

University of Tartu, Institute of Computer Science

Course: Introduction to Intelligent Transportation Systems

Project:

Automatic Plate Number Recognition (APNR)

Student:

Leonid Dashko

APNR: STEPS #1-5

- 1) Load image
- 2) Apply *blur filter* (to remove noise)
- 3) Convert blurred image to grayscale
- Apply Sobel filter to find vertical edges (car plates have a high density of vertical lines)
- 5) Apply *threshold with Ostu's Binarization* (Ostu's binarization will automatically calculate optimal threshold from image histogram)

Original image

Blurred image

Grayscale image

Sobel

Threshold image

APNR: STEP #6 (Morphological filters in OpenCV)

6) Then I created a rectangular mask of size of 17x3 and applied "closing" filter (shown on the right) to detect plate number more clearly

APNR: STEPS #7-9

- 7) Find and fetch contours of possible plates
- 8) Validate contours and clear out those, that can't be potential plate numbers
 - Is white color dominant?
 - Rotated not more than 15 degrees
 - In Europe, car plate size: 52x11, aspect 4,7272
 - Define min && max area of plate number
- 9) After (8), apply "dilate" filter and threshold to validated contours to get numbers and characters

APNR: STEP #9 in details

APNR: STEP #10 (parse plate number from image)

10) Apply Tesseract to extract plate number as a text.

Tesseract is an optical character recognition (OCR) engine sponsored by Google

APNR: Final Result

Thank you for attention!