Lecture 5

Proportion data: chi-square tests

Chi-square tests = proportion tests

- Sometimes data are presented as proportions:
- One-sample proportion
 - Proportion of women and men in the UK

(<u>NOTE</u>: only one 'independent' proportion here: if women are 52%, men must be 48% - they must add up to 100%)

- Proportion of children vs. adults in a village
- Two independent proportions
 - Proportion of Labour supporters in London vs. Glasgow
 - (<u>NOTE</u>: here, proportions do not need to add up to 100%
- To analyse proportions, we use *proportion tests* (aka *chi-square tests*)

Proportion test, one sample

- Example: sex ratios at birth
- Sex ratios are intriguing
 - In sexual species, a single male is able to fertilise many (if not all) females in a population
 - In many species, most males never mate!
 - But sex ratios remain ~1; why so many useless males?

Why are sex ratios generally balanced?

- If there are 100 offspring in a population, only 1 male (the father of all) and 100 females:
 - average female fitness= 1 offspring per female
 - average male fitness=100 offspring per male
 - -> average male fitness is 100 times higher
 - Selection favours the fittest, i.e. the rarest sex
 - when males are rare, male offspring is favoured
 - when females are rare, female offspring is favoured
 - -> population remains close to a balanced 1:1 sex ratio
 - This is an example of frequency-dependent selection

Deviations from balanced sex ratio

 If your offspring does not compete with others, sex ratio may change

- Example: viviparous mites
 - brothers inseminate sisters inside mother
 - observed sex ratio: ~ 1
 male: 22 females

Sex ratio vs. social status

- Offspring fitness also depends on social status
- In polygynous species (most mammals) only a few high-quality males reproduce (competition for harems is tough)
- In red deer:
 - dominant females have more sons (more likely to be future harem leaders) than daughters
 - subordinate females have more daughters (they can still be in a harem and reproduce) than sons
- But total sex ratio (dominant + subordinate) remains close to 1:1

Sex ratios in humans

- As a rule, sex ratio at birth is ~1 in humans
 - slightly male-based at ~1.05, to compensate for higher male infant mortality
- But Berenczi and Dunbar (1997) identified a femalebiased ratio at birth among Hungarian gypsies
 - rural and urban gypsies are poorer than neighbour Hungarians
 - daughters often marry richer Hungarians; sons very unlikely to marry out
 - Roma prefer baby girls to baby boys
- their prediction: sex ratio at birth should be biased towards females
- (note: sex ratio at birth is unaffected by infanticide etc.)

But let's re-examine the evidence presented in the study

• In Hungarian gypsies, is sex ratio at birth significantly different from p=0.5?

Table 2.	Sex	ratios	at	birth	for	each	population
1 00010 4.	~ ~ ~ ~	10000	cv	O CI CIC	,	cccrc	population

Table 2. Sen ratios at other for each population							
	number of sons per 100 daughters						
	rural p	opulations	urban populations				
	Gypsy	Hungarian	Gypsy	Hungarian			
A. all children							
sample size	254	216	239	224			
males/100 females	89.3	111.8	89.7	113.3			
B. first-born children only							
sample size	87	85	77	102			
males/100 females	81.3	157.6	94.3	131.8			

note: in this lecture, p is proportion; P is significance level

(careful: R output does not make the distinction!)

One-sample proportion test

- =tests the likelihood of a proportion p deviating from a test proportion
- often, test proportion is 50%

- e.g. coin tossing: binary distribution estimates probability of x heads, each one with p(head)=0.5, in n tosses
- expected mean: np (=10*0.5=5, i.e. you expect 5 heads in 10 tosses);
 variance: np(1-p)

• Test statistic:
$$u = \frac{x - np}{\sqrt{np(1-p)}}$$

- u statistic similar to t
- u distribution approaches normal with large n
- (alternative u², which has a chi-square distribution that also approaches normal with large n)

100 Draws

10000 Draws

Gypsy sex ratios

- So are there fewer gypsy boys than girls at birth?
 - 1) Rural gypsies, all babies:
- sex ratio=89.3%=0.893, n=254 =>120 boys, 134 girls, (120/134=0.893)
 - Proportion of boys = 120/254 = 0.47
 - Test proportion: 0.5 (i.e equal proportions)
 - Question: is **p=0.47** different from 0.5?

> prop.test(120, 254, 0.5)

1-sample proportions test with continuity correction data: 120 out of 254, null probability 0.5
X-squared = 0.6654, df = 1, p-value = 0.4147

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.4099875 0.5357417

sample estimates:

Ķ

0.4724409

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters				
	rural populations		urban populations		
	Gypsy	Hungarian	Gypsy	Hungarian	
A. all children sample size males/100 females	254 s 89.3	216 111.8	239 89.7	224 113.3	
B. first-born children sample size males/100 females	87	85 157.6	77 94.3	102 131.8	

Null hypothesis: proportion=0.5

- P=0.41
- proportion p=0.5 included in 95% CI
- =>no significant deviation from p=5 and balanced 1:1 sex ratio
- no evidence of fewer boys than girls in rural Roma

Note: calculating boys (b) and girls (g)

- Table shows:
 - Sample size n = b + g
 - (males/females) x 100 = b/g x 100 (i.e. shown as percentage)
- If n=254 and male/female = 89.3, then
 - b + g = 254
 - b/g = 0.893

i.e.

• g = n/(1 + sex ratio)

Exercise:

Run the same test with urban gypsies, all children (n=239, ratio=0.897)

Does the sex ratio at birth differ from p=0.5?

prop.test(113,239) p= 0.47 >>> p>0.05 no significant difference

First-borns only

- But decision to have a second baby or abort may depend on sex of previous offspring
 - if 1st child is boy, Roma parents are more likely to try again (until child is female; if girl, they are more likely to stop
- Solution: analyse only 1st-born rural babies:
 - Sex ratio=0.813, n=87 => boys=39, girls=48
 - p(boys)=39/87=0.448

> prop.test(39, 87, 0.5)

1-sample proportions test with continuity correction data: 39 out of 87, null probability 0.5

X-squared = 0.7356, df = 1, p-value = 0.3911

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.3427920 0.5583697

sample estimates:

р

0.4482759

Table 2. Sex ratios at birth for each population

		0 1 1			
	number of sons per 100 daughters				
	rural p	opulations	urban populations		
	Gypsy	Hungarian	Gypsy	Hungarian	
A. all children					
sample size	254	216	239	224	
males/100 females	89.3	111.8	89.7	113.3	
B. first-born childre	only				
sample size	87	85	77	102	
sample size males/100 females	81.3	157.6	94.3	131.8	

- P=0.39
- 95% CI includes test value p=0.5
- No evidence of fewer boys in rural Gypsy 1st-borns either
- One-sample proportion tests show no evidence that rural gypsies have female-biased sex ratio

Exercise:

Run the same test with urban gypsies, first-born children only (n=77, ratio=0.943)

Does the sex ratio at birth differ from p=0.5?

Prop.test(37,77) P= 0.48 >>> p>0.05 No significant difference

Two independent proportions

- But proportion of boys in rural gypsies vs. Hungarians could still differ *from each other*
 - i.e. we can compare the two independent proportions of boys in rural Gypsies vs. Hungarians

Table 2. Sex ratios at birth for each population

number of sons per	100 daughters
rural populations	urban populations
Gypsy Hungarian	Gypsy Hungarian

- We use two-sample proportion tests in this case
 - Based on *u*-statistic (=difference between proportion divided by pooled variance) and chi-square distribution

A. all children				
sample size	254	216	239	224
males/100 fema	es 89.3	111.8	89.7	113.3
B. first-born childr	en only		•	

B. first-born children only sample size 87 85 77 102 males/100 females 81.3 157.6 94.3 131.8

Syntax:

- > prop.test(c(x1, x2), c(n1, n2))
 - xi= positive cases (=boys) in group 1 and group 2
- ni=total cases (=boys+girls) in group 1 and group 2

All babies

```
> prop.test(c(120,114), c(254,216))
```

2-sample test for equality of proportions with continuity correction

data: c(120, 114) out of c(254, 216)

X-squared = 1.2171, df = 1, p-value = 0.2699

alternative hypothesis: two.sided

95 percent confidence interval:

-0.15018442 0.03951076

sample estimates:

prop 1 prop 2

0.4724409 0.5277778

For all babies

Rural gypsies: 254 total, 120

boys; p(boys)=0.47

Rural Hungarians: ratio 1.118, 216 total -> 114 boys, 102 girls; p(boys)=0.527

Result:

P>0.26

95% CI includes zero (no difference)

Conclusion: no significant difference in sex ratios between rural populations

Exercise: urban

Run the same test two independent proportions test on rural children

Does the sex ratio at birth differ between Gypsies and Hungarians?

First births only

- But now take only first births:
 - Rural gypsies: 39 boys, 48 girls, n=87
 - Rural Hungarians: 52 boys, 33 girls, n=85

> prop.test(c(39,52), c(87,85))

2-sample test for equality of proportions with continuity correction

```
data: c(39, 52) out of c(87, 85)
```

X-squared = 3.9795, df = 1, p-value = 0.04606

alternative hypothesis: two.sided

95 percent confidence interval:

-0.322272741 -0.004704946

sample estimates:

prop 1 prop 2 0.4482759 0.6117647

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters			
	rural populations		urban populations	
	Gypsy	Hungarian	Gypsy	Hungarian
A. all children				
sample size males/100 females				224 113.3
B. first-born childres sample size males/100 females	87	85 157.6	77 94.3	102 131.8

- Finally a significant difference!
 - P<0.05 (just about)
 - 95% CI excludes zero
 - difference between p(boys)=0.448 (Gypsies) and p(boys)=0.61 (Hungarians) is significant
- Conclusion: rural gypsies show lower proportion of first-born boys than rural Hungarians

Exercise:

Run the same test two independent proportions test on urban children, first-born only

Does the sex ratio at birth differ between Gypsies and Hungarians?

prop.test(c(37,58),c(77,102))

Conclusions

- The only test that shows a difference between sex ratios in Roma and Hungarians is a twoindependent sample comparing rural, first-born children
- But in that test, the 'abnormal' population is rural Hungarians, with a very high number of boys among first-borns!
 - They have 57.6% more boys than girls!!!
 - (but is this ratio significant?)
- Very biased conclusion!
 - Based on testing until result is the one you want
 - we'll see how to fix this later

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters			
	rural populations		urban populations	
	Gypsy	Hungarian	Gypsy	Hungarian
A. all children				
sample size	254	216	239	224
males/100 females	89.3	111.8	89.7	113.3
B. first-born childre	n only			
sample size	8	85	77	102
males/100 females	8 8 .3	157.6	94.3	131.8

possible cheating, thus correction for multiple testing >> limit the amount of testing (ANOVA)

Other cases: more than two independent proportions

- If you want to compare more than two independent proportions
 - e.g. to compare four populations, i.e. proportion of boys among rural gypsies, rural Hungarian, urban gypsies, urban Hungarians *all at the same time*)
- Just extend *prop.test* to four populations

```
> prop.test(c(x1, x2, x3, x4), c(n1, n2, n3, n4))
pos total
```

All values

Function chisq.test is like prop.test, but you enter it in matrix form
 Syntax: pos neg

> chisq.test(matrix(c(x1, x2, x3, x4, n1, n2, n3, n4), m))

Important! Here n = negatives (in our case, girls), not total!!!

(m is the number of groups; in the example above, m=4)

Exercise:

- 1) Run prop.test on the four proportions: rural gypsies, rural Hungarian, urban gypsies, urban Hungarians
- 2) Run a chi-square test on the same four proportions

Other cases: one sample, n proportions

- You may want to test whether a die (instead of a coin) is loaded
 - now there are six proportions (1/6 for each side) that add up to 100%
 - tested proportion is now p=1/6=0.17
- This test can be done with function chisq.test

```
> chisq.test(matrix(c(x1, x2, x3, x4, x5, x6), nrow=1))

byrow=T
```

Chisel.test(matrix(c(x1,x2,x3x,x4,x4),byrow=T, nrow=1))

- x1 = number of times you got a 1 rolling the die, etc.
- nrow= 1 (meaning all 6 values are from the same dice)

Binomial test

 The binomial test is equivalent to a prop.test, except that it is based on the binomial distribution itself

- Some prefer binom.test because it estimates an exact P value
 - contrary to prop.test that calculates P value from a normal approximation to the binomial

> prop.test(120, 254, 0.5)

1-sample proportions test with continuity correction data: 120 out of 254, null probability 0.5
X-squared = 0.6654, df = 1, p-value = 0.4147
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.4099875 0.5357417 sample estimates: p 0.4724409

> binom.test(120,254)

Exact binomial test

data: 120 and 254

number of successes = 120, number of trials = 254, p-

value = 0.4147

alternative hypothesis: true probability of success is not

equal to 0.5

95 percent confidence interval:

0.4097151 0.5358173

sample estimates: probability of success

0.4724409

Fischer exact test

- Fisher exact test also calculates exact P value
- Now you enter the positive x cases (e.g. boys) and the negative cases (e.g girls), instead of total n
- Test is based on odds-ratios not proportions
 - 95% CI looks different
 - if odds ratio (of boys to girls) is different from 1, proportions differ

Syntax:

```
>fisher.test(matrix(c(pos1, pos2,..., neg1, neg2,...), m)) + byrow=T
```

m= number of compared groups

Using data from urban gypsies vs. Hungarians

```
> fisher.test(matrix(c(39, 52, 48, 33), 2))
```

Fisher.test(matrix(c(x1,x2,x3,x4),byrow=T,2))
Fisher's Fxact Test for Count Data

data: matrix(c(39, 52, 48, 33), 2)

p-value = 0.03396

alternative hypothesis: true odds ratio is not

equal to 1

95 percent confidence interval:

0.2684001 0.9885450

sample estimates:

odds ratio

0.5176459

Generalisation

- Chi-square or Fisher exact tests can be generalised for any number of samples and proportions at the same time
- For example, does choice of degree (Archaeology, Biology, Engineering) at UCL affect the final grade (1^{st,} 2.1, 2.2, 3rd class degree)?
 - results per degree (number of 1^{st,} 2.1, 2.2, 3rd for each degree, which add up to 1)
 - number of degrees nrow (in this case, nrow=3)
- Syntax:

```
>chisq.test(matrix(c(n_{1st,arc}, n_{2.1,arc}, n_{2.2,arc}, n_{3rd,arc}, n_{1st,bio}, n_{2.1,bio}, n_{2.2,bio}, n_{3rd,bio}, n_{1st,eng}, n_{2.1,eng}, n_{2.2,eng}, n_{3rd,eng}, n_{3rd,eng}, n_{3rd,eng}), n_{3rd,eng}
```

- chisq.test compares observed values (e.g. proportion of Biologists with 2.1) vs. predicted values (e.g. proportion of Biologists times proportion of 2.1 degrees);
- again, advantage of Fisher test is to calculate exact P value