الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2016

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأوّل

يحتوي الموضوع الأول على 03 صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5).

التمرين الأول: (04,5 نقطة)

الفضاء منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{i}, \vec{j}, \vec{k})$.

 $H\left(rac{5}{4};rac{7}{4};-rac{1}{2}
ight)$ ، $E\left(0;1;1
ight)$ ، $D\left(rac{1}{2};2;-rac{1}{2}
ight)$ ، $C\left(-1;0;1
ight)$ ، $B\left(2;-1;1
ight)$ ، $A\left(1;1;0
ight)$ نعتبر النقط

و المستوي (P) المعرّف بالتمثيل الوسيطي: $x = 1 + \alpha + \beta$ و $x = 1 + \alpha + \beta$ و وسيطان حقيقيان. $x = 1 + \alpha + \beta$

اً) أي بيّن أنّ النقط B ، A و C تُعيّن مستويا.

بُ تحقّق أنّ الشعاع $\vec{n}(1;3;5)$ ناظمي للمستوي $\vec{n}(1;3;5)$ ثم اكتب معادلة ديكارتية له.

. معادلة ديكارتية للمستوي (P) ثم بيّن أن المستوبين (ABC) و (P) متقاطعان (2

(P) با نسمي (Δ) مستقيم تقاطع المستويين (ABC) و

- تحقّق أنّ النقطة D تتتمي إلى المستقيم (Δ) و أُنّ (-3;1;0) شعاع توجيه للمستقيم D

ج) اكتب تمثيلا وسيطيا للمستقيم $(\mathring{\Delta})$.

د) بيّن أنّ النقطة H هي المسقط العمودي للنقطة A على المستقيم (Δ) ثم استنتج المسافة بين A و (Δ) .

 $\{(A,2);(B,-3);(C,2)\}$ مرجح الجملة المثقلة: $\{(A,2);(B,-3);(C,2)\}$

. $\overrightarrow{EM} \cdot \overrightarrow{GM} = 11$: نسمي مجموعة النقط M من الفضاء التي تُحقّق (Γ) مجموعة النقط

أ) عين إحداثيات النقطة 6.

ب) اكتب معادلة ديكارتية للمجموعة (Γ) ثم بيّن أنّها سطح كرة يطلب تعيين مركزها و نصف قطرها.

 (Γ) و المجموعة (ABC) و المجموعة ((Γ)

التمرين الثاني: (04,5 نقطة)

 $\begin{cases} \ln\left(u_{1}\right) + \ln\left(u_{2}\right) = 11 \\ u_{1} + u_{2} = e^{4}\left(1 + e^{3}\right) \end{cases}$: منتالیة هندسیة متزایدة تماما، حدودها موجبة تماما، حدّها الأوّل u_{0} و أساسها q حیث $\left(u_{n}\right)$

. q و u_2 ثم استنتج قيمة الأساس u_2 (1

. $q = e^3$ و $u_1 = e^4$ نضع: (2

n عبّر عن u_n بدلالة (أ

.n بدلالة $.S_n = \ln(u_0) + \ln(u_1) + \ln(u_2) + ... + \ln(u_n)$ بدلالة (ب

 $a_n = n+3$: نضع عدد طبیعي من أجل كل عدد طبیعي من أجل كا

 $PGCD(2S_n, a_n) = PGCD(a_n, 14) : 1$ بيّن أنّ

. $PGCD(2S_n, a_n)$: القيم الممكنة لـ: (ب

 $PGCD(2S_n,a_n)=7$: التي من أجلها n التي الأعداد الطبيعية الأعداد الطبيعية

4) ادرس تبعا لقيم العدد الطبيعي n باقي القسمة الإقليدية للعدد 2^n على 4

. $b_n = 3na_n - 2S_n + 1437^{2016} + 1$ نضع: (5

 $. egin{aligned} b_n &\equiv 0 & [7] \ n &\equiv 0 & [5] \end{aligned}$: عيّن قيم العدد الطبيعي n التي من أجلها يكون n = 0 & [5] : يقبل القسمة على n بيّن أنّه من أجل كل عدد طبيعي n ، العدد n العدد n العدد (n على n)

التمرين الثالث: (04,5 نقطة)

 $z^2-4z+5=0$: المعادلة (1) أي حل في مجموعة الأعداد المركبة

 $-(z+1+i(1-\sqrt{3}))^2-4z+1-4i(1-\sqrt{3})=0$ الآتية: z ا

. عدد حقیقی حیث $\theta = 0 \le \theta \le \frac{\pi}{2}$ و مرکب طویلته 1 و عدد له θ

أ) اكتب العدد المركب $\sqrt{3} + 1 + 1$ على الشكل الأسى.

. (z_0 العدد المركب) . $\frac{z_0\left(1+i\sqrt{3}\right)}{z_0}=2e^{i\frac{\pi}{2}}$ العدد المركب (ب

ج) $\frac{z_0(1+i\sqrt{3})}{2}$ على الشكل المثلثي. $\frac{z_0(1+i\sqrt{3})}{2}$ على الشكل المثلثي.

د) عيّن قيم العدد الطبيعي n التي من أجلها يكون $\left| \frac{z_0 \left(1 + i \sqrt{3} \right)}{2} \right|^n$ عددا حقيقيا موجبا تماما.

(3) المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(0; \vec{u}, \vec{v})$ نعتبر النقط $B \cdot A$ و C التي لاحقاتها $z_C=1+i\sqrt{3}$ على الترتيب: $z_B=2+i$ و $z_C=1+i\sqrt{3}$ و $z_C=1+i\sqrt{3}$ و على الترتيب:

 $\{(A,1);(B,-1);(C,1)\}$ عيّن z_D لاحقة النقطة D مرجح الجملة المثقلة z_D

ب) استتج أنّ الرباعي ABCD متوازي أضلاع.

 $\begin{cases} a\operatorname{rg}(z_E - z_A) - a\operatorname{rg}(z_E - z_B) = \frac{\pi}{2} \\ \left| \frac{z_E - z_A}{z_E - z_B} \right| = 2 \end{cases}$ ج) E النقطة من المستوي المركب ذات اللاحقة Z_E حيث:

 $z_E = \frac{14}{5} + \frac{3}{5}i$: بيّن أنّ -

- بيّن أنّ النقطة A هي صورة النقطة B بتشابه مباشر يطلب تعيين عناصره المميّزة.

. [AB] نقطة من المستوي المركب لاحقتها z ، النقطة I منتصف القطعة المستقيمة M

أ) عيّن ي لاحقة النقطة 1.

 $z-z_I=e^{ilpha}$: عدد حقيقي، نسمي (Γ) مجموعة النقط M من المستوي المركب التي تُحقّق lpha

 (Γ) تتمى إلى المجموعة (Γ) .

. $\mathbb R$ في lpha في المجموعة (Γ) و عناصرها المميّزة عندما يتغيّر -

التمرين الرابع: (06,5 نقطة)

.
$$g(x) = 1 + x^2 + 2 \ln x$$
 بالدالة العددية المعرّفة على المجال $g(x) = 1 + x^2 + 2 \ln x$ بالدالة العددية المعرّفة على المجال $g(x) = 1 + x^2 + 2 \ln x$

1) ادرس اتجاه تغيّر الدالة g.

$$lpha$$
 بيّن أنّ المعادلة $g(x)=0$ تقبل في المجال $g(x)=0$ حلاّ وحيدا (2

.]0;+ ∞ [استنتج إشارة g(x) على المجال (3

$$f(x) = -x + \frac{3 + 2 \ln x}{x}$$
: ب $f(x) = -x + \frac{3 + 2 \ln x}{x}$ بالدالة العددية المعرّفة على المجال $f(x)$

$$C_f(0;ec{i},ec{j})$$
 سنتها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس المستوي المنسوب المعلم المتعامد و $C_f(0;ec{i},ec{j})$

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to \infty} f(x)$ احسب (1

$$f'(x) = \frac{-g(x)}{x^2}$$
 :]0; +∞[من المجال x من عدد حقيقي عدد عقيقي (1) أنّه من أجل كل عدد عقيقي (2)

ب) شكّل جدول تغيّرات الدالة f.

ج) تحقّق أنّ :
$$f(\alpha) = 2\left(\frac{1}{\alpha} - \alpha\right)$$
: ثم عيّن حصرا له.

اً) احسب $\lim_{x\to +\infty} \left[f(x) + x \right]$ ثم فسّر النتيجة هندسيا.

$$\cdot(\Delta)$$
 بالنسبة إلى مستقيمه المقارب المائل المائل (C_f) ادرس وضعية

. بيّن أنّ
$$\left(C_f
ight)$$
 يقبل مماسا $\left(T
ight)$ يوازي $\left(\Delta\right)$ يطلب كتابة معادلة ديكارتية له

نقبل أنّ (C_f) يقطع حامل محور الفواصل في نقطتين فاصلتيهما x_0 يقطع حامل محور الفواصل في نقطتين فاصلتيهما

$$2,11 < x_1 < 2,13$$
 و $0,22 < x_0 < 0,23$

$$\cdot \left(C_f
ight)$$
 و $\left(\Delta
ight)$ ، $\left(T
ight)$

. $3 + 2 \ln x - mx = 0$: وسيط حقيقي . ناقش بيانيا و حسب قيم m ، عدد حلول المعادلة : m

.
$$u_n = \int_{e^n}^{e^{n+1}} \left[f(x) + x \right] dx$$
 نضع : من أجل كل عدد طبيعي n نضع (III)

. $u_n > 0$: n بیّن أنّه من أجل كل عدد طبیعي (1

 u_0 أعط تفسيرا هندسيا للعدد (2

$$n$$
 احسب u_n بدلالة (3

$$.n$$
 نضع: $S_n = u_0 + u_1 + u_2 + ... + u_n$ نضع: (4

الموضوع الثاني

يحتوي الموضوع الثانى على صفحتين (الصفحة 4 من 5 والصفحة 5 من 5).

التمرين الأوّل: (05 نقاط)

- C ، B ، A نعتبر النقط C ، B ، A و C حيث: D الفضاء منسوب إلى المعلم المتعامد والمتجانس C ، D و C ، D و C حيث: D و C حيث: D و D
 - . (ABC) عيّن العددين الحقيقيين lpha و eta حتى يكون الشعاع عيّن العددين الحقيقيين lpha
 - (ABC) ب) جد معادلة ديكارتية للمستوي
 - ياترتيب. y=2z-2x-4 و (Q) و و (P) معادلتان ديكارتيتان للمستوبين و z=2-x
 - أ) بيّن أنّ المستويين (P) و (Q) متعامدان.
 - (Q) و (P) تقاطع المستويين (Δ) و المستويين (P)
 - ج) احسب المسافة بين النقطة D و المستقيم (Δ) .
 - . (Q) سطح الكرة التي مركزها D و مماس للمستوي (S)
 - أ) اكتب معادلة ديكارتية لسطح الكرة (S).
 - (S) و (P) ب الطبيعة والعناصر المميّزة لتقاطع
- عدد حقيقي، G_{λ} نقطة من الفضاء حيث: $\vec{O} = \vec{O}$: $\vec{O} = \vec{O}$ برمز إلى أساس اللوغاريتم النبيري). \vec{O} عدد حقيقي، \vec{O} نقطة من الفضاء حيث: \vec{O} النبيري). \vec{O} عين \vec{O} مجموعة النقط \vec{O} من الفضاء التي تُحقّق: \vec{O} الفضاء التي تُحقّق: \vec{O} مجموعة النقط \vec{O} مجموعة النقط \vec{O} مجموعة النقط \vec{O} محموعة النقط \vec{O} الفضاء التي تُحقق النقط \vec{O} محموعة النقط
 - \overrightarrow{CH} بدلالة $\overrightarrow{CG_{\lambda}}$ بدلالة $\{(A,2); (B,-1)\}$ بدلالة H
 - . $\mathbb R$ المجموعة النقط $G_{\mathfrak p}$ المتا يتغيّر بين (ج
 - د) جد قيمة λ التي تكون من أجلها G_{λ} منتصف القطعة (د

التمرين الثاني: (04 نقاط)

- . $z^2-2z+2=0$ المعادلة: $\mathbb C$ المعادلة الأعداد المركبة (1 (I
 - . $\begin{cases} 2z_1 3z_2 = 5i\sqrt{2} \\ z_1 + 3z_2 = -2i\sqrt{2} \end{cases}$: حيث: z_2 و z_1 العددين المركبين z_2 و z_1
- المستوي المركب منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$. النقط D ، C ، B ، A النقط (II)
 - الترتيب : $Z_H=\frac{z_C-z_B}{z_E-z_B}$ و $Z_D=1-i$ ، $Z_C=1+i$ ، $Z_B=-i\sqrt{2}$ ، $Z_A=i\sqrt{2}$: النقطة التي $\overrightarrow{DE}=2\overrightarrow{DO}$: ثُحقّق:
 - . BEC على الشكل الأسى و استنتج نوع المثلث (1
- . $z'=z_A\,z+z_B$: تحويل نقطي في المستوي يرفق بكل نقطة M لاحقتها z النقطة M' لاحقتها z حيث S (2 أ) ما هي طبيعة التحويل S و ما هي عناصره المميّزة ؟
 - . CD التي مركزها C و نصف قطرها (γ) التي مركزها
 - ج) عين (γ') صورة (γ) بالتحويل S و استنتج مساحتها.
 - عين (δ) مجموعة النقط M من المستوي (M) تختلف عن (C) ذات اللاحقات (C) التي يكون من أجلها (C)
 - العدد $\frac{Z_B Z}{Z_C Z}$ حقيقيا سالبا تماما.

التمرين الثالث: (04 نقاط)

- 11. أ) أ) ادرس حسب قيم العدد الطبيعي n، بواقي القسمة الإقليدية لكل من العددين n و n على 11. برهن أنّه من أجل كل عدد طبيعي n، العدد n العدد n على عدد طبيعي n العدد n
 - . نعتبر المعادلة (E) ذات المجهول (x;y) : (x;y) عددان طبيعيان. (2) فعتبر المعادلة (E) . (E) أ) حلّ المعادلة (E)
 - . (E) كلا للمعادلة (x;y) القاسم المشترك الأكبر للعددين x و y حيث الثنائية d
 - d القيم الممكنة للعدد d
 - d=4 من أجل (E) من أجل حلول المعادلة حيّن الثنائيات (x;y)
 - $.2016^{7x} + 1437^{3y} \equiv 0[11]$ جو الثنائيات (E) حلول المعادلة (E) حلول المعادلة (x; y) جد الثنائيات

التمرين الرابع: (07 نقاط)

- $. \varphi(x) = (x^2 x + 1)e^{-x + 1} 1$:كما يلي كما يلي الدالة العددية المعرّفة على φ (I
 - $\lim_{x\to +\infty} \varphi(x)$ و $\lim_{x\to -\infty} \varphi(x)$ احسب (1)
 - ب) ادرس اتجاه تغیر الداله φ ثم شکّل جدول تغیّراتها .
- $2,79 < \alpha < 2,80$: نقس أنّ المعادلة $\varphi(x) = 0$ تقبل في α ، حلاّ α يختلف عن α تقبل في $\varphi(x) = 0$
 - \mathbb{R} على $\varphi(x)$ على (3
- . $g(x) = \frac{2x-1}{x^2-x+1}$ و $f(x) = (2x-1)e^{-x+1}$: كما يلي \mathbb{R} كما يلي و $f(x) = (2x-1)e^{-x+1}$ المعترفتان المعرفتان على المستوي المنسوب إلى المعلم المتعامد والمتجانس $(C_g(\vec{i},\vec{j}))$ تمثيلاهما البيانيان في المستوي المنسوب إلى المعلم المتعامد والمتجانس ورديم
 - $\lim_{x\to +\infty} f(x)$ و $\lim_{x\to +\infty} f(x)$ اکسب (1)
 - . ادرس اتجاه تغیّر الدالهٔ f ثم شکّل جدول تغیّراتها
 - بيّن أنّ للمنحنيين (C_f) و (C_g) مماسا مشتركا (T) في النقطة ذات الفاصلة 1 ثم جد معادلة له.
 - $.(C_f)$ و المنحنى (T) ارسم المماس (3
 - $f(x) g(x) = \frac{(2x-1)\varphi(x)}{x^2 x + 1}$ ، عدد حقیقی عدد حقیقی (4)
 - \mathbb{R} و C_g و و C_f و المنحنيين المنحنيين \mathbb{R} على \mathbb{R} ثم استتج الوضع النسبي المنحنيين \mathbb{R}
 - . $\int_1^x f(t)dt : x$ باستعمال مكاملة بالتجزئة ، احسب بدلالة العدد الحقيقي x
 - د) احسب مساحة الحيّز المستوي المحدّد بالمنحنيين $\binom{C_g}{g}$ و $\binom{C_g}{g}$ و المستقيمين اللذيْن معادلتيهما: x=2 و x=1
- السب $f^{(n)}(x)$ ، $f^{(n)}(x)$ ، أعط تخمينا لعبارة $f^{(n)}(x)$ حيث $f^{(n)}(x)$ عدد طبيعي غير معدوم. $f^{(n)}(x)$ الدالة المشتقة من المرتبة $f^{(n)}(x)$.
 - . $f^{(n)}(x) = (-1)^n [2x (2n+1)]e^{1-x}$ ، n معدوم غير معدوم كل عدد طبيعي غير عدد طبيعي (2
 - $u_n = f^{(n)}(1)$: المتتالية العددية المعرّفة من أجل كل عدد طبيعي غير معدوم (u_n) المتتالية العددية المعرّفة من أجل كل عدد طبيعي غير معدوم
 - $.u_k + u_{k+1}$: المجموع ، المجموع غير المعدوم) المجموع ، المجموع أ
 - $u_1 + u_2 + ... + u_{2n}$: المجموع ، n المتنتج بدلالة

انتهى الموضوع الثاني

العلامة		/ **\$>! - * * *				
مجموع	مجزأة	عناصر الإجابة (الموضوع الأوّل)				
		التمرين الأوّل: (04,5 نقطة)				
	0,25	عير مرتبطين خطيا $\overrightarrow{AC}(-2;-1;1)$ و $\overrightarrow{AC}(-2;-1;1)$ غير مرتبطين خطيا				
	0,75	$\cdot (ABC)$ و $\vec{n} \cdot \overrightarrow{AC} = 0$ و $\vec{n} \cdot \overrightarrow{AC} = 0$ و $\vec{n} \cdot \overrightarrow{AB} = 0$ (ب)				
	$0,25 \times 2$	أ.أ) $x+3y+z-6=0$ و الشعاعين \vec{n} و \vec{n} غير مرتبطين خطيا.				
	$0,50\times2$.با $D\in (\Delta)$ و $ec{u}$ شعاع توجیه له.				
04,5	0,25	$\cdot (\Delta) \begin{cases} x = -3\lambda + \frac{1}{2} \\ y = \lambda + 2 \end{cases}, (\lambda \in \mathbb{R}) \iff z = -\frac{1}{2}$				
	0,75	$d(A;(\Delta)) = AH = \frac{\sqrt{14}}{4} \overrightarrow{AH} \cdot \overrightarrow{u} = 0 d(A;(\Delta)) $				
	0,25	$G(-6;5;-1)$ († .3				
	0,25 0,25	$\cdot (\Gamma): x^2 + y^2 + z^2 + 6x - 6y - 7 = 0$ (ب $\cdot (\Gamma): (x+3)^2 + (y-3)^2 + z^2 = 25$ $\cdot (\Gamma): (\alpha + 3)^2 + (\alpha + 3)^2$				
	0,25	. وفق دائرة (ABC) يقطع (Γ) ، $\frac{2}{\sqrt{35}} < 5$ وفق دائرة $d(\Omega;(ABC)) = \frac{2}{\sqrt{35}}$.				
		التمرين الثاني: (04,5 نقطة)				
	0,50	$\Delta = \left[e^4 \left(e^3 - 1 ight) ight]^2$ ، $x^2 - e^4 \left(1 + e^3 ight) x + e^{11} = 0$ عدد المعادلة $u_2 = u_1 \cdot 1$ و $u_2 = e^4$ و $u_1 < u_2$				
	0,25	$u_n = e^{3n+1} \text{ (1.2)}$				
02,75	0,50	$S_n = \frac{(n+1)(3n+2)}{2} (-1)$				
	0,50	$\cdot 2S_n = a_n (3n-4) + 14$ (أ $\cdot .3$ $\cdot PGCD(2S_n, a_n) = PGCD(a_n, 14)$: نتبيان أن				
	0,25	ب) القيم الممكنة لـ $PGCD(2S_n,a_n)$ هي 1 ، 7 ، 2 ، 1				
	0,75	. $k \in \mathbb{N}$ و $n = 14k + 4$				

العلامة		عناور الأولية (الموضوع الأمار)					
مجموع	مجزأة	عناصر الإجابة (الموضوع الأوّل)					
01,75	0,50	$k \in \mathbb{N}$	<i>n</i> الباق <i>ي</i>	3 <i>k</i>	3k+1	3k+2	.4
	0,75	$p \in \mathbb{N}$ جيث $n = 35p$.5					=35p.5
	0,50	$.1437^{9n+1} - 3 \times 4^{12n+1} + 52 \equiv 0[7] .6$					0[7] .6
		التمرين الثالث: (04,5 نقطة)					
	0,50	$z_2 = 2 - i$ و $z_1 = 2 + i$ (أ.1)					
	0,50	$z'' = 1 + i(\sqrt{3} - 2)$ $z' = 1 + i\sqrt{3}$ (ب)					
	0,25		$1+i\sqrt{3}=2e^{i\frac{\pi}{3}}$ (5.2)				
	0,50	$\theta = \frac{\pi}{12} (\varphi)$					
04,5	0,25	$\cdot \left[\frac{z_0 \left(1 + i\sqrt{3} \right)}{2} \right]^n = \cos \left(\frac{5n\pi}{12} \right) + i \sin \left(\frac{5n\pi}{12} \right) $ (\Rightarrow					
, ,	0,50					. $p \in \mathbb{N}$ و n	د) 24 <i>p</i>
	0,25				z	$z_D = 1 + i\left(\sqrt{3}\right)$	-2) (1.3
	0,25		ب) الرباعي ABCD متوازي أضلاع.				
	0,50	$z_E = \frac{14}{5} + \frac{3}{5}i - (1)$					
	0,25	. التشابه المباشر مركزه E نسبته E و $\frac{\pi}{2}$ زاوية له					
	0,25	$z_I = 2 \text{(i.4)}$					
	0,25	$. z_E - z_I = 1 (\cdot)$					
	0,25	هي الدائرة التي مركزها I و نصف قطرها Γ .				(۲) هي	
01					طة)	يع: (06,50 نق	التمرين الرا
	0,50	ه متزایدهٔ تماما علی المجال. g ، $g'(x) = 2x + \frac{2}{x}$.1 (I					
	0,50		.0,52 <		ل حلا وحيدا α يُد م ما 0.00 م	` /	
				g(0,	$(53) \approx 0.01$ و g	$(0,32)\approx -0,0$	<i>)</i> 4

العلامة		عناصر الإجابة (الموضوع الأوّل)		
مجموع	مجزأة	ر العوصوح الأول		
	0,25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$0,25 \times 2$	$\lim_{x \to +\infty} f(x) = -\infty \lim_{x \to \infty} f(x) = -\infty .1 \text{ (II)}$		
	0,50	$f'(x) = \frac{-g(x)}{x^2} \text{ (i.2)}$		
	0,25	. f . f عبرات الدالة		
	$0,25 \times 2$	$\cdot 2,71 < f(\alpha) < 2,81$ و $f(\alpha) = 2\left(\frac{1}{\alpha} - \alpha\right)$ (ج		
	$0,25\times2$	$\cdot (\Delta)$: $y = -x$ این مستقیما مقاربا مائلا کی (C_f) ، $\lim_{x \to +\infty} [f(x) + x] = 0$ (أ. 3)		
	0,25	$\cdot(\Delta)$ بالنسبة إلى (C_f)		
	0,50	$\cdot (T): y = -x + 2\sqrt{e} (\Rightarrow)$		
	0,50	$\cdot ig(C_fig)$ و Δ و Δ و ر Δ		
	0,50	5. المناقشة بيانيا:		
		اذا كان $m \leq 0$ فإنّ المعادلة تقبل حلا وحيدا.		
05,50		ا كان $m < 2\sqrt{e}$ فإنّ المعادلة تقبل حلّين متمايزين. $0 < m < 2\sqrt{e}$		
		اذا كان $m=2\sqrt{e}$ فإنّ المعادلة تقبل حلا مضاعفا.		
		إذا كان $m>2\sqrt{e}$ فإنّ المعادلة لا تقبل حلولا.		
	0,25	من أجل كل $\left[e^n;e^{n+1}\right]$ الدالة $f(x)+x$ موجبة تماما على المجال الدالة الد		
		عدد طبيعي .n		
	0,25	(Δ) و المستقيم (C_f) و المستقيم (Δ) و المستقيم (Δ)		
		x=e و المستقيمين اللذين معادلتيهما: $x=e$ و $x=1$		
	0,50	$u_n = 2n + 4 \cdot 3$		
	0,25	$S_n = n^2 + 5n + 4$.4		

العلامة			
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	
		التمرين الأوّل: (05 نقاط)	
	0,50	$.\beta = 2$ ومنه $\alpha = 1$	
	0,50	$\cdot (ABC): 2x + y - 2z + 4 = 0 \cdot \downarrow$	
	0,25	$\vec{n} \cdot \vec{n}_{(P)} = 0 \cdot \vec{n} \perp \vec{n} . $ (2	
	0,50	(Δ) ب $x=t$ تمثيل وسيطي للمستقيم $x=t$ تمثيل وسيطي $y=-4t$; $t\in\mathbb{R}$. ب $z=2-t$	
	0,75	c . (Δ) . D و المستقيم D و المستقيم D المسافة بين النقطة D و المستقيم D و منه D و المستقيم D و ا	
	0,25	$(x-3)^2 + (y-4)^2 + (z-1)^2 = 4^2 : (S)$ أ. معادلة ديكارتية لسطح الكرة	
05	0,25	(S) وسطح الكرة (Q) ب . إيجاد الطبيعة والخصائص المميزة لتقاطع المستوي	
		ون (S) و (S) يتقاطعان وفق دائرة مركزها نقطة تقاطع و $d(D;(P)) = \sqrt{2} < 4$	
		المستقيم العمودي على (P) والمار من D إذن إحداثياتها تحقق	
	0,50	$\omega(2;4;0)$ وبالتالي $t=-1$ أي $t=-1$ أي $(3+t)+0(4)+(1+t)-2=0$	
	0,25	$r=\sqrt{14}$ نصف قطرها $r=\sqrt{4^2-\left(\sqrt{2} ight)^2}$ نصف قطرها $r=\sqrt{14}$	
	0,25	$\begin{bmatrix} G_0G_1 \end{bmatrix}$ ومنه $\begin{bmatrix} G_0G_1 \end{bmatrix}$ هي المستوي المحوري للقطعة في الم $G_0=MG_1$ ($G_0=MG_1$) أ . المجموعة	
	0,25	$.$ $\overrightarrow{CG}_{\lambda}=rac{1}{1+e^{\lambda}}\overrightarrow{CH}:\overrightarrow{CH}$ بدلالة $\overrightarrow{CG}_{\lambda}$ بدلالة بدلالة	
	0,25	$rac{1}{1+e^{\lambda}}\in]0;1[$ لدينا $\lambda\in\mathbb{R}$ لما $A\in\mathbb{R}$ لما النقط النقط النقط النقط الما	
	0,25	H مجموعة النقط هي قطعة المستقيم CH باستثناء طرفيها C و	
	0,25	$\Delta=0$ منتصف القطعة المستقيمة $[CH]$ معناه $\overrightarrow{CG}_{\lambda}=rac{1}{2}$ أي $e^{\lambda}=1$ فيكون بذلك G_{λ} . G_{λ}	
		التمرين الثاني: (04 نقاط)	
	0,50	$S = \{1-i; 1+i\} : z^2-2z+2=0$ حل المعادلة (1 (I	
01 50	0,50	$z_2=-i\sqrt{2}$ يجاد $z_1=i\sqrt{2}$: z_2 و $z_1=i\sqrt{2}$ (2	
01,50	0,25	. BEC كتابة z_H على الشكل الأسي و استنتاج نوع المثلث (1 (II	
	0,25	$BC=BE$ متقایس الساقین BEC المثلث ، $z_{H}=rac{\sqrt{2}}{2}ig(1-iig)=1.e^{iig(-rac{\pi}{4}ig)}$ ، $z_{E}=-1+i$	

العلامة		/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,50	$\sqrt{2}$ أ. $ z_A = \sqrt{2}$ ، $ z_A = \sqrt{2}$ ، $ z_A = \sqrt{2}$ أ. (2
	0,50	وقيس زاويته $\frac{z_B}{1-z_A} = \frac{2}{3} - i \frac{\sqrt{2}}{3}$ ومركزه النقطة الصامدة ذات اللاحقة
	0,25	$4\piua$ ب. $D = z_D - z_C = -2i = 2$ إذن مساحة الدائرة
02,50	0,50	$2\sqrt{2}$ هي الدائرة ذات المركز $C'igl(-\sqrt{2};0igr)$ صورة C ونصف قطرها (γ') .
	0,25	$(4\pi)\left(\sqrt{2}\right)^2 = 8\pi ua$ مساحتها
		مجموعة النقط (δ) حيث $\frac{z_B-z}{z_C-z}$ حقيقيا سالبا تماما (3
	0,50	$\left(\overrightarrow{MC};\overrightarrow{MB} ight)=\pi+2k\pi$ $/$ $k\in\mathbb{Z}$ حقیقیا سالبا تماما معناه قیس الزاویه $\frac{Z_B-Z}{Z_C-Z}$
		Cالقطعة المستقيمة C ابستثناء طرفيها B و C
		التمرين الثالث: (04 نقاط)
	0,50	$r \in \{1;3;4;5;9\} : 11$ أ. دراسة بواقي القسمة الإقليدية للعدد 3^n على 1
	0,75	$r' \in \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}:$ دراسة بواقي القسمة الإقليدية للعدد 7^n على
		ب. برهان أنه من أجل كل n من $\mathbb N$ فإنّ: 11 $^{1437^{5n+4}}$ $^{1437^{5n+4}}$ تقبل القسمة على العدد 11
	0,25	$2 \times 2016^{5n+4} \equiv 8[11](1)$ و منه: $2016^{5n+4} \equiv 3^{5n+4}[11]$ و منه: $2 \times 2016^{5n+4} \equiv 3[11]$
	0,25 0,25	$1437^{10n+4} \equiv 3[11](2)$: أي: $1437^{10n+4} \equiv 7^{10n+4}[11]$ و منه $1437^{10n+4} \equiv 7^{10n+4}[11]$
04	0,25	$2 \times 2016^{5n+4} + 1437^{10n+4} \equiv 0[11] :$ من (1) و (2) نجد
	0,50	$(x;y) = (3k+2;7k+2)$, $k \in \mathbb{N}$: (E) اً. مجموعة حلول المعادلة (2
	0,50	$d\in \{1;2;4;8\}$: d ب. d القيم الممكنة للعدد
	0,50	d=4 من أجل $(x;y)$ حلول المعادلة (E) من أجل عبين كل الثنائيات $(x;y)$ حلول المعادلة
	-	$(x;y) = (24k' + 20;56k' + 44), k' \in \mathbb{N}$
	0,50	$.(x;y) = (30k+17;70k+37), k \in \mathbb{N} + \infty$
		التمرين الرابع: (07 نقاط)
01	$0,25 \times 2$	$\lim_{x \to +\infty} \varphi(x) = -1$ ، $\lim_{x \to -\infty} \varphi(x) = +\infty$ إذن $\varphi(x) = e\left(\frac{x^2}{e^x} - \frac{x}{e^x} + \frac{1}{e^x}\right) - 1$ أ (I
	0,25	$\phi'(x) = -(x-1)(x-2)e^{-x+1}$: بنجاه التغيّر
	0,25	الدالة φ متناقصة تماما على كل من المجالين $[0,+\infty]$ و $[0,+\infty]$ الدالة φ متزايدة تماما على المجال $[0,+\infty]$.
		الدالة م مترايده نماما على المجال [1,2] .

العلامة		/ *1.5.4 * *1. \ 1. \ 1. \ 1. \ 1. \ 1. \ 1. \ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	ϕ . هدول تغیرات الداله
	0,50	lpha بيّن أنّ المعادلة $arphi(x)=0$ تقبل في $lpha$ حلا $lpha$ يختلف عن 1
	0,25	$\cdot arphi(x)$ إشارة (3
	$0,25 \times 2$	$\lim_{x \to +\infty} f(x) = 0 \qquad \lim_{x \to -\infty} f(x) = -\infty (1) (1)$
	0,25	$-\infty + \frac{3}{2} - +\infty : f'(x)$ إشارة $f'(x) = (3-2x)e^{-x+1}$ (ب
	0,25	$-\infty; rac{3}{2}; +\infty$ الدالة f متزايدة تماما على $-\infty; rac{3}{2}$ و متناقصة تماما على الدالة الدا
	0,25	L [_] L
		جدول التغیّرات (C_g) و (C_g) لهما نفس المماس (T)
	0,25	
		و منه المنحنيين C_g و C_g و منه المنحنيين g و منه المماس g و منه المماس g و منه المماس g و منه المماس g
		(J (1) - g (1) - 1)عند النقطة ذات الفاصلة (T)
	0,25	(T): y = x
06	0,50	$\left(C_{f} ight)$ رسم $\left(T ight)$ رسم (3
00	0,25	$f(x)-g(x)=rac{(2x-1)arphi(x)}{x^2-x+1}$: نبیان أنّ (4 $\frac{1}{x^2-x+1}$: $f(x)-g(x)$ ب. دراسة إشارة الفرق $f(x)-g(x)=\frac{1}{x^2-x+1}$ ب. دراسة إشارة الفرق $f(x)-g(x)=\frac{1}{x^2-x+1}$
	0,25	x-x+1ب. دراسة إشارة الفرق $f(x)-g(x)$
		'
	0,25	$-$ الوضع النسبي لـ $\left(C_{g} ight)$ و $\left(C_{g} ight)$
	0,25	. $\int_{1}^{x} f(t)dt = -(2x+1)e^{-x+1} + 3$
	0,25	. $A = \int_{1}^{2} (f(x) - g(x)) dx = 3 - \frac{5}{e} - \ln 3$: د. المساحة
	0,25	$f'''(x) = -(2x-7)e^{-x+1}$ $f''(x) = (2x-5)e^{-x+1}$ (1 (III) $f^{(4)}(x) = (2x-9)e^{-x+1}$
	0,25	$f^{n}(x) = (-1)^{n} [2x - (2n+1)]e^{1-x}$ التخمين:
	0,50	البرهان بالتراجع أنّ: من أجل كل n من \mathbb{N}^* ،
		$f^{n}(x) = (-1)^{n} [2x - (2n+1)]e^{1-x}$
	0,25	$u_{k+1} + u_k = 2(-1)^k$: (3)
	0,25	$u_1 + u_2 + \dots + u_{2n} = (u_1 + u_2) + (u_3 + u_4) + \dots + (u_{2n-1} + u_{2n}) = -2n$ \downarrow
	1	

ملاحظة: تقبل جميع الطرق الممكنة للحل.