EIE2050 Digital Logic and Systems

Professor Qijun Zhang

Office: Room 404, Research A Building

Karnaugh Maps

- Karnaugh maps: basics
- Mappig SOP expression to Karnaugh map
- Karnaugh map simplification of SOP expression
- Mapping directly from truth table
- "Don't Care" conditions
- Mapping POS expression to Karnaugh map
- Karnaugh map simplification for POS expression
- Conversion between POS and SOP expressions

Reading Material: Chapter 4 of Textbook:

Textbook: Digital Fundamentals (global edition, 11th edition), by Thomas Floyd, Pearson 2015.

The examples used in the lecture are based on the textbook.

- Karnaugh map
 - Is similar to a truth table but arranged in a different way
 - Usually for expressions with 2, 3, 4 or 5 variables
 - Is an array of 2^n cells, where n is the number of variables
 - Useful for simplification of logic expressions

3-variable
 Karnaugh map

4-variableKarnaugh map

- Adjacency of cells in Karnaugh map
 - defined by a single variable change

- Karnaugh map
 - mapping a standard SOP expression:

$$\overline{A}\overline{B}C + \overline{A}B\overline{C} + AB\overline{C} + ABC$$

001 010 110 111

- Karnaugh map
 - mapping a standard SOP expression:

$$\overline{A}\overline{B}CD + \overline{A}B\overline{C}\overline{D} + AB\overline{C}D + ABCD + AB\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}C\overline{D}$$

0011 0100 1101 1111 1100 0001 1010

- Karnaugh map
 - mapping a non-standard SOP expression:

$$\overline{A}$$
 + $A\overline{B}$ + $AB\overline{C}$
 000 100 110
 001 101
 010
 011

- Karnaugh map
 - mapping a non-standard SOP expression:

$$\overline{BC}$$
 + $A\overline{B}$ + $AB\overline{C}$ + $A\overline{B}C\overline{D}$ + $\overline{A}\overline{B}CD$ + $A\overline{B}CD$ + $A\overline{B}CD$ 0000 1000 1100 1011 1011 1000 1010 1010 1010 1010 1010 1011

- Karnaugh map
 - simplification of SOP expression:
 - group the cells containing 1's
 - adjacent cells are grouped together
 - each group contains 1, 2, 4, 8, or 16 cells
 - largest possible number of cells in each group
 - every 1 must belong to a group

- Karnaugh map
 - simplification of SOP expression:

AB CI	00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1

- Karnaugh map
 - simplification of SOP expression:

- Karnaugh map
 - determine minimum SOP expression from map:

- final result: minimum SOP expression:

$$B + \overline{A}C + A\overline{C}D$$

Karnaugh map – determine minimum SOP expression

$$\overline{A}B + \overline{A}\overline{C} + A\overline{B}D$$

01

11

10

$$\overline{D} + A\overline{B}C + B\overline{C}$$

3-variable case:

group of 1 cell ->3 variable product term group of 2 cells->2 variable product term group of 4 cells->1 variable term

4-variable case:

group of 1 cell -> 4 variable product term group of 2 cells -> 3 variable product term group of 4 cells -> 2 variable product term group of 8 cells -> 1 variable term

Use Karnaugh map to minimize SOP expression:

$$A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$$

Final result: minimum SOP expression:

$$\overline{B} + \overline{A}C$$

Use Karnaugh map to minimize SOP expression:

$$\overline{B}\overline{C}\overline{D} + \overline{A}B\overline{C}\overline{D} + AB\overline{C}\overline{D} + \overline{A}\overline{B}CD + A\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}BC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D}$$

Final result: minimum SOP expression:

$$\overline{D} + \overline{B}C$$

- Karnaugh map
 - mapping directly from truth table:

Inputs	Output	AB C 0 1
A B C	X	_ 00 1
0 0 0	1 -	
0 0 1	0	01
0 1 0	0	
0 1 1	0	11 (1)(1)
1 0 0	1 -	
1 0 1	0	10 1
1 1 0	1 -	
1 1 1	1 -	

- Karnaugh map
 - "don't care" conditions:

Inputs		8	Output	
A B	\boldsymbol{C}	D	Y	_
0 0	0	0	0	
0 0	0	1	0	
0 0	1	0	0	
0 0	1	1	0	
0 1	0	0	0	
0 1	0	1	0	
0 1	1	0	0	
0 1	1	1	1	
1 0	0	0	1	
1 0	0	1	1	
1 0	1	0	X	
1 0	1	1	X	
1 1	0	0	X	Don't cares
1 1	0	1	X	
1 1	1	0	X	
1 1	1	1	X	

Without "don't care": $Y = A\overline{B}\overline{C} + \overline{A}BCD$

With "don't care": Y = A + BCD

Application of Karnaugh map: 7-segment display

$$a = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D$$

Minimum SOP expression: $a = A + C + BD + \overline{B}\overline{D}$

- Karnaugh map:
 - mapping a standard POS expression:

- Karnaugh map:
 - mapping a standard POS expression:

$$(\overline{A} + \overline{B} + C + D)(\overline{A} + B + \overline{C} + \overline{D})(A + B + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + \overline{C} + \overline{D})$$

1100 1011 0010 1111 0011

- Karnaugh map
 - Simplification of POS expressions:

$$(A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

Final result: minimum POS expression: $A(\overline{B} + C)$

minimum SOP expression: $AC + A\overline{B}$

- Karnaugh map
 - Simplification of POS expressions:

$$(B+C+D)(A+B+\overline{C}+D)(\overline{A}+B+C+\overline{D})(A+\overline{B}+C+D)(\overline{A}+\overline{B}+C+D)$$

Final result: minimum POS expression: $(C + D)(A + B + D)(\overline{A} + B + C)$

Using Karnaugh map to convert between SOP and POS

standard POS:

$$(\overline{A} + \overline{B} + C + D)(A + \overline{B} + C + D)(A + B + C + \overline{D}) \bullet (A + B + \overline{C} + \overline{D})(\overline{A} + B + C + \overline{D})(A + B + \overline{C} + D)$$

standard SOP:

$$\overline{ABCD} + \overline{ABCD} + \overline{AB$$

minimum POS:

$$(A+B+\overline{C})(\overline{B}+C+D)(B+C+\overline{D})$$

minimum SOP:

$$AC + BC + BD + \overline{BCD}$$