

TrenchMVTM **Power MOSFET**

IXTH160N10T **IXTQ160N10T**

100 160 $\mathbf{R}_{\mathsf{DS}(\mathsf{on})}$ 7.0 $\mathsf{m}\Omega$ ≤

N-Channel Enhancement Mode Avalanche Rated

Symbol Test Conditions Maximum Ratings V_{DSS} $T_1 = 25^{\circ}C$ to $175^{\circ}C$ 100 $\mathbf{V}_{\underline{\mathsf{DGR}}}$ $T_{\perp} = 25^{\circ}\text{C to } 175^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$ 100 V Transient ± 30 ٧ V_{GSM} $T_{\rm C} = 25^{\circ}C$ 160 Α I_{D25} Lead Current Limit, RMS 75 Α LRMS $T_{c} = 25^{\circ}C$, pulse width limited by T_{JM} 430 Α I_{DM} $T_{\rm C} = 25^{\circ} C$ Α 25 $T_{\rm C}^{\rm c} = 25^{\circ}{\rm C}$ **E**_{AS} 500 mJ dv/dt $I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, \, \mathrm{di}/\mathrm{dt} \leq 100 \,\, \mathrm{A}/\mu\mathrm{s}, \,\, \mathrm{V}_{_{\mathrm{DD}}} \leq \mathrm{V}_{_{\mathrm{DSS}}}$ V/ns $T_J \leq 175^{\circ}C, R_G = 5 \Omega$ $T_{\rm C} = 25^{\circ}C$ 430 W T_{J} °C -55 ... +175 °С 175 $\mathsf{T}_{\underline{\mathsf{stg}}}$ -55 ... +175 °C °С T_{i} 1.6 mm (0.062 in.) from case for 10 s 300 Plastic body for 10 seconds °С 260 T_{SOLD} Mounting torque 1.13 / 10 Nm/lb.in. M^{4} Weight TO-3P 5.5 TO-247 6

TO-3P (IXTQ) G D (TAB) G - Gate D - Drain

G = Gale	D = Diaili		
S = Source	TAB = Drain		

Features

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS)
- Low package inductance
 - easy to drive and to protect
- 175 °C Operating Temperature

- Easy to mount
- Space savings
- High power density

Applications

Advantages

- Automotive
 - Motor Drives
- 42V Power Bus
- ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Current Switching **Applications**
- High Voltage Synchronous Recifier

Symbol (T _J = 25°C	Test Conditions unless otherwise specified)		Cha Min.	aracteri Typ.	istic Va Max	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150°C			5 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 25 \text{ A}, \text{ Note}$	s 1, 2		5.8	7.0	$m\Omega$

DS99710 (11/06)

Symbol	Test Conditions	Cha	aracteris	tic Values
(T _J = 25°C ι	unless otherwise specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 60 \text{ A}, \text{ Note 1}$	65	102	S
C _{iss}			6600	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		880	pF
C_{rss}			135	pF
t _{d(on)}	Resistive Switching Times		33	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 25 \text{ A}$		61	ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 5 \Omega$ (External)		49	ns
t _f			42	ns
Q _{g(on)}			132	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 25 \text{ A}$		37	nC
\mathbf{Q}_{gd}			40	nC
R _{thJC}				0.35°C/W
R _{thCH}			0.25	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values				
$T_J = 25^{\circ}C \text{ ur}$	nless otherwise specified) M	in.	Тур.	Max.		
Is	$V_{GS} = 0 V$			160	Α	
SM	Pulse width limited by $T_{_{\rm JM}}$			430	Α	
V _{SD}	$I_F = 25 \text{ A}, V_{GS} = 0 \text{ V}, \text{ Note 1}$			1.0	V	
t _{rr}	$I_{_F} = 25 \text{ A}, -\text{di/dt} = 100 \text{ A/}\mu\text{s}$		100		ns	
	$V_{R} = 50 \text{ V}, V_{GS} = 0 \text{ V}$					

Notes: 1. Pulse test, $t \le 300 \mu s$, duty cycle d $\le 2 \%$;

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5 mm or less from the package body.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a preproduction design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 AD Outline

Terminals: 1 - Gate 3 - Source

2 - Drain Tab - Drain

Dim.	Millimeter		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-3P (IXTQ) Outline

Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain

SYM	INCHES		MILLIMETERS	
21M	MIN	MAX	MIN	MAX
Α	.185	.193	4.70	4.90
Α1	.051	.059	1.30	1.50
A2	.057	.065	1.45	1.65
Ф	.035	.045	0.90	1.15
b2	.075	.087	1.90	2.20
b4	.114	.126	2.90	3.20
O	.022	.031	0.55	0.80
D	.780	.791	19.80	20.10
D1	.665	.677	16.90	17.20
E	.610	.622	15.50	15.80
E1	.531	.539	13.50	13.70
Ф	.215	BSC	5.45	BSC
L	.779	.795	19.80	20.20
L1	.134	.142	3.40	3.60
øΡ	.126	.134	3.20	3.40
øP1	.272	.280	6.90	7.10
S	.193	.201	4.90	5.10

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 2. Extended Output Characteristics @ 25ºC 300 V_{GS} = 10V 275 9V 8V 250 225 200 175 7V 150 125 100 75 50 6V 25 0 0 2 5 V_{DS} - Volts

Fig. 8. Transconductance 140 T_J = - 40°C 120 100 25℃ gfs - Siemens 80 150°C 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200 220 I_D - Amperes

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off
Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off
Switching Times vs. Gate Resistance

