Name: Sadaf Iqbal

Department: BS Computer Science (BSCS)
University Roll No.: 23-ARID-740
Course: Python Programming
Semester: 5th – Evening
Submitted To: [M.Azhar]

Date: [12/08/2025]

----- Statistic Analysis -----

create file/array of Data for different Domain like computing, medical, social sciences etc. Generate sample Data using AI OR DOWNLOAD ANY SAMPLE DATASET.

and perform Statictic Analysis.

Steps to perform:

code in python

- 1. load Data Set of different Domain.
- 2. Statistic Analysis techniques/ formulas
- 3. peform calculation Function (using build-in/custom function)
- 4. Show result in Graph & Table format

Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
# 1. Generate Sample Datasets from Different Domains
def generate sample data():
    # Computing Domain (e.g., algorithm performance)
    computing_data = pd.DataFrame({
        'Algorithm': ['A', 'B', 'C', 'D', 'E'],
        'Execution Time (ms)': np.random.normal(200, 50, 5),
        'Memory Usage (MB)': np.random.normal(120, 15, 5)
    })
    medical_data = pd.DataFrame({
        'Patient ID': range(1, 11),
        'Age': np.random.randint(20, 80, 10),
```

```
'Blood Pressure': np.random.randint(110, 180, 10),
        'Cholesterol': np.random.randint(150, 250, 10)
    })
    # Social Science Domain (e.g., survey)
    social data = pd.DataFrame({
        'Respondent ID': range(1, 11),
        'Happiness Score': np.random.uniform(1, 10, 10),
        'Income (k)': np.random.randint(20, 100, 10),
        'Education Level': np.random.choice(['High School', 'Bachelor', 'Master',
 PhD'], 10)
    })
    return computing data, medical data, social data
# 2. Define Statistical Analysis Function
def perform_statistics(df, numeric_columns):
    stats dict = {}
    for col in numeric columns:
        mode_val = stats.mode(df[col], keepdims=True).mode[0] # Fixed for SciPy
        stats_dict[col] = {
            'Mean': np.mean(df[col]),
            'Median': np.median(df[col]),
            'Mode': mode_val,
            'Standard Deviation': np.std(df[col]),
            'Variance': np.var(df[col]),
            'Min': np.min(df[col]),
            'Max': np.max(df[col]),
    return pd.DataFrame(stats dict)
# 3. Plotting Functions
def plot histograms(df, numeric columns, title):
    for col in numeric columns:
        plt.figure()
        sns.histplot(df[col], kde=True)
        plt.title(f"{title}: Histogram of {col}")
        plt.xlabel(col)
        plt.ylabel('Frequency')
        plt.grid(True)
        plt.show()
def plot_correlation(df, numeric_columns, title):
   plt.figure(figsize=(6, 4))
```

```
sns.heatmap(df[numeric_columns].corr(), annot=True, cmap='coolwarm')
   plt.title(f"{title}: Correlation Matrix")
   plt.show()
# 4. Main Program
def main():
   computing data, medical data, social data = generate sample data()
   print("-----")
   comp_stats = perform_statistics(computing_data, ['Execution Time (ms)',
'Memory Usage (MB)'])
   print(comp stats)
   plot_histograms(computing_data, ['Execution Time (ms)', 'Memory Usage (MB)'],
"Computing")
   plot correlation(computing_data, ['Execution Time (ms)', 'Memory Usage
(MB)'], "Computing")
   print("\n-----")
   med stats = perform statistics(medical data, ['Age', 'Blood Pressure',
Cholesterol'])
   print(med stats)
   plot_histograms(medical_data, ['Age', 'Blood Pressure', 'Cholesterol'],
   plot correlation(medical data, ['Age', 'Blood Pressure', 'Cholesterol'],
"Medical")
   print("\n-----")
   social_numeric = ['Happiness Score', 'Income (k)']
   social stats = perform statistics(social data, social numeric)
   print(social stats)
   plot histograms(social data, social numeric, "Social Sciences")
   plot correlation(social data, social numeric, "Social Sciences")
# arphi Correct way to run the script
if __name__ == "__main__":
   main()
```

output:

(x, y) = (,)

×

PROBLEMS 5 OUTPUT	DEBUG CONSOLE TERMIN	NAL PORTS				
Computing Domain						
	Execution Time (ms)	Memory Usage (MB)				
Mean	187.485199	124.003527				
Median	198.670953	120.789707				
Mode	126.993003	118.700724				
Standard Deviation	50.361013	5.003301				
Variance	2536.231583	25.033019				
Min	126.993003	118.700724				
Max	258.917473	130.085378				
Modical Domain						

PROBLEMS 5 OUTPUT	DEBUG CONSOL	.E TERMINAL PO	RTS			
Medical Domain						
	Age	Blood Pressure	Cholesterol			
Mean	42.500000	151.000000	218.600000			
Median	42.000000	150.500000	222.000000			
Mode	25.000000	115.000000	222.000000			
Standard Deviation	14.746186	21.881499	18.607525			
Variance	217.450000	478.800000	346.240000			
Min	25.000000	115.000000	185.000000			
Max	73.000000	179.000000	243.000000			

Social Sciences Domain						
	Happiness Score	Income (k)				
Mean	8.133761	58.500000				
Median	8.448946	50.500000				
Mode	3.022872	20.000000				
Standard Deviation	1.796168	25.362374				
Variance	3.226218	643.250000				
Min	3.022872	20.000000				
Max	9.603429	95.000000				