STAT562 Lecture 11: Bagging and Random Forests

Beidi Qiang

SIUE

Introduction

- ► A single decision trees suffer from high variance: if we split the training data into two parts at random, and fit a decision tree to both halves, the results that we get could be quite different.
- Bagging and random forests are designed for reducing the variance of a statistical learning method. These methods use trees as building blocks to construct more powerful prediction models.
- ▶ Idea: to reduce variance, we can average a set of observations. We can take many training sets from the population, build a separate prediction model using each training set, and average the resulting predictions.

Bagging in general

We want to take many training sets from the population. However, we generally do not have access to multiple training sets. So, instead, we can bootstrap.

- We take repeated samples from the training data set and generates B different bootstrapped training data sets.
- ▶ We then train our method on each bootstrapped training set in order to get $f^{*b}(x)$, $b = 1, \dots, B$.
- Finally we average all the predictions, to obtain

$$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} f^{*b}(x)$$

Bagging with trees

Bagging can improve predictions for many regression methods, it is particularly useful for decision trees.

- In regression problems (quantitative outcome), we simply construct B regression trees using B bootstrapped training sets, and average the resulting predictions.
- ▶ In classification problems, we simply construct B classification trees using B bootstrapped training sets, record the class predicted from each of the B trees, and take a majority vote.

Estimate the test error: Out-of-Bag Error

Recall that the key to bagging is that trees are repeatedly fit to a subsets of the observations. On average, each bagged tree only makes use of around two-thirds of the observations.

- The remaining one-third of the observations not used to fit a given bagged tree are referred to as the out-of-bag (OOB) observations.
- We can predict the response for the *i*th observation using each of the trees in which that observation was OOB (not used), which gives about B/3 predictions.
- We can get a single OOB prediction by average these predicted responses or can take a majority vote.
- ▶ The resulting OOB error is a valid estimate of the test error (no need to perform cross-validation!).

Feature Importance

Bagging typically improves accuracy over prediction using a single tree. However, it can be difficult to interpret the resulting model. i.e. it improves prediction accuracy at the expense of interpretability. We seek a way to obtain an overall summary of the importance of each predictor.

- We can record the total amount that the SSE (or Gini index in classification case) is decreased due to splits over a given predictor, averaged over all B trees.
- ► A large value indicates an important predictor.

Random Forests

Random forests (RF) provide an improvement over bagged trees by a small tweak.

- At each split in the tree, the RF algorithm only consider a small subset of m predictors (features) out of total p available predictors $(m \approx \sqrt{p})$.
- Random forests eliminate the chance that all of the bagged trees look quite similar to each other (highly correlated).
- ▶ We can think of this process as "de-correlating" the trees.
- Random forest will typically be helpful when we have a large number of correlated predictors.

Example: Boston Data

Example: Iris Data

```
> lda.out=lda(default~income+student+balance)
> lda.out
Call:
lda(default ~ income + student + balance)
Prior probabilities of groups:
        Yes
0.9667 0.0333
Group means:
     income studentYes balance
No 33566.17 0.2914037 803.9438
Yes 32089.15 0.3813814 1747.8217
Coefficients of linear discriminants:
                    I D1
         3.367310e-06
income
studentYes -1.746631e-01
balance
        2.243541e-03
> lda.class=predict(lda.out,Default)$class
> table(lda.class,default)
        default
lda class No Yes
     No 9645 254
     Yes 22 79
```