Solution of System of Linear Equations

(Gauss-Jacobi and Gauss-Seidel methods)

Theorem (Diagonally Dominant):

• A square matrix A is said to be strictly diagonally dominant if

$$|a_{ii}| > \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{ij}|, i = 1, 2, ..., n.$$

Where, a_{ij} denotes the entry in the ith row and jth column of the matrix.

- A strictly diagonal dominant matrix (or an irreducibly diagonal dominant matrix) is non-singular.
- The Gauss-Jacobi and Gauss-Seidel methods for solving a linear system of equations converge if the matrix is strictly diagonally dominant. It converges for any initial approximation $x^{(0)}$.

 Generally, $x^{(0)} = \mathbf{0}$ is taken in the absence of any better initial approximation.

Iterative Methods:

- To solve the system of linear equations, we use two types of method. i.e., Direct method and Iterative method. Direct method includes Gauss-Elimination method and Gauss-Jordan method.
- Iterative method includes Gauss-Jacobi method and Gauss-Seidel method.

(1) Gauss-Jacobi Method:

- This is an iterative method and also known as "Method of simultaneous displacement".
- Here each diagonal element is solved and an approximate value is obtained. The process is then iterated until it converges.

Algorithm for Gauss-Jacobi method:

Step-1:

Consider a square matrix A of n-linear system of equations as Ax = b.

Where,
$$\mathbf{A} = [a_{ij}]_{n \times n}$$
, $\mathbf{x} = [x_1 \ x_2 \ x_3 \ ... \ x_n]^T$ and $\mathbf{b} = [b_1 \ b_2 \ b_3 \ ... \ b_n]^T$.

And the diagonal elements $a_{ii} \neq 0$ for i=1,2,...,n. If any of $a_{ii}=0 \; \forall \; i$, then rearrange the above system of equations in such a way that the above conditions hold.

Step-2:

Rewrite the system of equations as,

$$x_1 = \frac{1}{a_{11}}[b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n].$$

$$x_2 = \frac{1}{a_{22}}[b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n].$$

$$x_{n-1} = \frac{1}{a_{n-1,n-1}} \left[b_{n-1} - a_{n-1,1} x_1 - a_{n-2,2} x_2 - \dots - a_{n-1,n-2} x_{n-2} - a_{n-1,n} x_n \right].$$

$$x_n = \frac{1}{a_{nn}} \left[b_1 - a_{n1} x_1 - a_{n2} x_2 - \dots - a_{n,n-1} x_{n-1} \right].$$

In general,
$$x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j \right]$$
, $i = 1, 2, ..., n, \ a_{ii} \neq 0$.

Step-3:

Generate the iteration scheme $x^{(k+1)}$ from $x^{(k)}$ for $k \ge 0$ as

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j^{(k)} \right], i = 1, 2, ..., n \text{ and } a_{ii} \neq 0 \ \forall \ i.$$

Example 1:

Solve the linear system Ax = b by

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + \mathbf{10}x_3 - x_4 = -\mathbf{11}$$

$$3x_2 - x_3 + \mathbf{8}x_4 = \mathbf{15}$$

by Gauss-Jacobi method rounded up to four decimal places.

Solution:

Here, A is strictly diagonally dominant since 10 > 1 + 2, 11 > 1 + 1 + 3,

$$10 > 2 + 1 + 1$$
 and $8 > 3 + 1$.

Now letting $\mathbf{x}^{(0)} = [0 \ 0 \ 0 \ 0]^T$, we get

$$\mathbf{x}^{(1)} = [0.6000 \ 2.2727 \ -1.1000 \ 1.8750]^T$$

$$x^{(2)} = \begin{bmatrix} 1.0473 & 1.7159 & -0.8052 & 0.8852 \end{bmatrix}^T$$
 and

$$\mathbf{x}^{(3)} = [0.9326 \ 2.0533 \ -1.0493 \ 1.1309]^T.$$

Proceeding similarly one can obtain,

$$\mathbf{x}^{(5)} = [0.9890 \quad 2.0114 \quad -1.0103 \quad 1.0214]^T$$
 and

$$\boldsymbol{x}^{(10)} = [1.0001 \ 1.9998 \ -0.9998 \ 0.9998]^T.$$

The solution is $x = [1 \ 2 \ -1 \ 1]^T$. You may note that $x^{(10)}$ is a good approximation to the exact solution compared to $x^{(5)}$.

(2) Gauss-Seidel Method:

- This is the modification of Gauss-Jacobi iteration method.
- This method is also known as "Method of successive displacement" since one must use the recent guesses to do the iterations.

Algorithm for Gauss-Jacobi method:

Step-1:

Consider a square matrix A of n-linear equations and n-unknowns as Ax = b.

Where,
$$\mathbf{A} = [a_{ij}]_{n \times n}$$
, $\mathbf{x} = [x_1 \ x_2 \ x_3 \ ... \ x_n]^T$ and $\mathbf{b} = [b_1 \ b_2 \ b_3 \ ... \ b_n]^T$.

i.e.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + ... + a_{nn}x_n = b_n$$

And the diagonal elements $a_{ii} \neq 0$ for i = 1, 2, ..., n.

Step-2:

If any of $a_{ii}=0\ \forall\ i$, then rearrange the above system of equations in such a way that the above conditions hold. i.e. the first equation is rewritten with x_1 on the left-hand side and the second equation is rewritten with x_2 on the left-hand side and so on. i.e.,

Rewrite the system of equations as,

$$x_1 = \frac{1}{a_{11}}[b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n].$$

$$x_2 = \frac{1}{a_{22}} [b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n].$$

.

.

.

$$x_{n-1} = \frac{1}{a_{n-1,n-1}} \left[b_{n-1} - a_{n-1,1} x_1 - a_{n-2,2} x_2 - \dots - a_{n-1,n-2} x_{n-2} - a_{n-1,n} x_n \right].$$

$$x_n = \frac{1}{a_{nn}} [b_1 - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn-1}x_{n-1}].$$

In general,
$$x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j \right]$$
, $i = 1, 2, ..., n, \ a_{ii} \neq 0$.

Step-3:

Generate the iteration scheme $oldsymbol{x^{(k+1)}}$ from $oldsymbol{x^{(k)}}$ for $k \geq 0$ as

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{\substack{j=1 \\ j \neq i}}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{\substack{j=i+1 \\ j \neq i}}^{n} a_{ij} x_j^{(k)} \right], i = 1, 2, ..., n \text{ and } a_{ii} \neq 0 \ \forall \ i.$$

Step-4:

Now to find x_i 's, one must assume an initial guess for the x_i 's and then use the rewritten equations to calculate the new guesses. Remember, one always uses the most recent guesses to calculate x_i .

Step-5:

At the end of each iteration, one calculates the absolute relative approximate error for each x_i as

$$|\varepsilon_a|_i = |\frac{x_i^{new} - x_i^{old}}{x_i^{new}}| * 100$$

Where x_i^{new} is the recently obtained value of x_i , and x_i^{old} is the previous value of x_i .

When the absolute relative approximate error for each x_i is less than the pre-specified tolerance, the iterations are stopped.

Example 1:

Solve the given system of equations by Gauss-Seidel method.

$$12x_1 + 3x_2 - 5x_3 = 1$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$3x_1 + 7x_2 + 13x_3 = 76$$

Given
$$\begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 as the initial guess.

Solution:

The coefficient matrix,
$$A = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$
 is diagonally dominant as

$$|a_{11}| = |12| = 12 \ge |a_{12}| + |a_{13}| = |3| + |-5| = 8$$

$$|a_{22}| = |5| = 5 \ge |a_{21}| + |a_{23}| = |1| + |3| = 4$$

$$|a_{33}| = |13| = 13 \ge |a_{31}| + |a_{32}| = |3| + |7| = 10$$

And the inequality is strictly greater than for at least one row. Hence the solution should converge using Gauss-Seidel method.

Rewriting the equations, we get,

$$x_1 = \frac{1 - 3x_2 + 5x_3}{12}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{76 - 3x_1 - 7x_2}{13}$$

Given initial guess is
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
.

Iteration 1:

$$x_1 = \frac{1 - 3(0) + 5(1)}{12} = 0.5000$$

$$x_2 = \frac{28 - (0.5) - 3(1)}{5} = 4.9000$$

$$x_3 = \frac{76 - 3(0.5000) - 7(4.9000)}{13} = 3.0923$$

The absolute relative approximate error at the end of first iteration is

$$\begin{aligned} |\varepsilon_a|_1 &= \left| \frac{0.5000 - 1.0000}{0.5000} \right| * 100 = 67.662\% \\ |\varepsilon_a|_2 &= \left| \frac{4.9000 - 0}{4.9000} \right| * 100 = 100.000\% \\ |\varepsilon_a|_3 &= \left| \frac{3.0923 - 1.0000}{3.0923} \right| * 100 = 67.662\% \end{aligned}$$

The maximum absolute relative approximate error is 100.000%.

Iteration 2:

$$x_1 = \frac{1 - 3(4.9000) + 5(3.0923)}{12} = 0.14679$$

$$x_2 = \frac{28 - (0.14679) - 3(3.0923)}{5} = 3.7153$$

$$x_3 = \frac{76 - 3(0.14679) - 7(4.9000)}{13} = 3.8118$$

The absolute relative approximate error at the end of second iteration is

$$\begin{aligned} |\varepsilon_a|_1 &= \left| \frac{0.14679 - 0.5000}{0.14679} \right| * 100 = 240.62\% \\ |\varepsilon_a|_2 &= \left| \frac{3.7153 - 4.9000}{3.7153} \right| * 100 = 31.887\% \\ |\varepsilon_a|_3 &= \left| \frac{3.8118 - 3.0923}{3.8118} \right| * 100 = 18.876\% \end{aligned}$$

The maximum absolute relative approximate error is 240.62%. This is greater than the value of 67.612% we obtained in the first iteration. As we conduct more iterations, the solution converges as follows.

Iteration	a_1	$ \varepsilon_a _1$	a_2	$ \varepsilon_a _1$	a_3	$ \varepsilon_a _1$
1	0.50000	67.662	4.900	100.00	3.0923	67.662
2	0.14679	240.62	3.7153	31.887	3.8118	18.876
3	0.74275	80.23	3.1644	17.409	3.9708	4.0042
4	0.94675	21.547	3.0281	4.5012	3.9971	0.65798
5	0.99177	4.5394	3.0034	0.82240	4.0001	0.07499
6	0.99919	0.74260	3.0001	0.11000	4.0001	0.00000

Thus, the exact solution is
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$
.

Q. Why Gauss-Seidel method is more preferable than Gauss-Jacobi method?

<u>Ans</u>: The convergence rate of Gauss-Seidel method is faster than Gauss-Jacobi method as the rate of convergence of Gauss-Seidel method is almost twice than Gauss-Jacobi method. Hence, Gauss-Seidel method is more preferable than Gauss-Jacobi method.