1990

1990

SOLID STATE PHYSICS

УДК 548.571;548.4;621.315.592 O 1990

РОЛЬ МАЛОУГЛОВЫХ ГРАНИЦ в изменении рекомбинационной активности ГЛУБОКИХ ЦЕНТРОВ КРИСТАЛЛОВ n-Cd_xHg_{1-x}Te под действием ультразвука

К. А. Мысливец, Я. М. Олих

Методом релаксации фотопроводимости ($\lambda = 10.6$ мкм) исследованы температурные (77—200 К) зависимости времени жизни неравновесных носителей заряда в подвергнутых ультразвуковой обработке кристаллах n-Cd $_x$ Hg $_{1-x}$ Te ($x\sim0.22$) с линейной плотвюстью малоугловых границ в пределах 10-80 см $^{-1}$. На основании данных о параметрах центров рекомбинации ($E_n\simeq32\div64$ мэВ, $N_o\simeq10^{14}\div10^{16}$ см $^{-3}$, $C_n\simeq(0.6\div4.2)\times10^{-9}$ см $^{-3}$ С) и электрофизических характеристик (n_0 , μ_n), их изменений в зависимости

образований в системе точечных структурных дефектов данных кристаллов.

от режимов ультразвуковой обработки рассмотрены возможные механизмы УЗ пре-

низм таких преобразований в полупрсводниковых твердых растворах Cd_Hg1- Te (KPT) значительно сложнее, и его выяснение требует привлечения наряду с ранее использованными акустическим [2] и холловским [3] дополнительных методов. Известными возможностями обладают фотоэлектрические (ФЭ) методы, привлечение которых целесообразно и потому, что обнаружено прямое влияние УЗ обработки на время жизни неравновес-

Изменение свойств кристаллов под воздействием ультразвука (УЗ) связано с преобразованиями в структуре дефектов материала [1]. Меха-

ных носителей заряда (HH3) в кристаллах n-RPT [4]. Настоящая работа посвящена дальнейшему исследованию закономер-

ностей изменения рекомбинационных характеристик кристаллов n- $\mathbf{Gd}_{\mathbf{x}}\mathbf{Hg}_{\mathbf{1-x}}\mathbf{Te}$ ($x{\simeq}0.21{\dot}0.23$) с различной линейной плотностью малоугловых границ (МУГ) в диапазоне $N_{\rm MYF}{\simeq}10{\div}80~{
m cm}^{-1}$, подвергнутых УЗ обработке (УЗО) с целью выяснения механизма такого воздействия.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-Режимы УЗО		Экспериментальные данные			Расчетные параметры		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		f, Mrn		$n_0 \cdot 10^{-14},$ cm ⁻³				$N_a \cdot 10^{-15}$, cm ⁻³	
	10—15 $x \sim 0.23$ 231-A 70—80 $x \sim 0.23$ 210-E 10—15 $x \sim 0.23$ 231-B 70—80 $x \sim 0.23$ 65-C 25—30	2.0 11.5 11.5 30.0 - 30.0	4-6 	5.3 6.3 4.4 4.8 4.8 4.7 4.5 4.4 3.3	2.3 1.7 2.2 2.0 2.0 1.6 2.2 2.1 2.5	0.8 1.7 1.7 0.8 3.0 0.5 0.5 2.0 3.5	49 41 36 59 50 53 64	0.8 7.0 11.1 0.2 1.5 1.1 0.1	2.3 0.8 1.3 2.6 0.7 4.1 4.2

Исследовано пять образцов n-КРТ с близкими электрофизическими (ЭФ) параметрами: $n_0 = (3 - 5) \cdot 10^{14}$ см⁻³ и $\mu_n = (1.5 - 2.5) \cdot 10^5$ см²/В·с при T=77 К. Плотность дислокаций во всех образцах была сравнима (4-7) $\cdot 10^5$ см $^{-2}$. Различались образцы именно плотностью МУГ (см. таблицу). Контроль $\partial\Phi$ параметров $(n_0,\,\mu_n)$ при $T\!=\!77~{
m K}$ до и после УЗО осуществ-

лялся методом эффекта Холла в магнитном поле $B\!=\!0.1$ Тл. Время жизни ННЗ в диапазоне температур 77—200 K измерялось методом релаксации фотопроводимости на длине волны $\lambda = 10.6$ мкм. УЗО проводилась на пропольных волнах при комнатной температуре в течение 20-30 мин. Режимы узо различались по частоте f_0 и интенсивности W ультразвука (см. таб-

Выбор частоты y_{30} f_0 проводился исходя из обнаруженного ранее «резонансного» характера УЗ воздействия на ЭФ свойства кристаллов

Рис. 1. Температурные зависимости времени жизни с до УЗО (1, 2), после УЗО-1 (1', 2') и после УЗО-2 (1'', 2'').

a — образец 210-A, б — образец 231-A.

КРТ, содержащих МУГ. Частота f_0 соответствовала резонансной частоте $f_{\mathfrak{d}}$, определяемой средними размерами субблочной структуры каждого исследованного образца [2, 3] (см. таблицу). Для сравнения образцы 210-Б и 231-Б обрабатывались на другой, более высокой частоте (f_0 =30 М Γ ц). Повторная УЗО-2 проводилась на той же частоте, что и УЗО-1, но с интенсивностью примерно в четыре раза выше.

Для исключения поверхностных эффектов все образцы после УЗО подвергались химическому травлению. Контроль структуры протяженных дефектов на поверхности исследованных образцов показал, что использо-

ванные в работе режимы УЗО не привели к ее изменению.

Температурные зависимости времени жизни ННЗ т до и после УЗО-1, УЗО-2 приведены на рис. 1—3 $(\tau_{ai}$ — расчет времени жизни для Ожемеханизма рекомбинации в области собственной проводимости). Известно, что в области собственной проводимости ($T>150~{
m K}$) доминирующим механизмом рекомбинации в кристаллах n-КРТ ($x \sim 0.2$) является Ожепроцесс [5, 6]. Теоретические оценки показывают, что для исследованных образцов при $T>150~{
m K}$ Оже-механизм определяет температурный ход т (рис. 1—3). Отметим, что используемые режимы УЗО не приводят к заметным изменениям т в области собственной проводимости, т. е. фундаментальные параметры образцов (E_a, n_i, x) не меняются.

3начительные изменения зависимостей au (T) наблюдаются в области примесной проводимости ($T < 150 \; \mathrm{K}$), где реализуется шокли-ридовский (Ш-Р) механизм рекомбинации через глубокие уровни [5-8]. Используя методику расчета параметров таких рекомбинационных центров (РЦ) в рамках модели Ш-Р, можно провести количественный анализ преобразований, происходящих в результате УЗО, в си-

стеме точечных дефектов кристаллов n-КРТ. С учетом специфики данных кристаллов (большая концентрация РЦ $N_a \geqslant n_0$, глубокое их энергетическое положение относительно потолка валентной зоны, малый коэффициент захвата электронов $C_n/C_p\ll 1$ в силу электроотрицательности \hat{P}_{ij} преобладание электронной составляющей в фоточувствительности и $\mu_{\rm p}\sim 10^2$ и др.) электронное время жизни описывается простым выраже-

$$\tau_n = \frac{1}{C_n N_a} \frac{N_{va} + N_o}{n_0} \,, \tag{1}$$

где $N_{*a} = N_* \exp{(-E_a/kT)}$. По экспериментальным зависимостям τ (T), имеющим характерный для $\Pi - P$ механизма термоактивационный участок,

нием [4, 7]

Рис. 2. Температурные зависимости времени жизни для образца 210-Б до УЗО (1) и после УЗО-1 (1') и образца 231-Б до УЗО (2) и после УЗО-1 (2').

3. Температурные зависимости времени жизни для образца 65-С до V30 (1), после V30-1 (1') и после V30-2 (1''). Теоретические зависимости τ_a (T) для Оже-механизма рекомбинади и в области примесной проводимости до УЗО (2), после УЗО-1 (2') и после УЗО-2 (2'').

на основе (1) проведен расчет следующих параметров РЦ: E_a — энергия активации \hat{a} -уровней относительно потолка v-зоны, N_a — их концентрация, C_{s} — коэффициент захвата электронов [4]. Рекомбинационная активность (PA) центров рекомбинации, рост (падение) которой проявляется в уменьшении (увеличении) времени жизни ННЗ, определяется концентрацией РЦ и значением коэффициента захвата электронов. Результаты расчетов и экспериментальные данные сведены в таблицу.

1) РЦ, определяющие величину т при T < 150 K, характеризуются следующими параметрами: $E_a \simeq 32 \div 64$ мэВ, $N_a \simeq 10^{14} \div 10^{16}$ см⁻³, $C_n \simeq (0.6 \div 10^{14})$ 4.2)·10⁻⁹ см³/с. Уровни с такими параметрами типичны для всех исследованных образцов, как исходных, так и прошедших УЗО. Последнее по-

зволяет утверждать, что изучаемые РЦ имеют одну и ту же природу и являются вероятнее всего дефектами вакансионного типа в металлической подрешетке кристалла КРТ, т. е. $(V_{\rm Hg})_n$ [7, 8]. Разброс значений E_a , C_n , N_a в исходных образцах и величина их изменений в результате УЗО свиде-

тельствуют, что ФЭ активное состояние РЦ (а значит, и их РА) различно. 2) УЗО-1 уменьшает рекомбинационную активность РЦ, особенно в «резонансном» режиме: уменьшается N_a (в 10—50 раз), увеличиваются E_a и C_* . Повторная УЗО-2 качественно меняет характер преобразований. Начинает преобладать процесс генерации (активации) РЦ, растет РА (увеличивается в $\sim \! 10$ раз N_a , уменьшаются E_a и C_n). В результате УЗО

2914

происходят изменения и ЭФ параметров исследованных кристаллов. Величина этих изменений, как и в [3], также зависит от режима УЗО.

3) Механизм преобразований РЦ исследованных образцов во многом определяется их исходным состоянием и режимом УЗО. Скорость протека-

ния процессов преобразований в системе точечных дефектов связана, как и при термоотжиге [9], с их коэффициентами диффузии D и величиной грапиента химического потенциала. В отличие от термоотжига для УЗО существенным является: а) иной характер пространственного распределения

температуры по кристаллу, б) зависимость \hat{D} от интенсивности \mathbf{y} 30 (D. Одним из возможных механизмов преобразований в системе дефектов,

возрастает в $\sim 10^3$ раз [10]). определяющих Ш-Р рекомбинацию в кристаллах п-КРТ, является геттерирование их на стоки (МУГ, дислокации) с последующей рекомбинапионной «деактивацией» [4]. Учитывая малое значение коэффициента диффузии вакансий ртути ($D_v \simeq 10^{-16} \text{ м}^2/\text{с}$ при T = 300 K [9]), требуемые для

эффективной очистки всего объема кристалла путем стока вакансий времена составляют $\sim 10^6 \div 10^7$ с. Поскольку время УЗО $t_0 \sim 10^3$ с, то более

вероятны обратный диффузионный поток атомов $Hg (D_{Hg} \simeq 3 \cdot 10^{-11} \text{ м}^2/\text{c} \text{ [9]})$

со стоков и «залечивание» ими вакансионных дефектов. Такой внутренний термоакустический отжиг должен приводить наряду с уменьшением N

к увеличению р... Подобный механизм позволяет объяснить результаты узо-1 в «нерезонансном» режиме ($f_0=30\,{
m _I}M\Gamma$ д, образцы 210-Б, 231-Б): в режиме бегущей волны не происходит пространственной модуляции температуры по кристаллу из-за диссипации акустической энергии, а имеет место более равномерное распределение тепловыделений в со-

4) В «резонансном» режиме УЗО источники тепла локализуются (за счет поглощения УЗ) в пучностях колебательной скорости, т. е. на МУГ. Преобразования в системе точечных дефектов в этом случае происходят

ответствии с распределением дислокаций в объеме кристалла.

с участием МУГ и вблизи МУГ. При сравнительно небольших интенсивностях УЗО-1, как и в процессе низкотемпературного отжига (T < 300 °C [9]), возможна коагуляция вакансий ртути (когда N_{μ} выше равновесного значения для данной температуры $[^9]$), в том числе и образование нейтральных комплексов с обяза-

тельным участием РЦ, с одной стороны, и дефектов, связанных на дислокациях и МУГ, — с другой. Такая модель укрупнения вакансионных комплексов при УЗО позволяет объяснить наблюдаемые изменения ЭФ и ФЭ параметров образцов 210-А, 231-А (см. таблицу). Например, уменьшение µ_п — более сильным рассеянием электронов на вакансионных комплексах n [11]; увеличение n_{0} — ростом числа нескомпенсированных донорных дефектов; изменение E_{a} и C_{n} — влиянием энергетического барьера, образованного пространственным зарядом окружения РЦ, различного в объеме кристалла и вблизи $MY\Gamma$ | 12].

5) Повышение УЗ интенсивности (УЗО-2, образцы 210-А, 231-А) в «резонансном» режиме, учитывая амплитудно-зависимый характер акустических потерь в кристаллах КРТ [2], приводит к значительному увеличению тепловыделений на колеблющихся элементах. В этом случае преобладающим процессом становится образование новых РЦ: наряду с возможным распадом уже имеющихся комплексов (с повышением температуры увеличивается предел растворимости точечных дефектов [9])

ными центрами рассеяния электронов, сопровождается дальнейшим уменьшением μ_n , C_a и увеличением N_a . 6) Температурная зависимость т для образца 65-С (в отличие от образцов 210-А, Б, 231-А, Б) в исходном состоянии определяется Оже-

 $ext{MY}\Gamma$ [$^{f is}$]. Образование новых РЦ, являющихся, по-видимому, и эффектив-

вакансии колеблющимися дислокациями

генерируются

«свежие»

механизмом рекомбинации во всем исследованном интервале температур $(\mathtt{puc.}\ 3,\ \mathtt{kpubme}\ 1,\ 2).\ \mathbf{B}\ \mathtt{pesynbtate}\ \mathtt{V3O}\ \mathtt{ybe}$ личивается вклад $\mathbf{H-P}\ \mathtt{ka-P}$ нала рекомбинации через глубокие а-уровни (экспериментальные зависимости τ (T) I', I'' резко отличаются от расчетных для случая Оже-механи-

лированного звуком их распада образуются активные РЦ, уменьшается сечение рассеяния электронов, растет μ_n . Доминирование того или иного из рассмотренных выше механизмов преобразований РЦ (не исключается возможность их совместного проявления) зависит от характера и пространственной неоднородности дефектной структуры исследованных кристаллов (наличие или отсутствие вакансионных комплексов, МУГ и дислокаций). В зависимости от режимов УЗО МУГ играют роль и стоков, и источников для РЦ, во многом определяют

вма 2', 2'' соответственно). Возможно, что Ш-Р РЦ до УЗО находились в неактивном состоянии и были связаны в комплексы. В результате стиму-

В заключение авторы благодарят А. В. Любченко за обсуждение результатов работы, а также И. С. Вирта за помощь при измерениях.

- Список литературы
- [1] Островский И. В. // Письма в ЖЭТФ. 1981. Т. 34. № 8. С. 467—471. [2] Олих Я. М., Сальков Е. А., Курбанов К. Р. // ФТП. 1985. Т. 19. № 4. С. 762—765 [3] Баранский П. И., Мысливец К. А., Олих Я. М. // ФТТ. 1989. Т. 31. № 9. С. 278—
- [4] Любченко А. В., Мысливец К. А., Олих Я. М. // ФТП. 1990. Т. 24. № 1. С. 171—174. [5] Liscka К. // Phys. St. Sol. (b). 1986. V. 133. N 1. P. 17—46. [6] Баженов Н. Л., Гасанов С. И., Иванов-Омский В. И. и др. // ФТП. 1988. Т. 22. № 2. С. 333—335.

- [7] Гарягдыев Г., Любченко А. В., Шунтар Д. М. и др. // Изв. вузов, физика. 1988. № 2. С. 42—46.
 [8] Dornhaus B. R., Nimtz G. // The properties and applications of the Hg_{1-x}Cd_xTe alloy system. Narrow—Gap. Berlin, 1985. Р. 199—281.
 [9] Заитов Ф. А., Исаев Ф. К., Горшков А. В. Дефектообразование и диффузионные выстранции долгов В предоставления в предо
 - процессы в некоторых полупроводниковых твердых растворах. Баку: Азернешр, 1984. 211 c.
- [10] Бакай А. С., Лазарев Н. П. // ФММ. 1985. Т. 60. № 4. С. 675—682. [11] Заитов Ф. А., Мухина О. В., Поляков А. Я. // Техника радиационного экспери-
- мента. М.: Атомиздат, 1977. № 5. С. 34—37. [12] Рывкин С. М. Фотоэлектрические явления в полупроводниках. М.: Физматгиз,
- 1963. 496 с. [13] Хирт Дж., Лоте И. Теория дислокаций. М.: Атомиздат, 1972. 599 с.

- Институт полупроводников АН УССР
- Киев

Поступило в Редакцию 15 января 1990 r.