第 2 节 比较指、对数的大小:构造函数(★★★★)

强化训练

1.
$$(2022 \cdot 浙江月考 \cdot ★★★)$$
 已知 $a = 2^{\frac{4}{5}}$, $b = 4^{\frac{2}{7}}$, $c = 25^{\frac{1}{5}}$, 则 ()

(B)
$$a < b < c$$

$$(C)$$
 $b < c < a$

(A)
$$b < a < c$$
 (B) $a < b < c$ (C) $b < c < a$ (D) $c < a < b$

答案: A

解析:观察三个数的结构可发现 a, b 底数有猫腻,考虑化同底; a, c 指数有猫腻,考虑化同指,故先把 它们化同底、同指,再构造指数函数和幂函数来比较,

$$b = 4^{\frac{2}{7}} = (2^2)^{\frac{2}{7}} = 2^{\frac{4}{7}}$$
, 函数 $f(x) = 2^x$ 在 **R** 上 \nearrow ,所以 $f(\frac{4}{7}) < f(\frac{4}{5})$,从而 $2^{\frac{4}{7}} < 2^{\frac{4}{5}}$,故 $b < a$;

$$a = 2^{\frac{4}{5}} = (2^2)^{\frac{2}{5}} = 4^{\frac{2}{5}}$$
, $c = 25^{\frac{1}{5}} = (5^2)^{\frac{1}{5}} = 5^{\frac{2}{5}}$, $\boxtimes \boxtimes g(x) = x^{\frac{2}{5}}$

在
$$(0,+\infty)$$
上 \nearrow ,所以 $a < c$,故 $4^{\frac{2}{5}} < 5^{\frac{2}{5}}$;所以 $b < a < c$.

2. (2022 • 江苏南通模拟 • ★★★)已知
$$a = e - 1$$
, $b = e^{\frac{4}{3}} - \frac{3}{4}$, $c = 4 - \frac{1}{2 \ln 2}$,则()

(A)
$$b > c > a$$

(B)
$$a > c > b$$

(A)
$$b > c > a$$
 (B) $a > c > b$ (C) $c > b > a$ (D) $c > a > b$

(D)
$$c > a > b$$

答案: C

答案: a, b, c 中 b 的结构特征最清晰,且观察发现 a 可以看成 $e^1 - \frac{1}{1}$,与 b 的结构是统一的,故考虑将 c也化为与它们相同的结构,从而构造函数分析,

曲题意,
$$c=4-\frac{1}{2\ln 2}=e^{\ln 4}-\frac{1}{\ln 4}$$
,设 $f(x)=e^x-\frac{1}{x}(x\geq 1)$,则 $a=f(1)$, $b=f(\frac{4}{3})$, $c=f(\ln 4)$,

因为
$$f'(x) = e^x + \frac{1}{x^2} > 0$$
, 所以 $f(x)$ 在 $[1,+\infty)$ 上 \nearrow ,

接下来比较 a, b, c 自变量的大小,显然 $\frac{4}{3}$ 和 $\ln 4$ 都大于 1, 故只需比较 $\frac{4}{3}$ 和 $\ln 4$,可将 $\frac{4}{3}$ 化对数来看,

因为
$$\frac{4}{3} = \ln e^{\frac{4}{3}}$$
,且 $(e^{\frac{4}{3}})^3 = e^4 < 64 = 4^3$,所以 $e^{\frac{4}{3}} < 4$,从而 $\frac{4}{3} < \ln 4$,故 $f(\ln 4) > f(\frac{4}{3}) > f(1)$,即 $c > b > a$.

3.(2023・全国模拟・★★★)已知
$$a=9\ln 10$$
, $b=8\ln 11$, $c=7\ln 12$,则 a , b , c 的大小关系为()

$$(A)$$
 $c < a < b$

(B)
$$b < a < c$$

(C)
$$a < b < c$$

(A)
$$c < a < b$$
 (B) $b < a < c$ (C) $a < b < c$ (D) $c < b < a$

答案: D

解析: a, b, c 的共同特征是9+10=8+11=7+12=19,可据此将三个数据的结构调整为一致,

$$a = (19-10)\ln 10$$
, $b = (19-11)\ln 11$, $c = (19-12)\ln 12$,

设
$$f(x) = (19-x)\ln x(10 \le x \le 12)$$
,则 $a = f(10)$, $b = f(11)$, $c = f(12)$,

因为 $f'(x) = -\ln x + \frac{19 - x}{x} = \frac{19}{x} - \ln x - 1$, 当 $10 \le x \le 12$ 时, $\frac{19}{x} < 2$, $\ln x > 2$, 所以 f'(x) < 0,

从而 f(x) 在[10,12]上\, 故 f(12) < f(11) < f(10),所以 c < b < a.

【反思】观察出各数据结构上的共同特征,是构造函数的重要思路.

4.
$$(2022 \cdot 重庆月考 \cdot ★★★) 已知 $a = \frac{11}{10}$, $b = \ln 2$, $c = e^{\frac{1}{10}}$, 则 ()$$

(A)
$$c > a > b$$

(A)
$$c > a > b$$
 (B) $a > c > b$ (C) $c > b > a$ (D) $a > b > c$

$$(C)$$
 $c > b > a$

$$(D)$$
 $a > b > c$

答案: A

解析: 先简单估算一下, a>1, 0<b<1, c>1, 所以 b 最小,

那 a, c 怎么比呢?它们都比较接近 1, 找中间量不方便, 且结构不同, 只能从数字来看, 注意到 $\frac{11}{10} = 1 + \frac{1}{10}$,

我们把 $\frac{1}{10}$ 看成x,则a=1+x, $c=e^x$,可用切线放缩不等式 $e^x \ge 1+x$ 来完成比较,

由切线放缩不等式, $e^x \ge 1+x$,当且仅当x=0时取等号,所以 $e^{\frac{1}{10}} > 1+\frac{1}{10} = \frac{11}{10}$,从而c>a,故c>a>b.

5.
$$(2022 \cdot 全国甲卷 \cdot \star \star \star \star)$$
 已知 $a = \frac{31}{32}$, $b = \cos \frac{1}{4}$, $c = 4\sin \frac{1}{4}$, 则 ()

(A)
$$c > b > a$$
 (B) $b > a > c$ (C) $a > b > c$ (D) $a > c > b$

(B)
$$b > a > a$$

(C)
$$a > b > a$$

(D)
$$a > c > b$$

答案: A

解析: a, b, c 结构不同,所以从数字上考虑, $\frac{1}{4}$ 重复出现了,故将 $\frac{31}{32}$ 也化为 $\frac{1}{4}$, $\frac{31}{32}$ =1- $\frac{1}{32}$ =1- $\frac{1}{2}$ ×($\frac{1}{4}$)², 所以把 $\frac{1}{4}$ 看成x,构造函数,下面先比较a和b,

$$a-b=1-\frac{1}{2}\times(\frac{1}{4})^2-\cos\frac{1}{4}$$
, $\forall f(x)=1-\frac{1}{2}x^2-\cos x(0\leq x\leq\frac{\pi}{2})$, $\forall f'(x)=\sin x-x$, $f''(x)=\cos x-1\leq 0$,

所以
$$f'(x)$$
在 $[0,\frac{\pi}{2}]$ 上〉,又 $f'(0)=0$,所以 $f'(x)\leq 0$,从而 $f(x)$ 在 $[0,\frac{\pi}{2}]$ 上〉,故 $f(\frac{1}{4})< f(0)$,

即
$$1-\frac{1}{2}\times(\frac{1}{4})^2-\cos\frac{1}{4}<0$$
,所以 $a-b<0$, 从而 $b>a$;

从结构来看,b 和 c 比较接近,所以接下来比较 b 和 c,令 $x = \frac{1}{4}$,则 $b = \cos x$, $c = \frac{\sin x}{x}$,所以 $\frac{c}{b} = \frac{\tan x}{x}$, 故只需比较 tan x 与 x 的大小,可将其作差构造函数来分析,

所以
$$g(x)$$
在 $[0,\frac{1}{4}]$ 上 \nearrow ,从而 $g(\frac{1}{4})>g(0)$,即 $\tan\frac{1}{4}-\frac{1}{4}>0$,故 $\tan\frac{1}{4}>\frac{1}{4}$,

所以
$$\frac{c}{b} = \frac{\tan\frac{1}{4}}{\frac{1}{4}} > 1$$
,从而 $c > b$,故 $c > b > a$.

【反思】当 $x \in (0, \frac{\pi}{2})$ 时, $\sin x < x < \tan x$;对任意的 $x \in \mathbb{R}$, $1 - \frac{x^2}{2} \le \cos x$;若熟悉这两个不等式,本题的构

造思路会更清晰.

6. (2021・全国乙巻・★★★★) 设
$$a = 2 \ln 1.01$$
, $b = \ln 1.02$, $c = \sqrt{1.04} - 1$, 则()

(A)
$$a < b < c$$
 (B) $b < c < a$ (C) $b < a < c$ (D) $c < a < b$

(B)
$$b < c < a$$

(C)
$$b < a < c$$

(D)
$$c < a < b$$

答案: B

解析:观察发现a、b是同底数的对数,容易比较大小,所以先比较a和b,

 $a = 2\ln 1.01 = \ln 1.01^2 = \ln 1.0201 > \ln 1.02 = b$,所以选项 A、D 错误,此时结合选项知只需比较 a 和 c,

而 a 和 c 的结构不同,所以从数字上找共同点,注意到1.01=1+0.01,1.04=1+4×0.01,我们把 0.01 看成 x, 构造函数的方法就出来了,

则
$$f'(x) = \frac{2}{1+x} - \frac{4}{2\sqrt{1+4x}} = \frac{2[\sqrt{1+4x}-(1+x)]}{(1+x)\sqrt{1+4x}}$$
, $\stackrel{\text{\psi}}{=} x \in [0,0.01]$ 时, $(1+x)^2 - (\sqrt{1+4x})^2 = x(x-2) \le 0$,

所以 $(1+x)^2 \le (\sqrt{1+4x})^2$,从而 $1+x \le \sqrt{1+4x}$,故 $f'(x) \ge 0$,当且仅当x = 0时取等号,

所以 f(x) 在 [0,0.01] 上之,从而 f(0.01) > f(0) = 0,故 a-c > 0,所以 a > c,故选 B.