${\bf Experimento}~{\bf 07-PSI-3212}$ Natanael Magalhães Cardoso, nUSP: 8914122

Item 1.1

Figura 1: Esquema do circuto

Figura 2: Resultado da simulação. Em vermelho a ponta de prova PR1 (v_o) e em verde a ponta de prova PR2 (e_g) .

Item 1.2

O gráfico da figura 3 inclui a tensão de V_{DC} , em azul. Pela observação do gráfico, dá para ver que a curva v_o apresenta dois extremos, que são os pontos de saturação. Além disso, observa-se que os máximos e mínimos da tensão de saída são referentes à diferença entre as tensões e_g e V_{DC} . Para valores de $e_g > V_{DC}$ a tensão v_o atinge o nível de saturação inferior V_{-SAT} e para valores de $e_g < V_{DC}$ a tensão v_o atinge o nível superior V_{+SAT} . Por isso que a onda é quadrada e não senoidal. É notado também que a saturação máxima e mínima do sinal de v_o pode ser invertida com a inversão dos sinais de entrada nos pinos 2 e 3 no OpAmp 741.

Figura 3: Simulação do circuito da figura 1 com a tensão V_{DC} em azul.

Item 1.3

Figura 4: Simulação do circuito da figura 1 para $V_{DC}=1.8~{
m V}.$

Foi observado que o tempo em nível alto fica menor, pois aumentando o valor de V_{DC} , diminiu-se o tempo em que $e(g) > V_{DC}$.

Os valores medidos com o cursor do simulador foram:

Tempo em nível alto: 8.35 ms Tempo em nível baixo: 1.40 ms

Item 1.4

Com a simulação da figura 2 observa-se que o sinal de tensão v_o possui valores maximos ou mínimos de acordo com o sinal positivo ou negativo da curva e_g , mas este positivo e negativo não é em relação a zero. Com a simulação da figura 3, que mostra a tensão V_{DC} e o experimento da figura 4 variando o valor de V_{DC} , ficou claro que a tensão V_{DC} define o positivo e o negativo. Nesse sentido, este circuito é um comparador porque compara dois sinais, de tal forma que v_o é máximo quando $V_{DC}-e_g$ é maior que zero e mínimo caso contrário.

Item 2.1.a

Figura 5: Esquema do circuito.

Figura 6: Simulação do circuito da figura 5.

Item 2.1.b

O gráfico da figura 5, mostra que a tensão de saída tem polaridade invertida, ou seja, para valores positivos de tensão de entrada, a tensão de saída é negativa e vice-versa. E ainda tem uma amplitude muito maior (em módulo), pois é um amplificador.

Item 2.2.a

Figura 7: Esquema do circuito.

Figura 8: Simulação do circuito da figura 7.

Item 2.2.b

Aqui se observa que o comportamento visto no item (2.1) também é válido para tensões AC. Diferente do item (1), a tensão de saída satura quando a tensão de entrada inverte a polaridade, já que neste circuito a entrada 3 do aplificador está aterrada.

Item 3.a

Figura 9: Simulação para $V_{DC}=0$ V.

Item 3.b

Figura 10: Simulação para $V_{DC}=1~{
m V}.$

Item 3.c

Figura 11: Simulação para $V_{DC}=2~{
m V}.$