2017-MA-27-39

EE24BTECH11034 - K Teja Vardhan

October 29, 2024

- 1. Given two $n \times n$ matrices A and B with entries in \mathbb{C} , consider the following statements:
 - P: If A and B have the same minimal polynomial, then A is similar to B.
 - Q: If A has n distinct eigenvalues, then there exists $u \in \mathbb{C}^n$ such that $u, Au, \ldots, A^{n-1}u$ are linearly independent.

Which of the above statements hold TRUE?

- (a) Both P and Q
- (b) Only P
- (c) Only Q
- (d) Neither P nor Q
- 2. Let $A = (a_{ij})$ be a 10×10 matrix such that $a_{ij} = -1$ for $i \neq j$ and $a_{ii} = \alpha + 1$, where $\alpha > 0$. Let λ and μ be the largest and the smallest eigenvalues of A, respectively. If $\lambda + \mu = 24$, then α equals
- 3. Let C be the simple, positively oriented circle of radius 2 centered at the origin in the complex plane. Then $\frac{2}{\pi i} \int_C \left[\frac{e^{i\theta}}{2} + \tan\left(\frac{z}{2}\right) + \frac{1}{(z-1)(z-3)^2} \right] dz =$
- 4. Let Re (z) and Im (z), respectively, denote the real part and the imaginary part of a complex number z. Let $T: \mathbb{C} \cup [\infty] \to \mathbb{C} \cup [\infty]$ be the bilinear transformation such that T(6) = 0, T(3-3i) = i, and $T(0) = \infty$. Then, the image of $D = [z \in \mathbb{C} : |z-3| < 3]$ under the mapping w = T(z) is
 - (a) $[w \in \mathbb{C} : \operatorname{Im}(w) < 0]$
 - (b) $[w \in \mathbb{C} : \operatorname{Re}(w) < 0]$
 - (c) $[w \in \mathbb{C} : \operatorname{Im}(w) > 0]$
 - (d) $[w \in \mathbb{C} : \operatorname{Re}(w) > 0]$
- 5. Let (x_n) and (y_n) be two sequences in a complete metric space (X,d) such that $d(x_n,x_{n+1}) \leq \frac{1}{n^2}$ and $d(y_n,y_{n+1}) \leq \frac{1}{n}$ for all $n \in \mathbb{N}$. Then
 - (a) both (x_n) and (y_n) converge

- (b) (x_n) converges but (y_n) need NOT converge
- (c) (y_n) converges but (x_n) need NOT converge
- (d) neither (x_n) nor (y_n) converges
- 6. Let $f:[0,1] \to \mathbb{R}$ be given by f(x) = 0 if x is rational, and if x is irrational then $f(x) = 9^n$, where n is the number of zeros immediately after the decimal point in the decimal representation of x. Then the Lebesgue integral $\int_0^1 f(x) \ dx$ equals
- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{\sqrt{x^2 + y^2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$ Then, at (0,0),
 - (a) f is continuous and the directional derivative of f does NOT exist in some direction
 - (b) f is NOT continuous and the directional derivatives of f exist in all directions
 - (c) f is NOT differentiable and the directional derivatives of f exist in all directions
 - (d) f is differentiable
- 8. Let D be the region in \mathbb{R}^2 bounded by the parabola $y^2=2x$ and the line y=x. Then $\iint_D 3xy\,dx\,dy=$
- 9. Let $y_1(x) = x^3$ and $y_2(x) = x^2|x|$ for $x \in \mathbb{R}$. Consider the following statements: $P: y_1(x)$ and $y_2(x)$ are linearly independent solutions of $x^2 \frac{d^2y}{dx^2} 4x \frac{dy}{dx} + 6y = 0$ on \mathbb{R} . Q: The Wronskian $y_1(x) \frac{dy_2}{dx}(x) y_2(x) \frac{dy_1}{dx}(x) = 0$ for all $x \in \mathbb{R}$. Which of the above statements hold TRUE?
 - (a) Both P and Q
 - (b) Only P
 - (c) Only Q
 - (d) Neither P nor Q
- 10. Let α and β with $\alpha > \beta$ be the roots of the indicial equation of $(x^2 1)^2 \frac{d^2y}{dx^2} + (x+1)\frac{dy}{dx} y = 0$ at x = -1. Then $\alpha 4\beta$ equals
- 11. Let S_9 be the group of all permutations of the set [1, 2, 3, 4, 5, 6, 7, 8, 9]. Then the total number of elements of S_9 that commute with $\tau = (123) \, (4567)$ in S_9 equals
- 12. Let $\mathbb{Q}[x]$ be the ring of polynomials over \mathbb{Q} . Let $x^4 1 = p_1 p_2 \cdots p_n$ be the prime factorization of $x^4 1$ into irreducible polynomials in $\mathbb{Q}[x]$ over \mathbb{Q} . Then the total number of maximal ideals in the quotient ring $\mathbb{Q}[x]/(x^4 1)$ equals

13. Let $[e_n]_{n\in\mathbb{N}}$ be an orthonormal basis of a Hilbert space H. Let $T:H\to H$ be given by $Tx=\sum_{n=1}^\infty\frac{1}{n}\langle x,e_n\rangle e_n$. For each $n\in\mathbb{N}$, define $T_n:H\to H$ by $T_nx=\sum_{j=1}^n\frac{1}{j}\langle x,e_j\rangle e_j$.

Then

- (a) $|T_n T| \to 0$ as $n \to \infty$
- (b) $|T_n T| \to 0$ as $n \to \infty$ but for each $x \in H$, $|T_n x Tx| \to 0$ as $n \to \infty$
- (c) for each $x \in H$, $|T_n x Tx| \to 0$ as $n \to \infty$ but the sequence $(|T_n|)$ is unbounded
- (d) there exist $x, y \in H$ such that $\langle T_n x, y \rangle \nrightarrow \langle Tx, y \rangle$ as $n \to \infty$