Notes on the Second Borel-Cantelli lemma

Lu Jiaxin Student ID: 518030910412

March 24, 2020

Theorem 1. Let $(y_n)_{n\in\mathbb{N}}$ be a sequence of reals from [0,1] such that $\sum_{n\in\mathbb{N}} y_n = \infty$. Show that $\prod_{n\in\mathbb{N}} (1-y_n) = 0$.

Fact 2. $\log(1-x) \le -x \text{ for all } 0 \le x \le 1.$

Proof. From Fact 2 we have,

$$\log(\prod_{n\in\mathbb{N}}(1-y_n)) = \sum_{n\in\mathbb{N}}\log(1-y_n)$$

$$\leq -\sum_{n\in\mathbb{N}}y_n$$

Thus,

$$\prod_{n \in \mathbb{N}} (1 - y_n) = \exp(-\sum_{n \in \mathbb{N}} y_n)$$
$$= 0$$

By using Theorem 1, we can prove the second Borel-Cantelli lemma (BC2).

Theorem 3 (Second Borel-Cantelli lemma). Let (E_n) be a sequence of events in a probability space (Ω, \mathcal{F}, P) . If the events E_n are pairwisely independent, then $\sum_{n \in \mathbb{N}} P(E_n) = \infty$ implies that $P(\limsup_{n \to \infty} E_n) = 1$.

Proof. Let $A = \limsup_{n \to \infty} E_n$. We shall prove that $P(A^C) = 0$. Let $B_i = \bigcap_{n=i}^{\infty} E_n^C$. Then $A^C = \bigcup_{i=1}^{\infty} B_i$. So, we shall prove that $P(B_i) = 0$ for all i. Now, for each i and k > i,

$$P(B_i) = P(\bigcap_{n=i}^{\infty} E_n^C)$$

$$\leq P(\bigcap_{n=i}^k E_n^C) = \prod_{n=i}^k [1 - P(E_n)]$$

Use Theorem 1, we can derive,

$$P(B_i) = \prod_{n=i}^{k} [1 - P(E_n)] = 0$$

Thus, $P(B_i) = 0$ for all $i \in \mathbb{N}$.

Comparing two Borel–Cantelli lemmas(BC1 and BC2), we find that for a sequence of pairwisely independent events (E_n) , we either have $P(\limsup_{n\to\infty} E_n)=0$ or $P(\limsup_{n\to\infty} E_n)=1$, depending on $\sum_{n\in\mathbb{N}} P(E_n)$. From materials I found, this is known as **Zero-one law**, which is widely used in probability theory.