C を放物線 $y=3x^2/2-1/3$ とする.C 上の点 $Q(t,3t^2/2-1/3)$ を通り,Q における C の接線と垂直な直線を,Q における C の法線とする.

- (1) xy 平面上の点 P(x,y) で P を通る C の法線が一本だけ引けるようなものの存在範囲を求め,図示せよ.
- (2) (1) で求めた範囲と放物線の内部 (不等式 $y>3x^2/2-1/3$ の定める範囲) の共通部分の面積を求めよ .

[解] y' = 3x だから, C における法線は

である. 放物線では接点が異なれば法線が異なるから, 点 P にたいし①を満たす t がただ一つ存在すればよい. すなわち, 求める領域を D とすると,

 $D = \{(x, y) \mid ①$ を満たす t が唯一つ存在する $\}$

①の左辺 g(t) とおく . $g'(t)=27t^2-6y$ より , y の値によって以下のようになる .

$(i)y \leq 0$ の時

 $g'(t)\geq 0$ だから,g(t) は単調増加.これと g(t) は3 次関数だから,g(t)=0 は唯一つ解を持つ.故に D に含まれる.

(ii)y > 0 の時

下表を得る.ただし $\alpha = \sqrt{2y}/3$ である.

t		$-\alpha$		α	
g'	+	0	_	0	+
q	7		\		7

従って,グラフの概形は下図のようになる. D のようになる条件は,

$$q(-\alpha)q(\alpha) > 0$$
 ②

である.ここで①から

$$q(\pm \alpha) = \pm 9\alpha^3 \mp 6y\alpha - 2x$$

$$= \mp \frac{4\sqrt{2}}{3}y^{3/2} - 2x$$

であるから,②に代入して

$$\left(\frac{2\sqrt{2}}{3}y^{3/2} - x\right) \left(-\frac{2\sqrt{2}}{3}y^{3/2} - x\right) > 0$$

以上から,求める領域Dは,

$$y \le 0 \lor (y > 0 \land \textcircled{3})$$
 $\textcircled{4}$

で , 図示して下図斜線部 (境界含む) . \cdots ((1) の答)

この領域の対称性から D のうち $x \ge 0$ の部分 の面積 S_1 とすると , 求める面積 S との関係は

$$S = 2S_1$$
 §

である . y=f(x) と $x=\frac{2\sqrt{2}}{3}y^{3/2}$ の y>0 での交点は ,

$$y = \frac{3}{2} \left(\frac{2\sqrt{2}}{3} y^{3/2} \right)^2 - \frac{1}{3}$$

$$4y^3 - 3y - 1 = 0$$

$$(y - 1)(4y^2 + 4y + 1) = 0$$

$$y = 1 \qquad (\because y > 0)$$

である.このとき $x=\frac{2\sqrt{2}}{3}(\equiv\beta)$ である.グラフの概形は下図.

さて , x>0 のとき

$$x = \frac{2\sqrt{2}}{3}y^{3/2}$$
$$\therefore y = \frac{\sqrt[3]{9}}{2}x^{2/3}$$

に注意して

$$S_1 = \int_0^\beta \left(f(x) - \frac{\sqrt[3]{9}}{2} x^{2/3} \right) dx$$

$$= \left[\frac{1}{2} x^3 - \frac{1}{3} x \right]_0^\beta - \frac{\sqrt[3]{9}}{2} \left[\frac{3}{5} x^{5/3} \right]_0^\beta$$

$$= \frac{44\sqrt{2}}{135}$$

であるから,⑤に代入して

$$S = \frac{88\sqrt{2}}{135}$$

である. \cdots ((2) の答)