Einzelprüfung "Theoretische Informatik / Algorithmen (vertieft)" Einzelprüfungsnummer 66115 / 2019 / Herbst

Thema 1 / Aufgabe 4

Stichwörter: Polynomialzeitreduktion

(SAT DOPPELSAT)

Betrachten Sie die folgenden Probleme:

SAT

Gegeben: Aussagenlogische Formel Fin KNF

Frage: Gibt es mindestens eine erfüllende Belegung für F?

DOPPELSAT

Gegeben: Aussagenlogische Formel F' in KNF

Frage: Gibt es mindestens eine erfüllende Belegung für F, in der mindestens zwei Literale pro Klausel wahr sind?

(a) Führen Sie eine polynomielle Reduktion von SAT auf DOPPELSAT durch.

Lösungsvorschlag

https://courses.cs.washington.edu/courses/csep531/09wi/handouts/sol4.pdf

DOUBLE-SAT is in NP. The polynomial size certificate consists of two assignments f1 and f2. First, the verifier verifies if f1 6= f2. Then, it verifies if both assignments satisfy φ by subtituting the values for the variables and evaluate the clauses of φ . Both checks can be done in linear time. DOUBLE-SAT is NP-hard. We give a reduction from SAT. Given an instance φ of SAT which is a CNF formula of n variables x1,x2,...xn, we construct a new variable xn+1 and let $\psi = \varphi \land (xn+1 \lor \neg xn+1)$ be the corresponding instance of DOUBLE-SAT. We claim that φ has a satisfying assignment iff ψ has at least two satisfying assignments. On one hand, if φ has a satisfying assignment f, we can obtain two distinct satisfying assignments of ψ by extending f with xn+1 = T and xn+1 = F respectively. On the other hand, if ψ has at least two sastisyfing assignments then the restriction of any of them to the set x1,x2,...xn is a satisfying assignment for φ . Thus, DOUBLE-SAT is NP-complete.

https://cs.stackexchange.com/questions/6371/proving-double-sat-is-np-complete

Here is one solution:

Clearly Double-SAT belongs to NP, since a NTM can decide Double-SAT as follows: On a Boolean input formula $\phi(x_1, \ldots, x_n)$, nondeterministically guess 2 assignments and verify whether both satisfy ϕ .

To show that Double-SAT is NP-Complete, we give a reduction from SAT to Double-SAT, as follows:

On input $\phi(x_1,\ldots,x_n)$:

1. Introduce a new variable y. 2. Output formula $\phi'(x_1,\ldots,x_n,y)=\phi(x_1,\ldots,x_n)$ \wedge $(y \vee \bar{y}).$

If $\phi(x_1,...,x_n)$ belongs to SAT, then ϕ has at least 1 satisfying assignment, and therefore $\phi'(x_1, \dots, x_n, y)$ has at least 2 satisfying assignments as we can satisfy the new clause $(y \lor \bar{y})$ by assigning either y = 1 or y = 0 to the new variable y, so $\phi'(x_1, ..., x_n, y) \in \text{Double-SAT}.$

On the other hand, if $\phi(x_1, ..., x_n) \notin SAT$, then clearly $\phi'(x_1, ..., x_n, y) = \phi(x_1, ..., x_n) \wedge$ $(y \vee \bar{y})$ has no satisfying assignment either, so $\phi'(x_1, \dots, x_n, y) \notin \text{Double-SAT}$.

Therefore, SAT \leq_p Double-SAT, and hence Double-SAT is NP-Complete.

(b) Zeigen Sie, dass DOPPELSAT NP-vollständig ist.

Die Bschlangaul-Sammlung

Hermine Bschlangauland Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Staatsexamen/66115/2019/09/Thema-1/Aufgabe-4.tex