WO 2004/103276

PCT/US2004/014642

WHAT IS CLAIMED IS:

1. A compound of structural formula I:

$$Ar \xrightarrow{NH_2 O} R^8$$

$$R^{10} \xrightarrow{N} N X$$

$$R^{10} \xrightarrow{N} R^1$$

$$(I)$$

5 wherein

each n is independently 0, 1, or 2;

m is 1 or 2;

p is 1 or 2; with the proviso that m + p is 3;

X is N or CR²;

10

20

25

Ar is phenyl substituted with one to five R³ substituents;

R1 and R2 are each independently selected from the group consisting of

hydrogen,

15 halogen,

hydroxy,

cyano,

C₁₋₁₀ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents

independently selected from halogen or hydroxy,

C₁₋₁₀ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

C₁₋₁₀ alkylthio, wherein alkylthio is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

C2-10 alkenyl, wherein alkenyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

(CH₂)_nCOOH,

 $(CH_2)_nCOOC_{1-6}$ alkyl,

(CH₂)_nCONR⁴R⁵, wherein R⁴ and R⁵ are independently selected from the group consisting of hydrogen, tetrazolyl, thiazolyl, (CH₂)_n-phenyl, (CH₂)_n-C₃₋₆ cycloalkyl, and C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; or R⁴ and R⁵ together with the nitrogen atom to which they are attached form a heterocyclic ring selected from azetidine, pyrrolidine, piperidine, piperazine, and morpholine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; (CH₂)_n-NR⁴R⁵,

(CH₂)_n-OCONR⁴R⁵,

(CH₂)_n-SO₂NR⁴R⁵,

15 $(CH_2)_n$ -SO₂R⁶,

5

10

25

30

35

(CH₂)_n-NR⁷SO₂R⁶,

(CH₂)_n-NR⁷CONR⁴R⁵,

(CH₂)_n-NR⁷COR⁷,

 $(CH_2)_n$ -NR⁷CO₂R⁶,

 $(CH_2)_n$ - COR_6 ,

(CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

(CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, cyano, hydroxy, NR⁷SO₂R⁶, SO₂R⁶, CO₂H, C₁₋₆ alkyloxycarbonyl, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens.

(CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and

(CH₂)_n-heterocyclyl, wherein heterocyclyl is unsubstituted or substituted with one to three substituents independently selected from oxo, hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

wherein any methylene (CH₂) carbon atom in R¹ or R² is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens;

5 each R³ is independently selected from the group consisting of

hydrogen,

halogen,

cyano,

hydroxy,

10 C₁₋₆ alkyl, unsubstituted or substituted with one to five halogens, and

C₁₋₆ alkoxy, unsubstituted or substituted with one to five halogens;

R6 is independently selected from the group consisting of tetrazolyl, thiazolyl, (CH₂)_n-phenyl, (CH₂)_n-C₃₋₆ cycloalkyl, and C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and wherein any methylene (CH₂) carbon atom in R6 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, C₁₋₄ alkyl, and C₁₋₄ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens;

each R7 is hydrogen or R6;

each R8, R9, and R10 is independently selected from the group consisting of

25 hydrogen,

15

20

30

35

cyano,

carboxy,

C₁₋₆ alkyloxycarbonyl,

C₁₋₁₀ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy,

C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens,

(CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

WO 2004/103276

5

10

15

20

25

(CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

- (CH₂)_n-heterocyclyl, wherein heterocyclyl is unsubstituted or substituted with one to three substituents independently selected from oxo, hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
- (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and
- (CH₂)_nCONR⁴R⁵, wherein R⁴ and R⁵ are independently selected from the group consisting of hydrogen, tetrazolyl, thiazolyl, (CH₂)_n-phenyl, (CH₂)_n-C₃₋₆ cycloalkyl, and C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; or R⁴ and R⁵ together with the nitrogen atom to which they are attached form a heterocyclic ring selected from azetidine, pyrrolidine, piperidine, piperazine, and morpholine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy,

wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; wherein any methylene (CH₂) carbon atom in R^8 , R^9 or R^{10} is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens.

2. The compound of Claim 1 of structural formula Ia wherein the carbon atom marked with an * has the R configuration:

3. The compound of Claim 1 of structural formula Ib:

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} \xrightarrow{N-\chi} R^1$$

$$R^{10} \xrightarrow{R^9} R^9$$

$$(lb)$$

4. The compound of Claim 3 of structural formula Ic wherein the carbon atom marked with an * has the R configuration

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} N \xrightarrow{N} X$$

$$R^{10} \xrightarrow{R^9} R^9$$
(Ic)

5. The compound of Claim 3 of structural formula Id:

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} \xrightarrow{N-N} R^1$$

$$R^{10} \xrightarrow{R^9} R^9$$

$$(Id)$$

6. The compound of Claim 3 of structural formula Ie:

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} N \xrightarrow{R^2} R^9$$

$$(Ie)$$

7. The compound of Claim 1 of structural formula If:

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} R^8$$

$$R^{10} \xrightarrow{N} X$$

$$R^{10} \xrightarrow{R^9} R^1$$

8. The compound of Claim 7 of structural formula Ig wherein the carbon atom marked with an * has the R configuration:

$$Ar \xrightarrow{NH_2 O} R^8 R^8$$

$$R^{10} \xrightarrow{N} X$$

$$R^{10} \xrightarrow{R^9} R^1$$
(Ig)

9. The compound of Claim 7 of structural formula Ih:

5

$$\begin{array}{c|cccc} & NH_2 & O & R^8 & R^8 \\ & & & & & \\ & & & & & \\ & & & & & \\ R^{10} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

10. The compound of Claim 7 of structural formula Ii:

$$Ar \xrightarrow{NH_2 O R^8} R^8$$

$$R^{10} \xrightarrow{N} R^2$$

$$R^9 R^1$$
(lii)

The compound of Claim 1 wherein R³ is selected from the group consisting of hydrogen, fluoro, chloro, bromo, trifluoromethyl, and methyl.

12. The compound of Claim 11 wherein R³ is selected from the group consisting of hydrogen, fluoro, and chloro

5 13. The compound of Claim 1 wherein R¹ is selected from the group consisting of: hydrogen,

halogen,

10

C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

(CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, CN, hydroxy, NR⁷SO₂R⁶, SO₂R⁶, CO₂H, C₁₋₆ alkyloxycarbonyl, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five

halogens;

15 (CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and wherein any methylene (CH₂) carbon atom in R¹ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens.

14. The compound of Claim 13 wherein R¹ is selected from the group consisting of hydrogen,

methyl,

25 trifluoromethyl,

phenyl,

4-fluorophenyl,

4-(trifluoromethyl)phenyl,

4-(trifluoromethoxy)phenyl, and

30 5-methyl-1,3,4-oxadiazol-2-yl.

15. The compound of Claim 1 wherein R² is selected from the group consisting of hydrogen, halogen, and

C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy.

- 16. The compound of Claim 15 wherein R² is selected from the group consisting of hydrogen and trifluoromethyl.
 - 17. The compound of Claim 1 wherein R⁸, R⁹, and R¹⁰ are independently selected from the group consisting of:

hydrogen and

- 10 C₁₋₆ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens.
- 18. The compound of Claim 17 wherein R⁸, R⁹, and R¹⁰ are each independently selected from the group consisting of hydrogen and methyl.
 - 19. The compound of Claim 18 wherein R9 and R10 are hydrogen.
 - 20. The compound of Claim 2 which is selected from the group consisting of:

or a pharmaceutically acceptable salt thereof.

5

Mé

21. A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.

- A method for treating diabetes in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.
 - 23. A method for treating non-insulin dependent (Type 2) diabetes in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.

24. A method for treating hyperglycemia in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.

10

20

25

30

- 15 25. A method for treating obesity in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.
 - 26. A method for treating one or more lipid disorders selected from the group of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.
 - 27. A method for treating in a mammal in need thereof one or more conditions selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) irritable bowel syndrome, (15) inflammatory bowel disease, including Crohn's disease and ulcerative colitis, (16) other inflammatory conditions, (17) pancreatitis, (18) abdominal obesity, (19) neurodegenerative disease, (20) retinopathy, (21) nephropathy, (22) neuropathy, (23) Syndrome X, (24) ovarian hyperandrogenism (polycystic ovarian syndrome), and other disorders where insulin resistance is a component, wherein the method comprises the administration to the mammal a therapeutically effective amount of a compound of Claim 1.
 - 28. The pharmaceutical composition of Claim 21 further comprising one or more additional active ingredients selected from the group consisting of:

- (a) a second dipeptidyl peptidase IV inhibitor;
- (b) an insulin sensitizer selected from the group consisting of a PPARγ agonist, a PPARα/γ dual agonist, a PPARα agonist, a biguanide, and a protein tyrosine phosphatase-1B inhibitor;
- 5 (c) an insulin or insulin mimetic;
 - (d) a sulfonylurea or other insulin secretagogue;
 - (e) an α-glucosidase inhibitor;
 - (f) a glucagon receptor antagonist;
 - (g) GLP-1, a GLP-1 mimetic, or a GLP-1 receptor agonist;
- 10 (h) GIP, a GIP mimetic, or a GIP receptor agonist;
 - (i) PACAP, a PACAP mimetic, or a PACAP receptor agonist;
 - (j) a cholesterol lowering agent such as (i) HMG-CoA reductase inhibitor, (ii) sequestrant, (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonist, (v) PPARα/γ dual agonist, (vi) inhibitor of cholesterol absorption, (vii) acyl CoA:cholesterol acyltransferase inhibitor, and (viii) anti-oxidant;
 - (k) a PPARδ agonist;
 - (1) an antiobesity compound;
 - (m) an ileal bile acid transporter inhibitor;
 - (n) an anti-inflammatory agent; and
- 20 (o) an antihypertensive agent.

- 29. The pharmaceutical composition of Claim 28 wherein the PPARα/γ dual agonist is KRP-297.
- 30. A method of treating diabetes in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of Claim 1 in combination with the PPARα/γ dual agonist KRP-297.