PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

C12N 15/12, C07K 14/705, 16/28, C12N 5/10, 1/21, C12Q 1/68

(11) International Publication Number:

WO 98/38302

A2 |

(43) International Publication Date:

3 September 1998 (03.09.98)

(21) International Application Number:

PCT/EP98/00997

(22) International Filing Date:

20 February 1998 (20.02.98)

(30) Priority Data:

60/039,447

26 February 1997 (26.02.97) US

(71) Applicant: F. HOFFMANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse 124, CH-4070 Basle (CH).

(72) Inventors: DELGADO, Stephen, Gregory; Apartment #3, 358 25th Avenue, San Francisco, CA 94121 (US). DIETRICH, Paul, Shartzer; 3949 Bibbits Drive, Palo Alto, CA 94303 (US). FISH, Linda, Marie; Star Route 2, Box 327-A, La Honda, CA 94020 (US). HERMAN, Ronald, Charles; 467-D Costa Mesa Terrace, Sunnyvale, CA 94086 (US). SANGAMESWARAN, Lakshmi; 350 Avenida Arboles, San Jose, CA 95123 (US).

(74) Agent: MEZGER, Wolfgang; Grenzacherstrasse 124, CH-4070 Basle (CH).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: TETRODOTOXIN-SENSITIVE SODIUM CHANNEL α -SUBUNIT

(57) Abstract

DNA encoding for a voltage-gated, TTX-sensitive sodium channel is isolated. Also disclosed are polypeptide products of recombinant expression of these DNA sequences, expression vectors comprising the DNA sequence, and host cells transformed with these expression vectors. Other aspects of this invention are peptides whose sequences are based on the amino acid sequences deduced from these DNA sequences, antibodies specific for such proteins and peptides, procedures for detection and quantitation of such proteins and nucleic acids related thereto. Another aspect of this invention is the use of this voltage-gated, tetrodotoxin-sensitive sodium channel as a therapeutic target for compounds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS LT	Lesotho Lithuania	SI SK	Slovenia Slovakia
AM	Armenia	FI	Finland	LU	Luxembourg	SN	Senegal
ΑT	Austria	FR	France Gabon	LV	Latvia	SZ	Swaziland
ΑU	Australia	GA		MC	Monaco	TD	Chad
ΑZ	Azerbaijan	GB	United Kingdom	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GE	Georgia	MG	Madagascar	ТJ	Tajikistan
BB	Barbados	GH	Ghana	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GN	Guinea	IVIE	Republic of Macedonia	TR	Turkey
BF	Burkina Faso	GR	Greece	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary	MN	Mongolia	UA	Ukraine
BJ	Benin	IE	Ireland		Mauritania	UG	Uganda
BR	Brazil	IL	Israel	MR		US	United States of America
BY	Belarus	IS	Iceland	MW	Malawi	UZ	Uzbekistan
CA	Canada	IT	Italy	MX	Mexico	VN	Viet Nam
CF	Central African Republic	JP	Japan	NE	Niger	YU	Yugoslavia
CG	Congo	KE	Kenya	NL	Netherlands	ZW	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbaowe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/EP98/00997

- 1 -

Tetrodotoxin-Sensitive Sodium Channel α-Subunit

The present invention relates generally to sodium channel proteins and more particularly to a novel cloned α -subunit of a voltage-gated, tetrodotoxin-sensitive sodium channel protein. The present invention further relates to its production by recombinant technology and nucleic acid sequences encoding for this protein.

BACKGROUND OF THE INVENTION

The basic unit of information transmitted from one part of the nervous system to another is a single action potential or nerve impulse. The "transmission line" for these impulses is the axon, or nerve fiber. The electrical excitability of the nerve membrane has been shown to depend on the membrane's voltage-sensitive ionic permeability system that allows it to use energy stored in ionic concentration gradients. Electrical activity of the nerve is triggered by a depolarization of the membrane, which opens channels through the membrane that are highly selective for sodium ions, which are then driven inward by the electrochemical gradient. Of the many ionic channels, the voltage-gated or voltage-sensitive sodium channel is one of the most studied. It is a transmembrane protein that is essential for the generation of action potentials in excitable cells. An excellent review of sodium channels is presented in Catterall, TINS 16(12), 500-506 (1993).

20

25

30

5

10

15

The cDNAs for several Na⁺ channels have been cloned and sequenced. Numa *et al.*, Annals of the New York Academy of Sciences 479, 338-355 (1986), describe cDNA from the electric organ of eel and two different ones from rat brain. Rogart, U.S. Patent No. 5,380,836, describes cDNA from rat cardiac tissue. See also Cribbs *et al.* Proc. Natl. Acad. Sci., 86, 8170-8174 (1989). A peripheral nerve sodium channel, referred to as PN1, has been detected based on sodium current studies and hybridization to a highly conserved sodium channel probe by D'Arcangelo *et al.*, J. Cell Biol. 122, 915-921 (1993). However, neither the DNA nor the protein were isolated and its complete nucleic acid and amino acid sequence were unidentified. A partial amino acid sequence was presented at the 23rd Annual Meeting of the Society for Neuroscience, November 7-12, 1993, Washington D.C., see Abstracts: Volume 19, Part 1: Abstract 121.7: "Nerve Growth Factor Treatment of PC12 Cells Induces the Expression of a Novel Sodium Channel Gene, Peripheral Nerve Type 1 (PN1)", by B.L. Moss, J. Toledo-Aral and G. Mandel.

A sodium channel gene abundantly expressed in neurons and glia, referred to as NaCh6, was detected in 1995 based on RNase protection assays, *in situ* hybridization and RT-PCR hybridization. See Schaller *et al.*, J. Neuroscience 15(5), 3231-3242 (1995).

5

10

15

20

25

30

These studies have shown that the amino acid sequence of the Na^+ channel has been conserved over a long evolutionary period. These studies have also revealed that the channel is a single polypeptide containing four internal repeats, or homologous domains (domains I-IV), having similar amino acid sequences. Each domain folds into six predicted transmembrane α -helices or segments: five are hydrophobic segments and one is highly charged with many lysine and arginine residues. This highly charged segment is the fourth transmembrane segment in each domain (the S4 segment) and is likely to be involved in voltage-gating. The positively charged side chains on the S4 segment are likely to be paired with the negatively charged side chains on the other five segments such that membrane depolarization could shift the position of one helix relative to the other, thereby opening the channel. Accessory subunits may modify the function of the channel.

Therapeutic utility in recombinant materials derived from the DNA of the numerous sodium channels have been discovered. For example, U.S. Patent No. 5,132,296 discloses purified Na⁺ channels that have proven useful as therapeutic and diagnostic tools.

Isoforms of sodium channels are divided into "subfamilies". The term "isoform" is used to mean distinct but closely related sodium channel proteins, i.e., those having an amino acid homology of approximately 60-80%. These also show strong homology in functions. The term "subfamilies" is used to mean distinct sodium channels that have an amino acid homology of approximately 80-95%. Combinations of several factors are used to determine the distinctions within a subfamily, for example, the speed of a channel, chromosomal location, expression data, homology to other channels within a species and homology to a channel of the same subfamily across species. Another consideration is an affinity to tetrodotoxin ("TTX"). TTX is a highly potent toxin from the puffer or fugu fish which blocks the conduction of nerve impulses along axons and in excitable membranes of nerve fibers. TTX binds to the Na⁺ channel and blocks the flow of sodium ions.

Studies using TTX as a probe have shed much light on the mechanism and structure of Na⁺ channels. There are three Na⁺ channel subtypes that are defined by the affinity for TTX, which can be measured by the IC₅₀ values: TTX-sensitive Na⁺ channels (IC₅₀ ≈

1 nM), TTX-insensitive N⁺ channels (IC₅₀ \approx 1-5 μ M), and TTX-resistant Na⁺ channels (IC₅₀ \geq 100 μ M).

TTX-insensitive action potentials were first studied in rat skeletal muscle (Redfern et al., Acta Physiol. Scand. 82, 70-78 (1971)). Subsequently, these action potentials were described in other mammalian tissues, including newborn mammalian skeletal muscle, mammalian cardiac muscle, mouse dorsal root ganglion cells in vitro and in culture, cultured mammalian skeletal muscle and L6 cells (Rogart, Ann. Rev. Physiol. 43, 711-725 (1980)).

Dorsal root ganglia neurons possess both TTX-sensitive (IC₅₀ \simeq 0.3 nM) and TTX-resistant (IC₅₀ \simeq 100 μ M) sodium channel currents, as described in Roy *et al.*, J. Neurosci. 12, 2104-2111 (1992).

TTX-resistant sodium currents have also been measured in rat nodose and petrosal ganglia (Ikeda *et al.*, J. Neurophysiol. 55, 527-539 (1986) and Stea *et al.*, Neurosci. 47, 727-736 (1992)).

DESCRIPTION OF THE INVENTION

The present invention relates to novel sodium channel proteins. Specific embodiments include the α-subunit of such sodium channels that are TTX-sensitive.

In particular, the present invention relates to a purified and isolated DNA sequence encoding for a novel rat TTX-sensitive sodium channel protein and a splice variant thereof. The term "purified and isolated DNA" refers to DNA that is essentially free, i.e. contains less than about 30%, preferably less than about 10%, and even more preferably less than about 1% of the DNA with which the DNA of interest is naturally associated. Techniques for assessing purity are well known to the art and include, for example, restriction mapping, agarose gel electrophoresis, and CsCl gradient centrifugation. The term "DNA" is meant to include cDNA made by reverse transcription of mRNA or by chemical synthesis.

Specifically, the invention encompasses DNA having the engineered versions (discussed in detail below) of the nucleotide sequences set forth in SEQ ID NOS:1 and 2 designated herein as nerve sodium channel types 4 and the splice variant 4a (PN4 and PN4a). These versions of the PN4 and PN4a sequence were produced by removing most of the untranslated sequences of the PN4 and PN4a cDNA and cloned into expression

25

30

10

15

vectors for functional analysis. The longer "native" version of PN4 is shown in Fig. 3 (SEQ ID NO:7). The complete "native" base pair sequence of PN4a has the same sequence shown in Fig. 3 and labeled rPN4 with the 30 base pair insert after position 2050. The PN4 and PN4a DNA sequences comprise cDNA sequences that encode the α -subunit of novel voltage-gated, TTX-sensitive sodium channels, specifically the amino acid sequences set forth in Figs. 1 and 2 (SEQ ID NOS: 3 and 4). DNA sequences encoding the same or allelic variant or analog sodium channel protein polypeptides of the nervous system, through use of, at least in part, degenerate codons are also contemplated by this invention. The nucleotide sequences of SEQ ID NOS:1 and 2 correspond to the cDNAs from rat. A homology search provided that the closest related sodium channel is found in the fugu (puffer fish), with 92% homology. The next closest channels are rat brain types I and II, at 87.9% and rat brain type III at 87.3%. Homology to all other known channels drops off significantly thereafter.

Additionally, it is believed that the novel voltage-gated, TTX-sensitive sodium channel is also expressed in tissue of other mammalian species such as humans, and that the corresponding gene is highly homologous to the rat sequence. Therefore, the invention includes cDNA encoding a novel mammalian voltage-gated, TTX-sensitive sodium channel.

The invention not only includes the entire protein expressed by the cDNA sequences of SEQ ID NOS:1 and 2, but also includes protein fragments. These fragments can be obtained by cleaving the full length proteins or by using smaller DNA sequences or polynucleotides to express the desired fragment. Accordingly, the invention also includes polynucleotides that can be used to make polypeptides of about 10 to 1500, preferably 10 to 100, amino acids in length. The isolation and purification of such recombinant polypeptides can be accomplished by techniques that are well known in the art, for example preparative chromatographic separations or affinity chromatography. In addition, polypeptides can also be made by synthetic means which are well known in the art.

In general, sodium channels comprise an α- and two J-subunits. The J-subunits may modulate the function of the channel. However, since the α-subunit is all that is required for the channel to be fully functional, expression of the cDNA in SEQ ID NOS:1 and 2, will each provide a fully functional protein. The gene encoding the J₁-subunit in nerve tissue was found to be identical to that found in rat heart, brain and skeletal muscle.

The cDNA of the J₁-subunit is not described herein as it is well known in the art (Isom et al., Neuron 12, 1183-1194 (1994)). However, it is to be understood that by combining the

known sequence for the J_1 -subunit with the α -subunit sequence described herein, one may obtain complete PN4 and PN4a rat voltage-gated, TTX-sensitive sodium channels.

Northern blot analysis indicates that PN4 and PN4a are each encoded by a ~7.5 kb/9.5 kb transcript. The nucleotide sequence analysis of the PN4 cDNA identifies a 5934-base open reading frame, shown in SEQ ID NO:1, starting at base 22. The nucleotide sequence analysis of the PN4a cDNA identifies a 5964-base open reading frame, shown in SEQ ID NO:2, also starting at base 22. The deduced amino acid sequence of PN4, shown in Fig. 1 (SEQ ID NO:3), exhibits the primary structural features of an α-subunit of a voltage-gated, TTX-sensitive sodium channel. Shown in Fig. 1 are the homologous domains (I-IV); the putative transmembrane segments (Sl-S6); the amino acid conferring sensitivity to TTX (Δ); potential cAMP-phosphorylation site (•); and potential N-glycosylation site (•). The deduced amino acid sequence of PN4a, shown in Fig. 2 (SEQ ID NO:4), also exhibits the primary structural features of an α-subunit of a voltage-gated, TTX-sensitive sodium channel. Shown in Fig. 2 are the homologous domains (I-IV); the putative transmembrane segments (Sl-S6); the amino acid conferring sensitivity to TTX (Δ); potential cAMP-phosphorylation site (•); and potential N-glycosylation site (•).

Reverse transcription-polymerase chain reaction (degenerate oligonucleotide-primed "RT-PCR") analysis of RNA from the rat central and peripheral nervous systems, in particular from rat dorsal root ganglia ("DRG") was performed. Eight main tissue types were screened by RT-PCR for expression of the unique PN4 genes corresponding to positions 4646-5203 of SEQ ID NO:1. PN4 was present in five of the tissues studied: brain, spinal cord, DRG, nodose ganglia and superior cervical ganglia. PN4 was not present in the remaining tissues studied: sciatic nerve tissue, heart or skeletal muscle tissue.

Three main tissue types were screened by RT-PCR for expression of the unique PN4a genes corresponding to positions 1947-2135 of SEQ ID NO:2. PN4a was present in two of the tissues studied: spinal cord and DRG. PN4a was not present in brain tissue.

30

35

10

15

20

25

The invention also pertains to the cloning and functional expression in Xenopus oocytes of the novel PN4 and PN4a rat TTX-sensitive sodium channels. Specifically, the α -subunit of the sodium channels was cloned and expressed. Functional expression shows that PN4 and PN4a are voltage-gated, TTX-sensitive sodium channels with properties that are similar to other TTX-sensitive sodium channels.

10

15

20

25

Preferred aspects of this invention are PN4 cDNA sequences which encode for the novel mammalian TTX-sensitive sodium channel proteins that are expressed in brain, spinal cord, dorsal root ganglia, nodose ganglia and superior cervical ganglia but not in sciatic nerve, heart or skeletal muscle when assayed by the methods described herein, such as RT-PCR.

Also preferred aspects of this invention are PN4a cDNA sequences which encode for the novel mammalian TTX-sensitive sodium channel proteins that are expressed most strongly in DRG, with little expression in spinal cord and almost undetectable expression in brain when assayed by the methods described herein, such as RT-PCR.

cDNA sequences which encode for the novel PN4 TTX-sensitive sodium channel proteins that are predominantly expressed in the brain and spinal cord are also contemplated by this invention. cDNA sequences which encode for the novel PN4a TTX-sensitive sodium channel proteins that are predominantly expressed in the DRG are also contemplated by this invention.

The term "cDNA", or complementary DNA, refers to single-stranded or double-stranded DNA sequences obtained by reverse transcription of mRNA isolated from a donor cell. For example, treatment of mRNA with a reverse transcriptase such as AMV reverse transcriptase or M-MuLV reverse transcriptase in the presence of an oligonucleotide primer will furnish an RNA-DNA duplex which can be treated with RNase H, DNA polymerase, and DNA ligase to generate double-stranded cDNA. If desired, the double-stranded cDNA can be denatured by conventional techniques such as heating to generate single-stranded cDNA. The term "cDNA" includes cDNA that is a complementary copy of the naturally occurring mRNA as well as complementary copies of variants of the naturally occurring mRNA, that have the same biological activity. Variants would include, for example, insertions, deletions, sequences with degenerate codons and alleles. For example, PN4a is a splice variant of PN4, having a 10 amino acid insertion.

The term "cRNA" refers to RNA that is a copy of the mRNA transcribed by a cell. cRNA corresponding to mRNA transcribed from a DNA sequence encoding the α -subunit of a novel TTX-sensitive sodium channel protein is contemplated by this invention.

WO 98/38302 PCT/EP98/00997

- 7 -

The present invention also includes expression vectors comprising the DNA or the cDNA described above, host cells transformed with these expression vectors capable of producing the sodium channel of the invention, and cDNA libraries comprising such host cells.

5

10

15

20

The term "expression vector" refers to any genetic element, e.g., a plasmid, a chromosome, a virus, behaving either as an autonomous unit of polynucleotide expression within a cell or being rendered capable of replication by insertion into a host cell chromosome, having attached to it another polynucleotide segment, so as to bring about the replication and/or expression of the attached segment. Suitable vectors include, but are not limited to, plasmids, bacteriophages and cosmids. Vectors will contain polynucleotide sequences which are necessary to effect ligation or insertion of the vector into a desired host cell and to effect the expression of the attached segment. Such sequences differ depending on the host organism, and will include promoter sequences to effect transcription, enhancer sequences to increase transcription, ribosomal binding site sequences and transcription and translation termination sequences.

The term "host cell" generally refers to prokaryotic or eukaryotic organisms and includes any transformable or transfectable organism which is capable of expressing a protein and can be, or has been, used as a recipient for expression vectors or other transferred DNA. Host cells can also be made to express protein by direct injection with exogenous cRNA translatable into the protein of interest. A preferred host cell is the *Xenopus* oocyte.

25 The term "transformed" refers to any known method for the insertion of foreign DNA or RNA sequences into a host prokaryotic cell. The term "transfected" refers to any known method for the insertion of foreign DNA or RNA sequences into a host eukaryotic cell. Such transformed or transfected cells include stably transformed or transfected cells in which the inserted DNA is rendered capable of replication in the host cell. They also include transiently expressing cells which express the inserted DNA or RNA for limited periods of time. The transformation or transfection procedure depends on the host cell being transformed. It can include packaging the polynucleotide in a virus as well as direct uptake of the polynucleotide, such as, for example, lipofection or microinjection. Transformation and transfection can result in incorporation of the inserted DNA into the genome of the host cell or the maintenance of the inserted DNA within the host cell in plasmid form. Methods of transformation are well known in the art and include, but are

not limited to, viral infection, electroporation, lipofection and calcium phosphate mediated direct uptake.

It is to be understood that this invention is intended to include other forms of expression vectors, host cells and transformation techniques which serve equivalent functions and which become known to the art hereto.

The term "cDNA library" refers to a collection of clones, usually in a bacteriophage, or less commonly in bacterial plasmids, containing cDNA copies of mRNA sequences derived from a donor cell or tissue.

In addition, the present invention contemplates recombinant polynucleotides, of about 15 to 20kb, preferably 10 to 15kb nucleotides in length, comprising a nucleic acid sequence derived from the DNA of the invention.

15

20

25

30

35

10

5

The term "polynucleotide" as used herein refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, this term includes double- and single-stranded DNA, as well as double- and single-stranded RNA. It also includes modified, for example, by methylation and/or by capping, and unmodified forms of the polynucleotide.

The term "derived from" a designated sequence, refers to a nucleic acid sequence that is comprised of a sequence of approximately at least 6-8 nucleotides, more preferably at least 10-12 nucleotides, and, even more preferably, at least 15-20 nucleotides that correspond to, i.e., are homologous or complementary to, a region of the designated sequence. The derived sequence is not necessarily physically derived from the nucleotide sequence shown, but may be derived in any manner, including for example, chemical synthesis or DNA replication or reverse transcription, which are based on the information provided by the sequences of bases in the region(s) from which the polynucleotide is derived.

Further, the term "polynucleotide" is intended to include a recombinant polynucleotide, which is of genomic, cDNA, semisynthetic or synthetic origin which, by virtue of its origin or manipulation is not associated with all or a portion of the polynucleotide with which it is associated in nature and/or is linked to a polynucleotide other than that to which it is linked in nature.

The "native" version of PN4, and its splice variant PN4a, partially correspond to the sodium channel NaCh6 (described by Schaller *et al.* in J. Neurosci. 15, 3231-3242 (1995)) as shown in Figs. 3 and 4. In Figs. 3 and 4, base pair and amino acid sequences of the native PN4 and PN4a sodium channel cDNA clones include untranslated sequences. The published NaCh6 sequence does appear to not correctly provide the sodium channel sequence, and the sequences for PN4 and PN4a appear to represent the authentic sodium channel sequence for the following reasons:

First, most sodium channel gene coding regions, including PN4, begin with an eleven base pair sequence consisting of an out of frame ATG, followed by five base pairs downstream, followed by the ATG initiation codon for the coding region. The DNA sequence alignment (Fig. 3) shows a two base pair deletion in NaCh6 overlapping the second ATG, so that the normally out of frame, upstream ATG becomes the NaCh6 initiation codon, leading to a two amino acid insertion. Start and stop codons are underlined and primers are denoted by dashed lines with arrows.

Examination of the DNA sequence alignment (Fig. 3) shows that the bulk of the differences (residues in bold print) between the two sequences that would strongly influence protein function consist of a series of nine single base deletions in the Interdomain I/II region. These differences lead to a very different amino acid sequence, as shown in the amino acid alignment of Fig. 4, where the differences between the two sequences are again shown in bold print. The applicants' sequencing of multiple isolates resulting from the cloning of up to 1.5kb of the Interdomain I/II region by PCR repeatedly resulted in sequences which completely agreed with PN4 or PN4a sequences.

Comparison of PN4 and PN4a sequences to other sodium channel sequences shows a high degree of homology. For example, Fig. 5 is a comparison of PN4 and PN4a with NaCh6 and rat Brain type II in this region. Whereas PN4 and BrainII share about 50% identity in the region highlighted in bold, NaCh6 is almost completely different. The differences between BrainII and PN4 are underlined.

Also PCR was employed to look specifically for NaCh6. A sense primer common to both sequences (CAATCGTGGGCGCCCTAATC, corresponding to base pair 722-742 of NaCh6 and shown by dashed lines with an arrow in Fig. 3 at bases 884-904 of PN4) was paired with gene specific antisense primers (TGCTTTCATGCACTGGAATCCCTCT,

20

25

30

corresponding to base pair 1194-1170 of PN4, and

TGCTTTACTGCACTGGAATCCTTCG, corresponding to base pair 1029-1005 of NaCh6; sequence differences between the two primers are underlined). The antisense primers prime at a three base pair deletion of NaCh6 relative to PN4 and overlap three other sequence differences, as shown in Fig. 3. A PCR product of the expected size (about 300 base pairs) was obtained with the PN4 specific antisense primer using pBK-CMV/75-1.4 DNA (described in the description of SEQ ID NO:2) and with rat Brain and rat DRG cDNA templates. No PCR products were obtained from these templates with the NaCh6 specific primer.

10

15

Any of the sequence differences between PN4 and NaCh6 could result in an inability of the NaCh6 gene to form a functional channel. However, some differences could be ascribed to "base calling." To verify the accuracy of the sequence the full length versions of PN4 and PN4a were sequenced. Of the amino acid differences between PN4 and NaCh6, it appears that the profound differences in the Interdomain I/II region are responsible for the lack of success in expression of the NaCh6 gene. The nine single base deletions in this region appear to shift the reading frame (see Figs. 3 and 4), leading to a "nonsense" peptide which lacks a number of highly conserved residues (Fig. 5) and which could sufficiently disrupt the structure of the protein to destroy its function.

20

25

The splice variant PN4a is similar to and occurs in a homologous position to that seen with rat type Brain1 and 1a channels (Schaller et al., J. Neurosci 12, 1370-1381 (1992)). In each case it appears that the variants make use of the same 3' splice acceptor sites but alternative 5' sites. Rat BrainIII also has splice variants in this region, using the same 3' splice site but using alternative 5' sites more 5' than the other channels. An amino acid comparison with other rat(r) and human(h) channels is shown below. Not all sodium channels have this splicing pattern.

	rPN4	GRLLPE		AT.TEVE
	rPN4a	GRLLPE	VKIDKAAT.DS	AT.TEVE
30	rBRAIN1	GQLLPE	VIIDKPATDDN	GTTTETE
	rBRAIN1a	GQLLPE		GTTTETE
	rPN1	GQLLPE	VIIDKATSDDS	GTTNQMR
	hNE-Na	GQLLPE		GTTNQIH
	rBRAIN2	GQLLPE		GTTTETE
35	rBRAIN3			GTTTETE
	rCARDIAC	SYLLRP	MVLDRPP DT	TTPSEEP

It is interesting to note that rat PN1 is similar to PN4a whereas its human homologue, the neuroendocrine channel, hNE-Na, is similar to PN4. Perhaps each of these will be found to be one of a set of splice variants. Whereas the splicing patterns of BrainI, II, and III were found not to vary across a range of tissues (Schaller et al., J. Neurosci 12, 1370-1381 (1992)), PN4 and PN4a show dramatic abundance differences. PN4 has a gradient of expression with high expression in brain, intermediate in spinal cord and relatively the least in DRG. PN4a is very low or undetectable in brain, a minor fraction of total PN4 expression in spinal cord, and nearly as abundant as PN4 in DRG.

10

15

Many uses of the invention exist, a few of which are described below.

1. Probe for human channel.

As mentioned above, it is believed that homologs of the novel rat TTX-sensitive sodium channel described herein are also expressed in mammalian nerve tissue, in particular, human tissue. The entire cDNAs of PN4 and PN4a rat sodium channels of the present invention can be used as a probe to discover whether novel PN4 and PN4a voltage-gated, TTX-sensitive sodium channels exist in human nerve tissue and, if they do, to aid in isolating the cDNAs for the human protein.

20

25

30

35

The human homologues of the rat TTX-sensitive PN4 and PN4a channels can be cloned using a human DRG cDNA library. Human DRG are obtained at autopsy. The frozen tissue is homogenized and the RNA extracted with guanidine isothiocyanate (Chirgwin *et al.*, Biochemistry 18, 5294-5299 (1979)). The RNA is size-fractionated on a sucrose gradient to enrich for large mRNAs because the sodium channel α-subunits are encoded by large (7-11 kb) transcripts. Double-stranded cDNA is prepared using the SuperScript Choice cDNA kit (GIBCO BRL) with either oligo(dT) or random hexamer primers. EcoRI adapters are ligated onto the double-stranded cDNA which is then phosphorylated. The cDNA library is constructed by ligating the double-stranded cDNA into the bacteriophage-lambda ZAP II vector (Stratagene) followed by packaging into phage particles.

Phage are plated out on 150 mm plates on a lawn of XLI-Blue MRF' bacteria (Stratagene) and plaque replicas are made on Hybond N nylon membranes (Amersham). Filters are hybridized to rat PN4 and PN4a cDNA probes by standard procedures and detected by autoradiography or chemiluminescence. The signal produced by the rat PN4

and PN4a probes hybridizing to positive human clones at high stringency should be stronger than obtained with rat brain sodium channel probes hybridizing to these clones. Positive plaques are further purified by limiting dilution and re-screened by hybridization or PCR. Restriction mapping and polymerase chain reaction will identify overlapping clones that can be assembled by standard techniques into the full-length human homologue of rat PN4 and PN4a. The human clone can be expressed by injecting cRNA transcribed *in vitro* from the full-length cDNA clone into *Xenopus* oocytes, or by transfecting a mammalian cell line with a vector containing the cDNA linked to a suitable promoter.

2. Probe for Obtaining Molecular Data.

The polynucleotides of the invention can be bound to a reporter molecule to form a polynucleotide probe useful for Northern and Southern blot analysis and *in situ* hybridization.

15 The term "reporter molecule" refers to a chemical entity capable of being detected by a suitable detection means, including, but not limited to, spectrophotometric, chemiluminescent, immunochemical, or radiochemical means. The polynucleotides of this invention can be conjugated to a reporter molecule by techniques well known in the art. Typically the reporter molecule contains a functional group suitable for attachment to or incorporation into the polynucleotide. The functional groups suitable for attaching the reporter group are usually activated esters or alkylating agents. Details of techniques for attaching reporter groups are well known in the art. See, for example, Matthews et al., Anal. Biochem., 151, 205-209 (1985) and Engelhardt *et al.*, European Patent Application No. 0 302 175.

25

30

10

3. Antibodies Against PN4 and PN4a.

The polypeptides of the invention are highly useful for the development of antibodies against PN4 and PN4a. Such antibodies can be used in affinity chromatography to purify recombinant sodium channel proteins or polypeptides, or they can be used as a research tool. For example, antibodies bound to a reporter molecule can be used in histochemical staining techniques to identify other tissues and cell types where PN4 and PN4a are present, or they can be used to identify epitopic or functional regions of the sodium channel protein of the invention.

PCT/EP98/00997 WO 98/38302

-13-

The antibodies can be monoclonal or polyclonal and can be prepared by techniques that are well known in the art. Polyclonal antibodies are prepared as follows: an immunogenic conjugate comprising PN4, PN4a or a fragment thereof, optionally linked to a carrier protein, is used to immunize a selected mammal such as a mouse, rabbit, goat, etc. Serum from the immunized mammal is collected and treated according to known procedures to separate the immunoglobulin fraction.

Monoclonal antibodies are prepared by standard hybridoma cell technology based on that reported by Köhler and Milstein in Nature 256, 495-497 (1975): spleen cells are obtained from a host animal immunized with the PN4 or PN4a protein or a fragment thereof, optionally linked to a carrier. Hybrid cells are formed by fusing these spleen cells with an appropriate myeloma cell line and cultured. The antibodies produced by the hybrid cells are screened for their ability to bind to expressed PN4 or PN4a proteins.

A number of screening techniques well known in the art, such as, for example, forward or reverse enzyme-linked immunosorbent assay screening methods may be employed. The hybrid cells producing such antibodies are then subjected to recloning and high dilution conditions in order to select a hybrid cell that secretes a homogeneous population of antibodies specific to either the PN4 or PN4a protein.

20

25

30

10

15

In addition, antibodies can be raised by cloning and expressing nucleotide sequences or mutagenized versions thereof coding at least for the amino acid sequences required for specific binding of natural antibodies, and these expressed proteins used as the immunogen. Antibodies may include the complete immunoglobulin or a fragment thereof. Antibodies may be linked to a reporter group such as is described above with reference to polynucleotides.

4. Therapeutic Targets for Disorders.

The present invention also includes the use of the novel voltage-gated, TTXsensitive sodium channel α -subunit as a therapeutic target for compounds to treat disorders of the nervous system including, but not limited to, epilepsy, stroke injury, brain injury, allodynia, hyperalgesia, diabetic neuropathy, traumatic injury and AIDS-associated neuropathy. The invention allows for the manipulation of genetic materials by recombinant technology to produce polypeptides that possess the structural and functional characteristics of the novel voltage-gated, TTX-sensitive sodium channel α -subunit found 35 in nerve tissue, particularly in sensory nerves. Site directed mutagenesis can be used to

provide such recombinant polypeptides. For example, synthetic oligonucleotides can be specifically inserted or substituted into the portion of the gene of interest to produce genes encoding for and expressing a specific mutant. Random degenerate oligonucleotides can also be inserted and phage display techniques can be used to identify and isolate polypeptides possessing a functional property of interest.

5. Designing Therapeutics based on Inhibiting PN4 and PN4a and assays thereof. The present invention is also directed to inhibiting the activity of PN4 in brain, spinal cord, DRG, nodose ganglia and superior cervical ganglia tissues. This invention is also directed to inhibiting the activity of PN4a in spinal cord and DRG tissues. However, it is to be understood that further studies may reveal that PN4 and PN4a are present in other tissues, and as such, those tissues can also be targeted areas. For example, the detection of PN4 mRNA in nodose ganglia suggests that PN4 may conduct TTX-sensitive sodium currents in this and other sensory ganglia of the nervous system.

15

20

25

30

35

10

5

In addition, it has been found that proteins not normally expressed in certain tissues, are expressed in a disease state. Therefore, this invention is intended to encompass the inhibition of PN4 and PN4a in tissues and cell types where the protein is normally expressed, and in those tissues and cell types where the protein is only expressed during a disease state.

The invention also pertains to an assay for inhibitors of the novel TTX-sensitive sodium channel protein comprising contacting a compound suspected of being an inhibitor with expressed sodium channel and measuring the activity of the sodium channel. The compound can be a substantially pure compound of synthetic origin combined in an aqueous medium, or the compound can be a naturally occurring material such that the assay medium is an extract of biological origin, such as, for example, a plant, animal, or microbial cell extract. PN4 and PN4a activity can be measured by methods such as electrophysiology (two electrode voltage clamp or single electrode whole cell patch clamp), guanidinium ion flux assays and toxin-binding assays. An "inhibitor" is defined as generally that amount that results in greater than 50% decrease in PN4 or PN4a activity, preferably greater than 70% decrease in PN4 or PN4a activity, more preferably, greater than 90% decrease in PN4 or PN4a activity.

6. Designing and Screening for Additional Therapeutics.

WO 98/38302 PCT/EP98/00997

-15-

Another significant characteristic of PN4 is that it is TTX-sensitive. It is believed that TTX-sensitive sodium channels play a key role in transmitting nerve impulses relating to sensory inputs such as pain and pressure. This will also facilitate the design of therapeutics that can be targeted to a specific area such as nerve tissue.

5

10

15

20

25

30

35

Additionally, the recombinant protein of the present invention can be used to screen for potential therapeutics that have the ability to inhibit the sodium channel of interest. In particular, it would be useful to inhibit selectively the function of sodium channels in nerve tissues responsible for transmitting pain and pressure signals without simultaneously affecting the function of sodium channels in other tissues such as heart and muscle. Such selectivity would allow for the treatment of pain without causing side effects due to cardiac or neuromuscular complications. Therefore, it would be useful to have DNA sequences coding for sodium channels that are selectively expressed in nerve tissue.

7. Pain Reliever.

Sodium channels in nerve tissue play a large role in the transmission of nerve impulses, and therefore are instrumental in understanding neuropathic pain transmission. Neuropathic pain falls into two categories: allodynia, where a normally non-painful stimulus becomes painful, and hyperalgesia, where a usually normal painful stimulus becomes extremely painful. The ability to inhibit the activity of these sodium channels, i.e., reduce the conduction of nerve impulses, will affect the nerve's ability to transmit pain. Selective inhibition of sodium channels in sensory neurons such as dorsal root ganglia will allow the blockage of pain impulses without complicating side effects caused by inhibition of sodium channels in other tissues such as brain and heart. In addition, certain diseases are caused by sodium channels that produce impulses at an extremely high frequency. The ability to reduce the activity of the channel can then eliminate or alleviate the disease. Accordingly, potential therapeutic compounds can be screened by methods well known in the art, to discover whether they can inhibit the activity of the recombinant sodium channel of the invention. See Barram et al., Naun-Schmiedeberg's archives of Pharmacology, 347, 125-132 (1993) and McNeal et al., J. Med. Chem., 28, 381-388 (1985). For similar studies with the acetyl choline receptor, see, Claudio et al., Science 238, 1688-1694 (1987).

Accordingly, the present invention encompasses a method of alleviating pain by inhibiting the activity of the novel TTX-sensitive sodium channel comprising administering a therapeutically effective amount of a compound having an IC₅₀ in the range of 0.1-50 nM, preferably within the range of 1-25 nM. and most preferably within the range of 1-5 nM.

WO 98/38302 PCT/EP98/00997

-16-

Potential therapeutic compounds are identified based on their ability to inhibit the activity of PN4 and PN4a. Therefore, the aforementioned assay can be used to identify compounds having a therapeutically effective IC_{50} .

The term "IC₅₀" refers to the concentration of a compound that is required to inhibit by 50% the activity of expressed PN4 or PN4a when activity is measured by electrophysiology, flux assays and toxin-binding assays, as mentioned above.

The basic molecular biology techniques employed in accomplishing features of this invention, such as RNA, DNA and plasmid isolation, restriction enzyme digestion, preparation and probing of a cDNA library, sequencing clones, constructing expression vectors, transforming cells, maintaining and growing cell cultures and other general techniques are well known in the art, and descriptions of such techniques can be found in general laboratory manuals such as Molecular Cloning: A Laboratory Manual by Sambrook, et al. (Cold Spring Harbor Laboratory Press, 2nd edition, 1989). Accordingly, the following examples are merely illustrative of the techniques by which the invention can be practiced.

BRIEF DESCRIPTION OF THE SEO ID'S AND FIGURES

20

25

SEQ ID NO:1 depicts an engineered version of the nucleotide cDNA sequence encoding the rat TTX-sensitive peripheral nerve sodium channel type 4 ("PN4"). This version lacks most of the untranslated sequences, thereby comprising a 5934-base open reading frame, from nucleotide residue 22 of the XhoI-HindIII clone, the start site of translation, and ending at residue 5956.

SEQ ID NO:2 depicts an engineered version of the nucleotide cDNA sequence encoding the rat TTX-sensitive peripheral nerve sodium channel type 4a ("PN4a"). This version lacks most of the untranslated sequences, thereby comprising a 5964-base open reading frame, beginning at nucleotide residue 22 of the XhoI-HindIII clone, the start site of translation, and ending at residue 5986. The 30 base pair insert is found at positions 2014-2043.

Fig. 1 (SEQ ID NO:3) depicts the deduced amino acid sequence of PN4, represented in the single-letter amino acid code. Shown in Fig. 1 are the homologous domains (I-IV); the

putative transmembrane segments (Sl-S6); the amino acid conferring sensitivity to TTX (Δ); potential cAMP-phosphorylation site (\bullet); and potential N-glycosylation site (\bullet).

- Fig. 2 (SEQ ID NO:4) depicts the deduced amino acid sequence of PN4a,
 represented in the single-letter amino acid code. Shown in Fig. 2 are the homologous domains (I-IV); the putative transmembrane segments (Sl-S6); the amino acid conferring sensitivity to TTX (Δ); potential cAMP-phosphorylation site (•); and potential N-glycosylation site (•).
- Fig. 3 aligns the base pair sequences of the NaCh6 and the "native" version of the PN4 sodium channel cDNA clones (SEQ ID NO:7), including untranslated sequences, depicting the differences in bold. Start and stop codons are underlined and primers are denoted by dashed lines with arrows.
- Fig. 4 aligns the amino acid sequences of the PN4a, PN4 and NaCh6 sodium channel cDNA clones of Fig. 3, depicting the differences in bold.
- Fig. 5 is a comparison of the conserved region Interdomain I/II between PN4a, PN4, NaCh6 and BrainII sodium channels. Differences between PN4 (and PN4a) and NaCh6 are shown in bold type and differences between BrainII and PN4 are underlined.
 - SEQ ID NO:5 depicts the 696 nucleotide cDNA sequence encoding the novel probe CNaD4-2 used to identify the novel sodium channels of the invention.
- SEQ ID NO:6 depicts the deduced amino acid sequence of probe CNaD4-2, represented in the single-letter amino acid code.
 - Fig. 6 depicts the cloning map of PN4 and PN4a.
- Fig. 7 shows the properties of currents produced in *Xenopus* oocytes by injection of PN4 cRNA. Fig. 7a shows the current produced by sodium channels expressed in oocyte, Fig. 7b shows the current-voltage relationship.
- Fig. 8a and 8b show steady state inactivation of sodium currents produced by PN4 in *Xenopus* oocytes.

-18-

Fig. 9 demonstrates the effects of the β_1 and β_2 subunits upon PN4 function in *Xenopus* oocytes. Fig. 9a shows currents produced when the PN4 I subunit is injected alone; Fig. 9b is with the β_1 subunit; Fig. 9c is with the β_2 subunit; and Fig. 9d is with both the β_1 and β_2 subunits.

5

Abbreviations

	BSA bovine serum albumin					
	Denhardt's solution	0.02% BSA, 0.02% polyvinyl-pyrrolidone, 0.02% Ficoll				
10		(0.1 g BSA, 0.1 g Ficoll and 0.1 g polyvinylpyrrolidone per				
		500 ml)				
	DRG	dorsal root ganglia				
	EDTA	Ethylenediaminetetraacetic acid, tetrasodium salt				
	MEN	20 mM MOPS, 1 mM EDTA, 5 mM sodium acetate, pH				
15		7.0				
	MOPS	3-(N-morpholino)propanesulfonic acid (Sigma Chemical				
		Company)				
	PN3	peripheral nerve sodium channel type 3				
	PNS	peripheral nervous system				
20	SDS	sodium dodecyl sulfate				
	SSC	150 mM NaCl, 15 mM sodium citrate, pH 7.0				
	SSPE	80 mM NaCl, 10 mM sodium phosphate, 1 mM				
		ethylenediaminetetraacetate, pH 8.0				
	TEV	two electrode voltage clamp				
25	TTX	tetrodotoxin (Sigma Chemical Company)				
	UTR	untranslated region				

EXAMPLES

Each step employed in obtaining the DNA of the novel sodium channel of the invention is described in the detailed examples below. The following is an overview of the steps. Example 1 describes how a novel probe, CNaD4-2, was obtained by designing primers based on known sodium channels. Example 2 describes the construction and screening of a cDNA library with CNaD4-2 to obtain the 3' end of the novel sodium channel of the invention. Then, a known primer was employed to obtain the 5' end of the DNA of the invention. Example 3 describes how RT-PCR was employed to span the gap,

between the 3' and 5' ends obtained from the cDNA library. This resulted in a 798 base pair sequence and a splice variant thereof, having a 828 base pair sequence. Example 4 describes assembling the clones into two full-length cDNA clones in expression vectors. The cloning map is illustrated in Fig. 6. Example 5 discusses the tissue distribution and localization accomplished by RT-PCR. Example 6 discusses the northern analysis of mRNA. Example 7 discloses obtaining expression data from *Xenopus* oocytes, and localization by RT-PCR.

Materials

The plasmid pBK-CMV was obtained from Stratagene (La Jolla, CA); plasmid Litmus 29 was obtained from New England Biolabs (Beverly, MA); the oocyte expression vector plasmid pBSTAcIIr was constructed from pBSTA (described by Goldin *et al.*, in Methods in Enzymology (Rudy & Iverson, eds.) 207, 279-297) by insertion of a synthetic oligonucleotide linker; the mammalian cell expression vector plasmid pCI-neo was obtained from Promega (Madison, WI); plasmid pCRII was obtained from Invitrogen, San Diego, CA. Competent *E. Coli* cell lines STBL2™ and SURE® were obtained from GIBCO/BRL and Stratagene, respectively.

EXAMPLE 1: Identification of a novel channel fragment

A novel probe used to identify the novel sodium channels was obtained as follows. Degenerate oligonucleotide primers were designed based on the homologies between known sodium channels in domain IV and used to perform RT-PCR on RNA isolated from rat DRG. The domain IV PCR products were cloned into pCRII, transformed into *E. coli* and single colonies isolated. DNA sequence of the inserts of several of these colonies was obtained, including the following novel sequence from clone pCRII/CNaD4-2 of SEQ ID NO:5, identified as CNaD4-2. SEQ ID NO:6 depicts the deduced amino acid sequence of probe CNaD4-2, represented in the single-letter amino acid code.

CNaD4-2 can be made with standard PCR techniques.

30

35

25

20

EXAMPLE 2: Construction and screening of cDNA library from rat DRG with probe CNaD4-2

EcoRI-adapted cDNA was prepared from normal adult male Sprague-Dawley rat DRG poly(A)+ RNA using the SuperScript Choice System (GIBCO BRL). cDNA (>4kb) was selected by sucrose gradient fractionation as described by Kieffer (Gene 109, 115-119 (1991)). The cDNA was then ligated into the Zap Express vector (Stratagene), and

packaged with the Gigapack II XL lambda packaging extract (Stratagene). Plate lysates were prepared and screened by PCR using CNaD4-2 specific primers (ACACTCAGAGCAAGCAGATGG and TCCCTGGGTGCTCTTTGTCCA. corresponding to bases 32 to 52 and 569 to 589 of SEQ ID NO:5, respectively). Phage
 from one positive lysate were screened by filter hybridization with a ³²P-labeled probe (the 700 base pair EcoRI insert from CNaD4-2). Filters were hybridized in 50% formamide, 5X SSPE, 5X Denhardt's solution, 0.5% SDS, 250µg/ml sheared, denatured salmon sperm DNA, and 50mM sodium phosphate at 42°C and washed in 0.5X SSC, 0.1% SDS at 50°C. Positive clones were excised in vivo into pBK-CMV using the ExAssist/XLOLR system
 (Stratagene).

Approximately 95% of these clones contained sodium channel sequence under standard screening stringency conditions. The number of clones that are retrieved that contain sodium channel sequence can be increased with increased stringency conditions and careful analysis and interpretation of data. It is well known in the art when screening for a particular type of DNA sequence, other types of DNA sequences will also be hybridized, depending on the specificity of the probe. Here, with the careful designed probe of the invention, the approximate 95% "hit" rate, makes this fragment an exceptionally good sodium channel probe.

20

15

One of these clones, pBK-CMV/PN4.10-1, contained sequence of the CNaD4-2 channel from domain II through the 3' UTR. The position of the pBK-CMV/PN4.10-1 fragment in the PN4 and PN4a cloning map is shown in Fig. 6. In Fig. 6, ATG is the start codon, TAC is the stop codon and ∇ is the position of the PN4a splice insert.

25

30

35

A degenerate primer designed for sodium channels in domain I (ACCAACTG[T/C]GT[G/A]TT[T/C]ATGAC) was paired with a PN4 specific primer from the domain II region of pBK-CMV/PN4.10-1 (CAGCAGCTACAGTGGCTACA). These primers amplified a ca 1.5kb fragment from rat brain and from rat DRG which was shown by sequencing to represent much of the 5' end of PN4, thus verifying that the primers would work for screening the library. The primers were then used to screen plate lysates of the DRG cDNA library by PCR. Positive lysates were plated and individual plaques picked and screened by PCR using the same primers. Positive clones were excised in vivo into pBK-CMV using the ExAssist/XLOLR system. One of these, pBK-CMV/75-1.4, was found to contain PN4 sequence from the 5' UTR to the interdomain I/II region, but

not to domain II, possibly due to rearrangement during the excision process. The position of the pBK-CMV/75-1.4 fragment in the PN4 and PN4a cloning map is shown in Fig. 6.

EXAMPLE 3: Cloning the interdomain I/II region

The gap between pBK-CMV/75-1.4 and pBK-CMV/PN4.10-1 was cloned by RT-PCR on rat DRG and brain total RNA using specific primers:

AAAGAGGCCGAGTTCAAGGC (a base pair sequence of pBK-CMV/75-1.4) and TGTCCTTCCGTCCGTAGG (a base pair sequence of pBK-CMV/PN4.10-1). PCR products were cloned into plasmid pCRII and sequenced. Two distinct sequences, FA-2 and FA-7 (see Fig. 6), were cloned from DRG. These were found to be identical except for the presence of a 30 base pair insert (found at base pairs 2014-2043 in SEQ ID NO:2, and depicted by an upside triangle at the position of insertion in FA-7, FJ-13 and PN4a in Fig. 6), with sequence identity to pBK-CMV/75-1.4 and pBK-CMV/PN4.10-1 in the regions where they overlap. RT-PCR on rat brain RNA yielded only clones which lacked the 30 base pair insert. This insert is homologous to a splice variant of the NaChI channel (NaChIa) and likely results from alternative 5' splice site usage (Schaller et al., J. Neurosci 12, 1370-1381 (1992)).

Additional RT-PCR was performed on rat DRG RNA using primers

TTCATGGGGAACCTTCGAAAC (a base pair sequence of pBK-CMV/75-1.4) and
GAACGATGCAGATGGTGATGGCTAA (a base pair sequence of pBK-CMV/PN4.10
1). The 1.5kb PCR product was cloned into pCRII; six out of twenty isolates were positive for the 30 base pair insert variant by PCR. The sequence obtained for one of these, FJ-13, position shown in Fig. 6, was identical to that expected from the sequences of pBK-CMV/75-1.4, FA-7, and pBK-CMV/PN4.10-1, thus confirming that these clones all originated from the same transcript.

EXAMPLE 4: Assembly of full-length PN4 clones in expression vectors

Unsuccessful attempts have been made to create and stabilize full-length sodium channel cDNA sequences. In US Patent No. 5,380,836, the cDNA sequence for a rat cardiac sodium channel protein was contained in three separate plasmids. In order to create full-length functional PN4 genes, the 5' end was modified: suitable restriction sites were added and the upstream out-of-frame initiation codon was removed. The modified pBK-CMV/75-1.4 and FA-2 sequences were fused together, then combined with the remaining portion of PN4 from pBK-CMV/PN4.10-1 in suitable expression vectors. PCR was employed to assemble the 5' portion of PN4 from the initiation codon to domain II. A

1.43kb PCR fragment was generated from pBK-CMV/75-1.4 using the following primers: (1) GAAGCTCGAGCCCGGGCAAGAGAAGATGGCAGCGCGG (Xho-I Srf-I restriction sites underlined, initiation codon in bold, PN4 homology in italics, a base pair sequence of pBK-CMV/75-1.4) and primer (2) CTCGGAGAGCCTACCCCATC (a base pair sequence of pBK-CMV/75-1.4, and a base pair sequence of FA-2). A 0.69kb PCR fragment was generated from FA-2 using primer (3) AGAAGGGGAAGATGGGGTAGG (a base pair sequence of FA-2, and a base pair sequence of pBK-CMV/75-1.4) and primer (4) ATTCTGTCCTTCCGTCGTAG (a base pair sequence of FA-2, and a base pair sequence of pBK-CMV/PN4.10-1). These fragments were gel purified and then a small fraction of each was combined as template in a further PCR reaction using primers (1) and 10 (4). The fragments share a 31 base pair region of overlap at their 3' and 5' ends respectively, and therefore can act as primers to fuse the two fragments together (Horton et al., Gene 77, 61-68 (1991)). The 2.1kb PCR product was cloned into pCRII and several isolates were sequenced, one of which, FD-8, had the expected sequence. The position of FD-8 in the PN4 and PN4a clones is shown in the cloning map of Fig. 6. 15

To facilitate cloning into pBSTA and pCI-neo, it was determined to introduce an XbaI site at the 3' end. To accomplish this, the PN4 domain II to 3' UTR region was subcloned from pBK-CMV/PN4.10-1 from the EcoRI site of the vector to the HindIII site 14 base pairs from the PN4 stop codon into EcoRI plus HindIII digested Litmus 29. The resulting clone was labeled FC-1. The position of FC-1 in the PN4 and PN4a clones is shown in the cloning map of Fig. 6.

To assemble the full length PN4, the 5' portion was subcloned from FD-8 as a 2.0kb Xho I-Eco NI fragment together with the 3' portion from FC-1 as a 4.0kb Eco NI-Xba-I fragment into Xho-I plus Xba-I digested pBSTAcIIr. One of the resulting isolates was found to have the correct sequence and was named pBSTAcIIr_PN4(FU-7A).

The splice variant, PN4a, was assembled by replacing the 1.3kb Sph I - Acc I region of pBSTAcIIr_PN4(FU-7A) with the corresponding fragment from FJ-13, to form pBSTAcIIr_PN4a(FZA-3), and confirmed by DNA sequencing.

PN4 and PN4a were recloned into pCI-neo as 6.0kb Xho-I to Xba-I fragments to form pCI-neo-PN4(GAII-1) and pCI-neo-PN4a(GCII-2), respectively, and confirmed by DNA sequencing. The sequences of the coding regions as cloned in the oocyte and

mammalian cell expression vectors of PN4 and PN4a are SEQ ID NO:1 and SEQ ID NO:2, respectively.

Growth of fragments of PN4 or PN4a was accomplished under standard conditions, however growth of plasmids containing full length constructs of PN4 and PN4a (in pCIneo or pBSTAcIIr) could not be accomplished without use of special growth media, conditions, and E. coli strains. The following proved to be optimal: (1) use of E. coli STBL2TM for primary transformation following ligation reactions; for large scale culturing the primary transformants in STBL2™ cells were used, but secondary transformants in SURE® cells were used later if necessary. These E. coli strains have altered genotypes which allow the stable propagation of plasmids containing unstable inserts. (2) Solid media was 1/2x FM (see below) plus either 1x YENB (Bacto Yeast Extract, 0.75%, Bacto Nutrient Broth, 0.8%; Sharma and Schimke, Biotechniques 20, 42-44 (1996)), 1x YET (Bacto Yeast Extract, 0.75%, Bacto Tryptone, 0.8%), or 1x LB (Tryptone, 1%, Yeast Extract, 0.5%, NaCl, 0.5%), plus 15g/L agar. (3) Liquid media optimally was 1x FM plus 1/2x LB. (4) 15 Carbenicillin, 100µg/ml, was used for all media, as it is metabolized less rapidly than ampicillin. However, carbenicillin may be used within the range of 50-200 μg/ml; and more preferably within the range of 75-125 µg/ml. (5) Temperature for growth should be no greater than 30°C, usually 28°C; this necessitated longer growth periods than normally employed, from 36 to 48 hours. 20

The recipe for 2x Freezing Medium (2xFM) is K2HPO4, 12.6g; Na3Citrate, 0.9g; MgSO4.7H2O, 0.18g; (NH4)2SO4, 1.8g; KH2PO4, 3.6g; Glycerol, 88g; H2O, qs to 1L.

25 2xFM and the remaining media components are prepared separately, sterilized by autoclaving, cooled to at least 60°C, and added together to form the final medium. Carbenicillin is prepared at 25mg/ml H2O and sterilized by filtration. 2xFM was first described for preparation of frozen stocks of bacterial cells (Practical Methods in Molecular Biology, Schleif, R.F. and Wensink, P.C., Springer-Verlag, New York (1981) pp201-202).

EXAMPLE 5: Tissue distribution by RT-PCR

Brain, spinal cord, DRG, nodose ganglia, superior cervical ganglia, sciatic nerve, heart and skeletal muscle tissue were isolated from anesthetized, normal adult male

Sprague-Dawley rats and were stored at -80°C. RNA was isolated from each tissue using RNAzol (Tel-Test, Inc.). Random-primed cDNA was reverse transcribed from 500ng of

RNA from each tissue. The CNaD4-2 specific primers

ACACTCAGAGCAAGCAGATGG and TCCCTGGGTGCTCTTTGTCCA (see above)

defined a 558 base pair amplicon and would not discriminate between PN4 and PN4a.

Thermal cycler parameters were 30 s/94°C, 30 s/64°C, 1 min/72°C (24 cycles (confirmation experiment: 34 cycles)); 30 s/94°C, 30 s/64°C, 5 min/72°C (1 cycle). A positive control (pCRII/CNaD4-2) and a no-template control were also included. cDNA from each tissue was also PCR amplified using primers specific for glyceraldehyde-3-phosphate dehydrogenase to demonstrate template viability, as described by Tso *et al.*, Nucleic Acid Res. 13, 2485-2502 (1985).

10

Tissue distribution profile of PN4 by analysis of RNA from selected rat tissues by RT-PCR was as follows:

	<u>Tissue</u>	RT-PCR (35 cycles)
15	Brain	+++++
	Spinal cord	+++
	DRG	++
	Nodose ganglia	++
	Superior cervical ganglia	+
20	Sciatic nerve	-
	Heart	-
	Skeletal muscle	•

PN4 was also detected after only 25 cycles (24 + 1) in the same five tissues as above in the same relative abundance.

Since PN4 differs from PN4a by only 30 base pairs, a new sense primer, GGTGGACTGCAACGGCGTA (corresponding to the same base pair sequences of FA-2 and FA-7), was employed. RT-PCR using this primer together with primer

ATTCTGTCCTTCCGTCCGTAG (primer 4 above) gave amplicons of 159 base pairs from PN4 and 189 base pairs from PN4a. Thermal cycler parameters were 1 min/95°C; 20sec/94°C, 30 sec/60°C, 1 min/72°C, 8 cycles; 20sec/94°C, 30 sec/58°C, 1 min/72°C, 27 cycles; 3 min/72°C. PN4a was nearly as abundant as PN4 in DRG, much less abundant than PN4 in spinal cord, and almost undetectable in brain. This correlates well with cloning data; based on sequenced, cloned RT-PCR fragments which included the 30 base pair insert

PCT/EP98/00997 WO 98/38302

-25-

region, PN4a was found in 40% of isolates from DRG (9/24), but not found from brain (0/4).

	<u>Tissue</u>	RT-PCR (35 cycles)		
5		<u>PN4</u>	PN4a	
	Brain	++++	(+/-)	
	Spinal cord	+++	+	
	DRG	++	++	

EXAMPLE 6: Northern Analysis of mRNA from rat DRG 10

Lumbar DRG #4 and #5 (L4 and L5), brain and spinal cord were removed from anesthetized adult male Sprague-Dawley rats under a dissecting microscope. The tissues were frozen in dry ice and homogenized with a Polytron homogenizer; the RNA was extracted by the guanidine isothiocyanate procedure (Chomczynksi et al., Anal. Biochemistry 162, 156-159 (1987)). Total RNA (5 µg of each sample) was dissolved in 15 MEN buffer containing 50% formamide, 6.6% formaldehyde and denatured at 65°C for 5-10 minutes. The RNA was electrophoresed through a 0.8% agarose gel containing 8.3% formaldehyde in MEN buffer. The electrode buffer was MEN buffer containing 3.7% formaldehyde; the gel was run at 50 V for 12-18 hour.

20

25

After electrophoresis, the gel was rinsed in 2xSSC and the RNA was transferred to a Duralose membrane (Stratagene) with 20xSSC by capillary action; the membrane was baked under vacuum at 80°C for 1 hour. The membrane was prehybridized in 50% formamide, 5xSSC, 50 mM sodium phosphate, pH 7.1, 1x Denhardt's solution, 0.5% SDS, and sheared, heat-denatured salmon sperm DNA (1 mg/ml) for 16 hour at 42°C. The membrane was hybridized in 50% formamide, 5xSSC, 50 mM sodium phosphate, pH 7.1, 1x Denhardt's solution, 0.5% SDS, and sheared, heat-denatured salmon sperm DNA (200 μg/ml) with a ³²P- labeled cRNA probe (ca. 1-3x10⁶ cpm/ml). The probe was the cloned fragment. CNaD4-2, which contains the Domain 4 sequence of PN4 sodium channel α-subunit 30 sequence. The probe was hybridized for 18 hour at 42°C. The cRNA probe was synthesized by excising and subcloning the fragment into pBluescript KS+ vector, purchased from Stratagene. The cRNA was transcribed in vitro using T3 RNA polymerase, purchased from Promega, after linearizing the plasmid with XbaI, purchased from Boehringer Mannheim. Protocols for each procedure mentioned above can be found in Molecular Cloning: A Laboratory Manual by Sambrook et al. (Cold Spring Harbor Laboratory Press, 2nd edition, 1989).

PCT/EP98/00997

The membrane was washed three times with 2xSSC, 0.1% SDS at room temperature for 20 minutes and then washed once with 0.1xSSC, 0.1% SDS at 68°C for 30 minutes. The filter was exposed against Kodak X-omat AR film at -80°C with intensifying screens for up to two weeks.

Size markers, including ribosomal 18S and 28S RNAs and RNA markers (GIBCO BRL), were run in parallel lanes of the gel. Their positions were determined by staining the excised lane with ethidium bromide (0.5 µg/ml) followed by photography under UV light.

The CNaD4-2 probe hybridized to RNA from the brain, cerebellum, dorsal and ventral horn of the spinal cord with sizes of 11 kb, 9.5 kb, 7.5 kb, and 6.5 kb, estimated on the basis of their positions relative to the standards.

Bands of the same size were detected in a blot containing total RNA from DRG from neuropathic pain model. However, no signal was detected with RNA from naive DRG.

PN4 constitutes a subfamily of novel sodium channel genes; these genes are different from those detectable with other probes (e.g., PEAF8 and PN3 probes), as discussed in copending application no. 08/511,828. Sequence comparison of PN4 with NaCh6 (mRNA size = 9.5kb) (Schaller et al., J. Neurosci. 15, 3231-3242 (1995)) and cardiac-specific sodium channel for which only a partial sequence is available (mRNA size = 7kb) (Sills et al., J. Clin. Invest. 84, 331-336 (1989)) indicates that these genes share a higher homology among themselves than with members of other sodium channel subfamilies such as the brain-type sodium channels, TTX-insensitive cardiac sodium channel and the TTX-resistant PN3 sodium channel.

Semiquantitation of the signal intensity of the various bands detected in the blot containing RNAs from the neuropathic pain model indicated that the level of 7.5kb transcript was upregulated ~35 fold as compared with the DRG from the sham operated side on day 1 after the surgery, wherein the sciatic nerve was ligated with four loose ligatures causing a constriction injury. None of the other transcripts detected by the CNaD4-2 probe was regulated so dramatically. By day 2, the regulation was reduced to ~5 fold as compared with the sham operated side. The experiment was performed with DRG pooled from 6 rats.

5

20

25

30

WO 98/38302 PCT/EP98/00997

-27-

This experimental data suggests that PN4, or its splice variant, PN4a, is involved in the pathophysiology of neuropathic pain.

EXAMPLE 7: Expression of full length clone in Xenopus oocytes

cRNA was prepared from PN4 subcloned into pBSTA using a T7 in vitro transcription kit (Ambion, mMessage mMachine) and was injected into stage V and VI Xenopus oocytes using a Nanojector (Drummond), as described in Goldin, supra. After 1.5 days at 20°C, the oocytes were impaled with agarose-cushion electrodes (0.3-0.8 MOhm) and voltage-clamped with a Geneclamp 500 amplifier (Axon Instruments) in TEV mode. See Schreibmayer et al., Pflugers Arch. 426, 453-458 (1994).

Stimulation and recording were controlled by a computer running pClamp (Axon Instruments) (Kegel *et al.* J. Neurosci. Meth. 12, 317-330 (1982)). Oocytes were perfused with a solution containing: 81 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 0.3 mM CaCl₂, 20 mM Hepes-NaOH, pH 7.5. The data collected is shown in the Figs. 7-9 and described on the following pages.

Fig. 7a shows the currents produced from a PN4 sodium channel expressed in a *Xenopus* oocyte using the Geneclamp P/-4 leak subtraction, filtered at 5 kHz with a 4-pole Bessel filter, and sampled at 50 kHz. Test pulses for TTX c/r were to 0 mV for 5 ms at 0.033 Hz. The x-axis denotes time in milliseconds.

Fig. 7b illustrates the voltage to current relationship of a PN4 sodium channel expressed in a *Xenopus* oocyte.

25

5

10

Fig. 8a and b show steady state inactivation of sodium currents produced by PN4 in *Xenopus* oocytes. In Fig. 8a the x-axis denotes time in milliseconds. In Fig. 8b the x-axis is conditioning potential in millivolts and the y-axis is current in TA.

Fig. 9 demonstrates the effects of the β₁ and β₂ subunits upon PN4 function in Xenopus oocytes. Shown are currents produced when the PN4 I subunit is injected (a) alone; (b) with the β₁ subunit; (c) with the β₂ subunit; and (d) with both the β₁ and β₂ subunits. The x-axis in each of these figures denotes time in milliseconds. As these figures show, the inactivation kinetics of a functionally active PN4 channel are accelerated by the β₁ subunit. No obvious effects are seen with the β₂ subunit.

PCT/EP98/00997

As is seen in Fig. 7a and b expression of PN4 and PN4a produced an inward current with slow inactivation kinetics, similar to that of the rBIIa (Patton *et al.*. Neuron 7, 637-647 (1991)) and rSkM1 α -subunits expressed in the absence of the β_1 -subunit. In the expression of PN4, 0.2 ng of cRNA gave $1.4 \pm 0.19 \,\mu\text{A}$ (n = 9). In the expression of PN4a, 0.1 ng gave $1.8 \pm 0.23 \,\mu\text{A}$ (n = 6). Co-injection of rCN β_1 (1 ng/oocyte) with PN4 cRNA accelerated inactivation kinetics of the channel, as seen in Fig. 9a and b. This agreed with data obtained with rBIIa and hSCN β_1 .

For steady state inactivation, 10 second prepulses were used. In the steady state inactivation of PN4, $V1/2 = -70.7 \pm 0.71$ mV, $k = 5.5 \pm 0.55$ mV (n = 3). In the steady state inactivation of PN4a, $V1/2 = -73.3 \pm 0.97$ mV, $k = 5.5 \pm 0.28$ mV (n = 4). Leak currents were measured during long pulses to -100 mV and -120 mV, and the test currents corrected assuming that the leak currents had a linear current-voltage relationship. An inactivation of -70 mV is similar to most sodium channels.

TEVC activation data for PN4a was V1/2 = -23 \pm 2.7 mV, k = -6.4 \pm 0.75 mV (n = 3).

TTX IC 50 was found to be 1.0 ± 0.60 nM (n = 2).

Sodium channels are distinctively sensitive or insensitive to neurotoxins such as T1X. The TTX-sensitive brain and skeletal muscle sodium channels are blocked by nanomolar TTX concentrations, whereas the TTX-insensitive cardiac sodium channels are blocked by micromolar TTX concentrations. In rat heart sodium channel 1 (rh1), Cys³⁷⁴ is a critical determinant of TTX-insensitivity, as shown in Satin *et al.*, Science 256, 1202-1205(1992); in the TTX-sensitive rBI, rBII, rBIII, and rSkM1, the corresponding residue is either Phe or Tyr. When expressed in *Xenopus* oocytes, the PN4 sodium current is sensitive to TTX (IC₅₀ \geq 1 nM).

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

20

-29-SEQUENCE LISTING

	(1)	GEN	ERAL INFORMATION:
		(i) .	APPLICANT:
5			(A) NAME: F. HOFFMANN-LA ROCHE AG
			(B) STREET: Grenzacherstrasse 124
			(C) CITY: Basle
			(D) STATE: BS
			(E) COUNTRY: Switzerland
10			(F) POSTAL CODE (ZIP): CH-4002
			(G) TELEPHONE: 061 - 688 42 56
			(H) TELEFAX: 061 - 688 13 95
			(I) TELEX: 962292/965542 hlr ch
15		(ii)	TITLE OF INVENTION: Novel Cloned Tetrodotoxin-Sensitive Sodium
			Channel I-Subunit And A Splice Variant Thereof
		(iii)	NUMBER OF SEQUENCES: 7
		(iv)	COMPUTER READABLE FORM:
			(A) MEDIUM TYPE: Floppy disk
20			(B) COMPUTER: Apple Macintosh
			(C) OPERATING SYSTEM: System 7.1 (Macintosh)
			(D) SOFTWARE: Word 5.0
	(2)	INFO	RMATION FOR SEQ ID NO:1:
25		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 5977 base pairs
			(B) TYPE: nucleic acid
			(C) STRANDEDNESS: single
			(D) TOPOLOGY: linear
30		(ii)	MOLECULE TYPE: cDNA
		(iii)	HYPOTHETICAL: NO
		(iv)	ANTI-SENSE: NO
		(vi)	ORIGINAL SOURCE:
			(A) ORGANISM: rat
35			(F) TISSUE TYPE: Dorsal root ganglia
			(G) CELL TYPE: Peripheral nerve

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	1	CTCGAGCCCG	GGCAAGAGAA	GATGGCAGCG	CGGCTGCTCG	CACCACCAGG	CCCTC 3 TI 3 CT
					AACATCGAGA		
5					CACCGGGAGG		
					AGTTTGCCTT		
					TTTGACCCTT		
					TTCAGATTTA		
					ATAGCTATTA		
10					ACCAACTGTG		
					ACATTCACAG		
					ATAGACGGCT		
					ATGGCATATG		
					GTTCTCCGAG		
15					CTAATCCAGT		
					GTTTTCGCCC		
					TGGCCCATAA		
					GAATATATCA		
					TGCGGGAACA		
20					AGGAACCCCA		
	1081	GACACCTTCA	GCTGGGCCTT	CTTGGCATTA	TTCCGCCTTA	TGACCCAGGA	CTATTGGGAG
	1141	AACTTATACC	AGCTGACCTT	ACGAGCCGCT	GGGAAAACGT	ACATGATCTT	CTTTGTCTTG
	1201	GTCATCTTCG	TGGGTTCTTT	CTATCTGGTG	AACTTGATCT	TGGCTGTGGT	GGCCATGGCT
	1261	TATGAGGAAC	AGAACCAGGC	AACACTGGAG	GAGGCAGAGC	AAAAAGAGGC	CGAGTTCAAG
25	1321	GCAATGCTGG	AGCAACTCAA	GAAGCAGCAG	GAGGAGGCAC	AGGCTGCTGC	AATGGCCACC
	1381	TCAGCGGGCA	CTGTCTCGGA	AGACGCCATT	GAAGAAGAAG	GGGAAGATGG	GGTAGGCTCT
	1441	CCGAGGAGCT	CTTCTGAACT	GTCTAAACTC	AGTTCCAAGA	GCGCGAAGGA	GCGGCGGAAC
					TCTGAAGGCG		
20					ATGAGAAGGA		
30					AATCAGTCGC		
					AGCATCTTCA		
					GCAGACGATG		
					CCGATCCGCG		
25					AGCCGCTCGT		
35					GACTGCAACG		
	1981	CCCGGCTCAC	ACATCGGGCG	GCTCCTGCCT	GAGGCAACGA	CTGAGGTGGA	AATTAAGAAG

	2041	AAAGGCCCTG	GATCTCTTTT	AGTTTCTATG	GACCAACTCG	CCTCCTACGG	ACGGAAGGAC
	2101	AGAATCAACA	GCATAATGAG	CGTGGTCACA	AACACGCTAG	TGGAAGAGCT	GGAAGAGTCT
	2161	CAGAGAAAGT	GCCCACCGTG	CTGGTATAAG	TTTGCCAACA	CTTTCCTCAT	CTGGGAGTGT
	2221	CACCCCTACT	GGATAAAACT	GAAGGAGATC	GTGAACTTAA	TCGTCATGGA	CCCTTTTGTA
5	2281	GACTTAGCCA	TCACCATCTG	CATCGTTCTG	AATACGCTAT	TTATGGCAAT	GGAGCACCAT
	2341	CCCATGACAC	CACAGTTCGA	ACACGTCTTG	GCCGTAGGAA	ATCTGGTGTT	CACCGGGATC
	2401	TTCACGGCGG	AAATGTTTCT	GAAGCTCATA	GCCATGGACC	CCTACTATTA	TTTCCAAGAA
	2461	GGCTGGAACA	TTTTTGACGG	ATTTATTGTC	TCCCTCAGTT	TAATGGAGCT	GAGTCTCGCA
	2521	GATGTGGAGG	GGCTCTCAGT	GCTGCGGTCT	TTCCGACTGC	TCCGAGTCTT	CAAGCTGGCC
10	2581	AAGTCCTGGC	CCACCCTGAA	CATGCTGATC	AAGATCATCG	GGAACTCCGT	GGGTGCCCTG
	2641	GGCAACCTGA	CCCTGGTGCT	GGCCATCATC	GTCTTCATCT	TCGCCGTGGT	GGGGATGCAG
	2701	CTGTTTGGAA	AGAGTTACAA	GGAGTGCGTC	TGTAAGATCA	ACCAGGAGTG	CAAGCTCCCG
	2761	CGCTGGCACA	TGAACGACTT	CTTCCACTCC	TTCCTCATCG	TCTTCCGAGT	GCTGTGTGGG
	2821	GAGTGGATCG	AGACCATGTG	GGACTGCATG	GAGGTGGCCG	GCCAGGCCAT	GTGCCTCATT
15	2881	GTCTTCATGA	TGGTTATGGT	CATTGGCAAC	CTGGTGGTGC	TGAATCTATT	CCTGGCCTTG
	2941	CTTCTGAGCT	CCTTCAGCGC	AGACAACCTG	GCGGCCACAG	ACGACGACGG	GGAAATGAAC
	3001	AACCTGCAGA	TCTCAGTGAT	CCGGATCAAG	AAGGCCTGG	CCTGGACCAA	AGTGAAGGTG
	3061	CACGCCTTCA	TGCAGGCTCA	CTTCAAGCAG	CGGGAGGCGG	ATGAAGTGAA	ACCCCTCGAC
	3121	GAGCTGTATG	AGAAGAAGGC	CAACTGCATC	GCCAACCACA	CGGGCGTGGA	TATCCACCGG
20	3181	AACGGCGACT	TCCAGAAGAA	CGGGAACGGA	ACCACCAGCG	GCATCGGCAG	CAGCGTGGAG
	3241	AAGTACATCA	TCGACGAGGA	CCACATGTCC	TTCATTAACA	ACCCAAACCT	GACCGTCCGG
	3301	GTGCCCATTG	CTGTGGGCGA	GTCTGACTTC	GAGAACCTCA	ACACAGAGGA	TGTTAGCAGC
	3361	GAATCAGACC	CTGAAGGCAG	CAAAGATAAA	CTGGACGATA	CCAGCTCCTC	AGAAGGAAGT
	3421	ACCATCGACA	TCAAGCCTGA	GGTGGAAGAA	GTTCCCGTGG	AGCAACCTGA	GGAATACTTG
25	3481	GATCCGGACG	CCTGCTTTAC	AGAGGGTTGC	GTCCAGCGGT	TCAAGTGCTG	CCAGGTCAAC
	3541	ATCGAGGAAG	GACTAGGCAA	GTCGTGGTGG	ATCTTGCGGA	AAACCTGCTT	CCTCATTGTG
	3601	GAGCACAATT	GGTTTGAGAC	CTTCATCATC	TTCATGATTC	TGCTCAGCAG	TGGCGCCCTG
	3661	GCCTTTGAGG	ACATCTACAT	TGAGCAGAGG	AAGACCATCC	GCACCATCCT	GGAGTATGCG
	3721	GACAAGGTCT	TCACCTACAT	CTTCATCCTG	GAGATGTTGC	TCAAGTGGAC	AGCCTACGGC
30	3781	TTCGTCAAGT	TCTTCACCAA	TGCCTGGTGC	TGGTTGGACT	TCCTCATTGT	GGCTGTCTCT
	3841	TTAGTCAGCC	TTATAGCTAA	TGCCCTGGGC	TACTCGGAAC	TAGGTGCCAT	AAAGTCCCTT
	3901	AGGACCCTAA	GAGCTTTGAG	ACCCTTAAGA	GCCTTATCAC	GATTTGAAGG	GATGAGGGTC
					TCCATCATGA		
					GTTAACCTGT		
35	4081	TGCTTTAATO	AGACTTCTGA	AATCCGGTTC	GAAATCGATA	TTGTCAACAA	TAAAACGGA
	4141	TGTGAGAAGC	TCATGGAGG	CAACAGCACO	GAGATCCGAT	GGAAGAATGT	CAAGATCAA

-32-

				JL.	-		
	4201	TTTGACAATG	TCGGAGCAGG	GTACCTGGCC	CTTCTTCAAG	TGGCAACCTT	CAAAGGCTGG
	4261	ATGGACATCA	TGTATGCGGC	TGTAGATTCC	CGAAAGCCAG	ACGAGCAGCC	TGACTACGAG
	4321	GGCAACATCT	ACATGTACAT	CTACTTCGTC	ATCTTCATCA	TCTTCGGCTC	CTTCTTCACC
	4381	CTCAACCTGT	TCATCGGTGT	CATCATCGAC	AACTTCAACC	AGCAGAAGAA	AAAGTTTGGA
5	4441	GGTCAGGACA	TCTTCATGAC	AGAGGAACAG	AAGAAGTACT	ACAATGCCAT	GAAAAAGCTG
	4501	GGCTCCAAGA	AGCCACAGAA	GCCCATCCCC	CGACCCTTGA	ACAAAATCCA	AGGGATTGTC
	4561	TTTGATTTCG	TCACTCAACA	AGCCTTTGAC	ATTGTGATCA	TGATGCTCAT	CTGCCTTAAC
	4621	ATGGTGACAA	TGATGGTGGA	GACAGACACT	CAGAGCAAGC	AGATGGAGAA	CATTCTTTAC
	4681	TGGATTAATC	TGGTCTTTGT	CATCTTCTTC	ACCTGCGAGT	GTGTGCTCAA	AATGTTTGCC
10	4741	TTGAGACACT	ACTATTTCAC	CATTGGCTGG	AACATCTTTG	ACTTTGTGGT	GGTCATCCTC
	4801	TCCATTGTGG	GAATGTTCCT	GGCTGATATC	ATTGAGAAGT	ACTTCGTCTC	CCCAACCCTA
	4861	TTCCGAGTTA	TCCGATTGGC	CCGTATTGGG	CGCATCTTGC	GTCTGATCAA	GGGCGCCAAA
	4921	GGGATCCGCA	CCCTGCTCTT	TGCCTTAATG	ATGTCGCTGC	CCGCCCTGTT	CAACATCGGC
	4981	CTCCTGCTCT	TCCTCGTCAT	GTTCATCTTC	TCCATTTTTG	GCATGTCCAA	CTTCGCATAC
15	5041	GTGAAGCACG	AGGCCGGCAT	TGACGACATG	TTCAACTTCG	AGACATTTGG	CAACAGCATG
	5101	ATCTGTTTGT	TCCAGATCAC	AACGTCTGCT	GGCTGGGATG	GCCTGCTGCT	GCCAATCCTG
	5161	AACCGCCCCC	CTGACTGCAG	CTTGGACAAA	GAGCACCCAG	GGAGTGGCTT	CAAAGGGGAC
	5221	TGTGGGAACC	CCTCGGTGGG	CATCTTCTTC	TTTGTGAGCT	ACATCATCAT	CTCCTTCCTG
	5281	ATTGTGGTGA	ACATGTACAT	CGCCATCATC	CTGGAGAACT	TCAGCGTGGC	CACCGAGGAG
20	5341	AGCGCCGACC	CTCTGAGTGA	GGATGACTTC	GAGACTTTCT	ATGAGATCTG	GGAGAAGTTT
	5401	GACCCAGACG	CCACCCAGTT	CATCGAGTAC	TGTAAGCTGG	CAGACTTTGC	CGACGCCCTG
	5461	GAGCACCCGC	TCCGAGTACC	CAAGCCCAAC	ACCATCGAGC	TCATCGCCAT	GGACCTGCCC
	5521	ATGGTGAGCG	GAGATCGCAT	CCACTGCTTG	GACATCCTTT	TCGCCTTCAC	CAAGCGAGTC
			GTGGGGAGTT				
25			CCAAAGTGTC				
	5701	GAGGTGTCTG	CAGTGGTCCT	GCAGCGTGCC	TACAGGGGAC	ACTTGGCTAG	GCGGGGCTTC
	5761	ATCTGCAGAA	AGATGGCCTC	CAACAAGCTG	GAGAATGGAG	GCACACACAG	AGACAAGAAG
			CGTCCACAGC				
			AGCGTGCGGA			CCAAGAGGCA	AAAAGAGGTC
30	5941	AGGGAGTCCA	AGTGCTAGAG	GAGGGGAAAG	GAAGCTT		

(3) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6007 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

5

-33-

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: rat

(F) TISSUE TYPE: Dorsal root ganglia

(G) CELL TYPE: Peripheral nerve

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

		` ,		•			
10	1	CTCGAGCCCG	GGCAAGAGAA	GATGGCAGCG	CGGCTGCTCG	CACCACCAGG	CCCTGATAGT
	61	TTCAAGCCTT	TCACCCCTGA	GTCGCTGGCA	AACATCGAGA	GGCGTATTGC	CGAGAGCAAG
	121	CTCAAGAAAC	CACCAAAGGC	GGATGGCAGC	CACCGGGAGG	ACGATGAAGA	CAGCAAGCCC
	181	AAGCCAAACA	GTGACCTGGA	GGCTGGGAAG	AGTTTGCCTT	TCATCTACGG	GGACATCCCG
	241	CAAGGCCTGG	TTGCGGTTCC	CCTGGAGGAC	TTTGACCCTT	ACTATTTGAC	GCAGAAAACC
15	301	TTTGTAGTAT	TAAACAGAGG	GAAAACTCTC	TTCAGATTTA	GTGCCACACC	TGCCTTGTAC
	361	ATTTTAAGCC	CTTTTAACCT	GATAAGAAGA	ATAGCTATTA	AAATTTTGAT	ACACTCAGTT
	421	TTCAGCATGA	TCATCATGTG	CACCATCCTG	ACCAACTGTG	TGTTCATGAC	CTTTAGTAAC
	481	CCTCCAGAAT	GGTCCAAGAA	TGTGGAGTAC	ACATTCACAG	GGATTTACAC	ATTTGAATCA
	541	CTAGTGAAAA	TCATCGCAAG	AGGTTTCTGC	ATAGACGGCT	TCACCTTCTT	GCGAGACCCG
20	601	TGGAACTGGT	TAGACTTCAG	TGTCATCATG	ATGGCATATG	TGACAGAGTT	TGTGGACCTG
	661	GGCAATGTCT	CAGCGCTGAG	AACATTCAGG	GTTCTCCGAG	CTTTGAAAAC	TATCTCTGTA
	721	ATTCCAGGCC	TGAAGACAAT	CGTGGGCGCC	CTAATCCAGT	CCGTGAAGAA	GCTGTCGGAC
	781	GTGATGATCC	TGACAGTGTT	CTGCCTGAGT	GTTTTCGCCC	TGATTGGCCT	GCAGCTCTTC
	841	ATGGGGAACC	TTCGAAACAA	GTGTGTCGTG	TGGCCCATAA	ACTTCAACGA	GAGCTACCTG
25	901	GAGAACGGCA	CCAGAGGCTT	TGACTGGGAG	GAATATATCA	ACAATAAAAC	AAACTTTTAC
	961	ATGGTTCCTG	GCATGCTAGA	ACCCTTGCTC	TGCGGGAACA	GTTCTGATGC	TGGGCAATGC
	1021	CCAGAGGGAT	TCCAGTGCAT	GAAAGCAGGA	AGGAACCCCA	ACTACGGTTA	CACCAGCTTT
	1081	GACACCTTCA	GCTGGGCCTT	CTTGGCATTA	TTCCGCCTTA	TGACCCAGGA	CTATTGGGAG
	1141	AACTTATACC	AGCTGACCTT	ACGAGCCGCT	GGGAAAACGT	ACATGATCTT	CTTTGTCTTG
30	1201	GTCATCTTCG	TGGGTTCTTT	CTATCTGGTG	AACTTGATCT	TGGCTGTGGT	GGCCATGGCT
	1261	TATGAGGAAC	AGAACCAGGC	AACACTGGAG	GAGGCAGAGC	AAAAAGAGGC	CGAGTTCAAG
	1321	GCAATGCTGC	G AGCAACTCAA	GAAGCAGCAG	GAGGAGGCAC	AGGCTGCTGC	AATGGCCACC
	1381	TCAGCGGGCA	CTGTCTCGGA	AGACGCCATT	GAAGAAGAAG	GGGAAGATGG	GGTAGGCTCT
	1441	CCGAGGAGCT	CTTCTGAACI	GTCTAAACTC	AGTTCCAAGA	GCGCGAAGGA	GCGGCGGAAC
35	1501	CGACGGAAGA	A AGAGGAAGCA	GAAGGAGCTC	TCTGAAGGCG	AGGAGAAAGG	GGACCCGGAG
	1561	AAGGTGTTT	A AGTCAGAGTC	GGAAGACGGT	T ATGAGAAGGA	AGGCCTTCCG	GCTGCCAGAC

	1621	AACAGGATAG	GGAGGAAGTT	TTCCATCATG	AATCAGTCGC	TGCTCAGCAT	TCCAGGCTCG
	1681	CCCTTCCTCT	CCCGACATAA	CAGCAAAAGC	AGCATCTTCA	GCTTCCGGG	ACCCGGTCGG
	1741	TTCCGGGACC	CCGGCTCTGA	GAATGAGTTC	GCAGACGATG	AACACAGCAC	CGTGGAGGAG
	1801	AGCGAGGGCC	GGCGTGACTC	GCTCTTCATC	CCGATCCGCG	CCCGCGAGCG	CCGCAGCAGC
5	1861	TACAGTGGCT	ACAGCGGCTA	CAGCCAGTGC	AGCCGCTCGT	CGCGCATCTT	CCCCAGCCTG
	1921	CGGCGCAGCG	TGAAGCGCAA	CAGCACGGTG	GACTGCAACG	GCGTAGTGTC	ACTCATCGGG
	1981	CCCGGCTCAC	ACATCGGGCG	GCTCCTGCCT	GAGGTGAAAA	TAGATAAGGC	AGCTACGGAC
	2041	AGCGCAACGA	CTGAGGTGGA	AATTAAGAAG	AAAGGCCCTG	GATCTCTTTT	AGTTTCTATG
	2101	GACCAACTCG	CCTCCTACGG	ACGGAAGGAC	AGAATCAACA	GCATAATGAG	CGTGGTCACA
10	2161	AACACGCTAG	TGGAAGAGCT	GGAAGAGTCT	CAGAGAAAGT	GCCCACCGTG	CTGGTATAAG
	2221	TTTGCCAACA	CTTTCCTCAT	CTGGGAGTGT	CACCCCTACT	GGATAAAACT	GAAGGAGATC
	2281	GTGAACTTAA	TCGTCATGGA	CCCTTTTGTA	GACTTAGCCA	TCACCATCTG	CATCGTTCTG
	2341	AATACGCTAT	TTATGGCAAT	GGAGCACCAT	CCCATGACAC	CACAGTTCGA	ACACGTCTTG
	2401	GCCGTAGGAA	ATCTGGTGTT	CACCGGGATC	TTCACGGCGG	AAATGTTTCT	GAAGCTCATA
15	2461	GCCATGGACC	CCTACTATTA	TTTCCAAGAA	GGCTGGAACA	TTTTTGACGG	ATTTATTGTC
	2521	TCCCTCAGTT	TAATGGAGCT	GAGTCTCGCA	GATGTGGAGG	GGCTCTCAGT	GCTGCGGTCT
	2581	TTCCGACTGC	TCCGAGTCTT	CAAGCTGGCC	AAGTCCTGGC	CCACCCTGAA	CATGCTGATC
	2641	AAGATCATCG	GGAACTCCGT	GGGTGCCCTG	GGCAACCTGA	CCCTGGTGCT	GGCCATCATC
	2701	GTCTTCATCT	TCGCCGTGGT	GGGGATGCAG	CTGTTTGGAA	AGAGTTACAA	GGAGTGCGTC
20	2761	TGTAAGATCA	ACCAGGAGTG	CAAGCTCCCG	CGCTGGCACA	TGAACGACTT	CTTCCACTCC
	2821	TTCCTCATCG	TCTTCCGAGT	GCTGTGTGGG	GAGTGGATCG	AGACCATGTG	GGACTGCATG
	2881	GAGGTGGCCG	GCCAGGCCAT	GTGCCTCATT	GTCTTCATGA	TGGTTATGGT	CATTGGCAAC
	2941	CTGGTGGTGC	TGAATCTATT	CCTGGCCTTG	CTTCTGAGCT	CCTTCAGCGC	AGACAACCTG
	3001	GCGGCCACAG	ACGACGACGG	GGAAATGAAC	AACCTGCAGA	TCTCAGTGAT	CCGGATCAAG
25	3061	AAGGGCGTGG	CCTGGACCAA	AGTGAAGGTG	CACGCCTTCA	TGCAGGCTCA	CTTCAAGCAG
	3121	CGGGAGGCGG	ATGAAGTGAA	ACCCCTCGAC	GAGCTGTATG	AGAAGAAGGC	CAACTGCATC
	3181	GCCAACCACA	CGGGCGTGGA	TATCCACCGG	AACGGCGACT	TCCAGAAGAA	CGGGAACGGA
	3241	ACCACCAGCG	GCATCGGCAG	CAGCGTGGAG	AAGTACATCA	TCGACGAGGA	CCACATGTCC
	3301	TTCATTAACA	ACCCAAACCT	GACCGTCCGG	GTGCCCATTG	CTGTGGGCGA	GTCTGACTTC
30	3361	GAGAACCTCA	ACACAGAGGA	TGTTAGCAGC	GAATCAGACC	CTGAAGGCAG	CAAAGATAAA
	3421	CTGGACGATA	CCAGCTCCTC	AGAAGGAAGT	ACCATCGACA	TCAAGCCTGA	GGTGGAAGAA
	3481	GTTCCCGTGG	AGCAACCTGA	GGAATACTTG	GATCCGGACG	CCTGCTTTAC	AGAGGGTTGC
	3541	GTCCAGCGGT	TCAAGTGCTG	CCAGGTCAAC	ATCGAGGAAG	GACTAGGCAA	GTCGTGGTGG
	3601	ATCTTGCGGA	AAACCTGCTT	CCTCATTGTG	GAGCACAATT	GGTTTGAGAC	CTTCATCATC
35	3661	TTCATGATTC	TGCTCAGCAG	TGGCGCCCTG	GCCTTTGAGG	ACATCTACAT	TGAGCAGAGG
	3721	AAGACCATCC	GCACCATCCT	GGAGTATGCG	GACAAGGTCT	TCACCTACAT	CTTCATCCTG

3781 GAGATGTTGC TCAAGTGGAC AGCCTACGGC TTCGTCAAGT TCTTCACCAA TGCCTGGTGC 3841 TGGTTGGACT TCCTCATTGT GGCTGTCTCT TTAGTCAGCC TTATAGCTAA TGCCCTGGGC 3901 TACTCGGAAC TAGGTGCCAT AAAGTCCCTT AGGACCCTAA GAGCTTTGAG ACCCTTAAGA 3961 GCCTTATCAC GATTTGAAGG GATGAGGGTG GTGGTGAATG CCTTGGTGGG CGCCATCCCC 4021 TCCATCATGA ATGTGCTGCT GGTGTGTCTC ATCTTCTGGC TGATTTTCAG CATCATGGGA 5 4081 GTTAACCTGT TTGCGGGGAA ATACCACTAC TGCTTTAATG AGACTTCTGA AATCCGGTTC 4141 GAAATCGATA TTGTCAACAA TAAAACGGAC TGTGAGAAGC TCATGGAGGG CAACAGCACG 4201 GAGATCCGAT GGAAGAATGT CAAGATCAAC TTTGACAATG TCGGAGCAGG GTACCTGGCC 4261 CTTCTTCAAG TGGCAACCTT CAAAGGCTGG ATGGACATCA TGTATGCGGC TGTAGATTCC 4321 CGAAAGCCAG ACGAGCAGCC TGACTACGAG GGCAACATCT ACATGTACAT CTACTTCGTC 10 4381 ATCTTCATCA TCTTCGGCTC CTTCTTCACC CTCAACCTGT TCATCGGTGT CATCATCGAC 4441 AACTTCAACC AGCAGAAGAA AAAGTTTGGA GGTCAGGACA TCTTCATGAC AGAGGAACAG 4501 AAGAAGTACT ACAATGCCAT GAAAAAGCTG GGCTCCAAGA AGCCACAGAA GCCCATCCCC 4561 CGACCCTTGA ACAAAATCCA AGGGATTGTC TTTGATTTCG TCACTCAACA AGCCTTTGAC 4621 ATTGTGATCA TGATGCTCAT CTGCCTTAAC ATGGTGACAA TGATGGTGGA GACAGACACT 15 4681 CAGAGCAAGC AGATGGAGAA CATTCTTTAC TGGATTAATC TGGTCTTTGT CATCTTCTTC 4741 ACCTGCGAGT GTGTGCTCAA AATGTTTGCC TTGAGACACT ACTATTTCAC CATTGGCTGG 4801 AACATCTTTG ACTTTGTGGT GGTCATCCTC TCCATTGTGG GAATGTTCCT GGCTGATATC 4861 ATTGAGAAGT ACTTCGTCTC CCCAACCCTA TTCCGAGTTA TCCGATTGGC CCGTATTGGG 4921 CGCATCTTGC GTCTGATCAA GGGCGCCAAA GGGATCCGCA CCCTGCTCTT TGCCTTAATG 20 4981 ATGTCGCTGC CCGCCCTGTT CAACATCGGC CTCCTGCTCT TCCTCGTCAT GTTCATCTTC 5041 TCCATTTTTG GCATGTCCAA CTTCGCATAC GTGAAGCACG AGGCCGGCAT TGACGACATG 5101 TTCAACTTCG AGACATTTGG CAACAGCATG ATCTGTTTGT TCCAGATCAC AACGTCTGCT 5161 GGCTGGGATG GCCTGCTGCT GCCAATCCTG AACCGCCCCC CTGACTGCAG CTTGGACAAA 5221 GAGCACCCAG GGAGTGGCTT CAAAGGGGAC TGTGGGAACC CCTCGGTGGG CATCTTCTTC 25 5281 TTTGTGAGCT ACATCATCAT CTCCTTCCTG ATTGTGGTGA ACATGTACAT CGCCATCATC 5341 CTGGAGAACT TCAGCGTGGC CACCGAGGAG AGCGCCGACC CTCTGAGTGA GGATGACTTC 5401 GAGACTTTCT ATGAGATCTG GGAGAAGTTT GACCCAGACG CCACCCAGTT CATCGAGTAC 5461 TGTAAGCTGG CAGACTTTGC CGACGCCCTG GAGCACCCGC TCCGAGTACC CAAGCCCAAC 5521 ACCATCGAGC TCATCGCCAT GGACCTGCCC ATGGTGAGCG GAGATCGCAT CCACTGCTTG 30 5581 GACATCCTTT TCGCCTTCAC CAAGCGAGTC CTGGGAGACA GTGGGGAGTT GGACATCCTG 5641 CGGCAGCAGA TGGAGGAGCG GTTCGTGGCA TCCAATCCTT CCAAAGTGTC TTACGAGCCT 5701 ATCACAACCA CTCTGCGGCG CAAGCAGGAG GAGGTGTCTG CAGTGGTCCT GCAGCGTGCC 5761 TACAGGGGAC ACTTGGCTAG GCGGGGCTTC ATCTGCAGAA AGATGGCCTC CAACAAGCTG 5821 GAGAATGGAG GCACACAGA AGACAAGAAG GAGAGCACCC CGTCCACAGC CTCCCTCCCC 35 5881 TCTTACGACA GCGTCACAAA GCCAGACAAG GAGAAGCAGC AGCGTGCGGA GGAGGGCAGA (xi)

5941 AGGGAAAGAG CCAAGAGGCA AAAAGAGGTC AGGGAGTCCA AGTGCTAGAG GAGGGGAAAG 6001 GAAGCTT

(4) INFORMATION FOR SEQ ID NO:3: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1978 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:_ (D) TOPOLOGY: not relevant 10 (ii) MOLECULE TYPE: protein HYPOTHETICAL: YES (although, functionally expressed) (iii) (vi) ORIGINAL SOURCE: (A) ORGANISM: rat (F) TISSUE TYPE: dorsal root ganglia 15 (G) CELL TYPE: peripheral nerve

Met Ala Ala Arg Leu Leu Ala Pro Pro Gly Pro Asp Ser Phe Lys 5 10 15 20 Pro Phe Thr Pro Glu Ser Leu Ala Asn Ile Glu Arg Arg Ile Ala 20 25 30 Glu Ser Lys Leu Lvs Lys Pro Pro Lys Ala Asp Gly Ser His Arg 35 40 45 Glu Asp Asp Glu Asp Ser Lys Pro Lys Pro Asn Ser Asp Leu Glu 25 50 55 60 Ala Cly Lys Ser Leu Pro Phe Ile Tyr Gly Asp Ile Pro Gln Gly 65 70 75 Leu Val Ala Val Pro Leu Glu Asp Phe Asp Pro Tyr Tyr Thr Leu 80 85 90 30 Gln Lys Thr Phe Val Val Leu Asn Arg Gly Lys Thr Leu Phe Arg 95 100 105 Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu Ser Pro Phe Asn Leu 110 115 120 Ile Arq Ile Arg Ala Ile Lys Ile Leu Ile His Ser Val Phe Ser 35 125 130 135

SEQUENCE DESCRIPTION: SEQ ID NO:3:

	Met	Ile	Ile	Met	Cys	Thr	Ile	Leu	Thr	Asn	Cys	Val	Phe	Met	Thr
					140					145					150
•	Phe	Ser	Asn	Pro	Pro	Glu	Trp	Ser	Lys	Asn	Val	Glu	Tyr	Thr	Phe
					155					160					165
5	Thr	Gly	Ile	Tyr	Thr	Phe	Glu	Ser	Leu	Val	Lys	Ile	Ile	Ala	Arg
					170					175					180
	Gly	Phe	Cys	Ile	Ąsp	Glγ	Phe	Thr	Phe	Leu	Arg	Asp	Pro	Trp	Asn
					185					190					195
	Trp	Leu	qaƙ	Phe	Ser	Val	Ile	Met	Met	Ala	Tyr	Val	Thr	Glu	Phe
10					200					205					210
	Val	Asp	Leu	Gly	Asn	Val	Ser	Ala	Leu	Arg	Thr	Phe	Arg	Val	Leu
					215					220					225
	Arg	Ala	Leu	Lys	Thr	Ile	Ser	Val	Ile	Pro	Gly	Leu	Lys	Thr	Ile
					230					235					240
15	Val	Gly	Ala	Leu	Ile	Gln	Ser	Val	Lys	Lys	Leu	Ser	Asp	Val	Met
					245					250					255
	Ile	Leu	Thr	Val	Phe	Cys	Leu	Ser	Val	Phe	Ala	Leu	Ile	Gly	Leu
		_			260					265				_	270
20	Gln	Leu	Phe	Met	Gly	Asn	Leu	Arg	Asn	Lys	Cys	Val	Val	Trp	Pro
20	• •	_	_,	_	275	_	_			280	53		3	01	285
	Ile	Asn	Phe	Asn	Glu	Ser	Tyr	Leu	Glu	Asn	Gly	Thr	Arg	Gly	Phe 300
	>		G1	01	290	*1.		>	T	295) an	Dha	The con-	Vor	Val
	Asp	Trp	Glu	Glu	туr 305	Ile	Asn	Asn	Lys	Thr 310	Asn	Phe	Tyr	Met	315
25	Pro	Gly	Met	Leu	Glu	Pro	Leu	Leu	Cys	Gly	Asn	Ser	Ser	Asp	Ala
		31,	1100	Deu	320	110	Deu	Dea	0,0	325		501	552		330
	Glv	Gln	Cys	Pro	Glu	Gly	Phe	Gln	Cys	Met	Lys	Ala	Gly	Arg	Asn
	•		•		335	4			-	340	_		_	_	345
	Pro	Asn	Tyr	Gly	Tyr	Thr	Ser	Phe	Asp	Thr	Phe	Ser	Trp	Ala	Phe
30			-	-	350				_	355					360
	Leu	Ala	Leu	Phe	Arg	Leu	Met	Thr	Gln	Asp	Tyr	Trp	Glu	Asn	Leu
					365					370					375
	Tyr	Gln	Leu	Thr	Leu	Arg	Ala	Ala	Gly	Lys	Thr	Tyr	Met	Ile	Phe
					380					385					390
35	Phe	Val	Leu	Val	Ile	Phe	Val	Gly	Ser	Phe	Tyr	Leu	Val	Asn	Leu
					395					400					405

	Ile	Leu	Ala	Val	Val	Ala	Met	Ala	Tyr	Glu	Glu	Gln	Asn	Gln	Ala
					410					415					420
	Thr	Leu	Glu	Glu	Ala	Glu	Gln	Lys	Glu	Ala	Glu	Phe	Lys	Ala	Met
_					425					430					435
5	Leu	Glu	Gln	Leu	Lys	Lys	Gln	Gln	Glu	Glu	Ala	Gln	Ala	Ala	Ala
					440					445					450
	Met	Ala	Thr	Ser	Ala	Gly	Thr	Val	Ser	Glu	Asp	Ala	Ile	Glu	Glu
					455					460					465
	Glu	Gly	Glu	Asp	Gly	Val	Gly	Ser	Pro	Arg	Ser	Ser	Ser	Glu	Leu
10					470					475					480
	Ser	Lys	Leu	Ser	Ser	Lys	Ser	Ala	Lys	Glu	Arg	Arg	Asn	Arg	Arg
					485					490					495
	Lys	Lys	Arg	Lys	Gln	Lys	Glu	Leu	Ser	Glu	Gly	Glu	Glu	Lys	Gly
1.5					500					505					510
15	qzA	Pro	Glu	Lys	Val	Phe	Lys	Ser	Glu	Ser	Glu	Asp	Gly	Met	Arg
					515					520					525
	Arg	Lys	Ala	Phe	Arg	Leu	Pro	Asp	Asn	Arg	Ile	Gly	Arg	Lys	Phe
					530					535					540
20	Ser	Ile	Met	Asn	Gln	Ser	Leu	Leu	Ser	Ile	Pro	Gly	Ser	Pro	Phe
20					545					550					555
	Leu	Ser	Arg	His	Asn	Ser	Lys	Ser	Ser	Ile	Phe	Ser	Phe	Arg	Gly
					560					565					570
	Pro	Gly	Arg	Phe	Arg	Asp	Pro	Gly	Ser	Glu	Asn	Glu	Phe	Ala	Asp
25					575					580					585
25	Asp	Glu	His	Ser	Thr	Val	Glu	Glu	Ser	Glu	Gly	Arg	Arg	Asp	Ser
					590					595					600
	Leu	Phe	Ile	Pro	Ile	Arg	Ala	Arg	Glu	Arg	Arg	Ser	Ser	Tyr	Ser
					605					610					615
20	Gly	Tyr	Ser	Gly	Tyr	Ser	Gln	Cys	Ser	Arg	Ser	Ser	Arg	Ile	Phe
30					620					625					630
	Pro	Ser	Leu	Arg	Arg	Ser	Val	Lys	Arg	Asn	Ser	Thr	Val	Asp	Cys
					635					640					645
	Asn	Gly	Val	Val	Ser	Leu	Ile	Gly	Pro	Gly	Ser	His	Ile	Gly	Arg
25	_				650					655					660
35	Leu	Leu	Pro	Glu	Ala	Thr	Thr	Glu	Val	Glu	Ile	Lys	Lys	Lys	Gly
					665					670					675

	Pro	Gly	Ser	Leu	Leu	Val	Ser	Met	Asp	Gln	Leu	Ala	Ser	Tyr	Gly
					680					685					690
	λrg	Lys	qaƙ	Arg	Ile	Asn	Ser	Ile	Met	Ser	Val	Val	Thr	Asn	Thr
			•		695					700					705
5	Leu	Val	Glu	Glu	Leu	Glu	Glu	Ser	Gln	Arg	Lys	Cys	Pro	Pro	Сув
					710					715					720
	Trp	Tyr	Lys	Phe	Ala	Asn	Thr	Phe	Leu	Ile	Trp	Glu	Cys	His	Pro
					725					730					735
	Tyr	Trp	Ile	Lys	Leu	Lys	Glu	Ile	Val	Asn	Leu	Ile	Val	Met	Asp
10					740					745					750
	Pro	Phe	Val	Asp	Leu	Ala	Ile	Thr	Ile	Cys	Ile	Val	Leu	Asn	Thr
					755					760		•			765
	Leu	Phe	Met	Ala	Met	Glu	His	His	Pro	Met	Thr	Pro	Gln	Phe	Glu
15					770			_		775	m L	01	- 1 -	D b	780
15	His	Val	Leu	Ala	Val	Gly	Asn	Leu	Val	Phe 790	Thr	Gly	Ile	Phe	Thr 795
	23-	71	M	Dh.a	785	T	7 011	T 10	Ala	Met	Asp	Pro	Tyr	Tyr	Tyr
	Ala	Glu	Met	Phe	Leu 800	Lys	Leu	Ile	ALG	805	Asp	710	171	+ 7 -	810
	Phe	Gln	Glu	Gly	Trp	Asn	Ile	Phe	Asp	Gly	Phe	Ile	Val	Ser	Leu
20	1116	GIII	Giu	GIY	815	N311	116		1105	520					825
	Ser	Leu	Met	Glu	Leu	Ser	Leu	Ala	Asp	Val	Glu	Gly	Leu	Ser	Val
					830				-	835		-			840
	Leu	Arg	Ser	Phe	Arg	Leu	Leu	Arg	Val	Phe	Lys	Leu	Ala	Lys	Ser
					845					850					855
25	Trp	Pro	Thr	Leu	Asn	Met	Leu	Ile	Lys	Ile	Ile	Gly	Asn	Ser	Val
					860					865					870
	Gly	Ala	Leu	Gly	Asn	Leu	Thr	Leu	Val	Leu	Ala	Ile	Ile	Val	Phe
					875					880					885
	Ile	Phe	Ala	Val	Val	Gly	Met	Gln	Leu	Phe	Gly	Lys	Ser	Tyr	Lys
30					890					895					900
	Glu	Cys	Val	Cys	Lys	Ile	Asn	Gln	Glu	Cys	Lys	Leu	Pro	Arg	Trp
					905					910					915
	His	Met	Asn	Asp	Phe	Phe	His	Ser	Phe	Leu	Ile	Val	Phe	Arg	Val
					920					925					930
35	Leu	Cys	Gly	Glu	Trp	Ile	Glu	Thr	Met	Trp	qzA	Cys	Met	Glu	Val
					935					940					945

	Ala	Gly	Gln	Ala	Met	Cys	Leu	Ile	Val	Phe	Met	Met	Val	Met	Val
					950					955					960
	Ile	Gly	Asn	Leu	Val	Val	Leu	Asn	Leu	Phe	Leu	Ala	Leu	Leu	Leu
					965					970					975
5	Ser	Ser	Phe	Ser	Ala	Asp	Asn	Leu	Ala	Ala	Thr	Asp	Asp	Asp	Gly
					980					985					990
	Glu	Met	Asn	Asn	Leu	Gln	Ile	Ser	Val	Ile	Arg	Ile	Lys	Lys	Gly
					995					1000					1005
	Val	Ala	Trp	Thr	Lys	Val	Lys	Val	His	Ala	Phe	Met	Gln	Ala	His
10					1010					1015					1020
	Phe	Lys	Gln	Arg	Glu	Ala	Asp	Glu	Val	Lys	Pro	Leu	Asp	Glu	Leu
					1025					1030					1035
	Tyr	Glu	Lys	Lys	Ala	Asn	Cys	Ile	Ala	Asn	His	Thr	Gly	Val	Asp
					1040					1045					1050
15	Ile	His	Arg	Asn	Gly	Asp	Phe	Gln	Lys	Asn	Gly	Asn	Gly	Thr	Thr
					1055					1060					1065
	Ser	Gly	Ile	Gly	Ser	Ser	Val	Glu	Lys	Tyr	Ile	Ile	Asp	Glu	Asp
					1070					1075					1080
20	His	Met	Ser	Phe	Ile	Asn	Asn	Pro	Asn	Leu	Thr	Val	Arg	Val	Pro
20					1085					1090					1095
	Ile	Ala	Val	Gly	Glu	Ser	Asp	Phe	Glu	Asn	Leu	Asn	Thr	Glu	Asp
					1100					1105					1110
	Val	Ser	Ser	Glu	Ser	Ąsp	Pro	Glu	Gly	Ser	Lys	Asp	Lys	Leu	Asp
25					1115					1120					1125
25	Asp	Thr	Ser	Ser	Ser	Glu	Gly	Ser	Thr	Ile	Asp	Ile	Lys	Pro	Glu
					1130					1135					1140
	Val	Glu	Glu	Val	Pro	Val	Glu	Gln	Pro	Glu	Glu	Tyr	Leu	Asp	Pro
					1145					1150					1155
30	Asp	Ala	Cys	Phe	Thr	Glu	Gly	Cys	Val	Gln	Arg	Phe	Lys	Cys	Cys
30					1160					1165					1170
	Gln	Val	Asn	Ile	Glu	Glu	Gly	Leu	Gly	Lys	Ser	Trp	Trp	Ile	Leu
					1175					1180					1185
	Arg	Lys	Thr	Cys	Phe	Leu	Ile	Val	Glu	His	Asn	Trp	Phe	Glu	Thr
35	DI-	-,			1190					1195					1200
رر	Phe	Ile	Ile	Phe	Met	Ile	Leu	Leu	Ser	Ser	Gly	Ala	Leu	Ala	Phe
					1205					1210					1215

	Glu	qsA	Ile	туг	Ile	Glu	Gln	Arg	Lys	Thr	Ile	Arg	Thr	īle	Leu
					1220					1225					1230
	Glu	Tyr	Ala	Asp	Lys	Val	Phe	Thr	Tyr	Ile	Phe	Ile	Leu	Glu	Met
					1235					1240					1245
5	Leu	Leu	Lys	Trp	Thr	Ala	Tyr	Gly	Phe	Val	Lys	Phe	Phe	Thr	Asn
					1250					1255					1260
	Ala	Trp	Cys	Trp	Leu	Asp	Phe	Leu	Ile	Val	Ala	Val	Ser	Leu	Val
					1265					1270					1275
	Ser	Leu	Ile	Ala	Asn	Ala	Leu	Gly	Tyr	Ser	Glu	Leu	Gly	λla	Ile
10					1280					1285					1290
	Lys	Ser	Leu	Arg	Thr	Leu	Arg	Ala	Leu	Arg	Pro	Leu	Arg	Ala	Leu
					1295					1300	•			v-1	1305
	Ser	Arg	Phe	Glu	Gly	Met	Arg	Val	Val	Val	Asn	Ala	Leu	Val	Gly 1320
1.5		_			1310			***	7 011	1315 Leu	Val	Cys	Leu	Ile	Phe
15	Ala	Ile	Pro	Ser	Ile	Met	Asn	Val	Leu	1330	Vai	Cys	Deu	***	1335
	M	T 011	Ile	Phe	1325 Ser	Ile	Met	Gly	Val	Asn	Leu	Phe	Ala	Gly	Lys
	Trp	Leu	116	rne	1340	116		027		1345				-	1350
	Tyr	His	Tyr	Cys	Phe	Asn	Glu	Thr	Ser	Glu	Ile	Arg	Phe	Glu	Ile
20	-1-		-3-	-1-	1355					1360					1365
	Asp	Ile	Val	Asn	Asn	Lys	Thr	Asp	Cys	Glu	Lys	Leu	Met	Glu	Gly
					1370					1375					1380
	Asn	Ser	Thr	Glu	Ile	Arg	Trp	Lys	Asn	Val	Lys	Ile	Asn	Phe	Asp
					1385					1390					1395
25	Asn	Val	Gly	Ala	Gly	Tyr	Leu	Ala	Leu	Leu	Gln	Val	Ala	Thr	Phe
					1400					1405	i				1410
	Lys	Gly	Trp	Met	Asp	Ile	Met	Tyr	Ala	Ala	Val	Asp	Ser	Arg	Lys
					1415	.				1420)				1425
	Pro	Asp	Glu	Gln	Pro	Asp	Tyr	Glu	Gly	Asn	Ile	Tyr	Met	Tyr	Ile
30					1430)				1439	5				1440
	Туг	Phe	Val	Ile	Phe	Ile	Ile	Phe	Gly	Ser	Phe	Phe	Thr	Leu	
					144	5				145					1455
	Lev	ı Phe	Ile	G13			Ile	Asp	Asn			Gln	Gln	Lys	
					146					146				•	1470
35	Ly	s Phe	G1)	/ Gly			Ile	Phe	Met			ı Glu	Gln	Lys	Lys 1485
					147	5				148	U				1483

	Tyr	Tyr	Asn	Ala	Met	Lys	Lys	Leu	Gly	Ser	Lys	Lys	2ro	Gln	Lys
					1490					1495					1500
	Pro	Ile	Pro	Arg	Pro	Leu	Asn	Lys	Ile	Gln	Gly	Ile	Val	Phe	Asp
_					1505					1510					1515
5	Phe	Val	Thr	Gln	Gln	Ala	Phe	Asp	Ile	Val	Ile	Met	Met	Leu	Ile
					1520					1525					1530
	Суѕ	Leu	Asn	Met	Val	Thr	Met	Met	Val	Glu	Thr	Asp	Thr	Gln	Ser
					1535					1540					1545
	Lys	Gln	Met	Glu	Asn	Ile	Leu	Tyr	Trp	Ile	Asn	Leu	Val	Phe	Val
10					1550					1555					1560
	Ile	Phe	Phe	Thr	Cys	Glu	Cys	Val	Leu	Lys	Met	Phe	Ala	Leu	Arg
					1565					1570					1575
	His	Tyr	Tyr	Phe	Thr	Ile	Gly	Trp	Asn	Ile	Phe	Asp	Phe	Val	Val
1.5					1580					1585					1590
15	Val	Ile	Leu	Ser	Ile	Val	Gly	Met	Phe	Leu	Ala	Asp	Ile	Ile	Glu
					1595					1600					1605
	Lys	Tyr	Phe	Val	Ser	Pro	Thr	Leu	Phe	Arg	Val	Ile	Arg	Leu	Ala
					1610					1615					1620
20	Arg	Ile	Gly	Arg	Ile	Leu	Arg	Leu	Ile	Lys	Gly	Ala	Lys	Gly	Ile
20					1625					1630					1635
	Arg	Thr	Leu	Leu	Phe	Ala	Leu	Met	Met	Ser	Leu	Pro	Ala	Leu	Phe
					1640					1645					1650
	Asn	Ile	Gly	Leu	Leu	Leu	Phe	Leu	Val	Met	Phe	Ile	Phe	Ser	Ile
25					1655					1660					1665
23	Phe	Gly	Met	Ser	Asn	Phe	Ala	Tyr	Val	Lys	His	Glu	Ala	Gly	Ile
	_				1670					1675					1680
	Asp	qzA	Met	Phe	Asn	Phe	Glu	Thr	Phe	Gly	Asn	Ser	Met	Ile	Cys
	•				1685					1690					1695
30	L∈u	Phe	Gln	Ile	Thr	Thr	Ser	Ala	Gly	Trp	Asp	Gly	Leu	Leu	Leu
50	_				1700					1705					1710
	Pro	Ile	Leu	Asn	Arg	Pro	Pro	Asp	Cys	Ser	Leu	Asp	Lys	Glu	His
	_				1715					1720					1725
	Pro	Gly	Ser	Gly	Phe	Lys	Gly	Asp	Cys	Gly	Asn	Pro	Ser	Val	Gly
35	7 1				1730					1735					1740
رر	Ile	Phe	Phe	Phe	Val	Ser	Tyr	Ile	Ile	Ile	Ser	Phe	Leu	Ile	Val
					1745					1750					1755

	Val	Asn	Met	Tyr	Ile	Ala	Ile	Ile	Leu	Glu	Asn	Phe	Ser	Val	Ala
					1760					1765					1770
	Thr	Glu	Glu	Ser	Ala	Asp	Pro	Leu	Ser	Glu	Asp	Asp	Phe	Glu	Thr
					1775					1780					1785
5	Phe	Tyr	Glu	Ile	Trp	Glu	Lys	Phe	Asp	Pro	Asp	Ala	Thr	Gln	Phe
					1790					1795					1800
	Ile	Glu	Tyr	Cys	Lys	Leu	Ala	Asp	Phe	Ala	Asp	Ala	Leu	Glu	His
					1805					1810					1815
	Pro	Leu	Arg	Val	Pro	Lys	Pro	Asn	Thr	Ile	Glu	Leu	Ile	Ala	Met
10					1820					1825					1830
	Asp	Leu	Pro	Met	Val	Ser	Gly	Asp	Arg	Ile	His	Cys	Leu	Asp	Ile
					1835					1840					1845
	Leu	Phe	Ala	Phe	Thr	Ĺys	Arg	Val	Leu	Gly	Asp	Ser	Gly	Glu	Leu
					1850					1855					1860
15	Asp	Ile	Leu	Arg	Gln	Gln	Met	Glu	Glu	Arg	Phe	Val	Ala	Ser	Asn
					1865					1870					1875
	Pro	Ser	Lys	Val	Ser	Tyr	Glu	Pro	Ile	Thr	Thr	Thr	Leu	Arg	Arg
					1880					1885					1890
	Lys	Gln	Glu	Glu	Val	Ser	Ala	Val	Val	Leu	Gln	Arg	Ala	Tyr	Arg
20					1895					1900					1905
	Gly	His	Leu	Ala	Arg	Arg	Gly	Phe	Ile	Cys	Arg	Lys	Met	Ala	Ser
					1910					1915					1920
	Asn	Lys	Leu	Glu	Asn	Gly	Gly	Thr	His	Arg	Asp	Lys	Lys	Glu	Ser
					1925					1930					1935
25	Thr	Pro	Ser	Thr	Ala	Ser	Leu	Pro	Ser	Tyr	Asp	Ser	Val	Thr	Lys
					1940					1945					1950
	Pro	Asp	Lys	Glu	Lys	Gln	Gln	Arg	Ala	Glu	Glu	Gly	Arg	Arg	Glu
					1955					1960					1965
	Arg	Ala	Lys	Arg	Gln	Lys	Glu	Val	Arg	Glu	Ser	Lys	Cys		
30					1970					1975					

(5) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1988 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: rat
 - (F) TISSUE TYPE: dorsal root ganglia
 - (G) CELL TYPE: peripheral nerve
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

10	Met	Ala	Ala	Arg	Leu	Leu	Ala	Pro	Pro	Gly	Pro	Asp	Ser	Phe	Lys
					5					10					15
	Pro	Phe	Thr	Pro	Glu	Ser	Leu	Ala	Asn	Ile	Glu	Arg	Arg	Ile	Ala
					20					25					30
	Glu	Ser	Lys	Leu	Lys	Lys	Pro	Pro	Lys	Ala	Asp	Gly	Ser	His	Arg
15					35					40					45
	Glu	Asp	Asp	Glu	Asp	Ser	Lys	Pro	Lys	Pro	Asn	Ser	Asp	Leu	Glu
					50					55					60
	Ala	Gly	Lys	Ser	Leu	Pro	Phe	Ile	Tyr	Gly	Asp	Ile	Pro	Gln	Gly
					65					70					75
20	Leu	Val	Ala	Val	Pro	Leu	Glu	Asp	Phe	Asp	Pro	Tyr	Tyr	Leu	Thr
					80					85					90
	Gln	Lys	Thr	Phe	Val	Val	Leu	Asn	Arg	Gly	Lys	Thr	Leu	Phe	Arg
					95					100					105
	Phe	Ser	Ala	Thr	Pro	Ala	Leu	Tyr	Ile	Leu	Ser	Pro	Phe	Asn	Leu
25					110					115					120
	Ile	Arg	Arg	Ile	Ala	Ile	Lys	Ile	Leu	Ile	His	Ser	Val	Phe	Ser
					125					130					135
	Met	Ile	Ile	Met	Суз	Thr	Ile	Leu	Thr	Asn	Суѕ	Val	Phe	Met	Thr
20					140					145					150
30	Phe	Ser	Asn	Pro	Pro	Glu	Trp	Ser	Lys	Asn	Val	Glu	Tyr	Thr	Phe
					155					160					165
	Thr	Gly	Ile	Tyr	Thr	Phe	Glu	Ser	Leu	Val	Lys	Ile	Ile	Ala	Arg
					170					175					180
2.5	Gly	Phe	Cys	Ile	Asp	Gly	Phe	Thr	Phe	Leu	Arg	Asp	Pro	Trp	Asn
35					185					190					195

	Trp	Leu	Asp	Phe	Ser	Val	Ile	Met	Met	Ala	Tyr	Val	Thr	Glu	Phe
					200					205					210
	Val	Asp	Leu	Gly	Asn	Val	Ser	Ala	Leu	Arg	Thr	Phe	Arg	Val	Leu
					215					220					225
5	Arg	Ala	Leu	Lys	Thr	Ile	Ser	Val	Ile	Pro	Gly	Leu	Lys	Thr	Ile
					230					235					240
	Val	Gly	Ala	Leu	Ile	Gln	Ser	Val	Lys	Lys	Leu	Ser	Asp	Val	Met
					245					250					255
	Ile	Leu	Thr	Val	Phe	Cys	Leu	Ser	Val	Phe	Ala	Leu	Ile	Gly	Leu
10					260					265					270
	Gln	Leu	Phe	Met	Gly	Asn	Leu	Arg	Asn	Lys	Cys	Val	Val	Trp	Pro
					275					280					285
	Ile	Asn	Phe	Asn	Glu	Ser	Tyr	Leu	Glu	Asn	Gly	Thr	Arg	Gly	Phe
					290					295					300
15	Asp	Trp	Glu	Glu	Tyr	Ile	Asn	Asn	Lys	Thr	Asn	Phe	Tyr	Met	Val
					305					310					315
	Pro	Gly	Met	Leu	Glu	Pro	Leu	Leu	Cys	Gly	Asn	Ser	Ser	Asp	Ala
					320					325					330
	Gly	Gln	Cys	Pro	Glu	Gly	Phe	Gln	Суѕ	Met	Lys	Ala	Gly	Arg	Asn
20					335					340			_		345
	Pro	Asn	Tyr	Gly	Tyr	Thr	Ser	Phe	Asp	Thr	Phe	Ser	Trp	Ala	Phe
					350					355					360
	Leu	Ala	Leu	Phe	Arg	Leu	Met	Thr	Gln	Asp	Tyr	Trp	Glu	Asn	Leu
26	_		_		365					370	ma.1	_		-1-	375
25	Tyr	Gln	Leu	Thr	Leu	Arg	Ala	Ala	Gly	Lys	Thr	Tyr	Met	Ile	Phe 390
	5 1	••- 1	•	••-•	380	5 1.		01	C	385 Phe	(Th. 188	*	Val	2	Leu
	Pne	Val	Leu	Val	Ile 395	Pne	vai	Gly	Sei	400	Tyr	Leu	Val	ASII	405
	T 1.0	T ou	Ala	17-1	Val	71-	Mor	Ala	Tyr	Glu	Clu	Gln	Asn	Gln	
30	116	Leu	Ala	Vai	410	AId	Mec	Ald	TYL	415	Giu	GIII	ASII	GIII	420
50	ጥኮኖ	Leu	Glu	Glu	Ala	Glu	Gln	Lve	Glu	Ala	Glu	Phe	Lvs	Ala	Met
	1111	Deu	Giu	Giu	425	Giu	GIII	Буз	GIU	430	GIU	1110	Lys		435
	Leu	Glu	Gln	Leu		Lve	G) n	Gln	Glu		Ala	Gln	Ala	Ala	Ala
	ueu	314	J111	Deu	440	د ړد	9211	111	J_u	445		J.11			450
35	Met	Ala	Thr	Ser		Glv	Thr	Val	Ser		Asp	Ala	Ile	Glu	
					455	1	- • • •			460	2				465
					ب ب					3.0.0					

	Glu	Gly	Glu	Asp	Gly	Val	Gly	Ser	Pro	Arg	Ser	Ser	Ser	Glu	Leu
	C	-	_		470					475					480
	Ser	Lys	Leu	Ser	Ser	Lys	Ser	Ala	Lys	Glu	Arg	Arg	Asn	Arg	Arg
-	_	_	-		485					490					495
5	Lys	Lys	Arg	Lys	Gln	Lys	Glu	Leu	Ser	Glu	Gly	Glu	Glu	Lys	Gly
					500					505					510
	Asp	Pro	Glu	Lys	Val	Phe	Lys	Ser	Glu	Ser	Glu	Asp	Gly	Met	Arg
					515					520					525
	Arg	Lys	Ala	Phe	Arg	Leu	Pro	Asp	Asn	Arg	Ile	Gly	Arg	Lys	Phe
10					530					535					540
	Ser	Ile	Met	Asn	Gln	Ser	Leu	Leu	Ser	Ile	Pro	Gly	Ser	Pro	Phe
					545					5 5 0					555
	Leu	Ser	Arg	His	Asn	Ser	Lys	Ser	Ser	Ile	Phe	Ser	Phe	Arg	Gly
					560					565					570
15	Pro	Gly	Arg	Phe	Arg	Asp	Pro	Gly	Ser	Glu	Asn	Glu	Phe	Ala	Asp
					575					580					585
	Asp	Glu	His	Ser	Thr	Val	Glu	Glu	Ser	Glu	Gly	Arg	Arg	Asp	Ser
					590					595					600
	Leu	Phe	Ile	Pro	Ile	Arg	Ala	Arg	Glu	Arg	Arg	Ser	Ser	Tyr	Ser
20					605					610					615
	Gly	Tyr	Ser	Gly	Tyr	Ser	Gln	Cys	Ser	Arg	Ser	Ser	Arg	Ile	Phe
					620					625					630
	Pro	Ser	Leu	Arg	Arg	Ser	Val	Lys	Arg	Asn	Ser	Thr	Val	Asp	Cys
					635					640				-	- 6 4 5
25	Asn	Gly	Val	Val	Ser	Leu	Ile	Gly	Pro	Gly	Ser	His	Ile	Gly	Arg
					650					655					660
	Leu	Leu	Pro	Glu	Val	Lys	Ile	Asp	Lys	Ala	Ala	Thr	Asp	Ser	Ala
					665					670					6 7 5
	Thr	Thr	Glu	Val	Glu	Ile	Lys	Lys	Lys	Gly	Pro	Gly		Leu	Leu
30					680					685					690
	Val	Ser	Met	Asp	Gln	Leu	Ala	Ser	Tyr	Gly	Arg	Lys	Asp	Arg	Ile
					695					700				_	705
	Asn	Ser	Ile	Met	Ser	Val	Val	Thr	Asn	Thr	Leu	Val	Glu	Glu	Leu
					710					715					720
35	Glu	Glu	Ser	Gln	Arg	Lys	Cys	Pro	Pro	Суѕ	Trp	Tyr	Lys	Phe	Ala
					725					730		=	-		735

	Asn	Thr	Phe	Leu	Ile	Trp	Glu	Cys	His	Pro	Tyr	Trp	Ile	Lys	Leu
					740					745					750
	Lys	Glu	Ile	Val	Asn	Leu	Ile	Val	Met	Asp	Pro	Phe	Val	Asp	Leu
					755					760					765
5	Ala	Ile	Thr	Ile	Cys	Ile	Val	Leu	Asn	Thr	Leu	Phe	Met	Ala	Met
					770					775					780
	Glu	His	His	Pro	Met	Thr	Pro	Gln	Phe	Glu	His	Val	Leu	Ala	Val
					785					790 		_,		_,	795 -
	Gly	Asn	Leu	Val	Phe	Thr	Gly	Ile	Phe	Thr	Ala	Glu	Met	Phe	Leu
10					800			_	_	805	-1	0.1	63	01	810
	Lys	Leu	Ile	Ala	Met	Asp	Pro	Tyr	Tyr	Tyr	Phe	Gln	Glu	Gly	Trp
					815	_,	-1.	**- 3	C	820	Com	T 011	Was	Glu	825 Leu
	Asn	Ile	Phe	Asp	Gly	Phe	Ile	Val	Ser	Leu 835	Ser	Leu	Met	GIU	840
15	G	7	3.1 -	>	830	Glu	Gly	Leu	Ser	Val	Leu	Arg	Ser	Phe	Arg
15	Ser	Leu	Ala	Asp	Val 845	GIU	GIY	nea	261	850	Dea	9	501	1110	855
	Leu	Leu	Arg	Val	Phe	Lys	Leu	Ala	Lys	Ser	Trp	Pro	Thr	Leu	Asn
	Dea	nea	Arg	Vai	860	2,2	200		-3-	865		_			870
	Met	Leu	Ile	Lys	Ile	Ile	Gly	Asn	Ser	Val	Gly	Ala	Leu	Gly	Asn
20				-3-	875		-			880					885
	Leu	Thr	Leu	Val	Leu	Ala	Ile	Ile	Val	Phe	Ile	Phe	Ala	Val	Val
					890					895					900
	Gly	Met	Gln	Leu	Phe	Gly	Lys	Ser	Tyr	Lys	Glu	Cys	Val	Cys	Lys
					905					910					915
25	Ile	Asn	Gln	Glu	Cys	Lys	Leu	Pro	Arg	Trp	His	Met	Asn	Asp	Phe
					920					925					930
	Phe	His	Ser	Phe	Leu	Ile	Val	Phe	Arg	Val	Leu	Cys	Gly	Glu	Trp
					935					940					945
	Ile	Glu	Thr	Met	Trp	Asp	Cys	Met	Glu	Val	Ala	Gly	Gln	Ala	Met
30					950					955					960
	Cys	Leu	Ile	Val	Phe	Met	Met	Val	Met	Val	Ile	Gly	Asn	Leu	Val
					965					970					975
	Val	Leu	Asn	Leu			Ala	Leu	Leu			Ser	Phe	Ser	Ala
a -					980		_	_	_	985		,,,	_		990
35	Asp) Asn	Leu	Ala			Asp) Asp	Asp	_		Met	Asn	Asn	Leu 1005
					995					100	U .				7002

	Gln	Ile	Ser	Val	Ile	Arg	Ile	Lys	Lys	Gly	Val	Ala	Trp	Thr	Lys
					1010					1015					1020
	Val	Lys	Val	His	Ala	Phe	Met	Gln	Ala	His	Phe	Lys	Gln	Arg	Glu
_					1025					1030					1035
5	Ala	Asp	Glu	Val	Lys	Pro	Leu	Asp	Glu	Leu	Tyr	Glu	Lys	Lys	Ala
					1040					1045					1050
	Asn	Cys	Ile	Ala	Asn	His	Thr	Gly	Val	Asp	Ile	His	Arg	Asn	Gly
					1055					1060					1065
	Asp	Phe	Gln	Lys	Asn	Gly	Asn	Gly	Thr	Thr	Ser	Gly	Ile	Gly	Ser
10					1070					1075					1080
	Ser	Val	Glu	Lys	Tyr	Ile	Ile	Asp	Glu	Asp	His	Met	Ser	Phe	Ile
					1085					1090					1095
	Asn	Asn	Pro	Asn	Leu	Thr	Val	Arg	Val	Pro	Ile	Ala	Val	Gly	Glu
					1100					1105					1110
15	Ser	Asp	Phe	Glu	Asn	Leu	Asn	Thr	Glu	Asp	Val	Ser	Ser	Glu	Ser
					1115					1120					1125
	Asp	Pro	Glu	Gly	Ser	Lys	Asp	Lys	Leu	Asp	Asp	Thr	Ser	Ser	Ser
					1130					1135					1140
20	Glu	Gly	Ser	Thr	Ile	Asp	Ile	Lys	Pro	Glu	Val	Glu	Glu	Val	Pro
20					1145					1150					1155
	Val	Glu	Gln	Pro	Glu	Glu	Tyr	Leu	Asp	Pro	Asp	Ala	Cys	Phe	Thr
					1160					1165					1170
	Glu	Gly	Cys	Val	Gln	Arg	Phe	Lys	Cys	Cys	Gln	Val	Asn	Ile	Glu
25					1175					1180					1185
25	Glu	Gly	Leu	Gly	Lys	Ser	Trp	Trp	Ile	Leu	Arg	Lys	Thr	Cys	Phe
	_				1190					1195					1200
	Leu	Ile	Val	Glu		Asn	Trp	Phe	Glu	Thr	Phe	Ile	Ile	Phe	Met
		_			1205					1210					1215
30	lle	Leu	Leu	Ser		Gly	Ala	Leu	Ala	Phe	Glu	Asp	Ile	Tyr	Ile
30	~ 1				1220					1225					1230
	Glu	Gln	Arg	Lys	Thr	Ile	Arg	Thr	Ile	Leu	Glu	Tyr	Ala	Asp	Lys
					1235					1240					1245
	Val	Phe	Thr	Tyr	Ile	Phe	Ile	Leu	Glu	Met	Leu	Leu	Lys	Trp	Thr
35		_			1250					1255					1260
ر ر	Ala	Tyr	Gly	Phe	Val	Lys	Phe	Phe	Thr	Asn	Ala	Trp	Cys	Trp	Leu
					1265					1270					1275

	Asp	Phe	Leu	Ile	Val	Ala	Val	Ser	Leu	Val	Ser	Leu	Ile	Ala	Asn
					1280					1285					1290
•	Ala	Leu	Gly	Tyr	Ser	Glu	Leu	Gly	Ala	Ile	Lys	Ser	Leu	Arg	Thr
					1295					1300					1305
5	Leu	Arg	Ala	Leu	Arg	Pro	Leu	Arg	Ala	Leu	Ser	Arg	Phe	Glu	Gly
					1310					1315					1320
	Met	Arg	Val	Val	Val	Asn	Ala	Leu	Val	Gly	Ala	Ile	Pro	Ser	Ile
					1325					1330					1335
	Met	Asn	Val	Leu	Leu	Val	Cys	Leu	Ile	Phe	Trp	Leu	Ile	Phe	Ser
10					1340					1345					1350
	Ile	Met	Gly	Val	Asn	Leu	Phe	Ala	Gly	Lys	Tyr	His	Tyr	Суз	Phe
					1355					1360					1365
	Asn	Glu	Thr	Ser	Glu	Ile	Arg	Phe	Glu	Ile	Asp	Ile	Val	Asn	Asn
					1370					1375					1380
15	Lys	Thr	Asp	Суѕ	Glu	Lys	Leu	Met	Glu	Gly	Asn	Ser	Thr	Glu	Ile
					1385					1390					1395
	Arg	Trp	Lys	Asn	Val	Lys	Ile	Asn	Phe	Asp	Asn	Val	Gly	Ala	Gly
					1400					1405					1410
	Tyr	Leu	Ala	Leu	Leu	Gln	Val	Ala	Thr	Phe	Lys	Gly	Trp	Met	Asp
20					1415					1420					1425
	Ile	Met	Tyr	Ala	Ala	Val	Asp	Ser	Arg	Lys	Pro	Asp	Glu	Gln	Pro
					1430					1435					1440
	Asp	Ţyr	Glu	Gly	Asn	Ile	Tyr	Met	Tyr	Ile	Tyr	Phe	Val	Ile	Phe
					1445					1450					1455
25	Ile	Ile	Phe	Gly	Ser	Phe	Phe	Thr	Leu	Asn	Leu	Phe	Ile	Gly	Val
					1460					1465					1470
	Ile	Ile	qzA	Asn	Phe	Asn	Gln	Gln	Lys	Lys	Lys	Phe	Gly	Gly	Gln
					1475					1480					1485
	Asp	Ile	Phe	Met	Thr	Glu	Glu	Gln	Lys	Lys	Tyr	Tyr	Asn	Ala	Met
30					1490)				1495					1500
	Lys	Lys	Leu	Gly	Ser	Lys	Lys	Pro	Gln	Lys	Pro	Ile	Pro	Arg	Pro
					1505	5				1510					1515
	Leu	Asn	Lys	Ile	Gln	Gly	Ile	Val	Phe	Asp	Phe	Val	Thr	Gln	Gln
				•	1520)				1525	5				1530
35	Ala	Phe	Asp	Ile	Val	Ile	Met	Met	Leu		_	Leu	Asn	Met	Val
					1539	5				1540)				1545

	Thr	Met	Met	Val	Glu	Thr	Asp	Thr	Gln	Ser	Lys	Gln	Met	Glu	Asn
	Ile	Leu	/T		1550		_			1555					1560
	116	Leu	Tyr	Trp	Ile	Asn	Leu	Val	Phe	Val	Ile	Phe	Phe	Thr	Cys
5	C1	C+			1565					1570					1575
5	Glu	Cys	Val	Leu	Lys	Met	Phe	Ala	Leu	Arg	His	Tyr	Tyr	Phe	Thr
	T 1	-1			1580					1585					1590
	Ile	Gly	Trp	Asn	Ile	Phe	Asp	Phe	Val	Val	Val	Ile	Leu	Ser	Ile
					1595					1600					1605
10	Val	Gly	Met	Phe	Leu	Ala	Asp	Ile	Ile	Glu	Lys	Tyr	Phe	Val	Ser
10	_				1610					1615					1620
	Pro	Thr	Leu	Phe	Arg	Val	Ile	Arg	Leu	Ala	Arg	Ile	Gly	Arg	Ile
					1625					1630					1635
	Leu	Arg	Leu	Ile	Lys	Gly	Ala	Lys	Gly	Ile	Arg	Thr	Leu	Leu	Phe
1.5					1640					1645					1650
15	Ala	Leu	Met	Met	Ser	Leu	Pro	Ala	Leu	Phe	Asn	Ile	Gly	Leu	Leu
					1655					1660					1665
	Leu	Phe	Leu	Val	Met	Phe	Ile	Phe	Ser	Ile	Phe	Gly	Met	Ser	Asn
					1670					1675					1680
•	Phe	Ala	Tyr	Val	Lys	His	Glu	Ala	Gly	Ile	Asp	Asp	Met	Phe	Asn
20					1685					1690					1695
	Phe	Glu	Thr	Phe	Gly	Asn	Ser	Met	Ile	Cys	Leu	Phe	Gln	Ile	Thr
					1700					1705					1710
	Thr	Ser	Ala	Gly	Trp	Asp	Gly	Leu	Leu	Leu	Pro	Ile	Leu	Asn	Arg
					1715					1720					1725
25	Pro	Pro	Asp	Cys	Ser	Leu	Asp	Lys	Glu	His	Pro	Gly	Ser	Gly	Phe
					1730					1735					1740
	Lys	Gly	Asp	Cys	Gly	Asn	Pro	Ser	Val	Gly	Ile	Phe	Phe	Phe	Val
					1745					1750					1755
	Ser	Tyr	Ile	Ile	Ile	Ser	Phe	Leu	Ile	Val	Val	Asn	Met	Tyr	Ile
30					1760					1765					1770
	Ala	Ile	Ile	Leu	Glu	Asn	Phe	Ser	Val	Ala	Thr	Glu	Glu	Ser	Ala
					1775					1780					1785
	Asp	Pro	Leu	Ser	Glu	Asp	Asp	Phe	Glu	Thr	Phe	Tyr	Glu	Ile	Trp
					1790					1795					1800
35	Glu	Lys	Phe	Asp	Pro	Asp	Ala	Thr	Gln	Phe	Ile	Glu	Tyr	Cys	Lys
					1805					1810					1815

	Leu	Ala	Asp	Phe	Ala	qaA	Ala	Leu	Glu	His	Pro	Leu	Arg	Val	Pro
					1820					1825					1830
	Lys	Pro	Asn	Thr	Ile	Glu	Leu	Ile	Ala	Met	Asp	Leu	Pro	Met	Val
			•		1935					1840					1845
5	Ser	Gly	Asp	Arg	Ile	His	Cys	Leu	Asp	Ile	Leu	Phe	Ala	Phe	Thr
					1850					1855					1860
	Lys	Arg	Val	Leu	Gly	Asp	Ser	Gly	Glu	Leu	Asp	Ile	Leu	Arg	Gln
					1865					1870					1875
	Gln	Met	Glu	Glu	Arg	Phe	Val	Ala	Ser	Asn	Pro	Ser	Lys	Val	Ser
10					1880					1885					1890
	Tyr	Glu	Pro	Ile	Thr	Thr	Thr	Leu	Arg	Arg	Lys	Gln	Glu	Glu	Val
					1895					1900					1905
	Ser	Ala	Val	Val	Leu	Gln	Arg	Ala	Tyr	Arg	Gly	His	Leu	Ala	Arg
					1910					1915					1920
15	Arg	Gly	Phe	Ile	Cys	Arg	Lys	Met	Ala	Ser	Asn	Lys	Leu	Glu	Asn
					1925					1930					1935
	Gly	Gly	Thr	His	Arg	Asp	Lys	Lys	Glu	Ser	Thr	Pro	Ser	Thr	Ala
					1940	1				1945					1950
	Ser	Leu	Pro	Ser	Tyr	Asp	Ser	Val	Thr	Lys	Pro	Asp	Lys	Glu	Lys
20					1955	5				1960)				1965
	Gln	Gln	Arg	Ala	Glu	Glu	Gly	Arg	Arg	Glu	Arg	Ala	Lys	Arg	Gln
					1970)				1975	5				1980
	Lys	Glu	Val	Arg	Glu	Ser	Lys	Cys							
					198	5									

30

(6) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 696 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: RT-PCR
 - (A) DESCRIPTION: /desc = "DNA probe"
- (iii) HYPOTHETICAL: NO
- 35 (iv) ANTI-SENSE: NO

	(vi)	ORIGINA	AL SOURCE:			
		(A) O	RGANISM: r	at		
•		(F) TI	SSUE TYPE:	dorsal root ga	nglia	
		(G) CI	ELL TYPE: po	eripheral nerve	:	
5	(xi)	SEQUEN	CE DESCRIP	TION: SEQ I	D NO:5:	
	1	CTCAACATGG	TTACTATGAT	GGTGGAGACA	GACACTCAGA	GCAAGCAGAT
10	51	GGAGAACATT	CTTTACTGGA	TTAATCTGGT	CTTTGTCATC	TTCTTCACCT
	101	GCGAGTGTGT	GCTCAAAATG	TTTGCCTTGA	GACACTACTA	TTTCACCATT
	151	GGCTGGAACA	TCTTTGACTT	TGTGGTGGTC	ATCCTCTCCA	TTGTGGGAAT
15	201	GTTCCTGGCT	GATATCATTG	AGAAGTACTT	CGTCTCCCCA	ACCCTATTCC
	251	GAGTTATCCG	ATTGGCCCGT	ATTGGGCGCA	TCTTGCGTCT	GATCAAGGGG
20	301	GCCAAAGGGA	TCCGCACCCT	GCTCTTTGGC	CTTAATGATG	TCGCTGGCCG
	351	CCCTGTTCAA	CATCGCCTCC	TGCTCTTCCT	CGTCATGTTC	ATCTTCTCCA
	401	TTTTTGGCAT	GTCCAACTTC	GCATACGTGA	AGCACGAGGC	CGGCATTGAC
25	451	GACATGTTCA	ACTTCGAGAC	ATTTGGCAAC	AGCATGATCT	GTTTGTTCCA
	501	GATCACAACG	TCTGCTGGCT	GGGATGGCCT	GCTGCTGCCA	ATCCTGAACC
30	551	GCCCCCTGA	CTGCAGCTTG	GACAAAGAGC	ACCCAGGGAG	TGGCTTCAAA
	601	GGGGACTGTG	GGAACCCCTC	GGTGGGCATC	TTCTTCTTTG	TGAGCTACAT
	651	CATCATCTCC	TTCCTGATTG	TGGTGAACAT	GTACATCGCA	GTCATC

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: rat
 - (F) TISSUE TYPE: dorsal root ganglia
 - (G) CELL TYPE: peripheral nerve
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

15	Leu	Asn	Met	Val	Thr	Met	Met	Val	Glu	Thr	Asp	Thr	Gln	Ser	Lys
					5					10					15
	Gln	Met	Glu	Asn	Ile	Leu	Tyr	Trp	Ile	Asn	Leu	Val	Phe	Val	Ile
					20					25					30
	Phe	Phe	Thr	Cys	Glu	Cys	Val	Leu	Lys	Met	Phe	Ala	Leu	Arg	His
20					35					40					45
	Tyr	Tyr	Phe	Thr	Ile	Gly	Trp	Asn	Ile	Phe	Asp	Phe	Val	Val	Val
					50					55					60
	Ile	Leu	Ser	Ile	Val	Gly	Met	Phe	Leu	Ala	Asp	Ile	Ile	Glu	Lys
					65					70					75
25	Tyr	Phe	Val	Ser	Pro	Thr	Leu	Phe	Arg	Val	Ile	Arg	Leu	Ala	Arg
					80					85					90
	Ile	Gly	Arg	Ile	Leu	Arg	Leu	Ile	Lys	Gly	Ala	Lys	Gly	Ile	Arg
					95					100					105
	Thr	Leu	Leu	Phe	Gly	Leu	Asn	Asp	Val	Ala	Gly	Arg	Pro	Val	Gln
30					110					115					120
	His	Arg	Leu	Leu	Leu	Phe	Leu	Val	Met	Phe	Ile	Phe	Ser	Ile	Phe
					125					130					135
	Gly	Met	Ser	Asn	Phe	Ala	Tyr	Val	Lys	His	Glu	Ala	Gly	Ile	Asp
					140					145					150
35	Asp	Met	Phe	Asn	Phe	Glu	Thr	Phe	Gly	Asn	Ser	Met	Ile	Cys	Leu
					155					160					165

	Phe	Gln	Ile	Thr		Ser	Ala	Gly	Trp	Asp	Gly	Leu	Leu	Leu	Pro
					170					175					180
	Ile	Leu	Asn	Arg	Pro	Pro	Asp	Cys	Ser	Leu	Asp	Lys	Glu	His	Pro
_			-		185					190					195
5	Gly	Ser	Gly	Phe	Lys	Gly	Asp	Cys	Gly	Asn	Pro	Ser	Val	Gly	Ile
					200					205					210
	Phe	Phe	Phe	Val	Ser	Tyr	Ile	Ile	Ile	Ser	Phe	Leu	Ile	Val	Val
					215					220					225
	Asn	Met	Tyr	Ile	Ala	Val	Ile								
10					230										

(8) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6556 base pairs
- 15 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
- 20 (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: rat
 - (F) TISSUE TYPE: Dorsal root ganglia
 - (G) CELL TYPE: Peripheral nerve
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

	CCAAGATGGC	GCCCACCGCA	GTCCCGCCCG	CCGCAGCCTC	GGCGCCTCTG	50
	CAGTCCGGCC	GCGCCTCCCG	GGCCCCGCGC	TAGGGCCGCT	GCCGCCTCGC	100
	CCGCCGCCGC	CGCCGCCAGC	TGACCTGTCC	CGGACACATA	ACTAACGAAG	150
30	CTGCTGCAGG	ATGAGAAG <u>AT</u>	<u>G</u> GCAGCGCGG	CTGCTCGCAC	CACCAGGCCC	200
	TGATAGTTTC	AAGCCTTTCA	CCCCTGAGTC	GCTGGCAAAC	ATCGAGAGGC	250
	GTATTGCCGA	GAGCAAGCTC	AAGAAACCAC	CAAAGGCGGA	TGGCAGCCAC	300
	CGGGAGGACG	ATGAAGACAG	CAAGCCCAAG	CCAAACAGTG	ACCTGGAGGC	350
	TGGGAAGAGT	TTGCCTTTCA	TCTACGGGGA	CATCCCGCAA	GGCCTGGTTG	400
35	CGGTTCCCCT	GGAGGACTTT	GACCCTTACT	ATTTGACGCA	GAAAACCTTT	450
	GTAGTATTAA	ACAGAGGGAA	AACTCTCTTC	AGATTTAGTG	CCACACCTGC	500

	CTTGTACATT TTAAGCCCTT	TTAACCTGAT	AAGAAGAATA GCTATTAAAA	550
	TTTTGATACA CTCAGTTTTC	AGCATGATCA	TCATGTGCAC CATCCTGACC	600
	AACTGTGTGT TCATGACCTT	TAGTAACCCT	CCAGAATGGT CCAAGAATGT	650
	GGAGTACACA TTCACAGGGA	TTTACACATT	TGAATCACTA GTGAAAATCA	700
5	TCGCAAGAGG TTTCTGCATA	GACGGCTTCA	CCTTCTTGCG AGACCCGTGG	750
	AACTGGTTAG ACTTCAGTGT	CATCATGATG	GCATATGTGA CAGAGTTTGT	800
	GGACCTGGGC AATGTCTCAG	CGCTGAGAAC	ATTCAGGGTT CTCCGAGCTT	850
	TGAAAACTAT CTCTGTAATT	CCAGGCCTGA	AGACAATCGT GGGCGCCCTA	900
	ATCCAGTCCG TGAAGAAGCT	GTCGGACGTG	ATGATCCTGA CAGTGTTCTG	950
10	CCTGAGTGTT TTCGCCCTGA	TTGGCCTGCA	GCTCTTCATG GGGAACCTT-	999
	CGAAACAAGT GTGTCGTGTG	GCCCATAAAC	TTCAACGAGA GCTACCTGGA	1049
	GAACGGCACC AGAGGCTTTG	ACTGGGAGGA	ATATATCAAC AATAAAACAA	1099
	ACTTTTACAT GGTTCCTGGC	ATGCTAGAAC	CCTTGCTCTG CGGGAACAGT	1149
	TCTGATGCTG GGCAATGCCC	AGAGGGATTC	CAGTGCATGA AAGCAGGAAG	1199
15	GAACCCCAAC TACGGTTACA	CCAGCTTTGA	CACCTTCAGC TGGGCCTTCT	1249
	TGGCATTATT CCGCCTTATG	ACCCAGGACT	ATTGGGAGAA CTTATACCAG	1299
	CTGACCTTAC GAGCCGCTGG	GAAAACGTAC	ATGATCTTCT TTGTCTTGGT	1349
	CATCTTCGTG GGTTCTTTCT	ATCTGGTGAA	CTTGATCTTG GCTGTGGTGG	1399
	CCATGGCTTA TGAGGAACAG	AACCAGGCAA	CACTGGAGGA GGCAGAGCAA	1449
20	AAAGAGGCCG AGTTCAAGGC	AATGCTGGAG	CAACTCAAGA AGCAGCAGGA	1499
	GGAGGCACAG GCTGCTGCAA	TGGCCACCTC	AGCGGGCACT GTCTCGGAAG	1549
	ACGCCATTGA AGAAGAAGGG	GAAGATGGGG	TAGGCTCTCC GAGGAGCTCT	1599
	TCTGAACTGT CTAAACTCAG	TTCCAAGAGC	GCGAAGGAGC GGCGGAACCG	1649
	ACGGAAGAAG AGGAAGCAGA	AGGAGCTCTC	TGAAGGCGAG GAGAAAGGGG	1699
25	ACCCGGAGAA GGTGTTTAAG	TCAGAGTCGC	AAGACGGTAT GAGAAGGAAG	1749
	GCCTTCCGGC TGCCAGACAA	CAGGATAGG	G AGGAAGTTTT CCATCATGAA	1799
	TCAGTCGCTG CTCAGCATTC	CAGGCTCGCC	CTTCCTCTCC CGACATAACA	1849
	GCAAAAGCAG CATCTTCAGC	TTCCGGGGA	CCGGTCGGTT CCGGGACCCC	1899
	GGCTCTGAGA ATGAGTTCGC	AGACGATGA	A CACAGCACCG TGGAGGAGAG	1949
30	CGAGGGCCGG CGTGACTCGC	TCTTCATCC	GATCCGCGCC CGCGAGCGCC	1999
	GCAGCAGCTA CAGTGGCTAC	AGCGGCTAC	A GCCAGTGCAG CCGCTCGTCG	2049
	CGCATCTTCC CCAGCCTGCG	GCGCAGCGT	G AAGCGCAACA GCACGGTGGA	2099
	CTGCAACGGC GTAGTGTCAC	TCATCGGGC	C CGGCTCACAC ATCGGGCGGC	2149
	TCCTGCCTGA GGCAACGACT	GAGGTGGAA	A TTAAGAAGAA AGGCCCTGGA	2199
35	TCTCTTTTAG TTTCTATGGA	CCAACTCGC	C TCCTACGGAC GGAAGGACAG	2249
	AATCAACAGC ATAATGAGCC	G TGGTCACAA	A CACGCTAGTG GAAGAGCTGG	2299

					TGCCAACACT	2349
					AGGAGATCGT	2399
					ACCATCTGCA	2449
_	TCGTTCTGAA	TACGCTATTT	ATGGCAATGG	AGCACCATCC	CATGACACCA	2499
5	CAGTTCGAAC	ACGTCTTGGC	CGTAGGAAAT	CTGGTGTTCA	CCGGGATCTT	2549
					TACTATTATT	2599
					CCTCAGTTTA	2649
					TGCGGTCTTT	2699
1.0					ACCCTGAACA	2749
10					CAACCTGACC	2799
					GGATGCAGCT	2849
	GTTTGGAAAG	AGTTACAAGG	AGTGCGTCTG	TAAGATCAAC	CAGGAGTGCA	2899
	AGCTCCCGCG	CTGGCACATG	AACGACTTCT	TCCACTCCTT	CCTCATCGTC	2949
1.5	TTCCGAGTGC	TGTGTGGGGA	GTGGATCGAG	ACCATGTGGG	ACTGCATGGA	2999
15					GTTATGGTCA	3049
	TTGGCAACCT	GGTGGTGCTG	AATCTATTCC	TGGCCTTGCT	TCTGAGCTCC	3099
	TTCAGCGCAG	ACAACCTGGC	GGCCACAGAC	GACGACGGG	AAATGAACAA	3149
	CCTGCAGATC	TCAGTGATCC	GGATCAAGAA	GGGCGTGGCC	TGGACCAAAG	3199
	TGAAGGTGCA	CGCCTTCATG	CAGGCTCACT	TCAAGCAGCG	GGAGGCGGAT	3249
20	GAAGTGAAAC	CCCTCGACGA	GCTGTATGAG	AAGAAGGCCA	ACTGCATCGC	3299
	CAACCACACG	GGCGTGGATA	TCCACCGGAA	CGGCGACTTC	CAGAAGAACG	3349
	GGAACGGAAC	CACCAGCGGC	ATCGGCAGCA	GCGTGGAGAA	GTACATCATC	3399
	GACGAGGACC	ACATGTCCTT	CATTAACAAC	CCAAACCTGA	CCGTCCGGGT	3449
	GCCCATTGCT	GTGGGCGAGT	CTGACTTCGA	GAACCTCAAC	ACAGAGGATG	3499
25	TTAGCAGCGA	ATCAGACCCT	GAAGGCAGCA	AAGATAAACT	GGACGATACC	3549
	AGCTCCTCAG	AAGGAAGTAC	CATCGACATC	AAGCCTGAGG	TGGAAGAAGT	3599
	TCCCGTGGAG	CAACCTGAGG	AATACTTGGA	TCCGGACGCC	TGCTTTACAG	3649
	AGGGTTGCGT	CCAGCGGTTC	AAGTGCTGCC	AGGTCAACAT	CGAGGAAGGA	3699
••	CTAGGCAAGT	CGTGGTGGAT	CTTGCGGAAA	ACCTGCTTCC	TCATTGTGGA	3749
30	GCACAATTGG	TTTGAGACCT	TCATCATCTT	CATGATTCTG	CTCAGCAGTG	3799
	GCGCCCTGGC	CTTTGAGGAC	ATCTACATTG	AGCAGAGGAA	GACCATCCGC	3849
	ACCATCCTGG	AGTATGCGGA	CAAGGTCTTC	ACCTACATCT	TCATCCTGGA	3899
	GATGTTGCTC	AAGTGGACAG	CCTACGGCTT	CGTCAAGTTC	TTCACCAATG	3949
٨٠	CCTGGTGCTG	GTTGGACTTC	CTCATTGTGG	CTGTCTCTTT	AGTCAGCCTT	3999
35	ATAGCTAATG	CCCTGGGCTA	CTCGGAACTA	GGTGCCATAA	AGTCCCTTAG	4049
	GACCCTAAGA	GCTTTGAGAC	CCTTAAGAGC	CTTATCACGA	TTTGAAGGGA	4099

	TGAGGGTGGT	GGTGAATGCC	TTGGTGGGCG	CCATCCCCTC	CATCATGAAT	4149
	GTGCTGCTGG	TGTGTCTCAT	CTTCTGGCTG	ATTTTCAGCA	TCATGGGAGT	4199
	TAACCTGTTT	GCGGGGAAAT	ACCACTACTG	CTTTAATGAG	ACTTCTGAAA	4249
	TCCGGTTCGA	AATCGATATT	GTCAACAATA	AAACGGACTG	TGAGAAGCTC	4299
5	ATGGAGGGCA	ACAGCACGGA	GATCCGATGG	AAGAATGTCA	AGATCAACTT	4349
	TGACAATGTC	GGAGCAGGGT	ACCTGGCCCT	TCTTCAAGTG	GCAACCTTCA	4399
	AAGGCTGGAT	GGACATCATG	TATGCGGCTG	TAGATTCCCG	AAAGCCAGAC	4449
	GAGCAGCCTG	ACTACGAGGG	CAACATCTAC	ATGTACATCT	ACTTCGTCAT	4499
	CTTCATCATC	TTCGGCTCCT	TCTTCACCCT	CAACCTGTTC	ATCGGTGTCA	4549
10	TCATCGACAA	CTTCAACCAG	CAGAAGAAAA	AGTTTGGAGG	TCAGGACATC	4599
	TTCATGACAG	AGGAACAGAA	GAAGTACTAC	AATGCCATGA	AAAAGCTGGG	4649
	CTCCAAGAAG	CCACAGAAGC	CCATCCCCCG	ACCCTTGAAC	AAAATCCAAG	4699
	GGATTGTCTT	TGATTTCGTC	ACTCAACAAG	CCTTTGACAT	TGTGATCATG	4749
	ATGCTCATCT	GCCTTAACAT	GGTGACAATG	ATGGTGGAGA	CAGACACTCA	4799
15	GAGCAAGCAG	ATGGAGAACA	TTCTTTACTG	GATTAATCTG	GTCTTTGTCA	4849
	TCTTCTTCAC	CTGCGAGTGT	GTGCTCAAAA	TGTTTGCCTT	GAGACACTAC	4899
	TATTTCACCA	TTGGCTGGAA	CATCTTTGAC	TTTGTGGTGG	TCATCCTCTC	4949
	CATTGTGGGA	ATGTTCCTGG	CTGATATCAT	TGAGAAGTAC	TTCGTCTCCC	4999
	CAACCCTATT	CCGAGTTATC	CGATTGGCCC	GTATTGGGCG	CATCTTGCGT	5049
20	CTGATCAAGG	GCGCCAAAGG	GATCCGCACC	CTGCTCTTTG	CCTTAATGAT	5099
	GTCGCTGCCC	GCCCTGTTCA	ACATCGGCCT	CCTGCTCTTC	CTCGTCATGT	5149
	TCATCTTCTC	CATTTTTGGC	ATGTCCAACT	TCGCATACGT	GAAGCACGAG	5199
	GCCGGCATTG	ACGACATGTT	CAACTTCGAC	ACATTTGGCA	ACAGCATGAT	5249
	CTGTTTGTTC	CAGATCACAA	CGTCTGCTGC	CTGGGATGGC	CTGCTGCTGC	5299
25	CAATCCTGAA	CCGCCCCCT	GACTGCAGCT	TGGACAAAGA	GCACCCAGGG	5349
	AGTGGCTTCA	AAGGGGACTG	TGGGAACCC	TCGGTGGGCA	TCTTCTTCTT	5399
	TGTGAGCTAC	ATCATCATCT	CCTTCCTGAT	TGTGGTGAAC	ATGTACATCG	5449
	CCATCATCCT	GGAGAACTTC	AGCGTGGCC	A CCGAGGAGAG	CGCCGACCCT	5499
	CTGAGTGAGG	ATGACTTCG	GACTTTCTA	r gagatetgge	AGAAGTTTGA	5549
30	CCCAGACGCC	: ACCCAGTTC	TCGAGTACT	G TAAGCTGGCA	GACTTTGCCG	5599
	ACGCCCTGGA	GCACCCGCT	C CGAGTACCC	A AGCCCAACAC	CATCGAGCTC	5649
	ATCGCCATGG	ACCTGCCCA	r ggtgagcgg	A GATCGCATCO	ACTGCTTGGA	5699
	CATCCTTTTC	GCCTTCACC	A AGCGAGTCC	T GGGAGACAG1	GGGGAGTTGG	5749
	ACATCCTGCC	G GCAGCAGAT	G GAGGAGCGG	T TCGTGGCAT	CAATCCTTCC	5799
35	AAAGTGTCTT	r ACGA-GCCT.	A TCACAACCA	C TCTGCGGCGG	AAGCAGGAGG	5848
	AGGTGTCTG	C AGTGGTCCT	G CAGCGTGCC	T ACAGGGGAC	A CTTGGCTAGG	5898

	CGGGGCTTCA	TCTGCAGAAA	GATGGCCTCC	AACAAGCTGG	AGAATGGAGG	5948
	CACACACAGA	GACAAGAAGG	AGAGCACCCC	GTCCACAGCC	TCCCTCCCCT	5998
	CTTACGACAG	CGTCACAAAG	CCAGACAAGG	AGAAGCAGCA	GCGTGCGGAG	6048
	GAGGGCAGAA	GGGAAAGAGC	CAAGAGGCAA	AAAGAGGTCA	GGGAGTCCAA	6098
5	GTGC <u>TAG</u> AGG	AGGGGAAAGG	AAGCTTACCC	CGGCTGAACA	CTGGCAAGTG	6148
	AAAGCTTGTT	TACAAACTTC	CGAATCTCAC	GGATGCAGAG	CAGCTGTGCA	6198
	GACGCTCGCT	GTACTGGAAG	ACCTATACCA	AACATAGTCT	GCTTACATGT	6248
	GACATGGTGG	CATCCTGAGC	GGTGACT	GCTGGGGACA	AAGGACCCTG	6295
	CTCCCTGGAC	TCACAGATCT	CCTATCGCTT	GGGCAGACGG	TTACTGCATG	6345
10	TTCCACACTT	AGTCAATGCA	ACTTAGGACT	AAACTAACCA	GGATACAAAA	6395
	CCGAGGCGGC	TGCCGGGACC	AGCAGATCAC	CGCTGCAGCC	AAATGGATTT	6445
	TATTTTTCA	TTTTGTTGAT	TCTCAGAAGC	AGAAAGCATC	ACTTTAAAAG	6495
	TTTGTTTGTT	CATNCAAACA	ATATTTGAAT	TCTTACATTA	GTTAAGCTAA	6545
	GCANCAAAAA	G				6556

<u>Claims</u>

- 1. An isolated DNA sequence comprising the nucleotide sequence set forth in SEQ ID NO:7.
- 2. The isolated DNA sequence of claim 1 comprising the nucleotide sequence as set forth in SEQ ID NO:1.
- 3. The DNA of Claim 2 wherein said DNA sequence is encoding a sodium than the channel protein.
 - 4. The DNA of Claim 3 wherein said sodium channel protein is the α -subunit.
- 5. The DNA of Claim 4 wherein said sodium channel protein is tetrodotoxin15 sensitive.
 - 6. The DNA of Claim 5 wherein said sodium channel protein is found in mammals.
- 7. The DNA of Claim 5 wherein said sodium channel protein is found in rat.
 - 8. The DNA of Claim 5 wherein said sodium channel protein is found in human.
- 25 9. The DNA of Claim 2 wherein said DNA is cDNA.
 - 10. The DNA of Claim 2 wherein said DNA is synthetic DNA.
 - 11. Expression vectors comprising a DNA as claimed in claims 2 to 10.
 - 12. Host cells transformed with an expression vector of Claim 11.
 - 13. A cDNA library comprising a host cell of Claim 12.
- 35 14. A recombinant polynucleotide comprising a nucleic acid sequence derived from a DNA sequence as claimed in claims 2 to 10.

10

15

- 15. A tetrodotoxin-sensitive sodium channel protein encoded by a DNA of claims 2 to 10 or allelic variants thereof.
 - 16. The protein having the amino acid sequence set forth in SEQ ID NO:3.
- 17. An assay for inhibitors of tetrodotoxin-sensitive sodium channel protein encoded by a DNA of claims 2 to 10 or the amino acid sequence as set forth in SEQ ID NO:3 comprising contacting a compound suspected of being said inhibitor with expressed sodium channel protein and measuring the activity of said expressed sodium channel protein.
- 18. An isolated DNA sequence comprising the nucleotide sequence set forth in SEQ ID NO:7 having a 30 base pair insert after base pair number 2050, the 30 base pair insert comprising GTGAAAATAGATAAGGCAGCTACGGACAGC.
 - 19. The isolated DNA sequence of claim 18 comprising the nucleotide sequence as set forth in SEQ ID NO:2.
- 20 20. The DNA of Claim 19 wherein said DNA sequence is encoding a sodium channel protein.
 - 21. The DNA of Claim 20 wherein said sodium channel protein is the α -subunit.
 - 22. The DNA of Claim 21 wherein said sodium channel protein is tetrodotoxin-sensitive.
- 23. The DNA of Claim 22 wherein said sodium channel protein is found in mammal.
 - 24. The DNA of Claim 22 wherein said sodium channel protein is found in rat.
- 25. The DNA of Claim 22 wherein said sodium channel protein is found in 35 human.

- 26. The DNA of Claim 19 wherein said DNA is cDNA.
- 27. The DNA of Claim 19 wherein said DNA is synthetic DNA.
- 5 28. Expression vectors comprising a DNA as claimed in claims 19 to 27.
 - 29. Host cells transformed with an expression vector of Claim 28.
 - 30. A cDNA library comprising a host cell of Claim 29.

- 31. A recombinant polynucleotide comprising a nucleic acid sequence derived from a DNA sequence as claimed in claims 19 to 27.
- 32. A tetrodotoxin-sensitive sodium channel protein encoded by a DNA of Claims 19 to 27 or allelic variants thereof.
 - 33. The protein having the amino acid sequence set forth in SEQ ID NO:4.
- 34. An assay for inhibitors of tetrodotoxin-sensitive sodium channel protein encoded by a DNA of claims 19 to 27 or the amino acid sequence as set forth in SEQ ID NO:4 comprising contacting a compound suspected of being said inhibitor with expressed sodium channel protein and measuring the activity of said expressed sodium channel protein.
- 25 35. An isolated polynucleotide probe comprising the nucleotide sequence set forth in SEQ ID NO:5 and complements thereof.
 - 36. The protein having the amino acid sequence set forth in SEQ ID NO:6.
- 37. A polynucleotide probe comprising the polynucleotide of Claim 35 bound to a reporter molecule.
 - 38. A method of growing plasmids containing constructs of tetrodotexinsensitive sodium channel proteins comprising:

employing competent *E. coli* cell lines for primary transformations which allow the stable propagation of plasmids containing unstable inserts following ligation reactions;

employing 1/2 strength freezing media mixed with a broth chosen from the group comprising full strength YENB, full strength YET, and full strength LB, the broth being mixed with agar for solid media;

employing full strength freezing media plus 1/2 strength LB for liquid media; employing carbenicillin as an antibiotic;

providing a temperature no greater than 30° C; and growing the plasmids for periods longer than 20 hours.

10

5

- 39. The method according to claim 38 employing competent *E. coli* cells for secondary transformants.
 - 40. The method according to claim 38 wherein the temperature is 28° C.

15

- 41. The method according to claim 38 wherein the growing period is in the range of approximately 36 to 48 hours.
- 42. The method according to claim 38 having a carbenicillin concentration within the range of 50-200 μ g/ml.
 - 43. The method according to claim 38 wherein the carbenicillin has a concentration within the range of 75-125 μ g/ml.
- 25 44. The method according to claim 38 wherein the carbenicillin has a concentration of 100 μ g/ml.
 - 45. Antibodies against a tetrodotoxin-sensitive sodium channel protein as claimed in claims 15, 16, 32 and 33.

- 46. The use of a tetrodotoxin-sensitive sodium channel protein as claimed in claims 15, 16, 32 and 33 for identifying inhibitors of their activity.
- 47. A method of producing a tetrodotoxin-sensitive sodium channel protein as claimed in claims 15, 16, 32 and 33, comprising cultivating a host cell as claimed in claim 12 or 29 in a suitable medium and optionally isolating said channel protein.

PCT/EP98/00997

- 48. Proteins as claimed in claims 15, 16, 32 and 33 prepared by the method of claim 47.
- 5 49. Proteins as claimed in claims 15, 16, 32 and 33 for identifying inhibitors of their activity.
 - 50. The invention substantially as hereinbefore described, especially with reference to the examples.

10

Fig. 1A; SEQ ID NO:3

1	MAARLLAPPG	PDSFKPFTPE	SLANIERRIA	ESKLKKPPKA	DGSHREDDED
51	SKPKPNSDLE	AGKSLPFIYG	DIPQGLVAVP	LEDFDPYYLT	QKTFVVLNRG
101	KTLFRFSATP	ALYILSPFNL			TILTNCVFMT
151	FSNDDEWS	TENTEN TO THE			•
			FESLVKIIAR		RDPWNWLDFS
201			TFRVLRALKT		VGALIQSVKK
			IS4		
251			QLFMGNLRNK	CVVWPINFNE	SYLENGTRGF
	•	IS5		•	•
301	DWEEYINNKT	NFYMVPGMLE	PLLCGNSSDA	GQCPEGFQCM	KAGRNPNYGY
	•		•		
351	TSFDTFSWAF	LALFRLMTQD	YWENLYQLTL	RAAGKTYMIF	FVLVIFVGSF
			Δ		IS6-
101	YLVNLILAVV	AMAYEEQNQA	TLEEAEQKEA		
				_	
51	MATSAGTVSE	DAIEEEGEDG	VGSPRSSSEL	SKLSSKSAKE	RRNRRKKRKQ
501	KELSEGEEKG	DPEKVFKSES	EDGMRRKAFR	LPDNRIGRKF	SIMNQSLLSI
551	PGSPFLSRHN	SKSSIFSFRG	PGRFRDPGSE	NEFADDEHST	• • VEESEGRRDS
01	LFIPIRARER	RSSYSGYSGY	SQCSRSSRIF	PSLRRSVKRN	• STVDCNGVVS
551	LIGPGSHIGR	LLPEATTEVE	IKKKGPGSLL	VSMDQLASYG	• • RKDRINSIMS
01	VVTNTLVEEL	EESQRKCPPC	WYKFANTFLI	WECHPYWIKL	
	DETENT STORE	T117			
J 1	PFVDLAITIC				
	IIS1	•			-IIS2
01	KTIYWDDAAA				
	!		IIS3	-	IIS4

Fig. 1B; SEQ ID NO:3

351	KLAKSWPTLN	MLIKIIGNSV	GALGNLTLVL	AIIVFIFAVV	GMQLFGKSYK
			+ {	IISS	
901	ECVCKINQEC	KLPRWHMNDF	FHSFLIVFRV	LCGEWIETMW	DCMEVAGQAM
					1-
951	CLIVFMMVMV	IGNLVVLNLF	LALLLSSFSA	DNLAATDDDG	EMNNLQISVI
		·IIS6			
001	RIKKGVAWTK	VKVHAFMQAH	FKQREADEVK	PLDELYEKKA	NCIANHTGVD
					•
.051	IHRNGDFQKN	GNGTTSGIGS	SVEKYIIDED	HMSFINNPNL	TVRVPIAVGE
		•		•	
101	SDFENLNTED	VSSESDPEGS	KDKLDDTSSS	EGSTIDIKPE	VEEVPVEQPE
L151	EYLDPDACFT	EGCVQRFKCC	QVNIEEGLGK	SWWILRKTCF	LIVEHNWFET
L201	FIIFMILLSS	GALAFEDIYI	EQRKTIRTIL	EYADKVFTYI	FILEMLLKWT
	IIIS1		-	IIIS	32
1251	AYGFVKFFTN	AWCWLDFLIV	AVSLVSLIAN	ALGYSELGAI	KSLRTLRALR
		1	-IIIS3		IIIS4-
1301	PLRALSRFEG	MRVVVNALVG	AIPSIMNVLL	VCLIFWLIFS	IMGVNLFAGK
			[IIIS	SS
1351	YHYCFNETSE	IRFEIDIVNN	KTDCEKLMEG	nsteirwknv	KINFDNVGAG
	•	•	•	•	
1401	YLALLQVATF	KGWMDIMYAA	VDSRKPDEQP	DYEGNIYMYI	YFVIFIIFGS
					IIIS6
1451	FFTLNLFIGV	IIDNFNQQKX	KFGGQDIFMT	EEQKKYYNAM	KKLGSKKPQK
1501	PIPRPLNKIQ	GIVFDFVTQC	AFDIVIMMLI	CLNMVTMMVE	TDTQSKQMEN
			IVS1		
1551	ILYWINLVFV	' IFFTCECVL	MFALRHYYFT	. IGMNIEDEAA	VILSIVGMFL
		IVS2			IVS3
1501	ADIIEKYFVS	PTLFRVIRL	A RIGRILŖLIK	GAKGIRTLLF	ALMMSLPALF
			IVS4-		
1651	NIGLLLFLVN	1 FIFSIFGMS1	n fayvkheagi	DDMFNFETFO	NSMICLFQIT
	1	TVCE			

Fig. 1C: SEQ ID NO:3

1701	TSAGWDGLLL	PILNRPPDCS	LDKEHPGSGF	KGDCGNPSVG	IFFFVSYII
1/51		AIILENFSVA	TEESADPLSE	DDFETFYEIW	EKFDPDATQ
1001	IVS6	•			
1801	LEYCKLADFA	DALEHPLRVP	KPNTIELIAM	DLPMVSGDRI	HCLDILFAFT
1851	KRVLGDSGET.	DII BOOMEER	Till Current		
		DILRQQMEER	E VASNPSKVS	YEPITTLRR	KQEEVSAVVI
1901	QRAYRGHLAR	RGFICRKMAS	NKLENGGTHR	DKKESTPSTA	SI.PSVDSIM
					521 51 D3 V 1 i
1951	PDKEKQQRAE	EGRRERAKRQ	KEVRESKC		

Fig. 2A:-SEQ ID NO:4

1	MAARLLAPPG	PDSFKPFTPE	SLANIERRIA	ESKLKKPPKA	DGSHREDDED
51	SKPKPNSDLE	AGKSLPFIYG	DIPQGLVAVP	LEDFDPYYLT	QKTFVVLNRG
.01	KTLFRFSATP	ALYILSPFNL	IRRIAIKILI	HSVFSMIIMC	
.51	FSNPPEWSKN	VEYTETGIYT	FESLVKIIAR		
			2		
201			TFRVLRALKT		
			IS4		-
251			QLFMGNLRNK		SYLENGTRGF
		IS5		•	•
301			PLLCGNSSDA	GOCPEGFOCM	KAGRNPNYGY
	•		•		
351	TSFDTFSWAF	LALFRLMTOD	YWENLYQLTL	RAAGKTYMIF	FVLVIFVGSF
		_	Δ		IS6
401	YLVNLILAVV	AMAYEEQNQA	TLEEAEQKEA	EFKAMLEQLK	KQQEEAQAAA
451	MATSAGTVSE	DAIEEEGEDG	VGSPRSSSEL	SKLSSKSAKE	RRNRRKKRKQ
501	KELSEGEEKG	DPEKVFKSES	EDGMRRKAFR	LPDNRIGRKF	SIMNQSLLSI
551	PGSPFLSRHN	SKSSIFSFRG	PGRFRDPGSE	NEFADDEHST	VEESEGRRDS
601	LFIPIRARER	RSSYSGYSGY	SQCSRSSRIF	PSLRRSVKRN	STVDCNGVVS
651	LIGPGSHIGR	LLPEVKIDKA	. ATDSATTEVE	: IKKKGPGSLL	. VSMDQLASYG
701	RKDRINSIMS	VVTNTLVEEL	. EESQRKCPPC	WYKFANTFLI	WECHPYWIKL
751	KEIVNLIVMD	PFVDLAITIC	: IVLNTLFMAN	1 EHHPMTPQFE	HVLAVGNLVF
801	TGIFTAEMFL	KLIAMDPYYY	FQEGWNIFDC	FIVSLSLME	SLADVEGLSV
	IIS2	1		IIS3	

Fig. 2B: SEQ ID NO:4

851	LRSFRLLRVF KLAKSWPTLN	MLIKIIGNSV	GALGNLTLVL	AIIVFIFAV
	IIS4			IIS5-
901	GMQLFGKSYK ECVCKINQEC	KLPRWHMNDF		
951	DCMEVAGQAM CLIVFMMVMV	IGNLVVLNLF	LALLLSSFSA	DNLAATDDDG
	I	IS6		
1001	EMNNLQISVI RIKKGVAWTK	VKVHAFMQAH	FKQREADEVK	PLDELYEKKA
1051	NCIANHTGVD IHRNGDFQKN	GNGTTSGIGS	SVEKYIIDED	HMSFINNPNL
1101	TVRVPIAVGE SDFENLNTED	VSSESDPEGS	KDKLDDTSSS	EGSTIDIKPE
1151	VEEVPVEQPE EYLDPDACFT	EGCVQRFKCC	QVNIEEGLGK	SWWILRKTCF
1201	LIVEHNWFET FIIFMILLSS	GALAFEDIYI	EQRKTIRTIL	EYADKVFTYI
	IIIS1	1		
1251	FILEMLLKWT AYGFVKFFTN	AWCWLDFLIV	AVSLVSLIAN	ALGYSELGAT
	IIIS2			
1301				
	IIIS4			IIIS5
1351	IMGVNLFAGK YHYCFNETSE	IRFEIDIVNN		
	·	•		*
1401	KINFDNVGAG YLALLQVATF	KGWMDIMYAA	VDSRKPDEQP	DYEGNIYMYI
1451	VEVIETIEGS SETIMETON	T.T.	_	
	YFVIFIIFGS FFTLNLFIGV	TIDNFNQQKK	KFGGQDIFMT	EEQKKYYNAM
1501				
	KKLGSKKPQK PIPRPLNKIQ			
1551	TDTOSKOMENI II VUITATUTT		IVS1	
	TDTQSKQMEN ILYWINLVFV			
1501		-IVS2	•	
1001	VILSIVGMFL ADIIEKYFVS			
	IVS3		IVS4	
1651	ALMMSLPALF NIGLLLFLVM			DDMFNFETFG
	I'	VS5	· I	

Fig. 2C: SEQ ID NO:4

701	NSMICLFQIT	TSAGWDGLLL	PILNRPPDCS	LDKEHPGSGF	KGDCGNPSVC
					-
751	IFFFVSYIII	SFLIVVNMYI	AIILENFSVA	TEESADPLSE	DDFETFYEIV
		IVS6			
301	EKFDPDATQF	IEYCKLADFA	DALEHPLRVP	KPNTIELIAM	DLPMVSGDRI
351	HCLDILFAFT	KRVLGDSGEL	DILRQQMEER	FVASNPSKVS	YEPITTLR
	woody				
.901	KQEĒVSAVVL	QRAYRGHLAR	RGFICRKMAS	NKLENGGTAR	DRRESTPSTA
					•
.951	SLPSYDSVTK	PDKEKQQRAE	EGRRERAKRQ	KEVRESKC	

Fig. 3A: NaCh6/PN4 alignment (SEQ ID NO:7)

RATNaCh6A rPN4	CCAAGATGGC	GCCACCGCA	GTCCCGCCCG	CCGCAGCCTC		
RATNaCh6A					adcaccicia	50
rPN4	CAGTCCGGCC	GCGCCTCCCG	GGCCCGCGC	TAGGGCCGCT	GCCGCCTCGC	100
RATNaCh6A						
rPN4	CCGCCGCCGC	CGCCGCCAGC	TGACCTGTCC	CGGACACATA	ACTAACGAAG	150
RATNaCh6A		start=	****			
rPN4	CTGCTGCAGG	ATGAGAAGAT ATGAGAAGAT	CGGCGCGG GGCAGCGCGG	CTGCTCGCAC CTGCTCGCAC	CACCAGGCCC	38
			art=	CIGCICGCAC	CACCAGGCCC	200
RATNaCh6A	TGATAGTTTC	AAGCCTTTCA	CCCCTGZGTC	GCTGGCAAAC	1.TCC3.C3.CCC	
rPN4	TGATAGTTTC	AAGCCTTTCA	CCCCTGAGTC	GCTGGCAAAC	ATCGAGAGGC	88 250
PATNaCh6A	GTATTGCCGA	GAGCAAGCTC	AAGAAACCAC	CAAAGGCGGA	TGGCAGCCAC	138
rpn4	GTATTGCCGA	GAGCAAGCTC	AAGAAACCAC	CAAAGGCGGA	TGGCAGCCAC	300
RATNaCh6A	CGGGAGGACG	ATGAAGACAG	CAAGCCCAAG	CCAAACAGTG	ACCTGGAGGC	188
rPN4	CGGGAGGACG	ATGAAGACAG	CAAGCCCAAG	CCAAACAGTG	ACCTGGAGGC	350
RATNaCh6A	TGGGAAGAGT	TTGCCTTTCA	TCTACGGGGA	CATCCCGCAA	GGCCTGGTTG	238
rPN4	TGGGAAGAGT	TTGCCTTTCA	TCTACGGGGA	CATCCCGCAA	GGCCTGGTTG	400
RATNaCh6A	CGGTTCCCCT	GGAGGACTTT	GACCCTTACT	ATTTGACGCA	GAAAACCTTT	298
rpn4	CGGTTCCCCT	GGAGGACTTT	GACCCTTACT	ATTTGACGCA	GAAAACCTTT	450
RATNaCh6A	GTAGTATTAA	ACAGAGGGAA	AACTCTCTTC	AGATTTAGTG	CCACACCTGC	338
rpn4	GTAGTATTAA	ACAGAGGGAA	AACTCTCTTC	AGATTTAGTG	CCACACCTGC	500
RATNaCh6A	CTTGTACATT	TTAAGCCCTT	TTAACCTGAT	AAGAAGAATA	GCTATTAAAA	886
rPN4	CTTGTACATT	TTAAGCCCTT	TTAACCTGAT	AAGAAGAATA	GCTATTAAAA	550
RATNaCh6A	TTTTGATACA	CTCAGTTTTC	AGCATGATCA	TCATGTGCAC	CATCCTGACC	438
rPN4	TTTTGATACA	CTCAGTTTTC	AGCATGATCA	TCATGTGCAC	CATCCTGACC	600
RATNaCh6A	AACTGTGTGT	TCATGACCTT	TAGTAACCCT	CCAGAATGGT	CCAAGAATGT	488
rPN4	AACTGTGTGT	TCATGACCTT	TAGTAACCCT	CCAGAATGGT	CCAAGAATGT	650
RATNaCh6A	GGAGTACACA	TTCACAGGGA	TTTACACATT	TGAATCACTA	GTGAAAATCA	538
rpn4	GGAGTACACA	TTCACAGGGA	TTTACACATT	TGAATCACTA	GTGAAAATCA	700
RATNaCh6A	TCGCAAGAGG	TTTCTGCATA	GACGGCTTCA	CCTTCTTACG	AGACCCGTGG	588
rPN4	TCGCAAGAGG	TTTCTGCATA	GACGGCTTCA	CCTTCTTGCG	AGACCCGTGG	750
RATNaCh6A	AACTGGTTAG	ACTTCAGTGT	CATCATGATG	GCATATGTGA	CAGAGTTTGT	638
r PN4	AACTGGTTAG	ACTTCAGTGT	CATCATGATG	GCATATGTGA	CAGAGTTTGT	800
RATNaCh6A	GGACCTGGGC	AATGTCTCAG	CGCTGAGAAC	ATTCAGGGTT	CTCCGACCTT	690
rpn4	GGACCTGGGC	AATGTCTCAG	CGCTGAGAAC	ATTCAGGGTT	CTCCGAGCTT	688 850

Fig. 3B: NaCh6/PN4 alignment (SEQ ID NO:7)

2201-0602	EC					
RATNaCh6A					GGGCGCCTA GGGCGCCCTA	738
7 2 14 4	IGAAAACTAT	CICIGIAAII	CCAGGCCTGA	AGACAATCGT	GGGGGGGGG	900
	-					
RATNaCh6A	•	TC33C33CCT	בשבבבי בבשב	ATGATCCTGA	C3 CDCDDCDC	700
rPN4				ATGATCCTGA		788 950
	AICCAGICCG	IOAABAACI	GICGGACGIG	AIGAICCIGA	CAGIGITCIG	950
RATNaCh6A	CCTGAGTGTT	TTCGCCCTGA	TTGGCCTGCA	GCTCTTTCAT	GGGZZCCTTTT	838
rPN4				GCTCTTCATG		999
				00101104110	000.11.0011	,,,
RATNaCh6A	CGAAAC-AGT	GTGTCGTGTG	GCCCATAAAC	TTCAACGAGA	GCTACCTGGA	887
rPN4				TTCAACGAGA		1049
RATNaCh6A	GAACGGCACC	AGAGGCTTTG	ACTGGGAGGA	ATATATCAAC	AATAAAACAA	937
rPN4	GAACGGCACC	AGAGGCTTTG	ACTGGGAGGA	ATATATCAAC	AATAAAACAA	1099
RATNaCh6A				CCTTGCTCTG		987
rPN4	ACTTTTACAT	GGTTCCTGGC	ATGCTAGAAC	CCTTGCTCTG	CGGGAACAGT	1149
		 -				
RATNaCh6A	TCTGATGCTG	GGCAATGC	-GAAGGATTC	CAGTGCAGTA	AAGCAGGAAG	1034
rPN4	TCTGATGCTG	GGCAATGCCC	AGAGGGATTC	CAGTGCATGA	AAGCAGGAAG	1199
						
RATNaCh6A				CACCTTCAGC		1084
rPN4	GAACCCCAAC	TACGGTTACA	CCAGCTTTGA	CACCTTCAGC	TGGGCCTTCT	1249
Damir Ch Ca						
RATNaCh6A				ATTGGGAGAA		1134
IPN4	IGGCATTATT	CCGCCTTATG	ACCCAGGACT	ATTGGGAGAA	CTTATACCAG	1299
RATNaCh6A	CTGACCTTAC	GAGCCCCTCC	CAAAACCTAC	א תכא תכתתכת	TTGTCTTGGT	1184
rPN4				ATGATCTTCT		1349
	CIONCCIIAC	0.0000000	CAMMACOIAC	AIGAICIICI	1101011001	1345
RATNaCh6A	CATCTTCGTG	GGTTCTTTCT	ATCCGGTGAA	CTTGATCTTG	GCTGTGGTGG	1234
TPN4				CTTGATCTTG		1399
PATNaCh6A	CCATGGCTTA	TGAGGAACAG	AACCAGGCAA	CACTGGAGGA	GGCAGAGCAA	1284
rPN4	CCATGGCTTA	TGAGGAACAG	AACCAGGCAA	CACTGGAGGA	GGCAGAGCAA	1449
RATNaCh6A	AAAGAGGCCG	AGTTCAAGGC	AATGCTGGAG	CAACTCAAGA	AGCAGCAGGA	1334
rPN4	AAAGAGGCCG	AGTTCAAGGC	AATGCTGGAG	CAACTCAAGA	AGCAGCAGGA	1499
					GTCTCGGAAG	
rPN4	GGAGGCACAG	GCTGCTGCAA	TGGCCACCTC	AGCGGGCACT	GTCTCGGAAG	1549
D 3 (5) - (3) - (3)						
					GAGGAGCTCT	1434
rPN4	ACGCCATTGA	DUDARDARDA	GAAGATGGGG	TAGGCTCTCC	GAGGAGCTCT	1599
RATNaCh6A	тотса в стот	CTALACTCAC	ササビビカッ こうここ	GCGNACCNCC	GGCGGAACCG	1484
rPN4					GGCGGAACCG	1649
		a remove reud	···	JUNNOUNGC	SUCCOMMCCO	7043
RATNaCh6A	ACGGAAGAAG	AGGAAGCAGA	AGGAGCTCTC	TGAAGGCGAG	GAGAAAGGGG	1534
rPN4					GAGAAAGGGG	1599

Fig. 3C: NaCh6/PN4 alignment (SEQ ID NO:7)

		•				
RATNaCh6A rPN4	ACCCGGAGAA	GGTGTTTAAG	TCAGAGTCGG	AATACGGTAT	'GAGAAGGAAG	1584
19114	ACCCGGAGAA	. GGTGTTTAAC	TCAGAGTCGG	AAGACGGTAT	GAGAAGGAAG	1749
RATNaCh6A	GCCTTCCGGC	TGCCAGACAA	CAGGATAGGG	GAGGAAGTTTT	CCATCATGAA	1634
rpn4	GCCTTCCGGC	TGCCAGACAA	CAGGATAGGG	AGGAAGTTTT	CCATCATGAA	1799
RATNaCh6A rPN4	TCAGTCGCTG	CTCAGCATTC	CAGGCTCGCC	CTTCCTCTCC	CGACATAACA	1684
	TCAGTCGCTG	CTCAGCATTC	CAGGCTCGCC	CTTCCTCTCC	CGACATAACA	1849
RATNaCh6A	GCAAAAGCAG	CATCTTCAGC	TTC-GGGGAC	CC-GTCGGTT	-CGGGACCCC	1731
rPN4	GCAAAAGCAG	CATCTTCAGC	TTCCGGGGAC	CCGGTCGGTT	CCGGGACCCC	1899
RATNaCh6A	GGCTCTGAGA	ATGAGTTCGC	AGACGATGAA	CACAGCACCG	TGGAGGAGAG	1781
rPN4	GGCTCTGAGA	ATGAGTTCGC	AGACGATGAA	CACAGCACCG	TGGAGGAGAG	1949
RATNaCh6A	CGAGGGCCGG	CGTGACTCGC	TCTTCATCCC	GATCCGCGCC	CGCGAGCGCC	1831
- 5114	CGAGGGCCGG	CGTGACTCGC	TCTTCATCCC	GATCCGCGCC	CGCGAGCGCC	1999
RATNaCh6A	GCAGCAGCTA	CAGTGGCTAC	AGCGGCTACA	GCCAGTGCAG	CCGCTCGTCG	1881
rPN4	GCAGCAGCTA	CAGTGGCTAC	AGCGGCTACA	GCCAGTGCAG	CCGCTCGTCG	2049
RATNaCh6A	CGCATCT-CC	CCAGCCTGC-	GCGCAGCGTG	AAGC-CAACA	GCACGGTGGA	1928
rPN4	CGCATCTTCC	CCAGCCTGCG	GCGCAGCGTG	AAGCGCAACA	GCACGGTGGA	2099
RATNaCh6A rPN4	CTGCAACGGC	GTAGTGTCAC	TCATCGGGCC	CGGCTCACAC	ATCGGGCGGC	1978
TEN4	CTGCAACGGC	GTAGTGTCAC	TCATCGGGCC	CGGCTCACAC	ATCGGGCGGC	2149
RATNaCh6A	TCCTGC-TGA	GGCAACGACT	GAGGTGGAAA	TTAAGAAGAA	AGGCCCTGG2	2027
TPN4	TCCTGCCTGA	GGCAACGACT	GAGGTGGAAA	TTAAGAAGAA	AGGCCCTGGA	2199
RATNaCh6A	-CTCTTTTAG	TTTCTATGGA	CCAACTCGCC	TCCTACGGAC	GGAAGGACAG	2076
rPN4	TCTCTTTTAG	TTTCTATGGA	CCAACTCGCC	TCCTACGGAC	GGAAGGACAG	2249
RATNaCh6A	AATCAACAGC	ATAATGAGCG	TGGTCACAAA	CACGCTAGT-	GAAGAGCTGG	2125
rPN4	AATCAACAGC	ATAATGAGCG	TGGTCACAAA	CACGCTAGTG	GAAGAGCTGG	2299
RATNaCh6A	AAGAGTCTCA	GAGAAAGTGC	CCACCGTGCT	GGTATAAGTT	TCCCAACAC	21.55
rPN4	AAGAGTCTCA	GAGAAAGTGC	CCACCGTGCT	GGTATAAGTT	TGCCAACACT	2175 2349
PATNaCh6A	TTCCTCATCT	GGGAGTGTCA	CCCCTACTGG	ATAAAACTGA	ACCACATCC	2225
rPN4	TTCCTCATCT	GGGAGTGTCA	CCCCTACTGG	ATAAAACTGA	AGGAGATCGT	2225 2399
PATNaCh6A	GAACTTAATC	GTCATGGACC	CTTTTGTAGA	CTTAGCCATC	ACCATCTGC	2275
rPN4	GAACTTAATC	GTCATGGACC	CTTTTGTAGA	CTTAGCCATC	ACCATCTGCA	2449
RATNaCh6A		TACGCTATTT	ATGGCAATGG	AGCZCCATCC	CATGACACCA	
rPN4	TCGTTCTGAA	TACGCTATTT	ATGGCAATGG	AGCACCATCC	CATGACACCA	2325 2499
RATNaCh6A	CAGTTCGAAC	ACGTCTTGGC	CGTAGGAAAT	CTGGTGTTC	CCGGGGGGGG	2375
rPN4	CAGTTCGAAC	ACGTCTTGGC	CGTAGGAAAT	CTGGTGTTCA	CCGGGATCTT	23 7 5 2 54 9
RATNaCh6A	CACGGCGGAA	ATGTTTCTGA	AGCTCATAGC	CATGGACCC	ست لا شت لا شار كا ل	2425
rPN4	CACGGCGGAA	ATGTTTCTGA	AGCTCATAGC	CATGGACCCC	TACTATTATT	2425 2599

WO 98/38302 PCT/EP98/00997

Fig. 3D: NaCh6/PN4 alignment (SEQ ID NO:7)

RATNaCh6A r9N4		TTATTGTCTC TTATTGTCTC		2475 2649
RATNaCh6A r9N4		CTCTCAGTGC CTCTCAGTGC		2525 2699
RATNaCh6A rPN4		GTCCTGGCCC GTCCTGGCCC		2575 2 74 9
RATNaCh6A rPN4		GTGCCCTGGG GTGCCCTGGG		2625 2799
RATNaCh6A rPN4		GCCGTGGTGG GCCGTGGTGG		26 7 5 2849
RATNaCh6A rPN4		TAAGATCAAC TAAGATCAAC		2725 2899
RATNaCh6A rPN4		TCCACTCCTT TCCACTCCTT		2775 2 94 9
RATNaCh6A rPN4		ACCATGTGGG ACCATGTGGG		2825 2999
RATNaCh6A rPN4		CTTCATGATG CTTCATGATG		2875 3049
RATNaCh6A TPN4		TGGCCTTGCT TGGCCTTGCT		2925 3099
RATNaCh6A rPN4		GACGACGGGG GACGACGGGG		2975 3149
RATNaCh6A rPN4		GGGCGTGGCC GGGCGTGGCC		3025 3199
RATNaCh6A rPN4		TCAAGCAGCG TCAAGCAGCG		3075 3249
RATNaCh6A rPN4		AAGAAGGCCA AAGAAGGCCA		3125 3299
RATNaCh6A rPN4		CGGCGACTTC	CAGAAGAACG CAGAAGAACG	3175 3349
			GTACATCATC GTACATCATC	
			. CCGTCCGGGT	
RATNaCh6A rPN4			: ACAGAGGATG : ACAGAGGATG	

Fig. 3E: NaCh6/PN4 alignment (SEQ ID NO:7)

DATNACHCA						
RATNaCh6A rPN4		ATCAGACCCI	, GYYGGCYGCY	AAGATAAACT	' GGACGATACC	2275
	LAGCAGCG	ATCAGACCCT	, GYYGGCYGCY	. AAGATAAACT	GGACGATACC GGACGATACC	3375 3549
RATNaCh6A	AGCTCCTCAG	AAGGAAGTAC	CATCGACATO	ARCCCTCACC	TGGAAGAAGT	
rpn4	AGCTCCTCAG	AAGGAAGTAC	CATCGACATC	AAGCCTGAGG	TGGAAGAAGT	3425 3599
RATNaCh6A	TCCCGTGGAG	CAACCTGAGG	AATACTTGGA	TCCGGACGG	TGCTTTACAG	
rPN4	TCCCGTGGAG	CAACCTGAGG	AATACTTGGA	TCCGGACGCC	TGCTTTACAG	3475 3649
RATNaCh6A	AGGGTTGCGT	CCAGCGGTTC	* 1 CTCCCCC	1000011	CGAGGAAGGA	
rpn4	AGGGTTGCGT	CCAGCGGTTC	AAGTGCTGCC	AGGICAACAT	CGAGGAAGGA CGAGGAAGGA	3525
						3699
RATNaCh6A		CGTGGTGGAT	CTTGCGGAAA	ACCTGCTTCC	TCATTGTGGA	2555
15N4	CTAGGCAAGT	CGTGGTGGAT	CTTGCGGAAA	ACCTGCTTCC	TCATTGTGGA	3575 3749
RATNaCh6A						3/43
rPN4	GCACAATTGG	TTTGAGACCT	TCATCATCTT	CATGATTCTG	CTCAGCAGTG	3625
	GCACAATIGG	TTTGAGACCT	TCATCATCTT	CATGATTCTG	CTCAGCAGTG	3799
RATNaCh6A	GCGCCCTGGC	CTTTGAGGAC	ATCTACETTC	7667676677	~~~	
TPN4	GCGCCCTGGC	CTTTGAGGAC	ATCTACATTG	AGCAGAGGAA	GACCATCCGC	3675
						3849
RATNaCh6A	ACCATCCTGG	AGTATGCGGA	CAAGGTCTTC	ACCTACATCT	TCATCCTGGA	2726
rPN4	ACCATCCTGG	AGTATGCGGA	CAAGGTCTTC	ACCTACATCT	TCATCCTGGA	3725 3899
RATNaCh6A						3099
renachea renachea	GATGTTGCTC	AAGTGGACCA	CGTACGGCTT	CGTCAAGTTC	TTCACCAATG	3775
	GAIGIIGCIC	AAGTGGACAG	CCTACGGCTT	CGTCAAGTTC	TTCACCAATG	3949
RATNaCh6A	CCTGGTGCTG	GTTGGACTTC				
TPN4	CCTGGTGCTG	GTTGGACTTC	CTCATTGTGG	CTGTCTCTTT	AGTCAGCCTT	3825
						3999
RATNaCh6A	ATAGCTAATG	CCCTGGGCTA	CTCGGAACTA	GGTGCCATAA	AGTICICTUM A	2075
rPN4	ATAGCTAATG	CCCTGGGCTA	CTCGGAACTA	GGTGCCATAA	AGTCCCTTAG	3875 4049
RATNaCh6A						4043
rPN4	GACCCTAAGA	GCTTTGAGAC	CCTTAAGAGC	CTTATCACGA	TTTGAAGGGA	3925
	GACCCTAAGA	GCTTTGAGAC	CCTTAAGAGC	CTTATCACGA	TTTGAAGGGA	4099
RATNaCh6A	TGAGGGTGGT	GGTGAATGCC	TTCCTCCC	222722		
rPN4	TGAGGGTGGT	GGTGAATGCC	TTGGTGGGTG	CCATCCCCTC	CATCATGAAT	3975
			1100100000	CCATCCCCTC	CATCATGAAT	4149
PATNaCh6A	GTGCTGCTGG	TGTGTCTCAT	CTTCTGGCTG	ATTTTCAGCA	TCATCCCACT	
rPN4	GTGCTGCTGG	TGTGTCTCAT	CTTCTGGCTG	ATTTTCAGCA	TCATGGGAGT	4025
RATNaCh6A						4199
rPN4	TAACCTGTTT	GCGGGGAAAT	ACCACTACTG	CTTTAATGAG	ACTTCTGAAA	4075
	1 AACCIGTIT	GCGGGGAAAT	ACCACTACTG	CTTTAATGAG	ACTTCTGAAA	4249
PATNaCh6A					TGAGAAGCTC	
TPN4	TCCGGTTCGA	AATCGATATT	GTCAACAATA	AAACGGACTG	TGAGAAGCTC TGAGAAGCTC	4125
						4299
PATNaCh6A	ATGGAGGGCA	ACAGCACGGA	GATCCGATGG	AAGAATGTCA	AGATCAACTT	4175
TPN4	ATGGAGGGCA	ACAGCACGGA	GATCCGATGG	AAGAATGTCA	AGATCAACTT	4175 4349
rPN4	TGACAATGTC	GGAGCAGGGT	ACCTGGCCCT	TCTTCAAGTG	GCAACCTTCA	4225
	TOWCHAIG IC	GGAGCAGGGT	AUCTGGCCCT	TCTTCAAGTG	GCAACCTTCA GCAACCTTCA	4399

WO 98/38302 PCT/EP98/00997

Fig. 3F: NaCh6/PN4 alignment (SEQ ID NO:7)

RATNaCh6A	AAGGCTGGAT	GGACATCATG	TATGCGGCTG	TAGATTCCCG	AAAGCCAGAC	4275
rPN4	AAGGCTGGAT	GGACATCATG	TATGCGGCTG	TAGATTCCCG	AAAGCCAGAC	4449
RATNaCh6A		ACTACGAGGG				4325
rPN4	GAGCAGCCTG	ACTACGAGGG	CAACATCTAC	ATGTACATCT	ACTTCGTCAT	4499
RATNaCh6A		TTCGGCTCCT				4375
rPN4	CTTCATCATC	TTCGGCTCCT	TCTTCACCCT	CAACCTGTTC	ATCGGTGTCA	4549
RATNaCh6A		CTTCAACCAG				4425
rpn4	TCATCGACAA	CTTCAACCAG	CAGAAGAAAA	AGTTTGGAGG	TCAGGACATC	4599
RATNaCh6A		AGGAACAGAA				4475
rpn4	TTCATGACAG	AGGAACAGAA	GAAGTACTAC	AATGCCATGA	AAAAGCTGGG	4649
RATNaCh6A		CCACAGAAGC				4525
rPN4	CTCCAAGAAG	CCACAGAAGC	CCATCCCCCG	ACCCTTGAAC	AAAATCCAAG	4699
RATNaCh6A		TGATTTCGTC				4575
rPN4	GGATTGTCTT	TGATTTCGTC	ACTCAACAAG	CCTTTGACAT	TGTGATCATG	4749
RATNaCh6A		GCCTTAACAT				4625
rpn4	ATGCTCATCT	GCCTTAACAT	GGTGACAATG	ATGGTGGAGA	CAGACACTCA	4799
RATNaCh6A		ATGGAGAACA				4675
rPN4		ATGGAGAACA				4849
RATNaCh6A		CTGCGAGTGT				4725
rPN4	TCTTCTTCAC	CTGCGAGTGT	GTGCTCAAAA	TGTTTGCCTT	GAGACACTAC	4899
RATNaCh6A		TTGGCTGGAA				4775
rPN4	TATTTCACCA	TTGGCTGGAA	CATCTTTGAC	TTTGTGGTGG	TCATCCTCTC	4949
RATNaCh6A		ATGTTCCTGG				4825
rPN4		ATGTTCCTGG				4999
RATNaCh6A		CCGAGTTATC				4875
rPN4	CAACCCTATT	CCGAGTTATC	CGATTGGCCC	GTATTGGGCG	CATCTTGCGT	5049
RATNaCh6A		GCGCCAAAGG				4925
rPN4	CTGATCAAGG	GCGCCAAAGG	GATCCGCACC	CTGCTCTTTG	CCTTAATGAT	5099
RATNaCh6A		GCCCTGTTCA				4975
rPN4	GTCGCTGCCC	GCCCTGTTCA	ACATCGGCCT	CCTGCTCTTC	CTCGTCATGT	5149
RATNaCh6A					GAAGCACGAG	
rPN4	TCATCTTCTC	CATTTTTGGC	ATGTCCAACT	TCGCATACGT	GAAGCACGAG	5199
RATNaCh6A					ACAGCATGAT	5075
rPN4	GCCGGCATTG	ACGACATGTT	CAACTTCGAG	ACATTTGGCA	ACAGCATGAT	5249
RATNaCh6A					CTGCTGCTGC	5125
rPN4	CTGTTTGTTC	CAGATCACAA	CGTCTGCTGG	CTGGGATGGC	CTGCTGCTGC	5299

Fig. 3G: NaCh6/PN4 alignment (SEQ ID NO:7)

RATNaCh6A	CAATCCTGAA	CCGCCCCCT	GACTGCAGCT	TGGACAAAGA	GCACCCAGGG	5175
r9N4	CAATCCTGAA	CCGCCCCCT	GACTGCAGCT	TGGACAAAGA	GCACCCAGGG	5349
PATNaCh6A	AGTGGGTTG	3.3.C.C.C.3.C.T.C.	F550115000			
=PN4	AGTGGCTTCA	AAGGGGACIG	TGGGAACCCC	TCGGTGGGCA	TCTTCTTCTT	5225
	AGIGGCIICA	AAGGGAC 1G	IGGGAACCCC	TCGGTGGGCA	TCTTCTTCTT	5399
PATNaCh6A	TGTGAGCTAC	ATCATCATCT	CCTTCCTGAT	TGTGGTGAAC	ATGTGCATCG	5275
rPN4	TGTGAGCTAC	ATCATCATCT	CCTTCCTGAT	TGTGGTGAAC	ATGTACATCG	5449
D. 2001					_	3443
RATNaCh6A	CCATCATCCT	GGAGAACTTC	AGCGTGGCCA	CCGAGGAGAG	CGCCGACCCT	5325
1114	CCATCATCCT	GGAGAACTTC	AGCGTGGCCA	CCGAGGAGAG	CGCCGACCCT	5499
RATNaCh6A	CTGAGTGAGG	ATGACTTCGA	GACTTTTT	GAGATCTGGG	A C B A COURTES	5356
rPN4	CTGAGTGAGG	ATGACTTCGA	GACTTTCTAT	GAGATCTGGG	AGAAGITIGA	5375
						5549
RATNaCh6A	CCCAGACGCC	ACCCAGTTCA	TCGAGTACTG	TAAGCTGGCA	GACTTTGCCG	5425
rPN4	CCCAGACGCC	ACCCAGTTCA	TCGAGTACTG	TAAGCTGGCA	GACTTTGCCG	5599
RATNaCh6A	1.CCCCCTCC1	661 666666				
rPN4	ACCCCCTGGA	GCACCCGCTC	CGAGTACCCA	AGCCCAACAC	CATCGAGCTC	5475
	ACGCCCIGGA	GCACCCGCTC	CGAGTACCCA	AGCCCAACAC	CATCGAGCTC	5649
RATNaCh6A	ATCGCCATGG	ACCTGCCCAT	GGTGAGCGGA	GATCGCATCC	ACTGCTTGG	5525
rPN4	ATCGCCATGG	ACCTGCCCAT	GGTGAGCGGA	GATCGCATCC	ACTGCTTGG2	5699
						3033
RATNaCh6A	CATCCTTTTC	GCCTTCACCA	AGGCAGTCCT	GGGAGACAGT	GGGGAGTTGG	5575
rPN4	CATCCTTTTC	GCCTTCACCA	AGCGAGTCCT	GGGAGACAGT	GGGGAGTTGG	5749
RATNaCh6A	ACATOOTOG	CCICCICITO	C) CC) CCCC	TCGTGGCATC		
TPN4	ACATCCTGCG	GCAGCAGATG	CACCACCCCT	TCGTGGCATC	CAATCCTTCC	5625
		GCHGCHGAIG	GAGGAGCGGI	ICGIGGCAIC	CAATCCTTCC	5799
RATNaCh6A	AAAGTGTCTT	ACGAAGCCTA	TCAC-ACCAC	TCTGCGGCGC	AACGAGGAGG	5674
rPN4	AAAGTGTCTT	ACGA-GCCTA	TCACAACCAC	TCTGCGGCGC	AAGCAGGAGG	5848
DATE OF CA						
RATNaCh6A rpn4	AGGTGTCTGC	AGTGGTCCTG	CAGCGTGCCT	ACAGGGGACA	CTTGGCTAGG	5724
7274	AGGTGTCTGC	AGTGGTCCTG	CAGCGTGCCT	ACAGGGGACA	CTTGGCTAGG	5898
PATNaCh6A	CGGGGCTTCA	TCTGCAGAAA	GATGGCCTCC	AACAAGCTGG	AGANTCCACC	5774
rPN4	CGGGGCTTCA	TCTGCAGAAA	GATGGCCTCC	AACAAGCTGG	AGAATGGAGG	5774 5948
						3340
RATNaCh6A	CACACACAGA	GACAAGAAGG	AGAGCACCCC	GTCCACAGCC	TCCCTCCCCT	5824
rPN4	CACACACAGA	GACAAGAAGG	AGAGCACCCC	GTCCACAGCC	TCCCTCCCCT	5998
RATNaChsa	CTT3 CC3 C3 C					
rPN4	CTTACGACAG	CGTCACAAAG	CCAGACAAGG	AGAAGCAGCA	GCGTGCGGAG	5874
	CITACOACAG	COLCACACAC	CCAGACAAGG	AGAAGCAGCA	GCGTGCGGAG	6048
RATNaCh5A	GAGGGCAGAA	GGGAAAGAGC	CAAGAGGCAA	AAAGAGGTCA	GGGAGTCCAA	5924
rPN4	GAGGGCAGAA	GGGAAAGAGC	CAAGAGGCAA	AAAGAGGTCA	GGGAGTCCAA	6098
						9030
73 mr - 65 65	stop					
RATNaCh6A	GTGCTAGAGG	AGGGGAAAGG	AAGCTTACCC	CGGCTGAACA	CTGGCAAGTG	5974
	GIGCTAGAGG	AGGGGAAAGG	AAGCTTACCC	CGGCTGAACA	CTGGCAAGTG	6148
RATNaCh6A	AAAGCTTCTT	Tacaaacmro	CCDATCTCAC	CCITCCIC	0.000	
rPN4	AAAGCTTGTT	TACASACTIC	CGAATCTCAC	GGATGCAGA- GGATGCAGAG	CAGCTGTGCA	6023
		1.40-40110	COMMICICAC	COMICAGAG	CAGCTGTGCA	6198

Fig. 3H: .NaCh6/PN4 alignment (SEQ ID NO:7)

RATNaCh6A	GACGCTCGCT	GTACTGGAAG	ACCTATACCA	AACATAGTCT	GCTTACATGT	6073
rPN4	GACGCTCGCT	GTACTGGAAG	ACCTATACCA	AACATAGTCT	GCTTACATGT	6248
RATNaCh6A rPN4	GACATGGTGG	CATCCTGAGC	GGTGACTGCT	GCTGGGGACA	AAGGACCCTG	6123
	GACAIGGIGG	CATCCTGAGC	GGTGACT	GCTGGGGACA	AAGGACCCTG	6295
RATNaCh6A rPN4	CTCCCTGGAC	TCACAGATCT	CCTATCGCTT	GGGCAGACGG	TTACTGCATG	6173
					TTACTGCATG	6345
RATNaCh6A rPN4	TTCCACACTT	AGTCAATGCA	ACTTAGGACT	AAACTAACCA	GGATACAAAA	6223
				AAACTAACCA		6395
RATNaCh6A rpn4	CCGAGGCGGC	TGGCGACC	AGCAGATCAC	CGCTGCAGCC	AAATGGATTT	6271
1514	CCGAGGCGGC	TGCCGGGACC	AGCAGATCAC	CGCTGCAGCC	AAATGGATTT	6445
RATNaCh6A	TATTTTTCA	TTTTGTTGAT	TCTCAGAAGC	AGAAAGCATC	ACTTTAAAAG	6321
rPN4	TATTTTTCA	TTTTGTTGAT	TCTCAGAAGC	AGAAAGCATC	ACTTTAAAAG	6495
RATNaCh6A	TTTGTTTGTT	CATGCAAACA	ATATTTGAAT	TCTTACATTA	GTTAAGCTAA	6371
rPN4	TTTGTTTGTT	CATNCAAACA	ATATTTGAAT	TCTTACATTA	GTTAAGCTAA	6545
RATNaCh6A		GAAACACACA	CGCACACAGA	CACACAAAGA	CACACACACA	6421
rPN4	GCANCAAAA	G				6556
RATNaCh6A	TTCAGCCTAT	GTCACTAATC	GTCTGTTTCT	TTAACATAAC	AGCATCTTCT	6471
rPN4						6556
RATNaCh6A		GGCACGTGGT	TTGGAGATGG	GTGGGGGAAA	ATCAGGGTTT	6521
TPN4						6556
PATNaCh6A		AGGACTTGCT	CAGGCCAATC	CCAAATATGT	GCTCGTTCAA	6571
rpn4		*				6556
RATNaCh6A rPN4				TGTGTTCAGA		6621
12114						6556
RATNaCh6A rPN4	GAGACCCACA	CACCACAAGA	CACTAGTACT	CCTGTNNCCA	TCCACAGGCT	6671
						6556
RATNaCh6A		ACAGGACCAG	CCCTGCACCG	TTCACTGTAT	TTGGAGAAAT	6721
rPN4						6556
RATNaCh6A		CCACACCGGC	TGCAGTCCTC	TCAGTGTAGG	ATTCTTTCGT	6771
rPN4						6556
PATNaCh5A	ACACCTCTGG	GTAGGGAGAC	ATAATTAACC	AATTGACCAC	TACCAACAAA	6821
rPN4						6556
RATNaCh6A rPN4						
T E Mar	6556					

Fig. 4A: PN4a/PN4/NaCh6 alignment

- 5114						
rPN4a	MAARLLAP	PGPDSFKPFT	PESLANIERR	IAESKLKKPP	KADGSHREDD	48
rPN4	MAARLLAP	PGPDSFKPFT	PESLANIERR	IAESKLKKPP	KADGSHREDD	48
RATNaCh6A	MRRSARLLAP	PGPDSFKPFT	PESLANIERR	IAESKLKKPP	KYDGSHDEDD	
				***********	ICADGS/IREDD	50
rPN4a	EDSKPKPNSD	T.FACKSI.DET	VCDTBOCKUN	VPLEDFDPYY	T TO 2 TO 3 TO 3 TO 3 TO 3 TO 3 TO 3 TO	
rPN4	EDSKENDNED	I ENCYCL DET	VCDIPOCLUA	ABPEDEDEAX	LICKTEVVLN	98
RATNaCh6A	EDSKERENSD	LEAGRSLPFI	IGDIPQGLVA	Abredlebál	LTQKTFVVLN	98
RAINACHBA	EDSKPRPNSD	LEAGKSLPFI	YGDIPQGLVA	VPLEDFDPYY	LTQKTFVVLN	100
			(IS1		
rPN4a	RGKTLFRFSA	TPALYILSPF	NLIRRIAIKI	LIHSVFSMII	MCTILTNCVF	148
rPN4	RGKTLFRFSA	TPALYILSPF	NLIRRIAIKI	LIHSVFSMII	MCTILTNCVE	148
RATNaCh6A	RGKTLFRFSA	TPALYILSPF	NLIRRIAIKI	LIHSVFSMII	MCTTLTNCVE	150
					HEITBINGVE	±30
	- }	ſ	IS2- 	_1	r	
rPN4a	•	KMENAEACT.	VTEECTIVTT	ARGFCIDGFT	[
rPN4	MTECNIDOCUC	WHITE TO:	ITTESEVALL	ARGECIUGET	FLEDDMUMTD	198
RATNaCh6A	MALCHER	VAASITITET	115-25-4411	ARGFCIDGFT	FLRDPWNWLD	198
RAINACHDA	MILESNEPEWS	KNVEYTFTGI	YTFESLVKII	ARGFCIDGFT	FLRDPWNWLD	200
	IS3]	[-	IS4	1]		
rPN4a	FSVIMMAYVT	EFVDLGNVSA	LRTFRVLRAL	KTISVIPGLK	TIVGALIOSV	248
rPN4	FSVIMMAYVT	EFVDLGNVSA	LRTFRVLRAL	KTISVIPGLK	TTVGALTOSV	248
RATNaCh6A	FSVIMMAYVT	EFVDLGNVSA	LRTFRVLRAL.	KTISVIPGLK	TIVESLICEV	250
			211111111111111111111111111111111111111	KIIDVIEGER	TIVGALIQSV	250
	ſ	IS5	1			
rPN4a						
rPN4	KKK SDIPITE	VECTOALT	GLQLEMGNLR	NKCVVWPINF	NESYLENGTR	298
	KKLSDVMILT	VFCLSVFALI	GLQLFMGNLR	NKCVVWPINF	NESYLENGTR	298
RATNaCh6A	KKLSDVMILT	VFCLSVFALI	GLQLFHGNLS	KQCVVWPINF	NESYLENGTR	300
rPN4a	GFDWEEYINN	KTNFYMVPGM	LEPLLCGNSS	DAGQCPEGFQ	CMCAGDNDNV	348
rPN4	GEDWEEYINN	KTNEYMURGM	T.FDLT.CGMSS	DAGQCPEGFQ	CILCAGIGUENT	
RATNaCh6A	GEDWEEVINN	YTNEYWOOM	TEST COMOS	DAGQCPEGFQ	CMRAGRAPAY	348
	O. DALLIAM	XIMP IMVPGM	TESTFCGW22	DAGQC-EGFQ	CSKAGRNPNY	349
				_		
rPN4a	G1/mann			[-	IS6	
	GYTSFDTFSW	AFLALFRLMT	ODAMENTAOT	TLRAAGKTYM	IFFVLVIFVG	398
rpn4	GYTSFDTFSW	AFLALFRLMT	QDYWENLYQL	TLRAAGKTYM	IFFVLVIFVG	398
RATNaCh6A	GYTSFDTFSW	AFLALFRLMT	QDYWENLYQL	TLRAAGKTYM	IFFVLVIFVG	399
		}				
rPN4a	SFYLVNLILA	VVAMAYEEON	OATLEEAEOK	EAEFKAMLEQ	I KKOOFEROR	449
rPN4	SEYLVNI.TLA	MAMAYEEON	OULTEDATOR	EAEFKAMLEQ	LICAQQEEAQA	448
RATNaCh6A	SEVENDE TEN	TOTAL	QAILESAEQX	EARFRAMLEQ	LKKQQEEAQA	448
	SSIEAMPITY	VVAMAYEEQN	QATLEEAEQK	EAEFKAMLEQ	LKKQQEEAQA	449
rPN4a	334200					
	AAMATSAGTV	SEDAIEEEGE	DGVGSPRSSS	ELSKLSSKSA	KERRNRRKKR	498
rPN4	AAMATSAGTV	SEDAIEEEGE	DGVGSPRSSS	ELSKLSSKSA	KERRNRRKKR	498
RATNaCh6A	AAMATSAGTV	SEDAIEEEGE	DGVGSPRSSS	ELSKLSSKSA	KERRYRRKKR	499
rPN4a	KQKELSEGEE	KGDPEKVFKS	ESEDGMRRKA	FRLPDNRTGR	KFSIMMQSLL	548
TPN4	KQKELSEGEE	KGDPEKVEKS	ESEDGMPPKA	FRIDDINGTON	VECTATION:	
RATNaCh6A	KOKELSEGEE	KUDDERALERO	ECEACAIDDA.	LUTEDNATES	KL21LMO2TT	548
		WODE EXVEXS	ESEIGHKKKA	FREPUNRIGR	KFSIMNQSLL	549
rPN4a	SIDCEDTE					
- DVA	312632:153	HNSKSSIFSF	KGPGRFRDPG	SENEFADDEH	STVEESEGRR	598
rPN4	SIPGSPFLSR	HNSKSSIFSF	RGPGRFRDPG	SENEFADDEH	STVEESEGRR	598
RATNaCh6A	SIPGSPFLSR	HNSKSSIFSF	GDPS-VRDPG	SENEFADDEH	STVEESEGRR	598
						223

Fig. 4B: PN4a/PN4/NaCh6 alignment

rPN4a						
	DSLFIPIRAR	ERRSSYSGYS	GYSOCSRSSR	IFPSLRRSVK	RNSTVDCNGV	648
rPN4	DSLFIPIRAR					648
	DSLFIPIRAR					
RATNaCh6A	DSTLIBINAS	EXX22 12G12	GISQCSRSSR	ISPACAUR-E	AMSTADCINGA	647
rPN4a	VSLIGPGSHI					698
rPN4	VSLIGPGSHI	GRLLPE	ATTE	VEIKKKGPGS	LLVSMDQLAS	688
RATNaCh6A	VSLIGPGSHI	GRILLER	ORLR	WKLRRKALDS	-FSFYGPTRL	686
			• • • •			
rPN4a	VCDYDDTNCT	MCOUNTY VE	EL EECUDACD	PCWYKFANTF	T.TWECHDYNT	748
						738
rPN4				PCWYKFANTF		
PATNaCh6A	LRTEGQNQQH	NERGHKHASE	ELEESQRKCP	PCWYKFANTF	LIMECHAIMI	736
	[IIS	1	- - }	[
rPN4a	KLKEIVNLIV	MDPFVDLAIT	ICIVLNTLFM	AMEHHPMTPQ	FEHVLAVGNL	798
rPN4	KLKEIVNLIV	MDPFVDLAIT	ICIVLNTLFM	AMEHHPMTPQ	FEHVLAVGNL	788
RATNaCh6A	KLKEIVNLIV	MDPFVDLAIT	ICIVLNTLFM	AMEHHPMTPQ	FEHVLAVGNL	786
	TTC2	1	ſ	IIS3	1	
DVI 4						848
rPN4a				DGFIVSLSLM		
rPN4					ELSLADVEGL	838
RATNaCh6A	VFTGIFTAEM	FLKLIAMDPY	YYFQEGWNIF	DGFIVSLSLM	ELSLADVEGL	836
	[]	[IS4	- 1	[IIS5	
rPN4a	SVLRSFRLLR	VFKLAKSWPT	LNMLIKIIGN	SVGALGNLTL	VLAIIVFIFA	898
rPN4	SVLRSFRLLR	VFKLAKSWPT	LNMLIKIIGN	SVGALGNLTL	VLAIIVFIFA	888
RATNaCh6A	SVI.RSFRI.LR	VEKLAKSWPT	LNMLIKIIGN	SVGALGNLTL	VLAIIVFIFA	886

~DM4 ~			ECKLPRWHMN	N-0110-11 T11-	DUICCENTER	948
rPN4a	VVGMQLFGKS	YKECVCKINQ	ECKLPRWIN	DEFINATION	RVLCGENIEI	
rPN4	VVGMQLFGKS	YKECVCKINQ	ECKLPRWHMN	DFFHSFLIVF	RVLCGEWIET	938
	VVGMQLFGKS	YKECVCKINQ	ECKLPRWHMN	DFFHSFLIVF	RVLCGEWIET RVLCGEWIET	
rPN4	VVGMQLFGKS	AKECACKINÓ AKECACKINÓ	ECKLPRWHMN ECKLPRWHMN	DFFHSFLIVF DFFHSFLIVF	RVLCGEWIET	938
rPN4	VVGMQLFGKS VVGMQLFGKS	(AKECACKINO AKECACKINO	ECKLPRWHMN ECKLPRWHMN	DFFHSFLIVF DFFHSFLIVF	RVLCGEWIET RVLCGEWIET	938 936
rPN4	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ	YKECVCKINQ (AMCLIVFMMV	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF	RVLCGEWIET RVLCGEWIET SADNLAATDD	938
rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ	YKECVCKINQ (AMCLIVFMMV	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF	RVLCGEWIET RVLCGEWIET SADNLAATDD	938 936
rPN4 RATNaCh6A rPN4a	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF LFLALLLSSF	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD	938 936 998
rPN4 RATNaCh6A rPN4a rPN4	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF LFLALLLSSF	RVLCGEWIET RVLCGEWIET SADNLAATDD	938 936 998 988
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV AMCLIVFMMV	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN MVIGNLVVLN	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF LFLALLLSSF LFLALLLSSF	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD	938 936 998 988 986
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMMNLQIS	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF LFLALLLSSF LFLALLLSSF	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK	938 936 998 988 986
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4a	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNILQIS DGEMNILQIS	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK	938 936 998 988 986 1048 1038
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNILQIS DGEMNILQIS	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK	938 936 998 988 986
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMMNLQIS DGEMMNLQIS DGEMMNLQIS	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ TKVKVHAFMQ	DFFHSFLIVF DFFHSFLIVF	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK	938 936 998 988 986 1048 1038
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNILQIS DGEMNILQIS DGEMNILQIS KANCIANHTG	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI	DFFHSFLIVF DFFHSFLIVF] LFLALLLSSF LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE AHFKQREADE GSSVEKYIID	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK VKPLDELYEK	938 936 998 988 986 1048 1038 1036
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VOIHRNGDFQ VDIHRNGDFQ	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI	DFFHSFLIVF DFFHSFLIVF 	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK EDHMSFINNP	938 936 998 988 986 1048 1038 1036
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VOIHRNGDFQ VDIHRNGDFQ	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI	DFFHSFLIVF DFFHSFLIVF 	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK VKPLDELYEK	938 936 998 988 986 1048 1038 1036
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG	YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VOIHRNGDFQ VDIHRNGDFQ	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI	DFFHSFLIVF DFFHSFLIVF 	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK EDHMSFINNP	938 936 998 988 986 1048 1038 1036
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG KANCIANHTG KANCIANHTG	YKECVCKINQ YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ VDIHRNGDFQ GESDFENLNT	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI	DFFHSFLIVF DFFHSFLIVF LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE GSSVEKYIID GSSVEKYIID GSSVEKYIID	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK PLDELYEK EDHMSFINNP EDHMSFINNP EDHMSFINNP	938 936 998 988 986 1048 1038 1036
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG KANCIANHTG KANCIANHTG	YKECVCKINQ YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ VDIHRNGDFQ GESDFENLNT	ECKLPRWHMN ECKLPRWHMNIIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI	DFFHSFLIVF DFFHSFLIVF LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE GSSVEKYIID GSSVEKYIID GSSVEKYIID	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK PLDELYEK EDHMSFINNP EDHMSFINNP EDHMSFINNP	938 936 998 988 986 1048 1038 1036 1098 1088
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG KANCIANHTG KANCIANHTG KANCIANHTG KANCIANHTG	YKECVCKINQ YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ VDIHRNGDFQ VDIHRNGDFQ GESDFENLNT GESDFENLNT	ECKLPRWHMN ECKLPRWHMN CKLPRWHMN CKLPRWHMN MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI EDVSSESDPE	DFFHSFLIVF DFFHSFLIVF DFFHSFLIVF LFLALLLSSF LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSKDKLDDTS	RVLCGEWIET RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK EDHMSFINNP EDHMSFINNP EDHMSFINNP SSEGSTIDIK SSEGSTIDIK	938 936 998 988 986 1048 1038 1036 1098 1088 1086
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG KANCIANHTG KANCIANHTG KANCIANHTG KANCIANHTG	YKECVCKINQ YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ VDIHRNGDFQ VDIHRNGDFQ GESDFENLNT GESDFENLNT	ECKLPRWHMN ECKLPRWHMN CKLPRWHMN CKLPRWHMN MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI EDVSSESDPE	DFFHSFLIVF DFFHSFLIVF DFFHSFLIVF LFLALLLSSF LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSKDKLDDTS	RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK PLDELYEK EDHMSFINNP EDHMSFINNP EDHMSFINNP	938 936 998 988 986 1048 1038 1036 1098 1088 1086
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS WWDCMEVAGQ MWDCMEVAGQ MWDCMEVAGQ DGEMNNLQIS DGEMNNLQIS DGEMNNLQIS KANCIANHTG KANCIANHTG KANCIANHTG KANCIANHTG KANCIANHTG KANCIANHTG	YKECVCKINQ YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ VDIHRNGDFQ VDIHRNGDFQ GESDFENLNT GESDFENLNT	ECKLPRWHMN ECKLPRWHMN CKLPRWHMN CKLPRWHMN MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI EDVSSESDPE EDVSSESDPE	DFFHSFLIVF DFFHSFLIVF DFFHSFLIVF LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSKDKLDDTS GSKDKLDDTS	RVLCGEWIET RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK PLDHMSFINNP EDHMSFINNP EDHMSFINNP SSEGSTIDIK SSEGSTIDIK SSEGSTIDIK	938 936 998 988 986 1048 1038 1036 1098 1088 1086
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS MWDCMEVAGQ	YKECVCKINQ YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ VDIHRNGDFQ GESDFENLNT GESDFENLNT GESDFENLNT PEEYLDPDAC	ECKLPRWHMN ECKLPRWHMN ECKLPRWHMN IIS6 MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI EDVSSESDPE EDVSSESDPE EDVSSESDPE	DFFHSFLIVE DFFHSFLIVE DFFHSFLIVE LFLALLLSSE LFLALLLSSE LFLALLLSSE AHFKQREADE AHFKQREADE AHFKQREADE GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSKDKLDDTS GSKDKLDDTS GSKDKLDDTS	RVLCGEWIET RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK PEDHMSFINNP EDHMSFINNP SSEGSTIDIK SSEGSTIDIK SSEGSTIDIK GKSWWILRKT	938 936 998 988 986 1048 1038 1036 1098 1088 1086 1148 1133 1135
rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A rPN4a rPN4 RATNaCh6A	VVGMQLFGKS VVGMQLFGKS VVGMQLFGKS WVGMQLFGKS MWDCMEVAGQ	YKECVCKINQ YKECVCKINQ YKECVCKINQ (AMCLIVFMMV AMCLIVFMMV VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VIRIKKGVAW VDIHRNGDFQ VDIHRNGDFQ VDIHRNGDFQ GESDFENLNT GESDFENLNT GESDFENLNT GESDFENLNT PEEYLDPDAC	ECKLPRWHMN ECKLPRWHMN CKLPRWHMN CKLPRWHMN CHISG MVIGNLVVLN MVIGNLVVLN TKVKVHAFMQ TKVKVHAFMQ KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI KNGNGTTSGI EDVSSESDPE EDVSSESDPE EDVSSESDPE FTEGCVQRFR	DFFHSFLIVF DFFHSFLIVF DFFHSFLIVF LFLALLLSSF LFLALLLSSF LFLALLLSSF AHFKQREADE AHFKQREADE GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSVEKYIID GSSKDKLDDTS GSKDKLDDTS GSKDKLDDTS CCCQVNIEEGI	RVLCGEWIET RVLCGEWIET RVLCGEWIET SADNLAATDD SADNLAATDD SADNLAATDD VKPLDELYEK VKPLDELYEK VKPLDELYEK PLDHMSFINNP EDHMSFINNP EDHMSFINNP SSEGSTIDIK SSEGSTIDIK SSEGSTIDIK	938 936 998 988 986 1048 1038 1036 1098 1088 1086

Fig. 4C: PN4a/PN4/NaCh6 alignment

	[]IIS1]	
rPN4a	CFLIVEHNWE ETFILEMILL SSGALAFEDI YIFODKTIDT TIFVEDKURT	
rPN4	CELIVERNWE ETFITEMILL SSGALAFEDT VIFODETTOR TITEVADETER	1248
RATNaCh6A	CFLIVEHNWF ETFILFMILL SSGALAFEDI YIEQRKTIRT ILEYADKVFT	1238
	TILGERIER TELEPROPE	1236
	[]	
rPN4a	YIFILEMLLK WTAYGFVKFF TNAWCWLDFL IVAVSLVSLI ANALGYSELG	
rPN4	VIETI ENLIN WESVERINEE TRANSCRIPTE TVAVSEVSEI ANALGYSELG	1298
RATNaCh6A	YIFILEMLLK WTAYGFVKFF TNAWCWLDFL IVAVSLVSLI ANALGYSELG	1288
1410114 611014	YIFILEMLLK WTTYGFVKFF TNAWCWLDFL IVAVSLVSLI ANALGYSELG	1286
rPN4a]	
rPN4	AIKSLRTLRA LRPLRALSRF EGMRVVVNAL VGAIPSIMNV LLVCLIFWLI	1348
PATNaChsA	AIKSLRTLRA LRPLRALSRF EGMRVVVNAL VGAIPSIMNV LLVCLIFWLI	1338
.C.IIIdCII5A	AIKSLRTLRA LRPLRALSRF EGMRVVVNAL VGAIPSIMNV LLVCLIFWLI	1336
rPN4a		
	FSIMGVNLFA GKYHYCFNET SEIRFEIDIV NNKTDCEKLM EGNSTEIRWK	1398
rPN4	FSIMGVNLFA GKYHYCFNET SEIRFEIDIV NNKTDCEKLM EGNSTEIRWK	1388
RATNaCh6A	FSIMGVNLFA GKYHYCFNET SEIRFEIDIV NNKTDCEKLM EGNSTEIRWK	1386
		1300
rPN4a	NVKINFDNVG AGYLALLOVA TFKGWMDIMY AAVDSRKPDE OPDVEGNIVM	1448
rPN4	NVKINFDNVG AGYLALLOVA TFKGWMDIMY AAVDSPKDDF ODDVECHTVM	1438
RATNaCh6A	NVKINFDNVG AGYLALLQVA TFKGWMDIMY AAVDSRKPDE QPDYEGNIYM	
	ZIJIZGNI IN	1436
	IIIS6	
rPN4a	YIYFVIFIIF GSFFTLNLFI GVIIDNFNOO KKKFGGODIF MTFFOXXXXX	7.400
rPN4	YIYFVIFIIF GSFFTLNLFI GVIIDNFNQQ KKKFGGQDIF MTEEQKKYYN	1498
RATNaCh6A	YIYFVIFIIF GSFFTLNLFI GVIIDNFNQQ KKKFGGQDIF MTEEQKKYYN	1488
	THE STATE OF THE S	1486
	[IVS1]	
rPN4a	AMKKLGSKKP QKPIPRPLNK IQGIVFDFVT QQAFDIVIMM LICLNMVTMM	
rPN4	AMKKLGSKKP QKPIPRPLNK IQGIVFDFVT QQAFDIVIMM LICLMMVTMM	1548
RATNaCh6A	AMKKLGSKKP QKPIPRPLNK IQGIVFDFVT QQAFDIVIMM LICLNMVTMM	1538
	200 TIME DAW I GOLVEDE AL GOALD LAISTE MANAGEMENT THE TIME THE TANK I THE TAN	1536
	[]	
rPN4a	VETDTQSKQM ENILYWINLV FVIFFTCECV LKMFALRHYY FTIGWNIFDF	
rPN4	VETDTQSKQM ENILYWINLV FVIFFTCECV LKMFALRHYY FTIGWNIFDF	1598
RATNaCh6A	VETDTOSKOM ENTIVATION FUTEFICECY LKMFALRHYY FTIGWNIFDF	1588
	VETDTQSKQM ENILYWINLV FVIFFTCECV LKMFALRHYY FTIGWNIFDF	1586
	IVS3]	
rPN4a	MANUS TURN SERVICE TO	
rPN4	VVVILSIVGM FLADIIEKYF VSPTLFRVIR LARIGRILRL IKGAKGIRTL	1648
RATNaCh6A	VVVILSIVGM FLADIIEKYF VSPTLFRVIR LARIGRILRL IKGAKGIRTL	1638
	VVVILSIVGM FLADIIEKYF VSPTLFRVIR LARIGRILRL IKGAKGIRTL	1636
rPN4a	[]	
rPN4	LFALMMSLPA LFNIGLLLFL VMFIFSIFGM SNFAYVKHEA GIDDMFNFET	1693
	LFALMMSLPA LFNIGLLLFL VMFIFSIFGM SNFAYVKHFA GIDDMENEET	1668
RATNaCh6A	LFALMMSLPA LFNIGLLLFL VMFIFSIFGM SNFAYVKHEA GIDDMFNFET	1685
- DN4 -		
rPN4a	FGNSMICLFQ ITTSAGWDGL LLPILNRPPD CSLDKEHPGS GFKGDCGNPS	1748
rPN4	FGNSMICLFQ ITTSAGWDGL LLPILMRPPD CSLDKEHPGS GFKGDCCAPS	1738
RATNaCh6A	FGNSMICLFQ ITTSAGWDGL LLPILNRPPD CSLDKEHPGS GFKGDCGNPS	1736
		7130

Fig. 4D: PN4a/PN4/NaCh6 alignment

	(IVS6]			
rPN4a	VGIFFFVSYI	IISFLIVVNM	YIAIILENFS	VATEESADPL	SEDDFETFYE	1798
rPN4	VGIFFFVSYI	IISFLIVVNM	YIAIILENFS	VATEESADPL	SEDDFETFYE	1788
RATNaCh6A	VGIFFFVSYI	IISFLIVVM	CIAILLENFS	VATEESADPL	SEDDFETFYE	1786
rPN4a	IWEKFDPDAT	QFIEYCKLAD	FADALEHPLR	VPKPNTIELI	AMDLPMVSGD	1848
rpn4	IWEKFDPDAT	QFIEYCKLAD	FADALEHPLR	VPKPNTIELI	AMDLPMVSGD	1838
RATNaCh6A	IWEKFDPDAT	QFIEYCKLAD	FADALEHPLR	VPKPNTIELI	AMDLPMVSGD	1836
rPN4a	RIHCLDILFA	FTKRVLGDSG	ELDILRQQME	ERFVASNPSK	VSYEPITTTL	1898
rPN4	RIHCLDILFA	FTKRVLGDSG	ELDILRQQME	ERFVASNPSK	VSYEPITTTL	1888
RATNaCh6A	RIHCLDILFA	FTKAVLGDSG	ELDILRQQME	ERFVASNPSK	VSYEAYHTTL	1886
rPN4a	RRKQEEVSAV	VLQRAYRGHL	ARRGFICRKM	ASNKLENGGT	HRDKKESTPS	1948
rPN4	RRKQEEVSAV	VLQRAYRGHL	ARRGFICRKM	ASNKLENGGT	HRDKKESTPS	1938
RATNaCh6A	RRNEEEVSAV	VLQRAYRGHL	ARRGFICRKM	ASNKLENGGT	HRDKKESTPS	1936
rPN4a	TASLPSYDSV	TKPDKEKQQR	AEEGRRERAK	RQKEVRESKC	1988	
rPN4	TASLPSYDSV	TKPDKEKQQR	AEEGRRERAK	RQKEVRESKC	1978	
RATNaCh6A	TASLPSYDSV	TKPDKEKQQR	AEEGRRERAK	ROKEVRESKO	1976	

Fig. 5: PN4a/PN4/NaCh6/BrainII Interdomain I/II region comparison

rPN4a rPN4 RATNaCh6A rBrainII	DSLFIPIRAR DSLFIPIRAR	ERRSSYSGYS GYSQCSRSSR IFPSLRRSVK RNSTVDCNGV ERRSSYSGYS GYSQCSRSSR IFPSLRRSVK RNSTVDCNGV ERRSSYSGYS GYSQCSRSSR ISPACAQR-E ANSTVDCNGV ERRPS NVSQASRASR GIPTLPMNGK MHSAVDCNGV	648 648 647 653	
rPN4a rPN4 RATNaCh6A rBrainII	VSLIGPGSHI VSLIGPGSHI	GRLLPEVKID KAATDSATT-E VEIKKKGPGS LLVSMDQLASGRLLPEATT-E VEIKKKGPGS LLVSMDQLASGRLLRQRL-R WKLRKALDS -FSFYGPTRL TSPVGQLLPEGTTTE TEIRKRRSS YHVSMDLLED	61	98 88 86 98
rPN4a rPN4 RATNaCh6A rBrainII	IGRKDRINSI LRTEGQNQQH	MSVVTNTLVE ELEESQRKCP PCWYKFANTF LIWECHPYWI MSVVTNTLVE ELEESQRKCP PCWYKFANTF LIWECHPYWI NERGHKHASE ELEESQRKCP PCWYKFANTF LIWECHPYWI ASILTNTM-E ELEESQRKCP PCWYKFANMC LIWDCCKPWL	748 738 736 746	

20/23

Fig. 6

7002

(An) SI

Fig. 8(b)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/12, C07K 14/705, 16/28, C12N
5/10, 1/21, C12Q 1/68

A3

(11) International Publication Number:

WO 98/38302

(43) International Publication Date:

3 September 1998 (03.09.98)

(21) International Application Number:

PCT/EP98/00997

(22) International Filing Date:

20 February 1998 (20.02.98)

(30) Priority Data:

60/039,447

26 February 1997 (26.02.97) US

(71) Applicant: F. HOFFMANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse 124, CH-4070 Basle (CH).

(72) Inventors: DELGADO, Stephen, Gregory; Apartment #3, 358 25th Avenue, San Francisco, CA 94121 (US). DIETRICH, Paul, Shartzer; 3949 Bibbits Drive, Palo Alto, CA 94303 (US). FISH, Linda, Marie; Star Route 2, Box 327-A, La Honda, CA 94020 (US). HERMAN, Ronald, Charles; 467-D Costa Mesa Terrace, Sunnyvale, CA 94086 (US). SANGAMESWARAN, Lakshmi; 350 Avenida Arboles, San Jose, CA 95123 (US).

(74) Agent: MEZGER, Wolfgang; Grenzacherstrasse 124, CH-4070 Basle (CH).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report:

3 December 1998 (03.12.98)

(54) Title: TETRODOTOXIN-SENSITIVE SODIUM CHANNEL α -SUBUNIT

(57) Abstract

DNA encoding for a voltage-gated, TTX-sensitive sodium channel is isolated. Also disclosed are polypeptide products of recombinant expression of these DNA sequences, expression vectors comprising the DNA sequence, and host cells transformed with these expression vectors. Other aspects of this invention are peptides whose sequences are based on the amino acid sequences deduced from these DNA sequences, antibodies specific for such proteins and peptides, procedures for detection and quantitation of such proteins and nucleic acids related thereto. Another aspect of this invention is the use of this voltage-gated, tetrodotoxin-sensitive sodium channel as a therapeutic target for compounds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YÜ	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Int. ational Application No PCT/EP 98/00997

a. classification of subject matter IPC 6 C12N15/12 C07K C12N1/21 C12N5/10 C07K16/28 C07K14/705 C12Q1/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7K C12N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No Ottation of document, with indication, where appropriate, of the relevant passages Category 1-50 KLUGBAUER N ET AL: "Structure and Υ functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells." EMBO J, MAR 15 1995, 14 (6) P1084-90. XP002069908 **ENGLAND** see abstract; figure 1 1 - 37. SCHALLER KL ET AL: "A novel. abundant Υ 45-50 sodium channel expressed in neurons and glia." J NEUROSCI, MAY 1995, 15 (5 PT 1) P3231-42, XP002069909 UNITED STATES see abstract; figure 2 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Χ Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the off "O" document referring to an oral disclosure, use, exhibition or other means in the art. "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of theinternational search 1 1, 09, 1998 3 September 1998 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Gurdjian, D Fax: (+31-70) 340-3016

2

Ir. ational Application No PCT/EP 98/00997

2 / 0		PCT/EP 98/00997
(Continu ategory	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
•	US 5 380 836 A (ROGART RICHARD B) 10 January 1995 see examples 7,10,11,14	1-37, 45-50
,	US 5 439 808 A (BLAKE MILAN S ET AL) 8 August 1995 see column 15, paragraph 2	38-44
	EP 0 483 113 A (BIO TECHNOLOGY GENERAL CORP) 29 April 1992 see examples 5,13,24	38-44

International application No. PCT/EP 98/00997

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This Inte	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:				
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:					
}	see additional sheet				
1. [3	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.				
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:				
4. [No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Rer	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 50 partly 1-37, 45-49

tetrodotoxin-sensitive sodium channel DNA sequences proteins with seq.id.1-7 ,vectors, hosts, assays and antibodies .

2. Claims: 50 partly, 38-44

method of growing plasmids containing contructs of tetrodotoxin-sensitive sodium channel proteins employing competent E.coli .

Information on patent family members

Int. ational Application No PCT/EP 98/00997

Patent docume cited in search re		Publication date	Patent family member(s)		Publication date
US 5380836	A	10-01-1995	NONE		
US 5439808	3 A	08-08-1995	AU AU BR CA EP FI JP NO PL WO	690570 B 7371694 A 9407092 A 2167677 A 0713530 A 960309 A 9500538 T 960256 A 312712 A 9503413 A	30-04-1998 20-02-1995 03-09-1996 02-02-1995 29-05-1996 22-03-1996 21-01-1997 20-03-1996 13-05-1996 02-02-1995
EP 0483113	3 A	29-04-1992	US AU AU AU DE DK EP HK IL IL JP JP JP US US US US	4742004 A 603331 B 4667785 A 6019890 A 671728 B 6309994 A 3586473 A 384185 A 0173280 A 151695 A 61141 B 76192 A 108976 A 110039 A 8283296 A 61111693 A 2688180 B 7236490 A 2777074 B 81025 B 5143836 A 5162217 A 5455029 A 5457042 A 5059529 A 5147789 A 5527691 A	03-05-1988 15-11-1990 06-03-1986 08-11-1990 05-09-1996 28-07-1994 17-09-1992 28-02-1986 05-03-1986 29-09-1995 05-12-1996 05-12-1996 05-12-1996 29-10-1996 29-05-1986 08-12-1997 12-09-1995 16-07-1998 22-01-1988 01-09-1992 10-11-1992 03-10-1995 10-10-1995 12-09-1995 10-10-1995 10-10-1995 10-10-1996

Information on patent family members

In. ational Application No PCT/EP 98/00997

Patent document cited in search report	Publication	Patent family	Publication
	date	member(s)	date
EP 0483113 A		US 5126252 A US 5759816 A US 5112744 A US 5081020 A US 5151364 A	02-06-1998 12-05-1992 14-01-1992

Form PCT/ISA/210 (patent family annex) (July 1992)