COMP S264F Discrete Mathematics Tutorial 6: Functions (1) – Suggested Solution

Question 1.

		\int	g	$f\circ g$
(a)	Domain	$B = \{1, 2, 3\}$	$A = \{p, q, s\}$	$A = \{p, q, s\}$
	Codomain	$C = \{\alpha, \beta, \gamma\}$	$B = \{1, 2, 3\}$	$C = \{\alpha, \beta, \gamma\}$
	Range	$\{\alpha,\beta,\gamma\}$	$\{1, 3\}$	$\{\alpha, \beta\}$

- (b) γ
- (c) β
- (d) p, s

Question 2.

(a) Let
$$y = f(x) = 4x + 2$$

 $y = 4x + 2$
 $y - 2 = 4x$

$$x = \frac{y - 2}{4}$$

$$f^{-1}(y) = \frac{y - 2}{4}$$

(b) Let
$$y = f(x) = 3 + \frac{1}{x}$$

 $y = 3 + \frac{1}{x}$
 $yx = 3x + 1$
 $x(y - 3) = 1$
 $x = \frac{1}{y - 3}$
 $f^{-1}(y) = \frac{1}{y - 3}$

Question 3.

(a)
$$(f \circ g)(x) = f(g(x))$$

$$= f(\frac{x}{2})$$

$$= 3(\frac{x}{2}) + 1$$

$$= \frac{3x + 2}{2}$$

(b)
$$(g \circ f)(x) = g(f(x))$$

= $g(3x+1)$
= $\frac{3x+1}{2}$

Question 4.

(a) **Injective.** Yes.

Let
$$x, y \in \mathbb{Z}$$
.
 $f(x) = f(y) \implies -x = -y$
 $\implies x = y$

Surjective. Yes.

For any
$$b \in \mathbb{Z}$$
, $b = f(a) \implies b = -a$
 $\implies a = -b$
 $\implies a \in \mathbb{Z}$

Bijective. Yes, because f is *injective* and *surjective*.

(b) Injective. No.

Let
$$x = 2$$
 and $y = -2$.

Then
$$f(x) = |2| = 2$$
 and $f(y) = |-2| = 2$.

Therefore, $x \neq y \implies f(x) \neq f(y)$ is false.

Surjective. No.

Let
$$b = -2$$
.

$$b = f(a) \implies |a| = -2$$

However, |a| must be positive.

Therefore, there does not exist any $a \in \mathbb{R}$ such that f(a) = b.

Bijective. No, because f is neither *injective* nor *surjective*.

(c) **Injective.** Yes.

Let
$$x, y \in \mathbb{R}$$
.

$$f(x) = f(y) \implies 6x - 9 = 6y - 9$$
$$\implies x = y$$

Surjective. No.

For any
$$b \in \mathbb{Z}$$
, $b = f(a) \implies b = 6a - 9$

$$\implies a = \frac{b+9}{6}$$

However, when b = 0, $a = 1.5 \notin \mathbb{Z}$.

Bijective. No, because f is not *surjective*.

(d) Injective. Yes.

Let
$$x, y \in \mathbb{R}$$
.

$$f(x) = f(y) \implies 2x^3 - 4 = 2y^3 - 4$$
$$\implies x^3 = y^3$$
$$\implies x = y$$

Surjective. Yes.

For any
$$b \in \mathbb{Z}$$
, $b = f(a) \implies b = 2a^3 - 4$

$$\implies a^3 = \frac{b+4}{2}$$

$$\implies a = \sqrt[3]{\frac{b+4}{2}}$$

$$\implies a \in \mathbb{R}$$

Bijective. Yes, because f is *injective* and *surjective*.

Question 5.

(a) False. Consider the following arrow diagram for the functions f and g.

It is obvious that g is injective.

However, we can find a counterexample $(f \circ g)(p) = (f \circ g)(q) = \alpha$ to show that $f \circ g$ is not injective.

(b) True. Let $x \in A$ and $y \in A$ such that $g(x) = g(y) \implies f(g(x)) = f(g(y))$ $\implies (f \circ g)(x) = (f \circ g)(y)$

Since $f \circ g$ is injective, x = y. Hence, g is also injective.

(c) True. Assume $c \in C$.

Since f is surjective, there exists $b \in B$ such that f(b) = c. Since g is surjective, there exists $a \in A$ such that g(a) = b. Then f(g(a)) = f(b) = c. Therefore, $f \circ g$ is surjective.