BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-228400

(43)公開日 平成10年(1998) 8月25日

(51) Int.Cl.⁶

識別記号

G06F 12/00 G01C 21/00

520

· FI

G06F 12/00

520J

G01C 21/00

審査請求 未請求 請求項の数43 OL (全 14 頁)

(21)出願番号

特願平9-324429

(22)出願日

平成9年(1997)11月26日

(31)優先権主張番号 08/753483

(32)優先日

1996年11月26日

(33)優先権主張国

米国 (US)

(71) 出願人 000003333

株式会社ゼクセル

東京都渋谷区渋谷3丁目6番7号

(72)発明者 ジェフ・ジーーミン・リャウ

アメリカ合衆国・95129・カリフォルニア

州・サン ホゼ・グレン ヘプン ドライ

プ・1298

(72)発明者 榊原 寿一

アメリカ合衆国・95014・カリフォルニア

州・カッパチーノ・ノースショア スクエ

ア・10938

(74)代理人 弁理士 山川 政樹

(54) 【発明の名称】 高速ファイルシステム

(57)【要約】

り出される。

スのファイルに高速にアクセスする方法を提供する。 【解決手段】 ファイルシステムと結合されたファイル アクセステーブル (FAT) がファイルを参照する。F ATは複数の記憶場所を有し、それらの各記憶場所はフ ァイルのデータクラスタの 1 つ及び F A T 中の別の記憶 場所に対する参照を含み、それらの参照のリンクされた リストを形成する。ファイル中でデータクラスタが現れ る論理順序が、そのファイルについてのFAT中のリン クされたリストをたどることによって決定される。次 に、そのファイルに関するクラスタテーブルが構築され る。データクラスタに対する参照が、ファイル中のデー タクラスタの論理順序に従って、クラスタテーブルの連 続した記憶場所に記憶される。次に、クラスタテーブル 中の連続した記憶場所に逐次アクセスすることによりフ ァイルにアクセスして、データクラスタが検索され、取

【課題】 DOSファイルシステムを用いてデータベー

【特許請求の範囲】

【請求項1】 論理順序で配列された複数のサブセット を含むファイルへのアクセスを可能にする方法におい て:サブセットに対する参照を含み、その参照が前記フ ァイル中のサブセットの論理順序と異なる順序で配列さ れた第1のテーブルよりファイル中のサブセットの論理 順序を決定するステップと;前記ファイル中のサブセッ トの論理順序に従ってそのサブセットに対する参照を第 2のテーブルの連続した記憶場所に記憶するステップ と;を具備した方法。

1

【請求項2】 前記サブセットに対する参照を記憶する ステップが:前記第2のテーブル中の各参照の位置が前 記ファイル中の対応するサブセットの論理位置を表すよ うにして、ファイル中のサブセットの論理順序に従って サブセットに対する参照を第2のテーブルの連続した記 憶場所に記憶するステップよりなる;請求項1記載の方

前記第2のテーブル中の複数の連続した 【請求項3】 記憶場所にアクセスして、前記ファイルのクラスタを検 索して取り出すステップをさらに具備した請求項1記載 20 の方法。

【請求項4】 前記第2のテーブル中の記憶場所にラン ダムにアクセスすることにより前記ファイルにアクセス して、前記ファイルの少なくとも1つのクラスタを検索 して取り出すステップをさらに具備した請求項1記載の 方法。

【請求項5】 前記ファイルが更新されるのに応答して 前記第2のテーブルを自動的に更新するステップをさら に具備した請求項1記載の方法。

【請求項6】 前記参照が、リンクされたリストの形で 前記第1のテーブルに記憶され、前記ファイル中のサブ セットの論理順序を決定するステップが、そのリンクさ れたリストで参照を読み取って、サブセットを特定し、 かつファイル中のサブセットの論理順序を特定するステ ップよりなる請求項1記載の方法。

【請求項7】 ファイルシステムを用いてデータベース 中の複数のデータサブセットを含むファイルにアクセス できるようにする方法であって、ファイルシステムが複 数の記憶場所を有するファイルアクセステーブル(FA T)を含み、各記憶場所がデータサブセットの1つに対 40 する参照及びFAT中の別の記憶場所に対する参照を含 んでおり、ファイル中の他の記憶場所に対する参照がフ ァイル中の次の論理データサブセットを指示する方法に おいて:前記FATに基づいて前記ファイル中のデータ サブセットの論理順序を特定するステップと;前記論理 順序に基づいて前記テーブルの連続した記憶場所に前記 データサブセットに対する参照を記憶することによって 複数の記憶場所を含むテーブルを構築するステップと; を具備した方法。

【請求項8】 前記テーブル中の記憶場所にランダムに 50

アクセスすることにより前記ファイルにアクセスして、 ファイルの少なくとも1つのサブセットを検索して取り 出すステップをさらに具備した請求項7記載の方法。

【請求項9】 前記テーブルの複数の連続した記憶場所 にアクセスして、前記論理順序に従い前記ファイルのク ラスタを検索して取り出すステップをさらに具備した請 求項7記載の方法。

【請求項10】 前記ファイルの更新に応答して前記テ ーブルを自動的に更新するステップをさらに具備した請 10 求項7記載の方法。

【請求項11】 FATの記憶場所が、リンクされたり ストになっている請求項7記載の方法。

【請求項12】 前記データサブセットが、各々データ クラスタである請求項7記載の方法。

【請求項13】 前記データサブセットに対する参照が リンクされたリストとして前記FATに記憶され、前記 ファイル中のデータサブセットの論理順序を特定するス テップが、リンクされたリストを読み取って、データフ ァイル中のデータサブセットの論理順序を特定するステ ップよりなる請求項12記載の方法。

【請求項14】 前記ファイルシステムが、DOSファ イルシステムである請求項7記載の方法。

【請求項15】 ファイルシステムを用いてデータベー ス中の複数のデータのクラスタを含むデータファイルに アクセスするための方法であって、ファイルシステムが 複数の記憶場所を有するファイルアクセステーブル(F AT)を含み、各記憶場所がデータファイルのクラスタ の1つに対する参照及びデータファイルの次のクラスタ を指示する FAT中の別の記憶場所に対する参照を含 み、データファイルのクラスタに対する参照が FAT中 の非連続の記憶場所にあることが可能な方法において: 前記データファイル中のクラスタの論理順序を前記 FA Tより特定するステップと;前記論理順序に基づいてク ラスタテーブルの連続した記憶場所に前記クラスタに対 する参照を記憶することによってクラスタテーブルを構

【請求項16】 前記データファイルが更新されるのに 応答して自動的にクラスタテーブルを更新するステップ をさらに具備した請求項15記載の方法。

記憶場所に逐次アクセスすることにより前記データファ

【請求項17】 前記クラスタに対する参照が、リンク されたリストとしてFATに記憶される請求項15記載 の方法。

【請求項18】 前記クラスタの論理順序を特定するス テップが、前記リンクされたリストを読み取って、前記 データファイル中のデータクラスタの論理順序を特定す るステップよりなる請求項17記載の方法。

【請求項19】 DOSファイルシステムを用いてデー

築するステップと;前記クラスタテーブル中の連続した

イルにアクセスして、データファイルのクラスタを検索 して取り出すステップと;を具備した方法。

タベース中の複数のデータクラスタを含むファイルにア クセスする方法において:複数の記憶場所を有するDO Sファイルアクセステーブル (FAT) にアクセスする ステップであって、各記憶場所がデータクラスタの1つ 及びFATに対する参照を含み、データクラスタに対す る参照がリンクされたリストとしてFATに記憶され、 これらの参照が、必ずしも全部はFATの連続した記憶 場所に記憶されないステップと;前記リンクされたリス トをたどることによってデータクラスタがファイル中に 現れる論理順序を特定するするステップと;前記データ クラスタに対する参照を含むクラスタテーブルを、前記 ファイル中のクラスタの論理順序に従って該クラスタテ ーブルの連続した記憶場所にデータクラスタに対する参 照を記憶することによって、ファイル用のクラスタテー ブルを構築するステップと;前記クラスタテーブルの連 続した記憶場所にアクセスすることによりファイルにア クセスして、ファイルのクラスタを検索して取り出すス テップと;を具備した方法。

【請求項20】 前記データベースが、ある地域の街路 の地図データベースである請求項19記載の方法。

【請求項21】 乗物の運転者が進路決定するのを支援 するための乗物搭載システムに実装された請求項20記 載の方法。

【請求項22】 乗物の使用者が乗物の進路を決定する のを支援するための装置において:プロセッサと;論理 順序を有する複数のデータサブセットを含むデータファ イルを有するデータベースと;前記プロセッサに接続さ れたセンササブシステムと;前記プロセッサに接続され た前記使用者に進路情報を出力するための出力サブシス テムと:を具備し、

前記プロセッサが:前記センササブシステム及び前記デ ータベースからのデータに基づいて乗物の現在位置を計 算し;前記出力サブシステムに現在位置の指示情報をユ ーザに対して出力させる;よう構成されており、前記プ ロセッサが、さらに:前記データサブセットに対する参 照を含み、その参照が前記データファイル中のデータサ ブセットの論理順序と異なる順序で配列された第1のテ ーブルよりデータファイル中のデータサブセットの論理 順序を決定し;前記データファイル中のデータサブセッ トの論理順序に従って第2のテーブルの連続した記憶場 40 所に前記データサブセットに対する参照を記憶する;よ う構成されている装置。

【請求項23】 前記データベースが、ある地域の街路 の地図データベースである請求項22記載の装置。

【請求項24】 前記データファイルが、街路のサブセ ットを識別する情報を含む請求項23記載の装置。

【請求項25】 前記プロセッサが、さらに、前記第2 のテーブル中の各参照の相対的位置が前記論理順序にお ける前記データファイルの対応するクラスタの相対的位 置を表すように、データファイル中のデータサブセット 50

の論理順序に従って第2のテーブルの連続した記憶場所 にデータサブセットに対する参照を記憶するよう構成さ れている請求項22記載の装置。

【請求項26】 プロセッサが、さらに、前記第2のテ ーブルの記憶場所にランダムにアクセスすることにより 前記ファイルにアクセスして、ファイルの少なくとも1 つを検索して取り出すよう構成されている請求項22記 載の装置。

【請求項27】 前記プロセッサが、さらに、前記第2 のテーブルの複数の連続した記憶場所にアクセスするこ とにより前記ファイルにアクセスして、前記論理順序に 従ってファイルのクラスタを検索して取り出すよう構成 されている請求項26記載の装置。

【請求項28】 前記プロセッサが、さらに、前記ファ イルが更新されるのに応答して自動的に前記第2のテー ブルを更新するよう構成されている請求項22記載の装

【0029】 前記参照が、リンクされたリストの形で 前記第1のテーブルに記憶される請求項2記載の装置。

【請求項30】 プロセッサが、さらに、前記第1のテ 20 ーブルの参照を読み取ってデータサブセット識別し、か つデータファイル中のデータサブセットの論理順序を特 定するよう構成されている請求項記載の装置。

【請求項31】 論理順序に配列された複数のデータサ ブセットを含むデータベースにおけるデータファイルへ のアクセスを可能にする方法ステップを実行するための コンピュータシステム上で実行可能な命令のプログラム を実装した機械可読プログラム記憶媒体において:参照 が、データファイル中のデータサブセットの論理順序と 異なる順序で第1のテーブル中に配列されているとき、 前記データファイル中のデータサブセットの論理順序を データサブセットに対するその参照を含む第1のテーブ ルより決定し、

データファイル中のデータサブセットの論理順序に従っ て第2のテーブルの連続した記憶場所に該データサブセ ットに対する参照を記憶するプログラムを記録した機械 可読プログラム記憶媒体。

【請求項32】 前記データサブセットに対する参照を 記憶する際に:前記第2のテーブル中の各参照の相対的 位置が前記論理順序でにおける前記データファイルの対 応するクラスタの相対的位置を表すように該データファ イル中のデータサブセットの該論理順序に従って第2の テーブルの連続した記憶場所にデータサブセットに対す る参照を記憶する請求項31記載の機械可読プログラム 記憶媒体。

【請求項33】 さらに、前記第2のテーブル中の連続 した記憶場所にランダムにアクセスすることにより前記 ファイルにアクセスして、前記論理順序に従ってファイ ルのクラスタを検索して取り出すことを含む請求項31 記載の機械可読プログラム記憶媒体。

10

20

【請求項34】 さらに、前記ファイルが更新されるの 応答して自動的に前記第2のテーブルを更新することを 含む請求項31記載の機械可読プログラム記憶媒体。

【請求項35】 前記参照が、リンクされたリストの形 で前記第1のテーブルに記憶される請求項31記載の機 械可読プログラム記憶媒体。

【請求項36】 前記データファイル中のデータサブセ ットの論理順序を決定する際に、前記第1のテーブル中 の参照を読み取って、データサブセットを特定し、デー タファイル中のデータサブセットの論理順序を特定する 請求項32記載の機械可読プログラム記憶媒体。

【請求項37】 プロセッサと;前記プロセッサに接続 されたデータベースが記憶されている第1の記憶装置で あって、データベースが複数のデータクラスタを含んで いるデータファイルを含み、データファイルが複数の記 憶場所を有する第1のテーブルによって参照され、各記 憶場所が少なくとも 1 つのデータクラスタに対する参照 及び第1のテーブル中の別の記憶場所に対する参照を含 み、データファイルのクラスタに対する参照が、第1の テーブル中の非連続の記憶場所にある第1の記憶装置 と;前記プロセッサに接続された第2の記憶装置であっ て、プロセッサによって実行されるとき、そのプロセッ サに:前記データファイル中のデータクラスタの論理順 序を前記第1のテーブルより特定させ;前記論理順序に 基づいて、その連続した記憶場所に前記クラスタに対す る参照を記憶することによって第2のテーブルを構築さ せ;前記第2のテーブル中の少なくとも1つの連続した 記憶場所にランダムにアクセスすることによって前記デ ータファイルにアクセスして、データファイルの少なく とも1つのクラスタを検索して取り出させる;命令を記 30 憶した第2の記憶装置と;を具備したコンピュータシス テム。

【請求項38】 前記第1のテーブルがDOSファイル システムによって維持されるファイルアクセステーブル (FAT)である請求項37記載のコンピュータシステ

【請求項39】 前記命令が、さらに、プロセッサによ って実行されると、プロセッサに、前記ファイルが更新 されるのに応答して自動的に前記クラスタテーブルを更 新させる命令を含む請求項37記載のコンピュータシス 40 テム。

【請求項40】 前記データクラスタに対する参照が、 リンクされたリストとして前記第 1 のテーブルに記憶さ れる請求項37記載のコンピュータシステム。

【請求項41】 前記プロセッサに前記データクラスタ の論理順序を特定させる前記命令が、さらに、プロセッ サに、リンクされたリストを読み取らせることによりデ ータファイル中のデータクラスタの該論理順序を特定さ せる請求項37記載のコンピュータシステム。

【請求項42】 前記データベースが、ある地域の街路

の地図データベースである請求項37記載のコンピュー タシステム。

前記データファイルが、前記街路のサ 【請求項43】 ブセットを識別する情報を含む請求項42記載のコンピ ュータシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コンピュータシス テムに関するものである。より詳しくは、本発明は、搭 載型乗物用ナビゲーションシステムのデータベースにア クセスするための高速ファイルシステムに関する。

[0002]

【従来の技術】搭載型ナビゲーションシステムは、自動 車の運転者が不案内な土地を通って走る際、進路を決め るのを手助けするのに役立てることができる。このよう なシステムの一例が、運転者に記憶された街路地図デー タベースから目的地を選ばせ、その選択された目的地ま でのルートを演算させ、その後その選択された目的地へ 運転者を導くコンピュータベースの装置である。このよ うなシステムは、一般に乗物の位置を決定するための種 々のセンサを有する。このシステムは、乗物が移動する のに伴って、センサからデータを処理して、地図データ に対して最も確からしい乗物の位置を決定する。このシ ステムは、乗物が移動する際、運転者に周囲の地域の街 路地図を表示することができ、また表示された地図上に 乗物の位置と動きを示す標識を表示することができる。 また、このシステムは、音声及び/または視覚による進 路指示を運転者に与えることもできる。このような搭載 型自動車用ナビゲーションシステムは、現在、米国カリ フォルニア州サニーベール (Sunnyvale) のゼ クセル・ユー・エス・エー・コーポレーション (Zex el USA Corporation) 社から入手可 能である。

【0003】この種の搭載型ナビゲーションシステムは コンピュータによって制御される。他のコンピュータと 同様に、搭載型乗物用ナビゲーションシステムにおける コンピュータは、システムの基本的な動作を制御するた めのソフトウェアであるオペレーティングシステムを有 する。オペレーティングシステムは、ファイルに命名 し、ファイルを編成し、記憶し、検索する等、ファイル を管理するためのファイルシステムを含でいる。しかし ながら、搭載型乗物用ナビゲーションシステムのファイ ルシステムに関しては、いくつかの設計上の問題があ る。これらの問題は、一般に、ファイルシステムの速 度、修正可能性、メモリ使用度、及び市場サポートに関 連したものである。

【0004】例えば、相手先ブランド製造業者(OE M) は、外部の供給元からファイルシステムを購入する 場合がある。しかしながら、外部ソースから供給される 50 所有権を主張できるソフトウェアの使用は、ファイルシ 7

ステムソフトウェアを変更したり、あるいはデコンパイルする際、供給元によって課されるいくつかの制約の適用を受けなければならないことがある。そのような制約は、動作をデバッグする際の妨げになったり、ナビゲーションシステム全体のアップグレードを妨げたりする。その上、所有権を主張できるファイルシステムについては、市場で支援ツールを見つけることが困難なこともある。そのために、オープンアーキテクチャ(すなわち、公表規格)を有するファイルシステムを使用することが望ましい場合がある。

【0005】周知のDOS(ディスクオペレーティングシステム)ファイルシステムは、オープンアーキテクチャを持っており、そのためにDOSファイルシステムはこれからの搭載型ナビゲーションシステム用ファイルシステムとして魅力的な存在になっている。その上、DOSファイルシステムは、一部の所有権を主張できるファイルシステムと比較して、比較的小さいメモリ量しか必要としない。しかしながら、DOSファイルシステムは、後で詳細で述べるように(「発明の実施の形態」の項に記載)、大きいファイルにアクセスする時、遅くな項に記載)、大きいファイルにアクセスするときのこの遅延は運転者の注意をそらし、そのために危険を招くことがある。それ故に、標準のDOSファイルシステムは、一般に搭載型乗物用ナビゲーションシステムで使用するのに適切ではない。

【0006】従って、高速データアクセスが可能で、メモリ使用度が小さく、柔軟性及び市場サポートが確保されるファイルシステムが必要とされている。さらに、オープンアーキテクチャを有し、かつ搭載型乗物用ナビゲーションシステムでの使用に適した高速ファイルシステ30ムも必要とされている。

[0007]

【課題を解決するための手段】本発明は、ファイルへのアクセスを可能にする方法である。ファイルは、ファイル中に論理順序に並べられた多数のサブセットを含む。第1のテーブルは、サブセットに対する参照を含んでいる。ファイル中のサブセットの論理順序は、第1のテーブルより決定される。参照は、第1のテーブル中でファイル中のサブセットの論理順序と異なる順序で並べられる。次に、サブセットに対する参照は、ファイル中のサブセットの論理順序に従って第2のテーブルの連続した記憶場所に記憶される。

【0008】本発明のその他の特徴については、添付図面及びこの後の実施形態のについての詳細な説明から明らかとなろう。

【0009】以下の、添付図面に示す本発明の実施形態による詳細な説明は、例示説明のためのもので、本発明に対して限定的な意味を有するものではなく、図中、同様の構成要素は同じ参照符号で示してある。

[0010]

【発明の実施の形態】以下、本発明の高速DOSファイルシステムを実施形態により詳細に説明する。以下の説明においては、本発明の完全な理解させるために、具体的な詳細事項を多数記載する。しかしながら、当業者にとっては、本発明がこれらの具体的な詳細事項の記載なしに実施することが可能なことは明白であろう。その他の場合においては、本発明の説明を容易にするために、周知の構成や装置はブロック図形式により示す。

【0011】本発明には、この後詳細に説明するよう に、DOSファイルシステムの実効データアクセス速度 を改善するための技術が含まれる。一実施形態において は、本発明の高速DOSファイルシステムは搭載型自動 車用ナビゲーションシステムに実装される。しかしなが ら、搭載型乗物用ナビゲーションシステムとは無関係な アーキテクチャを含めて、本発明は種々異なるアーキテクチャで実施することができる。例えば、本発明はパーソナルコンピュータに実装することができる。

【0012】全体的なシステムアーキテクチャ

図1は、本発明を実装した搭載型自動車用ナビゲーショ ンシステム1をブロック図で図解したものである。図示 のナビゲーションシステム1は、中央処理装置(CP U) 10、リードオンリーメモリ(ROM) 11、ラン ダムアクセスメモリ (RAM) 12、及び大容量記憶媒 体13を有し、これらはすべてバス24に接続されてい る。バス24は、実際には、ブリッジ及び/またはバス アダプタによって互いに接続された2本以上のバスより なる場合もある。また、バス24には出力サブシステム 26も接続されている。出力サブシステム26は、バス 24に接続された音声出力コントローラ15から信号を 受け取るがオーディオスピーカ16を含む。また、出力 サブシステム26は視覚的表示装置18を含み、この表 示装置はバス24に接続されたディスプレイコントロー ラ17から信号を受信する。バス24には、入力サブシ ステム14が接続されており、この入力サブシステム は、ユーザ(例えば、乗物の運転者または乗客)が入力 をナビゲーションシステム1に入力する手段を与える。 また、バス24には、インタフェース装置22を介して センササブシステム25が接続されている。センササブ システム25は、角速度センサ19、走行マイル数セン サ(例えば、走行距離計)20及び全地球側位システム (GPS) の受信器21を有し、これらは各々インタフ ェース装置22に接続されている。インタフェース装置 22は、センサ19、20及びGPS受信器21から受 け取ったデータをフォーマットしてバス24へ転送す

【0013】図1に示す各構成要素については、本発明の範囲内で種々の代替が可能である。例えば、大容量記憶媒体13は、CD ROM(CD-ROM)(コンパクトディスクROM)、CD-R(記録可能CD)、D VD(ディジタル多用途ビデオディスク)等の磁気ディ

スクあるいは光学記憶ディスクを含め、適切なものであ れば、任意の形態の不揮発性記憶装置を用いることがで きる。本発明の一実施形態においては、大容量記憶媒体 13は、PCMCLA (Personal Computer Memory Car d International Association ;パーソナルコンピュー タメモリカード国際協会)ハードディスクドライブであ る。さらに、大容量記憶媒体13、ROM11、及びR AM12は、それぞれ複数の物理装置を表す場合もあ る。同様に、表示装置18は、ブラウン管(CRT)、 液晶表示装置(LCD)、あるいは他の任意の形態の適 10 切な視覚出力装置を用いることができる。一実施形態に おいては、入力サブシステム14は、ユーザがそれによ ってアルファニューメリック情報をナビゲーションシス テム1に入力することができる、あるいは表示装置18 上に表示された情報を選択することができるメカニカル ボタンないしはキーを含む。他の実施形態では、メカニ カルボタンに代えて感圧ボタンまたは感熱ボタン、タッ チセンシティブスクリーン、音声作動入力システム、あ るいは別の代替手段を用いることができる。さらに、図 1に示す特定のセンササブシステム25は、本発明の範 20 囲内で他の形態の検出装置に置き換えることが可能であ る。例えば、GPS受信器21は他の形態の高精度測位 システムに置き換えることができ、角速度センサに代え て絶対方位検出器(例えば、コンパス)を用いることが できる。

【0014】システム全体の動作

ナビゲーションシステム1は、街路地図データ、観光名所、レストラン、空港、ショッピングモールなど関心対象の場所を識別指示するデータ、及びその他のデータのデータベースを有する。街路地図データは、種々の異なる縮尺及び詳細図の縮尺を表すデータを含む。一実施形態においては、データベースは大容量記憶媒体13に記憶される。このナビゲーションシステム1によって、運転者は、記憶されたデータベースから所望の目的地を選択してから、その選択された目的地へのルートを演算することができる。

【0015】システム1は、乗物の走行中に、表示装置 18を用いて所定の地域の街路地図を運転者に対して表示する。この表示には、表示された地図に対する乗物の現在位置と動きを示す指示マークが含まれる。乗物が走 40行する際、システム1は、角速度センサ19及び走行マイル数センサ20からのデータを処理して、前に演算された位置からの相対位置の変化を求める「推測航法」と呼ばれる技術を利用する。次に、システム1は、地図マッチングアルゴリズムを使って、計算上の位置を地図データベースと比較し、必要に応じて、位置測定を修正する。場合によっては、GPS受信器21からのデータを用いて、推測航法及び地図マッチングを使って得られた測位結果を修正、補正、あるいは置換することもできる。乗物が走行するのに伴って、システムは、ユーザに 50

対して記録音声または合成音声の形の進路指示をスピーカ16を介して出力する。また、進路指示は表示装置18によりユーザに対して出力することも可能である。【0016】ナビゲーションシステム1はオペレーティングシステムに基づいて機能する。オペレーティングシステムは、ファイルの命名、編成、記憶、及び検索のような機能を実行するためのファイルシステムを有する。本発明は、以下に説明するように、ファイルシステムの動作を改善するための技術を含むものである。

【0017】一実施形態においては、本発明は、ナビゲ ーションシステム1でそのCPU10がメモリ(メモリ はROM11、RAM12、大容量記憶媒体13、また はこれらの装置の組合せでもよい)に記憶された命令の シーケンスを実行するのに応答して機能する。すなわ ち、メモリに記憶された命令のシーケンスの実行によっ て、СРИ10は以下に説明する本実施形態のステップ を実行する。例えば、命令は、ROM11または大容量 記憶媒体13のような永存性記憶装置からRAM12に ロードして、実行することも可能である。他の実施形態 においては、ソフトウェア命令に代えて、あるいはこれ らのソフトウェア命令と組み合わせてハードワイヤード 回路を用いることにより本実施形態を実施することも可 能である。このように、本発明は、ハードウェア回路と ソフトウェアの何らかの特定の組合せに限定されるもの ではなく、またナビゲーションシステム1によって実行 される命令の如何なる特定のソースに限定されるでもな

【0018】ファイルアクセステーブル

本発明には、DOSファイルシステムの実効速度を改善するための技術が含まれる。DOSファイルシステムは、そのデータアクセス速度が比較的遅いために、一般に自動車用ナビゲーションシステム用としては適当ではない。ここで、このデータアクセス速度が比較的遅い理由について述べる。

【0019】データは、一般にデータクラスタの形で記憶媒体上に記憶される。クラスタは、記憶媒体のいくつかの連続した物理セクタを意味する。各ファイルのデータクラスタは、そのファイル中において論理順序を有する。DOSファイルシステムは、一般にクラスタチェーンを用いてファイルにアクセスする。クラスタチェーンは、特定のファイルにおけるデータクラスタのリンクされたリストである。これらのクラスタチェーンは、ファイルとそのファイルのデータクラスタの間の結合であるファイルアクセステーブル(FAT)に記憶される。

【0020】図2には、FAT30が図解されている。FAT30は、多数の記憶場所を有し、これらの各記憶場所には、ファイルの特定のデータクラスタに対する参照が記憶される。各参照は、ファイル中の論理順序による次のデータクラスタに対する参照にもなっている。各ファイルにおけるクラスタチェーンの始めは入口点によ

って示され、この入り口点はFAT30における記憶場所12である。従って、 $File_A$ のクラスタチェーンは(13、14、45、46)である。ファイルのクラスタチェーンの最後のクラスタは、FAT30の記憶場所46に記憶された識別子「LAST」のようなクラスタチェーンの最後の記憶場所に記憶された適切な識別子によって識別される。

【0021】ファイルは、FATでそのファイルと結び 付けられたクラスタチェーンを通して逐次順方向検索を 行うことによってアクセスされる。現在参照されている データクラスタを指示するファイルポインタは、クラス タチェーンに沿って前方へ動かすることができる。関連 するデータがファイルポインタの後ろにある場合は、フ ァイルポインタをクラスタチェーンの始めにセットし て、探索を再始動することができる。ファイルが小さい 場合は、この探索を実行するするのに必要な時間は無視 できるほど小さいこともある。しかしながら、データベ ースファイルは一般に大量のデータが入っているので、 クラスタチェーンの探索は比較的長い時間を要すること が多い。従って、DOSファイルシステムと関連したF ATは、短いクラスタチェーンを有する比較的小さいフ ァイルにアクセスするのに適しているかもしれない。し かしながら、FATは、搭載型乗物用ナビゲーションシ ステムのデータベースに通常見られるような大きいデー タファイルにアクセスするのには全く不適である。

【0022】高速ファイルアクセステーブル 本発明は、(機能上)ファイルシステムのFAT「の上 に」置かれた追加構造を生成するすることによって、効 果的にDOSファイルシステムのデータアクセス速度を 改善するものである。本願においては、この構造を「高 30 速FAT(FFAT)」と称する。FFATはの一例を 図3Aに示す。この構造は、各ファイル毎のクラスタチ ェーンが、本願で「クラスタテーブル」と称する新しい テーブルに記憶される。クラスタテーブルは、ファイル 中の実クラスタに対する参照が書き込まれる多数の記憶 場所、すなわち論理クラスタを有する。DOSファイル システムの標準のFATと対比して、クラスタに対する 参照は、ファイル内のクラスタの論理順序に従ってクラ スタテーブルの連続した記憶場所に記憶される。その結 果、ファイルは、FATを用いた逐次方式ではなく、そ のクラスタテーブルを用いてランダム方式によりアクセ スすることができる。以下に説明するように、所定のフ ァイルについてののクラスタテーブルは、そのファイル と関連したFATをトラバース、あるいは走査すること により生成される。

【0023】次に、図3Aにおいて、FFATは、記述 子34、参照テーブル35、及び「Filename」 A」、「Filename」B」、及び「Filena me_C」のようないくつかのファイルについてのクラ スタテーブル36で構成されている。参照テーブル35 には、各ファイルのファイル名及び各ファイル毎のクラスタテーブルに対する参照が書き込まれる。参照テーブル35中のファイル名は、参照符号「31」によって示し、クラスタテーブルに対する参照は参照符号「32」によって示してある。記述子34は、FFAT中のファイル数及び参照テーブル35のサイズを記述する。このように、FFAT33中の各ファイルは、参照テーブル35にエントリを有する。エントリはファイル名によって識別することができ、そしてファイルのクラスタテーブルは、その関連する参照によって場所を突き止めることができる。このようにして、所定のファイルについてのクラスタテーブルをそのファイル名によってアクセスすることができる。

【0024】図3Bには、クラスタテーブルがより詳細 に示されている。クラスタテーブル37は、「論理クラ スタ」と呼ばれるN個の記憶場所38を有する。クラス タテーブル37中の各論理クラスタ38は、0、1、 2、・・・、N-1の範囲内にあるインデックス値によ って識別される。各論理クラスタのインデックス値は、 その論理クラスタによって参照されたデータクラスタが データファイル中に論理順序で現れる順序を表す。例え ば、図3Cには、図2によって説明した一例のファイル であるFile_Aと関連したクラスタテーブル39が 示されている。前に述べたように、File_Aついて のクラスタチェーンは(13、14、45、46)であ る。このように、ファイルAのクラスタテーブル39 は、論理クラスタ0、1、2、と3として識別される (インデックスされる) 4つの論理クラスタを含み、こ れらの論理クラスタにはそれぞれデータクラスタ13、 14、45、と46に対する参照が含まれている。

【0025】一実施形態においては、FFATは、利用 可能な時だけ、DOSファイルシステムにより使用され る任意選択機能として扱われる。FFATが利用可能で はない場合、ファイルシステムは、単に標準のFATを 使ってファイルにアクセスする。この実施形態では、シ ステム 1 がリセットされるたびに、ファイルシステムは デフォルトディレクトリ用のFFATをロードすること を試みる。同様に、ディレクトリの変更が行われるたび に、ファイルシステムは新しいディレクトリ用のFFA Tテーブルをロードすることを試みる。ディレクトリの 変更は、例えば、現在アクセス中の地域と異なる地域を 表すデータにアクセスするのに必要になる。FFATの ローディングがうまく行われれば、コンフィギュレーシ ョンファイルで指定されているファイルについての標準 のFATのテーブルアクセスに換えて、FFATのアク セスが行われる。FFATテーブルがうまくロードされ ないか、ファイルがコンフィギュレーションファイルで 指定されていない場合は、通常のFATのアクセスが行 われることになる。従って、ナビゲーションシステム1 50 はFATテーブルなしでも動作することができる。ただ し、その速度は F F A T テーブルを使用する場合より遅くなる。

【0027】 FFATによって参照されたデータファイルが更新される毎に、FFATを更新されなければならない。図5には、FFATを更新するためのルーチンが示されている。一実施形態においては、図5の手順はこの目的のための専用ソフトウェアユーティリティレクティンのパスが入力される(ステップ501)。次に、更新されたデータファイルの名前が、ディレクトリのコンファイルの名前が、ディレクトリのコンファイルより検索して取り出される(ステップ502)。次に、更新されたFFATが、FATによってFATから生成される(ステップ503)。FFATを更新するステップ(ステップ503)は、それによって影響されたファイルのクラスタテーブルを更新する操作を含む。

【0028】図6は、ファイルのクラスタテーブルを生 成する、あるいは更新するためのルーチンを示したもの である。インデックス変数【が始めにゼロにセットされ (ステップ601)、システム1は、ファイルポインタ に基づいてFATの第1の記憶場所にアクセスして、第 1のクラスタに対する参照を得る(ステップ602)。 次に、この参照はクラスタテーブルの論理クラスタLC [1] (1のインデックス値を有する論理クラスタ)に 記憶される。参照がクラスタチェーンの最後のクラスタ ならば (ステップ604) ルーチンは終了する。最後の 40 クラスタでなければ、インデックス変数 I が 1 だけイン クリメントされる(ステップ605)。インデックス値 」をインクリメントした後、現在の参照からクラスタチ ェーンにおける次の参照の記憶場所が決定される(ステ ップ606)。次に、FATにおける次の記憶場所がア クセスされて、そのクラスタチェーンにおける次のクラ スタに対する参照が得られる(ステップ607)。その 後、ステップ603からルーチンが繰り返される。

【0029】データファイルは、ファイルのクラスタテーブルの論理クラスタを逐次読み取ることよってアクセ 50

スされる。データアクセスは、ファイルシステムへの読 取り要求によって開始される。読取り要求には、ファイ ル名、オフセット、及びカウントが含まれる。オフセッ トは、ファイルの始め、現在位置あるいはファイルの終 わりのような、ファイル中の所定の点から測定される。 カウントは、読み取られるデータバイト数を指定し、従 って、一実施形態においては、読取り要求は次のような フォーマットを有する:READ([FILE_NAM E], [OFFSET], [COUNT])。オフセッ トを与えられて、クラスタテーブルの開始論理クラスタ がオフセットをクラスタサイズで割ることによって計算 される。このように、クラスタテーブルの開始論理クラ スタは、逐次方式ではなく、ランダムにアクセスされ る。次に、実データクラスタに対する参照をクラスタテ ーブルの論理クラスタから検索して取り出すことができ る。オフセットと関連したセクタ番号は、クラスタテー ブルから得られた実クラスタ番号にクラスタ当たりのセ クタ数を掛けることによって計算することができる。論 理セクタ番号及びセクタ数をデバイスドライバに供給す ることにより、論理セクタを物理セクタにマップして、 20 データを記憶装置から検索して取り出すことができる。 クラスタテーブル中の論理クラスタは、クラスタテーブ ル中に現れる順に読み取られる。このように、ファイル は、順次アクセスファイルとしてではなく、ランダムア クセスファイルとしてアクセスされる。

【0030】図7は、上に述べた方法でデータ読み取るためのルーチンの例を示したものである。始めに(ステップ701で)、クラスタテーブルで読み取られる最初のクラスタLCが、オフセット値(バイト)をクラスタサイズ(バイト)で割ることによって計算される。次に、値CLUSTER_OFFSETが、クラスタサイズで割ったオフセット値の剰余として計算される(ステップ702)。次に、SECTOR_IN_CLUSTERが、CLUSTER_OFFSETをセクタサイズで割った値として計算される(ステップ703)。その後、値SECTOR_OFFSETが、CLUSTER_OFFSETをセクタサイズで割った剰余として計算される(ステップ704)。次に、読み取ろうとする。理セクタLOGICAL_SECTORが、次式によって計算される(ステップ705):

LOGICAL_SECTOR = (CLUSTER_ TABLE [LC] ×クラスタ当たりのセクタ数) + S ECTOR_IN_CLUSTER 式中、CLUSTER_TABLE [LC] は、クラス

式中、CLUSTER_TABLE LLC」は、クラスタテーブルの論理クラスタ LC によって参照されるデータクラスタを表す。次に、計算で求められたLOGICAL_SECTOR及びSECTOR_OFFSET値を用いて、読み取ろうとするデータの場所が突き止められ、それらのデータが取り出される(ステップ706)。検索して取り出されたクラスタが最後に読み取ら

*20

れるクラスタでなければ、論理クラスタLCが1だけインクリメントされ、新しいLOGICAL_SECTO R値を計算することによってこのルーチンが繰り返される(ステップ705)。検索して取り出されたクラスタが最後に読み取られるクラスタであった場合、ルーチンは終了する。

【0031】以上、本発明の高速DOSファイルシステムを実施形態により詳細に説明した。本願では、本発明をその特定の実施形態に関連して説明したが、特許請求の範囲の範囲に記載する本発明の広義の精神及び範囲から逸脱することなく、これらの実施形態について種々の修正態様及び変更態様を実施することが可能なことは明白であろう。したがって、本願の明細書及び図面は、限定的な意味ではなく、例示説明を目的とした意味で解釈すべきものである。

【図面の簡単な説明】

【図1】 搭載型自動車用ナビゲーションシステムのブロック図である。

【図2】 DOSファイルアクセステーブル(FAT) の一例の説明図である。 *【図3】 高速 F A T (F F A T) の説明図(A) と、 クラスタテーブルの説明図(B)と、ファイルのデータ クラスタに対する参照を記憶したクラスタテーブルの説 明図(C)である。

【図4】 システムリセットまたはディレクトリの変更に応答してFFATの場所を突きとめるためのルーチンを図解したフローチャートである。

【図5】 FFATを生成するためのルーチンを図解したフローチャートである。

10 【図6】 ファイル用のクラスタテーブルを生成するためのルーチンを図解したフローチャートである。

【図7】 FFATを用いてファイル読み取るためのルーチンを図解したフローチャートである。

【符号の説明】

10 CPU、11 ROM、12 RAM、13 大容量記憶媒体、14入力サブシステム、15 音声出力コントローラ、16 スピーカ、17 ディスプレイコントローラ、18 表示装置、19 角速度センサ、20 走行距離センサ、21 GPS。

南台 デャントリのパスを入力する 501 デャントリのコンフィギュレーションファイルから、データファイルの名前を検索して取ります502 松子 する 503

【図5】

【図1】 HAM 12 S =1 음의 GPS 21 ଥ

【図3】

[図4]

【図6】

【図7】

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 10-228400

(43)Date of publication of application: 25.08.1998

(51)Int.Cl. G06F 12/00

G01C 21/00

(21)Application number: 09-324429 (71)Applicant: ZEXEL:KK

(22)Date of filing: 26.11.1997 (72)Inventor: LIAW JEFF JYH-MIN

SAKAKIBARA TOSHIKAZU

(30)Priority

Priority number: 96 753483

Priority date: 26.11.1996

Priority country: US

(54) HIGH-SPEED FILE SYSTEM

.....

(57)Abstract:

PROBLEM TO BE SOLVED: To enable high-speed data access by storing reference to subsets in successive storage locations of a 2nd table according to the logical order of the subsets in a file from a 1st table.

SOLUTION: A DOS(disk operating system) file system accesses the file by using a

cluster chain and stores it in a file access table as the 1st table of connection between the file and data clusters in the file. This file access table consists of a descriptor 34, a reference table 35, and a cluster table 36 of 2nd tables. In contrast with this file access table, reference 32 to subsets is stored in successive locations of the cluster table 36 according to the logical order of the subsets in the file.

LEGAL STATUS [Date of request for examination]

[Date of sending the examiner's decision of rejection]

.....

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The reference to :subset is included in the approach of enabling access to the file containing two or more subsets arranged by the logical order. The step which determines the logical order of the subset in a file from the 1st table arranged in the sequence that the reference differs from the logical order of the subset in said file; according to the logical order of the subset in said file, the reference to the subset The step memorized to the memory location which the 2nd table followed, and the approach possessing;.

[Claim 2] The step which memorizes the reference to said subset: The approach of; claim 1 publication that the location of referring to each in said 2nd table consists of a step which fears the reference to a subset an account in the memory location which the 2nd table followed according to the logical order of

the subset in a file as expresses the logic location of a subset where it corresponds in said file.

[Claim 3] The approach according to claim 1 which possesses further the step which accesses the memory location which the plurality in said 2nd table followed, and searches and takes out the cluster of said file.

[Claim 4] The approach according to claim 1 which possesses further the step which accesses said file, and searches and takes out at least one cluster of said file by accessing the memory location in said 2nd table at random.

[Claim 5] The approach according to claim 1 which possesses further the step which answers that said file is updated and updates said 2nd table automatically.

[Claim 6] The approach according to claim 1 said reference consists of a step which said 1st table memorizes in the form of a linked list, the step which determines the logical order of the subset in said file reads reference by the linked list, and specifies a subset, and specifies the logical order of the subset in a file.

[Claim 7] It is the approach of enabling it to access the file which contains two or more data subsets in a database using a file system. A file system contains the file access table (FAT) which has two or more memory locations. Each memory

location includes the reference to one of the data subsets, and the reference to another memory location in FAT. In the approach the reference to other memory locations in a file directs the following logic data subset in a file The step which specifies the logical order of the data subset in said file based on said FAT; : By memorizing the reference to said data subset to the memory location which said table followed based on said logical order The step which builds the table containing two or more memory locations, and the approach possessing;. [Claim 8] The approach according to claim 7 which possesses further the step which accesses said file, and searches and takes out at least one subset of a file by accessing the memory location in said table at random. [Claim 9] The approach according to claim 7 which possesses further the step which accesses the memory location which the plurality of said table followed, and searches and takes out the cluster of said file according to said logical order. [Claim 10] The approach according to claim 7 which possesses further the step which answers renewal of said file and updates said table automatically. [Claim 11] The approach according to claim 7 the memory location of FAT is a linked list.

[Claim 12] The approach according to claim 7 said data subset is a data cluster

respectively.

[Claim 13] The approach according to claim 12 of consisting of a step which the reference to said data subset is memorized by said FAT as a linked list, and the step which specifies the logical order of the data subset in said file reads a linked list, and specifies the logical order of the data subset in a data file.

[Claim 14] The approach according to claim 7 said file system is a DOS file system.

[Claim 15] It is an approach for accessing the data file which contains the cluster of two or more data in a database using a file system. A file system contains the file access table (FAT) which has two or more memory locations. Each memory location includes the reference to another memory location in FAT which directs the next cluster of the reference and the data file to one of the clusters of a data file. In an approach with the reference able for the discontinuous memory location in FAT to have to the cluster of a data file The step which specifies the logical order of the cluster in said data file from said FAT; By memorizing the reference to said cluster to the memory location which the cluster table followed based on said logical order The step which builds a cluster table; the step which accesses said data file, and searches and takes out the cluster of a data file by

accessing serially to the memory location followed in said cluster table, and the approach possessing;

[Claim 16] The approach according to claim 15 which possesses further the step which answers that said data file is updated and updates a cluster table automatically.

[Claim 17] The approach according to claim 15 by which the reference to said cluster is memorized by FAT as a linked list.

[Claim 18] The approach according to claim 17 the step which specifies the logical order of said cluster consists of a step which reads said linked list and specifies the logical order of the data cluster in said data file.

[Claim 19] It is the step which accesses the DOS file access table (FAT) which has the memory location of :plurality in the approach of accessing the file which contains two or more data clusters in a database using a DOS file system. Each memory location includes the reference to one and FAT of a data cluster. The reference to a data cluster is memorized by FAT as a linked list. These reference The step which not necessarily specifies the logical order to which a data cluster appears in a file when all follow the step and the; aforementioned linked list which are not memorized by the memory location which FAT followed; a cluster

table including the reference to said data cluster By memorizing the reference to a data cluster to the memory location which this cluster table followed according to the logical order of the cluster in said file The step which builds the cluster table for a file; the step which accesses a file, and searches and takes out the cluster of a file by accessing the memory location which said cluster table followed, and the approach possessing;

[Claim 20] The approach according to claim 19 said database is a map database of the street of a certain area.

[Claim 21] The approach according to claim 20 mounted in the vehicle loading system for supporting that the operator of a vehicle makes a course decision.

[Claim 22] In the equipment for supporting that the user of a vehicle determines the course of a vehicle: Provide the output subsystem for outputting course information to said user connected to said processor, and; a processor, the database which has a data file containing two or more data subsets which have; logical order, and; -- the sensor subsystem connected to said processor, and; -- It is constituted. said processor -- : -- the data from said sensor subsystem and said database -- being based -- the current position of a vehicle -- calculating --; which makes the directions information on the current position output to said

output subsystem to a user -- it needs -- Said processor includes the reference to the :aforementioned data subset further. The reference The logical order of the data subset in said data file The method of; which memorizes the reference to said data subset to the memory location which the logical order of the data subset in a data file was determined, and the 2nd table followed according to the logical order of the data subset in the; aforementioned data file from the 1st table arranged in different sequence Equipment constituted.

[Claim 23] Equipment according to claim 22 said whose database is a map database of the street of a certain area.

[Claim 24] Equipment according to claim 23 with which said data file includes the information which identifies the subset of a street.

[Claim 25] Equipment according to claim 22 constituted so that the relative location of referring to each in said 2nd table may express further the relative location of a cluster where said data file in said logical order corresponds and said processor may memorize the reference to a data subset to the memory location which the 2nd table followed according to the logical order of the data subset in a data file.

[Claim 26] Equipment according to claim 22 constituted so that a processor may

access said file and may search and take out at least one of the files by accessing the memory location of said 2nd table at random further.

[Claim 27] Equipment according to claim 26 constituted so that said processor may access said file and may search and take out the cluster of a file according to said logical order by accessing further the memory location which the plurality of said 2nd table followed.

[Claim 28] Equipment according to claim 22 constituted so that said processor may answer further that said file is updated and may update said 2nd table automatically.

[0029] Equipment according to claim 2 with which said reference is memorized by said 1st table in the form of a linked list.

[Claim 30] Equipment given in a claim constituted so that a processor may read reference of said 1st table, and may carry out data-subset discernment and may specify the logical order of the data subset in a data file further.

[Claim 31] In the machine-readable program storage which mounted the program of the instruction which can be executed on the computer system for performing the approach step which enables access to the data file in the database containing two or more data subsets arranged by the logical order:

reference When arranged in the 1st table in different sequence from the logical order of the data subset in a data file. It determines from the 1st table including the reference of as opposed to a data subset for the logical order of the data subset in said data file. The machine-readable program storage which recorded the program which memorizes the reference to this data subset on the memory location which the 2nd table followed according to the logical order of the data subset in a data file.

[Claim 32] the time of memorizing the reference to said data subset --: -- the machine-readable program storage according to claim 31 which memorizes the reference to a data subset to the memory location which the 2nd table followed according to this logical order of the data subset in this data file so that the relative location of a cluster where said data file which the relative location of referring to each in said 2nd table can boil and set by said logical order corresponds might be expressed.

[Claim 33] Furthermore, a machine-readable program storage including accessing said file, and searching and taking out the cluster of a file according to said logical order by accessing at random the memory location followed in said 2nd table, according to claim 31.

[Claim 34] Furthermore, a machine-readable program storage including the thing for which said file is updated and which carry out a thing response and updates said 2nd table automatically according to claim 31.

[Claim 35] The machine-readable program storage according to claim 31 with which said reference is memorized by said 1st table in the form of a linked list.

[Claim 36] The machine-readable program storage according to claim 32 which reads the reference in said 1st table, specifies a data subset, and specifies the logical order of the data subset in a data file in case the logical order of the data subset in said data file is determined.

[Claim 37] Processor; It is the 1st storage with which the database connected to said processor is memorized. The data file in which the database contains two or more data clusters is included. It is referred by the 1st table on which a data file has two or more memory locations. Each memory location includes the reference to at least one data cluster, and the reference to another memory location in the 1st table. The 1st storage which has the reference to the cluster of a data file in the discontinuous memory location in the 1st table; When it is the 2nd storage connected to said processor and a processor performs, To the processor: Make the logical order of the data cluster in said data file specify

from said 1st table, and it is based on the; aforementioned logical order. Said data file is accessed by making the 2nd table build and accessing at least one continuous memory location in the table of the; above 2nd at random by memorizing the reference to said cluster to the continuous memory location. The 2nd storage which memorized; instruction which makes at least one cluster of a data file search and take out, and the computer system possessing;.

[Claim 38] The computer system according to claim 37 which is the file access table (FAT) on which said 1st table is maintained by the DOS file system.

[Claim 39] The computer system according to claim 37 in which said instruction includes further the instruction which it answers [instruction] that said file is updated and makes a processor update said cluster table automatically when a processor performs.

[Claim 40] The computer system according to claim 37 the reference to said data cluster is remembered to be by said 1st table as a linked list.

[Claim 41] The computer system according to claim 37 as which said instruction in which the logical order of said data cluster is made to specify it as said processor makes this logical order of the data cluster in a data file specify by making a processor read a linked list further.

[Claim 42] The computer system according to claim 37 said whose database is a map database of the street of a certain area.

[Claim 43] The computer system according to claim 42 in which said data file includes the information which identifies the subset of said street.

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to a computer system. This invention relates to the high-speed file system for accessing the database of the navigation system for loading mold vehicles in more detail.

[0002]

[Description of the Prior Art] A loading mold navigation system can use deciding a course for helping, in case an automobilism person runs through unfamiliar land. It is equipment of the computer base where an example of such a system makes the destination choose from the street map database memorized by the operator in, makes the root to the selected destination calculate in, and leads an operator to the selected destination after that. Such a system has the various sensors for generally determining the location of a vehicle. In connection with a vehicle moving, this system processes data from a sensor and determines the location of the probable vehicle to map data. This system can display the indicator in which the location of a vehicle and a motion are shown on the map

which could display the street map of a surrounding area on the operator, and was displayed, in case a vehicle moves. Moreover, this system can also give an operator the course directions by voice and/or vision. Such a navigation system for loading mold automobiles is available from the ZEXEL U.S.A. corporation (Zexel USA Corporation) company of current and U.S. California Sunnyvale (Sunnyvale).

[0003] This kind of loading mold navigation system is controlled by the computer. Other computers and a computer [in / similarly / the navigation system for loading mold vehicles] have the operating system which is the software for controlling fundamental actuation of a system. An operating system names a file and the file system for managing a file, such as composing, memorizing and searching a file, is in it by **. However, there is a problem on some designs about the file system of the navigation system for loading mold vehicles. Generally these problems relate to whenever [rate / of a file system /, modifiability, and memory use], and, a commercial-scene support.

[0004] For example, an Original-Equipment-Manufacturing contractor (OEM) may purchase a file system from external supply origin. However, in case use of the proprietary software supplied from the external source changes file system

software or decompiles it, it may have to receive application of some constraint imposed by the supplying agency. Such constraint becomes the hindrance at the time of debugging actuation, or bars the upgrade of the whole navigation system. Moreover, about the file system which can assert ownership, it is sometimes difficult to find an exchange tool in a commercial scene. Therefore, it may be desirable to use the file system which has an open architecture (namely, official announcement specification).

[0005] The well-known DOS (disk operating system) file system has an open architecture, therefore the DOS file system has become an existence attractive as a future file system for loading mold navigation systems. Moreover, a DOS file system needs only the comparatively small amount of memory as compared with the file system which can assert a part of ownership. However, a DOS file system tends to become late, when accessing a large file so that it may be detailed and may state later (it indicates in the term of "the gestalt of implementation of invention"). This delay when accessing a file may divert an operator's attention, therefore may cause risk. So, a standard DOS file system is not suitable to use it by the navigation system for loading mold vehicles generally.

[0006] Therefore, a high-speed data access is possible, whenever [memory use] is small, and the file system with which flexibility and a commercial-scene support are secured is needed. Furthermore, the high-speed file system which has an open architecture and was suitable for use by the navigation system for loading mold vehicles is also needed.

[0007]

[Means for Solving the Problem] This invention is the approach of enabling access to a file. A file contains in a file the subset of a large number put in order by the logical order. The 1st table includes the reference to a subset. The logical order of the subset in a file is determined from the 1st table. Reference is put in order in different sequence from the logical order of the subset in a file in the 1st table. Next, the reference to a subset is memorized by the memory location which the 2nd table followed according to the logical order of the subset in a file. [0008] About the description of others of this invention, I will become clear from the detailed explanation about that of an accompanying drawing and a next operation gestalt.

[0009] The detailed explanation by the operation gestalt of this invention shown in the following accompanying drawings is a thing for instantiation explanation, it

does not have restrictive semantics to this invention, and the same reference mark has shown the same component among drawing.

[0010]

[Embodiment of the Invention] Hereafter, an operation gestalt explains the high-speed DOS file system of this invention to a detail. In the following explanation, in order [that this invention is perfect] to make it understand, many concrete detail matters are indicated. However, probably, for this contractor, it will be clear for this invention to be able to carry out without the publication of these concrete detail matters. In order to give explanation of this invention easy in the case of others, a block graphic form type shows a well-known configuration and equipment.

[0011] The technique for improving the effective data-access rate of a DOS file system is included in this invention so that it may explain to a detail after this. In 1 operation gestalt, the high-speed DOS file system of this invention is mounted in the navigation system for loading mold automobiles. However, various this inventions including architecture unrelated to the navigation system for loading mold vehicles can be carried out by different architecture. For example, this invention can be mounted in a personal computer.

[0012] Overall system-architecture drawing 1 illustrates the navigation system 1 for loading mold automobiles which mounted this invention with a block diagram. The navigation system 1 of illustration has a central processing unit (CPU) 10, a read only memory (ROM) 11, random access memory (RAM) 12, and a mass storage medium 13, and these are all connected to the bus 24. A bus 24 may consist of two or more buses each other connected by the bridge and/or the bus adapter in fact. Moreover, the output subsystem 26 is also connected to the bus 24. Although an output subsystem 26 receives a signal from the voice output controller 15 connected to the bus 24, it contains the audio loudspeaker 16. Moreover, an output subsystem 26 receives a signal including VDU 18 from the display controller 17 by whom this indicating equipment was connected to the bus 24. The input subsystem 14 is connected to the bus 24, and this input subsystem gives a means by which a user (for example, the operator or PAX of a vehicle) inputs an input into a navigation system 1. Moreover, the sensor subsystem 25 is connected to the bus 24 through the interface device 22. The sensor subsystem 25 has the receiver 21 of the angular-velocity sensor 19, the transit mileage sensor (for example, odometer) 20, and all earth accumbency systems (GPS), and these are respectively connected to the interface device 22.

An interface device 22 formats the data received from sensors 19 and 20 and the GPS receiver 21, and transmits them to a bus 24.

[0013] About each component shown in drawing 1, alternatives various by within the limits of this invention are possible. For example, a mass storage medium 13 is CD. Including a magnetic disk or optical storage disks, such as ROM (CD-ROM) (compact disk ROM), CD-R (recordable CD), and DVD (digital multi-purpose videodisk), if suitable, the nonvolatile storage of the gestalt of arbitration can be used. In 1 operation gestalt of this invention, a mass storage medium 13 is a PCMCLA (Personal Computer Memory Card International Association; personal computer memory card international association) hard disk drive. Furthermore, a mass storage medium 13, and ROM11 and RAM12 may express two or more physical units, respectively. Similarly, the Braun tube (CRT), a liquid crystal display (LCD), or the suitable vision output unit of the gestalt of other arbitration can be used for an indicating equipment 18. In 1 operation gestalt, an input subsystem 14 contains the mechanical carbon button or key which a user can input alphanumeric information into a navigation system 1 by it, or can choose the information displayed on the indicating equipment 18. With other operation gestalten, it can replace with a mechanical carbon button and a pressure-sensitive carbon button or a sensible-heat carbon button, a touch sensitive screen, voice actuation input system, or another alternative means can be used. Furthermore, the specific sensor subsystem 25 shown in drawing 1 can be transposed to the detection equipment of other gestalten within the limits of this invention. For example, the GPS receiver 21 can be transposed to the high precision positioning system of other gestalten, can be replaced with an angular-velocity sensor, and can use a bearing detector (for example, compass) absolutely.

[0014] The navigation system 1 of the whole system of operation has the database of the data which carry out the discernment directions of the locations for an interest, such as street map data, a sightseeing spot, a restaurant, an airport, and a shopping mall, and other data. Street map data contain the data showing the scale from which versatility differs, and the scale of detail drawing. A database is memorized by the mass storage medium 13 in 1 operation gestalt. By this navigation system 1, an operator can calculate the root to that selected destination, after choosing the desired destination from the memorized database. [0015] During transit of a vehicle, a display 18 is used for a system 1 and it displays the street map of a predetermined area to an operator. The directions

mark which shows the current position of the vehicle to the displayed map and a motion is included in this display. In case a vehicle runs, a system 1 processes the data from the angular-velocity sensor 19 and the transit mileage sensor 20, and the technique called the "dead-reckoning navigation" which asks for change of the relative position from the location calculated before is used. Next, a system 1 corrects location measurement for the location on count if needed as compared with a map database using a map matching algorithm. The positioning result obtained using dead-reckoning navigation and map matching depending on the case can also be corrected, amended or permuted using the data from the GPS receiver 21. In connection with a vehicle running, a system outputs course directions of the form of record voice or synthesized speech through a loudspeaker 16 to a user. Moreover, course directions can also be outputted to a user with a display 18.

[0016] A navigation system 1 functions based on an operating system. An operating system has a file system for performing naming of a file, organization, storage, and a function like retrieval. This invention includes the technique for improving actuation of a file system so that it may explain below.

[0017] In 1 operation gestalt, this invention answers and functions on performing

the sequence of the instruction with which the CPU10 was memorized by memory (the combination of ROM11, RAM12, mass storage media 13, or these equipments is sufficient as memory) by the navigation system 1. That is, CPU10 performs the step of this operation gestalt explained below by activation of the sequence of the instruction memorized by memory. For example, to load to RAM12 from ROM11 or ****** storage like a mass storage medium 13, and to perform can also be ordered. In other operation gestalten, it is also possible by replacing with a software instruction or using a hard-wired circuit combining these software instructions to carry out this operation gestalt. thus, this invention is not limited to a certain specific combination of hardware circuitry and software, and is limited to what kind of the specific source of the instruction executed by the navigation system 1 -- also coming out -- there is nothing.

[0018] The technique for improving the effective speed of a DOS file system is included in file access table this invention. Since the data-access rate of a DOS file system is comparatively slow, generally it is not suitable as an object for automobiles for navigation systems. Here, the reason nil why this data-access rate is comparatively slow is explained.

[0019] Generally data are memorized on a storage in the form of a data cluster.

A cluster means the physical sector which some of storages followed. The data cluster of each file has a logical order in the file. Generally a DOS file system accesses a file using a cluster chain. A cluster chain is the linked list of the data cluster in a specific file. These cluster chains are memorized by the file access table (FAT) which is association between the data clusters of a file and its file. [0020] FAT30 is illustrated by drawing 2 . FAT30 has much memory locations and the reference to the specific data cluster of a file is memorized by each of these memory locations. Referring to each is also reference to the following data cluster by the logical order in a file. It is shown by the entry point the start of the cluster chain in each file, and this entry point is the memory location 12 in FAT30. It follows. The cluster chains of File_A are (13, 14, 45, 46). The cluster of the last of the cluster chain of a file is identified by the suitable identifier memorized by the memory location of the last of a cluster chain like the identifier "LAST" memorized by the memory location 46 of FAT30.

[0021] A file is accessed by performing forward search serially through the cluster chain connected with FAT to the file. The file pointer which directs the data cluster by which current reference is carried out can do ***** moved to the front along with a cluster chain. When related data are behind a file pointer, a file

pointer can be set at the beginning of a cluster chain, and retrieval can be restarted. When a file is small, time amount required to perform this retrieval has that it is also so small that it can ignore. However, since a lot of data are generally contained, a database file requires time amount with comparatively long retrieval of a cluster chain in many cases. Therefore, FAT relevant to a DOS file system may be suitable for accessing the comparatively small file which has a short cluster chain. However, FAT is completely unsuitable, although a large data file which is usually looked at by the database of the navigation system for loading mold vehicles is accessed.

[0022] FAT "a ** top" of a file system (on a function) High-speed file access table this invention improves the data-access rate of a DOS file system effectively by generating the placed additional structure. In this application, this structure is called "a high speed FAT (FFAT)." An example of FFAT ** is shown in drawing 3.

A. This structure is memorized by the new table which the cluster chain for every file calls a "cluster table" by this application. A cluster table has the memory location of a large number in which the reference to the real cluster in a file is written, i.e., a logical cluster. The reference to a cluster is memorized by the memory location which the cluster table followed according to the logical order of

the cluster in a file as contrasted with FAT of the criterion of a DOS file system. Consequently, a file can be accessed with a random method not using the serial method which used FAT but using the cluster table. The cluster table of ** is generated by traversing or scanning FAT relevant to the file about a predetermined file so that it may explain below.

[0023] Next, in drawing 3 A, FFAT consists of cluster tables 36 about some files [like] which are a descriptor 34, the reference table 35 and "Filename_A", "Filename_B", and "Filename_C." The reference to the file name of each file and the cluster table for every file is written in the reference table 35. A reference mark "31" shows the file name in the reference table 35, and the reference mark "32" has shown the reference to a cluster table. A descriptor 34 describes the number of files in FFAT, and the size of the reference table 35. Thus, each file in FFAT33 has an entry on the reference table 35. An entry can be identified by the file name and the cluster table of a file can trace a location by the related reference. Thus, the cluster table about a predetermined file can be accessed by the file name.

[0024] The cluster table is shown more in the detail at <u>drawing 3</u> B. The cluster table 37 has the memory location 38 of N individual called a "logical cluster."

Each logical cluster 38 in the cluster table 37 is identified with 0, 1, 2, ..., the index value that is within the limits of N-1. The index value of each logical cluster expresses the sequence that the data cluster referred to by the logical cluster appears in a logical order in a data file. For example, the cluster table 39 relevant to File_A which is the file of an example explained by <u>drawing 2</u> is shown in <u>drawing 3</u> C. As stated above, the cluster chains attached File_A are (13, 14, 45, 46). Thus, the reference to the data clusters 13, 14, 45, and 46 is included in these logical clusters including four logical clusters from which the cluster table 39 of File A is discriminated as logical clusters 0, 1, 2, and 3 (an index is carried out), respectively.

[0025] In 1 operation gestalt, FFAT is treated as an optional feature used by the DOS file system, only when available. When FFAT is not available, a file system is accessed at a file, only using standard FAT. With this operation gestalt, it tries for a file system to load FFAT for default directories, whenever a system 1 is reset. It tries similarly, for a file system to load the new FFAT table for directories, whenever a change of a directory is made. Modification of a directory is needed for accessing the data showing the area for example, under current access, and a different area. If loading of FFAT is performed well, it will change to table

access of FAT of the criterion about the file specified by the configuration file, and access of FFAT will be performed. When a FFAT table is not loaded well or the file is not specified by the configuration file, access of the usual FAT will be performed. Therefore, even if a navigation system 1 has no FAT table, it can operate. However, the rate becomes slower than the case where a FFAT table is used.

[0026] Next, this function is explained with reference to drawing 4 which shows the routine for tracing the location of FFAT. Reset of a navigation system 1 tends to be answered or (step 401) and a navigation system 1 tend to trace a current directory or the location of FFAT for directories demanded to modification of a directory and coincidence (step 402). If the FFAT is found (step 403), a system loads the corresponding FFAT (step 404). Next, a system accesses a suitable file using the FFAT (step 405). When FFAT is not found, a system is accessed at a suitable file using standard FAT (step 406).

[0027] FFAT must also be updated whenever the data file referred to by FFAT is updated. The routine for updating FFAT is shown in <u>drawing 5</u>. In 1 operation gestalt, the procedure of <u>drawing 5</u> is carried out in the exclusive software utility for this purpose. First, the pass of the directory containing a data file is inputted

(step 501). Next, the identifier of the updated data file searches and is taken out from the configuration file of a directory (step 502). Next, updated FFAT is generated from FAT by scanning the cluster chain specified by FAT (step 503). The step (step 503) which updates FFAT includes the actuation which updates the cluster table of a file influenced by it.

[0028] Drawing 6 shows the routine for generating or updating the cluster table of a file. The index variable I is first set to zero (step 601), a system 1 accesses the 1st memory location of FAT based on a file pointer, and the reference to the 1st cluster is obtained (step 602). Next, this reference is memorized by logical cluster LC [I] (logical cluster which has the index value of I) of a cluster table. A routine will be ended if reference is the cluster of the last of a cluster chain (step 604). If it is not the last cluster, the increment of the index variable I will be carried out only for 1 (step 605). After incrementing the index value I, it decides on the memory location of reference of the degree in a cluster chain from current reference (step 606). Next, the following memory location in FAT is accessed and the reference to the following cluster in the cluster chain is obtained (step 607). Then, a routine is repeated from step 603.

[0029] a data file reads the logical cluster of the cluster table of a file serially -- it

is accessed. A data access is started by the read demand to a file system. A file name, offset, and a count are included in a read demand. A file begins offset and it is measured from a predetermined point in a file like the current position or an end of file. It is :READ ([FILE_NAME], [OFFSET], [COUNT]) in which a read demand has the following formats in 1 operation gestalt by a count specifying the number of data bytes read therefore. Offset can be given, and it is calculated when the initiation logical cluster of a cluster table breaks offset by cluster size. Thus, the initiation logical cluster of a cluster table is serially accessed by not a method but random. Next, the reference to a live-data cluster can be searched and taken out from the logical cluster of a cluster table. The sector number relevant to offset is calculable by multiplying the real cluster number obtained from the cluster table by the number of sectors per cluster. By supplying a logical sector number and the number of sectors to a device driver, the map of the logical sector can be carried out to a physical sector, and data can be searched and picked out from storage. The logical cluster in a cluster table is read by the order which appears in a cluster table. Thus, a file is accessed not as a sequential access file but as a random access file.

[0030] Drawing 7 shows the example of the routine of a data reading **** sake

by the approach described above. It is calculated when introduction and the first cluster LC read on a cluster table (at step 701) break an offset value (cutting tool) by cluster size (cutting tool). Next, value CLUSTER_OFFSET is calculated as a remainder of the offset value broken by cluster size (step 702). Next, which broke value calculated SECTOR_IN_CLUSTER is as CLUSTER_OFFSET by sector size (step 703). Then, value SECTOR_OFFSET is calculated as a remainder which broke CLUSTER_OFFSET by sector size which logical sector :LOGICAL_SECTOR 704). Next, (step LOGICAL_SECTOR which it is going to read is calculated by the degree type (step 705) The inside of a =(number of sectors per CLUSTER_TABLE[LC] x cluster)+SECTOR IN CLUSTER type and CLUSTER_TABLE [LC] are the logical cluster of a cluster table. LC The data cluster referred to is expressed. Next, the location of the data which it is going to read is traced using LOGICAL SECTOR and the SECTOR_OFFSET value required in count, and those data are taken out (step 706). If the cluster searched and taken out is not a cluster read at the end, the increment of the logical cluster LC will be carried out only for 1, and this routine will be repeated by calculating a new LOGICAL_SECTOR value (step 705). A routine is ended when the cluster searched and taken out is a cluster read at the end.

[0031] In the above, the operation gestalt explained the high-speed DOS file system of this invention to the detail. In this application, although this invention was explained in relation to the specific operation gestalt, probably, it will be clear that it is possible to carry out various correction modes and modification modes about these operation gestalten, without deviating from the pneuma and the range of a wide sense of this invention indicated in the range of a claim. Therefore, the specification and drawing of this application should be interpreted not in restrictive semantics but in the semantics aiming at instantiation explanation.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the block diagram of the navigation system for loading mold automobiles.

[Drawing 2] It is the explanatory view of an example of a DOS file access table (FAT).

[Drawing 3] They are the explanatory view (A) of a high speed FAT (FFAT), the explanatory view (B) of a cluster table, and the explanatory view (C) of the cluster table which memorized the reference to the data cluster of a file.

[Drawing 4] It is a flow chart illustrating the routine for answering modification of a system reset or a directory and tracing the location of FFAT.

[Drawing 5] It is a flow chart illustrating the routine for generating FFAT.

[Drawing 6] It is a flow chart illustrating the routine for generating the cluster table for a file.

[Drawing 7] It is the flow chart which illustrated the routine of a file reading **** sake using FFAT.

[Description of Notations]

10 CPU, 11 ROM, 12 RAM, 13 A mass storage medium, 14 input subsystems, 15 A voice output controller, 16 A loudspeaker, 17 A display controller, 18 A display, 19 An angular-velocity sensor, 20 A mileage sensor, 21 GPS.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.