Closed-form solution to the Ghosh equations

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the closed-form solution of the Ghosh equations.

The paper ends with "The End"

Introduction

The Ghosh combat model generalizes the Lanchester combat model by taking into account both growth and attrition of two militaries A and B.

The Ghosh equations are differential equations describing the time dependence of two militaries' strengths A and B as a function of time, with the function depending on both A and B.

In this paper, I describe the closed-form solution to the Ghosh equations.

The Ghosh equations

The Ghosh equations are

$$\frac{\partial A(t)}{\partial t} = aA(t) - \beta B(t)$$

$$\frac{\partial B(t)}{\partial t} = bB(t) - \alpha A(t)$$

The closed-form solution to the Ghosh equations

The closed-form solution to the Ghosh equations is

$$A(t) = e^{\frac{1}{2}t(a+b)} \left(c_1 \cosh\left(\frac{1}{2}t\sqrt{(a-b)^2 + 4\alpha\beta}\right) + \frac{(c_1(a-b) - 2\beta c_2)\sinh\left(\frac{1}{2}t\sqrt{(a-b)^2 + 4\alpha\beta}\right)}{\sqrt{(a-b)^2 + 4\alpha\beta}} \right)$$

$$B(t) = e^{\frac{1}{2}t(a+b)} \left(c_2 \cosh\left(\frac{1}{2}t\sqrt{(a-b)^2 + 4\alpha\beta}\right) + \frac{(c_2(b-a) - 2\alpha c_1)\sinh\left(\frac{1}{2}t\sqrt{(a-b)^2 + 4\alpha\beta}\right)}{\sqrt{(a-b)^2 + 4\alpha\beta}} \right)$$

where

 c_1 and c_2 are coefficients to be determined from battle data.

The End