Louis Meunier

Analysis 2 MATH255

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Dmitry Jackobson.

Contents

	Intr	Introduction		
	1.1	Metric Spaces	2	
	1.2	Topological Spaces	6	

1 Introduction

1.1 Metric Spaces

\hookrightarrow **Definition** 1.1: Metric Space

A set X is a *metric space* with distance d if

- 1. (symmetric) $d(x, y) = d(y, x) \ge 0$
- 2. $d(x,y) = 0 \iff x = y$
- 3. (triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$

Remark 1.1. If 1., 3. are satisfied but not 2., d can be called a "pseudo-distance".

→ Definition 1.2: Normed Space

Let X be a vector space over \mathbb{R} . The norm on X, denoted $||x|| \in \mathbb{R}$, is a function that satisfies

- 1. $||x|| \ge 0$
- $2. ||x|| = 0 \iff x = 0$
- 3. $||c \cdot x|| = |c| \cdot ||x||$
- 4. $||x+y|| \le ||x|| + ||y||$

If X is a normed vector space over \mathbb{R} , we can define a distance d on X by d(x,y) = ||x-y||.

\hookrightarrow Proposition 1.1

If X is a normed vector space over \mathbb{R} , a distance d on X by d(x,y) = ||x-y|| makes (X,d) a metric space.

Proof. 1. $d(x,y) = ||x - y|| \ge 0$

- 2. $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y=0 \iff x=y$
- 3. $d(x,y) + d(y,z) = ||x-y|| + ||y-z|| \ge ||(x-y) + (y-z)|| = ||x-z|| := d(x,z)$

\circledast Example 1.1: L^p distance in \mathbb{R}^n

Let $\overline{x} \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)$. The L^p norm is defined

$$||x||_p := (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}.$$

In the case p=2, n=2, we simply have the standard Euclidean distance over \mathbb{R}^2 .

<u>Unit Balls:</u> consider when $||x||_p \leq 1$, over \mathbb{R}^2 .

- $p=1:|x_1|+|x_2|\leq 1$; this forms a "diamond ball" in the plane.
- p = 2: $\sqrt{|x_1|^2 + |x_2|^2} \le 1$; this forms a circle of radius 1. Clearly, this surrounds a larger area than in p = 2.

A natural question that follows is what happens as $p \to \infty$? Assuming $|x_1| \ge |x_2|$:

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p})^{\frac{1}{p}}$$

$$= \left[|x_{1}|^{p} \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)\right]^{\frac{1}{p}}$$

$$= |x_{1}| \left(1 + \left|\frac{x_{2}}{x_{1}}\right|^{p}\right)^{\frac{1}{p}}$$

If $|x_1| > |x_2|$, this goes to $|x_1|$. If they are instead equal, then $||x||_p = |x_1| \cdot 2^{\frac{1}{p}} \to |x_1| \cdot 1$ as well. Hence, $\lim_{p \to \infty} ||x||_p = \max\{|x_1|, |x_2|\}$. Thus, the unit ball will approach $\max\{|x_1|, |x_2|\} \le 1$, that is, the unit square.

Figure 1: Regions of \mathbb{R}^2 where $||x||_p \leq 1$ for various values of p.

\hookrightarrow Proposition 1.2

Let $x \in \mathbb{R}^n$. Then, $||x||_p \to \max\{|x_1|, \dots, |x_n|\}$ as $p \to \infty$.

Remark 1.2. This is an extension of the previous example to arbitrary real space; the proof follows nearly identically.

→ Definition 1.3: Convex Set

Let X be a normed space, and take $x, y \in X$. The line segment from x to y is the set

$$\{t \cdot x + (1-t) \cdot y : 0 \le t \le 1\}.$$

Let $A \subseteq X$. A is *convex* $\iff \forall x, y \in A$, we have that

$$(t \cdot x + (1-t) \cdot y) \in A \,\forall \, 0 \le t \le 1.$$

Figure 2: Convex (left) versus not convex (right) sets.

Remark 1.3. Think of this as saying "a set is convex iff every point on a line segment connected any two points is in the set".

\hookrightarrow **<u>Definition</u>** 1.4: ℓ_p

The space ℓ_p of sequences is defined as

$$\{x = (x_1, x_2, \dots, x_n, \dots) : \sum_{n=1}^{\infty} |x_n|^p < +\infty\} *.$$

Then, * defines the ℓ^p norm on the space of sequences; that is, $||x||_p := (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$.

* Example 1.2: ℓ_p , $x_n = \frac{1}{n}$

. Let $x_n = \frac{1}{n}$. For which p is $x \in \ell_p$? We have, raising the norm to the power of p for ease:

$$||x||_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p + \dots$$

= $1^p + \left(\frac{1}{2}\right)^p + \dots < \infty \iff p > 1.$

In the case that p = 1, this becomes a harmonic sum, which diverges.

\circledast Example 1.3: L^p space of functions

Let f(x) be a continuous function. We define the norm of f over an interval [a,b]

$$||f||_p = \left[\int_a^b |f(x)|^p dx\right]^{\frac{1}{p}}.$$

Remark 1.4. Triangle inequality for $||x||_p$ or $||f||_p$ is called Minkowski inequality; $||x||_p + ||y||_p \ge ||x+y||_p$. This will be discussed further.

\circledast Example 1.4: Distances between sets in \mathbb{R}^2

Let A, B be bounded, closed, "nice" sets in \mathbb{R}^2 . We define

$$d(A, B) := Area(A \triangle B),$$

where

$$A\triangle B:(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B).$$

It can be shown that this is a "valid" distance.

Remark 1.5. \triangle denotes the "symmetric difference" of two sets.

\circledast Example 1.5: p-adic distance

Let p be a prime number. Let $x = \frac{a}{b} \in \mathbb{Q}$, and write $x = p^k \cdot \left(\frac{c}{d}\right)$, where c, d are not divisible by p. Then, the p-adic norm is defined $||x||_p := p^{-k}$. It can be shown that this is a norm.

Suppose $p=2, x=28=4\cdot 7=2^2\cdot 7$. Then, $||28||_2=2^{-2}=\frac{1}{4}$; similarly, $||1024||_2=||2^{10}||_2=2^{-10}$.

More generally, we have that $||2^k||_2 = 2^{-k}$; coversely, $||2^{-k}|| = 2^k$. That is, the closer to 0, the larger the distance, and vice versa, contrary to our notion of Euclidean distance.

$\hookrightarrow \underline{\text{Proposition}}$ 1.3

 $||x||_p$ as defined above is a well-defined norm over \mathbb{Q} .

Proof.

1.2 Topological Spaces

→ **Definition** 1.5: Topological space

A set X is a topological space if we have a collection of subsets τ of X called *open sets* s.t.

- 1. $\emptyset \in \tau, X \in \tau$
- 2. Consider $\{A_{\alpha}\}_{{\alpha}\in I}$ where A_{α} an open set for any α ; then, $\bigcup_{{\alpha}\in I}A_{\alpha}\in \tau$, that is, it is also an open set.
- 3. If J is a finite set, and A_{β} open for all $\beta \in J$, then $\bigcap_{\beta \in J} A_{\beta} \in \tau$ is also open.

In other words, 2.: arbitrary unions of open sets are open, and 3.: finite intersections of open sets are open.

→ **Definition 1.6: Closed sets**

Closed sets are complements of open sets; hence, axioms for closed sets follow appropriately;

- 1.* X, \emptyset closed;
- 2.* B_{α} closed $\forall \alpha \in I \implies \bigcap_{\alpha \in I} B_{\alpha}$ closed.
- 3.* B_{β} closed $\forall \beta \in J$, J finite, then $\bigcup_{\beta \in J} B_{\beta}$ also closed.

 \hookrightarrow Sat Jan 6 10:31:52 EST 2024