Colle 6A: Équations différentielles

Question de cours : arctan : définitions, variations, imparité, dérivabilité et graphes.

Exercice 1:

Résoudre l'équation différentielle suivante : $y' - y = x + e^x$.

Exercice 2:

Résoudre l'équation différentielle : xy'' + 2(x+1)y' + (x+2)y = 0 en posant z(x) = xy.

Exercice 3: (Oral X PC)

Soit $\alpha \in [0, \frac{1}{e}]$.

- 1. Montrer qu'il existe $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ tel que $\forall x \in \mathbb{R}, f'(x) = \alpha f(x+1)$.
- 2. Si $\alpha = \frac{1}{e}$, déterminer deux fonctions linéairement indépendantes vérifiant la relation précédente.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 6B: Équations différentielles

Question de cours : arcsin : définitions, variations, imparité, dérivabilité et graphes.

Exercice 1 : Résoudre l'équation différentielle suivante : $y' - 3y = 2e^{3x}$.

Exercice 2:

Résoudre l'équation différentielle : $(1 + e^x)y'' + 2e^xy' + (2e^x + 1)y = xe^x$ en posant $z(x) = (1 + e^x)y(x)$.

Exercice 3: (Oral ENS Lyon MP)

Soit l'équation différentielle : $y' = \alpha \sqrt{y} - x$ avec la condition initiale $y(x_0) = y_0$.

- 1. Discuter de l'existence de solution(s).
- 2. Trouver une CNS sur α pour qu'il existe a tel que $y(x) = ax^2$ soit solution.
- 3. On suppose maintenant que x > 0. Pour certaines valeurs de α , il y a 2 valeurs de a possibles $(a_1 < a_2)$. Si y est solution sur l'intervalle]0,t[, montrer que $\frac{y(x)}{x^2} \neq a_1$ et $\frac{y(x)}{x^2} \neq a_2$.
- 4. Si y est solution sur [0,t[et telle que pour tout $x>0, \frac{y(x)}{x^2}>a_2,$ montrer que y(0)>0.

Colle 6C: Équations différentielles

Question de cours : Énoncé des théorèmes de Cauchy-Lipschitz pour l'ordre 1 et 2.

Exercice 1 : Résoudre l'équation différentielle suivante : $y'' - 4y' + 4y = xe^{2x}$.

Exercice 2:

Résoudre l'équation différentielle : $x^2y'' - 3xy' + 4y = 0$ en posant $z(t) = y(e^t)$.

Exercice 3: (Oral Centrale MP)

Soit l'équation différentielle : A(t)y'' + B(t)y' + C(t)y = 0.

- 1. Si $z(u) = y(\frac{1}{u})$, trouver l'équation différentielle vérifiée par z.
- 2. Trouver A, B, C tel que $T_n(x) = \cos(n \arccos(x))$ soit solution.
- 3. Trouver l'autre solution.