Uvod u mjeriteljstvo

Pitanja za ponavljanje za 1. MI

1. Zašto mjerenja osiguravaju objektivnost?

Jer pobjeđuju vladavinu osjeta.

2. Što je "soft metrology"?

Mjerenje veličina za koje ne postoje reference ili jedinice (npr. bol, strah, govor tijela).

3. Što podrazumijevate pod pojmom mjeriteljstvo?

Znanost o mjerenju i njegovim primjenama. Ime dolazi od grčkih riječi metron - mjera i logos - učenje.

4. Što podrazumijevate pod pojmom mjerenje?

Proces eksperimentalnog određivanja jedne ili više vrijednosti veličina koje se razumno mogu pridružiti veličini.

5. Obzirom na razine kompleksnosti i točnosti, mjeriteljstvo se dijeli na koje razine?

- 1. ZNANSTVENO MJERITELJSTVO bavi se razvojem i pohranjivanjem mjernih etalona (najviša razina).
- 2. INDUSTRIJSKO MJERITELJSTVO bavi se osiguravanjem ispravnog funkcioniranja mjernih uređaja koji se upotrebljavaju u industriji, proizvodnji i ispitnim procesima, za osiguravanje kakvoće življenja te za akademska istraživanja.
- 3. ZAKONSKO MJERITELJSTVO odnosi se na mjerenja koja imaju utjecaj na ekonomske transakcije (naplate) i zakonsku verifikaciju mjernih uređaja.

6. Temelj mjeriteljstva (fizikalnih veličina) čine:

- 1. MJERNI ETALONI (služe kao referenca (ishodište) za definiranje, ostvarivanje ili pohranjivanje jedinica)
- 2. SLJEDIVOST (neprekinuti lanac usporedbi osigurava da svaki mjerni rezultat bude sljediv (povezan) najvišom razinom točnosti) I UMJERAVANJE (usporedba nepoznate vrijednosti prema poznatoj vijrednosti)
- 3. MJERNA NESIGURNOST (kvantitativna mjera kakvoće mjernih rezultata)

7. Na što se svodi određivanje vrijednosti veličine?

Na usporedbu između mjerene veličine i pripadne jedinice. I mjerna jedinica je fizikalna veličina, ali točno (?) određene vrijednosti. Mjerni rezultat ima to veću mjeriteljsku vrijednost što je mjerna jedinica, kojom ga izrazimo, ustanovljena s većom točnošću.

$$U = \{U\} [U]$$

8. Orlandov lakat?

Jedinica duljine u Dubrovačkoj Republici. Duljina lakta do vrha prstiju na stupu viteza Orlanda iz 1418. godine. Iznosi približno 51 cm.

9. Yard?

Udaljenost između vrška nosa i palca ispružene lijeve ruke Henryja I. 1 yd = 0.9144 m.

10. Inch?

Ukupna duljina triju zrna koje je Edward II. izabrao iz sredine ječmenog klasa. 1 in = 25,4 mm.

11. Tehnički sustav jedinica mehanike?

Metar (m), sekunda (s), kilopond (kp).

12. CGS sustay?

Centimetar (cm), gram (g), sekunda (s).

13. SI sustay?

METAR (m) - duljina puta koju svjetlost prijeđe u vakuumu za vrijeme 299 792 458-og dijela sekunde.

KILOGRAM (kg) - jedinica mase. On je jednak masi međunarodne pramjere kilograma od PtIr pohranjene u Sevresu.

SEKUNDA (s) - trajanje 9 192 631 770 perioda zračenja koje odgovara prijelazu dviju hiperfinih razina osnovnog stanja atoma cezija 133.

AMPER (A) - ona stalna struja koja, prolazeći dvama ravnim, paralelnim, neizmjerno dugačkim vodičima, zanemarivo malenog poprečnog presjeka, razmaknutima jedan metar u vakuumu, uzrokuje između njih silu od $2\cdot 10^{-7}$ N po metru duljine.

KELVIN (K) - jedinica termodinamičke temperature. To je 273,16-i dio termodinamičke temperature troje točke vode.

MOL (mol) - množina (količina tvari) sustava koji sadrži toliki broj elementarnih jedinki koliko ima atoma u 12 grama ugljika ^{12}C .

KANDELA (cd) - svjetlosna jakost, u određenom smjeru, izvora koji emitira monokromatsko zračenje frekvencije $540 \cdot 10^{12}$ Hz i čija je jakost zračenja u tom smjeru 1/683 vata po steradijanu.

14. Koja je jedinica SI sustava "najtočnije", a koja "najlošije" određena?

"Najtočnije" sekunda $(1 \cdot 10^{-15})$, a "najlošije" kandela $(1 \cdot 10^{-4})$.

15.Da li se jedinica volt može realizirati prema svojoj definiciji?

Definicija jedinice ne mora biti isto što i njezina realizacija. Volt je izvedena jedinica SI sustava definirana kao snaga od jedan vat podijeljena strujom od jedan amper. Napon se realizira uređajima u kojima se uspoređuje električna snaga s mehaničkom. Odogovor je NE.

16. Za SI sustav razlikujemo koje vrste jedinica?

- 1. OSNOVNE JEDINICE (m, kg, s, A, K, mol, cd)
- 2. IMENOVANE IZVEDENE JEDINICE (npr. N, W, J, T, Pa, Hz i dr.)
- 3. NEIMENOVANE IZVEDENE JEDINICE (npr. m/s, m² i dr.)
- 4. JEDINICE IZVAN SI SUSTAVA ČIJA JE PRIMJENA DOPUŠTENA (npr. h, min, t, bar i dr.)

17. SI sustav- zapis?

USPRAVNO - posebni brojevi (npr. e, j, π), simboli mjernih jedinica i pripadni predmetci, cimboli kemijskih elemenata, simboli operatora KOSO - simboli fizikalnih veličina, simboli funkcija

18. Formiranje decimalnih jedinica?

```
10^{-1} - deci - d

10^{-2} - centi - c

10^{-3} - mili - m

10^{-6} - mikro - \mu

10^{-9} - nano - n

10^{-12} - piko - p

10^{-15} - femto - f

10^{-18} - ato - a

10^{-21} - zepto - z

10^{-24} - jokto - j
```

 10^1 - deka - da

 10^2 - hekto - h

 10^3 - kilo - k

 10^6 - mega - M

 10^9 - giga - G

 10^{12} - tera - T

 10^{15} - peta - P

 10^{18} - eksa - E

 10^{21} - zeta - Z

 10^{24} - jota - J

19. Formiranje binarnih jedinica?

2¹⁰ - kibi - Ki

 2^{20} - mebi - Mi

 2^{30} - gibi - Gi

 2^{40} - tebi - Ti

2⁵⁰ - pebi - Pi

 2^{60} - exbi - Ei

 2^{70} - zebi - Zi

 2^{80} - yobi - Yi

20. Dva osnovna mjeriteljska dokumenta?

VIM i GUM.

21. Što je veličina?

Svojstvo pojave, tijela ili tvari, gdje svojstvo ima velikoću koja se može izraziti brojem i referencom (mjerna jedinica, mjerni postupak, referentni materijal ili njihova kombinacija).

22. Što je mjerena veličina?

Veličina koja se nastoji izmjeriti. Mjerenje, zajedno sa mjernim sustavom i uvjetima pod kojima se ono provodi, može promijeniti svojstvo pojave, tijela ili tvari tako da se veličina koja se izmjeri razlikuje od mjerene veličine (npr. spajanje ampermetra ili voltmetra u strujni krug).

23. Što je utjecajna veličina?

Ona koja u izravnom mjerenju ne utječe na veličinu koja se mjeri, ali utječe na odnosi između pokazivanja i mjernog rezultata (npr. temperatura mikrometra koji se rabi za mjerenje duljine, frekvencija kod mjerenja amplitude izmjeničnog napona).

24. Što je mjerno načelo?

Pojava koja služi kao osnova za mjerenje.

25. Što je mjerna metoda?

Općeniti opis logičkog slijeda djelovanja koji se rabi za mjerenje.

26. Što je mjerni postupak?

Detaljan opis mjerenja prema jednom ili više mjernih postupaka i prema određenoj mjernoj metodi, koji se temelji na mjernom modelu i uključuje sve izračune kako bi se odredio mjerni rezultat.

27. Što prava vrijednost veličine?

Vrijednost veličine u skladu s definicijom veličine.

28. Što je dogovorna vrijednost veličine?

Vrijednost veličine dogovorom pridijeljena veličini za određenu svrhu.

29. Što je mjerni rezultat?

Niz vrijednosti veličine pridružen mjerenoj veličini zajedno s bilo kojom pripadajućom raspoloživom informacijom.

30. Što je mjerna pogreška?

Mjerena vrijednost veličine minus referentna vrijednost veličine.

31. Što je apsolutna pogreška?

$$p = X - X_{ref}$$

32. Što je relativna pogreška?

$$p_r = \frac{X - X_{ref}}{X_{ref}}$$

33. Što je sustavna mjerna pogreška?

Sastavnica mjerne pogreške koja u ponovljenim mjerenjima ostaje stalna ili se mijenja na predvidljiv način.

34. Što je slučajna mjerna pogreška?

Sastavnica mjerne pogreške koja se u ponovljenim mjerenjima mijenja na nepredvidljiv način.

35. Na koji način otklanjamo slučajne učinke?

Ponavljanjem mjerenja.

36. Kada koristimo Gaussovu, a kada Studentovu t-razdiobu?

Za veliki broj uzoraka koristimo Gaussovu (n > 30), a za mali Studentovu t-razdiobu (n < 30).

37. O čemu ultimativno ovisi računanje mjerene nesigurnosti?

O matematičkom modelu kojim opisujemo mjerenu veličinu.

38. Pojedine sastavnice složene standardne nesigurnosti mogu biti koje vrste?

Vrste A i vrste B.