BME Gépészmérnöki Kar	DINAMIKA	Név: Vári Gergő	
Műszaki Mechanikai Tanszék	1. HÁZI FELADAT	Neptun kód: MQHJOH	
2025/26 I.	Határidő: 2025.10.20. 12:00	Késedelmes beadás: □ Javítás: □	
Nyilatkozat: Aláírásommal igazolom, hogy a házi feladatot saját magam készítettem el, az abban leírtak saját megértésemet tükrözik.		Aláírás: Vári Gergő	

Csak a formai követelményeknek megfelelő és az ellenőrző program által helyesnek ítélt végeredményeket tartalmazó házi feladatokat értékeljük! https://www.mm.bme.hu/hwchk

Feladatkitűzés

Az ábrán vázolt mechanizmus az (x, y) síkban síkmozgást végez. Feladatunk a mechanizmus egyes tagjainak pillanatnyi sebesség- és gyorsulásállapotának vizsgálata.

- 1. Rajzolja meg a mechanizmus méretarányos szerkezeti ábráját az adott konfigurációban!
- 2. Határozza meg a (2) test szögsebességét és az S_2 súlypont sebességét (ω_2 , \mathbf{v}_{S_2})!
- 3. Jelölje be a szerkezeti ábrán, hogy hol található a (2) test sebességpólusa, és rajzolja be a B, S₂ és C pontok sebességét!
- 4. Határozza meg a (2) test szöggyorsulását és az S_2 súlypont gyorsulását $(\varepsilon_2, \mathbf{a}_{S_2})!$
- 5. Rajzolja be a szerkezeti ábrára a B, S₂ és C pontok gyorsulását!
- 6. Számítsa ki a (2) test gyorsulásszögét és rajzolja be a szerkezeti ábrába a B, S₂ és C pontok gyorsulásvektorainál! Jelölje be az ábrán, hogy hol található a (2) test gyorsuláspólusa!
- 7. Határozza meg az S_2 súlypont gyorsulásvektorának tangenciális és normális irányú komponenseit $(\mathbf{a}_{S_2t}, \mathbf{a}_{S_2n})!$ Rajzolja be azokat a szerkezeti ábrába!
- 8. Számítsa ki az S₂ súlypont pályájának pillanatnyi görbületi sugarát $(\rho_{S_2})!$

Adatok

$$arphi=55~^\circ$$
 $l_1=0.07~\mathrm{m}$ $l_2=0.17~\mathrm{m}$ $l_3=0.04~\mathrm{m}$ $v_{\mathrm{C}x}=0.6~\mathrm{m/s}=\mathrm{\acute{a}ll}.$

(Rész)eredmények

ω_{2z} [rad/s]	$arepsilon_{2z}$ $[\mathrm{rad/s^2}]$	$v_{ m S_2}$ [m/s]	a_{S_2} $[\mathrm{m/s^2}]$	$a_{\rm S_2t}$ [m/s ²]	$a_{\rm S_2n}$ [m/s ²]	$ ho_{ m S_2}$ [m]
1.638	16.613	0.56349	1.4304	0.0199	1.4303	0.222

Dinamika HF1

Vári Gergő (MQHJ0H)

2025.október 5.

1. ábra: Boulton & Watt gőzgép

Tartalomjegyzék

1	2-es	test szög -és súlypontjának sebessége	1
	1.1	Helyvektorok	-
	1.2	Szögsebesség	-
		Súlypont sebesség	

1 2-es test szög -és súlypontjának sebessége

1.1 Helyvektorok

$$\mathbf{r}_{AB} = \begin{bmatrix} l_3 \sin \phi \\ l_3 \cos \phi \\ 0 \end{bmatrix} \tag{1}$$

$$\mathbf{r}_{\mathrm{CB}} = \begin{bmatrix} -l_3 \cos \beta \\ l_3 \sin \beta \\ 0 \end{bmatrix} \tag{2}$$

$$\sin \beta = \frac{l_3 + l_3 \cos \phi}{l_2} \tag{3}$$

$$\mathbf{r}_{\mathrm{CB}} = \begin{bmatrix} -l_3 \cos \beta \\ l_3 \sin \beta \\ 0 \end{bmatrix} \tag{4}$$

(5)

$$\mathbf{r}_{\mathrm{C}S_2} = \frac{\mathbf{r}_{\mathrm{CB}}}{2} \tag{6}$$

$$\boldsymbol{r}_{\mathrm{EA}} = \begin{bmatrix} 0 \\ l_3 \\ 0 \end{bmatrix} \tag{7}$$

1.2 Szögsebesség

$$\boldsymbol{v}_{\mathrm{C}} = \begin{bmatrix} v_{\mathrm{C}x} \\ 0 \\ 0 \end{bmatrix} \tag{8}$$

$$\boldsymbol{v}_{\mathrm{E}} = \boldsymbol{0} \tag{9}$$

$$\boldsymbol{v}_{\mathrm{A}} = \boldsymbol{v}_{\mathrm{E}} + \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{\mathrm{EA}} \tag{10}$$

$$\mathbf{v}_{\mathrm{B}} = \mathbf{v}_{\mathrm{C}} + \boldsymbol{\omega}_{2} \times \mathbf{r}_{\mathrm{CB}} = \mathbf{v}_{\mathrm{A}} + \boldsymbol{\omega}_{3} \times \mathbf{r}_{\mathrm{AB}} \Rightarrow$$
 (11)

(12)

$$\boldsymbol{\omega}_2 = \begin{bmatrix} 0\\0\\1.638 \end{bmatrix} [\text{rad/s}] \tag{13}$$

$$\boldsymbol{\omega}_3 = \begin{bmatrix} 0\\0\\-7.878 \end{bmatrix} [\text{rad/s}] \tag{14}$$

1.3 Súlypont sebesség

$$\boldsymbol{v}_{S_2} = \boldsymbol{v}_{\mathrm{C}} + \omega_2 \times \boldsymbol{r}_{\mathrm{C}S_2} = \begin{bmatrix} 0.55 \\ -0.13 \\ 0 \end{bmatrix} [\mathrm{m/s}]$$
 (15)