NIFTy session

Weak lensing with NIFTy

A little bit about lensing

(slides 2 - 8)

Simple problem

- Shearing a galaxy with a given brightness profile: $I(r) \sim \exp(r/r_0)$
- Shear parameters are known: $\gamma_1=0.1, \gamma_2=0.2$
- Assumed homogeneity and isotropy of the prior

Results - reconstructions

Results - reconstructions

Results - errors

$$r_0 = 2.7$$

At the peak error ~ 12%

Results - errors

$$r_0 = 10.$$

Uknown shear

 We would like to infer also the shear parameters, as well as the initial brightness profile

Uknown shear - problem

- I don't know how to formulate the response mapping for NIFTy $\,d=R_{\gamma}F+n\,$
- Possible to express locally:

$$F' = (1 + A(\gamma_1, \gamma_2) \nabla_{\theta}) F, \quad \gamma_1, \gamma_2 \to 0$$
$$A(\gamma_1, \gamma_2) = \begin{pmatrix} -\gamma_1 & \gamma_2 \\ \gamma_2 & \gamma_1 \end{pmatrix}$$

- But for arbitrary gamma? *
 - * Mapping between F' and F for very strong field and very weak field is known, but I don't know the mapping for the intermediate gamma

Potential solutions / improvements

- Maybe do the transformations in the shapelet space, since it is clear how to do. But problem is to see how much is lost in the shapelet decomposition
- We can do better with the prior spectrum to fix the offset in surface brightness *

* since total surface brightness is conserved the brightness close to the center of the sheared image would be very similar to the initial image

Benefits

 Would be useful to map out the matter density throughout the universe, using weak lensing maps, hence testing cosmological models

Thanks for your attention!