

TOWARDS SPATIALLY UNIVERSAL ADAPTIVE DIFFUSION NETWORKS

Cássio G. Lopes cassio@lps.usp.br

Luiz F. O. Chamon chamon@usp.br

Vítor H. Nascimento vitor@lps.usp.br

CONTRIBUTIONS

- (i) Analysis of individual node performance and spatial universality for ANs
- (ii) New combiner that promotes spatial universality by network and node-level feedback
- (iii) Analysis of the network learning phenomenon

BACKGROUND

Adaptive network

Set of agents—called nodes—that cooperate to estimate a set of parameters using AFs operating on local data.

Diffusion LMS

Adaptive diffusion

TOWARDS SPATIAL UNIVERSALITY

Desired properties of ANs

(i) Reject poor node

(ii) Exploit an exceptional node

(iii) Node performance homogeneity

Performance

Spatial universality

Definition 1. A node is said to be *locally* universal when is at least as good as the best node in its neighborhood.

Definition 2. An AN is said to be *universal* w.r.t. the non-cooperative strategy when all its nodes perform at least as well the best non-cooperative AF in the network.

Spatial universality promoting strategy

NETWORK LEARNING

Global network recursion

$$W_{i} = H_{i}\Psi_{i-1} + (I - H_{i})C^{T}W_{i-1}$$
$$A_{i} = A_{i-1} + \bar{\mathcal{M}}_{a,i}H_{i}(I - H_{i})\mathcal{Y}_{i-1}W_{i}$$

$$W_{i} = \operatorname{col}\{w_{n,i}\} \quad \Psi_{i} = \operatorname{col}\{\psi_{n,i}\} \quad \bar{\mathcal{M}}_{a,i} = \operatorname{diag}\{\bar{\mu}_{a,n}\}$$

$$A_{i} = \operatorname{col}\{a_{n}(i)\} \quad H_{i} = \operatorname{diag}\{[1 + e^{-a_{n}(i-1)}]^{-1}\}$$

$$\mathcal{Y}_{i-1} = \operatorname{diag}\{C^{T}W_{i-1} - \Psi_{i-1}\}$$

At steady-state: $\Psi_i \sim \mathsf{Normal}(b, R_{\Psi})$

Effect of network-level feedback

Without feedback:

$$W_i = \underbrace{\left[H_i + (I - H_i)C^T\right]}_{\check{C}} \Psi_{i-1}$$

With feedback:

$$W_{i} = H_{i}\Psi_{i-1} + \sum_{k=1}^{i-1} \prod_{j=0}^{i-k-1} \left[(I - H_{i-j})C^{T} \right] H_{k}\Psi_{k-1}$$

$$+ \prod_{k=0}^{i-1} \left[(I - H_{i-k})C^{T} \right] \Psi_{0}$$

Network learning behavior

$$ar{W}_i = \underbrace{ar{H}_i b}_{ ext{Node learning}} + \underbrace{(I - ar{H}_i) m{C^T ar{W}_{i-1}}}_{ ext{Network learning}}$$

$$K_{i} = \bar{H}_{i}(R_{\Psi} + bb^{T})\bar{H}_{i} + (I - \bar{H}_{i})C^{T}\bar{W}_{i-1}b^{T}\bar{H}_{i}$$

$$+ \bar{H}_{i}b\bar{W}_{i-1}^{T}C(I - \bar{H}_{i})$$

$$+ (I - \bar{H}_{i})C^{T}K_{i-1}C(I - \bar{H}_{i})$$

$$\bar{A}_i = \bar{A}_{i-1} + \mathrm{E}\,\mathcal{\bar{M}}_{a,i}\bar{H}_i(I - \bar{H}_i)\,\mathcal{K}_i$$
$$[\mathcal{K}_i]_n = [1 - \eta_n(i)]\,\mathbf{c}_n^T \mathbf{K}_{i-1}\mathbf{c}_n$$

$$+\left[2\eta_{n}(i)-1\right] \underbrace{\boldsymbol{c_{n}^{T}}\left(\boldsymbol{\bar{W_{i-1}}}\circ\boldsymbol{b}\right)}_{\mathcal{N}\text{ bias}}$$

$$-\eta_n(i) \quad (\sigma_n^2 + b_n^2)$$

The work of Dr. Nascimento is supported by

SIMULATIONS

ACKNOWLEDGEMENT

Iterations

FAPESP, Brazil.