Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Biomarker estimation from medical images: segmentation-based and segmentation-free approaches

Jing ZHANG (张 晶)

LITIS, INSA de Rouen, 06-04-2022

Jury members PR de l' Université Evry Val Essonne

M. Désiré SIDIBÉ M. Aymeric HISTACE Mme Mireille GARREAU Mme Caroline PETITJEAN Mme Samia AINOUZ

PR de l' ENSEA, Cergy PR de l' Université de Rennes I

PR de l' Université de Rouen Normandie PR de l' INSA Rouen Normandie Rapporteur Rapporteur Examinatrice

Codirectrice de thèse Directrice de thèse

Jing ZHANG LITIS, INSA de Rouen

Introductio

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Biomarker

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Biomarker

Jing ZHANG LITIS, INSA de Rouen

Introductio

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Generally...

How to measure a biomarker?

Jing ZHANG LITIS. INSA de Rouen

Kappa loss

HC estimation HC estimation Explainability

Cardiac volume

Conclusions

Biomarker identification examples

Image credit: 1. https://challenge2018.isic-archive.com/; 2. https://hc18.grand-challenge.org/;

Jing ZHANG LITIS, INSA de Rouen

Introductio

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Problems

Segmentation: (2) Intermediate step, prone to errors

Dice loss in Deep learning: © Does not generalize well

Jing ZHANG LITIS, INSA de Rouen

Introductio

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Very recently...

Direct estimation methods:

- Without segmentation intervention
- Less explainable

Jing ZHANG LITIS, INSA de Rouen

meroducere

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Contributions

Biomarker estimation:

- Segmentation-based -----New Kappa loss function
- > Segmentation-free (novel)-----
 - ② Direct biomarker estimation without segmentation
 - 3 Explainability of segmentation-free models

meroducer

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

- Kappa loss for skin lesion segmentation [Chapter 3]
- 3 Direct fetus head circumference estimation [Chapter 4]
 - ➤ HC estimation via Seg vs. Seg-free
 - ➤ Explainability for regression CNN
- 4 Direct cardiac structure volume prediction [Chapter 5]
- **5** Conclusions and Perspectives [Chapter 6]

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Kappa loss for skin lesion segmentation in fully convolutional network

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Deep segmentation models

- U-Net¹
- FCN 2
- V-Net 3 · · ·

input output segmentation output segmentation

U-Net architecture²

Background

- Loss functions
 - Region-based: Dice loss³
 - Cross entropy⁴
 - Distance-based loss
 - Hybrid loss

Losses overview⁵

1.Ronneberger et al., 2015; 2.Long et al., 2015; 3.Milletari et al., 2016; 4.Cox, 1959; 5.Ma et al., 2021

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Class imbalance problem

Dice metric =
$$\frac{2 * |A \cap B|}{A \cup B}$$
 (1)

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Problem: When classes are balanced

Dice loss =
$$1 - \frac{2\sum_{i=1}^{N} p_i g_i}{\sum_{i=1}^{N} (p_i + g_i)}$$
 (2)

Background is discarded in Dice loss!

 p_i : probability of predicted pixels;

 g_i : ground truth pixels.

Cardiac volume

Conclusions

Kappa index

☐ Kappa index (Cohen, 1960): the agreement between two raters.

		GT	GT (Rater 1)		
		+	+ -		
Predicted	+	а	Ь	a+b	
results	-	С	d	c + d	
(Rater 2)	Total	a + c	b+d	Ν	

$$\kappa = \frac{2(ad - bc)}{(a+b)(b+d) + (a+c)(c+d)}$$
(3)

When $d \gg (a; b; c)$, Eq (3) becomes:

$$\lim_{d\to\infty}\kappa=\frac{2\mathsf{a}}{2\mathsf{a}+\mathsf{b}+\mathsf{c}}\to\mathsf{Dice}$$

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Proposed Kappa loss

Proposed Kappa loss:

Kappa loss =
$$1 - \frac{2\sum_{i=1}^{N} p_{i}g_{i} - \sum_{i=1}^{N} p_{i} \cdot \sum_{i=1}^{N} g_{i}/N}{\sum_{i=1}^{N} p_{i} + \sum_{i=1}^{N} g_{i} - 2\sum_{i=1}^{N} p_{i}g_{i}/N}$$
(4)

- ✗ Dice loss ignores the background pixels.
- Kappa loss considers all pixels.
- Kappa loss is generalization of Dice loss.

p_i: probability of predicted pixels;

gi: ground truth pixels;

N: the number of pixels.

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Experimental results

Datasets: Skin lesion (6), data augmentation

Segmentation Model: U-Net, train from scratch

Loss functions: Dice loss; Kappa loss

Evaluation metrics: Dice index ↑; Hausdorff distance ↓

	Dice loss		Kappa loss		
dataset(#)	DI ↑	HD ↓	DI ↑	HD ↓	
Non-mel(87)†	$0.65{\pm}0.11$	5.06±1.79	0.73 ± 0.11	4.70±2.02	
Mel(119)†	0.80 ± 0.06	6.70 ± 1.93	$0.81 {\pm} 0.03$	$6.59{\pm}1.88$	
SCD(206)†	0.82 ± 0.04	7.94 ± 1.72	0.83 ± 0.03	7.91 ± 1.68	
ISIC-16(900)❖	$0.80 {\pm} 0.05$	8.42±2.19	$0.84 {\pm} 0.01$	$8.41{\pm}2.25$	
ISIC-17(2000) �	$0.80 {\pm} 0.05$	$8.07{\pm}1.93$	$0.84 {\pm} 0.05$	$8.03{\pm}1.94$	
ISIC-18(2594) �	0.81 ± 0.03	$7.59{\pm}2.60$	$0.82 {\pm} 0.04$	7.52 ± 2.66	

- ✓ Kappa loss > Dice loss
 - Input data & scale
- † Skin-Cancer-Detection (SCD, Non-mel, Mel):

https://uwaterloo.ca/vision-image-processing-lab/research-demos/skin-cancer-detection
International Skin Imaging Collaboration (ISIC):

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Learning curve

Loss curve (left) and Dice index (right) of training process:

- ☐ Convergence: Kappa loss (green) > Dice loss (red);
- ☐ Dice index: Kappa loss (green) > Dice loss (red).

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Qualitative results

X Dice loss: Defects/holes in the skin lesion.

✓ Kappa loss: Less segmentation error.

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Summary of Kappa loss

- Takes into account all the pixels → more accurate.
- ☐ Kappa loss is generalization of Dice loss.
- \square Performs as good as Dice loss \rightarrow background information.
- ☐ Segmentation results as prerequisite for biomarker identification → direct estimation.

Image credit: https://doi.org/10.1007/s11063-020-10364-y

• https://github.com/jizhang02/Kappa-loss

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

HC estimation Explainability

Cardiac volume

Conclusions

Direct fetus head circumference (HC) estimation from ultrasound images

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Related works

➤ HC measurements → **Segmentation**(State-of-the-art):

- ✓ Pros: Have segmentation results, explainable.
- ✗ Cons: Multi steps(Seg+ellipse fitting), prone to errors.
- ➤ Direct measurements → Regression methods:
 - Head pose, facial landmark (Riegler et al., 2013)
 - Left ventricular volumes prediction (Luo et al., 2016)
 - Kidney volume prediction (Hussain et al., 2016)
 - Brain age (Li et al., 2018)

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

HC estimation Explainability

Cardiac volume

Conclusions

Proposed Regression CNN

Benefits of proposed method:

- ➤ Doesn't need ground truth images, no segmentation errors.
 - ➤ Can estimate the HC value directly.

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

HC estimation Explainability

Cardiac volume

Conclusions

Proposed regression CNN

- **2 changes** from classification CNN to regression CNN model:
 - Softmax layer → Linear regression layer
 - Classification loss → Regression loss

$$- MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - g_i|$$

$$- MSE = \frac{1}{n} \sum_{i=1}^{n} (p_i - g_i)^2$$

$$- HL^* = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (p_i - g_i)^2, & \text{for } |p_i - g_i| < \delta \\ \frac{1}{n} \sum_{i=1}^{n} \delta * (|p_i - g_i| - \frac{\delta}{2}), & \text{otherwise} \end{cases}$$

*HL: Huber Loss;

 $p_i = \text{predicted values};$

 $g_i = ground truth values$

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

HC estimation

Explainability

Cardiac volume

Conclusions

Experiment protocol

Models

- Segmentation models+CNN backbones, Dice loss
- Regression models+CNN backbones, MAE, MSE, HL loss
- Transfer learning: pretrained on ImageNet[†], fine-tuned on HC18.

Settings

- HC18[‡] dataset, 5-fold cross validation
- Preprocessing: Data augmentation, Normalization, Resizing
- Metrics: MAE, percentage of MAE (PMAE)

[†] https://www.image-net.org/

[‡] https://hc18.grand-challenge.org/

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

HC estimation Explainability

Cardiac volume

Conclusions

Model performance: Seg-based vs. Seg-free

Metrics	MAE(mm)	MAE(px)	PMAE(%)		
Methods	Segmentation-based methods				
U-Net-B2	$1.08{\pm}1.25$	7.87 ± 7.51	$0.65{\pm}0.68$		
LinkNet-B2	$1.15{\pm}1.32$	8.45 ± 8.39	$0.69 {\pm} 0.77$		
	Segmentation-free methods (Our methods)				
Reg-B3-L1	1.83 ± 2.11	13.57 ± 13.53	$1.17{\pm}1.43$		
Reg-B3-L2	$2.35{\pm}2.74$	17.32 ± 17.95	1.53 ± 2.02		

- ➤ Prediction error:
 - Seg-free > Seg-based methods
- Same order of magnitude
- \odot Seg-based & Seg-free methods \ll inter-operator variability (± 12 mm, Sarris et al., 2012).

B2: ResNet50; B3: EfficientNet; L1: MAE loss; L2: MSE loss

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

HC estimation Explainability

Cardiac volume

Conclusions

Qualitative analysis: Seg-based vs. Seg-free

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

Explainability

Cardiac volume

Conclusions

Computation efficiency: Seg-based vs. Seg-free

Methods	Train (s/epoch)	Predict (s/test set)	Mem-M (GB)	Mem-P (GB)		
Segmentation-based methods						
U-Net-B2	29	68.26	3.06	1.84		
LinkNet-B2	30	80.36	3.82	1.90		
	Segmenta	tion-free metho	ds (Our methods)			
Reg-B2-L1	20	48.28	2.31	1.73		
Reg-B3-L1	38	36.95	2.29	2.68		

♡ Time: Seg-based > Seg-free methods

(2) Memory: Seg-based > Seg-free methods

B2: ResNet50; B3: EfficientNet; L1: MAE loss; M: Model memory; P: Practical memory

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

HC estimation Explainability

Cardiac volume

Conclusions

Summary of HC estimation

- □ Proposing regression CNN model → directly estimate the HC value without segmentation intervention.
- ☐ Evaluating Seg-based vs. Seg-free methods fairly.
- ☐ Trade off between prediction error and computation efficiency.
- ☐ Limitation: Less explainable.

Montréal 2020 [Journal of Imaging '22]

https://github.com/jizhang02/HC-reg-seg

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

Explainability

Cardiac volume

Conclusions

Explainability for regression CNN

Saliency maps: Highlight features that model learns from images

- Verify prediction results
- ➤ Find out flaws and biases

Jing ZHANG LITIS. INSA de Rouen

Introduction

Kappa loss

HC estimation HC estimation Explainability

Cardiac volume

Conclusions

Saliency maps of classification modelst.

Explanation methods:

Gradient

- Gradient¹
- SmoothGrad²
- Input*Gradient³

DeConvNet⁵

- Integrated Gradients⁴

Deconvolution

Guided BackProp⁶

LRP var.

- I RP⁷
- DeepTayor⁸

Which method is suitable?

tlmage credit: https://github.com/albermax/innvestigate 1.Simonyan et al., 2014; 2.Smilkov et al., 2017; 3.Shrikumar et al., 2016; 4.Sundararajan et al., 2017; 5.Zeiler et al., 2014; 6.Springenberg et al., 2015; 7. Layer-wise Relevance Propagation, Back et al., 2015; 8.Montavon et al., 2017 4 田 N 4 間 N 4 意 P 4 意 P

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

Explainability

Cardiac volume

Conclusions

Saliency maps on regression CNN

Saliency maps on regression VGG16

② No effective features are retrieved by DeConvNet and Gradient.
P:predicted HC value, T: ground truth HC value (in pixels).

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Saliency maps on regression CNN

Saliency maps on regression ResNet50

- DeConvNet and Gradient are insensitive to the models.
- ② Quantitative criteria is needed.

P:predicted HC value, T: ground truth HC value (in pixels).

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

Explainability

Cardiac volume

Conclusions

Quantitative evaluation method

Perturbation-based evaluation:

► Adding noise according to importance rank of saliency map

Perturbation process

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

Explainability

Cardiac volume

Conclusions

Quantitative evaluation method

Area over Perturbation Curve (AOPC) (Samek et al., 2017)

➡ Difference of accuracy with/without perturbation in Classification

Adapted for **Regression** (Accuracy \rightarrow Error $\epsilon(x_n)$)

$$AOPC_{Analyzer}^{regression} = \frac{1}{N} \sum_{n=0}^{N} (\epsilon(\mathbf{x}_n)^{(0)} - \frac{1}{K} \sum_{k=0}^{K} \epsilon(\mathbf{x}_n)^{(k)})$$
 (5)

 ${\it N}$ is the number of images, ${\it K}$ is the number of perturbation steps, ϵ is prediction error.

AOPC score:

- † Models: Sensitive to perturbation
- † Explanation method: Ability to capture highlight features

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Quantitative evaluation result

AOPC score of different explanation methods after perturbation

Model G	SG	DCN	DT	GB	I*G	IG	LRP
Reg_VGG -7.	.31 -7.39	-2.87	-7.40	-1.66	-9.19	-9.49	-9.17
Reg_ResN -1	1.53 -11.8	34 -9.25	-9.89	-9.72	-14.75	-5.60	-14.58

Note: G: Gradient, SG: SmoothGrad, DCN: DeConvNet, DT: DeepTaylor, GB: GuidedBackprop, I*G: Input*Gradient, IG: IntegratedGradients. Lower is better. Best scores in bold.

AOPC score:

- © I*G and LRP explanation methods are better
- © Regression ResNet > Regression VGG

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation

Explainability

Cardiac volume

Conclusions

Model's explainability Validation

Saliency maps for good prediction results on two models

Input image Reg-VGG16 Reg-ResNet50 P and T: predicted and ground truth HC values (pixels).

- Input*Gradient method
- Prediction results: **Explainable**
- Reg-ResNet > Reg-VGG

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Model's explainability Validation

Saliency maps for bad prediction results on two models

- Input*Gradient method
- Flaws and biases

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Summary of Explainability

- ☐ Using post-hoc explanation techniques to valid the explainability of regression CNN.
- Evaluating explanation methods through saliency maps and perturbation based methods.
- ☐ Extending model type from **classification** to **regression**.

Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2020

• https://github.com/jizhang02/XAI-reg

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Direct cardiac multi-structure volume prediction from 3D MRI images

Cardiac structure

RV: Right Ventricle

MYO: Myocardium

LV: Left Ventricle

ESV: End Systole Volume

EDV: End Diastole Volume

Ejection fraction = $\frac{\text{EDV-ESV}}{\text{EDV}} * 100$

Image credit: https://doi.org/10.1186/1532-429X-13-36

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Methodology

Goal

Predict the volume of cardiac structures directly without segmentation.

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

ACDC dataset*

Preprocessing

- Slice unifying (9)
- Slice cropping (100*100)
- Data augmentation

1 001_11101_0

crpped_P001_fm01

➤ Dataset: 182 subjects

NOR			
MINF			
нсм	Train(100)	Valid(3	2) Test(50)
DCM			
RV			

➤ Ground truth: volume of RV, MYO, LV (ml)

Volume =
$$\sum_{i}^{N} S_{i} * px_{x} * px_{y} * px_{z}/1000$$
 (6)

S: Area of cardiac structure; N: Number of cardiac slices; px: pixelsize in x,y,z

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Experimental results

Data: MRI cardiac

Model: ① Reg_VGG;

② Reg_ResNet;

③ Reg_efn*

Results: 5-fold cross validation

Loss: MAE loss

■ Metrics: MAE ↓; PMAE ↓

Prediction error of 3 cardiac structures on regression CNNs:

	RV		M'	Y0	LV		
	MAE(ml)	PMAE(%)	MAE(ml)	PMAE(%)	MAE(ml)	PMAE(%)	
1	50.51±39.81	65.64±92.96	41.58±34.38	36.43±37.59	35.29±29.49	40.20±52.63	
2	$43.11 {\pm} 36.57$	51.63 ± 69.46	36.98±29.25	$31.96{\pm}29.44$	33.19±26.48	39.09±47.45	
3	49.55±40.88	60.76±83.83	36.70±32.26	33.50 ± 36.88	33.51±26.93	39.78±52.15	

- ➤ Reg_ResNet > Reg_ VGG, Reg_efn
- ➤ RV is difficult to predict

^{*} EfficientNet, Tan et al. 2019

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Experimental results

Prediction error of LV and comparison to SotA:

	PMAE(%)							
Segmentation-free								
Reg_ResNet	33.19 ± 26.48	39.09±47.45						
Luo (2020a)	7.55 ± 4.5	_						
Luo (2020b)	5.1 ± 3.2	_						
Zhen (2016)	12.5 ± 8.4	_						
	Segmentation-based							
Zheng (2018)	12±9.1	_						
Vigneault (2018)	11.1 ± 5.3	_						
Liao (2017)	$12.85 {\pm} 9.55$	_						
Ngo (2017)	$16.95{\pm}12$	_						
Avendi (2017)	$18.35 {\pm} 18.6$	_						

- (2) Improvement room is left
- (2) Results are not so comparable

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Discussion

- ➤ Regression CNN model, over-fitting
- ➤ Low SNR in cardiac images.
- ➤ The cardiac slices may influence the model's prediction

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Summary

- ☐ Estimating cardiac structure volume directly.
- ☐ Extending image modality and prediction targets.
- ☐ Experimental results have room for improvement.

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Conclusions of thesis

New loss:

- Kappa loss
- ✓ Generalization of Dice loss
- ✓ Class imbalance & balance problem

Biomarker estimation:

- ✓ Regression CNN—Segmentation-free
- ✓ Head circumference: Seg vs. Seg-free
- Cardiac structure volume

Model's explainability:

- Saliency maps on regression CNNs

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Perspectives

Kappa loss—Segmentation

- Verify on more medical datasets
- Split dataset according to size of target

Biomarker estimation: Regression CNN—Segmentation-free

- Verify other biomarkers
- Multi-task learning
- Attention mechanisms
- Geometric deep learning

Model's explainability:

- Self explainable
- Applicable in clinical application

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

The end

Thank you for your attention!

Acknowledgment:

- € China Scholarship Council (CSC)
- Centre Régional Informatique et d'Applications Numériques de Normandie (CRIANN)

Interpretable and Explainable

Ref: https://towardsdatascience.com/interperable-vs-explainable-machine-learning-1fa525e12f48

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Additional info

AOPC score of different losses:

Table A.1 – Performance (AOPC scores) of different explanation methods after perturbation, with two regression models and three loss functions. G: Gradient, SG: SmoothGrad, DCN: DeConvNet, DT: DeepTaylor, GB: GuidedBackprop, I*G: Input*Gradient, IG: IntegratedGradients. Lower is better. Best scores in bold.

Model	G	SG	DCN	DT	GB	I*G	IG	LRP
RegVGG MAE	-7.31	-7.39	-2.87	-7.40	-1.66	-9.19	-9.49	-9.17
RegVGG MSE	-7.80	-7.18	-5.36	-9.10	-2.99	-14.57	N/A	-14.46
RegVGG_HL	-23.39	-21.63	-24.59	-27.78	-18.86	-29.47	N/A	-29.27
RegResNet MAE	-11.53	-11.84	-9.25	-9.89	-9.72	-14.75	-5.60	-14.58
RegResNet MSE	-11.31	N/A	-11.18	-19.41	N/A	-32.48	-20.49	-32.51
RegResNet HL	-24.17	-24.27	N/A	-22.66	-28.42	-37.12	-22.81	-38.12

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Additional info

AOPC score of different losses on cardiac structure volume:

Table 5.4 – Prediction error on volume of 3 cardiac structures using regression CNN models with 3 different loss functions, MAE loss, MSE loss and Huber loss (HL). The 3 CNN backbones are VGG16, ResNetV2, EfficientNetb2 (efn). The models are trained on 2900 training images. The results are average results of 5-fold cross validation.

Model	MAE_RV(ml)	PMAE(%)	MAE_MYO(ml)	PMAE(%)	MAE_LV(ml)	PMAE(%)
MAE loss						
Reg_VGG	50.51±39.81	65.64±92.96	41.58±34.38	36.43±37.59	35.29±29.49	40.20±52.63
Reg_ResNet	43.11±36.57	51.63±69.46	36.98±29.25	31.96±29.44	33.19±26.48	39.09±47.45
Reg_efn	49.55±40.88	60.76±83.83	36.70±32.26	33.50±36.88	33.51±26.93	39.78±52.19
MSE loss			VI 1. IV V 1.	200		
Reg_VGG	50.65±40.57	67.29±94.96	42.40±36.86	38.05±41.40	36.02±28.39	42.90±57.95
Reg_ResNet	43.82±34.47	56.33±79.52	38.11±29.74	34.63±33.99	33.28±26.27	42.01±53.51
Reg_efn	49.24±40.20	64.68±103.61	36.10±31.35	31.88±34.57	33.03±27.80	38.31 ± 49.99
HL loss	An advanced to the same	- management	HANNE AND DOOR TOO	mex-emecan	and the second second	Jugare v Danas
Reg_VGG	49.02±38.38	62.88±86.09	40.14±35.26	35.07±37.47	33.11±27.63	37.30±52.79
Reg_ResNet	49.29±38.12	66.20±93.30	35.13±31.27	30.99 ± 32.11	32.75±28.30	41.57±56.68
Reg_efn	49.11±39.99	65.08±103.74	36.79±31.14	32.62±34.80	33.28±28.10	37.29±46.3

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Additional info

Additional experiments on ACDC dataset:

- ➤ The influence of data modality
 - Cardiac slices
 - Training data scale
 - Single cardiac structure vs. Multi-structure
- Hyper parameters
 - Batchsize and learning rate
 - O Dataset splitting
 - Data type distribution
- ➤ Vision Transformer

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Additional info

Active contour loss for segmentation:

Figure 2: Overview of our proposed method which takes the object's area and length of the boundaries into account during training.

Chen, Xu, et al. "Learning active contour models for medical image segmentation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

Jing ZHANG LITIS, INSA de Rouen

Introduction

Kappa loss

HC estimation
HC estimation
Explainability

Cardiac volume

Conclusions

Additional info

Robust loss for regression:

Figure 1. Our general loss function (left) and its gradient (right) for different values of its shape parameter α . Several values of α reproduce existing loss functions: L2 loss ($\alpha=2$), Charbonnier loss ($\alpha=1$), Cauchy loss ($\alpha=0$), Geman-McClure loss ($\alpha=-2$), and Welsch loss ($\alpha=-\infty$).

Barron, Jonathan T. "A general and adaptive robust loss function." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.