Feuille 1.1 - Théorème(s) du point fixe

Exercice 1 - Contre-exemples et théorème du point fixe.

- a) Montrer que le théorème de Picard n'est plus vrai si on ne suppose pas X complet.
- **b)** Montrer que le théorème de Picard n'est plus vrai si on ne suppose pas l'application contractante (même avec l'inégalité d(f(x), f(y)) < d(x, y) pour tous $x, y \in X$).

Exercice 2 - Connexité et point fixe.

- a) Montrer que l'ensemble des valeurs d'adhérence d'une suite réelle (u_n) telle que $|u_{n+1} u_n| \to 0$ est connexe par arc.
- **b)** Soit X un intervalle compact de \mathbb{R} et $f: X \to X$ une fonction continue. On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 \in X$ et $u_{n+1} = f(u_n)$ et on suppose que $|u_{n+1} u_n| \to 0$. Montrer que la suite (u_n) converge.

Exercice 3 - Théorème des fermés emboîtés et complétude.

- a) On notera, pour A une partie d'un espace métrique, $\delta(A) = \sup\{d(x,y)|x,y \in A\}$ le diamètre de A. Démontrer le résultat suivant (théorème dit des fermés emboîtés) : Un espace métrique (X,d) est complet ssi l'intersection de toute suite décroissante $(A_n)_{n\in\mathbb{N}}$ de parties fermées non vides de X telles que $\lim_{n\to+\infty} \delta(A_n) = 0$ est non vide.
- **b)** Soit (X, d) un espace métrique complet non vide et $f: X \to X$ lipschitzienne de rapport $k \in [0, 1[$. Pour $R \in \mathbb{R}^+$, on pose $A_R = \{x \in X \mid d(x, f(x)) \leq R\}$.
 - i Montrer que $f(A_R) \subset A_{kR}$ et en déduire que pour tout $R \in \mathbb{R}^+_*$, A_R est une partie fermée non vide de X.
 - ii Soient $x, y \in A_R$. Montrer que $d(x, y) \leq 2R + d(f(x), f(y))$ et en déduire que $\delta(A_R) \leq \frac{2R}{1-k}$.
 - iii Montrer que $A_0 = \bigcap_{n \in \mathbb{N}^*} A_{1/n}$ et en conclure que A_0 est non vide.

Exercice 4 – Suite du type $u_{n+1} = f(u_n)$. Soient $f: I \to \mathbb{R}$ une fonction de classe C^1 sur un intervalle ouvert I et $a \in I$ un point fixe de f.

- a) On suppose que |f'(a)| < 1. Montrer qu'il existe un intervalle fermé J stable par f de centre a tel que, pour tout $x_0 \in J$, la suite définie par $u_0 = x_0$ et $u_n = f(u_{n-1})$ pour $n \ge 1$ converge vers a.
- **b)** Sous les hypothèses de la question précédente, on suppose de plus que f' ne s'annule pas sur J. Montrer que si $x_0 \neq a$ alors $u_n \neq a$ pour tout $n \in \mathbb{N}$ et que $u_{n+1} a \sim f'(a)(u_n a)$.
- c) Toujours sous les hypothèses de la première question, on suppose que f est de classe C^2 que f'(a) = 0 et que f'' ne s'annule pas sur J. Montrer que, si $x_0 \in J$ et $x_0 \neq a$ alors $u_n \neq a$ pour tout $n \in \mathbb{N}$ et que $u_{n+1} a \sim \frac{f''(a)}{2}(u_n a)^2$.

d) On suppose que |f'(a)| > 1. Montrer qu'il existe un intervalle fermé J de centre a tel que pour tout $x_0 \in J$ et $x_0 \neq a$ la suite $(u_n)_{n \in \mathbb{N}}$ sort de J.

Exercice 5 – Théorèmes du point fixe et limites. Soient (X, d) un espace métrique complet et $f_n : X \to X$ une suite de fonctions continues. On suppose que f_n admet un point fixe x_n .

- a) On suppose que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X.
 - i On suppose que $(x_n)_{n\in\mathbb{N}}$ converge (vers x_0). Montrer que x_0 est un point fixe pour f.
 - ii On suppose que $(f(x_n))_{n\in\mathbb{N}}$ converge (vers x_0). Montrer que x_0 est un point fixe pour f.
 - iii On suppose que f est contractante. Montrer que $(x_n)_{n\in\mathbb{N}}$ converge vers l'unique point fixe de f.
- b) on suppose maintenant que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur X. On suppose également qu'il existe $\alpha > 0$, pour tout $n \in \mathbb{N}$, f_n soit α -lipschiztienne.
 - i Montrer que f est α -lipschiztienne et que si $(x_n)_{n\in\mathbb{N}}$ converge vers x_0 alors x_0 est un point fixe de f.
 - ii On suppose $\alpha < 1$. Montrer que $(x_n)_{n \in \mathbb{N}}$ converge vers l'unique point fixe de f. Montrer qu'on ne peut pas remplacer la condition $\alpha < 1$ par la condition $\alpha_n < 1$ pour tout $n \in \mathbb{N}$ (où f_n est α_n -lipschitzienne). On pourra considérer l'opérateur $f_n : \ell^2 \to \ell^2$ défini par

$$f_n((x_k)_{k\in\mathbb{N}}) = (0,\ldots,0,(1-1/n)x_n+1/n,0,\ldots)$$

iii **Application.** Soient X un compact non vide d'un espace vectoriel normé qu'on suppose étoilé par rapport à l'un de ses points x_0 (c'est le cas par exemple si X est convexe). On suppose que $||f(x) - f(y)|| \leq ||x - y||$ pour tous $x, y \in X$. Montrer que f a un point fixe (on pourra introduire une suite $(t_n)_{n\in\mathbb{N}}$ qui tend vers 0 et les fonctions $f_n(x) = (1-t_n)f(x)+t_nx_0$). Peut-on retirer l'hypothèse de compacité ? (Pensez à une translation sur \mathbb{R}). Peut-on retirer l'hypothèse 'étoilé' ? (Pensez à une rotation sur le cercle).

Exercice 6 - Vers Cauchy-Lipschitz.

- a) Soient (X, d) un espace métrique complet non vide et $f: X \to X$ une application (qu'on ne suppose pas continue). On suppose qu'il existe $N \in \mathbb{N}$ et $\alpha \in [0, 1[$ tels que $d(f^N(x), f^N(y)) \leq \alpha d(x, y)$ pour tous $x, y \in X$, c'est à dire que f^N est une contraction. Montrer que f a un unique point fixe x_0 et que, pour tout $x \in X$, la suite définie par $u_0 = x$ et $u_{n+1} = f(u_n)$ converge vers x_0 .
- **b)** Application: Soient $a, b \in \mathbb{R}$ et I = [a, b] un intervalle compact. On considère une fonction $K: I \times I \to \mathbb{R}$ une fonction continue et ϕ une fonction continue de I dans \mathbb{R} .
 - i On suppose que $(b-a)\|K\|_{\infty} < 1$. Montrer qu'il existe une unique application continue $x: I \to \mathbb{R}$ telle que

$$x(t) = \phi(t) + \int_{a}^{b} K(s, t) x(s) \, \mathrm{d}s$$

ii Montrer qu'il existe une unique application continue $x:I\to\mathbb{R}$ telle que

$$x(t) = \phi(t) + \int_{a}^{t} K(s, t)x(s) ds$$

Exercice 7 — Théorème du point fixe et espace compact. Soit K un espace métrique compact et f une fonction de K dans K. On suppose que

$$\forall (x,y) \in K^2, \ x \neq y \ \Rightarrow \ d(f(x),f(y)) < d(x,y).$$

- a) Montrer que f admet un unique point fixe.
- **b)** Soit $x_0 \in K$. On définit $(x_n)_{n \in \mathbb{N}}$ par récurrence via $f(x_{n+1}) = x_n$. Montrer que $u_n = d(x_n, f(x_n))$ converge.
- c) Montrer que toute valeur d'adhérence de la suite est un point fixe.
- d) Conclure sur la convergence.

Exercice 8 – Théorème de Sarkowski. Soit I un segment de \mathbb{R} et $f: I \to I$ une application continue. Pour $x \in I$, on dit que x est un point n-périodique lorsque $f^n(x) = x$ et $f^k(x) \neq x$ pour tout $k \in \{1, ..., n-1\}$.

- a) Si K est un segment inclus dans f(I), montrer qu'il existe un segment $L \subset I$ tel que K = f(L).
- **b)** Montrer que si $I_0 \subset I$ est tel que $I_0 \subset f(I_0)$ alors f admet un point fixe dans I_0 .
- c) Si I_1 et I_2 sont deux segments quelconques de I tels que $I_2 \subset f(I_1)$, on notera désormais pour simplifier $I_1 \to I_2$. Montrer que si deux segments $I_0, I_1 \subset I$ vérifient $I_0 \to I_1 \to I_0$, alors f^2 admet un point fixe $x_0 \in I_0$ tel que $f(x_0) \in I_1$. En généralisant ceci, montrer que si $I_0 \to I_1 \to ... \to I_{n-1} \to I_0$, alors f^n admet un point fixe tel que $f^k(x_0) \in I_k$ pour tout $k \in \{1, ..., n-1\}$.
- d) On suppose que f admet un point 3-périodique $a \in I$. On note b = f(a) et $c = f^2(a)$. Quitte à interchanger a et b, on peut supposer que $a = min\{a, b, c\}$. Dans le cas où a < b < c, on définit $I_0 = [a, b]$ et $I_1 = [b, c]$. Montrer que $I_0 \to I_1$, $I_1 \to I_0$, $I_1 \to I_1$. En déduire que f admet un point n-périodique pour tout $n \ge 1$. Raisonner de manière similaire pour a < c < b.
- e) Le résultat précédent se généralise-t-il à des dimensions supérieures?
- f) Application Résoudre l'équation fonctionnelle $f^3 = id_{[0,1]}$ pour $f \in C([0,1],[0,1])$.

Exercice 9 – Point fixe et caractère global. Soit I un segment de \mathbb{R} et $f:I\to I$ une application continue. On suppose que

$$\forall x \in I, \ \exists n_x \in \mathbb{N}, \ f^{n_x}(x) = x$$

- a) Montrer que f est bijective.
- **b)** Dans le cas où f est croissante montrer que $f = id_I$.
- c) Conclure dans le cas général.
- d) Reprendre la dernière question de l'exercice précédent.