

Table of Contents

PROGRAM STEPS. 11 PREFIXES/SUFFIXES. 13 REGISTERS. 14 IMPORTANT FILES. 15 DEFS - DEFINITIONS. 17 GLOBAL DEFINITIONS (GLOBDEFS.INC FILE) 17 Accumulators registers 17 Accumulators registers 17 Global Useful constants. 18 Global ASCII Codes 18 Global Moth constants 15 Global Actin Constants 15 Global character display definitions for HD44780 chip constants 26 Wave constants 20 Sram boot type constants 20 Sram boot type constants 20 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 SET_HANDLE 24 LD	LIBRARY II DESCRIPTION.	11
REGISTERS. 14 IMPORTANT FILES. 15 DEFS - DEFINITIONS. 17 GLOBAL DEFINITIONS (GLOBDEFS.INC FILE) 17 Accumulators registers 17 Global useful constants 18 Global ASCII Codes 18 Global Math constants 19 Global character display definitions for HD44780 chip constants 20 Wave constants 26 Sram boot type constants 26 Sram boot type constants 22 Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 22 Interrupts Sources definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 23 _SAVE_HANDLE 24 _CIAL 24 _LDIAW 24 _LDIAW 25	Program steps	11
IMPORTANT FILES	Prefixes/Suffixes	13
DEFS - DEFINITIONS. 17 GLOBAL DEFINITIONS (GLOBDEFS.INC FILE) 17 Accumulators registers 17 Global useful constants 18 Global ASCII Codes 18 Global Math constants 19 Global character display definitions for HD44780 chip constants 26 Wave constants 26 Wave constants 26 Prescaler constants for normal AVR chips 26 Prescaler constants for normal AVR chips 26 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupt Sources definitions constants 22 Interrupts Sources definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 23 _SAVE_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAW 24 _LDIA 25 _LDIA 25	Registers.	14
GLOBAL DEFINITIONS (GLOBDEFS.INC FILE) 17 Accumulators registers 17 Global useful constants 18 Global ASCII Codes 18 Global Math constants 19 Global character display definitions for HD44780 chip constants 20 Wave constants 20 Sram boot type constants 20 Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Perscaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupt Sources definitions constants 22 Interrupts Sources definitions constants 23 SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAU 24 _LDIAU 24 _LDIAU 25 _LDIAU 25 _LDIV 25 _LDIV 25 _LDIV 25 _LDIAU	IMPORTANT FILES	15
Accumulators registers 17 Global useful constants 18 Global ASCII Codes 18 Global Math constants 19 Global Character display definitions for HD44780 chip constants 20 Wave constants 26 Sram boot type constants 26 Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 1 2 Prescaler constants for ATMEGA128 TIMER 1 3 22 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 22 Interrupts Sources definitions constants 23 SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _CALL_HANDLE 24 _LDIAU 24 _LDIAU 25 _LDIAU 25 </td <td>DEFS – DEFINITIONS</td> <td>17</td>	DEFS – DEFINITIONS	17
Global useful constants 18 Global ASCII Codes 18 Global Math constants 19 Global character display definitions for HD44780 chip constants 20 Wave constants 20 Sram boot type constants 20 Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAW 24 _LDIA 24 _LDIA 25 _LDIA 25 _LDIAW 25 _LDIAW 25 _LDIAW 25 _LDIAW 25 _LDSAW 25 _LDSAW <	GLOBAL DEFINITIONS (GLOBDEFS.INC FILE)	17
Global ASCII Codes 18 Global Math constants 19 Global character display definitions for HD44780 chip constants 20 Wave constants 20 Sram boot type constants 20 Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupt Sources definitions constants 22 Interrupts Sources definitions constants 23 SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAL 24 _LDIAL 24 _LDIV 25 _LDIV 25 _LDIV 25 _LDIAW 25 _LDIAW 25 _LDIAW 25 _LDIAW 25 _LDIAW 25 <td>Accumulators registers</td> <td>17</td>	Accumulators registers	17
Global Math constants	Global useful constants	18
Global character display definitions for HD44780 chip constants	Global ASCII Codes	18
Wave constants 26 Sram boot type constants 26 Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAW 24 _LDIA 24 _LDIA 25 _LDIY 25 _LDIY 25 _LDIY 25 _LDIAW 25 _LDIAW 25 _LDIAW 25 _LDIA 25 _LDIA 25 _LDIA 25 _LDIA 25 _LDIA 25 _LD	Global Math constants	19
Sram boot type constants 20 Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 LDIAW 24 LDIAW 24 LDIA 25 LDIY 25 LDIY 25 LDIW 25 LDIW 25 LDSAW 25 LDSAW 25 LDSAW 25 LDSAWT 25 LDSAL 26	Global character display definitions for HD44780 chip constants	20
Prescaler constants for normal AVR chips 21 Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAW 24 _LDIA 25 _LDIY 25 _LDIY 25 _LDIW 25 _LDSAW 25 _LDSAW 25 _LDSAWT 25 _LDSAWT 25 _LDSAL 26	Wave constants	20
Prescaler constants for ATMEGA128 TIMER 21 Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAW 24 _LDIAL 24 _LDIX 25 _LDIY 25 _LDIY 25 _LDIW 25 _LDIAW 25 <t< td=""><td>Sram boot type constants</td><td>20</td></t<>	Sram boot type constants	20
Prescaler constants for ATMEGA128 TIMER 2 21 Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Interrupts Solicions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAW 24 _LDIAL 24 _LDIY 25 _LDIY 25 _LDIW 25 _LDIW 25 _LDIAW 25 _LDSAW 25 _LDSAW 25 _LDSAWT 25 _LDSAWT 25 _LDSAL 26	Prescaler constants for normal AVR chips	21
Prescaler constants for ATMEGA128 TIMER 1 & 3 22 Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Timers Definitions constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAU 24 _LDIAL 24 _LDIX 25 _LDIY 25 _LDIV 25 _LDIW 25 _LDSAW 25 _LDSAWT 25 _LDSAL 26	Prescaler constants for ATMEGA128 TIMER	21
Prescaler constants for ATMEGA128 ADC 22 Interrupt pins sensing types constants 22 Timers Definitions constants 23 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAWT 24 _LDIAL 24 _LDIX 25 _LDIY 25 _LDIV 25 _LDIW 25 _LDIW 25 _LDSAW 25 _LDSAWT 25 _LDSAL 26	Prescaler constants for ATMEGA128 TIMER 2	21
Interrupt pins sensing types constants 22 Timers Definitions constants 23 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAWT 24 _LDIAL 24 _LDIX 25 _LDIY 25 _LDIZ 25 _LDIW 25 _LDSAW 25 _LDSAWT 25 _LDSAL 26	Prescaler constants for ATMEGA128 TIMER 1 & 3	22
Timers Definitions constants 22 Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAW 24 _LDIAL 24 _LDIX 25 _LDIY 25 _LDIZ 25 _LDIW 25 _LDSAW 25 _LDSAWT 25 _LDSAL 26	Prescaler constants for ATMEGA128 ADC	22
Interrupts Sources definitions constants 23 Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 _LDIAW 24 _LDIAWT 24 _LDIAL 24 _LDIX 25 _LDIY 25 _LDIZ 25 _LDIW 25 _LDSAW 25 _LDSAWT 25 _LDSAL 26	Interrupt pins sensing types constants	22
Communications definitions constants 23 _SET_HANDLE 23 _SAVE_HANDLE 24 _CALL_HANDLE 24 LDIAW 24 LDIAUT 24 LDIAL 24 LDIX 25 LDIY 25 LDIZ 25 CLRW 25 LDSAW 25 LDSAWT 25 LDSAL 26	Timers Definitions constants	22
SET_HANDLE	Interrupts Sources definitions constants	23
	Communications definitions constants	23
_CALL_HANDLE 24 LDIAW 24 LDIAL 24 LDIX 25 LDIY 25 LDIZ 25 CLRW 25 LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	_SET_HANDLE	23
LDIAW 24 LDIAWT 24 LDIAL 24 LDIX 25 LDIY 25 CLRW 25 LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	_SAVE_HANDLE	24
LDIAWT 24 LDIAL 24 LDIX 25 LDIY 25 LDIZ 25 CLRW 25 LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	_CALL_HANDLE	24
LDIAL 24 LDIX 25 LDIY 25 LDIZ 25 CLRW 25 LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	LDIAW	24
LDIX 25 LDIY 25 LDIZ 25 CLRW 25 LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	LDIAWT	24
LDIY 25 LDIZ 25 CLRW 25 LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	LDIAL	24
LDIZ 25 CLRW 25 LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	LDIX	25
CLRW	LDIY	25
LDIW 25 LDSAW 25 LDSAWT 25 LDSAL 26	LDIZ	25
LDSAW 25 LDSAWT 25 LDSAL 26	CLRW	25
LDSAWT	LDIW	25
LDSAL26	LDSAW	25
	LDSAWT	25
LDDAW26	LDSAL	26
	LDDAW	26

LDDAWT	26
LDSW	26
LDDW	27
STSAW	27
STSAWT	27
STSAL	27
STSW	27
ADDI	27
ADCI	28
SUBIAW	28
SUBIAWT	28
SUBIAL	28
ADDIAW	28
ADDIAWT	28
ADDIAL	29
SUBIW	29
LSRW	_
ASRW	
LSLAW	
LSLAWT	
LSRAW	
LSRAWT	
ASRAW	
ASRAWT	
SUBW	
ADDIW	
ADDW	
CPIW	
CPW	
CPIAW	_
CPIAL	
PUSHAW	31
PUSHAWT	
PUSHTEMPW	
PUSHW	
PUSHW	
POPAW	
POPAWT	
POPTEMPW	33
POPW	33
LBRNE	33
LBREQ	33
LBRCS	33
LBRCC	33
LBRLT	34
LBRMI	34

LBRPO	34
LBRGE	34
LBRSH	34
LBRLO	34
_M_PUSH_LOWER_REGS	35
_M_PUSH_UPPER_REGS	35
_M_PUSH_ALL_REGS	35
_M_POP_LOWER_REGS	35
_M_POP_UPPER_REGS	35
_M_POP_ALL_REGS	35
AVR FAMILY CHIPS NAMES DEFINITIONS AND INTERRUPTS HANDDLES FOR FOLLOWING DEVICES	
1200,2313,2323,8515,8535,M8,M16,M64,M128,M162	36
(AT90S2313) 2313HDC.INC HANDLE FILE	36
(AT90S2323) 2323HDC.INC HANDLE FILE	37
(AT90S8515) 8515HDC.INC HANDLE FILE	37
(AT90S8535) 8535HDC.INC HANDLE FILE	37
(ATMEGA8) M8HDC.INC HANDLE FILE	38
(ATMEGA16) M16HDC.INC HANDLE FILE	38
(ATMEGA64) M64HDC.INC HANDLE FILE Model A (SRAM Start 0x100)	39
(ATMEGA128) M128HDC.INC HANDLE FILE Model A (SRAM Start 0x100)	40
(ATMEGA162) M162HDC.INC HANDLE FILE Model A (SRAM Start 0x100)	41
MATH DEFINITIONS (MATHCONS.INC FILE)	42
Double Float Point Memory Formating	42
Double Float Point BCD Memory Formating	
Global Math constants	43
Double Float point Operator 1	43
Double Float point Operator 2	44
_M_PUSH_MATH_VARIABLES	
M POP MATH VARIABLES	
SRAM INIT (SRAM INIT.Inc File)	
MATH	
DFT - DISCRETE FOURIER TRANSFORM	
DFT_8BITS_64POINTS (DFT864V1.INC File)	
FILTERS	
AVERAGE16 (AVERAGE16.INC File)	
FLOAT DOUBLE	
ACOS – ArcCosine (ACOS.INC File)	
ASIN – ArcSine (ASIN.INC File)	
_DFASIN	
ATAN – ArcTangent (ATAN.INC File)	
_DFATAN	
ADDSUB – ADD AND SUBTRACTION (DFADDSUB.INC FILE)	50
_DFADD	
	55
_DFSUB	55 55

_DFMUL	
_DFDIV	
DFCPM – FLOAT COMPARE (DEFCPM.INC FILE)	
DFJP EQ	
DFJP NEQ	
DFJP_GT	
_DFJP_LT	
_DFJP_GTEQ DFJP_LTEQ	
COSINE (COSINE INC FILE)	
DFCOS	
_DFCOS	
DFSIN	
BCD TO STRING (DFBCDTOS.INC FILE)	
_DFBCDTOS	
FLOAT TO BCD (DFFTOBCD.INC FILE)	
DFFTOBCD	
FLOAT TO LONG (DFFTOL.INC FILE)	
DFFTOL	
DFF10L HEADER MACROS (DOUBLE FLOAT MACROS.INC FILE)	
(DOUBLE_FLOAT_HEADER.INC FILE)	
· · · · · - · · · · · · · · · · · · · ·	
INFINIT RESULT (DFINF.INC FILE)	
INT (INT.INC FILE)	
_DFINT DFFIX	
-	
LOAD STORE (DFLDXSTX.INC FILE)	
_DFLD0 DFLD1	
_DFLD1 DFLD2	
_	
_DFLD10 DFLDE	69
_DFLDSQRT2 DFLDSQRT2M1	
_DFLDSQR12W1 DFLDSQRT2P1	
DFLDPI2	
_DFLDP12 DFLDP14	
_DFLDF14	
_DFLD3PI2	
_DFLD3PI2	
_DFLDZ	
_DFLDDC	
_	
_DFSTZ DFLDOP1Z	
_	
_DFLDOP2Z DFACCOP1	
_DFMCCUT1	/4

_DFOP1ACC	74
_DFACCOP2	75
_DFOP2ACC	75
_DFPUSHACC	<i>7</i> 5
_DFPOPACC	75
_DFPUSHOP1	75
_DFPOPOP1	75
_DFPUSHOP2	<i>7</i> 5
_DFPOPOP2	76
LONG TO FLOAT (DFLTOF.INC FILE)	77
_DFLTOF	<i>77</i>
_DFITOF	<i>77</i>
_DFATOF OR _DFBTOF	<i>78</i>
SERIES	79
ATN – ArcTangent series (SERIE_ATN.INC File)	
LN – NATURAL LOGARITHM (SERIE_LN.INC FILE)	81
_DFSERATN	81
SERIE SINE (SERIE_SINE.INC FILE)	82
_DFSERATN	
SQUARE ROOT (DFSQRT.INC FILE)	83
COMPUTE A SQUARE ROOT FUNCTION USING NEWTON/RAPHSON APPROXIMATION ALGORITHM	
_DFSQRT	
STRING TO FLOAT (DFSTOF.INC FILE)	
_DFSSTOF	85
_DFSTOF	85
TAN - TANGENT (TAN.INC FILE)	
_DFSSTOF	86
UNARY (UNARY.INC FILE)	87
_DFABS	87
_DFCHS	87
_DFINV	87
_DFSQR	
INTEGER	
ATOS (ATOS.INC File)	
CHECKSUM16 (CHECKSUM16.INC File)	90
DIV_S32S32S32 (DIV_S32S32S32.INC File)	91
DIV_U8U8U8 (DIV_U8U8U8.INC File)	
DIV_U16U16U16 (DIV_U16U16U16.INC File)	
DIV_U16U16U16F16 (DIV_U16U16U16F16.INC File)	
DIV_U32U32U32 (DIV_U32U32U32.INC File)	
DUMPHEX (DUMPHEX.INC File)	
INT_ATN (INT_ATN.INC File)	
INT_ATN2PTS (INT_ATN2PTS.INC File)	
IPTOS (IPTOS.INC File)	
ITOS (ITOS.INC File)	
IXTOS (IXTOS.INC File)	101

MUL_S8S8S8 (MUL_S8S8S8.INC File)	
MUL_S8S8S16 (MUL_S8S8S16.INC File)	
MUL_S16S16S16 (MUL_S16S16S16.INC File)	110
MUL_S16S16S32 (MUL_S16S16S32.INC File)	111
MUL_S32S32S32 (MUL_S32S32S32.INC File)	112
MUL_U8U8U8 (MUL_U8U8U8.INC File)	113
MUL_U8U8U16 (MUL_U8U8U16.INC File)	114
MUL_U16U16U16 (MUL_U16U16U16.INC File)	115
MUL_U16U16X10 (MUL_U16U16X10.INC File)	116
MUL_U32U32U32 (MUL_U32U32X32.INC File)	117
MUL_U32U32U64 (MUL_U32U32X64.INC File)	118
MUL_U32U32X10 (MUL_U32U32X10.INC File)	
MULDIV_U8U8U8 (MULDIV_U8U8U8.INC File)	
UBTOS (UBTOS.INC File)	
UITOH (UITOH.INC File)	
UITOS (UBTOS.INC File)	
ULTOH (ULTOH.INC File)	
INTFRAC – Integer and Fractions	
IF_MUBSFB (MUBSFB.INC)	
IF_MUSFSI (MUSFSI.INC)	
LOGIC	
PARITY (PARITY.INC)	
ROTATION	
ROTATED2D (ROTATION2D.INC)	
TRIGONOMETRY	
DISCRETE COSINE (DISCRETE_COSINE.INC)	
DISCRETE SINE (DISCRETE_SINE.INC)	136
DISPLAYS	138
HD44780	129
VERSION10 - Deprecated	
VERSION20 (DPDRV48B.INC)	
BIG_NUMBERS (BIG_NUMBER.INC)	
SED1335	
SED1335 (G320X240.INC)	
SEVEN	
DRTYP1 (DIPS7DR1.INC)	
GRAPH	
CIRCLE (CIRCLE.INC)	
GRAPH CIRCLE	
LINE (LINE.INC)	
_GRAPH_MOVE_TO	
_GRAPH_MOVE_TO_EX	
_GRAPH_GET_POINT _GRAPH_LINE_TO	

DRAW (DRAW.INC)	163
_DRAW_SET_POINT	164
 _DRAW_GET_POINT	164
	164
DRAW GET CENTER POINT	165
 _DRAW_SET_SCALE	165
DRAW GET SCALE	165
	166
	166
	166
	167
EEPROMS	168
AT24C64 (AT24C64.INC)	168
AT24C64 BYTE WRITE	
AVRE2P (BE256.INC)	
EEPROM WRITE	
EEPROM READ	
 AVRE2P (A256.INC)	
EEPROM WRITE	
 _EEPROM_READ	
AT45DB161-B	
_AT45DB161B_INIT	
_AT45DB161B_RESET	
_AT45DB161B_DATA_OUT	
_AT45DB161B_DATA_IN	
_AT45DB161B_DATA_END	
_AT45DB161B_DATA_START	
_AT45DB161B_SET_WRITE_PROTECT	
_AT45DB161B_GET_STATUS_REGISTER	
_AT45DB161B_SET_ADDRESS	
_AT45DB161B_CONTINUOUS_ARRAY_READ	
_AT45DB161B_BUFFER1_WRITE	
_AT45DB161B_BUFFER1_READ	
_AT45DB161B_BUFFER1_WRITE_INTO_PAGE	
_AT45DB161B_BUFFER1_READ_FROM_PAGE	
ATAFORACAR Constructs	
AT45DB161B Constants	
ANALOG TO DIGITAL CONVERTERS	180
ANALOG TO DIGITAL CONVERTERS	180
ANALOG TO DIGITAL CONVERTERS ADC831 ADC831_INIT	
ANALOG TO DIGITAL CONVERTERS	

_ADC832_INIT	182
_ADC832_GET	183
ADC8535	184
_ADC_INIT	184
_ADC_CHANNEL	184
_ADC_GET	185
ADCM128	186
_ADC_INIT	186
_ADC_SET_CHANNEL	186
_ADC_GET_CHANNEL	187
_ADC_GET_VALUE	187
ADS8320(Texas Instruments/Burr-Brown)	188
_ADS8320_INIT	188
_ADS8320_GET	189
ASTRONOMY	190
JULIAN DAY	190
JULIAN DAY INIT	
JULIAN DAY SET DATE	
JULIAN DAY GET DATE	
JULIAN DAY SET GREGORIAN	
_JULIAN_DAY_SET_JULIAN	
_JULIAN_DAY_GET_VALUE	
JULIAN DAY COMPUTE	
COMM - COMMUNICATIONS	
I2C (I2C.INC)	
12C (12C.INC)	
_12C_START	
_12C_STOP	
I2C BIT OUT	
12C BIT IN	
_12C_BYTE_OUT	
_12C_BYTE_IN	
_12C_ACK_IN	
N64 (N64_COMM.INC)	
_N64_INIT	
_N64_GET_A	
SLIP (SLIP.INC)	
_SLIP_SET_RX_BUFFER	
_SLIP_GET_RX_BUFFER	
_SLIP_SET_TX_BUFFER	
_SLIP_GET_TX_BUFFER	
·· · _ · · · · · · · - · · · ·	207

_SLIP_SET_RX_ADDRESS	204
_SLIP_SET_TX_ADDRESS	205
_SLIP_SET_TIMEOUT_ADDRESS	205
_SLIP_SET_INDEX	205
_SLIP_GET_INDEX	206
_SLIP_GET_DATA	206
_SLIP_POLLING	206
_SLIP_SEND	207
_SLIP Constants	207
SERIAL	208
TWO_WIRE	208
SOFTWARE (SOFTWARE SERIAL.INC)	210
_SCOMM_INIT	210
_SCOMM_TX	211
_SCOMM_RX	211
_SCOMM_GET_RTS	211
_SCOMM_SET_CTS	212
REPRODUCTION AND COPYRIGHT	213
CONTACT	21/

.....

Library II Description.

Library II is a set of Routines wrote in Assembler Language for Atmel AVR Family Microcontrollers to be used with Atmel AVRStudio 4.0 developed by **Author Techonology Corp**. These Routines satisfy a minimum requirement to use an Assembler Language of ease way and reliable form, increasing productivity and offering capabilities to work in group of developers and some manner getting more performance in program code size(less bytes used) and more speed competing direct with more high level Languages like a C.

Library II is composited with CONSTANTS, MACROS, ROUTINES and generic no dependent Hardware routines like MATH, PROTOCOLS and dependent Hardware routines like DISPLAY DRIVERS, EEPROM ACCESS, DATA FLASH, ADCs, DACs.

Author Library II routines use a below schematic of flux of program components. The order of steps must be followed strictly to avoid program unpredictable results.

Program steps.

Step	Command	Description	
1	.INCLUDE "DEFS\GLOBAL_DEFINITIONS\GLOBDEFS.INC"	Must be a first include and always be included	
2	.EQU _SRAM_BOOT_TYPE=_SRAM_NOT_CLEAR .EQU _AVR_CLOCK = 16000000	Compiler and Software settings	
3	.INCLUDE "DEFS\M64_FILES\M64DEF.INC" .INCLUDE "DEFS\M64FILES\M64HDC.INC"	Processor definitions and handle interrupts	
4	;+	Generic Library II routines, left only a example.	

Step	Command		Description		
5	. INCLUDE	All	Hardware	dependent	

"HARDWARE DEFINITIONS.INC" routines are placed inside of this file .INCLUDE "LOCAL DEFINITIONS.INC" not Hardware dependent routines are placed inside of this file such as global program Functions, program Modules _MAIN_INIT: _MAIN_INIT label must always call _CPULED_INIT include and is the first entry call MOTION RELAY INIT point accessed after boot initialization, and here is placed all drives, routines, objects that must initialized before is used. Here, after MAIN: label are MAIN: placed the Main Program that call all routines placed in Hardware definition.inc Local definition.inc, but if you want to use a OOP

techniques Hardware dependent

routines must be avoid

Prefixes/Suffixes.

Author Libray II routines use below prefixes and suffixes to facility program scope, program reliability and program clarity.

Prefixes/Suffixes	Description		
_ (Underscore)	Prefix to signalize that a routine or label		
	is inside a Library		
	Ex:		
	Call _DISP_DATA_WRITE		
fn_	Prefix placed at all functions in		
	Local_Definitions.inc file meaning a Function		
MODULE	Prefix placed at all programs Module routines		
	that use functions defined in		
	Local_Definitions.inc, if an OOP techniques		
	is used all hardware dependent routines must		
	be avoid.		
.INC	Suffix placed in file extension meaning		
	generic include file or Library for AVR with		
	less than 8Kbytes of Flash memory		
. HUG	Suffix placed in file extension meaning		
	generic include file or Library for AVR with		
	more than 8Kbytes of Flash memory		

Registers.

Author Libray II routines registers use the below definitions.

Register	Description
R0R15	Usually used as scrap registers otherwise
	specified.
Acc ,R24	Acc is used like an Accumulator of 8bits size
AccH,R25	and AccH is an Accumulator High with 8 bits
	size, both may be used separated or together
	forming a 16bit register in macros prefixed
	by AccAW, this register is preferred way to
	pass and return values from routines
	Ex:
	Ldi Acc,23 ; Load Acc with 23
	Ldi AccH,18 ; Load AccH with 18
	Ldiaw 1234 ; Load AccH:Acc with 1234
AccT ,R16	AccT is used like a Temporary Accumulator of
AccTH,R17	8bits size and AccTH is a Temporaty
	Accumulator High with 8 bits size, both may
	be used separated or together forming a
	16bit register in macros prefixed by AccAWT,
	this register too is preferred way to pass
	and return values from routines
	Ex:
	Ldi AccT,23 ; Load AccT with 23
	Ldi AccTH,18 ; Load AccTH with 18
	LdiawT 1234 ; Load AccTH:AccT with 1234
Temp ,R18	Temp is used like a Temporary register of
TempH,R19	8bits size and TempH is a Temporaty Register
	High with 8 bits size, both may be used
	separated or together forming a 16bit
	register in macros prefixed by TempH, This
	register may be used to pass or return values
	from routines but they use must be used with
	care. They really a temporary scrap register,
	long time storage values must be avoid.
	Ex:
	Ldi Temp, 23 ; Load Temp with 23
	Ldi TempH,18 ; Load TempH with 18

Important Files.

Author Libray II important files are further explained below. $\,$

File	Description
GLOBDEFS.INC	Is a Global Definitions include file that
	contain a set of Macros, Contants used for
	all Author programs . And must be always
	included.
MATHCONS.INC	Is a Global Definitions when a math routine
	is need, placed on step 4 of program steps.
xxxxDEF.INC	Is a Global Device Definition include file
	supplied by Atmel AVRStudio 4 generally
	located at folder \Programs Files\Atmel\AVR
	Tools\AvrAssembler2\Appnotes Author routines
	actually support these devices AT90S1200,
	AT90S2313, AT90S2323, AT90S8515, AT90S8535,
	ATMEGA8, ATMEGA16, ATMEGA64, ATMEGA128,
	ATMEGA168 xxxx meaning processor partnumber.
xxxxHDC.INC	Is a Global Device Handle Interrupts include
	file supplied by Author to possibility a
	dynamic interrupt handling such as interrupt
	real time Handdle address change and
	Interrupt cascading allowing that more one
	Handdle routine be used.
	The control of these handles is taken using
	below macros.
	_SET_HANDDLE to set a new Handle routine to
	a specific hardware interrupt.
	_SAVE_HANDDLE to save an actual Handle
	routine address.
	_CALL_HANDDLE to call a specific hardware
	interrupt. Author Handdle files actually
	support these devices AT90S1200, AT90S2313,
	AT90S2323, AT90S8515, AT90S8535, ATMEGA8,
	ATMEGA16, ATMEGA64, ATMEGA128, ATMEGA168 but
	take a look at one of these files quickly
	other devices are made, the only restriction
	is that file use the formatting xxxxHDC.INC x
	meaning device partnumber.

File	Description
Hardware_Definitions.Inc	Is a Global Definitions include file that
	contain all EQUATES, ROUTINES, etc, that is
	Hardware dependent.
Local_Definitions.Inc	Is a Global Definitions include file that
	contain all EQUATES, ROUTINES, FUNCTION AND
	MODULES used by MAIN program and no Hardware
	dependent routine must called directly by a
	MODULE if a OOP techniques is used, only
	FUNCTIONS can call a hardware dependent
	routine if OOP is used.

DEFS - Definitions

GLOBAL DEFINITIONS (GLOBDEFS.INC FILE)

Description

A GLOBAL DEFINITIONS include is the first include file in any program of **Author Tecnology**. This file contains all necessary Constants Equates and General Macros definitions to standardize code, increasing software reliability and turning it clear and reducing time for coding when working in group. **This file must be always included and must be a first include**.

	Ac	cumulators registers
Name	Register	Description
Acc	R24	8bits Accumulator Low
AccH	R25	8bits Accumulator High
AccT	R16	8bits Temporary Accumulator Low
AccTH	R17	8bits Temporary Accumulator
		High
Temp	R18	8bits used in short time like
		Temporary low register
TempH	R19	8bits used in short time like
		Temporary high register
Suffix AW	R25:R24	16bits Accumulator
Or AccH:Acc		
Suffix AWT	R17:R16	16bits Temporary Accumulator
Or AccTH:AccT		
Suffix AL	R17:r16:r25:r24	32bits Accumulator
Or		
AccTH:AccT:AccH:AccTH		

Global useful constants				
Name	Decimal Value	Hexadecimal Value		
_ON	0XFF	255		
_OFF	0x00	0		
_EVEN	0XFF	255		
ODD	0XFF	255		
_NONE	0x00	0		
_LEFT	0x01	1		
_RIGHT	0x02	2		
_UP	0x03	3		
_DOWN	0x04	4		
_PRESSED	0x05	5		
_RELEASED	0x06	6		
_TIMEOUT	0x07	7		
_YES	0XFF	255		
_NO	0x00	0		
_OK	0XFF	255		
_NOTOK	0x00	0		

Global ASCII Codes				
Name	Decimal	Hexadecimal	meaning	
	Value	Value		
_NULL	0x00	0	Null Char	
_BS	0x08	8	Backspace	
_TAB	0x09	9	Tab (Tabulation)	
_CR	0X0D	13	Carriage Return	
_LF	0X0A	10	Line Feed	
_NC	0XFF	255	Null Char(special use)	
_ASCII_NULL	0x00	0	Null	
_ASCII_SOH	0X01	1	Start of Heading	
_ASCII_STX	0x02	2	Start of Text	
_ASCII_ETX	0x03	3	End of Text	
_ASCII_EOT	0X04	4	End of Transmission	
_ASCII_ENQ	0x05	5	Enquiry	
_ASCII_ACK	0x06	6	Acknowledge	
_ASCII_BEL	0x07	7	Bell - Caused teletype machines	
			to ring a bell. Causes a beep	
_ASCII_BS	0x08	8	Backspace - Moves the cursor (or	
			print head) move backwards (left)	
_ASCII_TAB	0X09	9	Horizontal tab - Moves the cursor	
			(or print head) right to the next	
_ASCII_LF	0X0A	10	NL line feed, new line - Moves	
			the cursor (or print head) to a	
			new	
_ASCII_VT	0X0B	11	vertical tab	
_ASCII_FF	0X0C	12	Form feed - Advances paper to the	

			top of the next page
_ASCII_CR	0X0D	13	Carriage return - Moves the
			cursor all the way to the left
_ASCII_SO	0X0E	14	Shift out - Switches output
			device to alternate character
			set.
_ASCII_SI	0X0F	15	shift in - Switches output
			device back to default character
			set.
_ASCII_DLE	0X10	16	Data link escape
_ASCII_DC1	0X11	17	Device control 1
_ASCII_DC2	0X12	18	Device control 2
_ASCII_DC3	0X13	19	Device control 3
_ASCII_DC4	0X14	20	Device control 4
_ASCII_NAK	0x15	21	Negative acknowledge
_ASCII_SYN	0X16	22	Synchronous idle
_ASCII_ETB	0X17	23	End of transmission block - Not
			the same as EOT
_ASCII_CAN	0X18	24	Cancel
_ASCII_EM	0X19	25	End of medium
_ASCII_SUB	0X1A	26	Substitute
_ASCII_ESC	0X1B	27	Escape
_ASCII_FS	0X1C	28	File separator
_ASCII_GS	0X1D	29	Group separator
_ASCII_RS	0X1E	30	Record separator
_ASCII_US	0X1F	31	Unit separator
_ASCII_SPACE	0X20	32	Space
_ASCII_SP	0X20	32	Space
_ASCII_DEL	0x7F	127	Delete

Global Math constants				
Name	Value	Description		
_LONG	4	Size of Long variable		
_INTEGER	2	Size of Integer variable		
_WORD	2	Size of Word variable		
BYTE	1	Size of byte variable		

Global character display definitions for HD44780 chip constants Value Description DISP_LINE_1 0 1 Row display DISP_LINE_2 1 2 Row display DISP FONT 5X8 0 5x8 Font Size DISP FONT 5X10 1 5x10 Font Size DISP 4BITS 0 4 bits interface 1 DISP 8BITS 8 bits interface

Wave constants			
Name	Value	Description	
_WAVE_DAC_8	8	8 Bits wave DAC	
_WAVE_DAC_16	16	16 Bits wave DAC	
_WAVE_DAC_24	24	24 Bits wave DAC	
_WAVE_DAC_32	32	32 Bits wave DAC	
_WAVE_FS_5500	5500	5500 samples/second	
_WAVE_FS_6000	6000	6000 samples/second	
_WAVE_FS_8000	8000	8000 samples/second	
_WAVE_FS_11025	11025	11025 samples/second	
_WAVE_FS_22050	22050	22050 samples/second	
_WAVE_FS_32000	32000	32000 samples/second	
_WAVE_FS_44100	44100	44100 samples/second	
_WAVE_SOURCE_FLASH	1	Wave into AVR Flash	
_WAVE_SOURCE_SRAM	2	Wave into AVR SRAM	
_WAVE_SOURCE_DEVICE	3	Wave Into DEVICE	
_WAVE_STATUS_PLAYING	1	Wave Status playing	
_WAVE_STATUS_STOPED	2	Wave Status Stoped	
_WAVE_STATUS_END	3	Wave Status End	

Sram boot type constants			
Name	Value	Description	
_SRAM_NOT_CLEAR	0	Not clear SRAM during reset	
_SRAM_CLEAR	1	Clear SRAM during reset	

Prescaler constants for normal AVR chips			
Name	Value	Description	
_TIMER_STOP	0в00000000	Timer stop	
_TIMER_DIV_1	0в0000001	Timer prescaler divisor by 1	
_TIMER_DIV_8	0в0000010	Timer prescaler divisor by 8	
_TIMER_DIV_64	0в00000011	Timer prescaler divisor by 64	
_TIMER_DIV_256	0В00000100	Timer prescaler divisor by 256	
_TIMER_DIV_1024	0В00000101	Timer prescaler divisor by 1024	
_TIMER_FALL	0В00000110	Timer Fall	
_TIMER_RISE	0В00000111	Timer Rise	

Prescaler constants for ATMEGA128 TIMER 0			
Name	Value	Description	
_TIMERMO_STOP	0В00000000	Timer stop	
_TIMERMO_DIV_1	0В00000001	Timer prescaler divisor by 1	
_TIMERMO_DIV_8	0В00000010	Timer prescaler divisor by 8	
_TIMERMO_DIV_32	0В00000011	Timer prescaler divisor by 32	
_TIMERMO_DIV_64	0В00000100	Timer prescaler divisor by 64	
_TIMERMO_DIV_128	0В00000101	Timer prescaler divisor by 128	
_TIMERMO_DIV_256	0В00000110	Timer prescaler divisor by 256	
_TIMERMO_DIV_1024	0B00000111	Timer prescaler divisor by 1024	

Prescaler constants for ATMEGA128 TIMER 2		
Name	Value	Description
_TIMERM2_STOP	0В00000000	Timer stop
_TIMERM2_DIV_1	0B00000001	Timer prescaler divisor by 1
_TIMERM2_DIV_8	0B00000010	Timer prescaler divisor by 8
_TIMERM2_DIV_32	0B00000011	Timer prescaler divisor by 32
_TIMERM2_DIV_256	0В00000100	Timer prescaler divisor by 256
_TIMERM2_DIV_1024	0B00000101	Timer prescaler divisor by 1024
_TIMERM2_FALL	0B00000110	Timer prescaler divisor by FALL
_TIMERM2_RISE	0B00000111	Timer prescaler divisor by RISE

Prescaler constants for ATMEGA128 TIMER 1 & 3		
Name	Value	Description
_TIMERM13_STOP	0в00000000	Timer stop
_TIMERM13_DIV_1	0B00000001	Timer prescaler divisor by 1
_TIMERM13_DIV_8	0В00000010	Timer prescaler divisor by 8
_TIMERM13_DIV_64	0B00000011	Timer prescaler divisor by 64
_TIMERM13_DIV_256	0В00000100	Timer prescaler divisor by 256
_TIMERM13_DIV_1024	0В00000101	Timer prescaler divisor by 1024
_TIMERM13_FALL	0В00000110	Timer prescaler divisor by FALL
_TIMERM13_RISE	0В00000111	Timer prescaler divisor by RISE

Prescaler constants for ATMEGA128 ADC		
Name	Value	Description
_TIMERMADC_DIV_2	0В00000000	Timer prescaler divisor by 2
_TIMERMADC_DIV_4	0B00000001	Timer prescaler divisor by 4
_TIMERMADC_DIV_8	0В0000010	Timer prescaler divisor by 8
_TIMERMADC_DIV_16	0В00000011	Timer prescaler divisor by 16
_TIMERMADC_DIV_32	0В00000100	Timer prescaler divisor by 32
_TIMERMADC_DIV_64	0В00000101	Timer prescaler divisor by 64
_TIMERMADC_DIV_128	0В00000110	Timer prescaler divisor by 128

Interrupt pins sensing types constants			
Name Value Description			
_LOW_LEVEL	0	Level sensing interrupt	
_FALLING_EDGE	2	Falling edge sensing interrupt	
_RISING_EDGE	3	Rising edge sensing interrupt	

Timers Definitions constants		
Name	Value	Description
_TIMER_0	0	To assign reference to timer 0
_TIMER_1	1	To assign reference to timer 1
_TIMER_2	2	To assign reference to timer 2
_TIMER_3	3	To assign reference to timer 3

Interrupts Sources definitions constants		
Name	Value	Description
_EXTERNAL_0	0	To assign reference to external interrupt 0
_EXTERNAL_1	1	To assign reference to external interrupt 1
_EXTERNAL_2	2	To assign reference to external interrupt 2
_EXTERNAL_3	3	To assign reference to external interrupt 3
_EXTERNAL_4	4	To assign reference to external interrupt 4
_EXTERNAL_5	5	To assign reference to external interrupt 5
_EXTERNAL_6	6	To assign reference to external interrupt 6
_EXTERNAL_7	7	To assign reference to external interrupt 7

Communications definitions constants		
Name	Value	Description
_COMM0	0	To assign reference to COMMO
_COMM1	1	To assign reference to COMM1
_COMM2	2	To assign reference to COMM2
_COMM3	3	To assign reference to COMM3

MACRO	_SET_HANDLE
Function	Set Handle address routine
Example	Set Timer0 overflow interrupt to jump to ADDRESS_ROUTINE _SET_HANDLE _HDC_OVF0_VECT,ADDRESS_ROUTINE
Observation	Interrupt are disabled during save and register AccH:Acc is used

MACRO	_SAVE_HANDLE
Function	Save Handle address into SRAM
Example	Save Timer0 overflow interrupt address into SRAM_ADDRESSSAVE_HANDLE _HDC_OVF0_VECT,SRAM_ADDRESS
Observation	Interrupt are disabled during save and register AccH:Acc is used

MACRO	_CALL_HANDLE
Function	Call Handle routine pointed by SRAM address
Example	Call Timer0 overflow interrupt _CALL_HANDLE _HDC_OVF0_VECT or _CALL_HANDLE SRAM_ADDRESS
Observation	Z register used to hold a address to be call

MACRO	
	LDIAW
Function	Load immediate value into AccH:Acc
Example	Load immediate AccH:Acc with 1500
	LDIAW 1500

MACRO	LDIAWT
Function	Load immediate value into AccTH:AccT
Example	Load immediate AccTH:AccT with 1500 LDIAWT 1500

MACRO	LDIAL
Function	Load immediate value into AccTH:AccT:AccH:Acc
Example	Load immediate AccTH:AccT:AccH:Acc with 12345000
	LDIAL 12345000

MACRO	LDIX
Function	Load immediate value into X
Example	Load immediate X with 1234 LDIX 1234

MACRO	LDIY
Function	Load immediate value into Y
Example	Load immediate Y with 1234 LDIY 1234

MACRO	LDIZ
Function	Load immediate value into Z
Example	Load immediate Z with 1234
	LDIZ 1234

MACRO	CLRW
Function	Clear registers X,Y or Z
Example	Clear X,Y and Z CLRW X CLRW Y CLRW Z

MACRO	
	LDIW
Function	Load immediate registers X,Y or Z
Example	Load immediate X =123 Y =456 Z =789
	LDIW X,123
	LDIW Y,456
	LDIW Z,789

MACRO	LDSAW
Function	Load 16Bits AccH:Acc with memory contents position
Example	Load AccH:Acc with memory contents SRAM_POS LDSAW SRAM_POS

MACRO	
	LDSAWT

Function	Load 16Bits AccTH:AccT with memory contents position
Example	Load AccTH: AccT with memory contents SRAM_POS
	LDSAWT SRAM_POS

MACRO	LDSAL
Function	Load 32Bits AccTH:AccT:AccH:Acc with memory contents
	position
Example	Load AccTH:AccT:AccH:Acc with memory contents of
	SRAM_POS
	LDSAL SRAM_POS

MACRO	LDDAW
Function	Load 16Bits AccH:Acc with using X,Y or Z as base +
	index
Example	Load AccH: Acc with memory contents pointed by X+2
	ע שונחת ד
	LDDAW X,2

MACRO	LDDAWT
Function	Load 16Bits AccTH:AccT with using X,Y or Z as base + index
Example	Load AccTH:AccT with memory contents pointed by X+2 LDDAWT X,2

MACRO	
	LDSW
Function	Load 16Bits X,Y or Z with memory position
Example	Load Z with memory contents position SRAM_POS
	LDSW Z, SRAM_POS

MACRO	LDDW
Function	Load 16Bits X,Y or Z with using X,Y or Z as base + index
Example	Load Y with memory contents pointed by X+2 LDDW Y,X,2

MACRO	STSAW
Function	Store 16Bits AccH:Acc into memory position
Example	Store AccH:Acc into memory SRAM_POS
	STSAW SRAM_POS

MACRO	STSAWT
Function	Store 16Bits AccTH:AccT into memory position
Example	Store AccTH:AccT into memory SRAM_POS STSAWT SRAM_POS

MACRO	
	STSAL
Function	Store 32Bits AccTH:AccT:AccH:Acc into memory position
Example	Store AccTH:AccT:AccH:Acc into memory SRAM_POS
	STSAL SRAM_POS

MACRO	STSW
Function	Store 16Bits X,Y or Z into memory position
Example	Store Z into memory position SRAM_POS STSW SRAM_POS, Z

MACRO	ADDI
Function	Add immediate to register
Example	Add immediate value 5 to register Acc ADDI Acc,5

MACRO	
	ADCI
Function	Add immediate with carry to register
Example	Add immediate with carry value 5 to register Acc
	ADCI Acc,5

MACRO	SUBIAW
Function	Subtract 16Bits AccH:Acc with immediate value
Example	Subtract AccH:Acc with 45 SUBIAW 45

MACRO	SUBIAWT
Function	Subtract 16Bits AccTH:AccT with immediate value
Example	Subtract AccTH:AccT with 45 SUBIAWT 45

MACRO	
	SUBIAL
Function	Subtract 32Bits AccTH:AccT:AccH:Acc with immediate
	value
Example	Subtract AccT:AccH:Acc with 12345678
	SUBIAL 12345678

MACRO	ADDIAW
Function	Add 16Bits AccH:Acc with immediate value
Example	Add Acch: Acc with 1234 ADDIAW 1234

MACRO	ADDIAWT
Function	Add 16Bits AccTH:AccT with immediate value
Example	Add AccTH: AccT with 1234 ADDIAWT 1234

MACRO	ADDIAL
Function	Add 32Bits AccTH:AccT:AccH:Acc with immediate value
Example	Add AccTH:AccT:AccH:Acc with 12345678 ADDIAL 12345678

MACRO	SUBIW
Function	Subtract 16Bits X,Y or Z with immediate value
Example	Subtract Y with 78 SUBIW Y,78

MACRO	
	LSRW
Function	Logical shift right word register X,Y,Z
Example	Logical shift right word X
	LSRW X

MACRO	ASRW
Function	Arithmetic shift right word register X,Y,Z
Example	Arithmetic shift right word X ASRW X

MACRO	LSLAW
Function	Logical shift left 16Bits AccH:Acc
Example	Logical shift left AccH:Acc

MACRO	LSLAWT
Function	Logical shift left 16Bits AccTH:AccT
Example	Logical shift left AccTH:AccT LSLAWT

MACRO	
	LSRAW
Function	Logical shift right 16Bits AccH:Acc
Example	Logical shift right AccH:Acc
	LSRAW

MACRO	LSRAWT
Function	Logical shift right 16Bits AccTH:AccT
Example	Logical shift right AccTH:AccT LSRAWT

MACRO	ASRAW
Function	Arithmetic shift right 16Bits AccH:Acc
Example	Arithmetic shift right AccH:Acc
	ASRAW

MACRO	
	ASRAWT
Function	Arithmetic shift right 16Bits AccHT:AccT
Example	Arithmetic shift right AccTH:AccT
	ASRAWT

MACRO	SUBW
Function	Subtract X,Y,Z from X,Y,Z
Example	Subtract X from Z SUBW X,Z

MACRO				
	ADDIW			
Function	Add X,Y,Z with immediate value			
Example	Add Z with 1234			
	ADDIW Z,1234			

MACRO	ADDW
Function	Add X,Y,Z with X,Y,Z
Example	Add X with Z ADDW X,Z

MACRO	CPIW
Function	Compare X,Y,Z with immediate value
Example	Compare X with 7 CPIW X,7
Observation	Temp destroyed

MACRO	CPW
Function	Compare X,Y,Z with X,Y,Z
Example	Compare X with Z CPW X,Z

MACRO	CPIAW
Function	Compare 16Bits AccH:Acc with immediate value
Example	Compare 16Bits AccH:Acc with 127 CPIAW 127
Observation	Temp destroyed

MACRO	CPIAL
Function	Compare 32Bits AccTH:AccT:AccH:Acc with immediate
	value
Example	Compare AccTH:AccT:AccH:Acc with 12345678
	CPIAL 12345678
Observation	Temp destroyed

MACRO	
	PUSHAW
Function	Push into stack 16Bits AccH:Acc
Example	Push AccH:Acc
	PUSHAW

MACRO					PUSHAWT
-					
Function	Push	into	stack	16Bits	ACCTH: ACCT

Example	Push AccTH:AccT
	PUSHAWT

MACRO	PUSHTEMPW
Function	Push into stack 16Bits TempH:Temp
Example	Push TempH: Temp PUSHTEMPW

MACRO	PUSHW
Function	Push into stack 16Bits X,Y,Z
Example	Push Z
	PUSHW Z

MACRO	PUSHW
Function	Push into stack 16Bits X,Y,Z
Example	Push Z
	PUSHW Z

MACRO	
	POPAW
Function	Pop from stack 16Bits AccH:Acc
Example	Pop AccH: Acc from stack POPAW

MACRO	POPAWT
Function	Pop from stack 16Bits AccTH:AccT
Example	Pop AccTH:AccT from stack POPAWT

MACRO	POPTEMPW
Function	Pop from stack 16Bits TempH:Temp
Example	Pop TempH:Temp from stack POPTEMPW

MACRO	POPW
Function	Pop from stack 16Bits X,Y,Z
Example	Pop Z from stack POPW Z

MACRO	LBRNE
Function	Long Branch not equal(no limit of +-2k)
Example	Branch to Address if not Egual LBRNE Address

MACRO	LBREQ
Function	Long Branch equal(no limit of +-2k)
Example	Branch to Address if Egual LBREQ Address

MACRO	LBRCS
Function	Long Branch if Carry bit Set(no limit of +-2k)
Example	Branch to Address if not CY=1
	LBRCS Address

MACRO	LBRCC
Function	Long Branch if Carry bit Clear(no limit of +-2k)
Example	Branch to Address if not CY=0 LBRCC Address

MACRO	LBRLT
Function	Long Branch if less than signed(no limit of +-2k)
Example	Branch to Address if less than LBRLT Address

MACRO	LBRMI
Function	Long Branch if Minus(no limit of +-2k)
Example	Branch to Address if minus
	LBRMI Address

MACRO	LBRPO
Function	Long Branch if Positive(no limit of +-2k)
Example	Branch to Address if Positive LBRPO Address

MACRO	LBRGE
Function	Long Branch if Great or Igual signed(no limit of +- 2k)
Example	Branch to Address if Great or Igual LBRGE Address

MACRO	LBRSH
	LIBROII
Function	Long Branch if Same or High unsigned(no limit of +-
	2k)
Example	Branch to Address if Same or High
	LBRSH Address

MACRO	LBRLO
Function	Long Branch if Lower(no limit of +-2k)
Example	Branch to Address if Lower LBRLO Address

MACRO	_M_PUSH_LOWER_REGS
Function	Push into stack registers R0R15
Example	Pushing registers R0R15 _M_PUSH_LOWER_REGS

MACRO	_M_PUSH_UPPER_REGS
Function	Push into stack registers R16R31
Example	Pushing registers R16R31 _M_PUSH_UPPER_REGS

MACRO	_M_PUSH_ALL_REGS
Function	Push into stack registers R0R31
Example	Pushing registers R0R31 _M_PUSH_ALL_REGS

MACRO	_M_POP_LOWER_REGS
Function	Pop from stack registers R0R15
Example	Poping registers R0R15 _M_POP_LOWER_REGS

MACRO	_M_POP_UPPER_REGS
Function	Pop into stack registers R16R31
Example	Poping registers R16R31 _M_POP_UPPER_REGS

MACRO	_M_POP_ALL_REGS
Function	Pop into stack registers R0R31
Example	Poping registers R0R31 M POP ALL REGS

AVR Family chips names definitions and Interrupts Handdles for following devices 1200,2313,2323,8515,8535,M8,M16,M64,M128,M162

Description

Each AVR Microcontroller device has a lot of internal register, these registers are used to set mode of operation of internal features like USART, PWM, TIMER, GPIO, I2C, ADC etc, to facility use of these register names is assigned to them, the files with this names has the following format XXXXDEF. INC where XXXX is a device number, below a list of Definitions files used by **Author**;

1200DEF.INC 2313DEF.INC 8515DEF.INC 8535DEF.INC M8.INC M16.INC M64.INC M128.INC M128.INC

Furthermore each device has a interrupt handle file that allow dynamic handling of interrupts like assigned in run time a routine that process this interrupt or cascading then. Below a tables describing handles of each device.

	(AT90S2313) 2313HDC.INC HANDLE FILE
HANDLES	Description
_HDC_INTO_VECT	External Interrupt IRQ0
_HDC_INT1_VECT	External Interrupt IRQ1
_HDC_ICP1_VECT	Timer1 capture interrupt handle
_HDC_OC1_VECT	Timer1 compare interrupt handle
_HDC_OVF0_VECT	TimerO Overflow interrupt handle
_HDC_URXC_VECT	UART RX complete interrupt handle
_HDC_UDRE_VECT	UDR Empty interrupt handle
_HDC_UTXC_VECT	UART TX complete interrupt handle
_HDC_ACI_VECT	Analog comparator interrupt handle

	(AT90S2323) 2323HDC.INC HANDLE FILE	
HANDLES	Description	
_HDC_INTO_VECT	External Interrupt IRQ0	
_HDC_OVF0_VECT	Timer0 Overflow interrupt handle	

(AT90S8515) 8515HDC.INC HANDLE FILE					
HANDLES	Description				
_HDC_INTO_VECT	External Interrupt IRQ0				
_HDC_INT1_VECT	External Interrupt IRQ1				
_HDC_ICP1_VECT	Timer1 capture interrupt handle				
_HDC_OC1A_VECT	Timer1 compare math A interrupt handle				
_HDC_OC1B_VECT	Timer1 compare math B interrupt handle				
_HDC_OVF1_VECT	Timer1 Overflow interrupt handle				
_HDC_OVF0_VECT	TimerO Overflow interrupt handle				
_HDC_SPI_VECT	SPI Serial transfer interrupt handdle				
_HDC_URXC_VECT	UART RX complete interrupt handle				
_HDC_UDRE_VECT	UDR Empty interrupt handle				
_HDC_UTXC_VECT	UART TX complete interrupt handle				
_HDC_ACI_VECT	Analog comparator interrupt handle				

	(AT90S8535) 8535HDC.INC HANDLE FILE
HANDLES	Description
_HDC_INTO_VECT	External Interrupt IRQ0
_HDC_INT1_VECT	External Interrupt IRQ1
_HDC_TOC2_VECT	Timer2 compare math interrupt handle
_HDC_OVF2_VECT	Timer2 overflow interrupt handle
_HDC_ICP1_VECT	Timer1 capture interrupt handle
_HDC_OC1A_VECT	Timer1 compare math A interrupt handle
_HDC_OC1B_VECT	TimerO compare math B interrupt handle
_HDC_OVF1_VECT	Timer1 overflow interrupt handdle
_HDC_OVF0_VECT	TimerO overflow interrupt handle
_HDC_SPI_VECT	SPI serial transfer complete interrupt handle
_HDC_URXC_VECT	UART RX complete interrupt handle
_HDC_UDRE_VECT	UDR Empty interrupt handle
_HDC_UTXC_VECT	UART TX complete interrupt handle
_HDC_ADC_VECT	ADC conversion complete interrupt handle
_HDC_EERDY_VECT	EEPROM Ready interrupt handle
_HDC_ACI_VECT	Analog comparator interrupt handle

(ATMEGA8) M8HDC.INC HANDLE FILE					
HANDLES	Description				
_HDC_INTO_VECT	External Interrupt IRQ0				
_HDC_INT1_VECT	External Interrupt IRQ1				
_HDC_OC2_VECT	Timer2 compare math interrupt handle				
_HDC_OVF2_VECT	Timer2 overflow interrupt handle				
_HDC_ICP1_VECT	Timer1 capture interrupt handle				
_HDC_OC1A_VECT	Timer1 compare math A interrupt handle				
_HDC_OC1B_VECT	TimerO compare math B interrupt handle				
_HDC_OVF1_VECT	Timer1 overflow interrupt handdle				
_HDC_OVF0_VECT	TimerO overflow interrupt handle				
_HDC_SPI_VECT	SPI serial transfer complete interrupt handle				
_HDC_URXC_VECT	UART RX complete interrupt handle				
_HDC_UDRE_VECT	UDR Empty interrupt handle				
_HDC_UTXC_VECT	UART TX complete interrupt handle				
_HDC_ADCC_VECT	ADC conversion complete interrupt handle				
_HDC_ERDY_VECT	EEPROM Ready interrupt handle				
_HDC_ACI_VECT	Analog comparator interrupt handle				
_HDC_TWI_VECT	Two-wire serial interface interrupt handle				
_HDC_SPMR_VECT	Store Program Memory Ready interrupt handle				

(ATMEGA16) M16HDC.INC HANDLE FILE					
HANDLES	Description				
_HDC_INTO_VECT	External Interrupt IRQ0				
_HDC_INT1_VECT	External Interrupt IRQ1				
_HDC_OC2_VECT	Timer2 compare math interrupt handle				
_HDC_OVF2_VECT	Timer2 overflow interrupt handle				
_HDC_ICP1_VECT	Timer1 capture interrupt handle				
_HDC_OC1A_VECT	Timer1 compare math A interrupt handle				
_HDC_OC1B_VECT	TimerO compare math B interrupt handle				
_HDC_OVF1_VECT	Timer1 overflow interrupt handle				
_HDC_OVF0_VECT	TimerO overflow interrupt handle				
_HDC_SPI_VECT	SPI serial transfer complete interrupt handle				
_HDC_URXC0_VECT	UART RX complete interrupt handle				
_HDC_UDRE0_VECT	UDR Empty interrupt handle				
_HDC_UTXC0_VECT	UART TX complete interrupt handle				
_HDC_ADCC_VECT	ADC conversion complete interrupt handle				
_HDC_ERDY_VECT	EEPROM Ready interrupt handle				
_HDC_ACI_VECT	Analog comparator interrupt handle				
_HDC_TWI_VECT	Two-wire serial interface interrupt handle				
_HDC_INT2_VECT	External Interrupt 2				
_HDC_OCO_VECT	TimerO compare math interrupt handle				
_HDC_SPMR_VECT	Store Program Memory Ready interrupt handle				

(277770264)	W64			
· ·	M64HDC.INC HANDLE FILE Model A (SRAM Start 0x100)			
HANDLES	Description			
_HDC_INTO_VECT	External Interrupt IRQ0			
_HDC_INT1_VECT	External Interrupt IRQ1			
_HDC_INT2_VECT	External Interrupt IRQ2			
_HDC_INT3_VECT	External Interrupt IRQ3			
_HDC_INT4_VECT	External Interrupt IRQ4			
_HDC_INT5_VECT	External Interrupt IRQ5			
_HDC_INT6_VECT	External Interrupt IRQ6			
_HDC_INT7_VECT	External Interrupt IRQ7			
_HDC_OC2_VECT	Timer2 compare math interrupt handle			
_HDC_OVF2_VECT	Timer2 overflow interrupt handle			
_HDC_ICP1_VECT	Timer1 capture interrupt handle			
_HDC_OC1A_VECT	Timer1 compare math A interrupt handle			
_HDC_OC1B_VECT	Timer1 compare math B interrupt handle			
_HDC_OVF1VECT	Timer1 overflow interrupt handle			
_HDC_OC0_VECT	TimerO compare math interrupt handle			
_HDC_OVF0_VECT	TimerO overflow interrupt handle			
_HDC_SPI_VECT	SPI Serial transfer complete interrupt handle			
_HDC_URXCO_VECT	USARTO Rx complete interrupt handle			
_HDC_UDRE0_VECT	USARTO Data register empty interrupt handle			
_HDC_UTXC0_VECT	USARTO Tx complete interrupt handle			
_HDC_ADCC_VECT	ADC conversion complete interrupt handle			
_HDC_ERDY_VECT	EEPROM ready interrupt handle			
_HDC_ACI_VECT	Analog comparator interrupt handle			
_HDC_OC1C_VECT	Timer1 compare math C interrupt handle			
_HDC_ICP3_VECT	Timer3 capture interrupt handle			
_HDC_OC3A_VECT	Timer3 compare math A interrupt handle			
_HDC_OC3B_VECT	Timer3 compare math B interrupt handle			
_HDC_OC3C_VECT	Timer3 compare math C interrupt handle			
_HDC_OVF3_VECT	Timer3 overflow interrupt handle			
_HDC_URXC0_VECT	USART1 Rx complete interrupt handle			
_HDC_UDRE0_VECT	USART1 Data register empty interrupt handle			
_HDC_UTXC0_VECT	USART1 Tx complete interrupt handle			
_HDC_TWI_VECT	Two-wire serial interface interrupt handle			
_HDC_SPMR_VECT	Store program memory Ready interrupt handle			

(ATMEGA128)	M128HDC.INC HANDLE FILE Model A (SRAM Start 0x100)
HANDLES	Description
HDC INTO VECT	External Interrupt IRQ0
HDC INT1 VECT	External Interrupt IRQ1
HDC INT2 VECT	External Interrupt IRQ2
HDC_INT3_VECT	External Interrupt IRQ3
HDC_INT4_VECT	External Interrupt IRQ4
HDC_INT5_VECT	External Interrupt IRQ5
HDC_INT6_VECT	External Interrupt IRQ6
_HDC_INT7_VECT	External Interrupt IRQ7
_HDC_OC2_VECT	Timer2 compare math interrupt handle
_HDC_OVF2_VECT	Timer2 overflow interrupt handle
_HDC_ICP1_VECT	Timer1 capture interrupt handle
_HDC_OC1A_VECT	Timer1 compare math A interrupt handle
_HDC_OC1B_VECT	Timer1 compare math B interrupt handle
_HDC_OVF1VECT	Timer1 overflow interrupt handle
_HDC_OC0_VECT	TimerO compare math interrupt handle
_HDC_OVF0_VECT	TimerO overflow interrupt handle
_HDC_SPI_VECT	SPI Serial transfer complete interrupt handle
_HDC_URXC0_VECT	USARTO Rx complete interrupt handle
_HDC_UDRE0_VECT	USARTO Data register empty interrupt handle
_HDC_UTXC0_VECT	USARTO Tx complete interrupt handle
_HDC_ADCC_VECT	ADC conversion complete interrupt handle
_HDC_ERDY_VECT	EEPROM ready interrupt handle
_HDC_ACI_VECT	Analog comparator interrupt handle
_HDC_OC1C_VECT	Timer1 compare math C interrupt handle
_HDC_ICP3_VECT	Timer3 capture interrupt handle
_HDC_OC3A_VECT	Timer3 compare math A interrupt handle
_HDC_OC3B_VECT	Timer3 compare math B interrupt handle
_HDC_OC3C_VECT	Timer3 compare math C interrupt handle
_HDC_OVF3_VECT	Timer3 overflow interrupt handle
_HDC_URXC0_VECT	USART1 Rx complete interrupt handle
_HDC_UDRE0_VECT	USART1 Data register empty interrupt handle
_HDC_UTXC0_VECT	USART1 Tx complete interrupt handle
_HDC_TWI_VECT	Two-wire serial interface interrupt handle
_HDC_SPMR_VECT	Store program memory Ready interrupt handle

(ATMEGA162) M162HDC.INC HANDLE FILE Model A (SRAM Start 0x100)					
HANDLES	Description				
_HDC_INTO_VECT	External Interrupt IRQ0				
_HDC_INT1_VECT	External Interrupt IRQ1				
_HDC_INT2_VECT	External Interrupt IRQ2				
_HDC_TIMER3_CAPT_VECT	Timer3 capture interrupt handle				
_HDC_TIMER3_COMPA_VECT	Timer3 compare math A interrupt handle				
_HDC_TIMER3_COMPB_VECT	Timer3 compare math B interrupt handle				
_HDC_TIMER3_OVF_VECT	Timer3 overflow interrupt handle				
_HDC_TIMER2_COMP_VECT	Timer2 compare math interrupt handle				
_HDC_TIMER2_OVF_VECT	Timer2 overflow interrupt handle				
_HDC_TIMER1_CAPT_VECT	Timer1 capture interrupt handle				
_HDC_TIMER1_COMPA_VECT	Timer1 compare math A interrupt handle				
_HDC_TIMER1_COMPB_VECT	Timer1 compare math B interrupt handle				
_HDC_TIMER1_OVF_VECT	Timer1 overflow interrupt handle				
_HDC_TIMERO_COMP_VECT	TimerO compare math interrupt handle				
_HDC_TIMERO_OVF_VECT	TimerO overflow interrupt handle				
_HDC_SPI_VECT	SPI Serial transfer interrupt handle				
_HDC_USARTO_RXC_VECT	USARTO Rx complete interrupt handle				
_HDC_USART1_RXC_VECT	USART1 Rx complete interrupt handle				
_HDC_USARTO_UDRE_VECT	USARTO Data register empty interrupt handle				
_HDC_USART1_UDRE_VECT	USART1 Date register empty interrupt handle				
_HDC_USARTO_TXC_VECT	USARTO Tx complete interrupt handle				
_HDC_USART1_TXC_VECT	USART1 Tx complete interrupt handle				
_HDC_EE_RDY_VECT	Timer3 compare math A interrupt handle				
_HDC_ANA_COMP_VECT	Timer3 compare math B interrupt handle				
_HDC_SPM_RDY_VECT	Timer3 compare math C interrupt handle				

MATH DEFINITIONS (MathCons.Inc File)

Description

Some constants, SRAM variables and register definitions used for math computation using integer or float types. This must be included if conversion to string is required or use float type variables.

		Double F	loat Poin	t Memory	Formating		
	Mantissa S:					Signal	Exponent
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7

- Byte 0 LSB(Less significant Byte)
- Byte 6 Bit 7 mantissa signal 0 positive 1 negative
- Byte 7 Exponent Bit 7 exponent signal 0 positive 1 negative

•

Double Float Point BCD Memory Formating							
Mantissa Exponen					Exponent		
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6						Byte 7	
D1-2	D3-4	D5-6	D7-8	D9-10	D11-12	D13-14	E12+ES+ES

- Byte 0 to byte 6 BCD digits 1 to 14
- Byte 7 E12 exponent digits 1 and 2

 Bit 6 exponent signal 0 positive 1 negative

 Bit 7 mantissa signal 0 positive 1 negative

Global Math constants						
Name	Value	Description				
_DF_STR_BUF_SIZE	1+1+16+1+1+2=22	Space used for numeric to string conversions				
_FDOUBLE_STACK_SIZE	8 (default)	Default size of float point stack				
_FDOUBLE	8	Size of float point double variable				
_FSINGLE	4	Size of float point single variable				
_FBCD	8	Size of BCD(Binary Codec Decimal) variable				
_FSTRING	_DF_STR_BUF_SIZE	Float string numbers				
_FBIAS	0X81	Bias used to simplify float point computations				
_FPOK	0	Float Point operation Ok				
_FEPOVER	1	Float Point error overflow				
_FEUNDER	2	Float Point error underflow				
_FEDIV0	3	Float point error division by zero				
_FEILLEG	4	Float point error illegal operator				

Double Float point Operator 1					
Name	Register	Description			
_op1_0	R0	1st operator mantissa byte 1			
_op1_1	R1	1st operator mantissa byte 2			
_op1_2	R2	1st operator mantissa byte 3			
_op1_3	R3	1st operator mantissa byte 4			
_op1_4	R4	1st operator mantissa byte 5			
_op1_5	R5	1st operator mantissa byte 6			
_op1_s	R6	1st operator mantissa byte 7 (signal)			
_op1_e	R7	1st operator exponent byte 8			

Double Float point Operator 2		
Name	Register	Description
_op2_0	R8	2st operator mantissa byte 1
_op2_1	R9	2st operator mantissa byte 2
_op2_2	R10	2st operator mantissa byte 3
_op2_3	R11	2st operator mantissa byte 4
_op2_4	R12	2st operator mantissa byte 5
_op2_5	R13	2st operator mantissa byte 6
_op2_s	R14	2st operator mantissa byte 7 (signal)
_op2_e	R15	2st operator exponent byte 8

Double Float point Accumulator		
Name	Register	Description
_op2_0	R18	2st operator mantissa byte 1(Temp)
_op2_1	R19	2st operator mantissa byte 2(TempH)
_op2_2	R20	2st operator mantissa byte 3
_op2_3	R21	2st operator mantissa byte 4
_op2_4	R22	2st operator mantissa byte 5
_op2_5	R23	2st operator mantissa byte 6
_op2_s	R26	2st operator mantissa byte 7 (signal) XL
_op2_e	R27	2st operator exponent byte 8 XH

Double Float Math SRAM Variables		
Name	Size	Description
_DF_MAC	_FDOUBLE	Mantissa accumulator
_DF_P10	_FDOUBLE	Power of 10
_DF_BCD	_FBCD	Float point codec BCD
_IS_SIZE	1	Define string output size of integer conversion.
		high nibble integer part size 015
		low nibble decimal part size 015c
_DF_EAC	1	exponent accumulator
_DF_FMASK	1	string flags
_DF_MASK	1	BIT 0=1 + sign for positive numbers
		1=1 use thousand separation char
		2=1 separation char is (point) else
		(comma)
		3=1 round result 0 no round result
_DF_FS	1	0X00 source is FLASH 0x01 source is SRAM
_DF_FRAC	1	this variable is used to say that FDIV is
		fractionary when value is 0xff
_DF_FSREG	1	hold a STATUS REGISTER flags of float
		point comparation

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

__DF_STR __DF_STR_BUF_SIZE Used for string conversions

MACRO	
	_M_PUSH_MATH_VARIABLES
Function	Save into stack all math variables
Example	_M_PUSH_MATH_VARIABLES

MACRO	
	_M_POP_MATH_VARIABLES
Function	Restore into stack all math variables
Example	_M_POP_MATH_VARIABLES

SRAM INIT (SRAM INIT.Inc File)

Description

During power on, some times are required that all variables in SRAM must be cleared other times not. This include, control when SRAM is cleared of not and initialize normal float point division when MathConst.inc is used.

Use below code to clear SRAM during power on.

Or below code to remainder SRAM state during power on.

Those above equates must be a first equate in program

MATH

DFT - Discrete Fourier Transform

DFT 8BITS 64POINTS (DFT864V1.INC File)

Description

Discrete Fourier Transform (DFT) has a lot of application in digital signal process like Digital Filters, Frequency Finder, Frequency genlock, wave compress, DTMF recognition, Etc. This routines implements 64 points of DFT means that capable to separate 32 frequencies and get yours amplitudes, working with 8bits of data magnitude with 48db of signal noise ratio. One frequency index of DFT routine is computed using below follow equation:

The DFT for one point frequency is obtained using the next equation

$$v = \left(\sum_{i=0}^{63} dt(i) \cdot \sin\left(\frac{2\pi fi}{64}\right)\right) + \left(\sum_{i=0}^{63} dt(i) \cdot \cos\left(\frac{2\pi fi}{64}\right)\right)$$

Note that correct vectored sum is performed as follow

$$c = \sqrt{a^2 + b^2}$$

but this method is more complex to calculate then to reduce time computation the equation below is used in place.

$$c = |a| + |b|$$

Doing this transformation a imprecision is introduced by a factor of $\sqrt{2}$ that is soothed by the dynamics of input signal dt(i) and larger values of output function.

Implemented Functions

Name	DFT 64B
Function	Compute one frequency magnitude using DFT.
Input values	Acc Frequency index 132
Output values	AccH:Acc Output frequency power
_	Max value 2030 when signal at 0°
	Max value 2870 when signal at 45°
Destroy	Flags, R0R13
Time	Average timing = 5258 clocks
	4Mhz 1314us
	8Mhz 657us
	14.3Mhz 368us
Observations	Procedure to use then routine
	Fill _DFT_DATA_BUF with 64 data into SRAM at sample
	frequency FS, after this set Acc with index of
	frequency to get amplitude into AccH:Acc
Example	Suppose that FS=6000Hz
	FIndex0 =FS/64 <- Min Frequency
	FIndex31=FIndex0*32 <- Max Frequency
	FIndex0 = 93.75Hz FIndex31=3000.00
	Now, if you need to obtain amplitude of Frequency 750Hz.
	<pre>ldi Acc,8 ;FIndex8=int(750/FIndex0) rcall _DDFTB ;After this point AccH:Acc ;have a amplitude of index ;frequency</pre>

Name	DFT DATA CLEAR
Function	Clear data in DFB data buffer all igual 0
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	Clear all data in DFT buffer
	rcall _DFT_DATA_CLEAR
	call _DFT_DATA_CLEAR (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
Name	_DFT_BUFFER_FILL
Function	Check if DFT data buffer is full
Input values	None
Output values	Cy=1 indicating buffer is full
Destroy	Flags
Time	
Observations	
Example	Check DFT buffer is full, after this call CY=1 if
	buffer full.
	rcall _DFT_BUFFER_FILL
	call _DFT_BUFFER_FILL (chips >=16k)

Name	DFT DATA ADD
Function	Insert data in DFT data buffer
Input values	Acc data
Output values	Cy=1 indicating buffer is full
Destroy	Flags
Time	
Observations	
Example	Insert a new data in DFT data buffer
	<pre>Ldi Acc, 15 rcall _DFT_DATA_ADD call _DFT_DATA_ADD (chips >=16k)</pre>

FILTERS

AVERAGE16 (AVERAGE16.INC File)

Description

Average16 circular filter is used to perform a low pass digital filter can be used to remove noise or high frequencies in a signal. Before use this routines set data buffer size as bellow:

First data buffer is shifted to accommodate a new data value as follow.

$$d(0) = d(1), d(1) = d(2), ... d(n-1) = d(n), d(n) = data$$

Then the output value of average filter is a average value of below equation

$$dout = \frac{d(0) + d(1) + d(2) + \cdots + d(n)}{n}$$

Implemented Functions

Name	_FILTER_AVG16_SET_VALUE
Function	Insert a new value into data buffer
Input values	AccH:Acc value
Output values	None
Destroy	None
Time	
Observations	
Example	Set a new value for average computation
	Ldiaw 1200
	rcall _FILTER_AVG16_SET_VALUE call _FILTER_AVG16_SET_VALUE (chips >=16k)

Name	_FILTER_AVG16_GET_VALUE
Function	Get a output value from data buffer
Input values	None
Output values	AccH:Acc value
Destroy	None
Time	
Observations	
Example	Get a new value from data buffer, after this AccH:Acc has the value.
	rcall _FILTER_AVG16_GET_VALUE call _FILTER_AVG16_GET_VALUE (chips >=16k)

Name	FILTER AVG16 EXECUTE
Function	Shift the data buffer and compute new output value
Input values	None
Output values	AccH:Acc value
	Or use _FILTER_AVG16_GET_VALUE
Destroy	Flags, R0R12
Time	
Observations	
Example	Compute new output value, after this AccH:Acc has the
	value of call _FILTER_AVG16_GET_VALUE
	rcall _FILTER_AVG16_EXECUTE
	call _FILTER_AVG16_EXECUTE (chips >=16k)

FLOAT DOUBLE

ACOS - ArcCosine (ACOS.INC File)

Description

Double float point $\operatorname{ArcCosine}$ is calculated using bellow equation.

$$a\cos(x) = \frac{\pi}{2} - a\sin(x)$$

Implemented Functions

Name	DFACOS
	_277000
Function	Compute Float Double ArcCosine
Input values	Float Acc
Output values	Float Acc
	Acc Exception code
Destroy	Flags, AccH, R0R15
Time	
Observations	
Example	rcall _DFACOS
	call _DFACOS (chips >=16k)

ASIN - ArcSine (ASIN.INC File)

Description

Double float point ArcSine is calculated using bellow equation.

$$asin(x) = atan(\frac{x}{\sqrt{1 - x^2}})$$

Implemented Functions

Name	
	_DFASIN
Function	Compute Float Double ArcSine
Input values	Float Acc
Output values	Float Acc
	Acc Exception code
Destroy	Flags, AccH, R0R15
Time	
Observations	
Example	rcall _DFASIN
	call _DFASIN (chips >=16k)

ATAN - ArcTangent (ATAN.INC File)

Description

Double float point ArcTangent is computed using a _DFSERATN that compute a partial arctangent of value in range $\left[-\sqrt{2}+1,\sqrt{2}-1\right]$ then the below equation is used to obtain ArcTangent for full range of values.

$$\operatorname{atan}(x) = \begin{cases} seratn(x), if \ x < \sqrt{2} - 1 \\ \frac{\pi}{2} - seratn\left(\frac{1}{x}\right), if \ x > \sqrt{2} + 1 \\ \frac{\pi}{4} + seratn\left(\frac{x-1}{x+1}\right), if \ \sqrt{2} - 1 < x < \sqrt{x} + 1 \end{cases}$$

Implemented Functions

Name	DFATAN
Function	Compute Float Double ArcTangent
Input values	Float Acc
Output values	Float Acc
	Acc Exception code
Destroy	Flags, AccH, R0R15
Time	
Observations	
Example	rcall _DFATAN
	call _DFATAN (chips >=16k)

ADDSUB - Add and Subtraction (DFADDSUB.INC File)

Description

Double float point Addition and Subtraction.

Implemented Functions

Name	
	_DFADD
Function	Perform Float Double Addition
Input values	Float Op1 1st operand
	Float Op2 2 nd operand
Output values	Float Acc
	Acc Exception code
Destroy	Flags, AccH, R0R15
Time	
Observations	Perform Float Acc=Float Op1+Float Op2
Example	rcall _DFADD
	call _DFADD (chips >=16k)

Name	DFSUB
Function	Perform Float Double Subtraction
Input values	Float Op1 1st operand
	Float Op2 2 nd operand
Output values	Float Acc
	Acc Exception code
Destroy	Flags, AccH, R0R15
Time	
Observations	Perform Float Acc=Float Op1-Float Op2
Example	rcall _DFSUB
	call _DFSUB (chips >=16k)

MULDIV - Multiply and divide (DEFMULDIV.INC File)

Description

Double float point Multiply and Divide.

Implemented Functions

Name	_DFMUL
Function	Perform Float Double Multiply
Input values	Float Op1 1st operand
	Float Op2 2 nd operand
Output values	Float Acc
	Acc Exception code
Destroy	Flags, AccH, R0R15
Time	
Observations	Perform Float Acc=Float Op1*Float Op2
Example	rcall _DFMUL
	call _DFMUL (chips >=16k)

Name	_DFDIV
Function	Perform Float Double Divide
Input values	Float Op1 1st operand
	Float Op2 2 nd operand
Output values	Float Acc
	Acc Exception code
Destroy	Flags, AccH, R0R15
Time	
Observations	Perform Float Acc=Float Op1/Float Op2
Example	rcall _DFDIV
	call _DFDIV (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

DFCPM - Float compare (DEFCPM.INC File)

Description

Compare two Double float point, after compare status flags will updated according compared values.

Implemented Functions

Name	
	_DFCPOP1OP2
Function	Perform Float Double Multiply
Input values	Float Op1 1 st operand
	Float Op2 2 nd operand
Output values	Status register
	_DF_FSREG with the copy of SREG
Destroy	Acc
Time	
Observations	
Example	rcall _DFCPOP1OP2
	call _DFCPOP1OP2 (chips >=16k)

Below macros may be used to facility branch instruction after compare. $% \begin{center} \begin$

MACRO	
	_DFJP_EQ
Function	Branch to Address if compare is equal
Example	Jump to Address if Op1=Op2 _DFJP_EQ Address

MACRO	_DFJP_NEQ
Function	Branch to Address if compare is not equal
Example	Jump to Address if Op1<>Op2 _DFJP_NEQ Address

MACRO	_DFJP_GT
Function	Branch to Address if Op1>Op2
Example	Jump to Address if Op1>Op2 _DFJP_GT Address

MACRO	_DFJP_LT
Function	Branch to Address if Op1 <op2< th=""></op2<>
Example	Jump to Address if Op1 <op2 _dfjp_lt="" address<="" th=""></op2>

MACRO	_DFJP_GTEQ
Function	Branch to Address if Op1>=Op2
Example	Jump to Address if Op1>=Op2 _DFJP_GTEQ Address

MACRO	DFJP LTEQ
Function	Branch to Address if Op1<=Op2
Example	Jump to Address if Op1<=Op2 _DFJP_LTEQ Address

COSINE (COSINE.INC File)

Description

Compute Double float point Cosine using below equation

$$\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$

Implemented Functions

Name	
	_DFCOS
Function	Perform Float Double Cosine
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags, R0R15, AccH
Time	
Observations	
Example	rcall _DFCOS
	call _DFCOS (chips >=16k)

SINE (SINE.INC File)

Description

Compute Double float point Sine using partial sine function DFSERSIN using the below equation:

First reduce value=x to $2.\pi$ arc.

$$x1 = \left| \frac{x}{2\pi} \right|$$

Then compute sine as below

$$\sin(x) = \begin{cases} -sersin(2\pi - x1), & \text{if } x1 \ge \frac{3 \cdot \pi}{2} \\ sersin(x1 - \pi), & \text{if } x1 \ge \pi \\ sersin(\pi - x1), & \text{if } x1 \ge \frac{\pi}{2} \end{cases}$$

Implemented Functions

Name	DEGTY
	_DFSIN
Function	Perform Float Double Sine
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags, R0R15, AccH
Time	
Observations	
Example	rcall _DFSIN
	call _DFSIN (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

BCD TO STRING (DFBCDTOS.INC File)

Description

Convert _DF_BCD SRAM Variable to string scientific formatted.

Implemented Functions

Name	DFBCDTOS
Function	Convert BCD to String scientific formatted
Input values	_DF_BCD SRAM variable
Output values	_DF_STR SRAM variable with string scientific
	formatted with 0 terminator
Destroy	Flags, R0R15, Acc, AccH
Time	
Observations	
Example	rcall _DFBCDTOS
	call _DFBCDTOS (chips >=16k)

FLOAT TO BCD (DFFTOBCD.INC File)

Description

Convert float double value in BCD format store in $_{\tt DF_BCD}$ SRAM variable.

Implemented Functions

Name	DFFTOBCD
Function	Convert Float value to BCD
Input values	Float Acc
Output values	_DF_BCD SRAM variable
Destroy	Flags, ROR15, Acc, AccH
Time	
Observations	After call this routine you can use _DFBCDTOS to
	obtain result in string scientific format
Example	rcall _DFFTOBCD
	call _DFFTOBCD (chips >=16k)

FLOAT TO LONG (DFFTOL.INC File)

Description

Convert float double value to signed long value 32bits.

Implemented Functions

Name	
	_DFFTOL
Function	Convert Float value to Long
Input values	Float Acc
Output values	AccTH:AccT:AccH:Acc 32bits output value
	Cy=1 if overflow occur
Destroy	Flags, Float OP1
Time	
Observations	
Example	rcall _DFFTOL
	call _DFFTOL (chips >=16k)

HEADER MACROS (DOUBLE_FLOAT_MACROS.INC File)

(DOUBLE_FLOAT_HEADER.INC File)

Description

 $\tt DOUBLE_FLOAT_HEADER$ is used to load all float point function and $\tt DOUBLE_FLOAT_HEADER$ to load all macros to used stacked float point function.

Implemented Functions

Stack Macros Names	Description
_FINIT	Initialize float point engine
_FDECST	Decrement Float Stack Point
_FINCST	Increment Float Stack Point
_FLD0	Float load 0 into Stack
_FLD1	Float load 1 into Stack
_FLD2	Float load 2 into Stack
_FLDPI2	Float load PI/2 into Stack
_FLDPI4	Float load PI/4 into Stack
_FLDPI	Float load PI into Stack
_FLD3PI2	Float load 3*PI/2 into Stack
_FLD2PI	Float load 2*PI into Stack
_FLDE	Float load e into Stack
_FLDSQRT2	Float load sqrt(2) into stack
_FLDSQRT2M1	Float load sqrt(2)-1 into stack
_FLDSQRT2P1	Float load sqrt(2)+1 into stack
_FLDII X	Float load X integer immediate into stack
_FLDI X	Float load X long integer immediate into stack
_FLDS S	Float load string S in Program Flash into stack
_FLDSS S	Float load string S in SRAM into stack
_FLDB M	Float load M Byte in SRAM into stack
_FLDI M	Float load M Integer in SRAM into stack
_FLDL M	Float load M Long in SRAM into stack
_FLDF M	Float load M single in SRAM into stack
_FLDD M	Float load M double in SRAM into stack
_FLD M	Same as _FLDD
_FSTB M	Float store byte into SRAM M
_FSTI M	Float store integer into SRAM M
_FSTL M	Float store long into SRAM M
_FSTF M	Float store single into SRAM M
_FSTD M	Float store double into SRAM M
_FST M	Same as _FSTD
_FSTBCD M	Float store BCD into SRAM M
_FSTBP M	Float store Byte into SRAM M and pop stack

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

_FSTIP M	Float store Integer into SRAM M and pop stack
_FSTLP M	Float store Long into SRAM M and pop stack
_FSTFP M	Float store single into SRAM M and pop stack
_FSTDP M	Float store double into SRAM M and pop stack
_FSTP M	Same as _FSTDP
_FSTBCDP M	Float store BCD into SRAM M and pop stack
_FADD	Float addition stack(0)+stack(1) and pop stack
_FSUB	Float addition stack(0)-stack(1) and pop stack
_FMUL	Float addition stack(0)*stack(1) and pop stack
_FDIV	Float addition stack(0)/stack(1) and pop stack
_FDIVFRAC	Float addition stack(0)/stack(1) return fraction
	part and pop stack
_FINV	Float point reciprocal 1/stack(0)
_FABS	Float point absolute of stack(0)
_FCHS	Float point multiply by -1 stack(0)
_FSQR	Float point square of stack(0)
_FSQRT	Float point square root of stack(0)
_FINT	Float point integer of stack(0), round to infinity
_FFIX	Float point integer of stack(0), round o zero
_FSERSIN	Float point partial sine of stack(0)
_FSERATN	Float point partial arctan of stack(0)
_FSIN	Float point sine of stack(0)
_FCOS	Float point cosine of stack(0)
_FTAN	Float point tangent of stack(0)
_FASIN	Float point arcsine of stack(0)
_FACOS	Float point arccosine of stack(0)
_FCOMP	Float Point compare stack(0) with stack(1)
_FBRANCH_EQ	Fload Point branch if equal
_FBRANCH_NEQ	Fload Point branch if not equal
_FBRANCH_GT	Fload Point branch if Great than
_FBRANCH_LT	Fload Point branch if less than
_FBRANCH_GTEQ	Fload Point branch if great than of equal
_FBRANCH_LTEQ	Fload Point branch if less than or equal

INFINIT RESULT (DFINF.INC File)

Description

Set infinities results.

Implemented Functions

Name	_DFUNDER
Function	Load float Acc with 0 and set underflow code
Input values	None
Output values	Acc underflow code
	Float Acc 0
Destroy	Flags
Time	
Observations	
Example	rcall _DFUNDER
	call _DFUNDER (chips >=16k)

Name	_DFOVER
Function	Load float Acc with +-1.701412e+38 and set overflow
	code
Input values	None
Output values	Acc overflow code
	Float Acc +-1.701412e+38
Destroy	Flags
Time	
Observations	
Example	rcall _DFOVER
	call _DFOVER (chips >=16k)

Name	_DFDIV0
Function	Load float Acc with max positive or negative +-
	1.701412e+38 and set overflow code
Input values	Float Acc
Output values	Acc overflow code
	Float Acc +-1.701412e+38
Destroy	Flags
Time	
Observations	
Example	rcall _DFDIV0
	call DFDIV0 (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

INT (INT.INC File)

Description

Get integer part of float double value. Below examples of returned value for INT and FIX functions.

INT (-8.4) = -9INT (-7) = -7INT (5.45) = 5INT (9.9) = 9FIX (-6.5) = -6FIX (6.5) = 6

Implemented Functions

Name	
	_DFINT
Function	Float point get integer part
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags
Time	
Observations	
Example	rcall _DFINT
	call _DFINT (chips >=16k)

Name	
	_DFFIX
Function	Float point get integer part
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags
Time	
Observations	
Example	rcall _DFFIX
	call _DFFIX (chips >=16k)

LOAD STORE (DFLDXSTX.INC File)

Description

Functions to Load Constants and Load/Store Floats Op1,Op1, Acc into SRAM.

Implemented Functions

Name	
	_DFLD0
Function	Float point load zero into Float Acc
Input values	None
Output values	Float Acc =0
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLD0
	call _DFLD0 (chips >=16k)

Name	DFLD1
Function	Float point load one(1) into Float Acc
Input values	None
Output values	Float Acc =1
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLD1
	call DFLD1 (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
	_DFLD2
Function	Float point load two(2) into Float Acc
Input values	None
Output values	Float Acc =2
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLD2
	call _DFLD2 (chips >=16k)

Name	DFLD10
	_perio
Function	Float point load 10 into Float Acc
Input values	None
Output values	Float Acc =10
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLD10
	call _DFLD10 (chips >=16k)

Name	DFLDE
Function	Float point load e=2,71828182845904524 into Float Acc
Input values	None
Output values	Float Acc =2,71828182845904524
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLDE
	call _DFLDE (chips >=16k)

Name	DFLDSQRT2
Function	Float point load sqrt(2)=1,414213562373 into Float Acc
Input values	None
Output values	Float Acc =1,414213562373
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLDSQRT2
	call _DFLDSQRT2 (chips >=16k)

Name	_DFLDSQRT2M1
Function	Float point load sqrt(2)-1=0,414213562373 into Float
	Acc
Input values	None
Output values	Float Acc =0,414213562373
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLDSQRT2M1
	call _DFLDSQRT2M1 (chips >=16k)

Name	_DFLDSQRT2P1
Function	Float point load sqrt(2)+1=2,414213562373 into Float
	Acc
Input values	None
Output values	Float Acc =2,414213562373
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLDSQRT2P1
	call _DFLDSQRT2P1 (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
	_DFLDPI2
Function	Float point load pi/2=1,5707963267948966 into Float
	Acc
Input values	None
Output values	Float Acc =1,5707963267948966
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLDPI2
	call _DFLDPI2 (chips >=16k)

Name	DFLDPI4
Function	Float point load pi/4=0,7853981633974483 into Float
	Acc
Input values	None
Output values	Float Acc = 0,7853981633974483
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLDPI4
	call _DFLDPI4 (chips >=16k)

Name	_DFLDPI
Function	Float point load pi=3,14159265358979324 into Float
	Acc
Input values	None
Output values	Float Acc =3,14159265358979324
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLDPI
	call _DFLDPI (chips >=16k)

Name	_DFLD3PI2
Function	Float point load 3*pi/2=4,71238898038468985 into
	Float Acc
Input values	None
Output values	Float Acc =4,71238898038468985
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLD3PI2
	call _DFLD3PI2 (chips >=16k)

Name	DFLD2PI
Function	Float point load 2pi=6,28318530717958648 into Float
	Acc
Input values	None
Output values	Float Acc =6,28318530717958648
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFLD2PI
	call _DFLD2PI (chips >=16k)

Name	DFLDZ
Function	Load Float Acc pointed by Z register
Input values	Z > Float Point in SRAM
Output values	Float Acc
Destroy	Flags
Time	
Observations	
Example	Load Float Acc with value_sram
	<pre>Ldiw Z,value_sram rcall _DFLDZ call _DFLDZ (chips >=16k)</pre>

Name	DFLDDC
Function	Load Float Acc pointed by Z register into Flash
Input values	Z → Float Point in FLASH
Output values	Float Acc
Destroy	Flags
Time	
Observations	
Example	Load Float Acc with value_flash
	Takin 7 malua flash+0
	Ldiw Z,value_flash*2
	rcall _DFLDDC
	call _DFLDDC (chips >=16k)

Name	_DFSTZ
Function	Store Float Acc pointed by Z register
Input values	Z → Float Point in SRAM
	Float Acc value
Output values	
Destroy	Flags, Z
Time	
Observations	
Example	Store Float Acc into value_sram
	Ldiw Z,value_sram rcall _DFSTZ call _DFSTZ (chips >=16k)

Name	_DFLDOP1Z
Function	Load Float Op1 pointed by Z register
Input values	Z → Float Point in SRAM
Output values	Float Op1
Destroy	Flags, Z
Time	
Observations	
Example	Load Float Op1 from value_sram
	Ldiw Z,value_sram rcall DFLDOP1Z
	call _DFLDOP1Z (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	DFLDOP2Z
-	_ '
Function	Load Float Op2 pointed by Z register
Input values	Z > Float Point in SRAM
Output values	Float Op2
Destroy	Flags, Z
Time	
Observations	
Example	Load Float Op2 from value_sram
	Ldiw Z,value_sram
	rcall DFLDOP2Z
	call _DFLDOP2Z (chips >=16k)

Name	
	_DFACCOP1
Function	Copy Float Acc to Float Op1
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	Move Float Acc To Float Op1
	rcall _DFACCOP1
	call _DFACCOP1 (chips >=16k)

Name	_DFOP1ACC
Function	Copy Float Op1 to Float Acc
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	Move Float Op1 To Float Acc
	rcall _DFOP1ACC call _DFOP1ACC (chips >=16k)

Name	_DFACCOP2
Function	Copy Float Acc to Float Op2
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	Move Float Acc To Float Op2
	rcall _DFACCOP2
	call _DFACCOP2 (chips >=16k)

Name	
	_DFOP2ACC
Function	Copy Float Op2 to Float Acc
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	Move Float Op2 To Float Acc
	rcall DFOP2ACC
	call _DFOP2ACC (chips >=16k)

MACRO	
	_DFPUSHACC
Function	Push Float Acc into Stack pointer
Example	_DFPUSHACC

MACRO	
	_DFPOPACC
Function	Pop Float Acc From Stack pointer
Example	DFPopACC

MACRO	
	_DFPUSHOP1
Function	Push Float Op1 into Stack pointer
Example	_DFPUSHOP1

MACRO	
	_DFPOPOP1
Function	Pop Float Op1 From Stack pointer
Example	_DFPOPOP1

MACRO	
MACRO	
	DEDUCUODO
	DFPUSHOP2
	_DF PUSHOP2

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Function	Push Float Op2 into Stack pointer
Example	_DFPUSHOP2

MACRO	
	_DFPOPOP2
Function	Pop Float Op2 From Stack pointer
Example	_DFPOPOP2

LONG TO FLOAT (DFLTOF.INC File)

Description

Convert integer quantities byte, word or long to double float point.

Implemented Functions

Name	_DFLTOF
Function	Convert long signed 32bits value to double float
	point
Input values	AccTH:AccT:AccH:Acc long value 32 bits
Output values	Float Acc
	Acc exception code
Destroy	Flags
Time	
Observations	
Example	rcall _DFLTOF
	call _DFLTOF (chips >=16k)

Name	_DFITOF
Function	Convert Integer signed 16bits value to double float point
Input values	AccH:Acc integer value 16 bits
Output values	Float Acc
	Acc exception code
Destroy	Flags
Time	
Observations	
Example	rcall _DFITOF
	call _DFITOF (chips >=16k)

Name	DFATOF OR DFBTOF
Function	Convert Byte signed 8bits value to double float point
Input values	Acc 8bits value
Output values	Float Acc
	Acc exception code
Destroy	Flags
Time	
Observations	
Example	rcall _DFLTOF
	call _DFLTOF (chips >=16k)

SERIES

ATN - ArcTangent series (SERIE ATN.INC File)

Description

Compute a partial ArcTangent function using Taylor seried describe below. The range of value of this function is $\left[-\sqrt{2}+1,\sqrt{2}+1\right]$, values out this range lost precision.

A original Taylor series for ArcTangent follow:

$$atan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} \dots$$

But because speed reason the equation is rewritten as following

$$sq = x^2$$

$$v1 = (((p4.sq + p3).sq + p2).sq + p1).sq + p0)$$

$$v2 = \frac{v1}{\left(\left((sq + q4).sq + q3\right).sq + q2\right).sq + q1\right).sq + q0)}$$

$$atan(x) = v2.x$$

numerador coefficients

p4 = 16,1536412982230228262

p3 = 268,42548195503973794141

p2 = 1153,0293515404850115428136

p1 = 1780,40631643319697105464587

p0 = 896,78597403663861959987488

quotient coefficients

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

q4 = 58,95697050844462222791

q3 = 536,265374031215315104235

q2 = 1666,7838148816337184521798

q1 = 2079,33497444540981287275926

q0 = 896,78597403663861962481162

coefficients are #5077 from Hart & Cheney. (19.56D)

Implemented Functions

Name	DFSERATN
Function	Compute Partial ArcTangent
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags,r0r15,AccH
Time	
Observations	
Example	rcall _DFSERATN
	call _DFSERATN (chips >=16k)

LN - Natural Logarithm (SERIE LN.INC File)

Description

Compute a partial natural logarithm function using Maclaurin series describe below. The range of value of this function is $\left[1,2\right]$, values out this range lost precision.

Modified Maclaurin series for more fast conversion of results of natural logarithm follow:

$$\ln\left(\frac{x-1}{x+1}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \frac{x^9}{9} + \frac{x^{11}}{11} \dots\right)$$

But to obtain more fast algorithm the equation is rewritten as following

$$ln\left(\frac{x-1}{x+1}\right) = 2.x(1+x^2)\left(\frac{1}{3}+x^2\right)\left(\frac{1}{5}+x^2\right)\left(\frac{1}{7}+x^2\right)\left(\frac{1}{9}+x^2\right)...$$

Implemented Functions

Name	
	_DFSERATN
Function	Compute Partial Natural Logarithm
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags,r0r15,AccH
Time	
Observations	
Example	rcall _DFSERLN
	call _DFSERLN (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

SERIE SINE (SERIE SINE.INC File)

Description

Compute a partial Sine function using Maclaurin series describe below. The range of value of this function is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, values out this range lost precision.

A original Maclaurin series for sine follow:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} \dots$$

But to obtain more fast algorithm equation is rewritten as following

$$\sin(x) = x(1+x^2(\frac{1}{3!}+x^2(\frac{1}{5!}+x^2(\frac{1}{7!}+x^2(\frac{1}{9!}+x^2(...$$

Implemented Functions

Name	
	_DFSERATN
Function	Compute Partial Sine
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags,r0r15,AccH
Time	
Observations	
Example	rcall _DFSERSIN
	call _DFSERSIN (chips >=16k)

SQUARE ROOT (DFSQRT.INC File)

Description

Compute a square root function using Newton/Raphson approximation algorithm.

Let $x_0 = x$ is my first approximation, then

$$x_{n+1} = \frac{\left(\frac{x}{x_n} + x_n\right)}{2}$$

Repeat above operation until $\mathbf{x}_{x+1} = \mathbf{x}_n$, in that instant \mathbf{x}_{n+1} is equal to square root of x.

Others considerations, the value ${\bf x}$ stored in memory use a base 2 using the following format.

 $x=m_\chi.2^{E_\chi}$ where m_χ is the mantissa of x and E_χ is the exponent of x base 2. This well known, the below simplification occurs.

$$\sqrt{x} \to \sqrt{m_x. 2^{E_x}} \to \sqrt{m_x}. \sqrt{2^{E_x}}$$

When E_{χ} is even then

$$\sqrt{x} = \sqrt{m_x} \cdot 2^{\frac{E_x}{2}}$$

When $E_{\it x}$ is odd then

$$\sqrt{x} = \sqrt{m_x} \cdot 2^{\frac{E_{x-1}}{2}} \cdot \sqrt{2}$$

How the base is 2 de maximum value for de m_χ is 2, the number of interaction of Newton/Raphson approximation is 6 for a 16 decimal digits number found experimentally.

Implemented Functions

Name	
	_DFSQRT
Function	Compute Square root
Input values	Float Acc
Output values	Float Acc
	Acc exception code
Destroy	Flags,r0r15,AccH
Time	
Observations	
Example	rcall _DFSQRT
	call _DFSQRT (chips >=16k)

STRING TO FLOAT (DFSTOF.INC File)

Description

Convert a String number in ASCII format store in SRAM or FLASH to float double value. The string must be zero ended $\0$.

Implemented Functions

Name	_DFSSTOF
Function	Convert a string number in SRAM to float double value
Input values	Z -> String into SRAM
Output values	Float Acc
	Acc exception code
Destroy	Flags,r0r15,AccH
Time	
Observations	
Example	Convert sram_string_value to float point
	<pre>Ldiw Z,sram_string_value rcall _DFSSTOF call _DFSSTOF (chips >=16k)</pre>

Name	DFSTOF
Function	Convert a string number in FLASH to float double value
Input values	Z -> String into SRAM
Output values	Float Acc
	Acc exception code
Destroy	Flags,r0r15,AccH
Time	
Observations	
Example	Convert flash_string_value to float point
	Ldiw Z,flash_string_value*2 rcall _DFSTOF call _DFSTOF (chips >=16k)

TAN - Tangent (TAN.INC File)

Description

Compute a Tangent of float double value. Using the follow equation:

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Implemented Functions

Name	DFSSTOF
Function	Compute Tangent
Input values	Float Acc input value
Output values	Float Acc
	Acc exception code
Destroy	Flags, r0r15, AccH
Time	
Observations	
Example	rcall _DFTAN
	call _DFTAN (chips >=16k)

UNARY (UNARY.INC File)

Description

Perform float double function that use one operator.

Implemented Functions

Name	
	_DFABS
Function	Float double absolute
Input values	Float Acc input value
Output values	Float Acc =0
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFABS
	call _DFABS (chips >=16k)

Name	DFCHS
Function	Float double change sign
Input values	Float Acc input value
Output values	Float Acc =0
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFCHS
	call _DFCHS (chips >=16k)

Name	
	_DFINV
Function	Float double reciprocal value 1/x
Input values	Float Acc input value
Output values	Float Acc =0
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFINV
	call _DFINV (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
	_DFSQR
Function	Float double square
Input values	Float Acc input value
Output values	Float Acc =0
	Acc FPOK
Destroy	Flags
Time	
Observations	
Example	rcall _DFSQR
	call _DFSQR (chips >=16k)

INTEGER

ATOS (ATOS.INC File)

Description

Convert signed byte to string ASCII with fixed size 4 chars and with left zero removal with 0 terminator $\setminus 0$.

Implemented Functions

Name	_ATOS or _BTOS
Function	Convert signed byte to ASCII string
Input values	Acc signed input value
Output values	z→ output string \0
Destroy	Flags
Time	
Observations	
Example	Convert Acc=45 to String
	Ldi Acc, 45 Rcall _ATOS Call _ATOS

CHECKSUM16 (CHECKSUM16.INC File)

Description

Compute 16 string of data pointed by z register. May be used to compute IP checksum.

Implemented Functions

Name	_CHECKSUM16
Function	Convert signed byte to ASCII string
Input values	AccH:Acc number of words of string
	Z-> data in SRAM
Output values	AccH:Acc checksum
Destroy	Flags
Time	
Observations	if user use this routine only for check purpose the
	return value must be 0xffff but if used to compute
	new checksum field the returned value must be
	complemented using 1 complement
Example	Compute checksum of string_SRAM of 100 words
	Ldiw Z,string_SRAM
	Ldiaw 100
	Rcall _CHECKSUM16
	Call _CHECKSUM16 (chips>=16k)

DIV S32S32S32 (DIV S32S32S32.INC File)

Description

Divide signed 32bits by signed 32bits and remainder quotient of 32bits and rest 32bits.

Implemented Functions

Name	_DIV_S32S32S32
Function	Divide signed 32bits by 32bits and remainder quotient
	of 32bits and rest of 32bits
Input values	R3:R2:R1:R0 Dividend
	R7:R6:R5:R4 Divisor
Output values	R3:R2:R1:R0 Quotient
	R8:R9:R10:R11 Rest
Destroy	Flags
Time	Min=566 Max=662 clocks
Observations	
Example	Divide 100000 by 456
	Ldial 100000
	Mov r0, Acc
	Mov r1, AccH
	Mov r2, AccT
	Mov r3, AccTH
	Ldial 456
	Mov r4, Acc
	Mov r5, AccH
	Mov r6, AccT
	Mov r7, AccTH
	rcall _DIV_S32S32S32
	Call _DIV_S32S32S32 (chips>=16k)

DIV U8U8U8 (DIV U8U8U8.INC File)

Description

Divide unsigned 8bits by unsigned 8bits result unsigned 8bits.

Implemented Functions

Name	_DIV_U8U8U8U8
Function	Divide unsigned 8bits by unsigned 8bits result
	unsigned 8bits
Input values	RO Dividend
	R1 Divisor
Output values	RO Quotient
	R2 Rest
Destroy	Flags
Time	Min=77 Max=77 clocks
Observations	
Example	Divide 100 by 7
	Ldi Acc, 100
	Mov r0, Acc
	Ldi Acc,7
	Mov r1,Acc
	rcall _DIV_U8U8U8
	Call _DIV_U8U8U8 (chips>=16k)

DIV U16U16U16 (DIV U16U16U16.INC File)

Description

Divide unsigned 16bits by unsigned 16bits result unsigned 16bits.

Implemented Functions

Name	_DIV_U16U16U16
Function	Divide unsigned 16bits by unsigned 16bits result
	unsigned 16bits
Input values	R1:R0 Dividend
	R3:R2 Divisor
Output values	R1:R0 Quotient
	R5:R4 Rest
Destroy	Flags
Time	Min=192 Max=208 clocks
Observations	
Example	Divide 1000 by 37
	Ldiaw 1000
	Mov r0, Acc
	Mov r1,AccH
	Ldiaw 37
	Mov r2,Acc
	Mov r3, AccH
	rcall _DIV_U16U16U16
	Call _DIV_U16U16U16 (chips>=16k)

DIV_U16U16U16F16 (DIV_U16U16U16F16.INC File)

Description

Divide unsigned 16bits by unsigned 16 bits result unsigned 16bit integer part and 16bits fraction part.

Implemented Functions

Name	_DIV_U16U16F16
Function	Divide unsigned 16bits by unsigned 16bits result
	unsigned 16bits and fractional part 16bits
Input values	R1:R0 Dividend
	R3:R2 Divisor
Output values	R1:R0 Quotient fraction part
	R3:R2 Quotient integer part
Destroy	Flags
Time	Min=451 Max=484 clocks
Observations	
Example	Divide 1000 by 37
	Ldiaw 1000
	Mov r0, Acc
	Mov r1,AccH
	Ldiaw 37
	Mov r2,Acc
	Mov r3,AccH
	rcall _DIV_U16U16F16
	Call _DIV_U16U16F16 (chips>=16k)

DIV_U32U32U32 (DIV_U32U32U32.INC File)

Description

Divide unsigned 32bits by unsigned 32 bits result unsigned 32bits.

Implemented Functions

Name	DIV U32U32U32
Function	Divide unsigned 32bits by unsigned 32bits result
	unsigned 32bits
Input values	R3:R2:R1:R0 Dividend
	R7:R6:R5:R4 Divisor
Output values	R3:R2:R1:R0 Quotient
	R11:R10:R9:R8 Rest
Destroy	Flags
Time	Min=566 Max=662 clocks
Observations	
Example	Divide 100000 by 456
	Ldial 100000
	Mov r0, Acc
	Mov r1, AccH
	Mov r2, AccT
	Mov r3, AccTH
	Ldial 456
	Mov r4, Acc
	Mov r5, AccH
	Mov r6, AccT
	Mov r7, AccTH
	rcall _DIV_U32U32U32
	Call _DIV_U32U32U32 (chips>=16k)

DUMPHEX (DUMPHEX.INC File)

Description

Convert byte to ASCII two(2) digits hexadecimal value.

Implemented Functions

Name	
	_DUMPHEX
Function	Convert byte to STRING ASCII hexadecimal
Input values	Acc input value
	z-> SRAM area to receive hex ASCII value
Output values	Z-> SRAM after 2 bytes (2 hex digits)
Destroy	Flags
Time	
Observations	
Example	Convert 100 to hex
	Ldi Acc,100
	rcall _DUMPHEX
	Call _DUMPHEX (chips>=16k)
	Result "64" in SRAM

Name	_TOHEX2
Function	Same as _DUMPHEX but zero ended \0
Input values	Acc input value
Output values	Z-> SRAM area that receive hex ascii digits
Destroy	Flags
Time	
Observations	
Example	Convert 100 to hex Ldi Acc, 100 rcall _TOHEX2 Call _TOHEX2 (chips>=16k)
	Result "64" in SRAM pointed by Z

INT_ATN (INT_ATN.INC File)

Description

Compute integer ArcTangent(X/Y).

Implemented Functions

Name	_INT_ATN_XY
Function	Compute integer ArcTangent(X/Y).
Input values	X 1 st value
	Y 2 nd value
Output values	AccH:Acc angle range -9090 degrees
Destroy	Flags
Time	
Observations	
Example	Get Integer arctangent between 100 and 45
	Ldiw X,100
	Ldiw Y,45
	rcall _INT_ATN_XY
	Call _INT_ATN_XY (chips>=16k)

INT_ATN2PTS (INT_ATN2PTS.INC File)

Description

Compute integer ArcTangent between two points p1(x,y) and p2(X/Y).

Implemented Functions

Name	_INT_ATN2PTS
Function	Compute integer arctangent between two points p1(x,y)
	and p2(x,y)
Input values	AccH:Acc, AccTH:AccT p1(x,y)
	X,Y p2(x,y)
Output values	AccH:Acc angle range 0359 in degrees
Destroy	Flags
Time	
Observations	
Example	Get Integer arctangent between p1(100,50) and
	p2(200,70)
	Ldiaw 100
	Ldiawt 50
	Ldiw X,200
	Ldiw Y,70
	rcall _INT_ATN2PTS
	Call _INT_ATN2PTS (chips>=16k)

IPTOS (IPTOS.INC File)

Description

Implemented Functions

Name	_IPTOS
Function	Convert 32bits number to string IP formatted.
Input values	X,Y IP number
Output values	Z -> SRAM STRING ASCII FORMATTED IP
Destroy	Flags
Time	
Observations	
Example	Convert to string a -1062680549 32bits value to formatted IP number. Ldiw X,lwrd(-1062680549) Ldiw Y,hwrd(-1062680549) rcall _IPTOS Call _IPTOS (chips>=16k) Result string "192.168.200.27"\0

ITOS (ITOS.INC File)

Description

Implemented Functions

Name	_ITOS
Function	Convert 16bits unsigned value to string ASCII
Input values	AccH:Acc Signed value
Output values	Z -> SRAM STRING ASCII +\0
Destroy	Flags
Time	
Observations	
Example	Convert 1234 to string.
	<pre>Ldiaw 1234 rcall _ITOS Call _ITOS (chips>=16k) Result string "1234"\0</pre>

IXTOS (IXTOS.INC File)

Description

Convert byte, word, integer, long to string $+\0$.

Implemented Functions

Name	_I_USE_SIZE
Function	Set size for formatted output string
Input values	Acc Size
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set output string size to 4.
	Ldi Acc,4 rcall _I_USE_SIZE
	Call _I_USE_SIZE (chips>=16k)

Name	
	_I_USE_PLUS
Function	Set '+' sign before positive number
Input values	Acc =1 if use '+' before positive number 0 otherwise
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set not plus signal in before number
	Ldi Acc, 0
	rcall _I_USE_PLUS
	Call _I_USE_PLUS (chips>=16k)

Name	
	_I_USE_THOUSAND
Function	Set Thousand separator of formatted numbers
Input values	Acc =1 used separator 0 otherwise
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set use of thousand separator.
	Ldi Acc,1
	rcall _I_USE_THOUSAND
	Call _I_USE_THOUSAND (chips>=16k)

Name	I USE SEP CHAR
Function	Set character for thousand separator
Input values	Acc =1 for point =0 for comma
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set thousand separator character as comma.
	Ldi Acc, 0
	rcall _I_USE_SEP_CHAR
	Call _I_USE_SEP_CHAR (chips>=16k)

Name	_IBTOS
Function	Integer signed byte to string automatic length
Input values	Acc Signed byte
Output values	Z-> formatted automatic length
Destroy	Flags
Time	
Observations	
Example	Convert 45 to string automatic length Ldi Acc, 15 rcall _IBTOS Call _IBTOS (chips>=16k) Result "45\0"

Name	
	_IBTOSF
Function	Integer signed byte to string formatted length
Input values	Acc Signed byte
Output values	Z-> formatted length string
Destroy	Flags
Time	
Observations	
Example	Convert 45 to string formatted length=5
	Ldi Acc, 5
	Call _I_USE_SIZE
	Ldi Acc, 45
	rcall _IBTOS
	Call _IBTOS (chips>=16k)
	Result " 45\0"

Name	_IUTOS
Function	Integer unsigned word to string automatic length
Input values	AccH:Acc Signed word
Output values	Z-> formatted automatic string
Destroy	Flags
Time	
Observations	
Example	Convert 1245 to string Ldiaw 1245 rcall _IUTOS Call _IUTOS (chips>=16k)
	Result "1245\0"

Warran Company of the	
Name	ITOS
	_1103
Function	Integer signed word to string automatic length
Input values	AccH:Acc Signed word
Output values	Z-> formatted automatic string
Destroy	Flags
Time	
Observations	
Example	Convert -1245 to string
	Ldiw -1245
	rcall ITOS
	_
	Call _ITOS (chips>=16k)
	Result "-1245\0"

Name	_ITOSF
Function	Integer signed word to string formatted length
Input values	AccH:Acc Signed word
Output values	<pre>Z-> formatted string</pre>
Destroy	Flags
Time	
Observations	
Example	Convert 1245 to string formatted size = 8, use thousand separator and plus sign Ldi Acc,8 Call _I_USE_SIZE Ldi Acc,1 Call _I_USE_THOUSAND Ldi Acc,1 Call _I_USE_SEP_CHAR Ldiaw 1245 rcall _ITOSF Call _ITOSF (chips>=16k) Result " +1,245\0"

Name	_IUTOSF
Function	Integer unsigned word to string formatted length
Input values	AccH:Acc unsigned word
Output values	<pre>Z-> formatted string</pre>
Destroy	Flags
Time	
Observations	
Example	Convert 1245 to string formatted size = 8, use thousand separator and plus sign Ldi Acc,8 Call _I_USE_SIZE Ldi Acc,1 Call _I_USE_THOUSAND Ldi Acc,1 Call _I_USE_SEP_CHAR Ldiaw 1245 rcall _IUTOSF Call _IUTOSF (chips>=16k) Result " +1,245\0"

Name	_IULTOS
Function	Long Integer unsigned word to string automatic length
Input values	AccTH:AccT:AccH:Acc unsigned long
Output values	<pre>Z-> formatted string</pre>
Destroy	Flags
Time	
Observations	
Example	Convert 12345678 to string automatic size = 12, use thousand separator and plus sign Ldi Acc,12 Call _I_USE_SIZE Ldi Acc,1 Call _I_USE_THOUSAND Ldi Acc,1 Call _I_USE_SEP_CHAR Ldial 12345678 rcall _IULTOS Call _IULTOS (chips>=16k) Result "+12,345,678\0"

ILTOS
_ **
Long Integer signed word to string automatic length
AccTH:AccT:AccH:Acc signed long
z-> formatted string
Flags
Convert -12345678 to string automatic size = 12, use
thousand separator and plus sign
Ldi Acc, 12
Call I USE SIZE
Ldi Acc,1
Call I USE THOUSAND
Ldi Acc, 1
Call I USE SEP CHAR
Ldial -12345678
rcall IULTOS
Call IULTOS (chips>=16k)
Result "-12,345,678\0"

Name	ILTOSF
Function	Long Integer signed word to string formatted length
Input values	AccTH:AccT:AccH:Acc signed long
Output values	<pre>Z-> formatted string</pre>
Destroy	Flags
Time	
Observations	
Example	Convert -12345678 to string formatted size = 12, use thousand separator and plus sign Ldi Acc, 12 Call _I_USE_SIZE Ldi Acc, 1 Call _I_USE_THOUSAND Ldi Acc, 1 Call _I_USE_SEP_CHAR Ldial -12345678 rcall _IULTOS Call _IULTOS Call _IULTOS (chips>=16k) Result " -12,345,678\0"

Name	IULTOSF
Function	Long Integer signed word to string formatted length
Input values	AccTH:AccT:AccH:Acc signed long
Output values	<pre>Z-> formatted string</pre>
Destroy	Flags
Time	
Observations	
Example	Convert 12345678 to string formatted size = 12, use
	thousand separator and plus sign
	Ldi Acc, 12
	Call _I_USE_SIZE
	Ldi Acc, 1
	Call _I_USE_THOUSAND
	Ldi Acc, 1
	Call _I_USE_SEP_CHAR
	Ldial 12345678
	rcall _IULTOS
	Call _IULTOS (chips>=16k)
	Result " +12,345,678\0"

MUL_S8S8S8 (MUL_S8S8S8.INC File)

Description

Multiply signed 8bits by signed 8bits result signed 8 bits

Implemented Functions

Name	_MUL_S8S8S8
Function	Multiply signed 8bits by signed 8bits result signed
	8bits
Input values	RO 1st operand
	R1 2nd operand
Output values	R2 Product
Destroy	Flags,R1,R3
Time	Min=43 clocks
Observations	
Example	Multiply 5 by 7
	Ldi Acc, 5
	Mov r0, Acc
	Ldi Acc, 7
	Mov r1, Acc
	rcall _MUL_S8S8S8
	Call _MUL_S8S8S8 (chips>=16k)

MUL_S8S8S16 (MUL_S8S8S16.INC File)

Description

Multiply signed 8bits by signed 8bits result signed 16 bits

Implemented Functions

Name	_MUL_S8S8S16
Function	Multiply signed 8bits by signed 8bits result signed
	16bits
Input values	RO 1st operand
	R1 2nd operand
Output values	R3:R2 Product
Destroy	Flags,R1,R4,R5
Time	Min=79 clocks
Observations	
Example	Multiply 100 by 200
	Ldi Acc, 100
	Mov r0, Acc
	Ldi Acc, 200
	Mov r1, Acc
	rcall _MUL_S8S8S16
	Call _MUL_S8S8S16 (chips>=16k)

MUL_S16S16S16 (MUL_S16S16S16.INC File)

Description

Multiply signed 16bits by signed 16bits result signed 16 bits

Implemented Functions

Name	_MUL_S16S16S16
Function	Multiply signed 16bits by signed 16bits result signed
	16bits
Input values	R1:R0 1st operand
	R3:R2 2nd operand
Output values	R5:R4 Product
Destroy	Flags,R0,R1,R2,R3,R6
Time	Min=180 Max=211 clocks
Observations	
Example	Multiply 100 by 200
	Ldiaw 100
	Mov r0, Acc
	MOV r1,AccH
	Ldiaw 200
	Mov r2, Acc
	Mov r3, AccH
	rcall _MUL_S16S16S16
	Call _MUL_S16S16S16 (chips>=16k)

.....

MUL_S16S16S32 (MUL_S16S16S32.INC File)

Description

Multiply signed 16bits by signed 16bits result signed 32 bits

Implemented Functions

Name	_MUL_S16S16S32
Function	Multiply signed 16bits by signed 16bits result signed
	32bits
Input values	R1:R0 1st operand
	R3:R2 2nd operand
Output values	R7:R6:R5:R4 Product
Destroy	Flags,R0,R1,R2,R3
Time	Max=284 clocks
Observations	
Example	Multiply 1000 by 2000
	Ldiaw 1000
	Mov r0, Acc
	MOV r1,AccH
	Ldiaw 2000
	Mov r2, Acc
	Mov r3,AccH
	rcall _MUL_S16S16S32
	Call _MUL_S16S16S32 (chips>=16k)

MUL_S32S32S32 (MUL_S32S32S32.INC File)

Description

Multiply signed 32bits by signed 32bits result signed 32 bits

Implemented Functions

Name	_MUL_S32S32S32
Function	Multiply signed 32bits by signed 32bits result signed
	32bits
Input values	R3:R2:R1:R0 1st operand
	R7:R6:R5:R2 2nd operand
Output values	R11:R10:R9:R8 Product
Destroy	Flags,R0,R1,R2,R3,R4,R5,R6,R7,R12
Time	Min=416 Max=571 clocks
Observations	
Example	Multiply 12345 by 45000
	Ldial 12345
	Mov r0, Acc
	Mov rl, AccH
	Mov r2, AccT
	Mov r3, AccTH
	Ldial 45000
	Mov r4, Acc
	Mov r5, AccH
	Mov r6,AccT
	Mov r7,AccTH
	rcall MUL S32S32S32
	Call _MUL_S32S32S32 (chips>=16k)

MUL_U8U8U8 (MUL_U8U8U8.INC File)

Description

Multiply unsigned 8bits by unsigned 8bits result unsigned 8 bits

Implemented Functions

Name	
1101110	MUL U8U8U8
Function	Multiply unsigned 8bits by unsigned 8bits result
	unsigned 8bits
Input values	RO 1st operand
	R1 2nd operand
Output values	R2 Product
Destroy	Flags,R1
Time	Max=28 clocks
Observations	
Example	Multiply 5 by 7
	Ldi Acc, 5
	Mov r0, Acc
	Ldi Acc, 7
	Mov r1, Acc
	rcall MUL U8U8U8
	Call _MUL_U8U8U8 (chips>=16k)

MUL_U8U8U16 (MUL_U8U8U16.INC File)

Description

Multiply unsigned 8bits by unsigned 8bits result unsigned 16 bits

Implemented Functions

Name	_MUL_U8U8U16
Function	Multiply unsigned 8bits by unsigned 8bits result
	unsigned 16bits
Input values	RO 1st operand
	R1 2nd operand
Output values	R3:R2 Product
Destroy	Flags, R1, R4
Time	Min=63 Max=87 clocks
Observations	
Example	Multiply 100 by 200
	Ldi Acc, 100
	Mov r0, Acc
	Ldi Acc, 200
	Mov r1, Acc
	rcall _MUL_U8U8U16
	Call _MUL_U8U8U16 (chips>=16k)

MUL_U16U16U16 (MUL_U16U16U16.INC File)

Description

Multiply unsigned 16bits by unsigned 16bits result unsigned 16 bits

Implemented Functions

Name	_MUL_S16S16S16
Function	Multiply unsigned 16bits by unsigned 16bits result
	unsigned 16bits
Input values	R1:R0 1st operand
	R3:R2 2nd operand
Output values	R5:R4 Product
Destroy	Flags,R0,R1,R2,R3
Time	Min=158 Max=174 clocks
Observations	
Example	Multiply 100 by 200
	Ldiaw 100
	Mov r0, Acc
	MOV r1,AccH
	Ldiaw 200
	Mov r2, Acc
	Mov r3,AccH
	rcall _MUL_U16U16U16
	Call _MUL_U16U16U16 (chips>=16k)

MUL_U16U16X10 (MUL_U16U16X10.INC File)

Description

Multiply unsigned 16bits number by 10 result back unsigned 16 bits

Implemented Functions

Name	_MUL_U16U16U32
Function	Multiply unsigned 16bits number by 10 result back unsigned 16 bits
Input values	R1:R0 1st operand
Output values	R1:R0 Result
Destroy	Flags, R2, R3
Time	Max=14 clocks
Observations	
Example	Multiply 1000 by 10
	Ldiaw 1000 Mov r0, Acc MOV r1, AccH rcall _MUL_U16U16X10
	MOV r1,AccH

.....

MUL_U32U32U32 (MUL_U32U32X32.INC File)

Description

Multiply unsigned 32bits by unsigned 32bits result unsigned 32 bits.

Implemented Functions

Name	_MUL_U32U32U32
Function	Multiply unsigned 32bits by unsigned 32 bits result unsigned 32 bits
Input values	R3:R2:R1:R0 1st operand R7:R6:R5:R4 2nd operand
Output values	R11:R10:R9:R8 2nd operand
Destroy	Flags, R0, R1, R2, R3, R4, R5, R6, R7
Time	Min=397 Max=525 clocks
Observations	
Example	Multiply 1000 by 1000 Ldial 1000 Mov r0, Acc Mov r1, AccH Mov r2, AccT Mov r3, AccTH Mov r4, Acc Mov r5, AccH Mov r6, AccT Mov r7, AccTH rcall _MUL_U32U32U32 Call _MUL_U32U32U32 (chips>=16k)

MUL_U32U32U64 (MUL_U32U32X64.INC File)

Description

Multiply unsigned 32bits by unsigned 32bits result unsigned 64 bits.

Implemented Functions

Name	_MUL_U32U32U64
Function	Multiply unsigned 32bits by unsigned 32 bits result unsigned 64 bits
Input values	R3:R2:R1:R0 1st operand
	R7:R6:R5:R4 2nd operand
Output values	R15:R14:R13:R12:R11:R10:R9:R8 Product
Destroy	Flags,R0,R1,R2,R3,R4,R5,R6,R7
Time	Min=566 Max=757 clocks
Observations	
Example	Multiply 12345678 by 87654321 Ldial 12345678 Mov r0, Acc Mov r1, AccH Mov r2, AccT Mov r3, AccTH Ldial 87654321 Mov r4, Acc Mov r5, AccH Mov r6, AccT Mov r7, AccTH rcall _MUL_U32U32U64 Call _MUL_U32U32U64 (chips>=16k)

MUL_U32U32X10 (MUL_U32U32X10.INC File)

Description

Multiply unsigned 32bits number by 10 result back unsigned 32 bits $\,$

Implemented Functions

Name	_MUL_U32U32X10
Function	Multiply unsigned 16bits number by 10 result back unsigned 16 bits
Input values	R3:R2:R1:R0 1st operand
Output values	R3:R2:R1:R0 Result
Destroy	Flags,R4,R5,R6,R7
Time	Max=24 clocks
Observations	
Example	Multiply 12345678 by 10 Ldial 12345678 Mov r0, Acc Mov r1, AccH Mov r2, AccT Mov r3, AccTH rcall _MUL_U32U32X10
	Call _MUL_U32U32X10 (chips>=16k)

MULDIV U8U8U8 (MULDIV U8U8U8.INC File)

Description

Multiply unsigned 8bits by unsigned 8bits and divide product by unsigned 8 bits. The orders of operations are A by B then divide by C, this useful for multiply a value by a fraction.

$$D = \frac{A.B}{C}$$

Implemented Functions

Name	_MULDIV_U8U8U8
Function	Multiply unsigned 8bits by unsigned 8bits and product is divided by unsigned 8bits
Input values	RO A value
	R1 B value
	R2 C value
Output values	R1:R0 D Quotient
	R5:R4 D Remainter
Destroy	Flags,R2,R3
Time	Min=278 Max=318 clocks
Observations	
Example	Multiply 100 by 5/4
	Ldi Acc, 100
	Mov r0, Acc
	Ldi Acc, 5
	Mov r1,Acc
	Ldi Acc, 4
	Mov r2, Acc
	rcall _MULDIV_U8U8U8
	Call _MULDIV_U8U8U8 (chips>=16k)

UBTOS (UBTOS.INC File)

Description

Convert unsigned byte to string ASCII

Implemented Functions

Name	_UBTOS
Function	Convert unsigned byte to string ASCII automatic length
Input values	Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 12 to string Ldi Acc, 12 rcall _UBTOS Call _UBTOS (chips>=16k) Result "12\0"

Name	_UBTOSU
Function	Convert unsigned byte to string ASCII fixed 4 bytes length with format +nnn/0
Input values	Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 12 to string Ldi Acc, 12
	rcall UBTOSU
	Call _UBTOSU (chips>=16k)
	Result "+012\0"

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	_UBTOSUS
Function	Convert unsigned byte to string ASCII fixed 4 bytes length with format +nnn/0
Input values	Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 12 to string Ldi Acc, 12 rcall _UBTOSUS Call _UBTOSUS (chips>=16k)
	Result "+ 12\0"

UITOH (UITOH.INC File)

Description

Convert integer 16bits to 4digits HEX string ASCII .

Implemented Functions

Name	_UITOH
Function	Convert integer 16bits to 4digits HEX string ASCII .
Input values	AccH:Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 1000 to hex string Ldiaw 1000 rcall _UITOH Call _UITOH (chips>=16k)
	Result "03E8\0"

UITOS (UBTOS.INC File)

Description

Convert unsigned integer 16bits to string ASCII

Implemented Functions

Name	_UITOS
Function	Convert unsigned integer 16bits to string ASCII automatic length
Input values	AccH:Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 1234 to string
	Ldiaw 1234
	rcall UITOS
	Call _UITOS (chips>=16k)
	Result "1234\0"

Name	_UITOSU
Function	Convert unsigned byte to string ASCII fixed 6 bytes length with format +nnnnn/0
Input values	AccH:Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 12 to string Ldiaw Acc, 12 rcall _UITOSU Call _UITOSU (chips>=16k)
	rcall _UITOSU

Name	_UITOSUS
Function	Convert unsigned integer to string ASCII fixed 6 bytes length with format +nnnnn/0
Input values	Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 12 to string
	Ldi Acc, 12
	rcall _UITOSUS
	Call _UITOSUS (chips>=16k)
	Result "+ 12\0"

ULTOH (ULTOH.INC File)

Description

Convert integer 32bits to 8digits $\ensuremath{\mathsf{HEX}}$ string $\ensuremath{\mathsf{ASCII}}$.

Implemented Functions

Name	_ULTOH
Function	Convert integer 32bits to 8digits HEX string ASCII .
Input values	AccTH:AccT:AccH:Acc unsigned value
Output values	Z-> SRAM string ASCII with zero ended
Destroy	Flags
Time	
Observations	
Example	Convert 1000 to hex string
	Ldial 1000 rcall _ULTOH Call _ULTOH (chips>=16k) Result "000003E8\0"

INTFRAC - Integer and Fractions

IF MUBSFB (MUBSFB.INC)

Description

Multiply unsigned byte by signed byte fraction useful for analog digital processing. $\,$

Implemented Functions

Name	_IF_MUL_UBSFB
Function	Multiply unsigned byte by signed byte fraction
Input values	RO unsigned integer
	R1 signed fraction
Output values	R3:R2 signed product
Destroy	Flags, R0
Time	
Observations	
Example	Multiply 100 by 0.34
	Ldi Acc, 100
	Mov r0, Acc
	Ldi Acc, 34*128/100
	Mov r1, Acc
	rcall _IF_MUL_UBSFB
	Call _IF_MUL_UBSFB (chips>=16k)

IF MUSFSI (MUSFSI.INC)

Description

Multiply signed integer by signed integer fraction useful for analog digital processing.

Implemented Functions

Name	_IF_MUL_SFSI
Function	Multiply signed integer by signed integer fraction
Input values	R1:R0 signed fraction number
	R3:R2 signed integer number
Output values	R5:R4 signed integer product
Destroy	Flags,R0,R1,R2,R3,R6
Time	Min=156 Max=187
Observations	
Example	Multiply 100 by 0.34
	Ldiaw 100 Mov r0, Acc Mov r1, AccH Ldiaw 34*32768/10000 Mov r2, Acc Mov r3, AccH rcall _IF_MUL_SFSI Call _IF_MUL_SFSI (chips>=16k)

LOGIC

PARITY (PARITY.INC)

Description

Check if byte parity is odd or even.

Implemented Functions

Name	_INTEGER PARITY8
Function	Check if byte parity is odd or even
Input values	RO input value
Output values	Cy=1 if odd else even
Destroy	Flags,R1
Time	Max 22 clocks
Observations	
Example	Check parity of Acc=3 "even"
	Ldi Acc, 3 Mov r0, Acc rcall _INTEGER_PARITY8 Call _INTEGER_PARITY8 (chips>=16k) Result CY=0

ROTATION

ROTATED2D (ROTATION2D.INC)

Description

Perform a 16bits rotation of P(x,y) point in relation at 16bits C(x,y) center pointer by angle A. This is performed using bellow trigonometrics reduction.

(1) rotation of point ${\bf P(px,py)}$ with center at ${\bf P(cx,cy)}$ by ${\boldsymbol \alpha}$ angle.

$$r = \sqrt{(px - cx)^2 + (py - cy)^2}$$
, $r = distance\ between\ points$

 $\alpha = atn2pts(cx, cy, px, py),$ angle between p(px, py) and p(cx, cy)

$$npx = cx + r.\cos(\alpha + \beta)$$
, rotation of x axis by β angle $npy = cy + r.\sin(\alpha + \beta)$, rotation of y axis by β angle

Consider $\mathbf{a}, \mathbf{b}, \mathbf{c}$ side of triangle rectangle, α a opposite angle of side \mathbf{a} , center pointer at intersection of side \mathbf{c} and \mathbf{a} , and desiderate point to be rotated at intersection of side \mathbf{a} and \mathbf{c} , yields:

$$a = py - cy$$
, $b = px - cx$, $\sin(\alpha) = \frac{a}{c}$
 $c = \sqrt{a^2 + b^2}$, $\cos(\alpha) = \frac{b}{c}$

Using a law of sun of sines and cosines, where k is rotate angle follow

$$\sin(\alpha + k) = \sin(\alpha) \cdot \cos(k) + \sin(k) \cdot \cos(\alpha)$$
$$\cos(\alpha + k) = \cos(\alpha) \cdot \cos(k) - \sin(\alpha) \cdot \sin(k)$$

Replacing by equation (1), and have in mind that $\cos(k)$ and $\sin(k)$ area constants then, $k=\cos(k)$ and $j=\sin(k)$

$$\sin(\alpha + k) = \frac{a}{c} \cdot k + \frac{b}{c} \cdot j$$

$$\cos(\alpha + k) = \frac{b}{c} \cdot k - \frac{a}{c} \cdot j$$

Knowing that $c=\sqrt{a^2+b^2}$ represent a distance between points we rewrite rotation equation as follow

$$npx = cx + c.\left(\frac{b}{c}.k - \frac{a}{c}.j\right), rotation of x axis by k angle$$
$$npy = cy + c.\left(\frac{a}{c}.k + \frac{b}{c}.j\right), rotation of y axis by k angle$$

Cutting **c**=distance, yields

$$npx = cx + (b.k - a.j)$$

$$npy = cy + (a.k + b.j)$$

That manner we obtain a very fast routine because only need to realize is a table lookup of sine of desiderate request angle and 4 integer multiplies.

Implemented Functions

Name	ROT2D SET POINT
Function	Set coordinates of point to be rotated
Input values	X,Y point coordinates
Output values	None
Destroy	None
Time	
Observations	
Example	Set point P(100,150) to be rotated
	Ldiw X,100 Ldiw Y,150 rcall _ROT2D_SET_POINT Call ROT2D SET POINT (chips>=16k)

Name	ROT2D GET POINT												
	_NOI2D_GB1_FOIN1												
Function	Get coordinates of point to be rotated												
Input values	None												
Output values	X,Y point coordinates												
Destroy	None												
Time													
Observations													
Example	Get point to be rotated, after this X,Y will have the coordinates												
	rcall _ROT2D_GET_POINT Call _ROT2D_GET_POINT (chips>=16k)												

Name	
	_ROT2D_SET_CENTER_POINT
•	

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Function	Cot coordinates of content of votation
FullCtion	Set coordinates of center of rotation
Input values	X,Y center point coordiantes
Output values	None
Destroy	None
Time	
Observations	
Example	Set Center point P(100,150)
	Ldiw X,100
	Ldiw Y,150
	rcall _ROT2D_SET_CENTER_POINT
	Call _ROT2D_SET_CENTER_POINT (chips>=16k)

Name	_ROT2D_GET_CENTER_POINT
Function	Get coordinates of center point
Input values	None
Output values	X,Y point coordinates
Destroy	None
Time	
Observations	
Example	Get center point, after this X,Y will have the coordinates rcall _ROT2D_GET_CENTER_POINT Call _ROT2D_GET_CENTER_POINT (chips>=16k)

Name	ROT2D GET ROTATED POINT
Function	Get coordinates of rotated point
Input values	None
Output values	X,Y point coordinates
Destroy	None
Time	
Observations	
Example	Get coordinates of rotated point, after this X,Y will have the coordinates
	rcall _ROT2D_GET_ROTATED_POINT Call _ROT2D_GET_ROTATED_POINT (chips>=16k)

Name	
	_ROT2D_SET_ANGLE
Function	Set angle of rotation
Input values	AccH:Acc angle in degree
Output values	None
Destroy	None
Time	
Observations	
Example	Set angle of rotation to 27 degree
	rcall _ROT2D_SET_ANGLE
	Call _ROT2D_GET_ANGLE (chips>=16k)

Name	_ROT2D_GET_ANGLE									
Function	Get angle of rotation									
Input values	None									
Output values	AccH:Acc angle in degree									
Destroy	one									
Time										
Observations										
Example	Get angle of rotation rcall _ROT2D_GET_ANGLE Call _ROT2D_GET_ANGLE (chips>=16k)									

Name	_ROT2D_ROTATE
Function	Rotate desiderate p(x,y) in relation of center(x,y)
	by angle alfa
Input values	None
Output values	None
Destroy	Flags, R0R15
Time	
Observations	
Example	Rotate point p(100,128) at center(40,30) by angle 50
	degree.
	Ldiaw 50
	Call _ROT2D_SET_ANGLE
	Ldiw X,100
	Ldiw Y,128
	Call _ROT2D_SET_POINT
	Ldiw X,40
	Ldiw Y,30
	Call _ROT2D_SET_CENTER_POINT
	Call _ROT2D_ROTATE
	Call _ROT2D_ROTATED_POINT

TRIGONOMETRY

DISCRETE COSINE (DISCRETE COSINE.INC)

Description

Calculate a integer 16bits discrete and scaled cosine.

Name	_DSCOS16B											
Function	Compute scaled cosine using a below equation											
	$y = s.\cos(\alpha)$											
	Where y=signed integer scaled cosine function											
	A=signed integer angle											
	S=unsigned integer scale											
Input values	AccH:Acc angle in degree											
	AccTH:AccT unsigned scale factor											
Output values	AccH:Acc signed integer scaled cosine of angle A											
Destroy	Flags,R0,R1,R2,R3,R4,R5,R6											
Time												
Observations												
Example	Compute cosine of 100 degrees and scale it by a											
	factor of 50											
	Ldiaw 100											
	Ldiawt 50											
	rcall _DSCOS16B											
	Call _DSCOS16B (chips>=16k)											

Name							DC	os1	6B							
Function	Comp	ute	disc	cret	e in	tege	r c	osi	ne							
Input values	AccH:Acc angle in degree															
Output values	AccH:Acc signed integer cosine of angle A															
Destroy	Flags, RO															
Time																
Observations	Output format of 16bits value of sine															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	S	i	f	f	f	f	f	f	f	f	f	f	f	f	f	f
	s=si	gnal	_ 0= <u>r</u>	oosi	tive	1=n	ega	tiv	е							
	i=in	tege	er pa	art												
	f=fra	acti	ona	су ра	art											
Example	Comp	ute	cos	ine (of 1	00 d	egr	ees								
	Ldia	w 10	0 (
	rcal	l _I	COS	16B												
	Call	_[COS	16B	(chi	ps>=	16k	.)								

DISCRETE SINE (DISCRETE_SINE.INC)

Description

Calculate a integer 16bits discrete and scaled sine.

Name	_DSSIN16B												
Function	Compute scaled sine using a below equation												
	$y = s.\sin(\alpha)$												
	Where y=signed integer scaled sine function												
	A=signed integer angle												
	S=unsigned integer scale												
Input values	AccH:Acc angle in degree												
	AccTH:AccT unsigned scale factor												
Output values	AccH:Acc signed integer scaled sine of angle A												
Destroy	Flags,R0,R1,R2,R3,R4,R5,R6												
Time													
Observations													
Example	Compute sine of 100 degrees and scale it by a factor												
	of 50												
	Ldiaw 100												
	Ldiawt 50												
	rcall _DSSIN16B												
	Call _DSSIN16B (chips>=16k)												

Name							_DS	IN1	6B							
Function	Compute discrete integer cosine															
Input values	AccH:Acc angle in degree															
Output values	AccH:Acc signed integer cosine of angle A															
Destroy	Flags, R0															
Time																
Observations	Output format of 16bits value of sine															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	s	i	f	f	f	f	f	f	f	f	f	f	f	f	f	f
	s=si	gnal	_ 0= <u>r</u>	posi	tive	1=n	ega	tiv	е							
	i=in	tege	er pa	art												
	f=fr	acti	ona	ry p	art											
Example	Comp	ute	sine	e of	100	deg	ree	S								
	Ldia	w 10	0 (
	rcal	1 _[SIN:	16B												
	Call	_[SIN	16B	(chi	ps>=	16k)								

DISPLAYS

HD44780

VERSION10 - Deprecated

VERSION20 (DPDRV48B.INC)

Description

The HD44780U dot-matrix liquid crystal display controller and driver LSI displays alphanumerics, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4- or 8-bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.

A single HD44780U can display up to one 8-character line or two 8-character lines. The HD44780U has pin function compatibility with the HD44780S which allows the user to easily replace an LCD-II with an HD44780U. The HD44780U character generator ROM is extended to generate Implemented Functions.

Author Version20 drive for HD4470 has a complete set of functions to use in 4 or 8bits mode using 5×8 or 5×10 character fonts, capable to use data bits in any port(no memory mapped port) in any bit position and have possibility to set a port for data and command in same port or separately.

Implemented Functions

Name	DISP INIT
Function	Initialize HD44780 Interface
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	<pre>Initialize HD44780 with DATA and COMMAND in same port in this case PORTC, RS bit=4,RW bit=5, E bit=6, two(2) lines, 5x8 font, interface 4 bits, interface bit start position 0. .EQU _DISP_PORT_DATA_OUT = PORTC .EQU _DISP_PORT_DATA_IN = PINC</pre>
	.EQU _DISP_PORT_DATA_DIR = DDRC .EQU _DISP_PORT_CMD_OUT = PORTC .EQU _DISP_PORT_CMD_IN = PINC .EQU _DISP_PORT_CMD_DIR = DDRC .EQU _DISP_BIT_RS = 4
	<pre>.EQU _DISP_BIT_RW = 5 .EQU _DISP_BIT_E = 6 .EQU _DISP_LINE = _DISP_LINE_2 .EQU _DISP_FONT = _DISP_FONT_5X8 .EQU _DISP_INTERFACE = _DISP_4BITS .EQU _DISP_POSITION = 0 rcall _DISP_INIT call _DISP_INIT (chips >=16k)</pre>

Name	
	_DISP_CMD_WRITE
Function	Write a COMMAND in HD44780
Input values	Acc Command to be write
Output values	None
Destroy	Flags
Time	
Observations	
Example	Sent a command to clear display.
	Ldi Acc, DISP_CMD_CLEAR
	rcall _DISP_CMD_WRITE
	call _DISP_CMD_WRITE (chips >=16k)

Name	_DISP_DATA_WRITE
Function	Write a DATA in HD44780
Input values	Acc Data to be write
Output values	None
Destroy	Flags
Time	
Observations	
Example	Sent a '*' to display.
	Ldi Acc,'*'
	rcall _DISP_DATA_WRITE call _DISP_DATA_WRITE (chips >=16k)

Name	
	_DISP_SEND_STR
Function	Send a string in FLASH to HD44780
Input values	Z-> String in Flash
Output values	None
Destroy	Flags, R0
Time	
Observations	
Example	Sent a "Hello World" to display.
	Ldiw Z,MSG*2
	Rcall DISP SEND STR
	call DISP SEND STR (chips >=16k)
	$ \cdot $
	MSG: .DB "Hello World",0

Name	_DISP_SEND_STR_S
Function	Send a string in SRAM to HD44780
Input values	Z-> String in SRAM
Output values	None
Destroy	Flags, RO
Time	
Observations	
Example	<pre>Sent a "Hello World" to display. Ldiw Z,MSG Rcall _DISP_SEND_STR_S call _DISP_SEND_STR_S (chips >=16k) . Memory position MSG must filled with "Hello World",0 message before execute above code .DSEG MSG: .BYTE 11 .CSEG</pre>

Name	_DISP_LOCATE
Function	Set cursor position in HD44780
Input values	Acc Line
	AccH Column
Output values	None
Destroy	Flags
Time	
Observations	
Example	Put display cursor at line 2 column 5. Ldi Acc,2 Ldi AccH,5 Rcall DISP LOCATE
	call _DISP_LOCATE (chips >=16k)

Name	_DISP_CLEAR
Function	Clear entire display screen and position cursor at line 1 column 1
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	Rcall _DISP_CLEAR
	call _DISP_CLEAR (chips >=16k)

Name	DISP HOME
Function	Put cursor at line 1 column 1
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	Rcall _DISP_HOME
	call _DISP_HOME (chips >=16k)

Name	_DISP_DATA_READ
Function	Read contents of last cursor position from CGRAM or DDRAM
Input values	None
Output values	Acc Data read
Destroy	Flags
Time	
Observations	
Example	Rcall _DISP_DATA_READ
	call _DISP_DATA_READ (chips >=16k)

Name	_DISP_DISPLAY
Function	Turn display character on screen visible or not
Input values	Acc _ON= Visible _OFF=hidden
Output values	None
Destroy	Flags
Time	
Observations	
Example	Turn display visible and hidden
	Ldi Acc,_ON
	Rcall _DISP_DISPLAY
	Ldi Acc,_OFF
	call _DISP_DISPLAY (chips >=16k)

Name	_DISP_SCROLL_LEFT
Function	Scroll entire display to left
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	rcall _DISP_SCROLL_LEFT
	call _DISP_SCROLL_LEFT (chips >=16k)

Name	DISP SCROLL RIGHT
Function	Scroll entire display to right
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	rcall _DISP_SCROLL_RIGHT
	call _DISP_SCROLL_RIGHT (chips >=16k)

Name	_DISP_CURSOR
Function	Turn cursor on or off
Input values	Acc _ON or _OFF
Output values	None
Destroy	Flags
Time	
Observations	
Example	Turn cursor off
	Ldi Acc,_OFF
	rcall _DISP_CURSOR
	call _DISP_CURSOR (chips >=16k)

Name	_DISP_CURSOR_LEFT
Function	Move cursor to the left one position
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	rcall _DISP_CURSOR_LEFT
	call _DISP_CURSOR_LEFT (chips >=16k)

Name	_DISP_CURSOR_RIGHT
Function	Move cursor to the right one position
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	rcall _DISP_CURSOR_RIGHT
	call _DISP_CURSOR_RIGHT (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	_DISP_BLINK
Function	Turn cursor blink state on or off
Input values	Acc ON or OFF
Output values	None
Destroy	Flags
Time	
Observations	
Example	Turn cursor blink off
	Ldi Acc,_OFF rcall _DISP_BLINK call _DISP_BLINK (chips >=16k)

Name	_DISP_SET_CGRAM_ADDR
Function	Set address for further data write/read in CGRAM area
Input values	Acc address
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set CGRAM address to 5
	<pre>Ldi Acc,5 rcall _DISP_SET_CGRAM_ADDR call _DISP_SET_CGRAM_ADDR (chips >=16k)</pre>

Name	
	_DISP_SET_DDRAM_ADDR
Function	Set address for further data write/read in DDRAM area
Input values	Acc address
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set DRAM address to 5
	Ldi Acc, 5
	rcall _DISP_SET_DDRAM_ADDR
	call DISP SET DDRAM ADDR (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
Name	DICE PROPERTY CALL
	_DISP_REDEFINE_CHAR
Function	Redefine character pattern for display codes 07
Input values	Acc character code 07
	z-> Flash area with new character pattern
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set a box pattern to character 2
	<pre>Ldi Acc,2 Ldiw Z,BOX_PATTERN rcall _DISP_SET_DDRAM_ADDR call _DISP_SET_DDRAM_ADDR (chips >=16k)</pre>
	BOX_PATTERN: .DB 0x1f,0x11,0x11,0x11,0x11,0x11,0x1f,0x00

HD44780 Constants		
Name	Value	Description
_DISP_LINE_1	0	1 LINE
_DISP_LINE_2	1	2 LINE
_DISP_FONT_5X8	0	5X8 FONT SIZE
_DISP_FONT_5X10	1	5X10 FONT SIZE
_DISP_4BITS	0	4 bits interface
_DISP_8BITS	1	8 bits interface

BIG_NUMBERS (BIG_NUMBER.INC)

Description

Display Big Digits in displays with 2 lines, these digits use the bellow pattern.

The above number represent characters codes 0..7,'-','L','', codes 0..7 was redefined during drive initialization.

Name	_DISP_BIG_NUMBER_INIT		
Function	Initialize BIG NUMBERS redefining character pattern		
	for display codes 07		
Input values	None		
Output values	None		
Destroy	Flags		
Time			
Observations	Need HD44780 Version20 display drive		
Example	rcall _DISP_SET_DDRAM_ADDR		
	call _DISP_SET_DDRAM_ADDR (chips >=16k)		

Name	_DISP_PRINT_BIG_NUMBER
Function	Put big number on display screen
Input values	Acc Number in ASCII
Output values	None
Destroy	Flags
Time	
Observations	Need HD44780 Version20 display drive
Example	Put big number '3' at column 5 Ldi Acc,'3' Ldi Acch,5 rcall _DISP_PRINT_BIG_NUMBER call _DISP_PRINT_BIG_NUMBER (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

SED1335

SED1335 (G320X240.INC)

Description

The SED1330/1335F/1336F is a family of versatile LCD controller ICs that can display text and graphics on a medium size LCD panel. The software is compatible among all three chips. S-MOS recommends new designs use the SED1335 since the SED1330 will gradually be replaced by the SED1335.

Features

- Text, graphics and combined text/graphics displaymodes
- Three overlapping screens in graphics mode
- 640 ´ 256 pixel LCD panel display resolution
- Programmable cursor control
- \bullet Smooth horizontal and vertical scrolling of all or part of the display
- 1/2-duty to 1/256-duty LCD drive
- Up to 64 Kbytes of external static RAM frame buffer memory
- Internal character generator
- \bullet 160, 5 $\acute{}$ 7 pixel characters in internal maskprogrammed character generator ROM
- \bullet Up to 64, 8 $^{\prime}$ 16 pixel characters in external character generator RAM
- \bullet Up to 256, 8 $^{\prime}$ 16 pixel characters in external character generator ROM
- 6800 and 8080 family microprocessor interfaces

Author Version20 drive for SED1335 has a complete set of functions capable to use data bits in any port(no memory mapped port) have possibility to set a port for data and command in same port or separately.

Implemented Functions

Name	DISP INIT		
Function	Initialize SED1335 Interface		
Input values	None		
Output values	None		
Destroy	Flags		
Time			
Observations			
Example	<pre>Initialize SET1335 with DATA port in PORTA, COMMAND port in PORTB, WR bit=7,RD bit=6, CS bit=5, A0 bit=4, RESET bit=3. .EQU _DISP_PORT_DATA_OUT = PORTA .EQU _DISP_PORT_DATA_IN = PINA .EQU _DISP_PORT_DATA_DIR = DDRA .EQU _DISP_PORT_CMD_OUT = PORTB .EQU _DISP_PORT_CMD_IN = PINB .EQU _DISP_PORT_CMD_DIR = DDRB .EQU _DISP_PORT_CMD_DIR = DDRB .EQU _DISP_BIT_WR = 7 .EQU _DISP_BIT_RD = 6 .EQU _DISP_BIT_CS = 5 .EQU _DISP_BIT_A0 = 4 .EQU _DISP_BIT_RESET = 3 rcall _DISP_INIT call _DISP_INIT</pre>		

No.	
Name	DICD HILL
	_DISP_FILL
Function	Fill VRAM area with specific pattern
Input values	X Stard Addres of VRAM
	Y Number of bytes
	Acc Pattern
Output values	None
Destroy	Flags
Time	
Observations	
Example	Fill VRAM area start at 0 length of 1000 bytes with
	patter Oxaa
	Ldiw X,0
	Ldiw Y ,1000
	Ldi Acc, 0xaa
	rcall _DISP_FILL
	call _DISP_FILL (chips >=16k)

Name	_DISP_SET_CURSOR_ADDR
Function	Set Cursor Address
Input values	AccH:Acc Cursor Address
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set cursor address to 1000H.
	Ldiaw 0x1000 rcall _DISP_SET_CURSOR_ADDR call _DISP_SET_CURSOR_ADDR (chips >=16k)

Name	_DISP_GET_CURSOR_ADDR
Function	get Cursor Address
Input values	None
Output values	AccH:Acc Cursor Address
Destroy	Flags
Time	
Observations	
Example	rcall _DISP_GET_CURSOR_ADDR
	call _DISP_GET_CURSOR_ADDR (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
	_DISP_SEED
Function	Define interface speed
Input values	Acc _DP_SLOW or _DP_FAST
Output values	None
Destroy	None
Time	
Observations	SED1335 GENERATE A FLICKS ON SCREEN AT EACH COMMAND OR DATA
	RECEIVED , WHEN USER DEFINE A SLOW SPEED INTERFACE LESS
	FLICKS THEN GENERATE ON SCREEN
Example	Set interface speed to fast
	Ldi Acc, DP FAST
	rcall DISP SPEED
	call _DISP_SPEED (chips >=16k)

Name	_DISP_CMD
Function	Send a COMMAND to display
Input values	Acc COMMAND
Output values	None
Destroy	Flags
Time	
Observations	
Example	Send a COMMAND to set cursor direction increment to right Ldi Acc, _DISP_CMD_CSRDIR_RIGHT rcall _DISP_CMD (chips >=16k)

Name	_DISP_DATA
Function	Send a DATA to display
Input values	ACC DATA
Output values	None
Destroy	Flags
Time	
Observations	
Example	Send a '*' to display
	Ldi Acc, '*' rcall _DISP_DATA call _DISP_DATA (chips >=16k)

Name	
	_DISP_SET_LC
Function	Set cursor position on screen
Input values	XL column
	YL line
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set cursor at line 2 column 5
	Ldi XL,5
	Ldi YL,2
	rcall _DISP_SET_LC
	call _DISP_SET_LC (chips >=16k)

Name	_DISP_SEND_STR
Function	Send a string in FLASH to display
Input values	Z-> String in Flash
Output values	None
Destroy	Flags
Time	
Observations	
Example	Sent a "Hello World" to display.
	<pre>Ldiw Z,MSG*2 Rcall _DISP_SEND_STR call _DISP_SEND_STR (chips >=16k) MSG: .DB "Hello World",0</pre>

Name	DISP SEND STR S
Function	Send a string in SRAM to display
Input values	Z-> String in SRAM
Output values	None
Destroy	Flags, R0
Time	
Observations	
Example	<pre>Ldiw Z,MSG Rcall _DISP_SEND_STR_S call _DISP_SEND_STR_S (chips >=16k) . Memory position MSG must filled with "Hello World",0 message before execute above code .DSEG MSG: .BYTE 11 .CSEG</pre>

Name	_DISP_PSET
Function	Set or Clear a pixel at display coordinates
Input values	X,Y Coordinates
	Acc _ON to set _OFF to clear
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set pixel at coordinates (160,120)
	Ldiw X,160 Ldiw Y,120 Ldi Acc,_ON Rcall _DISP_PSET call _DISP_PSET (chips >=16k)

Name			
	_DISP_POINT		
Function	Get pixel stated at display coordinates		
Input values	X,Y Coordinates		
Output values	Acc _ON if set _OFF if clear		
Destroy	Flags		
Time			
Observations			
Example	Get pixel state at coordinates (160,120)		
	Ldiw X ,160		
	Ldiw Y ,120		
	Rcall _DISP_POINT		
	call _DISP_POINT (chips >=16k)		

SED1335 Constants		
Name	Value	Description
_DISP_WIDTH	320	Hardware display width
_DISP_HEIGHT	240	Hardware display height
_DISP_SCALE_WIDTH	320	Logical width
_DISP_SCALE_HEIGHT	240	Logical height
_DISP_CMD_SYSTEM_SET	0x40	Initialize display
_DISP_CMD_SLEEP_IN	0x53	Enter standby mode
_DISP_CMD_DISP_OFF	0x58	Disable display
_DISP_CMD_DISP_ON	0x59	Enable display
_DISP_CMD_SCROLL	0x44	Set display start Addr and regions
_DISP_CMD_CSRFORM	0x5d	Set cursor type
_DISP_CMD_CGRAM_ADR	0x5c	Set addr of character generator in RAM
_DISP_CMD_CSRDIR_RIGHT	0x4c	Set cursor movement to right
_DISP_CMD_CSRDIR_LEFT	0x4d	Set cursor movement to left
_DISP_CMD_CSRDIR_UP	0x4e	Set cursor movement to up
_DISP_CMD_CSRDIR_DOWN	0x4f	Set cursor movement to down
_DISP_CMD_HDOT_SCR	0x5a	Set Horizontal scroll position
_DISP_CMD_OVLAY	0x5b	Set display overlay format
_DISP_CMD_CSWR	0x46	Set cursor address
_DISP_CMD_CSRR	0x47	Read cursor address
_DISP_CMD_MWRITE	0x42	Write to display memory
_DISP_CMD_MREAD	0x43	Read to display memory
_DISP_BIT_BUSY	6	Internal bit busy flag

SEVEN

DRTYP1 (DIPS7DR1.INC)

Description

This drive is software generator scanning for seven segments display generally LED displays. It generate pattern for space, digits 0..9, and characters 'A' to 'Z' of course some character not possible to implement in seven segment but a close pattern is generated as follow.

Implemented Functions

Name				
rame	_DISP7_INIT			
Function	Initialize Seven segment interface			
Input values	None			
Output values	None			
Destroy	Flags			
Time				
Observations	Global interrupts are disable during initialization			
Example	<pre>Initialize using PORTB as segment, PORTD as Digits, Segment ON=LOW, Segment OFF=High, Digit ON=low, Digit OFF=High, Number of digits=8, segments bit number of A,B,C,E,F,G,P in sequence 0,1,2,3,4,5,6,7 and Digits bit numbers of 0,1,2,3,4,5,6,7 as same in sequence. .EQU _DISP7_SEG_PORT_OUT = PORTB .EQU _DISP7_SEG_PORT_DIR = DDRB .EQU _DISP7_SEG_PORT_IN = PINB .EQU _DISP7_DIG_PORT_OUT = PORTD .EQU _DISP7_DIG_PORT_DIR = DDRD .EQU _DISP7_DIG_PORT_IN = PIND .EQU _DISP7_DIG_PORT_IN = PIND .EQU _DISP7_SEG_OFF = 1 .EQU _DISP7_SEG_OFF = 1 .EQU _DISP7_DIG_OFF = 1 .EQU _DISP7_NUM_DIGITS = 8 .EQU _DISP7_BIT_SEG_A = 0</pre>			

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

```
.EQU _DISP7_BIT_SEG B = 1
.EQU DISP7 BIT SEG C = 2
.EQU _DISP7_BIT_SEG_D = 3
.EQU _DISP7_BIT_SEG_E = 4
.EQU DISP7 BIT SEG F = 5
.EQU DISP7 BIT SEG G = 6
.EQU _DISP7_BIT_SEG_P = 7
.EQU _DISP7_BIT_DIG_0 = 0
.EQU _DISP7_BIT_DIG_1 = 1
.EQU _DISP7_BIT_DIG 2 = 2
.EQU _DISP7_BIT_DIG_3 = 3
.EQU _DISP7_BIT_DIG_4 = 4
.EQU _DISP7_BIT_DIG 5 = 5
.EQU _DISP7_BIT_DIG_6 = 6
.EQU _DISP7_BIT_DIG_7 = 7
rcall DISP7 INIT
call _DISP7_INIT (chips >=16k)
```

Name	_DISP7_SHOW_DIGIT
Function	Turn on one digit a time
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	IT'S RECOMMEND THAT PROGRAMMER TO USE THIS ROUTINE IN THE INTERRUPT HANDLE IN FIXED TIME AT 160Hz MINIMUM FREQUENCY.
Example	Using this without a interrupt routine LOOP: Call _DISP7_SHOW_DIGIT 'INSERT CODE HERE TO PROCESS OTHER THINGS 'SINCHRONIZE TO FIXED RATE RJM LOOP

Name	
Name	DISP7 DATA
Function	Send a character to display buffer
Input values	Acc Character ASCII
Output values	None
Destroy	Flags
Time	
Observations	
Example	Show 'A' on display
	Ldi Acc,'A'
	Rcall _DISP7_DATA
	call _DISP7_DATA (chips >=16k)

Name	_DISP7_SEND_STR
Function	Send String to display
Input values	z→ Flash string with zero ended \0
Output values	None
Destroy	Flags
Time	
Observations	
Example	Show 'ABCDEF' on display Ldiw Z,MSG*2 Rcall _DISP7_SEND_STR call _DISP7_SEND_STR (chips >=16k)
	MSG: .DB "ABCDEF", 0

Name	_DISP7_LOCATE
Function	Set cursor position
Input values	AccH Column
Output values	None
Destroy	Flags
Time	
Observations	
Example	Position cursor at column 4
	Ldi Acc, 4
	Rcall _DISP7_LOCATE
	call _DISP7_LOCATE (chips >=16k)

Name	_DISP7_CLS
Function	Clear character buffer
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	Rcall _DISP7_CLS
	call _DISP7_CLS (chips >=16k)

GRAPH

CIRCLE (CIRCLE.INC)

Description

Draw a Circle in any graph device that has implement a _DISP_PSET routine.

Implemented Functions

Name	_GRAPH_CIRCLE
Function	Draw a circle at any graph interface
Input values	X,Y Circle coordinates
	AccTH:AccT radius
	Acc Pixel color, if monochrome display _ON or _OFF
Output values	None
Destroy	None
Time	
Observations	User must be define a routine called _DISP_PSET that
	receiver X,Y with coordinates parameters and Acc with
	color.
Example	Draw circle at coordinates (128,102) with radius=100
	Ldiw X,128
	Ldiw Y,102
	Ldiawt 100
	Ldi Acc,_ON
	rcall _GRAPH_CIRCLE
	call _GRAPH_CIRCLE (chips >=16k)

LINE (LINE.INC)

Description

Draw a line in any graph device that has implement a <code>_DISP_PSET</code> routine that receiver \mathbf{X},\mathbf{Y} register with coordinates and \mathbf{Acc} with pixel color.

Implemented Functions

Name	_GRAPH_MOVE_TO
Function	Move a virtual pen to specific coordinate that
	represent a initial line coordinate
Input values	AccH:Acc X coordinate
	AccTH:AccT Y coordinate
Output values	None
Destroy	None
Time	
Observations	
Example	Move graph cursor to coordinates (10,20) Ldiaw 10 Ldiawt 20 rcall _GRAPH_MOVE_TO
	call _GRAPH_MOVE_TO (chips >=16k)

Name	
	GRAPH MOVE TO EX
Function	Same as _GRAPH_MOVE_TO but use X,Y register instead
Input values	X,Y Coordinates to move
Output values	None
Destroy	None
Time	
Observations	
Example	Move graph cursor to coordinates (10,20)
	Ldiw X ,10
	Ldiw Y ,20
	rcall _GRAPH_MOVE_TO_EX
	call GRAPH MOVE TO EX (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	_GRAPH_GET_POINT
Function	Get coordinates of virtual pen
Input values	None
Output values	X,Y Coordinates of pen
Destroy	None
Time	
Observations	
Example	rcall _GRAPH_GET_POINT
	call _GRAPH_GET_POINT (chips >=16k)

Name	_GRAPH_LINE_TO
Function	Draw a line any device from virtual pen coordinates
	to coordinates provide in this routine
Input values	X,Y End Coordinates
Output values	Flags,r0r13
Destroy	None
Time	
Observations	
Example	Draw a line from coordinates (10,20) to coordinates
	(150,200)
	Ldiw X,10
	Ldiw y,20
	Call _GRAPH_MOVE_TO_EX
	Ldiw x,150
	Ldiw Y,200
	Ldi Acc,_ON
	Call _GRAPH_LINE_TO

DRAW (DRAW.INC)

Description

Draw is similar a DRAW command used in some BASIC languages that allow graphics drawing using a vectors defined by a string using ASCII characters like commands. Below as list of these commands.

```
Ortogonal moves
```

```
nnnU - draw a vector up ( 900)
nnnR - draw a vector right ( 00)
nnnD - draw a vector down (2700)
nnnL - draw a vector left (1800)
```

Diagonal moves

```
nnnE - draw a vector up and right (450)
nnnF - draw a vector down and right (3150)
nnnG - draw a vector down and left (2270)
nnnH - draw a vector up and left (1350)
```

Free moves

```
sxxx, syyyP - draw a vector to PX+xxx, PY+yyy
```

Pen control

```
W - Turn pen on
B - Turn pen off
```

Where nnn,xxx,yyy is a values ranging 0 to 255 meaning vector length, the below string draw on device a word "DRAW".

"10U4R2F6D2G4LB8RW10U4R2F2D2G4LB4RW4FB2RW8U2E2R2F4D6LB6RW4DB2R10 UW10D5E5F10U"

Implemented Functions

Name	
	_DRAW_SET_POINT
Function	Define a start point of vectors
Input values	X,Y Start point Coordinates
Output values	None
Destroy	None
Time	
Observations	
Example	Set start coordinate at (0,0)
	Ldiw X,0
	Ldiw Y, 0
	rcall _DRAW_SET_POINT
	call _DRAW_SET_POINT (chips >=16k)

Name	_DRAW_GET_POINT
Function	Get a start point of vectors
Input values	None
Output values	X,Y Start point Coordinates
Destroy	None
Time	
Observations	
Example	rcall _DRAW_GET_POINT
	call _DRAW_GET_POINT (chips >=16k)

_DRAW_SET_CENTER_POINT
Define a center point for vectors rotation
X,Y center point Coordinates
None
None
Set center rotate point coordinate at (100,200) Ldiw X,100 Ldiw Y,200 rcall _DRAW_SET_CENTER_POINT call _DRAW_SET_CENTER_POINT (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	_DRAW_GET_CENTER_POINT
Function	Get a center point of vectors rotation
Input values	None
Output values	X,Y Start point Coordinates
Destroy	None
Time	
Observations	
Example	rcall _DRAW_GET_CENTER_POINT
	call _DRAW_GET_POINT (chips >=16k)

Name	
	_DRAW_SET_SCALE
Function	Set scale of vectors
Input values	AccH:Acc AccH integer part,Acc fractinary part
Output values	None
Destroy	None
Time	
Observations	
Example	Set scale to 2.5
	Ldiaw (2+50/100)*256
	rcall _DRAW_SET_SCALE
	call _DRAW_SET_SCALE (chips >=16k)

Name	_DRAW_GET_SCALE
Function	Get scale of vectors
Input values	None
Output values	AccH:Acc scale
Destroy	None
Time	
Observations	
Example	rcall _DRAW_GET_SCALE
	call _DRAW_GET_SCALE (chips >=16k)

Name	_DRAW_SET_ROTATE_ANGLE
Function	Set rotate angle of output set of vectors
Input values	AccH:Acc angle in degrees
Output values	None
Destroy	None
Time	
Observations	
Example	Set rotate angle to 50
	Ldiaw 50 rcall _DRAW_SET_ROTATE_ANGLE call _DRAW_SET_ROTATE_ANGLE (chips >=16k)

Name	_DRAW_SAVE_POINT
Function	Save start point for further use
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	rcall _DRAW_SAVE_SCALE
	call _DRAW_SAVE_SCALE (chips >=16k)

Name	
	_DRAW_RESTORE_POINT
Function	Restore start point
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	rcall _DRAW_RESTORE_POINT
	call _DRAW_RESTORE_POINT(chips >=16k)

Name	
	_DRAW
Function	Draw set of vectors on device
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	Draw a word "DRAW" on graph device
	Ldiw Z,MSG*2
	rcall _DRAW
	call _DRAW(chips >=16k)
	MSG:
	.db
	"10U4R2F6D2G4LB8RW10U4R2F2D2G4LB4RW4FB2RW8U2E2R2F4D6LB
	6RW4DB2R10UW10D5E5F10U",0

EEPROMS

AT24C64 (AT24C64.INC)

Description

The AT24C32/64 provides 32,768/65,536 bits of serial electrically erasable and programmable read only memory (EEPROM) organized as 4096/8192 words of 8 bits each. The device's cascadable feature allows up to 8 devices to share a common 2-wire bus.

Implemented Functions

Name	AT24C64 BYTE WRITE
Then also an	
Function	Write a byte into AT24C64 chip
Input values	Acc Data to be write
	AccH Device Address
	AccTH:AccT Memory Address
Output values	None
Destroy	None
Time	
Observations	
Example	Write a Byte 0x5a in device 5 at address 1000
	Ldi Acc, 0x5a
	Ldi AccH,5
	Ldiawt 1000
	rcall _AT24C64_BYTE_WRITE
	call _AT24C64_BYTE_WRITE (chips >=16k)

Name	
	_AT24C64_BYTE_READ
Function	Read a byte from AT24C64 chip
Input values	AccH Device Address
	AccTH:AccT Memory Address
Output values	Acc Read Data
Destroy	None
Time	
Observations	
Example	Read a Byte in device 5 at address 1000
	Ldi AccH,5
	Ldiawt 1000
	rcall _AT24C64_BYTE_READ
	call _AT24C64_BYTE_READ (chips >=16k)

AVRE2P (BE256.INC)

Description

Drive to write/read EEPROM in AVR device with EEPROM size $<\!\!=\!\!256$ bytes.

Implemented Functions

Name	_EEPROM_WRITE
Function	Write a byte into EEPROM
Input values	Acc Data to be write
	AccH Address
Output values	None
Destroy	None
Time	
Observations	
Example	Write a Byte 0x5a 5 at address 100
	Ldi Acc, 0x5a
	Ldi AccH, 100
	rcall _EEPROM_WRITE
	call _EEPROM_WRITE (chips >=16k)

Name	_EEPROM_READ
Function	Read a byte from EEPROM
Input values	AccH Address
Output values	Acc read Data
Destroy	None
Time	
Observations	
Example	Read a Byte at address 100
	Ldi AccH, 100
	rcall _EEPROM_READ
	call _EEPROM_READ (chips >=16k)

AVRE2P (A256.INC)

Description

Drive to write/read EEPROM in AVR device with EEPROM size \gt 256 bytes.

Implemented Functions

Name	_EEPROM_WRITE
Function	Write a byte into EEPROM
Input values	Acc Data to be write
	AccT:AccH Address
Output values	None
Destroy	None
Time	
Observations	
Example	Write a Byte 0x5a 5 at address 100
	Ldi Acc , 0x5a
	Ldi AccH, low(100)
	Ldi AccT, high (100)
	rcall _EEPROM_WRITE
	call _EEPROM_WRITE (chips >=16k)

Name	EEPROM READ
Function	Read a byte from EEPROM
Input values	AccT:AccH Address
Output values	Acc read Data
Destroy	None
Time	
Observations	
Example	Read a Byte at address 100 Ldi AccH, low(100) Ldi AccT, high(100) rcall _EEPROM_READ call _EEPROM_READ (chips >=16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

DATA FLASH

AT45DB161-B

Description

The AT45DB161B is a 2.5-volt or 2.7-volt only, serial interface Flash memory ideally suited for a wide variety of digital voice-, image-, program code and data-storage applications. Its 17,301,504 bits of memory are organized as 4096 pages of 528 bytes each. In addition to the main memory, the AT45DB161B also contains two SRAM data buffers of 528 bytes each. The buffers allow receiving of data while a page in the main memory is being reprogrammed, as well as writing a continuous data stream. EEPROM emulation (bit or byte alterability) is easily handled with a self-contained three step Read-Modify-Write operation.Unlike conventional Flash memories that are accessed randomly with multiple address lines and a parallel interface, the DataFlash uses a SPI serial interface to sequentially access its data. DataFlash supports SPI mode 0 and mode 3. The simple interface facilitates hardware layout, increases system reliability, minimizes switching noise, and reduces package size and active pin count. The device is optimized for use in many commercial and industrial applications where high density, low pin count, low voltage, and low power are essential. The device operates at clock frequencies up to 20 MHz with a typical active read current consumption of 4 mA.

Implemented Functions

Name	AMASDD161D TNIM
The state of the s	_AT45DB161B_INIT
Function	Initialize AT45DB161B Interface
Input values	None
Output values	None
Destroy	None
Time	
Observations	- Global interrupts are disable during
	initialization.
Example	Initialize device using data port as PORTA, Reset
	Port as PORTB, WP port as PORTC, SO bit=0, SI bit=1,
	SCK bit=2,CS bit=3,WP bit=0,RESET bit=1
	.EQU _AT45DB161B_PORT_OUTPUT = PORTA
	.EQU _AT45DB161B_PORT_DIR = DDRxA
	.EQU _AT45DB161B_PORT_INPUT = PINxA
	.EQU _AT45DB161B_RESET_OUTPUT= PORTB
	.EQU _AT45DB161B_RESET_DIR = DDRxB
	.EQU _AT45DB161B_RESET_INPUT = PINB
	.EQU _AT45DB161B_WP_OUTPUT = PORTC
	.EQU _AT45DB161B_WP_DIR = DDRC
	.EQU _AT45DB161B_WP_INPUT = PINC
	.EQU _AT45DB161B_SO_BIT = BIT0
	.EQU _AT45DB161B_SI_BIT = BIT1
	.EQU _AT45DB161B_SCK_BIT = BIT2
	.EQU _AT45DB161B_CS_BIT = BIT3
	.EQU _AT45DB161B_WP_BIT = BIT0
	.EQU _AT45DB161B_RESET_BIT = BIT1
	rcall _AT45DB161B_INIT
	call _AT45DB161B_INIT (chips >=16k)

Name	
	_AT45DB161B_RESET
Function	Reset AT45DB161B
Input values	None
Output values	None
Destroy	None
Time	
Observations	- Global interrupts are disable during
	initialization.
Example	rcall _AT45DB161B_RESET
	call _AT45DB161B_RESET (chips >=16k)

Name	_AT45DB161B_DATA_OUT
Function	Send Data or Command AT45DB161B
Input values	Acc Data or Command
Output values	None
Destroy	None
Time	80 clocks
Observations	- Global interrupts are disable during
	initialization. SPI Mode 3 is asserted
Example	Send continuous_array_read command to chip
	ldi Acc, AT45DB161B_SPI3_CMD_CONTINUOUS_ARRAY_READ rcall _AT45DB161B_DATA_OUT call _AT45DB161B_DATA_OUT (chips >=16k)

Name	_AT45DB161B_DATA_IN
Function	Read Data from AT45DB161B
Input values	None
Output values	Acc Data
Destroy	None
Time	44 clocks
Observations	- Global interrupts are disable during initialization. SPI Mode 3 is asserted
Example	rcall _AT45DB161B_DATA_IN call _AT45DB161B_DATA_IN (chips >=16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
	_AT45DB161B_DATA_END
Function	Finish data transfer to AT45DB161B
Input values	None
Output values	None
Destroy	None
Time	
Observations	- Global interrupts are disable during
	initialization. SPI Mode 3 is asserted
Example	rcall _AT45DB161B_DATA_END
	call _AT45DB161B_DATA_END (chips >=16k)

Name	
	_AT45DB161B_DATA_START
Function	Start data transfer to AT45DB161B
Input values	None
Output values	None
Destroy	None
Time	
Observations	- Global interrupts are disable during
	initialization. SPI Mode 3 is asserted
Example	rcall _AT45DB161B_DATA_START
	call _AT45DB161B_DATA_START (chips >=16k)

Name	_AT45DB161B_SET_WRITE_PROTECT
Function	Set WP pin state of AT45DB161B
Input values	Acc _ON=Protect _OFF=release
Output values	None
Destroy	None
Time	
Observations	
Example	rcall _AT45DB161B_SET_WRITE_PROTECT
	call _AT45DB161B_SET_WRITE_PROTECT (chips >=16k)

Name	
	_AT45DB161B_GET_STATUS_REGISTER
Function	Get status register state of AT45DB161B
Input values	None
Output values	Acc status
	Bit 7=READY/BUSY state 1=READ 0=BUSY
	Bit 6=COMPARE 0=compare math memory
	Bit 5=1,bit 4=0,bit 3=1,bit 2=1, bit 1=x, bit 0=x
Destroy	None
Time	
Observations	
Example	rcall _AT45DB161B_GET_STATUS_REGISTER
	call _AT45DB161B_GET_STATUS_REGISTER (chips >=16k)

Name	_AT45DB161B_SET_ADDRESS
Function	Set start address of AT45DB161B
Input values	X Buffer Address
	Y Page Address
Output values	
Destroy	None
Time	
Observations	
Example	Set page address = 1000 and buffer address = 50
	Ldiw X ,50
	Ldiw Y,1000
	rcall AT45DB161B SET ADDRESS
	call _AT45DB161B_SET_ADDRESS (chips >=16k)

Name	
	_AT45DB161B_CONTINUOUS_ARRAY_READ
Function	Send continuous array read command to AT45DB161B
Input values	X Buffer Address
	Y Page Address
Output values	
Destroy	None
Time	
Observations	
Example	Send continuou read command to address = 1000 and
	buffer address = 50
	Ldiw X , 50
	Ldiw Y,1000
	rcall AT45DB161B CONTINUOUS ARRAY READ
	call _AT45DB161B_CONTINUOUS_ARRAY_READ (chips >=16k)

Name	AT45DB161B BUFFER1 WRITE
	_AI430BIOIB_BOFFERI_WRITE
Function	Send Buffer1 write to AT45DB161B
Input values	X Buffer Address
Output values	
Destroy	None
Time	
Observations	
Example	Send Buffer1 write buffer address = 50
	Ldiw X,50
	rcall AT45DB161B BUFFER1 WRITE
	call _AT45DB161B_BUFFER1_WRITE (chips >=16k)

Name	AT45DB161B BUFFER1 READ
	_A145551015_501111K1_K125
Function	Send Buffer1 Read to AT45DB161B
Input values	X Buffer Address
Output values	
Destroy	None
Time	
Observations	
Example	Send Buffer1 READ buffer address = 50
	Ldiw X ,50
	rcall AT45DB161B BUFFER1 READ
	call _AT45DB161B_BUFFER1_READ (chips >=16k)

Name	_AT45DB161B_BUFFER1_WRITE_INTO_PAGE
Function	program Buffer1 into Flash Page to AT45DB161B

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Input values	Y Start Page Address
Output values	
Destroy	None
Time	
Observations	
Example	Send program Buffer1 into Flash Page page = 50 Ldiw Y,50 rcall _AT45DB161B_BUFFER1_WRITE_INTO_PAGE call _AT45DB161B_BUFFER1_WRITE_INTO_PAGE (chips
	>=16k)

Name	AT45DB161B BUFFER1 READ FROM PAGE
Function	read Buffer1 from Flash Page to AT45DB161B
Input values	Y Start Page Address
Output values	
Destroy	None
Time	
Observations	
Example	Send program Buffer1 into Flash Page page = 50
	Ldiw Y,50
	rcall _AT45DB161B_BUFFER1_READ_FROM_PAGE
	call _AT45DB161B_BUFFER1_READ_FROM_PAGE (chips
	>=16k)

AT45DB161B Constants		
Name	Value	
_AT45DB161B_SPI3_CMD_CONTINUOUS_ARRAY_READ	0XE8	
_AT45DB161B_SPI3_CMD_MAIN_MEMORY_PAGE_READ	0XD2	
_AT45DB161B_SPI3_CMD_BUFFER1_READ	0XD4	
_AT45DB161B_SPI3_CMD_BUFFER2_READ	0XD6	
_AT45DB161B_SPI3_CMD_STATUS_REGISTER_READ	0XD7	
_AT45DB161B_CMD_BUFFER1_WRITE	0x84	
_AT45DB161B_CMD_BUFFER2_WRITE	0x87	
_AT45DB161B_CMD_BUFFER1_PROGRAM_WITH_ERASE	0x83	
_AT45DB161B_CMD_BUFFER1_PROGRAM_WITH_ERASE	0x84	
_AT45DB161B_CMD_BUFFER1_PROGRAM_WITHOUT_ERASE	0x88	
_AT45DB161B_CMD_BUFFER2_PROGRAM_WITHOUT_ERASE	0x89	
_AT45DB161B_CMD_PAGE_ERASE	0x81	
_AT45DB161B_CMD_BLOCK_ERASE	0x50	
_AT45DB161B_CMD_PAGE_PROGRAM_THROUGH_BUFFER1	0x82	
_AT45DB161B_CMD_PAGE_PROGRAM_THROUGH_BUFFER2	0x85	
_AT45DB161B_CMD_MAIN_MEMORY_PAGE_TO_BUFFER1_TRANSFER	0x53	
_AT45DB161B_CMD_MAIN_MEMORY_PAGE_TO_BUFFER2_TRANSFER	0x55	
_AT45DB161B_CMD_MAIN_MEMORY_PAGE_TO_BUFFER1_COMPARE	0x60	
_AT45DB161B_CMD_MAIN_MEMORY_PAGE_TO_BUFFER2_COMPARE	0X61	
_AT45DB161B_CMD_AUTO_PAGE_REWRITE_THROUGH_BUFFER1	0x58	
AT45DB161B_CMD_AUTO_PAGE_REWRITE_THROUGH_BUFFER2	0x59	
AT45DB161B_RDY_BIT	7	
_AT45DB161B_COMP_BIT	6	

Analog to Digital Converters

ADC831

Description

ADC831 or TLC831 chip is a 8bit Analog to Digital Converter with serial control and differencial input. This device is a 8bit successive approximation analog to digital converters. The serial output is configured to interface with standard shift registers or microprocessors.

Implemented Functions

Name	
	ADC831_INIT
Function	Initialize ADC831 Interface
Input values	None
Output values	None
Destroy	None
Time	
Observations	- Global interrupts are disable during
	initialization.
	- After this initialization CLK,CS,DATA are in
	high level, CLK,CS as output and Data as input.
Example	Define PORT where the ADC831 is connected in this
	example PORTB
	.EQU ADC831 PORT OUT= PORTB
	.EQU ADC831 PORT IN = PINB
	.EQU ADC831 PORT DIR= DDRB
	Define pin bit numbers
	.EQU ADC831 BIT CLK = 0
	.EQU ADC831 BIT CS = 1
	.EQU ADC831 BIT DATA= 2
	Then initialize one of below two methods
	rcall ADC831 INIT
	call ADC831 INIT (chips >=16k)
Name	
	_ADC831_GET

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Function	Get 8bit unsigned value fr	om ADC831
Input values	None	
Output values	Acc 8bit unsigned value	
Destroy	Flags	
Time	Average conversion time	Frequency
	151.0uS	1Mhz
	37.6uS	4Mhz
	25.2uS	6Mhz
	18.9uS	8Mhz
	22.0uS	10Mhz
	20.1uS	14.3Mhz
	22.3uS	16Mhz
Observations		
Example	After below one of both ca	lls Acc with ADC831 value
	rcall _ADC831_GET	
	call _ADC831_GET (chips >	=16k)

ADC832

Description

ADC832 or TLC832 chip is a 8bit Analog to Digital Converter with serial control and have 2 input channels. This device is a 8bit successive approximation analog to digital converters. The serial output is configured to interface with standard shift registers or microprocessors.

Implemented Functions

Name	ADC832 INIT	
Function	Initialize ADC832 Interface	
Input values	None	
Output values	None	
-		
Destroy	None	
Time		
Observations	- Global interrupts are disable during	
	initialization.	
	- After this initialization	
	CLK,CS,DATA OUT,DATA IN are in high level,	
	CLK,CS,DATA OUT as output and DATA IN as input	
Example	Define PORT where the ADC832 is connected in this	
_	example PORTB	
	•	
	.EQU ADC832 PORT OUT= PORTB	
	.EQU ADC832 PORT IN = PINB	
	.EQU _ADC832_PORT_DIR= DDRB	
	Define pin bit numbers	
	.EQU _ADC832_BIT_CLK = 0	
	.EQU _ADC832_BIT_CS = 1	
	.EQU _ADC832_BIT_DATA_OUT = 2	
	.EQU _ADC832_BIT_DATA_IN=3	
	Then initialize one of below two methods	
	rcall ADC832 INIT	
	call ADC832 INIT (chips >=16k)	

Name	200	1020 GTM
	_ADC832_GET	
Function	Get 8bit unsigned value f	rom ADC831
Input values	Acc Channel 0 or 1	
Output values	Acc 8bit unsigned value	
Destroy	Flags	
Time	Average conversion time	Frequency
	166.0uS	1Mhz
	41.5uS	4Mhz
	27.7uS	6Mhz
	20.7uS	8Mhz
	23.8uS	10Mhz
	21.7uS	14.3Mhz
	23.8uS	16Mhz
Observations		
Example	Set Acc with channel 1 aft	ter below one of both calls
	Acc with ADC832 value	
	Ldi Acc,1	
	rcall _ADC831_GET	
	call _ADC831_GET (chips)	>=16k)

ADC8535

Description

ADC8535 is a 10bit Analog to Digital Converter internal of AT90S8535 microcontroller or other equivalents of AVR family.

Implemented Functions

Name	ADC INIT	
Function	Initialize internal ADC engine	
Input values	Acc CLK prescaler factor in power of 2 1=2,2=4,3=8	
Output values	None	
Destroy	None	
Time		
Observations	- Global interrupts are disable during	
	initialization.	
Example	Initialize ADC with prescaler = 2	
	Ldi Acc, 2	
	rcall _ADC_INIT	
	call _ADC_INIT (chips >= 16k)	

Name	_ADC_CHANNEL
Function	Set multiplexed channel to be use
Input values	Acc channel number 0 to 7
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set ADC channel to 3
	<pre>Ldi Acc, 3 rcall _ADC_CHANNEL call _ADC_CHANNEL (chips >=16k)</pre>

Name	_ADC_GET
Function	Get unsigned 10bit value from ADC
Input values	None
Output values	AccH:Acc has 10bit value
Destroy	Flags
Time	
Observations	
Example	After below both examples AccH:Acc have the 10bit value from ADC
	rcall _ADC_GET call _ADC_GET (chips >=16k)

ADCM128

Description

ADCM128 is a 10bit Analog to Digital Converter internal of ATMEGA128 microcontroller or other equivalents of AVR family.

Implemented Functions

Name	ADC INIT	
Function	Initialize internal ADC engine	
Input values	Acc CLK prescaler factor in power of 2 1=2,2=4,3=8	
Output values	None	
Destroy	None	
Time		
Observations	- Global interrupts are disable during	
	initialization.	
Example	Initialize ADC with prescaler = 2	
	Ldi Acc, 2	
	rcall _ADC_INIT	
	call _ADC_INIT (chips >=16k)	

Name	_ADC_SET_CHANNEL
Function	Set multiplexed channel to be use
Input values	Acc channel number 0 to 7
Output values	None
Destroy	Flags
Time	
Observations	
Example	Set ADC channel to 3
	Ldi Acc, 3
	rcall _ADC_CHANNEL
	call _ADC_CHANNEL (chips >=16k)

Name	
Name	ADC GET CHANNEL
Function	Get multiplexed channel in use
Input values	None
Output values	Acc channel number 0 to 7
Destroy	None
Time	
Observations	
Example	Get ADC channel in use, After below of both calls Acc
	has the channel number in use.
	rcall _ADC_GET_CHANNEL
	call _ADC_GET_CHANNEL (For chips with more 16k)

Name	
	_ADC_GET_VALUE
Function	Get unsigned 10bit value from ADC
Input values	None
Output values	AccH:Acc has 10bit value
Destroy	Flags
Time	
Observations	
Example	After below both examples AccH:Acc have the 10bit
	value from ADC
	manil ADC CEM VALUE
	rcall _ADC_GET_VALUE
	call _ADC_GET_VALUE(chips >=16k)

ADS8320 (Texas Instruments/Burr-Brown)

Description

The ADS8320 is a 16-bit sampling analog-to-digital converter with guaranteed specifications over a 2.7 V to 5.25 V supply range. It requires very little power even when operating at the full 100 kHz data rate. At lower data rates, the high speed of the device enables it to spend most of its time in the power-down mode the average power dissipation is less than 100 mW at 10 kHz data rate

Implemented Functions

ADS8320 INIT	
Initialize ADS8320 interface	
None	
None	
None	
- Global interrupts are disable during	
initialization.	
Define PORT where the ADS8320 is connected in this	
example PORTB	
.EQU ADS8320 PORT OUT= PORTB	
.EQU ADS8320 PORT IN = PINB	
.EQU _ADS8320_PORT_DIR= DDRB	
Define pin bit numbers	
.EQU _ADS832_BIT_CLK = 0	
.EQU _ADS832_BIT_CS = 1	
.EQU _ADS832_BIT_DATA= 2	
Then initialize one of below two methods	
rcall ADS8320 INIT	
call ADS8320 INIT (Chips >=16k)	

Name	_ADS8320_GET	
Function	Get 16bit value from ADS8320	
Input values	None	
Output values	AccH:Acc 16bit value	
Destroy	Flags	
Time		
Observations		
Example	After below both examples AccH:Acc have the 16bit value from ADC rcall _ADS8320_GET_VALUE call _ADS8320_GET_VALUE(chips >=16k)	

Astronomy

Julian Day

Description

The Julian day or Julian day number (JDN) is the integer number of days that have elapsed since an initial epoch defined as noon Universal Time (UT) Monday, January 1, 4713 BC in the proleptic Julian calendar. That noon-to-noon day is counted as Julian day 0. Negative values can also be used, although those predate all recorded history. Now, at 18:55, Thursday August 28, 2008 (UTC) the JDN is 2454707.

The Julian date (JD) is a continuous count of days and fractions elapsed since the same initial epoch. Currently the JD is 2454707.28844. The integral part (its floor) gives the Julian day number. The fractional part gives the time of day since noon UT as a decimal fraction of one day or fractional day, with 0.5 representing midnight UT. Typically, a 64-bit floating point (double precision) variable can represent an epoch expressed as a Julian date to about 1 millisecond precision. This routine compute Julian day according below equation:

$$y = year$$

m = month

$$d = day$$

If $m \le 2$ then

$$m = m + 12$$

$$y = y - 1$$

If calendar is Julian then,

$$b = -2 + fix\left(\frac{y + 4716}{4}\right) - 1179$$

Else

$$b = fix\left(\frac{y}{400}\right) - fix\left(\frac{y}{100}\right) + fix\left(\frac{y}{4}\right)$$

Then

$$a = 365 * y + 1720996.5$$

And

$$Julian \ day = a + b + fix(30.6001 * (m+1)) + d$$

Implemented Functions

Name	THE TAN DAY THE
	_JULIAN_DAY_INIT
Function	Initialize _JULIAN_DAY Object
Input values	None
Output values	None
Destroy	Flags, register R0R15
Time	
Observations	- Global interrupts are disable during
	initialization.
Example	Call below one of both methods to initialize
	rcall _JULIAN_DAY_INIT
	call _JULIAN_DAY_INIT (Chips >= 16k)

Name	
	_JULIAN_DAY_SET_DATE
Function	Set desiderated date for computation
Input values	Acc Day 131
	AccH Month 112
	AccTH:AccT Year
Output values	None
Destroy	None
Time	
Observations	
Example	Set date to Abril 6 of 1964
	Ldi Acc, 6
	Ldi AccH, 4
	Ldiawt 1964
	rcall _JULIAN_DAY_SET_INIT
	call _JULIAN_DAY_SET_INIT (chips >= 16k)

Name	_JULIAN_DAY_GET_DATE
Function	Get date
Input values	None
Output values	Acc Day 131
	AccH Month 112
	AccTH:AccT Year
Destroy	None
Time	
Observations	
Example	After below one both calls Acc = Day, AccH = Month,
	AccTH:AccT=Year
	rcall _JULIAN_DAY_GET_INIT
	call _JULIAN_DAY_GET_INIT (chips >=16k)

Name	_JULIAN_DAY_SET_GREGORIAN
Function	Set Gregorian date
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	After below one both calls date is assume Gregorian rcall _JULIAN_DAY_SET_GREGORIAN call _JULIAN_DAY_GET_GREGORIAN (chips >= 16k)

Name	_JULIAN_DAY_SET_JULIAN
Function	Set Julian date
Input values	None
Output values	None
Destroy	None
Time	
Observations	
Example	After below one both calls date is assume Julian rcall _JULIAN_DAY_SET_JULIAN call _JULIAN_DAY_GET_JULIAN (chips >= 16k)

Name	_JULIAN_DAY_GET_VALUE
Function	Get a pointer of Julian day value in Float Double
	precision
Input values	None
Output values	Z >> Fload Double Value
Destroy	None
Time	
Observations	The Julian day returned for this function is updated only before calling _JULIAN_DAY_COMPUTE function
Example	After below one both calls date is Z point to Julian
	day Float Double Value
	rcall _JULIAN_DAY_GET_VALUE call _JULIAN_DAY_GET_VALUE (chips >= 16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	_JULIAN_DAY_COMPUTE
Function	Using actual date compute Julian day
Input values	None
Output values	None
Destroy	Flags, R0R15
Time	
Observations	if calling this routine before setting a date and gregorian flag a unpredictable result will be returned
Example	After below one both calls Julian Day has computed. rcall _JULIAN_DAY_COMPUTE call _JULIAN_DAY_COMPUTE (chips >= 16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

COMM - Communications

12C (12C.INC)

Description

I2C (Inter-Integrated Circuit) is a multi-master serial computer bus invented by Philips that is used to attach low-speed peripherals to a motherboard, embedded system, or cellphone. The name is pronounced eye-squared-see or eye-two-see. As of October 1, 2006, no licensing fees are required to implement the I2C protocol. However, fees are still required in order to "officially" allocate I2C slave addresses. This Author drive implement function to implement I2C at any (no mapped) port.

Implemented Functions

Name	_I2C_INIT
Function	Initialize I2C Interface
Input values	None
Output values	None
Destroy	
Time	
Observations	- Global interrupts are disable during
	initialization.
Example	Initialize I2C at PORTB with SCL=0 and SDA=1
	<pre>.EQU _I2C_PORT_OUT = PORTB .EQU _I2C_PORT_IN = PINB .EQU _I2C_PORT_DIR = DDRB .EQU _I2C_BIT_SCL = 0 .EQU _I2C_BIT_SDA = 1</pre>
	rcall _I2C_INIT call I2C INIT (Chips >= 16k)

Name	
	_I2C_START
Function	Insert I2C start conditions
Input values	None
Output values	None
Destroy	
Time	
Observations	
Example	rcall _I2C_START
	call _I2C_START (Chips >= 16k)

Name	_I2C_STOP
Function	Insert I2C start conditions
Input values	None
Output values	None
Destroy	
Time	
Observations	
Example	rcall _I2C_START
	call _I2C_START (Chips >= 16k)

Name	I2C BIT OUT
Function	Send Bit thru I2C line
Input values	Cy bit to be send cy=1 to ONE
Output values	None
Destroy	
Time	
Observations	Usually this routine is used only by _I2C_BYTE_OUT
	routine, be carefully when use directly
Example	Send bit 1
	sec
	rcall _I2C_BIT_OUT
	call _I2C_BIT_OUT (Chips >= 16k)

Name	
	_I2C_BIT_IN
Function	Get Bit from I2C line
Input values	None
Output values	Cy bit read
Destroy	
Time	
Observations	Usually this routine is used only by _I2C_BYTE_IN
	routine, be carefully when use directly
Example	rcall _I2C_BIT_IN
	call _I2C_BIT_IN (Chips >= 16k)

Name	_I2C_BYTE_OUT
Function	Send a byte thru I2C line
Input values	Acc Data to be send
Output values	None
Destroy	
Time	
Observations	
Example	Send data 0xaa to I2C line
	Ldi Acc, 0xaa rcall _I2C_DATA_OUT call _I2C_DATA_OUT (Chips >= 16k)

Name	_I2C_BYTE_IN
Function	Get a byte from I2C line
Input values	None
Output values	Acc Read Data
Destroy	
Time	
Observations	
Example	rcall _I2C_DATA_IN
	call _I2C_DATA_IN (Chips >= 16k)

Name	_i2C_ACK_in
Function	Get a Ack=acknowledgement from I2C line
Input values	None
Output values	Су
Destroy	
Time	
Observations	
Example	rcall _I2C_ACK_IN
	call _I2C_ACK_IN (Chips >= 16k)

N64 (N64_COMM.INC)

Description

This drive implements N64 Joystick controller of Nintendo corp. Implements routines allow user get all button and Analog Joystick values and states.

Implemented Functions

Name	_N64_INIT
Function	Initialize _N64 Interface
Input values	None
Output values	None
Destroy	
Time	
Observations	 Global interrupts are disable during initialization. After this initialization DATAINOUT is configured as input to prevent short circuit during initialization.
Example	<pre>Initialize N64 controller at PORTB and Data bit=0 .EQU _N64_DATAINOUT_OUT</pre>

Name	N64 STATUS
Function	Update button and joystick coordinates of _N64
Input values	None
Output values	None
Destroy	Flags
Time	
Observations	
Example	rcall _N64_STATUS
	call _N64_STATUS (Chips >= 16k)

Name	_N64_GET_A
Function	Get key states
Input values	Acc Key Code
Output values	Acc _ON=pressed or _OFF=relesed
Destroy	Flags
Time	
Observations	
Example	Read status of button Z
	Ldi Acc, N64_KEY_A rcall N64_GET_A call N64_GET_A (Chips >= 16k)

Name	
	_N64_GET_X
Function	Get joystick X coordinate
Input values	None
Output values	Acc X coordinate
Destroy	Flags
Time	
Observations	
Example	rcall _N64_GET_X
	call _N64_GET_X (Chips >= 16k)

Name	N64 GET Y
Function	Get joystick Y coordinate
Input values	None
Output values	Acc Y coordinate
Destroy	Flags
Time	
Observations	
Example	rcall _N64_GET_Y
	call _N64_GET_Y (Chips >= 16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

SLIP (SLIP.INC)

Description

The TCP/IP protocol family runs over a variety of network media: IEEE 802.3 (ethernet) and 802.5 (token ring) LAN's, X.25 lines, satellite links, and serial lines. There are standard encapsulations for IP packets defined for many of these networks, but there is no standard for serial lines. SLIP, Serial Line IP, is a currently a de facto standard, commonly used for point-to-point serial connections running TCP/IP. It is not an Internet standard. More details see RFC 1055.

SLIP EXAMPLE

Fortunately, one of the TCP/IP families of standards, SLIP, provides exactly this functionality. It uses simple escape codes inserted in the serial data stream to signal block boundaries as follows.

- The end of each block is signaled by a special End byte, with a falue of 0xC0.
- If a data byte equal OXCO, two bytes with the values OxDB, OXDC are sent instead.
- if a data byte equal 0xDBH, two bytes with the values 0xDB, 0xDD are sent instead.

Additionally, most implementation send the End byte at the beginning of each block to clear out garbage characters prior to starting the new message.

SLIP FRAME

There is effectively no limit to the size of the data block, but you have to decide on some value in order to dimension the data bufers. With old, slow serial links, a maximum size of 256 bytes was generally used, but you'll be using faster links, and a larger size is better for minimizeng protocol overhead. By convention, 1006 bytes is oten used.

The encoding method can best be illustrated by an example. Assume a six-byte block of data with the hex values BF C0 C1 DB DC is sent; it is expanded to C0 BF DB DC C1 DB DD DC C0.

SLIP TRANSMISSION SAMPLE +---+ block data flow

END

SLIP OBSERVATION

When connect SLIP device in serial port under WINDOWS, it send a ATE1<cr> modem command and device replay OK<cr><lf>, after this the OS send DSVP packed to inform device about OS resorces, device replay OK<cr><1f> again, after this OS send a SLIP protocol with TCP/IP.

Connections

MODEM for SLIP protocol

Generic serial DEVICE for SLIP protocol

CTS, RTS, DCD from PC side are connected together

Implemented Functions

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

```
Sample code of {f SLIP} Initialization sequence.
```

```
ldiaw
            RX BUFFER SIZE
                                    rx buffer size;
            Z,RX_BUFFER_PTR
                                   rx pointer;
ldiw
RCALL
            SLIP SET RX BUFFER
                                   ;set
          TX_BUFFER_SIZE
Z,RX_BUFFER_PTR
ldiaw
                                   tx buffer size;
ldiw
            Z,RX_BUFFER_PTR ;tx p
_SLIP_SET_TX_BUFFER ;set
                                   tx pointer;
RCALL
ldiw
          Z,RX FUNC ADDR
                                   ; set function rx address
            SLIP SET RX ADDR
RCALL
          _, IA_fUNC_ADDR
SLIP_SET_TX_ADDR
Z,TIMEOUT
                                    ;set function tx address
ldiw
RCALL
ldiw
          Z,TIMEOUT_FUNC_ADDR
                                   ; set timeout function
ldiaw
           100
                                    ;set timeout to 100ms
RCALL
            _SLIP_SET_TIMEOUT_ADDR
```

Name	_SLIP_SET_RX_BUFFER
Function	Set address of receiver data buffer and size
Input values	AccH:Acc size
	<pre>Z-> data buffer</pre>
Output values	None
Destroy	
Time	
Observations	
Example	Set SLIP receiver data buffer address and size
	Ldiaw SLIP_SIZE
	Ldiw Z,SLIP_BUFFER
	rcall _SLIP_SET_RX_BUFFER
	call _SLIP_SET_RX_BUFFER(Chips >= 16k)

Name	2 2
	_SLIP_GET_RX_BUFFER
Function	Get address of receiver data buffer and size
Input values	None
Output values	AccH:Acc size
	Z-> data buffer
Destroy	
Time	
Observations	
Example	rcall _SLIP_GET_RX_BUFFER
	call _SLIP_GET_RX_BUFFER(Chips >= 16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	
	_SLIP_SET_TX_BUFFER
Function	Set address of transmitter data buffer and size
Input values	AccH:Acc size
	Z-> data buffer
Output values	None
Destroy	
Time	
Observations	
Example	Set SLIP transmitter data buffer address and size
	Ldiaw SLIP_SIZE
	Ldiw Z,SLIP_BUFFER
	rcall _SLIP_SET_TX_BUFFER
	call _SLIP_SET_TX_BUFFER(Chips >= 16k)

Name	_SLIP_GET_TX_BUFFER
Function	Get address of transmitter data buffer and size
Input values	None
Output values	AccH:Acc size
	Z-> data buffer
Destroy	
Time	
Observations	
Example	rcall _SLIP_GET_TX_BUFFER
	call _SLIP_GET_TX_BUFFER(Chips >= 16k)

Name	_SLIP_SET_RX_ADDRESS
Function	Set address of routine that receiver data
Input values	Z address
Output values	None
Destroy	
Time	
Observations	
Example	Set SLIP receiver address to RX_FUNCTION
	Ldiw Z,RX_FUNCTION
	rcall _SLIP_SET_RX_ADDRESS call _SLIP_SET_RX_ADDRESS(Chips >= 16k)

Name	
	_SLIP_SET_TX_ADDRESS
Function	Set address of routine that transmit data
Input values	z address
Output values	None
Destroy	
Time	
Observations	
Example	Set SLIP transmit address to TX_FUNCTION
	Ldiw Z,TX_FUNCTION
	rcall _SLIP_SET_TX_ADDRESS
	call _SLIP_SET_TX_ADDRESS(Chips >= 16k)

Name	_SLIP_SET_TIMEOUT_ADDRESS
Function	Set address of routine that set timeout value for
	received data
Input values	Z address
Output values	None
Destroy	
Time	
Observations	
Example	Set SLIP timeout receiver address to TIMOUT_FUNCTION
	Ldiw Z,TIMOUT_FUNCTION rcall _SLIP_SET_TIMEOUT_ADDRESS call _SLIP_SET_TIMEOUT_ADDRESS(Chips >= 16k)

Name	SLIP SET INDEX
Function	Set Data buffer index
Input values	AccH:Acc data index
	Cy=1 if data>SLIP Buffer size
Output values	None
Destroy	
Time	
Observations	
Example	Set SLIP index to get 3 rd data
	Ldiaw 2
	rcall _SLIP_SET_INDEX
	call _SLIP_SET_INDEX(Chips >= 16k)

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	_SLIP_GET_INDEX
Function	Get Data buffer index
Input values	None
Output values	AccH:Acc data index
Destroy	
Time	
Observations	
Example	rcall _SLIP_GET_INDEX
	call _SLIP_GET_INDEX(Chips >= 16k)

Name	_SLIP_GET_DATA
Function	Get Data from receiver buffer
Input values	None
Output values	Acc data
Destroy	
Time	
Observations	
Example	rcall _SLIP_GET_DATA
	call _SLIP_GET_DATA(Chips >= 16k)

Name	_SLIP_POLLING
Function	Polling a serial line and waiting CODE_END
Input values	None
Output values	Acc=SLIP_MSG_OK,cy=0 if SLIP block received ok
	Acc=SLIP_MSG_POL_END, cy=1 SLIP packet not received
	Acc=SLIP_MSG_TIMEOUT, cy=1 if timeout occur
	Acc=SLIP_MSG_UNEXPECTED, expected ESC_END, but received
	other code
	AccTH:AccT total received bytes if _OK
	AccTH:AccT total received bytes until Error if _NOTOK
Destroy	
Time	
Observations	

Name	
Name	SLIP SEND
	_5211_5245
Function	Transmitting Data using SLIP protocol
Input values	None
Output values	None
Destroy	
Time	
Observations	call _SLIP_SET_TX_BUFFER before to set address of
	data
Example	rcall _SLIP_SEND
	call _SLIP_SEND(Chips >= 16k)

_SLIP Constants	
Name	Value
_SLIP_CODE_END	0XC0
_SLIP_CODE_ESC	0XDB
_SLIP_CODE_ESC_END	0XDC
_SLIP_CODE_ESC_ESC	0XDD
_SLIP_CODE_OK	1
_SLIP_CODE_POL_END	2
_SLIP_CODE_TIMEOUT	3
_SLIP_CODE_UNEXPECTED	4

SERIAL

TWO WIRE

DT_COMM_V1 (DT_COMM_V1.INC)

Description

DTCOMMV1 is a Author proprietary protocol that allow faster communication unilateral from Master to slave using only one wire where master always request transmission and slave return data according below flow chart, maximum rate obtained is about 125Kbits.

Name	
	_DTCOMMV1_SLAVE_INIT
Function	Initialize DTCOMMV1 like a Slave interface
Input values	None
Output values	None
Destroy	None
Time	
Observations	- Global interrupts are disabled
	- Use External 0 interrupt handle _HDC_INT0_VECT
Example	rcall _DTCOMMV1_SLAVE_INIT
	call _DTCOMMV1_SLAVE_INIT(Chips >= 16k)

Author: João D´Artagnan A. Oliveira Brasília, Brazil, November 3, 2015

Name	_DTCOMMV1_MASTER_INIT
Function	Initialize DTCOMMV1 like a Master interface
Input values	None
Output values	None
Destroy	None
Time	
Observations	- Global interrupts are disabled
Example	Initialize master in PORTD Data bit=2
	.EQU _DTCOMMV1_PORT_OUTPUT = PORTD
	.EQU _DTCOMMV1_PORT_DIR = DDRD
	.EQU _DTCOMMV1_PORT_INPUT = PIND
	.EQU _DTCOMMV1_DATA_BIT = 2
	rcall _DTCOMMV1_SLAVE_INIT
	call _DTCOMMV1_SLAVE_INIT(Chips >= 16k)

Name	_DTCOMMV1_GET_DATA
Function	Get data from Slave
Input values	None
Output values	AccH:Acc Data
Destroy	None
Time	
Observations	Call _DTCOMMV1_REQUEST Before to check if new data arrived
Example	<pre>rcall _DTCOMMV1_GET_DATA call _DTCOMMV1_GET_DATA(Chips >= 16k)</pre>

SOFTWARE (SOFTWARE SERIAL.INC)

Description

Software serial communication that allow use any port (not mapped) in any bit, this version work only 8 data bits 115200 bauds and 2 stop bits optimized to use 16Mhz crystal.

Name	SCOMM INIT
Function	Initialize SCOMM interface
Input values	None
Output values	None
Destroy	None
_	None
Time	
Observations	- Global interrupts are disabled during
	initialization
Example	Initialize SCOMM ports with Data Port as PORTA and
	control port as PORTC, TX bit=0, RX bit=1, RTS bit=2
	CTS bit=3
	.EQU SCOMM PORT DATA OUTPUT=PORTA
	.EQU SCOMM PORT DATA DIR =DDRA
	.EQU SCOMM PORT DATA INPUT =PINA
	.EQU SCOMM PORT CTRL OUTPUT=PORTC
	.EQU SCOMM PORT CTRL DIR =DDRC
	.EQU SCOMM PORT CTRL INPUT =PINC
	.EQU SCOMM TX BIT = 0
	.EQU SCOMM RX BIT = 1
	.EQU SCOMM RTS BIT = 2
	.EQU _SCOMM_CTS_BIT = 3
	rcall _SCOMM_INIT
	call _SCOMM_INIT(Chips >= 16k)

Name		
	_SCOMM_TX	
Function	Send data to Serial Line	
Input values	Acc Data to be send	
Output values	None	
Destroy	None	
Time		
Observations	- Global interrupts are disabled during	
	Transmission	
Example	Send 0x27 to serial line	
	Ldi Acc, 0x27	
	rcall _SCOMM_TX	
	call _SCOMM_TX(Chips >= 16k)	

Name	
	_SCOMM_RX
Function	Get data to Serial Line
Input values	None
Output values	Acc Data received if cy=0
	Acc Error Code if cy=1
Destroy	None
Time	
Observations	- This routine use a fixed timeout of
	approximately 0.5 seconds elapsed this time
	<pre>cy=1 means timeout error</pre>
Example	rcall _SCOMM_RX
	call _SCOMM_RX(Chips >= 16k)

Name	_SCOMM_GET_RTS
Function	Get RTS state
Input values	None
Output values	Cy=1 if RTS=high level
Destroy	None
Time	
Observations	
Example	rcall _SCOMM_GET_RTS
	call _SCOMM_GET_RTS(Chips >= 16k)

Name	GOODA OTH CHO
	_SCOMM_SET_CTS
Function	Set CTS state
Input values	CY=1 if to put CTS=HIGH
Output values	None
Destroy	None
Time	
Observations	
Example	Set CTS=low
	clc
	rcall _SCOMM_SET_CTS
	call _SCOMM_SET_CTS(Chips >= 16k)

REPRODUCTION AND COPYRIGHT.

João D'Artagnan A. Oliveira Programmer and Author

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

*Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

this software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. in no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort law (including negligence or otherwise arising in any way out of the use of this software, even if advised of the possibility of such damage.

Information provided by **Author** is believed to be accurate and reliable. These materials are provided by **Author** as a service to its customers and may be used for informational purposes only. **Author** assumes no responsibility for errors or omissions in these materials, nor for its use. **Author** reserves the right to change specification at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of Author products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. Author further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Author shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these computer programs.

Author products or computer programs are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the computer programs.

Assembler Library 2 – Reference Manual Contact dartagnanmath@gmail.com

Author: João D'Artagnan A. Oliveira Brasília, Brazil, November 3, 2015