Smart Video Surveillance System

PROJECT SUPERVISOR DR. ZULFIQAR ALI MEMON

PROJECT CO SUPERVISOR SIR BEHRAJ KHAN

Submitted By

Syed Rayyan Adil 17K-3904

Hassan Saeed 17K-3693

Zakir Yousuf 17K-3748

SUBMISSION DATE May 25, 2021

Submitted in partial fullment of the requirements for the degree of Bachelor of Science

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF COMPUTER AND EMERGING
SCIENCES
KARACHI CAMPUS

ACKNOWLEDGEMENT

We are Thankful to Allah and His blessings.

We would like to express our utmost gratitude to our supervisor Dr.

Zulfiqar Ali Memon, for his enthusiasm, patience, insightful comments, helpful information, practical advice, and unceasing ideas that have helped us tremendously at all times especially during research and development of this project. His immense knowledge, profound experience, and professional expertise in Computer Vision and Embedded Systems has enabled us to complete this project successfully. Without his support and guidance, this project would not have been possible.

We are also thankful to our FYP Jury and FYP Committee for their guidance at each evaluation.

CONTENTS

1.	Ab	strac	:t	1
2.	Int	rodu	ction	2
3.	Pro	ject	Objective	3
4.	Mo	otiva	tion	3
5.	Lit	eratu	ıre Review	4
5	5.1	Dat	aset	4
5	5.2	Res	search Work	4
6.	Ov	ervie	ew	6
ϵ	5.1	Sig	nificance Of The Project	6
ϵ	5.2	Des	scription Of The Project	6
6	5.3	Pro	ject Scope	6
6	5.4	Not	In Scope	7
ϵ	5.5	Stal	keholders	7
6	5.6	Ope	erating Environment	7
7.	Pro	ject	Workflow	8
8.	Re	quire	ements	9
8	3.1	Fun	nctional Hierarchy	9
	8.1	.1	Use Cases	10
8	3.2	No	n-Functional Requirements	21
	8.2	.1	Performance Requirements	21
	8.2	2	Safety Requirements	21
9.	Sof	ftwai	re Architecture	23
10	. Г	Desig	n Strategy	24
1	0.1	Fut	ure System Extension Or Enhancement	24
1	0.2	Use	er Interface Paradigms	24
1	0.3	Dat	a Management (Storage, Distribution, Persistence)	24
1	0.4	Cor	ncurrency And Synchronization	25

11. Implementation	27
12. Testing And Evaluation:	29
12.1 Codes	29
12.1.1 Yolo	29
12.1.2 CNN	32
12.2 Results	37
12.2.1 Yolo	37
12.2.2 CNN	39
13. Conclusion	43
14. References	44

1. ABSTRACT

Theft detection (specifically GUN detection) is one of the most problematic crime that citizens face in their everyday life such as at homes, railways, airports or other public places. Since traditional approaches have long since failed to address this issue there is a dire need of a smart surveillance system that is able to distinguish among actions recorded in real time and checks if there is any such activity occurring, would generate alarming condition and sending the notification to the registered number. The proposed system does not waste its memory by recording the activity unnecessarily as it detects on real time, hence saves lot of wastage of memory of hard disk.

2. INTRODUCTION

In today's world theft, crime and burglaries have gone to much extent, which causes damage in several aspects such as in banking, streets crime, shopping malls, educational institutes, housing societies and some others. Video Surveillance System provides an ultimate solution for such activities (specifically GUN detection), used for "Remote Video Monitoring" for the protection mainly against theft, burglaries, also "Loss prevention" to protect the assets, Public Safety: routinely used for streets, malls, communities, and neighborhoods to help deter crime and enhance public safety. Through surveillance cameras, crimes can be prevented from such happenings and cases could be solved with material evidence. For meeting the security objectives, cameras must be visible and must be able to record, store and transmit footage. In recent years, a great influence by deep learning in the field of machine learning especially in the object detection for classification, and CNN achieved great results in this respect.

In this project, we aim to detect the gun held by a person in the monitoring areas through cameras using Convolutional Neural Network and YOLO, and recognizing the face with the age classification of the person using some machine learning and deep learning algorithms such as FaceNet and AgeNet-Caffe Model, which produces great results in the real-time.

3. PROJECT OBJECTIVE

The main concern of the project is the detection of guns and the person holding the in the premises of the monitoring area, also recognizing as known or unknown to the organization and it will be achieved by applying algorithms like You Only Look Once (YOLO) and Convolutional Neural Network (CNN). After successful detection of the gun held by a person, an alarm will be generated in that area and notification is sent to the relevant authority, which indicates an anomalous activity with respect to the gun detection happened in the monitoring area of the premises.

4. MOTIVATION

The need of these systems is increasing now a days as theft and burglary cases are growing rapidly. For this purpose, CCTV systems are used in different banks, malls, streets etc. In earlier stages, the cameras are capable of only monitoring the premises where they get installed and act passively. It needs an operator who can monitor the system manually after the activity got reported. Now this system works more effectively and efficiently which detects the activity in which weaponry (i.e. gun) is used at run time and generate the alarm for notification purpose. The vision of this project is to provide security by detecting gun held by a person, through system without the help of any monitoring person.

5. LITERATURE REVIEW

5.1 DATASET

The dataset is being collected from Kaggle and other online resources. In the initial phase of the project, we worked on small datasets of good quality images to test our system's performance. After that, we collected data in the form of CCTV footage videos for training the system on low quality images and identify the results in real form scenarios.

5.2 RESEARCH WORK

Video surveillance system as a whole is about detecting all the burglary and theft activities, means to automate the process and provides a better result in the field of security. Several algorithms, approaches, methods are used to restrict the theft and enhance the system with regards to the security. In our project, a system is developed to detect gun in the respective premises where the camera is installed, and for that we use Convolutional Neural Network and YOLO (You Only Look Once) architecture. Different approaches have been used and implemented in this frame of work and all of them are fine enough in one way or other. Models such as RCNN, FAST R-CNN, CNN, SSD, YOLO, HOG, etc. All the frameworks have their own significance such as object detection, noise removal, quality of frames and etc. Among then we used CNN and YOLO for gun detection held by a person unknown to the organization, recognizing the age, generating alarm in the premises and

notifying the registered number by using some machine learning and deep learning algorithms.

The further details of the above mentioned algorithms are described in the Proposed Work section.

6. OVERVIEW

6.1 SIGNIFICANCE OF THE PROJECT

Video surveillance is one of the trading technologies that is used detect threat and criminal activities like street snatching, burglary in banking sectors, shopping malls etc. This field is basically based on remote technology. In today's modern world, the use of this technology is widely used all across the globe. Mainly computer vision and some methods of deep learning are used in the project.

6.2 DESCRIPTION OF THE PROJECT

The System is programmed in a way that it identifies the gun at real time in the monitoring area along with the person who is holding it and labelling them as known or unknown to the organization. Additionally, the system will recognize the age of a person who is holding the gun and if the age of person is above threshold, the system will generate the alarm and notify the relevant authority, that indicates the anomalous activity in the area.

6.3 PROJECT SCOPE

Basically, the project will cover the boundaries of security. The system will provide safety in terms of detecting the use of illegal weapons i.e. gun. The system will be applicable where camera systems are installed for security and monitoring purposes. The project will detect the human holding weapon (gun) in the premises by applying algorithms of machine learning, deep learning along with Convolutional Neural Network (CNN) and You Only Look Once (YOLO), generating alarm and sending notification to the related organizations.

6.4 NOT IN SCOPE

The project will not include the features of working on facial expressions and anomalous activities. The burglary and robbery activities without the use of guns will not be entertained.

6.5 STAKEHOLDERS

The IT staff of the company where system is installed might be in connection with the system and to handle the issues if occur on sight. The ones who will work on this systems maintenance and to ensure that the quality assurance team will also be the stakeholders. All the areas where system will be placed are the stakeholders of this project.

6.6 OPERATING ENVIRONMENT

The system will operate in particular areas such as companies, malls, banks and streets etc. where monitoring of the premises will take place and where security measure is a main concern like in all banking sectors, malls and most of the streets are now monitored by CCTV camera systems. This project is a new innovation in the field of CCTV systems.

7. PROJECT WORKFLOW

8. REQUIREMENTS

8.1 FUNCTIONAL HIERARCHY

• Camera Monitoring:

Camera/System constantly monitoring the on-going activities, and checking whether any gun is detected in the frame or not.

• Extraction of frames:

System extracts the frames from the video and send it to the trained models to carry out the process of gun detection held by a person unknown to the organization.

Human Detection:

System detects the suspect in the frame, whose coordinates are retrieved to detect the gun held by that person.

• Burglary action (Gun detection):

The camera/system then detects the person holding gun in the coordinates specified for the person by using trained model like YOLO. Afterwards, it will recognize the person as known or unknown to the related organization.

• Face and Age Classification:

Once the face is detected with the label of Unknown, the system then classifies the age of the person who is holding the gun, and label the person with the age.

Alerting the relevant authorities:

If the labelled age of a person is above the threshold, it will generate the alarm by alerting the system/organization about the theft occurred in that area and by sending notification to the related organization or relevant authorities.

8.1.1 USE CASES

Use case Actors: Feature: Pre-condi	CA To	MERA			
Feature:	To				
		Detect the GU			
Pre-condi	ition: Ca		JN held by a person.		
		amera should b	e in operating state.		
	Sy	stem should b	e installed.		
	Sy	stem should b	e functional/Working properly.		
	M	odel should be	trained.		
Scenarios	S				
Step# A	Action		Software Reaction		
<i>1</i> . C	Camera monitoring	the	Camera is sending frames to the system.		
	particular area.				
Alternate	Alternate Scenarios:				
1a: Came	1a: Camera and system isn't working properly and fails to detect the gun.				
Post Cond	Post Conditions				
Step# D	Description				
G	Gun is detected in t	he frame held	by a person.		
S	System generates the alarm and sends the notification.		ends the notification.		
T	The frames then analyzed by the system.				
Use Case	Use Case Cross referenced Send data as frames to trained model				

	Send data as frames to trained model		
Use case Id: 02		02	
Actors	•	SYSTEM	
Featur	re:	System send th	e frames for extraction of images.
Pre-co	ndition:	System should l	pe installed.
		System should l	be functional/Working properly.
		Model should b	e trained.
Scenar	rios		
Step#	Action		Software Reaction
1.	System sends th	ne frames to the	System then detects the images with
	model.		help of trained model (like
			CNN/YOLO)
2.	System use these frames for		System detects gun held by a person
detection.			using model YOLO/CNN.
Alterno	Alternate Scenarios:		
1a: Sys	stem fails to send	the video as fran	nes.
2a: Gu	n is not detected.		
3a. Ala	rm doesn't activ	ate.	
Post C	onditions		
Step#	Description		
	Gun is detected	in the frame held	d by a person.
	System recognizes the human (nown/unknown).
	System generated the alarm ar		sent the notification.
	Use Case Cross Dete referenced		an in frame.

	Detect Human in frame			
Use case Id: 03		03		
Actors: S		SYSTEM		
Featur	<i>e</i> :	Detecting huma	n holding gun in the frame and	
retrievi	ng the coordinate	es of the detected	person.	
Pre-co	ndition:	Camera should	be in operating state.	
		System should b	be installed.	
		System should b	be functional/Working properly.	
		Model should be	e trained.	
		System should h	have sent the frames extracted from	
		video.		
Scenar	rios			
Step#	Action		Software Reaction	
1.	System detects h	numan holding	System is labelling the person holding	
	the gun.		the gun in the frame.	
2.	System retrieved the		After detecting human in the frame,	
coordinates of the		ne labelled	coordinates are retrieved to detect the	
	image.		gun in it.	
Alternate Scenarios:				
1a: Sys	tem isn't working	g properly.		
2a: Hu	man not detected.			
3a. Sys	tem failed to retr	ieve the coordina	ites.	
Post C	onditions			
Step#	Description			
	Human is detect	ed in the frame.		
	Gun is detected	held by a person		
	Generates alarm	and notification	is sent.	
Use Ca	se Cross	Face Recogn	nition.	
referen	aced	Gun Detecti	on	

	Retrieving Coordinates			
Use case Id: 04		04		
Actors	: 5	SYSTEM		
Featur	re:	After successful	detection of human, retrieve the	
coordin	nates of human det	ected.		
Pre-co	ndition:	Camera should l	be in operating state.	
		System should b	e installed.	
		System should b	e functional/Working properly.	
	-	Model should be	e trained.	
		System should h	have sent the frames extracted from	
		video.		
		System should have detected the human in the frame.		
Scenar	rios			
Step#	Action		Software Reaction	
1.	System retrieves	the	System, after detecting human in the	
	coordinates.		frame, retrieved the coordinates of a	
			person for gun detection.	
Alternate Scenarios:				
1a: System isn't working properly.				
_	man not detected.			
3a. Sys	stem failed to retrie	eve the coordina	tes.	
D 4 C	1*,*			
	onditions			
Step#	Description			
	Human is detected in the frame.			
	Gun is detected held			
	Coordinates of the detected human is retrieved,			
	ise Cross	Face Recogn	nition.	
referen	iced			

	Face Recognition			
Use ca	Use case Id: 05			
Actors: SY		SYSTEM		
Featur	<i>e</i> :	Recognizing fa	ce of the person holding gun is known or	
unknov	wn to the related		-	
Pre-co	ndition:	Camera should	be in operating state.	
		System should l	oe installed.	
		System should l	be functional/Working properly.	
		Model should b	e trained.	
		System should l	nave sent the frames extracted from	
		video.		
		Human is detec	ted and coordinates of human is	
		retrieved.		
Scenar			T	
Step#	Action		Software Reaction	
<i>1</i> .	System recognize		System detects the human and then	
	person holding the gun.		recognizes if a person is known or	
			unknown to the organization.	
2.	Labelling the pe	erson.	System labels the person with the name	
			if known person else labelled as	
			unknown person.	
Alternate Scenarios:				
1a: System isn't working properly.				
	man not detected			
	tem failed to retr		ates.	
	tem didn't label	the person.		
	onditions			
Step#	Description			
		ted in the frame.		
	Recognition of l			
		held by a person		
	Generates alarm	and notification	is sent.	
Use Ca	use Cross	Gun Detecti	on	
referenced				

	Gun Detection			
Use case Id:		06		
Actors	•	SYSTEM		
Featur	e:	Detecting gun i	n the frame where human is recognized	
as unkı	nown to the organ	nization.		
Pre-co	ndition:	Camera should	be in operating state.	
		System should b	be installed.	
		System should b	be functional/Working properly.	
		Model should be	e trained.	
		System should h	nave sent the frames extracted from	
		video.		
		Human is detect	ted, coordinates of human is retrieved,	
		and recognized as unknown.		
Scenar	Scenarios			
Step#	Action		Software Reaction	
<i>1</i> .	System detects	the gun in the	System detects the gun held by a	
frame.			person detected earlier.	
Alterno	Alternate Scenarios:			
1a: Sys	tem isn't workin	g properly.		
2a: Gu	n not detected.			
Post C	onditions			
Step#	tep# Description			
	Gun is detected held by a person.			
	Generates alarm and notification		is sent to the relevant authority.	
Use Ca	se Cross	Age Classifi	cation	
referen	aced			

	Age Classification			
Use case Id: 07		07		
Actors	•	SYSTEM		
Featur	re:	Age of person	holding gun is classified as the range.	
Pre-co	ndition:		pe functional/Working properly.	
		Model should b		
		Human is detec	ted holding the gun, coordinates of	
		human is retriev	ved, and recognized as unknown.	
Scenar	rios			
Step#	Action		Software Reaction	
1.	System classifie	es the age of a	After successful detection of gun and	
	person in the fra	ame.	human in the frame, it classifies the	
			age of a person.	
Alternate Scenarios:				
1a: Sys	1a: System isn't working properly.			
2a: Gun not detected.				
3a: Fac	ce not recognized	properly and car	n't classify the image of person.	
Post C	onditions			
Step#	Description			
		held by a person		
	Generates alarm and notification is sent to the		is sent to the relevant authority, if the	
	age is classified beyond the standard age limit.		dard age limit.	
Use Co	Use Case Cross		arm.	
referer	nced	Sending not	ification	

Generates Alarm			
Use case Id: 08			
Actors:	•	SYSTEM	
Featur	e:	System generates	s the alarm, once the human holding gun
and age	e above the thresh	nold is detected.	
Pre-co	ndition:	System should b	e installed.
		System should b	e functional/Working properly.
		Model should be	e trained.
		System should h	ave the human holding the gun is
		detected.	
Scenarios			
Step#	Action		Software Reaction
1.	System generate	es the alarm.	System is generating the alarm on the
			basis of gun detection.
Alternate Scenarios:			
1a. Sys	tem doesn't gene	erate alarm.	
Post Co	onditions		
Step#	Description		
	System generate	ed the alarm.	
	Operator then d	eactivated the alar	rm.
	Notification is sent to the authority.		
Use Case Cross referenced -			

	Sending Notification			
Use case Id:		09		
Actors	:	SYSTEM		
Featur	re:	Notification is s	ent to the relevant authority.	
Pre-co	ndition:	System should b	System should be functional/Working properly.	
		Model should be	Model should be trained.	
		Human is detect	Human is detected holding the gun, coordinates of human	
		is retrieved, and	is retrieved, and recognized as unknown.	
		Alarm is genera	Alarm is generated.	
Scenar	rios	·		
Step#	Action		Software Reaction	
1.	System sends the notification to		After successful detection of gun and	
	the relevant	authority.	human in the frame, classified the age	

of a person, generated the alarm and then sends the notification to the registered number of the related

Alternate Scenarios:

1a: System isn't working properly.

2a: Gun not detected.

3a: Face not recognized properly and can't classify the image of person, alarm not generated.

organization.

Post Conditions

Step#	Description			
	Generated alarm and notification is sent to the relevant authority, if the			
	age is classified beyond the standard age limit.			
Use Case Cross		-		
referen	aced			

Maintaining the System			
Use case Id:		10	
Actors:		OPERATOR	
Feature:		Operator maintains the system	
Pre-condition:		System should be installed.	
		Camera should be in operating state.	
		System should be functional/Working properly.	
		Model should be trained.	
Scenarios			
Step#	Action		Software Reaction
1. Operator is maint system regularly.		ntaining the	Camera is being checked, either
		у.	working properly or not or updating its specification
2.	Management of	data	Data is being updated after certain
			interval or filtered for database
			management.
Alternate Scenarios:			
1a. System isn't working properly.			
2a. Camera stopped working.			
3a. Mismanagement of data.			
Post Conditions			
Step# Description			
	Camera worked properly and perfectly monitoring.		
Data is updated or filtered on certain interval of time.			rtain interval of time.
Use Case Cross			-
referenced			

8.2 NON-FUNCTIONAL REQUIREMENTS

8.2.1 PERFORMANCE REQUIREMENTS

Firstly, the priority was to develop the software covering all the basic features and functionalities then we proceeded to improve its accuracy, execution time, precession etc.

All the above mentioned points have been considered while developing the project and these requirements will be check by the client and quality assurance team when the project will get evaluated.

8.2.2 SAFETY REQUIREMENTS

• Camera/System Maintenance:

Monitoring system should be working properly and maintained or to replace it with new after a certain interval of time, as it is monitoring (constantly) (24/7). And after detecting the burglary (gun detection) action an alarm will be generated, because if the camera isn't working, burglary (gun detection) would not be captured.

• Storage Management:

A proper disk storage management is needed in order to gather more data, so need to filter the frames/images stored in it.

• Alarm System:

Alarm is the main source of alerting the organization about the theft, so it should be checked on regular basis.

• Data collection/Training model:

Data is collected from different online resources such as KAGGLE, etc, using this dataset we trained our model using YOLO and CNN in order to achieve the better results.

• Alarm deactivation

After the successful detection of gun held by a person, alarm is generated which can be deactivated by the operator only.

9. SOFTWARE ARCHITECTURE

10.DESIGN STRATEGY

10.1 FUTURE SYSTEM EXTENSION OR ENHANCEMENT

In the initial launch of this system, we cover the most basic points like detection of gun, alarm generation and sending notification to the registered number of the related organization. Furthermore, in near future we set an objective to track suspect by sequence of cameras connected, whereas alerting the relevant authorities, that includes all the branches of the related company, bank, office and mall, police etc.

10.2 USER INTERFACE PARADIGMS

Camera is being operated to monitor the scenario and detecting the guns in the frame of that particular area.

The system is operating on windows 10, using Python on Visual Studio code for processing videos, extracting images and detecting frames as gun or not gun, recognizing the age of that person.

Alarm is used to generate noise and sending notification to the related authority that indicates about the theft in the area.

10.3 DATA MANAGEMENT (STORAGE, DISTRIBUTION, PERSISTENCE)

The system is tested on the files that are stored in a folder for checking the accuracy and results of the system.

10.4 CONCURRENCY AND SYNCHRONIZATION

The projects achieve synchronization as the data of the system is shared effectively among the sub-components, like it extracts the frames from video and detects gun in each frame. Similarly, the system is achieving concurrency while providing synchronization as multiple tasks are processing simultaneously like monitoring of video, after detection of gun, system will generate the alarm, recognize the age of the person holding gun and notifying the registered number of the related organization.

Figure 1: Process Diagram

Figure 2: Data Flow Diagram

11. IMPLEMENTATION

PROPOSED WORK:

Here the video is captured by the web camera or the image is processed, the extracted frames are then processed to detect as containing gun or not held by a person.

At the present moment, many researches have been made in detecting the gun in images and video frames. We also did research for image classification classes through which we are able to detect the concealed weapon (gun) in the frame. If the gun is detected in the monitoring area, then the surveillance system will be able to generate the alarm also notify the registered number by SMS or Voice Message. The algorithms that we choose for our project perspective are widely used in Video Surveillance system, Convolutional Neural Network (CNN) and YOLO along with deep learning and machine learning algorithms for recognizing the age of a person also to notify the registered number about the detection of gun in the particular area.

i. CONVOLUTIONAL NEURAL NETWORK:

The Convolutional Neural Network (CNN) is a deep learning algorithm which takes image or video as input. The pre-processing of the images is done using Keras. CNN based upon some filters which provide a better Spatial and Temporal Dependencies. Hence, it will train the images better. Filters are used in ConvNet to detect spatial patterns i.e., edges and lines of particular given image by detecting the fluctuations in intensity value of the images. The ConvNet split the images into much smaller parts which provides a better predictability for the image without losing any distinct feature.

The image or video that is chosen to detect gun held by a person is tested on the

trained CNN model, recognizing the age of a person and sending notification to the related person of the domain.

ii. YOLO:

Yolo came on Computer Vision scene with the seminal 2015 paper by Joseph Redmon et al. "You Only Look Once: Unified, Real-Time Object Detection," Yolo "You Only Look Once" is an object detection algorithm. Yolo is basically based on regression principle. It processes 45 frames per second. It does not only consider the interest part of the image although it predicts the classes and bound box of the whole image. This approach is effective and efficient then classification-based algorithm because in that algorithm firstly, it looks for the interest part of the image and then classify these interest regions of the images. The processing is done in two steps and it is slow then Yolo which takes one run time to predict the image.

The bounding box is consist of four terms:

- I. Center of bounding box (bxby).
- II. Width (bw).
- III. Height (bh).
- IV. Value C correlate with object of the class.

The algorithm uses the images in both training and testing time so it will be able to completely encode contextual information about the classes. Here, the frame is processed then it is cropped and labelled only that person who is holding the gun, also the notification to the registered number is sent when the person detected holding gun is UNKNOWN, else the system ignores if the person is KNOWN to the organization.

12. TESTING AND EVALUATION:

For testing, dataset is collected from CCTV footages and other online resources to check the accuracy and predicting the results of the project.

12.1 CODES

12.1.1 YOLO

```
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
with open("coco.names", "r") as f:
    classes = [line.strip() for line in f.readlines()]
layer names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
height, width, channels = img.shape
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output layers)
for out in outs:
    for detection in out:
        scores = detection[5:]
        class id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            center_x = int(detection[0] * width)
            center y = int(detection[1] * height)
            w = int(detection[2] * width*1.13)
            h = int(detection[3] * height)
            x = int(center x - w / 2)
            y = int(center_y - h / 2)
            boxes.append([x, y, w, h])
            confidences.append(float(confidence))
            class ids.append(class id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in range(len(boxes)):
    if i in indexes:
        if (classes[class_ids[i]] == 'person'):
            x, y, w, h = boxes[i]
            label = str(classes[class_ids[i]])
            label2 = label+str(count)
```

Figure 3: Person Detection

```
net = cv2.dnn.readNetFromDarknet("yolov3_custom.cfg", r"yolov3_custom_4000.weights")
classes = ['notGun', 'gun']
img = cv2.imread(FilePath)
hight, width, _ = img.shape
blob = cv2.dnn.blobFromImage(img, 1 / 255, (416, 416), (0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
output layers name = net.getUnconnectedOutLayersNames()
layerOutputs = net.forward(output_layers_name)
boxes = []
confidences = []
class ids = []
for output in layerOutputs:
   for detection in output:
        score = detection[5:]
        class id = np.argmax(score)
        confidence = score[class id]
        if confidence > 0.2:
            center x = int(detection[0] * width)
            center_y = int(detection[1] * hight)
           w = int(detection[2] * width)
            h = int(detection[3] * hight)
            x = int(center_x - w / 2)
           y = int(center y - h / 2)
            boxes.append([x, y, w, h])
            confidences.append((float(confidence*100)))
            class ids.append(class id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, .5, .4)
if len(indexes) > 0:
   for i in indexes.flatten():
        x, y, w, h = boxes[i]
        label = str(classes[class_ids[i]])
        confidence = str(round(confidences[i], 2))
        color = [0,0,255]
```

Figure 4: Gun Detection

```
while True:
   ret, frame = video_capture.read()
    bounding boxes, = detect face.detect face(frame, minsize, pnet, rnet, onet, threshold, factor)
   faceNum = bounding boxes.shape[0]
    if faceNum > 0:
       det = bounding_boxes[:, 0:4]
       img size = np.asarray(frame.shape)[0:2]
        cropped = []
        scaled = []
        scaled reshape = []
        for i in range(faceNum):
            emb array = np.zeros((1, embedding size))
            xmin = int(det[i][0])
            ymin = int(det[i][1])
            xmax = int(det[i][2])
            ymax = int(det[i][3])
            try:
                if xmin <= 0 or ymin <= 0 or xmax >= len(frame[0]) or ymax >= len(frame):
                    print('Face is very close!')
                    continue
                cropped.append(frame[ymin:ymax, xmin:xmax,:])
                cropped[i] = facenet.flip(cropped[i], False)
                scaled.append(np.array(Image.fromarray(cropped[i]).resize((image_size, image_size))))
                scaled[i] = cv2.resize(scaled[i], (input image size,input image size),
                                        interpolation=cv2.INTER CUBIC)
                scaled[i] = facenet.prewhiten(scaled[i])
                scaled_reshape.append(scaled[i].reshape(-1,input_image_size,input_image_size,3))
                feed dict = {images placeholder: scaled reshape[i], phase train placeholder: False}
                emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
                predictions = model.predict proba(emb array)
                best class indices = np.argmax(predictions, axis=1)
                best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
                if best_class_probabilities>0.7:
                    cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
                    for H i in HumanNames:
                        if HumanNames[best class indices[0]] == H i:
                            result_names = HumanNames[best_class_indices[0]]
                            cv2.rectangle(frame, (xmin, ymin-20), (xmax, ymin-2), (0, 255,255), -1)
                            cv2.putText(frame, result_names, (xmin,ymin-5), cv2.FONT_HERSHEY_COMPLEX_SMALL,
                                        1, (0, 0, 0), thickness=1, lineType=1)
                else :
                    cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
                    cv2.rectangle(frame, (xmin, ymin-20), (xmax, ymin-2), (0, 255,255), -1)
                    cv2.putText(frame, "Unknown", (xmin,ymin-5), cv2.FONT_HERSHEY_COMPLEX_SMALL,
                                        1, (0, 0, 0), thickness=1, lineType=1)
            except:
                print("error")
    fps = 1/(endtimer-timer)
    cv2.rectangle(frame, (15,30), (135,60), (0,255,255),-1)
    {\tt cv2.putText(frame, "fps: \{:.2f\}".format(fps), (20, 50), cv2.FONT\_HERSHEY\_SIMPLEX, 0.7, (0, 0, 0), 2) } \\
    cv2.imshow('Face Recognition', frame)
```

Figure 5:Face Recognition

12.1.2 CNN

```
data = ImageDataGenerator(rescale = 1./255, zoom range = 0.3,horizontal flip=True,
rotation range= 15).flow from directory(path, target size= (224,224),
color mode= "rgb",classes= ["gun", "no gun"],batch size=64)
model= Sequential()
model.add(Convolution2D(16,(3,3),input shape=(224,224,3),padding = "Same",activation="relu"))
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.2))
model.add(Convolution2D(32,(3,3),padding = "Same",activation="relu"))
model.add(MaxPooling2D(pool size=(3,3)))
model.add(Dropout(0.2))
model.add(Convolution2D(64,(3,3),padding = "Same",activation="relu"))
model.add(MaxPooling2D(pool size=(3,3)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(64,activation="relu"))
# model.add(Dropout(0.3))
model.add(Dense(2,activation="sigmoid"))
clbk= keras.callbacks.EarlyStopping(monitor='accuracy',mode='max')
model.compile(optimizer = 'adam', loss = 'binary crossentropy', metrics = ['accuracy'])
history 1 = model.fit(data, steps per epoch=10, epochs=5, shuffle=False, callbacks=[clbk])
model.save("Mymodel 1.h5")
```

Figure 6: Training Model

```
def extract images(fln):
    cam = cv2.VideoCapture(fln)
    try:
        if not os.path.exists('\data'):
            os.makedirs('\data')
    except OSError:
        print ('Error: Creating directory of data')
    currentframe = 0
    dir path = "/data/"
    while(True):
        ret, frame = cam.read()
        if ret:
            name = './data/frame' + str(currentframe) + '.jpg'
            print ('Creating...' + name)
            # plt.imshow(name)
            cv2.imwrite(name, frame)
            currentframe += 1
        else:
            break
```

Figure 7: Extraction of Images from Videos

```
def gun_detect(fln):
    img = Image.open(fln)
    img.thumbnail((350,350))
    img = ImageTk.PhotoImage(img)
   # Load the model
    filepath = 'Mymodel 1.h5'
    model = load_model(filepath, compile = True)
    new image = plt.imread(fln)
   # img = plt.imshow(new_image)
    # plt.show()
    classification = ['gun', 'not_gun']
    from skimage.transform import resize
    resized_image = resize(new_image, (224,224,3))
    img = plt.imshow(resized_image)
    predictions = model.predict(np.array( [resized_image] ))
```

Figure 8: Testing Gun Detection

```
def age detector(frame, list index):
    parser = argparse.ArgumentParser()
    parser.add argument('--input')
    args = parser.parse args()
    faceProto = r"opencv face detector.pbtxt"
    faceModel = r"opencv face detector uint8.pb"
    ageProto = r"age_deploy.prototxt"
    ageModel = r"age_net.caffemodel"
    MODEL MEAN VALUES = (78.4263377603, 87.7689143744, 114.895847746)
   ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)',
                '(48-53)', '(60-100)']
    # Load network
    ageNet = cv.dnn.readNet(ageModel, ageProto)
    faceNet = cv.dnn.readNet(faceModel, faceProto)
    padding = 20
    t = time.time()
    frameFace, bboxes = getFaceBox(faceNet, frame)
    if not bboxes:
        print("No Face Detected!")
    for bbox in bboxes:
        face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),
        max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
        blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL MEAN VALUES, swapRB=False)
        ageNet.setInput(blob)
        agePreds = ageNet.forward()
        age = ageList[agePreds[0].argmax()]
```

Figure 9: Age Classification

```
def notify():
    customer_id = "**********************************
    api_key = "**********************************

    print("notification send")
    phone_number = "92*********"
    message = "Gun Detected."
    message_type = "ARN"

messaging = MessagingClient(customer_id, api_key)
    response = messaging.message(phone_number, message, message_type)

voice = VoiceClient(customer_id, api_key)
    response1 = voice.call(phone_number, message, message_type)
```

Figure 10: Notification via Number

```
def email_alert(subject, body, to):
    msg = EmailMessage()
    msg.set_content(body)
    msg['subject'] = subject
    msg['to'] = to

    user = "abc123@gmail.com"
    msg['from'] = user
    password = "**************

    server = smtplib.SMTP("smtp.gmail.com", 587)
    server.starttls()
    server.login(user, password)
    server.send_message(msg)
    server.quit()
```

Figure 11: Notification via Email

12.2 RESULTS

12.2.1 YOLO

Figure 12: Gun Detected held by person

Figure 13:Face Recognition

12.2.2 CNN

Figure 14: Detected

Figure 15:Detected

Figure 16: Not Detected

Figure 17: Not Detected

Figure 18: Notification via Email

Figure 19: Notification via Message

Figure 20: Notification via Voice Message

13. CONCLUSION

In order to provide security around a specific region, many researches and algorithms are implemented to make the environment secure.

In this project, analysis of Video Surveillance System based on specific problem for the detection of gun is carried out, which further proceeded to detect the suspect holding the gun by classifying *it* as unknown person to the organization and age above the threshold, then generating the alarm and notifying the relevant authorities to alert them about the theft.

To do the analysis, we have used the models YOLO and CNN for the detection of gun and human in the premises and recognizing face using FaceNet, whereas classifying age using AgeNET-Caffe Model. This implementation is done on very small scale and the accuracy may vary depending upon the quality of image.

Object tracking still remains a challenging issue which is difficult to analyze on the small scale, but this issue requires more effort and research on large scale, so listed as the future work.

14. REFERENCES

- [1] Video Surveillance Systems A Survey, C. Lakshmi Devasena 1, R. Revathí 2, M. Hemalatha 3, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
- [2]. AUTOMATIC THEFT SECURITY SYSTEM (SMART SURVEILLANCE CAMERA)

Veena G.S 1, Chandrika Prasad2 and Khaleel K3

- [3]. Lun Zhang Li, S.Z. Xiaotong Yuan Shiming Xiang, Beijing, "Real-time Object Classification in Video Surveillance Based on Appearance Learning", Computer Vision and Pattern Recognition, 2007, IEEE Conference Issue Date: 17-22 June 2007, Print ISBN: 1-4244-1180-7, pp.1-8
- [4]. Theft detection using computer vision, Patil Siddesh et al.; International Journal of Advance Research, Ideas and Innovations in Technology, ISSN: 2454-132X
- [5]. Theft Detection System using Convolutional Neural Network and Object Tracking, Pallav Doshi1, Shubhankar Punktambekar2, Niraj Kini3, Simarjeet Singh Dhami 4, Vol-5 Issue-3 2019 IJARIIE-ISSN(O)-2395-4396
- [6]. M. Naphade, et al. "On the Detection of Semantic Concepts at TRECVID", ACM International Conference on Multimedia, 2004.
- [7]. High Definition Surveillance System Using Motion Detection Method based on FPGA DE-II 70 Board, V. B. Jagdale, R. J. Vaidya, International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-2, Issue-2, December 2012
- [8]. A Survey on Visual Surveillance of Object Motion and Behaviors, Weiming Hu, Tieniu Tan, Fellow, IEEE, Liang Wang, and Steve Maybank, IEEE TRANSACTIONS ON
- SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 3, AUGUST 2004
- [9]. Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder, Shuoyang Chen,1 Tingfa Xu,1,2,* Daqun Li,1 Jizhou Zhang,1 and Shenwang Jiang1

- [10]. An Improved Motion Detection Method for Real-Time Surveillance, Nan Lu, Jihong Wang, Q.H. Wu and Li Yang, IAENG International Journal of Computer Science, 35:1, IJCS_35_1_16
- [11]. Automatic Theft Detection System under Video Surveillance Mr.L. Ashokkumar 1, Mrs.D.Rajeswari2, J.Jovin3, S.Karthikeyan4, Newbin Wilfred5
- [12]. Survey Paper on Smart Surveillance System Shivprasad Tavagad1, Shivani Bhosale2, Ajit Prakash Singh3, Deepak Kumar4
- [13]. Camera based Smart Surveillance System-Literature Survey Ishan Kokadwar, Anurag Kulkarni, Sayali Khare, Vaibhav Limbhore, Swati Chandurkar
- [14].VIDEO SURVEILLANCE SYSTEMS Ľuboš OVSENÍK, Anna KAŽIMÍROVÁ KOLESÁROVÁ, Ján TURÁN
- [15]. BOJKOVIČ, Z. SAMČOVIČ, A. TURÁN, T.: "Object Detection and Tracking in Video Surveillance Systems", COST 276 Workshop, Trondheim, Norvegia, pp. 113–116, May 25–26, 2005