УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

1 Теоретическая часть

1.1 Линейные уравнения с частными производными первого порядка. Уравнения характеристик. Первый интеграл. Квазилинейные уравнения. Задача Коши.

Определение 1.

Уравнением в частных производных первого порядка называется уравнение вида

$$F\left(x_1, \dots, x_n, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right) = 0, \tag{1}$$

где $x_1 \dots, x_n$ — независимые переменные, $u = u(x_1, \dots, x_n)$ — неизвестная функция, $F(x_1, \dots, x_n, p_1, \dots, p_n)$ — заданная непрерывно дифференцируемая функция (здесь p_i обозначают частные производные $u'_{x_i} = \frac{\partial u}{\partial x_i}, i = \overline{1, n}$) в некоторой области $G \subset \mathbb{R}^{2n+1}$, причем в каждой точке области G

$$\sum_{i=1}^{n} \left(\frac{\partial F}{\partial p_i} \right)^2 \neq 0.$$

Уравнение (1) сокращенно можно записать в виде

$$F(x, u, \nabla u) = 0, (1')$$

где $x = (x_1, \dots, x_n)$ и $\nabla u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)$.

В зависимости от того, как неизвестная функция u и ее частные производные входят в уравнение (1), различают линейные и нелинейные уравнения.

Определение 2. (Линейные уравнения с частными производными первого порядка) Уравнение вида

$$a_1(x_1, \dots, x_n) \frac{\partial u}{\partial x_1} + \dots + a_n(x_1, \dots, x_n) \frac{\partial u}{\partial x_n} = b(x_1, \dots, x_n),$$
(2)

где $a_1, \ldots, a_n, b \in C^1(D), D \subset \mathbb{R}^n$, называется линейным неоднородным уравнением с частными производными первого порядка. Если $b(x_1, \ldots, x_n) = 0$, то уравнение называется линейным однородным.

Определение 3. (Квазилинейные уравнения)

Уравнение вида

$$a_1(x_1, \dots, x_n, u) \frac{\partial u}{\partial x_1} + \dots + a_n(x_1, \dots, x_n, u) \frac{\partial u}{\partial x_n} = b(x_1, \dots, x_n, u),$$
(3)

где $a_1, \ldots, a_n, b \in C^1(D), D \subset \mathbb{R}^n$, называется квазилинейным неоднородным уравнением с частными производными первого порядка. Если $b(x_1, \ldots, x_n, u) = 0$, то уравнение называется квазилинейным однородным.

Определение 4. (Первый интеграл)

Первым интегралом нормальной системы

$$\begin{cases} \dot{x}_1 = f_1(t, x_1, \dots, x_n), \\ \dots \\ \dot{x}_n = f_n(t, x_1, \dots, x_n), \end{cases}$$

$$(4)$$

называется такая функция $v(t, x_1, ..., x_n)$, что она постоянна вдоль любого решения этой системы. Выражение $v(t, x_1, ..., x_n) = 0$ называется общим интегралом системы.

Замечание: Если $v(t, x_1, \ldots, x_n)$ — первый интеграл системы (4), то его производная вдоль решения равняется нулю, то есть

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x_1} \dot{x}_1 + \ldots + \frac{\partial v}{\partial x_n} \dot{x}_n = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x_1} f_1(x_1, \ldots, x_n) + \ldots + \frac{\partial v}{\partial x_n} f_n(x_1, \ldots, x_n) = 0.$$

Справедливо и обратное, то есть функция, удовлетворяющая такому условию, является первым интегралом системы.

Определение 5. (Задача Коши)

Задачей Коши называется задача нахождения решения уравнения

$$a_1(x, y, z) \frac{\partial z}{\partial x} + a_2(x, y, z) \frac{\partial z}{\partial y} = b(x, y, z),$$

проходящего через кривую

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \\ z = \eta(t). \end{cases}$$

1.4	Уравнение колебаний отражений.	полубесконечной	струны	(стержня).	Метод
		5			

1.5	Энергия колебаний ограниченной струны. Теорема единственности для смешанной краевой задачи для уравнения колебаний стру-
	ны.
	6

1.6	Метод резке.	разделения	переменных	для	уравнения	колебаний	на	OT-
			7					

1.1	ны. Метод разделения переменных.						
	8						

1.0	вой задачи.	тепла в	стержне.	Постановка	смешанной	крае-
			9			
			J			

1.9	9 Принцип максимального значения для параболического уравнения и теорема единственности смешанной краевой задачи в ограниченной области.								

1.12	Задача без начального условия для уравнения теплопроводности.

1.13	для гармонические в ооласти. Теорема о среднем значении для гармонических функций. Принцип максимума.						
	14						

1.14	цилиндрических, сферических) координатах.
	15
	10

1.15 Собственные значения и собственные функции задачи Штурма-Лиувилля в прямоугольнике. Краевые задачи для уравнений Лапласа и Пуассона в прямоугольнике. 1.16 Метод разделения переменных решения первой краевой задачи для уравнения Лапласа внутри круга и вне круга. Интеграл Пуассона.

1.17	Функция Грина уравнения Лапласа первой краевой задачи в круге, на полуплоскости в полупространстве. Метод отражений.						
	18						

1.18	Единственность решения кр ней) для уравнения Лапласа	раевой а.	задачи	(внутренней	И	внеш-
		19				

1.20 Собственные значения и собственные функции задачи Штурма-Лиувилля в круге, в круговом кольце и во внешности круга. Краевые задачи для уравнения Лапласа в указанных областях. 1.21 Собственные значения и собственные функции задачи Штурма-Лиувилля в круговом секторе и в кольцевом секторе. Краевая задача для уравнения Лапласа в указанных областях.

1.23 Собственные значения и собственные функции задачи Штурма-Лиувилля для цилиндра. Краевые задачи для уравнений Лапласа и Пуассона в ограниченном цилиндре. 1.24 Полиномы Лежандра, их свойства. Формула Родриго. Рекуррентные соотношения. Задача Штурма — Лиувилля на сфере. Присоединенные функции Лежандра.

Краевые слое.	задачи	для	уравнений	Лапласа	И	Пуассона	в шаровом
			26				
				СЛОЕ.	СЛОЕ.	слое.	

1.26 Основные функции и обобщенные функции, сходимость в пространстве основных функций. Регулярная обобщённая функция. Носитель обобщённой функции.

1.27	Регуляризация степенных особенностей. ная функция \mathcal{P}^1_x . Формула Сохоцкого.	Сингулярная обобщён-

1.28	8 Фундаментальное решение дифференциального оператора. Обо щённое решение задачи Коши.	

1.29	Классическая свёртка. Свертка обобщённых функций. Обобщённое решение дифференциального уравнения.			
	30			

1.30 Пространство быстроубывающих функций и пространство функций медленного роста. Обобщённое преобразование Фурье. Обобщённое преобразование Фурье свертки и обобщённое равенство Парсеваля.

32

Фундаментальное решение оператора Лапласа.

1.31

ция влияния	мгновенного т	очечного ист	гочника.	
		33		

Фундаментальное решение оператора теплопроводности. Функ-

1.32

1.33	Фундаментальное решение оператора Гельмгольца. Сферические волны.
	34