На рисунке слева изображена схема дорог Неизвестного района, в таблице звёздочкой обозначено наличие дороги из одного населённого пункта в другой. Отсутствие звёздочки означает, что такой дороги нет

	1	2	3	4	5	6	7
1		*		*	*		
2	*		*				
3		*			*	*	*
4	*					*	*
5	*		*				*
6			*	*			
7			*	*	*		

Каждому населённому пункту на схеме соответствует его номер в таблице, но неизвестно, какой именно номер. Определите, какие номера населённых пунктов в таблице могут соответствовать населённым пунктам Е и F на схеме. В ответе запишите эти два номера в возрастающем порядке без пробелов и знаков препинания.

Задача 2

Логическая функция F задается выражением:

$$(\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \equiv (\bar{y} \lor z))$$

Ниже представлен фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки, при которых фукнция F истинна.

??	??	??	F
0	1	0	1
0	1	??	1
1	??	1	1

Определите, какому столбцу таблицы соответствует каждая из переменных x, y, z. В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

В файле приведен фрагмент базы данных «Каршеринг», принадлежащей каршеринговой компании некоторого города. База данных состоит из трёх связанных прямоугольных таблиц. Таблица «Аренда» содержит записи о датах аренды автомобилей компании клиентами в 2020 г. Заголовок таблицы имеет вид:

Таблица «Автомобили» содержит информацию о машинах, предлагаемых в аренду. Заголовок таблицы имеет вид:

Таблица «Клиенты» содержит информацию о клиентах компании, берущих автомобили в аренду. Заголовок таблицы имеет вид:

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите общую сумму (в рублях), которую потратили клиенты, имеющие нарушения, на аренду автомобилей Nissan. В ответе запишите только число.

Задача 4

Для кодирования некоторой последовательности, состоящей из букв K, E, Ш, A решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы E использовали кодовое слово 0, для буквы K – кодовое слово 10. Какова наименьшая возможная суммарная длина всех четырех кодовых слов?

Задача 5

Автомат обрабатывает натуральное число N по следующему алгоритму:

- 1. Строится двоичная запись числа N.
- 2. Складываются все цифры полученной двоичной записи. В конец записи (справа) дописывается остаток от деления суммы на 2.
 - 3. Предыдущий пункт повторяется для записи с добавленной цифрой.
 - 4. Результат переводится в десятичную систему и выводится на экран.

Пример. Дано число N = 17. Алгоритм работает следующим образом:

- 1. Двоичная запись числа N: 10001.
- 2. Сумма цифр двоичной записи 2, остаток от деления на 2 равен 0, новая запись 100010.
- 3. Сумма цифр полученной записи 2, остаток от деления на 2 равен 0, новая запись 1000100.

4. На экран выводится число 68.

Какое наименьшее число, большее 200, может появиться на экране в результате работы автомата?

Задача 6

Определите, при каком наименьшем введённом значении переменной s программа выведет число, не большее, чем 100.

Pascal	Python	C++
$var\ s,\ n:\ integer;$	s = int(input())	#include < iostream >
begin	n = 80	$ using \ namespace \ std; $
readln(s);	while s + n < 160:	int main() {
n := 80;	s = s + 15	int s, n = 80;
while s + n < 160 do	n = n - 10	
begin	print(s)	$ while (s + n < 160) \{ $
s := s + 15;		s = s + 15;
n := n - 10		n = n - 10;
end;		}
writeln(s)		cout << s << endl;
end.		return 0;
		}

Задача 7

Документ объемом 10 Мбайт можно передать с одного компьютера на другой двумя способами:

- А) Сжать архиватором, передать архив по каналу связи, распаковать
- Б) Передать по каналу связи без использования архиватора.

Какой способ быстрее и насколько, если

- средняя скорость передачи данных по каналу связи составляет 218 бит в секунду,
- объем сжатого архиватором документа равен 30 процентов от исходного,
- время, требуемое на сжатие документа 7 секунд, на распаковку 1 секунда?

В ответе напишите букву А, если способ А быстрее или Б, если быстрее способ Б. Сразу после буквы напишите количество секунд, насколько один способ быстрее другого.

Задача 8

Ботальщик составляет шестибуквенные слова, в которых встречаются только буквы С,О,Н. Причем буква С моет стоять только нна первом, втором или третьем местах и встречаться или только один раз, или ровно три раза, или не встречаться вовсе. Каждая из других допустимых букв может встречаться в слове на любом месте или не встречаться совсем. Словом считается любая допустисая последовательность букв, необязательно осмысленная. Сколько существует таких слов, которые может написать Ботальщик?

Задача 9

В электронной таблице в файле 9.xlsx приведена ведомость расходов и доходов физических лиц. Слева перечислены фамилии. Для каждого лица в первой строке указана сумма доходов за период, во второй – сумма расходов. Найдите двух людей – с наибольшей разницей доходов и расходов за весь период. Первого – с наибольшей прибылью, второго – с наибольшим долгом. В качестве ответа приведите два целых положительных числа – прибыль первого и долг второго.

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «человек» в любом числе и падеже в тексте повести Н.В. Гоголя «Вий». В ответе укажите только число.

Задача 11

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 7 символов. Пароль содержит только символы из следующего набора: 22 фиксированные строчные буквы латинского алфавита, хотя бы две десятичные цифры и хотя бы два из символов: !, ?, *, @, +, -

При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимальное возможное целое число байт. Кроме собственно пароля, о каждом пользователе в системе хранятся дополнительные сведения, для чего выделено 4 байта для каждого пользователя.

Сколько байт потребуется для хранения данных о 80 пользователях? В ответе запишите только целое число—количество байт.

Задача 12

Исполнитель Чертёжник перемещается на координатной плоскости, оставляя след в виде линии. Чертёжник может выполнять команду Сместиться на (a, b) (где a, b – целые числа), перемещающую Чертёжника из точки с координатами (x, y) в точку с координатами (x + a, y + b). Чертёжнику был дан для исполнения следующий алгоритм:

```
Сместиться на (16, -21)
Повтори N раз
Сместиться на (a, b)
Сместиться на (-1, -2)
конец
Сместиться на (-60, -12)
```

После выполнения этого алгоритма Чертёжник возвращается в исходную точку. Какое наибольшее число повторений могло быть указано в конструкции «Повтори . . . раз»?

Задача 13

На рисунке — схема дорог, связывающих города $A, B, B, \Gamma, \mathcal{A}, E, \mathcal{K}, 3, \mathcal{U}$. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города A в город W?

Сколько единиц содержится в двоичной записи значения выражения

$$16^{1010} + 4^{2017} - 2^{90}$$

Задача 15

Для какого наибольшего целого неотрицательного числа выражение

$$(5x + 6y < 121) \lor (y > A) \lor (x > A)$$

тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных x и y?

Задача 16

Алгоритм вычисления значения функции F(n,m), где n,m – натуральные числа, задан следующими соотношениями:

$$F(n, m) = 2$$
, при $n <= 2$ и $m <= 5$

$$F(n,\,m)=F(n$$
 - 3, m) + $F(n,\,m$ - 2) * m + $F(n$ - 5, m - 5)*n , при $n=2$ и m <5

Чему равно значение функции F(11, 16)?

В ответе запишите только натуральное число.

Задача 17

В файле содержится последовательность из 10000 натуральных чисел, необходимо найти количество пар чисел, которые удовлетворяют хотя бы одному из условий: 1) сумма пары кратна числу 71,

2) произведение пары кратно числу 17.

В ответе укажите количество таких пар и максимальную сумму пары. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

Задача 18

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата

Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота. Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Задача 19

Два игрока, Лёва и Лёша, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Лёва. За один ход игрок может добавить в кучу 1 камень или добавить в кучу 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 61 или больше камней. В начальный момент в куче было S камней, $1 \le S \le 55$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Лёша выиграл своим первым ходом после неудачного первого хода Лёвы. Укажите минимальное значение S, когда такая ситуация возможна.

Задача 20

Найдите два таких значения S, при которых у Лёвы есть выигрышная стратегия, причём одновременно выполняются два условия:

- Лёва не может выиграть за один ход;
- Лёва может выиграть своим вторым ходом независимо от того, как будет ходить Лёша.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

Задача 21

Найдите минимальное значение S, при котором одновременно выполняются два условия:

- у Лёши есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Лёвы;
 - у Лёши нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Ниже записан алгоритм. Укажите наименьшее из таких чисел N, при вводе которых алгоритм напечатает 17.

Pascal	Python	C++
$var\ N,\ q,\ i:\ longint;$	N = int(input())	#include < iostream >
begin	for i in $range(1, N)$:	using namespace std;
read(N);	if N % i == 0:	int main()
for i := 1 to N - 1 do begin	q = i	{
if N mod i = 0 then q := i	print(q)	int N;
end;		cin >> N;
write(q)		for (int i = 1; i < N; i++)
end.		if (N % i == 0)
		q = i;
		cout << q;
		}

Задача 23

Исполнитель Укроп преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2
- 3. Прибавить 3

Первая команда увеличивает число на экране на 1, вторая умножает его на 2, третья увеличивает на 3.

Программа для исполнителя Укропа — это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 2 в число 24 и при этом траектория вычислений содержит число 14?

Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 312 при исходном числе 6 траектория будет состоять из чисел 9, 10, 20.

Задача 24

Текстовый файл состоит из символов I, B, R и Q.

Определите максимальное количество идущих подряд символов в прилагаемом файле, среди которых нет идущих подряд символов R.

Задача 25

Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [412500; 412670], числа, имеющие ровно шесть различных натуральных делителей. Для каждого найденного числа запишите эти шесть делителей в шесть соседних столбцов на экране с новой строки. Делители в строке должны следовать в порядке возрастания.

Задача 26

Предприятие производит оптовую закупку изделий A и Z, на которую выделена определённая сумма денег. У поставщика есть в наличии партии этих изделий различных модификаций по различной цене. На выделенные деньги необходимо приобрести как можно больше изделий A (независимо от модификации). Закупать можно любую часть каждой партии. Если у поставщика закончатся изделия A, то на оставшиеся деньги необходимо

приобрести как можно больше изделий Z. Известна выделенная для закупки сумма, а также количество и цена различных модификаций данных изделий у поставщика. Необходимо определить, сколько будет закуплено изделий Z и какая сумма останется неиспользованной. Если возможно несколько вариантов решения (с одинаковым количеством закупленных изделий Z), нужно выбрать вариант, при котором оставшаяся сумма максимальна. Входные данные представлены в файле 26-42.txt следующим образом. Первая строка входного файла содержит два целых числа: N – общее количество партий изделий у поставщика и S – сумма выделенных на закупку денег (в рублях). Каждая из следующих N строк описывает одну партию изделия: сначала записана буква А или Z (тип изделия), а затем – два целых числа: цена одного изделия в рублях и количество изделий в партии. Все данные в строках входного файла разделены одним пробелом. В ответе запишите два целых числа: сначала количество закупленных изделий типа Z, затем оставшуюся неиспользованной сумму денег.

Пример входного файла 4 1000

A 14 12

Z 30 7

A 40 20

Z 50 15

В данном случае сначала нужно купить изделия А: 12 изделий по 14 рублей и 20 изделий по 40 рублей. На это будет потрачено 968 рублей. На оставшиеся 32 рубля можно купить 1 изделие Z по 30 рублей. Таким образом, всего будет куплено 1 изделие Z и останется 2 рубля. В ответе надо записать числа 1 и 2.

Задача 27

Имеется набор чисел, не превышающих 1000 – результаты измерений, полученных в ходе эксперимента (количество измерений N известно заранее, гарантируется, что N > 2).

- $1.\ R$ сумма двух различных переданных элементов последовательности («различные» означает, что нельзя просто удваивать переданные числа, суммы различных, но равных по величине элементов допускаются).
 - 2. R кратно 7.
- 3. Если в последовательности нет двух чисел, сумма которых кратна 7, контрольное значение считается равным 1.

В ответе укажите максимальное R, которое можно получить.

Пример входных данных:

6

100

5

30

145

19 84

Пример выходных данных для приведённого выше примера входных данных: 175