Graph Mining SD212 4. PageRank

Thomas Bonald

2018 - 2019

Motivation

How to identify the most "important" nodes in a graph, either globally or relatively to some other nodes?

Useful for:

- information retrieval
- content recommendation
- local clustering

We focus on PageRank metrics, originally proposed by Google's founders in 1999 to rank Web pages: popular pages are typically visited more frequently by a random Web surfer.

Example

PageRank

Local ranking

Personalized PageRank

Directed graphs

PageRank

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Forward-Backward PageRank

Notation

Consider a directed graph G = (V, E):

- ▶ $V = \{1, ..., n\}$
- ▶ A, weighted adjacency matrix
- ▶ w⁺, w⁻, vectors of out-weights and in-weights

Random walk

In the absence of sinks:

- ► $P_{ij} = A_{ij}/w_i^+$, probability of moving from i to j
- $P = D_{+}^{-1}A$ with $D + = \text{diag}(w^{+})$
- ► A Markov chain $X_0, X_1, X_2, ...$ with transition matrix P
- Probability distributions $\pi_0, \pi_1, \pi_2, \dots$ with $\pi_{t+1} = \pi_t P$

Stationary distribution

If the graph is strongly connected, the unique solution to

$$\pi = \pi P$$

Computation

Stationary distribution

Input:

P, transition matrix N, number of iterations

Do

For
$$t = 1, ..., N$$
, $\pi \leftarrow \pi P$

Output:

 π , (approximate) stationary distribution

Complexity: O(Nm) in time, O(n) in memory

The case of undirected graphs

We have:

- $w = w^+ = w^-$
- ▶ $P_{ij} = A_{ij}/w_i$, probability of moving from i to j
- ▶ $P = D^{-1}A$ with $D = \operatorname{diag}(w)$

Stationary distribution

If the graph is connected,

$$\pi \propto w$$

Accounting for sinks

Several options:

- 1. (recursive) pruning
- 2. (forced) restart, e.g.,

$$P_{ij} = \begin{cases} \frac{A_{ij}}{w_i^+} & \text{if } w_i^+ > 0\\ \frac{1}{n} & \text{otherwise} \end{cases}$$

3. wait, i.e.,

$$P_{ij} = \left\{ egin{array}{ll} rac{A_{ij}}{w_i^+} & ext{if } w_i^+ > 0 \\ \delta_{ij} & ext{otherwise} \end{array}
ight.$$

Traps

Enforcing irreducibility

Random walks with restarts:

- Fix $\alpha \in (0,1)$
- ▶ Walk with probability α , restart (e.g., to a random node) with probability $1-\alpha$
- An irreducible Markov chain with transition matrix:

$$P^{(\alpha)} = \alpha P + (1 - \alpha) \frac{11^{T}}{n}$$

▶ The stationary distribution $\pi^{(\alpha)}$ satisfies:

$$\pi^{(\alpha)} = \alpha \pi^{(\alpha)} P + (1 - \alpha) \frac{1^{T}}{n}$$

This is the PageRank vector!

Computation

PageRank

Input:

P, transition matrix (with forced restarts) α , damping factor

N, number of iterations

Do:

For
$$t=1,\ldots,N$$
, $\pi\leftarrow\alpha\pi P+(1-\alpha)\frac{1}{n}(1,\ldots,1)$

Output:

 π , (approximate) PageRank vector

Example ($\alpha = 0.85$)

Setting the damping factor

- ▶ The path length before restart (in the absence of sinks) has a **geometric distribution** with parameter 1α
- Average path length:

$$\frac{\alpha}{1-\alpha}$$

▶ For $\alpha = 0.85$, we get about 5.7, a typical distance between two nodes in real graphs (cf. the **small-world** property).

Expression of the PageRank vector

Proposition

$$\pi^{(\alpha)} = (1 - \alpha) \sum_{t=0}^{+\infty} \alpha^t \pi_t$$

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Forward-Backward PageRank

Personalization

Personalization

Personalized PageRank

- ▶ Restart distribution μ on $S \subset V$
- Restart from sinks:

$$P_{ij} = \left\{ egin{array}{ll} rac{A_{ij}}{w_i^+} & ext{if } w_i^+ > 0 \\ \mu_j & ext{otherwise} \end{array}
ight.$$

Damping:

$$P^{(\alpha)} = \alpha P + (1 - \alpha)1\mu$$

Computation

Personalized PageRank

Input:

P, transition matrix (with forced restarts) μ , personalization row vector α , damping factor N, number of iterations

Do:

$$\pi \leftarrow \mu$$

For $t = 1, ..., N$, $\pi \leftarrow \alpha \pi P + (1 - \alpha)\mu$

Output:

 π , (approximate) PageRank vector

Expression of the Personalized PageRank vector

Proposition

In the absence of sinks,

$$\pi^{(\alpha)} = \sum_{s \in S} \mu_s \pi_s^{(\alpha)}$$

where $\pi_s^{(lpha)}$ is the Personalized PageRank vector associated with s

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Forward-Backward PageRank

Motivation

- In many practical cases, two nodes having a large number of common successors (or predecessors) are closely related
- ► For instance, the articles "France" and "Germany" of Wikipedia for Schools have 38 common links: United States, United Kingdom, World War II, Latin, Japan, Italy, Spain, Russia, Time zone, Currency, ...

Forward-backward random walk

In the absence of sources and sinks:

- ▶ $P_{ik}^+ = A_{ik}/w_i^+$, probability of moving from i to k (original graph)
- ▶ $P_{kj}^- = A_{jk}/w_k^-$, probability of moving from k to j (reverse graph)
- ▶ A Markov chain $X_0, X_1, X_2, ...$ with transition matrix $P = P^+P^-$,

$$P_{ij} = \sum_{k} \frac{A_{ik}}{w_i^+} \frac{A_{jk}}{w_k^-}$$

Stationary distribution

If the Markov chain is irreducible,

$$\pi \propto w^+$$

Computation

Assuming neither sinks nor sources:

Personalized Forward-Backward PageRank

Input:

 P^+ and P^- , forward and backward transition matrices μ , personalization row vector α , damping factor N, number of iterations

Do:

$$\pi \leftarrow \mu$$

For $t = 1, ..., N$, $\pi \leftarrow \pi P^+$, $\pi \leftarrow \alpha \pi P^- + (1 - \alpha)\mu$

Output:

 π , (approximate) Forward-Backward PageRank vector

Directed graphs as bipartite graphs

Co-citation graph

- ► **Weighted, undirected** graph *G*^{co} associated with the directed graph *G*
- Weighted adjacency matrix:

$$A_{ij}^{\text{co}} = \sum_{k \in V} \frac{A_{ik} A_{jk}}{w_k^-}$$

Weight of node i:

$$w_i^{\text{co}} = \sum_{j \in V} A_{ij}^{\text{co}} = w_i^+$$

Random walks

The **forward-backward** random walk in G corresponds to the **regular** random walk in G^{co} :

$$P = P^+P^- = P^{co}$$

Size of the co-citation graph

- ▶ Each node k of G forms a clique of d_k^- nodes in G^{co}
- ▶ Number of edges in G^{co} possibly as large as:

$$\sum_{k\in V} (d_k^-)^2$$

May be **huge** for a power-law in-degree distribution!

▶ In comparison, the size of *G* is:

$$m = \sum_{k \in V} d_k^-$$

Back to undirected graphs

The case of bipartite graphs

Summary

PageRank metrics:

- ► Useful to quantify the "importance" of nodes, relatively to other nodes (through **personalization**)
- Fast computation through matrix-vector multiplications using sparse matrices
- ► The **Forward-Backward** version for directed graphs, related to the corresponding co-citation graph

A fundamental tool for graph analysis!