Transformers

The Decoder

Objectives

- understand the main components of the Transformer
- understand the importance of Attention mechanism
- be able to implement a small/medium Transformer model
- be able to train for long periods of time (several hours)
- be able to do checkpointing and continuous evaluation

GPT

BERT

Encoder

GPT

Decoder

Training

Attention: Initial VS Trained (280K)

Attention: With VS Without Positional Encoding (120k)

Attention: Different Heads (68,000)

Weights and Biases - Potential

Follow along with a video tutorial!

GPU

1. Large Model Size:

 A model with a large number of parameters requires more GPU memory and can lead to slower computations.

2. Large Batch Size:

model.

 Larger batch sizes can be beneficial for parallelism but may also lead to increased GPU memory usage and slower computations if the GPU memory is insufficient.

3. Inefficient Memory Usage:

 Inefficient use of GPU memory, such as unnecessary allocations or not releasing memory properly, can lead to slowdowns.

4. Data Transfer Between CPU and GPU:

 Frequent data transfers between CPU and GPU can introduce overhead. Minimizing these transfers can improve performance.

Self CPU time total: 272.339ms

5. Complex Operations:						
Certain complex operation	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
computationally intensive aten::empty	0.03%	143.000us	0.03%	143.000us	143.000us	1
6. Inefficient Tensor Operations	0.00%	19.000us	0.00%	19.000us	19.000us	1
aten::item	0.00%	4.000us	0.00%	7.000us	7.000us	1
• Writing inefficient code wit aten::_local_scalar_dense	0.00%	3.000us	0.00%	3.000us	3.000us	1
computations. For example enumerate(DataLoader)#_SingleProcessDataLoaderIter	0.71%	3.942ms	13.09%	73.004ms	73.004ms	1
aten::empty	0.00%	13.000us	0.00%	13.000us	13.000us	1
7. Insufficient Parallelism: aten::random_	0.00%	7.000us	0.00%	7.000us	7.000us	1
aten::item	0.00%	1.000us	0.00%	2.000us	2.000us	1
• If the GPU is not fully utilize aten::_local_scalar_dense	0.00%	1.000us	0.00%	1.000us	1.000us	1
computation. Ensuring tha	0.03%	160.000us	12.23%	68.211ms	68.211ms	1
aten::empty	0.01%	39.000us	0.01%	39.000us	39.000us	1
parallel processing can impart aten::randperm	12.19%	68.005ms	12.20%	68.012ms	68.012ms	1
8. Inefficient GPU Kernel Calls: aten::scalar_tensor	0.00%	6.000us	0.00%	6.000us	6.000us	1
aten::resize	0.00%	1.000us	0.00%	1.000us	1.000us	1
• Inefficient use of GPU kern aten::resize_	0.00%	0.000us	0.00%	0.000us	0.000us	1
performance. Frameworks aten::detach	0.00%	5.000us	0.00%	24.000us	24.000us	1
detach	0.00%	19.000us	0.00%	19.000us	19.000us	1
implementations for commaten::to	0.00%	4.000us	0.00%	4.000us	4.000us	1
9. Out-of-Memory Errors: aten::resolve_conj	0.00%	0.000us	0.00%	0.000us	0.000us	1
aten::resolve_neg	0.00%	0.000us	0.00%	0.000us	0.000us	1
* Running out of GPU memo aten::empty	0.00%	16.000us	0.00%	16.000us	16.000us	1
essential to manage memo aten::to	0.00%	1.000us	0.00%	1.000us	1.000us	1

What worked in coding the architecture

Building the most simple structure

Moving very slowly

Being a maniac about input/output shapes

Add complexities - One at a time

At every stage, when I think i got it right, I assume i got it wrong

- Talk to others
- Eavesdropping