Quiz 4: Mathematical Statistics (MATH-UA 234)

In-class 10/25 (15min). Print your name and NetID, write in the box, and circle your final answer.

Name:	NetID:									
Problem 1. For some fixed but unknown parameter p	$\in (0, 1/2), de$	fine t	the ci	ımula	tive d	istri	buti	on fu	nction	ı
$F_p(x) = \begin{cases} 0 \\ p \\ 1 - 1 \end{cases}$	λ ≥ 1.									
Suppose $X_1,\ldots,X_n\sim F_p$ are all independent and define	$\bar{X}_n = \frac{1}{n}(X_1 + \cdot$	+2	X_n).							
(a) Suppose $X \sim F_p$. What is $\mathbb{E}[X] = \int x dF_p(x)$ and	$d\mathbb{V}[X] = \int (x$	$-\mathbb{E}$	$[X])^2$	$^{2}dF_{p}(x)$	c)?				(2	spts)
(b) What is $\mathbb{E}[\bar{X}_n]$ and $\mathbb{V}[\bar{X}_n]$?									(2	pts)
(c) Find an interval (a_n, b_n) depending on X_1, \dots, X_n	and $\alpha \in (0,1)$	such	tha:	t						
$\mathbb{P}[p\in($	$[a_n, b_n] \ge 1 -$	-α.								
Your interval should not depend on p and should	get smaller as i	n gets	s larg	jer.					(8	pts)
Hint: it may help to use Chebyshev's inequality:										
$\mathbb{P}[Z - \mathbb{E}[Z] \geq \epsilon$	$] \leq \frac{\mathbb{V}[Z]}{\epsilon^2},$	∀2	Z.							

