Modify MPC-CMP as a Threshold Signature Scheme

Modified parts are marked in red.

0 Definitions

Definition 1.1(F-VSSS, Feldman's Verifiable Secret Sharing). Define the Verifiable Secret Sharing Scheme as the four tuple (com, share, recover, vrfy). In cryptography, a secret sharing scheme is verifiable if auxiliary information is included that allows players to verify their shares as consistent. More formally, verifiable secret sharing ensures that even if the dealer is malicious there is a well-defined secret that the players can later reconstruct.

Given $ssid = (\ldots, \mathbb{G}, q, g, P)$.

- 1. Let $(\tilde{F}, \tilde{f}) \leftarrow \mathcal{M}(com, \Pi^{F-VSSS}, t, ssid)$:
 - \circ Sample $f^1, \dots, f^{t-1} \leftarrow F_q$.
 - \circ For $k \in \{1, \ldots, t-1\}$, set $F^k = g^{f^k}$, $ilde{F} = (F^k)_k$, $ilde{f} = (f^k)_k$.
- 2. Let $(c, \tilde{X}, \tilde{x}) \leftarrow \mathcal{M}(share, \Pi^{F-VSSS}, t, \mathbf{P}, ssid; \tilde{f}, x)$.
 - Define a polynomial:

$$f(\nu) = x + f^1 * \nu + f^2 * \nu^2 + \dots + f^{t-1} * \nu^{t-1}$$

- \circ Compute $X = g^x$.
- \circ For $j\in\mathbf{P}$, set $x^j=f(j)$, $X^j=g^{x^j}$, $ilde{X}=(X^j)_j$, $ilde{x}=(x^j)_j$.
- \circ Set Feldman's commitment $c=(X, ilde{F})$
- 3. Verify $\mathcal{M}(vrfy,\Pi^{F-VSSS},j,c,ssid;x_j)=1.$

The secret share x_j could be validated as follows:

- \circ Compter $c_i^0 = X$
- $\circ \; \; \mathsf{Compter} \; c_j^1 = F_1^{(j^1)}$
- $\circ \;\;$ Compter $c_i^2 = F_2^{(j^2)}$
- 0 . .
- $\circ \ \ \mathsf{Compter} \ c_i^{t-1} = F_{t-1}^{(j^{t-1})}$
- $\circ \ \ \operatorname{Verify} \Pi_k^{t-1} c_j^k = g_j^x$
- 4. Let $(x) \leftarrow \mathcal{M}(recover, \Pi^{F-VSSS}, S \subseteq \mathbf{P}, (X, \tilde{F}), ssid; \tilde{x}).$

The origin secret x could be computed with at least t shares via the Sharmir's Secret Sharing Scheme.

- $\circ \ \ \text{Verify} \ |S| \geq t.$
- $\circ~$ Verify the F-VSSS commitment of the shares.
 - For $j \in S$, verify share x_j
 - lacksquare Compter $c_i^0=X$
 - Compter $c_i^1 = F_1^{j^1}$
 - $lacksquare Compter c_i^2 = F_2^{j^2}$
 -
 - $\bullet \quad \text{Compter } c_j^{t-1} = F_{t-1}^{j^{t-1}}$
 - $\quad \blacksquare \ \ \text{Verify} \ \Pi_k^{t-1} c_j^k = g_j^x$
- \circ For $j \in S$, Compute $\ell_j(0) = \prod_{i
 eq j}^{i \in S} rac{j}{j-i} \pmod{q}$

- \circ Compute the secret $x = \sum_{j \in S} \ell_j(0) \cdot x^j \pmod{q}$
- 5. Let $(X) \leftarrow \mathcal{M}(recover_pub, \Pi^{F-VSSS}, \tilde{X}, S \subseteq \mathbf{P}, ssid)$.

With at least t public keys corresponding to the secret shares, the public key corresponding to the origin secret could be computed as follows:

- \circ Verify $|S| \geq t$.
- $\circ \;\;$ For $j \in S$, Compute the Lagrangian interpolation coefficients:

$$\ell_j(0) = \prod_{i \neq j}^{i \in S} \frac{j}{j-i} \pmod{q}.$$

 $\circ \;\;$ Compute the public key $X = \prod_{j \in S} \ell_j(0) \cdot X^j$

1 Protocol: Threshold Key Generation

Round 1.

Upon activation on input $(\mathbf{keygen}, sid, i, t)$ from P_i , interpret $sid = (\ldots, G, q, g, \mathbf{P})$, and do:

- ullet Sample $\{x_i \leftarrow F_q\}$, and set $X_i = g^{x_i}$
- Sample $rid_i \leftarrow \{0,1\}^{\kappa}$ and compute $(A_i, \tau) \leftarrow \mathcal{M}(com, \Pi^{sch})$.
- Compute $(B_i, r) \leftarrow \mathcal{M}(com, \Pi^{sch})$.
- Compute the shares of x_i .
 - \circ Compute $(c_i, \tilde{f}_i) \leftarrow \mathcal{M}((com, \Pi^{F-VSSS}, t, ssid))$
 - $\text{O compute: } ((X_i, \tilde{F}_i), \tilde{X}_i, \tilde{x}_i) \leftarrow \mathcal{M}(share, \Pi^{F-VSSS}, t, \mathbf{P}, ssid; \tilde{f}, x). \text{ Set } X_i^j = g^{x_i^j}, \tilde{X}_i = (X_i^j)_j, \\ \tilde{x_i} = (x_i^j)_j$
- Sample $u_i \leftarrow \{0,1\}^{\kappa}$ and set $V_i = \mathcal{H}(sid,i,rid_i,X_i,A_i,B_i, ilde{X_i},c_i,u_i))$.

Round 2.

When obtaining (sid, j, V_i) from all P_i , broadcast $(sid, i, rid_i, X_i, A_i, B_i, \tilde{X}_i, c_i, u_i)$ and send (sid, i, x_i^j) to all P_i .

Round 3.

- 1. Upon receiving $(sid, j, rid_j, X_j, A_j, B_j, u_j, \tilde{X}_j, c_i, x_i^i)$ from P_i , do:
 - $\circ \;\; ext{Verify} \; \mathcal{H}(sid,j,rid_j,X_j,A_j,B_j,u_j, ilde{m{X}_j},m{c_i}) = V_j.$
 - \circ Verify $\mathcal{M}(vrfy,\Pi^{F-VSSS},i,c_i,ssid;x_i^i)=1.$
- 2. When obtaining the above from all P_j , do:
 - ullet Set $x_i' = \sum_{j \in P} x_j^i$
 - \circ For $j \in P$, set $X_j' = \prod_{k \in P} X_k^j$.
 - $\circ \;\;$ Set $ilde{X}' = (X'_j)_j$
 - Set $rid = \bigoplus_i rid_i$.
 - \circ Compute $\psi_i = \mathcal{M}(prove, \Pi^{sch}, (sid, i, rid), X_i; x_i, au).$
 - \circ Compute $\phi_i = \mathcal{M}(prove,\Pi^{sch},(sid,i,rid),X_i';x_i',r)$

Send (sid, i, ψ_i, ϕ_i) to all P_j .

Output.

- 1. Upon receiving (sid, j, ψ_i) from P_i interpret $\psi_j = (\hat{A}_j, \ldots)$ and $\phi_i = (\hat{B}_j, \ldots)$, and do:
 - \circ Verify $\hat{A}_i = A_i$.
 - \circ Verify $\mathcal{M}(vrfy,\Pi^{sch},(sid,j,rid),X_j,\psi_j)=1.$
 - \circ Verify $\hat{B}_{i}=B_{i}$.
 - \circ Verify $\mathcal{M}(vrfy,\Pi^{sch},(sid,j,rid),X_i^*,\phi_j)=1$
- 2. When passing above verification from all P_i , do:
 - \circ Set $X = \Pi_j X_j$.
 - ullet Compute $X' \leftarrow \mathcal{M}(recover_pub, \Pi^{F-VSS}, ssid, ilde{X}')$.
 - \circ Verify X=X'
 - $\circ \ \ \mathsf{Set} \, X_j = X_j' \, \mathsf{for} \, \mathsf{all} \, j \in P$
 - $\circ \ \ \mathsf{Set} \, x_i = x_i'$
 - \circ Output X.

Error. When failing a a verification report the culprit and halt.

Stored State. Store the following: $rid, t, X, \tilde{X} = (X_1, \dots, X_n), \mathbf{P}$ and x_i .

2 Protocol: Auxiliary Info. & Threshold Key Refresh

Round 1.

On input (aux - info, ssid, i) from P_i , do:

- Sample two $4\kappa bit$ long safe primes (p_i, q_i) . Set $N_i = p_i q_i$.
- ullet Sample $y_i \leftarrow \mathbb{F}_q$ and set $Y_i = g^{y_i}.$ Sample $(B_i, au) \leftarrow \mathcal{M}(com, \Pi^{sch}).$
- Compute the shares of 0:
 - \circ Compute $(c_i, \tilde{f_i}) \leftarrow \mathcal{M}((com, \Pi^{F-VSSS}, t, ssid))$
 - $\circ (c, \tilde{X}_i, \tilde{x}_i) \leftarrow \mathcal{M}(share, \Pi^{F-VSSS}, t, \mathbf{P}, ssid; \tilde{f}_i, 0)$
 - $ullet \ X_i^j = g^{x_i^j}, ilde X_i = (X_i^j)_j, ilde x_i = (x_i^j)_j.$
- ullet Sample $r \leftarrow \mathbb{Z}_{N_i}^*$, $\lambda \leftarrow \mathbb{Z}_{\phi(N_i)}$, set $t_i = r^2 \pmod{N_i}$, and $s_i = t_i^\lambda \pmod{N_i}$.

Compute
$$\hat{\psi}_i = \mathcal{M}(prove, \Pi^{prm}, (ssid, i), (N_i, s_i, t_i); \lambda)$$

- ullet Sample $(A_i^j, au_j)\leftarrow \mathcal{M}(Com,\Pi^{sch})$, for $j\in \mathbf{P}$. Set $A_i=(A_i^j)_j$.
- $\bullet \ \ \text{Sample} \ \rho_i, u_i \leftarrow 0, 1^\kappa \ \text{and compute} \ V_i = \mathcal{H}(ssid, i, X_i, \tilde{X}_i, \tilde{F}_i, A_i, B_i, N_i, s_i, t_i, \hat{\psi}_i, \rho_i, u_i).$

Broadcast $(ssid, i, V_i)$.

Round 2.

When obtaining (sid, j, V_j) from all P_j , broadcast $(ssid, i, X_i, \tilde{X}_i, \tilde{F}_i, A_i, B_i, N_i, s_i, t_i, \hat{\psi}_i, \rho_i, u_i)$ to all.

Round 3.

- 1. Upon receiving $(ssid, i, X_i, \tilde{X}_i, \tilde{F}_i, A_i, B_i, N_i, s_i, t_i, \hat{\psi}_i, \rho_i, u_i)$ from P_i , do:
 - \circ Verify $N_i \geq 2^{8\kappa}$ and $\mathcal{M}(verify,\Pi^{prm},(ssid,j),(N_j,s_j,t_j),\hat{\psi}_j) = 1.$
 - $\qquad \text{$\circ$ Verify $\mathcal{H}(sid,j,X_j,\tilde{X}_i,\tilde{F}_i,A_j,Y_j,B_j,N_j,s_j,t_j,\hat{\psi}_j,\rho_j,u_j)$} = V_j \,.$
 - \circ Verify $\mathcal{M}(recover_pub,\Pi^{F-VSSS},(id_G, ilde{F}_j),\mathbf{P},ssid, ilde{X}_j)=id_G.$
- 2. When obtaining the above from all P_i , do:
 - \circ Compute $\psi_i = \mathcal{M}(prove, \Pi^{mod}, (sid, \rho_i), N_i; (p_i, q_i)).$
 - \circ Compute $\phi_i = \mathcal{M}(prove, \Pi^{fac}, (sid,
 ho_, i), (N_i, \kappa); (p_i, q_i)).$
 - $\circ \ \ \mathsf{For} \ j \in P \text{, set} \ C_i^j = enc_j(x_i^j) \ \mathsf{and} \ \psi_i^j = \mathcal{M}(prove, \Pi^{sch}, (ssid, \rho, i), X_i^j; x_i^j, \tau_j).$
 - \circ Compute $\pi_i = \mathcal{M}(prove, \Pi^{sch}, (sid, i, rid), Y_i; y_i, \tau)$.

Send $(sid, i, \psi_i, \phi_i, \pi_i, C_i^j, \psi_i^j)$ to all P_i .

Output.

- 1. Upon receiving $(sid, j, \psi_j, \phi_j, \pi_j, C^i_j, \psi^i_j)$ from P_j , set $x^i_j = dec_i(C^i_j) \pmod{q}$ and do:
 - $\text{o Verify } g^{x^i_j} = X^i_j. \text{ If } g^{x^i_j} \neq X^i_j \text{ calculate } \mu = (C^i_j \cdot (1+N_i)^{-x^i_j})^{1/N} \pmod{N}^2 \text{ and do:} \\ \text{Dec Error: Send to all } (P_j, C^i_j, x^i_j, \mu) \text{ to each } P_j.$

 - $\circ \ \ \mathsf{Verify} \ \mathcal{M}(prove, \Pi^{mod}, (sid, \rho, j), N_j; (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathcal{M}(prove, \Pi^{fac}, (sid, \rho, j), (N_j, \kappa); (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathcal{M}(prove, \Pi^{fac}, (sid, \rho, j), (N_j, \kappa); (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathcal{M}(prove, \Pi^{fac}, (sid, \rho, j), (N_j, \kappa); (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathcal{M}(prove, \Pi^{fac}, (sid, \rho, j), (N_j, \kappa); (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathcal{M}(prove, \Pi^{fac}, (sid, \rho, j), (N_j, \kappa); (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathcal{M}(prove, \Pi^{fac}, (sid, \rho, j), (N_j, \kappa); (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathcal{M}(prove, \Pi^{fac}, (sid, \rho, j), (N_j, \kappa); (p_j, q_j)) = 1 \ \mathsf{and} \ \ \mathsf$
 - \circ Interpret $\pi_j=(\hat{B}_j,\ldots)$, and Verify $\hat{B}_j=B_j$ and $\mathcal{M}(prove,\Pi^{sch},(sid,j,rid),Y_j;y_j, au)=1.$
 - \circ For $k\in P$, interpret $\psi_j^k=(\hat{A}_j^k,\ldots)$, and verify $\hat{A}_j=A_j$ and verify $\mathcal{M}(vrfy,\Pi^{sch},(sid,rho,i),X_j^k,\psi_j^k)=1$
- 2. When passing above verification from all P_j , do:
 - \circ Set $x_i = x_i + \sum_j x_j^i \pmod{q}$.
 - $\circ \ \ \operatorname{\mathsf{Set}} X_j = X_j + \Pi_{k \in P} X_k^j \ \ \mathsf{for} \ j \in P \ \mathsf{and} \ ilde{X} = (X_k)_k$
 - $\circ \;\; \mathsf{Compute} \, X' \leftarrow \mathcal{M}(recover_pub, \Pi^{F-VSS}, ssid, ilde{X}^*) \,.$
 - \circ Verify X'=X
 - \circ Output $(ssid, i, \tilde{X} = (X_j)_j, \tilde{Y} = (Y_j)_j, \tilde{N} = (N_j)_j, \tilde{s} = (s_j)_j, \tilde{t} = (t_j)_j).$

Error. When failing a a verification or receiving a Dec Error report the culprit and halt.

Stored State. Store the following: (x_i, y_i, p_i, q_i) .

3 Protocol: ECDSA Pre-Signing and Signing

The key shard needs to preprocessed.

On input

 $(key-shard-preprocess, ssid, i, S \subseteq \mathbf{P}, ilde{X}=(X_j)_j, ilde{Y}=(Y_j)_j, ilde{N}=(N_j)_j, ilde{s}=(s_j)_j, ilde{t}=(t_j)_j, (x_i^*, y_i, p_i, q_i))$

• Compute the Lagrangian interpolation coefficients:

$$\ell_i(0) = \prod_{i \neq j}^{j \in S} \frac{i}{i-j} \pmod{q}.$$

- Set $x_i = \ell_i(0) \cdot x_i \pmod{q}$.
- Set $X_j = \ell_i(0) \cdot X_j$, for every $j \in \mathbf{G}$.
- $\bullet \ \ \text{Output } (ssid,i,S\subseteq \mathbf{P},\tilde{X}=(X_j)_j,\tilde{Y}=(Y_j)_j,\tilde{N}=(N_j)_j,\tilde{s}=(s_j)_j,\tilde{t}=(t_j)_j) \text{, and } (x_i,y_i,p_i,q_i).$

You can invoke the ECDSA Pre-Signing and Signing Protocol with the preprocessed key.

4 Some typos In MPC-CMP

In the ZK Proof Π^{mul*} (FIGURE 31, P68) :

 $\bullet \;\;$ The sampling of r_y in step 1is redandant and r_y is never used.

$$r_y \leftarrow Z_{N_1}^*$$

ullet The computation of A in step 1 should be:

$$A=C^lpha*r^{N_0}\ (\mathrm{mod}\ N)_0^2$$