3° de Secundaria Unidad 2 2023-2024

Practica la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- ☼ Deduce información acerca de la estructura atómica a partir de datos experimentales sobre propiedades atómicas periódicas.
- Representa y diferencia mediante esquemas, modelos y simbología química, elementos y compuestos, así como átomos y moléculas.
- Explica y predice propiedades físicas de los materiales con base en modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas.

D .	
Punti	ıación:
1 Giles	adelett.

Pregunta	Puntos	Obtenidos	Pre
1	5		
2	5		
3	5		
4	5		
5	5		
6	5		
7	5		
8	5		
9	10		Т

Pregunta	Puntos	Obtenidos
10	10	
11	5	
12	5	
13	5	
14	10	
15	10	
16	5	
Total	100	

Ejemplo 1

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- \bigcirc $3 O_2 + energía <math>\uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- $\label{eq:basic_solution} \begin{tabular}{ll} \begin{tabular}{ll$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- c CaCO₃(s) \longrightarrow CaO(s) + CO₂
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- - A Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 1

de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(l) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $4 \text{ Al(s)} + 3 \text{ O}_2(\text{g}) \longrightarrow 2 \text{ Al}_2 \text{O}_3(\text{s})$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 2 de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - D Doble desplazamiento
- $b 2 Al(s) + 3 S(s) \longrightarrow Al_2 S_3(s)$
 - A Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

- $\mathsf{C} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejemplo 2

Balancea la siguiente ecuación química:

$$H_2O \longrightarrow H_2 + O_2$$

Solución:

Si representamos la ecuación química con átomos de Ahora, hay 4 H en los reactivos y 2 H en los productos, distintos colores para cada elemento, tenemos:

> $H_2O + \longrightarrow$ H_2 \odot

Hay 2 O en los productos y 1 O en los reactivos, por lo que hay que multiplicar por 2 al H_2O .

por lo que hay que multiplicar por 2 al H_2 .

 $2 \,\mathrm{H}_2\mathrm{O} + \longrightarrow$ **₯** \odot

Por lo tanto, la ecuación química balanceada es:

$$2 H_2 O \longrightarrow 2 H_2 + O_2$$

Ejemplo 3

Balancea la siguiente ecuación química:

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O$$

Solución:

Si representamos la ecuación química con átomos de Ahora hay 4 O en los productos y 2 en los reactivos, distintos colores para cada elemento, tenemos:

 H_2O

Hay 4 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 2 al H₂O.

> CO_2 $2 H_2 O$

por lo que hay que multiplicar por 2 al O_2 . Y la ecuación balanceada es:

Por lo tanto, la ecuación química balanceada es:

$$\mathrm{CH_4} + 2\,\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\,\mathrm{H_2O}$$

Ejercicio 3	de 5 puntos
Balancea la siguiente ecuación química:	
$\mathrm{Fe} + \mathrm{H_2O} \longrightarrow \mathrm{Fe_3O_4} + \mathrm{H_2}$	
Ejercicio 4	de 5 puntos
Balancea la siguiente ecuación química:	
$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$	
Ejercicio 5	de 5 puntos
Balancea la siguiente ecuación química:	
$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + H_2O$	

Ejercicio 6	de 5 puntos
Balancea la siguiente ecuación química:	
$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$	
Ejercicio 7	de 5 puntos
Ejercicio 7 Balancea la siguiente ecuación química:	de 5 puntos
	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos

Ejercicio 8 _____ de 5 puntos Completa la siguiente tabla determinando para cada especie, la cantidad de protones (1), neutrones (1) y electrones

Especie	Símbolo	\oplus	0	Θ
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

Ejercicio 9	de 10 puntos			
Relaciona cada elemento con las características que le corresponden.				
o Titanio	(A) Elemento metaloide del grupo III, subgrupo A de la tabla periódica.			
b Oro	lacksquare Elemento metálico con Z = 31.			
c Helio	© Elemento metaloide, ubicado en el tercer período de la tabla periódica.			
d Boro	D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.			
e Radón	E Elemento con 22 protones y 22 electrones.			
fYodo	Elemento de la familia de los Halógenos con 74 neutrones.			
9 Bismuto	© Elemento de la familia de metales alcalino-terreos con 138 neutrones.			
h Radio	\bigoplus Elemento no metálico con Z =83.			
i Galio	① Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.			
j Silicio	① Metal brillante utilizado en joyería.			

Ejercicio 10 de 10 puntos Relaciona la especie química con la cantidad de protones y electrones de valencia. \bigcirc Ión oxígeno \bigcirc 20 protones y 2 electrones de valencia. **b** _____ 9 protones y 8 electrones de valencia. B Nitrógeno (N) **c** _____ 15 protones y 5 electrones de valencia. © Silicio (Si) d ______ 8 protones y 7 electrones de valencia. (Ca) e _____ 34 protones y 6 electrones de valencia. f _____ 14 protones y 4 electrones de valencia. (E) Ión Fluor (F⁻) 9 _____ 7 protones y 5 electrones de valencia. F Oxígeno (O) h _____ 3 protones y 2 electrones de valencia. G Neón (Ne) i _____ 8 protones y 6 electrones de valencia. (H) Ión Litio (Li⁺) j _____ 10 protones y 8 electrones de valencia. (I) Fósforo (P) (J) Selenio (Se)

Ejercicio 11 de 5 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

(A) Ión de Aluminio (Al³⁺)

 \bigcirc B Ión de Nitrógeno (N $^{3-}$)

C Ión de Flúor (F⁻)

(D) Litio (Li)

E Ión de Potasio (K⁺)

F Ión de Berilio (Be⁻)

 \bigcirc Ión de Azúfre (S²⁺)

(H) Ión de Cloro (Cl⁻)

① Ión de Hierro (Fe³⁺)

J Fósforo (P)

- a _____ 13 protones y 8 electrones de valencia.
- b _____ 17 protones y 8 electrones de valencia.
- c _____ 9 protones y 8 electrones de valencia.
- d _____ 4 protones y 3 electrones de valencia.
- e _____ 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- **9** _____ 26 protones y 2 electrones de valencia.
- h ______ 7 protones y 8 electrones de valencia.
- i _____ 3 protones y 1 electrón de valencia.
- j _____ 19 protones y 8 electrones de valencia.

Ejercicio 12 ____ de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómi-
 - (B) El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - (E) Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - B Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - (A) Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - A Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - O Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 13	de 5 puntos
Relaciona cada concepto con su definición.	
(A) Las sustancias se representan sólo con símbolos atómicos.	O Diagrama de esferas.
B Esquema tridimensional en el que es posible identificar a los enlaces químicos.	Fórmula estructural.Fórmula condensada.
C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.	d Diagrama de esferas y barras.
D Esquema tridimensional en el que no es posible identificar a los enlaces químicos.	1100.

	le 10 puntos
Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta. © Explica bajo qué condiciones el número atómico permite deducir el número de electrones preátomo.	esentes en un
En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un ¿cuál sería el radio del átomo en metros?	

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

Elemento Grupo Subgrupo Período Tipo Oro
Potasio
Paladio
Yodo
Samario

Ejercicio 16	de 5 puntos					
Señala en cada uno de los enunciados si la sentencia es falsa o verdadera.						
Q La tabla periódica se encuentra constituida por filas (períodos) y columnas (grupos).	k Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.					
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso					
b Los electrones de valencia se encuentran siempre en el último nivel de energía.	l El símbolo Cl ⁻ indica que el átomo de cloro ha tenido una reducción o pérdida de electrones.					
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso					
c El oxígeno y el nitrógeno son dos gases nobles de gran importancia.	M Una fórmula química sólo expresa la composición cualitativa de una sustancia.					
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso					
d El mercurio es un elemento líquido.	n En una fórmula química, los coeficientes indican el número de					
☐ Verdadero ☐ Falso	moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.					
e Los metales se ubican a la derecha y al centro de la tabla periódica.	☐ Verdadero ☐ Falso					
☐ Verdadero ☐ Falso	Él neutrón es una partícula subatómica que se encuentra gi- rando alrededor del núcleo atómico.					
f Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.	☐ Verdadero ☐ Falso					
☐ Verdadero ☐ Falso	O La masa de un neutrón es similar a la del protón.					
9 La fórmula H ₂ O expresa que la molécula de agua está cons-	☐ Verdadero ☐ Falso					
9 La fórmula H ₂ O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno.						
☐ Verdadero ☐ Falso	ρ Las únicas partículas elementales en el núcleo, son los protones y neutrones.					
h En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica que hay 4 átomos de carbono.	☐ Verdadero ☐ Falso					
☐ Verdadero ☐ Falso	Q El número de masa representa la suma de protones y neutrones.					
i Al número entero positivo, negativo o cero que se asigna a	☐ Verdadero ☐ Falso					
cada elemento en un compuesto, se denomina número de oxi- dación.	r El número total de electrones en un átomo lo determina el					
☐ Verdadero ☐ Falso	grupo al que pertenece.					
	☐ Verdadero ☐ Falso					
j En la construcción de una fórmula química se escribe primero la parte positiva y enseguida la negativa.	s Los protones y neutrones son partículas constituidas por					
□ Verdadero □ Falso	quarks.					
ordadoro rano	☐ Verdadero ☐ Falso					

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H_{\text{elio}}}_{\text{Helio}}$	$\sum_{\text{Neón}}^{10} \overset{20.180}{\text{N}}$	$\overset{18}{A}\overset{39.948}{ ext{r}}$	$\overset{36}{K}\overset{83.8}{r}$	$\overset{54}{X}^{131.29}$	\mathop{Radon}_{Radon}	118 294 Oganesón	71 174.97 Luterio	103 262 Lawrencio	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\overset{35}{\mathrm{Bromo}}$	53 126.9 Yodo	$\overset{85}{\mathrm{At}}^{210}$	117 292 Teneso	$\sum_{\text{Yterbio}}^{70} \sum_{\text{173.04}}^{173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	16 32.065 S Azúfre	$\overset{34}{\mathrm{Se}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	\prod_{Tulio}^{69}	101 258 Mendelevio	
	15 VA	$\sum_{\text{Nitrógeno}}^{7} 14.007$	$\sum_{Fósforo}^{15}$	$\overset{33}{A}_{\mathrm{S}}^{74.922}$ Arsénico	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$	$\overset{83}{\mathrm{Bismuto}}$	${\displaystyle \sum_{\text{Moscovio}}^{115}}$	$\stackrel{68}{\overset{167.26}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$	100 257 Fmio	
	14 IVA	6 12.011 Carbono	$\overset{14}{\mathrm{Silicio}}$	${\overset{32}{G}}^{72.64}$	$\mathop{\mathrm{Sn}}_{\mathrm{Esta\~no}}^{118.71}$	$\overset{82}{P}\overset{207.2}{b}$	114 289 Flerovio	$\overset{67}{H}\overset{164.93}{\text{Omio}}$	99 252 Einsteinio	
	13 IIIA	5 10.811 Boro	$\overset{13}{A}\overset{26.982}{\text{Aluminio}}$	${\overset{31}{G}}^{69.723}_{a}$	\prod_{Indo}^{49}	81 204.38 Talio	Nihonio	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\overset{98}{C}\overset{251}{f}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{\text{Cadmio}}$	$\underset{\text{Mercurio}}{\overset{80}{-200.59}}$	$\bigcup_{\text{Copernicio}}^{112} \bigcup_{\text{Spernicio}}^{285}$	$\prod_{\text{Terbio}}^{\textbf{65}}$	97 247 BK Berkelio	
			11 IB	$\overset{29}{\overset{63.546}{C}}$	$^{47}_{ m Ag}$	$\overset{79}{\mathbf{Au}}_{\text{Oro}}^{196.97}$	${\rm Rg}_{\rm S}$	$\overset{64}{Gd}_{ddolinio}^{157.25}$	96 247 Curio	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{\text{58.693}}^{58.693}$	$\overset{\textbf{46}}{P}\overset{\textbf{106.42}}{d}$	\Pr^{78}_{P1}	$\bigcup_{\text{Darmstadtio}}^{281}$	$\frac{63}{\mathbf{E}\mathbf{u}^{opio}}$	95 243 Am	
			9 VIIIB	${\displaystyle \mathop{Cobalto}_{\text{Cobalto}}}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\frac{77}{\text{L}}\frac{192.22}{\text{L}}$ Iridio	$\overset{109}{\text{Meitnerio}}$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}_{\text{Plutonio}}^{244}$	
		SO	8 VIIIB	$\overset{26}{F}\overset{55.845}{\bullet}$	$\mathop{Ruthenio}^{44}$	$\bigcup_{\text{Osmio}}^{76} S$	$\underset{Hassio}{\overset{2777}{\mathbf{Hassio}}}$	$\Pr^{61}_{\text{Prometio}}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{\mathbf{Mn}}\overset{54.938}{\mathbf{m}}$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Renio}_{\text{Renio}}$	$\underset{\text{Bohrio}}{\underline{\text{107}}}$	$\sum_{Neodimio}^{60} 144.24$	92 238.03 Uranio	
	Simbolo	Negro:] Gris: S	6 VIB	$\overset{24}{\underset{\text{Cromo}}{\bigcap}}$	$\sum_{\text{Molybdeno}}^{42}$	$\sum_{\text{Tungstenio}}^{74}$	106 266 SS Seaborgio	$\sum_{\mathbf{r}=\mathbf{r}}^{59} 140.91$	${\rm Pa}^{23.04}$	
	Sin	\mathbf{z} \mathbf{S} Símbolo	5 VB	$\sum_{Vanadio}^{23} 50.942$	$\sum_{\text{Niobio}}^{41} \stackrel{92.906}{\text{N}}$	$\prod_{Tantalo}^{73} \mathbf{\mathring{a}}$	$\sum_{\text{Dubnio}}^{105} \sum_{\text{262}}^{262}$	$\overset{58}{\overset{140.12}{\overset{60}{\mathbf{60$	90 232.04 Th	
			4 VB	$\prod_{Titanio}^{22} 47.867$	$\sum_{\rm Circonio}^{40~91.224}$	$\overset{72}{\text{Hafhio}}$	$\underset{\text{Rutherfordio}}{\text{Rutherfordio}}$	$\overset{57}{La}_{lantánido}^{138.91}$	$\overset{89}{Ac}_{\overset{227}{\cdot}}$	
			3 IIIA	$\overset{21}{S}^{44.956}_{C}$ Escandio	$\sum_{\rm ltrio}^{39} 88.906$	57-71 *	.: 89-103 .: * *	s -terreos	, a construction of the co	nidos
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Magnesio}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{S}\overset{87.62}{\text{r}}$	$\overset{56}{B}\overset{137.33}{a}$	$\mathop{Radio}^{88}_{226}$	Alcalino Alcalino	le o obles	los/Actí
1 IA	1 1.0079 Hidrógeno	3 6.941 1 Litio	$\overset{_{11}}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 \ 39.098}$	$\mathop{Rb}\limits^{37-85.468}_{\text{Rubidio}}$	$\mathbf{\hat{c}}_{\mathbf{S}}$	$\frac{87}{\text{Francio}}$	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno Gases Nobles	Lantánidos/Actínidos
	Н	2	8	4	Ŋ	9	2			