75		
15	.25881	•26162	.26443	•26723	.27004	.27284	•27563	74		
16	.27563	27843	·28122	·28401	.28680	·28958	•29237	73		
17	•29237	•29515	·29793	•30070	*30347	·30624	•30901	72		
18	.30901	*31178	·31454	•31730	•32006	·32281	•32556	71		
19	32556	*32831	·33106	•33380	•33654	•33928	•34202	70		
20	*34202	*34475	·34748	•35020	•35293	*35565	•35836	69		
21	35836	*36108	•36379	•36650	•36920	•37190	*37460	68		
22	*37460	•37730	·37999	•38268	•38536	·38805	•39073	67		
23	•39073	•39340	·39607	•39874	•40141	•40407	•40673	66		
24	•40673	•40939	·41204	•41469	•41733	•41998	•42261	65		
25	•42261	•42525	·42788	•43051	•43313	•43575	•43837	64		
26	•43837	•44098	·44359	•44619	•44879	•45139	•45399	63		
27	•45399	•45658	·45916	•46174	•46432	•46690	•46947	62		
28	46947	•47203	•47460	•47715	•47971	•48226	•48480	61		
29	•48480	·48735	•48988	•49242	•49495	•49747	•50000	60		
30	•50000	•50251	•50502	•50753	•51004	•51254	•51503	59		
31	•51503	.51752	•52001	•52249	•52497	.52745	•52991	58		
32	.52991	•53238	.53484	•53729	•53975	•54219	•54463	57		
33	•54463	.54707	•54950	•55193	•55436	.55677	•55919	56		
34	•55919	.56160	•56400	•56640	•56880	•57119	.57357	55		
35	•57357	•57595	•57833	·58070	•58306	.58542	•58778	54		
36	•58778	•59013	•59248	•59482	•59715	•59948	·60181	53		
37	.60181	.60413	.60645	·60876	·61106	·61336	·61566	52		
38	.61566	61795	.62023	•62251	•62478	•62705	62932	51		
39	.62932	·63157	•63383	•63607	.63832	.64055	·64278	50		
40	64278	•64501	.64723	.64944	.65165	.65386	·65605	49		
41	.65605	.65825	.66043	•66262	•66479	•66696	•66913	48		
42	•66913	.67128	•67344	•67559	•67773	.67986	•68199	47		
43	68199	•68412	.68642	•68835	•69046	69256	•69465	46		
44	.69465	.69674	·69883	•70090	.70298	.70504	.70710	45		
	60'	50'	40'	30′	20'	10'	0'	Deg		
			Notn	ral Cas	ine.					

Natural Cosine.

Natural Sine.

Natural Sine.									
Deg.	0'	10'	20'	30'	40'	50'	60'		
45	.70710	.70916	.71120	•71325	•71528	.71731	•71933	3 44	
46	•71933	•72135	•72336	-72537	•72737	•72936	•73133	43	
47	•73135	•73333	•73530	.73727	•73923	.74119	•74314		
48	•74314	.74508	•74702	.74895	.75088	.75279	.75470		
49	.75470	.75661	.75851	.76040	•76229	.76417	.7660-	40	
50	.76604	.76791	.76977	.77162	.77347	•77531	.77714	39	
51	.77714	.77897	.78079	-78260	.78441	.78621	-78801	38	
52	.78801	.78979	•79157	.79335	•79512	•79688	.79863	37	
53	.79863	-80038	80212	-80385	.80558	80730	-80901	36	
54	80901	81072	*81242	-81411	*81580	.81748	-81915	35	
55	*81915	*82081	*82247	-82412	.82577	.82740	82903	34	
56	82903	*83066	83227	-83388	*83548	.83708	-83867	33	
57	*83867	·84025	*84182	.84339	*84495	.84650	-84804		
58	*84804	.84958	.85111	-85264	.85415	.85566	85716	31	
59	*85716	.85866	.86014	-86162	*86310	.86456	-86602	30	
60	·86602	86747	86891	-87035	.87178	.87320	87461	29	
61	.87461	87602	87742	•87881	*88020	88157	-88294		
62	*88294	.88430	*88566	•88701	*88835	*88968	-89100	27	
63	·S9100	·89232	·89363	.89493	*89622	*89751	89879	26	
64	89879	•90006	•90132	.90258	.90383	.90507	.90630	25	
65	.90630	•90753	.90875	•90998	•91116	•91235	.91354	24	
66	.91354	.91472	•91589	91706	•91811	.91936	-92050	23	
67	*92050	•92163	•92276	•92387	•92498	•92609	.92718	22	
68	.92718	•92826	•92934	.93041	•93147	•93253	.93358	21	
69	*93358	•93461	•93564	•93667	•93768	•93869	•93969	20	
70	*93969	.94068	•94166	•94264	.94360	.94456	•94551	19	
71	.94551	•94646	•94739	•94832	.94924	•95015	•95105	18	
72	.95105	•95195	•95283	•95371	•95458	•95545	•95630	17	
73	95630	•95715	•95798	•95881	•95964	.96045	•96126	16	
74	96126	•96205	•96284	.96363	•96440	.96516	•96592	15	
75	96592	•96667	•96741	•96814	•96887	•96958	.97029	14	
76	.97029	•97099	•97168	•97236	•97304	.97371	.97437	13	
77	.97437	•97402	.97566	•97629	•97692	•97753	.97814	12	
78	.97814	•97874	•97934	.97992	•98050	.98106	.98162	11	
79	98162	.98217	.98272	-98325	•98378	•98429	.98480	10	
80	*98480	•98530	•98580	•98628	•98676	.98722	.98768	9	
81	.98768	.98813	•98858	•98901	.98944	•98985	•99026	8	
82	99026	•99066	•99106	•99144	•99182	•99218	.99254	7	
83	*99254	•99289	.99323	-99357	•99389	•99421	.99452	6	
84	99452	•99482	•99511	•99539	•99567	•99593	•99619	5	
85	99619	.99644	•99668	•99691	•99714	•99735	.99756	4	
86	99756	•99776	•99795	•99813	•99830	•99847	•99862	3	
87	99862	.99877	•99891	•99904	•99917	•99928	•99939	2	
88	.99939	•99948	•99957	•99965	.99972	•99979	•99984	1	
89	99984	-99989	•99993	•99996	.99998	•99999	1.0000	0	
	60'	50'	40'	30'	20'	10'	0'	Deg.	

Natural Cosine.

Natural Tangent.

Deg.	0'	10'	20'	30'	40'	50'	60'				
0	.00000	.00290	.00581	.00872	.01163	.01454	.01745	89			
1	•01745	.02036	.02327	.02618	-02909	.03200	.03492	88			
2	.03492	•03783	•04074	•04366	•04657	•04949	.65240	87			
2 3 4	.05240	.05532	.05824	•06116	.06408	.06700	•06992	86			
4	•06992	.07285	.07577	.07870	.08162	.08455	.08748				
5	.08748	.09042	•09335	.09628	.09922	.10216	•10510	84			
6	.10510	10804	•11098	•11393	•11688	•11983	.12278	83			
7	12278	•12573	•12869	•13165	•13461	.13757	•14054	82			
8	14054	•14350	•14647	•14945	15242	.15540	•15838	81			
9	15838	•16136	16435	16734	•17033	•17332	17632	80			
10	17632	17932	18233	18533	18834	19136	•19438	79			
11	19438	19740	•20042	20345	•20648	•20951	•21255	78			
12	•21255	•21559	•21864	•22169	•22474	•22780	•23086	77			
1.3	23086	•23393	•23700	•24207	•24315	•24624	•24932	76			
14	•24932	•25242	·25551 ·27419	·25861 ·27732	•26172	•26483	·26794 ·28674	75			
15	·26794 ·28674	·27106 ·28989	·27419 ·29305	29621	·28045 ·29938	·28359 ·30255	·28674 ·30573	74			
16	30573	·30891	·31210	•31529	·31849	·30233	•30373	72			
17 18	*32491	•32813	•33136	•33459	•33783	·34107	•34432	71			
18	*34432	•34758	•35084	*35411	•35739	•36067	•36397	70			
20	36397	•36726	•37057	•37388	37720	•38053	•38386	69			
21	38386	·38720	•39055	•39391	•39727	.40064	•40402	68			
22	•40402	•40741	•41080	•41421	•41762	42104	•42447	67			
23	42447	•42791	•43135	•43481	•43827	.44174	•44522	66			
24	•44522	•44871	•45221	•45572	•45924	•46277	•46630	65			
25	•46630	•46985	•47340	•47697	•48055	•48413	•48773	64			
26	•48773	•49133	•49495	•49858	•50221	.50586	.50952	63			
27	•50952	•51319	•51687	•52056	•52426	•52798	.53170	62			
28	.53170	•53544	•53919	•54295	.54672	.55051	.55430	61			
29	.55430	•55811	•56193	•56577	.56961	.57347	.57735	60			
30	.57735	.58123	•58513	•58904	•59296	•59690	-60086	59			
31	-60086	·60482	·60880	·61280	·61680	·62083	-62486	58			
32	62486	·62892	·63298	•63707	•64116	.64527	.64940	57			
33	64940	·65355	·65771	·66188	•66607	·67028	.67450	56			
34	67450	.67874	·68300	·68728	·69157	·69588	.70020	55			
35	.70020	.70455	•70891	·71329	•71769	.72210	.72654	54			
36	.72654	•73099	·73546	.73996	•74447	·74900	•75355	53			
37	.75355	•75812	·76271	•76732	•77195	•77661	•78128	52			
38	.78128	.78598	•79069	•79543	·80019	*80497	·80978	51			
39	*80978	*81461	·81946	*82433	.82923	.83415	·83909	50			
40	.83909	*84406	*84906	*85408	*85912	*86414	·86928	49 48			
41	.86928	.87440	*87955	*88472	·88992	*89515	•90040				
42	.90040	•90568	•91099	•91633	•92169	92704	-93251	47			
43	93251	.93796	•94345	.94896	•95450	.96008	•96568	45			
44	·96568	•97532	•97699	•98269	•98843	•99419	1.0000				
	60'	50'	40'	30'	20'	10'	0'	Deg.			
	Notured Cotangent.										

Natural Cotangent.

TRIGONOMETRY.								131
			Nati	aral Ta	ngent.			
Deg.	0'	10'	20'	30'	40'	50'	60'	
45	1.0000	1.0058	1.0117	1.0176	1.0235	1.0295	1.0355	44
46	1.0355	1.0415	1.0476	1.0537	1.0599	1.0661	1.0723	
47	1.0723	1.0786	1.0849	1.0913	1.0977	1.1041	1.1106	42
48	1.1106	1.1171	1.1236	1.1302	1.1369	1.1436	1.1503	
49	1.1503	1.1571	1.1639	1.1708	1.1777	1.1847	1.1917	40
50	1.1917	1.1988	1.2059	1.2130	1.2203	1.2275	1.2348	
51	1.2348	1.2422	1.2496	1.2571	1.2647	1.2722	1.2799	38
52	1.2799	1.2876	1.2954	1.3032	1.3111	1.3190	1.3270	37
53	1.3270	1.3351	1.3432	1.3514	1.3596	1.3679	1.3763	36
54	1.3763	1.3848	1.3933	1.4019	1.4106	1.4193	1.4281	35
55	1.4281	1.4370	1.4459	1.4550	1.4641	1.4732	1.4825	34
56	1.4825	1.4919	1.5013	1.5108	1.5204	1.5301	1.5398	33
57	1.5398	1.5497 1.6107	1.5596 1.6212	1.5696 1.6318	1.5798 1.6425	1.5900 1.6533	1.6642	32
58	1 6642	1.6752	1.6864	1.6976	1.7090	1.7204	1.7320	31 30
59	1.7320	1.7437	1.7555	1.7674	1.7795	1.7917	1.8040	29
60 61	1.8040	1.8164	1.8290	1.8417	1.8546	1.8676	1.8807	28
62	1.8807	1.8939	1.9074	1.9209	1.9347	1.9485	1.9626	27
63	1.9626	1.9768	1.9911	2.0056	2.0203	2.0352	2.0503	26
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283	2.1445	25
65	2.1445	2.1608	2.1774	2.1942	2.2113	2.2285	2.2460	24
66	2.2460	2.2637	2.2816	2.2998	2.3182	2.3369	2.3558	23
67	2.3558	2.3750	2.3944	2.4142	2.4342	2.4545	2.4750	22
68	2.4750	2.4959	2.5171	2.5386	2.5604	2.5826	2.6050	21
69	2.6050	2.6279	2.6510	2.6746	2.6985	2.7228	2.7474	20
70	2.7474	2.7725	2.7980	2.8239	2.8502	2.8769	2.9042	19
71	2.9042	2.9318	2.9600	2.9886	3.0178	3.0474	3.0776	18
72	3.0776	3.1084	3.1397	3.1715	3.2040	3.2371	3.2708	17
73	3.2708	3.3052	3.3402	3.3759	3.4123	3.4495	3.4874	16
*74	3.4874	3.5260	3.5655	3.6058	3.6470	3.6890	3.7320	15
75	3.7320	3.7759	3.8208	3.8667	3.9136	3.9616	4.0107	14
76	4.0107	4.0610	4.1125	4.1652	4.2193	4.2747	4.3314	13
77	4.3314	4·3896 4·7728	4·4494 4·8430	4·5107 4·9151	4·5736 4·9894	4·6382 5·0658	4·7046 5·1445	12 11
78 79	5.1445	5.2256	5.3092	5.3955	5.4845	5.5763	5.6712	10
30	5.6712	5.7693	5.8708	5.9757	6.0844	6.1970	6.3137	9
81	6.3137	6.4348	6.5605	6.6011	6.8269	6.9682	7.1153	8
82	7.1153	7.2687	7.4287	7.5957	7.7703	7.9530	8.1443	7
83	8.1443	8.3449	8.5555	8.7768	9.0098	9.2553	9.5143	6
84	9.5143	9.7881	10.078	10.385	10.711	11.059	11.430	5
85	11.430	11.826	12.250	12.760	13.196	13.726	14.300	4
86	14.300	14.924	15.604	16.349	17.169	18.074	19.081	3
87	19.081	20.205	21.470	22.003	24.541	26.431	28.636	2
88	28.636	31.241	34.367	38.188	42.964	49.103	57.289	1
89	57.289	68.750	85.939	114.58	171.88	343.77	00	0
	60′	50'	40'	30′	20'	10'	0'	Deg.

Natural Cotangent.

Natural Secant.

			Naci	irai see				
Deg.	0'	10'	20'	30'	40'	50'	60'	
0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0001	1.0001	89
1	1.0001	1.0002	1.0002	1.0003	1.0004	1.0005	1.0006	88
2	1.0006	1.0007	1.0008	1.0009	1.0010	1.0012	1.0013	87
3	1.0013	1.0015	1.0016	1.0018	1.0020	1.0022	1.0024	86
4	1.0024	1.0026	1.0028	1.0031	1.0033	1.0035	1.0038	85
5	1.0038	1.0040	1.0043	1.0046	1.0049	1.0052	1.0055	84
6	1.0055	1.0058	1.0061	1.0064	1.0068	1.0071	1.0075	83
7	1.0075	1.0078.	1.0082	1.0086	1.0090	1.0094	1.0098	82
8	1.0098	1.0102	1.0106	1.0111	1.0115	1.0120	1.0124	81
9	1.0124	1.0129	1.0134	1.0139	1.0144	1.0149	1.0154	80
10	1.0154	1.0159	1.0164	1.0170	1.0175	1.0181	1.0187	79
11	1.0187	1.0192	1.0198	1.0204	1.0210	1.0217	1.0223	78
12	1.0223	1.0229	1.0236	1.0242	1.0249	1.0256	1.0263	77
13	1.0263	1.0269	1.0277	1 0284	1.0291	1.0298	1.0306	76
14	1.0306	1.0313	1.0321	1.0329	1.0336	1.0344	1.0352	75
15	1.0352	1.0360	1.0369	1.0377	1.0385	1.0394	1.0403	74
16	1.0403	1.0411	1.0420	1.0429	1.0438	1.0447	1.0456	73
17	1.0456	1.0466	1.0475	1.0485	1.0494	1.0504	1.0514	72
18	1.0514	1.0524	1.0534	1.0544	1.0555	1.0565	1.0576	71
19	1.0576	1.0586	1.0597	1.0608	1.0619	1.0630	1.0641	70
20	1.0641	1.0653	1.0664	1.0676	1.0687	1.0699	1.0711	69
21	1.0711	1.0723	1.0735	1.0747	1.0760	1.0772	1.0785	68
22	1.0785	1.0798	1.0810	1.0823	1.0837	1.0850	1.0863	67
23	1.0863	1.0877	1.0890	1.0904	1.0918	1.0932	1.0946	66
24	1.0946	1.0960	1.0974	1.0989	1.1004	1.1018	1.1033	65
25 26	1.1033	1.1048	1.1063	1.1079	1.1094	1.1110 1.1206	1.1126 1.1223	64
27	1.1126	1.1141	1.1157	1.1174	1.1190 1.1290	1.1206		62
28	1.1223 1.1325	1.1239	1.1256	1.1273	1.1396	1.1415	1.1325 1.1433	61
29		1.1343	1.1361	1.1378 1.1489	1.1508	1.1413	1.1455	60 •
30	1.1433	1.1452 1.1566	1.1470 1.1586	1.1489	1.1625	1.1646	1.1666	59
31	1.1666	1.1686	1.1707	1.1728	1.1749	1.1770	1.1791	58
32	1.1791	1.1833	1.1835	1.1728	1.1878	1.1901	1.1923	57
33	1.1923	1.1946	1.1969	1.1992	1.2015	1.2038	1.1923	56
34	1.2062	1.2085	1.2109	1.2134	1.2158	1.2182	1.2207	55
35	1.2207	1.2232	1.2257	1.2283	1.2308	1.2334	1.2360	54
36	1.2360	1.2386	1.2413	1.2440	1.2466	1.2494	1.2521	53
37	1.2521	1.2548	1.2576	1.2604	1.2632	1.2661	1.2690	52
38	1.2690	1.2719	1.2748	1.2777	1.2807	1.2837	1.2867	51
39	1.2867	1.2898	1.2928	1.2959	1.2990	1.3022	1.3054	50
40	1.3054	1.3086	1.3118	1.3150	1.3183	1.3216	1.3250	49
41	1.3250	1.3283	1.3317	1.3351	1.3386	1.3421	1.3456	48
42	1.3456	1.3491	1.3527	1.3563	1.3599	1.3636	1.3673	47
43	1.3673	1.3710	1.3748	1.3785	1.3824	1.3862	1.3901	46
41	1.3901	1.3940	1.3980	1.4020	1.4060	1.4101	1.4142	45
	60′	50′	40′	30′	20'	10'	0′	Deg.
			Natur	al Cose	cant.			

Na	tura	1 Se	cant.

Deg.	0'	10'	20'	30'	40'	50'	60'	i
45	1.4142	1.4183	1.4225	1.4267	1.4309	1.4352	1.4395	44
46	1.4395	1.4439	1.4483	1.4527	1.4572	1.4617	1.4662	40
47	1.4662	1.4708	1.4755	1.4801	1.4849	1.4896	1.4944	42
48	1.4944	1.4993	1.5042	1.5091	1.5141	1.5191	1.5242	41
49	1.5242	1.5293	1.5345	1.5397	1.5450	1.5503	1.5557	40
50	1.5557	1.5611	1.5666	1.5721	1.5777	1.5833	1.5890	39
51	1.5890	1.5947	1.6005	1.6063	1.6122	1.6182	1.6242	38
52	1.6242	1.6303	1.6364	1.6426	1.6489	1.6552	1.6616	37
53	1.6616	1.6680	1.6745	1.6811	1.6878	1.6945	1.7013	36
54	1.7013	1.7081	1.7150	1.7220	1.7291	1.7362	1.7434	35
55	1.7434	1.7507	1.7580	1.7655	1.7730	1.7806	1.7882	34
56	1.7882	1.7960	1.8038	1.8118	1.8198	1:8278	1.8360	33
57	1.8360	1.8443	1.8527	1.8611	1.8697	1.8783	1.8870	32
58	1.8870	1.8959	1.9048	1.9138	1.9230 1.9800	1.9322	1.9416	31
59	1.9416	1.9510	1.9606	1.9702		1.9899 2.0519	2.0000	30
60	2.0000	2.0101	2·0203 2·0845	2·0307 2·0957	2·0412 2·1070	2.0519	2·0626 2·1300	29 28
61	2.0626	2.0735	2.0845	2.1656	2.1778	2.1184	2.1300	28
62	2.1300	2·1417 2·2153	2.1330	2.1000	2.2543	2.1901	2.2026	26
63	2 2811	2.2948	2.3087	2.3228	2.3370	2.3515	2.3662	25
64	2.3662	2.3810	2.3961	2.4114	2.4269	2.4426	2.4585	24
65	2.4585	2.4747	2.4911	2.5078	2.5247	2.5418	2.45593	23
67	2.5593	2.5769	2.5949	2.6131	2.6316	2.6503	2.6694	22
68	2.6694	2.6888	2.7085	2.7285	2.7488	2.7694	2.7904	21
69	2.7904	2.8117	2.8334	2.8554	2.8778	2.9006	2.9238	20
70	2.9238	2.9473	2.9713	2.9957	3.0205	3.0458	3.0715	19
71	3.0715	3.0977	3.1243	3.1515	3.1791	3 2073	3.2360	18
72	3.2360	3.2653	3.2951	3.3255	3.3564	3.3880	3.4203	17
73	3.4203	3.4531	3.4867	3.5209	3.5558	3.5915	3.6279	16
74	3.6279	3.6651	3.7031	3.7419	3.7816	3.8222	3.8637	15
75	3.8637	3.9061	3.9495	3.9939	4.0393	4.0859	4.1335	14
76	4.1335	4.1823	4.2323	4.2836	4.3362	4.3900	4.4454	13
77	4.4454	4.5021	4.5604	4.6202	4.6816	4.7448	4.8097	12
78	4.8097	4.8764	4.9451	5.0158	5.0886	5.1635	5.2408	11
79	5.2408	5.3204	5.4026	5.4874	5.5749	5.6653	5.7587	10
S0	5.7587	5 ·8553	5.9553	6.0588	6.1660	6.2771	6.3924	9
81	6.3924	6.5120	6.6363	6.7654	6.8997	7.0396	7.1852	8
82	7.1852	7.3371	7.4957	7.6612	7.8344	8.0156	8.2055	7
83	8.2055	8.4046	8.6137	8.8336	9.0651	9.3091	9.5667	6
84	9.5667	9.8391	10.127	10.437	10.758	11.104	11.473	5
85	11.473	11.868	12.291	12.745	13.234	13.763	14.335	4
86	14.335	14.957	15.636	16.380	17.198	18.102	19.107	3
87	19.107	20.230	21.493	22.925	24.562	26.450	28.653	2
88	28.653	31.257	34.382	38.201	42.975	49.114	57.298	1
89	57.298	68.757	85.945	114.59	171.SS	343.77	80	0
	60'	50'	40'	30'	20'	10'	0'	Deg.

Natural Cosecant.

FORMULA FOR RIGHT-ANGLED TRIANGLES.

$$a = \sqrt{b^{2} + c^{2}}, \qquad 1, \qquad Q = \frac{a^{3} \sin 2C}{4}, \qquad 10,$$

$$a = \frac{c}{\sin C}, \qquad 2, \qquad Q = \frac{1}{2} b^{2} \tan C, \qquad 11,$$

$$a = \frac{b}{\cos C}, \qquad 3, \qquad Q = \frac{1}{2} c^{2} \cot C, \qquad 12,$$

$$a = 2 \sqrt{\frac{Q}{\sin 2C}}, \qquad 4, \qquad \sin C = \frac{c}{a}, \qquad 14,$$

$$b = a \cos C, \qquad 5, \qquad \cos C = \frac{b}{a}, \qquad 15,$$

$$b = c \cot C, \qquad 6,$$

$$b = a \sin B, \qquad 7,$$

$$b = c \tan B, \qquad 8, \qquad \sin 2C = \frac{4Q}{a^{2}}, \qquad 17,$$

$$b = \sqrt{\frac{2Q}{\tan C}}, \qquad 9, \qquad \tan C = \frac{2Q}{b^{2}}, \qquad 18,$$

Say the angle to be $C=60^\circ$. In the first column of the table of sines, 60° corresponds with 0.86602 in the next column, which is the length of \sin 60° , when the radius of the circle is one, or the unit, and the expression \sin $60^\circ \times 36$ means 0.86602 $\times 36=31.17672$, and likewise with all the other Trigonometrical expressions.

In a triangle the functions for an angle have a certain relation to the opposite side; it is this relationship which enables us to solve the triangle by the application of Simple Arithmetic.

In triangles the sides are denoted by the letters a, b, and c; their respective opposite angles are denoted by A, B, and C, and the area by Q.

Example 1. Fig. 136 The side c in a right angled Triangle being 365 feet, and the angle $C=39^\circ$ 20'. How long is the side a=?

Formula 2. $a = \frac{c}{\sin C} = \frac{365}{\sin . 39^{\circ}.20'} = \frac{365}{0.63383} = 575.86$ feet, the answer.

20,

21,

FORMULA FOR OBLIQUE-ANGLED TRIANGLES.

 $=\sqrt{b^2+c^2-2b c \cos A}$, 10,

 $a:b=\sin A:\sin B$, and $b:c=\sin B:\sin C$. $a:c=\sin A:\sin C$, and $Q:ab=\sin C:2$.

$$a: c = \sin A : s$$

$$a = \frac{c \sin A}{\sin C},$$

$$a = \frac{c \sin A}{\sin (A+B)},$$

$$a = \frac{2Q}{b \sin C},$$

$$b = \frac{c \sin B}{\sin C},$$

$$b = \frac{2Q}{c \sin A},$$

$$\sin C = \frac{c \sin A}{a},$$

$$\sin A = \frac{2Q}{bc},$$

$$\sin A = \frac{a \sin C}{c},$$

and
$$b: c = \sin B: \sin C$$
, and $Q: ab = \sin C: 2$.

$$S = \frac{1}{2}(a+b+c) \qquad 12,$$

$$\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}}, 13,$$

$$2,$$

$$\sin \frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{ac}}, 14,$$

$$\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}, 15,$$

$$4,$$

$$\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}, 16,$$

$$Q = \frac{bc \sin A}{2}, 17,$$

$$Q = \frac{ab \sin C}{2}, 18,$$

$$Q = \frac{c^2 \sin A \sin B}{2 \sin (A+B)}, 19,$$

To Solve Triangles Mechanically.

PLATE III.

The accompanying diagram is so constructed that the moveable arm represents the hypothenuse, the square lines the two sides, and the circular scale the angles in a right-angled triangle. The scale numbered from the centre towards 0 will be called b, and the one at right angle to be called c.

Example 1. Let the lines that form the right-angle be given as b=12 and c=4 inches. Required the hypothenuse a, and the angles B and C?

Find where the two lines 12 and 4 crosses each other, move the arm to this crossing-point, which then indicates the length of the hypothenuse = 12.65 on the arm a; the two angles will be found at a on the scale. $B=71^{\circ}$ 40' and $C=18^{\circ}$ 20'.

If one angle and a side is given, set the arm on the given angle, and the intersection of the given side with the arm shows the length of the hypothenuse

and the other side.

An oblique angled triangle can be two right angled triangles by drawing a line from the largest angle perpendicular to the opposite side, and can be solved by this diagram.

Example 2. An oblique angled triangle being a=65 feet, $C=34^{\circ}$ 30' and

 $B = 68^{\circ} 20'$.

Required the two sides b and c?

Set the arm on the given angle 34° 30′, and at 65 feet on the arm will be found the height of the triangle = 37 feet on scale c, and one part of the side b is 54 feet on the scale b.

From the given angle $B=68^{\circ}$ 20' Subtract the complement of 34° 30' $=55^{\circ}$ 30' Set the arm on the angle, $=52^{\circ}$ 50' $=52^{\circ}$ 50'

Now at the height 37 on the scale b will be found 38 feet on the arm, which is the length of the side c, and the other part of the side b is 9 feet on the scale c, then b=54+9=63 feet.

In a similar manner any plane triangle can be so solved. By a little practice, this Table is very useful for approximating triangles.

SPHERICAL TRIGONOMETRY.

Spherical Trigonometry treats of triangles which are drawn (or imagined to be) on the surface of a sphere; their sides are arcs of the great circle of the sphere, and measures by the angle of the arc. Therefore the trigonometrical functions bear quite a different relation to the sides.

Every section of a sphere cut by a plane is a circle. A line drawn through the centre and at right angles to the sectional circle is called an axis, and the two points where the axis meets the surface of the sphere are called the poles of the

sectional circle.

When the cutting plane goes through the centre of the sphere, it will pass through the great circle, and is then called the *Equator* for the poles. Axis = N.S. Equator — *G.E.T.W.*

Three great circle-planes, aa'a''a''', bb'b'', and ac'c'', cutting a sphere, NESIV, will form a solid angle at the centre O, and a triangle ABC on the surface of the sphere, in which the arcs a, b, c, are the siles. The angles formed by each two planes are congruent to each of the appertinent angles A, B, and C.

RIGHT-ANGLED SPHERICAL TRIANGLE.

$\sin b = \sin a \sin B,$ $\tan c = \tan a \cos B,$	1, 2,	$\sin B = \frac{\sin b}{\sin a},$	12,
$\cot C = \cos a \tan B$, $\cot c = \sin b \tan C$, $\cos a = \cos b \cos c$,	3, 4, 5,	$\sin C = \frac{\tan b}{\tan a}$	13,
$\cos a = \cos b \sin C,$ $\cos B = \cos b \sin C,$ $\tan a = \frac{\tan b}{\tan C},$	6, 7,	$\tan C = \frac{\tan c}{\sin b},$	14,
$\sin c = \frac{\tan \lambda}{\tan B},$	8,	$\tan B = \frac{\tan b}{\sin c},$	15,
$\sin a = \frac{\sin b}{\tan B},$	9,	$\cos c = \frac{\cos C}{\sin B},$	16,
$\sin C = \frac{\cos B}{\cos b},$	10,	$\cos b = \frac{\cos B}{\sin C},$	17,
$\cos c = \frac{\cos a}{\cos b},$	11,	$\cos a = \frac{\cot C}{\tan B},$	18.

The sum of the three angles in a spherical triangle is greater than two right angles, and less than six right angles.

By Spherical Trigonometry we ascertain distances and courses on the surface of the earth; positions and motions of the heavenly bodies, &c., &c. Examples will be furnished in Geography and Astronomy.

Example 1. Fig. 140 In a right-angled spherical triangle the side or hypothenuse $a=36^\circ$ 20', the angle $B=68^\circ$ 50'. How long is the side b=?

The answer.

 $\log \sin 33^{\circ} 32' = 1.74233$ or $b = 33^{\circ} 32'$.

OBLIQUE-ANGLED SPHERICAL TRIANGLE.

$$sin.a : sin.b = sin.A : sin.B,
sin.a = \frac{sin.b sin.A}{sin.B},
sin.b : sin.c = sin.B : sin.C,
$$sin.b = \frac{sin.c sin.B}{sin.C},
sin.b = \frac{sin.c sin.B}{sin.C},
20,
tan.(a+b) = tan.\frac{1}{2}c \frac{cos.\frac{1}{2}(A-B)}{cos.\frac{1}{2}(A+B)},
tan.(a-b) = tan.c \frac{sin.\frac{1}{2}(A-B)}{sin.\frac{1}{2}(A+B)},
tan.\frac{1}{2}(A+B) = cot.\frac{1}{2}A \frac{cos.\frac{1}{2}(b-c)}{cos.\frac{1}{2}(b+c)},
tan.\frac{1}{2}(A-B) = cot.\frac{1}{2}A \frac{sin.\frac{1}{2}(b-c)}{sin.\frac{1}{2}(b+c)},
cot.\frac{1}{2}A = tan.\frac{1}{2}(B-C) \frac{sin.\frac{1}{2}(b+c)}{sin.\frac{1}{2}(b-c)}
tan.\frac{1}{2}c = tan.\frac{1}{2}(a-b) \frac{sin.\frac{1}{2}(A+B)}{sin.\frac{1}{2}(A-B)},
26,$$$$

Example 2. Fig. 141 Oblique angled spherical triangle. $c=72^{\circ}$ 30'. $B=17^{\circ}$ 30'. $C=79^{\circ}$ 50'. How long is the side b=?

Formula 20.
$$\sin b = \frac{\sin c \sin B}{\sin C} = \frac{\sin .72^{\circ} \ 30' \times \sin .17^{\circ} \ 30'}{\sin .79^{\circ} \ 50'}$$

$$c + \log .\sin .72^{\circ} \ 30' = 1.97942$$

$$B + \log .\sin .17^{\circ} \ 30' = 1.47812$$

$$+ \frac{11.45754}{\log .\sin .79^{\circ} \ 50'} = 1.99312$$
The answer log .in .16° 50' = 1.99312 or $b = 16^{\circ} \ 56'$

OBLIQUE-ANGLED SPHERICAL TRIANGLE.

$$\tan \frac{1}{2}(m+n)\tan \frac{1}{2}(m-n) = \tan \frac{1}{2}(a+c)\tan \frac{1}{2}(a-c)$$

$$\tan m = \tan c \cos A, \qquad 27,$$

$$\tan C = \frac{\sin m \tan A}{\sin (b-m)}, \qquad 28,$$

$$\cos a = \frac{\cos c \cos (b-m)}{\cos m}, \qquad 29,$$

$$\cos n = \frac{\cos a \cos m}{\cos c}, \qquad 30,$$

$$b = m+n.$$

$$\cot m = \frac{\cos c \tan A}{\tan a}, \qquad 31,$$

$$s = a+b+c \quad S = A+B+C,$$

$$\sin \frac{1}{2}A = \sqrt{\frac{\sin (s-c)\sin (s-b)}{\sin b \sin c}}, \qquad 32,$$

$$\sin \frac{1}{2}a = \sqrt{\frac{\cos S \cos (S-A)}{\sin B \sin C}}, \qquad 33,$$

To Find the Area of a Spherical Triangle.

Let Q be the area of the triangle in square degrees; if R= radius of the sphere, the length of one degree will be,

$$= \frac{2\pi R}{360}, \text{ or one square degree} = \frac{R^2}{3285 \cdot 58}.$$

$$\cot \frac{1}{2}Q = \frac{\cot \frac{1}{2}c \cot \frac{1}{2}a + \cos B}{\sin B}, \qquad - \qquad - \qquad 1,$$

$$\sin_{\frac{1}{2}Q} = \frac{\sin_{\frac{1}{2}c} \sin_{\frac{1}{2}c} \sin_{\frac{1}{2}a} \sin_{\frac{B}{2}}}{\cos_{\frac{1}{2}b}}, \qquad - \qquad - \qquad 2,$$

CONIC SECTIONS.

A Conic Section is the section obtained when a plane cuts a cone.

The conic sections are of five different kinds, namely.

2d. Circle. When the plane cuts the cone through its axis.

3d. Ellipse. When the plane cuts the cone obliquely passing through the two sides.

4th. Parabola. When the plane cuts the cone parallel to one side. 5th. Hyperbola. When the plane cuts the cone at an angle to the axis less than the angle of the axis and the side of the cone.

The position of a point in a plane surface is determined by its course and distance from a given point on a straight line, or by its distances from two lines inclined to one another

Let AB and CD be two infinite lines inclined to one another, and P being a point in the same plane as the lines. It is evident that the position of this point P is determined by the distances x and y from the lines AB and CD. Those lines and distances are called, AB the axis of ordinate, and CD the axis of abscissa, y the ordinate, x the abscissa, and o the origin.

The abscissa x is commonly taken on the absciss' axis. Now take different values of the abscissa x, and by some formula or rule calculate the ordinate y; then a number of points P, P'P'', &c., may be obtained; join those points by a line, then the rule or formula is called an equation for that line. Equations of this kind will here be furnished for the curve in the conic sections. Transverse-axis is the longest line that can be drawn in an Ellipse.

Conjugate-axis is a kine drawn through the centre, at right angles to the

transverse axis. Parameter of any diameter is a third proportional to that diameter, and its

Focus is the point in the axis where the ordinate is equal to half the di-

ameter.

Cycloid. 144. $y = 0.637 \sqrt{x(\pi d - x)},$ e = 1.211d, p = 0.637d.

CONIC SECTIONS.

145.

$$a:b=\sin w:\sin v,$$

$$b = \frac{a \sin v}{\sin w}, \qquad 1,$$

$$x: c = \sin w: \sin z$$

$$c = \frac{x \sin z}{\sin w},$$

$$x: d = \sin w: \sin(z+v),$$

$$d = \frac{x \sin(z+v)}{\sin w},$$

$$y^2 = c(d+b)$$
. See Fig. 64, page. 91,

3,

4,

$$y^{2} = \frac{x \cdot \sin z}{\sin w} \cdot \left(\frac{a \cdot \sin \cdot (z+v)}{\sin w} + \frac{a \cdot \sin \cdot v}{\sin w}\right), \qquad 5,$$

$$y^{2} = \frac{x \cdot \sin z}{\sin^{2} w} (a \sin [z+v] + a \sin v).$$
 6,

This is the general formula for all conic sections.

In any conic section, a point P can be calculated by this formula 6, but for the different sections, it will be found greatly simplified on the next pages. For a Parabola z+v=180, therefore $\sin z=\sin a$, and

$$y^2 = \frac{x \sin^2 v}{\sin^2 w}.$$

146. Circle.

$$y = \sqrt{2rx - x^2},$$

$$y^2 + x^2$$

$$r=\frac{y^2+x^2}{2x},$$

$$x = r + \sqrt{r^2 - y^2}.$$

$$y=\sqrt{r^2-x^2},$$

$$r=\sqrt{y^2+x^2},$$

$$x = \sqrt{r^2 - y^2}.$$

148. Circle Arc.

$$y=\sqrt{a^2+cx-x^2}-a,$$

$$a=\frac{c^2-4h^2}{8h}.$$

149.

151.

Circle Arc.

$$y = \sqrt{\left(\frac{c^2 + h^2}{8h}\right)^2 - x^2 - a}$$

$$a=\frac{c^2-4h^2}{8h}.$$

$$y=\frac{n}{m}\sqrt{2mx-x^{s}}.$$

$$y = \sqrt{n^2 - \left(\frac{nx}{m}\right)^2}$$

$$e = \sqrt{m^2 - n^2},$$

$$p = \frac{2n^2}{m}.$$

$$R = 2m - r,$$

$$r = 2m - R.$$

154. Parabola.

$$y = \sqrt{px}, \quad p = 4m,$$

 $r = \sqrt{y^2 + (x - m)^2} = x + m,$
 $y = \sqrt{t^2 - 4x^2}.$

$$y = 2\sqrt{x(x+m) - x^2},$$

$$t = \sqrt{4x^2 + y^2},$$

$$t = 2\sqrt{x(x+m)}.$$

155. Hyperbola.

$$R-r=2m, e=\frac{n}{m}.$$

$$y = \frac{1}{m} \sqrt{(e^2 - 1)(x^2 - m^2)},$$

$$b^2 = \frac{e^2 - 1}{m^2},$$

$$y=b\sqrt{\frac{(x+m)^2}{m^2}-1}.$$

MECHANICS.

Mechanics is that branch of Natural Philosophy which treats of the action of force, motion, and power. Mechanics is divided into four parts, namely, Statics the science of forces in equilibrium.

Dynamics, the science of forces in motion, it produces power or effect.

Hydrostatics, the science of fluids in equilibrium

Hydrodynamics the science of fluids in motion, its causes, power or effects.

Statics. Lever. Momentum.

Lever is an inflexible bar, supported in one point called the Fulcrum, or, centre of motion. The length of a lever is measured from the fulcrum to when the force or resistance acts, (when the force acts at right angles to the lever) or, the length of a lever is measured from the fulcrum at right angles to the direction. tion of the force.

$$W = Weight,$$
 and $l = lever$ for $W \\ F = Force,$ and $L = lever$ for $F \\ See Fig. 156.$

Momentum is the product of force or weight, multiplied by the length of

the lever it acts upon.

The products WI and FL are called Statics Momentums; when these incmentums are equal there will be no motion, and the weight Wwill balance the force F. When one momentum is greater than the other, there will be a motion, and the velocity of that motion is measured by the difference of the momentums.

Levers are of three distinct kinds, with reference to the relative positions of the Force F, Weight W, and Fulcrum C.

the Force F_i weight W_i and Fulcrum C_i and the weight W_i . 2d. Weight W_i is between the force F_i and the force F_i . 3d. Force F_i is the ween the fulcrum C_i and the force F_i . Example 1. Figure 156. The weight $W_i = 68$ pounds, the lever I = 3.86 feet, and L = 10 feet 6 inches. Required the force F = 1?

Formula 1.
$$F = \frac{Wl}{L} = \frac{68 \times 3.86}{10.5} = 25$$
 pounds nearly.

a =distance between the force F and the weight W.

The formula 3, 4, 7, 8, 11, 12, are for finding the fulcrum C, when the force F, weight W, and the distance α , are given.

Example 2. Fig. 157. The force F = 360 pounds, W = 1870, and a = 8 feet, 4 inches.

Required the position of the fulcrum c?

Formula 7.
$$l = \frac{Fh}{W - F} = \frac{360 \times 8:333}{1870 - 360} = \frac{2999 \cdot 988}{1510} = 19:86$$
 feet.

L = 8.333 + 19.86 = 28.193 feet, the answer.

Example 3. Fig. 161. The weight of the lever is Q=18 pounds. The centre of gravity is x=2.25 feet from the fulcrum. W=299 pounds, l=5.5 feet, and L = 11.95.

Required the force F = ? in pounds.

$$F = \frac{W7 - Qx}{L} = \frac{299 \times 5 \cdot 5 - 18 \times 2 \cdot 25}{11 \cdot 95} = 134 \cdot 25 \text{ pounds.}$$

Inclined Plane.

Example 4. Fig. 180. A load W=3466 pounds, is to be drawn up an inclined plane, t=638 feet long, and h=86 feet high. What force is required to keep the load on the inclined plane?

$$F = \frac{hW}{l} = \frac{86 \times 3466}{638} = 467.2$$
 pounds.

Example 4. Fig. 184. A Cylinder of cast iron, weighing W=5245 pounds, is to be rolled up an inclined plane; the angles $v=18^{\circ}$ 20' and $v'=8^{\circ}$ 10' What force is required to keep the cylinder on the plane?

 $F = W. \sin(v+v) = 5245 \times \sin(18^{\circ} 20' + 8^{\circ} 10') = 2340$ pounds,

Example 5. Fig. 185. An iron ball which weighs 398 pounds, is tied to an inclined plane with a rope; the angle of the rope and the inclined plane is $v'=16^{\circ}$ 40', and $v=14^{\circ}$ 30'. What force is acting on the rope?

$$F = \frac{W \sin v}{\cos v'} = \frac{398 \times \sin 14^{\circ} 30'}{\cos 16^{\circ} 40'} = 10.4 \text{ pounds.}$$

Example 6. Fig. 170. What force F is required to raise a weight W=8469pounds, by a double moveable pulley?

 $F = \frac{1}{2}W = \frac{1}{2} \times 8469 = 2117.25$ pounds.

Example 7. Fig. 173. How much weight can a force F = 269 pounds lift by three compound moveable pulleys?

 $W = 2^{u}F = 2^{s} \times 269 = 2152$ pounds, the answer.

Screw.

Example 8. Fig. 189. What force is required to lift a weight W = 16785 pounds. by a screw, with a pitch P = 0.125 feet, the lever being r = 5 feet, 4 inches?

$$F = \frac{WP}{2\pi r} = \frac{16785 \times 0.125}{2 \times 3.14 \times 5.333} = 62.62$$
 pounds, the answer.

Including friction the force F will be

$$F = \frac{W(P + f d \pi)}{2 \pi r}.$$

Find the friction f on page 155. d diameter of the screw.

Wedge.

Example 9. Fig. 186. The head of the wedge a=3 inches, and length $l=16\frac{1}{2}$ inches; the resistance to be separated is R=4846 pounds. Required the force F=l (Friction omitted.)

$$F = \frac{4846 \times 3}{16.5} = 881$$
 pounds.

Including friction the force F will be,

$$F = R \left[\frac{a}{l} + f \left(2 + \frac{a^2}{l s} \right) \right]$$

in which the friction f is to be found on page 155.

Catenaria.

Example 9. An iron chain 256 feet long, weighing 1560 pounds, is to be suspended between two points in the same horizontal line, but 196 feet apart.

How deep will the chain hang under the line of suspension, and with what

force will the chain act at the points of suspension? Figure and Formula 178, we have given, $W = \frac{1}{2} \times 1560 = 780$ pounds, $l = \frac{1}{2} \times 256 = 128$ feet, and $\alpha = \frac{1}{2} \times 196 = 98$ feet.

 $h = 0.6525\sqrt{128^2 - 98^2} = 53.73$ feet, the required depth under the horizontal line.

$$\cot v = \frac{2 \times 53.73}{98} = 1.096$$
, or $v = 44^{\circ} 44'$, and $2v = 89^{\circ} 28'$.

The required force will be,

$$F = \frac{780 \times \sin.44^{\circ} 44'}{\sin.89^{\circ} 28'} = 549 \text{ pounds.}$$

156.
$$F: W = l: L, \quad FL = Wl,$$

$$F = \frac{Wl}{L}$$
, $W = \frac{FL}{l}$, 1, 2

$$l = \frac{F a}{W + F}, \qquad L = \frac{W a}{W + F}, \qquad 3, 4,$$

157.
$$F: W = l: L, FL = Wl,$$

$$F = \frac{W \, l}{L}, \qquad W = \frac{F \, L}{l},$$

$$L = \frac{Wa}{W - F}, \qquad l = \frac{Fa}{W - F} \quad 7, \, 8,$$

5, 6,

158.
$$F: W = l: L, FL = W l,$$

$$F = \frac{Wl}{L}$$
, $W = \frac{FL}{l}$, $9,10$,

$$L = \frac{Wa}{F - W}, \qquad L = \frac{Fa}{F - W}, \quad 11, 12.$$

159.

af + a'f' + a''f'' = br + b'r' + b''r''.

If the sum of the momentums that act to move the body in one direction are equal to the sum of the momentums that act opposite, the acting forces will be in equilibrium; c being the centre or fulcrum.

160.

To find the fulcrum c when three forces act on one lever

$$R x = Q(a - b - x) + P(a - x),$$

$$x = \frac{Q a + P a - Q b}{P + Q + P}.$$

161.

Q = weight of the lever. x = distance from the centre of gravity of the lever to the fulcrum. Balance the lever over a sharp edge, and the centre of gravity is found.

$$F = \frac{Wl - Qx}{L}, W = \frac{FL + Qx}{l}.$$

162.
$$F: W = r: R$$
, $FR = Wr$, $F = \frac{Wr}{R}$, $R = \frac{Wr}{F}$, $W = \frac{RF}{r}$, $r = \frac{RF}{W}$.

$$F = \frac{W r r'}{R R'}, \quad W = \frac{F R R'}{r r'},$$

n = number of revolutions of the wheels, $n : n' = r' : R, \quad v : v' = rr' : RR',$ $v = \text{velocity of } W, \quad v' = \text{velocity of } F.$

$$F = \frac{W \, r \, r' r''}{R \, R' R''}, \quad W = \frac{F \, R \, R' R''}{r \, r' r''},$$

n: n'' = r'r'': R R', v: v' = rr'r'': R R'R''. r'r'' &c. = radii of the pinions.

R R'R''&c. = radii of the pinions. R R'R''&c. = radii of the wheels.

165.

Let P and Q represent the magnitudes and directions of two forces which act to move the body B. By completing the parallelogram, there will be obtained a diagonal force F, whose magnitude and direction is equal to the sum P and Q. F is called the resultant of P and Q.

166.

If three or more forces act in different directions to move a body B, find the resultant of any two of them, and consider it as a single force. Between this and the next force find a second resultant. thus: P, Q, and K are magnitudes and directions of the forces. P + Q = r, r + R = F = P + Q + R, or F is the magnitude and direction of the three forces, P, Q, and R.

167.

A force Q acting (alone) on the body B, can move it to a in a unit of time, another force P is able to move it to b in the same time; now if the two forces act at the same time, they will move the body to c. c is the resultant of a and b.

PULLEYS .- A single fixed Pulley.

F: W = R: R, or F = W,

$$v = v'$$
.

169.

A single moveable Pulley.

 $F: W = R: 2R, \text{ or } F = \frac{1}{2}W,$

If the force F being applied at a and act upwards, the result will be the same. v' = 2v.

170.

A double moveable Pulley.

$$F: W = R: 4R$$
, or $F = \frac{1}{4}W$,

$$v'=4v$$
.

171.

A double moveable Pulley.

$$F: W = R: 4R, \text{ or } F = \frac{1}{4}W,$$

$$F = \frac{W}{2u},$$

$$v:v'=1:2u.$$

172.

Quadruple moveable Pulley.

 $F = \frac{1}{8}W$. F: W = R: 8R.Let u = any number of moveable pulleys, then

$$F = \frac{W}{2u}$$

$$v:v'=1:2u.$$

173.

Compound Pulleys.

u = number of moveable Pulleys.

$$F = \frac{W}{2^u}, \quad W = 2^u F,$$

$$v: v' = 1: 2^u$$
.

An oblique fixed Pulley.

 $F: W = 2\cos z : 1$,

$$W = \frac{F}{2\cos z}, \quad F = 2W\cos z.$$

175.

$$W: F = \sin(x+v): \sin x,$$

$$F = \frac{W \sin x}{\sin (x+v)}, \quad f = \frac{W \sin x}{\sin (x+v)},$$

$$W: f = \sin(x+v) : \sin v$$
.

176.

$$F = \frac{w \sin x}{\sin (x+v)},$$

$$f = \frac{W \sin u}{\sin (u+z)}.$$

177.

$$W = P + Q + R + S$$
, $F = F'$, $f = f'$,

$$F = \frac{W \sin x}{\sin (x+v)}, \quad f = \frac{W \sin x}{\sin (x+v)}.$$

178. $l = \sqrt{\frac{4h^2}{l^2 + a^2}}, \ h = 0.8660 \ \sqrt{l^2 - a^2},$

l = length, and W = weight of half the chain, ff',

 $\cot v = \frac{2h}{c}$, $F = \frac{W \cdot \sin V}{\sin 2V}$, $f' = W \tan v$.

 $F = \frac{W. \sin v}{\sin 2v}, \quad f = W \tan v,$

$$\cot v = \frac{2h}{a}$$
.

W = weight of half the number of balls.

$180. F = \frac{Wh}{l} = W\sin v,$
$W = \frac{F l}{h} = \frac{F}{\sin v},$
$w = \frac{Wl}{h} = W \cos v$.

181.
$$F = W \sin(v+v'),$$

$$W = \frac{F}{\sin(v+v')},$$

$$W = W \cos(v+v').$$

182.
$$F = \frac{W \sin v}{\cos v},$$

$$W = \frac{F \cos v'}{\sin v},$$

$$w = W(\cos v + \sin v \cdot \tan v').$$

To solve an Inclined Plane by diagrams.

F = magnitude and direction of the force, which is obtained by completing the parallelogram.

By calculation see Formula, Fig. 180.

184.

W = weight of the body, and direction of the force of gravity; to be drawn at right-angles to the base b, and F parallel to F.

By calculation see Formula, Fig. 181.

185.

w = the force with which the body presses against the plane, to be drawn at right-angles to the plane l; then the parallelogram is completed.

By calculation see Formula, Fig. 182.

186

Wedge.
$$F = \frac{R \ a}{l}, \qquad R = \frac{F \ l}{a}.$$

F =force acquired to drive the wedge.

187.

Let the line Frepresent the magnitude and direction of a force acting to move the body B on the line CD; then the line a represents a part of F which presses the body B against CD, and the line b represents the magnitude of the force which actually moves the body B.

$$b = \sqrt{F^2 - a^2}, \quad b = F \cos v.$$

188.

 $F: W = h: b = \sin v: \cos v = \tan v.$

$$F = \frac{Wh}{b} = W \tan v$$
. $F' = F$.

$$W = \frac{Fb}{h} = \frac{F}{\tan v} = F \cot v.$$

189. Force by a Screw.

P = Pitch of the screw.

r = radius on which the force Facts.

$$F: W = P: 2\pi r.$$

$$F = \frac{WP}{2\pi r}, \qquad W = \frac{F2\pi r}{P}.$$

190. Force by Compound Screws.

P = Pitch of the large screw.

p =Pitch of the endless screw.

 $R={
m radius}$ of spur-wheel for the endless screw.

$$W: F = 4\pi^{2} R r: P p.$$

$$F = \frac{W P r}{4\pi^{2} R r}, \qquad W = \frac{F4^{2} \pi R r}{P p}.$$

On the spur-wheel is a cylinder by which the weight W' is wound up, the formula will be, r' = radius of the cylinder, and

$$F: W' = p \ r': 2\pi R r.$$

$$F = \frac{W'}{2\pi} \frac{p}{R} \frac{r'}{r}, \quad W = \frac{F2\pi}{p} \frac{R}{r'}.$$

DYNAMICS.

Velocity is a space passed through in a unit of time. In machinery velocities are measured in feet per second; for Steamboats and Railroads in miles per hour.

Circular or angular velocity is the number of revolutions a revolving body

makes per unit of time (minute.)

Velocity of Men.

A foot-soldier travels about 28 inches per step. In common time 90 steps per minute = 3.5 feet per second = 2.4 miles per hour. = 4·3 " = 5·5 " In quick time 110 Double quick time 140 = 5.5= 3.75

A soldier occupies in the rank, a front of 20 inches, and 13 inches deep without knapsack; the interval between the ranks is 18 inches.

Average weight of men, 150 pounds each.

Five men can stand in a space of 1 square yard.

Example 1. A man walked 450 feet in 75 seconds. With what velocity did he walk?

 $v = \frac{s}{4} = \frac{450}{75} = 6$ feet per second. Formula 1.

Example 2. A body moves 368 feet in t = 8 seconds. What velocity has it?

Formula 1. $v = \frac{s}{t} = \frac{368}{s} = 46$ feet per second.

Example 3. The radius of a wheel is 4 feet and 4 inches; it makes 131 revolutions per minute. What is the velocity of a point in the circumference?

 $v = \frac{2 \pi r}{60} = \frac{2 \times 3.14 \times 4.33 \times 131}{60} = 59.5$ feet per second. Formula 18.

Power is the product of force and velocity: that is, a force multiplied by the velocity with which it moves, is the power of the force. Force without velocity is no power.

Force and Power are two distinct quantities. Power can not be increased or diminished by mechanical means; but Force can be increased and diminished

When a force is in motion, and increased or diminished by mechanical means, the alteration will be at the expense of the velocity, so that the power will remain the same.

Horse Power.

THE unit for the measurement of mechanical *Powers* is assumed to be the power of a horse; or a force of 33000 pounds, moved through a space of one foot in one minute, or 550 pounds moved 1 foot in 1 second. Another unit for measuring small powers is, one pound moved through a space of one foot in one second; this unit is called effect.

One horse power is = 550 effects.
One man's power is = 50 effects.
One horse power is = 11 men's power.

Example 4. A man draws up a bucket of water which weighs 52 pounds, from the bottom of a well 83 feet deep, which space the bucket passes in 43 seconds. With what effect is that man working?

 $P = \frac{Fs}{t} = \frac{52 \times 83}{43} = 100$ Effects. Formula 5.

Dynamical Formula.

Velocity

$$v = \frac{s}{t}$$
, - - 1,
 Horse Power $H = \frac{F v}{550}$, 11,

 Space
 $s = v t$, - - 2,
 Horse Power $H = \frac{F s}{550}$, - 12,

 Time
 $t = \frac{s}{v}$, - - 3,
 Force
 $F = \frac{550 H}{v}$, 13,

 Power
 $P = \frac{F s}{t}$, - - 5,
 Force
 $F = \frac{550 H}{s}$, 14,

 Force
 $F = \frac{P v}{s}$, - - 6,
 Space
 $s = \frac{550 H t}{F}$, 15,

 Space
 $s = \frac{550 H t}{F}$, 16,
 Time
 $t = \frac{F s}{550 H}$, 17,

 Velocity
 $v = \frac{550 H t}{F}$, 16,
 Time
 $t = \frac{F s}{550 H}$, 17,

 Velocity
 $v = \frac{2 \pi r n}{60}$, - 18,

 Space
 $s = \frac{P t}{F}$, - - 9,
 Effect
 $P = \frac{F 2 \pi r n}{60}$, 19,

 Time
 $t = \frac{F s}{F}$, - 10,
 $H = \frac{F 2 \pi r n}{550 \times 60} = \frac{F r n}{5250}$, 20.

Letters denote.

P = Power in Effects.

H = Horse-power, number of. v = Velocity of the force F in feet per second.

t = Time in seconds.

s = the space in feet which the force F passes through in the time t.

Circular Motion.

r = radius of the circle in feet.

n = number of revolutions per minute.

154		OBSER	VED RESULTS	or Po	WER.	7		
OBSEI	RVE	DE	RESULI	S	ΟF	PΟ	W	ER.
	Force.	Ve ocity	Effects.	Ho7868:				
				hours per	1 5	V	P	H
D	escriptio	n of w	orks.	đơy.				
	n raise	a weig	ght by a singl	e		0.0	40	0.072
fixed pulley.	dring o	erant		8	50 20	0·8 2·5	50	
A man on	a tread-	wheel,	(horizontal,)	8	144	0.5	72	0.130
A man in	a tread	l-wheel	, (axis 24° from	1 8	30	2.3	69	0.125
vertical,)	aws or	pushes	in a horizonta	- 1	30	23	00	
direction.		_		8	30	2	60 44·4	0·109 0·0S0
A man pul A man can	ls up or	down,	elz	8 7	12 95	3·7 2·5	237.5	0 000
A horse in	a hor	se-mill,	walking mode	- [0.0	0.500
rately,	ā.	do.	nummin or fort	8 5	106 72	3	318 648	0·577 0·165
	do. do.	do.	running fast, walking mode		12	3		
rately,				8	154	2 3	308 213	0.558 0.308
	do. do.	do. do.	do. do.	8	71	2.65	87.4	0.160
1211 000	401		ur Mills.					
For every	100 nour		ne flour ground	ner h	מי יוור	anires	550	1.000
One pair o	f mill-st	tones o	f 4 feet diamet	er ma	king 1	20 rev.	550	1 000
Do. rye to	an grind coarse f	l 5 bush lour,	nels of wheat to	fine flo	our per	r hour.	2400 1600	4·36 2·91
	Sa	w Mil	ls, alterative					
	20 squar	e feet	sawed per hour	, in di	y oak	, there		4 000
Dry pine 3	0 square	feet p	er hour.				550 550	1.000
		Circ	ular Saw.					
			r; and making			ns per		1.000
			feet in oak per feet per hour.	nour,	with		550 550	1.000
In dry spri	-				-		000	
			ing Machine.			~~ .		
velocity o	t the le	ed roll ter of t	ers at the circ	umiero ler 3:5	ence 0.	55 feet		
feet long ma	king 300	revolu	itions per minu	te, car	thres	h from		
30 to 40 bushels of oats, and from 25 to 35 bushels of wheat,							2200	4.000
per hour. One man by a flail can thresh half a bushel per hour, (wheat.)							0.127	
Rolling Mills.								
		vo pair	of rough rollers					
ing rollers, s	ix puddl	efurna	ces, two welding	g furn	aces, I	naking		
per minute,			ours, rollers ma	wing t	orevo.	iutions	29000	80
Plate-mill	require	s abou	it five horses	er sq	uare i	oot of		
over 30 revo			e plate rollers	SHOUL	и пот	таке		
		•						

DREDGING MACHINES.

Letters denote.

T = tons of materials excavated and raised per hour. h =hight in feet in which the ma-

terials are raised above the bottom of the excavated channel.

k = 0.1 for hard clay with gravel. k = 0.07 for hard pure clay.

k = 0.05 for common clay or sand.

k = 0.04 for soft clay or loose sand. k = 0.03 for very loose materials,
 H = horse power required for excavating and raising the ma-

terials. F =force in pounds required to

feet the Dredge ahead.

v = velocity of the buckets in feet per second.

Formulas.

 $H=T\left(\frac{h}{700}+k\right)$

 $T = \frac{700 \ H}{h + 700 \ k}$

 $F = \frac{550 \text{ H}}{2}$

 $F = \frac{550 \ Tk}{m}$

 $k = \frac{H}{T} + \frac{h}{700} \quad \bullet$

Example 1. What power is required to excavate T=160 tons of hard pure clay per hour, and raise it up h=25 feet above the bottom of the channel? For hard clay k=0'07.

$$H = 160 \left(\frac{25}{700} + 0.07 \right) = 16.9$$
, or 17 horses.

Example 2. What force F=? is required to feet the Dredge ahead for the above example when the buckets move v=1 foot per second.

$$F = \frac{550 \times 16.9}{1} = 9295$$
 pounds.

LEATHER BELTS.

Letters denote.

 $\begin{array}{l} b = \text{breadth of leather belt in inches,} \\ H = \text{horse power transmitted by the belt.} \\ v = \text{velocity of the belt in feet per second.} \end{array}$

d = diameter in inches

 $d = \text{diameter in inches} \\ n = \text{revolutions per minitute} \\ F = \text{force in pounds transmitted by the belt.} \\ a = \text{number of degrees occupied by the belt on the small pulley.}$

 $v=\frac{d n}{230}$, $b = \frac{7500H}{d a},$ $H = \frac{v F}{550},$ $b = \frac{13.5 \ v \ F}{d \ a}$, - $H = \frac{d \ n \ F}{126500}$, - 3 $b = \frac{n F}{18.8},$ $F = \frac{126500H}{dn}$, - 4 $b = \frac{29 n H}{2 n a}$. 8

Example. Required the breadth of a leather belt to transmit a power of H=75 horses over a pulley of 72 inches diameter, angle $\alpha=170^{\circ}$.

Formulæ 5. $b = \frac{7400 \times 75}{72 \times 170} = 45.4$ inches, the answer.

COLLISION OF BODIES IN MOTION.

When bodies in motion come in collision with each other, the sum of their concentrated momentum will be the same after the collision as before, but their velocities and sometimes their directions will differ.

On the accompanying page the bodies are supposed to move in the same straight line, and the formula illustrates the consequences after

Letters denote.

M and m = weight of the bodies in pounds.

W and w = weight of the bodies in pointage. V and v = their respective velocities in feet per second. V and v' = respective velocities of the bodies after impact. K and k = coefficient of elasticity, which for perfectly hard bodies k = 0 and for perfect elastic bodies k = 1, therefore the elastic coefficient will always be between 0 and 1. When the bodies are perfectly hard their velocities after impact will be common.

For
$$M$$
, $K = \frac{MV}{M(V-V)}$, For m , $k = \frac{mv}{m(v-V)}$.

Example 1. Fig 191. The non-elastic body weighs M=25 pounds, and moves at a velocity V=12 feet per second; m=16 pounds, and v=9. Required the bodies' common velocities, v'=1 after impact.

$$v' = \frac{MV + mv}{M + m} = \frac{25 \times 12 + 16 \times 9}{25 + 16} = 10.83$$
 feet per second.

Example 2. Fig. 195. The perfect elastic body M=84 pounds, V=18, m=48, and v=27. Required the velocity V'=? after impact with the body m.

$$V = \frac{18(84 - 48) - 2 \times 48 \times 27}{84 + 48} = -23.64.$$

the negative sign denotes that the body will return after the collision

with a velocity of 23.63 feet per second.

Example 3. Fig. 196. The partly elastic body M=38 pounds and V=79 feet per second, will strike the body in rest m=24 pounds; what will be the velocity v'=? of the body m, its elasticity being k'=0.6.

$$v' = \frac{79 \times 38 (1+0.6)}{38+24} = 70.6$$
 feet per second.

When a moving body strikes a stationary elastic plane, its course of departure from the plane will be equal to its course of incident.

Problem. A body in a is to strike the plane AB so that it will depart to the given point b; required its course of incident from a?

Draw bd, at right angles through AB, make cd=bc join a and d; then ad is the course of incident, and eb, the course of departure, and the body will strike in e.

PILE DRIVING.

Letters denote.

M = weight of the ram in pounds.

S =fall of the ram in inches. m =weight of the pile in pounds.

s = space in inches which the pile sinks by the blow. r = resistance of the ground in pounds.

a= section area in sq. in. of the pile, sharpened to a point not more than 45° .

k = coefficient for the hardness of the ground.

h = depth to which the pile is driven.

W = weight in pounds which a driven pile can bear with safety after the last blow when the pile sunk sinches.

V= velocity in feet per second by which the ram strikes the pile. Ram and pilehead considered non-elastic and perfectly hard.

$$V = 8\sqrt{S} - 1 \qquad v = \frac{8M\sqrt{S}}{M+m} - 4$$

$$s = \frac{M^{3}S}{r(M+m)^{3}} - 2$$

$$W = \frac{M^{3}S}{6s(M+m)^{2}} - 3$$

$$r = ak\sqrt{h} - 6$$

Example 1. A wooden pile 18 feet long by 12 inches square, driven h=12 feet into common natural ground imbedded with tenacious clay for which may be assumed the coefficient k=50. Required how much the pile will set s=? into the ground at a blow with a ram of M=3500 lbs. The weight of the wooden pile will be about $m=18\times40=720$ lbs.

Area of the pile a=144 square inches.

Resistance $r=144\times50 \sqrt{12} = 23840 \text{ lbs.}$

The resistance sought from this formula 6, cannot be depended upon for calculating the weight the pile can bear with safety.

The set
$$s = \frac{3500^3 \times 42}{23840 (3500 + 720)^2} = 4.23$$
 inches.

Suppose the set to be s=4.23 inches at the last blow, required what weight the pile can bear with safety?

$$W = \frac{3500^3 \times 42}{6 \times 4.23 (3500 + 720)^3} = 3984 \text{ lbs.}$$

This can be depended on with safety, if calculated from the actual set of the pile at the last blow.

For ordinary pile driving a heavy ram and short fall is the most effective, but in some cases when the ground itself is elastic, or when driving piles in pure sand it is found more advantageous to use a high fall of the ram.

The Author has written to several places for information on pile driving, in order to establish a table for the coefficient k; have received answers, but with no information. Hope to be able to give such a table in

the next edition.

STEAM HAMMER.

A heavy steam hammer with short fall produces a better forging than a light hammer with a high fall, although the dynamical momentum may be the same in both cases. This is accounted for by the inertia of

the ingot forged.

The effect of blows of a heavy hammer and short fall will penetrate through the metal and nearly with the same effect on the anvil side, while a light hammer and high fall will effect the metal on or near the surface of the blow, because most of the momentum is in the latter case discharged in the inertia of the ingot forged. In forging large shaft it is generally piled up with iron bars sometimes rolled into a segment form to suit the pile, when placed under the hammer in a welding heat, very light and gentle blows are first given, then, the momentum of a light hammer may be discharged in the bars nearest to the blow, while a heavy hammer will squeeze the whole mass together throughout and a sound welding produced.

The additional expense of a heavy hammer is fully compensated by the waste of labour and materials under a small one. I have often seen

the waste of labour and materials under a small one. I have often seen in broken shafts the bars in the centre as clear and unwelded as when first piled, which is a pure indication that the shaft had been forged by a too light hammer. Crank shafts for propeller engines forged under a light hammer, when brought to the Machineshop the best part of the metal is worked away by plaining and turning, and the poorest left for the engine, but if forged under a heavy hammer, the difference of quality of metal will not be so great.

Cases of this kind are well known in the U. S. Navy.

Weight of Steam Hammers.

The weight of a steam hammer in pounds should be at least 80 times the square of the diameter of the shaft in inches.

CEMENT, CONCRETE AND MORTAR.

Roman Cement. Parker's analysis.

One part of common clay to 21 parts of Chalk, set very quick.

Concrete. Eight parts of pebble or pieces of brick about the size of an egg, to 4 parts of scrap river sand, and 1 part of good lime, mixed with water and grouted in, makes a good concrete.

Lime Mortar. One part of river sand to two parts of powdered lime, mixed with fresh water.

Hydralic Mortar. One part of pounded brick powder to two parts of powdered lime mixed with fresh water. This mortar must be laid very thick between the bricks, and the latter well seaked in water before laid.

Hydralic Concrete, by Treussart.

30 parts of hydraulic lime, measured in bulk before slacked.

30 Sand. 20 66

Gravel.

Broken stone, a hard lime stone.

This concrete diminishes about one fifth in volume after manipulation.

Asphalt Composition for street pavement by Colonel Emy. 2½ pints (wine measure,) of pure mineral pitch.

11 lbs of Gaugeac bitumen.

17 pints of powdered stonedust, woodashes or minion.

FRICTION.

THE resistance occasioned by Friction is independent of the velocity of motion; but the re-effect of friction is proportional to the velocity. Friction is in-dependent of the extent of surface in contact when the pressure remains the same, but proportional to the pressure. This law was established from experi-ments by Arthur Morin in the years 1831-32 and 1833, from which a summary is contained in the accompanying Table.

Letters denote.

a = Fibres of the woods are parallel to themselves, and to the direction of motion.

b = Fibres at right-angles to fibres.

c = Fibres vertical on the fibres which are parallel to the motion.

d = Fibres parallel to themselves, but at right-angles to the motion, length by length.

e = Fibres vertical, end to end.

Example. A vessel of 800 tons is to be hauled up an inclined plane, which inclines 90 40' from the horizon; the plane is of oak, and greased with tallow. What power is required to haul her up?

The coefficient for oak on oak with continued motion is f = 0.097, say 0.1, then,

 $800 \times \sin_{9} 0^{\circ} 40' = 800 \times 0.16791 = 124.328 \text{ tons}$

the force required if there were no friction, and

 $800 \times \cos.9^{\circ} 40' \times 0.1 = 800 \times 0.9858 \times 0.1 = 78.864 \text{ tons},$

the force required for the friction only, and

134.328 78.864

213.192 tons, the force required to haul her up.

The effect lost by friction in axle and bearings is expressed simply by the

$$P = \frac{\pi \, d \, W \, n \, f}{12.60} = \frac{W \, d \, n \, f}{230},$$

in which W = the weight of pressure in the bearing, d = diameter on which the friction acts in inches, n= number of revolutions per minute, and f= coefficient of friction from the Table. In common machinery kept in good order the coefficient of friction can be assumed to f=0.006, then

$$P = \frac{Wdn}{3533}$$
, $H = \frac{Wdn}{1941500}$

Example. The pressure on a steam-piston is 20000 pounds, and makes n = 40double strokes per minute. Required the friction in the shaft of d=8 inches?

$$H = \frac{20000 \times 8 \times 40}{1941500} = 3.3$$
 horses, the loss by friction.

Friction in Guides.

W= pressure on the steam piston in pounds.

S =stroke of piston in feet.

l =length of connecting rod in feet. H =horse power of the friction.

$$H = \frac{W \, S \, n}{350000 \, \sqrt{5 \, l^2 - S^2}}$$

Example. The pressure on a steam piston being W=30,000 pounds, stroke S=4 feet, length of connecting rod l=7 feet, and making 50 revolutions per minute. Required the horse power of the friction H=?

$$H = \frac{30000 \times 4 \times 50}{350000 \sqrt{5 \times 7^3 - 4^3}}$$
 1.13 horses.

TABLE OF FRICTION FOR PLANE SURFACES IN CONTACT.

Kind of Materials in contact.	- 1	Imbricated	Coeffici	
Action by Marco tare the contract	-	with.	Motion.	Starting.
Oak on Oak,	a,	0	0.478	0.625
" "	,,	tallow	0.097	0.160
" "	,,	lard	0.067	
(6 (6	b	0	0.324	0.540
" "	,,	unctuous	0.143	0.314
	99	tallow	0.083	0.254
" "	22	water,	0.25	
	d	0	0.336	
"	0	0	0.192	0.271
" "	e	0	****	0.43
C t-iron on Oak,	a	0	0.400	0.570
66 66	22	soap	0.214	****
	"	tallow	0.078	0.108
Wrought-iron on Oak,	22	0	0.252	
* "	22	tallow	0.078	0.10
Wrought iron, together	a	,0	0.138	0.137
	a	unctuous	0.177	• • • •
	22	tallow olive oil	0.082 0.070	0.115
	3) a	00010 000	0.194	0.119
Wrought on cast-iron,		o unctuous	0.18	0.194
" "	22%	tallow	0.103	0.10
"	"	olive oil	0.066	0.100
Cast-iron on cast-iron.	"	water	0.314	0.314
Cast-from our cast-from,		soap	0.197	0.514
	"	tallow	0.100	0.100
" "	"	olive oil	0.064	0 100
Wrought-iron on brass,	"a	01110 011	0.172	• • • • • • • • • • • • • • • • • • • •
" Cought of the stass, "	,,	unctuous	0.160	
"	"	tallow	0.103	
66 66	"	lard	0.075	
" "	,,	olive oil.	0.078	
Cast-iron on brass,	a	0	0.147	
" "	,,	unctuous	0.132	
"	,,	tallow	0.103	
" "	,,	lard	0.075	
" "	"	olive oil	0.078	
Brass on brass,	a	0	0.201	
" "	39	unctuous	0.134	
"	,,	olive oil	0.053	
Steel on cast-iron, • • •	,,	0	0.202	****
" "	,,	tallow	0.105	
" "	22	lard	0.081	
" "	a	olive oil	0.079	
,				

FRICTION OF AXLES IN MOTION.

	1	Oil, Tallow, or Hog's Lard.		
Designation of surface in contact.	Dry or slightly greasy, or wet.	Supplied in the ordinary manner.	The grease continually running.	
Brass on Brass,		0·079 0·072	0.049	
Iron on Brass, - · · · · · · · · · · · · · · · · · ·	0.251	0.075 0.075	0.054 0.054	
Cast-iron on cast-iron, -	0.137	0.075	0.054	
Iron on lignum-vitæ,	0·194 0·188	0.075 0.125	0.054	
Cast-iron on "Lignum-vitæ on cast-iron.	0.185	0·100 0 ·116	0·092 0·170	

STRENGTH OF MATERIALS.

Table I., shows the weight a column can bear with safety; when the weight presses through the length of the column. The tabular number is the weight in pounds or tons per square inch on the transverse section of a column of a length less than 12 times its smallest thickness.

Table I. RESISTANCE FOR COMPRESSION.

197

	101
Kind of Materials. Pounds. Tons.	2
Oak, of good quality, • • • 432 0.1885	w\
Oak, common, 280 0.125 /	'''
Spruce, red (Sapin rouge), 540 0.241	AT
" white, (Sapin blanc), 140 0.6256	
"Little Compile Compil	
	1 1
Iron, cast, 28750 12-85	
Basalt, 2875 1.285	1 1
Granite, hard, 1000 0.446	
" common, • • • • 575 0.256	h
Marble, hard, 1435 0.640	4
" common, 431 0.192	
Sandstone, hard, • • • • 1295 0.577	1
" loose, 5.6 0.0025	
Brick, good quality, • • • 175 0.078	1 1
Lime-stone, of hardest kind, - • 720 0.321	l i
" common, • • • 432 0.193	
Plaster-Paris, 86 0.0384	
Mortar, good quality, and 18 months old, 58 0.0259	
Do. common, 36 0.016	

When the length or height of the column is more than 12 times its smallest thickness, divide the tabular weight by the corresponding number in this Table.

The same of the sa									
Length×thickness	12	18	2.1	30	36	42	48	5.1	60
TIONS ON A CHICKITODS	2.44	10			00	3.44	20	0.2	00
Divide by	1.0	1.6	9	2.8	1	5	R	0	10
Divide by	14	10	- 4		- *	U	U	0	14

Example. A building which is to weigh 2000 tons is to be supported by piles of Sapin rouge Spruce 18 feet in length, and 12 inches diameter. How many piles are required to support the building?

$$\frac{122\times0.785\times0.241}{1.6} = 17 \text{ tons, the weight which each pile can bear,}$$

and

$$\frac{2000}{17}$$
 = 118 piles.

Professor Hodgkinson's Formulæ for Crushing Strength of Cast Iron Pillars.

The ends of the pullars should be perfectly flat and square, and the load to bear even on the whole surface.

T=crushing weight in tons.

D=outside and d inside diameters in inches.

l = length or height of pillar in feet.

$$T=46.65 \left(\frac{D^{3.55}-d^{3.55}}{l^{1.7}}\right)$$

Table showing the Weight in tons which Cast Iron Pillars or Tubes can bear with Safety,

	24	20.8. 663. 195. 195. 195. 133. 133. 1411. 263. 263. 263. 263. 263. 263. 263. 263	
	50	165 165 101 101 103 103 103 1156 1102 120 120 120 1765 17165 17165	
	18	73 73 113 593 744 744 746 724 7328 7328 7328 7328 7328 7328 7328 7328	
ore,	11	100.000, 100	
the k	16	78.7. 17. 17. 17. 10. 10. 10. 10. 10. 10. 10. 10	
Tubes subtract the weight due to the bore,	15	379 116 15586 359 359 359 1388 11388 11388 11388 11584 1274 4848 4274 4274 3801 3801 3801 3801 3801 3807 3801 3807 3807 3807 3807 3807 3807 3807 3807	
ht du	14	296. 2 296. 2 296. 2 280. 3 1919 2 1919 2 1919 2 1919 2 2017 2 2017 2 1933 3 2057 2 2057 2	
Weig	13	tons, tons, 169, 226 256	
the	13	169. 362. 362. 362. 362. 362. 362. 362. 362	
tract	11	124 162 1177 1177 1177 1177 1177 1181 1281 1281	
qus s	10	28, 28, 27.14 27.14 27.14 27.16 27.16 27.16 27.16 27.17 27.02 27.14 28.83 28.83 28.83 26.11 27.02 27.14 27.02 27.14 27.02 27.14 27.02 27.14 27.03 27.14 27.03 27.14 27.03 27.14 27.03 27.14 27.03 27.14 27.03 27.14 27.03 27.14 27.03 27.14 27.03 27.14 27.03 27.0	
Lubes	6	53.1 53.1 53.1 53.1 53.1 53.1 53.1 53.1 53.1 54.	
For .	œ	255 256 374 374 374 374 115 115 115 115 115 115 35 35 35 35 35 35 35 35 35 35 35 35 35	
	2	244 7500 3744 7500 3744 1500 3744 1500 1500 1500 1712 1712 1712 1712 1712 1712 1712 17	
Diameters in Inches.	9	14 4315 4315 13128 908 908 513 513 513 513 179 1158 1158 116 1103 86	
s in	9	tons, 7272, 2238, 2238, 471, 474, 174, 174, 174, 178, 106, 93, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65	
meter	4	226 200 300 300 300 300 300 300 311 115 115 119 48 48 48 48 33 37 33 37 38 28 28 22 22 22 22 22 22 23 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	
Dian	65	tons, 1156 355 1178 1110 775 55 55 23 23 22 20 17 115 115 117 117 117 117 117 117 117	
	 cs	218 4825 4825 225 25 174 174 178 64 64 64 64 64 64 64 64 64 64 64 83 64 83 64 83 64 83 64 83 64 83 64 83 64 83 64 83 64 83 64 84 84 84 84 84 84 84 84 84 84 84 84 84	
	-	22 6.8 6.8 3.5 2.1 1.4 1.4 1.0 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
	H	122240 01 122140 05	

These values are about half of that by Prof. Hodgkinson's formula. The points after the numbers mean ciphers.

Table II.
COHESIVE STRENGTH PER SQ. INCH OF CROSS-SECTION.

•					
Just tear asunder. With safety.					
Kind of Materials.	Pounds.	Tons.	Pounds.	Tons.	700
Cast Steel	134256	59.93	33600	14.98	198
Blistered Steel, - •	133152	59.43	33300	14.86	-
Steel, Shear,	128632	56.97	32160	14.24	I
Iron, Swedish bar, • •	65000	29.2	16260	7.3	
" Russian,	59470	26.7	14900	6.7	
" English, -	56000	25.0	14000	6.25	
" common, over 2 in. sq.		16.00	9000	4.0	
" sheet, parallel rolling,	40000	17.85	10000	4.46	@
" at right angles to roll,	34400	15.35	8600	3.84	
Cast iron, good quality, -	45000	20.05	11250	5.00	
" inferior,	18000	8:03	4500	2.0	
Copper, cast,	32500	14.37	8130	3.6	
" rolled,	61200	27.2	15300	6.8	
Tin, cast,	5000	2.23	12500	0.56	
Lead, cast,	880	0.356	220	0.09	
" rolled,	3320	1.48	830	0.37	
Platinum, wire,	53000	23.6	13250	5.9	
Brass, common,	45000	20.05	11250	5.0	
Drubby common	10000	20 00	11200		
Wood.			II		
Ash,	16000	7.14	4000	1.87	
Beach,	11500	5.13	2875	1.28	
Box, · · · ·	20000	8.93	5000	2.23	
Cedar,	11400	5.09	2850	1.27	. \
Mahogany,	21000	9.38	5250	2:34	/w\
Spanish, -	12000	5.36	3000	1.34	" \
Oak, American white, -	11500	5.13	2875	1.28	
" English " -	10000	4.46	2500	1.11	
" seasoned,	13600	6.07	3400	1.52	
Pine, pitch,	12000	5.35	3000	1.34	
" Norway,	13000	5.8	3250	1.45	
Walnut,	7800	3.48	1950	0.87	1
Whalebone	7600	3.40	1900	0.85	
Hemp ropes, good,	6400	2.86	2130	0.95	
Manilla ropes,	3200	I-43	1100	0.49	
Wire ropes,	38000	17	12600	5-36	1
Iron chain,	65000	29	21600	9.38	
" with cross pieces, -	90000	40	30000	13.4	I

To Find the Cohesive Strength.

Rule.—Multiply the cross-section of the materials in square inches by the tabular number in Table II., and the product is the cohesive strength.

Example An iron-bar has a cross-section of 2.27 sq. in. How many tons are required to tear it as under, and how many pounds can it bear with safety? English iron $2.27 \times 25 = 56.75$ tons, which will tear it as under, and it will bear with safety

 $2.27 \times 14000 = 31780$ pounds.

Safety	Tuche	sand	16ths.	Wht.	per fa	thom.	Price	perfa	thom.	Ultimate
proof.	Chain.	Hemp.	Wire.	Chain.	Hemp.	Wire.	Chain.	Hemp.	Wire,	Strain.
Cwt.	Diam.	Circ'm.	Circ m.	Pounds	Pounds	Pounds	\$ ets.	\$ cts.	\$ cts.	Cwt.
1.3	1	0.10	0.4	0.23	0.08	0.06	0.15	0.06	0.08	2.6
4.5	2	1.6	0.8	0.93	0.47	0.24	0.25	0.12	0.15	9
10	3	2.1	0.12	2.11	1.08	0.54	0.36	0.17	0.22	20
18	4	2.12	1.1	3.75	1.89	1.10	0.48	0.25	0.32	35
28	5	3.7	1.6	5.86	2.94	1.83	0.60	0.33	0.43	55
40	6	4.2	1.10	8.45	4.52	2.56	0.96	0.42	0.54	80
55	7	4.15	1.14	11.5	6.09	3.42	1.25	0.48	0.62	109
69	8	5.8	2.2	15.0	7.55	4.39	1.44	0.60	0.78	138
80	• 9	6.3	2.6	18.8	9.56	5.48	1.60	0.76	0.90	160
94	10	6.14	2.11	23.0	11.8	7.00	1.86	0.95	1.20	218
109	11	7.9	2.15	27.7	14.3	8.38	2.16	1.14	1.50	187
127	12	8.4	3.3	33.0	17.1	9.90	2.43	1.37	1.80	254
147	13	8.15	3.8	38.5	19.9	11.9	2.70	1.60	2.10	293
168	14	9.10	3.12	44.7	23.1	13.6	3.06	1.85	2.28	335
199	15	10.5	4.1	51.1	26.3	16.0	3.70	2.10	2.45	397
220	1 in.	11.	4.6	58.0	30.2	18.6	4.33	2.42	2.73	440
246	1.1	11.11	4.11	65.6	34.1	21.3	4.68	2.73	3.10	492
278	1.2	12.6	5 in.	73.7	38.2	24.2	5.58	3.06	3.50	545
302	1.3	13.1	5.5	82.1	42.6	27.4	5.86	3.40	3.91	604
332	1.4	13.12	5.10	91.0	47.1	30.7	6.42	3.77	4.35	663
365	1.5	14.7	6 in	100	52.0	35.	7.08	4.16	4.89	730
399	1.6	15.2	6.5	110	57.1	38.7	7.75	4.57	5.35	798
435	1.7	15.15	6.10	120	63.4	42.6	8.42	5.07	5.86	869
472	1.8	16.8	6.15	131	67.9	46.7	9.15	5.44	6.35	944
553	1.10	17.14	7.10	154	79.8	56.4	10.07	6.38	7.63	1105
638	1.12	19.4	8.4	178	92.6	66.0	12.38	7.40	8.83	1275
729	1.14	20.10	8.14		106	76.5	14.15	8.48	10.00	1457
825	2 in	22.	9.8		121	88.0	16.00	9.70	11.50	1650
1072	2.4	24.12	10.12		153	112	20.75	10.25	14.60	2141
1288	2.8	27.8	12 in.		189	140	25.	15.10	18.00	2575
1559	2.12	30.4	13.4	438	229	172	30.25	18.30	21.80	3117
1854	3 in.	33.	14.8	522	272	205	36.00	21.80	25.90	113708

The prices of the chains are taken from that in England and added 50 per cent. Price of hemp ropes from Weaver, Fitler & Co., Rope manufacturers, Philadelphia. The prices of Wire ropes are deduced from the price list of John A. Roebling, Patent Wire Rope Manufacturer, Trenton, N. J.

The Safety proof is here taken one half of the ultimate strength which may be trusted on for new ropes, but when much in use only one quarter or less should be trusted upon for safety.

CABLES AND ANCHORS.

Table showing the size of Cables and Anchors proportioned to the Tonnage of Vessels.

Tonnage of Vessels. Collete Chain Cubles Chain chain chain Chain chain Chain chain Chain chain Chain chain C		. Cables.	Chain Cubles	Proof	Weight of	Words of	Tilladada ar
Pessense in inches. inches. $\frac{1}{16}$ is $\frac{1}{16}$ in inches. $\frac{1}{16}$ in $\frac{1}{16}$	Tonnage of		Diameter in				fathom of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		in inches.	inches.		pounds.	Chain.	Cables.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			• <u>5</u>		N 1	5.₹	2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	4.	. 3	1.₹	84	8.	4.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	4.3	. 7	2.4	112	11.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	5.7	. 1	4.	168	14.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	6•	. 9	5.	224	17.	8.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	6.4	• 5	6•	336	24.	9.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	7.	.11	7.	392	27.	11.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75	7.1	• 3	9.	532	30.	13.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	8•	• 1 3 1 6	10-	616	36.	15•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130	9.	• 7	12.	700	42.	18.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150	9∙∄		14.	840	50∙	21•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180	10.4		16.	952	56•	25•7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	11.	1.1	18-	1176	60•	28.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240	12.		20.	1400	70-	33.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	270	12.4	1.3	21.	1456	78.	36.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	320	13.	1. 1	22-1	1680	86•	42.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	360	14.	16	25*	1904	96•	45.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	400	14-1	1. 3	27.	2072	104	49•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	440	15.7	1.7	30.	2240	115.	56•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	480	16·	2	33*	2408	125•	59.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	520	16·불	1. 9	36*	2800	136•	63•4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	570	17*	1 8	39*	3360	144.	67.2
	620	17·½		42.	3920	152	71.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	680	18*		45*	4200	161.	75.6
900 22. 1.15 56. 6720 196. 112.9	740	19•		49.	4180	172*	84.2
	820	20*		52*	5600	184	93.3
1000 24· 2· 60· 7168 208· 134·6	900	22*		56·	6720	196	112.9
	1000	24.	2.	60.	7168	208*	134.6

The proof in the U. S. Naval Service is about $12\frac{1}{2}$ per cent. less than the above for the larger sizes, and from 25 to 30 per cent. for the smaller.

The results of experiments at the U.S. Navy Yard, Washington, D.C., give for the cohesive force of chain iron, per square inch, as follows:

Mean of experiments with good iron, - - - - - - 41000 lbs. Mean of experiments with best iron, - - - - - - - 46000 lbs.

To find the weight of Castings, by the weight of Pine Patterns.

Reductions for Round Cores and Core-prints.

Rule. Multiply the square of the diameter by the length of the Core in inches, and the product by 0.017, is the weight of the pine core, to be deducted from the weight of the pattern.

Shrinking of Castings.

Pattern Makers' Rule $\begin{cases} & \text{Cast Iron,} & \frac{1}{3} & \frac{1}{5} \\ & \text{Brass,} & \frac{1}{3} & \frac{1}{5} \\ & \text{Lead,} & \frac{1}{3} & \frac{1}{5} \\ & \text{Tin,} & \frac{1}{7} & \frac{1}{5} \\ & \text{Zinc,} & \frac{1}{3} & \frac{1}{5} \end{cases} \end{cases}$ longer per Linear Foot.

Weight and Capacity of Balls.

Diameter in inches.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	inches.	inchez.	Pounds.	Pounds.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.	•5235	•1365	2147	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	1.7671	4607	•7248	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.	4.1887	1.0920	1.7180	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2 \cdot \frac{1}{2}$	8.1812	2.1328	3.3554	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.	14.1371	3.6855	5.7982	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3\frac{1}{2}$	22.4492	5.8525	9.2073	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.	33.5103	8.7361	13.744	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12.4387		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.	113.0973	29.4845	46.385	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		143.7932			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			117.0338		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
18· 3053·627 796·0825 1252·422 19· 3591·363 936·2708 1472·970					
19. 3591.363 936.2708 1472.970					
20. 4188.790 1092.0200 1717.995					
	20.	4189.790	1092.0200	1717-995	
				1	

LATERAL STRENGTH.

For wrought iron beams, letters denote.

W= weight in tons with safety, uniformly distributed on a beam resting on two supports.

 $S = \text{compressive strain in tons per square inch of top } 0.5 \left(a + \frac{a'}{a}\right)$

 $a={
m section}$ area in square inches of top and bottom flanges of the beam. Top and bottom flanges to be alike.

a'= section area in square inches of web or stem.

h = height of beam in inches.

l= length in feet between supports. f= deflection in inches of the beam in the centre, when the weight is

uniformly distributed. $P = \text{weight in pound per square foot of flooring to be supported by the beams, which in ordinary cases is estimated to <math>P = 140 \text{ lbs}$. B = distance in feet between the beams.

w = weight of the whole beam in pounds.

$$W = \frac{3h}{l} \left(a + \frac{a'}{3} \right) - 1 \qquad f = \frac{W \, l^3}{46 \, h^2 \, (3 \, a + a')}, \qquad 5$$

$$W = \frac{Sh}{3l} \left(a + \frac{a'}{3} \right) - 2 \qquad f = \frac{l^3}{46h}, \qquad - 6$$

$$S = \frac{3 \, W \, l}{h \, \left(a + \frac{a'}{3} \right)} - 3 \qquad B = \frac{2240 \, W}{P \, l}, \qquad - 7$$

$$w = 3.384 \, l \, (a + a'), \qquad 4 \qquad P = \frac{22w \, W}{B \, l}, \qquad - 8$$

Formula 6 gives the safety deflection of a wrought iron beam, which should never be exceeded. Example. A flooring of l=32 feet by 60 feet long to be constructed to support P=175 pounds per square foot. Required what kind of beams and how many are necessary? and what will be the cost of them?

In the table will be found the nearest star to 32 feet span is a 12 inch beam bearing W=8.71 tons, when the distance between the beams in the flooring will be,

Formula 7.
$$B = \frac{2240 \times 8.71}{175 \times 32} = 3.5$$
 feet.

Number of beams = $\frac{60}{3.5}$ - 1=16 about.

Add one foot to each beam for the supports at the ends, and the cost will be, 33×16×1.90=1003.70 dollars.

The following Table contains sections of iron rolled by the Phœnix Iron Company. Office 410 Walnut Street, Philadelphia.

Rules.

The price per foot multiplied by 5280 gives the price per mile. The weight in pounds per foot multiplied by 2.36 gives the weight in

The price per foot multiplied by 2240 and divided by the weight in pounds per foot gives the price per ton.

Strength of different Sections of Wrought Iron Beams

Made by the Phænix Iron Company, for Sustaining with Safety
a Load Uniformly Distributed.

	Compound Girders. Solid Rolled Beams.													
1 1	-						168	. 84	48					
Dis. bet.	$W = \frac{800}{l}$	$W = \frac{667}{l}$	$W=\frac{553}{l}$	$W=\frac{490}{l}$	W== 296	$W = \frac{308}{7}$	$ W = \frac{108}{7} $	W=- **	W= 48					
sup														
$=\hat{l}$	h=18 i.	h = 15 i.	½=12 i	h=15 i.	h=12 i.	h=9 i.	h = 9 i.	h=7 i.	h=6 i.					
feet.	tons.	tons.	tons,	tons.	tons.	tons.	tons.	tons.	tons.					
10	80.00	66.67	55.33	49.00	29.60	30.80	16.80	8.40	4.80					
12	66.66	55.56	44.44	40.83	24.66	25.69	14.00	7.00	4.00					
14	57.14	47.61	38.09	35.00	21.14	22.05	12.00	6.00	3.43₩					
16	50.00	41.67	33.33	30.63	18.50	19.25	10.50	5.25	3.00					
18	44.44	37.04	28.52	27.22	16.44	17.11	9.33	4.66	2.66					
20	40.00	33.33	26.66	24.50	14.80	15.40	8.40	4.20	2.40					
22	36.36	30.30	24.24	22.27	13.45	14.00	7·63	3.81*	2.18					
24	33.33	27.77	22.22	20.42	12.33	12.85	7.00	3.50	2.00					
26	30:77	25.64	20.05	18.85	11.38	11.87	6.46	3.23	1.84					
28	28.57	23.80	19.05	17.50	10.57	11.00	6.00*	3.00	1.71					
30	26.66	22.22	17.77	16.33	9.86	10.26	5.60	2.80	1.60					
32	25.00	20.83	16.66	15.31	9.25	9.62	5.25	2.62	1.50					
34	23.53	19.60	15.65	14.41	8.71%	9.06*	4.94	2.47	1.40					
36	22.22	18.52	14.26	13.61	8.22	8.55	4.66	2.33	1.33					
38	21.05	17.37	14.00	12.90*	7.80	8.11	4.42	2.21	1.26					
40	20.00	16.66	13.33	12.25	7.40	7.70	4.20	2.10	1.20					
42	19.05	15.87	12.70%	11.67	7.05	7.34	4.00	2.00	1.14					
44	18.18	15.15	12.12	11.13	6.72	7.00	3.81	1.91	1.09					
46	17:37	14.48#	11.44	10.66	6.43	6.70	3.65	1.83	1.04					
48	16.66	13.88	11.11	10.21	6.16	6.42	3.50	1.75	1.00					
50	16.00%	13.33	10.66	9.80	5.92	6.16	3.36	1.68	•96					
Per	78 lbs.	71 lbs.	59 5 lbs	47.8 lbs.	40 lbs.	50 lbs.	29 3 lbs.		13 3 lbs.					
Foot*	\$4.68	\$4.26	\$3.57	\$2.40	\$1.90	\$2.40	\$1.50	\$1.00	\$0.66					

The above Table gives the weight in tons, sustained by the several kinds of beams, uniformly distributed over them as in a floor. The weights given are what may be used in practice, being only 9 tons per square inch of that part of the metal subjected to a crushing force.

Under these weights the beams are within the limits of perfect elasticity, and the deflections are therefore in direct proportion to the load.

If it be intended to apply the entire weight at the centre, the figures in the Table must be divided by two; if at any other point, the weight at the centre is to the weight at any other point, as the square of half the beam is to the rectangle of the two parts from where the weight is applied. The prices are subject to changes of the market and agreement.

* When the span of the flooring is given, the star in the Table gives an approximation to what beam ought to be employed; for instance, l=38 feet span should have beams of h=15 inches high, able to bear W=12.9 tons uniformly distributed.

	Angle Iron. Variety of Forms. Price												
	Angle			}	Vari	ety of	Form	ıs.	Price				
	Dimensions.	Per F Weight.	Price.	Secti				Wt. p. Mile,	Per Ft.				
	Inches.	lbs.	cents.	Figu	ге, а	Sq. In.	Ibs,	Tons	\$ cts,				
	$\frac{3}{16}(1\frac{1}{2}+1\frac{1}{2})$	1.77	5.13	1		7.4	25	117.86	0.56				
	$\frac{1}{4} \left(\frac{1}{2} + \frac{1}{2} \right)$	2.32	6.74	2		5.9	20	92.7	0.45				
	$\frac{3}{16}(1\frac{3}{4}+1\frac{3}{4})$	2.09	6.07	3 I		7.1	24	113.14	0.54				
	$\frac{5}{16}(1\frac{3}{4}+1\frac{3}{4})$ $\frac{1}{3}(2+2)$	3·49 3·17	8.60	4		1.95	6.6	31.45	0.16				
	$\frac{3}{8}(2+2)$	4.59	13.3	5		5.41	18:3	86.43	0.45				
				5	-		100	00 10	0 10				
	$\frac{5}{16}(2\frac{1}{2}+2\frac{1}{2})$	4.97 6.84	14.4	6	-	4.44	15	70.71	0.37				
	$\frac{7}{16}(2\frac{1}{2}+2\frac{1}{2})$ $\frac{3}{8}(3+3)$	7.13	20:7	7	-	4.22	14.3	67.75	0.35				
I	$\frac{1}{2}(3+3)$	9.32	27.1	8	-	7.00	23.6	111.57	0.58				
	$\frac{3}{8} \left(3\frac{1}{2} + 3\frac{1}{2} \right)$	8.40	24.4	9	2	5.32	18	Chair.	0.72				
	$\frac{9}{16}(3\frac{1}{2}+3\frac{1}{2})$	12.2	34.9	10		9.65	32.6	Channel.	1.16				
	76(4+4)	11.2	32.5	11	_	5.41	18:3	Channel.	0.65				
	$\frac{5}{8}$ (4+4)	15.5	45.0	12		2.66	9	Purlin.	0.35				
	ShipFrames.			1		2.66	9	T iron.	0.32				
	$\frac{1}{4} \cdot 1\frac{1}{2} + \frac{3}{16} \cdot 2\frac{1}{4}$	2.5	7.95	13			0.0	Window-	12				
	$\frac{5}{16} \cdot 2 + \frac{1}{4} \cdot 3$	4.36	13.8	14	,	0.65	2.2	Sashes.	12				
	$\frac{3}{8} \cdot 2\frac{1}{2} + \frac{5}{16} \cdot 3\frac{3}{4}$	6.68	21.2	15		0.50	1.1	Dasnes.	12				
	$\frac{1}{2} \cdot 3\frac{1}{2} + \frac{5}{16} \cdot 4\frac{1}{2}$	8.85	28.1	16	-	0.89	3	Sash bar.	12				
	$76 \cdot 3 + \frac{3}{8} \cdot 5\frac{1}{4}$	11.0	35.0	17		2.07	7	Shoe.	0.25				
	$\frac{5}{8} \cdot 4 + \frac{7}{16} \cdot 6$	16.4	51.0	18		6.66	22.5	Girder.	0.80				
				30	h	the for	mulas	beam for and table bottom are	are set				
				21 8	h	made	to orde	oound Gir r of any si s per poun	ize, for				
				g	b v	# 20	intermed	iate sizes,					

LATERAL STRENGTH OF MATERIALS.

The formulas for lateral strength are here reduced to the simplest pos-The formulas for lateral strength are here reduced to the simplest possible form, and are in consequence subject to conditions which must be particularly attended to. In calculating the strength of beams of irregular sections as shown by the figures 210 to 217 on page 173, it is necessary to maintain the proportions marked on the figures and the calculation will be correct. For the sections 206 to 209 any proportion will answer in the formulas. The weight of the beam itself has not here been taken into consideration, for which allowance must be made if considerable. considerable.

Letters denote.

l = length of beam in feet. See figures.

h = height, b = breadth or thickness in inches of the beam, where the

strain is acting. k = coefficient for the different materials and sections of beams, to be found in the tables.

x =modulus of elasticity of materials. See Table.

f=elastic deflection in inches. W= weight in pounds which the beam can bear with safety, being

about one quarter of the ultimate strain at which the beam would break.

Example 1. Fig. 200. A rectangular beam of oak fastened in a wall projects out l=6 feet 4 inches, h=8 inches, and b=5 inches. Required what weight it can bear on the end W=?

$$W = \frac{30 \times 5 \times 8^3}{6.333} = 1509$$
 pounds, with perfect safety.

Example 2. Fig. 201. A beam of section fig. 211, with thickness b=1.25inches, height h=22.5 inches, supported at the two ends in a length l=25 feet. Required what weight W=1 it can bear in the middle. For cast iron coefficient k=260.

$$W = \frac{4 \times 260 \times 1.25 \times 22.5^{3}}{25} = 2639.5 \text{ lbs.} = 11.8 \text{ tons nearly.}$$

Example 3. Required the elastic reflection for the same beam and condition as in the foregoing example? See Table, modulus of elasticity x=2285 for cast iron. See page 176.

$$f = \frac{26325 \times 25^3}{16 \times 2285 \times 1 \cdot 25 \times 22 \cdot 5^3} = 0.80 \text{ inches, nearly.}$$

Example 4. Fig. 204. A wrought iron girder of section fig. 217, consisting of four angle irons of $a=3^{\circ}5\times0^{\circ}5\times2\times4=14$ square inches, the plate being 0.51.35=0.37 inches thick, and h=18 inches deep by l=22 feet. Required how much weight evenly distributed the girder can bear with safety ?

$$IV = \frac{8 \times 800 \times 14 \times 18}{22} = 73309 \text{ lbs.} = 32.75 \text{ tons.}$$

If plates being riveted to the angle iron at top and bottom, add that

Example 5. Fig. 222. The crank R=3.5 feet, force F=3860 lbs., length of the shaft l=64 feet, diameter D=5.25 inches. Required the twisting in degrees. The shaft being of wrought iron for which x=4110.

Degrees =
$$\frac{425 \times 3860 \times 3.5 \times 64}{4110 \times 5.25^4} = 11.76^\circ$$
.

1		7	
	206.		212.
^	Coefficient k.	^ 6 ^	Coefficient k.
	Cast iron, 150 Wro't iron, 120 Wood, 30	8 126	Cast iron, 236 Wro't iron, 189
	207. Coefficient k . Cast iron, 150 Wro't iron, 120 Wood, 30 $b \ h^2 = S^3$.	8 1 /2 7 2 4 /2 7 /2 5 L	Coefficient k. Cast iron, 250 Wro't iron, 200
D _y	208. Coefficient k. Cast iron, 88 Wro't iron, 70 Wood, 18 $b \ h^{2} = D^{3}.$	10 15 b	Cast iron, 700 Wro't iron, 560
(d) D	209. Coefficient k . Cast iron, 88 Wro't iron, 70 Wood, 18 $b \ h^2 = D^3 - d^3$.	100 10 100 × 5 126. 7	Coefficient k. Cast iron, 900
	210.		216.
h	Coefficient k . Wro't iron, 700 $b h^2 = a h$.	15	Cast iron tube,
15t	Coefficient k. Cast iron, 260 Wro't iron, 208	h 4.35	217. k=800, b h²=a h, a=area of all the four angle irons in square inches.

218.

A beam fixed in one end and loaded at the other, should have the form of a Parabola, in which l = abscissa and h = ordinate. y = depth, x = length from W.

$$y = l \sqrt{\frac{x}{h}}$$
.

219.

$$W = \frac{k b h^2}{l \cos v} = \frac{k b h^2}{b'}.$$

220.

$$W = \frac{36 \ k \ b \ h^2}{l}.$$

Divide the length into 24 equal parts, place 14 in the middle and 5 at each end.

221. To cut out the stoutest rectangular beam from a log.

1st case, divide the diameter in 3 equal parts, and draw lines at right-angles as represented.

2d, divide the diameter in 4 equal parts.

b=1.414 b, non-elastic. h=1.73 b, elastic beams.

222.

$$D=4\sqrt[3]{\frac{FR}{x}}=80\sqrt[3]{\frac{H}{x}},$$

Twisting in degrees = $\frac{425 FR}{x D^4}$.

$$D: d = \sqrt[3]{R}: \sqrt[3]{r},$$

$$D = 80 \sqrt[3]{\frac{H}{x n}},$$

Twisting in degrees = $\frac{2233000 \ H \ l}{x \ n \ D^4}$

		_				_	_				_				-	_				-	_	_						_	
	120 130 140 150 160	in.	2.19 2.13 2.07 2.03 1.99	2.43 2.38 2.32	2.68 2.62 2.56	97 2.89 2.82 2.75 2.70	3.15 3.07 3.00 2.92 2.87	3.23 3.15	3.38 3.30 3.22	3.51 3.43 3.34	3.64	3.86 3.77 3.68	4.07 3.97 3.88	4.25 4.15	4.42 4.32 4.22	4.47 4.37	4.75 4.64	5 00 4.89	5.23 5.10	5.58 5.44 5.31	5.77 5.63 5.50	6.38 6:22 6.07 5.93 5.81	6.30	6.96 6.81 6.63	7.27 7.10 6.93		7.84 7.64 7.46	8.09 7.90 7.71	8-55 8-32 8-13 7-92 7-78
e.	110	ln.		2.57		3.05	3.24	3.41	3.57	3.71	3.84	4.09	4 30	4.50	4.68	4.84	5.15	5.42	29.67	5.89	6.10	6.58			89.4	7.99	8.29	8.55	8.80
ninu	100	l ii	2.22	2.66	2.92	3.15	3.34	3.52	3.68	3.83		4.21	4.44	4.64	4.82	5.00	5.31	5.28	5.85	80.9	6.30	84.9				8.26	8.55		80.6
per minute,	90	ln.	2.40	2.75	3.03	3.27	3.47	3.65	3.82	3.97	4.11		4.60	4.81	5.00	5.18	5.50	5.80	90.9	6.30	6.53	7.03	7.47	68.1	8.22	8.55	8.86	9.14	9-41
afts]	80	in.	2.50	2.86	3.15	3.40	3.61	3.80	3.98	4.13	4.28	4.55	4.79		5.20	5.39	5.73	6.03	6.31	6.55	64.9	7.32	2.2.2	8.18	8.55	8.89	9.21	05.6	64-6
n sha	25	lu.	1.56	2.93	3.22	3.47	3.69	3.88	4.06	4.22	4.37	4.64	4 89	5.11	5.32	2.50	5.85	01.0	6.45	04.9	6.94	7.48	7.94	8.36	8.74	60.6	9.42	9.72	10.01
l iro	20	in.	2.61	3.00	3.29	3.55	3.77	3.97	4.15	4.31	4.47	4.75	2.00	5.23	5.44	5.63	5.68	6.30	6.28	6.85	2.10	29.4	8.12	8.55	8.94	9.30	9.64	9.94	10.2
Number of revolutions of wrought iron shafts	65	m,	2.68	3.07		3.64	3.87	4.07	4.26	4.43	4.58	4.87	5.13	5.37	5.58	5.78	6.14	6.47	94.9	2.03	7.28	7.84	8.34	8.78	9.18	9.54	68.6	10.2	10.2
f Wr	09	l ii	2.75	3.15	3.57	3.74	3.97	4.18	4.37	7.24	4.71	5.00	5.27	16.6	5.73	5.93	6.31	6.64	6.94	7.21	7.48	8.06	8.57	00.6	9-42	08.6		10.5	10.8
ns o	99	in.	2.83	3.24	3.57		4.08	4.30	4.5	4.67	4.84	5.15	5.43	29.9		6.10	6.49	6.83	7.14	7.42	69.4	8.29	8.80	9.27	69.6		10.4	10.8	11:11
lutio	20	in.	2.03	3.35	3.96		4.22	4.44	4.65	4.83	2.00	5.32	2.60	5.85	01.9	6.31	04.9	90.4	7.38	29.2	7.94	8.56	9.10		10.0	10.4	10.8		9.11
revo	45	in.	3.03	3.47	3.82	4.11	4.37	4.60	4.81	2.00	5.18	5.50	5.80	20.9	6.30	6.53	₹6.9	7.31	1.64	7.95	8.23	8.87	9.43		10.4				11.9
r of	40	in.	3.15	3.60		4.28	4.54	4.78	2.00	5.20	5.38	5.15	6.03	0.30	6.55	6.73	7.21	2.28	7.94	8.26	8.55	9.22	08.6		10.8		9.11	12.0	12.3
nmbe	35	in.	3.29	3.76	4.14				5.22	5.43	29.6	5.98	6.30	89.9	6.84	60.2	7.53	7.93	8.29	8.62	8.94				11.2			12.5	12.9
Ž	30	in.	3.47		4.37				2.20	5.73	5.93	08.9	€.64	6.94	7.55	2.4.2	7.95	8.37	8.74	60.6	9.45								13.5
	25	in.	3.68	4.22			5.33	2.60				04.9	20.2	1.37	29.2	7.94	8.44	8.89	9.29										14.4
	08		3.97						08.9	6.55	62-9				8 25												14.6		15.2
	15	in.				_	6.30			7.20																		9.91	1.2.1
	10	in.	5	5.72	6.30		7.21	1.59	7.94		8.55													_					10.6
	Horse Power	H	10	15	20	25.5	30	35	40	45	20	09	7.0	80	90	100	130	140	160	180	00%	250	300	350	400	450	200	550	009

Absolute and Ultimate Strength of Materials.

Kind of Materials.		Coeffic	cient k.		Elasticity.
	Safety.	Inter.	Pr. cir.	Ultimate	\boldsymbol{x}
Wrought iron	120	162	240	488	4110
Cast iron,	150	200	300	600	2285
Cast steel, soft,	385	519	170	1540	4300
Cast steel, hardened, -	1050	1400	2100	4200	6000
Blasted steel, soft,	175	233	350	700	4200
Brass,	58	75	113	226	1280
Copper,	53	71	106	212	2160
Zinc,	15	20	30	61	2360
Tin,	17	23	34	69	
Lead,	4	6	9	18	100
Ash,	45	56	85	170	221
Hickory,	67	90	135	270	
Chestnut, sweet,	42	56	85	170	
Oak, white,	50	66	100	200	300
Oak, white,					
Oak, English,	25	33	50	100	248
Canadian Oak,	37	49	73	147	283
Pine, white,	34	45	67	135	
Yellow, pine,	38	50	75	150	268
Teak,	51	68	102	205	316

The absolute safety weight is here taken one quarter of the ultimate breaking weight, but when the weight is acting at short intervals one third might be relied upon, or in pressing circumstances one half, when the materials in the beams are known to be of good quality; but the latter never to be exceeded.

BRICKS.

Dimensions.

Common brick $8 \times 4\frac{1}{4} \times 2\frac{1}{2}$ inches = 85 cubic inches. Front brick $8\frac{1}{4} \times 4\frac{1}{2} \times 2\frac{1}{2}$, = 92.8 , ,

When laid in a wall with cement it occupies a space of Common brick $8\frac{1}{2} \times 4\frac{1}{2} \times 2\frac{2}{4}$ inches = 102 cubic inches. Front brick $8\frac{1}{2} \times 4\frac{2}{3} \times 2\frac{2}{4}$, = 111 , , ,

Weight and Bulk of Bricks.

Tons.	Pounds.	Cub. feet.	by i		of bricks in wall wi C. Brick.	thcement
1	2240	22·4	448	416·6	381	347
0·04464	100	1 -	20	18·6	17	15½
2·23	5000	50·00	1000	930	850	772
2·4	5376	53·76	1075	1000	914	834
2·62	5872	58·72	1130	1100	1000	913
2·88	6451	64·51	1240	1200	1100	1000

W 0 0 D.

A Cord of wood is 4 feet wide, 4 feet high, and 8 feet deep. 128 cubic feet.

Inspector's Table for Steam-Boilers on Western Rivers.

	ickness		Diameter of boiler in inches.												
	ron.	34	36	38	40	42	44	46							
No,	in,	lbs,	lbs,	lbs,	lbs,	lbs,	lbs.	lbs,							
1	0.300	169.8	160.4	151.9	144.3	137.5	131.2	125.5							
2	0.284	158.5	149.7	141.8	134.7	128.3	122.5	117.1							
3	0.259	147.2	139.0	131.7	125.1	119.1	113.7	108.8							
4	0.238	138.8	128.3	121.5	115.5	110.0	105.0	100.4							
5	0.220	124.5	117.6	111.4	105.8	100.8	96.2	92.0							
6	0.202	113.2	606.9	101.3	96.2	91.6	87.5	83.6							
7	0.180	101.9	96.2	91.1	86.6	82.5	78.7	75.3							
		Working steam pressure per square inch.													

The following table is given by Mr. Fairbairn, as exhibiting the strongest form and best proportions of Riveted joints, as deduced from experiments and actual practice.

				Distance centre t	e from	single r	uantity iveted.	of lap in double riveted.				
in.	Ratio.	in.	Ratio.	in.	Ratio.	in.	Ratio.	in,	Ratio.			
0.38	2	0.88	4.5	1.25	6	1.25	6	2.10	10			
0.50	2	1.13	4.5	1.50	6	1.50	6	2.50	10			
0.63	2	1.38	4.5	1.63	5	1.88	6	3.15	10			
0.75	2	1.63	4.5	1.75	5	2.00	5.5	3.33	9.2			
0.81	1.5	2.25	4.5	2.00	4	2.25	4.5	3.75	7.5			
0 94	1.5	2.75	4.5	2.50	4	2.75	4.5	4 58	7.5			
1.13	1.5	3.25	4.5	3.00	4	3.25	4.5,	5.42	7.5			
	Diamet rive in. 0.38 0.50 0.63 0.75 0.81 0.94	Diameter of rivet.	Diameter of rivet. Length fro, he	Diameter of Length of rivet fro. head.	Diameter of rivet. Length of rivet Distance	Diameter of rivet. Length of rivet Distance from from head centre to cent.	Diameter of rivet. Length of rivet Distance from single of rivet. Distance from single of r	Diameter of rivet. Distance from centre to cent. Single riveted.	Diameter of rivet. Distance from centre to cent. Single riveted, doubler			

Letters denote.

P = pitch, the distances between the centres of two teeth in the pitch circle.

$$D = diameter$$

$$C = circumference$$

$$d = diameter$$

of the wheel.

of the pinion.

Pitch
$$\begin{cases} P = \frac{C}{M} & \cdot & 1 \\ P = \frac{\pi D}{M} & \cdot & 2 \end{cases}$$

$$\begin{cases} C = PM - 5 \\ C = \pi D - 6 \end{cases}$$
No. of teeth
$$\begin{cases} M = \frac{C}{P} & \cdot & 3 \\ M = \frac{\pi D}{P} & \cdot & 4 \end{cases}$$
Diameter
$$\begin{cases} D = \frac{PM}{\pi} & \cdot & 7 \\ D = \frac{C}{\pi} & \cdot & 8 \end{cases}$$

D: d = C: c = M: m = n: N

Example 1. A wheel of D=40 inches in diameter, is to have M=75 teeth. Required the pitch P=?

Formula 2. Pitch $P = \frac{3.14 \times 40}{75} = 1.66$ inches nearly.

Example 2. The pitch of teeth in a wheel, is to be P=1.71 inches, and having M=48 teeth. Required the diameter D=? of the wheel.

Formula 7. Diam. $D = \frac{1.71 \times 48}{3.14} = 26.14$ in. of the pitch circle

Construction of Teeth for Wheels.

Draw the radius R r, and pitch circle P P. Through r draw the line o o at an angle of 75° to the radius R r.

Half the angle between two teeth in the finion,
$$V = \frac{180}{M}$$
.

Diameter of the wheel, $v = \frac{180}{M}$.

 $v = \frac{3}{m}$.

 $v = \frac$

* If a wheel of more than 80 teeth is to gear a pinion of less than 20 teeth, and the wheel and pinion are of the same kind of materials; take the thickness

of the tooth in the
$$\begin{cases} \text{wheel, } a = P\left(0.42 + \frac{m}{700}\right) & \cdot & 15 \\ \text{pinion, } a = 0.5 \ P\left(1 - \frac{m}{350}\right) & \cdot & 16 \end{cases}$$

A rack is to be considered as a wheel of 200 teeth.

Example with Plate IV.

Example. A wheel of D=48 inches diameter is to gear a pinion about 8 revolutions to 1. Required a complete construction of the gearing?

Number of teeth in the
$$\begin{cases} \text{wheel, } M = \frac{3 \cdot 14 \times 48}{1 \cdot 34} = 112. & 8 \\ \\ \text{pinion, } m = \frac{112}{8} = 14 & 9 \end{cases}$$

Half the angle between two teeth in the pinion
$$V = \frac{180}{112} = 1^{\circ}36'$$
. $sin=0.028$. 1

pinion $V = \frac{180}{14} = 12^{\circ}51'$. $sin=0.2224$. 2

Diameter of pinion
$$d = \frac{48 \times 0.028}{0.2224} = 6.043 \text{ in.}$$
 4

Draw the pitch circle for the wheel and pinion so that they tangent one an other at r on a straight line between the centres of the circles.

Pitch in the gearing
$$P = 48 \times 0.028 = 1.344$$
 in.

Take this chordial pitch in a pair of compasses, and set it off in the pitch circles.

Thickness of tooth wheel
$$\alpha = 1.344 \left(0.42 + \frac{14}{700}\right) = 0.592 \text{in.}$$
 15 pinion $\alpha = 0.5 \times 1.344 \left(1 - \frac{14}{350}\right) = 0.645 \text{ in.}$ 16

Set off the thickness of tooth in the corresponding pitch circles.

Bottom clearance
$$b = 0.4 \times 1.344 = 0.5376$$
 in. - 11

Depth to pitch line
$$c = 0.3 \times 1.344 = 0.4032$$
 in. • 12

Distances
$$r$$
 o and r o' in the wheel
$$\begin{cases} d = \frac{1.344(112+6)}{2(112-11)} = 0.7851 \text{ in.} & -13 \\ e = 0.11 \times 1.344 \sqrt{112} = 0.7126 \text{ in.} & 14 \end{cases}$$

Set off these distances on the line o o' from r, -d beyond and e within the pitch circle for the wheel; then o is the centre and o m radius for the flank m. o' the centre and o' n radius for the face n. Draw circles through o and o' concentric with the pitch circle of the wheel.

Distances
$$r$$
 o and r o' in the pinion
$$\begin{cases} d = \frac{1.344(14+6)}{2(14-11)} = 4.48 \text{ in.} \\ e = 0.11 \times 1.344 \sqrt[3]{14} = 0.356 \text{ in.} \end{cases}$$
 13

Proceed with the pinion similar as the wheel

On the plate is a scale of inches and decimals, which will be convenient for the above measurements.

Strength of Teeth.

Letters denote.

S =strain on the teeth at the pitch-line in pounds.

a = thickness, (see figure),
b = breadth of the teeth,
v = velocity of the teeth in feet per second.

H = Horse power transmitted by the teeth.

Thickness
$$\begin{cases} a = 0.025 \sqrt{S_{\gamma}} \\ a = 0.663 \sqrt{\frac{H}{v}}, \end{cases}$$
 Strain
$$\begin{cases} S = 1600 \ a^{2}, \\ S = 300 \ h \ a. \end{cases}$$
 Pitch......
$$\begin{cases} p = 0.0544 \sqrt{S_{\gamma}} \\ p = 1.44 \sqrt{\frac{H}{v}}, \end{cases}$$
 Horses
$$\begin{cases} H = 2.275 \ \sqrt{a \ v}, \\ H = 0.48 \sqrt{p \ v}. \end{cases}$$

Abrasion included in these formulas and the breadth h = 2.5p.

When great strain is required on the teeth, and the diameter or pitch of the wheel is limited, it is necessary to increase the breadth h proportionally, which will be thus.

$$h = \frac{S}{653p} = \frac{S}{300a} = \frac{Sm}{943D} = \frac{Hm}{1\cdot347D \ v} = \frac{H}{0\cdot429a \ v} = \frac{H}{0\cdot934p} \ v,$$

Example. The pinion-wheel on a propeller shaft is to be D=48 inches in diameter, and to have m=36 teeth; it is driven by a pair of engines H=450 horses, and the propeller to make n=50 revolutions per minute. Required the breadth of the teeth h=2. The velocity at pitch circle will be,

$$v = \frac{3.14 \times 4 \times 50}{60} = 10.5$$
 feet per second, nearly, and

$$h = \frac{Hm}{1\cdot 347D}v = \frac{450\times 36}{1\cdot 347\times 48\times 10\cdot 5} = 23\cdot 88, \text{ or } 24 \text{ inches, nearly.}$$

To Find the Diameter of Axles and Shaft.

Letters denote,

d = diameter in inches, in the bearing; and the length of the bearing 1.5d. W = weight in pounds, acting in the bearing.

Example 1. A water wheel weighs 58,680 pounds, and supported in two bearings. Required the diameter of the wheel axles? The weight acting in each bearing will be 5869 : 2 = 29340 pounds, and

diameter
$$d = \frac{\sqrt{29340}}{21} = 8.15$$
 inches or wrought iron.

Example 2. Fig. 226, page 185. Required the diameter of the axle in the wheel, when the weights P+Q=4864 pounds? If the wheel is supported in two bearings W=4864:2=2432 pounds.

diameter
$$d = \frac{\sqrt{2432}}{28} = 1.76$$
 inches of wrought iron.

Example 3. The pressure on the steam piston, in a walking beam engine is 25000 pounds. Required the diameter of the beam journals?

diameter
$$d = \frac{\sqrt{25000}}{28} = 5.64$$
 inches the centre one.

$$d = \frac{\sqrt{12500}}{28} = 4$$
 inches at the ends.

In this example it is supposed that the beam is worked by a fork connecting rod.

$$D = \frac{\sqrt[3]{FR}}{4} = 5\sqrt[3]{\frac{\overline{H}}{n}}$$

D =inches wrought iron. R =radius of crank in feet.

F = force from the steam piston, lbs.

$$D: d = \sqrt[3]{R}: \sqrt[3]{r}$$

$$D = 4.35 \sqrt[3]{\frac{\overline{H}}{n}}$$

H = horse-power transmitted. n = number revolutions per minute.

When an axle or shaft not only serves as a fulcrum, but effect is transmitted by the act of twisting it, the diameter is to be calculated as follow.

Example 4. The pressure on the piston in a steam engine is $F=45{,}600$ pounds, applied direct on a crank of R=3 feet radius. Required the diameter of the shaft and crank pin?

Diameter of the shaft $D = \frac{\sqrt[3]{45600 \times 3}}{4} = 12.9$ inches. Diameter of the crank pin $d = \frac{\sqrt{45600}}{28} = 7.63$ inches.

Example 5. A steam engine of 368 horses is to make 32 revolutions per minute. Required the diameter of the main shaft?

Diameter
$$D = 5 \sqrt[3]{\frac{368}{32}} = 11\frac{1}{4}$$
 inches.

Example 6. A cog wheel of R=6.5 feet radius is to gear with a pinion of r=1.25 feet radius, and to transmit an effect of 231 horses with 42 revolutions per minute. Required the diameter of the wheel and pinion shafts? The force F is acting uniformly at the periphery.

Diameter of wheel shaft D = 4.35 $\sqrt[3]{\frac{231}{42}} = 7.66$ inches

$$D: d = \sqrt[3]{R}: \sqrt[3]{r}$$

Diameter of pinion shaft $d = 7.66 \sqrt[3]{\frac{1.25}{6.5}} = 4.41$ inches.

ALLOYS.

Letters denote.

	Let	ters denote			
A = Antimony, B = Bist N = Nickel, S = Silver, T = Silver	$\begin{array}{l} \text{nuth, } C \\ = \text{Tin, a} \end{array}$	= Copper and $Z=$ 2	G = G	Gold, $I = Irc$	on, $L = Lead$,
77 77				2C, 1Z.	
Brass, yellow, "rolled, Brass-casting, common, "hard, Brass-Propellers, (large), Gun-metal,				32C, 10Z, 1.52	<i>T</i> ,
Brass-casting, common,				20C, 1.25Z, 2.	5 T.
" hard, .				25C, 2Z, 4.5T	
Brass-Propellers, (large),				25 <i>C</i> , 2 <i>Z</i> , 4.5 <i>T</i> , 8 <i>C</i> , 0.5 <i>Z</i> , 1 <i>T</i> .	
Gun-metal,				8C, 1T.	
Copper-flanges, for pipes,			•	9C, 1Z, 0.26T	
Brass that bears soldering	well,			2C, 0.75Z.	
Diditor a menar can be lone	tamu no.	TWENT OF THE	d heat,	6C, 4Z.	
Statuary,			•	91.4C, 5.53Z, 1	1.7 <i>T</i> , 1.37 <i>L</i> .
German Silver, -			•	20C, 15·8N, 1	2·7Z, 1·31.
Frick's Imitative Silver,				53·39C, 17·4N	. 13Z.
Medals, Pinchbeck,	• •		•	100 <i>C</i> , 8 <i>Z</i> .	
			•	5C, 1Z,	1077 0.50 10
Oninese Briver,	• •		•	05-20, 19-52,	13N, 2.5S, 12
Britannia metal		- 12	7 1 4)		cobalt of I.
Britannia metal, When fused add, Babbitt's anti-Attrition me		. 1	1 1R	1Z, 2A, 1B.	
Babbitt's anti-Attrition me	etal		1, 12,	25T, 2A 0.50	y '
The Tin of the best quality	of Banca	is to be a	idded a	radually to the	e melted compo-
sution.	J	,		· · · · · · · · · · · · · · · · · · ·	o monour compro
Bell-metal, large, -			•	3C, 1T.	
" small, «-				4C, 1T.	
	~ -		_		
		d Meta	I.		
x = 21C, 13T y = 62C, 9Z, To be melt	ad caner	entaliz			
$y = 62C, 9Z, \int 10 \text{ Be MeI.}$	eu sepai	atery.			
Gold = $71y + 9x$, this make	es a brill	liant comp	position	1.	
	S	olders.			
37 1 1 0 11 1		014625,			
Newton's fusible alloy	s,	• •	8 <i>B</i>	3, 5L, 3T, mel	ts at 212°.
* Rose's " "		• •	2B	, 1L, 1T,	" 201o.
A more fusible comporation solder, coarse,	sition	• •	5 <i>B</i>	; 1L, 1T, ; 3L, 2T, ; 3L,	1990
iii soider, coarse,	- :	•	17	, 3 <i>L</i> ,	66 360°.
					. 3000.
Soft Spelter-solder, for Hard " for	inon	i orass wo	7KS, 1C	1Z.	
Solder for Steel,	21016,		10	0 20 17	
Solder for fine brass w	י מליינו		10	S, 3 <i>C</i> , 1 <i>Z</i> . , 8 <i>C</i> , 8 <i>Z</i> .	
Pewterer's soft solder.			2.73	, 4L, 3T.	
Pewterer's soft solder, "Gold Solder,			18	3, 1L, 2T	
Gold Solder,			240	G. 28, 1C	
Silver solder, hard,			48	G, 2S, 1C , 1C.	
" Eoft.	:			1 brass wire	١.
Gold Solder, Silver solder, hard,	-			,	
	rempe	ring S	teel.		
Vollow want faint for la	nanta				Tem. Fah.
Yellow, very faint, for la			•		4300
" pale straw, for r " full, for penkniv	azors see	hicals for	hord	aget iron	4500
Brown, for seissors and o	higgale f	or wrong	ht iron	cast iron -	4700
Red, for carpenter tools	in gener	al -	40 11011		4900
Purple, for fine watch sp			nives		5100
Blue, bright, for swords,	lock spr	ings -	1111112		530° 550°
" full, for daggers, fi	ne saws.	needles			5600
,, dark, for common	saws		-		6000
					000

	C								
Side in inches.	Weight in pounds.	Side in inches.	Weight in pounds	Diameter in inches.	Weight in pounds.	Diameter in inches.	Weight in pounds.		
16-18 15 16-14 1250-121 1450 114 1150	0.013	35	44.418	16-85 6-14 cp -12 cp c4 78	0.010	35	34.886		
8	0.53	33	47.534	8	0.041	33	37.332		
3	0.118	37	50.756	16	0.119	37	39.864		
1 1	0.211	4	54.084	1 Ž	0.165	4	42.464		
38	0.475	41/8	57.517	38	0.373	41	45.174		
1	0.845	41	61.055	1/2	0.663	44	47.952		
5 8	1.320	48	64.700	58	1.043	48 4½	50.815		
3	1.901	$4\frac{1}{2}$	68-448	34	1.493	$4\frac{1}{2}$	53.760		
7 8	2.588	4통 4월	72.305	78	2.032	45 43	56.788		
1	3.380	42	76.264	1 -	2.654	43	59.900		
11/8	4.278	47	80.333	$1\frac{1}{8}$	3.360	47	63.094		
11/4	5.280	5	84.480	11	4.172	5	66.752		
13	6.390	5 1 8	88.784	13	5.019	5븅	69.731		
$1\frac{1}{2}$	7.604	51	93.168	$1\frac{1}{2}$	5.972	51	73.172		
15 14 18 15 15 17 17	8.926	5 8	97.657	15 14 18 12 12 15 14	7.010	58	76.700		
12	10.325	$5\frac{1}{2}$	102.24	12	8.128	$5\frac{1}{2}$	80.304		
17	11.883	58	106.95	17	9.333	5 5 5 3	84.001		
2 21/3	13.520	53	111.75	2	10.616		87.776		
$\frac{2\frac{1}{8}}{}$	15.263	5 7	116.67	21/8	11.988	5 7	91.634		
21	17.112	6	121.66	2½ 2½ 2½ 2½ 2½ 2¾	13.440	6	95.552		
28	19.066	61	132.04	28	14.975	61	103.70		
$2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$ $2\frac{7}{8}$	21.120	61/2	142.82	22	16.688	61/2	112.16		
28	23.292	63	154.01	28	18.293	63	120.96		
22	25.56	7	165.63	24	20.076	7	130.05		
2 g	27.939	7½ 8	190.14	2 7 3	21.944	7½ 8	149.33		
21	30·416 33·010	8 1	216·34 244·22	21	23.888 25.926		169·85 191·81		
21	35.704	9	273.79	21	28.040	81	215.04		
3½ 3½ 3¾ 3¾	38.503	10	337.92	3½ 3½ 3½ 3%	30.240	9	266.29		
08	90 909	10	001.94	98	00 240	IU	200.73		

486.66 34 Cements for Cast Iron.

32.512

12

382.21

Two ounces Sal-ammoniac, one ounce Sulphur and sixteen ounces of borings or filings of cast Iron, to be mixed well in a mortar, and kept dry. When required for use take one part of this powder to twenty parts of clear iron borings or filings, mixed throughly in a mortar, make the mixture into a stiff paste with a little water, and then it is ready for use. A little fine grindstone sand improves the cement.

Or one ounce of Sal-ammoniac to one hundred weight of Iron borings. No

heat allowed to it.

31

41.408 12

The Cubic contents of the joint in inches, divided by five, is the weight of dry borings in pounds Avoir. required to make cement to fill the joint nearly.

Cement for Stone and Brick work.

Two parts Ashes, three of Clay, and one of Sand, mixed with oil, will resist weather equal to marble.

Brown Mortar.

One part Thomaston lime, two of Sand, and a small quantity of Hair.

Hydraulic Mortar.

Three parts of Lime, four Puzzolana, one Smithy Ashes, two of Sand, and four parts of rolled stone or shingles.

Service recognises and on the last							
Diameter inches.	Thickness 16th in.	Copper pipe	Iron pipe pounds.	Diameter inches.	Thickness 16th in.	Copper pipe pounds.	lron pipe pounds.
5	3	12.50	10.96	91	4	30.59	26.81
5	4	16.88	14.78	10	4	32.21	28.21
51	3	13.15	11.52	101	4	33.94	29.70
51		17.75	15.55	11	4	35.20	30 84
$5\frac{1}{2}$	3	13.63	11.94	111	4	36.94	32.35
$5\frac{1}{2}$	4	18:39	16.07	12	4	38.45	33.67
53	3	14.25	12.48	13	4	41.45	36 30
53	4	19.25	16.86	14	4	44.64	39.11
6	3	14.76	12.94	14	5	55.88	48.97
6	4	19.91	17.43	15	4 5 4 5	47.64	41.74
61	3	15.36	13.46	15	5	59.59	52.20
61	4	20.75	18.16	16	4	50.75	44.45
61	3	15.90	13.93	16	4 5 4 5	63.47	55.60
$6\frac{1}{2}$	4	21.41	18.75	17	4	53.86	47.15
63	3	16.50	14.45	17		67.34	59.00
63	4	22.25	19.70	18	4	57.04	50.00
7	3	17.03	14.93	18	5	71.26	62.41
7	4	22.93	20.07	19	4 5	60.14	52.65
71	3	17.65	15.45	19		75.23	65.90
74	4	23.74	20.79	20	4	62.51	54.74
73	3	18.32	16.05	20	5	78.21	68.5
71/2	4	24.45	21.40	21	5	82.98	72.64
7½ 7¾	3	18.95	16.60	22	5	86.77	76.00
72	4	25:28	22.13	23	5	90.57	79.34
8	3	29.42	17.03	24	5	94.31	82.60
8	4	25.96	22.72	26	4 5 5 5 5 5 5 5 5 5 5	101.9	89.32
81	3	20.58	18.03	28	5	109.4	95.68
81	4	27.47	24.07	30	5	117.0	102.4
9	4	28.98	25.38	36	5	140.0	122.5

Weight of Cast Iron Cylinders per Foot.

Diameter	Weight	Diameter.	Weight	Diameter		Diameter	Weight
in inches.	in pounds,	in inches.	in pounds.	in inches.	in pounds.	in inches	pounds.
			-		1 -		
34 78	1.39	$2\frac{3}{4}$	18.74	43	55.92	7½	139.4
7	1.88	27	20.48	47	58.72	72	148.87
lin.	2.47	3in.	22.35	5in.	61.96	8in.	158.63
$1\frac{1}{8}$	3.13	31	24.20	5 1	64.66	81	168.15
11	3.87	34	26.18		68:31	81/2	179.1
13	4.68	33	28.23	5½ 5¾	71.00	83	189.0
11/2	5.57	$3\frac{1}{2}$	30.36	5½ 5½ 5½ 5¾	74.98	9in.	200.8
15	6.54	$\frac{3\frac{1}{2}}{3\frac{5}{8}}$	32.57	55	78.65	91	211.12
17	7.59	33	34.85	53	81.95	$9\frac{1}{2}$	223.7
17/8	8.71	37	37.21	57	85.81	93	235.3
2in.	9.91	4in.	39.66	6in.	89.23	10in.	247.9
1항	11.19	41	41.80	61	96.82	101	273.27
21	12.54	41	44.77	$6\frac{1}{2}$	104.7	11in.	299.9
23	13.98	43	47.00	63	112.9	$11\frac{1}{2}$	327.8
$2\frac{1}{2}$	15.49	41	50.19	7in.	112.4	12in.	356.9
2 8	17.08	45	52.71	71	130.28	13in.	418.9
1						1	

Thickness of Metal.											
Hora,	Į į	1 3	1 1	5	1 3	1 7 8	1 1				
1 14 14 12 2 24 42 23 3 34 4 4 4 4 4 4 4 4 4 4 4	3.06 3.67 6-89	5-05 6-00 6-89 7-80 8-74 9-65 10-57 11-54 12-24 14-20 15-50 16-80 17-41 18-00 17-41 18-99 21-54 23-42 23-42 30-76 32-82 34-45 36-26 38-15	9·81 11·04 12·23 13·48 14·66 15·91 17·15 18·40 19·66 20·90 22·05 23·35 24·49 25·70 31·82 26·94 29·40 31·82 34·66 39·22 41·64 44·11 46·50 48·93 56·38 85·38 85·38 66·70 66·64 71·07 73·79 66·78·40 80·87 83·30 85·73 88·30 88 88 88 88 88 88 88 88 88 88 88 88 88	16·0 17·52 19·05 20·59 22·15·27 26·83 28·28 29·85 31·40 32·91 34·34 40·56 43·68 43·68 43·68 43·92 62·02 65·08 66·16 58·92 62·02 65·08 68·14 77·28 77·36 80·40 80·40 90·70 90 90 90 90 90 90 90 90 90 90 90 90 90	23·8 25·68 29·64 29·64 31·20 33·07 34·94 49·60 55·96 60·48 64·27 75·52 86·40 90·06 93·70 97·40 101·1 115·8 119·5 123·1 126·8 130·5 134·2 137·8 145·2 147·6 181·9 196·6 211·3 226·2	33:30 35:46 37:63 39:77 41:92 44:05 46:19 48:34 50:50 54:81 58:96 63:18 67:60 71:76 76:12 83:98 93:24 97:44 101:83 106:1 110:5 114:7 118:7	39:31 41:77 44:23 46:68 49.14 51:57 54:00 56:45 58:90 63:82 68:70 73:28 97:98 102:9 108:8 112:7 117:6 122:6 127:4 132:5 137:3 137:28 147:0 156:8 161:8 166:6 171:6 176:6 181:3 186:2 195:9 205:8 215:5 225:4 235:3 245:1 264:7 284:3 303:9				

Weight of Flat Rolled Iron per Foot,

column where the breadth is on the top; is the number of Look first for the thickness, and follow that line until the pounds per foot.

20.06

238

23

24 16·16 17·05 17·95

18.06 19.01

2 12.36 15.21 16.05 16.89 12 12.67 13.46 14.26 15.05 15.84 12 11.09 11.83 12.57 13.31 14.04 14.78 18 9.610 10.30 10.98 11.67 12.36 13.04 13.73 13 8.237 8.871 9.505 10.14 10.77 11.40 12.04 12.67 13 6.970 7.551 8.132 8.713 9.294 9.874 10.45 11.03 11.62 5.808 6.337 6.864 7.393 7.921 8.448 8.977 9.505 10.03 10.56 18 4.752 5.227 5.703 6.178 6.653 7.129 7.604 8.079 8.554 9.028 9.504

\$ 2.956 3.326 3.696 4.065 4.435 4.805 5.178 5.544 5.914 6.283 6.653 7.022 7.392 3.802 | 4.224 | 4.646 | 5.069 | 5.492 | 5.914 | 6.336 | 6.758 | 7.181 | 7.604 | 8.025 | 8.448 | 8.88 $2.217 \left[2.534 \right] 2.850 \left[3.168 \right] 3.484 \left[3.802 \right] 4.119 \left[4.435 \right] 4.752 \left[5.069 \right] 5.386 \left[5.703 \right] 6.019 \left[6.336 \right] 2.386 \left[5.703 \right] 6.019 \left[6.336 \right] 2.019 \left[6$ $|1.584|1.546|4 \cdot 112|2 \cdot 375|2 \cdot 640|2 \cdot 904|3 \cdot 168|3 \cdot 432|3 \cdot 696|3 \cdot 960|4 \cdot 224|4 \cdot 488|4 \cdot 752|5 \cdot 916|5 \cdot 280|4 \cdot 188|4 \cdot 188$

 $\left| 0.317 \right| 0.422 \right| 0.528 \left| 0.623 \right| 0.738 \left| 0.738 \right| 0.845 \left| 0.950 \right| 1.056 \right| 1.161 \right| 1.266 \left| 1.372 \right| 1.479 \right| 1.584 \left| 1.584 \right| 1.795 \left| 1.795 \right| 1.900 \left| 2.006 \right| 2.112 \right| 1.112 \left| 0.7317 \right$ $\frac{1}{3}$ " |1.056|1.265|1.477|1.690|1.901|2.112|2.325|2.535|2.746|2.957|3.168|3.379|3.591|3.802|4.013|4.224 $\$ \quad |0 \cdot 034| 0 \cdot 792 |0 \cdot 950| 1 \cdot 108 |1 \cdot 267| 1 \cdot 425 |1 \cdot 584| 1 \cdot 742 |1 \cdot 900| 2 \cdot 059 |2 \cdot 218| 2 \cdot 376 |2 \cdot 534| 2 \cdot 693| 2 \cdot 551 |3 \cdot 009| 3 \cdot 168 |2 \cdot 534| 2 \cdot 693| 2 \cdot 591| 3 \cdot 009| 3 \cdot 168 |2 \cdot 693| 2 \cdot 693| 2 \cdot 693| 2 \cdot 693| 3 \cdot$ $\frac{1}{2} \quad 0.162 \quad 0.237 \quad 0.336 \quad 0.396 \quad 0.474 \quad 0.553 \quad 0.633 \quad 0.712 \quad 0.792 \quad 0.987 \quad 0.949 \quad 1.029 \quad 1.109 \quad 1.188 \quad 1.267 \quad 1.346 \quad 1.425 \quad 1.504 \quad 1.584 \quad 0.988 \quad 1.088 \quad 1.$

5½ | 106.9 | 111.5

97.58 102.0 106.4

54

Weight of Flat Rolled Iron per Foot,

RULE.—Look first for the thickness, and follow the line until the column where the breadth is on the top, is the number of pounds per foot.

76.04 88-71 92-93 97-16 101-4 80-26 84-27 88-29 92-30 96-41 44 | 64.63 | 68.22 | 71.81 | 75.40 | 78.99 | 82.58 | 86.17 52.38 55.65 58.93 62.20 65.97 68.75 72.02 75.30 78.58 57-45 60-83 64-21 67-59 70-97 74-35 77-73 81-11 45.93 47.46 49.00 52.06 55.13 58.19 61.25 64.31 67.37 70.44 73.5144 | 72-23 | 76-04 | 79-84 | 83-64 | 87-44 49.09 50.69 53.86 57.03 60.20 63.36 66.53 69.70 72.87

39.92[41.34[42.77[44.19]45.62[48.47]51.24[54.17]57.03[59.88]62.73[65.58]68.4334 | 37.07 | 38.44 | 39.81 | 41.19 | 42.51 | 43.93 | 46.68 | 49.25 | 52.17 | 54.92 | 57.66 | 60.41 | 63.15 | 65.89 |34.33|35.64|36.96|38.28|39.60|40.92|42.24|44.68|47.43|50.16|52.80|55.44|58.08|60.72|63.36

 $24 \cdot 39 \cdot 25 \cdot 50 \cdot 26 \cdot 61 \cdot 127 \cdot 72 \cdot 128 \cdot 83 \cdot 129 \cdot 93 \cdot 131 \cdot 04 \cdot 132 \cdot 15 \cdot 133 \cdot 26 \cdot 134 \cdot 37 \cdot 135 \cdot 48 \cdot 137 \cdot 137 \cdot 48 \cdot 137 \cdot 1$ $22.18 | 23\cdot23| 24\cdot29| 25\cdot34| 26\cdot40| 27\cdot46| 28\cdot51| 29\cdot57| 30\cdot62| 31\cdot68| 32\cdot73| 33\cdot79| 35\cdot91| 33\cdot02| 40\cdot13| 42\cdot24| 44\cdot35| 46\cdot47| 48\cdot58| 50\cdot69| 26\cdot18| 26\cdot29| 31\cdot68| 26\cdot69| 31\cdot68| 32\cdot73| 33\cdot79| 32\cdot91| 33\cdot02| 40\cdot13| 42\cdot24| 44\cdot35| 46\cdot47| 48\cdot58| 50\cdot69| 32\cdot73| 33\cdot79| 32\cdot73| 33\cdot73| 33\cdot73|$ $\mathbf{3} \quad 31.94 \\ 32.95 \\ 34.21 \\ 35.48 \\ 36.75 \\ 38.75 \\ 38.75 \\ 38.928 \\ 40.55 \\ 42.09 \\ 45.62 \\ 48.16 \\ 50.69 \\ 48.76 \\ 54.816 \\ 50.69 \\ 53.28 \\ 55.76 \\ 58.30 \\ 60.84 \\ 80.$ $29\cdot42|30\cdot49|31\cdot57|32\cdot78|34\cdot00|35\cdot21|36\cdot43|37\cdot64|38\cdot86|41\cdot29|43\cdot72|46\cdot15|48\cdot58|51\cdot01|53\cdot43|55\cdot87|58\cdot31|$

Weight of Flat Rolled Iron per Foot,

The thickness is in the first column, and the breadth in the top line.

24 25 26 21.07 22.07 23.07 24.07 25.07 25.08 27.18 28.49 29.59 30.94 32.10 34.11 36.12 38.12 44.14 45.95 47.76 22.19 22.07 23.07				v	EIG	нт	OF .	L' L'A	Th	OLL	EP	IRC)N	PER	FOO	DT.						189	
28 36 36 37 38 38 38 34 44 44 44 44 44 44 44 44 44 44 45 5 64 44 45 5 64 44 45 65 65 66 87 12 <td></td> <td>9</td> <td>94.4</td> <td>4.82</td> <td>5.69</td> <td>9.55</td> <td>8.01</td> <td>6.43</td> <td>2.86</td> <td>0.42</td> <td>06.2</td> <td>5.35</td> <td>18.2</td> <td>12.0</td> <td>1.14</td> <td>5.20</td> <td>2.67</td> <td>0.23</td> <td>169.</td> <td>690.</td> <td>.801</td> <td>.535</td> <td>-</td>		9	94.4	4.82	5.69	9.55	8.01	6.43	2.86	0.42	06.2	5.35	18.2	12.0	1.14	5.20	2.67	0.23	169.	690.	.801	.535	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		624	5.95 4	3.32 4	1.09	3.86	3.43 3	1.01	1.53	$ \cdot _{5 3}$	3.72 2	1.29 2	1.862)-43 2	.00	1.57	2.141	716 1	287 7	858 5	643 3	429'2	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	14 48	82 45	49 41	17 38	85 36	53 34	20 3	88 25	55 26	23 24	91 2	59 18	26 17	94 17	61 12	94 9.	70 7.	47 4.	85 3.	23 2.	-
28		- 5	3 44	2 41.	.68 0	8 37	6 34	5 32.	3 30	1 27.	9 25	8 23	6 20.	4 18	2 16	1 13	9 11.	1 9.2	3 6.9	6 4.6	7 3.4	812.3	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 54	42.1	39.9	37-7	35.4	33.2	31.0	28.8	26.6	24.3	22.1	19.9	17.7	15.5	13.3	0.11	18.8	9.9	4.43	3.32	2.21	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	40.13	38.02	35.90	33.76	31.68	29.57	27.46	25.35	23.25	21.42	19.01	16.90	14.78	12.67	10.56	8.446	6.386	4.224	3.168	2.112	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•	43	38.12	36.12	34.11	32.10	30.09	60.87	80.97	24.08	22.07	20.02	18.06	16.05	14.04	12.04	10.03	3.026	3.019	1.013	3.009	900-2	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		44	6.12	4.22	2.31	0-41	8.51	6.61	4.71	2.81	0.91	9.01	7.11	5.21	3.31	1.41	209	.604	.703	805	158.	:001	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	1113	3.32 3).52 3	3-72 3	3.92 2	132	3.33 2	.542	1.74 2	1.95 1	1 21.9	1.36 1	199.	122	975	181	386 5	591 3	693 2	7951	Appendiculation
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 1	10 3	·41 35	.72 3(.04 28	.35 2(.66 23	.97 25	28 2	-59 18	106-	21 16	.52 1	83 15	14/10	45 8.	.26 2.	69 2.	880 3.	35 2.	1,069	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	84 32	46 30	57 28	19 27	55 25	92 23	28 21	64 20	00 18	37 16	74 15	09 13	46 11	22 10	83 8.4	47 6.7	10 5.0	74 3.5	55 2.5	37 1.6	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 3%	9 30.	1 29.	3 27.	5 26.	6 24.	8 22.	9 21.	1 19.	2 18	4 16.	7 14.	7 13.	9 11.	5 9.8	1 8.1	6 6.5	2 4.9	8 3.2	6 2.4	4 1.6	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•	333	29.5	3 28.5	3 26.4	25.3	23.7	22.1	20.5	19.0	17.4	15.8	14.2	12.6	11.0	3 9.50	7-92	6.33	4.75	3.16	2.37	11.58	The Assessment
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		53 535	28.84	27.5	25.78	24.5(22.97	21.4	19.90	18.37	16.84	15.3]	13.78	12.2(10.72	9.188	7.65	6.128	4.59	3.062	2.297	1.53]	Annual dynamics
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		33	28.09	26.61	25.13	23.65	22-18	20.70	19.22	17.74	16.26	14.78	13.31	11.83	10.35	8.871	7.393	5.914	4.436	2.957	2.218	1.479	Spinners memory
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		523	81.4	99.57	24.23	22.81	31.38	96.61	18.53	01.41	15.68	14.25	2.83	11.40	086-6	3.554	1.129	6.703	1.277	158-7	3.138	1-426	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		31	6.08	4.71	3.34	1.97	0.59	9.22	1.85	6.47	5.10 1	3.73	2.361	0.98	9019	-237	865	492	119	.746	059	373	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.07 2	.76 2	-44 2	-12 2	-80 2	.48 1	161	.84 1	.52 1	.20 1	.881	1551	740 9	920 3	601 6	280 5	960 4	640 2	980 2	320 1	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	07 25	81 23	54 22	28 21	01 16	74 18	47 17	21 15	94 14	67 13	41 11	14 10	11 9.	04 7.	37 6.	69 5.	02 3	35 2.	01 1.	67 1.	
24 24 24 25 25 24 25 25			7 24	36 22	35 21	13 20	22 19	00 17	91 62	57 15	36 13	14 12	93 11	16 10	38 20	87 7.6	72 6.8	58 5.0	44 3.8	29 2.5	22 1.5	15 1.5	
24 25 25 25 25 25 20 21 22 22 20 21 22 22		1 23	7 23.	1 21.8	5 20.	8 19.	2 18.	6 17.	0 15.	4 14	8 13.	2 12	5 10.	4 9.7	2 8.5	0 7.2	8 6.0	7 4.8	5 3.6	0 2.4	1 1.83	2 1.2	-
24 24 25 29 20 20 20 20 20 20 20		23	22.0	20.0	19.7	18.5	17.4	16.2	15.1	13.9	12.7	11.6	10.4	9-29	8.13	26.9	5.80	4.64	3.48	3 2.32	3 1.74	1.16	-
22		255	21.07	19.96	18.85	17.74	16.63	15.52	14.42	13.31	12.20	11.08	9.981	8.872	7.76	6.654	5.548	4.436	3.372	2.218	1.665	1.108	
(株式は、10 mm		23	20.06	10.61	17.95	16.89	15.84	14.78	13.73	12.67	11.62	10.56	9.504	8.448	7-392	6.336	5.280	4.224	3.168	2.112	1.584	1-056	
	_	_	23	2,	2, 1	67	1	124	-d	13	estro T	14	181	-	r-¦xo	62/41	rajzo	HA	uko	4	mke	-100	

Weight Per Square Foot in Pounds.

Thickness in inches.	Cast Iron,	Wrought or Sheet Iron.	Sheet Copper.	Sheet Lead.	Sheet Zinc
1 6	2.346	2.517	2.890	3.694	2.320
16	4.693	5.035	5.781	7.382	4.642
7.6	7.039	7.552	8.672	11.074	6.961
1	9.386	10.070	11.562	14.765	9.275
T6	11.733	12.588	14.453	18.456	11.61
38	14.079	15.106	17.344	22.148	13.93
7	16.426	17.623	20.234	25.839	16.23
1	18.773	20 141	23.125	29.530	18.55
76 45 76 76 76 76 76 76 76 76	21.119	22.659	26.016	33.222	20.87
5 8	23.466	25.176	28.906	36.913	23.19
	25.812	27:394	31.797	40.604	25.53
16	28.159	30.211	34.688	44.296	27.85
13	30.505	32.729	37.578	47.987	30.17
13 16 15 15	32.852	35.247	40.469	51.678	32.47
13	35.199	37.764	43.359	55.370	34.81
i°	37.545	40.282	46.250	59.061	37.13
11/8	42.238	45.317	52.031	66.444	41.78
11	46.931	50.352	57.813	73.826	46.42
13	51.625	55.387	63.594	63.594	51.04
$1\frac{1}{2}$	56.317	60.422	69.375	88.592	55.48
15	61.011	65.458	75.156	95.975	60.35
13	65.704	70.493	80.938	103.358	65.00
17	70.397	75.528	86.719	110.740	69.61
2	75.090	80.563	92:500	118.128	74.25

Weight of Copper Rods or Bolts per Foot,

Diameter. Weight. Founds. 2	Diameter. Inches 1 1,16 1,16 1,16 1,17 1,16 1,17 1,17 1	Weight. Founds. 3:0270 3:4170 3:8912 4:2688 4:7298 5:2140 6:8109 7:3898 7:9931 9:2702	Diameter, Inches. 178 2 215 214 228 225 225 225 33 318 314	Weight. Pounds. 10·642 12·108 13·668 15·325 17·075 18·916 20·856 22·891 25·019 27·243 29·559 31·972	Diameter Inches. 3 \$ 3 \frac{1}{3} \frac{3}{5} \frac{3}{5} \frac{1}{4}	Weight, Founds, 34.487 37.081 39.737 42.568 45.455 48.433 53.550 61.321 76.130 91.550 109.			

Birmingham Gauge for Wire, Sheet Iron and Steel. 191

2722	inginum ou				
	We	ight per Square	Foot in Poun	ds.	
Thickness by	Thickess in Inches.	Sheet and Boiler Iron.	Sheet Cast Steel.	Sheet Copper.	Thickness in Inches.
No. 0	0.340	13.7	14.0	15.6	32
" 1	0.300	12.1	12.4	13.8	3
" 2	0.284	11.4	11.7	13.0	1 6 9 3 2
" 3	0.259	10.4	10.6	11.9	1
" 4	0.238	9.60	9 80	11.0	1 7 3 2
" 5	0.220	8.85	9.02	10.1	"
" 6	0.203	8.17	8.33	9.32	66
" 7	0.180	7.24	7.38	8.25	T 6
" 8	0.165	6.65	6.78	7.59	
" 9	0.148	5.96	6.08		5 3 2
"10	0.134	5.40	5.51	6·80 6·16	32
"11	0.120	4.83	4.93	5.51	1 8
" 12	0.109	4.40	4.50	5.02	8
"13	0.095	3.83	3.91	4.37	9
"14	0.083	3.34	3.41	3.81	32
"15	0.072	2.90	2.96	3.31	1
" 16	0.065	2.62	2.67	3.00	18
" 17	0.058	2.34	2.39	2.67	"
" 18	0.049	1.97	2.01	2.25	66
" 19	0.042	1.69	1.72	1:93	2 6 4
" 20	0.035	1.41	1.42	1.61	"
" 21	0.032	1.29	1.31	1.47	"
" 22	0.028	1.13	1.15	1.29	52
" 23	0.025	1.00	1.02	1.14	66
" 24	0.022	0.885	0.903	1.01	"
" 25	0.020	0.805	0.820	0.918	66
" 26	0.018	0.724	0.738	0.826	64
" 27	0.016	0.644	0.657	0.735	66
" 28 " 29	0.014	0.563 0.523	0.574	0.642 0.597	
" 30	0.013	0.323	0.533 0.493	0.551	
31	0.010	0.402	0.410	0.480	
32	0.009	0.362	0.370	0.420	
" 33	0.008	0.322	0.328	9.370	
" 34	0.007	0.282	0.288	0.323	
" 35	0.005	0.230	0.235	0.262	
" 36	0.004	0.170	0.173	0.194	

A new wire gauge has been started by Brown & Sharpe, of Providence, R. I., and called the "American Standard wire gauge." It is an improvement on the Birmingham gauge, but still it must be accompanied by an interpreter to explain what it is. Not one in a hundred or one in a thousand of those who have to deal with measures, would understand the thickness from the number of the wire gauge. Whenever it is written or spoken of, it must be translated into inches in order to make it clear how much it is; why not then have the numbers of the wire gauge expressed direct into inches as proposed by M. Whitworth a few years ago, published I believe in the Artizan for 1857. If the American manufacturers would take up the proposition of M. Whitworth it would be one step ahead. It is very clear that the wire gauge is patched up from different sources and ages to its present state, which is not worth to imitate in a new guage.

Proportion of Bolts and Nuts. Number of threads per In-

				LABLE	FOR FALLI	ING DODIEL			100
ı	Velo-								
	city at the	Space fall- en through	Time in seconds.	Velocity at the	Space fall- en through	Time in seconds.	Velocity at the	Space fall.	Time in seconds.
1	end.	en mrougn	Seconds.	end.	on unough	accounts.	end.	on through	seconds.
۱	V	S	T	\mathbf{v}	S	T	v	S	T
	0.1	.00015	0.0031	5.1	•40388	0.158	11	1.8789	0.342
	0.2	.00062	0.0062	5.2	•41987	0.162	12	2.0652	0.373
1	0.3	.00139	0.0093	5.3	*43618	0.165	13	2.6242	0.405
1	0.4	.00248	0.0124	5.4	*45279	0.168	14	3.0435	0.436
ł	0.5	•00388	0.0155	5.5	*46972	0.171	15	3.4938	0.467
	0.6	*00559	0.0187	5.6	·48695 ·50450	0.174	16 17	3.9751	0.498
1	0.8	·00761 ·00994	0·0218 0·0230	5·7 5·8	.52236	0·177 0·181	18	4·4876 5·0310	0.530
	0.9	00994	0.0280	5.9	•55057	0.184	19	5.6056	0.591
ı	1.	01257	0.0311	6.	.55900	0.187	20	6.2112	0.622
1	1.1	:01879	0.0342	6.1	.57779	0.190	21	6.8478	0.654
Ì	1.2	.02065	0.0373	6.2	•59689	0.193	22	7.5155	0.685
1	1.3	.02624	0.0404	6.3	·61630	0.196	23	8.2143	0.716
1	1.4	.03043	0.0436	6.4	·63602	0.199	24	8.9441	0.747
l	1.5	.03493	0.0467	6.5	·65606	0.202	25	9.7049	0.778
-	1.6	03975	0.05	6.6	•67639	0.205	26	10.497	0.810
ı	1.7	.04487	0.052	6:7	69705	0.209	27	11.320	0.840
ı	1·8 1·9	•05031	0.556	6.8	•71801	0.212	28	12.174	0.872
1	2.	•05605	0.0591	6.9	73928	0.215	29 30	13.059	0.903
۱	2.1	·06211 ·06847	0.0623 0.0654	7· 7.1	·76087 ·78276	0·218 0·221	31	13.975 14.922	0.933
ı	$2 \cdot 2$.07515	0.0685	7.2	80497	0.221	32	15.900	0.996
1	2.3	.08214	0.0717	7.3	·82748	0.227	33	16.910	1.025
ı	2.4	.08944	0.0747	7.4	.85031	0.231	34	18.789	1.058
l	2.5	.09705	0.0780	7.5	.87344	0.234	35	19.022	1.091
l	2.6	.10497	0.0810	7.6	.89689	0.237	36	20.124	1.120
	2.7	·11320	0.0841	7.7	.92065	0.240	37	21.258	1.151
	2.8	.12174	0.0872	7.8	.94472	0.243	38	22.422	1.184
	2.9	·13059	0.0903	7.9	.96910	0.246	39	23.618	1.213
	3.	13975	0.0934	8.	•99379	0.250	40	24.844	1.243
١	$\begin{bmatrix} 3 \cdot 1 \\ 3 \cdot 2 \end{bmatrix}$	14922	0.0966	8.1	1.0187	0.253	41	26.102	1.276
l	3.3	·15900 ·16910	0·0997 0·1025	8·2 8·3	1.0441	$0.256 \\ 0.259$	42 43	27·391 28·57	1·308 1·338
١	3.4	18788	0.1023	8.4	1.0956	0.259	44	30.062	1.370
1	3.5	19022	0.1039	8.5	1.1218	0.262	45	31.444	1.400
1	3.6	20124	0.1121	8.6	1.1484	0.268	46	32.857	1.431
1	3.7	21257	0.1152	8.7	1.1753	0.271	47	34.301	1.463
	3.8	.22422	0.1185	8.8	1.2015	0.274	48	35.776	1.495
	3.9	·23618	0.1214	8.9	1.2299	0.278	49	37.282	1.525
	4.	.24844	0.1246	9.	1.2577	0.281	50	38.820	1.555
	4.1	.26102	0.1278	9.1	1.2858	0.283	51	40.388	1.588
	4.3	27391	0.1309	9.2	1.3143	0.287	52	41.987	1.619
	4.4	·28571 ·30062	0.1339	9.3	1.3430	0.290	53 54	43.618	1.650
	4.4	30062	0·1371 0·1403	9.4	1.4041	0·293 0·296	5± 55	45·279 46·972	1.711
	4.6	*32857	0.1403	9.6	1.4310	0.300	56	48.695	1.742
	4.7	.34301	0.1465	9.7	1.4610	0.300	57	50.450	1.774
1	4.8	*35776	0.1496	9.8	1.4913	0.306	58	52.236	1.805
1	4.9	.37282	0.1526	9.9	1.5219	0.309	59	55.058	1.835
1	5.	*38820	0.1559	10	1.5528	0.312	60	55.900	1.868
L		17			N				

17

GRAVITATION.

Gravity or Gravitation is a mutual faculty which all bodies in nature possess, to attract one another; or Gravity is the force by which all bodies tend to approach each other. A large body attracting a comparatively versuall one, and their distance apart being inconsiderable, the force of gravity in the small body will be very sensible compared with that in the large one; such is the ease with the body, our earth, attracting small bodies on or near her surface.

Gravitation is not periodical, it acts continually ever and ever. A body placed unsupported at a distance from the earth, the force of gravity is instantly operating to draw it down, and then we say, "the body fell down." If it were possible to withdraw the attraction between the body and the earth, it would not fall down, but remain unsupported in the space where it was placed;—giving the body a motion upwards it would continue that, and never come back to the earth again.

Law of Gravity.

The force of Gravity is proportional to the mass of the attracting bodies, and inverse as the square of their distance apart.

This law was discovered by Sir Isaac Newton. It is this law that supports the condition of the whole universe, and enables us to calculate the distances, mo-

tions and masses, &c., of the heavenly bodies.

The unit or measure of force of gravity is assumed to be the velocity a faulup body has obtained at the end of the first second it falls; this unit is commonly denoted by the letter g; its value at the level of the sea in New York is $g=32\,100$ feet per second, in vacuum. The space fallen through in the first second is $4g=16\,003$ feet.

This value augments with the latitude, and abates with the elevation above

the level of the sea.

l = latitude, h = height in feet above the level of the sea, and r = radius of the earth in feet, at the given latitude l.

$$r = 20887510(1+0.00164 \cos .2l),$$

$$g = 32 \cdot 16954 (1 - 0 \cdot 00284 \cos.2l) \Big(1 - \frac{2h}{r}. \Big)$$

Letters denote.

S = the space in feet, which the falling body passes through in the time T. u = the space in feet, which the body falls in the Tth second.

V = velocity in feet per second, of the falling body at the end of the time T. T = time in seconds the body is falling.

The accompanying Diagram is a good illustration of the acceleration of a falling body. The body is supposed to fall from a to b, every small triangle represents the space 16.08 feet which the body falls in the first second; when the body has reached the line 3" seconds, it will be found that it has passed 9 triangles, and $9 \times 16.08 = 144.72$ feet the space which a body will fall in 3" seconds. The number of triangles between each line is the space u which the body has fallen in that second. Between 3" and 4" are 7 triangles and 7×16.08 = 112.56 feet, the space fallen through in the fourth second. Under the line 3" will be found 6 triangles, which represents the velocity V the body has obtained at the end of the third second or $6\times16.08 = 96.48$ feet per second. For every successive second the body will gain two triangles or $2\times16.08 = 32.16$ feet per second.

Formulas for Accelerated Motion.

$$V = g T = \frac{2 S}{T} = \sqrt{2g S} = 8.02 \sqrt{S},$$
 - . . . 1,

$$S = \frac{g T^3}{2} = \frac{VT}{2} = \frac{V^2}{2 g} = \frac{V^3}{64 \cdot 33}, \quad \cdot \quad \cdot \quad \cdot \quad 2,$$

$$T = \frac{V}{g} = \frac{2S}{V} = \sqrt{\frac{2S}{g}} = \frac{VS}{401}, \quad \cdot \quad \cdot \quad 3,$$

$$u=g(T-\frac{1}{8}), \qquad T=\frac{u}{g}+\frac{1}{2}, \quad \cdot \quad \cdot \quad \cdot \quad 4.$$

Example 1. A body is dropped at a height of 98 feet. What velocity will it have when it reaches the ground, and what time will it take to fall down?

 $V = 8.02 \sqrt{S} = 8.02 \sqrt{98} = 79.39$ feet per second. Formula 1.

Formula 3.

$$T = \frac{\sqrt{S}}{4.01} = \frac{\sqrt{98}}{4.01} = 2.46$$
 seconds.

Example 2. A body was dropped at the opening of a hole in a rock, and reached the bottom after 3.5 seconds. How deep was the hole?

Formula 2.

$$S = \frac{g T^2}{2} = \frac{32.16 \times 3.5^2}{2} = 196.98 \text{ feet.}$$

Retarded Motion.

A body thrown up vertically will obtain inversely the same motion as when it falls down, because it is the same force that acts upon it, and causes retarded motion when it ascends, and accelerated motion when it descends.

V= the velocity at which the body starts to ascend. v= velocity at the end of the line t. T= time in seconds in which the body will ascend.

t =any time less than T. S = height in feet to which the body will ascend.

s = the space it ascends in the time t.

Formulas for Retarded Motion.

$$v = V - g t = \frac{s}{t} - \frac{gt}{2}, \qquad \cdot \qquad \cdot \qquad 5,$$

$$s = Vt - \frac{g t^2}{2} = t v + \frac{g t^2}{2}, \quad \cdot \quad \cdot \quad \cdot \quad 6,$$

$$t = \frac{V - v}{g} = \frac{V}{g} - \sqrt{\frac{V^2 - \frac{2S}{g^2}}{g^2}}, \quad ... \quad ...$$

Formulas for T and S, is the same as for accelerated motion.

Example 3. A ball starts to ascend with a velocity of 135 feet per second. At what velocity will it strike an object 60 feet above? Find the time t, by the Formula 8.

$$t=rac{135}{3216}-\sqrt{rac{135^a}{3216^a}-rac{2 imes 60}{3216^a}}=0.41$$
 seconds, until it strikes, and from

Formula 5, we have,
$$v = 135 - 3216 \times 0.41 = 121.83$$
 feet, per second.

Example 4. A ball thrown up vertically from a cannon, occupied 9 seconds, until it arrived at the same place it started from. How high up was the ball, and at what velocity did it start?

One half of $9 = 4\frac{1}{4}$ seconds. Formula 2.

$$S = \frac{32 \cdot 16 \times 4 \cdot 5^{9}}{2} = 326$$
 feet high.

$$V = 32.16 \times 4.5 = 144.7$$
 feet per second.

If a cannon ball be shot from A, in the direction AB, at an angle BAC to the horizon, there are two forces acting on the ball at the same time, namely,-the force of gunpowder, which would propel the ball uniformly in the direction AB, and the force of gravity which only acts to draw the ball down at an accelerated motion; these two different (uniform and accelerated) motions will cause the ball to move in a curved line, (Parabola) AaC. Fig. 225.

V = velocity of the ball at A. W = weight of the ball in pounds.

S = the greatest hight of ball over the horizontal line $A\hat{C}$.

t = time from A to C, via a. p = pounds of powder in the charge. b = the distance from A to C, called horizontal range.

$$V = 2800 \sqrt{\frac{p}{W}}, p = \frac{WV^2}{7840000}, b = 243781 \sin x \cos x \frac{p}{W}$$

Example 5. The cannon being loaded sufficiently to give the ball a velocity of 900 feet per second, the angle $x = 45^{\circ}$. Required the distance b = ? and the time t = ?

$$b = \frac{900^{9} \times \sin.45^{\circ} \times \cos.45^{\circ}}{32 \cdot 16} = 1259$$
 feet, the distance from A to C.

It will be observed that the distance b will be longest when the angle x is 45°, because the product of sine and cosine is greatest for that angle. sin.450xcos. $45^{\circ} = 0.5$.

Example 5. What time will it take for a ball to roll 38 feet on an inclined plane angle, $x = 12^{\circ} 20'$, and what velocity has it at 38 feet from the starting

$$T = \sqrt{\frac{2S}{g \sin x}} = \sqrt{\frac{2 \times 38}{32 \cdot 16 \times \sin 12^{\circ} 20'}} = 3.33 \text{ seconds.}$$

 $V = g T \sin x = 32.16 \times 3.33 \times \sin 12^{\circ} 20' = 22.8$ feet per second.

Power Concentrated in Moving Bodies.

It is highly important to distinguish between power simply, and power when concentrated in a moving body. The former is the force multiplied by its velocity,—but the power concentrated in a moving body is equal to the weight of the body multiplied by the square of its velocity, and the product divided by the accelleratrix g,—or the power concentrated in a moving body is equal to the power expended in giving it the motion.

Example. A sledge weighing 20 pounds, strikes a nail with a velocity of 12 feet per second. With what effect did it strike?

$$P = \frac{20 \times 12^9}{32 \cdot 16} = 89.55$$
 effects.

$$V = g \ T \sin x = \sqrt{2g \ S \sin x},$$

$$S = \frac{g T^a}{2 \sin x} = \frac{V^a}{2 g \sin x},$$

$$T = \frac{V}{g \sin x} = \sqrt{\frac{2S}{g \sin x}}.$$

A body will fall from o the distances a, b, c, and d, in equal times.

$$T = \sqrt{\frac{2d}{g}}.$$

224.

A body will fall from a to b via c in the shortest time, if the curve is a Cycloid. S=4d, the length of the Cycloid.

$$T = \pi \sqrt{\frac{d}{2g}} = \pi \sqrt{\frac{p}{2\pi g}}.$$

$$b = \frac{V^2 \sin x \cos x}{g},$$

$$T = \frac{V \sin x}{g}, \qquad S = \frac{V \sin^2 x}{2g}.$$

$$S = \frac{V \sin^{2}x}{2g}$$

$$S = g \frac{T^2 F}{2M} = \frac{V^2 M}{2g F},$$

$$V = g \ T \frac{F}{M} = \sqrt{\frac{2g \ S \ F}{M}},$$

$$T = \frac{V M}{g F} \qquad = \sqrt{\frac{2S M}{g F}},$$

$$F = \frac{V M}{g T'}, \qquad = \frac{2S M}{g T^2},$$

$$M = P + Q$$
, and $F = P - Q$.

CENTRIFUGAL FORCE.

Central Forces are of two kinds, centrifugal and centripetal.
Centrifugal Force is the tendency which a revolving body has to depart from its centre of motion.

Centripetal Force is that by which a revolving body is attracted or at-

tached to its centre of motion.

The Centrifugal and Centripetal forces are opposites to each other, and when The Centry again and centripetal forces are opposites to each other, and when equal the body revolves in a circle; but when they differ the body will revolve in other curved lines, as the Ellipse, the Parabola, &c., according to the nature of the difference in the forces. If the centripugal force is o while the other is acting, the body will move straight to the centre of motion; and if the ceitivine tall force is o while the other is acting, the body will depart from the circle in a straight line, tangent to the circle in the point where the centripetal force ceased to act. The central forces are distinct from the force that has set the body in motion.

If the centrifugal force be made use of to produce an effect, such effect will be

at the expense of the one producing the rotary motion.

Letters denote.

F = Centrifugal force in pounds.

M = the Mass or weight of the revolving body in pounds.

v = Velocity of the revolving body, in feet per second.

R = Radii of the circle in which the body revolves, in feet.

n = number of revolutions per minute.

Example 1. Required the centrifugal force of a body weighing 63 pounds, and making 163 revolutions per minute, in a circle of 4 feet, 4 inches radius?

$$F = \frac{MR n^2}{2933} = \frac{63 \times 4.33 \times 163^2}{2933} = 2475 \text{ pounds.}$$

Example 2. A Railroad train runs 43 miles per hour on a curved track of 115 feet radii. What should be the obliquity of the track?

$$\tan x = \frac{\text{Miles}^2}{69R} = \frac{43^2}{69 \times 115} = 0.233,$$

or $x = 13^{\circ}$ 10', the obliquity of the track.

Example 3. A governor having its arms l=1 foot, 6 inches, how many revolutions must it make per minute to form an angle $x = 30^{\circ}$?

$$n = \frac{54.16}{\sqrt{1.5 \times \cos .30^{\circ}}} = 47.5$$
 revolutions per minute.

$$F = \frac{M v^2}{g R} = \frac{M v^2}{32 \cdot 16 R}, - 1,$$

$$F = \frac{4M R \pi^2 n^2}{60^2 g} = \frac{M R n^2}{2933}, - 2,$$

$$M = \frac{F g R}{v^2} = \frac{2933 F}{M n^2}, \qquad 3$$

$$R = \frac{M v}{F g} = \frac{2933 F}{M n^2},$$
 - 4,

$$n = \sqrt{\frac{2933 \ F}{M R}}, \quad v = \sqrt{\frac{FRg}{M}}, \quad 5g$$

Centrifugal force of a ring.

$$F = \frac{M \, n_2 \, \sqrt{R^2 + r_2}}{4150}.$$

229.

Centrifugal force of a grinding stone, circle-plane, cylinder, rotating round its centre.

$$F = \frac{M R n^2}{4150}.$$

230.

Centrifugal force of a cylinder rotating round the diameter of its base.

$$F \equiv \frac{M n^2 \sqrt{4 l^2 + 3r}}{10260}.$$

231.

Centrifugal force of a ball, (centre of gyration included.)

$$F = \frac{M \, n_2 \, \sqrt{R^2 + \frac{s}{5} r^2}}{2933},$$

232.

Governor.

$$n = \frac{60}{2\pi} \sqrt{\frac{g}{h}} = \frac{54 \cdot 16}{\sqrt{h}} = \frac{54 \cdot 16}{\sqrt{h \cos x}},$$

$$h = \frac{2933}{n^2}$$
, $l = \frac{2933}{n^2 \cos x} = \frac{h}{\cos x}$,

$$\cos x = \frac{2933}{n^2 l} = \frac{h}{l}, \quad r = \sqrt{l^2 - h^2}.$$

PENDULUM.

Simple Pendulum is a material point under the action of gravitation, and suspended at a fixed point by a line of no weight.

Compound Pendulum is a suspended rod and body of sensible magnitude, fixed as the simple pendulum.

Centre of Oscillation is a point in which if all the matter in the compound pendulum were there collected, it would make a simple pendulum oscillate at the same times.

Angle of Oscillation is the space a pendulum describes when in motion.

The velocity of an oscillating body through the vertical position, is equal to the velocity a body would obtain by falling vertically the distance versed sine of half the angle of oscillation.

Letters denote.

 $l=\mathit{length}$ of the simple pendulum, or the distance between the centre of suspension, and centre of oscillation in inches.

t = time in seconds for n oscillations.

n = number of single oscillations in the time t.

Example 1. Required the length of a pendulum that will vibrate seconds? here n = 1, and t = 1".

 $l=39\cdot109$ $\frac{t^2}{n^2}=39\cdot109$ inches, the length of a pendulum for seconds.

Example 2. Require the length of a pendulum that will make 180 vibrations per minute? here t=60'' and n=180.

$$l = \frac{39 \cdot 109t^2}{n^2} = \frac{39 \cdot 109 \times 60^2}{180^2} = 4 \cdot 346$$
 inches.

 $\it Example$ 3. How many vibrations will a pendulum of 25 inches length make in 8 seconds?

$$n = \frac{6.254t}{\sqrt{t}} = \frac{6.254 \times 8}{\sqrt{25}} = 10$$
 vibrations.

Example 4. A pendulum is 137.67 inches long and makes 8 vibrations in 15 seconds. Required the unit or accelleratrix g=?

$$g = \frac{0.8225l \ n^2}{t^2} = \frac{0.8225 \times 137.67 \times 8^2}{15^2} = 32.209.$$

Example 5. A compound pendulum of two iron balls P and Q, having the centre of suspension between themselves: see Fig. 238. P=38 pounds, Q=12 pounds, a=25 inches, and b=18 inches. How long is the simple pendulum, and how many vibrations will the pendulum make in 10 seconds?

$$x = \frac{a P - b Q}{P + Q} = \frac{25 \times 38 - 18 \times 12}{38 + 12} = 14.68$$
 inches.

$$l = \frac{a^2 P + b^2 Q}{x(P+Q)} = \frac{25^2 \times 38 + 18^3 \times 12}{14 \cdot 68(38 + 12)} = 37 \cdot 68 \text{ inches,}$$

the length of the single pendulum.

$$n = \frac{6 \cdot 254t}{\sqrt{t}} = \frac{6 \cdot 254 \times 10}{\sqrt{37 \cdot 68}} = 10 \cdot 193 \text{ vibrations in 10 seconds.}$$

If a compound pendulum is hung up at its centre of oscillation, the former centre of suspension will be the centre of oscillation, and the pendulum will oscillate the same time.

CENTRE OF GYRATION.

Centre of Gyration is a point in revolving bodies in which, if all the revolving matters were there contained, it would obtain equal angular velocity from, and sustain equal resistance to, the force that gives it a rotary motion.

The centre of gyration in different bodies will be found by the accompanying formulas, in which x = distance from the centre of motion to the centre of gyration.

Example 1. Fig. 239. Find the centre of gyration in a bar, rotating round one of its ends; its length is 7 feet, 3 inches?

 $x = 0.5775 \times 7.25 = 4.13$ feet, from the centre of motion.

Example 2. Fig. 245. Find the centre of gyration of a cone, rotating round its vertex, its height being h=33 feet, and R=8 inches =0666 feet.

$$z = \sqrt{\frac{12h^2 + 3R^2}{20}} = \sqrt{\frac{12 \times 3 \cdot 3^2 + 3 \times 0 \cdot 666^2}{20}} = 2.569 \text{ feet}$$

from the centre of motion.

Example 3. Fig. 249. A ring or fly wheel having its outer radius R=6 feet 4 inches, the inner radius r=5 feet 8 inches. Required its centre of gyration x=? from the centre of motion.

$$x = \sqrt{\frac{R^2 + r^2}{2}} = \sqrt{\frac{633^2 + 566^2}{2}} = 6 \text{ feet.}$$

CONCLUSIONS.

The object of finding the centre of gyration of revolving bodies is to ascertain what effect is necessary to give a mass a certain angular velocity; or how much effect is concentrated in a body having a certain angular velocity.

Angular velocity is the number of revolutions a body makes in a unit of time, it is herein denoted by the letter n.

Letters denote.

P = power in effects.

H = horse-power. F = the Force which is applied to rotate a body, in pounds.

s = the radius on which the force acts, in feet. M = Mass of the revolving body, in pounds.

x = the distance from the centre of motion to centre of gyration, in feet.

T = time the force F is applied in seconds.

N= number of revolutions in the time T.

 $n = angular \ velocity$ or number of revolutions per minute, at the end of the time T.

g = 32.166 accelleratrix of the force of gravity. G = accelleratrix of the force F, then,

$$G: g = F S^{3}: M x^{2}, \text{ or } G = \frac{g F S^{3}}{M x^{2}}.$$

Example 4. Fig. 249. In connection with the preceding example (3) the fly-wheel weighs 7400 pounds. What force F must be applied at the radius r=2 feet, to give the fly wheel an angular velocity of n=128 revolutions per minute, at the end of the time T=40 seconds?

Formula 6.
$$F = \frac{n \ M \ x^2}{153 \cdot 5g \ Ts} = \frac{128 \times 7400 \times 6^2}{153 \cdot 5 \times 40 \times 2} = 2773 \ \text{pounds.}$$

How many revolutions did the wheel make in the 40 seconds?

Formula 9.
$$N = \frac{2.56 T_2 Fs}{M x^2} = \frac{2.56 \times 40^2 \times 2773 \times 2}{7400 \times 6^2} = 85.27 \text{ revolutions.}$$

A line or bar.

$$x = 0.5775l$$
,

$$x = 0.2887l.$$

240.

- A circumference round its diameter,
- A circle-plane round its centre, A cylinder round its axis.

$$x = 0.7071r$$
.

241.

A circle-plane round its diameter.

$$x = 0.5r.$$

242.

A Sphere round its diameter.

Convex surface, x = 0.8165r,

Solid, . . .
$$x = 0.6324r$$
.

243. Parallelopiped.

$$x = \sqrt{\frac{4l^2 + b^2}{12}}$$

$$x = \sqrt{\frac{4l^2 + b^3}{12} + a^2 + a l}$$

244.

$$x = \sqrt{\frac{4l^2 + 3r^2}{12}}$$

$$x = \sqrt{\frac{l^2 + 3r^2}{12}}$$

245. Cone.

$$x = \sqrt{\frac{2h^2 + 3R^2}{20}},$$

$$x = \sqrt{\frac{12h^2 + 3R^2}{20}}.$$

246. Conic Frustrum.

$$x = \sqrt{\frac{\frac{h}{10} \left(\frac{R^{2} + 3R \ r + R \ r^{2}}{R^{2} + R \ r + r^{2}} \right) + \frac{3}{20} \left(\frac{R^{5} - r^{5}}{R^{2} - r^{5}} \right)}$$

247.

Cylinder and Sphere.

$$x = \sqrt{a^2 + \frac{1}{2}r^2},$$

$$x = \sqrt{a^2 + \frac{2}{5}r^2}.$$

248.

Wedge and Ring.

$$x = 0.204 \sqrt{12/^2 + B^2 + b^2},$$
$$x = \sqrt{\frac{R^2 + r^2}{2}}.$$

249.

Fly Wheel.
$$x = \sqrt{\frac{R^2 + r^2}{2}},$$

$$FG: Mg = x^2 : s^2.$$

250. Fly Wheel with Arms.

$$x^{2}(M+m) = M \frac{R^{2}+r^{2}}{2} + m \frac{4r^{3}+b^{2}}{12},$$

$$x = \sqrt{\frac{6M(R^{\circ} + r^{\circ}) + m(4r^{\circ} + b^{\circ})}{12(M+m)}}.$$

Formulas for Force and Power of Acceleration.

$$T = \sqrt{\frac{4\pi s N}{G}}, -1, \qquad N = \frac{2 \cdot 56 \, T^2 \, F \, s}{M \, x^2} - 9,$$

$$T = x \sqrt{\frac{4\pi N M}{g \, F \, s}}, 2, \qquad n = \frac{153 \cdot 5 \, T \, F \, s}{M \, x^2}, -10,$$

$$T = \frac{2\pi \, s \, n}{60 \, G}, -3, \qquad P = \frac{n^2 \, M \, x^2}{244 \, T}, -11,$$

$$T = \frac{4\pi \, n \, M \, x^2}{60 \, g \, F \, s}, -4, \qquad M = \frac{244 \, T \, P}{n^2 \, x^2}, -12,$$

$$F = \frac{N \, M \, x^2}{2 \cdot 56 \, T^2 \, s}, -5, \qquad T = \frac{M \, x^2 \, n^2}{244 \, P}, -13,$$

$$F = \frac{n \, M \, x^2}{153 \cdot 5 \, T \, s}, -6, \qquad n = \sqrt{\frac{244 \, T \, P}{M \, x^2}}, -14,$$

$$s = \frac{N \, M \, x^2}{2 \cdot 56 \, T^2 \, F^2}, -7, \qquad H = \frac{n^2 \, M \, x^2}{134100 \, T}, -15,$$

$$s = \frac{n \, M \, x^2}{153 \cdot 5 \, T \, F^2}, -8, \qquad M = \frac{134100 \, T \, H}{n^2 \, x^2}, -16,$$

Fly-Wheels. Weight of.

The weight of a fly-wheel will be determined by the formula 16 in which the time T=130 seconds, the time in which the fly-wheel would concentrate the same power as the steam-engine. When the works or resistance is very irregular it will be better to take the time T=170. The centre of gyration (including ring and arms,) can in practice be assumed at x=r the inner radius of the ring.

Example 5. Required the weight of a fly-wheel for ordinary work, the steam engine being 56 horse power, making 42 revolutions per minute, and the inner radius r = 10 feet?

$$M = \frac{134100TH}{n^2 r^2} = \frac{134100 \times 130 \times 56}{422 \times 10^2} = 5535$$
 pounds.

CENTRE OF PERCUSSION.

Centre of Percussion is a point in which the momentums of a moving body are concentrated. Centre of Percussion is the same as centre of oscillation,

and to be calculated by the same formulas.

Take an iron bar in one hand, and strike heavily over a sharp edge, if the centre of percussion of the bar strikes over the edge, the whole momentum will there be discharged, but if it strikes at a distance from the centre of percussion a part of the momentum will be discharged in the hand, and a shock felt.

It is sometimes of great importance to properly place the centre of percussion. If it is dislocated, the moving body not only fails to properly transmit its effect,

but the lost momentum acts to wear out the machinery.

CENTRE OF GRAVITY.

Centre of Gravity is a point around which the momentums of all matters (under the action of the force of gravity) in a body, or system of bodies, are equally divided.

A body or system of bodies suspended at its centre of

gravity, will be in equilibrium in all positions.

A body or system of bodies, suspended in a point out of its centre of gravity, will hang with its centre of gravity vertical under the point of suspension.

A body or system of bodies suspended in a point out of the body or system of bodies suspended in a point out of

its centre of gravity, and having two different positions, the two vertical lines through the point of suspension will meet in the centre of gravity; thus if a plane be hung up in two different positions, the vertical lines a, b, and c, d, will meet in the centre of gravity o.

z = distance to the centre of gravity as noted in the

figures.

Example 1. The radius of a circle being 3 feet, how far is its centre of gravity from the centre of the half circle?

$$z = 0.6367 \times 3 = 1.91$$
 feet.

Example 2. How far from the bottom of a cylindric shell, open at one end, is its centre of gravity? The cylinder is 4 feet long, radius r = 0.8 feet.

$$z = \frac{h}{r+2h} = \frac{4}{0.8+2\times4} = 0.625$$
 feet.

Example 3. Fig. 264. An irregular figure weighing P=138 pounds, is suspended between a fulcrum and a weight, $l=5^\circ$ 6 feet, W=57 pounds. Required the distance to the centre of gravity z=?

$$\varepsilon = \frac{57 \times 5.6}{138} = 2.31 \text{ feet.}$$

Half Sphere.

Convex surface $z = \frac{1}{2}r$. Solid $z = \frac{2}{3}r$.

259.

Spherical Sector.

Solid, $z = \frac{1}{4} \left(r - \frac{h}{2} \right)$.

260.

Spherical Segment.

Convex surface $z = \frac{h}{2}$,

Solid
$$z = \frac{h}{2} \cdot \left[\frac{2r^2 + h^2}{3r^2 + h^2} \cdot \right]$$

261.

Cone.

Convex surface $z = \frac{h}{2}$,

Solid
$$z = \frac{h}{4}$$
.

262. Conic Fustrum.

Con. sur.
$$z = \frac{h}{2} - \frac{h}{6} \left[\frac{R-r}{R+r} \right]$$

Solid
$$z = \frac{h}{4} \cdot \left[\frac{R^2 + r(2R+3r)}{R^2 + r(R+r)} \cdot \right]$$

263.

Fyramidic Fustrum.

A and a = area of the two bases.

Solid
$$z = \frac{h}{4} \left[\frac{A+3a+2\sqrt{Aa}}{A+a+\sqrt{Aa}} \cdot \right]$$

Irregular Figure.

$$P: W = l: z,$$

$$z = \frac{W l}{P}.$$

265.

To find the Centre of Gravity of two bodies, P and Q.

$$z = \frac{Q \; a}{P + Q}, \qquad b = \frac{P \; a}{P + Q}.$$

266.

To find the Centre of Gravity of a system of bodies.

$$b = \frac{R \ a}{P+R}, \qquad z = \frac{Q \ d}{P+R+Q}.$$

267.

Half a circumference of a Circle or Ellipse.

$$z = 0.6367r.$$

268.

Circle arc or Elliptic arc.

$$z = \frac{c r}{b} = \frac{c(e^2 + 4h^2)}{8h b}.$$

269.

Cylindric Surface with a bottom in one end.

$$z = \frac{h}{r + 2h}.$$

SPECIFIC GRAVITY.

Specific Gravity is the comparative density of substances. The unit for measuring the specific gravity is assumed to be the density of rain water, or distilled water.

One cubic foot of distilled water weighs 1000 ounces, or 62.5 pounds avoirdupois.

To Find the Weight of a Body.

RULE 1. Multiply the contents of the body in cubic feet by 62.5, and the product by its specific gravity, will be the weight of the body in pounds avoirdupois.

RULE 2. Multiply the contents of the body in cubic inches by 0.03616, and the product by its specific gravity, will be the weight of the body in pounds avoirdupois.

RULE 3. Divide the specific gravity by 0.016 and the quotient is the weight of a cubic foot.

Example 1. A bottle full of mercury is 3 inches, inside diameter, and 6 inches high. How much mercury is there in the bottle in pounds?

One cubic inch of mercury weighs 0.491 pounds, and by the formula for Fig. 119 we have the

weight = $0.491 \times 0.785 \times 3^2 \times 6 = 20.85$ pounds.

Example 2. Required the weight of a cone of cast iron, diameter at the base d=1.33 feet, height $\hbar=4$ feet? One cubic foot of cast iron weighs 450-5 pounds, and by formula for Fig. 117 we have the

weight = $450.5 \times 0.2616 \times 1.332 \times 4 = 834$ pounds.

Example 3. The section area of the lower hole in a steam boat is 245 square feet; how much space must be taken in the length of the hole for 131 tons of anthracite coal?

Anthracite coal are 42.3 cubic feet per ton.;

length = $\frac{42.3\times131}{245}$ = 22.6 feet, the space required.

Weight and Bulk of Substances,

Names of Substances.	Cubic feet in pounds.	foot per ton.	Names of Substances.	Cubic feet in pounds.	foot per ton.
Cast iron, Wrought iron, Steel, - Copper, Lead, Brass, - Tin, - Pine, white " yellow, Manogany, Marble, common, Mill-stone, Oak, live - " white, Clay, Cotton Bales, Brick, - Plastor Paris,	450·5 486·6 489·8 555· 707·7 456 29·56 83·81 66·4 141·0 130 70 45·2 101·3	4.97 4.60 4.57 4.03 3.16 4.16 4.91 75.6 66.2 33.8 15.9 17.2 32.0 49.5 22.1 22.4 21.3	Sand, Granite, Earth, loose, - Water, salt, (sea) - " fresh - Ice, Gold, Silver, Coal, Anthracte - " Bituminous - " Cumberland - " Charcoal - Coke, Midlothian - " Cumberland - " Natural Virginia Conventional rate of Stone coal, 28 bushels (5 pecks) = 1 ton, -		23·7 16·1 28·5 34·8 35·9 38·56 2·21 4·07 42·3 44·8 42·3 123 68·5 70·9 48·3

To Find the Specific Gravity.

W= weight of a body in the air. w= weight of the body (heavier than water) immersed in water. S= specific gravity of the body. Then,

$$W-w: W=1: S. \quad S=\frac{W}{W-w}, \quad - \quad - \quad 1,$$

Example 4. Required the specific gravity of a piece of iron-ore weighing 6:345 pounds in the air, and 4:935 pounds in water, S=?

$$S = \frac{6.345}{6.345 - 4.935} = 4.5$$
 the specific gravity.

When the body is lighter than water, annex to it a heavier body that is able to sink the lighter one.

S = specific gravity of the heavier annexed body.

s = specific gravity of the lighter body.

W = weight of the two bodies in air.

w = weight of the two bodies in water.

V = weight of the heavier body in air. v = weight of the lighter body in air.

$$s = \frac{v}{W - w - \frac{V}{S}}, \quad \cdot \quad \cdot \quad \cdot \quad 2,$$

Example 5. To a piece of wood, which weighs $\mathfrak{d}=14$ pounds in the air, is anxest a piece of east-iron $\mathcal{V}=28$ pounds; the two bodies together weigh w=117 pounds in water. Required the specific gravity of the wood?

$$W = V + v = 28 + 14 = 42$$
 pounds. $S = 7.2$ specific gravity of cast-iron.

Formula 2.

$$S = \frac{14}{42 - 11.7 - \frac{28}{5.0}} = 0.529$$
, the specific

gravity of the wood, (Poplar White Spanish.)

A simple way to obtain the specific gravity of woods, is to form it to a parallel rod, and place it vertically in water, then when in equilibrium, the immersed end is to the whole rod as the specific gravity is to 1.

Example 6. A cylinder of wood is 6 feet, 3 inches long, when immersed vertically in water it will sink 3 feet, 9 inches by its own weight. Required its specific gravity.

$$3.75:6.25 = S:1, S = \frac{3.75}{6.25} = 0.600.$$

To discover the Adulteration in Metals. or to find the proportions of two Ingredients

tion in Metals. or to find the proportions of two Ingredien in a Compound.
$$V = \frac{W - s(W - w)}{1 - \frac{s}{S}}, \qquad \qquad \qquad \qquad \qquad \qquad \qquad 3,$$

Example 7. A metal compounded of silver and gold weighs W=6 pounds in the air, and in water w=6.636 pounds. Require the proportions of silver and gold?

S = 19.36 specific gravity of gold.

s = 10.51 specific gravity of silver.

weight
$$V = \frac{6 - 10.51(6 - 5.636)}{1 - \frac{10.51}{19.36}} = 4.755$$
 pounds of gold, and 1.245 pounds of silver.

		I	1		
		Weigh			Weight
Names of Substances.	Specific	per	Names of Substances.	Specific	per
2 values of Substances.	gravity.		Ivames of Buosiances.	gravity.	
		inch.			inch.
Metals.					
	22.669	F00	Alabastan mbita	0.700	-0005
Platinum, rolled		.798	Alabaster, white	2.730	.0987
	21.042	.761	" yellow	2.699	*0974
manife Cody	20.337	.736	Coral, red	2.700	*0974
" purified,	19.50	•706	Granite, Susquehanna	2.704	*0976
" crude, grains	15.602	*565	" Quincy	2.652	*0958
Gold, hammered " pure cast	19.361	.700	" Patapsco	2.640	*0954
" pure cast	19.258	•697	" Scotch	2.625	*0948
" 22 carats fine -	17.486	•733	Marble, white Italian	2.708	.0978
" 20 " " -	15.702	•568	" common	2.686	*0968
Mercury, solid at - 40°	15.632	•566	Tale, black Quartz, Slate,	2.900	*0105
" at+32° Fahr.	13.619	•493	Quartz,	2.660	.0962
" " 600 "	13.580	•491	Slate,	2.672	.0965
" " 212° "	13.375	•484	Pearl, oriental Shale,	2.650	.0957
Lead, pure	11.330	•410	Shale	2.600	*0940
" at + 32° Fahr. " " 60° " " " 212° " Lead, pure " hammered	11.388	•412	Flint, white	2.594	*0936
		•381	" black	2.582	•0933
" pure	10.474	*379	Stone, common	2.520	*0910
Rigmuth	9.823	*355	" Bristol	2.510	*0906
Red Lead.	8.940	*324	" Bristol " Mill	2.484	•0897
" pure Bismuth, Red Lead, Manganese, Conver wire and relled	8.098	•293	" Paving	2.416	.0873
Manganaga	8.030	•290	Gypsum, opaque	2.168	•0783
Conner wire and rolled	8.878	*321	Crindatono	2.143	.0775
Copper, wire and rolled pure	8.788		Salt common	2.130	•0770
Bronze, gun metal -	8.700	*318	Grindstone, Salt, common Saltpetre,	2.090	
		*315	Saltpetre, -		*0755
Brass, common	7.820	*282	Sulphur, native	2.033	.0735
Steel, cast steel	7.919	*286	Common soil, Rotten stone, Clay, Nitre,	1.984	•0717
COMMINION BOLL -	7.833	*283	Rotten stone,	1.981	'0416
mardened a temp.	7.818	283	Clay,	1-930	*0698
Iron, pure	7.768	•281	Brick,	1.900	*0686
" wrought and rolled		*282	Nitre,	1.900	*0636
" hammered	7.789	*282	Plaster Paris, {	1.872	•0677
" cast-iron	7.207	•261		2.473	*0894
Tin, from Böhmen -	7 312	•265	Ivory, Sand,	1.822	*0659
" English	7.291	•264	Sand,	1.800	'0651
Zinc, rolled	7.191	•260	Phoenhorus	1.770	*0640
" cast	6.861	•248	Borax, - · · ·	1.714	.0620
Antimony,	6.712	•244	and to the attendance	1.640	.0593
Aluminium	2.5	0.09	Coal, Anthracite - {	1.436	.0592
Aluminium Arsenic,	5.763	.208	" Maryland	1.355	•0490
Stones and Earths.			" Scotch	1.300	.0470
			" New Castle	1.270	.0460
Topaz, oriental	4.011	•145	" Bituminous	1.270	.0460
Emery,	4.000	.144	Charcoal, triturated -	1.380	.0500
Diamond,	3.521	.127	Forth loogs	1.500	•0542
Limestone, green	3.180	·115	Amber	1.078	60387
" white	3.156	·114	Pimstone.	1.647	*0596
Asbestos, starry	3.073	·111	Amber, Pimstone, Lime, quick Charcoal,	0.804	0291
Glass, flint	2.933	•106	Chargoal	0.441	•0160
" white	2.892	.104	Onaroual,	0 TIT	0100
" bottle green	2.732	0987	Woods (Dry.)		
" green	2.642	0954	Alder,	•800	.0289
Marble, Parian		103	Apple-tree,	•793	.0287
African		0978	Ash, the trunk	•845	*0306
" Egyptian		0964	Bay-tree.	*822	•0297
Mica,		1000	Bay-tree, Beech,	-852	.0308
Hone, white razor	2.838	1000	Box, French	•912	.0330
Chalk		104	" Dutch	1.328	•0480
Chalk, Porphyry,				1.031	*0373
Span groop		0999	" Brazilian red	•596	0219
Spar, green blue		0976	Cedar, wild		·0219
DIUG	2.693	1.0917	" Palestine	•613	0244
				-	-

	1	Weight	10		Weight
Names of Substances	Specific	per	Names of Substances.	Specific	per
Names of Substances.	gravity.		Traines of Buosiances.	gravity	
		inch.			inch.
Coden Indian	1.315		Oil Tingood	-040	•0340
Cedar, Indian		-0200	Oil, Linseed	•940	
	•561	*0203		•915	*0331
Citron, Cocoa-wood, Cherry-tree,	•726	*0263	"Turpentine .	*870	*0314
Cocoa-wood,	1.040	*0376	"Whale	•932	*0337
Cherry-tree,	.715	*0259 *0087 *0233	Proof Spirit,	*925	•0334
Cork,	•240	.0087	Vinegar,	1.080	*0390
Cypress, Spanish -	•644	.0233	Water, distilled	1.000	.0361
Ebony, American - Indian -	1.331	.0481	" Sea	1.026	*0371
" Indian .	1.209	*0437 *0252	" Dead sea .	1.240	*0448
Elder-tree	•695	.0252	Wine, ·	•992	+0359
Elm. trunk of	•671	.0243	" Port	•997	.0361
Filhert-tree	•600	.0217	2020		
Fir mala -	*550	•0199	Miscellaneous.		
" famala	•498	.0180	1113001IIIII00IIS		
Elm, trunk of - Filbert-tree, - Fir, male	•600	.0217	Asphaltum	•905	°0327
Teamine Spenish	•770	0279	Asphaltum, {	1.650	0597
Jasmine, Spanish .	•556	.0201	Beeswax	•965	0349
Jumper-tree, • •	•703	•0051	Butter	•942	*0341
Lemon-tree,		020±	Camphor	•988	*0357
Juniper-tree, - Lemon-tree, - Lignum-vitæ, - Linden-tree, - Log-wood, - Log-wo	1.333	0482	India rubber	•933	0338
Linden-tree,	*604	.0219	Fat of Roof	•923	*0334
Log-wood, • •	•913	.0331	" Hogg	•936	*0338
Mastic-tree - Mahogany, - Maple, Medlar, - Mulberry Oak heart of 60 old	*849	·0482 ·0219 ·0331 ·0307 ·0385 ·0271 ·0342 ·0324	Beeswax, - Butter, - Camphor, India rubber, - Fat of Beef, - " Hogs, - " Mutton, Gamboge, - Camboge, - Camboge	•923	*0334
Mahogany,	1.063	*0385	Caralamitton, •		
Maple,	•750	.0271	Gamboge, -	1.222	*0442
Medlar,	•944	•0342	Gunpowder, 100se •	•900	*0325
Mulberry	*897	*0324	" shaken	1.000	*0361
Oak, heart of, 60 old	1.170	.0423	" solid - {	1.550	*0561
Orange-tree	•705	.0255	001104	1.800	*0650
Orange-tree, Pear-tree,	•661	.0239	Gum Arabic, -	1.452	*0525
Pomegranate-tree,	1.354	.0490	Gum Arabic, - Indigo, Lard, Mastic, Spermaceti, - Sugar, - Tallow, sheep - " calf - " OX	1.009	*0365
Poplar -	*383	.0138	Lard, · · ·	•947	*0343
Poplar, white Spanish	•529	•0191	Mastic	1.074	*0388
Diame to a	•785	*0284	Spermaceti	•943	.0341
Plum-tree,	•705	10204	Sugar	1.605	*0580
Quince-tree,	482	·0255 ·0174	Tellow sheep -	•924	.0334
Plum-tree, Quince-tree, - Sassafras, - Spruce, " old - Pine, yellow - " white		01/4	" colf -	•934	•0338
Spruce,	*500	•0181	" calf - •	•923	*0334
" old	•460	·0166 ·0239	" OX,	.0012	43
Pine, yellow	•660	*0239	Atmospheric air, -	0012	***************************************
" white	*554	*0200			Weight
Vine, Walnut, Yew, Dutch - Spanish	1.327	.0480	Gases. Vapours.		cub. ft.
Walnut,	.671	.0243	Tagost Japous.		grains.
Yew, Dutch	•788	.0285	44 . 7 . 7 1	# 000	
" Spanish	*807	•0292	Atmospheric air,	1.000	527.0
Ligarida		1	Ammoniacal gas, -	•500	263.7
mid aras		1	Carbonic acid,	1.527	805.3
Acid, Acetic	1.062	.0384	Carbonic acid, - Carbonic oxid, - Carburetted hydrogen, Chlorine, - Chlorocarbonous acid,	•972	512.7
" Nitrie	1.217	.0440	Carburetted hydrogen,	•972	512.7
" Nitric Sulphuric -	1.841	.0666	Chlorine,	2.500	1316
Muriatic -	1.200	.0434	Chlorocarbonous acid,	3.472	1828
" Fluoric	1.500	*0542	Chloroprussic acid.	2.152	1134
" Phosphoric -	1.558	•0563	Flouboric acid, Hydriodic acid, Hydrogen, Oxygen,	2.371	1250
Alchohol, commercial	•833	.0301	Hydriodic acid	4.346	2290
" pure •	•792	.0287	Hydrogen.	•069	36.33
Ammoniac, liquid -	-897	0324	Ovygon	1.104	581.8
Roor lager	1.034	+0374	Sulphuretted hydrogen,	1.777	9370
Chempagna	9.97	*0260	Nitrogen,	+079	512.0
Beer, lager Champagne, Cider,	1.018	*0374 *0360 *0361	Nitrogen, Vapour of Alchohol, "turpen'e spir., "water,	1,012	851.0
Ethon galahamia		0301	vapour of Alchohol,	1.013	
Ether, sulphuric -	•739	0207	" furben'e spir	9.013	2642
Ether, sulphuric - Egg, - Honey, -	1.090	.0394	water,	623	328.0
Honey,	1.450	*0394 *0524 *0381	I SMOKE OF DITHINID, COST.	.102	53.80
Human blood, -	1.054	.0381	" wood, -	•90	474.0
Milk,	1.032	0373	Steam at 212° -	*488	257.3

HYDROMETER.

A PODY wholly immersed in a liquid will lose as much of its weight, as the weight of the liquid it displaces.

270.

A floating body will displace its own weight of the liquid in which it floats.

A cylindrical rol of wood or some light materials, being set down in two liquids, A and B, of different specific gravities, when in equilibrium it will sink to the mark a in the liquid A, and to b in the liquid B, then the specific gravity of A:B=b, c:a, c, or inverse as the immersed part of the rod. This is the principle upon which a hydrometer is constructed.

Table showing the comparative Scales of Guy Lussac and Baume, with the Specific Gravity and Proof, at the temperature of 60° Fahr.

		,		
<u>A</u>	Guy Lussac's.	Baum'è s	Specific Grav.	Proof.
271.	100	40	4700	1007
- 90	100	46	•796	
-180	95	40	·815	92 5
1-12.	₩ 90	36	•833	92 82 6
[]70	ਕੁ 85	33	*848	72 0
	10400lg 10400lg 10400lg	31	•863	72 62 52 52 7 1000T
Fl.50	1 2 50			52 at 0
140		28	·876	92 55
(2 70	26	•889	42 5 A 32 H
- 0	70 65	24	•901	32 4
	60	23	•912	32 5 22 5
		21	•923	12
		19	•933	0 Proof.
	a 50	19		
	# 45	18	•942	8)
国 月	5 40	17	•951	18 5 %
	35	16	•958	18 Jood
E-1/E-3	P 30	15	•964	18 Jood 29 St. Droof
	PA 25	14	970	48
	25	14	910 -	· ±0).
-	1			

HYDROSTATICS.

Letters denote.

A and a = areas of the pressed surfaces in square feet.

P and p = hydrostatic pressure in pounds.

d = depth of the centre of gravity of **A** or **a** under the surface of the liquids in feet.

S = specific gravity of the liquid.

Example 1. Fig. 272. The plane A=33 square feet, at a depth of d=6 feet under the surface of fresh water. Required the pressure P=7 Specific gravity of fresh water S=1.

 $P = 62.5 \text{A} d = 62.5 \times 3.3 \times 6 = 1237.5 \text{ pounds.}$

Example 2. Fig. 275. The area of the pistons ${\bf A}=8$ 5 square feet, ${\bf a}=0$ 02 square feet, t=4 feet, e=9 inches, and F=18 pounds. Required the pressure P=1

$$P = \frac{F \, l \, \Lambda}{^{\circ} e \, \mathbf{a}} = \frac{18 \times 4 \times 8 \cdot 5}{0.75 \times 0.02} = 40800 \text{ pounds.}$$

It must be distinguished that the centre of pressure and centre of gravily of the planes, are two different points; the centre of pressure is below the centre of gravity, when the plane is inclined or vertical.

	212.	P = 62.5 SAd,
	$A = \frac{P}{62.5 \ S \ d,}$	

273.

The Hydrostatic paradox.

 $d = \frac{P}{62.5 \text{ S.A.}}$

The pressure P is independent of the width of column C.

P = 62.5 SAh. (same as above.)

274.
$$P = A\left(62.5Sh + \frac{p}{a}\right)$$

$$p = a\left(\frac{P}{A} - 62.5Sh\right),$$

$$h = \frac{Pa - pA}{62.5SAa}$$

275. Bramah's Hydraulic Press.

$$P = \frac{F_{l} A}{e a}, \qquad A = \frac{P e a}{F l} ,$$

$$F = \frac{P e a}{A}$$
, $a = \frac{F A l}{P e}$.

276. Centre of Pressure of a rectangle, the upper edge at the surface of the liquid $d = \frac{2}{3}h$.

277. Centre of Pressure of a triangle, the base being at the surface of the liquid, $d = \frac{1}{2}h$.

278. Centre of Pressure of a triangle, the vertex being at the surface of the liquid. $d = \frac{3}{4}h$.

$$d = \frac{h}{3} + \sqrt{4(h-h')^2 + h^2}.$$

STABILITY OF VESSELS IN WATER.

Letters denote.—D = displacement of the vessel in pounds. $\mathfrak{M} =$ greatest immersed section in square feet. B = breadth of beam in feet in the water-line. L = length of the vessel in feet in the water-line. a = the vertical distance in feet between the centres of gravity of the vessel and displacement when in equilibrium. When the centre of gravity of the vessel c is below that of the displacement e, as in Fig. 1, then a is positive, or +a; and when c is above e, as in Fig. 2, a is negative, or -a. b = horizontal distance in feet from the centre of gravity of the displacement when in equilibrium to the same centre when of gravity of the displacement when in equilibrium to the same centre when out of equilibrium, d = depth of the centre of gravity of the displacement under water-line in feet when in equilibrium; and f = depth of the same centre when out of equilibrium. f = force of wind in pounds per square inch (see page 233). h = vertical height in feet from the centre of gravity of the displacement to the centre of the weight W, Fig. 281, when the vessel is in equilibrium. r = horizontal distance in feet from the centre of the vessel to the centre of the weight W, Fig. 281. l = leverage in feet upon which any force acts to careen the vessel to be calculated from the centre of gravity of the disacts to careen the vessel, to be calculated from the centre of gravity of the displacement, perpendicular to the direction of the careening force. In sailing, I is taken from the centre of gravity of the displacement to the centre of effort of the sails. m = vertical distance in feet from the centre of gravity of the displacement when out of equilibrium to the metacentre m. v = careen angle of the vessel. u = angle of the sails to the length of the vessel. z = angle of the wind to the sails. = area of resistance of the vessel in sq. ft. (see page

the wind to the sails. \bigoplus = area of resistance of the vessel in sq. 1t. (see page 27t). A = area of all the sails in square feet. M = miles or knots per hour, by sailing. F = force in pounds acting to propel the vessel forward. W = any weight or force in pounds acting on the level l to careen the vessel. Example 1.—The l is said frigate Niagara is L = 329 ft. long; B = 55 ft. wide; greatest immersed section, M = 855 sq. ft.; displacement, D = 11,200,000 pounds; vertical distance between the centres of gravity of displacement and vessel assumed to be $-\alpha = 2.5$ ft. What momentum (W l = 2) is required to careen her to an angle of v = 8°, and what force (W =?) is required on a lever of l = 3° feet?

of l = 35 feet?

Formula 1.
$$b = \frac{55^3 \times \tan.8^{\circ}}{12 \times 855} \sqrt[3]{\frac{11,200,000}{64.3 \times 329 \times 855}} = 1.945 \text{ feet.}$$

The required careen momentum will be

Formula 2 $Wl = 11,200,000 (1.945 - 2.5 \sin. 8^{\circ}) = 17,887,520$ foot pounds, and the force $W = \frac{17,887,520}{35} = 511,072 \text{ pounds} = 228 \text{ tons.}$

EXAMPLE 2.—It is required to find the momentum of stability of a man-of-war, by moving a number of guns of known weight from one side to the other. Each by moving a infinite rogins of known weight from one state to the other. Each gun weighs 25,000 pounds, and four guns are moved to the opposite side, to r = 20 feet from the centre of the vessel; the height of the centre of gravity of the guns above the centre of gravity of displacement is h = 16 feet. There will be eight guns of 25,000 pounds, or W = 200,000 pounds careen weight on one side, by which the vessel is careened to an angle of $v = 7^{\circ}$ 20'. Dimensions of the vessel are D = 6,150,000 pounds, B = 40 feet, L = 260, and M = 566 square feet. Required the vertical distance between the centres of gravity of the vessel and displacement, a = ?

splacement,
$$a = \frac{40^3 \times \tan. 7^{\circ} 20'}{12 \times 566} \sqrt{\frac{6,150,000}{64.3 \times 260 \times 566}} = 1,057 \text{ feet.}$$

Formula 6. $l = \sin. 7^{\circ}20' (16 - 20 \times \sin. 7^{\circ}20') + 20 \sec. 7^{\circ}20' - 1.057 = 21.36 \text{ ft.}$

Formula 5. $\pm a = \frac{1}{\sin. 7^{\circ}20'} \left(\frac{200,000 \times 21.09}{6,150,000} - 1.057\right) = -2.84 \text{ feet.}$

a is negative when $\frac{Wl}{D} < b$.

28	0	
----	---	--

$$b = \frac{B^3 \tan v}{12x} \sqrt[3]{\frac{D}{64.3* L x}} . 1$$

$$Wl = D (b \pm a \sin v), \dots$$

Depth
$$\delta = d \cos \frac{1}{2} v_1 \ldots 4$$

$$\pm a = \frac{1}{\sin v} \left(\frac{Wl}{D} - b \right), \dots$$

$$l = \sin v (h - r \sin v) + r \sec v - b$$
,

$$\cot v = \frac{D}{Wl} (m \pm a), \quad .$$

Capsizes when $a \sin v = \text{or} > b$, 8

282.

Careen force $W = f A \sin z \cos u$, 9

Sailing force $F = fA \sin z \sin u$, 10

Miles per hour $M = \sqrt{\frac{F}{6 \oplus }}$, . 11

283.

* 64.3 for salt and 62.5 for fresh water.

HYDRAULICS.

Let the vessel A, Fig. 284, be kept constantly full of water up to the water line w. In two horizontal faces lower than the water line w, are made orifices a and a, through which the water will pass up vertical nearly to the water line w. Omitting the resistance of air, &c., the jet should theoretically reach the water line w: practically it reaches 0.967h.

It is evident that the velocity of the jet through the orifices, must be the velocity due to a body falling the height h, according to the law of force of

gravity.

Letters denote.

Q = actual quantity of water discharged per second or in the time t, in cubic feet.

h = head, or height of water over the orifice.

t =operating time in seconds.

a = area of the orifice in square feet.

m = the coefficient for contraction. (See Fig. 299) G = gallon of 231 cubic inches discharged in the time t.

V = velocity through the orifice in feet per second.

Example 1. Fig. 284. How many gallons of water will be discharged in five minutes, through an orifice of 0.025 square feet, applied at 8 feet under the level of the water?

$$G = 37.75a t \sqrt{h} = 37.75 \times 0.025 \times 5 \times 60 \sqrt{8} = 800 \text{ gallons.}$$

Fig. 285. The weight P can represent the weight of a column of water whose

height =
$$\frac{P}{62.5A} = \frac{h'}{0.967}$$
, acting on the area A.

Fig. 286.n = number of down strokes per minute, s = stroke of piston; theair vessel C = 6As at the pressure of the atmosphere.

Example 2. Fig. 286. How many double strokes must be made per minute by the lever of a hand pump, to throw up 22 cubic feet of water 18 feet high, in the time of 8 minutes and 15 seconds; the levers t=30 inches, e=8 inches, s=0.6 feet, F=20 pounds? $8\times60+15=495$ seconds.

$$n = \frac{3630\,Q\,h'\,e}{t\,s\,F\,l} = \frac{3630\times22\times18\times8}{495\times0^{\circ}0\times20\times30} = 64\cdot5 \text{ strokes per minute,}$$

Example 3. Fig. 294. A vessel of rectangular form is of dimensions A=6 square feet, the weight h=5 feet. What time will it take the water level to sink 2 feet, when the orifice a = 0.212 square feet.

$$t = \frac{A (h - h')}{2.52a(\gamma h + \gamma h)} = \frac{6(5 - 3)}{2.52 \times 0.212(\gamma 5 + \gamma 3)} = 5.66.$$

Motion of Water in Pipes,

Letters denote.

L =extreme length of the pipe in feet.

d = inside diameter in feet, and uniform throughout the length L.

Example 4. Fig. 287. What will be the velocity of the water through a pipe of 0 45 feet inside diameter, and L=68 feet long, the head pressure of water being h = 8 feet ?

$$V = 48 \sqrt{\frac{0.45 \times 8}{68 + 50 \times 0.45}} = 9.6$$
 feet per second.

Weirs.

 $Q = k \ b \ t$. See Table for Weirs.

$$t = \frac{Q}{k b}, \quad b = \frac{Q}{k t},$$

291.

$$Q = 5.35m \ b \ h \ t \sqrt{h},$$

$$G = 40m \ b \ h \ t \sqrt{h},$$

$$t = \frac{Q}{5.35m \ h \ h / h},$$

292.

$$Q = 5.35m \ b \ t(h\sqrt{h} - h' \sqrt{h'}),$$

$$G = 40m \ b \ t(h\sqrt{h} - h' \sqrt{h'}),$$

$$t = \frac{Q}{5 \cdot 35m \ b(h\sqrt{h - h'}\sqrt{h'})},$$

293.

$$t = \frac{0.95m \ A(\sqrt{h} - \sqrt{h'})}{b \ \sqrt{h \ h'}},$$

A =area of the vessel in square feet.

t =time in seconds, in which the water level will sink the space h - h'.

294.

$$t = \frac{A(h - h')}{4m \ a \ (\sqrt{h} + \sqrt{h'})},$$

$$Q = 4m \ a \ t(\sqrt{h} + \sqrt{h'}),$$

295.

$$t = \frac{A}{3.85a \, m} (\sqrt{h} - \sqrt{h'}),$$

$$a = \frac{A\sqrt{h}}{3.85t'm}, \quad t' = \frac{A\sqrt{h}}{3.85am},$$

$$t = \frac{A A' \sqrt{h}}{13.7 m a \sqrt{A + A'}},$$
$$h = \frac{A h'}{A + A'},$$

297. Short Drain.

$$V = \frac{8.02 \sqrt{h}}{\sqrt{1 + \binom{1}{m} - 1}}^{2}$$

 $v = \sqrt{V^2 + 32 \cdot 1 \ h'},$ $Q = a \ mVt. \ from \ V \ to \ v \ about \ 6 \ \sqrt{a},$

298. Long Drain.

$$V = \frac{8 \cdot 02 \sqrt{h}}{\sqrt{1 + (\frac{1}{m} - 1)^a}},$$

 $v = \sqrt{V^a + 64 \cdot 32h' - 0.007 \frac{s \ l \ V^a}{a}}$
 $s = b + 2d$ $l = V \ to \ v, \ feet.$

299. Proportions of the contracted Vein.

 $a: m = 10^{\circ}: 8^{\circ}.$ m = 0.64 a. m = 0.64 when contracted on 4 sides. m = 0.72 " " 3 sides

m = 0.8 " " 2 sides. m = 0.9 " " 1 side.

300. The form of the Vein is a Parabola.

$$d = 2 \sqrt{hh'}, \qquad V = 8\sqrt{h+h'}$$

$$Q = 8 m \ a \ t \sqrt{h},$$

$$\tan v = \frac{2h'}{d}, \quad h = \frac{d^4}{4h'}.$$

301.

 $x = \sin^2 z h$ $y = \sin z \cos z h$.

$$d = 2 \sqrt{(h' + x)(h - x)} - y$$

$$Q = 8 m a t \sqrt{h} \qquad V = 8\sqrt{h + h'}.$$

Example 5. Fig. 289. Required the velocity and quantity of water discharged in a long pipe or hose of L=135 feet lo.g, and d=0.17 feet, attached to a hand-pump of D=0.2 feet in diameter P=44 pounds, and the end of the pipe elevated h=20 feet above the piston D?

$$V = 6.86 \sqrt{\frac{0.17(44 - 49 \times 0.22 \times 20)}{0.2(135 + 50 \times 0.17)}} = 1.95 \text{ feet per second.}$$

 $Q=1.95\times5.38\times0.2^2=0.042$ per second $\times60=2.52$ cubic feet per minute. s = 0.8 feet the stroke of piston, we shall have

$$n = \frac{2.52}{0.8 \times 0.785 \times 0.2^2} = 100$$
 strokes per minute.

Table for Water flowing over Weirs.

This Table is set up from careful experiments on a large scale, and is suited for weirs only.

See Fig. 290.

RULE. Multiply the width b in feet, of the weir by the coefficient k, and the product is the quantity of water discharged per second, in cubic feet. h is the height as represented by Fig. 290. The width b should be b > h.

Example 6. How much water will flow over a wier of b = 5 feet, h = 0.5 feet in one minute? $Q = k b t = 1.1295 \times 5 \times 60 = 338.35$ cubic feet.

h. inches.	h. feet.	m.	k.			
0.4	0.033		0.01365			
0.8	0.066	0.417	0.05452			
1.2	0.100	0.412	0.10592			
1.6	0.133		0.16616			
2.4	0.200	0.401	0.29171			
3.2	0.266	0.397	0.44480			
4.	0.333	0.395	0.63111			
6.	0.500	0.393	1.1295			
8.	0.666		1.7464			
9.	0.750	0.385	2.0331			
12	1.000	0.376	3.1350			

HYDRODYNAMICS.

Water Power.

THE natural effect concentrated in a fall of water, is equal to the weight of the quantity of water passed through per second multiplied by the vertical space it falls.

Fig. 297. Let Q be the quantity of water which passes through the orifice a in the time t=1" second, in cubic feet of 625 pounds each.

h = the vertical space the water falls; then the value or natural effect of the fall is at the orifice a.

$$P=62.5Q h$$
, effects.
• $Q=5.06a\sqrt{h}$, then we have
 $P=315.5 a h\sqrt{h}$.

This will be in horse-power,

But,

$$H = 0.573 \, a \, h \sqrt{h},$$
 $h = \frac{1}{1.07} \, \sqrt[3]{\frac{H^2}{a^2}},$ $H = 0.1134 \, Q \, h,$ $h = \frac{H}{0.1104 \, Q}.$

Example 1. In a creek passes 18 cubic feet of water per second. How high must that creek be dammed up to produce an effect of 10 horses?

$$h = \frac{10}{0.1134 \times 18} = 4.9$$
 feet, the answer.

WATER-WHEELS.

Water-wheels are of two essential kinds, namely, Vertical and Horizontal. The Vertical are subdivided into

Overshot-wheels, Undershot-wheels, Breast-wheels, and High-breast and Low-breast wheels.

The Horizontal are with Floats, Screw-wheels, Turbin, Reaction-wheels, &c.
Waterwheels do not transmit in full the natural effect concentrated in a fall
of water; under most favourable circumstances 80 per cent. has been utilized,
but under poor arrangements only 20 per cent. may be expected.

Example 1. Fig. 302. The vertical section of the immersed floats of an undershot-wheel in a mid-stream is $\mathbf{a}=27$ square feet, velocity of the stream $V=8^\circ 6$, and v=4 feet per second. Required the horse-power of the wheel H=2

$$H = \frac{\mathbf{a} \ v}{200} (V - v)^2 = \frac{27 \times 1}{200} (8.6 - 4)^2 = 11.4 \ \mathrm{horses}.$$

Example 2. Fig. 307. On a breast-wheel is acting Q=88 cubic feet of water per second, the head h=8 feet, velocity of the wheel at the centre of the buckets v=5 feet per second; the water strikes the buckets at an angle $u=8^\circ$ and velocity V=7 feet per second. Required the horse-power of the wheel, H=?

$$H = \frac{88}{11.4} \left(8 + \frac{5}{25} (7 \times \cos.8^{\circ} - 5) \right) = 65 \text{ horses.}$$

Example 3. Required the effect of Poncelet's wheel, the head $\hbar=4$ feet, and the orifice a=5 square feet, the velocity of the wheel at the centre of pressure of the floats is v=6.78 feet per second?

$$\begin{split} V &= 6.91 \ \text{V} = 13.82 \ \text{feet per second.} \\ Q &= 6.5 \times 5 \times \text{V} \overline{\text{V}} = 65 \ \text{cubic feet per second.} \\ H &= \frac{65 \times 678}{197} \ (13.82 - 6.78) = 15.8 \ \text{horses.} \end{split}$$

Example 4. Fig. 309. A saw-mill wheel is to be built under a fall of h=18 feet, and to make n=110 revolutions per minute. Required the proper diameter of the wheel.

$$D = \frac{100}{110} \sqrt{18} = 3.857$$
 feet,

at the centre of pressure of the buckets.

Velocity $V = 8\sqrt{18} = 33.94$ feet per second.

Velocity
$$v = \frac{3.14 \times 3.857 \times 110}{60} = 22.2 \text{ feet per second.}$$

The fall discharged 30 cubic feet of water per second. Required the horse-power of the wheel. H=?

$$H = \frac{30 \times 22.2}{200}$$
 (33.94 - 22.2) = 39 horses.

How many square feet of dry Pine can it saw per hour? See page 150. $30\times39=1170$ square feet. The saw is meant to be applied direct on the wheel shaft.

200

302.

Undershot wheel in a mid-stream.

$$H = \frac{\mathbf{a} \cdot v}{200} (V - v)^2$$
,

When V=2v about, the effect will be,

$$H = \frac{\mathbf{a} V_3}{1600}$$
, $\mathbf{a} = \text{area of float.}$

303.

Undershot-Wheel.

$$H = \frac{Q}{454}(V - v),$$

$$H = \frac{m \ a \ v}{86 \cdot 8} (V - v) \sqrt{h_*}$$

When
$$V = 2v$$
, about, $H = \frac{a h \sqrt{h}}{0.47}$.

304.

Poncelet's Wheel.

$$H=rac{\mathrm{Q}\;v}{228}(V-v)$$
, when $\hbar>5$ feet,

$$H = rac{Q}{197}(V-v)$$
 when $\hbar < 5$ feet,

$$Q = 8m \, a\sqrt{h}, \qquad V = 6.91\sqrt{h}.$$

305.

Breast-Wheel with Parabolic drain.

$$H = \frac{Q}{12} \left[h + \frac{v}{28} (V - v) \right],$$

$$Q=6.5a\sqrt{h'.}$$

206. Low-breast Wheel.

$$H = \frac{Q}{11\cdot 2} \left[h + \frac{v}{32} \left(V \cos w - v \right) \right]$$

Q = kb. $V = \frac{Q}{a}$. See table for weirs.

307. Breast Wheel.

$$H = \frac{Q}{11 \cdot 4} \left[h + \frac{v}{25} (V \cos u - v) \right]$$

308. Over-shot Wheel.

$$H = \frac{Q}{13.7} \left[h + \frac{v}{21.5} \left(V \cos u = v \right) \right]$$

Proper velocity about $n = \frac{35 D + 100}{D}$, revolutions per minute.

309. Saw-Mill Wheel.

$$H = \frac{Q \, v}{200} \, (V - v)$$

Proper diameter of the Wheel,

$$D = \frac{100}{n} \sqrt{h}, \text{ in feet,}$$

n = revolutions per min.

TURBINES.

Letters denote.

Q = cubic feet of water passed through the turbine per second. h = height of fall in feet.

D = diameter in inches of circle of effort in the turbine.

b= danketer in inches of the conduit passage into the turbine wheel. b= depth in inches of turbine buckets. c= depth in inches of leading buckets. r= breadth of turbine buckets in inches.

m = number of buckets in the turbine wheel.

m'= number of leading buckets.

m'= number of leading buckets. n = number of revolutions of turbine per minute. S and s = height of conduit and discharge in inches. t = thickness of steel plate buckets in 16ths of an inch. H = actual horse power of the turbine. t = length in feet t = d diameter in inches t of conduit pipe. t = diameter in inches of the discharge pipe. t = diameter in the turbine wheel hearing on

W= Hydraulic pressure on the turbine wheel bearing on the end of the

$$D = \frac{k \sqrt{h}}{n}, - - 1$$

$$D = \frac{a}{0.436 r}, - 2$$

$$n = \frac{k \sqrt{h}}{D}, - 3$$

$$n = \frac{20 k Q}{D n}, - 10$$

$$n = \frac{20 k Q}{D n}, - 10$$

$$n = \frac{20 k Q}{D n}, - 11$$

$$n = \frac{20 k Q}{D n}, - 3$$

$$n = \frac{20 k Q}{D n}, - 11$$

$$n = \frac{a}{0.436 D}, - 5$$

$$n = \frac{a}{0.436 D}, - 11$$

$$n = \frac{a}{0.436 D}, - 5$$

$$n = \frac{a}{0.436 D}, - 12$$

$$n = \frac{a}{0.436 D}, - 12$$

$$n = \frac{a}{0.436 D}, - 13$$

$$n = \frac{a}{0.625 D}, - 19$$

$$n = \frac{0.625 D}{V m}, - 10$$

$$n = \frac{0.625 D$$

 $H = 0.1134 \ Q \sqrt{h}$ natural effect of the fall, • • •

$$H = \frac{30 \text{ Q}^3}{a^2},$$
 actual horse power, 26 66 per cent of the natural. 27

The coefficient k can vary from 800 to 1200 without seriously affecting the per centage of the ultilized power, but it is best between 900 and 1000. This is a great advantage of the turbine over water wheels, that under the same head of fall it can run at different velocities and still utilizing the maximum effect. Whatever coefficient k adopted it must be kept the same throughout the construction of the turbine.

Jonval's Turbine has so many advantages above other hydraulic motors that it is considered sufficient to describe the construction of that one only, but the principal formulas will answer for any kind of turbines. On the accompanying plate is a drawing of a Jonval Turbine such as the Author of this Pocket Book has built in Russia. The buckets are not

supported by concentric rings, but are fastened only on one side, which supported by concentric rings, but are lastened only on one side, which is considered more simple and convenient for replacing new buckets. For falls over 30 feet it may be better to make it with concentric rings. When a turbine is to be constructed we have on the one side given the natural effect of the fall, and on the other side the actual work to be done, which latter should not exceed 66 per cent. of the former. Between these two points the turbine is to be so proportioned as to utilize the greatest possible effect with smallest expense of Machinery.

Jonval's turbine in good condition generally utilizes 60 to 80 per cent. Suppose a fall of h=25 feet, discharging Q=12 cubic feet of water per

second, the natural effect will be,

$$H = 0.1134 \times 12 \times \sqrt{25} = 6.8$$
 horses,

of which 6.8×0.66=4.5 horses to be counted upon as the actual effect of the turbine.

Turbine shaft to make n=200 revolutions per minute with the assumed coefficient k=960. From these dates we will obtain all the principal dimensions of the turbine, namely,

$$D = \frac{960\sqrt{25}}{200} = 24 \text{ inches.} - 1$$

$$r = \frac{48}{0.436\times24} = 4.6 \text{ in.} - 5$$

$$a = \frac{20\times960\times12}{24\times200} = 48 \text{ sq. in.} \quad 10$$

$$m = 5\sqrt{24} = 24.5 \text{ say } 25. - 17$$

$$m' = 4.5\sqrt{24} = 22 \text{ buckets.} - 18$$

$$r = \frac{48}{0.436\times24} = 4.6 \text{ in.} - - 5$$

$$c = \frac{0.625\times24}{\sqrt{25}} = 3 \text{ in.} - - - 19$$

$$c = \frac{0.78\times24}{\sqrt{25}} = 4 \text{ inches.} - - 20$$

In calculating the breadth r from formula 5, it must come inside of formula 7, if not the diameter D must be altered.

Now proceed with the construction as shown at the bottom of the plate, which represents a section of the buckets through the circle of effort of the turbine.

The drawing of the turbine is ? of an inch to the foot, and the construc-

tion of the buckets 3 inches to the foot.

Draw the base line AB, set off the angle of the leading buckets=10°.

The distance between the leading buckets will in this case be $24 \times 3.14:22 =$ The distance between the leading buckets will in this case be 24×3:14:22=3:43 inches, set off this from S towards A, draw the straight part of the second bucket parallel to the first one, draw from S the line d d at right angle to the buckets, and e will be the centre for the curved part. From the centre of S draw the line o to the end of the second buckets, divide this line into eight equal parts take five of them as radus and draw from the end of the second bucket a circleare of a bout 50°, which will be the propelling part of the turbine wheel bucket.

Distance between the wheel buckets will be 24×3:14:25=3:02 inches, set off this from A towards S, draw the second propelling arc. Set off from A the depth of the wheel buckets b=3 inches, set off 2 b to s, which will be the length of the first wheel bucket. Set off from s to u the distance between the buckets 3:02 inches. Wake s=0:86 S. Draw from u a curve.

between the buckets 3°02 inches. Make \$=0.58 C. Draw from ua curved line in the form of a parabola that will leave the space s and tangent the propelling circlearc somewhere about x. Care must be taken that the discharging area x' of all the wheel buckets will be about 2 per cent. less than the conduit area x of all the leading buckets. The surface of the buckets should be made as smooth as possible, or even polished.

For very high falls the Hydraulic pressure W becomes very considerable

and may necessitate another arrangement, namely, to lay the shaft horizontally and place on it two turbines so that the leading buckets are either between or outside of the wheels, but then comes another disadvantage, namely, that the number of revolutions will be greatly increased and may be required to gear it down 10 to 20 times to the proper speed of the main shaft.

To avoid this as much as possible take k=800 and make $r=\frac{D}{8}$.

One great advantage with Jonval's turbine is that it can be placed almost anywhere between the high and low levels to suit the location, though it should not be more than 20 feet above the lower level; then in order to utilize the whole fall, care must be taken to make the discharge pipe perfectly air tight. It is not necessary to make the discharge straight down from the turbine, it can be carried horizontally or inclined, as may suit the location. The Author has built turbines similar to that represented on the accompanying plate, at General Maltzof's Establishment, Kaluga, Russia.

Velocity of Water in Rivers,

The velocity of the water at the bottom in rivers is to that at the surface, as 8 is to 10.

MOTION OF WATER IN PIPES.

For City Water works. Du Buat's formula.

Letters denote.

Q = cubic feet of water passed through the pipe per minute.

D =inside diameter of the pipe in feet.

L = length of the pipe in feet increased by 50 diameters.

H = differential head in feet.

v = velocity of the water in the pipe in feet per minute.

$$Q = \frac{2356\sqrt{D}^{5}}{\sqrt{\frac{L}{H}}}.$$

$$D = \frac{1}{22 \cdot 329} \sqrt{\frac{Q^2 L}{H}},$$

$$v = \frac{3000 \sqrt{\overline{D}}}{\sqrt{\frac{L}{H}}}.$$

Example 1. A water pipe of D=1-75 feet in diameter, $L=36,000+50\times1$ -75 = 36087-5 feet long, head pressure H=390 feet. Required how much water it can discharge per minute ?

$$Q = \frac{2356\sqrt[3]{1.75^5}}{\sqrt{\frac{36087.5}{390}}} = 992.26 \text{ cubic feet.}$$

Example 2. At a distance of 27960 feet from a water work is required Q=564 cubic feet of water per minute, head pressure being H=256 feet. Required the diameter of the pipe? L=27960+50=28010 feet.

$$D = \frac{1}{22 \cdot 329} \sqrt{\frac{564^2 \times 28010}{256}} = 1.4436 \text{ feet.}$$

Example 3. A water pipe of D=0.75 feet in diameter, L=8650+50=8700 feet, have a head pressure of H=128 feet. Required the velocity v=? of the discharge.

$$v = \frac{3000\sqrt[3]{0.75}}{\sqrt{\frac{8700}{128}}} = 41.424 \text{ feet per second.}$$

Consumption of water in cubic feet per head of population, including all uses, as for manufactories, fires, &c., &c., in 24 hours.

January, 2.58, April, 2.73 October, July, 4.58 4.46 February, 2.40, May, 3.37 August, 4.75 November, 4.12 June, 3.50 Sept., March, 4.61 December,

ATMOSPHERE. AEROSTATIC.

THE atmosphere round our earth, as well as all other gaseous matters, endeavours to occupy a larger space to infinity, (no known limits,) but as it is a material substance, it is under the action of force of gravity, and cannot expand farther than when its density is in equilibrium with the said force. Conceive the atmosphere to consist of a great number of layers, one on the top of the other; the density of the under layers will evidently be greatest, because the upper ones press on them, and they are all elastic; hence the density of the atmosphere is greater at the surface of the earth than higher up. We can now find out the weight and density of all these layers.

A is a vessel full of mercury, in which is placed vertically a glass tube about 3 feet high above the surface l_i in the glass tube is fitted, air-tight, piston a_i just one square inch area, which can be moved by the piston-rod c_i ; now the piston stand is at a on the level l_i and in contact with the mercury in the tube; raise the piston by the piston rod and handle c_i , the mercury in the tube will follow until the height of 30 inches, the piston still continues to move higher in the tube, but the mercury will maintain its position at 30 inches from l_i . Now it may be supposed that it is some force of the piston that draws the mercury up in the tube; if so why did it separate at 30 inches? If the column becomes too heavy it could separate at l_i , and the 30 inches of mercury follow the piston; as this is not the case, but the weight of the atmosphere pressing on the surface l_i and forcing the mercury up in the tube until it (the mercury and the atmosphere) comes in equilibrium, which occurs at the 30 inches; and the piston only served to remove the atmospheric pressure in the tube; hence we have the weight of a column of atmospheric air with one square inch base equal to the mainth of a column of mercury 30 inches high and one shift and the function of a column of a mercury 30 inches high and one shift and one since the said to the mainth of a column of a mercury 30 inches high and so the said of a column of a mercury 30 inches high and so the said of a column of a mercury 30 inches high and so the said of the said of a column of a mercury 30 inches high and so the said of the said of a column of a mercury 30 inches high and so the said of the said of the said of a column of a mercury 30 inches high and so the said of the said of

in the tube; hence we have the weight of a column of atmospheric air with one square inch base equal to the weight of a column of mercury 30 inches high and one sq. in. base. One cubic inch of mercury at 60° Fahr. weighs 0.491 pounds, this multiplied by the height, 30 inches, gives 14.73 pounds, the weight of the columns of mercury or atmosphere; this is generally termed "the atmospheric pressure per square inch."

The specific gravity of mercury at 60° Fahr. is 13.58, and

$$\frac{13.58\times30}{12}$$
 = 33.95 feet, the height of a column of

water required to balance the atmosphere.

If the temperature and force of gravity were uniform throughout the atmosphere, the density would decrease in an arithmetical progression by the height from the ground, and by observing the altitude of columns of mercury at two different heights, the extreme height of the atmosphere would be found simply by the formula 7, page 64, in which

a=o the altitude of the column of mercury at the top of the atmosphere.

b = 30 inches, the column of mercury at the level of the sea.

 $\delta=$ the difference of the columns of mercury at the level of the sea, and at a height h above the sea.

Then, n multiplied by the height h, should be the extreme height of the atmosphere, or

$$H = h\left(\frac{b}{\delta} + 1\right)$$
 - 1,

Example. The mountain Chimborazo, Eucador, (South America,) is $\hbar=3.87$ miles high above the level of the sea; at its top the column of mercury is observed to be only 27-63 inches, and $\delta=30-27$ -63 = 2-37.

$$H = 3.87 \left(\frac{30}{2.37} + 1\right) = 52.825$$
 miles, the extreme height

of the atmosphere.

This is about the true height, but the calculation is incomplete by lack of many circumstances accompanied with higher calcules in mathematics, which can not be allowed to occupy room in this work.

The column is 30 inches when the temperature of the atmosphere is 32° Fah.

(See Barometer.)

BAROMETER.

THE Barometer is based upon the same principle as the preceding experiment. It consists of a glass tube b, about 35 inches high, open at one end, c, and filled with distilled mercury; inverted in a small vessel A, also containing mercury. About the top of the column of mercury is placed a scale to indicate the height from L. When disturbances take place in the atmosphere by heat, condensation, &c., its weight and density will differ, and the column of mercury will fall and rise accordingly; hence by connection of the scale at a, it indicates the disturbance.

To Find the Density of the Atmosphere about a Barometer,

Letters denote.

h = altitude of the column of mercury in inches.

t= temperature of the atmosphere, Fah. S= specific gravity of the air around the Barometer at the time h and t are observed.

S=1 when $t=32^{\circ}$.

$$S = \frac{h}{0.0624(448.77+t)}$$
 • • • 2,

Example. The Barometer has fallen to 26.31 inches and the temperature is $t = 60^{\circ}$. Required the specific gravity of the air?

$$S = \frac{26.31}{0.0624(448.77 + 60)} = 0.83.$$

This formula does not include the expansion of mercury from 32° to 60°, which must be separately reduced by the following formula.

$$h = H(0.9967962 - 0.0001001t)$$
 - - 3,

in which H= the observed column at the temperature t, and h= the true column to be inserted in the formula $2 \cdot$

To Measure Vertical Heights by the Barometer.

Letters Denote,

H = column of mercuryT = temperature of the air at the lower station.

h = column of mercuryt = temperature of the air at the higher station.

l = latitude of the place.

f = vertical height, in feet, between the higher and lower station.

$$x = \log \left(\frac{H}{h} \times_{1 + \frac{1}{1 + 0 \cdot 0001001(T - t)}}\right), \quad \cdot \quad \cdot \quad \cdot \quad 4,$$

$$f = 60345 \cdot 51x(1 + 0.002551 \cos 2l)(1 + 0.00208(T + t - 64^{\circ})), - 5.$$

If the atmosphere is very calm the observations may be made one after the other by one Barometer and detached Thermometer; but the least disturbance of wind requires the observations at the upper and lower stations to be made at the same time. The reduction of the columns of mercury is included in the formula 5.

WIND, AREODYNAMIC.

THE motions and effects of gases by the force of gravity, are precisely the same as that of liquids. (See Hydraulics.)

The altitude or head of the atmosphere at uniform density will be the altitude of a column of water 33.95 feet, divided by the specific gravity of the air, 0.0012046, or,

$$\frac{33.95}{0.0012046} = 28183$$
 feet,

the velocity due at the foot of this head is (Formula 1, page 183.)

 $V = 8.02 \sqrt{28183} = 1346.4$ feet per second, the velocity at which the air will pass into a vacuum.

Velocity of Wind.

When air passes into an air of less density, the velocity of its passage is measured by the difference of their density.

H= density of the air in inches of mercury.

t =temperature at the time of passage.

V = velocity of the wind in feet per second.

$$V = 1346.4 \sqrt{\frac{H-h}{h}(1+0.00208t)},$$
 6.

The force of wind increases as the square of its velocity.

 \mathbf{a} = area exposed at right-angles to the wind, in square feet. F = force of the wind in pounds.

H= horse-power.

v = velocity of the plane a in direction of the wind, + when it moves opposite, and - when it moves with the wind.

$$F = 0.002288 \, a \, V^2, \qquad \text{when } v = 0, \qquad - \qquad 7,$$

$$F = 0.002288 \, a \, (V + v)^2, \qquad - \qquad - \qquad 8,$$

$$H = \frac{a \, v \, (V + v)^2}{241400}, \qquad - \qquad - \qquad - \qquad 9.$$

Example. A Rail-train running ENE 25 miles per hour, exposes a surface of 1000 square feet to a pleasant brisk gale NE by E. Required the resistance to the train in the direction it moves, and the horse-power lost?

ENE - NE by N = 3 points = 33° 45′. V = 14 feet per second, a brisk gale.

 $v = 25 \times 1.467 = 36.6$ feet per second. $F = 0.002288 \sin.933^{\circ} 46' \times 1000 (14 + \cos.33^{\circ} 45' \times 36.6)^{2} = 305.1$ pounds.

$$H = \frac{305 \cdot 1 \times 36 \cdot 6}{550} = 20$$
 horses.

Miles	feet per	Force per	Common Appellation of the Force of Wind.			
per hour.	second.	sq. ft pound.				
1	1.47	0.002	Hardly perceptible.			
2 3 4 5 6 7 8	2.93	0.020	Just perceptible.			
3	4.4	0.044	{ o and persoperator			
4	5.87	0.079				
5	7.33	0.123	Gentle pleasant wind.			
6	8.8	0.177	Goddo product water			
7	10.25	0.241				
8	11.75	0.315				
	13.2	0.400				
10	14.67	0.492				
12	17.6	0.708	Pleasant brisk gale.			
14	20.5	0.964				
15	22.00	1.107				
16	23.45	1.25	l.			
18	26.4	1.55)			
20	29:34	1.968	Very brisk.			
25	36.67	3.075)			
30	44.01	4.429)			
35	51.34	6.027	≻High wind.			
40	58.68	7.873).			
45	66.01	9.963				
50	73.35	12:30	Very high.			
55	80.7	14.9				
60	88.02	17.71	Storm or tempest.			
65	95.4	20.85				
70	102.5	24.1	Great storm.			
.75	110	27.7	Hurricane.			
.80	117:36	31.49				
100	146.66	50.	Tornado, tearing up trees, &c.			

BALLOON.

To Find what Weight, and to what Height a Balloon can raise.

Letters denote.

C = cubic contents of the balloon, in feet.

w = 0 the weight in pounds, it can raise from the ground. w = 0 the weight in pounds, it can raise from the ground. of which it is made.

f = height in feet to which it will raise.

T = temperature at the ground.

t = temperature st the height f.

H = Barometer column in inches, at the ground.

l = latitude of the place.

 $f = 60345.51x(1+0.002551 \cos 2t)(1+0.00208(V+t-64))$

Balloons are commonly filled with Hydrogen gas whose specific gravity is s=0.07, when pure, or about 14 times lighter than air, of which say 10 times to be relied upon, as some foreign heavier gases may accompany it.

WIND-MILLS.

The sail-shaft of vertical wind-mills should have an inclination from 12° to 150 with the level when built on low flat ground; on high ground, elevated from 1000 to 1500 feet within a circle of about two miles, the sail-shaft should incline from 30 to 60 with the level

Effect of Wind-Mills.

Letters denote.

A= projecting area of sails exposed to the wind, in square feet. V= velocity of the wind in feet per second. H= horse-power of the mill.

 $R = \text{extreme} \atop r = \text{inner}$ radii of sails in feet.

 $l = \sqrt{\frac{R^2 + r^2}{2}}$, radius of centre of percussion in feet.

n = number of revolutions of sails per minute.

 $v=\max$ angle of sails to the plane of motion. The angle of the sails should be from 20° to 30° at the inner radius r, at the extreme radius R from 7° to 12° , and the mean angle $v=15^{\circ}$ to 17° .

$$H = \frac{A \ l \ n \ sin.v \ cos.v}{1,540,000} \left(\ V - \frac{b \ n \ sin.v}{9.5} \right)^{2}$$

assume the mean angle $v = 16^{\circ}$, we have the horse power.

$$H = \frac{A \ l \ n}{5,800,000} \left(V - \frac{l \ n}{34.5} \right)^{2}$$

In order to utilise the maximium effect of wind, it is necessary to load the mill that the number of revolutions of the sails are proportional to the velocity of the wind.

Proper revolutions will be found by
$$n = \frac{3 \cdot 16 \ V}{l \ sin. \ v}$$
.
If $v = 16^\circ$, $n = \frac{11 \cdot 5 \ V}{l}$, $H = \frac{A \ V^3}{1,135,000}$, and $A = \frac{1,135,000 \ H}{V^3}$.

Example 1. A wind-mill is to be built of six horse power in brisk wind, V=20 feet per second. Required the area of sails A=7

$$A = \frac{1,135,000 \times 6}{203} = 851$$
 sq. feet.

 $A = \frac{1,135,000 \times 6}{20^3} = 851 \text{ sq. feet.}$ Four sails $\frac{851}{4} = 212.75 \text{ sq. feet each.}$ 212.75 = 6 feet wide by Example 2. 35.5 long, dimensions of the sails. Inner radius r=5 feet and $R=5+35\cdot 3=40\cdot 5$ feet. Required the radius of centre of percussion l=1

$$l = \sqrt{\frac{40.5^2 + 5^3}{2}} = \sqrt{832.6} = 28.85$$
 feet.

 $l=\sqrt{\frac{40\cdot5^9+5^3}{2}}=\sqrt{832\cdot6}=28\cdot85$ feet. Example 3. The mean angle of sails to be $v=16^\circ$. Required the proper number of revolutions of the sails per minute in brisk wind of V=20 feet per second n. = ?

Revolutions $n = \frac{11.5 \times 20}{28.85} = 8$ per minute.

Example 4. A wind-mill has an area of A=750 sq. feet exposed to high wind of V=50 feet per second, and makes n=26 revolutions per minute,—centre of percussion l=25. Required the horse power of the mill H=1 and proper number of revolutions per minute n = ?

$$H = \frac{750 \times 25 \times 26}{5,800,000} \left(50 - \frac{25 \times 27}{34 \cdot 5}\right)^{2} = 7.8 \text{ horses.}$$

$$n = \frac{11.5 \times 50}{25} = 23 \text{ rev. per minute.}$$

$$H = \frac{750 \times 25 \times 23}{5,800,000} \left(50 - \frac{25 \times 23}{34 \cdot 5}\right)^{2} = 8.26 \text{ horses.}$$

LIGHT.

Light is the sensation transmitted by the eye and produces the sense of seeing. Heat and Electricity produce light by making bodies luminous. Intensity of Light is inverse as the square of the distance from the luminous body.

Velocity of Light is 192500 miles per second.

Light passes from the sun 95000000 miles in 8 minutes.

Light can pass around the whole earth in one-eighth of a second. Solids must be heated to at least 600° to produce light in the dark; and o 1000° in day-light.

MOTION OF GAS IN PIPES.

Letters denote.

Q= cubic feet of gas passed through the gas pipe per hour. L= length in feet, D=diameter in inches of the pipe. H= head of water in inches which presses the gas through the pipe.

s = specific gravity of the gas, air being 1. n = number of candles required for giving the same light as Q cubic feet of gas per hour.

$$Q = 780 D^2 \sqrt{\frac{HD}{SL}}, \qquad Q = \sqrt{n}$$

$$n = 0^3$$

$$Q = \sqrt{n}$$
$$n = Q^{2}$$

$$D = \frac{1}{14.35} \sqrt{\frac{5 \cdot \sqrt{s L Q}}{H}},$$

Example. At a distance of L=6450 feet from the gas work is required Q=940 cubic feet of gas per hour. Head of water being H=6 inches, specific gravity s=0.5. Required the diameter of the pipe D=?

$$D = \frac{1}{14.35} \sqrt{\frac{0.5 \times 6450 \times 940^3}{6}} = 3.7887 \text{ inches.}$$

SOUND.

Velocity of Sound through Air.

v = velocity in feet per second.

t =temperature of the air. Fah. scale. D = distance in feet the sound travels in the time T.

$$v = 1089.42 \sqrt{1 + 0.00208(t - 32)}$$

Velocity of sound in water is about 4 times that in air, and 8 times that through solids.

Intensity of sound is inversely as the square of the distance.

$$D = 1089.42 T \sqrt{1+0.00208(t-32)},$$

$$T = \frac{D}{2}.$$

Example. A ship at sea was seen to fire a cannon, and 6.5 seconds afterwards the report was heard, the temperature in the air was 60°. Required the distance to the ship?

 $D = 1089.42 \times 6.5 \sqrt{1 + 0.0028(60^{\circ} - 32)} = 7300$ feet, or 1.38 miles.

Descriptions of Sound.	Audible at a	distance of
Descriptions of Bounds.	feet.	miles.
A powerful human voice in the open air, no wind,	460	0.087
Report of a musket,	16000	3.02
Drum,	10560	2
Music, strong brass band,	15840	3
Cannonading, very strong,	575000	90
In a barely observable breeze a strong human voice		
with the wind can be heard,	15840	3

RINGING BELLS.

Letters denote.

D = diameter of the bell at the mouth, in inches.

d = diameter of the bell at the crown, in inches.

h = heighth of the bell from the mouth to the crown in inches.

S = thickness of sound bow in inches.

W = weight of the bell in pounds avoirdupois.

m= weight of the bell in pounds avoraupons, n= number of vibrations per second, corresponding with the key note of the bell, and to be found in the accompanying table I. k= from 0.07 to 0.08, or a coefficient expressing the relative thickness of the sound bow to the diameter of the bell. In peals of bells, the sound bow is generally S=0.08D for the triple, and S=0.07D for the tenor; the intermediate bells in the peal having the intermediate proportions of sound bow.

Example 1. Required the weight of a bell D = 62 inches in diameter, and S = 41 in. thickness of the sound bow, W = ?

Formulae 1.
$$W = 0.25 \times 62^2 \times 4.5 = 4324.5$$
 pounds.

Example 2. A bell of 2,500 pounds is to be constructed with a sharp note, taking the sound bow k = 0.075. Required the diameter of the bell D = ?

Formulae 10.
$$D = \sqrt[3]{\frac{4 \times 2500}{0.075}} = 51.084$$
 inches

Example 3. It is required to construct a bell with the key note Di in the first octave above zero, $n=152\cdot 22$. To be of light weight with a full good note, for which latter case take $k=0\cdot 07$. Required the diameter of the bell, D=1

Formulae 11.
$$D = \frac{58000 \times 0.07}{152.22} = 26.665$$
 inches.

Example 4. Required the key note of a bell with D = 36.5 in. diameter and S = 2.75 in., n = 7

Formulae 4.
$$n = 58000 \times \frac{2.75}{36.5} = 119.7$$
 vibrations.

In the table the nearest number 120.82, in the first octave below zero, answers to the key note B, which will be the note of the bell.

Example 5. A bell of 6860 pounds is to be constructed with the key note C in the first octave below nero n = 64, see table I. Required the diameter of the bell D = ?

Formulae 9.
$$D = 21.947$$
 $\sqrt{\frac{6860}{64}} = 70.6175$ inches

Example 6. Required the thickness of sound bow for the bell in the preceding example? D=70.6175 inches and n=64. S=?

Formulae 12.
$$S = \frac{64 \times 70.6175^2}{58000} = 5.5027$$
 inches.

Example 7. Required the weight of a bell D=43 inches diameter at the mouth, d=25 inches at the crown, and h=34 inches height from the mouth to the crown, S = 3.5 in., W = ?

Formulae 17.

 $W = 48 \times 25 \times 3.5 (0.5 - 0.002816 \times 25) + 0.00375 \times 34 \times 25^2 \times 3.5 = 2126.226$ pounds.

Formulas for Ringing Bellso

Table I. Vibrations per Second = n.

Key	1	Bass.	e Descant.			
note.	3rd Oct.	2nd Oct.	1st Oct. 🕺	1st Oct.	2nd Oct.	
C	16-000	32.000	64.000	128.00	256.00	512.00
C# D	16.947	33.385	67.790	135.58	271.00	542.32
D"	17.960	35.920	71.840	143.68	287:36	574.72
Ds	19.027	38.055	76.110	152.22	304.44	6 0 8:88
D# E	20.159	40.318	80.636	161.27	322.54	645.09
F	21.357	42.715	85.430	170.86	341.72	683.44
F	22.627	45.255	90.510	181.02	362.04	724.08
F#	23.972	47.945	95.890	191.78	383.56	767.12
G♯	25.398	50.797	101.59	203.19	406.37	812.75
A"	26.908	53.817	107.63	215.27	430.53	861.07
A" A# B	28.508	57.017	114.03	228.07	456.13	912.27
B	30.204	60.409	120.82	241.63	483-27	966.54
č	32.000	64.000	128.00	256.00	512.00	1024.0

Table V.

Abscissa	Ordinate	Thickness of Metal.						
æ .	y	S=1	S = 0.07D	S = 0.75D	S = 0.08D			
1	0.4142	1	0.700	0.750	0.800			
$\frac{1}{2}^{\frac{1}{n}}$	0.686	0.800	0.560	0.600	0.640			
2	0.867	0.653	0.459	0.490	0.522			
2½ 3	0.974	0.547	0.382	0.410	0.437			
	1.025	0.474	0.331	0.355	0.379			
31	1.030	0.423	0.295	0.317	0.338			
4	1.000	0.380	0.266	0.285	0.304			
4 <u>1</u> 5	0.955	0.351	0.245	0.263	0.281			
	0.875	0.327	0.228	0.245	0.261			
51	0.775	0.301	0.211	0.226	0 241			
6	0.665	0.291	0.203	0.218	0.233			
61/3	0.530	0.286	0.200	0.214	0.228			
	0.390	0.279	0.195	0.209	0.223			
74	0.235	0.272	0.190	0.204	0.217			
8	0.075	0.267	0.186	0.200	0.213			
8.74	0.78	0.333	0.233	0.250	0.266			

To Construct a Bell.

When a bell is to be constructed, we generally have the weight or key note given by contract, the diameter and sound bow are calculated by the preceding formulas and examples, and then ready to proceed with ne construction. See fig. 1.

The diameter of the bell at the mouth, is divided into 10 equal parts, the construction.

called strokes, which then is the scale and measurement for the con-

struction. Make a decimal scale, as shown on plate VII.

Shrinkage to be allowed for 3 sixteenths of an inch per foot.

The section of a bell is generally laid out on a piece of board represented by the dotted lines a,b,c,d, which then is cut out and used for turning up the mould for the bell. The board should be about 11 strokes long, and 2.5 strokes wide. Through the centre of the board draw the line p, q, parallel to b, c, bisect the line p, q, and set four (4) strokes from the bisecting point towards each end, divide the strokes into halves, and number them as shown on the accompanying drawing. Through each division draw lines at right angles to p, q, set off the corresponding ordinates y expressed in strokes, Table II. and join them by a curve-line, which then will be the centre of thickness of metal in the bell.

At the end of the first ordinate, as a centre, draw a circle with a diameter equal to the desired thickness of the sound bow, which should be from 0.7 to 0.8 strokes. At every succeeding ordinate draw a circle with the diameter noted in Table II; for instance, if the thickness of the sound bow is 4½ inches, then the thickness of metal or diameter of the circle at the thickness, then the thickness of metal or diameter of the circle at the third ordinate will be 4.5×0.474=2.133 inches; but if the sound bow is 0.7, 0.75 or 0.8 strokes, the thickness of metal at the third ordinate will be 0.331, 0.355, or 0.379 strokes. When all the thicknesses are thus drawn, draw the two lines tangenting the circles on each side of the centre line

of the metal.

From 0 to 1 make a moulding of 0.1 stroke thick over the dotted line

as shown by fig. 2.

Prolong the $6\frac{1}{4}$ ordinate, and set off 1.79 strokes to e, which then is the centre for the curve on the top, draw the arc through the centre of the small circle at the 8th ordinate; join e, 8, set off from e, 0.46 strokes to the centre for the inside curve at the top.

Thickness of metal of the top should be 0.3 the sound bow at 8, and

0.333 at r. Draw the ordinate at 8.74, set off 0.78 to r, join r and the abscissa 8.48, and prolong the line through r; then finish the drawing as shown on

the plate.

When the board is cut out and ready for turning the mould, it must be carefully set, so that the outside diameter of the crown will be half the

diameter of the mouth of the bell.

This form of Bells gives the greatest possible gravity of tone with the least possible quantity of metal. Bells can be made almost in any form without seriously affecting the quality of tone, but the thickness of metal should always be in proportion as the square of the diameter taken at the centre of the metal as in fig. 3.

Proportions of a Peal of Eight Bells,

Bells.	Keynote.	n	Tc .	S. in.	D. in.	W. lbs.	Clapper.		
Tenor,	D	71.84	0.070	3.95	56.5	3156	63 lts.		
2nd,	$E_{}$	80.64	0.071	3.62	51.1	2366	48.6		
3rd,	F#	90.51	0.072	3.32	46.1	1765	37.2		
4th,	G ^{TI}	95.89	0.073	3.22	44.2	1575	34.1		
5th,	Ā	107.63	0.075	3.08	40.5	1262	28.1		
6th,	B	120.82	0.077	2.85	37.0	976	22.4		
7th,	C#	135.58	0.079	2.67	33.8	763	18.2		
Triple,	$\widetilde{D}^{\mathfrak{N}}$	143.68	0.080	2.58	32.3	673	16.8		

Clapper. The weight of the clapper should be from one fortieth to one fiftieth the weight of the Bell, the smaller bells takes the largest

Bell Metal. Thirty of Tin to one hundred of Copper, is a good proportion.

RINGING BRLL. Fiģ.1. Fiģ. 2. Fiģ. 3. Strokes. J.W.Nystrom.

10 11 2

63

6

de, de.

Chromatic Scale in Descant Clef.

11 2 2

HEAT. CALORIC.

The Physical constitution of heat is yet under investigation by operative minds, its well known character and effect upon matter is the base for the investigation.

Heat resembles light, electricity and magnetism, and is thus far assumed to be a

material substance.

Heat is contained in all matters, with no known exception. Two bodies containing different quantities of heat per unit, being placed in contact,—the heat will pass from one to the other until it comes in equilibrium, that is when the two bodies contain equal quantities of heat per unit. It is this passing of heat that first comes under our notice. The body from which the heat passes will feel the other to be cold, and vice versa,—the one that receives the heat will feel the other to be warm, until there is no further passage, namely, when the bodies will feel neither warm nor cold to each other; hence the measure of the emplix sensible heat, is the difference between the heat per unit in the two bodies. Cold is only a want of heat.

Caloric is only another word of expression for heat.

Caloric is of two kinds, sensible and latent.

Sensible Caloric is that which is sensible to the touch, felt as tempera-

ture, and can pass freely from one body to another.

Latent Caloric is that which is insensible to the touch. It is contained in bodies without being felt as temperature, but can by chemical action become sensible; for instance, a piece of burned limestone put into water will get warm and heat it, although both were cold before; the latent caloric in the waterwas set free to sensible.

Influence of Heat on Matter's Coherence.

All bodies in nature expand when heated, and contract when cooled. Solid bodies vary but little by the difference in temperature. Liquids vary more, but gases are extremely susceptible to the impression of heat and cold.

Table of Linear Expansion of Solids.

	Table of Linear Expansi	on of socias.	
Difference in		Length at T.º	k difference length
temperatures.	Names of bodies.	Dongon wo 1.	per degree.
32° to 212°)	1.00086133	0.00000478
32 to 392	Glass,	1.00184520	0.00000546
32 to 572	1)	1.00303252	0.00000583
32 to 212	Wrought iron, {	1.00118210	0.00000656
32 to 572	()	1.00440528	0.00000894
32 to 212	Soft good iron,	1.00122045	0.00000680
32 to 212	Soft good iron, Iron wire,	1.00123504	0.00000687
32 to 212	Cast iron,	1.00111120	0.00000618
32 to 212	Soft steel,	1.00107915	0.000000000
32 to 212	Steel hardened and tem. 150°,	1.00123956	0.00000689
32 to 212	{Copper, {	1.00171820	0.00000955
32 to 572	('	1.00564972	0.00001092
32 to 212	Lead,	1.00284836	0.00001580
32 to 212	Gold, pure,	1.00146606	0.00000815
32 to 212	Gold, hammered,	1.00149530	0.00000830
32 to 212	Silver, pure,	1.00190868	0.00001060
32 to 212	Silver, hammered, -	1.00201000	0.00001116
32 to 212	Brass, common cast,	1.00187821	0.00001043
32 to 212 32 to 212	Brass wire or sheet, •	1.00193333 1.00088420	0.00001075
32 to 212 32 to 572	{ Platinum, pure, }	1.00275482	0.00000491 0.00000520
32 to 572	Platinum, hammered, -	1.00095420	0.00000520
32 to 212	Zinc, pure or cast,	1.00093420	0.00001633
32 to 212	Zinc, hammered,	1.00310833	0.00001722
32 to 212	Tin, hammered,	1.002710000	9.00001122
32 to 212	Tin, cast,	1.00217298	0.00001207
32 to 212	Fire brick,	1.00042280	3.00000235
33 to 212	Marble,	1.00116410	2.00000613
32 to 212	Granite	1.00078940	0.00000438

Table of Volume Expansion of Liquids.

Difference in temperatures.	Names of Liquids.	Volume at T.º	k difference in vol. per degree.
32° to 212°	Mercury, -	1.018018	0.0001000
212 to 392	"	1.018433	0.0001025
392 to 572	"	1.018868	0.0001048
32 to 212	Water,	1.046600	0.0002595
32 to 212	Salt, dissolved,	1.050000	0.0002778
32 to 212	Sulphuric acid,	1.060000	0.0003333
32 to 212	Oil of Turpentine and Ether,	1.070000	0.0003890
32 to 212	Oil, common,	1.080000	0.0004444
32 to 212	Alcohol and Nitric acid,	1.100000	0.0005555

All gases expand and contract equally and uniformly; 0.0020825 its volume per degree of Fah. thermometer. The accompanying Table is the result of Mr. Dalton's experiments with air. The volume at 32° is equal to 1 or the unit.

Table for Volume Expansion of Air.

1		*		
Degrees.	Volume.	Degrees.	Volume.	Volume
320	1.000	80	1.1110	1 7 64
33	1.002	85	1.121	$1\frac{1}{8}$
34	1.004	90	1.132	1756
35	1.007	100	1.152	1657
40	1.021	200	1:354	1 1
45	1.032	212	1.376	$1_{\overline{2}\cdot\overline{6}\overline{6}}$
50	1.043	302	1.558	1 g
55	1.055	392	1.739	$1^{\frac{3}{4}}$
60	1.066	482	1.919	$1\frac{15}{16}$
65	1.077	572	2.098	$2\frac{3}{3}$
70	1.089	680	2.312	2 18
75	1.099			

Letters Denote,

L =length or any linear measure of the body of the temperature T. t =length or linear measure at the temperature t.

v = volume of liquids at the temperature T: v = volume at the temperature t. k = coefficient for the linear measure or volume as noted in the Tables.

The volume of solids is as $L^3:7^3$.

The linear measure of liquids is a $\sqrt[3]{v}$: $\sqrt[3]{V}$.

Formulas of Linear Expansion of Solids.

$$L = l \left(1 + k(T - t), \right), \qquad l = \frac{L}{1 + k(T - t)^3}$$

$$T = \frac{L - l}{k l} + t, \qquad t = T - \frac{L - l}{k l},$$

Example 1. A copper rod of $L=22^{\circ}5$ feet long is 140° warm. To what temperature must it be cooled to fit in a space of $l=22^{\circ}52$ feet?

$$t = 140 - \frac{22.55 - 22.52}{22.52 \times 0.0000158} = 55.7^{\circ}$$
 the answer.

Formulas of Volume Expansion of Liquids.

$$V = v \left(1 + k(T - t) \right), \qquad v - \frac{V}{1 + k(T - t)^2}$$

$$T = \frac{V - v}{k v} + t, \qquad t = T - \frac{V - v}{k v}.$$

Example 2. A vessel containing 5.68 cubic feet of water at $t=42^{\circ}$, is closed up round the water, but a cylindrical pipe of 0.008 square feet, inside section, is raised up vertically from it; now let the temperature of the water be raised to $T=130^{\circ}$. How high will the water rise in the pipe?

$$V = 5.68[1 + 0.000002595(130 - 42)] = 5.681297$$
 cubic feet,

and

$$\frac{5.681297 - 5.68}{0.008} = 0.162 \text{ feet} = 1.945 \text{ inches,}$$

the height to which the water will raise in the pipe.

This is the principle upon which Thermometers are constructed, but the scale can only be approximated by this formula. The substances adopted for thermometers are spirits of wine and mercury; oil and ether has also been proposed, but the two former are best, and mercury is most generally used.

THERMOMETERS.

THERE are three different graduated Thermometers in use, namely Fuhrenheit's Celcius's, and Reamur's.

The first one, or Fahrenheit's is used in North America, England, and Holland.

The second or Celcius's in France, Sweden and Germany.

The third one, or Reamur's, was formerly used in France and some parts of Germany, but now only in Spain.

The Figures exhibit their difference.

Fahr. Celci. Ream.

Proportional Formulas for the Thermometrical Scales.

Celci. =
$$\frac{5}{4}$$
 Ream. = $\frac{5}{9}$ (Fah. - 32.)

Ream. =
$$\frac{4}{5}$$
 Celci. = $\frac{4}{9}$ (Fah. = 32.)

Fahr. =
$$\frac{9}{5}$$
 Celci. +32 = $\frac{9}{4}$ Ream. +32.

Example. How much is 68° Celcius on Fahrenheit's scale.

Fahrenheit's = $9 \times 68 + 32 = 154.4^{\circ}$, the answer.

Fluid boils when its vapour has the same density as the atmosphere where it boils, hence, fluid will boil sooner high up in the atmosphere than at the ground.

In vacuum water boils at 88°.

The mean temperature of the earth is about 50°; at the torrid zone 75°. temperate zone 50°; and in the polar regions 36°.

Water can be kept in liquid to 200.

	TABLE OF	LEMPERATURES.	240
Table of Temper	atures w	hen Bodies change Fo	erm.
SMELTING POINT		BOILING POINTS	
Cast iron, fully sm.,	- 2754° - 1983°	Mercury, Oil of Linseed, Sweet Oil, Sulphuric acid, Sulphur, Phosphorus, Oil of turpentine, Sea-water, salt, Water, distilled, Alcohol,	• 6300
Cast Fron, fully Sim, Gold, fine, Silver, fine, Copper, Brass, common, Zine, Lead, Bismuth, Tin, 1 Tin, 1 Dismuth, 3 Tin, 2 Lead, 5 Bismuth.	• 19830	Oll of Linseed,	- 600°
Silver, fine,	• 1850°	Sweet Uil,	- 412°
Copper,	- 21600	Sulphuric acid,	410° - 390° - 374° - 315° - 217° - 212°
Brass, common,	· 1900°	Sulphur,	- 3900
Zinc,	- 7400	Phosphorus, -	- 3740
Lead,	- 5940	On of turpentine, .	• 3150
Bismuth,	- 4760	Sea-water, sait,	2170
Tin,	- 4210	Water, distilled,	- 2120
1 Tin, 1 Bismuth,	- 2830	Alcohol,	- 1740
3 Tin, 2 Lead, 5 Bismuth, 1 Tin, 1 Lead, 4 Bismuth,	- 2120	SETTOMET F ASTRONO	
1 Tin, 1 Lead, 4 Bismuth,	- 2010	THE CONTRACTOR OF THE CONTRACT	
Antimony,	- 7900	Metals, red, daylight, -	• 10770
Sulphur,	- 2280	Iron red, daylight, -	8840
Phosphorus,	- 1090	Common fire,	- 7900
Beeswax, white,	- 155°	Iron bright red, in dark,	- 752°
" yellow,	 142° 	Human blood is	980
Tallow,	920	Cold greatest ever produced	1, — 90°
Ice,	- 320	Metals, red, daylight, - Iron red, daylight, - Common fire, - Iron bright red, in dark, Human blood is - Cold greatest ever produced Venous fermentation, - Acetous fermentation, bevi	- 60 to 70°
Antimony, Sulphur, Sulphur, Phosphorus, Beeswax, white, "yellow, Tallow, Ice, Oil of Turpentine, Ice of strong Brandy, 1 Snow and 1 Salt, Mercury,	 14° 	Acetous fermentation begin Acetification ends, - Phosphorous burns, - A comfortable room about	ns, — 78°
Ice of strong Brandy.	- 70	Acetification ends	- 88°
1 Snow and 1 Salt	• 00	Phosphorous burns, .	- 43°
Mercury,	390	A comfortable room about	60° to 70°
			i
Table of Poss	er for T	ransmission of Heat.	
14010 01 1 011	01 101 1		
CONDUCTING POWI	ER.	Sewing-silk, Air,	0.917
		Air,	0.577
Gold, Silver, Iron, Tin, Copper, Zinc, Lead, Platinum, Marble, Fire-brick, Fire-clay, Porcelain, Water as the Standar	1000	RELATIVE CONDUCTING P	
Silver, • • •	973	RELATIVE CONDUCTING P	OWEROF
Iron,	347	FLUIDS.	7000
Tin,	304	Mercury,	1000
Copper,	898	Water,	357
Zinc,	363 180	Mercury,	312
Lead,	180		
Platinum,	981	RADIATING POWER	₹.
Marble,	24 11	Water,	100
Fire-brick,	11 11·4 12·2	Lampblack,	100
Fire-clay,	11.4	Paper, writing,	98
Porcelain	12.2	Rosin	96
Water as the Standar	7	Sealing wax.	95
		Glass, common	90
Water, Pine, Oak, Elme, Oak, Ash, Ash, Ebony,	10	India ink	88
Pine, •	39	Ice · ·	85
Lime, • • •	39	Red Lead	80
Uak,	33	Graphit	75
Elm, • • •	32	Lead, tempered.	45
Ash, · · · ·	31	Mercury.	20
Apple, · · ·	28	Lead, polished.	19
Ebony,	22	Iron polished	15
RELATIVE CONDUCTING	POWERS	Tin and Silver	12
OF SOLIDS.		Copper and Gold.	12
	1.01*	RADIATING POWER Water, Lampblack, Paper, writing, Rosin, Sealing wax, Glass, common, India ink, Ice, Red Lead, Graphit, Lead, tempered, Mercury, Lead, polished, Iron, polished, Iron, polished, Irin and Silver, Copper and Gold, REFILECTING POWER	12
Hare's fur, • • •	1.315	D	
Provent for	1.305	Brass, · · ·	100
Deaver's Iur, • •	1.296	Silver, • • •	90
Kaw Silk, • • •	1.284	Tiniolium	85
MOOT	1.118	Tin,	80
Lamp-black,	1.117	Steel,	70
Cotton,	1.046	Lead, · · ·	60
Lint,	1.032 0.936	Brass, Silver, Tinfolium Tin, Steel, Lead, Glass,	10
Hare's fur, Eider-down, Beaver's fur, Raw silk, Wool Lamp-black, Cotton, Lint, Charcoal, Ashes of wood,	0.936	Glass, oiled or waxed, -	5
Ashes of wood,	0-927	Lampblack,	0

Mixtures of.	Co	old produce.	Degrees Fahr.
Nitrate of Ammonia, Water,	$1 \\ 1$	460	From +50° to +4°.
Sulphate of Soda, Muriatic Acid,	8 }	500	From +50° to +0°.
Dilute Sulphuric Acid Snow,	$\left\{\begin{array}{c}5\\4\end{array}\right\}$	230	From - 68° to - 91°.

SPECIFIC CALORIC.

Specific Caloric is the relative quantity of heat contained in bodies of equal weight or volume, and of the same temperature.

Let two different substances of known weight or volume and temperature, be mixed together; the temperature of the mixture will dissolve the relative quantity of caloric in the ingredients.

Mixture of the same Substances.

Letters denote.

W = weight or volume of a substance of temperature T: w = weight or volume of a similar substance but temperature t: t' = temperature of the mixture W + w. We shall have,

$$t'(W\!+\!w) = W\,T\!+\!wt, \qquad t' = \frac{W\,T\!+\!w}{W\!+\!w}\,t,$$

$$W = \frac{w(t'-t)}{T-t'}, \qquad T = \frac{w(t'-t)}{W}+t'.$$

Example 1. Let W=4.62 cubic feet of water at $T=150^\circ$ be mixed with 10=5.43 cubic feet at t=46. Required the temperature of the mixture t'=?

$$t' = \frac{4.62 \times 150^{\circ} + 5.43 \times 46^{\circ}}{4.62 + 5.43} = 97.6^{\circ}$$
 the answer.

Example 2. How much water of $T=107^{\circ}$ must be mixed to w=27.3 gallons of $t=58^{\circ}$, the mixture of the water to be 75°?

$$W = \frac{27 \cdot 3(75 - 58)}{107 - 75} = 14.5$$
 gallons.

Mixture of different Substances.

Wand wexpressed by weights only. S and s = Specific caloric as given in the accompanying Table. We shall have,

$$\begin{split} WS(T-t') &= w \ s(t'-t), \qquad t' = \frac{WS\ T+w\ s\ t}{WS+w\ s}. \\ W &= \frac{w\ s(t'-t)}{S(T-t)}, \qquad T &= \frac{t'(\ WS+w\ s) - w\ s\ t}{WS}. \end{split}$$

Example 3. To what temperature must W=20 pounds of iron be heated to raise w=131 pounds of water of $t=54^\circ$ to a temperature $t'=64^\circ$. T=t From the Table we have s=1, and $S=0^\circ1218$.

$$T = \frac{64(20 \times 0.1218 + 131) - 131 \times 1 \times 54}{20 \times 0.1218} = 602^{\circ}.$$

the required temperature, supposing no vapour escapes from the water. If any chemical action takes place in the mixture, these formulas will not answer, because part of the sensible caloric may become latent, or latent caloric may be set free.

Table of Specific Caloric, Water as Unit.

A SPOOL OF SPOOL OF			
27 007.	Specific Caloric.		
Names of Substances.		82°, 572°.	
· ·	1	02,012.	
Water, - · · ·	1.0000		
Iron,	0.1105		
Glass-crystal, - · ·	0.1929		
Mercury, · · ·	0.029 to 0.033	0.035	
Mercury, Lead,	0.02819 to 0.0293		
	0.04755 to 0.0514		
Sulphur, - · · ·	0.2085 to 0.188		
Lime, burned,	0.2169	19	
9 Water, 10 Lime, - · ·	0.43912		
Sulphuric acid, sp. g. = 1.87058, -	0.3346		
Nitric acid, sp. g. = 1.29895, -	0.66139		
Alcohol, sp. g. = 0.81, .	0.7		
Platinum, · · ·	0.0344 to 0.0335	0.0355	
Antimony.	0.0507	0.0547	
Antimoný, Zinc,	0.0927	0.1015	
Copper, -	0.094 to 0.0949	0.1013	
Iron, · · · ·	0.1098 to 0.1105	0.1218	
Iron,	0.1770	0.19	
Gold, · · ·	0.0288	0 10	
Bismuth.	0.0298		
Woods in average, • • •	0.48 to 0.6		
Sweet Oil, - · ·	0.30961		
Nickel, • • •	0.1035		
Cobalt · · ·	0.1498		
Tellurium.	0.0912		
Tenunum,	0 0012		
SPECIFIC CALORIC OF GASES AT EQUAL	Volume. Weight.	Weight.	
DENSITY.	air = 1, $air = 1$,		
Air, atmospheric, - · ·	1.000 1.000	0.2669	
Hydrogen, · · ·	0.9033 12.34	3.2936	
Oxygen, • • •	0.9764 0.8848	0.2361	
Nitrogen,	1.0000 1.0318	0.2754	
Carbonic-oxid gas,	1.034 1.0805	0.2884	
Carbonic acid. • • •	1.2583 0.828	0.221	
Nitro-oxid gas,	1.3505 0.8878	0.2369	
Gas of oils, • • • •	1.553 1.5763	0.4207	
Steam,	1.96 3.136	0.847	

Capacity for Caloric is the relative ability of bodies to retain the specific caloric, Capacity for caloric is inverse as the density of the substances. The specific caloric multiplied by the atom weight of a substance, gives the constant number 0:375 (average) which proves that the atoms have equal capacity for caloric in all substances. This is a fact with no known reason, but by it valuable results may be opened.

Table of Relative Capacity for Caloric.

l	Names.	Equal Weights.	Equal Volume.	Names.	Equal Weights.	Equal Volume.
	Water Copper Iron Brass Gold Silver	1.000 0.114 0.126 0.116 0.050 0.082	1.000 1.027 0.993 0.971 0.966 0.833	Zinc Tin Lead Glass	0·102 0·060 0·043 0·187	0·487 0·443

When the volume diminishes the capacity for caloric will also be diminished and thus part of the caloric will profuse the body. A volume of air compressed to $\frac{1}{k}$ its bulk will fire tinder, which requires a temperature of about 550°.

STEAM.

Steam is the vapour into which water is converted by the application of heat.

Let \overline{AB} be a cylindrical glass tube in which is fitted a piston α of one square inch area; consider this piston to have no friction or weight, and can be moved steam-tight from A to B. Let the tube be 1723 inches from A to B, the space under the piston a just one inch from the bottom being filled with water of 22° Fah, which will be one cubic inch; weigh the whole apparatus. Now, place a lamp under the tube in a position as represented by the Figure, and notice the time, (say 10h, 5m.) The temperature of the water will gradually increase, and the piston a maintain a contact with it until the water begins to boil, which time is to be carefully noticed; now (10h, 15m.) It will be found that temperature of the water has raised from 32° to 212° , which took 10h, 15m - 10h 5m = 10

Let the lamp still remain and the boiling be continued. The piston a will now leave the water, and gradually ascend towards B, apparently leaving a space between itself and the water, the latter will gradually diminish as the piston ascends, which indicates that steam is gradually formed, and occupies the space between the water and the piston, and as the piston has no weight or friction it is evident that the density of the steam must be the same as the sur-

rounding atmosphere.

But another important faculty of steam and water will now be manifest, namely, that the temperature of both will remain the same, 212°, as at the boiling point, (10h 15ms), consequently the heat from the lamp which goes into the water and steam is not sensible but becomes latent. The water is now getting very low; observe carefully the moment when it apparently disappears on the bottom carefully the moment when it apparently disappears on the octoom of the tube. - - "now" (114 10m.) The piston a will be found at B, 1700 inches from A, and the time from the boiling-point is (11h 10m.) - (10h 15m) = 55 minutes = 5½ times that occupied to raise the water from 32° to 212° = 180°; hence the quantity of heat from the lamp now contained in the steam is 180×5½+180 = 1170° of which 180° is sensible and 990 latent. If the water had been enclosed in a vessel to prevent evaporation, and the same quantity of heat 1170° imparted to it, it would have a temperature of 1202, which is about that of metals when red hot in daylight.

Again to the tube A B, at the time before noticed, viz., 11h, 10m. Take the lamp away, weigh the apparatus, and it will be found the same weight as before; hence, the same quantity of water is still in the tube, but in the form of steam. The heat will now radiate from the tube, and it will be observed that the piston a gradually descends towards A, and the inner surface of the tube will be covered with a dew which will soon fall to the bottom as water, but still maintain the heat of 212°, until the piston a has fully reached its former position at A, when the same quantity of water (one cubic inch) will occupy the same space as before the lamp was put under

it, but with a temperature of 212°.

The heat required to make steam of one cubic inch of water is able to raise 5½+1 cubic inches from 32° to 212°; or steam at 212°, formed of one cubic inch of water, can raise 5½ cubic inches of ice cool water from 32° to 212°, when mixed together, making 6½ cubic inches.

Effect of Steam.

By the preceding experiment we find that one cubic inch of water will be 1700 cubic inches converted into steam; or one cubic inch of water makes one cubic foot of steam 212°, the same density as the surrounding atmosphere which is 14% pounds per square inch; the effect of steam in the experiment was consequently a weight of $F = 14\frac{3}{3}$ pounds raised 1700 inches = 142 feet in 55 minutes, or

$$P = \frac{Fs}{t} = \frac{14.75 \times 142}{55 \times 60} = 0.635$$
 Effects.

See Formula 5, page 148.

Advantage of Using High Steam.

Let us now make the same experiment with the tube AB, and load the piston with 14‡ pounds, which will be a weight $F=29^\circ5$ pounds including the atmosphere. Set the lamp under as before, and the experiment is in operation. The temperature of the water will now not cease to increase when it has attained 212°; nor will the piston a begin to raise after 10 minutes as in the former experiment; but, when the water has attained 250°, it will cease to increase, the piston commence to ascend, and steam to generate. The piston will now only raise 930 inches from A, which will occupy the same time as before. The mechanical effect of the steam is therefore 29°5 pounds raised 930 = 77°5 feet in 55 minutes, or,

$$P = \frac{29.5 \times 77.5}{55 \times 60} = 0.693$$
 Effects,

which exceeds the former experiment about 9 per cent.

$$\frac{0.64363}{0.70469} = 0.913$$
 or $100 - 91.3 = 8.6$ per cent.

an advantage of using higher steam.

This per centage will increase as the steam is used higher.

Advantage of Using Steam Expansively.

We now continue the latter experiment. The piston a stands at 930 inches from A_i take the lamp away, and remove the $14\frac{1}{4}$ pounds on the piston. The steam of 250° in the tube will now raise the piston a to B_i at 1700 inches from A and the temperature of the steam will decrease from 250° to 212°; consequently the same steam has produced an additional effect by raising $14\frac{1}{4}$ pounds (the pressure of the atmosphere,) 1700 - 930 = 770 inches high = $64\cdot165$ feet, which for comparison, will here assume to be accomplished in the same time 55 minutes, we shall then have

$$P = \frac{14.75 \times 64.165}{55 \times 60} = 0.29127$$
 Effects

and 0.70469+0.29127 = 0.99596 Effects produced by the same quantity of steam,

and
$$\frac{0.64363}{0.99596} = 0.646$$
. $100 - 64.6 = 35.3$ per cent.

gained by using the steam high and expansively.

Advantage taken of the Pressure of the Atmosphere by Vacuum,

Again to the latter experiment, the piston a stands at B, and the tube is full of steam at 212° ; let there now be introduced among the steam $5\frac{1}{5}$ cubic inches of ice cool water, (32°), the steam will immediately condense to water, and the piston a begin to descend; finally, between the piston and the bottom of the tube will be found $6\frac{1}{5}$ cubic inches of water at 212° , hence the atmospheric pressure has reproduced an effect equal to that the steam before expended on it, or $0^{\circ}64363$ effects.

The principal features of the application of steam to produce mechanical effects are now illustrated, and we will proceed to give the principal Rules, For-

mulas, and Tables, respecting its property.

If steam is reduced in volume, its density and temperature will increase; and when additional heat is applied to steam its density or volume will increase the same as if it was produced direct from water.

					MILES OF EST	rang.		
-		Atmosph.	included.		k		Atmospher	e excluded.
	Tempera-	Inches of	Pounds	Specific	Volume	Number	Inches of	Pounds per
i	of Steam'	Mercury.	persquare inch.	gravity, air = 1.	compared with water.	of atmos- pheres.	Mercury,	square inch.
	32°	0.200	0.098	0.0041	187407	Parties	-29.79	1 -
	40	0.263	0.129	0.0053	144529	0.01	-29.73	-14.60
-	50	0.375	0.184	0.0055	103350	0.01	-29.62	-14.57
-	60	0.524	0.257	0.0102		0.02	-29.62 -29.47	-14.52
١	70	0.721	0.353		75421	0.02		-14.44
1	80	1.000		0.0136	55862		-29.27	-14.35
1	90		0.490	0.0186	41031	0.03	-29.00	-14.21
١		1.36	0.666	0.0250	30425	0.05	-28.63	-14.03
1	100 103	1.86	0.911	0.0333	22873	0.06	-28.13	-13.79
Į		2.04	1.000	0.0364	20958	0.07	-27.95	-13.70
١	110	2.53	1.240	0.0458	16667	0.08	-27.46	-13.46
İ	120	3.33	1.632	0.0576	13215	0.11	-26.66	-13.07
1	130	4.34	2.129	0.0538	10328	0.14	-25.65	-12 57
1	140	5.74	2.813	0.0960	7938	0.19	-24.25	-11.89
1	145	6.53	3.100	0.108	7040	0.22	-23.46	-11 60
	150	7.42	3.636	0.122	6243	0.25	-22.57	-11 06
	155	8.40	4.166	0.137	5559	0.28	-21.59	-10.54
-	160	9.46	4.635	0.153	4976	0.31	-20.53	-10.07
1	165	10.68	5.23	0.171	4443	0.35	-19.31	- 947
1	170	12.13	5.94	0.193	3943	0.4	-17.86	- 8 ⁷⁶
1	175	13.62	6.67	0.215	3538	0.45	-16.37	- 8.03
ı	180	15.15	7.42	0.238	3208	0.50	-14.84	- 7.28
1	185	17.00	8.33	0.265	2879	0.56	-12.99	- 6'37
1	190	19.00	9.310	0.294	2595	0.63	-10.99	- 5'39
1	195	21.22	10.40	0.325	2342	0.71	- 8.77	- 4.30
-1	200	23.64	11.58	0.36	2118	0.79	- 6.35	- 3.13
1	205	26.13	12.80	0.394	1932	0.87	- 3.86	- 1.90
1	210	28.84	14.13	0.431	1763	0.96	- 1.15	- 0.57
-1	211	29.41	14.41	0.440	1730	0.98	+ 0.58	- 0.59
-!	212	30.00	14.70	0.448	1700	1.00	∓ 0.00	± 0.00
	212.8	30.60	15.	0.457	1669	1.02	+ 0.60	+ 0.30
-	214.5	31.62	15.5	0.471	1618	1.05	+ 1.62	+ 0.80
1	216.3	32.64	16.	0.484	1573	1.09	+ 2.64	+ 1 30
1	218.	33.66	16.5	0.497	1530	1.12	+ 3.66	+ 1.80
	219.6	34.68	17.	0.512	1488	1.15	+ 4.68	+ 2.30
1	221.2	35.70	17.5	0.529	1440	1.19	+ 5.70	+ 2.8
1	222.7	36.72	18.	0.540	1411	1.22	+ 6.72	+ 3.3
	221.2	37.74	18.5	0.554	1377	1.25	+ 7.74	+ 3.8
	225.6	38.76	19.	0.567	1343	1.29	+ 8.76	+ 4.3
1	227.1	39.78	19.5	0.581	1312	1.33	+ 9.78	+ 4.8
1	228.5	40.80	20.	0.595	1281	1.36	+10.80	+ 5.3
	229.9	41.82	20.5	0.608	1253	1.40	+11.82	+ 5.8
1	231.2	42.84	21.	0.612	1225	1.43	+12.84	+ 6.3
1	232.5	43.86	21.5	0.636	1199	1.46	+13.86	+ 6.8
1	233.8	44.83	22.	0.65	1174	1.50	+14.88	+ 7.3
-	235.1	45.90	22.5	0.663	1150	1.53	+15.90	+ 7.8
	236.3	46.92	23.	0.677	1127	1.56	+16.92	+ 8.3
	237.5	47.94	23.5	0.690	1105	1.60	+17.94	+ 8.8
	238.7	48.96	24.	0.704	1084	1.63	+18.96	+ 9.3
	239.9	49.98	24.5	0.717	1064	1.67	+19.98	+ 9.8
	241.	51.00	25.	0.730	1044	1.70	+21.00	+10.3
-	243 3	53.04	26.	0.756	1007	1.77	+23.04	+11.3
	-100	00 01		3,00	1001	1	1.20 02	, 110
L	and the same of the same of	-						

		TABLE	OF PROPER	TIES OF STE	AM.		219
	Atmosph.	included.		lc lc	Y	Atmospher	re excluded.
Tempera-	1 -	Pounds	Specific	Volume	Number	_	
ture	Inches of Mercury.	per square Inch.	gravity,	with water.	of atmos.	Inches of Mercury.	Pounds per square Inch.
of Steam.					pheres.		1
245.5°	55.08	27	0.784	973	1.83	+25.08	+12.3
247.6	57.12	28	0.810	941	1.90	+27.12	+13.3
249.6	59.16	29	0.836	911	1.97	+29.16	+14.3
251.6	61.20	30	0.863	883	2.04	+31.20	+15.3
253.6	63.24	31	0.889	857	2.11	+33.24	+16.3
255.5	65.28	32	0.915	833	2.18	+35.28	+17.3
	67.32	33	0.941	810		+37.32	+18.3
257.3	69.36	34	0.968	788	2.24	+39.36	+19.3
259.1	71.40	35	0.993	767	2.31	+41.40	+20.3
260.9					2.38	+43.44	+21.3
262.6	73.44	36	1.020	748	2.45		
264.3	75.48	37	1.045	729	2.52	+45.48	+22.3
265.9	77.52	38	1.071	712	2.59	+47.52	+23.3
267.5	79.56	39	1.097	695	2.65	+49.56	+24.3
269.1	81.60	40	1.122	679	2.72	+51.60	+25.3
270.6	83.64	41	1.148	664	2.79	+53.64	+26.3
272.1	85.68	42	1.175	649	2.86	+55.68	+27.3
273.6	87.72	43	1.200	635	2.92	+57.72	+28.3
275.	89.76	44	1.225	622	3.00	+59.76	+29.3
	91.80	45	1.249	610	3.06	+61.80	+30.3
276.4	93.84	46	1.275	598	0 0 0	+63.84	+31.3
277.8			1.567	586	3.13	+65.88	+32.3
279.2	95.88	47			3.20		
280.5	97.92	48	1.325	575	3.26	+67.92	+33.3
281.9	99.96	49	1.351	564	3.32	+69.96	+34.3
283.2	102.0	50	1.376	554	3.40	+72.00	+35.3
284.4	104.0	51	1.400	544	3.47	+74.00	+36.3
285.7	106.1	52	1.426	534	3.53	+76.1	+37.3
286.9	108.1	53	1.450	525	3.60	+78.1	+38.3
288.1	110.2	54	1.477	516	3.67	+80.2	+39.3
289.3	112.2	55	1.500	508	3.74	+82.2	+40.3
290.5	114.2	56	1.523	500	3.81	+84.2	+41.3
291.7	116.3	57	1.548	492	3.88	+86.3	+42.3
291.7	118.3	58	1.575	484	3.94	+88.3	+43.3
	120.4	59	1.598	477		+90.4	+44.3
294.2			1.621	470	4.01	+92.4	+45.3
295.6	122.4	60			4.08		
296.9	124.4	61	1.646	463	4.15	+94.4	+46.3
298.1	126.5	62	1.671	456	4.22	+96.5	+47.3
299.2	128.5	63	1.698	449	4.28	+98.5	+48.3
300.3	130.5	64	1.719	443	4.35	+100.5	+49.3
301.3	132.6	65	1.743	437	4.42	+102.6	+50.3
302.4	134.6	66	1.755	434	4.49	+104.6	+51.3
303.4	136.7	67	1.794	425	4.55	+106.7	+52.3
304.4	138.7	68	1.818	419	4.62	+108.7	+53.3
305.4	140.8	69	1.839	414	4.69	+110.8	+54.3
306.4	142.8	70	1.868	408	4.76	+112.8	+55.3
307.4	144.8	71	1.891	403	4.82	+114.8	+56.3
		72	1.915	398		+116.9	+57.3
308.4	146.9	73	1.938	333	4.89	+118.9	+58.3
309.3	148.9			3:8	4.96		+59.3
310.3	151.0	74	1.963		5.03	+121.0	
311.2	153.0	75	1.991	383	5.09	+123	+60.3
312.2	155.1	76	2.011	379	5.17	+125.1	+61.3
313.1	157.1	77	2:036	374	5.23	+127.1	+62.3
		1				:	
1							

	Atmosph.	included		k		Atmospher	e excluded.
Tempera-	Inches of	Pounds	Specific	Volume	Number	Inches of	Pounds per
of Steam.	Mercury.	per square	gravity,	compared with water.	of atmos- pheres.	Mercury.	square inch.
314.00	159.1	78	2.060	370	5:30	+129.1	+ 63.3
314.9	161.2	79	2.081	366	5.37	+131.2	+ 64.3
315.8	163.2	80	2.105	362	5.44	+133.2	+ 65.3
316.7	165.3	81	2.128	358	5.51	+135.3	+ 66.3
317.6	167.3	82	2.152	354	5.57	+137.3	+ 67.3
318.4	169.3	83	2.178	350	5.64	+139.3	+ 68.3
319.3	171.4	84	2.203	346	5.71	+141.4	+ 69.3
320.1	173.4	85	2.228	342	5.78	+143.4	+ 70.3
321.0	175.5	86	2.248	339	5.85	+145.5	+ 71.3
321.8	177.5	87	2.275	335	5.91	+147.5	+ 72.3
322.6	179.6	88	2.295	332	5.98	+149.6	+ 73.3
323.5	181.6	89	2.322	328	6.05	+151.6	+ 74.3
324.3	183.6	90	2.343	325	6.12	+153.6	+ 75.3
325.1	185.8	91	2.365	322	6.19	+155.6	+ 76.3
325.9	187.8	92	2.389	319	6.26	+157.8	+ 77.3
326.7	189.8	93	2.411	316	6.32	+159.8	+ 78.3
327.5	191.9	94	2.435	313	6.39	+161.9	+ 79.3
328.2	193.9	95	2.459	310	6.46	+163.9	+ 80.3
329.0	196.0	96	2.483	307	6.53	+166.0	+ 81.3
329.8	198.0	97	2.505	304	6.60	+168.0	+ 82.3
330.5	200.0	98	2.530	301	6.66	+170.0	+ 83.3
331.3	202.0	99	2.558	298	6.73	+172.0	+ 84.3
332.0	204.0	100	2.583	295	6.80	+174.0	+ 85.3
335.8	214.2	105	2.703	282	7.13	+194.2	+ 90.3
339.2	224.4	110	2.815	271	7.47	+194.4	+ 95.3
342.7	234.6	115	2.947	259	7.82	+204.6	+ 100.3
345.8	244.8	120	3.036	251	8.15	+214.8	+105.3
349.1	255.0	125	3.178	240	8.5	+225.0	+110.3
352.1	265.2	130	3.270	233	8.83	+235.2	+115.3
355.0	275.4	135	3.405	224	9.16	+245.4	+120.3
357.9	285.6	140	3.497	218	9.51	+255.6	+125.3
360.6	295.8	145	3.626	210	9.83	+265.8	+130.3
363.4	306.0	150	3.712	205	10.2	+276.0	+135.3
368.7	326.4	160	3.941	193	10.9	+296.4	+145.3
373.6	346.8	170	4.028	183	11.5	+316.8	+155.3
378.4	867.2	180	4.375	174	12.2	+337.2	+165.3
382.9	387.6	190	4.585	166	12.9	+357.6	+175.3
387.3	408.0	200	4.82	158	13.6	+378.0	+185.3
403.8	509.	250	5.90	129	17.0	+479	+235.3
420.3	612	300	7.00	109	20.4	+582	+285.3
435.0	714.	350	8.00	95	23.8	+684.	+345.3
446.5	816.	400	8.95	85	27.2	+786	+385.3
471.3	1019	500	10.9	70	24.0	+989.	+485.3
487.0	1223	600	12.8	59	40.8	+1193	+585.3
519.	1631.	800	15.7	48	54.4	+1601	+785.3
548.	2038	1000	19.7	38	68 0	+2008	+985.3
						1	

3.

Letters denote.

F = force of the steam, or pressure per square inch in pounds.

I = inches of Mercury that balances the steam.

T = temperature of the steam in degrees of Fahrenheit's Thermometer.

Formulas for Steam above 2120.

$$F = \left(\frac{T}{202} + 0.52\right)^{6}, \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad 1,$$

$$I = \left(\frac{T}{180} + 0.584\right)^{6}, \quad \cdot \quad \cdot \quad \cdot \quad 2,$$

Example 1. The temperature of a quantity of steam is found to be 275°. Required the density in pounds per square inch?

 $T = (\sqrt[6]{F} - 0.52)202,$

$$F = \left(\frac{275}{202} + 0.52\right)^6 = 44.3$$
 pounds per square inch.

By logarithms,

$$\frac{275}{202} + 0.52 = 1.881.$$

$$\log.1.881 = 0.274389$$

 $\log.44.3 = \overline{1.646334}$ or 44.3 pound per square inch.

The properties of steam are calculated and contained in the accompanying Table, as noted on the top. The two last columns contain the inches of mercury and pressure per square inch commonly expressed in practice; it is 0 at the temperature 212°, and below that temperature it is negative, which denotes so much vacuum. If the temperature in a condenser is 120, the vacuum is 13°07 pounds.

To Find the Weight of Steam,

RULE. Multiply the specific gravity of the steam by the weight of one cubic foot of air = 0.07529, and the product is the weight per cubic foot of the steam in pounds.

To Find the Quantity of Water of which a given quantity of Sleam has been, or can be produced.

RULE. Divide the cubic contents of the steam by the volume k in the Table, and the quotient is the cubic content of the water.

Force or Feed Pumps.

Letters denote.

d = diameters = stroke, of the force pump, single acting.

D = diameter of the steam cylinder piston, in inches, double acting.

k =volume given in the Table at the given pressure of steam.

The stroke of the steam piston is only that under which steam is admitted to the cylinder.

$$d=2D\,\sqrt{\frac{S}{k\,s}},\qquad s=4\,\frac{D^3\,S}{k\,d^3},\qquad \qquad -\qquad 4,\,5,$$

Slip water included.

Example. Required the diameter of a force-pump having the same stroke as the cylinder piston s = 38 inches, diameter of cylinder D = 30 inches, the steam is cut off at $\frac{1}{4}$ the stroke, and the steam pressure +50 pounds per square inch? Here k=437, and S=19 inches, because steam is cut off at $\frac{1}{4}$ the stroke.

$$d=2\times30\sqrt{\frac{19}{437\times38}}=2\cdot03 \text{ inches.}$$

To find the Quantity of Condensing Water.

Letters denote.

q= condensing water of temperature t, in cubic feet. Q= steam of temperature T, in cubic feet. k= volume in the Table.

t' = temperature in the condenser when the steam and water are mixed.

$$q = \frac{1 \cdot 4 \, Q(990 + T - t')}{k(t' - t)},$$
 - - - 6,

Dimensions of the Air Pump.

d = diamter of the air pump, single acting. s = stroke

D = diameter of the steam cylinder, double acting. S = stroke

$$d = 2\cdot3D\sqrt{\frac{S(990+T-t)}{\frac{1}{\epsilon}k\ s(t'-t)}}, \qquad \bullet \qquad \bullet \qquad 7,$$

Assume $t' = 100^{\circ}$, and $t = 50^{\circ}$, we shall have,

$$d = 0.326D \sqrt{\frac{S(940+T)}{k s}},$$

$$s = 0.106D^2 \frac{S(940+T)}{k d^2},$$

$$s = 0.106D^2 \frac{S(940+T)}{k d^2},$$

$$9,$$

$$d = 0.23D \sqrt{\frac{S(940+T)}{k s}}$$

$$s = 0.053D^2 \frac{S(940+T)}{L t^2 t^2},$$
double acting air pumps.

Example. A single acting air-pump is to be constructed for an engine D=38 inches, S=45 inches stroke of the cylinder; the stroke of the air-pump can be 32 inches, and the exhaust steam is 261°. Required the diameter of the air-pump? k=767.

$$d = 0.326 \times 38 \sqrt{\frac{45(940 + 261)}{767 \times 32}} = 18.25 \text{ inches.}$$

Slip water included. T and k must be taken for the exhaust steam, as the steam may have had worked expansively; the area of the foot valve must be calculated from the following formulas.

Foot Valve in the Air Pump.

To render an air-pump to work well, and with the greatest advantage, it is necessary to pay particular attention to the following formulas. The force by which the water is driven from the condenser through the footvalve into the air-pump is limited by the pressure in the condenser; this pressure is the vacuum subtracted from 14.7 pounds; it is noted in the third column where vacuum subtracted from 147 pounds, it is noted in the tind column where the temperature in the condenser is opposite, in the first column. Every pound of this pressure per square inch balances a column of water 27 inches high, which is the head that presses the water from the condenser.

 $a = \frac{D^2 S n (590 + T)}{23000 m k \sqrt{p}}.$

m = 0.6 to 0.8

Letters denote.

a = area of the air-pump piston.

a = area of the foot-valve, or bucket-valve.

7 = diameter of the air-pump-piston.

n = diameter of the foot-valve, when round.

= stroke of air-pump piston, in feet.

 \mathfrak{P} = pressure in the condenser at the temperature T.

n = number of strokes of the air-pump piston per minute.

$$\mathfrak{a} = \frac{\mathfrak{A} \leq n}{100\sqrt{\mathfrak{P}}}, \qquad 12, \quad \mathfrak{d} = \frac{\mathfrak{P}\sqrt{\leq n}}{10\sqrt[4]{\mathfrak{P}}}, \qquad 15,$$

$$\mathbf{S} = \frac{100\pi\sqrt{10}}{n\,\mathbf{\Omega}}, \qquad 13, \qquad \mathbf{S} = \frac{100\mathbf{b}^2\sqrt{10}}{n\,\mathbf{\Omega}^2}, \qquad 16,$$

$$n = \frac{100 \text{ a.s.}}{\text{CCS}}, \qquad 14, \qquad n = \frac{100 \text{ b.s.}}{\text{D}^2 \text{ S.}}, \qquad 17.$$

Example. The area $\mathfrak A$ of an air-pump-piston is 2.35 square feet, stroke of piston $\mathfrak A = 3.6$ feet, to make n = 40 strokes per minute, and the pressure to be $\mathfrak B = 3.2$ pounds. Required the area of the foot-valve.

$$a = \frac{2.35 \times 3.6 \times 40}{100 \sqrt{3.2}} = 1.85 \text{ square feet.}$$

To Find the Velocity and Quantity of the Injection Water through the Adjustage into the Condenser. Letters denote.

v = velocity in feet per second.

h = head of the press water; + when above, and - below the adjustage.

F = vacuum, noted — or negative in the last column, but is positive in the formulas.

q = quantity of water discharged in cubic feet, per second.

a = area of all the holes in the adjustage in square feet.

 $d=\mathrm{diameter} \atop L=\mathrm{length}
brace$ of the injection pipe, in feet.

n = double strokes of cylinder-piston, or revolutions per minute.

A, D, and S, dimensions of the steam cylinder, in feet. T = temperature, and k = volume coefficient of the exhaust steam.

$$a = \frac{q}{5\sqrt{2F+h}},$$
 18, $q = 5a\sqrt{2F+h},$ 21,

$$v = 8\sqrt{2F \pm h}$$
 19, $d = 0.35\sqrt[5]{\frac{Lq^2}{2F \pm h}}$, 22,

$$q = \frac{n \ S \ D^{3}(940+T)}{55k}$$
, 20, $a = \frac{n \ S \ D^{3}(940+T)}{275k\sqrt{2F+h}}$, 23,

Example. Required the dismeter of an injection pipe L=10 feet long, which shall supply q=13 cubic feet of water per second into a vacuum of 12 pounds per square inch, the head of press water h=2 feet?

$$d = 0.35 \sqrt{\frac{5}{2 \times 12 + 2}} = 0.3055 \text{ feet} = 3\frac{1}{1}\frac{1}{6} \text{ inches.}$$

Area of Steam Passages.

a = area of the steam pipe, sq. in. A = area of the cylinder piston, sq. in.

 \overline{d} = diameter of the pipe, in inches. D = diameter, S = stroke of cylinder, in inches.

$$a = \frac{A S n}{35000},$$
 $d = \frac{D\sqrt{S n}}{186},$ • 24, 25.

Example. Required the diameter of a steam-pipe for a cylinder D = 40inches. Stroke of piston S=48 inches, and n=38 revolutions per minute?

$$d = \frac{40\sqrt{48\times38}}{186} = 9.2$$
 inches, nearly.

"Steam Ports to the Cylinder.

$$\mathbf{a} = \frac{A \, S \, n}{30600}, \qquad \bullet \qquad \bullet \qquad 26,$$

Safety Valve.

Three-fourths of the fire grate in square feet is a good proportion for the safety valve in square inches.

Notation of Letters corresponds with Figure 3, Plate VIII.

a = area of safety valve in square inches.

a = area of safety varve in square inches. P = pressure per square inch in the boiler W = weight on the safety valve lever Q = weight of the safety valve and lever i = lever for W e = "approx Pin inches, x = "Q

Balance the lever over a sharp edge, and the centre of gravity Q is found; measure the distance x from the fulcrum C.

$$\mathbf{a} P e = W l + Q x \qquad 27, \qquad W = \frac{\mathbf{a} P e - Q x}{l}, \qquad 29,$$

$$P = \frac{W l + Q x}{\mathbf{a} e}, \qquad 28, \qquad l = \frac{\mathbf{a} P e - Q x}{W}, \qquad 30,$$

Example. Area of the safety valve $\mathbf{a}=0$ square inches, $e=4\frac{1}{2}$ inches, W=50 pounds, weight of the lever and safety valve Q=15 pounds, and x=17 inches. Required at what distances l, l' and l'' will the weight W indicate pressures of P=30, P'=40, and P''=50 pounds?

$$l = \frac{9 \times 30 \times 4.5 - 15 \times 17}{50} = 29.2$$
 inches,

from the fulcrum C the weight W will indicate P = 30 pounds,

l'=37.9 inches, when P'=40 pounds. l''=45.8 " P''=50 "

and thus the lever can be graduated.

EXPANSION OF STEAM.

In order to save steam, or more correctly to employ its effect to a higher degree, the admittance of steam to the cylinder is shut off when the piston has moved a part of the stroke; from the cut-off point the steam acts expansively with a decreased pressure on the piston, as represented by the accompanying figure.

Let the steam be cut off at 1 of the stroke, and Aa represent the total pressure, say 20 pounds per square inch which will continue to the point per square inch which will collimate to the point E where the admittance of steam is shut off at one-third the stroke S. The steam $Aa \ eE$, is now acting expansively on the piston, and the pressure decreases as the volume increases, when the piston has attained Cc or two-thirds of S, the pressure Cc=10 pounds, only half the pressure Aa=20 because the volume $Aa \ eE$ is only half of Aa cC, and so on until the piston has attained Bb the pressure $B'b=\frac{1}{3} \times 20=6.66$ pounds.

The mean pressure, or the effectual pressure, throughout the stroke, will be about 13:33 pounds per square inch, or 66 per cent., but the quantity of steam used is only 33 per cent., hence 33 per cent. is gained by using the steam expansively.

I = part of the stroke S in feet, at which the steam is cut off.

P= pressure per square inch under full admittance of steam. F = mean pressure per square inch throughout the stroke S.

f = mean pressure per square inch during the expansion, which in double expansion cylinder engines will be the average pressure per square inch on the large piston A.

p = end pressure per square inch after expansion.

S = stroke of the cylinder Piston in feet.

 $f = \frac{FS - Pl}{S - l}$ $F = \frac{Pl}{S-1}(2.3 \log . S+1)$

Mean pressure of 32 lbs. $F=23^{\circ}735$ the answer. Example 2. Required from Table II. the mean pressure f, per square inch during the expansion, or on the large piston A in double cylinder engines, when the initial pressure P=75 lbs. and under two-thirds expansion? $f=40^{\circ}75$ Table II.

Example 3. Required the mean pressure f=7 for an initial pressure

P=43 lbs. under $\frac{3}{4}$ expansion? For P=40 lbs.

 $f = 18.48 \atop f = 1.38$ Table II. P = 30 or 3 lbs.

P=43 lbs. f=19.86 the answer. The effect gained or fuel saved by expansion and high steam is calculated from the following formulæ, in which it is supposed as a unit the work of an engine with P=30 pounds per square inch, or an indicated pressure of 15 lbs. without expansion.

c = per cent on 100, of effect gained or fuel saved.

For expansion $c = 100 (1 - \frac{lP}{cE})$. For high steam $c = 100 (1 - \frac{26490}{100})$

The following Table III. is calculated from these formulæ, in which the first line from 30 contains the economy per cent. from expansion alone, and the column o contains the economy per cent. from high steam above P=30 lbs. The balance of the table contains the jointed economy of expansion and high steam. Required the jointed economy of P=90lbs. under & expansion? 50.5 per cent. the answer.

	Grade of Expansion.												
Press. P.	1 4	3	3/8	$\frac{1}{2}$	5 8	2 3	3 4	7 8					
1	0.9637	0.9333	0.9187	0.8765	0.7417	0.6991	0.5965	0.3843					
2	1.9275	1.8686		1.6930	1.4835	1.3982	1.1930	0.7697					
3	2.8912	2.7999		2.5395	2.2252	2.0873	1.7895	1.1546					
4	3.8550	3.7333	3-6750	3.3860	2.9670	2.7964	2.3860	1.5395					
5	4.8185	4.6666	4.5935	4.2325	3.7085	3.4955	2.9825	1.9240					
6	5.7822	5.5999	5.5122	5.0790	4.4502	4.1946	3.5790	2.2008					
7	6.7469	6.5334	6.4319	5.9255	5.2419	4.8937	4.1755	2.6946					
8	7.7106	7.5666	7.3396	6.7720	5.9346	5.5928	4.7720	3.0784					
9	8.6733	8.3999	8.2683	7.6185	6.6753	6.2919	5.3685	3.4632					
10	9.6370	9.3333	9.1870	8.4656	7.4170	6.9912	5.9650	3.8480					
11	10.601	10.266	10.106	9.3115	8.1597	7.7001	6.2612	4.2333					
12	11.565	11.199	10.925	10.158	8.9014	3.3892	7.1580	4.6186					
13	12.528	12.133	11.943	11.004	9.6421	9.0783	7.7545	5.0034					
14	13.492	13.066	12.862	11.851	10.384	9.7874	8.5310	5.3882					
15	14.456	13.930	13.781	12.698	11.126	10.486	8.9475	5.7730					
16	15.420	14.933	14.700	13.544	11.268	11.185	9.5440	6.1582					
17	16.383	15.866	15.618	14.390	12.609	11.884	10.140	6.5426					
18 19	17:347	16.799	16.537	15.237	13.531	12.483	10.737	6.9274					
20	18·311 19·275	17.733	17:448	16 803	14.093	13.183	11.333	7.3122					
21	20.238	18.666 19.599	18·375 19·293	16.930	14.835	13.902	11.930	7.6970 S.0818					
22	21.201	20.532	20.211	17·776 18·623	15·576 16·318	14·501 15·300	12·526 13·123	S-4667					
23	22.166	21.466	21.131	19.469	17.060	15.989	13.720	8.8516					
24	23.030	22.399	22.050	20:316	17.802	16.698	14.316	9.4365					
25	24.093	23.333	22.968	21.162	18.573	17.477	14.912	9.6210					
26	25.057	24.266	23.887	22.009	19.285	18.046	15.509	9.8978					
28	26.985	26.233	25.714	23.702	20.769	19.495	16.702	10.775					
30	28.912	27.999	27.562	25.395	22.252	20.873	17.895	11.546					
35	33.731	32.666	32.156	29-627	25.961	24.368	20.877	13.470					
40	38.550	37.333	36.750	33.860	29.670	27.964	23.860	15.395					
45	43.368	42.000	41.341	38.092	33.378	31.459	26.842	17.319					
50	48.187	46.666	45.937	42.325	37.067	34.955	29.825	19.243					
55	53.005	51.333	50.530	46.557	40.775	38.450	32.807	21.167					
60	57.822	55.999	55.122	50.790	44.520	41.946	35.790	23.090					
65	62.640	60.666	59.715	55.022	48.228	45.441	38.772	24.924					
70 75	67·460 72·278	69.999	64.300	59.255	52.419	48.937	41.755	26.694					
80	77.096	75.666	63·S93 73·500	63·487 67·720	56·127 59·340	52·432 55·928	44·737 47·720	28·626 30·790					
85	\$1.914	80.333	78.093	71.952	63.048	59.423	50.702	32.714					
90	86.730	\$3.999	82.630	76.180	66.750	62.919	53.680	34.638					
95	91.548	88.666	87.273	80.412	70.458	66.414	56.662	36.554					
100	96.370	93.333	91.870	84.650	74.170	69.910	59.650	38.480					
105	101.18	97.999	96.463	88.882	77.878	73.405	62.632	40.404					
110	105.99	101.66	101.05	93.120	81.586	76.900	66.614	42.328					
115	110.80	106.33	105.64	97.352	85.294	80.395	69.596	44.252					
125	120.46	115.66	114.83	105.81	102.83	87.357	74.562	48.101					
140	134.92	130.66	128.62	118.51	103 84	97.874	85.310	53.882					
150	1456	139.33	137.81	126.47	111.26	104.86	89.470	57.730					
200	192.75	186.66	183.75	169.30	148.35	139.02	119.30	76.970					
250	240.93	233.33	229.68	211.62	185.43	174.77	149.12	96.210					
300	259.12	279.99	2/0.02	253.95	222.52	208.73	178.95	115.46					

	Mean Pressure f during the Expansion.												
Pres.	4	3	8	$\frac{1}{2}$	8	3	$\frac{3}{4}$	8					
30	28.549	24	23.50	20.79	17.60	16.31	13.86	8.9097					
35	33.308	28	27.41	24.25	20.54	19.02	16.17	10.394					
40	38.066	32	31.83	27.72	23.47	21.73	18.48	11.879					
45	42.824	36	35.25	31.18	26.40	24.46	20.79	13.364					
50	47.582	40	39.16	34.65	29.33	27.16	23.10	14.849					
55	52.340	44	43.08	38.11	32.24	30.17	25.41	16.334					
60	57.098	48	47.00	41.58	35.20	32.62	27.72	17.819					
65	61.853	52	50.91	45.04	38.14	35.33	30.03	19.303					
70	66.616	56	54.83	48.51	41.07	38.04	32.34	20.788					
75	71.371	60	58.75	51.90	44.00	40.75	34.65	22.263					
80	76.128	64	62.66	55.44	46.94	43.47	36.96	23.758					
85	80.885	68	66.18	58.90	49.87	46.19	39.27	25.243					
90	86.448	72	70.50	62.37	52.80	48.93	41.58	26.729					
95	90.391	76	74.41	65.73	55.73	51.62	43.89	28.213					
100	95.160	80	78.33	69.30	58.66	54.33	46.20	29.699					
105	99.910	84	82.24	72.76	61.57	57.33	48.51	31.183					
110	104.68	88	86.16	76.23	64.48	60.35	50.82	32.669					
115	109.40	92	90.08	79.69	67.44	62.79	53.13	34.153					
125	118.95	100	97.91	97.02	73.34	67.95	57.75	37.122					
140	133.23	112	109.6	97.02	82.14	76.08	64.68	41.576					
150	142.74	120	117.5	103.9	88.00	81.50	69.30	44.548					
200	190.32	160	156.6	138.6	117.3	108.6	92.40	59.398					
250	237.07	200	195.7	173.2	146.6	135.8	115.5	74.247					
300	288.16	240	235.0	207.9	176.0	163.1	138.6	89.097					

Table III. Economy of Expansion and high Steam.

Fuel saved or effect gained per cent.

ruer saved or effect gained per cent.													
Pres.	0	1	$\frac{1}{3}$	8	$\frac{1}{2}$	<u>5</u>	3	$\frac{3}{4}$	7/8				
30	0	12	29.5	32	41	49.3	52	58	67.5				
35	1.6	13.6	31	33.6	42.6	51	53.6	59.6	69.1				
40	2.5	14.5	32	34.5	43.5	51.8	54.5	60.5	70				
45	3.4	15.4	33	35.4	44.4	52.7	55.4	61.4	71				
50	4.3	16.3	33.8	36.3	45.3	53.6	56.3	62.3	71.8				
55	5.2	17.2	34.7	37.2	46.2	54.5	57.2	63.2	72.7				
60	6	18	35.7	38	47.	55.3	58	64	73.5				
65	6.7	18.7	36.2	38.7	47.7	56	58.7	64.7	74.2				
70	7.3	19.3	36.8	39.3	48.3	56.6	59.3	65.3	74.8				
75	7.8	19.8	37.3	39.8	48.8	57.1	59.8	65.8	75.3				
80	8.5	20.5	38	40.5	49.5	57.8	60.5	66.5	76				
85	9	21	38.5	41	50	58.3	61	67	76.5				
90	9.5	21.5	39	41.5	50.5	58.8	61.5	67.5	77				
95	10	22	39.5	42	51	59.3	62	68	77.5				
100	10.4	22.4	40	42.4	51.4	59.7	62.4	68.4	78				
105	10.7	22.7	40.2	42.7	51.7	60.	62.7	68.7	78.2				
115	11	23	40.5	43	52	60.3	63	69	78.5				
125	11.7	23.7	41.2	43.7	52.7	61	63.7	69.7	79.2				
150	14	26	43.5	46	55	63.3	66	72	81.5				
200	16	28	45.5	48	57	65.3	68	74	83.5				
250	17.7	29.7	46.2	49.7	58.7	67	69.7	75.7	85.2				
300	19	31	48.5	51	60	68.3	71	77	86.5				
	904				D	1							

22*

258			Con	SUMPTIC	N OF F	UEL						
					le IV.	_						
Co	nsum	ption	of Coal				e powe	r per h	our,			
Dava	Grade of Expansion. Pres. 0 $\frac{1}{4}$ $\frac{1}{3}$ $\frac{3}{8}$ $\frac{1}{2}$ $\frac{5}{8}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{7}{8}$											
P.	0	4	3	38	$\frac{1}{2}$	8	3	3	8			
lbs,	lbs,	lbs,	lbs.	lbs,	lbs,	lbs,	lbs,	lbs,	lbs,			
30	5.6	4.93	3.95	3.81	3.30	2.84	2.69	2.35	1.82			
35	5.51	4.84	3.86	3 72	3.21	2.74	2.60	2.26	1.73			
40	5.46	4.79	3.81	3.67	3.16	2.70	2.55	2.21	1.68			
45	5.41	4.73	3.75	3.62	3.11	2.65	2.50	2.16	1.62			
50	5.36	4.68	3.71	3.57	3.06	2.60	2.45	2.11	1.58			
55	5.31	4.63	3.66	3.51	3.01	2.55	2.40	2.08	1.53			
60	5.26	4.59	3.60	3.47	2.97	2.50	2.35	2.02	1.49			
65	5.20	4.55	3.57	3.43	2.93	2.46	2.31	1.98	1.45			
70	5.19	4.52	3.54	3.40	2.90	2.43	2.28	1.94	1.41			
75	5.16	4.49	3.21	3.37	2.87	2.40	2.25	1.91	1.39			
80	5.12	4.45	3.47	3.33	2.83	2.36	2.21	1.88	1.35			
85	5.09	4.42	3.44	3.30	2.80	2.33	2.18	1.85	1.32			
90	5.07	4.39	3.41	3.28	2.77	2.31	2.16	1.82	1.29			
95	5.04	4.37	3.39	3.25	2.74	2.28	2.13	1.79	1.26			
100	5.01	4.34	3.36	3.23	2.72	2.26	2.10	1.77	1.23			
105	5.00	4.32	3.35	3.21	2.70	2.24	2.09	1.75	1.22			
115	4.98	4.31	3.33	3.19	2.69	2.22	2.07	1.73	1.20			
125	4.94	4.27	3.29	3.15	2.65	2.19	2.03	1.70	1.17			
150	4.81	4.14	3.16	3.02	2.52	2.05	1.90	1.57	1.04			
200	4.70	4.03	3.05	2.91	2 41	1.94	1.79	1.46	0.92			
250	4.60	3.93	3.01	2.81	2.31	1.85	1.70	1.36	0.83			
300	4.54	3.87	2.89	2.75	2.24	1.78	1.62	1.29	0.75			

Table V.

Consumption of Coal in tons per 100 horses in 24 hours.

Pres.		1 1	1 1	. 3	1	1 5	1 2	1 2	1 7
P.	0	4	$\frac{1}{3}$	8	$\frac{1}{2}$	<u>5</u>	3	34	8
lbs.	tons	tons,	tons,	tons, 4.09	tons, 3.54	tons, 3.04	tons, 2.88	tons, 2.52	tons, 1.95
30	6.00	5.29	4.23						
35	5.90	5.19	4.13	3.99	3.44	2.94	2.79	2.42	1.86
40	5.85	5.13	4.08	3.93	3.39	2.90	2.73	2 37	1.80
45	5.80	5.07	4.02	3.88	3.34	2.84	2.68	2.31	1.73
50	5.75	5 01	3.97	3.83	3.28	2.79	2.63	2.26	1.69
55	5.70	4.96	3.92	3.77	3.22	2.73	2.57	2.21	1.64
60	5.64	4.92	3.87	3.72	3.18	2.68	2.52	2.17	1.60
65	5.58	4.88	3.82	3.68	3.14	2.63	2.48	2.12	1.55
70	5.56	4.84	3.79	3.64	3.11	2.60	2.44	2.08	1.51
75	5.53	4.81	3.76	3.61	3.07	2.57	2.41	2.05	1.49
80	5.49	4.77	3.72	3.57	3.03	2.53	2.37	2.01	1.44
85	5.46	4.74	3.69	3.54	3.00	2.50	2.33	1.98	1.41
90	5.43	4.70	3.66	3.51	3.97	2.47	2.31	1.95	1.38
95	5.40	4.68	3.63	3.48	2.94	2.44	2.28	1.92	1.35
100	5.37	4.65	3.60	3.46	2.91	2.42	2.26	1.90	1.32
105	5.36	4.63	3.59	3.44	2.89	2.40	2.24	1.88	1.31
115	5.34	4.61	3.57	3.42	2.88	2.38	2.22	1.85	1.29
125	5.30	4.58	3.53	3.38	2.84	2.34	2.18	1.82	1.25
150	5.16	4.44	3.39	3.34	2.81	2.30	2.04	1.68	1.11
200	5.04	4.32	3.27	3.12	2.59	2.19	1.92	1.56	0.99
250	4.93	4.21	3.22	3.01	2.47	2.09	1.82	1.46	0.89
300	4.87	4.15	3.10	2 95	2.40	2.01	1.74	1.38	0.83
- 50	- 0.	- 10	1 20		1		_ , ,	_ 50	

SUPERHEATED STEAM.

The Author's experience in superheated steam has been sufficient to convince him of its great importance. It appears that in order to utilize the maximum effect of steam or at least to attain the maximum quality of expansion, it is not necessary to overheat it after a pure steam is formed, that is, when all the small particles and bubbles of water are evaporated. Water which accompanies the steam in such a form has the same temperature as that due to the surrounding steam pressure, prevents it to vaporise; but when it passes through the superheating apparatus the temperature is greatly increased while the pressure remains the same because it being in connection with the steamroom in

mains the same because it being in connection with the statement with boiler allows the water to vaporise and a pure steam may be formed. If steam with particles of water is admitted into the cylinder part of the stroke and then allowed to expand, it is generally found that the end pressure does not come up to that due by theory, from which it has been pronounced that the expansive quality of steam does not follow that of a perfect gas, and that steam has condensed during the stroke; but if we knew the cubic containt of all the particles of water and subtracted that from the cubic containt of the steam it might be found that its expansive quality is not so far from that of a perfect gas. It appears also that the

expansive quality is diminished by overheating pure steam.

The small particles of water contain a great deal more caloric per volume than the surrounding steam, consequently when admitted into the condenser a good vacuum cannot be formed so well as with pure steam. It is therefore of great importance to pay particular attention to the superheating of steam, otherwise economy by expansion will not be realized to the extent herein given by formulas and tables. It is also of great importance for expansion that the piston and steam valves are perfectly tight.

SUPERHEATING APPARATUS.

The accompanying figure represents a superheating apparatus such as the Author has built it in Russia, and is found to answer exceedingly well. The figure is a section of the forend of an ordinary tubular boiler with steamdrum and uptake. The chimney is made a great deal wider in the steamdrum and contracted to the usual size at e, of 0.16 times the area of the firegrate; if a strong fan blast is applied it may be better to contract it to 0.11 . In the inside of the chimney are placed a number of copper tubes a, a, b, b, with flanges screwed to the side; the area of these tubes should be about four times that of the steampipe c. In the steamdrum is riveted steamtight a conical plate d, d, so that the steam cannot pass to the top without passing the superheating pipes. This superheating apparatus is in successful operation in three first class passenger steamers on the River Volga in Russia, each of 500 actual horses, and one in a steamer of 100 actual horses on the Black Sea.

The steamdrum can be placed around the chimney separately from the boiler and the steam led either above or below the plate d, d, by pipes from the steam-

room, as may suit the circumstances.

This superheating apparatus may also be well suited for locomotives.

	Diam			64		C-	.12 2.	73:	-4	6				
	Diam.	1	11/0/							Sin		•		
			i	1' 6"			-		" 2" 9	-	3' 6		4' 6'	1 -
	in.	H	H	H	H	H	11	H	H	H	H	H	H	H
	6	3.6	3.88		4.33			4.88					5.94	6.16
ı	7	4.9	5.27		5.90			6.65						8.38
ł	8	6.4	6.90		7.71			8.68					10.6	11.0
ı	9	8.1	8.72		9.75			11.0					13.4	13.9
ı	10	10	10.8	11.4	12.0			13.6					16.5	17.1
	11	12.1	13.0	13.9	14.6			16.4						20.7
	12	14.4	15.5	16.5	17.4		18.9	19.5					23.8	24.6
	13	16.9	18.2	19.3	20.3			22.9						28.9
1	14	19.6	21.1	22.4	23.6		25·7 29·5	26.6			29.7			33.5
	15 16	2·25 25·6	24.2	25.8	27.1	28.3	33.2	30.5			34.1		37.1	38.5
	17	28.9	27.4	29·3 33·1	30·8 34·8		37.9	34.7			38.9 43.9		42.2	43.8
1		32.4	31.1	37.1	39.0	40.8	42.5	44.0			49.2		47·7 53·5	49.4
١		36.1	34·9 38·9	41.3	43.5	45.5	47.3	49.0			54.8		59.6	55.4
	20	40.0	43.1	45.8	48.2	50.4	52.4	54.3			60.7		66.0	68.4
ı	21	14.1	47.5	50.5	53.1	55.6	57.8	59.8			67.0		72.8	75.4
I		18.1	52.1	55.4	58.3	61.0	63.4	65.6	61.8		73.5		80.0	82.8
١	23	52.9	57.0	60.5	63.7	66.7	69.3	71.8	74.1	76.3	80.3		87.4	90.5
1	24	57.6	62.0	65.9	69.4	72.6	75.5	78.1	80.7	83.1	87.4		95.2	98.6
١	25	62.5	67.3	71.5	75.3	78.7	81.9	84.8	87.5		94.8		103	107
1	26	67.6	72.8	77.3	81.5	85.2	88.6	91.7	94.7	97.5	102	107	111	116
1	27	72.9	78.5	83.5	87.8	91.9	95.6	99.0	102	105	111	116	120	125
١	28	78.4	84.4	89.8	94.5	98.8	102	106	110	113	119	124	129	134
ı	29	84.1	90.5	96.2	101	106	110	114	118	121	128	133	139	144
I		90.0	96.9	103	108	113	118	122	126	130	137	143	149	154
ı		96.1	103	110	116	121	126	130	134	139	146	153	159	164
ı	32	102	110	117	123	129	134	138	143	148	155	163	170	175
1	33	109	117	124	131	137	142	147	152	157	165	173	130	186
l	34	115	124	132	139	145	151	157	162	167	175	183	190	198
ı	35	122	132	140	148	154	160	166	172	177	186	194	202	210
ı	36	129	140	1.48	156	163	170	176	182	187	197	205	214	222
ı	37	137	147	156	165	172	180 190	186 196	192	198	208	217	226 238	234
l	38	144 152	155	165 174	174 183	182 192	200	206	$\frac{202}{213}$	209 220	218	241	251	247 260
ı	39 40	160	$\frac{164}{172}$	183	193	202	210	217	224	231	243	254	264	274
l	42	176	190	202	212	222	231	240	347	254	268	280	291	302
ı	44	193	208	221	233	244	254	263	271	280	294	307	320	331
l	46	211	228	242	255	266	277	287	297	306	321	336	350	362
l	48	230	248	264	277	290	302	313	323	332	350	366	380	394
l	50	250	269	286	301	315	328	339	350	360	380	397	413	427
۱	52	270	291	309	326	340	354	367	378	390	410	429	446	463
ı	54	291	314	333	351	367	382	396	408	420	443	463	481	500
ı	60	360	388	412	433	453	472	488	504	519	547	571	594	616
1	66	435	468	498	525	548	571	591	610	628	661	690	718	744
1	72	518	558	593	626	653	679	704	726	748	787	822	856	886
-	78	608	655	696	734	766	784	825	852	877	924			039
1	84	705	759	807	851	888	924	957	989			1116 1		
-	90	810	872	927	975	1020	1206	1100]	1134	1168 1	229	1284 1	536 1	585
1	96	921	991	10931	1110 .	1100[]	1200 1	249	12911.	1327 1	#001	1460 1	20211	010
1														

	Stroke of Cylinder Piston S in feet.												
D	6'	7'	8'	9'	10'	11′	12'	131	14'	15'	16'	18	201
in.	H	11	H	H	H	H	H	H	H	H	H	H	H
30	163	172	180	187	194		206		217	222			244
32	186	196	204	213			252		246				278
34	210	221	231	240			264						313
36	235	248	259	269			296						351
38	262	276	289	299			330		348				391
40	290	306	320	333			366		385				434
42	320	336		365			404		425				478
46	352 384	371	387 423	402			484		466 510			507 554	525 587
48	418	441	461	479			527		555	569			625
50	554		500	520			572		602	617		655	677
52	491	518	541	562			619		651	667	681	708	733
54	529	558	583	606			667		700	719	734	764	790
56	570	600	637	652		697	718		755	775	790	811	850
58	611	644	673	700		648			810	830	847	880	912
60	654	689	720	749	775	800	824	846	867	888	907	943	977
62	698	736	769	800	828	855	879		925	948		1007	1043
64	744	784	819	852	882	911	938					1073	
66	791	834	871	906	938	968	997				1099		1182
68	840	885	925	960		1023		1087	1114				1254
70	890	938	980									1283	
72	942		1037	1078		1153		1218					
76	995	1048 1105	1095		1179 1244		$\frac{1254}{1322}$		1319		1455	1434	
78	11050	1165	$1155 \\ 1219$	$1201 \\ 1265$			1393		1466				1567 1649
80	1162	1225			1378				1542				1737
84	1282		1411		1520			1658			1778		1914
88		1423			1668			1820	1866				2100
92	1538		1693	1761	1823			1990	2039			2258	
96	1674		1843	1917	1985	2049	2010	2166			2322	2414	2474
100	1817	1913			2154				2400	2466		2620	2714
104		1969			2349							2833	
108		2231			2512							3056	
112		2399			2702			2949				3286	
116		2574			2898			3163				3525	
120	2616				3312			3385				3772	
124 128	2793 2977	3133			3101	3643		3614				4028 4 4292 4	
		3333		3408 3624				4096				$\frac{1292}{4565}$	
	3360				3984			4348				1846 3	
		3749	3920	1077	1929	4359	1188	4608	1716	1839		5135 5	
		3966			4466			4875				54325	
148		4190		1556				5179				5739 5	
152	4198	4402	4621	4805				5431				6053	
	1421		4867	5062	5242	5412	5573	5721	5865	3000	6132	6376	
162	4768	5020	5249	5458	5653			6170				6876 7	122
168	5128	5399	5645	5870	6079			6635				70947	
174	5494	5791	6055	6297	6521	6733	6933	7117	7296	7464	7629	7932 8	216
100	5887	6198	6480	6539.	6979	7205]]	7419	7617	7809,1	7989	8164 8	3488,8	793

HORSE POWER IN MACHINERY.

Horse power in Machinery is assumed to be about the effect a horse is able to produce, and has been estimated and establised by Mr. Watt to be 33,000 lbs. raised one foot per minute for one horse, which will be the same as 550 lbs. raised one foot per second. This applied to steam engines, a difficulty has been encountered, namely, to foresay the velocity of the steam piston, for which Mr. Watt assumed a certain speed for each length of stroke, varying nearly as the cuberoot of the length of the stroke. He also adopted a standard steam pressure of 7 lbs. per square into actabilised a simple rule for the nominal horse power. stroke. He also adopted a Standard steam pressure of 7 nos. per square inch, established a simple rule for the nominal horse power of engines which is "The square of the diameter of the cylinder in inches multiplied by the cuberoot of the stroke in feet, and divided by the constant number 4T is the nominal horse power. This rule agreed very near to the actual performance of engines in those days, but as the improvements advanced we found that the steam piston can move with a greater velocity and the steam pressure gradually increased, that our days engines greatly exceeds the above rule.

The English Admiralty has adopted Mr. Watt's rule, with a slight modification in the assumption of the speed of the steam piston. Area of cylinder piston in square inches multiplied by 7 lbs. steam pressure, multiplied into the speed of piston in feet per minute divided by 33000. The length of stroke and relative speed of piston, and the number of revolutions per minute is assumed for

3 feet stroke 30 revolutions and 180 feet per minute.

9 " 133" " 247 " "

in which the speed of the piston will be very near 120 $\sqrt[3]{S}$ feet per minute. For long strokes the Admiralty's is less, and Mr. Watt's a little more.

Another expression well known as Indicated horse power, which should be understood to be the gross horse power imparted by the steam on the cylinder piston, but in some cases the friction and working pumps about 10 to 25 per cent. are deducted and still called Indicated horse power. This and to 25 per cent. are deducted and still called Indicated norse power. Thermakes a great confusion particularly in datas given of steamship performance. Numerous other estimates have been made of horse power, but most of them founded on that by Mr. Watt. Herein we shall assume two kinds, first, Nominal horse power, to express the size, weight and commercial value of engines, and to be the power spoken of when not expressly stated, the second, Actual horse power, which is to express the actual power an engine is able to deliver after friction and working pumps are

Comparing propeller and paddle wheel engines we now find that the velocity of the piston is frequently greater for short stroke, still I will maintain Mr Watt's rule, because it gives an accurate estimate of the real worth of an engine; shall only after the coefficient so as to suit our

days practice.

NOMINAL HORSE POWER.

Assume a standard steam pressure of 30 lbs. per square inch, expanded two-thirds the velocity of the steam piston to be $200 \sqrt[3]{S}$ feet and revolutions $n = \frac{100}{\sqrt[3]{S^2}}$ per minute, we will arrive to a formulæ of nominal horse power. $H = \frac{D^2 \sqrt[3]{S}}{S}$, for condensing engines,

 $H = \frac{D^2 \sqrt[3]{S}}{10}$, for condensing engines, which will agree very near with the actual performance of our present condensing engines. The preceding tables are calculated from this formulæ.

For high pressure engines I will assume the steam pressure to 80 lbs. per square inch, expanded \(\frac{1}{2} \) which will give the nominal horse power,

 $H = \frac{D^2 \sqrt[3]{S}}{4}$, high pressure engines.

The horse power in the accompanying table divided by 0.4 gives the nominal power o high pressure engines. The diameters D are contained in the first column in inches, and the stroke S in feet and inches on the top line.

ACTUAL HORSE POWER.

One actual horse power is 33000 lbs. raised one foot in one minute. One actual norse power is 33000 los. raised one foot in one minute. This applied to steam engines will be the mean steam pressure on cylinder piston in pounds, multiplied by the velocity of piston in feet per minute, divided by 33,000, is the horse power imparted by the steam. From this we shall deduct 25 per cent, in condensing engines, and 131 per cent, in high pressure engines, for working friction and pumps, the balance to be termed the actual horse power.

Example 1. Fig. and formulæ318. Area of steam cylinder A=1809 square inches, stroke of piston S=4 feet, indicated pressure of steam 30 lbs. to which add the atmospheric pressure 15 lbs. or P=45 lbs. expanded \(^2_3\), the mean pressure will be F=31·459 lbs. (see Expansion Table I.), vacuum v=12 lbs. the engine making n=45 revolutions or double stroke per minute. Required the actual horse power, H=? W=31·459+12-147=

28.759 lbs.

 $H = \frac{1809 \times 4 \times 28.759 \times 45}{1000} = 425.6 \text{ horses}$

In this example the actual horse power is 11.6 per cent. more than the

In this example the actual norse power is 11-6 per cent, more than the nominal power from the table. Example 2. Fig. 318. A high pressure engine of cylinder piston A=314 square inches, stroke S=3 feet, steam pressure 80 lbs, per square inch, to which add 15 lbs. P=95 lbs. expanded $\frac{1}{2}$, the engine making n=56 revolutions per minute. Required the actual horse power? From the expansion table we have the mean pressure $F=80^{\circ}412$ lbs., from which subtract the atmospheric pressure $14^{\circ}7$ lbs. $W=65^{\circ}712$ lbs.

$$H = \frac{314 \times 3 \times 65 \cdot 12 \times 56}{19000} = 180 \cdot 8 \text{ horses.}$$

Annular Expansion Double Cylinder, Fig. 319.

These kind of engines are now sometimes made in Europe with a view to economise fuel, and to extend the expansion of steam. The outer cylinder A, A, is annular, similar to that made by Mouslay, but in this case it is employed only for expansion, the inner cylinder a is used for high pressure only. It is so arranged by steam valves that the high steam is acting the whole takes are also as the control of the c acting the whole stroke on the small piston a, after which it is conducted to the annular cylinder where it acts expansively on the large piston A, A. to the annular cylinder where it acts expansively on the large piston A. The two pistons being connected by rods to one common crosshead as shown by Fig. 319. This arrangement has been successfully carried out by Mr. Jägerfelt in Nyköping, Sweden. The inner cylinder can be considered an ordinary high pressure engine where the utilized steam is set free into the air at each stroke; but in this case the exhaust steam accomplishes a second engagement in the annular cylinder, which according to the grade of expansion may greatly exceed the original effect imparted in the small cylinder during the first engagement. Example 3. Fig. 319. Area of the high pressure cylinder piston a=2544 square inches, the annular expansive piston A=7632 square inches, stroke of pistons S=3 feet, the high steam pressure P=60 be, vacuum v=12 lbs., making n=65 revolutions per minute. Required the actual horse power of the engine H=7 The grade of expansion will be 7632.

1-763.2 $-=\frac{2}{3}$, for which the mean pressure on the annular piston will be 254.4

f=32.62 lbs. See Expansion Table II. The effective pressure on the two pistons will be V=763.2 (32.62+12-14.7) + 254.4 (60-32.62) = 29800 lbs.

$$H = \frac{29800 \times 3 \times 65}{22000} = 264$$
 horses.

Example 4. Now we will reject the annular expansion cylinder, and take the effect of the steam without expansion, when the effectual pressure will be 60-14.7=45.3 lbs. and the actual power,

$$H = \frac{254.4 \times 3 \times 45.3 \times 65}{19000} = 118 \text{ horses.}$$

If we consider the last result as unit we shall have 264-118=146 horses or nearly 124 per cent. gained by the expansion, omiting the loss of steam in the steam passages.

In the first case about 11 per cent, was gained by vacuum, but that advantage is rather in favour of the utility of expansion, because the high steam cannot so well be introduced into the condenser.

The economy will be in the same proportion when the same grade of

expansion is used in one cylinder.

I do not mean to maintain that this high per centage of economy is always fully realized in practice, as I am well aware of cases where expanways fully realized in practice, as I am wen aware of cases where expansion is of little use, caused by misconception and carelessness in its employment. There are many circumstances about an engine which are in favour of expansion, for instance, the steam passages between the main valve and cylinder, and the clearance between the piston and cylinder heads, contains a great deal of steam which is a total loss, but when expansion, it was the transparent of the valve and its consequently. pansion is used, that steam expands into the cylinder, and is consequently utilized. The expanded exhaust require a smaller air pump than would be necessary for high steam introduced in the condenser.

Half Trunk Expansion Engines. Fig. 320.

This kind of engines has been introduced by Mr. Carlsund, and are extensively used in Sweden, they are well suited for Gunboats where the machinery is required to be below the water line. The high steam is employed throughout the stroke in the annular space around the trunk, after which it is conducted to act expansively on the large piston A

Example 5. Fig. 320. Area of the annular piston a=562 square inches, and A=2248 square inches, stroke of piston S=4 feet, steam pressure P=90 lbs., making n=68 revolutions per minute. Required the actual

horse power?

Grade of expansion =
$$1 - \frac{562}{2248} = \frac{3}{4}$$
,

From the Expansion Table II. we have f=41.58 lbs, mean pressure on A. The effectual pressure will be V=2248 (41.58–14.7) +562 (90–41.58) = 87639 lbs., high pressure $H = \frac{87639 \times 4 \times 68}{38000} = 627.3$ horses.

Double Cylinder Expansion Engines, Fig. 321.

This kind of engines are now made in England and are said to be very economical. The small cylinder is used for high pressure, from which the steam is conveyed to expand in the large cylinder. In the figure it is arranged so that the pistons follow one another in one direction, when the steam must be conveyed from the top of the small cylinder to the bottom of the large one, and vice-versa; but it is sometimes arranged so that the pistons move in opposite direction, when the steam is conveyed direct at the same ends from the small cylinder to the large one, which has the advantage of malking the steam passages shorter, but is more complicated in concentrating the motion.

Framule 6

Example 6.

High pressure cylinder,
$$\begin{cases} a = 962. \text{ square inches.} \\ s = 5 \text{ feet.} \end{cases}$$

Expansion cylinder, $\begin{cases} A = 3848 \text{ square inches.} \\ S = 10 \text{ feet.} \end{cases}$

Steam pressure in the small cylinder P=40 lbs., vacuum v=12 lbs., making n=21 revolutions per minute. Required the actual horse power, H=?Grade of expansion =1 $-\frac{833}{3848\times10}$

From the Expansion Table II. we have $f=\bar{1}1.879$ lbs., mean pressure on A. $w=3848\times 10$ (11.879+12-14:7) $+962\times 5$ (40-11.879) =366767 lbs. of momentum.

 $H = \frac{366767 \times 21}{22000} = 350$ horses.

318. One double acting Cylinder.

Actual
$$H = \frac{A S W n}{22000}$$
, cond. engs. horse power. $H = \frac{A S W n}{19000}$, high pr. engines.

W=F+v-14.7 for cond. engines.

W=F-14.7 for high pressure engines.

319. Annular expansion double Cylinder. $F = \frac{P a}{A} [2 \cdot 3 (log.A - log.a) + 1].$ $f = \frac{F A - P a}{A - a}, \quad V = A(f + v - 14 \cdot 7) + a(P - f).$

Actual $H = \frac{V S n}{22000}$, cond. engines. horse power. $H = \frac{V S n}{19000}$, high pr. engs.

320. Halftrunk expansion Cylinder.

$$F = \frac{Pa}{A} [2 \cdot 3(\log A - \log a) + 1].$$

$$f = \frac{Fa - Pa}{A - a} \cdot V = A(f + v - 14 \cdot 7) + a(P - f).$$

Actual horse hower. $H = \frac{V S n}{44000}$, cond. engines. $H = \frac{V S n}{38000}$, high pr. engs.

321. Double Cylinder expansion.

$$\begin{split} F &= \frac{P \, a \, s}{A \, S} [2 \cdot 3 (\log AS - \log as) + 1] \\ f &= \frac{F \, A - P \, a}{A - a}, \quad \begin{array}{c} w = AS(f + v - 14 \cdot 7) \\ + a \, s(P - f). \end{array} \end{split}$$

Actual $H = \frac{w n}{22000}$, cond. engines. horse $D = \frac{w n}{19000}$, high pr. engines.

SLIDE VALVES.

THE slide valve motion is one of the most important features in causing a steam engine to work well, and to employ the effect of steam economically. The author of this book being well acquainted with disarrangements on this point, has here endeavoured to give a good working-drawing of the proper proportions and arrangements of slide-valve motion. (See Plate VIII.)

Main Valve.

It will be best to assume a certain size cylinder, and at the same time give the proportions for any size. D = 34 inches, diameter of the cylinder.

n = 56 double strokes per minute. We have the area of the steamports m, from Formula 26, page 238.

$$\mathbf{a} = \frac{34^{9} \times 0.785 \times 18 \times 56}{30600} = 30 \text{ square inches, nearly.}$$

$$m = \frac{D+S}{26} = \frac{34+18}{26} = 2$$
 inches,

the width of the steamport; if the quotient gives a fraction take the nearest quarter or eighth.

$$\frac{\mathbf{a}}{m} = \frac{30}{2} = 15$$
 inches, breadth of steamport.

 $r=\frac{1}{4}m$ about = 1 inch, the exhaust port $o=2m-\frac{1}{4}r=3\frac{1}{4}$ inches, and $f=o+2r=5\frac{1}{2}$ inches, $h=f-\frac{1}{4}r=5\frac{1}{4}$ inches, $k=1\frac{1}{4}m=3$ inches, and $i = h + 2k = 11\frac{1}{4}$ inches, e = m = 2 inches.

* The stroke and diameter is here rather out of proportion, but we will maintain them in the calculations as they suit the drawing, which is purposely made to show the slide valves on a large scale. The rules will however suit any proportions of diameter and stroke.

To Find the Stroke of the Eccentric.

s = stroke of the eccentric in inches.

 $s = i - f - \frac{1}{4}r = 5\frac{1}{8} \text{ inches.}$ The $lap\ L = \frac{1}{8}(i - f - 2m) = \frac{7}{8} \text{ inches.}$

The lead of the valve, or opening of the steamport when the crank pin stands on the centre should be about

$$l = \frac{m\sqrt{n}}{80} = \frac{2\sqrt{56}}{80} = \frac{1}{4}$$
 inches, nearly.

Having finished the main valve and ascertained the stroke of the eccentric, it is now required to find the position of the centre b, (Plate VI.,) of the eccentric, to the crank-pin. Suppose the crank pin of the engine stands at a on the centre nearest to the cylinder, and the eccentric rols are attached direct to the valve rods; draw the line dd, at right-angle to the centre-line aa" of the engine,

the angle,
$$\sin W = \frac{2(I_1 + l)}{s} = \frac{2(\frac{s}{2} + \frac{1}{2})}{5\frac{1}{2}} = 0.409$$
, or $W = 24^{\circ}$ 10'.

See Plates VIII and IX.

To Find the position of the Crank-Pin at the moment the Main Valve opens.

$$y = \frac{Sl}{s \cos W} = \frac{18 \times 0.25}{5.5 \times 0.9123} = 0.9$$
 inches, nearly,

from the centre line.

To Find the position of the Crank at the moment the Exhaust opens.

$$x = \frac{S}{2} \left(\sin W - \frac{1}{s} (f - h) \right) = \frac{18}{2} \left(0.409 - \frac{1}{5.5} (5.5 - 5.25) \right) = 3.27 \text{ inches}$$

from the centre line.

To Find the position of the Crank Pin when the Main Valve cuts off the Steam.

$$X = \frac{2SL}{s} = \frac{2 \times 18 \times \frac{s}{6}}{5 \cdot 5} = 5.727$$
 inches.

To Find at what part of the Stroke the Main Valve Cuts off the Steam,

Will cut off at =
$$1 - \frac{4L^2}{s^2} = 1 - \left(\frac{2 \times \overline{s}}{5 \cdot 5}\right)^2 = 0.899$$
 of the stroke.

The greater the lap is, the sconer will the main-valve cut off, but if the lap is increased the stroke of the eccentric must also be equally increased. It does not work well to cut off much by the main-valve, especially when the engine works fast; for very slow motion it may answer to cut off at \$\frac{1}{2}\$ the stroke. It will be noticed that the centre of the eccentric is always ahead of the crank

It will be noticed that the centre of the eccentric is always ahead of the crank pin with an angle $90^{\circ}+w$. Hence when the engine is to be reversed, the centre b must have the same position on the opposite side of the centre-line, or the eccentric must be moved forwards an angle of $90^{\circ}-2w$.

Cut=off Valve.

The width of the cut off ports should be about d = fm = 1 inch, and their

breadth
$$\frac{\mathbf{a}}{2d} = \frac{30}{2 \times 1\frac{1}{4}} = 12$$
 inches, when two ports are used.

Proportions of the Valve.

a-b=c-d, a+d=b+c, and a=2d, and the stroke of the cut-off valve eccentric s=2b, we shall have $a=2\frac{1}{4}$, $b=2\frac{1}{4}$, $c=1\frac{1}{4}$, $c=1\frac{1}{4}$, and $s=4\frac{1}{4}$ inches.

 $s = 4\frac{\pi}{4}$ measure the steam to be cut off at $\frac{1}{2} = l$ of the stroke S, the position of the crank-pin α' will then be $\sin u = 2l = 0.666$, or u = 700 30'; at the same time the position of the centre α' of the cut off eccentric will be

$$\sin z = \frac{d+c}{s} = \frac{1\frac{1}{4}+1\frac{1}{8}}{4\frac{1}{8}} = 0.612$$
, or $z = 37^{\circ}$ 50',

and $V=u-v=70^\circ$ 30' -37° 50' $=32^\circ$ 40', the position of the centre c when the crank-pin a is on the centre. This Table will show the positions of the centre a and c, at different cut offs. Letters correspond with Figure 1, Plate Views 1.

THE REAL PROPERTY.	Cut off at l.	v	sin.v	stroke of eccen.s.	z	[u	F.	p.	
The Party of the P	ार्क स्थान कोन कोन के नि	22° 10′ 32° 40′ 31° 55′ 42° 35′ 46° 30′ 50° 30′	0·377 0·539 0·527 0·675 0·7193 0·7933	2b 2b c+a b+c a+b-c a+b-c	37° 50′ 37° 50′ 43° 35′ 47° 25′ 58° 58° 30′	60° 70° 30′ 75° 30′ 90° 104° 30′ 109° 30′	0.5880 0.6914 0.7332 0.8350 0.910 0.985	0.250 0.333 0.375 0.500 0.625 0.666	

It will now be observed that the effectual pressure F in this Table is less than in the Table on page 239, owing to the valve not cutting off the steam instantly, but gradually, so that the density of the steam in the cylinder is already diminished at the cut off point. The valve will cut off quicker the less the angle z is.

Stream's distinct at the cate y_0 point. The variety and the angle z is. See Figure 2, Plate VIII. The actual pressure will not form a sharp corner at e, or follow the line e, e, e, as would be due when cut off at $\frac{1}{2}$ the stroke, but the line f/f/f will be the true diagram. Including the steam in the ports and steamchest, the density at the end of the stroke will correspond nearly with the Table.

BLOWING-OFF. SALT WATER. SATURATION.

SEA water contains about 0.03 its weight of salt. When salt water boils, fresh water evaporates, and the salt remains in the boiler, consequently the proportion of salt increases as the water evaporates, until it has reached 0.36 weight to the water; the salt will then commence to saturate in the boiler, and the water in solution will hold 0.36 weight of salt to 1 of water.

To prevent this deposit in the boiler, it is necessary to keep the salt below this proportion, which is overcome by withdrawing (blow off) part of the supersalted water, while less salted (feed water,) weter is replaced. It is found in practice that when the proportions are kept 0.12 of salt to 1 weight of water, the deposit will be very slight. To obtain this it will be necessary to blow off

$$\frac{0.03}{0.12} = 0.25$$
 parts of the feed water, or

if a brine-pump is used, it should be at least 0.25 of the feed pump.

W = cubic feet of super-salted water to be blown off per minute. D, S, n, and k, as before, we shall have,

$$W = \frac{D^2 S n}{3000k},$$

Example. D=30 inches, stroke of piston 36 inches, cut off at half stroke S=18, making 14 revolutions per minute, with a pressure of 30 pounds per square inch, k=610. How much water must be blown off per minute?

$$W = \frac{30^{2} \times 18 \times 14}{3000 \times 610} = 0.124$$
 cubic feet.

Heat Wasted by Blowing Off.

Letters denote.

w =water evaporated W =water blown off W =

t =temperature of the feed water. T = "blowing off.

H = heat wasted, per cent.

$$H = \frac{W(T-t)}{w(990+T-t)}$$
.

Example. Let the quantity of water blown off be $\frac{1}{2}$ of the feed water, we have W=1, and w=2, the boiling point of the water will then be $T=215\cdot5^\circ$, let the feed water taken from the hot-well be $t=100^\circ$. Required the quantity of heat lost?

$$H = \frac{1(215 \cdot 5^{\circ} - 100)}{2(990 + 215 \cdot 5 - 100)} = 0.052 \text{ or } 5.2 \text{ per cent.}$$

This is a very trifing quantity of heat lost.

ZIIIS IS W YOL	j trining (launtore)	02 11000 10000	•	
Proportion of Salt.	Boiling point T.	Water blown off. per cent. W.	Heat lost. per cent.	Specific gravity.
0.03	213-20	100	100	1:03
0.09	214·4	50	10·35	1·06
	215·5	33·3	5·2	1·09
0·12	216·7	25	3·5	1·12
0·15	217·9	20	2·66	1·15
0·18	219·	16·6	2·14	1·18
0·21	220·2	14·3	1·80	1·21
0·24	221·4	12·5	1·56	1·24
0·27	222·5	11·1	1·38	1·27
0·30	223·7	10.0	1·23	1·30
0·33	224·9		1·12	1·33
0.36	226	Water sat		1.36

Heat wasted by Incrustation.

The conducting power of iron for heat, is about 30 times that of saturated scales, hence a considerable portion of heat is lost when the scales become thick in a boiler.

t = thickness of the scale in 16th of an inch.
 H = heat wasted, in per cent.

$$H = \frac{t^2}{32 + t^2}$$

Example. The scale in a boiler is 5 sixteenths of an inch thick. How much heat is lost by it?

$$H = \frac{5^{\circ}}{32 + 5^{\circ}} = 0.438$$
 or 44 per cent, nearly,

which goes out through the chimney.

This is merely to show that the heat lost by blowing off is but trifling, compared with the heat lost by saturation of scales, which additionally injures the boiler by softening and fracturing the iron, and final explosions.

When boilers are taken good care of by cleaning and blowing off at short

intervals, the scales need not exceed 1 sixteenth of an inch.

To Command the Engineer how to Manœuvre the Engine in a Steamboat: one stroke. Go ahead two strokes. Back one stroke. Stop -Slowly two short. Full speed three short. Go ahead slowly one long, two short. Back slowly two long, two short. Go ahead, full speed one long, three short. Back fast two long, three short. three short repeated. Hurry

SCREW PROPELLERS.

PLATE X., is a drawing of a Screw-propeller with proportions thus far known to be the most effective, particularly when the steam-engine is applied direct to the propeller shaft; its pitch is twice the diameter at the periphery, but contracts towards the centre; at the hub the pitch is lessened by the amount of slip assumed. When the propeller is geared from the engine, the pitch is generally less in proportion to the diameter.

$$p=\frac{1}{4}$$
 of the pitch at the periphery, $p''=$ " hub. $s=$ the assumed slip in a fraction of p .

Then p = p'' + s. By these two pitches p and p'', the helixes, a c b at the periphery and d c f at the hub are constructed as for common screws.

The actual pitch of the propeller at the centre of effort of the blades o is represented by p' at r = 0.725R from the centre; or the actual pitch = 4p'.

Letters Denote.

P= pitch of the propeller W= angle of the blades D= diameter, R= radius, extreme. L= length parallel with the centre-line.

m = number of blades.

b = extreme breadth of the propeller blades over the edge, between the corners e, e.

e = circle arc in the angle v.

v = the projected angle of the blades. a = the projected area of the blades.

A = the true inclined surface of the blades.

O = acting area of the propeller.

H = horse-power required to drive the propeller n revolutions per minute.

Formulas for Screw Propellers,

$$\cot W = \frac{P}{\pi D}, \quad 1, \quad b = \sqrt{\frac{v^2 \pi^3 D^2}{129600} - L^3}, \quad 7,$$

$$P = \cot W \pi D, \quad 2, \quad a = \frac{0.785 D^2 v m}{360}, \quad 8,$$

$$P = \frac{360 L}{v}, \quad 3, \quad A = \frac{R m}{2.25} (b + L), \quad 9,$$

$$P = \frac{\pi D L}{e}, \quad 4, \quad 0 = \frac{2.5 D^3}{\sqrt{P^2 + \pi^2 D^2}}, \quad 10,$$

$$P = \frac{\pi D L}{\sqrt{b^2 - L^2}}, \quad 5, \quad H = \frac{D^3 n^2}{480000} \left(L S \cos W + 0.11, \right) \quad 11,$$

$$v = \frac{360 L}{P}, \quad 6, \quad n = \frac{78}{D}, \quad \sqrt[3]{\frac{H}{(L S \cos W + 0.11)}} \quad 12.$$

SCREW PROPELLER, Plate XI

All Lystrom.

Example 1. The diameter of a propeller is 10 feet 6 inches, and the angle $W=58^{\circ}$ at the periphery. Required the pitch P= in feet?

$$P = \cot .58^{\circ} \times 3.14 \times 10.5 = 20.6$$
 feet.

Example 2. The propeller on Plate VII. is of dimensions D=15 feet, L=5 feet, $W=57^\circ$ 30', the slip is 38 per cent or $S=0^\circ$ 38. What power is required to drive it 40 revolutions per minute, H=?

$$H = \frac{15^{3} \times 40^{9}}{480000} \left(5 \times 0.38 \times \cos.57^{\circ} 30' + 0.11 \right) = 509 \text{ horses, nearly.}$$

Example 3. A Propeller of diameter D=12 feet, angle $W=64^\circ$, and length L=3 feet 6 inches, is to be driven by a steam engine of 450 horses, the slip $S=0^\circ28$. How many revolutions will it make per minute, n=?

$$n = \frac{78}{12}$$
 ° $\frac{450}{(3.5 \times 0.28 \times \cos 64^{\circ} + 0.11)} = 61$ revolutions

per minute.

Explanation of Tables.

Table I. is for finding the pitch and acting area of propellers; the column marked $\,W$ contains the angle of the propeller blades, as marked on the drawing.

To Find the Pitch.

RULE. Multiply the diameter of the propeller by the tabular coefficient in the pitch column opposite the given angle, and the product is the pitch of the propeller.

Example. The diameter of a propeller is 12 feet, the angle $W=60^{\circ}$; diameter of the hub 1.5 feet, and the angle $w=10^{\circ}$.

Let d and p be diameter and pitch of the hub. p = pitch at the centre of pressure. We shall have.

$$(P-p): (P-p) = (D-d): (0.725D-d).$$

and

$$\mathbf{p} = p + \frac{(P-p)(0.725 D - d)}{D - d}$$

$$\mathfrak{p} = 16\cdot455 + \frac{(21\cdot768 - 16\cdot455)(0\cdot725 \times 12 - 1\cdot5)}{12 - 1\cdot5} = 20\cdot097 \text{ feet.}$$

To Find the Acting Area.

RULE. Multiply the square of the diameter of the propeller by the tabular coefficient in the column O opposite the given angle, and the product is the acting area of the propeller.

Example. The diameter of a propeller D=13 feet, 3 inches, and the angle $W=60^{\circ}$. Required the acting area?

$$O = 13.25^{\circ} \times 0.679 = 119.2$$
 square feet.

TABLE I. Table for finding the Pitch and Acting Area of Propellers. $\mathbf{D}=\mathbf{1}_{\bullet}$

Angle.	Pitch.	Act. Area	Angle.	Pitch.	Act. Area.
w	P	0	w	P	0
50	36.	0.068	470	2.930	0.573
6	30.	0.082	48	2.828	0.583
7	25.65	0.095	49	2.730	0.582
8	22.4	0.109	50	2.635	0.601
9	19.85	0.123	51	2.545	0.610
10	17.82	0.136	52	2.455	0.618
11	16.16	0.150	53	2.370	0.625
12	14.79	0.163	54	2.283	0.634
13	13.60	0.176	55 .	2.200	0.642
14	12.60	0.190	56	2.120	0.650
15	11.04	0.203	57	2.040	0.657
16	10.97	0.217	58	1.963	0.665
17	10.27	0.229	59	1.888	0.672
18	9.67	0.242	60	1.814	0.679
19	9.12	0.255	61	1.740	0.686
20	8.64	0.268	62	1.670	0.692
. 21	8.19	0.281	63	1.600	0.699
22	7.77	0.294	64	1.530	0.705
23	7.40	0.306	65	1.465	0.711
24	7.06	0.319	66	1.400	0.716
25	6.75	0.331	67	1.333	0.722
26	6.45	0.344	68	1.270	0.728
27	6.17	0.356	69	1.205	0.731
28	5.91	0.368	70	1.142	0.736
29	5.67	0.380	71	1.114	0.741
30	5.45	0.392	72	1.021	0.745
31	5.23	0.404	73	0.960	0.750
32	5.03	0.415	74	0.900	0.754
33	4.85	0.427	75	0.842	0.757
34	4.66	0.439	76	0.783	0.761
35	4.50	0.450	77	0.725	0.764
36	4.33	0.461	78	0.668	0.767
37	4.175	0.472	79	0.611	0.770
38	4.025	0.483	80	0.555	0.772
39	3.885	0.494	81	0.498	0.775
40	3.745	0.504	82	0.442	0.777
41	3.620	0.515	83	0.386	0.779
42	3.500	0.523	84	0.331	0.780
43	3.370	0.535	85	0.275	0.781
44	3.260	0.545	86	0.220	0.782
45	3.141	0.555	87	0.165	0 783
46	3.035	0.564	88	0.110	0.784

TABLE II.

Table for finding the Exponent and Coefficient of Vessels.

	ing the Expon		
Full	Lines.	§ Hollow	Lines.
Exponent x.	Coefficient k.	Exponent x.	Coefficient k.
1	0.000	0.68	1.71
0.95	0.024	0.67	1.77
0.90	0.228	0.66	1.84
0.88	0.326	0.65	1.90
0.86	0.432	0.64	1.96
0.84	0.558	0.63	2.00
0.82	0.692	0.62	1.97
0.80	0.836	0.61	1.93
0.79	0.902	0.60	1.88
0.78	0.978	0.59	1.82
0.77	1.050	0.58	1.77
0.76	1.12	0.57	1.72
0.75	1.20	0.56	1.67
0.74	1.28	0.55	1.61
0.73	1.35	0.54	1.55
0.72	1.43	0.53	1.50
0.71	1.51	0.52	1.44
0.70	1.59	0.51	1.38
0.69	1.64	0.50	1.32

TABLE III.

Table for finding the Slip and Acting Area. O = 1.

ı	Tal	ole for fi		the Sup	and A	lcting A	rea• (= 1.					
	Slip.	Act. Area.											
	S.	0	S.	0	S.	0	S.	0					
	per cent.		per cent.		per cent.		per cent.						
	5	84.85	28	4.150	51	0.927	74	0.208					
1	6	60.35	29	3·S20	52	0.888	75	0.192					
ı	7	46.35	30	3.555	53	0.840	76	0.177					
20	8	39.00	31	3.333	54	0.784	77	0.163					
1	9	32.20	32	3.090	55	.0.737	78	0.149					
1	10	27.00	33	2.880	56	0.697	79	0.137					
١	11	22.07	34	2.710	57	0.655	80	0.125					
1	12	19.80	35	2.535	58	0.611	81	0.113					
ł	13	17.32	36	2.366	59	0.581	82	0.103					
1	14	15.20	37	2.222	60	0.546	83	0.092					
ł	15	13.52	38	2.085	61	0.511	84	0.083					
ı	16	12.00	39	1.952	62	0.479	85	0.074					
١	17	10.82	40	1.827	63	0.455	86	0.066					
١	18	9.715	41	1.727	64	0.422	87	0.058					
ł	19	8.820	42	1.634	65	0.394	88	0.050					
1	20	8.000	43	1.523	66	0.369	89	0.045					
ı	21	7.282	44	1.430	67	0.347	90	0.037					
ł	22	6.700	45	1.354	68	0.323	91	0.031					
ı	23	6.111	46	1.275	69	0.300	92	0.026					
1	24	5.635	47	1.195	70	0.281	93	0.021					
1	25	5.200	48	1.127	71	0.263	94	0.017					
-	26	4.785	49	1.068	72	0.241	95	0.012					
1	27	4.444	50	1.000	73).225							

STEAMSHIP PERFORMANCE.

Letters denote.

T =Displacement of the vessel in tons.

M = greatest immersed section in square feet.

= area of resistance in square feet.

= area of resistance in square leet.
 l = length of the vessel in feet, in the loadline.
 b = breadth of beam " "
 F = resistance of the vessel in pounds, including friction of the im-

k= coefficient, x= exponent of the vessel. See Table II. preceding page, H= Actual horse power required to propel the vessel. M= nautical miles or knots per hour.

$$x = \frac{35}{30} \frac{T}{l}, \qquad 1 \qquad F = 4 \otimes M^2, \qquad 3$$

$$\otimes = 20 \sqrt{\frac{b^2}{b^2 + k l^2}}, \qquad 2 \qquad H = \frac{\otimes M^2}{81}, \qquad 4$$

Example 1. The U. S. steam Frigate Niagara is $l=32S\cdot 9$ feet long, b=55 feet wide, greatest immersed results feet long, σ beet white, greatest inhiersest section K=855 square feet, displacement T=5000 tons. Required what horse power is necessary to propel her M=10 knots per hour in smooth water.

Exponent
$$x = \frac{35 \times 5000}{855 \times 328.9} = 0.63$$
 nearly,

for which the coefficient in Table II. preceding page is k=2. From formulæ 2 we have the area of resistance.

$$\otimes = 855 \sqrt{\frac{55^3}{55^3 + 2 \times 328 \cdot 9^3}} = 104 \text{ square feet.}$$

Actual power
$$H = \frac{104 \times 10^3}{81} = 1284$$
 horses.

Example 2. A barge of l=165 feet long, b=28 feet wide, of ossection M=112 square feet, displacement T=410 tons. How many horses are required to draw the barge at a speed of M=2 miles per hour in a canal?

Exponent
$$x = \frac{36* \times 410}{112 \times 165} = 0.8$$
. Coefficient $k = 0.836$.

Area of resistance
$$\otimes = 112 \sqrt{\frac{2S^2}{2S^2 + 0.836 \times 165^2}} = 65.7$$
 square feet.

Tractive force $F=4\times65.7\times2^9=1050$ pounds. Sea miles 2=2.3 statute miles. See page 123 for ability of a horse working d=5 hours continually.

$$F = \frac{375}{2.3 \text{ y/5}} = 73 \text{ pounds.}$$

Number of horses 1050:73 = 14.36 or 15 horses are required to draw the barge 2:3 statute miles per hour.

The mechanical horse power performed will be,

$$H = \frac{65.7 \times 2^3}{81} = 6.5$$
 horses.

If the breadth of the canal is less than three times that of the barge the resistance will be more, and require more horses.

For similar proportioned vessels, the resistance is a function of K^*M^3 , and the horse power a function of K^*M^3 . The displacement of a vessel is a

* 35 for salt water, and 36 for fresh water.

function of the cube of any linear dimension of the same, and the greatest immersed section K a function of the square of any linear dimension of the displacement, consequently the $\sqrt[3]{T}$ is a function of any linear didimension, and $(\sqrt[3]{T})^2 = \sqrt[3]{T^2}$ is a function of X; therefore, the resistance is a function of $M^2\sqrt[3]{T}$, and the horse power a function of $M\sqrt[3]{T}$

thus we arrive at what is known as Mr. Atherton's formulæ C

about which so much controversy has existed in English Journals.

The above formulas 1, 2, 3, and 4 will give the same result for similar vessels as that of Mr. Atherton's, and it will be found that they give different coefficients for different proportions of vessel as seen by the two examples where the quality of the performance is considered to be the same.

 $C = \frac{10^3 \sqrt[3]{5000^9}}{1284} = 228$ and Ex. 2. $C = \frac{2^3 \sqrt[3]{410^4}}{6.5} = 68$ as coeffi. Ex. 1.

These coefficients are very small compared with that of Mr. Atherton's on account of the different estimate of horse power; it can however in neither case be considered a measure of the quality of performance for different proportioned vessels; neither can it be considered a measure of commercial value, because the commercial effect produced will be,

Example 1. $\frac{10 \times 5000}{1284} = 39$. Example 2. $\frac{2 \times 410}{6.5} = 126$ effects,

which is quite the reverse of the coefficient.

which is quite the reverse of the coemcient.

The following Table is calculated from the formulas 1, 2, 3, and 4, for different sizes of vessels of similar proportions as that of Niagara. If those formulas are well understood it will be found that they trace a line of justice between the Engineer and ship builder, that when the performance is known it shows from where the fame or blame is due.

River steamers of light draft and flat bottom requires more power for the same sharpness of lines, as will be found by the formulas.

To Approximate the size of Steam Engines,

Example 3. It is required to build a river steamer of displacement T=1000 tons, to run M=16 nautical miles per hour. Required the size of the cylinder for an ordinary overbeam engine? From the table of steamship performance will be found the required actual power H=1798 horses.

From the table of Nominal horse power select the approximate size of cylinder which may be D=88 inches, diameter of cylinder by S=14 feet stroke, which answers to H=1866 horses nominal. In this case the nomi-

nal horse power can be considered the same as the actual.

Example 4. A propeller steamer is to run M=10 nautical miles per hour, with a displacement T=3400 tons. Required the size of the cylinders?

From table of steamship performance H=992 horses, to be divided into two cylinders of 496 each. Select from table of Nominal horse power D=60 inches diameter of cylinders and $S=2^{\circ}9^{\circ}$ stroke of piston, which answers to H=504, or $504\times 2=1008$ horses of the two cylinders. After these approximations are made, make a careful calculation from the original formulas.

Example 5. Suppose the propeller for the steamer in the preceding example 4 makes n=60 revolutions per minute. Required the diameter of the propeller shaft? See Table, page 176 for wrought iron shafts, for 500 horses and 60 revolutions, the shaft should be 10.1 inches. Multiply this by the cuberoot of 2, or 10.1×1.26=12.926, say 13 inches the diameter

Example 6. A steamer of T=2500 tons is to run M=9 nautical miles per hour with an indicated steam pressure of 20 lbs., or P=35 lbs. per square inch, expanded $\frac{1}{2}$. Required the consumption of fuel in tons per 24 hours? Table of steamship performance H=585 horses.

Table V., page 258 consumption of fuel, 3.44 tons.

The required consumption will be 5.85 \(\times 3.44 = 20.124 \) tons per 24 hours, steaming.

	Nautical Miles or Knots per Hour.											
Displace- ment.	5	6	7	8	9	10	11	12				
T	н	H	H	H	H	H	H	Н				
100	11.8	19.4	32.4	48.4	68.5	94.5	126	163				
200	18.8	32.5	51.5	76.9	110	150	200	260				
300	24.5	42.4	67.5	100	142	196	262	340				
400	29.8	51.4	81.7	122	172	238	317	412				
500	34.6	59.6	94.3	141	200	276	368	478				
600 700	39.0	67.2	107	160	226	313	415	540				
800	43.3	74.6	119 130	177	250	377	460	599				
	47.3	81.5	140	194	274	378	503	654				
900 1000	51.1	88.1	150	210 225	296	409	545	708				
1100	54.9	94·6 100	160	239	318	439	585 622	759 806				
1200	58.4		170		338	467	660					
	62.0	107 112	179	254 267	359 378	495 523	696	858 903				
1300 1400		112	189	281	378	549	732	950				
1500	68.7	124	197	295		575	766	995				
1600	75.0	130	206	307	417	600	800	1038				
1700	78.1	135	215	320	453	625	833	1083				
1800	81.2	140	224	332	470	649	884	1123				
1900	84.2	145	231	345	488	673	897	1166				
2000	87.0	150	239	356	504	696	927	1205				
2100	90.0	155	247	369	521	720	958	1247				
2200	90.0	160	255	380	537	741	988	1284				
2300	95.6	165	262	391	554	764	101.7	1324				
2400	98.4	170	270	402	569	786	1047	1360				
2500	101	174	277	414	585	808	1077	1400				
2600	104	179	285	424	600	828	1102	1435				
2700	106	184	292	436	616	850	1131	1473				
2800	109	188	299	446	631	871	1160	1508				
2900	111	192	306	457	646	893	1189	1545				
3000	114	197	313	467	660	913	1215	1582				
3100	117	201	320	478	676	933	1242	1614				
3200	119	205	327	488	690	952	1268	1648				
3300	121	209	334	498	704	972	1296	1683				
3400	124	214	340	508	718	992	1320	1717				
3500	127	218	347	518	733	1010	1347	1750				
3600	129	222	354	528	746	1025	1373	1783				
3700	131	226	360	538	759	1049	1398	1815				
3800	133	230	367	548	774	1070	1422	1848				
3900	135	234	373	558	787	1087	1446	1880				
4000	138	238	380	567	801	1105	1473	1912				
4100	140	242	386	577	814	1122	1497	1944				
4200	142	246	392	586	827	1141	1520	1975				
4300	145	250	398	595	840	1160	1545	2008				
4400	147	254	404	604	853	1179	1568	2037				
4500	150	258	410	613	866	1198	1593	2070				
4600	152	261	416	622	879	1216	1614	2100				
4800	156	270	423	640	904	1248	1663	2160				
5000	160	277	440	658	929	1282	1708	2220				
5500	171	295	469	700	990	1367	1822	2365				
6000	181	303	497	7.12	1050	1448	1930	2507				

Nautical Miles or Knots per Hour.										
-	11	Nautic	al Mile	es or K	nots pe	r Hour	•			
Displace- ment.	13	14	15	16	17	18	19	20		
T	н	н	H	н	H	н	н	H		
100	207	259	318	387	464	551	648	756		
200	329	412	506	615	737	875	1027	1201		
300	432	540	662	806	966	1146	1347	1573		
400	522	654	803	976	1170	1402	1632	1907		
500	607	759	932	1131	1358	1611	1896	2213		
600	684	856	1036	1280	1532 1700	1820 2016	2140	2500		
700 800	759	938	1166	1417	1857	2016	2373 2593	2770 3026		
1	830 898	1038 1123	1274 1380	1548 1675	2009	2385	2803	3274		
900	963	1206	1480	1798	2157	2560	3008	3514		
1100	1024	1284	1574	1913	2295	2723	3203	3736		
1200	1090	1360	1670	2030	2435	2890	3400	3967		
1300	1147	1432	1758	2136	2564	3043	3576	4178		
1400	1204	1508	1850	2248	2697	3200	3762	4394		
1500	1264	1580	1938	2355	2825	3352	3943	4605		
1600	1317	1648	2020	2458	2948	3500	4113	4803		
1700	1374	1718	2107	2561	3072	3646	4286	5006		
1800	1422	1784	2188	2660	3190	3785	4448	5195		
1900	1479	1850	2270	2760	3310	3928	4615	5390		
2000	1527	1913	2345	2854	3420	4060	4770	5570		
2100	1582	1979	2382	2948	3535	4195	4935	5762		
2200	1628	2037	2500	3038	3642	4325	5084	5935		
2300 2400	1680	2102	2578	3134	3755	4460	5241	6120		
	1723	$ \begin{array}{c c} 2160 \\ 2222 \end{array} $	2646	3220	3970	4580	5386	6290		
2500 2600	1777 1820	2280	2725 2796	3313 3400	4075	4715 4835	5542 5655	6470 6637		
2700	1870	2338	2868	3486	4180	4960	5832	6813		
2800	1911	2395	2935	3568	4280	5076	5970	6970		
2900	1960	2452	3010	3655	4385	5200	6115	7142		
3000	2000	2508	3075	3740	4485	5318	6255	7300		
3100	2048	2565	3145	3822	4585	5440	6394	7470		
3200	2092	2616	3210	3905	4680	5550	6525	7622		
3300	2134	2671	3280	3985	4775	5670	6666	7781		
3400	2178	2725	3343	4063	4870	5784	6784	7936		
3500	2220	2779	3408	4143	4965	5893	6936	8090		
3500	2264	2830	3475	4222	5060	6010	7061	8250		
3700	2303	2881	3534	4300	5155	6115	7184	8400		
3800	2348	2941	3606	4385	5250	6238	7333	8563		
3900	2385	2986 3038	3660 3725	4453	5340 5430	6336 6444	7444	8695		
4100	2468	3086	3785	4530 4610	5520	6550	7580 7700	8847		
4200	2507	3137	3850	4680	5610	6655	7830	8988 9141		
4300	2546	3186	3910	4750	5700	6761	7950	9285		
4400	2585	3238	3970	4825	5790	6865	8072	9432		
4500	2624	3286	4025	4900	5875	6970	8195	9572		
4600	2664	3333	4087	4970	5960	7070	8320	9710		
4800	2740	3431	4202	5113	6130	7275	8555	9990		
5000	2817	3525	4321	5253	6300	7475	8792	10250		
5509	3000	3755	4608	5600	6715	7972	9370	10953		
6000	3180	3981	4880	5935	7120	8446	9935	11586		

Speed of Steamboats.

Screw Propellers. Paddle-Wheels.
$$M = \frac{P n}{100}(1-S), - 1, M = \frac{R n \cos \frac{1}{8}W}{16}(1-S), 4,$$

$$n = \frac{100M}{P(1-S)}, - 2, n = \frac{16M}{R \cos \frac{1}{8}W(1-S)}, 5,$$

$$S = 1 - \frac{100M}{P n}, - 3, S = 1 - \frac{16M}{n R \cos \frac{1}{8}W}, 6,$$

Example. The pitch of a propelier is P=30 feet, and makes 40 revolutions per minute; the slip is S=0.4. Required the speed of the vessel?

$$M = \frac{30 \times 40}{100} (1 - 0.4) = 7.2 \text{ miles per hour.}$$

Explanation of Table III.

To find the Slip.

RULE. Divide the acting area of the propeller, or paddle-wheels by the area of resistance of the vessel; find the quotient in the columns of acting area, and opposite, in the slip column, is the slip per cent.

TONNAGE OF VESSELS.

THE United States Custom House measurement of tonnage of vessels is expressed by the formula.

$$T = \frac{b \ d}{95}(l - \frac{3}{5} \ b),$$

Letters Denote.

T = tonnage of the vessel.

The contage of the vessel. $b = \operatorname{extreme} beam$ in feet, taken above the main-wales. $d = \operatorname{depth}$ of the vessel in feet. In double-decked vessels half the beam b is taken as the depth. For single decked vessels, the depth is taken from the under side of the deck plank to the ceiling of the hold. $l = \operatorname{length}$ of the vessel in feet, from the fore-part of the steam to the after part of the steam post, measured on the unper deak.

the stern-post, measured on the upper deck.

Example. The dimensions of a vessel are l = 186 feet, b = 30, and d = 15 feet, for a double-decked vessel. Required her tonnage?

$$T = \frac{30 \times 15}{95} \left(186 - \frac{3}{5} 30 \right) = 795.77$$
 tons.

To Approximate the Tonnage of the Displacement.

$$Q = 2000 \text{ kg}$$
 $= 2000 \text{ kg}$ $= 2000 \text{$

FRESH WATER CONDENSOR.

Fig. 1, is a longitudinal, and Fig. 2, a transverse section of a fresh water condensor with horizontal tubes.

A, air-pump. a, fresh water. X, exhaust-pipe. b, hot well. T, tubes.

c, injection pipe. d, strainer.

The tubes are of copper one inch outside diameter, thickness of metal, No. 22 or 24 wire guage, weighs 5½ ounces per foot. The space occupied by the tubes should be about cubical, that is, the sides of the tube-plate should be about the length of the tubes.

Between the injection and the tubes is a horizontal strainer, to spread the cold water uniformly over the tubes. Steam inside the tubes.

Letters Denote.

A = condensing area of all the tubes in square inches.

l = length of tubes, height and breadth of tube-plate in inches. N = number of tubes in the condensor.

D = diameter of steam cylinder. S = stroke of piston, in inches.

n = number of revolutions of engine per minute.

T = temperature of exhaust steam see steam table, page 248.

$$A = \frac{D^2S\sqrt{n}}{6\cdot5k}(940+T), \quad l = 0.858\sqrt[3]{A}, \quad N = 0.5128 \ l^2, \quad A = 1.61 \ l^3.$$

Example. A fresh water condensor is to be constructed for an engine of D=62 in. S=76 in. making n=34 revolutions per minute; $T=230^{\circ}, k=1225$. Required the condensing area of tubes, A = ?

$$A = \frac{62^{2} \times 76 \times 1/34}{5 \cdot 5 \times 1225} (940 + 230^{\circ}) = 295,709 \text{ square inches.}$$

Required the length of tubes, and sides of tube plate, l = ?

 $l = 0.853\sqrt[3]{295,769} = 57$ inches nearly.

Required the number of tubes in the condensor, N=?

 $N = 0.5128 \times 57^2 = 1666$ tubes.

Number of tubes in the top row $\frac{l}{1.5} = \frac{57}{1.5} = 38$, side row $= \frac{57}{1.3} = 44$ tubes.

The tubes to be placed zigzag, as shown in Fig. 2. Should the location for the condensor not permit the cubical form, we have,

Length tubes $l = \frac{A}{1.61 lh}$, Breadth of tube plate $b = \frac{A}{1.61 lh}$, Height $h = \frac{A}{1.61 lh}$

Fresh water produced $G = \frac{D^2 Sn}{164 k}$, gallons per minute, or about 75 per cent of the feed water.

Temperature in the hot well about 110° to 115°. of fresh water 120° to 130°.

For fresh water condensors the capacity of the air pump should be about 10 per cent larger than by the rules on page 236.

STEAM BOILERS.

The accompanying proportions are averages of a great number of good marine boilers.

Letters denote.

D = diameter of the steam-cylinder in inches.

S = stroke of piston under which steam is fully admitted, in inches.

w = number of double strokes, or revolutions per minute. w = pounds of water evaporated per pound of coal, per hour. k = volum coefficient from the steam table.

= fire grate in square feet, for each cylinder, and with natural draft.

To Find the Area of Fire Grate.

$$= \frac{D^2 \ S \ n}{4.66 \ wk}, \qquad n = \frac{4.66 \ w \ k}{D^2 \ S}. \qquad 1, 2.$$

Example 1. A steam engine of D=54 inches diameter of the cylinder, and stroke of piston 96 inches, cut off at $\frac{1}{5}$, S=48 inches; is to make 22 revolutions per minute. Anthracite coal to be used, that evaporates w=7 pounds of water per pound of coal, and to carry 27 pounds of steam per square inch, k=649. Required the area of fire grate = ? in square feet.

$$=\frac{54^{2}\times48\times22}{4\cdot66\times7\times649}=145\cdot34$$
 square feet.

Example 2. A steamboiler of $\boxed{}$ = 128 square feet, is to be used for an engine of D=36 inches diameter, and 64 inches stroke,—cut off the steam at $\frac{3}{2}$ then S=42:66 inches. Steam pressure to be kept at 25 pounds per square inch k=679. w= 6.5. Required for how many revolutions per minutes can the steam be kept at 25 pounds?

$$n = \frac{4.66 \times 6.5 \times 679 \times 128}{36^2 \times 42.66} = 47.6$$
 revolutions.

Horse Power of the Fire Grate.

H = horse power of the fire grate.

P = pressure in the boiler in pounds per square inch, excluding the atmosphere.

p = vacuum in the condensor in pounds per square inch.

$$H = \frac{Hx}{k w (P + 0.8 p)}, \quad H = \frac{h w (P + 0.8 p)}{x}. \quad 3 \quad 4.$$
Cut off the steam at
$$\begin{cases} \frac{1}{4} \text{ the stroke. } x = 27700. \text{ saves } 55\\ y & n & x = 31400. & 9\\ \frac{1}{2} & n & x = 38400. & 9\\ \frac{1}{2} & n & x = 45500. & 26\\ \frac{1}{2} & n & x = 49100. & 20 \end{cases}$$
Steam admitted throughout the stroke $x = 61700.$ $y = 0$ per cent.

Example 3. Steambollers are to be constructed for an engine of 650 horses, the steam to be cut off at $\frac{1}{2}$ the stroke, and P=36 pounds per square inch, $k=544,\,w=7.5$ pounds of water evaporated per pound of coal. Required the fire grate in the boilers == ? in square feet.

$$= \frac{650 \times 38400}{554 \times 7.5 (36 + 0.8 \times 11)} = 136 \text{ square feet.}$$

Example 4. Required the horse-power of a fire grate $\equiv 112$ square feet, to carry 18 pounds steam, and cut off at $\frac{2}{3}$ the stroke? k=810, w=7 pounds.

$$H = \frac{112 \times 18 \times 810 \times 7}{45500} = 251.2$$
 horses.

Consumption of Coal.

C =coal consumed in pounds per hour.

$$C = \frac{3 D^2 S n}{w k}$$
. $C = \frac{14 H x}{k w (P+0.8p)}$ - 5, 6.

Example 5 A steam engine of D=42 inches diameter, and 48 inches stroke, cut off the steam at $\frac{1}{2}S=16$ inches, is to make n=65 revolutions per minute with a pressure of 34 pounds per square inch, k=564, and w=6 pounds. Required the consumption of coal in pounds per hour C=?

$$C = \frac{3 \times 42^2 \times 16 \times 65}{6 \times 564} = 1625$$
 pounds per hour.

Example 6. A pair of steam engines of H=260 horses are to be worked with P=28 pounds per square inch, cut off at $\frac{1}{2}$ the stroke, k=635, the coal to evaporate w=66 pounds of water per pound of coal. Required the consumption of coal in pounds per hour C=?

$$C = \frac{14 \times 260 \times 31400}{630 \times 6.5(28 + 0.8 \times 10)} = 775$$
 pounds per hour.

It will be observed in the formulas 4 and 6, that the higher steam used, the less fuel and fire grate is required for the same power,—the proportion of fuel will be nearly as the square root of the steam pressure; and still more fuel is saved by cutting off the steam at an early part of the stroke.

Fire Surface.

- 2. In flue and returning tubular boilers the whole amount of fire surface 30
- 3. Boilers with vertical flues, (2 inches diameter,) fire outside and water inside, fire surface 35

Area of Flues. (Calorimeter.)

In the common single returning flue boilers, the area of the first row should be about 0.18 .

Returning row, (flue or tube) 0.13

Area of chimneys 0.16

Height of Chimney.

$$C=2$$
 $\sqrt{2+h}$, $h=\frac{C^2}{4$ $= \frac{9}{2}$ -2 .

Example. Required the height of a chimney for the consumption of 15 lbs. of coal per square foot of grate.

height,
$$h = \frac{15^2}{4 \times 1^2} - 2 = 54$$
 feet,

Properties of Fuel.

Kind of Fuel.	lbs, of water evaporated per lb, of coal,	Per cent of Carbon.	Cubic feet of air req. for one lb. of coal.	Weight per cubic foot.	Cubic feet to stow a ton.
Bituminous coal,	7 to 9	80	265	50	44
Anthracite coal	8 to 10	92	282	54	40
Coke,	8 to 10	86	245	31	72
Coke, nat. Virginia,	8 to 9	80	260	48	48
Coke Cumberland,	8 to 10	80	250	32	70
Charcoal,	5 to 6	98	265	24	104
Dry wood,	4 to 5	44	147	20	100
		34	115	25	100
Wood with 20 per ct. water, -	4				
Turf dry,	6 5	51	165	28	80
Turf 20 per ct. water,		40	132	30	75
Illuminating gas,	13.8		194	0.037	29800
Oil, Wax, Tallow,	14	77	200	59	37
Alcohol (from market.)	9.56	58	154	52	42

Ohemically one pound of carbon burnt to carbonic acid requires the oxygen of 153 cubic feet of atmospheric air.

Morris Tasker & Co., Pascal Iron Works, Philada. Jan. 1861. Lap-welded American Charcoal Iron Boiler Flues.

					Each safe	Price, Screw on	
Outside	Thickness of	Heating sur-	Weight	Price	end col-	one end	flues
diameter.	iron.	face per ft.	per ft.	per ft-	shoulder	other.	each.
inches.	Wg. inches.	Sq. ft.	Pounds.	\$. c.	\$. c.	\$. c.	\$. c.
. 1.25	15 0.072	0.3273	1.12	18	16	82	1.45
5 1·5	14 0.083	0.3926	1.40	22	16	82	1.75
g 1·75	13 0.095	0.4589	1.60	24	18	86	
등 2	13 0.095	0.5236	1.95	28	18	86	2.50
1.2 2.72 1.42 2.52	13 0.095	0.5890	2.16	31	20	90	2.75
	12 0.109	0.6545	2.60	33	23	96	3.00
# 2·75	12 0·109	0.7200	2.98	36	26	1.02	
5 3	12 0·109	0.7853	3.16	41	29	1.08	4.00
₽ 3.25	11 0.120	0.8508	3.78	46	32		
3.5	11 0.120	0.9163	4.21	60	35		
8pecific lengths 3.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4	11 0.120	0.9817	4.90	70	38	ř.	ř.
5 4·	10 0.134	1.0472	5.25	75	40	order.	order.
5 4.5	10 0.134	1.179	5.54	1.00	43	6	
99 5	9 0.148	1.3680	6.48	1:15	45	20	2
9 6	8 0.165	1.5708	10.0	1.65	50	le	je je
	8 0.165	1.8326	12	2.00	60	Made	Made
Cut to 8	8 0.165	2.0944	14	2.75	75	4	A
# 9	7 0.180	2.3562	17	3.50			
5 10·	6 0.203	2.5347	20	4.25			

[&]quot;Safe Ends" of thicker iron welded to one or both ends of flues to order, gives increased strength to the flue for calking in the tube-plate. The additional thickness of the safe end is placed in or outside of the Flue, as may be specified in the order.

Combustion is the rapid chemical combination of substances with oxygen. Carbon C and hydrogen H, are the substances most generally employed for generating heat. Carbon is fully consumed when combined with oxygen O, to form carbonic acid gas CO_* , and partly consumed when in the form of carbonic oxide gas CO or smoke. h=units of heat generated of one pound of fuel. The heat necessary to raise one pound of water one degree Fah. is one unit of heat. w=pounds of water at 212° evaporated per pound of fuel. A=volume in cubic feet and a=weight in pounds of atmospheric air required for the perfect combustion of one pound of fuel. C, O, and H are in the four first formulas, fractions in one pound of the compound fuel.

Perfect Combustion.

$$A=149\left[C+3\left(H-\frac{o}{8}\right)\right], -1$$
 $a=12\left[C+3\left(H-\frac{o}{8}\right)\right], -2$
 $b=14500\left[C+4\cdot28H-\frac{o}{8}\right], 3$
 $w=\frac{h}{966}=15\left[C+4\cdot28\left(H-\frac{o}{8}\right)\right]$
 $m=\frac{h}{966}=15\left[C+4\cdot28\left(H-\frac{o}{8}\right)\right]$
 $m=\frac{h}{966}=15\left[C+4\cdot28\left(H-\frac{o}{8}\right)\right]$
 $m=\frac{h}{966}=15\left[C+4\cdot28\left(H-\frac{o}{8}\right)\right]$

When oxygen is supplied to carbon in a proportion between CO and CO_2 , both the gases will be formed separately in the proportion of the formulas 5 and 6, when the heat generated will be as formulas 7 and 8, in which C, O, CO and CO_2 are expressed in pounds, for instance: O=20 lbs. of oxygen united with C=12 lbs. of carbon will form

$$(CO) = \frac{56 \times 12 - 21 \times 20}{12} = 21$$
 lbs. carbonic oxide or smoke,
 $(CO_2) = \frac{33 \times 20 - 44 \times 12}{12} = 11$ lbs. carbonic acid, and will generate $h = 8002 \cdot 5 \times 20 - 6820 \times 12 = 78210$ units of heat.

One unit of heat=772 foot pounds, if generated per second will be H= 1.4 horses, of which we in our days practice utilizes about one-twentieth. The following table will show how important it is to fully consume the combustibles to acid. One pound of carbon consumed to oxide will generate only 1.72 horses, instead of 5.66 when consumed to acid.

Properties	of	Combustion,	ner Hour
1 TOPETOES	01	Comoustion,	per mour.

	2 reperiods of community, per 11ster.												
C	CO	CO_2	0	a	A	h	w	H					
lbs.	lbs.	lbs.	lbs.	lbs.	cub. ft.	heat.	lbs.	horses.					
1		3.666		12	149	14500		5.660					
	2.666		1.333	6	74.50	4400	4.55	1.720					
0.433	1		0.566	2.550	31.65	1650	5.633	1.200					
0.272		夏	0.727	3.275	40.56	3960		1.545					
	1.750	1.375	1	3.500	43.33	5440	5.633	2.125					
	0.445			1	12.38	1210	1.250	0.472					
	•0358	.0246	·0231	.0808	1	97.3	0.100	0.038					
	0.584	0.244	0.170	0.800	9.920	966	1	0.378					
	1.550	0.651	0.470	2.120	26.30	2558	2.645	1					

To Approximate the Weight of Steam Boilers.

The area of fire grate gives a nearer approximation to the weight of Marine boilers, than the heating surface.

Letters denote.

= total fire grate in square feet. $W = \text{weight of the boiler in pounds, including fire bars, doors, smoke pipe, fire tools and appendages, but without water. $W=800 \equiv . Example. Required the weight $W=$? of a steam boiler of \qquad = 250 \qquad square feet, grate surface.

<math>W=800 \times 250 = 200,000 \text{ lbs.}$

Weight of the water is about three-fourths of W or of the total weight of boilers.

Weight of rivets, braces or stays, doors and fire bars, is about one quarter of W or of the total weight of boilers.

To Approximate the Weight of Engines.

Letters denote

D = diameter of cylinder in inches. S = stroke

W= weight of engine in pounds, including engine room tools, oil and tallow tanks, wheels, propeller and shafts.

oution control in troops, projection and annual		co	efficie	ent k.
Trunk and oscillating engines,	-	-	-	4
Direct action paddle wheel engines,				4.25
Horizontal direct action propeller engine, -	-	-	-	4.5
Geared propeller engines,			-	5.
American overhead beam engines,	-	-	-	5· 5
Side lever engines,	-		-	6.
Horizontal direct action high pressure,	-	-	-	3.2
$W = k D^2 \sqrt{S_*}$				

Example. Require the weight W=? of a pair of Horizontal direct action propeller engines of D=72, S=36 inches, k=4.5.

 $W = 4.5 \times 72^2 \sqrt{36} = 139968$ lbs. for one cylinder, multiplied by 2=279936 lbs. the weight required.

For trunk engines must be taken the largest diameter.

Punching Iron Plates.

To punch iron plates of from \(\frac{1}{2}\) to 1 inch thick requires 24 tons per square inch of metal cut; that is, the circumference of the hole multiplied by the thickness of the plate is the area cut through.

Letters denote.

d = diameter of the punch or hole. D = diameter of the hole in the die.

t =thickness of the iron plate. All dimensions in 16ths of an inch.

W= weight or force in pounds required to punch the hole. $W=660\ t\ d.$ $D=d+0.2\ t.$

Example 1. An iron plate of t=6 sixteenths of an inch thick, and the hole to be d=12 sixteenths in diameter. Required the force W=3 $W = 660 \times 6 \times 12 = 47520$ lbs., the answer.

Example 2. Under the same conditions require the diameter D=? of the die.

 $D=12+0.2\times6=13.2$ sixteenths.

Example 3. Required the diameter of piston for a direction action steam punch, for the plate and hole as in example 1, pressure of steam to be 50 lbs. per square inch.

Force 47520= $A \times 50$ of which area of piston will be $A = \frac{47520}{500}$ = 950.4square inches, which answers to a diameter of 34.8, say 36 inches.

Shearing Iron Plates.

It requires the same force per section cut, for shearing as for punching, namely, 20 to 24 tons per square inch. If the shears are good, sharp, and well adjusted, 16 tons may be sufficient.

When the cutters in the shears are inclined to one another, the area cut, will be the square of the thickness of the plate multiplied by half the cotagent for the angle of the shears. Let v=angle of the shears, W and t same as for punching. $W=88 t^2 \cot v$.

Example 4. What force is required to cut a half inch plate t=8 sixteenths with a pair of shears forming an angle of $v=12^{\circ}$? Cot. $12^{\circ}=4.7$.

 $W = 88 \times 8^2 \times 4.7 = 26470$ lbs.

Atmospheric Columns.

Water=33.95 feet. 2.3 feet for 1 lbs. per square inch. Seawater=33.05 ft. 2.23 66

Mercury at 600=30 inches. 2.05 inches, Atm. air=28183 feet. 1912 feet,

Atmospheric air Required for each.

Blacksmith's forge, - - 100 to 200 Charcoal forge, -- 400 to 500 Finery forge, -800 to 1000

Cubic feet per minute.

Charcoal furnace, 1000 to 3000 Anthracite furnace - - 2000 to 5000

Cupola.

In a cupola of 3 feet 4 inches diameter, and 10 feet high, can be melted down 1000 lbs. of east iron, 200 lbs. of bitumninous coal per hour, with a blowing machine of 4.5 horses making 1700 cubic feet of air per minute into a pressure of 2.25 inches of mercury at which the temperature of the blast will be about 70° Fah.

BLOWING MACHINES.

Letters denote.

D = diameter in inches, of blowing cylinder double acting.

l = part of the stroke S under which the air compresses from the atmospheric density to that in the reservoir.

F = mean resistance in pounds per square inch of the air on the cylinder piston.

P= pressure in pounds per square inch of the blast in the reservoir. C= cubic feet of air of atmospheric density, delivered from the blowing cylinder to the reservoir per minute. H =actual horse power required to work the blowing engine, includ-

ing 13 per cent. for friction.

d =diameter of blast pipe in inches.

n = number of revolutions or double stroke per minute.
 A = area of supply valve to the blowing cylinder in square inches, at each end of cylinder.

p = vacuum in pounds per square inch, on the supply side of the cylinder

piston, which should not exceed 0.1 lbs. V = velocity of the blast through the tuyers in feet per second. v = velocity of the air through the supply valve A, in feet per second, which should not exceed 100 feet.

which should not exceed to the constraints of the orifice or tuyeres in square inches. h = height of mercury in inches, in the gauge on the blast reservoir. L = length of the blast pipe in feet from the receiver to the tuyeres. k = volume coefficient, see Table. t = temperature Fah. of the blast caused by compression or heating.

Example 1. Formulæ 8. For an Anthracite blast furnace is required 4000 cubic feet of air per minute, under a pressure of 6 inches mercury. Required the horse power necessary for the blowing machine? The effectual resistance $F=2^\circ365$ lbs. see Table. Assume the vacuum to be v = 0.09 lbs.

We have
$$H = \frac{4000 (2.365 + 0.09)}{198} = 49.6$$
 horses.

Example 2. Formulæ 10. Suppose the blast cylinder to be D=144 inches diameter with S=15 feet stroke. Required the number of double strokes per minute n=?

$$n = \frac{96 \times 4000}{144^2 \times 15} = 12.3$$
 the answer.

Example 3. Formulæ 9. Under the above conditions, require the area of the supply valves A=? when the velocity v=105 feet, per second.

$$A = \frac{144^{2} \times 15 \times 12 \cdot 3}{40 \times 105} = 911$$
 square inches.

Capacity of Blast Reservoir should not be less than the following proportions, but more is better.

For one single acting cylinder,

20) times the capacity of one cylind'r. For one double acting cylinder, 10 Two double act. cyl. cranks at 90° 5

One double acting cylinder, same as two single acting. The more cylinders the less capacity required for blast reservoir.

$$V = 246 \sqrt{h} \cdot (1 + 0.00208 t), t = 32 + 493 (k-1), t = 33.55 P + 32, t = 33.55 P + 32, k = \frac{P}{14.7},$$

Formulas for Blowing Machines.

Table for Blast and Blowing Machines.

Volume and temperat. Guage in inches. Pressure lbs. sq inch.							Telocity.
k	t	water.	h	P	F	1	V
1.002	330	1	0.073	0.036	0.032	0.0024	72
1.005	34.5	2	0.147	0.079	0.063	0.0049	102
1.007	35.2	3	0.220	0.108	0.095	0.0073	125
1.010	37	4	0.294	0.144	0.128	0.0097	144
1.012	38	5	0.368	0.180	0.159	0.0121	161
1.015	39.5	6	0.441	0.216	0.191	0.0145	176
1.020	42	8	0.588	0.288	0.253	0.0192	204
1.025	44.5	10	0.736	0.360	0.309	0.0239	228
1.030	47	12	0.884	0.432	0.379	0.0287	249
1.035	49.5	14	1.030	0.503	0.437	0.0334	269
1.043	53.5	17	1.250	0.612	0.531	0.0400	297
1.051	57.5	20	1.470	0.719	0.623	0.0467	322
1.062	63	24	1.766	0.863	0.745	0.0556	352
1.074	69	28	2.060	1.008	0.865	0.0643	381
1.082	73	31	2.281	1.116	0.955	0.0706	401
1.091	77.3	34	2.501	1.223	1.043	0.0769	420
1.100	82	37	2.720	1.332	1.130	0.0833	438
1.109	86.5	46	3.000	1.470	1.205	0.0908	460
1.116	90	47.5	3.500	1.715	1.431	0.1045	496
1.132	98	54.3	4.000	1.961	1.636	0.1178	530
1.165	114.5	67.7	5.000	2.450	2.010	0.1431	593
1.200	132	81.4	6.000	2.941	2.365	0.1667	650
1.265	164.5	108.5	8.000	3.925	3.088	0.2105	751
1.400	232	163	12.00	5.900	4.389	0.2859	918
1.500	282	203.7	15.00	7.375	6.875	0.3333	1077
1.625	344.5	254.6	18.75	9.217	8.831	0.3846	1393
1.750	407	305.5	22.49	11.06	10.67	0.4285	1590
1.875	469.5	356.4	26.24	13.90	11.64	0.4666	1760
2.000	532	407.4	30.00	14.75	12.50	0.5000	1955

FAN OR VENTILATOR.

Fans constructed as the accompanying figure have been found by the Author who has made several of them, to be the most effective.

The vanes are each one quarter of an arithmetical spiral with a pitch twice the diameter of the fan, that is, each vaneshould be constructed in an angle of 90° from centre to tip. Length of fan to be from † to † the diameter. Inlet to be half the diameter of the fan. Number of vanes to be not more than six, and not less than four. Six vanes work softer and better, but they give no better effect than four.

The housing should be an arithmetical spiral with sufficient clearing for the fan at a, and leaving a space at b about $\frac{1}{b}$ of the diameter. Fans of this construction make no noise.

Letters denote.

d = diameter of fan in inches. l = length

A =area in sq. in. L =length in feet, of blast pipe, to be as straight as possible.

a = area in sq. in. tuyeres or outlet.

C = cubic feet of air delivered per minute.

h = inches of mercury.

v = velocity in feet per second through a.

k = volume coefficient, see Table, page 287. n = revolutions of fan per minute.

H= actual horse power required to drive the fan.

Formulas for Fans.

$$h = \frac{d n^{2}}{5000000} \sqrt{\frac{d I}{25 a + d I}}, \qquad 1 \qquad v = \frac{n \sqrt{d}}{28 \cdot 86} \sqrt[4]{\frac{d I}{25 a + d I}}, \qquad 6$$

$$H = \frac{d I h n}{24000}, \qquad 2 \qquad n = \frac{24000 H}{d I h}, \qquad 7$$

$$h = \frac{24000 H}{d I n}, \qquad 3 \qquad C = \frac{v a k}{2 \cdot 6}, \qquad 8$$

$$v = 244 \sqrt{h} \qquad - \qquad 4$$

$$A = a \sqrt{L} \qquad - \qquad 5$$

Example 1. A fan of d=36 inches diameter, l=12 inches, making n=725revolutions per minute, area of tuyere being a=25 square inches. Required the density of the blast in inches of mercury h=3

Formulæ 1.
$$h = \frac{36 \times 725^3}{50000000} \sqrt{\frac{36 \times 12}{25 \times 25 + 36 \times 12}} = 0.242$$
 inches.

Example 2. Under the same conditions require the cubic containt of air delivered per minute, C=? k=1.01 the nearest in the Table.

Formulæ 9. $C=94\times25\times1.01/0.242=1167.7$ cubic feet. Required the horse power H=?

Formulæ 2.
$$H = \frac{36 \times 12 \times 0.242 \times 725}{24000} = 3.16$$
 horses.

BLAST OR IRON FURNACES.

It is almost impossible to set up the many variable circumstances connected with the performance of Blast Furnaces, into a table form. The datas herein given are deduced to an average from the performances of a

great many furnaces both in America and Europe.

The accompanying Tables are so arranged that the numbers in Table I, multiplied by the numbers in Table II, gives the corresponding charge of Iron ore, lime stone, coal, and the produce of pig iron in pounds per 24 hours, with the consumption of air in cubic feet per minute.

Table II, contains the effective capacity of blast furnaces in cubic yards.

* Example. It is required to construct a blowing machine for an Anthracite blast furnace of 12 feet diameter of boshes, height of stack 45 feet, to be worked with hot blast. Required the produce of pig iron per 24 hours, cubic feet of air per minute and actual horse power of the blowing engine? Produce of pig iron 155 Table I. X123 Table II. = 19065 lbs. or 8.5 tons per

Consumption of air 20×123=2460 cubic feet per minute. Suppose the blast to be blown into the furnace at a pressure of P=2.94 lbs., vacuum in the supply side in cylinder to be p=0.07 lbs. we shall have the required

actual power. Forumlæ 8, p. 287.

 $H = \frac{2460 (2.36 + 0.07)}{2400 (2.36 + 0.07)} = 30.2 \text{ horses}.$ 198

Table I. Iron or Blast Furnaces

			Jiast I'		-	
The unit bein of the French	Charge Iron Ore.	and prod Pig Iron.	uce per 24 Lime Stone.	Coal.	Air per minute.	
		The,	lbs.	lbs.	lbs.	cub, feet.
Soft charcoal	{Cold blast, Warm blast,	535 700	215 292	198 256	400 350	24 19
Hard charcoal	{Cold blast, Warm blast,	670 875	270 365	245 320	400 350	24 19
Goke	{Cold blast, Warm blast,	268 350	108 146	98 128	515 397	26 20
Bituminous	{Gold blast, Warm blast,	252 327	101 136	92 120	515 397	24 19
Anthracite	{Gold blast, Warm blast,	287 373	115 155	105 137	515 597	26 20
					1	

Table II. Capacity and Dimensions of Iron Furnaces.

Diameter of	Height of stack in feet.								
Boshes in ft.	25	30	35	40	45	50	55	60	
- 8	40	44	47	51	54	58	62	65	
9	50	55	60	64	69	73	78	83	
10	62	68	74	79	75	91	96	102	
11	75	82	89	96	103	110	117	123	
12	90	98	106	114	123	130	139	147	
13	105	115	125	134	144	153	163	172	
14	121	133	145	155	167	178	189	200	
15	140	153	166	178	191	204	217	230	
16	160	174	189	203	217	232	247	261	
17	280	197	213	229	245	262	279	295.	
18	202	220	239	257	275	293	312	330	

Sixty-two Simple Substances, with their Symbols, Equivalents and Specific Gravities.

Name.	Symbol.	Equiv.	Sp, Grav.	Name.	Spmbol.	Equiv.	Sp. Grav.
Aluminium,	Al	13.7	2.56	Molybedenum,	Mo	47.9	8.60
Antimony, (Stib.)	Sb	64.6	6.70	Nickel,	Ni	29.5	8.80
Arsenic,	As	37.7	5.70	Niobium,	Nr		
Barium,	Ba	68.6	4.70	Nitrogen,	N	14.2	0.972
Bismuth,	Bi	71.5	9.82	Norium,	No		
Boron,	B-		2.00	Osmium,	Os.		10.00
Bromine,	Br	78.4	3.00	Oxygen,	0		1.102
Cadmium,	Cd		8.65	Palladium,	Pd	53.3	11.35
Calcium,	Ca		1.58	Pelopium,	Pe		
Carbon,	C		3.20	Phosphorus,	P	15.9	
Cerium,	Ce	46.0		Platinum,	Pt		21.50
Chlorine,	01		2.44	Potassium, (Kal.)	K	39.2	
Chromium,	Ur		5.90	Rhodium,	R		11.00
Cobalt,	Oo		8.53	Ruthenium,	Ru		
Columbium, (Ta.)		184.8		Selenium,	Se	40.0	4.5
Copper, (Copr'm)		31.7	8.80	Silicon,	Si	22.0	
Didymium,	D	48.0		Silver, (Argent'm)		108.3	10.5
Erbium,	E			Sodium, (Natr.)	Na	23.5	
Fluorine,	F	18.7	1.32	Strontium,	Sr	43.8	
Glucinum,	G	6.9		Sulphur,	\mathbf{S}	16.1	1.99
Gold, (Aurum)	Au		19.30	Tellurium,	Te	64.2	6.30
Hydrogen,	H	1	0.069	Terbium,	Tb		
Iodine,	I	126.5	4.94	Thorium,	Th	60.0	
Iridium,	Ir		18.68	Tin, (Stannum)	Sn	58.9	7.29
Iron, (Ferrum)	Fe	28.0	7.75	Titanium,	Ti	24.5	5.28
	Ln	48.0		Tungsten, (Wolf.)	W		17.00
Lead, (Plumbum)	Pb	103.7		Uranium,	U		10.15
Lithium,	L	7.0	0.59	Vanadium,	V	68.5	
Magnesium,	Mg		1.75	Yttrium,	Y	32.0	7.00
Manganese,	Mn	26.0	8.00	Zine,	Zn	32.3	7.00
Mercury (Hydra.)	Hg	200.0	13.50	Zirconium,	Zr	234.0	
				-			

PROPORTIONS OF COMPOUNDS.

Names.	Carbon.	Hydrogen. H	Oxygen.	Nitrogen.
Olive oil, by weight, - :	772	133	95	
Spermaceti oil, "	780	118	102	
Castor oil, "	740	103	157	
Linseed oil, "	760	113	127	
Alcohol, "	527	129	344	
Sugar, "	432	68	500	
Atmosp. air, "			770	230
" air by volume,			210	790
Water, fresh, by weight,		1	8	
" volume, -		2	1	
India rubber by weight,	853	147		
Blood by wt. 66.6 iron.	665	53	110.4	104

123·7 208·0

216.0

232.2

235.5

271.8

116.3

143.8

220.6

169.8

Ag O

Ag Cl

Au Oa

Binary Compounds, with their Formulas and Equivalents,									
Name of Compound.	Formula.	Equiv.	Name of Compound.	Formula.	Equiv.				
Water, Binoxide of Hydro., Protoxide of Nitro.,		17.0	Binoxide of Lead, Dinoxide of Copper, Protoxide of Copper,	Pb O ₂ Cu ₂ O Cu O	119·7 71·4 39 7				
Binoxide of Nitrog., Hyponitrous Acid, Nitrous Acid,		30·2 38·2	Chloride of Copper, Oxide of Zinc, Sesquioxide of Ant	Cu Cl Zn O	67·2 40·3 153·2				
Nitric Acid, Ammonia, Cyanogen,	NO ₅ NH ₃ NC ₂		Antimonious Acid, Antimonic Acid, Protoxide of Tin,	Sb ₂ O ₄ Sb ₂ O ₅ Sn O	161·2 169·2 66·9				
Sulphurous Acid, Sulphuric Acid, Carbonic Oxide,	SO ₂ SO ₃ CO	32·1 40·1 14·1	Binoxide of Tin, Bisulphide of Tin, Chloride of Tin.	Sn O2 Sn S2 Sn Cl	74·9 91·1 94·4				
Carbonic Acid, Light Carb'ett'd Hy. Olefiant Gas, Bisulphide of Carb.,	H ₂ C ₂	22·1 8·1 14·2 38·3	Biehloride of Tin, Oxide of Bismuth, Chloride of Bismuth Protoxide Mangan.	Sn Cl ₂ Bi O Bi Cl	129·9 79·5 107·0 34·0				
Boracic Acid, Chlorons Acid, Chloric Acid.	BO ₃ Cl O ₄ Cl O ₅	35·0 67·5 75·5	Sesquioxide Manga. Red Ox. Manganese BinoxideManganese	Mn ₂ O ₃ Mn ₃ O ₄	76.0 110.0 42.0				
Hydrochloric Acid, Quadrochloride Nit., Iodic Acid,	IO5	36.5 156.2 166.5	Protoxide of Cobalt, Peroxide of Cobalt, Protoxide of Nickel,	Co ₂ O ₃ Ni O	37·5 83·0 37·5				
Hydroiodic Acid, Teriodide of Nit'gn, Hydrofluoric Acid, Phosphorous Acid,	HI NI ₃ H Fl P ₂ O ₃	127·5 393·7 19·7 55·4	Peroxide of Nickel, Arsenious Acid, Arsenic Acid, Arseniuretted Hydr.	Ni ₂ O ₃ As ₂ O ₃ As ₂ O ₅ H ₃ As ₂	83.0 99.4 115.4 78.4				

To Transform Chemical Formulas into a Mathematical Expression.

71.4 Sesquisulphide Arse. As2 S3

34.4 Protoxide Mercury, Hg 0. 56.0 Peroxide of Mercury Hg 0₂

64.0 Bisulphide of Merc., Hg S2

41.0 Chloride of Mercury Hg Cl

17.1 Bichloride of Merc., Hg Cl2

215.4 Terchloride of Gold, Au Cla

343.1 Bichloride Platin'm, Pt Cl2

36.0 Oxide of Silver.

80.0 Chloride of Silver,

111.7 Teroxide of Gold,

Phosphoric Acid,

Selenious Acid,

Selenic Acid,

Phosphoret'd Hydr., H3 P2

Seleniuret'd Hydro., H Se

Quadrotrisoxi'e Le'd Pb3 O4

Sulphurrt'd Hydro.,

Protoxide of Iron,

Peroxide of Iron,

Dinoxide of Lead,

Protoxide of Lead,

P2 05

Se 02

Se Os

HS

Fe O

Fe₂ O₃

Ph O

Ph₂ O

Rule. Multiply together the equivalent, (equiv.) and the exponent, (exp.) of each substance and the product is the proportion in the compound by weight. Divide this by its specific gravity gives the proportions by bulk or volume.

Example 1. The chemical formulæ for common alcohol is C_4 H_6 O_2 . Required its proportioned parts by weight in 1000?

equiv, exp. proportions.

Carbon
$$C_{\mathbf{i}_1} = 6 \cdot 12 \times 4 = 24 \cdot 48$$
 Hydrogen $H_{\mathbf{i}_2} = 1 \times 6 = 6$ Oxygen $O_{\mathbf{i}_1} = 8 \times 2 = 16$ 1000:46:48=21:5, 1000

A NEW SYSTEM OF ARITHMETIC.

Weights, Measures and Coins.

Our present Arithmetical system is very inconveniently arranged for the general requirements of mankind; it causes an international difficulty and discordance in the adoption of a uniform system of Weights, Measures and Coins.

An International Association for obtaining a uniform decimal system of Weights, Measures and Coins, has been in existence several years, but as yet, has accomplished very little. They meet with the most natural and reasonable objections, namely, that the Arithmetical base 10 does not admit of binary divisions, as required in the shop and the market. In practice, we want our units divided into the most natural fractions, namely, quarters, eighths, sixteenths, &c., &c., for which the decimal system is not suitable. A most common fraction 1/8 expressed by decimals will be 0.125; if this number is shown to the majority of the people there will be comparatively few who understand the true meaning 10 it; it will then be necessary to explain that the unit is divided into 1000 parts, of which 125 is 1/8 of the whole. The people will then surely remark that this is a roundabout way of doing things, and that they are not willing to cut up their things into 1000 parts in order to get it into 8. Even among the educated classes and among the best arithmeticians, there will be few, if any who have it clearly located on the mind that 0.125 is 1/8 of 1000, but it is very well known to be so, by practice in calculation. Therefore, our present arithmetical system is a great burden on the student, and very frequently exceeds the limits of the power of the human mind, beyond which solutions are performed mechanically, like a musician who

plays the crank organ.

The base ten has often been complained of, and more suitable numbers proposed. Charles the XII., of Sweden proposed the number twelve for proposed. Charles the XII., of Sweden proposed the number twelve for the arithmetical base; to use his own just expression that, "it is quite rediculous to use ten as the base for arithmetics, it can be divided once by two and then stops." It is not sufficient merely to propose or say that 8, 12, or 16 would be better as a base, but in order to make a correct impression of its utility, it is necessary to enter into details with examples that any one may be able to see its advantages without taxing his own mind. The Author laid before the above mentioned International Association which met at Englight in Varishing on the 10th 11th and 10th and tion which met at Bradford in Yorkshire, on the 10th, 11th, and 12th of October, 1859, a new system of Arithmetics, Weights, Measures, and Coins, founded uniformly throughout on the number 16, as the base. This would become the most simple system to the mind, and it would embrace all requirements of the different classes of mankind.

In that system it is proposed to add six new figures, thus,

2345678598088810

The new figures will appear strange at the first glance, but a little reflection will soon convince one of their simplicity and utility.

A complete description with numerous examples of this new system is now published by J. B. Lippincott & Co., Philadelphia. In one example it will be found that our present arithmetical system

requires, four additions, seven multiplications, and one division, employing in the calculation 215 figures; while the new system requires only one multiplication and employs only 39 figures for the same solution. JOHN W. NYSTROM.

Philadelphia, January, 1862.

OPTICS.

Optics is that branch of philosophy which treats of the property and motion of light.

Mirrors.

Example 1. Fig. 307. Before a concave mirror of r=6 feet radius, is placed an object 0=1, at d=1.75 feet from the vertex. Required the size of the image I=7

image
$$I = \frac{O \ r}{r-2 \ d} = \frac{1 \times 6}{6-2 \times 1.75} = 2.4$$

Example 2. Fig. 308. Before a concave mirror of $r=5\cdot25$ feet radius, is placed an object O=1, at $D=4\cdot5$ feet from the vertex. Required the size of the inverted image I=?

image
$$I = \frac{O \ r}{2 \ D - r} = \frac{1 \times 5 \cdot 25}{2 \times 4 \cdot 5 - 5 \cdot 25} = 1 \cdot 4$$

Example 3. Fig. 809. Before a convex mirror of r=1'8 feet radius, is placed an object O=1, at D=3'15 feet from the vertex. Required the size of the image I=?, and the distance in the mirror d=?

image
$$I = \frac{1 \times 1 \cdot 8}{2 \times 3 \cdot 15 + 1 \cdot 8} = 0.222$$
 distance $d = \frac{3 \cdot 15 \times 1 \cdot 8}{2 \times 3 \cdot 15 + 1 \cdot 8} = 0.699$ ft.

Example 4. Fig. 310. A parabolic mirror is h=1.31 feet high, and d=2.15 feet in diameter. Required the focal distance f=7 from the vertex.

focal distance
$$f = \frac{d^2}{16 h} = \frac{2 \cdot 15 \times 12}{16 \times 1 \cdot 31} = 2 \cdot 646$$
 inches.

Optical Lenses.

Example 5. Fig. 316. A double convex lens, of crown glass, having its radii R=r=6 inches. Required its principal focal distance f=l For crown glass the index of refraction is m=1.52. See table.

$$f = \frac{6}{2(1.52-1)} = 5.768$$
 inches.

Microscope

Letters denote.

p = magnifying power of a lens.

m = limit of distinct vision.

 $\alpha =$ limit of distinct sight, which for long-sighted eyes is about 10 or 12 inches, and near-sighted 6 to 8 inches. For common eyes take $\alpha = 10$ inches.

b = limit distance of the object from the optical centre at distinct vision.

Example 6. Fig. 322. Required the magnifying power of a single microscope with principal focal distance, f=43 inches?

Mag. power
$$p = \frac{a+f}{f} = \frac{10+4\cdot3}{4\cdot3} = 3\cdot325$$
 times.

307 Spherical Concave Mirror.

r = radius, and $f = \frac{1}{2} r$, focal distance of the mirror.

$$I = \frac{Or}{r-2d} \cdot D = \frac{dr}{r-2d}.$$

The image disappears when $d = f = \frac{1}{2}r$.

308 Spherical Concave Mirror.

$$I = \underbrace{\begin{array}{cc} O \, r \\ 2 \, D - r \end{array}} \quad d = \underbrace{\begin{array}{cc} D \, r \\ 2 \, D - r \end{array}}.$$

When the object is beyond the focal distance the image will be inverted.

309

Spherical Convex Mirror.

$$I = \frac{Or}{2D+r} \qquad d = \frac{Dr}{2D+r}.$$

310

Parabolic Concave Mirror.

$$f = \frac{d^2}{16h} \cdot h = \frac{d^2}{16f}$$

311

Hyperbolic Concave Mirror.

Heat, Light, or Sound emanating from the foci of a hyperbola will be reflected diverged, from the concave surface.

312

Eliptic Concave Mirror.

Emanating rays from either of the two foci in an elipse, will be refracted by the convex surface to the other foci.

Astronomical Telescopes and Opera Glasses.

Example 7. Fig. 325. The principal focal distance f=0.65 inches of the ocular or eye-lens. F=58 inches the principal focal distance of the objectivelens. Required the magnifying power of the telescope I=?

image
$$I = \frac{O F}{f} = \frac{1 \times 58}{0.65} = 89.23$$
 times the object.

The telescope is to be used at the limited distance D=1380 feet and $D=\infty$. Required the proper lengths l=? and micrometrical motion of the ocular or eye-lens? when the limit of distinct sight $\mathfrak{a}=10$ in. $F=58:12=4\cdot833$ feet. $f=0\cdot05:12=0\cdot05416$ feet.

$$l = \frac{1380 \times 4 \cdot 833}{1380 - 4 \cdot 833} + \frac{10 \times 0 \cdot 05416}{10 + 0 \cdot 05416} = \frac{4 \cdot 89035}{0 \cdot 05386}$$
When $D = 1380$ feet, the length $l = \overline{4 \cdot 94421}$ feet.
When $D = \infty$, $l = 4 \cdot 8333 + 0 \cdot 05386 = \underline{4 \cdot 88719}$
Micrometrical motion of eye lens
$$\begin{array}{c} \hline 0 \cdot 05702 \\ \hline 0 \cdot 68424 \text{ inches.} \\ \hline 15 \text{ in early.} \end{array}$$

Table of Refractive Indices.

Substances.	Index. m.	Substances.	Index. m.
Cromate of Lead -	\[\frac{2.97}{2.50} \]	Quartz Muriatic Acid	1.54 1.40
Realgar	2.55	Water	1.33
Diamond	2.45	Ice	1.30
Glass, flint	1.57	Hydrogen · · ·	1.000138
Glass, crown	1.52	Oxygen	1.000272
Oil of Cassia	1.63	Atmospheric air	1.000294
Oil of Olives	1.47		

314 Prism.

An emergent rays of light α α' falling upon a transparent medium A (say a glass prism) will be transmitted through in the direction a h, and delivered in the direction b b', parallel to a α' α'' .

V = angle of incident, v = angle of refraction.

Indix of refraction
$$m = \frac{\sin v}{\sin v}$$
.

315 Given the direction of the emergent rays a a', angles e and r,—to find the angles u and x,—or the direction of the rays b b'.

$$\cos z = \frac{\cos e}{m}$$
, $\cos u = m \cos (180 - z - r)$.

$$x = 180 - (e+r+u)$$
.

When e = u, the angle x is smallest. An eye in b' will see the candle in the direction b' b b''.

316 Double Convex Lens.

$$f = + \frac{Rr}{(m-1)(R+r)}$$
, the principal focal distance.
 $f = \frac{r}{2(m-1)}$, when $R = r$

$$o = optical centre of the lens.$$

317

Plano Convex Lens.

$$f = + \frac{r}{m-1}.$$

The optical centre is in the convex surface.

318 Convex-concave Lens (Meniscus.)

$$f = + \frac{R r}{(m-1)(R-r)}$$
.

Draw the radii R' and r' parallel to one another.—Draw n o, then o is the optical centre.

319

Double Concave Lens.

$$f = -\frac{R r}{(m-1)(R+r)}$$

320

Plano Concave Lens.

$$f = -\frac{r}{m-1}.$$

The optical centre is in the concave surface.

321

Concavo-convex Lens.

$$f = -\frac{R r}{(m-1)(R-r)}$$

Draw R and r' parallel to one another. Draw n o, then o is the optical centre.

322 Single Microscope.

$$I: O = f: f - d, \quad I = \frac{Of}{f - d}, \quad D = \frac{df}{f - d},$$

$$\mathfrak{P} = \frac{\mathfrak{A} + f}{f}, \quad \mathfrak{P} = \frac{\mathfrak{P} f}{f - \mathfrak{P}}, \quad \mathfrak{P} = \frac{\mathfrak{A} f}{\mathfrak{A} + f}.$$

323

When the object O is beyond the focal distance the image I will be inverted.

$$I: O = f: D - f, \quad I = \frac{Of}{d - f}, \quad d = \frac{Df}{D - f}.$$

324 Diminishing Power of a Double Concave Lens.

$$I: O = f: f + D \qquad I = \frac{Of}{f + D},$$

$$D = \frac{f(O-I)}{I}, \qquad d = \frac{Df}{D+f}.$$

325

Astronomical Telescope.

 $I: O = F: f, \qquad I = \frac{OF}{F}, \qquad d = \frac{Df}{F}.$

$$I = \frac{OF}{\mathcal{L}}$$

$$d = \frac{Df}{F}$$
.

$$l = D F * \frac{\alpha f}{\alpha + f}$$
. (if $D = \infty$, $l = F + \frac{\alpha f}{\alpha + f}$)

* + for astronomical telescope,

- for opera-glasses.

326

Opera Glass.

Formulas are the same as for Astronomical Telescope.

GEOGRAPHY.

The Earth on which we live, is a round ball or sphere, with a mean diameter of 7914 statute miles. The whole surface of the earth is 196800000 square miles, cf which only one fourth or nearly 50,000000 square miles is land, and about 150,000000 square miles water.

Table of Area and Population of the whole Earth.

Divisions of the Earth.	Area in Square Miles.	Population.	Proportion to Square Mile.
America,	14,491,000	60,000:000	4.1
Europe,	3,760,000	272,000,000	72
Asia,	16,313,000	730,000.000	41
Africa,	10,936,000	200,000,000	18
Oceanica,	4,500,000	27,000,000	6.7
Total,	50,000,000	1,289,000,000	26

About $\frac{1}{3}$ th of the whole population are born every year, and nearly an equal number die in the same time; making about one born and one dead per second.

The Earth is not a perfect sphere, it is flatted at the Poles. The following are her true dimensions in statute miles of 5280 feet.

Dimensions of the Earth.

Diameter	$\begin{cases} 7898.8809 \\ 7911.92 \\ 7924.911 \end{cases}$	miles "	at the Poles. mean, or in 45° lat. at the Equator.
Difference Flatted	- 26·0302 - 13·015	66	Poles and Equator. at each Pole.
Circumference	$\begin{cases} 24802 \cdot 486 \\ 24851 \cdot 640 \\ 24884 \cdot 22 \end{cases}$	"	round the Poles. Mean, or in 45° lat.

To Find the radius of the Earth in any given Latitude

 $R = 3955.96(1 + 0.00164 \cos 2l)$, statute miles.

Definitions.

Axis of the Earth is an imaginary diameter around which the earth

Poles of the Earth are the two extremities of the axis, and are called North and South.

Equator of the Earth is the great circle at equo-distances from the Poles; it divides the Earth into the Northern and Southern Hemispheres

Meridian is any great circle of the Earth drawn through the Poles; hence the Meridian runs north and south, and are at right-angles to the Equator.

The Equator and Meridians are divided into degrees, minutes, and seconds.

Latitude is the degrees on a Meridian counted from the Equator. Longitude is the degrees on the Equator or on circles parallel with the

Equator, counted at right angles from a Meridian.

Parallels are circles drawn through equal Latitudes; they are parallel and

concentric with the Equator, and at right-angles to the Meridians. **East** and **West** is the direction of the Equator and Parallels, or at right-angles to north and south. Turn your face towards the south, the east is on the left hand, and the west on the right.

The time in which the earth makes one revolution, is divided into 24 hours,

and
$$\frac{360^{\circ}}{24} = 15^{\circ}$$
 per hour.

To Reduce Longitude into Time.

RULE. Divide the number of degrees, minutes, and seconds by 15, and the quotient will be the time.

Example 1. Longitude 74° 48′ 15″, what is it in time? 4h 59m13s the answer.

To Find the Difference in Time between two Places.

RULE. Divide the difference in longitude by 15, and the quotient is the difference in time.

Example 2. Required the difference in time between New York and Cincinnati?

Longitude of Cincinnatti - 84° 27'
$$W$$
 " New York - 74 07 W Difference in longitude - 10° 20'

$$\frac{10\times60+20}{15} = 41 \text{ minutes 20 seconds,}$$

the difference in time. When it is 12 o'clock in Cincinnati, it is 12h 41' 20" in New York.

Example 3. Required the difference in time between Philadelphia and Paris? Longitude of Philadelphia 75° 10' W

2 20 E " Paris - -

77° 30° divided by 15 will be Difference in longitude 5h 10m the difference in time. When it is 12 o'clock in Philadelphia, it is 5h 10m o'clock in Paris.

Example 4. A vessel sails from New York for Liverpool, after she has been at sea about one week, her difference in time with New York was found to be 2h 7m45°. Required her longitude from New York?

15(2h 7 45) = 31° 58' 15" from New York.

NAVIGATION.

To navigate a vessel upon the supposition that the earth is a level plane, on which the meridians are drawn north and south, parallel with each other; and the parallels east and west, at right-angles to the former.

The line NS represents a meridian north and south; the line WE represents a parallel east and west.

A ship in I sailing in the direction of IV, and having reached l', it is required to know her position to the point l, which is measured by the line ll', and the angle Nll'; and imagined by the lines $l \alpha$ and $\alpha l'$

While the vessel is running from l to l', the distance is measured by the log and time; and the course Nll' is measured by the compass commonly expressed in points.

These four quantities bear the following names.

 $d=l\ l'$, distance from l to l' in miles. $C=Nl\ l'$, course, or points from the meridian.

 $\mathfrak{d} = l \, a$, departure or difference in longitudes, in miles.

u = a l', difference in latitudes, in miles.

l = latitude in degrees. L = difference in longitude, in degrees or time.

Formulas for Plane Sailing.

a drimand ada	Z Julio Sutiling.
$\mathfrak{v} = d \sin . C, 1,$ $\mathfrak{v} = u \tan . C, 2,$ $\mathfrak{v} = 60 \cos . l L, - 3,$	$\cos l = \frac{u \tan C}{60L}, - 15,$
$\mathfrak{d} = \sqrt{d^2 - u^2},$ - 4, $u = d \cos . C,$ - 5, $u = \mathfrak{d} \cot . C,$ - 6,	$L = \frac{\mathfrak{v}}{60\cos l}, \qquad -16,$
$u = \frac{60L \cos l}{\tan C}, -7,$	$L = \frac{d \sin C}{60 \cos l}, - 17,$
$u=\sqrt{d^2-\mathfrak{d}^2}, \bullet\qquad 8,$	$L = \frac{v \tan C}{60 \cos l}, -18,$
$d=\frac{\mathfrak{v}}{\sin C}, \bullet \qquad 9,$	
$d = \frac{u}{\cos C}, - 10,$	$\cos C = \frac{u}{d}, 19,$
$d = \frac{60L \cos l}{\sin C}, -11,$	$\sin C = \frac{b}{d}, - 20,$
$d=\sqrt{\mathfrak{d}^2+u^2}, \qquad \bullet \qquad 12,$	$\tan C = \frac{\mathbf{v}}{u}, - 21,$
$\cos l = \frac{b}{60L}, - 13,$	$\sin C = \frac{60L \cos l}{d}, \qquad 22,$
$\cos l = \frac{d \sin C}{60L}, - 14,$	$\tan C = \frac{60L \cos l}{u} \qquad 23,$

See Table of Formulas for Plane Sailing.

Example 1. A vessel sails east north east (6 points,) 236 miles. Required her departure 1? and difference in latitude u?

Formula 1. $n = d \sin C = 236 \times \sin 6$ points = 218 miles departure, and u = d $\cos c = 236 \times \cos 6$ points = 90.3 miles difference in latitude.

Example 2. A ship sails in north latitude in a course $C=ESE\c 2E=6\c 3$ points, at a distance of 132 miles she made a difference in longitude of $L=3^\circ$ 34. What latitude is she in?

Formula 14.
$$\cos l = \frac{d \sin C}{60L} = \frac{132 \times \sin .6\frac{3}{4}}{60 \times 3 + 34} = 0.59832,$$

or $l = 53^{\circ} 15'$ the latitude.

In high latitudes and very long distances, the preceding formulas will not give such correct results as may be desired, because they are set up with the supposition that the earth is a level plane; but by the aid of spherical trigonometry, we are enabled to ascertain courses and distances correctly, from and between any known points on the earth.

Spherical Distances.

For the spherical formulas, letters will denote.

l = lower latitude, in degrees from the equator.

l' =highest latitude, " " C = course, from the latitude l to l'.

C' = course, from l' to l.

d = shortest distance between l and l' in degrees of the great circle.

L = difference in longitude between l and l', in degrees, or time.

tan.m = cot.l' cos.L.

 $n = 90 \mp l - m$. -l, when l and l' are on one side of the equator. +l, when l is on one side and l' on the other. Then

$$\cos d = \frac{\sin l' \cos n}{\cos m}, \qquad - \qquad 1,$$

$$\sin C = \frac{\sin L \cos l'}{\sin d}, \qquad - \qquad 2,$$

$$\sin C' = \frac{\sin L \cos l}{\sin d}, -3,$$

Example. Required the shortest distance and course from New York to Liverpool?

$$l = 40^{\circ} 42'$$
 N. latitude
 74° " W. longitude New York.
 $l' = 53^{\circ} 22'$ N. latitude Liverpool.
 $l' = 50^{\circ} 8'$ difference in longitude.
 $l' = 71^{\circ} 8'$ difference in longitude.

 $\tan m = \cot 53^{\circ} 22' \times \cos 71^{\circ} 8' = 13^{\circ} 31'.$ $n = 90^{\circ} - 13^{\circ} 31' - 40^{\circ} 42' = 35^{\circ} 47'.$

For. 1.
$$\cos d = \frac{\sin .53^{\circ} 22' \times \cos .35^{\circ} 47'}{\cos .13^{\circ} 31''} = 47^{\circ} 58'.$$

Shortest distance = $47^{\circ} \times 60 + 58 = 2878$ geographical miles.

$$\sin C = \frac{\sin .71^{\circ} 8' \times \cos .53^{\circ} 22'}{\sin .47^{\circ} 58'} = 49^{\circ} 23' = 4\$ \text{ points}$$

course from New York NE#E.

North.	South.		Points.	Degrees.	sineC.	Cos.C.	tan.C.
N.	S.	{	100000000000000000000000000000000000000	2° 49′ 5 37 8 26	·0491 ·0979 ·1544	·9988 ·9952 ·9880	·0492 ·0983 ·1982
N. by E. and N. by W.	S. by E. and S. by W.	{	1 1½ 1½ 1¾	11 15 14 4 16 52 19 41	·1936 ·2430 ·2011 ·3368	•9811 •9700 •9570 •9416	*1989 *2505 *3032 *3577
N. N. E. and N. N. W.	S. S. E. and S. S. W.	{	2 2 ¹ / ₄ 2 ¹ / ₂ 2 ³ / ₄	22 30 25 19 28 7 30 56	·3827 ·4276 ·4713 ·5140	·9239 ·9039 ·8820 ·8577	·4142 ·4730 ·5343 ·5093
N. E. by N. and N. W. by N.	S. E. by S. and S. W. by S.	{	3 3 3 3 3 3 3	33 45 36 44 39 22 42 11	·5555 ·5981 ·6343 ·6715	·8314 -8014 ·7731 ·7410	·6883 ·7463 ·8204 ·9062
N. E. and N. W.	S. E. and S. W	{'	4 4 4 4 4 4 4 4	45 0 47 49 50 37 53 26	•707J •7410 •7731 •8014	·7071 ·6715 ·6345 ·5981	1·000 1·103 1·218 1·348
N. E. by E. and N. W. by W.	S. E. by E. and S. W. by W.	{	5 51 51 51 51	56 15 59 4 61 52 64 41	•8314 •8577 •8820 •£039	·5555 ·5140 ·4713 4276	1·496 1·668 1·870 2 114
E. N. E and W. N. W.	E. S. E. and W. S. W.	{	6 6 ¹ / ₄ 6 ¹ / ₇ 6 ³ / ₄	67 30 70 19 73 7 75 56	•9239 •9416 •9570 •9700	·3827 ·3368 ·2901 ·2430	2·414 2·795 3 295 3·991
E, by N. and W. by N.	E. by S. and W. by S.	{	7 7 7 7 7 7 7	78 45 81 34 84 22 87 11	·9811 ·9880 ·9952 ·9988	·1936 ·1544 ·0:79 ·0491	5·027 6·744 11·14 20·32
East or	West		8	200	1 000	0.000	ω,

To Find the Distances of Objects at Sea.

Height in feet.	Distance in miles.	Height in feet.	Distance in miles.	Height in feet.	Distance in miles.	Height in feet.	Distance in miles.
0·582	1	11	4·39	30	7·25	200	18·72
1	1·31	12	4·58	35	7·83	300	22·91
. 2	1·87	13	4·77	40	8·37	400	26·46
3	2·29	14	4·95	45	8·87	500	29·58
4	2·63	15	5·12	50	9·35	1000	32·41
5	2·96	16	5·29	60	10·25	2000	59·20
6	3·24	17	5·45	70	11.07	3000	72·50
7	3·49	18	5·61	80	11.83	4000	93·7
8	3·73	19	5·77	90	12.55	5000	93·5
9 10	3·96 4·18	20 25	5·92 6·61	100 150	13·23 16·22	1 mile.	96.1

The distance being the tangent ab in statute miles, at the elevation ac, in feet.

Example 1. The light-house at a is 100 feet above the level of the sea. Required the distance $a\,b$.

Height 100 feet = 13.23 miles.

Example 2. The flag of a ship is seen from a in d. Required the distance a, d, when the flag is known to be 50 feet above the level d' of the sea?

Height of the light 100 = 13.23 miles a, bHeight of the flag 50 = 9.35 " b, d, Distance to the ship = 22.58 miles a, d.

Example 3. A steamer is seen at e, the horizon b seen in the masts is assumed to be 16 feet above the level e'. Required the distance to the ship?

Height of the light 100 = 13.23 miles a b, The assumed height 16 = 5.29 " e b, Distance to the ship = 7.94 miles a e,

To Find the Distance by an Observed Angle v.

Letters denote.

d = distance in statute miles (a e') to the object observed.

t = the tangent $(a \ b)$ in statute miles, or distance to the horizon.

v = the observed angle eae', of the horizon and the loadline of the object.

r = radius of the earth.

w =the angle b a c.

$$\cos w = \frac{t}{\sqrt{t^2 + r^2}},$$

$$d = \cos((w - v)\sqrt{t^2 - r^2} - \sqrt{\cos^2(w - v)(t^2 + r^2) - t^2}.$$

POPULATION OF COUNTRIES AND CITIES IN THE WORLD.

Names.	Year	Populat'n	Names.	Year.	Population
NORTH AMERICA		60,000,000	Patagonia		1,200,000
			Chili		1,200,000
U. S. of America		31,429,891	Santiago	1	80,000
New York	1853	850,000	Valparaiso	1848	60,000
Philadelphia	1 "	575,000	New Grenada	12010	2,363,054
Baltimore	66	195,000	Bogota	1	40,000
Cincinnati	66	160,186	Péru	1851	2,279,085
New Orleans	1 - 1	145,449	Lima	1850	100,000
Boston	1850	136,880	Venezuela	1854	1,419,289
Pittsburg	1853	110,241	Caraccas	1853	63,000
St. Louis	66	100,000	Great Britain &		,
Chicago Buffalo	66	60,625 60,000	Ireland	1	27,686,609
	66	51,726	London	1856	2,500,000
Louisville	66	50,763	Manchester	1851	401,321
Providence	66	47,500	Liverpool	66	376,065
Newark, N. J	66	45,500	Glasgow	66	347,001
Charleston	1850	42,985	Dublin	66	254,850
Washington	66	40,001	Edinburg	1 66	158,015
Rochester	1853	40,000	France		35,779,222
Troy	1850	28,785	Paris	1851	1,053,262
Richmond	66	27,570	Marseilles	1852	192,527
Savannah	1853	23,458	Lyons	66	156,169
San Francisco	66	60,000	Spain	1849	13,936,218
British America	66	3,634,850	Madrid	1850	260,000
Montreal	1851	57,715	Barcelona	1000	121,815
Toronto	1855	50,000	Portugal Lisbon	1850	3,471,203 455,217
Quebec	1852	42,052	Belgium	1849	4,359,090
Halifax	1851	33,582	Brussels	1846	123,874
St. John	1852	22,745	Holland	1020	3,962,290
Cuba	1853	1,009,060 147,360	Amsterdam	1852	228,800
Havana	66	85,242	Denmark	1202	2,412,926
Santiago Matanzas	66	81,397	Copenhagen	1852	133,140
Puerto Princip	66	46,532	Hamburg Free City	1	200,690
Hayti	66	943,000	Bremen ditto	1	53,156
Portau Prince	46	20,000	Sweden & Nor-		
St. Domingo	66	10,000	way	1850	4,810,812
Jamaica		377,433	Stockholm	1855	100,000
Kingston		35,000	Gottenburg	66	30,000
Mexico	1	7,853,394	Christiania	1050	26,500
Mexico City		200,000	Prussia Berlin	1856 1852	17,178,091 441,931
Guadalaxara		70,000	Austria	1850	36,514,466
La Puebla		50,000	Vienna - · · ·	1846	407,980
San Luis Potosi		40,000 2,146,000	Italy	1010	24,733,385
Central America		50,000	Rome	1856	177,461
New Guatimala		1	Naples	1851	416,475
SOUTH AMERICA		16,000,000	Palermo	1850	167,222
Brazil	1050	6,065,000	Turkey		35,360,000
Rio Janeiro	1853		Constantinople		786,990
Bahia Bolivia		120,000	Russia	1851	60,098,821
La Paz		20,000	St. Petersburg	1852	533,241
Equador		500,000	Moscow	1840	349,068
Quito		60,000	Odessa	1850	71,392
Plata	1.	820,000	Sevastopol	1855	40,000 387,632,9 07
Buenos Ayres -	1854	85,000	China Pekin		2,000,000
Cordova	66	13,000	Canton	1	1,000,000
Paraguay	1	1,000,000	OURTOUT A C C C	1	2,000,000
L				1	

-			GIIUDE OF I DAOES.	7 1	7
Names of Places.	Latitude.	Longitude.	Names of Places.	Latitude.	Longitude.
N. AMERICA AND			GERMANY.		
WEST INDIES.			Berlin,	52 31 N	13 21 🗷
	46° 49′N	71 16 €	Bern,	46 57 "	7 25 🏲
Quebec,	41 38 ,,	63 35 c	Rotterdam, -	51 54 "	4 28 😁
Hainas,	43 36 ,,	70 12 m	Antwerp, -	51 13 "	4 24
FULLIANG US		78 55	Amsterdam, -	52 22 "	4 51
Dullaio,	10 0	87 35	Bremen, -	53 5 "	8 49
		70 49	Hague,	52 4 "	4 16
Newburyport light,	42 48 ,,	71 4	Hamburg, -	53 33 "	9 56
Boston State House,	41 23 "	70 3	Lubeck,	53 52 "	10 49
Manteucker cogres,	41 29 ,,	71 19	AUSTRIA.	1	
INEW port Castone,	40 42 ,,	74 00.7			10.00
	39 57 "	75 10	Vienna,	48 13 "	16 23
	38 46 ,	75 4	Venice,	45 26 "	12 21
	39 6 ,,	84 27	Trieste castle, -	45 39 "	13 46
	38 36 ,,	89 36	TURKEY.		
Richmond, -	37 32 ,,	77 27		42 38 "	18 7 ⊷
Washington City,	38 53 ,,	77 0.3 =	Ragusa, mole, Athens Philopa.,	37 58 "	02 44 1
Baltimore, .	39 18 ,,	76 37 °	Salonica, -	40 39 "	99 57
Cane Hatteras.	35 14 ,,	75 30 B	Constantinople,	41 1 "	28 59 B
Charleston light.	32 42 ,,	79 54		"	
Savannah	32 5 ,,	81 8	SWEDEN AND		
Cape Florida light,	25 41 ,,	80 5	NORWAY.		
Pensacola, -	30 24 ,	87 10	Stockholm, -	59 21 "	18 4
Mobile, -	30 42	87 59	Gothenburg, -	57 42 "	11 57
New Orleans,	29 57 ,,	90 0	Christiania, -	59 55 "	10 52
Porto Rico	10 20 ,,	66 7	Bergen,	60 24 "	5 20
Cape Hayti's City,	19 46 ,,	72 11	Wisby Gotland,	57 39 "	18 17
Havana,		82 22	DENMARK.		1
Vera Cruz, -	19 12 1	96 9		43	12 34
Mexico,	19 26 ,,	99 5	Copenhagen, •	55 41 "	12 34
Porto Bello, -	9 34 ,,	79 40	Elsineur, -	56 2 "	12 31 0
	10 28 ,, 8 21 S	08 /	RUSSIA.		Hs
Porto Cabello, Cape St. August'e, Rio Janeiro.	8 21 8	34 57 c	St. Petersburg,	59 56 "	30 19 0
Tero o delicaro,	22 56 S	43 9 o 58 22 ¤	Moscow,	55 46 "	25 23 ®
Buenos Ayres,	34 36 ,,		Revel,	59 26 "	24 46
Cape Horn, - Valparaiso Fort,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67 16 ≤ 71 41 =	Riga,	56 51 "	23 57 ₹
Valparaiso Fort,	8 57	79 31 9	Cronstadt, .	59 58 "	29 51 6
		122 21		60 27 "	22 15 🖻
San Francisco,	37 47 ,,	122 21 0	Odessa,	146 27 66	30 42
ENGLAND.			SPAIN.		
	51 31 "	0 0 66			3 42 W
London, •		2 52 "	mauria,	40 25 "	211 E
Liverpool, -		0 0 0	Darcelona,	41 23 "	3 1 "
Greenwich,	51 29 " 55 52 "	4 16 W	Algiers light, .	36 49 :	5 20 W
Glasgow, .	53 23 "	2 00	CIADIGICOL,	36 6 "	1 1 "
Dublin, •	55 57 "	0.40	Carthagena obser	., 37 36 "	1 1 "
Edinburgh,	51 27 "	0.05	PORTUGAL.		1
Bristol,	51 8"	1 19 E		41 11 "	0 20 66
Dover,	01	1 10 1	Oporto,	38 42 "	8 38 "
FRANCE.	1		Lisbon,		9 9 "
	48 50 "	2 20 "	Cape St. Vincent,	37 3 "	9 2
Paris Observatory	49 29 "	0 6 %	a SICILY.		
Havre de Grace,	49 38 "	1 37	I are a	38 12 "	15 35 2
Cherbourgh, - Marseilles Observ			Palermo, -	38 8 "	13 22 "
	51 13 "	4 24 3	B 25 21	35 54 "	14 13 "
Antwerp, -	50 58 "	1 51 %			
1 '	00 00 "	, ,	Ou min		
ITALY.	1	,	Peking,	39 54 "	116 28 "
Florence, -	130 46 "	11 16 ,	1 Canton	23 7 "	113 14 "
Leghorn, -	43 32 "	10 18 ,	9		
Rome, St. Peter's,		12 27 ,	A Cane of Good Hop	e. 34 22 S	18 30 "
Naples, light, -	40 50 "	14 16 ,	Sidney, Australia	34 0 ,,	151 23 "
Ancona, light,-	43 33 "		Jerusalem, Pales.	, 31 48 A	37 20 "
*62			Ü		
20*			-		

Cape Horn. | 6100|

San Francisco, 5820

6076|8837|15936|15796

Distances by Sca.

between the most important places on the earth: in Geographical miles, 60 per degree.

New York. St. Petersburg., Stockholm. Copenhagen. Gottenburg. From San Francisco 1980 to Sandwich Islands. * Round Cape of Good Hope. +Round Cape Horn. From Canton,

Miles.
Statute
Į,
Distances

London Liverpool 212 Paris 509 297

Nearest travelling distances between Cities in Europe.

		Dis	TAP	ICES	IN	EU	ROE	E.								307
	724	772	739	742	1983	833	1161	1187	1377	2492	2238	3505	1741	1413	646	684
	Hamburg 391 1560 1295 670 936	984	951	445 954	790 1295 1983	513 1431 1166 551 1045 833	963 1109 1022 1223 958 773 1373 1161	796 942 855 1351 1086 1107 1399 1187	536 711 1045 2051 1786 1297 1589 1377	Constantinople 1200 1000 1050 1679 1409 1456 1584 1909 2084 2160 2350 2086 2412 2704 2492	Odessa 750 805 1400 1907 1369 1099 1856 2000 1336 1511 1836 2750 2485 1900 2450 2238	Moscow 910 1660 792 2751 3158 2683 2413 3191 2964 2489 2664 3173 4004 3739 3114 3717 3505	St. Petersburg 403 1200 1950 733 1506 1774 1271 1162 1742 1544 969 1144 1478 2484 2219 1594 1953 1741	866 691 1082 2251 1986 1334 1626 1413	431 256 647 1816 1551 899 1191 979	214 39 352 1599 1334 710 896 684
	670	625	442			551	773	1107	1297	2412	1900	3114	1594	1334	899	110
	1295	1250	885	630	1459	1166	958	1086	1786	2086	2485	3739	2219	1986	1551	1334
_	1560	Berlin 175 509 1515 1250	541 1150 885	736 895 630	679 751 1724 1459	1431	1223	1351	2051	2350	2750	4004	2484	2251	1816	1299
	391	209	541	736	121	513	1022	855	1045	2160	1836	3173	1478	1082	647	352
	burg	175	909	803 901		454 600	1109	942	711	2084	1511	2664	1144	691	256	88
	Han	Berlin	809		200					1908	1336	2489	696			
			Berne	Turin 193	574	281	521	584	Warsaw 798 1069 563 460 1034 836	1584	2000	2964	1544	1606	1111	643
			_	Furin	Vienna 662	208	328	456	1034	1456	1856	3191	1742	1799	1364	849
					ienna	270	745	338	460	1400	1099	2413	1162	1370	935	118
					>	Munich 270	202	342	563	1679	1369	2683	1271	1291	856	633
						M	Rome 507 745 328	Triest 407 342 338 456	1069	1050	1907	3158	1774	1928	1493	1146
								Iriest	198	1000	1400	2751	1506	1633	1198	748
								-	arsaw	1200	805	792	733	1148	196	604
									W	pople	120	1660	1950	2775	2340	2123
										stanti	dessa	910	1200	1953	1772	1514
										Cons	0	Scow	403	835	1270	1504
												M	sburg	Stockholm 440 835 1953 2775 1148 1633 1928 1291 1370 1799 1606	875	1109
													Peter	cholm	435	699
													St	Stock	agen	234
															Jopenhagen 435 875 1270 1772 2340 967 1198 1493 856 935 1364 1171	rubeck 234 669 1109 1504 1514 2123 709 748 1146 639 718 849 643

Sailing distances

between the most important seaports in the United States, in Geographical miles, 60 per Degree.

				D.	11111	, w.	DISI	LAM	() East									
330	360	648	999	650	753	765	216	923	795	865	984	1065	1162	1930	1900	2685	2800	2635
Boston. 390	101	284	302	380	483	509	199	199	539	609	624	902	1000	1768	1738	2413	2638	2738
	Nantucket light, 107	193	211	274	377	403	555	199	433	503	426	202	802	1570	1540	2215	2440	2640
	ntucke	Sandy Hook. 193	18	131	234	258	410	416	288	358	322	603	869	1466	1436	2111	2336	2536
	Na	Sandy	New York, 18	149	252	276	428	434	306	375	340	621	216	1484	1332 1454	2129	2354	2554
			New	lopen.	103	135	287	293	165	235	218	499	594	1362		2002	2232	2432
				Cape Henlopen, 149	Philadelphia, 103	238	390	396	897	338	321	602	269	1465	1435	2110	2335	2535
				Ca	Philad	Cape Henry, 238	152	158	30	100	114	395	490	1410 1258	1380 1228	1903	2128	2328
				-		Cape]	Baltimore, 152	174	172	242	266	242	6.12	1410	1380	2055 1903	2280	2480
စုံ							Ball	Washington. 174	178	248	272	553	648	1406	1376	2051	2276	2476
Degre								Washi	Norfolk, 178	06	144	425	520	2288	1258	1933	1158	2358
in deographical miles, oo per Degree.									Z	Richmond. 90		495	290	1348	1328	2003	1402 1638 2228 1158	Perio 1407 1370 1200 1070 1612 1692 1838 2428 2358 2476 2480 2328 2535 2432 2554 2536 2640
oo 's										Rich	tteras.	281	376	894	738	1413	1638	1838
T IIIII											Cape Hatteras. 214	Charleston, 281	95	622	592.	1267	1402	1692
binca											S	Char	Savannah. 95	542	562	1187	1412	1612
eogla													Save	Key West, 542	85	040	870	0201
2 11														Key	Havana. 85		823	1200
															II	eans.	850	1370
																New Orleans. 640	Vera Cruz, 850	1407
																4	Vera	Bello

Distances in Statistic Miles States Albany						D	IST.	ANC	ES I	BY .	RAI	L R	OAD	8.							309
Distances in Statute Miles Detail	treal.	326		396		581		741		1250	1462	1754	1929	2425	1069	918					
Distances in Statute Miles States Albany	Mon	ston.	200	236	323	421	460	591		1100	1212	1487	1632	2128	1490	1073	993	693	430	525	208
Distances in Statute Miles Detail		ñ	any.	144	231	329	368	499	746	308	088	333	508	004	143	806	693	545	289	325	208
Distances in Statute Miles States Published States Published Philadelphia			Alb	ork.	87	185	224	355	602	864	946	221	396	892	293	048	847	470	194	470	989
Distances in Statute Miles Distances are given Publical States				Vew Y	hia.	86	137	268	515		889	134 1	309 1	805 1	1 290	865 1	963		901	222	809
Distances in Statute Miles Distances are given				-	ladelı	ore.	39	041		379	162	361	1112	107	120	341				355	114
Distances in Statute Miles Distances are given					Phi	altim	on.			340 (32 1	12/10	52 12	348 17	3 066	8 088		102	22	394 (183
Distances in Statute Miles Distances are given						В	hingt	nd.	47		21 7	99	41 11	37 16	21	11	62	33 4		25 (14, 4
Distances in Statute Miles Distances are given							Was	chmo	n. 2		74 6	19 8	94 10	90 15	92 11	37 10	8 60	95 5	00	72 8	61 6
Distances in Statute Miles Distances are given								Ri	ningto	п. 2	12 3		83 7	79 12	34 13	41 19	36 11	57 7	62 5	34 10	23 S
Distances in Statute Miles Distances in the United States									Wiln	rlesto	b. 1.		17	9	8 10	11 14	36 14	39 10	7 4 7	16 13	35 11
Distances in Statute Miles			1	ares						Chs	anna	B. 29	5 46	1 96	1 101	8 16.	3 120	0 11 (8	1 14	7 12
Distances in Statute Miles			5	מ מ מ מ	T C						Sav	tlant	71 17	29 9	06 9	3 131	8 97	5 145	4 111	7 144	3 132
between the most important places in the Uby Railroads and Rivers. The distances are by the shortest routes. *Mississippi River *Montg Montg Montg Rivers *Montg And Guennati 273. 697 1648 Cincinnati 273. 697 1648 Fittsburg 310 344 1174 2025 Harrisburg 326 684 1094 904 1790 Buffalo 664 220 468 543 1165 2016 Greveland. 183 395 150 255 360 511 1803			T		001							~	omery	49	12	* 149	* 114	* 162	* 129	* 193	* 140
between the most important places in the by Railroads and Rivers. The distance by Railroads and Rivers. The distance by the shortest routes. *Mississippi River New On St. Louis Chicago. 310 St. Louis Chicago. 310 Harrisburg. 310 344 1174 Harrisburg. 245 684 1094 904 Buffalo. 664 220 468 543 1165 Cleveland. 183 395 150 255 360 511		78	,	alle e	78 00								fontge	leans	1201	1618	1548	2025	1790	2016	1803
Distances in Statute Distances by Railroads and Rivers. The distances by Railroads and Rivers. The distances with the shortest rouse of the state of		Miles	.!	III C	tes								24	ew Or	ouis.	310	269	1174	904	1165	211
Distances in Stat. between the most important ply Railroads and Rivers. The shortest *Mississippi River Chic Ginchmati. Rarrisburg. 310 Harrisburg. 245 684 Buffalo. 664 220 468 Greveland. 183 395 150 255	*	ute]		aces		3								Z	St. I	ago.	273	344	1094	543	360
Distances in the between the most importational by Railroads and Rivers. *Mississippi River Checker		Stat	1	nt pi	rtest											Chic	nati.	310	684	468	255
Distances between the most imp by Railroads and Ri- *Mississippi River Fittsbu Harrisburg. Buffalo., 664 Cheveland. 183 395		fn	7	Orta	cho.	2											incin	rgh.	245	220	150
Dista between the most by Railroads an		mees		TILL P	of the												0	ittsbu	urg.	664	395
between the 1 *Mississippi *Mississippi Gleveland.		dista	1.0	TOOL	e entr	2	River											Pi	arrisb	falo.	183
between by Rail *Missis		_	11.0	tue I	1020		sippi												H	Buf	nd.
by the following			!	een De::	Tran	1	Missis														evela
			-	Detw	c c		*														5
			ľ	_																	

ASTRONOMY.

ASTRONOMY is that branch of Philosophy which treats of the properties of heavenly bodies.

The mean Solar day is divided into 24 hours

* A Sidereal year is -		•	•	•		3654 6a 9m 9.6e.
† An Anomalistic year is	3 -				-	365d 6h 13m 49'34.
X A Tropical year is -						365d 6h 13m 49·3a.

* Sidereal year is the time in which the Earth makes one revolution round the Sun, in reference to a fixed star.

Anomalistic year is the time which the Earth occupies between each perihelion to the sun.

X Tropical year is the periodical return of seasons.

Mean distance from the Earth to the Sun 95000000 miles or 11992 diameters of the Earth.

Inclination of the Ecliptic to the Equinoctial 23° 28' 40". The Sun subtends an angle from the Earth of 32' 3".

Horizontal paralax of the Sun 8.6" seconds.

Velocity of a point at the Equator by the rotation of the Earth 152.5 feet per second.

Cycle of the Sun is the period of 28 years at which the days of the week return to the same days at the month.

The Moon.

Distance from the Earth to the Moon is 237000 miles, = 30 diameters of the Earth, = about 0.25 the diameter of the Sun, or the diameter of the Sun is twice the diameter of the Moon's orbit around the Earth.

Diameter of the Moon is 2160 miles, or about 0.2729 of the Earth's diameter. Volume of the Moon compared with the Earth is 0.02024. Density of the Moon compared with the Earth is 0.5657.

Mass of the Moon compared with the Earth is 0.011399.

Inclination of the Moon's orbit to the Ecliptic 5° 8' 48"

The Moon subtends an angle from the Earth of 31' 7". Mean Sidereal revolution of the Moon 27:32166 days.

Mean Synodical revolution of the Moon 29.5305887 days.

The Moon passes the meridian in periods of 24.814 hours, or 48m 50s later every day.

Moon's Age is the number of days from the last new-moon.

Number of Months for the Moon's Age.

July, January, April, 5, October. February, 10, May, August. November. September, 8, December. March, To Find the Moon's Age on any given day.

RULE. Add together the day of the month, Epact for the year, and the Tabular number for the month, the sum will be the moon's age. If it exceed 30, reject 30's, and the remainder will be the moon's age.

Example. Find out if it will be moonlight at Christmas, 1855?

= 25 in December Number of day Epact for 1855 (see Table)

Tabular number of December = 10

47 - 30 = 17 the moon's age

or in its third quarter, consequently moon-light at mid-night.

Golden Number or Lunar Cycle

is the period of 19 years at which the changes of the moon fall on the same days of the month.

To find the Golden number.

RULE. Add one to the given year, divide the sum by 19, and the remainder will be the Golden number.

	1	Dom.	E			Dom.	Epact.			Dom.	. 25
Irs.	Days.	let-	pa	Irs.	Days.	let-	nd	Yrs.	Days.	let-	pa
1		ter.	Epact.			ter.	ct.			ter.	Epact.
1	1				1						
1800	Saturd.	FE	4	1834	Saturd.	E	20	1868	Sund.*	ED	6
1001	Sunday.	D	15	1835	Sunday.	D	1	1869	Monday.	C	17
1802	Monday.	C	26	1836	Tuesd.*	CB	12	1870	Tuesd.	В	28
1803	Tuesday	В	7	1837	Wedsd.	A	23	1871	Wedsd.	A	9
1804	Thursd*	AG	18	1838	Thursd.	G	4	1872	Friday*.	GF	20
1805	Friday.	F	29	1839	Friday.	F	15	1873	Saturd.	E	1
1806	Saturd.	E	11	1840	Sund.*	ED	26	1874	Sunday.	D	12
1807	Sunday.	D	22	1841	Monday.	C	7	1875	Monday.	C	23
1808	Tuesd.	CB	3	1842	Tuesd.	В	18	1876	Wedsd.*	BA	4
1809	Wedns.	A	14	1843	Wedsd.	A	29	1877	Thursd.	G	15
1810	Thursd.	G	25	1844	Friday.*	GF	11	1878	Friday.	F	26
1811	Friday.	F	6	1845	Saturd.	E	22	1879	Saturd.	E	7
1812	Sunday*	ED	17	1846	Sunday.	D	3	1880	Mond.*	DC	18
1813	Monday.	C	28	1847	Monday.	C	14	1881	Tuesd.	В	29
1814	Tuesd.	В	9	1848	Wedsd*.	BA	25	1882	Wedsd.	A	11
1815	Wedns.	A	20	1849	Thursd.	G	6	1883	Thurs.	G	22
1816	Friday*.	GF	1	1850	Friday.	F	17	1884	Saturd.*	FE	3
1817	Saturd.	E	12	1851	Saturd.	E	28	1885	Sunday.	D	14
1818	Sunday.	D	23	1852	Mond.*	DC	9	1886	Monday.	C	25
1819	Monday.	C	4	1853	Tuesd.	В	20	1887	Tuesd.	В	6
1820	Weds.*	BA	15	1854	Wedsd.	A	1	1888	Thurs.*	AG	17
1821	Thursd.	G .	26	1855	Thursd.	G	12	1889	Friday.	F	28
1822	Friday.	F	7	1856	Saturd.*	FE	23	1890	Saturd.	E	9
1823	Saturd.	E	18	1857	Sunday.	D	4		Sunday.	D	20
1824	Monda*.	DC	29	1858	Monday.	C	15	1892	Tuesd.*	CB	1
1825	Tuesd.	В	11	1859	Tuesd.	В	26	1893	Wedsd.	A	12
1826	Wedsd.	A	22	1860	Thurs.*	AG	7	1894	Thursd.	G	23
1827	Thursd.	G	3	1861	Friday.	F	18	1895	Friday,	F	4
1828	Saturd.*	FE	14	1862	Saturd.	E	29	1896	Sund.*	ED	15
1829	Sunday.	D	25	1863	Sunday.	D	11	1897	Monday.	C	26
1830	Monday.	C	6	1864	Tuesd*.	CB	22	1898	Tuesd.	В	7
1831	Tuesd.	В	17	1865	Wedsd.	A	3	1899	Thurs.	A	18
1832	Thurs.*	AG	28	1866	Thursd.	G	14	1900	Friday*.	GF	29
1833	Friday.	F	9	1867	Friday.	F	25				1
-							-				

In Leap years take January,* February.*

February, March, November.	February* August.	May.	January October.	January,* April, July.	September December.	June.
1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	11 18 25	5 12 19 26	6 13 20 27	7 14 21 28

Example. On what day in the week will the fourth of July fall in the year 1868?

See Table 1868 = Sunday*. In the Table of months, July column, Sunday is on the 5th; consequently the fourth falls on Saturday.

To Find the Latitude of a place by the Meridian Altitude of the Sun.

Letters denote.

A = meridian altitude of the sun's centre above the horizon, in degrees and minutes. (At sea the sun's lower limb is generally observed, then for corrections of semi-diameter dip of horizon, parallex, add 12 minutes to the observed tions of semi-diameter dip of nonzon, parameter of the sum will be the centre altitude very nearly.) altitude, and the sum will be the centre altitude very nearly.)

page 314.

l = latitude of the place of observation.

$$\begin{array}{l}
 l = 90 - A \pm D, & - & - & 1, \\
 A = 90 - l \pm D, & - & - & 2, \\
 D = \mp 90 \pm A \pm l, & - & - & - & 3, \\
 \end{array}$$

Where the quantities have double signs, plus and minus, use the upper one

when the latitude and declination are of equal names; and the lower one when the latitude and declination are of different names.

Example. On the 25th day of October, 1853, in north latitude was observed the sun's meridian centre alitude to be $A=37^{\circ}53'$; the declination on that day was $D=12^{\circ}10'$ south. Required the latitude?

 $l = 90 - 37^{\circ} 53' - 12^{\circ} 10' = 39^{\circ} 57'$ the latitude of Philadelphia.

To Find the Time when the Sun Rises or Sets.

Let b be the angle of time before or after six o'clock when the sun rises or sets; this angle divided by 15 and added to, or subtracted from six o'clock will be the true time when the sun rises or sets.

$$\sin v = \tan D \tan l, - - 4,$$

Example. What time does the sun rise and set, on the 27th day of July, 1854, in north latitude $l=42^\circ$ 6'?

Sun's declination
$$\begin{cases} D = 19^{\circ} \ 12' \text{ in the morning.} \\ D = 19 \end{cases}$$
 North. $\sin v = \tan .19^{\circ} \ 12' \times \tan .42^{\circ} \ 6' = 0.31454 \text{ or } v = 18^{\circ} \ 20'.$

$$18^{\circ} \ 20' : 15 = 1^{h} \ 13^{m} \ 20^{s} \text{ subtract from 6h}$$

$$5^{h} \ 59^{m} \ 60^{s}$$

Sun rises at 4^h 46^m 40^s in the morning.

 $\sin v = \tan .19^{\circ} 5' \times \tan .42^{\circ} 6' = 0.312611 \text{ or } v = 18^{\circ} 13'.$

18° 13': 15 =
$$\frac{6^h}{12}$$
 12 $\frac{56}{56^s}$ add to 6^h
Sun sets at $\frac{7^h}{12^m}$ $\frac{56^s}{56^s}$

To Find the Length of Day and Night.

RULE. Double the time when the sun sets is the length of the day. RULE. Double the time when the sun rises is the length of the night.

To Find the apparent Time by an Altitude of the Sun-

Let L be the angle of time from 12 o'clock, (noon,) when the sun's altitude a is observed,

a = the observed altitude of the sun, (if the sun's lower limb is observed add 12' for corrections),

A and v, same as in the preceding examples.

$$\cos L = \frac{\sin a(1 \pm \sin v)}{\sin A} + \sin v, \qquad \qquad 5,$$

The sign + or - is to be used as before described.

Example. On the 11th of May, 1853, the sun's altitude in the afternoon was observed to be $\alpha=42^{\circ}$ 30', in the latitude $l=33^{\circ}$ 40'; the sun's declination at the time of observation was $D=18^{\circ}$ N. Required the apparent time.

$$\sin v = \tan .18^{\circ} \times \tan .33^{\circ} \ 40' = 0.21642,$$
 4,
 $A = 90 - 33^{\circ} \ 40' + 18 = 74^{\circ} \ 20'$ - 2,

$$A = 90 - 55 + 40 + 10 = 14 + 20 = 25$$

$$\cos L = \frac{\sin .42^{\circ} \, 30' \, (1 + 0 \cdot 21642)}{\sin .74^{\circ} \, 20'} - 0 \cdot 21642 = 0 \cdot 63709, \qquad 5,$$

or 50° 25' is the angle L, $\frac{50^{\circ} 25}{15} = 3h 21^{m} 40^{\circ}$, the apparent time of observation.

If the altitude is taken in the forenoon, subtract the obtained time from 124 and the remainder is the apparent time.

Neptune.	Uranus,	Saturn,	Jupiter,	Pallas,	Ceres,	Juno,	Metis,	Iris,	Vesta,	Flora,	Mars,	Earth,	Venus,	Mercury,	Sun,	Planets.
	平	7	×	*	+0	1010			D#		07	\oplus	+0	+000	0	รนีย์ _เ ล
30.0368	19.18239	9.5387861	5.202776	2.7728580	2.7680510	2.6708370	2.3856070	2:3806240	2.3610810	2.2016870	1.5236293	1.0000000	0.7233316	0.3870981		Mean distance from the Sun.
60126-71	30686-8208	10759-2198	4332-5848	1686-51	1682-125	1594-296	1345-85	1341.636	1325-147	1193-249	686-97964	365-25636	224.70078	87-969258		Mean Sidereal period in mean solar days.
0.0087195	0-0166791	0.0561505	0.0481621	0.2398150	0.0766523	0.2548847	0.1202532	0.2299424	0.0895694	0.1565570	0.0933070	0.0167836	0.0068607	0.2055149		Eccentricity in parts of the semi-axis.
3:45	4:33	6.14	8:31	11:35	11.8	11.57	12.25	12:25	12:30	1277	15:33	18:9	22:3	30.4		Eccentricity Velocity in the in parts of the orbit in miles semi-axis. per second.
41500	34500	79160	87000		103	79?				250?	4100	7926	7800	3140	882000	Diameter in miles.
0.14	0.24	0.14	0.24								0.95	1.00	0.92	1.12	0.25	Density.
20.	198.0	139-5	817-5	_							0.1313	1.000	0.877	0.06966	344000	Mass.
143.5	82-47	996.2	1322-5		0.000012					0.000031	0.1384	1.000	0.9531	0.06218	1378000	Folume.
	9 30	10 29	9 56			27 0?					24 37	24 0	23 21		607 48m	Time of rotations in hours.

SUN'S DECLINATION.

			-
S JAN. FEB. MAR.	APR. MAY JUNE	JULY AUG. SEP.	Oct. Nov. Dec. g
Sou. Sou. Sou.	Nor. Nor. Nor.	Nor. Nor. Nor.	Sou. Sou. Sou. Sou.
A 0 / 0 / 0 /	0 1 0 1 0 1	010101	0101018
1 22 59 16 59 7 26	4 41 15 11 22 7	23 6 17 58 8 10	3 19 14 34 21 53 1
2 22 53 16 42 7 3	5 4 15 29 22 15	23 2 17 42 7 48	3 43 14 53 22 2 2
3 22 47 16 24 6 40	5 27 15 47 22 22	22 57 17 27 7 26	4 6 15 11 22 11 3
4 22 41 16 5 6 17	5 50 16 4 22 29	22 52 17 11 7 4	4 29 15 30 22 19 4
5 22 34 15 48 5 54	6 13 16 21 22 36	22 46 16 55 6 42	4 52 15 48 22 27 5
6 22 27 15 29 5 30	6 36 16 38 22 42	22 40 16 38 6 20	5 15 16 6 22 34 6
7 22 19 15 11 5 7	6 58 16 55 22 48	22 34 16 21 5 57	5 33 16 24 22 41 7
8 22 11 14 52 4 44	7 21 17 11 22 53	22 27 16 4 5 35	9 1 16 41 22 47 8
9 22 3 14 32 4 29	7 43 17 27 22 59	22 20 15 47 5 12	6 24 16 59 22 53 9
10 21 54 14 13 3 57	8 5 17 43 23 3	22 13 15 29 4 49	6 47 17 16 22 58 10
11 21 44 13 53 3 33	8 27 17 58 23 7	22 5 15 12 4 26	7 10 17 32 23 3 11
12 21 35 13 33 3 10	8 49 18 13 23 11	21 56 14 54 4 3	7 32 17 48 23 8 12
13 21 24 13 13 2 46	9 11 18 28 23 15	21 48 14 35 3 40	7 55 18 4 23 12 13
14 21 14 12 53 2 22	9 32 18 43 23 18	21 39 14 17 3 17	8 17 18 20 23 15 14
15 21 3 12 32 1 59	9 54 18 57 23 20	21 29 13 58 2 54	8 39 18 36 23 18 15
16 20 51 12 11 1 35	10 15 19 11 23 23	21 20 13 39 2 31	9 1 18 51 23 21 16
17 20 39 11 50 1 11	10 36 19 24 23 24	21 9 13 20 2 8	9 23 19 5 23 23 17
18 20 27 11 29 0 48	10 57 19 37 23 26	20 59 13 1 1 45	9 45 19 20 23 25 18
19 20 15 11 8 0 24	11 18 19 50 23 27	20 48 12 41 1 21	10 7 19 34 23 26 19
20 20 2 10 46 0 ON	11 38 20 03 23 27	20 37 12 21 0 58	10 29 19 47 23 27 20
21 19 49 10 24 0 23	11 59 20 15 23 27	20 25 12 1 0 35	10 50 20 1 23 27 21
22 19 35 10 3 0 47	12 19 20 27 23 27	20 13 11 41 0 11	11 11 20 13 23 27 22
23 19 21 9 41 1 11	12 39 20 40 23 26	20 2 11 21 0128	11 32 20 26 23 27 23
24 19 7 9 18 1 34	12 59 20 51 23 25	19 48 11 0 0 36	11 53 20 38 23 25 24
25 18 52 8 56 1 58	13 18 21 1 23 24	19 37 10 40 0 59	12 14 20 50 23 24 25
26 18 37 8 34 2 21	13 38 21 12 23 22	19 24 10 19 1 22	12 35 21 1 23 22 26
27 18 21 8 11 2 45	13 57 21 22 23 20	19 10 9 58 1 46	12 55 21 12 23 19 27
28 18 6 7 49 3 8	14 16 21 32 23 17	18 56 9 37 2 9	13 15 21 24 23 16 28
29 17 49 3 32	14 34 21 41 23 14	18 42 9 15 2 33	13 35 21 34 23 13 29
30 17 33 3 55	14 53 21 50 23 10	18 28 8 54 2 56	13 55 21 44 23 9 30
31 17 16 4 18	21 59	18 13 8 32	14 14 23 5 51

Declination of the Sun and equation of time for the years

```
.60,
Leap years 1852,
                                     ·64, in New York at 6h a.m.
            1853,
                             ·61,
                                    1865,
                     •57,
•58,
                                                           apparent noon.
                                             ,,
                                                   22
            1854,
                                      &c.
                                                           6h p.m.
            1855,
                     .59,
                             .63,
                                      æc.
                                                           12h midnight.
```

Exampe 1. Required the sun's declination in New York at 10 o'clock a.m. on the 13th of April, 1856?

```
From the table April 13 declin. 9° 11′ N. 9° 32 Difference 21 Dec. 9° 12′ Correction 21 (10-6): 24 = \frac{9^{\circ} \ 12'}{3\frac{1}{2}} add. Required declination 9^{\circ} \ 15' \ 30'' the answer.
```

Note. In leap years the declination and equation of time must be taken one day earlier in the tables for January, and February; for instance, declination on the 20th of February 1856 is $70~\rm keV$.

EQUATION OF TIME.

Example 2. Required the sun's declination in San Francisco at 4h 46m p.m., on the 5th of Aug. 1855.

From the table Aug. 5 declin. 16° 55' N. 6 16 38 22 22

Difference 17

Long. of San Francisco 1220 New York 74

48:15 = 3h 12m difference in time.

Time in S. F. 4 46 Midnight 12h - 8h = 4h × 17 : 24 = 3' nearly. 16° 45'

Correction add

3

Required declination 16° 48' the answer. Example 3. On the 5th day of Nov. 1857, at 2h 21m 56s apparent time p.m. Required the mean time?

Apparent time 2h 21m 56s Equation of time, sub. 16 14

Mean time 2h 5m 42s the answer.

Note. Add the equation of time to or subtract from the apparent time, is the mean time.

EPACT OF THE YEAR.

d. h.	d. h.	d. h.	d.h.	d. h.	d. h.	d. h.	d h.	d. h.	d. h.	d. h.	d. h.
1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861
17 17	28 8	9 10	20 1	1 3	11 18	23 10	4 12	15 3	25 17	7 21	1812
1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873
29 3	10 6	21 21	2 23	1315	24 6		1623	27 18	8 20	1915	0 17

EPACT OF THE MONTH.

-											
Jan.	Feb.	Mar.	Anr.	May	June	July	l Ang. l	Sen.	1 Oct.	Nov.	Dec.
0 0	1 17	0.4	1 16	2.3	June 3 14	4 2	5 13	7	7 11	8 23	9 10
0 0	1 1	0 1	1 7 70	20	OIX	T 2	0 10 1		1	0 20	2 10

To the time of high water, or the time when the moon passes the meridian, add two minutes for every exceeding hour of the moon's age, for corrections.

MOON'S POSITION. HIGH WATER IN DIFFERENT PLACES.

Q'rt'r	Face	Age d.	South. h. m.	High water in N. York. h. m.	Add to, or subt time of high v is the time of the desire	vater i high v	n N. Y. vater in	Rise Ft.
New	3	0	12 0p.m.	8 37a.m.	New York		0h 0m	5
21011	(i	12 49 ,,	9 21 ,,	Quebec	add	8 49	17
to er		2	1 38 ,,	10 2 ,,	Halifax	sub.	1 0	8
10		2 3	2 26	10 40 ,,	Boston	add	3 54	12
u a		4	3 26 ,,	11 16 ,,	New Haven	add	2 32	17
it.		5	4 4 ,,	11 54 ,,	Portsmouth	add	3 4	10
1st quarter Half		6	4 55 ,,	12 36p.m.	Providence	sub.	0 41	
Half	(A)	7	6 42 ,,	1 23 ,,	Albany	add	6 34	
13	0	8	6 30 ,,	2 16 ,,	Amboy	sub.	0 39	
2d quarter		9	7 19 ,,	3 16 ,,	Sandy Hook	sub.	1 8	6
n n	(m)	10	8 8 ,,	4 14 ,,	Philadelphia	add	5 15	6 5
9.T		11	8 57 ,,	5 9 ,,	Cape Henlopen	add	0 35	12
te	1	12	9 46 ,,	6 0 ,,	Baltimore Cape Henry	sub.	4 14 0 57	12
Full		13 14	10 34 ,,	W 000 "	Washington	sub.	4 8	4
Full		15	12 12a,m.	, , , ,	Norfolk	sub.	0.52	7
03		16	1 1	0 40 "	Charleston	sub.	0 22	5
ã		17	· · ·	0 07 "	Key West	add	1 16	2
3d quarter		18	0.00	10 4 ,,	Havana	add	1 35	5 2 3 6
9		19	3 27 ,,	10 51 ,,	Rio Janeiro	sub.	6 35	6
3	1	20	4 16 ,,	11 42 "	Buenos Ayres	bun.	0 0	
H		21	5 5 ,,	12 37a.m.	Cape Horn	sub.	3 57	9
Half	0	22	5 54 ,,	1 37 ,,	Valparaiso	add	0 55	5
	0	23	6 42 "	2 39 "	San Francisco	add	2 23	6
4		24	7 31 ,,	3 42 ,,	Liverpool	add	2 39	25
5		25	8 20 ,,	4 43 ,,	London	sub.	6 30	18
5		26	9 9 ,,	5 41 ,,	Hull	sub.	2 37	18
4th quarter		27	9 58 ,,	6 36 ,,	Bremen	add	2 37	
Te e		28	10 46 ,,	7 27 ,,	Lisbon	sub.	4 37	
13	60	29	11 35 ,,	8 14 "	Cape Good Hope	sub.	5 37	
		291	12 ,,	8 37 ,,				

Moon's Age. High Water. Moon South.

Example 1. Required the moon's age on the 25th day of September, 1855?

Date in September 25d)

Epact of September 7d add

Epact of 1855 11d 18h)

Reject 30 13d 18h is the moon's age at noon in New York.

Example 2. Required the time of high water in New York, and at what time the moon is south, on the same date as in preceding example?

In the annexed table we have given the moon's Age. South. High water. 13 days 10h 34m 6h 47m Correction add $18h\times2=$ 36m 36m

Moon south at 11h 10m, and 7h 23m is the time of high water in New York.

Example 3. Find the time of high water in San Francisco on the 18th of July, 1856.

y, 1856.
Date in July 18d
Epact of July 3d 26h
Epact of 1856 23d 10h

Epact of 1856 23d 10h)

Reject 30 15d 12h the moon's age.

In the table Age. High water. 15 8h 7m Correction add $12h\times2$ 24m

For San Francisco add 2h 23m
Time of high water in San Francisco 10h 54m, July 18, 1856.

The strength and direction of the wind sometimes accelerates and sometimes retards the tide, in consequence the most careful and scientific calculations may differ anhour from the time of high water.

SOUNDINGS.

To Reduce Soundings to Low Water.

Letters denote.

T = time in hours between high and low water.

t = time in hours from low water to the time when the soundings are taken.

H = vertical rise of tide in feet from high to low water.

h = reduction of the sounding taken at the time, t, in feet.

$$v = \frac{180 \ t}{T}$$
, and $h = \frac{1}{2} H (1 \mp \cos v)$,

 $\begin{array}{l} -\cos v \text{ when } v < 90 \\ +\cos v \text{ when } v > 90 \end{array}$

Example. High water at 10h 15m p.m. Low water at 3h 45m

Low water at $\frac{3h}{45m}$, Time $T = \frac{6h}{30m}$,

The sounding taken at 5h 30m ,, was 16 feet 6 inches

Time t = 1h 45mVertical rise H = 9.75 feet.

Required the reduction h = ? and true sounding at low water.

$$v = \frac{180 \times 1.75}{6.5} = 48^{\circ} 30$$
, cos. $v = 0.66262$.

Reduction $h = \frac{1}{6} \times 9.75$ (1—0.66262)=1.6447 feet. Sounding taken at 5h 30m was 16.5 feet. Reduction subtract $h = \frac{1.6447}{14.8533}$ feet.

PARABOLIC CONSTRUCTION OF SHIPS.

In this kind of construction, the load water-line and greatest immersed section of a vessel are parabolas with the vertex at o, Figs. 1 and 2; also, the square root of the areas of immersed cross-sections, taken at any distance fore or abaft from M, are subordinates in a parabola of the formula $y = \sqrt[n]{px}$, where, in the conic parabola, the exponent n = 2. In the accompanying tables I and II, ordinates and cross-sections are calculated for different exponents from 2 to 16, and the corresponding lines for the exponents 2, 3, 4, 6, and 10, are illustrated on plates XI and XII, from which any desired sharpness of a vessel can be selected. The highest exponent

makes the fullest lines.

makes the fullest lines. Letters denote.—D = disp. in cub. ft.; T = disp. in tons of salt water; $\mathfrak{W} = \text{greatest immersed cross-section}$; $\mathfrak{W} = \text{greatest immersed cross-section}$; $\mathfrak{W} = \text{length}$; t = length from \mathfrak{W} to stern or bow; b = beam; b = half the beam; d = load draft of water, omitting the depth of keel; t = any craft corresponding to the displacement t; e = depth of centre of gravity of displacement under water-line; x = abscissa; y = ordinate; n = exponent for the parabola in the water-line, $n' = \text{exponent for } \mathfrak{W}$, and n'' = exponent for the areas of the ordinate cross-sections; $r = \text{index for displacement } s = \text{exponent for } \mathfrak{W}$, and \mathfrak{W} and \mathfrak{W} in this displacement $s = \text{exponent for } \mathfrak{W}$. placement; $\mathbf{a} = \text{area of load water-line}$; $\mathcal{M} = b \ d$ multiplied with the same coefficient as for \mathbf{a} ; k = coefficient for speed and horse-power; $k = \mathbf{a}$ same coefficient as for knots per hour; H = horse-power required for the speed M; m = height of metacenter above the center of gravity of displacement; A = area of the hull of the vessel; A' = area of the upper deck, or any horizontal section of the hull at d' feet from the keel; A'= area of greatest cross-section from the keel to \mathbf{a}' , $\mathbf{e}' = \operatorname{depth}$ of center of gravity of the hull from the top of \mathbf{d}' , supposing the hull to be of uniform thickness; $\mathbf{b} = \operatorname{increment}$ of dark of water; $\mathbf{b} = \operatorname{increment}$ of displacement; $\mathbf{b} H = \operatorname{increment}$ of area of horse-power; $\mathbf{b} M = \operatorname{increment}$ of speed; pracement; $v_{N} = \text{Interment of noise-power}$; $v_{N} = \text{Interment of speed}$; C = steamship performance = coefficient. See page 275; N = coefficient for displacement, table IV; O = tabular number in table V. All linear dimensions are in feet, and areas in square feet.

dimensions are in feet, and areas in square feet. Hollow lines.—Let i, Fig. 1, be the point where the hollow line is to commence; draw through i a line parallel to the centre line; draw the ordinate z, find the ordinate z' = z, make a = a', then e is the stem of the boat. Draw equal number of ordinates on a and a', by which the line e' i is transferred to i e, and forms the hollow part of the water-line. Table III contains ordinates for hollow water-lines of $z = \frac{1}{2}b$. All the ordinate water-lines are parabolas of different orders, and the ordinate for the point in them can be calculated by the accompanying formula. point in them can be calculated by the accompanying formulas. l'= the whole length from $\mathfrak W$ to e, which must be divided into 8 equal parts for

the ordinate cross-sections of the exponent n".

Fig. 3 is a scale of displacement at different drafts of water, and for dif-

ferent exponents of vessels.

Fig. 4 is a diagram for laying out the ordinates in the water-line and rig. 4182 and taying out the originates in the water-the and cross-section. One of this should be constructed for each exponent n. Fig. 4182 constructed with the exponent 2, the line gh = b, Figs. 1 and 2, and the ordinates in the inner parabola correspond with the distances from g in the diagram.

Fig. 5 represents the spring of beams; the length is divided into 8 parts

Fig. 6 represents the spring of beams; the length is divided into 8 parts from each end, numbered as shown by the figure. The spring b=1; the ordinates are calculated from the line b, exponent 2, in Table I.

Table V is calculated from the formula 20, for the elliptic form of the stern rail and deck. The origin of the ellipse being at o, Fig. 8; the abscissa x in the centre line, and the ordinate y in the breadths.

Table V is calculated from formula 19, and contains the coefficient N.

Table VII contains the coefficient O. Suppose the size of a vessel is given in tons of the displacement, select the coefficient N in table VI as to the object and condition of the vessel, find in column N, table VII, the nearest number to the selected coefficient, and along that line select the coefficient O, which, multiplied by the cube root of the displacement, gives the required length of the vessel; divide this length by the number of the column noted at the top, and it gives the draft of water; the beam is calculated from formula 30.

$$y = l \sqrt[3]{\frac{x}{b}}, \qquad 1 \qquad n = \frac{\log b - \log x}{\log l - \log y}, \qquad 11 \qquad H = \frac{M^s \cancel{w}}{k L}, \qquad 21$$

$$x = \frac{y^n b}{l^n}, \qquad 2 \qquad D = \frac{\cancel{w} L 2 n^{2l'}}{2 n^{2l'} + 3 n^{l'} + 1}, \qquad 12 \qquad M = \sqrt[3]{\frac{k H L}{\cancel{w}}}, \qquad 22$$

$$a = \frac{n B L}{n + 1}, \qquad 3 \qquad e = \frac{d}{2} \left(\frac{n' + 1}{n' + 2}\right) \sqrt{\frac{n'' + 1}{n + 2}}, \qquad 13 \qquad H = \frac{M^s \cancel{\sqrt[3]{T^s}}}{C}, \qquad 23$$

$$n = \frac{a}{B L - a}, \qquad 4 \qquad r = \frac{(n' + 1)(n + 1)}{n' n'}, \qquad 14 \qquad M = \frac{C H}{\sqrt[3]{T^s}}, \qquad 24$$

$$\cancel{w} = \frac{n' B d}{n' + 1}, \qquad 5 \qquad n'' = \frac{\log b \sqrt{\cancel{w}}}{\log l - \log y}, \qquad 15 \qquad bH = \frac{3 H \cdot b M}{M} \cdot 25$$

$$n' = \frac{\cancel{w}}{B \cdot d - \cancel{w}}, \qquad 6 \qquad n'' = \frac{l' 8 D (\cancel{w} L - D)^s + 3 D}{4 (\cancel{w} L - D)}, \qquad 16 \qquad bM = \frac{M \cdot b H}{3 H}, \qquad 26$$

$$b = d \sqrt[3]{T}, \qquad 7 \qquad m = \frac{B^2}{12 \cancel{w}} \sqrt[3]{\cancel{w}} L, \qquad 17 \qquad N = \frac{35 T}{B L D'}, \qquad 27$$

$$t = \frac{d^r T}{d^r}, \qquad 8 \qquad \cancel{w} = \cancel{w} \left(1 - \frac{y^{n''}}{l^{n''}}\right)^s, \qquad 18$$

$$bt = \frac{r T f^{r_1} b^s}{d^r} \quad 9 \qquad N = \frac{2 n' n^{n''}}{(n' + 1)(2 n^{n'' + 1})^{n'' + 1}}, \qquad 19$$

$$b = \frac{d^r \cdot bt}{r T \delta^r n}, \qquad 10 \qquad y = \sqrt[n]{b - 2 n'} \frac{b^n - (\frac{b x}{l})^n}{n}, \qquad 20 \qquad B = \frac{35 T}{L d N'}, \qquad 30$$

$$Formulas for Hollow Lines.$$

$$l' = l \left(2 \sqrt[n]{b - z}, -\sqrt[n]{b - 2 n'}, \qquad 32 \mid c = l \left(1 - \sqrt[n]{b - z}\right), \qquad 33$$

$$t = \frac{l'}{2 \sqrt[n]{b - z}}, -\sqrt[n]{b - 2 n'}, \qquad 32$$

$$a = l' + c - l, \qquad 34$$

$$A = 2 \sqrt[n'']{n + 1} (\cancel{w}' + d' L) + a', \qquad 35$$

$$e' = \frac{d' (d' L + a + \cancel{w}')}{2 d' L + a + 2 \cancel{w}'} \binom{n' + 1}{n' + 2} \sqrt[n'' + 1]}, \qquad 36$$

$$Length \text{ of a Parabola.}$$

$$2 \quad b \sqrt[n]{\frac{l^n}{4 b^n} + 1} + \frac{l^n}{4 b} \text{ hyp. log. } \frac{2b}{l} \left(1 + \sqrt[n]{\frac{l^n}{4 b^n} + 1}\right), \qquad 37$$

Expo.	1 W	ATER-	LINE (OR CROS	SS-SECTI 5	ON. b =	=1.	a=BL×.	k
								W = Da X	
2	2345	•4375	.6094	.7500	.8593	.9375	.9844	•6666	1.94
2.25	•2595	•4766	.6527	.7897	·8899	•9558	.9907	•6923	1.98
2.5	2838	•5129	.6912	.8232	•9139	.9687	•9944	•7142	2.00
2.75	.3073	•5466	.7254	·8513	•9326	.9779	•9967	•7333	1.98
3.	•3301	.5781	.7558	.8750	•9472	.9844	•9980	•7500	1.94
3.25	.3521	.6074	.7829	·8944	.9587	•9889	•9988	.7647	1.91
3.5	.3733	.6346	.8070	.9116	.9677	.9922	.9993	•7777	1.88
3.75	· 3 939	·6600	.8284	.9256	.9747	.9944	•9995	•7894	1.85
4.	•4138	.6836	.8474	.9375	.9802	•9961	.9997	•8000	1.82
4.5	.4517	•7260	.8794	.9557	.9878	.9978	•9998	·8181	1.76
5.	.4871	.7627	.9046	.9687	.9926	.9990	.9999	•8333	1.70
5.5	.5202	.7945	.9246	.9779	.9954	.9994	.9999	•8461	1.64
6.	.5512	.8220	.9404	.9843	.9972	.9997	1.000	.8571	1.58
6.5	.5802	.8459	.9528	.9889	•9983	.9998	1.000	•8666	1.52
7.	.6073	.8665	.9627	.9922	•9989	.9998	1.000	.8750	1.46
8.	.6564	.8989	.9767	.9960	.9996	.9999	1.000	·8888	1.34
9.	.6993	.9249	.9854	.9985	.9998	.9999	1.000	•9000	1.28
10.	.7369	.9437	.9909	-9990	.9999	1.000	1.000	•9090	1.18
12.	.7963	9683	.9976	.9998	1.000	1.000	1.000	•9231	1.08
16.	.8819	.9991	.9999	1.000	1.000	1.000	1.000	.9412	1.00

TABLE II. DISPLACEMENT FOR THE EXPONENT n".

Expo.	ORD 1	INATE 2	CROSS	S-SECTI	ons Ø	· 6 ³⁰	=1.		$T = \mathcal{X}L \times$
2.	.0545	·1914	•3713	•5625	·7384	·8909	·9688	•5333	•0152
2.25	.0673	.1795	•4260	•6236	.7919	.9135	.9815	•5663	.0162
2.5	.0805	.2512	·4772	.6777	.8352	.9383	.9889	•5952	•0170
2.75	.0944	.2987	.5262	.7247	.8697	.9563	•9934	•6204	.0177
3.	·1090	•3342			.8972	.9691	.9960	•6429	.0184
3.25	·1239	•3689		.7999		.9779	.9976	•6629	•0189
3.5	.1394	•4027		•8310		•9845	.9986	•6806	•0194
3.75	1551	2000		8567			.9990	•6968	•0199
4.				8789				•7111	•0203
4.5				.9146			.9996	•7364	•0211
5.	2373			•9384			.9998	•7575	•0216
5.5	2706			.9563			0000	•7755	•0221
6.		.6757		.9688				•7924	•0227
6.5		.7155		.9780				.8047	•0230
7.				.9845				•8170	•0233
8.		.8080		.9920				*8366	•0239
9.	4890	000		9970				•8521	.0244
10.				9980				.8656	.0248
12.				9996				*8861	•0253
16.	.7777	•9991	1.9998	1.9999	9999	1.000	1.000	9126	0261

Hollow Waterlines Table III

0 1 2 3 4 5 6 7 000 7 6 5 4 3 2 1

Cross-sections & Table 1

Cross-sections M Table III

Expo	ORDII	NATES (F Holi	low W	ATER L	ines.	z=½b.	AREA.	l'—l =s
2	·1697	•3732	•5647	•7214	•8433	•9303	•9825	•6491	.0527
2.25	.1944	•4074	•6068	·7620	.8754	•9500	•9895	•6730	0535
2.5	·1960	•4415	•6460	•7443	•9013	•9642	•9943	•6939	0532
2.75	.2127	.4744	•6817	8277	•9219	.9744	.9962	•7124	0523
3	•2284	.5063	•7143	8537	•9383	.9817	.9977	•7287	.0510
3.25	•2445	•5368	•7439	.8760	•9513	.9870	•9986	•7433	.0496
3.5	.2596	.5657	.7706	.9895	.9617	.9907	.9992	•7654	.0482
3.75	.2779	.5947	.7954	.9114	.9699	.9924	•9995	•7682	.0463
4	.2962	•6193	.8164	.9247	.9762	•9953	.9997	•7789	•0452
4.5	•3337	.6670	.8534	•9463	.9853	.9976	.9998	.7975	.0424
5	•3744	.7105	·8839	.9619	•9909	.9988	•9998	•8139	.0390
5.5	•4081	.7465	.9070	.9727	.9944	.9994	.9999	.8269	.0375
6	•4428	·7790	•9260	.9806	•9965	.9997	.9999	•8385	.0354
6.5	•4703	·8266	.9405	.9860	.9978	.9998	1.000	.8479	.0352
7	.5081	.8328	.9533	.9902	.9988	.9999	1.000	.8582	.0327
8	.5861	.8794	.9719	.9953	.9994	1.000	1.000	.8730	.0286
9	.6186	.9047	.9815	.9975	.9998	1.000	1.000	.8852	.0261
10	•6606	.9274	.9883	.9992	.9999	1.000	1.000	•8942	.0237
12	.7415	.9601	.9954	.9997	1.000	1.000	1.000	•9110	.0206
16	·8481	•9871	•9993	•9999	1.000	1.000	1.000	•9319	.0156

When the exponents for the water line and cross section are selected, multiply half the beam with the numbers in the tables, which gives the corresponding distances from the centre line; for instance, if the expocorresponding distances from the centre fine; in finance, if the exponent for the water line is n=4 first column, table III, beam b=16 feet, the third ordinate will be $16\times0.3164=13.0624$ feet. Suppose the exponent for the cross section to be n'=3.25, b=16 feet, the fifth ordinate will be $16\times0.9587=16.3392$ feet. Area of the water line a is calculated from formula 3, and cross section $\mathfrak{V}_{\mathfrak{P}}$ from formula 5, or both are obtained by the coefficient in the column next to the last table. Residually the coefficient is the column next to the last table. quired the area of the water line of a vessel of L=256 feet, B=32 feet and $\hat{n} = 3.75$?

 $\mathbf{a}=256\times32\times0.7894=6472.7648$ square feet the answer. Required the cross section W of a vessel of B=27 feet drafted=12 feet, and the exponent n'=2.5?

 $\widetilde{W} = 27 \times 12 \times 0.7142 = 231.4$ square feet the answer. The area of the ordinate cross sections or the immersed area of any frame \emptyset is calculated from formula 18 or by the numbers in table II. Required the 4th cross section $\emptyset=$? in a vessel of B=42 ft., d=18 ft., and the exponent n=45 and n'=5. $\emptyset=$ 42 \times 18 \times 0*818=618*4836 square feet, and $\emptyset=$ 618*48 \times 0*9384=580*38 square feet.

The Displacement is calculated from formula 12 or by the coefficients in the two last columns, table II. Required the displacement of a vessel

of dimensions as in the preceeding example when L=325 feet? $D=618^{\circ}48\times325\times0.7575=152172$ cubic feet or $T=618^{\circ}48\times325\times0.0216=$

4341.729 tons, the answer.

When the exponents for the cross section n' and for the displacement n'' are selected, the displacement in cubic feet is obtained by multiplying together the length L, beam B, and draft of water d, and the product by the number in table VI.

Example. A vessel of T=3450 tons displacement is constructed with the exponents n=3, n'=6, and n''=3.25, drawing d=16 feet water. Required the draft of water when the vessel and all on board weighs t=2160 tons?

Formula 14.
$$r = \frac{(6+1)(3+1)}{6 \times 3.25} = 1.435$$
 the indix.

Formula 7.
$$\beta=16\sqrt[r]{\frac{\overline{2160}}{3450}}=11.55$$
 feet the answer.

or
$$\log \beta = \log.16 - \frac{\log.3450 - \log.2160}{1.435} = 1.0624.$$

Required how much the? the same vessel can be loadded per inch by of additional draft, at a draft of help feet.

Formula 9.
$$bt = \frac{1.435 \times 3450 \times 12^{0.435} \times 1\frac{1}{2}}{16^{1.435}} = 64.14$$
 tons, the answer.

The exponent for any displacement is found by formulas 15 and 16. Required the centre of gravity of displacement e=? of the vessel in the preceding examples, when loaded to d=16 feet.

Formula 13.
$$e=\frac{16}{2}\left(\frac{6+1}{6+2}\right)\sqrt{\frac{3.25+1}{3+2}}=6.43$$
 feet, the answer.

Required the area A=? of the immersed hull of the same vessel, when a=10242 square feet.

Formula 35.
$$A=2\sqrt{\frac{3\cdot25}{6+1}}$$
 (618.48+16×325)+10242=18112 square feet, answer.

For light draft and speed, the exponents should be selected towards the corner '490, Table IV; and for freight and light draft towards the corner '797. For heavy freight and light draft, the proportions of the vessel should be selected towards the corner 36.0, Table V; sailing yachts for deep water towards the corner 14.9, and ordinary vessels for deep water in the middle of column 12.

The exponent for the displacement n'' generally varies very little from that of the water-line n; that when selecting a desired sharpness from fig. 1 we can consider n''=n. The proper relation between n and n'' de-

pends on taste and judgment of the ship-builder.

CONSTRUCTION OF A PROPELLER STEAMER.

Figs. 6, 7, and 8, Plate XIV, are constructions of a steam propeller of the following dimensions: L=150 ft., B=30 ft., d=15 ft. The scale is 1-32 of an inch to the foot. The exponents are selected as follows: n=2 of the forward water-line, with hollow lines table III; for the aft water-line, n=29, full lines table I; \mathfrak{Q} is located 1-16 of the length abaft of the middle of L, making 84:375 ft. forward, and 65:625 ft. abaft of \mathfrak{Q} . Exponent for the cross-section is n=3, when the area will be $\mathfrak{Q}=37$ -5 sq. ft. Exponent for the displacement n''=2, when, from Formula 12, D=26996'3 cub. ft., and T=713'8 tons. From Formula 32, l=79'9 ft., which makes the parabola cut the water-line at 84:375-799-94:475 feet from the stem. Exponent for the forward parabolic rall is n=4, and for the elliptic rail abaft n=3. The sheer is 3 ft. forward, 13/5 ft. abaft, with 45° curve. The following table contains the principal dimensions for the form of the vessel, which table should always be calculated before the construction is commenced.

Ordi-	Cross- section.	Displ't.	WATER-LINE. Tab. III. Table I.			IL. Table V.	SHEER.				
nates.	n'=3	n''=2 Half (3)	n=2 Forward	$n = 2\frac{1}{8}$	n=4 Forward	n=9	45° For'rd	45° Abaft.			
						210010.		Abatt.			
1	4.951	9.211	2.547	4.257	5.591	9.34	0.047	0.023			
2	8.671	32.28		7.693	9.230	11.24	0.161				
3 .	11.33	62.63		10.36	11.44	12.18	0.366				
4	13.12	94.89	10.82	12.33	12.66	12.92	0.645				
5 6	14.21	124.5	12.65	13.71	13.24		1 055				
7	$14.76 \\ 14.97$	150·2 164·4	13·95 14·74	14.53	13.44	13·42 13·49	1.570 2.195				
8	14 91 15 ft.	168.7	15 ft.	15 ft.		13.5 ft.					
	10.	100	20 10.	1 10 10.	100 10.	100 100	10.	1 0 10			

The centre of gravity of displacement will be found by Formula 13, when the medium of n=21, $e=\frac{15}{2}\left(\frac{3+1}{3+2}\right)\sqrt{\frac{2+1}{24+2}}=5.04$ feet under the waterline, and $\frac{34.375-75}{2}=4.6875$ feet forward of \mathfrak{Z} .

Her launching weight t=310 tons. Required, her launching draft, δ ? Form 14. $r=\frac{(3+1)(2)(4+1)}{3\times 2}=2\cdot16$. Form 7. $\delta=15$ $\sqrt{\frac{510}{792}}=9\cdot716$ feet.

For further explanations, with examples, see Nystrom's Treatise on Parabolic Shipbvilding and Marine Engineering Subjects, where the Parabolic Construction can be acquired, and the tables and formulas in this book will serve as a memorandum. J. B. Lippincott & Co., Philadelphia—Trubner, London.

DATE OF THE PROPERTY OF THE PR											
TABLE V.—For Elliptic Stern of Vessels.											
Expot. Ordinates for ellipses of different order.											
n		$\frac{1}{2}$ 1		2 3		$\frac{1}{4}$			6	7	
2	-33	3398 -484		.6616	.7808	808 -8660		04 :	9682	•9922	
21			5490 .7147		8274			9495 9		•9958	
$2\frac{1}{4}$ $2\frac{1}{2}$			5537 .7657		8627				9873	.9978	
23	-51		$6514 \cdot 8029$		8901	.943			932	.9989	
3				·8331	9019	956			948	•9994	
31	.59		7252 8578		9275				9973	•9996	
31	.63		7548 8782		.9406				978	· 9 998	
4				9003	9595				9995	•9999	
Sheer			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1321	237		10 1.5	5449	•7531	
of				0539	$\cdot 1221$				$\frac{5249}{5227}$		
vessels.				0339	1086					·7313 ·6946	
vessers.									^		
TABLE VI.—To Approximate Size and Shape of Vessels. Exponent for displacement n''.											
	n'	2	1 2.5	expond 3	$^{\circ}3.2$	r disp				1 10	
a	n	2	1 7.9	1 3	2.9	4	5	6	8	10	
66	,	.356	397	.429	.453	.474	.500	528	558	.577	
1 % 1 4	$\begin{bmatrix} 2 \\ 2.5 \end{bmatrix}$	381	425		486	.508	.541	.566	597		
A A A	3.5	.400	•447		.510	.533	.563			620	
a at	3.5	•414			.528			.594	627	650	
W		414	476		.544	·552 ·569	·589 ·606	·616 ·635	650	673	
ft of wat	1	•444			.567	•592	.631	.660	668	$.693 \\ .722$	
Draft of water.	3	458	.509		.583	610	.649	679	.717	.750	
Dra	3	.474			605	632	673	.704	.743	.770	
1 (g) 1			547		.625	.654	.696	.720	.759	.797	
1	- 1		eed a								
Purpose.					Freight and passengers.			Freight and slow speed.			
	3		sseng								
TABLE				_							
1	V	8		tion o		t aga 36	$\frac{10}{1}$	64	vesse	1102	
1	v	0	12	10	26	30	48	04	02	102	
bp - 6 - 94	16	14.9	19.0	23.7	28.9	34.0	38.9	43.6	47.2	48.0	
string (.35		13.9	$19.0 \\ 17.7$	$\frac{23.7}{22.1}$	26.9	31.7	36.9	40.6	43.9	44.5	
Sail Sail		13.3	17.0	$\frac{22.1}{21.2}$	25.8	30.3	34.7	38.9	42.1	42.7	
2 (·5)		12.9		20.5	$25.0 \\ 25.0$	29.4	33.7	37.7	40.8	41.3	
ssels 5.50		12.5	16·5 16·0	20.0	24.4	28.7	30.8	36.8	39.8	40.3	
vess		$\frac{12.9}{12.1}$	15.5	19.4	23.5	27.6	31.6	35.4	38.3	38.8	
10.11. (.00		11.8	15.1	18.8	23.9	26.9	30.8	34.6	37.4	38.0	
Arthur 1:0		11.6	14.8	18.5	22.5	26.5	30.3	34.0	36.8	37.2	
Heavy Ordinary Sailing Freight, vessels, yachts.			14.3	17.9		25.6	29.3		35.6	36.0	
1											
Condition.		Vessels for deep water.			Ordinary			River steamers			
	ae	ep wa	uer.	navigation.			Light draft.				

accoes subjected and accounts.

abedefghijklmnopgrstubwxyz,

ABCDEFGHJRLMNDPDNSTUVWX V3 abcdefghijflmnopgraftuvwxyz

ABEDEFEHIIKLMYOPQRS
IHIWXYZ. 1234567890
abcdefghijklmnopqrsfybwxyz.

DEAF AND DUMB ALPHABET.

Keep your hand horizontal for the letters a, g, h, r, s and t. For j and z describe the letter with the finger in the air. For x make a motion up and down with the index finger,

