Big Data Computing

Master's Degree in Computer Science 2019-2020

Gabriele Tolomei

Department of Computer Science Sapienza Università di Roma

tolomei@di.uniroma1.it

Recommendation Strategies

3 approaches to recommender systems

COLLABORATIVE FILTERING

Collaborative Filtering (CF)

Idea

Recommend items to user u based on preferences of other users similar to u

Collaborative Filtering (CF)

Idea

Recommend items to user u based on preferences of other users similar to u

Core concept:

User-to-User or Item-to-Item similarity

Collaborative Filtering (CF)

Idea

Recommend items to user u based on preferences of other users similar to u

Core concept:

User-to-User or Item-to-Item similarity

No need for explicit creation of user/item profiles

3 main approaches to collaborative filtering

3 main approaches to collaborative filtering

Neighborhood-based

(a.k.a. memory-based)

3 main approaches to collaborative filtering

Neighborhood-based

(a.k.a. memory-based)

Latent-factor-based

(a.k.a. model-based)

3 main approaches to collaborative filtering

Neighborhood-based

(a.k.a. memory-based)

Hybrid

(memory-model-based)

Latent-factor-based

(a.k.a. model-based)

Neighborhood-based (Memory-based) CF

Compute the relationship between users or items

Neighborhood-based (Memory-based) CF

Compute the relationship between users or items

User-based

Evaluates a user's preference for an item based on ratings of "neighboring" users for that item

Neighborhood-based (Memory-based) CF

Compute the relationship between users or items

User-based

Evaluates a user's preference for an item based on ratings of "neighboring" users for that item

Item-based

Evaluates a user's preference for an item based on ratings of "neighboring" items by the same user

USER-BASED COLLABORATIVE FILTERING

Given a user u and an item i not rated by u, we want to estimate r(u, i)

Given a user u and an item i not rated by u, we want to estimate r(u, i)

From the set of users $\{u': u' \neq u\}$ who have already rated i extract a subset of k neighbours of u

Given a user u and an item i not rated by u, we want to estimate r(u, i)

From the set of users $\{u': u' \neq u\}$ who have already rated i extract a subset of k neighbours of u

k-neighborhood of u is found on the basis of the similarity between user ratings without the need of explicit user profiles

Given a user u and an item i not rated by u, we want to estimate r(u, i)

From the set of users $\{u': u' \neq u\}$ who have already rated i extract a subset of k neighbours of u

k-neighborhood of u is found on the basis of the similarity between user ratings without the need of explicit user profiles

Estimate r(u, i) based on the ratings of users in the k-neighborhood of u

In theory, rating prediction r(u,i) could be defined on any item i not rated by u

In theory, rating prediction r(u,i) could be defined on any item i not rated by u

In practice, we are interested only in estimating r(u,i) for those items i which have been rated by the u's k-neighborhood

In theory, rating prediction r(u,i) could be defined on any item i not rated by u

In practice, we are interested only in estimating r(u,i) for those items i which have been rated by the u's k-neighborhood

Intuitively, if a user v is not in the u's k-neighborhood then very likely u will not be interested in any item that **only** v has rated

In theory, rating prediction r(u,i) could be defined on any item i not rated by u

In practice, we are interested only in estimating r(u,i) for those items i which have been rated by the u's k-neighborhood

Intuitively, if a user v is not in the u's k-neighborhood then very likely u will not be interested in any item that **only** v has rated

In other words, the u's k-neighborhood must be computed first to narrow down the set of items which we must predict the rating of

Alice and Carl are the 2-nearest neighbours of Bob if we look at their rating behaviours

Predict the rating that Bob would give to each of those movies on the basis of Alice's and Carl's ratings

Predict the rating that Bob would give to each of those movies on the basis of Alice's and Carl's ratings

05/06/2020 2.5

Predict the rating that Bob would give to each of those movies on the basis of Alice's and Carl's ratings

Predict the rating that Bob would give to each of those movies on the basis of Alice's and Carl's ratings

05/06/2020 4.8

Predict the rating that Bob would give to each of those movies on the basis of Alice's and Carl's ratings

05/06/2020

31

Recommend the highest rated movie(s) to Bob!

05/06/2020 **4.8**

There is no point in predicting the rating of a movie which has only been rated by a user (Zoe) who is **not** in the Bob's neighborhood

User-to-User Similarity

• The key "trick" to discover the k-neighborhood of a given user u is the ability of finding users u' that are "similar" to u

User-to-User Similarity

- The key "trick" to discover the k-neighborhood of a given user u is the ability of finding users u' that are "similar" to u
- Remember that we are **not** building any content-based user/item profile

User-to-User Similarity

- The key "trick" to discover the k-neighborhood of a given user u is the ability of finding users u' that are "similar" to u
- Remember that we are not building any content-based user/item profile
- Intuitively, 2 users u_1 and u_2 are similar to each other if their ratings (of items) are similar

- The key "trick" to discover the k-neighborhood of a given user u is the ability of finding users u' that are "similar" to u
- Remember that we are not building any content-based user/item profile
- Intuitively, 2 users u_1 and u_2 are similar to each other if their ratings (of items) are similar
- Each user represented by her/his rating vector and similarity between them is measured in the item (rating) space

 $\sin(u,v)$ Similarity metric between any pair of users

sim(u,v) Similarity metric between any pair of users

Must capture the intuition that sim(Alice, Carl) > sim(Alice, Bob)

 \mathbf{r}_u *n*-dimensional vector of ratings provided by user u (n = #movies)

 \mathbf{r}_u *n*-dimensional vector of ratings provided by user u (n = #movies)

 $\mathbf{r}_{\mathrm{Bob}}$

$$sim(u, v) = J(\mathbf{r}_u, \mathbf{r}_v) = \frac{|\mathbf{r}_u \cap \mathbf{r}_v|}{|\mathbf{r}_u \cup \mathbf{r}_v|}$$

		MOVIES								
		Avenuens		(CLES) is the word	PULPFICTION	SHREK		THE WOLF OF WALLSTREET	100	
	Alice	2		5	4	5	4		4	
S	Bob	4					3		3	
SER	Carl	5	5	3	4	5	4		5	
Ď		***	•••	***	•••	(* * i*	•••	•••		
	Zoe		1	3				5	4	

$$sim(u, v) = J(\mathbf{r}_u, \mathbf{r}_v) = \frac{|\mathbf{r}_u \cap \mathbf{r}_v|}{|\mathbf{r}_u \cup \mathbf{r}_v|}$$

$$ext{sim(Alice, Bob)} = rac{|\mathbf{r}_{ ext{Alice}} \cap \mathbf{r}_{ ext{Bob}}|}{|\mathbf{r}_{ ext{Alice}} \cup \mathbf{r}_{ ext{Bob}}|}$$
 $= rac{3}{6} = 0.5$

$$sim(u, v) = J(\mathbf{r}_u, \mathbf{r}_v) = \frac{|\mathbf{r}_u \cap \mathbf{r}_v|}{|\mathbf{r}_u \cup \mathbf{r}_v|}$$

$$sim(Alice, Carl) = \frac{|\mathbf{r}_{Alice} \cap \mathbf{r}_{Carl}|}{|\mathbf{r}_{Alice} \cup \mathbf{r}_{Carl}|}$$

$$=\frac{6}{7}\approx 0.86$$

$$sim(u, v) = J(\mathbf{r}_u, \mathbf{r}_v) = \frac{|\mathbf{r}_u \cap \mathbf{r}_v|}{|\mathbf{r}_u \cup \mathbf{r}_v|}$$

Problem!

Jaccard ignores rating values

User-to-User Similarity: Cosine Similarity

$$sim(u, v) = cosine(\mathbf{r}_u, \mathbf{r}_v) = \frac{\mathbf{r}_u \cdot \mathbf{r}_v}{||\mathbf{r}_u||||\mathbf{r}_v||}$$

$$sim(Alice, Bob) = \frac{\mathbf{r}_{Alice} \cdot \mathbf{r}_{Bob}}{||\mathbf{r}_{Alice}||||\mathbf{r}_{Bob}||}$$

$$=\frac{32}{\sqrt{102}\sqrt{44}} \approx 0.48$$

User-to-User Similarity: Cosine Similarity

$$sim(u, v) = cosine(\mathbf{r}_u, \mathbf{r}_v) = \frac{\mathbf{r}_u \cdot \mathbf{r}_v}{||\mathbf{r}_u||||\mathbf{r}_v||}$$

$$sim(Alice, Carl) = \frac{\mathbf{r}_{Alice} \cdot \mathbf{r}_{Carl}}{||\mathbf{r}_{Alice}||||\mathbf{r}_{Carl}||}$$

$$= \frac{102}{\sqrt{102}\sqrt{141}} \approx 0.85$$

User-to-User Similarity: Cosine Similarity

$$sim(u, v) = cosine(\mathbf{r}_u, \mathbf{r}_v) = \frac{\mathbf{r}_u \cdot \mathbf{r}_v}{||\mathbf{r}_u||||\mathbf{r}_v||}$$

		MOVIES							
		Avenuens		(625) to the used	Pow Fiction	SHREK		THE WOLF OF WALL STREET	No.
	Alice	2		5	4	5	4		4
S	Bob	4					3		3
USERS	Carl	5	5	3	4	5	4		5
Ö	•••	***	•••	•••			•••	•••	•••
	Zoe		1	3				5	4

Problem!

Missing rating values are treated as 0s and have a negative effect

$$sim(u, v) = Pearson(\mathbf{r}_u, \mathbf{r}_v) = \frac{(\mathbf{r}_u - \bar{\mathbf{r}}_u) \cdot (\mathbf{r}_v - \bar{\mathbf{r}}_v)}{\sqrt{(\mathbf{r}_u - \bar{\mathbf{r}}_u)^T \cdot (\mathbf{r}_u - \bar{\mathbf{r}}_u)} \times \sqrt{(\mathbf{r}_v - \bar{\mathbf{r}}_v)^T \cdot (\mathbf{r}_v - \bar{\mathbf{r}}_v)}}$$

		MOVIES							
		(Averigens		(ESC) in the second	PULP FICTION	SHREK		THE WOLF OF WALL STREET	0
	Alice	-2		1	0	1	0		0
S	Bob	2/3					-1/3		-1/3
USERS	Carl	4/7	4/7	-10/7	-3/7	4/7	-3/7		4/7
Š		•••	•••	•••	•••	•••	•••	•••	•••
	Zoe		-9/4	-1/4				7/4	-1/4

Solution:

Normalize ratings by subtracting the mean rating

$$\mathbf{r}_u' = \mathbf{r}_u - ar{\mathbf{r}}_u$$
 mean-scaled rating vector of u

$$\mathbf{r}_v' = \mathbf{r}_v - ar{\mathbf{r}}_v$$
 mean-scaled rating vector of v

$$\mathbf{r}_u' = \mathbf{r}_u - ar{\mathbf{r}}_u$$
 mean-scaled rating vector of u

$$\mathbf{r}_v' = \mathbf{r}_v - ar{\mathbf{r}}_v$$
 mean-scaled rating vector of v

$$cosine(\mathbf{r}'_u, \mathbf{r}'_v) = \frac{\mathbf{r}'_u \cdot \mathbf{r}'_v}{||\mathbf{r}'_u||||\mathbf{r}'_v||} = \frac{(\mathbf{r}_u - \bar{\mathbf{r}}_u) \cdot (\mathbf{r}_v - \bar{\mathbf{r}}_v)}{||\mathbf{r}_u - \bar{\mathbf{r}}_u||||\mathbf{r}_v - \bar{\mathbf{r}}_v||} =$$

$$\mathbf{r}_u' = \mathbf{r}_u - \bar{\mathbf{r}}_u$$
 mean-scaled rating vector of u

$$\mathbf{r}_v' = \mathbf{r}_v - ar{\mathbf{r}}_v$$
 mean-scaled rating vector of v

$$cosine(\mathbf{r}'_u, \mathbf{r}'_v) = \frac{\mathbf{r}'_u \cdot \mathbf{r}'_v}{||\mathbf{r}'_u||||\mathbf{r}'_v||} = \frac{(\mathbf{r}_u - \bar{\mathbf{r}}_u) \cdot (\mathbf{r}_v - \bar{\mathbf{r}}_v)}{||\mathbf{r}_u - \bar{\mathbf{r}}_u||||\mathbf{r}_v - \bar{\mathbf{r}}_v||} =$$

$$= \frac{(\mathbf{r}_u - \bar{\mathbf{r}}_u) \cdot (\mathbf{r}_v - \bar{\mathbf{r}}_v)}{\sqrt{(\mathbf{r}_u - \bar{\mathbf{r}}_u)^T \cdot (\mathbf{r}_u - \bar{\mathbf{r}}_u)} \times \sqrt{(\mathbf{r}_v - \bar{\mathbf{r}}_v)^T \cdot (\mathbf{r}_v - \bar{\mathbf{r}}_v)}} = \text{Pearson}(\mathbf{r}_u, \mathbf{r}_v)$$

 \mathbf{r}_u Vector of ratings provided by user u

 \mathbf{r}_n Vector of ratings provided by user u

$$\mathcal{U}^k = \operatorname{argmax}_{\mathcal{U}' \subseteq \mathcal{U} \setminus u, |\mathcal{U}'| = k} \sum_{u' \in \mathcal{U}'} \sin(u, u') \quad \text{Top-k most "similar" users to u}$$

u's *k*-neighborhood

 \mathbf{r}_n Vector of ratings provided by user u

$$\mathcal{U}^k = \operatorname{argmax}_{\mathcal{U}' \subseteq \mathcal{U} \setminus u, |\mathcal{U}'| = k} \sum_{u' \in \mathcal{U}'} \sin(u, u')$$
 Top- k most "similar" users to u u's k -neighborhood

Set of items rated by
$$u$$
's neighbors $\mathcal{I}^k = \{i \in \mathcal{I} : \mathbf{r}_{u,i} = \downarrow \land u \in \mathcal{U}^k\}$

 \mathbf{r}_n Vector of ratings provided by user u

$$\mathcal{U}^k = \operatorname{argmax}_{\mathcal{U}' \subseteq \mathcal{U} \setminus u, |\mathcal{U}'| = k} \sum_{u' \in \mathcal{U}'} \sin(u, u')$$
 Top- k most "similar" users to u

u's *k*-neighborhood

Set of items rated by
$$u$$
's neighbors $\mathcal{I}^k = \{i \in \mathcal{I} : \mathbf{r}_{u,i} = \downarrow \land u \in \mathcal{U}^k\}$

Predicted rating given by user u to item i

$$\mathbf{r}_u[i] = r(u, i) = r_{u,i}$$

2 possible ways of aggregating neighbors ratings

2 possible ways of aggregating neighbors ratings

$$\forall i \in \mathcal{I}^k$$

2 possible ways of aggregating neighbors ratings

plain average

2 possible ways of aggregating neighbors ratings

3 main issues with user-based CF

3 main issues with user-based CF

Sparsity

systems performed poorly
when they had many
items but comparatively
few ratings

3 main issues with user-based CF

Sparsity

systems performed poorly
when they had many
items but comparatively
few ratings

Efficiency

computing similarities between all pairs of users is expensive

05/06/2020

63

3 main issues with user-based CF

Sparsity

systems performed poorly
when they had many
items but comparatively
few ratings

Efficiency

computing similarities between all pairs of users is expensive

Aging

user profiles changed quickly and the entire system model had to be recomputed

ITEM-BASED COLLABORATIVE FILTERING

• Introduced by **Amazon** to overcome the 3 issues of user-based CF

- Introduced by <u>Amazon</u> to overcome the 3 issues of user-based CF
- Since systems have typically more users than items, each item has more ratings than each user

- Introduced by Amazon to overcome the 3 issues of user-based CF
- Since systems have typically more users than items, each item has more ratings than each user
- As such, an item's rating average is more stable over time

- Introduced by <u>Amazon</u> to overcome the 3 issues of user-based CF
- Since systems have typically more users than items, each item has more ratings than each user
- As such, an item's rating average is more stable over time
- The model doesn't suffer from aging and therefore it does not need to be recomputed frequently

Item-based Neighborhood

Given a user u and an item i not rated by u, we want to estimate r(u, i)

Item-based Neighborhood

Given a user u and an item i not rated by u, we want to estimate r(u, i)

From the set of items already rated by $u(I_u)$ extract a subset of k neighbours of i

Item-based Neighborhood

Given a user u and an item i not rated by u, we want to estimate r(u, i)

From the set of items already rated by $u(I_u)$ extract a subset of k neighbours of i

k-neighborhood is found on the basis of the similarity between items without the need of explicit item's content or metadata

Item-based Neighborhood

Given a user u and an item i not rated by u, we want to estimate r(u, i)

From the set of items already rated by $u(I_u)$ extract a subset of k neighbours of i

k-neighborhood is found on the basis of the similarity between items without the need of explicit item's content or metadata

Estimate r(u, i) based on the ratings of items in the k-neighborhood of i

• The key "trick" to discover the k-neighborhood of a given item i is the ability of finding items that are "similar" to i

- The key "trick" to discover the k-neighborhood of a given item i is the ability of finding items that are "similar" to i
- Remember that we are not building any content-based user/item profile

- The key "trick" to discover the k-neighborhood of a given item i is the ability of finding items that are "similar" to i
- Remember that we are not building any content-based user/item profile
- Intuitively, 2 items i_1 and i_2 are similar to each other if users who rated them are similar

- The key "trick" to discover the k-neighborhood of a given item i is the ability of finding items that are "similar" to i
- Remember that we are not building any content-based user/item profile
- Intuitively, 2 items i_1 and i_2 are similar to each other if users who rated them are similar
- Each item represented by the user ratings vector and similarity between them is measured in the user (rating) space

 \mathbf{r}_i m-dimensional vector of ratings provided for item i (m = #users)

 \mathbf{r}_i m-dimensional vector of ratings provided for item i (m = #users)

 $\mathbf{r}_{\mathrm{Shrek}}$

• Item similarity can be computed from rating vectors (in user space)

- Item similarity can be computed from rating vectors (in user space)
- Analogous to user similarity of rating vectors (in item space):
 - Jaccard index
 - Cosine similarity (normalized = Pearson's correlation)

- Item similarity can be computed from rating vectors (in user space)
- Analogous to user similarity of rating vectors (in item space):
 - Jaccard index
 - Cosine similarity (normalized = Pearson's correlation)
- Rating prediction using the same methods proposed for user-based CF
 - Plain average of ratings
 - Weighted average of ratings (taking item similarity into account)

- Item similarity can be computed from rating vectors (in user space)
- Analogous to user similarity of rating vectors (in item space):
 - Jaccard index
 - Cosine similarity (normalized = Pearson's correlation)
- Rating prediction using the same methods proposed for user-based CF
 - Plain average of ratings
 - Weighted average of ratings (taking item similarity into account)

In general, item-based works better than user-based CF

• The most expensive step is finding the k most similar users (or items)

- The most expensive step is finding the k most similar users (or items)
- This computation is too expensive to do online (for every user/item)

- The most expensive step is finding the k most similar users (or items)
- This computation is too expensive to do online (for every user/item)
- Finding the k most similar users/items should be pre-computed (offline)

- The most expensive step is finding the k most similar users (or items)
- This computation is too expensive to do online (for every user/item)
- Finding the k most similar users/items should be pre-computed (offline)
- k-nearest neighbors seach in high dimensions (i.e., quickly find the set of k nearest data points)

- The most expensive step is finding the k most similar users (or items)
- This computation is too expensive to do online (for every user/item)
- Finding the k most similar users/items should be pre-computed (offline)
- k-nearest neighbors seach in high dimensions (i.e., quickly find the set of k
 - nearest data points)
 - The curse of dimensionality (again!)

- The most expensive step is finding the k most similar users (or items)
- This computation is too expensive to do online (for every user/item)
- Finding the k most similar users/items should be pre-computed (offline)
- k-nearest neighbors seach in high dimensions (i.e., quickly find the set of k
 - nearest data points)
 - The curse of dimensionality (again!)
 - Locality-Sensitive Hashing (LSH) approximation

Latent Factor (Model-based) CF

Tries to predict ratings by representing both items and users with a number of hidden factors inferred from observed ratings

Latent Factor (Model-based) CF

Tries to predict ratings by representing both items and users with a number of **hidden factors** inferred from observed ratings

Example: 2 hidden factors

- Dim. I: Male vs. Female

- Dim. 2: Serious vs. Escapist

Latent Factor (Model-based) CF

Tries to predict ratings by representing both items and users with a number of **hidden factors** inferred from observed ratings

Example: 2 hidden factors

- Dim. I: Male vs. Female
- Dim. 2: Serious vs. Escapist

A user's predicted rating for an item (movie) would equal the **dot product** of the movie and user vectors on the plot

• Some of the most successful realizations of latent factor models are based on matrix factorization (MF)

- Some of the most successful realizations of latent factor models are based on matrix factorization (MF)
- The original idea behind MF is to represent users and items in a lower dimensional latent space (i.e., as vectors of latent factors)

- Some of the most successful realizations of latent factor models are based on matrix factorization (MF)
- The original idea behind MF is to represent users and items in a lower dimensional latent space (i.e., as vectors of latent factors)
- Such vectors are inferred (i.e., learned) from observed item ratings

- Some of the most successful realizations of latent factor models are based on matrix factorization (MF)
- The original idea behind MF is to represent users and items in a lower dimensional latent space (i.e., as vectors of latent factors)
- Such vectors are inferred (i.e., learned) from observed item ratings
- High correspondence between item and user factors leads to a recommendation

• Map both items and users to a **joint latent factor** d-dimensional space

- Map both items and users to a **joint latent factor** d-dimensional space
- User-Item interactions are modeled as inner products in that space

- Map both items and users to a joint latent factor d-dimensional space
- User-Item interactions are modeled as **inner products** in that space $\mathbf{x}_u \in \mathbb{R}^d$ d-dimensional vector representing user u

Each $\mathbf{x}_{u}[k]$ measures the extent of interest user u has in items exhibiting the k-th factor

- Map both items and users to a joint latent factor d-dimensional space
- User-Item interactions are modeled as inner products in that space

 $\mathbf{x}_u \in \mathbb{R}^d$ d-dimensional vector representing user u

 $\mathbf{w}_i \in \mathbb{R}^d$ d-dimensional vector representing item i

Each $\mathbf{x}_{u}[k]$ measures the extent of interest user u has in items exhibiting the k-th factor

Each $\mathbf{w}_i[k]$ measures the extent to which the item i has the k-th factor

• Essentially, d hidden features for describing both users and items

- Essentially, d hidden features for describing both users and items
- In the user-movie example, a feature f may refer to:
 - how much each a user likes Disney movies (in the case of user vectors)
 - how close a movie is to a Disney movie (in the case of item, i.e., movie, vectors)

- Essentially, d hidden features for describing both users and items
- In the user-movie example, a feature f may refer to:
 - how much each a user likes Disney movies (in the case of user vectors)
 - how close a movie is to a Disney movie (in the case of item, i.e., movie, vectors)
- We do not know what these features are nor do we have to determine them beforehand!

- Essentially, d hidden features for describing both users and items
- In the user-movie example, a feature f may refer to:
 - how much each a user likes Disney movies (in the case of user vectors)
 - how close a movie is to a Disney movie (in the case of item, i.e., movie, vectors)
- We do not know what these features are nor do we have to determine them beforehand!
- That is why these features are often refer to as latent features

 $r(u,i) = r_{u,i}$ rating of user u for the item i

$$r(u,i) = r_{u,i}$$
 rating of user u for the item i
$$\hat{r}_{u,i} = \mathbf{x}_u^T \cdot \mathbf{w}_i = \sum_{j=1}^d x_{u,j} w_{j,i}$$
 estimated (i.e., predicted) rating of user u for the item i

$$r(u,i) = r_{u,i}$$
 rating of user u for the item i
$$\hat{r}_{u,i} = \mathbf{x}_u^T \cdot \mathbf{w}_i = \sum_{i=1}^d x_{u,i} w_{j,i}$$
 estimated (i.e., predicted) rating of user u for the item i

The major challenge is computing the mapping of each item and user to latent factor vectors \mathbf{x}_u and \mathbf{w}_i

 $r(u,i) = r_{u,i}$ rating of user u for the item i $\hat{r}_{u,i} = \mathbf{x}_u^T \cdot \mathbf{w}_i = \sum_{j=1}^d x_{u,j} w_{j,i}$ estimated (i.e., predicted) rating of user u for the item i

The major challenge is computing the mapping of each item and user to latent factor vectors \mathbf{x}_{ij} and \mathbf{w}_{ij}

Recommendations for a user are generated by computing the estimated ratings for unseen items, and by taking the **top-***k* **highest rated** ones

Matrix Factorization Framework

Matrix Factorization Framework

Matrix Factorization Framework

Approximate the user-item rating matrix R with the product of $X \times W^T$

Assuming we have access to a dataset of observed ratings

Assuming we have access to a dataset of observed ratings

The matrix R is partially known and filled with those observations

Assuming we have access to a dataset of observed ratings

The matrix R is partially known and filled with those observations

To actually learn the latent factor representations \mathbf{x}_u and \mathbf{w}_i we minimize the following loss function

$$L(X, W) = \sum_{(u,i) \in \mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

Training set of observed ratings

05/04/2020

Assuming we have access to a dataset of observed ratings

The matrix R is partially known and filled with those observations

To actually learn the latent factor representations \mathbf{x}_u and \mathbf{w}_i we minimize the following loss function

$$L(X, W) = \sum_{\substack{(u, i) \in \mathcal{D} \\ \uparrow}} \underbrace{\left(r_{u, i} - \mathbf{x}_{u}^{T} \cdot \mathbf{w}_{i}\right)^{2}}_{\text{squared error term}} + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_{u}||^{2} + \sum_{i \in \mathcal{D}} ||\mathbf{w}_{i}||^{2}\right)$$

05/06/2020

Training set of

observed ratings

Assuming we have access to a dataset of observed ratings

The matrix R is partially known and filled with those observations

To actually learn the latent factor representations \mathbf{x}_u and \mathbf{w}_i we minimize the following loss function

$$L(X,W) = \sum_{\substack{(u,i) \in \mathcal{D} \\ \uparrow}} \frac{\left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i\right)^2}{\text{squared error term}} + \frac{\lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2\right)}{\text{regularization term}}$$

05/06/2020

observed ratings

$$X^*, W^* = \operatorname{argmin}_{X,W} L(X, W)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} L(X, W)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} \sum_{(u,i)\in\mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u\in\mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i\in\mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} L(X, W)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} \sum_{(u,i) \in \mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} \left\{ \frac{1}{2} \sum_{(u,i) \in \mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 \right) \right\}$$

$$X^*, W^* = \operatorname{argmin}_{X,W} L(X, W)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} \sum_{(u,i) \in \mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} \left\{ \frac{1}{2} \sum_{(u,i) \in \mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 \right) \right\}$$

Mathematically convenient

$$X^*, W^* = \operatorname{argmin}_{X,W} L(X, W)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} \sum_{(u,i) \in \mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

$$X^*, W^* = \operatorname{argmin}_{X,W} \left\{ \frac{1}{2} \sum_{(u,i) \in \mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 \right) \right\}$$

Still, how do we solve this?

Learning Algorithms

2 main optimization methods

Learning Algorithms

2 main optimization methods

Stochastic Gradient Descent (SGD)

Learning Algorithms

2 main optimization methods

Stochastic Gradient Descent (SGD)

Alternating Least Squares (ALS)

For each training instance (u, i), let's compute the gradient of the loss with respect to \mathbf{x}_u and \mathbf{w}_i , respectively

For each training instance (u, i), let's compute the gradient of the loss with respect to \mathbf{x}_u and \mathbf{w}_i , respectively

$$\nabla L(\mathbf{x}_u; \mathbf{w}_i) = \frac{1}{2} \left[-2(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + 2\lambda \mathbf{x}_u \right] = -(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + \lambda \mathbf{x}_u$$

$$\nabla L(\mathbf{w}_i; \mathbf{x}_u) = \frac{1}{2} \left[-2(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{x}_u + 2\lambda \mathbf{w}_i \right] = -(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{x}_u + \lambda \mathbf{w}_i$$

We know that the updating strategy for SGD is as follows:

$$\mathbf{x}_u^{(t+1)} \leftarrow \mathbf{x}_u^{(t)} - \eta \nabla L(\mathbf{x}_u^{(t)}; \mathbf{w}_i^{(t)})$$

$$\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} - \eta \nabla L(\mathbf{w}_i^{(t)}; \mathbf{x}_u^{(t)})$$

We know that the updating strategy for SGD is as follows:

$$\mathbf{x}_u^{(t+1)} \leftarrow \mathbf{x}_u^{(t)} - \eta \nabla L(\mathbf{x}_u^{(t)}; \mathbf{w}_i^{(t)})$$

$$\mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} - \eta \nabla L(\mathbf{w}_{i}^{(t)}; \mathbf{x}_{u}^{(t)})$$

$$\mathbf{x}_u^{(0)}, \mathbf{w}_i^{(0)}$$

are typically randomly initialized

We know that the updating strategy for SGD is as follows:

$$\mathbf{x}_u^{(t+1)} \leftarrow \mathbf{x}_u^{(t)} - \eta \nabla L(\mathbf{x}_u^{(t)}; \mathbf{w}_i^{(t)}) \qquad \mathbf{x}_u^{(0)}, \mathbf{w}_i^{(0)}$$
are typically randomly initialize

$$\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} - \eta \nabla L(\mathbf{w}_i^{(t)}; \mathbf{x}_u^{(t)})$$

are typically randomly initialized

At each iteration, both user and item latent vectors are updated by a magnitude proportional to η in the **opposite direction** of the gradient

We define the **prediction error** associated with each training instance (u, i)

$$e_{u,i} = r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i$$

We define the **prediction error** associated with each training instance (u, i)

$$e_{u,i} = r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i$$

$$\nabla L(\mathbf{x}_u; \mathbf{w}_i) = -(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i)\mathbf{w}_i + \lambda \mathbf{x}_u = -e_{u,i}\mathbf{w}_i + \lambda \mathbf{x}_u$$

$$\mathbf{x}_{u}^{(t+1)} \leftarrow \mathbf{x}_{u}^{(t)} - \eta \nabla L(\mathbf{x}_{u}^{(t)}; \mathbf{w}_{i}^{(t)})$$

$$\mathbf{x}_{u}^{(t+1)} \leftarrow \mathbf{x}_{u}^{(t)} - \eta \nabla L(\mathbf{x}_{u}^{(t)}; \mathbf{w}_{i}^{(t)}) \qquad \mathbf{x}_{u}^{(t+1)} \leftarrow \mathbf{x}_{u}^{(t)} + \eta (e_{u,i} \mathbf{w}_{i}^{(t)} - \lambda \mathbf{x}_{u}^{(t)})$$

We define the **prediction error** associated with each training instance (u, i)

$$e_{u,i} = r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i$$

$$\nabla L(\mathbf{w}_i; \mathbf{x}_u) = -(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i)\mathbf{x}_u + \lambda \mathbf{w}_i = -e_{u,i}\mathbf{x}_u + \lambda \mathbf{w}_i$$

$$\mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} - \eta \nabla L(\mathbf{w}_{i}^{(t)}; \mathbf{x}_{u}^{(t)})$$

$$\mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} - \eta \nabla L(\mathbf{w}_{i}^{(t)}; \mathbf{x}_{u}^{(t)}) \quad \mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} + \eta (e_{u,i} \mathbf{x}_{u}^{(t)} - \lambda \mathbf{w}_{i}^{(t)})$$

• SGD has been shown to work well optimizing MF models

- SGD has been shown to work well optimizing MF models
- However, it is not a popular choice if the dimensionality of the original rating matrix R is high

- SGD has been shown to work well optimizing MF models
- However, it is not a popular choice if the dimensionality of the original rating matrix R is high
- Indeed, there are d(m+n) parameters to optimize

- SGD has been shown to work well optimizing MF models
- However, it is not a popular choice if the dimensionality of the original rating matrix R is high
- Indeed, there are d(m+n) parameters to optimize
- In real life problems, this number can get very large quite often, requiring both a parallelization mechanism or an alternative optimizer

Alternating Least Squares (ALS)

• The original objective is **non-convex**, as both \mathbf{x}_u and \mathbf{w}_i are unknown

- The original objective is **non-convex**, as both \mathbf{x}_u and \mathbf{w}_i are unknown
- ALS operates by alternately fixing (i.e., assuming constant) one latent vector (e.g., item vector) and updating the other one (e.g., user vector)

- The original objective is **non-convex**, as both \mathbf{x}_u and \mathbf{w}_i are unknown
- ALS operates by alternately fixing (i.e., assuming constant) one latent vector (e.g., item vector) and updating the other one (e.g., user vector)
- When one latent vector is fixed, the objective becomes quadratic (i.e., convex) and therefore can be solved optimally

- The original objective is **non-convex**, as both \mathbf{x}_u and \mathbf{w}_i are unknown
- ALS operates by alternately fixing (i.e., assuming constant) one latent vector (e.g., item vector) and updating the other one (e.g., user vector)
- When one latent vector is fixed, the objective becomes quadratic (i.e., convex) and therefore can be solved optimally
- Each alternating iteration reduces to traditional least squares and can be solved using OLS or its regularized variant (e.g., pseudo-inverse)

$$L(X, W) = \sum_{(u,i)\in\mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u\in\mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i\in\mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

$$L(X, W) = \sum_{(u,i)\in\mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u\in\mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i\in\mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

Let's assume we fix the item latent vector \mathbf{w}_i and we take the gradient with respect to the user latent vector \mathbf{x}_{ij}

$$L(X, W) = \sum_{(u,i)\in\mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u\in\mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i\in\mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

Let's assume we fix the item latent vector \mathbf{w}_i and we take the gradient with respect to the user latent vector \mathbf{x}_{ij}

$$\nabla L(\mathbf{x}_u; \mathbf{w}_i) = \frac{1}{2} \left[-2 \sum_{i \in \mathcal{D}} (r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + 2\lambda \mathbf{x}_u \right] = -\sum_{i \in \mathcal{D}} (r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + \lambda \mathbf{x}_u$$

$$L(X, W) = \sum_{(u,i)\in\mathcal{D}} \left(r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i \right)^2 + \lambda \left(\sum_{u\in\mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i\in\mathcal{D}} ||\mathbf{w}_i||^2 \right)$$

Let's assume we fix the item latent vector \mathbf{w}_i and we take the gradient with respect to the user latent vector \mathbf{x}_{ij}

$$\nabla L(\mathbf{x}_u; \mathbf{w}_i) = \frac{1}{2} \left[-2 \sum_{i \in \mathcal{D}} (r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + 2\lambda \mathbf{x}_u \right] = -\sum_{i \in \mathcal{D}} (r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + \lambda \mathbf{x}_u$$

We want to set this to 0
$$-\sum_{i\in\mathcal{D}}(r_{u,i}-\mathbf{x}_u^T\cdot\mathbf{w}_i)\mathbf{w}_i+\lambda\mathbf{x}_u=0$$

$$-\sum_{i\in\mathcal{D}} (r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + \lambda \mathbf{x}_u = 0$$

$$-\sum_{i\in\mathcal{D}}(r_{u,i}-\mathbf{x}_u^T\cdot\mathbf{w}_i)\mathbf{w}_i+\lambda\mathbf{x}_u=0$$

$$= -W^T(\mathbf{r}_u - W \cdot \mathbf{x}_u) + \lambda \mathbf{x}_u = 0$$

$$-\sum_{i\in\mathcal{D}} (r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{w}_i + \lambda \mathbf{x}_u = 0$$

$$= -W^T(\mathbf{r}_u - W \cdot \mathbf{x}_u) + \lambda \mathbf{x}_u = 0$$

$$= W^T \cdot \mathbf{r}_u = W^T W \cdot \mathbf{x}_u + \lambda \mathbf{x}_u$$

$$-\sum_{i\in\mathcal{D}}(r_{u,i}-\mathbf{x}_u^T\cdot\mathbf{w}_i)\mathbf{w}_i+\lambda\mathbf{x}_u=0$$

$$= -W^T(\mathbf{r}_u - W \cdot \mathbf{x}_u) + \lambda \mathbf{x}_u = 0$$

$$= W^T \cdot \mathbf{r}_u = W^T W \cdot \mathbf{x}_u + \lambda \mathbf{x}_u$$

$$\mathbf{x} = W^T \cdot \mathbf{r}_u = \mathbf{x}_u (W^T W + \lambda I)$$
 $I \in \mathbb{R}_{d imes d}$ identity matrix

$$-\sum_{i\in\mathcal{D}}(r_{u,i}-\mathbf{x}_u^T\cdot\mathbf{w}_i)\mathbf{w}_i+\lambda\mathbf{x}_u=0$$

$$= -W^T(\mathbf{r}_u - W \cdot \mathbf{x}_u) + \lambda \mathbf{x}_u = 0$$

$$= W^T \cdot \mathbf{r}_u = W^T W \cdot \mathbf{x}_u + \lambda \mathbf{x}_u$$

$$=W^T\cdot \mathbf{r}_u=\mathbf{x}_u(W^TW+\lambda I)$$
 $I\in\mathbb{R}_{d imes d}$ identity matrix

$$= (W^T W + \lambda I)^{-1} \cdot W^T \cdot \mathbf{r}_u = \mathbf{x}_u (W^T W + \lambda I) \cdot (W^T W + \lambda I)^{-1}$$

$$-\sum_{i\in\mathcal{D}}(r_{u,i}-\mathbf{x}_u^T\cdot\mathbf{w}_i)\mathbf{w}_i+\lambda\mathbf{x}_u=0$$

$$= -W^T(\mathbf{r}_u - W \cdot \mathbf{x}_u) + \lambda \mathbf{x}_u = 0$$

$$= W^T \cdot \mathbf{r}_u = W^T W \cdot \mathbf{x}_u + \lambda \mathbf{x}_u$$

$$=W^T\cdot \mathbf{r}_u=\mathbf{x}_u(W^TW+\lambda I)$$
 $I\in\mathbb{R}_{d imes d}$ identity matrix

$$= (W^T W + \lambda I)^{-1} \cdot W^T \cdot \mathbf{r}_u = \mathbf{x}_u (W^T W + \lambda I) \cdot (W^T W + \lambda I)^{-1}$$

$$\mathbf{x}_u = (W^T W + \lambda I)^{-1} \cdot W^T \cdot \mathbf{r}_u$$

ALS: User Vector Fixed

$$-\sum_{u \in \mathcal{D}} (r_{u,i} - \mathbf{x}_u^T \cdot \mathbf{w}_i) \mathbf{x}_u + \lambda \mathbf{w}_i = 0$$
$$= -X^T (\mathbf{r}_i - X \cdot \mathbf{w}_i) - \lambda \mathbf{w}_i = 0$$

$$= X^T \cdot \mathbf{r}_i = X^T X \cdot \mathbf{w}_i + \lambda \mathbf{w}_i$$

$$\mathbf{x} = X^T \cdot \mathbf{r}_i = \mathbf{w}_i (X^T X + \lambda I) \;\; I \in \mathbb{R}_{d imes d}$$
 identity matrix

$$= (X^T X + \lambda I)^{-1} \cdot X^T \cdot \mathbf{r}_i = \mathbf{w}_i (X^T X + \lambda I) \cdot (X^T X + \lambda I)^{-1}$$

$$\mathbf{w}_i = (X^T X + \lambda I)^{-1} \cdot X^T \cdot \mathbf{r}_i$$

I. Initialize the user latent vectors X and item latent vectors W randomly

- I. Initialize the user latent vectors X and item latent vectors W randomly
- 2. Fix item vectors W and solve for X (users)

- I. Initialize the user latent vectors X and item latent vectors W randomly
- 2. Fix item vectors W and solve for X (users)
- 3. Fix user vectors X and solve for W (items)

- Initialize the user latent vectors X and item latent vectors W randomly
- 2. Fix item vectors W and solve for X (users)
- 3. Fix user vectors X and solve for W (items)
- 4. Repeat step 2 and 3 until convergence

- Initialize the user latent vectors X and item latent vectors W randomly
- 2. Fix item vectors W and solve for X (users)
- 3. Fix user vectors X and solve for W (items)
- 4. Repeat step 2 and 3 until convergence

Convergence is guaranteed because in each step the loss function can either decrease or stay unchanged, but never increase

• In general, SGD is easier and faster than ALS

- In general, SGD is easier and faster than ALS
- However, ALS is favorable in at least 2 cases:

- In general, SGD is easier and faster than ALS
- However, ALS is favorable in at least 2 cases:
 - Parallelization: each \mathbf{x}_u and \mathbf{w}_i is computed independently of user/item factors

- In general, SGD is easier and faster than ALS
- However, ALS is favorable in at least 2 cases:
 - Parallelization: each \mathbf{x}_u and \mathbf{w}_i is computed independently of user/item factors
 - Implicit Data: the training set is dense and looping over each single instance as SGD does would be unfeasible

A well-known technique to decompose a matrix into the product of **3 matrices**

$$A_{m \times n} = U \Sigma V^T$$

A well-known technique to decompose a matrix into the product of **3 matrices**

$$A_{m \times n} = U \Sigma V^T$$

 $\Sigma \in \mathbb{R}_{k \times k}$ Diagonal matrix with the singolar values of A on its main diagonal

A well-known technique to decompose a matrix into the product of 3 matrices

$$A_{m \times n} = U \Sigma V^T$$

 $\Sigma \in \mathbb{R}_{k imes k}$. Diagonal matrix with the singolar values of A on its main diagonal

 $U \in \mathbb{R}_{m \times k}$ Orthonormal matrices (columns are orthogonal and their norm is 1) $V \in \mathbb{R}_{n \times k}$

A well-known technique to decompose a matrix into the product of 3 matrices

$$A_{m \times n} = U \Sigma V^T$$

 $\Sigma \in \mathbb{R}_{k \times k}$ Diagonal matrix with the singolar values of A on its main diagonal

$$U \in \mathbb{R}_{m \times k}$$

$$V \in \mathbb{R}_{n \times k}$$

 $U \in \mathbb{R}_{m imes k}$ Orthonormal matrices (columns are orthogonal and their norm is I) $V \in \mathbb{R}_{n imes k}$

SVD solution is unique

- If we let the matrix A be the user-item ratings R
 - Each row in U (V) corresponds to a user (item) factor
 - Each rating $R_{i,j}$ ($A_{i,j}$) is explained by a set of **independent factors**

- If we let the matrix A be the user-item ratings R
 - Each row in U (V) corresponds to a user (item) factor
 - Each rating $R_{i,j}$ ($A_{i,j}$) is explained by a set of **independent factors**
- For a specific user i and item j the rating $R_{i,j}$ is decomposed as:

$$R_{i,j} = r_{i,j} = \sum_{k=1}^{d} u_{i,k} \Sigma_{k,k} v_{j,k}^{T}$$

- If we let the matrix A be the user-item ratings R
 - Each row in U (V) corresponds to a user (item) factor
 - Each rating $R_{i,j}$ ($A_{i,j}$) is explained by a set of **independent factors**
- For a specific user i and item j the rating $R_{i,j}$ is decomposed as:

$$R_{i,j} = r_{i,j} = \sum_{k=1}^{d} u_{i,k} \Sigma_{k,k} v_{j,k}^{T}$$

user i's k-th latent factor

- If we let the matrix A be the user-item ratings R
 - Each row in U (V) corresponds to a user (item) factor
 - Each rating $R_{i,j}$ ($A_{i,j}$) is explained by a set of **independent factors**
- For a specific user i and item j the rating $R_{i,j}$ is decomposed as:

$$R_{i,j} = r_{i,j} = \sum_{k=1}^{d} u_{i,k} \Sigma_{k,k} v_{j,k}^{T}$$

item j's k-th latent factor

- If we let the matrix A be the user-item ratings R
 - Each row in U (V) corresponds to a user (item) factor
 - Each rating $R_{i,j}$ ($A_{i,j}$) is explained by a set of **independent factors**
- For a specific user i and item j the rating $R_{i,j}$ is decomposed as:

$$R_{i,j} = r_{i,j} = \sum_{k=1}^{d} u_{i,k} \sum_{k,k} v_{j,k}^{T}$$

overall effect (i.e., magnitude) of k-th latent factor

169

- If we let the matrix A be the user-item ratings R
 - Each row in U (V) corresponds to a user (item) factor
 - Each rating $R_{i,j}$ ($A_{i,j}$) is explained by a set of **independent factors**
- For a specific user i and item j the rating $R_{i,j}$ is decomposed as:

$$R_{i,j} = r_{i,j} = \sum_{k=1}^{d} u_{i,k} \Sigma_{k,k} v_{j,k}^{T}$$

Each factor k is the result of the **similarity** between user i and item j and its overall effect on ratings across all users and items

170

• Computationally-expensive technique (may don't scale to millions of users/items)

- Computationally-expensive technique (may don't scale to millions of users/items)
- The original matrix A is assumed to be fully-dense (no missing values)

- Computationally-expensive technique (may don't scale to millions of users/items)
- The original matrix A is assumed to be **fully-dense** (no missing values)
- Usually the rating matrix R is very sparse (many missing ratings)

- Computationally-expensive technique (may don't scale to millions of users/items)
- The original matrix A is assumed to be **fully-dense** (no missing values)
- Usually the rating matrix R is very sparse (many missing ratings)
- Possible workaround to apply SVD: use imputation to fill missing values in the matrix R

• One benefit of the matrix factorization approach to CF is its **flexibility** in dealing with various data aspects

- One benefit of the matrix factorization approach to CF is its **flexibility** in dealing with various data aspects
- The basic learning framework tries to capture the interactions between users and items that produce the different rating values

- One benefit of the matrix factorization approach to CF is its **flexibility** in dealing with various data aspects
- The basic learning framework tries to capture the interactions between users and items that produce the different rating values
- However, much of the observed variation in ratings depends on **biases** associated with users or items, independent of any interactions

- One benefit of the matrix factorization approach to CF is its **flexibility** in dealing with various data aspects
- The basic learning framework tries to capture the interactions between users and items that produce the different rating values
- However, much of the observed variation in ratings depends on **biases** associated with users or items, independent of any interactions
- For example, some users systematically tend to give higher ratings than others, and some items receive higher ratings than others

• Trying to explain observed ratings from user-item interactions only may not be enough accurate

- Trying to explain observed ratings from user-item interactions only may not be enough accurate
- We separate the latent factor modeling from the bias modeling

- Trying to explain observed ratings from user-item interactions only may not be enough accurate
- We separate the latent factor modeling from the bias modeling
- Given a rating $r_{u,i}$ a first-order approximation of the bias involved with it $(b_{u,i})$ can be defined as follows:

$$b_{u,i} = \mu + b_u + b_i$$

- Trying to explain observed ratings from user-item interactions only may not be enough accurate
- We separate the latent factor modeling from the bias modeling
- Given a rating $r_{u,i}$ a first-order approximation of the bias involved with it $(b_{u,i})$ can be defined as follows:

$$b_{u,i} = \mu + b_u + b_i$$

Overall avg. rating

- Trying to explain observed ratings from user-item interactions only may not be enough accurate
- We separate the latent factor modeling from the bias modeling
- Given a rating $r_{u,i}$ a first-order approximation of the bias involved with it $(b_{u,i})$ can be defined as follows:

$$b_{u,i} = \mu + \overline{b_u} + b_i$$

Observed deviations of user *u* from the avg.

- Trying to explain observed ratings from user-item interactions only may not be enough accurate
- We separate the latent factor modeling from the bias modeling
- Given a rating $r_{u,i}$ a first-order approximation of the bias involved with it $(b_{u,i})$ can be defined as follows:

$$b_{u,i} = \mu + b_u + b_i$$

Observed deviations of item *i* from the avg.

184

$$b_{u,i} = \mu + b_u + b_i$$

We want a first-order estimate for user Joe's rating of the movie Titanic

$$b_{u,i} = \mu + b_u + b_i$$

We want a first-order estimate for user Joe's rating of the movie Titanic

 $\mu = 3.7$ The average rating over all movies (i.e., items)

$$b_{u,i} = \mu + b_u + b_i$$

We want a first-order estimate for user Joe's rating of the movie Titanic

$$\mu=3.7$$
 The average rating over **all** movies (i.e., items)

$$b_{
m Titanic} = 0.5$$
 Titanic is a 0.5 stars above the avg. rated movie

$$b_{u,i} = \mu + b_u + b_i$$

We want a first-order estimate for user Joe's rating of the movie Titanic

 $\mu=3.7$ The average rating over all movies (i.e., items)

 $b_{
m Titanic} = 0.5$ Titanic is a 0.5 stars above the avg. rated movie

 $b_{
m Joe} = -0.3$ Joe is a critical user who tends to give 0.3 less stars than avg.

$$b_{u,i} = \mu + b_u + b_i$$

We want a first-order estimate for user Joe's rating of the movie Titanic

 $\mu = 3.7$ The average rating over **all** movies (i.e., items)

 $b_{
m Titanic} = 0.5$ Titanic is a 0.5 stars above the avg. rated movie

 $b_{
m Joe} = -0.3$ Joe is a critical user who tends to give 0.3 less stars than avg.

$$b_{\text{Joe,Titanic}} = 3.7 - 0.3 + 0.5 = 3.9$$

Bias term

$$\hat{r}_{u,i} = \underbrace{\mathbf{x}_u^T \cdot \mathbf{w}_i}_{\text{latent factors}} + \underbrace{\mu + b_u + b_i}_{\text{bias}}$$

The estimated rating of an item *i* for the user *u* is now made of **2 components**

$$\hat{r}_{u,i} = \underbrace{\mathbf{x}_u^T \cdot \mathbf{w}_i}_{\text{latent factors}} + \underbrace{\mu + b_u + b_i}_{\text{bias}}$$

The estimated rating of an item *i* for the user *u* is now made of **2 components**

Latent factor term

models user-item interaction

$$\hat{r}_{u,i} = \underbrace{\mathbf{x}_u^T \cdot \mathbf{w}_i}_{\text{latent factors}} + \underbrace{\mu + b_u + b_i}_{\text{bias}}$$

The estimated rating of an item *i* for the user *u* is now made of **2 components**

Latent factor term

models user-item interaction

Bias term

models global average, user and item bias

Overall, the original optimization problem becomes as follows

$$X^*, W^* = \operatorname{argmin}_{X,W} \left\{ \frac{1}{2} \sum_{(u,i) \in \mathcal{D}} \left[r_{u,i} - (\mathbf{x}_u^T \cdot \mathbf{w}_i + \mu + b_u + b_i) \right]^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 + \sum_{u \in \mathcal{D}} b_u^2 + \sum_{i \in \mathcal{D}} b_i^2 \right) \right\}$$

Overall, the original optimization problem becomes as follows

$$X^*, W^* = \operatorname{argmin}_{X,W} \left\{ \frac{1}{2} \sum_{(u,i) \in \mathcal{D}} \left[r_{u,i} - (\mathbf{x}_u^T \cdot \mathbf{w}_i + \mu + b_u + b_i) \right]^2 + \lambda \left(\sum_{u \in \mathcal{D}} ||\mathbf{x}_u||^2 + \sum_{i \in \mathcal{D}} ||\mathbf{w}_i||^2 + \sum_{u \in \mathcal{D}} b_u^2 + \sum_{i \in \mathcal{D}} b_i^2 \right) \right\}$$

Can still be solved using ALS

CF methods suffer from 3 main problems

CF methods suffer from 3 main problems

cold start

for a new user/item
entering the system there is
not enough data to make
recommendations

CF methods suffer from 3 main problems

cold start

for a new user/item
entering the system there is
not enough data to make
recommendations

scalability

million users/items systems may require extraordinary computational power to generate recommendations

CF methods suffer from 3 main problems

cold start

for a new user/item
entering the system there is
not enough data to make
recommendations

scalability

million users/items systems may require extraordinary computational power to generate recommendations

sparsity

the vast majority of items are not rated by users

 Most recommender systems now use a hybrid approach, combining content-based and collaborative filtering

- Most recommender systems now use a hybrid approach, combining content-based and collaborative filtering
- Hybrid approaches can be implemented in several ways:

- Most recommender systems now use a hybrid approach, combining content-based and collaborative filtering
- Hybrid approaches can be implemented in several ways:
 - Combining individual recommendations from content-based and collaborative filtering systems, separately

- Most recommender systems now use a hybrid approach, combining content-based and collaborative filtering
- Hybrid approaches can be implemented in several ways:
 - Combining individual recommendations from content-based and collaborative filtering systems, separately
 - Adding content-based capabilities to a collaborative-based approach (and vice versa)

- Most recommender systems now use a hybrid approach, combining content-based and collaborative filtering
- Hybrid approaches can be implemented in several ways:
 - Combining individual recommendations from content-based and collaborative filtering systems, separately
 - Adding content-based capabilities to a collaborative-based approach (and vice versa)
 - Unifying the two approaches into one model

Hybrid methods have shown to provide more accurate
 recommendations than pure content-based or collaborative filtering

- Hybrid methods have shown to provide more accurate
 recommendations than pure content-based or collaborative filtering
- They can also be used to overcome common problems in recommender systems such as cold start and the sparseness of user-item matrix

- Hybrid methods have shown to provide more accurate recommendations than pure content-based or collaborative filtering
- They can also be used to overcome common problems in recommender systems such as cold start and the sparseness of user-item matrix
- Netflix is a good example of hybrid recommender systems

Netflix's Hybrid Recommender System

Recommendations are generated

Netflix's Hybrid Recommender System

Recommendations are generated

from watching and searching habits of similar users

collaborative filtering

Netflix's Hybrid Recommender System

Recommendations are generated

from watching and searching habits of similar users

collaborative filtering

by offering movies similar to those that a user has already rated highly

content-based filtering

• In 2006, the online DVD rental company Netflix announced a contest to improve the state of its recommender system, called Cinematch

- In 2006, the online DVD rental company Netflix announced a contest to improve the state of its recommender system, called Cinematch
- Released a training set of ~100M ratings from about 500K anonymous customers and their ratings on more than 17K movies (1 to 5 stars)

- In 2006, the online DVD rental company Netflix announced a contest to improve the state of its recommender system, called Cinematch
- Released a training set of ~100M ratings from about 500K anonymous customers and their ratings on more than 17K movies (1 to 5 stars)
- Participating teams submit predicted ratings for a test set of approximately 3M ratings

 Netflix calculates a Root Mean Squared Error (RMSE) based on the heldout truth

- Netflix calculates a Root Mean Squared Error (RMSE) based on the heldout truth
- The first team that can improve on the Netflix algorithm's RMSE performance by 10% or more wins a \$1 million prize

- Netflix calculates a Root Mean Squared Error (RMSE) based on the heldout truth
- The first team that can improve on the Netflix algorithm's RMSE performance by 10% or more wins a \$1 million prize
- If no team reaches the 10 percent goal, Netflix gives a \$50,000 Progress Prize to the team in first place at the end of each year

- Netflix calculates a Root Mean Squared Error (RMSE) based on the heldout truth
- The first team that can improve on the Netflix algorithm's RMSE performance by 10% or more wins a \$1 million prize
- If no team reaches the 10 percent goal, Netflix gives a \$50,000 Progress Prize to the team in first place at the end of each year
- According to the <u>contest website</u>, more than 48,000 teams from 182 different countries have downloaded the data

 The BellKor team (AT&T Labs) took over the top spot in the competition in the summer of 2007

- The BellKor team (AT&T Labs) took over the top spot in the competition in the summer of 2007
- It firstly won the 2007 Progress Prize with the best score at the time: 8.43% better than Netflix

- The BellKor team (AT&T Labs) took over the top spot in the competition in the summer of 2007
- It firstly won the 2007 Progress Prize with the best score at the time: 8.43% better than Netflix
- On June 26, 2009 the team "BellKor's Pragmatic Chaos", a merger of "Bellkor in BigChaos" and "Pragmatic Theory", achieved a 10.05% lift

- The BellKor team (AT&T Labs) took over the top spot in the competition in the summer of 2007
- It firstly won the 2007 Progress Prize with the best score at the time: 8.43% better than Netflix
- On June 26, 2009 the team "BellKor's Pragmatic Chaos", a merger of "Bellkor in BigChaos" and "Pragmatic Theory", achieved a 10.05% lift

A combination of 100 different predictor sets, mostly factorization models

Evaluation Metrics

How do we evaluate recommendations generated?

Evaluation Metrics

How do we evaluate recommendations generated?

Offline

RMSE, MAE, MAP@K, MAR@K, Coverage, Personalization

Evaluation Metrics

How do we evaluate recommendations generated?

Offline

RMSE, MAE, MAP@K, MAR@K, Coverage, Personalization

Online

A/B testing measuring CTR, ROI, and other "live" metrics

RMSE =
$$\frac{1}{|\mathcal{D}_{\text{test}}|} \sqrt{\sum_{(u,i) \in \mathcal{D}_{\text{test}}} (r_{u,i} - \hat{r}_{u,i})^2}$$

RMSE =
$$\frac{1}{|\mathcal{D}_{\text{test}}|} \sqrt{\sum_{(u,i) \in \mathcal{D}_{\text{test}}} (r_{u,i} - \hat{r}_{u,i})^2}$$

Narrow focus on accuracy may penalize prediction diversity (all recommendations are too similar to the item)

RMSE =
$$\frac{1}{|\mathcal{D}_{\text{test}}|} \sqrt{\sum_{(u,i) \in \mathcal{D}_{\text{test}}} (r_{u,i} - \hat{r}_{u,i})^2}$$

Narrow focus on accuracy may penalize prediction diversity (all recommendations are too similar to the item)

The order of recommendations should also be taken into account

RMSE =
$$\frac{1}{|\mathcal{D}_{\text{test}}|} \sqrt{\sum_{(u,i) \in \mathcal{D}_{\text{test}}} (r_{u,i} - \hat{r}_{u,i})^2}$$

Narrow focus on accuracy may penalize prediction diversity (all recommendations are too similar to the item)

The order of recommendations should also be taken into account

The RMSE might penalize a method that does well for high ratings and badly for others

For a binary classifier predicting a condition (y = I) or not, we define

$$P = \frac{TP}{TP + FP} \qquad \qquad R = \frac{TP}{TP + FN}$$

For a binary classifier predicting a condition (y = I) or not, we define

$$P = \frac{TP}{TP + FP} \qquad \qquad R = \frac{TP}{TP + FN}$$

Mapping of binary classification terminology to recommender systems

binary classifier	recommender system
# with condition (y = I)	# of all possible relevant items for a user
# predicted positive (TP + FP)	# of recommended items
# correct positives (TP)	# of recommended items that are relavant

For a recommender system, we can therefore define

$$P = \frac{\text{\# relevant item recommendations}}{\text{\# items recommended}} \quad R = \frac{\text{\# relevant item recommendations}}{\text{\# items actually relevant}}$$

For a recommender system, we can therefore define

$$P = \frac{\text{\# relevant item recommendations}}{\text{\# items recommended}} \quad R = \frac{\text{\# relevant item recommendations}}{\text{\# items actually relevant}}$$

A recommender system generates k=5 items to recommend

There are only 3 relevant items

The success/failure of our recommendations: [0, 1, 1, 0, 0] 0=not relevant/1=relevant

$$P = \frac{2}{5} \qquad R = \frac{2}{3}$$

• Precision and Recall don't seem to care about ordering

- Precision and Recall don't seem to care about ordering
- Consider Precision and Recall at cutoff k (i.e., P@k and R@k)

- Precision and Recall don't seem to care about ordering
- Consider Precision and Recall at cutoff k (i.e., P@k and R@k)
- Imagine taking our list of N recommendations and considering only the first element, then only the first two, then only the first three, and so on

- Precision and Recall don't seem to care about ordering
- Consider Precision and Recall at cutoff k (i.e., P@k and R@k)
- Imagine taking our list of N recommendations and considering only the first element, then only the first two, then only the first three, and so on
- P@k and R@k are simply the precision and recall calculated only from the subset of the first k recommendations

P@k: Example

k = 3	Rank	Product Recommended	Result
1	1	Credit card	Correct positive
P@3 = -	2	Christmas Fund	False positive
3	3	Debit Card	False positive
0	4	Auto Ioan	False positive
	5	HELOC	Correct Positive
	6	College Fund	Correct positive
	7	Personal loan	False positive

P@k: Example

$$k=3$$
 $Poduct Recommended$ $Product Recommended$ $Poduct Recommended$

Rank	Product Recommended	Result
1	Credit card	Correct positive
2	Christmas Fund	False positive
3	Debit Card	False positive
4	Auto Ioan	False positive
5	HELOC	Correct Positive
6	College Fund	Correct positive
7	Personal	earse positive

$$k = 6$$

$$P@6 = \frac{3}{6}$$

Average Precision (AP)

Suppose our recommender system must return N items, with |Rel| actually relevant items

Average Precision (AP)

Suppose our recommender system must return N items, with |Rel| actually relevant items

We define the Average Precision (AP) as follows:

$$AP@N = \frac{1}{|\text{Rel}|} \sum_{k=1}^{N} P@k \times \mathbf{1}_{\text{Rel}}(k)$$

Average Precision (AP)

Suppose our recommender system must return N items, with |Rel| actually relevant items

We define the Average Precision (AP) as follows:

$$AP@N = \frac{1}{|\text{Rel}|} \sum_{k=1}^{N} P@k \times \mathbf{1}_{\text{Rel}}(k)$$

$$\mathbf{1}_{\mathrm{Rel}}(k) = \begin{cases} 1 & \text{if item } k \in \mathrm{Rel} \\ 0 & \text{otherwise} \end{cases}$$

Mean Average Precision (MAP)

AP@N is computed for a single data point (i.e., user)

Mean Average Precision (MAP)

AP@N is computed for a single data point (i.e., user)

We define the Mean Average Precision (MAP) as follows:

$$MAP@N = \frac{1}{|\mathcal{U}|} \sum_{u=1}^{|\mathcal{U}|} AP@N(u) = \frac{1}{|\mathcal{U}|} \sum_{u=1}^{|\mathcal{U}|} \frac{1}{|\text{Rel}|} \sum_{k=1}^{N} P@k(u) \times \mathbf{1}_{\text{Rel}}(k, u)$$

We may need a way to assess if a model recommends many of the same items to different users

We may need a way to assess if a model recommends many of the same items to different users

It is defined as the dissimilarity (i.e., I-cosine similarity) between user's lists of recommendations

We may need a way to assess if a model recommends many of the same items to different users

It is defined as the dissimilarity (i.e., I-cosine similarity) between user's lists of recommendations

Intuitively, a high personalization score indicates the recommender system is able to provide a **highly personalized** experience to the users

Suppose 3 users are recommended the following lists of items

$$u_1 = [A, B, C, D]$$
 $u_2 = [A, B, C, E]$ $u_3 = [A, B, F, G]$

$$u_2 = [A, B, C, E]$$

$$u_3 = [A, B, F, G]$$

Suppose 3 users are recommended the following lists of items

$$u_1 = [A, B, C, D]$$
 $u_2 = [A, B, C, E]$ $u_3 = [A, B, F, G]$

$$u_2 = [A, B, C, E]$$

$$u_3 = [A, B, F, G]$$

	Α	В	С	D	Е	F	G
u_1	1	1	1	1	0	0	0
u_2	1	1	1	0	1	0	0
u ₃	1	1	0	0	0	0	1

Compute the 3-by-3 triangular matrix containing the cosine similarity between each pair of user's recommendation binary vector

$$M_{i,j} = \operatorname{cosine}(\mathbf{u}_i, \mathbf{u}_j)$$

	u _l	$\mathbf{u_2}$	$\mathbf{u_3}$
u _I	1	0.75	0.58
u ₂	0.75	1	0.58
$\mathbf{u_3}$	0.58	0.58	1

Compute the 3-by-3 triangular matrix containing the cosine similarity between each pair of user's recommendation binary vector

$$M_{i,j} = \operatorname{cosine}(\mathbf{u}_i, \mathbf{u}_j)$$

	u _l	u ₂	u ₃	
u _I	1	0.75	0.58	~0.
u_2	0.75	1	0.58	
u_3	0.58	0.58	1	

64

Take the average of the upper triangle of the matrix M above

Compute the 3-by-3 triangular matrix containing the cosine similarity between each pair of user's recommendation binary vector

$$M_{i,j} = \operatorname{cosine}(\mathbf{u}_i, \mathbf{u}_j)$$

	u _l	u ₂	u ₃
u _l	1	0.75	0.58
u ₂	0.75	1	0.58
u_3	0.58	0.58	1

~0.64

Personalization =
$$1 - 0.64 = 0.36$$

Recommender systems as tools for dealing with information overload

- Recommender systems as tools for dealing with information overload
- 2 main approaches:
 - Content-based (explicitly creating user and item profiles)
 - Collaborative-filtering (extract patterns from past observed ratings)

- Recommender systems as tools for dealing with information overload
- 2 main approaches:
 - Content-based (explicitly creating user and item profiles)
 - Collaborative-filtering (extract patterns from past observed ratings)
- Hybrid approaches combining both usually work better in practice

- Recommender systems as tools for dealing with information overload
- 2 main approaches:
 - Content-based (explicitly creating user and item profiles)
 - Collaborative-filtering (extract patterns from past observed ratings)
- Hybrid approaches combining both usually work better in practice
- New Neural-Network-based approaches have been proposed recently

- Recommender systems as tools for dealing with information overload
- 2 main approaches:
 - Content-based (explicitly creating user and item profiles)
 - Collaborative-filtering (extract patterns from past observed ratings)
- Hybrid approaches combining both usually work better in practice
- New Neural-Network-based approaches have been proposed recently
- Evaluation metrics must capture the accuracy, personalization and serendipity of recommendations

Recommended Readings and Information:)

- A huge body of work on recommender systems is available out there!
- Surveys:
 - Adomavicius & Tuzhilin [2005]
 - Koren & Volinsky [2009]
 - <u>Bobadilla et al.</u> [2013]
 - Zhang et al. [2019]
- Well-renowed series of Conferences: <u>RecSys</u>, <u>KDD</u>, <u>SIGIR</u>, <u>TheWebConf</u>