Test di Calcolo Numerico

Ingegneria Informatica 13/06/2015

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 13/06/2015

1) Una matrice $A \in \mathbb{C}^{4 \times 4}$ ha il polinomio caratteristico dato da

$$P(\lambda) = \lambda^4 - 3\lambda^3 + \lambda^2 - 1.$$

- a) Determinare det(A).
- b) A ha un autovalore nullo?
- c) A risulta convergente?
- 2) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{x^3 + 4x^2 - 2x - 4}{x^3} \,.$$

- 3) Determinare la cardinalità dell'insieme dei numeri di macchina F(3, 5, -2, 2).
- 4) Calcolare i pesi della formula

$$J_1(f) = af(0) + bf(1)$$

che approssima l'integrale $\int_0^1 e^x f(x) dx$. Indicare il grado di precisone della formula ottenuta.

5) Calcolare il polinomio di interpolazione relativo alla tabella

SOLUZIONE

- 1) Dal polinomio caratteristico (di grado pari) si deduce che il $\det(A) = -1$. Da questo segue che non si possono avere autovalori nulli essendo il determinante il prodotto degli autovalori. Infine, la matrice non risulta convergente avendo $|\det(A)| \geq 1$.
- 2) I punti fissi dono le soluzioni dell'equazione $x = \phi(x)$. Si hanno quindi i punti fissi

$$\alpha_1 = -1, \quad \alpha_2 = 2, \quad \alpha_3 = \sqrt{2}, \quad \alpha_4 = -\sqrt{2}.$$

- 3) La cardinalità dell'insieme di numeri di macchina è card(F) = 1621.
- 4) I pesi della formula si ottengono imponendo che risulti esatta per le funzioni f(x) = 1 e f(x) = x. Si ottiene quindi

$$a = e - 2$$
, $b = 1$.

La formula ottenuta non risulta è esatta per $f(x) = x^2$ per cui il grado di precisione ottenuto è m = 1.

5) Il polinomio di interpolazione è $P_4(x) = x^2$.