MC-Symizer user manual

Stephen Leong Koan RNA Engineering Laboratory Institute for Research in Immunology and Cancer (IRIC) Université de Montréal

2014-Feb-14

Introduction

MC-Symizer is a new version of mcsymize by Marc Parisien which is used to automatically generate a MC-Sym script.

The main difference between this program and its predecessor is the addition of an annealed mode which allows to model two RNA sequences that anneal to each other.

Installation

Platform

MC-Symizer was used on Linux, Windows and MacOSX.

Requirements

To generate an MC-Sym script using MC-Symizer, the followings are needed:

- Python 2.7 or newer installed on your computer
- a copy of MC-Sym's NCM database (usually named "MCSYM-DB")
- the sequence(s)
- the secondary structure(s) in the dot-bracket notation

Running MC-Symizer

MC-Symizer can be called using

```
mcsymizer.py --sequence1 SEQUENCE1 --structure1 STRUCTURE1 --db_path DB_PATH [options]
```

Here is the complete list of parameters that can be given to MC-Symizer, the order in which they are declared is not important (i.e. mcsymizer.py --sequencel AGGUUUGUUUA --structurel "((((..))))." is same as mcsymizer.py --structurel "((((..))))." --sequencel AGGUUUGUUUA).

The mandatory parameters are:

Keyword	Alternative Keyword	Option
		An RNA sequence. The following
sequence1	-s1	characters are accepted: A, U, T, G,
		C, a, u, t, g, c
		An RNA structure in the dot bracket
structure1	-S1	notation (the same format as an
		MC-Fold output)
db_path	-D	The path to the MCSYM-DB directory

The optional parameters are:

Keyword	Alternative Keyword	Option	Comment
sequence2	-s2	An RNA sequence. The following characters are accepted: A, U, T, G, C, a, u, t, g, c	The annealing sequence to sequence1
structure2	-\$2	An RNA structure in the dot bracket notation (the same format as an MC-Fold output)	The annealing structure to structure1
name	-n	Name given to the model. Default is "structure"	The name of the structures generated by MC-Sym is set by this parameter (i.e. if "test" is used, the generated models will be named test- xxxx.pdb.gz)
help	-h		Display the help text on the terminal
use_high_res _ncm			Use high-resolution NCMs for canonical stacks of base pairs
merge_rmsd	-mr	The Merge RMSD threshold in Angstrom. Default is	The quality of the welding of two consecutive NCM is controlled through this parameter
model_diversi ty	-md	The Model Diversity threshold in Angstrom. Default is	This parameter controls the resemblance of generated models

clash_thresho Id	-ct	The Clash Threshold in Angstrom. Default is 1.5	This parameter prevents non- bonded atoms to be too close to one another
bond_thresho	-bt	The Bond Threshold in Angstrom. Default is 2.0	The bond threshold for covalent bonds in the backbone
construction_ method	-cm	The accepted values are "ccm" or "estimate". Default is "ccm"	"ccm" stands for Cyclic Coordinate Minimization. "estimate" stands for Interpolation Estimation
exploration_ method	-em	The accepted values are "probabilistic" Or "exhaustive". Default is "probabilistic"	"probabilistic" allows back-jumps and random domain assignments. "exhaustive" is a classic back-track algorithm
max_number	-mn	Default is 1000	The maximum number of models generated by MC-Sym
timeout	-t	The timeout in minutes. Default is	MC-Sym will stop its execution when the timeout is reached or when the maximum number of models is reached
no_dangling	-nd		Do not include dangling ends in the models
unzipped	-u		If this option is activated, the output structures will not be in a compressed format
external_libra ry	-el		Use the pdb.gz fragment as library, at defined position (e.g. fragment1.pdb.gz,5,7,21,23;fr agment2.pdb.gz,9,12,17,19). N.B: we recommend protecting the input string using quotes (")

use_relative_	-ur	Use relative path to the MCSYM-DB
path		directory (legacy behavior)

Additional information about the parameters can be found in pages 36-37 of the MC-Pipeline manual (http://www.major.iric.ca/MC-Pipeline/manual.pdf).

FAQ

Q: Why the models generated using mcsymize and MC-Symizer are not always identical?

A: This can be due to various reasons; the first being that MC-Symizer uses all the NCMs that are included in the MCSYM-DB directory (that's why the path to MCSYM-DB has to be given in the parameters); the second being a difference in the computation of the distance constraints, MC-Symizer allows "looser" constraints (using the equation found here http://www.major.iric.ca/MC-Sym/faq.html#section_dc).

Q: Does MC-Symizer support pseudoknots?

A: The answer is YES. However, modeling a pseudoknot is not a trivial problem. You might need to edit the script yourself to obtain better results. A short guide on modeling a pseudoknot can be found here http://www.major.iric.ca/MC-Sym/faq.html#section_pk.

Troubleshooting

Read LibraryFG is empty

This is probably due to the corresponding NCM being empty. We recommend that you look at the output of MC-SYM and identify the last NCM read by MC-Sym, delete it from MCSYM-DB and generate a new script using MC-Symizer.

Warning: skipped model #XX from file ...

This can be due to a malformed model in the NCM. You can edit the corresponding pdb file in MCSYM-DB or leave it be as this warning is harmless.