ÁLGEBRA LINEAR ALGORÍTMICA – UFRJ – 2020.1

ESTUDO DIRIGIDO 6

Atenção: Você pode usar o Maxima para fazer os cálculos do polinômio característico, de suas raízes e para resolver sistemas lineares e aplicar o algoritmo de Gram-Schmidt, mas todas as etapas nos cálculos de autovalores, autovetores, eixos, ângulos, etc devem ser claramente indicados em suas soluções.

Questões sobre os temas da Semana 11

Questão 1. Calcule uma base para os autoespaços de cada um dos operadores cujas matrizes são dadas abaixo e determine se são diagonalizáveis. Quando possível, ache uma base ortonormal de autovetores que diagonaliza o operador.

$$A_{1} = \begin{bmatrix} 37 & -288 & 0 & 27 \\ 4 & -31 & 0 & 3 \\ -9 & 72 & 2 & -9 \\ -6 & 48 & 0 & -4 \end{bmatrix}, \qquad A_{2} = \frac{1}{25} \begin{bmatrix} 17 & -16 & 8 & -4 \\ -16 & -7 & 16 & -8 \\ 8 & 16 & 17 & 4 \\ -4 & -8 & 4 & 23 \end{bmatrix}$$

Questão 2. Determine a matriz na base canônica de um operador linear autoadjunto do \mathbb{R}^3 que tenha autovalores 1 e 2, sabendo-se que o autoespaço associado a este último autovalor é gerado pelo vetor (1,0,-1).

Questão 3. Sejam A D e M matrizes quadradas de mesmo tamanho tais que M é inversível $e A = MDM^{-1}$.

- (a) Mostre que $A^k = MD^kM^{-1}$.
- (b) Mostre que se λ é autovalor de A, então λ^k é autovalor de A^k .
- (c) Sabendo que v é autovetor de A associado ao autovalor λ , determine um autovetor de A associado a λ^k .

Dica para (c): $(A - tI) = M(D - tI)M^{-1}$.

Date: 12 de fevereiro de 2021.

2

Questão 4. Considere o operador do \mathbb{R}^3 cuja matriz na base canônica é

$$\frac{1}{3} \begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$$

Encontre os vértices de um paralelepípedo que tenha a origem como um de seus vértices e que seja levado por T em um cubo de aresta igual a 18 unidades.

Questão 5. Determine quais das afirmações abaixo são verdadeiras e quais são falsas. Você deve dar um contra-exemplo para as afirmações falsas e provar as verdadeiras.

- (a) todo operador diagonalizável admite uma base ortonormal de autovetores;
- (b) a projeção ortogonal do \mathbb{R}^n em um plano tem um autoespaço de dimensão n-2:
- (c) o operador linear do \mathbb{R}^3 que tem autovalores -1, 1 e 2 associados aos autovetores (1,1,0), (0,1,0) e (1,2,0) é diagonalizável.

Questões sobre os temas da Semana 12

Questão 6. Considere a matriz

$$Q = \begin{bmatrix} 1/3 & 2/3 & -2/3 \\ a & 2/3 & 1/3 \\ b & 1/3 & c \end{bmatrix}.$$

Determine valores para a, b e c de forma que Q descreva uma rotação de \mathbb{R}^3 . Ache o eixo e o cosseno do ângulo de rotação de Q.

Questão 7. Seja ρ a rotação de eixo $\ell = (1, 1, 1)$ que leva o vetor $u_1 = (1, 0, 0)$ em $u_2 = (0, 1, 0)$.

- (a) Determine uma base ortonormal do plano ortogonal ao eixo.
- (b) Calcule o ângulo de rotação.
- (c) Determine a matriz de ρ na base canônica.
- (d) Calcule ρ^{18} e explique este resultado geometricamente.

Questão 8. Sejam ρ uma rotação do \mathbb{R}^3 e $u_1, u_2 \in \mathbb{R}^3$.

(a) Mostre que $\langle \rho(u_1) | \rho(u_2) \rangle = \langle u_1 | u_2 \rangle$.

(b) Mostre que se $\rho(u_1)=u_2$, então u_1-u_2 é ortogonal ao eixo de ρ .

 $Dica\ para\ (a)$: use a definição matricial do produto interno e as propriedades da matriz de uma rotação.