CS 65500 Advanced Cryptography

Lecture 13: Reducing Communication in Semi-Honest BGW

Instructor: Aarushi Goel

Spring 2025

Communication Compunity of Semi-Honest of BGW

- Input Sharing: For every input, the party holding that input sends a share to every other party: nx/III field elements # parties # inputs
- → Circuit Evaluation: For each gate un the circuit: ★ Addition gates: No communication

 - * Multiplication gate: Each party sends a share to every other party: n^2 field elements
- Dutput Reconstruction: For each output wire, each party sends their share to every other party: n2x10/ field elements

Communication Compunity of Semi-Honest of BGW

- Input Sharing: For every input, the party holding that input sends a share to every other party: nx/III field elements # parties # inputs
- → Circuit Evaluation: For each gate un the circuit: ★ Addition gates: No communication

 - * Multiplication gate: Each party sends a share to every other party: n² field elements { Can we reduce this?
- Dutput Reconstruction: For each output wire, each party sends their share to every other party: n2x10/ field elements

Agenda

Two ways of reducing communication:

- 1. Leveraging (input-independent) pre-processing
- 2. Ammortization when Computing Multiple copies of a function.

Approach - I

Levuaging Input-Independent Preprocessing

BGW with PreProcessing

- * Pre-processing Phase
- * Input-Sharing Phase
- * Circuit Evaluation Phase
- * Output-Reconstruction Phase

Input-Independent Preprocessing (Beaver Triplus)

- → Let us assume that before beginning the computation, parties *magically* get secret shares of correlated random field clements. Known as Beaver triples
- In particular, for each multiplication gate m, the parties obtain secret shares of (r_A, r_B, r_c) , where $r_A, r_B \leftarrow F$ and $r_c = r_A \cdot r_B$
- → Crucially, none of the pairies know ha, he, he. for any multiplication gate

Multiplication using Beaver Triples. a C given [a]t, [b]t and a Beaver triple b ([ra]t, [rb]t, [rc]t), parties need to compute [c]t.

- 1. $\forall i \in [n]$, party P_i computes and sends $d_i^* = a_i^* r_{Ai}$ and $e_i^* = b_i^* r_{Bi}$ to party 1.
- 2. Party 1 uses d₁₋₋₋dn le e₁₋₋en to reconstruct d le e. It sends d le e to all parties.
- 3. Vietni, party Pi computes (i = de + rci + de rbi + errai

Is ci a valid secret snaring of c?

$$d = a - AA$$
 $e = b - AB$

Hence, d·e + [sc] + d. [sB] + e. [sA] = [c] +

Exucise: Think if this idea can also be used in the GMW Protocol with additive Secret sharing.

Communication Complexity (per multiplication)

- 1. Fietn], party Pi computes and sends di= ai-rai and ei= bi-rai to party 1.: 2n field elements
- 2. Party 1 uses d,---dn & e,--. en to reconstruct d & e.

 It sends d & e to all parties: 2n field elements
- 3. Vietni, party Pi computes ci = de + rci + derbi + errai

Overall, the communication complexity is 4 n field elements as compared to n^2 field elements in Vanilla BGW

BGW with PreProcessing

- * Pre-processing Phase: generate a Beaver tiple for each multiplication gate. (we will hain how to do this efficiently later in the course)
- * Input Sharing Phase: Similar to Vanilla BGW
- * Circuit-Evaluation Phase: Addition is similar to vanilla BGW.

 Multiplication using Beaver triples
- * Output Revonstruction Phase: Similar to vanilla BGW.

Approach - I

Ammortization when computing multiple copies of a function.

Packed Secret Sharing

Reconstruct $(S_1, ..., S_{t+u})$: hagrange interpolation to find p(x). Then evaluate $v_i = p(\epsilon_i) -- ..., v_e = p(\epsilon_i)$

(l,t,n) - Packed Secret Shaving

Secrecy: V1,--., ve remain hidden from any subset of t-parties

Reconstruction: Any subset to the parties are sufficient for reconstructing V1, ---, Ve.

Observe that in contrast in regular secret-sharing, the difference between security & reconstruction threshold is 1.

Here the difference is e! Such schemes are also called ramp Secret sharing schemes.

Computing using Packed Secret Sharing

Multiple copies of a Function

Let's assume that the parties want to jointly & securely compute O(n) copies of the same function but on different sets of inputs.

BGW over Packed Secret Shares.

Reconstruct all output vectors un the output reconstruction phase.

BGW over Packed Secret Shares! Communication Complenity

Communication needed for computing O(n) copies of each multiplication gate: n² field elements

Ammortized communication nuded for computing a single copy of the multiplication gate: O(n) field elements.

exurise: Think about how you can combine this approach with Beaver tripus to get ammertized communication compunity of O(1) field elements per multiplication gate