Dependable Hybrid Systems Design: Coping With Errors

Dominique Méry Zheng Cheng

LORIA

Nov, 2020

Simulation

Assumptions

► Control logic/Simulation based on unique analytic solutions

Determine Uniqueness

Given initial value problem:

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

Lipschitz-continuous

f is Lipschitz-continuous on set D if there is constant K such that:

$$|f(t,u)-f(t,v)| \le K|u-v| \text{ for all } (t,u) \ (t,v) \in D \ \ (1)$$

Cauchy-Lipschitz theorem

if f is Lipschitz-continuous on D, then initial value problem of f with $(t_0, x_0) \in D$ has a unique solution

Determine Uniqueness: Example

Ex: Let $D=R^2$, and let $f(t,x)=t^2+2x$, for each (t,u) and (t,v) in D, consider:

$$|f(t, u) - f(t, v)| = |(t^2 + 2u) - (t^2 + 2v)|$$

= $2|u - v|$

So, f is Lipschitz-continuous on D= R^2 with K=2.

Determine Analytic Solution

TRY HARD

Assumptions

- Control logic/Simulation based on unique analytic solutions
- ► Abort if:
 - ▶ non-unique
 - ► non-analytic?

Control Logic Design based on Forward-Euler Method and Truncation Errors

New Heating System

- ▶ 2 modes: ON/OFF
- ► Simple dynamics: \dot{T} =1/-1
- ▶ monotonic T_{on} and T_{off} (no analytic solutions)
- ightharpoonup Sample at δ s
- Switch mode costs t_{act} s $(t_{act} < \delta)$
- ▶ Safety: $T_{min} \le T \le T_{max}$

New Heating System

- $ightharpoonup |T_{on}(\delta) Te_{on}(\delta)| \le \epsilon_{gteon}$
- $ightharpoonup |T_{off}(\delta) Te_{off}(\delta)| \leq \epsilon_{gteoff}$
- $ightharpoonup |T_{on}(\delta + \triangle) T_{eon}(\delta + \triangle)| \le \epsilon_{Iteon}$
- $ightharpoonup |T_{\it off}(\delta+\triangle)| \le \epsilon_{\it lteoff}$
- $ightharpoonup Min \leq \dot{T}_{on}(\delta, T_{on}(\delta)) \leq Max$
- $ightharpoonup Min \leq \dot{T_{off}}(\delta, T_{off}(\delta)) \leq Max$

Case 1: ON mode safe

Case 1: ON mode safe

$$\begin{split} T_{on}(\textit{now} + \triangle) &\leq \textit{Te}_{on}(\textit{now} + \triangle) + \epsilon_{\textit{lte}} & (\textit{prop}_{\textit{lte}}) \\ &= T_{on}(\textit{now}) + \dot{T_{on}}(\textit{now}, T_{on}(\textit{now})) \cdot \triangle + \epsilon_{\textit{lte}} & (\textit{Euler}) \\ &\leq T_{on}(\textit{now}) + \textit{Max} \cdot \triangle + \epsilon_{\textit{lte}} & (\textit{prop}_{\dot{fc}}) \\ &\leq \textit{Te}_{on}(\textit{now}) + \epsilon_{\textit{gteon}} + \textit{Max} \cdot \triangle + \epsilon_{\textit{lte}} & (\textit{prop}_{\textit{gte}}) \\ &\leq T_{\textit{max}} & (\textit{predict}) \end{split}$$

Case 2: ON mode unsafe

$$T_{on}(now + \triangle) = ...$$
 $> T_{max}$ (predict)