Lezioni di Ricerca Operativa

Corso di Laurea in Informatica Università di Salerno

Lezione n° 23

- Algoritmo di Kruskal
- Algoritmo di Prim

R. Cerulli - F. Carrabs

Alberi

Sia G=(V,E) un grafo non orientato e connesso.

- G è aciclico se i suoi archi non formano cicli;
- Un albero è un grafo connesso ed aciclico;
- Ogni grafo aciclico è in generale l'unione di uno o più alberi e viene detto foresta;

Esempio

Proprietà degli alberi

Dato un grafo G=(V,E), le seguenti affermazioni sono equivalenti:

- > Gè un albero
- > ogni coppia di nodi di G è connessa da un unico cammino
- ▶ G è aciclico e |E| = |V| 1
- ➢ G è connesso e |E| = |V| 1

Alberi Ricoprenti

Sia G=(V,E) un grafo non orientato e connesso.

Un albero ricoprente (spanning tree) di G è un sottografo T di G tale che: T è un albero e contiene tutti i nodi di G.

Un grafo può avere più alberi ricoprenti.

Il Problema del Minimo Albero Ricoprente (Minimum Spanning Tree Problem)

Sia G=(V,E) un grafo non orientato e connesso dove ad ogni arco $e_i \in E$ è associato un costo c_i .

Il costo di un albero ricoprente T di G è dato dalla somma dei costi degli archi che lo compongono.

Il problema: determinare l'albero ricoprente di G di costo minimo

Esempio

Applicazioni

- determinare la rete di comunicazione più affidabile;
- determinare la connessione tra n centri a costo minimo (e.g., distribuzione del gas);
- progettare i circuiti elettronici per collegare fra loro le diverse componenti minimizzando la quantità di filo da utilizzare;

Modello Matematico 1: Subtour Elimination

$$\min \sum_{(i,j) \in E} c_{ij} x_{ij}$$

$$\sum_{(i,j)\in E} x_{ij} = n-1$$

$$\sum_{\substack{(i,j)\in E\\i\in S,j\in S}}x_{ij}\leq \left|S\right|-1 \qquad \forall S\subset V,\,\left|S\right|\geq 3$$

$$x_{ij} \in \{0,1\} \qquad \forall (i,j) \in E$$

Modello Matematico 1: Cut Formulation

$$\min \sum_{(i,j)\in E} c_{ij} x_{ij}$$

$$\sum_{(i,j)\in E} x_{ij} = \mathbf{n-1}$$

$$\sum_{\substack{(i,j)\in E\\i\in S,j\in V\setminus S}}x_{ij}\geq 1$$

$$\sum x_{ij} \ge 1 \qquad \forall S \subset V, |S| \ge 1$$

$$x_{ij} \in \left\{0,1\right\}$$

$$\forall$$
 (i, j) \in E

Algoritmi Risolutivi

algoritmo di Kruskal (Greedy Algorithm)

algoritmo di Prim

Algoritmo di Kruskal (Minimum Spanning Tree)

Sia G=(V,E) un grafo non orientato con *n* nodi ed *m* archi.

- 1. Ordinare gli archi $e_1,e_2,...$, e_m in modo non decrescente $(c_1 \le c_2 \le ... \le c_m)$. Siano $E^0 = \emptyset$, $ST^0 = (V, \emptyset)$ e k=1.
- 2. Se $(V, E^{k-1} \cup \{e_k\})$ è un grafo aciclico allora $ST^k = (V, E^k)$ con $E^k = E^{k-1} \cup \{e_k\}$, altrimenti e_k viene scartato, $E^k = E^{k-1}$ e $ST^k = ST^{k-1}$.
- 1. Se |E^k|=n-1 l'algoritmo si arresta ed ST^k è l'albero ricoprente cercato, altrimenti k=k+1 e si ritorna al passo (2).

Esempio: n=9 m=17

(5,8)	(7,8)	(5,7)	(2,4)	(7,9)	(6,7)	(1,2)	(1,4)	(3,5)	(3,4)	(1,6)	(4,6)	(6,9)	(2,3)	(8,9)	(3,9)	(4,5)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Esempio: n=9 m=17

(5.8)	180	5.70	(34)	17.92	(6.7)	(1)-20	(1,4)	35	250	(1,6)	(4,6)	(6,9)	(2,3)	(8,9)	(3,9)	(4,5)
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Esempio: n=9 m=17

- ➤ Sia 4+k il nuovo peso dell'arco (2,4) nel grafo. Per quali valori di k l'albero di copertura minimo non cambia?
- ➤ Sia 8+k il nuovo peso dell'arco (1,4) in G. Per quali valori di k l'arco (1,4) verrà inserito nella soluzione ottima?

(5,8)	788	(5.7)	1341	7520	(6.7)	(1)20	(LA)	(3.5)	(34)	(1,6)	(4,6)	(6,9)	(2,3)	(8,9)	(3,9)	(4,5)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Algoritmo di Prim (Minimum Spanning Tree)

Sia G=(V,E) un grafo non orientato con *n* nodi ed *m* archi.

- 1. Selezionare un qualsiasi vertice $v_s \in V$ e porre $V^0 = \{v_s\}$, $E^0 = \emptyset$, k=1.
- 2. Dato il taglio [V^{k-1},V\V^{k-1}], selezionare l'arco diretto del taglio (v_i,v_h) avente costo minimo e porre $V^k=V^{k-1}\cup\{v_h\}$ e $E^k=E^{k-1}\cup\{(v_i,v_h)\}$
- 1. Se |E^k|=n-1 l'algoritmo si arresta ed ST=(V^k,E^k) è l'albero ricoprente cercato, altrimenti k=k+1 e si ritorna al passo (2).

Esempio: n=6 m=12

L'algoritmo di Prim O(|E|log|V|) è più efficiente di quello di Kruskal O(|E|log|E|).

Albero dei Cammini minimi ≠ albero di copertura minimo

Albero dei Cammini minimi ≠ albero di copertura minimo

