Отчёт по Интегрированию

1 Квадратурная Формула Ньютона-Котеса

1.1 Постановка задачи и теоретическое обоснование

Пусть $-\infty < a < b < \infty$, и на отрезке [a,b] задана функция $f:[a,b] \to \mathbb{R}$, т.ч. $f \in \mathbb{C}^{(n+1)}$. Требуется решить задачу приближённого численного интегрирования, а именно построить квадратурную формулу Ньютона-Котеса $S_n(f)$, которая по значениям функции в равноотстоящих узлах $\{x_i = a + i(b-a)\}_{i=0}^n$ восстанавливает значение интеграла, т.е.

$$S_n(f) = \sum_{i=0}^{n} c_i f(x_i) \approx \int_a^b p(x) f(x) dx = I(f)$$

Весовую функцию p(x) положим равной единице. Функцию f(x) можно приблизить с помощью интерполяционного многочлена Лагранжа, тогда:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) \prod_{j \neq i} \frac{(x - x_{j})}{(x_{i} - x_{j})} dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} \prod_{j \neq i} \frac{(x - x_{j})}{(x_{i} - x_{j})} dx$$

Положим

$$c_i = \int_{1}^b \prod_{i \neq i} \frac{(x - x_i)}{(x_i - x_j)} dx \tag{1}$$

Оценка погрешности квадратурной формулы в этой ситуации имеет вид:

$$R_n = |I(f) - S_n(f)| \le \frac{\|f^{(n+1)}\|}{(n+1)!} \cdot \int_a^b |\omega_{n+1}(x)| dx$$

Тогда для n = 3:

$$R_3(f) = |I(f) - S_3(f)| \le ||f^{(4)}|| \frac{(b-a)^5}{480}$$

Разобьём отрезок [a,b] на $\{[a_k,b_k]\}$, т.ч. $a_1=a,\ b_n=b,\ b_{k-1}=a_k, k=\overline{2,n-1}.$

 $|b_k - a_k| = \frac{b-a}{n}$. Тогда:

$$I(f) = \int_{a}^{b} f(x)dx = \sum_{k=1}^{n} \int_{a_{k}}^{b_{k}} f(x)dx = \sum_{k=1}^{n} I_{k}(f)$$

Норму ошибки можно переписать в виде:

$$|I(f) - S(f)| = |\sum_{k=1}^{n} (I_k(f) - S_k(f))| \le \sum_{k=1}^{n} |I_k(f) - S_k(f)| \le \sum_{k=1}^{n} ||f^{(4)}|| \frac{(b_k - a_k)^5}{480} =$$

$$= \sum_{k=1}^{n} ||f^{(4)}|| \frac{((b-a)/n)^5}{480} = \frac{||f^{(4)}|| (b-a)^5}{480 \cdot n^4}$$

Значит идея построения составной квадратуры, то есть разбиения отрезка на части и построения на каждой своей квадратуры, будет вести к сходимости общей квадратурной формулы к точному значению интеграла.

1.2 Алгоритм решения

Выполняем разбиение отрезка [a,b] на n подотрезков, как было описано в предыдущем пункте. Для каждого из них строим квадратурную формулу по четырём равноотстоящим узлам:

$$S_k(f) = \sum_{i=0}^3 c_{ik} f(x_{ik}),$$
 где $c_{ik} = \int_{a_k}^{b_k} \prod_{j \neq i} \frac{(x-x_j)}{(x_i-x_j)} dx, i = 0, 1, 2, 3.$

Эти интегралы можно в явном виде посчитать, откуда:

$$c_{0k} = \frac{b_k - a_k}{8}, \quad c_{1k} = \frac{3(b_k - a_k)}{8}, \quad c_{2k} = \frac{3(b_k - a_k)}{8}, \quad c_{3k} = \frac{b_k - a_k}{8}$$

Далее просто складываем значения и при некотором n получаем необходимую степень приближения.

$$S(f) = \sum_{k=1}^{n} S_k(f)$$

1.3 Описание работы программы

При запуске программы первым из входного файла input.txt считывается значение $\bf n$ - количество отрезков разбиения и границы отрезка $\bf a$ и $\bf b$ ($\bf a < \bf b$). Затем вызывается функция

double integration_func(const int n, const double a, const double b);

Она производит все операции, описанные в предыдущем пункте. Далее значение, возвращённое этой функцией, выводится на экран.

2 Квадратура Гаусса

2.1 Постановка задачи и теоретическое обоснование

Пусть даны функция $f \in \mathbb{C}^{(4)}$ и отрезок [a,b]. Требуется построить квадратуру для поиска $\int\limits_a^b f(x)dx$, точную для многочленов максимально возможной степени. (Весовую функцию в данной ситуации полагаем равной единице).

Теорема 1. Пусть ψ_n - ортогональный многочлен степени n на отрезке [a,b] с весовой функцией $p(x) \equiv 1$. Пусть $a < x_0 < \cdots < x_{n-1} < b$ - его корни и c_0, \ldots, c_{n-1} - коэффициенты квадратурной формулы S_n , т.ч. $I(P_{n-1}) = S_n(P_{n-1}) \ \forall \ P_{n-1}$. Тогда $I(P_{2n-1}) = S_n(P_{2n-1}) \ \forall \ P_{2n-1}$. Причём более точную квадратуру построить нельзя.

Теорема 2. Для квадратуры Гаусса, точной для многочленов степени 2n-1, верна следующая оценка погрешности:

$$R_n = |I(f) - S_n(f)| \le \frac{\|f^{(2n)}\|}{(2n)!} \cdot 2^{1-2n} \cdot \left(\frac{b-a}{2}\right)^{2n} \cdot \left(\int_a^b |p| dx + \sum_{i=0}^n |c_i|\right)$$
(2)

Ортогональными многочленами на [-1, 1] с весом 1 являются многочлены Лежандра. Перенося их на отрезок [a,b] с помощью формулы замены переменной получаем ортогональный многочлен на [a,b]. Далее находим его корни, узлы построения нашей квадратуры, и из условий точности квадратуры на многочленах можно решив СЛУ найти коэффициенты c_i .

2.2 Алгоритм решения

Выполняем разбиение отрезка [a,b] на п подотрезков аналогично первой задаче. Для каждого из них строим Квадратуру Гаусса в четырёх точках и суммируем результаты. Для начала, многочлен Лежандра 4-й степени на [-1,1]:

$$P_4(y) = \frac{1}{8}(35y^4 - 30y^2 + 3)$$

Его корни на [-1,1]:

$$y_0 = -\sqrt{\frac{3}{7} + \frac{2\sqrt{6/5}}{7}} = -y_3, \ y_1 = -\sqrt{\frac{3}{7} - \frac{2\sqrt{6/5}}{7}} = -y_2$$

Используя формулу $x_{ik} = \frac{b_k - a_k}{2} \cdot y_i + \frac{b_k + a_k}{2}$ можно перенести эти корни на любой из подотрезков. Коэффиценты c_i симметричны, т.е. $c_i = c_{3-i}$, поэтому составлять систему на них можно из двух уравений:

$$\begin{cases}
c_{0k} + c_{1k} + c_{2k} + c_{3k} = 2c_{0k} + 2c_{1k} = \int_{a_k}^{b_k} x^0 dx = b_k - a_k \\
c_{0k}x_{0k}^2 + c_{1k}x_{1k}^2 + c_{2k}x_{2k}^2 + c_{3k}x_{3k}^2 = c_{0k}(x_{0k}^2 + x_{3k}^2) + c_{1k}(x_{1k}^2 + x_{2k}^2) = \int_{a_k}^{b_k} x^2 dx = \frac{b_k^3 - a_k^3}{3}
\end{cases}$$

Отсюда

$$c_{1k} = \frac{b_k - a_k}{2(x_{1k}^2 + x_{2k}^2 - x_{0k}^2 - x_{3k}^2)} \cdot \left(\frac{2(b_k^2 + a_k b_k + a_k^2)}{3} - (x_{0k}^2 + x_{3k}^2)\right), \ c_{0k} = \frac{b_k - a_k}{2} - c_{1k}$$

$$c_{2k} = c_{1k}, \quad c_{3k} = c_{0k}$$

И теперь можем собрать все квадратуры:

$$S_k(f) = c_{0k}f(x_{0k}) + c_{1k}f(x_{1k}) + c_{2k}f(x_{2k}) + c_{3k}f(x_{3k}), \quad S(f) = \sum_{k=1}^n S_k(f)$$

2.3 Описание работы программы

При запуске программы первым из входного файла input.txt считывается значение ${\bf n}$ - количество отрезков разбиения и границы отрезка ${\bf a}$ и ${\bf b}$ (${\bf a}<{\bf b}$). Затем вызывается функция

double integration_func(const int n, const double a, const double b);

Она производит все операции, описанные в предыдущем пункте. Далее значение, возвращённое этой функцией, выводится на экран.

3 Двумерная задача

3.1 Постановка задачи и алгоритм решения

Пусть на квадрате $[0,1] \times [0,1]$ задана функция $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Будем интегрировать её по этому квадрату. Для этого разбиваем квадрат на тругольники и считаем интеграл по приведённому ниже алгоритму.

Равномерно разбиваем осевые отрезки на \mathbf{n} подотрезков длиной $\frac{1}{n}$ каждый. Проводя через каждую из точек линии, параллельные второй оси, получаем n^2 квадратов размера $1/n \times 1/n$. Проводя во всех квадратах главные диагонали, получаем триангуляцию квадрата $[0,1] \times [0,1]$, содержащую $2n^2$ треугольников, $3n^2 + 2n$ рёбер, $(n+1)^2$ вершин.

Чтобы вычислить значение интеграла, необходимо проинтегрировать функцию по всем треугольникам, где интеграл по треугольнику аппроксимируется по формуле:

$$\iint_{\wedge} f(x,y)dxdy \approx \frac{f(M_1) + f(M_2) + f(M_3)}{3} \cdot |\Delta|$$

где M_1, M_2, M_3 - середины рёбер треугольника. Из свойства аддитивности интеграла имеем, что интеграл по всему квадрату находится как сумма интегралов по всем треугольникам:

$$\iint\limits_{[0,1]^2} f(x,y) dx dy \approx \sum_{\triangle} \iint\limits_{\triangle} f(x,y) dx dy$$

3.2 Описание работы программы

При запуске программы в первую очередь с клавиатуры считывается значение ${\bf n}$ - количество отрезков разбиения. Далее запускается функция

которая записывает в файл **output.txt** номера всех вершин и их координаты, номера всех треугольников с номерами вершин, которые им принадлежат и номера всех рёбер с номерами их вершин.

Далее вершины и треугольники считываются и записываются в массивы **nodes** и **triangles**. Запускается функция

которая считает интегралы по треугольникам, складывает их и возвращает интеграл по квадрату как сумму интегралов по треугольникам. Полученное значение выводится на экран.