MATH 8510, Abstract Algebra I

Fall 2016

Exercises 11-2

Due date Thu 10 Nov 4:00PM

Exercise 1. Let R be a commutative ring with identity. Prove that R/N(R) has no non-zero nilpotent elements, that is, that N(R/N(R)) = 0.

Proof. We have shown in Exercise 10-1#2(a) that $N(R) \leq R$. By the Theorem 7.3.6., we have R/N(R) is a ring and $\forall r, s \in R$, we have

$$(r + N(R)) (s + N(R)) = rs + N(R).$$

Let $r + N(R) \in N(R/N(R))$, then $\exists n \in \mathbb{N}$ such that

$$(r + N(R))^n = N(R).$$

Then

$$r^n + N(R) = N(R).$$

So

$$r^n \in N(R)$$
.

Therefore, $\exists m \in \mathbb{N}$ such that

$$(r^n)^m = 1.$$

Since R is CRW1, we have

$$(r^n)^m = r^{mn} = 1.$$

As a result,

$$r \in N(R)$$
.

Thus,
$$N(R/N(R)) = 0$$
.

Exercise 2 (Division Algorithm). Let R be a commutative ring with identity. Let $f, g \in R[x]$ such that f is monic. Prove that there exist unique polynomials $q, r \in R[x]$ such that g = qf + r and $\deg(r) < \deg(f)$.

Hint: For existence, argue by induction on deg(q). In the induction step, reduce the degree of g by subtracting an appropriate multiple of f to clear the top degree term.

Proof. First we show the existence.

Basic step:

Let deg(g) = 0.

Since $\deg(f) > \deg(r)$, we have $f = 1_R \in R[x]$ which is monic and $r = 0_R \in R[x]$ with $deg(r) = -\infty$.

Let $q = g \in R[x]$, then we have g = qf + r.

Inductive step:

Assume when deg(g) = n, there exists $q, r \in R[x]$ such that g = qf + r.

Let
$$g = \sum_{i=0}^{n+1} a_i x^i \in R[x]$$
 with $a_{n+1} \neq 0_R$.
Let $h = \sum_{i=1}^{n+1} a_i x^{i-1}$, then $\deg(h) = n$.

Let
$$h = \sum_{i=1}^{n+1} a_i x^{i-1}$$
, then $\deg(h) = n$.

By assumption, there exists $q, r \in R[x]$ such that h = qf + r. Then

$$g = hx + a_0$$

$$= (qf + r)x + a_0$$

$$= qxf + (rx + a_0).$$

- (a) When $\deg(r) + 1 < \deg(f)$, we have $rx + a_0 \in R[x]$ and $\deg(rx + a_0) < \deg(f)$. Then after letting $q_1 = qx \in R[x]$ and $r_1 = rx + a_0 \in R[x]$, we have $g = q_1 f + r_1$.
- (b) When $\deg(r) + 1 = \deg(f)$, assume $\deg(r) = k$ and $r = \sum_{j=1}^{k} r_i x^i \in R[x]$ with $r_k \neq 0_R$.

Then deg(f) = k + 1 and

$$g = qxf + rx + a_0.$$

$$= qxf + \sum_{j=1}^{k} r_i x^{i+1} + a_0$$

$$= (r_k + qx)f + \left(r_k \left(x^{k+1} - f\right) + \sum_{j=1}^{k-1} r_i x^{j+1} + a_0\right).$$

Since $\deg(f) = k+1$ and f is monic, we have $\deg(x^{k+1} - f) \leq k$. So after letting $r_2 = r_k (x^{k+1} - f) + \sum_{j=1}^{k-1} r_i x^{i+1} + a_0 \in R[x]$, we have

$$\deg(r_2) \le k < \deg(f).$$

Let $q_2 = r_k + qx \in R[x]$, then we have

$$q = q_2 f + r_2.$$

Therefore, our assumption also holds when deg(g) = n + 1.

As a result, when deg(g) = n, there exists $q, r \in R[x]$ such that g = qf + r.

Next, we show the uniqueness.

Suppose for $g, f \in R[x]$ and f is monic, $\exists q_1, q_2, r_1, r_2$ such that $g = q_1 f + r_1 = q_2 f + r_2$ with $\deg(r_1) < \deg(f)$ and $\deg(r_2) < \deg(f)$. Then

$$(q_1 - q_2)f = r_2 - r_1.$$

So

(1)
$$\deg(f) \le \deg(r_2 - r_1) \le \max\{\deg(r_1), \deg(r_2)\}.$$

Since $deg(r_1) < deg(f)$ and $deg(r_2) < deg(f)$, we have

$$\max\{\deg(r_1), \deg(r_2)\} < \deg(f),$$

which is contradicted by (1).

Thus, let $g, f \in R[x]$ and f is monic, there exist unique $q, r \in R[x]$ such that g = qf + r.