Programação dinâmica

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Aqueles que não lembram o passado estão condenados a repeti-lo"

George Santayana.

Richard Ernest Bellman (26/08/1920 - 19/03/1984)

Principais linhas de atuação:

- Matemática e teoria de controle.
- Equações diferenciais.
- Programação dinâmica e estocástica.
- Algoritmos em grafos.

Prêmios:

- Prêmio Dickson de Ciências (1970).
- Prêmio Norbert Wiener (1970).
- Prêmio Teoria John von Neumann (1976).
- Medalha de Honra IEEE (1979).
- Prêmio Richard E. Bellman (1984).

Problemas e subproblemas

Vamos estudar problemas com algumas propriedades:

- Subestrutura ótima:
 - Decompomos a instância em vários subproblemas.
 - A solução ótima é construída a partir de soluções ótimas de subproblemas.
- Sobreposição de subproblemas:
 - Uma instância é quebrada em várias instâncias menores.
 - A recursão recalcula uma mesma instância várias vezes.

Programação dinâmica

Ideia:

- Evitar o recálculo desnecessário de subproblemas.
- Guardar as soluções de subproblemas em uma tabela.
- Cada entrada é uma instância distinta do subproblema.

Premissas da programação dinâmica:

- O número entradas da tabela é pequeno.
- Sabemos computar cada uma eficientemente.

Problemas de otimização

Consideramos tipicamente problemas de otimização:

- Cada instância tem um conjunto de soluções viáveis.
- Cada uma delas tem um valor dado pela função-objetivo.
- Queremos alguma cujo valor é mínimo ou máximo.

Uma solução viável com o melhor valor é chamada de ÓTIMA.

Problema do torneio

- Considere um torneio entre duas pessoas A e B.
- Nesse jogo, uma partida nunca termina empatada.
- ▶ Vence o torneio o jogador que vencer k partidas primeiro.
- Suponha que A vence uma partida com probabilidade 0.6.
 - Outros valores também poderiam ser usados.

Problema: Qual é a probabilidade de que A vença o torneio?

Subproblema recursivo

Seja P(k|i,j) a probabilidade de A ganhar o torneio dado que:

- O número de vitórias do jogador A é i.
- O número de vitórias do jogador B é j.

Vamos construir um algoritmo por **indução reversa** em *i* e em *j*.

Algoritmo por indução reversa

- Base:
 - ▶ Se i = k, então P(k|k,j) = 1 para todo j pois A é o vencedor.
 - Se j = k, então P(k|i,k) = 0 para todo i pois B é o vencedor.
- Hipótese de indução:
 - Sabemos calcular P(k|i',j') para i' > i e j' > j.
- Passo:
 - Considere os casos em que A ou B vence a próxima partida.
 - Por hipótese, já sabemos calcular P(k|i+1,j) e P(k|i,j+1).
 - Então podemos calcular a probabilidade condicional:

$$P(k|i,j) = 0.6 \cdot P(k|i+1,j) + 0.4 \cdot P(k|i,j+1)$$

Algoritmo recursivo

Algoritmo: RECURSIVO(k, i, j)

```
1 se i = k
```

3 **se**
$$j = k$$

5 devolva

$$0.6 \cdot \text{Recursivo}(k, i+1, j) + 0.4 \cdot \text{Recursivo}(k, i, j+1)$$

Esboço da árvore de recursão para k=3

- A menor profundidade de uma folha é k.
- Esta árvore tem pelo menos $\sum_{p=0}^{k} 2^p = 2^{k+1} 1$ nós.
- ▶ O algoritmo recursivo é $\Omega(2^k)$.

Número de subproblemas

- ► Temos um algoritmo exponencial, que tem pouca utilidade.
- Mas os parâmetros de entrada i e j variam apenas 0 até k.
- O número de possibilidades é (k+1)(k+1).
- Ou seja, há apenas $O(k^2)$ instâncias do subproblema.

Número de subproblemas

- Vários subproblemas aparecem repetidas vezes.
- Alguns deles estão com a mesma cor na árvore acima.

Duas estratégias

1. Top-down:

- Resolvemos os subproblemas novos recursivamente.
- Guardamos os resultados em uma estrutura de dados.
- É chamada de programação dinâmica com memorização ou simplesmente de memorização.

2. Bottom-up:

- Criamos uma tabela para guardar os resultados.
- Preenchemos as entradas para os casos básicos.
- Preenchemos as demais, das menores para as maiores.
- É chamada tipicamente de programação dinâmica.

Exemplo da estratégia bottom-up

	0	1	2	3
0				
1				
2				
3				

- ▶ Criamos uma matriz M de tamanho $(k+1) \times (k+1)$.
- Cada posição M[i,j] guarda o valor de P(k|i,j).
- O índice da linha representa i e da coluna j.
- ▶ Por exemplo, para k = 3 temos uma matriz 4×4 .

Casos básicos

	0	1	2	3
0				0
1				0
2				0
3	1	1	1	-

- Inicializamos as entradas para os casos básicos.
- Fazemos M[k,j] = 1 e M[i,k] = 0.

Passo

	0	1	2	3
0	0.68	0.48	0.22	0
1	0.82	0.65	0.36	0
2	0.94	0.84	0.6	0
3	1	1	1	-

- ▶ Uma entrada vale $M[i,j] = 0.6 \cdot M[i+1,j] + 0.4 \cdot M[i,j+1]$.
- Cada uma das entradas depende dos vizinhos na próxima linha M[i+1,j] e na próxima coluna M[i,j+1].
- Preenchemos a partir das últimas linha e coluna.
- A resposta está em M[0,0].

Algoritmo com programação dinâmica

Passamos a probabilidade de A ganhar como parâmetro g.

Algoritmo: PD(k, g)

```
1 para i \leftarrow 0 até k-1
2 M[k,i] \leftarrow 1
3 M[i,k] \leftarrow 0
4 para i \leftarrow k-1 até 0
5 para j \leftarrow k-1 até 0
6 M[i,j] \leftarrow g \cdot M[i+1,j] + (1-g) \cdot M[i,j+1]
```

7 devolva M[0, 0]

A complexidade de tempo do algoritmo é $O(k^2)$.

Corte de barras de aço

- Uma empresa corta longas barras de aço em pedaços menores para revenda.
- Realizar um corte tem um custo insignificante.
- ▶ Uma barra tem tamanho inteiro n e podemos cortá-la em qualquer posição $1 \le i \le n-1$ ou revender a barra inteira.
- ▶ Um pedaço de tamanho $1 \le i \le n$ tem preço de revenda p_i .

Exemplo de barra de aço

Exemplo onde n = 4:

Algumas formas de cortar:

- ▶ 4 itens de tamanho 1, preço total 4.
- 2 itens de tamanho 2, preço total 10.
- 2 itens de tamanho 1 e 1 item de tamanho 2, preço total 7.

Problema do corte de barra de aço

Problema

Entrada: Um inteiro n e um vetor com os preços de revenda p.

Solução: Quais cortes realizar na barra.

Objetivo: MAXIMIZAR preço total de revenda dos pedaços.

Projeto por indução

Seja r_n o preço total ótimo para uma barra de tamanho n.

- ► Base:
 - Se n=0 então $r_0=0$.
 - Se n=1 então $r_n=p_1$.
- Hipótese de indução:
 - Sabemos calcular r_k para k < n.
- Passo:
 - Seja i o tamanho do primeiro pedaço da solução ótima.
 - \triangleright A melhor forma de cortar o resto da barra vale r_{n-i} , daí:

$$r_n = p_i + r_{n-i}$$

Como não conhecemos o tamanho do primeiro pedaço:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Algoritmo recursivo

Algoritmo: RECURSIVO(p, n)

```
1 se n = 0

2 devolva 0

3 s \leftarrow 0

4 para i \leftarrow 1 até n

5 t \leftarrow p_i + \text{RECURSIVO}(p, n - i)

6 se t > s

7 s t \leftarrow t
```

8 devolva s

A complexidade de tempo do algoritmo é dada por:

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 0\\ \sum_{j=0}^{n-1} T(j) + \Theta(1) & \text{se } n > 0 \end{cases}$$

Tempo do algoritmo recursivo

Subtraindo T(n-1) de T(n) obtemos:

$$T(n) - T(n-1) = \left(\sum_{j=0}^{n-1} T(j) + c\right) - \left(\sum_{j=0}^{n-2} T(j) + c\right) = T(n-1)$$

Ou seja:

$$T(n) = 2T(n-1)$$

Resolvendo esta última recorrência, obtemos:

$$T(n) = \Theta(2^n)$$

Algoritmo de PD

- ightharpoonup Criamos vetor $r[0 \dots n]$ para usar programação dinâmica.
- Preenchemos do caso base para os casos maiores.

```
Algoritmo: PD(p, n, r)
```

```
\begin{array}{c|cccc}
 & \hline{r[0] \leftarrow 0} \\
 & \hline{para} & n' \leftarrow 1 \text{ até } n \\
 & s \leftarrow 0 \\
 & para} & i \leftarrow 1 \text{ até } n' \\
 & t \leftarrow p_i + r[n' - i] \\
 & se & t > s \\
 & s \leftarrow t \\
 & r[n'] \leftarrow s
\end{array}
```

▶ O algoritmo tem complexidade de tempo $\Theta(n^2)$.

Multiplicação de matrizes

Parentização

Considere um produto de matrizes:

$$M = M_1 \times M_2 \times \dots M_i \cdots \times M_n$$

- As dimensões das matrizes são dadas por um vetor b.
- A matriz M_i tem b_{i-1} linhas e b_i colunas.

Ordem de multiplicação:

- Só podemos multiplicar matrizes aos pares.
- Devemos escolher uma **parentização** para o produto.
- Produto matrizes $m \times \ell$ e $\ell \times n$ faz $m \cdot \ell \cdot n$ multiplicações.

Exemplo de parentização

Exemplo:

- ► Seja $M = M_1 \times M_2 \times M_3 \times M_4$ tal que b = (200, 2, 30, 20, 5).
- As possíveis parentizações são:

$$M = (M_1 \times (M_2 \times (M_3 \times M_4)))$$
 \rightarrow 5.300 multiplicações $M = (M_1 \times ((M_2 \times M_3) \times M_4))$ \rightarrow 3.400 multiplicações $M = ((M_1 \times M_2) \times (M_3 \times M_4))$ \rightarrow 4.500 multiplicações $M = ((M_1 \times (M_2 \times M_3)) \times M_4)$ \rightarrow 29.200 multiplicações $M = (((M_1 \times M_2) \times M_3) \times M_4)$ \rightarrow 152.000 multiplicações

A ordem das multiplicações faz diferença!

Multiplicação de cadeias de matrizes

Problema

Entrada: Um vetor b com dimensões de n matrizes.

Solução: Uma parentização das matrizes.

Objetivo: MINIMIZAR o número de multiplicações.

Testando todas as soluções viáveis:

O número de parentizações é dado por:

$$P(n) = \begin{cases} 1, & n = 1 \\ \sum_{k=1}^{n-1} P(k) \cdot P(n-k) & n > 1, \end{cases}$$

- A solução dessa recorrência é $P(n) = \Omega(4^n/n^{\frac{3}{2}})$.
- Um algoritmo de força bruta é IMPRATICÁVEL.

Encontrando uma subestrututra ótima

Considere uma parentização ótima.

▶ Para cada par (i,j) tal que $1 \le i \le j \le n$, defina:

$$M_{i,j} = M_i \times M_{i+1} \times \ldots \times M_j$$

Existe $i \le k < j$ tal que a última multiplicação realizada é:

$$M = M_{i,k} \times M_{k+1,j}$$

Com $b_{i-1} \cdot b_k \cdot b_j$ multiplicações.

Se essa parentização em k for ótima, o número de multiplicações para computar $M_{i,k}$ e $M_{k+1,j}$ também deve ser ótimo.

Encontramos uma substrutura ótima.

▶ Os produtos $M_{i,k}$ e $M_{k+1,n}$ devem ter parentizações ótimas.

Subproblema

Definimos o seguinte subproblema

- ▶ Considere uma tabela m com entrada para cada par (i,j).
- ▶ Seja m[i, j] o valor de uma parentização ótima para:

$$M_i \times M_{i+1} \times \ldots \times M_j$$

Podemos resolver esse subproblema recursivamente:

- Não são feitas multiplicações se i = j, então m[i, j] = 0.
- Do contrário, deve haver uma última multiplicação.
- Listando as possibilidades, obtemos uma recorrência:

$$m[i,j] = \min_{i \le k < j} \{m[i,k] + m[k+1,j] + b_{i-1} \cdot b_k \cdot b_j\}$$

Algoritmo recursivo

Algoritmo: MÍNIMO-MULTIPLICAÇÕES-RECURSIVO(b, i, j)

```
se i = j

m[i,j] \leftarrow 0

senão

m[i,j] \leftarrow \infty

para k \leftarrow i até j - 1

q \leftarrow \text{Mínimo-Multiplicações-Recursivo}(b, i, k)
+ \text{Mínimo-Multiplicações-Recursivo}(b, k + 1, j)
+ b[i - 1] \cdot b[k] \cdot b[j]
se m[i,j] > q
m[i,j] \leftarrow q

s[i,j] \leftarrow k
```

- 12 devolva m[i,j]
 - ightharpoonup s[i,j] guarda o índice para a última multiplicação de $M_{i,j}$.
 - ► A chamada inicial é MÍNIMO-MULTIPLICAÇÕES-RECURSIVO(b, 1, n).

1 **se** i = j

Recuperando a solução ótima

- A função anterior devolve apenas o valor da solução.
- Mas a tabela s induz uma parentização ótima.

```
Algoritmo: MULTIPLICA-MATRIZES (M, s, i, j)
```

```
2 imprima "M_i"

3 senão

4 imprima "("

5 MULTIPLICA-MATRIZES(M, s, i, s[i, j])

6 MULTIPLICA-MATRIZES(M, s, s[i, j] + 1, j)

7 imprima ")"
```


Complexidade do algoritmo recursivo

Seja n = j - i + 1 o número de matrizes.

O tempo de execução é dado pela recorrência:

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1\\ \sum_{k=1}^{n-1} [T(k) + T(n-k)] + \Theta(n) & \text{se } n > 1 \end{cases}$$

- Podemos mostrar que $T(n) = \Omega(2^n)$.
- Isso ainda é IMPRATICÁVEL.

Complexidade do algoritmo recursivo

Analisando com calma:

- ▶ O algoritmo **recalcula** o mesmo valor m[i,j] várias vezes.
- Por exemplo, se n = 4, os valores m[1, 2], m[2, 3] e m[3, 4] são computados duas vezes.

Melhorando:

- ▶ O número de pares (i,j) distintos é limitado por $O(n^2)$.
- Podemos guardar todos os valores m[i,j] em uma tabela.
- Resolvendo cada subproblema apenas uma vez.

Memorização x programação dinâmica

Evitamos o recálculo de subproblemas de duas maneiras.

1. Memorização:

- Mantemos a estrutura recursiva do algoritmo.
- Guardamos os valores computados em tabela.
- Devolvemos valores já conhecidos antes da chamada recursiva.

2. Programação dinâmica:

- Criamos uma tabela com entrada para cada subproblema.
- Inicializamos as entradas correspondentes a casos básicos.
- Preenchemos o restante da tabela com uma recorrência.
- A ordem de preenchimento deve obedecer a dependência entre subproblemas.

Algoritmo de memorização

Algoritmo: MÍNIMO-MULTIPLICAÇÕES-MEMORIZADO(b, i, j)

```
se m[i, j] não está definido
        se i = j
           m[i,j] \leftarrow 0
        senão
             m[i,j] \leftarrow \infty
             para k \leftarrow i até j-1
                   q \leftarrow \text{M\'inimo-Multiplicaç\~oes-Memorizado}(b, i, k)
                        +MÍNIMO-MULTIPLICAÇÕES-MEMORIZADO(b, k+1, j)
 8
                        +b[i-1] \cdot b[k] \cdot b[i]
                   se m[i,j] > q
10
                       m[i,j] \leftarrow q
11
                      s[i,j] \leftarrow k
12
```


Algoritmo de programação dinâmica

- Denotamos por *u* o tamanho da cadeia do subproblema.
- Preenchemos a tabela em ordem crescente de u.

Algoritmo: Mínimo-Multiplicações(b)

Complexidade da programação dinâmica

Análise:

- ▶ O algoritmo preenche cada entrada (i,j) uma vez.
- ▶ O número de pares diferentes na tabela é $O(n^2)$.
- Preencher cada entrada leva tempo O(n).
- ▶ O tempo total é limitado número de pares × tempo por par.
- Além disso, usamos uma matriz $n \times n$ para a tabela.

Complexidade:

- ▶ O tempo gasto pelo algoritmo é $O(n^3)$.
- A memória usada pelo algoritmo é $O(n^2)$.

Programação dinâmica

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

