- 01. 동적 계획법(Dynamic Programming)
- 1-1. 네트워크 선 자르기

동적계획법이란? 네트워크 선 자르기(Bottom-Up)

현수는 네트워크 선을 1m, 2m의 길이를 갖는 선으로 자르려고 합니다. 예를 들어 4m의 네트워크 선이 주어진다면

- 1) 1m+1m+1m+1m
- 2) 2m+1m+1m
- 3) 1m+2m+1m
- 4) 1m+1m+2m
- 5) 2m+2m

의 5가지 방법을 생각할 수 있습니다. (2)와 (3)과 (4)의 경우 왼쪽을 기준으로 자르는 위치가 다르면 다른 경우로 생각한다.

그렇다면 네트워크 선의 길이가 Nm라면 몇 가지의 자르는 방법을 생각할 수 있나요?

□ 입력설명

첫째 줄은 네트워크 선의 총 길이인 자연수 N(3≤N≤45)이 주어집니다.

■ 출력설명

첫 번째 줄에 부분증가수열의 최대 길이를 출력한다.

■ 입력예제 1

7

■ 출력예제 1

21

- 1) bottom-up: 아주 작은 프로그래밍 해를 먼저 구하고 그것을 이용해서 최종적으로 답을 구하는 알고리즘
- -dy[] 배열에 직관적으로 구할 수 있는 해를 먼저 구한 후 점화식을 유도해서 나머지 배열의 값들을 알아내는 방법

1-2. 풀이

```
AA.py - C:\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Uniters\Users\Uniters\Users\Uniters\Users\Uniters\Users\Users\Users\Users\Users\Users\Uniters\Users\Uniters\Users\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\Uniters\
```

11.최대점수 구하기(냅색 알고리즘)