

Мозаїка

Сальма планує розфарбувати глиняну мозаїку на стіні. Мозаїка являє собою $N \times N$ сітку, що складається з N^2 спочатку нерозфарбованих 1×1 квадратних плиток. Рядки мозаїки пронумеровані від 0 до N-1 зверху вниз, і стовпці пронумеровані від 0 до N-1 зліва направо. Плитка в рядку i і стовпці j ($0 \le i < N$, $0 \le j < N$) позначається (i,j). Кожна плитка також повинна бути зафарбована білим (позначається 0) або чорним (позначається 1) кольором.

Щоб розфарбувати мозаїку, Сальма спочатку вибирає два масиви X і Y довжини N, кожне з яких складається зі значень 0 і 1 таких, що X[0]=Y[0]. Вона розфарбовує плитки самого верхнього рядка (рядок 0) відповідно до масиву X так, що колір плитки (0,j) дорівнює X[j] ($0 \le j < N$). Вона також розфарбовує плитки самого лівого стовпця (стовпець 0) відповідно до масиву Y так, що колір плитки (i,0) дорівнює Y[i] ($0 \le i < N$).

Потім вона повторює наступні кроки, доки всі плитки не зафарбуються:

- Вона знаходить будь-яку *незафарбовану* плитку (i,j) таку, що її верхній сусід (плитка (i-1,j)) і лівий сусід (плитка (i,j-1)) обидва вже пофарбовані.
- Потім вона зафарбовує плитку (i,j) в чорний колір, якщо обидва ці сусіди білі; інакше вона зафарбовує плитку (i,j) в білий колір.

Можна показати, що кінцеві кольори плитки не залежать від порядку, у якому Сальма їх розфарбовує.

Ясмін дуже цікавиться кольорами плиток у мозаїці. Вона ставить Сальмі Q запитів, пронумерованих від 0 до Q-1. У запиті k ($0 \le k < Q$), Ясмін визначає підпрямокутник мозаїки за допомогою:

- ullet Самого верхнього рядка T[k] і самого нижнього рядка B[k] ($0 \leq T[k] \leq B[k] < N$),
- ullet Самого лівого стовпця L[k] і самого правого стовпця R[k] ($0 \leq L[k] \leq R[k] < N$).

Відповіддю на запит є кількість чорних плиток у цьому підпрямокутнику. Зокрема, Сальма повинна знайти, скільки плиток (i,j) існує таких, що $T[k] \leq i \leq B[k]$, $L[k] \leq j \leq R[k]$, а колір плитки (i,j) — чорний.

Напишіть програму, яка відповідає на запити Ясмін.

Деталі реалізації

Ви повинні реалізувати наступну функцію.

```
std::vector<long long> mosaic(
    std::vector<int> X, std::vector<int> Y,
    std::vector<int> T, std::vector<int> B,
    std::vector<int> L, std::vector<int> R)
```

- X, Y: масиви довжиною N, що описують кольори плиток у верхньому рядку та лівому стовпці відповідно.
- T, B, L, R: масиви довжини Q, що описують запити, які ставить Ясмін.
- ullet Функція має повернути масив C довжини Q, такий, що C[k] дає відповідь на запит k ($0 \le k < Q$).
- Ця функція викликається рівно один раз для кожного тесту.

Обмеження

- $1 \le N \le 200\,000$
- 1 < Q < 200000
- ullet $X[i] \in \{0,1\}$ і $Y[i] \in \{0,1\}$ для кожного i такого, що $0 \leq i < N$
- X[0] = Y[0]
- ullet $0 \leq T[k] \leq B[k] < N$ і $0 \leq L[k] \leq R[k] < N$ для кожного k такого, що $0 \leq k < Q$

Підзадачі

Підзадачі	Балів	Додаткові обмеження
1	5	$N \leq 2; Q \leq 10$
2	7	$N \leq 200; Q \leq 200$
3	7	$T[k] = B[k] = 0$ (для кожного k такого, що $0 \leq k < Q$)
4	10	$N \leq 5000$
5	8	$X[i] = Y[i] = 0$ (для кожного i такого, що $0 \leq i < N$)
6	22	$T[k] = B[k]$ і $L[k] = R[k]$ (для кожного k такого, що $0 \leq k < Q$)
7	19	$T[k] = B[k]$ (для кожного k такого, що $0 \leq k < Q$)
8	22	Без додаткових обмежень

Приклад

Розглянемо наступний виклик.

```
mosaic([1, 0, 1, 0], [1, 1, 0, 1], [0, 2], [3, 3], [0, 0], [3, 2])
```

Цей приклад показано на малюнках нижче. Ліворуч показано кольори плиток мозаїки. Середній і правий малюнки показують підпрямокутники, які Ясмін запитала у першому та другому запиті відповідно.

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

Відповіді на запит (тобто кількість одиниць у заштрихованих прямокутниках) - 7 і 3 відповідно. Отже, функція має повернути [7,3]

Приклад градера

Формат вхідних даних:

```
N
X[0] X[1] ... X[N-1]
Y[0] Y[1] ... Y[N-1]
Q
T[0] B[0] L[0] R[0]
T[1] B[1] L[1] R[1]
...
T[Q-1] B[Q-1] L[Q-1] R[Q-1]
```

Формат вихідних даних:

```
C[0]
C[1]
...
C[S-1]
```

Тут S — це довжина масиву C, яку повертає mosaic.