16/11/2017 HackerRank

Tower Breakers - The Final Battle

Our unsung tower-breaking heroes (players P_1 and P_2) only have one tower left, and they've decided to break it for a special game commemorating the end of $\mathbf{5}$ days of Game Theory! The rules are as follows:

- ullet P_1 always moves first, and both players always move optimally.
- Initially there is **1** tower of height **N**.
- The players move in alternating turns. The moves performed by each player are different:
 - 1. At each turn, P_1 divides the current tower into some number of smaller towers. If the turn starts with a tower of height H and P_1 breaks it into $x \ge 2$ smaller towers, the following condition must apply: $H = h_1 + h_2 + \ldots + h_x$, where h_i denotes the height of the i^{th} new tower.
 - 2. At each turn, P_2 chooses some tower k of the x new towers made by P_1 (where $1 \le k \le x$). Then P_1 must pay k^2 coins to P_2 . After that, P_1 gets another turn with tower h_k and the game continues.
- The game is over when no valid move can be made by P_1 , meaning that H=1.
- P_1 's goal is to pay as few coins as possible, and P_2 's goal is to earn as many coins as possible.

Can you predict the number of coins that P_2 will earn?

Input Format

The first line contains a single integer, T, denoting the number of test cases. Each of the T subsequent lines contains a single integer, N, defining the initial tower height for a test case.

Constraints

- $1 \le T \le 100$
- $2 \le N \le 10^{18}$

Output Format

For each test case, print a single integer denoting the number of coins earned by $P_{\mathbf{2}}$ on a new line.

Sample Input

- 4
- 2
- _

Sample Output

- 6
- 4
- 8

Explanation

16/11/2017 HackerRank

Test Case 0:

Our players make the following moves:

- 1. H = N = 4
 - 1. P_1 splits the initial tower into ${f 2}$ smaller towers of sizes ${f 3}$ and ${f 1}$.
 - 2. P_2 chooses the first tower and earns $\mathbf{1^2} = \mathbf{1}$ coin.
- 2. H = 3
 - 1. P_1 splits the tower into 2 smaller towers of sizes 2 and 1.
 - 2. P_2 chooses the first tower and earns $\mathbf{1^2} = \mathbf{1}$ coin.
- 3. H = 2
 - 1. P_1 splits the tower into $\mathbf{2}$ smaller towers of size $\mathbf{1}$.
 - 2. P_2 chooses the second tower and earns $2^2 = 4$ coins.

The total number of coins earned by P_2 is 1 + 1 + 4 = 6, so we print 6 on a new line.

f in Submissions:<u>195</u> Max Score:50 Difficulty: Medium Rate This Challenge: ☆☆☆☆☆

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature