Hustota vzorku se při studovaném efektu mění o 10 %. Měříme vzorek o výchozí hustotě 7874 kg m⁻³. Hustotu měříme Archimedovou metodou, tj. vážením ve vodě a na vzduchu při pokojové teplotě. Jaká musí být minimální přesnost měření hmotnosti (maximální relativní nejistota) aby bylo možné daný efekt spolehlivě detekovat?

Řešení:

Při vážení na vzduchu navážíme hmotnost m_1

$$m_1 = V\rho \tag{1}$$

kde Vje objem vzorku a ρ hustota vzorku.

Při vážení ve vodě nadnáší vzorek hydrostatická vztlaková síla proto navážíme menší hmostnost m_2

$$m_{\gamma} = V \rho - V \rho_{V}, \tag{2}$$

kde ρ_V hustota vody. Vztlakovou sílu vzduchu zanedbáváme protože je 1000-krát menší než vztlaková síla vody.

Kombinací rovnic (1) a (2) dostaneme

$$\frac{m_1 - m_2}{m_1} = \frac{\rho_V}{\rho} \tag{3}$$

a odtud vyjádříme hustotu ρ

$$\rho = \frac{m_1}{m_1 - m_2} \rho_V. \tag{4}$$

Maximální relativní chyba hustoty je

$$\frac{\mathcal{E}_{\rho}}{\rho} = \frac{\mathcal{E}_{m_1}}{m_1} + \frac{\mathcal{E}_{m_1 - m_2}}{m_1 - m_2}.\tag{5}$$

Vzhledem k tomu, že měření na vzduchu a ve vodě provádíme na stejných vahách je rozumné předpokládat, že maximální chyba určení hmotnosti m_1 i m_2 je stejná, tj. $\varepsilon_{m_1} = \varepsilon_{m_2} \equiv \varepsilon_m$.

Tedy maximální chyba $\varepsilon_{m_1-m_2}=2\varepsilon_m$. Dosazením do rovnice (5) a vyjádřením m_1 - m_2 z rovnice (3) dostáváme

$$\frac{\varepsilon_{\rho}}{\rho} = \frac{\varepsilon_{m}}{m_{1}} + \frac{2\varepsilon_{m}}{m_{1}} \frac{\rho}{\rho_{V}} = \frac{\varepsilon_{m}}{m_{1}} \left(1 + 2\frac{\rho}{\rho_{V}} \right). \tag{6}$$

Pro maximální relativní chybu vážení na vzduchu tedy dostáváme

$$\frac{\varepsilon_m}{m_1} = \frac{\varepsilon_\rho}{\rho} \left(1 + 2 \frac{\rho}{\rho_V} \right)^{-1}. \tag{7}$$

Po dosazení číselných hodnot $\frac{\varepsilon_{\rho}}{\rho} = 0.1$, $\rho = 7.874$ kg m⁻³, $\rho_V = 1$ kg m⁻³, dostáváme

$$\frac{\mathcal{E}_m}{m_1} \approx 0.6\%.$$

Pro určení maximální relativní vážení ve vodě upravíme rovnici (6) na tvar

$$\frac{\varepsilon_{\rho}}{\rho} = \frac{\varepsilon_m}{m_2} \frac{m_2}{m_1} + \frac{2\varepsilon_m}{m_2} \frac{m_2}{m_1} \frac{\rho}{\rho_V},\tag{8}$$

s použitím vztahu $m_2 / m_1 = (\rho - \rho_V) / \rho$ dostáváme

$$\frac{\varepsilon_{\rho}}{\rho} = \frac{\varepsilon_{m}}{m_{2}} \frac{\rho - \rho_{V}}{\rho} \left(1 + 2 \frac{\rho}{\rho_{V}} \right), \tag{9}$$

a tedy

$$\frac{\mathcal{E}_m}{m_2} = \frac{\mathcal{E}_\rho}{\rho} \frac{\rho}{\rho - \rho_V} \left(1 + 2 \frac{\rho}{\rho_V} \right)^{-1}. \tag{10}$$

Po dosazení číselných hodnot $\frac{\mathcal{E}_{\rho}}{\rho}$ = 0.1, ρ = 7.874 kg m⁻³, ρ_V = 1 kg m⁻³, dostáváme

$$\frac{\mathcal{E}_m}{m_2} \approx 0.7\%.$$