

github.com/TaceoLabs/noir_workshop_0625/

Building a coSNARK-powered DApp with coNoir

Shuffling Cards with MPC

No, I'll shuffle you scoundrel

Please shuffle the cards for us

What now?

Private State only gets you that far

TACEO.IO

How to share a secret?

Shamir Secret Sharing

- Polynomial f(X) of degree d
- Sample *n* points

Additive Secret Sharing

• Split x in n parts

 \boldsymbol{x}

Computing on secrets

Addition

Two secrets x and y

Computing on secrets

Addition

Two secrets x and y

$$x_1 + y_1$$

$$x_2 + y_2 = x + y$$

$$x_3 + y_3$$

Computing on secrets

Addition

Two secrets x and y

 x_2

 x_3

 y_2

 y_3

$$x_1 + y_1$$

$$x_2 + y_2 = x + y$$

$$x_3 + y_3$$

Multiplication

Non-linear Operations

Beaver triples

- Generate helper triples ([a], [b], [c]) and ab = c
- Open [a + x] = A and [b + y] = B
- Compute A[y] B[a] + [c] = [xy]

Non-linear Operations

Beaver triples

- Generate helper triples ([a], [b], [c]) and ab = c
- Open [a + x] = A and [b + y] = B
- Compute A[y] B[a] + [c] = [xy]
- Replicated Secret Sharing (2 out of 3 sharing)
 - Parties hold two shares instead of one
 - Every party computes $x_a y_a + x_a y_b + x_b y_a + m$, where m = [0]
 - Reshare result

Great – what now?

zkSNARKs 101

Keeping secret input hidden (potentially)

MPC 101

Inputs and intermediate values private (secret-shared)

What are coSNARKs?

What are coSNARKs?

Co-SNARK 101

Succinct proof for computational integrity

Keeping secret inputs and intermediate values hidden

We are done, right?

Playing a game of cards

• Shuffled the deck

Playing a game of cards

- Shuffled the deck
- Only distribute cards to respective players (verifiable encryption)

Playing a game of cards

- Shuffled the deck
- Only distribute cards to respective players (verifiable encryption)

Playing a game of cards

- Shuffled the deck
- Only distribute cards to respective players (verifiable encryption)

Private Shared State

- Not simply composing Alice and Bobs private state
- We generate new private state that nobody knows
- But: No input verification so far!

Towards publicly-auditable MPC

=> Solution: Always bind data to public commitments

Towards publicly-auditable MPC

Interop with Aztec

UltraHonk Proof System

- Currently supported by coNoir
- Recurse into smart contract

```
std::verify_proof(
    verification_key,
    proof,
    public_inputs,
    key_hash
);
```

Full Client-IVC Proof System

- Prove whole Aztec transactions in MPC
- Create Aztec keys that are secretshared and own Private State

github.com/TaceoLabs/noir_workshop_0625/

TACEO.10

Am Eisemen Tor 5 8010

Graz | Austria

office@taceo.io