

Winning Space Race with Data Science

Arushi Kapoor 16th April 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

- The objective of the capstone project is to determine the price of each launch. This is done by gathering information about Space X and creating dashboards.
- It is also found whether SpaceX will reuse the first stage. Instead of using rocket science to determine if the first stage will land successfully, we have trained a machine learning model and used public information to predict if SpaceX will reuse the first stage.

Introduction

- Using the Falcon9 data we are trying to draw conclusions if first stage will be reused and hence determine the cost of the launch.
- Stages of the capstone project:
 - Collecting the data API and Web Scrapping
 - Data Wrangling EDA to find some patterns in that data.
 - Exploratory analysis with SQL
 - Exploratory analysis with Pandas and Matplotlib
 - Interactive Visual Analytics
 - Predictive Analysis

Methodology

Executive Summary

- Data collection methodology:
 - Data is collected via API and Web Scrapping
- Perform data wrangling
 - EDA to find some patterns in the data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Data was trained on several models like Logistic Regression, SVM, Decision Tree and KNN to see which gives best accuracy
 - Hyperparameters for the models was selected by Grid Search approach.

Data Collection: API

1. Request and parse the SpaceX launch data using the GET request

- Decode the response content as a Json using .json() and turn it into a Pandas dataframe using .json_normalize()
- Use the API again to get information about the launches using the IDs given for each launch. Specifically we will be using columns rocket, payloads, launchpad, and cores.

2. Filter the dataframe to only include `Falcon 9` launches

• remove the Falcon 1 launches keeping only the Falcon 9 launches. Filter the data dataframe using the BoosterVersion column to only keep the Falcon 9 launches. Save the filtered data to a new dataframe called data falcon 9.

Data Collection: Web Scrapping

Web scrap Falcon 9 launch records with BeautifulSoup:

- Extract a Falcon 9 launch records HTML table from Wikipedia
- Parse the table and convert it into a Pandas data frame

Data Collection – SpaceX API

- Link to Notebook:
 - Click here

Data Collection - Scraping

- Link to notebook
 - Click here

Data Wrangling

Performed some Exploratory
Data Analysis (EDA) to find
some patterns in the data and
determine what would be the
label for training supervised
models.

Github Link

Click here

EDA with Data Visualization

- Charts Plotted:
- 1. Scatter Plot- Visualize the relationship between Flight Number and Launch Site, Visualize the relationship between Payload and Launch Site etc
 - 2. Bar Chart Visualize the relationship between success rate of each orbit type
 - 3. Line chart- Visualize the launch success yearly trend

EDA with SQL

- SQL queries carried out to do the following:
 - Display the names of the unique launch sites in the space mission
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display the total payload mass carried by boosters launched by NASA (CRS)
 - Display average payload mass carried by booster version F9 v1.1
 - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
 - List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch site for the months in year 2015.
- Github link click here

Build an Interactive Map with Folium

- Folium.Marker and folium.circle are added for each launch site on map
- Success/failed launches for each site on the map are marked
- Folium.Marker and folium.circle are added for each launch result in spacex_df
- Distances between a launch site to its proximities is calculated
- Github link <u>click here</u>

Build a Dashboard with Plotly Dash

- Pie chart shows success count for all launch sites
 - KSC LC-39A has the most number of successful launches
 - CCAFS SLC 40 has the least number of successful launches
- Scatter plot shows success count on Payload masses for all sites
- Github link click here

Predictive Analysis (Classification)

- Perform exploratory Data Analysis and determine Training Labels
- create a column for the class
- Standardize the data
- Split into training data and test data
- Find best Hyperparameter for SVM, Classification Trees and Logistic Regression Grid Search
- Find the method performs best using test data
- Github link <u>click here</u>

Results

• All models performed equally well with accuracy 83.3%

Results

Dashboard

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch Site Names Begin with 'CCA'

:	%sql	SELECT *	FROM SPACEXTBL	WHERE LAUNCH	_SITE LIKE '	CCA%' LIMIT 5;				
	* sqli	te:///my_	_data1.db							
:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcom
	2010- 06-04	18:45:00	F9 ∨1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute
	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attem
	2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attem
	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attem

Total Payload Mass

```
Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

** sqlite:///my_data1.db
Done.

2]: SUM(PAYLOAD_MASS_KG_) Customer

45596 NASA (CRS)
```

Average Payload Mass by F9 v1.1

```
Task 4

Display average payload mass carried by booster version F9 v1.1

* sqlite://my_data1.db
Done.

3]: AVG(PAYLOAD_MASS_KG_)

2534.666666666665
```

First Successful Ground Landing Date

Task 5 List the date when the first succesful landing outcome in ground pad was acheived. Hint:Use min function ** sql SELECT MIN(Date) FROM SPACEXTBL WHERE "Landing_Outcome" = "Success (ground pad)"; ** sqlite:///my_data1.db Done. ** MIN(Date) 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql SELECT Booster_Version, Payload FROM SPACEXTBL WHERE
 "Landing_Outcome" = "Success (drone ship)" AND PAYLOAD_MASS__KG_ >
 4000 and PAYLOAD_MASS__KG_ <6000

F9 FT B1022 JCSAT-14 F9 FT B1026 JCSAT-16 F9 FT B1021.2 SES-10 F9 FT B1031.2 SES-11 / EchoStar 105	Out[24]:	Booster_Version	Payload
F9 FT B1021.2 SES-10		F9 FT B1022	JCSAT-14
		F9 FT B1026	JCSAT-16
F9 FT B1031.2 SES-11 / EchoStar 105		F9 FT B1021.2	SES-10
		F9 FT B1031.2	SES-11 / EchoStar 105

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

%sql SELECT
 Booster_Version,
 PAYLOAD_MASS__KG_
 FROM SPACEXTBL
 WHERE
 PAYLOAD_MASS__KG_
 = (SELECT
 MAX(PAYLOAD_MASS__
 KG) FROM
 SPACEXTBL)

Booster_Version	PAYLOAD_MASSKG_
F9 B5 B1048.4	15600
F9 B5 B1049.4	15600
F9 B5 B1051.3	15600
F9 B5 B1056.4	15600
F9 B5 B1048.5	15600
F9 B5 B1051.4	15600
F9 B5 B1049.5	15600
F9 B5 B1060.2	15600
F9 B5 B1058.3	15600
F9 B5 B1051.6	15600
F9 B5 B1060.3	15600
F9 B5 B1049.7	15600

2015 Launch Records

%sql SELECT substr(Date, 6, 2) AS Month,"Booster_Version",
 "Launch_Site", Payload, "PAYLOAD_MASS__KG_",
 "Mission_Outcome", "Landing _Outcome" FROM SPACEXTBL
 WHERE substr(Date,0,5)='2015' AND "Landing _Outcome" =
 'Failure (drone ship)';

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 %sql SELECT * FROM SPACEXTBL WHERE "Landing _Outcome" LIKE 'Success%' AND (Date BETWEEN '2010-06-04' AND '2017-03-20') ORDER BY Date DESC;

Folium Map: map with marked launch sites

Folium Map: Mark the success/failed launches for each site on the map

Folium Map: Calculate the distances between a launch site to its proximities

Dashboard: Pie chart

Success Count for all launch sites

KSC LC-39A
CCAFS LC-40
VAFB SLC-4E
CCAFS SLC-40

Dashboard

Classification Accuracy

• All models performed equally well with an accuracy of 83.3%

Confusion Matrix

All models
 performed
 equally well with
 an accuracy of
 83.3%

Conclusions

- Data collection with API and Web Scrapping
- EDA with SQL
- EDA with data visualization
- Data trained on several models Logistic Regression, KNN, Decision Trees,
 SVM
- Tunning of Hyperparameter using Grid Search
- Accuracy: 83.3% for all the models

