

BERT dans la classification multi-classes

Classification et extraction de données dans des documents administratifs

Objectifs:

- Reproduire un BERT base
- Reproduire un Bagging BERT
- Comparer les 2 modèles aux résultats de la thèse

Rappel: Boostrap aggregation (BaggingBERT)

F1-score en fonction du nombre de modèle BERT

$$F1 - score = \frac{2}{\frac{1}{recall} + \frac{1}{precision}}$$

Construction d'un BERT base

Utilisation librairie FARM (basé sur les modèles BERT et la librairie Transformers de HuggingFaces)

• Tokenizer:

Utilise un BERT pré-entraîné adapté à la langue choisie

"bert-based-uncased" - anglais

Processor : gère le dataset

train/test/dev

Metrics: f1-score

Prend le Tokenizer

Construction d'un BERT base

Model : Adaptive Model

Basé sur un BERT pré-entraîné sur l'anglais

• Optimizer : Ajuster les poids et les biais pendant l'entraînement

Prend le modèle learning_rate

• Trainer:

Regroupe Processor + Optimizer

Construction d'un BERT base

• Paramètres utilisé:

batch_size: 32

max_sequence_lenght: 64

learning_rate: 2e-5

embedings_dropout_probability : 0.5

Construction d'un BaggingBERT

- Création d'une dizaine de BERT fine-tune pour les regrouper en 1 seul modèle.
- Boucle sur tous les éléments tokenizer du dataset["test"]
- Comparaison entre la probabilité maximale déjà calculée et la probabilité maximale d'un modèle. Récupération de la classe associée.
- Calcul de l'accuracy, de la précision et du f1_score pour chaque classe.

Construction d'un BaggingBERT

```
accuracy du modéle: 0.648695652173913
Classe 0 :
precision : 0.4876325088339223
F1 score : 0.6456140350877193
Classe 1 :
precision: 0.9561551433389545
F1 score : 0.6517241379310345
```

Comparaison des résultats

MRPC dataset de GLUE

Dataset pour tester la classification de Texte

• BERT - base :

accuracy 0.82

• Bagging BERT:

accuracy 0.65

Model	BERTBase	BagBERT	B2BERT
MRPC	85.29	86.52	87.87
$MNLI_m$	84.39	84.61	85.16
RTE	67.15	71.12	72.92
ECDT	94.54	96.10	96.88
ChnSent	93.00	93.5	94.33
XNLI	77.51	77.63	79.08

Conclusion

Améliorer le modèle Bagging BERT

Utiliser le cloud pour booster les performances (Google Collab)

Prochaine étape : Construire un modèle Boosting BERT

Sources:

Explication de fine-tuning de BERT:

 https://huggingface.co/docs/transformers/main_classes/trai ner

Librairie FARM:

- https://farm.deepset.ai/

Sources:

- [1] Performance en classification de données textuelles des passages aux urgences des modèles BERT pour le français, décembre 2021
- [2] Attention Mechanism, Transformers BERT and GPT: Tutorial and Survey, 2020
- [3] Bagging BERT Models for Robust Aggression Identification, mai 2020
- [4] BoostingBERT Integration Multi-Class Boosting into BERT for NLP Tasks, septembre 2020