UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

ASSIGNMENT - 4

Date	4th October 2022
Team ID	PNT2022TMID27839
Student Name	Chandan Kumar A K (311519104010)
Domain Name	Education
Project Name	University Admit Eligibility Predictor
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

```
▼ 1.)IMPORT THE REQUIRED LIBRARIES

✓ [1] import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

3.)HANDLE MISSING VALUES AND DEAL WITH THEM

```
▼ 3.)CHECK FOR MISSING VALUES AND DEAL WITH THEM

| Solution | Content | C
```

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

Q {x}	- 4.)	PERF	ORM DI	ESCRIPTIVE S	STATISTICS ON
	os O	df.des	cribe()		
	□•		Age	Annual Income (k\$)	Spending Score (1-100)
		count	200.000000	200.000000	200.000000
		mean	38.850000	60.560000	50.200000
		std	13.969007	26.264721	25.823522
		min	18.000000	15.000000	1.000000
		25%	28.750000	41.500000	34.750000
		50%	36.000000	61.500000	50.000000
		75%	49.000000	78.000000	73.000000
		max	70.000000	137.000000	99.000000

C	df.info	o()		
G	RangeIn Data co # Co 0 Ge 1 Ag 2 An 3 Sp dtypes:	ender ge	o 199 s): Non-Null Count 	object int64 int64

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

b.) MULTI - VARIANTE ANALYSIS

6.) FIND AND REPLACE THE OUTLIERS

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

8.) SCALING THE DATA

9.) PERFORMING ANY OF THE CLUSTERING ALGORITHMS

```
Q [17] from sklearn.cluster import (Means error = []) for k in range(1,11):
| sweams = Weas(n_clusters=k,init='k-means+') |
| percentage(1,11) = p
```

10.) ADD THE CLUSTER DATA WITH THE PRIMARY DATASET

11.)SPLITTING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

12.) SPLIT THE DATA INTO TRAINING AND TESTING DATA

13.) BUILD THE MODEL

14.) TRAIN THE MODEL

→ 12.)TRAIN THE MODEL		
<pre> [23] model.fit(x_train,y_train)</pre>		
RandomForestClassifier()		

15.) TEST THE MODEL

16.) MEASURE THE PERFORMANCE USING METRICS

