Universidade Federal da Bahia Departamento de Matemática

Matemática Discreta II Prof. Ciro Russo Segunda unidade – 20/04/2016

Atenção: explicar os procedimentos usados em todo exercício.

1. Usando a tabela de números ímpares abaixo, aplique o crivo de Eratóstenes para encontrar os números primos menores de 200. Especifique, para cada passo n, o número k_n do qual vai cancelar os múltiplos (ex.: $k_1 = 3$) e diga a qual passo interrompeu o processo e porquê.

	3	5	7	9	11	13	15	17	19
21	23	25	27	29	31	33	35	37	39
41	43	45	47	49	51	53	55	57	59
61	63	65	67	69	71	73	75	77	79
81	83	85	87	89	91	93	95	97	99
101	103	105	107	109	111	113	115	117	119
121	123	125	127	129	131	133	135	137	139
141	143	145	147	149	151	153	155	157	159
161	163	165	167	169	171	173	175	177	179
181	183	185	187	189	191	193	195	197	199

- 2. Usando os critérios de divisibilidade e as informações do exercício 1, encontre a fatoração de 26607 em potências de primos.
- 3. Encontre todas as soluções da equação congruencial $6x \equiv 0 \pmod{21}$.
- **4.** Usando o Teorema Chinês do Resto, verifique que o seguinte sistema de equações congruenciais é solucionável e encontre o conjunto das soluções.

$$\begin{cases} x \equiv 13 \pmod{10} \\ x \equiv 10 \pmod{7} \\ x \equiv 14 \pmod{9} \end{cases}.$$

- 5. Execute as seguintes conversões.
 - 5.1. 723 para a base 7.
 - 5.2. 1331 para a base 11.
 - $5.3. (561)_8$ para a base decimal.