MATH 4210/5210 Summer 2020

Homework 8

Due Wednesday, July 15

- 1. Chapter 15, Exercise A1 (p. 153)
- 2. Chapter 15, Exercise A4 (p. 153)
- 3. Chapter 15, Exercise C1 (p. 153)
- 4. Chapter 15, Exercise D1 (p. 154)
- 5. Chapter 15, Exercise E2 (p. 154)
- 6. Chapter 15, Exercise E5 (p. 154)
- 7. Chapter 15, Exercise E6 (p. 154)
- 8. Refer to Problem 7. Show that each element in \mathbb{Q}/\mathbb{Z} is the same as that in the equivalence class described in Chapter 12, Exercise B2 (i.e., for a fixed $r \in \mathbb{Q}$, show that $[r] = r + \mathbb{Z}$; see also June 18 notes).
- 9. Let $G = A_4 = \{e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)\}$ and $H = \{e, (12)(34), (13)(24), (14)(23)\}$ (see Homework 6, Problem 10). We have already computed the cosets of H and established that H is a normal subgroup, so that $G/H = \{H, H(123), H(132)\}$. Perform the coset multiplications of the elements of G/H to (a) write the table of G/H and (b) confirm that $\operatorname{ord}(Ha) = 3$ if $Ha \in G/H$ for $a \notin H$.
- 10. Refer to Homework 7, Problem 2. Let $G = \mathcal{D}(\mathbb{R})$ and $H = \ker(\phi)$. Show that for any $g \in G$, [g] = H + g, where [g] is an equivalence class obtained from the equivalence relation described in Homework 5, Problem 13. Conclude that each element $H + g \in G/H$ contains all the functions that differ from g by a constant (or equivalently, shifted vertically from g).
- 11. Let $G = \mathcal{C}(\mathbb{R})$ (the set of all continuous functions, see page 46). Define $\psi : G \to \mathbb{R}$ by $\psi(f) = \int_0^1 f(x) dx$. Show that ψ is a homomorphism, find $H = \ker(\psi)$, and describe G/H. (See also Homework 2, Problem 9).
- 12. Let $G = GL_2(\mathbb{R})$, and let $H = \{X \in G : \det(X) = 1\} = SL_2(\mathbb{R})$ be a subgroup of G. Show that H is a normal subgroup of G, and describe G/H.
- 13. Let $G = GL_2(\mathbb{R})$, and let $H = \{X \in G : \det(X) > 0\}$.
 - (a) Define $\psi: G \to P$, by $\psi(A) = 1$ iff $\det(A) > 0$, and $\psi(A) = -1$ iff $\det(A) < 0$, where $P = \{-1, 1\}$ is a parity group with multiplication (write the table of P, with 1 as the identity). Show that ψ is a homomorphism, find $\ker(\psi)$, and conclude that a H is a normal subgroup of G.
 - (b) Show that $G/H = \{H, HA\}$ where $A \notin H$, and verify that $(HA)^2 = H$.
- 14. Chapter 15, Exercise F (p. 154) (Do all parts; the definition of a center of a group G is given by $C = Z(G) = \{a \in G : ax = xa, \forall x \in G\}$)