MATH 467, Fall 2015 (39685R,39686R-Discussion)

Theory and Computational Methods for Optimization

Instructors

Lecture: Dr. Chunming Wang Grader: TBA

Office: KAP 244C Office: Phone: (213) 740-6097 Phone: e-Mail: cwang@usc.edu e-Mail:

Office Hours: MW 4:30PM-6PM Office Hours: TBA

Course Description

Optimization is one of the most important categories of mathematical problems that applied mathematicians, scientists and engineering frequently encounter in their work. The development of a large body of mathematical theories was motivated by the optimization problems. While the mathematical theories help to establish the existence of a solution to an optimization problem and, in some cases provide characterization of the solution, the computational techniques are developed to actually find the optimal solution for an application. In this course, we present an introduction to the basic theories of optimization starting from the characterization of optimal solutions for unconstrained and constrained optimization problems using tools of multiple variable calculus and linear algebra. We also provide an introduction to the most frequently used numerical techniques for local and global optimization problems. The following is a tentative list of topics that will be covered in the class:

- Unconstrained optimization and quasi-Newton method
- Least square problems
- Introduction to linear programming and simplex method
- Constrained optimization and convex optimization

Several computation projects which require students to use Matlab to implement specific numerical optimization techniques and to solve interesting application problems will be assigned during the semester. These projects allow students to gain hands-on experience in solving practical optimization problems.

Textbook and Reference

E. K.P. Chong and S.H. Zak, *An Introduction to Optimization*, 4th Ed., Wiley Inter-Science, 2013

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004

Grading Policy

Homework: 30%, Project: 10%, Midterm Exam: 30%, Final Exam: 30%.

Final Exam: Wednesday, December 16, 11:00AM-1:00PM

Monday, August 24 Introduction and Review	Wednesday, August 26 Introduction and Review	Friday, August 28 Set constrained and unconstrained optimization
Monday, August 31 Set constrained and unconstrained optimization	Wednesday, September 2 One-dimensional search	Friday, September 4 One-dimensional search
Monday, September 7 Labor Day	Wednesday, September 9 Gradient method	Friday, September 11 Gradient method
Monday, September 14 Newton's method	Wednesday, September 16 Newton's methods	Friday, September 18 Newton's methods
Monday, September 21 Conjugate gradient method	Wednesday, September 23 Conjugate gradient method	Friday, September 25 Conjugate gradient method
Monday, September 28 Conjugate gradient method	Wednesday, September 30 Quasi-Newton Method	Friday, October 2 Quasi-Newton Method
Monday, October 5 Linear programming	Wednesday, October 7 Linear programming	Friday, October 9 Linear programming
Monday, October 12 Linear programming	Wednesday, October 14 Linear programming	Friday, October 16 Midterm Exam
Monday, October 19 Linear programming	Wednesday, October 21 Simplex Method	Friday, October 23 Simplex Method
Monday, October 26 Simplex Method	Wednesday, October 28 Simplex Method	Friday, October 30 Simplex Method
Monday, November 2 Duality	Wednesday, November 4 Duality	Friday, November 6 Duality
Monday, November 9 Constrained optimization	Wednesday, November 11 Constrained optimization	Friday, November 13 Constrained optimization
Monday, November 16 Constrained optimization	Wednesday, November 18 Constrained optimization	Friday, November 20 Constrained optimization
Monday, November 23 Constrained optimization	Wednesday, November 25 Thanksgiving	Friday, November 27 Thanksgiving
Monday, November 30 Convex optimization	Wednesday, December 2 Convex optimization	Friday, December 4 Convex optimization