集合的基数

School of Computer Wuhan University

本章内容

- 1 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集

Outline

- 1 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集

Journey to infinity

基数

- 从一到无穷大
- 一一对应——双射

自然数的定义

Definition (后继(Successor ordinal))

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

例

•
$$\{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$$

$$\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$$

•
$$(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$$

•

@YaoYt

自然数的构造

Theorem (自然数公理)

存在集合N满足以下条件:

自然数集合

集合	编号	
Ø	0	
$\overline{\{\varnothing\}}$	1	
$\{\varnothing,\{\varnothing\}\}$	2	
	n	
$n \cup \{n\}$	n+1	

自然数

Theorem (Peano自然数公理)

- $0 \in \mathbb{N}$:
- 2 如果 $n \in \mathbb{N}$,则存在唯一的n的后继 $n' \in \mathbb{N}$;(后继唯一性)
- 3 0不是任何自然数的后继;
- ④ 如果n' = m',那么n = m;(直接前驱唯一性)

Remark

- 常以❷和❹来检验一个序列有没有"自然数性质",如:
 - 序列 0,1,2,3,4,5,.....
 - 序列 0,2,4,6,.....,1,3,5,7,.....

自然数的大于和小于

Definition (小于)

• 若 $m, n \in \mathbb{N}$,使得 $m \in n$,则称m小于n(或n大于m),记为m < n(or: n > m).

Definition (自然数的初始段)

Definition (等势(Equinumerous))

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射,记为 $A \sim B$; 否则,称集合A, B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系.

例

- 例:试证明:集合(-1,1)与 $(-\infty,\infty)$ 等势.
- 证:令 f: (-1,1) → (-∞,∞), f(x) = tan(^π/₂x)
 ∀y ∈ (-∞,∞), x = arctan(y) * ²/_π, f(x) = y ∴ f是满射;
 又∵若x₁ ≠ x₂, 则f(x₁) = tan(^π/₂x₁) ≠ tan(^π/₂x₂) = f(x₂),∴ f是单射;

有限集和无限集

Definition (有限集(Finite set)和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n;反之,集合A称为无限集.

例

- 例:试证明自然数集N是无限集.
- 证明:(反证法)
 设N为有限集,则∃f: N_n → N, (n∈N),是双射,
 设k∈ max(f(0),...,f(n-1))+1,则k∈N,但不存在x,使f(x) = k,
 ∴ f不是满射,与f是双射矛盾.
 - :.自然数集N是无限集.

有限集和无限集的性质

性质

- 任何有限集都不能与其真子集等势.
- 任何无限集都能与其真子集等势.
- 有限集的子集都是有限集.
- 无限集的父集一定是无限集.

Theorem

有限集的子集都是有限集.

Proof.

设A是有限集, $C \subseteq A$. 分两种情况:

- 若 C非空,则 A也非空,可将 A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:
 - **1** i = 0, j = 0;
 - ② 检查 a_i 是否在子集C中,若 $a_i \in C$, 转 Θ ; 否则转 Φ ;

 - **④** *i*++; 若*i* < *n*, 转**②**; 否则结束.

由此构造的g是从 $N_i = \{0,1,...,j-1\}$ 到C的双射,所以C是有限集.

可数集和不可数集

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集, iff, 集合A与自然数集 \mathbb{N} 等势, 其基数用 \aleph_0 表示(读作阿列夫零), 记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

• 不可数集

可数无限集判别

Theorem

无限集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}$,则 a_n 与自然数n对应,即可定义从A到 $\mathbb N$ 的双射, $f \colon A \to \mathbb N$, $f(a_n) = n$,A 为可数无限集.

注

- "重复排列"等价于"无重复排列".(构造算法)
- 此序列具有"自然数性质".

枚举

Definition (枚举(Enumeration))

集合A的枚举是从自然数集 $\mathbb{N}(\mathbb{N}$ 的初始段)到A的一个满射函数;

- 若该满射也是单射,则是一个无重复枚举;
- 若为非单射,则是重复枚举.

性质

- 通常,枚举 f表示为⟨f(0), f(1), f(2), ..., f(n), ...⟩
- 集合A是可数的, iff, 集合A可枚举.

枚举

例

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m, n) = \frac{(m+n)(m+n+1)}{2} + m$

例子

例

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

字典序(Lexicographic order)

例

字母表∑ = {a,b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

设有限字母表 Σ 指定了字母线序,对于 $s,t \in \Sigma^*$

- 字典序 \preccurlyeq ($s \prec t$)
 - ❶ 8是空串;
 - ② s是t的前缀:
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- - **1** ||s|| < ||t||, or
 - ② ||s|| = ||t||, 且在字典序中s前于t.

可数集的性质(I)

性质

- 可数集的任何子集都是可数集.
- ② 可数个可数集的并集是可数集. 证明:分两种情况:见下表

有限个可数集

A_0	a_{00}	a_{01}	a_{02}	
A_1	a_{10}	a_{11}	a_{12}	
A_2	a_{20}	a_{21}	a_{22}	
A_n	a_{n0}			

可数无限个可数集

A_0	a_{00}	a_{01}	a_{02}	
A_1	a_{10}	a_{11}	a_{12}	
A_2	a_{20}	a_{21}	a_{22}	
A_n	a_{n0}			

可数集例子

Theorem

Example

- Q是可数集;
- $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集.

可数集性质(II)

Theorem

任一无限集A,必会有可数无限子集.

Proof.

- $A \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A \{a_1\}$,
- 所得集合仍为无限集;
- 如此继续, $\{A$ 的可数无限子集 $\{a_1, a_2, a_3,\}$.

可数集性质(III)

Theorem

任一无限集M,必与自己的某真子集等势.

Proof.

- 由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots\},$
- $\diamondsuit M A = B$,
- 定义函数 $f: M \to M \{a_0\}$;
 - **1** $f(a_n) = a_{n+1} \ (a_n \in A);$
 - **2** $f(b) = b \ (b \in B).$
- 则,易证f是双射. $: M \sim M \{a_0\}$.

可数集和不可数集

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集, iff, 集合A与自然数集 \mathbb{N} 等势, 其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

• 集合 \mathbb{N} , \mathbb{Z}^+ , \mathbb{Z} 的基数均为 \mathbb{N}_0 .

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

• 不可数集

不可数集

Definition (连续统势)

• 任一集合A具有连续统(Continuum)势, iff, A与集合[0,1]等势, A的基数为c, p|A|=c.

Example-具有连续统势的集合

- \bullet [a, b]
- (0,1)
- **3** R

不可数集

Example

- 试证明:集合(0,1)与[0,1]等势.
- 证明:

令
$$A=\{0,1,1/2,1/3,.....,1/n,.....\}$$
,则 $A\subseteq [0,1]$,设 $f\colon [0,1]\longrightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & \text{if} \quad x = 0 \\ 1/(n+2) & \text{if} \quad x = 1/n, (n \geqslant 1, n \in \mathbb{N}) \\ x & \text{if} \quad x \in [0, 1] - A \end{cases}$$

容易证明 f 是双射, :.集合(0,1)与[0,1]等势.

Continuum hypothesis

连续统假设

- 连续统假设——在ℵ₀和c之间不存在其它的"无穷大"基数?
- 连续统假设是否成立,依赖于集合论的公理如何选择.
- https://en.wikipedia.org/wiki/Continuum_hypothesis

本章内容

- 1 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集

Reference books

Kenneth H. Rosen.

《离散数学及其应用》(原书第8版). 机械工业出版社.

■ 刘玉珍 《离散数学》. 武汉大学出版社.

■ 王汉飞 《离散数学》讲义.