Addressing

PEDRO MARTINS

Contents

1	Addı	ressing	3
2		ket Format	3
		Ethernet II	
	2.2	IEEE 802.3	4
3		ocol Demultiplexing	4
	3.1	Classes de IP address	4
		3.1.1 Endereços IP especiais	6
		3.1.2 Classificação dos endereços nas classes	
	3.2	IP multicast	
	3.3	Máscaras de Rede	
	3.4	Subnetting	7
4	ARP	- Address Resolution Protocol	7

1 Addressing

OUI: Organization Unique Identifier

l° octeto					
11011101	01110101	11001111	01011111	01000101	01111010

Figure 1: Exemplo de IEEE Address Example

• No 1º octeto, existem dois bits com significados especiais

Último: bit G/I (Grupo/Individual)Penúltimo: bit G/L (Global/Local)

Tipos de Endereços:

Unicast: G/I = 0Multicast: G/I = 1

• Broadcast: todos os bits a 1

2 Packet Format

- 6 octetos
- Preamble:
 - sequência alternada de '0's e '1's, para sincronização de clock
 - * 01010101010101010101010...
 - São usados códigos de Manchester diferenciais, que produzem exatamente a mesma sequência que os dados binários
 - A sincronização do clock é crucial para decidir o instante de amostragem
 - O objetivo da escolha do instante de amostragem ótimo é maximizar a abertura do diagrama de olho no instante de amostragem
 - Opreamble ao 57 bits
 - * No entanto, é preciso a indicação da terminação da trama, uma vez que estes bits apenas servem sincronismo, e "não podem ser contados antes de existir sincronismo"

• SFD - Start of Frame Delimiter:

- Para detetar o início da frame
- Pad: bytes de padding
- Para garantir a formatação correta do frame e alinhamento da informação
- Source Address:
- · Hardware Destination address
- FCS Frame Check Sequence:

- Para a deteção de erros na transmissão

• EFD - End of frame Delimiter:

- Detetar o fim do frame

2.1 Ethernet II

• Existem dois tipos de standards de Ethernet

A proposta original foi submetida pelo IEEE	preamble	1 bytes SFD	6 bytes destination	, ,	 46 - 1500 bytes data
Aproposta origination submettua peto illil.					

O 3º campo no header (protocol) é superior a 1500 bytes e representa o protocolo à qual os dados pertencem.

2.2 IEEE 802.3

prear		es 6 bytes destination						43 - 1497 bytes data	4 bytes FCFCS	
-------	--	---------------------------	--	--	--	--	--	-------------------------	------------------	--

Figure 2: Estrutura de um pacote de IEEE 802.3

Os primeiros três campos referem-se ao tamanho do pacote de dados (MAC), indicando no campo length o tamanho do campo de dados. Os três próximos bits (DSAP, SSAP e CTL) referem-se à LLC – Logical Link Control *Protocol Layer*, e são usadas para representar o protocolo.

Uma das principais diferenças entre o protocolo Ethernet II e o protocolo IEEE 802.3 é que no IEEE 802.3 é feita explicitamente a identificação do protocolo. Entre o protocolo IEEE e Ethernet II existe uma identificação explicita na trama enviada.

Contém ainda explicitamente:

- Designação do serviço de access point
- Quais são as "aplicações" da camada Applications que precisam do pacote
- Control Data
- Frame Check Sequence, com CRC

3 Protocol Demultiplexing

Usando o campo protocol de uma frame Ethernet, obtemos o diagrama de blocos representado abaixo, na figura 3

3.1 Classes de IP address

Figure 3: Diagrama de blocos para a operação de protocol demultiplexing

Figure 4: As diferentes classes de IP. A classe E não é usada atualmente

Table 1: Características dos 3 principais tipos de endereçamento usados. Note que nem todos os potenciais endereços são usados

Class	# bits in prefix	# max networks	# bits in suffix	#max hosts per network
Α	7	128	24	16777216
В	14	16384	16	65536
С	21	2097152	8	256

3.1.1 Endereços IP especiais

Figure 5: (1) - Apenas permitido na inicialização. Não representa um endereço válido e destino. (2) - Não é um endereço de origem válido. (3) Nunca deve aparecer na rede (No caso demonstrado, o LOOP BACK nunca deve sair para fora da placa de rede). O (4) indica um endereço usado para dar o nome à rede.

3.1.2 Classificação dos endereços nas classes

Class	Endereço mínimo possível	Endereço máximo possível
Α	1.0.0.0	126.0.0.0
В	128.0.0.0	191.255.0.0
C	192.0.0.0	223.255.255.0
D	224.0.0.0	239.255.255.255

Table 3: My caption

		decimal		binário	
		rede	host	rede	hots
en	dereço IP	10.	0.0.1	00001010	00000000 00000000 00000001
má	áscara	255.	0.0.0	11111111	00000000 00000000 00000000

Class	Endereço mínimo possível	Endereço máximo possível
Е	240.0.0.0	255.255.255.254

3.2 IP multicast

Define a chamada classe D

1110.

- Os pacotes são transmitidos a um grupo de máquinas,
- Cada máquina pode estar em mais do que um grupo em simultâneo

IGMP: Internet Group Management Protocol

- Pode ser usado para efetuar a troca de informação entre os vários elementos/nós da rede
- Preferencialmente, devo ser usado multicast se o hardware tiver suporte para o mesmo. Caso contrário, é preferível usar broadcast

3.3 Máscaras de Rede

- As máscaras de rede são utilizadas para fazer classless addresing
- Inicialmente, os endereços IP serviam para **fixar e definir fronteiras** entre redes, usando os primeiros bits do campo de endereço, tal como no passado tinha sido feito para as classes A, B e C
- Mais tarde, as fronteiras entre redes passaram a ser variáveis
- Passou a ser usada uma máscara de rede para definir o que pertence ou não à rede, sendo usada para separar os endereços que pertencem à rede e os endereços que pertencem ao *host*
- É importante para definir aspetos como broadcaste e multicast

3.4 Subnetting

4 ARP - Address Resolution Protocol

Objetivo do ARP:

Figure 6: Exemplo de Subnetting

- Descobrir se um terminal/router com um dado endereço de IP se encontra ligado na rede
- Permite a construção da frame de Ethernet com os endereços MAC de origem e destino corretos
 - Quando não sabe o endereço MAC do terminal/router de destino, envia um ARP Request
 - Se alguém na rede possuir na sua tabela de ARP, uma ligação entre o IP enviado no ARP Request e o MAC address, envia uma ARP Response para o terminal/router que enviou o pedido, indicando o MAC address

Figure 7: ARP Request and Response

- Um ARP Request é sempre broadcast
- É identificado com o Protocol Type 800
- É inserido numa frame de Ethernet