Principles of Feedback Design

MIMO closed-loop analysis Robust stability MIMO feedback design

Big picture

- we are pretty familiar with SISO feedback system design and analysis
- state-space designs (LQ, KF, LQG,...): time-domain; good mathematical formulation and solutions based on rigorous linear algebra
- frequency-domain and transfer-function analysis: builds intuition; good for properties such as stability robustness

MIMO closed-loop analysis

signals and transfer functions are vectors and matrices now:

- r (reference) and y (plant output): m-dimensional
- $ightharpoonup G_p(s)$: p by m transfer function matrix

$$E(s) = R(s) - (H(s) Y_o(s) + V(s))$$

= $R(s) - \{H(s) G_p(s) G_c(s) E(s) + H(s) G_d(s) D(s) + V(s)\}$ (1)

MIMO closed-loop analysis

(1) gives

$$E(s) = (I_m + G_{\text{open}}(s))^{-1} R(s) - (I_m + G_{\text{open}}(s))^{-1} H(s) G_d(s) D(s) - (I_m + G_{\text{open}}(s))^{-1} V(s)$$

where the loop transfer function

$$G_{\text{open}}(s) = H(s) G_p(s) G_c(s)$$

We want to minimize $E^*(s) \triangleq R(s) - Y(k) = E(s) + V(s)$

$$E^*(s) = \underline{(I_m + G_{\text{open}}(s))^{-1}}R(s)$$

$$-(I_m + G_{\text{open}}(s))^{-1} H(s) G_d(s) D(s) + \underline{(I_m + G_{\text{open}}(s))^{-1} G_{\text{open}}(s)} V(s)$$
Sonsitivity and complementary sonsitivity functions:

Sensitivity and complementary sensitivity functions:

$$S(s) \triangleq (I_m + G_{\text{open}}(s))^{-1}$$
$$T(s) \triangleq (I_m + G_{\text{open}}(s))^{-1} G_{\text{open}}(s)$$

Principles of Feedback Design

Fundamental limitations in feedback design

$$E^*(s) = S(s)R(s) + T(s)V(s) - S(s)H(s)G_d(s)D(s)$$

 $Y(s) = R(s) - E^*(s) = T(s)R(s) + ...$

- \triangleright sensitivity function S(s): explains disturbance-rejection ability
- ightharpoonup complementary sensitivity function T(s): explains reference tracking and sensor-noise rejection abilities
- fundamental constraint of feedback design:

$$S(s) + T(s) = I_m$$

equivalently

$$S(j\omega) + T(j\omega) = I_m$$

▶ cannot do well in all aspects: e.g., if $S(j\omega) \approx 0$ (good disturbance rejection), $T(j\omega)$ will be close to identity (bad sensor-noise rejection)

Goals of SISO control design

single-input single-output (SISO) control design:

$$S(j\omega) = \frac{1}{1 + G_{\mathsf{open}}(j\omega)}, \ \ T(j\omega) = \frac{G_{\mathsf{open}}(j\omega)}{1 + G_{\mathsf{open}}(j\omega)}$$

- goals:
 - 1. nominal stability
 - 2. stability robustness
 - 3. command following and disturbance rejection
 - 4. sensor-noise rejection
- feedback achieves: 1 (Nyquist theorem), 2 (sufficient (gain and phase) margins), and
 - ightharpoonup 3: small $S(j\omega)$ at relevant frequencies (usually low frequency)
 - lacksquare 4: small $T(j\omega)$ at relevant frequencies (usually high frequency)
- ▶ additional control design for meeting the performance goals: feedforward, predictive, preview controls, etc

SISO loop shaping

typical loop shape (magnitude response of G_{open}):

the idea of stability margins:

the idea of stability margins:

 $G_{\mathrm{open}}(j\omega)$ should be sufficiently far away from (-1,0) for robust stability. Commonly there are uncertainties and the actual case is

$$ilde{G}_{ ext{open}}\left(s
ight) = G_{ ext{open}}\left(s
ight)\left[1+\Delta\left(s
ight)
ight]$$

e.g. ignored actuator dynamics in a positioning system:

$$ilde{G}_{\mathsf{open}}\left(s
ight) = G_{\mathsf{open}}\left(s
ight) rac{1}{T_{\mathsf{a}}s+1} = G_{\mathsf{open}}\left(s
ight) \left[1 - rac{T_{\mathsf{a}}s}{T_{\mathsf{a}}s+1}
ight]$$

$$\Delta(j\omega) = -\frac{T_a j\omega}{T_a j\omega + 1}$$

if nominal stability holds, robust stability needs
$$|\Delta(j\omega) \, G_{open}(j\omega)| = \left| \tilde{G}_{open}(j\omega) - G_{open}(j\omega) \right| < \overline{|1 + G_{open}(j\omega)|}$$

$$\Leftrightarrow \left| \left| \Delta(j\omega) \frac{G_{open}(j\omega)}{1 + G_{open}(j\omega)} \right| < 1 \Leftrightarrow |\Delta(j\omega) \, T(j\omega)| < 1, \ \forall \omega \right|$$

if $|G_{open}(j\omega)| \ll 1$ then

$$\left| \Delta \left(j\omega
ight) rac{G_{open} \left(j\omega
ight)}{1 + G_{open} \left(j\omega
ight)}
ight| < 1$$

approximately means

$$|G_{open}(j\omega)| < \frac{1}{|\Delta(j\omega)|}$$

▶ assume G_{open} is $m \times m$ and realized by

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = Ax(t) + Be(t), \ x \in \mathbb{R}^{m \times 1}$$
$$y(t) = Cx(t)$$

the closed-loop dynamics is

$$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= (A - BC)x(t) + Br(t) \\ y(t) &= Cx(t) \end{cases}$$
 (2)

(2) gives the closed-loop transfer function

$$G_{\text{closed}}(s) = C(sI - A + BC)^{-1}B$$

▶ closed-loop stability depends on the eigenvalues eig(A - BC), which come from

$$\phi_{ ext{closed}}(s) = \det(sI - A + BC) = \det\left\{ (sI - A) \left[I + (sI - A)^{-1} BC \right] \right\}$$

$$= \det(sI - A) \det\left(I + C (sI - A)^{-1} B \right)$$

$$= \underbrace{\det(sI - A)}_{ ext{open loop } \phi_{ ext{open}}(s)} \det(I + G_{ ext{open}}(s))$$

hence

$$rac{\phi_{ ext{closed}}\left(s
ight)}{\phi_{ ext{open}}\left(s
ight)} = \det\left(I + G_{ ext{open}}\left(s
ight)
ight)$$

$$\frac{\phi_{\mathsf{closed}}\left(s\right)}{\phi_{\mathsf{open}}\left(s\right)} = \det\left(I + G_{\mathsf{open}}\left(s\right)\right) = \frac{\prod_{j=1}^{n_1}\left(s - p_{\mathsf{cl}}\right)}{\prod_{i=1}^{n_2}\left(s - p_{\mathsf{ol}}\right)}$$

- ▶ evaluate $\det(I + G_{\text{open}}(s))$ along the D contour $(R \to \infty)$
- ► Z closed-loop "unstable" eigen values in $\prod_{j=1}^{n_1} (s p_{cl})$ contribute to $2\pi Z$ net increase in phase
- ▶ P open-loop "unstable" eigen values in $\prod_{j=1}^{n_2} (s-p_{\text{ol}})$ contribute to $-2\pi P$ net increase in phase
- stable eigen values do not contribute to net phase change

the number of counter clockwise encirclements of the origin by $\det(I + G_{\text{open}}(s))$ is:

$$N(0, det(I + G_{open}(s)), D) = P - Z$$

stability condition: Z = 0

Theorem (Multivariable Nyquist Stability Criterion)

the closed-loop system is asymptotically stable if and only if

$$N(0, det(I + G_{open}(s)), D) = P$$

i.e., the number of counterclockwise encirclements of the origin by $det(I + G_{open}(s))$ along the D contour equals the number of open-loop unstable eigen values (of the A matrix).

Given the nominal model G_{open} , let the actual open loop be perturbed to

$$\tilde{G}_{\mathsf{open}} \; (j\omega) = G_{\mathsf{open}}(j\omega) [I + \Delta(j\omega)]$$

where $\Delta(j\omega)$ is the uncertainty (bounded by $\sigma(\Delta(j\omega)) \leq \bar{\sigma}$)

what properties should the nominal system possess in order to have robust stability?

obviously need a stable nominal system to start with:

$$N(0, det(I + G_{open}(s)), D) = P$$

for robust stability, we need

$$N(0,\det(I+G_{\mathsf{open}}(s)(1+\Delta(s))),\mathsf{D})=P$$
 for all possible Δ

under nominal stability, we need the boundary condition

Figure: Example Nyquist plot for robust stability analysis

note the determinant equivalence:

$$\det(I + G_{\text{open}}(j\omega)(1 + \Delta(j\omega))) = \det(I + G_{\text{open}}(j\omega))$$

$$\times \det\left[I + (I + G_{\text{open}}(j\omega))^{-1}G_{\text{open}}(j\omega)\Delta(j\omega)\right]$$

as the system is open-loop asymptotically stable, no poles are on the imaginary, i.e.,

$$\det(I + G_{\text{open}}(j\omega)) \neq 0$$

▶ hence $\det(I + G_{\text{open}}(j\omega)(1 + \Delta(j\omega))) \neq 0 \iff$

$$\det \left[I + \underbrace{\left(I + G_{\text{open}}(j\omega) \right)^{-1} G_{\text{open}}(j\omega)}_{T(j\omega)} \Delta(j\omega) \right] \neq 0 \qquad (3)$$

- ▶ intuitively, (3) means $T(j\omega)\Delta(j\omega)$ should be "smaller than" I
- ▶ mathematically, (3) will be violated if $\exists x \neq 0$ that achieves

$$[I + T(j\omega)\Delta(j\omega)]x = 0$$

$$\Leftrightarrow T(j\omega)\Delta(j\omega)x = -x$$
(4)

which will make the singular value

$$\sigma_{\mathsf{max}}[T(j\omega)\Delta(j\omega)] = \max_{v \neq 0} \frac{||T(j\omega)\Delta(j\omega)v||_2}{||v||_2} \ge \frac{||T(j\omega)\Delta(j\omega)x||_2}{||x||_2}$$

as this cannot happen, we must have

$$\sigma_{\mathsf{max}}[T(j\omega)\Delta(j\omega)] < 1$$

It turns out this is both necessary and sufficient if $\Delta(j\omega)$ is unstructured (can 'attack' from any directions). Message: we can design G_{open} such that $\sigma_{\text{max}}[\Delta(j\omega)] < \sigma_{\text{min}} \left[T^{-1}(j\omega) \right]$.

Summary

- 1. Big picture
- 2. MIMO closed-loop analysis
- 3. Loop shaping SISO case
- 4. MIMO stability and robust stability MIMO Nyquist criterion MIMO robust stability