- 1. Să se rezolve inecuația $3^{4-x} < 3^x$. (5 pct.)
 - a) \emptyset ; b) $x \in [2, \infty)$; c) $x \in \{-1, 1\}$; d) $x \in [0, 2]$; e) $x \in [-1, 1]$; f) $x \in \mathbb{R}$.
- 2. Coordonatele punctului de extrem al funcției $f:(0,\infty)\to\mathbb{R}, f(x)=x\ln x$ sunt: (5 pct.)
 - a) (e, -e); b) $(\frac{1}{e}, -\frac{1}{e})$; c) (1, -1); d) (1, 0); e) $(\frac{1}{e}, e)$; f) (1, 1).
- 3. Fie $a_1, ..., a_{10}$ o progresie aritmetică cu $a_1 = 10$ și rația r = -3. Câți termeni pozitivi are progresia? (5 pct.)
 - a) 10; b) 2; c) 5; d) 6; e) 4; f) 3.
- 4. Valoarea expresiei $E = i^5 + i^7$ este: (5 pct.)
 - a) i; b) 2i; c) 1; d) i + 1; e) i 1; f) 0.
- 5. Valoarea integralei $\int_{0}^{1} (3x^2 2x) dx$ este: (5 pct.)
 - a) 0; b) -1; c) 1; d) 2; e) -2; f) $\frac{1}{2}$.
- 6. Derivata funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+1)e^x$ este: (5 pct.)
 - a) $x^2 e^x$; b) e^x ; c) $(x+2)e^x$; d) $(x+1)e^x$; e) 0; f) xe^x .
- 7. Funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ egin{array}{ll} mx+1, & x<1 \\ x-1, & x\geq 1 \end{array}
 ight.$ este continuă pentru: (5 pct.)
 - a) m = 1; b) m = 2; c) m = -1; d) m = -2; e) $m = \frac{1}{2}$; f) m = 0.
- 8. Să se determine $a \in \mathbb{R}$ astfel încât $\begin{vmatrix} 1 & 2 \\ -1 & a \end{vmatrix} = 0$. (5 pct.)
 - a) $a \in [-1, 1]$; b) a = 3; c) a = -1; d) a = 2; e) a = -2; f) a = 0.
- 9. Să se calculeze $\lim_{x\to 1} \frac{x^2-1}{x-1}$. (5 pct.)
 - a) 3; b) 2; c) -1; d) 1; e) ∞ ; f) 0.
- 10. Fie $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Atunci matricea $B = A^2 A$ este: (5 pct.)
 - a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; b) $\begin{pmatrix} 6 & 8 \\ 12 & 18 \end{pmatrix}$; c) 0_2 ; d) $\begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$; e) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$; f) $\begin{pmatrix} 8 & 10 \\ 12 & 18 \end{pmatrix}$.
- 11. Să se determine $m \in \mathbb{R}$ astfel încât ecuația $x^2 mx + 4 = 0$ să admită soluție dublă. (5 pct.)
 - a) $m \in [-4, 4]$; b) m = 0; c) $m \in \mathbb{R}$; d) $m \in \{-4, 4\}$; e) $m \in \{-2, 2\}$; f) m = 5.
- 12. Câte perechi distincte $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ de numere întregi verifică inegalitatea $x^2 + y^2 \leq 5$? (5 pct.)
 - a) 19; b) 11; c) 8; d) 20; e) 21; f) 13.
- 13. Să se calculeze $x \frac{1}{x}$ pentru $x = \frac{1}{2}$. (5 pct.)
 - a) $-\frac{1}{2}$; b) 1; c) $\frac{1}{2}$; d) $-\frac{3}{2}$; e) -1; f) $\frac{3}{2}$.
- 14. Să se scrie în ordine crescătoare numerele 2, π , $\sqrt{3}$. (5 pct.)
 - a) π , 2, $\sqrt{3}$; b) $\sqrt{3}$, π , 2; c) 2, $\sqrt{3}$, π ; d) $\sqrt{3}$, 2, π ; e) π , $\sqrt{3}$, 2; f) 2, π , $\sqrt{3}$.
- 15. Să se determine domeniul maxim de definiție D al funcției $f:D\to\mathbb{R}, f(x)=\sqrt{2x+6}$. (5 pct.)
 - a) $[3, \infty)$; b) $[0, \infty)$; c) $(-\infty, -4]$; d) [-3, 3]; e) \mathbb{R} ; f) $[-3, \infty)$.
- 16. Să se calculeze $x_1^2 + x_2^2$, unde x_1, x_2 sunt soluțiile ecuației $x^2 4x + 3 = 0$. (5 pct.)
 - a) 0; b) 10; c) 12; d) 8; e) 16; f) 9.

- 17. Valoarea limitei $l = \lim_{n \to \infty} (\sqrt{n^2 + n} \sqrt{n^2 n})$ este: (5 pct.) a) -1; b) limita nu există; c) 1; d) $-\infty$; e) ∞ ; f) 0.
- 18. Valoarea integralei $I = \int_0^1 \mathrm{e}^{-x^2} dx$ satisface inegalitatea: (5 pct.)
 - a) $I < \frac{1}{e}$; b) I < 0, 1; c) $I < \frac{\pi}{10}$; d) I < 0; e) $I < \frac{1}{3}$; f) $I < \frac{\pi}{4}$.