Human Computer Interaction

Dialog Notations and Design

Lecture 13

Imran Siddiqi imran.siddiqi@gmail.com

Dialog

Conversation between two or more parties

Dialog

Conversation between two or more parties

Dialog – User Interface Design

- More specific meaning
- Structure of the conversation between user and computer
- Levels of computer language
 - Lexical Lowest level: Shape of icons, actual keys pressed
 - Syntactic Order of inputs and outputs
 - Semantic Meaning of conversation, Effect on internal application/data
- In user Interfaces
 - Dialog generally refers to the syntactic level of human–computer 'conversation'

Structured Human Dialog

- Human-computer dialogue very constrained
- Some human-human dialogue formal too ...

Minister: do you man's name take this woman ...

Man: I do

Minister: do you woman's name take this man ...

Woman: I do

Man: With this ring I thee wed

Woman: With this ring I thee wed

Minister: I now pronounce you man and wife

Lessons from Dialog

- Wedding service
 - Sort of script for three parties
 - Participants must say certain things in a specifies order
 - Some contributions are predetermined "I do"
 - Others variable "do you man's name …"
- If you say these words are you married?
 - Only if in the right place, with marriage licence
 - Syntax not semantics marriage may be acted out on television

Graphical Dialog Design Notations

State-transition nets (STN)
Petri nets, State charts
Flow charts, JSD diagrams

State Transition Networks (STN)

- Circles states
- Arcs actions/events

State Transition Networks – Actions/Events

- Arc labels a bit cramped because:
 - The actions/events require most detail

State Transition Networks - States

- Labels in circles a bit uninformative:
 - States are hard to name
 - But easier to visualise

Hierarchical STNs

- Managing complex dialogues
- Named sub-dialogues

Simple Dialog Box

Three toggles - individual STNs

Bold and Italic Combined

All together - combinatorial explosion Text Style 'bold' bold NO bold style only example italic underline 'underline' 'underline' 'italic' 'italic' <u>bold</u> <u>u'line</u> 'bold' u'line only 'italic' 'italic' bold 'bold' italic italic only 'underline' 'underline' <u>bold</u> italic 'bold' italic u'line <u>u'line</u>

Escapes

- Escape/cancel keys
 - End up with spaghetti of identical behaviors

Escapes

Proposition

- On high level diagram 'normal' exit for each submenu
- Plus separate escape arc active 'everywhere' in submenu

Help Menus

- Similar problems
 - Nearly the same everywhere
 - But return to same point in dialogue
 - Could specify on STN ... but very messy

Petri Nets

- One of the oldest notations in computing!
- Flow graph:
 - Places– a bit like STN states
 - Transitions– a bit like STN arcs
 - Counters/Tokens sit on places (current state)

Petri Nets - Basics

- Petri net consist two types of nodes: places and transitions. An arc exists only from a place to a transition or from a transition to a place.
- A place may have zero or more tokens.
- Graphically, places, transitions, arcs, and tokens are
 represented respectively by: circles, bars, arrows, and dots.

Petri Nets - Basics

- Below is an example Petri net with two places and one transition.
- Transition node is ready to *fire* if and only if there is at least one token at each of its input places

- State transition of form $(1, 0) \rightarrow (0, 1)$
- P1:Input place P2:Output place

Sequential Execution

Transition t2 can fire only after the firing of t1. This impose the precedence of constraints "t2 after t1."

Synchronization

Transition t1 will be enabled only when there is at least one token at each of its input places.

Merging

 Happens when tokens from several places arrive for service at the same transition.

Concurrency

 t1 and t2 are concurrent. With this property, Petri net is able to model systems of distributed control with multiple processes executing concurrently in time

Conflict

t1 and t2 are both ready to fire
 but the firing of any leads to the
 disabling of the other transitions.

- Conflict (Contd...)
 - The resulting conflict may be resolved in a purely non-deterministic way or in a probabilistic way, by assigning appropriate probabilities to the conflicting transitions

There is a choice of either t1 and t2, or t3 and t4

Petri Nets - Examples

Model

ET: Finished eating, Start thinking

Petri Nets – In a Restaurant

Petri Nets – In a Restaurant

Scenario 1:

 Waiter takes order from customer 1; serves customer 1; takes order from customer 2; serves customer 2.

Scenario 2:

 Waiter takes order from customer 1; takes order from customer 2; serves customer 2; serves customer 1.

Petri Nets – In a Restaurant (Scenario 1)

Petri Nets – In a Restaurant (Scenario 2)

Petri Nets – Vending Machine

Petri Nets – Vending Machine

Scenario 1:

Deposit 5c, deposit 5c, deposit 5c, deposit 5c, take 20c snack bar.

Scenario 2:

Deposit 10c, deposit 5c, take 15c snack bar.

Scenario 3:

Deposit 5c, deposit 10c, deposit 5c, take 20c snack bar.

Petri Nets – Vending Machine

- Used in UML
- Extension to STN

Multiple simultaneous perspectives on the same entity

Combine multiple simultaneous descriptions

Flow Charts

Familiar to programmers

- Used for Dialog
- Not internal algorithm

JSD Diagrams

JSD – Jackson Structured

JSD Diagrams

Sequence – Left to

Right

- Can not do any transactions before login
- 'o' Optional elements
 - Transaction may be anyone of the four operations
- '*' Iterations: Any number of repetitions
 - Login Any number of transactions Logout

References

Chapter 16 - Human Computer
 Interaction by Dix et al.

 Interactive Tutorials on Petri Nets, Wil van der Aalst, et al. TU Eindhoven, Netherlands

Modeling and Simulation, P. Fishwick

