Softwaretechnik

http://swt.informatik.uni-freiburg.de/node/94 http://proglang.informatik.uni-freiburg.de/teaching/swt/2008/

Übungsblatt 3

2008-05-23

Aufgabe 1 (Verschmelzen von Linksets; 2 Punkte)

Seien folgende zwei Linksets gegeben:

```
L_1 \equiv x : \mathtt{int} \mid (b \approx y : \mathtt{int} \vdash x > y : \mathtt{bool}), (y \approx \emptyset \vdash 5 : \mathtt{int})
L_2 \equiv b : \mathtt{bool}, z : \mathtt{int} \mid (x \approx \emptyset \vdash \mathtt{if} \ b \ \mathtt{then} \ z \ \mathtt{else} \ 0 : \mathtt{int})
```

Verschmelzen Sie L_1 und L_2 ; d.h. berechnen Sie $L_1 + L_2$.

Aufgabe 2 (Linking; (3+3) Punkte)

(a) Linken Sie nachfolgendes Linkset L; d.h. führen Sie Linkschritte \leadsto so lange wie möglich aus.

```
L \equiv z : \mathtt{int} \mid (b \approx y : \mathtt{bool}, x : \mathtt{int} \vdash \mathtt{if} \ y \ \mathtt{then} \ x \ \mathtt{else} \ z : \mathtt{int}) (y \approx x : \mathtt{int} \vdash x > 5 : \mathtt{bool}) (x \approx \emptyset \vdash 6 : \mathtt{int})
```

(b) Zeigen Sie, dass die Linkschritt-Relation \rightsquigarrow intramodulare Konsistenz nicht erhält. Finden Sie also ein Linkset L mit intra-checked(L), $L \rightsquigarrow L'$, aber nicht intra-checked(L').

Aufgabe 3 (Interfaces für Featherweight Java; 12 Punkte)

Erweitern Sie Featherweight Java um Interfaces. Als Anhaltspunkt sei hier die Syntax der erweiterten Sprache gegeben:

```
CL ::= \mathbf{class} \ C \ \mathbf{extends} \ D \ \mathbf{implements} \ E_1, \dots \ \{C_1 \ f_1; \dots \ K \ M_1 \dots \}
\mid \mathbf{interface} \ C \ \mathbf{extends} \ D_1, \dots \ \{S_1; \dots \}
S ::= C \ m(C_1 \ x_1, \dots)
```

(K, M, t und v sind wie in der Vorlesung definiert.)

Die Metavariablen C, D und E stehen für Klassen- und Interfacenamen. Eine Klassendeklaration **class** C **extends** D **implements** $E_1, \ldots \{C_1 f_1; \ldots K M_1 \ldots\}$ gibt jetzt nicht mehr nur die Superklasse D an, sondern spezifiziert auch die Interfaces E_1, \ldots , die C implementiert. Falls E_1, \ldots leer ist, dann implementiert C kein Interface.

Eine Interfacedeklaration interface C extends $D_1, \ldots \{S_1; \ldots\}$ führt ein neues Interface C ein. Dabei sind die D_1, \ldots (möglicherweise leer) die Superinterfaces von C.

Die Metavariable S steht für Methodensignaturen. Eine solche Methodensignatur gibt dabei nur den Rückgabetyp und die Argumenttypen einer Methoden an; es wird kein Methodenrumpf definiert.

Erweitern Sie jetzt die Typregelen und möglicherweise auch die operationelle Semantik von Featherweight Java. Benutzen Sie dabei Ihr Wissen über Interfaces in Java. Ihre Erweiterung soll so klein wie möglich sein und auf den Regeln der Vorlesung aufbauen. (In den Regeln aus der Vorlesung spezifizieren Klassendeklaration nicht die Liste der implementierten Interfaces. Sie können solche Regel trotzdem in Ihrer Erweiterung verwenden, indem Sie annehmen, dass diese Liste der Interfaces E_1, \ldots ist, wobei E_1, \ldots Namen sind, die in der Regel sonst nicht vorkommen.)

Abgabe: 2008-05-30, 12 Uhr vor der Saalübung im HS 00-036, Geb. 101.