STATS 217: Introduction to Stochastic Processes I

Lecture 4

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.
- Generally, let the generation k bacteria be b_1, \ldots, b_k . Then, b_i gives birth to ξ_i bacteria where ξ_1, \ldots, ξ_k are i.i.d. copies of ξ .

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.
- Generally, let the generation k bacteria be b_1, \ldots, b_k . Then, b_i gives birth to ξ_i bacteria where ξ_1, \ldots, ξ_k are i.i.d. copies of ξ .
- What is the probability that the bacteria population goes extinct?

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.
- Generally, let the generation k bacteria be b_1, \ldots, b_k . Then, b_i gives birth to ξ_i bacteria where ξ_1, \ldots, ξ_k are i.i.d. copies of ξ .
- What is the probability that the bacteria population goes extinct?
- This problem was studied by Galton and Watson in relation to the propagation of last names in Victorian England.

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

• $Z_0 = 1$,

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

- $Z_0 = 1$,
- $Z_1 = \xi_{0,1}$,

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

- $Z_0 = 1$,
- $Z_1 = \xi_{0,1}$,
- $Z_2 = \sum_{i=1}^{Z_1} \xi_{1,i}, \ldots$

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

- $Z_0 = 1$,
- $Z_1 = \xi_{0,1}$,
- $Z_2 = \sum_{i=1}^{Z_1} \xi_{1,i}, \ldots$
- $Z_k = \sum_{i=1}^{Z_{k-1}} \xi_{k-1,i}$.

Note that if $Z_i=0$ for some $i\geq 1$, then $Z_j=0$ for all $j\geq i$. This corresponds to the extinction of the population.

3 / 15

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

- $Z_0 = 1$,
- $Z_1 = \xi_{0,1}$,
- $Z_2 = \sum_{i=1}^{Z_1} \xi_{1,i}, \ldots$
- $Z_k = \sum_{i=1}^{Z_{k-1}} \xi_{k-1,i}$.

Note that if $Z_i=0$ for some $i\geq 1$, then $Z_j=0$ for all $j\geq i$. This corresponds to the extinction of the population.

Formally, we say that 0 is an **absorbing state** for the process $(Z_n)_{n>0}$.

3 / 15

- We have a branching process $(Z_n)_{n\geq 0}$ with **offspring distribution** ξ .
- We are interested in the probability that the population survives i.e.

$$\mathbb{P}[Z_n \geq 1 \quad \forall n].$$

- We have a branching process $(Z_n)_{n\geq 0}$ with **offspring distribution** ξ .
- We are interested in the probability that the population survives i.e.

$$\mathbb{P}[Z_n \geq 1 \quad \forall n].$$

ullet Trivial case: Suppose $\mathbb{P}[\xi \geq 1] = 1$. Then, $\mathbb{P}[Z_n \geq 1 \quad \forall n] = 1$.

4 / 15

- We have a branching process $(Z_n)_{n\geq 0}$ with **offspring distribution** ξ .
- We are interested in the probability that the population survives i.e.

$$\mathbb{P}[Z_n \geq 1 \quad \forall n].$$

- Trivial case: Suppose $\mathbb{P}[\xi \geq 1] = 1$. Then, $\mathbb{P}[Z_n \geq 1 \quad \forall n] = 1$.
- Hence, we may assume that for all integers $k \ge 0$,

$$\mathbb{P}[\xi=k]=:p_k$$

with $0 < p_0 < 1$.

Lecture 4 STATS 217 4 / 15

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

• $\mathbb{E}[Z_0] = 1$.

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

- $\mathbb{E}[Z_0] = 1$.
- $\mathbb{E}[Z_1] = \mathbb{E}[\xi_{0,1}] = \mu$.

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

- $\mathbb{E}[Z_0] = 1$.
- $\mathbb{E}[Z_1] = \mathbb{E}[\xi_{0,1}] = \mu$.

•

$$\mathbb{E}[Z_2] = \mathbb{E}\left[\sum_{i=1}^{Z_1} \xi_{1,i}\right]$$

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

- $\mathbb{E}[Z_0] = 1$.
- $\mathbb{E}[Z_1] = \mathbb{E}[\xi_{0,1}] = \mu$.

•

$$\mathbb{E}[Z_2] = \mathbb{E}\left[\sum_{i=1}^{Z_1} \xi_{1,i}\right]$$

$$= \sum_{z \ge 0} \mathbb{E}\left[\sum_{i=1}^{z} \xi_{i,1}\right] \mathbb{P}[Z_1 = z]$$

$$= \sum_{z \ge 0} z \mu \mathbb{P}[Z_1 = z]$$

$$= \mu \sum_{z \ge 0} z \mathbb{P}[Z_1 = z]$$

$$= \mu \cdot \mathbb{E}[Z_1] = \mu^2.$$

5 / 15

• Similarly, $\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$.

- Similarly, $\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$.
- \bullet This shows that if $\mu<$ 1, then with probability 1, the population becomes extinct.

- Similarly, $\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$.
- \bullet This shows that if $\mu <$ 1, then with probability 1, the population becomes extinct.
- ullet Indeed, if $\mu < 1$ (this is called the **subcritical case**), then

$$\mathbb{P}[Z_n \geq 1] \leq \mathbb{E}[Z_n] = \mu^n \to 0.$$

- Similarly, $\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$.
- ullet This shows that if $\mu <$ 1, then with probability 1, the population becomes extinct.
- ullet Indeed, if $\mu < 1$ (this is called the **subcritical case**), then

$$\mathbb{P}[Z_n \ge 1] \le \mathbb{E}[Z_n] = \mu^n \to 0.$$

- What about the case when $\mu > 1$?
- If $\mu=1$, then $\mathbb{E}[Z_n]=1$ and if $\mu>1$, then $\mathbb{E}[Z_n]\to\infty$, but this doesn't say anything about the probability of survival.

ullet To analyse the case $\mu \geq 1$, we will use first step analysis.

- ullet To analyse the case $\mu \geq 1$, we will use first step analysis.
- ullet Let ho denote the probability that the population eventually dies out so that

$$\rho=\mathbb{P}[Z_n=0 \text{ for some } n\geq 1].$$

- To analyse the case $\mu \geq 1$, we will use first step analysis.
- ullet Let ho denote the probability that the population eventually dies out so that

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

• Suppose that the bacterium b in generation 0 has k children b_1, \ldots, b_k . Then, the population dies out if and only if the subpopulations starting at b_1, \ldots, b_k die out. Moreover, the probability of each of these subpopulations dying out is also ρ .

Lecture 4 STATS 217 7 / 15

• Therefore,

$$\rho = \sum_{k=0}^{\infty} \mathbb{P}[\xi_{0,1} = k] \rho^{k} = \sum_{k=0}^{\infty} p_{k} \rho^{k} = \phi(\rho),$$

where

$$\phi(z) := \sum_{k=0}^{\infty} p_k z^k$$

is the **generating function** of $(p_k)_{k\geq 0}$.

8 / 15

• Therefore,

$$\rho = \sum_{k=0}^{\infty} \mathbb{P}[\xi_{0,1} = k] \rho^{k} = \sum_{k=0}^{\infty} p_{k} \rho^{k} = \phi(\rho),$$

where

$$\phi(z) := \sum_{k=0}^{\infty} p_k z^k$$

is the **generating function** of $(p_k)_{k>0}$.

 So, we see that the probability of extinction is a fixed point of the generating function i.e. a solution of

$$\rho = \phi(\rho)$$
.

We saw that the probability of extinction is a solution of

$$\rho = \phi(\rho) = \sum_{k>0} p_k \rho^k.$$

• We saw that the probability of extinction is a solution of

$$\rho = \phi(\rho) = \sum_{k>0} p_k \rho^k.$$

Since

$$\phi(1)=\sum_{k\geq 0}p_k=1,$$

we see that 1 is always a solution of $\rho = \phi(\rho)$.

We saw that the probability of extinction is a solution of

$$\rho = \phi(\rho) = \sum_{k>0} p_k \rho^k.$$

Since

$$\phi(1)=\sum_{k\geq 0}p_k=1,$$

we see that 1 is always a solution of $\rho = \phi(\rho)$.

• However, this does not mean that the extinction probability is 1, since there may be other solutions to $\rho = \phi(\rho)$.

9 / 15

Recall that
$$\phi(z) = \sum_{k>0} p_k z^k$$
.

ullet ϕ is non-decreasing on [0,1].

Recall that
$$\phi(z) = \sum_{k>0} p_k z^k$$
.

- ullet ϕ is non-decreasing on [0,1].
- ullet ϕ is continuous on [0,1].

Recall that $\phi(z) = \sum_{k>0} p_k z^k$.

- ullet ϕ is non-decreasing on [0,1].
- ullet ϕ is continuous on [0,1].
- $\phi(0) = p_0 \in (0,1)$.

Recall that
$$\phi(z) = \sum_{k>0} p_k z^k$$
.

- ullet ϕ is non-decreasing on [0,1].
- ullet ϕ is continuous on [0,1].
- $\phi(0) = p_0 \in (0,1)$.
- $\phi(1) = 1$.

Recall that
$$\phi(z) = \sum_{k \ge 0} p_k z^k$$
.

- ullet ϕ is non-decreasing on [0,1].
- ullet ϕ is continuous on [0,1].
- $\phi(0) = p_0 \in (0,1)$.
- $\phi(1) = 1$.
- $\bullet \ \phi'(z) = \sum_{k \ge 1} k p_k z^{k-1}.$

Recall that
$$\phi(z) = \sum_{k>0} p_k z^k$$
.

- ullet ϕ is non-decreasing on [0,1].
- ullet ϕ is continuous on [0,1].
- $\phi(0) = p_0 \in (0,1)$.
- $\phi(1) = 1$.
- $\bullet \ \phi'(z) = \sum_{k>1} k p_k z^{k-1}.$
- Hence, $\phi'(1) = \sum_{k \geq 1} k p_k = \mu$.

Recall that
$$\phi(z) = \sum_{k>0} p_k z^k$$
.

- ullet ϕ is non-decreasing on [0,1].
- ullet ϕ is continuous on [0,1].
- $\phi(0) = p_0 \in (0,1)$.
- $\phi(1) = 1$.
- $\bullet \ \phi'(z) = \sum_{k>1} k p_k z^{k-1}.$
- Hence, $\phi'(1) = \sum_{k > 1} k p_k = \mu$.
- $\phi''(z) = \sum_{k \ge 2} k(k-1)p_k z^{k-2} > 0 \text{ for } z \in (0,1].$

Recall that
$$\phi(z) = \sum_{k>0} p_k z^k$$
.

- ullet ϕ is non-decreasing on [0,1].
- ullet ϕ is continuous on [0,1].
- $\phi(0) = p_0 \in (0,1)$.
- $\phi(1) = 1$.
- $\bullet \ \phi'(z) = \sum_{k>1} k p_k z^{k-1}.$
- Hence, $\phi'(1) = \sum_{k > 1} k p_k = \mu$.
- $\phi''(z) = \sum_{k \ge 2} k(k-1)p_k z^{k-2} > 0$ for $z \in (0,1]$.
- ullet Hence, ϕ is strictly convex on (0,1].

Let
$$g(\rho) = \phi(\rho) - \rho$$
. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

Let
$$g(\rho) = \phi(\rho) - \rho$$
. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

• We have $g(0) = p_0 \in (0,1)$, g(1) = 0.

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

- We have $g(0) = p_0 \in (0,1)$, g(1) = 0.
- $g''(\rho) = \phi''(\rho) > 0$ for $\rho \in (0, 1]$.

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

- We have $g(0) = p_0 \in (0,1)$, g(1) = 0.
- $g''(\rho) = \phi''(\rho) > 0$ for $\rho \in (0, 1]$.
- $g'(\rho) = \phi'(\rho) 1$.

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

- We have $g(0) = p_0 \in (0,1)$, g(1) = 0.
- $g''(\rho) = \phi''(\rho) > 0$ for $\rho \in (0, 1]$.
- $g'(\rho) = \phi'(\rho) 1$.
- So, we have two cases:
 - If $\phi'(1) \le 1$, then $g'(1) \le 0$ and $g'(\rho) < 0$ for all $\rho \in [0,1)$. Hence, the only solution of $g(\rho) = 0$ is at $\rho = 1$.

Lecture 4 STATS 217 11 / 15

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

- We have $g(0) = p_0 \in (0,1)$, g(1) = 0.
- $g''(\rho) = \phi''(\rho) > 0$ for $\rho \in (0, 1]$.
- $g'(\rho) = \phi'(\rho) 1$.
- So, we have two cases:
 - If $\phi'(1) \le 1$, then $g'(1) \le 0$ and $g'(\rho) < 0$ for all $\rho \in [0,1)$. Hence, the only solution of $g(\rho) = 0$ is at $\rho = 1$.
 - If $\phi'(1) > 1$, then g'(1) > 0. So, there exists exactly one $\rho \in (0,1)$ such that $g(\rho) = 0$.

Critical case

• We know that the extinction probability ρ is a solution of $\phi(\rho) = \rho$.

Critical case

- We know that the extinction probability ρ is a solution of $\phi(\rho) = \rho$.
- We also saw that when $\mu = \phi'(1) = 1$, this equation has only one solution: $\rho = 1$.

Critical case

- We know that the extinction probability ρ is a solution of $\phi(\rho) = \rho$.
- We also saw that when $\mu = \phi'(1) = 1$, this equation has only one solution: $\rho = 1$.
- Therefore, if $\mu=1$ (this is called the **critical case**), we see that $\rho=1$.

• It remains to deal with the case when $\mu>1$ (this is called the **supercritical** case).

- It remains to deal with the case when $\mu>1$ (this is called the **supercritical** case).
- In this case, $\phi(\rho) = \rho$ has two solutions: $\rho^* < 1$ and 1.
- We claim that the extinction probability in this case is ρ^* .

- It remains to deal with the case when $\mu > 1$ (this is called the **supercritical** case).
- In this case, $\phi(\rho) = \rho$ has two solutions: $\rho^* < 1$ and 1.
- We claim that the extinction probability in this case is ρ^* .
- To see this, let

$$\rho_n=\mathbb{P}[Z_n=0].$$

- It remains to deal with the case when $\mu > 1$ (this is called the **supercritical** case).
- In this case, $\phi(\rho) = \rho$ has two solutions: $\rho^* < 1$ and 1.
- We claim that the extinction probability in this case is ρ^* .
- To see this, let

$$\rho_n = \mathbb{P}[Z_n = 0].$$

• Then, by first step analysis, we have

$$\rho_n = \sum_{k>0} p_k \rho_{n-1}^k = \phi(\rho_{n-1}).$$

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$
- Since $\rho_0 \leq \rho^*$, it follows that

$$\rho_1 = \phi(\rho_0) \le \phi(\rho^*) = \rho^*.$$

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$
- Since $\rho_0 \leq \rho^*$, it follows that

$$\rho_1 = \phi(\rho_0) \le \phi(\rho^*) = \rho^*.$$

• Iterating this shows that $\rho_n \leq \rho^*$ for all n.

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$
- Since $\rho_0 \leq \rho^*$, it follows that

$$\rho_1 = \phi(\rho_0) \le \phi(\rho^*) = \rho^*.$$

- Iterating this shows that $\rho_n \leq \rho^*$ for all n.
- Therefore,

$$\rho = \lim_{n \to \infty} \mathbb{P}[Z_n = 0] = \lim_{n \to \infty} p_n \le \rho^*.$$

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$
- Since $\rho_0 \leq \rho^*$, it follows that

$$\rho_1 = \phi(\rho_0) \le \phi(\rho^*) = \rho^*.$$

- Iterating this shows that $\rho_n \leq \rho^*$ for all n.
- Therefore,

$$\rho = \lim_{n \to \infty} \mathbb{P}[Z_n = 0] = \lim_{n \to \infty} p_n \le \rho^*.$$

• Finally, since $\rho = \phi(\rho)$, it must be the case that $\rho = \rho^*$.

Summary

Thus, we have established the following theorem.

- Let $(Z_n)_{n\geq 0}$ be a branching process with $Z_0=1$ and common offspring distribution ξ .
- Let $\mu = \mathbb{E}[\xi]$ and let $\phi(z) = \sum_{k \geq 0} \mathbb{P}[\xi = k] z^k$.
- Suppose that $0 < p_0 = \mathbb{P}[\xi = 0] < 1$.
- ullet Let ho be the probability of extinction.
- Then, ρ is the smallest solution of $\phi(z) = z$, $z \in [0,1]$.
- If $\mu \leq 1$, then $\rho = 1$.
- If $\mu > 1$, then $\rho < 1$.