Machine Learning

Prof. Matthias Hein

Exercise Sheet 2 - 6.5.2021 (12 points)

due: 13.5.2021

Exercise 4 - Maximum Likelihood and Maximum A Posteriori Estimation

• (3 Points) Consider the regression problem where the input $X \in \mathbb{R}^d$ and the output $Y \in \mathbb{R}$. Assume that the likelihood is specified in terms of the unknown parameter $w \in \mathbb{R}^d$ as

$$p(y|x,w) = \frac{1}{\sqrt{2\pi g(x)}} e^{-\frac{(y-\langle w,x\rangle)^2}{2g(x)}},$$

where $g: \mathbb{R}^d \to \mathbb{R}_+^*$ is a known positive function. Compute the maximum likelihood estimator of w.

• (3 points) Further we have a prior distribution on w:

$$p(w) = \frac{1}{(2\pi)^{\frac{d}{2}} (\prod_{i=1}^d \lambda_i)^{\frac{1}{2}}} e^{-\langle w, \Lambda^{-1} w \rangle}.$$

where Λ is a diagonal matrix with the diagonal entries given by $\frac{1}{\lambda_i}$ ($\lambda_i > 0$ for all $i \in \{1, ..., d\}$). We are given an i.i.d. training sample $(x_i, y_i)_{i=1}^n$, which we assume to be additionally conditionally independent given the model. We impose the condition that w is independent of x. Use this first to show that

$$p(y, x \mid w) = p(y \mid w, x)p(x).$$

What is the maximum a posteriori (MAP) estimator of w?

Exercise 5 - ML and MAP estimators

Consider the two r.v., representing two sensors estimating the same value θ ,

$$A = \theta + \epsilon_1,$$
 $\epsilon_1 \sim \mathcal{N}(0, \sigma_1^2)$
 $B = \theta + \epsilon_2,$ $\epsilon_2 \sim \mathcal{N}(0, \sigma_2^2),$

with ϵ_1 and ϵ_2 independent, and their realizations (a_1, \ldots, a_n) and (b_1, \ldots, b_n) (in practice n = 1 and we need an estimation of θ).

- (3 points) Compute the MLE of θ , using the information from both sensors and assuming σ_1, σ_2 known.
- (3 points) If additionally we assume a prior

$$p(\theta) = \mathcal{N}(\mu_P, \sigma_P^2),$$

which is the MAP estimator of θ ? With which σ_P would we get $\hat{\theta}_{ML} = \hat{\theta}_{MAP}$?