# Отчет по заданию 1 по курсу Суперкомпьютерное моделирование и технологии для студентов первого и второго потоков

Ноябрь 2024

Чэнь Цзюньцзе

8 вариант

### 1 Математическая постановка задачи.

В области  $D \subset \mathbb{R}^2$ , ограниченной контуром у рассматривается дифференциальное урав нение Пуассона

$$-\Delta u = f(x, y),$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

функция f(x, y) считается известной. Для выделения единственного решения уравнение дополняется граничными условием Дирихле:

$$u(x,y) = 0, \quad (x,y) \in \gamma.$$

Требуется найти функцию u(x, y) удовлетворяющую уравнению в D и краевому условию на ее границе.

### 2 Метод фиктивных областей.

Для приближенного решения задачи (1),(2) предлагается воспользоваться методом фиктивных областей [2].

Пусть область D принадлежит прямоугольнику  $\Pi = \{(x,y): A_1 < x < B_1, A_2 < y < B_2\}$ . Обозначим через  $\overline{D}$ ,  $\overline{\Pi}$  замыкание области D и прямоугольника  $\Pi$  соответственно, через  $\Gamma$  – границу прямоугольника. Разность множеств

$$\hat{D} = \Pi \setminus \overline{D}$$

называется фиктивной областью. Выберем и зафиксируем малое  $\varepsilon > 0$ .

В прямоугольнике П рассматривается задача Дирихле

$$-\frac{\partial}{\partial x} \left( k(x, y) \frac{\partial v}{\partial x} \right) - \frac{\partial}{\partial y} \left( k(x, y) \frac{\partial v}{\partial y} \right) = F(x, y),$$

$$v(x, y) = 0, \quad (x, y) \in \Gamma$$
(3)

с кусочно-постоянным коэффициентом

$$k(x,y) = \begin{bmatrix} 1, & (x,y) \in D, \\ 1/\varepsilon, & (x,y) \in \hat{D} \end{bmatrix}$$
 (4)

и правой частью

$$F(x,y) = \begin{bmatrix} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \in \hat{D}. \end{bmatrix}$$
 (5)

Требуется найти непрерывную в  $\overline{\Pi}$  функцию v(x,y), удовлетворяющую дифференциальному уравнению задачи (3) всюду в  $\Pi \setminus \gamma$ , равную нулю на границе  $\Gamma$  прямоугольника, и такую, чтобы вектор потока

$$W(x,y) = -k(x,y) \left( \frac{\partial v}{\partial x} \, , \, \frac{\partial v}{\partial y} \right)$$

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника  $\Pi$ . Последнее означает, что в каждой точке  $(x_0, y_0) \in \gamma \cap \Pi$  должно выполняться равенство

$$\lim_{\substack{(x,y)\to(x_0,y_0),\\(x,y)\in D}} \left(W(x,y),n(x_0,y_0)\right) = \lim_{\substack{(x,y)\to(x_0,y_0),\\(x,y)\in\hat{D}}} \left(W(x,y),n(x_0,y_0)\right),\tag{6}$$

где n(x,y) – вектор единичной нормали к границе  $\gamma$  в точке (x,y), определенный всюду или почти всюду на кривой.

Известно [2], что функция v(x,y) равномерно приближает решение u(x,y) задачи (1),(2) в области D, а именно,

$$\max_{P \in \overline{D}} |v(x, y) - u(x, y)| < C\varepsilon, \quad C > 0.$$
 (7)

В частности,  $|v(x,y)| < C\varepsilon$  во всех точках кривой  $\gamma$ . Этот результат позволяет получить искомую функцию u(x,y) с любой наперед заданной точночтью  $\varepsilon > 0$ , решая задачу (3),(6) вместо задачи (1),(2). Тем самым, задача Дирихле в криволинейной области приближенно заменяется задачей Дирихле в прямоугольнике с кусочно-постоянным коэффициентом k(x,y).

### 3 Разностная схема решения задачи.

Краевые задачу (3),(6) предлагается решать численно методом конечных разностей [3]. В замыкании прямоугольника  $\overline{\Pi}$  определяется равномерная прямоугольная сетка  $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$ , где

$$\bar{\omega}_1 = \{x_i = A_1 + ih_1, i = \overline{0, M}\}, \ \bar{\omega}_2 = \{y_j = A_2 + jh_2, j = \overline{0, N}\}.$$

Здесь  $h_1=(B_1-A_1)/M$ ,  $h_2=(B_2-A_2)/N$ . Через  $\omega_h$  обозначим множество внутренних узлов сетки  $\bar{\omega}_h$ , т.е. множество узлов сетки прямоугольника, не лежащих на границе  $\Gamma$ .

Рассмотрим линейное пространство H функций, заданных на сетке  $\omega_h$ . Обозначим через  $w_{ij}$  значение сеточной функции  $w \in H$  в узле сетки  $(x_i, y_j) \in \omega_h$ . Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}, \quad ||u||_E = \sqrt{(u,u)}.$$
 (8)

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида

$$Aw = B, (9)$$

где  $A: H \to H$  — оператор, действующий в пространстве сеточных функций,  $B \in H$  — известная правая часть. Задача (9) называется разностной схемой. Решение этой задачи считается численным решением исходной дифференциальной задачи.

При построении разностной схемы следует аппроксимировать (приближенно заменить) все уравнения краевой задачи их разностными аналогами — сеточными уравнениями, связывающими значения искомой сеточной функции в узлах сетки. Полученные таким образом уравнения должны быть функционально независимыми, а их общее количество — совпадать с числом неизвестных, т.е. с количеством узлов сетки.

Дифференциальное уравнение задачи (3) во всех внутренних точках сетки аппроксимируется разностным уравнением

$$-\frac{1}{h_{1}}\left(a_{i+1j}\frac{w_{i+1j}-w_{ij}}{h_{1}}-a_{ij}\frac{w_{ij}-w_{i-1j}}{h_{1}}\right)-\frac{1}{h_{2}}\left(b_{ij+1}\frac{w_{ij+1}-w_{ij}}{h_{2}}-b_{ij}\frac{w_{ij}-w_{ij-1}}{h_{2}}\right)=F_{ij},$$

$$i=\overline{1,M-1},\ j=\overline{1,N-1},$$

$$(10)$$

в котором коэффициенты

$$a_{ij} = \frac{1}{h_2} \int_{y_{j-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt, \quad b_{ij} = \frac{1}{h_1} \int_{x_{i-1/2}}^{x_{i+1/2}} k(t, y_{j-1/2}) dt$$
(11)

при всех  $i = \overline{1, M}, j = \overline{1, N}$ . Здесь полуцелые узлы

$$x_{i\pm 1/2} = x_i \pm 0.5h_1, \quad y_{j\pm 1/2} = y_j \pm 0.5h_2.$$

Правая часть разностного уравнения

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) dx dy, \quad \Pi_{ij} = \{ (x, y) : x_{i-1/2} \leqslant x \leqslant x_{i+1/2}, y_{j-1/2} \leqslant y \leqslant y_{j+1/2} \}$$
 (12)

при всех  $i = \overline{1, M-1}, j = \overline{1, N-1}.$ 

Введем обозначения правой и левой разностных производных по переменным  $x,\ y$  соответственно:

$$\begin{split} w_{x,ij} &= \frac{w_{i+1j} - w_{ij}}{h_1}, \quad w_{\overline{x},ij} = w_{x,i-1j} = \frac{w_{ij} - w_{i-1j}}{h_1}, \\ w_{y,ij} &= \frac{w_{ij+1} - w_{ij}}{h_2}, \quad w_{\overline{y},ij} = w_{y,ij-1} = \frac{w_{ij} - w_{ij-1}}{h_2}. \end{split}$$

С учетом принятых обозначений разностное уравнение (10) можно представить в более компактном и удобном виде:

$$-\left(aw_{\overline{x}}\right)_{x,ij} - \left(bw_{\overline{y}}\right)_{y,ij} = F_{ij}, \quad i = \overline{1, M-1}, \ j = \overline{1, N-1}$$

$$\tag{13}$$

Краевые условия Дирихле задачи (3),(6) аппроксимируются точно равенством

$$w_{ij} = w(x_i, y_j) = 0, \quad (x_i, y_j) \in \Gamma.$$

$$(14)$$

Переменные  $w_{ij}$ , заданные равенством (14), исключаются из системы уравнений (13). В результате остаются неизвестными значения  $w_{ij}$  при  $i = \overline{1, M-1}$ ,  $j = \overline{1, N-1}$  и их количество совпадает с числом уравнений. Система является линейной относительно неизвестных величин и может быть представлена в виде (9) с самосопряженным и положительно определенным оператором

$$Aw = -\left(aw_{\overline{x}}\right)_x - \left(bw_{\overline{y}}\right)_y$$

и правой частью F, определенной равенством (12). Таким образом, построенная разностная схема (13),(14) линейна и имеет единственное решение при любой правой части (см. [5]).

## 4 Метод решения системы линейных алгебраических уравнений.

Приближенное решение разностной схемы (10),(14) может быть получено итерационным методом скорейшего спуска [4]. Этот метод позволяет получить последовательность сеточных функций  $w^{(k)} \in H, k = 1, 2, \ldots$ , сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$||w - w^{(k)}||_E \to 0, \quad k \to +\infty.$$

Начальное приближение  $w^{(0)}$  можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки.

Метод является одношаговым. Итерация  $w^{(k+1)}$  вычисляется по итерации  $w^{(k)}$  согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}, (15)$$

где невязка  $r^{(k)} = Aw^{(k)} - B$ , итерационный параметр

$$au_{k+1} = rac{\left(r^{(k)}, r^{(k)}
ight)}{\left(Ar^{(k)}, r^{(k)}
ight)}.$$

В качестве условия остановки итерационного процесса следует использовать неравенство

$$||w^{(k+1)} - w^{(k)}||_E < \delta,$$

где  $\delta$  – положительное число, определяющее точность итерационного метода. Оценку точности приближенного решения можно проводить в других нормах пространства сеточных функций, например, в максимум норме

$$||w||_C = \max_{x \in \overline{\omega}_1} |w(x)|. \tag{16}$$

где  $\delta$  – положительное число, определяющее точность итерационного метода. Оценку точности приближенного решения можно проводить в других нормах пространства сеточных функций, например, в максимум норме

$$||w||_C = \max_{x \in \overline{\omega}_h} |w(x)|. \tag{16}$$

Константу  $\delta$  для данной задачи предлагается выбрать так, чтобы итерационный процесс укладывался в отведенное для него время.

# 5 Результаты.

Таблица 1: Таблица с результатами расчетов на ПВС IBM Polus (ОрепМР код).

| Количество<br>ОрепМРнит<br>ей | Числоточек с<br>етки (M×N) | Число итераций | Время решения | Ускоре<br>ние |
|-------------------------------|----------------------------|----------------|---------------|---------------|
| 1                             | 80×90                      | 53485          | 20150         |               |
| 2                             | 80×90                      | 47834          | 9036          | 2.23          |
| 4                             | 80×90                      | 59028          | 6317          | 3.19          |
| 8                             | 80×90                      | 63097          | 3341          | 6.03          |
| 16                            | 80×90                      | 49036          | 2234          | 9.02          |
| 1                             | 160×180                    | 67234          | 148660        |               |
| 4                             | 160×180                    | 56325          | 38814         | 3.83          |
| 8                             | 160×180                    | 82747          | 23823         | 6.24          |
| 16                            | 160×180                    | 89679          | 17635         | 8.43          |
| 32                            | 160×180                    | 70239          | 12503         | 11.89         |

Таблица 2: Таблица с результатами расчетов на ПВС IBM Polus (МРІ код).

| Количество процессов MPI | Числоточек<br>сетки (M×N) | Число итераций | Время решения | Ускорение |
|--------------------------|---------------------------|----------------|---------------|-----------|
| 2                        | 80×90                     | 74324          | 8876          | 2.27      |
| 4                        | 80×90                     | 63348          | 5840          | 3.45      |
| 8                        | 80×90                     | 58930          | 3229          | 6.24      |
| 16                       | 80×90                     | 69472          | 2418          | 8.33      |
| 4                        | 160×180                   | 65394          | 33940         | 4.38      |
| 8                        | 160×180                   | 54893          | 16778         | 8.86      |
| 16                       | 160×180                   | 78308          | 9957          | 14.93     |
| 32                       | 160×180                   | 88931          | 7052          | 21.08     |

Таблица 3: Таблица с результатами расчетов на ПВС IBM Polus (MPI+OpenMP код).

| Количество процессов MPI | Количество<br>ОрепМР-Нитей<br>в процессе | Числоточек<br>сетки (M×N) | Число<br>итераций | Время ре<br>шения | Ускорен<br>ие |
|--------------------------|------------------------------------------|---------------------------|-------------------|-------------------|---------------|
| 2                        | 1                                        | 80×90                     | 67184             | 8877              | 2.27          |
| 4                        | 2                                        | 80×90                     | 82326             | 5261              | 3.83          |
| 8                        | 4                                        | 80×90                     | 62823             | 2846              | 7.08          |
| 16                       | 8                                        | 80×90                     | 88704             | 1963              | 10.26         |
| 4                        | 1                                        | 160×180                   | 85947             | 24612             | 6.04          |
| 4                        | 2                                        | 160×180                   | 81320             | 10079             | 14.75         |
| 4                        | 4                                        | 160×180                   | 72772             | 6809              | 21.83         |
| 4                        | 8                                        | 160×180                   | 74169             | 5273              | 28.19         |

