

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Primer Examen Parcial		
Lic. en Ciencias de la Computación – Ing. en Computación – Ing. en Sistemas de Información		
Apellido y Nombre:	LU:	Hojas entregadas:
(en ese orden)		(sin enunciado)
Profesor:		
NOTA: Resolver los ejercicios en hojas separadas. Poner nombre. LU y número en cada hoja.		

Apague cualquier dispositivo electrónico en su poder y manténgalo guardado. No puede utilizar auriculares, ni calculadora. Lea todo el ejercicio antes de comenzar a desarrollarlo.

Ejercicio 1. Dado el número **decimal** -298,5625 llevar adelante los siguientes cambios de base:

- a) Convertirlo a **octal**, empleando el método de la **división** tanto para la parte entera como para la parte fraccionaria, expresando el resultado en **complemento a la base**, con 4 dígitos decimales para la parte entera y 6 para la parte fraccionaria.
- b) Convertirlo a **binario** utilizando el método de la **multiplicación** tanto para la parte entera como para la parte fraccionaria, expresando el resultado en **complemento a la base disminuida**, con 12 bits para la parte entera y 6 bits para la parte fraccionaria.

Ejercicio 2. Considerando los números **decimales** X = 2559 e Y = 1537, llevar adelante las siguientes operaciones con una precisión de cuatro dígitos (incluido el signo), indicando claramente el resultado obtenido y la existencia o no de *overflow*:

- a) Calcular -X-Y, trabajando en **hexadecimal** en **complemento a la base**.
- b) Calcular X + Y, trabajando en **hexadecimal** en **complemento a la base disminuida**.
- c) Calcular X Y, haciendo uso de un hardware que opera en una codificación **BCD Exceso-3** y **complemento a la base**, indicando claramente qué operación se está realizando en cada uno de los pasos intermedios.