

Social Value Propagation for Supply Chain Formation

by Toni Penya-Alba, Meritxell Vinyals, Jesus Cerquides and Juan A. Rodriguez-Aguilar for the 6th International OPTMAS Workshop

The problem

The Supply Chain Formation problem is that of finding the feasible configuration with maximum value.

Supply Chain Value = \$8 - \$5 - \$2 = **\$1**

Decentralized algorithm for SCF based on social value propagation.

Reduces computation.
Reduces communication.
Produces (near) optimal solutions.

Related work

SUPPLY CHAIN FORMATION TIMELINE

Social Value Propagation

Social value for participant p how much better is for the other agents that p is active over p being inactive.

Social value for participant p how much better is for the other agents that p is active over p being inactive.

With Alice = 6+5-2-3=6

Social value for participant p how much better is for the other agents that p is active over p being inactive.

Without Alice = 6+5-3-4=4

Social value for participant p how much better is for the other agents that p is active over p being inactive.

Alice's social value = 6 - 4 = 2

CHAINING Agents IN Mediated Environments

CHAINME is a message passing algorithm Two phases:

- Assess participants social value.
- Assess the supply chain configuration.

Assessing participants' Social Value

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Send offer to mediators

$$O_a^g \leftarrow V_a - S_a^g$$

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Send offer to mediators

$$O_a^g \leftarrow V_a - S_a^g$$

Send updated social value

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Send offer to mediators

$$O_a^g \leftarrow V_a - S_a^g$$

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Send offer to mediators

$$O_a^g \leftarrow V_a - S_a^g$$

Send updated social value

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Send offer to mediators

$$O_a^g \leftarrow V_a - S_a^g$$

Determine agent value

$$V_a = C_a + \sum_{g \in G_a} S_a^g$$

Send offer to mediators

$$O_a^g \leftarrow V_a - S_a^g$$

Send updated social value

Determining the supply chain configuration

- 1. Participants with positive value anounce their availability.
- 2. Mediators choose active participants out of the available ones.
- 3. Available participants remain available if all their mediators choose them to be active.
- 4. Back to 2.

- 1. Participants with positive value anounce their availability.
- 2. Mediators choose active participants out of the available ones.
- 3. Available participants remain available if all their mediators choose them to be active.
- 4. Back to 2.

Does it work?

	SAMP-SB	RB-LBP	CHAINME
participant memory	0(G)	0(G-A)	0(G)
mediator memory	0(A)		0(A)
participant bandwidth	0(G)	0(G-A)	0(G)
mediator bandwidth	0(A)		0(A)
participant operations	0(G)	0(G-A ²)	0(G)
mediator operations	O(logA)		O(A·logA)

argenetworks 5080005 40-500 agents

up to 50 times less bandwidth up to 10² times faster consistently better solutions close to 80% optimal solutions

consistently better solutions

close to 80% optimal solutions

Decentralized algorithm for SCF based on social value propagation.

Reduces computation.
Reduces communication.
Produces (near) optimal solutions.

What's next?

Payments Multiple Unit Time constraints Multiple Attritubes

Thank You

Questions?

CHAINME plots

70% optimal solutions

consistently better solutions

up to 50 times less bandwidth

up to 10² times faster

better convergence

CHAINE messages

$$\nu_{M \to s} = \begin{cases} \omega_s, & \text{if } s \in active_s \\ -\omega_b, & \text{otherwise} \end{cases}$$

$$\nu_{M \to b} = \begin{cases} \omega_b, & \text{if } b \in active_b \\ -\omega_s, & \text{otherwise} \end{cases}$$

$$\nu_{x \to F} = \sum_{F' \in \mathcal{N}(x) \setminus F} \nu_{F' \to x}$$

Background

Price Rules for Double Auctions

Individual rationality

No seller should be paid less than her bid. No buyer should pay more than her bid.

Fairness

The price cannot be larger than the bid of any seller out of trade.

Individual rationality

No seller should be paid less than her bid. No buyer should pay more than her bid.

Fairness

The price cannot be larger than the bid of any seller out of trade.

Individual rationality

No seller should be paid less than her bid. No buyer should pay more than her bid.

Sellers	Buyers	Fact
s^1	b^1	$b^1 + s^1 > 0$
:	÷	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	b^{η}	$b^{\eta} + s^{\eta} \ge 0$
$s^{\eta}=1$	$\begin{vmatrix} - b^{\overline{\eta}+\overline{1}} \end{vmatrix}$	$\bar{b}^{\eta+1} + \bar{s}^{\eta+1} < \bar{0}$
:		

Fairness

The price cannot be larger than the bid of any seller out of trade.

$$\tau^{-} \le \tau \le \tau^{+}$$

$$\tau^{-} = \max(-s^{\eta}, b^{\eta+1})$$

$$\tau^{+} = \max(-s^{\eta+1}, b^{\eta})$$

Sellers	Buyers	Fact
s^1	b^1	$b^1 + s^1 > 0$
:	÷	
$\overline{s^{\eta}}$	b^{η}	$b^{\eta} + s^{\eta} \ge 0$
$s^{\eta} = 1$	$\left -\bar{b}^{ar{\eta}+ar{1}} \right $	$\bar{b}^{\eta+1} + \bar{s}^{\eta+1} < \bar{0}$
:	÷	

Individual rationality

No seller should be paid less than her bid. No buyer should pay more than her bid.

Fairness

The price cannot be larger than the bid of any seller out of trade.

