EXPERIMENT 2: CLIPPER & CLAMPER CIRCUITS

PART B: Jo study different types of dipper circuits. APPARATURE Die 1 (Title)
APPARATUS: Diodes (IN4148/), Resistors, Disc capacition, Breadboard, Multimeter, Function Generator, CRO, Power Supply.
Theory: Part A: The diode Clipper, also known as Piode unites, is a wave shapping issuit that takes an input waveform and dips or cuts off its top half bottom half or both halves together to produce an output waveform that resembles a flattened revision of the input. The basic example of a dipper in a half wave rectifier, that eleminates one of the alternative output on Ac signal. Types of Cippers: I. Positive dipper: The clipper which dips the positive cycle of the input signal is called positive dupper.
2. Negative clipper: The dipper which clips the negative cycle of input signal is called negative dipper.
3 Series clipper: The clipper in which the diode is connected in series with the source and load is called series clipper
FOR EDUCATIONAL USE

DISCE

-	
*	Parallel clipper: The clipper in which the diode is connected in parallel with the source and load is called parallel dipper.
5	Biased chipper: Brased chipper means application of DC vortage to a chipper to chip a part of input signal can be used as in combination with any of the above chippers.
6.	combinational dipper: The dipper which dips positive as well as negative cycle of input signal at a time is called combinational dipper.
	Part B: A clamping circuit is used to place either the positive or negative peak of a signal at a desired limit. The dc component is simpley added or subtracted to/from the input signal. A clamp circuit adds the positive or negative dc component to the input signal so as to push it either on the positive side or on the negative gide. Types of Clampers: There are two basic types of clampers:
1.	Positive Clamper: It shifts its input waveform in a positive direction, so that it lies above a direction reference voltage.
2	Negative Clamper: It shifts its input waveform in a negative direction, so that it ies below a de reference voltage.
laram	FOR EDUCATIONAL USE

or Name of	(obser	red)	(calculo/P)	elated)
the circuit				
1. Series circuit			e half cycle	
hich elign the	shapper of dispersions to see the see to see the see to se	a accert form an looth h he besic he besic tyles, th h h h h h h h h h h h h h h h h h h	constant of the control of the contr	

A clamping circuit consists of three components a diode, a capacitor and a resistor sometimes an independent de supply is also required to
for a clamping circuit, There will be no change in the peak to peak
or ms value of the waveform due to the damping circuit: There will be a change in the peak and average values of the waveform. The clamped
output varies from 2 v _{max} and zero. The values of resistor R & capacitor C affect the wave form.
4 The values for the resistor R & capacitor c should be determined from the time constant equation t = RC.
PROLEDURE: Part A: 1) Assemble the circuit as per the given digram 2) Apply input AC sine wave signal of IKHZ, 5Vpp
using function generator. 3) Observe the output waveforms on the (120 and plot them wit input.
Note down the observed value for the positive as well as regative half cycle and calculate the value for both cycles using KVL.
Repeat the procedure for different circuits and name the circuits.
FOR EDUCATIONAL USE

Name of	0/P VOI		O/P NO		50
the circuit	For the	for -ve	1	For -ve	shift
he will be to	half agels		half cycle	half cycle	
Positive					
clamper					
circuit					
Negative					
clamper					
					1.634

No Post Lab questions for this experiment