Dylan Webb Tennis Data Project

December 10, 2020

1 Appendices

1.1 Appendix A - code used to generate the tennis.csv and stats.csv files

```
[]: #TENNIS STATS GENERATOR
     #WRITTEN BY DYLAN WEBB 11.28.20
     import numpy as np
     import pandas as pd
     #Generate statistics summarizing past player performance
     def generateStats(player, opponent, year, stat):
       df = pd.read_csv("tennis.csv")
       yearMax = df["year"] < year</pre>
       yearMin = df["year"] >= year - 5
      past_mask = yearMin & yearMax
       df = df[past_mask]
      playerW = df["winner_name"] == player
      playerL = df["loser_name"] == player
       opponentW = df["winner_name"] == opponent
       opponentL = df["loser_name"] == opponent
      pCommonOpponentWStat = 0
       pCommonOpponentLStat = 0
      pCommonOpponentWVar = 0
      pCommonOpponentLVar = 0
       oCommonOpponentWStat = 0
       oCommonOpponentLStat = 0
       oCommonOpponentWVar = 0
       oCommonOpponentLVar = 0
       #Calculate Player Statistics
       playerWStat = np.mean(df[playerW]["w_" + stat])
```

```
playerLStat = np.mean(df[playerL]["l_" + stat])
playerWVar = np.var(df[playerW]["w_" + stat])
playerLVar = np.var(df[playerL]["1_" + stat])
#Calculate Opponent Statistics
opponentWStat = np.mean(df[opponentW]["w_" + stat])
opponentLStat = np.mean(df[opponentL]["1_" + stat])
opponentWVar = np.var(df[opponentW]["w_" + stat])
opponentLVar = np.var(df[opponentL]["1_" + stat])
#find common opponents
opponents1 = pd.DataFrame(pd.concat([df[playerW]["loser_name"],
                                     df[playerL]["winner_name"]]))
opponents2 = pd.DataFrame(pd.concat([df[opponentW]["loser_name"],
                                     df[opponentL]["winner_name"]]))
opponents1.drop_duplicates(keep = "first", inplace = True)
opponents2.drop_duplicates(keep = "first", inplace = True)
commonOpponents = pd.merge(opponents1, opponents2)
#calculate Player Common Opponent Statistics
winTotal = np.empty(0)
loseTotal = np.empty(0)
for i in range(len(commonOpponents)):
  commonOpponentW = df["winner_name"] == commonOpponents.iloc[i][0]
  commonOpponentL = df["loser_name"] == commonOpponents.iloc[i][0]
 playerW_mask = playerW & commonOpponentL
 playerL_mask = playerL & commonOpponentW
 winTotal = np.append(winTotal, df[playerW_mask]["w_" + stat].values)
 loseTotal = np.append(loseTotal, df[playerL_mask]["1_" + stat].values)
if winTotal.size > 0 and loseTotal.size > 0:
 pCommonOpponentWStat = np.mean(winTotal)
 pCommonOpponentLStat = np.mean(loseTotal)
 pCommonOpponentWVar = np.var(winTotal)
 pCommonOpponentLVar = np.var(loseTotal)
else:
 playerWStat = float("NaN")
#calculate Opponent Common Opponent Statistics
winTotal = np.empty(0)
```

```
loseTotal = np.empty(0)
 for i in range(len(commonOpponents)):
    commonOpponentW = df["winner_name"] == commonOpponents.iloc[i][0]
    commonOpponentL = df["loser name"] == commonOpponents.iloc[i][0]
    opponentW_mask = opponentW & commonOpponentL
    opponentL_mask = opponentL & commonOpponentW
   winTotal = np.append(winTotal, df[opponentW_mask]["w_" + stat].values)
   loseTotal = np.append(loseTotal, df[opponentL_mask]["1_" + stat].values)
  if winTotal.size > 0 and loseTotal.size > 0:
    oCommonOpponentWStat = np.mean(winTotal)
    oCommonOpponentLStat = np.mean(loseTotal)
    oCommonOpponentWVar = np.var(winTotal)
   oCommonOpponentLVar = np.var(loseTotal)
 else:
   playerWStat = float("NaN")
 results = pd.DataFrame([[playerWStat, playerLStat, opponentWStat,
                           opponentLStat, pCommonOpponentWStat,
                           pCommonOpponentLStat, oCommonOpponentWStat,
                           oCommonOpponentLStat, playerWVar, playerLVar,
                           opponentWVar, opponentLVar, pCommonOpponentWVar,
                           pCommonOpponentLVar, oCommonOpponentWVar,
                           oCommonOpponentLVar]])
 results.columns = [stat + "player_w", stat + "player_l",
                     stat + "opponent_w", stat + "opponent_l",
                     stat + "playerCommon_w", stat + "playerCommon_l",
                     stat + "opponentCommon_w", stat + "opponentCommon_l",
                     stat + "pVariance_w", stat + "pVariance_l",
                     stat + "oVariance_w", stat + "oVariance_l",
                     stat + "pCommonVar_w", stat + "pCommonVar_l",
                     stat + "oCommonVar_w", stat + "oCommonVar_l"]
 return results
#CREATE TENNIS.CSV FILE
#Cleans up data for calculations
df = pd.read_csv("tennis_atp-master/atp_matches_2003.csv")
df["year"] = 2003
for year in range(2004,2020):
 file = "tennis_atp-master/atp_matches_" + str(year) + ".csv"
```

```
newdf = pd.read_csv(file)
 newdf["year"] = year
  df = df.append(newdf, ignore_index=True)
mask1 = df["tourney_name"] == "Australian Open"
mask2 = df["tourney_name"] == "Roland Garros"
mask3 = df["tourney name"] == "US Open"
mask4 = df["tourney_name"] == "Wimbledon"
mask = mask1 | mask2 | mask4
df = df[mask]
#Feature engineering
df["w_2ndIn"] = df["w_svpt"] - df["w_1stIn"]
df["l_2ndIn"] = df["l_svpt"] - df["l_1stIn"]
df["w_svWon"] = (df["w_1stWon"] + df["w_2ndWon"]) / df["w_svpt"]
df["l_svWon","] = (df["l_1stWon"] + df["l_2ndWon"]) / df["l_svpt"]
df["w_1stRnWon%"] = (df["l_1stIn"] - df["l_1stWon"]) / df["l_1stIn"]
df["l_1stRnWon"] = (df["w_1stIn"] - df["w_1stWon"]) / df["w_1stIn"]
df["w 2ndRnWon"] = (df["l 2ndIn"] - df["l 2ndWon"]) / df["l 2ndIn"]
df["l_2ndRnWon"] = (df["w_2ndIn"] - df["w_2ndWon"]) / df["w_1stIn"]
#label encode surface
df["surface"] = df["surface"].astype("category")
df["surface"] = df["surface"].cat.codes
df["surface"] /= 2
#remove unecessary columns and output tennis.csv
df = df[["year", "tourney_name", "surface", "winner_name", "loser_name",
         "w_svWon%", "w_1stRnWon%", "w_2ndRnWon%",
         "l_svWon%", "l_1stRnWon%", "l_2ndRnWon%"]]
df.dropna(how = 'any', inplace = True)
df.to_csv('tennis.csv', index = False)
#CREATE STATS.CSV FILE
#remove first five years for generateStats function
year_mask = df["year"] >= 2008
df = df[year mask]
outcome = pd.DataFrame(np.zeros((len(df),8)))
outcome.columns = ["player1", "player2", "year", "surface",
                   "2ndRnWon%", "svWon%", "1stRnWon%", "outcome"]
```

```
#randomly rearrange data frame and assign statistics
for i in range(len(df)):
 outcome.loc[i, "year"] = df["year"].iloc[i]
 outcome.loc[i, "surface"] = df["surface"].iloc[i]
 p = np.random.random()
 if p < .5:
   outcome.loc[i, "outcome"] = 1
   outcome.loc[i, "player1"] = df["winner_name"].iloc[i]
    outcome.loc[i, "player2"] = df["loser_name"].iloc[i]
    outcome.loc[i, "2ndRnWon%"] = df["w_2ndRnWon%"].iloc[i]
   outcome.loc[i, "svWon%"] = df["w_svWon%"].iloc[i]
   outcome.loc[i, "1stRnWon%"] = df["w_1stRnWon%"].iloc[i]
 else:
    outcome.loc[i, "player1"] = df["loser_name"].iloc[i]
    outcome.loc[i, "player2"] = df["winner_name"].iloc[i]
    outcome.loc[i, "2ndRnWon%"] = df["1_2ndRnWon%"].iloc[i]
    outcome.loc[i, "svWon%"] = df["l_svWon%"].iloc[i]
    outcome.loc[i, "1stRnWon%"] = df["l_1stRnWon%"].iloc[i]
#run generate stats function on every player matchup
stat1 = generateStats(outcome["player1"].iloc[0], outcome["player2"].iloc[0],
                      outcome["year"].iloc[0], "2ndRnWon%")
stat2 = generateStats(outcome["player1"].iloc[0], outcome["player2"].iloc[0],
                      outcome["year"].iloc[0], "1stRnWon%")
stat3 = generateStats(outcome["player1"].iloc[0], outcome["player2"].iloc[0],
                      outcome["year"].iloc[0], "svWon%")
for i in range(1,len(df)):
 stat1 = stat1.append(generateStats(outcome["player1"].iloc[i],
                                     outcome["player2"].iloc[i],
                                    outcome["year"].iloc[i], "2ndRnWon%"),
                       ignore_index = True)
 stat2 = stat2.append(generateStats(outcome["player1"].iloc[i],
                                     outcome["player2"].iloc[i],
                                    outcome["year"].iloc[i], "1stRnWon%"),
                       ignore_index = True)
 stat3 = stat3.append(generateStats(outcome["player1"].iloc[i],
                                     outcome["player2"].iloc[i],
                                    outcome["year"].iloc[i], "svWon%"),
                       ignore index = True)
#combine data frames and output stats.csv
outcome = outcome.drop(["player1", "player2"], axis = 1)
stats = outcome.join(stat1)
```

```
stats = stats.join(stat2)
stats = stats.join(stat3)

stats.dropna(how = 'any', inplace = True)
stats.to_csv('stats.csv', index = False)
```

1.2 Appendix B - code used to predict the winners of tennis matches

```
[ ]: #TENNIS PREDICTION MODEL
     #WRITTEN BY DYLAN WEBB 11.28.20
     import numpy as np
     import pandas as pd
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.ensemble import RandomForestRegressor
     from sklearn.model_selection import train_test_split
     #ROUND ROBIN PREDICTION
     def roundRobin(nameList, year, tourney):
      print("Round Robin")
      df = nameList
       df["score"] = 0
       matches = pd.DataFrame()
       for i in range(len(df) - 1):
         #match player against players they haven't yet played
         names = pd.DataFrame(df["name"])
         for j in range(i + 1):
           names = names.drop(j)
         names.columns = ["player1"]
         names["player2"] = df["name"].iloc[i]
         if i == 0:
           matches = names
         else:
           matches = matches.append(names)
       #predicts outcomes of all matches
       outcome = predictionModel(matches, year, tourney)
       #sort results into the score column
       for i in range(len(outcome)):
         for j in range(len(df)):
           if df["name"].iloc[j] == outcome["predicted_winner"].iloc[i]:
```

```
df.loc[j, "score"] += 1
 pd.set_option('display.max_rows', None)
  df.index += 1
  df = df.sort_values(by = "score", ascending = False)
  print(df)
#TOURNAMENT WINNER PREDICTION
def predictTournament(round1, year, tourney, winner = False):
 pd.set_option('display.max_rows', None)
 prediction = predictionModel(round1, year, tourney)
  r = 0
  while len(prediction) > 1:
   r += 1
    if winner == False:
      print("\nRound", r)
      print(prediction)
    nextRound = pd.DataFrame(np.zeros((int(len(prediction)/2),2))).astype(str)
    nextRound.columns = ["player1", "player2"]
    for i in range(len(prediction)):
      if i % 2 == 0:
        nextRound.loc[int(i/2), "player1"] = prediction["predicted_winner"
        l.iloc[i]
      else:
        nextRound.loc[int((i-1)/2), "player2"] = prediction["predicted_winner"
        ].iloc[i]
    prediction = predictionModel(nextRound, 2019, "Wimbledon")
  print("\nFinal Round")
 print(prediction)
#DOUBLE FOREST TENNIS PREDICTION MODEL.
def predictionModel(names, year, tourney):
  #Generate features for regressor forest
  features1 = approximateFeatures(names["player1"].iloc[0],
                               names["player2"].iloc[0],
                               year, tourney, "2ndRnWon%")
  features2 = approximateFeatures(names["player1"].iloc[0],
                               names["player2"].iloc[0],
                               year, tourney, "svWon%")
```

```
features3 = approximateFeatures(names["player1"].iloc[0],
                               names["player2"].iloc[0],
                               year, tourney, "1stRnWon%")
 for i in range(1, len(names)):
   features1 = features1.append(approximateFeatures(names["player1"].iloc[i],
                                                  names["player2"].iloc[i],
                                                  year, tourney, "2ndRnWon%"),
                                 ignore index = True)
   features2 = features2.append(approximateFeatures(names["player1"].iloc[i],
                                                  names["player2"].iloc[i],
                                                  year, tourney, "svWon%"),
                                 ignore_index = True)
   features3 = features3.append(approximateFeatures(names["player1"].iloc[i],
                                                  names["player2"].iloc[i],
                                                  year, tourney, "1stRnWon%"),
                                 ignore_index = True)
  #classifier forest takes input from regressor forest to predict the winner
  #run 15 times total to capture average forest vote
 p = np.zeros((len(names)))
 for i in range(15):
   p = np.add(p, forestClassify(pd.DataFrame(forestRegress(features1,
                                                            features2.
                                                            features3, year))))
 p /= 15
  #stores predictions in a dataframe of names to return
 prediction = pd.DataFrame(np.zeros((len(names),2)))
 prediction.columns = ["predicted_winner","likelihood"]
 for i in range(len(names)):
   if p[i] > .5:
     prediction.loc[i, "predicted_winner"] = names["player1"].iloc[i]
     prediction.loc[i, "likelihood"] = p[i]
   else:
      prediction.loc[i, "predicted_winner"] = names["player2"].iloc[i]
      prediction.loc[i, "likelihood"] = 1 - p[i]
 return prediction
#APPROXIMATE FEATURES ALGORITHM
def approximateFeatures(player, opponent, year, tourney, stat):
 df = pd.read_csv("tennis.csv")
  stats = pd.read_csv("stats.csv")
```

```
yearMax = df["year"] < year</pre>
yearMin = df["year"] >= year - 5
past_mask = yearMin & yearMax
df = df[past_mask]
yearMax = stats["year"] < year</pre>
yearMin = stats["year"] >= year - 5
past mask = yearMin & yearMax
stats = stats[past_mask]
playerW = df["winner_name"] == player
playerL = df["loser_name"] == player
opponentW = df["winner_name"] == opponent
opponentL = df["loser_name"] == opponent
#average values to fill in case of missing data
#this is caused by players who don't usually compete in Grand Slams
meanOffset = .9
varOffset = .7
playerWStat = np.mean(stats[stat + "player_w"]) * meanOffset
playerLStat = np.mean(stats[stat + "player 1"]) * meanOffset
playerWVar = np.mean(stats[stat + "pVariance_w"]) * varOffset
playerLVar = np.mean(stats[stat + "pVariance_1"]) * varOffset
opponentWStat = np.mean(stats[stat + "opponent_w"]) * meanOffset
opponentLStat = np.mean(stats[stat + "opponent_1"]) * meanOffset
opponentWVar = np.mean(stats[stat + "oVariance_w"]) * varOffset
opponentLVar = np.mean(stats[stat + "oVariance_1"]) * varOffset
pCommonOpponentWStat = np.mean(stats[stat + "playerCommon w"]) * meanOffset
pCommonOpponentLStat = np.mean(stats[stat + "playerCommon_l"]) * meanOffset
pCommonOpponentWVar = np.mean(stats[stat + "pCommonVar w"]) * varOffset
pCommonOpponentLVar = np.mean(stats[stat + "pCommonVar_1"]) * varOffset
oCommonOpponentWStat = np.mean(stats[stat + "opponentCommon_w"]) * meanOffset
oCommonOpponentLStat = np.mean(stats[stat + "opponentCommon 1"]) * meanOffset
oCommonOpponentWVar = np.mean(stats[stat + "oCommonVar_w"]) * varOffset
oCommonOpponentLVar = np.mean(stats[stat + "oCommonVar_1"]) * varOffset
#Calculate Player Statistics
win = df[playerW]["w_" + stat]
lose = df[playerL]["1_" + stat]
if len(win) > 0:
```

```
playerWStat = np.mean(win)
 playerWVar = np.var(win)
if len(lose) > 0:
 playerLStat = np.mean(lose)
 playerLVar = np.var(lose)
#Calculate Opponent Statistics
win = df[opponentW]["w_" + stat]
lose = df[opponentL]["1_" + stat]
if len(win) > 0:
 opponentWStat = np.mean(win)
 opponentWVar = np.var(win)
if len(lose) > 0:
  opponentLStat = np.mean(lose)
  opponentLVar = np.var(lose)
#find common opponents
opponents1 = pd.DataFrame(pd.concat([df[playerW]["loser_name"],
                                     df[playerL]["winner_name"]]))
opponents2 = pd.DataFrame(pd.concat([df[opponentW]["loser_name"],
                                     df[opponentL]["winner name"]]))
opponents1.drop_duplicates(keep="first", inplace = True)
opponents2.drop_duplicates(keep="first", inplace = True)
commonOpponents = pd.merge(opponents1, opponents2)
#calculate Player Common Opponent Statistics
winTotal = np.empty(0)
loseTotal = np.empty(0)
for i in range(len(commonOpponents)):
  commonOpponentW = df["winner_name"] == commonOpponents.iloc[i][0]
  commonOpponentL = df["loser_name"] == commonOpponents.iloc[i][0]
 playerW_mask = playerW & commonOpponentL
 playerL_mask = playerL & commonOpponentW
 winTotal = np.append(winTotal, df[playerW_mask]["w_" + stat].values)
 loseTotal = np.append(loseTotal, df[playerL_mask]["1_" + stat].values)
if winTotal.size > 0:
 pCommonOpponentWStat = np.mean(winTotal)
 pCommonOpponentWVar = np.var(winTotal)
if loseTotal.size > 0:
 pCommonOpponentLStat = np.mean(loseTotal)
 pCommonOpponentLVar = np.var(loseTotal)
```

```
#calculate Opponent Common Opponent Statistics
winTotal = np.empty(0)
loseTotal = np.empty(0)
for i in range(len(commonOpponents)):
  commonOpponentW = df["winner_name"] == commonOpponents.iloc[i][0]
  commonOpponentL = df["loser_name"] == commonOpponents.iloc[i][0]
  opponentW_mask = opponentW & commonOpponentL
  opponentL_mask = opponentL & commonOpponentW
 winTotal = np.append(winTotal, df[opponentW_mask]["w_" + stat].values)
 loseTotal = np.append(loseTotal, df[opponentL_mask]["1_" + stat].values)
if winTotal.size > 0:
  oCommonOpponentWStat = np.mean(winTotal)
  oCommonOpponentWVar = np.var(winTotal)
if loseTotal.size > 0:
  oCommonOpponentLVar = np.var(loseTotal)
 oCommonOpponentLStat = np.mean(loseTotal)
#label encode surface depending on tournament
surface = 1
if tourney == "Roland Garros":
 surface = 0
elif tourney == "Wimbledon":
 surface = .5
#store results and return
results = pd.DataFrame([[surface, playerWStat, playerLStat, opponentWStat,
                         opponentLStat, pCommonOpponentWStat,
                         pCommonOpponentLStat, oCommonOpponentWStat,
                         oCommonOpponentLStat, playerWVar, playerLVar,
                         opponentWVar, opponentLVar, pCommonOpponentWVar,
                         pCommonOpponentLVar, oCommonOpponentWVar,
                         oCommonOpponentLVar]])
results.columns = ["surface", stat + "player_w", stat + "player_l",
                   stat + "opponent_w", stat + "opponent_l",
                   stat + "playerCommon_w", stat + "playerCommon_l",
                   stat + "opponentCommon_w", stat + "opponentCommon_l",
                   stat + "pVariance_w", stat + "pVariance_l",
                   stat + "oVariance_w", stat + "oVariance_l",
                   stat + "pCommonVar_w", stat + "pCommonVar_l",
                   stat + "oCommonVar_w", stat + "oCommonVar_l"]
```

```
return results
#RANDOM FOREST 1 - REGRESSOR
def forestRegress(in1, in2, in3, year):
  df = pd.read_csv("stats.csv")
 predicted = pd.DataFrame()
  yearMax = df["year"] < year</pre>
  yearMin = df["year"] >= year - 5
 past_mask = yearMin & yearMax
 df = df[past_mask]
  stats = ["2ndRnWon%", "svWon%", "1stRnWon%"]
 X = df.drop(["year", "outcome", "2ndRnWon%", "svWon%", "1stRnWon%"], axis = 1)
 y = df[stats]
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .3)
 for i in range(len(stats)):
    stat = stats[i]
    statList = ["surface", stat + "player_w", stat + "player_l",
                stat + "opponent_w", stat + "opponent_l",
                stat + "playerCommon_w", stat + "playerCommon_l",
                stat + "opponentCommon_w", stat + "opponentCommon_l",
                stat + "pVariance_w", stat + "pVariance_l",
                stat + "oVariance_w", stat + "oVariance_l",
                stat + "pCommonVar_w", stat + "pCommonVar_l",
                stat + "oCommonVar_w", stat + "oCommonVar_l"]
    sX_train = X_train[statList]
    sy_train = y_train[stat]
    forest = RandomForestRegressor(warm_start = True, oob_score = True,
                                  min_samples_leaf = 6, n_estimators = 200,
                                   max depth = 150)
    forest.fit(sX_train, sy_train.values.ravel())
    if i == 0:
      tempPrediction = pd.DataFrame(forest.predict(in1))
    elif i == 1:
      tempPrediction = pd.DataFrame(forest.predict(in2))
    else:
      tempPrediction = pd.DataFrame(forest.predict(in3))
```

```
tempPrediction.columns = [stat]
    if stat == "2ndRnWon%":
      predicted = tempPrediction
    else:
      predicted = predicted.join(tempPrediction)
  return predicted
#RANDOM FOREST 2 - CLASSIFIER
def forestClassify(in_test):
  df = pd.read_csv("tennis.csv")
  win = df[["w_2ndRnWon%","w_svWon%","w_1stRnWon%"]]
  win.columns = ["2ndRnWon%","svWon%","1stRnWon%"]
  lose = df[["l_2ndRnWon%","l_svWon%","l_1stRnWon%"]]
  lose.columns = ["2ndRnWon%","svWon%","1stRnWon%"]
  #d.a.t.a.
 X = pd.concat([win,lose])
  #target
 y = pd.concat([pd.DataFrame(np.ones((len(win),1))),
                 pd.DataFrame(np.zeros((len(lose),1)))])
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .3)
  forest = RandomForestClassifier(warm_start = True, oob_score = True)
  forest.fit(X_train, y_train.values.ravel())
  predicted = forest.predict(in_test)
  return predicted
```

1.3 Appendix C - code used to rank features by importance in random forest classifier

```
[]: from sklearn.metrics import accuracy_score
from sklearn.inspection import permutation_importance

#Random forest classifier used to compare features
def forestFeatureRank(win, lose):
    #data
    X = pd.concat([win,lose])
```

```
#target
  y = pd.concat([pd.DataFrame(np.ones((len(win),1))),
                 pd.DataFrame(np.zeros((len(lose),1)))])
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .3)
  forest = RandomForestClassifier(oob_score = True)
  #fit model
  forest.fit(X_train, y_train.values.ravel())
  predicted = forest.predict(X test)
  #feature importance
  importance = permutation_importance(forest,
                                       X_train, y_train)["importances_mean"]
  features = sorted(zip(importance, win.columns), reverse=True)
  for i in range(len(features[0:])):
    print(features[0:][i][1])
 print("Accuracy =",accuracy_score(y_test, predicted),"\n")
df = pd.read_csv("fulltennis.csv")
win = df[["surface", "w_ace", "w_df", "w_svpt", "w_1stIn", "w_2ndIn", "w_1stWon",
          "w 2ndWon", "w SvGms", "w bpSaved", "w bpFaced",
          "w_1stIn%", "w_2ndIn%", "w_1stWon%", "w_2ndWon%", "w_svWon%",
          "w 1stRnWon%", "w 2ndRnWon%", "w rnWon%"]]
win.columns = ["surface", "ace", "df", "svpt", "1stIn", "2ndIn", "1stWon", "2ndWon",
               "SvGms", "bpSaved", "bpFaced", "1stIn%", "2ndIn%", "1stWon%",
               "2ndWon%", "svWon%", "1stRnWon%", "2ndRnWon%", "rnWon%"]
lose = df[["surface","l_ace","l_df","l_svpt","l_1stIn","l_2ndIn","l_1stWon",
           "l_2ndWon", "l_SvGms", "l_bpSaved", "l_bpFaced",
           "l_1stIn%","l_2ndIn%","l_1stWon%","l_2ndWon%","l_svWon%",
           "l_1stRnWon%","l_2ndRnWon%", "w_rnWon%"]]
lose.columns = win.columns
print("Ranking All Features:")
forestFeatureRank(win, lose)
win = df[["w svWon%","w 1stRnWon%","w 2ndRnWon%"]]
win.columns = ["svWon%","1stRnWon%","2ndRnWon%"]
lose = df[["l_svWon%","l_1stRnWon%","l_2ndRnWon%"]]
lose.columns = ["svWon%","1stRnWon%","2ndRnWon%"]
print("Ranking Top Three Features:")
forestFeatureRank(win, lose)
```

1.4 Appendix D - code used to create data visualizations

```
[]: import matplotlib.pyplot as plt
     df = pd.read_csv("tennis.csv")
     #Graphing 2ndRnWon%
     sum = 0
     for i in range(len(df["w_2ndRnWon%"])):
       if df["w_2ndRnWon%"][i] - df["l_2ndRnWon%"][i] >= 0:
         sum += 100
     lineStat = "(" + str(sum/len(df["w_1stRnWon%"
     ])) + "% of the data is to the left of the red line)"
     rn2Plot = df.plot(kind = "scatter", x = "l_2ndRnWon%", y = "w_2ndRnWon%",
                       alpha = .1)
     rn2Plot.plot((0,1), 'r--')
     plt.title("Comparing Ratio of 2nd Returns Won")
     plt.xlabel("Ratio of 2nd Returns Won by Loser")
     plt.ylabel("Ratio of 2nd Returns Won by Winner")
     plt.text(-.02,-.3,lineStat)
     plt.show()
     (df["w_2ndRnWon%"] - df["l_2ndRnWon%"]).plot(kind = "box", vert = False,
                                                  ylabel = "difference")
     plt.yticks(color = 'w', rotation = 90)
     plt.gca().invert_xaxis()
     plt.vlines(0, .8, 1.2, colors = "red", linestyles="dashed")
     plt.title(
         "Distribution of Difference Between Winner and Loser\nin 2nd Returns Won")
     plt.text(1.02,.3,lineStat)
     plt.show()
     #Graphing svWon%
     sum = 0
     for i in range(len(df["w_svWon%"])):
       if df["w svWon%"][i] - df["l svWon%"][i] >= 0:
         sum += 100
     lineStat = "(" + str(sum/len(df["w_1stRnWon%"
     ])) + "% of the data is to the left of the red line)"
     svPlot = df.plot(kind = "scatter", x = "l_svWon%", y = "w_svWon%", alpha = .1)
     svPlot.plot((0,1), 'r--')
     plt.title("Comparing Ratio of Serves Won")
     plt.xlabel("Ratio of Serves Won by Loser")
     plt.ylabel("Ratio of Serves Won by Winner")
     plt.text(-.02,-.3,lineStat)
```

```
plt.show()
(df["w_svWon%"] - df["l_svWon%"]).plot(kind = "box", vert = False,
                                       ylabel = "difference")
plt.yticks(color = 'w', rotation = 90)
plt.gca().invert_xaxis()
plt.vlines(0, .8, 1.2, colors = "red", linestyles="dashed")
plt.title("Distribution of Difference Between Winner and Loser\nin Serves Won")
plt.text(.82,.3,lineStat)
plt.show()
#Graphing 1stRnWon%
sum = 0
for i in range(len(df["w_1stRnWon%"])):
 if df["w_1stRnWon%"][i] - df["l_1stRnWon%"][i] >= 0:
   sum += 100
lineStat = "(" + str(sum/len(df["w_1stRnWon%"
])) + "% of the data is to the left of the red line)"
rn1Plot = df.plot(kind = "scatter", x = "l_1stRnWon%", y = "w_1stRnWon%",
                  alpha = .1)
rn1Plot.plot((0,1), 'r--')
plt.title("Comparing Ratio of 1st Returns Won")
plt.xlabel("Ratio of 1st Returns Won by Loser")
plt.ylabel("Ratio of 1st Returns Won by Winner")
plt.text(0,-.3,lineStat)
plt.show()
(df["w_1stRnWon%"] - df["l_1stRnWon%"]).plot(kind = "box", vert = False,
                                             ylabel = "difference")
plt.yticks(color = 'w', rotation = 90)
plt.gca().invert_xaxis()
plt.vlines(0, .8, 1.2, colors = "red", linestyles="dashed")
plt.title(
    "Distribution of Difference Between Winner and Loser\nin 1st Returns Won")
plt.text(.8,.3,lineStat)
plt.show()
#Graphing clustering of 2ndRnWon% vs 2ndRnWon%player_w
from sklearn.cluster import KMeans
#apply k-means clustering to data
df = pd.read_csv("stats.csv")
kmeans = KMeans(n_clusters = 2, algorithm = "full").fit(df[["2ndRnWon%player_w",
                                                             "2ndRnWon%"]])
y_kmeans = kmeans.predict(df[["2ndRnWon%player_w", "2ndRnWon%"]])
```

1.5 Appendix E - code used to test final prediction model accuracy

```
[]: #Testing prediction model on all match data from 2019
     df = pd.read csv("tennis.csv")
     mask = df["year"] == 2019
     df = df[mask]
     #create dataframe of player names
     names = pd.DataFrame()
     names["player1"] = df["winner name"]
     names["player2"] = df["loser_name"]
     names["tourney"] = df["tourney_name"]
     #randomly rearrange dataframe
     for i in range(len(names)):
      p = np.random.random()
       if p < .5:
         temp = names['player1'].iloc[i]
         names["player1"].iloc[i] = names["player2"].iloc[i]
         names["player2"].iloc[i] = temp
     #predict results using prediction model accross the various tournaments
     mask = names["tourney"] == "Australian Open"
     results = predictionModel(names[mask], 2019, "Australian Open")
     mask = names["tourney"] == "Roland Garros"
     results = results.append(predictionModel(names[mask], 2019, "Roland Garros"),
                              ignore_index = True)
     mask = names["tourney"] == "Wimbledon"
     results = results.append(predictionModel(names[mask], 2019, "Wimbledon"),
                              ignore_index = True)
     mask = names["tourney"] == "US Open"
     results = results.append(predictionModel(names[mask], 2019, "US Open"),
                              ignore_index = True)
     #compare predictions to actual match results and report accuracy
```

```
accuracy = 0
for i in range(len(results)):
   if results["predicted_winner"].iloc[i] == df["winner_name"].iloc[i]:
      accuracy += 1
accuracy /= len(results)

#accuracy usually between 60% and 63%
print("Proportion of Accurate Predictions:", accuracy)
```

1.6 Appendix F - code for PCA run on indidivual match features

```
[]: from sklearn.decomposition import PCA
     df = pd.read csv("fulltennis.csv")
     pca = PCA(n_components = 3)
     win = df[["surface","w_ace","w_df","w_svpt","w_1stIn","w_2ndIn","w_1stWon",
               "w_2ndWon", "w_SvGms", "w_bpSaved", "w_bpFaced",
               "w_1stIn%", "w_2ndIn%", "w_1stWon%", "w_2ndWon%", "w_svWon%",
               "w_1stRnWon%","w_2ndRnWon%", "w_rnWon%"]]
     win.columns = ["surface", "ace", "df", "svpt", "1stIn", "2ndIn", "1stWon", "2ndWon",
                    "SvGms", "bpSaved", "bpFaced", "1stIn%", "2ndIn%", "1stWon%",
                    "2ndWon%", "svWon%", "1stRnWon%", "2ndRnWon%", "rnWon%"]
     lose = df[["surface","l_ace","l_df","l_svpt","l_1stIn","l_2ndIn","l_1stWon",
                "1 2ndWon", "1 SvGms", "1 bpSaved", "1 bpFaced",
                "l_1stIn%","l_2ndIn%","l_1stWon%","l_2ndWon%","l_svWon%",
                "l_1stRnWon%","l_2ndRnWon%", "w_rnWon%"]]
     lose.columns = win.columns
     pca.fit(pd.concat([win,lose]))
     print("Variance Explained by Top Three Features:",
           sum(pca.explained_variance_ratio_))
```

1.7 Appendix G - code used for initial regressor test on stats.csv

```
[]: #Testing random forest regressor on stats.csv
df = pd.read_csv("stats.csv")
predicted = pd.DataFrame()

stats = ["2ndRnWon%", "svWon%", "1stRnWon%"]

X = df.drop(["year", "outcome", "2ndRnWon%", "svWon%", "1stRnWon%"], axis = 1)
y = df[stats]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .3)

for i in range(len(stats)):
```

```
stat = stats[i]
  statList = ["surface", stat + "player_w", stat + "player_l",
              stat + "opponent_w", stat + "opponent_l",
              stat + "playerCommon_w", stat + "playerCommon_l",
              stat + "opponentCommon_w", stat + "opponentCommon_l",
              stat + "pVariance_w", stat + "pVariance_l",
              stat + "oVariance_w", stat + "oVariance_l",
              stat + "pCommonVar_w", stat + "pCommonVar_l",
              stat + "oCommonVar_w", stat + "oCommonVar_l"]
  sX_train = X_train[statList]
  sX_test = X_test[statList]
  sy_train = y_train[stat]
  forest = RandomForestRegressor(warm_start = True, oob_score = True,
                                min_samples_leaf = 6, n_estimators = 200,
                                 max_depth = 150)
  forest.fit(sX_train, sy_train.values.ravel())
  tempPrediction = pd.DataFrame(forest.predict(sX_test))
  tempPrediction.columns = [stat]
  if stat == "2ndRnWon%":
    predicted = tempPrediction
  else:
    predicted = predicted.join(tempPrediction)
print("Accuracy =",accuracy_score(df["outcome"].iloc[X_test.index],
                                  forestClassify(predicted)))
```

1.8 Appendix H - code used to test kmeans and spectral accuracy

```
kAccuracy = accuracy_score(y_test, kPredicted)
if kAccuracy < .5:
    kAccuracy = 1 - kAccuracy
print("Proportion of accurate predictions with kmeans:", kAccuracy)

#fit spectral clustering and output accuracy
spectral = SpectralClustering(n_clusters = 2).fit(X_train)
sPredicted = spectral.fit_predict(X_test)
sAccuracy = accuracy_score(y_test, sPredicted)
if sAccuracy < .5:
    sAccuracy = 1 - sAccuracy
print("Proportion of accurate predictions with spectral clustering:", sAccuracy)</pre>
```

1.9 Appendix I - first five rows of the stats.csv file

```
[]: import pandas as pd
    pd.set option('display.max columns', None)
    pd.read_csv("stats.csv").head()
[]:
              surface 2ndRnWon%
                                     svWon% 1stRnWon% outcome \
         year
    0 2008.0
                        0.489362 0.723214 0.283582
                   0.0
                                                            1.0
    1 2008.0
                   0.0
                        0.178571 0.504854
                                            0.267857
                                                            0.0
    2 2008.0
                   0.0 0.538462 0.611111 0.346535
                                                            1.0
    3 2008.0
                   0.0
                         0.268293 0.511111
                                              0.195122
                                                            0.0
    4 2008.0
                   0.0
                         0.192308 0.522727
                                                            0.0
                                              0.307692
       2ndRnWon%player_w 2ndRnWon%player_l 2ndRnWon%opponent_w \
                0.552353
                                                        0.526618
    0
                                   0.263233
    1
                0.587202
                                   0.310956
                                                        0.527070
                0.570517
    2
                                   0.269485
                                                        0.602686
    3
                0.580924
                                   0.406957
                                                        0.528473
    4
                0.575643
                                   0.256561
                                                        0.527659
       2ndRnWon%opponent_1 2ndRnWon%playerCommon_w 2ndRnWon%playerCommon_1 \
    0
                  0.289022
                                           0.571429
                                                                    0.253140
    1
                  0.282955
                                           0.551724
                                                                    0.332156
    2
                  0.299596
                                           0.587520
                                                                    0.265466
    3
                  0.245692
                                           0.600000
                                                                    0.429662
    4
                  0.266432
                                           0.916667
                                                                    0.304328
       2ndRnWon%opponentCommon_w 2ndRnWon%opponentCommon_l 2ndRnWon%pVariance_w \
    0
                        0.500000
                                                   0.364224
                                                                         0.011655
                                                   0.397590
                                                                         0.001628
    1
                        0.576606
    2
                        0.628571
                                                   0.241978
                                                                         0.010450
    3
                        0.474722
                                                   0.147368
                                                                         0.005353
    4
                        0.600000
                                                   0.276648
                                                                         0.013896
```

```
2ndRnWon%pVariance_1
                          2ndRnWon%oVariance_w
                                                  2ndRnWon%oVariance_1
0
                0.011504
                                       0.009158
                                                               0.004851
                                       0.006618
                                                               0.009944
1
                0.010242
2
                0.009866
                                       0.002366
                                                               0.012371
3
                0.021901
                                       0.003301
                                                               0.006540
4
                0.008973
                                       0.007275
                                                               0.009295
                           2ndRnWon%pCommonVar_1 2ndRnWon%oCommonVar_w
   2ndRnWon%pCommonVar_w
0
                 0.000000
                                         0.001278
                                                                  0.000000
1
                 0.000000
                                         0.005037
                                                                  0.002748
2
                 0.000682
                                         0.011651
                                                                  0.00000
3
                 0.000000
                                         0.024515
                                                                  0.006958
4
                 0.00000
                                         0.004729
                                                                  0.00000
   2ndRnWon%oCommonVar_1
                                                1stRnWon%player_l
                           1stRnWon%player_w
0
                 0.004234
                                     0.303115
                                                         0.187896
1
                 0.000000
                                     0.308748
                                                         0.266854
2
                 0.002986
                                     0.342633
                                                         0.284496
3
                 0.000000
                                     0.371813
                                                         0.246415
4
                 0.006333
                                     0.381543
                                                         0.259840
   1stRnWon%opponent_w
                         1stRnWon%opponent_1
                                                1stRnWon%playerCommon_w
0
              0.400668
                                     0.221569
                                                                0.316667
1
               0.357139
                                     0.271407
                                                                0.340000
2
               0.366892
                                     0.242924
                                                                0.232965
3
               0.283163
                                     0.259052
                                                                0.423077
4
                                     0.267443
               0.323779
                                                                0.666667
   1stRnWon%playerCommon_l
                             1stRnWon%opponentCommon_w
0
                   0.197826
                                                0.459459
1
                   0.238066
                                                0.383273
2
                   0.285918
                                                0.431034
3
                   0.281900
                                                0.323077
4
                   0.296467
                                                0.283951
   1stRnWon%opponentCommon_l
                                1stRnWon%pVariance_w
                                                       1stRnWon%pVariance_1
                                                                    0.002843
0
                     0.213740
                                            0.009360
1
                     0.361446
                                             0.003881
                                                                    0.002273
2
                     0.206424
                                             0.007505
                                                                    0.006023
3
                     0.284211
                                             0.005616
                                                                    0.004499
4
                     0.279129
                                             0.011367
                                                                    0.004012
   1stRnWon%oVariance w
                          1stRnWon%oVariance_1
                                                 1stRnWon%pCommonVar_w
0
                0.001841
                                       0.005163
                                                                0.00000
1
                0.006069
                                       0.004980
                                                                0.000000
2
                0.004104
                                       0.003504
                                                                0.000408
3
                0.004983
                                       0.001208
                                                                0.000000
```

4	0.002525	0.004968	0.000000
0 1 2 3 4	1stRnWon%pCommonVar_1	0.0104 0.0000 0.0059	00 0.000752 42 0.000000 00 0.003510 17 0.000000
0 1 2 3 4	svWon%player_w svWon 0.716897 0.655625 0.673278 0.658385 0.707384	0.530297 0. 0.563563 0. 0.510357 0. 0.551997 0.	nent_w svWon%opponent_l \ 691051
0 1 2 3 4	svWon%playerCommon_w 0.750000 0.704545 0.664888 0.584746 0.724138	svWon%playerCommon_l 0.535714 0.563026 0.510399 0.500536 0.542244	0.681818 0.680642 0.662791 0.661302
0 1 2 3 4	svWon%opponentCommon_ 0.57374 0.56000 0.57024 0.56849 0.54014	0.003324 0.003032 4.0005353 0.004332	svWon%pVariance_1 \
0 1 2 3 4	0.004006 0.004114 0.002521 0.003295 0.002965	0.002244 0.004710 0.002713 0.003535 0.002965	n%pCommonVar_w \
0 1 2 3 4	svWon%pCommonVar_1 s 0.001276 0.001779 0.006685 0.000941 0.000704	0.000000 0.002537 0.000000 0.003582 0.000000	Won%oCommonVar_1 0.000909 0.000000 0.003061 0.000000 0.004586

1.10 Appendix J - results of coefficient gridsearch

[]: from IPython.display import Image Image("Gridsearch.png")

mean ->	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1	
0.6	0.575099	0.594862	0.590909	0.592885	0.588933	0.600791	0.596838	0.588933	0.594862	0.59156
0.65	0.590909	0.586957	0.588933	0.592885	0.588933	0.586957	0.612648	0.602767	0.602767	0.59486
0.7	0.58498	0.590909	0.581028	0.596838	0.600791	0.596838	0.610672	0.602767	0.604743	0.59661
0.75	0.586957	0.594862	0.590909	0.590909	0.596838	0.592885	0.594862	0.602767	0.588933	0.59332
0.8	0.586957	0.58498	0.581028	0.586957	0.583004	0.58498	0.588933	0.586957	0.581028	0.5849
0.85	0.600791	0.583004	0.579051	0.581028	0.588933	0.58498	0.594862	0.58498	0.588933	0.58739
0.9	0.583004	0.588933	0.577075	0.586957	0.581028	0.583004	0.581028	0.58498	0.586957	0.58366
0.95	0.590909	0.590909	0.586957	0.586957	0.58498	0.581028	0.594862	0.592885	0.579051	0.58761
1	0.583004	0.590909	0.592885	0.586957	0.583004	0.594862	0.58498	0.586957	0.581028	0.58717
var ^^	0.586957	0.589592	0.585419	0.589152	0.588494	0.589592	0.59552	0.592666	0.589811	