lab3.md 10/24/2022

Lab 3 Writeup

My name: Zuo, Qikun

My Student number: 201830013

This lab took me about 3 hours to do. I did attend the lab session.

1. Program Structure and Design:

In wrapping_integers.cc, we write wrap() and unwrap() to implement the conversion between sequence numbers and absolute sequence numbers. The relationship between sequence numbers and absolute sequence numbers is: abs_seqno + isn (mod 1 << 32) = seqno. So the implementation of the function wrap() is easy: just add abs_seqno and isn together according to the operator overloaded in the class WrappingInt32. Note that a seqno n corresponds to many absolute seqnos, and we need to find the absolute seqno that is closest to the checkpoint. Thus to implement function unwrap(), we could first find the seqno of the checkpoint, i.e., checkpoint + isn (mod 1 << 32). And then we need to discuss the quantitative relationship between n and the seqno of the checkpoint to determine the distance between the absolute seqno of n and checkpoint. Several different cases and edge conditions should be taken into consideration in order to make the result strict.

In tcp_receiver.cc, we write segment_received() to: (1)listen to 'syn' to record the beginning of a stream, the ISN of the stream (i.e., seg.header().seqno), and the FIN signal; (2)calculate the checkpoint, the absolute seqno, and the stream index of the stream; (3)use the function push_substring() of the reassembler to reassemble the byte stream. Writing function akcno() and window_size() is easy: just use the right member functions of the class Bytestream. And the ISN and FIN signal should also be taken into consideration when calculating the acknowledgment number (ackno).

2. Implementation Challenges:

The hardest part of the lab is to unwrap the seqno, i.e., to convert the seqno into the absolute seqno according to the given checkpoint. Several different cases and edge conditions should be taken into consideration in order to make the result strict. We drew a picture of the mapping relationship between the absolute seqnos and seqnos to make the conversion algorithm clear and comprehensible.

3. Remaining Bugs:

lab3.md 10/24/2022

<pre>cs144@cs144vm:~/lab3-SophisRousseau/sponge/build\$ m</pre>	ake check_	lab3
[100%] Testing the TCP receiver		
Test project /home/cs144/lab3-SophisRousseau/sponge	/build	
Start 1: t_wrapping_ints_cmp		
1/26 Test #1: t_wrapping_ints_cmp	Passed	0.00 sec
Start 2: t_wrapping_ints_unwrap		
2/26 Test #2: t_wrapping_ints_unwrap	Passed	0.00 sec
Start 3: t_wrapping_ints_wrap		
3/26 Test #3: t_wrapping_ints_wrap	Passed	0.00 sec
Start 4: t_wrapping_ints_roundtrip		
4/26 Test #4: t_wrapping_ints_roundtrip	Passed	0.14 sec
Start 5: t_recv_connect		
5/26 Test #5: t_recv_connect	Passed	0.00 sec
Start 6: t_recv_transmit		
6/26 Test #6: t_recv_transmit	Passed	0.04 sec
Start 7: t_recv_window		
7/26 Test #7: t_recv_window	Passed	0.00 sec
Start 8: t_recv_reorder		
8/26 Test #8: t_recv_reorder	Passed	0.00 sec
Start 9: t_recv_close		
9/26 Test #9: t_recv_close	Passed	0.00 sec
Start 10: t_recv_special		
10/26 Test #10: t_recv_special	Passed	0.00 sec
Start 17: t_strm_reassem_single		
11/26 Test #17: t_strm_reassem_single	Passed	0.00 sec
Start 18: t_strm_reassem_seq		
12/26 Test #18: t_strm_reassem_seq	Passed	0.00 sec
Start 19: t_strm_reassem_dup		
13/26 Test #19: t_strm_reassem_dup	Passed	0.01 sec
Start 20: t_strm_reassem_holes		
14/26 Test #20: t_strm_reassem_holes	Passed	0.00 sec
Start 21: t_strm_reassem_many		
15/26 Test #21: t_strm_reassem_many	Passed	0.37 sec
Start 22: t_strm_reassem_overlapping		0.04
16/26 Test #22: t_strm_reassem_overlapping	Passed	0.01 sec
Start 23: t_strm_reassem_win	D	0.43
17/26 Test #23: t_strm_reassem_win	Passed	0.42 sec
Start 24: t_strm_reassem_cap	D	0.07
18/26 Test #24: t_strm_reassem_cap	Passed	0.07 sec
Start 25: t_byte_stream_construction		0.00
19/26 Test #25: t_byte_stream_construction	Passed	0.00 sec
Start 26: t_byte_stream_one_write	D	0.00
20/26 Test #26: t_byte_stream_one_write	Passed	0.00 sec
Start 27: t_byte_stream_two_writes	D	0.00
21/26 Test #27: t_byte_stream_two_writes	Passed	0.00 sec
Start 28: t_byte_stream_capacity	Passed	0.36 sec
22/26 Test #28: t_byte_stream_capacity	Passea	0.36 SEC
Start 29: t_byte_stream_many_writes	Danasa	0.01
23/26 Test #29: t_byte_stream_many_writes	Passed	0.01 sec
Start 52: t_address_dt	Pacerd	E 04
24/26 Test #52: t_address_dt	Passed	5.04 sec
Start 53: t_parser_dt 25/26 Test #53: t parser dt	Passed	0.00 sec
25/26 Test #53: t_parser_dt Start 54: t_socket_dt	rassea	0.00 Sec
26/26 Test #54: t_socket_dt	Passad	0.01 sec
20/20 Test #34. t_socket_ut	rassed	0.01 Sec
100% tests passed, 0 tests failed out of 26		
100% tests passed, & tests raffed out of 26		
Total Test time (real) = 6.62 sec		
[100%] Built target check_lab3		
[=====================================		

Until now, no bugs are found in the code submitted.