How Diverse Body Shapes in American Football Athletes Address the NFL's 40 Yard Dash

Emile Therrien

11/08/2020

Introduction

Does body proporitions determine position on the field or is it BMI? * use leg length and BMI: is there is a suggested determinant for how fast the athlete runs the 40? ** Does BMI and/or leg length determine how fast the 40 or first ten yard split is ran? *** Use ovr forty time as a metric the NFL uses to measure athlete speed *** Use ten split time to determine the explosiveness of the athlete

Data Plots

```
## Observations: 308
## Variables: 8
## $ name
                 <chr> "Zuniga, Jabari", "Young, Chase", "Woodward, David", "W...
                 <chr> "DE", "DE", "OLB", "TE", "DE", "TE", "OT", "DT", "OT", ...
## $ POS
                 <dbl> 32.99737, 31.30548, 29.52993, 31.76957, 30.59400, 28.93...
## $ bmi
## $ fortyTime
                 <dbl> 4.64, NA, 4.79, 4.92, 4.73, 4.78, 4.85, 4.90, 5.32, 4.6...
                 <dbl> 1.61, NA, 1.62, 1.74, 1.70, 1.63, 1.72, 1.76, 1.87, 1.5...
## $ tenTimeOvr
## $ Height
                 <dbl> 75, 77, 74, 76, 77, 77, 76, 79, 79, 77, 75, 75, 76,...
## $ legHgtRatio <dbl> 1.156159, NA, NA, NA, NA, NA, 1.206093, NA, NA, NA, NA,...
                 <chr> "DL", "DL", "LB", "TE", "DL", "TE", "OL", "DL", "OL", "OL", "...
## $ genPos
```


Statistical Analyses

BMI v Forty Time

 $\alpha = 0.05$

 H_0 : BMI and forty time do not have a strong (≤ 0.5), postive correlation.

 H_A : BMI and forty time do have a strong (>0.5), postive correlation.

A tibble: 1 x 2

lower upper

<dbl> <dbl>

1 0.742 0.848

Bootstrap distribution of correlation between BMI and Forty Time with 95% confidence interval

Based on an α level of 0.05, we are 95% confident that the true population coefficient for BMI and forty times is between (0.7485, 0.8436). There is enough evidence to reject the null hypothesis that there is not a strong, positive correlation between BMI and forty time.

Position v Ten Time

What is the relationship between positions and the frst ten yard splits? All conditions met, can use linear inference to determine relationship.

					_		
##	#	Α	tibbl	e :	9	x	5

##	term	estimate	std.error	statistic	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	1.53	0.00925	166.	1.85e-240
## 2	genPosDL	0.206	0.0122	16.9	5.09e- 42
## 3	genPosLB	0.0403	0.0130	3.11	2.12e- 3
## 4	genPosOL	0.294	0.0120	24.5	5.16e- 66

##	5	genPosQB	0.0883	0.0175	5.03	9.78e-	7
##	6	genPosRB	0.0120	0.0128	0.931	3.53e-	1
##	7	genPosS	0.0279	0.0147	1.90	5.91e-	2
##	8	genPosTE	0.101	0.0153	6.63	2.44e-	10
##	9	genPosWR	-0.00293	0.0118	-0.249	8.04e-	1

 $\hat{Split} = 1.533 \text{ (CB)} + 0.206 \text{ (DL)} + 0.040 \text{ (LB)} + 0.294 \text{ (OL)} + 0.088 \text{ (QB)} + 0.012 \text{ (RB)} + 0.028 \text{ (S)} + 0.101 \text{ (TE)} - 0.003 \text{ (WR)}$

Leg:Torso and Ten Time Split

```
#obs correlation between BMI and forty time

dimension_analysis = combine2 %>%

summarize(

   sdTenTime = sd(tenTimeOvr, na.rm=TRUE),

   sdRatio = sd(legHgtRatio, na.rm=TRUE),

   covar = cov(tenTimeOvr, legHgtRatio, use ="complete.obs")
) %>%

mutate(
   sample_correlation = (covar/(sdTenTime*sdRatio))
) %>%
```

```
select(sample_correlation)
#simulation based approach for correlation
set.seed(1)
boot_dist2 = numeric(1000)
for(i in 1:1000){
  indices <- sample(1:nrow(combine2), replace = T)</pre>
  boot_ten_time <- combine2 %>%
    slice(indices) %>%
    summarize(boot_sd_tenTime = sd(tenTimeOvr), na.rm=TRUE) %>%
    pull()
  boot_ratio <- combine2 %>%
    slice(indices) %>%
    summarize(boot_sd_ratio = sd(legHgtRatio, na.rm=TRUE)) %>%
    pull()
  boot_covar_ratio <- combine2 %>%
    slice(indices) %>%
    summarize(boot_covar = cov(tenTimeOvr, legHgtRatio,
                                use = "complete.obs")) %>%
    pull()
  boot_dist2[i] <- (boot_covar_ratio/(boot_ratio*boot_ten_time))</pre>
boot_means2 <- tibble(boot_dist2)</pre>
boot_means3 = boot_means2 %>%
  summarize(lower = quantile(boot_dist2, 0.025),
            upper = quantile(boot_dist2, 0.975))
boot_means3
## # A tibble: 1 x 2
```

##

##

lower upper
<dbl> <dbl>

1 -0.0579 0.00711

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Bootstrap distribution of correlation

Based on an α level of 0.05, we are 95% confident that the true population coefficient for leg:torso and ten time splits is between (-0.05468, 0.0006826435).

Can't infer from lm for tentime and leg:torso or fortyTime and leg:torso Not normally distributed

Conclusion: evidence fails to reject the null that there is no correlation between leg:torso and ten time splits