

Since f'(a) exists:

So, if f is close to a:

L^f_a over or underestimates f based on the curvature of f

Error in Linear Approximations

The two factors that affect the error are:

- The distance from x to a
- How curved f is (|f"|)

The more curved f is, the faster the slopes of the tangent lines change, meaning that f' changes faster and |f"| is larger.

Theorem: Error in Linear Approximations

If f satisfies $|f''(x)| \le 1$ for all x in an open interval I containing x=a, then

$$|error| = |F(x) - |f(x)| \le \frac{m}{2}(x - a)^2$$

Ex. Find an upper bound on the error in using L^f_4(x) to approximate
4(x) = 1x if x e [1, 6]
1 (4) - 1,4 11 X e L1, 6]
Solution: t'(x) = 1/2Jx
$f''(x) = \frac{1}{4} x^{-3/2}$
S = 16" -1 -3]
So $ f''(x) = -\frac{1}{4} x^{-3}/2 \le \frac{1}{4}$
$\left \frac{1}{4}x^{-3}\right ^{2}$ is decreasing, so use $x=1$, $m=\frac{1}{4}$.
$ F(x) - U_4 \le \frac{n}{2} (x - 4)^2 = \frac{\binom{1}{4}}{2} (1 - 4)^2 = \frac{9}{8}$
So emor ≤ 9 8
30 1611011 - 8
Estimating Change
We want to approximate the change in f(x) as x goes from a to b.
I.e. We want to approximate $\Delta f = f(b)-f(a)$ if we know $\Delta x = b-a$
$\Delta f = f(b) - f(a) \approx L_a^f(b) - f(a)$
$= \mathcal{F}(a) + \mathcal{F}'(a)(b-a) - \mathcal{F}(a)$
= +'(a)(b-a)
$= F'(a) \Delta x$
:. AF XF'(a)Ax

Ex. You are inflating a spherical balloon. At some point, the radius is 20 m. If you exhale once and the radius increases to 20.01 m, estimate the change in volume.

