- **Ex 1** Soient $(a, b) \in \mathbb{R}^2$. On a :
 - a) $ab \neq 0 \iff [a \neq 0 \text{ et } b \neq 0] : a \text{ et } b \text{ sont "tous non nuls"}.$
 - b) $(a,b) \neq (0,0) \iff [a \neq 0 \text{ ou } b \neq 0] : a \text{ et } b \text{ sont "non tous nuls"}.$
- Ex 2 On quantifie la proposition logique :

$$\forall (a, c, b, d) \in \mathbb{R}^2 \times \mathbb{R}^{*2}, \ \left(\frac{a}{b} = \frac{c}{d} \Leftrightarrow \exists k \in \mathbb{R} \ / \ \left\{ \begin{array}{l} a = kb \\ c = kd \end{array} \right. \right)$$

Ex 3 Soit P(x, y, z): x = y = z. Cette proposition équivant à la double égalité x = y et y = z. Sa négation est donc

$$x \neq y$$
 ou $y \neq z$

- a) $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x+y^2=0 \text{ est fausse car pour } x=1 \text{ et } y=1, \text{ on n'a pas } x+y^2=0.$
- b) $\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x+y^2=0 \text{ est } \mathbf{vraie} : \text{il suffit de choisir } x=0 \text{ et } y=0 \text{ et on a bien } x+y^2=0.$
- c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y^2 = 0$ est **fausse**: pour x = 1, on ne peut pas trouver $y \in \mathbb{R}$ tel que $x + y^2 = 0$.
- d) $\forall y \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ x+y^2=0 \ \text{est} \ \text{vraie} : \text{pour} \ y \in \mathbb{R} \ \text{donn\'e, le r\'eel} \ x=-y^2 \ \text{v\'erifi bien} \ x+y^2=0.$
- e) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x+y^2=0 \text{ est } \mathbf{fausse}: \text{ si elle } \mathsf{\acute{e}tait} \text{ vraie, on aurait un r\'{e}el } x \text{ tel } \mathsf{que} \ \forall y \in \mathbb{R}, \ y^2=-x.$ En particulier pour y=0 on aurait x=0 et pour y=1 on aurait x=-1 **contradiction**.
- Ex 4 Traductions et négations :
 - a) Il existe un réel strictement positif dont le cube est strictement négatif : $\exists x \in \mathbb{R}_+^* / x^3 < 0$. Négation : $\forall x \in \mathbb{R}_+^*, \ x^3 \geqslant 0$.
 - b) Dans \mathbb{R} , l'ensemble des solutions de l'équation $x^3=2$ est inclus dans $]1,2[:\{x\in\mathbb{R}\ /\ x^3=2\}\subset]1,2[$ On peut ausi l'écrire de manière plus élémentaire : $\forall x\in\mathbb{R},\ x^3=2\Rightarrow 1< x<2.$ Négation : $\exists x\in\mathbb{R}\ /\ x^3=2$ et $(x\geqslant 2 \text{ ou } x\leqslant 1)$, soit encore $\exists x\in[-\infty,1]\cup[2,+\infty[\ /\ x^3=2.$
 - c) Tout entier naturel est pair ou impair : $\forall n \in \mathbb{N}, \ (\exists k \in \mathbb{N} \ / \ n = 2k) \text{ ou } (\exists k \in \mathbb{N} \ / \ n = 2k+1)$. Négation : $\exists n \in \mathbb{N}, \ (\forall k \in \mathbb{N} \ / \ n \neq 2k) \text{ et } (\forall k \in \mathbb{N} \ / \ n \neq 2k+1)$.
- Ex 5 Soient E un ensemble et P(x) un prédicat de la variable $x \in E$. La proposition $\exists ! x \in E \ / \ P(x)$ équivaut à $[\exists x \in E \ / \ P(x)]$ et $[\forall (x,x') \in E^2, \ (P(x) \text{ et } P(x')) \Rightarrow x = x']$ (la deuxième partie d la proposition exprime l'unicité P(x) et P(x') ne peuvent pas être vraies simultanément si x et x' sont distincts). On a ainsi la négation :

$$\boxed{\left[\forall x \in E \ / \ \overline{P\left(x\right)}\right] \text{ ou } \left[\exists \left(x, x'\right) \in E^2 \ / \ x \neq x' \text{ et } \left(P\left(x\right) \text{ et } P\left(x'\right)\right)\right]}$$

(autrement dit, soit P(x) n'est jamais vraie, soit il est vrai pour au moins deux valeurs de x).

- **Ex 6** Soient E un ensemble, P(x) et Q(x) deux prédicats de la variable $x \in E$.
 - a) La proposition $\exists x \in E \ / \ P(x)$ et Q(x) n'est pas équivalente à $\exists x \in E \ / \ P(x)$ et $\exists x \in E \ / \ Q(x)$. En effet si $E = \mathbb{R}$ et par exemple P(x) : x > 1 et Q(x) : x < -1, alors :
 - * $\exists x \in E / P(x)$ et $\exists x \in E / Q(x)$ est vraie car par exemple P(2) est vraie et Q(-2) est vraie
 - * $\exists x \in E / P(x)$ et Q(x) est fausse car un réel x ne peut pas vérifier à la fois x < -1 et x > 1.
 - b) La proposition $\forall x \in E, \ P\left(x\right)$ ou $Q\left(x\right)$ n'est pas non plus équivalente à $\forall x \in E, \ P\left(x\right)$ ou $\forall x \in E, \ Q\left(x\right)$. En effet si $E = \mathbb{R}$ et par exemple $P\left(x\right): x > 0$ et $Q\left(x\right): x \leqslant 0$, alors :
 - * $\forall x \in E, P(x)$ ou Q(x) est vraie puisqu'un réel est soit positif soit négatif ou nul,
 - * $\forall x \in E, P(x)$ ou $\forall x \in E, Q(x)$ est fausse car tout réel n'est pas positif et tout réel n'est pas négatif.

PCSI 1 Thiers 2019/2020

Ex 7 Soient P, Q, R trois assertions. On a par définition de l'implication, et en utilisant les règles de calculs sur les propositions logiques :

$$\begin{split} [P\Rightarrow (Q\Rightarrow R)] &\Leftrightarrow & \left[\overline{P} \text{ ou } (Q\Rightarrow R)\right] \\ &\Leftrightarrow & \left[\overline{P} \text{ ou } \left(\overline{Q} \text{ ou } R\right)\right] \\ &\Leftrightarrow & \left[\left(\overline{P} \text{ ou } \overline{Q}\right) \text{ ou } R\right] \\ &\Leftrightarrow & \left[\overline{\left(P \text{ et } Q\right)} \text{ ou } R\right] \\ &\Leftrightarrow & \left[\left(P \text{ et } Q\right)\Rightarrow R\right] \end{split}$$

ainsi

$$P\Rightarrow (Q\Rightarrow R)$$
 est équivalente à $(P$ et $Q)\Rightarrow R$

Ex 8 Soit $f: I \to \mathbb{R}$ une fonction.

- a) "f est croissante sur I" se traduit symboliquement par : $\forall (x,y) \in I^2, \ x \leq y \Rightarrow f(x) \leq f(y)$. Sa négation est donc : $\exists (x,y) \in I^2 / x \leq y$ et f(x) > f(y).
- b) "si f s'annule en un point de I, alors elle est nulle sur I" se traduit symboliquement par :

$$(\exists x \in I / f(x) = 0) \Rightarrow (\forall x \in I, f(x) = 0)$$

Sa contraposée est : $(\exists x \in I / f(x) \neq 0) \Rightarrow (\forall x \in I, f(x) \neq 0)$

Sa négation est : $(\exists x \in I / f(x) = 0)$ et $(\exists x \in I / f(x) \neq 0)$

- c) Soit $P: (\forall x \in I, f(x) \ge 0) \Longrightarrow (\exists x \in I / f(x) \ne 0)$
 - Sa négation est \overline{P} : $(\forall x \in I, f(x) \ge 0)$ et $(\forall x \in I / f(x) = 0)$, autrement dit $\forall x \in I / f(x) = 0$

Sa contraposée est $(\forall x \in I / f(x) = 0) \Rightarrow (\exists x \in I, f(x) < 0)$: elle est équivalente à P.

d) Soit $Q: \forall (x,y) \in I^2, f(x) = f(y) \Rightarrow x = y.$

Sa contraposée est $\forall (x,y) \in I^2, x \neq y \Rightarrow f(x) \neq f(y)$. Elle équivaut à Q.

Sa négation est \overline{Q} : $\exists (x,y) \in I^2 / f(x) = f(y)$ et $x \neq y$.

Ex 9 Soient x, y, z trois réels parmi lesquels il y a 0 et deux réels non nuls de signe contraire. On suppose les implications

(i)
$$x = 0 \Rightarrow y > 0$$
 (ii) $x > 0 \Rightarrow y < 0$ (iii) $y \neq 0 \Rightarrow z > 0$

On peut faire une disjonction de cas sur le signe de y:

- Si y > 0, alors (iii) donne z > 0 ce qui contredit que deux réls non nuls de $\{x, y, z\}$ sont de signe contraire.
- Si y < 0, alors la contraposée de (i) donne $x \neq 0$. Mais alors z = 0 (un des réels doit être nul). La contraposée de (iii) entraine alors y = 0 contradiction.

Finalement y = 0. Mais alors x < 0 (contraposée de (ii)) et donc z > 0. ainsi

$$x < y = 0 < z$$