MÉCANIQUE QUANTIQUE ALGÈBRE LINÉAIRE

Edouard Marchais

EPITA

Février-Juin 2025

PLAN

- 1. Introduction
- 2. GÉNÉRALITÉS
- 3. Bases et indépendance linéaire
- 4. Opérateurs linéaires et matrices
- 5. Matrices de Pauli
- 6. Produit scalaire
- 7. Vecteurs propres et valeurs propres
- 8. Opérateurs adjoints et hermitiens
- 9. Produit tensoriel
- 10. Fonctions d'opérateurs
- 11. Commutateur et anti-commutateur
- 12. DÉCOMPOSITION POLAIRE ET DÉCOMPOSITION EN VALEURS SINGULIÈRES

1. Introduction

1.1. BITS QUANTIQUES

• Un qubit est représenté mathématiquement par la combinaison linéaire, ou superposition, (ici $\alpha, \beta \in \mathbb{C}$)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

- L'état $|\psi\rangle$ du qubit, correspondant à un **système physique** (photon, électron,...), est **normalisé**, soit $|\alpha|^2 + |\beta|^2 = 1$ et les quantités $|\alpha|^2, |\beta|^2$ peuvent s'interpréter comme des **probabilités**.
- Il existe d'autre paramétrisation de l'état $|\psi\rangle$, par exemple $(\theta, \varphi, \gamma \in \mathbb{R})$

$$|\psi\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle\right)$$

• Seul le module de $|\psi\rangle$ importe physiquement, on peut donc ignorer le facteur $e^{i\gamma}$, de plus θ et φ appartiennent aux coordonnées sphériques sur une sphère de Bloch de rayon unité (pour un seul qubit).

1.2. Multi-qubits

• L'expression d'un état à deux qubits se généralise simplement

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

- On maintenant la règle $\sum_{x \in \{0,1\}^2} |\alpha_x|^2 = 1$ et donc $|\alpha_x|^2$ gardent leur interprétation en terme de **probabilité de mesure**.
- \bullet Un état particulier à deux qubit est l'état de Bell suivant

$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

- La probabilité de mesurer que le **premier qubit** soit 0 ou 1 est de 1/2 dans les deux cas et **après mesure** le système est dans l'état mesuré.
- Dans ce cas une seconde mesure sur le système donnera toujours le **même résultat**, on dit que ces mesures successives sont **corrélées**.
- Ces **particularités** de la mécanique quantique qui peuvent être exploitées du point de vue algorithmique et technologique.

2. GÉNÉRALITÉS

- Un état multiqubits appartient à l'espace vectoriel (e.v) \mathbb{C}^n dont les éléments (appelés vecteurs) peuvent être représentés par une **matrice à une colonne** à coefficients complexes z_i pour $1 \le i \le n$ (voir le document de cours).
- Dans cet espace est défini l'addition entre vecteurs ainsi que la multiplication par un scalaire (ici un nombre complexe).
- D'après la **notation de Dirac**, on notera les vecteurs sous la forme $|\psi\rangle$, où ψ est la lettre grecque « psi » (d'autre symboles peuvent être utilisés).
- On appellera de manière générale un vecteur $|v\rangle$ un **ket** et on peut écrire, par exemple, $|v\rangle+0=|v\rangle$ où 0 est le **vecteur nul**.
- Un sous-espace vectoriel est un sous-ensemble d'un espace vectoriel stable par addition et multiplication par un scalaire, c'est-à-dire stable par combinaison linéaire.

3. Bases et indépendance linéaire

• Une famille génératrice d'un e.v est un ensemble de vecteurs $|v_1\rangle, \ldots, |v_n\rangle$ tel que tout vecteur $|v\rangle$ dans cet e.v s'écrit

$$|v\rangle = \sum_{i} a_i |v_i\rangle$$

où la sommation sur $1 \le i \le n$ est **implicite**.

• Un ensemble de vecteurs non nuls $|v_1\rangle, \ldots, |v_n\rangle$ est **linéairement dépendant** s'il existe un ensemble de nombres complexes a_1, \ldots, a_n avec $a_i \neq 0$ pour au moins une valeur de $1 \leq i \leq n$, tel que

$$a_1 |v_1\rangle + a_2 |v_2\rangle + \cdots + a_n |v_n\rangle = 0$$

- Dans le cadre de la mécanique quantique appliqué au **calcul** et à la **programmation**, la dimension des espaces vectoriels considérés sera toujours **finie** (souvent notée n).
- Dans les applications physique et technologique de la mécanique quantique, il est en revanche nécessaire d'utiliser des espaces vectoriels de dimension infinie.

4. Opérateurs linéaires et matrices

• Un opérateur linéaire entre les espaces vectoriels V et W est une fonction $A:V\to W$ qui est linéaire par rapport à son argument soit

$$A\left(\sum_{i} a_{i} | v_{i} \rangle\right) = \sum_{i} a_{i} A\left(| v_{i} \rangle\right)$$

• La représentation matricielle a_{ij} d'un opérateur $A:V\to W$ s'écrit

$$A |v_j\rangle = \sum_i a_{ij} |w_i\rangle = a_{1j} |w_1\rangle + \dots + a_{nj} |w_n\rangle$$

où $|v_1\rangle, \ldots, |v_m\rangle$ est une base de V et $|w_1\rangle, \ldots, |w_n\rangle$ est une base de W.

• Nous utiliserons indifféremment les points de vue de la représentation matricielle et de l'**opérateur abstrait** dans la notation de Dirac.

4. Matrices de Pauli

• Nous utiliserons très souvent les matrices de Pauli données par

$$\sigma_0 \equiv I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \sigma_1 \equiv \sigma_x \equiv X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\sigma_2 \equiv \sigma_y \equiv Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad \sigma_3 \equiv \sigma_z \equiv Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- Elles forment un base de l'espace des matrices 2×2 complexes.
- De plus elles sont hermitiennes, involutives et unitaires.
- Elles vérifient les relations de commutation et d'anti-commutation

$$[\sigma_i, \sigma_j] = 2i \,\epsilon_{ijk} \,\sigma_k \qquad \qquad \{\sigma_i, \sigma_j\} = 2 \,\delta_{ij} \,I$$

où ϵ_{ijk} est le symbole de Levi-Civita, δ_{ij} est le symbole de Kronecker.

5. Produit scalaire

• On écrit le **produit scalaire** entre deux vecteurs $|v\rangle$ et $|w\rangle$ sous la forme

$$(|v\rangle, |w\rangle) = \langle v|w\rangle$$

- C'est un nombre complexe et le vecteur $\langle v|$ est le **dual** du vecteur $|v\rangle$, c'est-à-dire le **conjugué-transposé** de $|v\rangle$.
- $|v\rangle$ et $|w\rangle$ sont les éléments d'un **espace hermitien**, c'est-à-dire un e.v complexe de dimension finie muni d'un **produit scalaire**.
- En termes de représentation matricielle, un vecteur dual est un vecteur ligne tandis qu'un vecteur donné est a priori un vecteur colonne.
- Soient z_i (i = 1, 2) sont des **nombres complexes**, dans ce cas on a

$$|v\rangle = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
 donc $\langle v| = \begin{bmatrix} z_1^* & z_2^* \end{bmatrix}$

- Une fonction (\cdot, \cdot) de $V \times V$ dans \mathbb{C} est un **produit scalaire** si elle satisfait aux conditions suivantes :
 - (1) (\cdot, \cdot) est linéaire par rapport à son deuxième argument, c'est-à-dire

$$\left(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle\right) = \sum_{i} \lambda_{i} \left(|v\rangle, |w_{i}\rangle\right)$$

- (2) $(|v\rangle, |w\rangle) = (|w\rangle, |v\rangle)^*$
- (3) $(|v\rangle, |v\rangle) \ge 0$ avec égalité si et seulement si $|v\rangle = 0$
- Par exemple, \mathbb{C}^n a un produit scalaire défini par

$$((y_1,\ldots,y_n),(z_1,\ldots,z_n)) \equiv \sum_i y_i^* z_i = \begin{bmatrix} y_1^* & \cdots & y_n^* \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$

• En mécanique quantique il est souvent fait référence aux **espaces de Hilbert**. Ces espaces sont en fait la généralisation en dimension infinie des espaces hermitiens (de dimension finie).

- Les vecteurs $|w\rangle$ et $|v\rangle$ sont **orthogonaux** (ou perpendiculaire) si leur produit scalaire est nul. Par exemple, $|w\rangle \equiv (1,0)$ et $|v\rangle \equiv (0,1)$ sont orthogonaux, on peut utiliser la définition précédente pour le vérifier.
- On définit la **norme** d'un vecteur $|v\rangle$ par

$$||v\rangle|| = \sqrt{\langle v|v\rangle}$$

- Un vecteur unitaire est un vecteur $|v\rangle$ tel que $||v\rangle|| = 1$.
- On dit aussi que $|v\rangle$ est **normalisé** si $||v\rangle|| = 1$.
- Si un vecteur $|u\rangle$ n'est pas normalisé, sa version normalisée $|u'\rangle$ est

$$|u'\rangle = \frac{|u\rangle}{\||u\rangle\|}$$
 soit $|u'\rangle = \frac{|u\rangle}{\sqrt{\langle u|u\rangle}}$

• Un ensemble de vecteurs $|i\rangle$ est **orthonormé** si chaque vecteur est unitaire et chacun est orthogonal aux autres, c'est-à-dire

$$\langle i|j\rangle = \delta_{ij}$$

où $i, j \in \{1, ..., n\}$.

- Supposons $|w_1\rangle, \ldots, |w_d\rangle$ forme une **base** d'un espace vectoriel V muni d'un produit scalaire.
- La **procédure de Gram-Schmidt** permet de produire une base orthonormée $|v_1\rangle, \ldots, |v_d\rangle$ pour l'espace vectoriel V.
- On définit le premier vecteur $|v_1\rangle = |w_1\rangle/||w_1\rangle||$, et pour $1 \le k \le d-1$ on définit $|v_{k+1}\rangle$ par induction selon la formule de récurrence

$$|v_{k+1}\rangle = \frac{|w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1} \rangle |v_i\rangle}{\||w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1} \rangle |v_i\rangle\|}$$

- On peut facilement **vérifier** que l'ensemble des vecteurs $|v_1\rangle, \ldots, |v_d\rangle$ est orthonormé.
- \bullet Une conséquence de ceci est que tout espace vectoriel de dimension d a une base orthonormée.
- Désormais, on supposera que **toute représentation matricielle** soit par rapport à des bases orthonormées d'entrée et de sortie.

• Soient les **représentations** des vecteurs d'un espace de Hilbert suivantes

$$|w\rangle = \sum_{i} w_{i} |i\rangle$$
 et $|v\rangle = \sum_{i} v_{j} |j\rangle$

où les bases de vecteurs $|i\rangle$ et $|j\rangle$ orthonormées.

• On peut alors calculer que

$$\langle v|w\rangle = \left(\sum_{i} v_{i} |i\rangle, \sum_{j} w_{j} |j\rangle\right) = \sum_{ij} v_{i}^{*} w_{j} \delta_{ij} = \sum_{i} v_{i}^{*} w_{i}$$
$$= \left[v_{1}^{*} \cdots v_{n}^{*}\right] \begin{bmatrix}w_{1} \\ \vdots \\ w_{n}\end{bmatrix}$$

où on a utiliser la relation $\langle i|j\rangle = \delta_{ij}$.

• On a également utiliser la notation concise $\sum_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n}$

- Il existe un moyen commode de représenter les opérateurs linéaires qui utilise le produit scalaire, connu sous le nom de **produit extérieur**.
- Supposons $|v\rangle$ est un vecteur dans un **espace hermitien** V, et $|w\rangle$ est un vecteur dans un **espace hermitien** W.
- On définit le produit extérieur de $\langle v|$ avec $|w\rangle$, noté $|w\rangle\langle v|$, être l'**opérateur linéaire** de V à W par l'expression

$$(|w\rangle\langle v|)(|v'\rangle) \equiv |w\rangle\langle v|v'\rangle = \langle v|v'\rangle|w\rangle$$

- Dans cette écriture on considère que l'opérateur $|w\rangle\langle v|$ «agit » sur $|v'\rangle$.
- De même, il s'agit aussi d'une **multiplication** de $|w\rangle$ par le nombre complexe $\langle v|v'\rangle$. Si on pose $A=|w\rangle\langle v|$ alors $A|v'\rangle=\alpha|w\rangle$ avec $\alpha=\langle v|v'\rangle$
- On peut définir des **combinaisons linéaires** d'opérateurs de produits extérieurs $|w\rangle\langle v|$ de manière évidente. Par définition l'opérateur linéaire

$$\sum_{i} a_i |w_i\rangle\langle v_i|$$

« agit » sur le vecteur $|v'\rangle$ et produit la combinaison linéaire de vecteur $\sum_i a_i |w_i\rangle\langle v_i|v'\rangle$

• Par le produit extérieur dans la notation de Dirac on peut construire, avec une base orthonormée $|i\rangle$ sur V, l'**opérateur identité** selon

$$I = \sum_{i} |i\rangle\langle i|$$

où on peut vérifier que $I|v\rangle = I|v\rangle$ pour tout $|v\rangle \in V$.

- Cette définition de l'opérateur identité est aussi appelée **relation de fermeture** et elle est très (très) souvent utilisée dans les calculs.
- Par exemple, pout tout opérateur $A: V \to W$ on peut écrire

$$A = I_W \, A \, I_V = \sum_{ij} |w_j\rangle \langle w_j|A|v_i\rangle \langle v_i| = \sum_{ij} \langle w_j|A|v_i\rangle |w_j\rangle \langle v_i|$$

où $\langle w_j|A|v_i\rangle$ est l'**élément de matrice** $\langle w_j|A|v_i\rangle$ dans la i-ème colonne et la j-ème ligne, par rapport à la base d'entrée $|v_i\rangle$ et base de sortie $|w_j\rangle$

• Une autre application de cette relation de fermeture est l'**inégalité de** Cauchy-Schwarz traduisant une propriété géométrique des espaces de Hilbert.

6. Vecteurs propres et valeurs propres

• Un vecteur propre $|v\rangle \neq 0$ d'un opérateur linéaire A est défini par l'équation aux valeurs propres suivante

$$A|v\rangle = v|v\rangle$$

où v est un nombre complexe appelé valeur propre de A associée à $|v\rangle$.

- Il sera souvent pratique d'utiliser la notation v à la fois comme label pour le vecteur propre et pour représenter la valeur propre elle-même.
- La fonction caractéristique est définie comme étant

$$\chi(\lambda) = \det|A - \lambda I|$$

où det est la fonction déterminant des matrices.

- On rappel que les valeurs propres d'un opérateur donné sont solutions de l'équation caractéristique $\chi(\lambda)=0$.
- L'espace propre correspondant à une valeur propre v est l'ensemble des vecteurs qui ont pour valeur propre v. C'est un sous-espace vectoriel de l'espace vectoriel sur lequel A agit.

• Un opérateur A sur V est dit **diagonalisable** s'il possède une **représentation diagonale** d'un opérateur de la forme suivante

$$A = \sum_{i} \lambda_{i} |i\rangle\langle i|$$

- Les vecteurs $|i\rangle$ forment un **ensemble orthonormé** de vecteurs propres pour A, avec des **valeurs propres** associées λ_i .
- \bullet Un exemple simple de représentation diagonale est la matrice de Pauli Z

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|$$

- Une valeur propre associé à plusieurs vecteurs propres est dite dégénérée, tout comme l'espace propre qui lui est associé.
- Par exemple, la matrice suivante

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

possède un espace propre bidimensionnel correspondant à la valeur propre 2. Les deux vecteurs propres qui lui sont associés sont (1,0,0) et (0,1,0)

2. Les deux vecteurs propres qui lui sont associés sont (1,0,0) et (0,1,0). \Rightarrow Exercices 1, 11 du document de cours

Exercices supplémentaires

EXERCICE 1

Any normalized state (qubit) in \mathbb{C}^2 can be written as

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
, $\alpha, \beta \in \mathbb{C}$, $|\alpha|^2 + |\beta|^2 = 1$.

Find a parameter representation (i) if the underlying field is the set of real numbers (ii) if the underlying field is the set of complex numbers.

EXERCICE 2

Consider the normalized states in \mathbb{C}^2 $(\theta_1, \theta_2 \in [0, 2\pi))$

$$\begin{pmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{pmatrix}, \qquad \begin{pmatrix} \cos(\theta_2) \\ \sin(\theta_2) \end{pmatrix}.$$

Find the condition on θ_1 and θ_2 such that the vector

$$\begin{pmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{pmatrix} + \begin{pmatrix} \cos(\theta_2) \\ \sin(\theta_2) \end{pmatrix}$$

is normalized.

EXERCICE 3

Let $\{|0\rangle, |1\rangle\}$ be an orthonormal basis in the Hilbert space \mathbb{C}^2 . The *NOT operation* (unitary operator) is defined as

$$|0\rangle \rightarrow |1\rangle, \qquad |1\rangle \rightarrow |0\rangle.$$

- (i) Find the unitary operator U_{NOT} which implements the NOT operation with respect to the basis $\{|0\rangle, |1\rangle\}$.
- (ii) Consider the standard basis

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Find the matrix representation of U_{NOT} for this basis.

(iii) Consider the Hadamard basis

$$|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \qquad |1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

Find the matrix representation of U_{NOT} for this basis.

EXERCICE 4

Let $|0\rangle$, $|1\rangle$ be an orthonormal basis in \mathbb{C}^2 . The Walsh-Hadamard transform is a 1-qubit operation, denoted by H, and performs the linear transform

$$|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \qquad |1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

- (i) Find the unitary operator U_H which implements H with respect to the basis $\{|0\rangle, |1\rangle\}$.
- (ii) Find the inverse of this operator.
- (iii) Consider the standard basis

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

in \mathbb{C}^2 . Find the matrix representation of U_H for this basis.

(iv) Consider the Hadamard basis

$$|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \qquad |1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

in \mathbb{C}^2 . Find the matrix representation of U_H for this basis.

7. Opérateurs adjoints et hermitiens

• Soit A soit un opérateur linéaire sur un espace de Hilbert V. Dans ce cas, son **opérateur adjoint** (ou *conjugué hermitien*) A^{\dagger} est défini par

$$(|w\rangle, A|v\rangle)^* = (A^{\dagger}|v\rangle, |w\rangle)$$
 soit $\langle w|A|v\rangle^* = \langle v|A^{\dagger}|w\rangle$

 \bullet On peut aussi définir le **dual** $\langle v|$ (bra) du vecteur $|v\rangle$ (ket) par la relation

$$(A|v\rangle)^{\dagger} = \langle v|A^{\dagger}$$

- La définition de l'opérateur adjoint dans la notation de Dirac donne une interprétation simple de la **représentation matricielle** de A^{\dagger} .
- \bullet L'inversion des « indices » w et v indique l'opération de transposition.
- Le symbole * indique l'opération de **conjugaison complexe**.
- Donc pour obtenir la matrice A^{\dagger} à partir de celle de A il suffit de la **transposer** et puis de prendre son **conjugué**.

• Un opérateur A est appelé **opérateur hermitien** ou **opérateur auto-adjoint** si il est invariant par transposition-conjugaison, soit

$$A = A^{\dagger}$$
 ou encore $A = (A^*)^{\mathsf{T}}$

• Voici un **exemple** de l'opération de transposition-conjugaison

$$\begin{bmatrix} 1+3i & 2i \\ 1+i & 1-4i \end{bmatrix}^{\dagger} = \begin{bmatrix} 1-3i & 1-i \\ -2i & 1+4i \end{bmatrix}^{\dagger}$$

- Une propriété intéressante des opérateurs hermitien est que leur **spectre**, correspondant à l'ensemble de leurs valeurs propres, est **réel**.
- Un type particulier d'opérateur auto-adjoint sont les **projecteurs**

$$P \equiv \sum_{i=1}^{k} |i\rangle\langle i|$$

où $|i\rangle$ est une base orthonormée. Cet opérateur **projète** un vecteur d'un e.v de dimension d dans un sous e.v de dimension k < d.

• Tout opérateur projecteur P vérifient la propriété $P^2 = P$.

• Un opérateur A est dit **normal** si il vérifie la relation

$$AA^{\dagger} = A^{\dagger}A$$

- Il est clair qu'un opérateur hermitien est **également** normal.
- Le théorème de décomposition spectrale indique que tout opérateur normal est diagonalisable (voir le document de cours).
- $\bullet\,$ Une opérateur U est dit **unitaire** si il vérifie les relations

$$U^{\dagger}U = U U^{\dagger} = I$$

- Un opérateur unitaire est également normal, il possède donc une décomposition spectrale.
- Géométriquement, les opérateurs unitaires préservent le **produit** scalaire entre vecteurs. En effet on vérifie facilement que

$$(U|v\rangle, U|w\rangle) = \langle v|UU^{\dagger}|w\rangle = \langle v|I|w\rangle = \langle v|w\rangle$$

• Si $|v_i\rangle$ est une base orthonormée alors les vecteurs $|w_i\rangle = U|v_i\rangle$ forment aussi une base orthonormée. On peut donc écrire U sous la forme

$$U = \sum_{i} |w_i\rangle\langle v_i|$$

- Inversement, si $|v_i\rangle$ et $|w_i\rangle$ sont deux bases orthonormées quelconques, alors l'opérateur U ainsi défini est un opérateur unitaire.
- Un opérateur A est dit **positif** si pour tout vecteur $|v\rangle$, la quantité scalaire $(|v\rangle, A|v\rangle)$ est un nombre réel non négatif.
- Si $(|v\rangle, A|v\rangle)$ est **strictement supérieur** à zéro pour tout $|v\rangle \neq 0$, soit

$$\langle v|A|v\rangle > 0$$

alors on dit que A est **défini positif**.

• Tout opérateur positif est hermitien.

8. Produit tensoriel

- Le produit tensoriel est l'opération permettant « d'assembler » des espaces vectoriels en espaces vectoriels **plus grands**.
- Physiquement, cela permet de construire des représentations de **systèmes composites** formés de plusieurs sous-systèmes.
- Si V et W sont deux e.v de dimension n et m alors l'**espace vectoriel** $V \otimes W$ (lire «V tensoriel W») est de dimension $n \times m$.
- Les **éléments** de $V \otimes W$ sont notés $|v\rangle \otimes |w\rangle$ avec $|v\rangle \in V, |w\rangle \in W$ et sit $|i\rangle \in V, |j\rangle \in W$ sont des **bases**, alors $|i\rangle \otimes |j\rangle$ est une base de $V \otimes W$.
- On utilisera les **notations abrégées** $|v\rangle|w\rangle$, $|v,|w\rangle$ ou même $|vw\rangle$ pour le produit tensoriel $|v\rangle\otimes|w\rangle$.
- Par exemple, si V est un e.v à **deux dimensions** avec des vecteurs de base $|0\rangle$ et $|1\rangle$ alors $|0\rangle\otimes|0\rangle+|1\rangle\otimes|1\rangle$ est un élément de $V\otimes V$.

- Par définition, le **produit tensoriel** satisfait les propriétés suivantes :
 - (1) Si z est un scalaire arbitraire, $|v\rangle \in V$ et $|w\rangle \in W$ alors

$$z(|v\rangle \otimes |w\rangle) = (z|v\rangle) \otimes |w\rangle = |v\rangle \otimes (z|w\rangle)$$

(2) Si $|v_1\rangle$ et $|v_2\rangle$ appartiennent à V et $|w\rangle$ appartient à W alors

$$(|v_1\rangle \otimes |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle$$

(3) Si $|v\rangle$ appartient à V et $|w_1\rangle$ et $|w_2\rangle$ appartiennent à W alors

$$|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle$$

• Soient A et B sont des **opérateurs linéaires** sur V et W, Alors nous pouvons définir un opérateur linéaire $A\otimes B$ sur $V\otimes W$ par

$$(A \otimes B) (|v\rangle \otimes |w\rangle) \equiv A|v\rangle \otimes B|w\rangle$$

• On notera que, du point de vue de la **notation**, le « premier » opérateur agit sur le « premier » vecteur du produit tensoriel.

- La notion de produit tensoriel de deux opérateurs s'étend de manière évidente au cas où les opérateurs $A:V\to V'$ et $B:W\to W'$ agissent entre **différents espaces vectoriels**.
- En effet, pour un opérateur $C: V \otimes W \to V' \otimes W'$ on peut écrire

$$C = \sum_{i} c_i A_i \otimes B_i$$

• Dans ce cas, par définition, on a également

$$C(|v\rangle \otimes |w\rangle) = \left(\sum_{i} c_{i} A_{i} \otimes B_{i}\right) |v\rangle \otimes |w\rangle \equiv \sum_{i} c_{i} A_{i} |v\rangle \otimes B_{i} |w\rangle$$

• Les **produits scalaires** sur les espaces V et W peuvent être utilisés pour définir un produit scalaire naturel sur $V\otimes W$. On a

$$\left(\sum_{i} a_{i} | v_{i} \rangle \otimes | w_{i} \rangle, \sum_{j=1}^{n} b_{j} | v_{j}' \rangle \otimes | w_{j}' \rangle\right) \equiv \sum_{ij} a_{i}' b_{j} \langle v_{i} | v_{j}' \rangle \langle w_{i} | w_{j}' \rangle$$

• À partir de cela, on peut en déduire que l'espace hermitien $V \otimes W$ hérite des autres structures que nous avons rencontrées auparavant.

- Il existe une représentation matricielle commode du produit tensoriel connue sous le nom de **produit de Kronecker**.
- Soit A une matrice de taille $m \times n$ et B une matrice de taille $p \times q$. On a alors la représentation matricielle suivante

$$A \otimes B \equiv \begin{bmatrix} A_{11}B & A_{12}B & \cdots & A_{1n}B \\ A_{21}B & A_{22}B & \cdots & A_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1}B & A_{m2}B & \cdots & A_{mn}B \end{bmatrix}$$

$$m \times p$$

 \bullet Par exemple, le produit tensoriel des vecteurs (1,2) et (2,3) est donné par

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} \\ 2 \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \times 2 \\ 1 \times 3 \\ 2 \times 2 \\ 2 \times 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \end{bmatrix}$$

• On a aussi la notation $|\psi\rangle^{\otimes k} = \overbrace{|\psi\rangle\otimes\cdots\otimes|\psi\rangle}_{\text{and }}$

9. FONCTIONS D'OPÉRATEURS

- De nombreuses **fonctions** importantes sont définies lorsque leur argument est un opérateur ou une matrice.
- D'une manière générale, il est possible de définir une fonction matricielle sur des matrices normales ou hermitiennes.
- Soit $A = \sum_a a |a\rangle\langle a|$ une **décomposition spectrale** pour un opérateur normal A. On définit alors une fonction f par

$$f(A) = \sum_{a} f(a) |a\rangle\langle a|$$

- On peut ainsi définir, de manière **unique**, de nombreuses fonctions utiles telles que la racine carré d'un opérateur positif, l'exponentielle, etc...
- On peut, par exemple, écrire l'expression suivante

$$\exp\left(\theta Z\right) = \left[\begin{array}{cc} e^{\theta} & 0\\ 0 & e^{-\theta} \end{array}\right]$$

puisque les vecteurs propres de Z sont $|0\rangle$ et $|1\rangle$.

• La trace de A est définie comme étant la somme de ses éléments diagonaux, c'est-à-dire ($|i\rangle$ est une base ici)

$$\operatorname{tr}(A) \equiv \sum_{i} A_{ii}$$
 ou encore $\operatorname{tr}(A) = \sum_{i} \langle i|A|i\rangle$

• La trace est invariante par **permutation cyclique**, c'est-à-dire

$$tr(AB) = tr(BA)$$
 , $tr(ABC) = tr(BCA) = tr(CAB)$, ...

• De plus, la trace est une fonction linéaire, soit

$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$
 et $\operatorname{tr}(zA) = z\operatorname{tr}(A)$

où A et B sont des matrices arbitraires et z est un nombre complexe.

• La cyclicité de la trace, implique qu'une matrice est invariante par transformation de similarité unitaire $A \to UAU^{\dagger}$ puisque l'on a

$$\operatorname{tr}(UAU^{\dagger}) = \operatorname{tr}(U^{\dagger}UA) = \operatorname{tr}(A)$$

- De manière générale on définit la **trace d'un opérateur** A comme étant la trace de toute représentation matricielle de A.
- L'invariance de la trace sous les transformations unitaires de similarité assure que la trace d'un opérateur est bien définie.

• Incidemment, la trace d'un **produit de Kronecker** de deux matrices est le produit de leurs traces, soit

$$\operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B)$$

- Supposons que $|\psi\rangle$ soit un vecteur unitaire et A est un opérateur arbitraire.
- Pour évaluer $\operatorname{tr}(A|\psi\rangle\langle\psi|)$, on construit une base orthonormée $|i\rangle$ où $|\psi\rangle$ est le premier élément en utilisant la procédure de Gram-Schmidt.
- On pourra alors écrire

$$\operatorname{tr}(A|\psi\rangle\langle\psi|) = \sum_{i} \langle i|A|\psi\rangle\langle\psi|i\rangle \quad \text{ soit } \quad \operatorname{tr}(A|\psi\rangle\langle\psi|) = \langle\psi|A|\psi\rangle$$

• Ce résultat est extrêmement utile pour évaluer la trace d'un opérateur.

10. Commutateur et anti-commutateur

 $\bullet\,$ Le commutateur entre deux opérateurs A et B est défini comme étant

$$[A, B] \equiv AB - BA$$

- Si [A, B] = 0, soit AB = BA, alors on dit que A commute avec B.
- \bullet L'anti-commutateur de deux opérateurs A et B est défini par

$$\{A,B\} \equiv AB + BA$$

- On dit alors que A anti-commute avec B si $\{A, B\} = 0$.
- De **nombreuses** propriétés importantes des paires d'opérateurs peuvent être déduites de leur commutateur et de leur anti-commutateur.

- Un résultat fondamental est que deux opérateurs hermitiens commutant peut être diagonaliser simultanément les opérateurs.
- En termes plus précis, si [A, B] = 0 alors les opérateurs A et B, de base propre commune orthonormale $|i\rangle$, peuvent s'écrire sous la forme

$$A = \sum_{i} a_{i} |i\rangle\langle i|$$
 et $B = \sum_{i} b_{i} |i\rangle\langle i|$

- Théorème. Soient A et B des opérateurs hermitiens. Alors [A, B] = 0 si et seulement s'il existe une base orthonormée telle que A et B soient tous deux diagonaux par rapport à cette base. On dit que alors A et B sont simultanément diagonalisables dans ce cas.
- Ce résultat relie le commutateur de deux opérateurs, souvent **facile** à calculer, à la propriété d'être diagonalisable simultanément, ce qui est a priori assez difficile à déterminer.
- Par exemple, on peut facilement vérifier que [X,Y]=0, les opérateurs X et Y n'ont donc pas de **vecteurs propres** communs.

11. DÉCOMPOSITION POLAIRE ET DÉCOMPOSITION EN VALEURS SINGULIÈRES

- Ces décompositions sont des moyens utiles afin de décomposer les opérateurs linéaires en opérateurs **plus simples**.
- En particulier, celles-ci permettent de décomposer les opérateurs linéaires généraux en **produits** d'opérateurs unitaires et d'opérateurs positifs.
- Théorème de décomposition polaire. Soit A un opérateur linéaire sur un espace vectoriel V. Alors il existe un

Soit A un opérateur linéaire sur un espace vectoriel V. Alors il existe un opérateur unitaire U et des opérateurs positifs J et K tels que

$$A = UJ = KU$$

où les opérateurs positifs uniques J et K sont définis par $J \equiv \sqrt{A^{\dagger}A}$ et $K \equiv \sqrt{AA^{\dagger}}$. De plus, si A est inversible alors U est unique.

• On appelle l'expression A = UJ la décomposition polaire gauche de A, et A = KU la décomposition polaire droite de A.

• Théorème de décomposition en valeurs singulières.

Soit A une matrice carrée. Alors il existe des matrices unitaires U et V, et une matrice diagonale D à entrées positives telles que

$$A = UDV$$

Les éléments diagonaux de D sont appelés les valeurs singulières de A.

- Ce théorème **combine** en fait le théorème de décomposition polaire et le théorème spectral.
- Le théorème de décomposition en valeurs singulière est utilisée dans la procédure de **décomposition de Schmidt**.