Omics to clinic

Goals:

Immediate

Integrate the multiple omics information to visualize expression levels in a more digestible form

Intermediate

Connect with clinical data.

Apply analytics and predictive techniques.

Long term

Use in clinic for personalized medicine.

Basic Clinical thinking paradigm and workflow

What Happened

to patient

Collect Info

- History (pt / EMR)
 - Onset/Course/Frequency
 - Characterize/ severity
 - Events /Procedures
 - Family /Likelihood
 - Past EMRnotes
 - OSH records

What's Happening to patient

Assess Info

- Symptoms (pt / EMR / tests)
- Vitals / Exam /
- Labs / Imaging

What We Think is happening to patient

Form / Narrow Differential diagnosis

- Patterns / Likelihood
- Test /Imaging results

What to do Manage

- Rx / Tx / Surgery
- Algorithms
- Discuss / Consult
- Stabilize
- Prioritize

Investigate / Diagnose

- Testing / Imaging
- Trending

Anticipate / Prevent

- If / Then plans
- Thresholds
- Screen
- Prep
 - ex: type + cross

Check patient

Execute Plan

Clinical Genomics / Biomarkers

General Clinical Use Cases

Disease
Screening
for Prevention /
Early detection

Predict
Treatment
Response
Based on higher

Based on higher fidelity pathological classification

Diagnosis
Confirmation or rule out

Rare
Disease
Diagnosis
Exploratory

Monitoring
Recurrence
and/or
treatment
efficacy

Reproductive Risk
Assessment
Germline mutations

Clinical
Trials
Eligibility &
Enrollment

Research
Basic &
Translational;
Elucidating
patients with
diseaseresistance

Clinical Genomics

Some example Specific Clinical Use Cases

Breast cancer HER2 + BRCA

MUTYH colon cancer

Prostate cancer

Warfarin
Sensitivity

Omics to clinic

Pathway Schematic

OMICS databases

Omics to clinic

Future & Sustainability

- Clinical trial research design

- Basic / Translational

/ data

OMICS ReporteR potential areas of contribution

ReporteR

What Happened to patient

Collect Info

What's Happening to patient

Disease status

What We Think is happening to patient

Confirm /
Sub-classify /
Narrow Diagnosis

What to do

Optimize Management

- Drug response prediction
- Treatment contraindications
- Algorithms and treatment guidelines
- Treatment decisions

Investigate / Diagnose

Anticipate / Prevent

- Screening
- Trend or monitor gene expressions of interest

Technology progression for omics use in clinic

Selected highlights

Information of interest

More detail on the information of clinical relevance

Disease Phenotype Information

- Clinical Severity and Progression Course
- Symptoms
- Associated Lab abnormalities and other markers of differentiation
- Other unique aspects to this variant
- Is this gene expression good to trend?
 - If so, show patient historic levels

More detail on the information of clinical relevance

Disease association **Clinical Relevance** Evidence-based Disease Phenotype **Treatment** Information Guidelines

Evidence-based Treatment Guidelines

- Clinical Risks
- Contraindications to certain treatments
 - Drug toxicities / sensitivities
 - Side effects to be aware of
- Guidelines on treatment
 - Efficacy data
 - Algorithms / Scores
 - Dosing

Clinician Preferences and Context for Consideration

Non-genomic clinicians are primary interested in information that changes clinical management (aka treatment)

• If seeing a particular abnormal gene expression doesn't change the treatment (or there are no alternative treatments that will make a difference with a variant, the physician would probably rather not see the expression information.

Treatments are rarely decided solely base on the result of a single test

 Total patient history, presentation, clinical information, and patient preference is taken into account to decide on treatment

For complex integration of information, evidence-based algorithms and guidelines are helpful

• In a clinician's mind, the result of such algorithms, even with a numerical input, often group a patient into a 3 qualitative categories for making clinical decisions (ie. low, medium, high risks)

Patient Report

Information of interest

Decent example to model (info content, not UI)

1. Test result in simple terms

2. What the results mean (risk with appropriate visual comparison etc)

3. Next Steps

- Followup with doctor to discuss
- Reducing risk
- Other support and resources

4. Details (made clear not necessary to read)

- Full clinical interpretation
- Test methodology
- References