Constraint Networks

Chapter 2 @ Constraint Processing by Rina Dechter

Constraint programming

- Model problem by specifying constraints on acceptable solutions
 - define variables and domains
 - post constraints on these variables
- Solve model
 - choose algorithm
 - incremental assignment / backtracking search
 - complete assignments / stochastic search
 - design heuristics

Mathematical Background: sets

- Sets, Domains and Tuples
 - A set is a collection of objects; objects are not ordered; objects cannot be repeated
 - Set operations: member, subset, intersection, union, difference, etc.
 - The domain of a variable is a set of values
 - Cartesian product of a list of domains example:
 - D_1 = {black, green}, D_2 = {apple juice, coffee, tea}, D_1 x D_2 = ???

Mathematical Background: relations (I)

Relations

- A relation on a set of variables is any subset of the Cartesian product of their domains
- The scope of a relation is the set of variables on which a relation is defined
 - D_1 (D_2) is the scope of variable x_1 (x_2)
 - The set of tuples {(black, coffee), (black, tea), (green, tea)} is a relation on $\{x_1, x_2\}$, i.e. the scope of the relation is $\{x_1, x_2\}$

Mathematical Background: relations (II)

- Graphical representation
 - Scope {x₁, x₂}
 - D₁ = {black, green}, D₂ = {apple juice, coffee, tea}
 - R₁₂ = {(black, coffee), (black, tea), (green, tea)}

				appro jaree
x_1	x_2			coffee
black	coffee			tea
black green	tea		block	
green	tea	$\underline{x_1}$	oreen	$\left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right]$
				_
(a) ta	able		(b) $(0,1)$)-matrix

apple juice

Mathematical Background: relations (III)

- Relations may be explicitly or implicitly defined
 - Variables x₁ and x₂
 - Domains $D_1 = \{2,4\}$ and $D_2 = \{1,3,5\}$
 - Explicit relation $R_{12} = \{(2,3),(2,5),(4,5)\}$
 - Implicit relation $R'_{12} = (x_1 < x_2)$
 - $R_{12} = R'_{12}$

Mathematical Background: relations (IV)

Intersection, union and difference (for relations on the same scope)

x_1	x_2	x_3
a	b	$^{\mathrm{c}}$
b	b	$^{\mathrm{c}}$
\mathbf{c}	b	c
\mathbf{c}	b	\mathbf{s}

x_1	x_2	x_3
b	b	c
\mathbf{c}	b	С
\mathbf{c}	$\mid n \mid$	n

x_2	x_3	x_4
a	a	1
b	c	2
b	С	3

- (a) Relation R (b) Relation R'
- (c) Relation R''
- Intersection(R, R')? Union(R,R')? Difference(R,R')?

Mathematical Background: relations (IV)

x_1	x_2	x_3
a	b	С
b	b	С
\mathbf{c}	b	С
\mathbf{c}	b	s

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \hline \end{array}$$

$$\begin{array}{c|cccc} x_2 & x_3 & x_4 \\ \hline a & a & 1 \\ b & c & 2 \\ b & c & 3 \\ \end{array}$$

- (a) Relation R
- (b) Relation R'
- (c) Relation R''

$$\begin{array}{c|cccc}
 x_1 & x_2 & x_3 \\
 b & b & c \\
 c & b & c
 \end{array}$$

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline a & b & c \\ b & b & c \\ c & b & c \\ c & b & s \\ c & n & n \\ \hline \end{array}$$

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
\hline
a & b & c \\
c & b & s
\end{array}$$

(a)
$$R \cap R'$$

(b)
$$R \cup R'$$

(b)
$$R - R'$$

Mathematical Background: relations (V)

• Selection, projection, and join operations on relations

x_1	x_2	x_3
a	b	С
b	b	С
\mathbf{c}	b	С
$^{\mathrm{c}}$	b	\mathbf{s}

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
\hline
b & b & c \\
c & b & c \\
c & n & n
\end{array}$$

$$\begin{array}{c|ccc} x_2 & x_3 & x_4 \\ \hline a & a & 1 \\ b & c & 2 \\ b & c & 3 \\ \end{array}$$

(a) Relation R

(b) Relation R'

(c) Relation R''

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
b & b & c \\
c & b & c
\end{array}$$

$$\begin{array}{c|cc} x_2 & x_3 \\ \hline b & c \\ n & n \end{array}$$

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 & x_4 \\ \hline b & b & c & 2 \\ b & b & c & 3 \\ c & b & c & 2 \\ c & b & c & 3 \\ \end{array}$$

(a)
$$\sigma_{x_3=c}(R')$$

(b)
$$\pi_{\{x_2,x_3\}}(R')$$

(c)
$$R' \bowtie R''$$

Mathematical Background: graphs

- Graph (V,E) with V set of vertices and E set of edges
- Path is a sequence of edges
- Undirected (G₁) and directed (G₂) graphs

Constraint Network / Constraint Problem

- Triple (X,D,C)
- Finite set of variables X and respective set of domains D
 - A domain lists the possible values for each variable
- Set of constraints C
 - A constraint is a relation defined on a subset of variables

N-Queens problem (N=4)

- Variables?
- Domains?
- Constraints?

You have 5 minutes!

N-Queens problem (N=4)

- $X = \{x_1, x_2, x_3, x_4\}, D_i = \{1, 2, 3, 4\}$
- Six constraints given by relations R_{ij}

```
R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}
R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}
R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)
(4,2), (4,3)\}
R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}
R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}
R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}
```

Solutions of a Constraint Network

- An instantiation of a subset of variables is an assignment of each variable to a value in the domain
 - An assignment is represented by a tuple <x,a> or x=a or <a1,a2,...>
- An instantiation satisfies a constraint iff
 - It is defined over all the variables in the constraints
 - The components of the instantiation are present in the relation
- A partial instantiation is consistent if it satisfies all of the constraints with no uninstantiated variables
- A solution is an instantiation to all variables that satisfies all constraints

4Q: consistent instantiation & 2 solutions

Solution 1? Solution 2?

The crossword puzzle

You have 3 minutes!

{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}

The crossword puzzle: constraints

- $R_{\{1,2,3,4,5\}} = \{(H,O,S,E,S)(L,A,S,E,R)(S,H,E,E,T)(S,N,A,I,L)(S,T,E,E,R)\}$
- $R_{\{3,6,9,12\}} = \{(A,L,S,O),(E,A,R,N),(H,I,K,E),(I,R,O,N),(S,A,M,E)\}$
- $R_{\{5,7,11\}} = \{(E,A,T)(L,E,T)(R,U,N)(S,U,N)(T,E,N)(Y,E,S)\}$
- $R_{\{8,9,10,11\}} = R_{\{3,6,9,12\}}$
- $R_{\{10,13\}} = \{(B,E),(I,T),(N,O),(U,S)\}$
- $R_{\{12,13\}} = R_{\{10,13\}}$

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

Consistent partial assignments

• Over the set of variables $\{x_1, x_2, x_3, x_4, x_5, x_6, x_9, x_{12}\}$

```
{(H,O,S,E,S,A,M,E),
(L,A,S,E,R,A,M,E),
(S,H,E,E,T,A,R,N),
(S,N,A,I,L,L,S,O),
(S,T,E,E,R,A,R,N)}
```

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

Alternative formulation

- x₁ (1, horizontal)
- x₂ (3, vertical)
- x₃ (5, vertical)
- x₄ (8, horizontal)
- x₅ (12, horizontal)
- x₆ (10, vertical)

- D₁ = {hoses,laser,sheet,snail,steer}
- R₁₂ = {(hoses, same), (laser, same), (sheet, earn), (snail, also), (steer, earn)}

Constraint graph: map coloring

- Each node is a variable
- Arcs collect all nodes whose variables are included in a constraint scope

Constraint graph: 4 Queens

You have 2 minutes!

Constraint graph: 4 Queens

Constraint graph: crossword

Radio link frequency assignment problem

• Real problems with +- 1000 variables and more than 5000 constraints

Scheduling example (I)

You have 5 minutes!

- Goal: schedule five tasks T1, ..., T5 [variables]
- Each task takes 1h to complete
- Tasks may start at 1:00, 2:00 or 3:00 [domains]
- Tasks may be executed simultaneously, but... [constraints]
 - T1 must start after T3
 - T3 must start before T4 and after T5
 - T2 cannot execute at the same time as T1 or T4
 - T4 cannot start at 2:00

Scheduling example (II)

Unary constraint

 $D_{T4} = \{1:00, 3:00\}$

Binary constraints

 $R_{\{T1,T2\}}$: {(1:00, 2:00), (1:00, 3:00), (2:00, 1:00),

(2:00, 3:00), (3:00, 1:00), (3:00, 2:00)

 $R_{\{T1,T3\}}$: {(2:00, 1:00), (3:00, 1:00), (3:00, 2:00)}

 $R_{\{T2,T4\}}$: {(1:00, 2:00), (1:00, 3:00), (2:00, 1:00)

(2:00, 3:00), (3:00, 1:00), (3:00, 2:00)

 $R_{\{T3,T4\}}$: {(1:00, 2:00), (1:00, 3:00), (2:00, 3:00)}

 $R_{T3,T5}$: {(2:00, 1:00), (3:00, 1:00), (3:00, 2:00)}

Numeric constraints

Express constraints by arithmetic expressions

$$(3x_i + 2x_j \le 3) \land (-4x_i + 5x_j < 1)$$

• 4-Queens

$$R_{ij} = \{(x_i, x_j) \mid x_i \in D_i, x_j \in D_j, x_i \neq x_j, \text{ and } |x_i - x_j| \neq |i - j|\}$$

- Crypto-arithmetic puzzles
 - SEND + MORE = MONEY

SEND + MORE = MONEY

Replace each letter by a different digit so that

$$\frac{SEND}{+\ MORE} \\ \frac{+\ MONEY}{}$$

is a correct sum.

You have 5 minutes

SEND + MORE = MONEY as a CSP

Variables: S, E, N, D, M, O, R, Y

Domains:

```
[1..9] for S, M,
```

[0..9] for E, N, D, O, R, Y.

Constraints

 ${\tt all_different}(S, E, N, D, M, O, R, Y).$

SEND + MORE = MONEY: alternative

Use "carry" variables $C_1, \ldots, C_4 \in [0..1]$:

$$D + E = 10 \cdot C_1 + Y,$$

$$C_1 + N + R = 10 \cdot C_2 + E,$$

$$C_2 + E + O = 10 \cdot C_3 + N,$$

$$C_3 + S + M = 10 \cdot C_4 + O,$$

$$C_4 = M.$$

 $all_different(S, E, N, D, M, O, R, Y).$

Boolean constraints

 $\varphi = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D)\}$

- One node for each Boolean variable
- One edge for each pair of nodes corresponding to variables appearing in the same clause

Combinatorial circuits diagnosis

- Identify a subset of the gates that explain the faulty observed output
- Variables are inputs (A-E), outputs (F,G), intermediate output (X,Y,Z) and components (M1-3,A1-2)
 - Inputs and outputs have integer domains
 - Components have Boolean domains

Combinatorial circuits diagnosis: constraints

- One constraint associating each component variable to the inputs and output
- Example of a constraint assuming Boolean domain and M₁ to be an AND gate
 - $M_1 \rightarrow (A \land C \rightarrow X)$

Primal vs dual graphs

- Dual graphs are related with hypergraphs
 - An hypergraph is a pair (V,S)
 - V is a set of vertices
 - S is a set of subsets of V, called hyperedges
 - Hyperedges may "connect" more than 1 or 2 vertices

Constraint hypergraphs

- Nodes represent the variables
- Hyperedges (drawn as regions/squares) are scopes of constraints

• Dual constraint graph is a related representation

Primal vs dual graphs: crossword

- Nodes represent constraint scopes
- Arcs connect nodes with shared variables
 - Labels correspond to those variables

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

Resembles something???

Equivalence and deduction

- New constraints can be inferred from an initial set of constraints
 - Deduction or constraint inference
- For example, from $x \rightarrow y$ and $y \rightarrow z$ we can infer $x \rightarrow z$
- Adding inferred constraints yields an equivalent constraint network
 - Inferred constraints are redundant!

Example: 2-graph coloring

- Variables x_1 , x_2 , x_3
- Domain {red, blue}
- $R_{21} = R_{32} = \{(blue, red), (red, blue)\}$
- Two solutions: (red,blue,red) and (blue,red,blue)

• Impact of disallowing the pair $(x_1=red,x_3=blue)$?

2-graph coloring: deduction

- Impact of adding the constraint R₁₃={(red,red),(blue,blue)}?
- The same two solutions: (red,blue,red) and (blue,red,blue)
- The new constraint could be inferred
- The two networks R and R' are equivalent!

When is a constraint redundant?

