

Home Credit Default Risk

Predicting how capable each applicant is of repaying a loan?

Agenda

- Business problem
- Approach
- Data / Data wrangling
- Exploratory data analysis
- Predictive modeling
- Conclusion
- Future work

Many people struggle to get loans due to insufficient or non-existent credit histories.

This population is often taken advantage by untrustworthy lenders.

Home credit tries to include the unbanked population to support their economic needs.

How can this help?

Doesn't leave business on the table!

Uses supervised machine learning to classify one of two categories.

Supervised machine learning is a phenomenon where the AI learns from the data without anyone writing explicit code logic.

Target Labels

1

Target label of 0 indicates that there was no difficulty in repaying the loan on time.

Target label of 1 indicates that there was difficulty in repaying the loan on time.

The data is taken from Kaggle's competition, publicly available.

application_train.csv

- 307511 Records, 122 Columns
- Imbalanced Target Labels.
- Source for training machine Learning models.
- Target Labels :
- 0's 282686, 1's 24825

application_test.csv

- 48744 Records, 121 Columns
- No Target Labels.
- Source for testing the performance of machine Learning models.
- Target Labels :
- None need to predict.

Cleaning steps can be many, relative to the approach taken & judgement calls.

Since the ML model can't inherently deal with text, the data must be converted to appropriate numbers. Any significant distortion/noise in the model must be removed as much as possible.

- Converting string categorical columns into numerical Label encoding.
- Converting string categorical columns into numerical and adding new columns to indicate the presence of categorical variables – One hot encoding.
- Replacing illogical outliers with empty values (NAN values).
- Imputing empty cells with the median of the values. In some cases, imputation is approached with a certain grouping.
- Dealing with a few anomalies.
- Changing invalid entries into valid entries.

Assumptions and choices were made relative the approach taken.

Sometimes there is no certainty as to why something occurred or what something really means. A helpful guide is the description of the column names, however there isn't enough certainty with just names too.

Choices:

- Used the same approach similar to target class balanced problem.
- Retained all the columns for processing.
- Generated interaction variables.

Assumptions:

- Feature relations are linear.
- Highest linearly correlated variables have a larger hand in making derived features.
- Domain engineered features are powerful.
- Data is noisy.

Laborers - occupation type were the most borrowers.

Most of the clients are laborers and the least of the clients are IT Staff.

Predictive Modeling – Outcome of the model is expected to identify the potential that someone will default on a loan.

Expected Target Outcome: 0 or 1, 0 – Not a defaulter, 1 – potential defaulter.

Perfomance Metrics used: Accuracy.

Models currently used: Logistic regression, Random forest, XGBoost, LightGBM, Naïve bayes, Model ensemble.

Training and Testing datasets were subjected to the same feature engineering to evaluate the model.

- Out of the main training dataset, a certain percentage is kept untrained to test the model's performance.
- Training set and validation set are split in following percentages: 66.66%: 33.33%.
- On the testing set, the target labels are hidden, until the performance is evaluated.

Currently there are 6 models used.

Model Name	Hyperparameters	Accuracy
LogisticRegression	(C=2, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)	92.01%
RandomForestClassifier	(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=-1, oob_score=False, random_state=50, verbose=1, warm_start=False)	91.98%
XGBClassifier	(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=5, min_child_weight=1, missing=None, n_estimators=250, nthread=-1, objective='binary:logistic', reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, silent=True, subsample=1)	92.06%
LightGBM	(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, learning_rate=0.1, max_depth=-1, min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0, n_estimators=100, n_jobs=-1, num_leaves=31, objective=None, random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0)	92.04%
NaïveBayesClassifier	(priors=None)	32.63%
All Stacked	Same as above, but voted.	92.04%

XGBoost is currently the best chosen model, Until further work.

- More feature engineering could be done, such as mathematical transformation, possibly: certain columns to log and such.
- Advanced techniques like SMOTE could be deployed to handle the class imbalance problems.
- DNN's can be used.
- Long short term memory networks could be used to incorporate time series data.
- Advanced forms of stacking can be used apart from voting.
- Recursive feature selection can be used to reduce the features.