Лабораторная работа №3

«Исследование трехфазных электрических цепей при соединении нагрузки в трехлучевую звезду»

1. Цель работы — исследовать соотношения между фазными и линейными напряжениями и токами в случае симметричной и несимметричной нагрузок, выяснить роль нулевого провода, измерить активную мощность цепи.

2. Системные требования

Microsoft Office 2007 или выше с включенной поддержкой макросов (Visual Basic). Работоспособность на более ранних версиях не проверялась, но не исключается

3. Схема исследуемой цепи

Исследуемая цепь выполнена в виде виртуальной модели в среде Visual Basic. Схема исследуемой цепи представлена на рисунке 1. Цепь содержит три переменных сопротивления, включенных в соответствующие фазы. Амперметрами, вольтметрами и ваттметрами измеряются соответствующие линейные (фазные) токи, линейные и фазные напряжения, напряжение нейтрали и активные мощности фаз. Все элементы соединяются согласно схеме.

Электрическая цепь получает питаний от трехфазного источника регулируемого напряжения (ИРН), в качестве которого используется лабораторный автотрансформатор регулировочный (ЛАТР) Все измерительные приборы в цепи имеют нормированную погрешность, соответствующую классу точности «1».

Рис. 1. Соединение нагрузки по схеме «звезда»

4. Порядок выполнения работы

- 4.1. Открыть файл «ЛР трехфазные звезда.xlsm». При появлении предупреждения системы безопасности ответить «разрешить редактирование» и «включить активное содержимое», иначе программа не сможет запуститься.
- 4.2. В появившемся приветственном сообщении нажать «ОК», при этом откроется основное окно программы.
- 4.3. Установить сопротивления нагрузки **Ra**, **Rb**, **Rc** одинаковыми согласно выданному варианту. Также установить линейное напряжение **U**л согласно варианту. Создать симметричный режим работы фаз, выбрать режим работы «нормальный». Записать показания приборов в таблицу 1.

напряжение питания		сопротивления нагрузки	
инейное напряжение Uл, В 100		RL OH 100 Rb, OH 100	tc, Om 100
Режим работы		Нулевой провод	
нормальныйобрыв фазы	с Скор	роткое замыкание фазы С	нен
Показания измерительных приборов			
Аа: амперметр в фазе А (А)	0	Va: вольтметр в фазе A (B)	0
Ab: амперметр в фазе В (A)	0	Vb: вольтметр в фазе В (В)	0
Ас: амперметр в фазе С (А)	0	Vc: вольтметр в фазе C (B)	0
Ра: активная мощности ф. А (Вт)	0	Vл: линейное напряжение источника (B)	0
рь: активная мощность ф. В (Вт)	0	Vф:фазное напряжение источника (B)	0
Рс: активная мощность ф. С (Вт)	0	А0: амперметр в нулевом проводе (А)	0
		V001: напряжения смещения нейтрали (B)	0
1			
Показать схему За	нести данные	е в таблицу Excel Рассчитать показания из	черительных приборов

Рис. 2.

4.4. При отключенном нулевом проводе уменьшить в **два** раза сопротивление фазы C, создав несимметричный режим работы. Записать показания приборов в таблицу 1.

Внимание! Для отображения показаний приборов после изменения параметров цепи необходимо каждый раз нажимать кнопку «Рассчитать показания измерительных приборов»

Внимание! Нажатие кнопки «Занести данные в таблицу Excel» перенесет текущие показания измерительных приборов в свободную строку электронной таблицы

Внимание! Не забудьте скопировать данные перед выходом из программы, при повторном открытии файла данные будут уничтожены!

Таблица 1

Нагрузка	Uл	U _{ф.}	Ua	U _B	Uc	Ia	$I_{\scriptscriptstyle B}$	I_{c}	I_0	U_{001}	Pa	Рв	Pc
	В	В	В	В	В	A	A	A	A	В	Вт	Вт	Вт
Симметричная													
без нулевого													
провода													
Несимметричная													
без нулевого													
провода													
Обрыв фазы «С»													
КЗ фазы «С»													
Несимметричная													
нагрузка при													
наличии													
нулевого													
провода													

4.5. Осуществить опыт обрыва фазы «С». Для этого переключатель режима работы поставить в положение «обрыв фазы С». Либо установить в

фазе «С» сопротивление более 10 000 Ом. Записать показания приборов в таблицу 1.

- 4.6. Осуществить опыт короткого замыкания фазы «С». Для этого переключатель режима работы поставить в положение «короткое замыкание фазы С». Либо установить в фазе «С» сопротивление 0,001 Ом. Записать показания приборов в таблицу 1.
- 4.7. Восстановить в цепи несимметричный режим п. 4.4. Для этого переключатель режимов установить в положение «нормальный» и выставить сопротивление фазы «С» такое же, как было выставлено в п. 4.4.
- 4.8. Подключить нулевой провод. Для этого установить галочку «нулевой провод подключен». Создать несимметричный режим работы фаз при наличии нулевого провода. Записать показания приборов в таблицу 1.

5. Обработка результатов измерений и их анализ

- 5.1. По данным таблицы 1 построить в масштабе векторные диаграммы напряжений и токов:
 - симметричной нагрузки;
 - одного случая несимметричной нагрузки;
 - обрыва фазы «С»;
 - короткого замыкания фазы «С»;
 - несимметричной нагрузки с нулевым проводом.
- 5.2. Вычислить мощность одной из фаз, как произведение квадрата тока на сопротивление, и сопоставить с показанием ваттметра при симметричном режиме работы фаз.
- 5.3. Выяснить назначение нулевого провода. Нулевую точку приемника на векторной диаграмме строить **методом засечек (рис. 3)**.
 - 5.4. Объяснить результаты, сделать выводы по работе.

Рис. 3. Пример построения векторной диаграммы для несимметричного режима при соединении нагрузки по схеме «звезда»

6. Контрольные вопросы

- 6.1. Назовите отличительные признаки симметричной системы напряжений.
 - 6.2. Что такое симметричная и несимметричная нагрузки?
- 6.3. Какого соотношение фазных и линейных напряжений при симметричной и несимметричной нагрузках в системе без нулевого провода?
 - 6.4. Что такое зависимый режим работы фаз и почему он нежелателен?
 - 6.5. Как создать независимый режим работы фаз?
 - 6.6. Поясните назначение нулевого провода.
 - 6.7. Как рассчитать нулевое напряжение?

- 6.8. Что такое симметричная и несимметричная, однородная и неоднородная нагрузка?
 - 6.9. Как можно замерить мощность трехфазной цепи двумя ваттметрами?
- 6.10. Схемы включения измерительных приборов: амперметра, вольтметра, ваттметра
- 6.11 Измерения фазных и линейных токов и напряжений в трехфазных электрических цепях. Точки включения измерительных приборов.
 - 6.12. Симметричный и несимметричный режим. Методы получения
 - 6.13. Режим короткого замыкания фазы. Создание режима на стенде.
 - 6.14. Измерение тока в нулевом проводе

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Зевеке Г.В. Основы теории цепей. Учебник для вузов. Авторы: Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. 5-е издание, переработанное. Москва: Энергоатомиздат, 1989.
- 2. Касаткин А.С., Немцов М.В. Электротехника. М.: Энергоатомиздат, 1283. С. 94-98.
- 3. Иванов И.И., Равдоник В.С. Электротехника, М.: Высшая школа, 1984. С. 66-68.