

REPLACEMENT SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2
Sheet: 1/64

FIG. IA

FIG. 2

FIG. 3

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6A

FIG. 6G

20-bit ISA

39	19		
10	0	20-bit parallel	Control II Control
0	1	20-bit serial	Control # Control
1	0	40-bit extended	DSP, extensions/Shadow
1	1	20-bit serial	DSP # DSP

FIG. 6B

6-bit operand specifier:

A 6-bit specifier is used in DSP extended instructions to access memory and register operands.

5	4	3	2	1	0
---	---	---	---	---	---

M/R

0	0	ac-page
0	1	gpr:0-r15
1	ptr(r0)to(r15)	off

ereg

GPR

Mem[ptr{0-15}]II PTR[0-15]+=offset1/offset2 Always postupdate

This allows access to data memory, ereg and GPR

- Bit 5=1: Use rX(X:0-7) register to obtain effective memory address and post-modify the
ptr field by one of two possible offsets specified in rX registers.
dmem[ptr], ptr=ptr+offset1, if off=0
ptr=ptr+offset2, if off=1
- Bit 5=0: Access ac-page or GPR

If Bit-4 is set to 0, then bits 3:0 control access to the general-purpose register file (r0-15) or to execution unit registers.

FIG. 6C

4-bit operand specifier:

Memory operands: (rX) specifies an access out of the data memory to the extension unit for the function that needs to be performed. The address for the access is specified in the rX register in the general register file that hold the 14-bit pointer(16K of addressing) to memory, 5-bit signed offset or a 3-bit unsigned offset that can post-modify the address. In addition, each pointer is typed for efficient SIMD processing and includes a permute control for rearranging data elements of a vector on the fly. The “podi” core can deal with 4-element 16-bit real vectors or complex data directly. This ability to manipulate memory data directly reduces the instruction width greatly and allows efficient signal processing.

(rX): Memory Address Registers

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
type	cb	x	permute	offl:(0-7)	off0:(-16 to 15)																									ptr: pointer	

Fig. 6D

For shadow DSP instructions, the 3-bit specifier for operands is defined as follows:

<table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>2</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>1</td><td>1</td></tr> <tr><td>1</td><td>0</td><td>0</td></tr> <tr><td>1</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>1</td><td>0</td></tr> <tr><td>1</td><td>1</td><td>1</td></tr> </table>	2	1	0	0	0	0	0	0	1	0	1	0	0	1	1	1	0	0	1	0	1	1	1	0	1	1	1	EREG1	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>2</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>1</td><td>1</td></tr> <tr><td>1</td><td>0</td><td>0</td></tr> <tr><td>1</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>1</td><td>0</td></tr> <tr><td>1</td><td>1</td><td>1</td></tr> </table>	2	1	0	0	0	0	0	0	1	0	1	0	0	1	1	1	0	0	1	0	1	1	1	0	1	1	1	EREG2
2	1	0																																																							
0	0	0																																																							
0	0	1																																																							
0	1	0																																																							
0	1	1																																																							
1	0	0																																																							
1	0	1																																																							
1	1	0																																																							
1	1	1																																																							
2	1	0																																																							
0	0	0																																																							
0	0	1																																																							
0	1	0																																																							
0	1	1																																																							
1	0	0																																																							
1	0	1																																																							
1	1	0																																																							
1	1	1																																																							
A0		A0																																																							
A1		A1																																																							
T		T																																																							
TR		TR																																																							
SX1		SY1																																																							
SX1s		SY1s																																																							
SX2		SY2																																																							
SX2s		SY2s																																																							

Only the shadow DSP instructions can see the above modified page of execution unit registers.

FIG. 6E

5-bit operand specifier:

The 5-bit specifier includes the 4-bit specifier for general data operands and the special purpose registers. It is used in RISC instructions.

4	3	2	1	0
0	spr:s0-s15			
1	gpr:r0-r15			

SPR	SPR	Intr page	SPR intr page
0	fu-ctl	fu-ctl_I	
1	a-type	a-type_I	
2	ps-ctl	ps-ctl	
3	t-type	t-type	
4	pl-ctl	pl-ctl	
5	cb-ctl	cb-ctl_I	
6	shuffle	shuffle	
7	lo_ptr	lo_ptr	
8	status	status_I	
9	loop-ctl	loop-ctl	
10	pcr	pcr	stack(8)
11	reserved	reserved	
12	reserved	reserved	
13	reserved	reserved	
14	reserved	reserved	

NOTE: All SPR registers are reset to all zeros at power on reset except for the PCR register.

FIG. 6F

REPLACEMENT SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2
Sheet: 10/64

DSP instructions

39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Multiply	1 0 0 PS S' SX SY V/SSA DA Sub-op		
	da=sx*sy	0 0 0	Nop
	da=(sx*sy)+sa	0 0 1	Add
	da=(sx*sa)+sy	0 1 0	Add
	da=(sx*sy)+sa	0 1 1	Sub
	da=(sx*sa)+sy	1 0 0	Sub
	da=min(sx*sy,sa)	1 0 1	Min
	da=min(sx*sa,sy)	1 1 0	Min
	da=max(sx*sy,sa)	1 1 1	Max

Add	1 0 1 PS +/- SX SY V/SSA DA Sub-op		
	da=sx+sy	0 0 0	Nop
	da=sx+sy+sa	0 0 1	Add
	da=sx+sy; sa=sx+sy;	0 1 0	AddSub
	da=(sx+sy)*sa	0 1 1	Mul
	da=-(sx+sy)*sa	1 0 0	MulN
	da=min(sx+sy,sa)	1 0 1	Min
	da=max(sx+sy,sa)	1 1 0	Max
	da=ssum(sa) (sx,sy unused)	1 1 1	CombAdd

Extremum	1 1 0 PS x/n SX SY V/SSA DA Sub-op		
	da=ext(sx,sy)	0 0 0	Nop
	da=ext(sx,sy,sa)	0 0 1	Ext
	da=ext(sx,sa)*sy	0 1 0	Mul
	da=-ext(sx,sa)*sy	0 1 1	MulN
	da=ext(sx,sa)+sy	1 0 0	Add
	da=ext(sx,sa)-sy	1 0 1	Sub
	ext(sa,da) ?1=sx,tr=sy,lcs=lc	1 1 0	amax

type-match	1 1 0 PS 0 SX SY x x x 1 1 1		
	1 1 0 PS 0 x x x x x x x x 1 1 1		

Permute	1 1 0 PS 1 Type SY 0 ereg 1 1 1		
Reserved	1 1 1 PS x SX SY SA DA V/S Sub-op		

FIG. 6H

REPLACEMENT SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 **Docket No.: 42P14037D2**
Sheet: 11/64

Control and specifier Extensions

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

Mul	0	Pred	PL	Sxt	Syt	Rnd	Lt	S'	S'	S'	0	SA	DA	abs	0	0	0	0
-----	---	------	----	-----	-----	-----	----	----	----	----	---	----	----	-----	---	---	---	---

Add	0	Pred	PL	Sxt	Syt	Lt	Sub-ext	0	SA	DA	abs	0	0					
-----	---	------	----	-----	-----	----	---------	---	----	----	-----	---	---	--	--	--	--	--

+/-+/-+/-x
x V/S Rnd Fp
tr/ctl Gx Fp

Nop (uadd)
 Mul/MulN
 Min/Max

Ext	0	Pred	PL	Sxt	Syt	tr-ctl	Gx	Sub-ext	0	SA	DA	abs	0	0			
-----	---	------	----	-----	-----	--------	----	---------	---	----	----	-----	---	---	--	--	--

Lt Fp
Rnd V/S

Add/sub
 Mul

0	Pred	PL	Sxt	Syt		Pctl1	0	ereg	Pctl	0	0						
---	------	----	-----	-----	--	-------	---	------	------	---	---	--	--	--	--	--	--

Type/offset/permute extensions

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

0	Pred	PL	x	Type:SX	Type:SY	0	SA	DA	x	0	1							
0	Pred	PL	Psx	Permute:SX	Permute:SY	0	SA	DA	Psy	1	0							
0	Pred	I/R I/R prX	Offset:SX	Offset:SY	Offset:SY	0	SA	DA	prY	1	1							

Type override
 permute override
 Offset override

Shadow DSP

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

0	Op	PL	Op	SA	ereg1	DA	ereg2	1	SA	DA	Sub-op							
---	----	----	----	----	-------	----	-------	---	----	----	--------	--	--	--	--	--	--	--

nop

1	1	0	PL	0	x	x	x	Rnd	x	x	x	0	SA	DA	1	1	1
---	---	---	----	---	---	---	---	-----	---	---	---	---	----	----	---	---	---

FIG. 6I

Control instructions

		19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
add,sub	L	Pred	0	0	0			RX				RY			!	RZ	+/-	0			
max,min	L	Pred	0	0	0			RX				RY			!	RZ	X/N	1			
Shift	L	Pred	0	0	1			RX				UI4			!	RZ	UI2	R/L			
Logic	L	Pred	0	1	0			RX				RY			RZ		&,	&1			
Mux	L	Pred	0	1	1			RX				RY			RZ		Pd	0			
mov	L	Pred	0	1	1			RX				DZ			Rxt	Dzl	0	0	0	1	
addi	L	Pred	0	1	1			SI4				DZ			x	x	1	0	0	1	
mov2erg	L	Pred	0	1	1			RX				unit	ereq		qd	type	1	0	1		
I.dm	L	Pred	0	1	1			RX				DZ1			DZ2			1	1		
Set4bits	L	Pred	1	0	0			UI4:POS				RY			Rzt		UI4		0		
Set2bits	L	Pred	1	0	0			UI4:POS				RY			Rzt	UI2	0	0	0	1	
Setbit	L	Pred	1	0	0			UI4:POS				RY			Rzt	UI1	UI1	1	0	1	
Movi	L	Pred	1	0	0							SI8			RZ			1	1		
Jmp	L	Pred	1	0	1							SI9			0	PRED	0	0			
Call	L	Pred	1	0	1							SI9			1	PRED	0	0			
Loop	L	Pred	1	0	1			UI5:Lcount				UI5:Lsize			UI2:Lst	0	1				
Jmpi	L	Pred	1	0	1			RX				x	x	x	x	x	0	PRED	1	0	
Calli	L	Pred	1	0	1			RX				x	x	x	x	x	1	PRED	1	0	
Loopi	L	Pred	1	0	1			RX				x		UI5:Lsize		UI2:Lst	1	1			
Test	L	Pred	1	1	0			RX				RY			PZ	=,<,>	0				
Testbit	L	Pred	1	1	0			RX				UI5			PZ	B	0	1			
Andp, orp	L	Pred	1	1	0			Pa		Pb		Pc			PZ	&	1	1			
Load	L	Pred	1	1	1			MX				RZ			Ext	0	0	0			
Store	L	Pred	1	1	1			MZ				RZ			Ext	1	0	0			
eLoad	L	Pred	1	1	1			MX				RY			1	1	1	0	0	0	
eStore	L	Pred	1	1	1			MZ				RY			1	1	1	1	0	0	
Extended	L	Pred	1	1	1										Bits 27:16			1	0		
Logic2	L	Pred	1	1	1			RX				RY/RZ			Rxt	Ryt	&,1,&1,	0	1		
mov-erg	L	Pred	1	1	1			unit	ereq			RZ			qd	Sft	0	1	1		
Crb	L	Pred	1	1	1			RX				RZ			s/m	0	0	1	1	1	
Panty	L	Pred	1	1	1			RX				PZ		IO/E	0	1	0	1	1	1	
Stm	L	Pred	1	1	1			MZ				RX			1	1	0	1	1	1	
Abs	L	Pred	1	1	1			RX				RZ			0	0	1	1	1	1	
Neg	L	Pred	1	1	1			RX				RZ			0	1	1	1	1	1	
Div-step	L	Pred	1	1	1			RX				RZ			1	0	1	1	1	1	
Test&Set	L	Pred	1	1	1			RX				PZ		0	1	1	1	1	1	1	
Reserved	L	Pred	1	1	1							0	0	1	1	1	1	1	1	1	
Return	L	Pred	1	1	1			Pred	I-ctl	0	1	0	1	1	1	1	1	1	1	1	
Zero-ac	L	Pred	1	1	1			ac #		1	1	0	1	1	1	1	1	1	1	1	
eSync	L	Pred	1	1	1			RZ		0	1	1	1	1	1	1	1	1	1	1	
Swi	L	Pred	1	1	1			UI3	0	1	1	1	1	1	1	1	1	1	1	1	
Nop	L	Pred	1	1	1			UI3	1	1	1	1	1	1	1	1	1	1	1	1	

<Bit1,Bits9-6>
 ==UI5 (Shift Amount)
 <Bit3,Bits13-10>==UI5 POS

FIG. 6J

Extended Control

FIG. 6K

REPLACEMENT SHEET

NET EMBODIMENT SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D

Sheet: 14/64

REPLACEMENT SHEET

REF E/ACCELMEN T SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D
Sheet: 15/64

۱۵۳

FIG. 6L-2

FIG. 7

FIG. 8a

FIG. 8b

FIG. 9A

FIG. 9B

Instructions to Instruction
Register 715

REPLACEMENT SHEET

Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2
Sheet: 21/64

FIG. 10

FIG. 11

FIG. 12A

<u>Data Type</u>	<u>SP Configuration</u>
1 x 4 R Bit Range: 39 - 32 31 30 - 28 27 — 0 Guard S Data Zeroes 4 Bits	\approx 1 x 40
1 x 8 R Bit Range: 39 - 32 31 30 - 24 23 — 0 Guard S Data Zeroes 8 Bits	\approx 1 x 40
1 x 16 R Bit Range: 39 - 32 31 30 — 16 15 — 0 Guard S Data Zeroes 16 Bits	\approx 1 x 40
1 x 32 R Bit Range: 39 - 32 31 30 — 0 Guard S Data 32 Bits	\approx 1 x 40
1 x 40 R Bit Range: 39 — 0 Data 40 Bits	\approx 1 x 40
SXA 550 or SYA 554	

FIG. 12B

<u>Data Type</u>	<u>SP Configuration</u>
1 x 4 R	
1 x 8 R	
1 x 16 R	
1 x 32 R	
1 x 40 R	<p style="text-align: center;">or</p> <p style="text-align: center;">SXM 552A - 552B</p> <p style="text-align: center;">SYM 556A - 556B</p>

FIG. 12C

Data Type

SP Configuration

SXA 550A and SXA 550B
 or
 SYA 554A and SYA 554B

FIG. 12D

Data Type

SP Configuration

SXA 550A, SXA 550B, SXA 550C, and SXA 550D
 or
 SYA 554A, SYA 554B, SYA 554C, and SYA 554D

FIG. 12E

<u>Data Type</u>	<u>SP Configuration</u>
1 x 4 C	$\approx 2 \times 16$
1 x 8 C	$\approx 2 \times 16$
1 x 16 C	$\approx 2 \times 16$
1 x 32 C	$\approx 2 \times 16$
1 x 40 C	$\approx 2 \times 16$
SXM 552A and SXM 552B or SYM 556A and SYM 556B	

REPLACEMENT SHEET
**Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT**
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2

FIG. 12F

Data Type

SP Configuration

SXM 552A, SXM 552B, SXM 552C, and SXM 552D

or

SYM 556A, SYM 556B, SYM 556C, and SYM 556D

Operand 1 Data Type:	$N_1 \times S_1 R$
Operand 2 Data Type:	$N_2 \times S_2 R$
Type Matching R:	$\text{Max } (N_1 \text{ or } N_2) \times \text{Max } (S_1 \text{ or } S_2) R$

Fig. 13A

Operand 1 Data Type:	$N_1 \times S_1 C$
Operand 2 Data Type:	$N_2 \times S_2 C$
Type Matching C:	$\text{Max } (N_1 \text{ or } N_2) \times \text{Max } (S_1 \text{ or } S_2) C$

Fig. 13B

Operand 1 Data Type:	$N_1 \times S_1 R$
Operand 2 Data Type:	$N_2 \times S_2 C$
Type Matching R+C:	$\text{Max } (N_1 \text{ or } N_2) \times \text{Max } (S_1 \text{ or } S_2) C$

Fig. 13C

REPLACEMENT SHEET

Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR

BUSES IN AN INTEGRATED CIRCUIT

1st Named Inventor: Ruban Kanapathippillai

Application No.: 10/649,067

Docket No.: 42P14037D2

Sheet: 29/64

	1x16 real	2x16 real	1x16 cmplx	4x16 real	2x16 cmplx	1x32 real	2x32 cmplx	1x32 real	4x32 cmplx	2x32 real	1x40 real	2x40 real	1x40 real	4x40 real	2x40 cmplx
1x16 real	1	2		2	4	4	2	4	4						
2x16 real	2	2													
1x16 cmplx			2												
4x16 real				4											
2x16 cmplx					4										
1x32 real						2									
2x32 real							4								
1x32 cmplx								4							
4x32 real									4						
2x32 cmplx										4					
1x40 real											4				
2x40 real												4			
1x40 real													4		
4x40 real														4	
2x40 real															4

FIG. 14

REPLACEMENT SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2
Sheet: 30/64

	1x16 real	2x16 real	1x16 cmplx	4x16 real	2x16 cmplx	1x32 real	2x32 real	1x32 cmplx	4x32 real	2x32 cmplx	1x40 real	2x40 real	1x40 real	4x40 real	2x40 cmplx
1x16 real	1	2		4		1	4		4		1	2		4	
1x16 real		unit	unit		unit	unit		unit		unit		unit		unit	
2x16 real	2	2				2	2					2			
1x16 cmplx															
4x16 real	4														
2x16 cmplx															
1x32 real	1	2				4			1		2		4		
2x32 real	4	2				unit		unit	2		2		2		
1x32 cmplx															
4x32 real	4														
2x32 cmplx															
1x40 real	1								1		4		4		
2x40 real	2	2						2	2						
1x40 real															
4x40 real	4										4		4		
2x40 real															

FIG. 15A

REPLACEMENT SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2
Sheet: 31/64

	1x16 real	2x16 real	1x16 cmplx	4x16 real	2x16 cmplx	1x32 real	2x32 cmplx	4x32 real	2x32 cmplx	1x40 real	2x40 real	1x40 real	2x40 real	4x40 real	2x40 cmplx
1x16 real	1 unit	2 unit	4 unit	1 unit	4 unit	1 unit	2 unit	4 unit	1 unit	4 unit	1 unit	2 unit	2 unit	4 unit	4 unit
2x16 real	2 unit	2 unit				2 unit	2 unit				2 unit				
1x16 cmplx	2 unit														
4x16 real	4 unit														
2x16 cmplx	4 unit														
1x32 real	1 unit	2 unit				1 unit	2 unit	2 unit	4 unit	4 unit	4 unit	1 unit	2 unit	2 unit	4 unit
2x32 real	2 unit	2 unit				2 unit	2 unit	2 unit				2 unit			
1x32 cmplx	2 unit					2 unit	2 unit	2 unit				2 unit		2 unit	4 unit
4x32 real	4 unit					4 unit	4 unit					4 unit		4 unit	4 unit
2x32 cmplx	4 unit					4 unit									
1x40 real	1 unit					1 unit		2 unit	4 unit	4 unit	4 unit	1 unit	2 unit	2 unit	4 unit
2x40 real	2 unit					2 unit		2 unit				2 unit		2 unit	
1x40 real	2 unit					2 unit		2 unit						2 unit	
4x40 real	4 unit					4 unit		4 unit						4 unit	
2x40 real	4 unit					4 unit								4 unit	

FIG. 15B

REPLACEMENT SHEET

REPLACEMENT SHEET
Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathipillai
Application No.: 10/649,067 Docket No.: 42P14037D
Sheet: 32/64

Sheet: 32/64

FIG. 16

Data Type: N x S(R/C)

FIG. 17

FIG. 18

Data Type 1801

0000:	1x16 real
0001:	2x16 real
0010:	1x16 complex
0011:	4x16 real
0100:	1x32 real
0101:	2x32 real
0110:	1x32 complex
0111:	2x16 complex
1000:	4x32 real
1001:	2x32 complex
1010:	1x40 real
1011:	2x40 real
1100:	1x40 complex
1101:	4x40 real (only for local add unit operations)
1110:	2x40 complex (only for local add unit operations)
1111:	Reserved

FIG. 19

FIG. 20

$X' = [SX_{10}, SX_{11}, SX_{12}, SX_{13}]$ e.g. $[X_0, X_1, X_2, X_3]$
 $X'' = [SX_{20}, SX_{21}, SX_{22}, SX_{23}]$ e.g. $[X_4, X_5, X_6, X_7]$

Where SX_{ab} : S=Source; a=delay; b= SP unit number(e.g. SP3,SP2, SP1, SP0; or termed U3,U2,U1,U0)

$Y' = [SY_{10}, SY_{11}, SY_{12}, SY_{13}]$
 $Y'' = [SY_{20}, SY_{21}, SY_{22}, SY_{23}]$

Where SY_{ab} : S=Source; a=delay; b= SP unit number(e.g. SP3,SP2,SP1, SP0; or termed U3,U1,U0)

FIG. 22A

REPLACEMENT SHEET
 Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
 BUSES IN AN INTEGRATED CIRCUIT
 1st Named Inventor: Ruban Kanapathippillai
 Application No.: 10/649,067 Docket No.: 42P14037D2
 Sheet: 37/64

FIR Filter

$$\begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_N \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix} = X_0Y_0 + X_1Y_1 \dots + X_NY_N$$

Primary Stage		Primary Stage Computations			
Cycle #		SP0	SP1	SP2	SP3
1		X_0Y_0	X_1Y_1	X_2Y_2	X_3Y_3
2		X_4Y_4	X_5Y_5	X_6Y_6	X_7Y_7
3		X_8Y_8	X_9Y_9	$X_{10}Y_{10}$	$X_{11}Y_{11}$
:					
N		$X_{N-3}Y_{N-3}$	$X_{N-2}Y_{N-2}$	$X_{N-1}Y_{N-1}$	X_NY_N

Shadow Stage		Shadow Stage Computations			
Cycle #		SP0	SP1	SP2	SP3
1	No operation				
2	No operation				
3		X_1Y_0	X_2Y_1	X_3Y_2	X_4Y_3
4		X_5Y_4	X_6Y_5	X_7Y_6	X_8Y_7
:					
N+2		$X_{N-2}Y_{N-3}$	$X_{N-1}Y_{N-2}$	X_NY_{N-1}	$X_{N+1}Y_N$

Subsequent Cycles					
Primary Stage		Shadow Stage			
Cycle #			Cycle #		
N+1		$\begin{bmatrix} X_2 \\ \vdots \\ X_{N+2} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$		N+3	$\begin{bmatrix} X_3 \\ \vdots \\ X_{N+3} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$
:				N+5	$\begin{bmatrix} X_5 \\ \vdots \\ X_{N+5} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$
N+4		$\begin{bmatrix} X_4 \\ \vdots \\ X_{N+4} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$		N+6	$\begin{bmatrix} X_6 \\ \vdots \\ X_{N+6} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$
:				N+7	$\begin{bmatrix} X_7 \\ \vdots \\ X_{N+7} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$

FIG. 22B

Shuffle Control Register															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
u3	u2	u1	u0	u3	u2	u1	u0	u3	u2	u1	u0	u3	u2	u1	u0
SY2S	SY1S	SX2S	SX1S												

Units are connected to their nearest neighbors for shuffling the sources using the following bit diagram:

- | | | |
|----|-------------------|---------|
| 00 | Unit N+1, SX1=X' | (right) |
| 01 | Unit N+1, SX2=X'' | (right) |
| 10 | Unit N-1, SX1=X' | (left) |
| 11 | Unit N-1, SX2=X'' | (left) |

For example to shift the sources to the left by one:

3	2	1	0	From
2	1	0	3	Into

The bits should be 10101010 (~~1AA~~)

FIG. 22C

FIG. 23A

FIG. 23B

FIG. 23

FIG. 23A

FIG. 23B

FIG. 24A

$X_0 = SX_{10}, SX_{20}$

$X_1 = SX_{11}, SX_{21}$

$X_3 = SX_{13}, SX_{23}$

FIG. 24B

$X_1 = SX_{11}, SX_{21}$
 $X_2 = SX_{12}, SX_{22}$
 $X_0 = SX_{10}, SX_{20}$

FIG. 24C

$X_2 = SX_{12}, SX_{22}$
 $X_3 = SX_{13}, SX_{23}$
 $X_1 = SX_{11}, SX_{21}$

FIG. 24D

$x_3 = SX_{13}, SX_{23}$

$x_0 = SX_{10}, SX_{20}$

$x_2 = SX_{12}, SX_{22}$

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 31

FIG. 32

FIG. 29

FIG. 30

REPLACEMENT SHEET
**Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT**
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2
Sheet: 51/64

FIG. 33A

FIG. 35

FIG. 36A

REPLACEMENT SHEET

Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
BUSES IN AN INTEGRATED CIRCUIT
1st Named Inventor: Ruban Kanapathippillai
Application No.: 10/649,067 Docket No.: 42P14037D2
Sheet: 56/64

HARDWARE DESIGNER'S VIEW
OFFSET PHYSICAL ADDRESS SPACE

FIG. 36B

FIG. 36C

FIG. 37

FIG. 38B

FIG. 38A

FIG. 39

FIG. 40

FIG. 42

FIG. 43

FIG. 41

REPLACEMENT SHEET
 Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
 BUSES IN AN INTEGRATED CIRCUIT
 1st Named Inventor: Ruban Kanapathippillai
 Application No.: 10/649,067 Docket No.: 42P14037D2
 Sheet: 62/64

FIG. 44A

FIG. 45

FIG. 44B

REPLACEMENT SHEET
 Title: METHOD AND APPARATUS OF BUS STATE KEEPERS FOR
 BUSES IN AN INTEGRATED CIRCUIT
 1st Named Inventor: Ruban Kanapathippillai
 Application No.: 10/649,067 Docket No.: 42P14037D2
 Sheet: 64/64

FIG. 46B

FIG. 46A