Aggregate Demand and Sovereign Debt Crises

Francisco Roldán

New York University

Sovereign debt crises associated with deep recessions

 \cdot Conventional view: low output \implies high spreads

Sovereign debt crises associated with deep recessions

 \cdot Conventional view: low output \implies high spreads

1

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- Huidrom et al. (2019): weak fiscal positions erode consumption demand
- Large literature about costs of sovereign default silent about costs of default risk
 - · Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - Saving rate in the crisis?
 - · Consequences?
 - · Household sector manages substantial wealth (avg 96% of GDP) Spanish data
 - Substantial fraction of government debt held by residents

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- · Huidrom et al. (2019): weak fiscal positions erode consumption demand
- Large literature about costs of sovereign default silent about costs of default risk
 - Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - Saving rate in the crisis?
 - · Consequences?
 - Household sector manages substantial wealth (avg 96% of GDP)
 - · Substantial fraction of government debt held by residents Spanish data

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- · Huidrom et al. (2019): weak fiscal positions erode consumption demand
- Large literature about costs of sovereign default silent about costs of default risk
 - Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - · Saving rate in the crisis?
 - · Consequences?
 - Household sector manages substantial wealth (avg 96% of GDP)
 - Substantial fraction of government debt held by residents

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- · Huidrom et al. (2019): weak fiscal positions erode consumption demand
- Large literature about costs of sovereign default silent about costs of default risk
 - · Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - · Saving rate in the crisis?
 - · Consequences?
 - Household sector manages substantial wealth (avg 96% of GDP)
 - Substantial fraction of government debt held by residents

THIS PAPER

- I propose a model of sovereign debt crises
 - · Prominent role for household consumption/savings decision
 - · Heterogeneous domestic savers can **choose** to be exposed to government debt
 - Endogenous wealth distribution that interacts with gov't default choice
- Mode
 - Defaults create
 - Aggregate income losses

— TFP costs of default

Redistributive effects

- Domestic debt holdings
- ... Those who benefit from redistribution: high MPCs from current income, low from future income
- Economy looks riskier when the default probability increases
 - Default risk interacts with precautionary behavior

THIS PAPER

- I propose a model of sovereign debt crises
 - · Prominent role for household consumption/savings decision
 - · Heterogeneous domestic savers can **choose** to be exposed to government debt
 - Endogenous wealth distribution that interacts with gov't default choice
- · Model
 - · Defaults create
 - Aggregate income losses ← TFP costs of default
 - \cdot Redistributive effects \longleftarrow Domestic debt holdings
 - ... Those who benefit from redistribution: high MPCs from current income, low from future income
 - · Economy looks riskier when the default probability increases
 - Default risk interacts with precautionary behavior

THIS PAPER

- I propose a model of sovereign debt crises
 - · Prominent role for household consumption/savings decision
 - · Heterogeneous domestic savers can **choose** to be exposed to government debt
 - · Endogenous wealth distribution that interacts with gov't default choice

How is sovereign risk costly? Feedback loop between spreads and output \uparrow Spreads $\Longrightarrow \downarrow$ Demand $\Longrightarrow \downarrow$ Output

- Model
 - · Defaults create
 - Aggregate income losses ← TFP costs of default

- Redistributive effects
- ← Domestic debt holdings
 - ... Those who benefit from redistribution: high MPCs from current income, low from future income
- Economy looks riskier when the default probability increases
 - · Default risk interacts with precautionary behavior

MAIN FINDINGS

- Sovereign risk makes the response of output to shocks
 - Nonlinear
 - · State-dependent
- Feedback effect explains significant portion of the crisis
 - · 20% 40% of output contraction attributable to default
- Large welfare effects
 - · Volatility of output and consumption 25% and 55% lower without default
 - · Unemployment halved
 - Households would give up 10% of permanent consumption to avoid defaults
- New light on Aguiar-Gopinath facts
 - · Amplification of negative shocks, demand-driven recessions
 - In downturns volatility of C > volatility of Y

RELATED LITERATURE

- Sovereign risk affecting the supply side through finance
 Neumeyer and Perri (2005), Bocola (2016), Arellano, Bai, and Mihalache (2018), Balke (2017)
- Domestic debt and default incentives
 Gennaioli, Martin, and Rossi (2014), Mengus (2014), Mallucci (2015), Pérez (2016), Sosa-Padilla (2018),
 D'Erasmo and Mendoza (2016), Ferriere (2016), ...
- Sovereign risk and fiscal austerity
 Cuadra, Sánchez, and Sapriza (2010), Romei (2015), Bianchi, Ottonello, and Presno (2016), Anzoategui (2017),
 Philippon and Roldán (2018)
- Shocks affecting aggregate demand through redistribution Auclert (2017), Eggertsson and Krugman (2012), Korinek and Simsek (2016), ...

ROADMAP

- Evidence
- · Description of Model
- Model Results
- Simulations
- Crises

MAIN SPECIFICATION

· Regress outcome variable Q_{jt} on country j's spread

$$Q_{jt} = \beta \Delta Spread_{jt} + \gamma X_{jt} + \delta_t + \mu_j + \epsilon_{jt}$$

where $Q_{jt} = \log Y_{jt}, \log C_{jt}$

• IV strategy (based on Martin and Philippon, 2017)

$$\Delta Spread_{jt} = \underbrace{\phi B_{jo} + \delta_t}_{Z_{jt}} + \eta_{jt}$$

Data for 11 European countries between 2010Q1 – 2013Q1
 Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain

FEEDBACK

	Dependent variable:			
	$\log Y_{jt}$ (1)	$\log C_{jt}$ (2)	log Y _{jt} (3)	log <i>C_{jt}</i> (4)
Δ Spread $_{jt}$	-0.008*** (0.001)	-0.013*** (0.001)		
Δ Spread $_{jt}$ (IV)			-0.006** (0.002)	-0.010*** (0.003)
Country + Time FE	√	√	√	√
Observations	143	143	143	143
Adj. R ²	0.772	0.784	0.765	0.776

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The Cycle is the Trend

GENERAL DESCRIPTION

- · Small open economy with
 - Uninsurable idiosyncratic income risk + Incomplete markets
 - Default risk
 - · Nominal rigidities
- Actors:
 - A government
 - · Issues long-term debt, purchases goods, decides repayment
 - Households
 - · Consume, work, save in the gov't bond + risk-free debt
 - · Differ in 'cash' holdings, idiosyncratic income shock
 - Firms
 - · Produce the goods with labor, subject to wage rigidities
 - Foreigners
 - · Lend to the government and to the private sector
 - Price all assets

Decisions within a period
Dashed ellipses encircle simultaneous decisions

GOVERNMENT POLICY

At each t, the government

- Chooses repayment $h_t \in \{1, 1 \hbar\}$
- Follows fiscal rules for new issuances $B'(S_t)$ and spending $G(S_t)$
 - · Can depend on full state: $(B_t, \lambda_t, \xi_t, \zeta_t, Z_t)$
- Must satisfy its budget constraint

$$\underbrace{q_t^g}_{\text{debt price}}\underbrace{\left(B_t' - (1-\rho)B_t\right)}_{\text{new debt issued}} + \underbrace{T_t}_{\text{lump-sum}} + \underbrace{\tau w_t L_t}_{\text{payroll tax}} = \underbrace{G_t}_{\text{spending}} + \underbrace{\kappa B_t}_{\text{coupor}}$$

 $\rightarrow T_t$ summarizes a default / austerity tradeoff

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - Price all assets

$$q^{h}(S) = \frac{1}{1 + r^{\star}}$$

$$q^{g}(S) = \frac{1}{1 + r^{\star}} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1 - \xi')\kappa}_{coupon} + \underbrace{(1 - \rho)}_{depreciation} \underbrace{(1 - \hbar \mathbb{1}_{(\zeta=1 \cap \zeta' \neq 1)})}_{potential \ haircut} \underbrace{q^{g}(S')}_{resale \ price} \mid S \right]$$

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{(1-\rho)}_{depreciation} \underbrace{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}_{potential\ haircut} \underbrace{q^{g}(S')}_{resale\ price} \right] S$$

- Firms
 - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)}\right) \hspace{1cm} Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)}\right) \hspace{1cm} \textcolor{blue}{w_t \geq \bar{w}}$$

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{(1-\rho)}_{depreciation} \underbrace{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}_{potential\ haircut} \underbrace{q^{g}(S')}_{resale\ price} \right] S$$

- Firms
 - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad \mathbf{W}_t \geq \overline{\mathbf{W}}$$

- Households
 - Access to both assets with borrowing limits, inelastic labor supply
- Approximation: $\lambda_t = \log \mathcal{N}(\mu_t, \Sigma_t)$. So $S = (B, \mu, \sigma, \xi, \zeta, z)$

· Given govt's policies, aggregates, and evolution of the state

$$\begin{split} v(\omega,\epsilon,\mathsf{S})^{\frac{\psi-1}{\psi}} &= \max_{c,a',b'} (1-\beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{a'} + R_{\mathsf{S},\mathsf{S'}} \underline{b'},\epsilon',\mathsf{S'}) \right)^{1-\gamma} \middle| \omega,\epsilon,\mathsf{S} \right]^{\frac{1}{\psi(1-\gamma)}} \\ &\text{subject to } p_{\mathsf{C}}(\mathsf{S})c + q^h(\mathsf{S})\underline{a'} + q^g(\mathsf{S})\underline{b'} = \omega + \ell(\mathsf{S})\epsilon - T(\mathsf{S}) \\ &\ell(\mathsf{S}) = w(\mathsf{S})L(\mathsf{S})(1-\tau) + \Pi(\mathsf{S}) \\ &R_{\mathsf{S},\mathsf{S'}} = \mathbb{1}_{(\varsigma'=1)}\kappa + (1-\rho)\left(1-\hbar\mathbb{1}_{(\varsigma=1)(\varsigma'\neq1)}\right)q^g(\mathsf{S'}) \\ &a' \geq \bar{a}; \qquad b' \geq \mathsf{O} \\ &\mathsf{S'} = \Psi(\mathsf{S},\xi',z',h') \\ &\mathsf{Exog LoMs for } (\epsilon,\xi,z); \mathsf{prob of } h' \mathsf{ given } (\mathsf{S},\xi',z') \end{split}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{\mathbf{a}' + R_{\mathbf{S}, \mathbf{S'}} \mathbf{b'}}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{1}{\psi}(1 - \gamma)}$$
subject to $p_{\mathcal{C}}(\mathbf{S})c + q^{h}(\mathbf{S})\mathbf{a'} + q^{g}(\mathbf{S})\mathbf{b'} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^{g}(\mathbf{S'})$$

In crisis times

$$\pi \uparrow \Longrightarrow \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1 - \pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \qquad \leftarrow \text{Aggregate effect}$$

$$q^g \downarrow \Longrightarrow \omega \downarrow \text{ for all} \qquad \leftarrow \text{Distributional effect}$$

$$\pi \Rightarrow \omega \left(R_{S,S'}, sdf' \mid S\right) \downarrow \qquad \leftarrow \text{Savings technology' effect}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi - 1}{\psi}} = \max_{c, a', b'} (1 - \beta) c^{\frac{\psi - 1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{\mathbf{a}' + R_{\mathbf{S}, \mathbf{S}'} \mathbf{b'}}, \epsilon', \mathbf{S}') \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{1}{\psi}(1 - \gamma)}$$
subject to $p_{c}(\mathbf{S})c + q^{h}(\mathbf{S})\mathbf{a'} + q^{g}(\mathbf{S})\mathbf{b'} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S}'} = \mathbb{1}_{(\zeta' = 1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta = 1)(\zeta' \neq 1)} \right) q^{g}(\mathbf{S}')$$

In crisis times

$$\pi \uparrow \Longrightarrow \mathbb{E} [w'L'] = \pi \mathbb{E} [w'L'|\zeta' \neq 1] + (1 - \pi) \mathbb{E} [w'L'|\zeta' = 1] \downarrow \qquad \leftarrow \text{Aggregate effect}$$

$$\leftarrow \text{Pistributional effect}$$

$$\leftarrow \text{Savings technology' effect}$$

 \leftarrow Savings technology effect

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{a'} + R_{\mathbf{S}, \mathbf{S'}} \underline{b'}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi(1 - \gamma)}{\psi}}$$
subject to $p_{c}(\mathbf{S})c + q^{h}(\mathbf{S})\underline{a'} + q^{g}(\mathbf{S})\underline{b'} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq1)} \right) q^{g}(\mathbf{S'})$$

In crisis times

$$\pi \uparrow \Longrightarrow \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1 - \pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \qquad \leftarrow \text{Aggregate effect}$$

$$\therefore q^g \downarrow \Longrightarrow \omega \downarrow \text{ for all} \qquad \leftarrow \text{Distributional effect}$$

$$\therefore \text{cov}(R_{S,S'}, sdf' \mid S) \downarrow \qquad \leftarrow \text{`Savings technology' effect}$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{W}\right)^{\frac{1}{1-\alpha_{N}}}$$

$$\begin{aligned} \mathbf{Y}_{N}^{d} &= C \varpi \left(\frac{p_{N}}{p_{C}} \right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}} \mathbf{G} \\ \mathbf{Y}_{N}^{s} &= L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)} \Delta \right) \\ L_{N}^{d} &= \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}} \right)^{\frac{1}{1 - \alpha_{N}}} \end{aligned}$$

$$\begin{aligned} Y_{N}^{d} &= C \varpi \left(\frac{p_{N}}{p_{C}} \right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}} G \\ Y_{N}^{s} &= L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)} \Delta \right) \\ L_{N}^{d} &= \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}} \right)^{\frac{1}{1 - \alpha_{N}}} \end{aligned}$$

- $\cdot C \downarrow \Longrightarrow p_N \downarrow \Longrightarrow w \downarrow$
- Wage rigidity creates price stickiness

THE GOVERNMENT'S OBJECTIVE

- B'_t and G_t are given functions of S_t
- · Default / Repayment is an optimal choice
 - · Utilitarian objective

$$W(S) = \int v(s, S) d\lambda_S(s)$$

- In period t, observe S_{t-1} and (ξ_t, z_t)
- · Gov't understands $S_t = \Psi(S_{t-1}, \xi_t, Z_t, \zeta_t)$
- Default iff

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{de}}$$

where
$$\xi_t^{\mathrm{def}} \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

THE GOVERNMENT'S OBJECTIVE

- B'_t and G_t are given functions of S_t
- · Default / Repayment is an optimal choice
 - Utilitarian objective

$$\mathcal{W}(\mathsf{S}) = \int v(\mathsf{s},\mathsf{S}) d\lambda_{\mathsf{S}}(\mathsf{s})$$

- But B_t , ζ_t are part of S_t !
- · Gov't understands $\mathsf{S}_t = \Psi(\mathsf{S}_{t-1}, \xi_t, \mathsf{Z}_t, \zeta_t)$ · Distribution
- Default iff

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{de}}$$

where
$$\xi_t^{\mathrm{def}} \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

THE GOVERNMENT'S OBJECTIVE

- B'_t and G_t are given functions of S_t
- · Default / Repayment is an optimal choice
 - Utilitarian objective

$$W(S) = \int v(s, S) d\lambda_S(s)$$

- In period t, observe \mathbf{S}_{t-1} and (ξ_t, z_t)
- · Gov't understands $S_t = \Psi(S_{t-1}, \xi_t, Z_t, \zeta_t)$ Distribution
- · Default iff

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,\mathsf{Z}_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,\mathsf{Z}_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{def}}$$

where
$$\xi_t^{\mathrm{def}} \stackrel{iid}{\sim} \mathcal{N}(\mathsf{0}, \mathsf{1})$$

EQUILIBRIUM CONCEPT

Definition

Given fiscal rules B'(S), G(S), an equilibrium consists of

- A government policy $h'(S, \xi', z'), T(S)$
- Policy functions $\{\phi_a, \phi_b, \phi_c\}$ (s, S)
- Prices $p_c(S)$, $p_N(S)$, w(S), $q^g(S)$. Quantities $L_N(S)$, $L_T(S)$, $\Pi(S)$, T(S)
- Laws of motion $\mu'(S, \xi', z'; h), \sigma'(S, \xi', z'; h)$

such that

- The policy functions solve the household's problem
- · The laws of motion are consistent with the policy functions
- Firms maximize profits, $w(S) \ge \bar{w}$, markets clear Market Clearing
- h' maximizes $\mathcal{W}(\Psi(S,\xi',z',\cdot))$ for gov't, taxes respect budget constraint.

OBJECTIVE FUNCTION

Anticipated objective function Blue: repayment, red: default

TRANSFERS

Transfers
Blue: repayment, red: default

PRICE OF DEBT

UNEMPLOYMENT

CALIBRATION

Description	Parameter	Value	Source
Risk-free rate	r*	4% ann.	Anzoategui (2017)
Haircut in case of default	\hbar	50%	Philippon and Roldán (2018)
TFP loss in case of default	Δ	10%	Philippon and Roldán (2018)
Share of nontraded in prod	ϖ	0.74	Anzoategui (2017)
Share of nontraded in G	ϑ_N	88%	Anzoategui (2017)
Idiosyncratic income	$ ho_\epsilon, \sigma_\epsilon$	(0.978, 0.022)	D'Erasmo and Mendoza (2016)

Internally calibrated			Target (Spain)
Discount rate of HHs	$1/\beta - 1$	4.46% ann.	Moments in Table 1
Risk aversion	γ	14.3	Moments in Table 1
Progressivity of tax schedule	au	19.4%	Moments in Table 1
Wage minimum	\bar{W}	1.15	Moments in Table 1
TFP process	$ ho_{Z}, \sigma_{Z}$	(0.886, 0.0371)	Moments in Table 1
Mean risk premium	$ar{\xi}$	1.39%	Moments in Table 1
Risk premium AR(1)	$ ho_{\xi}, \sigma_{\xi}$	(0.948, 0.00195)	Moments in Table 1

CALIBRATION (CONT'D)

- Simulate model solution for 8000 years
- · Agents' believe $\lambda_t = \log \mathcal{N}\left(\mu_t, \sigma_t
 ight)$
- Keep track of actual distribution

Target	Model	Data
$AR(1) \operatorname{coef} \log(Y_t)$	0.994	0.966
Std coef $log(Y_t)$	0.0399	0.0129
$AR(1) \operatorname{coef} \log(C_t)$	0.998	0.962
Std coef $log(C_t)$	0.0157	0.0166
AR(1) coef spread	0.987	0.967
Std coef spread	0.064	0.103
Avg Debt-to-GDP	72.8%	64.6%
Std Debt-to-GDP	17.4%	23.5%
Avg unemployment	17.4%	15.9%
Std unemployment	8.65%	6.09%
Median dom holdings	53.6%	56.5%
Avg wealth-to-GDP	56.8%	94.5%

Table 1: Model Fit

CALIBRATION (CONT'D)

- Simulate model solution for 8000 years
- · Agents' believe $\lambda_t = \log \mathcal{N}\left(\mu_t, \sigma_t\right)$
- Keep track of actual distribution

Target	Model	Data
$AR(1) \operatorname{coef} \log(Y_t)$	0.994	0.966
Std coef $log(Y_t)$	0.0399	0.0129
$AR(1) \operatorname{coef} \log(C_t)$	0.998	0.962
Std coef $log(C_t)$	0.0157	0.0166
AR(1) coef spread	0.987	0.967
Std coef spread	0.064	0.103
Avg Debt-to-GDP	72.8%	64.6%
Std Debt-to-GDP	17.4%	23.5%
Avg unemployment	17.4%	15.9%
Std unemployment	8.65%	6.09%
Median dom holdings	53.6%	56.5%
Avg wealth-to-GDP	56.8%	94.5%

Table 1: Model Fit

SIMULATED PATHS

AMPLIFICATION OF TFP SHOCKS

$$\log Y_{t+h} = \alpha + \beta_h \log \epsilon_t^z + \eta_{t+h}$$

AMPLIFICATION OF TFP SHOCKS (CONT'D)

For large shocks

For indebted economies

ERGODIC DISTRIBUTIONS

Ergodic Densities for Normalized Output and Consumption

SIMULATED CRISES

In simulated data

- · Record all episodes of
 - i. High spreads for 7 quarters
 - ii. Default
- · Take 2-year windows around each
 - Left with 178 defaults ($\sim 4.5\%$ annual freq)
- · Compute distribution of endogenous variables around them

SIMULATED DATA - CRISES

Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

SIMULATED DATA - CRISES

- Decompose output contraction between
 - TFP + wage rigidities
 - · Aggregate demand
- · Compare against a no default benchmark
 - · Give the no-default economy the same shocks as the benchmarks
 - · Extract the same t's

Key

Conditioning on high spreads only \implies economies only differ in expectation

SIMULATED DATA - CRISES

- Decompose output contraction between
 - TFP + wage rigidities
 - · Aggregate demand
- Compare against a no default benchmark
 - · Give the no-default economy the same shocks as the benchmarks
 - · Extract the same t's

Key

Conditioning on high spreads only \implies economies only differ in expectations

SIMULATED DATA - NO DEFAULT BENCHMARK

Blue: Benchmark, Dashed orange: No default

MODELS

Target	Benchmark	No default
$AR(1) \operatorname{coef} \log(Y_t)$	0.994	0.998
Std coef $log(Y_t)$	0.0399	0.0306
$AR(1) \operatorname{coef} \log(C_t)$	0.998	0.998
Std coef $log(C_t)$	0.0157	0.00699
AR(1) coef spread	0.987	1
Std coef spread	0.064	0.000471
Avg Debt-to-GDP	72.8%	57.5%
Std Debt-to-GDP	17.4%	24.5%
Avg unemployment	17.4%	8.27%
Std unemployment	8.65%	7.13%
Median dom holdings	53.6%	130%
Avg wealth-to-GDP	56.8%	93.3%

Table 2: Models

STILL MISSING

- · Compare episodes of high spreads in simulated data against
 - i. No TFP costs of default \leftarrow shuts down aggregate income losses
 - $\Delta = 0$
 - ii. Only TFP costs of default ← shuts down redistributive wealth effects
 - Keep paying coupons in default + $\hbar = 0$
 - \rightarrow (i) + (ii) = no default
- Compare against representative agent benchmark

CONCLUDING REMARKS

- · Interested in interaction of
 - Default risk
 - · Precautionary behavior
 - + implications for amplification of shocks
- · Channel helps explain severity of recessions in debt crises
 - · Default risk creates high volatility of consumption and unemployment
 - Large welfare costs of sovereign risk up to 10% of permanent consumption
- Key:
 - · Aggregate + redistributive wealth effects if default
 - Agents take precautions against those
 - Timing flips usual MPC / transfer argument

ITALY

Italian firms' self-reported limits to production

Source: Eurostat

GREECE

Greek firms' self-reported limits to production Source: Eurostat

HOUSEHOLD SURVEY

• Companion paper: dom exp to Spanish sovereign risk

MEASURING EXPOSURES TO SOVEREIGN DEBT - BANKS

Measure exposure based on Philippon and Salord (2017)

- study European banks resolutions in Cyprus
- · average total recapitalization need was around 17.4% of assets
- private investors provided 33% of need via loss in equity (91%), junior debt (53%) and senior debt (14%)
- remaining 2/3 came from government intervention
 - → assumed not possible in Spain!
 - → remaining need comes from senior debt and depositors

MEASURING EXPOSURES TO SOVEREIGN DEBT - DEPOSITS

Work with different scenarios of loss on deposits:

Scenario	SD Loss	Dep. Loss
Extreme	25%	14%
Mild	50%	10%
Conservative	75%	5%

Table 3: Expected losses on deposits

- · Assume a 50% haircut on public debt that triggers a bank crisis
- Loss for depositors of 10%
- Overall, public debt and bank crisis would induce a fall of between 8% and 10% of financial assets

DATA - EXPOSURES

◆ BACK

- · Companion paper: dom exp to Spanish sovereign risk More
- · Pension funds, mutual funds, insurance perfect passthrough
- Deposits more complicated
 - Philippon and Salord (2017): bank resolutions in Cyprus Petails

FISCAL RULES

	G _t /Y _t		$\left(B_t'-(1-\rho)B_t\right)/Y_t$	
	(1)	(2)	(3)	(4)
Unemployment _t	0.031 (0.039)	0.073*** (0.015)	0.334** (0.158)	0.346*** (0.059)
Unemployment ²	0.002 (0.001)		0.0001 (0.006)	
B_t/Y_t	0.010* (0.005)	-0.017*** (0.002)	-0.010 (0.020)	0.009 (0.007)
$(B_t/Y_t)^2$	-0.0002*** (0.00004)		0.0001 (0.0001)	
Net Exports _t	0.009 (0.019)	0.007 (0.012)	0.046 (0.075)	0.019 (0.046)
Net Exports ²	-0.0001 (0.001)		-0.001 (0.003)	
Mean FE	20.675	21.085	1.079	0.571
Country + Time FE	✓	✓	✓	✓
Observations Adj. R ²	968 0.904	968 0.901	957 0.697	957 0.698

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

FISCAL RULES (CONT'D)

EVOLUTION OF THE DISTRIBUTION

The law of motion for λ

- Policy functions ϕ_a , ϕ_b at S_t determine assets at t+1
- After seeing z_{t+1} , the government decides **repayment**
- · At S_{t+1} , relationship between $q^g(S_{t+1})$, $R_b(S_{t+1})$, μ_{t+1} , σ_{t+1}

$$R_b(\mathbf{S}_{t+1}) = \mathbb{1}_{(\zeta_{t+1}=1)}\kappa + (1-\rho)q^g(\mathbf{S}_{t+1})$$

$$\int \omega d\lambda_{t+1} = \int \phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t)d\lambda_t$$

$$\int \omega^2 d\lambda_{t+1} = \int (\phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t))^2 d\lambda_t$$

OUTPUT GROWTH AND DEFAULTS

Defaults and output growth

Source: Panizza, Sturzenegger, and Zettelmeyer (2009)

SHARE OF DOMESTIC DEBT

Source: Morelli and Roldán (2018) on Banco de España

SHARE OF DOMESTIC DEBT

Source: Morelli and Roldán (2018) on Banco de España Dotted lines are sample averages

NET WORTH

Source: Eurostat Dotted lines are sample averages

NET WORTH

Source: Eurostat Dotted lines are sample averages

GENERAL SDF OF FOREIGNERS

• If risk-averse foreigners

$$q_t^h = \frac{1}{1+r^*} \mathbb{E}_t \left[\left(\frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} \right]$$
$$q_t^g = \frac{1}{1+r^*} \mathbb{E}_t \left[\left(\frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} R_{t,t+1}^b \right]$$

where
$$R_{t,t+1}^b = \mathbb{1}_{(\zeta_{t+1}=1)} \tilde{\kappa} + (1-\rho)(1-\hbar \mathbb{1}_{(\zeta_t=1\cap \zeta_{t+1} \neq 1)}) q_{t+1}^g$$

· Reduces to risk-neutral if

$$\operatorname{cov}\left(\left(\frac{C_{t+1}^f}{C_t^f}\right)^{-\gamma_f}, R_{t,t+1}^b\right) = 0$$

SOLUTION METHOD

- Guess a policy for the government
 - · Guess a law of motion for the distribution
 - Compute $q^g(S)$, q^h from lenders' sdf.
 - Compute w, L_N, L_T, Π, T as functions of (S, p_N)
 - Guess a relative price of nontraded goods p_N
 - \cdot Solve the household's problem at $(\mathbf{s},\mathbf{S},p_{\mathit{N}})$
 - $\boldsymbol{\cdot}$ Check market clearing for nontraded goods.
 - Iterate until $p_N(S)$ converges
 - · Iterate until the law of motion converges
- Iterate on the government's policy

FEEDBACK

	Unemployment _{jt}			Saving rate _{jt}			
	(1)	(2)	(3)	(4)	(5)	(6)	
Spread _{jt}	1.381***			0.461*** (0.097)			
$Spread_{jt}$ (IV)		2.372*** (0.826)	1.951** (0.896)		1.634 (1.186)	2.048 (1.515)	
Spread Non-fin _{jt}		-0.172 (0.297)	-0.450 (0.306)		0.654	0.832	
Spread Fin _{jt}		-0.364 (0.530)	0.076		-0.265 (0.666)	-0.595 (0.901)	
B_{jt}/Y_{jt}		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.040*** (0.012)		, ,	-0.035 (0.035)	
Model	OLS	IV	IV	OLS	IV	IV	
Country FE	Υ	Υ	Υ	Υ	Υ	Υ	
Quad Time Trend	Υ	Υ	Υ	Υ	Υ	Υ	
Observations	968	304	304	569	179	179	
Adj. R ²	0.731	0.715	0.713	0.450	0.420	0.398	

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Gilchrist-Mojon (2017) indices of corporate spreads for FRA, DEU, ITA, ESP. 2000Q1 – 2017Q4

MARKET CLEARING

· Three markets need to clear

$$\begin{aligned} Y_{Nt} &= C_{Nt} + \frac{\vartheta_N}{p_{Nt}} G_t \\ Y_{Tt} &= C_{Tt} + (1 - \vartheta_N) G_t - NFI_t \\ (L_{Nt} + L_{Tt} - 1) (w_t - \gamma w_{t-1}) &= 0 \end{aligned}$$

where net foreign inflows are

$$\mathsf{NFI}_t = \int \left(\omega - q_t^\mathsf{h} \phi_a - q_t^g \phi_b\right) d\lambda_t - \kappa B_{t-1} + q_t^g (B_t - (1-\rho)B_{t-1})$$

FEEDBACK

	Dependent variable Q _{jt} :							
	$\log Y_{jt}$				$\log C_{jt}$			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Spread _{jt}	-0.011*** (0.003)				-0.011*** (0.002)			
$Spread_{jt}$ (IV)		-0.048** (0.019)	-0.031 (0.023)	-0.031 (0.024)		-0.088*** (0.022)	-0.035** (0.017)	-0.035** (0.016)
R_{jt}^h			0.054***	0.049*** (0.011)			0.004	-0.009 (0.007)
R_{jt}^{s}			(0.010)	0.013 (0.046)			(0.007)	0.036
Model	OLS	IV	IV	IV	OLS	IV	IV	IV
Country + Time FE	\checkmark	✓	\checkmark	✓	✓	\checkmark	✓	\checkmark
Observations Adj. R²	968 0.995	968 0.994	540 0.997	540 0.997	968 0.997	968 0.993	540 0.999	540 0.999

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

FEEDBACK

Standard errors in parentneses. $^{n-p} \neq 0.01, ^{n-p} \neq 0.05, ^{n} \neq 0.1$.

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

THE CYCLE IS THE TREND

	$\sigma(C)$	$\sigma(Y)$	$\sigma(C)/\sigma(Y)$	$\sigma(C)/\sigma(Y)$ (AG)
Austria	0.716	0.782	0.916	0.870
Belgium	0.556	0.795	0.700	0.810
Denmark	1.047	1.178	0.889	1.190
Finland	1.278	1.957	0.653	0.940
France	0.780	0.773	1.009	_
Germany	0.692	0.867	0.799	_
Ireland	3.140	3.680	0.853	_
Italy	1.165	0.978	1.191	_
Netherlands	1.726	1.244	1.388	1.070
Portugal	1.827	1.576	1.160	1.020
Spain	1.901	1.396	1.362	1.110

HP filtered data with $\lambda =$ 1600. Std deviations in %.

SPAIN IN THE EUROZONE CRISIS

Spain in the 2000s

SPAIN IN THE EUROZONE CRISIS

Spain in the 2000s

LOW DEMAND?

Spanish firms' self-reported limits to production

Source: Eurostat

NONDURABLE CONSUMPTION

ERGODIC DISTRIBUTIONS

Densities for Output and Consumption during Crises ($\pi \geq 15\%$)

ERGODIC DISTRIBUTIONS

Densities for Output and Consumption during Defaults

ERGODIC DISTRIBUTIONS

Unconditional Ergodic Densities for Output and Consumption

SIMULATED DATA - DEFAULT EPISODES

Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

ANZOATEGUI, D. (2017): "Sovereign Debt and the Effects of Fiscal Austerity," mimeo, NYU. ARELLANO, C., Y. BAI, AND G. MIHALACHE (2018): "Default risk, sectoral reallocation, and persistent recessions," *Journal of International Economics*, 112, 182–199.

AUCLERT, A. (2017): "Monetary Policy and the Redistribution Channel," Working Paper 23451, National Bureau of Economic Research.

BALKE, N. (2017): "The Employment Cost of Sovereign Default," mimeo, UCL.

BIANCHI, J., P. OTTONELLO, AND I. PRESNO (2016): "Unemployment, Sovereign Debt, and Fiscal Policy in a Currency Union," 2016 Meeting Papers 459, Society for Economic Dynamics.

BOCOLA. L. (2016): "The Pass-Through of Sovereign Risk," Journal of Political Economy, 124,

879–926.
D'ERASMO, P. AND E. G. MENDOZA (2016): "Optimal Domestic (and External) Sovereign

Default," Working Paper 22509, National Bureau of Economic Research.
EGGERTSSON, G. AND P. KRUGMAN (2012): "Debt, Deleveraging, and the Liquidity Trap: a

Fisher-Minsky-Koo Approach," *Quarterly Journal of Economics*, 1469–1513.

FERRIERE, A. (2016): "Sovereign default, inequality, and progressive taxation," Working paper, European University Insitute.

- GENNAIOLI, N., A. MARTIN, AND S. ROSSI (2014): "Sovereign Default, Domestic Banks, and Financial Institutions," *Journal of Finance*, 69, 819–866.
- HUIDROM, R., M. A. KOSE, J. J. LIM, AND F. L. OHNSORGE (2019): "Why do fiscal multipliers depend on fiscal Positions?" *Journal of Monetary Economics*.
- KORINEK, A. AND A. SIMSEK (2016): "Liquidity Trap and Excessive Leverage," American Economic Review, 106, 699–738.
- MALLUCCI, E. (2015): "Domestic Debt and Sovereign Defaults," International Finance Discussion Papers 1153, Board of Governors of the Federal Reserve System (U.S.).
- MARTIN, P. AND T. PHILIPPON (2017): "Inspecting the Mechanism: Leverage and the Great Recession in the Eurozone," *American Economic Review*, 107, 1904–37.
- MORELLI, J. M. AND F. ROLDÁN (2018): "Distributional Effects in Sovereign Debt Policy," mimeo, NYU.
- NEUMEYER, P. A. AND F. PERRI (2005): "Business cycles in emerging economies: the role of interest rates," *Journal of Monetary Economics*, 52, 345–380.

 PHILIPPON, T. AND F. ROLDÁN (2018): "On the Optimal Speed of Sovereign Deleveraging with
 - PHILIPPON, T. AND F. ROLDÁN (2018): "On the Optimal Speed of Sovereign Deleveraging with Precautionary Savings," *IMF Economic Review*, 66, 375–413.

