Progetto di Reti		18 Giugno 2018
	Esame finale	
G. Oriolo		18 Giugno 2018

Consegnare esclusivamente questo foglio, rispondendo alle domande sul retro.

Esercizio 1. Considerate l'istanza del Facility Location Game con insieme dei clienti $N = \{A, B, C, D\}$, insieme delle facility $F = \{1, 2, 3\}$, costi di set-up $f_1 = 12, f_2 = 14, f_3 = 10$ e costi di connessione $d_{A,1} = 7, d_{A,2} = 17, d_{A,3} = 7, d_{B,1} = 11, d_{B,2} = 17, d_{B,3} = 9, d_{C,1} = 17, d_{C,2} = 19, d_{C,3} = 17, d_{D,1} = 17, d_{D,2} = 13, d_{D,3} = 9.$

- Utilizzando l'algoritmo primale-duale individuare una soluzione per il problema di facility location (ovvero, quali facility aprire e la connessione di ogni cliente a una facility aperta). Illustrare lo svolgimento dell'esercizio riportando i valori di tutte le variabili al variare della variabile di clock t, le facility aperte in modo temporaneo e quelle aperte in modo definitivo (giustificando la eventuale chiusura di una o più facility) e i valori delle variabili duali.
- Quale frazione del costo di questa soluzione può essere recuperata utilizzando una divisione dei costi che sia stabile? Per rispondere alla domanda, indicare quanto dovrebbe pagare ciascun cliente e appunto la frazione di costo che questa divisione permette di recuperare.
- Sulla base delle risposte precedenti, dire quanto può valere l'integrality gap della formulazione standard del problema di facility location:

$$\min \sum_{i \in F} f_i y_i + \sum_{i \in F} \sum_{j \in N} d_{ij} x_{ij}$$

$$\sum_{i \in F} x_{ij} \ge 1, \ j \in N$$

$$x_{ij} \le y_i, \ i \in F, j \in N$$

$$x_{ij}, y_i \in \{0, 1\}, i \in F, j \in N;$$

in questo caso. Per rispondere alla domanda, fornire un intervallo, il più piccolo possibile, nel quale si colloca il valore dell'integrality gap. Non è necessario giustificare la risposta

Soluzione Innanzitutto è facile verificare che i costi di connessione soddisfano l'ipotesi metrica, quindi l'uso dell'algoritmo primale-duale appropriato.

Svolgiamo dunque l'algoritmo. Esso fa crescere ordinatamente le variabili $\alpha_j, j \in \{A, B, C, D\}$ e le variabili $\beta_{ij}, i \in \{1, 2, 3\}, j \in \{A, B, C, D\}$. Immaginiamo che il suo svolgimento segua un clock esterno, rappresentato da una variabile temporale t: all'inizio t = 0 e tutte le variabili valgono 0, poi $t = \varepsilon$ e tutte le α_j valgono ε etc.

All'istante t = 7, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 7$, le variabili β sono a 0, gli archi $\{1, A\}$ e $\{3, A\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante t = 9, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 9$, $\beta_{A1} = \beta_{A3} = 2$, le altre variabili β sono a 0, gli archi $\{1, A\}$, $\{3, A\}$, $\{3, B\}$ e $\{3, D\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante t=11, $\alpha_A=\alpha_B=\alpha_C=\alpha_D=11$, $\beta_{A1}=\beta_{A3}=4$, $\beta_{B3}=\beta_{C3}=2$ le altre variabili β sono a 0, gli archi $\{1,A\}$, $\{3,A\}$, $\{3,B\}$, $\{3,D\}$ e $\{1,B\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante $t = \frac{35}{3}$, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = \frac{35}{3}$, $\beta_{A1} = \beta_{A3} = \frac{14}{3}$, $\beta_{B3} = \beta_{C3} = \frac{8}{3}$ le altre variabili β sono a 0, gli archi $\{1,A\}$, $\{3,A\}$, $\{3,B\}$, $\{3,D\}$ e $\{1,B\}$ sono tight, la facility 3 è temporaneamente aperta.

All'istante t=17, $\alpha_A=\alpha_B=\alpha_D=\frac{35}{3}$, $\alpha_C=17$, $\beta_{A1}=\beta_{A3}=\frac{14}{3}$, $\beta_{B3}=\beta_{C3}=\frac{8}{3}$ le altre variabili β sono a 0, gli archi $\{1,A\}$, $\{3,A\}$, $\{3,B\}$, $\{3,D\}$, $\{1,B\}$ e $\{3,D\}$ sono tight, la facility 3 è temporaneamente aperta e tutti i clienti sono connessi a essa.

In questo caso non è necessario svolgere la seconda parte dell'algoritmo perché una sola facility è aperta e non ci sono conflitti.

È facile verificare che il costo sia della soluzione primale che della soluzione duale è pari a 52 e quindi esiste una allocazione dei costi che permette di recuperare integralmente il costo della soluzione primale.

Infine in questo caso l'integrality gap è 1.