AMC 10 Preparation

16. Circle – Radius, Circumference, and Areas

PROBLEMS

Problem 1. An 36-foot by 72-foot floor is tiled with rectangular tiles of size 9

foot by 18 foot. Each tile has a pattern containing two congruent circles and is shaded as shown. How many square feet of the floor are shaded?

(A)
$$1296-324\pi$$
 (B) $648-162\pi$ (C) $648-324\pi$ (D)

$$81 - \frac{81}{4}\pi$$
 (E) $648 - \frac{81}{4}\pi$

Problem 2. Circles of radius 4 and 6 are externally tangent and are circumscribed

by a third circle, as shown in the figure. What is the ratio of the area of the shaded region to the area of the unshaded regions?

(A) 3/19 (B) 6/19 (C) 7/19 (D) 8/17 (E) 5/7

Problem 3. A sector of 25° on circle A has the same area as a sector of 100° on circle B. What is the ratio of the length of the circumference on circle A to the length of the circumference on circle *B*?

(A)
$$\frac{1}{2}$$

- (B) $\frac{1}{4}$
- (C) $\frac{4}{1}$ (D) $\frac{3}{1}$ (E) $\frac{2}{1}$

Problem 4. In the diagram, C is the center of the circle and AD is tangent to the circle at D. The line segment AC intersects the circle at B. If AD = 10 and AB = 7, find the area of the circle.

- (A) $\frac{2601}{196}\pi$ (B) $\frac{51}{7}$ (C) $\frac{51}{14}$ (D) $\frac{2016}{196}\pi$ (E) $\frac{51}{14}\pi$

Problem 5. A goat is tied to one of the corners of a rectangular barn on a rope that is 50 feet long. The dimensions of the barn are 40 feet by 30 feet. Assuming

AMC 10 Preparation

16. Circle – Radius, Circumference, and Areas

that the goat can graze wherever its rope allows it to reach, what is the number of square feet of the grazing area for the goat?

(A)
$$1875\pi$$
 (B) 125π (C) 1975π (D) 2000π (E) 2016π

Problem 6. Charles walks completely around the boundary of a square. From any point on his path he can see exactly 2 km horizontally in all directions. The area of the region consisting of all points Charles can see is $144 + 4\pi$ during his walk. What is the length of the side of the square?

- (A) 4
- (B) 6
- (C) 8
- (D) 10
- (E) 12

Problem 7. In triangle ABC, $\angle C = 90^{\circ}$. AC = 6, BC = 8. Find the area of the regions outside the circle but inside the triangle.

- (A) $12\sqrt{2}$

- (B) $24 4\pi$ (C) 24 (D) $24 2\pi$
- (E) 14

Problem 8. Triangle ABC is an equilateral triangle and O is the center of its inscribed circle. If the area of the circle is 4π cm², what is the area, in square centimeters, of triangle ABC?

- (A) $12\sqrt{2}$
- (B) $12\sqrt{3}$
- (C) 24
- (D) 12π
- (E) 14

Problem 9. An isosceles triangle with equal sides of 5 inches and a base of 6 inches is inscribed in a circle. What is the area, in square inches, of the circle?

(A)
$$\frac{25}{8}$$

(A) $\frac{25}{8}$ (B) 10π (C) $\frac{625}{64}\pi$ (D) 9π (E) $\frac{225}{4}\pi$

Problem 10. Equilateral $\triangle ABC$ is inscribed in circle O. The radius of circle O is 12 inches. How many square inches are in the area of $\triangle ABC$?

16. Circle - Radius, Circumference, and Areas AMC 10 Preparation

(A) $108\sqrt{3}$

- (B) $54\sqrt{3}$ (C) $36\sqrt{3}$
- (D) $27\sqrt{3}$ (E) 187

Problem 11 Circle O is inscribed in equilateral triangle ABC. Circle P of radius 1 is tangent to circle O and segments AB and BC. Find the area of triangle ABC.

- (A) 27 (B) $9\sqrt{3}$ (C) $36\sqrt{3}$ (D) $27\sqrt{3}$ (E) 47

Problem 12. Circle O of radius 45 is inscribed in equilateral triangle ABC. Circle P is tangent to circle O and segments AB and BC. Find the area of circle P.

(A) 245π

- (B) 625π (C) 225 (D) 225π (E) 700

Problem 13. In the figure shown, ABC is a triangle with AB = 15, BC = 14, and CA = 13. Circle O has the center on AB. D and E are the tangent points. Find the distance from O to D.

(A) 56/9

- (B) 6
- (C) 56/3
- (D) 56/11 (E) 9

Problem 14. In the figure, \overline{BC} is the base of isosceles triangle ABC. \overline{BC} is a diameter of the circle, point A is on the circle, $\overline{BC} / / \overline{DE}$, and \overline{DE} is tangent to the

AMC 10 Preparation

16. Circle – Radius, Circumference, and Areas

circle. What is the ratio of the area of triangle ABC to the area of trapezoid *BCED*?

Problem 15. $\triangle ABC$, $\angle C = 90^{\circ}$, AB = 10, $BC = 2\sqrt{5}$.

AC is the diameter of the circle O. AB meets the circle O at D. Find CD.

Problem 16. (AMC) In the figure, AB and CD are diameters of the circle with center O, $AB \perp CD$, and chord DF intersects AB at E. If DE = 6 and EF = 2, then the area of the circle is

(A) 23π (B) $47\pi/2$ (C) 24π

- (D) $49\pi/2$
- $(E) 25\pi$

Problem 17. (AMC) Chords AB and CD in the circle (see figure) intersect at E and are perpendicular to each other. If segments AE, EB, and ED have measures 2, 6, and 3 respectively, then the length of the diameter of the circle is

- (A) $4\sqrt{5}$ (B) $\sqrt{65}$ (C) $2\sqrt{17}$ (D) $3\sqrt{7}$ (E) $6\sqrt{2}$

AMC 10 Preparation 16. Circle – Radius, Circumference, and Areas

Problem 18. The centers of two circles, O and P, are 16 inches apart. The larger circle has a radius of 5 inches, and the smaller circle a radius of 3 inches. The length of the common internal

A.
$$\frac{2}{3}\sqrt{3} + 4$$
 B. $\frac{4}{3}\sqrt{3} + 4$ C. $\frac{32}{3}\sqrt{3}$ D. $\frac{16}{3}\sqrt{3} + 8$ E. $\frac{8}{3}\sqrt{3} + 4$

Problem 20. Four circles of radius r are mutually tangent inside a circle of radius one unit. The radius r is:

(A) 1 (B)
$$1/2$$
 (C) $\sqrt{2} - 1$ (D) $1/4$ (E) $\frac{\sqrt{5}}{5}$

Problem 21. Four circles, each with radius 4 cm, are tangent to each other and tangent to an external square. A smaller circle is drawn tangent to each of the larger circles as shown. What is the number of square centimeters in the area of the shaded region?

(B)
$$256-112$$
) π

(C)
$$32\sqrt{2} + 112\pi$$

(D)
$$256 + (32\sqrt{2} - 102)\pi$$

(E)
$$236 + (32\sqrt{2} - 112)\pi$$

16. Circle - Radius, Circumference, and Areas AMC 10 Preparation

Problem 22. Four circles of radius 1 are each tangent to two sides of a square that is 6 on each side and externally tangent to a circle of radius r, as shown. What is the area of the shaded region?

(A)
$$18 + (8\sqrt{2} - 16)\pi$$
 (B) $36 + (8\sqrt{2} - 16)\pi$

(C)
$$36+8\sqrt{2}\pi$$
 (D) $(8\sqrt{2}-16)\pi$ (E) $36+16\sqrt{2}$