## Carrefour hackathon





## Final presentation

Subject 1 - Product recommendation

March 22<sup>nd</sup>, 2021

# Agenda





- 1. Exploring the dataset
- 2. Building the model
- 3. Obtained results





### Exploring the data set:

- 12 months of data 2019
- 116k clients
- 12k products
- 140M rows of data in total (120M for training and 20M for testing) 3 Go





### Exploring the data set:

- 12 months of data 2019
- 116k clients
- 12k products
- 140M rows of data in total (120M for training and 20M for testing) 3 Go

Reasonably big





#### Clients:

- 1 000 different products bought per year in average
- In average +20% of new products every 2 months











#### Clients:

- 1 000 different products bought per year in average
- In average +20% of new products every 2 months

### Prediction difficult to make Need for recognising similarities







### Products:

Seasonality due to discount periods, seasons and main periods of the year







### Products:

Seasonality due to discount periods, seasons and main periods of the year





















Positive examples

Negative examples





### Motivation of using matrix decomposition

- ✓ Using two embeddings gives the user control over the features
- ✓ The model can predict new item to be bought.
- ✓ Handles large amounts of data
- Can be used in a pipeline for other tasks

## 3. Obtained results





| Predictions \ Truth | True           | False           |
|---------------------|----------------|-----------------|
| True                | 819 023 = TP   | 1 413 056 = FP  |
| False               | 1 587 644 = FN | 15 387 875 = TN |

| Model         | Precision | Recall | F1-score |
|---------------|-----------|--------|----------|
| Trained model | 0.367     | 0.340  | 0.353    |
| "Dumb" model  | 0.125     | 1.00   | 0.222    |

Computation time: 2 minutes (!)

### Conclusion





- Possible improvements: the way we implement similarity matrices can evolve to integrate more features (importance of promotions, current trends of shopping...)
- Overall, a really interesting project, representative of what we can encounter in companies: GCP environment, problematics.
- We think our solution is innovative in its way and scalable
- We would have loved more time to refine our solution.