MIPS Overview

From OSDev Wiki

This page is a work in progress and may thus be incomplete. Its content may be changed in the near future.

The MIPS CPU architecture is used in computer architectures like SGI O2 and Octane systems, Nintendo N64 as well as the Sony Playstation, Playstation 2 and Playstation Portable.

Contents

- 1 General Registers
- 2 Arithmetic Registers
- 3 Coprocessor 0 Registers
- 4 Instruction fields
- 5 Addressing modes
- 6 See Also
 - 6.1 Articles
 - 6.2 References

General Registers

Name	Number	Function	Callee must preserve?	
\$zero	\$0	constant 0	n/a	
\$at	\$1	assembler temporary	no	
\$v0- \$v1	\$2–\$3	values for function returns and expression evaluation	no	
\$a0- \$a3	\$4-\$7	function arguments	no	
\$t0- \$t7	\$8-\$15	temporaries	no	
\$s0- \$s7	\$16–\$23	saved temporaries	yes	
\$t8- \$t9	\$24-\$25	no		
\$k0-	\$26-\$27	reserved for OS kernel	no	

\$k1			
\$gp	\$28	global pointer	yes
\$sp	\$29	stack pointer	yes
\$fp/\$s8	\$30	frame pointer	yes
\$ra	\$31	return address	n/a

Note: All except registers on the MIPS except \$zero, HI and LO are general registers; the listed usage is per convention and not enforced by the processor or the assembler. The register name \$s8 is a synonym for \$fp used in some assemblers, in systems where the frame pointer is not regularly used.

Arithmetic Registers

Register	Multiplication	Division
HI	Multiplicand Upper word	Quotient
LOW	Multiplicand Lower word	Remainder

Coprocessor 0 Registers

Name	Number	Function	Callee must preserve?
c0_index	cop0 \$0	TLB entry index register	n/a
c0_random	cop0 \$1	TLB randomized access register	n/a
c0_entrylo	cop0 \$2	Low-order word of "current" TLB entry	n/a
c0_context	cop0 \$4	Page-table lookup address	n/a
c0_vaddr	cop0 \$8	Virtual address associated with certain exceptions	n/a
c0_entryhi	cop0 \$10	High-order word of "current" TLB entry	n/a
c0_status	cop0 \$12	Processor status register	n/a
c0_cause	cop0 \$13	Exception cause register	n/a
c0_epc	cop0 \$14	PC at which exception occurred	n/a

Instruction fields

Field	Size	Position	Op Types	Description
op	6	26-31	R, I, J	opcode for the instruction or group of instructions.
rs	5	21-25	R, I	Source register for store operations, destination for

				all other operations.
rt	5	16-20	R, I	First operand register.
rd	5	11-15	R	Second operand register.
shift	5	6-10	R	Immediate operand for shift and rotate instructions.
func	6	0-5 R Extended opcode.		
imm	16	0-15	I	Half-word immediate operand.
address		0-25	J	26-bit address field for unconditional jump operations.

Addressing modes

Type	Assembly Format	Opcode format	Comments
Register	inst rs, rd,	op rs, rd, rt, shift, func	The opcode represents a group of operations rather than a specific instruction; the func field contains the actual operation. The shift field is only used in shift and rotate operations.
Immediate (I-type)	inst rs, rt, imm	opcode rs, rt, imm	Immediate operation use a 16-bit immediate value from the instruction word itself.
Load (I- type)	inst rs, imm(rt)	op rs, rt, imm	Load/Store operations are a special case of immediate, where the offset is the immediate operand.
Store (I- type)	inst rs, offset(rt)	op rs, rt, imm	Unlike in most other operations, the rs register is the data source.
Cond. Branch(I-type)	inst rs, rt, label	op rs, rt, imm	Conditional branches have a 16-bit relative range.
Jump {J-type)	inst label	op address	the J and JAL operations have a 26-bit relative range.

Note: The assembly formats given are those from the official MIPS Technologies documentation. Other assemblers (e.g., gas) may use different formats.

See Also

Articles

System Initialization (SGI Mips)

References

- Wikibooks: MIPS Assembly Instruction Formats (http://en.wikibooks.org/wiki/MIPS_Assembly/Instruction_Formats)
- MIPS Instruction Coding (http://www.d.umn.edu/~gshute/spimsal/talref.html)

■ MIPS Encoding Reference (http://www.student.cs.uwaterloo.ca/~isg/res/mips/opcodes)

Retrieved from "http://wiki.osdev.org/index.php?title=MIPS_Overview&oldid=17267" Categories: In Progress | MIPS

- This page was last modified on 3 December 2014, at 13:35.
- This page has been accessed 22,119 times.