Package 'SlideCNA'

January 23, 2025

Title Calls Copy Number Alterations from Slide-Seq Data
Version 0.1.0
Description This takes spatial single-cell-type RNA-seq data (specifically designed for Slide-seq v2) that calls copy number alterations (CNAs) using pseudo-spatial binning, clusters cellular units (e.g. beads) based on CNA profile, and visualizes spatial CNA patterns. Documentation about 'SlideCNA' is included in the the preprint by Zhang et al. (2022, <doi:10.1101 2022.11.25.517982="">). The package 'enrichR' (>= 3.0), conditionally used to annotate SlideCNA-determined clusters with gene ontology terms, can be installed at <https: enrichr="" github.com="" wjawaid=""> or with install_github(``wjawaid/enrichR").</https:></doi:10.1101>
Imports data.table, reshape2, dplyr, ggplot2, scales, pheatmap, cluster, factoextra, dendextend, Seurat, tidyselect, stringr, magrittr, tibble, futile.logger, mltools, utils
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2
Suggests testthat (>= 3.0.0), enrichR (>= 3.0)
Config/testthat/edition 3
NeedsCompilation no
Author Diane Zhang [aut, cre] (https://orcid.org/0000-0002-0268-4413), Johanna Klughammer [aut] (https://orcid.org/0000-0001-7519-731X), Broad Institute of MIT and Harvard [cph, fnd]
Maintainer Diane Zhang <dkzhang711@gmail.com></dkzhang711@gmail.com>
Repository CRAN
Date/Publication 2025-01-23 17:40:05 UTC
Contents
bin

2 bin

center_rm	4
clone_so	4
cnv_heatmap	5
dat_to_long	5
find_cluster_markers	6
find_go_terms	7
get_num_clust	8
long_to_bin	9
make_seurat_annot	9
make_so_bin	10
mean_cnv_plot	11
mode	11
plot_clones	12
prep	13
prep_cnv_dat	13
quantile_plot	14
ref_adj	15
· ·	15
run_slide_cna	16
scalefit	18
scale_nUMI	19
SpatialPlot	20
weight_rollmean	20
weight_rollmean_sub	21
	22

bin

Index

 $Subfunction\ of\ bin_metadata()\ for\ expression/positional\ binning$

Description

This function computes a pseudospatial distance between beads that combines spatial distance and distance from the expression space, then using the silhouette score and hierarchical clustering, segregates beads into bins

```
bin(
  dat,
  md,
  k,
  pos = TRUE,
  pos_k = 55,
  ex_k = 1,
  hc_function = "ward.D2",
  plot_directory
)
```

bin_metadata 3

Arguments

dat	data.table of smoothed relative expression intensities
md	data.table of metadata of each bead
k	number of malignant bins to set
pos	TRUE if doing spatial and expressional binning, FALSE if just expressional binning $$
pos_k	positional weight
ex_k	expressional weight
hc_function	hierarchical clustering function
plot_directory	output plot directory path

Value

A data.table of bead metadata combined with bin designations

bin_metadata

Spatio-molecular binning of relative expression intensities

Description

This function combines metadata with binned relative expression intensities

Usage

```
bin_metadata(
  md,
  dat,
  avg_bead_per_bin = 12,
  pos = TRUE,
  pos_k = 55,
  ex_k = 1,
  hc_function = "ward.D2",
  plot_directory
)
```

Arguments

md data.table of metadata of each bead

dat data.table of smoothed relative expression intensities

avg_bead_per_bin

integer of average number of beads there should be per bin

pos TRUE if doing spatial and expressional binning, FALSE if just expressional binning

pos_k positional weight

clone_so

ex_k expressional weight

hc_function hierarchical clustering function plot_directory output plot directory path

Value

A data.table of bead metadata combined with binned expression intensities for all genes for all beads

center_rm

Center expression intensities

Description

Take in a data.table of genomic positions and smoothed expression intensities counts and center by subtracting average intensity across all beads for each gene

Usage

```
center_rm(rm)
```

Arguments

rm

data.table of smoothed expression intensities counts

Value

centered_rm data.table of smoothed, centered expression intensities

clone_so

Add clone information to meta data of seurat object and bin the beads

Description

This function adds another column for cluster designation to a seurat object's meta data and bins beads

Usage

```
clone_so(so, hcl_sub, md, mal = FALSE)
```

Arguments

ı

hcl_sub hierarchical clustering object of cluster assignemnt as outputted from SlideCNA::plot_clones()

md data.table of metadata of each bead mal TRUE if only using malignant beads cnv_heatmap 5

Value

A seurat object updated with clone information

cnv_heatmap

Plot CNV scores on a heat map

Description

This function prepares data for plotting and makes a heat map of CNV scores per bead across all genes

Usage

```
cnv_heatmap(
  cnv_data,
  md,
  chrom_colors,
  hc_function = "ward.D2",
  plot_directory
)
```

Arguments

cnv_data list object of cnv data from SlideCNA::prep_cnv_dat()

md data.table of metadata of each bead

chrom_colors vector of colors labeled by which chromosome they correspond to

hc_function character for which hierarchical clustering function to use

plot_directory output plot directory path

Value

None

dat_to_long

Convert data to long format and add in metadata

Description

This function will create rows for each bead and gene combination, adding in new metadata with bin designations

```
dat_to_long(dat, md)
```

6 find_cluster_markers

Arguments

data.table of smoothed relative expression intensities

md data.table of metadata per bead

Value

A data.table of bead expression intensities per gene with metadata in long format

find_cluster_markers Find and plot top n DEGs per cluster

Description

This function uses Seurat's marker finding capability to find DEGs of each cluster

Usage

```
find_cluster_markers(
    so_clone,
    type,
    logfc.threshold = 0.2,
    min.pct = 0,
    only.pos = TRUE,
    n_markers = 5,
    value = "log2_expr",
    text_size = 16,
    title_size = 18,
    legend_size_pt = 4,
    p_val_thresh = 0.05,
    bin = TRUE,
    plot_directory = None
)
```

Arguments

so_clone seurat object with 'clone' (SlideCNA-designated cluster) and bin annotations

type character string that is 'all' if using malignant and normal clusters and 'malig'

if just using malignant clusters

logfc.threshold

numeric float that is seurat parameter, representing the minimum log2 fold change

for DEGs to be significant

min.pct numeric Seurat function parameter

only.pos TRUE if only using DEGs with positive log2 fold change

n_markers integer of number of top DEGs to plot/use

find_go_terms 7

Value

A list object with cluster marker information markers_clone = data.table of all cluster markers top_markers_clone = data.table of just top cluster markers top_clone_vis = data.frame formatted for plot visualization of top cluster markers

find_go_terms

plot_directory output plot directory path

Find and plot top n GO-enriched terms per cluster

Description

This function utilizes cluster-specific DEGs to identify cluster-specifc GO biological processes and plots these if they occur

Usage

```
find_go_terms(
  cluster_markers_obj,
  type,
  n_terms = 5,
  text_size,
  title_size,
  plot_directory
)
```

Arguments

cluster_markers_obj

list object with cluster marker information

type character string that is 'all' if using malignant and normal clusters and 'malig'

if just using malignant clusters

n_terms integer of number of top DEGs to plot/use

text_size integer of text size for ggplot title_size integer of title size for ggplot plot_directory output plot directory path get_num_clust

Value

A list object with cluster GO term information en_clone = data.table of cluster GO terms top_en_clone = data.table of just top cluster GO terms

get_num_clust

Find optimal number of clusters

Description

This function uses the Silhouette Method applied to CNV scores to determine the best number of clusters to divide the binned beads into

Usage

```
get_num_clust(
  data,
  hc_func = "ward.D2",
  max_k = 10,
  plot = TRUE,
  malig = FALSE,
  k = NA,
  plot_directory
)
```

Arguments

data	cnv_data list object of cnv data from SlideCNA::prep_cnv_dat()
hc_func	character string for which hierarchical clustering function to use
max_k	integer of number max number of clusters to evaluate (2:max_k)
plot	TRUE if plotting silhoutte scores per cluster
malig	TRUE if only using malignant bins and FALSE if using all bins
k	integer of optimal number of clusters, if known, and NA if not known
plot_directory	output plot directory path

Value

An integer representing the number of clusters that optimizes the silhouette score

long_to_bin 9

long_to_bin

Convert to wide bin x genes + metadata format

Description

This function will combine beads into bins, taking the average expression intensities, average positions, most common cluster seurat cluster, and most common cluster/tissue type of constituent beads

Usage

```
long_to_bin(dat_long, plot_directory, spatial = TRUE)
```

Arguments

```
data.table of bead expression intensities per gene with metadata in long format plot_directory output plot directory path spatial True if using spatial information
```

Value

data.table of expression intensities at aggregated bin level

make_seurat_annot

Creation of Seurat object

Description

This function takes in raw counts (and potentially meta data) to make a Seurat object and process it

```
make_seurat_annot(
  cb,
  md = NULL,
  seed_FindClusters = 0,
  seed_RunTSNE = 1,
  seed_RunUMAP = 42
)
```

make_so_bin

Arguments

cb sparse counts matrix (genes x cells/beads)

md data.frame of meta data for cells/beads if specific annotations known

 ${\sf seed_FindClusters}$

seed number for FindCLusters

seed_RunTSNE seed number for RunTSNE seed_RunUMAP seed number for RunUMAP

Value

A Seurat object with specific Seurat features run

make_so_bin Make a binned version of a Seurat object

Description

Aggregate Seurat object counts by bin to create a new Seurat object with binned beads as units instead of beads

Usage

```
make_so_bin(so, md, hcl_sub, mal = FALSE)
```

Arguments

so Seurat object of beads and their meta data md data.frame of metadata for Seurat object

hcl_sub hierarchical clustering object of cluster assignemnt as outputted from SlideCNA::plot_clones()

mal TRUE if using malignant beads only

Value

A Seurat object with binned beads as units and corresponding binned metadata

mean_cnv_plot 11

 ${\tt mean_cnv_plot}$

Plot mean CNV scores per bin and per chromosome

Description

This function colors and plots each bin by its mean CNV score on spatial coordinates for each chromosome

Usage

```
mean_cnv_plot(
   cnv_data,
   text_size,
   title_size,
   legend_height_bar,
   plot_directory
)
```

Arguments

```
cnv_data list object of cnv data from SlideCNA::prep_cnv_dat()
text_size integer of text size for ggplot
title_size integer of title size for ggplot
legend_height_bar
integer of bar height of legend for ggplot
plot_directory output plot directory path
```

Value

None

mode

Subfunction of long_to_bin() that finds mode of vector/column

Description

This function finds the mode of a vector

Usage

mode(x)

Arguments

Х

vector (column in data.table) to calculate the mode from

plot_clones

Value

mode of the vector

plot_clones

Plot cluster/clone information

Description

This function plots cluster dendrograms, spatial assignment, and the CNV heat map

Usage

```
plot_clones(
   cnv_data,
   md,
   k,
   type,
   chrom_colors,
   text_size,
   title_size,
   legend_size_pt,
   legend_height_bar,
   hc_function = "ward.D2",
   plot_directory,
   spatial = TRUE
)
```

Arguments

cnv_data list object of cnv data from SlideCNA::prep_cnv_dat()

md data.table of metadata of each bead k integer of number of clusters/clones

type character string, being "all" if using all binned beads, or "malig" if just malignant

binned beads

chrom_colors vector of colors labeled by which chromosome they correspond to

Ggplot2 legend_height_bar

hc_function character string for which hierarchical clustering function to use

plot_directory output plot directory path

spatial TRUE if using spatial information

prep 13

Value

A hierarchical clustering object of the clusters

prep Infercny-based preparation of relative gene expression intensities

Description

This function takes in a data table of raw counts and a vector of reference/normal beads to normalize counts and adjust for reference expression.

Usage

```
prep(so, normal_beads, gene_pos, chrom_ord, logTPM = FALSE)
```

Arguments

so Seurat object of Slide-seq data with raw counts

normal_beads vector of names of normal beads

gene_pos data.table with columns for GENE, chr, start, end, rel_gene_pos (1 : # of genes

on chromosome)

chrom_ord vector of the names of chromosomes in order logTPM TRUE if performing adjustment with logTPM

Value

A data.table of normalized, capped, and ref-adjusted counts with genomic psoition info

prep_cnv_dat Prepare data for CNV heat map

Description

This function caps CNV scores, adds annotation columns for plotting, performs hierarchical clustering of bins based on similar CNV score, and plots nUMI per bin

```
prep_cnv_dat(
  dat_bin,
  lower = 0.6,
  upper = 1.4,
  hc_function = "ward.D2",
  plot_directory
)
```

14 quantile_plot

Arguments

data_bin data.table of CNV scores per bin

lower numeric float to represent the lower cap for CNV scores

upper numeric float to represent the upper cap for CNV scores

hc_function character for which hierarchical clustering function to use

plot_directory output plot directory path

Value

A list object for downstream cnv plotting and analysis all = data.table of CNV scores of all bins x (metadata + genes) malig = data.table of CNV scores of just malignant bins x (metadata + genes) all_wide = data.frame in wide format of CNV scores of all bins x (metadata + genes) malig_wide = data.frame in wide format of CNV scores of just malignant bins x (metadata + genes) hcl = hclust object that describes the hierarchical clustering for malignant bins hcl_all = hclust object that describes the hierarchical clustering for all bins

quantile_plot

Plot CNV score quantiles per bin and per chromosome

Description

This function colors and plots each bin by its CNV score quantiles (min, 1st quartile, median, 3rd quartile, max) on spatial coordinates for each chromosome

Usage

```
quantile_plot(
  cnv_data,
  cluster_label = "seurat_clusters",
  text_size,
  title_size,
  legend_height_bar,
  plot_directory
)
```

Arguments

```
cnv_data list object of cnv data from SlideCNA::prep_cnv_dat()
cluster_label character string of which column name to keep
text_size integer of text size for ggplot
title_size integer of title size for ggplot
legend_height_bar
integer of bar height of legend for ggplot
plot_directory output plot directory path
```

ref_adj

Value

None

ref_adj

Adjust for Reference (Normal) Beads

Description

Take in a data.table of genomic positions and smoothed, centered expression intensities counts and adjust for reference beads by subtracting average intensities of reference beads for each gene. This is the second reference adjustment.

Usage

```
ref_adj(centered_rm, normal_beads)
```

Arguments

centered_rm data.table of smoothed, centered expression intensities counts

normal_beads vector of names of normal beads

Value

rm_adj data.table of smoothed relative expression intensities

run_enrichr

Subfunction to get significantly enriched GO terms given a set of signficant beads and genes

Description

This function finds the GO biological processes associated with the top n genes using enrichR

Usage

```
run_enrichr(genes, n_genes)
```

Arguments

genes vector of differentially expressed genes

n_genes number of the most significantly enriched DEGs to base gene enrichment from

Value

A data.table of the most significant GO terms and their meta data

16 run_slide_cna

run_slide_cna

Run SlideCNA workflow

Description

Take a raw expression counts, cell type annotations, and positional cooridnates to identify CNA patterns across space and CNA-based clustering patterns

```
run_slide_cna(
  counts,
 beads_df,
 gene_pos,
  output_directory,
  plot_directory,
  spatial = TRUE,
  roll_mean_window = 101,
  avg_bead_per_bin = 12,
  pos = TRUE,
  pos_k = 55,
 ex_k = 1,
  hc_function_bin = "ward.D2",
  spatial_vars_to_plot = c("seurat_clusters", "bin_all", "N_bin", "umi_bin",
    "cluster_type"),
  scale_bin_thresh_hard = TRUE,
  lower_bound_cnv = 0.6,
  upper_bound_cnv = 1.4,
  hc_function_cnv = "ward.D2",
 hc\_function\_cnv\_heatmap = "ward.D2",
 quantile_plot_cluster_label = "seurat_clusters",
 hc_function_silhouette = "ward.D2",
 \max_{k} silhouette = 10,
 plot_silhouette = TRUE,
  hc_function_plot_clones = "ward.D2",
  use\_GO\_terms = TRUE,
 chrom_ord = c("chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8", "chr9",
  "chr10", "chr11", "chr12", "chr13", "chr14", "chr15", "chr16", "chr17", "chr18",
    "chr19", "chr20", "chr21", "chr22", "chr23", "chrX", "chrY", "chrM"),
  chrom_colors = c(chr1 = "#8DD3C7", chr2 = "#FFFFB3", chr3 = "#BEBADA", chr4 =
  "#FB8072", chr5 = "#80B1D3", chr6 = "#FDB462", chr7 = "#B3DE69", chr8 = "#FCCDE5",
  chr9 = "#D9D9D9", chr10 = "#BC80BD", chr11 = "#CCEBC5", chr12 = "#FFED6F", chr13 =
    "#1B9E77", chr14 = "#D95F02", chr15 = "#7570B3", chr16 = "#E7298A", chr17 =
    "#66A61E", chr18 = "#E6AB02", chr19 = "#A6761D", chr20 = "#666666", chr21 =
    "#A6CEE3", chr22 = "#1F78B4", chrX = "#B2DF8A"),
  text_size = 16,
  title_size = 18,
```

run_slide_cna 17

```
legend_size_pt = 4,
legend_height_bar = 1.5
)
```

Arguments

counts data.frame of raw counts (genes x beads)

beads_df data.frame of annotation of each bead (beads x annotations); contains columns

'bc' for bead names, 'cluster_type' for annotations of 'Normal' or 'Malignant', 'pos_x' for x-coordinate bead positions, and 'pos_y' for y-coordinate bead po-

sitions

gene_pos data.frame with columns for GENE, chr, start, end, rel_gene_pos (1 : # of genes

on chromosome)

output_directory

output directory path

plot_directory output plot directory path

spatial TRUE if using spatial information FALSE if not

roll_mean_window

integer number of adjacent genes for which to average over in pyramidal weight-

ing scheme

avg_bead_per_bin

integer of average number of beads there should be per bin

pos TRUE if doing spatial and expressional binning, FALSE if just expressional

binning

pos_k positional weight

hc_function_bin

ex_k

hierarchical clustering function for binning; to feed hclust's method argument, one of "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "me-

dian" or "centroid"

expressional weight

spatial_vars_to_plot

character vector of features to plot/columns of metadata

scale_bin_thresh_hard

TRUE if using strict thresholds for expression thresholds and FALSE if adjusting thresholds based on 1 + or - the mean of absolute min and max values

lower_bound_cnv

numeric float to represent the lower cap for CNV scores

upper_bound_cnv

numeric float to represent the upper cap for CNV scores

hc_function_cnv

character for which hierarchical clustering function to use for CNV-calling; to feed hclust's method argument, one of "ward.D", "ward.D2", "single", "com-

plete", "average", "mcquitty", "median" or "centroid"

18 scalefit

hc_function_cnv_heatmap

character for which hierarchical clustering function to use for visualzing CNV heat map; to feed helust's method argument, one of "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid"

quantile_plot_cluster_label

character string of which column name to keep in quantile plot

hc_function_silhouette

character string for which hierarchical clustering function to use for the Silhouette method; to feed hclust's method argument, one of "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid"

 $max_k_silhouette$

integer of number max number of clusters to evaluate (2: \max_k _silhouette) . in Silhouette method

plot_silhouette

TRUE if plotting silhouette scores for clustering

hc_function_plot_clones

character string for which hierarchical clustering function to use in plotting

clones

use_GO_terms TRUE if using enrichR to get Gene Ontology terms for SlideCNA-defined clus-

ters

chrom_ord character vector of order and names of chromosomes

chrom_colors character vector of which colors each chromosome should be in heat map

text_size integer of size of text in some ggplots title_size integer of size of title in some ggplots

legend_size_pt integer of size of legend text size in some ggplots

legend_height_bar

integer of height of legend bar in some ggplots

Value

None

scalefit	Subfunction for scale_nUMI that normalizes a given bin for UMI
	count and centers the mean CNV score at 1

Description

This function re-scales expression intensities to be in a smaller range, normalizes for nUMI per bin, and centers the CNV scores to have a mean of 1

```
scalefit(obj, nbin, start, end)
```

scale_nUMI 19

Arguments

1 .	1 11	C 1	•	• . • . •	
Ohi	data tahla	of relative	avnraccion.	intencifies:	ner hin
obi	uata.tabic	of relative	CADICSSIUII	michistics	

nbin nUMIs in that specific bin start lower bound of CNV scores end upper bound of CNV scores

Value

vector of adjusted CNV scores for that bins with nbin number of nUMIs within the range (inclusive) of start to end

scale_nUMI	Scale for nUMI (UMI Count) to generate CNV scores
------------	---

Description

This function re-scales expression intensities to be in a smaller range, normalizes for nUMI per bin, and subtracts reference bead signal

Usage

```
scale_nUMI(dat_bin, thresh_hard = FALSE)
```

Arguments

data.table of relative expression intensities per bin

thresh_hard TRUE if using strict thresholds for expression thresholds and FALSE if adjusting

thresholds based on 1 + or - the mean of absolute min and max values

Value

data.table of CNV scores per bin

20 weight_rollmean

SpatialPlot

Spatial plots of meta data

Description

This function will plot information about beads and bins on x and y coordinates

Usage

```
SpatialPlot(
  dat_long,
  vars = NULL,
  text_size,
  title_size,
  legend_size_pt,
  legend_height_bar,
  plot_directory
)
```

Arguments

```
data.table of bead expression intensities per gene with metadata in long format vars character vector of features to plot/columns of metadata

text_size Ggplot2 text size

title_size Ggplot2 title size

legend_size_pt Ggplot2 legend_size_pt

legend_height_bar

Ggplot2 legend_height_bar

plot_directory output plot directory path
```

Value

None

weight_rollmean

Expressional smoothing along a chromosome using a weighted pyramidal moving average

Description

Take in a data.table of genomic positions and bead normalized/modified counts and apply pyramidal weighting with a window size k to create smoothed expression intensities

weight_rollmean_sub 21

Usage

```
weight_rollmean(dat, k = 101)
```

Arguments

dat data.table of normalized/adjusted counts

k size of window for weighting

Value

A data.table of expression intensities

 $weight_rollmean_sub \qquad \textit{Subfunction of weight_rollmean}$

Description

Take in a counts matrix and apply pyramidal weighting with a window size k to create smoothed expression intensities

Usage

```
weight_rollmean_sub(mat, k)
```

Arguments

matrix of normalized/adjusted counts

k size of window for weighting

Value

A matrix of smoothed counts

Index

```
bin, 2
bin_metadata, 3
center_rm, 4
clone_so, 4
cnv_heatmap, 5
dat_to_long, 5
find_cluster_markers, 6
find_go_terms, 7
get_num_clust, 8
long_to_bin, 9
make\_seurat\_annot, 9
make_so_bin, 10
mean_cnv_plot, 11
mode, 11
\verb|plot_clones|, 12|
prep, 13
prep_cnv_dat, 13
quantile_plot, 14
ref_adj, 15
run_enrichr, 15
\verb"run_slide_cna", 16"
scale_nUMI, 19
scalefit, 18
{\tt SpatialPlot}, \textcolor{red}{20}
weight_rollmean, 20
weight\_rollmean\_sub, \textcolor{red}{21}
```