

FLEXIBLE ASSEMBLY SYSTEMS

Cyclic schedules

- ☐ Schedules often cyclic or periodic
 - Given set of jobs scheduled in certain order
 - ➤ Contains all product types
 - >May contain multiple jobs of same type
 - Second identical set scheduled, etc.
- ☐ Practical if insignificant setup time
 - Low inventory holding costs
 - Easy to implement
- □Cyclic schedules may **not** optimize throughput!

João Miguel da Costa Sous

200

Minimum Part Set

- \square Suppose there are l different product types
- \square Let N_k be number of jobs of product type k
- \square Let z be the greatest common divisor of N_1, \dots, N_l
- Then

$$N^* = \left(\frac{N_1}{z}, \frac{N_2}{z}, \dots, \frac{N_l}{z}\right)$$

is the smallest set with same proportions as the long range production set.

☐ It is called the **Minimum Part Set** (MPS)

João Miguel da Costa Sousa

201

Defining a cyclic schedule

 \square Consider the jobs in the MPS as n jobs

$$n = \frac{1}{z} \sum_{k=1}^{l} N_k = \sum_{k=1}^{l} N_k^*$$

- \Box Let p_{ij} be the processing time as before
- ☐ A cyclic schedule is determined by sequencing jobs in the MPS
- ☐ Maximizing throughput is equivalent to minimizing cycle time in a steady-state.

João Miguel da Costa Sousa

Minimizing cycle time

□ **Profile Fitting** (PF) heuristic:

- Select first job j₁
 - >Arbitrarily
 - ► Largest amount of processing
- Generates profile. Departure of job 1 from machine i:

$$X_{i,j_1} = \sum_{h=1}^{i} p_{h,j_1}$$

· Determine which job goes next

João Miguel da Costa Sousa

206

Profile Fitting: next job

- □Compute for each candidate job
 - time the machines are idle
 - time the job is blocked
 - departure times of a job c is computed recursively by:

$$\begin{split} X_{1,j_2} &= \max \left(X_{1,j_1} + p_{1c}, X_{2,j_1} \right) \\ X_{i,j_2} &= \max \left(X_{i-1,j_2} + p_{ic}, X_{i+1,j_1} \right), \quad i = 2,..., m-1 \\ X_{m,j_1} &= X_{m-1,j_1} + p_{mc} \end{split}$$

João Miguel da Costa Sousa

Nonproductive time

 \Box Calculate sum of idle and blocked time for job c

$$\sum_{i=1}^{m} (X_{i,j_2} - X_{i,j_1} - p_{ic})$$

- □ Repeat for all remaining jobs in the MPS
- ☐ Select job with smallest number
- ☐ Calculate new profile and repeat

João Miguel da Costa Sousa

208

Profile Fitting heuristic

Step 1: Initial Condition

□ Select the job with the longest total processing time as the first job in the MPS.

Step 2: Analysis of remaining jobs to be scheduled

☐ For each not yet scheduled: consider it the next one in the partial sequence and compute the total non-productive time on all m machines (machine idle time and machine blocking time).

João Miguel da Costa Sousa

20

Profile Fitting heuristic

Step 3: Select the next job in partial schedule

☐ From all jobs analyzed in Step 2, select the job with the smallest total non-productive time as the next in the partial sequence.

Step 4: Stopping criterion

- ☐ If all jobs in the MPS have been scheduled, then STOP
- ☐ Otherwise, go to Step 2.

João Miguel da Costa Sousa

210

Discussion: PF Heuristic

- □PF heuristic performs well in practice
- ☐ Refinement:
 - Nonproductive time is not equally bad on all machines
 - Bottleneck machine are more important.
 - Use weight in the sum: Weighted Profile Fitting heuristic (see Example 6.2.3)

João Miguel da Costa Sousa

Discussion: PF Heuristic

- Basic assumptions
 - Setup time is not important
 - Low WIP is important
 - ⇒ Cyclic schedules are good
- Want to maximize throughput
 - ⇒ Minimize cycle time
 - ⇒ PF heuristic performs well

João Miguel da Costa Sousa

212

Discussion: solution methods

- ☐ Formulated as 'simple' sequencing
- ☐ Can apply branch-and-bound
- ☐ In general constraints make mathematical programming formulation difficult
- ☐PF heuristic is easy to generalize

João Miguel da Costa Sousa

Additional complications

- ☐ The material handling system does not wait for a job to be complete
 - ⇒ Paced assembly systems
- ☐ There may be multiple machines at each station and/or there may be bypass
 - ⇒ Flexible flow systems with bypass

João Miguel da Costa Sousa

214

Paced Assembly Systems

- ☐ Conveyor moves jobs from one workstation to another at fixed speeds
- ☐ Fixed distance between jobs
 - Spacing proportional to processing time
- No bypass
- ☐ Unit cycle time
 - time between two successive jobs
 - line balancing
- **Example**: automotive industry

João Miguel da Costa Sousa

215

Paced assembly lines

- ☐ Line runs at a constant rate
- ☐ Size of work centre proportional to duration of operation
 - It takes longer to install a sunroof than a windshield so the workstation is longer
- ☐ Once the setup is done, the only thing to control is the sequence of cars

João Miguel da Costa Sousa

Possible algorithms

- ☐ Extend Constrained Programming model
 - Setup costs easy to add
 - Distance from preassigned slots easy to add
 - See Optimization Programming Language code in Appendix D.4 of Pinedo's book
- ☐ Dispatch rules, IP formulation, Tabu search
- ☐ Ant Colony Optimization
- ➤ Heuristics Grouping and Spacing (GS)

João Miguel da Costa Sousa

224

Grouping and Spacing heuristic

- i. Determine the total number of jobs to be scheduled
- ii. Group jobs with high setup cost operations
- iii. Order each subgroup accounting for shipping dates
- iv. Space jobs within subgroups accounting for capacity constrained operations

João Miguel da Costa Sousa

Grouping and Spacing heuristic

☐ Total number of jobs

- High number allows a sequence with lower cost. However, probability of disruption is high.
- Number of jobs is normally between one day and one week.

☐ Grouping jobs

- Ex: determining run lengths of different colors. Grey can go up to 50, and purple may be only 1 or 2.
- Other examples: options, destination of cars.
- Similar to computing an Economic Order Quantity (see Lot Scheduling)

João Miguel da Costa Sousa

Grouping and Spacing heuristic

☐ Ordering different subgroups

- Determined by the urgency with which the jobs in a group have to be shipped.
- Urgency is determined by committed shipping dates of Make-To-Order jobs and current inventory levels of Make-To-Stock jobs.

☐ Internal sequencing within subgroups

- Consider capacity constrained operations.
- Consider most critical operation and space jobs as uniformly as possible. It proceeds similarly to the other operations.

João Miguel da Costa Sousa

Flexible Flow Line Loading algorithm

□ Objectives

- · Maximize throughput
- Minimize Work-In-Process (WIP)
- ☐ Minimizes the makespan of a day's mix
 - Actually minimization of cycle time for Minimum Part Set (MPS)
- Reduces blocking probabilities

João Miguel da Costa Sousa

Flexible Flow Line Loading algorithm

Three phases:

- i. Machine allocation phase
 - assigns each job to a specific machine at each stage
- ii. Sequencing phase
 - orders in which jobs are released
 - Dynamic Balancing heuristic

iii. Time release phase

minimize MPS cycle time on bottlenecks

João Miguel da Costa Sousa

238

FFLL algorithm: machine allocation

- Bank of machines
- ■Which machine for which job?
- ☐ Basic idea: workload balancing
- > Use LPT dispatching rule
- Output: allocation of jobs to machines, but not the sequencing of jobs or the timing of processing.

João Miguel da Costa Sousa

FFLL algorithm: sequencing

- ☐ Basic idea: spread out jobs sent to the same machine
- □ Dynamic Balancing heuristic
- \square For a given station, let p_{ij} be processing time of job jon machine i.

☐ and the total workload of an MPS be

$$W = \sum_{i=1}^{m} W_{i}$$

João Miguel da Costa Sousa

Dynamic Balancing heuristic

- \square Let J_k be set of jobs loaded into the system, including
- \square Total workload of machine *i* that entered the system by the time job k is loaded:

$$\alpha_{ik} = \sum_{j \in J_k} \frac{p_{ij}}{W_i} \in [0,1]$$

$$\Box \text{ Ideal balanced target:}$$

$$\alpha_k^* = \sum_{j \in J_k} \sum_{i=1}^m p_{ij} / \sum_{j=1}^n \sum_{i=1}^m p_{ij} = \sum_{j \in J_k} p_j / W$$

Minimizing overload

 \square Overload of machine *i* due to job *k*

$$o_{ik} = p_{ik} - p_k W_i / W$$

 \square Cumulative overload of all jobs up to and including job k

$$O_{ik} = \sum_{i \in I_i} o_{ij} = \sum_{i \in I_i} p_{ij} - \alpha_k^* W_i$$

➢ Objective: minimize

$$\sum_{k=1}^{n} \sum_{j=1}^{m} \max \left(O_{ik}, 0 \right)$$

João Miguel da Costa Sousa

242

FFLL algorithm: release timing

■MPS workload of each machine known

- Highest workload is the bottleneck
- MPS cycle time ≥ Bottleneck cycle time

Algorithm

- ➤ Step 1: Release all jobs as soon as possible
- ➤ Step 2: Delay all jobs upstream from bottleneck as much as possible
- > Step 3: Move up all jobs downstream from the bottleneck as much as possible

João Miguel da Costa Sousa

...

Machine allocation

☐ Using LPT:

João Miguel da Costa Sousa

							_
	Jobs	1	2	3	4	5	•
	p_{1j}	6	0	0	3	0	6 3
	p_{2j}	0	3	1	0	5	5 3 1
	p_{3j}	3	2	1	3	2	
٠	p_{4j}	4	5	0	3	0	5 4 3
	p_{5j}	0	0	6	0	4	6 4
	•						•

Workload

☐ From the table we obtain

each row	each column
$W_{1} = 9$	$p_1 = 13$
$W_2 = 9$	$p_2 = 10$
$W_3 = 11$	$p_3 = 8$
$W_4 = 12$	$p_4 = 9$
$W_5 = 10$	$p_5 = 11$
W = 51	

João Miguel da Costa Sousa

Overload

■With job 1 as first job of sequence:

$$o_{11} = 6 - 9 \times 13/51 = +3.71$$

$$o_{21} = 0 - 9 \times 13/51 = -2.29$$

$$o_{31} = 3 - 11 \times 13/51 = +0.20$$

$$o_{41} = 4 - 12 \times 13/51 = +0.94$$

$$o_{51} = 0 - 10 \times 13/51 = -2.55$$

João Miguel da Costa Sousa

Overload matrix

■With jobs 1 to 5 as first job of sequence, we can compute matrix o_{ik}

3,71	-1,76	-1,41	1,41	-1,94
-2,29	1,24	-0,41	-1,59	3,06
0,20	-0,16	-0,73	1,06	-0,37
0,94	2,65	-1,88	0,88	-2,59
-2,55	-1,96	4,43	-1,76	1,84

João Miguel da Costa Sousa

Dynamic Balancing heuristic

3,71	0,00	0,00	1,41	0,00
0,00	1,24	0,00	0,00	3,06
0,20	0,00	0,00	1,06	0,00
0,94	2,65	0,00	0,88	0,00
0,00	0,00	4,43	0,00	1,84
4,84	3,88	4,43	3,35	4,90

First Job

João Miguel da Costa Sousa

Selecting the second job

☐ Calculate the cumulative overload

$$O_{11} = \sum_{j \in J_1} p_{1j} - \alpha_1^* W_1$$

$$= \sum_{j \in \{4,1\}} p_{1j} - 0.43 \times 9$$

$$= (3+6) - 0.43 \times 9$$

where
$$\alpha_1^* = \sum_{j \in I_k} p_j / W = \sum_{j \in \{4,1\}} p_j / 51$$

= $(9+13)/51 = 0.43$

João Miguel da Costa Sousa

251

Cumulative overload

$$O_{i1} = (+5.11, -3.88, +1.26, +1.82, -4.32)$$

$$O_{i2} = (-0.35, -0.36, +0.90, +3.52, -3.72)$$

$$O_{i3} = (+0.00, -2.00, +0.33, -1.00, +2.67)$$

$$O_{i5} = (-0.53, +1.47, +0.69, -1.71, +0.08)$$

Selected next

João Miguel da Costa Sousa

Final cycle

☐ Schedule jobs 4, 5, 1, 3, 2

■ Release timing phase

- Machine 4 is the bottleneck
- Delay jobs on Machine 1, 2, and 3
- Expedite jobs on Machine 5

João Miguel da Costa Sousa

Assembly sequence at Toyota

- ☐ Everything operates on Just-in-Time
 - · Works to minimize WIP and tardiness
- ☐ Most important objective is to keep the part consumption regular
 - The quantity of a given part consumed per hour should be constant
- > Solution: the next car to build is chosen to minimize error from the desired rate

João Miguel da Costa Sousa

254

Example

- Model 1 requires 1 *unit*
- ☐ Model 2 requires 2 units
- Model 3 requires 3 units
- ☐ Production needed:
 - 10 cars of model 1
 - 15 cars of model 2
 - 10 cars of model 3

João Miguel da Costa Sousa

...

Example

- ■So, it is needed
 - $(10 \times 1) + (15 \times 2) + (10 \times 3) = 70$
- ☐ If the consumption of *unit* is to be constant, the consumption is 70/35 = 2 per car
- \Box Choose car *j* to minimize:
 - (units use / cars built 2)²

João Miguel da Costa Sousa

256

Toyota problem

- ☐ A car has around 20000 number of parts.
- ☐ Parts are represented by their respective subassembly
- □ Number of subassemblies in Toyota is around 20.
- ☐ Toyota developed the Goal Chasing Method to solve the mixed model assembly, which minimizes the sum of squared error over all subassemblies.
- ☐See p.134

João Miguel da Costa Sousa

257

Flexible Manufacturing Systems

☐ Flexible Manufacturing Systems (FMS)

- Numerically Controlled machines
- Automated Material Handling system
- Produces a variety of product/part types

■ Scheduling

- Routing of jobs
- Sequencing on machines
- Setup of tools
- \square Similar features but more complicated

João Miguel da Costa Sousa