EL PLANO

I. EJERCITACIÓN BÁSICA:

- 1) Determinar la ecuación general y la segmentaria del plano obtenido en cada caso:
 - **a)** Pasa por el punto A(3; -6; 1) y es perpendicular al vector $\vec{n} = 2\vec{i}$;
 - **b)** Pasa por el punto A (3; -6; 1) y es perpendicular al vector $\vec{n} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$;
 - **c)** Contiene al punto A (3;-6;1) y es perpendicular al vector $\vec{n} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$;
 - **d)** Contiene al origen y es normal al vector $\vec{n} = -2\vec{i} + 5\vec{j} + \vec{k}$.
- **2)** Con los planos hallados en los ejercicios 1, determinar las trazas e intersecciones con los ejes coordenados. Graficar
- **3)** Determinar la ecuación general y segmentaria del plano obtenido en cada caso. Graficar.
 - a) Pasa por A(3; -6; 1) y es perpendicular al vector $\vec{n} = 6\vec{i} + 3\vec{j} + 2\vec{k}$
 - **b)** Contiene al punto A (3; -6; 1) y es perpendicular al vector $\vec{n} = -3\vec{k}$
- 4) Determinar la ecuación del plano obtenido en cada caso:
 - **a)** Pasa por $P_1(-1; 2; 4)$ y es paralelo a $\pi_1(2x 3y 5z + 6 = 0;$
 - **b)** Pasa por los puntos P_1 (2; 3; 5), P_2 (6; 4; 3) y P_3 (4; 6; 3).

Determinar sus trazas.

- **c)** Pasa por P_1 (-2; -1; 5) y es perpendicular a la recta determinada por P_2 (2; -1; 2) y P_3 (3; 1; -2)
- **d)** Es perpendicular en el punto medio al segmento que une los puntos A(-2; 2; -3) y B(6; 4; 5)
- **e)** Contiene los puntos P_1 (2; 3; 5), P_2 (6; 4; 15) y P_3 (0; 0; 0).
- **5)** Hallar la distancia entre:
 - a) $A(1; -2; 3) y \pi) 2x 3y + 2z 14 = 0$
 - **b)** El punto de intersección de π_1) 2x y + 3z 4 = 0 con el eje y y el plano

$$\pi_2$$
) $\frac{x}{3} + \frac{y}{3} + \frac{z}{-2} = 1$

- **c)** π_1) 8x 4y + z + 9 = 0 y π_2) 8x 4y + z 36 = 0.
- **6)** Calcular el ángulo que forman π_1) x-y+z=1 y π_2) 2x+3y-z=2.
- **7)** Demostrar que los planos π_1)3x + 2y z 3 = 0, π_2)2x 3y 3z = 4 y π_3)x + 7y 2z + 7 = 0 tienen sólo un punto común. Hallarlo.

II. EJERCITACIÓN COMPLEMENTARIA:

- 1) Determinar la ecuación del plano obtenido en cada caso:
 - **a)** Pasa por A (3; -2; 4) y es perpendicular a π_1) 7x 3y + z = 5 y π_2) 4x y z + 9 = 0
 - **b)** Contiene al eje z y al punto A (3; 1; 5)
 - **c)** Es perpendicular al plano xy y contiene a A(2; -2; 11) y B(-7; -8; -3). Graficar.
 - **d)** Pasa por la intersección de π_1) 3x + y 2z + 2 = 0 y π_2) x 3y z + 3 = 0 y es perpendicular al plano xz
 - **e)** Es paralelo a π_1) 4x 4y + 7z 3 = 0 y dista 4 unidades de A (4; 1; -2)
 - **f)** Es paralelo a los vectores $\overrightarrow{v_1} = 2\overrightarrow{i} + 5\overrightarrow{j} + \overrightarrow{k}$ y $\overrightarrow{v_2} = -\overrightarrow{i} + 2\overrightarrow{j}$ y pasa por P(2; 5; 6)
 - **g)** Pasa por A(1; -1; 1) y por la recta de intersección de π_1) x + 2y z = 4 y π_2) 2x 3y + z = 6
- **2)** Hallar la ecuación del plano cuya intersección con el eje x es L(2; 0; 0) y con el eje y es M(0; 3; 0) y dista del origen 6/7.
- **3)** Hallar los valores de k si:
 - **a)** π_1) 2x + 3y + z = 1 y π_2) $4x + k_1y + k_2z = 8$ son paralelos
 - **b)** π_1) 2x + 3y + z = 1 y π_2) x 4y + kz = 20 son perpendiculares
 - **c)** La distancia del origen al π) 3x 6y + kz + 14 = 0 es 2
 - **d)** π) kx 3y + kz = 22 pasa por A(3, -4, 2)
 - **e)** π_1) 2x + ky kz + 7 = 0 es perpendicular a π_2) 3x + 6y = 12
- **4)** Hallar la ecuación del plano que pasa por A (1; 3; 0) y B (4; 0; 0) y forma un ángulo de 30° con π_1) x + y + z = 1
- **5)** Determinar la ecuación del plano que pasa por A(0; 0; 1) y es perpendicular al plano xz, y forma un ángulo cuyo coseno es 1/3 con el plano x + 2y + 2z = 5.
- **6)** Hallar la ecuación del plano que pasa por la intersección de π_1) 2x y + 3z = 2 y π_2) 4x + 3y z = 1, y es perpendicular a π_3) 3x 4y 2z = 9
- **7)** Hallar la ecuación del plano que sea paralelo al π_1) 6x + 3y 2z = 14 y equidistante de él y del origen.
- **8)** Determinar un plano paralelo al π_1 x + 2y 3z = 4, que se encuentre a 2 unidades de él.
- **9)** Determinar los puntos ubicados sobre el eje y, que equidisten de los planos π_1) 3x 4y + 5 = 0 y π_2) 2x y + z + 9 = 0.
- **10)** Hallar la ecuación del plano que pasa por A(3; 1; -1), es perpendicular a π_1) 2x 2y + z + 4 = 0 e intersecta al eje z en B(0; 0; -3).

11) Determinar la relación que existe entre las componentes de un vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ que sea

coplanar con
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 y $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. ¿Qué conclusión se puede obtener de la relación encontrada?

12) Determinar un vector que sea coplanar con $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ y $\begin{pmatrix} 0\\2\\-1 \end{pmatrix}$.

13) Sea
$$\pi$$
) $2x + y - z + d = 0$

Obtenga el valor de $d \in \Re$ para que la proyección ortogonal del punto M (2; 4; 6) sobre el plano π sea un punto M' perteneciente al plano yz. Halle dicho punto M'.

- **14)** Dados los planos π_1) x+y-1=0 y π_2) 2x-z=0 y los puntos A(1;1;1) y B(1;2;c) determinar los valores de c para los cuales existe un plano que contiene a la recta AB y a la recta de intersección entre π_1 y π_2 . Indicar la ecuación de dicho plano.
- **15)** Sea el prisma triangular (triángulos iguales y paralelos) de la figura, con A(-1; 1;0), B(1; 0; -1), C(0; 1; -1) y $A'(1; -1; \alpha)$. Calcula:
 - a) La ecuación del plano π que pasa por los puntos A, B y C.
 - **b)** El valor de α para que el plano π' , que contiene los puntos A', B' y C', diste una unidad del plano π .
 - c) Para $\alpha = 1$ el plano π' y el volumen del prisma.

III. APLICACIONES:

El contenido de este apartado se encuentra incluido en Aplicaciones del tema "Rectas en \mathbb{R}^{3} ".

I. RESPUESTAS A EJERCITACIÓN BÁSICA:

1) a)
$$x = 3; \quad \frac{x}{3} = 1$$

1) c)
$$x - 2y + 3z - 18 = 0$$
; $\frac{x}{18} + \frac{y}{-9} + \frac{z}{6} = 1$ **1) d)** $2x - 5y - z = 0$ No puede expresarse en forma segmentaria

2) a)
$$\pi \cap xy : x=3; z=0$$

 $\pi \cap xz : x=3; y=0$
 $\pi \cap yz : \exists$
 $\pi \cap x : L(3; 0; 0)$
 $\pi \cap y : \exists$
 $\pi \cap z : \exists$

2) c)
$$\pi \cap xy : x - 2y - 18 = 0; z=0$$

 $\pi \cap xz : x + 3z - 18 = 0; y=0$
 $\pi \cap yz : -2y + 3z - 18 = 0; x = 0$
 $\pi \cap x : L(18; 0; 0)$
 $\pi \cap y : M(0; 9; 0)$
 $\pi \cap z : N(0; 0; 6)$

3) a)
$$6x + 3y + 2z - 2 = 0$$

$$\frac{x}{1/3} + \frac{y}{2/3} + \frac{z}{1} = 1$$

4) a)
$$2x - 3y - 5z + 28 = 0$$

b) $2x + 2y + 5z - 35 = 0$
c) $x + 2y - 4z + 24 = 0$
d) $4x + y + 4z - 15 = 0$
e) $5x - 2z = 0$

1) b)
$$x-2y-15=0$$
; $\frac{x}{15}+\frac{y}{-15/2}=1$

2) b)
$$\pi \cap xy : x - 2y - 15 = 0; z = 0$$

 $\pi \cap xz : x = 15; y = 0$
 $\pi \cap yz : y = -15/2; x = 0$
 $\pi \cap x : L(15; 0; 0)$
 $\pi \cap y : M(0; -15/2; 0)$
 $\pi \cap z : \exists$

2) d)
$$\pi \cap xy : 2x - 5y = 0; z=0$$

 $\pi \cap xz : 2x - z = 0; y=0$
 $\pi \cap yz : 5y + z = 0; x=0$
 $\pi \cap x : L(0; 0; 0)$
 $\pi \cap y : M(0; 0; 0)$
 $\pi \cap z : N(0; 0; 0)$

3) **b)**
$$-3z+3=0 \Rightarrow z-1=0$$
 $\frac{z}{1}=1$

5) a)
$$0$$
 b) $\frac{14}{17} \cdot \sqrt{17}$ **c)** 5

7)
$$P(2; -1; 1)$$

II. RESPUESTAS A EJERCITACIÓN COMPLEMENTARIA:

1) a)
$$4x + 11y + 5z = 10$$

b)
$$x - 3y = 0$$

c)
$$2x - 3y - 10 = 0$$

d)
$$10x - 7z + 9 = 0$$

e)
$$4x - 4y + 7z + 38 = 0$$

 $4x - 4y + 7z - 34 = 0$

f)
$$2x + y - 9z + 45 = 0$$

g)
$$2x - 3y + z - 6 = 0$$

c)
$$\pm 2$$

5)
$$3x - 4z + 4 = 0$$
 ; $x = 0$

5)
$$3x - 4z + 4 = 0$$
 ; $x = 0$

7)
$$6x + 3y - 2z - 7 = 0$$

11)
$$x + y - z = 0$$

14)
$$c=0$$
 ; π) $x-y-z+1=0$

2)
$$\pi_1$$
) $3x + 2y + 6z - 6 = 0$

$$\pi_2$$
) $3x + 2y - 6z - 6 = 0$

4)
$$5x + 5y + (8 \pm 3\sqrt{6})z = 20$$

6)
$$6x + 7y - 5z = 0$$

10)
$$5x + y - 8z - 24 = 0$$

13)
$$d=4$$
 ; $M'(0;3;7)$

15) a)
$$x + y + z = 0$$

b)
$$\alpha = \pm \sqrt{3}$$

c)
$$\pi'$$
) $x + y + z - 1 = 0$; $V = 1/2$.

Bibliografía Consultada:

Geometría Analítica

(C. Lehmann)