

PRÄSENTATION - SCHIENENCODE

Ahmed L'harrak
Anna Lisa Müller
Bjarne Bensel
Christopher-Marcel Klein
Florian Hardy Vogel
Kai Bastian Badde
Ronja Haas

Übersicht

- Workflow
- Spielkonzept
- Level Editor
- Design
- Drag and Drop
- Multiplayer und Mirror
- Datenbank
- Steuerung
- Vorausschau
- Live-Demo

VON UNS GENUTZTE DIENSTE

Diese Tools haben wir zur Koordinierung und Umsetzung unseres Projekts verwendet.

Gitlab

-lssues

-Wiki

-Versionskontrolle

Discord

-Meetings

-Filesharing

-Termine

Unity

-Game-Engine

-Editor

WhatsApp

-Schnelle Kommunikation

-Kurzfristige Rücksprachen

Firebase

-Echtzeit Datenbank

-Später: Schnittstelle für

Dozenten

Google Drive

-Filesharing

-Simultanes Arbeiten

Big Blue Button

-Besprechung mit Tutoren

-Informationsquelle

AUFTEILUNG IN TEAMS

In jedem Sprint teilen wir Aufgaben neu auf. Vieles besprechen wir gemeinsam.

Dennoch haben sich lockere aber spezialisierte Teams gebildet:

Steuerung und Mirror: Florian und Bjarne (und Ahmed)

Grid und Prefabs (und Wiki): Ronja und Lisa

Drag and Drop: Ahmed

Datenbank und Scrum: Bastian (und Christopher)

Kontinuierliche Integration: Christopher

SPRINTS

- Wöchentliches Meeting
- Planning Poker
- 3 Sprints
 - O Durchschnittlich 134 Punkte = ca. Arbeitsaufwand in Stunden
- Wiki
 - Festhalten der Sprints inklusive Punkte
- Issue-Board
 - Organisation von Sprints

Ziel	Punkteplanung
Gamekonzept erstellen	40
User Stories	20
MockUps	20
Klassendiagramm	13
Grafiken sichten	8
Einarbeitung in Mirror	20
Einarbeitung in Firebase	13
= Insgesamt	134

- Kontrollstrukturen sind Stoff des 1. Semesters.
- Erstsemester Studenten häufig noch unentschlossen.
- Lernspiel motiviert und vereinfacht den Lernprozess.

LERNSPIEL - WAS WIRD GELERNT?

Im Mittelpunkt liegt das Erlernen von Kontrollstrukturen aus der alltäglichen Programmierung:

If-Verzweigungen

Kopfgesteuerte Schleifen Fußgesteuerte Schleifen

SPIELIDEE

Das Spiel besteht in seinen Grundzügen aus drei Hauptbestandteilen:

Aufträgen

Kontrollstrukturen

Definition von Bedingungen

SPIELBRETT

Ein Spielbrett besteht aus:

- Einem Gridfeld mit besetzen bzw. unbesetzen Feldern
- Einen Auswahlbalken, über den Kontrollstrukturen (KS) in freie Felder eingesetzt werden können
- Das Verhalten der KS kann durch den Spieler definiert werden

SPIELMODUS

Wir beschränken uns zunächst auf den kompetitiven Modus.

Alle Spieler erhalten die gleiche Aufgabe. Es gewinnt der Spieler, der zuerst die korrekten Einstellungen getroffen und bestätigt hat.

Der Single-Player Modus ist mit einem Spiel des kompetitiven gleichzusetzen, welchem nur ein Spieler beigetreten ist.

MISSIONEN

- Aufgaben
 - Streckenaufbau
 - o Programmieren der Fahrtroute
 - Ladung aufsammeIn
 - Schwierigkeitsgrade
- Timer
 - O Streckenaufbau & Programmieren
 - O Zum Fahren der Strecke
 - Punkteberechnung

LEVEL EDITOR

- Level erstellen
- Beliebiges Objekt / Prefab
 - Vorschau
 - Platzieren
 - Löschen
- Raster
 - hilft bei der Positionierung

DESIGN

- Low Polygon Style
 - O Geringe Rechenkapazität nötig
 - O Große Auswahl an Assets
- 6 verschiedene vorgefertigte Karten
- Spielfläche
 - Anpassbare Bodentextur
 - O Begrenzungen der Spielwelt

Drag & Drop

- Das Menü :Enthält alle platzierbaren Objekte
- Panel Fenster
 Zu jedem Element des Menü existiert
 ein passendes Anpassungs-Fenster

Nach Betätigen des Rotate

Drag & Drop

Platzierungsregeln:
 die Bedingungen, die beim Schienenbau erfüllt werden müssen

Zulässige Platzierung:

Unzulässige Platzierung:

Multiplayer Konzept

Gesamte Map		
Spieler 1	Spieler 2	
Spieler 3	Spieler 4	

- Spielbrett geviertelt
- in Bauphase nur eigenes Viertel
- in Ausführphase ganzes Brett für alle
- während der Bauphase werden die Schienen schon bei allen platziert

Datenbank

- Verwendung einer Echtzeitdatenbank (Firebase)
- Zuständig für die Sicherung und Bereitstellung von Spielfeldern.
- Spielfelder können händisch erstellt und in die Datenbank übertragen werden.
- Auslesen der Datenbank bislang bisher nur aus Entwicklersicht möglich.

Steuerung

- Zug folgt Bezier-Kurve 3. Grades
 - o vier Punkte im 3D-Raum bilden Bezier-Kurve
- Zug folgt Bezier-Kurve 3. Grades
 - Durch Aneinanderreihung der Bezier-Kurven entsteht die Fahrtroute

Was ist noch zu tun?

Missionen

Missionen müssen umgesetzt und auf ihre Erfüllung hin überprüft werden.

CI

Merkmale kontinuierlicher Integration müssen umgesetzt und angewandt werden

Kontrollstrukturen

Es fehlen noch die Implementierungen von Weichen und Tunneln (und ggf. weiteren)

Datenbank

Die Datenbank muss auch von Spielern genutzt werden können.

Schienenmodelle

Es sind noch nicht alle geplanten Schienenmodelle vorhanden.

Tests

Unsere Tests müssen ausführlich erweitert werden.

Multiplayer

Spieler müssen gegeneinander spielen können.

Framework-Integration

Integration in das SWTP-Framework

