<u>Página inicial</u> <u>Cursos</u> <u>QXD0116 - ÁLGEBRA LINEAR - 01A - 2025.1</u> <u>Frequência</u>

(10/06/2025) - Base de um Espaço Vetorial II

2	
६०३	
-0-	

Iniciado em	sexta, 27 jun 2025, 01:54
Estado	Finalizada
Concluída em	sexta, 27 jun 2025, 01:56
Tempo empregado	1 minuto 49 segundos
Notas	3,00/3,00
Avaliar	10,00 de um máximo de 10,00(100 %)

Questão 1
Correto
Atingiu 1,00 de 1,00

Seja $\mathbb{B}_1=\{\mathbf{e}_1,\mathbf{e}_2\}$ a base canônica de \mathbb{R}^2 e $\mathbb{B}_2=\{\mathbf{u}_1,\mathbf{u}_2\}$ uma nova base, onde $\mathbf{u}_1=\begin{bmatrix}1\\1\end{bmatrix}$ e $\mathbf{u}_2=\begin{bmatrix}-1\\1\end{bmatrix}$. Qual das matrizes \mathbf{A} representa a matriz de mudança de base de \mathbb{B}_2 para \mathbb{B}_1 .

Escolha uma opção:

o a.
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
b. $\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
c. $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$
d. $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$
e. $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$
e. $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Sua resposta está correta.

As respostas corretas são: ${f A}=egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$, ${f A}=egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix}$

Histórico de respostas

Passo	Hora	Ação	Estado	P
1	27/06/2025 01:54	Iniciada	Ainda não respondida	
2	27/06/2025 01:56	Salvou: [\mathbf{A}=\left[\begin{matrix} 1 & -1 \\ 1 & 1 \end{matrix}\right]]	Resposta salva	
3	27/06/2025 01:56	Tentativa finalizada	Correto	1,(

☆

Ş

Considere o vetor ${\bf v}$ que possui coordenadas ${\bf v}_{\mathbb{B}_2}=\begin{bmatrix}2\\3\end{bmatrix}$ em relação à base $\mathbb{B}_2=\{{\bf u}_1,{\bf u}_2\}$ onde ${\bf u}_1=\begin{bmatrix}1\\1\end{bmatrix}$ e ${\bf u}_2=\begin{bmatrix}-1\\1\end{bmatrix}$. Se a matriz de mudança de base de \mathbb{B}_2 para \mathbb{B}_1 é ${\bf A}=\begin{bmatrix}1&0\\1&1\end{bmatrix}$, quais são as coordenadas de \mathbb{B}_2 mathbf $\{{\bf v}\}$ na base canônica \mathbb{B}_1 ?

Escolha uma opção:

- c. $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ d. $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ e. $\begin{bmatrix} 5 \\ 2 \end{bmatrix}$

Sua resposta está correta.

As respostas corretas são: $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$

 $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Histórico de respostas

The correct de l'obpostation				
Passo	Hora	Ação	Estado	Pontos
1	27/06/2025 01:54	Iniciada	Ainda não respondida	
2	27/06/2025 01:55	Salvou: [\left[\begin{matrix} 5 \\ 3 \end{matrix}\right]]	Resposta salva	
3	27/06/2025 01:56	Tentativa finalizada	Correto	1,00

 $\vec{\mathcal{U}}$

仚

(~)

 \bigcirc

£033

Seja $\mathbf{v}_{\mathbb{B}_1}$ o vetor de coordenadas de \mathbf{v} na base \mathbb{B}_1 , e $\mathbf{v}_{\mathbb{B}_2}$ o vetor de coordenadas de \mathbf{v} na base \mathbb{B}_2 . Qual das seguintes equações expressa corretamente a relação entre $\mathbf{v}_{\mathbb{B}_1}$, $\mathbf{v}_{\mathbb{B}_2}$ e a matriz de mudança de base \mathbf{A} de \mathbb{B}_2 para \mathbb{B}_1 ?

Escolha uma opção:

$$igcup$$
 a. $\mathbf{v}_{\mathbb{B}_1}+\mathbf{v}_{\mathbb{B}_2}=\mathbf{A}$

$$lacksquare$$
 b. $\mathbf{v}_{\mathbb{B}_1} = \mathbf{A} \cdot \mathbf{v}_{\mathbb{B}_2}$

$$igcup_{\mathbb{B}_1}\cdot \mathbf{v}_{\mathbb{B}_2}^{-1}$$

$$igcup_{\mathbb{B}_1} = \mathbf{A}^{-1} \cdot \mathbf{v}_{\mathbb{B}_2}$$

$$igcup_{\mathbb{B}_2} = \mathbf{A} \cdot \mathbf{v}_{\mathbb{B}_1}$$

Sua resposta está correta.

A resposta correta é: $\mathbf{v}_{\mathbb{B}_1} = \mathbf{A} \cdot \mathbf{v}_{\mathbb{B}_2}$

Histórico de respostas

Passo	Hora	Ação
1	27/06/2025 01:54	Iniciada
2	27/06/2025 01:56	Salvou: [\mathbf{v}_{\mathbb{B}_1}=\mathbf{A}\cdot\mathbf{A}
3	27/06/2025 01:56	Tentativa finalizada

©2020 - Universidade Federal do Ceará - Campus Quixadá.

Todos os direitos reservados.

Av. José de Freitas Queiroz, 5003

Cedro - Ouixadá - Ceará CEP: 63902-580

Cedro – Quixadá – Ceará CEP: 63902-580 Secretaria do Campus: (88) 3411-9422 🛚 Baixar o aplicativo móvel.