Message #1: the friendship paradox on average, your friends have more friends than you do \rightarrow a random individual has k friends with probability p_k \rightarrow however, their friends have k friends with probability $\propto kp_k$ by spreading on a contact network, the disease naturally oversamples individuals more likely to cause a larger number of

ignoring this effect leads back to the mass-action assumption

secondary infections

Message #2: the effect of superspreading events the PGF formalism falls back to the outcome of the SIR dynamics when p_k is a Poisson distribution $R(\infty) = 1 - e^{-R_0 R(\infty)}$ $G_0(x) = G_1(x) = e^{R_0(x-1)}$; - the mass-action assumption is not appropriate for diseases

whose propagation is driven by superspreading events

JOURNAL OF THE ROYAL SOCIETY INTERFACE

Research articles

Beyond R₀: heterogeneity in secondary infections and probabilistic epidemic forecasting

Laurent Hébert-Dufresne, Benjamin M. Althouse, Samuel V. Scarpino and Antoine Allard ☑

Message #1: the friendship paradox

- on average, your friends have more friends than you do
 - \rightarrow a random individual has k friends with probability p_k
 - ightarrow however, their friends have k friends with probability $\propto k p_k$
- by spreading on a contact network, the disease naturally oversamples individuals more likely to cause a larger number of secondary infections
- ignoring this effect leads back to the mass-action assumption

JOURNAL OF THE ROYAL SOCIETY INTERFACE

Research articles

Beyond R₀: heterogeneity in secondary infections and probabilistic epidemic forecasting

Laurent Hébert-Dufresne, Benjamin M. Althouse, Samuel V. Scarpino and Antoine Allard ☑

Message #2: the effect of superspreading events

– the PGF formalism falls back to the outcome of the SIR dynamics when p_k is a Poisson distribution

$$G_0(x) = G_1(x) = e^{R_0(x-1)}; \qquad R(\infty) = 1 - e^{-R_0R(\infty)}$$

 the mass-action assumption is not appropriate for diseases whose propagation is driven by superspreading events Message #3 : we need to look beyond R_0 for overdispersed infectious diseases like COVID-19

negative binomial distribution for secondary cases

$$G_1(x) = \left[1 + \frac{R_0(x-1)}{\gamma}\right]^{-\gamma}$$

shows the great impact overdispersion (small γ) has on the spreading dynamics

– in other words, if $R_0 > 1$, our attention should not be focused on whether R_0 equals 2.5 or 3.5, but rather be focused on figuring out how much heterogeneity there is behind it (what is γ ?)

JOURNAL OF THE ROYAL SOCIETY INTERFACE

Research articles

Beyond R₀: heterogeneity in secondary infections and probabilistic epidemic forecasting

Laurent Hébert-Dufresne, Benjamin M. Althouse, Samuel V. Scarpino and Antoine Allard ⊡