San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Non-Regular Languages (Part 1)

Lecture 24 Day 26/31

CS 154
Formal Languages and Computability
Fall 2019

Agenda of Day 26

- Solution and Feedback of Quiz 9
- Summary of Lecture 23
- Lecture 24: Teaching ...
 - Non-Regular Languages (Part 1)

Solution and Feedback of Quiz 9 (Out of 19)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	14.29	18	9
02 (TR 4:30 PM)	14.02	18	7
03 (TR 6:00 PM)	15.77	18	12

Summary of Lecture 23: We learned ...

Parse-Trees

- Parse-tree is ...
 - an ordered-tree that can be constructed for every string by using the grammar.

Parsers Algorithms

- There are two types of algorithms for parsers:
 - Top-down and bottom-up
- Exhaustive parsing algorithm is ...
 - a top-down algorithm that check all possible derivations to find a derivation sequence for a given string.

Exhaustive Parsing Algorithm

- This algorithm has two serious problems:
 - It is extremely inefficient: O(|P|^{2|w|+1})
 - It is possible that it never terminates.
- Two good news:
 - Theorem: there exists an efficient algorithm for every CFG with complexity O(|w|³).
 - 2. If we use s-grammar, the efficiency would be O(|w|).

Any Question

Summary of Lecture 23: We learned ...

S-Grammar

- A simple grammar is ...
 - a CFG with two restrictions:
 - All production rules are of the form A → av where A ∈ V, a ∈ T, v ∈ V*

One terminal as prefix and any number of variables as suffix.

- 2. Any pair (A, x) occurs only once in all production rules.
- Note that there is no λ.

Ambiguity in Grammars

Ambiguity of grammars ...

... happens when for some strings in the language, we can construct two or more parse-tree.

Any Question

Objective of This Lecture

- We defined "regular languages" as ...
 - A language is called regular if there exists a ...
 - ... DFA/NFA to accept it.
 - REGEX to represent it.
 - regular grammar to generate it.
- But the most interesting languages are non-regular.
- The main question of this lecture is:

How TO PROVE a language is NON-REGULAR?

Obviously, we cannot say:

L is non-regular because I CANNOT construct a DFA/NFA/REGEX/regular grammar for it!

Objective of This Lecture

- Before, we learned a heuristic technique to figure out a language was non-regular.
 - We looked at the language's strings pattern and if it needed some kind of memory or counter, then it could not be regular.
- But this is NOT a mathematical proof!
- Also, in some cases, we might make mistake.
 - e.g.: L = {w : w has an equal number of ab and ba} is regular!
- So, in this lecture we are looking for a ...
 ... solid technique to prove a language is NON-REGULAR.
- At first, we introduce an important property of infinite regular languages.

Required Background

- 1. The concept of regular and non-regular languages
- 2. Proof by contradiction
- 3. Cycle and simple cycle definitions in graphs
- 4. One-dimensional projection of a walk
- 5. Pigeonhole principle

(will be covered shortly!)

Regular and Non-Regular Languages

U = All Formal Languages

Proof by Contradiction

- Logically, proving a theorem means to assume the truth of some statements (e.g.: p) and entailing the truth of another statement (e.g.: q)
- Sometimes, it is hard to follow this path.
- In these cases, we might use the following logical equivalency:

Contrapositive

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

- In fact, we prove that if the negation of the desired result (e.g. ~q) is true, then it leads to a contradiction.
- And to resolve this contradiction, we have no choice except blaming our assumption that was "~q is true". Therefore, q ≡ T.
- This technique is called "proof by contradiction".

11

Cycle

- A walk from a vertex (called base) to itself with no repeated edges.
- But: Walk + No repeated edges = path
- Rewording: A cycle is a path from a vertex (called base) to itself.

Examples 1

- Walk 1: (v₃, v₁), (v₁, v₃)
- Walk 2: (v₁, v₃), (v₃, v₃), (v₃, v₁)
- Walk 3: (v₃, v₃)

- A cycle that no vertex other than the base is repeated.
- In other words, in a simple cycle, all vertices (except the base) and all edges are visited uniquely.

Examples 2

- Walk 1: (v₁, v₃), (v₃, v₁)
- Walk 2: (v₃, v₁), (v₁, v₃)
- Walk 3: (v₃, v₃)

Example 3

• Given following DFA with 3 states over $\Sigma = \{a, b\}$:

Show one-dimensional projection of w = baab.

Every string has its own one-dimensional projection.

Note that w ∉ L. How do we know that?

Example 4

• Given following NFA with 4 states over $\Sigma = \{a, b\}$:

Show one-dimensional projection of w = aaaab.

In this example, q₂ is the first repeated state.

Pigeonhole Principle

Recap

Pigeonhole Principle

Example 5

 If we have 10 pigeons and 9 pigeonholes (boxes), then one pigeonhole must contain more than one pigeon.

Pigeonhole Principle

If we put n objects (pigeon) into m boxes (pigeonholes) &&

n > m

- At least one box must contain more than one object.
- Reference: https://en.wikipedia.org/wiki/Pigeonhole_principle

What is Pigeonhole Principle and DFAs Relationship!

Pigeonhole Principle and DFAs Relationship

Example 6

Given following DFA with 4 states.

- Consider the walk of w = aaaab. (|w| = 5)
- Can we conclude that:

At least one state must be visited more than once.

 Yes, because the size of the string is bigger than the number of states.

Pigeonhole Principle and DFA's

Example 6 (cont'd) w = aaaab

 Now, let's show the walk by one-dimensional projection method to investigate our guess.

q₂ and q₃ are visited twice.

What is Pigeon and what is Pigeonhole?

- Pigeons are the symbols of the string w = aaaab.
- Pigeonholes are the transitions.

- The edges don't look like HOLES!
- But states do!

What is Pigeon and what is Pigeonhole?

- The states give us a better feeling of pigeonholes!
- Therefore, we might consider states as pigeonholes.

- Note that in one-dimensional projection, q₀ (q₁ in this example), does not have any role.
- The first repeated-state in this example is q₂.
- Now, let's see this relationship in the original transition graph.

What is Pigeon and What is Pigeonhole?

- So, we can consider the edges or the states right after them as the pigeonholes.
- In this lecture, we'll switch between these two based on the context.

Pigeonhole Principle and DFA's

Conclusion

If a DFA has m states, and

we process a string w whose size is $|w| \ge m$,

then by the pigeonhole principle,

at least one state should be visited more than once.

- Consider L as an INFINITE REGULAR language.
- Since L is regular, so, there exists a DFA that accepts it.
- Let's assume this DFA has m states (that should be a finite number).

- Take the general string $w = a_1 a_2 ... a_k \in L$ whose size is $|w| \ge m$.
- Since |w| ≥ m, therefore, based on pigeonhole principle, in the walk of w,
 - at least one state is visited more than once.

The following graph is the one-dimensional projection of w.

- Why is the last state accepting-state?
 - Because w ∈ L, therefore the last state must be accepting-state.
- Can there be any other accepting-state?
 - Of course! Any state can be accepting-state.

- Note that between two q's, there is no nested repeated-states.
 - We can always pick the first repeated state in which there is no nested repeated-states.
 - Therefore, if we show the original transition graph, this portion must be a "simple cycle".

- Let's review the facts we have so far:
 - 1. From a₁ to a_i, we have unique states (visited once). because we assumed q is the first repeated-state.
 - 2. From a_{i+1} to a_j , we have unique states because it is a simple cycle. (Only q (the base) is repeated!)
- Therefore, we have unique states from a₁ to a_j.

- Now, let's name different portions of the string:
- We can split string w as xyz.
 (x, y, and z are variables for substrings.)
- Note that y corresponds to substring between two q's.

Now let's see how x, y, and z looks in the original transition graph.

(1) Important Questions

1. Is this true: $|xy| \le m$

Yes, because we learned a_1 to a_j (= xy) are unique states and there is no repeated-states between them.

y = a_{i+1} ... a_i

Recall that the DFA has m states and xy is only a part of that.

2. Is this true: $|y| \ge 1$

Yes, because y is a simple cycle and the smallest simple cycle is a loop whose size is 1.

More Questions!

We've already known $w = xyz \in L$.

- 3. Is string $xz = a_1 a_2 ... a_i a_{i+1} ... a_k$ accepted by this DFA? Yes, it skips y part. So xz ∈ L
- How about xyyz? Or, xyyyz?
- 5. Or in general: $x y^{i} z$, for i = 0, 1, 2, ...
- The answer is yes to all, so all strings x y z belongs to L.

Conclusion

- If L is an infinite regular language,
 and if we pick a string w = xyz ∈ L,
 and split it in a certain way (means it satisfies some conditions),
- ... then, we can pump any number of y's
 and the resulting strings would belong to the language L.
- Means: $w_i = xy^iz \in L$ for i = 0, 1, 2, ...

• And this was the mysterious concept of "Pumping Lemma"!

① Pumping Lemma

What is a Lemma?

Etymology

- "Lemma" is a smaller theorem to help proving a bigger one.
- Very occasionally lemmas can take on a life of their own.
- In computer science, "pumping lemma" is one of them.

Pumping Lemma

If L is an INFINITE REGULAR language,

Then there exists an $m \ge 1$ such that

If $w \in L$ and $|w| \ge m$

Then //pumping lemma guarantees that ...

We must be able to divide w into three parts xyz in such a way that all of the following conditions are satisfied:

$$|xy| \le m$$
, and $|y| \ge 1$, and $w_i = x \ y^i \ z \in L$ for $i = 0, 1, 2, 3, ...$

Formal Statement of Pumping Lemma

If L is an infinite regular language,

Then

(1) There exists an $m \ge 1$ such that

If (2)
$$w \in L$$
 and (3) $|w| \ge m$

Then //P. L. guarantees that ...

- (4) We must be able to divide w into xyz in such a way that all of the following conditions are satisfied:
- (5) $|xy| \le m$, and
- (6) $|y| \ge 1$, and
- (7) $w_i = x y^i z \in L$
- (8) w_i for i = 0, 1, 2, ...

Steps of Pumping Lemma

Step	Description	Comment
1	Take an m	Always take it as m
2	Take w	A string from the language dependent to m
3	Check w ≥ m	
4	Find x, y, z	w = x y z
5	Check xy ≤ m	
6	Check y ≥ 1	
7	Construct w _i = xy ⁱ z ∈ L	
8	Check various i's of w _i	For i = 0, 1, 2, 3,

Pumping Lemma

Example 7

 Verify the pumping lemma property on the following infinite regular language.

$$L = \{a^n b: n \ge 0\}$$

Solution

- (1) Let's take the m = 2. Why not 3?OK, let's take it as m.
 - If we need, we'd make some boundary on m later.
- (2) Let's take $w = a^m b$
 - Note that m is a constant.
 - It means, a^mb is a string, NOT a pattern.
- (3) Check w's size: |w| = |a^mb| = m+1 ≥ m

- Pumping lemma guarantees that:
- (4) There exists x, y, z such that:

$$w = a^m b = xyz = \lambda$$
 a $a^{m-1}b$

- (5) $|xy| = |a| = 1 \le m$
- (6) $|y| = 1 \ge 1$
- (7) $w_i = xy^iz = \lambda a^i a^{m-1}b \in L$
- (8) Check various i's of w_i:
- i=0 $w_0 = xz = a^{m-1}b \in L$
- i=1 $w_1 = xy^1z = a^mb \in L$
- i=2 $w_2 = xy^2z = a^{m+1}b \in L$
- i=3 $w_3 = xy^3z = a^{m+2}b \in L$
- ...

Pumping Lemma

Example 8

 Verify the pumping lemma property on the following infinite regular language.

$$L = \{bba^n : n \ge 0\}$$

Solution

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Costas Busch's website: http://csc.lsu.edu/~busch/
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790