ERT Refleksjonsnotat 16-17 Uke 42 Navn: Lars André Roda Jansen Dato: *Læringsutbytte:*

Tre på topp ERT-16:

Tekst.

Tre på topp ERT-17:

1. OP-AMPens gyldne regler

Det er nyttig att inngangstrømmen er lik null fordi det gjør det totale systemet mye lettere å utregne

Det er nyttig å anta att v_+ - v_- = 0 fordi det betyr att ingangsspenningene tilsvarer hverandre.

Spenningsforksjellen er ikke alltid lik 0 fordi når man jobber med reelle komponenter så vil de ikke alltid oppføre seg ideelt, og da vil det være en liten forskjell på dens reelle verdi.

2. Inverterende forsterker

En inverterende forsterker er en forsterker som tar inn en inngangsspenning og gir ut en utgangsspenning med motsatt fortegn.

En fordel kan være att største og minste mulige forsterkning vil være omvendt i forhold til en vanlig OP-AMP

3. Addisjonskrets

Bilder...

En addisjonskrets kalles for en addisjonskrets fordi utgangsspenningen vil tilsvare en konstant gange summen av inngangsspenningene.

Forskjellen mellom denne og den i ERT-8 er att den i ERT-8 benytter seg av digitale komponenter og ikke rent elektroniske komponenter.

Bilder:			

Hvor langt (hvilken oppgave) kom du i løpet av fredagen? Tekst...

Hva lurer jeg på?:

Tekst...

ERT 16

Oppgave 1

Inngangsmotstand = 3MegaOhm

A = 140 V/mV aka 140k

Utgangsmotstand = 3000hm

Oppgave 2

a)

Gitt att inngangsmotstanden skal være tilnærmet lik uendelig, så vil strømmen bli 0 fordi I = U / R

Oppgave 3

- a) Fordi den var mettet
- b) Fordi R_i er tilnærmet lik inf, så vil all spenningen bli oppbrukt før den når v_-, som gjør at v_+ (vet ikke brur)

Oppgave 4							
Oppo	4)	U	e =	X			
	Vo R1+	$\overline{R_1}$. U	X =	0		
	Vo=	UX R	a	(K	+	R_2	
	U0=	UX (1	+	$\frac{R_2}{R_1}$	\		
	Vo =(1	R.	0	,,		

a)

b) Den kalles for en inverterende forsterker fordi den bytter fortegnet på inngangsspenningen

Oppgave 7

a)

b) Bitlagring

Oppgave 8

a)

Ja

b) Den beveger seg utenfor det lineære området fordi v_0 blir mettet.

Oppgave 10

a) Fordi hvis vi setter R_i = 100ohm, så vil den totale mostanden i parallellkoblingen bli vesentlig mindre enn den tidligere spenningen R_1, slik at meste av spenningen blir oppbrukt i R_1.

 $v_a = 500 picoV$

Oppgave 11

a)

b) Den klarer å halvere spenningen som ønsket selv om r_i ennå holdes på 100ohm. Må dessuten bruke flere komponenter enn hvis man bare hadde en høyere r_i.

Oppgave 12