# Tackling Data Version Management in MLOps using DVC

Sampad Kumar Kar Shourjya Basu

20th November 2023

## Introduction to MLOps

- MLOps is a set of practices that combine machine learning (ML) systems development and operations (Ops) to streamline the end-to-end ML lifecycle, from development to deployment and maintenance.
- Key objectives of MLOps:
  - Collaboration
  - Reproducibility
  - Automation
  - Scaling

## Components of MLOps



#### Intoduction to Version Control

- Version control is a system that tracks changes to code and other data over time, allowing users to revert to previous versions if necessary.
- Types of versioning in ML projects:
  - Project Versioning
  - Data Versioning
  - Model Versioning
  - Deployment-based Versioning

## Introduction to Data Versioning

- Data versioning refers to the practice of systematically managing and tracking changes to datasets over time.
- Its primary uses are:
  - Tracking Changes to Datasets
  - Reproducibility
  - Collaboration
  - Automation in Machine Learning Pipelines

### Research Questions

- What is the current state of data versioning in the marketplace?
- What are the requirements that need to be considered when considering applying data versioning into the project pipeline?
- What kind of approaches or frameworks can be used for building an integrated ML system and to continuously operate it in production?

## Data Versioning Tool: DVC

- DVC is an Open-source, Git-based data science library, developed by iterative.ai, which enables users to apply version control to machine development by tracking ML Models and Data sets.
- It provides 3 main functions:
  - ML Project Version Control
  - ML Experiment Management
  - Deployment and Collaboration

#### Demo Problem

#### Changing dataset by Modifying Random seed

- Create a simple classification model using a random seed for train-test split.
- Modify the random seed and observe the impact on model performance.
- Track changes to the dataset and model using DVC.

#### Solution offered using DVC

- Easily reproduce different versions of the dataset and model.
- Compare model performance across different data versions.

## **DVC** Implementation

- Initialise Git and DVC
- Versioning ML artefacts
- Storing versioned ML artefacts
- Retrieving ML artefacts
- Making changes on dataset
- Switching between versions

## Conclusion/Key takeaways

- Data version control is essential for reproducible and reliable machine learning.
- DVC provides a powerful and easy-to-use tool for data version control in ML projects.
- Adopting DVC can significantly improve the efficiency and effectiveness of ML development and deployment.

#### References

- Tackling Version Management and Reproducibility in MLOps
  Priscilla Dias Melin
- On the Co-evolution of ML Pipelines and Source Code Empirical Study of DVC Projects
- Software Engineering for Machine Learning: A Case Study
- Creating reproducible data science workflows with DVC

## THANK YOU