Bagging, Random Forest and Boosting

Lab 12 - MATH 4322

- We will apply bagging, random forests and boosting to the Boston data, using the randomForest package.
- *Note*: The exact results obtained in this lab may depend on the version of R and the version of the randomForest package installed on your computer. Give the results from your computer.
- You can use the Rmarkdown script given or write down your answers and scan them as a pdf file to upload in Canvas similar to your homework.
- Possible points: 10.

Question 1: For any data that has p predictors **bagging** requires that we consider how many predictors at each split in a tree?

Bagging will use all p predictors in a tree

First, we call the data and create training/testing sets.

```
library(ISLR2)
set.seed(1)
train = sample(1:nrow(Boston),nrow(Boston)/2)
boston.test = Boston[-train,"medv"]
```

Bagging

We perform bagging as follows:

```
Call:
```

Mean of squared residuals: 11.5691 % Var explained: 84.95

Question 2: What is the *MSE* based on the training set?

MSE = 11.5691

How well does this bagged model perform on the test set?

Question 3: What is the formula to determine the *MSE*?

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2$$

Run the following in R.

```
yhat.bag = predict(bag.boston,newdata = Boston[-train,])
plot(yhat.bag,boston.test)
abline(0,1)
```


$$mean((yhat.bag - boston.test)^2) \leftarrow Test MSE$$

[1] 23.23877

Question 4: What is the *MSE* of the test data set?

Test MSE = 23.23877

We could change the number of trees grown by randomForest() using the ntree argument:

```
Call:
```

Question 5: What method do we use to get the different trees?

We use bootstrap methods to get the different trees

Random Forests

[1] 23.06258

Question 6: For a building a random forest of regression trees, what should be mtry (number of predictors to consider at each split)?

mtry = p/3 Eregression why = P for classification Type and run the following in R:

[1] 18.62328

Question 7: Compare the MSE of the test data to the MSE of the bagging.

This MSE is smaller than the results of bagging.

Question 8: Use the importance() function what are the two most important variables?

```
importance(rf.boston)
```

	%IncMSE	${\tt IncNodePurity}$
crim	15.48571304	1197.64717
zn	3.34978057	169.00931
indus	6.93488857	870.60348
chas	0.05746934	61.05778
nox	12.97835448	1179.66670
rm	30.67206810	6612.55554
age	13.52685213	760.41982
dis	10.94707995	899.17273
rad	4.60598124	129.80949
tax	9.20624202	556.89248
ptratio	6.99867017	1044.02812
lstat	26.41637352	5483.83696

varImpPlot(rf.boston)

rf.boston

rm and lstat

Boosting

Run the following in R:


```
rel.inf
            var
rm
             rm 44.48249588
          1stat 32.70281223
lstat
           crim 4.85109954
crim
dis
            dis
                 4.48693083
                  3.75222394
nox
            nox
                 3.19769210
age
            age
ptratio ptratio
                  2.81354826
tax
                  1.54417603
            tax
indus
          indus
                  1.03384666
                  0.87625748
rad
            rad
zn
                  0.16220479
             zn
chas
           chas
                  0.09671228
```

Question 9: What are the two most important variables with the boosted trees?

rm and lstat

We can produce *partial dependence plots* for these two variables. The plots illustrate the marginal effect of the selected variables on the response after *integrating* out the other variables.

```
plot(boost.boston,i = "rm")
```



```
plot(boost.boston,i = "lstat")
```


Notice that the house prices are increasing with rm and decreasing with lstat.

We will use the boosted model to predict medv on the test set:

[1] 18.39057

Question 10: Compare this MSE to the MSE of the random forest and bagging models.

 ${\rm Bag\ MSE} = 23.23877,\,{\rm RF\ MSE} = 18.62328,\,{\rm Boost\ MSE} = 18.39057$