Module-5: Numerical methods -2

Numerical Solution of Ordinary Differential Equations (ODE's):

Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order, Milne's predictor-corrector formula (No derivations of formulae). Problems.

Self-Study: Adam-Bashforth method.

(RBT Levels: L1, L2 and L3)

Numerical solution of Ordinary differential equations:

1. Taylor's series method: To find y(x) from $\frac{dy}{dx} = f(x,y)$, given $y(x_0) = y_0$.

First find the values of $y'(x_0)$, $y''(x_0)$, $y'''(x_0)$, $y'''(x_0)$

Then
$$y(x) = y_0 + y'(x_0)(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \frac{y'''(x_0)}{3!}(x - x_0)^3 + \frac{y^{iv}(x_0)}{4!}(x - x_0)^4 + \cdots$$

If $\frac{dy}{dx} = f(x,y)$, given $y(0) = y_0$ then $x_0 = 0$

$$y(x) = y_0 + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \frac{y^{iv}(0)}{4!}x^4 + \cdots$$

2. Modified Euler's method: To find $y(x_1) = y_1$ from $\frac{dy}{dx} = f(x, y)$, given $y(x_0) = y_0$.

Initial approximation of y_1 is $y_1^{(I)} = y_0 + hf(x_0, y_0)$ where $h = x_1 - x_0$.

Better approximation of y_1 is $y_1^{(M_1)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(I)}) \right]$

$$y_1^{(M_2)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(M_1)}) \right]$$

We repeat this step, till two consecutive values of y agree.

Once y_1 is obtained to desired degree of accuracy, y_2 can be obtained by replacing x_0 by x_1 , y_1 by y_2 in above formulae. x_1 by x_2 , y_0 by y_1 and

3. Fourth order Runge-Kutta method: To find $y(x_1) = y_1$ from $\frac{dy}{dx} = f(x, y)$, given $y(x_0) = \frac{dy}{dx}$ y_0 .

Calculate successively $k_1 = h f(x_0, y_0)$,

$$k_2 = h f(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2})$$

$$k_3 = h f(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2})$$
 and $k_4 = h f(x_0 + h, y_0 + k_3)$

$$k_4 = h f(x_0 + h, y_0 + k_3)$$

Finally compute

$$k = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Then
$$y_1 = y_0 + k$$

Once y_1 is obtained, y_2 can be obtained by replacing x_0 by x_1 , y_0 by y_1 and y_1 by y_2 in above formulae.

4. Milne's method: To find $y(x_4) = y_4$ from $\frac{dy}{dx} = f(x,y)$, given $y(x_0) = y_0$, $y(x_1) = y_1$, $y(x_2) = y_2$, and $y(x_3) = y_3$.

First calculate $y_1' = f(x_1, y_1)$, $y_2' = f(x_2, y_2)$, and $y_3' = f(x_3, y_3)$

Then the Predictor formula is $y_4^{(p)} = y_0 + \frac{4h}{3} [2y_1' - y_2' + 2y_3']$

Corrector formula is $y_4^{(c_1)} = y_2 + \frac{h}{3} [y_2' + 4y_3' + y_4'^{(p)}]$ where $y_4'^{(p)} = f(x_4, y_4^{(p)})$ $y_4^{(c_2)} = y_2 + \frac{h}{2} \left[y_2' + 4y_3' + y_4'^{(c_1)} \right]$

We repeat this step, till two consecutive values of y agree.

Problems:

1. Using Taylor's series method, solve $y' = x + y^2$, given y(0) = 1, at x = 0.1, 0.2, considering upto 4^{th} degree term.

Solution:
$$y(0) = 1$$
,
 $y' = x + y^2 \implies y'(0) = 1$
 $y''' = 1 + 2yy' \implies y''(0) = 3$
 $y'''' = 2yy''' + 2(y')^2 \implies y'''(0) = 8$
 $y'^v = 2yy''' + 6y'y'' \implies y'^v(0) = 34$
If $\frac{dy}{dx} = f(x, y)$, given $y(0) = y_0$ then $x_0 = 0$
 $y(x) = y_0 + x y'(0) + \frac{x^2}{2!} y''(0) + \frac{x^3}{3!} y'''(0) + \frac{x^4}{4!} y'^v(0) + \cdots$
 $\therefore y(x) = 1 + x + \frac{3x^2}{2} + \frac{4x^3}{3} + \frac{17x^4}{12}$
And $y(0.1) = 1.1165$, $y(0.2) = 1.2729$.

2. Find an approximate value of y when x = 1.1, if $\frac{dy}{dx} = 1 - x^2y$, given y(1) = 0, using Taylor's method.

Solution: Given,
$$y' = 1 - x^2y$$

$$y''' = -x^2y'' - 2xy$$

$$y''' = -x^2y''' - 4xy' - 2y$$

$$y''v = -x^2y''' - 6xy'' - 6y'$$

$$\Rightarrow y(1) = 0, \quad y'(1) = 1 \quad , \quad y''(1) = -1, \quad y'''(1) = -3, \quad y'v(1) = 3$$

$$y(x) = y_0 + (x - x_0)y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(x_0) + \frac{(x - x_0)^4}{4!}y'v(x_0) + \cdots$$

$$\therefore \quad y(x) = (x - 1) - \frac{(x - 1)^2}{2!} - \frac{(x - 1)^3}{2} + \frac{(x - 1)^4}{8},$$

$$y(1.1) = 0.0945.$$

3. Using Taylor's series method, compute the solution of $\frac{dy}{dx} = xy^2 - 1$, given y(0) = 1 at x = 0.1.

Solution:
$$y' = xy^2 - 1$$
, $y'' = 2xyy' + y^2$, $y''' = 2xyy'' + 2x(y')^2 + 4yy'$
 $\Rightarrow y(0) = 1$, $y'(0) = -1$, $y''(0) = 1$, $y'''(0) = -4$
 $y(x) = y_0 + xy'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y'^v(0) + \cdots$
 $\therefore y(x) = 1 - x + \frac{x^2}{2} - \frac{2x^3}{3}$ and $y(0.1) = 0.9043$.

4. Find an approximate value of y when x = 1.1, if $\frac{dy}{dx} = x - y^2$, given y(1) = 0, using Taylor's method.

Solution:
$$y' = x - y^2$$
, $y'' = 1 - 2yy'$ $y''' = -2yy'' - 2(y')^2$
 $\Rightarrow y(1) = 0$, $y'(1) = 1$, $y''(1) = 1$ $y'''(1) = -2$.
 $y(x) = y_0 + (x - x_0)y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(x_0)$
 $\therefore y(x) = (x - 1) + \frac{(x - 1)^2}{2} - \frac{((x - 1))^3}{3!}$ and $y(1.1) = 0.1047$.

5. If $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, then find the values of y(0.1) and y(0.2) by Modified Euler's method. Perform two iterations in each stage.

Solution: Clearly
$$f(x,y)=1+y^2$$
, $x_0=0$, $y_0=0$, $x_1=0.1$, $x_2=0.2$, & $h=0.1$. To find y_1 : $y_1^{(I)}=y_0+hf(x_0,y_0)=0.1$.
$$y_1^{(M_1)}=y_0+\frac{h}{2}\big[f(x_0,y_0)+f\big(x_1,y_1^{(I)}\big)\big]=0.1005 \ . \quad y_1^{(M_2)}=0.1005.$$
 To find y_2 : $y_2^{(I)}=y_1+hf(x_1,y_1)=0.2015$.
$$y_2^{(M_1)}=y_1+\frac{h}{2}\big[f(x_1,y_1)+f\big(x_2,y_2^{(I)}\big)\big]=0.2030 \ . \quad y_2^{(M_2)}=0.2031 \ .$$
 $y(0.1)=0.1005$ and $y(0.2)=0.2031$.

6. Using modified Euler's method, find an approximate value of y when x = 0.2, given that $\frac{dy}{dx} = x + y$, and y = 1, when x = 0 taking h = 0.1. Perform two iterations in each stage.

Ans: Let f(x, y) = x + y, h = 0.1 $x_0 = 0$, $y_0 = 1$.

Initial approximation of y_1 is $y_1^{(I)} = y_0 + hf(x_0, y_0) = 1.1$

Better approximation of
$$y_1$$
 is $y_1^{(M_1)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(l)}) \right]$

$$= 1 + \frac{0.1}{2} \left[0 + 1 + 0.1 + 1.1 \right] = 1.11$$

$$y_1^{(M_2)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(M_1)}) \right] = 1 + \frac{0.1}{2} \left[0 + 1 + 0.1 + 1.11 \right] = 1.1105$$

Initial approximation of y_2 is $y_2^{(I)} = y_1 + hf(x_1, y_1) = 1.2316$.

$$y_2^{(M_1)} = y_1 + \frac{h}{2} \left[f(x_1, y_1) + f(x_2, y_2^{(l)}) \right]$$

$$= 1.1105 + \frac{0.1}{2} \left[0.1 + 1.1105 + 0.2 + 1.2316 \right] = 1.2426.$$

$$y_2^{(M_2)} = y_0 + \frac{h}{2} \left[f(x_1, y_1) + f\left(x_2, y_2^{(M_1)}\right) \right]$$

$$= 1.1105 + \frac{0.1}{2} \left[0.1 + 1.1105 + 0.2 + 1.2426 \right] = 1.2432$$

$$\therefore y(0.2) = 1.2432.$$

7. Using modified Euler's method, find an approximate value of y when x = 0.1,

given
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = 1$. Perform two iterations.

Solution: Let $f(x, y) = \frac{y-x}{y+x}$, h = 0.1 $x_0 = 0$, $y_0 = 1$.

Initial approximation of y_1 is $y_1^{(I)} = y_0 + hf(x_0, y_0) = 1.1$

Better approximation of
$$y_1$$
 is $y_1^{(M_1)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(l)}) \right] = 1.0917$
 $y_1^{(M_2)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f\left(x_1, y_1^{(M_1)}\right) \right] = 1.0916$
 $\therefore y(0.1) = 1.0916$.

8. Using modified Euler's method, find an approximate value of y when x = 1.1,

given
$$\frac{dy}{dx} = 2x - \frac{y}{x}$$
, given $y(1) = 1$
Let $f(x, y) = 2x - \frac{y}{x}$, $h = 0.1$ $x_0 = 1$, $y_0 = 1$.

Initial approximation of y_1 is $y_1^{(I)} = y_0 + hf(x_0, y_0) = 1.1$

Better approximation of y_1 is $y_1^{(M_1)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(l)}) \right]$ $= 1 + \frac{0.1}{2} \left[1 + 1.2 \right] = 1.11$ $y_1^{(M_2)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f\left(x_1, y_1^{(M_1)}\right) \right] = 1 + \frac{0.1}{2} \left[1 + 1.1909 \right] = 1.1095$

$$\therefore y(1.1) = 1.1095$$
.

- 9. Apply fourth order Runge-Kutta method to find the solution of $\frac{dy}{dx} = x + y$, given y(0) = 1 at x = 0.2 Solution: Clearly f(x, y) = x + y. $x_0 = 0$, $y_0 = 1$, h = 0.2 $k_1 = h f(x_0, y_0) = 0.2 f(0, 1) = 0.2.$ $k_2 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.2 f(0.1, 1.1) = 0.24$ $k_3 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.2 f(0.1, 1.12) = 0.244$ and $k_4 = h f(x_0 + h, y_0 + k_3) = 0.2 f(0.2, 1.244) = 0.2888.$ $y(0.2) = y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.2428.$
- 10. Using fourth order Runge-Kutta method find the solution of $10 \frac{dy}{dx} = x^2 + y^2$, y(0) = 1 at x = 0.2.

Solution: Clearly
$$f(x, y) = \frac{x^2 + y^2}{10}$$
. $x_0 = 0$, $y_0 = 1$, $h = 0.2$
 $k_1 = h f(x_0, y_0) = 0.02$.
 $k_2 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.0206$.
 $k_3 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.0206$
and $k_4 = h f(x_0 + h, y_0 + k_3) = 0.0216$.
 $y(0.2) = y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.0207$.

11. Using Runge-Kutta method of fourth order, solve $y' = \log_{10} \left[\frac{y}{1-x} \right]$ given y(0) = 1 at x = 0.2.

Solution: Clearly
$$f(x, y) = \log_{10} \left[\frac{y}{1-x} \right]$$
. $x_0 = 0$, $y_0 = 1$, $h = 0.2$ $k_1 = h f(x_0, y_0) = 0$. $k_2 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.2 f(0.1, 1) = 0.0092$. $k_3 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.2 f(0.1, 1.0046) = 0.0096$ and $k_4 = h f(x_0 + h, y_0 + k_3) = 0.2 f(0.2, 1.0096) = 0.0202$. $y(0.2) = y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.0096$.

12. Using Runge-Kutta method of fourth order, find an approximate value of y when x = 0.1,

given
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = 1$.
Solution: Clearly $f(x, y) = \frac{y-x}{y+x}$. $x_0 = 0$, $y_0 = 1$, $h = 0.1$
 $k_1 = h f(x_0, y_0) = 0.1$
 $k_2 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 f(0.05, 1.05) = 0.0909$.
 $k_3 = h f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 f(0.05, 1.0455) = 0.0909$.
and $k_4 = h f(x_0 + h, y_0 + k_3) = 0.1 f(0.1, 1.0909) = 0.00832$.
 $y(0.1) = y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.0911$.

13. Given $\frac{dy}{dx} = x - y^2$ and y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762, evaluate y(0.8) by Milne's method.

Solution:
$$y' = x - y^2$$
, $h = 0.2$.

fution:
$$y = x - y^{2}, \quad h = 0.2$$
.
 $x_{0} = 0, \qquad y_{0} = 0,$
 $x_{1} = 0.2, \qquad y_{1} = 0.02, \qquad y'_{1} = \mathbf{0}.\mathbf{1996}.$
 $x_{2} = 0.4. \qquad v_{2} = 0.0795. \qquad v'_{2} = \mathbf{0}.\mathbf{3937}.$

$$x_2 = 0.4$$
, $y_2 = 0.0795$, $y_2' = 0.3937$.

$$x_3 = 0.6$$
, $y_3 = 0.1762$, $y_3' = \mathbf{0.5690}$.

Then predictor formula is $y_4 = y_0 + \frac{4h}{3} [2y_1' - y_3' + 2y_3'] = 0.3049$.

$$y_4' = 0.8 - 0.3049^2 = 0.7070$$

Corrector formula is $y_4 = y_2 + \frac{h}{3} [y_2' + 4y_3' + y_4']$ $= 0.0795 + \frac{0.2}{3} [0.3937 + 4 \times 0.5690 + 0.7070] = 0.3046.$

14. Given $\frac{dy}{dx} = x^2(1+y)$ and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, evaluate y(1.4) by Milne's method.

Solution:
$$y' = x^2(1+y), h = 0.1$$
.

$$x_0 = 1,$$
 $y_0 = 1,$.

$$x_1 = 1.1,$$
 $y_1 = 1.233,$ $y_1' = 2.7019$

$$x_2 = 1.2,$$
 $y_2 = 1.548,$ $y_2' = 3.6691$

$$x_3 = 1.3$$
, $y_3 = 1.979$, $y_3' = 5.0345$

Solution. y = x (1 + y), $x_0 = 1,$ $x_0 = 1,$ $x_1 = 1.1,$ $y_1 = 1.233,$ $y_1' = 2.7019.$ $x_2 = 1.2,$ $y_2 = 1.548,$ $y_2' = 3.6691.$ $x_3 = 1.3,$ $y_3 = 1.979,$ $y_3' = 5.0345.$ Then predictor formula is $y_4 = y_0 + \frac{4h}{3} \left[2y_1' - y_3' + 2y_3' \right] = 2.5738.$

$$y_4' = 1.4^2(1 + 2.5738) = 7.0047.$$

Corrector formula is $y_4 = y_2 + \frac{h}{3} [y_2' + 4y_3' + y_4'] = 2.5751.$

Self-study:

Adams-Bash forth method: To find $y(x_4) = y_4$ from $\frac{dy}{dx} = f(x, y)$, given $y(x_0) = y_0$,

$$y(x_1) = y_1$$
, $y(x_2) = y_2$, and $y(x_3) = y_3$.

 $y(x_1) = y_1$, $y(x_2) = y_2$, and $y(x_3) = y_3$. First calculate $f_0 = f(x_0, y_0)$, $f_1 = f(x_1, y_1)$, $f_2 = f(x_2, y_2)$, and $f_3 = f(x_3, y_3)$

Then predictor formula is $y_4 = y_3 + \frac{h}{24} [55f_3 - 59f_2 + 37f_1 - 9f_0]$

$$f_4 = f(x_4, y_4)$$

Corrector formula is $y_4 = y_3 + \frac{h}{24} [9f_4 + 19f_3 - 5f_2 + f_1]$

15. Given $\frac{dy}{dx} = x^2 - y$ and y(0) = 0, y(0.1) = 0.90516, y(0.2) = 0.82127, y(0.3) = 0.74918. Evaluate y(0.4) by Adams-Bashforth method.

Solution:
$$f(x, y) = x^2 - y$$
, $h = 0.1$.

$$x_0 = 0,$$
 $y_0 = 0,$ $f_0 = \mathbf{0}$.

$$x_1 = 0.1$$
, $y_1 = 0.90516$, $f_1 = -0.8952$.

$$x_2 = 0.2,$$
 $y_2 = 0.82127,$ $f_2 = -0.7813.$

$$x_3 = 0.3$$
, $y_3 = 0.74918$, $f_3 = -0.6592$.

Predictor value is $y_4 = y_3 + \frac{h}{24}(55f_3 - 59f_2 + 37f_1 - 9f_0) = 0.6522$,

$$f_4 = f(x_4, y_4) = 0.4^2 - 0.6522 = -0.4922$$
.

 $y_4 = y_3 + \frac{h}{24}(9f_4 + 19f_3 - 5f_2 + f_1) = 0.6911.$ Corrector value is

Solve by Adoms-Bhash forth method for x = 0.8, Given that $\frac{dy}{dx} = 2y - 2x + 1$ 16.

х	0	0.2	0.4	0.6
у	1	1.6918	2.6255	3.9201

Ans: Given that f = 2y - 2x + 1, h = 0.2.

$$x_0 = 0,$$
 $y_0 = 1,$ $f_0 = 3.$

$$x_1 = 0.2,$$
 $y_1 = 1.6918,$ $f_1 = 3.9836.$

$$x_2 = 0.4$$
, $y_2 = 2.6255$, $f_2 = 5.4510$.

$$x_3 = 0.6$$
, $y_3 = 3.9201$, $f_3 = 7.6402$.

Predictor value: $y_4 = y_3 + \frac{h}{24} (55f_3 - 59f_2 + 37f_1 - 9f_0) = 5.7451.$

$$f_4 = f(x_4, y_4) = 2 \times 5.7451 - 2 \times 0.8 + 1 = 10.8902$$

Corrector value: $y_4 = y_3 + \frac{h}{24}(9f_4 + 19f_3 - 5f_2 + f_1) = 5.7526.$

$$y(0.8) = 5.7526$$
.

17. Given $\frac{dy}{dx} = x^2(1+y)$ and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, evaluate y(1.4) by Adams-Bashforth method.

Solution:
$$f(x, y) = x^2(1 + y), h = 0.1.$$

$$x_0 = 1,$$
 $y_0 = 1,$ $f_0 = 2.$

$$x_1 = 1.1,$$
 $y_1 = 1.233,$ $f_1 = 2.7019$

$$x_2 = 1.2$$
, $y_2 = 1.548$, $f_2 = 3.6691$

$$x_0 = 1,$$
 $y_0 = 1,$ $f_0 = 2.$ $x_1 = 1.1,$ $y_1 = 1.233,$ $f_1 = 2.7019.$ $x_2 = 1.2,$ $y_2 = 1.548,$ $f_2 = 3.6691.$ $x_3 = 1.3,$ $y_3 = 1.979,$ $f_3 = 5.0345.$

Predictor value: $y_4 = y_3 + \frac{h}{24}(55f_3 - 59f_2 + 37f_1 - 9f_0) = 2.5723$.

$$f_4 = f(x_4, y_4) = 1.4^2(1 + 2.5723) = 7.0017.$$

Corrector value: $y_4 = y_3 + \frac{h}{24}(9f_4 + 19f_3 - 5f_2 + f_1) = 2.5749.$