Отчёт по лабораторной работе № 7

Эффективность рекламы

Егорова Диана Витальевна

Содержание

Список литературы		17
5	Выводы	16
4	Выполнение лабораторной работы	9
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Код для первого случая на Julia	9
		10
4.3	Код для второго случая на Julia	11
4.4	Результат работы программы	12
4.5	Код для третьего случая на Julia	12
		13
4.7	Код для первого случая в OpenModelica	13
4.8	Результат работы программы	14
4.9	Код для второго случая в OpenModelica	14
4.10	Результат работы программы	14
4.11	Код для третьего случая в OpenModelica	15
	Результат работы программы	15

Список таблиц

1 Цель работы

Рассмотреть моделирование ситуации "Эффективность рекламы".

2 Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{d(n)}{dt} = (0.55 + 0.0001n(t))(N - n(t))$$

2.
$$\frac{d(n)}{dt} = (0.00005 + 0.2n(t))(N - n(t))$$

3.
$$\frac{d(n)}{dt} = (0.5\sin t + 0.3\cos t n(t))(N-n(t)) \label{eq:delta}$$

3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от

затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

4 Выполнение лабораторной работы

Напишем код программы на Julia (рис. 4.1).

Рис. 4.1: Код для первого случая на Julia

В результате получаем следующий график (рис. 4.2).

Рис. 4.2: Результат работы программы

Напишем код для второй программы на Julia (рис. 4.3).

Рис. 4.3: Код для второго случая на Julia

В результате получаем следующий график (рис. 4.4).

Рис. 4.4: Результат работы программы

Напишем код для третьей программы на Julia (рис. 4.5).

Рис. 4.5: Код для третьего случая на Julia

В результате получаем следующий график (рис. 4.6).

Рис. 4.6: Результат работы программы

Напишем код программы в OpenModelica (рис. 4.7).

```
1 model one
2 Real N = 500;
3 Real n;
4 initial equation
5 n = 5;
6 equation
7 der(n) = (0.55 + 0.0001*n)*(N-n);
8 end one;
```

Рис. 4.7: Код для первого случая в OpenModelica

В результате получаем следующий график (рис. 4.8).

Рис. 4.8: Результат работы программы

Напишем код программы для второго случая в OpenModelica (рис. 4.9).

```
1  model two
2  Real N = 500;
3  Real n;
4  initial equation
5  n = 5;
6  equation
7  der(n) = (0.00005 + 0.2*n)*(N-n);
8  end two;
```

Рис. 4.9: Код для второго случая в OpenModelica

В результате получаем следующий график (рис. 4.10).

Рис. 4.10: Результат работы программы

Напишем код программы для третьего случая в OpenModelica (рис. 4.11).

```
model three
Real N = 500;
Real n;
initial equation
n = 5;
equation
der(n) = (0.5*sin(time) + 0.3*cos(time)*n)*(N-n);
end three;
```

Рис. 4.11: Код для третьего случая в OpenModelica

В результате получаем следующий график (рис. 4.12).

Рис. 4.12: Результат работы программы

5 Выводы

Я построила графики рекламы, математическая модель которой описывается следующим уравнением: 1. $\frac{d(n)}{dt}=(0.55+0.0001n(t))(N-n(t))$ 2. $\frac{d(n)}{dt}=(0.00005+0.2n(t))(N-n(t))$ 3. $\frac{d(n)}{dt}=(0.5\sin t+0.3\cos tn(t))(N-n(t))$

Список литературы