8. CLASS I METHOD FOR EMPENNAGE SIZING AND DISPOSITION

AND FOR COMPROL SURFACE SIZING AND DISPOSITION

AND FOR CONTROL SURFACE SIZING AND DISPOSITION

The purpose of this chapter is to present a step-by-step method for deciding on the size and disposition of the empennage as well as on the size and disposition of the longitudinal and directional control surfaces. The method is presented as part of Step 8 in p.d. sequence I as outlined in Chapter 2.

Section 8.1 presents the method while Section 8.2 contains three example applications.

8.1 STEP-BY-STEP METHOD FOR EMPENNAGE SIZING AND DISPO-SITION AND FOR CONTROL SURFACE SIZING AND DISPOSITION

Step 8.1: Decide on the overall empennage configuration to be used.

The possibilities which present themselves were already discussed in sub-section 3.3.5. The reader should consult that sub-section and make a decision.

As a general rule, the horizontal tail should <u>not</u> be placed directly in the propeller slipstream. By referring to section 3.1 the reader will observe that many airplanes in fact do have the horizontal tail in the slipstream. The reasons against this arrangement are:

- a.) The slipstream will usually cause the tail to buffet which leads to structure-borne cabin noise. Tail buffet can also lead to early structural fatigue.
- b.) Rapid power increases or decreases called for by the pilot can result in undesirably large trim changes.

These comments also apply to canards. There is not usually a problem with a vertical tail mounted in the slipstream at the aft end of a fuselage.

Note: Single engine propeller driven airplanes usually do have the empennage mounted in the slipstream. This does enhance elevator effectiveness and rudder effectiveness during the take-off roll. On the other hand, it also causes considerable tail buffet during the take-off roll in some airplanes.

Step 8.2: Determine the disposition of the empennage.

Having decided on the overall empennage configuration in Step 8.1 the location of the empennage components on the airplane should now be decided. This amounts to deciding on the empennage moment arms \mathbf{x}_h ,

 x_v and x_c as defined in Figure 8.1. These empennage mo-

ment arms can be determined from the general arrangement drawing of the fuselage which was prepared in Chapter 4.

To keep the airplane weight and drag down as much as possible it is obviously desirable to keep the empennage area as small as possible. This in turn can be achieved by locating the empennage components at as large a moment arm as possible relative to the critical center of gravity (aft c.g. for conventional layouts and forward c.g. for a canard).

Note: in some airplanes (carrier based airplanes are one example) severe restrictions are place on the allowable length, height and width!

Step 8.3: Determine the size of the empennage.

Three types of configurations will be considered:

- a. Conventional configurations
- b. Canard configurations
- c. Three-surface configurations
- d. Butterfly empennage configurations
- a. Conventional configurations.

Sizing the empennage for a conventional configuration means deciding on the magnitude of $\mathbf{S_h}$ and $\mathbf{S_v}$.

For a first 'cut' at the size of either the vertical

or the horizontal tail, the so-called V-method is often used. The tail volume coefficients are defined as follows:

Figure 8.1 Definition of Volume Coefficient Quantities

Page 189

$$\overline{V}_{h} = x_{h}S_{h}/\overline{SC}$$
 (8.1)

$$\overline{V}_{V} = x_{V}S_{V}/Sb$$
 (8.2)

Figure 8.1 defines the various quantities in Equations (8.1) and (8.2).

Tables 8.1 through 8.12 present the values of tail volume coefficients for twelve types of airplanes.

Having determined which type airplane best fits the

airplane being designed, suitable values for \overline{V}_h and \overline{V}_v are selected. This can be done by averaging or by comparison to specific types. In deciding which value for

 $\mathbf{V}_{\mathbf{v}}$ to use, care must be taken that the lateral disposi-

tion of the engines is not too dissimilar. Note that vertical tail sizes are often dictated by the engine-out (i.e. $V_{\rm mc}$) condition. Section 11.3 contains a vertical

tail sizing procedure for V_{mc} .

Having selected the volume coefficients, and having determined the moment arms \mathbf{x}_h and \mathbf{x}_v from the fuselage

arrangement sketches mentioned in Step 8.2, the tail areas can be computed from:

$$S_{h} = \overline{V}_{h} S \overline{C} / x_{h}$$
 (8.3)

$$S_{v} = \overline{V}_{v} Sb/x_{v}$$
 (8.4)

The reader will have noted from the supersonic fighter configurations of Figures 3.25a and 3.27b that twin vertical tails are sometimes used. This is often done to avoid a very large single fin. The lateral placement of these twin verticals is a critical problem because of vortex shedding from the fuselage. These vortices can cause structural fatigue as well as a reduction in tail effectiveness.

b. Canard configurations.

The concept of volume coefficients can in principle be extended to a canard configuration. The problem is

Part II

Chapter 8

Page 190

Table 8.1a) Homebuilt Airplanes: Horizontal Tail Volume and Elevator Data

Туре	Wing Area	Wing	Wing Airfoil	Hor. Tail	s _e /s _h	*h	$\mathbf{\bar{v}_h}$	Elevator Chord
	s	c	root/tip	Area S _h				root/tip
	ft ²	ft	NACA*	ft ²		ft		fr.c _h
PIK-21	76.4	4.50	64212	10.4	0.45	10.1	0.30	0.45
Duruble RD-03C	119	4.30	23018/23012	22,2	0.33	11.3	0.49	.47/.32
PIEL CP-750	118	3.82	23012	23.5	0.51	12.6	0.66	.55/.47
CP-750	104	3.81	NA	22.3	0.50	11.8	0.66	.56/.38
POTTIER	104	3.01	MA					
P-50R	80.7	3.74	23015/23012	13.4	0.52	10.6	0.47	.50/.55
P-70S	77.5	4.10	4415	14.5	0.60	9.68	0.44	0,60
0-0		• •	•					
Aerosport	80.7	3.77	23012	15.4	0.48	10.6	0.54	0.48
Aerocar						_		
Micro-Imp	81.0	3.00	GA(Pc)-1	11.7	0.25	6.27	0.30	.28/.33
Coats								0.46
SA-III	112	4.50	63415	16.5	0.46	10.9	0.36	0.40
Sequoia			. .			40.0	0.59	0.43
300	130	4.37	64,A215/64A210	25.5	0.43	13.2	0.39	0.43
Ord-Hume						11.1	0.43	0.49
OH-4B	125	5.25	RAF48	25.4	0.49	11.1	0.43	0.47
Procter					0.52	12.2	0.52	0.52
Petrel	135	4.54	3415	26.0	0.32	7.64	0.31	0.17
Bede BD-8	96.7	5.0	63,015	19,4	0.14	7.04		
* Unless	otherwis	se indi	cated.				0.467	

Table 8.1b) Homebuilt Airplanes: Vertical Tail Volume, Rudder and Aileron Data

-2E-	Wing Area	Wing Span	Vert. Tail	s _r /s _v	x _v	í <u>A</u> ^Á	Rudder Chord	s _a /s	Ail. Span Loc.	Ail. Chord
	s	b	Area S _V				root/ti	P	in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _▼		fr.b/2	fr.c _w
PIK-21	76.4	17.0	3.49	0.33	10.5	0.028	.24/.49	0.130	0/1.0	0.13
Duruble RD-03C	119	28.7	8, 35	0.30	12.5	0.031	.38/.32	0.063	.63/.93	.22/.24
PIEL CP-750	118	26.4	9.49	0.55	12.9	0.039	.50/.64	0.077	.44/.96	.19/.14
CP-750	104	23.6	7.64	0.50	11.9	0.037	.47/.54	0.092	.42/.91	.22/.18
POTTIER	107	23.0	,,,,	****					:	
P-50R	80.7	20.3	11.3	0.42	10.4	0.072	.34/.61	0.067	60/.98	.24/.22
P-70S	77.5	19.4	4.36	0.67	10.5	0.031	.59/.76	0.082	.52/.88	0.20
0-0				- •						
Aerosport	80.7	21.3	6.86	0.38	10.0	0.040	.34/.44	0.080	.54/.97	0.19
Aerocar										
Micro-Imp	81.0	27.0	7.15	0.31	6.27	0.020	.33/.43	0.140	.07/.95	0.16
Coats						~				
SA-III	112	25.0	7.53	0.44	10.6	0.028	.35/.68	0.130	.55/1.0	0.26
Sequola									< 0.0	
300	130	30.0	16.5	0.31	13.2	0.055	.27/.43	0.085	.60/.95	0.29
Ord-Hume					_				.35/.91	0.20
OH-4B	125	25.0	6.73	0.71	12,5	0.027	.57/1.0	0.110	.33/.91	0.20
Procter								0.097	.62/.98	0.26
Petrel	135	30.0	11.7	0.35	11,4	0.033	.31/.57	0.037	53/.92	
Bede BD-8	96.7	19.3	6.89	0.24	8, 65	0.032	.20/.34	V. U 83	. 33/ . 34	0.22

Table 8.2a) Single Engine Propeller Driven Airplanes: Horizontal Tail Volume and Elevator Data

Type	Wing Area	Wing mgc - c	Wing Airfoil	Hor. Tail Area	s _e /s _h	x _h	$\overline{\mathbf{v}}_{\mathbf{h}}$	Elevator Chord
	S	C	root/tip	$\mathbf{s}_{\mathbf{h}}$				root/tip
CESSNA	ft ²	ft	NACA*	ft ²		ft		fr.c _h
Skywagon 207 Cardinal	174	4,55	2412	44.9	0.45	16.2	0.92	.48/.47
RG Skylane	174	4.79	64A215/64A412	35.0	1.00	14.3	0.60	stabilator
RG PIPER Cherokee	174	4,52	2412	38.8	0.41	14.3	0.71	.47/.39
Lance	175	5.25	65,415	34.6	1.00	16,1	0.61	stabilator
Warrior	170	4.44	65,415	26.5	1.00	13.5	0.48	stabilator
Turbo Sara			_					
SP Bellanca	178	4.71	NA	36.2	1.00	16,2	0.70	stabilator
Skyrocket Grumman	1 83	5.30	63,215	42.6	0.38	13.8	0.61	.36/.42
Tiger Rockwell	140	4.44	NA	37.6	0.28	12.6	0.76	0.39
Commander Trago Mil		4.58	63415	31.2	0.34	10.9	0.49	.33/.44
SAH-1 Scottish	120	3.94	2413.6	22.0	0.46	17.8	0.83	0.46
Bullfinch		3.97	63,615	27.5	0.58	11.9	0,63	0.45

^{*} Unless otherwise indicated.

Table 8.2b) Single Engine Propeller Driven Airplanes: Vertical Tail Volume,
Rudder and Aileron Data

Туре	Wing Area S	Wing Span b	Vert. Tail Area S	s _r /s _v	*v	<u> </u>	Rudder Chord root/ti	s _a /s	Ail. Span Loc. in/out	Ail. Chord in/out
	ft ²	ft	ft ²		ft		fr.c _v	-	fr.b/2	fr.c _w
CESSNA Skywagon 207	174	35,8	16.0	0.44	18.0	0.046	.46/.46	0.10	.61/.94	.25/.22
Cardinal RG Skylane	174	35.5	17.4	0.37	13.5	0.038	.3.5/.43	0.11		.38/.37
RG PIPER Cherokee	174	35,8	18.6	0.37	15.8	0.047	,41/,42	0.11	.47/.96	.17/.24
Lance	175	32.8	13.8	0.31	15.3			0.064	.56/.88	0.20
Warrior	170	35.0	11.5	0.36	13.2	0.026	.29/.52	0.078	.48/.96	.27/.24
Turbo Sar SP Bellanca	atoga 178	36.2	15.9	0.29	15,2	0.038	.23/.58	0.057	.52/.84	0.19
Skyrocket Grumman	183	35.0	18.1	0.33	13,2	0.037	.28/.40	0.076	.60/1.0	.25/.22
Tiger Rockwell	140	31.5	8. 4	0.43	12.6	0.024	.36/.46	0.055	.56/.92	0.24
Commander Trago Mil		32.8	17.0	0.28	11.4	0.039	.30/,46	0.072	.64/.97	.27/.36
SAH-1 Scottish			17.1	0.40	18,6	0.086	.35/.54		.58/.97	.25/.29
Bullfinch	129	33.8	22.7	0.39	11.9	0.062	.35/.56	0.073	.61/.95	.23/.30

Table 8.3a) Twin Engine Propeller Driven Airplanes: Horizontal Tail Volume
and Elevator Data

Туре	Wing Area	Wing	Wing Airfoil	Hor. Tail	s _e /s _b	x h	\bar{v}_h	Elevator Chord
	s	č	root/tip	Area S _h				root/tip
•	ft ²	ft	NACA*	ft ²		ft		$\operatorname{fr.c}_{\operatorname{h}}$
CESSNA			******	54.3	0.41	14. 9	0.95	.42/.39
310R	179	4.77	23018/23009	60.7	0.41	16.5	1.07	.41/.39
402B	196	4.77	23018/23009	60.7	0.27	16.4	0.93	.37/.38
414A	226	4.73	23018/23009			14.9	0.78	.41/.44
T303	189	4.9	23017/23012	48.1	0.42	14.5	0,76	. 42/.44
PIPER				60 B		16.2	0.84	.41/.51
PA-31P	229	5.79	63,415/63,212	68.7	0.44	15.7	0.46	stabilator
PA-44-180T		4.34	NA	23.4	1.0	• .	0.72	0.38
Chieftain	229		63,A415/63,A212		0.38	16.1	0.72	.40/.41
Cheyenne I	229	5.69	63,A415/63,A212	70.5	0.40	15.7	0.68	.35/.44
Cheyen.III BEECH	293	7.33	63,A415/63,A212	61.8	0.39	23.7	0.00	.33/.44
Duchess	181	5.08	63,A415	39.4	0.35	15.6	0.67	0.40
Duke B60	213		23016.5/23010.5		0.27	14.5	0.64	0.39
Lear Fan	210	0.00						
2100	163	4.36	NA	55.0	0.23	13.1	1.01	.36/.31
Rockwell		,,,,						
Comdr 700	200	5.28	NA	55.4	0.37	19.7	1.03	0.37
Piaggio		- •						
P166-DL3	286	6.06	230 series	51.6	0.27	17.2	0.51	.40/.50
EMB-121	296	6.62	NA	62.9	0.43	20.3	0.65	.39/.46
			-					

[•] Unless otherwise indicated

Table 8.3b) Twin Engine Propeller Driven Airplanes: Vertical Tail, Rudder and Aileron Data

Type	Wing	Wing	Vert.	s _r /s _v	×v	\overline{v}_{v}	Rudder	s _a /s	Ail.	Ail.
Type	Area	Span	Tail	L. A	▼	. ▲	Chord	а	Span	Chord
	nica	Dpu	Area						Loc.	
	S	b	S				root/ti	p	in/out	in/out
•		-						•		
	ft ²	ft	ft ²		ft		fr.c.		fr.b/2	fr.c.
							. •			-
CESSNA										201:00
310R	179	36.9	26.1	0.45	15.9	0.063	.48/.41	0.064	.60/.90	.30/.29
402B	196	39.9	37.9	0.47	16.5	0.080	.48/.40	0.058	.64/.91	.29/.27
414A	226	44.1	41.3	0.38	17.0	0.071	.49/.37	0.061	.62/.87	.30/.28
T303	189	39.0	23.2	0.44	16.5	0.052	.46/.39	0.087	.64/.97	31/.30
ConquestI	225	44.1	41.3	0.38	17.1	0.071	.47/.34	0.060	.61/.86	0.29
PIPER	-									
PA-31P	229	40.7	30.1	0.38	17.2	0.056	.37/.40	0.056	.59/.97	.24/.29
PA44-180T		38.6	21.5	0.37	14.4	0.044	.30/.50	0.077	.45/.90	.19/.18
Chieftain		40.7	29.5	0.40	17.3	0.055	.40/.38	0.060	.66/.98	.24/.30
Cheyen. I		42.7	26.5	0.40	16.5	0.045	.37/.42	0.057	.62/.93	.24/.29
		47.7	43.6	0.46	20.8	0.065	0.33	0.046	.66/.94	.23/.26
Cheye. III BEECH	493	4					-			
Duchess	181	38.0	25.6	0.29	14.2	0.053	.34/.42	0.059	.67/.97	0.28
Duke B60	213	39.3	28.8	0.43	17.4	0.060	.44/.46	0.054	.50/.84	.24/.26
	213	33,5	20,0							
Lear Pan 2100	163	39.3	44.4	0.17	14.0	0.097	.32/.34	0.044	.72/.98	.31/.24
	103	39.3	44,7	0.1.		••••	••-••			
Rockwell	000	42.5	39.9	0.38	20.5	0.096	.37/.38	0.087	.58/.99	.28/.24
Condr 700	200	44.5	39,9	0.50	20.5	0.050			• • • • • • •	*
Piaggio		40.0	20 7	0.43	18.3	0.041	.38/.43	0.073	.61/.94	.19/.22
P166-DL3	286	48.2	30.7	0.45	17.8	0.055	.42/.41	0.052	.71/.97	0.22
EMB-121	296	46.4	42.6	0.43	. 11.0	0.033	. 74/. 74	V. V. I		

Table 8.4a) Agricultural Airplanes: Horizontal Tail Volume and Elevator Data

Type	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail Area	s _e /s _h	*h	\overline{v}_h	Elevator Chord
	s	č	root/tip	s _h				root/tip
	ft ²	ft	NACA*	ft ²		ft		fr.c _h
PZL-104	167	4.60	2415	34.0	0.60	17.3	0.77	0.51
PZL-106A	306	6.23	Clark Y	81.4	0.56	18.6	0.79	.30/.50
PZL-M18	431	7.50	4416/4412	70.0	0.49	17.4	0.38	0.49
NDN-6	338	6.71	NA	60.4	0.36	17.4	0.46	0.36
EMB201A	215	5.63	23015	50,3	0.32	13.6	0.56	0.56
Cessna			0.410	40 **	0.41	15.6	0.68	.43/.37
Ag Husky Schweizer	205	4.55	2412	40.7	0.41	13, 0	0.00	.43/.3/
Ag-Cat B	392	4.83	4412	45.0	0.49	12.9	0,31	.38/.60
Aero Boer	0							
260Ag	189	5.29	23012	25.5	0.41	14.1	0.36	0.44
Let 2-37A	256	5.91	33015/43012A	54.1	0.41	16.8	0.60	.44/.42
Hal HA-31	251	6.54	USA35B	45, 6	0.43	17.9	0.50	0.46
IAR-822	2 80	6.90	23014	48.4	0.44	17.4	0.44	0.46
Piper								
PA-36	226	6.22	63,618	43.3	0.48	15.0	0.46	.38/.62

^{*} Unless otherwise indicated.

Table 8.4b) Agricultural Airplanes: Vertical Tail Volume, Rudder and Aileron Data

Туре	Wing Area	Wing Span	Vert. Tail	s _r /s _v	x	$\overline{\mathbf{v}}_{\mathbf{v}}$	Rudder Chord	s _a /s	Ail. Span Loc.	Ail. Chord
	s	b	Area S _V				root/ti	P	in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c
PZL-104	167	36.5	20.3	0.49	16.1	0.054	.41/.50	0.10	.58/.94	0.25
PZL-106A	306	48.5	31.0	0.56	17.1	0.036	.45/.51	0.087	.53/.96	0.22
PZL-M18	431	58.1	28.5	0.65	18.5	0.021	.50/.46	0,11	.59/.92	0.32
NDN-6	338	50.3	91.0	0.54	18.4	0.034	.50/.64	0.047	.73/1.0	,19/,14
EMB201A	215	38.4	13.0	0.52	14.1	0.022	.39/.36	0.08	.57/.90	0.19
Cessna	est to the same	.								
Ag Husky Schweizer	205	41.7	11,6%	0.38	16.2	0.034	.32/.39	0.11	.53/.94	.27/.28
Ag-Cat B	392	42.3	30.0	0.40	13.5	0.024	.25/.31	0.08	.53/.86	0.29
Aero Boer				-•			*****		•==••	
260Aq	~ 189	35.8	9.94	0.39	15.1	0.022	.32/.51	0.11	.52/.94	.20/.19
Let 2-37A		40.1	22.1	0.52	15.3	0.033	.59/.65	0.086	.64/1.0	0.32
HAL HA-31		39.4	20.7	0.45	16.6	0.035	.50/.46	0.092	.55/.89	0.28
IAR-822	280	42.0	22.9	0.69	17.9	0.035	.56/.64	0.11	.63/.98	0.27
Piper	7 00	72,0	**. 7	0.09	21.7	0.000		V. 4.2		
PA-36	226	38.8	19.9	0.49	16 4	U V46	.59/,21	0.096	.52/.92	0.28
TW-00	440	70. F	17.Y	v. 43	10.3	v. v.a		A* 220		v. * 0

Table 8.5a) Business Jets: Horizontal Tail Volume and Elevator Data

Туре	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail	s _e /s _h	*h	$\mathbf{\bar{v}_h}$	Elevator Chord
	s	č	root/tip	Area S _h				root/tip
	ft ²	ft	NACA*	ft ²		ft		fr.c _h
DASSAULT	-BREGUET	2						
Falcon 1		6.71	NA	72.7	0.20	16.5	0.69	.31/.29
Falcon 2		9.33	NA	122	0.22	21.9	0.65	.28/.31
Palcon :		9.31	NA	144	0.23	21.7	0.68	.31/.34
CESSNA C	CITATION							
500	260	6.44	23014/23012	70.6	0.29	17.3	0.73	.32/.23
II	323	6.77	NA	73.1	0.36	19.2	0.64	.37/.35
ĪĪI	312	6.07	NASA Sprcrt	69.6	0.34	26.9	0.99	.39/.42
	BARJET	•						
24	232	7.03	64A109	54.0	0.26	20.2	0.67	.36/.26
35A	253	7.22	64A109	54.0	0.33	21,9	0.65	.33
55	265	6.88	NA	57.8	0.32	23.8	0.76	.31/.35
Canadai	Challer	ger						
CL-601	450	11.3	NA	105	0.28	32,2	0.67	.30/.31
Aerospat	iale		+					
SN-601	237	5.60	NA	58,9	0.42	16.7	0.74	.40/.44
ISRAEL A	IRCRAFT	IND.						
Astra	317	5.62	Sigma 2	77.1	0.25	22.8	0.99	.30/.32
Westwind	308	7.58	64A212	70.1	0.25	19.8	0.59	.29/.26
	Aerospac							
125-700	353	7.52	NA	100	0.48	19.1	0.72	.37/.67
G.AII		13.8	NA	184	0.33	35.6	0.51	0.33
MU Diam.		6,23	NA	57.2	0.37	22.4	0.85	0.37

[•] Unless otherwise indicated.

Table 8.5b) Business Jets: Vertical Tail Volume, Rudder and Aileron Data

Type	Wing	Wing	Vert. Tail	s _r /s _v	x ·	$\bar{v}_{_{f v}}$	Rudder Chord	s _a /s	Ail. Span	Ail. Chord
	Area	Span	Area				CHOIG		Loc.	Chora
	S	b	S.				root/ti	.p	in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c _w
DASSAUL	BREGUE	r								
Falcon 1	10 259	42.9	4 8, 9	0.32	14.4	0.063	.34/.49	0.051	.67/.95	.27/.31
Palcon 2	10 440	53.5	81.8	0.23	18.1	0.063	.25/.39	0.057	.62/.92	0.25
Falcon :	50 495	61.9	106	0.12	18.7	0.064	.21/.32	0.049	.68/.97	0.27
CESSNA (CITATION									
500	260	43.9	50.9	0.36	18.2	0.081	0.36	0.096	.55/.94	.32/.30
II	323	51.7	53.0	0.34	19.36	0.062	.35/.31	0.078	.56/.89	.32/.30
III	312	53,5	70.2	0.30	20.5	0.086	.37/.38	NA*	.70/.86	.21/.17
GATES LI	TARJET						*			
24	232	35.6	38,4	0.17	16.6	0.077	_23/.22	0.050	.63/.89	.25/.23
35A	253	38.1	38.4	0.17	16.6	0.066	.26/.25	0.066	.55/.79	.30/.27
5 5	265	43.8	52.4	0.17	19.2	0.086	.26/.25	0.062	.49/.71	0.30
Can. CL60	1 450	64.3	96.0	0.26	24.9	0.083	.29/.31	0.033	.73/.91	.23/.26
Aerospai										
SN-601	237	42.2	45.4	0.30	15.7	0.071	.36/.32	0.033	.68/.91	.22/.20
ISRAEL A	IRCRAFT	IND.								
Astra	317	52.7	4 8, 3	0.21	22.0	0.064	.33/.32	0.040	.67/.95	.26/.25
Westwind	308	44.8	59.7	0.18	20.1	0.087	.34/.44	0.050	.59/.90	.21/.31
British		ce HS							-	-
125-700	353	47.0	63.8	0.22	15.9	0.061	.31/.37	0.084	.66/1.0	.33/.46
G.A. III	935	77.8	159	0.24	26.9	0.059	0.28	0.038	.66/.86	.24/.27
MU Diam.		43.4	55.9	0.25	17.4	0.093	.33/.28	0.012	.86/.94	.20/.22

[•] Also uses spoilers for lateral control

Table 8.6a) Regional Turboprop Airplanes: Horizontal Tail Volume and Elevator Data

Туре	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail Area	s _e /s _h	*h	$\tilde{\mathbf{v}}_{\mathbf{h}}$	Elevator Chord
	s	c	root/tip	s _h			•	root/tip
	ft ²	ft	NACA*	ft ²		ft		fr.ch
CASA C-21	2-200							
	431	6.68	653-218	135	0.35	24.9	1.17	.49/.53
SHORTS	·							
330	453	6.06	NA	83.6	0.33	27.3	0.83	0.50
360	453	6.06	NA	106	0.39	33.0	1.28	0.48
BEECH								
1900	303	5.35	23018/23015	71.3	0.43	30.3	1.33**	.43/.48
B200	303	5.35 23	018.5/23011.3	68.0	0.28	24.6	0.91	0.42
CESSNA CO		***	I airfoils ca	rry -63	mod.			
I***	225	4.73	23018/23009	62.0	0.33	16.4	0.95	.36/.43
ĪI	254	4.98	23018/23009	63.4	0.29	18.0	0.90	.43/.40
GA Ic	610	8.28	NA	134	0.26	36.5	0.97	.29/.32
GAF N22B	324	5.94	23018	78.0	1.00	20.6	0.83	stabilator
Pokker F2	7-200	-						
	754	8,43	4-421/64-415	172	0.27	36.0	0.98	.29/.34
DeHAVILLA		A						
DHC-6-300		6.50	NA	100	0.35	24.8	0.91	0.47
DHC-7	860	9.45	3A418/63A415	217	0.46	41.6	1.11	.42/.47
DBC-8	5 8 5	6.51	NA	154	0.42	36.3	1.47	.41/.43
		. • •						
EMB-120	409	6.57	23018/23012	108	0.39	31.7	1.27	.38/.44
BAe 31	270		3A418/63A412	84.0	0.46	20.7	1,22	.43/.48
Metro III			A215/64,A415	76.0	0.28	26.1	1,07	.31/.48
				-				•

^{*} Unless otherwise indicated. • • 1900 also has a small fixed stabilizer.

Table 8.6b) Regional Turboprop Airplanes: Vertical Tail Volume. Rudder and Aileron Data

	Туре	Wing Area	Wing Span	Vert. Tail	s _r /s _v	×v	$\boldsymbol{\bar{v}_v}$	Rudder Chord	s _a /s	Ail. Span	Ail. Chord
ft^2 ft ft ² ft fr.c _y fr.b/2 fr.c _y		s	b					root/ti	P	Loc. in/out	in/out
		ft ²	ft			ft		fr.c _∀		fr.b/2	fr.c _w
	CASA C-71	2-200									
	Chon C 22		62.3	77.5	0.41	24, 8	0.072	0.41	0.061	.69/1.0	.24/.26
SHORTS	SHORTS			* . • .	-						
330 453 74.7 93.1 0.26 27.3 0.075 0.41 0.061 .70/.95 0.27		453	74.7	93.1	0.26	27.3	0.075	0.41			
360 453 74.7 91.4 0.37 33.9 0.091 .39/.36 0.074 .69/.98 0.27	360	453	74.7	91.4	0.37	33.9	0.091	.39/.36	0.074	.69/.98	0.27
BEECH				•							
1900* 303 54.5 47.5 0.35 26.5 0.076 .40/.38 0.064 .60/1.0 0.21		303	54.5	47.5	0.35	26.5	0.076	.40/.38	0.064	.60/1.0	
B200 303 54.5 52.3 0.29 20.5 0.065 .47/.41 0.059 .60/1.0 0.21	B200	303	54.5	52.3	0.29	20.5	0.065	.47/.41	0.059	.60/1.0	0.21
CESSNA CONQUEST	CESSNA CO	NQUEST									
1 225 44.1 41.3 0.38 17.1 0.071 .46/.38 0.060 .61/.86 .29/.28	1	225	44.1	41,3	0.38	17.1	0.071	.46/.38			
TT 254 49.3 43.5 0.37 18.7 0.065 .48/.33 0.058 .62/.89 .30/.32		254	49.3	43.5	0.37	18.7	0.065	.48/.33			
GA TC 610 78.3 117 0.25 35.4 0.087 .29/.33 0.061 .65/.98 .27/.22		610	.78.3	117	0,25	35,4	0.087	.29/.33			
GAF N22B 324 54.2 70.2 0.44 21.6 0.086 .49/.43 0.085 .54/1.0 0.24		324	54.2	70.2	0,44	21.6	0.086	.49/.43	0.085	.54/1.0	0.24
Fokker F27-200											
754 95.2 153 0.30 36.0 0.077 .33/.29 0.050 .69/.98 .31/.29			95.2	153	0.30	36.0	0.077	.33/.29	0.050	.69/.98	.31/.29
DeHAVILLAND CANADA	DeHAVILL	ND CAN	ADA								
DHC-6-300 420 65.0 82.0 0.42 25.7 0.077 .35/.44 0.079 .44/.97 0.20				82.0	0.42	25.7	0.077	.35/.44			
DHC-7 860 93.0 170 0.28 35.7 0.076 .25/.30 0.027 .81/1.0 .27/.31			_	170	0.28	35.7	0.076	.25/.30	0.027	.81/1.0	
DHC-8 585 84.0 190 0.26 31.4 0.121 .27/.35 0.031 .80/1.0 .23/.22					0.26	31.4	0.121	.27/.35	0.031	.80/1.0	,23/,22
					•	•					
EMB-120 409 64.9 74.3 0.38 27.3 0.076 .32/.31 0.084 .63/.97 0.24	EMB-120	409	64.9	74.3	0.38	27.3	0.076				
BAe 31 270 52.0 83.1 0.26 20.7 0.120 .34/.39 0.061 .59/.97 .28/.30	BAe 31	270	52.0	83.1	0.26	20.7	0.120		-		
Metro III 309 57.0 56.0 0.35 27.9 0.089 .37/.56 0.046 .61/.98 .31/.36		309	57.0	56.0	0.35	27.9	0.089	.37/.56	0.046	.61/.98	.31/.36

^{• 1900} also has taillets on horizontal tail.

Table 8.7a) Jet Transports: Horizontal Tail Volume and Elevator Data

Туре	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail	s _e /s _h	* _h	\bar{v}_h	Elevator Chord
	s	c	root/tip	Area S _h				root/tip
	ft ²	ft		ft ²		ft		fr.ch
BOEING								
727-200	1,700	18.0	BAC	376	0.25	67.0	0.82	.29/.31
737-200	9 8 0	11.2	BAC	321	0.27	43.8	1.28	.30/.32
737-300	1,117	10.9	BAC	330	0.24	49.7	1.35	.24/.34
747-200B	5,500	38.0	BAC	1,470	0.24	104.5	0.74	0.29
747SP	5,500	38.0	BAC	1,534	0.21	72.9	0.54	.32/.20
757-200	1.951	14.9	BAC	585	0.25	56.9	1.15	.29/.38
767-200	3.050	19.8	BAC	83 6	0.23	67.6	0.94	.30/.25
McDONNELI			2					
DC-9 S80	1.270	15.7	N.A.	314	0.34	61.4	0.96	.39/.38
DC-9-50	1.001	11.8	N.A.	276	0.38	56.8	1.32	.41/.47
DC-10-30	3,958	24.7	N.A.	1,338	0.22	65.9	0.90	.25/.30
AIRBUS	2,520		217-14					
A300-B4	2,799	19.2	N.A.	748	0.26	80.4	1,12	0.35
A310	2,357	19.3	N.A.	689	0.26	72.0	1.09	.33/.30
Lockheed		17.5	N.A.		red elev			
-500	3.541	24.5	N.A.	1.282	0.19	55.9	0.83	stabilator
		27.2	H.A.	2,202	**			
Pokker P-	-2 8 850	10.9	N.A.	210	0.20	47,2	1.07	.34/.33
-4000			M.A.		0.00			•
Rombac/Br			N.A.	258	0.27	40.7	0.86	.41/.35
1-11 495	1,031	11.8	N.A.	250	V			
British A			57 %	276	0.39	45.3	1.48	.42/.44
146-200	832	10.2	N.A.	436	0.18	58.9	0.71	.27/.25
Tu-154	2,169	16.8	N.A.	- 1 30	4.10	50.5	****	• •

Table 8.7b) Jet Transports: Vert. Tail Volume, Rudder, Aileron and Spoiler Data

Type	Wing Area	Wing Span	Vert. Tail Area	$s_{\rm r}/s_{\rm v}$	×v	\bar{v}_v	Rudder Chord	s _a /s	Inb'd Ail. Span	Inb'd Ail. Chord
	s	b	S [▲]				root/ti	p	in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c _w
BOEING										
727-200	1,700	108	422	0.16	47.4	0.110	.29/.28	0.034	.38/.46	.17/.24
737-200	980	93.0	233	0.24	40.7	0,100	.25/.22	0.024	none	none
737-300	1,117	94.8	239	0.31	45.7	0.100	.26/.50	0.021	none	none
747-200B	5,500	196	83 0	0.30	102	0.079	0.30	0.040	.38/.44	.17/.25
747-SP	5.500	196	885	0.27	69.5	0.057	.31/.34	0.040	.38/.44	.17/.25
757-200	1.951	125	384	0.34	54.2	0.086	.35/.33	0.027	none	none
767~200	3.050	156	497	0.35	64.6	0.067	.33/.36	0.041	.31/.40	,23/,20
McDONNELL	-DOUGLA	S								
DC-9 S'80	1.270	108	168	0.39	50.5	0.062	.49/.46	0.030	none	none
DC-9-50	1.001	93.4	161	0.41	46.2	0.079	.45/.44	0.038	none	none
DC-10-30	3.958	165	605	0.18	64.6	0.060	0.35	0.047	.32/.39	.20/.25
AIRBUS	- •									•
A300-B4	2.799	147	4 87	0.30	79.5	0.094	.35/.36	0.049	.29/.39	.23/.27
A310	2.357	144	4 87	0.35	68.5	0.098	.33/.35	0.027	.32/.40	.23/.27
Lockheed	L1011									
-500	F3.541	1 64	550	0.23	5 8, 2	0.055	.29/.26	0.051	.40/.49	.22/.23
Fokker F-	2 8									
-4000	850	82.3	157	0.16	37.9	0.085	.29/.31	0.034	none	none
Rombac/Br	itish A	erospa	ce							
1-11 495	1,031	93.5	117	0.28	31.6	0.038	.39/.37	0.030	none	none
British A	erospac	e								
146-200	832		224	0.44	38.9	0.12	0.29	0.046	none	none
Tu-154	2,169	123	341	0.27	43.3	0.055	0.37	0.036	none	none

Table 8.7c) Jet Transports: Vert. Tail Volume, Rudder, Aileron and Spoiler Data

Type	Outb'd Ail. Span in/out	Outb'd Ail. Chord in/out	Inb'd Spoiler Span Loc. in/out	Inb'd Spoiler Chord in/out	Inb'd Spoiler Hinge Loc. in/out	Outb'd Spoiler Span Loc. in/out	Outb'd Spoiler Chord in/out	Outb'd Spoiler Hinge Loc. in/out
	fr.b/2	fr.c _w	fr.b/2	fr.c _w	fr.c _w	fr.c _w	fr.c _w	fr.c _w
BOEING								
727-200	.76/.93	.23/.30	.14/.37	.09/.14	.79/.69	.48/.72	.16/.20	.65/.63
737-200	.74/.94		.40/.66	.14/.18	.66/.67	none	none	none
737-300	.72/.91		.38/.64	0.14	.64/.70	none	none	none
747-200B	.70/.95	.11/.17	.46/.67	.12/.16	0.71	none	none	none
747-SP	.70/.95	.11/.17	.46/.67	.12/.16	0.71	none	none	none
757-200	.76/.97	.22/.36	.41/.74	.12/.13	.73/.69	none	none	none
767-200	.76/.98	.16/.15	.16/.31	.09/.11	.85/.78	.44/.67	.12/.17	.74/.71
McDONNELI	-DOUGLAS							
DC-9 S80	.64/.85	.31/.36	.35/.60	.10/.08	.69/.65	none	none	none
DC-9-50	.78/.95		.35/.60	.10/.08	.69/.65	none	none	none
DC-10-30	.75/.93	.29/.27	,17/,30	.05/.06	.78/.74	.43/.72	.11/.16	.75/.70
AIRBUS								
A300-B4	.83/.99	.32/.30	.57/.79	.16/.22	.73/.72	none	none	none
A310	none	none	.62/.83	.16/.22	.69/.66	none	none	none
Lockheed								
-500	.77/.98	.26/.22	.13/.39	.08/.12	.82/.73	.50/.74	.14/.14	.67/.67
Fokker F-								
-4000		.29/.28	no later	al contro	l spoiler	8		
	itish Aer							
1-11 495	.72/.92	0.26	.37/.68	.06/.11	.68/.63	none	none	none
British A					i			
146-200	.78/1.0		.14/.70	.22/.27	.76/.68	none	none	none
Tu-154	.76/.98	.34/.27	.43/.70	.14/.20	.62/.60	none	none	none

Table 8.8a) Military Trainers: Horizontal Tail Volume and Elevator Data

Type	Wing Area	Wing Egc	Wing Airfoil	Hor. Tail Area	s _e /s _h	× _h	\overline{v}_h	Elevator Chord
	s	c c	root/tip	S _h				root/tip
	ft ²	ft	NACA*	ft ²		ft		fr.c _h
Turboprope	eller Dr	iven						
EMB-312	209		A415/63A212	49.2	0.44	16.9	0.69	.42/.44
Pil. PC-7	179		A415/64,A612	36.9	0.49	16.2	0.64	.49/.50
NDN 1T	126	5.4	23012	25.8	0.47	14.0	0.53	0.44
T-34C	180	4.01 2	3016.5/23012	37.2	0.37	14.8	0.76	.43/.44
Epsilon	96.9	3.97 R	A1643/RA1243	21.5	0.48	13.8	0.77	.49/.54
SF-260M	109	4.35 6	4,212/64,210	26.0	0.40	12.7	0.70	.35/.56
Yak-52	162	5.20	Člark YÑ	30.8	0.54	13.3	0.49	.54/.60
Neiva T25	185	5.19 63	A315/63A212	33.0	0.44	15.0	0.52	.46/.40
Jet Driver	3							
Aero L39C	202	7.04	64A012	54.6	0.23	15,2	0.58	.35/.44
Microturbo	Microje	et.						
200B	65.9	2.79	RA16.3C3	22.9	0.32	8.98	1.12	.37/.34
Dassault-E	3reguet/I	ornier	•					
Alphajet	188	7.37	N.A.	42,4	1,0	14.1	0.43	stabilator
Aermacchi								
MB-339A	208	6.34 6	4 <u>A114/64A212</u>	46.9	0.23	14.6	0.52	.26/.36
SM S-211	136	5.40 K	U .17 sprcrt.	36.4	0.40	15.2	0.75	.41/.40
PZL TS-11	188	5.80	64209/64009	38.1	0.33	16.3	0.57	.31/.32
CASA C101	.215	6.32	Norcasa 15	47.8	0.23	15.2	0.54	.33/.46
British Ac	erospace							
Hawk Mk1	180	6.30	N.A.	46,6	1,0	14.8	0.61	stabilator

[•] Unless otherwise indicated.

Table 8.8b) Military Trainers: Vertical Tail Volume, Rudder and Aileron Data

Туре	Wing Area	Wing Span	Vert. Tail	s _r /s _v	x	$\overline{v}_{\boldsymbol{v}}$	Rudder Chord	s _a /s	Ail. Span	Ail. Chord
	8	b	Area S _V				root/ti	•	Loc. in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c _w
Turboprop	eller D	riven								
EMB-312	209	36.5	22.4	0.70	16.6	0.049	.37/1.0*	0.100	.56/.99	.21/.31
Pil. PC-7	179	34.1	20.2	0.47	14.4	0.048	.52/.49	0.082	.56/.97	.23/.27
NDN 1T	126	26.0	13.5	0.52	11.8	0.049	.38/.57	0.110	.50/.87	0.26
T-34C	180	33.3	19.8	0.35	14.4	0.048	.41/.40	0.063	.55/.95	.22/.23
Epsilon	96.9	26.0	11.0	.0.39	13.4	0.058	.48/.45	0.090	.58/.91	.30/.29
SF-260M	109	27.4	16.4	0.40	12.5	0.069	.35/.63	0.075	.61/.92	.23/.30
Yak~52	162	30.5	15.9	0.59	13.9	0.045	.46/.51	0.130	.47/.98	.27/.26
Neiva T25	185	36.1	18.5	0.52	15.7	0.043	.53/.52	0.085	.51/.96	.16/.22
Jet Drive	n									
Aero L39C	202	31.0	37.8	0.28	13.9	0.083	.36/.33	0.066	.62/.93	.36/.34
Microturbe	o Micro	iet								
200B	65.9	24.8	14.5	0.39	10.0	0.089	.37/.43	0.073	.64/.96	.29/.32
Dassault-1	Breguet	Dornie	Ľ							
Alphajet	188	29.9	32.0	0.21	14.8	0.084	.32/.36	0.059	.68/1.0	.23/.27
Aermacchi										
MB-339A	208	35.6	25.5	0.26	12.6	0.043	.30/.38	0.069	.60/.92	0.25
SM S-211	136	27.7	21.6	0.33	13.5	0.078	.37/.36	0.100	.58/.97	.22/.21
PZL TS-11	188	33.0	24.2	0.31	16.8	0.066	.24/.47	0.085	.55/.95	.23/.27
CASA C101	215	34.8	34.4	0.41	15.8	0.072	.37/.36	0.080	.61/.93	.26/.27
British A	erospace	e								_
Hawk Mk1	180	30.8	27.0	0.23	12.1	0.059	.28/.31	0.063	.65/1.0	.26/.32

[•] Large hornbalance at tip.

Table 8.9a) Fighters: Horizontal Tail Volume and Elevator Data

Туре	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail Area	s _e /s _h	* _h	\vec{v}_h	Blevator Chord
	s	c	root/tip	Sh				root/tip
	ft ²	ft	NACA*	ft ²		ft		fr.c _h
DASSAULT-	BREGUET							
Mir. IIIE	377	17.7	NA	0	0	0 -	0	elevons
Mir. F1C	269	10.4	NA	96.9	1.0	14.9	0.51	stabilator
Mir. 2000	441	18.2	NA	0	0	0	0	elevons
Super Et.	306	10.5	NA	59.7	1.0	15.5	0.29	stabilator
PR A-10A	506	8.94	6716/6713	89.4	0.32	20.6	0.41	0.33
Grum, A6A	529	10.9	NA	109.8	1.0	24.2	0.46	stabilator
Grum. P14A	565	10,2	NA	140	1.0	16.4	0.40	stabilator
North.F5E		8,05	65A004.8	59.0	1.0	13.0	0.51	stabilator
Vht A7A	375	10.8	65A007	56.2	1.0	16.2	0.22	stabilator
MCDONNELL	DOUGLAS			•	. •			
F-4E	530	15.5	64A005.9	96.9	1.0	22.2	0.26	stabilator
F-15	608	17.8	McD .003	104	1.0	20.7	0.20	stabilator
GENERAL D	YNAMICS				-			
PB-111A	476	8.22	63 (NA)	168	1.0	17.6	0.75	stabilator
P-16	300	11.4	64A204	66.6	1.0	15.4	0.30	stabilator
Cessna		•		=			_	
A37B	184	5.61	2418/2412	46.7	0.25	15,1	0.68	.34/.31
Aermacchi		- •	•		=	-	*	
MB339K	208	6.30	64A114/64A212	36.4	0.29	14.5	0.40	.26/.37
MIG-25	612	17.3	NA	236	1.0	16.0	0.36	stabilator
Su-7BMK	329	12.5	0.008 thick	92.7	1.0	17.9	0.40	stabilator
						-,		

[•] Unless otherwise indicated.

Table 8.9b) Fighters: Vertical Tail Volume, Rudder and Aileron Data

Type	Wing Area	Wing Span	Vert. Tail	s_r/s_v	x.	\overline{v}_v	Rudder Chord	ś _a /s	Ail. Span	Ail. Chord
			Area						Loc.	
	S	b	s _▼				root/ti	p	in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c _w
DASSAULT 1	BREGUET	•								
Mir. IIIE	377	27.0	48.4	0.20	13.9	0.066	.22/.29	0.14	.18/1.0	.13/1.0
Mir. F1C	269	27.6	53.9	0.16	13.5	0.098	.21/.35	0.031	.77/1.0	.23/.25
Mir. 2000	441	29.5	71.8	0.16	13.6	0.075	.21/.34	0.13	.19/1.0	.13/1.0
Super Et.		31.5	48.3	0.18	12.4	0.062	.25/.49	0.053	.57/.81	.23/.27
FR A-10A	506	57.5	84.0	0.28	20.9	0.060	.31/.34	0.094	.58/.91	.42/.40
Grum. A6A	529	53.0	79.3	0.21	24.6	0.069	.28/.21	see Ja	ne's 81-8	1
Grum. F14A		64.1	118	0.29	18.4	0.060	.29/.33		ne's 81-8	
North.F5E		26.7	41.4	0.15	11.7	0.098	.26/.30	0.050	.76/.99	.34/.33
Vht A7A	375	38.8	115	0.13	16.1	0.13	.21/.29	0.053	.59/.90	.20/.24
MCDONNELL				****					• • • • • •	
F-4E	530	38.4	59.6	0.20	18.3	0.054	.20/.29	0.040	.63/.98	.23/.28
F-15	608	42.8	143	0.25	17.8	0.098	.30/.50	0.053	.60/.86	.25/.27
	YNAMICS			-1			••••		nder Grum	
FB-111A	476	63.0	96.1	0.21	17.0	0.054	.25/.26	see Ja		
F-16	300	31.8	62.2	0.25	14.4	0.094	.34/.33	0.13*		.21/.23
Cessna					- ** *		••••			
A37B	184	35.9	17.8	0.35	15.1	0.041	.37/.39	0.061	.56/.91	.27/.32
Aermacchi				*****		••••		•••	• • • • • •	
MB339K	208	36.2	25.5	0.26	12.6	0.043	.26/.41	0.069	.58/.90	.24/.26
MIG-25	612	45.8	174	0.15	16.8	0.10	0.24	0.053	.54/.79	.22/.21
Su-7BMK	329	29.3	58.2	0.26	16.9	0.10	.28/.25	0.11	.62/.97	.29/.35
De .DIM		5	20.2			-,				

[•] Flaperon

Table 8.10a) Military Patrol, Bomb and Transport Airplanes: Horizontal Tail
Volume and Elevator Data

	Volume	and El	evator Data					

Туре	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail Area	s _e /s _h	x h	\bar{v}_h	Elevator Chord
	S	ē	root/tip	Sh				root/tip
	ft ²	ft	NACA*	ft ²		ft		$\mathtt{fr.c}_{\mathtt{h}}$
Turbopropelle	er Driv	en						
LOCKHEED	4 845	13.7	64A318/64A412	536	0.29	42.1	0.94	.34/.44
C-130E	1,745	14.1	0014/0012	322	0.25	48.5	0.85	.29/.37
P3C	1,300	17.1	0014/0014	722	0.23	40.0		••••
ANTONOV An-12BP	1,310	11.3	NA	319	0.24	52,5	1.13	.33/.36
An-125P An-22	3.713	18.8	NA.	846	0.28	87.4	1.06	34/.53
An-26	807	8.79	NA	213	0.28	43.5	1.31	.34/.38
Grum. E2C	700	9.73	NA.	174	0.29	26.9	0.69	.29/.36
D/B Atlant.2	-	11.5	NA NA	355	0.25	43.4	1.04	.35/.36
Aerital.G222	883	8,65	NA NA	255	0.20	37.0	1.24	.39/.30
Jet Driven								
LOCKHEED								
S-3A Viking	598	9.85	NA	176	0.287	20.0	0.60	35/.25
C-141B	3,406	21.4	NA	545	0.26	82.5	0.62	.28/.29
C-5A	6,200	32.9	NA	966	0.27	130.4	0.62	0.30
BA Nimrod 2	2,121	20.5	NA	435	0.31	50.5	0.51	.32/.40
Boeing YC-14	1,762	16.8	NA	690	0.40	61.5	1.43	0.46
McDD KC-10A	3,958	24.7	NA :	1,338	0.22	65.1	0.89	0.27
Tu-16	1,772	15.9	NA	360	0.27	50,6	0.65	.26/.41
11-76T	3,229	20.7	NA	639	0.25	71.2	0.68	.31/.30

^{*} Unless otherwise indicated.

Table 8.10b) Military Patrol, Bomb and Transport Airplanes: Vertical Tail Volume,
Rudder, Aileron and Spoiler Data

Type	Wing Area S	Wing Span b	Vert. Tail Area S _v	s _r /s _v	x _v	\overline{v}_v	Rudder Chord root/ti	s _a /s	Inb'd Ail. Span in/out	Inb'd Ail. Chord in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c _w
Turboprop	eller D	riven								
LOCKHEED C-130E	1,745	133	300	0.25	40.5	0.053	.26/.31	0.063	none	none none
P3C ANTONOV	1,300	99.7	176	0.34	46.1	0.063	.32/.39	•	none	
An-12BP	1,310	125	205	0.28	48.9	0.061	.42/.44	0.064	none	none
An-22	3,713	211	700	0.44	82.6	0,074	.54/.40	0.040	none	none
An-26	807	95.8	171	0.40	39.9	0.088	.41/.43	0.071	none	none
Grum. B2C	700	80.6	199	0.52	27.7	0.098	.44/.64	0.077	none	none
D/B Atl.2	1.295	123	179	0.36	44.3	0.050	.37/.42	0.044	none	none
Aer.G222	883	94.2	207	0.37	36.7	0.091	.39/.47	0.045	none	none
Jet Drive	מני									•
S-3A Viki	na 598	68.7	129	0.29	20.0	0.063	.37/.35	0.022	none	none
C-141B	3,406	160	455	0.21	72.1	0.060	.24/,28	0.056	none	none
C-5A	6,200	223	961	0.24	113	0.079	.27/.31	0.041	none	none
BA Nimr.2		115	118	0.35	50.4	0.024	.45/.37	0.058	none	none .
B. YC-14	1,762	129	650	0.26	55.7	0.160	0.40	0.048	none	none
MDD KC10A		165	605	0.18	62.9	0.058	.39/.40	0.047	.32/.39	20/.25
Tu-16	1.772	108	276	0.24	48,5	0.070	.35/.29	0.057	none	none
11-76T	3,229	166	596	0.26	60.7	0.068	.46/.38	0.040	none	none

Table 8.10c) Military Patrol, Bomb and Transport Airplanes: Vertical Tail Volume,
Rudder, Aileron and Spoiler Data

Туре	Outb'd Ail. Span in/out	Outb'd Ail. Chord in/out	Inb'd Spoiler Span Loc. in/out	Inb'd Spoiler Chord in/out	Inb'd Spoiler Hinge Loc. in/out	Outb'd Spoiler Span Loc. in/out	Outb'd Spoiler Chord in/out	Outb'd Spoiler Hinge Loc. in/out
	fr.b/2	fr.c _w	fr.b/2	fr.c _w	fr.c _w	fr.c _w	fr.c _w	fr.c _w
Turbopror	eller Dri	ven						
LOCKHEED								
C-130E	.70/.99	0.29	no later	al contro	l spoiler	35		
P3C	.63/.96	.22/.25		al contro				
ANTONOV					•			
An-12BP	.68/.98	.31/.33	no later	al contro	l spoiler	s		
An-22	.63/.98	.27/.32		al contro				
An-26	.66/.98	.32/.26		al contro				
Grum. E2C	.57/.98	.22/.33		al contro				
D/B Atl.		.24/.25		.06/.08			none	none
Aer.G222	.72/1.0	.35/.45	.48/.70			none	none	none
2101.0400			. 40, . 70	.01,.00		none		
Jet Drive	en.							
LOCKHEED								
S-3A Vik.	79/.96	.23/.25	24/.79	.12/.15	.67/.56	none	none	none
C-141B	.67/1.0	.26/.23	.15/.41	.09/.12	.85/.80	.43/,66	.10/.13	.83/.83
C-5A	.72/.93	.28/.30	.36/.70	.13/.12	0.80	none	none	none
BA Nimr. 2	.61/.96	.26/.27	no later	al contro	l spoiler	s		
B. YC-14	.78/1.0	.37/.33	none	none	none	.53/.78	0.16	.74/.64
MDD KC107		.29/.27	.17/.30	.05/.06	.78/.74	.43/.72	.11/.16	.75/.70
Tu-16	.66/.97	.25/.29		al contro				
11-76T	.74/.98	.25/.26	.17/.71	.10/.13	. 80/. 69		none	none
							-	

Table 8.11a) Flying Boats, Amphibious and Float Airplanes: Horizontal Tail

Volume and Elevator Data (Piston/Prop. Except as Indicated)

туре	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail Area	s _e /s _h	* _h	\overline{v}_h	Elevator Chord
-	s	ē	root/tip	S _h				root/tip
	ft ²	ft	NACA*	ft ²		ft		$\mathtt{fr.c}_{\mathtt{h}}$
SHORTS								
Sandringham	1,487	16.6	NA	259	0.35	44.1	0.46	.53/.35
Shetland	2,773	20.0	Gott. 436	388	0.32	55.8	0.39	.45/.41
DORNIER								
Do 24	1,162	13.8	NA	202	0.35	33.6	0.42	0.42
Do 24/72	1,129	12.4	NA	262	0.25	40.2	0.75	.25/.31
Do Seastar**	258	5.27	23018	52.6	0.41	18.7	0.72	0.41
GRUMMAN								
JRF-6B	375	8.33	NA	79.9	0.38	21.8	0.56	0.42
J4F-1	245	5.85	NA	50.4	0.43	16.8	0.56	.45/.48
SM S-700	258	5.31	NASA GAW-1	76.1	0.47	18.5	1.03	0.47
Can. CL-215	1,080	11.5	NA	306	0.28	28.2	0.70	0.40
BV-222	3,077	18.1	NA	413	0.23	59.0	0.44	.31/.17
SM US-1**	1,462	12.6	NA	343	0,28	51.3	0.95	.33/.34
Boeing 314-A	3,001	22.3	BAC	5 80	0.26	52.8	0.46	.31/.39
Martin PBM-3		12.8	NA	257	0.42	39.8	0.58	0.50
Beriev M-12*	**							
	1,130	10.2	NA	244	0.40	39.9	0.85	.37/.57
Part.P68B***		5.08	NA	47.5	1.00	15.7	0.74	stabilator
McK G-21G	378	7.78	23000	84,5.	0.53	22.1	0.64	.49/.69

^{*} Unless otherwise indicated. ** Turbopropeller driven *** Jet Driven **** Float Airplane

Table 8.11b) Plying Boats, Amphibious and Ploat Airplanes: Vertical Tail Volume.

Rudder and Aileron Data

Туре	Wing Area	Wing Span	Vert. Tail Area	s_r/s_v	×v	\bar{v}_v	Rudder Chord	s _a /s	Ail. Span Loc.	Ail. Chord
	S	b	S _v				root/ti	P	in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c _w
SHORTS										
Sandr'ham	1.487	113	157	0.31	43.5	0.041	.43/.36	0.089	.52/.93	,26/,20
Shetland	2,773	150	247	0.28	53.6	0.032	.33/.30	0.069	.51/.92	.22/.23
DORNI ER	• .									
Do 24	1,162	88.6	98.4	0.46	33,6	0.032	.41/.56	0.090	.32/.94	.15/.21
Do 24/72	1,129	91.8	200	0.38	42.2	0.081	.28/1.0	0.088	.63/.97	.29/,27
Do Seasta	r* 258	48.6	31,3	0.35	18.5	0.046	.33/.41	0.098	.60/.96	0.28
GRUMMAN										
JRF-6B	375	49.0	45.3	0.44	20.7	0.051	.41/.57	0.077	.56/.92	.27/.21
J4P-1	245	40.0	26.8	0.43	16.5	0.045	.35/.59	0.063	.57/.94	.20/.23
SM S-700	258	49.2	47.8	0,34	17.9	0.067	29/.44	0.058	.63/.94	0.19
Can.CL215	1,080	93.8	186	0.35	29.2	0.053	.41/.57	0.080	.64/.95	0.26
BV-222	3,077	157	255	0.40	60.6	0.032	.36/.64	0.052	.56/.97	.12/.16
SM US-1*	1,462	109	265	0.29	46.4	0.077	.17/.30	0.047	.72/.98	.23/.21
B 314A	3,001	152	252	0.41	54.8	0.030	0.41	0.033	.58/.95	.09/,23
M PBM-3	1,385	118	196	0.44	39.7	0.048	.48/.39	0.053	66/,96	.25/.28
Beriev M-	12**									
	1,130	97.5	203	0.38	41.9	0.077	.36/.38	0.076	.58/.98	.29/.30
P68B***	200	39.4	21.9	0.22	15.5	0.043	.36/.40	0.096	.62/.96	0.21
McK G21-G	378	50.8	40.1	0.56	22.3	0.047	.39/.71	0.078	.55/.89	.23/.21

^{*} Turbopropeller driven *** Jet Driven *** Float Airplane

Table 8.12a) Supersonic Cruise Airplanes: Horiz. Tail Volume and Elevator Data

	7.5							
Туре	Wing Area	Wing mgc	Wing Airfoil	Hor. Tail Area	s _e /s _h	x _h	\overline{v}_h	Elevator Chord
	s	č	root/tip	s _h				root/tip
	ft ²	ft		ft ²		ft		fr.c _h
NORTH AMERI	CAN AVIA	TION (Now	Rockwell)					
XB-70A	6,297	78.5	NA	đelta	with ele	vons an	d small	canard
RA-5C	700	15.7	NA	356	1.0	17.1	0.56	stabilator
BOEING							- •	
SST*	9.000	29.0**	NA	592	0.16	161	0.36	.24/.74
AST-100*	11,630	96.2	NA	547	1.0	107	0.052	stabilator
NASA*	•				- • •			
SSXjet I	965	30.6	.002/.003	65.0	1.0	47.2	0.10	stabilator
SSX jet II	965	30.6	.002/.003	80.0	1.0	41.2	0.09	stabilator
SSXjet III	1,128	33.1	.002/.003	80.0	1.0	41.9	0.09	stabilator
TUPOLEV				. •				
Tu-144	4,715	58.3		delta	with ele	vons an	đ foldi	ng canard
Tu-22M	1,585	15.4**	NA	727	1.0	37.2	1.11	stabilator
Tu-22	2,062	23.7 ***	NA	620	0.12	34.7	0.44	.29/.30
Dassault	-							
Mirage IVA	840	24.7	NA	delta	with ele	vons		
GD F-111A	530	9.12**	NA	352	1.0	17.6	1.28	stabilator
Concorde	3,856	61.7	NA	ogive	with ele	vons		
Rockwell B1	B 1,950	15.8**	NA	494	1.0	49.9	0.80	stabilator
Convair B58	1,481	34.6	NA	delta	with ele	vons		

[•] Study projects only ** Measured at forward sweep *** Fixed sweep airplane See Refs. xx - yy

Table 8.12b) Supersonic Cruise Airplanes: Vertical Tail Volume, Rudder, Aileron and Spoiler Data

Туре	Wing Area	Wing Span	Vert. Tail Area	s _r /s _v	×v	\bar{v}_v	Rudder Chord	s _a /s	Ail. Span Loc.	Ail. Chord
	S	þ	s _v				root/ti	.p	in/out	in/out
	ft ²	ft	ft ²		ft		fr.c _v		fr.b/2	fr.c _w
NORTH AME	RICAN A	VIATION	(Now R	ockwell)					
XB-70A	6,297	105	468	0.75	48.5	0.034		0.067	.33/.72	.13/.31*
RA-5C	700	53.0	102	1.0**	21.8	0.060	1.0**	no ail	erons	-
BOEING***										
SST	9,000	174	866	0.26	88.5	0.049	.23/.46	0.014	.78/.96	.32/.43
AST-100	11,630	138	890	1.0**	121	0.067	1.0**	0.017	.72/1.0	.15/.29
NASA***										
SSXjet I	965	42.1	75.0	1.6**	38.3	0.071	1.0**	0.018	.76/1.0	.21/.26
SSXjet II	965	42.1	75.0	1.0**	35.5	0.066	1.0**	0.018	.76/1.0	.21/.26
ssxjt III	1,128	45.6	97.0	1.0**	32,1	0.061	1.0**	0.017	.74/1.0	.19/.26
TUPOLEV										
Tu-144	4,715	94.5	648	0.19	55.6	0.081	.20/.35	0.100	.31/.97	.11/.51*
Tu-22M	1,585	113	437	0.17	35.6	0.087	.39/.36	NA	.80/.95	.24/.28
Tu-22	2,062	90.9	376	0.14	29.6	0.059	.25/.33	0.051	.66/.95	.29/.31
Dassault										
Mirage IV	A 840	38.9	129	0.12	14.1	0.056	.14/.24	0.120	.30/.96	.17/.63*
GD F-111A	530	63.0	115	0.25	18.6	0.064	.27/.29	no ail	erons	
Concorde	3,856	84.0	477	0.24	54.1	0.080	.18/.47	0.089	.51/1.0	.15/.27*
Rockw.B1B	1,950	137	230	0.30	45.8	0.039	.29/.38	no ail	erons	*
Conv. B58	1,481	57.0	153	0.24	31.8	0.057	.32/.31	0.120	.18/.69	.16/.28*

^{*} Elevon equipped ** Slab vertical tail ***Study projects only **** Rudder hingeline skewed

Table 8.12c) Supersonic Cruise Airplanes: Vertical Tail Volume, Rudder, Aileron and Spoiler Data

Type	Inb'd Ail. Span	Inb'd Ail. Chord	Inb'd Spoiler Span Loc.	Inb'd Spoiler Chord	Inb'd Spoiler Hinge Loc.	Outb'd Spoiler Span Loc.	Outb'd Spoiler Chord	Outb'd Spoiler Hinge Loc.
	in/out	in/out	in/out	in/out	in/out	in/out	in/out	in/out
	fr.b/2	fr.c _w	fr.b/2	fr.c _w	fr.c _w	fr.c _w	fr.c _w	fr.c _w
NORTH AME	RICAN AVI	ATION (No	w Rockwel	.1)		-		
XB-70A	none	none	no later	al contro	l spoiler			
RA-5C	none	none	none	none	none	.25/.73	.14/.19	.60/.65
BOEING*								
SST	none	none	none	none	none	.36/.78		.69/.67
AST-100	none	none	none	none	none	.60/.70	.08/.11	.73/.65
NASA*								
SSXiet I	none	none	none	none	none	.38/.75		.88/.78
SSX jet II	none	none	none	none	none	.31/.75		.85/.78
ssxjt III		none	none	none	none	.31/.74	.04/.06	.86/.78
TUPOLEV								
Tu-144	none	none	no later	al contro	ol spoiler			
Tu-22M	none	none	none	none	none	.32/.80	.08/.13	.69/.66
Dassault								
Mir. IVA	none	none	no later	al contro	ol spoiler	S	-	
GD F111A	none	none	none	none	none	.25/.79	0.17	.65/.66
Concorde	none	none	no later	al contro	ol spoiler	s		
Rockw. B1B	none	none	none	none	none		.36/.35	.64/.65
Conv. B58	none	none	no later	al contro	ol spoiler	s		

Study projects only

that not enough different canard configurations have been built for a reliable data base.

For this reason it is suggested that the reader use the so-called X-plot method for the sizing of a canard. This method is explained in Chapter 11.

c. Three-surface configurations.

The comments made under b. also apply here. The reader should use the X-plot method of Chapter 11 to size the canard and the horizontal tail of a three-surface airplane.

d. Butterfly empennage configurations.

For a butterfly arrangement, the first step is to apply the sizing method as if the tail were conventional. The surface areas $S_{\rm h}$ and $S_{\rm v}$ obtained in this manner must

now be considered to be equal to the projections of the butterfly arrangement onto the horizontal and vertical reference planes. The required 'butterfly angle', [h follows from this projection analogy:

$$f_h = \arctan(S_v/S_h) \tag{8.5}$$

Step 8.4: Decide on the planform geometry of the empennage.

This involves making the following choices:

- 1. aspect ratio
- 2. sweep angle
- 3. taper ratio
- 4. thickness ratio
- 5. airfoil
- 6. dihedral
- 7. incidence angle

Tables 8.13 and 8.14 provide some guidance in making these choices. The selection of items 1-7 follow some of the same reasoning used in selecting these items for the wing in Chapter 6.

In selecting sweep angle/thickness ratio combinations for tail aft configurations it is important to ensure that the critical Mach number for the tails is higher than that of the wing. An increment of $\Delta M = 0.05$ is usually sufficient.

Table 8.13 Planform Design Parameters for Horizontal Tails

Type	Dihedral Angle, h	Incidence Angle. ⁱ h	Aspect Ratio, ^A h	Sweep Angle, Ac/4h	Taper Ratio, ^h h
-	deg.	deg.		deg.	-
Homebuilts	+510	0 fixed to variable	1.8 - 4.5	0 - 20	0.29 - 1.0
Single Engine Prop. Driven	0	-5 - 0 or variable	4.0 - 6.3	0 - 10	0.45 - 1.0
Twin Engine Prop Driven	0 - +12	0 fixed to variable	3.7 - 7.7	0 - 17	0.48 - 1.0
Agricultural	0 - +3	0	2.7 - 5.4	0 - 10	0.59 - 1.0
Business Jets	-4 - +9	-3,5 fixed	3.2 - 6.3	0 - 35	0.32 - 0.57
Regional Turbo- Props.	0 - +12	0 - 3 fixed to variable	3.4 - 7.7	0 - 35	0.39 - 1.0
Jet Transports	0 - +11	variable	3.4 - 6.1	18 - 37	0.27 - 0.62
Military Trainers	-11 - +6	0 fixed to	3.0 - 5.1	0 - 30	0.36 - 1.0
Fighters	-23 - +5	0 fixed to	2.3 - 5.8	0 - 55	0.16 - 1.0
Mil. Patrol. Bomb and Transports	-5 - +11	0 fixed to variable	1.3 - 6.9	5 - 35	0.31 - 0.8
Plying Boats. Amph. and Ploat Airplanes	0 - +25	0 fixed	2,2 - 5,1	0 - 17	0.33 - 1.0
Supersonic Cruise Airplanes	-15 - 0	0 fixed to variable	1.8 - 2.6	32 - 60	0.14 - 0.39

Table 8.14 Planform Design Parameters for Vertical Tails

Туре	Dihedral Angle, f _V deg.	Incidence Angle, i _v deg.	Aspect Ratio, A _V	Sweep Angle, ^A c/4 _v deg.	Taper Ratio, ^A v
Homebuilts	90	0	0.4 - 1.4	0 - 47	0.26 - 0.71
Single Engine Prop. Driven	90	0	0.9 - 2.2	12 - 42	0.32 - 0.58
Twin Engine Prop Driven	90	0 .	0.7 - 1.8	18 - 45	0.33 - 0.74
Agricultural	90	0	0.6 - 1.4	0 - 32	0.43 - 0.74
Business Jets	90	0	0.8 - 1.6	28 - 55	0.30 - 0.74
Regional Turbo- Props.	90	0	0.8 - 1.7	0 - 45	0.32 - 1.0
Jet Transports	90	0	0.7 - 2.0	33 - 53	0,26 - 0.73
Military Trainers	90	0	1.0 - 2.9	0 - 45	0.32 - 0.74
Pighters	75 - 90	0	0.4 - 2.0	9 - 60	0.19 - 0.57
Mil. Patrol, Bomb and Transports	90	0	0.9 - 1.9	0 - 37	0.28 - 1.0
Flying Boats, Amph. and Float A	90 Airplanes	0	1.2 - 2.4	0 - 32	0.37 - 1.0
Supersonic Cruise Airplanes	3 75 - 90	0	0.5 - 1.8	37 - 65	0.20 - 0.43

For most horizontal tails and vertical tails NACA symmetrical airfoils are in use. Typical of such airfoils are NACA 0009/0018. Ref. 20 provides data on these airfoils.

For canards the choice of airfoil is particularly critical. The required maximum lift coeffficient capability at the canard Reynold's number must be determined so that the canard always stalls first. If a laminar flow airfoil is selected for the canard it will be necessary to verify that the canard lift is not altered drastically when the flow becomes turbulent such as may happen when suddenly encountering rain.

- Step 8.5: Prepare dimensioned drawings of the selected empennage planforms.
- Step 8.6: Decide on the sizes and disposition of the longitudinal and directional control surfaces.

Tables 8.1 through 8.12 provide data for twelve types of airplanes on the size and location of:

elevators and stabilators
 rudders

After deciding which type of airplane best 'fits' the type being designed, initial control surface sizes can be determined directly from Tables 8.1 through 8.12.

The control surfaces should now be sketched into the planform drawings of Step 8.5. Watch out for a possible conflict between rudder and elevator deflections. Such conflicts often arise in conventional arrangements and lead to inboard cut-outs of one of these surfaces. Typical examples are shown in Figures 3.4b and 3.4d.

Step 8.7: Document the decisions made under Steps 8.1 through 8.6 in a brief, descriptive report including clear dimensioned drawings.

8.2 EXAMPLE APPLICATIONS

Three examples applications will now be discussed:

8.2.1 Twin Engine Propeller Driven Airplane: Selene

8.2.2 Jet Transport: Ourania

8.2.3 Fighter: Eris

8.2.1 Twin Engine Propeller Driven Airplane

Step 8.1: It was decided in sub-section 3.5.1 to employ a conventional configuration. That implies a tail aft arrangement.

Step 8.2: From the general arrangement drawing of the fuselage in Figure 4.2b (p.113) the following moment arms are 'guestimated':

$$x_h = 21.4 \text{ ft.}$$
 and $x_v = 16.8 \text{ ft.}$

Step 8.3: The following table summarizes volume coefficient and control surface size data for comparable airplanes. The data are taken from Tables 8.3a and b:

Airplane Type	$\overline{\mathtt{v}}_{\mathtt{h}}$	s_e/s_h	\bar{v}_v	s _{r/s} v
Cessna 310R	0.95	0.41	0.063	0.45
Cessna 402B	1.07	0.29	0.080	0.47
Cessna 414A	0.93	0.27	0.071	0.38
Cessna T303	0.78	0.42	0.052	0.44
Beech Duke B60	0.64	0.27	0.060	0.43
Piaggio P166-DL3	0.51	0.27	0.041	0.43
Averages:	0.81	0.32	0.061	0.43

For the Selene the following values are selected:

$$\overline{V}_{h} = 0.94$$
, $S_{e}/S_{h} = 0.32$, $\overline{V}_{v} = 0.10$, $S_{r}/S_{v} = 0.43$

The reason for selecting higher volume coefficients is the higher wing loading of the Selene. With a relatively smaller wing this could lead to tail surfaces which are too small.

For the Selene, S = 172 ft², c = 4.92 ft and b = 37.1 ft. With Eqns (8.3) and (8.4) this leads to the following tail sizes:

$$S_h = 37 \text{ ft}^2 \text{ and } S_v = 38 \text{ ft}^2.$$

Step 8.4: The following table summarizes the geometric parameters for the horizontal and for the vertical tail of the Selene. These quantities are in overall agreement with those listed in Tables 8.13 and 8.14 for twin engine propeller driven airplanes:

Parameter	Hor. Tail	Vert. Tail
Aspect ratio, A	3.85	1.0
Leading edge sweep angle	30 deg.	50 deg.
Taper ratio	0.40	0.56
Thickness ratio	0.12	0.15
Airfoil	NACA 0012	NACA 0015
Dihedral angle	0 deg.	not appl.
Incidence angle	variable	0 deg.

Step 8.5: Figure 8.2 presents dimensioned drawings of the proposed empennage arrangement for the Selene.

Step 8.6: Using the control surface ratios selected in Step 8.3, the elevator and rudder outlines are drawn into the planforms of Figure 8.2.

Step 8.7: This step has been omitted to save space.

8.2.2 Jet Transport

Step 8.1: It was decided in sub-section 3.5.2 to employ a conventional configuration. That implies a tail aft arrangement.

Step 8.2: From the general arrangement drawing of the fuselage in Figure 4.7 (p.120) the following moment arms are 'guestimated':

$$x_{h} = 51.0 \text{ ft.}$$
 and $x_{v} = 54.0 \text{ ft.}$

Step 8.3: The following table summarizes volume coefficient and control surface size data for comparable airplanes. The data are taken from Tables 8.7a and b:

Airplane Type	$\overline{\mathtt{v}}_{\mathtt{h}}$	s _e /s _h	\bar{v}_v	s _{r/s} v
Boeing 737-200	1.28	0.27	0.100	0.24
Boeing 737-300	1.35	0.24	0.100	0.31
McDD DC-9-S80	0.96	0.34	0.062	0.39
McDD DC-9-50	1.32	0.38	0.079	0.41
Fokker F-28-4000	1.07	0.20	0.085	0.16
Rombac/BAe 1-11-495	0.86	0.27	0.038	0.28
Averages:	1.14	0.28	0.077	0.30

Figure 8.2 Selene: Empennage Configuration

For the Ourania the following values are selected:

$$\bar{v}_h = 0.80$$
, $s_e/s_h = 0.30$, $\bar{v}_v = 0.06$, $s_r/s_v = 0.35$

The reason for selecting lower volume coefficients is the fact that it was decided in sub-section 3.5.2 to employ 'relaxed' static stability combined with a digital 'fly-by-wire' flight control system.

For the Ourania, S = 1,296 ft², c = 12.5 ft and b = 113.8 ft. Using Eqns (8.3) and (8.4) this leads to the following tail sizes:

$$S_h = 254 \text{ ft}^2 \text{ and } S_v = 164 \text{ ft}^2.$$

Step 8.4: The following table summarizes the geometric parameters for the horizontal and for the vertical tail of the Ourania. These quantities are in overall agreement with those listed in Tables 8.13 and 8.14 for jet transports.

Parameter	Hor. Tail	Vert. Tail
Aspect ratio, A Leading edge sweep angle Taper ratio Thickness ratio Airfoil Dihedral angle	5.0 35 deg. 0.32 0.12 NACA 0012 0 deg.	1.8 45 deg. 0.32 0.15 NACA 0015 not appl.
Incidence angle	variable	0 deg.

The reader should verify with the help of Figure 6.1a (p.150) that the critical Mach number of both tail surfaces is higher than that of the wing.

Step 8.5: Figure 8.3 presents dimensioned drawings of the proposed empennage arrangement for the Selene.

Step 8.6: Using the control surface ratios selected in Step 8.3, the elevator and rudder outlines are drawn into the planforms of Figure 8.3.

Step 8.7: This step has been omitted to save space.

8.2.3 Fighter

Step 8.1: It was decided in sub-section 3.5.3 to employ a conventional, twin boom configuration. That implies a tail aft arrangement.

Figure 8.3 Ourania: Empennage Configuration

Step 8.2: From the general arrangement drawing of the fuselage in Figure 4.9 (p.122) the following moment arms are 'guestimated':

$$x_h = 25.3$$
 ft. and $x_v = 22.0$ ft.

Step 8.3: The following table summarizes volume coefficient and control surface size data for comparable airplanes. The data are taken from Tables 8.9a and b:

Airplane Type	$\overline{\mathtt{v}}_{\mathtt{h}}$	s_e/s_h	$\overline{\mathtt{v}}_{\mathbf{v}}$	s _{r/s} v
Fairchild Rep. A-10A	0.41	0.32	0.060	0.28
Grumman A6A	0.46	1.00*	0.069	0.21
Aermacchi MB339K**	0.40	0.29	0.043	0.26
Vought A7A**	0.22	1.00*	0.130	0.13

*stabilator **single engine fighter

Averages:

0.37

0.31

0.076

0.22

For the Eris the following values are selected:

$$\overline{V}_{h} = 0.25$$
, $S_{e}/S_{h} = 0.31$, $\overline{V}_{v} = 0.06$, $S_{r}/S_{v} = 0.22$

The reason for selecting lower volume coefficients is the fact that it was decided in sub-section 3.5.3 to employ 'relaxed' static stability combined with a digital 'fly-by-wire' flight control system.

For the Eris, S = 787 ft², c = 11.9 ft and b = 68.7 ft. Using Eqns (8.3) and (8.4) this leads to the following tail sizes:

$$S_h = 93 \text{ ft}^2 \text{ and } S_V = 147 \text{ ft}^2.$$

Step 8.4: The following table summarizes the geometric parameters for the horizontal and for the vertical tail of the Eris. These quantities are in overall agreement with those listed in Tables 8.13 and 8.14 for fighters.

Parameter	Hor. Tail	Vert. Tail
Aspect ratio, A	3.6	1.2
Leading edge sweep angle	0 deg.	45 deg.
Taper ratio	1.0	0.55
Thickness ratio	0.10	0.15
Airfoil	NACA 0010	NACA 0015
Dihedral angle	0 deg.	not appl.
Incidence angle	0 deg.	0 deg.

The reader should verify with the help of Figure 6.1a (p.150) that the critical Mach number of both tail surfaces is higher than that of the wing.

Step 8.5: Figure 8.4 presents dimensioned drawings of the proposed empennage arrangement for the Eris.

Step 8.6: Using the control surface ratios selected in Step 8.3, the elevator and rudder outlines are drawn into the planforms of Figure 8.4.

Step 8.7: This step has been omitted to save space.

Figure 8.4 Eris: Empennage Configuration

