GRISWOPLIS & Value Junction
The Value Junction
BLOE 498/598 P1

Markov Decision Process (MDP)

States S where we are actions a what we choose (next state) rewards rewards of gain/loss from (s,a)

Markov Property: a state talls us Eurrything we need to know (memoryless)

Making Decisions in an MDP Assume: MOP is deterministic
Process terminates (@ time T) Let's say we are at state so. may Reward $= \max_{\alpha} \left\{ r_{i} + \sum_{i=2}^{T} r_{i} \right\} = \max_{\alpha} \left\{ r_{i} + \sqrt{(s')} \right\}$ Value Function future

Gerdwoerd

13	14	15	finish	Compue V(S) for Every square
5	10	11	ıS	If I know V(5),
5	6	7	8	then I can always find the
Stari	7 2	3	4	shortest path.

get from start to finish in the fewest number of steps.

How do I compute
$$V(s)$$
?

 $\Gamma_i = -1$ except at the finish.

States $S = \{1, 2, ..., 16\}$

Start terminal

•	13	14	15	16
	9	10	[1	12
	5	6	7	8
	1	2	3	4

actions are defined for Every State

Approach: Monte Carlo Method

1. Pick a state.

5,6,10,9,5,6,7,11,15,16

2. Take a random walk until I reach the finish

$$V(5) = -9$$

3. Count steps.

4. Repeat.

V(s)

			Finish
-25.8	-22.7	-14.6	0
-27.8	-26.5	-21.1	-14.3
-29.3	-29.3	-25.7	-22.9
-30.2	-30.4	-28.3	-26.5

→	-	—	
†	-	-	†
†	-	†	†
†	-	†	†

start

V(s)

V(5)

