Activity 8 – Introduction to Proof logic

- (1) Which of the following sentences are statements? For those which are not, is there a way to modify them so that they are?
 - (a) The domain of the divisibility relation is \mathbb{Z} .
 - (b) x is a prime number.
 - (c) The range of the divisibility relation is \mathbb{R} .
 - (d) This sentence is false.
- (2) Several compound sentences can be constructed using either the \land or the \lor operator together with \neg 's on the predicate variables. (For example, $\neg A \lor B$ or $\neg A \land \neg B$.) Assuming that A and B appear in that order, there are 8 such sentences. List them.

(3) A shortcut to figuring out the truth tables of sentences like the ones from the previous problem is this: "Or" statements are *false* in exactly one row, "And" statements are *true* in exactly one row.

We take the ordering of the rows of a 2-variable truth table to be:

	A	B
row 1:	Т	Т
row 2:	Т	ϕ
row 3:	ϕ	Т
row 4:	ϕ	ϕ

With the above convention what row number(s) are the following sentences true in?

- (a) $A \wedge B$
- (b) $A \wedge \neg B$
- (c) $\neg A \wedge B$

What row noumbers are the following false in?

- (a) $\neg A \lor B$
- (b) $A \vee \neg B$
- (c) $\neg A \lor \neg B$

(4) Now we should be ready to create all 8 truth tables for the statements from problem 2. I've pre-filled the skeletons of the tables to ease your burden.

A	B	$A \wedge B$	A	B	$A \wedge \neg B$	A	В	$\neg A \wedge B$	A	B	$\neg A \wedge \neg B$
Т	Т		Т	Т		$\overline{\mathrm{T}}$	Τ		Т	Т	
Τ	ϕ		Τ	ϕ		T	ϕ		Τ	ϕ	
ϕ	Т		ϕ	Т		ϕ	Τ		ϕ	Т	
ϕ	ϕ		ϕ	ϕ		ϕ	ϕ		ϕ	ϕ	

(5) Create a truth table for $A \wedge (A \vee B)$

(6) Create a truth table for $A\vee (A\wedge B)$

(7) Comparing the last two problems, what do you notice?

(8) Draw the digital logic diagram for $A \wedge (A \vee B)$ and $A \vee (A \wedge B)$. How could they be simplified? (9) In the video we mentioned the *exclusive or* operator which is true when exactly one of its inputs is true. Usually, exclusive or is notated thusly: $A \oplus B$.

Using the notion of disjunctive normal form¹ determine an expression that only uses \land , \lor and \neg that is equivalent to $A \oplus B$.

(10) Construct a digital logic diagram – using the disjunctive normal form concept – for the following truth table. Challenge: A much simpler logic diagram is possible. Can you find it?

A	B	$\mid C \mid$???
Т	Т	Т	ϕ
Τ	Т	$ \phi $	Т
Τ	ϕ	$\mid T \mid$	ϕ
Τ	ϕ	$\mid \phi \mid$	Т
ϕ	Т	$\mid T \mid$	ϕ
ϕ	Т	$\mid \phi \mid$	ϕ
ϕ	ϕ	$\mid T \mid$	ϕ
ϕ	ϕ	$ \phi $	ϕ

¹Recall that disjunctive normal form consists of the "or" of a bunch of "and" statements that recognize the rows we want to be true.