

DESCENSO COORDENADO. GRADIENTE PROYECTADO SIMPLE.

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 25) 12.OCTUBRE.2023

Descenso Coordenado

Algoritmo: (Descenso Coordenado)

Inputs: $f: \mathbb{R}^n \to \mathbb{R}$ función de clase C^1 , con gradiente $\nabla f^2 f$; $\mathbf{x}_0 \in \mathbb{R}^n$.

Outputs: \mathbf{x} punto crítico de f.

Obtain n, the dimension of the domain.

For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Define $j = k \pmod{n}$ the coordinate to step j = k % n.

Set $\mathbf{d}_k = \mathbf{e}_i$.

Compute $-\nabla f(\mathbf{x}_k)[j] = \frac{\partial f}{\partial x_i}(\mathbf{x}_k)$.

Set $\alpha_{\mathbf{k}}$ by using any of Backtracking, Hessian or Cauchy strategies.

Define

$$\mathbf{x}_{k+1} = \mathbf{x}_k - (\alpha_k \nabla f(\mathbf{x}_k)[j])) \mathbf{e}_j$$

= $\mathbf{x}_k - (0, 0, \dots, 0, \alpha_k \frac{\partial f}{\partial x_i}(\mathbf{x}_k), 0, \dots, 0).$

Return \mathbf{x}_{k+1} .

Descenso Coordenado por Bloques

En ocasiones es conveniente dividir todas las n variables del dominio a optimizar en un conjunto de bloques

$$B_1, B_2, \ldots, B_r$$
.

El **descenso coordenado por bloques** imita la idea del descenso coordenado, sólo que en lugar de moverse a lo largo de una dirección \mathbf{e}_{j} en cada iteración, este nuevo método se mueve a lo largo de todas las direcciones del bloque \mathbf{B}_{j} .

Por ejemplo, si el bloque B_j consiste de las variables \mathbf{x}_1 , \mathbf{x}_7 y \mathbf{x}_{13} , entonces la actualización

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \, \nabla f(\mathbf{x}_k) B_j$$

representa el ciclo

```
Define \mathbf{temp} = \mathbf{x}_k.

For i in B_j: (for i in [1,7,13]:) \mathbf{temp} = \mathbf{temp} - (\alpha_k \nabla f(\mathbf{x}_k)[i]))\mathbf{e}_i,

Set \mathbf{x}_{k+1} = \mathbf{temp}.
```


Descenso Coordenado por Bloques

```
Algoritmo: (Descenso Coordenado por Bloques)
Inputs: f: \mathbb{R}^n \to \mathbb{R} función de clase C^1, con gradiente \nabla f^2 f; \mathbf{x}_0 \in \mathbb{R}^n; una lista de bloques
[B_1, B_2, \ldots, B_r] conformando una partición de las variables dominio.
Outputs: x punto crítico de f.
Obtain r, the number of blocks.
For k = 0,1,2,... hasta que se cumpla un criterio de paro:
     Define i = k \pmod{r} the coordinate Block to step j = k \% r.
     Set \mathbf{d}_k = B_i.
     Set \alpha_k by using any of Backtracking. Hessian or Cauchv
strategies.
     Define temp = \mathbf{x}_{b}.
     For i in B_i:
           temp = temp - (\alpha_k \nabla f(\mathbf{x}_k)[i]))\mathbf{e}_i,
      Set \mathbf{x}_{b\perp 1} = \mathbf{temp}.
Return \mathbf{x}_{k+1}.
```

Gradiente Proyectado

Otro método sencillo, pero útil, se obtiene cuando queremos restringir los valores de nuestra solución de optimización a un subdominio rectangular de \mathbb{R}^n .

En este caso, supongamos que deseamos nuestra solución objetivo ${\bf x}$ en el rectángulo

$$[a_1,b_1]\times [a_2,b_2]\times \cdots \times [a_n,b_n]\subseteq \mathbb{R}^n.$$

En otras palabras, queremos

$$a_i \le x_i \le b_i$$
, para toda $i = 1, 2, \dots, n$. (1)

El método de gradiente proyectado (simple) consiste en calcular la iteración del descenso gradiente usual

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \, \nabla f(\mathbf{x}_k)^\mathsf{T} \, \mathbf{d}_k,$$

y luego obligar a que el nuevo punto \mathbf{x}_{k+1} cumpla con todas las restricciones (1).

Gradiente Proyectado

En Python esto se logra fácilmente definiendo arrays

lo = np.array([
$$a_1, a_2, ..., a_n$$
]),
up = np.array([$b_1, b_2, ..., b_n$]),

y haciendo

$$\begin{array}{lcl} {\bf x}_{k+1}[{\bf x}_{k+1} < {\bf lo}] & = & {\bf lo}[{\bf x}_{k+1} < {\bf lo}], \\ {\bf x}_{k+1}[{\bf x}_{k+1} > {\bf up}] & = & {\bf up}[{\bf x}_{k+1} > {\bf up}]. \end{array}$$

Gradiente Proyectado

Algoritmo: (Gradiente Proyectado)

Inputs: $f : \mathbb{R}^n \to \mathbb{R}$ función de clase C^1 , con gradiente $\nabla f^2 f$; $\mathbf{x}_0 \in \mathbb{R}^n$; $\mathbf{lo} = [a_1, \dots, a_n]$ y $\mathbf{up} = [b_1, \dots, b_n]$ los límites del dominio rectangular.

Outputs: \mathbf{x} punto crítico de f.

For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Find \mathbf{d}_k a descent direction.

Compute $\alpha_{\mathbf{k}}$ by using any of Backtracking or other method.

Define

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \, \nabla f(\mathbf{x}_k)^\mathsf{T} \, \mathbf{d}_k,$$

Apply

$$\mathbf{x}_{k+1}[\mathbf{x}_{k+1} < \mathbf{lo}] = \mathbf{lo}[\mathbf{x}_{k+1} < \mathbf{lo}],$$

 $\mathbf{x}_{k+1}[\mathbf{x}_{k+1} > \mathbf{up}] = \mathbf{up}[\mathbf{x}_{k+1} > \mathbf{up}].$

Return \mathbf{x}_{k+1} .

