Atividade Prática

Nome Completo: Eloim Colossette Martins de Lima RU: 4317729

PROCEDIMENTOS EXPERIMENTAIS

EXPERIÊNCIA 1: Retificador de meia onda

Tabela 1: Sinais de entrada e saída de um retificador de meia onda.

Parâmetro	v_i	v_o
Tensão pico a pico	12	~5.3
[V]		
Frequência [Hz]	60	60

Funcionamento do circuito:

O retificador de meia onda permite a passagem apenas da metade positiva do sinal de entrada senoidal. O diodo conduz quando a tensão da fonte é positiva e está acima da sua queda de tensão direta (~0,7 V). Na metade negativa, o diodo bloqueia, e a corrente não circula, resultando em zero volts na saída.

Cálculos:

1. Tensão de entrada pico (vi):

Dado que a fonte é de 12 Vpp (pico-a-pico):

2. Tensão de saída pico (vo):

A tensão de pico na saída será a de entrada menos a queda no diodo:

3. Frequência:

A frequência da saída retificada é igual à da entrada, pois apenas a metade positiva é passada:

Imagem osciloscopio:

Tabela 2: Curva de transferência de um retificador de meia onda.

v_i	v_o
-6	0
-5	0
-4	0
-3	0
-2	0
-1	0
0	0
1	0
2	0
3	2.3
4	3.3

• Com os dados da tabela monte o gráfico da curva de transferência.

Imagem do circuito:

EXPERIÊNCIA 2: Ceifador em dois níveis

- Monte o circuito seguindo as indicações do roteiro.
- Coloque uma foto do circuito montado no protoboard ou uma imagem da tela do simulador com o circuito montado.
- Coloque uma imagem da tela do osciloscópio ou da tela do simulador mostrando os sinais de entrada e saída.
- Realize a medição solicitada e preencha a Tabela 3.
- Explique o princípio de funcionamento do circuito

Tabela 3: Sinais de entrada e saída de um retificador de meia onda.

Parâmetro	v_i	v_o
Tensão pico a pico	12	~7.4
[V]		
Frequência [Hz]	60	60

Princípio de funcionamento - Ceifador em dois níveis:

Um ceifador em dois níveis (clipper) serve para limitar a tensão de saída dentro de um intervalo específico, cortando ("ceifando") partes do sinal de entrada acima de um valor positivo e abaixo de um valor negativo. No circuito da imagem:

- O primeiro diodo (com uma fonte DC de +3 V) conduz quando a tensão de entrada ultrapassa esse limite, ceifando o pico superior.
- O **segundo diodo** (com uma fonte de -3 V) conduz durante os picos negativos, **ceifando o fundo do sinal**.
- Assim, a saída oscila entre aproximadamente +3,7 V e -3,7 V, considerando a queda de 0,7 V dos diodos.

Imagem do Circuito:

Imagem do Osciloscopio:

Calculo:

1. Tensão de entrada de pico (Vi):

Dado que:

2. Tensão de saída limitada (Vo):

A tensão de saída será ceifada nos pontos em que os diodos entram em condução.

• Para o limite superior:

O diodo conectado à fonte +3 V conduzirá quando a tensão de entrada for maior que:

Vclipping superior=+3V+0,7V=+3,7V

• Para o limite inferior:

O diodo conectado à fonte **-3 V** conduzirá quando a tensão de entrada for menor que:

Vclipping inferior=-3V-0,7V=-3,7V

Portanto, a **tensão de saída** será limitada entre **+3,7 V** e **−3,7 V**.

3. Tensão pico a pico da saída:

$$Vo(pp)=3,7V-(-3,7V)=7,4V$$

4. Frequência da saída:

A frequência **permanece igual** à da entrada, pois o sinal não é filtrado nem duplicado:

Curva de transferência

Tabela 4: Curva de transferência de um ceifador em dois níveis.

v_i	v_o
-6	-3.7
-5	-3.7
-4	-3.7
-3	-3
-2	-2
-1	-1
0	0
1	1
2	3
3	3.7
4	3.7
5	3.7

Com os dados da tabela monte o gráfico da curva de transferência.
Curva de Transferência - Ceifador em Dois Níveis

EXPERIÊNCIA 3: Amplificador somador

 Coloque uma foto do circuito montado no protoboard ou uma imagem da tela do simulador com o circuito montado.

Coloque TODOS OS CÁLCULOS solicitados para montagem do circuito.

Resistores

 $R_1 = 10 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_1 = 10 \text{ k}\Omega$ (resistor de realimentação)

Tensões de entrada:

 $V_1 = 1 \text{ V (senoidal, 60 Hz)}$, $V_2 = 2 \text{ V (senoidal, 60 Hz)}$

Fórmula geral do somador inversor:

Vout = -Rf * (V1 / R1 + V2 / R2)

Vout = - (V1 + V2)

Vout = - (1 V + 2 V)

Vout = -3 V

Resultado:

A saída será um sinal senoidal de 3 V (amplitude), invertido (180° de defasagem), com a mesma frequência dos sinais de entrada (60 Hz).

 Coloque uma imagem da tela do osciloscópio ou da tela do simulador mostrando os sinais de entrada e saída. Os sinais de entrada devem ser os solicitados no roteiro.

uninter.com | 0800 702 0500

Explique o princípio de funcionamento do circuito

Explicação do Funcionamento do Circuito

O amplificador somador é um circuito baseado em amplificador operacional (op-amp) que realiza a soma de dois ou mais sinais de entrada. No caso do **somador inversor**, as entradas são aplicadas na entrada inversora do op-amp através de resistores, enquanto a entrada não-inversora é conectada ao terra.

Princípio de funcionamento:

- O op-amp trabalha com a regra do nó virtual, ou seja, ele ajusta sua saída para manter a tensão no terminal inversor igual à do terminal não-inversor (neste caso, 0 V).
- As tensões de entrada (V₁, V₂, ...) passam por resistores (R₁, R₂, ...) e geram correntes que se somam no nó inversor.
- A corrente resultante atravessa o resistor de realimentação (Rf), criando uma queda de tensão que determina a saída do circuito.

A saída do circuito é dada pela fórmula:

Vout = -Rf * (V1 / R1 + V2 / R2 + ...)

Se todos os resistores forem iguais:

Vout = - (V1 + V2 + ...)

Ou seja, a saída é a **soma invertida** dos sinais de entrada.

Características principais:

- O sinal de saída é invertido (180° de defasagem).
- A amplitude da saída depende da soma das entradas e da relação entre os resistores.
- O circuito permite somar vários sinais analógicos ao mesmo tempo.

Esse tipo de circuito é muito usado em sistemas de áudio, instrumentação e processamento de sinais.

Eletrônica Analógica

uninter.com | 0800 702 0500

Prof. Eng. Viviana R. Zurro MSc.

uninter.com | 0800 702 0500

Prof. Eng. Viviana R. Zurro MSc.