MA 374 – Financial Engineering Lab

<u>Lab − 1</u>

Name - Vishisht Priyadarshi

Roll No - 180123053

1 QUESTION - 1:

The initial option prices for the European Call Option and European Put Option are:

Number of Sub-intervals (M)	European Call Option	European Put Option
1	38.16764	19.94172
5	34.90653	16.68061
10	33.62502	15.39910
20	33.85945	15.63353
50	33.98118	15.75527
100	34.01116	15.78524
200	34.01958	15.79366
400	34.01913	15.79321

Binomial Pricing Algorithm:

1. At time $t = t_i$ (= i. δt), there are i + 1 possible asset prices, i.e,

$$S_n^i = d^{i-n} u^n S_0$$
,

- 2. Since continuous compounding convention is used, gross return is $R = e^{r.\delta t}$.
- 3. The probability (p) of an upward return in price is $\frac{R-d}{u-d}$.
- 4. At expiry, i.e, t = T, we calculate the price of the option using the respective payoff function for both the call and put option, i.e,

$$C_n^M = \max(S_n^M - K, 0),$$

$$P_n^M = \max(K - S_n^M, 0),$$

where, $C_n{}^M$ is the nth possible price of the call option for the Mth interval, and $P_n{}^M$ is the nth possible price of the put option for the Mth interval

5. Now, we continuously apply **Backward Induction** to find out the option price at t = 0

by using following relation:
$$C_n{}^i = (1-p) \cdot C_{n+1}{}^{i+1} + p \cdot C_n{}^{i+1} \quad , 0 <= n <= i \& 0 <= i <= M-1 \\ P_n{}^i = (1-p) \cdot C_{n+1}{}^{i+1} + p \cdot P_n{}^{i+1} \quad , 0 <= n <= i \& 0 <= i <= M-1 \\ \end{cases}$$

6. C_0^0 and P_0^0 are the required values, i.e, initial option prices.

2 QUESTION - 2:

The plots for the Call Option are:

The plots for the Put Option are:

Observation:

- 1. From all the plots, we observe that the initial Call Option price converges to 34.02 (approx.) while the initial Put Option price converges to 15.79 (approx.).
- 2. The convergence of the plot is faster when step value is 5. The deviations from the convergence value is higher when the value of M is less.
- 3. The convergence is not perfect in the sense that the values tend to oscillate around the specified values (*in point 1*) even if the sub-intervals number is increased beyond 400. But this oscillation is normal for such numerical algorithms and gives a correct approximation of the required value since fluctuations tend to happen at 3rd/4th decimal place onwards.
- 4. We can say that the convergence of the values is fast enough as not too many iterations are required to approximately attain the converged value.

3 QUESTION -3:

The required values of the <u>call options</u> at given time stamps for M = 20 are:

Time points Options	t = 0	t = 0.50	t = 1	t = 1.50	t = 3	t = 4.50
1.	33.86	59.96	100.66	160.61	519.10	1419.42
2.	Χ	31.89	57.70	98.44	359.93	1024.99
3.	X	15.10	29.80	55.30	242.03	732.79
4.	X	X	13.47	27.57	154.84	516.32
5.	X	X	5.15	11.77	91.19	355.96
6.	Χ	X	X	4.12	46.98	237.16
7.	Χ	X	X	1.13	19.73	149.15
8.	Χ	X	X	X	6.15	83.95
9.	Χ	X	X	X	1.24	36.25
10.	Х	X	X	Х	0.12	8.15
11.	Х	X	X	Х	0.00	0.00
12.	Х	X	X	Х	0.00	0.00
13.	X	X	X	X	0.00	0.00
14.	X	X	X	X	X	0.00
15.	X	X	X	X	X	0.00
16.	Χ	X	X	X	X	0.00
17.	Χ	X	X	X	X	0.00
18.	Χ	X	X	X	X	0.00
19.	Χ	X	X	X	X	0.00

Observations:

- 1. At t = 0.25*i, we will get i + 1 different values of the options, since i + 1 different asset prices are available according to the Binomial Model.
- 2. The same observation holds for the Put Option.

The required values of the **put options** at given time stamps for M = 20 are:

Time points Options	t = 0	t = 0.50	t = 1	t = 1.50	t = 3	t = 4.50
1.	15.63	8.48	3.50	0.94	0.00	0.00
2.	Х	15.49	8.00	3.00	0.00	0.00
3.	Х	24.67	15.27	7.44	0.01	0.00
4.	X	X	24.98	14.96	0.17	0.00
5.	Χ	X	35.97	25.27	1.24	0.00
6.	X	Х	X	36.97	4.96	0.00
7.	X	Х	X	48.30	13.22	0.00
8.	Х	Х	X	X	25.96	0.00
9.	Х	Х	X	X	40.53	0.60
10.	Х	Х	X	X	53.85	8.28
11.	Х	Х	X	X	64.43	26.64
12.	Х	Х	X	X	72.36	46.28
13.	Х	Х	X	X	78.23	60.83
14.	Х	Х	X	X	X	71.60
15.	Х	Х	X	X	X	79.59
16.	Х	X	Х	X	Х	85.50
17.	Х	Х	Х	Х	Х	89.88
18.	Х	Х	Х	Х	Х	93.13
19.	Х	Х	Х	Х	Х	95.53

No-arbitrage Condition:

In order for no arbitrage opportunity to exist, following relation must exist:

where,

$$R$$
 = $e^{\,r.\delta t}$
$$d = e^{\,-\,\sigma\sqrt{\delta t}\,+\,\left(r\,-\,\frac{1}{2}\sigma^2\right)\delta t}$$

$$u = e^{\,\sigma\sqrt{\delta t}\,+\,\left(r\,-\,\frac{1}{2}\sigma^2\right)\delta t} \qquad \text{, where } \delta t = \frac{T}{M}$$