

AULA 03 ALGORITMOS DE CONVERSÃO MATRICIAL: RETAS E CIRCUNFERÊNCIAS

PROF. DR. DENIS HENRIQUE PINHEIRO SALVADEO

AULA ANTERIOR

Breve Histórico de CG

- Dispositivos Gráficos
 - Entrada, Saída
- Revisão de Conceitos Geométricos

Primitivas Gráficas

Padronização e Pacotes Gráficos

Aula de Hoje

- Algoritmos de Geração de Linhas
 - Equação da Reta
 - DDA
 - Bresenham (Ponto Médio)
- Algoritmo de Geração de Circunferências
 - Bresenham (Ponto Médio)
- Aliasing

Algoritmos de Geração de Linhas

http://upload.wikimedia.org/wikipedia/commons/thumb/8/86/FuncionLineal01.svg/2000px-FuncionLineal01.svg.png

Equação da reta:

$$-y = mx + b$$

•
$$m = (y_2 - y_1)/(x_2 - x_1)$$

•
$$b = y_1 - m * x_1$$

 Usados para controlar a voltagem de deflexão em dispositivos vetoriais

pixels

http://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Bresenham.svg/2000px-Bresenham.svg.png

y = 2.0x + 1 y = 0.5x - 1y = 0.5x + 1

ALGORITMO DDA (DIGITAL DIFFERENTIAL ANALYZER)

• Estratégia:

- Definir o valor de m
- Fixar os pontos com incremento unitário em uma direção e calcular a coordenada na outra (com arredondamento)
- |m| <= 1- $\Delta x = 1$, $y_{k+1} = y_k + m$
- m > 1- $\Delta y = 1$, $x_{k+1} = x_k + 1/m$
- m < -1- $\Delta y = -1$, $x_{k+1} = x_k - 1/m$
- Assumindo do ponto mais a esquerda para o ponto mais a direita. E o contrário?

INCREMENTOS DO ALGORITMO DDA — ORIGEM

Caso |m| <=1

$$m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$$

$$m = y_{k+1} - y_k$$

$$y_{k+1} = y_k + m$$

INCREMENTOS DO ALGORITMO DDA — ORIGEM

Caso m > 1

$$m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$$

$$m = \frac{1}{x_{k+1} - x_k}$$

$$x_{k+1} - x_k = \frac{1}{m}$$

$$x_{k+1} = x_k + \frac{1}{m}$$

INCREMENTOS DO ALGORITMO DDA — ORIGEM

Caso m < -1

$$m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$$

$$m = -\frac{1}{x_{k+1} - x_k}$$

$$x_{k+1} - x_k = -\frac{1}{m}$$

$$m = -1$$

$$x$$

$$m = 1$$

$$m < -1$$

$$x_{k+1} = x_k - \frac{1}{m}$$

ALGORITMO DDA (DIGITAL DIFFERENTIAL ANALYZER)

Problemas

- Propagação de erros devido ao arredondamento (linhas mais longas) => distorção da reta real
- Arredondamento e ainda necessidade de manipulação de números reais (custo computacional)

Vantagens

- Cálculo mais rápido do que equação da reta diretamente (elimina multiplicação de m)
- Uso de acumuladores

ALGORITMO DDA

```
Algoritmo DDA(x1, y1, x2, y2: Inteiros)
Variáveis
   dx, dy, iter, k: inteiros
   x inc, y inc, x, y: reais
Início
   dx = x2 - x1
   dy = y2 - y1
   Se abs(dx) > abs(dy) Então
        iter = abs(dx)
   Senão
        iter = abs(dy)
   Fim Se
   x inc = dx/iter
   y inc = dy/iter
   x = x1
   y = y1
   SetPixel(round(x), round(y))
   Para k = 1 Até iter Faça
        x = x + x inc
        y = y + y inc
        SetPixel(round(x), round(y))
   Fim Para
Fim
```

- Usa somente aritmética de inteiros
- Da equação da reta, temos:

$$-mx + b - y = 0$$
 \longrightarrow $\Delta y/\Delta x *x + b - y = 0$

- $F(x,y) = \Delta y^*x + \Delta x^*b \Delta x^*y = 0$
- F(x,y) > 0 (abaixo da reta)
- F(x,y) < 0 (acima da reta)

 $\label{lem:http://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Bresenham-Pitteway_pixel_choice.svg/2000px-Bresenham-Pitteway_pixel_choice.svg.png$

A ideia é determinar:

- "Onde está o próximo ponto médio (M) com relação à reta (interseção Q)?"
- $d = F(x_k+1, y_k+1/2) = \Delta y^*(x_k+1) + \Delta x^*b \Delta x^*(y_k+1/2)$
 - Se d > 0, M está abaixo da reta, escolho NE (x_k+1,y_k+1)
 - Se d <= 0, M está acima da reta, escolho E (x_k+1, y_k)

Baseado em HILL JR., F. S. Computer Graphics. Machmillan Publishing Company, 1990.

- Dado que escolhi NE ou E, qual o próximo valor de d (do próximo ponto médio)?
 - Se escolho E,

•
$$d_{Novo} = F(x_k+2, y_k+1/2) = \Delta y^*(x_k+2) + \Delta x^*b - \Delta x^*(y_k+1/2)$$

•
$$d_{Novo} - d_{Velho} = \Delta y$$

- $d_{Novo} = d_{Velho} + \Delta y$

Se escolho NE,

•
$$d_{Novo} = F(x_k+2, y_k+3/2) = \Delta y^*(x_k+2) + \Delta x^*b - \Delta x^*(y_k+3/2)$$

•
$$d_{Novo} - d_{Velho} = \Delta y - \Delta x$$

- $d_{Novo} = d_{Velho} + \Delta y - \Delta x$

Baseado em HILL JR., F. S. Computer Graphics. Machmillan Publishing Company, 1990.

Como definir o dinicial?

-
$$d_{Inicial} = F(x_0+1, y_0+1/2) = \Delta y^*(x_0+1) + \Delta x^*b - \Delta x^*(y_0+1/2)$$

- $d_{Inicial} = F(x_0, y_0) + \Delta y \Delta x/2$
 - Como é número real e apenas estamos interessados no valor de d para teste, podemos usar 2*F(x,y)
- Funciona somente para 0 < m < 1
 - Para m > 1?
 - -0>m>-1?
 - m < -1?
- Linhas horizontais e verticais

Espessura

http://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Bresenham_decision_variable.svg/2000px-Bresenham_decision_variable.svg.png

ALGORITMO BRESENHAM

```
Algoritmo bresenham linha(x1, y1, x2, y2: Inteiros)
Variáveis
   dx, dy, d, const1, const2, x, y, xFinal: inteiros
Início
   dx = abs(x2 - x1)
   dy = abs(y2 - y1)
   d = 2*dy-dx
   const1 = 2*dy
   const2 = 2 * (dy - dx)
   Se x1 > x2 Então
          x = x2
          y = y2
          xFinal = x1
    Senão
          x = x1
          y = y1
          xFinal = x2
   Fim Se
   SetPixel(x, y)
   Enquanto x < xFinal Faça</pre>
          x = x + 1;
          Se d < 0 Então
                    d = d + const1
          Senão
                    y = y + 1
                    d = d + const2
          Fim Se
          SetPixel(x, y)
   Fim Enquanto
Fim
```

EXERCÍCIO

- Desenhe os segmentos de reta definidos pelos pontos (4,7) e (14, 14) usando os algoritmos de geração de linhas abaixo:
 - Equação da Reta
 - DDA
 - Bresenham

Solução Eq. Da Reta e DDA

$$m = \frac{\Delta y}{\Delta x} = \frac{14-7}{14-4} = \frac{7}{10} = 0,7$$
 $\therefore |m| \le 1$ incX = 1 incY = m = 0,7

k	X_real	Y_real	X_DDA	Y_DDA
0	4	7	4	7
1	5	7,7	5	8
2	6	8,4	6	8
3	7	9,1	7	9
4	8	9,8	8	10
5	9	10,5	9	10
6	10	11,2	10	11
7	11	11,9	11	12
8	12	12,6	12	13
9	13	13,3	13	13
10	14	14	14	14

Solução usando Bresenham

$$\Delta x = 14 - 4 = 10$$
 $\Delta y = 14 - 7 = 7$
 $d = 2. \Delta y - \Delta x = 2.7 - 10 = 14 - 10 = 4$
 $incE = 2. \Delta y = 2.7 = 14$ $incNE = 2. (\Delta y - \Delta x) = 2. (7 - 10) = -6$

k	Próx_direção	Ponto Gerado	d
0	-	(4, 7)	4
1	NE	(5, 8)	4 – 6 = -2
2	E	(6, 8)	-2 + 14 = 12
3	NE	(7, 9)	12 – 6 = -6
4	NE	(8, 10)	6 – 6 = 0
5	NE	(9, 11)	0 - 6 = -6
6	E	(10, 11)	-6 + 14 = 8
7	NE	(11, 12)	8 – 6 = 2
8	NE	(12, 13)	2 – 6 = -4
9	E	(13, 13)	-4 + 14 = 10
10	NE	(14, 14)	10 – 6 = 4

LINHAS GERADAS

Algoritmos de Geração de Circunferências

Centre

Equação da circunferência

 $- x^2 + y^2 = r^2$

Simetria

2nd octant (mirrored) 1st octant http://upload.wikimedia.org/wikipedia/commons/thumb/2/24/Bresenham_circle.svg/20

00px-Bresenham circle.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/1/1d/CIRCLE_1.svg/2000px-CIRCLE_1.svg.png

Da equação da circunferência, temos:

$$- F(x,y) = x^2 + y^2 - r^2 = 0$$

- F(x,y) > 0 (fora da circunferência)
- F(x,y) < 0 (dentro da circunferência)

A ideia é determinar:

- "Onde está o próximo ponto médio (M) com relação à circunferência (interseção Q)?"
- x = 0 a x = y = R/sqrt(2)
- $d = F(x_k+1, y_k-1/2) = (x_k+1)^2 + (y_k-1/2)^2 r^2$
 - Se d < 0, M está dentro, escolho E (x_k+1,y_k)
 - Se d >= 0, M está fora, escolho SE (x_k+1, y_k-1)

Baseado em HILL JR., F. S. Computer Graphics. Machmillan Publishing Company, 1990.

- Dado que escolhi SE ou E, qual o próximo valor de d?
 - Se escolho E,

•
$$d_{Novo} = F(x_k+2, y_k-1/2) = (x_k+2)^2 + (y_k-1/2)^2 - r^2$$

•
$$d_{Novo} - d_{Velho} = 2*x_k + 3$$

- $d_{Novo} = d_{Velho} + 2*x_k + 3$

- Se escolho SE,
 - $d_{Novo} = F(x_k+2, y_k-3/2) = (x_k+2)^2 + (y_k-3/2)^2 r^2$
 - $d_{Novo} d_{Velho} = 2*x_k 2*y_k + 5$ - $d_{Novo} = d_{Velho} + 2*x_k - 2*y_k + 5$

Baseado em HILL JR., F. S. Computer Graphics. Machmillan Publishing Company, 1990.

• Como definir o dInicial, lembrando que (0,r) é o ponto inicial?

$$- d_{Inicial} = F(1, r-1/2) = (1)^2 + (r-1/2)^2 - r^2$$

$$-d_{Inicial} = 5/4 - r$$

 Como é número real e apenas estamos interessados no valor de d para teste, podemos usar d_{Inicial} = 1 – r

ALGORITMO BRESENHAM PARA CIRCUNFERÊNCIAS

```
Algoritmo bresenham circunferencia (xCentro, yCentro, raio: Inteiros)
Variáveis
   x, v, d: inteiros
Início
   x = 0
   y = raio
   d = 1 - raio
   plotaPontosCircunferencia(xCentro, yCentro, x, y)
   Enquanto x < y Faça
        Se d < 0 Então
                 d = d + 2 * x + 3
        Senão
                 d = d + 2 * (x - y) + 5
                 y = y - 1
        Fim Se
        x = x + 1
        plotaPontosCircunferencia(xCentro, yCentro, x, y)
   Fim Enquanto
Fim
```

ALGORITMO BRESENHAM PARA CIRCUNFERÊNCIAS

```
Procedimento plotaPontosCircunferencia(xCentro, yCentro, x, y: Inteiros)
    SetPixel(xCentro + x, yCentro + y)
    SetPixel(xCentro + y, yCentro + x)
    SetPixel(xCentro + y, yCentro - x)
    SetPixel(xCentro + x, yCentro - y)
    SetPixel(xCentro - x, yCentro - y)
    SetPixel(xCentro - y, yCentro - x)
    SetPixel(xCentro - y, yCentro + x)
    SetPixel(xCentro - y, yCentro + y)

Fim Procedimento
```

EXERCÍCIO

- Desenhe a circunferência definida pelo centro (0,0) e raio = 7 usando os algoritmos de geração de circunferências abaixo:
 - Equação da Circunferência
 - Bresenham

Solução usando Eq. da Circunferência e Bresenham

$$x = 0$$

$$y = raio = 7$$

$$d = 1 - raio = 1 - 7 = -6$$

$$y_real = \sqrt{raio^2 - x_real^2}$$

k	X_real	Y_real	Dir	d	X_PM	Y_PM
0	0	7	-	-6	0	7
1	1	6,9	E	-6 + 2 . 0 + 3 = -3	1	7
2	2	6,7	E	-3 + 2 . 1 + 3 = 2	2	7
3	3	6,3	SE	2 + 2 . (2 - 7) + 5 = -3	3	6
4	4	5,7	E	-3 + 2 . 3 + 3 = 6	4	6
5	5	4,9	SE	$6 + 2 \cdot (4 - 6) + 5 = 7$	5	5

CIRCUNFERÊNCIAS GERADAS

ANTI-ALIASING

Antisserrilhado

- Causa do Serrilhado:
 - Aproximações no cálculo da posição do pixel
 - Amostragem de baixa frequência

ntutj%C3%A4mning_2_linjer.png

- Algumas técnicas anti-aliasing:
 - Teoria de Amostragem
 - Considera a intensidade proporcional à área do pixel
 - Filtro da média e filtro Gaussiano

EXERCÍCIO

Aplique o filtro da média M na imagem I abaixo

			l	
		-1	0	1
	-1	1/9	1/9	1/9
k	0	1/9	1/9	1/9
	1	1/9	1/9	1/9
			M	

				_
0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

I

$$I'(i,j) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} I(i+k,j+l)M(k,l)$$

	0	0	0	0	255
	0	0	0	255	0
	0	0	255	0	0
	0	255	0	0	0
	255	0	0	0	0

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

ı

0	0		

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

ı

0	0	28	

EXERCÍCIO

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

ı

0	0	28	57	

0	0	0	0	255	
0	0	0	255	0	
0	0	255	0	0	
0	255	0	0	0	
255	0	0	0	0	

0	0	28	57	57

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

I

0	0	28	57	57
0				

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

ı

0	0	28	57	57
0	28			

EXERCÍCIO

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

ı

0	0	28	57	57
0	28	57		

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	0	0	0
255	0	0	0	0

ı

0	0	28	57	57
0	28	57	85	

0	0	0	0	255	
0	0	0	255	0	
0	0	255	0	0	
0	255	0	0	0	
255	0	0	0	0	

I

0	0	28	57	57
0	28	57	85	57

EXERCÍCIO

E assim segue o processo, até preencher toda a matriz l'

0	0	0	0	255
0	0	0	255	0
0	0	255	0	0
0	255	O	0	0
255	0	0	0	0
		1		

0	0	28	57	57
0	28	57	85	57
28	57	85	57	28
57	85	57	28	0
57	57	28	0	0

IMPLEMENTAÇÃO DOS ALGORITMOS VISTOS