ELECTROMAGNETISMO

Série 9 – Lei de Faraday

1. Uma bobine com 15 espiras e um raio de 10.0 cm é colocada coaxialmente em relação a um solenóide muito longo, com um raio de 2.00 cm e 1.00×10³ espiras/m, como está ilustrado na Fig. 1. A corrente no solenóide varia no tempo, t, de acordo com a expressão $I = 5.00\sin(120t)$. Deduza uma expressão para a fem induzida na bobine com 15 espiras em função do tempo.

Figura 1

- 2. Um fio isolado é utilizado para construir um circuito em forma de 8 constituído por dois círculos, como está ilustrado na Fig. 2. O círculo superior tem um raio de 5.00 cm e o círculo inferior tem um raio de 9.00 cm. O fio tem uma resistência por unidade de comprimento uniforme de 3.00 Ω/m. Um campo magnético é aplicado na direcção perpendicular ao plano do circuito (ver Fig.2). A sua magnitude aumenta a uma taxa de 2.00 T/s.
 - a) Calcule o módulo da força electromotriz induzida em cada círculo.
 - b) Qual é o sentido e a magnitude da corrente no circuito em forma de 8?

Figura 2

- 3. Uma barra condutora de comprimento $\lambda = 35.0$ cm desloca-se sobre duas barras condutoras fixas e paralelas, com uma velocidade constante v = 8.00 m/s, como está ilustrado na Fig. 3. Duas resistências nos extremos das barras fixas fecham o circuito, que está imerso num campo magnético uniforme, B = 2.50 T, perpendicular ao plano do circuito. Calcule:
 - a) a corrente que passa em cada uma das resistências;
 - b) a potência total transferida para o circuito;
 - c) a magnitude da força que é necessário aplicar à barra de forma a movê-la com a velocidade constante referida.

Figura 3

- 4. Um solenóide muito longo com $1000 \ espiras/m$ e um raio de $2.00 \ cm$ é percorrido por uma corrente dada por $I = 5.00 \sin(100 \ \pi t)$.
 - a) Qual é o campo eléctrico induzido a uma distância $r = 1.00 \, cm$ do eixo do solenóide?
 - b) Qual é a sua direcção quando a corrente percorre o solenóide no sentido anti-horário e está a aumentar?
- 5. Uma bobine com uma área de $0.100\,m^2$ roda a 60 rotações por segundo num campo magnético uniforme de $0.200\,T$, perpendicular ao eixo de rotação da bobine. Se a bobine tiver 1000 espiras:
 - a) Qual é o valor máximo da fem gerada?
 - b) Qual é a orientação da bobine relativamente ao campo magnético quando a *fem* é máxima?
- 6. Um electrão move-se através de um campo elétrico uniforme $\vec{E} = (2.50\vec{u}_x + 5.00\vec{u}_y)V/m$ e de um campo magnético uniforme $\vec{B} = 0.400\vec{u}_x T$. Determine a aceleração do electrão quando tem velocidade $\vec{v} = 10.0\vec{u}_x$ m/s.

7. Uma espira rectangular de dimensões ℓ e ω move-se com uma velocidade constante ν afastando-se de um longo fio que transporta uma corrente I no plano da espira, como mostra a Fig. 4. A resistência total da espira é R. Derive a expressão que dá a corrente na espira no instante em que o lado mais próximo desta está à distância r do fio.

Figura 4

8. Um íman rectangular é posto a rodar em torno de um eixo com velocidade angular ω constante, como mostra a Fig. 5. Uma espira rectangular fixa envolve o íman e no instante t = 0 o íman está orientado como se mostra. Faça um gráfico qualitativo da corrente induzida na espira em função do tempo. Considere positiva a corrente que circula no sentido directo e negativa a corrente que circula no sentido indirecto.

Figura 5

Soluções:

- 1. $\varepsilon = -14.2 \times \cos(120t) \ mV$.
- 2. a) $\varepsilon_{superior} = 15.7 \ mV$, $\varepsilon_{inferior} = 50.9 \ mV$; b) $I = 13.3 \ mA$, sentido horário no círculo superior e sentido anti-horário no círculo inferior.
- 3. a) $I_{(2.00 \Omega)} = 3.50 A$; $I_{(5.00 \Omega)} = 1.40 A$; b) P = 34.3 W; c) F = 4.29 N.
- 4. a) $E = -9.87 \times \cos(100\pi t) \ mV/m$; b) Direcção tangente a círculo centrado no eixo do solenóide, sentido horário.
- 5. $\varepsilon_{max} = 7.54 \ kV$. O plano da bobine é paralelo ao campo magnético.

6.
$$\vec{a} = (-4.39 \times 10^{11} \vec{u}_x - 1.76 \times 10^{11} \vec{u}_y) \ m/s^2$$
.

7.
$$I = \frac{\mu_0 I \lambda v}{2\pi R r} \frac{\omega}{(r+\omega)}.$$

8.

