1 Best Response Dynamics

While the current outcome is not a Pure Nash equilibirum (PNE), we can pick an arbitrary player i and an arbitrary beneficial deviation s'_i for player i and move to outcome (s'_i, \mathbf{s}_{-i}) .

Recall that the definition of a potential game is one where there exists a function $\Phi: \mathcal{S} \to \mathbb{R}$ where \mathcal{S} is the finite set of strategies with

$$\Phi(s_i', s_{-i}) - \Phi(s_i, s_{-i}) = c_i(s_i', s_{-i}) - c_i(s_i, s_{-i})$$

Proposition 1.1. In a finite potential game from any arbitrary outcome, best-response dynamics converge to a PNE.

Proof. In a best-response dynamics approach, every iteration has $\Phi(\mathbf{s^{t+1}}) < \Phi(\mathbf{s^t})$, i.e. the potential decreases. Unless the $\mathbf{s^t}$ is a PNE, our Φ is lower bounded by $\min_{s \in \mathcal{S}} \Phi(s)$ and hence the process must terminate.

Definition 1.2 (ϵ -Pure Nash Equilibrium). For $\epsilon \in [0,1]$, and outcome **s** is an ϵ -pure NE if for every agent i and deviations $s'_i \in S_i$

$$c_i(s_i', s_{-i}) \ge (1 - \epsilon)c_i(s_i, s_{-i})$$

An epsilon—best response dynamics is one which permits moves when there is significant improvements (substential lowering of cost or increasing of utility) which is an important factor to for a state to converge to near optimal equilibrium. While a current outcome \mathbf{s} is not an ϵ -PNE, we pick an arbitary player i that has an ϵ -move, i.e. a deviation to s'_i :

$$c_i(s_i', s_{-i}) < (1 - \epsilon)c_i(\mathbf{s})$$

Theorem 1.3 (Fast convergence of ϵ -Best Response Dynamics). Consider an atomic selfish routing game where:

- 1. All players have the same source s and destination t vertex.
- 2. Cost function satisfy the " α -bound jump condition"

$$c_e(x) \le c_e(x+1) \le \alpha \cdot c_e(x)$$

for all edges e.

3. The MaxGain variant of ϵ -BR dynamics is used: in every iteration, amongst all players with an ϵ -move available, the player who can obtain the biggest absolute cost decrease gets to move.

Then an ϵ -PNE is reached in at most

$$\frac{k \cdot \alpha}{\epsilon} \log \frac{\Phi(\mathbf{s^0})}{\Phi_{min}}$$

iterations, where k is the number of agents, s^0 is the initial state of the system.

Lemma 1.4. For $x \in (0,1)$

$$(1-x)^{1/x} < (e^{-x})^{1/x} = e^{-1}$$

Theorem 1.5. Consider a (λ, μ) -cost minimization game with a positive potential function Φ such that $\Phi(\mathbf{s}) \leq cost(\mathbf{s})$ for every outcome \mathbf{s} . Let $\mathbf{s}^0, \mathbf{s}^1, \dots, \mathbf{s}^T$ be a sequence generated by MaxGain best response dynamics, \mathbf{s}^* a minimum cost outcome and $1 > \gamma > 0$ is a parameter, Then for all but

$$\frac{k}{\gamma(1-\mu)}\log\frac{\Phi(\mathbf{s}^0)}{\Phi_{min}}\tag{1}$$

outcomes \mathbf{s}^t satisfy

$$cost(\mathbf{s^t}) \le \left(\frac{\lambda}{(1-\mu)(1-\gamma)}\right) \cdot cost(\mathbf{s^*})$$
 (2)

Proof.

$$cost(\mathbf{s^{t}}) \leq \sum_{i} c_{i}(\mathbf{s^{t}})$$

$$= \sum_{i} \left[c_{i}(s_{i}^{*}, s_{-i}^{t}) + \delta_{i}(\mathbf{s^{t}}) \right], \quad \delta_{i}(\mathbf{s^{t}}) = c_{i}(\mathbf{s^{t}}) - c_{i}(s_{i}^{*}, s_{-i}^{t})$$

$$\leq \lambda \cdot cost(\mathbf{s^{*}}) + \mu \cdot cost(\mathbf{s^{t}}) + \sum_{i} \delta_{i}(\mathbf{s^{t}})$$

$$cost(\mathbf{s^{t}}) \leq \frac{\lambda}{1 - \mu} \cdot cost(\mathbf{s^{*}}) + \frac{1}{1 - \mu} \cdot \sum_{i} \delta_{i}(\mathbf{s^{t}})$$
(3)

we shall let $\Delta(\mathbf{s^t}) = \sum_i \delta_i(\mathbf{s^t})$ in the remaining parts of the proof. We shall now define a state $\mathbf{s^t}$ to be bad if it does not satisfy (2) and by (3), when $\mathbf{s^t}$ is bad we get

$$\Delta(\mathbf{s^t}) \ge \gamma(1-\mu) \cdot cost(\mathbf{s^t})$$

By the MaxGain definition and the inequality relating the potential function and cost,

$$\max_{i} \delta_{i}(\mathbf{s^{t}}) \geq \frac{\Delta(\mathbf{s^{t}})}{k} \geq \frac{\gamma(1-\mu)}{k} \cdot cost(\mathbf{s^{t}}) \geq \frac{\gamma(1-\mu)}{k} \cdot \Phi(\mathbf{s^{t}})$$

and we get what we desire as

$$\Phi(\mathbf{s^t}) - \Phi(s_i^*, s_{-i}^t) = c_i(\mathbf{s^t}) - c_i(s_i^*, s_{-i}^t) = \delta_i(\mathbf{s^t})$$

and hence

$$\left(1 - \frac{\gamma(1-\mu)}{k}\right)\Phi(\mathbf{s^t}) \ge \Phi(\mathbf{s^{t+1}}) \tag{4}$$

whenever $\mathbf{s^t}$ is a bad state. The equation in (4) says that for every MaxGain best response dynamics, if the state is bad, the new state $\mathbf{s^{t+1}}$ is smaller than the previous state $\mathbf{s^t}$ by a factor of $1 - \frac{\gamma(1-\mu)}{k}$. By Lemma 1.4, the potential decreases by a factor of e for every $\frac{k}{\gamma(1-\mu)}$ bad states encountered. Thus solving

$$e^{-n}\Phi(\mathbf{s^0}) > \Phi_{min}$$

shows (1).