AB Geometrie & Topologie

Stephan Stadler Phillip Grass Markus Nöth

Analysis einer Variablen

Nachklausur

- 1. (a) Die Folge (a_n) konvergiert genau dann, wenn ein $a \in \mathbb{C}$ existiert, (+2) so dass gilt: Für jedes $\epsilon > 0$ existiert $n_0 \in \mathbb{N}$ mit $|a_n a| < \epsilon$ für alle $n \geq n_0$. (+2)
 - (b) Wegen $\ln(2^n) > 0$ für alle $n \in \mathbb{N}$ gilt $2^n = \exp(n \ln(2)) \ge \frac{\ln^3(2)}{6} n^3$. (+4) Es folgt

$$0 \le \frac{n^2}{2^n} \le \frac{6}{\ln^3(2)} \frac{1}{n} \to 0.$$

Mit dem Einschnürungsprinzip folgt, dass (a_n) eine Nullfolge ist. (+2)

- 2. (a) Für die m-te Partialsumme gilt $s_m = (a_2 a_1) + (a_3 a_2) + \ldots + (a_{m+1} a_m) = a_{m+1} a_1.$ (+2) Es folgt $\lim_{m \to \infty} s_m = (\lim_{m \to \infty} a_{m+1}) a_1 = a a_1.$ (+2)
 - (b) Wir setzen $a_k = \frac{2^{2k}}{(2k)!}$. Dann gilt für alle $k \in \mathbb{N}$: $\left|\frac{a_{k+1}}{a_k}\right| = \frac{4}{(2k+2)(2k+1)} \le \frac{1}{3}$. (+2)

 Aus dem Quotientenkriterimum folgt, dass die Reihe absolut konvergiert. (+2)
- 3. (a) Für jede reelle Zahl $\epsilon > 0$ existiert eine natürliche Zahl $n \in \mathbb{N}$ mit $\frac{1}{n} < \epsilon$. (+2)
 - (b) Angenommen f ist stetig in einem Punkt $x \in \mathbb{R} \setminus \{0\}$. Wir wählen Folgen $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$ mit $a_n \to x$ und $b_n \to x$ und so dass $a_n \in \mathbb{Q}$ und $b_n \in \mathbb{R} \setminus \mathbb{Q}$ für alle $n \in \mathbb{N}$.

Dann gilt $x = \lim_{n \to \infty} a_n = \lim_{n \to \infty} f(a_n) = f(x)$. (Insbesondere ist $x \in \mathbb{Q}$.) (+2)

Weiter gilt wegen
$$x \neq 0$$
 (+1)

$$\frac{1}{x} = \lim_{n \to \infty} \frac{1}{b_n} = \lim_{n \to \infty} f(b_n) = f(x). \tag{+2}$$

Es folgt
$$x^2 = 1$$
, also $x \in \{-1, 1\} \cap (0, \infty)$ und damit $x = 1$. $(+2)$

Es bleibt die Stetigkeit in 1 zu zeigen. Dazu sei (x_k) eine beliebige Folge mit $x_k \to 1$. Wegen $|f(x_k) - 1| \le \max\{|x_k - 1|, |\frac{1}{x_k} - 1|\}$ genügt es $\frac{1}{x_k} \to 1$ zu zeigen. Dies folgt aber direkt aus der Quotientenregel für konvergente Folgen, denn $1 \neq 0$. (+2)

4. (a) Eine Funktion $f: I \to \mathbb{R}$ ist konvex, falls für alle $\lambda \in [0, 1]$ und jedes Paar von Punkten $x, y \in I$ gilt: (+1)

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{+1}$$

(b) Wir betrachten die Hilfsfunktion h(x) = f(x) - ax. Die Funktion h ist glatt als Differenz zweier glatter Funktionen.

Weil
$$f$$
 eine glatte konvexe Funktion ist, gilt $f'' \ge 0$. $(+1)$

Wegen h'' = f'' folgt, dass auch h eine glatte konvexe Funktion ist. (+1)

Aus der Vorlesung wissen wir, dass h' monoton steigend ist. (+2)

Wegen
$$h'(0) = f'(0) - a = 0$$
 folgt also $h'(x) \ge 0$ für $x \in [0, \infty)$. $(+2)$

Also ist h monoton steigend auf $[0, \infty)$. Es folgt $h(x) \ge h(0) = 0$ was zu zeigen war. (+2)

5. (a) i. Das n-te Taylorpolynom von f in x_0 ist gegeben durch

$$T_n(x) = \sum_{j=0}^n \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j.$$

(+2) (+2)

ii. Für Punkte $x, x_0 \in I$ mit $x \neq x_0$ existiert ein Punkt ξ zwischen x und x_0 mit

$$f(x) = T_{n-1}(x) + \frac{f^{(n)}(\xi)}{n!}(x - x_0)^n.$$

(+2)

(b) Für |x| < 1 konvergiert die geometrische Reihe $\sum_{k=0}^{\infty} x^k$ absolut und es gilt $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$. (+2)

Also ist f als Potenzreihe darstellbar. Aus der Vorlesung wissen wir, dass diese Potenzreihe dann mit der Taylorreihe von f übereinstimmt. Also ist das 4. Taylorpolynom von f gegeben durch $T_4(x) = 1 + x + x^2 + x^3 + x^4$. (+2)

- 6. (a) Ist $f: I \to \mathbb{C}$ stetig, so ist $F: I \to \mathbb{C}$ mit $F(x) = \int_a^x f(t)dt$ $(a \in I)$ Stammfunktion von f, d.h. F' = f. (+3)
 - Ist $F: I \to C$ stetig differenzierbar, so ist $F(x) F(x_0) = \int_{x_0}^x F'(t) dt$ für $x, x_0 \in I$. (+3)
 - (b) Mit der Substitution $t(x) = x^2$ ergibt sich $\int_0^1 x e^x dx = \frac{1}{2} \int_0^1 e^t dt = \frac{e-1}{2}$. (+3)

Partielle Integration liefert $\int_0^\pi x \cos(x) dx = x \sin(x)|_0^\pi - \int_0^\pi \sin(x) dx = \cos(x)|_0^\pi = -2.$ (+3)