Factors Influencing Employee Retention

Griselda Arevalo

Coral Rosa-Falero

Jiemin Sheng

Topic: Employee Retention Prediction

Purpose

• Build a predictive model determine the factors that influence employee retention.

Applications

- Improve selection and retention of employees.
- Understand what factors that influence employee retention

Tools

- Jupyter NB
 - pandas
 - o sqlite3
 - Sklearn.metrics
- Tableau
- GitHub

Data: Overview

csv file with 4,653 observations

https://www.kaggle.com/datasets/tejashvi14/employee-future-prediction

Data

- Education (Degrees)
- Joining Year (Hiring Date)
- City (Office Location)
- Payment Tier (Salary Level)
- Age
- Gender
- Ever Benched (Productivity/Profitability)
- Experience In Current Domain (# Years)
- Leave Or Not (Retention)

```
employee data df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4653 entries, 0 to 4652
Data columns (total 9 columns):
     Column
                                 Non-Null Count
                                                 Dtype
     Education
                                 4653 non-null
                                                 object
                                                 int64
 1
     JoiningYear
                                 4653 non-null
    City
                                                 object
                                 4653 non-null
     PaymentTier
                                 4653 non-null
                                                 int64
                                 4653 non-null
                                                 int64
    Age
                                                 object
    Gender
                                 4653 non-null
    EverBenched
                                 4653 non-null
                                                 object
     ExperienceInCurrentDomain
                                4653 non-null
                                                 int64
     LeaveOrNot
                                 4653 non-null
                                                 int64
dtypes: int64(5), object(4)
memory usage: 327.3+ KB
```

Age

Gender

Age	F	M
22	19	30
23	20	28
24	156	229
25	171	247
26	243	402
27	254	371
28	274	356
29	93	137
30	83	137
31	44	81
32	47	85
33	48	76
34	55	81
35	51	72
36	63	76
37	57	84
38	53	83
39	61	70
40	57	77
41	26	56

Gender

Education

Degrees

City

Office location

Join Year

Hiring Date

Join Year Distribution

Joining Year	Gender	
	F	M
2012	180	324
2013	253	416
2014	246	453
2015	440	341
2016	178	347
2017	450	658
2018	128	239

Experience In Current Domain

Payment Tier

Salary

Ever Benched

Productivity/Profitability

Retention Dashboard

Leave Or Not

Retention

- Connect to sqlite3 database
- Asses the properties of the database
- Establish columns/target and remove unwanted columns
- Check the balance of the target values
- Establish the training set and train the model
- Resample the training data
- Calculate training accuracy score
- Calculate testing set accuracy score
- Calculate confusion matrix
- Evaluate the classification report
- Determine the importance rating of each feature

```
employee data df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4653 entries, 0 to 4652
Data columns (total 9 columns):
    Column
                                Non-Null Count
                                               Dtype
    Education
                                4653 non-null
                                                object
    JoiningYear
                                4653 non-null
                                                int64
    City
                                                object
                                4653 non-null
    PaymentTier
                                                int64
                                4653 non-null
    Age
                                                int64
                                4653 non-null
    Gender
                                4653 non-null
                                                object
    EverBenched
                                                object
                                4653 non-null
    ExperienceInCurrentDomain
                               4653 non-null
                                                int64
    LeaveOrNot
                                4653 non-null
                                                int64
dtypes: int64(5), object(4)
memory usage: 327.3+ KB
```

- Connect to sqlite3 database
- Asses the properties of the database
- Establish columns/target and remove unwanted columns
- Check the balance of the target values
- Establish the training set and train the model
- Calculate training accuracy score
- Calculate testing set accuracy score
- Calculate confusion matrix
- Evaluate the classification report
- Determine the importance rating of each feature

```
# Check the balance of our target values (1 = yes or 0 = no)
y.value_counts()

0    3053
1    1600
Name: LeaveOrNot, dtype: int64
```

- Connect to sqlite3 database
- Asses the properties of the database
- Establish columns/target and remove unwanted columns
- Check the balance of the target values
- Establish the training set and train the model
- Calculate training accuracy score
- Calculate testing set accuracy score
- Calculate confusion matrix
- Evaluate the classification report
- Determine the importance rating of each feature

```
# Calculated the balanced accuracy score: TRAINING
y_tr = brfc.predict(X_train)
balanced_accuracy_score(y_train, y_tr)

0.9137117737003058

# Calculated the balanced accuracy score: TESTING
y_pred = brfc.predict(X_test)
balanced_accuracy_score(y_test, y_pred)

0.7848625654450262
```

```
# classification report
from sklearn.metrics import classification report
print( classification report(y test, y pred))
                          recall f1-score support
              precision
                             0.83
                                       0.84
                                                  764
                   0.86
                             0.74
                   0.69
                                       9.72
                                                  400
                                       0.80
                                                 1164
    accuracy
   macro avg
                   9.78
                             9.78
                                       9.78
                                                 1164
weighted avg
                   0.80
                             0.80
                                       0.80
                                                 1164
```

- Connect to sqlite3 database
- Asses the properties of the database
- Establish columns/target and remove unwanted columns
- Check the balance of the target values
- Establish the training set and train the model
- Calculate training accuracy score
- Calculate testing set accuracy score
- Calculate confusion matrix
- Evaluate the classification report
- Determine the importance rating of each feature

```
# List the features sorted in descending order by feature importance
importances = brfc.feature importances
sorted(zip(brfc.feature importances , X.columns), reverse=True)
[(0.3086914210245113, 'JoiningYear'),
 (0.19190147118381745, 'Age'),
 (0.09890156348096112, 'ExperienceInCurrentDomain'),
 (0.09325636092904764, 'PaymentTier'),
 (0.05727410779116132, 'City Pune'),
 (0.054031392148976856, 'Education Masters'),
 (0.046093613205681915, 'Gender Male'),
  (0.03876883320695893, 'Education Bachelors'),
 (0.03204738082388843, 'Gender Female'),
 (0.025990119766903574, 'City Bangalore'),
 (0.025687810889074857, 'City New Delhi'),
 (0.009464044355872172, 'EverBenched No'),
 (0.009311635638471467, 'EverBenched Yes'),
 (0.008580245554672804, 'Education PHD')]
```

Summary

Accuracy scores

Training Score: 91%

Testing Score: 78%

Precision, Sensitivity and F1 score of 80%.

Next Steps

Anything the team would have done differently

• Use a more robust database

Recommendation for future analysis

- Adjustments to current model:
 - Modify the split size
 - Number of decision making trees
 - Remove the less important features