# Sjálfvirk greining flæðimælinga

Uppgötvun leka og sundurliðun mælinga

Höfundur: Sverrir Heiðar Davíðsson

# Sverrir Heiðar Davíðsson

#### Menntun:

- BSc. í **Hugbúnaðarverkfræði** frá Háskóla Íslands
- MSc. nemi í Human-Centered Artificial Intelligence í DTU

#### Veitur:

- Hóf störf í byrjun sumars
- Þetta verkefni sem áfangi í DTU

### Fyrri reynsla:

- Tvö rannsóknarverkefni hjá Rio Tinto
- Hópstjóri drifkerfis í hönnun og smíði rafmagns formúlubíls (Team Spark)

# Samhengi verkefnis

Gögn frá flæðimælum í vatnsveitu víða í Reykjavík

Elstu mælingar frá árinu 2005

Mælar ýmist staðsettir við 'botnlanga' í kerfinu eða í hverfum með margar leiðir inn og út

 Meiri áhersla á botnlangana fyrir betri túlkun niðurstaðna



# Gögnin

Flæðimælingar úr kaldavatnslögnum

- Klukkustunda meðaltal
- Yfirleitt mjög regluleg mynstur
- Mælingar yfirleitt á sama bilinu







# Yfirlit mælinga -Skerjafjörður

#### Gerð hverfis:

- Íbúðahverfi
- Botnlangi lagnakerfis

#### Helstu eiginleikar gagna:

- Áberandi stór <u>leki</u> frá 2011 2014
- <u>Litlar sveiflur</u> yfir ár án stórra leka
- Mjög regluleg dagleg/vikuleg mynstur



# Yfirlit mælinga -Víðidalur

#### Helstu eiginleikar gagna:

- Margir stórir <u>lekar</u> frá upphafi
- <u>Miklar sveiflur</u> yfir ár
- <u>Nokkuð óregluleg</u> dagleg/vikuleg mynstur



# Hvernig þekkjum við leka frá aukinni notkun?

#### Helstu vandamál

- Ekki nóg að fylgjast með meðaltali
- Aukning í notkun lítur ekki eins út fyrir öll hverfi

Þurfum fyrst að vita hvað er eðlilegt fyrir hvert hverfi (mynstur)



## Hvað er mynstur í þessu samhengi?

#### **Dagleg mynstur:**

Auðveldara að túlka

#### Vikuleg mynstur:

- Þolir betur frávik frá mynstri
- Betra fyrir lekamat

#### Mynstur leka:

- Bein lína (Nánast alveg rétt)







# Lekaleit dæmi -Skerjafjörður

Viljum aðferð sem getur gert eftirfarandi:

- Input gögn ≈ Lekamat + Notkun

Ef aðferð væri að virka þá myndum við sjá:

- Lækkun í lekamati eftir viðgerð
- Enga breytingu í annarri notkun

#### Niðurstöður benda til að aðferðin virki.

- ... að minnsta kosti *fyrir þetta hverfi* 



# Hvað þýðir að "Útskýra notkun með mynstrum"?

Við leysum einfalt dæmi:

Mælingar = (magn\_A \* mynstur\_A) + (magn\_B \* mynstur\_B) + ...

#### Túlkun útreikninga:

- magn\_A ~ Fjöldi fólks af gerð A
- mynstur\_A ~ Notkunarmynstur fólks af gerð A

<u>Líkanið finnur mynstrin sem geta best útskýrt mælingarnar</u>





# Lekaleit dæmi -Víðidalur

#### Ólíkt hverfi

- Óreglulegri mynstur
- Öðruvísi gerð notkunar
- Töluvert fleiri lekar
- Meiri árstíðarsveiflur

#### Niðurstöður benda til að aðferðin virki.

- ... einnig fyrir þetta hverfi

<u>Græðum nýja sýn á þróun notkunar í hverfi</u>







## Hvað getur aðferðin sagt okkur?

#### Notkun íbúa/fyrirtækja

- 1. Hvenær fólk notar meira vatn
- 2. Af hverju fólk notar meira vatn
  - a. Bera saman við aðrar breytur

#### Lekar

- 1. Hvenær nýir lekar birtast
- 2. Hve stórir nýir lekar eru
- 3. Heildar magn leka í gefnu kerfi



# Samantekt/umræða

### Hvað gerir þetta fyrir Veitur?

- 1. Forgangsröðun lekaviðgerða
- 2. Yfirsýn á heildar ástandi kerfisins (Árangursmat)
- 3. Nýtt innsæi í notkun/hegðun notenda

#### Framtíð verkefnis

- 1. Frekari þróun aðferðar → betri niðurstöður
  - a. Innleiðing fleiri gagna
  - b. Mynstur sem þróast með hverfum
- 2. Fjölgun mæla → Nákvæmari staðsetning leka
- 3. Sjálfvirk kerfi → Tilkynningar um nýja leka





# Takk fyrir mig!

Spurningar?