CSC236 Week 4

Larry Zhang

Announcements

- PS2 due on Friday
- This week's tutorial: Exercises with big-Oh
- PS1 feedback
 - People generally did well
 - Writing style need to be improved. This time the TAs are lenient, next time they will be more strict.
- Read the feedback post on Piazza.

Recap: Asymptotic Notations

- Algorithm Runtime: we describe it in terms of the number of steps as a function of input size
 - Like n², nlog(n), n, sqrt(n), ...
- Asymptotic notations are for describing the growth rate of functions.
 - constant factors don't matter
 - only the highest-order term matters

Big-Oh, Big-Omega, Big-Theta

- O(f(n)): The set of functions that grows no faster than f(n)
 - asymptotic upper-bound on growth rate
- $\Omega(f(n))$: The set of functions that grows no slower than f(n)
 - asymptotic lower-bound on growth rate
- Θ(f(n)): The set of functions that grows no faster and no slower than f(n)
 - asymptotic tight-bound on growth rate

growth rate ranking of typical functions

$$f(n) = n^n$$

$$f(n) = 2^n$$

$$f(n) = n^3$$

$$f(n) = n^2$$

$$f(n) = n \log n$$

$$f(n) = n$$

$$f(n) = \sqrt{n}$$

$$f(n) = \log n$$

$$f(n) = 1$$

grow fast

grow slowly

The formal mathematical definition of big-Oh

Chicken grows slower than turkey, or chicken size is in O(turkey size).

What it really means:

- Baby chicken might be larger than baby turkey at the beginning.
- But after certain "breakpoint", the chicken size will be surpassed by the turkey size.
- From the **breakpoint on**, the chicken size will **always** be smaller than the turkey size.

Definition of big-Oh

Function f(n) = O(g(n)) ("f is big oh of g") iff

- (i) There is some positive $n_0 \in N$
- (ii) There is some positive $c \in R$ such that

$$\forall n \geq n_0, f(n) \leq cg(n)$$

Beyond the **breakpoint** n_0 , f(n) is **upper-bounded** by cg(n), where c is some wisely chosen constant multiplier.

Side Note

Both ways below are fine

- $f(n) \in O(g(n))$, i.e., f(n) is **in** O(g(n))
- f(n) = O(g(n)), i.e., f(n) is O(g(n))

Both means the same thing, while the latter is a slight abuse of notation.

```
Function f(n) = O(g(n)) ("f is big oh of g") iff

(i) There is some positive n_0 \in N

(ii) There is some positive c \in R

such that

\forall n \geq n_0, f(n) \leq cg(n)
```

Knowing the definition, now we can write proofs for big-Oh. The key is finding n₀ and c

Example 1

Prove that 100n + 10000 is in $O(n^2)$

Need to find the n₀ and c such that 100n + 10000 can be upper-bounded by n² multiplied by some c.

underestimate and simplify

overestimate and simplify

Function f(n) = O(g(n)) ("f is big oh of g") iff

- (i) There is some positive $n_0 \in N$
- (ii) There is some positive $c \in R$ such that

 $\forall n \geq n_0, f(n) \leq cg(n)$

Pick n₀ = 1

Write up the proof

Proof:

Choose $n_0=1$, c = 10100,

then for all $n \ge n_0$,

100n + 10000 <= 100n² + 10000n² # because n >= 1
= 10100n²

 $= cn^2$

Therefore by definition of big-Oh, 100n + 10000 is in O(n²)

Proof that 100n + 10000 is in $O(n^2)$

Function f(n) = O(g(n)) ("f is big oh of g") iff

- (i) There is some positive $n_0 \in N$
- (ii) There is some positive $c \in R$

such that

 $\forall n \geq n_0, f(n) \leq cg(n)$

Quick note

The choice of n₀ and c is not unique.

There can be many (actually, infinitely many) different combinations of n₀ and c that would make the proof work.

It depends on what inequalities you use while doing the upper/lower-bounding.

Example 2

Prove that $5n^2 - 3n + 20$ is in $O(n^2)$

underestimate and simplify

overestimate and

simplify

c n²

small

Pick c = 25

25n²

 $5n^2 + 20n^2$

coz n >= 1

 $5n^2 + 20$

remove a negative term

 $5n^2 - 3n + 20$

Pick n₀ = 1

Takeaway

connects both sides.

After simplification, **choose a** *c* that

choose some breakpoint (n₀=1 often works), then we can assume $n \ge 1$

under-estimation tricks

- remove a positive term
 - $3n^2 + 2n \ge 3n^2$
- multiply a negative term
 - \bullet 5n² n ≥ 5n² n*n = 4n²

over-estimation tricks

- **remove** a **negative** term
 - $3n^2 2n \le 3n^2$
- multiply a positive term
 - $5n^2 + n \le 5n^2 + n*n = 6n^2$

The formal mathematical definition of big-Omega

Definition of big-Omega

Function
$$f(n) = \Omega(g(n))$$
 iff

- (i) There is some positive $n_0 \in N$
- (ii) There is some positive $c \in R$

```
such that \forall n \geq n_0, cg(n) \leq f(n) The only difference
```

This means that g(n) is a **lower bound** on f(n).

Example 3 Prove that $2n^3 - 7n + 1 = \Omega(n^3)$

underestimate and simplify

overestimate and simplify $2n^3 - 7n + 1$

$$n^3 + n^3 - 7n + 1$$

n³

large

small

Prove that $2n^3 - 7n + 1 = \Omega(n^3)$

Pick $n_0 = 3$

Prove that $2n^3 - 7n + 1$ is in $\Omega(n^3)$

Write up the proof

Proof:

Choose n_0 = 3, c = 1,

then for all $n \ge n_0$,

$$2n^{3} - 7n + 1 = n^{3} + (n^{3} - 7n) + 1$$

>= $n^{3} + 1$ # because n >= 3
>= $n^{3} = cn^{3}$

Therefore by definition of big-Omega, $2n^3$ - 7n + 1 is in $\Omega(n^3)$

Takeaway

Additional trick learned

- Splitting a higher order term
- Choose n₀ to however large you need it to be

$$n^3 + n^3 - 7n + 1$$

The formal mathematical definition of big-Theta

Definition of big-Theta

Function $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. This means that g(n) is a **tight bound** on f(n).

In other words, if you want to prove big-Theta, just prove **both** big-Oh and big-Omega, separately.

Exercise for home

Prove that
$$2n^3 - 7n + 1 = \Theta(n^3)$$

Summary of Asymptotic Notations

- We use functions to describe algorithm runtime
 - Number of steps as a function of input size
- Big-Oh/Omega/Theta are used for describing function growth rate
- A proof for big-Oh and big-Omega is basically a chain of inequality.
 - Choose the n₀ and c that makes the chain work.