EXAMPLE 9-2

Figure 9-4(a) shows how four 74ALS138s and an INVERTER can be arranged to function as a 1-of-32 decoder. The decoders are labeled Z_1 to Z_4 for easy reference, and the eight outputs from each one are combined into 32 outputs. Z_1 's outputs are \overline{O}_0 to \overline{O}_7 ; Z_2 's outputs \overline{O}_0 to \overline{O}_7 are renamed \overline{O}_8 to \overline{O}_{15} , respectively; Z_3 's outputs are renamed \overline{O}_{16} to \overline{O}_{23} ; and Z_4 's are renamed \overline{O}_{24} to \overline{O}_{31} . A five-bit input code $A_4A_3A_2A_1A_0$ will activate only one of these 32 outputs for each of the 32 possible input codes.

- (a) Which output will be activated for $A_4A_3A_2A_1A_0 = 01101$?
- (b) What range of input codes will activate the Z₄ chip?
- (c) Create a megafunction circuit in Quartus that will implement a 1-of-32 decoder with active-HIGH outputs.

Combinational logic implementation:

Multiplexer circuit using decoder: No.

DECODER CIRCUIT +Vcc=5V+1 LED -> Light enitting diode.

• BCD to 7 segment decoder (common anode connection):

Decimal	a	b	С	d	е	f	g	a -	+V _{CC} Anode Commonanode anode
) 0	~ 0	0	0	0_	0	0	1	· ·	Cathode a connections
1	1	0	0	1	1	1	1 - f		b+ (5)
2	70	0	1	0	0	1	0		
3	→ 0	0	0	0	1	1	0	g	BCD C BCD- bc-
4	1	0	0	1	1	0	0		input B 7-segment decoder/
5	→ 0	1	0	0	1	0	0		driver ē
6	-4	1	0	0	0	0	0 ~ e		C Blanking BI/RBO
7	0	0	0	0	1	1	1		controls RBI
8	0	0	0	0	0	0	0	a s	LED test input 7446 or 7447 For current
9	0	0	0	0	1	0	0		limiting
									インノンラック
Decimal	Δ R	<u> </u>	,	~ b		d e	t a		$a = \prod M (0, 2, 3, 5, 7, 8, 9) d (10, 11, 12, 13, 14, 15)$

	Decimal	Α	В	С	D	а	b	С	d	е	f	g	
(10	1	0	1	0	X	X	X	X	X	X	X	
	11	1	0	1	1	X	X	X	X	X	X	X	
	12	1	1	0	0	X	X	X	X	X	X	X	
	13	1	1	0	1	X	X	X	X	X	X	X	
	14	1	1	1	0	X	X	X	X	X	X	X	
L	15	1	1	1	1	X	X	X	X	X	X	X	

 $-b = \prod M(0, 1, 2, 3, 4, 7, 8, 9) \prod d(10, 11, 12, 13, 14, 15)$

 $c = \prod M (0, 1, 3, 4, 5, 6, 7, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$

 $-d = \prod M (0, 2, 3, 5, 6, 8) \prod d (10, 11, 12, 13, 14, 15)$

 $e = \prod M (0, 2, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$

 $= \prod M (0, 4, 5, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$

 $g = \prod M (2, 3, 4, 5, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$

BCD to 7 segment decoder (common anode connection):

 $a = \prod M (0, 2, 3, 5, 7, 8, 9) d (10, 11, 12, 13, 14, 15)$ $b = \prod M (0, 1, 2, 3, 4, 7, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$ $c = \prod M (0, 1, 3, 4, 5, 6, 7, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$ $d = \prod M (0, 2, 3, 5, 6, 8) \prod d (10, 11, 12, 13, 14, 15)$ $e = \prod M (0, 2, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$ $f = \prod M (0, 4, 5, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$ $g = \prod M (2, 3, 4, 5, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$

a = A (B+D) (B+C)(B+D)
$b = B(\overline{C} + \overline{D})(C + D)$
$c = \overline{B}C\overline{D}$
$d = (\overline{C} + D) (B + \overline{C})(\overline{B} + C + \overline{D}) (B + D)$
$e = (\overline{C} + D) (B + D)$
$f = \overline{A} (C + D) (\overline{B} + C) (\overline{B} + D)$
$g = \overline{A} (\overline{B} + C) (\overline{C} + D) (B + \overline{C})$

$$a = \prod M (0, 2, 3, 5, 7, 8, 9) d (10, 11, 12, 13, 14, 15)$$

$$b = \prod M (0, 1, 2, 3, 4, 7, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$$

$$c = \prod M (0, 1, 3, 4, 5, 6, 7, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$$

$$d = \prod M (0, 2, 3, 5, 6, 8) \prod d (10, 11, 12, 13, 14, 15)$$

$$e = \prod M (0, 2, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$$

$$f = \prod M (0, 4, 5, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$$

$$g = \prod M (2, 3, 4, 5, 6, 8, 9) \prod d (10, 11, 12, 13, 14, 15)$$

a = A (B+D) (B+C)(B+D)
$b = B(\overline{C} + \overline{D})(C + D)$
$c = \overline{B}C\overline{D}$
$d = (\overline{C} + D) (B + \overline{C})(\overline{B} + C + \overline{D}) (B + D)$
$e = (\overline{C} + D) (B + D)$
$f = \overline{A} (C + D) (\overline{B} + C) (\overline{B} + D)$
$g = \overline{A} (\overline{B} + C) (\overline{C} + D) (B + \overline{C})$

• BCD to 7 segment decoder (common cathode connection):

Common Cathode Display

Decimal	а	b	С	d	e	f	g	_ a 	_	+9V R ₁ to R ₇ Common Catho 390Ω to 750Ω Display
0	1	1	1	1	1	1	0			LT Vcc BL a A
1	0	1	1	0	0	0	0	f	b	
2	1	1	0	1	1	0	1			switches C VVV c f b
3	1	1	1	1	0	0	1	<u> </u>		BCDto d VVV d g
4	0	1	1	1	0	1	1			7-sement e \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5	1	0	1	1	0	1	1			Decoder f VVV f e
6	1	0	1	1	1	1	1	e	С	
7	1	1	1	1	0	0	0			4-bit BCD >>>> LE Gnd
8	1	1	1	1	1	1	1	d		Input \$\$\$ Gnd
9	1	1	1	1	0	1	1			4x 1kΩ =

Decimal	А	В	С	D	а	b	С	d	е	f	g	
10	1	0	1	0	X	X	X	X	X	X	X	
11	1	0	1	1	X	X	X	X	X	X	X	
12	1	1	0	0	X	X	X	X	X	X	X	
13	1	1	0	1	X	X	X	X	X	X	X	
14	1	1	1	0	X	X	X	X	X	X	X	
15	1	1	1	1	X	X	X	X	X	X	X	

$$a = \sum m (0, 2, 3, 5, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$b = \sum m (0, 1, 2, 3, 4, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$c = \sum m (0, 1, 3, 4, 5, 6, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$d = \sum m (0, 2, 3, 5, 6, 8) + \sum d (10, 11, 12, 13, 14, 15)$$

$$e = \sum m (0, 2, 6, 8) + \sum d (10, 11, 12, 13, 14, 15)$$

$$f = \sum m (0, 4, 5, 6, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$g = \sum m (2, 3, 4, 5, 6, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$a = \sum m (0, 2, 3, 5, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$b = \sum m (0, 1, 2, 3, 4, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$c = \sum m (0, 1, 3, 4, 5, 6, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$d = \sum m (0, 2, 3, 5, 6, 8) + \sum d (10, 11, 12, 13, 14, 15)$$

$$e = \sum m (0, 2, 6, 8) + \sum d (10, 11, 12, 13, 14, 15)$$

$$f = \sum m (0, 4, 5, 6, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$g = \sum m (2, 3, 4, 5, 6, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$a = A + BD + \overline{BD} + \overline{BC}$
$b = B + \overline{C}\overline{D} + CD$
$c = B + \overline{C} + D$
$d = C\overline{D} + \overline{B}C + B\overline{C}D + \overline{B}\overline{D}$
$e = C\overline{D} + \overline{B}\overline{D}$
$f = A + \overline{C}\overline{D} + B\overline{C} + B\overline{D}$
$g = A + B\overline{C} + C\overline{D} + \overline{B}C$

$$a = \sum m (0, 2, 3, 5, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$b = \sum m (0, 1, 2, 3, 4, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$c = \sum m (0, 1, 3, 4, 5, 6, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$d = \sum m (0, 2, 3, 5, 6, 8) + \sum d (10, 11, 12, 13, 14, 15)$$

$$e = \sum m (0, 2, 6, 8) + \sum d (10, 11, 12, 13, 14, 15)$$

$$f = \sum m (0, 4, 5, 6, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$$g = \sum m (2, 3, 4, 5, 6, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

$a = A + BD + \overline{BD} + \overline{BC}$
$b = B + \overline{C}\overline{D} + CD$
$c = B + \overline{C} + D$
$d = C\overline{D} + \overline{B}C + B\overline{C}D + \overline{B}\overline{D}$
$e = C\overline{D} + \overline{B}\overline{D}$
$f = A + \overline{C}\overline{D} + B\overline{C} + B\overline{D}$
$g = A + B\overline{C} + C\overline{D} + \overline{B}C$

