Лабораторная работа 3

РЕЗОНАНСЫ В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Задачи

- 1. Выбрать параметры цепи и источника в соответствии со своим вариантом.
- 2. Изменяя ёмкость (С) конденсатора, записать показания приборов (действующие значения), выделив в таблице резонанс напряжений и токов.
- 3. Рассчитать по результатам измерений в цепи с последовательным и параллельным соединением резистора, катушки и конденсатора её параметры.
- 4. Построить по результатам измерений и вычислений на одном поле графики I(C), $U_R(C)$, $U_L(C)$, $U_C(C)$, на другом графики $X_C(C)$, $X_L(C)$, S(C), $cos\phi(C)$.
- 5. Построить в масштабе векторную диаграмму для режима резонанса напряжений.
- 6. Построить по результатам измерений и вычислений графики I(C), $I_{\mathbb{C}}(C)$, Y(C), $\cos \varphi$.

Ход работы

• Рассчитать цепи (Рис.1 и Рис.2).

Рис. 1: Цепь при резонансе напряжений

Рис. 2: Цепь при резонансе токов

• Заполнить таблицы ().

Таблица "Резонанс напряжений"

Nº	С, мкФ		Измерить						Рассчитать								
			Р, Вт	I, A	U, B	U _R , B	U _L , B	U _C , B	R, Ом	X _C , Ом	φ, °	Ζ, Ом	X _L , Ом	Х, Ом	S, B*A	Q, вар	cosφ
1.	C _p -40	130	2442	11.65		209.6	215.1	281.6	17.991	18.464	0.307	18.884	24.172	5.708	2563.0	19.48	0.953
2.	C _p -30	140	2562	11.93		214.7	220.3	267.8	17.997	18.466	0.218	18.441	22.448	3.982	2624.6	13.75	0.976
3.	C _p -20	150	2638	12.11		217.9	223.5	253.6	17.993	18.456	0.137	18.167	20.941	2.486	2664.2	8.65	0.990
4.	C _p -10	160	2677	12.19		219.5	225.1	239.5	18.007	18.466	0.066	18.048	19.647	1.181	2681.8	4.12	0.998
5.	Cp	170	2688	12.20	220	220.0	225.6	225.9	18.033	18.467	0.001	18.033	18.516	0.025	2684.0	0.09	1.001
6.	C _p +10	180	2680	12.20		219.6	225.3	213.0	18.000	18.467	-0.056	18.033	17.459	-1.008	2684.0	-3.52	0.999
7.	C _p +20	190	2658	12.15		218.7	224.3	201.0	18.000	18.461	-0.106	18.107	16.543	-1.918	2673.0	-6.68	0.994
8.	C _p +30	200	2627	12.08		217.5	223.0	189.8	18.005	18.460	-0.151	18.212	15.712	-2.748	2657.6	-9.55	0.988
9.	C _p +40	210	2591	12.00		215.9	221.5	179.5	17.992	18.458	-0.192	18.333	14.958	-3.500	2640.0	-12.12	0.981

Таблица "Резонанс токов"

	С, мкФ				Изм	еритн	•	Рассчитать				
Nº			Р, Вт	U, B	I, A	I _{R′} B	I _L , B	I _C , B	Ү, См	G, См	В, Ом	cosφ
1.	C _p -40	130	2771		12.91	12.22	11.92	9.09	0.0587	0.0555	0.0129	0.976
2.	C _p -30	140	2785		12.84	12.22	11.92	9.79	0.0584	0.0555	0.0097	0.986
3.	C _p -20	150	2805		12.80	12.22	11.92	10.49	0.0582	0.0555	0.0065	0.996
4.	C _p -10	160	2814		12.81	12.22	11.92	11.19	0.0582	0.0555	0.0033	0.999
5.	$\mathbf{c}_{\mathbf{p}}$	170	2833	220	12.86	12.22	11.92	11.88	0.0585	0.0555	0.0002	1.001
6.	C _p +10	180	2846	220	12.96	12.22	11.92	12.58	0.0589	0.0555	-0.0030	0.998
	C _p +20	ı			13.09	12.22	11.92	13.28	0.0595	0.0555	-0.0062	0.995
8.	C _p +30	200	2884		13.26	12.22	11.92	13.97	0.0603	0.0555	-0.0093	0.989
9.	C _p +40	210	2904		13.48	12.22	11.92	14.67	0.0613	0.0555	-0.0125	0.979
10.	C _p +50	220	2924		13.74	12.22	11.92	15.37	0.0624	0.0555	-0.0157	0.969

• Построить зависимости

Выводы.