Proteomics Informatics – Analysis of mass spectra: signal processing, peak finding, and isotope clusters (Week 3)

Charge-State Distributions

Peptide

$$\frac{m}{z}=\frac{M+nH}{n}$$

M - molecular massn - number of chargesH - mass of a proton

Protein

MALDI

Charge-State

$$\frac{m}{Z} = \frac{M + nH}{n}$$
 M - molecular mass n - number of charges H - mass of a proton

Example:

peptide of mass 898 carrying 1 H+ =
$$(898 + 1) / 1 = 899 \text{ m/z}$$

carrying 2 H+ = $(898 + 2) / 2 = 450 \text{ m/z}$
carrying 3 H+ = $(898 + 3) / 3 = 300.3 \text{ m/z}$

Isotope Distributions

0.015% ²H 1.11% ¹³C 0.366% ¹⁵N 0.038% ¹⁷O, 0.200% ¹⁸O, 0.75% ³³S, 4.21% ³⁴S, 0.02% ³⁶S

Only ¹²C and ¹³C:

p=0.0111

n is the number of C in the peptide m is the number of 13 C in the peptide $T_{\rm m}$ is the relative intensity of the peptide m 13 C

$$T_m = \binom{n}{m} p^m (1-p)^{n-m}$$

Isotope distributions

Resolution

$$R = \frac{M}{\Delta M} = resolving power$$

Resolution = minimum peak separation, ΔM , which allows to distinguish two ion species

 ΔM = full width at half maximum (FWHM)

Resolution = $M/\Delta M = 500/0.5 = 1000$

Resolution

Resolution

$$R = \frac{M}{\Delta M} = \text{resolving power}$$

 What resolution do we need to differentiate a 1600 Da peptide that carries either an acetylation (+ 42.0100) or trimethylation (42.0464)?

R = 1600/0.0364 = 43,956

Isotope Clusters and Charge State

Isotope Clusters and Charge State

What is the Charge State?

 Δ between the isotopes is 0.5 Da

 Δ between the isotopes is 0.33 Da

Noise

Smoothing

Smoothing

Adaptive Background Correction

Smoothing and Adaptive Background Correction

Peak Finding

Find maxima of
$$S(I) = \sum_{|k-I| < w/2} I(k)$$

The centroid m/z of a peak

$$\frac{\sum_{|k-l|< w/2} I(k) \cdot \frac{m}{z}(k)}{\sum_{|k-l|< w/2} I(k)}$$

Peak Finding

The signal in a peak can be estimated with the RMSD

$$\sqrt{\frac{\sum_{|k-l|< w/2} (I(k) - \langle I \rangle)^2}{w/2}}$$

and the signal-to-noise ratio of a peak can be estimated by dividing the signal with the RMSD of the background

Estimating peptide quantity

Time dimension

m/z

Time

Sampling

Sampling

Sampling

What is the best way to estimate quantity?

Peak height

- resistant to interference

- poor statistics

Peak area

- better statistics

- more sensitive to interference

Curve fitting

- better statistics

- needs to know the peak shape

- slow

Web Tool

http://10.193.36.101/plot-filter-cgi/plot_filter.pl or http://10.193.36.219/plot-filter-cgi/plot_filter.pl

peptide: EDLNESK
Peak width: 0.1
Points per m/z unit: 100
Noise: 0.1
Offset: 1
Apply filters
Smoothing: hamming ▼ width: 11
Adaptive Background Correction: width: 11 , strength: 10
Find peaks
Plot

Web Tool

http://10.193.36.101 or http://10.193.36.219

Proteomics Informatics – Analysis of mass spectra: signal processing, peak finding, and isotope clusters (Week 3)