Capítulo 2 Movimento a uma dimensão

- 7. Uma bola é lançada verticalmente para cima com a velocidade 10 m/s.
- a) Encontre analiticamente a lei do movimento y = y(t), se não considerar a resistência do ar.
- b) Qual a altura máxima e o instante em que ocorre, no caso da alínea a)?
- c) Em que instante volta a passar pela posição inicial, no caso da alínea a)?
- d) Resolva as alíneas anteriores, considerando a resistência do ar. Resolva usando o método de Euler. A velocidade terminal da bola no ar é de 100 km/h.

Resolução resumida:

6)

altera ma'xima (=)

y marximo

g = 9.804/22

(instante tim)

dy =0

10 - 9 tu=0

tm= = 1.02 s 7(fm)= 5.10m

c) no robo

7=0

0 = 10t - 129t2

(10- 2st)t =0

t=0 v t = 10 = 2.040

d) d'resistencia do ar

ars = - D | Ny | Ny ; 0>0

ag = -g - D/my/my

D = 2

 $ay = \frac{dv_y}{dt}$, $v_j = \frac{dy}{dt}$

integração numerica usando o mestodo de Euler ver programa prob 2.7-euler. py

- Altura máxima é quando a velocidade é nula ($\frac{dy}{dt} = v_y = 0$).

Podemos estimar a altura máxima e o instante desse acontecimento vericando qual o valor absoluto mais pequeno do vetor velocidade. É uma aproximação, mas à mediad que o passo temporal diminui o erro ad aproximação diminui muito.

δt (s)	v_y (m/s)	y_m (m)	t_m (s)	
0.01	-0.011	4.84357	0.98	
0.001	0.0040	4.80207	0.979	
0.0001	-0.00039	4.78794	0.9795	
0.00001	-0.000045	4.79752	0.97947	

Num outro problema vamos calcular as mesmas quantidades, usando um método numérico (interpolação de Lagrange)

- O instante em que volta a passar pela a posição inicial (y = 0)

δt (s)	y (m)	t_{solo} (s)	
0.01	-0.02	1.99	
0.001	-0.0006	1.980	
0.0001	-0.0008	1.9792	
0.00001	-0.00003	1.97904	

Solução:

7.
$$y(t) = +10 t - \frac{1}{2} gt^2$$
; b) $t_m = 1.02 \text{ s}$, $y_m = 5.10 \text{ m}$; c) $t_{solo} = 2.04 \text{ s}$; d) $t_m = 0.979 \text{ s}$, $y_m = 4.798 \text{ m}$, $t_{solo} = 1.979 \text{ s}$