Computer Networks and Distributed Systems Network Layer

Dr Fidelis Perkonigg

March 1, 2018

Overview

- Routers/Gateways
- Routing Strategies and Algorithms
- Internet Protocol (IP)
- Datagrams (packets)
- IP addressing
- Other protocols (ARP, DHCP, ICMP)

Network Layer Services

- Provides end-to-end transmission of data
- Global addressing and routing
- Hides differences in underlying networks
- Uses data link layer to provide transmission over single hops

Routing

- Problem: No single network can serve all users
 - Too much traffic, too complex for lower layers, cannot maintain complete network plan
- Solution
 - LANs (subnets) interconnected using routers
 - Routing refers to selecting path from source to destination across multiple subnets

Example Topology

Router/Gateway

- Operates at network layer
- Router forwards packets based on destination networks, unlike bridges, which use hosts
- Lookup in routing table
- Verifies/modifies packets
 - Updates fields affected by routing
 - Checks/recalculates checksum
- Adds transmission, processing delays, and potentially queuing

Router/Gateway

- Typically used for connecting sites
 - Overcome physical and administrative boundaries
 - Greater management and traffic isolation
- Not transparent to end nodes
 - Host needs to know whether/which router to send to

- Correctness: Find a route (if it exists)
- **Efficiency**: Routes should provide good performance (should use minimal resources)
- Robustness: Route even when links/nodes fail
- Adaptability: Routes should reflect network conditions without overreacting
- Fairness: Hosts should have equal access to network but Quality of Service (QoS) should be respected
- Simplicity: Cheap, predictable and verifiable

Find routes with good properties in terms of:

- Available bandwidth
- Delay
- Hop count
- Price
- Priority for traffic types

Routing Properties

- No centralised control
- Knowledge of the whole topology or underlying protocols does not exist
- May use intermediate networks to get to destination

Routing Strategies

- Static (non-adaptive) routing
 - Compute routes once and load into router
 - Worked for early ARPANET
- Dynamic (adaptive) routing
 - Change routes to reflect changes in topology and load (as seen through congestion)
 - Usually used in packet-switched networks
 - 2 major classes of popular algorithms: Distance Vector Routing and Link State Routing

Static Routing

- Routing using fixed routing tables
- Often used with list of known hosts/networks/links
- All packets for host pair always take same route
- Default link for unknown hosts
- Most workstations use static routing; route most traffic to default gateway/router

Adaptive Routing Flooding

- Send packet to all neighbours except source
- Unless packet seen before (add sequence number to remove loops)
- But inefficient and leads to high load on network
- Shortest path and fast discovery
- Extremely robust (data is delivered if there is at least one path)

Adaptive Routing Distance Vector

- ARPANET used this routing protocol
- Implemented as Routing Information Protocol (RIP)
- Router maintains table of distances (vectors)
 - Usually hops/delay/queue length to destination network
 - Periodically exchanges this information with neighbours
 - Re-computes distance and updates its tables

Distance Vector Routing Example

	R1	R2	R3	R4
R1 Vector	0 .	2 A		1 B
R2 Vector	2 A	0 .	3 D	
R3 Vector		3 D	0 .	1 C
R4 Vector	1 B		1 C	0 .
R1 Vector	0	2 Δ	2 R	1 R

- Needs time to converge
- What if R3 goes down?
- Count-to-infinity problem

Distance Vector Problems

- Poor efficiency
 - Slow to converge after changes (especially "bad news")
 - Main reason for its demise
 - Count-to-infinity problem
 - Distance vectors increase linearly with network size and may not fit inside packet
- Route finding suboptimal
 - Only considers delay or hop count not bandwidth of links
 - Routing tables do not include paths

Adaptive Routing

- Each router maintains (partial) map of network
 - Consists of more than just neighbours
 - Includes cost metrics (e.g. distance, delay, bandwidth, cost)
- Properties
 - Faster convergence and more reliable
 - Less bandwidth intensive than distance vector routing
 - But more complex and memory/CPU intensive
- Variants used today: IS-IS (Intermediate System to Intermediate System) and OSPF (Open Shortest Path First)

Adaptive Routing

- Each router does the following:
 - Discover identities of all neighbours through HELLO packets
 - Set/measure metric of link to neighbours (automatic or set by administrator)
 - Send this information to all other routers (Link State packet)
 - Also, receive Link State packets from other routers
 - Compute shortest path to every other router using Dijkstra's algorithm
- When link state changes
 - Notification packet flooded throughout network
 - All routers re-compute routes

Link State Packets

Α		
SeqNo		
TTL		
В	4	
F	5	

В		
SeqNo		
TTL		
Α	4	
С	2	
Ε	6	

С		
SeqNo		
TTL		
В	2	
D	3	
F	1	

	D
Sec	οNp
T	TL
С	3
Е	7

I	E	
Sec	ηNo	
TTL		
В	6	
D	7	
F	8	

	F	
Se	qNo	
Т	TTL	
Α	5	
С	1	
E	8	

Link State Distribution

- Based on flooding algorithm
 - Do not send on incoming link
- ID of source
 - Unique identifier
- Sequence number
 - Routers record received sequence numbers
 - Only newer state packets are forwarded
 - Old or duplicate packets are dropped
 - How to handle corrupt sequence numbers?
 - How to handle router reboots and crashes? (resets sequence number)
- Time-to-live (TTL)
 - Discard packets if TTL reaches 0 (decremented by routers)
 - Discard information after TTL (resets recorded sequence number)
- Different routers have different views of topology
 - E.g. link from A to B not necessarily the same cost as for link from B to A

Hierarchical Routing

- Complete map of topology in every router infeasible
- Instead exploit hierarchy and use regions
 - Router knows local topology in detail
 - Router knows route to other regions but not their internal arrangements
- Regions may map to
 - Geographical area (e.g. London academic network routes between universities)
 - Organisations network (e.g. Imperial has routers in core network, routing between departments and to external links)

Internet Routing

- Autonomous systems (AS) are regions on the Internet
 - E.g. Internet Service Providers (ISPs) manage regions
- Within ASs
 - Routing protocols: Open Shortest Path First (OSPF) and Intermediate System-Intermediate System (IS-IS)
 - Variant of Link State routing algorithm
- Between ASs
 - Routing protocol: Border Gateway Protocol (BGP)
 - Variant of Distance Vector algorithm

Internet Protocol (IP)

- Basic protocol for the Internet (Network Layer)
 - Defined in RFC 791 (updated in 1349, 2474, 6864)
- Datagram (packet) oriented
 - Variable sized data payload
 - Unreliable delivery
 - No checksum on data payload, just on header
- Global addressing; packets contain complete addressing information
- Fragmentation
 - May split packets if underlying network requires it
- Priorities through Type of Service (ToS) information
 - Requires routers on path to read and treat packets differently

IP Datagram Format

32 bits				
				
Vers	IHL	Service		Total Length
Identification		Flags	Fragment Offset	
T	ΓL	Protocol	Header Checksum	
		Source	Add	ress
Destination Address				
Options + Padding				
Data				

- Version: IP version (usually 4 or 6)
- Internet Header Length
 - In 4-byte multiples (from 5 to 15)
 - Options increase this
 - Gives data offset
- Type of Service
 - Prioritize data (e.g. VoIP)
 - ToS vs DSCP (Differentiated Services Code Point)
- Total Length
 - Entire packet size in bytes (max 64KB for IPv4)

Fragmentation

- Networks have maximum transfer unit (MTU)
- ullet E.g. Ethernet frames are limited to ≤ 1500 bytes
- Too large IP datagrams broken up into smaller datagrams
- Smaller datagrams need their own complete IP header

- Identifier, Flags and Fragment Offset aid reassembling fragmented datagrams
- Final destination can reassemble original datagram
 - Missing fragments are waited for
 - Whole datagram discarded if any fragment is lost

IP Datagram Format

- Time to Live (TTL)
 - Handles routing loops
 - Decremented at each hop (router)
 - Datagram dropped when 0
- Protocol
 - 0 = reserved, 1 = ICMP, 6 = TCP, 17 = UDP
 - Similar to Ethernet 'protocol type' field
- Header checksum
 - 1s complement sum of header (not data)
 - Sum of header and checksum should be 0
- Source and destination addresses
- Options
 - Security, loose/strict source routing, record route, stream ID, timestamp, . . .
 - Padded to multiples of 32 bits

IP Addressing

- Ethernet addresses are 48 bits and written as hex pairs
- IP addresses are 32 bits and written as dotted decimal
 - E.g. 146.169.7.41
 - No direct mapping of IP addresses to Ethernet addresses
 - IP address identifies network and host on that network
 - Device on *n* networks has *n* IP addresses one for each
- Address space administered by ICANN (Internet Corporation for Assigned Names and Numbers)

IP Address Classes

Subnets

- As organisations grow, they need finer control over network sizes
- Single class A/B/C network not good enough
- Create subnet within assigned IP network

- Subnets can be any size within host field
- Internally subnet addresses may be used for routing and creating administrative boundaries

Subnets

- Use high-order bits from host field to create subnets within network class
- Subnet mask AND address = network portion

Number of subnets and hosts:

- 2^{subnet_bits} = number of subnets per network
 - Usage of all 0s and 1s is not RFC-compliant
- $2^{32-network_bits-subnet_bits} 2 = number of hosts per subnet$
 - All 0s and all 1s are not valid addresses; cannot be assigend to hosts

Special IP Addresses

- 127.0.0.0/8 loopback address
- Loopback is for local inter-process communication (IPC) and should never exist on the network
- 0.0.0.0 local host
- Network part + all 0s for host part: Network ID
- Network part + all 1s for host part: Broadcast address
- A broadcast addresse is never a valid source addresse
- Addresses with all bits 0 or 1 are not assigned to hosts for routing purposes

Subnet Example

- In DoC, we have a class B network
- How would you have found out?
- What about subnets?
 - Subnet mask 255.255.254.0
 - 7 bits for subnets and 9 bits for hosts
 - In a class B network this means: 128 subnets, each with 510 hosts
 - What is the network ID of this subnet?
 - What is the range of IP addresses for this subnet?
 - What is the broadcast address?
 - What is the network ID of the next subnet?

Private Internet Address Ranges

- Address ranges for internal use
- Addresses never routed on public Internet
 - Not all devices need to be globally visible
 - Used for testing and NAT (see later)
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

IP Datagrams and Ethernet Frames

Type=0x800	IP Header	Data	
Network Header		Data	

- IP destination address is always final destination address
- Physical destination address (MAC address) in frame is changed at each hop
- Along the path each router
 - Removes packet from the frame
 - Determines next router or local link
 - Re-encapsulates in appropriate frame for next hop

- Network layer: hosts send packets using IP addresses
- Data link layer: frames between devices use MAC addresses
- Need to translate between addresses
- Static mapping
 - May be sufficient for small isolated network
 - IP addresses are virtual (no relation to hardware, maintained in software)

Dynamic Address Resolution

Address Resolution Protocol (ARP)

- Hosts maintain lookup tables (e.g. hash tables) of IP/data link address mappings for LAN
- If host A has no entry for host B
 - A broadcasts ARP Request requesting data link address for B's IP address
 - B recognises its IP address and returns ARP response with its data link address
- ARP is network layer protocol, not visible to the user
- Usual method on IP networks that use Ethernet
- Optimisations
 - Hosts cache these tables
 - B also adds A's mapping to its own table
 - Likely to need it in future exchanges
- Defined in RFC 826

ARP Message Format

- HW Address Type: 1 for Ethernet
- Protocol Address Type: 0x800 for IP
- HW Address Length: 6 bytes
- Protocol Address Length: 4 bytes
- Operation: 1 for request, 2 for response
- Target HW Address: undefined on request
- Target machine swaps target and sender in response

Host Configuration

- How to configure the IP addresses of the hosts?
 - Manually vs dynamically
- Dynamic Host Configuration Protocol (DHCP)
 - Host broadcasts request for IP address (DHCP DISCOVER packet)
 - OHCP server allocates free IP address and sends it to host
 - IP addresses are chosen from pool
 - DHCP OFFER packet
 - uses Ethernet address of the DHCP DISCOVER packet
- IP addresses are only leased for a fixed period of time
- Host must renew the lease before it expires or IP is returned to the pool
- Other information DHCP is used for
 - IP address of the default gateway including network mask
 - IP addresses of name servers and time servers
 - Can be extended by custom fields
- Described in RFCs 2131 and 2132

Internet Control Message Protocol (ICMP)

- Used to investigate communication problems
 - IP unreliable and no guarantees of delivery
- Allows hosts to send control/error messages to other hosts
- Popular clients: Ping and Traceroute

• Behaves as if higher level protocol, but integral to IP

ICMP Message Format

- Type (8bit) and code (8bit), which gives subtype
- 1s compliment checksum (16bit) of type and code
- Rest of header based on type and code
- Type 3 codes
 - 0: Net unreachable
 - 1: Host unreachable
 - 2: Protocol unreachable
 - 3: Port unreachable
 - 4: Fragmentation needed and DF set
 - 5: Source route failed

- Other types include
 - 0: Echo reply
 - 5: Redirect
 - 8: Echo request (ping)
 - 11: Time exceeded
 - 12: Parameter problem
 - 13: Timestamp
 - 14: Timestamp reply
 - 15: Information request
 - 16: Information reply
 - 17: Address mask request
 - 18: Address mask reply

Ping

- Verify connection to hosts
- Quality of connection (round trip time, dropped packages)
- Sends echos and receives echo replies
- Traceroute
 - Find out about intermediate hosts (hops)
 - Routers send ICMP error messages back for every received packet with TTL=0 (type 11)
 - Send packets with increasing TTL for each subsequent packet

IP Addressing Challenges

- Support for mobility (laptops, phones,...)
 - Moving between different networks
 - Challenges with transistion as routing depends on address used
- Expansion of networks
 - Renumbering/adding new number ranges hard

IP Addressing Space Problem

- Shortage of unallocated addresses
 - Practical address space in IPv4 is 100 million hosts
 - IP is more popular than its designers expected
- Some address classes are unnecessarily large
 - Some organisations have more than they need
 - Classes A and B are bigger than most people use

Better utilisation:

- Stricter access to allocation
 - Applicant needs to show that addresses will be utilised
- Make address allocation more flexible
 - Allocate networks with subnet masks ("Subnetting for the Internet")
 - Classless Inter-Domain Routing (CIDR)

Increase address space:

- Reuse addresses in different parts of network
 - Network Address Translation (NAT)
- Add more address bits
 - IPv6

Network Address Translation (NAT)

- Hide network in smaller address range
 - External address: routable, allocated IP address
 - Internal address: from private addresses range
 - Gateway box with external and internal address
 - Translates internal address to external address for traffic leaving internal network
 - Box maintains this mapping for incoming traffic (replies)
 - Port numbers are part of the mapping (see Transport Layer)
- Port mappings on gateways can make services on private hosts available to public hosts (see Transport Layer)

- 128 bit addresses (vs. 32 bit in IPv4)
 - About $6.5*10^{23}$ addresses for every square meter of the Earth's surface
 - Large address space easier to be subdivided into hierarchical domains
- Simplified 7 field header (vs. 13 fields in IPv4)
 - Faster processing in routers possible
 - More options through extension headers
 - Support for authentication, privacy, service types, mobility, ...
- No interoperability with IPv4 but independent network
 - Can exist in parallel
 - Translator gateways to exchange traffic between IPv6 and IPv4 networks

- Transition from IPv4 to IPv6 hard and slow
 - Router/switch manufacturers not pushing it
 - ISPs and network providers not demanding it
 - Many of the benefits lost in gateways to IPv4
- Currently useful within organisation
- Not many hosts to talk IPv6 to
- Mobile phones may push adoption
- Google users using IPv6: 8-13% in 2016; 13-20% in 2017¹

¹https://www.google.com/intl/en/ipv6/statistics.html