Математическая логика и теория алгоритмов

Посов Илья Александрович

запись конспекта: Блюдин Андрей

Содержание

1 Математическая логика

1.1 Исчисление высказываний

1.1.1 Основные понятия

Определение. Логическая функция — это множество из 2 элементов. Также, логической функцией называют множество логических значений $B = \{0,1\}$, где 0 — это ложь (false), а 1 — это истина (true)

Определение. Логическая функция от n переменных

$$f:B^n\to B$$

Замечание. Часто логические функции вводят как перечисление возможных аргументов и значений функции при этих аргументах

Пример. Введем функцию f(x,y)

X	у	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Таблица 1: Таблица истинности для f(x,y)

Эту же функцию можно задать функцией f(x,y) = max(x,y)

x_1	x_2	 x_n	$f(x_1,x_2,\ldots,x_n)$
0	0	 0	0 или 1
		 	0 или 1
1	1	 1	0 или 1

Таблица 2: Таблица истинности для $f(x_1, x_2, \ldots, x_n)$

Утверждение. Функция переменных быть $f(x_1,x_2,x_3,\ldots,x_n)$

При этом количество всех возможных наборов аргументов равня $emcs 2^n$, а количество всех возможных функций при всех возможных наборах аргументов равняется 2^{2^n}

Следствие. Посчитаем количество таких функий для разных п

$$n = 1$$
 $2^2 = 4 функций $f(x)$$

$$n=1$$
 $2^2=4$ функций $f(x)$ $n=2$ $2^{2^2}=16$ функций $f(x,y)$

$$n=3$$
 $2^{2^3}=2^8=256$ функций $f(x,y,z)$

1.1.2 Функции от 1 переменной (их определения)

Пример. Перечислим все возможные функции от 1 переменной

	x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
	0	0	0	1	1
Ì	1	0	1	0	1

Данные функции имеют значение:

$$f_1(x) = 0$$
 — функция 0

$$f_2(x) = x - функция x$$

$$f_3(x) = !x, \bar{x}, \neg x, \text{ not } x - \varphi$$
ункция отрицания (не x)

$$f_4(x) = 1 - функция 1$$

1.1.3Функции от 2 переменных (их определения)

Пример. Перечислим все возможные функции от 2 переменных Продолжение:

Перечислим основные значения функций:

 $f_2(x,y)$ — это конъюнкция или "лочическое и"или логическое умножение $(xy, x\&y, x \land y)$

 $f_7(x,y)$ — это исключающее или $(x+y,xXORy,x\oplus y)$, также данную функцию можно ассоциировать как (x+y)mod2

x	y	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$	$f_7(x)$	$f_8(x)$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 3: Таблица истинности для f(x,y)

x	y	$f_9(x)$	$f_{10}(x)$	$f_{11}(x)$	$f_{12}(x)$	$f_{13}(x)$	$f_{14}(x)$	$f_{15}(x)$	$f_{16}(x)$
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 4: Таблица истинности для f(x, y)

```
f_8(x,y) — это логическое или, но ее можно также записать как
max(x,y) (x|y, x \vee y)
    f_{10}(x,y) — это эквивалентность (x \Leftrightarrow y, x \equiv y, x == y)
    f_{14}(x,y) — это импликация (x \Rightarrow y, x \rightarrow y)
    Импликация работает так, что истина следует из чего угодно:
    лешия не существует \Rightarrow русалок не существует = 1 \ (1 \Rightarrow 1 = 1)
    допса скучная \Rightarrow русалок не существует = 1 \ (0 \Rightarrow 1 = 1)
    русалки существуют \Rightarrow драконы существуют = 1 \ (0 \Rightarrow 0 = 1)
    x \Rightarrow y = 0 только если x = 1, а y = 0
    f_{12}(x,y) — это обратная импликация (x \Leftarrow y = y \Rightarrow x)
    f_9(x,y) — стрелка Пирса (x \downarrow y = \overline{x \lor y})
    f_{15}(x,y) — штрих Шеффера (x|y=\overline{xy})
    f_3(x,y) — запрет по у (x > y = \overline{x \Rightarrow y})
    f_1(x,y) = 0
    f_4(x,y) - x
    f_5(x,y) — запрет по х (x < y = \overline{x \leftarrow y})
    f_6(x,y) - y
    f_{11}(x,y) — не у (\neg y)
    f_{13}(x,y) — не х (\neg x)
    f_{16}(x,y) - 1
```

Определение. Логические выражения — способ задания логических функций с помощью переменных, цифр 0 или 1 и операций:

$$\cdot \lor \Rightarrow \Leftrightarrow + \equiv \downarrow \downarrow < >$$

Пример. Примеры логических выражений:

$$\begin{aligned} (x \vee y) &= \\ (x \Rightarrow yz) \vee (y \equiv z) \\ (0 \Rightarrow x) \vee (1 \Rightarrow y) \end{aligned}$$

Определение. Значения логического выражения можно записать **Таблицей истинности**

Пример. $f(x, y, z) = (x \vee y)z$

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Замечание. Порядок строчек в таблеце истинности может быть любым, но лучше использовать как у двоичных чисел

Утверждение. Таблицы истинности часто считают постепенно

X	у	Z	$x \lor y$	$(x \vee y)z$

1.1.4 Приоритеты операций

 $\begin{array}{ccc} \cdot & & \\ & \vee & \\ + & \equiv & \\ \Rightarrow & \Leftarrow & \\ \downarrow & < & > \end{array}$

Пример. Примеры приоритетов операций:

1.1.5 Алгебраические преобразования логических выражений

Определение. Алгебраические преобразования логических выражений — изменяем выражения по правилам, обычно в сторону упрощения

Пример.
$$(0 \Rightarrow x) \lor (1 \Rightarrow y) = 1 \lor (1 \Rightarrow y) = 1$$

Утверждение 1.

$$\overline{\overline{x}} = x$$

Доказательство:

x	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Утверждение 2. $\Pi pu \vee :$

$$1 \lor x = 1$$

$$0 \lor x = x$$

$$x \lor y = y \lor x$$