TD 6

October 7, 2024

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering, SpectralClustering

Exercise 1:

- 1 Load Wine dataset and save samples features in a matrix X and classes in a vector y.
- 2 Code a function to compute $n \times n$ matrix of Euclidian distances between n samples.
- 3 Perform the four clustering algorithms on X using sklearn.cluster functions.
- 4 Plot clustering results in all 2-d projections of X.

We denote $\ell(y_1, y_2)$ the classification loss function that equals to 1 if $y_1 = y_2$ and 0 otherwise.

- 5 Code this loss function and assess results of the four algorithms using true labels y.
- 6 Apply PCA on X and apply the different clustering methods on the first two principal components.
- 7 Plot the results on the first two principal components, compute their classification error using the loss function and compare to previous results.

Exercise 2:

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as pltimg
```

from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering, SpectralClustering

1 Load the two provided images and plot them.

We want to flatten these images but keeping RGB and alpha values as features :

```
X = img.reshape((img.shape[0]*img.shape[1],-1))
```

- 2 Apply k-means algorithm on obtained matrices with 3, 5 and 10 clusters.
- 3 Replace, in a new matrix, each pixel by the cluster center value of its associated cluster and plot the results.

We propose now to add a notion of geometric distance and not only color distance. For that, we simply create a new matrix with labels of the first clustering as the first feature, and containing coordinates as other features.

- 4 Suggest another way to take also into account pixel coordinate distances.
- 5 Apply DBSCAN and Spectral clustering on the new XX data and observe the results.