

ER(40,0.02)

ER(40,0.05)

Phase transition

The interesting thing about the G(n, p) model is that even though edges are chosen independently, certain global properties of the graph emerge from the independent choice.

Probability	Transition
$p = o(\frac{1}{n})$	Forest of trees, no component
	of size greater than $O(\log n)$
$p = \frac{d}{n}, d < 1$	All components of size $O(\log n)$
$p = \frac{d}{n}, d = 1$	Components of size $O(n^{\frac{2}{3}})$
$p = \frac{d}{n}, d < 1$ $p = \frac{d}{n}, d = 1$ $p = \frac{d}{n}, d > 1$	Giant component plus $O(\log n)$ components
$p = \sqrt{\frac{2\ln n}{n}}$	Diameter two
$p = \frac{1}{2} \frac{\ln n}{n}$	Giant component plus isolated vertices
	Disappearance of isolated vertices
$p = \frac{\ln n}{n}$	Appearance of Hamilton circuit
	Diameter $O(\log n)$
$p = \frac{1}{2}$	Clique of size $(2 - \epsilon) \ln n$

Phase transition

Definition. If there exists a function p(n) such that

- when $\lim_{n\to\infty}\left(\frac{p_1(n)}{p(n)}\right)=0$, $G(n,p_1(n))$ almost surely does not have the property.
- when $\lim_{n\to\infty}\left(\frac{p_2(n)}{p(n)}\right)=\infty$, $G(n,p_2(n))$ almost surely has the property.

Then we say phase transition occurs and p(n) is the threshold.

Every increasing property has a threshold.

Increasing property

- Definition: The probability of a graph having the property increases as edges are added to the graph.
- Example:
 - Connectivity
 - Having no isolated vertices
 - Having a cycle

—

Lemma: If Q is an increasing property of graphs and $0 \le p \le q \le 1$, then the probability that G(n, q) has property Q is greater than or equal to the probability that G(n, p) has property Q.

Proof:

Independently generate graph G(n,p) and $G(n,\frac{q-p}{1-p})$.

 $H = G(n, p) \cup G(n, \frac{q-p}{1-p})$ (the union of the edge set).

Graph *H* has the same distribution as G(n, q):

$$\Pr(\{u,v\} \in E(H)) = p + (1-p)\frac{q-p}{1-p} = q.$$

And edges in *H* are independent.

The result follows naturally.

Replication

m-fold replication of G(n, p):

- Independently generate m copies of G(n, p) (on the same vertex set);
- Take the union of the m copies;

The result graph H has the same distribution as G(n, q), where $q = 1 - (1 - p)^m$.

copies of G

If any graph has three or more edges, then the m-fold replication has three or more edges.

The m-fold replication H

copies of G

Even if no graph has three or more edges, the m-fold replication might have three or more edges.

The m-fold replication H

John's book: Figure 8.10

Replication

m-fold replication of G(n, p):

- Independently generate m copies of G(n, p) (on the same vertex set);
- Take the union of the m copies;

The result graph H has the same distribution as G(n, q), where $q = 1 - (1 - p)^m$.

One of the copies of G(n, p) has the increasing property

G(n,q) has the increasing property.

As
$$q \le 1 - (1 - mp) = mp$$

$$\therefore \Pr(G(n, mp) \text{ has } Q) \ge \Pr(G(n, q) \text{ has } Q)$$

Theorem: Every increasing property Q of G(n,p) has a phase transition at p(n), where for each n, p(n) is the minimum real number a_n for which the probability that $G(n,a_n)$ has property Q is $\frac{1}{2}$.

Proof:

First prove that for any function $p_0(n)$ with $\lim_{n\to\infty}\frac{p_0(n)}{p(n)}=0$, almost surely $\textbf{\textit{G}}(n,p_0)$ does not have the property Q.

Suppose otherwise: the probability that $G(n, p_0)$ has the property Q does not converge to Q.

Then there exists $\epsilon > 0$ for which the probability that $G(n, p_0)$ has the property Q is $\geq \epsilon$ on an infinite set I of n. Let $m = \lceil (1/\epsilon) \rceil$

First prove that for any function $p_0(n)$ with $\lim_{n\to\infty}\frac{p_0(n)}{p(n)}=0$, almost surely $\textbf{\textit{G}}(n,p_0)$ does not have the property Q.

Let G(n,q) be the m-fold replication of $G(n,p_0)$.

For all $n \in I$, the probability that G(n,q) does not have $Q: \leq (1-\epsilon)^m \leq e^{-1} \leq 1/2$

$$\Pr(G(n, mp_0) \text{ has } Q) \ge \Pr(G(n, q) \text{ has } Q) \ge 1/2$$

As p(n) is the minimum real number a_n for which

 $\Pr(G(n, a_n) \text{ has } Q) = \frac{1}{2}$, it follows that $mp_0(n) \ge p(n)$.

$$\therefore \frac{p_0(n)}{p(n)} \ge \frac{1}{m} \text{ infinitely often.}$$

Contradict to the fact that $\lim_{n\to\infty}\frac{p_0(n)}{p(n)}=0$.

Theorem: Every increasing property Q of G(n,p) has a phase transition at p(n), where for each n, p(n) is the minimum real number a_n for which the probability that $G(n,a_n)$ has property Q is $\frac{1}{2}$.

Proof:

Secondly prove that for any function $p_1(n)$ with $\lim_{n\to\infty}\frac{p(n)}{p_1(n)}=0$, almost surely $\textbf{\textit{G}}(n,p_1)$ almost surely has the property Q.