PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Cuarta práctica (tipo a) Primer semestre 2025

Indicaciones generales:

- Duración: 110 minutos.
- Materiales o equipos a utilizar: con apuntes de clase físicos.
- No está permitido el uso de ningún material o equipo electrónico, salvo calculadora.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Cuestionario:

Pregunta 1 - Optimización irrestricta (4 puntos)

Sea $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ una muestra aleatoria correspondiente a una distribución normal $\mathcal{N}(\mu, \sigma^2)$. Se define la función de verosimilitud por:

$$L(x_1, x_2, ..., x_n; \mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}.$$
 (1)

Se denominan los estimadores de máxima verosimilitud de μ y σ^2 (que se denotan por $\hat{\mu}$ y $\hat{\sigma}^2$) a los valores para los que se alcanza el máximo valor de la función definida en (1). Calcule $\hat{\mu}$ y $\hat{\sigma}^2$, comprobando que se trata de un máximo. Asuma que no todos los x_i son iguales.

Solución: El objetivo es resolver

$$\mathcal{P}: \begin{cases} \max_{\mu,\sigma^2} & L(\mu, \sigma^2; x_1, ..., x_n) \\ s.a.: & (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+. \end{cases}$$

Es importante que los x_i no sean iguales. Note que se maximiza sobre μ y σ^2 . Un primer enfoque, para poder encontrar los candidatos a óptimos locales, es aplicar directamente las condiciones de primer orden a la función objetivo

$$\begin{split} \frac{\partial L}{\partial \mu} &= \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} = 0 \\ \frac{\partial L}{\partial \sigma^2} &= \frac{-n}{(\sigma^2)^{\frac{n+1}{2}} \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} + \frac{\sum_{i=1}^n (x_i - \mu)^2}{(\sigma^2)^{n/2} \sqrt{2\pi} \cdot (\sigma^2)^{3/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} = 0. \end{split}$$

Como la exponencial es siempre positiva, se tiene que

$$\sum_{i=1}^{n} (x_i - \mu) = 0$$
$$\frac{\sum_{i=1}^{n} x_i}{n} = \overline{x} = \hat{\mu}.$$

Luego, teniendo en cuenta nuevamente que $e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2}>0$ y simplificando obtenemos

$$\frac{1}{\sigma^{n}\sqrt{2\pi}} \cdot \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{\sigma^{3}} = \frac{n}{\sigma^{n+1}\sqrt{2\pi}^{n}}$$
$$\frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{\sigma^{n+3}} = \frac{n}{\sigma^{n+1}}$$
$$m\sigma^{2} = \sum_{i=1}^{n} (x_{i} - \mu)^{2}.$$

O sea,

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

Observación: dada la estructura (productoria) de la función de máxima verosimilitud, considerando sobre todo las condiciones de segundo orden, lo más acertado es maximizar la función de log-verosimilitud, definida de la siguiente manera

$$K(\theta) = K(\mu, \sigma^{2} | x)$$

$$= \ln(L(x_{1}, ..., x_{n}; \mu, \sigma^{2}))$$

$$= \ln\left[\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}}\right]$$

$$= -n \ln \sqrt{2\pi} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} - \frac{n}{2} \ln \sigma^{2}.$$

Debido a las propiedades de la función logaritmo neperiano, $K(\theta)$ posee los mismos óptimos, y de misma naturaleza, que $L(x;\theta)$. Por ende, bastaba con aplicar las CPO a $K(\mu, \sigma^2)$

$$\frac{\partial K}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$
$$\frac{\partial K}{\partial \sigma^2} = \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2\sigma^2} = 0.$$

Despejando, se vuelven a obtener los candidatos a máximo local

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2 = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \frac{1}{n} \sum_{j=1}^{n} x_j \right)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2.$$

Queda entonces únicamente por analizar las condiciones de segundo orden para ver si se trata de un máximo.

$$\begin{split} \frac{\partial^2 K}{\partial \mu^2} &= -\frac{n}{\sigma^2} \\ \frac{\partial^2 K}{\partial \mu \partial \sigma^2} &= \frac{\partial^2 K}{\partial \sigma^2 \partial \mu} = -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu) \\ \frac{\partial^2 K}{\partial (\sigma^2)^2} &= \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2. \end{split}$$

Luego,

$$H(K(\mu, \sigma^2)) = \begin{bmatrix} -\frac{n}{\sigma^2} & -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu) \\ -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu) & \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2 \end{bmatrix}.$$

Por ende,

$$D_1 = H_{11}(K(\hat{\mu}, \hat{\sigma}^2)) = -\frac{n}{\hat{\sigma}^2} < 0$$

у

$$D_{2} = \det(H(K(\hat{\mu}, \hat{\sigma}^{2})))$$

$$= \frac{1}{\sigma^{6}} \left[-\frac{n^{2}}{\sigma^{2}} + \frac{n}{\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} - \frac{1}{\sigma^{2}} \left(\sum_{i=1}^{n} (x_{i} - \mu) \right)^{2} \right] \Big|_{\mu = \overline{x}, \sigma^{2} = \hat{\sigma}^{2}}$$

$$= \frac{1}{\sigma^{6}} \left[-\frac{n^{2}}{\sigma^{2}} + \frac{n}{\sigma^{2}} \sigma^{2} - \frac{1}{\sigma^{2}} \left(\sum_{i=1}^{n} (x_{i} - \mu) \right)^{2} \right] \Big|_{\mu = \overline{x}, \sigma^{2} = \hat{\sigma}^{2}}$$

$$= \frac{1}{\hat{\sigma}^{6}} \left[-\frac{n^{2}}{\hat{\sigma}^{2}} + \frac{n}{\hat{\sigma}^{2}} \hat{\sigma}^{2} - \frac{1}{\hat{\sigma}^{2}} \left(\sum_{i=1}^{n} (x_{i} - \hat{\mu}) \right)^{2} \right]$$

$$= -\frac{n}{\hat{\sigma}^{2}} - \frac{n}{2\hat{\sigma}^{6}}$$

$$= \frac{n^{2}}{2\hat{\sigma}^{6}} > 0.$$

Concluimos entonces, gracias a las condiciones de segundo orden, que $(\hat{\mu}, \hat{\sigma}^2)$ es en efecto un máximo local.

Pregunta 2 - Estática comparativa (4 puntos)

Considere el siguiente modelo IS-LM

$$Y = C + I + G$$

$$C = 0.8(Y - T)$$

$$I = 100 - 0.5r$$

$$M^{d} = 0.5Y - 0.2r.$$

- 1. Interprete las ecuaciones, donde T y G son parámetros.
- 2. Verifique si se pueden aplicar los supuestos del teorema de la función implícita y en dicho caso, obtenga $\frac{\partial Y}{\partial G}$ y $\frac{\partial r}{\partial G}$ por medio de estática comparativa.

Solución:

- Interpretación de las ecuaciones:
 - -Y = C + I + G es la condición de equilibrio en el mercado de bienes: la producción (renta) Y se destina a consumo C, inversión I y gasto público G (exógeno).
 - -C = 0.8(Y T) es la función de consumo lineal: la propensión marginal a consumir es 0.8, y T son impuestos netos (parámetro exógeno).
 - -I = 100 0.5 r es la función de inversión: la inversión autónoma es 100 y disminuye en 0.5 unidades por cada punto de aumento de la tasa de interés r.
 - $-M^d=0.5\,Y-0.2\,r$ es la demanda de dinero real: crece con el ingreso (0.5) y disminuye con la tasa de interés (0.2). La oferta real de dinero M/P se toma como constante.
- Aplicación del Teorema de la Función Implícita y estática comparativa:

 Definimos el sistema

$$\begin{cases} F_1(Y, r; G, T) = Y - 0.8(Y - T) - (100 - 0.5 r) - G = 0, \\ F_2(Y, r; M/P) = 0.5 Y - 0.2 r - \frac{M}{P} = 0. \end{cases}$$

Derivadas parciales:

$$F_{1Y} = 0.2$$
, $F_{1r} = 0.5$, $F_{1G} = -1$, $F_{2Y} = 0.5$, $F_{2r} = -0.2$, $F_{2G} = 0$.

Jacobiano respecto a (Y, r):

$$J = \begin{pmatrix} 0.2 & 0.5 \\ 0.5 & -0.2 \end{pmatrix}, \quad \det J = (0.2)(-0.2) - (0.5)(0.5) = -0.29 \neq 0.$$

Por el método de Cramer:

$$\frac{\partial Y}{\partial G} = \frac{F_{2r}}{\det J} = \frac{-0.2}{-0.29} = \frac{0.2}{0.29} \approx 0.69, \quad \frac{\partial r}{\partial G} = -\frac{F_{2Y}}{\det J} = -\frac{0.5}{-0.29} = \frac{0.5}{0.29} \approx 1.72.$$

Conclusión de la estática comparativa:

$$\frac{\partial Y}{\partial G} \approx 0.69, \qquad \frac{\partial r}{\partial G} \approx 1.72.$$

Un aumento unitario de G eleva el ingreso en 0.69 y la tasa de interés en 1.72, mostrando el efecto "crowding-out" sobre la inversión.

Pregunta 3 - Lagrange (4 puntos)

Resuelva el problema de maximización de la utilidad en función del vector de precios $\mathbf{p} = (p_1, p_2) \in \mathbb{R}^2_{++}$ y la riqueza I > 0, para

- $u(x_1, x_2) = x_1^{0.5} + x_2^{0.5}$.
- $u(x_1, x_2) = x_1 + \ln x_2, x_2 > 0.$

Solución:

• Para $u(x_1, x_2) = x_1^{0.5} + x_2^{0.5}$:

$$\max_{x_1, x_2 \ge 0} \sqrt{x_1} + \sqrt{x_2} \quad \text{s.a.} \quad p_1 x_1 + p_2 x_2 = I.$$

Las condiciones de primer orden (interior) son

$$\frac{\frac{\partial u}{\partial x_1}}{p_1} = \frac{\frac{1}{2}x_1^{-1/2}}{p_1} = \frac{\frac{\partial u}{\partial x_2}}{p_2} = \frac{\frac{1}{2}x_2^{-1/2}}{p_2} \implies \frac{1}{p_1\sqrt{x_1}} = \frac{1}{p_2\sqrt{x_2}} \implies x_2 = x_1\left(\frac{p_1}{p_2}\right)^2.$$

Sustituyendo en la restricción presupuestaria:

$$p_1 x_1 + p_2 x_1 \left(\frac{p_1}{p_2}\right)^2 = x_1 \left(p_1 + \frac{p_1^2}{p_2}\right) = I \implies x_1^*(p_1, p_2, I) = \frac{I p_2}{p_1 (p_1 + p_2)},$$
$$x_2^*(p_1, p_2, I) = x_1^* \left(\frac{p_1}{p_2}\right)^2 = \frac{I p_1}{p_2 (p_1 + p_2)}.$$

• Para $u(x_1, x_2) = x_1 + \ln x_2, x_2 > 0$:

$$\max_{x_1 \ge 0, x_2 > 0} x_1 + \ln x_2 \quad \text{s.a.} \quad p_1 x_1 + p_2 x_2 = I.$$

Las condiciones de primer orden (interior) son

$$\frac{\partial u/\partial x_1}{p_1} = \frac{1}{p_1} = \lambda, \qquad \frac{\partial u/\partial x_2}{p_2} = \frac{1/x_2}{p_2} = \lambda \implies \frac{1}{x_2 p_2} = \frac{1}{p_1} \implies x_2^* = \frac{p_1}{p_2}.$$

De la restricción:

$$p_1 x_1 + p_2 \frac{p_1}{p_2} = I \implies x_1^* = \frac{I - p_1}{p_1} = \frac{I}{p_1} - 1.$$

(Para garantizar $x_1^* \ge 0$ se requiere $I \ge p_1$.) Si no $x_2^* = I/p_2$ y $x_1^* = 0$.

Pregunta 4 - Lagrange y Teorema de la Envolvente, estática comparativa (8 puntos)

- 3.1) Supongamos que usted dispone de una placa metálica de $25m^2$ de superficie, con la que debe construir una caja rectangular que se llenará de gasolina. Se le pide que responda las siguiente cuestiones:
 - (a) ¿Cuáles serán las dimensiones de la caja si el objetivo es llevarse la mayor cantidad posible de gasolina?
 - (b) Sabiendo que el litro de gasolina cuesta 144 unidades monetaria, ¿cuánto estaría usted dispuesto a pagar por un cm^2 más de placa?
 - (c) Si el precio de la gasolina sube a 160um el litro, ¿cuánto pagaría por un cm² adicional de placa?

Solución:

a) El volumen del soporte rectangular, es igual a

$$V = xyz$$
,

siendo x el largo, y la profundidad y z el alto. Por otro lado, la superficie de un rectángulo ordinario que va a usarse para construir la caja está dada por

$$S = 2xy + 2xz + 2yz.$$

Por ende, el objetivo es resolver el siguiente problema de maximización

$$\max V(x, y, z) = xyz$$

 $s.a. 2xy + 2xz + 2yz = 25.$

Como S está en $m^2,\ x,y$ y z estará en metros y V en m^3 . La función lagrangiana subyacente a este problema es

$$L(x, y, z, \lambda) = xyz + \lambda(25 - 2xy - 2xz - 2yz).$$

Aplicando las condiciones de primer orden,

$$\frac{\partial L}{\partial x} = yz - 2\lambda y - 2\lambda z = 0 \tag{2}$$

$$\frac{\partial L}{\partial y} = xz - 2\lambda x - 2\lambda z = 0 \tag{3}$$

$$\frac{\partial L}{\partial z} = xy - 2\lambda x - 2\lambda y = 0 \tag{4}$$

$$\frac{\partial L}{\partial \lambda} = 25 - 2(xy + xz + yz) = 0. \tag{5}$$

De (2) y (3),

$$yz - xz = 2\lambda(y - x).$$

Si $y \neq x, z = 2\lambda$. Reemplazando en (3), $\lambda = 0, \Rightarrow \Leftarrow$. De este modo, x = y. Análogamente, usando (2) y (4), se obtiene que x = z. De este modo,

$$25 = 2(3x^2) = 6x^2.$$

Es decir,

$$(x^*, y^*, z^*) = \left(\frac{5}{\sqrt{6}}, \frac{5}{\sqrt{6}}, \frac{5}{\sqrt{6}}\right).$$

Este resultado es coherente con el argumento de simetría. En efecto, pudo haberse escogido cualquier eje para medir la altura o la profundidad o el largo del depósito rectangular.

b) El litro de gasolina cuesta 144um. Como $1L = 0.001m^3$, $\Pi = 144000 \cdot V(um)$. Luego, recordemos que

$$\frac{\partial V(S)}{\partial S} = \lambda^*,$$

siendo S el parámetro de la restricción, ente caso, la superficie. Observe que, para el caso general,

$$(x^*, y^*, z^*) = \left(\sqrt{\frac{S}{6}}, \sqrt{\frac{S}{6}}, \sqrt{\frac{S}{6}}\right).$$

Luego,

$$V(S) = \left(\sqrt{\frac{S}{6}}\right)^3 = \frac{S^{3/2}}{6^{3/2}}$$

у

$$\frac{\partial V}{\partial S} = \frac{3S^{1/2}}{2 \cdot 6^{3/2}}.$$

En nuestro caso, como S=25, $\lambda^*=5\sqrt{6}/24$. Recordemos que en el caso general, siendo b el parámetro de la restricción y V la función valor en un problema \mathcal{L} ,

$$V(b+db) \simeq V(b) + \lambda^* db. \tag{6}$$

En este caso, b=25 y $db=10^{-4}$ (1 cm^2 es $10^{-4}m^2$). De este modo, para calcular el precio que se estaría dispuesto a pagar (en analogía con la variación equivalente en teoría del consumidor), será exactamente igual al beneficio monetario que le aporta contar con 1 cm^2 adicional de superficie. En efecto, no pagaría más que este beneficios pues perdería, y siempre es capaz de pagar p con tal de que $p < \Delta\Pi - \varepsilon$, para todo $\varepsilon > 0$. Así pues,

$$\begin{split} p &= \Delta \Pi \\ &= p_0 \times 10^3 (V(25+10^{-4})-V(25)) \\ &= 144 \times 10^3 \left[\left(\frac{5}{\sqrt{6}}\right)^3 + \frac{5\sqrt{6}}{24} \cdot 10^{-4} - \left(\frac{5}{\sqrt{6}}\right)^3 \right] \\ &\sim 7.35 um. \end{split}$$

c) Si $p_0 = 166um$, reemplazando en

$$p_0 \times 10^3 \left[\left(\frac{5}{\sqrt{6}} \right)^3 + \frac{5\sqrt{6}}{24} \cdot 10^{-4} - \left(\frac{5}{\sqrt{6}} \right)^3 \right]$$

se obtiene 8.47um. Alternativamente, podemos plantear el problema de maximización del beneficio

$$\max \Pi(x, y, z, p_0) = p_0 xyz$$

s.a.: $S(x, y, z) = 2(xy + xz + yz) = 25$

y aplicar el Teorema Envolvente.

3.2) Un individuo consume dos bienes x_1 y x_2 , cuyos precios son $p_1, p_2 > 0$. El individuo minimiza el gasto considerando que quiere una utilidad por lo menos igual a $\overline{u} > 0$. Su función de utilidad es clase $C^2(\mathbb{R}^2)$ y tal que, $u(\mathbf{0}) = 0$, $\frac{\partial u}{\partial x_i} > 0$, $\frac{\partial^2 u}{\partial x_i^2} < 0$ y $\frac{\partial^2 u}{\partial x_i \partial x_j} > 0$. Asuma que no es óptimo $x_i = 0$. Halle mediante estática comparativa

$$\frac{\partial x_1}{\partial y_2}$$

e interprete.

Solución: Diferenciando las CPO

$$dp_1 - d\lambda u_{x_1} - \lambda u_{x_1 x_1} dx_1 - \lambda u_{x_1 x_2} dx_2 = 0$$

$$dp_2 - d\lambda u_{x_2} - \lambda u_{x_1 x_2} dx_1 - \lambda u_{x_2 x_2} dx_2 = 0$$

$$d\overline{u} - u_{x_1} dx_1 - u_{x_2} dx_2 = 0.$$

Eliminando los efectos que no son de interés, queda

$$\begin{bmatrix} 0 \\ dp_2 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda u_{x_1x_1} & \lambda u_{x_1x_2} & u_{x_1} \\ \lambda u_{x_1x_2} & \lambda u_{x_2x_2} & u_{x_2} \\ u_{x_1} & u_{x_2} & 0 \end{bmatrix} \begin{bmatrix} dx_1 \\ dx_2 \\ 0 \end{bmatrix}.$$

Aplicando la regla de Cramer

$$\frac{dx_1}{dp_2} = \frac{u_{x_1}u_{x_2}}{|A|} > 0,$$

donde

$$|A| = \lambda u_{x_1 x_1}(-u_{x_2}^2) - \lambda u_{x_1 x_2}(-u_{x_1} u_{x_2}) + u_{x_1}[\lambda u_{x_1 x_2} u_{x_2} - \lambda u_{x_2 x_2} u_{x_1}] > 0.$$

Profesor del curso: Jorge Chávez.

Asistente de docencia: Marcelo Gallardo.