Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Репозиторий на Github

Содержание

1 Динамическое программирование (окончание)			еское программирование (окончание)	2	
	1.1	ДПс	помощью масок	2	
		1.1.1	Задача 1	2	
		1.1.2	Задача 2	2	
		1.1.3	Задача З	3	
	1.2	ДП по	о профилю	3	
		1.2.1	Задача 1	3	
	1.3	Излом	манный профиль	3	

1 Динамическое программирование (окончание)

1.1 ДП с помощью масок

Пусть
$$U = \{0, 1, \dots, n-1\}$$
 $A \subset U$

Тогда будем записывать A как массив длины n, где $i \in A \leftrightarrow a_i = 1$. Такое представление называется маской множества

Как проверить входит ли x в A?

Как брать пересечения и объединения?

$A \cap B$	$A \cup B$	
$ mask_A mask_B$	$mask_A\&mask_B$	

1.1.1 Задача 1

Пусть даны a_{ij} - стоимость выполнения j-го задания i-ым работников. Найти минимальную стоимость выполнения всех заданий.

Решение:

Пусть dp[i][mask] - минимальная стоимость распределить первых i работников, чтобы они выполнили множество заданий маски.

$$dp[i][mask] = min_{b \in mask}(a_{ib} + dp[i-1][\underbrace{mask|b}_{mask+(1 < < b)}])$$

 $A c u м n m o m u \kappa a : O(2^n n^2)$

1.1.2 Задача 2

Максимальная клика в графе за $O(2^{\frac{n}{2}})$

Определение 1.1. Клика $C \subset V$ такова, что для любых ее двух вершин есть ребро между ними.

Решим пока задачу за $O(2^k)$, где k - количество вершин

Обозначим за neighbour(v) маску соседей v

Тогда $clique(mask) = true \leftrightarrow clique(mask|v) = true, mask|v \subset neighbour(v)$

Осталось только придумать, как из маски за O(1) выкидывать ее вершину.

Сделаем это предпосчетом для каждой маски за $O(2^k)$, записывая последовательно ее старший бит.

1.1.3 Задача 3

Найти максимальную клику в маске.

Решение:

- 1. Если clique(mask) == true, то subclique(mask) = |mask|
- 2. Возьмем максимальное значение из:
 - (a) subclique(mask | v) не берем v
 - (b) 1 + subclique(mask & neighbour(v)) берем v

Такое тоже работает за $O(2^k)$

Теперь мы готовы решить основную задачу...

- **Шаг 1** Разобьем граф на 2 половинки, где будем искать клики. Пусть corr[mask] множество вершин правой доли, которые соединены со всеми вершинами mask.
- Шаг 2 Хотим добавить их к mask, чтобы получилась клика. Единственное требование все выбранные вершины corr[mask] должны быть кликой -> А ЭТО ВЕДЬ ЗАДАЧА 3!!! То есть ответ будет состоять из max(|mask| + subclique(mask)), где mask клика из левой части. Осталось понять, как считать corr[mask]

Шаг 0 corr[mask] = corr[mask|v] & neighbour(v)

1.2 ДП по профилю

1.2.1 Задача 1

Пусть есть доска $n \times m$, сколько существует способов покрыть ее доминошками. dp[j][mask] - количество способов полностью покрыть j столбцов, т. ч. mask - множество строк, где лежат "торчащие" доминошки.

"Торчащие" доминошки - те, что расположены в j и j+1 столбцах.

- 1. База: $dp[0][0] = 1, dp[0][\neq 0] = 0$
- 2. Переход: Обозначим за $old_m ask$ маску на j-1 столбце. Переберем по всевозможным old mask.
- 3. Заметим, что, зафиксировав mask и old_mask, картинка полностью заполняется. Добавляем dp[i-1][old] к dp[j][mask], если
 - (a) old \cap mask = 0
 - (b) B old ∪ mask все блоки из нулей-четной длины

Получаем асимптотику $O(4^n m)$, но можно подправить на $O(3^n m)$, если не рассматривать случаи $old \cap mask = 1$ в каком-то бите.

1.3 Изломанный профиль

Считаем, что профиль - теперь часть доски, покрытая доминошками по предположению.

Комментарий: Раньше профиль получался из целых столбцов, а теперь нет