Nama: Adil Arundaya NIM 5312422017 Teknik Komputer Prodi

FIR Filters

PARKET Finite Impulse Response (AR) filter memiliki persamaan sebagai benikut $\lambda(u) = \sum_{r}^{m-1} P(m) \times (u-m)$

Dengan x(n) adalah Input filter, dan y(n) adalah output, b(m) merupakan atau impulse response. Ini merupakan kanvalusi sinyal x(n)dungan toefisien filter disebut "taps" karena sistem ini dapat dilihat sebagai "tapping" b(n) . Umumnya mengetuk garis delay.

$$y(z) = x(z) \cdot \sum_{m=0}^{L} b(m) \cdot z^{-m}$$

Didapatican transfer function, dengan membagi output dan input $H(z) = \frac{Y(z)}{X(z)}$

Didapatkan juga frekuensi respon dari mengganti z dengan $e^{j\Omega}$ $H(e^{j\Omega}) = \sum_{m=1}^{L} b(m) \cdot e^{-j\Omega m}$

Karena e ja adalah bilangan kompleks, frekuensi respon H juga kompleks, dinyatakan dalam plot magnitude dan fase poda fretuensi. Magnitude menunjukkan redaman sedangkan fase menunjukkan pergerakan fase. Dengan plot tersebut kita dapat mendesain seperti stop band pada frekuensi tertentu

IIR Filters

IIR (Infinite Impulse Response) filter sebagai berikut: Persamaon

$$y(n) = \sum_{m=0}^{L} b(m) \cdot x(n-m) + \sum_{r=1}^{R} a(r) \cdot y(n-r)$$
 (1)

Terdapat 2 konvolusi. Output dan y rembali ke input penjumlahan. Bagian feedback dimulai dan delay r=1.

Transformed 2 dan pertamaan 1: Y(2): \$\frac{b(m).\times(2).2^{-m}}{F}\$ a(r).\times(2).\times\ti		
Untilk mendapottan transfer function, dapot money menindan $Y(z)$ ke saturation $Y(z) \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ $Y(z) \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ $Y(z) \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ $Y(z) \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ $Y(z) \cdot \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ Polinomial dalam denomirator/penyebut transfer function dapat menyebabkan filter thanks stabil jika poles didulam lingkaran supaya filter stabil ditter Example: Exponential Decaying Signal Diretahui b(o) = 1 $x(1) = p, \text{ mara}$ $y(n) = 1 \cdot \chi(n) + p \cdot y(n-1)$ $\chi(n) \text{ adalah unit putse, outputnya adalah decay exspanential:}$ $1 \cdot p, p^2, p^3.$ Yang merupakan IIR. Domain z nya $Y(z) = \chi(z) + p \cdot z^{-1} \cdot \chi(z)$ $Y(z) = \chi(z) + p \cdot z^{-1} \cdot \chi(z)$ $Y(z) = \chi(z) - 1 - p \cdot z^{-1}$ Saat transform he domain wuktu kembali, didopatran tungsi exsponensial, y ung merupakan FIR. Jodi, hasil inverz z transform dan transfer function sepertim. Fitter example: Computing the resulting frequency Response Dalam munghitung frequency response Dalam munghitung frequency vektor untuk memenuhi syarat pemresesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	Transformasi Z dari persamaan :	
Untilk mendapottan transfer function, dapot mining memindan $Y(z)$ ke satu ripi $Y(z) \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ $Y(z) \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ $Y(z) \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right) = \chi(z) \cdot \sum_{k=1}^{n} b(m) \cdot z^{-m}$ $Y(z) \cdot \left(1 - \sum_{k=1}^{n} a(r) \cdot z^{-k}\right)$ Polinomial dalam denominator/penyebut transfer function dapat menyebabkan filter tidak stabil jika poles di luar lingkaran kroefisien a(n) penting untut memastikan agar semua poles didatam lingkaran supaya filter stabil itter Example: Exponential Decaying signal Diretahui b(o) = 1 $a(1) = p, mara$ $y(n) = 1 \cdot \chi(n) + p \cdot y(n-1)$ $\chi(n) adalah unit putse, outputnya adalah decay ekspanensial: 1 \cdot p, p^2, p^3. Yang merupakan IIR. Domain z nya Y(z) = \chi(z) + p \cdot z^{-1} \cdot \chi(z) H(z) = \chi(z) = 1 \chi(z) = 1 - p \cdot z^{-1} Saat transform he domain wuktu kembali, didapatran tungsi ekspanensial, yang merupakan FIR. Jadi, hasil inverz z transform dan transfer function seperti im. Fitter example: Computing the resulting frequency Response Dalam munghitung frequency response titter, pemilihan pole mempengaruhi kepefisien, mampulasi vektor untuk memenuhi syarat pemresesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi$	Y(2) h(m) y(2) 2-M . P - (1) Y(1) 2-F	
Untuk mendapotean transfer function, dapot shong memindon $Y(2)$ ke saturated $Y(2)(1-\frac{R}{2}a(r).z^r)=x(2).\frac{R}{2}b(m).z^{-m}$ $Y(2)(1-\frac{R}{2}a(r).z^r)=x(2).\frac{R}{2}b(m).z^{-m}$ $X(2)=\frac{Y(2)}{1-\frac{R}{2}}a(r).z^{-r}$ Polinomial dalam denominator/penyebut transfer function dapat menyebabban filter tidake stabil jika poles di luar lingkaran. Foetisien $a(n)$ penting untuk memarifican agar semua poles didatam lingkaran supaya filter stabil Alter Example: Exponential Decaying Signal Ditetahui $b(0)=1$ $a(1)=p$, maka $y(n)=1.x(n)+p.y(n-1)$ $x(n)$ adalah unit pulse, outputnya adalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya adalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit pulse, outputnya dalah decay exsponential: $y(n)=1.x(n)+p.y(n-1)$ $y(n)$ adalah unit	2	-
Y(2) (1 - \(\frac{2}{2} a(r) \cdot \frac{2}{r} \) = \(\times (z) \cdot \frac{5}{5} b(m) \cdot \frac{7}{2} m \cdot \frac{7}{8} \) = \(\frac{7}{2} \) = \(\frac{7}{2		
H(z) = Y(z) = \(\frac{1}{2} \) = \(\frac{1}{	Untile mendaportion transfer function, daport mengamentadon Y(2) he saturas	
H(z) = Y(z) = \(\frac{1}{2} \) = \(\frac{1}{		
H(z) = Y(z) = \(\frac{1}{2} \) = \(\frac{1}{	$Y(2)(1- \leq a(r) \cdot z^{r}) = X(2) \cdot \leq b(m) \cdot z^{-rr}$	
Polinomial dalam denominator/penyebut transfer function dapat menyebabkan filter tidale stabil jika poles di luar lingkaran. Foetisien a(n) penting untuk memasikan agar semua poles didalam lingkaran supaya filter stabil ilter Example: Exponential Decaying Signal Diketahui b(o) = 1 a(1) = p, maka y(n) = 1. x(n) + p. y(n-1) x(n) adalah unit pulse, outputnya adalah decay eksponensial: 1, p, p², p³, Yang merupakan lir. Domain z nya y(z) = x(z) + p. z²! y(z) H(z) = y(z) = 1 x(z) 1-p.z²! Saat transform ke domain wuku kembali, didapatran tungsi eksponensial, yung menupakan fir. Jadi, hari invers z transform dan transfer function seperti itm. Filter example: Computing the resulting Frequency Response Dalam menghitung frekuensi respon filter, pemilihan pole mempengaruhi keefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadop frekuensi	r-) m-o	Note that the control is a supplier of
Polinomial dalam denominator/penyebut transfer function dapat menyebabkan filter tidale stabil jika poles di luar lingkaran. Foetisien a(n) penting untuk memasikan agar semua poles didalam lingkaran supaya filter stabil ilter Example: Exponential Decaying Signal Diketahui b(o) = 1 a(1) = p, maka y(n) = 1. x(n) + p. y(n-1) x(n) adalah unit pulse, outputnya adalah decay eksponensial: 1, p, p², p³, Yang merupakan lir. Domain z nya y(z) = x(z) + p. z²! y(z) H(z) = y(z) = 1 x(z) 1-p.z²! Saat transform ke domain wuku kembali, didapatran tungsi eksponensial, yung menupakan fir. Jadi, hari invers z transform dan transfer function seperti itm. Filter example: Computing the resulting Frequency Response Dalam menghitung frekuensi respon filter, pemilihan pole mempengaruhi keefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadop frekuensi	$H(z) = \frac{Y(z)}{z} = \sum_{m=0}^{\infty} b(m) \cdot z^{-m}$	
tidak stabil jika poles di luar lingkaran. Foefisien a(n) penting untuk memastikan agar semua poles didalam lingkaran supaya filter stabil ilter Example: Exponential Decaying Signal Diketahui b(o)=1 a(1)=p, maka y(n)=1. x(n) + p. y(n-1) x(n) adalah unit pulse, outputnya adalah Jecay eksponensial: 1, p, p², p³. Yang merupakan IIR. Domain z nya Y(2)= x(z)+p.z-1. y(z) H(z)= y(z)= 1 x(z) 1-p.z-1 Saak transform ke domain wuktu kembali, didapatran tungsi eksponensial, yang menupakan FIR. Jadi, hasi invers z transform dan transfer function seperti itm. Filter example: Computing the resulting Frequency Response Dalam menghutung frequenci respon filter, pemilihan pole mempengaruhi keefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinya) Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	X(2) 1- 5 R a(r). z- T	100
agar semua poles didatam lingkaran supaya filter stabil ilter Example: Exponential Decaying Signal Diretahui b(o)=1 a(1)=p, maka y(n)=1.x(n)+p.y(n-1) x(n) adalah unit pulse, outputnya adalah Jecay ersponensial: 1,p,p²,p³. Yang merupakan IIR. Domain z nya Y(2)=x(2)+p.z-1.Y(z) H(z)=y(z)=1 x(z) 1-p.z-1 Saak transform ke domain wortu kembali, didopatran tungsi ersponensial, y ung merupakan FIR. Jadi, hasil invers z transform dan transfer function seperti itu. Filter example: Computing the resulting Frequency Response Dalam menghutung frequenci respon filter, pemilihan pole mempengaruhi keefisien, manipulasi vertor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 Kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	Polinomial dalam denominator/penyebut transfer function dapat menyebabkan filt	ter
Diretahui b(0)=1 a(1)=p, mara y(n)=1. x(n)+p. y(n-1) x(n) adalah unit pulse, outputnya adalah decay erspanensial: 1, p, p², p³. Yang merupakan IIR. Domain z nya y(2)= x(2)+p. z ⁻¹ . Y(2) H(2)= x(2)= 1 x(2) 1-p.z ⁻¹ Saat transform ke domain watu kembali, didapatran tungsi erspanensial, y ang merupakan FIR. Jadi, harl invers z transform dan transfer function seperti im. Filter example: Computing the resulting Frequency Response Dalam menghitung frequenti respon filter, pemilihan pole mempengaruhi kepefisien, manipulasi vertar untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekvensi	tidak stabil jika poles di luar lingkaran, foefisien a(n) penting untuk memal	stikan
Diretahui b(o)=1 a(1)=p, mara y(n)=1. x(n)+p. y(n-1) x (n) adalah unit puise, outputnya adalah Jecay erspanensial: 1, p, p², p³, Yang merupakan IIR. Domain z nya y(z)=x(z)+p.z-1. y(z) H(z)=y(z)=1 x(z) 1-p.z-1 Saat transform ke domain wortu kembali, didopatran tungsi erspanensial, yang merupakan FIR. Jadi, haril invers z transform dan transfer function seperti inv. Filter example: Computing the resulting Frequency Response Dalam menghitung frequency respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vertor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 Kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	agar semua poles didalam lingkaran supaya filter stabil	1,21,10
Diretahui b(o)=1 a(1)=p, mara y(n)=1. x(n)+p. y(n-1) x (n) adalah unit puise, outputnya adalah Jecay erspanensial: 1, p, p², p³, Yang merupakan IIR. Domain z nya y(z)=x(z)+p.z-1. y(z) H(z)=y(z)=1 x(z) 1-p.z-1 Saat transform ke domain wortu kembali, didopatran tungsi erspanensial, yang merupakan FIR. Jadi, haril invers z transform dan transfer function seperti inv. Filter example: Computing the resulting Frequency Response Dalam menghitung frequency respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vertor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 Kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
Diretahui b(o)=1 a(1)=p, mara y(n)=1. x(n)+p. y(n-1) x (n) adalah unit puise, outputnya adalah Jecay ersponensial: 1, p, p², p³, Yang merupakan IIR. Domain z nya y(z)=x(z)+p.z-1. y(z) H(z)=y(z)=1 x(z) 1-p.z-1 Saat transform ke domain waktu kembali, didapatran tungsi ersponensial, yang merupakan FIR. Jadi, haril invers z transform dan transfer function seperti inv. Filter example: Computing the resulting Frequency Response Dalam menghitung frequency respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vertor untuk memenuhi syarat pemrasesan sinyal Dalam bidang 2 Kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	Filter Example: Exponential Decaying Signal	
a(1)=p, maka y(n)=1.x(n)+p.y(n-1) x (n) adalah unit pulse, outputnya adalah delay ersponensial: 1,p,p²,p³, Yang merupakan IIR. Domain z nya Y(2)=x(2)+p.z-1.y(z) H(z)=y(z)= x(z) 1-p.z-1 Saat transform ke domain waktu kembali, didopatran tungsi eksponensial, yang merupakan FIR. Jadi, hasl invers z transform dan transfer function seperti itu. Filter example: Computing the resulting Frequency Response Dalam menghutung frekuensi respon filter, pemilihan pole mempengaruhi keefisien, manipulasi vertor untuk memenuhi syarat pemresesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
a(1)=p, maka y(n)=1. x(n)+p. y(n-1) x (n) adalah unit pulse, outputnya adalah Jeray eksponensial: 1, p, p², p³, Yang merupakan IIR. Domain z nya Y(2)= x(2)+p. z-1. y(z) H(z)= y(z)= x(z) 1-p.z-1 Saat transform ke domain waktu kembali, didopatran tungsi eksponensial, yang merupakan FIR. Jadi, hasil invers z transform dan transfer function seperti itu. Filter example: Computing the resulting Frequency Response Dalam menghutung frekuensi respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	Directorbusi b (a) = 1	
y(n)=1.x(n)+p.y(n-1) x(n) adalah unit puise, outputnya adalah delay ersponensial: 1,p,p²,p³, Yang merupakan IIR. Domain z nya Y(2)= x(2)+p.z-1. Y(z) H(z)= y(z)= 1 x(z) 1-p.z-1 Saat transform he domain waktu kembali, didapatran tungsi eksponensial, yang merupakan FIR. Jadi, harl invers z transform dan transfer function seperti itu. Filter example: Computing the resulting Frequency Response Dalam menghitung frequensi respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
X (n) adalah unit pulse, outputnya adalah delay ersponensial: 1, p, p², p³, Yang merupakan IIR Domain z nya Y(z) = X(z) + p. z-1. Y(z) H(z) = Y(z) = 1 X(z) 1-p.z-1 Saat transform ke domain waktu kembali, didopatran tungsi eksponensial, yang merupakan FIR. Jadi, hasi invers z transform dan transfer function seperti itm. Filter example: Computing the resulting Frequency Response Dalam menghitung frequenci respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
Yang merupakan IIR. Domain z nya Y(2) = X(2) + P. 2 ⁻¹ . Y(2) H(z) = Y(2) = 1 X(z) 1-p.z ⁻¹ Saat transform he domain weeth kembali, didopatron tungsi eksponensial, yang merupakan FIR. Jadi, harl invers z transform dan transfer function seperti itm. Filter example: Computing the resulting Frequency Response Dalam menghitung frequenti respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
Yang merupakan IIR. Domain z nya Y(2) = X(2) + p. z ⁻¹ . Y(z) H(z) = Y(z) = 1 X(z) 1-p.z ⁻¹ Saat transform he domain wattu kembali, didopatran tungsi ersponensial, yang merupakan FIR. Jadi, hasi invers z transform dan transfer function sepertitu. Filter example: Computing the resulting Frequency Response Dalam menghitung frequenti respon filter, pemilihan pole mempengaruhi keefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekvensi		
Y(2) = X(2) + p. z ⁻¹ . Y(z) H(z) = Y(z) = 1 X(z) 1-p.z ⁻¹ Saat transform he domain wattu kembali, didopatron tungsi eksponensial, y ung merupakan file. Jadi, has linvers z transform dan transfer function seperti itu. Filter example : Computing the resulting Frequency Response Dalam menghitung frekuensi respon filter, pemilihan pole mempengaruhi koefisien, manupulasi vertor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
H(z) = Y(z) = 1 X(z) 1-p.z ⁻¹ Saat transform he domain wattu kembali, didopatron tungsi eksponensial, y ang merupakan FIR. Jadi, hasi invers z transform dan transfer function seperti itu. Filter example : Computing the resulting Frequency Response Dalam menghitung frequenti respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekvensi	7 and merupakan 11k . Vomoin z nya	
Saat transform ke domain wattu tembali, didopatran tungsi eksponensial, yang merupatan FIR. Jadi, hasi invers z transform dan transfer function seperti itu. Filter example: Computing the resulting Frequency Response Dalam menghitung frequenti respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekvensi		
Saat transform he domain wattu kembali, didopatron tungsi eksponensial, yang merupatan FIR. Jadi, hasil invers z transform dari transfer function seperti itu. Filter example: Computing the resulting Frequency Response Dalam menghitung frequenti respon filter, pemilihan pole mempengaruhi koefisien, manipulasi vertor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekvensi		
merupakan FIR. Jodi, hosil invers z transform dan transfer function seperti itu. Filter example: computing the resulting Frequency Response Dalam menghitung frekuensi respon filter, pemilihan pole mempengaruhi Koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
Filter example: Computing the resulting Frequency Response Dalam manghitung frequency respon filter, pemilihan pole mempengaruhi KBEFisien, manipulasi Vertor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 Kompleks memberikan pemahaman pengaruhnya terhadap frekuensi		
Dalam menghitung frekuensi respon filter, pemilihan pole mempengaruhi Koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	merupakan FIR. Jadi, has linvers z transform dan transfer function sepert	sinu.
Dalam menghitung frequenti respon filter, pemilihan pole mempengaruhi Koefisien, manipulasi vertor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekuensi	Tilter was all . Computing the resulting Frequency Response	
koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekvensi	ther example : companing the resoluted treducing response	
koefisien, manipulasi vektor untuk memenuhi syarat pemrosesan sinyal Dalam bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap frekvensi	Delay mandahing tonness' totana ditan pomilinan ania man	1.)
bidang 2 kompleks memberikan pemahaman pengaruhnya terhadap trekvensi		NAME AND ADDRESS OF THE OWNER, WHEN PERSON NAMED IN
		-
resport, almana semantinggi		
	respon amana semana derat pole re linguaran, saruan semana ring	<i>p</i>
Appendix Construction of the Appendix of the Construction of the C	Specific Control of the Control of t	
	(2000)	