Chap 3	5: Subgroups				
let G be	a group.	monempty sub	sed S of G	is called	a subgroup ⇒ab∈S
		with respect ta	Water por cons		
and	S is closed v	with respect to	inwerses:		u C3.
,	(-,) -	a cular	e (P+)		
set of ev	$en(2\mathbb{Z},+)$ \bar{u}	s a subgp.	of (2, +).	(is not	a subgroup)
1 /	A a a parin	and Sisa	subgroup, the	en 3 itself	as a group
P.L.	First hother to	lat ees	if aes	s, then at	ES and closed
	A		hence	e= a.u e	der mult-
TIME	1 contestion the	o andions of si	6 Mah	C WELL WA	
, New	M 2017	a Handama	s defining a	Group.	Control of the Contro
	=> S cottst	es the work	, , , , , , ,		
	\Rightarrow S satisfies $(F(R), +)$	es the work	unitions from	R + R	~
Exampl	\Rightarrow S satisfy $e_{i}(F(R),+)$	group of fu	unitions from	R to R	.' 2→R
Exampl f=f(x): 9=9(x)	$\Rightarrow S \text{ softer}$ $e_{i}(F(R), +)$ $R \rightarrow R \Rightarrow (+)$ $R \rightarrow R \qquad (-)$	group of fu group	unitions from tablety	R to R y e= 0: A	.: 2→R 1→ 0 , VXXR
Example $ f = f(x): g = g(x): z $	$\Rightarrow S \text{ softer}$ $e_{i}(f(R), +)$ $R \rightarrow R \Rightarrow (f+)$ $R \rightarrow R \qquad (-f+)$ $18(R) + 1$	group of fu group of fu group of fu from the subgroup of	unitions from related to Continuous f	R to R by $e=0$. A summations	: 2→R 1→ 0 VXXR
Example $ f = f(x): g = g(x): z $	$\Rightarrow S \text{ softer}$ $e_{i}(F(R), +)$ $R \rightarrow R \rightarrow (f+)$ $(O(R), +)$ $(O(R), +)$	group of for group of for group of subgroup of subgroup of	unitions from tablety (xo) Continuous f alifferentiable	R to R y e= 0 : A unotions functions	2>R 1->0. VXX
Example f=f(x): g=g(x): z. 3.	$\Rightarrow S \text{ softer}$ $e_{i}(F(R), +)$ $R \Rightarrow (f+i)$ $R \Rightarrow (f+i)$ $(\mathcal{D}(R), +)$ $(\mathcal{D}(R), +)$	group of for group of subgroup of subgroup of group.	continuous from differentiable has 2 to	R to R y e= 0 : F notions rivial subgra	2→R 1→0. VXXR
F=f(x): g=g(x): z. 3.	$\Rightarrow S \text{ softer}$ $e_{i}(F(R), +)$ $R \rightarrow R \rightarrow (f+)$ $(O(R), +)$ $(O(R), +)$	group of fu group of fu group of fu from the subgroup of	continuous from differentiable has 2 to	R to R y e= 0 : F notions rivial subgra	2→R 1→0. VXXR

Ex: Suppose G às a group and A={a,az,-...an} < G às a subset of a. The subgroup generated by A is the subset that consists of all the possible products of elements in A and their invenes. This subgp. will be denoted by (a, az, -, an) For example, A={a}. then \(a >= \{e, a, a^{-1}, a^2, a^{-2}, ..., a^k, a^k, ...\}\) This can be a finite group or intime group. (a) is also called the cyclic subgroup generated by a (a): order of ca>= number of clements in car is called the order of the element a in G. examples: . For any k EZ, kZ={km; m EZ}. · If G= Z6 (2)= {0,2,4} = Z3 2. A= <a,b>={e;a,b,a',b';ab,ab1,ba,ba-1, there may aaa, aab, aab', aba, abb, aba' be repotitions. ab'a, ab'a', ab'b'; baa, _____?

be repotations. $ab^{-1}a, ab^{-1}a^{-1}, ab^{-1}b^{-1}; baa.$ how to multiply: $(baba^{-1})(ab^{-1}a^{-2}b) = bab(a^{-1}a)b^{-1}a^{-2}b$ $= ba(bb^{-1}a^{-2}b)$ $= ba^{-1}b$

B, 5. $G = \langle \mathfrak{D}(\mathbb{R}), + \rangle$, $H = \{ f \in \mathfrak{D}(\mathbb{R}) : \frac{df}{dx} \text{ is constant} \}$ (i) f.geH= de (f+9)= df + dg is constant= f+geH (ii) feH > do (-+)= dt is a constant > - JEH > 11 zo a sub group of a

Assume: C. subgps of Abelian gps. G is communitative (i.e. abelian) 5. Let H be a styp. of G. K= {x ∈ G: I integer n>0 st. x ∈ H} (i) N. YEG = " " " (H. Y" EH) (XY) " (M) = (M) " (Y")" (H) (ii) $n \in G \Rightarrow n \in H \Rightarrow (n-1)^n = (n-1)^n = (n-1)^n \in H$ Not True in general of G is not abelian (i.e. not commutative) to: G= Z2+Z2 = (a, b) a=e, b=e> $H = \{e\}$ $(ab)^n = (ab)(ab) - (ab) \neq e$. D. subgroups of an arbitrary group. 7. H<G K={NEG: NOXIEH HAEH} (a) Kiss a subgp. of G: (i) Tx, y & K. then: (xy) a (xy) = x(yay-1)x-1 & H >> Yay-1 & H >> ACH (ii) * x + K, then · x a (x = 1 = x - a x + H => a = x b x - 1 \in H

· a + H & x - a x = b = x b x - 1 + K b + C H

(b) His a subgr of K. Just need to show $H \subset K$ NEH. $NAN^{-1}=bEH \Rightarrow a=N^{-1}bNEH$ $aEH \Rightarrow NAN^{-1}EH$ So $NAN^{-1}EH$ iff aEH.

5. Interesting reduction: let G be a finite GP., S be a nonempty subset of G. Suppose S is closed wirt. multiplication. Then S is a subgp. of G (i.e. Sis closed wirt inverses).

E. Generators of gps.

1. List all the year gps. of (210, +>

· {o} . Zo are trival sign.

· fo, 2, 4, 6, 8}, (3)={0,3,6,9,2,5,8,1}=Z10

247= {0,4,8,2,6}=(2>, (5>={0,5}

<6>= {0,6,2,--} = <2>, <7>> = ₹1= T ⇒> <7>= Z1= T ⇒> <7>= Z10

(8>> 32= 2 ⇒ (8>=(2>), (9>> 81= T⇒ (9>= Z10

=> all different cyclec gps: 10}, Z10, (22, (5)

2. $Z_{10} = (2.57)$ because $2 \times (-2) + 5 = 1 \in (2.57)$ $\Rightarrow (2.5) = (1) = Z_{10}$

F. Groups determined by generators and defining equations. $G = \langle a, b | \alpha^4 = e, \alpha^2 = b^2, b\alpha = \alpha b^2 \rangle \simeq \{ j - l, i, -l, j, -j, k, -k \}$ e baab bbs ab abs ! a b b 2 b ab ab ab ab ab 74=(-1)=1 (=) ate e a b b b ab ab 1=e $\dot{z}^2 = -|z|^2 \iff \alpha^2 = \beta^2$ $\vec{v} = \alpha$ J = b abe ji=-k=ij3 \ ba=ab3 b2 ab2 b3 e b -1 = 52 ab3 ab -j = 63 b3 ab e b b2 ab2 Sudoku a ab b ab ab ab a b2 R=ab e $-i=ab^2$ abe aboa ab b $-k=ab^3$ ab3 b3 a ab ab2 Ps b G. Cayley Diagrams. Every finite gp. may be represented by a dragram known as Cayley dragram A Cayley dragram converses of points joined by anows. . There is one point for every element of the group. . The arrows represent the result of multiplying by a generator. e→a→a²→ or ante of finale cyclic gp. Ex: G=(a>: ->: mubtiply by a ->: multiply by b on the -->: multiply by a right Jab $(ab)(ab)=b^{2}$ $-\frac{1}{4}$ of $a^2 = e^{\frac{1}{4}(a-a^{-1})}$ ab = 5-1 a el-a

A point-and-arrow diagram is the Cayley diagram of a group iff it has the following 2 properties:

(a) For each point x and generator a, there is exactly one a-anow starting at x, and exactly one a-anow ending at x; furthermore at most one arrow goes from x to another point y.

(b) If two different paths starting at x lead to the same destination then these two paths, starting at any point y, lead to the same

e y y y y xy = xy x

4				•	C	•	
	e	×	y	хy	yx	yny	(x,y x=e,y=e) yxy=xyx>
	e	ø	y	xy	yx	Rak	1/2
×	×y	e	py		yxy	yx	1-11-5 15
J	1	yx	e	y Yvy	X	KK	(a, b) a2 = e, b3 = e
py	xy	ywy	X	yx	e	y	$ba=ab^2$
JP.	1 AN		9204	D	Ra	×	
J×y	yxy	- ny	身为	X	3	e	$/ \alpha = x, b = yx$
							6a=4x2=4

(ab= x yxyx = yxy yx=y)

	e	a	6	Ps	3	al	abz	abi	
6	e	a	6	5	لح کی	66	ab2	abs	eguniya
a	a	6	ab	abz	abs	6	Ps	b 3	
b	16	ab^3	Ps	b3	e	a	ab2 b2 ab	ab	
35	1/5	ab"	P.	6	Ь	ab ³	a	ab	
P3	b 3	ab	6	Ь	PS	abe	ab3	a	
ab	ab	b3	abe	ab	a	6	6	Ps	
ab2	ab2	Ps	abs	a	ab	P3	6	п 6	
abs	ab3	P	a	ab	ab	Ps	P3	e	
•								, see 6	

(a, b | a=e, b=e, ab=b-a> = D4

Let x=ab, y=b. Then x+=e. y=e. y=babb=ba x3 = ababab = babacb So G= < x, y | xt=e, y=e, xy=yx) =D4

Quaternion group: G= (a,b | a4=e, a2=b2, ba= ab3)

Claim: G= D4.