Planche nº 24. Arithmétique dans Z. Corrigé

Exercice nº 1

Soit n un entier naturel.

$$n(n+1)(n+2)(n+3) + 1 = n^4 + 6n^3 + 11n^2 + 6n + 1 = (n^2 + 3n + 1)^2$$

avec $n^2 + 3n + 1$ entier naturel.

Exercice nº 2

- 1) Soit n un entier relatif.
- Si n est pair, alors $5n^3 + n \equiv 5 \times 0^3 + 0$ [2] ou encore $5n^3 + n \equiv 0$ [2]. Dans ce cas, $5n^3 + n$ est divisible par 2. Si n est impair, alors $5n^3 + n \equiv 5 \times 1^3 + 1$ [2] ou encore $5n^3 + n \equiv 6$ [2] ou enfin $5n^3 + n \equiv 0$ [2]. Dans ce cas aussi, $5n^3 + n \equiv 0$ [3] ou enfine $5n^3 + n \equiv 0$ [4]. est divisible par 2. Finalement : $\forall n \in \mathbb{Z}, 2 \mid (5n^3 + n)$.
- Si n est multiple de 3, alors $5n^3 + n \equiv 5 \times 0^3 + 0$ [3] ou encore $5n^3 + n \equiv 0$ [3]. Dans ce cas, $5n^3 + n$ est divisible par 3. Si n est de la forme 3k + 1 où $k \in \mathbb{Z}$, alors

$$5n^3 + n \equiv 5 \times 1^3 + 1$$
 [3] puis $5n^3 + n \equiv 6$ [3] et donc $5n^3 + n \equiv 0$ [3].

Par suite, $5n^3 + n$ est divisible par 3.

Si n est de la forme 3k + 2 où $k \in \mathbb{Z}$, alors,

$$5n^3 + n \equiv 5 \times 2^3 + 2$$
 [3] puis $5n^3 + n \equiv 42$ [3] et donc $5n^3 + n \equiv 0$ [3].

Dans ce cas aussi, $5n^3 + n$ est divisible par 3.

Finalement, $\forall n \in \mathbb{Z}, 3 \mid (5n^3 + n)$.

Enfin, pour tout $n \in \mathbb{Z}$, $5n^3 + n$ est divisible par les nombres premiers 2 et 3 et donc par $2 \times 3 = 6$. On a montré que

$$\forall n \in \mathbb{Z}, 6 \mid (5n^3 + n).$$

2) 4^{2^n} signifie $(...((4^2)^2)^2...)^2$. Etudions la suite de ces élévations au carré successives modulo 7. $4^{2^{\circ}} = 4$ et donc $4^{2^{\circ}} \equiv 4$ [7]. Ensuite, $4^{2^{1}} \equiv 4^{2}$ [7] ou encore $4^{2^{1}} \equiv 2$ [7]. Ensuite, $4^{2^{2}} \equiv 2^{2}$ [7] ou encore $4^{2^{2}} \equiv 4$ [7] ...

Montrons par récurrence que : $\forall k \in \mathbb{N}, \, 4^{2^{2^k}} \equiv 4 \, [7]$ et $4^{2^{2^{k+1}}} \equiv 2 \, [7].$

- C'est vrai pour k = 0.

• Soit
$$k \ge 0$$
. Supposons que $4^{2^{2k}} \equiv 4$ [7] et $4^{2^{2k+1}} \equiv 2$ [7].
Alors, $4^{2^{2(k+1)}} = \left(4^{2^{2k+1}}\right)^2 \equiv 2^2$ [7] ou encore $4^{2^{2(k+1)}} \equiv 4$ [7] puis $4^{2^{2(k+1)+1}} = \left(4^{2^{2(k+1)}}\right)^2 \equiv 4^2$ [7] ou encore $4^{2^{2(k+1)+1}} \equiv 2$ [7]

On a montré par récurrence que $\forall k \in \mathbb{N}, \, 4^{2^{2^k}} \equiv 4$ [7] et $4^{2^{2^{k+1}}} \equiv 2$ [7].

Ensuite $2^{2^0} = 2$ est dans $2+7\mathbb{Z}$ puis, pour $n \geqslant 1$, $2^{2^n} = 2^{2\times 2^{n-1}} = 4^{2^{n-1}}$ est dans $4+7\mathbb{Z}$ si n-1 est pair ou encore si n est impair et est dans $2+7\mathbb{Z}$ si n est pair. Ainsi, que n soit pair ou impair, $4^{2^n}+2^{2^n}+1$ est dans $(4+2)+1+7\mathbb{Z}=7+7\mathbb{Z}=7\mathbb{Z}$ et on a montré que :

$$\forall n \in \mathbb{N}, 7 \mid 4^{2^n} + 2^{2^n} + 1.$$

Exercice nº 3

Soient m, n et p trois entiers naturels et r₁, r₂ et r₃ les restes des divisions euclidiennes de m, n et p par 8. Alors,

$$m^2 + n^2 + p^2 \equiv r_1^2 + r_2^2 + r_3^2$$
 [8].

Donc $\mathfrak{m}^2+\mathfrak{n}^2+\mathfrak{p}^2$ est dans $7+8\mathbb{Z}$ si et seulement si $\mathfrak{r}_1^2+\mathfrak{r}_2^2+\mathfrak{r}_3^2$ est dans $7+8\mathbb{Z}$. Comme $\mathfrak{r}_1,\,\mathfrak{r}_2$ et \mathfrak{r}_3 sont des entiers entre 0 et 7, il suffit de vérifier que les sommes de trois carrés d'entiers compris au sens large entre 0 et 7 ne sont pas dans $7 + 8\mathbb{Z}$.

 $\mathrm{Or},\ 0^2 \stackrel{\cdot}{=} 0 \in 8\mathbb{Z},\ 1^2 = 1 \in 1 + \mathring{8}\mathbb{Z},\ 2^2 = 4 \in 4 + 8\mathbb{Z},\ 3^2 = 9 \in 1 + 8\mathbb{Z},\ 4^2 = 16 \in 8\mathbb{Z},\ 5^2 = 25 \in 1 + 8\mathbb{Z},\ 6^2 = 36 \in 4 + 8\mathbb{Z} \ \mathrm{et}$ $7^2 = 49 \in 1 + 8\mathbb{Z}$. Donc, les carrés des entiers de 0 à 7 sont dans $8\mathbb{Z}$ ou $1 + 8\mathbb{Z}$ ou $4 + 8\mathbb{Z}$. Enfin,

$$\begin{array}{lll} 0+0+0=0\in 8\mathbb{Z}, & 0+0+1=1\in 1+8\mathbb{Z}, & 0+0+4=4\in 4+8\mathbb{Z}, & 0+1+1=2\in 2+8\mathbb{Z}, \\ 0+1+4=5\in 5+8\mathbb{Z} & 0+4+4=8\in 8\mathbb{Z}, & 1+1+1=3\in 3+8\mathbb{Z}, & 1+1+4=6\in 6+8\mathbb{Z}, \\ 1+4+4=9\in 1+8\mathbb{Z}, & 4+4+4=12\in 4+8\mathbb{Z}. \end{array}$$

Aucune de ces sommes n'est dans $7 + 8\mathbb{Z}$ et on a montré qu'un entier de la forme 8n + 7 n'est pas la somme de trois carrés.

Exercice nº 4

Soit $n \in \mathbb{N}^*$. En développant $\left(1+\sqrt{2}\right)^n$ par la formule du binôme de Newton et en séparant les termes où $\sqrt{2}$ apparaît à un exposant pair des termes où $\sqrt{2}$ apparaît à un exposant impair, on écrit $(1+\sqrt{2})^n$ sous la forme $a_n+b_n\sqrt{2}$ où a_n et b_n sont des entiers naturels non nuls. Un calcul conjugué fournit $(1-\sqrt{2})^n=a_n-b_n\sqrt{2}$ et donc

$$(-1)^n = \left(1+\sqrt{2}\right)^n \left(1-\sqrt{2}\right)^n = \left(\alpha_n + b_n\sqrt{2}\right) \left(\alpha_n - b_n\sqrt{2}\right) = \alpha_n^2 - 2b_n^2$$

ou finalement,

$$((-1)^n a_n) \times a_n + (2(-1)^{n+1} b_n) \times b_n = 1$$

où $u=(-1)^na_n$ et $v=2(-1)^{n+1}b_n$ sont des entiers relatifs. Le théorème de Bezout permet d'affirmer que a_n et b_n sont premiers entre eux.

Exercice nº 5

 $\operatorname{Posons} \left(1+\sqrt{3}\right)^n = a_n + b_n \sqrt{3} \text{ où } a_n \text{ et } b_n \text{ sont des entiers naturels puis } \left(1-\sqrt{3}\right)^n = a_n - b_n \sqrt{3} \text{ et donc } a_n + b_n \sqrt{3} \text{ et donc$

$$(1+\sqrt{3})^{2n+1}+(1-\sqrt{3})^{2n+1}=2a_{2n+1}\in\mathbb{N}.$$

 $\mathrm{Mais} \ \mathrm{de} \ \mathrm{plus}, \ -1 < 1 - \sqrt{3} < 0 \ \mathrm{et} \ \mathrm{donc}, \ \mathrm{puisque} \ 2n + 1 \ \mathrm{est} \ \mathrm{impair}, \ -1 < \left(1 - \sqrt{3}\right)^{2n+1} < 0. \ \mathrm{Par} \ \mathrm{suite},$

$$2a_{2n+1} < (1+\sqrt{3})^{2n+1} < 2a_{2n+1} + 1$$

ce qui montre que $\left\lfloor \left(1+\sqrt{3}\right)^{2n+1} \right\rfloor = 2\mathfrak{a}_{2n+1} = \left(1+\sqrt{3}\right)^{2n+1} + \left(1-\sqrt{3}\right)^{2n+1}$ et montre déjà que $\left\lfloor \left(1+\sqrt{3}\right)^{2n+1} \right\rfloor$ est un entier pair. Mais on en veut plus :

$$(1+\sqrt{3})^{2n+1} + (1-\sqrt{3})^{2n+1} = (1+\sqrt{3})\left((1+\sqrt{3})^2\right)^n + (1-\sqrt{3})\left((1-\sqrt{3})^2\right)^n$$

$$= (1+\sqrt{3})\left(4+2\sqrt{3}\right)^n + (1-\sqrt{3})\left(4-2\sqrt{3}\right)^n$$

$$= 2^n\left[\left(1+\sqrt{3}\right)\left(2+\sqrt{3}\right)^n + \left(1-\sqrt{3}\right)\left(2-\sqrt{3}\right)^n\right]$$

Montrons enfin que $\left(1+\sqrt{3}\right)\left(2+\sqrt{3}\right)^n+\left(1-\sqrt{3}\right)\left(2-\sqrt{3}\right)^n$ est un entier, pair. Mais, $\left(1+\sqrt{3}\right)\left(2+\sqrt{3}\right)^n$ est de la forme $A+B\sqrt{3}$ où A et B sont des entiers naturels et donc, puisque $\left(1-\sqrt{3}\right)\left(2-\sqrt{3}\right)^n=A-B\sqrt{3}$, on a finalement $\left(1+\sqrt{3}\right)\left(2+\sqrt{3}\right)^n+\left(1-\sqrt{3}\right)\left(2-\sqrt{3}\right)^n=2A$ où A est un entier.

Donc, $\left(1+\sqrt{3}\right)\left(2+\sqrt{3}\right)^n+\left(1-\sqrt{3}\right)\left(2-\sqrt{3}\right)^n$ est un entier pair, ou encore $\left(1+\sqrt{3}\right)^{2n+1}+\left(1-\sqrt{3}\right)^{2n+1}=\left\lfloor \left(1+\sqrt{3}\right)^{2n+1}\right\rfloor$ est un entier divisible par 2^{n+1} .

Exercice nº 6

Soit $\mathfrak n$ un entier naturel non nul. On note $\sigma(\mathfrak n)$ la somme de ses chiffres en base 10. Si $\mathfrak n=c_0+10c_1+...+10^kc_k$ où $k\in\mathbb N,\,0\leqslant c_i\leqslant 9$ pour $0\leqslant i\leqslant k$ et $c_k\neq 0$, alors

$$\sigma(n) = c_0 + ... + c_k \leqslant 9(k+1) = 9(|\log n| + 1) \leqslant 9(\log n + 1).$$

Donc,

 $A = \sigma(4444^{4444}) \leqslant 9(\log(4444^{4444}) + 1) \leqslant 9(4444\log(10^5) + 1) = 9(4444 \times 5 + 1) = 9 \times 22221 = 199989.$

Puis, $B = \sigma(A) \leqslant 1 + 5 \times 9 = 46$, puis $\sigma(B) \leqslant \sigma(39) = 12$. Donc, $1 \leqslant \sigma(B) \leqslant 12$.

D'autre part, on sait que modulo 9 : $\sigma(B) \equiv B \equiv A \equiv 4444^{4444}$. Enfin, $4444^{4444} = (9 \times 493 + 7)^{4444} \equiv 7^{4444}$ [9]. De plus, $7 \equiv -2$ [9] puis $7^2 \equiv 4$ [9] puis $7^3 \equiv -8 \equiv 1$ [9] et donc $7^{4444} = (7^3)^{1481} \times 7 \equiv (1^3)^{1481} \times 7 \equiv 7$ [9]. Finalement, $1 \le \sigma(B) \le 12$ et $\sigma(B) \equiv 7$ [9] ce qui impose

$$\sigma(B) = 7.$$

Exercice nº 7

On a trois possibilités : $p \in 3\mathbb{Z}$, $p \in 3\mathbb{Z} + 1$ ou $p \in 3\mathbb{Z} - 1$.

Dans les deux derniers cas, $p^2 \in 1 + 3\mathbb{Z}$ et $8p^2 + 1 \in 9 + 3\mathbb{Z} = 3\mathbb{Z}$. Mais alors, $8p^2 + 1$ est premier et multiple de 3 ce qui impose $8p^2 + 1 = 3$. Cette dernière égalité est impossible.

Il ne reste donc que le cas où p est premier et multiple de 3, c'est-à-dire p=3 (en résumé, p et $8p^2+1$ premiers impliquent p=3). Dans ce cas, $8p^2+1=73$ et $8p^2-1=71$ sont effectivement premiers.

Exercice nº 8

- $1) \ \mathrm{Pour} \ 1 \leqslant k \leqslant n, \ k \binom{n}{k} = n \binom{n-1}{k-1}. \ \mathrm{Donc}, \ \mathrm{si} \ k \ \mathrm{et} \ n \ \mathrm{sont} \ \mathrm{premiers} \ \mathrm{entre} \ \mathrm{eux}, \ \mathrm{puisque} \ n \ \mathrm{divise} \ k \binom{n}{k}, \ \mathrm{le} \ \mathrm{th\acute{e}or\grave{e}me} \ \mathrm{de}$ Gauss permet d'affirmer que n divise $\binom{n}{k}.$
- $2) \text{ De même, } (n+1) \binom{2n}{n-1} = n \binom{2n}{n} \text{ montre que } (n+1) \text{ divise } n \binom{2n}{n} \text{ et, puisque } n \text{ et } (n+1) \text{ sont premiers entre eux } (d'après \text{ Bezout puisque } (n+1)-n=1), \ (n+1) \text{ divise } \binom{2n}{n} \text{ d'après le théorème de Gauss.}$

Exercice nº 9

1) Posons d = PGCD(x, y) et m = PPCM(x, y). d divise $m = 105 = 3 \times 5 \times 7$ mais, puisque d divise x et y, d divise aussi $x + y = 56 = 2^3 \times 7$. Donc, d divise PGCD(105, 56) = 7 et nécessairement d = 1 ou d = 7.

1er cas. d = 1 fournit, puisque m = 105, xy = md = 105. x et y sont donc les solutions de l'équation $X^2 - 56X + 105 = 0$ qui n'admet pas de solutions entières.

2ème cas. d = 7 fournit $xy = 7 \times 105 = 735$. x et y sont donc les solutions de l'équation $X^2 - 56X + 735 = 0$ qui admet les solutions 21 et 35.

Réciproquement, 21 + 35 = 56 et $PPCM(21, 35) = 3 \times 5 \times 7 = 105$. Donc

$$\mathscr{S} = \{(21, 35), (35, 21)\}.$$

2) On pose x = dx' et y = dy' avec x' et y' premiers entre eux et $d = \operatorname{PGCD}(x,y)$. Le système s'écrit $\begin{cases} x' - y' = 1 \\ dx'y' = 72 \end{cases}$ ou encore $\begin{cases} x' = y' + 1 \\ d(y' + 1)y' = 72 \end{cases}$. En particulier, y' et y' + 1 sont deux diviseurs consécutifs de 72. $72 = 2^3 \times 3^2$ admet $4 \times 3 = 12$ diviseurs à savoir 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Donc y' est élément de $\{1, 2, 3, 8\}$.

1er cas. y' = 1 fournit $d = \frac{72}{1 \times 2} = 36$ puis $y = 36 \times 1 = 36$ et x = y + d = 72. Réciproquement, 72 - 36 = 36 = PGCD(36,72) et PPCM(36,72) = 72.

2ème cas. y' = 2 fournit d = 12, y = 24, x = 36 qui réciproquement conviennent.

3ème cas. y' = 3 fournit d = 6, y = 18, x = 24 qui réciproquement conviennent.

4ème cas. y' = 8 fournit d = 1, y = 8, x = 9 qui réciproquement conviennent.

$$S = \{(9, 8), (24, 18), (36, 24), (72, 36)\}.$$

3) Posons d = PGCD(x, y) et m = PPCM(x, y). d divise m et donc d divise $m - d = 243 = 3^5$ puis $d \in \{1, 3, 9, 27, 81, 243\}$. On pose alors x = dx', y = dy' avec x' et y' premiers entre eux.

1er cas. Si d=1 on a x'y'-1=243 ou encore $x'y'=244=2^2\times 61$ ce qui fournit les possibilités (en n'oubliant pas que x' et y' sont premiers entre eux) :

x' = 1, y' = 244 puis x = 1 et y = 244,

x' = 4, y' = 61 puis x = 4 et y = 61,

x' = 61, y' = 4 puis x = 61 et y = 4,

x' = 244, y' = 1 puis x = 244 et y = 1 qui réciproguement conviennent.

2ème cas. Si d = 3, on a 3x'y' - 3 = 243 puis $x'y' = 81 + 1 = 82 = 2 \times 41$ ce qui fournit les possibilités :

x' = 1, y' = 82 puis x = 3 et y = 246,

x' = 2, y' = 41 puis x = 6 et y = 123,

x' = 41, y' = 2 puis x = 123 et y = 6,

x' = 82, y' = 1 puis x = 246 et y = 3 qui réciproquement conviennent.

3ème cas. Si d = 9 on a $x'y' = 27 + 1 = 28 = 2^2 \times 7$ ce qui fournit les possibilités :

x' = 1, y' = 28 puis x = 9 et y = 252,

x' = 4, y' = 7 puis x = 36 et y = 63,

x' = 7, y' = 4 puis x = 63 et y = 36,

x' = 28, y' = 1 puis x = 252 et y = 9 qui réciproquement conviennent.

4ème cas. Si d = 27 on a $x'y' = 9 + 1 = 10 = 2 \times 5$ ce qui fournit les possibilités :

x' = 1, y' = 10 puis x = 27 et y = 270,

x' = 2, y' = 5 puis x = 54 et y = 135,

x' = 5, y' = 2 puis x = 135 et y = 54,

x' = 10, y' = 1 puis x = 270 et y = 27 qui réciproquement conviennent.

5ème cas. Si d = 81, on a $x'y' = 3 + 1 = 4 = 2^2$ ce qui fournit les possibilités :

x' = 1, y' = 4 puis x = 81 et y = 324,

x' = 4, y' = 1 puis x = 324 et y = 81 qui réciproquement conviennent.

6ème cas. Si d=243, on a x'y'=1+1=2 ce qui fournit les possibilités :

x' = 1, y' = 2 puis x = 243 et y = 486,

x' = 2, y' = 1 puis x = 486 et y = 243 qui réciproquement conviennent.

Exercice nº 10

Soit n un entier supérieur ou égal à 2.

$$(n-2)^2 + (n-1)^2 + n^2 + (n+1)^2 + (n+2)^2 = 5n^2 + 10 = 5(n^2 + 2).$$

 $5(n^2+2)$ devant être un carré parfait, n^2+2 doit encore être divisible par 5 mais si n est dans $5\mathbb{Z}$, n^2+2 est dans $2+5\mathbb{Z}$, si n est dans $\pm 1+5\mathbb{Z}$, n^2+2 est dans $3+5\mathbb{Z}$ et si n est dans $\pm 2+5\mathbb{Z}$, n^2+2 est dans $1+5\mathbb{Z}$ et n^2+2 n'est jamais divisible par 5. Une somme de cinq carrés d'entiers consécutifs n'est donc pas un carré parfait.

Exercice nº 11

Soient n et m deux entiers naturels tels que n < m. Posons m = n + k avec k > 0. On note que

$$F_{\mathfrak{m}} = 2^{2^{\mathfrak{n}+k}} + 1 = \left(2^{2^{\mathfrak{n}}}\right)^{2^k} + 1 = \left(F_{\mathfrak{n}} - 1\right)^{2^k} + 1.$$

En développant l'expression précédente par la formule du binôme de Newton et en tenant compte du fait que 2^k est pair puisque k est strictement positif, on obtient une expression de la forme

$$F_m = q \times F_n + 1 + 1 = q \times F_n + 2$$

où q est un entier.

Le PGCD de F_n et F_m doit encore diviser $F_m - q \times F_n = 2$ et vaut donc 1 ou 2. Enfin, puisque 2^n et 2^m sont strictement positifs, F_n et F_m sont impairs et leur PGCD vaut donc 1 (ce résultat redémontre aussi l'existence d'une infinité de nombres premiers).

Exercice nº 12

1) Pour n entier naturel non nul donné, posons $v_n = u_{n+1}u_{n-1} - u_n^2$. Alors,

$$\nu_{n+1} = u_{n+2}u_n - u_{n+1}^2 = \left(u_n + u_{n+1}\right)u_n - u_{n+1}\left(u_{n-1} + u_n\right) = u_n^2 - u_{n+1}u_{n-1} = -\nu_n.$$

La suite ν est donc une suite géométrique de raison -1 et on a :

$$\forall n \in \mathbb{N}^*, \ \nu_n = (-1)^{n-1} \nu_1 = (-1)^n.$$

Cette égalité s'écrit encore $((-1)^n u_{n-1}) u_{n+1} + ((-1)^{n+1} u_n) u_n = 1$ et le théorème de Bezout permet d'affirmer que pour tout entier naturel n, les entiers u_n et u_{n+1} sont premiers entre eux (il est clair par récurrence que la suite u est à valeurs entières).

2) • Pour m = 1 et n entier naturel quelconque :

$$u_{n+m} = u_{n+1} = u_{n+1} \times 1 + u_n \times 0 = u_{n+1}u_1 + u_nu_0 = u_{n+1}u_m + u_{m-1}u_n$$
.

Pour m = 2 et n entier naturel quelconque :

$$u_{n+m} = u_{n+2} = u_{n+1} + u_n = u_{n+1}u_2 + u_nu_1 = u_{n+1}u_m + u_{m-1}u_n$$
.

• Soit $m \ge 1$. Supposons que pour tout entier naturel n, on a $u_{n+m} = u_{n+1}u_m + u_{m-1}u_n$ et $u_{n+m+1} = u_{n+1}u_{m+1} + u_mu_n$. Alors, pour tout entier naturel n,

$$\begin{split} u_{n+m+2} &= u_{n+m+1} + u_{n+m} = u_{n+1} u_{m+1} + u_m u_n + u_{n+1} u_m + u_{m-1} u_n \text{ (par hypothèse de récurrence)} \\ &= u_{n+1} (u_{m+1} + u_m) + u_n (u_m + u_{m-1}) = u_{n+1} u_{m+2} + u_n u_{m+1}. \end{split}$$

ce qui démontre l'égalité proposée par récurrence.

Soient n et m deux entiers naturels non nuls tels que $n \ge m$. La division euclidienne de n par m s'écrit n = mq + r avec q et r entiers tels que $0 \le r \le m - 1$.

Or, $u_{m+r} = u_m u_{r+1} + u_{m-1} u_r$. Par suite, un diviseur commun à u_m et u_r divise encore u_m et u_{m+r} et réciproquement un diviseur commun à u_m et u_{m+r} divise $u_{m-1} u_r$. Mais, u_m et u_{m-1} sont premiers entre eux et, d'après le théorème de Gauss, un diviseur commun à u_m et u_{m+r} divise u_r . Les diviseurs communs à u_m et u_r sont encore les diviseurs communs à u_m et u_{m+r} et donc :

$$PGCD(u_m, u_r) = PGCD(u_m, u_{m+r}).$$

Puis, par récurrence

$$\operatorname{PGCD}\left(u_{\mathfrak{m}},u_{r}\right)=\operatorname{PGCD}\left(u_{\mathfrak{m}},u_{\mathfrak{m}+r}\right)=\operatorname{PGCD}\left(u_{\mathfrak{m}},u_{\mathfrak{m}+2r}\right)=...=\operatorname{PGCD}\left(u_{\mathfrak{m}},u_{\mathfrak{q}\mathfrak{m}+r}\right)=\operatorname{PGCD}\left(u_{\mathfrak{m}},u_{\mathfrak{m}}\right).$$

Ainsi, les algorithmes d'Euclide appliqués d'une part à u_m et u_n et d'autre part à m et n s'effectuent en parallèle et en particulier, $\operatorname{PGCD}(u_m, u_n) = u_{\operatorname{PGCD}(m,n)}$.

Exercice nº 13

1) Posons d = PGCD(x, y, z) puis x = dx', y = dy' et z = dz' où PGCD(x', y', z') = 1.

$$x^2 + y^2 = z^2 \Leftrightarrow d^2(x'^2 + y'^2) = d^2z'^2 \Leftrightarrow x'^2 + y'^2 = z'^2,$$

avec PGCD(x', y', z') = 1, ce qui montre que l'on peut se ramener au cas où x, y et z sont premiers entre eux.

Supposons donc x, y et z premiers entre eux (dans leur ensemble). Soit p un nombre premier. Si p divise x et y alors p divise $x^2 + y^2 = z^2$ et donc p est également un facteur premier de z contredisant le fait que x, y et z sont premiers entre eux. Donc, x et y sont premiers entre eux.

Si p divise x et z alors p divise $z^2 - x^2 = y^2$ et donc p est également un facteur premier de y, contredisant le fait que x, y et z sont premiers entre eux. Donc, x et z sont premiers entre eux. De même, y et z sont premiers entre eux. Finalement, x, y et z sont premiers entre eux deux à deux.

2) Puisque x, y et z sont deux à deux premiers entre eux, parmi les nombres x, y et z, il y a au plus un nombre pair. Mais si ces trois nombres sont impairs, $x^2 + y^2 = z^2$ est pair en tant que somme de deux nombres impairs contredisant le fait que z est impair. Ainsi, parmi les nombres x, y et z, il y a exactement un nombre pair et deux nombres impairs.

Si x et y sont impairs, alors d'une part, z est pair et z^2 est dans $4\mathbb{Z}$ et d'autre part x^2 et y^2 sont dans $1+4\mathbb{Z}$. Mais alors, x^2+y^2 est dans $2+4\mathbb{Z}$ excluant ainsi l'égalité $x^2+y^2=z^2$. Donc, z est impair et l'un des deux nombres x ou y est pair. Supposons, quite à permuter les lettres x et y, que x est impair et y est pair.

Posons alors y=2y' puis $X=\frac{z+x}{2}$ et $Z=\frac{z-x}{2}$ (puisque x et z sont impairs, X et Z sont des entiers).

3) On a

$$x^2 + y^2 = z^2 \Leftrightarrow 4y'^2 = (z + x)(z - x) \Leftrightarrow y'^2 = XZ.$$

Un diviseur commun à X et Z divise encore z = Z + X et x = Z - X et est donc égal à ± 1 puisque x et z sont premiers entre eux. X et Z sont des entiers premiers entre eux.

Le produit des deux entiers X et Z est un carré parfait et ces entiers sont premiers entre eux. Donc, un facteur premier de X n'apparaît pas dans Z et apparaît donc dans X à un exposant pair ce qui montre que X est un carré parfait. De même, Z est un carré parfait.

4) Donc, il existe deux entiers relatifs u et v tels que $X=u^2$ et $Z=v^2$. Mais alors, $z=Z+X=u^2+v^2$ et $x=Z-X=u^2-v^2$. Enfin, $y^2=z^2-x^2=(u^2+v^2)^2-(u^2-v^2)^2=4u^2v^2$ et donc, y=2uv quite à remplacer u par -u. En résumé, si $x^2+y^2=z^2$ alors il existe $(d,u,v)\in\mathbb{N}^*\times\mathbb{Z}\times\mathbb{Z}$ tel que $x=d\left(u^2-v^2\right)$, y=2duv et $z=d\left(u^2+v^2\right)$ ou bien x=2duv, $y=d\left(u^2-v^2\right)$ et $z=d\left(u^2+v^2\right)$.

Réciproquement,

$$(d(u^2-v^2))^2 + (2duv)^2 = d^2(u^4 + 2u^2v^2 + v^4) = (d(u^2+v^2))^2$$

et on a trouvé tous les triplets Pythagoriciens. Par exemple, d=1, u=2 et v=1 fournissent le triplet (3,4,5). d=2, u=2 et v=1 fournissent le triplet (6,8,10) et d=1, u=3 et v=2 fournissent le triplet (5,12,13).

Exercice nº 14

Soient x et y deux entiers naturels tels que $3x^3 + xy + 4y^3 = 349$. On a $4y^3 \le 3x^3 + xy + 4y^3 = 349$ et donc

$$y \leqslant \sqrt[3]{\frac{349}{4}} = 4, 4...$$

Donc, $y \in \{0, 1, 2, 3, 4\}$. De même, $3x^3 \le 3x^3 + xy + 4y^3 = 349$ et donc

$$x \leqslant \sqrt[3]{\frac{349}{3}} = 4, 8...$$

Donc, $x \in \{0, 1, 2, 3, 4\}$ ce qui ne laisse plus que $5 \times 5 = 25$ couples candidats. Ensuite,

y = 0 donne $3x^3 = 349$ qui ne fournit pas de solutions.

y = 1 donne $3x^3 + x - 345 = 0$, équation dont aucun des entiers de 0 à 4 n'est solution.

y = 2 donne $3x^3 + 2x - 317 = 0$, équation dont aucun des entiers de 0 à 4 n'est solution.

y = 3 donne $3x^3 + 3x - 241 = 0$, équation dont aucun des entiers de 0 à 4 n'est solution.

y = 4 donne $3x^3 + 4x - 93 = 0$ dont seul x = 3 est solution.

$$S = \{(3,4)\}.$$

Exercice nº 15

Si $x \ge 5$ et $5 \le k \le x$, alors k! est divisible par $2 \times 5 = 10$ puis $\sum_{k=5}^{x} k!$ est divisible par 10. D'autre part, 1! + 2! + 3! + 4! = 33

et le chiffre des unités de $\sum_{k=1}^{x} k!$ est 3. $\sum_{k=1}^{x} k!$ n'est donc pas un carré parfait car le chiffre des unités (en base 10) d'un

carré parfait est à choisir parmi 0, 1, 4, 5, 6, 9. Donc, $x \le 4$. Ensuite, $1! = 1 = 1^2$ puis 1! + 2! = 1 + 2 = 3 n'est pas un carré parfait, puis $1! + 2! + 3! = 9 = 3^2$ puis 1! + 2! + 3! + 4! = 33 n'est pas un carré parfait.

$$S = \{(1,1), (3,3)\}.$$

Exercice no 16

$$n = 9 + 8(10 + 10^{2} + ... + 10^{p-1}) + 4(10^{p} + ... + 10^{2p-1}) = 9 + 80\frac{10^{p-1} - 1}{10 - 1} + 4 \times 10^{p}\frac{10^{p} - 1}{10 - 1}$$

$$= \frac{1}{9} \left(81 + 80 \left(10^{p-1} - 1 \right) + 4 \times 10^{p} \left(10^{p} - 1 \right) \right) = \frac{1}{9} (4 \times 10^{2p} + 4 \times 10^{p} + 1) = \left(\frac{2 \times 10^{p} + 1}{3} \right)^{2},$$

(ce qui montre déjà que n est le carré d'un rationnel). Maintenant, modulo 3,

$$2 \times 10^{p} + 1 \equiv 2 \times 1^{p} + 1 \equiv 0$$

et $2 \times 10^p + 1$ est un entier divisible par 3 ou encore $\frac{2 \times 10^p + 1}{3}$ est un entier. Finalement, $n = \left(\frac{2.10^p + 1}{3}\right)^2$ est bien le carré d'un entier.

Exercice nº 17

Pour $k \in \mathbb{N}$, posons $a_k = 11...1$ (k+1 chiffres 1 en base 10).

Soit n un entier naturel quelconque.

La division euclidienne de a_k par n s'écrit : $a_k = n \times q_k + r_k$ où q_k et r_k sont des entiers naturels tels que $0 \leqslant r_k \leqslant n-1$.

Les n+1 entiers r_0, \ldots, r_n sont à choisir parmi les n entiers $0, 1, \ldots, n-1$. Les n+1 restes considérés ne peuvent donc être deux à deux distincts (principe des tiroirs). Par suite,

$$\exists (k, l) \in \mathbb{N}^2 / 0 \leq k < l \leq n \text{ et } r_k = r_l.$$

Mais alors, $a_l - a_k = (q_l - q_k)n$ est un multiple de n. Comme $a_l - a_k = 11...10...0$ (l - k chiffres 1 et k + 1 chiffres 0), on a montré que tout entier naturel admet un multiple de la forme $11...10...0 = 11...1 \times 10^{k+1}$. Si de plus n est impair, non divisible par 5, alors n est premier à 2 et à 5 et donc à 10^{k+1} . D'après le théorème de GAUSS, n divise 11...1.

Exercice no 18

1)
$$u_n^2 = (2^{n+1} + 1)^2 = 2^{2n+2} + 2^{n+2} + 1 = 10...010...01_2 (n-1 \text{ puis } n+1 \text{ chiffres } 0)$$

2)

$$\begin{aligned} u_n^3 &= \left(2^{n+1}+1\right)^3 = 2^{3n+3}+3\times 2^{2n+2}+3\times 2^{n+1}+1 = 2^{3n+3}+(2+1)\times 2^{2n+2}+(2+1)\times 2^{n+1}+1 \\ &= 2^{3n+3}+2^{2n+3}+2^{2n+2}+2^{n+2}+2^{n+1}+1 = 10...0110...0110...01_2 \end{aligned}$$

(n-1 puis n-1 puis n chiffres 0)

3)

$$u_n^3 - u_n^2 + u_n = 2^{3n+3} + 3 \times 2^{2n+2} + 3 \times 2^{n+1} + 1 - 2^{2n+2} - 2^{n+2} - 1 + 2^{n+1} + 1 = 2^{3n+3} + 2^{2n+3} + 2^{n+2} + 1 = 10...010...010...01$$

(n-1) puis n puis n+1 chiffres 0).

Exercice nº 19

1) Soit $n \in \mathbb{N}^*$. Posons $n = \sum_{k=0}^p c_k 10^k$, où $p \in \mathbb{N}$, et $\forall k \in [0,p]$, $c_k \in [0,9]$, et $c_p \neq 0$. Le nombre de chiffres de n est alors p+1. L'entier p vérifie $10^p \leq n < 10^{p+1}$ ou encore $p \leq \log n < p+1$. Par suite, $p = |\log n|$. Ainsi,

le nombre de chiffres de $\mathfrak n$ en base 10 est $\lfloor \log \mathfrak n \rfloor + 1$.

- 2) Pour $n \in \mathbb{N}^*$, posons $u_n = \frac{\sigma(n+1)}{\sigma(n)}$
- a) Soit $n \in \mathbb{N}^*$. Posons $n = c_p 10^p + ... + 10c_1 + c_0 = \overline{c_p...c_1c_0}_{10}$. Si au moins un des chiffres de n n'est pas 9, on note k le plus petit indice tel que $a_k \neq 9$. Alors, $0 \leqslant k \leqslant p-1$ et $n = \overline{a_p...a_k9...9}_{10}$ et $n+1 = \overline{a_p...a_{k+1}(a_k+1)0...0}_{10}$. Dans ce cas, si k=0,

$$\frac{\sigma(n+1)}{\sigma(n)} = \frac{\sigma(n)+1}{\sigma(n)} = 1 + \frac{1}{\sigma(n)} \leqslant 1 + 1 = 2.$$

et si $1 \leq k \leq p-1$,

$$\frac{\sigma(n+1)}{\sigma(n)} = \frac{\alpha_p + ... + \alpha_k + 1}{\alpha_p + ... + \alpha_k + 9k} \leqslant \frac{\alpha_p + ... + \alpha_k + 1}{\alpha_p + ... + \alpha_k + 1} = 1 \leqslant 2.$$

Sinon, tous les chiffres de n sont égaux à 9, et dans ce cas.

$$\frac{\sigma(n+1)}{\sigma(n)} = \frac{1}{9(p+1)} \leqslant 2.$$

Ainsi, pour tout entier naturel non nul n, on a $u_n \leq 2$. La suite u est donc bornée.

 $\mathrm{Pour}\; p \in \mathbb{N}^*, \, u_{10^p-1} = \frac{\sigma\left(10^p\right)}{\sigma\left(10^p-1\right)} = \frac{1}{9p}.\; \mathrm{La\;suite\;extraite}\; \left(u_{10^p-1}\right)_{p \in \mathbb{N}} \; \mathrm{converge\;et\;a\;pour\;limite}\; 0.$

 $\mathrm{Pour}\; \mathfrak{p} \in \mathbb{N}^*, \, \mathfrak{u}_{10^p} = \frac{\sigma(10^p+1)}{\sigma(10^p)} = \frac{2}{1} = 2. \; \mathrm{La\; suite \; extraite} \; (\mathfrak{u}_{10^p})_{\mathfrak{p} \in \mathbb{N}} \; \mathrm{converge \; et \; a \; pour \; limite} \; 2 \neq 0.$

On en déduit que la suite u diverge.

La suite $\mathfrak u$ est bornée et diverge.

b) Avec les notations du a), $1 \le \sigma(n) \le 9(p+1) = 9(|\log n| + 1) \le 9(\log n + 1)$.

$$\mathbf{c)} \; \mathrm{Soit} \; n \in \mathbb{N}^*. \; 1 \leqslant \sqrt[n]{\sigma(n)} \leqslant \sqrt[n]{9(\log n + 1)} = \exp\left(\frac{1}{n}\left(\ln 9 + \ln\left(1 + \frac{\ln n}{\ln 10}\right)\right)\right). \; \mathrm{Les \; deux \; membres \; de \; cet \; encadrement \; tendent \; vers \; 1 \; et \; donc \; la \; suite \; \left(\sqrt[n]{\sigma(n)}\right)_{n \geqslant 1} \; \mathrm{converge \; et \; } \lim_{n \to +\infty} \sqrt[n]{\sigma(n)} = 1.$$

Exercice nº 20

1) (Formule de LEGENDRE) Soit n un entier naturel supérieur ou égal à 2.

Si p est un nombre premier qui divise $n! = 1 \times 2... \times n$, alors p est un facteur premier de l'un des entiers 2,..., n et en particulier, $p \le n$. Réciproquement, il est clair que si p est un nombre premier tel que $p \le n$, p divise n!. Les facteurs premiers de n! sont donc les nombres premiers inférieurs ou égaux à n.

Soit donc p un nombre premier tel que $p \le n$. Pour trouver la valuation p-adique de n!, on compte 1 pour chaque multiple de p inférieur ou égal à n, on rajoute 1 pour chaque multiple de p^2 inférieur ou égal à n, on rajoute encore 1 pour chaque multiple de p^3 inférieur ou égal à n... et on s'arrête quand l'exposant k vérifie $p^k > n$. Or

$$n \geqslant p^k \Leftrightarrow \ln n \geqslant k \ln p \Leftrightarrow k \leqslant \frac{\ln n}{\ln p},$$

$$(\operatorname{car}\, \ln p>0). \ \operatorname{Donc}, \operatorname{si}\, k\geqslant \left\lfloor \frac{\ln n}{\ln p}\right\rfloor +1, \operatorname{alors}\, p^k>n.$$

Dit autrement, l'exposant de p est la somme du nombre de multiples de p inférieurs ou égaux à n, du nombre de multiples de p^2 inférieurs ou égaux à n... et du nombre de multiples de $p^{\lfloor \ln n/\ln p \rfloor}$ inférieurs ou égaux à n...

Soit k un entier tel que $1\leqslant k\leqslant \left|\,\frac{\ln n}{\ln p}\,\right|$ et K un entier naturel.

$$1\leqslant K\times \mathfrak{p}^k\leqslant \mathfrak{n}\Leftrightarrow \frac{1}{\mathfrak{p}^k}\leqslant K\leqslant \frac{\mathfrak{n}}{\mathfrak{p}^k}\Leftrightarrow 1\leqslant K\leqslant \left\lfloor\frac{\mathfrak{n}}{\mathfrak{p}^k}\right\rfloor.$$

Il y a donc $\left\lfloor \frac{n}{p^k} \right\rfloor$ multiples de p^k compris au sens large entre 1 et n. On a montré que la valuation p-adique de n! est

$$\boxed{\nu_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots}$$

2) Tout d'abord $10 = 2 \times 5$. L'exposant de 5 dans la décomposition primaire de 1000! est

$$\left\lfloor \frac{1000}{5} \right\rfloor + \left\lfloor \frac{1000}{5^2} \right\rfloor + \left\lfloor \frac{1000}{5^3} \right\rfloor + \left\lfloor \frac{1000}{5^4} \right\rfloor = 200 + 40 + 8 + 1 = 249.$$

L'exposant de 2 est évidemment supérieur (il y a déjà au moins 500 nombres pairs entre 1 et 1000). Donc, la plus grande puissance de 10 divisant 1000! est encore la plus grande puissance de 5 divisant 1000!, à savoir 249. L'écriture en base 10 de 1000! se termine par 249 zéros.

Exercice nº 21

Soit p un nombre premier.

- 1) Soit p un nombre premier et k un entier tel que $1 \le k \le p-1$. On a $k \binom{p}{k} = p \binom{p-1}{k-1}$. Donc, p divise $k \binom{p}{k}$. Mais, p est premier et donc p est premier à tous les entiers compris entre 1 et p-1 au sens large. D'après le théorème de Gauss, p divise $\binom{p}{k}$.
- 2) Soit p un nombre premier. Montrons par récurrence que $\forall a \in \mathbb{N}^*, a^p \equiv a(p)$.
- C'est clair pour a = 1.
- \bullet Soit $\alpha\geqslant 1.$ Supposons que $\alpha^p\equiv \alpha$ (p). On a alors

$$(a+1)^p = \sum_{k=0}^p \binom{p}{k} a^k = a^p + 1 + \sum_{k=1}^{p-1} \binom{p}{k} a^k$$
$$\equiv a^p + 1 \ (p) \quad (d'après \ 1))$$
$$\equiv a+1 \ (p) \quad (par \ hypothèse \ de \ récurrence)$$

On a montré par récurrence que

$$\forall a \in \mathbb{N}^*, \ a^p \equiv a \ (p).$$

Exercice $n^o 22$

Soit p un entier naturel supérieur ou égal à 2.

Supposons que $(p-1)! \equiv -1$ (p). Il existe donc un entier relatif $\mathfrak a$ tel que $(p-1)! = -1 + \mathfrak a p$ (*).

Soit
$$k \in [1, p-1]$$
. L'égalité $(*)$ s'écrit encore $k\left(-\prod_{j \neq k} j\right) + \alpha p = 1$. Le théorème de Bezout permet alors d'affirmer que k et p sont premiers entre eux. Ainsi, p est premier avec tous les entiers naturels éléments de $[1, p-1]$ et donc, p est un

nombre premier.