Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3211	К работе допущен	07.12.2023
Студент	Болорболд А.	Работа выполнена	10.01.2024
Преподаватель	Коробков М.П	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.13

- 1. Цель работы.
 - Изучение прецессии гироскопа.
 - Подтверждение линейной зависимости периода прецессии гироскопа от частоты вращения вокруг оси симметрии.
 - Определение момента инерции гироскопа.
- 2. Задачи, решаемые при выполнении работы.
 - Измерение периода прецессии гироскопа.
 - Измерение частоты вращения гироскопа вокруг своей оси.
 - Расчет момента инерции гироскопа на основе экспериментальных данных и сравнение с теоретическим значением.

3. Объект исследования.

Объектом исследования является гироскоп – устройство, состоящее из большого поворотного диска (маховика), который вращается вокруг своей оси симметрии.

4. Метод экспериментального исследования.

В ходе эксперимента используется измерение периода прецессии гироскопа и частоты его вращения вокруг оси. Момент инерции гироскопа рассчитывается на основе полученных данных.

5. Рабочие формулы и исходные данные.

Формула	Комментарий
$T' = \frac{2\pi}{Fl} I\omega$	<i>T'</i> —период прецессии
$\sigma_A = \sqrt{\frac{\sum_{i=1}^n (T_{\text{np}i} - \sum_{i=1}^n (n-1)^n T_{\text{np}i}}{\sum_{i=1}^n (n-1)^n T_{\text{np}i}}}$	$\frac{A\omega_{\pi pi})^2}{1)\omega_{{ m cp}i}^2}$ Стандартное отклонение для коэффициента A
$I_{\text{reop}} = \frac{mR^2}{2}$	Момент инерции маховика гироскопа (теор.) относительно главной оси
$I_{_{\mathfrak{HKC\Pi}}} = \frac{Amg}{2\pi}$	Момент инерции маховика гироскопа (эксп.) относительно главной оси
$A = \frac{2\pi I}{mgl}; A = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}$	$\frac{\omega_{\mathrm{cp}i}T_{\mathrm{пp}i}}{\omega_{\mathrm{cp}i}^2}$ Коэффициент A , найденный с помощью МНК
$\Delta A = 2\sigma_A; \varepsilon_A = \frac{\Delta A}{A}$	* 100% Абсолютная и относительная погрешность

Исходные данные:

 $m_0 = 4$ г — масса держателя грузов;

 $m_1 = 20$ г — масса первого груза;

 $g = 9,82 \text{ м/c}^2$ — ускорения свободного падения;

 $m_{\scriptscriptstyle \mathrm{Max}}=$ 1,5 кг — масса маховика;

 $r_{\text{мах}} = 12,5$ см — радиус маховика;

 $l=22,5\ {\rm cm}$ — расстояние от точки опоры оси вращения до места крепления дополнительных грузов (плечо силы).

6. Измерительные приборы.

Nº	Наиманараниа	Tug gnussana	Используемый	Погрешность	
п/п	Наименование	Тип прибора	диапазон	прибора	
1	Цифровой	Измерительный		±1 об/мин	
I	тахометр	прибор		±1 00/Muh	
Pah	Цифровые весы	Измерительный	_	±0,1 г	
	/	прибор			
(3d)	Цифровой	Измерительный		±0,01 сек	
	секундомер	прибор		20,07 CCK	

7. Схема установки.

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Таблица 1: Измерение зависимости периода прецессии от частоты вращения маховика гироскопа

т, г	ω_1 , об/мин	ω_2 , об/мин	$\omega_{ m cp}$, об/мин	<i>T</i> _{np} , c
	420	360	390	57
	515	432	473,5	63
24	475	405	440	58
	520	440	480	62
701	524	443	483,5	63
Phys	447	403	425	30
edit	488	444	466	34
44	537	473	505	35
	488	444	466	33
	523	465	494	35
	460	422	441	22
	550	505	527,5	25
64	557	512	534,5	26
	547	507	527	25
	438	413	425,5	21

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$\sigma_A=0.03412294$$
 $A_1=rac{\sum_{i=1}^n\omega_{ ext{cpi}}T_{ ext{прi}}}{\sum_{i=1}^n\omega_{ ext{cpi}}^2}=0.13; A_2=0.07; \ A_3=0.048$ $I_{ ext{Teop}}=rac{mR^2}{2}=rac{1.5*0.125^2}{2}=0.01172\ ext{KT}* ext{M}^2$

	1	2	3
$I_{ m эксп}$, кг $*$ м 2	0,001122	0,001094	0,001087

Для $I_{\text{эксп}}$ доверительный интервал с доверительной вероятностью 0,9 будет:

Предел: 0,000709

Доверительный интервал: $0.01101 \pm 0.0007 \ \mathrm{kr} \cdot \mathrm{m}^2$

10. Расчёт погрешностей измерений (для прямых и косвенных измерений)

$$\Delta A = 2\sigma_A = 0,06824869$$
 $\varepsilon_A = \frac{\Delta A}{A} \cdot 100\% = 0,8332\%$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Экспериментальная зависимость периода прецессии от средней частоты вращения

12. Результаты:

- График 1 график зависимостей периода прецессии гироскопа от частоты вращения его маховика для каждого из моментов силы;
- Значение момента инерции в виде доверительного интервала: $0.01101 \pm 0.0007 \text{ кr} \cdot \text{м}^2$;
- Абсолютное отклонение измеренного момента инерции от его теоретического значения: $|I_{\text{эксп}} I_{\text{теор}}| = 0,0007 \text{ кг} \cdot \text{м}^2$.

13. Вывод:

В ходе проведенной лабораторной работы был проведён ряд экспериментов с гироскопом с целью изучения его прецессионного движения. Полученные результаты подтвердили закономерность: с увеличением приложенного момента силы наблюдается уменьшение периода процессии. Кроме того, выявлена связь между увеличением массы и ростом момента инерции маховика, что также подтверждает зависимость параметров гироскопа от внешних воздействий. Конечно, результаты могут не оправдать ожидания из-за различных факторов (я отсутствовал во время проведения замера, так что человеческий фактор смог сыграть немалую роль), но их влияния на результаты оказывались незначительной.