Orifice Meter Experiment using JS

Project Documentation and Test Cases for Orifice Meter Experiment Using JavaScript

Documentation

- 1) Introduction (Pg: 3)
- 2) Languages Used (Pg: 3)
- 3) Working Description (Pg: 4-11)
- 4) Buttons (Pg: 12 13)
- 5) Input and Output (Pg: 14)
- 6) Test Cases (Pg: 15 16)

1.Introduction:

An orifice meter or orifice plate is a device used for measuring the rate of flow of a fluid through a pipe. The objective of this simulation is to determine the coefficient of discharge (Cd) using the orifice meter. This simulation is written in JavaScript.

2.Languages Used:

- 1) HTML
- 2) CSS
- 3) JAVA SCRIPT

3. Working Description:

Functionality of all the functions and scripts used in the program.

3.1 layout.js:

Functions:

1.fill_text

2.triangle

3.draw line

4.lines

5.line filling

fill_text function

function fill_text(font_size, color, text, left, top)

Description-

Fills the text in the canvas.

Parameters

font size: font size of the text

color: color of the text

text: text content

left: distance of text from left border

top: distance of the text form the top border

triangle function

```
function triangle(x, y, x1, y1, x2, y2)
```

Description-

Draws a triangle at desired location

Parameters

x: initial x coordinate of the triangle

y: initial y coordinate of the triangle

x1: second x coordinate of the triangle

y1: second y coordinate of the triangle

x2: third x coordinate of the triangle

y2: third y coordinate of the triangle

Draw_line function

function draw_line(startX, startY, newX, newY)

Description-

Draws a line between desired coordinates.

Parameters

startX: initial x coordinate of the line

startY: initial y coordinate of the line

newX: final x coordinate of the line

newY: final y coordinate of the line

lines function:

function lines(startX, startY, newX, newY)

Description-

Draws a black line between the desired coordinates.

Parameters

startX: initial x coordinate of the line

startY: initial y coordinate of the line

newX: final x coordinate of the line

newY: final y coordinate of the line

line_filling function:

```
function line_filling(color, iX , iY, nX, nY)
```

Description-

Draws a line with desired width, height and colour at a desired position.

Parameters

color: color of the rectangle

iX: initial point of the rectangle

iY: initial point of the rectangle

nX: width of the rectangle from iX

nY: height of the rectangle from iY

3.2 Animation.js:

Functions:

1. animations

animation function

function animations()

Description-

Performs the animation as per the required simulation (filling the tube with water).

Parameters-

No parameters required.

Animations frames used:

- 1. window.requestAnimationFrame()
- 2. window.cancleAnimationFrame()

window.requestAnimationFrame()

id=window.requestAnimationFrame(animations);

The window.requestAnimationFrame() method tells the browser to perform an animation and requests that the browser to call animations function to update an animation before the next repaint. The method takes a callback as an argument to be invoked before the repaint.

window.cancleAnimationFrame()

cancelAnimationFrame(id);

The window.cancelAnimationFrame() method cancels an animation frame request previously scheduled through a call to window.requestAnimationFrame().

3.3. calculator.js

Functions:

1. Results

Results function

function Results()

Description-

This function performs all the necessary calculations required to get *Theoretical discharge* (Q_th), *Actual discharge* (Q_a) and *coefficient of discharge* (Cd).

Formulas Used:

```
Q_th = (A1 * A2* Math.sqrt(2* g * H))/Math.sqrt(A1*A1 - A2*A2); // Theoritical discharge (Q_th) in cm^3/sec
Q_a = (a * h)/t; // Actual discharge (Q_a) in cm^3/sec
Cd = Q_a/Q_th; // Coefficient of discharge (Cd)
```

4.Buttons:

- 1. Start
- 2. Re-set
- 3. Calculate

Start Button:

```
<button type = "button" onclick = "animations()" id = 'child1' >Start</button> <!--Start Button-->
```

Start

Description-

On clicking on this button animations() functions starts executing.

Re-set Button:

<input type="button" value="Re-set" onClick="document.location.reload(true) " id = "child2">

Re-set

Description-

On clicking this button the simulation goes to the starting stage and page gets refreshed.

Prepared By B. N. V. VISWESWAR ABHAY

Calculate Button:

<input type="button" onClick="Results()" value="Calculate" style = "position:absolute; top:160; left: 350">

Calculate

Description-

On clicking the calculate button Results() function will be invoked and calculations will be performed and displayed on the output form.

5.Input and Output:

<pre><label style="color: blue; font: bold;">H (cm):</label> <input id="ht" name="Height" style="position:absolute; top:0; left: 120" type="number"/></pre>
<label style="position:absolute; top:0; left: 500; color: blue">Q_a:</label> <input name="q_a" style="position:absolute; top:0; left: 550" type="text"/> <
<pre><labe style="color: blue; font: bold;">Da (cm): <input name="D1" style="position:absolute; top:35; left: 120" type="number"/></labe></pre>
<pre><label style="position:absolute; top:50; left: 500">Q_th:</label> <input name="q_th" style="position:absolute; top:50; left: 550" type="text"/> < </pre>
<pre><label style="color: blue; font: bold;">Db (cm):</label> <input name="D2" style="position:absolute; top:70; left: 120" type="number"/></pre>
<pre><label style="position:absolute; top:100; left: 500">C_d:</label> <input name="c_d" style="position:absolute; top:100; left: 550" type="text"/> </pre>
<pre><label style="color: blue; font: bold;">Time (sec):</label> <input name="Time" style="position:absolute; top:105; left: 120" type="number"/> </pre>
<pre><input onclick="Results()" style="position:absolute; top:160; left: 350" type="button" value="Calculate"/></pre>

<u>Input</u>		<u>Output</u>	
H (cm):		Q_a:	
Da (cm):			
Db (cm):		Q_th:	
Time (sec):		C_d:	

6.Test Cases:

Input/Output case 1:

Input:

H = 40 cm

Da = 90 cm

Db = 30 cm

Time = 8 sec

Output:

Expected Output	Actual Output
Q_a = 1.8	Q_a = 1.8000
Q_th = 199255.0805	Q_th = 199255.0805
C_d = 0.0000090336	C_d = 0.0000090336

Input/Output case 2:

Input:

H = 20 cm

Da = 10 cm

Db = 5 cm

Time = 2 sec

Output:

Expected Output	Actual Output
Q_a = 3.6	Q_a = 3.6000
Q_th = 4017.0640	Q_th = 4017.0640
C_d = 0.0008961769	C_d = 0.0008961769