Detailed Design of a Magnetically-Geared Actuator for use in Extremely Cold Lunar Environments

Justin J. Scheidler¹ Peter A. Hoge² Thomas F. Tallerico¹
Kyle R. Whitling²

Aaron, D. Anderson¹
Jesse Hawk²

Steven M. Darmon²

Erica N. Montbach¹

¹NASA Glenn Research Center, Cleveland, OH 44135

²HX5, LLC, Brook Park, OH 44142

NOTICE FOR COPYRIGHTED INFORMATION

This is a work of the United States Government authored as part of the official duties of employee(s) of the National Aeronautics and Space Administration. No copyright is claimed in the United States under Title 17, U.S. Code. All other rights are reserved by the United States Government. Any publisher accepting this work for publication acknowledges that the United States Government retains a nonexclusive, irrevocable, worldwide license to prepare derivative works, publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

Published by the Institute of Electrical and Electronics Engineers, with permission.

Motivation

- Rotational actuators for Space mechanisms require a mechanical gearbox to meet mass, volume requirements
- Mechanical gears require lubrication to achieve satisfactory performance & life
- SOA approaches for temperatures < about -60 °C:

Current approaches	Current penalty		
Heat the gearbox/motor to ≥ -60 °C & use grease lubrication	Increased complexity & mass less power for science		
Use dry film lubricant on contacting surfaces	(often significant) reductions in life design constraints on load & speed		

• This is a pervasive problem – potential for big impact

Mechanisms affected					
Rover wheels					
Solar arrays					
Gimbals					
ISRU (drills, buckets, etc)					
Robot arms					

Environments affected				
Lunar surface				
Lunar Gateway				
Mars				
Europa				
Titan				
•••				

Motors for Dusty & Extremely Cold Environments (MDECE) Project

- R&D & ground test project, Oct 2020 Sep 2024
- Goal: Develop 2 <u>unheated</u> rotational actuators that can operate for a <u>long duration in extreme cold</u> (ambient temperature of -243 °C (30 K))
 - Evaluate life in controlled, representative lunar dust environment with and without lunar simulant
- **Approach:** Eliminate gear lubrication 1 actuator with non-contact gearing, 1 actuator with no gears
- Key Performance Parameters: Min. operating temperature dustfree life - efficiency of magnetic actuator - output resolution of piezoelectric actuator
- Relevant environment: Broadly applicable; focusing on lunar PSR
- Promising applications:
 - Magnetic actuator: rover mobility in-situ resource utilization robotic arm joints rotors for powered flight
 - <u>Piezoelectric actuator</u>: precision pointing (e.g., laser communication) - low power robotic arm joints

Example mechanisms for demonstrating prototypes (NASA KSC)

Piezoelectric actuator preliminary design (JPL)

[graphic courtesy of NDEAA team / JPL / Caltech / NASA (Patent pending)]

Magnetically-geared actuator preliminary design (NASA GRC & GSFC)

Driving Requirements

Mechanical

Continuous

105 Nm at 2 rpm (22 W power)

output

Peak

208 Nm at up to 1.5 rpm (up to 33 W) for 20+ seconds

Match flightqualified reference actuator

Size / mass • No strict requirements (TRL 2-5)

Mass

4.73 kg (max), < 3.15 kg (goal)

Envelope volume

1440 cm³ (max), < 960 cm³ (goal)

Aspect ratio (L/D)

0.5 to 1.75

Thermal specifications

		Specification						
Parameter	Condition	Mini	imum	Maximum				
		Goal	Required	Required	Goal			
Lunar surface	Operating	30 K (-243 °C)	108 K (-165 °C)	293 K (20 °C)	313 K (40 °C)			
temperature	Survival	3 K (-270 °C)	108 K (-165 °C)	293 K (20 °C)	393 K (120 °C)			
Solar heating	Operating	Shadowed	Shadowed	N/A	Lunar south pole (85° S)			
environment	Survival	Shadowed	Shadowed	N/A	Lunar equator			

MDECE Magnetic Actuator Configuration

- Magnetic components of both cycloidal gear and magnetically-geared motor designed using genetic optimizations based on static 2D finite element analysis
- Selected 0.25 mm nominal gap for both

Initial Electromagnetic Design

- Eccentricity of eccentric rotor is major driver of cycloidal gear's mass & size
 - Causes large bearing forces
- Output torque must transfer through connection that has opposite eccentricity
 - 2 options evaluated for the connection: sliding pins & needle bearings

- Pin-to-rotor contact force
- Load through eccentric bearing
- Net radial magnetic force & torque on eccentric rotor

Initial Electromagnetic Design

- Increasing # of pins reduces peak pin force (thus bearing forces), but with diminishing returns & at expense of complexity and eventually mass [left plot below]
- Sliding pins simpler, but more difficult to keep lubricated & they incur significantly larger bearing force [right plot below]
- Magnitude and direction of these forces also time dependent [see paper]

<u>Takeaway</u>: Magnitude of pin & bearing forces makes it challenging to balance life of dry film lubricants with size / mass of bearings

Initial Electromagnetic Design

- Selected cycloidal gear: 4 pins, needle bearings, 43:1 gear ratio
 - Mass: 2.85 kg
 - Continuous efficiency: 91.9%

<u>Takeaway</u>: Sliding pins found to be less efficient and considerably heavier than needle bearings

- Selected geared-motor:
 13.5:1 gear ratio
 - Mass: 0.89 kg
 - Continuous efficiency: 91.3%

Genetic optimization of magnetically-geared motor

Thermal Analysis

- 3D finite element model of actuator and lunar surface
- Temperature-dependent material properties included where available
- At this time, needle bearing loss very conservative (3X prediction for grease lubrication)
- Generic anodized titanium finish on housing selected due to cryo compatibility, relatively high emissivity, & relatively low absorptivity-to-emissivity ratio
- Across operating environments, internal actuator temperature ranges from 25 K (-248 °C) to about 393 K (120 °C)

Takeaways:

- Temperature rise during 20 second peak operation is small (~2 °C)
- Temperature gradients across bearings & air gaps are up to 19 °C but typically < 7 °C

Structural Analysis

- Forces included: thermal, magnetic (radial and torsional), centrifugal
- Static thermal conditions: room temperature, worst-case cold operation, worst-case hot operation

Structural Analysis

Nominal air gap in the cycloidal gear (top) and deviation in air gap caused by structural deformation at peak output torque (bottom)

Predicted life of dry film lubricated bearings in preliminary design

	Bearing							
	1	2	3	4	5	6	7-14	15
Revolutions (millions)	8.7	8.8	25.7	0.56	0.18	0.44	0.41	0.44
% of threshold	250	273	796	217	68	167	159	7333
% of goal	30	33	96	26	8	20	19	880

Takeaways:

- Under peak load, structural deformation of air gap is significant but only away from location of minimum nominal gap
- Threshold life nearly achievable with selected bearings, but design modifications required to approach goal life

Additional Electromagnetic Analysis

- 3D electromagnetic analysis of torque capacity
 - Magnetically-geared motor: 3D effects large (24% torque reduction relative to 2D model), but accurately captured by motor design code
 - Cycloidal gear: 3D effects only 1% for baseline design and only up to 3.2% to 5.5% if number of eccentric rotors increased to 2 or 3 to reduce bearing loads

Impact of replacing iron in cycloidal gear with air or extra magnet on actuator's output torque (T) and approximate total mass (m)

		Eccentric rotor				
		No iron	Baseline (iron)	Magnet		
Housing	No iron	T: -0.6% m: -11.3%	T: -0.1% m: -6.2%	-		
	Baseline (iron)	T: -0.7% m: -5.1%	0%	T: +18.5% m: -1.2%		
	Magnet	-	T: +15.9% m: -1.0%	T: +37.6% m: -2.5%		

Summary & Future Work

Summary

- Proposed magnetically-geared actuator is viable for lunar surface operation down to 30 K (-243 °C)
- Material limits are not exceeded at the temperature extremes or peak loads, temperature gradients and differential thermal contractions are manageable, and the expected change in performance over the predicted internal temperature envelope (25 K [-248 °C] to 430 K [157 °C]) is acceptably small
- Efficiency of preliminary design (83.9%) is above the project's efficiency goal
- Mass of preliminary design (5.01 kg) is larger than objective due to challenge of meeting desired bearing life target

Future work

- Proof-of-concept prototype developed in parallel to design work -- assembly finishing end of March, then functionality & performance testing in Earth ambient environment
- Critical design review scheduled for mid-April
 - Design improvement in progress: thorough mass optimization reconfigure cycloidal gear to reduce bearing loads - transient thermal analysis - structural analysis at zero, continuous, and peak torques
- Fully-functional prototype built then ground tested in relevant cryogenic-vacuum-dust environment in 2024

Acknowledgements

This work was funded by the Motors for Dusty & Extremely Cold Environments (MDECE) Project

Space Technology Mission Directorate

Game Changing Development Program

MDECE Project

Contact Info

{justin.j.scheidler, thomas.tallerico, aaron.d.anderson-1, peter.a.hoge, kyle.r.whitling, jesse.hawk, erica.n.montbach}@nasa.gov

THANK YOU

