Economics 144 Economic Forecasting

Lecture 7
Characterizing Cycles
Autoregressive Models

Dr. Randall R. Rojas

Today's Class

- Cycles
- Autoregressive (AR) Models
 - The AR(1) Process
 - The AR(2) Process
 - The AR(p) Process
- Chain Rule for Forecasting
- R Example

Cycles 1 of 3

 Def: Cycle = Time series pattern of periodic fluctuations.

- Deterministic: Common in engineering, physical sciences, etc. Example: $Y_t = 2 \cos(0.5t + 0.8) + \varepsilon_t$
- Stochastic: Common in economics, business, etc.

Example:
$$Y_t = 0.5Y_{t-1} + 0.3Y_{t-2} + \varepsilon_t$$

estimate

Cycles 2 of 3

Persistence upstate and bottomstate

----- Y=2cos(0.5 t +0.78) + e ----- Y_determ=2cos(0.5 t +0.78)

Deterministic

$$Y_t = 2 \cos(0.5t + 0.8) + \varepsilon_t$$

Unemployed persons, 1989-2002 (seasonally adjusted)

Note: Shaded areas represent recessions. Break in series in January 1994 is due to the redesign of the survey.

Stochastic

$$Y_t = 0.5Y_{t-1} + 0.3Y_{t-2} + \varepsilon_t$$

Cycles 3 of 3

Unemployed persons, 1989-2002 (seasonally adjusted)

Source: Bureau of Labor Statistics Current Population Survey

Note: Shaded areas represent recessions. Break in series in January 1994 is due to the redesign of the survey.

Autoregressive Models

Def: AR(p) = Autoregressive process of order

p
$$\geq$$
0: $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + ... + \phi_p Y_{t-p} + \varepsilon_t$, where $\varepsilon_t \sim (0, \sigma^2)$, and φ = persistence parameter.

the influence past observations exert on the current see textbook a

Examples:

- AR(1):
$$Y_t = c + \phi_1 Y_{t-1} + \varepsilon_t$$

-AR(2):
$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$$

- AR(6):
$$Y_t = c + \phi_6 Y_{t-6} + \varepsilon_t$$

Autoregressive Models

For every AR(p) process, we need to address the following 3 questions:

- 1. What does a time series of an AR process look like?
- 2. What do the corresponding ACFs and PACFs look like?
- 3. What is the optimal forecast?

- (1) What does a time series of an AR process look like?
- Consider the following AR(1) process:

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t$$
 the AR mean reverts slowly, as goes up, harder to mean reverts, eventually goes up when = 1 (see figures next slide

- We can plot this process for c = 1, and different values of φ , e.g., for φ =0.4, φ =0.7, φ =0.95, and φ =1.
- We can show that $E(Y_t) = c + \varphi \mu$, and $\sigma^2(Y_t) = \sigma^2_{\varepsilon} / (1 \varphi^2)$

Note: Since
$$E(Y_t) = \mu \rightarrow \mu = c + \varphi \mu \rightarrow \mu = c/(1-\varphi)$$

AR(1): $Y_{t} = c + \phi Y_{t-1} + \varepsilon_{t}$

- (2) What do the corresponding ACFs and PACFs look like?
- ACF:
 - We would expect to see that $ρ_1 = p_1 = φ$, and all others decay to zero according to $ρ_k = φ^k$.
- PACF:
 - We would expect to see only 1 spike different from zero, i.e., $p_1 = φ$, and all others equal to zero ($p_k=0$, k>1).

Actually there is a function in R that directly tells AR(?) Autocorrelation Functions of Simulated AR(1) Processes

For all three cases $\hat{
ho}_1=\hat{p}_1=\hat{\phi}$

A useful Property for AR Processes:

IFF

A necessary and sufficient condition for an AR(1) process $Y_t = c + \phi Y_{t-1} + \varepsilon_t$ to be covariance stationary is that $|\phi| < 1$.

if | |>= 1, then mean does not revert, variance is not constant, assumptions about covariance stationary is broken (why we need to extract trend and seasonality and apply ARMA to remainder)

Sample: 1969 2002 Included observations: 33

Autocorrelation	Partial Correlation		AC	PAC
		1 2 3 4 5 6 7 8 9	0.098 0.135	0.629 0.125 0.134 0.059 0.051 -0.050 -0.180 0.126 -0.179 0.021
i [i	1 1 1	11	-0.021	-0.006

Q: Does this series look like an AR(1) process?

A: Yes, since $\rho_1 = p_1 = \varphi$ and $\rho_k \rightarrow 0$ for k>1.

$$\hat{\rho}_1 = \hat{p}_1 = \hat{\phi} = 0.63$$

Autoregressive Models Forecasting in an AR(1) Process

- Consider first the 1-step-ahead forecast, h = 1: AR(1): $Y_t = c + \phi Y_{t-1} + \varepsilon_t \rightarrow Y_{t+1} = c + \phi Y_t + \varepsilon_{t+1}$
- Optimal Point Forecast: $f_{t,1} = E(Y_{t+1}|I_t) = c + \phi Y_t$
- One-period-ahead Forecast Error: $e_{t,l} = Y_{t+1}$ $f_{t,1} = \varepsilon_{t+1}$
- Uncertainty of the Forecast: $\sigma^2_{t+1|t} = var(Y_{t+1}|I_t) = \sigma^2_{\varepsilon}$
- Density Forecast: $f(Y_{t+1}|I_t) \sim N(c + \phi Y_t, \sigma^2_{\varepsilon})$
 - Note: We can compute the confidence intervals from the density forecast.

Please go over the steps for h=1 and h=2 (Section 7.2°)

Autoregressive Models Forecasting in an AR(1) Process

- Consider the k-step-ahead forecast, h = k for the AR(1): $Y_t = c + \phi Y_{t-1} + \varepsilon_t$ process:
- Optimal Point Forecast: $f_{t,k} = E(Y_{t+k}|I_t) = c(1+\phi+...+\phi^{k-1}) + \phi^k Y_t$
- k-period-ahead Forecast Error:

$$e_{t,k} = Y_{t+k} - f_{t,k} = \varepsilon_{t+k} + \phi \varepsilon_{t+k-1} + \dots + \phi^{k-1} \varepsilon_{t+1}$$

Uncertainty of the Forecast:

$$\sigma_{t+k|t}^2 = var(Y_{t+k}|I_t) = \sigma_{\varepsilon}^2(1+\phi^2+\phi^4+...+\phi^{2(k-1)})$$

- Density Forecast: $f(Y_{t+k}|I_t) \sim N(\mu_{t+k|t}, \sigma^2_{t+k|t})$
 - Note: We can compute the confidence intervals from the density forecast.

Autoregressive Models Forecasting in an AR(1) Process

 Recall that for covariance-stationary processes, |φ|<1 and φ^k →0 for large values of k (k→∞). Therefore, the optimal forecast does not depend on the information set, and thus has a 'short-term memory'.

$$\begin{cases} f_{t,k} = c(1+\phi+\phi^2+...) = c/(1-\phi) \\ \sigma^2_{t+1|t} = \sigma^2_{\varepsilon}(1+\phi^2+\phi^4+...) = = \sigma^2_{\varepsilon}/(1-\phi^2) \end{cases}$$

- Example: $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$
- A useful Property for an AR(2) Process:

The necessary conditions for an AR(2) process to be covariance stationary are that $-1 < \phi_2 < 1$ and $-2 < \phi_1 < 2$, and the sufficient conditions are that $\phi_1 + \phi_2 < 1$ and $\phi_2 - \phi_1 < 1$.

 Note: For an AR(2) the respective unconditional mean is given by:

$$\mu = \frac{c}{1 - \phi_1 - \phi_2}$$

Q: Is this process stationary?

All three AR(2) Processes have in common:

 $\rho_1 = p_1$, $p_2 = \phi_2$, and $p_1 \neq 0$ and $p_2 \neq 0$, all other $p_k = 0$ (k>2)

1913-2003 Inflation Rate

Q: What model would you suggest?

A: An AR(2) with $\phi 2 = -0.25$

Sample: 1913 2003 Included observations: 90

Autocorrelation	Partial Correlation	Š	AC	PAC
		2 3 4 5 6 7 8 9 10 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 20 - 21 -	0.117 0.066 0.144 0.181 0.115 0.039 0.035 0.047 0.174 0.280 0.303 0.306 0.184 0.032 0.075 0.161	0.128 -0.038 0.210 -0.039 -0.016 -0.032 0.089 -0.067 -0.128 -0.162 -0.114 -0.081 -0.172 0.156 0.073 -0.125 -0.034
	1 1	23	0.073	-0.005

Multistep Forecast of the U.S. Inflation Rate

h = 1 2004	$f_{t,1} = \hat{c} + \hat{\phi}_1 Y_t + \hat{\phi}_2 Y_{t-1} =$ $= 1.49 + 0.79 \times 2.25 - 0.25 \times 1.56 =$ ≈ 2.90	$\sigma_{t+1 t}^2 = \hat{\sigma}_{\varepsilon}^2 = 3.74^2$	$f(Y_{t+1} I_t) \to N(\mu_{t+1 t}, \sigma_{t+1 t}^2)$ $= N(2.90, 3.74^2)$
h = 2 2005	$f_{t,2} = \hat{c} + \hat{\phi}_1 f_{t,1} + \hat{\phi}_2 Y_t =$ $= 1.49 + 0.79 \times 2.90 - 0.25 \times 2.25 =$ ≈ 3.25	$\sigma_{t+2 t}^{2} = \hat{\sigma}_{\varepsilon}^{2} (1 + \hat{\phi}_{1}^{2}) =$ $= 3.74^{2} (1 + 0.79^{2}) =$ $\approx 4.81^{2}$	$f(Y_{t+2} I_t) \to N(3.25, 4.81^2)$
h = 3 2006	$f_{t,3} = \hat{c} + \hat{\phi}_1 f_{t,2} + \hat{\phi}_2 f_{t,1} =$ $= 1.49 + 0.79 \times 3.25 - 0.25 \times 2.90 =$ ≈ 3.36	$\sigma_{t+3 t}^{2} = \hat{\sigma}_{\varepsilon}^{2} (1 + \hat{\phi}_{1}^{2} + (\hat{\phi}_{2} + \hat{\phi}_{1}^{2})^{2}) =$ $\approx 5.03^{2}$	$f(Y_{t+3} I_t) \to N(3.36, 5.03^2)$
h = 4 2007	$f_{t,4} = \hat{c} + \hat{\phi}_1 f_{t,3} + \hat{\phi}_2 f_{t,2} =$ $= 1.49 + 0.79 \times 3.36 - 0.25 \times 3.25 =$ ≈ 3.37	$\sigma_{t+4 t}^2 \approx 5.04^2$	$f(Y_{t+4} I_t) \to N(3.37, 5.04^2)$
h = 5 2008	$f_{t,5} = \hat{c} + \hat{\phi}_1 f_{t,4} + \hat{\phi}_2 f_{t,3} =$ $= 1.49 + 0.79 \times 3.37 - 0.25 \times 3.36 =$ ≈ 3.34	$\sigma_{t+5 t}^2 \approx 5.04^2$	$f(Y_{t+5} I_t) \to N(3.34, 5.04^2)$
h = 6 2009	$f_{t,6} = \hat{c} + \hat{\phi}_1 f_{t,5} + \hat{\phi}_2 f_{t,4} =$ $= 1.49 + 0.79 \times 3.34 - 0.25 \times 3.37 =$ ≈ 3.32	$\sigma_{t+6 t}^2 \approx 5.04^2$	$f(Y_{t+6} I_t) \to N(3.32, 5.04^2)$

Autoregressive Models AR(P) Process

In general, for an AR(p) process:

$$Y_{t} = c + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-1} + \dots + \phi_{p}Y_{t-p} + \varepsilon_{t}$$

- We can show that
 - $\rho_1 = p_1$, $\rho k = pk$ for k < p
 - The speed of the ACF's decay depends on the persistence of $\phi_1 + \phi_2 + \ldots + \phi_p$
 - $p_1 \neq 0, p_2 \neq 0, ...p_p \neq 0$, and $p_p = 0$ for k > p

Autoregressive Models Forecasting in an AR(p) Process

- Consider the k-step-ahead forecast, h = k for the AR(p): $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + ... + \phi_p Y_{t-p} + \varepsilon_t$ process:
- Optimal Point Forecast:

$$f_{t,k} = E(Y_{t+k}|I_t) = c + \phi_1 f_{t,k-1} + ... + \phi_p f_{t,k-p}$$

k-period-ahead Forecast Error:

$$e_{t,k} = Y_{t+k} - f_{t,k} = \varepsilon_{t+k} + \phi_1 e_{t,k-1} + \dots + \phi_p e_{t,k-p}$$

Uncertainty of the Forecast:

$$\sigma^{2}_{t+1|t} = \sigma_{\varepsilon}^{2} + \sum_{i}^{p} \phi_{i}^{2} var(e_{t,k-i}) + 2\sum_{i} \phi_{i} \phi_{j} cov(e_{t,k-i}, e_{t,k-j})$$

• Density Forecast: $f(Y_{t+k}|I_t) \sim N(\overset{i\neq j}{\mu_{t+k|t}}, \sigma^2_{t+k|t})$

Autoregressive Models Forecasting in an AR(p) Process

Chain Rule for Forecasting

$$Y_{t} = c + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + \varepsilon_{t}$$

- Step1 (change t \rightarrow t+1): Compute $f_{t,1} = Y_{t+1}$ $f_{t,1} = c + \phi_1 Y_t + \phi_2 Y_{t-1} + ... + \phi_p Y_{t+1-p}$

- Step2 (repeat Step 1): Compute $f_{t,2}$ $f_{t,2} = c + \phi_1 Y_{t+1} + \phi_2 Y_t + ... + \phi_p Y_{t+2-p}$ $= c + f_{t,1} + \phi_2 Y_t + ... + \phi_p Y_{t+2-p}$

$$f_{t,k} = c + f_{t,k-1} + \phi_2 f_{t,k-2} + \dots + \phi_p f_{t,k-p}$$

Q: What type of a process is this?

Sample: 1989:01 2004:06 Included observations: 186

For Next Class

 Readings about today's class: Chapter 7^a, 8^b

Review Exercises / Problems:

Chapter 8b: 1, 2

Chapter 8^b: 2, 3, 4, 9

Readings for next class:
 Chapter 7^a (Section 7.3), Chapter 9^b