

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 16 pages./
Hierdie nasienriglyne bestaan uit 16 bladsye.

(3)

QUESTION 1/VRAAG 1

1.1	B✓✓	(2)
1.2	D ✓✓	(2)
1.3	B√√	(2)
1.4	D✓✓	(2)
1.5	B√✓	(2)
1.6	$D\checkmark\checkmark$	(2)
1.7	C ✓✓	(2)
1.8	A✓✓	(2)
1.9	A✓✓	(2)
1.10	B√✓	(2) [20]
QUEST	TION 2/VRAAG 2	
2.1 2.1.1	E✓	(1)
2.1.2	F✓	(1)
2.1.3	C✓	(1)
2.1.4	H✓	(1)

2.22.2.1 2-bromo-2,4,5-trimethylhexane/2-broom-2,4,5-trimetielheksaan

2 bromo 2,4,0 timothymoxano/2 broom 2,4,0 timothomoxaan			
Marking criteria:	Nasienkriteria:		
 Correct stem i.e. <u>hexane</u>. √ 	 Korrekte stam d.i. <u>heksaan</u>. √ 		
 All substituents (bromo and trimethyl) correctly identified. ✓ 	Alle substituente (bromo and trimetiel) korrek geïdentifiseer. ✓		
 IUPAC name completely correct including numbering, sequence, 	IUPAC-naam heeltemal korrek insluitende volgorde, koppeltekens en		
hyphens and commas √	kommas √		

2.2.2

Marking criteria/Nasienkriteria:

- Five C atoms in longest chain + triple bond.
 - <u>Vyf C-atome in langste ketting + drievoudige binding.</u>
- Two methyl substituents. ✓ Twee metielsubstituente.
- Whole structure correct. Hele struktuur korrek. ✓

IF/INDIEN

- More than one functional group/wrong functional group:
 Meer as een funksionele groep/foutiewe funksionele groep:
- /3 urformules
- If condensed structural formulae used/Indien gekondenseerde struktuurformules gebruik: Max/Maks.: $\frac{2}{3}$
- 2.3 2.3.1 Aldehyde/Aldehied ✓

(1)

2.3.2 Formyl/Formiel ✓

(1)

(3)

2.3.3

- Marking criteria/Nasienkriteria:
- Functional group. ✓ Funksionele groep.
- Whole structure correct. Hele struktuur korrek. ✓

IF/INDIEN

- More than one functional group/wrong functional group:
 Meer as een funksionele groep/foutiewe funksionele groep:
- If condensed structural formulae used/Indien gekondenseerde struktuurformules gebruik:

 Max/Maks.: 1/2

2.4

- 2.4.1 Methyl√propane√/2-methylpropane/*Metielpropaan/2-metielpropaan*
- (2)

(2)

2.4.2 $2C_4H_{10} + 13O_2 \checkmark \rightarrow 8CO_2 + 10H_2O \checkmark$ Bal. \checkmark

Ignore phases./Ignoreer fases.

Marking criteria/Nasienkriteria:

- Reactants ✓ Products ✓ Balancing: ✓
 Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10/Nasienreël 6.3.10.

IF: Structural formula for C₄H₁₀ Max. 2/3

INDIEN: Structural formula for C₄H₁₀ Max. 2/3

(3)

[19]

QUESTION 3/VRAAG 3

3.1 Marking criteria/Nasienkriteria

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

The <u>temperature</u> at which the <u>vapour pressure</u> of a substance <u>equals</u> atmospheric/external pressure. $\checkmark\checkmark$

Die <u>temperatuur</u> waar die <u>dampdruk</u> van 'n stof <u>gelyk is aan atmosferiese</u>/ eksterne druk.

(2)

3.2

3.2.1 Increases/Neem toe ✓

(1)

3.2.2 **From A to C:**

- Increase in molecular mass/size/chain length/surface area/number of C atoms. ✓
- <u>Strength of the intermolecular forces increases/More sites for London forces.</u> ✓
- More energy is needed to overcome/break intermolecular forces. ✓

OR

From C to A:

- Decrease in molecular mass/size/chain length/surface area/number of C atoms. ✓
- <u>Strength of the intermolecular forces decreases/Less sites for London forces.</u> ✓
- Less energy is needed to overcome/break intermolecular forces. ✓

Van A na C:

- Verhoging in molekulêre massa/molekulêre grootte/kettinglengte/reaksieoppervlak/aantal C-atome. ✓
- <u>Sterkte van die intermolekulêre kragte verhoog./Meer punte</u> vir Londonkragte. ✓
- Meer energie benodig om intermolekulêre kragte te oorkom/breek. √

OF

Van C na A:

- <u>Verlaging in molekulêre massa/molekulêre grootte/kettinglengte/reaksie-</u>oppervlak/aantal C-atome. ✓
- <u>Sterkte van die intermolekulêre kragte verlaag./Minder punte</u> vir Londonkragte. ✓
- Minder energie benodig om intermolekulêre kragte te oorkom/breek. √

3.3 No / Nee ✓

More than one independent variable./Molar mass and chain length (surface area) are changing. ✓

<u>Meer as een onafhanklike veranderlike./Molêre massa (reaksie-oppervlak) en</u> kettinglengte verander.

(2)

(3)

3.4

- 3.4.1 Functional group/homologous series/type of intermolecular forces/type of compound ✓

 Funksionele groep/homoloë reeks/soort intermolekulêre kragte/tipe verbinding
- 3.4.2 <u>Dipole-dipole</u> forces/<u>Dipool-dipoolkragte</u> √ (1)

3.5 C→D / methylbutane / metielbutaan ✓

Lower boiling point/Weaker intermolecular forces ✓ Laer kookpunt/Swakker intermolekulêre kragte

(2) [**12**]

QUESTION 4/VRAAG 4

4.1

- 4.1.1 Dehydrohalogenation/elimination/dehydrobromination ✓

 Dehidrohalogenering/eliminasie/dehidrobrominering (1)
- 4.1.2 2-methylbut-2-ene / 2-methyl-2-butene ✓ ✓ 2-metielbut-2-een / 2-metiel-2-buteen ✓ ✓

Marking criteria/Nasienkriteria
Methylbutene/metielbuteen ✓
IUPAC name correct/IUPAC-naam
korrek ✓

(2)

IF/INDIEN

Any error, e.g. hyphens omitted and/or incorrect sequence/Enige fout, bv. koppeltekens weggelaat en/of verkeerde volgorde: Max/Maks: $\frac{1}{2}$

4.1.3 Water/H₂O ✓

(1)

4.1.4 Heat/*Hitte* ✓ (Concentrated) <u>sulphuric acid/catalyst</u> ✓ (*Gekonsentreerde*) <u>swawelsuur/katalisator</u>

ACCEPT/AANVAAR:

High temperature/
Hoë temperatuur

(2)

4.1.5

Marking criteria/Nasienkriteria

- Whole structure correct/Hele struktuur korrek: ²/₂
- Only functional group correct:/Slegs funksionele groep korrek: Max/Maks.: 1/2

IF/INDIEN

More than one functional group/Meer as een funksionele groep $\frac{0}{2}$

(2)

- 4.2
- 4.2.1 Catalyst/Lowers the activation energy./Increases the rate of the reaction. ✓ *Katalisator/Verlaag die aktiveringsenergie./Laat reaksietempo toeneem.*

(1)

4.2.2 The bromine water/Br₂/solution decolourises. ✓ *Die broomwater/Br₂/oplossing ontkleur.*

OR/OF

Bromine water/Br₂/solution changes from brown/reddish to colourless. *Broomwater/Br*₂/oplossing verander van bruin/rooi na kleurloos.

(1)

4.2.3 Addition/halogenation/bromination ✓ *Addisie/halogenering/brominering*

(1)

(3)

 $C_2H_6 \checkmark \checkmark \checkmark$ (3 or/of 0) OR/OF

 C_4H_{10}

OR/OF C_6H_{14}

IF structural/condensed formulae: (2 or 0)

INDIEN struktuurformules/gekondenseerde formules gebruik: (2 of 0)

, ,

4.2.5 Marking criteria

Н

4.2.4

- Correct functional group i.e. double bond. √
- Correct number of C atoms in relation to answer in Q4.2.4. √
- Whole structure correct. ✓

IF condensed/molecular formulae used: Max. $\frac{2}{3}$

Nasienkriteria

- Korrekte funksionele groep d.i. dubbelbinding. √
- Korrekte aantal C-atome na aanleiding van antwoord in V4.2.4. √
- Hele struktuur korrek. ✓

INDIEN gekondenseerde/molekulêre formules gebruik: Maks. $^{2}/_{3}$

IF C₂H₆ in QUESTION 4.2.4/INDIEN C₂H₆ in VRAAG 4.2.4:

$$H - C - C - C - C - H$$
OR/OF

IF C₄H₁₀ in QUESTION 4.2.4/ INDIEN C₄H₁₀ in VRAAG 4.2.4:

$$\begin{array}{c|c} H & H \\ \hline C = C - C - H & \checkmark \checkmark \\ \hline H & H \end{array}$$

IF C₆H₁₄ in QUESTION 4.2.4:
INDIEN C₆H₁₄ in VRAAG 4.2.4:

(3) **[17]**

QUESTION 5/VRAAG 5

5.1 **NOTE/LET WEL**

Give the mark for <u>per unit time</u> only if in context of reaction rate. Gee die punt vir <u>per eenheidtyd</u> slegs indien in konteks met reaksietempo.

ANY ONE:

- Change in concentration ✓ of products/reactants per (unit) time.
- <u>Change in amount/number of moles/volume/mass</u> of products or reactants per (unit) time.
- <u>Amount/number of moles/volume/mass of products formed/reactants used per (unit) time.</u>
- Rate of change in concentration/amount/number of moles/volume/ mass.√√ (2 or 0)

ENIGE EEN:

- <u>Verandering in konsentrasie</u> van produkte/reaktanse <u>per (eenheid) tyd</u>.
- <u>Verandering in hoeveelheid/getal mol/volume/massa</u> van produkte of reaktanse <u>per (eenheid) tyd.</u>
- <u>Hoeveelheid/getal mol/volume/massa van produkte gevorm/reaktanse gebruik per (eenheid) tyd.</u>
- <u>Tempo van verandering in konsentrasie/ hoeveelheid/getal mol/volume/massa</u>. (2 of 0)
- Surface area / state of division / particle size (of MgCO₃) ✓
 - Concentration (of HCℓ) ✓
 - Reaksieoppervlak/toestand van verdeeldheid/deeltjie-grootte (van MgCO₃)
 - Konsentrasie (van HCl)
- At a higher temperature particles move faster/have a higher kinetic energy. ✓
 - More molecules have enough/sufficient kinetic energy for an effective collision. ✓
 - **OR** More molecules have kinetic energy/ E_k equal to or greater than the activation energy.
 - More effective collisions per unit time/second. ✓
 - **OR** Frequency of effective collisions increases.
 - Reaction rate increases. ✓
 - By 'n hoër temperatuur beweeg die deeltjies vinniger/het die deeltjies hoër kinetiese energie. √
 - Meer molekule het genoeg/voldoende kinetiese energie/E_k vir 'n effektiewe botsing. √
 - **OF** <u>Meer molekule het kinetiese energie gelyk aan of groter as die</u> aktiveringsenergie.
 - Meer effektiewe botsings per eenheidtyd/sekonde. ✓
 OF Frekwensie van effektiewe botsings verhoog.
 - Reaksietempo neem toe. √

(4)

(2)

(2)

5.4.1 Marking criteria

- Formula: $n = \frac{m}{M} \checkmark$
- Substitution of 84 g·mol⁻¹ in n = $\frac{m}{M}$ \checkmark
- Use mole ratio: $n(MgCO_3)_{used} = n(CO_2)_{produced} \checkmark$
- Substitution of 44 g·mol⁻¹ in n = $\frac{m}{M}$ or to calculate rate in mol·min⁻¹. ✓
- Correct substitution of 0,5 in rate equation. ✓
- Final answer: 5,238 to 5,28 min √

- Formule: $n = \frac{m}{M}$
- Vervanging van 84 g·mo Γ^1 in $n = \frac{m}{M}$
 - Gebruik molverhouding: $n(MgCO_3)_{aebruik} = n(CO_2)_{berei} \checkmark$
 - Vervanging van 44 g·mol⁻¹ in $n = \frac{m}{M}$ of om tempo te bereken in mol·min⁻¹. ✓
 - Korrekte vervanging van tempovergelyking. ✓
 - Finale antwoord: 5,238 tot 5,28 min ✓

5.4.2 **POSITIVE MARKING FROM QUESTION 5.4.1.** POSITIEWE NASIEN VANAF VRAAG 5.4.1.

Marking criteria

• Substitution of n(CO₂) AND 1,5 dm³ in

$$n = \frac{V}{V_m}$$
.

- Final answer:
- \25 to 25,21 dm³⋅mol⁻¹√

Nasienkriteria

• Vervanging van n(CO₂) EN 1,5 dm³ in

$$n = \frac{V}{V_m}$$
.

Finale antwoord:

25 dm³ tot 25,21 dm³·mol⁻¹ ✓

$$n = \frac{V}{V_{m}}$$

$$0.06 = \frac{1.5}{V_{m}}$$

$$V_{m} = \frac{25 \text{ dm}^{3} \cdot \text{mol}^{-1}}{V_{m}} \checkmark (25.21 \text{ dm}^{3} \cdot \text{mol}^{-1})$$
ACCEPT/AANVAAR: 25 dm³

(2)

(6)

Kinetic e	nergy/ <i>Kinetiese</i>	energie
-----------	-------------------------	---------

Marking criteria/Nasienkriteria			
4	Curve B has a higher peak to the left of curve A .	/	
	Kurwe B het hoër piek aan die linkerkant van kurwe A .	•	
2	Curve B is below curve A beyond the peak of curve	./	
_	A./Kurwe B is onder kurwe A na die piek van kurwe A.	V	
If BOTH graphs not labelled (A and B): no marks			
Indien BEIDE grafieke nie benoem nie (A en B): geen punte			

(2) [**18**]

QUESTION 6/VRAAG 6

6.1.1 2 (mol·dm⁻³) ✓

(1)

6.1.2 Marking criteria/Nasienkriteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

When the equilibrium in a closed system is disturbed, the system will reinstate a (new) equilibrium \(\sqrt{} \) by favouring the reaction that will cancel/oppose the disturbance. \(\sqrt{} \)

<u>Wanneer die ewewig in 'n geslote sisteem versteur word</u>, sal die sisteem 'n (nuwe) <u>ewewig instel</u> deur die reaksie te bevoordeel wat die <u>versteuring</u> kanselleer/teenwerk.

(2)

6.1.3 Cooled/Afgekoel ✓

(1)

- A decrease in temperature favours the exothermic reaction./An increase in temperature favours the endothermic reaction. ✓
 - The forward reaction is favoured./HI concentration increases./Equilibrium (position) shifts to the right. ✓
 - The forward reaction is exothermic./Reverse reaction is endothermic.
 - Afname in temperatuur bevoordeel die eksotermiese reaksie./Toename in temperatuur bevoordeel die endotermiese reaksie. ✓
 - Die voorwaartse reaksie word bevoordeel./ HI-konsentrasie neem toe./Die ewewigs(posisie) skuif na regs. √
 - Voorwaatse reaksie is eksotermies./Die terugwaartse reaksie is endotermies. √

(3)

6.2

6.2.1 Products can be converted back to reactants. ✓

OR

Both forward and reverse reactions can take place.

OR

A reaction which can take place in both directions.

Produkte kan omgeskakel word na reaktanse. ✓

OF

Beide voor-en terugwaartse reaksies kan plaasvind.

OF

'n Reaksie wat in beide rigtings kan plaasvind.

(1)

6.2.2 Marking criteria

- a) $\Delta n(N_2O_4) = n(N_2O_4)_{eq} n(N_2O_4)_{ini}$.
- b) USING ratio:

 $n(NO_2)$: $n(N_2O_4) = 2: 1$

- c) $n(NO_2)_{eq} = n(NO_2)_{ini} \Delta n(NO_2) \checkmark$
- d) Divide BOTH by 1 dm³ √
- e) Correct K_c expression (<u>formulae in</u> <u>square brackets</u>). ✓

Nasienkriteria:

- (a) $\Delta n(N_2O_4) = n(N_2O_4)_{\text{ewe}} n(N_2O_4)_{\text{aanv}}.$
- (b) <u>GEBRUIK</u> verhouding: $n(NO_2) : n(N_2O_4) = 2 : 1 \checkmark$
- (c) $n(NO_2)_{\text{ewe}} = n(NO_2)_{\text{aanv}} \Delta n(NO_2) \checkmark$
- (d) Deel BEIDE deur 1 dm³ √
- (e) Korrekte K_c uitdrukking (<u>formules in</u> <u>vierkantige hakies</u>). ✓

	NO ₂	N_2O_4]
Initial amount (moles) Aanvangshoeveelheid (mol)	х	0	
Change in amount (moles) Verandering in hoeveelheid (mol)	1,62	0,81 ^(a)	ratio √ <i>verhouding</i>
Equilibrium amount (moles) Ewewigshoeveelheid (mol)	x – 1,62 ^(c)	0,81	
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	x – 1,62	0,81	

$$K_c = \frac{[N_2O_4]}{[NO_2]^2} \checkmark (e)$$

$$= \frac{(0.81)}{(x - 1.62)^2}$$

Wrong or no K_c expression/Verkeerde of geen K_c uitdrukking: Max./Maks. $\frac{4}{5}$

(5)

6.2.3 **POSITIVE MARKING FROM QUESTION 6.2.2** POSITIEWE NASIEN VAN VRAAG 6.2.2.

Marking criteria

- a) Add 0,79 mol to $n(N_2O_4)_{ini}$.
- b) USING ratio: $n(NO_2)$: $n(N_2O_4) = 2:1$ to calculate $\Delta n(N_2O_4)$ as 0,6 mol. \checkmark
- c) $n(NO_2)_{eq} = n(NO_2)_{ini} + \Delta n(NO_2)$ $n(N_2O_4)_{eq} = n(N_2O_4)_{ini} - \Delta n(N_2O_4)$
- d) Substitution of concentrations into correct K_c expression. ✓
- e) Equating K_c expresssion from Q6.1.3 and Q6.2.3. ✓
- f) Final answer: 12,42 ✓ (Range: 11,27 – 12,42)

Nasienkriteria:

- (a) Voeg 0,79 mol by $n(N_2O_4)_{aanv}$. \checkmark
- (b) **GEBRUIK** verhouding: $n(NO_2): n(N_2O_4) = 2:1$ om $\Delta n(N_2O_4)$ as 0,6 mol te bereken. \checkmark
- (c) $n(NO_2)_{\text{ewe}} = n(NO_2)_{\text{aanv}} + \Delta n(NO_2)$ $n(N_2O_4)_{\text{ewe}} = n(N_2O_4)_{\text{aanv}} - \Delta n(N_2O_4)$
- (d) Vervanging van konsentrasies in korrekte K_c-uitdrukking.
- (e) Stel K_c-uitdrukking van Q6.1.3 en Q6.2.3 gelyk aan mekaar. ✓
- (f) Finale antwoord: 12,42 √ (Gebied: 11,27 – 12,42)

	NO ₂	N_2O_4
Initial amount (moles) Aanvangs hoeveelheid (mol)	x – 1,62	0,81 <u>+ 0,79</u> √ = 1,6
Change in amount (moles) Verandering in hoeveelheid (mol)	1,2	0,6 ✓
Equilibrium amount (moles) Ewewigshoeveelheid (mol)	x – 1,62 <u>+1,2</u>	1 (c)
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	x - 0,42	1

$$K_{c} = \frac{[N_{2}O_{4}]}{[NO_{2}]^{2}}$$

$$\frac{(0.81)}{(x-1.62)^{2}} \stackrel{\text{(e)}}{=} \frac{1}{(x-0.42)^{2}} \checkmark \text{(d)}$$

$$x = 12.42 \text{ (mol)} \checkmark \text{(f)}$$

Wrong K_c expression/*Verkeerde K_c- uitdrukking*: Max./Maks. $\frac{4}{6}$

No K_c expression/Geen K_c- uitdrukking: ⁶/₆

(6)[19]

QUESTION 7/VRAAG 7

7.1

- 7.1.1 An acid is a proton (H⁺ ion) donor. ✓✓ 'n Suur is 'n protondonor/skenker of H⁺-ioon donor/skenker.
 - (2)

: HY ✓

For the SAME acid concentration:

Lower pH / higher H⁺ or H₃O⁺ concentration / more ionised. \checkmark Vir DIESELFDE suurkonsentrasie:

Laer pH / hoër H⁺/H₃O⁺ konsentrasie / meer geïoniseer.

CLower than./Laer as ✓

 $^{\blacktriangle}$ K_a < 1 / HX ionises incompletely. / HX has a small K_a value. / HX is a weak

 $K_a < 1 / HX$ ioniseer onvolledig. / HX het 'n klein K_a -waarde. / HX is 'n swak suur.

(2)

(2)

7.2.1 pH =
$$-\log[H_3O^+]$$
 OR/OF $[H_3O^+] = 10^{-pH} \checkmark$
 $2 \checkmark = -\log[H_3O^+]$
 $[H_3O^+] = 0.01 \text{ mol·dm}^{-3} \checkmark (1 \text{ x } 10^{-2} \text{ mol·dm}^{-3})$ (3)

7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1. POSITIEWE NASIEN VAN VRAAG 7.2.1.

Marking criteria for OPTION 1:

- Substitute c(HCℓ)_{excess} and 0,35 dm³ to calculate n(HCℓ)_{excess}.√
- Substitute to calculate n(HCℓ)_{initial} √
- $n(HC\ell)_{react} = n(HC\ell)_{ini} n(HC\ell)_{excess}. \checkmark \checkmark$
- Use ratio: n(NaOH) = n(HCℓ) ✓
- Substitute 0,15 dm³ in c = $\frac{n}{V}$.
- Final answer: 0,02 mol·dm⁻³ ✓
 or 0,0167 mol·dm⁻³ or 0,017 mol·dm⁻³

Nasienkriteria vir OPSIE 1:

- Vervang c(HCℓ)_{cormaat} en 0,35 dm³ om n(HCℓ)_{cormaat} te bereken.√
- Vervang om n(HCl)_{aanv} te bereken. √
- n(HCℓ)_{rea} = n(HCℓ)_{aanv} (HCℓ)_{oormaat}√√
- Gebruik verhouding: n(NaOH) = n(HCℓ) √
- Vervang 0,15 dm³ in $c = \frac{n}{V}$.
- Finale antwoord: 0,02 mol·dm⁻³ √
 of 0,0167 mol·dm⁻³ of 0,017 mol·dm⁻³

OPTION 1/OPSIE 1

$$\begin{array}{l} \frac{\text{constant}}{\text{n(HC}\ell)_{\text{excess/oormaat}}} = \text{cV} \\ &= \frac{0.01 \times 0.35}{3.5 \times 10^{-3}} \text{ mol} \\ \text{n(HC}\ell)_{\text{initial/aanv}} = \text{cV} \\ &= 0.03 \times 0.2 \checkmark \\ &= 0.006 \text{ mol} \\ \text{n(HC}\ell)_{\text{reacted/reageer}} = \frac{0.006 - 3.5 \times 10^{-3}}{4.5 \times 10^{-3}} \checkmark \checkmark \\ &= 0.0025 \text{ mol} \\ \text{n(NaOH)}_{\text{reacted/reageer}} = \text{n(HC}\ell)_{\text{reacted/reageer}} = 0.0025 \text{ mol} \checkmark \\ \text{c(NaOH)} = \frac{n}{V} \\ &= \frac{0.0025}{0.15} \checkmark \\ &= 0.02 \text{ mol} \cdot \text{dm}^{-3} \checkmark \qquad (0.0167 \text{ mol} \cdot \text{dm}^{-3} \text{ or/of } 0.017 \text{ mol} \cdot \text{dm}^{-3}) \end{array}$$

OPTION 2/OPSIE 2

Concentration ratio in final solution: Konsentrasie verhouding in finale oplossing:

 $HCl: H_3O^+ = 1:1 \checkmark$

Thus/dus [HC ℓ] = 0,01 mol·dm⁻³ \checkmark \checkmark

 $[HC\ell]_{react} = [HC\ell]_{initial} - [HC\ell]_{excess}$ = $\frac{0.03 - 0.01}{0.02} \checkmark \checkmark$ = 0.02 mol·dm^{-3}

Concentration ratio in final solution: Konsentrasie verhouding in oorspronklike oplossing: HCℓ: NaOH = 1:1 ✓

 $[NaOH] = 0.02 \text{ mol} \cdot dm^{-3} \checkmark$

Marking criteria

- Ratio HCl: H₃O⁺ = 1:1 √
- $c(HC\ell)_{excess} = 0.01 \text{ (mol-dm}^{-3}) \checkmark \checkmark$
- $n(HC\ell)_{react} = n(HC\ell)_{ini} (HC\ell)_{excess}. \checkmark \checkmark$
- Use ratio: n(NaOH) = n(HCℓ) ✓
- Final answer: 0,02 mol·dm⁻³ ✓

Nasienkriteria

- Verhouding HCℓ : H₃O⁺ = 1 : 1 ✓
- c(HCℓ)_{oormaat} = 0,01 (mol·dm⁻³) √√
- $n(HC\ell)_{reag} = n(HC\ell)_{aanv} (HC\ell)_{oormaat} \checkmark \checkmark$
- Gebruik verhouding: n(NaOH) = n(HCℓ) √
- Finale antwoord: 0,02 mol·dm⁻³ √

OPTION 3/OPSIE 3

$$\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2}$$

$$\frac{c_1(200)}{(0,01)(350)}\checkmark = \frac{1}{1}\checkmark$$

 $c_1 = 0.0175 \text{ mol} \cdot \text{dm}^{-3}$

$$c(HC\ell)_{react} = c(HC\ell)_{ini} - c(HC\ell)_{excess}$$

= $0.03 - 0.0175 \checkmark \checkmark$
= $0.0125 \text{ mol·dm}^{-3}$

$$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$$

$$\frac{(0,0125)(200)}{c_b(150)\checkmark} = \frac{1}{1} \checkmark$$

 $c(NaOH) = 0.0167 \text{ mol} \cdot dm^{-3} \checkmark$

(0,0167 mol·dm⁻³ **or/of** 0,017 mol·dm⁻³)

Marking criteria

- Substitute 350 cm³ in $\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2} \checkmark$
- Ratio of HCl: H₃O⁺ = 1:1 √
- n(HCℓ)_{react} = n(HCℓ)_{ini} -(HCℓ)_{excess}. ✓ ✓
- Use ratio: n(NaOH) = n(HCℓ) √
- Substitute 150 cm³ in $\frac{c_1 V_1}{c_2 V_2} = \frac{n_1}{n_2} \checkmark$
- Final answer: 0,02 mol·dm⁻³ ✓ • or 0,0167 mol·dm⁻³ • or 0,017 mol·dm⁻³

Nasienkriteria

- Vervang 350 cm³ in $\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2} \checkmark$
- Verhouding HCl: H₃O⁺ = 1:1 √
- $n(HC\ell)_{reag} = n(HC\ell)_{aanv} (HC\ell)_{oormaat}$. ✓ ✓
- Gebruik verhouding: n(NaOH) = n(HCℓ) √
- Vervang 150 cm³ in $\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2} \checkmark$
- Finale antwoord: 0,02 mol·dm⁻³ √
 of 0,0167 mol·dm⁻³
 of 0,017 mol·dm⁻³

(7) [16]

QUESTION 8/VRAAG 8

8.1

8.1.1 Temperature/*Temperatuur*: 25 °C/298 K ✓ Pressure/*Druk*: 101,3 kPa/1 atmosphere ✓ Concentration/*Konsentrasie*: 1 mol·dm⁻³ ✓

(3)

8.1.2 | **OPTION 1/OPSIE 1**

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \checkmark$$

$$2,89 \checkmark = E_{\text{reduction}}^{\theta} - (-1,66) \checkmark$$

$$E_{\text{reduction}}^{\theta} = 1,23 \text{ (V) } \checkmark$$

X is O₂/oxygen/suurstof ✓

[X marked independently/ X onafhanklik nagesien]

Notes/Aantekeninge

- Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. E°_{cell} = E°_{OA} E°_{RA} followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik bv.
 E°_{sel} = E°_{OM} E°_{RM} gevolg deur korrekte vervangings: 4/_E

OPTION 2/OPSIE 2

X is O₂/oxygen/suurstof ✓

[X marked independently/X onafhanklik nagesien]

(5)

(1)

(2)

8.1.3 Aℓ ✓

8.1.4 $O_2(g) + 4H^+ + 4e^- \rightarrow 2H_2O \checkmark \checkmark$

Ignore phases./Ignoreer fases.

Marking criteria/Nasienkriteria:

- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (+) omitted on H⁺/ Indien lading (+) weggelaat op H⁺: Max./Maks: $\frac{1}{2}$ Example/Voorbeeld: O₂(g) + 4H + 4e⁻ \rightarrow 2H₂O \checkmark

8.1.5 $A\ell(s) \mid A\ell^{3+}(aq) \mid O_2(g) \mid H^+(aq) \mid H_2O(\ell) \mid Pt(s)$

OR/OF

 $A\ell(s) | A\ell^{3+}(aq) | | O_2(g) | H^+(aq) | H_2O(\ell) | C(s)$

OR/OF

$$Al \mid Al^{3+} \mid \mid O_2 \mid H^+ \mid H_2O \mid Pt$$
 (3)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

8.2 Copper/Koper ✓

- <u>Cu is a weaker reducing agent than Ni</u> √and <u>will not reduce Ni²⁺</u> (to Ni). / <u>Cu will not be oxidised</u> (to Cu²⁺).√
- Zn is a stronger reducing agent than Ni ✓ and will reduce Ni²⁺ (to Ni). / Zn will be oxidised (to Zn²⁺).
- <u>Cu is 'n swakker reduseermiddel as Ni</u> en <u>sal nie Ni²⁺</u> (na Ni) <u>reduseer nie</u>. / Cu sal nie geoksideer word nie na (Cu²⁺).
- <u>Zn is 'n sterker reduseermiddel as Ni</u> en <u>sal Ni²⁺</u> (na Ni) <u>reduseer. / Zn sal</u> geoksideer word (na Zn²⁺).

NOTE/LET WEL:

The mark for 'reduce' can be awarded at any ONE of the two comparisons. Die punt vir 'reduseer' kan toegeken word by ENIGEEN van die twee vergelykings.

(4) [18]

(2)

QUESTION 9/VRAAG 9

9.1 Marking criteria/Nasienkriteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

ANY ONE/ENIGE EEN:

- The chemical process in which <u>electrical energy is converted to chemical energy</u>. ✓ ✓
- The use of electrical energy to produce a chemical change.
- Decomposition of an ionic compound by means of electrical energy.
- The process during which an <u>electric current passes through a solution/ionic liquid/molten ionic compound</u>.
- Die chemiese proses waarin <u>elektriese energie omgeskakel word na</u> <u>chemiese energie</u>. ✓ ✓
- Die gebruik van <u>elektriese energie om 'n chemiese verandering te weeg te bring</u>.
- Ontbinding van 'n ioniese verbinding met behulp van elektriese energie.
- Die proses waardeur 'n <u>elektriese stroom deur 'n oplossing/ioniese</u> <u>vloeistof/gesmelte ioniese verbinding</u> beweeg.

9.2 9.2.1 X ✓ (1)

Copyright reserved/Kopiereg voorbehou

9.2.2
$$2H_2O(l) + 2e \rightarrow H_2(g) + 2OH^-(aq) \checkmark \checkmark$$

Ignore phases/Ignoreer fases

Marking criteria/Nasienkriteria:

- $$\begin{split} \bullet & \ \ \, H_2(g) + 2OH^-(aq) \leftarrow 2H_2O(\ell) + 2e^- \; (\frac{2}{2}) \; \; 2H_2O(\ell) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq) \; (\frac{1}{2}) \\ & \ \ \, H_2(g) + 2OH^-(aq) \rightleftharpoons 2H_2O(\ell) + 2e^- \; (\frac{0}{2}) \; \; 2H_2O(\ell) + 2e^- \leftarrow H_2(g) + 2OH^-(aq) \; (\frac{0}{2}) \end{split}$$
- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (-) omitted on OH⁻ /Indien lading (-) weggelaat op OH⁻:
 Example/Voorbeeld: 2H₂O(ℓ) + 2e⁻ → H₂(g) + 2OH(aq) ✓ Max./Maks: 1/2

9.2.4
$$2H_2O(\ell) + 2C\ell(aq) \checkmark \rightarrow C\ell_2(g) + H_2(g) + 2OH(aq) \checkmark Bal \checkmark$$

OR/OF

$$2H_2O(\ell) \ + \ 2NaC\ell(aq) \ \rightarrow \ C\ell_2(g) \ + \ H_2(g) \ + \ 2NaOH(aq)$$

Ignore phases/Ignoreer fases

Marking criteria/Nasienkriteria:

- Reactants ✓ Products ✓ Balancing: ✓
 Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10/Nasienreël 6.3.10.

9.3 Increases / Toeneem ✓ (1)

TOTAL/TOTAAL: 150

(3)