Fabrice Charron

Dans le cadre du cours 247-501-HU

Présenté à Guy Michel Lessard

24 novembre 2014

Table des matières

Introduction	3
Diagramme fonctionnel	4
Organigramme	5
Organigramme Raspberry Pi	5
Organigramme Ordinateur	6
Diagramme UML	7
Caractéristiques fonctionnelles	8
Caractéristiques électriques	8
Caractéristiques mécaniques	8
Caractéristiques logicielles des programmes à concevoir	8
Schématique	9
Diagramme schématique	9
Liste de raccord	10
Liste des composants	12
Tableau des connecteurs	13
Tableau des composants, Prix, Fournisseur et temps de livraison	15
Échéancier	16
Échéancier Automne 2014	16
Échéancier Hiver 2015	16
Conclusion	17

Introduction

Dans le cadre de mon projet final, pour ma technique de génie électrique (système ordiné), j'ai décidé de concevoir un drone que je vais pouvoir contrôler à distance à partir de mon ordinateur portable. J'ai fait le choix de ce projet, car celui-ci me permettra d'apprendre de nouvelle connaissance, de découvrir de nouvelles pièces d'électroniques et de mettre en pratique certaines notions que j'ai apprises au cours de mes trois années en génie électrique. De plus, j'ai toujours été impressionné par les avions téléguidé. Lorsque j'étais jeune, j'avais eu un avion téléguidé en cadeau, mais après quelques vols, atterrissages d'urgence, bris matériel et perte de contrôle causé par mon manque d'expérience en tant que pilote, j'ai décidé de m'en tenir au véhicule sur la terre ferme. Ce projet représente pour moi, une chance d'utiliser mes connaissances en génie électrique afin de pouvoir contrôler plus facilement mon avion d'apprécier d'avantage mes expériences de vols en admirant la vue. Pour ce projet, je vais découvrir le fonctionnement des Raspberry Pi qui utilisent le langage linux. Pour ma part, il s'agit de ma première expérience avec ce composant. J'ai fait le choix d'utiliser se composant, car il est très puissant qu'il me permet d'en apprendre sur ce composant qui m'intéresse. D'autre part, je vais devoir découvrir et apprendre à utiliser la caméra pour Raspberry Pi puisqu'il va falloir que je puisse diriger mon drone. Afin de pouvoir diriger mon drone convenablement, celui-ci sera inclut d'un capteur Gyroscopique pour que je puisse savoir la stabilité de l'avion et il aura aussi un capteur de pression qui me permettra de déterminer l'altitude de l'avion avec un calcul mathématique. J'ai fait le choix de prendre de nouvelles pièces afin de pouvoir les découvrir et pour travailler avec des composantes que je ne connaissais pas.

Diagramme fonctionnel

Organigramme

Organigramme Raspberry Pi

Organigramme Ordinateur

Diagramme UML

Caractéristiques fonctionnelles

Le projet consiste à concevoir un drone sous la forme d'un avion qui sera contrôlable à partir d'un ordinateur. Le drone sera équipé d'une caméra situé près du cockpit. Celle-ci diffusera une image en temps réel qui permettra à l'utilisateur de contrôle l'avion comme ci il était le pilote. De plus, le drone comportera un capteur gyroscopique qui permettra à l'utilisateur de voir le tangage de l'avion. Par ailleurs, il y aura aussi un capteur de pression qui permettra à de savoir l'altitude de l'avion par rapport au sol.

Caractéristiques électriques

Composant	Tension	Courant
Batterie pour l'avion	11.1v	3200mA
Batterie pour Raspberry Pi	2X5v	800mA

Caractéristiques mécaniques

Afin d'être certain que les capacités aéronautiques de l'avion soit bonne, je me suis procuré un avion téléguidé qui comprend le fuselage, les servos moteurs pour contrôler la direction, le moteur ainsi que son contrôleur.

Le fuselage de l'avion est suffisamment gros pour que je puisse facilement insérer le Raspberry Pi qui sera à l'intérieur de celui-ci.

Par ailleurs, afin de pouvoir connecter les servos moteurs au Raspberry Pi, je me concevoir une plaquette qui me permettra de raccorder les servos moteurs à ma plaquette qui sera relier au Raspberry pi.

Caractéristiques logicielles des programmes à concevoir

Le logiciel va permettre à l'utilisateur de voir l'image en temps réel de l'avion grâce à une caméra située dans le cockpit. Celle-ci diffusera sur le web la vidéo en temps réel qui sera récupéré par le logiciel pour voir l'image. Par ailleurs, les capteurs situés sur l'avion vont permettre à l'utilisateur de voir en temps réel l'altimètre et le gyroscope selon les mouvements de l'avion.

De plus, l'utilisateur aura le contrôle à distance de l'avion. Il pourra contrôler l'avion à l'aide d'une manette de (playstation). Ainsi, l'utilisateur aura le contrôle complet de tous les moteurs de l'avion. La transmission des données en l'avion dans les aires et le centre de commandement (ordinateur de contrôle) sera par Wifi.

Schématique

Diagramme schématique

Liste de raccord

Liste de raccord						
Exporté du schématique Drone.sch le 1 décembre 2014 17:27:32						
	EAGLE Version 6.5.0 Copyright © 1988-2013 CadSoft					
Nœud	Composant	Pad	Broche		Feuille	
+3V3	ALTIMETRE 4		4		1	
+5V	SERVO-MOTEUR_1	2		2		1
	SERVO-MOTEUR_2	2		2		1
	SERVO-MOTEUR_3	2		2		1
	SERVO-MOTEUR_4	2		2		1
	SERVO-MOTEUR_5	2		2		1
	SERVO-MOTEUR_6	2		2		1
GPIO1	GPIO 1		1		1	
GPIO2	GPIO 2		2		1	
GPIO3	ALTIMETRE 1		1		1	
	GPIO 3		3		1	
	GYROSCOPE 4		4		1	
	GYROSCOPE 5		5		1	
GPIO4	GPIO 4		4		1	
GPIO5	ALTIMETRE 2		2		1	
	GPIO 5		5		1	
	GYROSCOPE 3		3		1	
GPIO6	GPIO 6		6		1	
GPIO7	GPIO 7		7		1	
GPIO8	GPIO 8		8		1	Ш
GPIO9	GPIO 9		9		1	
						Ш
GPIO10	GPIO 10		10		1	

Nœud	Composant	Pad	Broche	_	Feuille	
	•					
GPIO11	GPIO 11		11		1	
	SERVO-MOTEUR_1	3		3		1
GPIO12	GPIO 12		12		1	
GPIO13	GPIO 13		13		1	
GPIO14	GPIO 14		14		1	
011014	0110 14		17			
GPIO15	GPIO 15		15		1	
-						
GPIO16	GPIO 16		16		1	
GPIO17	GPIO 17		17		1	
GPIO18	GPIO 18		18		1	
GPIO19	GPIO 19		19		1	
GP1019	SERVO-MOTEUR_2	3	19	3	1	1
	SERVO MOTEOR_2			3		_
GPIO20	GPIO 20		20		1	
GPIO21	GPIO 21		21		1	
	SERVO-MOTEUR_3	3		3		1
-						
GPIO22	GPIO 22		22		1	
	SERVO-MOTEUR_5	3		3		1
GPIO23	GPIO 23		23		1	
GP1023	SERVO-MOTEUR_4	3	23	3	1	1
	SERVO MOTEOR_4			,		_
GPIO24	GPIO 24		24		1	
	SERVO-MOTEUR_6	3		3		1
GPIO25	GPIO 25		25		1	
GPIO26	GPIO 26		26		1	

Nœud	Composant	Pad	Broche		Feuille	
PE	ALTIMETRE 3		3		1	
	GYROSCOPE 8		8		1	
	SERVO-MOTEUR_1	1		1		1
	SERVO-MOTEUR_2	1		1		1
	SERVO-MOTEUR_3	1		1		1
	SERVO-MOTEUR_4	1		1		1
	SERVO-MOTEUR_5	1		1		1
	SERVO-MOTEUR_6	1		1		1

Liste des composants

Liste de pièce							
Exporté du schén	Exporté du schématique Drone.sch le 1 décembre 2014 17:27:49						
EAGLE Vers	sion 6.5.0 Copyright © 1	1988-2013 Ca	adSoft				
Composant	Device	Boitier	Librairie	Feuille			
ALTIMETRE	PINHD-1X5	1X05	1mylib	1			
GPIO	PINHD-2X13/90	2X13/90	1mylib	1			
GYROSCOPE	PINHD-1X8	1X08	1mylib	1			
SERVO-MOTEUR_1	PINHD-1X3/90	1X03/90	1mylib	1			
SERVO-MOTEUR_2	PINHD-1X3/90	1X03/90	1mylib	1			
SERVO-MOTEUR_3	PINHD-1X3/90	1X03/90	1mylib	1			
SERVO-MOTEUR_4	PINHD-1X3/90	1X03/90	1mylib	1			
SERVO-MOTEUR_5	PINHD-1X3/90	1X03/90	1mylib	1			
SERVO-MOTEUR_6	PINHD-1X3/90	1X03/90	1mylib	1			

Tableau des connecteurs

Nom du connecteur	#Broche	Signal
Gyroscope	1	INT1
Сугозсорс	2	INT2
	3	SDO
	4	SDA
	5	SCL
	6	CS
	7	Vin
	8	GND
Altimètre	1	Vin
Aitimetre	2	3Volts
	3	GND
	4	SCL
	5	SDA
Servo-Moteur 1	1	GND
Servo-Woteur 1	2	5Volts
	3	PWM
Servo-Moteur 2	1	GND
Servo-iviotedi 2	2	5Volts
	3	PWM
Servo-Moteur 3	1	GND
Servo-iviotedi 3	2	5Volts
	3	PWM
Servo-Moteur 4	1	GND
Servo-ivioledi 4	2	5Volts
	3	PWM
Servo-Moteur 5	1	GND
Servo-iviotedi 5	2	5Volts
	3	PWM
Servo-Moteur 6	1	GND
Jei vo-ivioleur o	2	5Volts
	3	PWM
GPIO Raspberry Pi	1	3.3Volts
GFIO Naspuelly Pl	2	5Volts
	3	SDA
	4	
	-	DNC
	5	SCL
	6	0V
	7	GPIO_4

Nom du connecteur	#Broche	Signal
	8	UART_TXD
	9	DNC
	10	UART_RXD
	11	GPIO_17
	12	GPIO_1
	13	GPIO_21
	14	DNC
	15	GPIO_22
	16	GPIO_23
	17	DNC
	18	GPIO_24
	19	SPI_MOSI
	20	DNC
	21	SPI_MISO
	22	GPIO_25
	23	SPI_SCLK
	24	SP10_CE0_N
	25	DNC
	26	SP10_CE1_N

Tableau des composants, Prix, Fournisseur et temps de livraison

Tableau des composants, Prix, Fournisseur et temps de livraison							
Nom: Fabrice Charron			Projet: Drone (Avion)				
Pièce	Quantité	Prix	Prix Fournisseur Temps de Livraiso				
Kit raspberry pi	1	89,95	Element 14	3 semaines			
Battery pour raspberry pi	1	24,95	Element 14	1 semaine			
Camera pour raspberry pi	1	34,62	RobotShop	5 Jours			
Capteur Gyroscope	1	29,99	RobotShop	3 Semaines			
Capteur barométrique	1	9,95	RobotShop	3 Semaines			
Avion téléguidé tout équipé	1	325,95	Hobby 2000 (Gatineau)	1 Jour			
Connecteur Header 2X12	1	0,49					
Connecteur Header 1X3	5	0,29					
Ensemble de disipateur de chaleur	1	3,5	RobotShop	3 Semaines			
Protection pour caméra	1	12,95	Element 14	5 Jours			
Logiciel	0	0	Aucun	Aucun			
Coût Total	532,64						

Échéancier

Échéancier Automne 2014

Échéancier Hiver 2015

Conclusion

Finalement, au cours de ce projet, je vais pouvoir mettre en pratique de nombreuses connaissances que j'ai apprise au cours de mes années en TSO. Ce projet va me permettre de développer davantage mon sens de l'autonomie. L'un des défis que j'ai été de pouvoir transmettre le signal vidéo de la camera via le Wifi. Après avoir fait quelques recherches et tests, j'ai réussit à transmettre un signal vidéo. Toutefois, ce signal avait un grand délai avec la transmission par Wifi. J'ai découvert la cause du problème et j'ai changé de logiciel afin d'avoir un meilleur logiciel et ainsi réduire le délai. Après avoir apporté ces modifications, le signal vidéo avait un délai de moins de 1 seconde. Par ailleurs, j'ai commencé à découvrir comment contrôler les servos moteurs avec un Raspberry Pi. Cette étape de ma recherche n'a pas été compliquée puisque le fonctionnement est similaire à celui des Arduinos. D'une autre part, après avoir discuté avec Guy Michel Lessard, il m'a conseillé d'acheter un avion qui comportait toutes les pièces mécaniques nécessaires à la réalisation du projet.