Dispersione di soglia e ILDAC (no outliers) RD53B

May 11, 2021

1 In questo script recupero informazioni relative alla dispersione di soglia dei FE RD53A e RD53B e ne elimino gli outliers

Devo prendere i valori al 50% dello scan di soglia e calcolare la varianza della loro distribuzione. Infine, plottare l'andamento delle dispersioni di soglia delle misurazioni fatte in funzione della corrente I_{LDAC} , cercando di eliminare l'effetto di eventuali outliers.

```
[2]: import numpy as np
      import matplotlib.pyplot as plt
 [3]: %run ./Functions/selectFiles.ipynb #gestisce button e schermata di dialogo con
      →il file system
      %run ./Functions/parseCalibs.ipynb #parsing dei file txt. input: path[]; output:_
       -dataframe []
[13]: def plotHist(dataframe, tipo): #plot istogramma distribuzione delle soglieu
       →filtrate per tipo di FE. Ritorna lista di soglie
          C = dataframe[0][0]
          D = C.loc[C['Tipo'] == tipo]
          E = np.asarray(D['Thresholds'].values.tolist())
          fig, ax = plt.subplots(1, 1)
          kws = dict(histtype= "stepfilled",alpha= 0.5, linewidth = 2)
          ax.hist(E, color="lightblue", edgecolor = "k", **kws, density = False)
          ax.legend(["Dev ~ " + str(round(np.std(E), 3))])
          ax.set_xlabel("Thresholds")
          ax.set_ylabel("Frequency")
          plt.show()
          return E
[18]: def plotNoOutliers(array):
          fig, ax = plt.subplots(1, 1)
```

```
kws = dict(histtype= "stepfilled",alpha= 0.5, linewidth = 2)

ax.hist(array, color="green", edgecolor = "k", **kws, density = False)
ax.legend(["Dev ~ " + str(round(np.std(array), 3))])
ax.set_xlabel("Thresholds")
ax.set_ylabel("Frequency")
plt.show()
```

[6]: button = selectFiles() #è possibile selezionare più files

Selected files:

 ${\tt C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_8_0_soglia_1000_elettroni.txt}$

1.1 Dati per corrente $I_{LDAC} = 8\mu A$

```
[7]: data8 = parseCalibs(button.files) #ad ogni file è associato un dataframe ⊔
```

1 dataframe crated!

Dati sporchi

```
[14]: array8 = plotHist(data8, 'B')
```


Rimuovo gli outliers lavorando sul coefficiente m

Il dato viene considerato se:

$$x - \overline{x} < m \cdot \lambda_x$$

con λ_x deviazione standard

[16]: no_outliers_8 = array8[abs(array8 - np.mean(array8)) < 0.85*np.std(array8)] →#Rimuovo gli outliers

[19]: plotNoOutliers(no_outliers_8)

[58]: varianzeB.append(np.std(array8))
varianzeB_pulite.append(np.std(no_outliers_8))

1.2 Dati per corrente $I_{LDAC} = 10 \mu A$

[20]: button10 = selectFiles() #è possibile selezionare più files

Selected files:

 ${\tt C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_10_0_soglia_1000_elettroni.txt}$

[21]: data10 = parseCalibs(button10.files) #ad ogni file è associato un dataframe ⊔

1 dataframe crated!

Dati sporchi

[22]: array10 = plotHist(data10, 'B')

Rimuovo gli outliers lavorando sul coefficiente m

[26]: no_outliers_10 = array10[abs(array10 - np.mean(array10)) < 4*np.std(array10)]

[27]: plotNoOutliers(no_outliers_10)

[59]: varianzeB.append(np.std(array10))
varianzeB_pulite.append(np.std(no_outliers_10))

1.3 Dati per corrente $I_{LDAC} = 12\mu A$

[29]: button12 = selectFiles() #è possibile selezionare più files

Selected files:

 ${\tt C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_12_0_soglia_1000_elettroni.txt}$

1 dataframe crated!

[31]: array12 = plotHist(data12, 'B')

[60]: varianzeB.append(np.std(array12))
varianzeB_pulite.append(np.std(array12))

1.4 Dati per corrente $I_{LDAC} = 13 \mu A$

[34]: button13 = selectFiles() #è possibile selezionare più files

Selected files:

 ${\tt C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_13_0_soglia_1000_elettroni.txt}$

[35]: data13 = parseCalibs(button13.files) #ad ogni file è associato un dataframe ⊔

1 dataframe crated!

Dati sporchi

Rimuovo gli outliers lavorando sul coefficiente m

1.4.1 Dati per corrente $I_{LDAC} = 14 \mu A$

[39]: button14 = selectFiles() #è possibile selezionare più files

Selected files:

 ${\tt C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_14_0_soglia_1000_elettroni.txt}$

[40]: data14 = parseCalibs(button14.files) #ad ogni file è associato un dataframe \hookrightarrow

1 dataframe crated!

[41]: array14 = plotHist(data14, 'B')

[42]: array_x=array14
no_outliers_14 = array_x[abs(array_x - np.mean(array_x)) < 2*np.std(array_x)]
plotNoOutliers(no_outliers_14)

[62]: varianzeB.append(np.std(array14))
varianzeB_pulite.append(np.std(no_outliers_14))

1.4.2 Dati per corrente $I_{LDAC} = 16\mu A$

[43]: button16 = selectFiles() #è possibile selezionare più files

Selected files:

 ${\tt C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_16_0_soglia_1000_elettroni.txt}$

[44]: data16 = parseCalibs(button16.files) #ad ogni file è associato un dataframe ⊔

1 dataframe crated!

[45]: array16 = plotHist(data16, 'B')

[47]: array_x=array16
no_outliers_16 = array_x[abs(array_x - np.mean(array_x)) < 2*np.std(array_x)]
plotNoOutliers(no_outliers_16)</pre>

[63]: varianzeB.append(np.std(array16))
varianzeB_pulite.append(np.std(no_outliers_16))

1.4.3 Dati per corrente $I_{LDAC} = 18\mu A$

[48]: button18 = selectFiles() #è possibile selezionare più files

Selected files:

 $\hbox{C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_18_0_soglia_1000_elettroni.txt \\$

```
[49]: data18 = parseCalibs(button18.files) #ad ogni file è associato un dataframe ⊔
```

1 dataframe crated!

[50]: array18 = plotHist(data18, 'B')


```
[64]: varianzeB.append(np.std(array18))
varianzeB_pulite.append(np.std(array18))
```

1.4.4 Dati per corrente $I_{LDAC} = 20 \mu A$

```
[51]: button20 = selectFiles() #è possibile selezionare più files
```

Selected files:

 ${\tt C:/Users/andre/Documents/CMSAFE/CMSAFE_calibs/calib_I_LDAC_20_0_soglia_1000_elettroni.txt}$

```
[52]: data20 = parseCalibs(button20.files) #ad ogni file è associato un dataframe ⊔
```

1 dataframe crated!

```
[53]: array20 = plotHist(data20, 'B')
```


[55]: array_x=array20
no_outliers_20 = array_x[abs(array_x - np.mean(array_x)) < 2*np.std(array_x)]
plotNoOutliers(no_outliers_20)</pre>

[65]: varianzeB.append(np.std(array20))
varianzeB_pulite.append(np.std(no_outliers_20))

1.5 Plot Dispersioni di soglia (senza outliers) in funzione di I_{LDAC}

[66]: correnti = [8.0, 10.0, 12.0, 13.0, 14.0, 16.0, 18.0, 20.0]

