# CHAPITRE 10



# Table des matières

| Ι  | Cours                                              | 2   |
|----|----------------------------------------------------|-----|
| 1  | Rayon de convergence                               | 3   |
| 2  | Convergence normale et continuité                  | 5   |
| 3  | Intégrer                                           | 5   |
| 4  | Dériver                                            | 6   |
| 5  | (NE PAS) ÊTRE DÉVELOPPABLE EN SÉRIE ENTIÈRE        | 8   |
| 6  | Produit de Cauchy et somme de deux séries entières | 10  |
| 7  | Séries entières complexes                          | 11  |
| ΤΤ | T.D.                                               | 14  |
|    |                                                    | 1.1 |
|    | EXERCICE 1                                         | 14  |
|    | Exercice 6                                         | 14  |

# Première partie

# Cours

On rappelle qu'il existe des séries numériques  $\sum u_n$ , des séries de fonctions  $\sum f_n$  (à ne pas confondre avec la série numérique  $\sum f_n(x)$ ). Dans ce chapitre, on s'intéresse à un cas particulier de séries de fonctions, celles de la forme  $\sum a_n x^n$  (qui est un abus de langage, il ne s'agit pas d'une série numérique malgré son apparence). Ainsi, la somme des termes de cette série est de la forme

$$\sum_{n=0}^{\infty} a_n x^n = a_0 x^0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$

Si, à partir d'un certain rang, la suite  $(a_n)_{n\in\mathbb{N}}$  est nulle, alors il s'agit d'un polynôme. Une série entière est une généralisation des polynômes. Toute troncature de la somme des termes d'une série entière est un développement limité.

# DÉFINITION 1:

Une série de fonctions  $\sum f_n$  est appelée série entière s'il existe une suite de réels  $(a_n)_{n\in\mathbb{N}}$  tels que

$$orall n \in \mathbb{N}, \; orall x \in \mathbb{R}, \quad f_n(x) = a_n \; x^n.$$

| Somme                                                                                  | Rayon de convergence |
|----------------------------------------------------------------------------------------|----------------------|
| DOMME                                                                                  | TOTAL DE CONVENGENCE |
| $rac{1}{1-x} = \sum_{k=0}^{\infty} x^k$                                               | 1                    |
| $rac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^k\ x^k$                                          | 1                    |
| $rac{1}{1+x^2}=\sum_{\substack{k=0\ \infty}}^{\infty}\left(-x^2 ight)^k$              | 1                    |
| $\ln(1+x) = \sum_{k=1}^{\infty} (-1)^k \frac{x^k}{k}$                                  | 1                    |
| $\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$                         | 1                    |
| $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$                                             | ∞                    |
| $\operatorname{ch} x = \sum_{k=0}^{k=0} \frac{x^{2k}}{(2k)!}$                          | ∞                    |
| $\sh x = \sum_{k=0}^{\infty} rac{x^{2k+1}}{(2k+1)!}$                                  | ∞                    |
| $\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$                             | ∞                    |
| $\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$                         | ∞                    |
| $= (1+x)^lpha = 1 + \sum_{k=1}^\infty ig(lpha(lpha-1)\cdots(lpha-k+1)ig)rac{x^k}{k!}$ | 1                    |

Table 1 - Séries entières usuelles

### EXERCICE 2

On admet les formules de la table précédente. On applique la formule de la dernière ligne dans le cas  $\alpha=-1/2$  :

$$\begin{aligned} \forall x \in ]-1,1[, & \frac{1}{\sqrt{1-x}} \\ &= 1+\alpha(-x)+\frac{\alpha(\alpha-1)}{2!}(-x)^2+\dots+\frac{\alpha(\alpha-1)\cdots(\alpha-(n-1))}{n!}(-x)^n+\dots \\ &= 1+\frac{1}{2}\sum_{n=1}^{\infty}\frac{\left(\frac{1}{2}+1\right)\cdots\left(\frac{1}{2}+n-1\right)}{n!}x^n \\ &= 1+\frac{1}{2}\sum_{n=1}^{\infty}\frac{3\times\cdots\times(2n-1)}{2^n\times n!}x^n \\ &= 1+\frac{1}{2}\sum_{n=1}^{\infty}\frac{1\times2\times3\times\cdots\times(2n-1)\times2n}{2^n\times n!\times2\times4\times\cdots\times(2n-2)\times2n}x^n \\ &= 1+\frac{1}{2}\sum_{n=1}^{\infty}\frac{(2n)!}{n!\times2^n\times2^n(n!)}x^n \\ &= 1+\frac{1}{2}\sum_{n=1}^{\infty}\binom{2n}{n}\frac{x^n}{4^n}. \end{aligned}$$

### 1 RAYON DE CONVERGENCE

LEMME 3 (d'ABEL):

Soit un réel  $x_0 > 0$ . Si la suite  $(a_n x_0^n)_{n \in \mathbb{N}}$  est bornée, alors la série  $\sum a_n x^n$  converge absolument pour tout réel  $x \in ]-x_0, x_0[$ .

### Démonstration:

On veut montrer que si la suite  $(a_nx_0^n)_{n\in\mathbb{N}}$  est bornée, alors, pour  $x\in ]-x_0,x_0[$ , la série numérique  $\sum a_nx^n$  converge absolument. On suppose la suite  $(a_nx_0^n)_{n\in\mathbb{N}}$  bornée. Ainsi, il existe  $M\in\mathbb{R}^+$  tel que pour tout  $n\in\mathbb{N},\ |a_nx_0^n|\leqslant M$ . Ce lemme est vrai si  $x_0=0$ ; on suppose à présent  $x_0\neq 0$ . Alors,

$$\left|a_nx^n
ight|=\left|a_nx_0^n\;rac{x^n}{x_0^n}
ight|\leqslant M imes\left|rac{x}{x_0}
ight|^n.$$

Or, la série  $\sum M \left| \frac{x}{x_0} \right|^n = M \sum \left| \frac{x}{x_0} \right|^n$  converge si  $\left| \frac{x}{x_0} \right| < 1$ . Donc, si  $\left| \frac{x}{x_0} \right| < 1$ , alors la série  $\sum |a_n x^n|$  converge.

FIGURE 1 - Rayon de convergence - convergence absolue et divergence grossière

Proposition - Définition 4:

Soit  $\sum a_n x^n$  une série entière. Il existe un unique  $R \in \overline{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{+\infty\}$  tel que

- si |x| < R, alors la série  $\sum a_n x^n$  converge absolument;
- si |x|>R, alors la série  $\sum a_n x^n$  diverge grossièrement;

Le réel R est appelé rayon de convergence de la série entière. Il vaut

$$R = \sup\{ r \in \mathbb{R}^+ \mid (a_n r^n) \text{ bornée } \}.$$

Démonstration:

Soit  $x \in \mathbb{R}$ .

Cours

 $1^{\underline{\mathtt{BR}}}$  CAS |x| < R. Soit  $x_0 = (|x| + R)/2 < R$ . Alors, la suite  $(a_n x_0^n)_{n \in \mathbb{N}}$  est bornée. D'où, d'après le lemme d'ABEL, la série numérique  $\sum a_n x^n$  converge absolument.

 $2^{ ext{ND}}$  CAS |x|>R. Alors, la suite  $(a_nx^n)_{n\in\mathbb{N}}$  n'est plus bornée. D'où la suite  $(a_nx^n)_{n\in\mathbb{N}}$  n'est pas convergente, et ne tend pas vers 0. On en déduit que la série numérique  $\sum a_n x^n$ diverge grossièrement.

REMARQUE 5:

On a

$$egin{aligned} R &= \sup \{ \ r \in \mathbb{R}^+ \ | \ (a_n r^n)_{n \in \mathbb{N}} \ ext{bornée} \ \} \ ext{par définition} \ &= \sup \{ \ r \in \mathbb{R}^+ \ | \sum a_n r^n \ ext{converge} \ \} \ ext{par le théorème} \ 4 \ &= \sup \{ \ r \in \mathbb{R}^+ \ | \ (a_n r^n)_{n \in \mathbb{N}} \ ext{tend vers} \ 0 \ \} \end{aligned}$$

Exemple 6  $(R = +\infty)$ :

On considère la série  $\sum \frac{x^n}{n!}$ . Calculons son rayon de convergence. Soit  $u_n = \left|\frac{x^n}{n!}\right|$ . Si x = 0, la série  $\sum u_n$  converge vers 1. On suppose  $x \neq 0$ . On calcule

$$\frac{u_{n+1}}{u_n} = \frac{|x|}{n+1} \xrightarrow[n \to \infty]{} 0.$$

D'où, d'après le critère de D'Alembert, la série  $\sum u_n$  converge. On en déduit que, pour tout  $x \in \mathbb{R}$ , la série  $\sum a_n x^n$  converge, *i.e.* son rayon de convergence vaut  $R = +\infty$ .

Exemple 7 (R = 0):

On considère la série  $\sum n^n x^n$ . Calculons son rayon de convergence. Si x=0, la série converge vers 1. On suppose maintenant  $x \neq 0$ . Alors, à partir d'un certain rang,  $|nx| \geqslant 7$ . Or, la somme  $\sum 7^n$  diverge grossièrement. D'où, la série  $\sum |nx|^n$  diverge aussi. Comme la série  $\sum (nx)^n$ ne converge pas absolument, on en déduit que la série  $\sum n^n x^n$  ne converge absolument que si x = 0. On en déduit que R = 0.

EXEMPLE 8  $(R \in ]0, +\infty[$ , et diverge aux deux bords): On considère la série  $\sum x^n$ . Calculons son rayon de convergence. Il s'agit d'une série géométric de la convergence de trique, mais il s'agit aussi d'une série entière, où  $\forall n \in \mathbb{N}, \, a_n = 1.$  Or, on sait que

$$\sum_{k=0}^n x^k = \begin{cases} \frac{1-x^{n+1}}{1-x} & \quad \text{si } x \neq 1 \quad \text{ qui converge si et seulement si } |x| < 1 \\ n+1 & \quad \text{si } x = 1 \quad \text{ qui diverge.} \end{cases}$$

Donc, la série  $\sum x^n$  converge si et seulement si |x| < 1. On en déduit que R = 1.

Exemple 9  $(R \in ]0, +\infty[$ , et diverge d'un bord, converge de l'autre): On considère la série  $\sum \frac{x^n}{n}$ . Si x=1, alors la série  $\sum \frac{1}{n}$  diverge par critère de RIEMANN. Si  $x \neq -1$ , alors la série  $\sum \frac{(-1)^n}{n}$  converge d'après le théorème des séries alternées car  $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}^*$  tend vers 0 en décroissant. Cette situation dissymétrique nous montre que R=1.

Exemple 10  $(R \in ]0, +\infty[$ , et converge aux deux bords):

- On considère la série  $\sum \frac{x^n}{n^2}$ . Calculons son rayon de convergence.

   Si x=1, la série  $\sum \frac{1}{n^2}$  converge par critère de RIEMANN. D'où  $R\geqslant 1$ .
  - Si |x| > 1, alors

$$\frac{\left|\frac{x^{n+1}}{(n+1)^2}\right|}{\left|\frac{x^n}{n^2}\right|} = \left(\frac{n}{n+1}\right)^2 \times |x| \xrightarrow[n \to \infty]{} |x|.$$

D'où, d'après le critère de d'Alembert, la série  $\sum \frac{|x|^n}{n}$  diverge. D'où  $R \leqslant 1$ . On en déduit que R=1.

Autre méthode :

- Si |x|>1, alors  $\frac{x^n}{n^2} \xrightarrow[n \to \infty]{} +\infty$  par croissances comparées. D'où  $R\leqslant 1$ .

   Si |x|<1, alors  $\frac{|x|^n}{n^2} \xrightarrow[n \to \infty]{} 0$ . D'où  $R\geqslant 1$ .

Cours

### PROPOSITION 11:

Soient  $R_a$  et  $R_b$  les rayons de convergence des séries entières  $\sum a_n x^n$  et  $\sum b_n x^n$  respective-

- 1. Si, à partir d'un certain rang,  $|a_n| \leqslant |b_n|$ , alors  $R_a \geqslant R_b$ .
- 2. Si  $a_n = \mathcal{O}_{n \to \infty}(b_n)$ , alors  $R_a \geqslant R_b$ .
- 3. Si  $a_n \sim_{n \to \infty} b_n$ , alors  $R_a = R_b$ .

DÉMONSTRATION: 1. Ainsi, à partir d'un certain rang,  $|a_nx^n|\leqslant |b_nx^n|$ . D'où, si la série  $\sum |b_nx^n|$  converge, alors la série  $\sum |a_nx^n|$  converge. On a donc  $R_b\leqslant R_a$ .

- 2. Ainsi,  $a_n = b_n \times u_n$  où  $(u_n)_{n \in \mathbb{N}}$  est une suite bornée. Il existe donc  $M \in \mathbb{R}^+$  tel que  $|u_n| \leq M$ . D'où,  $|a_n| = |b_n| \times |u_n| \leq M |b_n|$ . Donc,  $R_a \geqslant R'$  où R' est le rayon de convergence de la série  $\sum Mb_nx^n = M \sum b_nx^n$ . On en déduit que  $R_a \geqslant R_b$ .
- 3. Ainsi,  $a_n = \mathcal{O}(b_n)$  et  $b_n = \mathcal{O}(a_n)$ , d'où d'après le cas précédent,  $R_a \geqslant R_b$ , et  $R_b \geqslant R_a$ . On en déduit que  $R_a = R_b$ .

CICE 12: 1. On considère la série entière  $\sum e^{\cos n} x^n$ . Or, pour tout  $n \in \mathbb{N}$ ,  $0 \leqslant e^{-1} \leqslant a_n = e^{\cos n} \leqslant e^1$  car  $-1 \leqslant \cos n \leqslant 1$  et exp est croissante. D'une part,  $|a_n| \leqslant |e^1|$ , d'où  $R_a$  est supérieur ou égal au rayon de convergence de la série  $\sum e^1 x^n = e \sum x^n$ . D'où  $R_a \geqslant 1$ . D'autre part,  $R_a \leqslant 1$  de même. On en déduit que  $R_a = 1$ . Exercice 12:

- 2. On considère la série entière  $\sum \frac{n!}{2^{2n}\sqrt{(2n)!}}x^n$ , de terme général  $u_n$ 
  - (a) MÉTHODE 1 (D'ALEMBERT).

$$\frac{|u_{n+1}|}{|u_n|}=|x|\times\frac{n+1}{4\sqrt{(2n+2)(2n+1)}}\xrightarrow[n\to\infty]{}\frac{1}{8}|x|.$$

Alors, la série  $\sum u_n$  diverge si |x|/8>1; et, la série  $\sum u_n$  converge si |x|<1, par le critère de d'Alembert. On en déduit que R=8.

(b) MÉTHODE 2 (STIRLING)... à tenter

# Convergence normale et continuité



FIGURE 2 - Convergence normale d'une série entière

Théorème 13: 1. La série entière  $\sum a_n x^n$  converge normalement (donc uniformément) sur tout segment inclus dans ]-R,R[. Mais, la convergence normale étant une propriété globale, on ne peut pas « faire sauter la barrière. »

2. La somme  $x\mapsto \sum_{n=0}^\infty a_nx^n$  est une fonction continue sur ]-R,R[.

Théorème 14 (Abel radial): Si la série numérique  $\sum a_n R^n$  converge, alors

$$\sum_{n=0}^{\infty} a_n x^n \xrightarrow[x \to R^-]{} \sum_{n=0}^{\infty} a_n R^n.$$

#### 3 Intégrer

Théorème 15:

Soit R le rayon de convergence d'une série entière.

1. Le rayon de convergence de la série entière  $\sum \frac{a_n}{n+1} x^{n+1}$  est aussi égal à R.

2.

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \int_0^x \left( \sum_{n=0}^{\infty} a_n t^n \right) dt.$$

« On peut intégrer terme à terme sans changer son rayon de convergence. » EXEMPLE 16:

EXERCICE 17:

# 4 Dériver

Théorème 18:

Avec les notations précédentes,

- 1. le rayon de convergence de la série entière  $\sum na_nx^{n-1}$  est aussi égal à R,
- 2. pour  $x \in ]-R, R[$ ,

$$\sum_{n=1}^{\infty} n a_n x^{n-1} = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} a_n x^n,$$

3. la somme

est de classe  $\mathcal{C}^{\infty}$ , et  $orall n \in \mathbb{N}$ ,  $a_n = rac{f^{(n)}(0)}{n!}$ .

« On peut dériver terme à terme sans changer son rayon de convergence. »

EXERCICE 19:

On considère la série entière  $\sum \frac{n+5}{(n+2)(n+2)} x^n$ . Calculons son rayon de convergence.

 $\frac{\text{ID\'e}}{\sum \frac{x^{n+1}}{n+1}}. \text{ On r\'e-int\`egre la s\'erie} : \sum \frac{x^{n+2}}{(n+1)(n+2)}. \text{ On multiplie par } x^3, \text{ et on obtient la s\'erie enti\`ere} \\ \sum \frac{x^{n+1}}{(n+1)}. \text{ On r\'e-int\`egre la s\'erie} : \sum \frac{x^{n+2}}{(n+1)(n+2)}. \text{ On multiplie par } x^3, \text{ et on obtient la s\'erie enti\`ere} \\ \sum \frac{x^{n+5}}{(n+1)(n+2)} x^{n+4}. \text{ On divise}^1 \text{ par } x^4 \text{ pour trouver la s\'erie demand\'e} : \sum \frac{(n+5)}{(n+1)(n+2)} x^n. \\ \text{Cette m\'ethode fonctionne car on peut int\'egrer/d\'eriver sans changer son rayon de convergence.} \\ \text{Le rayon de convergence de la s\'erie} \\ \sum \frac{n+5}{(n+1)(n+2)} x^n \text{ est } R = 1. \\ \text{donc le rayon de convergence de la s\'erie} \\ \sum \frac{n+5}{(n+1)(n+2)} x^n \text{ est } R = 1. \\ \text{donc le rayon de convergence de la s\'erie} \\ \text{Description}$ 

 $\frac{\text{R\'{e}DACTION}}{\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}} = \int_{0}^{x} \frac{1}{1-t} \, \mathrm{d}t = -\ln(1-x). \ \mathrm{D'où, en int\'{e}grant,} \ \forall x \in ]-1,1[, \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = \int_{0}^{x} \frac{1}{1-t} \, \mathrm{d}t = -\ln(1-x). \ \mathrm{D'où, en int\'{e}grant,}$ 

$$\begin{aligned} \forall x \in ]-1,1[, \quad \sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+1)(n+2)} &= -\int_{0}^{x} 1 \times \ln(1-t) \, \mathrm{d}t \\ &= -\big[t \ln(1-t)\big] - \int_{0}^{x} \frac{t}{1-t} \, \mathrm{d}t \\ &= x \ln(1-x) - \int_{0}^{x} \left[-1 + \frac{1}{1-t}\right] \, \mathrm{d}t \\ &= -x \ln(1-x) - \left[-x - \ln(1-x)\right] \\ &= (1-x) \ln(1-x) + x. \end{aligned}$$

« Mieux vaut intégrer le plus tôt possible pour déterminer le rayon de convergence »

<sup>1.</sup> On suppose dans ce cas  $x \neq 0$ , et on s'occupera du cas x = 0 à part.

De même pour les autres étapes du raisonnement.

Autre Méthode : on a  $\frac{n+5}{(n+1)(n+2)} \sim_{n\to\infty} \frac{1}{n}$  d'où, les séries entières  $\sum \frac{(n+5)}{(n+1)(n+2)} x^n$ , et  $\sum \frac{x^n}{n}$  ont le même rayon de convergence, qui vaut R=1.

EXEMPLE 20 (séries entières & équations différentielles): 1. On pose

$$\mathtt{exp}:\mathbb{R}\longrightarrow\mathbb{R}$$

$$x\longmapsto {\sf e}^x=\sum_{n=0}^\infty rac{x^n}{n!}.$$

En dérivant terme à terme, et on retrouve bien  $x\mapsto \exp(x)$ , et son rayon de convergence est le même. On a donc montré que exp est une solution de y'=y. De plus, la fonction  $x\mapsto K$  e $^x$  est aussi une solution de cette équation différentielle. Montrons, avec la méthode de la variation de la constante, que ces fonctions sont les seules solutions de y'=y. On pose  $y(x)=k(x)\mathrm{e}^k$ , et on a

$$y'(x) = y(x) \iff k'(x)e^x + \underline{k}(x)e^{x^2} = \underline{k}(x)e^{x^2}$$
 $\iff k'(x)e^x = 0$ 
 $\iff k'(x) = 0$ 
 $\iff \exists K \in \mathbb{R}, \ k(x) = K.$ 

D'où, la solution générale de l'équation y'=y est :  $\forall x \in \mathbb{R}, \ y(x)=K\mathrm{e}^x.$ 

2. Soit  $\alpha \in \mathbb{R}$ . On considère la série entière  $\sum a_n x^n$  où

$$a_0=1$$
 et  $a_n=rac{lpha(lpha-1)\cdots(lpha-n+1)}{n!}$  si  $n>0$ .

Soit  $(u_n)_{n\in\mathbb{N}}$  défini comme  $u_n=|a_nx^n|$ , et on calcule, si  $\alpha\not\in\mathbb{N}$ ,

$$\begin{split} \frac{u_{n+1}}{u_n} &= \left| \frac{a_{n+1}}{a_n} \times \frac{x^{n+1}}{x^n} \right| \\ &= |x| \times \left| \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)(\alpha-n)}{\alpha(\alpha-1)\cdots(\alpha-n+1)} \right| \times \frac{n!}{(n+1)!} \\ &= \frac{|\alpha-n|}{n+1} |x| \xrightarrow[n \to +\infty]{} |x| \end{split}$$

D'après le critère de d'Alembert, si |x|>1, alors la série diverge, et si |x|<1, alors la série converge. On en déduit que R=1. Soit, pour tout  $x\in ]-1,1[$ ,  $f(x)=1+\sum_{n=1}^{\infty}a_nx^n$ . On peut dériver terme à terme sans changer le rayon de convergence. D'où

$$orall x \in \ ]-1,1[,\quad f'(x)=\sum_{n=1}^{\infty}na_nx^{n-1}=\sum_{n=1}^{\infty}rac{lpha(lpha-1)\cdots(lpha-n+1)}{(n-1)!}x^{n-1}.$$

Montrons que f est solution de l'équation  $\alpha y - (1+x)y' = 0$ 

$$lpha f(x) - (1+x) f'(x) = lpha \left(1 + \sum_{n=1}^{\infty} a_n x^n\right) - (1+x) \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$= lpha + \sum_{n=1}^{\infty} x^n (lpha a_n - n a_n) - \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$= lpha + \sum_{n=1}^{\infty} \left(x^n a_n (lpha - n) - n a_n x^{n-1}\right)$$

$$= 0$$

<sup>2.</sup> Il s'agit de la série entière convergent vers  $\ln(1-x)$ .

Ι Cours

En effet,  $(n+1)a_{n+1}=(\alpha-n)a_n$ , par construction de la suite  $(a_n)_{n\in\mathbb{N}}$ , et

$$lpha + \sum_{n=1}^N ig(x^n(n+1)a_{n+1} - x^{n+1}na_nig) = lpha - lpha + x^N(N+1)a_{N+1} \xrightarrow[N o \infty]{} 0.$$

D'où, f est solution de l'équation différentielle  $\alpha y - (1+x)y' = 0$ . Or,  $x \mapsto K(1+x)^{\alpha}$ est une solution de cette équation différentielle. On fait varier la constante : on pose, pour  $x \in [-1, 1]$ ,  $y(x) = k(x) (1+x)^{\alpha}$ 

$$egin{aligned} &lpha y(x)-(1+x)\ y'(x)-lpha k(x)\ (1+x)^lpha\ &-(1+x)ig(k'(x)(1+x)^lpha+lpha\ k(x)(1+x)^{lpha-1}ig)=0 \ &\iff orall x\in ]-1,1[,\ (1+x)^{lpha+1}k'(x)=0 \ &\iff orall x\in ]-1,1[,k'(x)=0 \ &\iff \exists K\in \mathbb{R},\ k(x)=K \ &\iff \exists K\in \mathbb{R},\ orall x\in ]-1,1[,f(x)=K(1+x)^lpha \end{aligned}$$

Or, f(0) = 1 et donc K = 1.

# (NE PAS) ÊTRE DÉVELOPPABLE EN SÉRIE ENTIÈRE

Définition 21:

Soit  $r \in \mathbb{R}^+_* \cup \{+\infty\}$ . On dit qu'une fonction f est développable en série entière sur ]-r,r[s'il existe une série entière  $\sum a_n x^n$  qui a un rayon de convergence  $R\geqslant r$  telle que

$$orall x \in \ ]-r,r[,\quad f(x)=\sum_{n=0}^{\infty}a_nx^n.$$

EXEMPLE 22:

REMARQUE 23:

EXERCICE 24:
$$\mathbb{R} \longrightarrow \mathbb{R}$$
Soit  $f: x \longmapsto \begin{cases} e^{-1/x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ 

1. Montrons que, pour  $n \in \mathbb{N}$ , f est  $C^n$  sur  $\mathbb{R}^*$ , et il existe un polynôme  $P_n$  tel que  $\forall x \neq 0$ ,  $f^{(n)}(x) = P_n(x) \frac{1}{x^{3n}} e^{-1/x^2}$ .

— Pour 
$$n=0$$
, alors  $f^{(0)}(x)={
m e}^{-1/x^2}=rac{1}{x^{3 imes 0}} imes {
m e}^{-1/x^2}$ , d'où  $P_0(X)=1$ .

— On suppose 
$$f^{(n)}(x)=rac{P_n(x)}{x^{3n}}\mathrm{e}^{-1/x^2}$$
. D'où  $f^{(n)}$  est de classe  $\mathcal{C}^1$  et

$$\begin{split} f^{(n+1)}(x) &= \frac{\mathrm{d}}{\mathrm{d}x} f^{(n)}(x) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \big[ P_n(x) x^{-3n} \mathrm{e}^{-1/x^2} \big] \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \big[ P_n(x) x^{-3n} \big] + P_n(x) x^{-3n} \times \frac{2}{x^3} \mathrm{e}^{-1/x^2} \\ &= \Big( P_n'(x) x^{-3n} - 3n P_n(x) x^{-3n-1} + 2 P_n(x) x^{-3n-3} \Big) \mathrm{e}^{-1/x^2} \\ &= \frac{x^3 P_n'(x) - 3n x^2 P_n(x) + 2 P_n(x)}{x^{3n+3}} \mathrm{e}^{-1/x^2} \\ &= \frac{P_{n+1}(x)}{x^{3(n+1)}} \mathrm{e}^{-1/x^2} \end{split}$$

2. Par récurrence :

— 
$$f^{(0)}(0) = f(0) = 0$$
 par définition, et  $f(x) = e^{-1/x^2} \xrightarrow[x \to 0]{} 0 = f(0)$ , donc  $f$  est  $C^0$ .

— On suppose f  $\mathcal{C}^n$  sur  $\mathbb{R}$  et  $f^{(n)}(0)=0$ . On sait que,  $f^{(n)}$  est continue sur  $\mathbb{R}$  par hypothèse,  $f^{(n)}$  est dérivable sur  $\mathbb{R}^*$  car f est  $\mathcal{C}^\infty$  d'après la question 1. Et,

$$rac{\mathrm{d}}{\mathrm{d}x}f^{(n)}(x)=f^{(n+1)}(x) \ =rac{P_{n+1}(x)}{x^{3n+3}}\mathrm{e}^{-1/x^2} \ rac{0}{x^{3n+3}}$$
0 par croissances comparées.

3. f est  $\mathcal{C}^{\infty}$  mais pas développable en série entière. Par l'absurde, si f est développable en série entière, alors  $f(x)=\sum_{n=0}^{\infty}a_nx^n$  et  $a_n=\frac{f^{(n)}(0)}{n!}=0$ , d'où  $\forall x$ , f(x)=0, ce qui est absurde.

RAPPEL (Théorème de la limite de la dérivée):

Si f est continue sur [a, b], dérivable sur ]a, b[ et

- 1.  $\lim_{x\to a^+} f'(x) = \ell \in \mathbb{R}$ , alors f est dérivable en a et  $f'(a) = \ell$ .
- 2.  $\lim_{x\to a^+}f'(x)=\pm\infty$ , alors f n'est pas dérivable en a, et la courbe possède une tangente verticale.
- 3.  $\lim_{x\to a^+} f'(x)$  n'existe pas, alors on ne peut pas conclure.

PROPOSITION 25:

Une fonction f est développable en série entière sur ]-r,r[ si, et seulement si

1. 
$$f \operatorname{est} C^{\infty} \operatorname{sur} [-r, r]$$

2. 
$$\forall x \in ]-r, r[,\,R_N(x) \xrightarrow[N \to \infty]{} 0$$
 où  $R_N(x) = f(x) - \sum_{n=0}^N rac{f^{(n)}(0)}{n!} x^n.$ 

En effet, on a

$$f(x) = \sum_{n=0}^{N} rac{f^{(n)}(0)}{n!} x^n + R_N(x),$$

ainsi 
$$\sum_{n=0}^{N} f^n(0)/n! \xrightarrow[N \to \infty]{} f(x) \iff R_N(x) \xrightarrow[N \to \infty]{} 0.$$

RAPPEL (Formules de TAYLOR):

Formule de Taylor-Young : si f est de classe  $C^n$ , alors

$$\begin{split} f(x) &= f(0) + o(1) \\ &= f(0) + x \ f'(0) + o(x) \\ &= f(0) + x \ f'(0) + \frac{x^2}{2!} \ f''(0) + o(x^2) \\ &= f(0) + x \ f'(0) + \frac{x^2}{2!} \ f''(0) + \dots + \frac{x^n}{n!} \ f^{(n)}(0) + o(x^n) \end{split}$$

Formule de Taylor avec reste intégral  $^3$  : si f est de classe  $\mathcal{C}^{n+1}$ , alors

$$f(x) = f(0) + \int_0^x f'(t) dt$$

$$= f(0) + x f'(0) + \int_0^x (x - t) f''(t) dt$$

$$= f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \int_0^x \frac{(x - t)^2}{2!} f'''(t) dt$$

$$= f(0) + x f'(0) + \dots + \frac{x^n}{n!} f^{(n)}(0) + \int_0^x \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt$$

<sup>3.</sup> aussi appelé formule de TAYLOR-LAPLACE

EXERCICE 26: 1. Montrons que, pour  $x \in \mathbb{R}$ ,  $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ . Pour  $n \in \mathbb{N}$ ,  $R_n(x) = \int_0^x \frac{(x-t)^n}{n!} \cos^{(n+1)}(t) dt$  car cos est  $\mathcal{C}^{n+1}$ . Soit  $x \in \mathbb{R}$ . Montrons que  $R_n(x) \xrightarrow[n \to \infty]{} 0$ .

$$egin{aligned} 0 &\leqslant |R_n(x)| = igg| \int_0^x rac{(x-t)^n}{n!} \cos^{(n+1)}(t) \; \mathrm{d}t igg| \ &\leqslant igg| \int_0^x \left| rac{(x-t)^n}{n!} \cos^{(n+1)}(t) 
ight| \; \mathrm{d}t igg| \ &\leqslant igg| \int_0^x rac{|x-t|^n}{n!} \; \mathrm{d}t igg| \end{aligned}$$

car  $|\cos^{(n+1)}(t)| \leqslant 1$ ,  $\forall t \in [0, x]$ . D'où,

$$|0\leqslant |R_n(x)|\leqslant igg|\int_0^xrac{x^n}{n!}\;\mathrm{d}tigg|=rac{|x|^{n+1}}{n!}\stackrel{}{\longrightarrow}0,$$

car on sait que la série  $\sum \frac{x^n}{n!}$  converge, donc le terme général tend donc vers 0. Donc cos est développable en série entière sur  $\mathbb{R}$ .

2. De même pour sin.

# 6 Produit de Cauchy et somme de deux séries entières

RAPPEL (produit de CAUCHY):

On rappelle le produit de deux polynômes : on pose  $A=\sum_{n=0}^{\deg A}a_nX^n$  et  $B=\sum_{p=0}^{\deg B}b_pX^p$ , le produit de ces deux polynômes est donc

$$egin{aligned} A imes B &= \Big(\sum_{n=0}^{\deg A} a_n X^n\Big) \Big(\sum_{p=0}^{\deg B} b_p X^p\Big) \ &= \sum_{k=0}^{\deg A + \deg B} c_k X^k \qquad ext{ où } c_k = \sum_{n+n=k} a_n b_p. \end{aligned}$$

On définit alors le produit de Cauchy de deux séries : si  $\sum u_n$  et  $\sum v_n$  convergent absolument, alors  $\sum w_n$  converge absolument, en posant  $w_k = \sum_{n+p=k} u_n v_p$ . De plus,

$$\sum_{k=0}^{\infty} w_k = \Big(\sum_{n=0}^{\infty} u_n\Big) \Big(\sum_{p=0}^{\infty} v_p\Big).$$

Proposition 27: 1. Soit  $c_n=a_n+b_n$ . Le rayon de convergence de la série  $\sum c_n x^n$  vaut  $R_c=\min(R_a,R_b)$  (ou plus sur  $R_a=R_b$ ) et

$$orall x \in \ ]-R_c,R_c[,\quad \sum_{n=0}^{\infty}c_nx^n=\sum_{n=0}^{\infty}a_nx^n+\sum_{n=0}^{\infty}b_nx^n.$$

2. Si  $\sum a_n x^n$  et  $\sum b_n x^n$  ont respectivement pour rayons de convergence  $R_a$  et  $R_b$ , alors  $\sum c_n x^n$  a pour rayon de convergence  $R_c \geqslant \min(R_a, R_b)$ , où  $c_k = \sum_{n+p=k} a_n + b_p$ , et

$$orall x \in \ ]-R_c,R_c[,\ \Big(\sum_{n=0}^\infty a_n x^n\Big)\Big(\sum_{p=0}^\infty b_p x^p\Big)=\sum_{k=0}^\infty c_k x^k$$

Cours

Exemple 28: 1. La série  $\sum x^n$  a pour rayon de convergence 1, et la série entière 1-x a pour rayon de convergence  $+\infty$ . Et,  $\forall x\in ]-1,1,[$ ,  $\sum_{n=0}^{\infty}x^n=\frac{1}{1-x}$ . Le produit de Cauchy des deux séries entières  $\sum x^n=\sum a_kx^k$  et  $1-x=\sum b_\ell x^\ell$  est la série

$$c_n = \sum_{k+\ell=n} a_k b_\ell \ = \sum_{\ell=0}^n a_{n-\ell} b_\ell$$

D'où,  $c_0=1$ ,  $c_1=1-1=0$  et  $\forall n\geqslant 2$ ,  $c_n=0$ . Donc  $\sum c_n x^n=1$ , qui a pour rayon de convergence  $+\infty\neq \min(R_a,R_b)$ . On retrouve ce résultat car

$$\underbrace{\frac{1}{1-x}}_{n=0} \times (1-x) = 1.$$

2. (tarte à la crème) La série entière  $\sum H_n x^n$ ,  $^4$  est le produit de CAUCHY des deux séries entières  $\sum \frac{x^n}{n}$  et  $\sum x^n$ . En effet,

$$c_nx^n=\sum_{k+\ell=n}rac{x^k}{k}x^\ell=\sum_{k=1}^nrac{1}{k}x^n=H_nx^n.$$

Or,  $R_c \geqslant \min(R_a, R_b) = \min(1, 1) = 1$ . D'où

$$\forall x \in ]-1,1[,\Big(\sum_{n=1}^{\infty} \frac{x^n}{n}\Big)\Big(\sum_{n=0}^{\infty} x^n\Big) = \sum_{n=1}^{\infty} H_n x^n$$

et donc

$$-\ln(1-x) imesrac{1}{1-x}=\sum_{n=1}^{\infty}H_nx^n.$$

Exercice 29 (tarte à la crème):

Soient  $x,y \in \mathbb{R}$ . Montrer que  $e^x \cdot e^y = e^{x+y}$ . On sait que  $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ . On veut montrer que  $\left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) = \sum_{n=0}^{\infty} \frac{(x+y)^k}{k!}$ . Le rayon de convergence de la série exp est  $+\infty$ , le rayon de convergence du produit de CAUCHY de deux séries exp est supérieur à  $\min(+\infty, +\infty)$ , i.e. il faut  $+\infty$ . Le produit de CAUCHY de ces deux séries est la série  $\sum w_k$  avec

$$w_{k} = \sum_{n+p=k} u_{n} v_{p} = \sum_{n+p=k} \frac{x^{n}}{n!} \frac{y^{p}}{p!} = \sum_{n=0}^{k} \frac{x^{n} y^{k-n}}{n! (k-n)!}$$

$$= \frac{1}{k!} \sum_{n=0}^{k} \frac{k!}{n! (n-k)!} x^{n} y^{n-k}$$

$$= \frac{1}{k!} (x+y)^{k}$$

# SÉRIES ENTIÈRES COMPLEXES

EXERCICE 30:

Montrer que, pour tout  $\theta \in \mathbb{R}$ ,

$$\mathrm{e}^{i heta}=\cos heta+i\sin heta.$$

4. où 
$$H_n = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$$

On a  $orall z\in\mathbb{C}$ ,  $\mathrm{e}^z=\sum_{n=0}^\inftyrac{z^n}{n!}.$  En particulier, si z=i heta, on a

$$\mathrm{e}^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^{2n+1} \frac{\theta^{2n+1}}{(2n+1)!} = \cos\theta + i \sin\theta.$$

II T.D.

### DEUXIÈME PARTIE

# T.D.

# EXERCICE 1

On considère la série entière  $\sum \tan\left(\frac{n\pi}{7}\right)x^n$ . La fonction tan est  $\pi$ -périodique, d'où la suite  $(a_n)_{n\in\mathbb{N}}=\left(\tan\frac{n\pi}{7}\right)_{n\in\mathbb{N}}$  est 7-périodique. D'où, la suite  $(a_n)_{n\in\mathbb{N}}$  est bornée ; il existe  $M\in\mathbb{R}^+$  tel que, pour  $n\in\mathbb{N},\ |a_n|\leqslant M$ . Or, le rayon de convergence de la série entière  $\sum Mx^n=M\sum x^n$  vaut 1. D'où, le rayon R de convergence est  $R\geqslant 1$ . De plus,  $a_n\xrightarrow[n\to\infty]{}0$ , la série  $\sum a_n$  diverge grossièrement, donc  $R\leqslant 1$ . On en déduit que

$$R=1.$$

# EXERCICE 6

Trouver les solutions développables en séries entières de l'équation différentielle (E):

$$(E): \quad 4x \ y''(x) + 2 \ y'(x) - 1 \ y(x) = 0.$$

Cette équation est homogène. Comme les coefficients ne sont pas constants, on ne peut pas utiliser la méthode de l'équation caractéristique.

Soit R le rayon de convergence d'une série entière  $\sum a_n x^n$ , et soit, pour  $x \in ]-R,R[$ ,  $f(x)=\sum_{n=0}^\infty a_n x^n$ . On peut dériver terme à terme une série entière sans changer son rayon de convergence, d'où

$$orall x \in \ ]-R,R[, \quad egin{dcases} f'(x) = \sum_{n=1}^{\infty} n \, a_n \, x^{n-1}; \ f''(x) = \sum_{n=2}^{\infty} n \, (n-1) \, a_n \, x^{n-2}. \end{cases}$$

f est une solution de (E)

$$\iff 4x\sum_{n=2}^{\infty}n\left(n-1\right)a_{n}x^{n-2}+2\sum_{n=1}^{\infty}n\,a_{n}\,x^{n-1}-\sum_{n=0}^{\infty}a_{n}x^{n}=0$$
 
$$\iff 4\sum_{n=2}^{\infty}n\left(n-1\right)a_{n}x^{n-1}+2\sum_{n=1}^{\infty}n\,a_{n}\,x^{n-1}-\sum_{n=0}^{\infty}a_{n}x^{n}=0$$
 
$$\iff 2a_{1}-a_{0}+\sum_{n=1}^{\infty}\left(4n\left(n+1\right)a_{n+1}+2n\left(n+1\right)a_{n+1}-a_{n}\right)x^{n}=0$$
 
$$\iff \begin{cases} 2a_{1}-a_{0}=0\\ \forall n\geqslant 1,\; (2n+1)\left(2n+2\right)a_{n+1}-a_{n}=0\\ \text{par unicit\'e du d\'eveloppement en s\'erie enti\`ere} \end{cases}$$
 
$$\iff \forall n\in\mathbb{N},\; a_{n}=\frac{a_{0}}{(2n)!}\; \text{par r\'ecurrence}$$

II T.D.

Donc, f est une solution de (E) sur ]-R,R[ si, et seulement si

$$orall x \in \ ]-R,R[,\ f(x)=a_0\sum_{n=0}^{\infty}rac{x^n}{(2n)!}.$$

On détermine maintenant R grâce à la règle de D'ALEMBERT.

- si x = 0, alors la série converge.
- si  $x \neq 0$ , soit alors  $u_n = \left| \frac{x^n}{(2n)!} \right|$ ; d'où,

$$egin{aligned} rac{u_{n+1}}{u_n} &= rac{(2n)!}{(2n+2)!} imes |x| \ &= rac{|x|}{(2n+2)\,(2n+1)} \xrightarrow[n o \infty]{} 0 < 1. \end{aligned}$$

D'où, la série converge pour tout  $x \in ]-\infty, +\infty[$ . On en déduit donc que  $R=+\infty.$ 

On distingue deux cas, en fonction du signe de x.

 $1^{ ext{ER}}$  CAS si  $x\geqslant 0$ , alors  $x=\left(\sqrt{x}
ight)^2$ , d'où

$$\sum_{n=0}^{\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{\infty} \frac{\left(\sqrt{x}\right)^{2n}}{(2n)!} = \operatorname{ch}\left(\sqrt{x}\right).$$

 $2^{ ext{ND}}$  CAS si  $x\leqslant 0$ , alors  $-x=\left(\sqrt{-x}
ight)^2$ , d'où

$$\sum_{n=0}^{\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{\infty} \left[ -(\sqrt{-x})^2 \right]^n = \sum_{n=0}^{\infty} (-1)^n \frac{\left(\sqrt{-x}\right)^{2n}}{(2n)!} = \cos\left(\sqrt{x}\right).$$

On conclut : f est une solution développable en série entière sur  $]-\infty,+\infty[$  si, et seulement si :

$$\exists K \in \mathbb{R}, \; orall x \in ]-\infty, +\infty[, \quad f(x) = egin{cases} K \operatorname{ch}\left(\sqrt{x}
ight) & ext{si } x \geqslant 0 \ K \cos\left(\sqrt{-x}
ight) & ext{si } x \leqslant 0 \end{cases}$$