ZADANIE 1.

Pokaż, że ($\mathbb{Z}/m\mathbb{Z}$) $\otimes_{\mathbb{Z}}$ ($\mathbb{Z}/n\mathbb{Z}$) = 0 jeśli m, n są względnie pierwsze.

Załóżmy, że m, n są względnie pierwsze, czyli z równości Bezout'a:

$$am + bn = 1$$

teraz popatrzmy na dowolny element produkciku:

$$x \otimes y = (xy) \otimes (am + bn) = (xy) \otimes (am) + (xy) \otimes (bn) = (amx) \otimes y + (xy) \otimes 0 = 0 \otimes y + (xy) \otimes 0 = 0 + 0 = 0$$

Czyli każdy element jest 0, więc całość też jest 0.

ZADANIE 2.

Niech A będzie pierścieniem, $\mathfrak a$ ideałem, a M A-modułem. Pokaż, że (A/ $\mathfrak a$) \otimes_A M jest izomorficzne do M/ $\mathfrak a$ M. [Stensoruj ciąg dokładny $0 \to \mathfrak a \to A \to A/\mathfrak a \to 0$ z M

To jest tak, że jak miałam sobie

$$\mathfrak{a} \to A \to A/\mathfrak{a} \to 0$$

i jakiś losowy A-moduł M, to

$$\mathfrak{a} \otimes M \to A \otimes M \to A/\mathfrak{a} \otimes M \to 0$$

też jest ciągiem dokładnym!

Zajebiście, to teraz jak te pyśki szły? Pierwszy jest iniekcją, drugi jest suriekcją i ten drugi indukuje izomorfizm Coker(f) = M/f(M') na M'' (f to pierwsza funkcja, a myśki lecą $M' \to M \to M''$.)

Czyli co? Jak wygląda ta iniekcja $\mathfrak{a} \to A$? To jest identyczność na \mathfrak{a} lol.

Jak na razie mam, że

$$A/a \otimes M \cong (A \otimes M)/(a \otimes M) \cong AM/aM = M/aM$$

ZADANIE 3.

Niech A będzie pierścieniem lokalnym, M, N skończenie generowanymi A-modułami. Udowodnij, że $M \otimes N = 0$ wtedy M = 0 lub N = 0.

[Niech \mathfrak{m} będzie ideałem maksymalnym, $k = A/\mathfrak{m}$ będzie residue filed (to jest ciało zrobione przez wytentegowanie z tym tym). Niech $M_k = k \otimes_A M \cong M/\mathfrak{m}M$ na mocy zadania 2. Z lematu Nakayamy mamy, że $M_k = 0 \implies M = 0$. Ale $M \otimes_A N = 0 \implies (M \otimes_A N)_k = 0 \implies M_k \otimes_k N_k = 0 \implies M_k = 0$ or $N_k = 0$, since M_k , N_k są przestrzeniami wektorowymi nad ciałem.]

Czyli co, ja mam uzasadnić po prostu przejścia w tym łańcuszku?

$$M \otimes_A N = 0 \implies (M \otimes_A N)_k = 0 \stackrel{(\star)}{\Longrightarrow} M_k \otimes_k N_k = 0 \stackrel{(\heartsuit)}{\Longrightarrow} M_k = 0 \vee N_k = 0$$

Bo cała reszta wydaje się mieć sens?

$$(\star) k \otimes_{\Delta} (M \otimes_{\Delta} N) = 0 \implies (k \otimes_{\Delta} M) \otimes_{k} (k \otimes_{\Delta} N) = 0$$

Jeśli k
$$\otimes_{\Delta}$$
 (M \otimes_{Δ} N) = 0, to (k \otimes_{Δ} M) \otimes_{Δ} N) = 0, czyli k \otimes_{Δ} M

A to to jest raczej proste, bo jeśli k \otimes_A (M \otimes_A N) = 0, to tym bardziej k \otimes_k (k \otimes_A (M \otimes_A N)) = 0 a jak się poprzestawia, bo to raczej jest izomorficzne, chyba że nagle świat staną na głowie, to dostaję k \otimes_A M \otimes_k k \otimes_A N.

(♥) $M_k \otimes_k N_k = 0 \implies M_k = 0 \lor N_k = 0$? Nie no, to jest raczej oczywiste z tego ten ten na N.

POKOPAŁAM TE RÓWNOŚCI I CO JEST CZYM AAAAAAAAAA – zapytać jak się zmienia to nad czym tensorujemy

Chwila, bo $0 = k \otimes_A (M \otimes_A N) = (k \otimes_A M) \otimes_A N$

ZADANIE 4.

Niech M_i ($i \in I$) będzie dowolną rodziną A-modułów i niech M będzie ich sumą prostą. Pokaż, że M jest płaski \iff każdy M_i jest płaski

Mamy funktor $T_N: M\mapsto M\otimes_A N$ i on jest na kategorii A-modułów i homomorfizmów. Jeśli T_N jest dokładny, czyli tensorowanie z N przekształca wszystkie ciągi dokładne na ciągi dokładne, wtedy N jest flat A-modułem.

 \iff pójdzie chyba z faktu, że (M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)

Wiem, że jeśli mam ciąg dokładny

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0$$

dla dowolnych N_i, to wtedy tensorowanie przez M zachowuje dokładność, tzn ciąg

$$0 \to N_1 \otimes M \to N_2 \otimes M \to N_3 \otimes M \to 0$$

jest nadal dokładny.

Co by się stało, jeśli któraś współrzędna M nie jest flat? Wtedy mogłam N wybrać tak, żeby

$$0 \rightarrow N_1 \otimes M_i \rightarrow N_2 \otimes M_i \rightarrow N_3 \otimes M_i \rightarrow 0$$

nie było dokładne, czyli tutaj psuje się iniekcja

$$f_1: N_1 \otimes M_i \rightarrow N_2 \otimes M_i$$

No dobra, ale ja mogę zapisać sobie

$$M = M_i \bigoplus_{j \neq i} M_j$$

i zrobić

$$F_1: N_1 \otimes (M_i \bigoplus M_j) \to N_2 \otimes (M_i \bigoplus M_j)$$

czyli coś typu $n_1 \otimes (m_i, m) \mapsto n_2 \otimes (m_i, m)$, ale mam też izomorfizmy

$$n_1 \otimes (m_i, m) \mapsto (n_1, m_i) \otimes (n_1, m)$$

$$n_2 \otimes (m_i, m) \mapsto (n_2, m_i) \otimes (n_2, m)$$

no i tak jakby iniekcyjność F_1 jest psuta przez brak inikcyjności w f_1 , czyli sprzeczność? Bo przecież $F_1 = f_1 \otimes F'$ dla jakiejś ładnej iniekcji F'.

ZADANIE 5.

Niech A[X] będzie pierścieniem wielomianów jednej zmiennej nad pierścieniem A. Pokaż, że A[X] jest płaską A-algebrą.

No jak dla mnie to A[X] to jest suma prosta $\bigoplus_{n\in\mathbb{N}} Ax^n \cong \bigoplus_{n\in\mathbb{N}} A$ i A[X] to moduł wolny. Ah, no i teraz korzystam z tego, że $A\otimes M=M$ i śmiga.

ZADANIE 6.

Dla dowolnego A-moduły, niech M[X] będzie oznaczało zbiór wszystkich wielomianów w x o współczynnikach z M, to znaczy wyrażenia formy

$$m_0 + m_1 x + ... + x_r x^r$$

Zdefiniuj iloczyn elementu A[X] z elementem M[X] w oczywisty sposób, pokaż że M[X] jest A[X]-modułem. Pokaż, że M[X] \cong A[X] \otimes_A M.

Jak to leciało dla A-modułu? $a, b \in A, x, y \in M$

$$a(x + y) = ax + ay$$

$$(a + b)x = ax + by$$

$$(ab)x = a(bx)$$

$$1x = x$$

Czy ja chce brać sobie w, $v \in M[X]$ oraz p, $r \in A[X]$ i robić zwykłe mnożenie wielomianów? Chyba tak XD

$$\begin{split} p(w+v) &= \left(\sum p_i x^i\right) \left(\sum w_i x^i + \sum v_i x^i\right) = \left(\sum p_i x^i\right) \left(\sum (w_i + v_i) x^i\right) = \\ &= \sum_{k=0}^n \left(\sum_{i+j=k} p_i (w_j + v_j) x^k\right) = \sum \left(\sum p_i w_j x^k + \sum p_i v_j x^k\right) = \\ &= \sum \sum p_i w_j x^k + \sum \sum p_i v_j x^k = pw + pv \end{split}$$

I reszty sprawdzania to mi się nie chce.

Homomorfizm na

$$\begin{split} f: M[X] &\to A[X] \otimes_A M \\ f(\sum m_j x^j) &= \sum (x^j \otimes m_j) \end{split}$$

jest 1 – 1, bo każdy wielomian jest unikalny ze względu na współczynniki przy kolejnych potęgach, bla bla. Widać. Nawet mi się nie chce tego pisać ładnie

To teraz w drugą stronę jest też dość prosty

$$\begin{split} g: &A[X] \otimes_A M \to M[X] \\ g(\left(\sum a_i x^i\right) \otimes m) &= \sum a_i m x^i \end{split}$$

ZADANIE 7.

Niech $\mathfrak p$ będzie ideałem pierwszym w A. Pokaż, że $\mathfrak p[X]$ jest ideałem pierwszym w A[X]. Czy jeśli $\mathfrak m$ jest ideałem pierwszym w A, to $\mathfrak m[X]$ jest ideałem maksymalnym w A[X]?

Z poprzedniego zadania wiem, że $\mathfrak{p}[X] \cong A[X] \otimes_A \mathfrak{p}$, bo każdy ideał jest A-modułem.

Czy mogę określić sobie homomorfizm (ewualuację w x = 1)

$$f:A[X] \rightarrow A$$

$$f(\sum a_i x^i) = \sum a_i$$

i wtedy $f^{-1}[p]$ jest całością p[X] jest ideałem pierwszym jako przeciwobraz ideału pierwszego przez homomorfizm.

Alternatywnie

$$(A[X])/(p[X]) \cong (A/p)[X]$$

w pierwszym zadaniu z poprzedniego rozdziału pokazywaliśmy, że $f \in A[X]$ jest dzielnikiem zera \iff af = 0 dla pewnego $a \in A \setminus \{0\}$, czyli \iff w A są dzielniki zera. Ale w (A/\mathfrak{p}) dzielników zera nie ma, bo wszystkie są w \mathfrak{p} który to wyrzuciliśmy, więc śmiga.

ZADANIE 9.

TO WYPADAŁOBY ZROBIĆ, ALE NIEEE CHCEEE MIII SIEEEE

ZADANIE 10.

Niech A będzie pierścieniem i $\mathfrak a$ ideałem zawartym w radykalne Jacobsona. Niech M będzie A-modułem, a N niech będzie skończenie generowanym A-modułem. Niech $\mathfrak u: M \to N$ będzie homomorfizmem. Pokaż, że jeżeli indukowany homomorfizm $\mathfrak M \to N/\mathfrak a N$ jest surjektywny, to również $\mathfrak u$ taki jest.

Najpierw rysuneczek:

No i to jest tak, że to co jest w ??? jest izomorficzne z Coker(\overline{u}), bo no izomorfizm w dół mi nie popsuje Coker(\overline{u}), które było równe 0. Czyli ??? = 0. Z drugiej strony, to co jest w ??? jest równe Coker(u) \otimes A/ α . Skoro N było skończenie generowane, to takie jest też Coker(u), bo przecież wychodzi z N. Czyli mam, że

$$0 = Coker(u) \otimes A/a \cong Coker(u)/aCoker(u)$$

i z tego wynika, że Coker(u) = α Coker(u) i z lematu Nakayamy wiem, że Coker(u) = 0.

Nieskończenie generowany moduł, który nie spełnia lematu Nakayamy. Wyzwanie: znaleźć pierścień R, moduł M i ideał α taki, że M = α M i M \neq 0

Mam pierścień $k[x_1,...,x_n,...]$

ZADANIE 11.

Niech A będzie pierścieniem $\neq 0$. Pokaż, że $A^n \cong A^m \implies m = n$.

[Niech \mathfrak{m} będzie ideałem maksymalnym w A i niech $\phi: A^n \to A^m$ będzie izomorfizmem. Wtedy $1 \otimes \phi: (A/\mathfrak{m}) \otimes A^n \to (A/\mathfrak{m}) \otimes A^m$ jest izomorfizmem pomiędzy przestrzeniami liniowymi wymiaru \mathfrak{m} i \mathfrak{n} nad ciałem $k = A/\mathfrak{m}$. Czyli $\mathfrak{m} - \mathfrak{n}$.]

- Jeżeli $\phi: A^m \to A^n$ jest surjekcją, to $m \ge n$
- Czy jeżeli $\phi: A^m \to A^n$ jest iniekcją, to m < n?

Mamy $A^m \cong A^n$ i $\mathfrak{m} \triangleleft A$.

$$\begin{array}{ccc} A^n & \stackrel{\cong}{\longrightarrow} & A^m \\ \downarrow & & \downarrow \\ (A/\mathfrak{m})^n & \stackrel{\cong}{\longrightarrow} & (A/\mathfrak{m})^m \end{array}$$

i to niżej to jest przestrzeń liniowa, korzystamy z fakty dobrej określonowości wymiaru takich przestrzeni.

Na surjekcję to działa, ale przy iniekcji niekoniecznie to się przenosi.

Zakładamy nie wprost, że m > n i mamy strzałkę $\phi: A^m \to A^n$. Będziemy uzasadniać, że ona ma nietrywialne jądro.

$$A^{m} \xrightarrow{\psi} A^{n} \xrightarrow{\psi} A^{m}$$

Niech M będzie modułem z A^k . i $\psi \in End(A^m)$. Mamy, że dla $a_i \in A$

$$\psi^{k} + \dots + a_{1}\psi^{k-1} + \dots + a_{k}id_{a^{m}} = 0$$

$$A^{k} \longrightarrow A^{k}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \longrightarrow M$$

ZADANIE 12.

Niech M będzie skończenie generowanym A-modułem i ϕ : M]toAⁿ będzie surjektywnym homomorfizmem. Pokaż, że ker(ϕ) jest skończenie generowany.

[Niech $e_1,...,e_n$ będzie bazą A^n i wybierzmy $u_i \in M$ takie, że $\phi(u_i) = e_i$. Pokaż, że M jest sumą prostą $ker(\phi)$ i podmodułów generowanych przez $u_1,...,u_n$.

Korzystamy ze wskazówki, czyli te u_i istnieją tak jak chcemy. Niech $m \in M$, wtedy

$$\phi$$
(m) = $\sum a_i e_i \implies m - \sum a_i u_i \in \ker(\phi)$

Czyli $m \in M$ to jest suma czegoś z $\langle u_i \rangle$ i czegoś z ker (ϕ) .

Z tego wnioskujemy, że $\ker(\phi) \cong M/\langle u_i \rangle$ i my mówimy, że to jest skończenie generowane, bo jest suriekcja z M w to cóś.

ZADANIE 13

Niech $f:A\to B$ będzie homomorfizmem pierścieni i niech N będzie B-modułem. Patrzenie na N jako na A-moduł poprzez restrykcję skalarów daje nam B-moduł $N_B = B \otimes_A N$. Pokaż, że homomorfizm $g:N\to N_B$ taki, że $y\mapsto 1\otimes y$ jest iniekcją i że g(N) jest składnikiem sumy N_B (czyli $N_B = g(N)\oplus C$ dla pewnego C).

[Zdefiniuje p : $N_B \rightarrow N$ przez p(b \otimes y) = by i pokaż, że $N_B = Im(q) \oplus ker(p)$.]

To, że g jest iniekcją to raczej widać. Bo wpp.

$$q(y) = 1 \otimes y = 1 \otimes y' = q(y')$$

ale y \neq y', czyli $1 \otimes y \neq 1 \otimes y'$.

Definiuję p tak jak mi każą. Po pierwsze, czym jest ker(p)? Na pewno będzie się w tym zawierać $\ker(\phi)$ i jeszcze te b, dla których by = 0.

Weźmy sobie dowolny element $n \in \overline{N_B}$, wtedy $n = b \otimes n'$.

Jeżeli bn′ ≠ 0

Jeżeli bn' \neq 0, to mogę powiedzieć, że to jest b(1n') = bp(g(n')). Wpp. b \otimes n' \in ker(p).