

Motivation

Regional/continental hydrologic modeling depends on **proper regionalization** to identify model and parameters for uncalibrated areas, which in turn depends on **robust calibration**

Methodology

Run and evaluate different **calibration/regionalization experiments within NextGen** (in terms of model formulation, objective function, calibration/regionalization algorithm etc.)

Message to take home

NextGen's **heterogeneous** process representation offers flexibility in **model and parameter identification at catchment level** to achieve best results

The Next Generation Water Resources Modeling Framework (NextGen)

- Features a model-agnostic modular modeling environment with a plug-and-play interface
- Incorporates multiple modules for each hydrologic process
- Supports heterogeneous process representation
- Facilitates collaborative community development

Model/Parameter Identification with NextGen

2 calibratable catchments
2 USGS gages

Question: How to identify appropriate model and parameters for each catchment (in order to simulate flow at the outlet)?

Model/Parameter Identification with NextGen - cont.

Calibration & Regionalization Scenarios

Total number of scenarios: $3 \times 2 \times 2 = 12$

Experimental Setup

- Study area
 - New England region (HUC-01); 14,632 catchments
 - 9 calibration basins (122 catchments)
 - 239 validation basins (uncalibrated but regionalized)
- Evaluation
 - Period: 10/01/2013 09/30/2016, 3 water years
 - Forcing: Analysis of Record for Calibration (AORC)
 - Validation data: USGS hourly streamflow
 - Metrics: KGE, NSE, PBIAS (absolute percent bias), CORR (Pearson correlation)

Donor-Receiver Pairing from Regionalization

(based on Physical & Spatial Similarities)

Streamflow Results at Validation Basins: Comparison by Objective Function

- NSE-based calibration outperforms KGE-based calibration at validation basins
- ☐ The mixed (heterogeneous)
 model generally outperforms
 uniform implementations of CFE
 and TOPMODEL
- ☐ The two regionalization scenarios (HLR vs CAMELS) perform very similarly in all cases

Streamflow Results at Validation Basins: Spatial distribution

Validation at 01013500 (Fish River near Fort Kent, Maine)

scenario	model	calib_obj_func	reg_scenario	KGE	NSE	CORR	PBIAS
CFE_kge_camels	CFE	kge	camels	0.07	-0.30	0.51	64.2
CFE_nse_camels	CFE	nse	camels	0.69	0.41	0.69	6.1
mixed_nse_camels	mixed	nse	camels	0.73	0.56	0.76	11.5

Flow Observation vs. Simulations

Take-home Messages & Future Work

- NextGen's heterogeneous process representation offers flexibility in optimal model and parameter identification at catchment level
- Proper calibration can play a critical role in regionalization studies and hence should not be discounted
- Future work
 - Expand to other regions and contiguous US
 - Enhance NextGen calibration/regionalization capabilities
 - Explore other calibration/regionalization options

References

- Addor, N., A.J. Newman, N. Mizukami, and M.P. Clark, 2017. The CAMELS data set: catchment attributes and meteorology for large-sample studies. *Hydrol. and Earth Syst. Sci.*, **21**, 5293-5313, doi:10.5194/hess-21-5293-2017
- ☐ Gupta, H.V., H. Kling, K.K. Yilmaz, G.F. Martinez, 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol., **377**, 80-91, <u>doi: 10.1016/j.jhydrol.2009.08.003</u>
- □ Wolock, D. M., Winter, T. C. & McMahon, M. (2004) Delineation and evaluation of hydrologic-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environ. Manage. 34, S71–S88.
- Gower, J. C. (1971). A general coefficient of similarity and some of Its properties. Biometrics, 27(4), 857-871.
- J.E. Nash and J.V. Sutcliffe, 1970. River flow forecasting through. Part I. A conceptual models discussion of principles. Journal of Hydrology, **10**, 282-290.

