PROGRAMMA DI GEOMETRIA DIFFERENZIALE

Corso di Laurea in Matematica A.A. 2023-2024, primo semestre Docente: Andrea Loi

- 1. Geometria differenziale in \mathbb{R}^n
- **1.1 Funzioni lisce e reali analitiche.** Richiami sulle funzioni lisce e reali analitiche su aperti di \mathbb{R}^n ; funzioni C^k ma non C^{k+1} ; esempi di funzioni lisce che non sono reali analitiche.
- 1.2 Diffeomorfismi e la formula di Taylor Diffeomorfismi tra aperti di \mathbb{R}^n (applicazioni lisce, bigettive con inversa liscia); esistono funzioni bigettive e lisce che non sono diffeomorfismi; gli intervalli aperti limitati o illimitati di \mathbb{R} sono diffeomorfi; il prodotto di n intervalli aperti di \mathbb{R} risulta diffeomorfo a \mathbb{R}^n ; una palla aperta di \mathbb{R}^n e \mathbb{R}^n sono diffeomorfi; sviluppo di Taylor con resto intorno ad un punto p di una funzione liscia definita su un aperto stellato di \mathbb{R}^n .
- 1.3 Vettori tangenti. Vettori tangenti in un punto $p \in \mathbb{R}^n$; lo spazio $T_p\mathbb{R}^n$ come insieme dei vettori colonna; derivata direzionale di una funzione liscia rispetto ad un vettore $v \in T_p\mathbb{R}^n$; il germe di una funzione in un punto p; l'insieme dei germi di funzioni $C_p^{\infty}(\mathbb{R}^n)$ definite in un intorno di un punto $p \in \mathbb{R}^n$ é un algebra su \mathbb{R} ; derivazioni puntuali in un punto $p \in \mathbb{R}^n$; la derivata direzionale $D_v : C_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ rispetto ad un vettore $v \in T_p\mathbb{R}^n$; l'insieme $\mathrm{Der}(C_p^{\infty}(\mathbb{R}^n))$ delle derivazioni puntuali risulta uno spazio vettoriale su \mathbb{R} ; l'applicazione $\Phi : T_p\mathbb{R}^n \to \mathrm{Der}(C_p^{\infty}(\mathbb{R}^n)), v \mapsto D_v$ è un isomorfismo tra spazi vettoriali; base canonica di $\mathrm{Der}(C_p^{\infty}(\mathbb{R}^n))$.
- **1.4 Campi di vettori.** Campi di vettori su un aperto U di \mathbb{R}^n ; l'insieme dei campi di vettori lisci $\chi(U)$ formano un $C^{\infty}(U)$ -modulo; derivata di una funzione liscia f rispetto ad un campo di vettori liscio X; campi di vettori lisci su un aperto U di \mathbb{R}^n come derivazioni dell'algebra $C^{\infty}(U)$.

2. Varietà differenziabili

- **2.1 Varietà topologiche.** Richiami sulle varietà topologiche; dimensione di una varietà topologica e teorema dell'invarianza della dimensione topologica (solo enunciato); esempi e non esempi.
- **2.2 Varietà differenziabili.** Carte compatibili; atlanti differenziabili su uno spazio topologico; atlanti massimali (strutture differenziabili); ogni atlante è contenuto in un unico atlante massimale; varietà differenziabili; esempi di varietà: \mathbb{R}^n , aperti di varietà; varietà di dimensione zero; grafici di funzioni; curve e superfici in \mathbb{R}^3 ; il gruppo lineare; il cerchio unitario S^1 ; la sfera S^n ; il prodotto di varietà differenziabili; il toro n-dimensionale.
- **2.3 Quozienti** Topologia quoziente; applicazioni costanti sulle classi di'equivalenza; identificazione di un sottoinsieme ad un suo punto; condizioni affinchè il quoziente di uno spazio topologico sia T_2 e N_2 .
- **2.4 Lo spazio proiettivo reale e la Grassmanniana** Lo spazio proiettivo reale $\mathbb{R}P^n$ come varietà differenziabile di dimensione n; La Grassmanniana dei k-piani in \mathbb{R}^n come varietà differenziabile di dimensione k(n-k).

3. Applicazioni lisce

3.1 Funzioni lisce su varietà Funzione liscie su una varietà a valori reali; Applicazioni lisce tra varietà; composizione di applicazioni lisce tra varietà; esempi; funzioni a campana; estensioni di applicazioni lisce.

- **3.2 Diffeomorfismi** Diffeomorfismi tra varietà; cenni sull'esistenza e unicità delle strutture differenziabili su una varietà topologica; esempi di strutture differenziabili diverse su \mathbb{R} ; le funzioni coordinate sono diffeomorfismi; ogni diffeomorfismo da un aperto di una varietà in \mathbb{R}^n è un'applicazione coordinata.
- **3.3 Altri esempi di applicazioni lisce** Vari esempi di applicazioni lisce; applicazioni sul prodotto di varietà; definizione di gruppi di Lie; esempi: $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, GL(V), $(\mathbb{R}^n, +)$, (\mathbb{R}^*, \cdot) , $(\mathbb{R}^+, +)$, (\mathbb{C}^*, \cdot) , (S^1, \cdot) , il prodotto di gruppi di Lie; il toro \mathbb{T}^n ; un qualunque gruppo finito o numerabile con la topologia discreta è un gruppo di Lie 0-dimensionale.
- **3.4 Derivate parziali** Derivata parziale di una funzione liscia su una varietà; la matrice Jacobiana di un'applicazione liscia tra varietà; lo Jacobiano dell'applicazione di transizione; diffeomorfismi locali e il teorema delle funzione inversa per applicazioni lisce tra varietà.

4. Lo spazio tangente e il differenziale.

- **4.1 Lo spazio tangente** Lo spazio tangente T_pM ad una varietà M in un suo punto p come insieme delle derivazioni puntuali $\operatorname{Der}_p(C_p^\infty(M))$ in p dei germi di funzioni lisce intorno a p; $\frac{\partial}{\partial x_i}|_p$, $i=1,\ldots,n$ come elementi della base dello spazio tangente in p ad una varietà differenzibile M di dimensione n.
- **4.2 Il** differenziale Il differenziale di un'applicazione liscia tra varietà differenziabili; il differenziale e lo Jacobiamo: il differenziale e il teorema della funzione inversa; la regola della catena per applicazioni lisce tra varietà; il teorema di invarianza della dimensione nel caso liscio; espressione locale per il differenziale.
- **4.3 Categorie e funtori (un cenno)** Definizione di categorie e funtori tra categorie; esempi; proprietà funtoriali del differenziale.
- **4.4 Curve su varietà** curve su varietà e il vettore tangente ad una curva liscia in un suo punto; derivata direzionale in termini di curve; spazio tangente ad una varietà in un suo punto come insieme dei vettori tangenti a curve lisce sulla varietà passanti per il punto; calcolo del differenziale di un'applicazione liscia tra varietà in termini di curve; il differenziale della traslazione a sinistra in $GL_n(\mathbb{R})$; differenziale della moltiplicazione e dell'inversione in un gruppo di Lie.

5. Sottovarietà.

- **5.1 Immersioni e sommersioni** Inclusione canonica e proiezione canonica; immerisoni e sommersioni; rango in un punto di un'applicazione liscia tra varietà differenziabili; rango massimale di un'applicazione in un punto; punti regolari e punti critici, valori regolari e valori critici; esempi; massimi e minimi locali e punti critici.
- **5.2 Sottovarietá** Carte adattate; sottovarietà di una varietà ed esempi; il teorema della preimmagine di un valore regolare; esempi: la sfera, i grafici, curve del piano proiettivo reale, il gruppo lineare speciale.
- 5.3 Il Teorema del rango costante il teorema del rango costante in analisi (senza dimostrazione) e per applicazioni lisce tra varietà differenziabili. preimmagine di un'applicazione di rango costante; dimostrazione che il gruppo ortogonale è una sottovarietà del gruppo lineare; il teorema di immersione e di sommersione; alcune proprietà delle sommersioni.
- **5.4 Embedding differenziabili** definzione di embedding differenziabile; l'immagine di una sottovarietá tramite un embedding differenziabile é una sottovarietá; il teorema di Whitney (senza dimostrazione); esempi di immersioni iniettive la cui immagine non

è una sottovarietà; sottovarietà immerse; applicazioni lisce la cui immagine è contenuta in una (sotto)varietà.

6. Il fibrato tangente e i campi di vettori.

- **6.1 Il fibrato tangente** Topologia e struttura differenziabile sul fibrato tangente di una varietà differenziabile.
- **6.2 Campi di vettori** Campi di vettori su un varietà; criteri affinchè un campo di vettori su una varietà sia liscio; uguaglianza tra campi di vettori; campi di vettori come derivazioni dell'algebra delle funzioni lisce; campi di vettori su sottovarietà; esempi di campi di vettori sulle sfere; il Teorema di Adams (senza dimostrazione).
- **6.3 Curve integrali e flussi** Curve integrali di un campo di vettori; flussi locali e globali; curve integrali massimali; campi di vettori completi; ogni campo di vettori su una varietà compatta è completo.
- **6.4 Campi di vettori come algebra di Lie** Il commutatore (o bracket) di Lie di due campi di vettori; algebre di Lie; pushforward di un campo di vettori tramite un diffeomorfismo; campi di vettori F-related tramite un'applicazione; campi di vettori F-related e commutatore di Lie.

7. Gruppi di Lie

- **7.1 Gruppi e sottogruppi di Lie.** Le traslazioni a sinistra e a destra; omomorfismi e isomorfismi tra gruppi di Lie; sottogruppi di Lie; se H è un sottogruppo algebrico e una sottovarietà di un gruppo di Lie G allora H è un sottogruppo di Lie di G; sottogruppi di Lie embedded; sottogruppi di Lie immersi.
- 7.2 L'esponenziale di una matrice. Spazi vettoriali normati; $M_n(\mathbb{R})$ come spazio vettoriale normato; algebre normate e loro proprietà; $M_n(\mathbb{R})$ come algebra normata; spazi di Banach e algebre di Banach; in uno spazio di Banach una successione assolutamente convergente è convergente e quindi l'esponenziale di una matrice risulta ben definito; alcune proprietá dell'esponenziale di una matrice.
- 7.3 Triangolarizzazioni diagonalizzazioni e matrici normali. Matrici simili e unitariamente simili; teorema di Schur: ogni matrice a entrate complesse é simile ad una matrice triangolare; basi di Schur; la traccia di una matrice è la somma dei suoi autovalori; determinante dell'esponenziale di una matrice é uguale all'esponenziale della traccia della matrice; il differenziale del determinante; matrici normali; il teorema spettrale per matrici normali: ogni matrice normale é unitariamente simile ad una matrice diagonale; forma canonica ortogonale.
- 7.4 Esempi di gruppi e sottogruppi di Lie. Il gruppo $GL_n(\mathbb{R})$ (risp. $GL_n(\mathbb{C})$) è un gruppo di Lie non compatto e non connesso di dimensione n^2 (risp. $2n^2$) e $T_I GL_n(\mathbb{R}) = M_n(\mathbb{R})$ (risp. $T_I GL_n(\mathbb{C}) = M_n(\mathbb{C})$); Il gruppo ortogonale O(n) è un sottogruppo di Lie (embedded) compatto e non connesso di $GL_n(\mathbb{R})$ di dimensione $\frac{n(n-1)}{2}$ e $T_IO(n)$ consiste della matrici antisimmetriche a entrate reali; il gruppo ortogonale speciale SO(n) è una componente connessa di O(n); il gruppo lineare speciale $SL_n(\mathbb{R})$ (risp. $SL_n(\mathbb{C})$) è un sottogruppo di Lie (embedded) connesso e non compatto di $GL_n(\mathbb{R})$ (risp. $GL_n(\mathbb{C})$) di dimensione n^2-1 (risp. $2n^2-2$) e $T_ISL_n(\mathbb{R})$ (risp. $T_ISL_n(\mathbb{C})$) consiste delle matrici a entrate reali (risp. complesse) di traccia nulla; il gruppo unitario U(n) è un sottogruppo di Lie (embedded) compatto e connesso di $GL_n(\mathbb{C})$ di dimensione n^2 e $T_IU(n)$ consiste della matrici antihermitiane; il gruppo unitario speciale SU(n) è un sottogruppo di Lie compatto e connesso di U(n) e s $T_ISU(n)$ consiste della matrici antihermitiane di

dimensione $n^2 - 1$; $GL_n(\mathbb{R})$ e $SL_n(\mathbb{R}) \times \mathbb{R} \setminus \{0\}$ sono diffeomorfi (come varietà) per ogni $n \geq 1$ mentre sono isomorfi (come gruppi di Lie) se e solo se n è dispari.

Tabella reassuntiva

Gruppo	T_IG	Dimensione	Compatto	Connesso
$\mathrm{GL}_n(\mathbb{R})$	$M_n(\mathbb{R})$	n^2	no	no
$\mathrm{GL}_n(\mathbb{C})$	$M_n(\mathbb{C})$	$2n^2$	no	si
$SL_n(\mathbb{R})$	$\{B \in M_n(\mathbb{R}) \mid \operatorname{tr} B = 0\}$	$n^2 - 1$	no	si
$SL_n(\mathbb{C})$	$\{B \in M_n(\mathbb{C}) \mid \operatorname{tr} B = 0\}$	$2n^2 - 2$	no	si
U(n)	$\{B \in \mathrm{GL}_n(\mathbb{C}) \mid B + B^* = 0\}$	n^2	si	si
SU(n)	$\{B \in \mathrm{GL}_n(\mathbb{C}) \mid B + B^* = 0 \land \mathrm{tr}B = 0\}$	$n^2 - 1$	si	si
O(n)	$\{B \in \mathrm{GL}_n(\mathbb{R}) \mid B + B^T = 0\}$	$\frac{n(n-1)}{2}$	si	si
SO(n)	$\{B \in \mathrm{GL}_n(\mathbb{R}) \mid B + B^T = 0\}$	$\frac{n(n-1)}{2}$	si	si

8. Algebra di Lie.

- 8.1 Algebra di Lie di un gruppo di Lie. Campi di vettori invarianti a sinistra su un gruppo di Lie e loro principali proprietà; definizione dell'algebra di Lie di un gruppo di Lie come sottoalgebra dei campi di vettori lisci.
- **8.2** L'algebra di Lie dei gruppi di matrici. L'algebra di Lie del gruppo lineare; push-forward di campi di vettori invarianti a sinistra tramite un omomorfismo di gruppi di Lie; omomorfismo di algebra di Lie indotto da un omomorfismo di gruppi di Lie; calcolo dell'algebra di Lie dei gruppi matriciali.
- **8.3 L'applicazione esponenziale.** Flussi (globali) di campi di vettori invarianti a sinistra su un gruppo di Lie e applicazione esponenziale; sottogruppi di Lie ad un parametro di un gruppo di Lie; omomorfismi di gruppi di Lie e applicazione esponenziale; l'applicazione esponenziale di un sottogruppo H di Lie di un gruppo G è la restrizione dell'esponenziale di G; l'applicazione esponenziale di un gruppo matriciale coincide con l'esponenziale di matrici; omomorfismi continui; cenni sulla suriettività dell'applicazione esponenziale e sui teoremi di corrispondenza di Lie.
- 8.4 Classificazione dei gruppi di Lie abeliani Un gruppo di Lie connesso è generato da un suo intorno dell'elemento neutro; Il bracket dell'algebra di Lie di un gruppo abeliano è nullo; quozienti di gruppi di Lie: se H è un sottroguppo di Lie chiuso di un gruppo di Lei G allora G/H ha un'unica struttura di varietà differenziabile rispetto alla quale la proiezione $\pi: G \to G/H$ è liscia (senza dimostrazione); ogni sottogruppo di Lie discreto di \mathbb{R}^n è un reticolo (senza dimostrazione); ogni gruppo di Lie compatto e connesso è isomorfo al prodotto di un toro e di uno spazio euclideo.

Testi di riferimento

Lorin, W. Tu, An Introduction to Manifolds, Springer Verlag.

J. Lee, *Introduction to Manifolds*, Springer Verlag.

W. Boothby, An introduction to differentiable manifolds and Riemannian Geometry, Academic Press.

M. Spivak, Calculus on Manifolds, Addison-Wesley Publishing Company.

F.W. Warner, Foundations of Differentiable Manifolds and Lie grous, Springer Verlag.