

Beijing-Dublin International College

SEMESTER 2 FINAL I	EXAMINATION - 2020/2021

BDIC2025J/2002J Discrete Mathematics

Exam Test A

MODULE COORDINATOR: Shaofan Wang

Time Allowed: 95 minutes

Instructions for Candidates

BJUT Student ID:	UCD Student ID:	
I have read and clearly un	derstand the Examination Rules of	both Beijing University of
Technology and University	College Dublin. I am aware of the P	unishment for Violating the
Rules of Beijing University	y of Technology and/or University	College Dublin. I hereby
promise to abide by the rele	evant rules and regulations by not g	iving or receiving any help
during the exam. If caught \	violating the rules, I accept the punis	hment thereof.
Honesty Pledge:		(Signature)

Instructions for Invigilators

All electronic devices, notebooks, books, work papers are strictly prohibited.

The Full Score of All Items of the Exam Paper

Item	1	2	3	4	5	6	7	8	Full
Full score	25	8	8	8	15	12	12	12	100

Obtained score

Question 1: Choose the single answer among A,B,C,D for each question.

Question 1-1: Let A, B be two sets with |A|=m, |B|=n. How many different binary relations from A to B?

(A) 2^{m+n}

(B) 2^{mn}

- (C) m^2n^2
- **(D)** *mn*

Question 1-2: Let A, B be two sets with |A|=2, |B|=m>2. How many different injection from A to B?

- **(A)** m(m-1)
- **(B)** $\frac{1}{2}m(m-1)$
- (C) m^2
- **(D)** $\frac{1}{2}m^2$

Question 1-3: Which function is a surjection?

- (A) $f: \mathbb{Z}^+ \to \mathbb{Z}^+, f(x) = |x|$
- **(B)** $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, f(x) = (x, x)
- (C) $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, f(x) = (0, x)$
- **(D)** $f: \mathbb{N} \to \mathbb{N}, f(x) = 2^x$

Question 1-4: Which graph is not a Eulerian graph but a semi-Eulerian graph?

(A) $K_{2.3}$

(B) $K_{3,3}$

- (C) $K_{2,2}$
- (D) K_4

Question 1-5: Let * be the minimum operator, i.e. $a * b = \min(a, b)$. All the sub-monoids of $(\{0,1,2\},*)$ are

- (A) $(\{0,1\},*), (\{0,2\},*), (\{0,1,2\},*)$ (B) $(\{0,2\},*), (\{1,2\},*), (\{0,1,2\},*)$
- (C) $(\{2\},*), (\{1,2\},*), (\{0,2\},*), (\{0,1,2\},*)$ (D) $(\{0\},*), (\{0,1\},*), (\{0,2\},*), (\{0,1,2\},*)$

Obtained score

Question 2: Compute the Conjunctive Normal Form of $(A \lor B) \to ((B \land A) \leftrightarrow C)$.

Obtained score

Question 3: Compute the Prenex Normal Form of $(\forall x P(x) \lor \exists y Q(y)) \to \forall x R(x)$.

Obtained
score

Question 4: Prove the following tautological implication using the Inference theory (Please give law notations in each inference step: P, T, AP, CP, US, UG, ES, EG) $\exists x A(x) \rightarrow \forall x B(x) \Rightarrow \forall x (A(x) \rightarrow B(x))$

Obtained score

Question 5: Let $A = \{1,2,3,4,5,6,7,8,9,10\}$, and let R be the division relation on A. That is, $(a,b) \in R$ if b = ma for some integer m.

- (1) Prove that R is a partial order relation on A (i.e. (A, R) is a poset).
- (2) Draw the Hasse diagram of R.
- (3) Compute the greatest element, the least element, maximal elements, and minimal elements of (A,R).

Obtained score

Question 6: Let R_1, R_2 be two equivalence relations on a set A. Prove that $R_1 \cap R_2$ is an equivalence relation.

Obtained score

Question 7: Let $A = \mathbb{R} - \{2\}$ and let * be the operator defined by a*b = ab - 2(a+b-3). Prove that (A,*) is a group.

Obtained score

Question 8: Let G be an undirected simple graph of order n. Suppose that $deg(x) + deg(y) \ge n - 1$ holds for any different two vertices x, y of G. Prove that G is a connected graph.