Supervised ML Classifiers for Predicting Water Wells Condition in Tanzania

Leveraging Data to Improve Water Access

•Student: Daniel Mwaka

•Student Pace: DSF-FT12

·Phase: 3

Instructor: Samuel Karu

Problem Statement

- Access to clean water is a critical challenge in Tanzania.
- Many established water points are in disrepair or nonfunctional, impacting millions leading to water scarcity.
- The lack of an effective, data-driven framework for predicting a well's functional status is a leverageable improvement area.
- **The Goal:** To recommend an evidence-based supervised ML classification model for predicting the functional condition of water wells in Tanzania.

Business Understanding

- **Business Problem:** Predicting the condition of water wells can enable stakeholders to prioritize maintenance, and allocate resources efficiently to support water security.
- **Core Question:** Can the operational status of water-wells be accurately predicted using available data and machine learning models?

Project Scope:

- Examine features related to a Water-well's function to identify potential predictor variables.
- Build multiple classifiers, tune them, evaluate, and compare their respective prediction performance (*Accuracy, F1-score*, and *ROC-AUC*) to determine the best fit model.
- Verify the reliability of the best-fit model by deploying it to predict the target variable for a previously unseen dataset.
- Deduce feasible business recommendations and viable next steps.

Data Understanding

- **Dataset Source:** Kaggle competition dataset on Tanzanian Water Wells from https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/data/
- Dataset Features: training-set (41 columns and 59400 entries), test-data (40 columns and 4874 entries).
- •**Target Variable:** Water-well Status (Functional, Function but in need of repair, or Non-functional).
- •Selected Predictor Features: gps height, population, well age, basin, region, permit, extraction type, management group, payment type, water quality, water quantity, source type, and water-point type.

Model Evaluation: Logistic Regression Model

Model Evaluation: Decision Tree Classifier

Model Evaluation: Gradient Boosting Classifier

Model Performance Comparison

	Model	Train Accuracy	Test Accuracy	Train F1- score	Test F1- score	Train ROC- AUC	Test ROC- AUC
0	Logistic Regression (Untuned)	0.649605	0.640120	0.650390	0.674233	0.831460	0.816319
1	Logistic Regression (Tuned)	0.650144	0.636700	0.650930	0.671800	0.832009	0.816467
2	Decision Tree (Untuned)	0.999461	0.625445	0.999461	0.657666	1.000000	0.731613
3	Decision Tree (Tuned)	0.812680	0.634991	0.812901	0.667340	0.953505	0.801969
4	Gradient Boosting (Untuned)	0.720366	0.668329	0.721155	0.698047	0.879053	0.843328
5	Gradient Boosting (Tuned)	0.817529	0.684001	0.817773	0.710658	0.944834	0.863916

Selected Model for Deployment

- The tuned Gradient Boosting Classifier is selected for deployment.
- Reasons for Selection:
 - Consistently delivered superior predictive performance (highest ROC-AUC).
 - Balanced precision and recall across all classes (highest F1-score).
 - Demonstrated strong generalization to unseen data (highest ROC-AUC).
 - Small gap between train and test performance metrics indicates robustness and minimal overfitting.
- This model is the most reliable, effective, and best-choice for predicting the status of water wells in Tanzania.

Feature Importance Insights

Business Recommendations

- Prioritize Maintenance: Use model predictions to identify high-risk wells and allocate maintenance resources efficiently.
- Improve Data Collection: Enhance data quality, particularly for key features influencing well condition, such as management, payment types, and environmental factors.
- Stakeholder Engagement: Share insights with local authorities and NGOs to inform decision-making, schedule maintenance routines, and find patterns on factors impacting long-term functionality.
- **Inform New Infrastructure:** Use insights on factors contributing to failure to inform the design and construction frameworks for new groundwater projects.

Next Steps

- Model Deployment: Integrate the Tuned Gradient Boosting
 Classifier into a user-friendly dashboard for real-time predictions.
- Integration into Planning: Use model predictions to optimize maintenance schedules and target interventions.
- **Pilot Targeted Interventions:** Use the model to pilot interventions in high-risk areas/well types and measure the impact.
- Feature Expansion: Incorporate additional data sources (e.g., weather, usage patterns) to enhance model accuracy and update the mode regularly with new data to maintain performance and relevance.

