

MIDDLE EAST TECHNICAL UNIVERSITY

CAT FEEDING PROJECT

$STUDENT\ ID:$

Contents

1	Introduction	2
2	Mechanic Design	3
3	Electronic Component Selection	4
4	Base Software Development	5
5	Computer Vision	7
6	Next Week Tasks	8
7	Conclusion	q

1 Introduction

Cat feeding project report 1 is presented in this report. This week we have done a lot of works in various aspects of the project. Therefore, it is best to present the results in sections mechanic design, electronic component selection, base software development, computer vision which are given as sections 2, 3, 4 and 5 respectively. The tasks for the next week is given in section 6.

We shared the work according to our abilities and professions. We end up with the following work structure:

Figure 1: Salt Cup

2 Mechanic Design

This week the overall mechanical design was discussed. By observing the similar systems, a rude concept of the design was made. Mechanical design part was divided into two categories: Inner design and Outer design. Inner design might be problematic since it includes the food and water tank systems. In order to control the amount of the cat food which will flow through food container, the gate should be designed and this gate should effectively cut the food flow. We have think about some gates like using magnets for holding the door or using a system like spinning wheel. However in first case the power of the magnet might not enough for holding the door therefore we have to make some editions in order to make it work. Moreover due to the magnetis magnetic field other devices might be suffer. In the second case the spinning wheel might also cause some problems like, it might not rotate due to the friction between food and bucket. Moreover in order to implement it one has to use powerful motor and due to the size of the spinning wheel the overall systems will be huge, which is not desirable for aesthetic and economic reasons. On the other hand we came up with an idea that we can use a systems like ordinary salts have. One can see this on figure 1

This systems is applicable since one can control the flow of the food by rotating the cover of the salt cup. When two open sides are matched food flows however when one open side matches with a closed side of the cover food flow stops. Outer design will be handled when the inner design is fixed since, the dimensions of it will be determined by the system which be implemented inside.

3 Electronic Component Selection

The main constraints of the hardware selection is the power consumption, communication capability, network performance and software support. We have done research about the microprocessors and we decided to buy raspberry pi zero w since this model has WiFi built in, but it was out of stock in the markets in Turkey. Therefore, we decided to buy raspberry pi zero wh which can be seen in the figure 2. We also decided to buy camera module that has 5mp resolution and supports 1080p video capturing as seen in the figure 3. Furthermore, we decided to buy 16gb microsd card. We also did research about voltage regulators, audio opamps and 555timer opamps.

Figure 2: raspberry pi zero wh

Figure 3: raspberry pi camera module

4 Base Software Development

Neural networks and feature descriptors are decided to be used for cat and dog classification. Since embedded electronic computers are not capable of doing mass works, it is concluded that a server is going to be used for those mass calculations. As a result, it became a must to transfer data from the embedded system to a powerful computer. The transfer process is done over network socket with TCP protocol which is selected because of reliability and permanent tunnel advantages over UDP[1].

To transfer data properly and make the whole system consistent, a schema of software overview is designed. Figure 4 shows the rough schema that how the network is constructed and related to the other components of the project such as computer vision, database, starting cat feeder.

Native implementation of python of ServerSocket and Socket objects are used[4]. This part of the work includes the data transfer, video streaming and frame transfer, command transfer and response. This week is mainly about transferring a single frame over network and abstract object structures for client-server and camera driver objects. More specifically, camera driver(CameraDriver.py) and server-client(ServerClient.py) source files are started and some basic functionalities are added[3]. Note that currently the source code is being developed under pi branch in GitHub which will then be re-based so that minimum congestion arises.

Parameter optimization for the data transfer is the another factor which affect the data transfer performance and stability of the transferred image. Using greater number of frames and low data buffer sizes, the image is transferred partially, or even the first segments are broken which caused the corrupted data. The system is still needed to be improved and integrated with the computer vision work group of the project.

Figure 4: Overall System Schema

5 Computer Vision

This week, only some initial research was done on various ways of achieving cat and dog detection and cat recognition. Even though initial decision was to take advantage of neural networks, it is now on the table to develop and use feature based detection algorithms. It is discussed and made clear that even though feature based detection is prone to a higher error, it requires much less computational power, let alone training time and data. The decision between a convolutional neural network and a feature based detection algorithm is still in consideration. A casual comparison of the two methods can be found in Table 1.

	Advantages	Disadvantages
Deep Learning	Newer technology Better community	Too much computational power
		Requires server
		Ever changing technology
Feature-based	Faster	More prone to error
Detection	Can run on embedded system	Old technology

Table 1: Advantages and disadvantages of two methods

We examined some open source implementation examples. A remarkable amount of those were trained on the "Dogs vs Cats" data on Kaggle [2]. If we need to train a data-set instead of using pretrained weights, we will most likely use this data-set.

6 Next Week Tasks

This week's Computer Vision research was focused mostly on deep learning; next week, we are planning to get more familiar with feature based detection techniques.

Further research on all other subjects will also be conducted; new design ideas about mechanical design will be produced. Also, we will try to improve current ideas. Especially, image acquisition will be examined in detail as discussed in the previous weekly meeting. Also, we will begin to write the proposal report.

The base software is going to be tested and integrated to the other parts of the work. Initially, frame transfer and processing will be tried which will then be followed by parallel data transfer and computation and time based co-relation of images. All the works will be put into the Gannt chart and road-map for better planning.

7 Conclusion

We started the work in parallel by separating works as much as possible so that no team member requires to depend on another member's work. As discussed in section 6 we will be trying to find ways to merge the works in next weeks.

References

- [1] I. Coonjah, P. C. Catherine, and K. M. S. Soyjaudah. Experimental performance comparison between tcp vs udp tunnel using openvpn. In 2015 International Conference on Computing, Communication and Security (ICCCS), pages 1–5, Dec 2015.
- [2] Dogs vs. cats data-set. https://www.kaggle.com/c/dogs-vs-cats, 2013.
- [3] picamera. https://picamera.readthedocs.io/en/release-1.13/.
- [4] Low-level networking interface. https://docs.python.org/3/library/socket.html.