Centro Federal de Educação Tecnológica - CEFET-RJ Quarta Aula de Cálculo Numérico

Decomposição LU

Professor da Disciplina

Wagner Pimentel & Pedro Villela

Decomposição LU

Considere o sistema linear Ax = b. Uma forma de resolvê-lo, alternativa ao método de eliminação de Gauss, consiste em decompor a matriz de coeficientes A em um produto de dois fatores e, em seguida, resolver dois sistemas lineares, resultantes dessa fatoração, utilizando a retro-substituição de variáveis.

A vantagem do processo de fatoração LU é que podemos resolver qualquer sistema linear que tenha a mesma matriz de coeficientes A, utilizando essa decomposição de forma única, independente do valor assumido pelo vetor de termos independentes, b.

Pode-se mostrar que "toda matriz quadrada invertível admite uma decomposição em duas matrizes triangulares, uma superior e outra inferior. Além disso, essa decomposição é única." Quem garante esse resultado é o processo de eliminação de Gauss.

Agora que sabemos em quais condições essa fatoração existe, perguntamos: Como podemos obtê-la?

Para encontrá-la, devemos, aplicar o processo de eliminação de Gauss, sobre a matriz A, até que a mesma se torne uma matriz triangular superior, no final do processo. Essa matriz transformada final será a matriz U, da decomposição. Por outro lado, a matriz L dependerá dos multiplicadores, m_{ij} , das etapas da eliminação de Gauss que são utilizados para anular os elementos abaixo da diagonal principal de A. Pode-se mostrar que:

$$L = \begin{cases} 0 & se \quad i < j \\ 1 & se \quad i = j \\ m_{ij} & se \quad i > j \end{cases}$$

ou seja, L é uma matriz triangular inferior com diagonal formada por 1's cujos elementos abaixo dela valem m_{ij} .

Além disso, como

$$U = \begin{cases} u_{ij} & se & i \le j \\ 0 & se & i > j \end{cases}$$

e o determinante de uma matriz triangular é dado pelo produto dos elementos da sua diagonal, podemos ver que:

$$det(A) = det(LU) = det(L)det(U) = 1det(U) = det(U) = u_1u_2...u_n,$$

de modo que o determinante de uma matriz invertível qualquer é o produto dos elementos da diagonal da matriz U e por isso ele nunca é nulo.

Exemplo 1:

Encontre as matrizes L e U da fatoração matriz A a seguir:

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 2 \end{array} \right]$$

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

Linha pivô = L_1 e $a_{11} = 1$ é pivô.

Multiplicadores:
$$m_{21} = \frac{a_{21}}{a_{11}} = \frac{1}{1} = 1$$
 e $m_{31} = \frac{a_{31}}{a_{11}} = \frac{2}{1} = 2$

Faça:
$$L_2^{(1)} \leftarrow L_2^{(0)} - m_{21}L_1^{(0)}$$

Faça: $L_3^{(1)} \leftarrow L_3^{(0)} - m_{31}L_1^{(0)}$

Assim,

$$[A]^1 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Linha pivô =
$$L_2^{(1)}$$
 e pivô = $a_{22}^{(1)}$ = 1.

Multiplicador:
$$m_{32} = \frac{a_{32}^{(1)}}{a_{22}^{(1)}} = \frac{-1}{1} = -1$$

Faça:
$$L_3^{(2)} \leftarrow L_3^{(1)} - m_{32}L_2^{(1)}$$

Assim,

$$[A]^2 = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

Logo,

$$L = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}; e$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = [A]^{2}$$

Como resolver o sistema linear Ax = b utilizando a fatoração LU?

Resposta: Considere o sistema Ax = b, como A = LU o sistema se pode ser reescrito como (LU)x = b. Por meio da substituição, ou fazendo, y = Ux podemos trocar o sistema original por dois sistemas triangulares de mais fácil resolução, um triangular inferior, Ly = b, e outro triangular superior, Ux = y. Note que primeiramente resolvemos o sistema Ly = b e determinamos a solução, y, e por último resolvemos o sistema Ux = y e obtemos a solução do sistema linear original, x.

Decomposição LU com Pivoteamento

Sabemos que no método de Gauss com pivoteamento parcial realizamos permutações ou trocas de linhas. Quais seriam os efeitos destas trocas nos sistemas triangulares Ly = b e Ux = y?

Sabemos da teoria de Álgebra Linear que uma matriz de permutação P de ordem n pode ser sempre obtida através da matriz identidade I de ordem n permutando-se suas linhas ou colunas. Neste curso, trataremos apenas matrizes P derivadas de I pela permutação de linhas.

Sejam

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \text{ obtida de } I \text{ trocando } L_1 \text{ com } L_2 \text{ e } L_2 \text{ com } L_3,$$
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ -2 & -5 & 3 \end{bmatrix}$$

então.

$$PA = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ -2 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ -2 & -5 & 3 \\ 1 & -1 & 2 \end{bmatrix}$$

Note que a pré-multiplicação da matriz A pela matriz P inverte as linhas da mesma seguindo a mesma lógica de troca da matriz de permutação. Esse resultado, que utilizaremos mais adiante, vale apenas para a pré-multiplicação uma vez que as matrizes não comutam.

Considere o sistema linear Ax = b e a fatoração LU tal que PA = LU, então

$$Ax = b \equiv (PA)x = Pb \equiv (LU)x = Pb$$

Seja, ainda, y = Ux, então a solução do sistema linear original pode ser obtida por meio da resolução

de dois sistemas lineares triangulares: primeiramente resolvemos o sistema $Ly = \mathbf{Pb}$ e determinamos a solução, y, para depois solucionarmos o sistema Ux = y e assim encontrarmos a solução do sistema original, x.

Exemplo 2:

a) Utilize o método da Eliminação de Gauss com pivoteamento para determinar as matrizes L e U da fatoração matriz de coeficientes do sistema linear a seguir:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 - 2x_2 - x_3 = 4 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz do sistema é

$$[A]^{(0)} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & -1 \\ -2 & -5 & 3 \end{bmatrix}, P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal. Escolha $a_{21} = 2$ como pivô trocando L_1 com L_2 , assim,

$$[A]^{(0)'} = \begin{bmatrix} 2 & -2 & -1 \\ 1 & -1 & 2 \\ -2 & -5 & 3 \end{bmatrix}, P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiplicadores:
$$m_{21} = \frac{a_{21}}{a_{11}} = 1/2$$
 e $m_{31} = \frac{a_{31}}{a_{11}} = -1$

$$[A]^{(1)} = \begin{bmatrix} 2 & -2 & -1 \\ 0 & 0 & 5/2 \\ 0 & -7 & 2 \end{bmatrix} \quad \begin{array}{c} L_2^{(1)} \leftarrow L_2^{(0)} - 1/2L_1^{(0)} \\ L_3^{(1)} \leftarrow L_3^{(0)} + L_1^{(0)} \end{array}.$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Escolha $a_{32} = -7$ como pivô trocando L_2 com L_3 , observe que esta troca acarretará na troca entre m_{21} e m_{31} na configuração da matriz L, dado que eles já foram determinados na fase anterior. Continuando teremos,

$$[A]^{(1)'} = \begin{bmatrix} 2 & -2 & -1 \\ 0 & -7 & 2 \\ 0 & 0 & 5/2 \end{bmatrix}, P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Multiplicadores: $m_{32} = \frac{a_{32}}{a_{22}} = 0/(-7) = 0$

$$[A]^{(2)} = \begin{bmatrix} 2 & -2 & -1 \\ 0 & -7 & 2 \\ 0 & 0 & 5/2 \end{bmatrix} \quad L_3^{(2)} \leftarrow L_3^{(1)} - 0L_2^{(1)}.$$

Assim, a matrizes são,

$$L = \begin{bmatrix} 1 & 0 & 0 \\ m_{31} & 1 & 0 \\ m_{21} & m_{32} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & -2 & -1 \\ 0 & -7 & 2 \\ 0 & 0 & 5/2 \end{bmatrix}$$

b)Resolva o sistema linear usando as matrizes LU

Como
$$Pb = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix},$$

podemos resolver o sistema Ly=Pb por retro-substituição de variáveis:

$$\begin{cases} y_1 & = 4 \\ -y_1 + y_2 & = 3 \\ \frac{1}{2}y_1 & + y_3 = 2 \end{cases}$$

Assim,
$$y_1 = 4$$
; $y_2 = \frac{3 - (-y_1)}{1} = 7$; $y_3 = \frac{2 - (\frac{1}{2}y_1)}{1} = 0$; portanto, $y = \begin{bmatrix} 4 \\ 7 \\ 0 \end{bmatrix}$.

Agora, vamos resolver o sistema Ux = y por retro-substituição de variáveis.

$$\begin{cases} 2x_1 - 2x_2 - x_3 = 4 \\ - 7x_2 + 2x_3 = 7 \\ + \frac{5}{2}x_3 = 0 \end{cases}$$

Assim,
$$x_3 = 0$$
; $x_2 = \frac{7 - (2x_3)}{-7} = -1$; $x_1 = \frac{4 - (-2x_2 - x_3)}{2} = 1$; daí, $x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.

Exemplo 3:

Uma fábrica produz três tipos de carro (A, B e C) cuja fabricação envolve três etapas: a de montagem, a de pintura e a de acabamento. O setor de montagem gasta 1 hora para montar cada um dos três carros, já o de pintura gasta 1 hora para pintar o carro A, 2 horas para pintar o carro B e 2 horas para pintar o carro C. Já o setor de acabamento gasta 2 horas para finalizar o carro A, 1 hora para finalizar o carro B e 2 horas para finalizar o carro C. Sabe-se que o setor de montagem tem disponibilidade de 13 horas semanais, o de pintura 21 horas e o de acabamento 22 horas. Nessas condições, o dono da fábrica gostaria de saber:

a) A produção semanal de cada tipo de carro, sabendo que todas as máquinas serão utilizadas em tempo integral.

b)Se a disponibilidade de tempo do setor de montagem aumentar para 15 horas, a do setor de pintura aumentar para 24 horas e a do setor de acabamento para 25 horas, quantos carros de cada tipo poderiam ser produzidos durante uma semana, sabendo que todas as máquinas serão utilizadas em tempo integral.

Resposta: a) Pelo enunciado, as quantidades a serem determinadas são as quantidades a serem produzidas de cada carro em uma semana. Sendo assim, vamos utilizar a seguinte denominação:

 x_1 : Quantidade semanal produzida do carro A.

 x_2 : Quantidade semanal produzida do carro B.

 x_3 : Quantidade semanal produzida do carro C.

Podemos notar que a produção de x_1 carros do tipo A gasta x_1 horas do setor de montagem, ao passo que a produção de x_2 carros do tipo B gasta x_2 horas do setor de pintura e que a produção de x_3 carros do tipo C gasta x_3 horas do setor de acabamento. Logo, o total de horas gasto nesse setor é $x_1 + x_2 + x_3$. Como esse setor possui 13 horas de disponibilidade, podemos dizer que $x_1 + x_2 + x_3 = 13$.

Utilizando um raciocínio similar para o setor de pintura, podemos afirmar que $x_1 + 2x_2 + 2x_3 = 21$. De forma análoga, para o setor de acabamento, temos que $2x_1 + x_2 + 2x_3 = 22$.

Logo, para encontrar a solução do problema, devemos resolver o seguinte sistema linear:

$$\begin{cases} x_1 + x_2 + x_3 = 13 \\ x_1 + 2x_2 + 2x_3 = 21 \\ 2x_1 + x_2 + 2x_3 = 22 \end{cases}$$

A matriz de coeficientes desse sistema é a mesma do **Exemplo 1**. Assim, para resolver esse exercício, vamos aproveitar diretamente a fatoração LU dessa matriz obtida nesse mesmo exemplo e resolver os dois

sistema lineares triangulares a seguir.

Para Ly = b, temos:

$$\begin{cases} y_1 & = 13 \\ y_1 + y_2 & = 21 \\ 2y_1 - y_2 + y_3 & = 22 \end{cases}$$

Assim,
$$y_1 = 13$$
; $y_2 = 8$; $y_3 = 4$; portanto, $y = \begin{bmatrix} 13 \\ 8 \\ 4 \end{bmatrix}$.

O sistema final Ux = y será:

$$\begin{cases} x_1 + x_2 + x_3 = 13 \\ + x_2 + x_3 = 8 \\ x_3 = 4 \end{cases}$$

Assim,
$$x_3 = 4$$
; $x_2 = 4$; $x_1 = 5$; daí, $x = \begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix}$.

b)Repare que, nesse caso, apenas a disponibilidade de tempo de cada setor foi alterado, de forma que a solução desse problema envolve o mesmo sistema linear do exercício anterior, mudando apenas a quantidade do lado direito. Sendo assim, para resolver esse novo problema, precisamos investigar o seguinte sistema linear:

$$\begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + 2x_2 + 2x_3 = 24 \\ 2x_1 + x_2 + 2x_3 = 25 \end{cases}$$

Note que a matriz A desse sistema é a mesma do exercício anterior. Logo, podemos aproveitar a fatoração LU já conhecida para determinar a solução desse sistema, evitando que façamos novamente a Eliminação de Gauss. O aproveitamento da fatoração LU é recorrente quando precisamos resolver um conjunto de sistemas em que apenas as quantidades do lado direito mudam recorrentemente, como nesse exemplo da fábrica. A nova solução pode ser obtida por meio da resolução dos seguintes sistemas lineares triangulares:

$$Ly = b \to \begin{cases} y_1 & = 15 \\ y_1 + y_2 & = 24 \to y = \begin{bmatrix} 15 \\ 9 \\ 2y_1 - y_2 + y_3 = 25 \end{bmatrix}.$$

$$Ux = y \to \left\{ \begin{array}{cccc} x_1 & + & x_2 & + & x_3 & = & 15 \\ & + & x_2 & + & x_3 & = & 9 & \to x = \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix} \right.$$

Calculando a inversa de uma matriz através da fatoração LU

Uma maneira eficiente de encontrar a inversa de uma matriz A seria considerá-la na forma de colunas, ou seja, $A^{-1} = [v_1 v_2, \dots v_n]$, onde $v_1 v_2, \dots v_n$ são as colunas da matriz inversa, A^{-1} . Pode-se mostrar, por meio de argumentos intuitivos, que $AA^{-1} = [Av_1 Av_2, \dots Av_n]$. Consideraremos também que a matriz identidade de ordem n também esteja em forma de colunas, ou seja, $I = [e_1 e_2, \dots e_n]$, em que e_i é a i-ésima coluna dessa matriz, ou seja, $e_i = (0, 0, \dots, 0, 1, 0, \dots, 0)^t$

Como $AA^{-1} = I$, temos que $[Av_1 Av_2, ... Av_n] = [e_1 e_2, ... e_n]$. Por meio dessa igualdade, é fácil ver que $Av_1 = e_1$, $Av_2 = e_2$,..., $Av_n = e_n$, ou seja, que $Av_i = e_i$, para i = 1, 2, ..., n.

Sendo assim, uma maneira de obter a matriz A^{-1} seria resolver n sistemas lineares, um para cada coluna da matriz inversa.

À primeira vista, trocar o cálculo direto da matriz inversa por n sistemas lineares não parece ser algo vantajoso, pois teríamos que resolver um número excessivo de sistemas via eliminação de Gauss. Entretanto, o fato de apenas os valores do lado direito serem alterados em cada problema, sugere que podemos aproveitar a fatoração LU de A, já que ela não depende dos valores do lado direito de cada sistema linear.

Dessa forma, caso utilizássemos a fatoração LU de A para resolver cada sistema do tipo $Av_i = e_i$, precisaríamos realizar o processo de eliminação de Gauss apenas uma vez, para determinar as matrizes L e U, ao invés das usuais n vezes, uma para cada sistema linear.

Exemplo 4:

Ache a inversa da matriz A do **Exemplo 1**, aproveitando a sua fatoração LU já calculada anteriormente.

Se
$$A^{-1} = \begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & x_3 \end{bmatrix}$$
, devemos resolver o sistema $Ax = e_1$ para obter a sua primeira

coluna, o sistema $Ay = e_2$ para encontrar a sua segunda coluna e, finalmente, o sistema $Az = e_3$ para determinar a sua terceira e última coluna. Considerando a variável auxiliar v, temos:

Coluna 1: De $Ax = e_1$, temos que $(LU)x = e_1$, ou seja, devemos resolver os sistemas $Lv = e_1$ e Ux = v.

$$Lv = e_1 \to \left\{ \begin{array}{cccc} v_1 & & = & 1 \\ v_1 & + & v_2 & & = & 0 \\ 2v_1 & - & v_2 & + & v_3 & = & 0 \end{array} \right. \to v = \left[\begin{array}{c} 1 \\ -1 \\ -3 \end{array} \right].$$

$$Ux = v \to \begin{cases} x_1 + x_2 + x_3 = 1 \\ x_2 + x_3 = -1 \to x = \begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix}.$$

Coluna 2: De $Ay = e_2$, temos que $(LU)y = e_2$, ou seja, devemos resolver os sistemas $Lv = e_2$ e yx = v.

$$Lv = e_2 \to \left\{ \begin{array}{cccc} v_1 & & = & 0 \\ v_1 & + & v_2 & & = & 1 & \to v = \begin{bmatrix} 0 \\ 1 \\ 2v_1 & - & v_2 & + & v_3 & = & 0 \end{array} \right.$$

$$Uy = v \to \begin{cases} y_1 + y_2 + y_3 = 0 \\ y_2 + y_3 = 1 \to y = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

Coluna 3: De $Az = e_3$, temos que $(LU)z = e_3$, ou seja, devemos resolver os sistemas $Lv = e_3$ e Uz = v.

$$Lv = e_3 \to \left\{ \begin{array}{cccc} v_1 & & = & 0 \\ v_1 & + & v_2 & & = & 0 \\ 2v_1 & - & v_2 & + & v_3 & = & 1 \end{array} \right. \to v = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right].$$

$$Uz = v \to \left\{ \begin{array}{cccc} x_1 & + & x_2 & + & x_3 & = & 0 \\ & & x_2 & + & x_3 & = & 0 \\ & & & x_3 & = & 1 \end{array} \right. \to z = \left[\begin{array}{c} 0 \\ -1 \\ 1 \end{array} \right].$$

Finalmente,
$$A^{-1} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & x_3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ 2 & 0 & -1 \\ -3 & 1 & 1 \end{bmatrix}$$