01-Customer-churn_completed

June 25, 2019

1 Customer Churn

Photo by Louis Hansel

1.1 Context

Predict behavior to retain customers. You can analyze all relevant customer data and develop focused customer retention programs.

1.2 Content

Each row represents a customer, each column contains customer's attributes described on the column Metadata.

The data set includes information about:

- Customers who left within the last month the column is called Churn
- Services that each customer has signed up for phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies
- Customer account information how long they've been a customer, contract, payment method, paperless billing, monthly charges, and total charges
- Demographic info about customers gender, age range, and if they have partners and dependents

1.3 Inspiration

To explore this type of models and learn more about the subject.

1.4 First insight

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
In [2]: from sklearn.decomposition import PCA
    from sklearn.preprocessing import StandardScaler, MinMaxScaler
    from sklearn.model_selection import train_test_split
```

```
In [3]: from sklearn.metrics import f1_score, classification_report
        from sklearn.model_selection import cross_val_score
        from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
        from sklearn.linear model import LogisticRegression, SGDClassifier
        from sklearn.svm import SVC, LinearSVC
In [4]: import lightgbm as lgbm
        import xgboost as xgb
In [5]: import warnings
        warnings.simplefilter(action='ignore', category=FutureWarning)
        pd.set_option('display.max_columns', 100)
In [6]: df = pd.read_csv('./input/Telco-Customer-Churn.csv')
        df.head()
Out [6]:
                                SeniorCitizen Partner Dependents
           customerID
                        gender
                                                                    tenure PhoneService
        0
           7590-VHVEG
                       Female
                                             0
                                                   Yes
                                                                No
                                                                          1
                                                                                      No
        1 5575-GNVDE
                          Male
                                             0
                                                    No
                                                                No
                                                                        34
                                                                                     Yes
          3668-QPYBK
                          Male
                                             0
                                                    No
                                                                No
                                                                          2
                                                                                     Yes
        3 7795-CFOCW
                          Male
                                             0
                                                    No
                                                                No
                                                                         45
                                                                                      No
        4 9237-HQITU Female
                                                    No
                                                                No
                                                                          2
                                                                                     Yes
              MultipleLines InternetService OnlineSecurity OnlineBackup
           No phone service
                                                           No
        0
                                          DSL
                                                                       Yes
        1
                                          DSL
                                                          Yes
                                                                        No
                          No
        2
                          No
                                          DSL
                                                          Yes
                                                                       Yes
        3
           No phone service
                                          DSL
                                                          Yes
                                                                        No
        4
                                 Fiber optic
                                                                        No
                          No
                                                          No
          DeviceProtection TechSupport StreamingTV StreamingMovies
                                                                              Contract
        0
                         No
                                     No
                                                  No
                                                                   No
                                                                       Month-to-month
        1
                        Yes
                                      No
                                                                              One year
                                                  No
                                                                   No
        2
                                     No
                                                                       Month-to-month
                         No
                                                  No
                                                                   No
        3
                        Yes
                                    Yes
                                                  No
                                                                   No
                                                                              One year
        4
                         No
                                      No
                                                  No
                                                                       Month-to-month
          PaperlessBilling
                                          PaymentMethod
                                                        MonthlyCharges TotalCharges
        0
                        Yes
                                       Electronic check
                                                                   29.85
                                                                                 29.85
        1
                                           Mailed check
                                                                   56.95
                                                                                1889.5
                         No
        2
                        Yes
                                           Mailed check
                                                                   53.85
                                                                                108.15
        3
                             Bank transfer (automatic)
                                                                   42.30
                                                                               1840.75
                         No
        4
                                       Electronic check
                                                                   70.70
                        Yes
                                                                                151.65
          Churn
        0
             No
```

1

No

```
3 No
4 Yes
In [7]: df.shape
Out[7]: (7043, 21)
```

2

Yes

The dataset contains about 7000 customers with 19 features.

Features are the following: - customer ID: a unique ID for each customer - gender: the gender of the customer - SeniorCitizen: whether the customer is a senior (i.e. older than 65) or not -Partner: whether the customer has a partner or not - Dependents: whether the customer has people to take care of or not - tenure: the number of months the customer has stayed - PhoneService: whether the customer has a phone service or not - MultipleLines: whether the customer has multiple telephonic lines or not - InternetService: the kind of internet services the customer has (DSL, Fiber optic, no) - OnlineSecurity: what online security the customer has (Yes, No, No internet service) - OnlineBackup: whether the customer has online backup file system (Yes, No, No internet service) - DeviceProtection: Whether the customer has device protection or not (Yes, No, No internet service) - TechSupport: whether the customer has tech support or not (Yes, No, No internet service) - StreamingTV: whether the customer has a streaming TV device (e.g. a TV box) or not (Yes, No, No internet service) - StreamingMovies: whether the customer uses streaming movies (e.g. VOD) or not (Yes, No, No internet service) - Contract: the contract term of the customer (Month-to-month, One year, Two year) - PaperlessBilling: Whether the customer has electronic billing or not (Yes, No) - PaymentMethod: payment method of the customer (Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic)) - MonthlyCharges: the amount charged to the customer monthly - Total Charges: the total amount the customer paid

And the **Target**: - Churn: whether the customer left or not (Yes, No)

As you can see, many features are categorical with more than 2 values. You will have to handle this.

Take time to make a proper and complete EDA: this will help you build a better model.

2 Exploratory Data Analysisű

Global infos on the dataset (null values, types...)

```
In [8]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
customerID
                    7043 non-null object
gender
                    7043 non-null object
SeniorCitizen
                    7043 non-null int64
                    7043 non-null object
Partner
Dependents
                    7043 non-null object
tenure
                    7043 non-null int64
```

```
PhoneService
                    7043 non-null object
MultipleLines
                    7043 non-null object
InternetService
                    7043 non-null object
OnlineSecurity
                    7043 non-null object
                    7043 non-null object
OnlineBackup
DeviceProtection
                    7043 non-null object
TechSupport
                    7043 non-null object
StreamingTV
                    7043 non-null object
StreamingMovies
                    7043 non-null object
                    7043 non-null object
Contract
                    7043 non-null object
PaperlessBilling
PaymentMethod
                    7043 non-null object
MonthlyCharges
                    7043 non-null float64
TotalCharges
                    7043 non-null object
Churn
                    7043 non-null object
dtypes: float64(1), int64(2), object(18)
memory usage: 1.1+ MB
  Nb of each type
In [9]: df.dtypes.value_counts()
Out[9]: object
                   18
        int64
                    2
        float64
                    1
        dtype: int64
  Nb of unique value for each type
In [10]: df.select_dtypes('object').apply(pd.Series.nunique, axis = 0)
Out[10]: customerID
                              7043
         gender
                                 2
         Partner
                                 2
                                 2
         Dependents
         PhoneService
                                 2
         MultipleLines
                                 3
                                 3
         InternetService
                                 3
         OnlineSecurity
         OnlineBackup
                                 3
                                 3
         DeviceProtection
                                 3
         TechSupport
                                 3
         StreamingTV
                                 3
         StreamingMovies
         Contract
                                 3
                                 2
         PaperlessBilling
         PaymentMethod
                                 4
         TotalCharges
                              6531
         Churn
                                 2
         dtype: int64
```

2.1 Target infos

In [11]: df['Churn'].value_counts()

Out[11]: No 5174 Yes 1869

Name: Churn, dtype: int64

In [12]: df['Churn'].str.replace('No', '0').str.replace('Yes', '1').astype(int).plot.hist()

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4a41ebe438>

Basic stats on numerical cols

In [13]: df.describe()

Out[13]:		SeniorCitizen	tenure	MonthlyCharges
	count	7043.000000	7043.000000	7043.000000
	mean	0.162147	32.371149	64.761692
	std	0.368612	24.559481	30.090047
	min	0.000000	0.000000	18.250000
	25%	0.000000	9.000000	35.500000
	50%	0.000000	29.000000	70.350000
	75%	0.000000	55.000000	89.850000
	max	1.000000	72.000000	118.750000

2.2 Basic cleaning

```
In [14]: df.duplicated().sum()
Out[14]: 0
In [15]: df.isnull().sum()
Out[15]: customerID
                              0
         gender
                              0
         SeniorCitizen
                              0
         Partner
                              0
                              0
         Dependents
         tenure
                              0
         PhoneService
         MultipleLines
         {\tt InternetService}
                              0
         OnlineSecurity
                              0
         OnlineBackup
                              0
         DeviceProtection
                              0
         TechSupport
                              0
         StreamingTV
                              0
         StreamingMovies
         Contract
         PaperlessBilling
                              0
         PaymentMethod
                              0
         MonthlyCharges
                              0
         TotalCharges
                              0
                              0
         Churn
         dtype: int64
```

In [16]: df = df.drop(columns=['customerID'])

No missing or duplicated rows. The customer ID is irrelevant and can be dropped.

2.3 Dealing with abnormal values

The 'TotalCharges' column has an object type, but it is supposed to contain only numerical values...Let's dig a little deeper:

```
In [17]: # example for the record strip non digit values
         #test = pd.Series(["U$ 192.01"])
         #test.str.replace('^[^\d]*', '').astype(float)
         #df.TotalCharges = df.TotalCharges.str.replace('^[^\d]*', '')
In [18]: df.iloc[0, df.columns.get_loc("TotalCharges")]
Out[18]: '29.85'
```

```
In [19]: float(df.iloc[0, df.columns.get_loc("TotalCharges")])
Out[19]: 29.85
In [20]: df.iloc[488, df.columns.get_loc("TotalCharges")]
Out[20]: ''
In [21]: len(df[df['TotalCharges'] == ' '])
Out[21]: 11
  Drop strange/missing values (the pandas method to_numeric could also has been used!):
In [22]: # replace missing values by 0
         df.TotalCharges = df.TotalCharges.replace(" ",np.nan)
         # drop missing values - side note: it represents only 11 out of 7043 rows which is no
         df = df.dropna()
         # now we can convert the column type
         df.TotalCharges = df.TotalCharges.astype('float')
         df.shape
Out[22]: (7032, 20)
In [23]: num_feat = df.select_dtypes(include=['float', 'int']).columns.tolist()
         num_feat.remove('SeniorCitizen') # SeniorCitizen is only a boolean
         num_feat
Out[23]: ['tenure', 'MonthlyCharges', 'TotalCharges']
In [24]: sns.pairplot(data=df[num_feat])
         plt.show()
```


Plot distribution of those feat, w/ & w/o the distinction between the customers who churn

```
In [25]: plt.figure(figsize=(16, 10))

    plt.subplot(2, 3, 1)
    sns.distplot(df['tenure'])
    plt.title('tenure')

    plt.subplot(2, 3, 2)
    sns.distplot(df['MonthlyCharges'])
    plt.title('MonthlyCharges')

    plt.subplot(2, 3, 3)
    sns.distplot(df['TotalCharges'])
```

```
plt.title('TotalCharges')

plt.subplot(2, 3, 4)
sns.kdeplot(df.loc[df['Churn'] == 'No', 'tenure'], shade=True,label = 'Churn == 0')
sns.kdeplot(df.loc[df['Churn'] == 'Yes', 'tenure'], shade=True,label = 'Churn == 1')

plt.subplot(2, 3, 5)
sns.kdeplot(df.loc[df['Churn'] == 'No', 'MonthlyCharges'], shade=True,label = 'Churn == sns.kdeplot(df.loc[df['Churn'] == 'Yes', 'MonthlyCharges'], shade=True,label = 'Churn == sns.kdeplot(df.loc[df['Churn'] == 'No', 'TotalCharges'], shade=True,label = 'Churn == sns.kdeplot(df.loc[df['Churn'] == 'Yes', 'TotalCharges'], shade=True,label = 'Churn'
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4a40662e10>

Are there any correlations?

Out[26]:	SeniorCitizen	tenure	${ t Monthly Charges}$	TotalCharges
SeniorCitizen	1.000000	0.015683	0.219874	0.102411
tenure	0.015683	1.000000	0.246862	0.825880
${ t Monthly Charges}$	0.219874	0.246862	1.000000	0.651065
TotalCharges	0.102411	0.825880	0.651065	1.000000

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4a401d0da0>

SeniorCitizen -


```
In [30]: cat_features = df.select_dtypes('object').columns.tolist()
         cat_features
Out[30]: ['gender',
          'Partner',
          'Dependents',
          'PhoneService',
          'MultipleLines',
          'InternetService',
          'OnlineSecurity',
          'OnlineBackup',
          'DeviceProtection',
          'TechSupport',
          'StreamingTV',
          'StreamingMovies',
          'Contract',
          'PaperlessBilling',
          'PaymentMethod',
          'Churn']
```

Plot the count of different categories for the other features (with text)

Same plot but with the distinction between customers who churn

```
In [32]: cat_features.remove('Churn')
    plt.figure(figsize=(16, 20))
    plt.subplots_adjust(hspace=0.4)

for i in range(len(cat_features)):
    plt.subplot(6, 3, i+1)
```

sns.countplot(df[cat_features[i]], hue=df['Churn'])
#plt.title(cat_features[i])

plt.show()

3 Data Preparation & Feature engineering

Target creation

In [33]: y = df.Churn.str.replace('No', '0').str.replace('Yes', '1').astype(int)
Label encoding of categorical features

Features creation

- In this case, it's complicated to add features from an other dataset because no information is provided with the CSV file we're using.
- All columns except the user_id are relevant, so all of them are kept.
- We can combine features to create new ones: by dividing TotalCharges with the tenure which provide a kind of charge average per month. This value compared to the Monthly charges can give an idea of the charges' evolution with time.

```
In [36]: X['average_charges'] = X['TotalCharges'] / X['tenure']
         X.loc[X['tenure'] == 0, 'average_charges'] = X['MonthlyCharges']
         X.head()
Out[36]:
            SeniorCitizen tenure MonthlyCharges TotalCharges
                                                                  gender Male
                                             29.85
                                                            29.85
                                             56.95
         1
                                34
                                                          1889.50
                                                                              1
                                                          108.15
         2
                                 2
                                             53.85
                                                                              1
         3
                        0
                                45
                                             42.30
                                                          1840.75
                                                                              1
         4
                         0
                                 2
                                             70.70
                                                           151.65
                                                                              0
            Partner_Yes Dependents_Yes PhoneService_Yes \
         0
                      1
         1
                       0
                                                          1
         2
                       0
                                       0
                                                          1
                                       0
         3
                       0
                                                          0
         4
                       0
                                       0
            MultipleLines_No phone service MultipleLines_Yes
         0
         1
                                          0
                                                              0
                                          0
         2
                                                              0
         3
                                                              0
                                          1
         4
                                          0
                                                              0
            InternetService_Fiber optic InternetService_No
         0
                                                            0
         1
                                       0
                                                            0
         2
                                       0
                                                            0
         3
                                       0
                                                            0
```

```
0
                                      0
                                                           0
1
                                      0
                                                           1
2
                                      0
                                                           1
3
                                      0
                                                           1
4
                                      0
                                                           0
   OnlineBackup_No internet service OnlineBackup_Yes
0
                                                       0
1
2
                                    0
                                                       1
3
                                    0
                                                       0
4
                                    0
                                                       0
   DeviceProtection_No internet service DeviceProtection_Yes \
0
                                        0
1
                                                               1
                                        0
2
                                                               0
                                        0
3
                                                               1
4
                                        0
                                                               0
   TechSupport_No internet service TechSupport_Yes \
0
1
                                   0
                                                     0
2
                                   0
                                                     0
3
                                   0
                                                     1
4
                                   0
                                                     0
   StreamingTV_No internet service
                                     StreamingTV_Yes
0
                                   0
                                                     0
1
2
                                   0
                                                     0
3
                                                     0
                                   0
4
                                   0
                                                     0
   StreamingMovies_No internet service StreamingMovies_Yes \
0
1
                                       0
                                                             0
2
                                       0
                                                             0
                                                             0
3
                                       0
4
   Contract_One year
                      Contract_Two year
                                           PaperlessBilling_Yes
0
                    0
                                        0
                    1
                                        0
                                                               0
1
2
                    0
                                        0
                                                               1
3
                                        0
                                                               0
                    1
                                                               1
```

```
PaymentMethod_Credit card (automatic) PaymentMethod_Electronic check \
         0
                                                  0
                                                                                    0
         1
         2
                                                  0
                                                                                    0
         3
                                                  0
                                                                                    0
         4
                                                  0
                                                                                    1
            PaymentMethod_Mailed check average_charges
         0
                                       0
                                                29.850000
                                                55.573529
         1
                                       1
         2
                                       1
                                                54.075000
         3
                                       0
                                                40.905556
                                       0
         4
                                                75.825000
   Scaling data
In [37]: num_feat.append('average_charges')
         scaler = MinMaxScaler()
         X[num_feat] = scaler.fit_transform(X[num_feat])
/home/sunflowa/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/data.py:323: DataCondas
  return self.partial_fit(X, y)
In [38]: X.head()
Out [38]:
            SeniorCitizen
                                       MonthlyCharges
                                                        TotalCharges
                                                                      gender_Male
                              tenure
                         0.000000
                                             0.115423
                                                            0.001275
         0
                                             0.385075
         1
                         0 0.464789
                                                            0.215867
                                                                                 1
         2
                            0.014085
                                             0.354229
                                                            0.010310
                                                                                 1
         3
                           0.619718
                                             0.239303
                                                            0.210241
                                                                                 1
         4
                            0.014085
                                             0.521891
                                                            0.015330
            Partner_Yes Dependents_Yes PhoneService_Yes
         0
                                                           0
                       1
                       0
                                        0
                                                           1
         1
         2
                       0
                                        0
                                                           1
         3
                       0
                                        0
                                                           0
                                        0
                       0
                                                           1
            MultipleLines_No phone service
                                              MultipleLines_Yes
         0
                                           0
                                                               0
         1
         2
                                           0
                                                               0
         3
                                           1
                                                               0
         4
            InternetService_Fiber optic InternetService_No
         0
                                        0
                                                             0
```

```
1
                               0
                                                    0
2
                               0
                                                    0
3
                               0
                                                    0
4
                               1
                                                    0
   OnlineSecurity_No internet service OnlineSecurity_Yes
0
                                      0
1
                                                            1
2
                                      0
                                                            1
3
                                      0
                                                            1
4
                                      0
                                                            0
   OnlineBackup_No internet service OnlineBackup_Yes
0
1
                                    0
2
3
                                    0
                                                       0
                                    0
   {\tt DeviceProtection\_No\ internet\ service\ DeviceProtection\_Yes}
0
                                        0
1
                                                                1
                                        0
2
                                                                0
                                        0
3
                                                                1
4
   TechSupport_No internet service TechSupport_Yes
0
                                   0
1
2
                                   0
3
                                   0
                                                     1
   StreamingTV_No internet service StreamingTV_Yes
0
                                   0
1
                                                     0
2
                                   0
3
   StreamingMovies_No internet service StreamingMovies_Yes \
0
                                                              0
1
                                       0
                                                              0
2
                                                              0
3
                                       0
                                                              0
```

Contract_One year Contract_Two year PaperlessBilling_Yes \

```
0
                                                                       0
         1
                             1
         2
                             0
                                                0
                                                                       1
         3
                             1
                                                0
                                                                       0
         4
                             0
                                                0
                                                                       1
            PaymentMethod_Credit card (automatic)
                                                    PaymentMethod_Electronic check \
         0
         1
                                                 0
                                                                                   0
                                                 0
                                                                                   0
         2
         3
                                                  0
                                                                                   0
         4
                                                  0
                                                                                   1
            PaymentMethod_Mailed check average_charges
         0
                                                0.149361
         1
                                      1
                                                0.388372
         2
                                      1
                                                0.374448
         3
                                      0
                                                0.252084
         4
                                      0
                                                0.576539
   Splitting train and test sets
In [39]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
   Features importances
In [40]: rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)
         rnd_clf.fit(X, y)
Out[40]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=-1,
                     oob_score=False, random_state=None, verbose=0,
                     warm_start=False)
In [41]: feature_importances = pd.DataFrame(rnd_clf.feature_importances_, index = X.columns,
                                              columns=['importance']).sort_values('importance',
         feature_importances[:10]
Out[41]:
                                          importance
         TotalCharges
                                            0.167416
                                            0.150908
         tenure
         average_charges
                                            0.137030
         MonthlyCharges
                                            0.134679
                                            0.034640
         PaymentMethod_Electronic check
         InternetService_Fiber optic
                                            0.034376
         Contract_Two year
                                            0.032602
```

0

1

0

0

```
gender_Male 0.024216
OnlineSecurity_Yes 0.022954
PaperlessBilling_Yes 0.022600
```


4 Baselines

```
In [44]: model_list = [RandomForestClassifier(),
             LogisticRegression(),
             SVC(),
             LinearSVC(),
             SGDClassifier(),
             lgbm.LGBMClassifier(),
             xgb.XGBClassifier()
In [45]: model_names = [str(m)[:str(m).index('('))] for m in model_list]
In [46]: for model, name in zip(model_list, model_names):
             model.fit(X train, y train)
             get_f1_scores(model, name)
RandomForestClassifier
                                - Training F1 score = 95.88% / Test F1 score = 51.62%
LogisticRegression
                            - Training F1 score = 60.45% / Test F1 score = 56.12%
             - Training F1 score = 58.92% / Test F1 score = 54.46%
SVC
                   - Training F1 score = 59.91% / Test F1 score = 56.36%
LinearSVC
SGDClassifier
                       - Training F1 score = 40.85% / Test F1 score = 36.83%
LGBMClassifier
                        - Training F1 score = 76.50% / Test F1 score = 57.02%
                       - Training F1 score = 62.61% / Test F1 score = 58.36%
XGBClassifier
```

The 1st model - RandomForrest Clf - is clearly overfitting the train dataset and can't generalize. The others models don't have good results and are probably underfitting. So let's tuned them!

5 Training more accurately other models

5.1 Randomforest with weighted classes

The improvement is not significant...

5.2 LGBM with weighted classes

5.3 XGB with ratio

That's a little better.

5.4 Adaboost

6 Using GridsearchCV & Combining the best models

With XGB

```
In [54]: print(classification_report(y_test, xgb_model.predict(X_test)))
```

	precision	recall	f1-score	support
	0 0.87	0.81	0.84	1018
	1 0.58	0.70	0.63	389
micro av	g 0.73	0.78	0.78	1407
macro av		0.75	0.74	1407
weighted av		0.78	0.78	1407

Let's use a GridSearch with 5 cross validation to tuned the hyperparameters

```
In [55]: from sklearn.model_selection import GridSearchCV
In [56]: params = {'learning_rate':[0.175, 0.167, 0.165, 0.163, 0.17],
                   'max_depth':[1, 2, 3],
                   'scale_pos_weight':[1.70, 1.73, 1.76, 1.79]}
         clf_grid = GridSearchCV(xgb.XGBClassifier(), param_grid=params, cv=5, scoring='f1', n
         clf_grid.fit(X_train, y_train)
Fitting 5 folds for each of 60 candidates, totalling 300 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 34 tasks
                                           | elapsed:
                                                         2.6s
[Parallel(n_jobs=-1)]: Done 184 tasks
                                           | elapsed:
                                                        10.3s
[Parallel(n_jobs=-1)]: Done 300 out of 300 | elapsed:
                                                        16.2s finished
Out[56]: GridSearchCV(cv=5, error_score='raise-deprecating',
                estimator=XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
                max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
                n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
                reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
                silent=True, subsample=1),
                fit_params=None, iid='warn', n_jobs=-1,
                param_grid={'learning_rate': [0.175, 0.167, 0.165, 0.163, 0.17], 'max_depth':
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='f1', verbose=1)
In [57]: clf_grid.best_score_
Out [57]: 0.635398553168061
In [58]: clf_grid.best_params_
Out[58]: {'learning_rate': 0.163, 'max_depth': 1, 'scale_pos_weight': 1.76}
  With a LogisticRegression
In [59]: lr = LogisticRegression(C=10, class_weight={0:0.26, 1:0.74})
In [60]: lr.fit(X_train, y_train)
         get_f1_scores(lr, 'Logistic Reg')
Logistic Reg
                     - Training F1 score = 62.82% / Test F1 score = 64.88%
```

Now we can try to combine the best models

```
In [61]: xgb_model = xgb.XGBClassifier(objective="binary:logistic", learning_rate=0.167, max_definition.
         xgb_model.fit(X_train, y_train)
         get_f1_scores(xgb_model, 'XGB with ratio')
XGB with ratio
                        - Training F1 score = 66.17% / Test F1 score = 63.93%
In [62]: y_pred_lr = lr.predict_proba(X_test)
In [63]: lgbm_w = lgbm.LGBMClassifier(n_jobs = -1, class_weight={0:1869, 1:5174})
         lgbm_w.fit(X_train, y_train)
         y_pred_lgbm = lgbm_w.predict_proba(X_test)
In [65]: # y_pred with predict_proba returns 2 cols, one for each class
         y_pred_xgb = xgb_model.predict_proba(X_test)
         y_pred_xgb[:5, 1]
Out[65]: array([0.66343373, 0.6869538 , 0.031379 , 0.49967214, 0.06845096],
               dtype=float32)
In [66]: y_pred_lgbm[:5, 1]
Out[66]: array([0.65824753, 0.73075217, 0.06651954, 0.50086417, 0.0424213 ])
In [67]: test = np.vstack((y_pred_lgbm[:5, 1], y_pred_xgb[:5, 1]))
         test
Out[67]: array([[0.65824753, 0.73075217, 0.06651954, 0.50086417, 0.0424213],
                [0.66343373, 0.68695378, 0.031379, 0.49967214, 0.06845096]])
In [68]: np.mean(test, axis=0)
Out[68]: array([0.66084063, 0.70885298, 0.04894927, 0.50026816, 0.05543613])
In [69]: y_pred_mean = np.mean(np.vstack((y_pred_lgbm[:, 1], y_pred_xgb[:, 1])), axis=0)
         y_pred_mean[:5]
Out [69]: array([0.66084063, 0.70885298, 0.04894927, 0.50026816, 0.05543613])
In [70]: y_pred_mean[y_pred_mean < 0.5] = 0</pre>
         y_pred_mean[y_pred_mean > 0.5] = 1
         y_pred_mean[:5]
Out[70]: array([1., 1., 0., 1., 0.])
In [71]: print(f'F1 score of models combined on the test dataset = {f1_score(y_test, y_pred_meanstable})
F1 score of models combined on the test dataset = 63.59%
```

Despite combining model, the best F1 score is still obtained by XGB with tuned hyperparameters.

In []: