Weather Data Analysis

Submitted By: Animesh Chandra Srivastava

Roll No: 202401100300042

1. Introduction

Weather plays a crucial role in various aspects of life, including agriculture, transportation, and disaster management. Analyzing weather data helps in understanding climate patterns and making accurate predictions for better decision-making. This project focuses on collecting, cleaning, and analyzing weather data to extract meaningful insights.

Objective:

- Collect and preprocess weather data from reliable sources.
- Handle missing values, outliers, and inconsistencies in the dataset.
- Perform exploratory data analysis to identify trends and patterns.
- Build predictive models for weather forecasting.

2. Methodology

2.1 Data Collection

Weather data was gathered from meteorological sources, including government weather agencies, APIs, and historical datasets.

2.2 Data Cleaning

• Handling Missing Values: Used interpolation, mean/mode imputation, and time-series methods.

- Removing Duplicates: Ensured data integrity by eliminating redundant entries.
- **Handling Outliers:** Applied statistical techniques like Z-score and IQR for anomaly detection.

2.3 Data Transformation

- Normalization & Scaling: Applied Min-Max Scaling and Standardization.
- Encoding Categorical Variables: Converted categorical weather descriptions into numerical values using One-Hot Encoding.
- **Feature Engineering:** Created additional features such as humidity index, heat index, and temperature deviation trends.

2.4 Model Selection & Training

- Compared machine learning models such as Linear Regression,
 Decision Trees, Random Forest, and LSTMs (Long Short-Term
 Memory Networks) for time-series forecasting.
- Evaluated models based on RMSE, MAE, and R-squared metrics.

3. Code Implementation

The implementation was carried out using the following steps:

- 1. Load the dataset from a CSV file containing weather data.
- 2. **Handle missing values** using forward fill or statistical imputation methods.
- 3. **Encode categorical variables** like weather conditions into numerical form.
- 4. **Scale numerical data** to bring temperature, humidity, and wind speed into a uniform range.

- 5. **Split data into training and testing sets** to evaluate model performance.
- 6. **Train a machine learning model** such as Random Forest or LSTM for weather prediction.
- 7. **Evaluate the model** using metrics like Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).
- 8. **Generate insights** by identifying seasonal trends and anomalies in the data.

4. Output/Results

- Improved Data Quality: Missing values and outliers were addressed effectively.
- Optimized Model Performance: The Random Forest model achieved a significant improvement in temperature prediction accuracy.
- Pattern Identification: Seasonal trends and anomalies in temperature and humidity were successfully detected.

```
[2] import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('/content/weather_data.csv')
print(df.head()) # Display the first few rows of the DataFrame

■ Date Temperature Rainfall Humidity
0 2024-01-01 26.645538 33.236744 83.786199
1 2024-01-02 26.179277 42.386321 47.606538
2 2024-01-03 20.306999 12.751054 71.562863
3 2024-01-04 9.232039 6.346388 70.787966
4 2024-01-05 14.565188 45.768719 53.309877
```

[4] # Get summary statistics of numerical variables
 print(df.describe())

		Temperature	Rainfall	Humidity
	count	20.000000	20.000000	20.000000
	mean	15.197606	26.512254	54.217730
	std	12.168381	13.638843	18.427857
	min	-3.657570	6.346388	20.060225
	25%	7.236562	14.085247	43.567149
	50%	17.001724	28.873570	50.898195
	75%	26.295843	35.445143	70.247543
	max	32.922133	45.768719	83.786199

Distribution of Temperature

• 5. References & Credits

- **Data Source:** [weather_data.csv]
- Libraries Used: Pandas, NumPy, Scikit-Learn, TensorFlow/Keras