Moteur de preuves pour la logique classique propositionnelle

Q. ANDRE M. LEGRAND B. DARNALA E. DUVERGER

Encadrant : Pr David Delahaye Département Informatique

Présentation TER. 2018

- Présentation du sujet
- Développement du projet
 - Objets et Héritage
 - Analyse Lexicale et Syntaxique
 - Interface terminal
- Oémonstration
- 4 Résultat et Perspectives

Qu'est ce que le calcul de séquent?

$$(...), (...), (...)$$
 |= $(...), (...), (...)$
Hypothèses Conclusions

$$\frac{}{A \vdash A}$$
 axiome

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \quad \land \, \text{gauche} \qquad \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} \quad \land \, \text{droite}$$

- Développement du projet
 - Objets et Héritage
 - Analyse Lexicale et Syntaxique
 - Interface terminal

Formules Biens Formés

On a besoin de modéliser les formules de logique propositionelle.

FIGURE - Diagramme de classe des formules bien formées

Formules Biens Formés

On a besoin de modéliser les formules de logique propositionelle.

Séquent

Il s'agit de l'objet de base du calcul qui est un couple de listes de formules.

FIGURE – Diagramme de classe des séquents

Formules Bien Formées

On a besoin de modéliser les formules de logique propositionelle.

Séquent

Il s'agit de l'objet de base du calcul qui est un couple de listes de formules.

Arbre de Preuve

Une structure en arbre pour réaliser des preuves de calcul.

- Présentation du sujet
- 2 Développement du projet
 - Objets et Héritage
 - Analyse Lexicale et Syntaxique
 - Interface terminal
- 3 Démonstration
- 4 Résultat et Perspectives

Analyse lexicale et syntaxique

FIGURE - Flex & Bison

- Développement du projet
 - Objets et Héritage
 - Analyse Lexicale et Syntaxique
 - Interface terminal

Interface terminal

```
aenorya@aenorya-VirtualBox:~/Desktop/TER/TER-master$ ./main
Entrer le nombre d'hypothese du séquent :
Entrer les hypotheses :
A/\B
C->D
Entrer le nombre de conclusion du séquent :
Entrer les conclusions :
A\/D
(!C)<->A
Indice de l'arbre :
(0)
(A/B) (a), (C->D) (b) |= (A\/D) (c), ((!C)<->A) (d)
Entrer l'indice de l'arbre a développer :
```

FIGURE - Initialisation

Interface terminal

```
Entrer l'indice de l'arbre a développer :
Entrer l'indice de la formule a développer :
Après OP sur : c
Indice de l'arbre : (0), (clos)
(A/\backslash B) (a) , (C->D) (b) I=(A\backslash D) (c) , ((!C)<->A) (d)
Indice de l'arbre : (1), (clos)
  (a) , B (b) , (C->D) (c)
                                    |= (A \setminus D) (d) , ((!C) < ->A) (e)
(A/\B), (C->D) = (A\D), ((!C)<->A)
Indice de l'arbre : (2), (clos), (axiome)
A (a) , B (b) , (C->D) (c) |= A (d) , D (e) , ((!C)<->A) (f)
A, B, (C->D) = (A\setminus D), ((!C)<->A)
Tout est clos !
A, B, (C->D) |= A, D, ((!C)<->A)
A, B, (C->D) \mid = (A \setminus /D), ((!C) < ->A)
(A/\B), (C->D) |= (A\D), ((!C)<->A)
```

FIGURE - Clôture d'un arbre

Démonstration

Exemple : on veut prouver que $\neg(p \land q) \rightarrow \neg p \lor \neg q$ On aura donc comme hypothese $\neg(p \land q)$ Et comme conclusion $\neg p \lor \neg q$

Résultat et Perspectives

Logique

Etendre le moteur à la logique du premier ordre

Résultat et Perspectives

Logique

Etendre le moteur à la logique du premier ordre

Interface

Intégrer une véritable interface graphique avec des boutons dynamique

Résultat et Perspectives

Logique

Etendre le moteur à la logique du premier ordre

Interface

Intégrer une véritable interface graphique avec des boutons dynamique

Enregistrement

Intégrer la possibilité d'enregistrer/d'imprimer une preuve au format .PDF