

Statistical power in missing person cases

Lecture 1: Do we have enough data?

Magnus Dehli Vigeland August 18th 2021

PROYECTO DE COOPERACIÓN TRIANGULAR. ARGENTINA - COLOMBIA - UNIÓN EUROPEA.

Overview

1. Introduction to missing person cases

- Motivating case: Missing grandchildren of Argentina
- Terminology
- Genetics
- Likelihood ratio
- Software

Power

- Inclusion power
- Exclusion power
- Power plots
- Examples from BNDG

How I got involved

Forensic Science International: Genetics

Volume 31, November 2017, Pages 57-66

Prioritising family r

missing person case

combining the statis

Magnus D. Vigeland ^a [△] [™], Franco L. Marsico

Mariana

Franco

Research paper

Evaluating the statis identification, exem grandchildren of Ar

Daniel Kling ^a $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Thore Egeland ^b $\stackrel{\boxtimes}{\sim}$, Maria

Forensic Science International: Genetics

Volume 49, November 2020, 102376

基

2

Forensic Science International: Genetics

Volume 54, September 2021, 102519

inclusion Research paper

Making decisions in missing person identification cases with low statistical power

Franco L. Marsico ^a 🌣 , Magnus D. Vigeland ^b, Thore Egeland ^c, Mariana Herrera Piñero ^a

Thore

Daniel

Argentina 1976 - 1983

- Military dictatorship
- *Dirty war* against left-wing guerrillas
- Opponents killed or disappeared
 - counts: 20,000 30,000

- 500 children abducted
 - kidnapped with their parents, or born in captivity
 - parents killed
 - raised by police or military families.

The missing grandchildren

- Grandmothers of Plaza de Mayo
 - formed in 1977
 - weekly marches ever since
- 1984: First grandchild recovered
 - HLA typing + blood groups
- 1989: National genetic data bank

2021: 130 reunifications so far

Missing person cases: Basics

Reference family

Currently in BNDG

- ~300 reference fams
- ~10 000 POIs

DNA-based identification

- DNA-based evidence
 - autosomal markers
 - mtDNA
 - Y chromosome

- Forensic markers:
- standard kits, 15 24 STRs
- up to 50 alleles
- mostly unlinked

- Simplest when
 - available DNA from the missing person
 - available DNA from parents

Similar to standard paternity cases

Argentina: Parents usually unavailable

The likelihood ratio (LR)

$$LR = \frac{P(\text{data} \mid H_1)}{P(\text{data} \mid H_2)}$$

Positive match if LR > 10,000*

Likelihood computations

Software

Familias

- Original publication: Egeland, Mostad et al, 2000
- Currently maintained by Daniel Kling
- Used by BNDG

R/ped suite

- Very flexible
- Great for plotting
- The latest research!
- (but requires some programming)

R

QuickPed

- Online tool for creating pedigrees
- Handy for reports and presentations

The **ped suite**

A collection of packages for pedigree analysis in R

Home page: https://magnusdv.github.io/pedsuite/

Academic Press, 2021

Available in most online book stores, Amazon etc.

Chapter 6

- Kinship testing
- Missing person cases

QuickPed

https://magnusdv.shinyapps.io/quickped

A free online tool for building pedigrees

Quick

demo!

Questions

Coffee break

Overview

1. Introduction to missing person cases

- Motivating case: Missing grandchildren of Argentina
- Terminology
- Genetics
- Likelihood ratio
- Software

Power

- Inclusion power
- Exclusion power
- Power plots
- Examples from BNDG

Where we left off...

$$LR = \frac{P(\text{data} \mid H_1)}{P(\text{data} \mid H_2)}$$

Positive match if LR > 10,000*

Statistical power: Brief recap

Classical hypothesis testing

 H_0 : P(head) = 0.5 H_A : P(head) = 0.7

- Procedure:
 - Flip 30 times
 - Reject H_0 if #heads ≥ 20
 - (Gives significance level $\alpha \approx 0.05$)

If the coin is fake, what is the probability that we detect it?

$$power = P(\#heads \ge 20 \mid H_A)$$

In this case: power = <u>0.73</u>

Power in missing person cases

- Two complementary measures of power
 - Inclusion: The probability of recognizing the true MP
 - Exclusion: The probability of excluding an unrelated POI
- Note: Computed <u>before</u> POI is genotyped!

Inclusion power (IP)

If POI = MP: Do we have enough data to detect it?

$$IP_{10000} = P(LR > 10,000 \mid POI = MP)$$

also known as the exceedence probability $E_{
m 10000}$

- Computed by simulation
 - Unconditional → <u>average</u> for pedigrees of this type
 - Conditional → probability for this particular case

Depends on

- Reference individuals
- Reference genotypes
- Number of markers
- Allele frequencies

Conditional sims: first done in linkage analysis

- Power analysis for linkage requires simulation
 - conditional on disease genotype
 - conditional on the distance to disease locus
- Weeks, Ott, Lathrop (1990)
 - SLINK: a general simulation program for linkage analysis

Not for the faint of heart...

Inclusion power in R


```
library(forrel)
 ref = readFam(...)
 missingPersonIP(ref, missing = "MP",
                  nsim = 500, seed = 42,
                  threshold = 10000)
Using all 20 attached markers
Simulating 500 profiles...done
Computing likelihood ratios...done
Total time used: 9.87 secs
Mean LR: 65947.04
Mean log10(LR): 3.121
Estimated power:
  P(LR >= 10000) = 0.248
```


Exclusion power (EP)

If POI ≠ MP: What is the probability of mismatch in at least 1 marker?

$$EP = P(\text{exclusion} \mid POI \text{ unrelated})$$

Can be computed exactly!

The exclusion power formula

Claim: H_1 True: H_2

Single marker:
$$EP_i = P(\text{mismatch in } H_1 \text{ for marker } i \mid H_2)$$

$$= \sum_g I(g \mid H_1) \cdot P(g \mid H_2)$$
of POI
$$= \begin{cases} 1, \text{ if } g \text{ incompat with } H_1 \\ 0, \text{ otherwise} \end{cases}$$
Total power: $EP = 1 - \prod (1 - EP_i)$

Exclusion power in R

> missingPersonEP(ref, missing = "MP")

Potential mismatches: 8 (D3S1358, D7S820, CSF1PO,

PENTA_D, VWA, TPOX, D19S433, D2S1338)

Expected mismatches: 1.679

P(at least 1 mismatch): 0.863

Power plot

Back to Argentina ...

Power assessment of the BNDG database

- Selection of ~200 reference families
- For each family: Compute IP_{10000} and EP

Excellent power

- 68 families with both EP > 99% and $IP_{10000} > 99\%$
- Included ~30 cases with parental data

$$IP_{10000} = 100 \%$$

 $EP = 100 \%$

Results

Low power despite many typed

Results

Good power, but exclusion impossible

Overall

- 34% of the unsolved families had poor power
- Reasons:
 - few markers
 - few typed relatives

Ongoing actions:

- retyping 1000 individuals
- exhumation of informative relatives

Next week

Lecture 2: Who should be exhumed?

Prioritization problems in missing person cases