

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

SIGUD

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:		Tecnológica							
PROYECTO CURRICULAR:		Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:				
			I. IDENTIF	ICACIÓN DEL ESPACIO A	CADÉMICO				
NOMBRE DEL E	SPACIO ACAI	DÉMICO: PROTOTIPOS EL	ECTRÓNICOS						
Código del espacio académico:			24834	Número de créditos académicos:				3	
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	5	
Tipo de espacio académico:			Asignatura	х	Cátedra				
			NATURA	ALEZA DEL ESPACIO ACA	DÉMICO:				
Obligatorio Básico		_	atorio mentario		Electivo Intrínseco	х	Electivo Extrínseco		
			CARÁ	CTER DEL ESPACIO ACAD	ÉMICO:				
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:	
			MODALIDAD	DE OFERTA DEL ESPACIO	ACADÉMICO:		•		
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:	
			II. SUGERENCIA	S DE SABERES Y CONOCIN	MIENTOS PREVIOS				

El estudiante debe haber cursado Electrónica I y II, Circuitos Digitales, y tener conocimientos en lectura de esquemas, programación básica, manejo de plataformas como Arduino o ESP32, así como experiencia con simuladores (LTSpice, Proteus) y herramientas de diseño de PCBs (KiCAD, EasyEDA).

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El diseño y desarrollo de prototipos electrónicos es una competencia esencial en la ingeniería moderna, pues permite validar, iterar y transferir soluciones electrónicas funcionales hacia la manufactura o implementación final. Esta asignatura promueve el desarrollo de proyectos electrónicos reales que integren diseño esquemático, PCB, modelado 3D, control digital, sostenibilidad y documentación técnica. A través de herramientas actuales, el estudiante adquiere habilidades para enfrentar los retos del diseño electrónico ágil en sectores como la industria, la educación, la medicina, la robótica o el internet de las cosas.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar, desarrollar, documentar y validar prototipos electrónicos funcionales mediante procesos estructurados de diseño, simulación, integración, modelado y pruebas, alineados con estándares de calidad y sostenibilidad.

Objetivos Específicos:

Aplicar metodologías de diseño electrónico orientado a la producción.

 $Integrar\ sensores,\ control adores\ y\ circuitos\ en\ un\ sistema\ funcional.$

Diseñar esquemas y PCBs aplicando normas IPC y buenas prácticas.

Utilizar herramientas CAD para modelado físico y diseño de carcasas.

Elaborar documentación técnica clara, reproducible y profesional.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Consolidar habilidades para el desarrollo ágil y estructurado de soluciones electrónicas funcionales.

Promover la cultura maker, la innovación tecnológica y la sostenibilidad desde el diseño.

Fortalecer el trabajo colaborativo, el pensamiento crítico y la responsabilidad técnica.

Resultados de Aprendizaje:

Diseña circuitos electrónicos analógicos y digitales orientados a un propósito específico.

 $\label{lem:permutation} Desarrolla\,es que mas\,y\,PCBs\,con\,herramient as\,CAD\,respet and o\,normas\,IPC.$

Realiza simulaciones eléctricas y térmicas de circuitos diseñados.

Integra componentes electrónicos, mecánicos y embebidos en un sistema funcional.

Documenta el proceso técnico, el diseño y las pruebas de validación del prototipo.

VI. CONTENIDOS TEMÁTICOS

1. Introducción al diseño de prototipos electrónicos (1 semana)

Etapas del diseño: conceptual, esquemático, implementación, prueba

Enfoque ágil (design thinking, lean prototyping)

Diseño centrado en el usuario

2. Metodologías de diseño electrónico (2 semanas)

Top-down vs bottom-up

Diseño modular y reutilización de bloques

Estándares y normas IPC

3. Herramientas de diseño y simulación (2 semanas)

Diseño esquemático y PCB en KiCAD, EasyEDA o Altium

Simulación con Proteus o LTSpice

Diseño térmico y reglas de manufactura (DRC, ERC)

4. Selección y evaluación de componentes electrónicos (1 semana)

Parámetros técnicos, disponibilidad, obsolescencia

Consideraciones de montaje y soldadura

Estimación de costos y compras en línea

5. Diseño mecánico, modelado y fabricación (2 semanas)

Diseño de carcasas 3D en Fusion 360 o Tinkercad

Impresión 3D, corte láser y mecanizado CNC

Integración electromecánica y restricciones de ensamblaje

6. Compatibilidad electromagnética y pruebas funcionales (2 semanas)

Fuentes de ruido, apantallamiento, filtrado

Pruebas de validación funcional y térmica

Seguridad eléctrica y normativas

7. Gestión y documentación del proyecto (2 semanas)

Bitácora de diseño, planos, BOM, informes técnicos

Instrucciones de ensamblaje y prueba

Licencias, patentes y derechos de autor

8. Proyecto integrador: diseño completo de un sistema electrónico (3 semanas)

Desarrollo de un prototipo desde la idea hasta la validación

Presentación técnica, póster o video demostrativo

Evaluación en entorno real o validación funcional simulada

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La asignatura se basa en aprendizaje basado en proyectos (ABP) con enfoque iterativo. Se emplearán herramientas digitales de diseño, simulación, documentación y prototipado rápido. Las actividades se desarrollan en talleres colaborativos con entregas parciales, asesorías personalizadas, bitácoras técnicas y presentaciones públicas. Se fomentará el uso de plataformas abiertas (GitHub, Hackster.io, Fritzing) y estándares industriales.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, software (KiCAD, EasyEDA, Proteus, Fusion 360, Tinkercad, LTSpice, Inkscape), plataformas (GitHub, Hackaday, Thingiverse, LibrePCB), textos base, hojas de datos, artículos técnicos, manuales técnicos, datasheets y bibliotecas digitales.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se podrán desarrollar visitas a empresas de diseño electrónico, laboratorios de impresión 3D o incubadoras de hardware. Se incentivará la participación en ferias de ciencia, ferias de prototipado, exposiciones de proyectos, concursos o muestras tecnológicas.

XI. BIBLIOGRAFÍA

Alarcón, J. Desarrollo de Proyectos de Productos Electrónicos. Ed. Paraninfo Serna, A. & García, J. Construcción de Prototipos Electrónicos. Ed. Paraninfo Dunning, C. KiCAD Like a Pro. Leanpub Bosch, R. Diseño Electrónico Profesional. McGraw-Hill IPC Standards (IPC-2221, IPC-A-600) IEEE eXplore, Hackaday, All About Circuits

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS							
Fecha revisión por Consejo Curricular:							
Fecha aprobación por Consejo Curricular:		Número de acta:					