Ganpat University- U. V. Patel College of engineering

Subject: 2BS3102 Discrete Mathematics & Probability

Unit-1 Algebraic Structures and Morphism

1. Set theory:

1.1 Set: Definite collection is set. We denote it by capital letter A, B,...etc.

For example: $A = \{1, 2, 3\}, B = \{Ram, Sham, a, 1, *\}, M = \{\} = \emptyset$

Some standard sets:

$$N = \{1,2,3,...\}$$
= set of natural numbers

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$
=Set of integer

$$Q = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}, q \neq 0 \right\}$$
 =Set of all rational numbers

R= set of real numbers

$$C = \{a + ib : a, b \in R, i = \sqrt{-1}\}$$
 =Set of complex numbers

 Z_{+} = Set of positive integers

1.1.1 Subset:

 $A \subset B$ if $\forall x \in A \Rightarrow x \in B$ (**Read as** A is subset of B if for each x belongs to A implies x belongs to B)

For example: (1) $N \subset Z \subset Q \subset R \subset C$

(2)
$$A = \{a, b, c\}$$
 and $B = \{a, b, c, d\}$ then $A \subset B$

(3) Empty set = \emptyset is subset of every set.

1.1.2 Union and intersection:

$$A \cup B = \{x : x \in A \ or \ x \in B\}$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

For example: $A = \{1,2,3\}, B = \{2,3,4\}$ then $A \cup B = \{1,2,3,4\}$ and

$$A \cap B = \{2,3\}$$

1.2 Function or mapping:

Let A and B be two given two non-empty sets. Suppose there exists a correspondence denoted by f, which associates to each member of A, a unique member of B. Then f is called a function or a mapping of A to B.

Notation: $f: A \rightarrow B$ where A is domain and B is codomain.

1.2.1 Function as sets of ordered pair:

 $f: A \to B$ is subset of $A \times B$ satisfying following conditions:

- (i) $\forall a \in A, (a, b) \in f$ for some $b \in B$
- (ii) If $(a,b) \in f$ and $(a,b') \in f \Rightarrow b = b'$

For example: If $A = \{a, b, c\}$ and $B = \{x, y, z\}$

$$\Rightarrow A \times B = \{(a, x), (a, y), (a, z), (b, x), (b, y), (b, z), (c, x), (c, y), (c, z)\}$$

Here (1) $f = \{(a, x), (b, y), (c, x)\}$ is function.

Codomain: B

Range=
$$\{x, y\}$$

Onto: Codomain = Range (Note: f is not onto)

One one: different element have different image (Note: f is not one-one)

(2) $g = \{(a, x), (a, y), (b, y), (c, x)\}$ is NOT a function. as a has two images(not unique image).

В

B

1.3 Relation: Relation R from A to B is subset of $A \times B$.

Symbolically, R is a relation from A to B if and only if (iff) $R \subset A \times B$.

For example: If $A = \{a, b, c\}$ and $B = \{x, y, z\}$

$$\Rightarrow A \times B = \{(a, x), (a, y), (a, z), (b, x), (b, y), (b, y), (c, x), (c, y), (c, z)\}$$
 then

(1) $R = \{(a, x), (a, y), (b, y), (c, x)\}$ is relation (Not function) from A to B.

Here we can write aRx, aRy, ... (Read as a is related to x)

(2) Let P be set of person living in Mehsana. Then the statement "x is a son of y where x, $y \in P$ " determines a relation R in P.

Obviously $R \subset P \times P$.

(3) Let Z be a set of integer then the statement "x is less than y, x, y \in Z" is relation R. $R = \{(x, y) \mid x \in Z, y \in Z, x < y\} \subset Z \times Z.$

Clearly $(3, 4) \in R$ or 3 R 4.

Also $(2, 1) \notin \mathbb{R}$.

- (4) L=set of all lines in a plane. "x is parallel to y" is also relation.
- (5) **Definition: Congruence modulo n (Residue modulo m)**

a is congruent to b modulo n if and only if a - b is divisible by n.

i.e.
$$a = b \pmod{n}$$
 iff $n \mid (a - b)$

For example: $R = \{(x, y) \mid x \in Z, y \in Z, x-y \text{ is divisible by 5}\}$ then R is relation in Z and known as congruence modulo 5 or residue modulo 5 relation.

Here $5 \mid x - y$ which means, x-y=5k for some $k \in \mathbb{Z}$ Therefore x=5k+y.

Here $(5, 10) \in \mathbb{R}$ as 5|5-10 i.e. 5|(-5). So we can say $5 = 10 \pmod{5}$

Also $(6,11) \in R$ as $5 \mid 6-11$ So we can say $6 = 11 \pmod{5}$

• If [a] is congruence class (mod m) (here class means equivalence class) then set of congruence classes (mod m) = Z_m (say)

Here [a] = [b] if and only if $a = b \pmod{m}$ then

$$Z_5 = \{[0], [1], [2], [3], [4]\} \text{ or } Z_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$$

Note: (1) $\frac{2}{6} = \frac{1}{3} = 0.333$ is value

(2) $2 \mid 6$ read as "2 divides 6" is relation. (Note here remainder r will be 0)

 $6=2\times$ k, for some k \in Z here k=3

1.3 Binary operations:

Let A be a nonempty set. Then $A \times A = \{(a, b) | a, b \in A\}$. A function $*: A \times A \to A$ is said to be binary operation on A if $*(a, b) = a * b \in A$.

For example:

- (1) $^{+}$ is binary operation on N.
- (2)' \times ' is binary operation on R.
- (3)'-' is not binary operation on N.

(4) "Addition modulo m"

Let a and b be any two integer and m is a fixed positive integer, then addition modulo m is written as $a+_m b=r, 0 \le r < m$ where r is the least non-negative remainder when a+b is divided by m.

For example:

- (1) $17 +_3 4 = 0$ as if we divide 17 + 4 = 21 by 3 we have 0 as remainder.
- (2) 15 + 24 = 1

(5) "Multiplication modulo p"

Let a and b be any two integer and p is a fixed positive integer, then multiplication modulo p is written as $a \times_p b = r, 0 \le r < p$ where r is the least non-negative remainder when $a \times b$ is divided by p.

For example:

- (3) $7 \times_3 4 = 1$ as if we divide $7 \times 4 = 28$ by 3 we have 1 as remainder.
- $(4) 5 \times_4 7 = 3$