Effective Transformers

Алина Августёнок, БПМИ211

Friendly Reminder

$$\mathbf{X} \in \mathbb{R}^{L imes d}$$

input sequence

$$\mathbf{Q} = \mathbf{X}\mathbf{W}^q \in \mathbb{R}^{L imes d_k}$$

query embedding inputs

$$\mathbf{K} = \mathbf{X}\mathbf{W}^k \in \mathbb{R}^{L imes d_k}$$

key embedding inputs

$$\mathbf{V} = \mathbf{X}\mathbf{W}^v \in \mathbb{R}^{L imes d_v}$$

value embedding inputs

Attention:

$$\operatorname{attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}})\mathbf{V}$$

Efficient Attention

Problem: $\mathcal{O}(L^2d)$ time and $\mathcal{O}(L^2)$ memory

Solutions:

- Sparse Attention
- Content-based Attention
- Low-Rank Attention

Sparse Attention: Fixed Local Context

Local 2D Attention

q – current pixel,

M – memory block – other positions, used in computing q

Fixed Local Context

image 8x8 → image 32x32

dataset: CelebA

 τ – temperature

Model Type	au	%Fooled
ResNet	n/a	4.0
srez GAN	n/a	8.5
PixelRecursive	1.0	11.0
(Dahl et al., 2017)	0.9	10.4
	0.8	10.2
1D local	1.0	29.6 ± 4.0
Image Transformer	0.9	33.5 ± 3.5
	0.8	35.94 ± 3.0
2D local	1.0	30.64 ± 4
Image Transformer	0.9	34 ± 3.5
	0.8	36.11 ± 2.5

Input

1D Local Attention

 $\tau = 0.8$ $\tau = 0.9$ $\tau = 1.0$ $\tau = 0.8$

2D Local Attention

 $\tau = 0.9$ $\tau = 1.0$

Original

Content-based Attention

Problems:

- quadratic time and memory complexity in self-attention
- memory in N-layer model = N * memory in 1-layer model
- intermediate feed-forward layers can be large

Idea:

- dot-product attention → locality-sensitive hashing attention
- residual blocks → reversible residual layers

Locality-Sensitive Hashing Attention

 $x \rightarrow h(x)$: $h(x) = \operatorname{argmax}([xR; -xR]),$

where $[\cdot;\cdot]$ – concatenation, R is a random matrix,

R.shape = (d, b/2), b is a hyperparameter

Locality-Sensitive Hashing Attention

Reversible Residual Layers

normal residual layer:
$$x \mapsto y$$
, $y = x + F(x)$

reversible residual layer:

$$egin{aligned} (x_1,x_2) &\mapsto (y_1,y_2) \ y_1 &= x_1 + F(x_2), \; y_2 = x_2 + G(y_1) \ x_2 &= y_2 - G(y_1), \; x_1 = y_1 - F(x_2) \end{aligned}$$

in transformers:

$$Y_1 = X_1 + \operatorname{Attention}(X_2), Y_2 = X_2 + \operatorname{FeedForward}(Y_1)$$

Reformer:

Locality-Sensitive Hashing Attention + Reversible Residual Layers

Table 3: Memory and time complexity of Transformer variants. We write d_{model} and d_{ff} for model depth and assume $d_{ff} \ge d_{model}$; b stands for batch size, l for length, n_l for the number of layers. We assume $n_c = l/32$ so $4l/n_c = 128$ and we write $c = 128^2$.

Model Type	Memory Complexity	Time Complexity
Transformer	$\max(bld_{ff}, bn_h l^2)n_l$	$(bld_{ff} + bn_h l^2)n_l$
Reversible Transformer	$\max(bld_{ff},bn_hl^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
Chunked Reversible Transformer	$\max(bld_{model}, bn_h l^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
LSH Transformer	$\max(bld_{ff}, bn_h ln_r c)n_l$	$(bld_{ff} + bn_h n_r lc)n_l$
Reformer	$\max(bld_{model}, bn_h ln_r c)$	$(bld_{ff} + bn_h n_r lc)n_l$

Low-Rank Attention

linear projections:

$$\mathbf{E}_i, \mathbf{F}_i \in \mathbb{R}^{L imes k}$$

$$\begin{split} \overline{\mathbf{head}}_i &= \operatorname{attn}(\mathbf{X}_q \mathbf{W}_i^q, \mathbf{E}_i \mathbf{X}_k \mathbf{W}_i^k, \mathbf{F}_i \mathbf{X}_v \mathbf{W}_i^v) \\ &= \underbrace{\operatorname{softmax}\Big(\frac{\mathbf{X}_q \mathbf{W}_i^q (\mathbf{E}_i \mathbf{X}_k \mathbf{W}_i^k)^\top}{\sqrt{d}}\Big)}_{\text{low rank attention matrix } \bar{A} \in \mathbb{R}^{k \times d}} \mathbf{F}_i \mathbf{X}_v \mathbf{W}_i^v \end{split}$$

Low-Rank Attention

Summing Up

Efficient Attention:

- Sparse Attention: Fixed Local Context
- Content-based Attention: Locality-Sensitive Hashing Attention and Reversible Residual Layers
- Low-Rank Attention

Source:

https://lilianweng.github.io/posts/2023-01-27-the-transformer-family-v2/