

NP and NP-Complete

Mohammad Javad Dousti

Some slides are courtesy of Dr. Mahini.

Overview

- □ Introduction
- □ P vs. NP
- □ Reduction
- □ NP-Complete & NP-Hard
- □ NP-Complete Examples
- **□** Sample Problems

Introduction

- □ What has this semester been about?
 - > We've taken problems you probably knew how to solve slowly, and we figured out how to solve them faster.
- ☐ In some sense, that's the job of a computer scientist. Figure out how to take our problems and make the computer do the hard work for us.
- □ Let's take a big step back, and try to break problems into three types:
 - 1. Those for which a computer might be able to help.
 - 2. Those which would take so long to solve even on a computer we wouldn't expect to solve them.
 - 3. Those which a computer cannot solve regardless of how long we wait.
- ☐ There are problems we could solve in finite time...but we'll all be long dead before our computer tells us the answer.

Efficient (کارا یا کارآمد)

- □ We'll consider a problem *efficiently solvable*, if it has a polynomial time algorithm.
 - > In other words, there's an algorithm which runs in $O(n^k)$, where k is a constant.
 - > Are these algorithms always actually *optimum* (بهینه)?
 - O Not necessarily!
- - > But these edge cases are rare, and polynomial time is good as a low bar.
 - > If we can't even find an n^{10000} algorithm, we should probably rethink our strategy.

Decision Problem vs. Optimization Problem

Optimization Problem

- Try to optimize
- More complex
- Examples
 - Max flow: Find the maximum flow
 - Shortest-path: Find the shortest path
 - Knapsack: Find the maximum possible value.

Decision Problem

- Output is *yes* or *no*
- Simple
- Examples
 - Max flow: Is there any feasible flow of size k?
 - Shortest-path: Is there any path of length less than or equal to k?
 - Knapsack: Is there any solution with the value of at least k?

Class P

A decision problem Q is in P if there is a polynomial-time algorithm A called decider such that for all inputs x:

- if $x \in Q$ then A(x) = YES,
- if $x \notin Q$ then A(x) = NO,

 $Q \in \mathbf{P} \leftrightarrow [\exists A \text{ such that } \forall x : x \in Q \leftrightarrow A(x) = yes]$

Examples:

- Connectivity problem
- Shortest path problem
- Summation

Input: Undirected graph *G*

Output: Is *G* a connected graph?

Input: Directed weighted graph G and two vertices *s* and *t* and a value of *k*

Output: Is there any path between *s* and *t* with the length of at most *k*?

Input: Three numbers x, y, and z

Output: Is x + y = z?

Class NP (Non-deterministic Polynomial)

A decision problem Q is in **NP** if there is a **polynomial-time algorithm** V called **verifier** such that for all inputs x:

- if $x \in Q$ then there is a **certificate** y such that V(x,y) = YES, -
- if $x \notin Q$ then for all certificates y we have V(x, y) = NO,

 $Q \in \mathbf{NP} \leftrightarrow [\exists V \text{ such that } \forall x : x \in Q \leftrightarrow (\exists y \text{ such that } V(x, y) = yes)]$

Size of y should be a polynomial of size of x

Examples:

- Traveling Sales Man
- Clique
- Longest path

Input: Directed weighted graph *G* and a value of *k* **Output**: Is there any tour of length at most *k*?

Input: Undirected graph G and a value of k
Output: Can we find k vertices in graph G such that
they are all adjacent to each other?

Input: Directed weighted graph *G* and two vertices *s* and *t* and a value of *k*

Output: Is there any *simple* path between *s* and *t* with the length of at least *k*?

What if |y| is not polynomial in |x|?

- □ Note that the runtime of a verifier (or generally any algorithm) is defined in terms of the *input size*.
- \square If |y| is arbitrarily large, then there is an algorithm that can verify a given NP problem, in polynomial time w.r.t. |y|, but not necessarily polynomial in |x|.
- \square Does a given program *P* halts (finishes) in less than or equal to 2^n steps?
 - > This problem can be shown not to be in NP.
 - > If we could use an arbitrarily large certificate, one can pass this certificate: $\langle c_0, c_1, c_2, ..., c_m \rangle$, where c_i is the configuration of the program after each step.
 - > A simple verifier can walk through these certificates and check the following properties:
 - 1. All c_i 's are legit configurations.
 - 2. Any $c_i \rightarrow c_{i+1}$ is a legit step.
 - 3. $m \leq 2^n$

The \$1M Question

□ The Clay Mathematics Institute: Millennium Prize Problems

- 1. Birch and Swinnerton-Dyer Conjecture
- 2. Hodge Conjecture
- 3. Navier-Stokes Equations
- 4. P vs. NP
- 5. Poincaré Conjecture ← Solved in 2002 by Grigori Perelman
- 6. Riemann Hypothesis
- 7. Yang-Mills Theory

The P versus NP problem

- □ P vs. NP is one of the biggest open problems in computer science (and mathematics) today.
- ☐ It's currently unknown whether there exist polynomial time algorithms for NP-complete problems
 - > That is, does P = NP?
 - > People generally believe $P \neq NP$, but no proof yet.
- □ But what is the **P-NP** problem?

$P \subseteq NP$ Proof

A decision problem Q is in P if there is a polynomial-time algorithm A called decider such that for all inputs x:

- if $x \in Q$ then A(x) = YES,
- if $x \notin Q$ then A(x) = NO,

 $Q \in \mathbf{P} \leftrightarrow [\exists A \ such \ that \ \forall x : x \in Q \leftrightarrow A(x) = yes]$

$$V(x,y) = A(x)$$

A decision problem Q is in **NP** if there is a **polynomial-time algorithm** V called **verifier** such that for all inputs x:

- if $x \in Q$ then <u>there is</u> a **certificate** y such that V(x, y) = YES,
- if $x \notin Q$ then for all certificates y we have V(x, y) = NO,

 $Q \in \mathbf{NP} \leftrightarrow [\exists V \ such \ that \ \forall x : x \in Q \leftrightarrow (\exists y \ such \ that \ V(x,y) = yes)]$

Is **P** a proper subset of **NP**?

Polynomial-Time Reductions (تقلیل یا تحویل)

- □ The purpose of a reduction is to show that *some problem is at least as hard as some other problem*.
- □ If problem X reduces to problem Y, then solving Y implies solving X.
 - > Y is at least as hard as X, denoted $X \le Y$.
- □ Reduction types:
 - > Karp reduction
 - We use it in this course to prove NP-hardness of problems.
 - > Cook reduction
 - We don't talk about it in this course.
 - > Levin reduction
 - We don't talk about it in this course.

Karp Reduction

- \square A polynomial time reduction from a decision problem X to a decision
 - problem Y is an algorithm f that has the following properties:
 - > Given an instance I_X of X, f produces an instance I_Y of Y.
 - > f runs in polynomial time w.r.t. $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$
 - Answer to I_X YES iff answer to I_Y is YES. In other words, $x \in X \iff f(x) \in Y$.
- \square Notation: $X \leq_P Y$ (or $X \leq_m^P Y$) if X reduces to Y.
- □ Proposition: If $X \leq_P Y$, then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Richard M. Karp

Karp Reduction (cont'd)

□ Karp reduction is also called many-one reduction and polynomial transformations.

Karp Reduction: Example 1

Matching

Input: Undirected bipartite graph *G* and a value of *k*Output: Does G have a matching of size at least *k*?

Matching $\leq_p Flow$

Flow

Input: Network flow *G* and a

value of *k*

Output: Does *G* has a feasible

flow of at least *k*?

Karp Reduction: Example 2

Independent Set

Input: Undirected graph *G* and

a value of *k*

Output: Is there any set of

vertices of size k in G that none

of them are adjacent?

Independent Set \leq_P Vertex Cover

Vertex Cover

Input: Undirected graph *G* and a

value of *k*

Output: Can we color *k* vertices of

G such that for each edge at least

one of its endpoints is colored?

Karp Reduction: Example 2 (cont'd)

Independent Set

Input: Undirected graph G and a value of kOutput: Is there any set of

vertices of size k in G that none of them are adjacent?

Independent Set \leq_P Vertex Cover

Vertex Cover

Input: Undirected graph G and a value of k

value of *k*

Output: Can we color *k* vertices of *G* such that for each edge one of

its endpoints is colored?

Black box algorithm for problem *Vertex Cover*

Output of *C* for (G, n - k) = Output of B for (G, k)

Polynomial-Time Karp Reduction Transitivity

- □ Theorem: If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$.
- □ Proof:
 - \Rightarrow Per definition, $\exists f, g$ such that $x \in A \iff f(x) \in B$ and $y \in B \iff g(y) \in C$.
 - $\Rightarrow x \in A \iff f(x) \in B \iff g(f(x)) \in C.$
 - > g(f(.)) is polynomial because f(x) is polynomial in x.

NP-Complete and NP-Hard

NP-Complete

- The most difficult problems in NP to solve
- If we can solve an NP-complete problem in polynomial time, we can solve all NP problems in polynomial time.

```
Q \in NP - Complete:
```

- $Q \in NP$
- $\forall Q' \in \mathbf{NP}$, we have $Q' \leq_p Q$

NP-Hard

- If we can solve an NP-hard problem in polynomial time, we can solve all NP problems in polynomial time.
- They are not necessarily in NP.

```
Q \in NP - Hard:
```

• $\forall Q' \in \mathbf{NP}$, we have $Q' \leq_{p} Q$

NP-Complete and NP-Hard

The First NP-Complete Problem

Circuit Satisfiability (CS)

Input: Logical circuit with AND, OR, and NOT gates with *n* inputs, *m* gates and one output

Output: Can we set *n* inputs such that the output becomes 1?

CS Problem: Example

Satisfiable

Unsatisfiable

NP-Completeness of CS Problem: Proof

- ☐ This is the first NP-complete problem we prove.
- ☐ Two steps are required to prove the theorem:
 - \succ Circuit-SAT \in **NP**
 - $\Rightarrow \forall Q \in NP$, we have $Q \leq_p \text{Circuit-SAT}$

```
Q \in \mathbf{NP} \leftrightarrow [\exists A \text{ such that } \forall x : x \in Q \leftrightarrow (\exists y \text{ such that } A(x,y) = yes)]
```

CS Problem is NP

- □ Lemma 1: Circuit-SAT is in NP
- □ Proof:
 - > Must show that there exists a polynomial-time verifier.
 - > We can easily check in polynomial time if truth assignment produces TRUE.

CS Problem is NP-Hard (1)

- □ Lemma 2: For every problem Q in NP, we have: $Q \leq_P \text{Circuit-SAT}$
 - > Or Circuit-SAT is NP-hard.
- □ Proof: (sketch of the proof; for full sketch, see CLRS 34.3)
 - > If an algorithm runs in polynomial time, then there is a polynomial-size Boolean circuit that "implements" the algorithm, and such a circuit can be constructed in polynomial time.
 - Idea: Algorithm runs on computer that is essentially a Boolean circuit.
 - ➤ To complete the proof, we should create a reduction function f such that for any $x \in Q$, we have $f(x) \in Circuit SAT$, and vice versa.

CS Problem is NP-Hard (2)

- □ Step 2: Describe algorithm that performs reduction:
 - > Q is in NP, so Q has a polynomial-time verification algorithm A(x,y) that checks if x is a "yes"-instance using certificate y.
 - > Construct circuit implementing A.
 - Circuit runs in polynomial time.
 - Input has size polynomial.
 - A combinational circuit implementing a mapping on the polynomial-size input has size polynomial.
 - A polynomial-sized circuit can run in polynomial time.
 - > "Fix" the variables corresponding to x according to the given input
 - > Run Circuit-SAT:
 - \circ Circuit-SAT returns "yes" iff x is a "yes" instance for problem Q.

CS Problem is NP-Hard (3)

Fix input x, we want to decide whether $x \in Q$

If runtime of Algorithm A for x is T(n), then the size of our logical circuit is polynomial of T(n).

Mohammad Javad Dousti

NP-Complete Examples

Structure of NP-Completeness Proofs

Now, we have a strong tool to prove a new problem Q is NP-Complete

- $Q \in \mathbf{NP}$
- $CS \leq_p Q$

NP-Complete Problems

- ☐ By 1979, at least 300 problems had been proven NP-complete.
- □ Garey and Johnson put a list of all the NP-complete problems they could find at the time in this textbook.
- □ Took them almost 100 pages to just list them all.
- □ No one has made a comprehensive list since.

3-SAT Problem is NP-Complete

3-SAT (3-Conjunctive Normal Form or 3-CNF) Problem

Satisfiability (SAT) and 3-SAT

Input: m Boolean clauses and n Boolean variable. Each clause is like $x_1 \vee \overline{x_2} \vee x_4$ (with only \vee and **NOT** operators)

Output: Can we find an assignment such that all Boolean clauses become true?

3-SAT is NP

```
Two steps:

• 3-SAT \in NP

• CS \leq_p 3-SAT(it means \forall Q \in NP we have Q \leq_p 3-SAT)

How to design a poly-time verifier for 3-SAT to prove 3-SAT \in NP?
```

3-SAT is NP-Hard (1)

Two steps:

- 3-SAT∈ NP
- $CS \leq_p 3$ -SAT (it means $\forall Q \in NP$ we have $Q \leq_p 3$ -SAT)

For any Boolean circuit, one can:

- 1. Break each Boolean gates into 2-input gates.
- 2. Each of the intermediate results are stored in a variable.
- 3. Boolean equation equivalent of the circuit is written.
- 4. The formula is satisfiable when all of intermediate equations are satisfied. Hence, we can AND them together.

- $x_7 \leftrightarrow \overline{x_1} \wedge x_2$
- $x_8 \leftrightarrow x_3 \wedge x_4$
- $\begin{array}{c|cccc} x_{12} & \bullet & x_9 \leftrightarrow \overline{x_5} \lor x_6 \\ \hline \bullet & x_{10} \leftrightarrow \overline{x_7} \land x_8 \end{array}$

 - $x_{11} \leftrightarrow \overline{x_8} \lor x_9$
 - $x_{12} \leftrightarrow \overline{x_{11}} \wedge x_{10}$

3-SAT is NP-Hard (2)

Two steps:

- 3-SAT∈ **NP**
- $CS \leq_p 3$ -SAT (it means $\forall Q \in NP$ we have $Q \leq_p 3$ -SAT)

x_1	x_2	x_3	$\phi = x_3 \leftrightarrow x_1 \wedge \overline{x_2}$
1	1	1	0
1	0	1	1
0	1	1	0
0	0	1	0
1	1	0	1
1	0	0	0
0	1	0	1
0	0	0	1

3-SAT is NP-Hard (4)

```
Two steps:

• 3-SAT \in NP

• CS \leq_p 3-SAT(it means \forall Q \in NP we have Q \leq_p 3-SAT)
```

Last step: How to convert everything to clauses with 3 variables?

- If a clause has 2 literals, it can be converted to 3 literals as follows:
 - $(l_1 \lor l_2) \rightarrow (l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \overline{p})$
- If a clause has 1 literal, it can be converted to 3 literals as follows:
 - $l \to (l \lor p \lor q) \land (l \lor p \lor \overline{q}) \land (l \lor \overline{p} \lor q) \land (l \lor \overline{p} \lor \overline{q})$

CLIQUE Problem is NP-Complete

CLIQUE problem

CLIQUE

Input: Undirected graph *G* and a value of *k* **Output**: Can we find *k* vertices in graph G
such that there are all adjacent to each other?

CLIQUE is NP

```
Two steps:

• CLIQUE \in NP

• 3-SAT\leq_pCLIQUE (it means \forall Q \in NP we have Q \leq_p CLIQUE)

How to design a verifier to prove CLIQUE \in NP?
```

CLIQUE is NP-Hard

Two steps:

- CLIQUE∈ NP
- 3-SAT \leq_p CLIQUE (it means $\forall Q \in NP$ we have $Q \leq_p$ CLIQUE)
- \square Construct graph G = (V, E) as follows:
 - > Introduce a node for each *literal* in each clause.
 - > Put edge between each pair of nodes such that
 - Nodes are in different clauses.
 - Nodes are not each other's opposite.

CLIQUE Problem Reduction Example

Should select exactly one vertex from each clause.

Set the value of selected vertex to 1 in 3-SAT instance

Formula Is Satisfiable \Leftrightarrow A Clique of Size k Exists

- \square Formula is satisfiable \Rightarrow A clique of size k exists
 - > Assume the formula with k clauses is satisfiable.
 - > For each clause, select the TRUE node.
 - > Then these nodes must form a clique.
- \square A clique of size k exists \Rightarrow Formula is satisfiable
 - > Assume G has a clique of size at least k.
 - > Set variables such that these nodes evaluate to TRUE.
 - > Must be a consistent setting that makes formula satisfiable true.
- ☐ It suffices to show that CLIQUE problem is NP-hard in this special case. Why?
 - > If we had a polynomial-time algorithm that solved clique on general graphs, it would also solve CLIQUE on restricted graphs.

SUBSET-SUM Problem is NP-Complete

SUBSET-SUM problem

SUBSET-SUM

Input: Set $S = \{x_1, x_2, ..., x_n\}$ with integer

values and a value of *t*

Output: Is there any subset of *S* such that

sum of its elements is equal to t?

- S = {1, 2, 5, 10, 11} and t = 17
 Answer is *yes* because of {2, 5, 10}
- $S = \{1, 2, 5, 10, 11\}$ and t = 19
- Answer is *yes* because of {1, 2, 5, 11}
- S = {1, 2, 5, 10, 11} and t = 20
 Answer is no

SUBSET-SUM is NP

Two steps: • SUBSET-SUM \in NP • 3-SAT \leq_p SUBSET-SUM (it means $\forall Q \in NP$ we have $Q \leq_p$ SUBSET-SUM) How to design a verifier to prove SUBSET-SUM \in NP?

SUBSET-SUM is NP-Hard (1)

Two steps:

- SUBSET-SUM∈ **NP**
- **1•** 3-SAT≤_pSUBSET-SUM (it means $\forall Q \in NP$ we have $Q \leq_p$ SUBSET-SUM)
- \square *n* variables x_i and *m* clauses C_i
- \square For each variable x_i , construct numbers v_i and v_i' of n+m digits:
 - > The i^{th} digit of v_i and v'_i is equal to 1.
 - For $n+1 \le j \le n+m$, the jth digit of v_i is equal to 1 if x_i is in clause C_{j-n}
 - For $n+1 \le j \le n+m$, the j^{th} digit of v'_i is equal to 1 if \overline{x}_i is in clause C_{j-n}
- \square All other digits of v_i and v'_i are 0.
- □ Example:
 - $> (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

		J					
	x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	1	0	0	1	0	0	1
$\boldsymbol{v_1'}$	1	0	0	0	1	1	0
v_2	0	1	0	0	0	0	1
v_2'	0	1	0	1	1	1	0
v_3	0	0	1	0	0	1	1
v_3'	0	0	1	1	1	0	0

SUBSET-SUM is NP-Hard (2)

Two steps:

- SUBSET-SUM∈ **NP**
- 3-SAT \leq_p SUBSET-SUM (it means $\forall Q \in NP$ we have $Q \leq_p$ SUBSET-SUM)
- \square For each clause C_j , construct slack variables s_j and s'_j of n+m digits:
 - > The (n + j)th digit of s_i is equal to 1.
 - > The (n+j)th digit of s'_i is equal to 2.
 - > All other digits of s_i and s'_i are 0.
- \Box Finally, construct a sum number t of n + m digits:
 - For $1 \le j \le n$, the j^{th} digit of t is equal to 1.
 - For $n + 1 \le j \le n + m$, the jth digit of t is equal to 4.
- □ Example:
 - $> (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$

	x_I	x_2	x_3	C_1	C_2	C_3	C_4
s_1	0	0	0	1	0	0	0
s_1'	0	0	0	2	0	0	0
s_2	0	0	0	0	1	0	0
s_2'	0	0	0	0	2	0	0
s_3	0	0	0	0	0	1	0
s_3'	0	0	0	0	0	2	0
s_4	0	0	0	0	0	0	1
s_4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

SUBSET-SUM is NP-Hard (3)

Formula Satisfiable ⇒ Subset Exists

- \square Take v_i if x_i is TRUE.
- \square Take v_i' if x_i is FALSE.
- \square Take both s_j and s'_j if number of true literals in C_j is 1.
- \square Take s'_i if number of true literals in C_i is 2.
- \square Take s_j if number of true literals in C_j is 3.
- □ Example:
 - $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$
 - $x_1 = x_2 = x_3 = \text{TRUE}$
 - > Subset = $\{v_1, v_2, v_3, s_1, s_2, s_2', s_3, s_3', s_4'\}$

	x_1	x_2	x_3	C_{I}	C_2	C_3	C_4
v_1	1	0	0	1	0	0	1
v_2	0	1	0	1	0	1	0
v_3	0	0	1	1	1	0	1
s_1	0	0	0	1	0	0	0
s_2	0	0	0	0	1	0	0
s_2'	0	0	0	0	2	0	0
s_3	0	0	0	0	0	1	0
s_3'	0	0	0	0	0	2	0
s_4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

Subset Exists ⇒ Formula Satisfiable

- \square Assign value TRUE to x_i if v_i is in subset.
- \square Assign value FALSE to x_i if v_i' is in subset.
- □ Exactly one number per variable must be in the subset .
 - \triangleright Otherwise one of first *n* digits of the sum is not equal to 1.
- ☐ At least one variable number corresponding to a literal in a clause must be in the subset.
 - \triangleright Otherwise one of next *m* digits of the sum is smaller than 4.
- □ Each clause is satisfied.

An Undecidable Problem: HALTING Problem

HALTING Problem Input: Program *P* and input *I* **Output**: Returns **yes** if program *P* halts on input *I* and **no** otherwise Assume program H(P, I) decides the **HALTING Problem. G**(x) { if H(x,x) = yesLoop forever; else Halt;

Contradiction: What is the result of G(G)?

Ouroboros: a dragon that continually consumes itself

Why did we study about complexity classes?

□ As a scientist:

- > You need to understand complexity classes.
- > If you you establish a problem as **NP-complete**, it's a good evidence for its intractability.
- > There are MANY MANY more classes we didn't discuss in the class.
 - o In the CS theory field, many researchers are actively working on this subject.

☐ As an engineer:

- > Find an approximate algorithm instead of trying to solve the problem exactly.
- > Solve a tractable special case.

Sample Problems

True or False?

- 1. **NP** is the class of problems that are verifiable in polynomial time.
- 2. It is not known whether $P \neq NP$ or P = NP.
- 3. If a problem is not in **P**, it should be in **NP-complete**.
- 4. If a problem is in **NP**, it must also be in **P**.
- 5. If a problem is **NP-complete**, it must not be in **P**.
- 6. **NP-complete** problems cannot be decided efficiently.
- 7. **NP-complete** problems are the hardest decision problems.

True or False? (cont'd)

- 8. Assume $P \neq NP$. Let A and B be decision problems. If A is in NP-complete and $A \leq_P B$, then B is not in P.
- 9. There exists a decision problem *X* such that for all *Y* in **NP**, *Y* is polynomial-time reducible to *X*.
- 10. If P = NP, then NP = NP-complete.
- 11. If a problem is not in **P**, then it must be in **NP**.
- 12. **NP** is the class of problems that are not decidable in polynomial time.

Integer Factorization Problem

- □ *Integer factorization* is the decomposition of a composite number into a product of smaller integers greater than 1.
 - > If these factors are further restricted to prime numbers, the process is called *prime factorization*.
- □ No efficient (*non-quantum*) integer factorization algorithm is known.
 - > However, it has not been proven that no efficient algorithm exists.
 - > The presumed difficulty of this problem is at the heart of widely used algorithms in cryptography such as RSA.
 - o Take a course on computer security or cryptography to learn more about it.
 - > *Peter Shor* came up with an algorithm in 1994 which could factorize integers in polynomial-time on quantum computers.
 - Take a course on quantum computing/information processing to learn more about it.

Peter Shor

Polynomial-Time Solution for Integer Factorization!

- □ We have learned that no algorithm has been published that can factor any integer in polynomial time.
- □ I claim that I can come up with a polynomial-time algorithm though!

```
factorize(n) {
    for i = 2 to n - 1 {
        if n % i == 0 {
            return i, n / i
        }
    }
    return n + " is prime."
}
```

Prove or disprove whether this algorithm factorizes *n* in polynomial time.

Traveling Salesman Problem (TSP)

- ☐ *Hamiltonian cycle* is a cycle which passes through all the vertices of the graph exactly once.
 - > Assume that deciding whether a graph has a Hamiltonian cycle (HAM-CYCLE) is **NP-complete**.
 - > See the NP-completeness proof in CLRS 34.5.3.

□ Traveling salesman problem (TSP):

- > Given a weighted complete graph G with non-negative edges and integer k, decide whether the graph G contains a *tour* (or Hamiltonian cycle) of cost k or smaller.
- > Prove that TSP is NP-complete.
- ▶ **Hint:** Show HAM-CYCLE \leq_p TSP

William Rowan Hamilton

Hamiltonian cycle

TSP is NP

 \square How to design a verifier to prove that $TSP \in NP$?

Graph G

Graph G'

TSP is NP-Hard (cont'd)

- \square G has a Hamiltonian cycle if and only if G' has a tour of cost at most 0.
 - \triangleright If G has a Hamiltonian cycle, G' has a tour of cost at most 0.

 \triangleright If G' has a tour of cost at most 0, G has a Hamiltonian cycle.

Recommended Website

- □ See Chapter 28 slides of this website for nice proves of different NP-complete problems:
 - https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/index.html
 - o For instance, circuit satisfiability problem is detailed here:
 - https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/circuitSAT.html