Algorithm - Strongly Connected Components

Def (Strongly Connected Component)

G=(V,E) 是個有向圖, $C\subseteq V$ 是個 G 的 connected component。 若:

$$\forall u, v \in G. \ u \leadsto v \text{ and } v \leadsto u$$

目:

 $\forall w \in V \setminus C.\, V \cup \{w\} \text{ is not a connected coponent}$

則稱 C 是個 Strongly Connected Component.

更精簡的訂法:

SCC is the equivalent class of "mutually reachable"

Observation (轉置後 SCC 不變)

G = (V, E) 是一張有向圖,則:

U is a SCC of $G \iff U$ is a SCC of G^T

假定 G 中 $u \overset{p_1}{\leadsto} v$ 且 $v \overset{p_2}{\leadsto} u$ 。則顯然 G^{T} 中 $v \overset{p_1^{\mathrm{T}}}{\leadsto} u$ 且 $u \overset{p_2^{\mathrm{T}}}{\leadsto} v$,因此在 G 中連通的各點,在 G^{T} 中仍然連通。

因為 $G = (G^{\mathrm{T}})^{\mathrm{T}}$,所以 G^{T} 中連通的各點,在 G 中也保持連通。由此得證。

Lemma (SCC 們是個 DAG)

G=(V,E) 是一張有向圖,C',C 是 G 相異的 SCC, $u,v\in C$, $u',v'\in C'$,則:

$$u \leadsto u' \Rightarrow v' \not\leadsto v$$

若 $v \leadsto v'$, 則對於 C 中的任意點 w 及 C' 中任一點 w':

$$\begin{array}{l} w \rightsquigarrow u \\ u \rightsquigarrow u' \Rightarrow w \rightsquigarrow w' \\ u' \rightsquigarrow w' \end{array}$$

及:

$$\begin{array}{ll} w' \leadsto v' \\ v' \leadsto v & \Rightarrow w \leadsto w' \\ v \leadsto w \end{array}$$

故 C', C 都不是 Strongly Connected Component, 矛盾。

Def (Discovery and Finish Time for Sets of Vertices)

G = (V, E) 是一張有向圖, $U \subseteq V$, 則定義 DFS 的起始與結束時間:

$$\begin{cases} d(U) = \min \left(\left\{ u. \, d \mid u \in U \right\} \right) \\ d(U) = \max \left(\left\{ u. \, d \mid u \in U \right\} \right) \end{cases}$$

Lemma

G=(V,E) 是一張有向圖,C',C 是 G 相異的 SCC。假定 $v \in C$, $v' \in C'$,且 $(v,v') \in E$,則:

假定 d(C) < d(C'),令 $x \in C$ 是 C 中第一個被發現的點。在 x.d 時間時, C, C' 全白。對於任意 $w' \in C'$:

$$x \leadsto v \to v' \leadsto w$$

是一條全白路徑。因此 C 中所有點都是 x 的子節點。由 Nestings 得證。

假定 d(C)>d(C'),假定 x' 是 C' 中第一個發現的點。因 d(C)>d(C'),故在 x' . d 時, C 為全白。由 Lemma 知:

$$eg \exists u \in C, u' \in C'. (u', u) \in E$$

所以在 x'. d 時:

$$orall w \in C. \, x' \overset{ ext{WHITE}}{\longrightarrow} w$$

因此 C 中任意點,都不是 x' 的子節點。由 Nestings 的狀況 1. 知 C 中每一點的 f 值都比 C' 中每一點的 f 值大。由此得證。

Corollary

G=(V,E) 是一張有向圖,C',C 是 G 相異的 SCC。假定 $v\in C$, $v'\in C'$,且 $(v,v')\in E^T$,則:

$$(v,v') \in E^T \iff (v',v) \in E$$

因為 G 和 G^T 的 SCC 相同,因此套用 Lemma 即得證。

Kosaraju's Algorithm