

Introduction:

Dans la quête du bien-être sociétal et du progrès, tous les gouvernements partagent une aspiration commune : l'augmentation du taux d'espérance de vie. La mesure du succès d'une nation est de plus en plus liée à la santé et à la longévité de ses citoyens. Pour dévoiler les facteurs complexes qui façonnent les taux d'espérance de vie, nous plongeons dans le domaine de l'analyse de données, en nous concentrant particulièrement sur un ensemble de données exhaustif portant sur l'espérance de vie.

A propos: Life Expectancy Dataset

Ce jeu de données spécifie l'espérance de vie en fonction d'une liste d'attributs. Les caractéristiques incluses dans le dataset sont les suivante

- · Pays (Country),
- Taux d'alphabétisation (literacyrate),
- Homicides pour 100 000 habitants (homicidiesper100k),
- Accès à l'électricité (electricity),
- · Niveau de scolarité (Schooling),
- · VIH/SIDA (HIV.AIDS),
- · Statut (Status),

- · Accès à l'eau potable (wateraccess),
- Tuberculose (tuberculosis),
- · Taux d'inflation (inflation),
- · Dépenses de santé par habitant (healthexppercapita),
- · Taux de fécondité (fertilityrate),
- · Espérance de vie (lifeexp),
- · Accès à Internet (internet),
- · PIB par habitant (gdppercapita),
- Émissions de CO2 (CO2),
- · Couverture forestière (forest),
- · Population urbaine (urbanpop),
- Croissance de la population urbaine (urbanpopgrowth),
- · Pays les moins développés (leastdeveloped).

Objectif : Déterminer la qualité de vie dans les pays en fonction de divers indicateurs de santé et de développement en utilisant des techniques de la classification

Importation des Bibliothèques :

```
1 import pandas as pd
2 import seaborn as sns
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from sklearn.impute import SimpleImputer
6 from sklearn.model_selection import train_test_split
7 from sklearn.linear_model import linearRegression
8 from sklearn.linear_model import train_test_split
7 from sklearn.metrics import mean_squared_error, r2_score
9 from sklearn.preprocessing import StandardScaler
10 from sklearn.cluster import AgglomerativeClustering
11 from scipy.cluster.hierarchy import linkage, dendrogram
12 from sklearn.preprocessing import LabelEncoder, StandardScaler
13 from sklearn.neighbors import KNeighborsClassifier
14 from sklearn.svm import SVC
15 from sklearn.metrics import confusion matrix, classification report
```

Chargement des Données :

```
1 df = pd.read_csv('lifeexpectancy1.csv')
2 df2 = pd.read_csv('lifeexpectancy2.csv')
```

Prétraitement des données :

Fusion des deux jeux de donnée, sélection des colonnes pertinentes et traitement des valeurs manquantes.

```
1 combined_df = pd.concat([df, df2])
2 combined_df = combined_df.drop_duplicates(subset='Country')
 4 combined_df = combined_df.reset_index(drop=True)
 5 | fe_data = combined_df[["Country", "Status", "wateraccess", "inflation", "tuberculosis", "lifeexp", "literacyrate", "electricity", "Schooling"]]
 7 # Création d'un imputeur qui remplace chaque valeur manquante par la moyenne de cette colonne
 8 imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
10 # Séparation des caractéristiques numériques et catégorielle
11 num cols = lfe data.select dtypes(include=['float64', 'int64']).columns
12 cat_cols = lfe_data.select_dtypes(include=['object']).columns
13
14 # Application de l'imputeur aux colonnes numériques
15 lfe data[num cols] = imputer.fit transform(lfe data[num cols])
16 pd.set option('display.max rows', None)
18 print(lfe data)
                               Country
                                                   Status wateraccess inflation
```

124 02.13				Official Cub.if
8	Brazil	Developing	98.1	6.329152
9	Bulgaria	Developed	99.4	-1.418184
10	Chile	Developing	99.0	4.718675
11	China	Developing	94.8	1.921643
12	Colombia	Developing	91.3	2.897819
13	Costa Rica	Developing	97.7	4.519346
14	Croatia	Developed	99.6	-0.215196
15	Cyprus	Developed	100.0	-1.354989
16	Dominican Republic	Developing	85.0	2.998642
17	Ecuador	Developing	86.9	3.589220
18	El Salvador	Developing	93.1	1.141345
19	Estonia	Developing	99.6	-0.106175
20	Georgia	Developing	99.6	3.068812
21	Greece	Developing	100.0	-1.311211
22	Guatemala	Developing	92.7	3.418362
23	Honduras	Developing	90.6	6.129249
24	Hungary	Developed	100.0	-0.227566
25	India	Developing	94.1	6.353195
26	Indonesia	Developing	86.8	6.394925
27	Italy	Developed	100.0	0.241047
28	Jamaica	Developing	93.8	8.290006
29	Jordan	Developing	96.9	2.898932
30	Kazakhstan	Developing	92.9	6.849450
31	Kenya	Developing	63.1	6.878155
32	Latvia	Developed	99.3	0.620491
33	Lebanon	Developing	99.0	1.854604
34	Lithuania	Developed	96.6	0.103790
35	Malta	Developed	100.0	0.310306
36	Mauritius	Developing	99.9	3.217692
37	Mexico	Developing	96.1	4.018616
38	Mongolia	Developing	64.2	12.225448
39	Morocco	Developing	85.3	0.442310
40	Myanmar	Leastdeveloped	80.5	5.046411
41	Nepal	Leastdeveloped	90.7	8.364155
42	Nicaragua	Developing	86.9	6.035969
43	Oman	Developing	93.4	1.022343
44	Pakistan	Developing	91.3	7.189384
45	Panama	Developing	94.4	2.630931
46	Paraguay	Developing	96.6	5.028828
47	Peru	Developing	86.3	3.244963
48	Philippines	Developing	91.5	3.597823
49	Poland	Developed	98.3	0.053821
50	Portugal	Developed	100.0	-0.278153
51	Romania	Developed	100.0	1.068310
52	Singapore	Developed	100.0	1.024983
53	Slovenia	Developed	99.5	0.199344
54	South Africa	Developing	92.8	6.136020
55	Snain	Develoned	100.0	-0.150870

L'objectif est d'éliminer les données superflues, corriger les erreurs éventuelles et sélectionner les variables clés nécessaires à notre analyse approfondie. Cette étape nous permettra de disposer d'un jeu de données fiable et optimisé pour identifier les facteurs influant sur la durée de vie.

Exploration des Données :

Analyse des données :

- Pour comprendre la distribution des caractèristiques
- Prendre connaissance des valeurs manquantes (si présente)

1 lfe_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 138 entries, 0 to 137
Data columns (total 9 columns):
# Column
                Non-Null Count Dtype
0 Country
                  138 non-null
    Status
                  138 non-null
                                  object
                  138 non-null
                                  float64
    wateraccess
                  138 non-null
                                  float64
    inflation
    tuberculosis 138 non-null
                                  float64
    lifeexp
                  138 non-null
                                  float64
                                  float64
    literacyrate 138 non-null
    electricity
                  138 non-null
                                  float64
    Schooling
                  138 non-null
                                  float64
dtypes: float64(7), object(2)
memory usage: 9.8+ KB
```

• Résumé statistique des principales caractéristiques numériques du DataFrame

1 lfe_data.describe()

	wateraccess	inflation	tuberculosis	lifeexp	literacyrate	electricity
count	138.000000	138.000000	138.000000	138.000000	138.000000	138.000000
mean	88.554348	3.816283	121.607681	71.615724	90.855738	3180.130238
std	14.732248	5.065714	162.039059	8.202395	7.679331	2071.932719
min	40.000000	-1.509245	0.760000	50.621000	55.375190	139.143681
25%	81.725000	0.860427	14.000000	66.151250	90.855738	2743.672186
50%	95.350000	2.704123	53.000000	73.752500	90.855738	3180.130238
75%	99.675000	5.208063	166.500000	77.151037	93.724381	3180.130238
max	100.000000	36.906643	852.000000	83.587805	99.895903	19592.231949
4						>

Visualisation de donnée:

Cette historigramme nous permet de visualiser la tranche d'esperance de vie et sa fréquence dans notre data set, la frequence indiquant combien de pays ont une espérance de vie dans chaque intervalle spécifié

```
1 lfe_data = lfe_data.dropna()
2
3 plt.hist(lfe_data['lifeexp'], bins=30, edgecolor='black', color='skyblue')
4
5 plt.axvspan(40, 50, color='yellow', alpha=0.3, label='40-50 ans')
6 plt.axvspan(50, 60, color='orange', alpha=0.3, label='50-60 ans')
7 plt.axvspan(60, 70, color='red', alpha=0.3, label='60-70 ans')
8 plt.axvspan(70, 80, color='purple', alpha=0.3, label='70-80 ans')
9 plt.axvspan(80, 90, color='blue', alpha=0.3, label='80-90 ans')
10
11
12 plt.title('Distribution de Life Expectancy')
13 plt.xlabel('Life Expectancy')
14 plt.ylabel('Fréquence')
15 plt.legend()
16 plt.show()
```


Cette historigramme nous permet de visualiser la tranche d'esperance de vie et sa fréquence dans notre data set, la frequence indiquant combien de pays ont une espérance de vie dans chaque intervalle spécifié

```
1 plt.hist(lfe_data['lifeexp'], bins=20, edgecolor='black', color='skyblue')
2 plt.title('Distribution de l\'Espérance de Vie des Pays')
3 plt.xlabel('Espérance de Vie')
4 plt.ylabel('Nombre de Pays')
5 plt.show()
```


Cette matrice de corrélation montre à quel point les variables d'un ensemble de données sont liées entre elles. Dans ce notebook, elle est utilisée pour comprendre comment différentes caractéristiques (comme l'accès à l'électricité) sont corrélées à l'espérance de vie, aidant ainsi à identifier des facteurs influençant la qualité de vie dans les pays.

```
1 correlation_matrix = lfe_data.corr()
2 plt.figure(figsize=(10, 8))
3 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
4 plt.title('Matrice de corrélation')
5 plt.show()
```

<ipython-input-9-29d102897454>:1: FutureWarning: The default value of numeric_only in correlation_matrix = lfe_data.corr()

Les pays avec l'espérance de vie la plus élevée et la plus basse

```
1 df = lfe data.sort values(by='lifeexp', ascending=False)
3 elevee_df = df.iloc[0] #plus élevée
4 basse_df = df.iloc[-1] # plus basse
 6 print("Pays avec l'espérance de vie la plus élévée:", elevee_df['Country'])
7 print("Pays avec l'espérance de vie la plus basse:", basse_df['Country'])
9 result = pd.DataFrame({'Country': [elevee_df['Country'], basse_df['Country']], 'Life Expectancy': [elevee_df['lifeexp'], basse_df['lifeexp']]})
10 sns.barplot(x='Country', y='Life Expectancy', data=result, palette ='viridis')
11 plt.title('Comparaison de l\'espérance de vie plus élevée vs plus basse')
12 plt.xlabel('Pays')
13 plt.ylabel('Espérance de Vie (années)')
14 plt.show()
```

Pays avec l'espérance de vie la plus élévée: Japan Pays avec l'espérance de vie la plus basse: Central African Republic

Comparaison de l'espérance de vie plus élevée vs plus basse

Ce diagramme en cercle montre visuellement la répartition des différents statuts de pays dans votre dataset. Chaque secteur représente un statut (développé, en développement, sous-développé) et sa taille est proportionnelle au nombre de pays ayant ce statut

```
1 status_counts = lfe_data['Status'].value_counts()
3 colors = ['orange', 'red', 'green']
4 plt.figure(figsize=(8, 8))
 \verb|5 plt.pie| (status\_counts, labels=status\_counts.index, autopct='\%1.1f\%', startangle=140, colors=colors) \\
7 plt.title('Répartition des Pays par Statut de Développement')
8 plt.show()
```

Répartition des Pays par Statut de Développement

La corrélation entre le niveau de développement d'un pays (status) et son accès à l'eau potable

```
1 couleurs = ['skyblue', 'lightgreen', 'orange']
2
3 sns.boxplot(x='Status', y='wateraccess', data=lfe_data, palette= couleurs)
4 plt.title('Accès à l\'eau potable par statut')
5 plt.show()
```


Ce graphique en nuage de points montre la relation entre l'inflation et l'espérance de vie, chaque point représentant un pays

```
1 sns.scatterplot(x='inflation', y='lifeexp', data= lfe_data )
2 plt.title('Relation entre l\'Inflation et l\'Espérance de Vie')
3 plt.xlabel('Inflation')
4 plt.ylabel('Espérence de vie')
5 plt.show()
```


Diagramme de barres qui illustre le taux d'inflation pour différents pays

```
1 df = lfe_data.sort_values(by='inflation', ascending=False)
2
3 plt.figure(figsize=(20, 10))
4 bar_colors = sns.color_palette("viridis", len(df))
5 df_pays = df.head(100)
6
7 bars = plt.bar(df_pays['Country'], df_pays['inflation'], color=bar_colors)
8 plt.title('Inflation par pays', fontsize=16)
9 plt.xlabel('Pays', fontsize=14)
10 plt.ylabel('Inflation', fontsize=14)
11 plt.xticks(rotation=90, ha='center', fontsize=12)
12
13 plt.show()
```


Pays

Ce diagramme conçu pour etudier le taux d'inflation dans le dataframe

```
1 def categorize_inflation(inflation) :
    if inflation < 0.1 :
       return 'Faible'
    elif inflation >=0.1 and inflation < 0.4 :
      return 'Moyen'
      return 'Elevé'
 8 lfe_data["rate of quality"] = lfe_data['inflation'].apply(categorize_inflation)
10 rate_of_quality = lfe_data["rate of quality"].value_counts()
11 colors = sns.color_palette('pastel')[0:len(rate_of_quality)]
12
13 plt.figure(figsize=(10, 6))
14 rate_of_quality.plot(kind="bar", color=colors)
15 plt.title('Répartition des Catégories d\'inflation')
16 plt.xlabel('Catégorie d\'Inflation')
17 plt.ylabel('Nombre de Pays')
18
19 plt.show()
```

Répartition des Catégories d'inflation

Prédiction de l'Inflation des Pays Basée sur des Indicateurs de Développement avec Régression Linéaire

```
1 X= lfe_data[['lifeexp', 'tuberculosis', 'literacyrate', 'wateraccess']]
2 y = lfe_data['inflation'] # variable cible
3 X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.5, random_state = 42)
4
5 model = LinearRegression()
6 model.fit(X_train, y_train)
7
8 predictions = model.predict(X_test)
9 predictions = model.predict(X_test)
10 rmse = np.sqrt(mean_squared_error(y_test, predictions)) # erreur quadratique moyenne
11
12 print("RMSE:", rmse)
RMSE: 5.763172736529843
```

Prédire la variable "wateraccess" en utilisant des modèles de classification (K-Nearest Neighbors (KNN) ou Support Vector Classifier (SVC))

```
1 X = lfe_data.drop('wateraccess', axis=1)
2 y = lfe_data['wateraccess']
 4 X = lfe_data.select_dtypes(include=[np.number])
 5 label_encoder = LabelEncoder()
 6 y_encode = label_encoder.fit_transform(y)
7 X_train, X_test, y_train, y_test = train_test_split(X, y_encode, test_size=0.5, random_state=42)
9 # Normalisation des données
10 scaler = StandardScaler()
11 X_train_scaled = scaler.fit_transform(X_train)
12 X_test_scaled = scaler.transform(X_test)
13
14 # Entraînement et évaluation du modèle KNN
15 knn_model = KNeighborsClassifier(n_neighbors=5)
16 knn_model.fit(X_train_scaled, y_train)
17 knn_predictions = knn_model.predict(X_test_scaled)
18 print("KNN Model Evaluation:")
19 print(confusion_matrix(y_test, knn_predictions))
20 print(classification_report(y_test, knn_predictions))
21
22 # Entraînement et évaluation du modèle SVC
23 svc_model = SVC(kernel='linear')
24 svc_model.fit(X_train_scaled, y_train)
25 svc_predictions = svc_model.predict(X_test_scaled)
26
27
28
29 print("\nSVC Model Evaluation:")
30 print(confusion_matrix(y_test, svc_predictions))
31 print(classification_report(y_test, svc_predictions))
```

```
→ KNN Model Evaluation:
    [[ \ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0 ]
     [000...000]
     [100...000]
     [ 0
[ 0
          0 0 ... 0
                        0
          0 0 ... 0 0 0]
     [ 0 0 0 ... 0 0 13]]
                                recall f1-score
                                                    support
                  precision
                0
                        0.00
                                   0.00
                                             0.00
                        0.00
                                   0.00
                                             0.00
                                                          0
                2
                        0.00
                                  0.00
                                             0.00
                                                          1
                3
                        0.00
                                   0.00
                                             0.00
                                                          1
                6
                        0.00
                                   0.00
                                             0.00
                        0.00
                                   0.00
                                             0.00
                                                          1
               9
                        0.00
                                  0.00
                                             0.00
                                                          1
               11
                        0.00
                                  0.00
                                             0.00
                                                          1
               13
                        0.00
                                   0.00
                                             0.00
                                                          1
                        0.00
                                             0.00
               14
                                  0.00
                                                          0
               15
                        0.00
                                  0.00
                                             0.00
                                                          1
               16
                        0.00
                                   0.00
                                             0.00
                                                          0
               17
                        0.00
                                   0.00
                                             0.00
                                                          0
               18
                        0.00
                                   0.00
                                             0.00
                                                          1
               19
                        0.00
                                   0.00
                                             0.00
                                                          1
               20
                        0.00
                                   0.00
                                             0.00
               21
                        0.00
                                   0.00
                                             0.00
               22
                        0.00
                                  0.00
                                             0.00
                                                          0
               23
                        0.00
                                   0.00
                                             0.00
                                                          1
               24
                        0.00
                                  0.00
                                             0.00
                                                          1
               29
                        0.00
                                  0.00
                                             0.00
                                                          0
                        0.00
                                  0.00
               30
                                             0.00
                                                          1
               31
                        0.00
                                  0.00
                                             0.00
                                                          1
               32
                        0.00
                                   0.00
                                             0.00
                                                          1
               33
                        0.00
                                   0.00
                                             0.00
                                                          1
               34
                        0.00
                                   0.00
                                             0.00
               35
                        0.00
                                   0.00
               36
                        0.00
                                   0.00
                                             0.00
                                                          1
               37
                        0.00
                                  0.00
                                             0.00
                                                          1
                        0.00
               38
                                  0.00
                                             0.00
                                                          1
               39
                        0.00
                                  0.00
                                             0.00
                                                          1
               41
                        0.00
                                  0.00
                                             0.00
                                                          1
               42
                        0.00
                                   0.00
                                             0.00
                                                          1
               43
                        0.00
                                  0.00
                                             0.00
                                                          1
               44
                        0.00
                                   0.00
                                             0.00
                                                          1
               45
                        0.00
                                   0.00
                                             0.00
                                                          1
               46
                        0.00
                                   0.00
                                             0.00
                                                          1
               49
                        0.00
                                   0.00
                                             0.00
               51
                        0.00
                                  0.00
                                             0.00
                                                          1
               53
                        0.00
                                  0.00
                                             0.00
                                                          1
               54
                        0.00
                                  0.00
                                             0.00
                                                          1
               56
                                                          0
                        0.00
                                   0.00
                                             0.00
               58
                        0.00
                                   0.00
                                             0.00
                                                          1
               59
                        0.00
                                   0.00
                                             0.00
                                                          1
               60
                        0.00
                                   0.00
                                             0.00
                                                          1
               61
                        0.00
                                   0.00
                                             0.00
                                                          2
               62
                        0.00
                                   0.00
                                             0.00
                                                          1
```

Ce box plot permet de voir la différence entre les atux de scolarisation et le status d'un pays

```
1 plt.figure(figsize=(10, 6))
2 colors = ['skyblue', 'salmon', 'lightgreen']
3
4 sns.boxplot(x='Status', y='Schooling', data=lfe_data, palette= colors)
5 plt.title('Distribution du Taux de scolarisation en fonction du Statut du Pays')
6 plt.xlabel('Statut du pays')
7 plt.ylabel('Taux de Schooling')
8 plt.show()
```

Distribution du Taux de scolarisation en fonction du Statut du Pays

Ce diagramme chercher a mettre en lumièren la correlation entre le taux d'electrisation et le status d'un pays

```
1 plt.figure(figsize=(12, 8))
2 palette = sns.color_palette("husl", 3)
3 colors = {'Developed': palette[0], 'Developing': palette[1], 'Leastdeveloped': palette[2]}
4
5 lfe_data['color'] = lfe_data['Status'].map(lambda x: colors.get(x, 'gray'))
6
7 # Créer graphique de dispersion
8 plt.scatter(lfe_data['Status'], lfe_data['electricity'], c=lfe_data['color'], s=100)
9
10 plt.title('Relation entre Statut des Pays et Disponibilité d\'Électricité')
11 plt.xlabel('Statut')
12 plt.ylabel('flectricité')
13
14 # Ajouter une légende
15 legend_labels = [plt.Line2D([0], [0], marker='o', color='w', label=status,markerfacecolor=color, markersize=10) for status, color in colors.items()]
16 plt.legend(handles=legend_labels, title='Statut')
17 plt.show()
```

Relation entre Statut des Pays et Disponibilité d'Électricité

Analyse de Régression Linéaire pour la Prédiction de l'Espérance de Vie

```
1 X = lfe_data[['wateraccess', 'tuberculosis', 'literacyrate', 'electricity', 'Schooling']]
2 y = lfe_data['lifeexp'] #variable cible
4 #division en ensembles d'entraı̂nement et de test
 5 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
7 # Création et entraînement du modèle
 8 model = LinearRegression()
9 model.fit(X_train, y_train)
10
11 # Prédiction sur l'ensemble de test
12 y_pred = model.predict(X_test)
13 # Calcul de l'erreur quadratique moyenne et du coefficient de détermination
14 mse = mean_squared_error(y_test, y_pred)
15 r2 = r2_score(y_test, y_pred)
17 print(f"Erreur quadratique moyenne (MSE) : {mse}")
18 print(f"Coefficient de détermination (R^2) : {r2}")
19 plt.scatter(y_test, y_pred, alpha=0.5)
20 plt.title("Régression Linéaire : valeurs réelles vs prédites ")
21 plt.xlabel("valeurs réelles")
22 plt.ylabel("valeurs rrédites")
23 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
24 plt.show()
```

Erreur quadratique moyenne (MSE) : 13.538435218423952 Coefficient de détermination (R^2) : 0.8030876962775488

Régression Linéaire : valeurs réelles vs prédites


```
1 selected_columns = ["wateraccess", "inflation", "tuberculosis", "lifeexp", "literacyrate", "electricity", "Schooling"]
2 data = df[selected_columns]
3
4 # Normalisation des données
5 scaler = StandardScaler()
6 normalized_data = scaler.fit_transform(data)
7
8 # Application de l'algorithme de clustering hiérarchique
9 clustering = AgglomerativeClustering(n_clusters=3, linkage='ward')
10 df['Cluster'] = clustering.fit_predict(normalized_data)
11
2 # Visualisation des clusters
3 sns.pairplot(df, hue='Cluster', diag_kind='kde', palette='Dark2')
14 plt.show()
15
```

