# Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

## ОТЧЁТ по лабораторной работе № 6

## ИЗУЧЕНИЕ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НА МАЯТНИКЕ ОБЕРБЕКА

| Выполнил студент группы      |
|------------------------------|
|                              |
|                              |
|                              |
| Преподаватель кафедры физики |
| Отметка о защите             |

### Лабораторная работа №6

#### ИЗУЧЕНИЕ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НА МАЯТНИКЕ ОБЕРБЕКА

Цель работы – проверить основной закон динамики вращательного движения.

Приборы и принадлежности: маятник Обербека, грузы, секундомер, штангенциркуль.

#### Описание экспериментальной установки

Для выполнения работы используется маятник Обербека, который схема-



тически показан на рис. 1. Он представляет собой крестовину, состоящую из четырёх стержней, укрепленных на втулке под прямым углом. На ту же втулку насажены два шкива различных радиусов ( $r_1$  $r_2$ ). На стержнях находятся грузы массой  $m_1$  каждый. Ось закреплена в подшипниках так, что вся система может вращаться вокруг горизонтальной оси. Передвигая грузы по стержням, можно изменять момент инерции J маятника. На шкивы наматывается нить, к которой привязана платформа с грузом известной массы т. Нить натягивается и создаёт вращающий момент, который можно изменять, перематывая нить со шкива на шкив.

#### Общие положения

Вращение твердого тела постоянной массы вокруг неподвижной оси описывается основным законом динамики вращательного движения

$$M = J\varepsilon, \tag{1}$$

где M – момент внешних сил, действующих на тело;

J — момент инерции тела;

 $\varepsilon$  – угловое ускорение.

Момент инерции  $J_1$  всей вращающейся системы относительно оси вращения складывается из момента инерции крестовины и момента инерции грузов:

$$J_1 = J_0 + 4m_1 R_1^2 \,, \tag{2}$$

где  $J_0$  – момент инерции крестовины без грузов относительно оси вращения;

 $R_1$  – расстояние от оси вращения до середины груза;

 $m_1$  — масса груза на стержне.

При изменении расстояния R от оси вращения до грузов  $m_1$ , момент инерции системы изменится и станет равным:

$$J_2 = J_0 + 4m_1 R_2^2 \tag{3}$$

Вычтем одно выражение из другого

$$J_2 - J_1 = 4m_1(R_2^2 - R_1^2) (4)$$

Правая часть равенства может быть вычислена по данным  $m_1$ ,  $R_1$ ,  $R_2$ 

Значения  $J_1$  и  $J_2$  определим с помощью основного закона динамики вращательного движения (1). Вращающий момент M создаётся силой натяжения нити T. Он равен произведению силы натяжения нити на плечо. Плечом является радиус шкива.

Силу натяжения нити определим из второго закона Ньютона. На груз массой m действуют две силы: сила тяжести mg и сила натяжения нити T. Под действием этих сил он движется вниз равноускоренно с ускорением a. Запишем второй закон Ньютона в проекции на направление движения:

$$mg - T = ma$$
.

отсюда

$$T = m(g - a) \tag{5}$$

Вращающий момент:

$$M = Tr = m(g - a)r. (6)$$

Подставив выражение (6) в формулу (1), найдем момент инерции вращающейся системы:

$$J = \frac{M}{\varepsilon} = \frac{m \cdot (g - a) \cdot r}{\varepsilon} \tag{7}$$

Угловое и линейное ускорения связаны соотношением:

$$a = \varepsilon r$$
. (8)

Груз т движется равноускоренно, поэтому:

$$h=rac{at^2}{2}$$
 . Отсюда  $a=rac{2h}{t^2},$  тогда  $\epsilon=rac{2h}{t^2r}.$ 

Подставляя значения a и  $\varepsilon$  в выражение (7), получим:

$$J = mr^2 \left( \frac{gt^2}{2h} - 1 \right) \tag{9}$$

По формуле (9) можно вычислить  $J_1$  и  $J_2$ , затем разность моментов инерции и проверить равенство (4), выполнение которого подтверждает справедливость основного закона динамики вращательного движения.

#### Подготовка к работе

(ответы представить в письменном виде)

- 1. Какова цель работы?
- 2. Какие величины измеряются непосредственно?
- 3. Запишите формулу, по которой рассчитывается момент инерции системы в данной работе. Поясните смысл обозначений.

#### Выполнение работы

- 1. Измерить штангенциркулем диаметр d большого шкива.
- 2. Измерить высоту h падения груза m от нуля линейки до пола.
- 3. Закрепить грузы  $m_1$  посередине стержней так, чтобы система находилась в состоянии безразличного равновесия. Записать значение массы  $m_1$  груза на спице, указанное на установке.
- 4. Измерить расстояние  $R_1$  от оси вращения до середины груза  $m_1$ .
- 5. Записать значение массы m груза, который крепится к нити.
- 6. Прикрепить к свободному концу нити груз массы *m* и намотать нить на большой шкив так, чтобы нижний торец груза установился напротив нулевой отметки линейки.
- 7. Отпустить груз m, одновременно пустив в ход электрический секундомер, и измерить время t падения груза.
- 8. Опыт повторить три раза. Найти среднее значение времени падения груза.
- 9. Измерить штангенциркулем диаметр d малого шкива.
- 10. Прикрепить к свободному концу нити груз массы *m* и намотать нить на малый шкив так, чтобы нижний торец груза установился напротив нулевой отметки линейки. Провести измерения согласно п. 7-8.
- 11. Расположить грузы  $m_1$  на концах стержней. Измерить расстояние  $R_2$  от оси вращения до середины груза  $m_1$ .
- 12. Выполнить измерения согласно п. 6, 7, 8, наматывая нить сначала на большой шкив, а затем на малый.

### Оформление отчёта

#### 1. Расчёты

- 1. Вычислить моменты инерции  $J_1$  и  $J_2$  по формуле (9). Найти среднее значение момента инерции для каждого положения грузов.
- 2. Рассчитать разность моментов инерции (левая часть формулы (4)).
- 3. Рассчитать правую часть формулы (4), используя измеренные значения  $R_1$ ,  $R_2$  и известное значение  $m_1$ .
- 4. Сравнить результаты, полученные в п. 2 и п. 3.

### 2. Защита работы

(ответы представить в письменном виде)

- 1. Сформулируйте основной закон динамики вращательного движения. Запишите формулу.
- 2. Дайте определение момента силы. Укажите единицу измерения. Как определяется направление момента силы?
- 3. Дайте определение момента инерции твердого тела. Укажите единицу измерения.
- 4. Какой вывод можно сделать из сравнения результатов, полученных в пунктах 2 и 3?

# ПРОТОКОЛ измерений к лабораторной работе №6

| Выполнил(а)                         | Группа  |  |  |  |
|-------------------------------------|---------|--|--|--|
|                                     |         |  |  |  |
| Масса грузов, закреплённых на спице | $m_1$ = |  |  |  |
| Масса падающего груза               | m=      |  |  |  |
| Высота падения груза                | h=      |  |  |  |
| Диаметр большого шкива              | d=      |  |  |  |
| Диаметр малого шкива                | d=      |  |  |  |

| $N_{\underline{0}}$ | r, | R, | $t_1$ , | $t_2$ , | $t_3$ , | $t_{\rm cp}$ , | J,    | Примечание                    |
|---------------------|----|----|---------|---------|---------|----------------|-------|-------------------------------|
| $\Pi/\Pi$           | MM | CM | c       | c       | c       | c              | кг∙м² |                               |
| 1                   |    |    |         |         |         |                |       | Грузы нахо-<br>дятся на сере- |
| 2                   |    |    |         |         |         |                |       | дине спиц                     |
| среднее             |    |    |         |         |         |                |       |                               |
| 3                   |    |    |         |         |         |                |       | Грузы нахо-<br>дятся на кон-  |
| 4                   |    |    |         |         |         |                |       | цах спиц                      |
| среднее             |    |    |         |         |         |                |       |                               |

| Дата | Подпись преподавателя |
|------|-----------------------|
|------|-----------------------|