

Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear - Profs Mauro Rincon & Marcia Fampa AD2 (Segunda Avaliação a Distância) - Primeiro Semestre de 2010

Nome -Assinatura -

1.(2.0) Considere o sistema linear homogêneo Ax = 0;

$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 = 0 \\ x_1 - 2x_2 + x_3 - 3x_4 = 0 \\ -x_1 - 2x_2 + 2x_3 - x_4 = 0 \\ x_1 + 5x_2 + 3x_3 = 0 \end{cases}$$

- a.(1.0) Determine uma base e a dimensão do espaço vetorial Ker(A) = N(A)(Núcleo de A).
- b.(1.0) Calcule o determinante da matriz dos coeficientes, usando a expansão de Cofatores(Fórmula de Laplace).
- 2.(2.0) Considere o sistema linear:

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 1 \\ -x_1 + 2x_2 + x_3 = -2 \\ 2x_1 + 5x_2 + 3x_3 = 1 \end{cases}$$

- a.(1.0) Determine a matriz inversa de matriz dos coeficientes, usando-a para resolver o sistema linear.
- b.(1.0) Resolva o sistema linear pelo método de eliminação de Gauss com pivoteamento.

3.(2.0) Seja a aplicação $T: I\!\!R^2 \to I\!\!R^3$

$$(x,y) \rightarrow (x+ky,x+k,y)$$

Verifique em que caso(s) T é linear, justificando a resposta:

- a) k = x; b) k = 1; c) k = 0
- 4.(3.0) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear, onde $T(v_1)=(1,0,-1)$, $T(v_2)=(1,1,1)$ e $T(v_3)=(3,1,-2)$, para $v_1=(0,1,0)$, $v_2=(1,0,1)$ e $v_3=(1,2,0)$
 - a.(1.0) Determine a transformação linear e o valor de T(v), onde v=(2,-1,9).
 - b.(1.0) Determine o núcleo, uma base para esse subespaço e sua dimensão. T é injetora? Justificar
 - c.(1.0) Determine a imagem, uma base para esse subespaço e sua dimensão. T é sobrejetora? Justificar
- 5.(1.0) Calcule os autovalores e os correspondentes autovetores das seguintes matrizes:

$$B = \left[\begin{array}{rrr} 3 & 0 & 0 \\ -1 & 2 & -3 \\ -3 & 0 & -1 \end{array} \right]$$

Gabarito

Álgebra Linear: AD2 - CEDERJ

Mauro Rincon & Márcia Fampa - 2010.1 Tutores: Cristina Lopes e Rodrigo Olimpio

- 1^a Questão) Solução:
- a) $N(A) = \{x/Ax = 0\}$. Como o sistema é homogêneo, basta resolvê-lo.

Vamos representar a matriz aumentada relativa ao sistema. Em seguida, utilizaremos o Método de Eliminação de Gauss para resolvê-lo :

$$\begin{bmatrix} 2 & -1 & 1 & 1 & 0 \\ 1 & -2 & 1 & -3 & 0 \\ -1 & -2 & 2 & -1 & 0 \\ 1 & 5 & 3 & 0 & 0 \end{bmatrix}$$

Fazendo $L_2 \leftarrow 2L_2 - L_1$, $L_3 \leftarrow 2L_3 + L_1$ e $L_4 \leftarrow 2L_4 - L_1$ temos:

$$\begin{bmatrix} 2 & -1 & 1 & 1 & 0 \\ 0 & -3 & 1 & -7 & 0 \\ 0 & -5 & 5 & -1 & 0 \\ 0 & 9 & 5 & -1 & 0 \end{bmatrix}$$

Agora, fazendo $L_3 \leftarrow 3L_3 - 5L_2$, $L_4 \leftarrow L_4 + 3L_2,$ temos:

$$\begin{bmatrix} 2 & -1 & 1 & 1 & 0 \\ 0 & -3 & 1 & -7 & 0 \\ 0 & 0 & 10 & 32 & 0 \\ 0 & 0 & 8 & -22 & 0 \end{bmatrix}$$

Agora, fazendo $L_4 \leftarrow 10L_4 - 8L_3$:

$$\begin{bmatrix} 2 & -1 & 1 & 1 & 0 \\ 0 & -3 & 1 & -7 & 0 \\ 0 & 0 & 10 & 32 & 0 \\ 0 & 0 & 0 & -476 & 0 \end{bmatrix}$$

Assim, temos o seguinte sistema após a eliminação de Gauss:

$$\begin{cases}
2x_1 - x_2 + x_3 + x_4 &= 0 \\
-3x_2 + x_3 - 7x_4 &= 0 \\
10x_3 + 32x_4 &= 0 \\
-476x_4 &= 0
\end{cases}$$
(1)

Por L_4 neste sistema, temos que $x_4 = 0$.

Substituindo x_4 em L_3 temos que $x_3 = 0$.

Agora, substituindo x_3 e x_4 em L_2 , temos que $x_2 = 0$. E substituindo x_1, x_2 e x_3 em L_1 , temos que $x_1 = 0$.

Portanto, a solução $S=\{(0,0,0,0)\}$. Desse modo, $N(A)=\vec{0}$ e a base para o núcleo é $B=\{\}$, com dimensão 0.

b) Considere o sistema homogêneo:

$$\begin{cases} 2x_1 & -x_2 & +x_3 & +x_4 & = 0 \\ x_1 & -2x_2 & +x_3 & -3x_4 & = 0 \\ -x_1 & -2x_2 & +2x_3 & -x_4 & = 0 \\ x_1 & +5x_2 & +3x_3 & = 0 \end{cases}$$

A matriz dos coeficientes que representa esse sistema é dada por:

$$A = \begin{bmatrix} 2 & -1 & 1 & 1 \\ 1 & -2 & 1 & -3 \\ -1 & -2 & 2 & -1 \\ 1 & 5 & 3 & 0 \end{bmatrix}$$

Podemos expandir o determinante em relação à uma linha ou coluna. É claro que é melhor expandir em relação a uma linha ou coluna que tenha o maior número de zeros, já que, nesse caso, os cofatores A_{ij} dos a_{ij} que são nulos não precisam ser calculados, uma vez que $a_{ij}A_{ij} = (0)(A_{ij}) = 0$.

Expandindo, então, em relação à quarta linha, obtemos:

$$det(A) = a_{41}A_{41} + a_{42}A_{42} + a_{43}A_{43} + a_{44}A_{44}$$
 (2)

$$A_{ij} = (-1)^{i+j} det(M_{ij})$$

onde M_{ij} é o determinante menor de a_{ij} .

Assim, temos:

$$A_{41} = (-1)^{4+1} det(M_{41}) = (-1)^5 \begin{vmatrix} -1 & 1 & 1 \\ -2 & 1 & -3 \\ -2 & 2 & -1 \end{vmatrix}$$
 (3)

$$A_{42} = (-1)^{4+2} det(M_{42}) = (-1)^6 \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & -3 \\ -1 & 2 & -1 \end{vmatrix}$$
 (4)

$$A_{43} = (-1)^{4+3} det(M_{43}) = (-1)^7 \begin{vmatrix} 2 & -1 & 1 \\ 1 & -2 & -3 \\ -1 & -2 & -1 \end{vmatrix}$$
 (5)

 A_{44} não vamos calcular pois $a_{44} = 0$.

Expandindo

$$det(M_{41}) = \begin{vmatrix} -1 & 1 & 1 \\ -2 & 1 & -3 \\ -2 & 2 & -1 \end{vmatrix}$$
em relação à primeira linha, por exemplo, temos:

$$det(M_{11}) = (-1)(-1)^{1+1} \begin{vmatrix} 1 & -3 \\ 2 & -1 \end{vmatrix} + (1)(-1)^{1+2} \begin{vmatrix} -2 & -3 \\ -2 & -1 \end{vmatrix} + (1)(-1)^{1+3} \begin{vmatrix} -2 & 1 \\ -2 & 2 \end{vmatrix}$$

$$= -1(5) + 1(-1)(-4) + 1(-2) = -5 + 4 - 2 = -3$$

De maneira análoga para $det(M_{42})$ temos

$$det(M_{42}) = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & -3 \\ -1 & 2 & -1 \end{vmatrix}$$
em relação à primeira linha, por exemplo, temos:

$$det(M_{11}) = (2)(-1)^{1+1} \begin{vmatrix} 1 & -3 \\ 2 & -1 \end{vmatrix} + (1)(-1)^{1+2} \begin{vmatrix} 1 & -3 \\ -1 & -1 \end{vmatrix} + (1)(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ -1 & 2 \end{vmatrix}$$

$$= 2(5) + 1(-1)(-4) + 1(3) = 10 + 4 + 3 = 17$$

E também de maneira análoga para $det(M_{43})$ temos

$$det(M_{43}) = \begin{vmatrix} 2 & -1 & 1 \\ 1 & -2 & -3 \\ -1 & -2 & -1 \end{vmatrix} =$$

$$= (2)(-1)^{1+1} \begin{vmatrix} -2 & -3 \\ -2 & -1 \end{vmatrix} + (-1)(-1)^{1+2} \begin{vmatrix} 1 & -3 \\ -1 & -1 \end{vmatrix} + 1(-1)^{1+3} \begin{vmatrix} 1 & -2 \\ -1 & -2 \end{vmatrix}$$

$$= 2(-4) + (-1)(-1)(-4) + 1(-4) = -8 - 4 - 4 = -16$$

Logo, temos de (3), (4) e (5) que

$$A_{41} = (-1)(-3) = 3$$

 $A_{42} = (1)(17) = 17$
 $A_{43} = (-1)(-16) = 16$

Substituindo esses valores em (2) temos:

$$det(A) = 1(3) + 5(17) + (3)(16) + 0(A_{44})$$
$$det(A) = 3 + 85 + 48 + 0$$
$$det(A) = 136$$

- 2^a Questão) Solução:
- a) Considere o sistema

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 1 \\ -x_1 + 2x_2 + x_3 = -2 \\ 2x_1 + 5x_2 + 3x_3 = 1 \end{cases}$$

Formaremos a matriz aumentada $[A|I_3]$ e usaremos o Método de Gauss-Jordan para colocar a matriz $[A|I_3]$ em sua forma escada reduzida por linhas. As operações elementares feitas em uma linha de A também devem ser feitas na linha correspondente da matriz I_3 . Teremos então a matriz aumentada [C|D] equivalente por linhas à matriz $[A|I_3]$, onde se $C = I_3$ então $D = A^{-1}$.

O sistema linear acima pode ser representado por:

$$\begin{bmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 2 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

 1^a Etapa) Formaremos a matriz aumentada $[A|I_3]$. A matriz aumentada é dada por:

$$[A|I_3] = \begin{bmatrix} 2 & 1 & 3 & | & 1 & 0 & 0 \\ -1 & 2 & 1 & | & 0 & 1 & 0 \\ 2 & 5 & 3 & | & 0 & 0 & 1 \end{bmatrix}$$

 2^a Etapa) Transformaremos a matriz aumentada à sua forma escada reduzida por linhas, usando operações elementares em suas linhas.

$$[A|I_3] = \begin{bmatrix} 2 & 1 & 3 & | & 1 & 0 & 0 \\ -1 & 2 & 1 & | & 0 & 1 & 0 \\ 2 & 5 & 3 & | & 0 & 0 & 1 \end{bmatrix}$$

Trocando as linhas L_1 e L_2

$$\begin{bmatrix}
-1 & 2 & 1 & | & 0 & 1 & 0 \\
2 & 1 & 3 & | & 1 & 0 & 0 \\
2 & 5 & 3 & | & 0 & 0 & 1
\end{bmatrix}$$

Multiplicando a 1ª linha por -1

$$\begin{bmatrix}
1 & -2 & -1 & | & 0 & -1 & 0 \\
2 & 1 & 3 & | & 1 & 0 & 0 \\
2 & 5 & 3 & | & 0 & 0 & 1
\end{bmatrix}$$

Fazendo $L_2 \longleftarrow L_2 - 2L_1$ e $L_3 \longleftarrow L_3 - 2L_1$, obtemos:

$$\begin{bmatrix}
1 & -2 & -1 & | & 0 & -1 & 0 \\
0 & 5 & 5 & | & 1 & 2 & 0 \\
0 & 9 & 5 & | & 0 & 2 & 1
\end{bmatrix}$$

Multiplicando L_2 por $\frac{1}{5}$

$$\begin{bmatrix} 1 & -2 & -1 & | & 0 & -1 & 0 \\ 0 & 1 & 1 & | & 1/5 & 2/5 & 0 \\ 0 & 9 & 5 & | & 0 & 2 & 1 \end{bmatrix}$$

Fazendo $L_3 \longleftarrow L_3 - 9L_2$

$$\begin{bmatrix} 1 & -2 & -1 & | & 0 & -1 & 0 \\ 0 & 1 & 1 & | & 1/5 & 2/5 & 0 \\ 0 & 0 & -4 & | & -9/5 & -8/5 & 1 \end{bmatrix}$$

Multiplicando L_3 por $\frac{-1}{4}$

$$\begin{bmatrix} 1 & -2 & -1 & | & 0 & -1 & 0 \\ 0 & 1 & 1 & | & 1/5 & 2/5 & 0 \\ 0 & 0 & 1 & | & 9/20 & 2/5 & -1/4 \end{bmatrix}$$

Fazendo $L_1 \longleftarrow L_1 + 2L_2$

$$\begin{bmatrix} 1 & 0 & 1 & | & 2/5 & -1/5 & 0 \\ 0 & 1 & 1 & | & 1/5 & 2/5 & 0 \\ 0 & 0 & 1 & | & 9/20 & 2/5 & -1/4 \end{bmatrix}$$

Fazendo $L_1 \longleftarrow L_1 - L_3$ e $L_2 \longleftarrow L_2 - L_3$, obtemos

$$\begin{bmatrix} 1 & 0 & 0 & | & -1/20 & -3/5 & 1/4 \\ 0 & 1 & 0 & | & -5/20 & 0 & 1/4 \\ 0 & 0 & 1 & | & 9/20 & 2/5 & -1/4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & -1/20 & -3/5 & 1/4 \\ 0 & 1 & 0 & | & -1/4 & 0 & 1/4 \\ 0 & 0 & 1 & | & 9/20 & 2/5 & -1/4 \end{bmatrix}$$

Assim, como a matriz encontrada é a identidade, a matriz inversa é dada por:

$$\begin{bmatrix} -1/20 & -3/5 & 1/4 \\ -1/4 & 0 & 1/4 \\ 9/20 & 2/5 & -1/4 \end{bmatrix}$$

Temos que $Ax = b \Longrightarrow x = A^{-1}b$. Então, temos:

$$x = \begin{bmatrix} -1/20 & -3/5 & 1/4 \\ -1/4 & 0 & 1/4 \\ 9/20 & 2/5 & -1/4 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{20} + \frac{6}{5} + \frac{1}{4} \\ -\frac{1}{4} + 0 + \frac{1}{4} \\ \frac{9}{20} - \frac{4}{5} - \frac{1}{4} \end{bmatrix}$$

$$x = \begin{bmatrix} \frac{-1+24+5}{20} \\ 0 \\ \frac{9-16-5}{20} \end{bmatrix} \begin{bmatrix} \frac{28}{20} \\ 0 \\ -\frac{12}{20} \end{bmatrix} = \begin{bmatrix} \frac{7}{5} \\ 0 \\ -\frac{3}{5} \end{bmatrix}$$

onde x é a solução do sistema linear.

b) Vamos representar a matriz aumentada relativa ao sistema:

Em seguida, utilizaremos o Método de Eliminação de Gauss com pivoteamento para resolvê-lo :

$$\left[\begin{array}{ccccc}
2 & 1 & 3 & 1 \\
-1 & 2 & 1 & -2 \\
2 & 5 & 3 & 1
\end{array}\right]$$

Por definição, o pivô é dado por $max = \{|a_{11}|, |a_{21}|, |a_{31}|\} = 2.$

Fazendo $L_2 \leftarrow 2L_2 + L_1$, $L_3 \leftarrow L_3 - L_1,$ temos:

$$\begin{bmatrix}
2 & 1 & 3 & 1 \\
0 & 5 & 5 & -3 \\
0 & 4 & 0 & 0
\end{bmatrix}$$

Agora o pivô será $max = \{|a_{22}|, |a_{32}|\} = 5.$

Assim, temos o seguinte sistema após a eliminação de Gauss:

$$\begin{cases}
2x_1 + x_2 + 3x_3 &= 1 \\
5x_2 + 5x_3 &= -3 \\
4x_2 &= 0
\end{cases}$$
(6)

Por L_3 , temos que $x_2 = 0$. Por L_2 , temos que $5x_3 = -3 \Longrightarrow x_3 = \frac{-3}{5}$. E substituindo x_2 e x_3 em L_1 temos que $x_1 = \frac{7}{5}$.

Assim, a solução do sistema é $S = \left\{ \left(\frac{7}{5}, 0, \frac{-3}{5} \right) \right\}$.

3^a Questão) Solução:

Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$

$$(x,y) \rightarrow (x+ky,x+k,y)$$

Vejamos em cada caso se T é linear:

a) Para
$$k=x$$
 , obtemos $T:\mathbbm{R}^2\to\mathbbm{R}^3$
$$(x,y)\to(x+xy\,,\,2x\,,\,y)$$

Note inicialmente que T satisfaz a condição necessária, dada por T(0,0)=(0,0,0). Assim passamos a verificar se satisfaz as duas condições de linearidade.

Seja
$$u = (x_1, y_1)$$
 e $v = (x_2, y_2)$, $u, v \in \mathbb{R}^2$.

i)
$$T(u+v) = T(x_1+x_2, y_1+y_2) = ((x_1+x_2)+(x_1+x_2)(y_1+y_2), 2(x_1+x_2), y_1+y_2) =$$

 $= (x_1+x_1y_1+x_1y_2+x_2+x_2y_1+x_2y_2, 2x_1+2x_2, y_1+y_2) = (x_1+x_1y_1, 2x_1, y_1)$
 $+ (x_2+x_2y_2, 2x_2, y_2) + (x_1y_2+x_2y_1, 0, 0) = T(u) + T(v) + (x_1y_2+x_2y_1, 0, 0) \neq$
 $T(u) + T(v)$

ii)
$$T(\alpha u) = T(\alpha x_1, \alpha y_1) = (\alpha x_1 + \alpha^2 x_1 y_1, 2\alpha x_1, \alpha y_1) = \alpha(x_1 + \alpha x_1 y_1, 2x_1, y_1) \neq \alpha T(u)$$

Logo, T não é linear.

b) Para k = 1, obtemos $T : \mathbb{R}^2 \to \mathbb{R}^3$

$$(x,y) \rightarrow (x+y, x+1, y)$$

Uma condição necessária para que a Transformação T seja linear é: T(0,0) = (0,0,0). Note que nesse caso T(0,0) = (0,1,0). Logo T é não linear.

c) Para k = 0, obtemos $T : \mathbb{R}^2 \to \mathbb{R}^3$

$$(x,y) \rightarrow (x, x, y)$$

Note inicialmente que T satisfaz a condição necessária, dada por T(0,0)=(0,0,0).

Seja
$$u = (x_1, y_1)$$
 e $v = (x_2, y_2)$, $u, v \in \mathbb{R}^2$.

i)
$$T(u+v) = T(x_1 + x_2, y_1 + y_2) = (x_1 + x_2, x_1 + x_2, y_1 + y_2) = (x_1, x_1, y_1) + (x_2, x_2, y_2) = T(u) + T(v)$$

ii)
$$T(\alpha u) = T(\alpha x_1, \alpha y_1) = (\alpha x_1, \alpha x_1, \alpha y_1) = \alpha(x_1, x_1, y_1) = \alpha T(u)$$

Como as duas condições são satisfeitas temos, neste caso, que T é linear.

4^a Questão) Solução:

$$T(0,1,0) = (1,0,-1)$$

$$T(1,0,1) = (1,1,1)$$

$$T(1,2,0) = (3,1,-2)$$

Temos que encontrar a matriz que representa a transformação linear. Assim, temos:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ -1 & 1 & -2 \end{bmatrix}$$

Desse modo, chegamos ao seguinte sistema:

$$\begin{cases}
b = 1 \\
a+c = 1 \\
a+2b = 3 \\
e = 0 \\
d+f = 1 \\
d+2e = 1 \\
h = -1 \\
g+i = 1 \\
q+2h = -2
\end{cases}$$
(7)

Por L_1 , temos que b=1. Por L_4 , temos que e=0. Substituindo b=1 em L_3 , temos que a=1. Substituindo e em L_6 temos que d=1. Usando d=1 em L_5 , encontramos f=0. E substituindo a=1 em L_2 , temos c=0.Por L_7 , h=-1. Substituindo em L_9 , temos g=0. Colocando g=0 em L_8 , encontramos i=1.

Assim, a matriz transformação é:

$$\begin{bmatrix}
 1 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & -1 & 1
 \end{bmatrix}$$

Encontrando T(2, -1, 9):

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 10 \end{bmatrix}$$

Assim T(2, -1, 9) = (1, 2, 10).

b) Considere $x, y, z \in \mathbb{R}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Assim, temos os seguinte sistema:

$$\begin{cases} x+y = 0 \\ x = 0 \\ -y+z = 0 \end{cases}$$
(8)

Por este sistema, fica claro que a solução é $\{(0,0,0)\}$, ou seja, $N(T)=\vec{0}$. Logo, a base para o núcleo é $B=\{\}$, com dimensão 0.

T é injetora se, e somente se, N(T)=0. Logo, T é injetora.

c) Considere $x, y, z \in \mathbb{R}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y \\ x \\ -y+z \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Logo, uma base para a imagem é $B = \{(1,1,0)^t, (1,0,-1)^t, (0,0,1)^t\}$, com dimensão 3 (Claramente estes vetores são LI).

Como a transformação é de \mathbb{R}^3 em \mathbb{R}^3 (dim domínio = dim contradomínio), T é sobrejetora se, e somente se, T é injetora. Logo, T é sobrejetora.

5^a Questão) Solução:

$$B = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 2 & -3 \\ -3 & 0 & -1 \end{bmatrix} \quad \text{e} \quad B - \lambda I = \begin{bmatrix} 3 - \lambda & 0 & 0 \\ -1 & 2 - \lambda & -3 \\ -3 & 0 & -1 - \lambda \end{bmatrix}$$

Logo o polinômio característico é dado por

$$P_3(\lambda) = det(B - \lambda I) = (3 - \lambda)(2 - \lambda)(-1 - \lambda)$$

As raízes de $P_3(\lambda)$ são $\lambda_1=3,\ \lambda_2=2$ e $\lambda_3=-1$. Logo os autovalores da matriz A, são: $\lambda_1=3,\ \lambda_2=2$ e $\lambda_3=-1$.

Cálculo dos autovetores v associados aos autovalores λ .

1. Autovetores associados ao autovalor $\lambda_1 = 3$. Do polinômio característico temos

$$B - 3I = \begin{vmatrix} 0 & 0 & 0 & 0 \\ -1 & -1 & -3 & 0 \\ -3 & 0 & -4 & 0 \end{vmatrix}$$

Fazendo $L_2 \leftarrow L_1$ e $L_1 \leftarrow L_2$, obtemos

$$B - 3I = \begin{bmatrix} -1 & -1 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & 0 & -4 & 0 \end{bmatrix}$$

Fazendo $L_1 \leftarrow L_1.(-1)$, obtemos

$$B - 3I = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & 0 & -4 & 0 \end{bmatrix}$$

Fazendo $L_3 \leftarrow L_3 + 3L_1$, obtemos

$$B - 3I = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 5 & 0 \end{bmatrix}$$

Tomando $z = r \neq 0$ obtemos a solução $v_1 = \left(\frac{-4}{3}r, \frac{-5}{3}r, r\right) = r\left(\frac{-4}{3}, \frac{-5}{3}, 1\right)$. Portanto o vetor $v_1 = \left(\frac{-4}{3}, \frac{-5}{3}, 1\right)$ é um autovetor de B associado ao autovalor $\lambda_1 = 3$.

2. Autovetores associados ao autovalor $\lambda_2=2$ De forma análoga temos que

$$B - 2I = \begin{bmatrix} 1 & 0 & 0 | & 0 \\ -1 & 0 & -3 | & 0 \\ -3 & 0 & -3 | & 0 \end{bmatrix}$$

Fazendo $L_2 \leftarrow L_2 + L_1$ e $L_3 \leftarrow L_3 + 3L_1$ obtemos

$$B - 2I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & -3 & 0 \end{bmatrix}$$

Dividindo as duas últimas linhas por -3 e resolvendo o sistema, tomando $y=r\neq 0$, obtemos que $v_2=(0,r,0)$. Ou seja $v_2=r(0,1,0)$ é um autovetor de B associado ao autovalor $\lambda_2=2$.

3. Autovetores associados ao autovalor $\lambda_3 = -1$

$$B + 1I = \begin{bmatrix} 4 & 0 & 0 | & 0 \\ -1 & 3 & -3 | & 0 \\ 3 & 0 & 0 | & 0 \end{bmatrix}$$

Dividindo a linha 1 por 4

$$B + 1I = \begin{bmatrix} 1 & 0 & 0 | & 0 \\ -1 & 3 & -3 | & 0 \\ 3 & 0 & 0 | & 0 \end{bmatrix}$$

Fazendo $L_2 \leftarrow L_2 + L_1$ e $L_3 \leftarrow L_3 - 3L_1$ obtemos

$$B + 1I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Dividindo a linha 2 por 3

$$B + 1I = \begin{bmatrix} 1 & 0 & 0 | & 0 \\ 0 & 1 & -1 | & 0 \\ 0 & 0 & 0 | & 0 \end{bmatrix}$$

Fazendo de forma análoga aos anteriores, obtemos, tomando $z=r\neq 0$, a solução $v_3=(0,r,r)=r(0,1,1)$, ou seja $v_3=(0,1,1)$ é um autovetor de B associado ao autovalor $\lambda_3=-1$.