

Presentación del equipo

Pablo Baez
Consulta
proyectos
relacionados

Jonathan
Betancur
Implementación
del código

Felipe Uribe Realización de informe y presentación

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

Algoritmo de Dijkstra

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Algoritmo de A*

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

Ejemplo de grafos con Dijkstra y A* respectivamente:

Ambas imagenes nos demuestran como ejecuta el recorrido cada algoritmo planteado, el algoritmo de A* es mas eficiente y arroja un resultado mas rapido.

Complejidad del algoritmo

Nombre del Algoritmo	Complejidad Temporal	Complejidad de la memoria
A*	O(E)	O(E)
Dijkstra	O(V*V)	O(V*E*(2 ^E)

Complejidad en tiempo (¿cual es mas rapido?) y memoria (cantidad de RAM que se usa) de los algoritmos. V es "fundamental devertex" o vértice (numero de vertices), la unidad los grafos, E es "edge" o aristas (numero de aristas), indica la relacion entre dos vertices.

Resultados del camino más corto

Origen	Destino	Distancia más corta (metros)	Sin superar un riesgo promedio ponderado de acoso (r)
Universidad EAFIT	Universidad de Medellín	9153.21 metros	0.84
Universidad de Antioquia	Universidad Nacional	1124.80 metros	0.83
Universidad Nacional	Universidad Luis Amigó	1357.60 metros	0.85

La distancia más corta obtenida fue de 3878.53 sin superar un riesgo ponderado de acoso r

Resultados del menor riesgo

Origen	Destino	Riesgo promedio ponderado de acoso	Sin superar una distancia (metros)
Universidad EAFIT	Universidad de Medellín	0.8989	10000
Universidad de Antioquia	Universidad Nacional	0.8435	2000
Universidad Nacional	Universidad Luis Amigó	0.8435	2000

El menor riesgo medio ponderado es de 0.8653 sin superar una distancia d.

Tiempos de ejecución del algoritmo

Tiempos de ejecución

42 segundos

20 segundos

19 segundos

Direcciones de trabajo futuras

Bases de datos

Modelación de datos

Sistemas gestores de bases datos

Creación y modelación de bases de datos

Proyecto 1

Página web presentando los indicios del proyecto, es decir, como está estructurado y para qué sirve

Ing. Software

Manejo
de largas cantid
ades de datos
d una manera c
onsistente

Acceso eficiente a bases de datos

Proyecto 2

Conversión del proyecto a un producto

Análisis de recursos

Investigación económica

