

2. $a_1(x,u) \partial_{x_1} u + \dots + a_n(x,u) \partial_{x_n} u = f(x,u)$ $el\ campo\ v = (a_1, ..., a_n, f)$ sobre $\mathbb{R}^n \times \mathbb{R}$ es tangente a las gráficas (x, u(x)) de soluciones.

3. en general, $F(x, u, \nabla u) = 0$,

Consideramos $J^1 = \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \ni (x,y,p)$ (el espacio de 1 – chorros) *F(x,y,p) = 0 define una hiper superficie $\Sigma \subset J^1$

* buscamos una función $u: \mathbb{R}^n \to \mathbb{R}$ cuyo 'ascensor' $(x, u(x), \nabla_x u) \subset J^1$ queda en Σ

* cada ascensor de un función es tangente a los 'planos de contacto': $\alpha = dy - p \cdot dx = 0$ * contrues un campo de lineas (dirreciones de características) sobre Σ por :

-intersecarse el plano tangente a Σ con el plano contacto para obtener $\pi \subset T\Sigma$ -tomas el complemento ortogonal a π con respeto a $d\alpha|_{T\Sigma}$

 $\dot{x} = F_p , \dot{y} = p \cdot F_p , \dot{p} = -(F_x + pF_y)$ * para edp de primer orden que no depende de u, F(x,p) = 0, las caracteristicas

El campo vectorial sobre $\Sigma \subset J^1$ que da estas características tiene expresión :

 $\dot{x} = F_p, \ \dot{p} = -F_x.$

para x,p son las ecuaciones de Hamilton:

