Statistical learning - Classification

Rita Almeida

PhD course 3045, VT 2018

Classification

Regression is used when the outcome variable is quantitative.

Classification is used when the output variable is categorical.

- Inference
- Prediction
 - ▶ The aim is to decide to what class C_i a new input x belongs.

K-nearest neighbors

Classification without learning a separation function. (Use the data for prediction.)

Nearest-neighbor (NN):

Simple

K-nearest neighbors (KNN)

Misaki et al., Neuroimage 2010

For a new x the KNN classifier estimates $p(C_j|x)$ as the fraction of K nearest neighbours of x that belong to C_j .

Classification

Classification learning a separation function.

Discriminative model classifiers: Estimate $p(C_i|x)$ directly.

Logistic regression

Generative model classifiers: Estimate $p(C_j)$ and $p(x|C_j)$ to calculate $p(C_j|x)$ using Bays theorem.

- Linear discriminant analysis
- Quadratic discriminant analysis

Discriminant classifiers: Find a discriminant function that directly maps an input x to a category C_i .

Support vector classifiers

Logistic regression

Discriminative model classifiers: Estimate $p(C_i|x)$ directly.

▶ Logistic regression (2 categories): $p(C_j|x)$ is estimated by a logistic function of a linear combination of the independent variables.

$$Y = \beta_0 + \beta_1 X + \dots$$
 $p(X) = \frac{e^{\beta_0 + \beta_1 X + \dots}}{1 + e^{\beta_0 + \beta_1 X + \dots}}$ $log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_1 X + \dots$

Figure adapted from James et al.

Multinomial regression (more than 2 categories)

Discriminant analysis

Generative model classifiers: Estimate $p(C_j)$ and $p(x|C_j)$ to calculate $p(C_j|x)$ using Bays theorem.

- ▶ Discriminant analysis : assumes that the $p(x|C_j)$ are normally distributed.
 - same covariance matrix for different categories - Linear DA
 - different covariance matrix for different categories - Quadratic DA.

Figure adapted from Misaki et al.,

Neuroimage 2010

Discriminant classifiers: Find a discriminant function (a hyperplane) that directly maps an input x to a category C_j .

Support vector classifiers: maximize the margin separating two categories.

All the points on the margin are support vectors.

- ► The maximal margin hyperplane in p dimensions is defined based on a set of weights $\beta_0, \beta_1, \beta_2, \dots, \beta_p$.
- A new observation x^* is classified based on the sign of $f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \cdots + \beta_p x_p^*$

Soft-margin classifiers

Figure adapted from Misaki et al., Neuroimage 2010

All the points on the margin or on the wrong side of the margin are support vectors.

Soft-margin classifiers used for:

- non-separable classes,
- greater robustness of the classifier to individual observations.

SVC is the solution to the optimization problem:

maximize
$$\beta_0, \beta_1, \dots, \beta_p, \epsilon_1, \dots, \epsilon_n, MM$$

subject to $\sum_{j=1}^p \beta_j^2 = 1$
 $y_i(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p) \ge M(1 - \epsilon_i)$
 $\epsilon_i \ge 0, \quad \sum_{j=1}^n \epsilon_j \le C$

- $ightharpoonup \epsilon_1, \ldots, \epsilon_n$ are slack variables.
 - If the observation *i* is on the wrong side of the margin then $\epsilon_i > 0$.
 - ▶ If the observation *i* is on the wrong side of the hyperplane then $\epsilon_i > 1$.

- C determines the trade-off between model complexity and points between boundaries or misclassified.
 - ► Small *C* few points are allowed inside the margins → potential low bias but high variance
 - Large C many points are allowed inside the margins or misclassified → potential high bias but low variance
- C can be set by cross-validation.
- All the points on the margin or on the wrong side of the margin are support vectors.
 - ▶ Large *C* results in more support vectors.
- Observations that are not support vectors do not affect the classifier.

Non-linear support vector classifiers

- ► The features can include polynomials or other functions of the original variables.
- The feature space can be increased using non-linear kernels.
- The usage of kernels leads to an efficient approach to find non-linear boundaries between classes.

For more than 2 categories

- Classification using all possible pairs, plus a voting scheme.
- Classification of each category versus all other.

Example: ADHD classification

ADHD-200 Consortium:

- data from 8 imaging centers
- children and adolescents (7-21 years)
- 491 typical developing, 285 diagnosed with ADHD
- resting-state fMRI
- structural MRI
- phenotypic information including: diagnostic status, dimensional ADHD symptom measures, age, sex, intelligence quotient (IQ)

Competition:

- ▶ 197 extra datasets (from six sites) without labels
- aim was to give correct diagnosis: typically developing,
 ADHD primarily inattentive type, or ADHD combined type
- 21 teams submitted solutions
- evaluation: 1 point awarded per correct diagnosis; 1/2 point for correct ADHD with subtype incorrect.

Example: ADHD classification

A team from University of Albert had highest accuracy using: age, sex, handedness and IQ!

Diagnostic task	Input data	Classifier	Holdout accuracy (%)
Binary	Chance		55.0
	PCs1	Quadratic SVM	69.0
	PCs2	Linear SVM	65.5
Three-way	Chance		55.0
	PCs1	Logistic	63.7
	PCs2	Logistic	59.1

Table adapted from Brown et al., Front Syst Neurosci. 2012

Example: ADHD classification

Figure adapted from ADHD-200 Consortium, Front Syst Neurosci. 2012