Domaći zadatak: Dimenziono modelovanje

1 zadatak

Bus matrix						
Business processes	Categories					
	Ride	Payment	Staff	Customer		
Ticket to ride	Х	Х	Х	Х		

Prilikom modelovanja skladišta odlučeno je da će model sadržati jednu fact tabelu **F_Tickets** koja je povezana sa dimenzijama:

- D_Date,
- D_Payment,
- D Customer i
- D_Rides.

Iz postojećeg modela baze podataka dimenzija D_Customer nastala je spajanjem tabela Customer, City, Region i Country. Tabela Staff, kao i agregacija između ove tabele i tabele Rides, zadržala je svoj oblik dok agregacija u ovom modelu predstavlja Link ili Bridge između dimenzija Rides i Staff i sadrži podatke o angažovanom osoblju na određenoj vožnji.

Skladišta podataka Dimitrije Milenković

Ukoliko želimo da pratimo sve promene u tabeli Rides, spojili bismo tabelu F_Tickets sa D_Rides i na taj način pretvorili Rides tabelu u tabelu činjenica koja ima dimenzije D_Payment, D_Date, D_Customer. Takođe, model više na bi sadržao Link koji povezuje Rides i Staff već bi StaffID postao spoljni ključ u novoj tabeli činjenica.

Tipične razlike u SQL upitima možemo prikazati na primeru kada želimo da izlistamo ukupan broj prodatih karata kupcima iz određenog grada.

U slučaju početnog modela baze podataka zahteva se spajanje (join) tri tabele dok nad modelom skladišta dovoljno je spojiti dve, što povećava brzinu realizacije upita.

SELECT COUNT(*)

FROM Tickets t INNER JOIN Customer c ON t.CustomerID = c.CustomerID INNER JOIN City ct ON c.CityID = ct.CityID

WHERE ct.City = 'Belgrade'

SELECT COUNT(*)

FROM F_TICKETS F INNER JOIN D_CUSTOMER D ON F.CustomerID=D.CustomerID WHERE D.City = 'Belgrade'

2 zadatak

Bus matrix						
Duningan	Categories					
Business Processes	RentalOffices	Cars	Drivers	PaymentMode		
Rentals	Х	Х	Х			
Payments				Х		

U ovom slučaju izabrana je jedna tabela činjenica koja obuhvata Rentals i Payments tabele (moguće je, takođe, posmatrati ove tabele kao dve odvojene tabele činjenica). Fact tabela ima dimenzije:

- D_RentalOffices,
- D_Cars,
- D_Drivers,
- D_PaymentMode.

Dimenzija RentalOffices nastala je spajanjem sa tabelama City, Area, State i Country. Dimenzija Cars nastala je spajanjem sa tabelama Category, Brand i Model. Agregacija koja je povezivala Rentals i Drivers izbačena je i fact tabela sada ima dimenziju Drivers.

Ukoliko je potrebno pratiti promene u dve odvojene fact tabele Facts i Drivers izvršili bismo spajanja tabela Cars i Rentals gde bi se dodao surogatni ključ kako bi se omogućilo više rentiranja za isti CarlD. Spojili bismo takođe tabele Drive i Drivers sa novim surogatnim ključem koji omogućava da jedan isti vozač rentira isti auto u drugom danu, to jest sa različitim datumom, i slicno.

Kada su upiti u pitanju, isti je slučaj kao u prethodnom zadatku. U originalnom modelu baze podataka da bi se izdvojila rentiranja koja dolaze iz određene države trebalo bi spojiti pet tabela dok u modelu skladišta podataka samo dve.

SELECT COUNT(*)

FROM Rentals r INNER JOIN RentalOffices ro ON r.PickupRentalOfficeID = ro.RentalOfficeID INNER JOIN City c ON c.CityID = ct.CityID INNER JOIN State s ON c.StateID = s.StateID INNER JOIN Country co ON c.CountryID = co.CountryID WHERE co.Country = 'Serbia'

SELECT COUNT(*)

FROM F_Rental_Payments F INNER JOIN D_Rental_pffices D ON F.ROID_PU=D.ROID WHERE D.Country = 'Serbia'