Signal Analysis

Semester 2, 2022

Prof Wageeh Boles

Tarang Janawalkar

Signal Analysis CONTENTS

Contents

C	ontei	nts
1		perties of Mathematical Functions
	1.1	Even and Odd Functions
		1.1.1 Integrating Even and Odd Functions
		1.1.2 Product of Even and Odd Functions
	1.2	Orthogonality
	1.3	Orthogonality of Trigonometric Functions
	1.4	Integrals of Trigonometric Functions
		1.4.1 Product of Trigonometric Functions
2	Fou	rier Series
	2.1	Fourier Series Expansion
		2.1.1 Convergence of a Fourier Series
		2.1.2 Periodicity of a Fourier Series
	2.2	Fourier Cosine Series
	2.3	Fourier Sine Series

1 Properties of Mathematical Functions

1.1 Even and Odd Functions

Definition 1.1 (Even function). A function x(t) is even if

$$x\left(-t\right) = x\left(t\right)$$

for all t in the functions domain. Even functions are symmetric about the vertical axis.

Definition 1.2 (Odd function). A function x(t) is odd if

$$x\left(-t\right) = -x\left(t\right)$$

for all t in the functions domain. Odd functions are symmetric about the origin.

1.1.1 Integrating Even and Odd Functions

When integrating an **even** function x(t) over the domain [-T, T]:

$$\int_{-T}^{T} x(t) dt = 2 \int_{0}^{T} x(t) dt.$$

Similarly, when integrating an **odd** function x(t) over the domain [-T, T]:

$$\int_{-T}^{T} x\left(t\right) \mathrm{d}t = 0.$$

1.1.2 Product of Even and Odd Functions

1. The product of an **even** function with an **even** function, is an **even** function. Let f(t) and g(t) be even functions, and let h(t) = f(t)g(t),

$$h\left(-t\right)=f\left(-t\right)g\left(-t\right)=f\left(t\right)g\left(t\right)=h\left(t\right).$$

2. The product of an **even** function with an **odd** function, is an **odd** function. Let f(t) be an even function and g(t) be an odd function, and let h(t) = f(t)g(t),

$$h(-t) = f(-t) g(-t) = (-f(t)) g(t) = -h(t)$$
.

3. The product of an **odd** function with an **odd** function, is an **even** function. Let f(t) and g(t) be odd functions, and let h(t) = f(t)g(t),

$$h\left(-t\right)=f\left(-t\right)g\left(-t\right)=\left(-f\left(t\right)\right)\left(-g\left(t\right)\right)=f\left(t\right)g\left(t\right)=h\left(t\right).$$

1.2 Orthogonality

Definition 1.3 (Inner product). An inner product generalises the dot product in general vector spaces.

In particular, for the function space $\mathscr{F}([a,b])$, where $t \in [a,b]$, the inner product is defined as the following:

$$\langle f, g \rangle = \int_{a}^{b} f(t) g(t) dt$$

for $f, g \in \mathcal{F}([a, b])$.

Definition 1.4 (Orthogonality). Given an inner product space, two vectors are orthogonal iff

$$\langle f, g \rangle = 0.$$

1.3 Orthogonality of Trigonometric Functions

Consider the inner product between the sine and cosine functions on the interval [-T, T].

$$\langle \sin(t), \cos(t) \rangle = \int_{-T}^{T} \sin(t) \cos(t) dt = 0$$

as the integrand is an odd function.

1.4 Integrals of Trigonometric Functions

For $n \in \mathbb{Z}$:

$$\begin{split} \int_{t_0}^{t_0+1} \sin{(2n\pi f_0 t)} \, \mathrm{d}t &= -\frac{1}{2n\pi f_0} \left[\cos{(2n\pi f_0 t)} \right]_{t_0}^{t_0+T} \\ &= -\frac{1}{2n\pi f_0} \left[\cos{\left(\frac{2n\pi}{T} \left(t_0 + T \right) \right)} - \cos{\left(\frac{2n\pi}{T} t_0 \right)} \right] \\ &= -\frac{1}{2n\pi f_0} \left[\cos{\left(\frac{2n\pi}{T} t_0 + 2n\pi \right)} - \cos{\left(\frac{2n\pi}{T} t_0 \right)} \right] \\ &= -\frac{1}{2n\pi f_0} \left[\cos{\left(\frac{2n\pi}{T} t_0 \right)} - \cos{\left(\frac{2n\pi}{T} t_0 \right)} \right] \\ &= -\frac{1}{2n\pi f_0} \left[0 \right] \\ &= 0. \end{split}$$

$$\begin{split} \int_{t_0}^{t_0+T} \cos\left(2n\pi f_0 t\right) \mathrm{d}t &= \frac{1}{2n\pi f_0} \left[\sin\left(2n\pi f_0 t\right)\right]_{t_0}^{t_0+T} \\ &= \frac{1}{2n\pi f_0} \left[\sin\left(\frac{2n\pi}{T}\left(t_0 + T\right)\right) - \sin\left(\frac{2n\pi}{T}t_0\right)\right] \\ &= \frac{1}{2n\pi f_0} \left[\sin\left(\frac{2n\pi}{T}t_0 + 2n\pi\right) - \sin\left(\frac{2n\pi}{T}t_0\right)\right] \\ &= \frac{1}{2n\pi f_0} \left[\sin\left(\frac{2n\pi}{T}t_0\right) - \sin\left(\frac{2n\pi}{T}t_0\right)\right] \\ &= \frac{1}{2n\pi f_0} \left[0\right] \\ &= 0 \end{split}$$

1.4.1 Product of Trigonometric Functions

Recall the Werner formulas:

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$
$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$
$$2\sin(\alpha)\cos(\beta) = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

For $n, m \in \mathbb{N}$,

Product of two cosine functions:

$$\int_{t_{0}}^{t_{0}+T}\cos\left(2n\pi f_{0}t\right)\cos\left(2m\pi f_{0}t\right)\mathrm{d}t = \frac{1}{2}\int_{t_{0}}^{t_{0}+T}\cos\left(2\left(n-m\right)\pi f_{0}t\right) + \cos\left(2\left(n+m\right)\pi f_{0}t\right)\mathrm{d}t$$

 $n=m \implies n-m=0$ and $(n+m) \in \mathbb{Z}$, so that the integral of the second term is 0, and the integral of the first term results in $\frac{T}{2}$.

 $n \neq m \implies (n-m), (n+m) \in \mathbb{Z}$ so that both terms evaluate to 0 when integrated separately.

$$\int_{t_0}^{t_0+T} \cos\left(2n\pi f_0 t\right) \cos\left(2m\pi f_0 t\right) \mathrm{d}t = \begin{cases} \frac{T}{2}, & n=m\\ 0, & n\neq m. \end{cases}$$

Product of two sine functions:

$$\int_{t_0}^{t_0+T} \sin\left(2n\pi f_0 t\right) \sin\left(2m\pi f_0 t\right) dt = \frac{1}{2} \int_{t_0}^{t_0+T} \cos\left(2\left(n-m\right)\pi f_0 t\right) - \cos\left(2\left(n+m\right)\pi f_0 t\right) dt$$

By the same argument as before,

$$\int_{t_0}^{t_0+T} \sin(2n\pi f_0 t) \sin(2m\pi f_0 t) dt = \begin{cases} \frac{T}{2}, & n=m\\ 0, & n \neq m. \end{cases}$$

Product of sine and cosine functions:

$$\int_{t_{0}}^{t_{0}+T}\sin\left(2n\pi f_{0}t\right)\cos\left(2m\pi f_{0}t\right)\mathrm{d}t=\frac{1}{2}\int_{t_{0}}^{t_{0}+T}\sin\left(2\left(n-m\right)\pi f_{0}t\right)+\sin\left(2\left(n+m\right)\pi f_{0}t\right)\mathrm{d}t$$

Signal Analysis 2 FOURIER SERIES

 $n=m \implies n-m=0$ and $(n+m) \in \mathbb{Z}$, so that the integral reduces to 0. $n \neq m \implies (n-m)$, $(n+m) \in \mathbb{Z}$ so that both terms evaluate to 0 when integrated separately.

$$\int_{t_0}^{t_0+T} \sin(2n\pi f_0 t) \cos(2m\pi f_0 t) dt = 0.$$

2 Fourier Series

2.1 Fourier Series Expansion

The Fourier Series Expansion of a function x(t) on the interval $[t_0, t_0 + T]$ is given by

$$x_{F}\left(t\right)=a_{0}+\sum_{n=1}^{\infty}a_{n}\cos\left(2n\pi f_{0}t\right)+\sum_{n=1}^{\infty}b_{n}\sin\left(2n\pi f_{0}t\right)$$

where $n \in \mathbb{Z}^+$ and $f_0 = \frac{1}{T}$. The coefficients are given by

$$\begin{split} a_0 &= \frac{1}{T} \int_{t_0}^{t_0 + T} x\left(t\right) \mathrm{d}t \\ a_n &= \frac{2}{T} \int_{t_0}^{t_0 + T} x\left(t\right) \cos\left(2n\pi f_0 t\right) \mathrm{d}t \\ b_n &= \frac{2}{T} \int_{t_0}^{t_0 + T} x\left(t\right) \sin\left(2n\pi f_0 t\right) \mathrm{d}t \end{split}$$

Proof. Let $m \in \mathbb{N}$.

For the coefficient a_0 , integrate the function x(t) over the interval $[t_0, t_0 + T]$.

$$\begin{split} \int_{t_0}^{t_0+T} x\left(t\right) \mathrm{d}t &= \int_{t_0}^{t_0+T} a_0 \, \mathrm{d}t + \sum_{n=1}^{\infty} a_n \int_{t_0}^{t_0+T} \cos\left(2n\pi f_0 t\right) \mathrm{d}t + \sum_{n=1}^{\infty} b_n \int_{t_0}^{t_0+T} \sin\left(2n\pi f_0 t\right) \mathrm{d}t \\ \int_{t_0}^{t_0+T} x\left(t\right) \mathrm{d}t &= a_0 T \\ a_0 &= \frac{1}{T} \int_{t_0}^{t_0+T} x\left(t\right) \mathrm{d}t \end{split}$$

so that a_0 represents the average value of x on $[t_0, t_0 + T]$.

Signal Analysis 2 FOURIER SERIES

For coefficients a_m , multiply the equation by $\cos(2m\pi f_0 t)$ before integrating.

$$x(t)\cos(2m\pi f_0 t) = a_0 \cos(2m\pi f_0 t)$$

$$+ \sum_{n=1}^{\infty} a_n \cos(2n\pi f_0 t) \cos(2m\pi f_0 t)$$

$$+ \sum_{n=1}^{\infty} b_n \sin(2n\pi f_0 t) \cos(2m\pi f_0 t)$$

$$\int_{t_0}^{t_0 + T} x(t) \cos(2m\pi f_0 t) dt = a_0 \int_{t_0}^{t_0 + T} \cos(2m\pi f_0 t) dt$$

$$+ \sum_{n=1}^{\infty} a_n \int_{t_0}^{t_0 + T} \cos(2n\pi f_0 t) \cos(2m\pi f_0 t) dt$$

$$+ \sum_{n=1}^{\infty} b_n \int_{t_0}^{t_0 + T} \sin(2n\pi f_0 t) \cos(2m\pi f_0 t) dt$$

$$\int_{t_0}^{t_0 + T} x(t) \cos(2m\pi f_0 t) dt = a_m \frac{T}{2}$$

$$a_m = \frac{2}{T} \int_{t_0}^{t_0 + T} x(t) \cos(2m\pi f_0 t) dt$$

For coefficients b_m , multiply the equation by $\sin(2m\pi f_0 t)$ before integrating.

$$\begin{split} x\left(t\right)\sin\left(2m\pi f_{0}t\right) &= a_{0}\sin\left(2m\pi f_{0}t\right) \\ &+ \sum_{n=1}^{\infty}a_{n}\cos\left(2n\pi f_{0}t\right)\sin\left(2m\pi f_{0}t\right) \\ &+ \sum_{n=1}^{\infty}b_{n}\sin\left(2n\pi f_{0}t\right)\sin\left(2m\pi f_{0}t\right) \\ \int_{t_{0}}^{t_{0}+T}x\left(t\right)\sin\left(2m\pi f_{0}t\right)\mathrm{d}t &= a_{0}\int_{t_{0}}^{t_{0}+T}\sin\left(2m\pi f_{0}t\right)\mathrm{d}t \\ &+ \sum_{n=1}^{\infty}a_{n}\int_{t_{0}}^{t_{0}+T}\cos\left(2n\pi f_{0}t\right)\sin\left(2m\pi f_{0}t\right)\mathrm{d}t \\ &+ \sum_{n=1}^{\infty}b_{n}\int_{t_{0}}^{t_{0}+T}\sin\left(2n\pi f_{0}t\right)\sin\left(2m\pi f_{0}t\right)\mathrm{d}t \\ \int_{t_{0}}^{t_{0}+T}x\left(t\right)\sin\left(2m\pi f_{0}t\right)\mathrm{d}t &= b_{m}\frac{T}{2} \\ b_{m} &= \frac{2}{T}\int_{t_{0}}^{t_{0}+T}x\left(t\right)\sin\left(2m\pi f_{0}t\right)\mathrm{d}t \end{split}$$

To summarise,

$$\begin{split} a_0 &= \frac{1}{T} \int_{t_0}^{t_0 + T} x\left(t\right) \mathrm{d}t \\ a_n &= \frac{2}{T} \int_{t_0}^{t_0 + T} x\left(t\right) \cos\left(2n\pi f_0 t\right) \mathrm{d}t \\ b_n &= \frac{2}{T} \int_{t_0}^{t_0 + T} x\left(t\right) \sin\left(2n\pi f_0 t\right) \mathrm{d}t \end{split}$$

2.1.1 Convergence of a Fourier Series

If x(t) is piecewise smooth on $[t_0, t_0 + L]$, $x_F(t)$ converges to

$$x_{F}\left(t\right) = \lim_{\epsilon \to 0^{+}} \frac{x\left(t+\epsilon\right) + x\left(t-\epsilon\right)}{2}$$

that is, $x = x_F$, except at discontinuities, where f_F is equal to the point halfway between the leftand right-handed limits.

2.1.2 Periodicity of a Fourier Series

If x is non-periodic, x_F converges to the periodic extension of x. The endpoints may converge non-uniformly, corresponding to jump discontinuities in the periodic extension of x.

2.2 Fourier Cosine Series

Consider the Fourier series expansion of an even function x on the interval $\left[-\frac{T}{2}, \frac{T}{2}\right]$, i.e., $t_0 = -\frac{T}{2}$. In this case,

$$b_{n}=\frac{2}{T}\int_{-T}^{\frac{T}{2}}x\left(t\right) \sin \left(2n\pi f_{0}t\right) \mathrm{d}t=0$$

and the Fourier series is a "Fourier cosine series", given by:

$$x_{C}\left(t\right)=a_{0}+\sum_{n=1}^{\infty}a_{n}\cos\left(2n\pi f_{0}t\right)$$

with coefficients

$$\begin{split} a_0 &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x\left(t\right) \mathrm{d}t = \frac{2}{T} \int_{0}^{\frac{T}{2}} x\left(t\right) \mathrm{d}t \\ a_n &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x\left(t\right) \cos\left(2n\pi f_0 t\right) \mathrm{d}t = \frac{4}{T} \int_{0}^{\frac{T}{2}} x\left(t\right) \cos\left(2n\pi f_0 t\right) \mathrm{d}t. \end{split}$$

2.3 Fourier Sine Series

Consider the Fourier series expansion of an odd function x on the interval $\left[-\frac{T}{2},\frac{T}{2}\right]$. In this case

$$b_{n}=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x\left(t\right)\sin\left(2n\pi f_{0}t\right)\mathrm{d}t=0$$

and the Fourier series is a "Fourier sine series", given by:

$$x_{S}\left(t\right)=\sum_{n=1}^{\infty}b_{n}\sin\left(2n\pi f_{0}t\right)$$

with coefficients

$$b_{n}=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x\left(t\right)\sin\left(2n\pi f_{0}t\right)\mathrm{d}t=\frac{4}{T}\int_{0}^{\frac{T}{2}}x\left(t\right)\sin\left(2n\pi f_{0}t\right)\mathrm{d}t.$$