One-stage cluster sampling estimation

Week 6 (5.1, 5.2.1, 5.2.3)

Stat 260, St. Clair

1 / 24

Design: One-Stage Cluster Sample

Definition: Divide all population **observation units** into N non-overlapping **clusters** of observation units.

https://spot.pcc.edu/~evega/section-4.html

Design: One-Stage Cluster Sample

Defined: We take a SRS of n clusters and survey every observation unit in selected clusters.

https://spot.pcc.edu/~evega/section-4.html

Design: Cluster vs. Stratified sampling

Take a SRS within each strata

https://spot.pcc.edu/~evega/section-4.html

3 / 24

Design: One-Stage Cluster Sample

- Primary Sampling Units (PSU): clusters
- Secondary Sampling Units (SSU): observation units
 - $\circ \ y_{ij}$ is the measurement for unit j in cluster i
 - $\circ \,\, M_i$ is the number of observation units in cluster i
 - $\circ \ M_0 = \sum_{i=1}^N M_i$ is the total number of observation units in the population

Design: One-Stage Cluster Sample

Why?

- Can be **cheaper** than a SRS
- A sampling frame of clusters may exist but a sampling frame of observation units does not.

5 / 24

Example 1: GPA

A student wants to estimate the average GPA in his dormitory. The dorm consists of 100 suites, each with four students. He chooses a SRS of 5 of these suites and records the GPA of each student living in the suite.

Example 2 - residents

Suppose you are interested in surveying the 11,482 adults who reside permanently in Northfield. You divide the town into 400 blocks and take a SRS of 5 blocks. You then visit each adult resident who lives on a selected block and record their annual income (in thousands of dollars) and whether or not they identify their political affiliation as Democratic.

Inclusion probabilities: One-Stage Cluster

What is the probability that unit j from cluster i is selected?

Sampling weights: One-Stage Cluster

What is the sampling weight for unit j from cluster i under a one-stage cluster design?

9 / 24

Estimation plan: One-Stage Cluster

• One option! Use an unbiased Horvitz-Thompson estimator to estimate the (overall) population total

$$\hat{t}_{HT} = \sum_{ ext{sampled units}} w_{ij} y_{ij}$$

Population Total: One-Stage Cluster

• Parameter: $t = \sum_{i=1}^{N} \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^{N} t_i$

Population Total: One-Stage Cluster

• Parameter: $t = \sum_{i=1}^N \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^N t_i$

· Unbiased Estimator:

$$\hat{t}_{\,unb} = rac{N}{n} \sum_{i=1}^n t_i = N ar{t}$$

where $ar{t}$ is the sample mean **total response** per cluster

Population Mean: One-Stage Cluster

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$
- Assume that M_0 is known
- Unbiased Estimator:

$$\hat{ar{y}}_{unb} = rac{\hat{t}_{\,unb}}{M_0}$$

where \bar{t} is the sample mean **total response** per cluster.

• Standard error:

$$SE(\hat{ar{y}}_{unb}) = rac{SE(\hat{t}_{unb})}{M_0}$$

Population Total: One-Stage Cluster

• Parameter: $t = \sum_{i=1}^{N} \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^{N} t_i$

· Unbiased Estimator:

$$\hat{t}_{\it unb} = rac{N}{n} \sum_{i=1}^n t_i = N ar{t}$$

where $ar{t}$ is the sample mean **total response** per cluster.

· Standard error:

$$SE(\hat{t}_{unb}) = N\sqrt{\left(1-rac{n}{N}
ight)rac{s_t^2}{n}}$$

where s_t is the sample standard deviation of cluster totals.

13 / 24

Population Proportion: One-Stage Cluster

• Parameter: $p=rac{t}{M_0}$

- Use formulas for mean where t_i counts the number of observation units in cluster i that are a "success"

Example 1 - GPA

 $N=100,\, n=5,\, M_i=4,\, M_0=400$

	Suite 1	Suite 2	Suite 3	Suite 4	Suite 5
1	3.08	2.36	2.00	3.00	2.68
2	2.60	3.04	2.56	2.88	1.92
3	3.44	3.28	2.52	3.44	3.28
4	3.04	2.68	1.88	3.64	3.20
total	12.16	11.36	8.96	12.96	11.08

Estimate/SE for the mean GPA in the population.

Population Mean: One-Stage Cluster

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$
- Assume that M_0 is unknown
- Biased Ratio Estimator:

$$\hat{\bar{y}}_r = \frac{\sum_{i=1}^n t_i}{\sum_{i=1}^n M_i}$$

Population Mean: One-Stage Cluster

• Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$

• What if M_0 is unknown!

17 / 24

Population Mean: One-Stage Cluster

• Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$

- Assume that M_0 is unknown
- Biased Ratio Estimator:

$$\hat{ar{y}}_r = rac{\sum_{i=1}^n t_i}{\sum_{i=1}^n M_i}$$

• Standard error: for large n:

$$SE(\hat{ar{y}}_r) pprox \sqrt{\left(1-rac{n}{N}
ight)rac{1}{nar{M}^2}rac{\sum_{i=1}^n(t_i-\hat{ar{y}}_rM_i)^2}{n-1}}$$

Population Total: One-Stage Cluster

• Parameter: $t=M_0ar{y}_{\mathcal{U}}$

• Assume that M_0 is known!!

• Biased Ratio Estimator:

$$\hat{t}_{\,r}=M_0\hat{ar{y}}_{\,r}$$

- Standard error: for large \boldsymbol{n}

$$SE(\hat{t}_{\,r})pprox M_0SE(\hat{ar{y}}_{\,r})$$

One-Stage Cluster estimation options:

- Unbiased vs. Biased:
 - \circ Biased (ratio) options could be more precise than unbiased options when t_i and M_i are positively correlated
- Bias of ratio options:
 - \circ need large n for bias to be small

21 / 24

Example 2 - residents

$$N = 400, n = 5$$

	Block 1	Block 2	Block 3	Block 4	Block 5	total	s_t^2
# of Adults	10	15	18	22	17	82	19.3
Total Income	1100	1020	972	704	714	4510	33144
# Dems	8	5	7	15	3	38	20.8

Assume that $M_0=11,482.$ Estimate/SE the proportion of adults who are Democrats.

Example 2 - residents

$$N=400,n=5$$

	Block 1	Block 2	Block 3	Block 4	Block 5	total	s_t^2
# of Adults	10	15	18	22	17	82	19.3
Total Income	1100	1020	972	704	714	4510	33144
# Dems	8	5	7	15	3	38	20.8

Assume you don't know M_0 . Estimate/SE the proportion of adults who are Democrats.