

FCC TEST REPORT

Report No.: SEFB907135

According to

CFR47 §15.247

Applicant : Guangzhou Shirui Electronics Co.,Ltd.

Address 192 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development

District, Guangzhou,Guangdong,China

Manufacturer : Guangzhou Shirui Electronics Co.,Ltd.

Address 192 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development

Address : District, Guangzhou,Guangdong,China

Equipment: WiFi/BT Module Model No.: WF-R22C-USA1

Brand : seewo

FCC ID : 2AFG6-WF-R22C-USA1 Test Period : Jul. 04, 2019~ Jul. 25, 2019

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of *Cerpass Technology (Suzhou) Co., Ltd.*, the test report shall not be reproduced exc- ept in full.
- The test report must not be used by the clients to claim product certification approval by any agency of the Government.

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.10 – 2013& FCC Part15.247** and the energy emitted by this equipment was *passed.*

Approved by:	Laboratory Accreditation:		
	Cerpass Technology Corpo	ration Test Laborator	гу
	 TAF LAB Code:	1439	
Moch	Cerpass Technology (SuZh	ou) Co., Ltd.	
Miro Chueh EMC/RF Manager	A2LA LAB Code:	4981.01	
	ALLA LAD COUC.	4301.01	

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

Page No.

1 of 79

Contents

Report No.: SEFB907135

Issued Date

Page No.

Jul. 25, 2019

2 of 79

1.	Report of Measurements and Examinations	5
2.	General Info	
2.1	Description of EUT	6
2.2	Carrier Frequency of Channels	7
2.3	The Worst Case Configuration	7
2.4	Test Mode & Test Software	8
2.5	Description of Test System	8
3.	General Information of Test Site	9
3.1		
3.2	Measuring Equipment	10
3.3	Measurement Uncertainty	11
4.	AC Conducted Emission Measurement	13
4.1	Test Limit	13
4.2	Test Procedures	13
4.3	Typical Test Setup	13
4.4	Test Result and Data	14
5.	Radiated Emission Measurement	16
5.1	Test Limit	16
5.2	Test Standard	17
	Test Procedures	
5.4	Typical Test Setup	17
	Test Result and Data	
	20dB Bandwidth Measurement	
6.1	Test Limit	39
6.2	Test Standard	39
6.3	•	
6.4	Test Setup Layout	
6.5		
	Channel Carrier Frequencies Separation Measurement	
	Test Limit	
	Test Standard	
	Test Setup	
	Test Setup Layout	
	Test Result and Data	
	Dwell Time Measurement	
	Test Limit	
	Test Standard	
	Test Setup	
	Test Setup Layout	
	Test Result and Data	
	Number of Hopping Channels Measurement	
	Test Limit	
9.2	Test Standard	52

9.3 Test Setup	52
9.4 Test Setup Layout	52
9.5 Test Result and Data	53
10.Peak Output Power Measurement	54
10.1 Test Limit	54
10.2 Test Standard	54
10.3 Test Setup	54
10.4 Test Setup Layout	55
10.5 Test Result and Data	56
11.Conducted Spurious Emissions Measurement	59
11.1 Limit	59
11.2 Test Procedure	60
11.3 Test Setup	60
11.4 Test Result	61
12.Radiated Emission Band Edge Measurement	66
12.1 Limit	
12.2 Test Procedure	66
12.3 Test Setup	67
42.4 Test Decilt	60

S-FD-501V1.0

Issued Date : Jul. 25, 2019

Report No.: SEFB907135

Page No. : 3 of 79

History of this Test Report

Report No.: SEFB907135

Report No.	Version	Issue Date	Description
SEFB1907135	Rev 01	Jul. 25, 2019	Original

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

S-FD-501V1.0 Page No. : 4 of 79

1. Report of Measurements and Examinations

FCC Rule	. Description of Test	Result
§ 15.203	. Antenna Requirement	Pass
§ 15.207(a)	. Conducted Emission	Pass
§ 15.209(a)	. Radiated Emission	Pass
§ 15.247(a)(1)	. Channel Carrier Frequencies Separation	Pass
§ 15.247(a)(1)	. 20dB Bandwidth Measurement	Pass
§ 15.247(a)(1)	. Dwell Time	Pass
§ 15.247(b)	. Number of Hopping Channels	Pass
§ 15.247(b)	. Peak Output Power Measurement Data	Pass
§ 15.247(d)	. Band Edges Measurement Data	Pass

Report No.: SEFB907135

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

S-FD-501V1.0 Page No. : 5 of 79

2. General Info

2.1 Description of EUT

Product name	WiFi/BT Module
Model No.	WF-R22C-USA1
Model Discrepancy	N/A
Power supply	DC3.3V
Frequency Range	2402~2480MHz
Number of Channels	79
Modulation	GFSK (1Mbps), Π/4 DQPSK (2Mbps) and 8DPSK (3Mbps)
Data Rates	Bluetooth: 1, 2, 3Mbps,
Antenna Spec.	Dipole Antenna with 3.18dBi

Report No.: SEFB907135

Note: For more details, please refer to the User's manual of the EUT.

Issued Date Jul. 25, 2019 S-FD-501V1.0 Page No. 6 of 79

2.2 Carrier Frequency of Channels

2.2 Carrier i requestey of Chaimers							
Bluetooth Working Frequency of Each Channel:							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2403 MHz	02	2404 MHz	03	2405 MHz
04	2406 MHz	05	2407 MHz	06	2408 MHz	07	2409 MHz
08	2410 MHz	09	2411 MHz	10	2412 MHz	11	2413 MHz
12	2414 MHz	13	2415 MHz	14	2416 MHz	15	2417 MHz
16	2418 MHz	17	2419 MHz	18	2420 MHz	19	2421 MHz
20	2422 MHz	21	2423 MHz	22	2424 MHz	23	2425 MHz
24	2426 MHz	25	2427 MHz	26	2428 MHz	27	2429 MHz
28	2430 MHz	29	2431 MHz	30	2432 MHz	31	2433 MHz
32	2434 MHz	33	2435 MHz	34	2436 MHz	35	2437 MHz
36	2438 MHz	37	2439 MHz	38	2440 MHz	39	2441 MHz
40	2442 MHz	41	2443 MHz	42	2444 MHz	43	2445 MHz
44	2446 MHz	45	2447 MHz	46	2448 MHz	47	2449 MHz
48	2450 MHz	49	2451 MHz	50	2452 MHz	51	2453 MHz
52	2454 MHz	53	2455 MHz	54	2456 MHz	55	2457 MHz
56	2458 MHz	57	2459 MHz	58	2460 MHz	59	2461 MHz
60	2462 MHz	61	2463 MHz	62	2464 MHz	63	2465 MHz
64	2466 MHz	65	2467 MHz	66	2468 MHz	67	2469 MHz
68	2470 MHz	69	2471 MHz	70	2472 MHz	71	2473 MHz
72	2474 MHz	73	2475 MHz	74	2476 MHz	75	2477 MHz
76	2478 MHz	77	2479 MHz	78	2480 MHz	N/A	N/A

Report No.: SEFB907135

2.3 The Worst Case Configuration

Data rate Configuration:

Test Mode	
DH5	√
2DH5	√
3DH5	√

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

S-FD-501V1.0 Page No. : 7 of 79

2.4 Test Mode & Test Software

 During testing, the interface cables and equipment positions were varied according to ANSI C63.10

Report No.: SEFB907135

- b. The complete test system included support units and EUT for RF test.
- c. Run the test software "BT:RTLBTAPP.exe".
- d. The following test mode was performed for conduction and radiation test:

Test Mode 1: GFSK: CH 00: 2402MHz, CH 39: 2441MHz, CH 78: 2480MHz.

Test Mode 2: $\pi/4$ DQPSK : CH 00: 2402MHz, CH 39: 2441MHz, CH 78: 2480MHz.

Test Mode 3: 8DPSK: CH 00: 2402MHz, CH 39: 2441MHz, CH 78: 2480MHz.

2.5 Description of Test System

No	Device	Manufacturer	Model No.	Description
1	Notebook	SONY	PCG-71811P	R33021

Use Cable:

No.	Cable	Quantity	Description
1	USB Cable	1	1.7m Shielding

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 8 of 79

3. General Information of Test Site

3.1 Information of Test Site

		Cerpass Technology Corporation Test Laboratory Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City		
	Test Site	33848, Taiwan (R.O.C.)		
		Tel:+886-3-3226-888		
I_		Fax:+886-3-3226-881		
		Address: No.68-1, Shihbachongsi, Shihding Township,		
		New Taipei City 223, Taiwan, R.O.C.		
		Tel: +886-2-2663-8582		
	TAF	1439		
	FCC	TW1079, TW1061		
	IC	4934E-1, 4934E-2		
		T-2205 for Telecommunication Test		
	VCCI	C-4663 for Conducted emission test		
	V001	R-4399, R-4218 for Radiated emission test		
		G-812, G-813 for radiated disturbance above 1GHz		
		Cerpass Technology (Suzhou) Co.,Ltd		
		Address: No.66, Tangzhuang Road, Suzhou Industrial Park,		
	Test Site	Jiangsu 215006, China		
l		Tel: +86-512-6917-5888		
		Fax: +86-512-6917-5666		
	CNAS	L5515		
	FCC	CN1243		
	A2LA	4981.01		
	IC	7290A-1, 7290A-2		
		T-1945 for Telecommunication Test		
	VCCI	C-2919 for Conducted emission test		
	1001	R-2670 for Radiated emission test		
		G-227 for radiated disturbance above 1GHz		

Report No.: SEFB907135

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

S-FD-501V1.0 Page No. : 9 of 79

3.2 Measuring Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
EMI Receiver	R&S	ESCI3	100563	2019.06.21	2020.06.20
LISN	Schwarzbeck	NSLK 8127	8127-920	2018.09.25	2019.09.24
Pulse Limiter	R&S	ESH3-Z2	100529	2019.03.11	2020.03.10
Software	Farad	Ez-EMC	ver.ct3a1	N/A	N/A

Report No.: SEFB907135

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.	
Bilog Antenna	Sunol	JB1	A072414-2 -2	2019.07.13	2020.07.13	
EMI Receiver	R&S	ESCI3	101183	2019.06.28	2020.06.27	
EMI Receiver	R&S	ESCI7	100968	2018.07.30	2019.07.29	
Preamplifier	EM Electronics corp.	EM330	60618	2019.03.11	2020.03.10	
Horn Antenna	Schwarzbeck	BBHA9120 D	9120D-619	2019.07.13	2020.07.13	
Horn Antenna	Schwarzbeck	BBHA9170	9170-348	2019.06.23	2020.06.22	
Spectrum Analyzer	R&S	FSP40	100324	2019.07.13	2020.07.12	
Preamplifier	EMCI	EMCI 030-00-3230	SN016723	2019.03.11	2020.03.10	
Preamplifier	EM Electronics corp.	EM01G18G	SN060714	2019.03.23	2020.03.22	
Spectrum Analyzer	KEYSIGHT	N9010A	MY53400169	2018.08.25	2019.08.24	
Software	E3	AUDIX	Version: 8.14.806b	N/A	N/A	

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 10 of 79

3.3 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Report No.: SEFB907135

11 of 79

RF Conducted Measurement

Test Item		Uncertainty	Limit
Radio Frequency		±8.7X10 ⁻⁷	±1X10 ⁻⁵
RF output power, condu	cted	\pm 0.63dB	\pm 1.5dB
Power density, conducted	ed	±1.21dB	± 3 dB
Unwanted emissions,	30-1000MHz	\pm 0.51dB	± 3 dB
conducted	1-12.75GHz	\pm 0.67dB	± 3 dB
All emissions, radiated	30-1000MHz	\pm 2.28dB	\pm 6dB
	1-12.75GHz	\pm 2.59dB	\pm 6dB
Temperature		±0.8℃	±1°C
Humidity		±3%	±5%
DC and low frequency v	oltages	±3%	$\pm 3\%$

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

S-FD-501V1.0 Page No. :

AC Conducted Measurement

Measurement	Frequency	Uncertainty		
Conducted emissions(LINE)	9KHz-30MHz	+/- 0.7738 dB		
Conducted emissions(NEUTRAL)	9KHz-30MHz	+/- 0.7886 dB		
Conducted emissions(10Mbps)	150KHz-30MHz	+/- 1.3013dB		
Conducted emissions(100Mbps)	150KHz-30MHz	+/- 1.3197 dB		
Conducted emissions(1000Mbps)	150KHz-30MHz	+/- 1.2987 dB		

Report No.: SEFB907135

Radiated Measurement

Measurement	Polarity	Frequency	Uncertainty
	Horizontal	below 1GHz	+/- 3.8936 dB
Radiated	Vertical	below 1GHz	+/- 3.8928 dB
emissions	issions Horizontal above 1GHz		+/- 5.18858dB
	Vertical	above 1GHz	+/- 5.18928 dB

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 12 of 79

4. AC Conducted Emission Measurement

4.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.10-2013 Section 6.2. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 6.2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Report No.: SEFB907135

Frequency (MHz)	Quasi Peak (dB μ V)	Average (dB μ V)		
0.15 – 0.5	66-56*	56-46*		
0.5 - 5.0	56	46		
5.0 - 30.0	60	50		

^{*}Decreases with the logarithm of the frequency.

4.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

4.3 Typical Test Setup

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 13 of 79

4.4 Test Result and Data

Report No.: SEFB907135

Note: Measurement Level = Reading Level + Correct Factor

Test M	ode :	Normal L	ink				
AC Power: AC 120V/60Hz			Phase:	N	NEUTRAL		
Tempe	erature :	26°C		Humidity:	60	0%	
Pressu	ıre(mbar) :	1002		Date:	20	019-07-22	
	80.0 dBuV				<u> </u>		
	0.0	Will what was	Agher-Jeen While and In March be about her will be a second of the secon	Ab-part was placed and the parties of the parties o	FCC Class B	B Conduction(QP) Conduction(AVG)	peak AVG
No.	Frequency (MHz)	Factor (dB)	Reading (dBuV)	Level	Limit (dBuV)	Margin (dB)	Detector
1	0.1539	10.06	38.42	48.48	65.78	-17.30	QP
2	0.1539	10.06	21.56	31.62	55.78	-24.16	AVG
3	0.1660	10.06	38.35	48.41	65.15	-16.74	QP
4	0.1660	10.06	25.31	35.37	55.15	-19.78	AVG
5	0.2100	10.05	32.02	42.07	63.20	-21.13	QP
6	0.2100	10.05	19.92	29.97	53.20	-23.23	AVG
7	0.2620	10.02	27.51	37.53	61.36	-23.83	QP
8	0.2620	10.02	17.50	27.52	51.36	-23.84	AVG
9	0.3140	10.00	24.05	34.05	59.86	-25.81	QP
10	0.3140	10.00	16.14	26.14	49.86	-23.72	AVG
11	0.4460	9.92	20.17	30.09	56.95	-26.86	QP
12	0.4460	9.92	14.21	24.13	46.95	-22.82	AVG

Report No.: SEFB907135

S-FD-501V1.0 Page No. : 15 of 79

Issued Date

: Jul. 25, 2019

Radiated Emission Measurement

5.1 Test Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

Report No.: SEFB907135

FREQUENCIES (MHz)	FIELD STRENGTH (micro volts/meter)	MEASUREMENT DISTANCE (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

For unintentional device, according to CISPR PUB.22, for Class B digital devices, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 10 meters shall not exceed the above table.

Frequency (MHz)	Distance Meters	Radiated (dB µV/ M)		
30-230	10	30		
230-1000	10	37		

Cerpass Technology (Suzhou) Co., Ltd. Issued Date Jul. 25, 2019

Page No.

16 of 79

S-FD-501V1.0

5.2 Test Standard

ANSI C63.10-2013-Section 6.10.5

5.3 Test Procedures

a. The EUT was placed on a rotatable table top 0.8 meter for frequency below 1GHz and 1.5meter for frequency above 1GHz above ground.

Report No.: SEFB907135

- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR guasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.4 Typical Test Setup

9kHz~30MHz Test Setup

Cerpass Technology (Suzhou) Co., Ltd. **Issued Date** Jul. 25, 2019 Page No. 17 of 79

S-FD-501V1.0

Below 1GHz Test Setup

1GHz~18GHz Test Setup

18GHz~40GHz Test Setup

Page No. : 18 of 79

Jul. 25, 2019

Report No.: SEFB907135

5.5 **Test Result and Data**

The 9kHz-30MHz spurious emission is under limit 20dB more.

Below 1GHz

Power	:	DC 3.3V	Pol/Phase	:	Horizontal
Test Mode	:	Mode 1	Temperature	:	18 °C
Test Date	:	Jul. 21, 2019	Humidity	:	49 %
Memo	:	CH 00	Atmospheric Pressure	:	1008 hpa

Report No.: SEFB907135

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.	Height (cm)	Azimuth (deg)
1	119.2400	-10.36	47.22	36.86	43.50	-6.64	peak	100	57
2	179.3800	-9.97	46.59	36.62	43.50	-6.88	peak	200	103
3	207.5100	-9.62	46.85	37.23	43.50	-6.27	QP	241	68
4	240.4900	-6.98	47.20	40.22	46.00	-5.78	QP	237	116
5	277.3500	-6.51	45.36	38.85	46.00	-7.15	QP	164	78
6	481.0500	-1.97	40.77	38.80	46.00	-7.20	peak	200	159

Note: Level = Reading + Factor Margin = Level - Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

Cerpass Technology (Suzhou) Co., Ltd. Issued Date Jul. 25, 2019 Page No. : 19 of 79

S-FD-501V1.0

Power	:	DC 3.3V	Pol/Phase	•	VERTICAL
Test Mode		Mode 1	Temperature	:	18 °C
Test Date		Jul. 21, 2019	Humidity	:	49 %
Memo		CH 00	Atmospheric Pressure	:	1008 hpa

Report No.: SEFB907135

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	33.8800	-7.99	41.88	33.89	40.00	-6.11	peak	100	67
2	129.9100	-11.12	43.12	32.00	43.50	-11.50	peak	100	102
3	206.5399	-8.63	43.86	35.23	43.50	-8.27	peak	100	59
4	238.5500	-8.81	46.11	37.30	46.00	-8.70	peak	100	203
5	481.0500	-1.97	36.26	34.29	46.00	-11.71	peak	100	158
6	693.4800	-2.22	40.64	38.42	46.00	-7.58	peak	100	12

Note: Level = Reading + Factor Margin = Level – Limit

Radiated Emission above 1GHz:

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 21 of 79

Power		:	DC 3.3V		Pol/P	hase	!	:	Vertical	
Test Mo	ode		Mode 1		Temp	eratu	ıre	:	25 °C	
Test Da	ite	:	Jul. 14, 2	2019	Humi	dity		:	52 %	
Memo			CH 00		Atmos	sphe	ric Pressure	e :	1010 hpa	
80.0 dB	uV/m				FCC CI	ass B	Radiation (above 1	GHz) peal	k	
					FCC (Class B	Radiation (above	1GHz) Av	g	
							-			
40	1.	2 3	4 5	6 *						
			Î							
0.0										
	D 2700.00	4400.00	6100.00	7800.00 9500.0	00 11200	1.00	12900.00 1460	0.00	18000.00 M	i Hz
No.	Freque	ency	Factor	Reading	Leve	ı	Limit	Marg	gi Detec	ctor
	(MH	(z)	(dB/m)	(dBuV)	(dBuV/	m)	(dBuV/m)	n		
								(dB)		
1	3295.0	000	-4.68	44.00	39.32	2	74.00	-34.6	8 pea	ık
2	3946.0	667	-2.07	40.83	38.76	3	74.00	-35.2	4 pea	ık
3	4804.0	000	1.23	37.78	39.0	1	74.00	-34.9	9 pea	ık
4	5306.0	667	1.86	37.74	39.60)	74.00	-34.4	0 pea	ık
5	6128.3	333	3.31	36.83	40.14	1	74.00	-33.8	6 pea	ık
6	7206.0	000	5.88	36.45	42.33	3	74.00	-31.6	7 pea	ık

Report No.: SEFB907135

Note: Level = Reading + Factor
 Margin = Level – Limit
 Factor= Antenna Factor + Cable Loss - Amplifier Factor

Powe	er		:	DC	3.3V			Pol/F	Phas	e		:	Н	ORIZON	NTAL
Test	Мос	de	:	Мо	de 1			Tem	oerat	ure		:	25	°C	
Test	Dat	е	:	Jul.	14, 2	2019		Hum	idity			:	52	%	
Mem			:	СН	39			Atmo	sph	eric Pres	ssure	e :	10	10 hpa	
80.0	dBu\	//m						FCC	Class B	Radiation (a	above 1	(GHz) pea	ak		
								FCC	Class I	B Radiation	(above	1GHz) A	vg		
40		*	2 3	4 *	5 X	6 X									
0.0	0.000	2700.00	4400.00	610	0.00	7800.00) 9500.1	00 112	00.00	12900.00	1460	0.00		18000.00	MHz
No.		Free	quency	Fa	ctor	Re	ading	Lev	el	Limi	it	Mar	gi	Dete	ctor
		(N	(Hz)	(dF	B/m)	(d)	BuV)	(dBuV	// m)	(dBuV	/m)	n			
												(dB	3)		
1		312	25.000	-5	.57	4:	5.39	39.8	32	74.0	0	-34.	18	pea	ak
2		434	3.333	-0	.14	4	1.24	41.1	0	74.0	0	-32.9	90	pe	ak
3		488	2.000	1.	38	3	8.97	40.3	35	74.0	0	-33.6	65	pea	ak
4		567	5.000	2.	45	38	8.70	41.1	5	74.0	0	-32.8	85	pea	ak
5		615	6.667	3.	32	3	7.37	40.6	9	74.0	0	-33.3	31	pea	ak
6		732	3.000	6.	34	3	5.74	42.0	8	74.0	0	-31.9	92	pea	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 23 of 79

Powe	er		:	DC 3	.3V			Pol/F	Phase	<u>е</u>	:	Ve	ertical	
Test	Mod	de	:	Mode	e 1			Tem	oerat	ure	:	25	°C	
Test	Dat	е	:	Jul. 1	4, 2	019		Hum	idity		:	52	%	
Mem			:	CH 3	9			Atmo	sphe	eric Pressur	e :	10	10 hpa	
80.0	dBu∖	//m						FCC (Class B	Radiation (above	1GHz) pe	ak		
								FCC	Class I	B Radiation (abov	e 1GHz) A	vg		
40		;	1 2 3 X X X	4 3	5 X	Š.								
0.0	0.000	2700.00	4400.00	6100.0	00	7800.00	9500.0	00 1120	00.00	12900.00 146	00.00		18000.00	MHz
No.		Freq	uency	Facto	or	Read	ding	Lev	el	Limit	Mar	gi	Dete	ctor
		_	IHz)	(dB/n	n)	(dB	_	(dBuV	// m)	(dBuV/m)	n			
											(dE	B)		
1		338	0.000	-4.2	3	44.	.47	40.2	24	74.00	-33.	76	pe	ak
2		428	6.667	-0.4	3	41.	.54	41.1	11	74.00	-32.	89	pe	ak
3		488	2.000	1.38	3	38.	.99	40.3	37	74.00	-33.	63	pea	ak
4		593	0.000	3.09	9	38.	.00	41.0	9	74.00	-32.	91	pea	ak
5		646	8.333	3.45	5	37.	.82	41.2	27	74.00	-32.	73	pe	ak
6		732	3.000	6.34	4	35.	.44	41.7	' 8	74.00	-32.	22	pea	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 24 of 79

Pow	er		:	DC	3.3V			Pol/F	Phase	e	:	НС	ORIZON	NTAL
Test	Мо	de	:	Мо	de 1			Tem	perat	ure	:	25	°C	
Test	Dat	e	:	Jul.	14, 2	2019		Hum	idity		:	52	%	
Mem			• •	СН	78			Atmo	sphe	eric Pressur	e :	10	10 hpa	
80.0	dBu	V/m						FCC (Class B	Radiation (above	1GHz) pea	ak		
								FCC	Class I	B Radiation (abov	e 1GHz) A	vg		
40		*	2 3	4	5 X	6								
0.0														
100 No		2700.00		6100	o.oo ctor	7800.00	9500.0	00 1120 Lev	00.00	12900.00 146 Limit	00.00 Mov	~:	18000.00 Dete	
NO	٠.		quency 1Hz)		3/m)	Read (dB	_	(dBuV		(dBuV/m)	Mar n (dB		Dete	ctor
1		309	06.667	-5.	72	45.	.29	39.5	57	74.00	-34.4		pea	ak
2		442	28.333	0.	29	40.	.67	40.9	96	74.00	-33.0)4	pe:	
3		496	0.000	1.	52	38.	.58	40.1	0	74.00	-33.9	90	pea	ak
4		542	20.000	1.	95	38.	.90	40.8	35	74.00	-33.1	15	pea	ak
5		621	3.333	3.	35	37.	.99	41.3	84	74.00	-32.6	66	pea	ak
6		744	0.000	6.	80	35.	.30	42.1	0	74.00	-31.9	90	pe	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 25 of 79

Pow	er			:	DC	3.3V	/			Pol/F	has	е		:	Ve	ertical	
Test	Мо	de		:	Мо	de 1				Temp	perat	ure		:	25	s °C	
Test	Dat	e			Jul.	14, 2	2019)		Hum	idity			:	52	2 %	
Men					H	78				Atmo	sphe	eric	Pressure	:	10	10 hpa	
80.0	dBu	V/m								FCC (Class B	Radi	ation (above	GHz) pe	ak		
										FCC	Class I	B Rac	liation (above	1GHz) A	vg		
40		*		2 3	4 *	5 X	6 X										
0.0	000	2700.00	4400		C10	000	7800	00 050	0.00	1120	0.00	1200	00.00 1460	0.00		10000 00	
No		2700.00 Fred	4400 quency		6100 Fac	ctor		.00 950 Reading	U.UL	Lev	10.00 e l		Limit	Mar	·σi	18000.00 Dete	
110			4неле <i>ј</i> ИНz)			3/m)		(dBuV)		(dBuV			BuV/m)	n	8-		
		Ì	ŕ		Ì	ŕ		`		Ì	ĺ	Ì	ŕ	(dE	B)		
1		312	25.000		-5.	.57		45.67		40.1	0		74.00	-33.	90	pe	ak
2		454	1.667		0.	74	1	41.64		42.3	8		74.00	-31.	62	pe	ak
3		496	0.000		1.	52		40.06		41.5	8	,	74.00	-32.	42	pe	ak
4		556	1.667		2.	17		38.26		40.4	.3	,	74.00	-33.	57	pe	ak
5		672	23.333		4.	18		37.85		42.0	3	,	74.00	-31.	97	pe	ak
6		744	0.000		6.	80		35.94		42.7	' 4		74.00	-31.	26	pe	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Pow	er			:	DC	3.3\	/		Pol/F	Phas	е	:	Н	ORIZON	NTAL
Test	Mod	de		:	Мо	de 2			Tem	perat	ture	:	25	s °C	
Test	Dat	е		:	Jul.	14,	2019		Hum	idity		:	52	2 %	
Mem				:	СН	00			Atmo	osph	eric Pressur	e :	10	10 hpa	
80.0	dBu∖	//m							FCC	Class B	Radiation (above	1GHz) pe	ak		
									FCC	Class	B Radiation (above	e 1GHz) A	wg		
40			1	3 X	4 ×	5 X	6 X								
0.0	n nnn	2700.00	440	0.00	610	0.00	7800.	00 9500.	NN 112	00.00	12900.00 146	00.00		18000.00	MHz
No			quenc			ctor		eading	Lev		Limit	Mar	gi	Dete	
		(N	THz)		(dE	B/m)		dBuV)	(dBuV	// m)	(dBuV/m)	n	Ü		
												(dE	B)		
1		349	3.333	3	-3	.64		43.75	40.	11	74.00	-33.	89	pe	ak
2		428	6.667	,	-0	.43	,	41.22	40.7	79	74.00	-33.	21	pe	ak
3		480	4.000)	1.	23		40.02	41.2	25	74.00	-32.	75	pea	ak
4		556	1.667	,	2.	17		38.99	41.1	16	74.00	-32.	84	pea	ak
5		635	5.000)	3.	40		37.68	41.0)8	74.00	-32.	92	pe	ak
6		720	6.000)	5.	88		37.35	43.2	23	74.00	-30.	77	pea	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Power	r			:	DC	3.3V			Pol/F	Phas	е		:	Ve	ertical	
Test M	Лode			:	Мо	de 2			Tem	oerat	ure		:	25	s °C	
Test D	Date			:	Jul.	14, 2	2019		Hum	idity			:	52	2 %	
Memo				:	СН	00			Atmo	sph	eric P	ressure	:	10	10 hpa	
80.0	dBuV/m								FCC	Class B	Radiati	on (above 1	(GHz) pea	ak		
									FCC	Class I	B Radia	ition (above	1GHz) A	vg		
40		1 X	, 2 *	3 X	4 5	į :	6 X									
0.0																
No.	000 270		uenc	00.00	610 Fa	ctor	7800.00	ading	Lev)0.00 Al	12900. T	.00 1460 imit	u.uu Mar	rai	18000.00 Dete	
110.		_	Hz)	'y		3/m)		BuV)	(dBuV			uV/m)	n (dB		Dett	Ctoi
1		335 ⁻	1.66	7	-4.	.38	4	3.68	39.3	30	7.	4.00	-34.7		pe	 ak
2	_		5.000			.15		1.75	40.6			4.00	-33.4		pe	
3			4.000			23	<u> </u>	0.29	41.5			4.00	-32.4		pe	
4			3.33			10	<u> </u>	8.82	40.9			4.00	-33.0		pe	
5			1.66		3.	29	3	7.98	41.2	27	7.	4.00	-32.7	73	pe	
6		720	6.000	0	5.	88	3	6.60	42.4	18	7	4.00	-31.5	52	pe	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Powe	er					DC	3.3	V				Pol/F	has	e		:	Н	ORIZON	NTAL
Test I	Mod	le				Мос	de 2					Tem	perat	ure		:	25	5 °C	
Test [Date	Э				Jul.	14,	20	019			Hum	idity			:	52	2 %	
Mem						СН	39					Atmo	sph	eric	Pressure	e :	10)10 hpa	
80.0	dBuV	//m										FCC (Class B	Radi	ation (above	1GHz) pe	ak		
												FCC	Class	B Ra	diation (above	1GHz) A	vg		
40			*	2 X	3	*	5 X	>	6 X										
0.0	1 000	2700.00		400.00		6100	1 00		7800.0	0 950	0 01	n 1120	0.00	129	00.00 1460	00.00		18000.00	MHz
No.		Freq			, 	Fac				eading	0.00	Lev			Limit	Mar	gi	Dete	
		-	Hz)	·		(dB	/m)			lBuV)		(dBuV	/m)	(d	BuV/m)	n	0		
		Ì	ĺ				ŕ		Ì	ŕ		`	Í	Ì	ŕ	(dE	3)		
1		360	6.66	67		-3.	24		4	3.28		40.0)4		74.00	-33.	96	pe	ak
2		420	1.66	67	t	-0.	86		4	1.97	1	41.1	1		74.00	-32.	89	pe	ak
3		488	2.00	00		1.	38		3	88.92	1	40.3	0		74.00	-33.	70	pe	ak
4		533	5.00	00		1.	88		3	37.79		39.6	7		74.00	-34.	33	pe	ak
5		646	8.33	33		3.	45		3	88.23		41.6	8		74.00	-32.	32	pe	ak
6		732	3.00	00		6.	34		3	86.14		42.4	-8		74.00	-31.	52	pe	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Pow	er				:	DC	3.3\	/			Pol	/Pha	se		:	Ve	ertical	
Test	Мос	de			:	Мо	de 2				Ter	nper	ature)	:	25	5 °C	
Test	Dat	е			:	Jul.	14,	201	9		Hu	nidit	y		:	52	2 %	
Mem					:	СН	39				Atn	nosp	herio	Pressur	e :	10)10 hpa	
80.0	dBu∖	√/m									FC	C Class	B Rad	diation (above	1GHz) pe	ak		
											F	CC Clas	ss B R	adiation (abov	e 1GHz) /	۱۷g		
40			X	2	3		4 5	6										
0.0	0.000	2700.0	0	4400	0.00	610	0.00	780	00.00	9500.	00 11	200.00) 12	900.00 146	00.00		18000.00	MHz
No		Fre	eque	ncy	7	Fa	ctor		Rea	ding	Le	vel		Limit	Mai	rgi	Dete	ctor
		(1	MH	z)		(dE	B/m)		(dB	uV)	(dBu	V/m)) (dBuV/m)	n (dI			
1		36	35.0	000		-3	.14		41	.61	38	.47		74.00	-35.	53	ре	ak
2		43	15.0	000		-0	.28		38	.83	38	.55		74.00	-35.	45	ре	ak
3		48	82.0	000		1.	38		40	.20	41	.58		74.00	-32.	42	ре	ak
4		61	85.0	000		3.	33		38	.02	41	.35		74.00	-32.	65	ре	ak
5		66	10.0	000		3.	82		35	.80	39	.62		74.00	-34.	38	ре	ak
6		73	23.0	000		6.	34		36	.18	42	.52		74.00	-31.	48	ре	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 30 of 79

Pow	er			:	DC	3.3V	,		Pol/F	Phase	e		:	HORIZO	NTAL
Test	Мо	de		:	Мо	de 2			Tem	oerat	ure		:	25 °C	
Test	Dat	е		:	Jul.	14, 2	2019		Hum	idity			:	52 %	
Men				:	СН	78			Atmo	sphe	eric Pre	essure	e :	1010 hpa	a
80.0	dBu⅓	//m							FCC	Class B	Radiation	(above	(GHz) peak	K	
									FCC	Class I	B Radiatio	n (above	1GHz) Av	g	
40			×	2 3	\$ \$	5 X	e X								
0.0	ın nnn	2700.00		400.00	610	0.00	7800.00	9500.0	nn 112	00.00	12900.00	1460	0.00	18000.00	MH ₂
No			quen			ctor		ding	Lev		Lin		Marg		ector
			ИНz)	-		B/m)		SuV)	(dBuV		(dBu		n		
		204	10.21	22	2	17	11	07	20.7	70	7.4	00	(dB)		- ale
1			18.33			.17		.87	39.7		74.		-34.3	<u> </u>	eak
2			15.00			.28		.48	41.2		74.		-32.8		eak
3			0.00			52		.57	41.0		74.		-32.9		eak
4			36.66			23		.82	41.0		74.		-32.9		eak
5			53.33			63		.12	41.7		74.		-32.2	<u>_</u>	eak
6		744	10.00	00	6.	80	36	.63	43.4	13	74.	00	-30.5	7 pe	eak

Report No.: SEFB907135

: 31 of 79

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

S-FD-501V1.0

Power		:	DC 3.3V		Pol/Phas	se e	:	Vertical
Test M	ode	:	Mode 2		Tempera	ture	:	25 °C
Test D	ate	:	Jul. 14, 2	2019	Humidity	,	:	52 %
Memo		:	CH 78		Atmosph	eric Pressure	e :	1010 hpa
80.0 d	BuV/m				FCC Class E	Radiation (above	IGHz) peal	x
					FCC Class	B Radiation (above	1GHz) Av	g
40		1 2 3 X X X	4 5	6				
0.0								
1000.0 No.	00 2700.00 Fred	4400.00 (uency	6100.00 Factor	7800.00 9500.0 Reading	00 11200.00 Level	12900.00 1460 Limit	00.00 Marg	i Detector
110.		IHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	n	Detector
							(dB)	
1	343	6.667	-3.93	41.99	38.06	74.00	-35.9	4 peak
2	408	8.333	-1.44	39.80	38.36	74.00	-35.6	4 peak
3	496	0.000	1.52	38.97	40.49	74.00	-33.5	1 peak
4	576	0.000	2.66	37.48	40.14	74.00	-33.8	6 peak
5	678	0.000	4.37	36.75	41.12	74.00	-32.8	8 peak
6	744	0.000	6.80	36.29	43.09	74.00	-30.9	1 peak

Report No.: SEFB907135

Note: Level = Reading + Factor
 Margin = Level – Limit
 Factor= Antenna Factor + Cable Loss - Amplifier Factor

Powe	er		:	DC 3.3V		Pol/F	has	<u></u> е	: F	HORIZONTAL
Test	Mod	de	:	Mode 3		Temp	perat	ure	: 2	25 °C
Test	Date	е	:	Jul. 14, 2	2019	Hum	idity		: 5	62 %
Mem				CH 00		Atmo	sphe	eric Pressure	e : 1	010 hpa
80.0	dBuV	//m				FCC (Class B	Radiation (above	IGHz) peak	
						FCC	Class I	B Radiation (above	1GHz) Avg	
40			1 2 3	4 5 * X	6 X					
0.0	0.000	2700.00	4400.00	6100.00	7800.00 9500	100 1126	00.00	12900.00 1460	00.00	18000.00 MHz
No.			uency	Factor	Reading	Lev		Limit	Margi	
1,00		_	IHz)	(dB/m)	(dBuV)	(dBuV		(dBuV/m)	n	2 606001
									(dB)	
1			3.333	-3.64	43.88	40.2		74.00	-33.76	 '
2		420	1.667	-0.86	40.39	39.5	3	74.00	-34.47	peak
3		480	4.000	1.23	40.49	41.7	'2	74.00	-32.28	peak
4		595	8.333	3.16	38.76	41.9	2	74.00	-32.08	peak
5		624	1.667	3.36	38.96	42.3	2	74.00	-31.68	peak
6		720	6.000	5.88	37.12	43.0	0	74.00	-31.00	peak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 33 of 79

Powe		:	DC	3.3V			Pol/Phase :						Vertical		
Test I	;	:	Mod	de 3			Temperature :					25 °C			
Test I		:	Jul.	14, 2	2019		Humidity :					52 %			
Mem	0		:	СН	00			Atmospheric Pressure :					1010 hpa		
80.0	dBuV/n	n						FCC (Class B	Radiation	GHz) pea	k			
								FCC	Class I	B Radiation	n (above	1GHz) Av	⁄g		
40		*	2 3	4 *	5X	6 X									
	1.000 27		4400.00	6100		7800.00	9500.0		00.00	12900.00	1460			18000.00	
No.	No. Frequency (MHz)		Factor (dB/m)		Reading (dBuV)		Level (dBuV/m)		Limit (dBuV/m)		Mar n (dB)		Dete	ctor	
1		3323.333		-4.53		43.73		39.20		74.00		-34.8	30 peak		ak
2		4201.667		-0.86		40.81		39.95		74.00		-34.0)5	5 peak	
3		4804.000		1.23		40.57		41.80		74.00		-32.2	32.20 pea		ak
4		5873.333		2.95		38.08		41.03		74.00		-32.9	-32.97		ak
5		6298.333		3.38		38.16		41.54		74.00		-32.46		peak	
6		7206.000			5.88		36.42		42.30		74.00		70	peak	

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 34 of 79

Power		:	DC	3.3V			Pol/Phase :						HORIZONTAL		
Test M	ode	:	Mod	de 3			Temperature :						25 °C		
Test Da	ate	:	Jul.	14, 2	2019		Humidity :						52 %		
Memo		:	СН	39			Atmospheric Pressure :						1010 hpa		
80.0 dl	80.0 dBuV/m						FCC (Class B	Radiation	[above 1	(GHz) pea	ak			
							FCC	Class I	8 Radiation	ı (above	1GHz) A	vg			
40		1 2 2		4 5 * X	6 *										
0.0															
1000.00 No.	00 2700.00 Fred	4400.00 quency	Fac		7800.00 Rea	9500.0 ding	1120 Lev	00.00 el	12900.00 Lim	1460	0.00 Mar	gi	18000.00 Dete		
1,00		(Hz)		(dB/m)		(dBuV)		(dBuV/m)		(dBuV/m)		8 -	Dete	ctor	
		,		(uD/III)		()		,			(dB	3)			
1	355	3550.000		-3.43		43.59		40.16		74.00		<u></u> 34	peak		
2	431	4315.000		-0.28		39.32		39.04		74.00		96	6 peak		
3	488	4882.000		1.38		39.22		60	74.00		-33.4	40	10 peak		
4	621	6213.333		3.35		37.00		35	74.00		-33.6	35	65 peak		
5	669	6695.000		4.09		36.88		40.97		74.00		03 peak		ak	
6	732	3.000	6.34		35.81		42.15		74.00		-31.85		pea	ak	

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 35 of 79

Power :					DC 3	3.3V			Pol/Phase :						Vertical		
Test Mode :					Mod	e 3			Temperature :						25 °C		
Test I	Э		:	Jul.	14, 2	2019		Hum	Humidity :						52 %		
Mem			:	CH 3	39			Atmospheric Pressure :						1010 hpa			
80.0 dBuV/m									FCC	Class B	Radiation	IGHz) peak					
									FCC	Class	B Radiatio	on (above	1GHz) A	vg			
40		*	2	3	**	5 X	6										
		2700.00	4400.0	00	6100.		7800.0			00.00	12900.0				18000.00	MHz	
No.			quency		Factor		Reading		Level		Limit		Margi		Detector		
		(MHz)			(dB/m)		(dBuV)		(dBuV/m)		(dBuV/m)		n (dB	5)			
1		3181.667			-5.27		43.51		38.24		74.00		-35.7	76 peak		ak	
2		4258.333			-0.57		39.96		39.39		74.00		-34.6	31	1 peak		
3		4882.000			1.38		39.18		40.56		74.00		-33.4	.44 peal		ak	
4		6015.000			3.27		37.57		40.84		74.00		-33.1	33.16 ре		ak	
5		6581.667			3.72		36.07		39.79		74.00		-34.21		peak		
6		7323.000			6.34		35.62		41.96		74.00		-32.04		peak		

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Power :			DC	3.3V	,		Pol/F	Phase	e	:	: HORIZONTAL				
Test I	Test Mode :			Mod	Mode 3 Temperature :			25	25 °C						
Test [Test Date : Jul. 14, 2				14, 2	2019		Humidity				52	2 %		
Mem				:	СН	78			Atmo	osphe	eric Pressu	ire :	: 1010 hpa		
80.0	dBuV	7m							FCC	Class B	Radiation (abov	e 1GHz) p	eak		
									FCC	Class I	B Radiation (abo	ve 1GHz).	Avg		
40			*	2 *	4 *	5×	8 X								
0.0	0.000	2700.00	440	0.00	6100	1.00	7800.00) 9500.	00 112	00.00	12900.00 14	1600.00		18000.00	MHz
No.		Fre	quenc	y	Fac	tor	Re	ading	Lev	el	Limit	Ma	rgi	Dete	ctor
		(N	MHz)		(dB	/m)	(d	BuV)	(dBuV	⁷ /m)	(dBuV/m)) r (d)			
1		352	21.667	,	-3.	53	4	2.86	39.3	33	74.00	-34	-	pe	ak
2		4456.667			0.44		-	8.37	38.8		74.00	-35		pe	
3		4960.000			1.52		1	9.45	40.9		74.00	-33		pe	
4		6015.000		3.2			6.90	40.1		74.00	-33		pe		
5			95.000		4.0		-	7.38	41.4		74.00	-32		pe	
6		744	10.000)	6.8	30	3	5.43	42.2	23	74.00	-31	.77	pe	ak

Report No.: SEFB907135

Note: Level = Reading + Factor Margin = Level – Limit

Factor = Antenna Factor + Cable Loss - Amplifier Factor

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 37 of 79

Power		:	DC 3.3V		Pol/Phas	se	:	Vertical		
Test M	ode	:	Mode 3		Tempera	ture	:	25 °C		
Test Da	Test Date : Jul. 14,			2019	Humidity	1	:	52 %		
Memo					Atmosph	eric Pressure	e :	1010 hpa		
80.0 dE	BuV/m				F00 01 F					
					FLL Class E	Radiation (above	luHzj pea	K		
					FCC Class	B Radiation (above	1GHz) Av	rg e		
		. 2 3	4 5 * \$	6 X						
40		1 2 3	T Å							
0.0										
	0 2700.00	4400.00	6100.00	7800.00 9500.0	00 11200.00	12900.00 1460	0.00	18000.00 MHz		
No.	Frequ	iency	Factor	Reading	Level	Limit	Mar	gi Detector		
	(MI	Hz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	n			
							(dB))		
1	3635	.000	-3.14	41.78	38.64	74.00	-35.3	66 peak		
2	3975	.000	-1.98	41.79	39.81	74.00	-34.1	9 peak		
3	4960	4960.000		38.76	40.28	74.00	-33.7	'2 peak		
4	5958.333		5958.333 3.16		40.11	74.00	-33.8	9 peak		
5	6411	.667	3.42	36.58	40.00	74.00	-34.0	00 peak		
6	7440	7440.000		7440.000 6.8		35.87	42.67	74.00	-31.3	peak

Report No.: SEFB907135

Note: Level = Reading + Factor
 Margin = Level – Limit
 Factor= Antenna Factor + Cable Loss - Amplifier Factor

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019 S-FD-501V1.0 Page No. : 38 of 79

20dB Bandwidth Measurement

6.1 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

Report No.: SEFB907135

6.2 Test Standard

ANSI C63.10-2013- Section 7.8.7

6.3 Test Setup

- 1. Set RBW ≥ 1% of the 20dB bandwidth
- 2. VBW ≥ 3 ×RBW
- 3. Span = approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace to stabilize
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20dB relative to the maximum level measured in the fundamental emission

6.4 Test Setup Layout

Spectrum Analyzer

Issued Date Jul. 25, 2019 S-FD-501V1.0 Page No. 39 of 79

6.5 Test Result and Data

Test Item	Occupied Bandwidth
Test Mode	Mode 1: Transmitter DH5

Channel No.	Frequency(MHz)	20dB Bandwidth(kHz)
00	2402	956.5
39	2441	955.3
78	2480	955.2

Issued Date : Jul. 25, 2019

Test Item	Occupied Bandwidth
Test Mode	Mode 2: Transmitter 2DH5

Channel No.	Frequency(MHz)	20dB Bandwidth(kHz)
00	2402	1278
39	2441	1277
78	2480	1279

Test Item	Occupied Bandwidth
Test Mode	Mode 3: Transmitter 3DH5

Report No.: SEFB907135

Issued Date : Jul. 25, 2019

Channel No.	Frequency(MHz)	20dB Bandwidth(kHz)
00	2402	1292
39	2441	1292
78	2480	1292

S-FD-501V1.0 Page No. : 42 of 79

7. Channel Carrier Frequencies Separation Measurement

7.1 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: SEFB907135

7.2 Test Standard

ANSI C63.10-2013- Section 7.8.2

7.3 Test Setup

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW
- d) Sweep: Auto
- e) Detector function: Peak
- Trace: Max hold f)
- g) Allow the trace to stabilize

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

7.4 Test Setup Layout

Spectrum Analyzer

Cerpass Technology (Suzhou) Co., Ltd. Issued Date Jul. 25, 2019 S-FD-501V1.0 Page No. 43 of 79

7.5 Test Result and Data

Test Item	Channel Carrier Frequency Separation
Test Mode	 Mode 1: Transmitter DH5

Channel No.	Frequency (MHz)	Carrier Frequency Separation (kHz)	Limit (kHz)	Result
00	2402	1000	>25 kHz or 2/3 of 20 dB BW	Pass
39	2441	1000	>25 kHz or 2/3 of 20 dB BW	Pass
78	2480	1000	>25 kHz or 2/3 of 20 dB BW	Pass

Test Item	• •	Carrier Frequency Separation
Test Mode	•	Mode 2: Transmitter 2DH5

Channel No.	Frequency (MHz)	Carrier Frequency Separation(kHz)	Limit (kHz)	Result
00	2402	1000	>25 kHz or 2/3 of 20 dB BW	Pass
39	2441	1000	>25 kHz or 2/3 of 20 dB BW	Pass
78	2480	1000	>25 kHz or 2/3 of 20 dB BW	Pass

Test Item	• •	Carrier Frequency Separation
Test Mode	•	Mode 3: Transmitter 3DH5

Channel No.	Frequency (MHz)	Carrier Frequency Separation(kHz)	Limit (kHz)	Result
00	2402	1000	>25 kHz or 2/3 of 20 dB BW	Pass
39	2441	1000	>25 kHz or 2/3 of 20 dB BW	Pass
78	2480	1000	>25 kHz or 2/3 of 20 dB BW	Pass

Cerpass Technology (Suzhou) Co., Ltd.Issued DateS-FD-501V1.0Page No.

Issued Date : Jul. 25, 2019

: 44 of 79

S-FD-501V1.0

CERPASS TECHNOLOGY (SUZHOU) CO., LTD

Report No.: SEFB907135

Page No.

: 45 of 79

8. Dwell Time Measurement

8.1 Test Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: SEFB907135

8.2 Test Standard

ANSI C63.10-2013- Section 7.8.3

8.3 Test Setup

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak

e) Trace: Max hold

8.4 Test Setup Layout

Spectrum Analyzer

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 46 of 79

8.5 Test Result and Data

Test Date : Jul. 19, 2019 Temperature : 22C Atmospheric pressure : 1017 hPa Humidity : 60 %

Test Period = 0.4 (second/ channel) x 79 Channel = 31.6 sec

Modulation Standard: GFSK(1Mbps)

DH 1

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
0.384	122.88	31.6	400	PASS

Report No.: SEFB907135

Remark:Total of Dwell =pulse Time*(1600/2)/79*Period Time DH 3

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
1.64	262.40	31.6	400	PASS

Remark:Total of Dwell =pulse Time*(1600/4)/79*Period Time DH 5

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
2.885	307.73	31.6	400	PASS

Remark:Total of Dwell =pulse Time*(1600/6)/79*Period Time

Modulation Standard: π /4 DQPSK(2Mbps)

DH 1

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
0.393	125.76	31.6	400	PASS

Remark:Total of Dwell =pulse Time*(1600/2)/79*Period Time DH 3

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
1.64	262.40	31.6	400	PASS

Remark:Total of Dwell =pulse Time*(1600/4)/79*Period Time DH 5

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
2.89	308.27	31.6	400	PASS

Remark: Total of Dwell =pulse Time*(1600/6)/79*Period Time

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 47 of 79

Modulation Standard: 8DPSK(3Mbps)

DH 1

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
0.39	124.8	31.6	400	PASS

Report No.: SEFB907135

Remark:Total of Dwell =pulse Time*(1600/2)/79*Period Time DH 3

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
1.645	263.20	31.6	400	PASS

Remark:Total of Dwell =pulse Time*(1600/4)/79*Period Time

DH 5

Pulse Time	Total of Dwell	Period Time	Limit	
(ms)	(ms)	(s)	(ms)	Result
2.895	308.80	31.6	400	PASS

Remark: Total of Dwell =pulse Time*(1600/6)/79*Period Time

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 48 of 79

Report No.: SEFB907135

: Jul. 25, 2019

: 49 of 79

Test Period = 0.4 (second/ channel) x 20 Channel = 8 sec

	Erogueney	Length of	Number of	Dwell Time	Limit
Modulation Type	Frequency (MHz)	transmission	transmission in a 8		
	(IVITZ)	time (ms)	(20 Hopping*0.4)	(ms)	(ms)
AFH (DH1)	2402-2421	0.393	160	62.88	400
AFH (DH3)	2402-2421	1.65	80	132.00	400
AFH (DH5)	2402-2421	2.895	53.33	154.39	400

Report No.: SEFB907135

S-FD-501V1.0 Page No. : 51 of 79

Issued Date

Jul. 25, 2019

9. Number of Hopping Channels Measurement

9.1 Test Limit

Frequency hopping systems in the 2400 ~ 2483.5 MHz band shall use at least 15 channels.

9.2 Test Standard

ANSI C63.10-2013- Section 7.8.3

9.3 Test Setup

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW
- d) Sweep: Auto
- e) Detector function: Peak
- f) Trace: Max hold
- g) Allow the trace to stabilize

9.4 Test Setup Layout

Spectrum Analyzer

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

S-FD-501V1.0

Page No. : 52 of 79

9.5 Test Result and Data

Test Item	:	Number of Hopping Frequencies

Test Mode	Frequency Band	Number of Hopping	Limit	Result
	(MHz)	Frequencies		
Mode 1: Transmitter DH5	2400 - 2483.5	79	>15	Pass
Mode 2: Transmitter DH5	2400 - 2483.5	79	>15	Pass
Mode 3: Transmitter DH5	2400 - 2483.5	79	>15	Pass

Page No. : 53 of 79

Issued Date : Jul. 25, 2019

Report No.: SEFB907135

10. Peak Output Power Measurement

10.1 Test Limit

The Maximum Peak Output Power Measurement is 125mW (20.97dBm).

10.2 Test Standard

ANSI C63.10-2013- Section 7.8.5

10.3 Test Setup

Spectrum analyzer method

- a) Use the following spectrum analyzer settings:
- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW ≥ RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- e) A plot of the test results and setup description shall be included in the test report

Peak power meter method

The antenna port (RF output) of the EUT was connected to the input (RF input) of a power meter. Power was read directly from the meter and cable loss connection was added to the reading to obtain power at the EUT antenna terminal. The EUT Output Power was set to maximum to produce the worse case test result.

Cerpass Technology (Suzhou) Co., Ltd. Issued Date Jul. 25, 2019

Page No.

54 of 79

S-FD-501V1.0

10.4 Test Setup Layout

Spectrum Analyzer

Report No.: SEFB907135

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 55 of 79

10.5 Test Result and Data

Test Item	:	Peak Output Power
Test Mode		Mode 1: Transmitter DH5

Channel No.	Frequency (MHz)	Measurement Power Output (dBm)	Limit (dBm)	Result
0	2402	5.36	20.97	Pass
39	2441	4.30	20.97	Pass
78	2480	2.30	20.97	Pass

Test Item	:	Peak Output Power
Test Mode	:	Mode 2: Transmitter 2DH5

Report No.: SEFB907135

Issued Date : Jul. 25, 2019

Channel No.	Frequency (MHz)	Measurement Power Output (dBm)	Limit (dBm)	Result
0	2402	7.80	20.97	Pass
39	2441	6.36	20.97	Pass
78	2480	5.32	20.97	Pass

S-FD-501V1.0 Page No. : 57 of 79

Test Item	:	Peak Output Power
Test Mode	:	Mode 3: Transmitter 3DH5

Report No.: SEFB907135

Issued Date : Jul. 25, 2019

Channel No.	Frequency (MHz)	Measurement Power Output (dBm)	Limit (dBm)	Result
0	2402	7.90	20.97	Pass
39	2441	6.72	20.97	Pass
78	2480	5.53	20.97	Pass

S-FD-501V1.0 Page No. : 58 of 79

11. Conducted Spurious Emissions Measurement

11.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) of FCC part 15 is not required.

Report No.: SEFB907135

S-FD-501V1.0 Page No. 59 of 79

Issued Date

Jul. 25, 2019

11.2 Test Procedure

According to ANSI C63.10: 2013.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

Report No.: SEFB907135

RBW = 100 kHz

VBW ≧ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

11.3 Test Setup

Spectrum Analyzer

Cerpass Technology (Suzhou) Co., Ltd. Issued Date : Jul. 25, 2019

Page No.

60 of 79

S-FD-501V1.0

11.4 Test Result

Single test

Modulation Standard: GFSK (1Mbps)

Channel: 00

Report No.: SEFB907135

Modulation Standard: GFSK (1Mbps)

Channel: 39

Modulation Standard: GFSK (1Mbps)

Channel: 78

S-FD-501V1.0 Page No. : 61 of 79

Modulation Standard: π/4 DQPSK (2Mbps)

Channel: 00

Report No.: SEFB907135

Modulation Standard: π/4 DQPSK (2Mbps)

Channel: 39

Modulation Standard: $\pi/4$ DQPSK (2Mbps)

Channel: 78

Modulation Standard: 8DPSK (3Mbps)

Channel: 00

Report No.: SEFB907135

Modulation Standard: 8DPSK (3Mbps)

Channel: 39

Modulation Standard: 8DPSK (3Mbps)

Channel: 78

Issued Date

Jul. 25, 2019

S-FD-501V1.0 Page No. : 63 of 79

Report No.: SEFB907135

Hopping test

Modulation Standard: GFSK (1Mbps)

Modulation Standard: GFSK (1Mbps)

Modulation Standard: $\pi/4$ DQPSK (2Mbps) Channel: 39

Modulation Standard: GFSK (1Mbps)

Modulation Standard: π/4 DQPSK (2Mbps)

Modulation Standard: $\pi/4$ DQPSK (2Mbps)

Channel: 78

Issued Date

: Jul. 25, 2019

S-FD-501V1.0 Page No. : 64 of 79

Modulation Standard: 8DPSK (3Mbps)

Channel: 00

Modulation Standard: 8DPSK (3Mbps)

Channel: 78

Modulation Standard: 8DPSK (3Mbps)

Channel: 39

Issued Date

Jul. 25, 2019

Report No.: SEFB907135

S-FD-501V1.0 Page No. : 65 of 79

12. Radiated Emission Band Edge Measurement

12.1 Limit

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a) of FCC part 15.

12.2 Test Procedure

According to ANSI C63.10: 2013.

This test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205 of FCC part 15. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1GHz

VBW ≧ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b) of FCC part 15.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209 of FCC Part 15. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit of FCC part 15.

If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-delta" method may be employed.

Cerpass Technology (Suzhou) Co., Ltd. Issued Date Jul. 25, 2019

S-FD-501V1.0

66 of 79

Page No.

12.3 Test Setup

Report No.: SEFB907135

S-FD-501V1.0 Page No. : 67 of 79

Issued Date

Jul. 25, 2019

12.4 Test Result

Report No.: SEFB907135

Powe	r		: DC 3	.3V	Pol/Phase	: Ho	Horizontal				
Test N	/lode		: GFSI	K, CH00	Temperatur	re : 25	: 25 °C				
Test d	late		: Jul. 1	4, 2019	Humidity	: 55	5 %				
110.0	dBuV/m										
_					FCC Class	B Radiation (above	e 1GHz) peak				
55					FCC Clas	s B Radiation (abov	ve 1GHz) Avg				
~	home have a shake	men programme per			war and a second a	*		ndenan			
0.0 230	0.000 2312.00	2324.00	2336.00	2348.00 2	360.00 2372.00	2384.00 239	96.00 2	2420.00 MHz			
No.	Frequen	icy I	Factor	Reading	Level	Limit	Margin	Detector			
	(MHz) (dE		(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)				
1	2390.00	. 00	-10.05	47.29	37.24	74.00	-36.76	peak			
2	2390.00	. 00	-10.05	35.80	25.75	54.00	-28.25	AVG			

Report No.: SEFB907135

Power			DC 3.	.3V		Pol/Pha	se	:	VEF	RTICAL		
Test Mo	ode	:	GFS	K, CH78		Tempera	ature	:	25 °	C		
Test da	te	:	Jul. 1	4, 2019		Humidit	y	:	55 %	%		
110.0	dBuV/m											
55		1 X			and the same of th		Class B	Radiation (a	(above	1GHz) Avg	PART Aprenditor	
0.0 2450.1 No.	000 2465.00 2480. Frequency		2495.00 ctor	2510.00 Readii	2525	5.00 2540 Level	1.00	2555.00 Limit	2570.	00 Margin	2600.00 Dete	
NO.	(MHz)		3/m)	(dBu)		(dBuV/m	,	(dBuV/ı		(dB)	Dete	Clor
1	, ,	,).65	46.75	,	37.10	',	74.00	•	-36.90	na	ok.
	2483.500		0.65 0.65	35.42		25.77		54.00		-36.90	pe AV	
2	2483.500	ı _0	n'h	1 35/1								

Report No.: SEFB907135

Power		:	DC 3.3V				Pol/Phase : Ho				Hor	Horizontal		
Test M	ode	:	GFSK, CH78			Те	Temperature : 25			°C				
Test da	ate	:	Jul. 1	4, 201	9	Н	umidi	ty		:	55	%		
110.0	dBuV/m													1
	ſ	\												
_							FCC	Class I	B Radi	ation (a	bove '	IGHz) peak		-
55							FC	Class	B Rad	diation	(above	1GHz) Avg		
4~4	markan warman	1	Muran	www	~~~~~	~~~~	ر رواد در الراد	m	mm	and the same of th	المالين ورسوم		ol market	
		2												
		*												
0.0														
	.000 2465.00 2480		2495.00	2510		525.00		0.00	255!		2570		2600.00	
No.	Frequency		ctor		ading	_	_evel			Limit		Margir	n Det	ector
	(MHz)	•	3/m)	(di	BuV)	(di	3uV/r	n)	•	BuV/ı		(dB)		
1	2483.500	-6	0.65	46	6.74	3	37.09		,	74.00)	-36.91	pe	eak
2	2483.500	-6	0.65	35	5.36	2	25.71		,	54.00		-28.29	A	٧G

Report No.: SEFB907135

Power	,	:	DC 3	.3V		Pol/l	Phase		: VEI	VERTICAL			
Test M	lode	:	π/4 D	QPSK	C, CH00	100 Temperature : 25 °C							
Test da	ate	:	Jul. 1	4, 201	9	Hum	idity		: 55	%			
110.0	dBuV/m												1
						<u>'</u>	CC Class	B Radiation	(above	IGHz) p	eak		
							FEC CI	n natata		ļ.,			
55							FLU LIAS	s B Radiatio	n (above	Inanzi	AVO		-
									1	_		~~~~	
m	_manger or of more production death	Land Market Control	wan,	/	A MANAGAN	Morrowand		Opportunity that	2	<u> </u>	MA.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
									*				
0.0	.000 2312.00 2324	1.00	2336.00	2348	00 22	60.00	2372.00	2384.00	2396	. 00		2420.00	<u> </u>
No.	Frequency		ctor		ding	Le		2384.00 Lim			argin		ector
	(MHz)	(dl	3/m)	(dE	BuV)	(dBu	V/m)	(dBuV	//m)	(0	dB)		
1	2390.000	-10	0.05	47	'.65	37.	60	74.0	0	-3	6.40	рє	eak
2	2390.000	-10	0.05	35	5.68	25.	63	54.0	0	-2	8.37	A۱	/G

Report No.: SEFB907135

Note: Level=Reading +Factor. Margin=Level-Limit.

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 72 of 79

Power	-		:	DC 3.3V				Pol/Phase :				Horizontal						
Test M	1ode		:	π/4 DQPSK, CH00			Te	Temperature : 2				25	25 °C					
Test date :				Jul. 14, 2019				Humidity : 5				55	%					
110.0	dBuV/m		<u> </u>														7	
																	-	
														Λ			-	
								FCC	Class I	B Radi	ation (a	bove '	IGHz	pea	ık		-	
														+			-	
								FCI	C Class	B Rad	liation	(ahove	164	z1 A	20		-	
55														,			-	
	ana makana maka			_		Managema		,	10.	www	1	Northern				ana M		
				And Andrew	ANNA TO	TO THE PERSON NAMED IN COLUMN TO THE			-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	April V V	2							
											*	•					-	
																	-	
0.0																		
2300 No.	0.000 2312.00 Frequer	2324.0		2336.00 ctor	2348 Rea	3.00 23 ading	860.00	237 Level	2.00	2384	1.00 Limit	2396		/lar	ain	2420.00 Det	MHz ector	
	(MHz	_		B/m) (dBuV)		_		BuV/r			BuV/ı		(dB)			- 310.		
1	2390.0	00	-10	.05	47	7.99		37.94			74.00			-36.06		p	peak	
2	2390.0	00	-10	.05	35	5.74		25.69		54.00		-28.31		А	AVG			

Report No.: SEFB907135

Test Mode : π/4 DQPSK, CH78 Temperature : 25 °C Test date : Jul. 14, 2019 Humidity : 55 % 110.0 dBuV/m	
,	
110.0 dBuV/m	
FCC Class B Radiation (above 1GHz) peak FCC Class B Radiation (above 1GHz) Avg	Wommen.
0.0 2450.000 2465.00 2480.00 2495.00 2510.00 2525.00 2540.00 2555.00 2570.00 No. Frequency Factor Reading Level Limit Margin (MHz) (dB/m) (dBuV) (dBuV/m) (dBuV/m) (dB)	2600.00 MHz Detector
1 2483.500 -9.65 61.83 52.18 74.00 -21.82	peak
2 2483.500 -9.65 41.96 32.31 54.00 -21.69	AVG

Report No.: SEFB907135

Power :			.3V	Pol/Phase	:	Horizontal			
Test Mode	:	π/4 D	QPSK, CH78	Temperatur	re :	25 °C			
Test date	date : Jul. 14, 2019 Humidity : 55 %								
110.0 dBuV/m									
55	*******				s B Radiation	above 1GHz) peak (above 1GHz) Avg			
0.0 2450.000 2465.00 24 No. Frequency (MHz)		2495.00 ector B/m)	2510.00 25 Reading (dBuV)	25.00 2540.00 Level (dBuV/m)	2555.00 Limit		2600.00 MHz Detector		
1 2483.500		9.65 46.39		36.74	74.00		peak		
2 2483.500		9.65	35.46	25.81	54.00		AVG		

Report No.: SEFB907135

Power :			:	DC 3.3V			Р	Pol/Phase :				VERTICAL					
Test Mode :			:	8DPSK, CH00			Т	Temperature : 25				25 °	25 °C				
Test d	Test date :				Jul. 14, 2019			Humidity :				55 '	%				
110.0	dBuV/m																
													$-\int$	-			
								FCC	Class I	B Radia	ation (a	bove 1	(GHz)	peak			
													1				
								FCC	Class	B Rac	liation I	(ahove	16Hz	l Avh			
55													1	1			
_						A 141				مانيس ـ	1 Manx	Santania	_		manners		
~		*****	- Arranant	~~~~~	Carried Manager	·	-VW-w	and the second		- Anna Andrews	,	. W			10.185. 02.019	~ 1	
											*	:					
0.0																	
	0.000 2312.00	2324.00		2336.00	2348		360.00		2.00	2384		2396				0 MHz	
No.	Freque	_		ctor		ading		Level			Limit			Margin		tector	
	(MHz	<u>z</u>)	(dB	B/m) (dBuV)		(d	(dBuV/m)			(dBuV/m)			(dB)				
1	2390.0	000	-10	.05	47	7.75		37.70		74.00		-36.30)	peak		
2	2390.0	000	-10	.05	.05 35.87			25.82			54.00			-28.18		AVG	

Report No.: SEFB907135

Note: Level=Reading +Factor. Margin=Level-Limit.

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 76 of 79

Power :			DC 3.3V			Pol/Pha	Pol/Phase :				Horizontal				
Test Mode :			8DPSK, CH00			Temper	Temperature :				25 °C				
Test d	ate	:	Jul. 1	4, 2019		Humidit	Humidity :								
110.0	dBuV/m							B Radiation (a							
0.0	anna a maran ann ann ann ann ann ann ann ann ann	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	and the same of the same of	man man	mada	a market and a market	man	i de la companya de l			lumm	www			
2300	0.000 2312.00 2324.		2336.00	2348.0		0.00 237	2.00	2384.00	2396.			2420.00			
No.	Frequency		Factor Reading		•	Level		Limit		Margin		Dete	ector		
	(MHz) (d		B/m) (dBuV)		ıV)	(dBuV/n	1)	(dBuV/	m)	(dB)					
1	2390.000	-10	0.05	47.7	70	37.65	37.65)	-36.35		peak			
2	2390.000	-10	0.05	35.8	34	25.79		54.00)	-28.21		AVG			

Report No.: SEFB907135

Note: Level=Reading +Factor. Margin=Level-Limit.

 Cerpass Technology (Suzhou) Co., Ltd.
 Issued Date
 : Jul. 25, 2019

 S-FD-501V1.0
 Page No.
 : 77 of 79

Power	ower :			DC 3.3V			se	:	VE	VERTICAL				
Test Mo	Test Mode :			8DPSK, CH78			Temperature : 25				25 °C			
Test da	ite	:	Jul. 1	4, 2019	ŀ	Humidit	.y	:	55	%				
110.0	dBuV/m								•			1		
55	Marketin	*	Munham	- when the same of	Vound		Class	B Radiation	ı (above		Maria de managari			
0.0	000 2465.00	2480.00	2495.00	2510.00	2525.00	2540	2.00	2555.00	2570	0.00	2600.00	MU-		
No.	Frequenc		actor	Reading		Level	J. 00	Z555.00 Limi		Margin		ector		
	(MHz)		dB/m)	(dBuV)		dBuV/n	1)	(dBuV/m)		(dB)				
1	2483.500) -	9.65	62.05		52.40		74.00		-21.60		eak		
2	2483.500) -	9.65	42.07		32.42		54.0	0	-21.58	A\	VG		

Report No.: SEFB907135

Power	ower :			.3V	Po	ol/Phas	е	: F	Horizontal			
Test Mo	Test Mode :			SK, CH78	Те	mperat	ture	: 2	25 °C			
Test da	te		: Jul. 1	4, 2019	Hu	umidity		: 5	55 %			
110.0	dBuV/m										1	
55 		*	the proof of the second		Magana	FCC C	Class B Radia	ation (ab	ve 1GHz) peak	man de la companya d		
0.0	000 2465.00	2480.00	2495.00	2510.00	2525.00	2540.0	00 2555.0	n 2	2570.00	2600.00	MHz	
No.	Frequen		Factor	Reading		_evel		imit	Margin		ector	
	(MHz)		dB/m)	(dBuV)	(di	BuV/m)	(dB	uV/m)				
1	2483.50	0	-9.65	47.38	3	37.73		4.00	-36.27	ре	eak	
2	2483.50	0	-9.65	35.44	2	25.79	54	4.00	-28.21	A۱	√G	

Note: Level=Reading +Factor. Margin=Level-Limit.

_____ The End

S-FD-501V1.0 Page No. : 79 of 79