Functional Analysis Assignment I

YANG, Ze (5131209043)

March 2, 2016

Problem 1. If x, y, z are points in metric space (X, d), show

$$d(x,y) \ge |d(x,z) - d(y,z)|$$

Proof. By defining properties of metric:

- 1. $d(x,y) \ge 0$.
- 3. $d(x,z) \le d(x,y) + d(y,z)$.

If $d(x,z) - d(y,z) \ge 0$, rearrange terms: $d(x,z) - d(y,z) \le d(x,y) \Rightarrow |d(x,z) - d(y,z)| \le d(x,y)$. Otherwise, rearrange terms: $d(y,z) - d(x,z) \ge -d(x,y) \Rightarrow |d(y,z) - d(x,z)| \le d(x,y)$.

Problem 2. $(X, d_X), (Y, d_Y)$ are metric spaces. Show that the *Cartesian product* (For which $z = (x, y) \in Z$ for $x \in X, y \in Y$.) $(Z := X \times Y, d)$ is a metric space with

$$d(z_1, z_2) := d_X(x_1, x_2) + d_Y(y_1, y_2).$$

Proof. It suffices to check the defining properties of d:

- 1. $d(z_1, z_2) = d_X(x_1, x_2) + d_Y(y_1, y_2) \ge 0$ is clear, since d_X, d_Y are metrics. Moreover, if $d(z_1, z_2) = 0$, then it must be $d_X(x_1, x_2) = d_Y(y_1, y_2) = 0$, hence $x_1 = x_2, y_1 = y_2 \Rightarrow z_1 = z_2$; the other direction is trivial.
- 2. $d(z_1, z_2) = d_X(x_1, x_2) + d_Y(y_1, y_2) = d_X(x_2, x_1) + d_Y(y_2, y_1) =: d(z_2, z_1).$ (symmetry)
- 3. (triangle ineq.)

$$d(z_1, z_3) + d(z_3, z_2) = d_X(x_1, x_3) + d_Y(y_1, y_3) + d_X(x_3, x_2) + d_Y(y_3, y_2)$$

$$\leq d_X(x_1, x_2) + d_Y(x_1, x_2)$$

$$=: d(z_1, z_2) \blacksquare$$
(1)

Problem 3. $(X,d_X),(Y,d_Y),(Z,d_Z)$ be metric spaces. $f:X\to Y$ and $g:Y\to Z$ be continuous functions. Show that

$$h := g \circ f : X \to Z$$

is continuous.

Proof. Take arbitrary $\{x_n : n \geq 1\} \subseteq X$ converging to x. By continuity of $f: f(x_n) \to f(x)$. Consider sequence $\{f(x_n) : n \geq 1\}$, by continuity of $g: g(f(x_n)) \to g(f(x))$. i.e. we have $g(f(x_n)) \to g(f(x))$ whenever $x_n \to x$. $\iff h = g \circ f$ is a continuous mapping by definition.

Problem 4. Show

- · Every compact subset of a metric space is closed and bounded.
- · A closed subset of a compact space is compact.

Proof. (1) Let $K \subseteq X$ be a compact subset.

(Boundedness) By compactness, pick open cover $K \subseteq \bigcup_{x \in F} B_r(x)$, \exists a finite subcover $K \subseteq \bigcup_{i=1}^n B_r(x_i)$.

Denote $d_1 := \max\{r, d(x_1, x_2)\}$, then clearly $B_r(x_1) \cup B_r(x_2) \subseteq B_{r+d_1}(x_2)$; $d_2 := \max\{r, d(x_2, x_3)\}$, then $B_r(x_3) \cup B_{r+d_1}(x_2) \subseteq B_{r+d_1+d_2}(x_3)$. Do this repeatedly until n, we have

$$K \subseteq \bigcup_{i=1}^{n} B_r(x_i) \subseteq B_{r+\sum_{i=1}^{n} d_i}(x_n)$$

Where $r + \sum_{i=1}^{n} d_i < \infty$. K is bounded.

(Closedness) Forall $x_0 \in X \setminus K$, we have $K \subseteq \bigcup_{x \in K} B_{\frac{1}{2}d(x,x_0)}(x)$. By compactness, \exists a finite subcover $K \subseteq \bigcup_{i=1}^n B_{\frac{1}{2}d(x_i,x_0)}(x_i)$. Let $\delta := \frac{1}{4} \min_{i=1,\dots,n} \{d(x_i,x_0)\}$; then $\forall y \in B_{\delta}(x_0), \forall i = 1,\dots,n$: $d(x_i,y) \geq \frac{3}{4}d(x_i,x_0)$, which implies $y \notin B_{\frac{1}{2}d(x_i,x_0)}(x_i)$ for any i. Hence $B_{\delta}(x_0) \subseteq X \setminus K \Rightarrow X \setminus K$ is open.

(2) Let $K \subseteq X$ be a closed subset. X is a compact metric space $\iff X$ is sequentially compact $\iff X$ is complete and totally bounded.

Therefore it suffices to show K is totally bounded. This follows the total-boundedness of X. Because $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \text{ s.t.}$

$$K \subseteq X \subseteq \bigcup_{i=1}^{n_{\epsilon}} B_{\epsilon}(x_i)$$

Hence (under the condition that $K \subseteq X$, X is complete) K is closed and totally bounded $\iff K$ is sequentially compact $\iff K$ is compact.

Problem 5. Let (X, d) be complete metric space, and $Y \subset X$. Show that

(Y,d) is complete $\iff Y$ is a closed subset of X

Proof. (\Leftarrow) \forall Cauchy sequence $\{y_n\} \subset Y \subset X$. Since (X,d) is complete, $\{y_n\}$ is convergent sequence and $y_n \to y \in X$.

Since Y is closed, $\{y_n\}$ is convergent, limit point $y \in X \Rightarrow y \in Y$ by definition. Hence Y is complete.

 (\Rightarrow) \forall convergent sequence $\{y_n\} \subset Y$, $y_n \to y \in X$. But convergence of $y_n \to y$ implies that $\{y_n\}$ is Cauchy sequence.

Since (Y, d) is complete, $y_n \to y \in Y$. Therefore Y is closed.

Problem 6. Let (X, d) be metric space, $\{x_n\} \subset X$. Show if $\{x_n\}$ has Cauchy subsequence, then, for any decreasing sequence of positive $\epsilon_k \searrow 0$, there exists $\{x_{n_k}\} \subset \{x_n\}$, s.t.

$$d(x_{n_k}, x_{n_l}) \le \epsilon_k$$
 for all $k \le l$

Proof. Denote $\{x_{n_j}\}\subset\{x_n\}$ be a Cauchy. By definition, $\forall \epsilon>0, \exists N\in\mathbb{N}, \text{ s.t. } d(x_{n_p},x_{n_q})\leq\epsilon$ for $n_q\geq n_p\geq N$. Given the sequence $\{\epsilon_k\}\searrow 0$, we have:

For ϵ_1 , $\exists N_1 \in \mathbb{N}$, s.t. $d(x_{n_{p_1}}, x_{n_{q_1}}) \leq \epsilon_1$ for all $n_{q_1} \geq n_{p_1} \geq N_1$. We pick $x_{n_1}^* := x_{n_{p_1}}$. For ϵ_2 , $\exists N_2 \in \mathbb{N}$, $N_2 \geq N_1$, s.t. $d(x_{n_{p_2}}, x_{n_{q_2}}) \leq \epsilon_2$ for all $n_{q_2} \geq n_{p_2} \geq N_2$. We pick n_{p_2} such that $n_{p_2} \geq \max\{N_2, n_{p_1}\}$, let $x_{n_2}^* := x_{n_{p_2}}$. It is clear that $d(x_{n_1}^*, x_{n_2}^*) \leq \epsilon_1$, because $x_{n_1}^* \geq N_1, x_{n_2}^* \geq x_{n_1}^*$.

.

Do this repeatedly, we obtain $\{x_{n_k}^*\}\subset\{x_n\}$ that satisfies desired property.

Problem 7. $f: X \to \mathbb{R}$ is lower semicontinuous and $M \in \mathbb{R}$. Define

$$f_M(x) := \min\{f(x), M\}$$

Show that f_M is lower semicontinuous.

Proof. By definition, $f_M(x) \leq f(x)$.

Since f is lower semicontinuous,

$$f_M(x) \le f(x) \le \liminf_{n \to \infty} f(x_n)$$

whenever $x_n \to x$. Since $f_M(x) \leq M$,

$$f_{M}(x) \leq \min\{M, \liminf_{n \to \infty} f(x_{n})\} = \min\{M, \sup_{m \geq 0} \inf_{n \geq m} f(x_{n})\}$$

$$\leq \liminf_{n \to \infty} (\min\{M, f(x_{n})\})$$

$$= \liminf_{n \to \infty} (f_{M}(x_{n})) \quad \blacksquare$$

$$(2)$$

Problem 8. $f: X \to \mathbb{R}$. The *Epigraph* epif is the subset of $X \times \mathbb{R}$ consisting of points that lie above the graph of f, i.e.

$$\operatorname{epi} f := \{(x, t) \in X \times \mathbb{R} : t > f(x)\}\$$

Show that f is lower semicontinous \iff its epigraph is a closed set.

Proof. (\Rightarrow) Take any convergent sequence $\{(x_n, t_n)\}\subset \operatorname{epi} f$, $(x_n, t_n)\to (x, t)$. We have pointwisely $t_n\geq f(x_n)$. Take limit inf on both sides:

$$t = \lim_{n \to \infty} t_n = \liminf_{n \to \infty} t_n \ge \liminf_{n \to \infty} f(x_n)$$

Since f is lower semicontinous, we have

$$\liminf_{n \to \infty} f(x_n) \ge f(x)$$

Hence $t \ge f(x)$, $(x,t) \in \operatorname{epi} f$, implies that $\operatorname{epi} f$ is a closed set.

(\Leftarrow) Let $x_n \to x$ be convergent sequence. Denote $t := \liminf_{n \to \infty} f(x_n)$, then there exists $\{x_{n_k}\} \subseteq \{x_n\}$, s.t. $f(x_{n_k}) \to t$, i.e. $(x_{n_k}, f(x_{n_k})) \to (x, t)$, which is also convergent. Since epif is closed $\Rightarrow (x, t) \in \text{epi} f$. So $t = \liminf_{n \to \infty} f(x_n) \ge f(x)$.

Problem 9. $\{x_n\}$ is sequence in compact metric space such that all its convergent subsequence has same limit x. Show that

$$x_n \to x$$

Proof. Assume otherwise. I.e. x_n does not converge to x.

Then by definition, $\exists \delta > 0$, $\forall N \in \mathbb{N}$, $\exists n > N$, s.t. $x_n \notin B_{\delta}(x)$. Which is to say that infinitely many points lie out of $B_{\delta}(x)$. Denote these as $\{\bar{x}_n\} := \{x_n\} \setminus \{x_i \in \{x_n\} : x_i \in B_{\delta}(x)\}$

Since X is compact $\Rightarrow \exists \{x_{n_k}\} \subseteq \{\bar{x}_n\} \subseteq \{x_n\}$ that is convergent. But it can not converge to x, because $d(x, x_{n_k}) > \delta$ for all k. Contradicts the fact that any subsequence of $\{x_n\}$ converges to x.