1 Cónicas

As **cónicas** são curvas planas obtidas por intersecção de um cone circular recto com um plano.

- Se o plano intersecta todas as geratrizes do cone, a curva obtida é uma elipse.
- Se o plano é paralelo apenas a uma geratriz, a curva obtida é uma **parábola**.
- Se o plano é paralelo a duas geratrizes, a curva obtida é uma hipérbole.

Equação Geral das Cónicas (eq. de 2° grau em $x \in y$):

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0, (1)$$

com $A, B, C, D, E, F \in \mathbb{R}$, sendo $A, B \in C$ não simultaneamente nulos.

- Se $B^2 4AC < 0$, (1) é a equação de uma **elipse.**
- Se $B^2 4AC = 0$, (1) é a equação de uma **parábola.**
- Se $B^2 4AC > 0$, (1) é a equação de uma **hipérbole**.

1.1 Elipse

Elipse é o conjunto dos pontos do plano cuja soma das distâncias a dois pontos fixos (focos) é constante e maior que a distância entre eles.

Equação Reduzida

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b)$$

Equação Reduzida

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 $(b > a)$

Focos: $(\pm c, 0)$, sendo $c^2 = a^2 - b^2$

Eixo maior = 2a

Eixo menor = 2b

Distância focal =2c

Vértices: $(\pm a, 0)$, $(0, \pm b)$

Focos: $(0, \pm c)$, sendo $c^2 = b^2 - a^2$

Eixo maior = 2b

Eixo menor = 2a

Distância focal =2c

Vértices: $(\pm a, 0)$, $(0, \pm b)$

Equação Reduzida da Elipse centrada em (α, β) :

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1.$$

1.2 Parábola

Parábola é o conjunto dos pontos do plano equidistantes de um ponto fixo (foco) e de uma recta (directriz), que não contém o ponto.

Equação Reduzida

$$y^2 = 2px \quad (p > 0)$$

Equação Reduzida

$$y^2 = -2px \quad (p > 0)$$

Foco : $F\left(\frac{p}{2},0\right)$

Directriz: $x = -\frac{p}{2}$

Vértice: V(0,0)

 $\mathbf{Foco}: F\left(0, -\frac{p}{2}\right)$

Directriz : $x = \frac{p}{2}$

Vértice : V(0,0)

Equação Reduzida

$$x^2 = 2py \quad (p > 0)$$

Equação Reduzida

$$x^2 = -2py \quad (p > 0)$$

Foco: $F\left(0, \frac{p}{2}\right)$

 $\mathbf{Directriz}: y = -\frac{p}{2}$

 $\mathbf{V\acute{e}rtice}:V\left(0,0\right)$

 $\mathbf{Foco}: F\left(0, -\frac{p}{2}\right)$

Directriz: $y = \frac{p}{2}$

 $\mathbf{V\acute{e}rtice}:V\left(0,0\right)$

Equação Reduzida da Parábola com vértice em (α, β) :

$$(y - \beta)^2 = 2p(x - \alpha)$$

$$(x - \beta)^2 = 2p(y - \alpha)$$

5

1.3 Hipérbole

Hipérbole é o conjunto dos pontos do plano tais que o módulo da diferença das distâncias a dois pontos fixos (focos) é constante e menor que a distância entre eles.

Equação Reduzida

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Focos: $(\pm c, 0)$, sendo $c^2 = a^2 + b^2$

Eixo transverso = 2a

Eixo não transverso = 2b

Distância focal =2c

Vértices : $(\pm a, 0)$

Assimptotas: $y = \pm \frac{b}{a}x$

Focos: $(0, \pm c)$, sendo $c^2 = a^2 + b^2$

Eixo transverso = 2b

Eixo não transverso = 2a

Distância focal = 2c

Vértices : $(0, \pm b)$

Assimptotas: $y = \pm \frac{b}{a}x$

Equação Reduzida da Hipérbole centrada em (α, β) :

$$\frac{\left(x-\alpha\right)^2}{a^2} - \frac{\left(y-\beta\right)^2}{b^2} = 1.$$

