Решения на задачите по алгебра

Този материал е изготвен със съдействието на школа Sicademy

А1. Нека a,b,c,d са положителни числа, за които abcd=1. Да се докаже, че

$$\frac{1+ab}{1+a} + \frac{1+bc}{1+b} + \frac{1+cd}{1+c} + \frac{1+da}{1+d} \ge 4.$$

Решение. Имаме

$$\frac{1+ab}{1+a} + \frac{1+cd}{1+c} = \frac{1+ab}{1+a} + \frac{1+ab}{ab(1+c)} \ge \frac{4(1+ab)}{1+a+ab+abc},$$

$$\frac{1+bc}{1+b} + \frac{1+da}{1+d} = \frac{1+bc}{1+b} + \frac{1+bc}{bc(1+d)} \ge \frac{4(1+bc)}{1+b+bc+bcd} = \frac{4a(1+bc)}{1+a+ab+abc}.$$

Събираме горните неравенства и получаваме исканото неравенство.

A2. Да се намерят всички полиноми $P \in \mathbb{R}[x]$ такива, че

$$P(x)P(2x^2) = P(2x^3 + x) \quad \forall x \in \mathbb{R}.$$

Peшение. Ако P е константа, то тогава $P\equiv 0$ или $P\equiv 1.$ Сега да положим

$$P(x) = \sum_{k=0}^{n} a_k x^{n-k}$$
, където $n = \deg P \ge 1$ и $a_0 \ne 0$.

Сравнявайки коефициентите пред x^{3n} от двете страни на равенството получаваме, че $a_0^2=a_0$, т.е. $a_0=1$. Нека $P(x)=x^kP_1(x)$, където $k\geq 0$ и $P_1(0)\neq 0$. Тогава даденото равенство може да бъде представено като

$$2^k x^{2k} P_1(x) P_1(2x^2) = (2x^2 + 1)^k P_1(2x^3 + x).$$

Значи k=0, тъй като иначе $P_1(0)=0$, което е противоречие. Сега горното равенство за x=0 ни дава $a_n=P(0)=1$. От формулите на Виет се вижда, че произведението на корените на P е равно на 1.

Нека сега $\alpha \in \mathbb{C}$ да бъде корен на P с максимален модул. Тогава $P(2x^3+\alpha)=0$ и следователно $|\alpha| \leq 1$, тъй като иначе

$$|2\alpha^3 + \alpha| \ge |\alpha| \left(2|\alpha|^2 - 1 \right) > |\alpha|,$$

което е противоречие. Значи $|\alpha|=1$ и $|2\alpha^2+1|=1.$ Представяме α като

$$\alpha = \cos \varphi + i \sin \varphi.$$

Тогава

$$2\alpha^2 + 1 = (2\cos 2\varphi + 1) - i \cdot 2\sin 2\varphi$$
, r.e. $(2\cos 2\varphi + 1)^2 + (2\sin 2\varphi)^2 = 1$,

откъдето следва, че $\cos 2\varphi = -1$. Значи $\alpha = \pm i$ и тъй като коефициентите на P(x) са реални, заключаваме, че i и -i са корени на P(x).

Нека $P(x)=(x^2+1)^mQ(x)$, където $m\geq 1$ и $Q(i)Q(-i)\neq 0$. Тогава използвайки равенството $(x^2+1)((2x^2)^2+1)=(2x^3+x)^2+1$ виждаме, че полиномът Q(x) удовлетворява даденото условие. От горните аргументи става ясно, че $Q\equiv 0$ или $Q\equiv 1$ (защото $Q(i)Q(-i)\neq 0$). Окончателно решенията на задачата са полиномите $P\equiv 0, P\equiv 1$ и $P(x)=(x^2+1)^n$, където $n\in \mathbb{N}$.

А3. Да се намерят всички функции $f: \mathbb{R} \to \mathbb{R}$ такива, че

$$f(x+y) \ge (y+1)f(x) \quad \forall x, y \in \mathbb{R}.$$

Peшение. Имаме, че $f(z) \ge 0.f(z+1) = 0$ и $f\left(\frac{k+1}{n}x\right) \ge \left(1+\frac{x}{n}\right)f\left(\frac{kx}{n}\right)$. Като умножим тези неравенства при $k=0,1,\dots,n-1$, получаваме, че

$$f(x) \ge \left(1 + \frac{x}{n}\right)^n f(0).$$

Аналогично, като умножим неравенствата

$$f\left(\frac{kx}{n}\right) \ge \left(1 - \frac{x}{n}\right) f\left(\frac{k+1}{n}x\right)$$

при $k = 0, 1, \dots, n - 1$, получаваме, че

$$f(0) \ge \left(1 - \frac{x}{n}\right)^n f(x).$$

Тъй като $\left(1\pm\frac{x}{n}\right)^n\to e^{\pm x}$, следва, че $f(x)=f(0)e^x$. Обратно, неравенството $e^y\geq 1+y$ показва, че за всяко $c\geq 0$ функцията $f(x)=ce^x$ удовлетворява даденото условие.