数据探索性分析与数据预处理

1120193289 刘倞 计算机学院07111908班

github地址: https://github.com/106877952/DM_homework_week4

选用数据集GitHub Dataset

```
In [ ]: import matplotlib.pyplot as plt
import pandas as pd
```

In []: dataset = pd.read_csv("github_dataset/github_dataset.csv")

数据属性介绍:

repositories - the name of the repository (Format - github_username/repository_name)

stars_count - stars count of the repository

forks_count - fork count of the repository

issues_count - active/opened issues in the repository

pull_requests - pull requests opened in the repository

contributors - contributors contribute to the project so far

language - primary language used in the project

In []:	#预览前数据集前5行
	<pre>dataset.head(5)</pre>

Out[]:		repositories	stars_count	forks_count	issues_count	pull_requests	contributc
	0	octocat/Hello-World	0	0	612	316	
	1	EddieHubCommunity/support	271	150	536	6	
	2	ethereum/aleth	0	0	313	27	1
	3	localstack/localstack	0	0	290	30	4
	4	education/classroom	0	589	202	22	
4							

数据摘要和可视化

repositories 标称属性

```
In [ ]: attribute = "repositories"
  dataset_repositories = dataset[attribute].value_counts(dropna=False)
```

dataset_repositories

```
Out[]: kameshsampath/ansible-role-rosa-demos
                                                      2
                                                      2
        aloisdeniel/bluff
        antoniaandreou/github-slideshow
                                                      2
                                                      2
        jgthms/bulma-start
        artkirienko/hlds-docker-dproto
                                                      2
                                                      . .
        WhiteHouse/CIOmanagement
                                                      1
        0xCaso/defillama-telegram-bot
                                                      1
        ethereum/blake2b-py
                                                      1
        openfoodfacts/folksonomy_mobile_experiment
        gamemann/All_PropHealth
        Name: repositories, Length: 972, dtype: int64
In [ ]: #数据太大,仅显示前10个
```

```
dataset_repositories[:10].plot(kind="bar", figsize=(10,4))
```

Out[]: <Axes: >

stars_count 数值属性

```
In [ ]: attribute = "stars_count"
        #五数概括
        print('Min:', dataset[attribute].quantile(0))
        print('Q1:', dataset[attribute].quantile(0.25))
        print('Q2:', dataset[attribute].quantile(0.5))
        print('Q3:', dataset[attribute].quantile(0.75))
        print('Max:', dataset[attribute].quantile(1))
```

Min: 0.0 Q1: 1.0 Q2: 12.0 Q3: 65.25 Max: 995.0

In []: #绘制盒图
 dataset[attribute].plot(kind="box",figsize=(10,10))

Out[]: <Axes: >


```
In [ ]: #绘制直方图
dataset[attribute].plot(kind="hist",figsize=(10,4))
```

Out[]: <Axes: ylabel='Frequency'>


```
In []: #查找离群点
  Q1 = dataset[attribute].quantile(0.25)
  Q3 = dataset[attribute].quantile(0.75)
  outliner = Q3 + (Q3 - Q1) * 1.5
  print(f"大于{outliner}的项被识别为离群点")
```

大于161.625的项被识别为离群点

forks_count 数值属性

```
In []: attribute = "forks_count"

#五数概括
    print('Min:', dataset[attribute].quantile(0.25))
    print('Q1:', dataset[attribute].quantile(0.25))
    print('Q2:', dataset[attribute].quantile(0.5))
    print('Q3:', dataset[attribute].quantile(0.75))
    print('Max:', dataset[attribute].quantile(1))

Min: 0.0
    Q1: 1.0
    Q2: 6.0
    Q3: 38.25
    Max: 973.0

In []: #绘制盒图
    dataset[attribute].plot(kind="box",figsize=(10,10))
```

Out[]: <Axes: >

In []: #绘制直方图
 dataset[attribute].plot(kind="hist",figsize=(10,4))


```
In []: #查找离群点
Q1 = dataset[attribute].quantile(0.25)
Q3 = dataset[attribute].quantile(0.75)
outliner = Q3 + (Q3 - Q1) * 1.5
print(f"大于{outliner}的项被识别为离群点")
```

issues_count 数值属性

```
In [ ]: attribute = "issues_count"
        #五数概括
        print('Min:', dataset[attribute].quantile(0))
        print('Q1:', dataset[attribute].quantile(0.25))
        print('Q2:', dataset[attribute].quantile(0.5))
        print('Q3:', dataset[attribute].quantile(0.75))
        print('Max:', dataset[attribute].quantile(1))
        Min: 1.0
        Q1: 1.0
        Q2: 2.0
        Q3: 6.0
        Max: 612.0
In []: #绘制盒图
        dataset[attribute].plot(kind="box",figsize=(10,10))
Out[]: <Axes: >
                                                  0
         600
                                                  0
         500
         400
         300
                                                  0
                                                  0
         200
                                                  8
                                                  8
         100
          0
                                              issues_count
```

```
In []: #绘制直方图
dataset[attribute].plot(kind="hist",figsize=(10,4))
```

```
Out[]: <Axes: ylabel='Frequency'>
```



```
In []: #查找离群点
  Q1 = dataset[attribute].quantile(0.25)
  Q3 = dataset[attribute].quantile(0.75)
  outliner = Q3 + (Q3 - Q1) * 1.5
  print(f"大于{outliner}的项被识别为离群点")
```

大于13.5的项被识别为离群点

pull_requests 数值属性

```
In []: attribute = "pull_requests"

#五数概括
    print('Min:', dataset[attribute].quantile(0.25))
    print('Q1:', dataset[attribute].quantile(0.25))
    print('Q2:', dataset[attribute].quantile(0.5))
    print('Q3:', dataset[attribute].quantile(0.75))
    print('Max:', dataset[attribute].quantile(1))

Min: 0.0
    Q1: 0.0
    Q2: 0.0
    Q3: 2.0
    Max: 567.0

In []: #绘制盒图
    dataset[attribute].plot(kind="box",figsize=(10,10))
```

Out[]: <Axes: >


```
In [ ]: #绘制直方图
    dataset[attribute].plot(kind="hist",figsize=(10,4))
```



```
In []: #查找离群点
Q1 = dataset[attribute].quantile(0.25)
Q3 = dataset[attribute].quantile(0.75)
outliner = Q3 + (Q3 - Q1) * 1.5
print(f"大于{outliner}的项被识别为离群点")
```

contributors 数值属性

```
In [ ]: attribute = "contributors"
        #五数概括
        print('Min:', dataset[attribute].quantile(0))
        print('Q1:', dataset[attribute].quantile(0.25))
        print('Q2:', dataset[attribute].quantile(0.5))
        print('Q3:', dataset[attribute].quantile(0.75))
        print('Max:', dataset[attribute].quantile(1))
        Min: 0.0
        Q1: 0.0
        Q2: 2.0
        Q3: 4.0
        Max: 658.0
In [ ]: #绘制盒图
        dataset[attribute].plot(kind="box",figsize=(10,10))
Out[ ]: <Axes: >
                                                  0
         600
         500
                                                  0
         400
                                                  0
         300
                                                  0
         200
                                                  8
         100
           0
                                               contributors
```

In []: #绘制直方图
dataset[attribute].plot(kind="hist",figsize=(10,4))

```
Out[]: <Axes: ylabel='Frequency'>
```



```
In []: #查找离群点
Q1 = dataset[attribute].quantile(0.25)
Q3 = dataset[attribute].quantile(0.75)
outliner = Q3 + (Q3 - Q1) * 1.5
print(f"大于{outliner}的项被识别为离群点")
```

大于10.0的项被识别为离群点

language 标称属性

```
In [ ]: attribute = "language"
    dataset_language = dataset[attribute].value_counts(dropna=False)
    dataset_language
```

```
Out[]: JavaScript
                           253
                           155
        Python
        NaN
                           145
                          72
        HTML
                           44
        Java
        CSS
                           37
        TypeScript
                            37
                            36
        Dart
        Jupyter Notebook
                           29
                            29
        C++
                            28
        Ruby
        C
                            26
                            25
        Shell
        PHP
                            16
        Go
                            15
        Swift
                            10
        Rust
                            10
        C#
                             8
        Objective-C
                            8
        Kotlin
                            7
        Makefile
                             6
        Jinja
                             5
        SCSS
                             4
        AutoHotkey
                            3
        Dockerfile
                             3
        CoffeeScript
                             3
        Perl
                             3
                             3
        Solidity
        Vim Script
                             2
                             2
        Pawn
        Assembly
                             2
        PowerShell
                             2
        Hack
                             2
                             2
        CodeQL
                             2
        Vue
        Elixir
                             2
        Gherkin
                             1
        QMake
                             1
        CMake
                             1
        0z
                             1
        Cuda
                             1
        QML
                             1
        ActionScript
                             1
        Roff
                             1
        HCL
                             1
                             1
        PureBasic
                             1
                             1
        Smarty
        Less
                             1
        Svelte
                             1
        Haskell
        SourcePawn
                             1
        Name: language, dtype: int64
In []: #数据太大,仅显示前10个
        dataset_language[:10].plot(kind="bar", figsize=(10,4))
```

Out[]: <Axes: >

数据缺失的处理

```
In [ ]:
        dataset_new = dataset
        #统计所有属性数据的缺失值个数
        print(dataset.isnull().sum(axis=0))
                          0
        repositories
        stars_count
                          0
                          0
        forks_count
        issues_count
        pull_requests
                          0
        contributors
                          0
                        145
        language
        dtype: int64
```

处理language属性的缺失

缺失的原因:可能是在数据统计的过程中出现了错误,毕竟每个代码仓库应当都有自己使用的语言。选择策略:将缺失部分剔除

```
In []: attribute = "language"
    dataset_new = dataset_new.dropna(subset=[attribute])

In []: #对比新旧数据集
    plt.subplot(2,1,1)
    dataset[attribute].value_counts(dropna=False)[:10].plot(kind="bar",figsize=(10,8 plt.subplot(2,1,2) dataset_new[attribute].value_counts(dropna=False)[:10].plot(kind="bar",figsize=(0,8 plt.subplot(2,1,2) dataset_new[attribute].plot(kind="bar",figsize=(0,8 plt.subplot(2,1,2) dataset_new[attribute].plot(kind="bar",figsize=(0,8 plt.subplot(2,1,2) dataset_new[attribute].plot(kind="bar",figsize=(0,8 plt.subplot(2,1,2) dataset_new[attribute].plot(kind="bar",figsize=(0,8
```

