Geometric objects that exclude the origin

How to represent a line that does not contain the origin?

Start with a line that *does* contain the origin.

We know that points of such a line form a vector space $\ensuremath{\mathcal{V}}.$

Translate the line by adding a vector \mathbf{c} to every vector in \mathcal{V} :

$$\{c+v\ :\ v\in\mathcal{V}\}$$

(abbreviated
$$\mathbf{c} + \mathcal{V}$$
)

Result is line through **c** instead of through origin.

Geometric objects that exclude the origin

How to represent a plane that does not contain the origin?

Start with a plane that *does* contain the origin.

We know that points of such a plane form a vector space \mathcal{V} .

Translate it by adding a vector ${f c}$ to every vector in ${\cal V}$

$$\{\boldsymbol{c}+\boldsymbol{v}\ :\ \boldsymbol{v}\in\mathcal{V}\}$$

(abbreviated $\mathbf{c} + \mathcal{V}$)

Result is plane containing c.

Affine space

Definition: If ${\bf c}$ is a vector and ${\cal V}$ is a vector space then

$$\mathbf{c} + \mathcal{V}$$

is called an affine space.

Examples: A plane or a line not necessarily containing the origin.

Affine space and affine combination

Example: The plane containing $\mathbf{u}_1 = [3, 0, 0]$, $\mathbf{u}_2 = [-3, 1, -1]$, and $\mathbf{u}_3 = [1, -1, 1]$.

Want to express this plane as $\mathbf{u}_1 + \mathcal{V}$ where \mathcal{V} is the span of two vectors (a plane containing the origin)

Let
$$V = \mathsf{Span}\ \{\mathbf{a}, \mathbf{b}\}$$
 where

$$\mathbf{a} = \mathbf{u}_2 - \mathbf{u}_1$$
 and $\mathbf{b} = \mathbf{u}_3 - \mathbf{u}_1$

Since $\mathbf{u}_1 + \mathcal{V}$ is a translation of a plane, it is also a plane.

- ▶ Span $\{a,b\}$ contains $\mathbf{0}$, so $\mathbf{u}_1 + \mathsf{Span}\ \{a,b\}$ contains $\mathbf{u}_1.$
- ▶ Span $\{a, b\}$ contains $u_2 u_1$ so $u_1 + \text{Span } \{a, b\}$ contains u_2 .
- ▶ Span $\{a,b\}$ contains $u_3 u_1$ so $u_1 + \text{Span } \{a,b\}$ contains u_3 .

Thus the plane $\mathbf{u}_1 + \mathsf{Span}\ \{\mathbf{a},\mathbf{b}\}\ \mathsf{contains}\ \mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3.$

Only one plane contains those three points, so this is that one.

Affine space and affine combination

Example: The plane containing $u_1=[3,0,0]$, $u_2=[-3,1,-1]$, and $u_1=[1,-1,1]$: $u_1+\text{Span }\{u_2-u_1,u_3-u_1\}$

Cleaner way to write it?

$$\begin{array}{lll} \mathbf{u}_{1} + \operatorname{Span} \; \{ \mathbf{u}_{2} - \mathbf{u}_{1}, \mathbf{u}_{3} - \mathbf{u}_{1} \} & = & \{ \mathbf{u}_{1} + \alpha \left(\mathbf{u}_{2} - \mathbf{u}_{1} \right) + \beta \left(\mathbf{u}_{3} - \mathbf{u}_{1} \right) : \alpha, \beta \in \mathbb{R} \} \\ & = & \{ \mathbf{u}_{1} + \alpha \, \mathbf{u}_{2} - \alpha \, \mathbf{u}_{1} + \beta \, \mathbf{u}_{3} - \beta \, \mathbf{u}_{1} \; : \; \alpha, \beta \in \mathbb{R} \} \\ & = & \{ (1 - \alpha - \beta) \, \mathbf{u}_{1} + \alpha \, \mathbf{u}_{2} + \beta \, \mathbf{u}_{3} \; : \; \alpha, \beta \in \mathbb{R} \} \\ & = & \{ \gamma \, \mathbf{u}_{1} + \alpha \, \mathbf{u}_{2} + \beta \, \mathbf{u}_{3} \; : \; \gamma + \alpha + \beta = 1 \} \end{array}$$

Definition: A linear combination $\gamma \mathbf{u}_1 + \alpha \mathbf{u}_2 + \beta \mathbf{u}_3$ where $\gamma + \alpha + \beta = 1$ is an *affine combination*.

Affine combination

Definition: A linear combination

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_n \mathbf{u}_n$$

where

$$\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$$

is an affine combination.

Definition: The set of all affine combinations of vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ is called the *affine hull* of those vectors.

Affine hull of
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n = \mathbf{u}_1 + \mathsf{Span} \ \{\mathbf{u}_2 - \mathbf{u}_1, \dots, \mathbf{u}_n - \mathbf{u}_1\}$$

This shows that the affine hull of some vectors is an affine space..

Geometric objects not containing the origin: equations

Can express a plane as $\mathbf{u}_1 + \mathcal{V}$ or affine hull of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

More familiar way to express a plane:

The solution set of an equation ax + by + cz = d

In vector terms,

$$\{[x, y, z] : [a, b, c] \cdot [x, y, z] = d\}$$

In general, a geometric object (point, line, plane, \dots) can be expressed as the solution set of a system of linear equations.

$$\{\mathbf{x} : \mathbf{a}_1 \cdot \mathbf{x} = \beta_1, \dots, \mathbf{a}_m \cdot \mathbf{x} = \beta_m\}$$

Conversely, is the solution set an affine space?

Consider solution set of a contradictory system of equations, e.g. 1x = 1, 2x = 1:

- Solution set is empty....
- \blacktriangleright ...but a vector space $\mathcal V$ always contains the zero vector,
- \blacktriangleright ...so an affine space $\mathbf{u}_1 + \mathcal{V}$ always contains at least one vector.

Turns out this the only exception:

Theorem: The solution set of a linear system is either empty or an affine space.

Affine spaces and linear systems

Theorem: The solution set of a linear system is either empty or an affine space.

Each linear system corresponds to a linear system with zero right-hand sides:

$$\mathbf{a}_{1} \cdot \mathbf{x} = \beta_{1} \\ \vdots \\ \mathbf{a}_{m} \cdot \mathbf{x} = \beta_{m}$$

$$\Rightarrow \qquad \qquad \mathbf{a}_{1} \cdot \mathbf{x} = 0 \\ \vdots \\ \mathbf{a}_{m} \cdot \mathbf{x} = 0$$

Definition:

A linear equation $\mathbf{a} \cdot \mathbf{x} = 0$ with zero right-hand side is a *homogeneous* linear equation. A system of homogeneous linear equations is called a *homogeneous* linear system.

We already know: The solution set of a homogeneous linear system is a vector space.

Lemma: Let \mathbf{u}_1 be a solution to a linear system. Then, for any other vector \mathbf{u}_2 , \mathbf{u}_2 is also a solution if and only if $\mathbf{u}_2-\mathbf{u}_1$ is a solution to the corresponding homogeneous linear system.

Affine spaces and linear systems

$$\mathbf{a}_{1} \cdot \mathbf{x} = \beta_{1}$$
 \Longrightarrow $\mathbf{a}_{1} \cdot \mathbf{x} = 0$ \vdots $\mathbf{a}_{m} \cdot \mathbf{x} = \beta_{m}$ $\mathbf{a}_{m} \cdot \mathbf{x} = 0$

Lemma: Let \mathbf{u}_1 be a solution to a linear system. Then, for any other vector \mathbf{u}_2 , \mathbf{u}_2 is also a solution if and only if $\mathbf{u}_2 - \mathbf{u}_1$ is a solution to the corresponding homogeneous linear system.

Proof: We assume $\mathbf{a}_1 \cdot \mathbf{u}_1 = \beta_1, \dots, \mathbf{a}_m \cdot \mathbf{u}_1 = \beta_m$, so

$$\mathbf{a}_{1} \cdot \mathbf{u}_{2} = \beta_{1} \qquad \mathbf{a}_{1} \cdot \mathbf{u}_{2} - \mathbf{a}_{1} \cdot \mathbf{u}_{1} = 0 \qquad \mathbf{a}_{1} \cdot (\mathbf{u}_{2} - \mathbf{u}_{1}) = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{a}_{m} \cdot \mathbf{u}_{2} = \beta_{m} \qquad \mathbf{a}_{m} \cdot \mathbf{u}_{2} - \mathbf{a}_{m} \cdot \mathbf{u}_{1} = 0 \qquad \mathbf{a}_{m} \cdot (\mathbf{u}_{2} - \mathbf{u}_{2}) = 0$$

QED

We use this lemma to prove the theorem:

Theorem: The solution set of a linear system is either empty or an affine space.

- Let V = set of solutions to corresponding homogeneous linear system.
- ▶ If the linear system has no solution, its solution set is empty.
- ▶ If it does has a solution **u**₁ then

Number of solutions to a linear system

We just proved:

If \mathbf{u}_1 is a solution to a linear system then

 $\{\text{solutions to linear system}\} = \{ \boldsymbol{u}_1 + \boldsymbol{v} : \boldsymbol{v} \in \mathcal{V} \}$

where $V = \{$ solutions to corresponding homogeneous linear system $\}$

Implications:

Long ago we asked: How can we tell if a linear system has only one solution?

Now we know: If a linear system has a solution \mathbf{u}_1 then that solution is unique if the only solution to the corresponding homogeneous linear system is $\mathbf{0}$.

Long ago we asked: How can we find the number of solutions to a linear system over GF(2)?

Now we know: Number of solutions either is zero or is equal to the number of solutions to the corresponding *homogeneous* linear system.