Machine Learning Models Unidad 1 Preprocesado

Transformación de variables

- ☐ 1. Normalización de variables numéricas
- ☐ 2. Conversión de variables categóricas a numéricas

1. Normalización de variables numéricas

Normalización Introducción

- La <u>normalización</u> es una técnica que se utiliza para cambiar los valores de las columnas numéricas en el conjunto de datos a una escala común, sin distorsionar las diferencias en los rangos de valores
- En <u>Machine Learning</u>, a menudo se normalizan las características (o variables de entrada) para asegurarse de que todas ellas sean evaluadas en una escala similar
- El <u>objetivo</u> es evitar que las características con rangos de valores más grandes influyan desproporcionadamente en el modelo en comparación con las características con rangos de valores más pequeños
- Hay varios tipos de normalización, nos centraremos en dos: <u>estandarización</u> y Min-Max Scaling (<u>escalado 0-1)</u>
- Ejemplo: supón que tienes un conjunto de datos con dos características: la edad (que varía de 0 a 100) y el ingreso anual (que varía de 0 a 100.000). Un modelo de aprendizaje automático podría considerar erróneamente que el ingreso es una característica más importante simplemente debido a su mayor magnitud

Normalización Min-Max scaling

- Una forma común de normalización es la llamada "Min-Max Scaling", que escala todos los valores de una variable / columna para que estén entre 0 y 1
- La fórmula es: $X_{esc} = \frac{X X_{min}}{X_{max} X_{min}}$ donde X_{min} es el valor mínimo de los datos de esa variable y X_{max} es el valor máximo
- Esta fórmula se aplica a cada valor de la variable y el resultado es que todos los datos de la variable están entre 0 y 1 (y ambos, son tomados, lógicamente)

Normalización Estandarización

- Otra forma también muy común (como sabéis) de normalizar una variable es estandarizarla. Es decir, convertirla en una variable de media cero y desviación estándar 1
- La fórmula es: $X_{est} = \frac{X-X}{S_X}$ donde \overline{X} es la media de la variable X y S_X es la desviación estándar de la variable X
- Esta fórmula se aplica a cada valor de la variable y el resultado es que esa variable tiene media 0 y desviación estándar 1
- En este caso la media puede no ser un dato existente y por lo tanto en los datos estandarizados puede no existir ningún valor de cero
- Recordemos que la interpretación de un valor (puntuación) estandarizada se obtiene evaluando si está por encima de la media (valor mayor a 0) o por debajo de la media (menor a cero) o igual que la media (igual a cero). Además, lo que te separa de la media está en unidades de su desviación estándar
- Ejemplo de interpretación: Una puntuación estandarizada de X=2 es un valor por encima de la media de X en 2 desviaciones estándar de esa variable X

Normalización-Resumen

Feature scaling

Normalización EN MACHINE LEARNING

IMPORTANTE

- Hay que distinguir dos conceptos en la aplicación de la normalización en MACHINE LEARNING:
- Construcción del normalizador en base a unos datos
- Tomamos unos datos
- Construimos el normalizador con esos datos
- SÓLO Calculamos lo que necesitamos para normalizar
 - Mínimo y máximo para el Min-Max Scaling
 - Media y Desviación estándar para la estandarización
- Aplicación del normalizador ya creado a unos datos
- Tomamos unos datos (los que han servido para construirlo u otros datos nuevos que no han servido para construir la formula, el normalizador)
- Aplicamos el normalizador ya construido sobre esos datos (los mismos u otros)

Normalización PYTHON I Crear objeto

- **CREACIÓN** del objeto capaz de normalizar
 - Min-Max Scaler:
- from sklearn import preprocessing
- escalador = preprocessing.MinMaxScaler()
 - Estandarización
- from sklearn import preprocessing
- estandarizador = preprocessing.StandardScaler()

Normalización PYTHON II Construir

CONSTRUCCIÓN del normalizador en base a unos datos

- Min-Max Scaler:
- escalador.fit(df[['Ingreso']])
- escalador.fit(df[['Ingreso', 'gasto]])

- Estandarización
- estandarizador.fit(df[['Ingreso']])
- estandarizador.fit(df[['Ingreso', 'gastos]])

Normalización PYTHON III Aplicar

• APLICACIÓN del normalizador a unos datos

- Min-Max Scaler:
- escalador.transform(df2[['Ingreso']])
- escalador.transform(df2[['Ingreso', 'gasto]])
 - Estandarización
- estandarizador.transform(df2[['Ingreso']])
- estandarizador.transform(df2[['Ingreso', 'gasto']])

Normalización PYTHON IIII Construir + Aplicar

- CONSTRUCCIÓN + APLICACIÓN
- Podemos crear y aplicar sobre unos mismos datos todo a la vez

- Min-Max Scaler:
- escalador.fit_transform(df2[['Ingreso']])
- escalador.fit_transform(df2[['Ingreso', 'gasto]])

- Estandarización
- estandarizador.fit_transform(df2[['Ingreso', 'gasto']])

1. Conversión de variables categóricas a numéricas

Conversión a numérica Introducción

- La mayoría de algoritmos de ML necesitan trabajar con variables numéricas. Por ello habremos de convertir las variables categóricas a variables numéricas de forma inteligible para los algoritmos
- Hay dos fromas principales de convertir variables categóricas en numércias:
 - One-Hot encoding. Esta técnica genera tantas variables dicotómicas como categorías tiene la variable a convertir
 - Ordinal encoding. Esta técnica asigna un valor numérico a cada caetgoría.

One-Hot encoding. Esta técnica genera tantas **variables dicotómicas** como categorías tiene la variable a convertir

Conversión a numérica One-Hot encoding

SECTOR		Automoción	Turismo	Editorial
Automoción		1	0	0
Turismo		0	1	0
Turismo	smo		1	0
Editorial		0	0	1
Turismo	Turismo		1	0
Automoción		1	0	0

Conversión a numérica One-Hot encoding PYTHON

	Sector	Ingresos	
0	Automocion	1000	11.
1	Turismo	2000	
2	Turismo	300	
3	Editorial	150	
4	Turismo	2000	
5	Automocion	900	

Conversión a numérica One-Hot encoding PYTHON [38] one_hot=pd.get_dummies(df, columns=['Sector'])
one_hot

	Ingresos	Sector_Automocion	Sector_Editorial	Sector_Turismo
0	1000	1	0	0
1	2000	0	0	1
2	300	0	0	1
3	150	0	1	0
4	2000	0	0	1
-	000	4	0	0

Conversión a numérica Ordinal encoding **Ordinal encoding**. Esta técnica asigna un número a cada categoría. SOLO EN CASOS DONDE EL ORDEN TENGA SENTIDO y hay que mantenerlo

NIVEL ESTUDIOS	NIVEL ESTUDIOS
GRADO	3
ESO	1
ESO	 1
BATX	2
ESO	1
GRADO	3

Conversión a numérica Ordinal encoding PYTHON

∌		NivelEstudios	Ingresos	
	0	ESO	1000	11.
	1	GRADO	2000	
	2	ESO	300	
	3	ESO	150	
	4	BATX	2000	
	5	ESO	900	
	6	GRADO	2000	

Conversión a numérica Ordinal encoding PYTHON

	NivelEstudios	Ingresos	NE	${\bf NivelEstudios_codificado}$	
0	ESO	1000	0	0	
1	GRADO	2000	2	2	
2	ESO	300	0	0	
3	ESO	150	0	0	
4	BATX	2000	1	1	
5	ESO	900	0	0	
6	GRADO	2000	2	2	

Nota: estamos fitando y aplicando a la vez (fit_transform)