2D transformations (a.k.a. warping)

Overview of today's lecture

- Reminder: image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Reminder: image transformations

What is an image?

grayscale image

What is the range of the image function f?

A (grayscale) image is a 2D function.

What types of image transformations can we do?

Filtering

What types of image transformations can we do?

changes range of image function

changes domain of image function

- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

Given a set of matched feature points:

$$\{oldsymbol{x_i}, oldsymbol{x_i'}\}$$
 point in one point in the image other image

and a transformation:

$$oldsymbol{x}' = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$
 transformation $oldsymbol{\nearrow}$ parameters function

find the best estimate of the parameters

p

What kind of transformation functions $m{f}$ are there?

2D transformations

2D transformations

translation

rotation

aspect

affine

perspective

cylindrical

u

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

$$x' = ax$$

$$x' = ax$$
$$y' = by$$

What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

y

$$x' = ax$$
$$y' = by$$

matrix representation of scaling:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

Polar coordinates...

$$x = r \cos (\phi)$$

 $y = r \sin (\phi)$
 $x' = r \cos (\phi + \theta)$
 $y' = r \sin (\phi + \theta)$

Trigonometric Identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2D planar and linear transformations

$$x' = f(x; p)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$$
parameters p point x

2D planar and linear transformations

Scale

$$\mathbf{M} = \left[egin{array}{ccc} s_x & 0 \ 0 & s_y \end{array}
ight]$$

Flip across y
$$\mathbf{M} = \left[\begin{array}{cc} s_x & 0 \\ 0 & s_y \end{array} \right] \qquad \mathbf{M} = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right]$$

Rotate

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Flip across origin

$$\mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Shear

$$\mathbf{M} = \left[egin{array}{ccc} 1 & s_x \ s_y & 1 \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Identity

$$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Projective geometry 101

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 add a 1 here

Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} ax \\ ay \\ a \end{bmatrix}$$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation using homogeneous coordinates?

2D translation using homogeneous coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Homogeneous coordinates

Conversion:

heterogeneous → homogeneous

$$\left[\begin{array}{c} x \\ y \end{array}\right] \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

homogeneous → heterogeneous

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w \\ y/w \end{array}\right]$$

scale invariance

Special points:

point at infinity

$$\left[\begin{array}{cccc} x & y & 0 \end{array}\right]$$

undefined

$$[\begin{array}{cccc}0&0&0\end{array}]$$

Projective geometry

What does scaling **X** correspond to?

Transformations in projective geometry

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$p' = ? ? ? ? p$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$p' = \text{translation}(t_{x}, t_{y}) \qquad \text{rotation}(\theta) \qquad \text{scale}(s, s) \qquad p$$

Does the multiplication order matter?

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & t \end{array} ight]$?
similarity	$\left[\begin{array}{c c} sR & t \end{array}\right]$?
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

Translation:
$$\left[\begin{array}{cccc} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{array} \right]$$

How many degrees of freedom?

Euclidean (rigid): rotation + translation
$$egin{bmatrix} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ 0 & 0 & 1 \ \end{bmatrix}$$

Are there any values that are related?

Euclidean (rigid): rotation + translation

$$egin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?

Similarity: uniform scaling + rotation + translation
$$\begin{bmatrix} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{bmatrix}$$

Are there any values that are related?

Similarity: uniform scaling + rotation + translation

How many degrees of freedom?

Affine transform: uniform scaling + shearing + rotation + translation

Are there any values that are related?

Affine transform: uniform scaling + shearing + rotation + translation
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

Are there any values that are related?

similarity shear
$$\left[\begin{array}{ccc} sr_1 & sr_2 \\ sr_3 & sr_4 \end{array} \right] \left[\begin{array}{ccc} 1 & h_1 \\ h_2 & 1 \end{array} \right] = \left[\begin{array}{ccc} sr_1 + h_2sr_2 & sr_2 + h_1sr_1 \\ sr_3 + h_2sr_4 & sr_4 + h_1sr_3 \end{array} \right]$$

Affine transform: uniform scaling + shearing + rotation + translation
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?

similarity shear
$$\left[\begin{array}{ccc} sr_1 & sr_2 \\ sr_3 & sr_4 \end{array} \right] \left[\begin{array}{ccc} 1 & h_1 \\ h_2 & 1 \end{array} \right] = \left[\begin{array}{ccc} sr_1 + h_2sr_2 & sr_2 + h_1sr_1 \\ sr_3 + h_2sr_4 & sr_4 + h_1sr_3 \end{array} \right]^{\frac{1}{\sqrt{1-\left(\frac{1}{2}\right)}}}$$

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Does the last coordinate w ever change?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Suppose we have two triangles: ABC and DEF.

Suppose we have two triangles: ABC and DEF.

What type of transformation will map A to D, B to E, and C to F?

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

Affine transform: uniform scaling + shearing + rotation + translation

$$egin{array}{ccccc} a_1 & a_2 & a_3 \ a_4 & a_5 & a_6 \ 0 & 0 & 1 \ \end{array}$$

How many degrees of freedom do we have?

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

- unknowns $\mathbf{x}' = \mathbf{M}\mathbf{x}$ point correspondences
- One point correspondence gives how many equations?
- How many point correspondences do we need?

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

point correspondences

How do we solve this for **M**?

Least Squares Error

$$E_{\mathrm{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i' \|^2$$

Least Squares Error

$$E_{ ext{LS}} = \sum_i \| oldsymbol{f}(oldsymbol{x}_i; oldsymbol{p}) - oldsymbol{x}_i' \|^2$$
Residual (projection error)

Least Squares Error

$$E_{\mathrm{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i' \|^2$$

What is the free variable?
What do we want to optimize?

Find parameters that minimize squared error

$$\hat{oldsymbol{p}} = rg \min_{oldsymbol{p}} \sum_i \|oldsymbol{f}(oldsymbol{x}_i; oldsymbol{p}) - oldsymbol{x}_i'\|^2$$

General form of linear least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$E_{ ext{LLS}} = \sum_i |oldsymbol{a}_i oldsymbol{x} - oldsymbol{b}_i|^2 \ = \|oldsymbol{A} oldsymbol{x} - oldsymbol{b}\|^2 \quad ext{ (matrix form)}$$

Affine transformation:

$$\left[egin{array}{c} x' \ y' \end{array}
ight] = \left[egin{array}{ccc} p_1 & p_2 & p_3 \ p_4 & p_5 & p_6 \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight] \hspace{1cm} ext{Why can we drop the last line?}$$

Vectorize transformation parameters:

Stack equations from point correspondences:

$$\begin{bmatrix} x' \\ y' \\ x' \\ y' \end{bmatrix} = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \\ x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \\ p_6 \end{bmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix}$$

Notation in system form:

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\mathrm{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \|\boldsymbol{b}\|^{2}$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})oldsymbol{x} = \mathbf{A}^{ op}oldsymbol{b}$$

In Matlab:

$$x = A \setminus b$$

Note: You almost <u>never</u> want to compute the inverse of a matrix.

Determining unknown image warps

Determining unknown image warps

Suppose we have two images.

• How do we compute the transform that takes one to the other?

Suppose we have two images.

How do we compute the transform that takes one to the other?

- 1. Form enough pixel-to-pixel correspondences between two images
- 2. Solve for linear transform parameters as before
- 3. Send intensities f(x,y) in first image to their corresponding location in the second image

Suppose we have two images.

How do we compute the transform that takes one to the other?

with this?

- 1. Form enough pixel-to-pixel correspondences between two images
- 2. Solve for linear transform parameters as before
- 3. Send intensities f(x,y) in first image to their corresponding location in the second image

Pixels may end up between two points

• How do we determine the intensity of each point?

Pixels may end up between two points

- How do we determine the intensity of each point?
- ✓ We distribute color among neighboring pixels (x',y') ("splatting")

• What if a pixel (x',y') receives intensity from more than one pixels (x,y)?

Pixels may end up between two points

- How do we determine the intensity of each point?
- ✓ We distribute color among neighboring pixels (x',y') ("splatting")

- What if a pixel (x',y') receives intensity from more than one pixels (x,y)?
- ✓ We average their intensity contributions.

Inverse warping

Suppose we have two images.

• How do we compute the transform that takes one to the other?

with this?

- 1. Form enough pixel-to-pixel correspondences between two images
- 2. Solve for linear transform parameters as before, then compute its inverse
- 3. Get intensities g(x',y') in in the second image from point $(x,y) = T^{-1}(x',y')$ in first image

Inverse warping

Pixel may come from between two points

• How do we determine its intensity?

Inverse warping

Pixel may come from between two points

- How do we determine its intensity?
- ✓ Use interpolation

Bilinear interpolation

- 1. Interpolate to find R2
- 2. Interpolate to find R1
- 3. Interpolate to find P

Grayscale example

In matrix form (with adjusted coordinates)

$$f(x,y) \approx \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}.$$

In Matlab:

call interp2

Forward vs inverse warping

Suppose we have two images.

• How do we compute the transform that takes one to the other?

Pros and cons of each?

Forward vs inverse warping

Suppose we have two images.

How do we compute the transform that takes one to the other?

- Inverse warping eliminates holes in target image
- Forward warping does not require existence of inverse transform

References

Basic reading:

Szeliski textbook, Section 3.6.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004.

 a comprehensive treatment of all aspects of projective geometry relating to computer vision, and also a very useful reference for the second part of the class.
- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.

 a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).