Data, Decision Trees and Ensembles

Machine Learning in Molecular Science

Prof. Michael Shirts July 23rd, 2024

Decision Trees and Random Forests

- Tree Methods
 - Regression trees
 - Classifier trees
- Notebook!
- Ensemble methods
 - Bagging, boosting, random forest
- Notebook!

Visualization of a decision tree

An example of a decision tree

Decision tree prediction

Terminal nodes

or "leaves"

Building a regression tree

- We need a way to assign a value to our prediction
- The value we report for a prediction is the average of all of the training points placed in the same "container"

$$\sum_{i: \ x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: \ x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2, \qquad \qquad \sum_{i: \ x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: \ x_i \in R_1(j,$$

Pick divisions that minimize the total RSS/MSE

$$R_1(j,s) = \{X|X_j < s\} \text{ and } R_2(j,s) = \{X|X_j \ge s\},$$

A cutpoint breaks it into two regions

Building a regression tree

- Example: The regression tree is divided into three regions (R₁-R₃) based on sub-divisions of the feature space
- This is done iteratively by
 - finding at each the biggest decreases in total RSS by appropriately selecting which predictor (j) and cutpoint give the biggest decrease in RSS...

Options for tree building

- Approach is known as "top down" or "greedy": goes after the biggest reductions in RSS first (recursive binary splitting)
- Does not simulate all possible trees, so it is possible you are not finding the minimum RSS
- Also possible that trees designed in this approach can lead to overfitting (i.e. too much bias)
- The procedure of "tree pruning" can address this (we won't cover today)
- We will explore options/choices (hyperparameters!) in building our decision trees

Big picture concepts in building a tree

- Decision trees are constructed as an alternative to regression models we have seen
- ISL Fig 8.7 shows some extreme examples of "regression vs. classification" and comparisons

- If relationships are inherently linear, decision trees won't be great
- If relationships have "cliffs" and other abrupt features, it will perform better than linear regression

Big picture concepts in building a tree

• PROS:

- Trees are easy to explain to non-experts
- Trees can be displayed graphically (if small)
- Very easy to interpret

• CONS:

- Trees are highly sensitive to training data
- Deep trees are very likely to overfit
 - Lots of cutpoints leads to high effective numbers of parameters

To the notebook!

Building better trees with ensembles

- Three common ensemble methods
 - Bagging
 - Random forests
 - Boosting
- Lots of jargon here, let's unpack!

Ensemble methods reduce variance

- The error of a DT is highly dependent on the training set used – sometimes much more than in regression
- Ensemble methods are a way to avoid this
- Involves bootstrapping to create semi-new draws from the underlying distribution
- Original purpose of bootstrapping: error estimation
- This time, we go beyond error estimation to use ensemble methods to reduce variance by AVERAGING bootstrap draws
- Important: these methods get introduced in ISL in the context of decision trees, but can also be applied to almost any other high variance ML techniques

Applying ensemble methods to decision trees: Bagging

- Bootstrap Aggregation = Bagging
- Bagging algorithm
 - Build a model based on B individual bootstrap data sets
 - Regression trees: Make predictions f(x) for each model and average the predicted response

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

 Classifier trees: use "majority vote" (most common occurring response) to decide for each data point

Estimating test error in bagging

- When you generate bootstrap samples, you can show that about 1/e ≈ 36% of the data points in the sample won't be used.
- Use THESE unused samples to compute test error for each bagging trial.
- These are called "out of bag" samples

Applying ensemble methods to decision trees: Random Forest

- Random forest: random selection of predictors in bunch of trees
- Bagging methods work well, but the bootstrap sets can still be highly correlated,
 - Predictors with a lot of information gain (i.e. useful in predictions) will be at the top of most trees, making the final trees similar
- To reduce correlation, the random forest method uses a random subset of predictors at each split (node) in the tree
 - Heuristic is that $m=\sqrt{p}$ predictors are randomly chosen to use in each split, other predictors are ignored
- Do it a bunch of times like bagging

Applying ensemble methods to decision trees: Random Forest

- Random forest scoring
 - Regression random forest: Make predictions f(x) for each model and average the predicted response

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

- Classifier random forest:
 - "majority vote" (most common occurring response) wins
 - Or average predicted probabilities and take those above/below 0.50

To the notebook!

Boosting

- Fit the data slowly instead of all at once.
- Fit a tree to the data;
- Fit a new tree to the difference between the data and the old tree.
- Fit a new tree to the difference between the data and the i+2 tree.
- Fit a new tree to the difference between the data and the i+3 tree.
- etc.
- Fitting data <u>sequentially</u> with an ensemble, rather than <u>in parallel</u> with an ensemble

AdaBoost

 Standard tree booster in sklearn; there are lots of different variants

$$F_{t-1}(x_i) + lpha_t h(x_i)$$

$$E_t = \sum_i E[F_{t-1}(x_i) + lpha_t h(x_i)]$$

We select a each time we add a new 'learner' that minimizes the error with that new learner.

Final answer is a weighted ensemble of learners, trained sequentially on all the data, instead of in parallel on all of the data

Gradient Boosting (like XGBoost)

- Similar to AdaBoost
- Minimize the residuals with respect to the LAST boost.
- Very popular and fast

To the notebook!

Regression trees vs Classification trees

- Concepts are very similar
- Rather than averaging the values, you classify by a majority vote of what training set is in your bin
- Error metric is based on the <u>classification error rate</u>, not RSS, just as in K-nearest neighbors and related methods
- The decision tree leaves have your qualitative class assignment, not just a quantitative prediction

Visualization of a classification decision tree

Tree diagram

with assignment

2D division of space

What is the 'best' split for classification?

- How do you decide on the best way to split a node?
 - We want nodes that are more 'pure'.
- What makes the splits the most 'pure'?
- Two common choices:
 - minimize Gini $\sum_{K} p_{k} (1 p_{k})$
 - minimize entropy $\sum_{K} -p_k \log p_k$

 P_k = percent of class k in the leaf

For two classes: If 50/50, then Gini = 0.5 If 90/10, Gini = 0.18 If 100/0, Gini = 0.0

For two classes:

If 50/50, then entropy = 0.30

If 90/10, entropy = 0.195

If 100/0, entropy = 0.0

Other Similar Approaches

- Support vector machines: Divide with linear partitions instead of straight lines up and down.
- Or even with curved lines!
- Otherwise quite similar to decision trees.