Convex Optimization ScAi Lab Study Group

Zhiping (Patricia) Xiao University of California, Los Angeles

Winter 2020

Outline

Introduction: Convex Optimization

Convexity

Convex Functions' Properties

Definition of Convex Optimization

Convex Optimization

General Strategy

Learning Algorithms

Convergence Analysis

Examples

Textbook:

Convex Optimization and Intro to Linear Algebra by Prof. Boyd and Prof. Vandenberghe

Course Materials:

- ► <u>ECE236B</u>, <u>ECE236C</u> offered by Prof. Vandenberghe
- ► <u>CS260 Lecture 12</u> offered by Prof. Quanquan Gu

Notes:

- ▶ My previous <u>ECE236B notes</u> and <u>ECE236C final report.</u>
- ▶ My previous <u>CS260 Cheat Sheet</u>.

Related Papers:

- ► Accelerated methods for nonconvex optimization
- Lipschitz regularity of deep neural networks: analysis and efficient estimation

Introduction: Convex Optimization

Notations 5

- ▶ iff: if and only if
- $\mathbb{R}_+ = \{ x \in \mathbb{R} \mid x \ge 0 \}$
- $\mathbb{R}_{++} = \{ x \in \mathbb{R} \mid x > 0 \}$
- \blacktriangleright int K: interior of set K, not its boundary.
- ▶ Generalized inequalities (textbook 2.4), based on a proper cone K (convex, closed, solid, pointed if $x \in K$ and $-x \in K$ then x = 0):
 - $\triangleright x \leq_K y \iff y x \in K$
 - $\triangleright x \prec_K y \iff y x \in \mathbf{int} K$
- Positive semidefinite matrix $X \in \mathbb{S}^n_+, \forall y \in \mathbb{R}^n, y^T X y \geq 0$ $\iff X \succeq 0.$

Set C is convex iff the line segment between any two points in C lies in C, i.e. $\forall x_1, x_2 \in C$ and $\forall \theta \in [0, 1]$, we have:

$$\theta x_1 + (1 - \theta)x_2 \in C$$

Both convex and nonconvex sets have convex hull, which is defined as:

conv
$$C = \{ \sum_{i=1}^{k} \theta_i x_i \mid x_i \in C, \theta_i \ge 0, i = 1, 2, \dots, k, \sum_{i=1}^{k} \theta_i = 1 \}$$

Figure: Left: convex, middle & right: nonconvex.

Figure: Left: convex hull of the points, right: convex hull of the kidney-shaped set above.

The most common operations that preserve convexity of convex sets include:

- ▶ Intersection
- ► Image / inverse image under affine function
- Cartesian Product, Minkowski sum, Projection
- ► Perspective function
- ► Linear-fractional functions

Convexity is preserved under *intersection*:

- ▶ S_1, S_2 are convex sets then $S_1 \cap S_2$ is also convex set.
- ▶ If S_{α} is convex for $\forall \alpha \in \mathcal{A}$, then $\cap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.

Proof: **Intersection** of a collection of convex sets is convex set. If the intersection is empty, or consists of only a single point, then proved by definition. Otherwise, for any two points A, B in the intersection, line AB must lie wholly within each set in the collection, hence must lie wholly within their intersection.

An **affine function** $f: \mathbb{R}^n \to \mathbb{R}^m$ is a sum of a linear function and a constant, i.e., if it has the form f(x) = Ax + b, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, thus f represents a *hyperplane*.

Suppose that $S \subseteq \mathbb{R}^n$ is convex and then the *image* of S under f is convex:

$$f(S) = \{ f(x) \mid x \in S \}$$

Also, if $f: \mathbb{R}^m \to \mathbb{R}^n$ is an affine function, the inverse image of S under f is convex:

$$f^{-1}(S) = \{x \mid f(x) \in S\}$$

Examples include scaling $\alpha S = \{f(x) \mid \alpha x, \ x \in S\} \ (\alpha \in \mathbb{R})$ and translation $S + a = \{f(x) \mid x + a, \ x \in S\} \ (a \in \mathbb{R}^n)$; they are both convex sets when S is convex.

Proof: the image of convex set S under affine function f(x) = Ax + b is also convex.

If S is empty or contains only one point, then f(S) is obviously convex. Otherwise, take $x_S, y_S \in f(S)$. $x_S = f(x) = Ax + b$, $x_S = f(y) = Ay + b$. Then $\forall \theta \in [0, 1]$, we have:

$$\theta x_S + (1 - \theta)y_S = A(\theta x + (1 - \theta)y) + b$$
$$= f(\theta x + (1 - \theta)y)$$

Since $x, y \in S$, and S is convex set, then $\theta x + (1 - \theta)y \in S$, and thus $f(\theta x + (1 - \theta)y) \in f(S)$.

The Cartesian Product of convex sets $S_1 \subseteq \mathbb{R}^n$, $S_2 \subseteq \mathbb{R}^m$ is obviously convex:

$$S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$$

The Minkowski sum of the two sets is defined as:

$$S_1 + S_2 = \{x_1 + x_2 \mid x_1 \in S_1, x_2 \in S_2\}$$

and it is also obviously convex.

The *projection* of a convex set onto some of its coordinates is also obviously convex. (consider the definition of convexity reflected on each coordinate)

$$T = \{x_1 \in \mathbb{R}^m \mid (x_1, x_2) \in S \text{ for some } x_2 \in \mathbb{R}^n\}$$

We define the *perspective* function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$, with domain $\operatorname{dom} P = \mathbb{R}^n \times \mathbb{R}_{++}$, as P(z,t) = z/t.

The *perspective function* scales or normalizes vectors so the last component is one, and then drops the last component.

We can interpret the perspective function as the action of a pin-hole camera. (x_1, x_2, x_3) through a hold at (0, 0, 0) on plane $x_3 = 0$ forms an image at $-(x_1/x_3, x_2/x_3, 1)$ at $x_3 = -1$. The last component could be dropped, since the image point is fixed.

Proof: That this operation preserves convexity is already proved by $affine\ function + projection\ preserve\ convexity.$

A linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$ is formed by composing the perspective function with an affine function. Consider the following affine function $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$:

$$g(x) = \begin{bmatrix} A \\ c^T \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $d \in \mathbb{R}$. Followed by a perspective function $P : \mathbb{R}^{m+1} \to \mathbb{R}^m$ we have:

$$f(x) = (Ax + b)/(c^{T}x + d),$$
 $dom f = x | c^{T}x + d > 0$

And it naturally preserves convexity because both affine function and perspective function preserve convexity.

UCLA

Convex Functions Strict Convex Functions Strong Convex Functions

Figure: The three commonly-seen types of convex functions and their relations. In brief, strong convex functions \Rightarrow strict convex functions \Rightarrow convex functions.

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff it satisfies:

- ightharpoonup dom f is a convex set.
- $\blacktriangleright \ \forall x,y \in \mathbf{dom} \ f, \ \theta \in [0,1], \ \text{we have the } \textit{Jensen's inequality}:$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

f is strictly convex iff when $x \neq y$ and $\theta \in (0,1)$, strict inequality of the above inequation holds.

f is concave when -f is convex, strictly concave when -f strictly convex, and vice versa.

f is strong convex iff $\exists \alpha > 0$ such that $f(x) - \alpha ||x||^2$ is convex. $||\cdot||$ is any norm.

Proof: strong convex functions \Rightarrow strict convex functions \Rightarrow convex functions.

That all strict convex functions are convex functions, and that convex functions are not necessarily strict convex. Strong convexity implies, $\forall x, y \in \operatorname{\mathbf{dom}} f, \theta \in [0, 1], x \neq y, \exists \alpha > 0$:

$$f(\theta x + (1 - \theta)y) - \alpha \|\theta x + (1 - \theta)y\|^{2}$$

$$\leq \theta f(x) + (1 - \theta)f(y) - \theta \alpha \|x\|^{2} - (1 - \theta)\alpha \|y\|^{2}$$
(1.1)

Something we didn't prove yet but is true: $\|\cdot\|^2$ is strictly convex. We need it for this proof.

$$\|\theta x + (1 - \theta)y\|^2 < \theta \|x\|^2 + (1 - \theta)\|y\|^2$$

(proof continues)

$$\alpha \|\theta x + (1 - \theta)y\|^2 < \theta \alpha \|x\|^2 + (1 - \theta)\alpha \|y\|^2$$

$$t = -\alpha \|\theta x + (1 - \theta)y\|^2 + \theta \alpha \|x\|^2 + (1 - \theta)\alpha \|y\|^2 > 0$$

(1.1) is equivalent with:

$$f(\theta x + (1 - \theta)y) + t \le \theta f(x) + (1 - \theta)f(y)$$

where t > 0, thus:

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

Figure: Convex function illustration from Prof. Gu's Slides. This figure shows a typical convex function f, and instead of our expression of x and y he used u & v instead.

Commonly-seen uni-variate convex functions include:

- Constant: C
- \triangleright Exponential function: e^{ax}
- Power function: x^a $(a \in (-\infty, 0] \cup [1, \infty)$, otherwise it is concave)
- ▶ Powers of absolute value: $|x|^p$ $(p \ge 1)$
- ▶ Logarithm: $-\log(x)$ $(x \in \mathbb{R}_{++})$
- $\triangleright x \log(x) \ (x \in \mathbb{R}_{++})$
- ightharpoonup All norm functions ||x||
 - The inequality follows from the triangle inequality, and the equality follows from homogeneity of a norm."

An affine function $f: \mathbb{R}^n \to \mathbb{R}^m$, f(x) = Ax + b, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, is convex & concave (neither strict convex nor strict concave).

Conversely, all functions that are both convex and concave are affine functions.

Proof: $\forall \theta \in [0, 1], x, y \in \operatorname{dom} f$, we have:

$$f(\theta x + (1 - \theta)y) = A(\theta x + (1 - \theta)y) + b$$
$$= \theta(Ax + b) + (1 - \theta)(Ay + b)$$
$$= \theta f(x) + (1 - \theta)f(y)$$

f is convex iff it is convex when restricted to **any** line that intersects its domain.

In other words, f is convex iff $\forall x \in \operatorname{\mathbf{dom}} f$ and $\forall v \in \mathbb{R}^n$, the function:

$$g(t) = f(x + tv)$$

is convex. $\operatorname{\mathbf{dom}} g = \{t \mid x + tv \in \operatorname{\mathbf{dom}} f\}$

This property allows us to check convexity of a function by restricting it to a line.

Suppose f is differentiable (its gradient ∇f exists at each point in $\operatorname{dom} f$, which is open). Then f is convex iff:

- ightharpoonup dom f is a convex set
- $\blacktriangleright \ \forall x,y \in \mathbf{dom}\, f$:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

It states that, for a convex function, the first-order Taylor approximation $(f(x) + \nabla f(x)^T (y - x))$ is the first-order Taylor approximation of f near x) is in fact a global underestimator of the function.

Could also be interpreted as "tangents lie below f".

Proof is on next page.

This proof comes from CVX textbook page 70, 3.1.3.

Let $x, y \in \operatorname{\mathbf{dom}} f$, $t \in (0, 1]$, s.t. $x + t(y - x) \in \operatorname{\mathbf{dom}} f$, then, by convexity we have:

$$f(x + t(y - x)) = f((1 - t)x + ty) \le (1 - t)f(x) + tf(y)$$
$$tf(y) \ge (t - 1)f(x) + f(x + t(y - x))$$
$$f(y) \ge f(x) + \frac{f(x + t(y - x)) - f(x)}{t}$$

take $\lim_{t\to 0}$ we have:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

First we assume that α is the maximum value of the parameter before the norm.

Also note that all norms are equivalent ¹, meaning that $\exists 0 < C_1 \leq C_2$ for $\forall a, b, x$:

$$C_1 ||x||_b \le ||x||_a \le C_2 ||x||_b$$

and thus it is okay to treat $\|\cdot\|$ as ℓ_2 norm. Consider the Taylor formula:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x)^{T} (y - x)$$

We now assume that f is twice differentiable, that is, its Hessian or second derivative $\nabla^2 f$ exists at each point in $\operatorname{\mathbf{dom}} f$, which is open. Then f is convex iff:

- ightharpoonup dom f is convex
- ▶ f's Hessian is positive semidefinite, $\forall x \in \operatorname{dom} f$:

$$\nabla^2 f(x) \succeq 0$$

When $f: \mathbb{R}^n \to \mathbb{R}$, it is simply:

$$\nabla^2 f(x) \ge 0$$

(*) When f is **strongly convex** with constant m:

$$\nabla^2 f(x) \succeq mI \qquad \forall x \in \mathbf{dom} \, f$$

$$\nabla^2 f(x) \succeq 0$$

Then for strong convex, where $\nabla^2 (f(x) - \alpha ||x||^2) \succeq 0$, we have:

$$\nabla^2 f(x) \succeq \nabla_x^2 \alpha ||x||^2$$

and we often take the bound of $\nabla_x^2 \alpha ||x||^2$ as m. For instance, in the case of $\nabla_x^2 \alpha ||x||_2^2$, $m = 2\alpha$.

Note that α and m are usually different constants. But it doesn't matter such much in practice.

The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

Sublevel sets of a convex function are convex, for any value of α .

Proof: $\forall x, y \in C_{\alpha}$, $f(x) \leq \alpha$, $\forall \theta \in [0, 1]$, $f(\theta x + (1 - \theta)y) \leq \alpha$, and hence $\theta x + (1 - \theta)y \in C_{\alpha}$.

The converse is **not** true: a function can have **all** its sublevel sets convex (a.k.a. quasiconvex), but **not** convex itself. e.g. $f(x) = -e^x$ is concave in \mathbb{R} but all its sublevel sets are convex.

If f is concave, then its α -superlevel set is a convex set:

$$\{x \in \operatorname{\mathbf{dom}} f \mid f(x) \ge \alpha\}$$

Figure: The illustration of graph and epigraph from textbook. Epigraph of f is the shaded part, graph of f is the dark line.

UCLA

The graph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is a subset of \mathbb{R}^{n+1} :

$$\{(x, f(x)) \mid x \in \mathbf{dom}\, f\}$$

The *epigraph* of it is also subset of \mathbb{R}^{n+1} , defined as:

epi
$$f = \{(x, t) \mid x \in \text{dom } f, \ f(x) \le t\}$$

The link between convex sets and convex functions is via the epigraph: A function is convex iff its epigraph is a convex set.

Figure: "... least-squares and linear programming problems have a fairly complete theory, arise in a variety of applications, and can be solved numerically very efficiently ... the same can be said for the larger class of convex optimization problems." — from textbook

Considering the following mathematical optimization problem (a.k.a optimization problem):

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, i = 1, 2, \dots m$

- \blacktriangleright $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- ▶ $f_i: \mathbb{R}^n \to \mathbb{R} \ (i = 1, 2, ..., m)$ are the constraint functions

A vector x^* is called *optimal*, or called a *solution* of the problem, iff: $\forall z$ satisfying every $f_i(z) \leq b_i$ (i = 1, 2, ..., m), we have $f_0(z) \geq f_0(x^*)$.

minimize
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

It has no *constraints*. $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{k \times n}$, $k \ge n$. $a_i \in \mathbb{R}^n$ are the rows of the coefficient matrix A.

The solution can be reduced to solving a set of linear equations:

$$A^T A x = A^T b$$

We have analytical solution:

$$x = (A^T A)^{-1} A^T b$$

Can be solved in approximately $\mathcal{O}(n^2k)$ time if A is dense, otherwise much faster.

Figure: Illustration of how we get the solution of a least-square problem. k=3, n=1. With Col(A) be the set of all vectors of the form Ax (the column space, consistent), the closest vector of the form Ax to b is the orthogonal projection of b onto Col(A). Figure from https://textbooks.math.gatech.edu/ila/least-squares.html.

UCLA

minimize
$$f_0(x) = c^T x$$

subject to $f_i(x) = a_i^T x \le b_i, \quad i = 1, 2, \dots m$

It is called *linear programming*, because the objective (parameterized by $c \in \mathbb{R}^n$) and all constraint functions (parameterized by $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$) are linear.

- ▶ No simple analytical solution.
- Cannot give exact number of arithmetic operations required.
- ▶ A lot of effective methods, include:
 - ► Dantzig's simplex method ²
 - ► Interior-point methods (most recent)
 - Time complexity can be estimated to a given accuracy, usually around $\mathcal{O}(n^2m)$ in practice (assuming $m \ge n$).
 - ▶ Could be extended to *convex optimization* problems.

UCLA

²It's the thing you've be taught in junior high school.

Many optimization problems can be transformed to an equivalent linear program. For example, the *Chebyshev* approximation problem:

minimize
$$\max_{i=1,2,\dots k} |a_i^T x - b_i|$$

Many optimization problems can be transformed to an equivalent linear program. For example, the *Chebyshev approximation problem*:

minimize
$$\max_{i=1,2,\dots k} |a_i^T x - b_i|$$

It can be solved by solving:

minimize
$$t$$

subject to $a_i^T x - t \le b_i, \qquad i = 1, 2, ..., k$
 $-a_i^T x - t \le b_i, \qquad i = 1, 2, ..., k$

Here, $a_i, x \in \mathbb{R}^n$, $b_i, t \in \mathbb{R}$.

A convex optimization problem is one of the form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, i = 1, 2, \dots m$

where the functions $f_0, f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are all convex functions. That is, they satisfy:

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

$$\forall x, y \in \mathbb{R}^n, \ \theta \in [0, 1].$$

The least-squares problem and linear programming problem are both special cases of the general convex optimization problem.

- ▶ No analytical formula for the solution.
- ▶ Interior-point methods work very well in practice, but no consensus has emerged yet as to what the best method or methods are, and it is still a very active research area.
- ▶ We cannot yet claim that solving general convex optimization problems is a mature technology.
- ▶ For some subclasses of *convex optimization* problems, e.g. second-order cone programming or geometric programming, interior-point methods are approaching mature technology.

Figure: Illustration of what are included in the nonlinear optimization problems (grey parts are wiped out). The problems where (1) $\exists f_i$ not linear, (2) the problem is **not known** to be convex.

No effective methods for solving the general *nonlinear* programming problem, and the different approaches each of involves some compromise.

- ► Local optimization: "more art than technology"
- ► Global optimization: "the compromise is efficiency"

Convex optimization also helps with non-convex problems from:

- ► Initialization for local optimization:
 - 1. Find an approximate, but convex, formulation of the problem.
 - 2. Use the approximate convex problem's exact solution to handle the original non-convex problem.

- Introduce convex heuristics for solving nonconvex optimization problems, e.g:
 - ► Sparsity: when and why it is preferred.
 - ► The use of *randomized algorithms* to find the best parameters.
- Estimating the bounds, e.g. estimating the lower bound on the optimal value (the best-possible value):
 - Lagrangian relaxation:
 - 1. Solve the Lagrangian dual problem, which is convex
 - 2. It provides a lower bound on the optimal value
 - ▶ Relaxation:
 - Each nonconvex constraint is replaced with a looser, but convex, constraint.

Convex Optimization

The problem is often expressed as:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, 2, ..., m$
 $h_i(x) = 0, \quad i = 1, 2, ..., p$

The domain \mathcal{D} is defined as:

$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$$

A point $x \in \mathcal{D}$ is *feasible* if it satisfies the constraints $(f_i \text{ for } i = 1, ..., m, \text{ and } h_i \text{ for } i = 1, ..., p)$.

The optimal value p^* is inf $f_0(x)$ when x is feasible. An optimal point x^* satisfies $f_0(x^*) = p^*$.

UCLA

The standard form optimization problem is convex optimization problem when satisfying three additional conditions:

- 1. The objective function f_0 must be convex;
- 2. The inequality constraint functions f_i (i = 1, 2, ..., m) must be convex;
- 3. The equality constraint functions $h_i(x) = a_i^T x b_i$ (i = 1, 2, ..., p) must be affine.

An important property coming after: The feasible set \mathcal{D} must be convex, as it is the intersection of the above-listed convex functions.

The epigraph form is in the form $(x \in \mathbb{R}^n, t \in \mathbb{R})$, obviously equivalent with standard form:

minimize
$$t$$

subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, 2, ..., m$
 $h_i(x) = 0, \quad i = 1, 2, ..., p$

Note that the objective function of the epigraph form problem is a linear function of the variables x, t.

It can be interpreted geometrically as minimizing t over the epigraph of f_0 , subject to the constraints on x.

A fundamental property of convex optimization problems is that any locally optimal point is also (globally) optimal.

Proof: Assume x is local optima, then $x \in \mathcal{D}$, and for some R > 0,

$$f_0(x) = \inf\{f_0(z) \mid z \in \mathcal{D}, ||z - x||_2 \le R\}$$

Now assume it is not global optima, then $\exists y \in \mathcal{D}, f_0(y) < f_0(x)$. There must be $||y - x||_2 > R$. Consider point z given by:

$$z = (1 - \theta)x + \theta y$$
 $\theta = \frac{R}{2||y - x||_2} < \frac{1}{2}$

Therefore, $||z - x||_2 = \frac{R}{2} < R$. By convexity of feasible set \mathcal{D} , $z \in \mathcal{D}$, and f_0 is convex. Then it contradicts the assumption:

$$f_0(z) \le (1 - \theta)f_0(x) + \theta f_0(y) < f_0(x)$$

When solving an optimization problem, we follow the following steps:

- Reformulate the problem into the standard format / epigraph format / other known equivalent format (e.g. LP (Linear Program), QP (Quadratic Program), SOCP (Second-Order Cone Program), GP (Geometric Program), CP (Cone Program), SDP (Semidefinite Program));
- 2. We could form highly nontrivial bounds on convex optimization problems by duality. (Weak) duality works even for hard problems that are not necessarily convex (but the functions involved must be convex).
- 3. The problem could be solved by solving the KKT (Karush-Kuhn-Tucker) conditions.

UCLA

³ Textbook Chapter 4.

When f_0 is a constant, the problem becomes a *feasibility* problem.

When there's no f_1, \ldots, f_m and no $h_1, \ldots h_p$, the problem is an unconstrained minimization problem.

- ► Feasibility \rightarrow unconstrained minimization: make a new f'_0 with value 0 (or other constants) when $x \in \mathcal{D}$, otherwise $f'_0(x) = +\infty$.
- ▶ Unconstrained minimization \rightarrow feasibility: introduce $f_0(x) \leq p^* + \epsilon$ as the constraint and remove the objective.

Infeasible problem: $p^* = +\infty$; unbounded problem: $p^* = -\infty$.

LPs are normally in the form:

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

With slack variable $s \in \mathbb{R}^m \succeq 0$ introduced and $x = x^+ - x^-, x^+, x^- \succeq 0$:

minimize
$$c^T x^+ - c^T x^- + d$$

subject to $Gx^+ - Gx^- + s = h$
 $Ax^+ - Ax^- = b$
 $s, x^+, x^- \succeq 0$

Consider the Chebyshev center of a polyhedron \mathcal{P} , defined as:

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid a_i^T x \le b_i, \ i = 1, 2, \dots m \}$$

We want to find the largest Euclidean ball that lies in \mathcal{P} , whose center is known as the Chebyshev center of the polyhedron. The ball is represented as:

$$\mathcal{B} = \{ x_c + u \mid ||u||_2 \le r \}$$

The variables: $x_c \in \mathbb{R}^n$, $r \in \mathbb{R}$, problem: maximize r subject to the constraint $\mathcal{B} \subseteq \mathcal{P}$.

We start from observing that $x = x_c + u$ from \mathcal{B} , and that $x \in \mathcal{P}$, thus:

$$a_i^T(x_c + u) = a_i^T x_c + a_i^T u \le b_i$$

 $||u||_2 \le r$ infers that:

$$\sup\{a_i^T u \mid ||u||_2 \le r\} = r||a_i||_2$$

and that the condition we have is:

$$a_i^T x_c + r \|a_i\|_2 \le b_i$$

a linear inequality in (x_c, r) .

minimize
$$-r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i, \quad i = 1, 2, \dots m$

UCLA

Consider the standard form written as:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, 2, ..., m$
 $h_i(x) = 0, \quad i = 1, 2, ..., p$

Denote the optimal value as p^* . Its Lagrangian, $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

It is basically a weighted sum of the objective and the constraints. The Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

Denote g's optimal point, or dual optimal point, as (λ^*, ν^*) .

g is always concave, and could reach $-\infty$ at some λ, ν values.

There's an important **lower-bound property**: If $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$.

Proof: Since $x^* \in \mathcal{D}$, $f_i(x^*) \leq 0$, $h_i(x^*) = 0$, thus:

$$p^* = f_0(x^*) \ge L(x^*, \lambda^*, \nu^*) \ge \inf_{x \in \mathcal{D}} L(x, \lambda^*, \nu^*) = g(\lambda^*, \nu^*)$$

Assume strong duality holds, then:

$$f_0(x^*) = g(\lambda^*, \nu^*)$$

$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

because of $\lambda_i \geq 0$, $f_i(x^*) \leq 0$, $h_i(x^*) = 0$. Therefore,

$$\sum_{i=1}^{m} \lambda_i^* f_i(x^*)$$

Since each term is non-positive, $\lambda_i^* f_i(x^*) = 0$.

UCLA

For a problem with differentiable f_i and h_i , we have four conditions that togetherly named KKT conditions:

▶ Primal Constraints:

$$\begin{cases} f_i(x) \le 0 & i = 1, 2, \dots, m \\ h_i(x) = 0 & i = 1, 2, \dots, p \end{cases}$$

- ▶ Dual Constraints: $\lambda \succeq 0$
- ▶ Complementary Slackness: $\lambda_i f_i(x) = 0 \ (i = 1, 2, ..., m)$
- ▶ gradient of Lagrangian vanishes (with respect to x):

$$\nabla_x L(x, \lambda, \nu) = \nabla_x f_0(x) + \sum_{i=1}^m \lambda_i \nabla_x f_i(x) + \sum_{i=1}^p \nu_i \nabla_x h_i(x) = 0$$

- ▶ If strong duality holds and (x, λ, ν) are optimal, then KKT condition must be satisfied.
- ▶ If the KKT condition is satisfied by (x, λ, ν) , strong duality must hold and the variables are optimal.
- ▶ If Slater's Conditions (see textbook section 3.5.6, these conditions imply strong duality) is satisfied, and x is optimal $\iff \exists (\lambda, \nu)$ that satisfy KKT conditions.

The original form of least-square problem

minimize
$$||Ax - b||_2^2$$

could be transformed into:

$$\begin{array}{ll}
\text{minimize} & x^T x \\
\text{subject to} & Ax = b
\end{array}$$

With independent rows, we have that AA^T is nonsingular, and thus:

$$A^{\dagger} = A^T (AA^T)^{-1}$$

With independent columns, we have that A^TA is nonsingular, and thus:

$$A^{\dagger} = (A^T A)^{-1} A^T$$

Recall that previously, we said that for a least-square problem, $||Ax - b||_2^2$, sometimes it doesn't exist an A^{-1} , thus we use $A^TAx = A^Tb$ instead, the pseudo inverse is a formal definition of this operation.

Consider the following problem with $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$:

minimize
$$x^T x$$

subject to
$$Ax = b$$

Consider the following problem with $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$:

$$\begin{array}{ll}
\text{minimize} & x^T x\\
\text{subject to} & Ax = b
\end{array}$$

Solution: The Lagrangian of this problem is (no need λ):

$$L(x,\nu) = x^T x + \nu^T (Ax - b)$$

The KKT conditions are:

- ▶ Primal Constraints: Ax = b
- ▶ Dual Constraints: None
- ► Complementary Slackness: None
- ▶ gradient of Lagrangian vanishes (with respect to x):

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0$$

From gradient of Lagrangian vanishes, $x^* = -(1/2)A^T\nu^*$; from Primal Constraints, $Ax^* = b$. Therefore:

$$AA^{T}\nu^{*} = -2b$$

$$\nu^{*} = -2(AA^{T})^{-1}b$$

$$x^{*} = A^{T}(AA^{T})^{-1}b = A^{\dagger}b$$

It agrees with the previous version in terms of pseudo-inverse:

$$x^* = (A^T A)^{-1} A^T b = A^{\dagger} b$$

- ► Descent Methods
 - ▶ To find the best step size we do *line search*, but the particular choice of line search does not matter such much, instead, the particular choice of search direction matters a lot.
 - ► SGD, AdaGrad, Adam, etc. Almost all popular optimizers today.
- ► Newton's Method
 - ▶ In theory faster convergence, in practice much larger space.
 - (*) Prof. Lin's course projects (Newton + CNN)
- ► Interior-point Methods
 - ▶ Applying Newton's method to a sequence of modified versions of the KKT conditions.

$$x^{(k+1)} = x^{(k)} + \eta \Delta x^{(k)}$$
 $f(x^{(k+1)}) < f(x^{(k)})$

where $\Delta x^{(k)}$ is called a step, and $|\eta| = -\eta$ the step size. From convexity, it implies:

$$\nabla f(x)^T \Delta x < 0$$

Step size could be determined by line-search, optimized along the direction of $\nabla f(x)\Delta x$.

$$f(x + \eta \Delta x) \approx f(x) + \eta \nabla f(x)^T \Delta x$$

Exact line search:

$$\eta^* = \operatorname*{argmin}_{t>0} f(x + \eta \Delta x)$$

Backtracking line search:

- Parameters: $\alpha \in (0, 0.5), \beta \in (0, 1)$
- ▶ Start with $\eta = 1$, repeat:
 - 1. Stop when:

$$f(x + \eta \Delta x) < f(x) + \alpha \eta \Delta f(x)^T \Delta x$$

2. If not stop, update $\eta := \beta \eta$.

Both strategies are used for selecting a proper step size. Not very important in practice.

In steepest descent methods, instead of optimizing towards the direction of $\nabla f(x)^T \Delta x$, it searches for the unit-vector v with the most negative $\nabla f(x)^T v$ — the directional derivative of f at x in the direction v. In other words:

$$x^{(k+1)} = x^{(k)} + \eta \Delta x_{nsd}^{(t)}$$

where x_{nsd} is defined as:

$$\Delta x_{nsd} = \underset{v}{\operatorname{argmin}} \{ \nabla f(x)^T v \mid ||v|| = 1 \}$$

Use subgradient $g \in \partial f(x)$ instead of gradient $\nabla f(x)$, which means that,

$$f(y) \ge f(x) + g^T(y - x), \ \forall y$$

There could be multiple g for the same x. The advantage of using g is that it enables the function to handle non-derivative functions.

g for $x^{(t)}$ is denoted as $g^{(t)}$.

$$x^{(k+1)} = x^{(k)} + \eta g^{(t)}$$

⁴In Prof. Gu's Slides only, not included in textbook.

Giving starting point $x \in \operatorname{\mathbf{dom}} f$ and tolerance $\epsilon > 0$, repeat the following steps:

- 1. Compute Newton step: $\Delta x_{nt} = -\frac{\nabla f(x)}{\nabla^2 f(x)}$
- 2. Compute Newton decrement:

$$\lambda(x)^{\bar{2}} = (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))$$

- 3. Quit if $\frac{\lambda(x)^2}{2} \le \epsilon$
- 4. Select step size η by backtracking line-search
- 5. $x = x + \eta \Delta x_{nt}$

 \triangleright $x + \Delta x_{nt}$ minimized second-order approximation:

$$\hat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x)$$

 $ightharpoonup x + \Delta x_{nt}$ solves linearized optimality condition:

$$\nabla f(x+v) \approx \nabla \hat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

 $ightharpoonup \Delta x_{nt}$ is steepest descent direction at x in local Hessian norm:

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$

 $\lambda(x)$ is an approximation of $f(x) - p^*$, with p^* estimated by $\inf_y \hat{f}(y)$:

$$f(x) - \inf_{y} \hat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

UCLA

Define the logarithm barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \ \mathbf{dom} \ \phi(x) = \{x \mid f_i(x) < 0, \ i = 1, \dots m\}$$

it preserves the convexity and the twice continuously differentiable (if any) of f_i , and could turn the inequality constraints from explicit to implicit:

minimize
$$f_0(x) + \phi(x)$$

subject to $h_i(x) = 0, i = 1, 2, ..., p$

minimize
$$f_0(x) + \phi(x)$$

subject to $Ax = b$

Interior point methods does not work well if some of the constraints are not strictly feasible:

- \triangleright f_i is convex and twice continuously differentiable
- $ightharpoonup A \in \mathbb{R}^{p \times n}$ and A's rank is p
- \triangleright p^* is finite and attained
- ► The problem is strictly feasible (exists interior point), hence, strong duality holds and dual optimum is attained.

It is the algorithm coming directly from primal-dual methods. In brief, at iteration step t, we set $x^*(t)$ as the solution of:

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

t exists here as a balance of $\phi(x)$'s increasing value, forcing the algorithm to focus on f_0 more in the end.

We have central path defined as $\{x^*(t) \mid t > 0\}$, the path alone which we minimize the Lagrangian, and:

$$\lim_{t \to \infty} f_0(x^*(t)) = p^*$$

Lipschitz constraint is a very common type of constraint applied to the functions, being L-Lipschitz meaning:

$$|f(x) - f(y)| \le L||x - y||, \quad \forall x, y \in \mathbf{dom} f$$

L is called the *coefficient*.

Lipschitzness is very important in analyzing convergence of optimization problems, in both convex cases and non-convex cases.

We need it to analyze from one step to the next, although sometimes it is omitted in the end.

The coefficient L of f can be interpreted as:

- ightharpoonup A bound on the next-level derivative of f
 - ightharpoonup Can taken to be zero if f is constant.
- ightharpoonup More generally, L measures how well f can be approximated by a constant.
 - ▶ If $f = \nabla g$ then L measures how well g can be approximated by a linear model.
 - ▶ If $f = \nabla^2 h$ then L measures how well h can be approximated by a quadratic model.

Consider the convergence analysis of Newton, in unbounded optimization, where the objective f is:

- ▶ Twice continuously differentiable: $\nabla f(x)$ and $\nabla^2 f(x)$ exist;
- ▶ Strongly convex with constant m: $\nabla^2 f(x) \succeq mI$ $(x \in \mathcal{D})$
 - ▶ It implies that $\exists M > 0, \forall x \in \mathcal{D}, \nabla^2 f(x) \leq MI$. (Proof on next page)
- ▶ The Hessian of f is L-Lipschitz continuous on \mathcal{D} , $\forall x, y \in \mathcal{D}$:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2$$

This part's proof comes from textbook 9.1.2.

First, by using the 1st-order characterization of convex function f, we have that, $\forall x, y \in \mathbf{dom} f$:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

with the previously-mentioned quadratic Taylor approximation:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$

In the case of strong convex with constant m > 0, we have $\nabla^2 f(x) \succeq mI$, thus

$$(y-x)^T \nabla^2 f(z)(y-x) \ge m||y-x||_2^2$$

Therefore we have:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$$

This inequality implies that the sublevel sets contained in $\operatorname{dom} f$ are bounded, so $\operatorname{dom} f$ is bounded. It essentially means that the maximum eigenvalue of $\nabla^2 f(x)$, which is a continuous function of x on $\operatorname{dom} f$, is bounded above on $\operatorname{dom} f$, i.e., there exists a constant M>0 such that:

$$\nabla^2 f(x) \preceq MI$$

Note that m are M are often unknown in practice.

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} ||y - x||_2^2$$

Still from textbook 9.1.2.

Previously we have had:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$$

Now, considering a fixed x, it is obvious that the right-hand-side is a convex quadratic function of y. Where we find the \tilde{y} that minimizes it is the one that achieves zero derivative:

$$\nabla_{\tilde{y}} \left(f(x) + \nabla f(x)^T (\tilde{y} - x) + \frac{m}{2} ||\tilde{y} - x||_2^2 \right) = \nabla f(x) + m(\tilde{y} - x) = 0$$

$$\tilde{y} = x - \frac{1}{m} \nabla f(x)$$

And therefore,

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} \|y - x\|_{2}^{2}$$

$$\ge f(x) + \nabla f(x)^{T} (\tilde{y} - x) + \frac{m}{2} \|\tilde{y} - x\|_{2}^{2}$$

$$= f(x) - \frac{1}{m} \nabla f(x)^{T} \nabla f(x) + \frac{1}{2m} \|\nabla f(x)\|_{2}^{2}$$

$$= f(x) - \frac{1}{2m} \|\nabla f(x)\|_{2}^{2}$$

Since it holds for $\forall y \in \mathcal{D}$, we can say that:

$$p^* \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2$$

It is often used as the upper-bound estimation of error:

$$\epsilon = f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

Similarly, applying the same strategy to:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} ||y - x||_2^2$$

we have an lower bound of the error ϵ :

$$p^* \le f(x) - \frac{1}{2M} \|\nabla f(x)\|_2^2$$

$$\epsilon = f(x) - p^* \ge \frac{1}{2M} \|\nabla f(x)\|_2^2$$

Outline of the proof: $\exists \eta \in (0, \frac{m^2}{L}], \gamma > 0$, such that

$$\begin{cases} f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma & \|\nabla f(x)\|_2 \ge \eta \\ \frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2 & \|\nabla f(x)\|_2 < \eta \end{cases}$$

There are two phases of the problem $(t^{(k)})$ is the step size here:

- 1. Damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$:
 - ► Most iterations require backtracking steps
 - \triangleright Function value decreases by at least γ
 - ▶ If bounded $(p^* > -\infty)$, this phase costs *iterations* no more than

$$\frac{f(x^{(0)}) - p^*}{\gamma}$$

- 2. Quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$:
 - All iterations use step size $t^{(k)} = 1$

 $ightharpoonup \|\nabla f(x)\|_2$ converges to zero quadratically:

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2 \le \frac{1}{2}$$

We've set $\eta \leq \frac{L^2}{m}$, thus for k+1 and $\|\nabla f(x^{(k)})\|_2 < \eta$, we have:

$$\|\nabla f(x^{(k+1)})\|_2 \le \frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2^2 < \frac{\eta^2 L}{2m^2} \le \frac{\eta}{2} < \eta$$

and it holds for $\forall l > k$. More generally:

$$\frac{L}{2m^2} \|\nabla f(x^{(l)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{l-k}$$

$$\|\nabla f(x^{(l)})\|_2^2 \leq \frac{4m^4}{L^2} \Big(\frac{1}{2}\Big)^{l-k+1}$$

From strong convexity we know:

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

$$f(x^{(l)}) - p^* \le \frac{1}{2m} \|\nabla f(x^{(l)})\|_2^2 \le \frac{2m^3}{L^2} \left(\frac{1}{2}\right)^{l-k+1} \le \epsilon$$

It implies that it converges fast at this phase.

Define $\epsilon_0 = \frac{2m^3}{L}$, then we have that, We can bound the number of iterations in the quadratically convergent phase by:

$$\log_2 \log_2 \left(\frac{\epsilon_0}{\epsilon}\right)$$

Consider a function f which is $\rho\textsc{-Lipschitz},$ updated via sub-gradient descent.

$$\begin{aligned} & :: f(x^{(t)}) - f(x^*) = (f(x^{(t+1)}) - f(x^{(t)})) - (f(x^{(t+1)}) - f(x^*)) \leq 0 \\ & :: \langle x^{(t+1)} - x^{(t)}, g^{(t+1)} \rangle - \langle x^{(t+1)} - x^*, g^{(t+1)} \rangle \leq 0 \\ & :: \langle x^{(t+1)} - x^*, x^{(t+1)} - x^{(t)} \rangle \leq 0 \\ & \iff \langle x^{(t+1)} - x^*, (x^{(t+1)} - x^*) - (x^{(t)} - x^*) \rangle \leq 0 \\ & :: \|(x^{(t)} - x^*) - (x^{(t+1)} - x^*)\|^2 \leq \|x^{(t+1)} - x^*\|^2 + \|x^{(t+1)} - x^*\|^2 \end{aligned}$$

$$(\because (x^{(t)} - x^{(k)})g^{(t)} \leq f(x^{(t)}) - f(x^{(k)}))$$

$$\sum_{t=1}^{T} (f(x^{(t)}) - f(x^*))$$

$$\leq \sum_{t=1}^{T} (x^{(t)} - x^*)^T g^{(t)} \qquad (\because a^2 + b^2 \geq 2ab)$$

$$\leq \sum_{t=1}^{T} \left(\frac{\|x^{(t)} - x^*\|^2}{2\eta} + \frac{\eta}{2} \|g^{(t)}\|^2 \right) \approx \sum_{t=1}^{T} \left(\frac{\|x^{(t)} - x^{(t+1)}\|^2}{2\eta} + \frac{\eta}{2} \|g^{(t)}\|^2 \right)$$

$$\leq \sum_{t=1}^{T} \frac{\|x^{(t)} - x^*\|^2 - \|x^{(t+1)} - x^*\|^2}{2\eta} + \sum_{t=1}^{T} \frac{\eta}{2} \|g^{(t)}\|^2$$

$$= \frac{\|x^{(0)} - x^*\|^2 - \|x^{(T+1)} - x^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|g^{(t)}\|^2$$

Assume that f is ρ -Lipschitz, then we have $||g^{(t)}|| \leq \rho$ ($\forall t$). Also, $x^{(0)} = 0$, $\lim_{t \to \infty} x^{(t)} \to x^*$.

$$f(x^{(t)}) - f(x^*) \le \frac{\|x^{(0)} - x^*\|^2 - \|x^{(T+1)} - x^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^T \|g^{(t)}\|^2$$
$$\frac{1}{T} (f(x^{(t)}) - f(x^*)) \le \frac{\|x^*\|^2}{2\eta T} + \frac{\eta \rho^2}{2\eta}$$

For every x^* , if $T \ge \frac{\|x^*\|^2 \rho^2}{\epsilon^2}$ and $\eta = \sqrt{\frac{\|x^*\|^2}{\rho^2 T}}$, then the right hand side of the last inequation is at most ϵ .

Examples

Accelerated Methods for Non-Convex Optimization

- ▶ Design accelerated methods that doesn't rely on convexity of the optimization problem.
- ▶ It relies on that the problem has L_1 -Lipschitz continuous gradient and L_2 -Lipschitz continuous Hessian.
- ▶ Calculate a score α according to L_1 , ϵ , and the gradient $\nabla f(x)$ to decide whether or not negative curvature descent should be conducted at each step.
- Apply accelerated gradient descent for almost-convex function made for the almost-convex point at each step to update that point.

Saving gradient and negative curvature computations:

Finding local minima more efficiently

- ▶ Doesn't require the original problem to be convex.
- ▶ Develops an algorithm with fewer steps of computing the negative curvature descent ⁵.
- Divide the entire domain of the objective function into two regions (by comparing $\|\nabla f(x)\|_2$ with ϵ): large gradient region, small gradient region; and then perform gradient descent-based methods in the large gradient region, and only perform negative curvature descent in the small gradient region.

Official code in PyTorch:

https://github.com/yaodongyu/gose-nonconvex.

⁵Useful for escaping the small-gradient regions.

<u>Multi-Task Learning as Multi-Objective Optimization</u> work on solving the problem of that multiple tasks might conflict.

- ► Use the multiple-gradient-descent algorithm (<u>MGDA</u>) optimizer;
- ▶ Define the Pareto optimality for MTL (in brief, no other solutions dominants the current solution);
- ► Use multi-objective

 KKT (Karush-Kuhn-Tucker) conditions and find a descent direction that decreases all objectives.
- ► Applicable to any problem that uses optimization based on gradient descent.

Implementation: https://github.com/hav4ik/Hydra

