ANDREW TULLOCH

MATHEMATICS OF OP-ERATIONS RESEARCH

TRINITY COLLEGE
THE UNIVERSITY OF CAMBRIDGE

Contents

1	Generalities 5	
2	Constrained Optimization 7	
	2.1 Lagrangian Multipliers 7	
	2.2 Lagrange Dual 8	
	2.3 Supporting Hyperplanes 8	
3	Linear Programming 11	
	3.1 Convexity and Strong Duality 11	
	3.2 Linear Programs 12	
	3.3 Linear Program Duality 12	
	3.4 Complementary Slackness 13	
4	Simplex Method 15	
	4.1 Basic Solutions 15	
	4.2 Extreme Points and Optimal Solutions	15
	4.3 The Simplex Tableau 16	
	4.4 The Simplex Method in Tableau Form 16	5

5	Advanced Simplex Procedures 17	
	5.1 The Two-Phase Simplex Method 17	
	5.2 Gomory's Cutting Plane Method 17	
6	Complexity of Problems and Algorithms	19
	6.1 Asymptotic Complexity 19	
7	The Complexity of Linear Programming	21
	7.1 A Lower Bound for the Simplex Method 21	
	7.2 The Idea for a New Method 21	
8	Graphs and Flows 23	
	8.1 Introduction 23	
	8.2 Minimal Cost Flows 23	
9	Transportation and Assignment Problems	25
10	Non-Cooperative Games 27	
11	Strategic Equilibrium 29	
12	Bibliography 31	

Generalities

www.statslab.cam.ac.uk/~ff271/teachin/morff271@cam.ac.uk

Constrained Optimization

Minimize f(x) subject to $h(x) = b, x \in X$.

Objective function $f: R^n \to R$ Vector $x \in R^n$ of decision variables, Functional constraint where $h: R^n - > R^m$, $b \in R^m$ Regional constraint where $X \subseteq R^n$.

Definition 2.1. The feasible set is $X(b) = \{x \in X : h(x) = b\}$.

An inequality of the form $g(x) \le b$ can be written as g(x) + z = b, where $z \in \mathbb{R}^m$ called a slack variable with regional constraint $z \ge 0$.

2.1 Lagrangian Multipliers

Definition 2.2. Define the Lagrangian of a problem as

$$L(x,\lambda) = f(x) - \lambda^{T}(h(x) - b)$$
 (2.1)

where $\lambda \in R^m$ is a vector of Lagrange multipliers

Theorem 2.3 (Lagrangian Sufficiency Theorem). Let $x \in X$ and $\lambda \in R^m$ such that

$$L(x,\lambda) = \inf_{x' \in X} L(x',\lambda)$$
 (2.2)

and h(x) = b. Then x is optimal for P.

Proof.

$$\min_{x' \in X(b)} f(x') = \min_{x' \in X(b)} [f(x) - \lambda^{T} (h(x') - b)]$$
 (2.3)

$$\geq \min_{x' \in X} [f(x') - \lambda^{T} (h(x') - b)]$$
 (2.4)

$$= f(x) - \lambda^{T}(h(x) - b)$$
(2.5)

$$= f(x) \tag{2.6}$$

2.2 Lagrange Dual

Definition 2.4. Let

$$\phi(b) = \inf_{x \in X(b)} f(x). \tag{2.7}$$

Define the Lagrange dual function $g: R^m \to R$ with

$$g(\lambda) = \inf_{x \in X} L(x, \lambda) \tag{2.8}$$

Then, for all $\lambda \in \mathbb{R}^m$,

$$\inf_{x \in X(b)} f(x) = \inf_{x \in X(b)} L(x, \lambda) \ge \inf_{x \in X} L(x, \lambda) = g(\lambda)$$
 (2.9)

That is, $g(\lambda)$ is a lower bound on our optimization function.

This motivates the **dual problem** to maximize $g(\lambda)$ subject to $\lambda \in Y$, where $Y = \{\lambda \in R^m : g(\lambda) > -\infty\}$.

Theorem 2.5 (Duality). From (2.9), we see that the optimal value of the primal is always greater than the optimal value of the dual. This is **weak** duality.

2.3 Supporting Hyperplanes

Fix $b \in R^m$ and consider ϕ as a function of $c \in R^m$. Further consider the hyperplane given by $\alpha : R^m \to R$ with

$$\alpha(c) = \beta - \lambda^{T}(b - c) \tag{2.10}$$

Now, try to find $\phi(b)$ as follow.

(i) For each λ , find

$$\beta_{\lambda} = \max\{\beta : \alpha(c) \le \phi(c), \forall c \in R^m\}$$
 (2.11)

(ii) Choose λ to maximize β_{λ}

Definition 2.6. Call $\alpha: R^m \to R$ a supporting hyperplane to ϕ at b if

$$\alpha(c) = \phi(b) - \lambda^{T}(b - c)$$
 (2.12)

and

$$\phi(c) \ge \phi(b) - \lambda^{T}(b - c) \tag{2.13}$$

for all $c \in R^m$.

Theorem 2.7. The following are equivalent

- (i) There exists a (non-vertical) supporting hyperplane to ϕ at b,

Linear Programming

3.1 Convexity and Strong Duality

Definition 3.1. Let $S \subseteq R^n$. S is convex if for all $\delta \in [0,1]$, $x,y \in S$ implies that $\delta x + (1 - \delta)y \in S$.

 $f: S \to R$ is convex if for all $x, y \in S$ and $\delta \in [0,1]$, $\delta f(x) + (1 - \delta)f(y) \ge f(\delta x + (1 - \delta)y$.

Visually, the area under the function is a convex set.

Definition 3.2. $x \in S$ is an interior point of S if there exists $\epsilon > 0$ such $\{y : ||y - x||_2 \le \epsilon\} \subseteq S$.

 $x \in S$ is an extreme point of S if for all $y, z \in S$ and $S \in (0, 1)$, $x = \delta y + (1 - \delta)z$ implies x = y = z.

Theorem 3.3 (Supporting Hyperplane). Suppose that our function ϕ is convex and b lies in the interior of the set of points where ϕ is finite. Then there is a (non-vertical) supporting hyperplane to ϕ at b.

Theorem 3.4. Let $X(b) = \{x \in X : h(x) \le b\}$, $\phi(b) = \inf_{x \in X(b)} f(x)$. Then ϕ is convex if X, f, and h are convex.

Proof. Let $b_1, b_2 \in R^m$ such that $\phi(b_1), \phi(b_2)$ are defined. Let $\delta \in [0,1]$ and $b = \delta b_1 + (1 - \delta)b_2$. Consider $x_1 \in X(b_1), x_2 \in X(b_2)$ and let $x = \delta x_1 + (1 - \delta)x_2$.

By convexity of Y, $x \in X$. By convexity of h,

$$h(x) = h(\delta x_1 + (1 - \delta)x_2)$$

$$\leq \delta h(x_1) + (1 - \delta)h(x_2)$$

$$\leq \delta b_1 + (1 - \delta)b_2 = b$$

Thus $x \in X(b)$, and by convexity of f,

$$\phi(b) \le f(x)$$

$$= f(\delta x_1 + (1 - \delta)x_2)$$

$$\le \delta f(x_1) + (1 - \delta)f(x_2)$$

$$\le \delta \phi(b_1) + (1 - \delta)\phi(b_2)$$

3.2 Linear Programs

Definition 3.5. General form of a linear program is

$$\min\{c^T x : Ax \ge b, x \ge 0\} \tag{3.1}$$

Standard form of a linear program is

$$\min\{c^T x : Ax = b, x \ge 0\}$$
 (3.2)

3.3 Linear Program Duality

Introduce slack variables to turn problem $\mathbb P$ into the form

$$\min\{c^{T}x : Ax - z = b, x, z \ge 0\}$$
 (3.3)

We have $X = \{(x, z) : x, z \ge 0\} \subseteq R^{m+n}$. The Lagrangian is

$$L((x,z),\lambda) = c^T x - \lambda^T (Ax - z - b)$$
(3.4)

$$= (c^T - \lambda^T A)x + \lambda^T z + \lambda^T b$$
 (3.5)

and has a finite minimum if and only if

$$\lambda \in Y = \{\lambda : c^T - \lambda^T A \ge 0, \lambda \ge 0\}$$
 (3.6)

For a fixed $\lambda \in Y$, the minimum of L is satisfied when $(c^T \lambda^T A$)x = 0 and $\lambda^T z = 0$, and thus

$$g(\lambda) = \inf_{(x,z) \in X} L((x,z), \lambda) = \lambda^T b$$
(3.7)

We obtain that the dual problem

$$\max\{\lambda^T b : A^T \lambda \le c, \lambda \ge 0\}$$
 (3.8)

and it can be shown (exercise) that the dual of the dual of a linear program is the original program.

Complementary Slackness

Theorem 3.6. Let x and λ be feasible for \mathbb{P} and its dual. Then x and λ are optimal if and only if

$$(c^T - \lambda^T A)x = 0 (3.9)$$

$$\lambda^T (Ax - b) = 0 (3.10)$$

Proof. If x, λ are optimal, then

$$c^{T}x = \underbrace{\lambda^{T}b}_{\text{by strong duality}}$$

$$= \inf_{x' \in X} (c^{T}x' - \lambda^{T}(Ax' - b)) \leq c^{T}x - \underbrace{\lambda^{T}(Ax - b)}_{\text{primal and dual optimality}} \leq c^{T}x$$
(3.11)

Then the inequalities must be equalities. Thus

$$\lambda^T b = c^T x - \lambda^T (Ax - b) = \underbrace{(c^T - \lambda^T A)x}_{=0} + \lambda^T b$$
 (3.13)

and

$$c^{T}x - \underbrace{\lambda^{T}(Ax - b)}_{=0} = c^{T}x \tag{3.14}$$

If
$$(c^T - \lambda^T A)x = 0$$
 and $\lambda^T (Ax - b) = 0$, then

$$c^T x = c^T - \lambda^T (Ax - b) = (c^T - \lambda^T a)x + \lambda^T b = \lambda^T b$$
 (3.15)

and so by weak duality, x and λ are optimal.

Simplex Method

4.1 Basic Solutions

Maximize $c^T x$ subject to Ax = b, $x \ge 0$, $A \in \mathbb{R}^{m \times n}$.

Call a solution $x \in R^n$ of Ax = b **basic** if it has at most m non-zero entries, that is, there exists $B \subseteq \{1, ..., n\}$ with |B| = m and $x_i = 0$ if $i \notin B$.

A basic solution x with $x \ge 0$ is called a **basic feasible solution** (BFS).

4.2 Extreme Points and Optimal Solutions

We make the following assumptions:

- (i) The rows of *A* are linearly independent
- (ii) Every set of *m* columns of *A* are linearly independent.
- (iii) Every basic solution is non-degenerate that is, it has exactly *m* non-zero entries.

Theorem 4.1. x is a BFS of Ax = b if and only if it is an extreme point of the set $X(b) = \{x : Ax = b, x \ge 0\}$.

Theorem 4.2. If the problem has a finite optimum (feasible and bounded), then it has an optimal solution that is a BFS.

4.3 The Simplex Tableau

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Let B be a basis (in the BFS sense), and $x \in \mathbb{R}^n$, such that Ax = b. Then

$$A_B x_B + A_N x_N = b (4.1)$$

where $A_B \in R^{m \times m}$ and $A_N \in R^{m \times (n-m)}$ respectively consist of the columns of A indexed by B and those not indexed by B. Moreover, if x is a basic solution, then there is a basic B such that $x_N = 0$ and $A_B x_B = b$, and if x is a basic feasible solution, there is a basis B such that $x_N = 0$, $A_B x_B = b$, and $x_B \ge 0$.

For every x with Ax = b and every basis B, we have

$$x_B = A_B^{-1}(b - A_N x_N) (4.2)$$

as we assume that A_B has full rank. Thus,

$$f(x) = c^{T} x = c_{B}^{T} x_{B} + c_{N}^{T} x_{N}$$
(4.3)

$$= c_B^T A_B^{-1} (b - A_N X_N) + c_N^T x_N$$
 (4.4)

$$= C_B^T A_B^{-1} b + (c_N^T - c_B^T A_B^{-1} A_N) x_N (4.5)$$

Assume we can guarantee that $A_B^{-1}b=0$. Then x^\star with $x_B^\star=A_B^{-1}b$ and $x_N^\star=0$ is a BFS with

$$f(x^*) = C_B^T A_B^{-1} b \tag{4.6}$$

Assume that we are maximizing c^Tx . There are two different cases:

- (i) If $C_N^T C_B^T A_B^{-1} A_N \le 0$, then $f(x) \le c_B^T A_B^{-1} b$ for every feasible x, so x^* is optimal.
- (ii) If $(c_N^T c_B^T A_B^{-1} A_N)_i > 0$, then we can increase the objective value by increasing the corresponding row of $(x_N)_i$.

4.4 The Simplex Method in Tableau Form

Advanced Simplex Procedures

5.1 The Two-Phase Simplex Method

Finding an initial BFS is easy if the constraints have the form Ax = b where $b \ge 0$, as

$$Ax + z = b, (x, z) = (0, b)$$
 (5.1)

5.2 Gomory's Cutting Plane Method

Used in integer programming (IP). This is a linear program where in addition some of the variables are required to be integral.

Assume that for a given integer program we have found an optimal fractional solution x^* with basis B and let $a_{ij}=(A_B^{-1}A_j)$ and $a_{i0}=(A_B^{-1}b)$ be the entries of the final tableau. If x^* is not integral, the for some row i, a_{i0} is not integral. For every feasible solution x,

$$x_i = \sum_{j \in \mathbb{N}} \lfloor a_{ij} \rfloor x_j \le x_i + \sum_{j \in \mathbb{N}} a_{ij} x_j = a_{i0}.$$
 (5.2)

If *x* is integral, then the left hand side is integral as well, and the inequality must still hold if the right hand side is rounded down.

Thus,

$$x_i + \sum_{j \in \mathbb{N}} \lfloor a_{ij} \rfloor x_j \le \lfloor a_{i0} \rfloor. \tag{5.3}$$

Then, we can add this constraint to the problem and solve the augmented program. One can show that this procedure converges in a finite number of steps.

Complexity of Problems and Algorithms

6.1 Asymptotic Complexity

We measure complexity as a function of input size. The input of a linear programming problem: $c \in R^n$, $A \in R^{m \times n}$, $b \in \mathbb{R}^m$ is represented in $(n + m \cdot n + m) \cdot k$ bits if we represent each number using k bits.

For two functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ write

$$f(n) = \mathcal{O}(g(n)) \tag{6.1}$$

if there exists c, n_0 such that for all $n \ge n_0$,

$$f(n) \le c \cdot g(n) \tag{6.2}$$

, ... (similarly for $\Omega \to \geq$, and $\Theta \to (\Omega + \mathcal{O})$)

The Complexity of Linear Programming

7.1 A Lower Bound for the Simplex Method

Theorem 7.1. There exists a LP of size $O(n^2)$, a pivoting rule, and an initial BFS such that the simplex method requires $2^n - 1$ iterations.

Proof. Consider the unit cube in \mathbb{R}^n , given by constraints $0 \le x_i \le 1$ for $i=1,\ldots,n$. Define a spanning path inductively as follows. In dimension 1, go from $x_1=0$ to $x_1=1$. In dimension k, set $x_k=0$ and follow the path for dimension $1,\ldots,k-1$. Then set x=1, and follow the path for dimension $1,\ldots,k-1$ backwards.

The objective x_n currently increases only once. Instead consider the perturbed unit cube given by the constraints $\epsilon \leq x_1 \leq 1$, $\epsilon x_{i-1} \leq x_i \leq 1 - \epsilon x_{i-1}$ with $\epsilon \in (0, \frac{1}{2})$.

7.2 The Idea for a New Method

$$\min\{c^T x : Ax = b, x \ge 0\}$$
 (7.1)

$$\max\{b^T \lambda : A^T \lambda \le c\} \tag{7.2}$$

By strong duality, each of these problems has a bounded optimal

solution if and only if the following set of constraints is feasible:

$$c^T x = b^T \lambda \tag{7.3}$$

$$Ax = b (7.4)$$

$$x \ge 0 \tag{7.5}$$

$$A^T \lambda \le c \tag{7.6}$$

It is thus enough to decide, for a given $A' \in \mathbb{R}^{m \times n}$ and $b' \in \mathbb{R}^m$, whether $\{x \in \mathbb{R}^n : Ax \ge b\} \ne \emptyset$.

Definition 7.2. A symmetric matrix $D \in \mathbb{R}^{n \times n}$ is called positive definite if $x^T D x > 0$ for every $x \in \mathbb{R}^n$. Alternatively, all eigenvalues of the matrix are strictly positive.

Definition 7.3. A set $E \subseteq \mathbb{R}^n$ given by

$$E = E(z, D) = \{ x \in \mathbb{R}^n : (x - z)^T D(x - z) \le 1 \}$$
 (7.7)

for a positive definite symmetric $D \in \mathbb{R}^{n \times n}$ and $z \in \mathbb{R}^n$ is called an ellipsoid with center z.

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. To decide whether $P \ne \emptyset$, we generate a sequence $\{E_t\}$ of ellipsoids E_t with centers x_t . If $x_t \in P$, then P is non-empty and the method stops. If $x_t \notin P$, then one of the constraints is violated - so there exists a row j of A such that $a_j^T x_t < b_j$. Therefore, P is contained in the half-space $\{x \in R^n : a_j^T x \ge a_j^T x_t$, and in particular the intersection of this half-space with E_t , which we will call a half-ellipsoid.

Theorem 7.4. Let E = E(z, D) be an ellipsoid in \mathbb{R}^n and $a \in \mathbb{R}^n \neq 0$. Consider the half-space $H = \{x \in \mathbb{R}^n | a^T x \geq a^T z\}$, and let

$$z' = z + \frac{1}{n+1} \frac{Da}{\sqrt{a^T Da}}$$
 (7.8)

$$D' = \frac{n^2}{n^2 - 1} \left(D - \frac{2}{n+1} \frac{Daa^T D}{a^T Da} \right)$$
 (7.9)

Then D' is symmetric and positive definite, and therefore E'=E(z',D') is an ellipsoid. Moreover, $E\cap H\subseteq E'$ and $Vol(E')< e^{\frac{-1}{2(n+1)}}Vol(E)$.

Graphs and Flows

8.1 Introduction

Consider a directed graph (network) G = (V, E), Vthe set of vertices, $E \subseteq V \times V$ a set of edges. Undirected if E is symmetric.

8.2 Minimal Cost Flows

Fill in this stuff from lectures

Transportation and Assignment Problems

Non-Cooperative Games

Theorem 10.1 (von Neumann, 1928). *Let* $P \in \mathbb{R}^{m \times n}$. *Then*

$$\max_{x \in X} \min_{y \in Y} p(x,y) = \min_{y \in Y} \max_{x \in X} p(x,y)$$
 (10.1)

Strategic Equilibrium

Definition 11.1. $x \in X$ is a best response to $y \in Y$ if $p(x,y) = \max_{x' \in X} p(x',y)$. $(x,y) \in X \times Y$ is a Nash equilibrium if x is a best response to y and y is a best response to x.

Theorem 11.2. $(x,y) \in X \times Y$ is an equilibrium of the matrix game P if and only if

$$\min_{y' \in Y} p(x, y') = \max_{x' \in X} \min_{y' \in Y} p(x', y')$$
 (11.1)

and

$$\max_{x \in X'} p(x', y) = \min_{y' \in Y} \max_{x' \in X} p(x', y').$$
 (11.2)

Theorem 11.3. Let (x,y), $(x',y') \in X \times Y$ be equilibria of the matrix game with payoff matrix P. Then p(x,y) = p(x',y') and (x,y') and (x',y) are equilibria as well.

Theorem 11.4 (Nash, 1951). Every bimatrix game has an equilibrium.

Bibliography