Living to tell the tale

Family, survival, and the genocide of the Maya-Achi in Guatemala

Diego Alburez-Gutierrez London School of Economics alburezg@lse.ac.uk; alburez.me

BSPS - 06 Sept 2017

Post-conflict fertility behaviour

- 1. Fertility drops during mortality crises
 - Malnutrition, psychological stress, changes in marital behaviour (Abu-Musa et al., 2008)
- 2. Followed by temporary surges in fertility
 - Post-WWII 'baby-boom' (Van Bavel & Reher, 2013)
 - ► Angola (Agadjanian & Prata, 2002); Cambodia (Heuveline & Poch, 2007)
 - ► China after the 1958-1961 famine (Ashton, 1984)
- 3. Higher fertility amongst young women (Cetorelli, 2014; Nobles et al., 2015)

Why does fertility increase after conflict?

1. Replacement effects

- 1.1 Own-child mortality (Hossain et al., 2007)
- 1.2 Collective mortality (Nobles et al., 2015)

2. Spouse separation-reunification

- 2.1 Increases in marital fertility (Heuveline & Poch, 2007)
- 2.2 Higher share of women at risk of pregnancy (Van Bavel & Reher, 2013)

The case: Rio Negro

- ► Guatemalan civil war (1960-1996)
- ▶ Rio Negro, an indigenous community (~1000 inhabitants)
- ▶ 44% population killed in mass killings around 1982
- ► Possible genocide

Research questions

- 1. What drove post-conflict fertility recovery in Rio Negro?
- 2. What was the role of replacement fertility and spouse reunification in the recovery?

Descriptive analysis

- 1. Conflict Mortality
- 2. Post-conflict fertility
 - 2.1 Number of children (completed fertility)
 - 2.2 Timing of childbirth (age-specific fertility rates)

Cohort composition (women only)

Cohort	Age at genocide	Years of birth	Cohort size
Pre-war	20-29	1953-1962	159
War	10-19	1963-1972	246
Post-war	0-9	1973-1982	395

Data

- ▶ Demographic data on one village (1960-2015)
 - Reconstructed from genealogies
 - ▶ 3556 unique individuals
- ► Fieldwork Nov 2015 Nov 2016

Family id: 37 Family id: 74

Did fertility recover after the genocide?

Mortality > Conflict-deaths by cohort

Mortality > Own-child deaths

Cohort	Age at genocide	Cohort	Had child %	Lost child %
Pre-war	20-29	1953-1962	77.65	50.59
War	10-19	1963-1972	8.20	4.92
Post-war	0-9	1973-1982	0.00	0.00

Fertility > Total number of children

Fertility > Timing of childbirth

Discussion > Cohort effects on psot-conflict fertility

- ▶ Older women (20-29)
 - More affected (mortality, sexual violence, stigma)
 - Extended reproductive age
 - Did not contribute the most children
- ► Younger women (10-19)
 - Less affected by the war (own-mortality and relatives lost)
 - ► Timing: more time to bear children
 - ► Contributed most children after the genocide

Conclusions

- 1. Replacement effects
 - 1.1 Depend on conflict-mortality distribution
 - 1.2 Older cohorts have more relatives to lose (including children)
 - 1.3 But less time to replace them
- 2. Spouse reunification
 - 2.1 Possible effect
 - 2.2 Most children were from younger women who did not postpone their fertility
- 3. Social pressure on younger women (next paper!)

Limitations

1. Data

- 1.1 Cohort choice: data less reliable in distant past
- 1.2 External factors
- 2. Analysis and generalisability
 - 2.1 Small numbers
 - 2.2 Non-probabilistic sample

Thank you!

Find out more about the data collection on my talk tomorrow:

"Innovative data collection & processing" session

Thursday 9:00-10:30