14.5: Directional Derivatives and the Gradient

Directional Derivatives

 $f'_{\vec{u}}(x_0,y_0)$ or $D_{\vec{u}}f(P_0)$ gives the **directional derivative** of f in the direction of \vec{u} at the point $P_0=(x_0,y_0)$.

• The rate of change of f in the \vec{u} direction.

If $ec{u}=u_1\mathbf{i}+u_2\mathbf{j}$, then

$$D_{ec{u}}f(P_0) = \lim_{s o 0}rac{f(x_0+su_1,y_0+su_2)-f(x_0,y_0)}{s}$$

provided that the limit exists.

Example

Example: Find the directional derivative of $f(x,y) = x^2 + xy^2$ at the point P(1,1) in the direction of i-j. $\|\bar{\imath} - \bar{\jmath}\| = \sqrt{2}$ $\|\bar{\imath} - \bar{\jmath}\| = \sqrt{2}$

Gradients

Gradient of a function f(x, y) is vector

$$abla f(x,y) = rac{\partial f}{\partial x} \mathbf{i} + rac{\partial f}{\partial y} \mathbf{j}$$

You can imagine how to extend this into 3+ dimensions.

Properties

$$egin{aligned}
abla(f(ec{x})+g(ec{x})) &=
abla f(ec{x}) +
abla g(ec{x}) \
abla(lpha f(ec{x})) &= lpha
abla f(ec{x}) \
abla(f(ec{x})g(ec{x})) &= f(ec{x})
abla g(ec{x}) +
abla f(ec{x})g(ec{x}) \end{aligned}$$

Directional Derivative

Directional derivative of f in the direction of \vec{u} at point $P_0 = (x_0, y_0)$ can be written as:

$$f'_{\vec{u}}(P_0) =
abla f(P_0) \cdot \hat{u} = \|
abla f(P_0)\| \cos \theta$$

Properties

- 1. At P, function f increases most rapidly in the direction of its gradient vector.
- 2. Function f decreases most rapidly in the direction of $-\nabla f$.
- 3. Any direction \vec{u} orthogonal to gradient $\nabla f \neq 0$ is a direction of zero change in f.

Examples

Find the gradient of $f(x,y) = 2e^x \sin(x^2 + y)$

$$egin{aligned}
abla f(x,y) &= (4xe^x\cos(x^2+y) + 2e^x\sin(x^2+y))\mathbf{i} \ &+ 2e^x\cos(x^2+y)\mathbf{j} \end{aligned}$$

Find a unit vector in the direction in which f increases most rapidly at P and give the rate of change of f in that direction.

$$f(x,y) = y^{-2}e^{2x} \text{ at } P(0,1)$$

$$\nabla f = \underbrace{\frac{1}{y^2}}_{y^2} \dot{t} - \underbrace{\frac{1}{y^3}}_{y^3} \dot{f}$$

$$||\nabla f(0,1)|| = \sqrt{8} = \underbrace{\frac{1}{\sqrt{2}}}_{y^4} \dot{t} - \frac{1}{\sqrt{2}} \dot{f}$$

$$||\nabla f(0,1)|| = \sqrt{8} = \underbrace{\frac{1}{\sqrt{2}}}_{y^4} \dot{t} - \frac{1}{\sqrt{2}} \dot{f}$$

Tangent Lines to Level Curves

The tangent line to level curve f(x,y)=c at point (x_0,y_0) is

$$egin{aligned} f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) &= 0 \ rac{\partial f}{\partial x}igg|_{(x_0,y_0)}(x-x_0) + rac{\partial f}{\partial y}igg|_{(x_0,y_0)}(y-y_0) &= 0 \end{aligned}$$

(Can be derived from implicit differentiation rule)

Derivative Along a Path

if $\vec{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is a smooth path C and $w = f(\vec{r}(t))$ is a scalar function evaluated along C, then the derivative along that path is

$$rac{d}{dt}f(ec{r}(t)) =
abla f(ec{r}(t)) \cdot ec{r}'(t)$$

14.6: Tangent Planes & Differentials

Tangent Planes & Normal Lines

Tangent plane to level surface f(x, y, z) = c of a differentiable function f at point $P_0(x_0, y_0, z_0)$ where the gradient is not zero is the plane through P_0 normal to $\nabla f(x_0, y_0, z_0)$.

$$egin{aligned} f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)+f_z(P_0)(z-z_0)&=0\ &
abla f(P_0)\cdot \overrightarrow{P_0P}&=0 \end{aligned}$$

Normal line to level surface f(x, y, z) = c is the line through P_0 parallel to $\nabla f(x_0, y_0, z_0)$.

$$x = x_0 + f_x(P_0)t$$

 $y = y_0 + f_y(P_0)t$
 $z = z_0 + f_z(P_0)t$

or

$$\vec{r}(t) = P_0 + t \nabla f(P_0)$$

Differentials

Linearization

The **linearization** of differentiable function f(x, y) at (x_0, y_0) is:

$$egin{aligned} L(x,y) &= f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) \ L(x,y) &= f(x_0,y_0) + rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y \end{aligned}$$

The approximation $f(x,y) \approx L(x,y)$ is called the **standard linear approximation** of f at the point.

The **total differential of** f is the resulting change from (x_0, y_0) to $(x_0 + dx, y_0, dy)$

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$$

Error in standard linear approximation when using L to approximate f:

$$|E| \leq rac{1}{2} M (|x-x_0| + |y-y_0|)^2$$

M represents the upper bound of the second partials on the rectangle centered at P_0 .

Extension of above formulas to more dimensions is trivial.

More Differentials

They also help in estimating change in a function in a particular direction.

To estimate the change in value of a differentiable function f when moving a small distance, ds, from point P_0 in the direction of the unit vector \hat{u} ,

$$df = f_{\hat{u}}'(P_0) ds = (
abla f(P_0) \cdot \hat{u}) ds$$

14.7: Extreme Values

Local Extrema

Let f(x,y) be defined on a region R containing point (a,b). Then:

- 1. f(a,b) is a **local maximum** of f if $f(a,b) \ge f(x,y)$ for all domain points (x,y) in an open disk around (a,b).
- 2. f(a,b) is a **local minimum** of f if $f(a,b) \le f(x,y)$ for all domain points (x,y) in an open disk around (a,b).

First Derivative Test: If f(x,y) has a local extremum at interior point (a,b), then $\nabla f(a,b) = \vec{0}$ (all the partial derivatives are 0).

• Critical Points: remember single variable calc?

Saddle point: Critical point that isn't a local extremum (some points are greater, some are less)

Second partials test (analogous to the 2nd derivative test):

Used to determine if a critical point is a saddle point or a local min or max

$$egin{aligned} A &= f_{xx}(x_0, y_0) \ B &= f_{xy}(x_0, y_0) \ C &= f_{yy}(x_0, y_0) \ D &= egin{bmatrix} A & B \ B & C \end{bmatrix} = AC - B^2 \end{aligned}$$

- 1. If D < 0, (x_0, y_0) is a saddle point.
- 2. If D > 0 and A > 0, local minimum.
- 3. If D > 0 and A < 0, local minimum.
- 4. If D = 0, test is inconclusive.

Absolute Extrema

Absolute maximum: Greatest value f(x,y) for all $(x,y) \in D$ **Absolute maximum:** Smallest value f(x,y) for all $(x,y) \in D$

Process for finding absolute extrema:

- 1. Find critical points in *D*.
- 2. Find extreme points on boundary of D.
- 3. Evaluate f at candidates.
- 4. Yeah.