Neural Networks

TM Chapter 4

Outline

- Threshold units
- Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Alternative loss functions

Properties of Neural Nets

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Why Study Neural Nets?

	DT Learning	Neural Nets
Target fn/output	Discrete	Discrete/real vector
Input instance	Discrete	Discrete/real, high-dim
Training data	Robust to noise	Robust to noise
Hypothesis space	Complete, expressive	Restricted: #hidden units (hard bias), expressive
Search strategy	Incomplete: prefer shorter tree (soft bias)	Incomplete: prefer smaller weights (soft bias)
	Refine search using all examples	Gradient ascent/descent batch mode: all examples stochastic: mini-batches
	No backtracking	stochastic. IIIIII-batches
Training time	Short	Long
Prediction time	Fast	Fast
Interpretability	White-box	Black-box

ALVINN drives 70 mph on highways

https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf

Perceptron Unit

Vector notation.

$$o(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} > 0, \\ -1 & \text{otherwise;} \end{cases}$$
where $\mathbf{w} = (w_0, w_1, \dots, w_n)^{\top} \in H = \mathbb{R}^{n+1}$
and $\mathbf{x} = (1, x_1, \dots, x_n)^{\top} \in X$
s.t. X is an n -dimensional subspace of \mathbb{R}^{n+1} .

Decision Surface of Perceptron

Expressive power. Some useful functions can be represented:

• What weights can represent AND (x_1, x_2) ?

Some functions (e.g., not linearly separable) cannot be represented:

• We want to design neural nets to represent them!

Perceptron Training Rule

Idea. Initialize w randomly, apply perceptron training rule to every training example, and iterate thru all training examples till w is consistent

$$w_i \leftarrow w_i + \Delta w_i , \quad \Delta w_i = \eta(t - o)x_i$$

for $i = 0, 1, \dots, n$ where

- $t = c(\mathbf{x})$ is target output for training example $\langle \mathbf{x}, c(\mathbf{x}) \rangle$,
- $o = o(\mathbf{x})$ is perceptron output, and
- η is small +ve constant (e.g., .1) called learning rate.

Guaranteed to converge if training examples are linearly separable and η is sufficiently small

Gradient Descent

Idea. Search *H* to find weight vector that "best fits" the (possibly linearly non-separable) training examples

To ease understanding, consider a simpler linear unit:

$$o = \mathbf{w} \cdot \mathbf{x}$$

Learn w that minimizes loss function (i.e., sum of squared errors):

$$L_D(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

where D is the set of training examples, t_d and o_d are, respectively, target output and output of linear unit for training example d

Gradient Descent

Idea. Finds w that minimizes L by first initializing it randomly and then repeatedly updating it in the direction of steepest descent

Gradient.
$$\nabla L_D(\mathbf{w}) = \left[\frac{\partial L_D}{\partial w_0}, \frac{\partial L_D}{\partial w_1}, \dots, \frac{\partial L_D}{\partial w_n}\right]^{\frac{25}{20}}$$
Training rule.

Training rule.

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}, \quad \Delta \mathbf{w} = -\eta \nabla L_D(\mathbf{w})$$

that is,

$$w_i \leftarrow w_i + \Delta w_i, \quad \Delta w_i = -\eta \frac{\partial L_D}{\partial w_i}$$

Gradient Descent

$$\frac{\partial L_D}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \mathbf{w} \cdot \mathbf{x}_d)$$

$$\frac{\partial L_D}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id})$$

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

GRADIENT-DESCENT

Idea. Initialize w randomly, apply linear unit training rule to all training examples, and repeat

Gradient-Descent (D, η)

- Initialize each w_i to some small random value
- Until termination condition is met, do
 - Initialize each Δw_i to zero.
 - For each $d \in D$, do
 - * Input instance \mathbf{x}_d to linear unit and compute output o
 - * For each linear unit weight w_i , do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_{id}$$

- For each linear unit weight w_i , do

$$w_i \leftarrow w_i + \Delta w_i$$

Summary so far...

Perceptron training rule is guaranteed to converge if

- Training examples are linearly separable
- Learning rate η is sufficiently small

Linear unit training rule utilizing gradient descent is guaranteed to converge to hypothesis with min. squared error/loss

- If learning rate η is sufficiently small
- Even when training examples are noisy and/or linearly non-separable by *H*