Functional Principal Component Analysis for Manifold Data

February 6, 2019

Types of manifolds or manifolds with additional structures

- Topological Manifold: spheres are same as cubes.
- Differential Manifold: spheres and ellipsoids are same.
- Riemannian Manifold: equipped with Riemannian metric for defining angles and distances.

Example: manifolds

Example: n-sphere

The n-sphere \mathbb{S}^n is an n-dimensional manifold that can be embedded in Euclidean (n + 1)-space.

$$\mathbb{S}^n = \{ x \in \mathbb{R}^{n+1} : ||x|| = r \}$$

A pair of points on the real line is 0-sphere.

A circle on \mathbb{R}^2 is 1-sphere.

Surface of a ball is 2-sphere.

Manifolds

Importance

Manifolds locally resemble Euclidean space near each point, i.e., point of n-manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n.

Example 1

Example 2

Geodesics

Geodesics: generalization of straight lines

- Like straight lines in Euclidean spaces, we need a 'straight line' to quantify distance.
- Geodesics are the curves on a smooth manifold that locally yield the shortest distance between two points.

Geodesics: example

-10

 $\begin{array}{c} 20 \\ 15 \\ 10 \\ x_2 \end{array}$

Introduction

0000000000000000

- A tangent space T_pM is a real vector space containing all vectors passing a point p on a n-manifold M.
- T_pM is also n-dimensional and same as the manifold M.
- Tagent space provides the best linear approximation to the manifold around p (Taylor expansion).

Tangent space: Example

Tangent space: Linear approximation

Assume we have a 2-dimensional manifold parametrized as z = f(x, y). Taking the Taylor expansion

$$z = f(x, y) \approx f(p) + \nabla f(p)\dot{(}(x, y) - p) + \cdots$$

which gives the tangent space or plane.

Exponential map

Let $\mathcal{D}(p)$ be an open subset of $\mathcal{T}_p M$ defined by

$$\mathcal{D}(p) = \{ v \in T_p M | \gamma_v(1) \text{ is defined} \}$$

where γ_{ν} is the unique geodesic with $\gamma_{\nu}(0) = p$ and $\gamma'_{\nu}(0) = \nu$.

Exponential map

$$\exp_p(v): \mathcal{D}(p) \to M$$
, given by $\exp_p(v) = \gamma_v(1)$

Exponential map

- Local parametrization of the manifold M.
- A map from the subspace of T_pM to M.

Radius of injectivity

Injectivity radius inj_p

Let M be a smooth manifold. $\forall p \in M$, the injectivity radius of M at p is the supremum such that \exp_p is a diffeomorphism on the open ball $B(0,r) \subseteq T_pM$.

Diffeomorphism means that there is a smooth inverse function of \exp_p which is the logarithm map \log_p .

example

Sphere example

The geodesic distance between any points p_1 and p_2 on a sphere is the great-circle distance,

$$d_M(p_1, p_2) = \cos^{-1}(p_1^T p_2)$$

The exponential map given a point p on the manifold is

$$\exp_p(\mathbf{v}) = \cos(||\mathbf{v}||_E)p + \sin(||\mathbf{v}||_E)\frac{\mathbf{v}}{||\mathbf{v}||_e}$$

The logrithm map $\log_p: M\setminus \{-p\} \to T_pM$ is the inverse of the exponential map

$$\log_p(q) = rac{q - (p^Tq)p}{||q - (p^Tq)p||}d_M(p,q)$$

Notations

Let \mathcal{M} be a d-dimensional complete Riemannian manifold embedded in a Euclidean space \mathbb{R}^{d_0} for $d \leq d_0$. \mathcal{X} denotes the sample space of \mathcal{M} -valued function where

$$\mathcal{X} = \{x : \mathcal{T} \to \mathcal{M} | x \in \mathcal{C}(\mathcal{T})\}$$

for some compact interval $C(\mathcal{T}) \subset \mathbb{R}$.

Frechet mean

Like variables in Euclidean space, we need to define the mean or the expectation for the \mathcal{M} -valued function X(t). The Frechet mean is introduced as the global minimizer of the aggregate energy function or the sum of squared distance for each $t \in \mathcal{T}$. That is,

$$M(p,t) = \sum_{j=1}^J d_{\mathcal{M}}^2(X_j(t),p)$$
 and $\mu_{\mathcal{M}}(t) = \underset{p \in \mathcal{M}}{\operatorname{argmin}} M(p,t)$

Idea of RFPCA

The idea of RFPCA is to represent the variation of the inifite dimensional object X around the mean function $\mu_{\mathcal{M}}$ in a lower dimensional submanifold.

Basis expansion

The K-dimensional submanifold is defined in the following way

- Given a system of K orthonomral basis functions $\psi_k(t) \in T_{\mu_{\mathcal{M}(t)}}$.
- The submanifold

$$\mathcal{M}_{\mathcal{K}}(\Psi_{\mathcal{K}}) := \{x \in \mathcal{X}, x(t) = \exp_{\mu_{M}(t)}(\sum_{k=1}^{K} a_{k}\psi_{k}(t)) | t \in \mathcal{T}, a_{k} \in \mathbb{R}\}$$

The best K-dimensional approximation to X

Let $\Pi(x, \mathcal{M}_K)$ be the projection of $x \in \mathcal{X}$ on \mathcal{M}_K which is defined as

$$\Pi(x, \mathcal{M}_K) := \underset{y \in \mathcal{M}_K}{\operatorname{argmin}} \int_{\mathcal{T}} d_{\mathcal{M}}(y(t), x(t))^2 dt$$

The best K-dimensional approximation to X is then find a submanifold \mathcal{M}_K that minimizes

$$F_{\mathcal{S}}(\mathcal{M}_{\mathcal{K}}) = E \int_{\mathcal{T}} d_{\mathcal{M}}(X(t), \Pi(X, \mathcal{M}_{\mathcal{K}})(t))^2 dt$$

where each manifold is generated by K basis functions.

Logarith mapping

Instead of directly optimizing $F_S(\mathcal{M}_K)$ over a family of manifolds, the objective function is modifed by invoking tangent space approximation. Recalling injectivity radius and exponential map with its inverse logarithm map,

$$V(t) = log_{\mu_{\mathcal{M}}(t)}(X(t))$$

is well-defined for all $t \in \mathcal{T}$ as long as X(t) stays within $\operatorname{inj}_{\mu_{\mathcal{M}}(t)}$.

Optimization

A practical and tractable optimality criterion is therefore defined as

$$F_V(\mathcal{V}_K) = E(||V - \Pi(V, \mathcal{V}_K)||^2)$$

over all K-dimensional linear subspaces

$$\mathcal{V}_{\mathcal{K}}(\psi_1,...,\psi_{\mathcal{K}}) = \{\sum_{k=1}^{\mathcal{K}} \mathsf{a}_k \psi_k(t) | \mathsf{a}_k \in \mathbb{R} \}$$

for $\psi_k \in \mathbb{H}$ and $\psi_k(t) \in T_{\mu_{\mathcal{M}(t)}}$. This is equivalent to a multivartiate functional principal component analysis.

Covariance G(t,s) ov V(t)

Let G(t,s) be the covariance function of V(t) in L^2 sense. Then,

$$G(t, s) = cov(V(t), V(s)) = E(V(t)V(s)^{T})$$

since the log-mapped data $V(t) = log_{\mu_{\mathcal{M}}(t)}(X(t))$ is zero at the intrinsic mean of data on manifold.

Karhunen-Loeve decomposition of V(t)

Let

$$G(t,s) = \sum_{k=1}^{\infty} \lambda_k \phi_k(t) \phi_k(s)^T$$

where ϕ_k 's are the orthonormal vector-valued eigenfucntions with eigenvalues λ_k . Then, the Karhunen-Loeve decomposition of V(t) is

$$V(t) = \sum_{k=1}^{\infty} \xi_k \phi_k(t)$$

where $\xi_k = \int_{\mathcal{T}} V(t)\phi_k(t)dt$ is the k-th RFPC score.

Best K-dimensional approximation

The Best K-dimensional approximation to V is V_k that minimizes

$$E(||V - \Pi(V, \mathcal{V}_K)||^2)$$

Choosing a suitable K

When K = 0, $V_0(t) = 0$ and $X_0(t) = \mu_{\mathcal{M}}(t)$. Define U_K to be the residual variance as

$$U_K = E \int_{\mathcal{T}} d_{\mathcal{M}}(X(t), X_K(t))^2 dt$$

The fraction of varinance explained by the first K components as

$$\mathsf{FVE}_{K} = \frac{U_0 - U_k}{U_0}$$

 K^* is chosen as the smallest K with largest FVE.

Estimation I

Given a Riemannian manifold \mathcal{M} with n independent observations $X_1,...,X_n$, which are \mathcal{M} -valued random functions that are distributed as X.

- Sample Frechet mean $\hat{\mu}_{\mathcal{M}}(t)$ is obtained by minimizing $M_n(p,t) = \frac{1}{n} \sum_{i=1}^n d_{\mathcal{M}}(X_i(t),p)^2$.
- ullet The log-mapped data V_i : $\hat{V}_i(t) = \log_{\hat{\mu}_{\mathcal{M}}(t)}(X_i(t))$.
- Sample covariance function $\hat{G}(t,s) = \frac{1}{n} \sum_{i=1}^{n} \hat{V}_{i}(t) \hat{V}_{i}(s)$

Estimation II

- Obtain k-th eigenvalue and eigenfunction $(\hat{\lambda}_k, \hat{\phi}_k)$ of \hat{G} .
- Calculate kth RFPC score of each subject $\xi_{ik} = \int_{\mathcal{T}} V_i(t) \phi_k(t) dt$.

Hence, the K-dimensional representation becomes

$$\hat{V}_{iK}(t) = \sum_{k=1}^K \hat{\xi}_{ik} \hat{\phi}_k(t), \hat{X}_{iK}(t) = \exp_{\hat{\mu}_{\mathcal{M}(t)}}(\sum_{k=1}^K \hat{\xi}_{ik} \hat{\phi}_k(t))$$

Example: Vancouver wind data

Finding Frechet mean

$$M(p,t) = \sum_{j=1}^J d_{\mathcal{M}}^2(X_j(t),p)$$
 and $\mu_{\mathcal{M}}(t) = \underset{p \in \mathcal{M}}{\operatorname{argmin}} M(p,t)$

The above can be thought of as a function of angles, and we can develope a naive gradient descent to search for the minimizer given the uniqueness in 1-sphere case.

$$p^{(i+1)} = p^{(i)} - \frac{dM(p,t)}{dp^{(i)}}$$

Go to R...

Thank You