Metody uzyskiwania adresu IP

RARP, BOOTP, DHCP

Skąd dostać adres?

- Część sieciowa:
 - Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca.
 - W przeciwnym przypadku numer sieci dostajemy od
 - Dostawcy Internetowego (Internet Service Provider) lub
 - Kiedyś **IANA** (*ang. Internet Assigned Numbers Authority*) obecnie **ICANN** (*ang. The Internet Corporation for Assigned Names and Numbers*).
- Część hosta:
 - numerem hosta zarządzamy sami (administrator)

Skąd dostać adres?

- IANA (ang. Internet Assigned Numbers Authority):
 - Powstała w celu zarządzania nazwami domen i adresami IP w sieci Internet. Obecnie przyznawaniem adresów IP oraz zarządzaniem domenami zajmuje się ICANN (której częścią jest IANA). IANA zajmuje się tylko domenami najwyższego poziomu oraz ogólnym nadzorem nad DNS.
- ICANN (ang. The Internet Corporation for Assigned Names and Numbers):
 - Jest prywatną organizacją non-profit, której rząd USA przekazał czasowo prawo nadzoru nad systemem DNS, przydziałem puli adresów IPv4 i IPv6 (dla tzw. Regional Internet Registries RIR) oraz rejestracją numerów portów.

Skąd dostać adres?

- Regional Internet Registry (RIR):
 - African Network Information Center (AFRINIC) Afryka,
 - American Registry for Internet Numbers (ARIN) USA, Kanada, część Karaibów i Antarktyda,
 - Asia-Pacific Network Information Centre (APNIC) Azja,
 Australia, Nowa Zelandia oraz kraje sąsiadujące,
 - Latin America and Caribbean Network Information Centre (LACNIC) – Ameryka Południowa oraz cześć Karaibów,
 - Réseaux IP Européens Network Coordination Centre (RIPE NCC) – Europa, Rosja, Bliski Wschód oraz Azja Centralna.

Wpisy statyczne

- Ręczne przypisywanie adresów IP wszystkim urządzeniom:
 - metoda najbardziej zrozumiała
 - nieskalowalna
 - nieelastyczna
 - bardzo podatna na błędy

RARP

- Reverse Adres Resolution Protocol RFC 903:
 - wykorzystana ramka formatu ARP (broadcast, bez nagłówka IP!),
 - w sieci lokalnej muszą być <u>serwery RARP</u> (podstawowy oraz ewentualnie rezerwowe).

RARP - zasada działania

- Urządzenie, które nie zna swojego adresu IP wysyła zapytanie do serwera RARP posiadającego wpis odwzorowania pomiędzy adresami IP hostów pracujących w sieci a ich adresami MAC.
- Urządzenie nie zna adresu MAC serwera RARP, więc kieruje zapytanie do wszystkich hostów (broadcast).
- Urządzenie identyfikuje się u serwera swoim adresem MAC (zapisany na karcie sieciowej)

Serwery RARP

- Serwer odpowiada nadawcy zapytania RARP wypełniając pole adresu odbiorcy i kierując odpowiedź bezpośrednio do maszyny, która wysłała zapytanie.
- Komunikacja odbywa się w ramach jednej sieci fizycznej.
- W sieci lokalnej działa co najmniej jeden serwer RARP (mogą być zapasowe!)

BOOTP

- Wady RARP-a
 - odpowiedź zawiera bardzo mało informacji; słabe wykorzystanie pasma (28/46 bajtów)
 - zasięg serwera ograniczony do jednej sieci
- BOOTstrap Protocol RFC 951:
 - za pomocą jednego komunikatu pozwala uzyskać informację na temat m.in. adresu IP komputera, adresu routera, adresu serwera z kodem startowym, maski, adresów serwerów wydruku itp.
 - używa protokołu IP (UDP)

BOOTP

- Sposób działania → analogicznie do RARP:
 - Zapytanie wysyłane jest na adres 255.255.255.255
 - Serwer przekazuje odpowiedź
 - Odpowiedzialnym za niezawodność połączenia jest klient (retransmisje).
- Odpowiedź wysyłana jest bezpośrednio do hosta lub rozgłaszana
 - jeśli chcemy wysłać do hosta bezpośrednio, to najpierw wysyłamy zapytanie ARP o jego adres MAC
 - host nie zna swojego adresu IP (właśnie o niego pyta) więc nie odpowiada na ARP-a :-(
 - Musimy zrobić wpis 'ręcznie' lub odpowiadać na adres rozgłoszeniowy

Retransmisja w BOOTP

- Odpowiedzialnym za niezawodność połączenia jest klient.
- Stosuje mechanizmy timeout-u i retransmisji.
 - Wysyła prośbę i uruchamia zegar. Po upływie timeout-u wysyła prośbę ponownie.
 - Czasy retransmisji są dobierane tak, by uniknąć równoczesnych transmisji.
 - Pierwsze żądanie wysyłane jest po upływie losowego czasu oczekiwania -> uniknięcie kolizji w sytuacji zaniku napięcia.
 - Każde następny czas oczekiwania jest wartością losową $t \in <0; max> s$, gdzie $max=2^{n}(n+1)$, n-numer próby. Jeśli max>60s to n=1.

Format komunikatu BOOTP

0		8	16	24	31	
	operacia	typ sprzetu	dł adr. sprz.	etapy		
	identyfikator transakcji					
	sekı	undy		ywane		
	adres IP klienta					
	twój adres IP					
	adres IP serwera					
	adres IP routera					
	adres sprzętowy klienta (16 oktetów)					
	nazwa węzła serwera (64 oktety)					
	nazwa pliku startowego (128 oktetów)					
	dane specyficzne dla firmy (64 oktety)					

Format komunikatu BOOTP

0		8	16	24	31
	operacja	typ sprzętu	dł adr. sprz.	etapy	

- Operacja prośba (1), odpowiedź (2)
- typ sprzętu, długość adresu sprzętowego: znaczenie jak w ARP. Ethernet: 1, 6
- etapy: Klient umieszcza 0. Jeśli serwer odbierze i przekaże do innego serwera to zwiększa licznik o 1.

Format komunikatu BOOTP

- Identyfikator transakcji pozwala na powiązanie odpowiedzi z wysłanym żądaniem.
- Sekundy liczba sekund od momentu wystartowania klienta

Format komunikatu BOOTP

0	8	16	24	31	
adres IP klienta					
		twój adres IP			
	a	dres IP serwera			
		adres IP routera			
adres sprzętowy klienta (16 oktetów)					
nazwa węzła serwera (64 oktety)					
nazwa pliku startowego (128 oktetów)					

- Klient wypełnia wszystko co zna
 - adres IP klienta: swój adres IP lub 0 (protokół może być także używany przez klientów którzy znają już swój adres IP np. w celu uzyskania pliku startowego i w takiej sytuacji w polu adres IP klienta podają swój adres)
 - jeśli pole adres IP klienta jest równe 0 wtedy w odpowiedzi serwer odsyła klientowi jego adres IP umieszczony w polu twój adres IP
 - adres IP serwera/nazwa serwera: serwer z którego chce uzyskać informacje startowe lub 0
 - nazwa pliku startowego (obraz systemu): swoje preferencje lub 0

Format komunikatu BOOTP

- Pole opcji pozwala na przekazywanie przez serwer dodatkowych informacji.
 - Pierwsze 4 bajty (*magic cookie*) określają format reszty. np. dla 99.130.83.99 (standardowy format) reszta składa się z listy pozycji z których każda ma postać:
 - np.: Kod (1 bajt) Dł (1 bajt) Wartość
 - 1/4/maska
 - 2/4/czas
 - 3/4N/adresy N routerów
 - 9/4N/adresy serwerów wydruku
 - itd

BOOTP – relay agents

- Serwer BOOTP może obsługiwać wiele sieci wykorzystując routery działające jako relay-agents
 - router odbiera zapytanie BOOTP i wysyła go do znanego sobie serwera BOOTP unicastem,
 - odpowiedź wraca do routera, a nie do klienta,
 - router przekazuje odpowiedź do hosta pytającego.

Ograniczenia RARP i BOOTP

- RARP i BOOTP zostały zaprojektowane do systemów, w których większość węzłów ma stałe podłączenie do sieci
- W obydwu serwerach należy ręcznie wprowadzać informacje o skojarzeniu adresu MAC z pozostałymi informacjami

Ograniczenia RARP i BOOTP

- RARP i BOOTP zostały zaprojektowane do systemów, w których większość węzłów ma stałe podłączenie do sieci
- W obydwu serwerach należy ręcznie wprowadzać informacje o skojarzeniu adresu MAC z pozostałymi informacjami

 \rightarrow

Sieć klasy C: 300 osób pracujących w grupach po 30
 — problem!!!

DHCP

- Dynamic Host Configuration Protocol
- RFC 2131
- Serwerowi DHCP jest przyznana pula adresów.
- Klient komunikuje się z serwerem i otrzymuje jeden z tych adresów (z puli lub wpisu statycznego).
- Adres jest przyznawany na pewien czas ustalany administracyjnie, zależny od lokalnych potrzeb
 <u>dzierżawa'</u> (ang. *lease*)
- Autokonfiguracja może być ograniczona administracyjnie, np. administrator tworzy wpisy statyczne jak dla BOOTP

BOOTP a DHCP

- Obydwa protokoły pracują w architekturze klient-serwer.
- Używają portów 67 (request) i 68 (reply) UDP

BOOTP: DHCP:

- przypisania statyczne,

- przypisania stałe,

- podst. 4 parametry

- przypisania dynamiczne,

- 'dzierżawa' *,

- ponad 30 parametrów (IP, maska, brama, DNS). (WINS, nazwa domeny...).

- DHCP przypisania:
 - ręczne administrator ustala jaki adres ma otrzymać klient (tak jak w BOOTP),
 - automatyczne gdy komputer podłącza się po raz pierwszy do sieci serwer DHCP przypisuje mu adres IP, przy kolejnych podłączeniach klient otrzymuje zawsze ten sam
 - Dynamiczne serwer "dzierżawi" klientowi adres IP z określonej puli adresów.

Format komunikatu DHCP

- Podobne do BOOTP. Niektóre pola mają inne znaczenie.
- Rodzaj komunikatu przekazywany jest w opcjach:

Kod (1 bajt)	Dł (1 bajt)	Wartość
1	1	DHCPDISCOVER
2	1	DHCPOFFER
3	1	DHCPREQUEST
itd	1	DHCP

Format komunikatu DHCP

0	8	_16	_24	31	
operacja	typ sprzętu	dł adr. sprz.	etapy		
identyfikator transakcji (XID)					
sekı	ındy	flagi			
adres IP klienta (CIADDR)					
twój adres IP (YIADDR)					
adres IP serwera (SIADDR)					
adres IP routera (GIADDR)					
adres sprzętowy klienta (CHADDR)					
nazwa węzła serwera (SNAME)					
nazwa pliku startowego (FILENAME)					
opcje DHCP					

- Większość pól komunikatu DHCP jest taka sama jak w BOOTP.
- Zamiast pola nieużywane występuje pole znaczniki (flagi). Nadanie pierwszemu bitowi tego
 pola wartości 1 oznacza że klient prosi o rozgłoszenie odpowiedzi (zazwyczaj jest unicast).
- Pole opcji ma taki sam format jak w BOOTP i uwzględnia wszystkie opcje używane w tamtym protokole. Dodatkowe opcje w DHCP umożliwiają m.in. określenie typu komunikatu DHCP (prośba o przydział adresu, ...)

DHCP — diagram stanów

- Klient rozgłasza prośbę DHCP poprzez ograniczony broadcast (DHCP DISCOVER)
- Jeśli po wysłaniu prośby klient nie dostanie odpowiedzi, ponawia prośbę.
- Serwery DHCP oferują w sieci adresy IP (*DHCP Offer*)
- Klient negocjuje z odpowiednim serwerem DHCP (jak już rozpoznał dostępne serwery DHCP) wypożyczenie (dzierżawę) wybranego adresu IP (DHCP Request).
- Adres jest dzierżawiony przez serwer na pewien ustalony czas (od serwera *DHCP Acknowledge,* klient konfiguruje interfejs sieciowy).
- Pod koniec czasu wynajmu klient musi albo wynegocjować przedłużenie czasu wynajmu albo zwrócić adres IP.

DHCP — diagram stanów

- W tle pracują dwa zegary T1 odmierza połowę czasu użytkowania, zaś T2 – 87,5% pełnego czasu użytkowania.
- Staranie o przedłużenie wynajmu adresu IP rozpoczynane jest po upływie 50% czasu (T1). Klient wysyła do serwera prośbę o przedłużenie dzierżawy obecnie używanego adresu IP. Serwer może się zgodzić lub nie.
- Jeśli serwer DHCP nie wyrazi zgody na przedłużenie dzierżawy klient musi przestać używać adres IP i rozpocząć procedurę uzyskiwania nowego adresu IP.
- Jeśli klient wysłał prośbę o przedłużenie dzierżawy ale nie otrzymał odpowiedzi od serwera to po upływie 87,5% czasu (T2) dzierżawy zakłada że serwer jest nieosiągalny i stara się skontaktować z innym serwerem DHCP w sieci lokalnej w celu potwierdzenia dzierżawy tego adresu.

DHCP — diagram stanów

- W przypadku kiedy klient nie uzyska żadnej odpowiedzi przed upływem czasu dzierżawy to musi przestać używać adresu IP i rozpocząć starania o uzyskanie nowego adresu IP.
- Przy ponownym dołączeniu do sieci klient może poprosić o przydzielenie tego samego adresu IP (jeśli go zapamiętał).
- Dzierżawę adresu IP klient można zakończyć przed czasem wynajmu.

DHCP relay - działanie

- Klient wysyła zapytanie DHCP, które przechwytuje DHCP relay-agent na ruterze.
- DHCP relay uzupełnia pole <u>GIADDR</u> (gateway).
- Przekazuje zapytanie do serwera(ów) (unicast), a następnie odpowiedź do klienta.