Linear Data Analysis Classification - Single Artificial Neuron

Cain Susko

Queen's University School of Computing

March 21, 2022

a Artificial Neurons

Artificial Neural Networks are made up of Artificial Neurons. We can think of operations with Neural Networks as finding a hyper plane of separation. There is also a biological analogy that can help explain neural networks and their neurons.

b Data Flow and Computation for Neurons

Simple Model The simple model of Data flow within a NN is made up of:

inputs	x_{j}
weights	w_{j}
bias / threshold	β

Within this simple model an neuron will fire when the voltage or input exceeds the bias. This can be represented as the equation:

$$\sum_{j=1}^{n} x_j w_j \ge \beta$$
or
$$\sum_{j=1}^{n} x_j w_j + \beta \ge 0$$

The output of a Neuron is it's activation function ϕ

Data Flow Through a Neuron For each neuron within a neural network, it may have many inputs, which are first weighted, then summed and fed as input to the activation function ϕ (if the neuron has one)

Linear Algebra An observation is an input vector $\vec{x_i}$. The weighted sum of this observation is:

$$u_i = u(\vec{x}_i) = \vec{x}_i^{\mathsf{T}} \vec{w} + \beta$$

Thus, a neuron with this input of a weighted sum only fires if and only if:

$$u_i \ge 0$$

When training a Neural Network a user will provide labels for each initial data vector. For this course the labelling will be binary with each label $y_i \in \{0,1\}$. This differs from other machine learning literature which may use $y_i = \pm 1$.

c Hyperplane of Separation for Neurons

This Section will explore how a Neural Network Does Hyperplane Operations. Recall a Hyperplane $\mathbb H$ is:

Where \vec{w} is the weight vector associated with \mathbb{H} . S_1, S_2 are the 2 sides of \mathbb{H} . The question is how does the Neural Network decide which side \vec{x}_1 is on. In terms of Neural Networks, a hyperplane \mathbb{H} is \vec{w}, β which are its axis and bias. Therefore, the pseudo-distance from \mathbb{H} for each point \vec{x}_i is:

$$u_i = \vec{x}_i^{\top} \vec{w} + \beta$$

Such that:

$$u_i \geq 0 \rightarrow \vec{x}_i \in S_1$$

$$u_i < 0 \rightarrow \vec{x}_i \in S_2$$

We then Augment the weight—and thus input vector as well—such that:

$$\hat{w} = \begin{bmatrix} \vec{w} \\ \beta \end{bmatrix} \quad \hat{x}_i = \begin{bmatrix} \vec{x}_i \\ 1 \end{bmatrix}$$

Thus, the previous computation with these augmented values would be made faster with the equation:

$$u_i = \hat{x}_i^{\mathsf{T}} \hat{w} = \vec{x}_i^{\mathsf{T}} \vec{w} + 1 \times \beta$$

Not only does it make it faster but in out code the bias scalar is better integrated into the equation in the augmented vector.

General Activation A General Activation function ϕ maps a real number to another real number

$$\phi: \mathbb{R} \to \mathbb{R} \text{ or } z = \phi(u)$$

Such that the linear algebra interpretation of ϕ is the **score** of the input for each neuron. The score is then put through a quantization function, maps the score to a set of 'labels':

$$q: \mathbb{R} \to \{0, 1\} \text{ or } q(\phi(u_i)) = \{0, 1\}$$

Therefore, The classification function for points on 2 sides of a hyperplane implemented with a Neural Network is:

$$H(u_i) = {}^{def} \begin{cases} 1 \text{ if } u \ge 0\\ 0 \text{ if } u < 0 \end{cases}$$

Where u_i is the pseudo-distance from a point \vec{x}_i to the hyperplane \mathbb{H} . Such that if \vec{x}_i is on the negative side of \mathbb{H} then u_i will be negative. Additionally, when \vec{x}_i is on the positive side of the hyperplane, u_i is positive. This is the reasoning behind the classification function H, or the activation function of the neuron.

Binary Classification

- each \hat{x}_i has a label $y_i \in \{0, 1\}$
- each label representes the 2 sides of the hyperplane such that:

$$y_i = \begin{cases} 0 \text{ if } \hat{x}_i \in S_2\\ 1 \text{ if } \hat{x}_i \in S_1 \end{cases}$$

• thus, the ideal match is:

$$(y_i = 0) \leftrightarrow (\hat{x}_i^\top \hat{w} < 0)$$
$$(y_i = 1) \leftrightarrow (\hat{x}_i^\top \hat{w} > 0)$$

Learning Outcomes

Students should now be able to:

- Augment data vectors for neural computation
- Use augmented vectors to find pseudo distance
- Quantize pseudo-distance as the activation of the neuron