$\frac{DFIR}{\text{decimating FIR-Filter for Betty SDR}}$

Filename: dfir.vhd Dependencies: none Actual version: 1.0 based on FIR

Interface definition:

Generic Name	Туре	Description
fir_order	natural	filter order
fir_coeff	fir_coeff_t	signed Q26 format

Port Name	Туре	Description
clk	Input (std_logic)	system clock
stb	Input (std_logic)	input data strobe
d	Input (signed)	data input in Q26
q	Output (signed)	data output in Q26
rdy	Output (std_logic)	output data strobe

design structure:

<u>DFIR</u> decimating FIR-Filter for Betty SDR

Design test:

test enviroment: ghdl + matlab

test discription:

It will be tested for amplitude and phase errors.

The filter will be applied to two different channels. One stimulated with a sinus wave and the other stimulated with the orthogonal cosine wave. The two output signals forms a complex signal which will be analysed. In addition each channel consists of two different waves. One wave in the passband and one in the stopband of the filter.

I channel: $X_I(t) = 0.5\cos(2 \cdot \pi \cdot f_1 \cdot t) + 0.5\cos(2 \cdot \pi \cdot f_2 \cdot t)$ Q channel: $X_I(t) = 0.5\sin(2 \cdot \pi \cdot f_1 \cdot t) + 0.5\sin(2 \cdot \pi \cdot f_2 \cdot t)$

with $f_1 = 10 \text{kHz}$; $f_2 = 20 \text{kHz}$

filter characteristic: $f_c = 12.5 \text{kHz}$; n = 128

The complex output signal consists of one signal with a positive frequency on the position +10kHz. The signal with the positive frequency +20kHz should be suppressed. In the FFT plot there must no image frequencies.

The result of the MATLAB reference implementation(firf.m in directory test):

<u>DFIR</u> decimating FIR-Filter for Betty SDR

An example of 5% amplitude error:

The result of the VHDL implementation:

$\frac{DFIR}{\text{decimating FIR-Filter for Betty SDR}}$

Test result:

The spectrum of the output signal of the VHDL implementation shows no image frequency and has a perfect suppression of the signal in the stopband.

The Test is passed by the VHDL implementation.