11 December 2006 (afternoon) FINAL EXAMINATION

PAPER NO.: 200 PAGE NO.: 1 of 10

DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours

EXAMINATION: MATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Berry

VALUES

Instructions:

- 1. One hand-written single-sided reference page (8.5" by 11") is permitted. This information page must contain your name and student I.D. number.
- 2. No other aids are permitted.
- 3. Attempt all problems. Show all your work.
- 4. Write your solutions in the space provided. If insufficient space is provided for your solution to a problem, continue your work **on the back of the previous page**, indicating in the bottom right hand corner that work is continued on the back of the previous page.
- 5. Fill in the information requested below.
- 6. Put your student number on each page in the space provided.

Student Name (Print):	
Student Number:	
Student Signature:	
	(I understand that cheating is a serious offense.)
Seat Number:	

problem	mark
1	/11
2	/9
3	/10
4	/9
5	/10
6	/9
7	/7
8	/13
9	/12
TOTAL	
	/90

FINAL EXAMINATION

11 December 2006 (afternoon)

PAPER NO	D.: 200		PAGE NO.: 2 of 10
DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours			Time: 2 hours
EXAMINA	TION: MAT	CH 1210 - Techniques of Classical & Linear Algeb	ra EXAMINER: T. G. Berry
VALUES			
		Student number:	
[11]	1	Use the Principle of Mathematical Induction t	a show that for n any positive

[11] 1. Use the Principle of Mathematical Induction to show that , for *n* any positive integer

$$\sum_{\ell=0}^{2n-1} (3\ell+1) = n(6n-1).$$

11 December 2006 (afternoon) FINAL EXAMINATION PAPER NO.: 200 PAGE NO.: 3 of 10

DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours

EXAMINATION: MATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Berry

VALUES

Student number:

[9] 2. Consider the complex numbers

$$z_1 = \sqrt{2}(1+i)$$
, $z_2 = 3i$ and $z_3 = \frac{1}{4}(-1+i\sqrt{3})$.

(a) Express each of these numbers in exponential form.

(b) Evaluate $\frac{z_1^3 z_3}{z_2}$, expressing your answer in exponential form and simplifying the result as far as possible.

11 December 2006 (afternoon) FINAL EXAMINATION

PAPER NO.: 200 PAGE NO.: 4 of 10

DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours

EXAMINATION: MATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Berry

VALUES

Student number:

- [10] 3. Consider the complex polynomial equation $z^4 = 16e^{i(3\pi/4)}$.
 - (a) Find the modulus and the principal value of the argument of each of the roots of this equation.

(b) Plot the roots determined in part (a) on the following diagram.

11 December 2006 (afternoon)		fternoon)	FINAL EXAMINATION
PAPER	NO.: 200		PAGE NO.: 5 of 10
DEPARTMENT & COURSE NO: Mathematics - MATH 1210		OURSE NO: Mathematics - MATH 1210	Time: 2 hours
EXAMI	NATION: MA	ATH 1210 - Techniques of Classical & Linear Al	gebra EXAMINER: T. G. Berry
VALUES			
		Student number:	
[9]	4.	Consider the polynomial $P(x) = 2x^3 + x^2 + x^3 + x^4 + x^$	-5x-3.
	(a)	List all possible rational roots of $P(x) = 0$ Theorem.	, as indicated by the Rational Roots
	(b)	What is the maximum number of negative according to Descartes' Rule of Signs?	real zeros that $P(x)$ can possess,
	(c)	Clearly Descartes' Rule of Signs indicates to positive real zero. Find it.	that $P(x)$ can have at most one
	(d)	Use the above information to find the rema	ining zeros of $P(x)$.

11 December 2006 (afternoon) FINAL EXAMINATION

PAPER NO.: 200 PAGE NO.: 6 of 10

DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours

EXAMINATION: MATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Berry

VALUES

Student number:

[10] 5. Given
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ -1 & 0 \\ 2 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \end{pmatrix}$, find

(a)
$$A(B-C^T)^T$$

(b)
$$(CB)^{-1}$$

FINAL EXAMINATION

11 December 2006 (afternoon)

PAPER	NO.: 200	PAGE NO.: 7 of 10	
DEPAR'	TMENT & CO	COURSE NO: Mathematics - MATH 1210 Time: 2 hours	
EXAMIN	NATION: MA	ATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Ber	rry
VALUES			
		Student number:	
		(4. 0. 0. 0. 4. 0.	
		$\begin{pmatrix} 1 & 0 & 0 & 0 & 4 & -2 \\ 0 & 2 & 2 & 6 & 0 & 2 \end{pmatrix}$	
[9]	6.	Consider the matrix $\begin{bmatrix} 0 & 3 & 3 & -0 & 0 & 3 \\ 0 & 0 & -1 & -4 & 0 & 0 \end{bmatrix}$	
[>]	0.		
		Consider the matrix $ \begin{pmatrix} 1 & 0 & 0 & 0 & 4 & -2 \\ 0 & 3 & 3 & -6 & 0 & 3 \\ 0 & 0 & -1 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 & 6 \end{pmatrix} . $	
	(a)	Reduce this matrix to row-echelon form (REF), indicating clearly all e	elementary
		row operations (ERO) used to do so. (You may combine some opearti	ons if you
		wish, as long as you indicate which operations you use.)	
	(b)	Assuming that this matrix is the augmented matrix of a non-homogen	eneous
		linear system of equations of the form $Ax = b$, fill in the following t	able:
		# of variables in this system	
		rank of the augmented matrix	
		rank of the coefficient matrix	
		# of "free" variables in this system	
		# of solutions possessed by this system	
	(c)	Assuming that this matrix is the coefficient matrix of a homogeneou	s linear
		system of equations of the form $Bx = 0$, fill in the following table:	
		# of variables in this system	
		rank of the augmented matrix	
		rank of the coefficient matrix	
		# of "free" variables in this system	
		# of solutions possessed by this system	

11 December 2006 (afternoon) FINAL EXAMINATION

PAPER NO.: 200 PAGE NO.: 8 of 10

DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours

EXAMINATION: MATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Berry

VALUES

Student number:

[7] 7. Is the set of vectors consisting of
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$ and $\vec{v}_4 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}$

linearly dependent or linearly independent. Justify your answer.

11 December 2006 (afternoon)

FINAL EXAMINATION

PAPER NO.: 200 PAGE NO.: 9 of 10

DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours

EXAMINATION: MATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Berry

VALUES

Student number:

- [13] 8. Consider the matrix $F = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 4 & -1 \\ 0 & 2 & 1 \end{pmatrix}$.
 - (a) Evaluate $\det F$ using a **cofactor expansion along the second column**, showing all the details of the calculation.

(b) Find F^{-1} . (You may use any method you wish, but must show all your work.)

11 December 2006 (afternoon)

FINAL EXAMINATION

PAPER NO.: 200 PAGE NO.: 10 of 10

DEPARTMENT & COURSE NO: Mathematics - MATH 1210 Time: 2 hours

EXAMINATION: MATH 1210 - Techniques of Classical & Linear Algebra EXAMINER: T. G. Berry

VALUES

Student number: _

[12] 9. Consider the linear transformation
$$y = Ax$$
 in which $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

and
$$y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

(a) Find all the eigenvalues of A.

(b) Find all eigenvectors corresponding to each of the eigenvalues of A.