Matemática Discreta

Clase 1: Introducción a la lógica proposicional

Federico Olmedo*

Departamento de Ciencias de la Computación Universidad de Chile

^{*} Estas diapositivas fueron diseñadas a partir de diapositivas del profesor Alejandro Hevia.

Contenido clase de hoy

- 1. Introducción a la lógica
- 2. Sintaxis de la lógica proposicional
- 3. Introducción a la deducción natural

Introducción a la lógica

¿Qué estudia la lógica?

El objetivo de la lógica es responder cuándo un argumento es válido; se la conoce como la ciencia del razonamiento.

- Un argumento consiste en un conjunto de premisas y una conclusión.
- El argumento es válido (o correcto) cuando la conclusión se deduce de las premisas, o equivalentemente, cuando la conclusión es verdadera cada vez que las premisas son verdaderas.¹
- La lógica se ocupa de la forma de los argumentos, y no del contenido.

 $^{^1\}mbox{M\'{a}s}$ adelante veremos que la noción de validez admite dos caracterizaciones distintas, pero equivalentes.

Todos los hombres son mortales Sócrates es hombre Por lo tanto, Sócrates es mortal

• ¿Es un argumento válido?

Sí

 ¿La validez del argumento cambia si cambiamos "hombres" por "animales"? No

• ¿Y si cambiamos "Sócrates" por "Platón"?

Tampoco

Si Pedro estudia en el DCC o en el DIM, entonces tomará CC4102 Pedro estudia en el DCC

Por tanto, Pedro tomará CC4102

Forma del argumento:
$$\begin{array}{c} (p \lor q) \to r \\ \hline p \\ \hline r \end{array}$$

¿Argumento válido?: Sí

La validez del argumento no depende ni de cómo interpretemos los enunciados individuales (p, q, r), ni de si resultan verdades o falsos, sino de su patrón (o forma) general.

Si llueve, baja la temperatura

No Ilovió

Por lo tanto, no bajó la termperatura

Forma del argumento: $\neg p$

 $\neg q$

 $p \rightarrow q$

¿Argumento válido?: No

Todos los hombres son mortales Sócrates es hombre Por lo tanto, Sócrates es mortal

¿Argumento válido?: Sí

La validez del argumento no depende ni de cuáles sean los predicados "hombre", "mortal" o la constante "Sócrates", ni de si "Socrates" satisface el predicado "hombre". La validez está garantizada por la forma general del argumento.

Expresividad y tipos de lógicas

Distintos tipos de argumentos requieren distintos tipos de lógicas:

- Los argumentos de los Ejemplos 2 y 3 requieren sólo proposiciones (atómicas) y conectivos lógicos.
- El argumento del Ejemplo 1 requiere una lógica más expresiva, que incluya predicados y cuantificaciones sobre variables.

Hoy empezaremos estudiando la lógica más simple (o menos expresiva) de los Ejemplos 2 y 3: la lógica proposicional.

Sintaxis de la lógica proposicio-

nal

La noción de proposición

La lógica proposicional está construida alrededor de la noción de proposición. Una proposición es cualquier enunciado que es verdadero o falso (pero no ambas).

- Las siguientes son proposiciones: Pedro estudia en el DCC, Santiago es la capital de Chile, 2 > 4
- Las siguientes no: ¿Qué hora es?, x == 2

Objetivo de la sintaxis

La sintaxis determina cuándo una secuencia de símbolos es una fórmula bien formada

Fórmulas bien formadas: $p \land q$, $\neg p \rightarrow p$, qFórmulas no bien formadas: $p \land q$, $q \not p \neg p$, \lor

Conjunto de fórmulas bien formadas

Una fórmula bien formada es o bien una fórmula atómica, formada por una proposición, o bien una fórmula compuesta, formada combinando proposiciones a través de conectivos lógicos.

Definición (sintaxis de la lógica proposicional)

Dado un conjunto $P = \{p, q, r, \ldots\}$ de proposiciones, el conjunto de fórmulas bien formadas sobre P, notado $\mathcal{L}(P)$, se define inductivamente de la siguiente manera:

```
Caso base: Si p \in P, entonces p \in \mathcal{L}(P).
Caso inductivo: Si \alpha, \beta \in \mathcal{L}(P), entonces (\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta) \in \mathcal{L}(P).
```

Supresión de paréntesis

Para evitar el aglutinamiento de paréntesis en las fórmulas nos permitimos omitir el par de paréntesis más externos e introducimos un orden de precedencia sobre los conectivos lógicos: \neg , \wedge , \vee , \rightarrow , \leftrightarrow .

Ejemplo

Fórmula	Forma Abreviada
$((eg p) ightarrow q) \ ((p \wedge q) ee r)$	$ eg p o q$ $ eg \wedge q ee r$

Introducción a la deducción natural

Estableciendo la validez de un argumento

Existen dos enfoques para probar la validez de un argumento:

1. **Enfoque semántico (teoría de modelos):** verificar que cada valuación de las proposiciones que hace verdadera simultáneamente a todas las premisas, también hace verdadera a la conclusión.

$$\frac{p \lor q \to r}{p}$$

р	q	r	$p \lor q \rightarrow r$
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

Estableciendo la validez de un argumento

Existen dos enfoques para probar la validez de un argumento:

 Enfoque sintáctico o deductivo (teoría de la demostración): verificar que el argumento puede construirse combinando razonamientos "básicos" o "elementales".

A continuación vamos a identificar el conjunto de estos razonamientos elementales a través de un acertijo lógico.

Acertijo: ¿Quién sacó la nota más alta?

Cuatro estudiantes —Ramona, Sofía, Tamara y Úrsula— rindieron 4 controles.

1. No se sabe qué nota sacó cada estudiante, pero se tienen los siguientes registros (cada registro corresponde a una estudiante):

	Control 1	Control 2	Control 3	Control 4
Registro 1	С	С	С	С
Registro 2	С	C	В	D
Registro 3	В	В	D	D
Registro 4	В	В	С	А

- 2. (Al menos) Una estudiante entre Ramona y Sofía no sacó ninguna C
- 3. (Al menos) Una estudiante entre Sofía y Tamara no sacó ninguna B
- 4. Tamara sacó la misma nota que Úrsula en (exactamente) 2 controles
- 5. Úrsula y Ramona no sacaron la misma nota en ningún control

Pregunta: ¿Qué estudiante sacó la única A?

		C1	C2	C3	C4
	Reg. 1	С	С	С	С
H ₁ :	Reg. 2	C	C	В	D
	Reg. 3	В	В	D	D
	Reg. 4	В	В	C	Α

H₂: (Al menos) Una estudiante entre Ramo-

- na v Sofía no sacó ninguna C
- H₃: (Al menos) Una estudiante entre Sofía y Tamara no sacó ninguna B
- H₄: Tamara sacó la misma nota que Úrsula en (exactamente) 2 controles
- H₅: Úrsula y Ramona no sacaron la misma nota en ningún control

1. Analizando H₄ y H₁, Tamara y Úrsula corresponden o bien a los Registros 1 y 2 (en algún orden), o bien a los Registros 3 y 4 (en algún orden). Si corresponden a los Registros 3 y 4, entonces, las otras dos estudiantes —Ramona y Sofía— corresponden a los otros 2 registros —Registros 1 y 2—, lo que es imposible porque contradice H₂. Por lo tanto, Tamara y Úrsula corresponden a los Registros 1 y 2 (en algún orden).

		C 1	C2	C3	C4
	Reg. 1	С	C	С	С
H ₁ :	Reg. 2	C	C	В	D
	Reg. 3	В	В	D	D
	Reg. 4	В	В	C	Α

H₂: (Al menos) Una estudiante entre Ramo-

na y Sofía no sacó ninguna C

 H_3 : (Al menos) Una estudiante entre Sofía y Tamara no sacó ninguna B

H₄: Tamara sacó la misma nota que Úrsula en (exactamente) 2 controles

H₅: Úrsula y Ramona no sacaron la misma nota en ningún control

 Como Tamara y Úrsula corresponden a los Registros 1 y 2 (en algún orden), Ramona y Sofía corresponden a los Registros 3 y 4 (en algún orden), y por lo tanto sacaron dos B's cada una.

		C1	C2	C 3	C4
	Reg. 1	С	С	С	С
H ₁ :	Reg. 2	C	C	В	D
	Reg. 3	В	В	D	D
	Reg. 4	В	В	C	Α

H₂: (Al menos) Una estudiante entre Ramo-

na y Sofía no sacó ninguna C

- H₃: (Al menos) Una estudiante entre Sofía y Tamara no sacó ninguna B
- H₄: Tamara sacó la misma nota que Úrsula en (exactamente) 2 controles
- H₅: Úrsula y Ramona no sacaron la misma nota en ningún control

3. Ahora, analizando H_3 y H_1 , el único registro que no tiene ninguna B es el Registro 1. Y como Sofía tiene 2 B's [ver 2], Tamara debe corresponder al Registro 1.

		C1	C2	C 3	C4
	Reg. 1 (T)	С	С	С	С
H ₁ :	Reg. 2	C	C	В	D
	Reg. 3	В	В	D	D
	Reg. 4	В	В	С	Α

H₂: (Al menos) Una estudiante entre Ramo-

na y Sofía no sacó ninguna C

 H_3 : (Al menos) Una estudiante entre Sofía y Tamara no sacó ninguna B

H₄: Tamara sacó la misma nota que Úrsula en (exactamente) 2 controles

H₅: Úrsula y Ramona no sacaron la misma nota en ningún control

4. Como Tamara y Úrsula corresponden a los Registros 1 y 2 (en algún orden) [ver 1], y Tamara corresponde al Registro 1 [ver 3], entonces Úrsula corresponde al Registro 2.

		C1	C2	C3	C4
	Reg. 1 (T)	С	С	С	С
H ₁ :	Reg. 2 (U)	C	C	В	D
	Reg. 3	В	В	D	D
	Reg. 4 (R)	В	В	C	Α

H₂: (Al menos) Una estudiante entre Ramo-

- na y Sofía no sacó ninguna C
- H₃: (Al menos) Una estudiante entre Sofía y Tamara no sacó ninguna B
- H₄: Tamara sacó la misma nota que Úrsula en (exactamente) 2 controles
- H₅: Úrsula y Ramona no sacaron la misma nota en ningún control

- 5. Combinando esto último con H_5 , y viendo en H_1 que el único registro que no tiene ninguna nota en común con el Registro 2 (de Úrsula) es el Registro 4, podemos concluir que Ramona corresponde al Registro
 - 4. Por lo tanto, Ramona fue la estudiante que sacó la unica A.

si Tamara y Úrsula corresponden a los Registros 3 y 4 [razonamiento] situación que es imposible (porque contradice H2) Tamara y Úrsula no corresponden a los Registros 3 y 4

si Tamara y Úrsula corresponden a los Registros 3 y 4 [razonamiento] situación que es imposible (porque contradice H2)
Tamara y Úrsula no corresponden a los Registros 3 y 4

Para probar la negación de un enunciado, suponemos "temporalmente" que es cierto (razonamiento hipotético), y derivamos una contradicción.

Tamara corresponde al Registro 1 Úrsula corresponde al Registro 2

Tamara corresponde al Registro 1 y Úrsula corresponde al Registro 2

$$\frac{\alpha \qquad \beta}{\alpha \wedge \beta}$$

Para probar la conjunción de dos enunciados, hay que probar cada uno de ellos.

Ramona y Sofía sacaron dos B's cada una Ramona sacó dos B's

$$\frac{\alpha \wedge \beta}{\alpha}$$
 $\frac{\alpha \wedge \beta}{\beta}$

De la conjunción de dos enunciados podemos derivar cada uno de ellos individualmente.

Si Ramona corresponde al Registro 4, entonces Ramona sacó la única A Ramona corresponde al Registro 4

Ramona sacó la única A

$$\frac{\alpha \to \beta \qquad \alpha}{\beta}$$

Modus ponens: si tenemos una prueba de un condicional y de su antecedente, podemos derivar su consecuente.

- Cada regla está asociada a un operador particular. Se nombran de acuerdo a la posición que ocupa el operador en la regla.
- Las reglas de la primera línea introducen el operador (¬ y ∧, resp.)
 en la conclusión de la regla. Se llaman reglas de introducción.
- Las reglas de la segunda línea eliminan el operador (\land y \rightarrow , resp.) que aparece en las premisas. Se llaman reglas de eliminación.