Omega Production in 11.5 GeV AuAu Collision UpDate

Feng Zhao
UCLA
09/16/2010

Data Set

- AuAu 11.5GeV, st_physics files
- Trigger ID: 310014
- Vertex_Z Cut: |Vz|<70cm, sqrt(Vx^2+Vy^2)<2cm
- After Cut, we have 16.5 million data
- Centrality Definition from Hiroshi Masui

Track Selection:

- Nhits > 15
- $P_T >= 0.15 \text{ GeV/c}$
- |nSigma_dEdx| <= 4.0 (<= 3.0 for Proton)

Geometrical Cuts on Ω

For Λ :

- (2) Dca_Proton > 0.6cm
- (3) Dca_Pion > 2.0cm
- (6) Dca_Proton_to_Pion < 0.7cm
- (7) Dca_ $\Lambda > 0.4$ cm
- (L_{\wedge}) DecayLength_ $\Lambda > 5$ cm

For Ω :

- (4) Dca_Kaon > 1.0cm
- (5) Dca_ Λ _to_Kaon < 0.7cm
- (1) Dca_ Ω < 0.4cm
- (L_{Ω}) DecayLength_ $\Omega > 3$ cm

Besides, $L_{\wedge} > L_{\Omega}$

$$(\vec{r}_{V_0} - \vec{r}_{X_i}) \cdot \vec{p}_{V_0} > 0$$

 $(\vec{r}_{Y_i} - \vec{r}_{PV}) \cdot \vec{p}_{Y_i} > 0$

$$(\overline{r}_{Xi} - \overline{r}_{PV}) \times \overline{p}_{Xi} / |\overline{r}_{Xi} - \overline{r}_{PV}| / |\overline{p}_{Xi}| > 0.15$$

Omega Signal

Uncorrected Spectra

TOF Cut on Kaon Track

- Theoretical Time of Flight = $\frac{DecayLength}{30 * \sqrt{1 + \frac{Mass * Mass}{\vec{p} \cdot \vec{p}}}}$
- Add the TOF_Kaon, TOF_Omega to be the TOF_theory
- TOF_difference = TOF_measured TOF_theory

- Set |TOF_difference|<= 0.35 ns
 which is ~3 sigma of TOF resolution.
- Loose the geometrical cuts:

```
Dca_Proton > 0.4cm

Dca_Pion > 1.0cm

Dca_Proton_to_Pion < 1.0cm

Dca_ \Lambda > 0.3cm

DecayLength_\Lambda >4cm

Dca_Kaon > 1.0cm

Dca_ \Lambda _to_Kaon < 1.0cm

DecayLength_\Omega > 2cm
```

 If a Kaon track has TOF match, then use TOF cut and the loose geometrical cuts; If doesn't have TOF match, then use strict geometrical cuts.

Ratio $\frac{\overline{\Omega}^+}{\Omega^-} = 0.37392$, Error = 0.01911

Omega Production in 7.7 GeV AuAu Collision

Feng Zhao
UCLA
09/16/2010

Data Set

- AuAu 7.7GeV, st_physics files
- Trigger ID: 290001, 290004
- Vertex_Z Cut: |Vz|<70cm, sqrt(Vx^2+Vy^2)<2cm
- After Cut, we have about 5 million data
- Centrality Definition from Hiroshi Masui

Track Selection:

- Nhits > 15
- $P_T >= 0.15 \text{ GeV/c}$
- |nSigma_dEdx| <= 4.0 (<= 3.0 for Proton)

Geometrical Cuts on Ω

For Λ :

- (2) Dca_Proton > 0.6cm
- (3) Dca_Pion > 2.0cm
- (6) Dca_Proton_to_Pion < 0.7cm
- (7) Dca_ $\Lambda > 0.4$ cm
- (L_{\wedge}) DecayLength_ $\Lambda > 4$ cm

For Ω :

- (4) $Dca_Kaon > 1.0cm$
- (5) Dca_ Λ _to_Kaon < 0.7cm
- (1) Dca_ Ω < 0.4cm
- (L_{Ω}) DecayLength_ Ω > 2cm

Besides, $L_{\wedge} > L_{\Omega}$

$$(\vec{r}_{V0} - \vec{r}_{Xi}) \cdot \vec{p}_{V0} > 0$$

 $(\vec{r}_{Xi} - \vec{r}_{PV}) \cdot \vec{p}_{Xi} > 0$

$$(\bar{r}_{x_i} - \bar{r}_{p_V}) \times \bar{p}_{x_i} / |\bar{r}_{x_i} - \bar{r}_{p_V}| / |\bar{p}_{x_i}| > 0.15$$

Λ Signal

Omega Signal

Uncorrected Spectra

TOF Cut on Kaon Track

- Theoretical Time of Flight = $\frac{DecayLength}{30 * \sqrt{1 + \frac{Mass * Mass}{\vec{P} \cdot \vec{P}}}}$
- Add the TOF_Kaon, TOF_Omega to be the TOF_theory
- TOF_difference = TOF_measured TOF_theory

- Set |TOF_difference|<= 0.35 ns
 which is ~3 sigma of TOF resolution.
- Loose the geometrical cuts:

```
Dca_Proton > 0.4cm

Dca_Pion > 1.0cm

Dca_Proton_to_Pion < 1.0cm

Dca_ Λ > 0.3cm

Dca_Kaon > 1.0cm

Dca_ Λ _ to_Kaon < 1.0cm
```

 If a Kaon track has TOF match, then use TOF cut and the loose geometrical cuts; If doesn't have TOF match, then use strict geometrical cuts.

Ratio $\frac{\overline{\Omega}^+}{\Omega^-} = 0.21344$, Error = 0.03012

To Do List:

- Refine the cuts.
- Analyze the Omega & Xi;

Omega & Lambda;

Omega & Kaon Correlation.

Request the Embedding.