

<u>Help</u>

sandipan_dey >

Discussion Progress <u>Course</u> <u>Dates</u> <u>Calendar</u> <u>Notes</u> ☆ Course / Unit 5: Curves and Surfaces / Lecture 17: Parametric Curves (3) Next > Previous 2. Example in 2D ☐ Bookmark this page

Lecture due Oct 5, 2021 20:30 IST

Explore

Imagine a particle moving through two-dimensional space. We can describe the motion of the particle by specifying the position of the particle at time t, where t runs through a set of values. For example, let's imagine a particle whose position at time t is given by the x,y-coordinates $(t^2,1+t^2)$, where $0 \le t < \infty$.

By plotting a few points, we can see that the particle moves in a straight line from the point (0,1) in the north-eastern direction.

In the image above, we have plotted the particle's **trajectory**, that is, the set of points that the particle goes through. We can imagine letting the tip of a pencil follow the particle around on a piece of paper, which creates this image of the particle's trajectory.

Equations such as $x(t) = t^2$ and $y(t) = 1 + t^2$ for $0 \le t < \infty$ are known as **parametric equations**. The terminology comes from the fact that x and y each depend on the **parameter** t.

Here are some questions we will be interested in answering:

- 1. What is the particle's velocity at time t?
- 2. What is the particle's speed at time t?
- 3. Is there a way to see that $(t^2, 1+t^2)$ describes a straight line without plotting points?

Straight-line trajectory

Let's first look at the third question: can we get a better feeling for the motion described by $(t^2,1+t^2)$? One approach is to use the language of vector arithmetic. We can represent the point $(t^2,1+t^2)$ by the vector t^2 . Then, we can separate this vector into the sum of vectors:

This form gives better insight into the motion of the particle. We can see that at t=0, the particle will be at the point (0,1), and as t increases, it moves along the vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Since the vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ doesn't depend on t,

the trajectory of the particle is indeed a straight line. In fact, the trajectory's line is parallel to the vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

■ Calculator

Hide Notes

Remark 2.1 (Parameterizing a Line) In general, the parametric equation $(x(t),y(t))=\vec{v}+f(t)\vec{w}$ for vectors \vec{v},\vec{w} and any function f(t), gives a trajectory that is contained within a straight line. The point \vec{v} will be the starting point at t=0, and the vector \vec{w} will be parallel to the trajectory's line.

Parameterizing a line

1/1 point (graded)

Which of the following parametric equations has a straight-line trajectory?

$$\checkmark$$
 $(t/3, t/2)$

$$\checkmark (1+t(t-1),2t(t-1))$$

$$(1-t^2,1+t^2)$$

Solution:

In each case, we try to write it in the form $\vec{v} + f(t)\vec{w}$. In this solution, we will highlight t in blue.

First, (2+t, 1-t) can be written as the sum:

Since this matches the form $\vec{v} + f(t)\vec{w}$, this trajectory is a straight line.

Second, $(t^2, 1+t)$ cannot be written this way. If we try, the best we can get is:

The trajectory is not a straight line. Over time, the particle will bend towards the horizon.

Third, (t/3, t/2) can be written as:

Therefore its trajectory **is** a straight line (here $ec{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$).

Fourth, (1+t(t-1),2t(t-1)) can be written as:

$$egin{pmatrix} 1+t\,(t-1)\ 2t\,(t-1) \end{pmatrix} = egin{pmatrix} 1\ 0 \end{pmatrix} + t\,(t-1)\,inom{1}{2} \end{pmatrix}$$

Therefore its trajectory **is** a straight line. The motion of this particle is a little more interesting: for t > 0, it will move along the line, then reverse, and trace out the straight line in the other direction. This happens because t(t-1) switches from decreasing to increasing as t runs through t0, t0.

Fifth, $(1-t^2,1+t^2)$ can be written as:

Therefore its trajectory is a straight line.

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

A parametric equation is a vector-valued function

As in the above example, it is common to think of a pair of parametric equations (x(t), y(t)) as a two-dimensional vector that varies with the parameter t. It is standard to use the letter \vec{r} to represent this vector.

$$\vec{r}\left(t\right) = \begin{pmatrix} x\left(t\right) \\ y\left(t\right) \end{pmatrix},\tag{6.43}$$

or sometimes just $ec{r}$, if the parameter t is clear from context. Technically, $ec{r}$ is known as a **vector-valued function**, which means it is a function whose output is a vector. The input to the vector-valued function $ec{r}$ is the parameter t

Remark 2.2 The notation \vec{r} is used quite often for the position vector at a time t, sometimes without explicit comment. It will be important that you can recognize this meaning when you see the letter \vec{r} .

A mnemonic: \vec{r} tells you where you **are** ("r").

2. Example in 2D Topic: Unit 5: Curves and Surfaces / 2. Example in 2D Add a Post Show all posts There are no posts in this topic yet. X Previous Next >

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>