基础过关题型

开心提示: 重点掌握例题题型, 数列考察等差、等比系列公式需要记熟。

【题型1】等差数列

【思路点拨】主要掌握等差数列的定义、元素特征、求和公式以及通项公式。

【例 1】在-12 和 6 之间插入n个数,使这n+2个数组成和为-21 的等差数列,则n为) 。

(A) 4

(B) 5

(C) 6

【解析】 $\sum_{i=1}^{n+2} a_i = \frac{n+2}{2} (-12+6) = -21 \Rightarrow (n+2) \times (-6) = -42 \Rightarrow n=5$,选 B。

【例 2】已知等差数列 $\{a_n\}$ 中的 a_{10}, a_1 是方程 $x^2-3x-5=0$ 的两个根,那么 a_3+a_8 等于

) 。

(A) 3 (B) 4 (C) -3 (D) -4 (E) -3 或 3 【解析】 $a_3 + a_8 = a_1 + a_{10} = 3$,故选 A。

【例 3】如果数列 $x,a_1,a_2,a_3,\cdots,a_m,y$ 和数列 $x,b_1,b_2,b_3,\cdots,b_n,y$ 都是等差数列,则 $\frac{a_2-a_1}{b_4-b_2}$ 的

值为()。

(A) $\frac{n}{2m}$ (B) $\frac{n+1}{2m}$ (C) $\frac{n+1}{2(m+1)}$ (D) $\frac{n+1}{m+1}$ (E) $\frac{n-1}{m+1}$

【解析】设 $x,a_1,a_2,a_3,\cdots,a_m,y$ 的公差为 $d=\frac{y-x}{m+1}$, 设 $x,b_1,b_2,b_3,\cdots,b_n,y$ 的公差为

$$\delta = \frac{y-x}{n+1}$$
,所以 $\frac{a_2-a_1}{b_4-b_2} = \frac{d}{2\delta} = \frac{\frac{y-x}{m+1}}{\frac{y-x}{n+1}} = \frac{n+1}{2(m+1)}$,故选 C。

【例 4】在等差数列 $\{a_n\}$ 中 $a_4=9$, $a_9=-6$, $S_n=54$,则n的值为()。

 $na_1 + \frac{1}{2}n(n-1)d = 54 \Rightarrow n^2 - 13n + 36 = 0$ 解得 n = 4 或 n = 9 , 故选 A.

【例 5】设等差数列 $\{a_n\}$ 的前n项和为 S_n ,如果 $a_2=9$, $S_4=40$,求常数c,使数列

 $\left\{\sqrt{S_n+c}\right\}$ 成等差数列 ()。

(A) 4 或 9 (B) 4 (C) 9 (D) 3 或 8 (E) 8

【解析】由 $a_2=9$, $S_4=40$,解得 $a_1=7$, d=2,故 $a_n=2n+5$, $S_n=n^2+6n$, $\sqrt{S_n+c}=1$

 $\sqrt{n^2+6n+c}$, 所以当c=9时, $\sqrt{S_n+c}=n+3$ 是等差数列。故选 C。

【题型2】等比列数

原式=
$$\frac{a_1+a_3+a_9}{a_2+a_4+a_{19}}$$
= $\frac{a_1+a_3+a_9}{a_1+a_3+a_9+3d}$ = $\frac{(1+3+9)d}{(1+3+9+3)d}$ = $\frac{13}{16}$

选 D。

【例 11】4 个数,前 3 个数成等差数列,它们的和为 12,后 3 个数成等比数列,它们 的和是19,则这4个数之积为()。

- (A) 432 或-18000
- (B) -432 或 18000 (C) -432 或-18000
- (D) 432 或 18000
- (E) 以上都不正确

【解析】设这 4 个数为 a,b,c,d ,则前 3 个数之和 $a+b+c=3b=12 \Rightarrow b=4$,后 3 个数之 和 $b+c+d=4+c+\frac{c^2}{4}=19 \Rightarrow c=6$ 或-10。

- (1) 当c = 6时,a = 2,d = 9,有 $abcd = 2 \times 4 \times 6 \times 9 = 432$ 。
- (2) 当c = -10 时,a = 18,d = 25,有abcd = -18000,所以选 A。

【题型4】特殊数列求和

【思路点拨】采用通项裂项,进而采用相消求和法。这是分解与组合思想在数列求和中的具 体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项, 最终达到求和的目的。通项分解(裂项)如 $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ 。

【例 12】在数列 $\{a_n\}$ 中, $a_n = \frac{1}{n+1} + \frac{2}{n+1} + \dots + \frac{n}{n+1}$,又 $b_n = \frac{2}{a_n \Box a_{n+1}}$,求数列 $\{b_n\}$ 的前 99 项的和 ()。

(A)
$$\frac{208}{35}$$
 (B) $\frac{208}{25}$ (C) $\frac{198}{35}$ (D) $\frac{188}{35}$ (E) $\frac{198}{25}$

(B)
$$\frac{208}{25}$$

(C)
$$\frac{198}{35}$$

(D)
$$\frac{188}{35}$$

(E)
$$\frac{198}{25}$$

【解析】因为
$$a_n = \frac{1}{n+1} + \frac{2}{n+1} + \dots + \frac{n}{n+1} = \frac{n}{2}$$
,所以 $b_n = \frac{2}{\frac{n-n+1}{2}} = 8\left(\frac{1}{n} - \frac{1}{n+1}\right)$ 。

所以数列 $\{b_n\}$ 的前n项和为 $S_n=8$ 。

【例 13】数列 $\{a_n\}$ 的通项公式是 $a_n = \frac{1}{\sqrt{n+\sqrt{n+1}}}$,若前n项的和为 10,则项数n为

() 。

- (B) 120 (C) 121 (D) 122
- (E) 124

【解析】由于
$$a_n = \frac{1}{\sqrt{n+\sqrt{n+1}}} = \sqrt{n+1} - \sqrt{n}$$
,所以

$$S_n = (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \dots + (\sqrt{n+1} - \sqrt{n}) = \sqrt{n+1} - 1 = 10$$

得到n=120, 故选 B。

【解析】由于
$$\underbrace{111\cdots1}_{k \wedge 1} = \frac{1}{9} \times \underbrace{999\cdots9}_{k \wedge 9} = \frac{1}{9} (10^k - 1)$$
 (找通项及特征),所以 $1+11+111+\cdots+\underbrace{111\cdots1}_{n \wedge 1}$ $= \frac{1}{9} (10^1 - 1) + \frac{1}{9} (10^2 - 1) + \frac{1}{9} (10^3 - 1) + \cdots + \frac{1}{9} (10^n - 1)$ (分组求和) $= \frac{1}{9} (10^1 + 10^2 + 10^3 + \cdots + 10^n) - \frac{1}{9} \underbrace{(1+1+1+\cdots+1)}_{n \wedge 1}$

$$= \frac{1}{9} \frac{10(10^{n} - 1)}{10 - 1} - \frac{n}{9} = \frac{1}{81} (10^{n+1} - 10 - 9n)$$

【注意】先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数 列通项揭示的规律求数列的前 n 项和,这是一个重要的方法。

【例 15】已知方程 $x^2 + 3x = 0$ 的一个根是某等差数列的公差,另一个根为此数列的首项, 且此等差数列的 a_4 是 a_3 , a_5 的比例中项,求 a_n 的前 100 项之和。

【解析】设 $a_3 = a_4 - d$, $a_5 = a_4 + d$, 则有 $a_4^2 = a_3 a_5 = (a_4 - d)(a_4 + d) = a_4^2 - d^2 \Rightarrow d = 0$; 方程 $x^2 + 3x = 0$ 的根为-3, 0。

从而 d=0 , $a_1=-3$, 则有 $a_n=-3$, 故前 100 项之和为-300 , 选 E。

【例 16】已知数列 a_1, a_2, \dots, a_{10} ,则 $a_1 - a_2 + a_3 - \dots + a_9 - a_{10} \ge 0$ 。

(1)
$$a_n \ge a_{n+1}, n = 1, 2, 3, \dots, 9$$
 (2) $a_n^2 \ge a_{n+1}^2, n = 1, 2, 3, \dots, 9$

(1) $a_n \ge a_{n+1}, n = 1, 2, 3, \cdots, 9$ (2) $a_n^2 \ge a_{n+1}^2, n = 1, 2, 3, \cdots, 9$ 【解析】条件 (1), $a_n \ge a_{n+1}, n = 1, 2, 3, \cdots, 9$,所以 $(a_1 - a_2) + (a_3 - a_4) + \cdots + (a_9 - a_{10}) \ge 0$, 充分;

条件(2), $a_n^2 \ge a_{n+1}^2, n=1,2,3,\cdots,9$,因为每一项可正可负,所以结果不确定,不充分。A。 故选 A。