Recall: If A is a 2×2 matrix then it defines a linear transformation

$$T_A \colon \mathbb{R}^2 \to \mathbb{R}^2 \qquad T_A(\mathbf{v}) = A\mathbf{v}$$

Note. T_A maps parallelograms to parallelograms:

Theorem

If A is a 2×2 matrix and $\mathbf{v}_1, \mathbf{v}_1 \in \mathbb{R}^2$ then

$$area(T_A(\mathbf{v}_1), T_A(\mathbf{v}_2)) = |\det A| \cdot area(\mathbf{v}_1, \mathbf{v}_2)$$

Proof:

area
$$(T_A(v_1), T_A(v_2)) = area (Av_1, Av_2)$$

$$= |det[Av_1 Av_2]|$$

$$\frac{Pecalli}{So:} [Av_1 Av_2] = A \cdot [v_1 v_2]$$

$$So: area (T_A(v_1), T_A(v_2)) = |det(A \cdot [v_1 v_2])|$$

$$= |det(A) \cdot det[v_1 v_2]|$$

$$= |det(A)| \cdot area(v_1, v_2)$$

Generalization:

Theorem

If A is a 2×2 matrix then for any region S of \mathbb{R}^2 we have:

$$area(T_A(S)) = |det A| \cdot area(S)$$

Idea of the proof.

The area of S can be approximated by the sum of small squares covering S.

 $area(5) \approx \Sigma area(small square)$ $area(T_A(s)) \approx \Sigma area(T_A(small square))$ $= \Sigma |det(A)| \cdot area(small square)$ $= |det(A)| \cdot \Sigma area(small square)$ $\approx |det(A)| \cdot area(S)$