CBC-Mode

Nachricht in n Teile gliedern.

Schlüssel ⇒ Permutationsmatrix mit Einheitsvektoren

$$\pi = \begin{pmatrix} 1 & \cdots & n \\ a & \cdots & z \end{pmatrix} \Rightarrow P_{\pi} = \begin{pmatrix} e_a \\ \vdots \\ e_z \end{pmatrix}$$

Verschlüsselung:

$$c_0 = IV$$

$$c_i = E(\pi, c_{i-1} \oplus m_i) = P_{\pi} \cdot (c_{i-1} \oplus m_i)$$

$$\Rightarrow c_1,\ldots,c_n$$

Entschlüsselung:

$$m_i = D(\pi^{-1}, c_i) \oplus c_{i-1} = (P_{\pi^{-1}} \cdot c_i) \oplus c_{i-1}$$

mit $\pi^{-1} = \pi'$ (transponiert)

CFB-Mode

Verschlüsselung:

$$c_i = E(\pi, c_{i-1}) \oplus m_i$$

Entschlüsselung:

$$m_i = E(\pi, c_{i-1}) \oplus c_i$$

CTR-Mode

Verschlüsselung:

$$c_i = E(\pi, IV + (i-1)) \oplus m_i$$

(binäre Addition, Überträge verwerfen)

Entschlüsselung:

$$m_i = E(\pi, IV + (i-1)) \oplus c_i$$

Hashfunktion

Nicht injektive Abbildung, die Urbildbildbereich auf erheblich kleineren Bildbereich abbildet. Speicherung von Passwörtern, Dateivalidierung

Message Authentication Code (MAC)

Hashfunktion mit geheimen Schlüssel zur Integritätsprüfung von Nachrichten. Ermöglicht kein nonrepudiation, daher nicht als digitale Unterschrift geeignet.

Kollisionsresistenz

Es ist schwierig zwei Werte x und y mit H(x) =H(y) zu bestimmen

Schwache Kollisionsresistenz

Es ist schwierig zu geg. Wert x ein x' mit H(x) =H(x') zu bestimmen

Shamir Secret-Sharing

t von n Stakeholdern sind nötig, um Geheimnis k=f(0) zu ent- Weitere praktische Kommandos schlüsseln. Außerdem gegeben: Primzahl p>n,k und vom Dealer gewähltes Polynom f(x) vom Grad t-1

Schlüssel $s_i = f(i) \mod p$

Secret Recovery:

$$k = f(0) = \sum s_i \cdot l_i(0)$$
 $l_i(0) := \left[\prod_{i=1, j \neq i} \frac{j}{j-i}\right] \mod p$

Erweiterter Euklidischer Algorithmus (EEA)

$$ggT(a,b)$$
 und $x \cdot a + y \cdot b = d$

$gg^{\perp}(a, b)$ and $a = a + g = a$									
q	r	x	y	a	b	x_2	x_1	y_2	y_1
X	X	X	X	a	b	1	0	0	1
a/b	$a \mod b$	$x_2 - qx_1$	$y_2 - qy_1$	b	r	x_1	x	y_1	y
•••									
?	0	?	?	=d	0	=x	?	=y	?

Inverses Element $(a)^{-1}$ berechnen

Es gilt: $[a \cdot (a)^{-1}] \mod k = 1$ qqT(a,k) mit EEA durchführen.

$$(a)^{-1} = \begin{cases} (x+k) \mod k & \text{wenn } x < 0 \\ x \mod k & \text{sonst} \end{cases}$$

Remote Repositories

Änderungen veröffentlichen

Platz für eigene Anmerkungen!

Beispielhafte Programmaufrufe