Automatic Estimation of Epipolar Geometry

Problem Statement

Given Image pair

<u>Find</u> The fundamental matrix F and correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$.

- Compute image points
- Compute correspondences
- Compute epipolar geometry

Robust line estimation

Fit a line to 2D data containing outliers

There are two problems:

- (i) a line fit to the data $\min_{l} \sum_{i} d_{\perp i}^{2}$; and,
- (ii) a classification of the data into inliers (valid points) and outliers.

RANdom SAmple Consensus (RANSAC)

[Fischler and Bolles, 1981]

Objective Robust fit of a model to a data set S which contains outliers.

Algorithm

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of the sample and defines the inliers of S.
- (iii) If the size of S_i (the number of inliers) is greater than some threshold T, re-estimate the model using all the points in S_i and terminate.
 - (iv) If the size of S_i is less than T, select a new subset and repeat the above.
- (v) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i .

Robust ML estimation

An improved fit by

- A better minimal set
- ullet Robust MLE: instead of $\min_{\mathbf{l}} \sum_i d_{\perp i}^2$

$$\min_{\mathbf{l}} \sum_{i} \gamma\left(d_{\perp i}\right) \quad \text{ with } \gamma(e) = \begin{cases} e^{2} \ e^{2} < t^{2} \ \text{inlier} \\ t^{2} \ e^{2} \geq t^{2} \ \text{outlier} \end{cases}$$

Feature extraction: "Corner detection"

Interest points [Harris]

• 100s of points per image

Correlation matching

- Match each corner to most similar looking corner in the other image
- Many wrong matches (10-50%), but enough to compute the fundamental matrix.

Correspondences consistent with epipolar geometry

- Use RANSAC robust estimation algorithm
- ullet Obtain correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ and \mathtt{F}
- Guided matching by epipolar line
- Typically: final number of matches is about 200-250, with distance error of \sim 0.2 pixels.

Automatic Estimation of F and correspondences

Algorithm based on RANSAC [Torr]

- (i) Interest points: Compute interest points in each image.
- (ii) Putative correspondences: use cross-correlation and proximity.
 - (iii) RANSAC robust estimation:

Repeat

- (a) Select random sample of 7 correspondences
- (b) Compute F
- (c) Measure support (number of inliers)

Choose the F with the largest number of inliers.

- (iv) MLE: re-estimate F from inlier correspondences.
- (v) Guided matching: generate additional matches.

How many samples?

For probability p of no outliers:

$$N = \log(1 - p) / \log(1 - (1 - \epsilon)^s)$$

- N, number of samples
- s, size of sample set
- \bullet ϵ , proportion of outliers

	Sample size Proportion of outliers ϵ							
e.g. for $p=0.95$	s	5%	10%	20%	25%	30%	40%	50%
	2	2	2	3	4	5	7	11
	3	2	3	5	6	8	13	23
	4	2	3	6	8	11	22	47
	5	3	4	8	12	17	38	95
	6	3	4	10	16	24	63	191
	7	3	5	13	21	35	106	382
	8	3	6	17	29	51	177	766

Adaptive RANSAC

- $N = \infty$, sample_count= 0.
- While $N > \text{sample_count Repeat}$
 - Choose a sample and count the number of inliers.
 - Set $\epsilon = 1 \text{(number of inliers)/(total number of points)}$
 - Set N from ϵ with p = 0.99.
 - Increment the sample_count by one.
- Terminate.

e.g. for a sample size of 4

Number of	1 - <i>ϵ</i>	Adaptive
inliers		N
6	2%	20028244
10	3%	2595658
44	16%	6922
58	21%	2291
73	26%	911
151	56%	43

This page left empty

Part 2: Three-view and Multiple-view Geometry

Computing a Metric Reconstruction

Reconstruction from two views

Given only image points and their correspondence, what can be determined?

Two View Reconstruction Ambiguity

Given: image point correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$, compute a reconstruction:

$$\{P, P', X_i\}$$
 with $\mathbf{x}_i = PX_i$ $\mathbf{x}'_i = P'X_i$

Ambiguity

$$\mathbf{x}_i = P\mathbf{X}_i = P H(H)^{-1} \mathbf{X}_i = \tilde{P}\tilde{\mathbf{X}}_i$$

 $\mathbf{x}_i' = P'\mathbf{X}_i = P' H(H)^{-1} \mathbf{X}_i = \tilde{P}'\tilde{\mathbf{X}}_i$

 $\{\tilde{P}, \tilde{P}', \tilde{X}_i\}$ is an equivalent Projective Reconstruction.

Metric Reconstruction

Correct: angles, length ratios.

Algebraic Representation of Metric Reconstruction

Compute H

$$\{\mathbf{P}^1,\;\mathbf{P}^2,...,\mathbf{P}^m,\;\mathbf{X}_i\} \qquad \frac{\rightarrow}{\mathbf{H}} \qquad \{\mathbf{P}^1_{\mathbf{M}},\;\mathbf{P}^2_{\mathbf{M}},...,\mathbf{P}^m_{\mathbf{M}},\;\mathbf{X}^{\mathbf{M}}_i\}$$

Projective Reconstruction

Metric Reconstruction

- Remaining ambiguity is rotation (3), translation (3) and scale (1).
- Only 8 parameters required to rectify entire sequence (15-7=8).

How?

- Calibration points: position of 5 scene points.
- Scene geometry: e.g. parallel lines/planes, orthogonal lines/planes, length ratios.
- Auto-calibration: e.g. camera aspect ratio constant for sequence.

Projective Reconstruction

Direct Metric Reconstruction

Use 5 or more 3D points with known Euclidean coordinates to determine H

Stratified Reconstruction

Given a projective reconstruction $\{P^j, X_i\}$, compute a metric reconstruction via an intermediate affine reconstruction.

(i) affine reconstruction: Determine the vector \mathbf{p} which defines $\boldsymbol{\pi}_{\infty}$. An affine reconstruction is obtained as $\{P^{j}\mathbf{H}_{P}, \mathbf{H}_{P}^{-1}\mathbf{X}_{i}\}$ with

$$\mathtt{H}_{\mathrm{P}} = \left[egin{array}{c} \mathtt{I} & \mathbf{0} \ -\mathbf{p}^{ op} & 1 \end{array}
ight]$$

(ii) Metric reconstruction: is obtained as $\{P_A^jH_A, H_A^{-1}\mathbf{X}_{A_i}\}$ with

$$\mathtt{H}_{\mathrm{A}} = \left[egin{array}{c} \mathtt{K} & \mathbf{0} \\ \mathbf{0}^{ op} & 1 \end{array}
ight]$$

Stratified Reconstruction

- Start with a projective reconstruction.
- Find transformation to upgrade to affine reconstruction.
 - Equivalent to finding the plane at infinity.
- Find transformation to upgrade to metric (Euclidean) reconstruction.
 - Equivalent to finding the "absolute conic"
- Equivalent to camera calibration
 - If camera calibration is known then metric reconstruction is possible.
 - Metric reconstruction implies knowledge of angles camera calibration.

Anatomy of a 3D projective transformation

 \bullet General 3D projective transformation represented by a 4×4 matrix.

$$\begin{aligned} \mathbf{H} &= \begin{bmatrix} s \mathbf{R} \mathbf{K} \ \mathbf{t} \\ \mathbf{v}^\top \ 1 \end{bmatrix} = \begin{bmatrix} s \mathbf{R} \ \mathbf{t} \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{K} \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{v}^\top \ 1 \end{bmatrix} \\ &= \mathsf{metric} \ \times \mathsf{affine} \ \times \mathsf{projective} \end{aligned}$$

Stratified reconstruction ...

- (i) Apply the transformations one after the other:
- Projective transformation reduce to affine ambiguity

$$\begin{bmatrix} \mathbf{I} \\ \mathbf{v}^\top \ 1 \end{bmatrix}$$

• Affine transformation – reduce to metric ambiguity

· Metric ambiguity of scene remains

Reduction to affine

Affine reduction using scene constraints - parallel lines

Reduction to affine

Other scene constraints are possible:

- Ratios of distances of points on line (e.g. equally spaced points).
- Ratios of distances on parallel lines.

Points lie in front of the viewing camera.

- Constrains the position of the plane at infinity.
- Linear-programming problem can be used to set bounds on the plane at infinity.
- Gives so-called "quasi-affine" reconstruction.
- Reference : Hartley-Azores.

Reduction to affine . . .

Common calibration of cameras.

- With 3 or more views, one can find (in principle) the position of the plane at infinity.
- Iteration over the entries of projective transform : $\begin{bmatrix} \mathbf{I} \\ \mathbf{v}^\top 1 \end{bmatrix}$.
- Not always reliable.
- Generally reduction to affine is difficult.

Metric Reconstruction

Metric Reconstruction . . .

Assume plane at infinity is known.

- Wish to make the step to metric reconstruction.
- ullet Apply a transformation of the form $\left[egin{smallmatrix} K \\ 1 \end{smallmatrix}\right]$
- Linear solution exists in many cases.

The Absolute Conic

- Absolute conic is an imaginary conic lying on the plane at infinity.
- Defined by

$$\Omega : X^2 + Y^2 + Z^2 = 0 : T = 0$$

- Contains only imaginary points.
- Determines the Euclidean geometry of the space.
- Represented by matrix $\Omega = diag(1, 1, 1, 0)$.
- Image of the absolute conic (IAC) under camera $P = K[R \mid t]$ is given by $\omega = (KK^T)^{-1}$.
- Basic fact :

 ω is unchanged under camera motion.

Using the infinite homography

- (i) When a camera moves, the image of a plane undergoes a projective transformation.
- (ii) If we have affine reconstruction, we can compute the transformation H of the plane at infinity between two images.
- (iii) Absolute conic lies on the plane at infinity, but is unchanged by this image transformation :
 - (iv) Transformation rule for dual conic $\omega^* = \omega^{-1}$.

$$oldsymbol{\omega}^* = \mathtt{H}_j oldsymbol{\omega}^* \mathtt{H}_j^{ op}$$

- (v) Linear equations on the entries of ω^* .
- (vi) Given three images, solve for the entries of ω^* .
- (vii) Compute K by Choleski factorization of $\omega^* = KK^\top$.

Example of calibration

Images taken with a non-translating camera:

Mosaiced image showing projective transformations

Computation of K

Calibration matrix of camera is found as follows:

- Compute the homographies (2D projective transformations) between images.
- Form equations

$$oldsymbol{\omega}^* = \mathtt{H}_{ij} oldsymbol{\omega}^* \mathtt{H}_{ij}^{} ^{ op}$$

- Solve for the entries of ω^*
- ullet Choleski factorization of $oldsymbol{\omega}^* = \mathtt{K} \mathtt{K}^{ op}$ gives $\mathtt{K}.$

Affine to metric upgrade

Principal is the same for non-stationary cameras once principal plane is known.

- H_{ij} is the "infinite homography" (i.e. via the plane at infinity) between images i and j.
- May be computed directly from affinely-correct camera matrices.
- Given camera matrices

$$P_i = [M_i | \mathbf{t}_i]$$
; $P_j = [M_j | \mathbf{t}_j]$

• Infinite homography is given by

$$\mathbf{H}_{ij} = \mathbf{M}_i \mathbf{M}_i^{-1}$$

Algorithm proceeds as for fixed cameras.

The previous calibration procedure (affine-to-metric) may be generalized to case of changing internal parameters. See paper tomorrow given by Agapito. This page left empty

Changing internal camera parameters

The Trifocal Tensor

The Trifocal Tensor

- (i) Defined for three views.
- (ii) Plays a similar rôle to Fundmental matrix for two views.
- (iii) Unlike fundamental matrix, trifocal tensor also relates lines in three views.
 - (iv) Mixed combinations of lines and points are also related.

Geometry of three views

Point-line-line incidence.

 \bullet Correspondence $\mathbf{x} \leftrightarrow \mathbf{l}' \leftrightarrow \mathbf{l}''$

Geometry of three views . . .

- Let $\mathbf{l}^{(1)}$ and $\mathbf{l}^{(2)}$ be two lines that meet in \mathbf{x} .
- General line I back-projects to a plane I^TP .
- Four plane are $\mathbf{l}^{(1)\top}\mathbf{P}$, $\mathbf{l}^{(2)\top}\mathbf{P}'$, $\mathbf{l}'^{\top}\mathbf{P}'$ and $\mathbf{l}''^{\top}\mathbf{P}''$
- The four planes meet in a point.

The trifocal relationship

Four planes meet in a point means determinant is zero.

$$\det \begin{bmatrix} \mathbf{l}^{(1)\top} \mathbf{P} \\ \mathbf{l}^{(2)\top} \mathbf{P} \\ \mathbf{l}'^{\top} \mathbf{P}' \\ \mathbf{l}''^{\top} \mathbf{P}'' \end{bmatrix} = 0$$

- This is a linear relationship in the line coordinates.
- Also (less obviously) linear in the entries of the point $\mathbf{x} = \mathbf{l}^{(1)} \times \mathbf{l}^{(2)}$.

This is the trifocal tensor relationship.

Tensor Notation

Point coordinates.

- Consider basis set (e_1, e_2, e_3) .
- Point is represented by a vector $\mathbf{x} = (x^1, x^2, x^3)^{\mathsf{T}}$.
- New basis : $\hat{\mathbf{e}}_j = \sum_i \mathbf{H}_i^i \mathbf{e}_i$.
- With respect to new basis x represented by

$$\hat{\mathbf{x}} = (\hat{x}^1, \hat{x}^2, \hat{x}^3)$$
 where $\hat{\mathbf{x}} = \mathtt{H}^{-1}\mathbf{x}$

- \bullet If basis is transformed according to H, then point coordinates transform according to H $^{-1}$.
- **Terminology**: x^i transforms contravariantly.
- Use upper indices for contravariant quantities.

Tensor Notation...

Line coordinates

- Line is represented by a vector $\mathbf{l} = (l_1, l_2, l_3)$
- In new coordinate system $\hat{\mathbf{e}}_{i}$, line has coordinate vector $\hat{\mathbf{l}}$,

$$\hat{\mathbf{l}}^{\top} = \mathbf{l}^{\top}\mathbf{H}$$

- Line coordinates transform according to H.
- Preserves incidence relationship. Point lies on line if:

$$\hat{\mathbf{l}}^{\top}\hat{\mathbf{x}} = (\mathbf{l}^{\top}\mathbf{H})(\mathbf{H}^{-1}\mathbf{x}) = \mathbf{l}^{\top}\mathbf{x} = 0$$

- **Terminology**: l_i transforms covariantly.
- Use lower indices for covariant quantities.

Summation notation

• Repeated index in upper and lower positions implies summation.

Example

Incidence relation is written $l_i x^i = 0$.

Transformation of covariant and contravariant indices

Contravariant transformation

$$\hat{x}^j = (\mathbf{H}^{-1})^j_i x^i$$

Covariant transformation

$$\hat{l}_j = \mathtt{H}^i_j l_i$$

More transformation examples

Camera mapping has one covariant and one contravariant index : P^i_j . Transformation rule $\hat{\mathbf{P}} = \mathbf{G}^{-1}\mathbf{PF}$ is

$$\hat{P}_{i}^{j} = (G^{-1})_{s}^{j} P_{r}^{s} F_{i}^{r}$$

Trifocal tensor T_i^{jk} has one covariant and two contravariant indices.

Transformation rule:

$$\hat{T}_{i}^{jk} = F_{i}^{r} (G^{-1})_{s}^{j} (H^{-1})_{t}^{k} T_{r}^{st}$$

The ϵ tensor

Tensor ϵ_{rst} :

• Defined for $r, s, t = 1, \dots, 3$

 $\epsilon_{rst} = 0$ unless r, s and t are distinct

=+1 if rst is an even permutation of 123

=-1 if rst is an odd permutation of 123

• Related to the cross-product :

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} \quad \Longleftrightarrow c_i = \epsilon_{ijk} a^j b^k$$
.

Basic Trifocal constraint

Basic relation is a point-line-line incidence.

- ullet Point x^i in image 1
- lines l'_i and l''_k in images 2 and 3.

Basic Trifocal constraint...

- ullet Let $l_r^{(1)}$ and $l_s^{(2)}$ be two lines that meet in point $x^i.$
- \bullet The four lines $l_r^{(1)},\,l_s^{(2)},\,l_i'$ and l_k'' back-project to planes in space.
- The four planes meet in a point.

Derivation of the basic three-view relationship

- Line l_i back-projects to plane l_i \mathbf{P}^i where \mathbf{P}^i is i-th row.
- Four planes are coincident if

$$(l_r^{(1)}\mathbf{P}^r) \wedge (l_s^{(2)}\mathbf{P}^s) \wedge (l_i'\mathbf{P}^{\prime j}) \wedge (l_k''\mathbf{P}^{\prime\prime k}) = 0$$

where 4-way wedge \land means determinant.

Thus

$$l_r^{(1)} l_s^{(2)} l_i' l_k'' \quad \mathbf{P}^r \wedge \mathbf{P}^s \wedge \mathbf{P}'^j \wedge \mathbf{P}''^k = 0$$

• Multiply by constant $\epsilon^{rsi}\epsilon_{rsi}$ gives

$$\epsilon^{rsi} l_r^{(1)} l_s^{(2)} l_i' l_k'' \quad \epsilon_{rsi} \mathbf{P}^r \wedge \mathbf{P}^s \wedge \mathbf{P}'^j \wedge \mathbf{P}''^k = 0$$

• Intersection (cross-product) of $l_r^{(1)}$ and $l_s^{(2)}$ is the point x^i :

$$l_r^{(1)}l_s^{(2)}\epsilon^{rsi} = x^i$$

Definition of the trifocal tensor

Basic relationship is

$$x^{i} l'_{i} l''_{k} \quad \epsilon_{rsi} \mathbf{P}^{r} \wedge \mathbf{P}^{s} \wedge \mathbf{P}'^{j} \wedge \mathbf{P}''^{k} = 0$$

Define

$$\epsilon_{rsi}\mathbf{P}^r \wedge \mathbf{P}^s \wedge \mathbf{P}'^j \wedge \mathbf{P}''^k = T_i^{jk}$$

Point-line-line relation is

$$x^i l_j' l_k'' T_i^{jk} = 0$$

 T_i^{jk} is covariant in one index (i), contravariant in the other two.

Line Transfer

Basic relation is

$$x^i l_i' l_k'' T_i^{jk} = 0$$

Interpretation:

- \bullet Back projected ray from x meets intersection of back-projected planes from l' and l''.
- \bullet Line in space projects to lines l' and l'' and to a line passing through ${\bf x}.$

Line transfer

- Denote $l_i = l'_i l''_k T_i^{jk}$
- $\bullet \,$ See that $x^i\,l_i=0$ when x^i lies on the projection of the intersection of the planes.
- Thus l_i represents the transferred line corresponding to l'_i and l''_k .
- We write

$$l_i \approx l_j' l_k'' T_i^{jk}$$

• Cross-product of the two sides are equal:

$$l_r \epsilon^{irs} l_i' l_k'' T_i^{jk} = 0^s$$

• Derived from basic relation $x^i l'_j l''_k T^{jk}_i$ by replacing x^i by $l_r \epsilon^{irs}$.

Point transfer via a plane

- Line I' back-projects to a plane π' .
- Ray from x meets π' in a point X.
- This point projects to point \mathbf{x}'' in the third image.
- \bullet For fixed l', mapping $x \mapsto x''$ is a homography.

Point-transfer and the trifocal tensor

• If I" is any line through x", then trifocal condition holds.

$$l_k''(x^i l_j' T_i^{jk}) = 0$$

• $x^i l'_i T_i^{jk}$ must represent the point x''^k .

$$x''^k \approx x^i \, l'_j \, T_i^{jk}$$

• Alternatively (cross-product of the two sides)

$$x^i l_i' \epsilon_{krs} x''^r T_i^{jk} = 0_s$$

• Derived from basic relation $x^i l_j' l_k'' T_i^{jk}$ by replacing l_k'' by $x'''^r \epsilon_{krs}$.

Contraction of trifocal tensor with a line

- Write $H_i^k = l_i' T_i^{jk}$
- Then $x''^k = H_i^k x^i$.
- H_i^k represents the homography from image 1 to image 3 via the plane of the line l_i' .

Three-point correspondence

Given a triple correspondence $\mathbf{x} \leftrightarrow \mathbf{x}' \leftrightarrow \mathbf{x}''$

- \bullet Choose any lines \mathbf{l}' and \mathbf{l}'' passing through \mathbf{x}' and \mathbf{x}''
- Trifocal condition holds

$$x^i l_j' l_k' T_i^{jk} = 0$$

Geometry of the three-point correspondence

- 4 choices of lines ⇒ 4 equations.
- May also be written as

$$x^{i}x^{\prime r}\epsilon_{rsi}x^{\prime\prime t}\epsilon_{tuj}T_{i}^{jk}=0$$

• Gives 9 equations, only 4 linearly independent.

Summary of transfer formulas

(i) Point transfer from first to third view via a plane in the second.

$$x^{"k} = x^i l_j' T_i^{jk}$$

(ii) Point transfer from first to second view via a plane in the third.

$$x^{'j} = x^i \, l_k'' \, T_i^{jk}$$

(iii) Line transfer from third to first view via a plane in the second; or, from second to first view via a plane in the third.

$$l_i = l_j' \, l_k'' \, T_i^{jk}$$

Summary of incidence relations

(i) Point in first view, lines in second and third

$$l_j' \, l_k'' \, T_i^{jk} x^i = 0$$

(ii) Point in first view, point in second and line in third

$$x^i x'^j l_k'' \epsilon_{jpr} \mathcal{T}_i^{pk} = 0_r$$

(iii) Point in first view, line in second and point in third

$$x^{i} l_{i}' x''^{k} \epsilon_{kqs} \mathcal{T}_{i}^{jq} = 0_{s}$$

(iv) Point in three views

$$x^i x^{'j} x^{''k} \, \epsilon_{jpr} \epsilon_{kqs} \mathcal{T}_i^{pq} = \mathsf{O}_{rs}$$

Degeneracies of line transfer

- Degeneracy of line transfer for corresponding epipolar lines.
- When the line lies in an epipolar plane, its position can not be inferred from two views.
- Hence it can not be transferred to a third view.

Degeneracy of point transfer

Transferring points from images 1 and 2 to image 3:

Only points that can not be transferred are those points on the baseline between centres of cameras 1 and 2.

For transfer with fundamental matrix, points in the trifocal plane can not be transferred.

Contraction on a point

In
$$x_k'' \approx x^i l_j' T_i^{jk}$$
 write $x^i T_i^{jk} = G^{jk}$

• Represents a mapping from line l''_k to the point x'^j :

$$x''^k \approx G^{jk} l'_j = (x^i T_i^{jk}) l'_j$$

- As l'_i varies x''^k traces out the projection of the ray through x^i .
- Epipolar line in third image.
- ullet Epipole is the intersection of these lines for varying x^i .

Finding epipolar lines

To find the epipolar line corresponding to a point x^i :

• Transfer to third image via plane back-projected from l'_i

$$x_k'' = x^i T_i^{jk} l_j'$$

- Epipolar line satisfies $l_k''x''^k = 0$ for each such x_k'' .
- For all l'_i

$$x^i l_i' l_k'' T_i^{jk} = 0$$

ullet Epipolar line corresponding to x^i found by solving

$$l_k''(x^i T_i^{jk}) = 0^j$$

Result : Epipole is the common perpendicular to the null-space of all $x^iT_i^{jk}$.

This page left empty

Extraction of camera matrices from trifocal tensor

Formula for Trifocal tensor

- Trifocal tensor is independent of projective transformation.
- ullet May assume that first camera is $[{\hspace{1pt}{ ilde{\hspace{1pt}}}} | {\hspace{1pt}{ ilde{\hspace{1pt}}}}]$
- ullet Other cameras are $[A|a_4]$ and $[B|b_4]$
- Formula

$$T_i^{jk} = a_i^j b_4^k - a_4^j b_i^k$$

- ullet Note : ${f a}_4$ and ${f b}_4$ represent the epipoles :
 - Centre of the first camera is (0, 0, 0, 1).
 - Epipole is image of camera centre.

$$\mathbf{a}_4 = [\mathbf{A}|\mathbf{a}_4] \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Where does this formula come from?

Formula for trifocal tensor

$$T_{i}^{jk} = \epsilon_{rsi} \mathbf{P}^{r} \wedge \mathbf{P}^{s} \wedge \mathbf{P}'^{j} \wedge \mathbf{P}''^{k}$$
$$= 2 \det \begin{bmatrix} \sim \mathbf{P}^{i} \\ \mathbf{P}'^{j} \\ \mathbf{P}''^{k} \end{bmatrix}$$

Notation : $\sim \mathbf{P}^i$ means omit row i.

Example, when i = 1

$$T_1^{jk} = \det egin{bmatrix} 1 \ a_1^j \ a_2^j \ a_3^j \ a_4^j \ b_1^k \ b_2^k \ b_3^k \ b_4^k \end{bmatrix} \ = a_1^j b_4^k - a_4^j b_1^k$$

Extraction of the camera matrices.

Basic formula

$$T_i^{jk} = a_i^j b_4^k - a_4^j b_i^k$$

- Entries of T_i^{jk} are quadratic in the entries of camera matrices.
- But if epipoles a_4^j and b_4^k are known, entries are linear.

Strategy:

- Estimate the epipoles.
- Solve linearly for the remaining entries of *A* and *B*.
- 27 equations in 18 unknowns.

Exact formulae are possible, but not required for practical computation.

Matrix formulas involving trifocal tensor

Given the trifocal tensor written in matrix notation as $[T_1, T_2, T_3]$.

(i) Retrieve the epipoles e_{21} , e_{31}

Let \mathbf{u}_i and \mathbf{v}_i be the left and right null vectors respectively of \mathbf{T}_i , i.e. $\mathbf{T}_i^{\top}\mathbf{u}_i = \mathbf{0}$, $\mathbf{T}_i\mathbf{v}_i = \mathbf{0}$. Then the epipoles are obtained as the null-vectors to the following 3×3 matrices

$$[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3] \mathbf{e}_{21} = \mathbf{0} \quad [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] \mathbf{e}_{31} = \mathbf{0}$$

(ii) Retrieve the fundamental matrices F_{12} , F_{13}

$$F_{12} = [\mathbf{e}_{21}]_{\times}[T_1, T_2, T_3]\mathbf{e}_{31}$$
 $F_{13} = [\mathbf{e}_{31}]_{\times}[T_1^{\top}, T_2^{\top}, T_3^{\top}]\mathbf{e}_{21}$

(iii) Retrieve the camera matrices P', P'' (with P = $[I \mid 0]$) Normalize the epipoles to unit norm. Then

$$P' = [(I - \mathbf{e}_{21} \mathbf{e}_{21}^{\top})[T_1, T_2, T_3] \mathbf{e}_{31} \mid \mathbf{e}_{21}] \quad P'' = [-[T_1^{\top}, T_2^{\top}, T_3^{\top}] \mathbf{e}_{21} \mid \mathbf{e}_{31}]$$

This page left empty

This page left empty
This page left empty
1, 3,

Computation of the trifocal tensor

Linear equations for the trifocal tensor

Given a 3-point correspondence

$$\mathbf{x} \leftrightarrow \mathbf{x}' \leftrightarrow \mathbf{x}''$$

The trifocal tensor relationship is

$$x^{i} x'^{j} x''^{k} \epsilon_{jqu} \epsilon_{krv} T_{i}^{qr} = 0_{uv}$$

- ullet Relationship is linear in the entries of T.
- each correspondence gives 9 equations, 4 linearly independent.
- T has 27 entries defined up to scale.
- 7 point correspondences give 28 equations.
- ullet Linear or least-squares solution for the entries of T.

Summary of relations

Other point or line correspondences also yield constraints on T.

Correspondence	Relation	number of equations
three points	$x^{i} x'^{j} x''^{k} \epsilon_{jqu} \epsilon_{krv} T_{i}^{qr} = 0_{uv}$	4
two points, one line	$x^i x'^j l_r'' \epsilon_{jqu} T_i^{qr} = 0_u$	2
one point, two lines	$x^i l_q' l_r'' T_i^{qr} = 0$	1
three lines	$l_p l_q' l_r'' \epsilon^{piw} T_i^{qr} = 0^w$	2

Trilinear Relations

Solving the equations

Given 26 equations we can solve for the 27 entries of T.

- Need 7 point correspondences
- or 13 line correspondences
- or some mixture.

Total set of equations has the form

$$Et = 0$$

- With 26 equations find an exact solution.
- With more equations, least-squares solution.

Solving the equations ...

- Solution :
 - Take the SVD : $E = UDV^{T}$.
 - Solution is the last column of V corresponding to smallest singular value).
 - Minimizes $||\mathbf{E}\mathbf{t}||$ subject to $||\mathbf{t}||=1$.
- Normalization of data is essential.

Constraints

- $\bullet\ T$ has 27 entries, defined only up to scale.
- Geometry only has 18 degrees of freedom.
 - 3 camera matrices account for $3 \times 11 = 33$ dof.
 - Invariant under 3D projective transformation (15 dof).
 - Total of 18 dof.
- $\bullet\ T$ must satisfy several constraints to be a geometrically valid trifocal tensor.
- To get good results, one must take account of these constraints (cf Fundamental matrix case).

What are the constraints

Some of the constraints are easy to find.

- (i) Each T_{\cdot}^{jk} must have rank 2.
- (ii) Their null spaces must lie in a plane.
- (iii) This gives 4 constraints in all.
- (iv) 4 other constraints are not so easily formulated.

Constraints through parametrization.

- ullet Define T in terms of a set of parameters.
- ullet Only valid Ts may be generated from parameters.

Recall formula for T:

$$T_i^{jk} = a_i^j b_4^k - a_4^j b_i^k$$

- Only valid trifocal tensors are generated by this formula.
- Parameters are the entries a_i^j and b_i^k .
- Over-parametrized : 24 parameters in all.

Algebraic Estimation of T

Similar to the algebraic method of estimation of F.

Minimize the algebraic error ||Et|| subject to

- (i) $||\mathbf{t}|| = 1$
- (ii) ${\bf t}$ is the vector of entries of T.
- (iii) T is of the form $T_i^{jk} = a_i^j b_4^k a_4^j b_i^k$.

Difficulty is this constraint is a quadratic constraint in terms of the parameters.

Minimization knowing the epipoles

Camera matrices $[I \mid 0]$, $[A|a_4]$ and $[B|b_4]$.

$$T_i^{jk} = a_i^j b_4^k - a_4^j b_i^k$$

As with fundamental matrix, \mathbf{a}_4 and \mathbf{b}_4 are the epipoles of the first image.

If ${\bf a}_4$ and ${\bf b}_4$ are known, then T is linear in terms of the other parameters. We may write

$$\mathbf{t} = \mathtt{G}\mathbf{p}$$

- $\bullet~\mathbf{p}$ is the matrix of 18 remaining entries of camera matrices A and B.
- t is the 27-vector of entries of T.
- \bullet G is a 27×18 matrix.

Minimization knowing the epipoles ...

Minimization problem

Minimize $||\mathbf{E}\mathbf{t}||$ subject to $||\mathbf{t}|| = 1$.

becomes

Minimize ||EGp|| subject to ||Gp|| = 1.

- Exactly the same problem as with the fundamental matrix.
- Linear solution using the SVD.
- Reference : Hartley Royal Society paper.

Algebraic estimation of ${\cal T}$

Complete algebraic estimation algorithm is

- (i) Find a solution for T using the normalized linear (7-point) method
 - (ii) Estimated T will not satisfy constraints.
 - (iii) Compute the two epipoles a_4 and b_4 .
 - (a) Find the left (respectively right) null spaces of each T^{jk} .
 - (b) Epipole is the common perpendicular to the null spaces.
- (iv) Reestimate ${\cal T}$ by algebraic method assuming values for the epipoles.

Iterative Algebraic Method

Find the trifocal tensor T that minimizes $||\mathbf{Et}||$ subject to $||\mathbf{t}||=1$ and $T_i^{jk}=a_i^jb_4^k-a_4^jb_i^k$.

- Concept : Vary epipoles \mathbf{a}_4 and \mathbf{b}_4 to minimize the algebraic error $||\mathbf{E}\mathbf{t}'|| = ||\mathbf{E}\mathbf{G}\mathbf{p}||$.
- Remark : Each choice of epipoles \mathbf{a}_4 and \mathbf{b}_4 defines a minimimum error vector EGp as above.
- Use Levenberg-Marquardt method to minimize this error.
- Simple 6×27 minimization problem.
 - 6 inputs the entries of the two epipoles
 - 27 outputs the algebraic error vector Et' = EGp.

• Each step requires estimation of p using algebraic method. This page left empty

This page left empty
This page left empty

Automatic Estimation of a Projective Reconstruction for a Sequence

Outline

first frame of video

- (i) Projective reconstruction: 2-views, 3-views, N-views
- (ii) Obtaining correspondences over N-views

Reconstruction from three views

Given: image point correspondences $\mathbf{x}_i^1 \leftrightarrow \mathbf{x}_i^2 \leftrightarrow \mathbf{x}_i^3$, compute a projective reconstruction:

$$\{\mathtt{P}^1,\ \mathtt{P}^2,\ \mathtt{P}^3,\ \mathbf{X}_i\}$$
 with $\mathbf{x}_i^j = \mathtt{P}^j\ \mathbf{X}_i$

What is new?

verify correspondences

- 3-view tensor: the trifocal tensor
- Compute from 6 image point correspondences.
- Automatic algorithm similar to F. [Torr & Zisserman]

Automatic Estimation of the trifocal tensor and correspondences

- (i) Pairwise matches: Compute point matches between view pairs using robust F estimation.
- (ii) Putative correspondences: over three views from two view matches.
 - (iii) RANSAC robust estimation:

Repeat

- (a) Select random sample of 6 correspondences
- (b) Compute T (1 or 3 solutions)
- (c) Measure support (number of inliers)

Choose the T with the largest number of inliers.

- (iv) MLE: re-estimate ${\it T}$ from inlier correspondences.
- (v) Guided matching: generate additional matches.

Projective Reconstruction for a Sequence

- (i) Compute all 2-view reconstructions for consecutive frames.
- (ii) Compute all 3-view reconstructions for consecutive frames.
- (iii) Extend to sequence by hierarchical merging:

(iv) Bundle-adjustment: minimize reprojection error

$$\min_{\mathbf{P}^{j} \mathbf{X}_{i}} \sum_{i \in \text{points}} \sum_{j \in \text{frames}} d\left(\mathbf{x}_{i}^{j}, \mathbf{P}^{j} \mathbf{X}_{i}\right)^{2}$$

(v) Automatic algorithm [Fitzgibbon & Zisserman]

Cameras and Scene Geometry for an Image Sequence

Given video

first frame of video

- Point correspondence (tracking).
- Projective Reconstruction.

Interest points computed for each frame

first frame of video

• About 500 points per frame

Point tracking: Correlation matching

first frame of video

• 10-50% wrong matches

Point tracking: Epipolar-geometry guided matching

first frame of video

- Compute F so that matches consistent with epipolar geometry.
- Many fewer false matches, but still a loose constraint.

Point tracking: Trifocal tensor guided matching

first frame of video

- Compute trifocal tensor so that matches consistent with 3-views.
- Tighter constraint, so even fewer false matches.
- Three views is the last significant improvement.

Reconstruction from Point Tracks

Compute 3D points and cameras from point tracks

a frame of the video

- Hierarchical merging of sub-sequences.
- Bundle adjustment.

Application I: Graphical Models

Compute VRML piecewise planar model

Example II: Extended Sequence

140 frames of a 340 frame sequence

a frame of the video

Metric Reconstruction

140 frames of a 340 frame sequence

a frame of the video

Application II: Augmented Reality

Using computed cameras and scene geometry, insert virtual objects into the sequence.

a frame of the video

330 frames

3D Insertion

a frame of the video

Further Reading

Some of these papers are available from http://www.robots.ox.ac.uk/~vgg

- Beardsley, P., Torr, P. H. S., and Zisserman, A. 3D model acquisition from extended image sequences. In B. Buxton and Cipolla R., editors, *Proc. 4th European Conference on Computer Vision, LNCS 1065, Cambridge*, pages 683–695. Springer–Verlag, 1996.
- Deriche R., Zhang Z., Luong Q. T., and Faugeras O., Robust recovery of the epipolar geometry for an uncalibrated stereo rig. In J. O. Eckland, editor, *Proc. 3rd European Conference on Computer Vision, LNCS 800/801, Stockholm*, pages 567–576. Springer-Verlag, 1994.
- Faugeras, O. "What can be seen in three dimensions with an uncalibrated stereo rig?", *Proc. ECCV*, LNCS 588. Springer-Verlag, 1992.
- Faugeras, O., "Three-Dimensional Computer Vision", MIT Press, 1993.
- Faugeras, O. "Stratification of three-dimensional vision: projective, affine, and metric representation", *J. Opt. Soc. Am.*, A12:465–484, 1995.
- Fischler, M. A. and Bolles, R. C., "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography",

CommACM, 24, 6, 381–395, 1981.

- Fitzgibbon, A and Zisserman, A, Automatic camera recovery for closed or open image sequences. In *Proc. ECCV*, pages 311–326. Springer-Verlag, June 1998.
- Hartley, R., Gupta, R., and Chang, T. "Stereo from uncalibrated cameras", *Proc. CVPR*, 1992.
- Hartley, R. I., In defence of the 8-point algorithm. In *ICCV5*, 1995.
- Hartley, R. I., A linear method for reconstruction from lines and points. In *Proc. ICCV*, pages 882–887, 1995.
- Hartley, R. I. and Zisserman, A., *Multiple View Geometry in Computer Vision*, Cambridge University Press, to appear.
- Kanatani, K., *Geometric Computation for Machine Vision*. Oxford University Press, Oxford, 1992.
- Longuet-Higgins H. C., A computer algorithm for reconstructing a scene from two projections. *Nature*, vol.293:133–135, 1981.
- Luong, Q. T. and Vieville, T., Canonical representations for the geometries of multiple projective views. *CVIU*, 64(2):193–229, September 1996.
- Mundy, J. and Zisserman, A., "Geometric invariance in computer vision", MIT Press, 1992. Introduction and Chapter 23 (projective geometry).
- Semple, J. and Kneebone, G. Algebraic Projective Geometry. Oxford Univer-

sity Press, 1979.

- Shashua, A. Trilinearity in visual recognition by alignment. In *Proc. ECCV*, volume 1, pages 479–484, May 1994.
- Spetsakis, M. E. and Aloimonos, J, Structure from motion using line correspondences. *IJCV*, 4(3):171–183, 1990.
- Torr P. H. S., *Outlier Detection and Motion Segmentation*. PhD thesis, University of Oxford, Engineering Dept., 1995.
- Torr, P. H. S. and Zisserman, A, Robust parameterization and computation of the trifocal tensor. *Image and Vision Computing*, 15:591–605, 1997.

Acknowledgements

The images in this document were created by Paul Beardsley, Antonio Criminisi, Andrew Fitzgibbon, David Liebowitz, Luc Robert, and Phil Torr.