

Image Formation II

Semester 2, 2025 Kris Ehinger

Outline

- Image formation, continued
- Colour
- Shading and surfaces
- Feature invariance

Learning outcomes

- Implement the diffuse reflectance model
- Explain how trichromatic colour values are computed and implement colour space transforms
- Explain the problems involved in recreating surface properties from a single image
- Explain "invariance" in the context of object recognition and identify invariant features

Image formation

Image formation model

Diffuse (Lambertian) reflectance

Goal of vision

Recover surface colour and normal from reflected light

Colour

Visible light

Visible light

 Spectral power distribution (SPD) = relative amount of each wavelength reflected by a surface (or produced by a light source)

 Human colour perception is based on 3 types of colour-sensitive cells (cones)

 Standard cameras also have 3 colour sensors, each with a different spectral sensitivity

 Most surfaces reflect a range of wavelengths, but perceived colour is a function of cone response

Result: many different spectra appear to be the same colour

Trichromatic colour response

 Sensor response = sensitivity x spectrum, integrated over all wavelengths

$$I_R = \int_{400}^{700} I(\lambda) S_R(\lambda) \partial \lambda$$

$$I_G = \int_{400}^{700} I(\lambda) S_G(\lambda) \partial \lambda$$

$$I_B = \int_{400}^{700} I(\lambda) S_B(\lambda) \partial \lambda$$

https://csci1230.graphics/demos/metamers/index.html

Colour representation

- Common colour spaces:
- RGB (red, green, blue)
 - Most common spaces for digital images
- HSL/HSV (hue, saturation, lightness/value)
 - Attempt to match human understanding of colour
- CIE 1931 XYZ
 - Based on human cone sensitivity, basis for other spaces
- LAB (luminance, a*=red/green, b*=blue/yellow)
 - Approximately perceptually uniform space

Colour transforms

- Converting between colour spaces is straightforward:
 - Linearize R, G, B values
 - Linear transform, e.g. $\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = M \begin{bmatrix} R \\ G \\ B \end{bmatrix}$
 - Values of M can be looked up for various colour spaces and white points (= the value defined to be "white" for a given colour space)
- Built-in functions in OpenCV, scikit-image

Example: colour swap

Swap R,G channels in RGB

Invert red-green axis in LAB

Summary

- Colour is not just three values, but human eye (and standard camera) depends on just three sensors
- Many trichromatic colour spaces
- RGB most common for image storage, other spaces may be more useful for colour manipulations

Shading and surfaces

Goal of vision

Recover surface colour and normal from reflected light

Recovering surface properties

Image: E. Adelson

Recovering surface properties

Recovering surface normal

- Assume no changes in surface colour/reflectance (constant albedo)
- Can you recover surface normal from image?

•
$$I_D(x) = \mathbf{N}(x) \cdot \mathbf{L} = \cos \theta_x$$

Recovering surface normal

- Can recover angle between surface normal and light source, but not normal
- However, can add additional assumptions:
 - Normals along boundary of object are known
 - Neighbouring normal are similar

"Shape from shading"

Image: R. Szeliski, Computer Vision, Figure 13.2

"Shape from shading"

- Recover 3D shape from 2D image based only on surface brightness (shading)
- Requires additional assumptions, no algorithm works for all cases

What if surface isn't constant albedo?

Recovering surface reflectance

 $Luminance = Reflectance \times Illumination$

Recovering surface properties

- Simple approach: assume lighting is blurry/smooth and hard edges are always due to reflectance
 - Some reflectance edges are smooth
 - Some lighting edges are not smooth (textures, corners)
- Even more complicated in practice!
 - Lighting usually isn't uniform
 - Most surfaces aren't matte/Lambertian

Cast shadows

Cast shadow – change in illumination, not change in surface

Specularity

Anisotropy

Transparency / translucency

Summary

- Goal of vision: recover object properties (shape, reflectance) from the image
- Problem is underconstrained
- Some solutions, but rely on additional assumptions (e.g., Lambertian surface, smoothness constraint)

Feature invariance

Goal of vision

$$I_D(x) = I_L R \mathbf{N}(x) \cdot \mathbf{L}$$

Not straightforward to recover reflectance (R) or normal (N)

However, **change** in I_D indicates a **change** in R or N (or I_L)

Intensity changes

Intensity changes

intensity function (along horizontal scanline)

first derivative

extrema of derivative

Gradient

Gradient of a function over x,y:

•
$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

i = unit vector in the x direction

 $\mathbf{j} =$ unit vector in the y direction

- Gradient at a single point (x,y) is a vector:
 - Direction is the direction of maximum slope:

•
$$\theta = \tan^{-1}(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x})$$

Length is the magnitude (steepness) of the slope

•
$$\|\nabla f\| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$$

Partial derivatives in x, y

Week 3, Lecture 2

COMP90086 Computer Vision

Figure: D. Hoiem42

Edge filters

Sobel (x)

Derivative of Gaussian (x)

Sobel (y)

Derivative of Gaussian (y)

Edges and image recognition

- High gradient in image indicates change in the world:
 - Occlusion boundary
 - Change in surface normal (corner)
 - Change in colour
 - Change in light intensity (cast shadow)
- Edges are invariant or tolerant to many sources of image variation

Definition of invariance

- Invariant to X = response/representation does not vary with X, is insensitive to changes in X
- Tolerant to X = response is mostly insensitive to X

Invariant to light intensity?

- Image derivative is invariant to intensity shift (I_{new} = I + b)
- Tolerant to contrast change ($I_{new} = aI$), but depends on thresholds

Invariant to light direction?

Photo: Heshan Jayakody

Invariant to translation?

Invariant to rotation?

Invariant to scale?

Invariant to 3D rotation / pose?

Summary

- Recovering world properties from a single image is an underconstrained problem
- Changes in image brightness (= image gradient, edges) indicate changes in world properties
- Most vision systems learn to detect edges because these are invariant features for object recognition