Série 2

Réponses à l'exercice 2.1 : IMPULSION DE DIRAC

Rappel: $f(t) * \delta(t - t_0) = f(t - t_0)$ et $f(t) \cdot \delta(t - t_0) = f(t_0)\delta(t - t_0)$.

- 1) rect(t).
- **2)** rect(t-1).
- 3) rect(t-1).
- **4)** rect(t-2).
- **5)** $\delta(t-2) \delta(t-4)$.
- 6) e^{-t-2} rect $(t+\frac{3}{2})$.
- **7)** 0.
- 8) $\delta(t-2) e^{2-t}u(t-2)$.

Réponses à l'exercice 2.2 : ANALYSE DE SYSTÈME

- 1) $(D + 5I) \{y\}(t) = x(t)$
- **2)** $h_1(t) = u(t)e^{-5t}$
- 3) Le système S_1 est causal, RII (i.e. non-RIF) et stable BIBO.
- **4)** z(t) = 2y'(t) + 3y(t)
- 5) Le système S_2 est causal et RIF.
- **6)** $h(t) = 2\delta(t) 7u(t)e^{-5t}$
- 7) (a) $z_1(t) = 2\delta(t) 7u(t)e^{-5t}$
 - (b) $z_2(t) = \frac{1}{5}u(t)(3 + 7e^{-5t})$
 - (c) $z_3(t) = \frac{1}{3}u(t)e^{-2t}(7e^{-3t} 1)$

Réponses à l'exercice 2.3 : OPÉRATEURS DIFFÉRENTIELS

- 1) Réponse impulsionnelle : $h(t) = 2\delta'(t) \delta(t)$. Fonction de Green : $g(t) = \frac{1}{2}u(t)e^{t/2}$.
- 2) Fonction de Green de l'opérateur 2(D+I). Réponse impulsionnelle du système $x \to y$ caractérisé par 2y' + 2y = x.
- 3) $4(D + (1/2 + j)I)(D + (1/2 j)I)\{y\} = x$. $h(t) = \frac{1}{4}u(t)e^{-(\frac{1}{2}+j)t} * u(t)e^{-(\frac{1}{2}-j)t} = \frac{j}{8}u(t)e^{-(\frac{1}{2}+j)t} - \frac{j}{8}u(t)e^{-(\frac{1}{2}-j)t}$.
- 4) Dériver la réponse précédente.
- 5) i) $y_1(t) = h(t) = \frac{\mathrm{i}}{8}u(t)\mathrm{e}^{-(\frac{1}{2}+\mathrm{j})t} \frac{\mathrm{j}}{8}u(t)\mathrm{e}^{-(\frac{1}{2}-\mathrm{j})t}$.
 - ii) $y_2(t) = \delta(t)$.
 - iii) $y_3(t) = h(t) * e^{-t/3} = \frac{9}{37}e^{-t/3}$.

Réponses à l'exercice 2.4 : RÉPONSES IMPULSIONNELLES

Rappel : Un système physique est causal-stable BIBO \Leftrightarrow tous les pôles de l'opérateur correspondant sont dans le demi-plan complexe gauche (partie réelle négative).

1)
$$(D-I)\{y\}(t) = x(t) \text{ donc } y(t) = (D-I)^{-1}\{x\}(t).$$

 $T = (D-I)^{-1}; h(t) = T\{\delta(t)\} = e^t u(t) \text{ (cf. table A-5)}. Pas causal-stable BIBO.}$

- 2) T = (D 2I)⁻²; $h(t) = T\{\delta(t)\} = t_+e^{2t}$. Pas causal-stable BIBO.
- 3) T = $[(D 7I)(D + 2I)]^{-1}$; $h(t) = T\{\delta(t)\} = [e^{7t}u(t)] * [e^{-2t}u(t)] = \frac{e^{7t} e^{-2t}}{9}u(t)$ (table A-4). Pas causal-stable BIBO.
- 4) $\frac{1}{2\sqrt{2}}u(t)(\sqrt{2}\cos(\sqrt{2}t)-\sin(\sqrt{2}t))$. Pas causal-stable BIBO.

