KU-BIG Fine Dust TEAM

이동빈 박수희 고유경 김재훈 김은하 이나영

Index

- 1. Prophet
- 2. 시각화 패키지 소개 Plotly
- 3. 시각화 패키지 소개 Folium

1. Prophet 패키지

- 페이스북이 만든 시계열 예측 라이브러리 (Data: 카드매출, 소비, 미세먼지 …)
- ARIMA와 같은 확률/이론적 모델 X , 경험적 규칙 (Heuristic Rule) 을 사용
- 비정상탐지 알고리즘으로 활용

1. Prophet 패키지

$$y(t) = g(t) + s(t) + h(t) + error$$

- Growth
 - 반복적인 요소를 가지지 않는 트렌드
- Seasonality
 - 행동 양식이 주기적으로 나타나는 패턴
- Holidays
 - 전체 추이에 큰 영향을 주는 비주기적 이벤트

Library 에 종속되어 디테일한 변경이 쉽지 않음

1. Prophet 패키지

1. Prophet 패키지

시각화 패키지 소개 - Plotly

1. Plotting Method

```
fig = go.Figure()
fig.add_trace(go.Scatter(x = data['ds'],
                         v = data['v'].
                         mode = 'markers'.
                         name = 'purchase outlier'
fig.add trace(go.Scatter(x = x.
                         v = total['vhat lower'].
                         mode = 'lines'.
                        fill = 'tonexty',
                         fillcolor = 'rgba(0,176,246,0.2)',
                         line color='rgba(255.255.255.0)'.
                         name = 'Interval'
fig.update_layout(
    xaxis = go.layout.XAxis(
        rangeslider = dict(visible = True)))
fig.show()
```


시각화 패키지 소개 - Plotly

1. Plotting Option

```
fig.update lavout(
    updatemenus = [ go.layout.Updatemenu(
        type = 'buttons',
        buttons = list([
           dict(label="All".
                 method="update",
                 args=[{"visible": [True, True, True, True, True, True, True]}]),
           dict(label="Purchase".
                 method="update".
                 args=[{"visible": [True, True, False, False, False, False, False]}]),
           dict(label="Fine_Dust".
                 method="update".
                 args=[{"visible": [False, False, True, True, True, True, True, True]}]).
               ]),
```


시각화 패키지 소개 - Folium

- Folium
- Heatmap
- HeatmapWithTime

Folium

Folium:

지도데이터에 위치정보를 시각화하기 위한 라이브러리

'GeoJSON' /'topoJSON' 형식으로

데이터를 지정

마커 형태로 위치 정보를 지도상에 표현 가능

- 'GeoJSON'은 다양한 지리 데이터 구조를 인코딩하기 위한 형식을 제공
- 객체: 지오메트리, 지형지물 표시 가능
 Point, LineString, Polygon, MultiPoint,
 MultiLineString, MultiPolygon 및
 GeometryCollection과 같은 속성들 지정가능
- GeoJSON 형식: {"type": "Feature", "geometry": {"type": "Point", "coordinates": [125.6, 10.1]},

"properties": {"name": "Dinagat Islands"}}

Folium

- 1. 초기 객체 생성
- '.Map()'에 중심 좌표값을 지정

```
In [1]: import folium
In [2]: map_osm = folium.Map(location=[37.591586, 127.027631])
In [3]: map_osm.save('C:/Users/user/Desktop/map.html')
```

• 초기 화면 크기 지정 방법: 'zoom_start'

* 특정 지역의 위도와 경도값을 찾는 방법:

구글맵/ 네이버지도와 같은 지도 서비스

Folium

/Usars/usar/Dackton/man html 르고 있으면 방문 기록이 나타납니다. 분누 눈누 상업용 무료한... 🐧 3,200,000+ free an... 2. Marker와 Popup 설정 Folium은 다양한 형식의 마커와 마커를 클릭하였을 때 나타나는 정보 지정 가능 종암로9다길 종암중학 화정체 려 CH import folium 학 map osm = folium.Map(location=[37.591586, 127.027631],zoom start=17) folium.Marker([37.591586, 127.0276313], popup='고려대학교').add_to(map_osm) Out[3]: <folium.map.Marker at 0x24c0bf28d48> map_osm.save('C:/Users/user/Desktop/map.html')

Folium - Heatmap

Heatmap:

데이터의 값을 컬러로 변환, 시각적인 분석을 가능하게 하는 데이터 시각화 기법

데이터를 열 분포 형태로; 뜨거운 난색 계열 – 밀집 부분 차가운 한색 계열 – 반대 경우

밤 12시

아침 8시

2019년 3월 4일 00시부터 23시까지 종로구와 노원구의 유동인구 추이

시간 효과가 추가된 히트맵

→ 시간에 따른 추이를 볼 수 있음

(1) 2019년 3월 4일 하루 각 시간에 따른 유동인구

	TMST_00	TMST_01	TMST_02	TMST_03	TMST_04	TMST_05	TMST_06	TMST_07	TMST_08	TMST_09	
HDONG_NM											
가회동	133	88	84	90	239	526	1798	3462	3085	2135	
부암동	471	314	195	220	515	1229	3489	5937	5653	4686	
종로1234가 동	2013	1135	1080	970	3445	8784	23589	62792	72704	42547	
창신3동	123	74	61	76	101	185	472	1541	1159	780	
청운효자동	354	197	191	173	484	967	2208	5464	4293	3485	
평창동	1693	1205	936	859	1505	3302	6275	9618	8787	7846	
혜화동	651	438	269	299	1236	1644	3788	8189	9153	6115	
상계1동	1127	748	623	610	911	2378	4328	7825	6982	5882	
상계34동	731	429	333	382	492	967	1950	4299	3322	2768	
상계67동	1527	1021	798	835	1601	4350	8070	14355	14029	12107	
월계1동	640	365	241	264	439	1347	2857	7242	6189	4275	
중계본동	584	409	297	282	357	634	988	2565	1966	2145	
하계1동	805	417	359	357	676	1690	3278	7575	6951	6010	

(2) 각 동에 대한 좌표

	lat	Ing
HDONG_NM		
가회동	37.580005	126.984691
부암동	37.593326	126.962617
종로1234가동	37.571255	126.988853
창신3동	37.577756	127.014965
청운효자동	37.584061	126.970580
평창동	37.605335	126.966858
혜화동	37.586755	127.000355
상계1동	37.679662	127.054986
상계34동	37.663775	127.075346
상계67동	37.653026	127.058154
월계1동	37.619835	127.062932
중계본동	37.651440	127.083127
하계1동	37.640556	127.072569


```
[구현과정] Step 1. 유동인구 스케일링
                                                                                        차이 매우 극심
          print("하루 통틀어 가장 작은 유동인구: ", pop0304.min().min())
           print("하루 통틀어 가장 큰 유동인구: ", pop0304.max().max())
                                                                             유동인구 간격 유지,
          하루 통틀어 가장 작은 유동인구: 61
                                                                             그 수의 조정 필요
           하루 통틀어 가장 큰 유동인구: 72704
   In [12]: #인구 최대 500으로 min-max스케일링
         value = np.array(pop0304).reshape(13*24,)
         minimum = min(value)
         maximum = max(value)
         result = pop0304.transform(func = lambda x : 500*(x - minimum)/(maximum-minimum))
                                                                             Min-max 스케일링 후
         pop0304_scaled=np.ceil(result).astype(int)
         pop0304 scaled
                                                                             x 500
                                                                             → 최대 500. 최저
         print("스케일링 후 하루 통틀어 가장 작은 유동인구: ", pop0304_scaled.min().min())
         print("스케일링 후 하루 통틀어 가장 큰 유동인구: ", pop0304_scaled.max(),max())
                                                                             0이 되도록 조정
         스케일링 후 하루 통틀어 가장 작은 유동인구: 0
         스케일링 후 하루 통틀어 가장 큰 유동인구: 500
```


[구현과정] Step2. 데이터 포맷화

HeatMapWithTime (입력 데이터, 시간 인덱스)

```
import folium
import folium.plugins as plugins

m = folium.Map([37.612, 127.03], zoom_start=11)
plugins.HeatMapWithTime(data, index=time_index, auto_play=True).add_to(m)
m
```

HeatMapWithTime 적용 위해 데이터를 규격에 맞게 만들어줘야 함!

입력 데이터: 3차원의 리스트

가장 안쪽 차원: <mark>좌표</mark> (위도, 경도)

다음 차원: 지역 (가회동, 부암동, 종로구 등)

가장 바깥 차원 시간 (00시, 01시, .. , 23시)

[구현과정] Step2. 데이터 포맷화

입력 데이터 포맷화

	가회동	부암동	종로1234가동	
00시			→ … ● (14개)	
01시		• •	● … ● (8개)	
02시		• /	● ●… ● (8개)	
:				
		1		

각 데이터 포인트들은 미세하게 달라야 움직이는 효과 및 크기 표현 가능 종로 1234가동의 좌표를 평균으로 하는 정규분포로부터 14개 좌표 추출

$$m{\mu} = ig(rac{37.571255}{126.988853} ig), \ \ m{\sigma} = ig(rac{0.003}{0.003} ig)$$
 $m{N}(m{\mu}, m{\sigma}) \sim m{14개의 데이터 포인트}$

<유동인구>

HDONG_NM	가회동	부암동	종로1234가동
TMST_00	1	3	14
TMST_01	1	2	8
TMST_02	1	1	8

[구현과정] Step3. 입력데이터 구현 코드

```
In [24]: location=np.array(location)
          location = location.T
          matrix = []
          for i in range(pop0304 scaled.shape[1]):
              a = []
              for Io1, Io2, value in zip(location[0], location[1], pop0304_scaled.iloc[:,j]):
                      [a.append([lo1+np.random.normal(0.0.003), lo2+np.random.normal(0.0.003)]) for i in range(value)]
              matrix.append(a)
          matrix
Out [24]: [[[37.58067244356036, 126.9810843377848],
            [37.58934315668846, 126.9601521708221].
            [37,59253638459552, 126,9626832816376]
            [37.59782599680598, 126.96021826473853]
            [37.56958823533165, 126.98441038848699]
            [37,56887619737525, 126,98963428408733]
            [37.56896122193259. 126.9900698568987]
            [37.569774977235504, 126.98678197907657]
            [37.57112678340523, 126.9918183466608]
            [37.56857987041131, 126.99098470756435]
            [37,570629900529035, 126,98623505547963]
            [37.57185295511589. 126.99058775002717]
            [37.57092709070111, 126.98587199504871]
```


Thank you

