TRIGONOMETRY

Chapter 03

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

TRIGONOMETRÍA SACO OLIVEROS

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

Resolver un triángulo rectángulo, significa determinar la longitud de sus lados y las medidas de sus ángulos. Existen 3 casos, en los cuales se necesitan 2 datos : la medida de un lado y la medida de un ángulo interior agudo.

Regla práctica:

$$\frac{[\text{lado incógnita}]}{[\text{lado dato}]} = RT \begin{pmatrix} 4 \\ \text{dato} \end{pmatrix}$$

$$\Rightarrow x = m sen\theta$$

•
$$\frac{y}{m} = \cos \theta$$

$$\Rightarrow$$
 y = m cos θ

Conclusión:

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

•
$$\frac{x}{m}$$
 = $tan\theta$

•
$$\frac{y}{m} = \sec \theta$$

$$\Rightarrow$$
 y = m sec θ

Conclusión:

Caso III:

•
$$\frac{x}{m} = \cot \theta$$

$$\Rightarrow$$
 x = m cot θ

•
$$\frac{y}{m} = csc\theta$$

$$\Rightarrow$$
 y = m csc θ

Conclusión:

Siendo S el área de la región : triangular sombreada.

Se cumple:
$$S = \frac{a.b}{2} sen \alpha$$

Ejemplo:

Calcule el área de la región triangular de lados 10 u y 7u, además el ángulo entre ellos mide 53°.

RESOLUCIÓN

$$S = \frac{7 (10)}{2} sen53^{0}$$

$$S = 35\left(\frac{4}{5}\right)$$

10 u

$$\therefore S = 28u^2$$

En un triángulo rectángulo, la hipotenusa mide m y un ángulo agudo mide θ .- Determine el área de dicho triángulo.

RESOLUCIÓN

$$\frac{x}{m} = sen\theta \Rightarrow x = m \cdot sen\theta$$

$$\frac{y}{m} = \cos\theta$$
 $y = m \cdot \cos\theta$

Luego: Área
$$\Delta = \frac{y \cdot x}{2}$$

$$\therefore \text{ Área} = \frac{\text{m}^2.\text{sen}\theta.\text{cos}\theta}{2}$$

Juan y Jorge compran un terreno rectangular para sembrar camote y papa; para ello dividen el terreno en dos partes iguales trazando una diagonal.- Si el largo del terreno es L metros y el ángulo formado por la diagonal y el lado anterior del terreno es β ; calcule el área del terreno que les corresponde para sembrar cada tubérculo, en términos de L y β .

RESOLUCIÓN

Del gráfico :
$$\frac{x}{L m} = tan\beta$$

Área
$$\Delta = \frac{(L m)((L tan\beta) m)}{2}$$

∴ Área camote = Área papa =
$$\left(\frac{L^2 \tan \beta}{2}\right)$$
 m²

De la figura , halle el valor de "x" en función de a, b y θ .

En un triángulo acutángulo ABC, se traza la altura \overline{CD} (D en \overline{AB}).- Si m \not CAD = α , m \not CBD = β y AD = β ; calcule BD en términos de α , β y p.

RESOLUCIÓN

$$\triangle ADC : \frac{CD}{p} = \tan \alpha \implies CD = p \tan \alpha$$

CDB:
$$\frac{x}{p \tan \alpha} = \cot \beta$$

 $\therefore x = p \tan \alpha \cdot \cot \beta$

En el gráfico mostrado, halle AB en términos de $r y \theta$.

RESOLUCIÓN

Se observa que :

$$AB = AO + OB \implies AB = r \csc\theta + r$$

$$\therefore AB = r(csc\theta + 1)$$

En el gráfico, calcule el área de la región sombreada.

RESOLUCIÓN

$$S_1 = \left(\frac{5.4}{2}\right) \text{sen30}^{\circ} = (10)\frac{1}{2}$$

$$S_1 = 5 u^2$$

Sobre un terreno que tiene la forma de un triángulo ABC, se construirá un muro desde B hacia D; así se tendrá una zona para el centro comercial y otra zona para el estacionamiento, tal como indica la figura.

Si AB = 40 m y BC = 60 m; además por cada metro construido del muro se invierte S/173 .- ¿ Cuánto es el costo total para realizar dicha obra?

(Dato : $\sqrt{3} = 1,73$)

RESOLUCIÓN

Se observa que : $S_1 + S_2 = S_{\triangle ABC}$

$$\left(\frac{40. x}{2}\right) \operatorname{sen30^{\circ}} + \left(\frac{60 x}{2}\right) \operatorname{sen30^{\circ}} = \left(\frac{40.60}{2}\right) \operatorname{sen60^{\circ}}$$

$$(20x)^{\frac{1}{2}} + (30x)^{\frac{1}{2}} = (1200).^{\frac{\sqrt{3}}{2}}$$

$$50x = 1200\sqrt{3}$$
 $x = 24\sqrt{3}$ m

Costo =
$$24\sqrt{3}$$
 (S/ 173)
= $24\sqrt{3}$ (S/ $100\sqrt{3}$)

