姓名:

第十二届全国大学生数学竞赛初赛试卷

(数学类 A 卷, 2020 年 11 月)

考试形式: 闭卷 考试时间: __150_ 分钟 满分: __100_ 分

题号			Ξ	四	五.	六	总分
满分	15	15	15	20	15	20	100
得分							

注意: 1. 所有答题都须写在此试卷纸密封线右边, 写在其它纸上一律无效.

- 2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 3. 如答题空白不够, 可写在当页背面, 并标明题号.

得分	
评阅人	

一、(本题 15 分) 设 N(0,0,1) 是球面 $S: x^2 + y^2 + z^2 = 1$ 的北极点. $A(a_1,a_2,0), B(b_1,b_2,0), C(c_1,c_2,0)$ 为 xOy 平面上不同的三点. 设连接 N 与 A,B,C 的三直线依次交 球面 S 于点 A_1,B_1 与 C_1 .

- (1) 求连接 N 与 A 两点的直线方程.
- (2) 求点 $A_1, B_1 与 C_1$ 的坐标.
- (3) 给定点 A(1,-1,0), B(-1,1,0), C(1,1,0), 求四面体 $NA_1B_1C_1$ 的体积.

解.

(1) 过 N, A 两点的直线方程为

$$\frac{x}{a_1} = \frac{y}{a_2} = \frac{z - 1}{-1}.$$

......(3 分)

(2) 由此可得直线的参数方程

$$x = a_1 t, \quad y = a_2 t, \quad z = 1 - t,$$

代入球面方程可得

$$(a_1t)^2 + (a_2t)^2 + (1-t)^2 = 1.$$

由此解得

$$t = \frac{2}{a_1^2 + a_2^2 + 1} \quad \vec{\mathfrak{g}} \quad t = 0.$$

从而得 A_1 的坐标为

$$\left(\frac{2a_1}{a_1^2 + a_2^2 + 1}, \frac{2a_2}{a_1^2 + a_2^2 + 1}, \frac{a_1^2 + a_2^2 - 1}{a_1^2 + a_2^2 + 1}\right).$$

同理可得, A_2 的坐标为

$$\left(\frac{2b_1}{b_1^2+b_2^2+1}, \frac{2b_2}{b_1^2+b_2^2+1}, \frac{b_1^2+b_2^2-1}{b_1^2+b_2^2+1}\right).$$

以及 A₃ 的坐标为

$$\left(\frac{2c_1}{c_1^2+c_2^2+1}, \frac{2c_2}{c_1^2+c_2^2+1}, \frac{c_1^2+c_2^2-1}{c_1^2+c_2^2+1}\right).$$

.....(9 分)

(3) 当 A(1,-1,0), B(-1,1,0) 以及 C(1,1,0) 给定时, 经计算可得

$$A_1 = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \qquad B_1 = \left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right), \qquad C_1 = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right).$$

所以,利用向量的混合积可以把四面体 $NA_1B_1C_1$ 的体积表示为

$$V = \frac{1}{6} \big| \big(\overrightarrow{NA_1}, \overrightarrow{NB_1}, \overrightarrow{NC_1}\big) \big|.$$

混合积 $(\overrightarrow{NA_1}, \overrightarrow{NB_1}, \overrightarrow{NC_1})$ 表示成矩阵的行列式

$$(\overrightarrow{NA_1}, \overrightarrow{NB_1}, \overrightarrow{NC_1}) = \det \begin{pmatrix} \frac{2}{3} & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} \end{pmatrix} = \frac{32}{27}.$$

于是得到

$$V = \frac{1}{6} \times \frac{32}{27} = \frac{16}{81}.$$

.....(15 分)

		一、(本题 15 分) 求极限 lim ———————————————————————————————————
得分		二、(本题 15 分) 求极限 $\lim_{n\to\infty} \frac{\ln n}{\ln(1^{2020} + 2^{2020} + \dots + n^{2020})}$
评阅人		
解. 我们	门有	
		$\lim_{n\to\infty} \frac{1}{n^{2021}} \left(1^{2020} + 2^{2020} + \dots + n^{2020} \right)$
		$= \lim_{n \to \infty} \frac{1}{n} \left(\left(\frac{1}{n} \right)^{2020} + \left(\frac{2}{n} \right)^{2020} + \dots + \left(\frac{n}{n} \right)^{2020} \right)$

 $= \int_0^1 x^{2020} \, dx = \frac{1}{2021}.$

或用 Stolz 公式

$$\lim_{n \to \infty} \frac{1}{n^{2021}} \left(1^{2020} + 2^{2020} + \dots + n^{2020} \right) = \lim_{n \to \infty} \frac{n^{2020}}{n^{2021} - (n-1)^{2021}} = \frac{1}{2021}.$$

因此, $\ln \frac{1^{2020} + 2^{2020} + \dots + n^{2020}}{n^{2021}}$ 有界.

$$\lim_{n \to \infty} \frac{\ln n}{\ln(1^{2020} + 2^{2020} + \dots + n^{2020})}$$

$$= \lim_{n \to \infty} \frac{\ln n}{2021 \ln n + \ln \frac{1^{2020} + 2^{2020} + \dots + n^{2020}}{n^{2021}}}$$

$$= \frac{1}{2021}.$$

得分	三、(本题 15 分)设 A, B 均为 2020 阶正交矩阵,
评阅人	
解. A, B 一定不相似	
 证明如下.	(2分)
令 $C = AB^{-1}$. 由矩阵, 故可以复对	日于 A, B 均为正交矩阵, 故 C 也是正交矩阵. C 视为复矩阵是酉 付角化. 即存在复可逆矩阵 T 和复对角矩阵 D , 使得 $T^{-1}CT = D$, 线上的元素即为 C 的复特征值.
 齐次线性方程组	
$\mathrm{rank}(L$	$(D - I) = \operatorname{rank} (T^{-1}(C - I)T) = \operatorname{rank} (C - I)$ = $\operatorname{rank} ((A - B)B^{-1}) = \operatorname{rank} (A - B) = 2017.$
正交矩阵的实特	D 的主对角线上恰有 3 个元素是 1 . 即 C 有三重特征值 1 . 由于征值为 1 或 -1 , 而非实数特征值共轭成对出现, 共有偶数个. 又存征值 (计重数), 故 C 有特征值 -1 , 且重数为奇数.
C 的行列式是其	
	(15 分)

姓名:

得分	
评阅人	

四、(本题 20 分) 称非常值一元 n 次多项式 (合并同类项后) 的 n-1 次项 (可能为 0) 为第二项. 求所有 2020 次复系数首一多项式 f(x), 满足对 f(x) 的每个复根 x_k , 都存在非常值复系数首一多项式 $g_k(x)$ 和 $h_k(x)$, 使得

 $f(x) = (x - x_k)g_k(x)h_k(x)$, 且 $g_k(x)$ 与 $h_k(x)$ 的第二项系数相等.

解. 显然 $f(x) = x^{2020}$ 满足题意.

.....(5 分

以下证明这是唯一解. 设 f(x) 的 2020 个复根为 $x_1, x_2, \dots, x_{2020}$. 对每个 k (1 \leq $k \leq$ 2020),由题设条件可设 $f(x) = (x - x_k)g_k(x)h_k(x)$,其中 $g_k(x), h_k(x)$ 分别 为 m_k 次和 n_k 次非常值首一多项式,第二项系数均为 a_k . 设 $g_k(x)$ 的所有复根 为 $g_{k,1}, g_{k,2}, \dots, g_{k,m_k}$, $g_{k,n}, g_{k,n}$, $g_{k,n}$,

$$\sum_{j \neq k} \varepsilon_{kj} x_j = 0,$$

其中 $\varepsilon_{kj} = 1$ 或 -1.

这样, 我们得到了关于 $x_1, x_2, \cdots, x_{2020}$ 的齐次线性方程组, 其系数矩阵 A 为 2020 阶方阵, 主对角线上元素为 0. 主对角线外元素为 1 或 -1. 令 B 为 2020 阶方阵, 其主对角线上元素为 0, 主对角线外元素为 1, 则容易计算出 B 的行列式为 $\det B = -2019$. 由行列式定义, $\det A$ 与 $\det B$ 的奇偶性相同, 故 $\det A \neq 0$.

从而上述齐次线性方程组只有零解, 即 $x_1 = x_2 = \cdots = x_{2020} = 0$. 这便证明了 $f(x) = x^{2020}$.

注: 上面证明 $\det A \neq 0$ 也可以如下进行:

显然, $\det A \equiv \det B \pmod 2$. 由于 $\det B = -2019 \equiv 1 \pmod 2$. 所以 $\det A \equiv 1 \pmod 2$. 故 $\det A \neq 0$.

姓名:

得分	
评阅人	

五、(本题 15 分)设 φ 是 \mathbb{R} 上严格单调增加的连续函数, ψ 是 φ 的反函数,实数列 $\{x_n\}$ 满足

$$x_{n+2} = \psi\left(\left(1 - \frac{1}{\sqrt{n}}\right)\varphi(x_n) + \frac{1}{\sqrt{n}}\varphi(x_{n+1})\right), \quad n \geqslant 2.$$

证明 $\{x_n\}$ 收敛或举例说明 $\{x_n\}$ 有可能发散.

证明. 我们断言 $\{x_n\}$ 收敛. 证明如下. 记 $y_n = \varphi(x_n)$, 则

$$y_{n+2} = (1 - \frac{1}{\sqrt{n}})y_n + \frac{1}{\sqrt{n}}y_{n+1}, \quad n \geqslant 2.$$

令

$$a_n = \min\{y_n, y_{n-1}\}, \quad b_n = \max\{y_n, y_{n-1}\} \qquad n \geqslant 3.$$

则

$$a_n \leqslant y_{n+1} \leqslant b_n, \qquad n \geqslant 3.$$

进而

$$a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n, \qquad n \geqslant 3.$$

所以 $\{a_n\}$, $\{b_n\}$ 均单调有界, 从而收敛.

特别, $\{y_n\}$ 有界. 由于

$$y_{n+2} - y_{n+1} = -\left(1 - \frac{1}{\sqrt{n}}\right)(y_{n+1} - y_n), \quad n \geqslant 2.$$

因此

$$|y_{n+2} - y_{n+1}| \le |y_3 - y_2| \prod_{k=2}^{n} \left(1 - \frac{1}{\sqrt{k}}\right), \quad n \ge 2.$$

由
$$\prod_{k=0}^{\infty} \left(1 - \frac{1}{\sqrt{k}}\right)$$
 发散到零, 得到 $\lim_{n \to \infty} \left(y_{n+1} - y_n\right) = 0$.

$$k=2$$
(10 分)

所以

$$b_n - a_n = |y_n - y_{n-1}| \to 0, \qquad n \to \infty.$$

这样, $\{a_n\}$ 与 $\{b_n\}$ 的极限相等, 从而 $\{y_n\}$ 收敛.

最后, 由 ψ 的连续性得到 $\{x_n\}$ 收敛.

得分	
评阅人	

六、(本题 20 分)对于有界区间 [a,b] 的划分 $P: a=x_0 < x_1 < \cdots < x_{n+1} = b$, 其范数定义为 $\|P\|=\max_{0 \le k \le n} (x_{k+1}-x_k)$. 现设 [a,b] 上函数 f 满足 Lipschitz 条件, 即存在常数 M>0 使得对任何 $x,y\in [a,b]$, 成立

 $|f(x) - f(y)| \le M|x - y|$. 定义 $s(f; P) \equiv \sum_{k=0}^{n} \sqrt{|x_{k+1} - x_k|^2 + |f(x_{k+1}) - f(x_k)|^2}$. 若 $\lim_{\|P\| \to 0^+} s(f; P)$ 存在, 则称曲线 y = f(x) 可求长. 记 P_n 为 [a, b] 的 2^n 等分. 证明:

(1) $\lim_{n\to\infty} s(f; P_n)$ 存在.

(2) 曲线 y = f(x) 可求长.

证明.法 I. 我们有

$$0 \leqslant s(f; P) \leqslant \sum_{k=0}^{n} \sqrt{M^2 + 1} |x_{k+1} - x_k| = (b - a)\sqrt{M^2 + 1}.$$

因此, s(f; P) 有界.

......(3 分)

(1) 由平面上点和点距离的三角不等式, 立即有

$$s(f; P_n) \leqslant s(f; P_{n+1}), \quad \forall n \geqslant 1.$$

因此, $\{s(f; P_n)\}$ 单调增加, 结合有界性知其收敛. 设极限为 L.

一般地, 对于划分 P,Q, 用 $P \oplus Q$ 表示由 P 和 Q 的所有分点为分点的划分, 则

$$s(f; P \bigoplus Q) \geqslant s(f; P).$$

(2) 对于任何 $\varepsilon > 0$, 有 $m \ge 1$ 使得

$$s(f; P_m) \geqslant L - \varepsilon.$$

对于划分 P, 用 $P \oplus P_m$ 表示由 P 和 P_m 的所有分点为分点的划分,则

$$s(f; P \bigoplus P_m) \geqslant s(f; P_m) \geqslant L - \varepsilon.$$

在 $s(f; P \bigoplus P_m)$ 的和式中,与 s(f; P) 的和式中不同的项是涉及 P_m 的分点的项, 总数不超过 2^{m+1} 项,相应的小区间长度不超过 $\|P \bigoplus P_m\| \leq \|P\|$. 因此,这些项的 和不超过 $2^{m+1}\sqrt{M^2+1}\|P\|$. 于是

$$s(f; P) \geqslant s(f; P \bigoplus P_m) - 2^{m+1} \sqrt{M^2 + 1} ||P|| \geqslant L - \varepsilon - 2^{m+1} \sqrt{M^2 + 1}.$$

这样

$$\underline{\underline{\lim}}_{\|P\| \to 0^+} s(f; P) \geqslant L - \varepsilon.$$

进而

$$\underline{\lim}_{\|P\| \to 0^+} s(f; P) \geqslant L.$$

.....(14 分)

类似地, 记 $K = \overline{\lim}_{\|P\| \to 0^+} s(f; P)$. 对于任何 $\varepsilon > 0$, 有划分 Q 使得

$$s(f;Q) \geqslant K - \varepsilon$$
.

则

$$s(f; Q \bigoplus P_m) \geqslant s(f; Q) \geqslant K - \varepsilon.$$

在 $s(f;Q\bigoplus P_m)$ 的和式中,与 $s(f;P_m)$ 的和式中不同的项是涉及 Q 的分点的项,总数不超过 2N 项,其中 N 是划分 Q 的分点数.因此,这些项的和不超过 $2N\sqrt{M^2+1}\|P_m\|$.于是

$$s(f; P_m) \ge s(f; Q \bigoplus P_m) - 2N\sqrt{M^2 + 1} ||P_m|| \ge K - \varepsilon - 2N\sqrt{M^2 + 1} ||P_m||.$$

这样

$$L = \lim_{m \to \infty} s(f; P_m) \geqslant K - \varepsilon.$$

进而 $L\geqslant K$. 结合 $K\geqslant \varliminf_{\|P\|\to 0^+}s(f;P)\geqslant L$ 得到

$$\lim_{\|P\| \to 0^+} s(f; P) = L.$$

即 y = f(x) 可求长.

.....(20 分

法 II. 事实上, 注意到 (1) 是 (2) 的推论, 我们只需直接证明 (2). 具体证明如下.

我们有

$$0 \leqslant s(f; P) \leqslant \sum_{k=0}^{n} \sqrt{M^2 + 1} |x_{k+1} - x_k| = (b - a)\sqrt{M^2 + 1}.$$

因此, s(f; P) 有界.

对于划分 P,Q,用 $P \bigoplus Q$ 表示由 P 和 Q 的所有分点为分点的划分,由平面上点和点距离的三角不等式,立即有

$$s(f; P \bigoplus Q) \geqslant s(f; P).$$

考虑划分列 $\{Q_k\}$ 使得 $\lim_{k\to\infty} ||Q_k|| = 0$, 且

$$\lim_{k \to \infty} s(f; Q_k) = L \equiv \overline{\lim}_{\|P\| \to 0} s(f; P).$$

对于每个 $k \ge 1$, 设 N_k 为划分 Q_k 的分点数.

$$s(f; P \bigoplus P_m) \geqslant s(f; P_m) \geqslant L - \varepsilon.$$

在 $s(f; P \bigoplus Q_k)$ 的和式中,与 s(f; P) 的和式中不同的项是涉及 Q_k 的分点的项,总数不超过 $2N_k$ 项,相应的小区间长度不超过 $\|P \bigoplus Q_k\| \leq \|P\|$. 因此,这些项的和不超过 $2N_k\sqrt{M^2+1}\|P\|$. 于是

$$s(f; P) \geqslant s(f; P \bigoplus Q_k) - 2N_k \sqrt{M^2 + 1} ||P|| \geqslant s(f; Q_k) - 2N_k \sqrt{M^2 + 1} ||P||.$$

这样

$$\underline{\lim}_{\|P\| \to 0^+} s(f; P) \geqslant s(f; Q_k), \qquad \forall k \geqslant 1.$$

进而

$$\underline{\lim}_{\|P\| \to 0^+} s(f; P) \geqslant L = \overline{\lim}_{\|P\| \to 0^+} s(f; P).$$

所以 $\lim_{\|P\|\to 0^+} s(f;P)$ 存在. 即 y=f(x) 可求长. 自然也有 $\lim_{n\to\infty} s(f;P_n)$ 存在.