Two shot detectors

- * Use two passes on the data:
 - detect condidates (region proposals)
 - dassity and regress objects in proposal (Including a no-object class)
- * Methods:

- Fast-RCNN - CNN classitier - R-FeN - Fully anvolutional RCNN - Faster RCNN - use regum proposed network &- Mask RCNN - all object segmentation (instance,

Two shot detectors

* RUNN:

- Instead of processing Candidates as a great use Syper Pixels (Selether Search alg.) to Find comdidates

- Extract 2000 proposals

- Alwantage:

- · condidutes have different asput notes and scalls
- · Fewer cambidates

* Fast - RCNN architecture:

* RUI - pooling - we max pooling to convent the region of interest to a fixed size (1.9. 7x7) to The fc classifien

This page does not seem important

Two shot detectors

* RFCN (Regan Joseph fully convolutional Network)

- use convolutions instead of costly down layers that are applied for each region;

- create position sensitive score maps where law ocore map is sensitive to another region.

kxk grin => k2 Slore maps

each score map has C+1 chammels (c class) + on no-old class)

Two shot detectors

x Postus sensitus ROZ Pustano:

Figure 1: Key idea of **R-FCN** for object detection. In this illustration, there are $k \times k = 3 \times 3$ position-sensitive score maps generated by a fully convolutional network. For each of the $k \times k$ bins in an RoI, pooling is only performed on one of the k^2 maps (marked by different colors).

* KFCN architchere:

- use RPN for proposals

Figure 2: Overall architecture of R-FCN. A Region Proposal Network (RPN) [18] proposes candidate Rols, which are then applied on the score maps. All learnable weight layers are convolutional and are computed on the entire image; the per-Rol computational cost is negligible.

IWO SHOL WELECTOLS	
* Feature pyramid hutwork (FPN)	
- used by faster- OcNN	
- Goal: detect orgets at different Scales	
lesing higher level features	
actest large scale objects when high land features Outed small scale objects Noting low land features.	
Two shot detectors	
* Lateral connections in FPN:	
Les hours La predict features La predict features La predict features La predict high land features La predict	
- mountain strong semantic features at each level	
- lextered Connections combine features cut	
Two shot detectors	
* Mask RCNN: - sty to solve the problem of instant segmentation	
-Add segmentation to faster RCM -> 16sterna Segmention	
Region proposed RPN RO I Ollyh REINET	masks resolution — Scaled up to original resolution find resolution large because the setwark was palled theret and

Two shot detectors

**RoI alope or They to solve the problem of the pulling - you me sent five to alignment

- RuI - pouling extracts small freature mays of fixed site.

- RuI - pulling is sentitive to alignment are dixed regions switting to girll will change results.

- RuI - align soluts this by simpling with interpolation

with interpolation

find

```
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import Dense, Flatten, Conv2D, Reshape, Input
from tensorflow.keras.models import Model
import matplotlib.pyplot as plt
# Load the Oxford-IIIT Pet dataset
# Load the Oxford-IIIT Pet dataset
dataset, info = tfds.load('oxford_iiit_pet', split='train', with_info=True,
as_supervised=False)
# Preprocessing function
def preprocess data(sample):
                                        } Three things that I need
    image = sample['image']
    bbox = sample['objects']['bbox']
   label = sample['objects']['label']
   # Resize image to a fixed shape (224x224)
    image = tf.image.resize(image, (224, 224))
   image = image / 255.0 # Normalize pixel values
   \ensuremath{\text{\#}} Convert bbox to [xmin, ymin, xmax, ymax] format and normalize coordinates
   bbox = tf.stack([bbox[:, 1], bbox[:, 0], bbox[:, 3], bbox[:, 2]], axis=1) #
Convert to [xmin, ymin, xmax, ymax]
    return image, {'bbox': bbox, 'class': tf.one_hot(label, depth=37)} # 37 classes
```