In [1]:

```
from google.colab import drive
drive.mount('/content/gdrive')
```

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6 qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0% b&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fww ogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fww ogleapis.com%2Fauth%2Fdrive.photos.photos.photos.photos.photos.photos.pho

```
Enter your authorization code:
......
Mounted at /content/gdrive
```

In [2]:

```
import pandas as pd
import io

final = pd.read_csv('gdrive/My Drive/CSV/final_cleaned.csv')
final.head()
```

Out[2]:

	Unnamed:	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Sco
0	138706	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	0	1
1	138683	150501	0006641040	AJ46FKXOVC7NR	Nicholas A Mesiano	2	2	1
2	417839	451856	B00004CXX9	AIUWLEQ1ADEG5	Elizabeth Medina	0	0	1
3	346055	374359	B00004Cl84	A344SMIA5JECGM	Vincent P. Ross	1	2	1
4	417838	451855	B00004CXX9	AJH6LUC1UT1ON	The Phantom of the Opera	0	0	1

In [3]:

```
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.layers import Dropout
```

```
Using TensorFlow backend.
```

In [4]:

```
final['Score'].value_counts()
```

Out[4]:

1 307061 -1 57110

Name: Score, dtype: int64

In [5]:

```
final.Score.replace(to_replace= -1, value=0, inplace=True)
final['Score'].value_counts()
```

Out[5]:

1 307061 0 57110

Name: Score, dtype: int64

In [6]:

final.head()

Out[6]:

	Unnamed:	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Sco
C	138706	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	0	1
1	138683	150501	0006641040	AJ46FKXOVC7NR	Nicholas A Mesiano	2	2	1
2	417839	451856	B00004CXX9	AIUWLEQ1ADEG5	Elizabeth Medina	0	0	1
3	346055	374359	B00004Cl84	A344SMIA5JECGM	Vincent P. Ross	1	2	1
4	417838	451855	B00004CXX9	AJH6LUC1UT1ON	The Phantom of the Opera	0	0	1
4	•							P

In [74]

```
final = final[0:5000] #taking the first 5k reviews
len(final)
```

Out[74]:

5000

```
In [75]:
```

```
z = final['New'].values
z
```

Out[75]:

array(['everi book educwitti littl book make son laugh loud recit car drive along alway sing refrain hes learn whale india droop love new word book introduc silli classic book will bet son st ill abl recit memori colleg',

'whole seri great way spend time childrememb see show air televis year ago child sister later bought day thirti someth use seri book song student teach preschool turn whole school purcha s along book children tradit live',

'entertaining1 funnibeetlejuic well written movi everyth excel act special effect delight chose view movi',

. . . ,

'must season kitchenfirst tri vegeta hear visit eastern europ late sinc becom kitchen stapl use vegeta make soup stew chicken veal marsala piccata vegeta use season rice pasta sinc made veget use enrich flavor vegetarian thanksgiv stuf vegeta also use enhanc sauc gravi havent tri vegeta urg believ wide use across europ',

'year old eat veggiyear old hate lettuc purchas aerogarden watch leav grow alway ask lettuc longer problem get eat salad love snack leav outsid leav pretti lettuc stay lush full still great look custom servic also great quick sent replac seed sprout call aerogarden let know pretti outer lettuc leav week growth immedi sent replac seed kit new seed kit grown full lush much better first kit told call back problem custom servic realli want complet happi impress make star',

'super richmmmmmmm yummi must chocol lover caus chocolatey thick super rich much guess coul d add milk might well buy cocoa'],

dtype=object)

1

In [76]:

```
from nltk import FreqDist

#https://stackoverflow.com/questions/41699065/create-vocabulary-dictionary-for-text-mining

train_set = final["New"]
word_dist = FreqDist()
for s in train_set:
    word_dist.update(s.split())

word_dist = dict(word_dist)
word_dist
```

Out[76]:

```
{'everi': 334,
'book': 91,
'educwitti': 1,
'littl': 792,
'make': 1440,
 'son': 87,
'laugh': 24,
'loud': 5,
'recit': 2,
'car': 31,
'drive': 31,
 'along': 91,
'alway': 323,
'sing': 15,
'refrain': 2,
 'hes': 43,
 'learn': 52,
'whale': 2,
'india': 25,
'droop': 3,
 'love': 1291,
 'new': 296,
 'word': 81,
'introduc': 52,
'silli': 10,
'classic': 82,
 'will': 22,
'bet': 14,
```

```
'still': 416,
'abl': 138,
'memori': 41,
'colleg': 26,
'whole': 314,
'seri': 7,
'great': 1718,
'way': 487,
'spend': 44,
'time': 926,
'childrememb': 1,
'see': 290,
'show': 81,
'air': 43,
'televis': 7,
'year': 601,
'ago': 167,
'child': 72,
'sister': 22,
'later': 88,
'bought': 264,
'day': 630,
'thirti': 6,
'someth': 297,
'use': 1634,
'song': 14,
'student': 25,
'teach': 12,
'preschool': 2,
'turn': 156,
'school': 53,
'purchas': 257,
'children': 80,
'tradit': 133,
'live': 211,
'entertainingl': 1,
'funnibeetlejuic': 1,
'well': 721,
'written': 16,
'movi': 161,
'everyth': 125,
'excel': 405,
'act': 27,
'special': 152,
'effect': 110,
'delight': 89,
'chose': 6,
'view': 14,
'modern': 16,
'fairi': 1,
'taletwist': 1,
'rumplestiskin': 1,
'captur': 6,
'film': 117,
'star': 226,
'michael': 30,
'keaton': 39,
'geena': 22,
'davi': 26,
'prime': 13,
'tim': 47,
'burton': 67,
'masterpiec': 9,
'rumbl': 1,
'absurd': 6,
'wonder': 488,
'pace': 8,
'point': 112,
'dull': 7,
'moment': 34,
'fantastbeetlejuic': 1,
'funni': 46,
'hilari': 11,
'wacki': 4,
'beetlejuic': 64,
'help': 267,
'think': 515,
```

```
'one': 1738,
'best': 1192,
'ever': 484,
'made': 529,
'sure': 222,
'youll': 208,
'agre': 53,
'good': 1871,
'watch': 103,
'greatone': 2,
'collect': 30,
'fill': 197,
'comedi': 22,
'action': 6,
'whatev': 58,
'els': 138,
'want': 520,
'call': 184,
'clamshel': 3,
'edit': 19,
'versionalway': 1,
'enjoy': 480,
'entertain': 25,
'didnt': 237,
'hesit': 23,
'pick': 113,
'guess': 72,
'market': 188,
'plan': 71,
'famili': 242,
'elimin': 18,
'strong': 224,
'profan': 1,
'element': 18,
'usual': 195,
'version': 161,
'warn': 60,
'uncut': 7,
'avoid': 62,
'death': 28,
'flibought': 1,
'apart': 37,
'infest': 2,
'fruit': 235,
'fli': 16,
'hour': 127,
'trap': 38,
'mani': 477,
'within': 62,
'practic': 42,
'gone': 58,
'may': 277,
'long': 305,
'term': 26,
'solut': 9,
'crazi': 49,
'consid': 109,
'buy': 799,
'surfac': 30,
'sticki': 24,
'tri': 1511,
'touch': 64,
'bettlejuic': 5,
'bettlejuichappen': 1,
'say': 364,
'name': 190,
'three': 153,
'keaten': 1,
'two': 416,
'coupl': 139,
'old': 235,
'stori': 47,
'hous': 169,
'come': 464,
'back': 326,
'suppli': 44,
'store': 551,
```

```
'sudden': 21,
'get': 1243,
'caught': 27,
'insid': 92,
'bridg': 5,
'start': 242,
'tumbl': 1,
'lake': 8,
'board': 9,
'catch': 11,
'theyv': 23,
'got': 284,
'hope': 131,
'small': 274,
'dog': 421,
'step': 22,
'slide': 10,
'water': 513,
'minut': 257,
'find': 784,
'home': 233,
'somehow': 18,
'somehad': 1,
'light': 250,
'fireplac': 3,
'done': 65,
'magic': 44,
'dead': 29,
'guy': 58,
'known': 61,
'appear': 49,
'survic': 1,
'soon': 74,
'wish': 108,
'never': 429,
'troublemak': 2,
'save': 136,
'account': 8,
'said': 145,
'cant': 394,
'leav': 243,
'theirselv': 1,
'anoth': 245,
'world': 173,
'giant': 16,
'sandworm': 3,
'stellar': 3,
'awesom': 109,
'play': 74,
'lead': 26,
'role': 13,
'researchget': 1,
'realli': 874,
'imposs': 26,
'today': 82,
'french': 70,
'vhs': 5,
'could': 396,
'pleas': 172,
'tell': 127,
'tks': 2,
'research': 36,
'beatlejuic': 3,
'video': 10,
'versionget': 1,
'look': 528,
'productrealli': 6,
'idea': 79,
'final': 126,
'product': 1395,
'outstand': 61,
'decal': 2,
'window': 16,
'everybodi': 19,
'ask': 116,
'thumb': 14,
'wow': 65,
```

```
'slickerreceiv': 1,
'shipment': 35,
'hard': 303,
'wait': 129,
'instead': 171,
'sticker': 7,
'remov': 64,
'easili': 97,
'daughter': 91,
'design': 43,
'sign': 13,
'print': 14,
'revers': 6,
'beauti': 116,
'shop': 95,
'program': 16,
'go': 206,
'lot': 355,
'fun': 128,
'everywher': 28,
'like': 2392,
'screen': 17,
'comput': 12,
'monitor': 40,
'end': 144,
'gopher': 12,
'problemrecent': 1,
'woodstream': 2,
'corp': 1,
'lay': 6,
'easi': 309,
'set': 84,
'work': 432,
'success': 48,
'also': 964,
'rememb': 100,
'wire': 2,
'attach': 14,
'tie': 6,
'steak': 47,
'prevent': 36,
'drag': 7,
'hole': 19,
'luck': 18,
'musteasi': 1,
'mess': 46,
'offer': 152,
'vibrant': 6,
'color': 152,
'taint': 4,
'decort': 1,
'would': 858,
'high': 554,
'recommend': 545,
'anyon': 156,
'decor': 19,
'usemuch': 1,
'easier': 78,
'wilson': 1,
'past': 126,
'frost': 52,
'simpl': 119,
'complaint': 35,
'must': 185,
'often': 108,
'fresh': 396,
'origin': 170,
'master': 13,
'storytel': 3,
'burtongreat': 1,
'dont': 806,
'even': 800,
'know': 447,
'sum': 7,
'first': 545,
'complet': 108,
'unlik': 78,
```

```
'seen': 74,
'second': 158,
'kind': 220,
'spooki': 1,
'weird': 29,
'feel': 257,
'probabl': 205,
'art': 39,
'director': 17,
'welch': 1,
'anyth': 211,
'invent': 22,
'fabul': 45,
'comed': 4,
'fanasi': 1,
'direct': 111,
'masterbeetlejuic': 1,
'amus': 9,
'romp': 1,
'explor': 4,
'incred': 69,
'possibl': 77,
'boundari': 3,
'tale': 11,
'recent': 105,
'marri': 10,
'led': 6,
'chaotic': 3,
'supernatur': 5,
'adam': 15,
'barbara': 11,
'maitland': 18,
'alec': 28,
'baldwin': 30,
'discov': 81,
'conflict': 2,
'rather': 111,
'human': 31,
'imperfect': 2,
'haunt': 7,
'plagu': 3,
'afterlif': 11,
'project': 6,
'seem': 282,
'blind': 6,
'assign': 2,
'dispassion': 1,
'filmmak': 1,
'commerci': 35,
'reason': 173,
'plot': 9,
'bizarr': 12,
'subject': 4,
'matter': 57,
'remark': 10,
'complement': 20,
'unusu': 30,
'macabr': 2,
'artist': 3,
'sensibl': 5,
'extraordinarili': 2,
'creat': 77,
'unbeliev': 20,
'brilliant': 11,
'quidanc': 1,
'imagin': 64,
'pee': 14,
'wee': 3,
'big': 230,
'adventur': 10,
'batman': 14,
'wood': 21,
'sleepi': 8,
'hollow': 4,
'uniqu': 92,
'creativ': 16,
'landscap': 2,
```

```
'culmin': 1,
'essenti': 40,
'abund': 7,
'ironi': 4,
'outlandish': 1,
'yet': 200,
'behavior': 2,
'grace': 10,
'bodi': 99,
'augment': 3,
'devious': 1,
'energet': 6,
'perform': 33,
'glenn': 3,
'shadix': 4,
'jeffrey': 9,
'jone': 14,
'winona': 21,
'ryder': 22,
'catherin': 13,
'hara': 2,
'bustl': 1,
'uninhibit': 1,
'hilar': 2,
'persist': 4,
'push': 10,
'level': 84,
'almost': 212,
'affabl': 1,
'euphoria': 1,
'pair': 15,
'ingeni': 3,
'screenplay': 1,
'tour': 3,
'forc': 17,
'transform': 9,
'exuber': 1,
'jovial': 1,
'exercis': 22,
'extrem': 87,
'satisfi': 160,
'philosoph': 1,
'percept': 1,
'though': 286,
'unabl': 17,
'undeserv': 1,
'deep': 55,
'critic': 15,
'analysi': 3,
'undeni': 1,
'inspir': 24,
'concept': 21,
'flawless': 3,
'transfer': 14,
'dvd': 36,
'packag': 526,
'includ': 180,
'theatric': 5,
'trailer': 4,
'isol': 10,
'danni': 8,
'elfman': 8,
'music': 13,
'track': 26,
'choic': 136,
'anamorph': 1,
'widescreen': 5,
'pan': 50,
'scan': 2,
'eventu': 15,
'need': 405,
'wiltonsick': 1,
'scad': 1,
'nasti': 41,
'toothpick': 27,
'counter': 16,
'tint': 1,
```

```
'overdu': 1,
'except': 87,
'welcom': 13,
'offens': 7,
'tast': 2442,
'blend': 349,
'opinion': 60,
'smooth': 162,
'wilton': 1,
'experi': 172,
'bit': 373,
'hue': 5,
'right': 321,
'worth': 251,
'funnithought': 1,
'geeki': 1,
'husband': 106,
'priceless': 1,
'scenc': 1,
'kid': 237,
'successmani': 1,
'dealt': 4,
'figur': 58,
'angel': 9,
'clarenc': 1,
'life': 175,
'brad': 2,
'pitt': 1,
'abysm': 1,
'joe': 26,
'black': 327,
'howev': 282,
'present': 49,
'interestng': 1,
'town': 21,
'die': 41,
'oddest': 1,
'return': 60,
'thier': 12,
'selv': 1,
'confin': 3,
'premis': 4,
'send': 59,
'strang': 48,
'desert': 21,
'popul': 3,
'remain': 50,
'wouldnt': 85,
'bad': 236,
'wasnt': 89,
'nyc': 11,
'artisan': 3,
'move': 67,
'remodel': 1,
'place': 177,
'consult': 4,
'juno': 3,
'sylvia': 3,
'sidney': 4,
'hire': 6,
'betelgues': 2,
'pronouc': 1,
'henc': 9,
'titl': 14,
'unfortun': 57,
'po': 1,
'demon': 4,
'refus': 19,
'underworld': 1,
'visual': 10,
'stun': 4,
'micheal': 3,
'give': 471,
'blast': 12,
'beer': 72,
'swill': 1,
'cuss': 1.
```

```
'worst': 44,
'nightmar': 11,
'superpow': 1,
'proud': 21,
'martha': 2,
'stewart': 7,
'style': 71,
'cake': 203,
'cookidont': 1,
'liquid': 48,
'food': 924,
'intens': 48,
'shade': 10,
'ice': 223,
'season': 175,
'cooki': 341,
'excit': 36,
'tabl': 46,
'dessert': 66,
'parti': 66,
'tea': 2662,
'event': 10,
'especi': 192,
'contest': 4,
'birthday': 35,
'christma': 90,
'raini': 11,
'afternoon': 60,
'casper': 1,
'ghostmichael': 1,
'bring': 105,
'distinguish': 8,
'characterist': 11,
'ghoul': 1,
'mere': 12,
'script': 4,
'cinematographi': 1,
'focus': 26,
'snack': 415,
'popcorn': 64,
'terribl': 43,
'dvdcontinu': 1,
'amaz': 168,
'shoddi': 2,
'treatment': 11,
'releas': 35,
'simpli': 117,
'disgrac': 1,
'exampl': 25,
'energi': 110,
'extra': 183,
'mention': 66,
'delet': 3,
'scene': 18,
'featurett': 1,
'lousi': 6,
'commentari': 7,
'wors': 31,
'cut': 112,
'less': 318,
'theater': 13,
'advic': 15,
'money': 117,
'somebodi': 13,
'capabl': 5,
'medium': 65,
'provid': 91,
'materi': 24,
'greatmovi': 1,
'cheat': 4,
'dvdwarn': 1,
'trick': 23,
'format': 7,
'compani': 277,
'mistak': 25,
'full': 189,
'compar': 146.
```

```
'comtain': 1,
'pictur': 48,
'top': 214,
'bottom': 59,
'mean': 126,
'take': 393,
'slight': 151,
'expect': 153,
'care': 150,
'rip': 11,
'peopl': 292,
'nice': 433,
'bright': 21,
'colorbought': 1,
'dia': 1,
'los': 5,
'muerto': 1,
'skull': 3,
'ateco': 2,
'gave': 102,
'mix': 586,
'total': 131,
'beatlejuicwinona': 1,
'hot': 592,
'gothic': 4,
'princess': 3,
'doom': 3,
'eldest': 1,
'brother': 26,
'ive': 608,
'zenith': 1,
'goe': 114,
'miss': 77,
'cours': 131,
'fan': 142,
'fav': 6,
'part': 154,
'chum': 1,
'charact': 31,
'wear': 15,
'type': 154,
'cloth': 11,
'deal': 92,
'witti': 3,
'clever': 9,
'charm': 16,
'spit': 28,
'hit': 69,
'gina': 3,
'favoritfavorit': 1,
'mine': 98,
'girl': 36,
'read': 150,
'mom': 69,
'bedtim': 11,
'copi': 12,
'either': 132,
'lost': 58,
'given': 75,
'away': 189,
'found': 506,
'garag': 1,
'sale': 49,
'condit': 63,
'around': 216,
'somewher': 14,
'attic': 1,
'niec': 3,
'piec': 155,
'heavenyear': 1,
'simul': 5,
'truli': 106,
'italian': 76,
'espresso': 144,
'cappuccino': 9,
'without': 390,
'savar'. 207
```

```
30 VC1 . 2011
'arriv': 164,
'sent': 60,
'briel': 3,
'cadiz': 1,
'machin': 207,
'russian': 7,
'china': 46,
'cup': 585,
'case': 192,
'espression': 11,
'pod': 477,
'kindest': 1,
'qualiti': 316,
'eas': 26,
'exquisit': 18,
'prepar': 113,
'gift': 239,
'itali': 32,
'heaven': 59,
'earth': 18,
'everyonvacat': 1,
'meet': 24,
'demis': 1,
'kill': 24,
'local': 265,
'worri': 60,
'head': 64,
'transport': 8,
'mysteri': 22,
'journey': 7,
'roller': 2,
'coaster': 1,
'score': 14,
'til': 5,
'cri': 9,
'odd': 34,
'fantasi': 6,
'comeditwo': 1,
'accid': 16,
'aliv': 10,
'ghost': 18,
'stuck': 43,
'etern': 2,
'month': 246,
'york': 30,
'jefferi': 2,
'connecticut': 2,
'farmhous': 1,
'chang': 127,
'aesthet': 5,
'control': 50,
'terrif': 45,
'box': 698,
'offic': 53,
'summer': 54,
'plenti': 39,
'humor': 14,
'win': 12,
'oscar': 9,
'likeabl': 3,
'age': 56,
'gross': 20,
'funmichael': 1,
'alreadi': 75,
'major': 35,
'solidifi': 1,
'status': 8,
'hollywood': 7,
'brightest': 2,
'generat': 15,
'belli': 27,
'wife': 60,
'surpris': 152,
'centerpiec': 1,
'gag': 13,
'defin': 39,
```

```
nearn . 40'
'ad': 306,
'hilarihilari': 1,
'favorit': 504,
'dine': 7,
'room': 48,
'danc': 15,
'rider': 2,
'spectacular': 12,
'couldnt': 93,
'stop': 119,
'keep': 381,
'stitch': 2,
'night': 92,
'cartoon': 7,
'shown': 21,
'decid': 131,
'fact': 154,
'hey': 19,
'much': 717,
'thing': 466,
'wrong': 110,
'short': 45,
'mayb': 122,
'efect': 1,
'older': 23,
'middl': 32,
'nameset': 1,
'england': 21,
'follow': 73,
'maitlin': 1,
'owner': 28,
'larg': 130,
'hardwar': 2,
'vacat': 10,
'drown': 8,
'mishap': 1,
'taken': 39,
'boister': 1,
'deet': 1,
'prospect': 3,
'poltergeist': 1,
'featur': 26,
'cast': 18,
'young': 39,
'storylin': 3,
'boast': 9,
'believ': 128,
'prop': 2,
'costum': 1,
'absolut': 169,
'liter': 38,
'diebeetlejuic': 1,
'funiest': 1,
'realiti': 9,
'romanc': 1,
'deceas': 6,
'handbook': 5,
'break': 54,
'cover': 71,
'job': 50,
'monthbook': 1,
'poetri': 5,
'cute': 28,
'poem': 5,
'author': 8,
'purpos': 25,
'write': 61,
'rhythm': 3,
'thingwine': 1,
'saver': 16,
'obvious': 42,
'open': 203,
'bottl': 237,
'wine': 89,
'stay': 115,
'glass': 71,
```

```
.armmer.: 22,
'let': 180,
'expens': 153,
'sinc': 487,
'wont': 213,
'wast': 66,
'rest': 60,
'interest': 108,
'undrunk': 1,
'portion': 42,
'next': 119,
'put': 378,
'fridg': 39,
'drink': 605,
'pull': 30,
'red': 221,
'guynever': 1,
'dissapoint': 20,
'gadget': 11,
'concerto': 3,
'white': 226,
'stopper': 6,
'handi': 29,
'click': 16,
'sound': 61,
'vacuum': 10,
'correct': 32,
'neat': 10,
'beetlejuicsay': 1,
'actual': 269,
'memor': 8,
'drama': 4,
'pervert': 1,
'caus': 74,
'quit': 279,
'chao': 3,
'newli': 2,
'couldv': 3,
'better': 688,
'disapoint': 6,
'beetljuic': 1,
'footag': 2,
'havent': 83,
'lover': 88,
'starbuck': 96,
'poduse': 2,
'chamonix': 1,
'amazon': 549,
'produc': 94,
'delici': 513,
'latt': 26,
'smell': 234,
'regular': 280,
'decaf': 63,
'dark': 246,
'rich': 217,
'roast': 224,
'fyi': 3,
'paper': 84,
'tab': 10,
'burn': 55,
'finger': 18,
'individu': 121,
'wrap': 92,
'space': 14,
'your': 193,
'stamp': 7,
'date': 80,
'ghostsimpli': 1,
'funniest': 6,
'ghostbust': 1,
'mischief': 1,
'rid': 19,
'decemb': 8,
'snowman': 2,
'anniversaridaughter': 1,
'rosi': 2,
```

```
'caroı': ∠,
 'king': 24,
 'avail': 209,
 'far': 270,
 'johnni': 4,
 'allig': 1,
 'chicken': 264,
 'soup': 165,
 'rice': 241,
 'mauric': 4,
 'sendak': 10,
 'plus': 117,
 'cheap': 60,
 'movimovi': 1,
 'doesnt': 261,
 'lydia': 13,
 'deitz': 1,
 'sad': 31,
 'depress': 7,
 'mother': 54,
 'redecor': 1,
 'ohara': 10,
 'other': 96,
 'march': 10,
 'blooper': 1,
 'workskeptic': 1,
 'item': 224,
 'prior': 12,
 'vacuvin': 6,
 'last': 270,
 'maximum': 7,
 'immedi': 61,
 'longer': 119,
 'refriger': 56,
 'week': 202,
 'devic': 3,
 'pump': 35,
 'plastic': 55,
 'cork': 3,
 'pressur': 29,
 'rins': 37,
 'perfect': 430,
 'singl': 114,
 'sit': 96,
 'switch': 60,
 'betterive': 2,
 'vacu': 11,
 'vin': 11,
 'previous': 51,
 ...}
In [77]:
type(word_dist)
Out[77]:
dict
In [78]:
import operator
word_dist = sorted(word_dist.items(), key=operator.itemgetter(1),reverse = True)
word dist
Out[78]:
[('tea', 2662),
 ('tast', 2442),
('like', 2392),
 ('flavor', 1996),
 ('good', 1871),
 ('one', 1738),
 ('great', 1718),
('use', 1634),
```

```
('tri', 1511),
('make', 1440),
('product', 1395),
('love', 1291),
('coffe', 1247),
('get', 1243),
('best', 1192),
('eat', 1024),
('also', 964),
('time', 926),
('food', 924),
('chocol', 913),
('realli', 874),
('would', 858),
('dont', 806),
('even', 800),
('buy', 799),
('littl', 792),
('find', 784),
('well', 721),
('much', 717),
('box', 698),
('better', 688),
('bag', 639),
('sweet', 635),
('day', 630),
('order', 620),
('sugar', 615),
('ive', 608),
('drink', 605),
('year', 601),
('cat', 594),
('hot', 592),
('mix', 586),
('cup', 585),
('sauc', 557),
('high', 554),
('store', 551),
('bar', 550),
('amazon', 549),
('recommend', 545),
('first', 545),
('made', 529),
('look', 528),
('packag', 526),
('want', 520),
('chees', 517),
('think', 515),
('water', 513),
('delici', 513),
('found', 506),
('favorit', 504),
('price', 502),
('wonder', 488),
('way', 487),
('sinc', 487),
('ever', 484),
('enjoy', 480),
('mani', 477),
('pod', 477),
('candi', 474),
('give', 471),
('milk', 467),
('thing', 466),
('come', 464),
('brand', 460),
('natur', 457),
('differ', 453),
('know', 447),
('treat', 436),
('nice', 433),
('work', 432),
('add', 431),
('perfect', 430),
('never', 429),
('dog', 421),
('still', 416),
```

```
('two', 416),
('snack', 415),
('excel', 405),
('need', 405),
('green', 405),
('could', 396),
('fresh', 396),
('cant', 394),
('take', 393),
('without', 390),
('organ', 385),
('stuff', 384),
('keep', 381),
('review', 381),
('put', 378),
('ingredi', 376),
('bit', 373),
('say', 364),
('lot', 355),
('blend', 349),
('healthi', 349),
('ship', 349),
('cooki', 341),
('contain', 337),
('everi', 334),
('black', 327),
('back', 326),
('alway', 323),
('tasti', 323),
('serv', 323),
('right', 321),
('less', 318),
('qualiti', 316),
('whole', 314),
('enough', 312),
('oil', 311),
('fat', 311),
('easi', 309),
('real', 307), ('ad', 306),
('long', 305),
('hard', 303),
('diet', 302),
('someth', 297),
('new', 296),
('peopl', 292),
('cook', 292),
('see', 290),
('calori', 289),
('though', 286),
('got', 284),
('varieti', 284),
('butter', 284),
('seem', 282),
('howev', 282),
('regular', 280),
('quit', 279),
('may', 277),
('compani', 277),
('free', 276),
('noodl', 275),
('small', 274),
('pack', 273),
('far', 270),
('last', 270),
('actual', 269),
('help', 267),
('cereal', 267),
('local', 265),
('bought', 264),
('chicken', 264),
('quick', 262),
('doesnt', 261),
('purchas', 257),
('minut', 257),
('feel', 257),
('textur', 257),
```

```
('friend', 255),
('juic', 253),
('bread', 253),
('worth', 251),
('light', 250),
('dri', 250),
('senseo', 250),
('month', 246),
('dark', 246),
('anoth', 245),
('pill', 245),
('leav', 243),
('famili', 242),
('start', 242),
('salt', 242),
('rice', 241),
('gift', 239),
('theyr', 239),
('didnt', 237),
('kid', 237),
('bottl', 237),
('groceri', 237),
('peanut', 237),
('bad', 236),
('fruit', 235),
('old', 235),
('smell', 234),
('home', 233),
('chew', 231),
('big', 230),
('orang', 228),
('cream', 228),
('star', 226),
('white', 226),
('strong', 224),
('roast', 224),
('item', 224),
('ice', 223),
('thank', 223),
('health', 223),
('vanilla', 223),
('pretti', 223),
('sure', 222),
('red', 221),
('kind', 220),
('brew', 218),
('breakfast', 218),
('rich', 217),
('around', 216),
('low', 216),
('amount', 215),
('definit', 215),
('top', 214),
('problem', 214),
('wont', 213),
('almost', 212),
('live', 211),
('anyth', 211),
('protein', 211),
('avail', 209),
('pasta', 209),
('youll', 208),
('sever', 207),
('machin', 207),
('go', 206),
('probabl', 205),
('cake', 203),
('open', 203),
('spice', 203),
('week', 202),
('size', 202),
('bean', 202),
('per', 201),
('yet', 200),
('gum', 200),
('morn', 200),
('fill', 197),
```

```
('usual', 195),
('recip', 195),
('your', 193),
('especi', 192),
('case', 192),
('lemon', 192),
('that', 191),
('wheat', 191),
('name', 190),
('full', 189),
('away', 189),
('market', 188),
('must', 185),
('hand', 185),
('call', 184),
('extra', 183),
('happi', 183),
('meal', 182),
('powder', 182),
('includ', 180),
('let', 180),
('noth', 180),
('can', 179),
('place', 177),
('life', 175),
('season', 175),
('world', 173),
('reason', 173),
('might', 173),
('mouth', 173),
('pleas', 172),
('experi', 172),
('instead', 171),
('origin', 170),
('hous', 169),
('absolut', 169),
('prefer', 169),
('came', 169),
('amaz', 168),
('licoric', 168),
('ago', 167),
('cracker', 167),
('thought', 167),
('soup', 165),
('arriv', 164),
('fine', 164),
('smooth', 162),
('soft', 162),
('movi', 161),
('version', 161),
('satisfi', 160),
('person', 160),
('bitter', 159),
('spici', 159),
('soda', 159),
('second', 158),
('half', 158),
('turn', 156),
('anyon', 156),
('piec', 155),
('part', 154),
('type', 154),
('fact', 154),
('receiv', 154),
('honey', 154),
('three', 153),
('expect', 153),
('expens', 153),
('special', 152),
('offer', 152),
('color', 152),
('surpris', 152),
('salad', 152),
('bake', 152),
('slight', 151),
('tazo', 151),
('nut', 151),
```

```
('care', 150),
('read', 150),
('weight', 150),
('syrup', 150),
('nutrit', 150),
('sweeten', 148),
('compar', 146),
('said', 145),
('end', 144),
('espresso', 144),
('oliv', 143),
('fan', 142),
('addict', 142),
('isnt', 142),
('base', 141),
('chai', 140),
('coupl', 139),
('cinnamon', 139),
('abl', 138),
('els', 138),
('least', 138),
('heat', 138),
('corn', 138),
('crunchi', 137),
('save', 136),
('choic', 136),
('meat', 136),
('carri', 134),
('cost', 134),
('tradit', 133),
('disappoint', 133),
('altern', 133),
('either', 132),
('hope', 131),
('total', 131),
('cours', 131),
('decid', 131),
('addit', 131),
('dish', 131),
('larg', 130),
('bowl', 130),
('cocoa', 130),
('chip', 130),
('wait', 129),
('shape', 129),
('fun', 128),
('believ', 128),
('mild', 128),
('particular', 128),
('cold', 128),
('hour', 127),
('tell', 127),
('chang', 127),
('fast', 127),
('yummi', 127),
('final', 126),
('past', 126),
('mean', 126),
('run', 126),
('everyth', 125),
('clean', 125),
('tree', 125),
('sell', 124),
('tomato', 124),
('egg', 123),
('mayb', 122),
('bite', 122),
('pop', 122),
('becom', 122),
('coke', 122),
('individu', 121),
('although', 121),
('everyon', 121),
('side', 120),
('jerki', 120),
('numi', 120),
('simpl', 119),
```

```
('stop', 119),
('next', 119),
('longer', 119),
('soy', 119),
('root', 119),
('exact', 119),
('caffein', 119),
('aroma', 118),
('ground', 118),
('film', 117),
('simpli', 117),
('money', 117),
('plus', 117),
('stock', 117),
('ask', 116),
('beauti', 116),
('ill', 116),
('beef', 116),
('carb', 116),
('process', 116),
('stay', 115),
('jar', 115),
('goe', 114),
('singl', 114),
('pound', 114),
('pick', 113),
('prepar', 113),
('ginger', 113),
('gluten', 113),
('pocket', 113),
('point', 112),
('cut', 112),
('went', 112),
('direct', 111),
('rather', 111),
('brown', 111),
('packet', 111),
('english', 111),
('fiber', 111),
('effect', 110),
('energi', 110),
('wrong', 110),
('grey', 110),
('sometim', 110),
('consid', 109),
('awesom', 109),
('near', 109),
('consist', 109),
('suggest', 109),
('note', 109),
('wish', 108),
('often', 108),
('complet', 108),
('interest', 108),
('rate', 108),
('flower', 108),
('vitamin', 107),
('com', 107),
('list', 107),
('husband', 106),
('truli', 106),
('notic', 106),
('artifici', 106),
('normal', 106),
('cherri', 106),
('roll', 106),
('herbal', 106),
('recent', 105), ('bring', 105),
('plain', 105),
('valu', 105),
('flour', 105),
('true', 104),
('gummi', 104),
('watch', 103),
('herb', 103),
('creami', 103),
```

```
('gave', 102),
('close', 102),
('five', 102),
('super', 102),
('pepper', 102),
('general', 101),
('state', 101),
('combin', 101),
('custom', 101),
('servic', 101),
('rememb', 100),
('pleasant', 100),
('pot', 100),
('seed', 100),
('import', 100),
('acid', 100),
('bodi', 99),
('fantast', 99),
('mine', 98),
('etc', 98),
('maker', 98),
('easili', 97),
('balanc', 97),
('pay', 97),
('plant', 97),
('dress', 97),
('starbuck', 96),
('other', 96),
('sit', 96),
('glad', 96),
('microwav', 96),
('sodium', 96),
('shop', 95),
('certain', 95),
('pure', 95),
('stick', 95),
('substitut', 95),
('entir', 95),
('four', 95),
('cool', 95),
('earl', 95),
('produc', 94),
('instant', 94),
('melt', 94),
('couldnt', 93),
('dinner', 93),
('gourmet', 93),
('bear', 93),
('insid', 92),
('uniqu', 92),
('deal', 92),
('night', 92),
('wrap', 92),
('refresh', 92),
('appl', 92),
('onlin', 92),
('book', 91),
('along', 91),
('daughter', 91),
('provid', 91),
('sold', 91),
('mind', 91),
('similar', 91),
('result', 91),
('christma', 90),
('veget', 90),
('site', 90),
('fish', 90),
('feed', 90),
('delight', 89),
('wasnt', 89),
('wine', 89),
('later', 88),
('lover', 88),
('took', 88),
('premium', 88),
('popular'. 88).
```

```
('content', 88),
('granola', 88),
('son', 87),
('extrem', 87),
('except', 87),
('youv', 87),
('impress', 87),
('coat', 86),
('conveni', 86),
('wouldnt', 85), ('consum', 85),
('anni', 85),
('set', 84),
('level', 84),
('paper', 84),
('line', 84),
('area', 84),
('loos', 84),
('mint', 84),
('havent', 83),
('american', 83),
('slice', 83),
('classic', 82),
('today', 82),
('label', 82),
('cannot', 82),
('beverag', 82),
('beat', 82),
('hint', 82),
('daili', 82),
('pour', 82),
('gram', 82),
('fair', 82),
('formula', 82),
('word', 81),
('show', 81),
('discov', 81),
('ounc', 81),
('delic', 81),
('sour', 81),
('websit', 81),
('children', 80),
('date', 80),
('search', 80),
('finish', 80),
('kona', 80),
('strawberri', 80),
('salti', 80),
('extract', 80),
('oatmeal', 80),
('heart', 80),
('idea', 79),
('manufactur', 79),
('teeth', 79), ('boil', 79),
('almond', 79),
('crunch', 79),
('grain', 79),
('easier', 78),
('unlik', 78),
('thick', 78),
('sourc', 78),
('lunch', 78),
('cheddar', 78),
('describ', 78),
('preserv', 78),
('possibl', 77),
('creat', 77),
('miss', 77),
('inform', 77),
('pepsi', 77),
('italian', 76),
('thin', 76),
('berri', 76),
('chewi', 76),
('dip', 76),
```

```
· """ , ' ' ' '
('given', 75),
('alreadi', 75),
('toast', 75),
('web', 75),
('grow', 75),
('replac', 75),
('potato', 75),
('oat', 75),
('coconut', 75),
('soon', 74),
('play', 74),
('seen', 74),
('caus', 74),
('togeth', 74),
('happen', 74),
('throw', 74),
('huge', 74),
('follow', 73),
('benefit', 73),
('improv', 73),
('system', 73),
('banana', 73),
('child', 72),
('guess', 72),
('beer', 72),
('supermarket', 72),
('smaller', 72),
('blue', 72),
('ate', 72),
('check', 72),
('stevia', 72),
('plan', 71),
('style', 71),
('cover', 71),
('glass', 71),
('arent', 71),
('babi', 71),
('mac', 71),
('someon', 71),
('french', 70),
('difficult', 70),
('wild', 70),
('subtl', 70),
('leaf', 70),
('overal', 70),
('incred', 69),
('hit', 69),
('mom', 69),
('raw', 69),
('clear', 69),
('south', 69),
('macaroni', 69),
('fri', 68),
('digest', 68),
('burton', 67),
('move', 67),
('increas', 67),
('there', 67),
('saw', 67),
('larger', 67),
('eaten', 67),
('stomach', 67),
('unless', 67),
('dessert', 66),
('parti', 66),
('mention', 66),
('wast', 66),
('requir', 66),
('onion', 66),
('rebecca', 66),
('tini', 66),
('stir', 66),
('blood', 66),
('done', 65),
('wow', 65),
('medium', 65),
```

```
( actta ' 001'
('due', 65),
('certifi', 65),
('sandwich', 65),
('bubbl', 65),
('relax', 65),
('scent', 65),
('beetlejuic', 64),
('touch', 64),
('remov', 64),
('imagin', 64),
('popcorn', 64),
('head', 64),
('earli', 64),
('basic', 64),
('standard', 64),
('authent', 64),
('share', 64),
('condit', 63),
('decaf', 63),
('steep', 63),
('stronger', 63),
('gold', 63),
('lime', 63),
('assort', 63),
('chines', 63),
('busi', 63),
('hold', 63),
('avoid', 62),
('within', 62),
('ball', 62),
('doubl', 62),
('cheaper', 62),
('lose', 62),
('garlic', 62),
('homemad', 62),
('instruct', 62),
('yogurt', 62),
('known', 61),
('outstand', 61),
('write', 61),
('sound', 61),
('immedi', 61),
('jelli', 61),
('number', 61),
('visit', 61),
('power', 61),
('medicin', 61),
('juici', 61),
('raspberri', 61),
('twine', 61),
('kraft', 61),
('warn', 60),
('opinion', 60),
('return', 60),
('afternoon', 60),
('sent', 60),
('worri', 60),
('wife', 60),
('rest', 60),
('cheap', 60),
('switch', 60),
('sort', 60),
('perhap', 60),
('option', 60),
('tofu', 60),
('rose', 60),
('tablespoon', 60),
('vet', 60),
('lower', 60),
('crave', 60),
('send', 59),
('bottom', 59),
('heaven', 59),
('told', 59),
('main', 59),
('tend', 59),
```

```
('hook', 59),
('whatev', 58),
('gone', 58),
('guy', 58),
('figur', 58),
('lost', 58),
('drop', 58),
('thai', 58),
('browni', 58),
('crisp', 58),
('sooth', 58),
('litter', 58),
('pet', 58),
('matter', 57),
('unfortun', 57),
('poor', 57),
('healthier', 57),
('mill', 57),
('age', 56),
('refriger', 56),
('yum', 56),
('san', 56),
('grill', 56),
('over', 56),
('superior', 56), ('caramel', 56),
('veggi', 56),
('reduc', 56),
('deep', 55),
('burn', 55),
('plastic', 55),
('form', 55),
('trip', 55),
('sorri', 55),
('celesti', 55),
('summer', 54),
('break', 54),
('mother', 54),
('restaur', 54),
('kitchen', 54),
('peppermint', 54),
('yes', 54),
('alon', 54),
('chemic', 54), ('allow', 54),
('aftertast', 54),
('broth', 54),
('tin', 54),
('anymor', 54),
('picki', 54),
('anywher', 54),
('continu', 54),
('school', 53),
('agre', 53),
('offic', 53),
('anyway', 53),
('everyday', 53),
('tuna', 53),
('learn', 52),
('introduc', 52),
('frost', 52),
('upon', 52),
('remind', 52),
('bone', 52),
('realiz', 52),
('sprinkl', 52),
('tart', 52),
('pancak', 52),
('left', 52),
('fit', 52),
('util', 52),
('previous', 51),
('round', 51),
('hate', 51),
('sampl', 51),
('carbon', 51),
```

```
('arınker', 51),
('outsid', 51),
('hershey', 51),
('spoon', 51),
('sip', 51),
('shake', 51),
('muffin', 51),
('kitti', 51),
('douw', 51),
('lipton', 51),
('pan', 50),
('remain', 50),
('control', 50),
('job', 50),
('countri', 50),
('spread', 50),
('otherwis', 50),
('count', 50),
('readi', 50),
('none', 50),
('egbert', 50),
('vegan', 50),
('typic', 50),
('bland', 50),
('moist', 50),
('hungri', 50),
('allergi', 50),
('crazi', 49),
('appear', 49),
('present', 49),
('sale', 49),
('smoke', 49),
('decent', 49),
('eye', 49),
('chunk', 49),
('nutti', 49),
('flake', 49),
('success', 48),
('strang', 48),
('liquid', 48),
('intens', 48),
('pictur', 48),
('room', 48),
('distinct', 48),
('what', 48),
('yellow', 48),
('salmon', 48),
('shelf', 48),
('heavi', 48),
('chamomil', 48),
('brought', 48),
('biscuit', 48),
('citrus', 48),
('xylitol', 48),
('tim', 47),
('stori', 47),
('steak', 47),
('claim', 47),
('depend', 47),
('overpow', 47),
('straight', 47),
('deliveri', 47),
('bonsai', 47),
('cane', 47),
('safe', 47),
('raisin', 47),
('toy', 47),
('yeast', 47),
('quantiti', 47),
('somewhat', 47),
('tip', 47),
('funni', 46),
('mess', 46),
('tabl', 46),
('china', 46),
('serious', 46),
('suppos', 46),
```

```
('1sland', 46),
('grown', 46),
('guest', 46),
('mountain', 46),
('infus', 46),
('chili', 46),
('weve', 46),
('golden', 46),
('mug', 46),
('oreo', 46),
('fabul', 45),
('terrif', 45),
('short', 45),
('relat', 45),
('appreci', 45),
('whether', 45),
('salsa', 45),
('equal', 45),
('crumbl', 45),
('began', 45),
('hazelnut', 45),
('darjeel', 45),
('stale', 45),
('stress', 45),
('tooth', 45),
('boy', 45),
('heard', 45),
('kosher', 45),
('kashi', 45),
('spend', 44),
('suppli', 44),
('magic', 44),
('worst', 44),
('knew', 44),
('twice', 44),
('six', 44),
('jasmin', 44),
('paid', 44),
('pie', 44),
('hibiscus', 44),
('bulk', 44),
('basket', 44),
('respons', 44),
('fall', 44),
('forward', 44),
('supplement', 44),
('cent', 44),
('dollar', 44),
('mate', 44),
('kick', 44),
('kept', 44),
('current', 44),
('quot', 44),
('hes', 43),
('air', 43),
('design', 43),
('terribl', 43),
('stuck', 43),
('hear', 43),
('sick', 43),
('pleasur', 43),
('sens', 43),
('stand', 43),
('talk', 43),
('horribl', 43),
('complex', 43),
('curri', 43),
('charg', 43),
('acquir', 43),
...]
```

In [79]:

type(word_dist)

```
list
In [80]:
 word_dist[:15]
Out[80]:
 [('tea', 2662),
        ('tast', 2442),
       ('like', 2392),
       ('flavor', 1996),
       ('good', 1871),
('one', 1738),
        ('great', 1718),
       ('use', 1634),
       ('tri', 1511),
        ('make', 1440),
        ('product', 1395),
        ('love', 1291),
        ('coffe', 1247),
       ('get', 1243),
       ('best', 1192)]
 In [0]:
 {\tt \#https://stackoverflow.com/questions/3071415/efficient-method-to-calculate-the-rank-vector-of-a-limits of the action of the stackoverflow of the stacko
 st-in-python
```

```
#https://stackoverflow.com/questions/3071415/efficient-method-to-calculate-the-rank-vector-of-a-li
st-in-python

'''a={}
    rank=1
    for num in sorted(vector):
        if num not in a:
            a[num]=rank
            rank=rank+1 '''

a = {}
    rank = 1
    for num in range(len(word_dist)):
        i = word_dist[num][0]
        a[i] = rank
        rank+=1
```

In [0]:

```
X = []
for sent in z:
    rows = []
    for word in sent.split():
        rows.append(a[word])
    X.append(rows)
```

In [0]:

```
#X[:20]
```

In [97]:

```
X = np.array(X)
X
```

Out[97]:

```
list([252, 265, 16038, 9, 3909, 990, 746, 2561, 1214, 1210, 64, 385, 818, 1167, 8, 3909, 10,
283, 2079, 156, 5027, 16039, 16040, 3909, 8, 265, 178, 223, 64, 51, 536, 8, 3861, 4, 1129, 4201, 1
560, 3909, 17, 8, 1008, 44, 1423, 567, 9, 3909, 3286, 363, 1243, 8, 1021, 1214]),
       list([39, 188, 16, 16041, 188, 852, 1815, 159, 2304, 468, 174, 629, 113, 408, 1815, 396,
216, 14, 16, 312, 12, 87, 174, 856, 174, 204, 1815, 414, 4396, 249, 85, 7, 52, 479, 480, 17, 7, 15
7, 757, 630, 484, 1516, 254, 2304, 260, 77, 204, 2272, 1815, 174, 232, 1596, 743, 757, 630, 484, 1
079, 130, 484, 1079, 933, 249, 4396, 29, 31, 50, 1079, 775, 254, 112, 216, 479, 480, 21, 54, 446,
256, 554, 10, 195]),
       list([474, 16042, 371, 252, 20, 544, 637, 2704, 608, 474, 210, 29, 648, 91, 81, 71, 268, 28
, 25, 358])],
      dtype=object)
4
                                                                                                  Þ
In [98]:
Y = final['Score']
Y = np.array(Y)
Out[98]:
array([1, 1, 1, ..., 1, 1, 1])
In [0]:
from sklearn.model selection import train test split
X_train , X_test , y_train , y_test = train_test_split(X,Y,test_size = 0.2,random_state = 0,shuffle
= False)
In [0]:
%matplotlib notebook
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import time
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error
def plt_dynamic(x, vy, ty, ax, colors=['b']):
    ax.plot(x, vy, 'b', label="Validation Loss")
    ax.plot(x, ty, 'r', label="Train Loss")
   plt.legend()
    plt.grid()
    fig.canvas.draw()
In [0]:
import warnings
plt.style.use('fivethirtyeight')
plt.rcParams['figure.figsize'] = [10, 5]
warnings.filterwarnings("ignore", category=FutureWarning)
%config InlineBackend.figure_format = 'retina'
In [104]:
# truncate and/or pad input sequences
max\_review\_length = 600
X train = sequence.pad sequences(X train, maxlen=max review length)
X test = sequence.pad sequences(X test, maxlen=max review length)
print(X train.shape)
print(X_train[1])
(4000, 600)
                   0
                      Ω
                             0
                                  Ω
                                       Ω
                                             Ω
                                                 Ω
                                                       0
                                                            Ω
                                                                 Ω
                                                                      0
[ 0
        Ω
              0
    0
                   0
                        0
                                  0
    Ω
         0
             0
                   0
                        0
                             0
                                  0
                                       0
                                             Ω
                                                  0
                                                       0
                                                            Ω
                                                                 Ω
                                                                      0
    0
         0
              0
                        0
                             0
                                  0
                                       0
                                             Ω
                                                  0
                                                       Ω
                                                            Ω
                                                                 0
                                                                      0
                   Ω
                        0
                                  0
                                       0
    0
         0
              0
                   0
                             0
                                             0
                                                  0
                                                       0
                                                            0
                                                                      0
    0
         0
              0
                   0
                       0
                             Ω
                                  0
                                       Ω
                                             0
                                                 Ω
                                                       0
                                                            0
                                                                0
                                                                      0
    0
         0
                        0
                             0
                                  0
                                       0
                                                       0
                                                            0
                                                                 0
              0
                   0
                                             0
                                                  0
                                                                      0
```

```
0
      Ω
          0
              0
                  0
                      0
                          0
                               0
                                   Ω
                                       0
                                           0
                                               Ω
  0
      0
          0
              0
                  0
                      0
                          0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
  0
                  0
                                               0
              0
                                       0
                                           0
  0
      0
          0
              0
                  0
                      0
                          0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
  0
      0
                 0
                     0 0
                              0
                                          0
                                             0
                                                   0
          0
              0
                                   0
                                      0
                                                       0
  0
                 0
                                         0
  0
                 0
                     0
                         0
                              0
                                                  0
      0
          0
              0
                                   0
                                     0
                                             0
                                                       0
  0
      0
          0
              0
                  0
                      0
                          0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
  0
      0
          0
              0
                  0
                      0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
  0
      0
          0
              0
                  0
                      0
                          0
                              0
                                   0
                                      0
                                           0
                                               0
                                                   0
                                                       0
  0
      0
                  0
                     0
                         0
                             0
                                      0
                                         0
                                             0
              0
                                   0
  0
      0
          0
              0
                0
                    0
                        0
                             0
                                   0
                                       0
                                         0 0
  0
                      0
      0
          Ω
              0
                  0
                          Ω
                              Ω
                                   0
                                       0
                                           0
                                               Ω
                                                   Ω
                                                       0
  0
      0
                  0
                      0
                          0
                                           0
                                               0
              0
                                   0
  0
      0
          0
              0
                  0
                      0
                          0
                              0
                                   0
                                      0
                                           0
                                               0
                                                   0
                                                       0
  0
      0
                 0
                     0 0
                             Ω
                                         Ω
                                             0
                                                  0
          Ω
              0
                                   Ω
                                      Ω
                                                       0
  0
      0
                0
                    0 0
                                         0 0
                 0
                     0
                         0
                                         0
                                                  0
  0
      0
          0
                              0
                                             0
              0
                                   0
                                      0
                                                       0
  0
      0
          0
              0
                  0
                      0
                          0
                              0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
  0
      0
          0
              0
                  0
                      0
                           0
                               0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                 0
  0
                                           0
      0
          0
              0
                      0
                          0
                              0
                                   0
                                      Ω
                                               Ω
                                                   0
                                                       0
  0
      0
              0
                  0
                     0
                              0
                                   0
                                      0
                                         0
                                             0
  0
      0
          0
              0
                0
                     0 0
                             0
                                   0
                                      0
                                         0 0
                                                 0
                                                       0
                    0
                        0
  0
      Ω
          0
              0
                  0
                              Ω
                                   0
                                      0
                                           0
                                              Ω
                                                   Ω
                                                       0
  0
                  0
                      0
                                               0
      0
          0
              0
                               0
                                   0
                                       0
                                           0
                                                       0
  0
      0
          0
              0
                  0
                      0
                          0
                              0
                                   0
                                      0
                                           0
                                               0
                                                   0
                                                       0
                                     0
                                                 0
  0
      0
          0
              0
                0 0 0
                             0
                                   0
                                         0 0
                                                       0
  0
      0
         0
              0
                0 0 0
                             0
                                   0 0
                                         0 0 0
                             0
                                     0
                                             0
                                                 0
                                         0
  0
     0
                0 0 0
                                 0
         Ω
              0
                                                       0
  0
      0
          0
              0
                  0
                      0
                          0
                              0
                                   0
                                      0
                                           0
                                               0
                                                   0
                                                       0
  0
      0
          0
              0
                  0
                      0
                          0
                              0
                                   0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                 0
                              0
                                           0
  0
     0
          0
              0
                      0
                          0
                                   0
                                      0
                                               0
                                                   0
                                                       0
                         7
                              63 961
  0
     0
          0
              0 119 2983
                                     18 7191 133 583 986
2984
    39 280 647 1521 543 155
                             34 3240 129
                                         8 2983 527 2010
1413 2192 5398 297 119 831 159 528 527 589 346 219]
```

In [0]:

```
top_words = 6000
epochs = 20
batch_size = 64
embedding_vecor_length = 32
```

In [0]:

```
from keras.layers.normalization import BatchNormalization
```

In [0]:

```
from datetime import datetime
```

Architecture-1

In [122]:

```
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(LSTM(2, return_sequences=True))
model.add(LSTM(2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
```

Layer (type)	Output	Shape		Param #
embedding 26 (Embedding)	(None,	600,	======================================	192000
lstm_51 (LSTM)	(None,	600, 2	2)	280

 lstm_52 (LSTM)
 (None, 2)
 40

 dense_21 (Dense)
 (None, 1)
 3

 Total params: 192,323
 Trainable params: 192,323

 Non-trainable params: 0
 0

None

In [123]:

start = datetime.now()

```
history = model.fit(X_train, y_train, epochs = 10, batch_size = batch_size,
verbose=1,validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))
Train on 4000 samples, validate on 1000 samples
Epoch 1/10
4000/4000 [============ ] - 178s 45ms/step - loss: 0.6351 - acc: 0.8855 - val los
s: 0.5737 - val acc: 0.8640
Epoch 2/10
4000/4000 [============= ] - 172s 43ms/step - loss: 0.5241 - acc: 0.8895 - val los
s: 0.5071 - val acc: 0.8640
Epoch 3/10
s: 2.1682 - val acc: 0.8640
Epoch 4/10
s: 2.1682 - val_acc: 0.8640
Epoch 5/10
s: 2.1682 - val_acc: 0.8640
Epoch 6/10
s: 2.1682 - val_acc: 0.8640
Epoch 7/10
s: 2.1682 - val_acc: 0.8640
Epoch 8/10
s: 2.1682 - val acc: 0.8640
Epoch 9/10
4000/4000 [============= ] - 175s 44ms/step - loss: 1.7616 - acc: 0.8895 - val los
s: 2.1682 - val_acc: 0.8640
Epoch 10/10
4000/4000 [============= ] - 178s 45ms/step - loss: 1.7616 - acc: 0.8895 - val los
s: 2.1682 - val acc: 0.8640
Accuracy: 86.40%
```

In [124]:

```
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,11))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, validation_data=(X_test, Y_test))

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss: validation loss
# val_acc: validation accuracy

# loss: training loss
# acc: train accuracy
# for each key in histrory.histrory we will have a list of length equal to number of epochs
```

```
vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)

print('Time taken to run this cell :', datetime.now() - start)
```

Time taken to run this cell : 0:30:12.316704

In [125]:

```
plt.plot(model.history.history['loss'])
plt.plot(model.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Crossvalidation'], loc='upper left')
plt.show()
```


Architecture-2

In [126]:

```
from keras.layers.normalization import BatchNormalization

# create the model
embedding_vecor_length = 64
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
```

```
model.add(BatchNormalization())
model.add(LSTM(100, return_sequences=True))
model.add(Dropout(0.25))
model.add(BatchNormalization())
model.add(LSTM(100))
model.add(Dropout(0.25))
model.add(Dropout(0.25))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
#Refer: https://datascience.stackexchange.com/questions/10615/number-of-parameters-in-an-lstm-model
```

Layer (type)	Output	Shape	Param #
embedding_27 (Embedding)	(None,	600, 64)	384000
batch_normalization_37 (Batc	(None,	600, 64)	256
lstm_53 (LSTM)	(None,	600, 100)	66000
dropout_40 (Dropout)	(None,	600, 100)	0
batch_normalization_38 (Batc	(None,	600, 100)	400
lstm_54 (LSTM)	(None,	100)	80400
dropout_41 (Dropout)	(None,	100)	0
dense_22 (Dense)	(None,	1)	101
Total params: 531,157 Trainable params: 530,829 Non-trainable params: 328			

None

In [129]:

```
start = datetime.now()
history = model.fit(X_train, y_train, epochs = 10, batch_size = batch_size,
verbose=1,validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))

plt.plot(model.history.history['loss'])
plt.plot(model.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Crossvalidation'], loc='upper right')
plt.show()
print('Time taken to run this cell :', datetime.now() - start)
```

```
Train on 4000 samples, validate on 1000 samples
Epoch 1/10
4000/4000 [============ ] - 171s 43ms/step - loss: 0.1379 - acc: 0.9490 - val los
s: 0.3757 - val_acc: 0.8620
Epoch 2/10
4000/4000 [============= ] - 176s 44ms/step - loss: 0.1352 - acc: 0.9510 - val los
s: 0.4866 - val acc: 0.8810
Epoch 3/10
4000/4000 [============== ] - 183s 46ms/step - loss: 0.0831 - acc: 0.9698 - val los
s: 0.4728 - val_acc: 0.8840
Epoch 4/10
s: 0.5302 - val acc: 0.8510
Epoch 5/10
4000/4000 [============= ] - 176s 44ms/step - loss: 0.0365 - acc: 0.9875 - val los
s: 0.6105 - val acc: 0.8760
Epoch 6/10
4000/4000 [============ ] - 176s 44ms/step - loss: 0.0551 - acc: 0.9800 - val los
```


Time taken to run this cell: 0:30:12.283487

Architecture-3

In [130]:

```
# create the model
embedding_vecor_length = 64
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(BatchNormalization())
model.add(LSTM(2, return_sequences=True))
model.add(BatchNormalization())
model.add(LSTM(2))
model.add(Dropout(0.25))
model.add(Dropout(0.25))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
#Refer: https://datascience.stackexchange.com/questions/10615/number-of-parameters-in-an-lstm-mode
```

Layer (type)	Output	Shape	Param #
embedding_28 (Embedding)	(None,	600, 64)	384000
batch_normalization_39 (Batc	(None,	600, 64)	256
lstm_55 (LSTM)	(None,	600, 2)	536
batch_normalization_40 (Batc	(None,	600, 2)	8
lstm_56 (LSTM)	(None,	2)	40
dropout_42 (Dropout)	(None,	2)	0

dense_23 (Dense) (None, 1) 3

Total params: 384,843 Trainable params: 384,711 Non-trainable params: 132

None

In [131]:

```
start = datetime.now()
history = model.fit(X_train, y_train, epochs = 10, batch_size = batch_size,
verbose=1,validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))

plt.plot(model.history.history['loss'])
plt.plot(model.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Crossvalidation'])
plt.show()
print('Time taken to run this cell :', datetime.now() - start)
```

```
Train on 4000 samples, validate on 1000 samples
Epoch 1/10
4000/4000 [============ ] - 181s 45ms/step - loss: 0.5411 - acc: 0.7970 - val los
s: 0.4908 - val acc: 0.8640
Epoch 2/10
4000/4000 [============= ] - 169s 42ms/step - loss: 0.4744 - acc: 0.8895 - val los
s: 0.4633 - val acc: 0.8640
Epoch 3/10
4000/4000 [============== ] - 168s 42ms/step - loss: 0.4495 - acc: 0.8895 - val los
s: 0.4483 - val acc: 0.8640
Epoch 4/10
s: 0.4300 - val acc: 0.8640
Epoch 5/10
s: 0.4124 - val_acc: 0.8640
4000/4000 [============== ] - 170s 42ms/step - loss: 0.3771 - acc: 0.8895 - val_los
s: 0.3957 - val acc: 0.8640
Epoch 7/10
4000/4000 [============= ] - 169s 42ms/step - loss: 0.3482 - acc: 0.8900 - val los
s: 0.3837 - val acc: 0.8640
Epoch 8/10
4000/4000 [============= ] - 169s 42ms/step - loss: 0.3278 - acc: 0.9000 - val los
s: 0.3856 - val acc: 0.8620
Epoch 9/10
s: 0.3786 - val acc: 0.8540
Epoch 10/10
4000/4000 [============ ] - 170s 42ms/step - loss: 0.2922 - acc: 0.9113 - val los
s: 0.3676 - val acc: 0.8600
Accuracy: 86.00%
```


Time taken to run this cell : 0:28:58.181136

Architecture-4

In [136]:

```
# create the model
embedding_vecor_length = 32
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(LSTM(100))
model.add(Dropout(0.25))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
#Refer: https://datascience.stackexchange.com/questions/10615/number-of-parameters-in-an-lstm-model
```

Layer (type)	Output Shape	Param #
embedding_31 (Embedding)	(None, 600, 32)	192000
lstm_59 (LSTM)	(None, 100)	53200
dropout_45 (Dropout)	(None, 100)	0
dense_26 (Dense)	(None, 1)	101
Total params: 245,301 Trainable params: 245,301 Non-trainable params: 0		

None

In [137]:

```
start = datetime.now()
history = model.fit(X_train, y_train, epochs = 10, batch_size = batch_size,
verbose=1,validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))

plt.plot(model.history.history['loss'])
plt.plot(model.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Crossvalidation'])
plt.show()
print('Time taken to run this cell :', datetime.now() - start)
Train on 4000 samples, validate on 1000 samples
```

```
: 2.1682 - val acc: 0.8640
Epoch 4/10
: 2.1682 - val acc: 0.8640
Epoch 5/10
: 2.1682 - val acc: 0.8640
Epoch 6/10
: 2.1682 - val acc: 0.8640
Epoch 7/10
: 2.1682 - val acc: 0.8640
Epoch 8/10
: 2.1682 - val acc: 0.8640
Epoch 9/10
: 2.1682 - val acc: 0.8640
Epoch 10/10
: 2.1682 - val acc: 0.8640
Accuracy: 86.40%
```


Time taken to run this cell: 0:15:33.636212

Architecture-5

In [149]:

```
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(LSTM(10,return_sequences=True,dropout=0.5,recurrent_dropout=0.5))
model.add(LSTM(10,dropout=0.5,recurrent_dropout=0.5))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
print(model.summary())
```

Layer (type)	Output Shape	Param #
embedding_37 (Embedding)	(None, 600, 32)	192000
lstm_71 (LSTM)	(None, 600, 10)	1720
lstm_72 (LSTM)	(None, 10)	840
dense_31 (Dense)	(None, 1)	

Total params: 194,571
Trainable params: 194,571

None

In [150]:

```
start = datetime.now()
history = model.fit(X_train, y_train, epochs = 10, batch_size = batch_size,
verbose=1,validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))

plt.plot(model.history.history['loss'])
plt.plot(model.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Crossvalidation'])
plt.show()
print('Time taken to run this cell :', datetime.now() - start)
```

```
Train on 4000 samples, validate on 1000 samples
Epoch 1/10
4000/4000 [============= ] - 216s 54ms/step - loss: 0.5445 - acc: 0.8738 - val los
s: 0.3943 - val_acc: 0.8640
Epoch 2/10
s: 0.4105 - val_acc: 0.8640
Epoch 3/10
4000/4000 [============ ] - 196s 49ms/step - loss: 0.3330 - acc: 0.8895 - val los
s: 0.3932 - val acc: 0.8640
Epoch 4/10
s: 0.3665 - val acc: 0.8690
Epoch 5/10
4000/4000 [============ ] - 192s 48ms/step - loss: 0.2662 - acc: 0.9008 - val los
s: 0.3734 - val acc: 0.8680
Epoch 6/10
4000/4000 [============== ] - 194s 48ms/step - loss: 0.2406 - acc: 0.9113 - val los
s: 0.3701 - val_acc: 0.8690
Epoch 7/10
s: 0.3909 - val_acc: 0.8670
Epoch 8/10
s: 0.4047 - val acc: 0.8650
Epoch 9/10
4000/4000 [============= ] - 193s 48ms/step - loss: 0.1817 - acc: 0.9315 - val los
s: 0.4272 - val acc: 0.8670
Epoch 10/10
4000/4000 [============= ] - 190s 47ms/step - loss: 0.1777 - acc: 0.9345 - val los
s: 0.4367 - val_acc: 0.8670
Accuracy: 86.70%
```


0 2 4 6 8 Epoch

Time taken to run this cell : 0:33:14.242946

Architecture-6

```
In [159]:
```

```
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(LSTM(2,return_sequences=True,dropout=0.5,recurrent_dropout=0.5))
model.add(LSTM(2,dropout=0.5,recurrent_dropout=0.5))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
print(model.summary())
```

Layer (type)	Output Shape	Param #
embedding_41 (Embedding)	(None, 600, 64)	384000
lstm_79 (LSTM)	(None, 600, 2)	536
lstm_80 (LSTM)	(None, 2)	40
dense_35 (Dense)	(None, 1)	3
Total params: 384,579 Trainable params: 384,579 Non-trainable params: 0		

None

In [152]:

```
start = datetime.now()
history = model.fit(X_train, y_train, epochs = 10, batch_size = batch_size,
verbose=1,validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))

plt.plot(model.history.history['loss'])
plt.plot(model.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.ylabel('Loss')
plt.vlabel('Loss')
plt.legend(['Train', 'Crossvalidation'])
plt.legend(['Train', 'Crossvalidation'])
plt.show()
print('Time taken to run this cell :', datetime.now() - start)
```

```
Train on 4000 samples, validate on 1000 samples
Epoch 1/10
s: 0.5844 - val_acc: 0.8640
Epoch 2/10
4000/4000 [============== ] - 192s 48ms/step - loss: 0.5350 - acc: 0.8870 - val los
s: 0.4606 - val acc: 0.8640
Epoch 3/10
s: 0.4126 - val acc: 0.8640
Epoch 4/10
s: 0.4006 - val acc: 0.8640
Epoch 5/10
s: 0.3960 - val acc: 0.8640
Epoch 6/10
              -----1 1060 /0mg/o+on 1000. 0 2565 000. 0 0005
4000/4000 [-
```

```
4000/4000 [=====
         s: 0.3950 - val acc: 0.8640
Epoch 7/10
s: 0.3952 - val acc: 0.8640
Epoch 8/10
s: 0.3943 - val acc: 0.8640
Epoch 9/10
s: 0.3935 - val acc: 0.8640
Epoch 10/10
s: 0.3894 - val acc: 0.8640
Accuracy: 86.40%
```


Time taken to run this cell : 0:33:45.448443

Architecture-7

(Architecture-6 with 20 epochs.)

```
In [161]:
```

```
start = datetime.now()
history = model.fit(X_train, y_train, epochs = 20, batch_size = batch_size,
verbose=1,validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose = 0)
print("Accuracy: %.2f%%" % (scores[1]*100))

plt.plot(model.history.history['loss'])
plt.plot(model.history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.ylabel('Epoch')
plt.legend(['Train', 'Crossvalidation'])
plt.show()
print('Time taken to run this cell :', datetime.now() - start)

Train on 4000 samples, validate on 1000 samples
```

```
va_ acc. 0.0010
Epoch 4/20
4000/4000 [============== ] - 201s 50ms/step - loss: 0.3635 - acc: 0.8895 - val los
s: 0.3929 - val acc: 0.8640
Epoch 5/20
s: 0.3922 - val acc: 0.8640
Epoch 6/20
s: 0.3839 - val_acc: 0.8640
Epoch 7/20
s: 0.3680 - val acc: 0.8640
s: 0.3490 - val acc: 0.8640
Epoch 9/20
4000/4000 [============== ] - 195s 49ms/step - loss: 0.2730 - acc: 0.9008 - val_los
s: 0.3380 - val_acc: 0.8640
Epoch 10/20
4000/4000 [============= ] - 197s 49ms/step - loss: 0.2536 - acc: 0.9040 - val_los
s: 0.3371 - val acc: 0.8660
Epoch 11/20
s: 0.3452 - val acc: 0.8710
Epoch 12/20
s: 0.3451 - val acc: 0.8710
Epoch 13/20
s: 0.3488 - val_acc: 0.8700
Epoch 14/20
4000/4000 [============= ] - 196s 49ms/step - loss: 0.1928 - acc: 0.9278 - val los
s: 0.3627 - val acc: 0.8710
Epoch 15/20
4000/4000 [============ ] - 194s 49ms/step - loss: 0.1874 - acc: 0.9313 - val los
s: 0.3735 - val acc: 0.8730
Epoch 16/20
4000/4000 [============= ] - 195s 49ms/step - loss: 0.1748 - acc: 0.9365 - val los
s: 0.3855 - val acc: 0.8710
Epoch 17/20
s: 0.3948 - val_acc: 0.8680
Epoch 18/20
s: 0.4051 - val_acc: 0.8670
Epoch 19/20
s: 0.3993 - val acc: 0.8640
Epoch 20/20
4000/4000 [============= ] - 196s 49ms/step - loss: 0.1578 - acc: 0.9400 - val los
s: 0.4117 - val acc: 0.8660
Accuracy: 86.60%
```


Time taken to run this cell: 1:07:04.966635

Summary

As my previous models were overfitting highly, i decided to try different architechures. But due to time limitations, I had to do it with 5000 points only(Sorry!!!!!...). Here is a ocmplete summary of the 7 architures that i used.

```
In [11]:
```

```
from prettytable import PrettyTable
x = PrettyTable()
x.field names = ["S.R", 'Architectures', "Training Loss", "Test loss", "Accuracy", "Remarks"]
x.add row([(1), "Architecture-1", "1.716", 2.162, '86.40%', "Overfit"])
x.add_row([(2),"Architecture-2","0.0272", 0.9908, '88.40%', "Overfit"])
x.add_row([(3),'Architecture-3',"0.2922", 0.3676, '86.00%', "Good"])
x.add_row([(4),"Architecture-4","1.7616", 2.1682, '86.40%', "Overfit"])
x.add_row([(5), "Architecture-5", "0.1777", 0.4367, '86.70%', "Good"])
x.add_row([(6), 'Architecture-6', "0.3413", 0.3894, '86.40%', "Very Good"])
x.add row([(7),'Architecture-7 (Architecture-6 with 20 epochs.)',"0.1578", 0.4117, '86.60%', "Good"]
print(x.get string(title = "----SUMMARY----"))
| S.R |
                                                 | Training Loss | Test loss | Accuracy | Re
                    Architectures
arks |
| 1 |
                                                              | 2.162 | 86.40% | Ov
                                                      1.716
                    Architecture-1
                                                fit |
| 2 |
                    Architecture-2
                                                0.0272 | 0.9908 | 88.40% |
Overfit |
                                                      0.2922 | 0.3676 | 86.00% |
| 3 |
                    Architecture-3
                                                 Good
     | 4 |
                                                      1.7616 | 2.1682 | 86.40% |
                    Architecture-4
                                                1
Overfit |
                                                       0.1777
                                                               | 0.4367 | 86.70% |
| 5 |
                    Architecture-5
                                                Good |
1 6
                     Architecture-6
                                                      0.3413
                                                                   0.3894 | 86.40% | Ver
Good I
7 | Architecture-7 (Architecture-6 with 20 epochs.) |
                                                      0.1578 | 0.4117 | 86.60% |
             ._____
```