# 电路理论 Principles of Electric Circuits

# 第五章 双口网络 (Two-port Network)

§ 5.5 端口分析法





双口网络应用的典型电路

解题思路

借助等效电路分析

借助电路方程分析

单口网络 $N_s$ 的端口方程 1个

双口网络N的端口方程 2个

单口网络 $N_L$ 的端口方程 1个

端口分析法



【例1】已知双口网络N的开路电阻参数为  $R = \begin{bmatrix} 9 & 6 \\ 6 & 9 \end{bmatrix} \Omega$  试求电流 $I_1$ 和 $I_2$ 。



解:

法一: 利用等效电路求解

$$R = \begin{bmatrix} 9 & 6 \\ 6 & 9 \end{bmatrix} \Omega$$
 构造 
$$U_1 \qquad 6\Omega \qquad U_2$$

【例1】已知双口网络N的开路电阻参数为  $R = \begin{bmatrix} 9 & 6 \\ 6 & 9 \end{bmatrix} \Omega$  试求电流 $I_1$ 和 $I_2$ 。



解:

法一: 利用等效电路求解

$$I_1 = \frac{18}{3+6//(3+3)} = 3A$$

$$I_2 = -\frac{1}{2}I_1 = -\frac{1}{2} \times 3 = -1.5A$$



【例1】已知双口网络N的开路电阻参数为  $R = \begin{bmatrix} 9 & 6 \\ 6 & 9 \end{bmatrix} \Omega$  试求电流 $I_1$ 和 $I_2$ 。



解:

法二: 利用端口分析法求解

由
$$R$$
参数 
$$\begin{cases} U_1 = 9I_1 + 6I_2 \\ U_2 = 6I_1 + 9I_2 \end{cases}$$
 联立 
$$U_1 = 18$$
 
$$U_1 = 18$$
 
$$U_2 = -3I_2$$
 
$$I_1 = 3A$$
 
$$I_2 = -1.5A$$



【例2】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 6 \\ 0.5 & 1.6 \end{bmatrix}$ 

求 $R_L$ 获得最大功率时电压源提供的功率。



解:

(1) 求 $R_{\rm L}$  (即求: 戴维南等效电阻 $R_{\rm eq}$ 

由
$$T$$
参数  $\longrightarrow$  
$$\begin{cases} U_1 = 2.5U_2 - 6I_2 \\ I_1 = 0.5U_2 - 1.6I_2 \end{cases}$$

电压源置零:  $U_1 = 0V$ 

【例2】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 6 \\ 0.5 & 1.6 \end{bmatrix}$ 求 $R_L$ 获得最大功率时电压源提供的功率。



解:

(1) 求 $R_{\rm L}$  (即求: 戴维南等效电阻 $R_{\rm eq}$ 

曲 
$$T$$
 参数  $\longrightarrow$  
$$\begin{cases} U_1 = 2.5U_2 - 6I_2 \\ I_1 = 0.5U_2 - 1.6I_2 \end{cases}$$
 
$$2.5U_2 - 6I_2 = 0$$
 
$$R_L = R_{eq} = \frac{U_2}{I_2} = 2.4\Omega$$

电压源置零:

$$U_1 = 0V$$



$$2.5U_2 - 6I_2 = 0$$

$$R_{\rm L} = R_{\rm eq} = \frac{U_2}{I_2} = 2.4\Omega$$

【例2】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 6 \\ 0.5 & 1.6 \end{bmatrix}$ 

求 $R_L$ 获得最大功率时电压源提供的功率。



解:

(2) 求电压源提供的功率

端口方程: 
$$\begin{cases} U_1 = 9 \\ U_1 = 2.5U_2 - 6I_2 \\ I_1 = 6U_2 - 1.6I_2 \end{cases}$$
 电压源提供功率: 
$$I_1 = 2.1 \text{A}$$
 
$$U_2 = -2.4 I_2$$
  $P_s = 9I_1 = 18.9 \text{W}$   $P_s = 9I_1 = 18.9 \text{W}$ 

$$P_{\rm s} = 9I_1 = 18.9 \text{W}$$



【例3】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 8 \\ 0.5 & 1.6 \end{bmatrix}$  求电压源提供的功率。



解:

#### (1) 求1端口输入电阻

曲
$$T$$
参数  $\longrightarrow$  
$$\begin{cases} U_1 = 2.5U_2 - 8I_2 \\ I_1 = 0.5U_2 - 1.6I_2 \end{cases}$$

输入电阻 
$$R_{in} = \frac{U_1}{I_1} = \frac{2.5U_2 - 8I_2}{0.5U_2 - 1.6I_2} = \frac{2.5 \frac{2}{-I_2} + 8}{0.5 \frac{U_2}{I} + 1.6} = 5\Omega$$



电工教研室 TAR Section of Electrical Engineering

【例3】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 8 \\ 0.5 & 1.6 \end{bmatrix}$  求电压源提供的功率。



解:

(1) 求1端口输入电阻

输入电阻 
$$R_{in} = \frac{U_1}{I_1} = \frac{2.5U_2 - 8I_2}{0.5U_2 - 1.6I_2} = \frac{2.5\frac{U_2}{-I_2} + 8}{0.5\frac{U_2}{-I_2} + 1.6}$$

(2) 求电压源提供的功率

$$P_{\rm s} = \frac{10^2}{5} = 20 {
m W}$$



【例4】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 6 \\ 0.5 & 1.6 \end{bmatrix}$  求电压源提供的功率。



解: 思路: 构造电路,变黑匣子为具体电路





 $2\Omega$ 



电工教研室

开路电阻参数方程

【例4】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 6 \\ 0.5 & 1.6 \end{bmatrix}$ 求电压源提供的功率。



解: 思路: 构造电路,变黑匣子为具体电路

(方法1) 求开路电阻参数

输入电阻 
$$R_{in} = 3 + 2 / / (1.2 + 2.4) = \frac{30}{7} \Omega$$

电压源提供功率: 
$$P_{\rm s} = \frac{9^2}{30/7} = 18.9 \text{W}$$



【例4】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 6 \\ 0.5 & 1.6 \end{bmatrix}$  求电压源提供的功率。



解: 思路: 构造电路,变黑匣子为具体电路

(方法2) 求短路电导参数



短路电导参数方程





电工教研室

【例4】已知双口网络N的传输参数矩阵为  $T = \begin{bmatrix} 2.5 & 6 \\ 0.5 & 1.6 \end{bmatrix}$  求电压源提供的功率。



解: 思路: 构造电路,变黑匣子为具体电路

(方法2) 求短路电导参数

输入电阻 
$$R_{in} = 10 / / (6 + 4 / /2.4) = \frac{30}{7} \Omega$$

电压源提供功率:  $P_{\rm s} = \frac{9^2}{30/7} = 18.9 \text{W}$ 



# 电路理论 Principles of Electric Circuits

# 第五章 双口网络 (Two-port Network)

# § 5.6 含运算放大器的电阻电路分析



#### 一、运算放大器( Operational Amplifier , Op Amp )

运算放大器是能够实现压控电压源特性的多端实际器件,其能够完成加法、微分、积分等数学运算。





除了供电端,只有四个端子与外部电路相连。

#### 一、运算放大器( Operational Amplifier , Op Amp )





#### 一、运算放大器(Operational Amplifier, Op Amp)



a: 反相输入端

b: 同相输入端

A: 开环电压增益

#### 、运算放大器 (Operational Amplifier, Op Amp)



a: 反相输入端

b: 同相输入端

A: 开环电压增益

本课程只讨论Op Amp运行于线性区的情况

#### 传输特性分为三个区域:

(1) 线性工作区

$$|u_{\rm d}| < U_{\rm ds}$$
,  $\mathbb{M} u_{\rm o} = Au_{\rm d}$ 

(2) 正向饱和区

$$u_{\rm d} > U_{\rm ds}$$
,  $M_{\rm o} = U_{\rm sat}$ 

(3) 反向饱和区



#### 一、运算放大器(Operational Amplifier, Op Amp)



开环电压增益  $(A_{\mathbf{u}})$ :  $A_{\mathbf{u}} = \frac{u_{\mathbf{0}}}{u_{\mathbf{i}}}$ 

 $输入电阻(R_i)$ : 从 $u_i$ 端口向输出端方向看进去,

一端口网络(含电阻和受控源)的等效电阻。

输出电阻  $(R_o)$ :  $\mathcal{M}_o$ 端口向输入端方向看进去  $(u_s$ 短路),一端口网络(含电阻和受控源)的等效电阻。



#### 一、运算放大器(Operational Amplifier, Op Amp)





开环电压增益  $(A_{\mathbf{u}})$ :  $A_{\mathbf{u}} = \frac{u_{\mathbf{o}}}{u_{\mathbf{i}}}$ 

 $R_i$ 和 $R_o$ 数值的大小 应如何设计?

 $输入电阻(R_i)$ :  $从u_i$ 端口向输出端方向看进去,

一端口网络(含电阻和受控源)的等效电阻。

**输出电阻**  $(R_0)$ :  $\mathcal{M}_0$ 端口向输入端方向看进去  $(u_s$ 短路),一端口网络(含电阻和受控源)的等效电阻。



#### 一、运算放大器(Operational Amplifier, Op Amp)

#### 实际运放的电路模型





 $R_{i}$ : 输入电阻 (M  $\Omega$ 量级)

 $R_0$ : 输出电阻( $\Omega$ 量级)

A: 开环电压增益 10<sup>5</sup>~10<sup>8</sup>

当: 
$$u_{+}=0$$
,则  $u_{0}=-Au_{-}$ 

当: 
$$u_{-}=0$$
,则  $u_{0}=Au_{+}$ 

#### →、运算放大器( Operational Amplifier , Op Amp )





 $R_i$ : 输入电阻  $(R_i \rightarrow \infty)$ 

 $R_0$ : 输出电阻  $(R_0=0)$ 

A: 开环放大倍数  $(A \rightarrow \infty)$ 





#### 运算放大器(Operational Amplifier, Op Amp)

#### 理想运算放大器





 $R_i$ : 输入电阻  $(R_i \rightarrow \infty)$ 

 $R_0$ : 输出电阻  $(R_0=0)$ 

A: 开环放大倍数  $(A \rightarrow \infty)$ 







#### 理想运放(Ideal Op Amp)及其外特性



**虚短**: 即*u*<sub>+</sub>=*u*<sub>-</sub>,两个输入端之间相当于短路。 但是实际上并未短路

**虚断**:  $i_{+}=0$ ,  $i_{-}=0$ 。 即从输入端看进去,相当于断路。 但是实际上并未断路



虚短、虚断是电压、电流同时为零,与通常的短路和开路有所不同。



#### 二、含理想运放电阻电路的分析

这有啥用啊?!









电压跟随器的作用: 在电路中起隔离前、后两级电路的作用。



#### 二、含理想运放电阻电路的分析



#### 二、含理想运放电阻电路的分析



#### 反相比例放大器

由"虚短" 
$$u_{a} = u_{b} = 0$$
  
由"虚断"  $i_{a} = 0$ ,  $i_{b} = 0$ ,  $i_{2} = i_{1}$   
 $i_{1} = u_{i} / R_{1}$   $i_{2} = -u_{o} / R_{f}$  
$$\frac{u_{i}}{R_{1}} = -\frac{u_{o}}{R_{f}}$$
  $u_{o} = -\frac{R_{f}}{R_{1}} u_{i}$ 



- (1)  $R_f$  接在输出端和反相输入端,称为负反馈。
- (2) 反馈电路中,信号接入反相输入端,则输出输入反相。
- (3) 当 $R_1$ 和 $R_f$ 确定后,为使 $u_o$ 不超过饱和电压(即保证工作在线性区),应对 $u_i$ 有一定限制。



#### 二、含理想运放电阻电路的分析



同相比例放大器

曲"虚衡" 
$$i_a=0$$
,  $i_b=0$   
曲"虚短"  $u_a=u_b$   
$$u_i=\frac{R_2}{R_1+R_2}u_o$$
$$u_o=\frac{R_1+R_2}{R_2}u_i=(1+\frac{R_1}{R_2})u_i$$

#### 二、含理想运放电阻电路的分析



曲"虚断"  $i_a=0$ ,  $i_b=0$   $i_1+i_2+i_3=i_f$ 

由"虚短"  $u_a = u_b = 0$ 

$$\frac{u_1}{R_1} + \frac{u_2}{R_2} + \frac{u_3}{R_3} = -\frac{u_0}{R_f}$$

$$u_{o} = -\left(\frac{R_{f}}{R_{1}}u_{1} + \frac{R_{f}}{R_{2}}u_{2} + \frac{R_{f}}{R_{3}}u_{3}\right)$$





- [1] B.Carter. 运算放大器权威指南:第4版. 北京:人民邮电出版社,2014.
- [2] S.Franco. 基于运算放大器和模拟集成电路的电路设计. 西安: 西安交通大学出版社, 2004.



# 二、含理想运放电阻电路的分可以求解"吗?

直接利用虚短虚断





#### 列写节点①、②的节点电压方程

$$\left(\frac{2}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) u_{n1} - \frac{1}{R_2} u_{n2} - \frac{1}{R_3} u_{n3} = \frac{u_s}{R_1}$$

$$-\frac{1}{R_2} u_{n1} + \left(\frac{1}{R_2} + \frac{1}{R_2}\right) u_{n2} - \frac{1}{R_3} u_{n3} = 0$$

# 由"虚短" u<sub>+</sub> = u<sub>-</sub> =0

$$\frac{3}{e^{0}} u_{0} = 0$$

$$\begin{cases}
\left(\frac{2}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right) u_{n1} - \frac{1}{R_{3}} u_{n3} = \frac{u_{s}}{R_{1}}$$

$$-\frac{1}{R_{2}} u_{n1} - \frac{1}{R_{3}} u_{n3} = 0$$

$$u_{n3} = \frac{u_{s}}{R_{1}}$$

其中: 
$$R = \frac{2R_2}{R_1R_3} + \frac{2}{R_3} + \frac{R_2}{R_3^2}$$



# 电路理论 Principles of Electric Circuits

# 第五章 双口网络 (Two-port Network)

§ 5.7 回转器



#### § 5.7 回转器

#### 回转器

回转器是一种双口电阻元件,可以用晶体电路或运算放大 器来实现。



$$r = \frac{1}{g}$$

#### 回转器的电路符号

$$\begin{vmatrix} u_1 = -ri_2 \\ u_2 = ri_1 \end{vmatrix}$$

矩阵形式: 
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} \quad \text{或} \quad \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 0 & g \\ -g & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

# § 5.7 回转器

#### 二、回转器的特性

1. 回转器为线性非互易的双口元件。

$$R_{12} \neq R_{21}$$

2. 回转器为无源元件。

(既不发出功率,也不消耗功率)

$$u_1i_1 + u_2i_2 = -ri_1i_2 + ri_1i_2 = 0$$

3. 回转器具有容感倒逆特性。

$$i_2 = -C \frac{du_2}{dt}$$

$$u_1 = -ri_2 = rC \frac{du_2}{dt} = r^2 C \frac{di_1}{dt}$$



$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$



