Solución del examen 3 puntos 1,2,3,5

Teorema 0.1. Sea $u \in C^2(\mathbb{R} \times (0,\infty))$ siendo la solución de la ecuación $u_t = a^2u_{xx} + bu_x + cu + f(x,t)$ donde a,b,c son constantes reales y f es una función dada. Defina la función v por $v(x,t) = e^{-ct}u(x-bt,t)$ para $x \in \mathbb{R}$ y t > 0. Entonces v satisface la ecuación no homogénea $v_t = a^2v_{xx} + e^{-ct}f(x,t)$.

Ejercicio 0.2. Resuelve el PVI

$$u_t = a^2 u_{xx} + bu_x + cu + f(x, t), \quad x \in \mathbb{R}, \quad t > 0, \quad u(x, 0) = u_0(x), \quad x \in \mathbb{R}$$

con los siguientes datos:

- 1. $f(x,t) = t \sin x$, $u_0 = 1$, a = c > 0, b = 0.
- 2. $f(x,t)=h(t)\in C^1([0,\infty))$ y u_0 es una función continua acotada.

Ejercicio 0.3. Supongamos que $u_0 \in C(\mathbb{R})$ satisface la condición de que $|u_0(x)| \leq Me^{-\delta|x|}$ para todo $x \in \mathbb{R}$ y para algunas constantes $M > 0, \delta > 0$. Demuestre que la solución u de la ecuación de calor $u_t = a^2 u_{xx}$ con dato inicial u_0 satisface la estimativa

$$|u(x,t)| \le M(1 + 4a^2\delta t)^{-1/2} \exp\left(-\frac{\delta|x|^2}{1 + 4a^2\delta t}\right)$$

Ejercicio 0.4. 5. Considere la ecuación de onda $u_{tt} - c^2 u_{xx} = 0$, x > 0, t > 0 en el primer cuadrante e imponga la siguiente condición de frontera en la frontera x = 0:

$$u_t + \alpha u_x = 0$$
, $x = 0$, $t > 0$,

y las condiciones iniciales en t = 0, x > 0.

- 1. Si $\alpha \neq c$, derive una fórmula para la solución.
- 2. Si α = c, demuestre que no existe una solución en general, pero existe si las condiciones iniciales satisfacen algunas condiciones adicionales. Interprete la condición de frontera en este caso geométricamente.