ALAMSYS: DEVELOPMENT OF STOCK MARKET PRICE FORECASTING SYSTEM USING DYNAMIC MODE DECOMPOSITION, LONG SHORT-TERM MEMORY WITH ARNAUD LEGOUX MOVING AVERAGE CONVERGENCE-DIVERGENCE INTEGRATION

A Special Problem
Presented to
the Faculty of the Division of Physical Sciences and Mathematics
College of Arts and Sciences
University of the Philippines Visayas
Miag-ao, Iloilo

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Computer Science by

OLARTE, John Markton M.

Nilo C. Araneta Adviser

June 2023

Contents

1	Res	ults a	nd Discussions	1		
	1.1	alamS	YS Documentation	1		
		1.1.1	Documentation for alamAPI and Database	1		
		1.1.2	Documentation for alamSYS Preprocessor	1		
		1.1.3	Documentation for alamAPP	1		
		1.1.4	Build and Deployment Guide	2		
	1.2	DMD-	-LSTM Model Results and Discussions	2		
	1.3	ALM	ACD Results and Discussions	4		
	1.4 alamSYS System Tests Results and Discussions 5					
	1.5	Result	ts and Discussions for the Real World Application of alamSYS	7		
2	Conclusions and Future Work 8					
\mathbf{R}_{0}	References 9					

List of Figures

List of Tables

1.1	Sizes	2
1.2	Baseline LSTM Training Error Metrics Scores for Different Window Sizes	2
1.3	DMD-LSTM Cross-Validation Error Metrics Scores	3
1.4	DMD-LSTM Successive Predictions	3
1.5	Optimal Alma Parameters Validation Results	4
1.6	Idle System Average Resource Usage Statistics	5
1.7	Internal Load Average Resource Usage Statistics	6
1.8	Deployment Load Test Results (Buy Requests)	6
1.9	Deployment Load Test Results (Sell Requests)	7
1.10	Return Performance Comparison Between alamSYS and PSEI	7

Chapter 1

Results and Discussions

Temporary Include Tables

1.1 alamSYS Documentation

XXX

1.1.1 Documentation for alamAPI and Database

XXX

1.1.2 Documentation for alamSYS Preprocessor

XXX

1.1.3 Documentation for alamAPP

1.1.4 Build and Deployment Guide

XXX

1.2 DMD-LSTM Model Results and Discussions

XXX

Table 1.1: DMD-LSTM Training Error Metrics Scores for Different Window Sizes

Error Metrics	Window Sizes			
Error Metrics	5	10	15	20
MSE	0.000037	0.787877	0.006917	0.057851
\mathbf{RMSE}	0.006106	0.887624	0.083166	0.240522
\mathbf{MAE}	0.004175	0.755407	0.067645	0.202746
MAPE	0.000001	0.000194	0.000017	0.000053

XXXX

Table 1.2: Baseline LSTM Training Error Metrics Scores for Different Window Sizes

Error Metrics	Window Sizes			
Error Metrics	5	10	15	20
MSE	2912.840703	191.935882	1118.183283	706.136814
\mathbf{RMSE}	53.970739	13.854093	33.439248	26.573235
\mathbf{MAE}	35.301888	9.480864	22.099720	18.285352
\mathbf{MAPE}	0.009618	0.002527	0.006024	0.005004

Table 1.3: DMD-LSTM Cross-Validation Error Metrics Scores

Stocks	MSE	RMSE	MAE	MAPE
PSEI	0.00002	0.00419	0.00328	1.510000e-03
\mathbf{AC}	0.00236	0.04856	0.03414	6.110000e-03
\mathbf{ALI}	0.00255	0.05054	0.03645	1.597000e-02
\mathbf{AP}	0.00129	0.03596	0.02515	9.220000e-03
BDO	0.00160	0.03999	0.02799	7.250000e-03
BLOOM	0.01883	0.13721	0.06901	1.052898e + 12
FGEN	0.00224	0.04733	0.03265	1.197000e-02
GLO	0.00211	0.04595	0.03149	4.680000e-03
ICT	0.00335	0.05785	0.03731	$3.005818e{+11}$
\mathbf{JGS}	0.00331	0.05752	0.03992	2.009923e+11
LTG	0.01567	0.12518	0.05858	3.583335e+12
\mathbf{MEG}	0.00431	0.06565	0.04422	1.393042e+11
\mathbf{MER}	0.00326	0.05708	0.03770	9.170000e-03
MPI	0.00273	0.05230	0.03390	2.497000e-02
PGOLD	0.00149	0.03865	0.02818	7.880000e-03
RLC	0.00338	0.05817	0.03978	6.922000 e-02
RRHI	0.00131	0.03618	0.02699	6.390000e-03
SMC	0.00137	0.03702	0.02317	5.690000e-03
\mathbf{TEL}	0.00178	0.04214	0.03002	4.240000e-03
URC	0.00297	0.05447	0.03742	1.798000e-02

Table 1.4: DMD-LSTM Successive Predictions

Successive	Actual and Predicted	MAPE
Days Predicted	Data Ratio	\mathbf{Score}
1	100%	0.00973
2	80%	0.13403
3	60%	0.15782
4	40%	0.15646
5	20%	0.13910

Table 1.4 continued from previous page

Successive	Actual and Predicted	MAPE
Days Predicted	Data Ratio	\mathbf{Score}
6	0%	0.12494
7	-20%	0.11283
8	-40%	0.10014
9	-60%	0.08914
10	-100%	0.08976

1.3 ALMACD Results and Discussions

Table 1.5: Optimal Alma Parameters Validation Results

Stock	Compounded Expected Return
PSEI	113966.8500
\mathbf{AC}	20893.1914
\mathbf{ALI}	1072.1418
\mathbf{AP}	690.7100
BDO	2541.9970
BLOOM	495.4600
\mathbf{FGEN}	581.0804
GLO	60538.0035
ICT	2815.6103
\mathbf{JGS}	1569.8650
LTG	397.2854
\mathbf{MEG}	149.2233
MER	8586.0306
MPI	146.0200
PGOLD	721.2700

Table 1.5 continued from previous page

Stock	Compounded Expected Return
RLC	649.4767
RRHI	1050.7000
\mathbf{SMC}	2557.0770
\mathbf{TEL}	72070.5000
$\overline{\text{URC}}$	3207.5394

1.4 alamSYS System Tests Results and Discussions

XXX

 ${\bf Table~1.6:~Idle~System~Average~Resource~Usage~Statistics}$

	alamAPI	alamDB	alamPREPROCESSOR
CPU	0.168125	0.254313	0.009769
Utilization $(\%)$	0.100120	0.204010	0.009109
Memory	45 710911	166 775977	312.798300
Utilization (MiB)	40.710011	166.775377	312.790300

Table 1.7: Internal Load Average Resource Usage Statistics

	Data Collector	Data Processor	alamSYS PREPROCESSOR (Data Collector & Data Processor)
Failure Rate (%)	0	0	0
Success Rate $(\%)$	100	100	100
Average Runtime (s)	41.72398	8.38061	48.30466
Average CPU Utilization (%)	11.40659	92.71117	20.03138
Average Memory Utilization (MiB)	3.64200	57.09545	794.29436
Average Network Utilization (Mb)	232.73640	154	77.27655

Table 1.8: Deployment Load Test Results (Buy Requests)

	Number or Requests			
	10 100 1000			
Success Rate (%)	100	100	100	
Average Processing Time (s)	11.905222	139.618550	1159.773569	

Table 1.9: Deployment Load Test Results (Sell Requests)

	Number or Requests		
	10	100	1000
Success Rate (%)	100	100	100
Average Processing Time (s)	13.384126	130.119867	1642.995011

1.5 Results and Discussions for the Real World Application of alamSYS

XXX

Table 1.10: Return Performance Comparison Between alam SYS and PSEI $\,$

	Realized Profit (PHP)	Realized Gain (%)
alamSYS	7,839.75	1.51
PSEI	-22,788.90	-13.810

Chapter 2

Conclusions and Future Work

References