An optimized, interpretable and automated source classification for large X-ray surveys

Hugo Tranin 2nd year PhD student Supervisor : Natalie Webb May 2021

I. Context

Classification of X-ray sources

Citizen science

Context - X-ray catalogues

- 3 active telescopes (soft X-rays) : XMM-Newton, Swift and Chandra
- Today: about 1 million sources, most of them unknown!
- Tomorrow : eROSITA, > 3 million sources
- Need of a robust classification

Illustration on 1 source

Illustration on 1 source (star)

Illustration on 1 source (AGN)

Illustration on 1 source (XRB)

Context - hard and fast rules

	AGN	Stars	X-ray binaries
Galactic latitude	abs(b)>20°	abs(b)<20°	abs(b)<20° OR extragalactic
X-ray / Optical flux ratio	>0.1, <10	<0.01	depends
X-ray variability (short-term)	low	<10 low	high
X-ray variability (long-term)	high but <100	OW	high
X-ray spectrum	strait ht line	peak	depends

Context - X-ray classification

Statistical distributions of galactic latitude and F_X/F_{IR}

Context - X-ray classification

Decision tree of Lin+2012 for classification of 2XMMi-DR3 bright sources (~4000 sources)

Inaccurate

How to automatically classify X-ray sources?

Machine learning (Arnason+ 2020)

- Naive Bayes (Tranin et al. submitted to A&A)
- Random Forest (e.g. Farrell+2015)
- ⇒ Based on a training sample

Example: in 4XMM-DR9

AGN	Star	XRB	CV
19,000	6,000	730	260

Decision tree of Lin+2012 for classification of 2XMMi-DR3 bright sources

Current classification works & issues

- Few are probabilistic
- Almost all are on small samples

- Summary: manual / decision tree / machine-learning
- Suboptimal catalogue enhancement
- Samples of known XRB, CV, TDE... are small

What could be done to improve them

- Favour probabilistic classifications
- Adapt them to data mining: large samples
- Find a trade-off between accuracy and interpretability
- Enhance catalogues properly
- Enlarge training samples

Context - citizen science

- Booming field since 20 years
- Wisdom of crowds
- Galaxy Zoo revolution

- → 1 million galaxies classified, ~50/galaxy
- → 39 peer-reviewed publications in 2019
- Few projects in X-ray astronomy

II. My work

Automatic classification

Citizen science experiment

Catalogue enhancement

2SXPS / 4XMM-DR10 catalogue

⊗ SDSS QSO, HIPPARCOS...

Catalogue enhancement

2SXPS / 4XMM-DR10 catalogue

Identification of known sources

⊗ SDSS QSO, HIPPARCOS...

⊗ Gaia, AllWISE...

Catalogue enhancement

2SXPS / 4XMM-DR10 catalogue

Identification of known sources

⊗ SDSS QSO, HIPPARCOS...

Multiwavelength associations

⊗ Gaia, AllWISE...

Long-term light curves with all X-ray detections

⊗ Swift, Chandra...

X-ray source classification

Unknown source b=50° log(F_x/F_{w1})=-2 AGN or star ?

Naive Bayes Classification principle

X-ray source classification

Unknown source b=50° log(F_x/F_{w1})=-2 AGN or star ?

Naive Bayes Classification principle

X-ray source classification

- Naive Bayes Classification optimization : fine-tuning the $\alpha_{\rm t}$

$$\mathbb{P}(\mathbf{c}|data) = \frac{\mathcal{P}(\mathbf{c}) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|\mathbf{c})^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}{\sum_{C \in \{\text{classes}\}} \mathcal{P}(C) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|C)^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}$$

One α_t per category: $\alpha_{location}$, $\alpha_{spectrum}$, $\alpha_{variability}$, $\alpha_{counterparts}$

⇒ CLAXBOI code, Tranin et al. submitted to A&A

Classification results / reference sample

2SXPS

Quantity to maximize: f_1 -score of XRB

$$f_1 = 2(recall^{-1} + precision^{-1})^{-1}$$

4XMM-DR10

\rightarrow AGN	19737	87	77	238	20139
\rightarrow Star	141	4954	19	4	5118
\rightarrow XRB	193	37	248	41	519
\rightarrow CV	44	0	3	36	83
Total	20115	5078	347	319	Average
recall (%)	98.1	97.6	71.5	11.3	69.6
precision (%)	94.9	96.6	82.3	52.4	81.6
	ı				ı
$\mathrm{Truth} \to $	AGN	Star	XRB	CV	Total cl.
$\frac{\text{Truth} \to}{\to \text{AGN}}$	AGN 18057	Star 25	XRB 122	CV 144	Total cl. 18348
\rightarrow AGN	18057	25	122	144	18348
\rightarrow AGN \rightarrow Star	18057 55	25 6239	122 10	144	18348 6306
\rightarrow AGN \rightarrow Star \rightarrow XRB	18057 55 241	25 6239 31	122 10 398	144 2 49	18348 6306 719
$\begin{array}{c} \rightarrow \text{AGN} \\ \rightarrow \text{Star} \\ \rightarrow \text{XRB} \\ \rightarrow \text{CV} \end{array}$	18057 55 241 27	25 6239 31 0	122 10 398 5	144 2 49 55	18348 6306 719 87

Truth \rightarrow | AGN Star XRB

Tranin et al. submitted to A&A

Comparison to another machine learning method

Optimized naive Bayes2SXPS

Random Forest

2SXPS

⇒ better results on XRB + better interpretability

$\mathrm{Truth} \to $	AGN	Star	XRB	CV	Total cl.
\rightarrow AGN	19737	87	77	238	20139
\rightarrow Star	141	4954	19	4	5118
ightarrow XRB	193	37	248	41	519
\to CV	44	0	3	36	83
Total	20115	5078	347	319	Average
recall (%)	98.1	97.6	71.5	11.3	69.6
precision~(%)	94.9	96.6	82.3	52.4	81.6
	!				ı
$\mathrm{Truth} \to$	AGN	Star	XRB	CV	Total cl.
$\frac{\text{Truth} \to}{\to \text{AGN}}$	AGN 5957	Star 21	XRB 23	CV 72	Total cl. 6073
	_				
\rightarrow AGN	5957	21	23	72	6073
\rightarrow AGN \rightarrow Star	5957 19	21 1506	23 5	72 1	6073 1531
$ \begin{array}{c} $	5957 19 41	21 1506 13	23 5 66	72 1 10	6073 1531 130
$ \begin{array}{c} $	5957 19 41 0	21 1506 13 0	23 5 66 3	72 1 10 21	6073 1531 130 24

Tranin et al. submitted to A&A

Interpretability of the results

 One classification product: the probability "track"

⇒ this object was classified as X-ray binary because of - its variability
 (- its hardness)

Tranin et al. submitted to A&A

Property categories

- What is the test sample?
 - \Rightarrow sample that you could classify manually
 - ⇒ Following at least 2 of the following:
 - Optical counterpart
 - Infrared counterpart
 - Spectrum acquired, or S/N>10
 - Several X-ray detections
- 55 % of each X-ray catalogue!

- >200 sources analyzed manually (Swift+XMM)
- >90% accuracy on the sources classified as AGN and stars
- Between 30 % and 65 % accuracy on ... as XRB

- >200 sources analyzed manually (Swift+XMM)
- >90% accuracy on the sources classified as AGN and stars
- Between 30 % and 65 % accuracy on ... as XRB
 - → Issues in the multiwavelength matching algorithm
 - → Issues in the multi-instrument long-term light curves
 - → Lack of sufficient training sample

- Estimations (4XMM-DR10):
 - 180 000 new AGN
 - 30 000 new stars
 - 8 000 new XRB

(test sample having no match in Simbad, accuracy-corrected)

Tranin et al. submitted to A&A

Outlier measure

$$O.M. = -\log \left(\mathcal{P}(c) \times \prod_{t \in \{cat\}} \mathcal{L}(t|c)^{\alpha_t/\sum_{t \in \{cat\}} \alpha_t} \right)$$

Interpretation: typical height of the class c distribution at this point of the parameter space

Outlier measure

- Outliers = one of these:
 - Spurious sources

- If classified as star/AGN: special types of star/AGN
- If classified as XRB : rare & variable objects such as TDE, GRB, supernovae...

Improvements of X-ray classification

- Favour probabilistic classifications
- Adapt them to data mining: large samples
- Find a trade-off between accuracy and interpretability
- Enhance catalogues properly
- Enlarge training samples
 - → citizen science

Enlarging the training samples

Alternative: Citizen Science

- Goals:
 - Obtain a large training sample for ML
 - + Serendipitous results?

CLAXSON – quick look

CLAXSON

How to ensure classification reliability?

CLAXSON

~50 new X-ray binaries so far

- 972 unknown sources classified >10 times, by 46 users
- Mean success rate among trained users: 82 %
- *(preliminary)* 68 % of the end results agree with the output of the Naive Bayes classifier

Ranking of level 2 users						
Rank	User	Number of classifications	Since 1 week	Success rate		
1	algol	9800	163	92.4		
2	KrystianBykowski	4509	305	84.2		
3	dani.gi	4466	6	86.5		
4	Tsuki Eeen no	4032	0	64.6		
5	SimonLeKlaxon	3847	317	91.8		

CLAXSON

- Outlook:
 - More communication
 - Translation (currently:
 - More gamification
 - Interface → researchers and volunteers

Versatile tool

Versatile tool

Back to classification results... Applications!

First results - ULX

First results - ULX

 \Rightarrow 1 confirmed ULX

Crucial criterion = Variability!

Cataclysmic variable

X-ray binary

Seyfert-1

Crucial criterion = Variability!

$$\mathbb{P}(\mathbf{c}|data) = \frac{\mathcal{P}(\mathbf{c}) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|\mathbf{c})^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}{\sum_{C \in \{\text{classes}\}} \mathcal{P}(C) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|C)^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}$$

 $ightarrow lpha_{{\scriptscriptstyle variabilitv}}$ is the biggest coefficient after optimization

