Redução polinomial

Permite comparar

o "grau de complexidade" de problemas diferentes.

 Π , Π' : problemas

Redução de Π a Π':

algoritmo ALG que resolve Π usando uma subrotina hipotética ALG' que resolve Π' , de forma que...

Redução polinomial

Permite comparar

o "grau de complexidade" de problemas diferentes.

 Π , Π' : problemas

Redução polinomial

Permite comparar

o "grau de complexidade" de problemas diferentes.

 Π , Π' : problemas

Redução de Π a Π' :

algoritmo ALG que resolve Π usando uma subrotina hipotética ALG' que resolve Π' , de forma que,

se ALG' é polinomial, então ALG é um algoritmo polinomial.

 $\Pi \leq_P \Pi' = \text{ existe uma redução de } \Pi \text{ a } \Pi'.$

Esquema comum de redução

Faz apenas uma chamada ao algoritmo ALG'.

Esquema comum de redução

Faz apenas uma chamada ao algoritmo ALG'.

T transforma uma instância I de Π em uma instância I'=T(I) de Π' tal que

$$\Pi(I) = \text{sim se e somente se } \Pi'(I') = \text{sim}$$

Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Exemplo:
$$\phi = (x_1) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3)$$
.

Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}\$$

que torna ϕ verdadeira?

Exemplo:
$$\phi = (x_1) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3)$$
.

Um literal é uma variável x ou sua negação $\neg x$.

3-Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

3-Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Exemplo:

$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

Exemplo 4

Satisfatibilidade \leq_P 3-Satisfatibilidade

Exemplo 4

Satisfatibilidade \leq_P 3-Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ e devolve uma fórmula booleana ϕ' com exatamente 3 literais por claúsula tal que

 ϕ é satisfatível $\Leftrightarrow \phi'$ é satisfatível.

Exemplo 4

Satisfatibilidade \leq_P 3-Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ e devolve uma fórmula booleana ϕ' com exatamente 3 literais por claúsula tal que

 ϕ é satisfatível $\Leftrightarrow \phi'$ é satisfatível.

A transformação consiste em substituir cada claúsula de ϕ por uma coleção de claúsulas com exatamente 3 literais cada, e equivalente a ϕ .

Seja $(I_1 \vee I_2 \vee \cdots \vee I_k)$ uma claúsula de ϕ .

Seja $(I_1 \vee I_2 \vee \cdots \vee I_k)$ uma claúsula de ϕ .

Caso 1.
$$k=1$$

Troque (I_1) por

$$(\mathit{I}_{1} \lor y_{1} \lor y_{2}) (\mathit{I}_{1} \lor \neg y_{1} \lor y_{2}) (\mathit{I}_{1} \lor y_{1} \lor \neg y_{2}) (\mathit{I}_{1} \lor \neg y_{1} \lor \neg y_{2})$$

onde y_1 e y_2 são variáveis novas.

Seja $(l_1 \vee l_2 \vee \cdots \vee l_k)$ uma claúsula de ϕ .

Caso 1.
$$k=1$$

Troque (I_1) por

$$(\mathit{l}_{1} \lor \mathit{y}_{1} \lor \mathit{y}_{2})(\mathit{l}_{1} \lor \neg \mathit{y}_{1} \lor \mathit{y}_{2})(\mathit{l}_{1} \lor \mathit{y}_{1} \lor \neg \mathit{y}_{2})(\mathit{l}_{1} \lor \neg \mathit{y}_{1} \lor \neg \mathit{y}_{2})$$

onde y_1 e y_2 são variáveis novas.

Caso 2.
$$k = 2$$

Troque $(l_1 \lor l_2)$ por $(l_1 \lor l_2 \lor y)(l_1 \lor l_2 \lor \neg y)$, onde y é uma variável nova.

Seja $(I_1 \vee I_2 \vee \cdots \vee I_k)$ uma claúsula de ϕ .

Caso 1.
$$k=1$$

Troque (I_1) por

$$(I_1 \vee y_1 \vee y_2)(I_1 \vee \neg y_1 \vee y_2)(I_1 \vee y_1 \vee \neg y_2)(I_1 \vee \neg y_1 \vee \neg y_2)$$

onde y_1 e y_2 são variáveis novas.

Caso 2.
$$k = 2$$

Troque $(l_1 \lor l_2)$ por $(l_1 \lor l_2 \lor y)(l_1 \lor l_2 \lor \neg y)$, onde y é uma variável nova.

Caso 3.
$$k = 3$$

Mantenha $(I_1 \vee I_2 \vee I_3)$.

```
Caso 4. k > 3

Troque (l_1 \lor l_2 \lor \cdots \lor l_k) por (l_1 \lor l_2 \lor y_1)

(\neg y_1 \lor l_3 \lor y_2) (\neg y_2 \lor l_4 \lor y_3) (\neg y_3 \lor l_5 \lor y_4) \cdots

(\neg y_{k-3} \lor l_{k-1} \lor l_k)

onde y_1, y_2, \dots, y_{k-3} são variáveis novas.
```

Caso 4.
$$k > 3$$

Troque $(l_1 \lor l_2 \lor \cdots \lor l_k)$ por $(l_1 \lor l_2 \lor y_1)$
 $(\neg y_1 \lor l_3 \lor y_2) (\neg y_2 \lor l_4 \lor y_3) (\neg y_3 \lor l_5 \lor y_4) \cdots$
 $(\neg y_{k-3} \lor l_{k-1} \lor l_k)$
onde y_1, y_2, \dots, y_{k-3} são variáveis novas.

Verifique que ϕ é satisfativel \Leftrightarrow nova fórmula é satisfatível.

Caso 4.
$$k > 3$$

Troque $(l_1 \lor l_2 \lor \cdots \lor l_k)$ por $(l_1 \lor l_2 \lor y_1)$
 $(\neg y_1 \lor l_3 \lor y_2) (\neg y_2 \lor l_4 \lor y_3) (\neg y_3 \lor l_5 \lor y_4) \cdots$
 $(\neg y_{k-3} \lor l_{k-1} \lor l_k)$
onde y_1, y_2, \dots, y_{k-3} são variáveis novas.

Verifique que ϕ é satisfativel \Leftrightarrow nova fórmula é satisfatível.

O tamanho da nova claúsula é O(q), onde q é o número de literais que ocorrem em ϕ (contando-se as repetições).

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Se $\Pi \leq_P \Pi'$ e Π é NP-completo, então Π' é NP-completo.

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Se $\Pi \leq_P \Pi'$ e Π é NP-completo, então Π' é NP-completo.

Existe um algoritmo polinomial para um problema NP-completo se e somente se P = NP.

Demonstração de NP-completude

Para demonstrar que um problema Π' é NP-completo podemos utilizar o Teorema de Cook e Levin.

Demonstração de NP-completude

Para demonstrar que um problema Π' é NP-completo podemos utilizar o Teorema de Cook e Levin.

Para isto devemos:

- ▶ Demonstrar que Π' está em NP.
- Escolher um problema Π sabidamente NP-completo.
- ▶ Demonstrar que $\Pi \leq_P \Pi'$.

Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Exemplos:

Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Exemplos:

clique com k vértices = subgrafo completo com k vértices

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tais que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tais que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Para cada claúsula, o grafo G terá três vértices, um correspondente a cada literal da cláusula. Logo, G terá 3k vértices.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tais que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Para cada claúsula, o grafo G terá três vértices, um correspondente a cada literal da cláusula. Logo, G terá 3k vértices. Teremos uma aresta ligando vértices u e v se

- u e v são vértices que correspondem a literais em diferentes claúsulas; e
- ▶ se u corresponde a um literal x então v não corresponde ao literal ¬x.

Clique é NP-completo (cont.)

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Clique é NP-completo (cont.)

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Cobertura por vértices

Um conjunto S de vértices de um grafo G é uma cobertura se toda aresta de G tem uma ponta em S.

Cobertura por vértices

Um conjunto S de vértices de um grafo G é uma cobertura se toda aresta de G tem uma ponta em S.

Problema: Dado um grafo G e um inteiro k, G possui uma cobertura com $\leq k$ vértices?

Cobertura por vértices

Um conjunto S de vértices de um grafo G é uma cobertura se toda aresta de G tem uma ponta em S.

Problema: Dado um grafo G e um inteiro k, G possui uma cobertura com $\leq k$ vértices?

Você consegue provar que este problema é NP-completo?

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica que P = NP.

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica que P = NP.

Todo problema NP-completo é NP-difícil.

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica que P = NP.

Todo problema NP-completo é NP-difícil.

Exemplos:

- Encontrar um ciclo hamiltoniano é NP-difícil, mas não é NP-completo, pois não é um problema de decisão e portanto não está em NP.
- Satisfabilidade é NP-completo e NP-difícil.

Mais problemas NP-difíceis

Os seguintes problema são NP-difíceis:

- mochila booleana
- caminho máximo
- caminho hamiltoniano
- escalonamento de tarefas
- subset-sum
- clique máximo
- cobertura por vértices
- ▶ sistemas 0-1

e mais um montão deles ...

Exercícios

Exercício 25.A

Suponha que os algoritmos ALG e ALG' transformam cadeias de caracteres em outras cadeias de caracteres. O algoritmo ALG consome $\mathsf{O}(n^2)$ unidades de tempo e o algoritmo ALG' consome $\mathsf{O}(n^4)$ unidades de tempo, onde n é o número de caracteres da cadeia de entrada. Considere agora o algoritmo ALGALG' que consiste na composição de ALG e ALG' , com ALG' recebendo como entrada a saída de ALG . Qual o consumo de tempo de ALGALG' ?

O algoritmo Mochila-Booleana é polinomial? Justifique a sua resposta.

Exercício 25.C [CLRS 34.1-5]

Seja ALG um algoritmo que faz um número constante de chamadas a um algoritmo ALG'. Suponha que se o consumo de tempo de ALG' é constante então o consumo de tempo de ALG é polinomial.

- 1. Mostre que se o consumo de tempo de ALG é polinomial então o consumo de tempo de ALG é polinomial.
- 2. Mostre que se o consumo de todo polinomial de chamadas a ALG', então é possível que o consumo de tempo de ALG seja exponencial.

Mais exercícios

Exercício 25.D [CLRS 34.2-1]

Mostre que o problema de decidir se dois grafos dados são isomorfos está em NP.

Exercício 25.E [CLRS 34.2-2]

nia...

Mostre que um grafo bipartido com um número ímpar de vértices não é hamiltonia... (= possui um ciclo hamiltoniano).

Exercício 25.F [CLRS 34.2-3]

Mostre que se o problema do Ciclo hamiltoniano está em P, então o problema de listar os vértices de um ciclo hamiltoniano, na ordem em que eles ocorrem no ciclo, pode ser resolvido em tempo polinomial.

Exercício 25.G [CLRS 34.2-5]

Mostre que qualquer problema em NP pode ser resolvido por um algoritmo de consumo de tempo $2^{O(n^c)}$, onde n é o tamanho da entrada e c é uma constante.

Exercício 25.H [CLRS 34.2-6]

Mostre que o problema do Caminho hamiltoniano está em NP.

Exercício 25.1 [CLRS 34.2-7]

Mostre que o problema do caminho hamiltoniano pode ser resolvido em tempo polinomial em grafos orientado acíclicos.

Mais exercícios

Exercício 25.J [CLRS 34.2-8]

Uma fórmula booleana ϕ é uma tautologia se $t(\phi)$ = verdade para toda atribuiçado $t: \{\text{variaveis}\} \rightarrow \{\text{verdade}, \text{falso}\}$. Mostre que o problema de decidir se uma dada fórmula booleana é uma tautologia está em co-NP.

Exercício 25.K [CLRS 34.2-9]

Prove que $P \subseteq \text{co-NP}$.

Exercício 25.L [CLRS 34.2-10]

Prove que se $NP \neq co-NP$, então $P \neq NP$.

Exercício 25.M [CLRS 34.2-11]

Se G é um grafo conexo com pelo menos 3 vértices, então G^3 é o grafo que se obtém a partir de G ligando-se por uma aresta todos os pares de vértices que estão conectados em G por um caminho com no máximo três arestas. Mostre que G^3 é hamiltoniano.

Exercício 25.N [CLRS 34.3-2]

Exercício 25.N [LLN3 34.3-2] Mostre que se $\Pi_1 \leq_P \Pi_2$ e $\Pi_2 \leq_P \Pi_3$, então $\Pi_1 \leq_P \Pi_3$.

Mais exercícios

Exercício 25.0 [CLRS 34.3-7]

Suponha que Π e Π' são problemas de decisão sobre o mesmo conjunto de instâncias que $\Pi(I)=\sin$ se e somente se $\Pi'(I)=$ não. Mostre que Π é NP-completo se e somente se Π' é co-NP-completo. (Um problema Π' é co-NP-completo se Π' está em co-NP e $\Pi \leq_P \Pi'$ para todo problema Π em co-NP.)

Exercício 25.P [CLRS 34.4-4]

Mostre que o problema de decidir se uma fórmula boolena é uma tautologia é co-NP-completo. (Dica: veja o exercício 25.O.)

Exercício 25.Q [CLRS 34.4-6]

Suponha que ALG' é um algoritmo polinomial para Satisfatibilidade.

Descreva um algoritmo polinomial ALG que recebe um fórmula booleana ϕ e devolve uma atribuição $t: \{\text{variáveis}\} \rightarrow \{\text{verdade}, \text{falso}\}\$ tal que $t(\phi) = \text{verdade}.$

Exercício 25.Q [CLRS 34.5-3]

Prove que o problema Sistemas lineares 0-1 é NP-completo.

Exercício 25.R [CLRS 34.5-6]

Mostre que o problema Caminho hamiltoniano é NP-completo.

Exercício 25.S [CLRS 34.5-7]

Mostre que o problema de encontrar um ciclo de comprimento máximo é NP-completo.

