PROVA (PARTE 1)

Universidade Federal de Jataí (UFJ) Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

03 de julho de 2019

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro minitestes (MT), uma prova final (PF), exercícios em formato de *Quizzes* (QZ) e questões conceituais (QC) aplicadas em sala de aula pelo método de Instrução pelos Colegas;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = [(\sum_{i=1}^{4} max(MT_i, SMT_i) + PF].0, 2 + QC + QZ$

em que

- -S é o somatório da pontuação de todas as avaliações, e
- $-SMT_i$ é a substitutiva do mini-teste i.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (1) Lógica Proposicional, e (2) Relações em Lógica Proposicional.

Nome:		
I (OIIIO)		

Primeiro Teste

- 1. (5,0 pt) Sejam as proposições p: "O software foi testado", e q: "O usuário encontrou erros". Traduza as duas proposições abaixo:
 - (a) (2,5 pt) [para a linguagem natural] $\sim (p \lor q)$

R: É falso que o software foi testado ou o usuário encontrou erros.

(b) (2,5 pt) [para a linguagem simbólica] Se o software foi testado então o usuário não encontrou erros.

R: $p \rightarrow \sim q$

2. $(5,0~{\rm pt})$ Informe os todos valores lógicos das duas regiões $3x3~({\rm R1~e~R2})$ que estão faltando na tabela-verdade abaixo.

\sim	p	V	q	\leftrightarrow	(p	\rightarrow	r)	\wedge	s
F	V	V	V	V		V		V	V
F	V	V	V	F	V	V	V	F	F
F	V	V	V	F	V	F	F	F	V
F	V	V	V	F	V	F	F	F	F
F	V	F	F	F	V	V	V	V	V
F	V	F	F	V	V	V	V	F	F
F	V	F	F	V	V	F	F	F	V
F	V	F	F	V	V	F	F	F	F
V	F	V	V	V	F	V	V	V	V
V	F	V	V	F	F	V	V	F	F
V	F	V	V	V	F	V	F	V	V
V	F	V	V	F	F	V	F	F	F
V	F	V	\mathbf{F}	V	F	V	V	V	V
F	\(\begin{aligned} V \\ V \\ V \\ V \\ V \\ F \\ F \\ F \	V V V V F F F V V V V V V V V V V V V V	$\begin{array}{c} q \\ V \\ V \\ V \\ F \\ F \\ F \\ V \\ V \\ V \\ F \\ F$	V	$egin{array}{c c} V & V & V & V & V & V & F & F & F & F &$	V	$egin{array}{c c} V & V & F & F & V & F & F & V & F & F &$	V F F F V F V F V F V F V F V F	V
V	F	V	F	V	F	V	F	V	V
V	F	V	F	F	F	V	F	F	F

Segundo Teste

3. (5,0 pt) [Alencar 6.3 (f)] Demonstrar por tabela-verdade que $(p \to q) \lor (p \to r) \Leftrightarrow p \to q \lor r$.

A proposição bicondicional associada à equivalência é $(p \to q) \lor (p \to r) \leftrightarrow p \to q \lor r$.

p	\rightarrow	q)	V	(p	\rightarrow	r)	\leftrightarrow	p	\rightarrow	q	V	r
V	V	V	V	V	V	V	V	V	V	V	V	V
V	V	V	V	V	F	F	V	V	V	V	V	F
V	\mathbf{F}	F	V	V	V	V	V	V	V	F	V	V
V	\mathbf{F}	F	F	V	F	F	V	V	F	F	F	F
F	V	V	V	\mathbf{F}	V	V	V	F	V	V	V	V
F	V	V	V	\mathbf{F}	V	F	V	F	V	V	V	F
F	V	F	V	\mathbf{F}	V	V	V	F	V	F	V	V
F	V	F	V	F	V	F	V	F	V	F	F	F

Como a bicondicional é uma tautologia, então a equivalência é verdadeira

4. (5,0 pt) [Alencar 6.6 (b) Adaptado] Demonstrar por tabela-verdade que $p \lor q \Rightarrow (p \downarrow q) \downarrow (p \downarrow q)$.

A proposição condicional associada à implicação é $p \lor q \to (p \downarrow q) \downarrow (p \downarrow q)$.

p	٧	q	\rightarrow	(p	\downarrow	q)		(p	\	q)
V	V		V					V		V
V	V	F	V	V	F	\mathbf{F}	V	V	F	F
F	V	V	V	F	F	V	V	F	F	V
F	F	F	V	F	V	F	F	F	V	F

Como a condicional é uma tautologia, então a implicação é verdadeira