User Manual

Juri Trifonov

February 2023

The current version of all files is V.5.0.

1 Description of files

The full package contains 5 important files:

- arma_func_v.x.x.R contains functions for estimating ARMA-family models using LASSO, MCP, SCAD, and ALASSO penalties.
- arma_sim_v.x.x.R provides code for Monte-Carlo simulations using penalized ARMA models.
- arma_res_v.x.x.R aggregates the results all together for all designs.
- des_full.RData this data file contains the results of simulations (for all designs).
- des_i.RData additional files containing results for each specific design $i \in \{1, ..., 21\}$.

2 Names of objects in the file with results

This section explains the names of objects in the arma_res_v.x.x.R file.

- $\mathbf{seed_i}$ the vector of seed values for every design, where i stands for the number of the design.
- theta_hat_lasso_i the list of parameter estimates for lasso penalty, i.e., $\hat{\theta} = (\hat{\beta}, \hat{\pi})$, the value of the maximized objective function, and the value of BIC for each λ across every design
- theta_hat_mcp_i the list of parameter estimates for MCP penalty, i.e., $\hat{\theta} = (\hat{\beta}, \hat{\pi})$, the value of the maximized objective function, and the value of BIC for each λ across every design.
- theta_hat_scad_i the list of parameter estimates for SCAD penalty, i.e., $\hat{\theta} = (\hat{\beta}, \hat{\pi})$, the value of the maximized objective function, and the value of BIC for each λ across every design.
- theta_hat_alasso_i the list of parameter estimates for alasso penalty, i.e., $\hat{\theta} = (\hat{\beta}, \hat{\pi})$, the value of the maximized objective function, and the value of BIC for each λ across every design.
- theta_hat_max_lasso_i the vector of parameter values for lasso penalty corresponding to the smallest BIC, i.e., $\hat{\theta}_{max}$, the value of the maximized objective function, and the value of BIC.
- theta_hat_max_mcp_i the vector of parameter values for MCP penalty corresponding to the smallest BIC, i.e., $\hat{\theta}_{max}$, the value of the maximized objective function, and the value of BIC
- theta_hat_max_scad_i the vector of parameter values, i.e., $\hat{\theta}_{max}$, for SCAD penalty corresponding to the smallest BIC, the value of the maximized objective function, and the value of BIC.
- theta_hat_max_alasso_i the vector parameter values for alasso penalty corresponding to the smallest BIC, i.e., $\hat{\theta}_{max}$, the value of the maximized objective function, and the value of BIC.

- accuracy_lasso_i the number representing the share of simulations when $\hat{\beta} = 0$ for lasso penalty, where i defines the design.
- accuracy_mcp_i the number representing the share of simulations when $\hat{\beta} = 0$ for MCP penalty, where i defines the design.
- accuracy_scad_i the number representing the share of simulations when $\hat{\beta} = 0$ for SCAD penalty, where i defines the design.
- accuracy_alasso_i the number representing the share of simulations when $\hat{\beta} = 0$ for alasso penalty, where i defines the design.