Notes on Mathematics

Contents

1	Calculus	1
2	Differentation and Integration 2.1 Directional Derivative and Gradients	1 4
3	Nonlinear Optimization 3.1 Minimization without Constraints	
4	4.1 Hyperbolic Geometry 4.2 Complex Numbers 4.3 Exponential Function and Logarithms	12 13
	4.4 Complex Number Calculus	14

1 Calculus

2 Differentation and Integration

Lemma 2.1 (Simple Calculations).

1. For $1 = xx^{-1}$ the product rule yields $0 = x^{-1} + x(x^{-1})'$. Hence

$$\frac{d}{dx}x^{-1} = -\frac{1}{x^2}$$

2. Similarly $x = \sqrt{x^2}$ and $1 = 2\sqrt{x}\sqrt{x'}$ and so

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$

3. It is

$$\frac{d}{dx}x^n = nx^{n-1}$$

since via induction the product rule yields

$$\frac{d}{dx}x^{n} = \frac{d}{dx}xx^{n-1} = x^{n-1} + \frac{d}{dx}x^{n-1} = x^{n-1} + (n-1)x^{n-1} = nx^{n-1}$$

4. Again, applying the product rule gives

$$\left(\frac{1}{g}\right)' = \left(\frac{1}{x} \circ g\right)' = -\frac{g'}{g^2}$$

and the quotient rule

$$\left(\frac{f}{g}\right)' = \frac{f'}{g} + f\left(\frac{1}{g}\right)' = \frac{f'}{g} - \frac{fg'}{g^2} = \frac{gf' - fg'}{g^2}$$

5. Also $x = f \circ f^{-1}$ and $1 = (f^{-1})'f' \circ f^{-1}$. Thus

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

where defined. Especially for $x \neq 0$

$$\log'(x) = \frac{1}{\exp'(\log(x))} = \frac{1}{x}$$

6. $(1-q)(1+q+q^2+\cdots+q^n)=1-q+q-q^2+q^2-q^3+\cdots+q^{n+1}$ gives

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \text{ and } \sum_{k=m}^{n} q^k = \frac{q^m - q^{n+1}}{1 - q}$$

Lemma 2.2 (Exponential Function).

1. It is

$$\exp(x+y) = \exp(x)\exp(y)$$

Hence

$$\exp(0) = 1$$
$$\exp(-x) = \exp(x)^{-1}$$
$$\exp(nx) = \exp(x)^{n}$$

2. For the derivative

$$\exp'(x) = \sum_{k=0}^{\infty} \frac{1}{k!} (x^k)' = \sum_{k=0}^{\infty} \frac{1}{k!} k x^{k-1} = \sum_{k=1}^{\infty} \frac{1}{(k-1)!} x^{k-1} = \exp(x)$$

Lemma 2.3 (Sinus and Cosinus).

1. Sinus and Cosinus power series

$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} x^{2k}$$
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

2. Symmetry

$$\cos(-x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} (-x)^{2k} = \cos(x)$$
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (-x)^{2k+1} = -\sin(x)$$

3. Derivatives

$$\cos'(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k-1)!} x^{2k-1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} x^{2k+1} = -\sin(x)$$
$$\sin'(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} x^{2k} = \cos(x)$$

Theorem 2.4 (Fermat Stationary Point). Let $\Omega \subseteq \mathbb{R}$ be open and $f \in C^1(\Omega)$. If $x^* \in \Omega$ is local extremum then $f'(x^*) = 0$.

Proof. Assume x^* is the minimum of f in Ω and let $f(x^*) > 0$. Since $f \in C^1(\Omega)$ there exist $\varepsilon, \delta > 0$, so that for $|h| \le \varepsilon$

$$\frac{f(x^* + h) - f(x^*)}{h} > \delta$$

Pick a negative $h \in [-\varepsilon, 0)$. Then

$$f(x^* + h) < f(x^*) + \delta h < f(x^*)$$

and x^* cannot be the minimum. Analog for maximum with a positive h, then apply to -f.

Theorem 2.5 (Rolle). Let $f \in C[a,b]$ with f(a) = f(b). If f is differentiable in (a,b) then there exists a $\xi \in (a,b)$ with $f'(\xi) = 0$.

Proof. Assume f is not constant. Since [a,b] is compact there exists either a global minimum or maximum $\xi \in (a,b)$ and Theorem 2.4 can be applied.

Theorem 2.6 (Mean Value). Let $f \in C[a,b]$ be differentiable in (a,b). Then there exists a $\xi \in (a,b)$ with

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Proof. Apply Theorem 2.5 to

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

Remark 2.7.

- 1. More generally choose any $\varphi \in C^1[a,b]$ with $\varphi(a) = 0$ and $\varphi(b) = f(b) f(a)$. Set $g(x) = f(x) \varphi(x)$ to see there is $a \notin (a,b)$ with $f'(\xi) = \varphi'(\xi)$.
- 2. Another useful generalization: let $\Omega \subseteq \mathbb{R}^n$ be open and $f \in C^1(\Omega)$. For $x, y \in \Omega$ define $\varphi(t) = f(tx + (1-t)y)$ and apply the chain rule for differentiation

$$\varphi'(\xi) = \nabla f(\xi x + (1 - \xi)y)^{T}(x - y) = f(x) - f(y)$$

3. The Cauchy Schwarz inequality then yields

$$||f(x) - f(y)|| \le ||\nabla f(\xi x + (1 - \xi)y)|| ||(x - y)||$$

Theorem 2.8 (Differentiation Theorem). Let $f \in C[a,b]$ and define

$$F(x) = \int_{a}^{x} f(t) dt$$

Then $F \in C^1[a,b]$ with F'(x) = f(x) for $x \in [a,b]$.

Proof. Applying the Mean Value Theorem of Integration gives

$$F(x+h) - F(x) = \int_{x}^{x+h} f(t) dt = f(\xi)h$$

for some $\xi \in (x, x + h)$.

Theorem 2.9 (Fundamental Theorem of Calculus). Let $F \in C^1[a,b]$ with F' = f Then

$$F(b) - F(a) = \int_{a}^{b} f(t) dt$$

Lemma 2.10 (Differentiation for Integrals). Let $I \subseteq \mathbb{R}$ be an interval and $f \in C(I)$. For $\varphi \in C([a,b],I)$ it follows

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) \, dt$$

Proof. Let $F \in C^1(I)$ with F' = f. Then the chain rule for differentiation yields

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = F(\varphi(b)) - F(\varphi(a))$$

$$= F \circ \varphi(b) - F \circ \varphi(a)$$

$$= \int_{a}^{b} (F \circ \varphi)'(t) dt$$

$$= \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt$$

Examples 2.11.

1. For $\varphi(x) = x^2 + 1$ it is $\varphi(0) = 1$ and $\varphi(2) = 5$. Thus

$$\int_0^2 x \cos(x^2 + 1) \, dx = \frac{1}{2} \int_0^2 2x \cos(x^2 + 1) \, dx = \frac{1}{2} \int_1^5 \cos(t) \, dt = \frac{1}{2} (\sin(5) - \sin(1))$$

2. Consider $\varphi(x) = \sin(x)$ where $\varphi(0) = 0$ and $\varphi(\pi/2) = 1$. Since $\cos(t) = \sqrt{1 - \sin^2(t)}$ it follows

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_{\cos(0)}^{\cos(\pi/2)} \sqrt{1 - x^2} \, dx = \int_0^{\pi/2} \sqrt{1 - \sin^2(t)} \cos(t) \, dt = \int_0^{\pi/2} \cos^2(t) \, dt$$

3. Let $f \in C[a,b]$ and $\varphi(x) = a + t(b-a)$. Then

$$\int_{a}^{b} f(x) dx = (b - a) \int_{0}^{1} f(a + t(b - a)) dt$$

4. Let $f(x) = x^n$ and $\varphi(x) = t^m$. As expected

$$\int_0^1 x^n dx = \int_0^1 t^{nm} m t^{m-1} dt = m \int_0^1 t^{m(n+1)-1} dt = \left[\frac{m}{m(n+1)} t^{m(n+1)} \right]_0^1 = \frac{1}{n+1}$$

2.1 Directional Derivative and Gradients

Lemma 2.12 (Directional Derivative). Let $\Omega \subseteq \mathbb{R}^n$ be open and $f \in C^1(\Omega)$. Then

$$\frac{\partial f}{\partial d}(x) = \nabla f(x)^T d$$

for any $d \in \mathbb{R}^n$.

Proof. Let $\varphi(t) = f(x+td)$. Then $\varphi \in C^1[-\varepsilon, \varepsilon]$ for some $\varepsilon > 0$ and the chain rule yields

$$\varphi'(t) = \nabla f(x + td)^T d$$

Hence

$$\varphi'(0) = \lim_{t \to 0} \frac{\varphi(x+td) - \varphi(0)}{t} = \lim_{t \to 0} \frac{f(x+td) - f(x)}{t} = \nabla f(x)^T d$$

Remark 2.13.

1. Note that by definition the directional derivative is invariant under multiplication with any $\lambda \neq 0$.

2. A similar proposition holds under the weaker assumption that d is a only feasable direction for f in x

3. For $d = \nabla f(x) / \|\nabla f(x)\|$ it follows that

$$\frac{\partial f}{\partial d}(x) = \|\nabla f(x)\| > 0$$

and for any other $d \in \mathbb{R}^n$ with ||d|| = 1 the Cauchy Schwarz inequality yields

$$\left|\frac{\partial f}{\partial d}(x)\right| = \left|\nabla f(x)^T d\right| \le \left\|\nabla f(x)\right\| \|d\| = \left\|\nabla f(x)\right\|$$

Hence $\nabla f(x)$ is the direction of the greatest ascent and respectively, $-\nabla f(x)$ is the direction of the greatest descent.

Theorem 2.14 (First Order Necessary Condition). Let $\Omega \subseteq \mathbb{R}^n$ be open and $f \in C^1(\Omega)$. If $x^* \in \Omega$ is a local minimizer then $\nabla f(x^*) = 0$.

Proof. Let $h \in \mathbb{R}^n$ and $\delta > 0$ so that $x^* + th \in \Omega$ for all $t \in (-\delta, \delta)$. Then 0 is local minimizer for $\varphi(t) = f(x^* + th)$ and

$$\varphi'(0) = \nabla f(x^*)^T h = 0$$

Now let $h = \nabla f(x^*)$.

Theorem 2.15 (Banach Fixed-Point Theorem). Let X be a Banach space and $f \in C(X,X)$ a contraction

$$||f(x) - f(y)|| \le q||x - y|| \text{ for all } x, y \in X$$

for some 0 < q < 1. Then there exists a unique fix point $x^* \in X$ with

$$f(x^*) = x^*$$

Furthermore for any $x_0 \in X$ the sequence defined by

$$x_{n+1} = f(x_n)$$

converges aganist x^* .

Proof. Since
$$||x_{n+1} - x_n|| = ||f(x_n) - f(x_{n-1})|| \le q||x_n - x_{n-1}||$$
 it follows, that $||x_{n+1} - x_n|| \le q^n ||x_1 - x_0||$

Furthermore

$$||x_n - x_m|| \le \sum_{k=m}^n q^k ||x_1 - x_0|| = \frac{q^m - q^{n+1}}{1 - q} ||x_1 - x_0||$$

and (x_n) is a Cauchy sequence. For its limit x^* we have

$$x^* = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(x^*)$$

For any other $y^* \in X$ with $f(y^*) = y^*$ it follows, that

$$||x^* - y^*|| = ||f(x^*) - f(y^*)|| \le q||x^* - y^*||$$

and therefore $x^* = y^*$.

3 Nonlinear Optimization

3.1 Minimization without Constraints

Lemma 3.1 (Gradient Inequality). Let $M \subseteq \mathbb{R}^n$ be a convex set and $f \in C^1(M)$. Then f is convex if and only if

$$f(x) \ge f(y) + \nabla f(y)^T (x - y)$$

for all $x, y \in M$.

Proof. Let f be convex and $x, y \in M$. For $0 \le \lambda \le 1$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) = \lambda f(x) - \lambda f(y) + f(y)$$

and

$$f(x) - f(y) \ge \frac{f(\lambda x + (1 - \lambda)y) - f(y)}{\lambda} = \frac{f(y + \lambda(x - y)) - f(y)}{\lambda}$$

For d = x - y and $\lambda \to 0$ the term on the right converges to the direction derivative of f in d

$$\frac{\partial f}{\partial d}(y) = \nabla f(y)^T d = \nabla f(y)^T (x - y)$$

Now let $x, y \in M$ and $0 \le \lambda \le 1$. For $z = \lambda x + (1 - \lambda)y \in M$ it follows that

$$\lambda f(x) \ge \lambda f(z) + \lambda \nabla f(z)^{T} (x - z)$$
$$(1 - \lambda) f(y) \ge (1 - \lambda) f(z) + (1 - \lambda) \nabla f(z)^{T} (y - z)$$

Adding the two inequalities gives

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(z) + \nabla f(z)^T (\lambda x - \lambda z + (1 - \lambda)y - (1 - \lambda)z)$$
$$= f(z) + \nabla f(z)^T (\lambda x + (1 - \lambda)y - z)$$
$$= f(z)$$

Exercise 3.2 (Facility Locations). The facilities are located at:

$$(3,0), (0,-3), (1,4)$$

Proof. Let

$$f(x) = (x-3)^2 + y^2 + x^2 + (y+3)^2 + (x-1)^2 + (y-4)^2$$

= $x^2 - 6x + 9 + y^2 + x^2 + y^2 + 6y + 9 + x^2 - 2x + 1 + y^2 - 8y + 16$
= $3x^2 + 3y^2 - 8x - 2y + 35$

Then

$$\nabla f(x,y) = (6x - 8, 6y - 2) \text{ and } \nabla^2 f(x,y) = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix} > 0$$

Hence (4/3, 1/3) is the gobal minimum.

Exercise 3.3 (Convex Functions). The sum of convex functions is convex.

Proof. Let $x, y \in M$. Since $\alpha_i > 0$ we have

$$f(\lambda x + (1 - \lambda)y) = \sum_{i=1}^{m} \alpha_i f_i(\lambda x + (1 - \lambda)y))$$

$$\leq \sum_{i=1}^{m} \alpha_i \lambda f_i(x) + \sum_{i=1}^{m} \alpha_i (1 - \lambda) f_i(y) = \lambda f(x) + (1 - \lambda) f(y)$$

Let $f(x) = x^2$. Then -f is not convex, e.g. x = 1, y = -1 and $\lambda = 0.5$.

Exercise 3.4 (Solution of Quadratic Inequality). Let

$$f(x) = x^T A x + b^T x + c$$

Proof. The product rule gives

$$\nabla f(x) = x^{T} A + Ax + b = (A^{T} + A)x + b = 2Ax + b$$

Thus $\nabla^2 f(x) = 2A > 0$ and f is convex. Hence the level set Γ_{-c} is convex. Since the intersection of convex sets is convex $\Gamma_{-c} \cap \{x \in \mathbb{R}^n : g^T x + h = 0\}$ is convex, too.

Exercise 3.5 (Line Search on Compact Convex Sets). Let $S \subset \mathbb{R}^n$ be compact and convex. Furthermore let $f \in C^1(S)$ be convex, $x \in S$ and $d \in \mathbb{R}^n$ a descent direction of f in x with $\nabla f(x)^T d < 0$.

Proof. If $x + \lambda^* d$ is an optimal solution then $\nabla f(x + \lambda^* d)^T d = 0$ according to Theorem 2.14. Let $\nabla f(x + \lambda^* d)^T d = 0$. Then Lemma 3.1 gives

$$f(x + \lambda d) \ge f(x + \lambda^* d) + (\lambda - \lambda^*) \nabla f(x + \lambda^* d)^T d = f(x + \lambda^* d)$$

and $x + \lambda^* d$ is an optimal solution.

Exercise 3.6 (Steepest Descent). Let

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

where A is symmetrical and positive definite.

Proof. Since $\nabla f(x) = Ax + b$ and $\nabla^2 f(x) = A > 0$ it follows $x^* = -A^{-1}b$. Let v be eigenvector with $Av = \mu v$. For $x_0 = x^* + \theta v$ we have

$$\nabla f(x_0) = Ax^* + \mu\theta v + b = \mu\theta v$$

and for $\lambda \geq 0$

$$\arg\min\{f(x_0 - \lambda \nabla f(x_0))\} = \arg\min\{f(x^* + \theta v - \lambda \mu \theta v)\} = \mu^{-1}$$

Thus

$$x_1 = x_0 - \mu^{-1} \nabla f(x_0) = x^* + \theta v - \mu^{-1} \mu \theta v = x^*$$

and $\nabla f(x_1) = 0$. Hence the algorithm stops after the first iteration. Now let

$$x_0 = x^* + \sum_{i=0}^m \theta_i v_i$$

for orthogonal eigenvectors with $Av_i = \mu_i$ and $m \leq n$. Then

$$\nabla f(x_0) = Ax^* + \sum_{i=0}^{m} \mu_i \theta_i v_i + b = \sum_{i=0}^{m} \mu_i \theta_i v_i$$

and

$$x_1 = x_0 - \lambda \sum_{i=0}^{m} \mu_i \theta_i v_i = x^* + \sum_{i=0}^{m} \theta_i v_i - \lambda \sum_{i=0}^{m} \mu_i \theta_i v_i = x^* + \sum_{i=0}^{m} (1 - \lambda \mu_i) \theta_i v_i$$

Since x^* is the minimum we have $\nabla f(x_1) = 0$ iff $\lambda = \mu^{-1}$ for all $0 \le i \le m$.

3.2 One Dimensional Minimization and Direct Search

Definition 3.7 (Unimodal Function). A function $f : [a, b] \to \mathbb{R}$ is called unimodal if there exists a $\xi \in [a, b]$, so that f is strictly decreasing in $[a, \xi]$ and strictly increasing in $[\xi, b]$.

In fact ξ is the unique minimum of f in [a,b]. According to the definition, for $a \leq x < y \leq b$ we have

$$f(x) > f(y)$$
 for $x, y \in [a, \xi)$ and $f(x) < f(y)$ for $x, y \in (\xi, b]$

Thus

$$\xi \in [a,y]$$
 if $f(x) < f(y)$ and $\xi \in [x,b]$ if $f(x) \ge f(y)$

Consider now a symmetrical partioning of the interval [0,1] where two consecutive partionings hold the same ratio respectively:

$$\sigma = 1 - \tau$$
 and $\frac{1}{\tau} = \frac{\tau}{\sigma}$

Then $1 - \tau = \tau^2$ and solving the quadratic equation $\tau^2 + \tau = 1$ yields

$$\tau = \frac{\sqrt{5} - 1}{2} \approx 0.61803$$

Figure 1: Golden Section

Let now $[a_0, b_0] = [a, b]$ and define

$$[a_{k+1}, b_{k+1}] = \begin{cases} [a_k, y_k] & \text{if } f(x_k) < f(y_k) \\ [x_k, b_k] & \text{if } f(x_k) \ge f(y_k) \end{cases}$$

where

$$x_k = b_k - \tau(b_k - a_k)$$
$$y_k = a_k + \tau(b_k - a_k)$$

It follows that $[a_k, b_k] \supset [a_{k+1}, b_{k+1}]$ is a decreasing series of intervals with

$$(b_{k+1} - a_{k+1}) = \tau(b_k - a_k)$$

where the interval converges to ξ . This leads to the following algorithm:

Algorithm 3.8 (Golden Section Search).

```
"""Basic implementation of the golden section search, this easily can be
improved by storing and resuing the results of the previous iteration
"""

import math

def golden_section_search(f, I, eps=0.00001):
    t = 0.5 * (math.sqrt(5) - 1)
    a, b = I
    while abs(b - a) > eps:
        x, y = b - t * (b - a), a + t * (b - a)
        if f(x) > f(y):
            a = x
        else:
            b = y
    return (a + b) / 2

if __name__ == '__main__':
    p, q, I = 0, 0, (-10, 10)
    p, q, I = -4, 1, (-10, 10)
    f = lambda x: (x + p) ** 2 + q
    x0 = golden_section_search(f, I)
    print(f'arg min f on {I}: {x0}')
```

Algorithm 3.9 (Steepest Descent).

Let $f \in C^1(\mathbb{R}^n)$ and $x_0 \in \mathbb{R}^n$. For $0 < \alpha \le \beta < 1$ and $\gamma < 1$ let

Exercise 3.10 (Surprising Convergence). Example for $f \in C^2(\mathbb{R})$ with a sequence of strict local minima converging to a strict local maximum.

Proof. Let $f \in C[a, b]$ and $\xi \in (a, b)$ so that f is strictly increasing in $(a, \xi]$ and strictly decreasing in $[\xi, b)$. Define

 $g(x) = \int_{\xi - x}^{\xi + x} f(t) dt$

4 The Road to Reality

4.1 Hyperbolic Geometry

The ratio between the area A and A' of two similar shapes is given by

$$A' = k^2 A$$

Theorem 4.1 (Pythagoras).

$$a^2 + b^2 = c^2$$

Proof. Let A, B and C be the areas of the three triangles respectively. All triangles are similar, hence

$$B = \frac{b^2}{a^2}A$$
 and $C = \frac{c^2}{b^2}B$

Since A + B = C it follows that

$$a^{2} + b^{2} = \frac{b^{2}A}{B} + b^{2} = \frac{b^{2}(A+B)}{B} = \frac{b^{2}C}{B} = c^{2}$$

Lemma 4.2 (Conformal and Projective Representation). The mapping from conformal and projective representation of any point is given by the radial expansion of the following factor

$$\frac{2R}{R^2 + r^2}$$

Proof. For any point the distance from the origin with regard to the two representations is given by

$$\log \frac{R+r}{R-r} = \frac{1}{2} \log \frac{R+r'}{R-r'} = \log \frac{(R+r')^2}{(R-r')^2}$$

This gives

$$(R-r)^2(R+r') = (R+r)^2(R-r')$$
 and $-4R^2r + 2R^2r' + 2r^2r' = 0$

Hence

$$r' = \frac{2R^2}{R^2 + r^2}r$$

4.2 Complex Numbers

Lemma 4.3 (Basic Formulas).

1. It is

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

2. Thus

$$(a+ib)^2 = (a^2 - b^2) + i2ab$$

and

$$(a+ib)(a-ib) = a^2 + iab - iab - i^2b^2 = a^2 + b^2$$

3. Hence

$$\frac{a+\mathrm{i}b}{c+\mathrm{i}d} = \frac{(a+\mathrm{i}b)(c-\mathrm{i}d)}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \mathrm{i}\frac{bc-ad}{c^2+d^2}$$

4. For

$$z = \sqrt{\frac{1}{2}(a + \sqrt{a^2 + b^2})} + \mathrm{i}\sqrt{\frac{1}{2}(-a + \sqrt{a^2 + b^2})}$$

 $it\ follows$

$$z^2 = \frac{1}{2}(a + \sqrt{a^2 + b^2}) - \frac{1}{2}(-a + \sqrt{a^2 + b^2}) + i2\sqrt{\frac{1}{4}(\sqrt{a^2 + b^2}^2) - a^2} = a + ib$$

Lemma 4.4 (Binomial Theorem).

1. For the binomial coefficient Pascal's identity holds

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

2. The following equation states the binomial identity

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

3. For a = 1 follows

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Proof. It is

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!} = \frac{n!(n+1-k)+n!k!}{k!(n+1-k)!} = \binom{n+1}{k}$$

Furthermore by using induction

$$(a+b)^{n+1} = \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n+1-k}$$
$$= \sum_{k=1}^{n+1} \binom{n}{k-1} a^{k} b^{n+1-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n+1-k}$$
$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{k} b^{n+1-k}$$

4.3 Exponential Function and Logarithms

Exercise 4.5 (Exponential Function). The Cauchy product yields

$$\sum_{n=0}^{\infty} a_n \sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

if at least one of the series is absolutely convergent. Hence

$$\sum_{n=0}^{\infty} \frac{1}{n!} z^n \sum_{n=0}^{\infty} \frac{1}{n!} w^n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!} z^k \frac{1}{(n-k)!} w^{n-k}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^k w^{n-k}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} (z+w)^n$$

Let $t \in \mathbb{R}$. Then

$$e^{it} = \sum_{k=0}^{\infty} \frac{1}{k!} (it)^k$$

$$= \sum_{k=0}^{\infty} \frac{1}{2k!} (it)^{2k} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (it)^{2k+1}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} t^{2k} + i \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1}$$

$$= \cos t + i \sin t$$

More generally for $z = \log r + it$

$$e^z = e^{\log r + it} = re^{it} = r(\cos t + i\sin t)$$

For r=1 and $t=2\pi$ this yields

$$e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$$

and for $t=2\pi$ we get

Lemma 4.6 (Euler Equation).

$$e^{\pi i} + 1 = 0$$

Exercise 4.7.

1. If $e^z = w$ then $z + \pi i$ is a logarithm to -w: $e^{z+\pi i} = e^z e^{\pi i} = -e^z = -w$.

2. Since $e^{i(s+t)} = e^{is}e^{it}$ it follows

$$\cos(s+t) + i\sin(s+t) = (\cos s + i\sin s)(\cos t + i\sin t)$$
$$= \cos s\cos t - \sin s\sin t + i(\cos s\sin t + \sin s\cos t)$$

Hence

$$\cos(s+t) = \cos s \cos t - \sin s \sin t$$

$$\sin(s+t) = \cos s \sin t + \sin s \cos t$$

3. It is $e^{3it} = (e^{it})^3$ and thus

$$\cos 3t + i \sin 3t = (\cos t + i \sin t)^3 = \cos^3 t - 3 \cos t \sin^2(t) + i(\cos^2 t \sin t - \sin^3 t)$$

4. Fun facts

$$e^{1-4\pi^2} = e^{1+(2i\pi)^2} = e^{2\pi i}e^{2\pi i} = e$$

and $i = e^{i\pi/2}$ gives

$$i^i=e^{i\log i}=e^{ii\pi/2}=e^{-\pi/2}\in\mathbb{R}$$

4.4 Complex Number Calculus

Theorem 4.8 (Cauchy Riemann Equations). Let f = u + iv be holomorphic. Then f satisfies the Cauchy Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Proof. For $h \in \mathbb{R}$ follows

$$\lim_{h\to 0} \frac{f(z+h)-f(z)}{h} = \frac{\partial u}{\partial x}(z) + \mathrm{i} \frac{\partial v}{\partial x}(z)$$

and

$$\lim_{h\to 0}\frac{f(z+\mathrm{i}h)-f(z)}{\mathrm{i}h}=\frac{\partial u}{\mathrm{i}\partial y}(z)+\frac{\partial v}{\partial y}(z)=\frac{\partial v}{\partial y}(z)-\mathrm{i}\frac{\partial u}{\partial y}(z)$$

Examples 4.9.

1. Let
$$f(z)=z^3$$
. Then $u(x,y)+\mathrm{i} v(x,y)=x^3-3xy^2+\mathrm{i}(3x^2y-y^3)$ and as expected
$$\frac{\partial u}{\partial x}(x,y)=x^3-3y^2 \quad \text{ and } \quad \frac{\partial u}{\partial y}(x,y)=-6xy$$

$$\frac{\partial v}{\partial x}(x,y)=6xy \quad \text{ and } \quad \frac{\partial v}{\partial y}(x,y)=x^3-3y^2$$

Lemma 4.10. Let $\gamma:[a,b]\to\mathbb{C}$ a smooth path and $\psi:[c,d]\to[a,b]$ a smooth and increasing bijection. For $f\in C[a,b]$

$$\int_{\gamma} f(z) \, dz = \int_{\gamma \circ \psi} f(z) \, dz$$

Proof. It is

$$\int_{\gamma \circ \psi} f(z) dz = \int_{c}^{d} f(\gamma \circ \psi(s))(\gamma \circ \psi)'(s) ds$$
$$= \int_{\psi(a)}^{\psi(b)} f(\gamma(\psi(s))\gamma'(\psi(s))\psi'(s) ds$$
$$= \int_{a}^{b} f(\gamma(t))\gamma'(t) dt$$

Examples 4.11.

1. Let $\gamma(t) = t + it$. Then

$$\int_{\gamma} z^2 dz = \int_0^1 (t + it)^2 (1 + i) dt = (1 + i) \int_0^1 2it^2 dt = \left[(-2 + 2i)t^2 \right]_0^1 = -\frac{2}{3} + i\frac{2}{3}$$

2. For $\gamma(t) = t^2 + it$

$$\int_{\gamma} z^2 dz = \int_0^1 (t^2 + it)^2 (2 + it) dt = \int_0^1 (2t^5 - 4t^3) + i(5t^4 - t^2t) dt$$
$$= \left[\frac{1}{3} t^6 - t^4 \right]_0^1 + i \left[t^5 - \frac{1}{3} t^3 \right]_0^1 = -\frac{2}{3} + i \frac{2}{3}$$

3. And $\gamma(t) = i + e^{it}$

$$\begin{split} \int_{\gamma} z^2 \, dz &= \int_{3/2\pi}^{2\pi} (\mathbf{i} + \mathbf{e}^{\mathbf{i}t})^2 \mathbf{i} \mathbf{e}^{\mathbf{i}t} \, dt = \int_{3/2\pi}^{2\pi} (-1 + 2\mathbf{i} \mathbf{e}^{\mathbf{i}t} + \mathbf{e}^{2\mathbf{i}t}) \mathbf{i} \mathbf{e}^{\mathbf{i}t} \, dt \\ &= \int_{3/2\pi}^{2\pi} -\mathbf{i} \mathbf{e}^{\mathbf{i}t} - 2\mathbf{e}^{2\mathbf{i}t} + \mathbf{i} \mathbf{e}^{3\mathbf{i}t} \, dt = \left[(-\mathbf{e}^{\mathbf{i}t} + \mathbf{i} \mathbf{e}^{2\mathbf{i}t} + \frac{1}{3} \mathbf{e}^{3\mathbf{i}t} \right]_{3/2\pi}^{2\pi} \\ &= \left(-1 + \mathbf{i} + \frac{1}{3} \right) - \left(\mathbf{i} - \mathbf{i} + \frac{1}{3} \mathbf{i} \right) = -\frac{2}{3} + \mathbf{i} \frac{2}{3} \end{split}$$

4. Let $z_0 \in \mathbb{C}$ and $\gamma(t) = z_0 + e^{it}$ for $t \in [0, 2\pi]$. Then

$$\int_{\gamma} \frac{1}{z - z_0} dz = \int_0^{2\pi} \frac{i e^{it}}{z_0 + e^{it} - z_0} dt = \int_0^{2\pi} i dt = 2\pi i$$

and thus $1/(z-z_0)$ has no anti-derivative on $\mathbb{C}\setminus\{z_0\}$