CIS 635 Knowledge Discovery & Data Mining

ML Models: Decision Tree

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?
- Decision Tree is our second example

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?
- Decision Tree is our second example
 - Those are with CS background are already aware of BST
 - Whiteboarding

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?
- Decision Tree is our second example
 - Those are with CS background are already aware of **BST**
 - Whiteboarding

- Concepts and Principles
- Let's learn through an example

- Data records for two animal classes:
 - O Bunny and Cat

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What feature should we use to split records?

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What feature should we use to split records?
- nb of legs is useless as there is no variation.

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What feature should we use to split records?
- nb of legs is useless as there is no variation.
- We can use the 'weight(lb)' feature.

nb of legs	weight (lb)	animal
4 •	2.1	Bunny
4	7	Cat
4 •	1.7	Bunny
4	9	Cat
4 "	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4 -	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4 -	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4 -	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4 •	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- Can we identify groups?

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- Let's find a split point.

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- Create branches

weight (lb)	animal
2.1	Bunny
7	Cat
1.7	Bunny
9	Cat
2.75	Bunny
	2.1 7 1.7 9

- Create branches

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What if we used a threshold=2.5?

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What if we used a threshold=2.5?

- What metrics are used for split point determination?

- What metrics are used for split point determination?

Entropy

Gini Impurity

Information Gain

The idea is quite simple, choose the one that make classes more separable.

What metrics are used for split point determination?

Entropy
Gini Impurity
Information Gain

The idea is quite simple, choose the one that make classes more separable.

- What if we used a threshold=2.5?

- How about this configuration?
- We have data points for an additional animal class "Chicken"

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

- Prediction Time

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

2	4	??

2	4	??

2	4	??

2	4	??

You may have multiple trees

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

How to randomize Trees?

How to randomize Trees?

Through

- Random sampling of data points
- Random sampling of features
- Randomizing feature combinations

How to randomize Trees?

Through

- Random sampling of data points
- Random sampling of features
- Randomizing feature combinations

Essentially we can generate many trees for a dataset.

QA