Questionnaire on Well-Being (QWB) $_{\rm CFA}$

Magnus Johansson

2024-09-13

Reproducing CFA

```
library(readxl)
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
           1.1.4
                     v readr
                                  2.1.5
           1.0.0
v forcats
                     v stringr
                                  1.5.1
v ggplot2 3.5.1
                     v tibble
                                  3.2.1
v lubridate 1.9.3
                     v tidyr
                                  1.3.1
v purrr
            1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to be
library(lavaan)
This is lavaan 0.6-18
lavaan is FREE software! Please report any bugs.
library(patchwork)
Questionnaire on Well-Being (QWB), 18 items, each item is scored on a scale
```

of 0 to 4 (Hlynsson et al. 2024). Data from the same paper. We'll use the data from the second study that was used in the CFA in the paper.

Code and data were retrieved from the paper's OSF page. Really great to see these materials made available, it is such an important step towards improving the standards of science!

```
# Read in study two data -----
dd <- read_excel("data/study_two.xlsx")</pre>
onefactor <- 'f1 =~ swb1 + swb2 + swb3 + swb4 + swb5 + swb6 + swb7 + swb8 +
                    swb9 + swb10 + swb11 + swb12 + swb13 + swb14 + swb15 +
                    swb16 + swb17 + swb18'
# Fit the model to the data
cfamodel <- sem(model = onefactor, data = dd, estimator = "WLSMV")</pre>
Warning: lavaan->lav_options_est_dwls():
   estimator "DWLS" is not recommended for continuous data. Did you forget to
   set the ordered= argument?
```

This warning message is important! For WLSMV to work properly, one also needs to specify ordered = TRUE.

Let's see if we can reproduce the fit metrics reported in the paper (p.15), using the output from the misspecified function call above.

```
cfamodel %>% summary(standardized=T, ci=F, fit.measures= TRUE, )
```

lavaan 0.6-18 ended normally after 33 iterations

Estimator Optimization method Number of model parameters	DWLS NLMINB 36	
Number of observations	Used 1561	Total 1795
Model Test User Model: Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor Shift parameter simple second-order correction Model Test Baseline Model:	Standard 603.028 135 0.000	Scaled 1576.509 135 0.000 0.391 33.384
Test statistic Degrees of freedom P-value Scaling correction factor User Model versus Baseline Model:	40316.305 153 0.000	8701.238 153 0.000 4.698
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Robust Comparative Fit Index (CFI)	0.988 0.987	0.831 0.809 0.986
Robust Tucker-Lewis Index (TLI) Root Mean Square Error of Approximation:		0.984
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value H_0: RMSEA <= 0.050 P-value H_0: RMSEA >= 0.080	0.047 0.043 0.051 0.887 0.000	0.083 0.079 0.086 0.000 0.892
Robust RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value H_0: Robust RMSEA <= 0.050 P-value H_0: Robust RMSEA >= 0.080		0.052 0.049 0.054 0.106 0.000
Standardized Root Mean Square Residual:		
SRMR	0.053	0.053

Parameter Estimates:

Standard errors Robust.sem
Information Expected
Information saturated (h1) model Unstructured

Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
f1 =~						
swb1	1.000				0.639	0.695
swb2	0.861	0.035	24.575	0.000	0.550	0.544
swb3	0.550	0.036	15.121	0.000	0.352	0.413
swb4	0.876	0.034	25.809	0.000	0.560	0.647
swb5	0.929	0.039	23.849	0.000	0.594	0.635
swb6	0.967	0.040	24.054	0.000	0.618	0.656
swb7	1.064	0.036	29.625	0.000	0.680	0.765
swb8	1.142	0.034	33.522	0.000	0.730	0.808
swb9	1.124	0.036	30.957	0.000	0.718	0.780
swb10	1.182	0.040	29.564	0.000	0.755	0.751
swb11	1.202	0.045	26.933	0.000	0.768	0.730
swb12	0.872	0.037	23.385	0.000	0.557	0.654
swb13	0.707	0.039	17.969	0.000	0.452	0.493
swb14	0.980	0.035	27.907	0.000	0.626	0.666
swb15	1.202	0.043	28.182	0.000	0.768	0.743
swb16	1.104	0.036	30.255	0.000	0.706	0.715
swb17	1.097	0.040	27.296	0.000	0.701	0.728
swb18	0.981	0.045	21.770	0.000	0.627	0.587
Variances:						
variances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.swb1	0.436	0.018	24.187	0.000	0.436	0.517
.swb1	0.721	0.015	28.874	0.000	0.721	0.704
.swb3	0.601	0.024	24.670	0.000	0.601	0.829
.swb4	0.435	0.017	25.780	0.000	0.435	0.581
.swb5	0.523	0.019	27.276	0.000	0.523	0.597
.swb6	0.506	0.019	26.097	0.000	0.506	0.570
.swb7	0.327	0.014	22.718	0.000	0.327	0.414
.swb8	0.283	0.012	23.155	0.000	0.283	0.347
.swb9	0.332	0.013	25.432	0.000	0.332	0.392
.swb10	0.441	0.018	24.399	0.000	0.441	0.436
.swb11	0.518	0.022	23.263	0.000	0.518	0.468
.swb12	0.415	0.017	24.855	0.000	0.415	0.572
.swb13	0.634	0.022	28.570	0.000	0.634	0.757
.swb14	0.493	0.019	26.580	0.000	0.493	0.557
.swb15	0.480	0.020	24.323	0.000	0.480	0.449
.swb16	0.476	0.019	25.534	0.000	0.476	0.489
.swb17	0.436	0.019	22.826	0.000	0.436	0.470
.swb18	0.749	0.028	26.616	0.000	0.749	0.656
f1	0.408	0.026	15.931	0.000	1.000	1.000

The "standard" column in the output looks like what has been reported in the paper (see quote below) regarding 2, RMSEA, and CFI. Good to see that it is reproducible.

A single-factor solution for the Confirmatory factor analysis for the Questionnaire on Well-Being. QWB resulted in a good fit for the data: 2(135) = 603.03, p < 0.001, CFI = 0.988, SRMR = 0.053, RMSEA = 0.047 [90% CI: 0.043, 0.051]. Thus, our single-factor model for the QWB exhibits all of our predetermined criteria for a good model fit.

Let's run the CFA function call with ordered = TRUE added to make the WLSMV estimator, which was correctly described in the paper, work as intended.

```
cfamodel2 <- sem(model = onefactor, data = dd, estimator = "WLSMV", ordered = TRUE)
cfamodel2 %>% summary(standardized=T, ci=F, fit.measures= TRUE, )
```

lavaan 0.6-18 ended normally after 34 iterations

Estimator Optimization method Number of model parameters	DWLS NLMINB 90	
Number of observations	Used 1561	Total 1795
Model Test User Model:		
Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor Shift parameter simple second-order correction	Standard 1832.971 135 0.000	
Model Test Baseline Model:		
Test statistic Degrees of freedom P-value Scaling correction factor	131413.959 153 0.000	1010.7010
User Model versus Baseline Model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.987 0.985	0.930 0.921
Robust Comparative Fit Index (CFI) Robust Tucker-Lewis Index (TLI)		0.831 0.808

Root Mean Square Error of Approximation:

RMSEA	0.090	0.115
90 Percent confidence interval - lower	0.086	0.112
90 Percent confidence interval - upper	0.093	0.119
P-value H_0: RMSEA <= 0.050	0.000	0.000
P-value H_0: RMSEA >= 0.080	1.000	1.000
Robust RMSEA		0.126
90 Percent confidence interval - lower		0.122
90 Percent confidence interval - upper		0.130
P-value H_0: Robust RMSEA <= 0.050		0.000
P-value H_0: Robust RMSEA >= 0.080		1.000

Standardized Root Mean Square Residual:

SRMR 0.060 0.060

Parameter Estimates:

Parameterization Delta
Standard errors Robust.sem
Information Expected
Information saturated (h1) model Unstructured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
f1 =~						
swb1	1.000				0.740	0.740
swb2	0.788	0.022	35.977	0.000	0.583	0.583
swb3	0.614	0.029	21.080	0.000	0.454	0.454
swb4	0.946	0.021	44.763	0.000	0.700	0.700
swb5	0.944	0.022	43.672	0.000	0.699	0.699
swb6	0.940	0.023	41.605	0.000	0.695	0.695
swb7	1.123	0.020	56.041	0.000	0.831	0.831
swb8	1.187	0.019	62.155	0.000	0.878	0.878
swb9	1.112	0.019	59.591	0.000	0.823	0.823
swb10	1.061	0.020	54.326	0.000	0.785	0.785
swb11	1.076	0.021	50.727	0.000	0.796	0.796
swb12	0.954	0.022	42.924	0.000	0.706	0.706
swb13	0.713	0.026	27.920	0.000	0.527	0.527
swb14	0.946	0.020	46.765	0.000	0.700	0.700
swb15	1.064	0.020	52.990	0.000	0.787	0.787
swb16	1.009	0.019	54.088	0.000	0.747	0.747
swb17	1.066	0.020	52.085	0.000	0.789	0.789
swb18	0.840	0.024	35.203	0.000	0.622	0.622
Thresholds:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
swb1 t1	-2.252	0.088	-25.646	0.000	-2.252	-2.252

swb1 t2	-1.076	0.039	-27.312	0.000	-1.076	-1.076
swb1 t3	-0.102	0.032	-3.213	0.001	-0.102	-0.102
swb1 t4	1.117	0.040	27.866	0.000	1.117	1.117
swb2 t1	-1.949	0.067	-29.073	0.000	-1.949	-1.949
swb2 t2	-0.847	0.036	-23.368	0.000	-0.847	-0.847
swb2 t3	-0.020	0.032	-0.633	0.527	-0.020	-0.020
swb2 t4	1.082	0.039	27.392	0.000	1.082	1.082
swb3 t1	-2.613	0.129	-20.271	0.000	-2.613	-2.613
swb3 t2	-1.627	0.053	-30.772	0.000	-1.627	-1.627
swb3 t3	-0.886	0.037	-24.149	0.000	-0.886	-0.886
swb3 t4	0.316	0.032	9.776	0.000	0.316	0.316
swb4 t1	-2.341	0.096	-24.399	0.000	-2.341	-2.341
swb4 t2	-1.189	0.041	-28.723	0.000	-1.189	-1.189
swb4 t3	-0.075	0.032	-2.353	0.019	-0.075	-0.075
swb4 t4	1.212	0.042	28.968	0.000	1.212	1.212
swb5 t1	-2.044	0.073	-28.162	0.000	-2.044	-2.044
swb5 t2	-0.908	0.037	-24.557	0.000	-0.908	-0.908
swb5 t3	0.191	0.032	5.993	0.000	0.191	0.191
swb5 t4	1.257	0.043	29.397	0.000	1.257	1.257
swb6 t1	-2.232	0.086	-25.911	0.000	-2.232	-2.232
swb6 t2	-1.151	0.041	-28.285	0.000	-1.151	-1.151
swb6 t3	-0.133	0.032	-4.174	0.000	-0.133	-0.133
swb6 t4	0.948	0.037	25.272	0.000	0.948	0.948
swb7 t1	-2.317	0.094	-24.744	0.000	-2.317	-2.317
swb7 t2	-1.312	0.044	-29.847	0.000	-1.312	-1.312
swb7 t3	-0.208	0.032	-6.498	0.000	-0.208	-0.208
swb7 t4	0.978	0.038	25.798	0.000	0.978	0.978
swb8 t1	-2.294	0.092	-25.065	0.000	-2.294	-2.294
swb8 t2	-1.105	0.040	-27.710	0.000	-1.105	-1.105
swb8 t3	-0.038	0.032	-1.189	0.234	-0.038	-0.038
swb8 t4	1.145	0.041	28.210	0.000	1.145	1.145
swb9 t1	-1.852	0.062	-29.836	0.000	-1.852	-1.852
swb9 t2	-0.602	0.034	-17.755	0.000	-0.602	-0.602
swb9 t3	0.534	0.033	15.978	0.000	0.534	0.534
swb9 t4	1.542	0.050	30.794	0.000	1.542	1.542
swb10 t1	-1.664	0.054	-30.703	0.000	-1.664	-1.664
swb10 t2	-0.645	0.034	-18.832	0.000	-0.645	-0.645
swb10 t3	0.311	0.032	9.625	0.000	0.311	0.311
swb10 t4	1.375	0.045	30.257	0.000	1.375	1.375
swb11 t1	-2.018	0.071	-28.422	0.000	-2.018	-2.018
swb11 t2	-1.099	0.040	-27.631	0.000	-1.099	-1.099
swb11 t3	-0.279	0.032	-8.668	0.000	-0.279	-0.279
swb11 t4	0.598	0.034	17.657	0.000	0.598	0.598
swb12 t1	-2.423	0.104	-23.194	0.000	-2.423	-2.423
swb12 t2	-1.367	0.045	-30.210	0.000	-1.367	-1.367
swb12 t3	-0.092	0.043	-2.909	0.004	-0.092	-0.092
swb12 t4	1.082	0.032	27.392	0.004	1.082	1.082
swb13 t1	-2.070	0.039	-27.876	0.000	-2.070	-2.070
swb13 t2	-1.236	0.042	-29.203	0.000	-1.236	-1.236
swb13 t3	-0.183	0.042	-5.741	0.000	-0.183	-0.183
PMDIOLO	0.103	0.032	0.141	0.000	0.103	0.103

swb13 t4	1.029	0.039	26.611	0.000	1.029	1.029
swb14 t1	-1.994	0.070	-28.659	0.000	-1.994	-1.994
swb14 t2	-0.915	0.037	-24.692	0.000	-0.915	-0.915
swb14 t3	0.105	0.032	3.314	0.001	0.105	0.105
swb14 t4	1.275	0.043	29.553	0.000	1.275	1.275
swb15 t1	-1.718	0.056	-30.542	0.000	-1.718	-1.718
swb15 t2	-0.842	0.036	-23.275	0.000	-0.842	-0.842
swb15 t3	0.112	0.032	3.516	0.000	0.112	0.112
swb15 t4	1.099	0.040	27.631	0.000	1.099	1.099
swb16 t1	-1.834	0.061	-29.952	0.000	-1.834	-1.834
swb16 t2	-0.901	0.037	-24.422	0.000	-0.901	-0.901
swb16 t3	0.075	0.032	2.353	0.019	0.075	0.075
swb16 t4	1.179	0.041	28.616	0.000	1.179	1.179
swb17 t1	-2.098	0.076	-27.561	0.000	-2.098	-2.098
swb17 t2	-1.260	0.043	-29.429	0.000	-1.260	-1.260
swb17 t3	-0.323	0.032	-9.977	0.000	-0.323	-0.323
swb17 t4	0.756	0.035	21.440	0.000	0.756	0.756
swb18 t1	-1.658	0.054	-30.718	0.000	-1.658	-1.658
swb18 t2	-0.828	0.036	-22.996	0.000	-0.828	-0.828
swb18 t3	0.010	0.032	0.329	0.742	0.010	0.010
swb18 t4	1.034	0.039	26.695	0.000	1.034	1.034
Variances:						
Variances:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Variances:	Estimate 0.453	Std.Err	z-value	P(> z)	Std.1v 0.453	Std.all 0.453
		Std.Err	z-value	P(> z)		
.swb1	0.453	Std.Err	z-value	P(> z)	0.453	0.453
.swb1 .swb2	0.453 0.660	Std.Err	z-value	P(> z)	0.453 0.660	0.453 0.660
.swb1 .swb2 .swb3	0.453 0.660 0.794	Std.Err	z-value	P(> z)	0.453 0.660 0.794	0.453 0.660 0.794
.swb1 .swb2 .swb3 .swb4	0.453 0.660 0.794 0.510	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510	0.453 0.660 0.794 0.510
.swb1 .swb2 .swb3 .swb4 .swb5	0.453 0.660 0.794 0.510 0.512	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512	0.453 0.660 0.794 0.510 0.512
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6	0.453 0.660 0.794 0.510 0.512 0.517	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517	0.453 0.660 0.794 0.510 0.512 0.517
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7	0.453 0.660 0.794 0.510 0.512 0.517 0.310	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310	0.453 0.660 0.794 0.510 0.512 0.517
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9 .swb10 .swb11	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9 .swb10 .swb11 .swb12	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9 .swb10 .swb11 .swb12 .swb13 .swb14	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9 .swb10 .swb11 .swb12 .swb13 .swb14 .swb15 .swb15	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9 .swb10 .swb11 .swb12 .swb13 .swb14 .swb15 .swb16 .swb16	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442 0.378	Std.Err	z-value	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442 0.378	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442 0.378
.swb1 .swb2 .swb3 .swb4 .swb5 .swb6 .swb7 .swb8 .swb9 .swb10 .swb11 .swb12 .swb13 .swb14 .swb15 .swb15	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442	Std.Err	z-value 29.873	P(> z)	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442	0.453 0.660 0.794 0.510 0.512 0.517 0.310 0.229 0.323 0.384 0.366 0.502 0.722 0.511 0.380 0.442

Before looking closer at the results and making comparisons to the published/reported metrics, we need to address the issue of reporting the correct, scaled model fit metrics.

The often used Hu & Bentler (1999) cutoff values (also used in the paper) are based on simulations of continuous data and ML estimation. As such, they are not appropriate for ordinal data analyzed with the WLSMV estimator (McNeish

2023; Savalei 2018). The R-package dynamic can produce appropriate cutoff values for model fit indices. We'll get into that after reviewing the scaled fit metrics and modification indices.

Scaled fit metrics

For WLSMV, the .scaled metrics should be reported.

```
fit_metrics_scaled <- c("chisq.scaled", "df", "pvalue.scaled",</pre>
                        "cfi.scaled", "tli.scaled", "rmsea.scaled",
                        "rmsea.ci.lower.scaled", "rmsea.ci.upper.scaled",
                        "srmr")
fitmeasures(cfamodel2, fit_metrics_scaled) %>%
 rbind() %>%
  as.data.frame() %>%
 mutate(across(where(is.numeric),~ round(.x, 3))) %>%
 rename(Chi2.scaled = chisq.scaled,
         p.scaled = pvalue.scaled,
         CFI.scaled = cfi.scaled,
         TLI.scaled = tli.scaled,
         RMSEA.scaled = rmsea.scaled,
         CI_low.scaled = rmsea.ci.lower.scaled,
         CI_high.scaled = rmsea.ci.upper.scaled,
         SRMR = srmr) %>%
 knitr::kable()
```

Chi2.scaledf	p.scaled	CFI.sca	leHLI.sca	leRMSEA.s	s @l<u>e</u>d ow.sca	Ø d_high.s	c SIR dMR
2940.978 135	0	0.93	0.921	0.115	0.112	0.119	0.06

Again, these were the metrics reported in the paper:

A single-factor solution for the Confirmatory factor analysis for the Questionnaire on Well-Being. QWB resulted in a good fit for the data: 2(135) = 603.03, p < 0.001, CFI = 0.988, SRMR = 0.053, RMSEA = 0.047 [90% CI: 0.043, 0.051]. Thus, our single-factor model for the QWB exhibits all of our predetermined criteria for a good model fit.

The differences from the model fit metrics output in the table above and those found in the paper are partially due to the missing ordered = TRUE option, but also from reporting the wrong metrics for the WLSMV estimator.

The correct model fit metrics indicate problems, no matter which cutoffs one would use, especially regarding RMSEA. Let us review the modification indices.

Modification indices

We'll filter the list and only present those with mi/2 > 30.

lhs	op	$_{ m rhs}$	mi	epc	sepc.lv	sepc.all	sepc.nox
swb4	~~	swb5	213.550	-0.242	-0.242	-0.474	-0.474
swb5	~~	swb12	155.477	-0.211	-0.211	-0.416	-0.416
swb7	~~	swb8	132.329	-0.143	-0.143	-0.536	-0.536
swb11	~~	swb17	102.493	-0.144	-0.144	-0.388	-0.388
swb1	~~	swb2	78.974	-0.172	-0.172	-0.315	-0.315
swb1	~~	swb16	68.421	-0.138	-0.138	-0.309	-0.309
swb2	~~	swb16	68.162	-0.161	-0.161	-0.298	-0.298
swb5	~~	swb6	63.609	-0.146	-0.146	-0.284	-0.284
swb15	~~	swb17	62.165	-0.117	-0.117	-0.308	-0.308
swb12	~~	swb13	58.963	-0.162	-0.162	-0.269	-0.269
swb13	~~	swb14	48.027	-0.148	-0.148	-0.244	-0.244
swb9	~~	swb18	42.649	-0.120	-0.120	-0.269	-0.269
swb4	~~	swb12	39.141	-0.118	-0.118	-0.233	-0.233
swb2	~~	swb17	34.139	0.137	0.137	0.275	0.275
swb8	~~	swb12	33.173	0.123	0.123	0.363	0.363
swb2	~~	swb3	31.034	-0.132	-0.132	-0.182	-0.182

Many very large mi/2 values due to residual correlations.

Dynamic cutoff values

In order to establish useful cutoff values for the WLSMV estimator with ordinal data, we need to run simulations relevant to the current set of items and response data (McNeish 2023). This has been implemented in the development version of dynamic.

```
library(dynamic) # devtools::install_github("melissagwolf/dynamic") for development version
```

Beta version. Please report bugs: https://github.com/melissagwolf/dynamic/issues.

```
dyncut <- catOne(cfamodel2, reps = 500)
dyncut</pre>
```

```
Your DFI cutoffs:

SRMR RMSEA CFI
Level-0 0.015 0.011 0.999
Specificity 95% 95% 95%

Level-1 0.026 0.04 0.991
Sensitivity 95% 95% 95%
```

```
Level-2 0.031 0.056 0.983 Sensitivity 95% 95% 95%
```

Level-3 0.034 0.066 0.977 Sensitivity 95% 95% 95%

Empirical fit indices:

```
Chi-Square df p-value SRMR RMSEA CFI
2940.978 135 0 0.06 0.115 0.93
```

Notes:

- -'Sensitivity' is % of hypothetically misspecified models correctly identified by cutoff-Cutoffs with 95% sensitivity are reported when possible
- -If sensitivity is <50%, cutoffs will be supressed

Explanations on Levels 0-3 from the dynamic package vignette:

When there are 6 or more items, cfaOne will consider three levels of misspecification. As in catHB, the Level-0 row corresponds to the anticipated fit index values if the fitted model were the exact underlying population model. The Level-1 row corresponds to the anticipated fit index values if the fitted model omitted 0.30 residual correlations between approximately 1/3 of item pairs. The Level-2 row corresponds to the anticipated fit index values if the fitted model omitted 0.30 residual correlations between approximately 1/3 of item pairs. The Level-3 row corresponds to the anticipated fit index values if the fitted model omitted 0.30 residual correlations between all item pairs.

As we can see, the observed/empirical fit metrics from the data does not come close to the Level-3 simulation based cutoff values.

Summary comments

The 18 items do not fit a unidimensional model, due to issues with residual correlations and potential multidimensionality.

Software used

sessionInfo()

R version 4.4.1 (2024-06-14) Platform: aarch64-apple-darwin20 Running under: macOS Sonoma 14.6.1

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;

```
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Stockholm
tzcode source: internal
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
                                                                  base
other attached packages:
 [1] dynamic_1.1.0
                     patchwork_1.2.0 lavaan_0.6-18
                                                      lubridate_1.9.3
 [5] forcats_1.0.0
                     stringr_1.5.1
                                      dplyr_1.1.4
                                                      purrr_1.0.2
 [9] readr_2.1.5
                     tidyr_1.3.1
                                      tibble_3.2.1
                                                      ggplot2_3.5.1
[13] tidyverse_2.0.0 readxl_1.4.3
loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1
                          R.utils_2.12.3
                                                fastmap_1.2.0
 [4] digest 0.6.37
                          timechange_0.3.0
                                                lifecycle 1.0.4
 [7] Deriv 4.1.3
                          dcurver 0.9.2
                                                cluster 2.1.6
[10] mirt_1.42
                          magrittr_2.0.3
                                                compiler_4.4.1
[13] rlang_1.1.4
                          tools_4.4.1
                                                utf8_1.2.4
[16] yaml_2.3.10
                          knitr_1.48
                                                mnormt_2.1.1
[19] curl 5.2.2
                                                withr 3.0.1
                          Bayesrel 0.7.7
[22] R.oo_1.26.0
                          grid_4.4.1
                                                stats4_4.4.1
[25] fansi_1.0.6
                          colorspace_2.1-1
                                                future_1.34.0
[28] progressr_0.14.0
                          GPArotation_2024.3-1 globals_0.16.3
                          MASS_7.3-61
                                                GenOrd_1.4.0
[31] scales_1.3.0
[34] cli_3.6.3
                                                rmarkdown_2.27
                          mvtnorm_1.3-1
[37] vegan_2.6-8
                          generics_0.1.3
                                                rstudioapi_0.16.0
[40] future.apply_1.11.2
                          SimDesign_2.17.1
                                                tzdb_0.4.0
[43] sessioninfo_1.2.2
                          pbapply_1.7-2
                                                audio_0.1-11
                          parallel_4.4.1
[46] splines_4.4.1
                                                cellranger_1.1.0
[49] beepr_2.0
                          vctrs_0.6.5
                                                Matrix_1.7-0
[52] jsonlite_1.8.8
                          hms_1.1.3
                                                listenv_0.9.1
[55] testthat_3.2.1.1
                          snow_0.4-4
                                                parallelly_1.38.0
[58] glue_1.7.0
                          semTools_0.5-6
                                                codetools_0.2-20
[61] stringi_1.8.4
                          gtable_0.3.5
                                                quadprog_1.5-8
[64] munsell 0.5.1
                          pillar 1.9.0
                                                brio 1.1.5
[67] htmltools 0.5.8.1
                          R6 2.5.1
                                                Rdpack 2.6.1
[70] simstandard_0.6.3
                          evaluate_0.24.0
                                                pbivnorm_0.6.0
[73] lattice_0.22-6
                          rbibutils_2.2.16
                                                R.methodsS3 1.8.2
[76] RPushbullet 0.3.4
                                                gridExtra 2.3
                          Rcpp_1.0.13
[79] nlme_3.1-165
                          permute_0.9-7
                                                mgcv_1.9-1
[82] xfun_0.46
                          pkgconfig_2.0.3
```

References

Hlynsson, Jón Ingi, Anders Sjöberg, Lars Ström, and Per Carlbring. 2024. "Evaluating the Reliability and Validity of the Questionnaire on Well-Being:

- A Validation Study for a Clinically Informed Measurement of Subjective Well-Being." Cognitive Behaviour Therapy 0 (0): 1–23. https://doi.org/10.1080/16506073.2024.2402992.
- Hu, Li-tze, and Peter M. Bentler. 1999. "Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives." Structural Equation Modeling: A Multidisciplinary Journal 6 (1): 1–55. https://doi.org/10.1080/10705519909540118.
- McNeish, Daniel. 2023. "Dynamic Fit Index Cutoffs for Categorical Factor Analysis with Likert-Type, Ordinal, or Binary Responses." *American Psychologist* 78 (9): 1061–75. https://doi.org/10.1037/amp0001213.
- Savalei, Victoria. 2018. "On the Computation of the RMSEA and CFI from the Mean-And-Variance Corrected Test Statistic with Nonnormal Data in SEM." *Multivariate Behavioral Research* 53 (3): 419–29. https://doi.org/10.1080/00273171.2018.1455142.