4.56) (a) For two values $t, s \in [0, \infty]$, if s < t then

$$st + s < st + t \implies s(t+1) < t(s+1) \implies \frac{s}{s+1} < \frac{t}{t+1} \text{ or } \Phi(s) < \Phi(t)$$

Also

$$\Phi(t+s) = \frac{t+s}{t+s+1} = \frac{t}{t+s+1} + \frac{s}{t+s+1} < \frac{t}{t+1} + \frac{s}{s+1} = \Phi(t) + \Phi(s)$$

- (b) Φ is monotic and so it has an inverse. This means that $\rho(x,y) \leq r$ implies $\Phi \circ \rho(x,y) \leq \Phi(r)$ and also $\Phi \circ \rho(x,y) < r$ implies $\rho(x,y) < \Phi^{-1}(r)$. Thus set U open in (Y,ρ) is also open under the topology generated by $\Phi \circ \rho$ since any open ball with respect to ρ must include an open ball with respect to Φ and vice versa. This implies that the topologies generated by either metric are the same.
- (c) Let $\gamma(f,g) = \sup_{x \in X} |f(x) g(x)|$. Then $(C(X), \gamma)$ is a metric space with the topology of uniform convergence. The previous result tells us that $\Phi \circ \gamma$ is also a metric on C(X) with the same topology.
- (d) We already know that each summand of ρ is a metric. Thus ρ is a metric since a positive sum of metrics is still a metric.

For any open ball $B_r(f)$, each function $g \in B_r(f)$ must be contained within some ball $B_s(g)$ such that $B_s(g) \subset B_r(f)$. If we let $B'_{k,N}(g) = \{h : \sup_{x \in \overline{U_n}} |h(x) - g(x)| < k^{-1} \}$ such that $\Phi(k^{-1} < \frac{s}{2})$ and $\sum_{n=N}^{\infty} 2^{-n} < \frac{s}{2}$ then it follows that

$$B'_{k,N}(g) \subset \{h : \sum_{n=1}^{N-1} 2^{-n} \Phi(\sup_{x \in \overline{U_N}} |h(x) - g(x)|) < \frac{s}{2}\} \subset B_s(g).$$

So $B_r(f)$ is open in the topology of uniform convergence of compact sets.

Likewise, for any open ball $B'_{k,N}(f)$ in the topology of uniform convergence. For any $g \in B'_{k,N}(f)$ there exists an s such that $\{h : \sup_{x \in \overline{U_n}} |h(x) - g(x)| < s\} \subset B'_{k,N}$. But this implies that $B'_{k,N}(f)$ also contains $B_{2^{-N}\Phi(s)}$ since

$$B_{2^{-N}\Phi(s)} = \{h : \sum_{n=1}^{N-1} 2^{-n} \Phi(\sup_{x \in \overline{U_n}} |h(x) - g(x)|) < 2^{-n} \Phi(s)\}$$

$$\subset \{h : 2^{-N} \Phi(\sup_{x \in \overline{U_N}} |h(x) - g(x)|) < 2^{-N} \Phi(s)\}$$

$$= \{h : \sup_{x \in \overline{U_N}} |h(x) - g(x)| < s\} \subset B'_{k,N}$$

So any $B'_{k,N}$ is open in the metric topology and thus the two topologies are equivalent. Lastly, a sequence of functions converges in the metric iff they converge in the topology of uniform convergence of compact sets (since it is equivalent to the metric topology). Since X is LCH and thus every point $x \in X$ has a compact neighborhood. This implies that such a convergent sequence will converge uniformly on those compact neighborhoods, i.e. it will converge locally uniformly.

4.61) **Restatement:** Let X be a compact Hausdorff space and Y be a metric space. If \mathcal{F} is an equicontinuous, pointwise totally bounded subset of functions mapping X to Y, then \mathcal{F} is totally bounded in the uniform metric and \mathcal{F} is compact in the space of all functions from X to Y.

The proof is almost the same as that for theorem 4.43. As in the original proof, once we have a finite set $x_1, \ldots, x_n \in X$ for which $\bigcup_{1}^{n} U_x = X$, we need to find a finite set $\{z_n\} \subset Y$ that is $\frac{1}{4}\epsilon$ -dense in $\{f(x_j): f \in \mathcal{F}, 1 \leq j \leq n\}$. Here, we need pointwise total bounded-ness to be able to claim there is a finite covering of each set $\{f(x_j): f \in \mathcal{F}\}$ with balls of radius $\frac{1}{4}\epsilon$, the centers of which we can use to form our finite set $\{z_n\}$.

From here, the proof proceeds the same as for theorem 4.43.

4.63) Any functions K and f have compact images since their domains are compact. Compact sets are bounded in $\mathbb C$ and so their images are also bounded. In particular, $||f||_u$ is finite. Also by continuity of K we can pick a δ such that $|K(x_1,y)-K(x_2,y)|<\epsilon/||f||_u$ whenever $|x_1-x_2|<\delta$. This implies the following:

$$|Tf(x_1) - Tf(x_2)| = \int_0^1 K(x_1, y) f(y) \, dy - \int_0^1 K(x_2, y) f(y) \, dy$$

$$\leq \int_0^1 |K(x_1, y) - K(x_2, y)| ||f||_u \, dy$$

$$< \int_0^1 \frac{\epsilon}{||f||_u} ||f||_u \, dy = \epsilon$$

and so $Tf \in C([0,1])$.

To show that $\mathcal{F} = \{Tf : ||f||_u \leq 1\}$ is equicontinuous note that for any point $x_1 \in [0,1]$, we can find a δ such that $|K(x_1,y) - K(x_2,y)| < \epsilon$ for all x_2 such that $|x_1 - x_2| < \delta$. Since, we have $||f||_u \leq 1$ this also means that $|K(x_1,y) - K(x_2,y)| < \epsilon/||f||_u$ for any $f \in \mathcal{F}$. Thus by the proof of continuity of a specific Tf we have that \mathcal{F} is equicontinuous at a point x_1 . The choice of x_1 was arbitrary so \mathcal{F} is actually just equicontinuous.

Furthermore, since $|Tf(x)| \leq \int_0^1 |K(x,y)| |f(y)| dy \leq \int_0^1 |K(x,y)| dy$ we know that \mathcal{F} is pointwise bounded. Thus by the Arzela-Ascoli Theorem, we know that it is precompact.

4.64) Let $\mathcal{F} = \{ f \in C(X) : ||f||_u \le 1 \text{ and } N_{\alpha}(f) \le 1 \}$ where

$$N_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}}.$$

For any finite $\epsilon > 0$ let $\delta = \epsilon^{1/\alpha}$. Then

$$|f(x) - f(y)| \le \rho(x, y)^{\alpha} \le \delta^{\alpha} = \epsilon$$

implying that \mathcal{F} is equicontinuous. It is also pointwise bounded by definition and so \mathcal{F} is precompact by the Arzela-Azcoli Theorem.

For any sequence $\langle f_n \rangle \subset \mathcal{F}$ convergent to some $f \in C(X)$ and for each point $x \in X$, each sequence $\langle f_n(x) \rangle$ is a convergent sequence of points in a closed set [-1,1] such that $f(x) \in [-1,1]$. But this means that $||f||_u \leq 1$. Also, since $N_{\alpha}(f_n) \leq 1$ we have that $|f_n(x) - f_n(y)| \leq \rho(x,y)^{\alpha}$. But $\langle f_n(x) - f_n(y) \rangle \to f(x) - f(y)$ and so it holds that $|f(x) - f(y)| \leq \rho(x,y)^{\alpha}$. Thus $N_{\alpha}(f) \leq 1$ and $f \in \mathcal{F}$. This means that $\overline{\mathcal{F}} = \mathcal{F}$ and so \mathcal{F} is compact.

4.68) Letting $\mathcal{F} = \{f(x,y) = g(x)h(y) : g \in C(X), h \in C(Y)\}$, note that the set of finite sums of elements of \mathcal{F} form an algebra. For instance, given any two elements f, f' in this algebra, it holds that

$$ff' = \left(\sum_{i} g_i h_i\right) \left(\sum_{j} g'_j h'_j\right) = \sum_{i,j} (g_i g'_j) (h_i h'_j)$$

which is still an element of \mathcal{F} . The algebra \mathcal{A} generated by \mathcal{F} contains this algebra and so they must be equivalent. Also for any $f \in \mathcal{A}$ we have that $f^* = \sum g_i^* h_i^* \in \mathcal{A}$ such that the algebra is closed under complex conjugation. This also implies that $\overline{\mathcal{A}}$ is closed under conjugation since it is a continuous function which we can apply to any convergent sequence in \mathcal{A} .

Assume we have two unique points $(x_1, y_1), (x_2, y_2) \in X \times Y$ and that $x_1 \neq x_2$ without loss of generality. Then, since X is compact Hausdorff and hence normal, Urysohn's Theorem tells us that there exists a function $g \in C(X)$ that separates x_1 and x_2 . This in turn means that $f = g \cdot 1 \in \mathcal{A}$ separates (x_1, y_1) and (x_2, y_2) . Thus $\overline{\mathcal{A}}$ separates points in $X \times Y$. Since $\overline{\mathcal{A}}$ also contains every constant function and since $X \times Y$ is compact, the Complex Stone-Weierstrass Theorem tells us that $\overline{\mathcal{A}} = X \times Y$, i.e. \mathcal{A} is dense in $X \times Y$.

4.69) Assume we have two points $x, y \in X$ and that $x \neq y$. Then there exists some coordinate map such that $\pi_{\alpha}(x) \neq \pi_{\alpha}(y)$. Thus \mathcal{A} and hence it's closure separates X. We know that $\overline{\mathcal{A}}$ is closed under complex conjugation because the algebras of projections and the constant function are closed under conjugation and because the conjugation function is continuous. We know that X is compact by Tyconoff's Theorem, and that the entire set \mathcal{A} vanishes nowhere because it contains constant functions. Thus we can apply the Complex Stone-Weierstrass Theorem to show that \mathcal{A} is dense in X.