

Machine Learning & fraud detection

Olivier Caelen

Agenda

The Card Fraud-Detection Context

- Fraud-Detection as a machine learning problem
 - Clustering
 - Graph mining
- Conclusion

Background

- Credit card fraud
 - Fraudsters steal card data
 - Skimming
 - Phishing
 - Data theft (Hacking)
- Cards misused to issue transactions

The Card Fraud-Detection Context

- Real-time/Near Real-time
- Debit/Credit
- Issuing/Acquiring

Expert driven

Data driven

Agenda

- The Card Fraud-Detection Context
- Fraud-Detection as a machine learning problem

- Clustering
- Graph mining
- Conclusion

The Fraud-Detection problem

• The problem: Learning over a potentially infinitely long stream of transactions.

- Data-generating process χ generates tuples $(x_t, y_t) \sim \chi$
 - x_t is the transaction data at time t (e.g., $x_t \in \mathbb{R}^d$)
 - y_t is the associated label (e.g., $y_t \in \{+, -\}$)
- Data:
 - Transactional data (TX_DATETIME, AMT, COUNTRY_CODE, ...)
 - External Date (Gender, Age, ...)
 - Data driven features (Clustering, graph mining, ...)

- Fraud Detection is a learning problem with :
 - On-line learning with concept-drift
 - Sampling bias
 - · Highly unbalanced
 - Overlapping
 - Many possible cost functions

Concept-drift / Nonstationary

- · Fraudster strategies change
- Customers' spending habits change

• Consider as an illustrative example a simple 1-dimension classification problem.

If
$$t < \delta$$
, we have $(x_t, y_t) \sim \mathcal{X}$.
If $t > \delta$, we have $(x_t, y_t) \nsim \mathcal{X}$
 \implies Concept-drift at δ

 \mathcal{X} becomes **non-stationary**.

Sampling bias

The feedback from transactions $(y_t \in \{+, -\})$ comes with delay.

Note that in the feedback $(x_t, y_t) \nsim \chi \implies$ sampling bias.

Highly unbalanced

The rate of the fraudulent transactions is usually less than 1/1000.

Learning from unbalanced datasets is a difficult task since learning algorithms are not designed to cope with a large difference between the number of cases belonging to different classes [1].

Techniques for unbalanced datasets:

- Sampling methods
- Ensemble methods
- Cost based methods
- ...

[1] N. Japkowicz, et al. The class imbalance problem: A systematic study, 2002

Highly unbalanced – Sampling methods (I)

Many of the existing methods for classification with unbalanced dataset take advantage of sampling techniques to balance the dataset.

[1] N.V. Chawla, et al. Smote: synthetic minority over-sampling technique 2011.

Highly unbalanced – Sampling methods (II)

When is under-sampling effective in unbalanced classification tasks?[1]

Uniform under-sampling modifies P(Y = + | X = x) but not the ranking.

→And fraud detection is a ranking problem.

[1] A. Dal Pozzolo, et al. When is undersampling effective in unbalanced classification tasks?, 2015

Highly unbalanced – Ensemble methods (I)

• EasyEnsemble [1], explore the majority class in an unsupervised manner

Algorithm 1 The EasyEnsemble algorithm.

- {Input: A set of minority class examples \$\mathcal{P}\$, a set of majority class examples \$\mathcal{N}\$, \$|\mathcal{P}| < |\mathcal{N}|\$, the number of subsets \$T\$ to sample from \$\mathcal{N}\$, and \$s_i\$, the number of iterations to train an AdaBoost ensemble \$H_i\$}
- 2: $i \Leftarrow 0$
- 3: repeat
- 4: i ← i + 1
- 8: Randomly sample a subset \mathcal{N}_i from \mathcal{N} , $|\mathcal{N}_i| = |\mathcal{P}|$.
- 6: Learn H_i using \mathcal{P} and \mathcal{N}_i . H_i is an AdaBoost ensemble with s_i weak classifiers $h_{i,j}$ and corresponding weights $\alpha_{i,j}$. The ensemble's threshold is θ_i , i.e.

$$H_i(x) = \operatorname{sgn}\left(\sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \theta_i\right).$$

- 7: until i = T
- 8: Output: An ensemble:

$$H(x) = \operatorname{sgn}\left(\sum_{i=1}^{T} \sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \sum_{i=1}^{T} \theta_i\right).$$

[1] X.Y. Liu, et al. Exploratory undersampling for class-imbalance learning.2009.

Highly unbalanced – Ensemble methods (II)

• BalanceCascade [1], explore the majority class in a supervised manner

- At every step, a model is trained on a balanced dataset.
- The majority training set is shrunk after every step.
 - \rightarrow By removing the correctly classified examples from the majority class.

[1] X.Y. Liu, et al. Exploratory undersampling for class-imbalance learning.2009.

Highly unbalanced – Cost based methods

- Cost based methods [1] are type of learning that takes the misclassification costs into consideration (FN cost >FP cost)
- Cost-insensitive algorithm can be converted into cost-sensitive using a wrapper approach:
 - → Modify the class distribution of the training data and then apply the cost insensitive algorithm.
 - Cost proportional sampling [2], positive and negative examples are sampled by the ratio:

```
\frac{P(majority).FNcost}{P(minority).FP\ cost}
```

• **Costing** [3], accept an instance into the sample with the accepting probability $\frac{C(i)}{Z}$, where C(i) is the misclassification cost of class i, and Z is an arbitrary constant such that $Z \ge \max C(i)$.

[1] C.X. Ling, et al. Cost-sensitive learning and the class imbalance problem, 2008.

[2] C. Elkan, et al. The foundations of cost-sensitive learning, 2001

[3] B. Zadrozny, et al. Cost-sensitive learning by cost-proportionate example weighting. 2003

Highly unbalanced – Other methods

- Goal is to remove:
 - both noise and borderline examples (e.g. Tomek link [1])
 - or instances from the majority class that are distant from the decision border, considered less relevant for learning (e.g. CNN [2])

Tomek link

Condensed Nearest Neighbor

[1] I. Tomek, Two modi cations of cnn, 1976

[2] P. E. Hart, The condensed nearest neighbor rule, 1968

Overlapping (I)

- Fraudulent transactions may look like genuine transactions (and vice-versa).
 - → more True/false positive.

Overlapping (II)

Many possible cost functions

- Fraud detection is a ranking sequential learning problem with unbalanced datasets.
- What's the best cost function to estimate the accuracy of the models?
 - Precision/Recall/F-score?
 - AUC?
 - P_k ?
 - Speed of detection?
- What about the amount of the transactions?

Many possible cost functions – Precision Recall curve

- Fraud Detection is a learning problem with :
 - On-line learning with concept-drift
 - Sampling bias
 - Highly unbalanced
 - Overlapping
 - Many possible cost functions

Other topics

- On-line learning
- High dimension ($d \approx 50$)
- Fast prediction
- ...

Data management

- Many features can be created during data preparation step.
- These features can then be used in the expert or data driven rules.
- Goal: improve accuracy.
- We will present two technics:
 - Clustering
 - Graph mining

Agenda

- The Card Fraud-Detection Context
- Fraud-Detection as a machine learning problem
 - Clustering
 - · Graph mining

Conclusion

Clustering Overview

- **Clustering**: grouping a set of card profiles in such a way that profiles in the same group are more 'similar' to each other than to those in other groups.
- **Application in fraud detection**: can be used to reduce false positive or to increase detection rate. Example:
 - Reduce false positive (less customer impact): if a card has a risk behavior but it is the common behavior of the user → reduce the probability to generate an alert.
 - <u>Increase detection rate & speed of detection</u> (**reduce fraud losses**): if a card has a risk behavior and it's far from his common behavior \rightarrow increase the probability to generate an alert.
- They are two main approaches:
 - Expert driven (CardType, Gender, ...)
 - Data driven
 - ▶ In this presentation, we focus on the data driven approach. In practice, both can be used simultaneously.

Clustering Overview

- Our clustering project is divided into two main phases:
 - Finding the clusters
 - · Classify new card profile in a suitable cluster

Method – Observations

Three independent clustering are done:

card with most ecom transaction [ECOM]

- rateEcom > 90% rateEcom < 10%
- card with most face-to-face transactions [F2F]
- card with ecom & face to face transactions [mixed]

47.626 card profiles are used to create the clusters.

Method – Variables

List of variables in the card profile:

- Velocity
 - Mean Sum Amt Per Day
 - Mean Nb Tx Per Day
 - ..
- Ecom activity Only clustering [ECOM]
 - Rate 3d Ecom
 - · Rate Charity Ecom
 - .
- F2F activity Only clustering [F2F]
 - Rate Pin F2F
 - ..

- Socio-demographic
 - Age
 - Gender (<u>qualitative</u>)
 - ..
- Other:
 - Rate Night
 - Card Type (qualitative)
 - ...
- → 19 input variables.
- Qualitative variables are used for business interpretation.
- They are not used during the creation of the clusters
 → no impact on the clustering.

Results – clustering

Results – clustering

Group: [mixed] 30.837 Cards

Cluster sizes:

Cluster 1	Cluster 2	Cluster 3	Cluster 4
92.4%	0.6%	0.03%	7,0%

Group: [F2F]

11.496 Cards

Cluster sizes:

Cluster 1	Cluster 2	Cluster 3	Cluster 4	
65.8%	9.7%	21.5%	2.9%	

Business

Interpretation

Results – Business Interpretation & Fraud detection

Lot of statistics could be obtained for the business interpretation of the clusters:

ECOM - cluster 1 Cluster 3 Cluster 2 Cluster 4 Cluster 5 Cluster 1 0.2% 43.4% 47.9% 8.4% 0.07% Statistics: **Business Interpretation:** Fraud detection (example): Variable Mean in Overall category mean Decrease the score risk of Higher rate of recurring Rate Charity Ecom 52.9% 0.2% fraud on MCC charity. charity activities. Rate Recurring Ecom 56.6% 19.9% (Reduce false positive) 52 43 Age Note: I show only values where the difference is statistically significant. "charity"

Agenda

- The Card Fraud-Detection Context
- Fraud-Detection as a machine learning problem
 - Clustering
 - Graph mining

Conclusion

Graph mining

- Many aggregated variables can be created from historical data.
 - Nb transaction,
 - Sum Amt,
 - Sum of transactions with fraudulent cards,
 - ..
- Basic graph features, which only take into account direct neighbors.
- Graph mining give a way to see was is happening further.
 - Influence propagation
 - Sub graph

Graph Mining – Influence propagation

- Gotcha [1]
- It is a random walk algorithm which propagate fraud information in the graph.

$$s_t = \alpha * P^T * s_{t-1} + (1 - \alpha) * z$$

• After convergence, the vector s_t contains a risk score for each note.

Graph mining – Sub graph (I)

Cardholder	Shop	Fraud?			
alex	EdwardsElectronics	no			
bob	EdwardsElectronics	no			
bob	FelixFashion	yes			Suspicious
alex	DorasDresses	yes			shop pattern {D,E,F}
bob	DorasDresses	yes			
alex	FelixFashion	yes			
chris	EdwardsElectronics	?			
chris	FelixFashion	?		>	Higher fraud probability?
chris	DorasDresses	?			<u> </u>
		Tim	ne		

It is a "Clique"

Graph mining – Sub graph (II)

- Feature are extracted from all these sub-graphs...
- ... and used in data/expert driven rules.

Community sub-graph

Agenda

- The Card Fraud-Detection Context
- Fraud-Detection as a machine learning problem
 - Clustering
 - · Graph mining

• Conclusion

Conclusion

- Fraud Detection is a learning problem with :
 - · On-line learning with concept-drift
 - Sampling bias
 - · Highly unbalanced
 - Overlapping
 - Many possible cost functions
 - On-line learning
 - High dimension ($d \approx 50$)
 - · Fast prediction
 - ..
- New data driven features :
 - Clustering
 - Graph Mining

Thank you for your attention

