Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2021-2022Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir surveillé N°2 1Bac Sciences Mathématiques Durée 2h00

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème
60%	20%	20%

III tableau de spécification

niveau d'habileté	Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Comportement global d'un circuit	39% 8pts 47min 8Q	13% 3pts 16min 3Q	13% 2pts 15min 2Q	65% 13pts 78min 13Q
Les réactions acido-basiques	12% 2.5pts 15min 2Q	4% 1pt 5min 1Q	4% 0.5pts 4min 1Q	20% 4pts 24min 4Q
Les réactions d'oxydoréduction	9% 2pts 11min 1Q	3% 0.5pts 4min 1Q	3% 0.5pts 3min 1Q	15% 18pts 18min 3Q
	60% 12pts 72min	20% 4pts 24min	20% 4pts 24min	100% 20pts 120min

Devoir surveillé $N^{\circ}\mathbf{2}$ Semestre II

Chimie				(7pts)			
Partie 1 :Les	comprimés effer	vescents de	Vitamine B5				(3.5 pts)
N° Question			Réponse				Note
1.	Les formules des couples mis en jeux : Zn^{2+}/Zn et H^+/H_2 $Zn \Longrightarrow Zn^{2+} + 2e^-$ et $2H^+ + 2e^- \Longrightarrow H_2$			0.5pt			
2.		$2 H^+ + Zn \longrightarrow H_2 + Zn^{2+}$			0.25pts		
3.	Le volume nécessaire de la solution d'acide chlorhydrique pour faire disparaitre complètement la grenaille de zinc : V=4mL			1.25pt			
4	le gaz forme au cours de cette transformation : H_2			0.5pt			
5	$V(H_2) = 0.25L$			0.5pt			
Partie 2 :L'eau de javel			$\overline{(3.5 \mathrm{pts})}$				
N° Question		Réponse		Note			
1.	les demi-équations électroniques $ClO^-/Cl_2: 2 \operatorname{ClO}^- + 4 \operatorname{H}^+ + 2 \operatorname{e}^- \Longrightarrow \operatorname{Cl}_2 + 2 \operatorname{H}_2\operatorname{O}$ $Cl_2/Cl^-: 2 \operatorname{Cl}^- \Longrightarrow \operatorname{Cl}_2 + 2 \operatorname{e}^-$			0.5pt			
2.	l'équation de la réaction : $2 \operatorname{ClO}^- + 4 \operatorname{H}^+ + 2 \operatorname{Cl}^- \longrightarrow 2 \operatorname{Cl}_2 + 2 \operatorname{H}_2 \operatorname{O}$			1pt			
	tableau d'avancement :						
3. <i>a</i>	Equation de la réaction $2 \text{ClO}^- + 4 \text{H}^+ + 2 \text{Cl}^- \longrightarrow 2 \text{Cl}_2 + 2 \text{H}_2 \text{O}$						
	états	avancement	quanti	quantité de Matière en mol			
	Etat initial	0	0.41	-en excès-	0	0	0.75pts
	Etat de transformation	x	0.41 - 2x	-	2x	-	
	Etat final	x_{max}	$0.41 - 2x_{max}$	-	$2x_m$	-	
3.b	la quantité de matière n du gaz toxique produite $n(Cl_2) = 0.41 mol$			0.75pts			
3.c	le volume V de gaz toxique dégagé : $V(Cl_2) = 9.84L$			0.5pts			

Physique (1:			
Partie 1 :Con	nportement globale d'un circuit électrique	(6pts)	
N° Question	Réponse	Note	
	Comportement globale d'un circuit électrique		
1.	P E. N A A A B	1pt	
	L'énergie dissipée par effet joule par le conducteur		
2.a	ohmique : On a : I = $500 \text{mA} = 0.5 \text{ A}$ et $\Delta t = 12 \text{ min} = 12 \times 60 = 720 \text{s}$	1pt	
	$W_R = R.I^2.\Delta t = 100, 5^2720 = 1800J$		
2.b	Il s'agit d'un circuit en série, on peut appliquer	$\begin{vmatrix} 1pt \end{vmatrix}$	
2.0	la loi de Pouillet : $I = \frac{E - E'}{R + r + r'}$ donc $r' = \frac{E - E'}{I} - R - r = 5\Omega$		
	L'énergie totale produite par le générateur :		
3.a	On maintenant I = 0,35 A et $\Delta t = 20$ min = $20 \times 60 = 1200$ s	1pt	
	$W_e = E.I.\Delta t \text{ donc } We = 120,351200 = 5040J$		
	L'énergie électrique fournie au circuit par le générateur :		
3.b	$W_f = U_{PN}.I.\Delta t = E.I.\Delta t - r.I^2.\Delta t$	1pt	
	$donc W_f = 120,351200 - 1x0,352x1200 = 4893J$		
	On peut appliquer la loi de Pouillet puisque le		
	circuit est en série : $I = \frac{E - E'}{R + r + r'}$ alors $R = \frac{E - E'}{I} - r - r' = 17\Omega$		
3.c	Les dipôles récepteurs qui dissipent de l'énergie	1pt	
	par effet joule sont le conducteur ohmique et le moteur.		
	$W_{th} = R.I^2.\Delta t = 3200J$		
Partie 2 :Bila	ın énergétique	(7pts)	
1.	$P_r = (R + r')I^2 = 0.32W$	1pt	
2.	$P_u = E'I = 0.24W$	1pt	
3.	$P_e = P_j + P_u = 0.56W$	1pt	
4.a	$P_j = 0.36 - 0.32 = 0.04W$	1pt	
4.b	$P_j = rI^2 \text{ donc } r = \frac{P_J}{I^2} = 4\Omega$ $P_e = U_{PN}.I = (E - rI)I \text{ donc } E = \frac{P_e}{I} + rI = 6V$	1pt	
E .	$P_e = U_{PN}.I = (E - rI)I \text{ donc } E = \frac{P_e}{I} + rI = 6V$	1.04	
5	$I = \frac{E - E'}{R + r + r'} = 0.1A$	1pt	
6. <i>a</i>	a valeur de h =	1pt	
6.b	les formes :	1pt	