First Secondary

PHYSICS

Mr. Shrerif Hawary

Unit one

Physical measurement

Chapter One

Physical Measurement

Measurement

It is the process of comparing an unknown quantity with another quantity of its kind (called the unit of measurement) to find out how many times the first includes the second.

Types of physical quantity:

Fundamental Physical Quantities	Derived Physical Quantities
They are physical quantities that cannot be defined in terms of other physical quantities.	They are physical quantities they can be defined in terms of the fundamental physical quantities.
Length – Mass – Time	Volume – Speed –Acceleration

Measuring tools:

Length	Mass	Volume	
1- Meter Tape.	1- Roman Scale.	1- Hourglass.	
2- Vernier Caliper.	2- Analog Scale.	2- Stopwatch.	
3- Ruler.	3- Beam Balance.	3- Clock.	
4- Micrometer.	4- Digital Balance.	4- Digital Watch.	
The state of the s		50 10 10 10 10 10 10 10 10 10 10 10 10 10	
		THE PLANT OF THE PARTY OF THE P	

Measuring Units:

	The French system (C.G.S)	The British System (F.P.S)	The Metric System (M.K.S)
Length	Centimeter	Foot	Meter
Mass	Gram	Pound	Kilogram
Time	Second	Second	Second

International System of units (SI Units):

The Physical Quantity	The international Units
Length(L)	Meter(m)
Mass(M)	Kilogram(k
Time(t)	g) Second(s)
Electric current intensity(I)	Ampere(A)
The absolute temperature(T)	Kelvin(k)
Amount of material(n)	Mole(mol.)
Luminous intensity(I _v) Angle	Candela(cd)
measurement	Radian
Solid angle measure	Steradian

Standard (Length) meter

It is the distance between two engraved marks at the ends of a rod made of Platinum and Iridium alloy kept at 0°C, at the international bureau of weights and measures near Paris.

The Standard Time (Second)

The Second = 1/86400 of the average solar day

The Standard Mass (Kilogram)

It is the mass of a cylinder made of Platinum and Iridium alloy of specific dimension kept at 0°C, at the international bureau of weights and measures near Paris.

Give reason for:

Platinum and iridium alloy used in the standard unit? Because 1- It is rigid. 2 - Chemically inactive. 3 - Not affected by surrounding temperature contrary to other materials such as glass.

► Write the scientific term:

1.	The mass of a cylinder made of platinum and Iridium alloy of specific dimensions
	kept at 0°C, at the international Bureau of weights and measures near Paris.(

- 2. It is the distance between two engraved marks at the ends of a rod made of Platinum and Iridium alloy kept at OoC, at the international bureau of weights and measures near Paris.(...)
- 3. The Second = 1/86400 of the average solar day.(...

► Choose the correct answer:

- 1. is a derived physical quantity.
- a- Length. b- mass. c- velocity.
 - 2. In the international system unit, the ampere is the unit of......
- a- Electric current intensity. b- electric charge. c- luminous intensity.
 - 3. The unit of solid angle measure is
- a- radian. b- steradian.c- kelvin.

	Coi	mpai	re b	etw	een:
--	-----	------	------	-----	------

Fundamental Physical Quantities	Derived Physical Quantities

Give reason for:
1- Glass is not used in the standard unit.
2- Length is a fundamental quantity.

DIMENSIONAL FORMULA

Quantity	Rule	D.F	Unit	
Length		L	M	
Mass		M	Kg	
Time		T	Sec	
Area	length x length	$L \times L = L^2$	m ²	
Volume	length x length	$L \times L \times L = L^3$	m ³	
V 0202220	x length			
Density	<u>M</u>	$\frac{\underline{M}}{L^3} = ML^{-3}.$	Kg.m ⁻³	
	V	L		
Velocity				
Acceleration				
Force	m x a			
Work	Fxd			
K.E	½ m v ²			
P.E	m g h			

Youtube Channel: Mr.Science	Contact: 01001852981	Facebook Page: Mr Science
(kg.m/s , s-1 , kg.n	1.s)	
quantity is	i a physical quantity is	M0L0T-1, the measuring unit of this
(M.L.T-1 , M.L.T-2	,	MOLOT 1 the measuring unit of this
2- Dimensions of work are		
(M.L2.T-1 , M.L.T-2	, M2.L2.T-2)	
1- Dimensions of force are	(F=ma)	
Choose the correct ans		
2- Unit =		
1- D.F =		
► If E = mv² Find:		
$3-v2 = a \times d$, where the (v) ve	locity, (a) acceleration	and (d) displacement.
2- F=m/a, Where (m) is the ol		
1- Work = ½ mv2, Where	(m) is the object mass a	and (v) is its velocity.
► Use the dimensional fo	rmula to verify the f	ollowing laws:-

PREFIXES

Factor	10-9	10-6	10-3	10-2	102	103	106	109
Prefix	nano	Micro	Milli	Centi	hecto	Kilo	Meg a	Giga
Symbol	N	μ	M	С	h	K	M	G

HOME WORK

► Write down the following values in a scientific form (10 $\pm x$):-

- 2- The ant mass = 0.001 kg =
- 3- The number of seconds in a day = 86400s =
- 4- 3- 3x10-9 s = ms
- $5-4-88 \, \text{km} = \text{m}$
- 6- The density of gold = 19300 kg/m3 = kg/m3.
- 7- The radius of a hydrogen atom = 0.000000005m =

ERROR IN MASUREMENT

Reasons of measurement error:

Choosing improper tool

A defect in the measuring tool

- Wrong procedure

Environmental conditions, such as:- (Temperature, Humidity, air currents)

Types of measurements:

Direct Measurement	Indirect Measurement
One measuring tool is used.	More than one measuring tool are
	used.
No mathematical relation	A mathematical relation is
is applied.	applied to find the
	quantity.
One measurement error may	More than one measurement
occur.	error may occur.
Like measure the density	Like measure the density by
by using hydrometer.	measure the mass and volume.

Calculation of error in direct measurement:

In direct measurement

Absolute Error (ΔX)	Relative Error (r)
It is the difference between the real	It is the ratio between the absolute
(actual) value (X_0) and the measured value (X)	error (Δ X) to the real value ($X_{o}).$
$\Delta X = X_0 - X $	$\mathbf{r} = \mathbf{\Delta} \mathbf{X} / \mathbf{X}_{0}$

o In indirect measurement

Add, Subtract	Times, divide
$(\Delta \mathbf{x} = \Delta \mathbf{x}_1 + \Delta \mathbf{x}_2)$	$(\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2)$

Youtube Channel: Mr.Science

.			The second		
	Lno	oose	tne	correct	answer

0	1	Youtube	Channel:	· ·	Contact: 01001852981	Ŕ	Facebook Page: Mr Science	
••••	••••							
			ative and ab			sures its ieii	igui ne measureu :	0.3111
			orth of a wal	ic 5m whon	a student moa	cures its lon	gth he measured !	5 5m
•	Dr	ills:						
	2.	The r	relative erro	in measurir	ng the distance	between tw	o buildings = 0.02	
	1.	The A	Absolute erro	or in measur	ing the wall len	gth = 5 cm.		
•	W	hat is	meant by:					
a-	Gr	aduat	ed cylinder.	b- hyd	rometer.c- mic	rometer.		
	2.	The .	is u	sed to meas	ure the density	of liquid dir	rectly.	
a-	50	cm.	b- 0.2cm	c- 0.04cm.				
	1.			_	th of a wooden absolute error		found to be 50.2cr	n, while

	error in measuring the volume of cu	uboid if the results of
	nsions are as follows:-	
Dimension	Measured quantity(cm)	Real quantity (cm)
Length(x)	5.2	5.23
Width(y)	4.5	4.56
Height(z)	2.9	2.95

Physical measurement

Chapter two

Vectors and Scalars

Resultant Force

It is a single force that produces the same effect on an object as that produced by the original acting forces.

Scalar Quantity	Vector Quantity
It is a physical quantity that can be	It is a physical quantity that can be
fully defined by its magnitude only,	fully defined by both magnitude
it has no direction.	and direction.
Examples	Examples
1 - Distance.	1 - Displacement.
2 - Speed.	2 - Velocity.
3 - Time.	3 - Acceleration.
4 - Mass.	4 - Force.
5 - Energy.	
6 - Temperature.	
Distance	Displacement
It is the length of the path moved by	It is the length of the straight line
an object from a position to another.	segment in a given direction between
	the starting points to the end point.
Scalar quantity	Vector quantity

○ Adding vectors if $\Theta = 900$

A + B = C
$$A^2 + B^2 = C^2$$
 $c = \sqrt{A^2 + B^2}$

Product of vector:

Scalar product: A.B = AB cos Θ

Vector product = $A \wedge B = AB \sin \Theta n$

Resolution:

(n) is the direction of the new vector which \perp to the plane and can be got by (right hand rule).

► W	/hat is meant by:					
1- Tł	ne displacement of a body	y is 50 m	۱.			
2- Th	ne distance covered by th	e body :	=10 m.			
► W	/rite the scientific terr	n:				
1-Th	at defined by its magnitu	ude only	y. (
	ngle force that results the ng force.(same e	ffect on the	object as the	at produced by th	e original
3-Th	e change in the position	of an o	bject. ()		
►G	ive reason for:					
1-Ve	locity is a vector quantity	/ .				
2-Di	stance is a scalar quantity	<i>/</i> .				
%	Youtube Channel: Mr.Science	<u> </u>	Contact: 01001852981	<u> </u>	Facebook Page: Mr Science	

► When does?
1-Displacement of an object equal to the distance it covered.
2-Displacement of an object equal to zero in spite of its motion.
3-Scalar product = vector product.
4-Scalar product = 0.
5-Vector product = max.
6-The difference between to vectors = 0

► Compare between distance and displacement.

Distance	Displacement

▶ Problems:

1-Find the resultant of two forces; one of them $(F_x = 4 \text{ N})$ acting in x- dimension, while the other $(F_y = 3N)$ acting in y- dimension.
2-The magnitude of two vectors A and B are 5 and 10 respectively and the angle between them is 60o find the result of each of: 1- A. B 2- A Λ B
3-Mohamed leaves the schooland hikes 11 km, north and then hikes 11 km east. Determine Mohamed's resulting displacement.
4-A tines ball falls from a height of 20 m then rebounded to upward 4m, find its distance and displacement.
5-If the vector X is 3 and vector Y is 5 and these vectors making angle 60° between them find:
a.Vector product with the direction.
b. Scalar product.
6-A body moved in a circular motion of radius (r) find its displacement and
distance when the body : a. Makes one complete cycle. b. Moves half cycle.

Youtube Channel: Mr.Science

Motion in st. line

Chapter one

Motion in st. line

Translational motion	Periodic motion
The motion which has starting	The motion that repeats itself in
point	equal interval of time.
and end point.	
Motion in straight line.	Motion in circle.

Velocity

the rate of change of displacement.

Or: the displacement of an object in one second.

Velocity	Speed
The displacement of an object in	The distance of an object in one
one	second.
second.	
Vector quantity.	Scalar quantity.
Defined by its magnitude only	Defined by magnitude and
	direction.

Types of velocity:

Uniform velocity	Non uniform velocity					
At which the objects moves through equal displacements in equal interval of time.	At which the objects moves through unequal displacements in equal interval of time.					
Time (s)	Displ. (m) Time (s)					

Acceleration

It is the rate of change of velocity.

Or: The change of the object velocity per unit time.

Positive acceleration.	Zero acceleration.	Negative acceleration.
When the velocity	When the velocity is	When the velocity
increase.	constant.	decrease.
Vel.(m/s	Vel.(m/s	Vel.(m/s
Time (s)	Time (s)	Time (s)

► Give reason for:

1-Fan motion is a periodic motion, while the train motion is a transitional motion.
2- Average velocity may be equal to the instantaneous velocity.
3- When a body moves with constant velocity its acceleration = zero.
➤ Write the scientific term:
1- Distance moved by the object per unit time and scalar quantity.
()
2- Motion in which velocity changes with time. ()
3- At which the objects moves through equal displacements in equal interval of time.
()
► What is meant by:
1-A car moves at uniform acceleration =-4 m/s^2 .
2- An object is displaced 20 m in 4 sec.
• • • • • • • • • • • • • • • • • • • •
Youtube Channel: Contact: Facebook Page:

3-	- The	e ve	eloc	ity	of	an	ob	je	ct	ino	cre	eas	ses	at	a	ra	te 4	4 r	n/s	s e	ve	ry	1	se	ec.				
			• • • •				•••		• • •	• • •	• • •		• • • •	• • •			•••			• • •					• • •	 	• • •	• • • •	

► Describe the kinematic state of the object and mention what the slope of the line equals in each graph:-

► Problems:

1-	Calculate the average velocity in(km/h) unit if a tracker cutting a distance
	(4000m) in (30min.) then calculate the distance cutting after (45min.) from the
	starting point with same velocity.

 	• • • • • • • • • • • • • • • • • • • •

2- The table below illustrates the relation between velocity of an object and time:

V (m/s)	5	10	20	30	A	40
T (s)	1	2	4	6	7	8

a-Plot the graph between vel. On vertical axis and time on horizontal axis b- From the graph find:

- 1) The value of A.
- 2) The velocity of the object at the 5th sec.
- 3) The acceleration of motion and its type.

Unit two

Motion in st. line

Chapter two

Motion with uniform acc.

1st Equation of motion:

$$a = \frac{\Delta V}{t}$$

$$V_f - V_i$$

$$a = \frac{\tau}{t}$$

$$a \ t = V_f - V_i$$

$$V_f = V_i + a \ t$$

2nd Equation of motion:

$$V_{av} = \frac{d}{t}$$

$$V_{av} = \frac{V_f + V_i}{2}$$

$$\frac{V_f + V_i}{2} = \frac{d}{t}$$

$$2d = (V_f + V_i) t$$
From 1st eq. $(V_f = V_i + at)$

$$2d = (V_i + at + V_i)t$$

$$d = V_i t + \frac{1}{2} at^2$$

3rd Equation of motion

$$V_{av} = \frac{a}{t} \qquad d = v_{av}. t$$

$$: V_{av} = \frac{Vf + Vi}{2}$$
From 1St eq. $t = \frac{Vf - Vi}{a}$

$$d = \frac{Vf + Vi}{2} X \frac{Vf - Vi}{a}$$

$$2ad = (V_f + V_i) (V_f - V_i)$$

$$2ad = V_f^2 - V^2$$

$$V_f = V_i + 2ad$$

Acceleration

It is the rate of change of velocity.

Or: The change of the object velocity per unit time.

3 eq. of motion

$$V_f = V_i + gt$$
 $D = v_i t + 1/2 g t^2$
 $V_f^2 = V_i^2 + 2 g d$

$$\underline{\mathbf{Vi}} = \mathbf{0}$$

$$V_f = gt$$

$$D = 1/2 g$$

 $t^2 V_t^2 = 2$

$$\alpha A$$

g d

$$\mathbf{V}\mathbf{f} = \mathbf{0}$$

$$V_i = -gt$$

$$D = v_i t + 1/2 g$$

$$t_{i}^{2}V^{2} = -2 g d$$

Projectiles:

a)Upward:

$$V_f = 0$$
 , $g = -10 \text{ m/s}^2$,

b)Downward:

$$V_i = 0$$
 , $g = 10 \text{ m/s}^2$,

c)With angle:

$$1\text{-} \ V_{ix} \ = V_i \cos \theta \quad \Rightarrow \qquad V_{iy} = V_i \sin \theta$$

$$V_{fy} = V_{iy} + (-gt)$$
 \Rightarrow $0 = V_{iy} - gt$

$$V_{iy} = gt$$
 \Rightarrow $t = v_{iy} -g$

Time of flight (T) = 2t =
$${}^{2}V_{iy} - g$$
 (1)

2-
$$V_{fy}2 = V_{iy}^2 + 2gh$$

$$0 = V_{iy}^2 + 2gh$$
 $V_{iy}^2 = 2gh$ =

$$h = \frac{V_{\underline{i}\underline{y}}^2}{-2a} \quad (2)$$

3- R =
$$V_{ix}$$
 2t = V_{ix} T (3)

►Choose:					
1. The dimensional formula of acceleration					
a) LT-1 b) LT-2 c) L-1 T-2 d) L-2 T-2					
2. When the change of velocity equal zero ,					
a)a is negative. b) a is positive. C) a = 0 d)body at rest.					
3. If the direction of velocity and acceleration is negative					
a)Velocity increase. b) Velocity decrease.					
c) Velocity is constant. d) body stopped.					
4. Two different objects have the same volume falls together from the same height which of these statement is correct:					
a)The heavier reaches ground first b) The lighter reach first.					
c)acceleration of the heavier is bigger. d) reaches ground together.					
► What is meant by:					
1. Displacement of a table is 3m?					
2. Velocity of a bike = 5m/s?					

3. Acceleration of gravity = 9.8 m/s2?
► Give reasons for:- 1- When an object falls freely from rest, its velocity increases.
2- The acceleration due to gravity may be positive or negative.
 When does each of the following values equal zero? 1- The velocity of a body projected vertically upwards.
2- The horizontal component of initial velocity of a projectile.

► Write the mathematical relation for each graph of the following and state what the slope of each line represents:

► Problems:

1. An object moves in a straight line according to the relation: Vf2 = 36 - 4d,

<u>Find</u>: a. The acceleration of the object motion.

b. The time taken to stop.

- 2. A driver saw the red traffic light when he was moving at 80Km/h, at 100m away from the car. He used the brakes to decelerate at 2m/s2.
- a) Would the car cross the traffic sign?
- b) Calculate the time taken by the car to stop.

3. In an experiment to determine the acceleration due to gravity using falling water drops, the distance between the tab and the plate base is (1m), If the time taken by 100 drops is 45s, Find the acceleration due to gravity.

	b) If projected ver	tically downward.		
	u) ii projected vei			
	a) If projected ver		-	
		y the object after (4s) in the f	•	
		vity is (10m/s ²) calculate the		
4- Pe		ct from high building with vel		
b c	Time of its flight. The horizontal ran	ght reached by the motorcycle ge reached by the motorcycle		
	ne horizontal, <u>Find</u> :	.14 1		
3- A	motorcycle is launc	ned at 15 m/s in a direction th	nat makes an angle 30 ⁰ to	
b.		e reached by the projectile.		
a.	The maximum heigh	it reached by the projectile.		
	projectile is projecte an angle 30° to the	d from a canon at a velocity o	of 800 m/s	
••••				
		ht reached by the object. by the object to return back	to the point of projection.	
	projection.			
	cceleration is 9.8m/s The object6 veloc	•		
	n object is projected			

c)	If it projected with angle 30° with horizontal plane.
d)	If it projected with angle zero with the horizontal plane.

Motion in st. line

Chapter three

Force and motion

Force

It is an external influence that affects the object to change its state of motion or direction.

Newton's first law

A static object keeps its state of rest and a moving object keeps its state of motion at a uniform velocity in a straight line unless acted upon by a resultant force.

 $\Sigma F = 0$

Youtube Channel:
Mr.Science

Inertia

The tendency of an object to keeps either its state of rest or state of motion at its uniform velocity in straight line.

OR: the resistance of object to change its static or dynamic state.

Newton's second law

The resultant force affecting on object equals to the rate of the change in the object's momentum (motion amount).

OR: When a resultant force acts on object, the object acquires an acceleration which is directly proportional to the resultant force and

inversely proportional to the object mass.

Momentum:

The velocity and the mass are related to a physical quantity known as:

Momentum = Mass × Velocity

 $Mom. = m \times v$

The measuring unit of momentum is: Kg.m/s

Factors that affect the momentum

- 1- Mass.
- 2- Velocity.

Youtube Channel:
Mr.Science

$$F = \frac{R}{\Delta T} = \frac{mV_2 - mV_1}{\Delta T} = \frac{m(V_2 - V_1)}{\Delta T} = m x a$$

Newton

It is the force that when acts on an object of mass1 kg accelerates it at 1 m/s 2

 $F = m \times a$ N = kg. m/s2 Dimensional: M L T-2

Mass	Weight
The resistance of an object to change its dynamic state.	The force of gravity acting on a body.
Fundamental, scalar.	Derived, vector (to the center of the earth)
$\mathbf{M} = F $	$W = m \times a$
Kg	Newton
Constant at everywhere.	Changed from position to another.

Newton's third law

When an object acts on another object by a force, the second object reacts with an equal force on the first object in a direction opposite to that of action.

Or: every action has reaction equal in magnitude and opposite in direction.

Youtube Channel: Mr.Science

► Choose:

1-When the resultant force acting on moving object is zero, the object.......

a- Stops motion.

b- Moves at uniform velocity.

c- Moves at non uniform velocity.

d- Moves at uniform acceleration.

2-The mathematical formula that expresses Newton's third law

a- F1 =-F2

b-F=mxa

c- ΣF ≠ 0

 $d-\Sigma F=0$

3-A car moving with uniform velocity in straight line to east when the resultant force on the car

a- Zero.

b- -ve

c- ± ve

d- to east.

4- When an abject projected vertically with vi with an angle 600 with the horizontal plane so it cover horizontal distance R, to reach distance farther than this starting with same velocity we have to project it with angle equal...........

a- 90o.

b-75o.

c- 45o.

d- 30o.

5- The graph which represents motion of body with uniform velocity?

a-

b-

c-

d-

t

Give reason for:
1- Passengers in the bus fall forward when it stops suddenly.
2- A space rocket does not need to consume more fuel after being moved away from the earth's gravity.
3- The rotation of fan after turn off the current.
4- Force is a vector quantity.
5- The objects weigh on earth is greater than its mass.
6- No single force could exist in the universe.
► Problems:
1- A static object of mass 20kg is affected by a force 30N. find:
a- The acceleration acquired by the object.
b- The time taken by the object to move a distance of 75m.

Contact:

01001852981

Facebook Page:

Mr Science

Youtube Channel:

Mr.Science

9	Youtube Channel: Mr.Science	Contact: 01001852981	Facebook Page: Mr Science
1- Pa	assengers in a bus tei	nd to fall forward when it s	uddenly stops.
►G	ive reasons for:-		
			()
	3.000		(
The	attraction force of Ea	arth to the body.	
			()
The	force that when acts	on an object of mass 1 kg a	accelerates it at (1) m/s2.
► W	Vrite down the scie	entific term:-	
	- b- The distance cov		
	- The final velocity a		
body	y moved for 3s. and t	he free fall acceleration=10	Om/s2, calculate:
3- A	static body of weigh	t 400N was acted upon by	a force 200N. giving that the
	ng on the body.	assuming that the free fall	acceleration=10m/s2 find the force
	-		
2- A	hody of weight 240	N was moving at velocity	of 25m/s. two seconds later, its

2- The action and reaction may not lead to equilibrium.
► When does each of the following happens:
1-Force acting on object equals its mass.
2-The object move in straight line with uniform speed.
▶Drill:-
1-A car was pulled by a force 1000N to move it at acceleration 5 m/s2, Find the mass and the weight of the car (Given that $g = 9.8 \text{ m/s2}$).
2-A car pushes a box of mass 20 kg with a force 50 N, Calculate the acceleration of the box. (Assume that there is no friction).

