CS & IT ENGING

Operating System

Memory Management

Lecture - 5

Recap of Previous Lecture

Topic TLB

TLB Mapping Topic

Topic

Segmentation

000		
001		
010		
011		
100		
101		
110		
111		

, which p. T. entires is stored where in TLB

TLB Mapping

- 1. Fully Associative
- 2. Direct
- 3. Set-Associative

Fully associative mapping:

TLB

Tag (Page no.) P.T. entry
0100 1010
1001

L.A.

P	9
Tag	

TLB Mapping: Direct

000	0
001	
010	
011	
100	
101	
110	
Ш	

No of bits in TLB entry no. = log_(no. of entries)

Ex:- no. of pages = $2^{12} \Rightarrow P = 12 \text{ bits}$ TLB can stare 32 entriesDirect mapping. $\Rightarrow 2^5$ Tag = $\frac{7}{4}$ bits

Topic: Question

#Q. A computer system implements a 31- bit virtual address, page size of 8 kilobytes, and a 256-entry translation look-aside buffer (TLB) organized as direct mapped. The minimum length of the TLB tag in bits is _____?

no of entires in
$$TLIB = 256 - 28$$

entry no. = $69256 = 86its$

logical

#Q.) L.A.S. = 8GB = 2330 => LA = 33 bits Direct mapped TLB has 5/2 entires Page = 4 kBytes = 2¹² B Tag = 12 bits 21

ex: TLB size = 64 bytes 1 P.T. entry = 2 bytes no. of entries in $TB = \frac{64B}{2B}$ = 32

Topic: Question

#Q. A computer system implements a 44- bit virtual address, page size of 1 kilobytes, and a 16KB look-aside buffer (TLB) organized as direct mapped. Each page table entry is of 4bytes. The minimum length of the TLB tag in bits is __22___?

 50^{17} no. of entrees in $TLB = \frac{16kB}{4B} = 4k = 2^{12}$ P

J

Tag TLB entry

TLB Mapping: Set Associative

TLB => 64 entries 2-way set associative

no. of sets in
$$TLB = \frac{64}{2}$$

$$= 32$$

$$= 2^{5} \Rightarrow TLB \text{ set no}$$

$$= 5 \text{ bits}$$

Topic: Question

#Q. A Computer system implements a 36-bit virtual address, page size of 16 Kbytes and a 256 – entry translation look-aside buffer (TLB) organized into 64 sets each having four ways. Assume that the TLB tag does not store any process id. The minimum length of the TLb tag in bits is _____.

no of	sets =	64 =	26 => set	no.	11	6	bits
-------	--------	------	-----------	-----	----	---	------

Paging suffers from internal fragmentation

Reducing page size can reduce internal Lagmentation.

Homework:-

If page size is reduced or increased, then what impact it causes on page table size?

 Divide Process in logically related partitions (Segments) Segments are scattered in physical memory

Brocess

Seg 0 Seg 1

- Size of segment can vary, so along with base, keep limit information also
- Limit defines max number of bytes within the segment

Ex: - CPU wants L.A. => 5= 1 byte = 5 500+5 > search Base = (500) = 505 CPU generalles L.A. = S=1 d=400 → seg. = sase=svo == Table

[NAT]

#Q. Find physical address for the following requests?

S	d	Physical Address
2	856	5000 +856 = 5856
1	256	500 +256 = 756
0	480	2000 +480 = 2480
2	952	seg. fault

	Seg.	Table
0	2000	ಉಂ
1	500	300
2	5000	900
1	Base	limit

- Size of segment can vary, so along with base, keep limit information also
- Limit defines max number of words within the segment

[NAT]

#Q. Maximum segment size = $16KB = 2^{14}B \Rightarrow 3 = 14^{14}b$ Number of segments in process = $2^{10} \Rightarrow 5 = 16^{14}b$ Logical address = 2^{14} bits ??

Segmentation suffers from external fragmentation

2 mins Summary

Topic

TLB Mapping

Topic

Segmentation

Happy Learning

THANK - YOU