6331 - Algorithms, CSE, OSU Elementary graph algorithms

Instructor: Anastasios Sidiropoulos

Graph problems

▶ Many problems can be phrased as *graph problems*.

Graph problems

- ▶ Many problems can be phrased as *graph problems*.
- ▶ Input: Graph G = (V, E).

Graph problems

- ▶ Many problems can be phrased as *graph problems*.
- ▶ Input: Graph G = (V, E).
- ▶ The running time is measured in terms of |V|, and |E|.

Adjacency-matrix for a graph G = (V, E).

$$|V| \times |V|$$
 matrix $A = (a_{ij})$, where

$$a_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{if } \{i, j\} \notin E \end{cases}$$

Adjacency-matrix for a graph G = (V, E).

$$|V| \times |V|$$
 matrix $A = (a_{ij})$, where

$$a_{ij} = \begin{cases} 1 & \text{if } \{i,j\} \in E \\ 0 & \text{if } \{i,j\} \notin E \end{cases}$$

Storage space = $\Theta(|V|^2)$.

The adjacency-list for a graph G = (V, E) is an array Adj of size |V|.

The adjacency-list for a graph G = (V, E) is an array Adj of size |V|.

For each $u \in V$, Adj[u] is a list that contains all $v \in V$, with $\{u,v\} \in E$.

The adjacency-list for a graph G = (V, E) is an array Adj of size |V|.

For each $u \in V$, Adj[u] is a list that contains all $v \in V$, with $\{u,v\} \in E$.

Storage space $= \Theta(|V| + |E|)$.

The adjacency-list for a graph G = (V, E) is an array Adj of size |V|.

For each $u \in V$, Adj[u] is a list that contains all $v \in V$, with $\{u,v\} \in E$.

Storage space $= \Theta(|V| + |E|)$.

Much smaller space when $|E| \ll |V|^2$.

Breadth-first search

An algorithm for "exploring" a graph, starting from the given vertex s.

Breadth-first search BFS(G, s)for each $u \in G.V - \{s\}$ u.color = WHITE $u.d = \infty$ $u.\pi = NIL$ s.color = GRAYs.d = 0 $s.\pi = NII$ $Q = \emptyset$ $\mathsf{ENQUEUE}(Q,s)$ //FIFO queue while $Q \neq \emptyset$ $u = \mathsf{DEQUEUE}(Q)$ for each $v \in G.Adi[u]$ if v.color = WHITFv.color = GRAYv.d = u.d + 1 $v.\pi = u$ ENQUEUE(Q, v)u.color = BLACK

► How many DEQUEUE operations?

How many DEQUEUE operations? A non-white vertex never becomes white.

► How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once.

► How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most O(|V|) DEQUEUE operations.

- ► How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most O(|V|) DEQUEUE operations.
- ▶ For every dequeued vertex u, we spend O(|G.Adj[u]|) time.

- ► How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most O(|V|) DEQUEUE operations.
- ▶ For every dequeued vertex u, we spend O(|G.Adj[u]|) time. Total length of all adjacency-lists is O(|E|).

- ► How many DEQUEUE operations? A non-white vertex never becomes white. Every vertex is enqueued at most once. At most O(|V|) DEQUEUE operations.
- ► For every dequeued vertex u, we spend O(|G.Adj[u]|) time. Total length of all adjacency-lists is O(|E|).
- ▶ Total running time O(|V| + |E|).

Shortest paths

For $u, v \in V$, let $\delta(u, v)$ be the minimum number of edges in a path between u and v in G, and ∞ if no such path exists.

Shortest paths

For $u, v \in V$, let $\delta(u, v)$ be the minimum number of edges in a path between u and v in G, and ∞ if no such path exists.

I.e., $\delta(u, v)$ is the **shortest path distance** between u and v in G.

Shortest paths

For $u, v \in V$, let $\delta(u, v)$ be the minimum number of edges in a path between u and v in G, and ∞ if no such path exists.

I.e., $\delta(u, v)$ is the **shortest path distance** between u and v in G.

A path between u and v in G of length $\delta(u, v)$ is called a **shortest-path**.

Lemma

For any $\{u,v\} \in E$, we have

$$\delta(s,v) \leq \delta(s,u) + 1.$$

Lemma

For any $\{u,v\} \in E$, we have

$$\delta(s,v) \leq \delta(s,u) + 1.$$

Why?

Lemma

After the termination of BFS, for each $v \in V$, we have

$$v.d \geq \delta(s, v).$$

Lemma

After the termination of BFS, for each $v \in V$, we have

$$v.d \geq \delta(s, v).$$

Proof.

Induction on the number of ENQUEUE operations.

Lemma

After the termination of BFS, for each $v \in V$, we have

$$v.d \geq \delta(s, v)$$
.

Proof.

Induction on the number of ENQUEUE operations. Inductive hypothesis: For all $v \in V$, we have $v.d \ge \delta(s, v)$.

Lemma

After the termination of BFS, for each $v \in V$, we have

$$v.d \geq \delta(s, v)$$
.

Proof.

Induction on the number of ENQUEUE operations.

Inductive hypothesis: For all $v \in V$, we have $v.d \ge \delta(s, v)$.

Basis of the induction: s.d = 0, and $v.d = \infty$ for all $v \neq s$.

Lemma

After the termination of BFS, for each $v \in V$, we have

$$v.d \geq \delta(s, v).$$

Proof.

Induction on the number of ENQUEUE operations. Inductive hypothesis: For all $v \in V$, we have $v.d \geq \delta(s,v)$. Basis of the induction: s.d = 0, and $v.d = \infty$ for all $v \neq s$. Consider some $v \in G.Adj[u]$, immediately after dequeueing u.

Lemma

After the termination of BFS, for each $v \in V$, we have

$$v.d \geq \delta(s, v)$$
.

Proof.

Induction on the number of ENQUEUE operations. Inductive hypothesis: For all $v \in V$, we have $v.d \geq \delta(s,v)$. Basis of the induction: s.d = 0, and $v.d = \infty$ for all $v \neq s$. Consider some $v \in G.Adj[u]$, immediately after dequeueing u.

$$v.d = u.d + 1$$
 $\geq \delta(s,u) + 1$
 $\geq \delta(s,v)$ (by the previous Lemma)

Lemma

Suppose during the execution, $Q = (v_1, ..., v_r)$, where $v_1 = head$, $v_r = tail$. Then for all $i \in \{1, ..., r-1\}$

$$v_i.d \leq v_{i+1}.d$$
,

and

$$v_r.d \leq v_1.d + 1.$$

Lemma

Suppose during the execution, $Q=(v_1,\ldots,v_r)$, where $v_1=$ head, $v_r=$ tail. Then for all $i\in\{1,\ldots,r-1\}$

$$v_i.d \leq v_{i+1}.d$$

and

$$v_r.d \leq v_1.d + 1.$$

Why?

Lemma

Suppose during the execution, both v_i and v_j are enqueued, and v_i is enqueued before v_j . Then, $v_i.d \le v_j.d$ when v_j is enqueued.

Lemma

Suppose during the execution, both v_i and v_j are enqueued, and v_i is enqueued before v_j . Then, $v_i.d \le v_j.d$ when v_j is enqueued.

Why?

Theorem

After termination, for all $v \in V$, we have

$$v.d = \delta(s, v).$$

Moreover, for any v that is reachable from s, there exists a shortest path from s to v that consists of a shortest path from s to $v.\pi$, followed by the edge $\{v.\pi,v\}$.

Proof sketch

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Pick such a v so that $\delta(s, v)$ is minimized.

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Pick such a v so that $\delta(s, v)$ is minimized.

By the above Lemma, $v.d > \delta(s, v)$.

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Pick such a v so that $\delta(s, v)$ is minimized.

By the above Lemma, $v.d > \delta(s, v)$.

Let u be the vertex preceding v in a shortest path from s to v. We have

$$v.d > \delta(s, v) = \delta(s, u) + 1 = u.d + 1.$$

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Pick such a v so that $\delta(s, v)$ is minimized.

By the above Lemma, $v.d > \delta(s, v)$.

Let u be the vertex preceding v in a shortest path from s to v. We have

$$v.d > \delta(s,v) = \delta(s,u) + 1 = u.d + 1.$$

Consider the time immediately after dequeueing u.

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Pick such a v so that $\delta(s, v)$ is minimized.

By the above Lemma, $v.d > \delta(s, v)$.

Let u be the vertex preceding v in a shortest path from s to v. We have

$$v.d > \delta(s,v) = \delta(s,u) + 1 = u.d + 1.$$

Consider the time immediately after dequeueing u.

▶ If v is WHITE, then v.d = u.d + 1, a contradiction.

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Pick such a v so that $\delta(s, v)$ is minimized.

By the above Lemma, $v.d > \delta(s, v)$.

Let u be the vertex preceding v in a shortest path from s to v. We have

$$v.d > \delta(s,v) = \delta(s,u) + 1 = u.d + 1.$$

Consider the time immediately after dequeueing u.

- ▶ If v is WHITE, then v.d = u.d + 1, a contradiction.
- ▶ If v is BLACK, then it is already dequeued, so by the above Lemma $v.d \le u.d$, a contradiction.

Suppose for the purpose of contradiction that there exists v with $v.d \neq \delta(s, v)$.

Pick such a v so that $\delta(s, v)$ is minimized.

By the above Lemma, $v.d > \delta(s, v)$.

Let u be the vertex preceding v in a shortest path from s to v. We have

$$v.d > \delta(s,v) = \delta(s,u) + 1 = u.d + 1.$$

Consider the time immediately after dequeueing u.

- ▶ If v is WHITE, then v.d = u.d + 1, a contradiction.
- ▶ If v is BLACK, then it is already dequeued, so by the above Lemma $v.d \le u.d$, a contradiction.
- ▶ If v is GRAY, then it was painted GRAY after dequeueing some vertex w, so $v.d = w.d + 1 \le u.d + 1$, a contradiction.

Proof sketch (cont.)

So,
$$v.d = \delta(s, v)$$
 for all $v \in V$.

Proof sketch (cont.)

So,
$$v.d = \delta(s, v)$$
 for all $v \in V$.

For the last part of the theorem, if $u=v.\pi$, then v.d=u.d+1. The assertion follows by induction.

Breadth-first trees

We define the **predecessor graph** as $G_{\pi} = (V_{\pi}, E_{\pi})$, where

$$V_{\pi} = \{v \in V : v.\pi \neq \mathit{NIL}\} \cup \{s\}$$

$$E_{\pi} = \{(v.\pi, v) : v \in V_{s} \setminus \{s\}\}$$

Breadth-first trees

We define the **predecessor graph** as $G_{\pi} = (V_{\pi}, E_{\pi})$, where

$$V_{\pi} = \{ v \in V : v.\pi \neq NIL \} \cup \{ s \}$$
$$E_{\pi} = \{ (v.\pi, v) : v \in V_{s} \setminus \{ s \} \}$$

 G_{π} is a **breadth-first tree** if V_{π} consists of the vertices reachable from s and for all $v \in V_{\pi}$, G_{π} contains a unique simple path from s to v that is also a shortest path from s to v in G.

Breadth-first trees

We define the **predecessor graph** as $G_{\pi} = (V_{\pi}, E_{\pi})$, where

$$V_{\pi} = \{v \in V : v.\pi \neq \mathit{NIL}\} \cup \{s\}$$

$$E_{\pi} = \{(v.\pi, v) : v \in V_{s} \setminus \{s\}\}$$

 G_{π} is a **breadth-first tree** if V_{π} consists of the vertices reachable from s and for all $v \in V_{\pi}$, G_{π} contains a unique simple path from s to v that is also a shortest path from s to v in G.

Lemma

After the execution of BFS, the predecessor graph G_{π} is a breadth-first tree.