

IPv4 Adressering

Hoofdstuk 3

Inleiding

IPv4

IPv4 – Unicast / Multicast / Broadcast

IPv4 – Public en Private Adressen

IPv4 – Speciale Adressen

IPv4 – Legacy Classfull Addressing

Testing

Inleiding

- Internet Protocol versie 4
- Een IP-adres = logisch netwerkadres, toebehorend aan een host die is aangesloten op het netwerk
 - ⇒ Identificatie en plaatsbepaling voor routing van pakketten naar host toe
- Adres heeft een subnetmask nodig

- Versie die huidig het meest voorkomt
- Bestaat uit 4 octetten (= 32 bits)
- Bestaat uit "Network portion" en "Host portion"
 - → Worden bepaald door de subnetmask
- P-adressen worden beheerd en uitgedeeld door de RIR's (= Regional Internet Registries) van desbetreffende regio

- RIR's (= Regional Internet Registries) van regio's:
 - ✓ ARIN = Amercan Registry for Internet Numbers → Noord-Amerika
 - ✓ LACNIC = Latin-American and Carribean IP Address Registry → Zuid-Amerika
 - ✓ RIPE NCC = Réseaux IP Europeans → Europa, Midden-Oosten, Centraal-Azië
 - ✓ APNIC = Asia Pacific Network Information Centre → Azië, Pacific Regio, Australië
 - ✓ AfriNIC = African Network Information Centre → Afrika

"NETWORK PORTION" en "HOST PORTION"

- Bits in "Network portion" zijn voor alle devices in het netwerk hetzelfde
- Bits in "Host portion" zijn uniek in de netwerkomgeving
- ⇒ Elk toestel kan gevonden worden in eigen netwerk of naar een ander netwerk toe

SUBNETMASK

- Bepaalt welk deel van IP-adres "Network portion" of "Host portion" is
 - ✓ Enen in subnetmask identificeren "Network portion"
 - ✓ Nullen in subnetmask identificeren "Host portion"
- Om "Network portion" en "Host portion" te vergelijken moeten we bit per bit van links naar rechts kijken

LOGICAL AND OPERATION

- Te vergelijken met binair optellen
- Gebruiken we om onze host bits te vinden
 - $\sqrt{1}$ AND 1 = 1
 - $\sqrt{0}$ AND 1 = 0
 - $\sqrt{0}$ AND 0 = 0
 - $\sqrt{1}$ AND 0 = 0

192	. 168 .	10	. 10
1100 000	00 . 1010 1000 . (00001010	0000 1010
255	. 255	255	. 0
1111 1111 . 1111 1111 . 1111 1111			0000 0000
192	. 168 .	10	. 0
1100 000	00 . 1010 1000 . (00001010	0000 0000

^{*} Makkelijk te onthouden als je 1 vervangt door TRUE en 0 door FALSE

CIDR

- Verkorte notatie om IP-adres en subnetmask samen weer te geven
- Wordt ook "slash notatie" genoemd
- Overally Voorbeeld: 192.168.10.10 /24
 - ✓ IP: 192.168.10.10
 - ✓ Subnetmask: 255.255.255.0

We tellen aantal binaire 1'en van links naar rechts in subnetmask om slash notatie te bekomen

Met de CIDR kunnen we berekenen hoeveel adressen we krijgen

$$\sqrt{2}$$
 (32-CIDR) – 2 = aantal bruikbare IP's

$$\sqrt{24 \rightarrow 32 - 24} = 8 \rightarrow 2^8 = 256 \rightarrow 256 - 2 = 254$$

http://www.rjsmith.com/CIDR-table.html

"Wouldn't it be more efficient to just find who's complicating equations and ask them to stop?"

UNICAST

 Proces van het verzenden van een pakket door een host naar een andere individuele host

- Wordt gebruikt voor normale host-to-host communicatie
- Unicast packets gebruiken het destination address van het toestel als destination address
- Tijdens encapsulatie gebruikt de source host zijn IPv4-adres als source address
- Kan gerout worden door internetnetwerk

BROADCAST

Proces van het verzenden van een pakket door een host naar alle hosts in het netwerk

Wordt gebruikt om pakketten naar alle hosts in het netwerk te sturen, gebruikmakend van het network broadcast address

Bvb.: 192.168.10.0 /24 neemt het adres 192.168.10.255

Alle hosts in het netwerk ontvangen het pakket

Routers ontvangen wel broadcasts maar sturen ze niet door. Ze **droppen** deze broadcasts !!!

MULTICAST

 Proces van het verzenden van een pakket door een host naar een voorafbepaalde groep van hosts

- Reduceert het netwerkverkeer tegenover broadcast
- IPv4 heeft de adressen 224.0.0.0 tot 239.255.255.255 gereserveerd als multicast range
- 224.0.0.0 tot 224.0.0.255 is gereserveerd voor multicasting op lokaal netwerk

IPv4 - Public en Private Adressen

PRIVATE ADRESSEN

- Pakketten met private adressen kunnen niet gerout worden door het publieke internet
- Gemaakt om de uitgeputte IPv4-range tegen te gaan
- Over LAN's gebruiken we private adressen
 - ⇒ Elk network kan zijn eigen range bepalen die niet uniek hoeft te zijn

IPv4 - Public en Private Adressen

Ranges:

- √ 192.168.0.0 /16
- √ 172.16.0.0 /12
- √ 10.0.0.0 /16

IPv4 - Public en Private Adressen

NAT

- Om van public naar private te gaan en andersom gebruiken we NAT
- Deze NAT-translatie gebeurt op de router die je netwerk met het internet verbindt

IPv4 – Speciale Adressen

Localhost

- 127.0.0.1
- Wordt ook "loopback address" genoemd

Link-Local

- 169.254.0.0 /16
- Wordt ook "APIPA address" genoemd

TEST-Net

- 192.0.2.0 /24
- Gereserveerd voor lessen en voor documentatie

- In 1981 werden IPv4-adressen toegekend aan "Classfull addressing"
- In de jaren '90 (wanneer men NAT introduceerde) werd alles "Classless"
- er zijn in totaal 5 types "Classfull adresses": A, B, C, D en E
- Klanten kregen een netwerkadres toegekend op basis van 1 van de 3 classes A, B of

CLASS A

- ✓ 0.0.0.0 /8 tot 127.0.0.0 /8
- ✓ Ontworpen om extreem grote netwerken te ondersteunen van meer dan 16 miljoen hosts
- ✓ Maximaal aantal netwerken = 128
- ✓ Eerste bit is altijd 0

CLASS B

- ✓ 128.0.0.0/16 tot 191.255.0.0/16
- ✓ Ontworpen voor middelgrote tot grote netwerken
- ✓ Maximaal aantal netwerken = 16384
- ✓ Eerste 2 bits zijn 10

CLASS C

- ✓ 192.0.0.0/24 tot 233.255.255.0/24
- ✓ Ontworpen voor kleine netwerken
- ✓ Maximaal aantal netwerken = 2097152
- ✓ Eerste 3 bits zijn 110

CLASS D

- ✓ 224.0.0.0 tot 239.0.0.0
- ✓ Multicast range block

CLASS E

- ✓ 240.0.0.0 tot 255.0.0.0
- ✓ Experimentele range block

PING

- We kunnen pingen naar andere toestellen en/of gateway om de connectiviteit te testen
- We kunnen het loopback address pingen om de interne communicatie te testen
- Ping gebruikt ICMP echo request en reply

- Ommon messages:
 - √ Host confirmation
 - ✓ Destination host unreachable
 - ✓ Time exceeded
 - √ Route redirection

TRACEROUTE

- Werkt gelijkaardig aan ping maar geeft meer weer
- Geeft de verschillende hops onderweg weer
- Als de traceroute faalt onderweg geeft hij laatst bereikte router weer die reageerde

- \bigcirc RTT (= Round Trip Time)
 - ✓ De tijd die een pakket nodig heeft om de remote host te bereiken en om de reply van de host te ontvangen
 - ✓ Een * wordt gebruikt om een verloren of onbeantwoord pakket weer te geven

- \rightarrow TTL (= <u>Time To Live</u>):
 - ✓ Traceroute gebruikt een TTL field en een hop limit field in de layer 3 headers
 - ✓ Met een TTL van 10 zal het pakket na de 10e hop worden gedropt door de eerstvolgende router
 - ✓ Voorkomt dat een pakket oneindig blijft doorloopen

Practice Makes Perfect,

Lab – werken met IP – subnetmask

Lab – werken met IP – PT subnetmask

Lab – werken met IPv4

Lab – testing

