Assignment 03 - Smart Temperature Monitoring

- Caberletti Sofia 0001071417
- Marrelli Marco 0001079192
- Margherita Zanchini 0001081989

Descrizione del Sistema

Il sistema è progettato per monitorare la temperatura di un ambiente chiuso e controllare l'apertura della finestra in base alla temperatura rilevata. Il sistema può operare in due modalità: AUTOMATIC e MANUAL. In modalità AUTOMATIC, il sistema decide automaticamente quanto aprire la finestra in base alla temperatura corrente. In modalità MANUAL, l'apertura è controllata manualmente da un operatore. La modalità iniziale all'avvio è AUTOMATIC.

Il sistema di monitoraggio della temperatura è composto da quattro sottosistemi principali:

- Control Unit: centro di controllo principale del sistema che gestisce la comunicazione con i vari sottosistemi.
- Temperature Monitoring: gestisce l'ESP32 con la rilevazione della temperatura.
- Window Controller: gestisce Arduino Uno e i componenti a lui attaccati. Viene gestita l'apertura della finestra e il passaggio da modalità manuale a automatica.
- Dashboard: mostra le informazioni attuali del sistema e permette di risolvere l'alarm.

Schema di Arduino

Schema dell'ESP32S3

Control Unit Subsystem

Il Control Unit governa e coordina l'intero sistema. Contiene la logica che gestisce tutti i sottosistemi scritta in Java.

Questo sottosistema si basa su una FSM sincrona composta da quattro stati principali:

• **NORMAL**: Lo stato iniziale in cui il sistema monitora la temperatura e mantiene la frequenza di campionamento a F1. In questo stato la temperatura è sottocontrollo e quindi la finestra è mantenuta chiusa.

- **HOT**: Quando la temperatura supera la soglia T1, il sistema passa allo stato HOT e aumenta la frequenza di campionamento a F2. L'apertura della finestra è proporzionale all'intervallo tra T1 e T2.
- **TOO_HOT**: Se la temperatura supera la soglia T2, il sistema entra nello stato TOO_HOT. La finestra viene aperta completamente.
- **ALARM**: Se la temperatura rimane sopra T2 per un periodo di tempo DT, il sistema entra nello stato di ALLARME e notifica l'operatore. Si potrà uscire dallo stato ALARM solo una volta che l'operatore avrà agito sulla Dashboard.

Inoltre può lavorare in due modalità diverse:

- **AUTOMATIC**: L'apertura della finestra viene scelta automaticamente dal Control Unit in base alla temperatura.
- MANUAL: L'apertura viene scelta dall'operatore tramite il potenziometro collegato al Window Controller.

Il Control Unit utilizza diversi protocolli per comunicare con gli altri sottosistemi:

- **MQTT**: Utilizzato per la comunicazione con Temperature Monitoring. Il sottosistema di controllo riceve le misurazioni della temperatura e invia la frequenza di campionamento.
- **Seriale**: Utilizzato per la comunicazione con il Window Controller. Il sottosistema di controllo invia il valore di apertura della finestra se si è in modalità AUTO mentre se si è in modalità MANUAL l'apertura viene mandata dal Window Controller. Infine riceve o manda la modalità (AUTO/MANUAL) del sistema.
- **HTTP**: Utilizzato per la comunicazione con la Dashboard. Il sottosistema di controllo invia i dati di monitoraggio della temperatura e riceve i comandi per risolvere gli allarmi o cambiare modalità.

Temperature Monitoring Subsystem

Questo sottosistema è composto da ESP32-S3, da un led rosso, uno verde e da un thermistor. Il Temperature Monitoring rileva con una frequenza F, decisa dal Control Unit, la temperatura della stanza. Le temperature rilevate vengono poi mandate al Control Unit tramite protocollo MQTT.

Temperature Monitoring

/ green = ON, red = OFF, net = OK do/sample temperature with frequency F net = OK / green = ON, red = OFF red = OFF net = ERROR / green = OFF, red = ON Error

Il sottosistema è basato su una FSM sincrona composta da due stati:

- **OK**: L'ESP32-S3 è connesso correttamente al Control Unit tramite MQTT e ciò viene indicato dal led verde accesso.
- **ERROR**: Se si verifica un problema di connessione si entra in questo stato e il led rosso viene acceso.

Window Controller Subsystem

Questo sottosistema è composto da Arduino UNO, da un servo motore, da un potenziometro, da un bottone e da un LCD. Il Window Controller si occupa dell'apertura e della chiusura fisica della finestra e permette grazie al bottone di cambiare la modalità. LCD mostra alcune informazioni sullo stato attuale del sistema.

Il Window Controller è basato su una FSM sincrona composta da due stati:

- **AUTOMATIC**: L'apertura della finestra è decisa dal Control Unit e mostrata dall'LCD insieme alla modalità corrente. Premendo il bottone si passa alla modalità manuale.
- MANUAL: L'apertura della finestra è decisa dall'operatore tramite il potenziometro. In questo stato l'LCD mostra anche il valore corrente della temperatura. Premendo il bottone si torna alla modalità automatica.

Dashboard Subsystem

La Dashboard ha due funzionalità principali: visualizzare lo stato del sistema mostrando alcune informazioni chiave e consentire agli operatori di interagire con il sistema. La Dashboard visualizza un grafico della temperatura considerando le ultime 10 misurazioni, il valore medio/massimo/minimo corrente, lo stato del sistema (NORMAL, HOT, TOO-HOT, ALARM) e il livello di apertura della finestra in percentuale. Inoltre, permette di cambiare la modalità da AUTOMATIC a MANUAL (e viceversa) e di gestire lo stato di ALARM premendo un pulsante per riportare il sistema allo stato NORMAL. La Dashboard è stata implementata usando JavaFX.

