

What do we mean by conjunction

- P ∧ Q is true if and only if P is true and Q is true
 - In logic, conjunctions use the word "and" to mean that both of the propositions are true
 - In some contexts, a conjunction might take more than two propositions, in which case the conjunction is true if *all* of the propositions are true
- Consider the statement "it is raining and the sprinkler is on".
 - This proposition is *not* true if:
 - It is raining, and the sprinkler is off
 - It is not raining, but the sprinkler is on
 - This proposition is true if:
 - It is raining, and the sprinkler is on

Right associative

- Conjunction is right-associative:
 - $P \wedge (Q \wedge R)$ and $P \wedge Q \wedge R$ are the same
 - $(P \land Q) \land R$ is syntactically the same
- However, as we will see P \land (Q \land R) and (P \land Q) \land R are semantically the same conjunction is fully associative
- Syntactically, however, this means that a conjunction of 4 terms is actually a conjunction of two terms, where the second term is a conjunction of two terms, where the second term of the second term is a conjunction of two atomic terms:
 - $P \wedge Q \wedge R \wedge S = P \wedge (Q \wedge (R \wedge S))$

Introduction rule

• A proof of conjunction requires proofs that both propositions are true:

```
{P Q} pfP: P, pfQ: Q
----- (and.intro)
P \( \Lambda \) Q
```

```
lemma my_and_intro{P Q: Prop}(pfP: P)(pfQ: Q): P \( \Lambda \) Q :=
begin
  exact and.intro pfP pfQ
end
```

Elimination Rules

- We have two elimination rules for and: and.elim_left and and.elim right
- The first, and.elim_left, is synonymous with .1 or .left being applied to the proof, so that if pfPandQ is a proof of P and Q, these are the same:
 - (and.elim left pfPandQ)
 - pfPandQ.1
 - pfPandQ.left
- The second, and.elim_right, is synonymous with .2 or .right being applied to the proof

Examples

• See file and_properties.lean in the examples directory

