

EN 301 091-1 v2.1.1 and EN 301 091-2 v2.1.1

AS REFERENCED BY TEST PLAN 11647276-TP1V6

TEST REPORT

FOR

MILLIMETERWAVE E-BAND RADAR SENSOR DEVELOPMENT BOARD

MODEL SERIES: AWR1843BOOST, IWR1843BOOST

REPORT NUMBER: 12554995-E1V2

ISSUE DATE: JULY 31, 2019

Prepared for

TEXAS INSTRUMENTS 12500 TI BLVD. DALLAS TEXAS, 75243, USA

Prepared by

UL VERIFICATION SERVICES INC 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	7/19/2019	Initial Issue	M. Heckrotte
	7/31/2019	Update Test Plan Reference & add Model Number	Conan Cheung

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. TI	EST METHODOLOGY	5
3. F	ACILITIES AND ACCREDITATION	5
4. C	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. E	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	OUTPUT POWER	7
5.3.	SOFTWARE AND FIRMWARE	7
<i>5.4.</i>	DESCRIPTION OF TEST SETUP	8
6. TI	EST AND MEASUREMENT EQUIPMENT	11
7. A	PPLICABLE LIMITS AND TEST RESULTS	12
7.1.	DUTY CYCLE	12
7.2.	OPERATING FREQUENCY RANGE	14
7.3.	MEAN POWER	16
7.4.	PEAK POWER	18
7.5.	UNWANTED EMISSIONS IN THE OUT OF BAND DOMAIN	21
7.6.		
	6.1. TX UNWANTED EMISSIONS, 30 - 1000 MHz	
	6.3. TX UNWANTED EMISSIONS, 1 - 18 GHZ	
	6.4. TX UNWANTED EMISSIONS, 26 - 40 GHz	32
7.	6.5. TX UNWANTED EMISSIONS, 40 - 154 GHz	34
7.7.	RECEIVER SPURIOUS EMISSIONS	35
7.8.	RECEIVER IN-BAND, OUT-OF-BAND AND REMOTE-BAND SIGNALS	HANDLING.36
	,	

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: TEXAS INSTRUMENTS

12500 TI BLVD.

DALLAS, TX 75243, USA

EUT DESCRIPTION: MMWAVE E-BAND RADAR SENSOR DEVELOPMENT BOARD

MODEL SERIES: AWR1843BOOST, IWR1843BOOST

SERIAL NUMBERS: 5498400022 (Rev. A) & 5727000006 (Rev. B)

DATE TESTED: JANUARY 17, 2019 – APRIL 17, 2019

APPLICABLE STANDARDS

STANDARDS TEST RESULTS

EN 301 091-1 v2.1.1 and EN 301 091-2 v2.1.1 as referenced by Test Plan 11647276-TP1V6

Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

MICHAEL HECKROTTE PRINCIPAL ENGINEER UL Verification Services Inc.

MH

GIA-PIAO CHIN TEST ENGINEER UL Verification Services Inc.

Page 4 of 43

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with EN 301 091-1 v2.1.1, EN 301 091-2 v2.1.1 and EN 303 396 v1.1.1, as referenced by Test Plan 11647276-TP1V6.

In this report the EN 301 091-1 v2.1.1 and EN 301 091-2 v2.1.1 standards are collectively referred to as EN 301 091.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd
☐ Chamber A	Chamber D	Chamber I
Chamber B	Chamber E	Chamber J
☐ Chamber C	☐ Chamber F	Chamber K
	☐ Chamber G	Chamber L
	Chamber H	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

The Laboratory's Scope of Accreditation does not include EN 301 091-1 v2.1.1, EN 301 091-2 v2.1.1 or EN 303 396 v1.1.1.

4. CALIBRATION AND UNCERTAINTY

4.1. **MEASURING INSTRUMENT CALIBRATION**

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radio Frequency	±3.5 x 10^(-8)
Radiated RF power (up to 40 GHz)	±5.3 dB
Radiated RF power (above 40 up to 66 GHz)	±5.1 dB
Radiated RF power (above 66 up to 100 GHz)	±5.4 dB
Radiated RF power (above 100 GHz)	±5.0 dB
Temperature	±0.9 deg C
Humidity	±4.5 % RH
DC and low frequency voltages	±0.45 %

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

See Test Plan 11647276-TP1V6.

5.2. OUTPUT POWER

The highest Mean Output Power is 23.63 dBm EIRP over normal and extreme temperature conditions.

The highest Peak Output Power is 27.07 dBm EIRP over normal and extreme temperature conditions.

5.3. SOFTWARE AND FIRMWARE

The software used on the support laptop is mmWave Studio 2.0.0.2 and the DFP package is mmwave_dfp_01.02.00.01 for the 18xx series.

A test script with 300 MHz operating bandwidth, transmitting maximum power was provided and used at all RF tests.

Texas Instruments mmWave_Demo.Visualizer ver 3.1.0 software was utilized for the Receiver In-band, Out-of-band and Remote-band Signals Handling test.

5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number				
Laptop	Dell	E7450	713FR72				
Laptop Power Supply	Dell	DA130PE-00	CN-OJU012-48661-12E-DYX1-A04				
5VDC 3A Adapter	CUI Japan	EMSA050300					
5VDC 2A Adapter	Volgen	KTPS10-05020WA					
Data Capture Board	TI	DCA1000EVM	3718DCA1000EVM0102				

I/O CABLES

	I/O Cable List								
Cable No	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	1	3-prong	Unshielded	0.9				
2	DC	1	Barrel	Unshielded	1.8				
3	AC	1	3-prong	Unshielded	-				
4	DC	1	Barrel	Unshielded	1.5				
5	AC	1	3-prong	Unshielded	1				
6	DC	1	Barrel	Unshielded	1.5	Ferrite on DC			
7	60-Pin	1	60-Pin	Flat Ribbon	0.08				
8	USB	2	USB 2.0 Male - USB mini	Shielded	0.9				

TEST SETUP

The EUT is connected to a laptop computer. Software within the computer is used to configure and exercise the EUT.

SETUP DIAGRAM FOR TESTS

SETUP DIAGRAM FOR TEST

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	S/N or Local ID	Cal Due		
PXA Signal Analyzer	Agilent	N9030A	T313	1/25/2020		
PSG Analog Signal Generator, 250KHz to 50GHz	Keysight	E8257D	PRE0160761	8/13/2019		
60-90 GHz Horn	CMi	HO12R	H12-2	9/20/2019		
60-90 GHz Downconverter	OML	C12H1DC01	180530-1	CNR		
Isolator, 60-90 GHz	Millitech	FBI-12-RSES0	A18672	CNR		
RF Diode Detector, 60-90 GHz	Millitech	DET-12-RPFW0	A18672	CNR		
Power Sensor, 75-110 GHz	Agilent	W8486A	T411	8/15/19		
P-Series Power Meter	Keysight	N1913A	PRE0078027	1/30/2020		
Digital Signal Analyzer, 8 GHz	Agilent	DSA90804A	PRE0079430	8/10/2019		
Low Pass Filter, 10 MHz	Solar Electric Co.	6623-10	T417	9/25/2019		
Voltage Amplifier, 200 MHz	FEMTO	HVA-200M-40-B	PRE0184145	CNR		
0.01 – 26.5 GHz Amplifier	Agilent	83006A	12020	9/25/2019		
Horn antenna, 33-50 GHz	ČMi	HO22R		CNR		
LNA, 40-50 GHz	Spacek Labs	SL4510-33-4W	14J05	9/24/2019		
50-75 GHz Horn	CMi	HO15R	H15-1	9/20/2019		
LNA, 50-75 GHz	Vivatech	VTLNA-15-6018-FB	2013051	CNR		
50-75 GHz Downconverter	OML	C15H1DC01	PRE0180075	CNR		
75-110 GHz Horn	CMi	HO10R	H10-1	9/20/2019		
LNA. 75-110 GHz	Spacek	SLW-22-5	15J04	CNR		
75-110 GHz Downconverter	OML	C10H1DC01	PRE0180076	CNR		
110-170 GHz Horn	CMi	HO6R	H06-1	9/20/2019		
LNA 110-170 GHz	VivaTech	VTLNA-01S01	2015085	CNR		
110-170 GHz Downconverter	VDI	SAX 228	PRE0175814	CNR		
170-260 GHz Horn	CMi	HO4R	H04-1	9/20/2019		
170-260 GHz Downconverter	VDI	SAX 229	PRE0175628	CNR		
ESW EMI Test Receiver 44 GHz	Rohde & Schwartz	ESW44	PRE0179375	5/8/2019		
Hybrid Antenna. 30MHz to 3GHz	SunAR	JB3	PRE0184052	10/24/2019		
Amplifier, 9kHz to 1GHz, 32dB	Sonoma Instruments	310	PRE0186650	12/13/2019		
Antenna, Horn 1-18GHz	ETS Lingren	3117	T344	4/30/2019		
1-18 GHz Amplifier	Amplical	AMP1G18-35	T1569	6/3/2019		
44 GHz Test Receiver	Rohde & Schwartz	ESW	PRE0179378	5/8/2019		
HF Switch Box & Preamps 18-40 GHz	UL		PRE0183142	7/3/2019		
Antenna, Horn 18 to 26.5GHz	ARA	MW H-1826/B	T448	3/13/2019		
Antenna, Horn 26.5 to 40GHz	ARA	MWH-2640/B	T445	3/13/2019		
60-90 GHz Source	VDI	SGX 213	PRE0165570	CNR		
60-90 GHz Rotary Attenuator	Flann Microwave	26110	T1687	CNR		
50-75 GHz Power Sensor	Agilent	V8486A	T433	9/6/2019		
Signal Generator, 250kHz-40 GHz	Agilent	E8257D	T181	2/7/2020		
Environmental Chamber	Cincinnati Sub Zero	ZP8	T754	4/2/2019		
Digital Multimeter	Fluke	77 IV	30860448	4/20/2019		
UL EMC Radiated Software	Version	Rev. 9.5.22	00000110	1/20/2010		

All horn antennas at and above the 33-50 GHz band are standard gain horns. In accordance with C63.10 clause 4.4.3 (a) these antennas do not need to be calibrated. UL measures the critical dimensions on an annual basis and checks for damage and deterioration before each test.

C63.10 clause 4.4.3 a) Standard gain horns need not be periodically recalibrated, unless damage or deterioration is suspected or known to have occurred. If a standard gain horn is not periodically recalibrated, then its critical dimensions (see IEEE Std 1309-2005) shall be verified and documented on an annual basis.

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. **DUTY CYCLE**

LIMIT

None, for reporting purposes only.

TEST PROCEDURE

The fundamental is measured using a Standard Gain Horn Antenna, Low Noise Amplifier and Downconverter feeding a Diode Detector connected to an Oscilloscope. Pulse widths, burst lengths, and periods are measured, then the duty cycle is calculated.

The total Duty Cycle is calculated as the duty cycle across bursts multiplied by the duty cycle within each burst.

The duty cycle factor is calculated as:

Duty Cycle Factor (dB) = 10 * Log (1 / x)Where X = Duty Cycle (linear)

RESULTS

BETWEEN BURSTS				WITHIN BURST				TOTAL	
ON Time (msec)	Period (msec)	Duty Cycle (lin)		ON Time Period Duty Cycle (msec) (msec) (lin)		Duty Cycle (lin)	Duty Cycle (%)	Correction Factor (dB)	
4.466	10	0.447		29	35.11	0.826	0.37	36.89	4.33

Between Bursts

Within Burst

OPERATING FREQUENCY RANGE

LIMITS

EN 301 091 Clause 4.3.1.3

The upper and lower limits of the operating frequency range shall meet the following conditions: F_L ≥ 76 GHz

F_H ≤ 77 GHz

TEST PROCEDURE

The operating frequency range is measured as the -23 dBc BW. A manual measurement and an automatic measurement are made in far-field conditions. Automatic measurements are made in near-field conditions over extreme temperatures using an environmental chamber. Automatic measurements utilize the spectrum analyzer internal Occupied Bandwidth measurement routine.

RESULTS

Temp.	Center	Freq	F _L	FL	Result	F _H	F _H	Result	-23 dB
	Freq	Error		Limit	Pass/Fail		Limit	Pass/Fail	Bandwidth
(°C)	(GHz)	(GHz)	(GHz)	(GHz)		(GHz)	(GHz)		(GHz)
Normal			76.496	≥ 76	Pass	76.803	≤ 77	Pass	0.3070
Normal	76.65	0.00132	76.498	≥ 76	Pass	76.805	≤ 77	Pass	0.3067
-20	76.65	0.00384	76.499	≥ 76	Pass	76.808	≤ 77	Pass	0.3089
60	76.65	-0.00114	76.497	≥ 76	Pass	76.801	≤ 77	Pass	0.3043

Normal Condition - Manual Measurement

Automatic Measurement in Environment Chamber

Temperature: +20°C

Temperature: -20°C

Temperature: +60°C

7.3. MEAN POWER

LIMIT

EN 301 091 Clause 4.3.2.3

The mean power shall not be greater than the limits in table 2.

Table 2: Mean power [i.2]

EUTs others than pulsed radar		Pulsed radar					
me	an power (e.i.r.p.)	50 dBm	23,5 dBm				
NOTE: For the purposes of this measurement, the averaging time shall be not greater than 100 ms. If the							
	result varies through the EUT cycle time the maximum value shall be taken as the result.						

For constant pattern scanning antennas measured with the scanning inhibited (clause 4.3.5 of ETSI EN 303 396 [1]), the mean power shall be calculated from the measured result PMEASURED as shown in table 3.

Table 3: Mean power calculation (constant pattern scanning antenna)

	EUTs others than pul	lsed radar	Pulsed radar			
Illumination time t (see note 1)	t ≤ 100 ms	t > 100 ms	t ≤ 100 ms	t > 100 ms		
mean power (e.i.r.p)	PMEASURED + 10 log(D)	PMEASURED	PMEASURED + 10 log(D)	PMEASURED		
(see note 2)	1 MEASURED - 10 log(E)	1 MEASURED	T MEASURED . TO log(D)	I MEASURED		
NOTE 1: t is the illumination time defined in ETSI EN 303 396 [1].						
NOTE 2: D is the antenna scan duty factor defined in ETSI EN 303 396 [1]. As D is smaller than 1						
(i.e. 100 %), the log(D) value is negative and leads to a decrease in the result.						

The antenna does not scan, therefore the limit is 50 dBm EIRP.

TEST PROCEDURE

EN 303 396 Clause 6.2.5

The fundamental signal is measured in far-field conditions using a Standard Gain Horn Antenna, Low Noise Amplifier and Power Sensor.

The fundamental signal is then measured in near-field conditions using the same test setup situated outside an environmental chamber. Without moving the near-field setup, the delta between the near-field raw measurements and the far-field corrected measurements is then applied to tests at extreme temperatures.

The measured power level is converted to EIRP using the Friis equation:

$$EIRP = P_T * G_T = (P_R / G_R) * (4 * Pi * D / \lambda)^2$$

where,

 P_R is the received power G_R is the gain of the receive measurement antenna D is the measurement distance λ is the wavelength

Notes: Calculations are made in the log form equivalent to the linear form listed above.

Page 16 of 43

FAR FIELD BOUNDARY CALCULATIONS

The far-field boundary is given as:

 $R_{far field} = (2 * L^2) / \lambda$

where,

L = Largest Antenna Dimension, including the reflector, in meters

 λ = wavelength in meters

The dimension of integral Tx patch antenna is 8.8 mm x 5.8 mm.

Frequency	cy L Lambda		R (Far Field)	
(GHz)	(m)	(m)	(m)	
76	0.0105	0.0039	0.0559	
77	0.0105	0.0039	0.0566	

The dimension of receiving Rx E-band horn antenna is 22.9 mm x 30 mm.

Frequency	L	Lambda	R (Far Field)
(GHz)	(m)	(m)	(m)
76	0.0378	0.0039	0.7239
77	0.0378	0.0039	0.7335

Radiated power measurements are performed at a 1.5 meter test distance.

RESULTS

	Frequency	Meas.	Meas.	Corr	Duty Cycle	Mean	Temp Chamber	Mean Power	Margin
Environmental		Power	Distance	Meas	Corr Fact	Power	Factor	Limit	
Conditon	(GHz)	(dBm)	(m)	(dBm EIRP)	(dB)	(dBm EIRP)	(dB)	(dBm EIRP)	(dB)
Far Field Ambient	76.5	-1.98	1.5	19.15	4.33	23.48		50	-26.52
Chamber Ambient	76.5	0.83				23.48	22.65	50	-26.52
-20°C	76.5	0.98				23.63		50	-26.37
+60°C	76.5	0.76				23.41		50	-26.59

7.4. PEAK POWER

LIMIT

EN 301 091 Clause 4.3.3.3

The peak power for EUT with fixed beam or scanning antenna shall not be greater than 55 dBm.

TEST PROCEDURE

EN 303 396 Clause 6.2.4

The fundamental signal is measured in far-field conditions using a Standard Gain Horn Antenna, Downconverter and Pre-amplifier.

The fundamental signal is then measured in near-field conditions using the same test setup situated outside an environmental chamber situated outside an environmental chamber. Without moving the near-field setup, the delta between the near-field raw measurements and the far-field corrected measurements is then applied to tests at extreme temperatures.

RESULTS

Normalized Sweep Rate Correction Factor:

FMCW	Ramp	Sweep	Sweep	RBW	Normalized	Amplitude	Amplitude
Width	Time	Rate	Rate		Sweep Rate	Loss	Loss
(MHz)	(us)	(MHz/us)	(Hz/s)	(Hz)	(lin)	(lin)	(dB)
307	29	10.586	1.06E+13	8.00E+06	0.17	0.999	-0.012

	Frequency	Meas.	Meas.	Corr	Norm. Swp Rate	Peak	Temp Chamber	Peak	Margin
Environmental		Power	Dist	Meas	Corr. Factor	Power	Factor	Pwr Limit	
Condition	(GHz)	(dBm)	(m)	(dBm	(dB)	(dBm	(dB)	(dBm EIRP)	(dB)
	(3113)	(3.2.1.)	(,	EIRP)	(5.2)	EIRP)	()	,	(/
Far Field Ambient	76.743	1.86	1.5	25.28	0.012	25.29		55	-29.71
Chamber									
Ambient	76.506	0.41				25.29	24.87	55	-29.71
-20°C	76.565	2.20				27.07		55	-27.93
+60°C	76.505	-1.32				23.55		55	-31.45

RESULTS

Normal Condition - Far Field

Environment Chamber - Near Field

Temperature: +20°C

Temperature: +60°C

7.5. UNWANTED EMISSIONS IN THE OUT OF BAND DOMAIN

LIMIT

EN 301 091 Clause 4.3.4.3

The RMS mean power spectral density radiated in the calculated out-of-band domain (between F_1 to f_L and f_H to F_2 band) shall not be greater than the values given in table 4.

Table 4: Limits for out-of-band radiation [i.4]

Frequency [GHz]	RMS mean power spectral density [dBm/MHz]
F ₁ ≤ f < f _L	0
f _H < f ≤ F ₂	0

The values f_L and f_H are the results of the operating frequency range conformance test, see clause 4.3.1.4.

The values F₁ and F₂ are calculated as in ETSI EN 303 396 [1], clause 6.2.11.

NOTE: The out-of-band domain may be larger or smaller than the maximum permitted range of operation.

TEST PROCEDURE

EN 303 396 Clause 6.2.11

OOB emissions are measured in far-field conditions using a Standard Gain Horn Antenna, Downconverter and Pre-amplifier.

RESULTS

Meas.	Frequency	Meas.	Meas.	Corr	Duty Cycle	ООВ	ООВ	Margin
Band		Power	Dist	Meas	Corr Fact	Power	Limit	
	(GHz)	(dBm)	(m)	(dBm/MHz EIRP)	(dB)	(dBm/MHz EIRP)	(dBm/MHz EIRP)	(dB)
OOB LOW	76.496	-62.14	1.50	-28.10	4.33	-23.77	0	-23.77
OOB HIGH	76.803	-61.14	1.50	-26.96	4.33	-22.63	0	-22.63

OOB LOW

OOB HIGH

7.6. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

LIMIT

EN 301 091 Clause 4.3.5.3

The effective radiated power of any radiated spurious emission shall be not greater than the values given in table 5.

Table 5: Limits of radiated spurious emissions [i.4]

Frequency range (MHz)	Limit values for spurious radiation	Detector type							
47 to 74	-54 dBm e.r.p.	Quasi-Peak							
87,5 to 118	-54 dBm e.r.p.	Quasi-Peak							
174 to 230	-54 dBm e.r.p.	Quasi-Peak							
470 to 790	-54 dBm e.r.p.	Quasi-Peak							
otherwise in band 30 to 1 000	-36 dBm e.r.p.	Quasi-Peak							
f > 1 000 to 300 000 (see note)	-30 dBm e.i.r.p.	RMS							
OTE: Measurement is only required up to the 2 nd harmonic of the fundamental frequency (as defined in									
CEPT/ERC/REC 74-01 (i.41). In this case, the upper frequency limit up to which measurements are									

NOTE: Measurement is only required up to the 2nd harmonic of the fundamental frequency (as defined in CEPT/ERC/REC 74-01 [i.4]). In this case, the upper frequency limit up to which measurements are performed is 154 GHz.

TEST PROCEDURE

EN 303 396 Clause 6.3.10

RESULTS

7.6.1. TX UNWANTED EMISSIONS, 30 - 1000 MHz

TX UNWANTED EMISSIONS, 30 - 1000 MHz (Rev. B Board)

TX UNWANTED EMISSIONS, 30 - 1000 MHz (Rev. B Board)

Radiated Emissions

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	AF PRE0184052 (dB/m)	Amp/Cbl (dB)	Amp/Cbl (dB)	Corrected Reading (dBm)	EN 301 091 v2.1.1 Qp Limit (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	292.9359	-35.27	Pk	19.2	-29.8	8.3	-37.57	-	-	5	188	Н
1	292.9359	-39.89	Qp	19.2	-29.8	8.3	-42.19	-36	-6.19	5	188	Н
2	624.985	-70.67	Pk	25.3	-28.8	9.7	-64.47	-	-	145	129	Н
2	624.985	-73.26	Qp	25.3	-28.8	9.7	-67.06	-54	-13.06	145	129	Н
3	449.975	-62.47	Pk	22.7	-29.2	12.9	-56.07	-	-	352	206	Н
3	449.975	-64.06	Qp	22.7	-29.2	12.9	-57.66	-36	-21.66	352	206	Н
4	295.3151	-40.91	Pk	19.2	-29.8	8.1	-43.41	-	-	323	100	V
4	292.9359	-39.89	Qp	19.2	-29.8	7.8	-42.69	-36	-6.69	323	100	V
5	47.8257	-55.4	Pk	14.6	-31.4	7.7	-64.5	-	-	0	114	V
5	47.8716	-60.69	Qp	14.6	-31.4	7.7	-69.79	-54	-15.79	0	114	V
6	625.008	-73.01	Pk	25.3	-28.8	6.7	-69.81	-	-	273	284	V
6	625.008	-77.79	Qp	25.3	-28.8	6.7	-74.59	-54	-20.59	273	284	V

Pk - Peak detector

Qp - Quasi-Peak detector

30-1000MHz 300MHz BW_Max Pwr.DAT Rev 9.5 11 Jan 2019

TX UNWANTED EMISSIONS, 30 - 1000 MHz (Rev. C Board)

TX UNWANTED EMISSIONS, 30 - 1000 MHz (Rev. C Board)

Radiated Emissions

Frequency (MHz)	Meter Readin	Det	AF PRE0184971 (dB/m)	Amp Cbl (dB)	Amp/Cbl (dB)	Corrected Reading (dBm)	EN 302 264 v2.1.1 - Qp Limit	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(dBm)		(42/11)			(42)					
288.1309	-37.74	Pk	19.2	-29.8	9.4	-38.94		-	225	176	Н
288.1309	-39.91	Qp	19.2	-29.8	9.4	-41.11	-36	-5.11	225	176	Н
843.186	-80.02	Pk	27.6	-27.9	11.5	-68.82	-	-	233	232	Н
843.686	-80.21	Qp	27.6	-27.9	11.5	-69.01	-54	-15.01	233	232	Н
635.022	-74.34	Pk	25.5	-29	12.5	-65.34	-	-	233	189	Н
634.9808	-79.72	Qp	25.5	-29	12.5	-70.72	-54	-16.72	233	189	Н
293.1011	-55.27	Pk	19.2	-29.8	7.8	-58.07	-	-	146	226	V
294.1011	-44.39	Qp	19.2	-29.8	7.8	-47.19	-36	-11.19	146	226	V
899.9685	-68.06	Pk	28	-27.5	8.3	-59.26	-	-	205	200	V
899.953	-69.73	Qp	28	-27.5	8.3	-60.93	-36	-24.93	205	200	V
374.982	-63.3	Pk	20.8	-29.5	10.1	-61.9	-	-	121	216	V
374.9928	-63.96	Qp	20.8	-29.5	10.1	-62.56	-36	-26.56	121	216	V

Pk - Peak detector Qp - Quasi-Peak detector

*.TST

Rev 9.5 11 Jan 2019

7.6.2. TX UNWANTED EMISSIONS, 1 - 18 GHz

TX UNWANTED EMISSIONS, 1 - 18 GHz

Radiated Emissions

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T344 (dB/m)	Amp/Cbl (dB)	Amp/Cbl (dB)	Corrected Reading (dBm)	EN 301 091 V2.1.1 Avg Limit (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.35	-61.5	Pk	29.4	-35.5	10	-57.6	-	-	72	125	H
1	1.35	-63.45	Av	29.4	-35.5	10	-59.55	-30	-29.55	72	125	Н
2	1.8	-61.4	Pk	30.1	-35.4	11.7	-55	-	-	313	158	Н
2	1.8	-65.28	Av	30.1	-35.4	11.7	-58.88	-30	-28.55	313	158	Н
3	2.4	-66.67	Pk	32	-35.3	11.4	-58.57	-	-	20	118	Н
3	2.4	-70.15	Av	32	-35.3	11.4	-62.05	-30	-32.05	20	118	Н
4	3.328	-73.65	Pk	32.8	-33.3	11	-63.15	-	-	225	190	V
4	3.33	-77.81	Av	32.8	-33.3	11.1	-67.21	-30	-37.21	225	190	٧
5	1.8	-64.51	Pk	30.1	-35.4	11.1	-58.71	-	-	178	149	V
5	1.8	-69.41	Av	30.1	-35.4	11.1	-63.61	-30	-33.61	178	149	V
6	1.35	-66.36	Pk	29.4	-35.5	9.8	-62.66	-	-	224	142	V
6	1.35	-69.57	Av	29.4	-35.5	9.8	-65.87	-30	-35.87	224	142	V

PK - Peak

Av - Average detection

1-18GHz 300MHz BW_Max Pwr.DAT Rev 9.5 11 Jan 2019

7.6.3. TX UNWANTED EMISSIONS, 18 - 26 GHz

Radiated Emissions

Pre-scan Trace Markers

Marker	Freq (GHz)	Meter Reading (dBuV)	Det	AF PRE0182188 (dB/m)	Amp/Cbl/20 dB Pad (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)
1	19.108	74.07	Pk	33	-37.4	-9.5	40.17
2	19.124	80.32	Pk	33.2	-37.4	-9.5	46.62
3	19.16	80.61	Pk	33.3	-37.4	-9.5	47.01
4	19.198	80.23	Pk	33.1	-37.2	-9.5	46.63
5	19.251	77.95	Pk	33.3	-37.2	-9.5	44.55
6	19.332	71.51	Pk	33.2	-36.9	-9.5	38.31
7	19.548	75.73	Pk	33.1	-37	-9.5	42.33
8	19.124	75.98	Pk	33.2	-37.5	-9.5	42.18
9	19.198	74.5	Pk	33.1	-37.2	-9.5	40.9

Pk - Peak detector Class B 18-26GHz.TST Rev 9.5 22 Jun 2018

Mrker	Freq.	Meter	Det	T90 AF	Amp/Cbl/	Dist	Corr.	Convert	Corr.	Av	Margin	Polarity
	(GHz)	Reading		(dB/m)	20 dB Pad	Corr	Reading	dBuV to	Reading	Limit		
		(dBuV)			(dB)	(dB)	(dBuV)	dBm	(dBm)	(dBm)	(dBm)	
2*	19.124	58.23	Αv	33.2	-37.5	-9.5	44.43	-95.2	-50.77	-30	-20.77	Η
4*	19.198	55.49	Αv	33.1	-37.2	-9.5	41.89	-95.2	-53.31	-30	-23.31	Н
8*	19.124	58.50	Αv	33.2	-37.5	-9.5	44.7	-95.2	-50.5	-30	-20.5	V
9*	19.198	55.28	Αv	33.1	-37.2	-9.5	41.68	-95.2	-53.52	-30	-23.52	V

Av - Average detection Class B 18-26GHz.TST Rev 9.5 22 Jun 2018

*Markers 2,4,8,9 are subharmonics of fundamental signals and also FMCW modulated signals, the measurement method of FMCW signal was applied at test.

7.6.4. TX UNWANTED EMISSIONS, 26 - 40 GHz

Radiated Emissions

Pre-scan Trace Markers

Marker	Frequency	Meter	Det	T90 AF	Amp/Cbl	Dist Corr	Corrected
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading
		(dBuV)					(dBuVolts)
1	28.798	63.28	Pk	35.8	-32	-9.5	57.58
2	38.248	59.38	Pk	37.1	-32.4	-9.5	54.58
3	38.396	55.75	Pk	37.1	-32.4	-9.5	50.95
4	28.798	50.24	Pk	35.8	-32	-9.5	44.54
5	38.258	52.08	Pk	37.1	-32.4	-9.5	47.28
6	38.395	51.39	Pk	37.1	-32.4	-9.5	46.59

Pk - Peak detector

Radiated Emissions

Marker	Freq.	Meter	Det	T90 AF	Amp/Cbl	Dist	Corr.	Convert	Corr.	Limit	Margin	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Corr	Reading	dBuV to	Reading			
		(dBuV)				(dB)	(dBuV)	dBm	(dBm)	(dBm)	(dBm)	
1	28.798	63.77	Av	35.8	-32	-9.5	58.07	-95.2	-37.13	-30	-7.13	Н
2*	38.248	48.39	Av	37.1	-32.4	-9.5	43.59	-95.2	-51.61	-30	-21.61	Н
3*	38.397	36.26	Av	37.1	-32.4	-9.5	31.46	-95.2	-63.74	-30	-33.74	Н
4	28.798	51.55	Av	35.8	-32	-9.5	45.85	-95.2	-49.35	-30	-19.35	V
5*	38.248	44.35	Av	37.1	-32.4	-9.5	39.55	-95.2	-55.65	-30	-25.65	V
6*	38.397	32.89	AV	37.1	-32.4	-9.5	28.09	-95.2	-67.11	-30	-37.11	V

Av - Average detection Ti1843_26-40 GHz_300MHz BW.DAT 30915 6 Jan 2015 Rev 9.5 19 Oct 2016

*Markers 2,3,5,6 are subharmonics of fundamental signals and also FMCW modulated signals, the measurement method of FMCW signal was applied at test.

7.6.5. TX UNWANTED EMISSIONS, 40 - 154 GHz

No unwanted emission above the noise floor of PXA was detected, using Average detection on the following bands:

- 40 50 GHz
- 50 75 GHz
- 75 76 GHz
- 77 110 GHz

The following emission was detected within the 110 - 154 GHz band.

Frequency	Meas. Av Pwr	Meas. Dist.	Avg Pwr EIRP	Limit	Margin
(GHz)	(dBm)	(m)	(dBm EIRP)	(dBm EIRP)	(dB)
152.992	-64.66	1	-33.88	-30	-3.88

^{*152.992} GHz signal is harmonic of fundamental signal and also FMCW modulated signal, the measurement method of FMCW signal was applied at test.

7.7. RECEIVER SPURIOUS EMISSIONS

LIMIT

EN 301 091 Clause 4.4.2.3

The effective radiated power of any narrowband receiver spurious emission shall be not greater than the values given in table 6.

Table 6: Narrowband spurious emission limits for receivers [i.4]

Frequency range	Limit	Detector type			
30 MHz to 1 GHz	-57 dBm (e.r.p.)	Quasi-Peak			
above 1 GHz to 300 GHz (see note)	-47 dBm (e.i.r.p.)	RMS			
frequency (as defined in CEP	DTE: Measurement is only required up to the 2 nd harmonic of the fundamental frequency (as defined in CEPT/ERC/REC 74-01 [i.4]). In this case, the upper frequency limit up to which measurements are performed is 154 GHz.				

Wideband receiver spurious emissions shall be not greater than the values given in table 7.

Table 7: Wideband spurious emission limits for receivers [i.4]

Frequency range		Limit	Detector type		
30 MHz to 1 GHz	-47 dBr	n/MHz (e.r.p.)	Quasi-Peak		
above 1 GHz to 300 GHz (s	ee note) -37 dBm	n/MHz (e.i.r.p.)	RMS		
NOTE: Measurement is only required up to the 2 nd harmonic of the fundamental					
frequency (as defined in CEPT/ERC/REC 74-01 [i.4]). In this case, the upper					
frequency limit up to which measurements are performed is 154 GHz.					

TEST PROCEDURE

EN 303 396 Clause 6.2.12

RESULT

Not applicable Per 11647276-TP1V6.

DATE: JULY 31, 2019 MODEL SERIES: AWR1843BOOST

7.8. RECEIVER IN-BAND, OUT-OF-BAND AND REMOTE-BAND SIGNALS HANDLING

LIMIT

EN 301 091 Clause 4.4.3.3

The EUT shall achieve the wanted performance criterion, see clause 4.2.2, in the presence of unwanted signals defined in table 8.

The unwanted signal transmitter shall be able to transmit continuous wave signals at specific frequencies, as described in table 8.

Table 8: Unwanted signal for 76-77 GHz sensors

	In-band signal	OOB signal	Remote-band signal		
Frequency	Centre frequency (f _c) of the	$f = f_c \pm F$	$f = f_c \pm 10 \times F$		
	EUT modulated signal (see				
	clause 4.3.1)				
Signal level field strength at the EUT	55 mV/m	173 mV/m	173 mV/m		
Equivalent EIRP at 10 m	10 dBm	20 dBm	20 dBm		
F: permitted frequency bandwidth (1 GHz)					

TEST SETUP

EN 303 396 Clause 6.3.12.2

TEST PROCEDURE

EN 303 396 Clause 6.3.12.3

PERFORMANCE CRITERION

During and after the application of the unwanted signal, the EUT shall indicate the distance to the target within 20 cm of the distance indicated prior to the application of the unwanted signal.

RESULTS

No changes in the Range Profile, X-Y Scatter Plot or Doppler Range Plot were observed during the application of the unwanted signals in the chart below, relative to the corresponding indications with no interference signal present.

Signal	Unwanted Frequency (GHz)	+10 dBm EIRP Results	+20 dBm EIRP Results
In Band	76.65	Pass	
Remote Band	66.65		Pass
Out of Band	75.65		Pass
Out of Band	77.65		Pass
Remote Band	86.65		Pass

RESULTS

NO INTERFERENCE SIGNAL

= Target

76.65 GHz IN BAND +10 dBm INTERFERENCE SIGNAL

66.65 GHz REMOTE BAND +20 dBm INTERFERENCE SIGNAL

75.65 GHz OUT-OF-BAND +20 dBm INTERFERENCE SIGNAL

77.65 GHz OUT-OF-BAND +20 dBm INTERFERENCE SIGNAL

86.65 GHz REMOTE BAND +20 dBm INTERFERENCE SIGNAL

8. SETUP PHOTOS

12511652 on the photos is for internal used only, the actual Project No. is 12554995.

RADIATED RF MEASUREMENT SETUP

TEMPERATURE CHAMBER

RADIATED EMISSIONS

RECEIVER IN-BAND, OUT OF BAND AND REMOTE BAND SIGNALS HANDLING

END OF REPORT