

ESTUDO DE UM MOTOR DE RELUTÂNCIA SÍNCRONA PELO MÉTODO DOS ELEMENTOS FINITOS

Caio Alexandre T. Graciano Orientador: Prof. Cleiton Magalhães Freitas, D.Sc

Universidade do Estado do Rio de Janeiro (UERJ) Projeto de Graduação em Engenharia Elétrica (Sistemas de Potência)

Introdução

- Objetivo do trabalho
- Motivação
- O que será abordado

Objetivo

- Desenhar e simular uma MRS elementar;
- Obter Indutâncias;
- Conjugado e Tensão induzida;
- Distribuição de Fluxo;
- Verificar efeitos de Saturação
 Magnética.

Motivação

- Avanço da tecnologia de Controles;
- Ascenção do uso na Indústria;
- Divulgação Científica.

Máquina de Relutância Síncrona comercial

Organização

- Princípio de Funcionamento;
- Convenções, considerações e metodologia de simulação;
- Resultados das Simulações e suas conclusões.

Conceito de Torque de Relutância

$$T = \frac{\partial W_{\phi}'}{\partial \theta_r} = -3I_s^2 L_B \left[\sin(2\phi) - \frac{1}{2}\sin(2\phi - 4\theta_r) \right]$$

Com corrente de campo igual a zero, ainda é possível ver a existência de um torque.

Este torque alinha o eixo direto do rotor com o eixo magnético do estator.

Máquina de Síncrona de Polos Salientes

Máquina de Relutância Síncrona

O que caracteriza uma MRS é a natureza anisotrópica do seu rotor, já o estator é igual ao de máquinas síncronas CA.

Definição de Eixo Direto e em Quadratura

- O eixo direto é o eixo de menor relutância;
- As barreiras magnéticas garantem que o eixo de quadratura seja de maior relutância;
- Os eixos dq estão defasados de 45°
 mecânicos e 90° elétricos;
- Essa geometria do rotor lhe garante uma característica anisotrópica.

Conceitos Teóricos Aplicados

$$\begin{split} T_{em-g} &= \frac{3}{2} \frac{p}{2} \left(\lambda_m \times i_m \right) = \frac{3}{2} \frac{p}{2} \left| \lambda_m \right| \cdot |i_m| \sin \beta \\ &= \frac{3}{2} \frac{p}{2} \left(\lambda_{dm} i_{qm} - \lambda_{qm} i_{dm} \right) = \frac{3}{2} \frac{p}{2} \left(L_{dm} i_{dm} - L_{qm} \right) \cdot i_{dm} i_{qm} \\ &= \frac{3}{2} \frac{p}{2} \left(L_{dm} (i_{dm}) - L_{qm} \right) \cdot I_m^2 \sin(2\theta) \end{split} \qquad \text{Torque médio teórico} \end{split}$$

$$\xi = rac{L_{dm}}{L_{am}}$$
 Razão de saliência

Convenções, considerações e metodologia de simulação

Método dos Elementos Finitos

- O MEF divide a estrutura em diversos polígonos;
- As equações de Maxwell são resolvidas para cada nó, seguindo regras definidas anteriormente;
- Desse modo o que ocorre na área de cada polígono é influenciado por polígonos vizinhos.

Convenções, considerações e metodologia de simulação

Definição da Máquina a ser estudada

Tabela 1 - Parâmetros Físicos da Máquina Simulada

Parâmetro da Máquina	Valor
Número de par de polos	2
Número de fases	3
Ângulo entre fases (Graus)	30
Ranhuras no estator	36
Ângulo entre ranhuras no estator (Graus)	10
Número de voltas nas bobinas	12
Diâmetro do rotor (cm)	19.93
Diâmetro interno do estator (cm)	20
Diâmetro externo do estator (cm)	27
Comprimento do Entreferro (mm)	35
Corrente Nominal (A)	8
Material do Rotor	Aço M-36
Material do Estator	Aço M-15
Material do Enrolamento do Estator	14 AWG

Fonte: O Autor

Convenções, considerações e metodologia de simulação

Metodologia de Simulação

- FEMM 4.2
- Python 3
- Biblioteca pyFEMM
- Biblioteca csv

Convenções, considerações e metodologia de simulação

Testes Iniciais da Geometria do Rotor

Material de Ferro artificial

$$\mu(x,y) = 2000x2000;$$

- Relação B x H linear;
- Corrente contínua de 5 A na

bobina A;

Convenções, considerações e metodologia de simulação

Testes Iniciais da Geometria do Rotor

Corrente na Bobina A e rotor girante.

máximo (60°)

1. Levantamento das Curvas de Magnetização

Levantamento de λdq:

- Para λd, o eixo direto do rotor foi alinhado com a bobina A;
- Já para λq, o rotor foi rotacionado de 45° em relação ao eixo direto.

- O λd satura em 1.2Wb;
- O λq não satura;
- Antes de saturar, λ_d e λ_q possuem relação linear.

$$\lambda_d = \xi \cdot \lambda_q$$
, tal que $\lambda_d < 1,15Wb$

2. Levantamento das Indutâncias da Máquina

- A corrente de 8 A
 maximiza ambos
 Ld-Lq e Ld/Lq;
- Com Ld Lq igual a0.07 H;
- E razão de saliência (ξ) de 11,73.

2. Levantamento das Indutâncias da Máquina

- As indutâncias

 variam com a
 posição do campo
 em relação ao rotor;
- É possível ver o
 efeito da saturação
 em 32A e 64A.

Curva aparentemente senoidal.

Valores de Fluxo tangencial de 5x a 20x menor que o Fluxo normal.

Distribuição de fluxo normal de 8A

Distribuição de fluxo normal de 16A

Distribuição de fluxo normal de 64A

3. Levantamento do Torque.

- 3. Levantamento de Tensão Induzida.
- Devido à metodologia de simulação, não é possível obter dados de tensão induzida diretamente do FEMM;
- Será efetuada uma diferenciação discretizada do Fluxo concatenado para obter os dados de tensão.

$$E_a = \frac{d\lambda_a}{dt}$$

$$E_a[k] = \frac{\lambda_a[k] - \lambda_a[k-1]}{\Delta t}$$

3. Levantamento de Tensão Induzida.

- A tensão induzida está adiantada de 90° em relação ao fluxo (Lembrando que o ângulo elétrico é o dobro do ângulo mecânico para este motor).
- Harmônicos de fluxo
 espaciais geram curvas
 de tensão harmônicas
 que somam à curva
 principal, a distorcendo.

Conclusão

- O levantamento das curvas de magnetização foram importantes para compreender o efeito das correntes nos fluxos de eixo direto e em quadratura;
- A saturação afeta a diferença entre Ld e Lq e a razão de saliência (ξ).
 É importante ter atenção a esses parâmetros para garantir a eficiência do MRS;
- Ao fazer o levantamento dos vetores de campo magnéticos espaciais foram evidenciados os harmônicos espaciais que os slots do estator induzem no entreferro da máquina.

Conclusão

Sugestão para trabalhos futuros:

- Variar parâmetros da geometria do rotor, de modo a verificar o impacto nos fluxos e nas indutâncias;
- Calcular perdas resistivas no rotor da máquina, de modo a confirmar o conceito de rotor frio;
- Fazer um estudo de comparação com outro tipo de máquina ou até mesmo com uma variação do MRS.

Obrigado!

Caio Alexandre T. Graciano, Cleiton M. Freitas

Email: caioalexandretg@gmail.com

Universidade do Estado do Rio de Janeiro (UERJ)

Rio de Janeiro - Brasil