Machine Learning

tinyurl.com/ml-intro-pg

Was ist ML-KA?

- Kurz für Machine Learning Karlsruhe
- ▶ **Hochschulgruppe** seit 15. Oktober 2015
- ▶ **Ziel**: Wissen über ML Verbreiten / Mehren
- ▶ Idee: Forum für interessierte Studenten bilden, organisation in kleinen Gruppen
- Umsetzung bisher
 - Paper Discussion Group (PDG, wöchentlich)
 - Gesellschaftliche Implikationen vom ML (GIML, 2-wöchentlich)
 - ► Teilnahme (und Preisträger) der Herbsttagung der Gesellschaft für Datenanalyse und Numerische Klassifikation
- ► Mehr auf https://ml-ka.de

Wer ist ML-KA?

- Vorstand:
 - Martin Thoma (info@martin-thoma.de)
 - Marvin Teichmann
 - Marvin Schweizer
- Mitglieder: Überwiegend aktuelle Studenten des KIT
 - 20 Mitglieder (Stand: 3. Februar 2016)
 - 213 Facebook Mitglieder (Stand: 26. Mai 2016)

Was ist Machine Learning?

Was ist Machine Learning?

Collaborative Filtering

Was ist Machine Learning?

Reinforcement Learning (RL)

ImageNet

Image by Thomas Deselaers 21 841 Synsets, 14 197 122 Bilder

Let Artificial Intelligence guess your attractiveness and age #howhot

Stunning Godlike

Let Artificial Intelligence guess your attractiveness and age

#howhot

Stunning

Godlike

Let Artificial Intelligence guess your attractiveness and age #howhot

Nice

#howhot

Hot

Stunning

Godlike

Let Artificial Intelligence guess your attractiveness and age

#howhot

Hmm..

Ok

lice

Hot

Stunning

Godlike

Let Artificial Intelligence guess your attractiveness and age #howhot

Hot

Stunning Godlike

Let Artificial Intelligence guess your attractiveness and age #howhot

Hot

Stunning Godlike

Anwendungen

- Klassifikation
 - write-math.com: Symbole erkennen
 - howhot.io: Geschlecht schätzen
 - ► Bildersuche
- Regression
 - ▶ howhot.io, how-old.net: Alter / "Hotness" schätzen
 - Regenmenge / Verkaufszahlen schätzen
- Collaborative Filtering: Netflix-Empfehlungen
- ▶ RL: Spiele automatisch spielen (Video 1, 2), Selbstfahrende Autos, Roboterarme
- ► Weiteres: Deep dream

MNIST - Ziffern klassifizieren

- Klassen: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- 60 000 Trainigsdaten, 10 000 Testdaten auf yann.lecun.com/exdb/mnist
- Algorithmen zur
 Klassifizierung: SVMs
 (Support Vector
 Machines), CNNs
 (Convolutional Neural
 Networks), k Nearest
 Neighbors (siehe
 tinyurl.com/knn-interact)

Datensatz der Klasse "2"; $28 \text{ px} \times 28 \text{ px}$

Wie löst man das?

▶ **Situation**: Daten im $\mathbb{R}^{28 \times 28}$, Lösungen in $\{0,1,2,3,4,5,6,7,8,9\}$

Wie löst man das?

- ▶ **Situation**: Daten im $\mathbb{R}^{28 \times 28}$, Lösungen in $\{0,1,2,3,4,5,6,7,8,9\}$
- lacktriangle ... oder $[0,1]^{10}$, wenn wir eine Wahrscheinlichkeitsverteilung wollen

Wie löst man das?

- ▶ **Situation**: Daten im $\mathbb{R}^{28 \times 28}$, Lösungen in $\{0,1,2,3,4,5,6,7,8,9\}$
- lacktriangle ... oder $[0,1]^{10}$, wenn wir eine Wahrscheinlichkeitsverteilung wollen
- Lösung: Neuronale Netze!

Wie finden wir die Gewichte?

Wie finden wir die Gewichte?
Gradientenabstieg
(Mehrdimensionale Ableitung)

Gradientenabstieg

Quelle: http://imgur.com/a/Hqolp

sklearn

Weitere Tools

- ▶ TensorFlow (Tutorials)
- TensorBox basiert auf TensorFlow, Lokalisierung (Computer Vision)
- ► Keras: Sehr einfach zu bedienen, abstrahiert von TensorFlow
- Datenvisualisierung
 - ► Pandas
 - ► Seaborn