ANALYTIC GEOMETRY, PROBLEM SET 12

- **1.** Find the equation of the circle: a) passing through A(3,1) and B(-1,3) and having the center on the line d: 3x y 2 = 0;
- b) determined by A(1,1), B(1,-1) and C(2,0); c) tangent to both $d_1: 2x+y-5=0$ and $d_2: 2x+y+15=0$, if the tangency point with d_1 is M(3,1).
- **2.** a) Determine the position of the point A(1, -2) relative to the circle $C: x^2 + y^2 8x 4y 5 = 0$;
- b) Find the intersection between the line d: 7x y + 12 = 0 and the circle $C: (x-2)^2 + (y-1)^2 25 = 0$;
- c) Determine the position of the line d: 2x y 3 = 0 relative to the circle $C: x^2 + y^2 3x + 2y 3 = 0$.
- **3.** Find the equation of
- a) the tangent line to $C: x^2 + y^2 5 = 0$ at the point A(-1,2);
- b) the tangent lines to $C: x^2 + y^2 + 10x 2y + 6 = 0$, parallel to d: 2x + y 7 = 0;
- c) the tangent lines to $C: x^2 + y^2 2x + 4y = 0$, orthogonal on d: x 2y + 9 = 0.
- 4. Find the foci of the ellipse $\mathcal{E}: 9x^2 + 25y^2 225 = 0$.
- **5.** Find the intersection points between the line $d_1: x + 2y 7 = 0$ and the ellipse given by the equation $\mathcal{E}: x^2 + 3y^2 25 = 0$.
- **6.** Find the position of the line d: 2x+y-10=0 relative to the ellipse $\mathcal{E}: \frac{x^2}{9}+\frac{y^2}{4}-1=0$.
- 7. Find the equation of a line which is orthogonal on $d_1: 2x 2y 13 = 0$ and tangent to the ellipse $\mathcal{E}: x^2 + 4y^2 20 = 0$.
- **8.** Consider the ellipse $x^2 + 4y^2 = 25$. Find the chords on the ellipse which have the point A(7/2, 7/4) as their midpoint.
- **9.** Consider the ellipse $\frac{x^2}{4} + y^2 = 1$ with F_1, F_2 as foci. Find the points M, situated on the ellipse for which the angle $\angle F_1 M F_2$ is right.

Date: December 18, 2021.

- 10. Consider the ellipse $\frac{x^2}{4} + y^2 = 1$ with F_1, F_2 as foci. Find the point M on the ellipse for which $\angle F_1 M F_2$ is maximal.
- 11. Consider the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Determine the geometric locus of the midpoints of the chords on the ellipse which are parallel to the line x + 2y = 1.