第四讲 二次曲面

- > 二次曲面的标准方程与图形
 - 1.椭球面
 - 2. 抛物面
 - 3.双曲面
- ▶ 化二次曲面为标准方程
- ▶ 内容小结

第四讲 二次曲面

- > 二次曲面的标准方程与图形
 - 1.椭球面
 - 2. 抛物面
 - 3.双曲面

化二次曲面为标准方程 内容小结

一、二次曲面的标准方程与图形

二次方程

$$a_{11}x^{2} + a_{22}y^{2} + a_{33}z^{2} + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

+ $b_{1}x + b_{2}y + b_{3}z + c = 0$

所表示的曲面称为二次曲面.

例如,椭圆柱面
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

旋转抛物面 $z = x^2 + y^2$
球面 $x^2 + y^2 + z^2 = \mathbb{R}^2$

研究二次曲面几何特征的方法:

- (1) 用坐标变换(旋转、平移)将二次方程 化为标准方程;
 - (2) 用截痕法讨论标准方程的几何特征.

截痕法:

用坐标面或与坐标面平行的平面与曲面相截, 考察所得交线(截痕)的形状,通过截痕形状 研究曲面的形状.

几类二次曲面的的标准方程:

1. 椭球面

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$$

$$(a > 0, b > 0, c > 0)$$

(1) 范围: $|x| \leq a$, $|y| \leq b$, $|z| \leq c$.

图形在 $x = \pm a$, $y = \pm b$, $z = \pm c$ 所围成的长方体内.

(2) 对称性: 图形关于三个坐标面、三个坐标轴及原点对称.

(3) 截痕

用平面 $z=z_1$ 截椭球面,其交线为椭圆

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \\ \frac{z}{c^2} + \frac{z}{c$$

椭圆截面的大小随平 面位置的变化而变化.

同理与平面 $x = x_1$ 和 $y = y_1$ 的交线也是椭圆.

椭球面与三个坐标面的交线为椭圆:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, & \begin{cases} \frac{x^2}{a^2} + \frac{z^2}{c^2} = 1, \\ z = 0 \end{cases}, & \begin{cases} \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \\ y = 0 \end{cases}$$

(4) 椭球面的几种特殊情况:

$$1^0 \ a = b, \ \frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$$
 是旋转椭球面

由椭圆
$$\begin{cases} \frac{x^2}{a^2} + \frac{z^2}{c^2} = 1, \& z 轴旋转而成. \\ y = 0 \end{cases}$$

$$2^0 a = b = c$$
, $x^2 + y^2 + z^2 = a^2$. 是球面

- 1. 研究二次曲面几何特征的方法
- 2. 椭球面的标准方程与图形