Кратчайшие пути в графах

Виктор Васильевич Лепин

В орграфе G = (V, E), каждой дуге которого приписана cmoumocmb ($\partial nuha$) c(v, w), нужно найти

• путь $P = \{s = v_0, v_1, \dots, v_{k-1}, v_k = t\}$ от вершины $s \in V$ до вершины $t \in V$ минимальной стоимости (кратчайший путь)

В орграфе G = (V, E), каждой дуге которого приписана cmoumocmb $(\partial nuha)$ c(v, w), нужно найти

- путь $P = \{s = v_0, v_1, \dots, v_{k-1}, v_k = t\}$ от вершины $s \in V$ до вершины $t \in V$ минимальной стоимости (κ ратчайший nymb) $c(P) = \sum_{i=1}^k c(v_{i-1}, v_i).$
- ullet кратчайшие пути от выделенной вершины $s \in V$ до всех остальных вершин графа.

В орграфе G = (V, E), каждой дуге которого приписана cmoumocmb ($\partial nuha$) c(v, w), нужно найти

- путь $P = \{s = v_0, v_1, \dots, v_{k-1}, v_k = t\}$ от вершины $s \in V$ до вершины $t \in V$ минимальной стоимости (кратчайший путь)
 - $c(P) = \sum_{i=1}^{k} c(v_{i-1}, v_i).$
- ullet кратчайшие пути от выделенной вершины $s \in V$ до всех остальных вершин графа.
- ullet кратчайшие пути от всех вершин до выделенной вершины $t \in V$.

В орграфе G = (V, E), каждой дуге которого приписана cmoumocmb $(\partial nuha)$ c(v, w), нужно найти

- путь $P = \{s = v_0, v_1, \dots, v_{k-1}, v_k = t\}$ от вершины $s \in V$ до вершины $t \in V$ минимальной стоимости (кратчайший путь)
 - $c(P) = \sum_{i=1}^{k} c(v_{i-1}, v_i).$
- ullet кратчайшие пути от выделенной вершины $s \in V$ до всех остальных вершин графа.
- ullet кратчайшие пути от всех вершин до выделенной вершины $t \in V$.
- lacktriangledown кратчайшие пути между всеми парами вершин $s,t\in V$.

В орграфе G=(V,E), каждой дуге которого приписана cmoumocmb $(\partial nuha)$ c(v,w), нужно найти

- путь $P = \{s = v_0, v_1, \dots, v_{k-1}, v_k = t\}$ от вершины $s \in V$ до вершины $t \in V$ минимальной стоимости (кратчайший путь)
 - $c(P) = \sum_{i=1}^{k} c(v_{i-1}, v_i).$
- ullet кратчайшие пути от выделенной вершины $s \in V$ до всех остальных вершин графа.
- ullet кратчайшие пути от всех вершин до выделенной вершины $t \in V$.
- lacktriangledown кратчайшие пути между всеми парами вершин $s,t\in V$.

Как это не парадоксально, но найти кратчайший путь между двумя выделенными вершинами не легче, чем искать кратчайшие пути от одной вершины до всех остальных.

ФОРМУЛИРОВКА ЗАДАЧИ О КРАТЧАЙШЕМ ПУТИ В ГРАФЕ

■ **Имеется** взвешенный граф G = (V, E)

lacktriangle Каждому ребру $(i,j) \in E$ назначен вес w_{ij}

lacksquare Заданы начальная вершина $s \in V$ и конечная $d \in V$

■ **Требуется** найти кратчайший путь из вершины *s* в вершину *d* (shortest path problem)

Длина пути
 (path length, path cost, path weight) –
 это сумма весов ребер, входящих в него

Алгоритмы

Алгоритм	Применение
Алгоритм Дейкстры	Находит кратчайший путь от одной из вершин графа до всех остальных. Алгоритм работает только для графов без ребер отрицательного веса ($\mathbf{w}_{ij} \geq 0$)
Алгоритм Беллмана-Форда	Находит кратчайшие пути от одной вершины графа до всех остальных во взвешенном графе. Вес ребер может быть отрицательным
Алгоритм поиска А* (A star)	Находит путь с наименьшей стоимостью от одной вершины к другой, используя алгоритм поиска по первому наилучшему совпадению на графе
Алгоритм Флойда-Уоршелла	Находит кратчайшие пути между всеми вершинами взвешенного ориентированного графа
Алгоритм Джонсона	Находит кратчайшие пути между всеми парами вершин взвешенного ориентированного графа (должны отсутствовать циклы с отрицательным весом)
Алгоритм Ли (волновой алгоритм)	Находит путь между вершинами <i>s</i> и <i>t</i> графа, содержащий минимальное количество промежуточных вершин (трассировки электрических соединений на кристаллах микросхем и на печатных платах)
Алгоритмы Viterbi, Cherkassky,	

Задача ShortestPath и циклы

• Здесь d(i,j) может быть отрицательным; однако не должно быть **циклов отрицательного веса**.

Задача ShortestPath и циклы

- Здесь d(i,j) может быть отрицательным; однако не должно быть **циклов отрицательного веса**.
- Фактически, существование отрицательного цикла означает, что существует путь, имеющий вес $-\infty$. Поскольку e и f образуют цикл с отрицательным весом, достижимый из s, то есть путь, имеющий вес $-\infty$ из s.

Пусть G=(V,E) есть орграф с выделенной вершиной $s\in V,$ каждой дуге $(v,w)\in E$ приписана стоимость c(v,w).

Пусть G=(V,E) есть орграф с выделенной вершиной $s\in V$, каждой дуге $(v,w)\in E$ приписана стоимость c(v,w).

Принцип оптимальности динамического программирования

• Пусть $P = (s = v_0, v_1, \dots, v_k = t)$ есть кратчайший путь от вешины s до вершины t в графе G.

Пусть G=(V,E) есть орграф с выделенной вершиной $s\in V$, каждой дуге $(v,w)\in E$ приписана стоимость c(v,w).

Принцип оптимальности динамического программирования

- Пусть $P = (s = v_0, v_1, \dots, v_k = t)$ есть кратчайший путь от вешины s до вершины t в графе G.
- Тогда для любого 0 < i < k начальная часть пути $P_i = (s = v_0, v_1, \dots, v_i)$ есть кратчайший путь от s до v_i ,

Пусть G = (V, E) есть орграф с выделенной вершиной $s \in V$, каждой дуге $(v, w) \in E$ приписана стоимость c(v, w).

Принцип оптимальности динамического программирования

- Пусть $P = (s = v_0, v_1, \dots, v_k = t)$ есть кратчайший путь от вешины s до вершины t в графе G.
- Тогда для любого 0 < i < k начальная часть пути $P_i = (s = v_0, v_1, \dots, v_i)$ есть кратчайший путь от s до v_i ,
- так как иначе отрезок P_i пути P можно заменить кратчайшим путем из s в v_i и получить более короткий путь P_t из s в t.

• Стоимость кратчайшего пути в графе G от вершины s до вершины $v \in V$ обозначим через $\sigma(s,v)$

- Стоимость кратчайшего пути в графе G от вершины s до вершины $v \in V$ обозначим через $\sigma(s,v)$
- (если такого пути не существует, то $\sigma(s, v) = +\infty$).

- Стоимость кратчайшего пути в графе G от вершины s до вершины $v \in V$ обозначим через $\sigma(s, v)$
- (если такого пути не существует, то $\sigma(s, v) = +\infty$).
- ullet Если в графе G нет циклов отрицательной стоимости,

- Стоимость кратчайшего пути в графе G от вершины s до вершины $v \in V$ обозначим через $\sigma(s,v)$
- (если такого пути не существует, то $\sigma(s, v) = +\infty$).
- ullet Если в графе G нет циклов отрицательной стоимости,
- то все кратчайшие пути являются простыми

- Стоимость кратчайшего пути в графе G от вершины s до вершины $v \in V$ обозначим через $\sigma(s, v)$
- (если такого пути не существует, то $\sigma(s, v) = +\infty$).
- ullet Если в графе G нет циклов отрицательной стоимости,
- то все кратчайшие пути являются простыми
- и из принципа оптимальности можно сделать вывод, что стоимости кратчайших путей удовлетворяют следующим уравнениям Беллмана:

- Стоимость кратчайшего пути в графе G от вершины s до вершины $v \in V$ обозначим через $\sigma(s, v)$
- (если такого пути не существует, то $\sigma(s, v) = +\infty$).
- ullet Если в графе G нет циклов отрицательной стоимости,
- то все кратчайшие пути являются простыми
- и из принципа оптимальности можно сделать вывод, что стоимости кратчайших путей удовлетворяют следующим уравнениям Беллмана:

$$\sigma(s,s) = 0,$$

- Стоимость кратчайшего пути в графе G от вершины s до вершины $v \in V$ обозначим через $\sigma(s,v)$
- (если такого пути не существует, то $\sigma(s, v) = +\infty$).
- \bullet Если в графе G нет циклов отрицательной стоимости,
- то все кратчайшие пути являются простыми
- и из принципа оптимальности можно сделать вывод, что стоимости кратчайших путей удовлетворяют следующим уравнениям Беллмана:

$$\sigma(s,s)=0,$$

$$\sigma(s,v)=\min_{(w,v)\in E(V,v)}(\sigma(s,w)+c(w,v))$$
 для всех $v\in V\setminus s.$

• Функция цен есть функция $p:V \to \mathbb{R}$.

- Функция цен есть функция $p:V\to\mathbb{R}$.
- Приведенная функция стоимости $c_p: V \to \mathbb{R}$ относительно функции цен p определяется по правилу: $c_p(v,w) = p(v) + c(v,w) p(w)$.

- Функция цен есть функция $p: V \to \mathbb{R}$.
- Приведенная функция стоимости $c_p: V \to \mathbb{R}$ относительно функции цен p определяется по правилу: $c_p(v,w) = p(v) + c(v,w) p(w)$.
- Цены вершин имеют натуральную экономическую интерпретацию как действующие рыночные цены на некоторый продукт.

- Функция цен есть функция $p: V \to \mathbb{R}$.
- Приведенная функция стоимости $c_p: V \to \mathbb{R}$ относительно функции цен p определяется по правилу: $c_p(v,w) = p(v) + c(v,w) p(w)$.
- Цены вершин имеют натуральную экономическую интерпретацию как действующие рыночные цены на некоторый продукт.
- Мы можем интерпретировать приведенную стоимость $c_p(v,w)$, как суму затрат на
- ullet закупку единицы продукта в вершине v по цене p(v)

- Функция цен есть функция $p:V\to\mathbb{R}$.
- Приведенная функция стоимости $c_p: V \to \mathbb{R}$ относительно функции цен p определяется по правилу: $c_p(v,w) = p(v) + c(v,w) p(w)$.
- Цены вершин имеют натуральную экономическую интерпретацию как действующие рыночные цены на некоторый продукт.
- Мы можем интерпретировать приведенную стоимость $c_p(v,w)$, как суму затрат на
- ullet закупку единицы продукта в вершине v по цене p(v)
- ullet и затрат c(v,w) на транспортировку в вершину w

- Функция цен есть функция $p:V\to\mathbb{R}$.
- Приведенная функция стоимости $c_p: V \to \mathbb{R}$ относительно функции цен p определяется по правилу: $c_p(v,w) = p(v) + c(v,w) p(w)$.
- Цены вершин имеют натуральную экономическую интерпретацию как действующие рыночные цены на некоторый продукт.
- Мы можем интерпретировать приведенную стоимость $c_p(v,w)$, как суму затрат на
- ullet закупку единицы продукта в вершине v по цене p(v)
- ullet и затрат c(v,w) на транспортировку в вершину w
- ullet минус доход от продажи ее там по цене p(w).

Приведенные стоимости путей и циклов

Π емма 1

• Пусть G = (V, E) есть орграф, на дугах которого определена функция стоимости c, а на вершинах функция цен p.

Приведенные стоимости путей и циклов

Π емма 1

- Пусть G = (V, E) есть орграф, на дугах которого определена функция стоимости c, а на вершинах функция цен p.
- Тогда для пути P из вершины v в вершину w в графе G имеет место равенство $c_p(P) = c(P) + p(v) p(w)$.

Приведенные стоимости путей и циклов

Π емма 1

- Пусть G = (V, E) есть орграф, на дугах которого определена функция стоимости c, а на вершинах функция цен p.
- Тогда для пути P из вершины v в вершину w в графе G имеет место равенство $c_p(P) = c(P) + p(v) p(w)$.
- В частности, если P цикл, то $c_p(P) = c(P)$.

• Для покрывающего ордерева T с корнем s функция $paccmoshuŭ\ d:V\to\mathbb{R}$ определяется рекурсивно следующим образом:

- Для покрывающего ордерева T с корнем s функция $paccmoshuŭ\ d:V \to \mathbb{R}$ определяется рекурсивно следующим образом:
- $d(s)=0,\,d(v)=d(parent(v))+c(parent(v),v)$ для $v\in V\setminus s,$

- Для покрывающего ордерева T с корнем s функция $paccmoshuŭ\ d:V\to\mathbb{R}$ определяется рекурсивно следующим образом:
- d(s) = 0, d(v) = d(parent(v)) + c(parent(v), v) для $v \in V \setminus s,$
- ullet где parent(v) есть omeu, вершины v в дереве T.

- Для покрывающего ордерева T с корнем s функция $paccmoshuŭ\ d:V \to \mathbb{R}$ определяется рекурсивно следующим образом:
- d(s) = 0, d(v) = d(parent(v)) + c(parent(v), v) для $v \in V \setminus s$,
- ullet где parent(v) есть omeu, вершины v в дереве T.
- Покрывающее ордерево T с корнем s называется деревом кратчайших путей,

- Для покрывающего ордерева T с корнем s функция $paccmoshuŭ\ d:V \to \mathbb{R}$ определяется рекурсивно следующим образом:
- d(s) = 0, d(v) = d(parent(v)) + c(parent(v), v) для $v \in V \setminus s$,
- ullet где parent(v) есть omeu, вершины v в дереве T.
- Покрывающее ордерево T с корнем s называется деревом кратчайших путей,
- \bullet если для каждой вершины v единственный путь в дереве T из s в v

- Для покрывающего ордерева T с корнем s функция $paccmoshuŭ\ d:V \to \mathbb{R}$ определяется рекурсивно следующим образом:
- d(s) = 0, d(v) = d(parent(v)) + c(parent(v), v) для $v \in V \setminus s$,
- ullet где parent(v) есть omeu, вершины v в дереве T.
- Покрывающее ордерево T с корнем s называется деревом кратчайших путей,
- ullet если для каждой вершины v единственный путь в дереве T из s в v
- является кратчайшим путем из s в v в графе G, т. е. $d(v) = \sigma(s, v)$.

TEOPEMA 2

• Пусть все вершины графа G = (V, E) достигаются из вершины $s \in V$.

TEOPEMA 2

- Пусть все вершины графа G = (V, E) достигаются из вершины $s \in V$.
- Граф G имеет дерево кратчайшийх путей тогда и только тогда, когда он не имеет циклов отрицательной стоимости.

Теорема 2

- Пусть все вершины графа G = (V, E) достигаются из вершины $s \in V$.
- Граф G имеет дерево кратчайшийх путей тогда и только тогда, когда он не имеет циклов отрицательной стоимости.
- Покрывающее ордерево T с корнем s является деревом кратчайших путей тогда и только тогда, когда его функция расстояний d удовлетворяет условию:

Теорема 2

- Пусть все вершины графа G = (V, E) достигаются из вершины $s \in V$.
- Граф G имеет дерево кратчайшийх путей тогда и только тогда, когда он не имеет циклов отрицательной стоимости.
- Покрывающее ордерево T с корнем s является деревом кратчайших путей тогда и только тогда, когда его функция расстояний d удовлетворяет условию:

$$c_d(v,w) \ge 0$$
 для всех $(v,w) \in E$.

Критерий отсутствия отрицательных циклов

Следствие 3

Орграф G = (V, E) не имеет циклов отрицательной стоимости тогда и толъко тогда, когда существует функция цен $p: V \to \mathbb{R}$, что $c_p(v, w) \ge 0$ для всех $(v, w) \in E$.

Алгоритмы поиска кратчайших путей

• Идея всех алгоритмов поиска кратч. путей одинакова.

- Идея всех алгоритмов поиска кратч. путей одинакова.
- Все они начинают с функций

- Идея всех алгоритмов поиска кратч. путей одинакова.
- Все они начинают с функций
- $d:V\to\mathbb{R}\cup\{\infty\}$ и $parent:V\to V\cup\{nil\}$, таких, что $d(v)=\left\{\begin{array}{ll}0,&v=s,\\\infty,&v\in V\setminus\{s\},\end{array}\right.$

МЕТОД ПОСЛЕДОВАТЕЛЬНОЙ АППРОКСИМАЦИИ

- Идея всех алгоритмов поиска кратч. путей одинакова.
- Все они начинают с функций
- $d:V \to \mathbb{R} \cup \{\infty\}$ и $parent:V \to V \cup \{nil\}$, таких, что $d(v) = \left\{ \begin{array}{ll} 0, & v=s, \\ \infty, & v \in V \setminus \{s\}, \\ parent(v) = \mathsf{nil}, \ v \in V. \end{array} \right.$

- Идея всех алгоритмов поиска кратч. путей одинакова.
- Все они начинают с функций
- $d:V \to \mathbb{R} \cup \{\infty\}$ и $parent:V \to V \cup \{nil\}$, таких, что $d(v) = \left\{ \begin{array}{ll} 0, & v=s, \\ \infty, & v \in V \setminus \{s\}, \\ parent(v) = \mathsf{nil}, \ v \in V. \end{array} \right.$
- Затем итеративно повторяется следующий шаг:

- Идея всех алгоритмов поиска кратч. путей одинакова.
- Все они начинают с функций
- $d:V \to \mathbb{R} \cup \{\infty\}$ и $parent:V \to V \cup \{nil\}$, таких, что $d(v) = \left\{ \begin{array}{ll} 0, & v=s,\\ \infty, & v \in V \setminus \{s\}, \end{array} \right.$ $parent(v) = \mathsf{nil}, \ v \in V.$
- Затем итеративно повторяется следующий шаг:
 - выбрать дугу (v, w) отрицательной приведенной стоимости $c_d(v, w) < 0$,

- Идея всех алгоритмов поиска кратч. путей одинакова.
- Все они начинают с функций
- $d:V \to \mathbb{R} \cup \{\infty\}$ и $parent:V \to V \cup \{nil\}$, таких, что $d(v) = \left\{ \begin{array}{ll} 0, & v=s, \\ \infty, & v \in V \setminus \{s\}, \\ parent(v) = \mathsf{nil}, \ v \in V. \end{array} \right.$
- Затем итеративно повторяется следующий шаг:
 - выбрать дугу (v,w) отрицательной приведенной стоимости $c_d(v,w) < 0$,
 - положить parent(w) = v и заменить d(w) на d(v) + c(v, w).

- Идея всех алгоритмов поиска кратч. путей одинакова.
- Все они начинают с функций
- $d:V \to \mathbb{R} \cup \{\infty\}$ и $parent:V \to V \cup \{nil\}$, таких, что $d(v) = \left\{ \begin{array}{ll} 0, & v=s,\\ \infty, & v \in V \setminus \{s\}, \end{array} \right.$ $parent(v) = \mathsf{nil}, \ v \in V.$
- Затем итеративно повторяется следующий шаг:
 - выбрать дугу (v, w) отрицательной приведенной стоимости $c_d(v, w) < 0$,
 - положить parent(w) = v и заменить d(w) на d(v) + c(v, w).
- Это есть метод последовательной аппроксимации.

• Если в графе нет циклов отрицательной стоимости, то

- Если в графе нет циклов отрицательной стоимости, то
- метод заканчивает работу после конечного числа итераций, когда стоимости дуг целочисленны.

- Если в графе нет циклов отрицательной стоимости, то
- метод заканчивает работу после конечного числа итераций, когда стоимости дуг целочисленны.
- При этом $d(v) = \sigma(s, v)$ для всех $v \in V$, а указатели parent задают дерево кратчайших путей.

- Если в графе нет циклов отрицательной стоимости, то
- метод заканчивает работу после конечного числа итераций, когда стоимости дуг целочисленны.
- При этом $d(v) = \sigma(s, v)$ для всех $v \in V$, а указатели parent задают дерево кратчайших путей.
- Если в графе есть цикл отрицательной стоимости, достижимый из вершины s,

- Если в графе нет циклов отрицательной стоимости, то
- метод заканчивает работу после конечного числа итераций, когда стоимости дуг целочисленны.
- При этом $d(v) = \sigma(s, v)$ для всех $v \in V$, а указатели parent задают дерево кратчайших путей.
- Если в графе есть цикл отрицательной стоимости, достижимый из вершины s,
- то метод должен остановиться, как только граф, составленый из дуг (parent(v), v) с $parent(v) \neq \mathsf{nil}$, содержит цикл.

- Если в графе нет циклов отрицательной стоимости, то
- метод заканчивает работу после конечного числа итераций, когда стоимости дуг целочисленны.
- При этом $d(v) = \sigma(s, v)$ для всех $v \in V$, а указатели parent задают дерево кратчайших путей.
- Если в графе есть цикл отрицательной стоимости, достижимый из вершины s,
- то метод должен остановиться, как только граф, составленый из дуг (parent(v), v) с $parent(v) \neq \mathsf{nil}$, содержит цикл.
- Из описания метода последовательной аппроксимации следует, что стоимость этого цикла отрицательна.

- Если в графе нет циклов отрицательной стоимости, то
- метод заканчивает работу после конечного числа итераций, когда стоимости дуг целочисленны.
- При этом $d(v) = \sigma(s, v)$ для всех $v \in V$, а указатели parent задают дерево кратчайших путей.
- Если в графе есть цикл отрицательной стоимости, достижимый из вершины s,
- то метод должен остановиться, как только граф, составленый из дуг (parent(v), v) с $parent(v) \neq \mathsf{nil}$, содержит цикл.
- Из описания метода последовательной аппроксимации следует, что стоимость этого цикла отрицательна.
- Эффективность метода зависит от порядка выбора дуг отрицательной приведенной стоимости.

• Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - в противном случае, любой цикл в графе, опред. указателями parent, является отрицательным циклом.

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - **2** в противном случае, любой цикл в графе, опред. указателями *parent*, является отрицательным циклом.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - lacktriangledown если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - **2** в противном случае, любой цикл в графе, опред. указателями *parent*, является отрицательным циклом.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \{s\}$.

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - в противном случае, любой цикл в графе, опред. указателями parent, является отрицательным циклом.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \{s\}$.
- 3. Для $i = 1, \ldots, n$ выполнить шаги 3.1–3.4:

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - ullet если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - **2** в противном случае, любой цикл в графе, опред. указателями *parent*, является отрицательным циклом.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \{s\}$.
- ullet 3. Для $i=1,\ldots,n$ выполнить шаги 3.1–3.4:
 - 3.1. $Q = \emptyset$, $\bar{d} = d$.

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - ullet если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - **2** в противном случае, любой цикл в графе, опред. указателями *parent*, является отрицательным циклом.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}.$
- 2. Положить d(s) = 0 и $S = \{s\}$.
- 3. Для $i = 1, \dots, n$ выполнить шаги 3.1–3.4:
 - 3.1. $Q = \emptyset$, $\bar{d} = d$.
 - 3.2. Для $(v,w) \in E(S,V)$, таких, что $d(w) > \bar{d}(v) + c(v,w)$, положить $d(w) := \bar{d}(v) + c(v,w)$, parent(w) := v, $Q := Q \cup \{w\}$.

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - ullet если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - **2** в противном случае, любой цикл в графе, опред. указателями *parent*, является отрицательным циклом.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}.$
- 2. Положить d(s) = 0 и $S = \{s\}$.
- 3. Для $i=1,\ldots,n$ выполнить шаги 3.1–3.4:
 - 3.1. $Q = \emptyset$, $\bar{d} = d$.
 - 3.2. Для $(v,w) \in E(S,V)$, таких, что $d(w) > \bar{d}(v) + c(v,w)$, положить $d(w) := \bar{d}(v) + c(v,w)$, parent(w) := v, $Q := Q \cup \{w\}$.
 - 3.3. Если $Q = \emptyset$, вернуть **истина**; иначе положить S = Q.

- Вход: Орграф G = (V, E), ф-ция $c : E \to R$, верш. $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}, \, функция \ d: V \to \mathbb{R} \cup \{\infty\}:$
 - если указатели parent представляют дерево, то d(v) кратчайшее расстояние от s до v;
 - **2** в противном случае, любой цикл в графе, опред. указателями *parent*, является отрицательным циклом.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \{s\}$.
- 3. Для $i=1,\ldots,n$ выполнить шаги 3.1–3.4:
 - 3.1. $Q = \emptyset$, $\bar{d} = d$.
 - 3.2. Для $(v,w) \in E(S,V)$, таких, что $d(w) > \bar{d}(v) + c(v,w)$, положить $d(w) := \bar{d}(v) + c(v,w)$, $parent(w) := v, \ Q := Q \cup \{w\}$.
 - 3.3. Если $Q = \emptyset$, вернуть **истина**; иначе положить S = Q.
- 4. Вернуть ложь.

• Обозначим через $\sigma^i(s,v)$ стоимость кратчайшего пути из s в v среди всех путей, которые имеют ровно i дуг.

- Обозначим через $\sigma^i(s,v)$ стоимость кратчайшего пути из s в v среди всех путей, которые имеют ровно i дуг.
- Если такого пути не существует, то $\sigma^i(s,v) = \emptyset$.

- Обозначим через $\sigma^i(s,v)$ стоимость кратчайшего пути из s в v среди всех путей, которые имеют ровно i дуг.
- Если такого пути не существует, то $\sigma^i(s,v) = \emptyset$.
- Пусть $d^i(v)$, S^i соответственно d(v) и список S после итерации i.

- Обозначим через $\sigma^i(s,v)$ стоимость кратчайшего пути из s в v среди всех путей, которые имеют ровно i дуг.
- Если такого пути не существует, то $\sigma^i(s,v) = \emptyset$.
- Пусть $d^i(v)$, S^i соответственно d(v) и список S после итерации i.
- Этап инициализации (шаги 1 и 2) называем 0-й итерацией.

Свойства функции расстояний

Π емма 4

Справедливы следующие соотношения:

Свойства функции расстояний

Лемма 4

Справедливы следующие соотношения:

(i)
$$d^i(v) = \min_{0 \le k \le i} \sigma^k(s, v)$$
 для всех $v \in V$,

Свойства функции расстояний

Π емма 4

Справедливы следующие соотношения:

(i)
$$d^i(v) = \min_{0 \le k \le i} \sigma^k(s, v)$$
 для всех $v \in V$,

(ii)
$$d^i(v) = \bar{\sigma^i(s,v)} < \sigma^{i-1}(s,v)$$
 для всех $v \in S^i$,

Свойства функции расстояний

Лемма 5

Если после завершения алгоритма Беллмана-Форда $S=\emptyset$, то функция расстояний d удовлетворяет условию $c_d(v,w)\geq 0$ для всех $(v,w)\in E$.

ОТРИЦАТЕЛЬНЫЕ ЦИКЛЫ

ЛЕММА 6

Граф G имеет цикл отрицательной стоимости тогда и только тогда, когда после завершения алгоритма Беллмана-Форда множество S не пустое.

Сложность алгоритма Беллмана-Форда

Teopema 7

За время O(nm) алгоритм Беллмана-Форда или строит дерево кратчайшийх путей, или находит цикл отрицательной стоимости.

• Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.
- Чтобы гарантировать это,

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.
- Чтобы гарантировать это,
 - ullet добавим к графу G новую вершину s

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.
- Чтобы гарантировать это,
 - ullet добавим к графу G новую вершину s
 - и соединим ее дугой (s,v) нулевой стоимости с каждой вершиной $v \in V$.

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.
- Чтобы гарантировать это,
 - ullet добавим к графу G новую вершину s
 - и соединим ее дугой (s,v) нулевой стоимости с каждой вершиной $v \in V$.
- ullet В расширенном графе G^t
 - каждая вершина достижима из вершины s

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.
- Чтобы гарантировать это,
 - ullet добавим к графу G новую вершину s
 - и соединим ее дугой (s,v) нулевой стоимости с каждой вершиной $v \in V$.
- ullet В расширенном графе G^t
 - **1** каждая вершина достижима из вершины *s*
 - $oldsymbol{2}$ и любой цикл в G^t также является циклом в G.

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.
- Чтобы гарантировать это,
 - ullet добавим к графу G новую вершину s
 - и соединим ее дугой (s,v) нулевой стоимости с каждой вершиной $v \in V$.
- ullet В расширенном графе G^t
 - каждая вершина достижима из вершины s
 - $oldsymbol{@}$ и любой цикл в G^t также является циклом в G.
- Применим алгоритм Беллмана-Форда к графу G^t с начальной вершиной s,

- Задача поиска в орграфе G = (V, E), дугам $(v, w) \in E$ которого приписаны стоимости c(v, w), цикла Γ отрицательной стоимости $c(\Gamma) < 0$,
- имеет самостоятельный интерес.
- Алгоритм Беллмана-Форда может найти отр. цикл,
- если этот цикл достижим из стартовой вершины.
- Чтобы гарантировать это,
 - ullet добавим к графу G новую вершину s
 - и соединим ее дугой (s,v) нулевой стоимости с каждой вершиной $v \in V$.
- ullet В расширенном графе G^t
 - каждая вершина достижима из вершины s
 - $oldsymbol{@}$ и любой цикл в G^t также является циклом в G.
- Применим алгоритм Беллмана-Форда к графу G^t с начальной вершиной s,
- ullet и, если в G есть отрицательный цикл, то алгоритм найдет его.

Алгоритм Дейкстры

Алгоритм Дейкстры

- Алгоритм Дейкстры (Dijkstra's algorithm, 1959) алгоритм поиска кратчайшего пути в графе из заданной вершины во все остальные (single-source shortest path problem)
- Находит кратчайшее расстояние от одной из вершин графа до всех остальных
- Применим только для графов без ребер отрицательного веса и петель ($w_{ii} \ge 0$)
- Эдсгер Дейкстра (Edsger Wybe Dijkstra) нидерландский ученый (структурное программирование, язык Алгол, семафоры, распределенные вычисления)
- Лауреат премии Тьюринга (ACM A.M. Turing Award)
 - Дейкстра Э. Дисциплина программирования

 A discipline of programming. М.: Мир, 1978. С. 275.
 - Дал У., Дейкстра Э., Хоор К. Структурное программирование = Structured Programming. — М.: Мир, 1975. — С. 247.

• Алгоритм Дейкстры применяется, когда стоимости всех дуг неотрицательные.

- Алгоритм Дейкстры применяется, когда стоимости всех дуг неотрицательные.
- Это также алгоритм последовательной аппроксимации,

- Алгоритм Дейкстры применяется, когда стоимости всех дуг неотрицательные.
- Это также алгоритм последовательной аппроксимации,
- ullet который на каждой итерации уточняет верхние оценки d(v) длин кратчайших путей от источника s.

- Алгоритм Дейкстры применяется, когда стоимости всех дуг неотрицательные.
- Это также алгоритм последовательной аппроксимации,
- ullet который на каждой итерации уточняет верхние оценки d(v) длин кратчайших путей от источника s.
- Алгоритм поддерживает подмножество вершин S, до которых кратчайший путь уже найден.

- Алгоритм Дейкстры применяется, когда стоимости всех дуг неотрицательные.
- Это также алгоритм последовательной аппроксимации,
- ullet который на каждой итерации уточняет верхние оценки d(v) длин кратчайших путей от источника s.
- Алгоритм поддерживает подмножество вершин S, до которых кратчайший путь уже найден.
- ullet Если $v \in S$, то d(v) есть длина кратч. пути от s до v.

- Алгоритм Дейкстры применяется, когда стоимости всех дуг неотрицательные.
- Это также алгоритм последовательной аппроксимации,
- ullet который на каждой итерации уточняет верхние оценки d(v) длин кратчайших путей от источника s.
- Алгоритм поддерживает подмножество вершин S, до которых кратчайший путь уже найден.
- ullet Если $v \in S$, то d(v) есть длина кратч. пути от s до v.
- На очередной итерации алгоритм выбирает вершину $w \in V \setminus S$ с минимальной "меткой" d(w), добавляет ее к S,

- Алгоритм Дейкстры применяется, когда стоимости всех дуг неотрицательные.
- Это также алгоритм последовательной аппроксимации,
- который на каждой итерации уточняет верхние оценки d(v) длин кратчайших путей от источника s.
- Алгоритм поддерживает подмножество вершин S, до которых кратчайший путь уже найден.
- ullet Если $v \in S$, то d(v) есть длина кратч. пути от s до v.
- На очередной итерации алгоритм выбирает вершину $w \in V \setminus S$ с минимальной "меткой" d(w), добавляет ее к S,
- и для всех дуг $(w,v) \in E(w,V\setminus S)$ перевычисляет метки их конечных вершин по правилу:

$$d(v) = \min\{d(v), d(w) + c(w, v)\}.$$

• Вход: Орграф G=(V,E), функция $c:E\to R$, вершина $s\in V$.

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{nil\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где d(v) κ ратчайшее paccmoshue от s до v.

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{nil\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где $d(v) \kappa pam чайшее расстояние от <math>s$ до v.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{nil\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где $d(v) \kappa pam vaŭue e paccmonue$ от s до v.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \emptyset$.

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где $d(v) \kappa pam чайшее расстояние от <math>s$ до v.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \emptyset$.
- 3. Пока |S| < n-1 выполнять шаги 3.1 и 3.2:

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{\mathsf{nil}\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где $d(v) \kappa pam чайшее расстояние от <math>s$ до v.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \emptyset$.
- 3. Пока |S| < n-1 выполнять шаги 3.1 и 3.2:
 - 3.1. Выбрать $w \in \arg\min\{d(v): v \in V \setminus S\}$ и положить $S := S \cup \{w\}.$

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{nil\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где $d(v) \kappa pam чайшее расстояние от <math>s$ до v.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}.$
- 2. Положить d(s) = 0 и $S = \emptyset$.
- 3. Пока |S| < n-1 выполнять шаги 3.1 и 3.2:
 - 3.1. Выбрать $w \in \arg\min\{d(v): v \in V \setminus S\}$ и положить $S := S \cup \{w\}.$
 - 3.2. Для всех $(w,v) \in E(w,V\setminus S)$, что d(v)>d(w)+c(w,v), положить d(v)=d(w)+c(w,v) и parent(v)=w.

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{nil\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где $d(v) \kappa pam чайшее расстояние от <math>s$ до v.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \emptyset$.
- 3. Пока |S| < n-1 выполнять шаги 3.1 и 3.2:
 - 3.1. Выбрать $w \in \arg\min\{d(v): v \in V \setminus S\}$ и положить $S := S \cup \{w\}.$
 - 3.2. Для всех $(w,v) \in E(w,V\setminus S)$, что d(v)>d(w)+c(w,v), положить d(v)=d(w)+c(w,v) и parent(v)=w.

- Вход: Орграф G = (V, E), функция $c : E \to R$, вершина $s \in V$.
- Выход: указатели $parent: V \to V \cup \{nil\}$, задающие дерево кратчайших путей, функция $d: V \to \mathbb{R} \cup \{\infty\}$, где $d(v) \kappa pam чайшее расстояние от <math>s$ до v.
- 1. Для всех $v \in V \setminus \{s\}$ положить $d(v) = \infty$ и $parent(v) = \mathsf{nil}$.
- 2. Положить d(s) = 0 и $S = \emptyset$.
- 3. Пока |S| < n-1 выполнять шаги 3.1 и 3.2:
 - 3.1. Выбрать $w \in \arg\min\{d(v): v \in V \setminus S\}$ и положить $S := S \cup \{w\}.$
 - 3.2. Для всех $(w,v) \in E(w,V\setminus S)$, что d(v)>d(w)+c(w,v), положить d(v)=d(w)+c(w,v) и parent(v)=w.

Свойства алгоритма Дейкстры

ЛЕММА 8

Алгоритм Дейкстры поддерживает следующие инварианты:

- $\mathbf{0}$ $d(v) \leq d(w)$ для всех $v \in S, w \in V \setminus S;$
- ② $d(v) + c(v, w) \ge d(w)$ для всех $(v, w) \in E(V, S)$.

Сложность алгоритма Дейкстры

Теорема 9

Если стоимости всех дуг неотрицательны, то за время $O(n^2)$ алгоритм Дейкстры строит дерево кратчайшийх путей.

- Пример: найти кратчайший путь из вершины 1 в вершину 5
- Введем обозначения:
 - □ *H* множество посещенных вершин
 - □ D[i] текущее известное кратчайшее расстояние от вершины s до вершины i
 - □ prev[i] номер вершины, предшествующей i в пути

- 1. Устанавливаем расстояние D[i] от начальной вершины s до всех остальных в ∞
- 2. Полагаем D[s] = 0
- 3. Помещаем все вершины в очередь с приоритетом Q (min-heap): приоритет вершины i это значение D[i]

- 4. Запускаем цикл из *п* итераций (по числу вершин)
 - Извлекаем из очереди Q вершину v с минимальным приоритетом – ближайшую к s вершину
 - 2. Отмечаем вершину *v* как посещенную (помещаем *v* во множество *H*)
 - Возможно пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u смежной с вершиной v и не включенной в H проверяем и корректируем расстояние D[u]

D[2]	=	10
D[4]	=	30
D[5]	=	100

30 100

10

- 4. Запускаем цикл из *п* итераций (по числу вершин)
 - Извлекаем из очереди Q вершину v с минимальным приоритетом – ближайшую к s вершину
 - 2. Отмечаем вершину v как посещенную (помещаем v во множество H)
 - Возможно пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u смежной с вершиной v и не включенной в H проверяем и корректируем расстояние D[u]

$$D[3] = 60$$

100

- 4. Запускаем цикл из *п* итераций (по числу вершин)
 - 1. Извлекаем из очереди Q вершину v с минимальным приоритетом ближайшую к s вершину
 - 2. Отмечаем вершину v как посещенную (помещаем v во множество H)
 - Возможно пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u смежной с вершиной v и не включенной в H проверяем и корректируем расстояние D[u]

D[3]	=	50
D[5]	=	90

- 4. Запускаем цикл из *п* итераций (по числу вершин)
 - 1. Извлекаем из очереди Q вершину v с минимальным приоритетом ближайшую к s вершину
 - 2. Отмечаем вершину *v* как посещенную (помещаем *v* во множество *H*)
 - Возможно пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u смежной с вершиной v и не включенной в H проверяем и корректируем расстояние D[u]

- 4. Запускаем цикл из *п* итераций (по числу вершин)
 - Извлекаем из очереди Q вершину v с минимальным приоритетом – ближайшую к s вершину
 - Отмечаем вершину v как посещенную (помещаем v во множество H)
 - 3. Возможно пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u смежной с вершиной v и не включенной в H проверяем и корректируем расстояние D[u]

- В массиве D[1:n] содержатся длины кратчайших путей из начальной вершины s = 1
 - D[1] длина пути из 1 в 1
 - o D[2] длина пути из 1 в 2
 - D[3] длина пути из 1 в 3
 - o D[4] длина пути из 1 в 4
 - D[5] длина пути из 1 в 5

- Как определить какие вершины входят в кратчайший путь из s = 1 в d = 5?
- Как восстановить путь?

- Восстановление кратчайшего пути
- Массив prev[i] содержит номер вершины, предшествующей i в пути

	1	2	3	4	5
prev[<i>i</i>]	-1	1	4	1	3

- Восстанавливаем путь с конца
 - Вершина 5
 - Вершина prev[5] = 3
 - Вершина prev[3] = 4
 - Вершина prev[4] = 1

Кратчайший путь (1, 4, 3, 5)


```
function ShortestPath Dijkstra(G, src, d, prev)
    // Input: G = (V, E), src, dst
    // Output: d[1:n], prev[1:n]
    // prev[i] - узел, предшествующий і в пути
    // Помещаем вершины в очередь с приоритетом
    for each i in V \ {src} do
        d[i] = Infinity
        prev[i] = -1
        PriorityQueueInsert(Q, i, d[i])
    end for
    d[src] = 0
    prev[src] = -1
    PriorityQueueInsert(Q, src, d[src])
```

```
for i = 0 to n - 1 do
        // Извлекаем узел ближайший к начальному
        v = PriorityQueueRemoveMin(Q)
        // Отмечаем v как посещенный
        H = H + \{v\}
        // Цикл по смежным вершинам узла v
        for each u in Adj(v) \setminus H do
            // Путь через и короче текущего пути?
            if d[v] + w(v, u) < d[u] then
                d[u] = d[v] + w(v, u)
                PriorityQueueDecrease(Q, u, d[u])
                prev[u] = v
            end if
        end for
    end for
end function
```

Восстановление кратчайшего пути

```
function SearchShortestPath(G, src, dst)
    ShortestPath_Dijkstra(G, src, d, prev)
    // Восстановление пути из src в dst
    i = dst
    pathlen = 1
    while i != src do
        pathlen = pathlen + 1
        i = prev[i]
    end while
    i = 0
    i = dst
    while i != s do
        path[pathlen - j] = i
        i = prev[i]
        j = j + 1
    end while
    return path[], pathlen
                                                T = T_{Diiikstra} + O(|V|)
end function
```

Разреженные и насыщенные графы

Вариант реализации алгоритма Дейкстры	Насыщенный граф $m=\mathit{O}(n^2)$	${f P}$ азреженный граф ${f m}={\cal O}(n)$
Вариант 1 <i>D</i> [i] — это массив (поиск за время <i>O</i> (<i>n</i>))	$T = O(n^2 + m) = O(n^2)$	$T = O(n^2 + m) = O(n^2)$
Вариант 2 D[i] хранятся в бинарной куче	$T = O(n \log n + m \log n)$ $= O(n^2 \log n)$	$T = O(n \log n + m \log n)$ $= O(n \log n)$
Вариант 3 <i>D</i> [i] хранятся в Фибоначчиевой куче	$T = O(m + n \log n)$ $= O(n^2)$	$T = O(n + n \log n)$ $= O(n \log n)$

Кратчайшие пути в ациклических графах

Постановка задачи

• Рассмотрим задачу поиска кратчайших путей в ациклическом орграфе G = (V, E).

Постановка задачи

- Рассмотрим задачу поиска кратчайших путей в ациклическом орграфе G = (V, E).
- Стоимости дуг c(v,w) $((v,w) \in E)$ могут быть произвольные: как положительные, так и отрицательные.

Постановка задачи

- Рассмотрим задачу поиска кратчайших путей в ациклическом орграфе G = (V, E).
- Стоимости дуг c(v,w) $((v,w) \in E)$ могут быть произвольные: как положительные, так и отрицательные.
- ullet Так как в G нет отрицательных циклов, то все кратчайшие пути простые.

• Если граф G не имеет ориентированных циклов, то его можно топологически отсортировать,

- Если граф G не имеет ориентированных циклов, то его можно топологически отсортировать,
- т. е. найти такую нумерацию $l: V \to \{1, \dots, n\}$ его вершин, для которой для каждой дуги $(v, w) \in E$ выполняется неравенство l(v) < l(w).

- Если граф G не имеет ориентированных циклов, то его можно топологически отсортировать,
- т. е. найти такую нумерацию $l: V \to \{1, \dots, n\}$ его вершин, для которой для каждой дуги $(v, w) \in E$ выполняется неравенство l(v) < l(w).
- Сначала в графе G находим вершину v_1 , в которую не входит ни одна дуга, и приписываем ей номер 1 $(l(v_1)=1);$

- Если граф G не имеет ориентированных циклов, то его можно топологически отсортировать,
- т. е. найти такую нумерацию $l: V \to \{1, \dots, n\}$ его вершин, для которой для каждой дуги $(v, w) \in E$ выполняется неравенство l(v) < l(w).
- Сначала в графе G находим вершину v_1 , в которую не входит ни одна дуга, и приписываем ей номер 1 $(l(v_1) = 1);$
- затем удаляем из графа вершину v_1 и все инцидентные ей дуги;

- Если граф G не имеет ориентированных циклов, то его можно топологически отсортировать,
- т. е. найти такую нумерацию $l: V \to \{1, \dots, n\}$ его вершин, для которой для каждой дуги $(v, w) \in E$ выполняется неравенство l(v) < l(w).
- Сначала в графе G находим вершину v_1 , в которую не входит ни одна дуга, и приписываем ей номер 1 $(l(v_1) = 1);$
- ullet затем удаляем из графа вершину v_1 и все инцидентные ей дуги;
- в оставшемся подграфе снова находим вершину v_2 , в которую не входит ни одна дуга, и приписываем ей номер 2 $(l(v_2) = 2)$;

- Если граф G не имеет ориентированных циклов, то его можно топологически отсортировать,
- т. е. найти такую нумерацию $l: V \to \{1, \dots, n\}$ его вершин, для которой для каждой дуги $(v, w) \in E$ выполняется неравенство l(v) < l(w).
- Сначала в графе G находим вершину v_1 , в которую не входит ни одна дуга, и приписываем ей номер 1 $(l(v_1) = 1);$
- затем удаляем из графа вершину v_1 и все инцидентные ей дуги;
- в оставшемся подграфе снова находим вершину v_2 , в которую не входит ни одна дуга, и приписываем ей номер 2 $(l(v_2)=2)$;
- так продолжаем до тех пор, пока все вешины не будут занумерованы.

- Если граф G не имеет ориентированных циклов, то его можно топологически отсортировать,
- т. е. найти такую нумерацию $l: V \to \{1, \dots, n\}$ его вершин, для которой для каждой дуги $(v, w) \in E$ выполняется неравенство l(v) < l(w).
- Сначала в графе G находим вершину v_1 , в которую не входит ни одна дуга, и приписываем ей номер 1 $(l(v_1) = 1);$
- ullet затем удаляем из графа вершину v_1 и все инцидентные ей дуги;
- в оставшемся подграфе снова находим вершину v_2 , в которую не входит ни одна дуга, и приписываем ей номер 2 $(l(v_2) = 2)$;
- так продолжаем до тех пор, пока все вешины не будут занумерованы.

• Считаем, что $V = \{1, ..., n\}$ и i < j для всех $(i, j) \in E$.

- ullet Считаем, что $V = \{1, \ldots, n\}$ и i < j для всех $(i,j) \in E$.
- Наша цель вычислить длины d(j) кратчайший путей в графе G от вершины 1 до всех остальных вершин $j=2,\ldots,n$.

- Считаем, что $V = \{1, \dots, n\}$ и i < j для всех $(i,j) \in E$.
- Наша цель вычислить длины d(j) кратчайший путей в графе G от вершины 1 до всех остальных вершин $j=2,\ldots,n$.
- Из принципа оптимальности вытекает справедливость следующей рекурентной формулы:

$$d(1) = 0,$$

$$d(j) = \min_{(i,j) \in E} (d(i) + c(i,j)), \quad j = 2, \dots, n.$$

- ullet Считаем, что $V = \{1, \dots, n\}$ и i < j для всех $(i,j) \in E$.
- Наша цель вычислить длины d(j) кратчайший путей в графе G от вершины 1 до всех остальных вершин $j=2,\ldots,n$.
- Из принципа оптимальности вытекает справедливость следующей рекурентной формулы:

$$d(1) = 0,$$

$$d(j) = \min_{(i,j) \in E} (d(i) + c(i,j)), \quad j = 2, \dots, n.$$

• Как обычно, минимум по пустому множеству альтернатив равен $+\infty$.

- Считаем, что $V = \{1, \dots, n\}$ и i < j для всех $(i, j) \in E$.
- Наша цель вычислить длины d(j) кратчайший путей в графе G от вершины 1 до всех остальных вершин $j=2,\ldots,n$.
- Из принципа оптимальности вытекает справедливость следующей рекурентной формулы:

$$d(1) = 0,$$

$$d(j) = \min_{(i,j) \in E} (d(i) + c(i,j)), \quad j = 2, \dots, n.$$

• Как обычно, минимум по пустому множеству альтернатив равен $+\infty$.

Обратный ход

Зная значения d(j), мы можем можем определить дерево кратчайших путей, выполнив обратный ход:

$$parent(j) \in \{i: (i,j) \in E \text{ и } d(j) = d(i) + c(i,j)\},$$
 $j=n,n-1,\ldots,2,$ $parent(1)=\mathsf{nil}.$

• В дальнейшем мы также будем рассматривать задачи, решение которых сводится к поиску путей максимальной стоимости (длины) в ациклическом графе.

- В дальнейшем мы также будем рассматривать задачи, решение которых сводится к поиску путей максимальной стоимости (длины) в ациклическом графе.
- Справедлива следующая рекурентная формула:

$$d(1) = 0,$$

$$d(j) = \max_{(i,j) \in E} (d(i) + c(i,j)), \quad j = 2, \dots, n.$$

- В дальнейшем мы также будем рассматривать задачи, решение которых сводится к поиску путей максимальной стоимости (длины) в ациклическом графе.
- Справедлива следующая рекурентная формула:

$$d(1) = 0,$$

$$d(j) = \max_{(i,j) \in E} (d(i) + c(i,j)), \quad j = 2, \dots, n.$$

• Максимум по пустому множеству альтернатив равен $-\infty$.

- В дальнейшем мы также будем рассматривать задачи, решение которых сводится к поиску путей максимальной стоимости (длины) в ациклическом графе.
- Справедлива следующая рекурентная формула:

$$d(1) = 0,$$

$$d(j) = \max_{(i,j) \in E} (d(i) + c(i,j)), \quad j = 2, \dots, n.$$

• Максимум по пустому множеству альтернатив равен $-\infty$.

Применение алгоритма Беллмана-Форда: протокол маршрутизатора

ПРОТОКОЛ МАРШРУТИЗАЦИИ

Задача:

- Каждый узел обозначает маршрутезатор, а вес обозначает время передачи пакета от маршрутизатора i до j.
- Цель разработать протокол для определения самого быстрого маршрута, когда маршрутизатор s хочет отправить пакет в узел t.

Протокол маршрутизации: алгоритм Дейкстры против алгоритма Беллмана-Форда

- Выбор: алгоритм Дейкстры.
- Однако для этого алгоритма необходимо **глобальное знание**, то есть знание всего графа, которое (почти) невозможно получить.
- Напротив, алгоритм Беллмана-Форда **требует только локальной информации**, то есть информации об **окрестностях вершин**, а не **всей сети**.

ПРИМЕНЕНИЕ: ПРОТОКОЛ МАРШРУТИЗАЦИИ

AsynchronousShortestPath(G,t)

```
1: Инициализация, положить OPT[t,t] = 0, и
   OPT[v,t] = \infty;
2: Отметить узел t как "активный"; //Узел v называется
   "активным" если OPT[v,t] было изменено;
3: while существует активный узел do
     Выберите активный узел w произвольно;
     Удалите для узла w иметку — "активный";
     for all ребер (v,w) (в произвольном порядке) do
6:
       OPT[v,t] = \min \begin{cases} OPT[v,t] \\ OPT[w,t] + d(v,w) \end{cases}
7:
       if OPT[v,t] было изменено then
8:
          Установить для v метку "активный";
9:
        end if
10:
     end for
11:
12: end while
                                          ←□ → ←□ → ← □ → ← □ → ← □
```

Задача: Длинейший путь

Задача: Длинейший путь

вход:

Ориентированный граф $G = \langle V, E \rangle$. Каждая дуга (u, v) имеет длину d(u, v). Два узла: s и t.

выход:

Самый длинный простой путь из s в t.

Сложность: задача LongestPath является NP-трудной. (Подсказка: очевидно, что задача LongestPath содержит HamiltonianPath в качестве своего особого случая.)

Секрет сложности задачи LongestPath I

- Разбиение на подзадачи: Подзадачи не являются независимыми.
- Рассмотрим задачу найти путь от q до t. Разбьем ее на две подзадачи: найти путь от q до r и найти путь от r до t.

- Предположим, что мы уже решили подзадачи.
 Попробуем объединить решения двух подзадач:
 - $P(q,r) = q \to s \to t \to r$
 - $P(r,t) = r \to q \to s \to t$

Мы получим путь $q \to s \to t \to r \to q \to s \to t$, который не является простым.

Секрет сложности задачи LongestPath II

• Другими словами, использование *s* в первой подзадаче не позволяет нам использовать *s* во второй подзадаче. Однако мы не можем получить оптимальное решение второй подзадачи без использования *s*.

LONGESTPATH ПРОТИВ SHORTESTPATH

- Напротив, проблема SHORTEST РАТН не имеет этой трудности.
- Почему? Решения подзадач не имеют общего узла. Предположим, что кратчайшие пути P(q,r) и P(r,t) имеют общий узел $w(w \neq r)$. Тогда будет цикл $w \to \cdots \to r \to \cdots \to w$. Удаление этого цикла приводит к более короткому пути (без отрицательного цикла). Противоречие.
- Это означает, что две подзадачи являются независимыми: решение одной подзадачи не влияет на решение другой подзадачи.

Если все ребра имеют положительный вес, то существует жадный алгоритм, который находит оптимальное решение.

Об этом мы поговорим в следующих лекциях.