

EOSC 350: Environmental, Geotechnical and Exploration Geophysics I

Instructor: Doug Oldenburg

Co-instructor: Seogi Kang

Students

- Geologists?
- Geologic engineers?
- Other EOAS programs?
- P. Geo. or P. Eng.?
- Other?

Instructors

- Doug Oldenburg
 - Director: Geophysical Inversion Facility
 - Room 5194 ESB
 - doug@eos.ubc.ca
- Seogi Kang
 - Postdoctoral Fellow in geophysics
 - Room 4033 ESB
 - sgkang09@gmail.com

Teaching assistants

- Michael Mitchell
 - PhD student in geophysics
 - mmitchel@eoas.ubc.ca

- Thibaut Astic
 - PhD student in geophysics
 - thibaut.astic@gmail.com

First some problems of relevance

Finding Resources

Minerals

Ground Water

Hydrocarbons

Geothermal Energy

Natural Hazards

Volcanoes

Tsunami

Geotechnical engineering

Tunnels

Slope stability

In-mine safety

Environmental

Water contamination

http://www.centennialofflight.gov

Salt water intrusion

Surface or Underground Storage

CO2 sequestration

Industrial Waste Disposal

Aquifer Storage and Recover

What do problems have in common?

 All require ways to see into the earth without direct sampling.

 Geophysics is the only discipline that is devoted to this goal.

Broad overview

- Who uses geophysics?
- How does geophysics work?
- What can geophysics tell us?

Broad overview

What this course is:

Introduction to applied geophysics, focus on what information geophysics can provide and how to approach solving problems with geophysics

What the course is not:

A rigorous theoretical treatment of geophysical methods

Goal:

help you understand how to use and apply geophysics in your professional careers, not turn you into a geophysicist!

Your expectations for this course?

- New knowledge?
 - "Geophysics 101"
 - Some physics, a little math
 - Application-oriented
- New skills?
 - Using geophysical information to make decisions
- Attitudes?
 - Geophysics is not intellectually scary
 - It is fun!

Outline of topics

Foundations:

- Physical properties
- A 7-step framework for applying geophysics

Geophysical surveys (modules):

- Magnetic (magnetic susceptibility)
- Seismic (density, elastic parameters)
- Ground penetrating radar (electrical permittivity)
- DC resistivity (electrical conductivity/resistivity)
- Electromagnetic (electrical conductivity/resistivity)

Emphasis throughout:

- Understand the basics of the surveys.
- Have reasonable expectations for when and a survey should be used and information provided.

Teaching and learning activities

Lecture:

- Presentations by the instructors
- Demos/hands-on practice using interactive apps

Team-based learning (TBL) case history:

- A publication on the use of a geophysical method to solve a practical problem
- Read the paper and answer individual TBL questions as homework; submit your answers online before the team discussion
- Answer team TBL questions as a team and submit worksheets in class

Teaching and learning activities

• Quiz:

- Ten multiple choice questions at the end of each topic are answered individually.
- Same questions are discussed as part of TBL and submitted as a team

Lab:

- Mostly computer-based exercises using interactive apps
- Use the department's computers (get user account from the main office) or your own devices
- Instructed by TA's
- Turn in worksheets before deadlines (assignment)

TBL: App competition

Individual:

- Choose a problem of interest and adopt a 7-step procedure.
- Show how an app can be used
- Projects can be done at any time throughout the year
- Marked as part of Individual TBL

Team:

- Select the "best" project from your team
- Improve it
- Present to class at the end of the term
- Marked as part of group TBL

Contribution to final grade

^{*} Zero grade for missed team activities

Marking

- Individual TBL:
 - multiple choice questions;
 - online form submission

- Individual quiz:
 - multiple choice questions;
 - paper-based bubble sheet

- Team TBL and labs: (short-answer questions; paperbased worksheet)
 - Word grade evaluation
 - No specific comments will be made on papers
 - Answers available after worksheets are evaluated.

Marking: Word-grade evaluation

- Awesome: = 95% (you did the work very well and very clearly understand the material)
- Brilliant:= 80% (did the work and understand all of the concepts)
- Competent: = 65% (you did the work and understand most of the concepts)
- Decent: 50% (you did the work but don't quite understand all the concepts)
- Fall-Short = 0% (you didn't do the work, or only some of it)

Important web links

- Course website
 - http://eosc350.geosci.xyz/en/latest/index.html
- "Textbook"
 - GPG: Geophysics for Practicing Geoscientists
 - http://gpg.geosci.xyz/

- Interactive apps
 - GPG labs

Rules

 Electronic devices are used only for course-related teaching and learning purposes.

 Quizzes, midterm and final exams can be rescheduled individually for medical or emergency reasons.

 Flexibility in attending one of the two lab sessions – contact the TA

Other logistics

- Your 350 ID number
 - First four digits of your student ID/username
 - ID for online submission/announcement

Team

- 7 people per team
- Checkout the 350 website for teams
- Advanced learning opportunities
 - Prep for honors/grad school
 - Want to be a geophysicist
 - Have specific geoscientific problems

A few more examples

Electromagnetics

Profile of measured electrical conductivity over an aquifer

Outcome: physical property values.

Magnetic

Geo-penetrating Radar (GPR)

Seismic data: Echoes of sound energy

Model: locations of interfaces.

Exploration: Magnetics - Raglan deposit

Geological question:

"Are outcrops connected at depth?"

Upcoming activities

- Fri. Sept. 7
 - Lecture on physical properties
- Mon. Sept. 10
 - Lecture on the framework of applied geophysics
- Wed. Sept. 12
 - Quiz: foundations
 - TBL: "A geophysical journey around Ireland"
- Labs on Sept. 10, 11
 - Physical properties of rocks
 - Not a computer lab