-		-
1		$^{+}$
	T., 191., 12 . 1 1	
	<u>Intitulé du projet :</u>	
	Programmation C et mesures de performaances OBHPC	
	1 rogrammation C et mesures de performaances ODITC	
		.
	Réalisé par:	
	•	
	CHIKHI Katia	
	Année condémieur 2022 2022	
	Année académique 2022-2023	
+		+
+		+

L

Table de matières

1	Les contraintes nécessaires pour une mesure de performance stable	3
2	Information sur l'architecture cible	3
3	Description des résultats	4

Liste des figures

1	Figure qui illustre les informations sur le cpu	3
2	Figure qui illustre les informations sur les caches de données	4
3	Figure qui illustre les différentes versions de dgemm par compilateur	5
4	Figure qui illustre la différence entre les compilateurs pour dotprod	5
5	Figure qui illustre la différence entre les compilateurs pour reduc	6
6	Figure qui illustre la différence entre les différents flags d'optimisation pour clang.	7
7	Figure qui illustre la différence entre les différents flags d'optimisation pour gcc.	8

1 Les contraintes nécessaires pour une mesure de performance stable

- S'assurer que le laptop est connecté au serveur.
- S'assurer que le CPU tourne a une fréquence stable:
 En utilisant cpupower frequency-info, la fréquence du CPU doit être entre 400 MHz et 3,10 GHz, puisque la fréquence actuelle est de 612 MHz alors le CPU tourne a une fréquence stable.
- Pinner le processus sur un cœur de calcul: Les processus sont dans le cœur numéro 0 du CPU.

2 Information sur l'architecture cible

• Informations sur le CPU . lscpu rassemble les informations sur l'architecture du processeur à partir de sysfs , /proc/cpuinfo et de toutes les bibliothèques applicables spécifiques à l'architecture

la figure ci-dessous montre ces informations.

Figure 1: Figure qui illustre les informations sur le cpu.

• Informations sur les caches de données La figure ci-dessous montre les informations sur les caches de données.

```
cpu_cache_info.txt
            coherency_line_size = 64
            number_of_sets = 64
physical_line_partition = 1
            shared_cpu_list = 0, 2
            shared_cpu_map = 5
            size = 32K
type = Data
            ways_of_associativity = 8
            number_of_sets = 1024
physical_line_partition = 1
            shared_cpu_list = 0, 2
            shared_cpu_map = 5
            type = Unified
            ways_of_associativity = 4
            number_of_sets = 4096
physical_line_partition = 1
                                                         Ī
            shared_cpu_list = 0-3
            shared_cpu_map = f
            size = 3072k
type = Unified
            ways_of_associativity = 12
```

Figure 2: Figure qui illustre les informations sur les caches de données.

3 Description des résultats

La figure ci-dessous montre que :

• Dans l'ensemble, cblas dgemm a donné des performances beaucoup plus élevée que les autres versions. Elle a probablement appliqué l'optimisation la plus avancée pour améliorer les performances

Figure 3: Figure qui illustre les différentes versions de dgemm par compilateur.

La figure ci-dessous montre que le compilateur gcc a donné de meilleurs résultats de performance que clang pour dotprod.

Figure 4: Figure qui illustre la différence entre les compilateurs pour dotprod.

La figure ci-dessous montre que le compilateur clang a donné de meilleurs résultats de performance que gcc pour reduc.

Figure 5: Figure qui illustre la différence entre les compilateurs pour reduc.

Les deux figures ci-dessous montrent que :

- La différence entre O0 et les autres niveaux d'optimisation est très importante pour les deux compilateurs
- O2 fournit les meilleures optimisations d'exécution pour clang.
- O3 fournit les meilleures optimisations d'exécution pour gcc.

Figure 6: Figure qui illustre la différence entre les différents flags d'optimisation pour clang.

Figure 7: Figure qui illustre la différence entre les différents flags d'optimisation pour gcc.