Chapter 17

Parametrization and Vector Fields

17.1 Parametrized Curves

Our experience with describing plane curves so far primarily consists of one of the following:

- expressing "y" as a function of "x", that is, y = f(x),
- expressing "x" as a function of "y", that is, x = g(y),
- giving a relation between "y" and "x" that defines "y" implicitly as a function of "x", that is, f(x,y) = 0.

However, some curves are not readily expressed using either of these methods, e.g., see Figure 17.1

Figure 17.1: Generic Planar Curve

Imagine that a particle moves along the curve C as shown in Figure 17.1. It is impossible to describe C by an equation of the form y = f(x) because C fails the Vertical Line Test. But the x- and y-coordinates of the particle are functions of time and so we can write x = f(t) and y = g(t). Such a pair of equations is often a new and more convenient way of describing a curve and gives rise to the following definition.

Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations

$$x = f(t) y = g(t) (17.1)$$

(called **parametric equations**). Each value of t determines a point (x, y), which we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve C, which we call a **parametric curve**. The parameter t does not necessarily represent time and, in fact, we could use any letter other than t for the parameter (another typical choice is θ which could denote an angle). But in many applications of parametric curves, t does denote time and therefore we can interpret (x, y) = (f(t), g(t)) as the position of a particle at time t.

Example 1. Sketch and identify the curve defined by the parametric equations

$$x = t + 1 y = t^2 - 2t, (17.2)$$

where:

(a)
$$-\infty < t < +\infty$$

(b)
$$1 \le t \le 3$$

Solution: We start by selecting several values of t and finding the corresponding x and y values.

t	x	y
-2		
-1		
0		
1		
2		
3		
4		

Example 2. Sketch and identify the curve defined by the parametric equations

$$x = \cos(\theta) \qquad \qquad y = \sin(\theta) \,, \tag{17.3}$$

where:

(a)
$$0 \le \theta < 2\pi$$

(b)
$$\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$$

Solution: We start by picking some values for θ and find the corresponding values of x and y.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0

Example 3. Sketch and identify the curve defined by the parametric equations given below:

(a)
$$x = \cos(t)$$
 $y = \sin(t)$, $0 \le t \le 2\pi$

$$0 < t < 2\pi$$

(b)
$$x = \sin(t)$$
 $y = \cos(t)$, $0 \le t \le 2\pi$

$$0 < t < 2\pi$$

(c)
$$x = \sin(2t)$$
 $y = \cos(2t)$, $0 \le t \le \pi$

$$0 < t < \pi$$

(d)
$$x = \sin(2t)$$
 $y = \cos(2t)$, $\frac{5\pi}{2} \le t \le \frac{7\pi}{2}$

$$\frac{5\pi}{2} \le t \le \frac{7\pi}{2}$$

Parametric Equations in Three Dimensions

A parametric curve in the xyz-space is a curve described by parametric equations

$$x = f(t)$$
, $y = g(t)$, $z = h(t)$,

where the **parameter** t changes in some interval $\mathcal{I} = [a, b]$.

Figure 17.2: Generic Curve in the xyz-space

As in the case of planar curves, for each value of parameter t there is a corresponding point (x, y, z) = (f(t), g(t), h(t)). As t changes, the point moves along C describing a motion along the path C. The path C has

- initial point $(x_1, y_1, z_1) = (f(a), g(a), h(a)),$
- **terminal point** $(x_2, y_2, z_2) = (f(b), g(b), h(b)).$

Example 4. Sketch and **identify** the curve defined by the parametric equations given below:

$$x = 2\cos(t), y = 2\sin(t), z = t, t \ge 0.$$

Example 5. Sketch and identify the curve defined by the parametric equations given below:

$$x = t \cdot \cos(t)$$
, $y = t \cdot \sin(t)$, $z = t$, $t \ge 0$.

Parametrization in Vector Form

Let a parametrized curve

$$x = f(t),$$
 $y = g(t),$ $z = h(t),$ $t \in \mathcal{I} = [a, b]$

be given. We can write the parameterization as:

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}.$$

 $\vec{r}(t)$ is called the **position vector**. The position vector traces the curve as t changes.

Parametric Equation of a Line in Vector Form

Let L be the line passing through a point (x_0, y_0, z_0) and parallel to $\vec{w} = w_1 \vec{i} + w_2 \vec{j} + w_3 \vec{k}$. Then

$$L: \quad x(t) = x_0 + t \cdot w_1, \quad y(t) = y_0 + t \cdot w_2, \quad z(t) = z_0 + t \cdot w_3, \quad -\infty < t < \infty.$$

In the vector form the same line can be written as

$$L: \quad \overrightarrow{r}(t) = \overrightarrow{r_0}(t) + t \cdot \overrightarrow{w}, \qquad \overrightarrow{r_0}(t) = x_0 \overrightarrow{i} + y_0 \overrightarrow{j} + z_0 \overrightarrow{k}, \qquad -\infty < t < \infty.$$

Example 6. Consider the following two points $P_0 = (2, -1, 3)$ and $P_1 = (-1, 5, 4)$. Find a parametric representation of:

- (a) The line, L, through the points P_0 and P_1 .
- (b) The line segment, S, from P_0 to P_1 .

Solution:

Example 7. Find a parametrization of the line perpendicular to the plane z = 2x - 3y + 7 and through the point (1, 1, 6). Solution:

Example 8. Determine whether the following line is parallel to the plane 2x - 3y + 5z = 5:

$$x = 5 + 7t$$
, $y = 4 + 3t$, $z = -3 - 2t$.

Solution:

Example 9. Make sure to study Examples 9, 10, and 11 from Section 17.1 in our textbook (accessible through WileyPLUS).