

DNESP32S3 硬件参考手册 V1.0

-正点原子 DNESP32S3 开发板教程

修订历史:

版本	日期	修改内容
V1.0	2024/2/28	第一次发布

正点原子公司名称 : 广州市星翼电子科技有限公司

原子哥在线教学平台: www.yuanzige.com

开源电子网/论坛: www.openedv.com

正点原子官方网站: www.alientek.com

正点原子淘宝店铺 : https://openedv.taobao.com

正点原子 B 站视频 : https://space.bilibili.com/394620890

电话: 020-38271790 传真: 020-36773971

请下载原子哥 APP,数千讲视频免费学习,更快更流畅。请关注正点原子公众号,资料发布更新我们会通知。

扫码下载"原子哥"APP

扫码关注正点原子公众号

内容简介	1
第一章 实验平台简介	2
1.1, DNESP32S3 开发板资源初探;	2
1.1.1 DNESP32S3 硬件设计特点	
1.1.2 DNESP32S3 硬件基本参数	
1.1.3 DNESP32S3 硬件资源分布	
1.1.4 DNESP32S3 硬件资源列表	
1.2, DNESP32S3 开发板资源说明;	
1.2.1 硬件资源说明	
1.2.2 DNESP32S3 IO 引脚分配	
第二章 实验平台硬件资源详解	9
2.1 开发板原理图详解	9
2.1.1 模组	9
2.1.2 引出 IO 口	9
2.1.3 USB 串口/串口 1 选择接口	10
2.1.4 LCD 模块&WIRELESS 接口	
2.1.5 复位电路	11
2.1.6 EEPROM	
2.1.7 温湿度传感器接口	
2.1.8 光环境传感器	12
2.1.9 红外接收头	
2.1.10 红外发送头	
2.1.11 LED	
2.1.12 按键	
2.1.13 摄像头模块接口	
2.1.14 有源蜂鸣器	
2.1.15 TF 卡接口	
2.1.16 ATK 模块接口	
2.1.17 多功能端口	
2.1.18 电源	
2.1.19 电源输入输出接口	
2.1.20 USB 通信接口	
2.1.21 USB 串口	
2.1.22 音频编解码器	
2.1.23 RGB LCD 接口	
2.2 开发板使用注意事项	20

内容简介

本手册主要介绍 DNESP32S3 开发板的硬件资源,包括:实验平台简介、实验平台硬件资源详解以及使用注意事项等。通过本手册的学习,大家将会对 DNESP32S3 开发板的硬件有一个比较全面的了解,对后续的软件学习及程序设计非常有帮助。

本手册是《DNESP32S3 开发指南(IDF 版、Arduino 和 MicroPython 版)》的重要补充教程,强烈建议大家在学习相关例程前,先学习本手册!

第一章 实验平台简介

本章主要介绍我们的实验平台:正点原子 DNESP32S3 开发板。通过本章的学习,您将对我们后面使用的实验平台有个大概了解,为后面的学习做铺垫。

本章将分为如下几个小节:

- 1.1, DNESP32S3 底板资源初探;
- 1.2, DNESP32S3 底板资源说明;
- 1.3, DNESP32S3 核心板资源初探;
- 1.4, DNESP32S3 核心板资源说明;
- 1.5, DNESP32S3 IO 引脚分配;
- 1.6, DNESP32S3 升级说明;

1.1, DNESP32S3 开发板资源初探;

ESP32 系列芯片自 2016 年发布以来,经过多年的发展,已经成为了物联网领域的重要选择。该系列芯片不断升级和完善,支持更多的应用场景和功能,因此受到广泛欢迎。最新的 ESP32-S 系列芯片进一步丰富了该系列的产品线,满足了不同领域的需求。为了满足大家对 AIOT 功能的需求,正点原子推出了 HMI 与典型的学习板相结合的 DNESP32S3 开发板,为开发者提供了一个全面、易用的开发环境。该开发板结合了图形界面和典型学习版的功能,让开发者能够更方便地进行开发和学习。

下面我们开始介绍 DNESP32S3。

1.1.1 DNESP32S3 硬件设计特点

DNESP32S3 开发板硬件设计特点包括:

- 1)接口丰富。板子提供十来种标准接口,可以方便的进行各种外设的实验和开发。
- 2) **设计灵活。**板上很多资源都可以灵活配置,以满足不同条件下的使用。我们引出了数十个 **IO** 口,可以极大的方便大家扩展及使用。
- 3)**资源充足。**主控模组采用正点原子提供的 ATK-MWS3S(和乐鑫官方 ESP32S3-WOOD-N16R8 对应),自带 384K ROM(存储官方启动固件,开发者无法使用)、512K SRAM、16MB FLASH 和 8MB PSRAM,满足大数据存储需求。
- 4) **人性化设计。**各个接口都有丝印标注,且用方框框出,使用起来一目了然;部分常用外设大丝印标出,方便查找;接口位置设计合理,方便顺手。资源搭配合理,物尽其用。
- 5) **国产化程度高。**为了支持国产芯片的发展和推广,正点原子优选国产好芯, DNESP32S3 开发板上凡是能用国产替代的芯片,全部使用国产芯片,国产化率达到 98% (数量)。

1.1.2 DNESP32S3 硬件基本参数

DNESP32S3 硬件基本参数如表 1.1.2.1 所示:

112013203 次日至十岁				
项目	说明			
产品型号	ATK-DNESP32S3 V1			
模组	ATK-MWS3S, WROOM			
引出 IO	28个			
外形尺寸	120mm*62mm			
工作电压	5V (USB)			
工作电流	42mA~180mA ¹ (@5V)			
工作温度	0°C~+70°C			

表 1.1.2.1 DNESP32S3 硬件基本参数

-注 1:42mA 对应 CPU 在复位情况下,裸板的工作电流;180mA 对应 CPU 正常运行时裸板的工作电流。

1.1.3 DNESP32S3 硬件资源分布

DNESP32S3 的硬件资源分布如图 1.1.3.1 所示:

图 1.1.3.1 DNESP32S3 的硬件资源分布图

1.1.4 DNESP32S3 硬件资源列表

DNESP32S3 的硬件资源列表如表 1.1.4.1 所示:

资源	数量	说明
±± /□	1. ^	ATK-MWS3S;
模组	1个	ROM:384KB; SRAM:512KB;
EEDDOM	1 ^	FLASH:16MB;PSRAM:8MB;
EEPROM	1个	2Kb (256B)
电源指示灯	1个	蓝色
状态指示灯	2个	红色 (LED)
复位按键	1个	用于 Module&LCD 的复位
功能按键	5个	KEY0、KEY1、KEY2、KEY3、BOOT
电源开关	1个	控制整个板子供电
蜂鸣器	1个	有源蜂鸣器,用于发出提示音
红外接收头	1个	用于红外接收,配备红外遥控器
红外发送头	1个	用于红外发送
光环境传感器	1个	用于测量光照强度、接近距离、红外光强等
音频编解码芯片	1个	ES8388,用于音频编解码
录音咪头(MIC)	1个	用于录音
板载扬声器	1个	用于播放音乐或者视频声音
立体声音频输出接口	1个	用于外接耳机、功放等
SPILCD 接口	1个	 可接 NRF24L01 无线模块、正点原子 1.3/2.4 寸 SPILCD 模块
(无线模块接)	1 1	可按 NKF24L01 元线模块、正点原
数字温湿度传感器接口	1个	支持 DS18B20、DHT11 等数字温湿度传感器
ATK 模块接口	1个	支持正点原子各种模块产品(蓝牙/GPS/MPU6050等)
摄像头接口	1个	支持正点原子各种摄像头模块
USB 转串口	1个	用于 USB 转 TTL 串口通信、仿真调试、下载代码

USB 从机接口(JTAG)	1个	用于 USB SLAVE(从机)通信
TF卡接口	1个	用于接 TF 卡
多功能接口	1组	用于 ADC/RMT/RV1 等互联
5V 电源输入/输出口	1组	用于 5V 电源接入/对外提供 5V 电压
3.3V 电源输入/输出口	1组	用于 3.3V 电源接入/对外提供 3.3V 电压
三轴加速度计	1个	用于测量 X,Y,Z 坐标
IO扩展	1个	用于扩展 IO
引出 IO	28 个	用于扩展使用
RGBLCD	1个	用于 RGB 接口的 LCD 屏(RGB565 格式)

表 1.1.4.1 DNESP32S3 的硬件资源列表

1.2, DNESP32S3 开发板资源说明;

DNESP32S3 资源说明,我们将分为两个部分:硬件资源说明和 DNESP32S3 IO 引脚分配。

1.2.1 硬件资源说明

这里我们详细介绍 DNESP32S3 开发板的各个部分(图 1.1.3.1 中的标注部分)的硬件资源, 我们将按逆时针的顺序依次介绍。

1, USB 转串口

这是开发板板载的另外一个 Type C USB 头 (USB_UART),用于 USB 连接 CH340 芯片,从而实现 USB 转 TTL 串口。同时,此接头也是开发板电源的主要提供口

2, 红外接收头

这是开发板的红外接收头(IR),可以实现红外遥控功能,通过这个接收头,可以接受市面常见的各种遥控器的红外信号,大家甚至可以自己实现万能红外解码。当然,如果应用得当,该接收头也可以用来传输数据。

DNESP32S3 开发板给大家配备了一个小巧的红外遥控器,该遥控器外观如图 1.2.1.1 所示:

图 1.2.1.1 红外遥控器

3, SPILCD 模块/WIRELESS 模块接口

这是开发板板载的无线模块接口(U2),可以外接 NRF24L01、RFID、正点原子 1.3 寸 SPILCD 和正点原子 2.4 寸 SPILCD 等模块。从而实现屏幕显示和无线通信等功能。注意:接 NRF24L01 模块进行无线通信的时候,必须同时有 2 个模块和 2 个板子,才可以测试,单个模块/板子例程是不能测试的。

4, 红外发送

这是开发板的红外发送头(IR1),可以实现红外遥控器功能,通过这个发送头,可以发送市面上规定好的红外编码数据。

5. USB SLAVE

这是开发板板载的一个 Type C USB 头(JTAG/USB_SLAVE),用于 USB 从机(SLAVE) 通信,一般用于 ATK-MWS3S 模组与电脑的 USB 通信和 JTAG 下载调试。

6,摄像头模块接口

这是开发板板载的一个 OLED/摄像头模块接口 (P2), 如果是摄像头模块 (正点原子提供),则刚好插满。通过这个接口,可以分别连接 2 种外部模块,从而实现相关实验。

7, 光环境传感器

这是开发板板载的一个光环境三合一传感器(U5),它可以作为环境光传感器、接近传感器和红外传感器。通过该传感器,开发板可以感知周围环境光线的变化,接近距离等,从而实现类似手机的自动背光控制。

8, 有源蜂鸣器

这是开发板的板载蜂鸣器(BEEP),可以实现简单的报警/闹铃等功能。

BEEP 信号直接连接在 XL9555(IIC IO 扩展芯片)的 P0_3 引脚上,需要通过 IIC 控制 XL9555,间接控制蜂鸣器开关。

9, 加速度传感器

这是开发板板载的一个三轴传感器: QMA6100P(三轴加速度),这款传感器尺寸小,功耗低,能提供高精度的姿态检测,具有出色的温度稳定性。

10, DS18B20/DHT11 接口

这是开发板的一个复用接口(U4),该接口由 4 个镀金排孔组成,可以用来接 DS18B20/DS1820等数字温度传感器。也可以用来接 DHT11 这样的数字温湿度传感器。实现一个接口,2 个功能。不用的时候,大家可以拆下上面的传感器,放到其他地方去用,使用上是十分方便灵活的。

11, LED

这是开发板板载的一个红色的 LED 灯, 主要是方便大家识别。

在调试代码的时候,使用 LED 来指示程序状态,是非常不错的一个辅助调试方法。 DNESP32S3 开发板几乎每个实例都使用了 LED 来指示程序的运行状态。

12,复位按钮

这是开发板板载的复位按键(RESET),用于复位 ATK-MWS3S 模组,还具有复位液晶的功能,因为液晶模块的复位引脚和 ATK-MWS3S 模组的复位引脚是连接在一起的,当按下该键的时候,ATK-MWS3S 模组和液晶一并被复位。

13,5个按键

这是开发板板载的 5 个机械式输入按键(KEY0、KEY1、KEY2、KEY3 和 BOOT),其中 KEY0、KEY1、KEY2 和 KEY3 按键都使用 IO 扩展 IC 来读取电平,并且都是低电平有效。BOOT 按键可用来切换启动模式,当启动完成后,可当普通按键来使用,此按键也是低电平有效。

14, 电源指示灯

这是开发板板载的一颗蓝色的 LED 灯 (PWR),用于指示电源状态。在电源开启的时候(通过板上的电源开关控制),该灯会亮,否则不亮。通过这个 LED,可以判断开发板的上电情况。

15, 多功能接口

这是1个由4个排针组成的一个接口(P3)。不过大家可别小看这4个排针,这组端口通过组合可以实现的功能有:ADC 采集、RMT等,所有这些,你只需要1个跳线帽的设置,就可以逐一实现。

16, MIC (咪头)

这是开发板的板载录音输入口(MIC),该咪头直接接到 ES8388 的输入上,可以用来实现录音功能。

17, 耳机输出接口

这是开发板板载的音频输出接口(PHONE),该接口可以插 3.5mm 的耳机,当 ES8388 放音的时候,就可以通过在该接口插入耳机,欣赏音乐。

18, 3.3V 电源输入/输出

这是开发板板载的一组 3.3V 电源输入输出排针 (2*3) (VOUT1), 用于给外部提供 3.3V 的电源,也可以用于从外部接 3.3V 的电源给板子供电。

大家在实验的时候可能经常会为没有 3.3V 电源而苦恼不已,有了 DNESP32S3 开发板,你就可以很方便的拥有一个简单的 3.3V 电源 (USB 供电的时候,最大电流不能超过 500mA,外部供电的时候,最大可达 500mA)。

19,5V 电源输入/输出

这是开发板板载的一组 5V 电源输入输出排针 (2*3) (VOUT2), 该排针用于给外部提供 5V 的电源, 也可以用于从外部接 5V 的电源给板子供电。

同样大家在实验的时候可能经常会为没有 5V 电源而苦恼不已,正点原子充分考虑到了大家需求,有了这组 5V 排针,你就可以很方便的拥有一个简单的 5V 电源(USB 供电的时候,最大电流不能超过 500mA,外部供电的时候,最大可达 1000mA)。

20, 电源开关

这是开发板板载的电源开关(K1)。该开关用于控制整个开发板的供电,如果切断,则整个开发板都将断电,电源指示灯(PWR)会随着此开关的状态而亮灭。

21, ATK-MWS3S 模组

这是开发板的核心模组(U1),型号为:ATK-MWS3S模组。该模组内部资源非常丰富,详见表 1.2.1.1:

ATK-MWS3S 内部资源					
内核	Xtensa 双核	12位 ADC	2		
主频	:频 240Mhz ADC 通道数		20		
ROM	384KB	SPI	4		
SRAM	512KB	I2S	2		
FLASH	16MB	IIC	2		
PSRAM	8MB	LED PWM	1		
封装	WROOM	RMT	1		
IO 数量	36	UART	3		
工作电压	3.0 ~ 3.6 V	SD/MMC	2		
USB OTG	1	RTC	1		
TIMG	2组	TWAI	1		

表 1.2.1.1 ATK-MWS3S 内部资源表

22,扬声器(喇叭)

这是开发板自带的一个 8Ω 1W 的小喇叭,安装在开发板的正面,可以用来播放音频。 该喇叭由 MD8002A 单声道桥接音频功率放大器 IC 进行驱动,输出功率可达 3W。

注意,由于 USB HOST 和 USB SLAVE 是共用 PA11 和 PA12,所以两者不可以同时使用。

23, 引出 IO 口(总共有 4 处)

这是开发板 IO 引出端口,总共四组主 IO 引出口: P1、P3、P4 和 P5, P1 采用 2*12 单排针引出, P3 采用 1*4 单排针引出, P4 采用 2*3 双排针引出, P5 采用 2*3 双排针引出,除去电源等相关管脚,能做普通 IO 的只有 28 个。

如果使用的时候 IO 口还不够用的话,可以考虑自行把摄像头模块接口座子换成排针,这样还可以引出: 12 个 IO 口。

24, RGB LCD 接口

这是 RGB LCD 接口(LCD),可以连接正点原子多种 RGB LCD 屏模块,并且支持触摸屏。为了节省 IO 口,采用的是 RGB565 格式,虽然降低了颜色深度,但是节省了 IO,且 RGB565 格式,程序上更通用一些。

25, 24C02 EEPROM

这是开发板板载的 EEPROM 芯片 (U6),容量为 2Kb,也就是 256 字节。用于存储一些掉电不能丢失的重要数据,比如系统设置的一些参数/触摸屏校准数据等。有了这个就可以方便的实现掉电数据保存。

26, TF 卡接口

这是开发板板载的一个 TF 卡接口(也叫 Micro SD 卡, 在板子背面), SDIO 方式驱动, TF

卡容量选择范围非常宽(最大可达 TB 级),有了这个接口,就可以满足海量数据存储的需求。

27, USB 串口/串口 0

这是 USB 串口同 ATK-MWS3S 模组的串口 0 进行连接的接口 (P4), 标号 U0RX 和 U0TX 是 USB 转串口的 2 个数据口 (对 CH340 来说), 而 TXD0 和 TXD0 则是 ATK-MWS3S 模组的串口 0 的两个数据口 (复用功能下)。它们通过跳线帽对接,就可以和连接在一起了,从而实现 ATK-MWS3S 模组的程序下载以及串口通信。

设计成 USB 串口,是出于现在电脑上串口正在消失,尤其是笔记本,几乎清一色的没有串口。所以板载了 USB 串口可以方便大家下载代码和调试。而在板子上并没有直接连接在一起,则是出于使用方便的考虑。这样设计,你可以把 DNESP32S3 开发板当成一个 USB 转 TTL 串口,来和其他板子通信,而其他板子的串口,也可以方便地接到 DNESP32S3 开发板上。

28, ATK 模块接口

这是开发板板载的一个正点原子通用模块接口(U3),目前可以支持正点原子开发的 GPS、蓝牙、LORA、手势识别、激光测距和 MPU6050 等模块,直接插上对应的模块,就可以进行开发。后续我们将开发更多兼容该接口的其他模块,实现更强大的扩展性能。

29, CH340C 芯片

这是开发板板载的 USB 转串口芯片,型号为: CH340C。有了这个芯片,我们就可以实现 USB 转串口,从而能实现 USB 下载代码,串口通信等。

1.2.2 DNESP32S3 IO 引脚分配

为了让大家更快更好的使用我们的 DNESP32S3 开发板,这里特地将 DNESP32S3 开发板主控模组: ATK-MWS3S 模组的 IO 资源分配做了一个总表,以便大家查阅。DNESP32S3 的 IO 引脚分配总表如表: 1.2.2.1 所示:

脚分配总表如表: 1.2.2.1 所示:					
DNESP32S3 IO 资源分配表					
引脚 标号	GPIO	连接资源		完全 独立	连接关系
4	IO4	LCD_DE	OV_D0	N	1, RGBLCD 的 DE 信号 2, 摄像头的 D0 信号
5	IO5	LCD_CLK	OV_D1	N	1, RGBLCD 的 CLK 信号 2, 摄像头的 D1 信号
6	IO6	LCD_B7	OV_D2	N	1, RGBLCD 的 B7 信号 2, 摄像头的 D2 信号
7	IO7	LCD_B6	OV_D3	N	1, RGBLCD 的 B6 信号 2, 摄像头的 D3 信号
8	IO15	LCD_B5	OV_D4	N	1, RGBLCD 的 B5 信号 2, 摄像头的 D4 信号
9	IO16	LCD_B4	OV_D5	N	1, RGBLCD 的 B4 信号 2, 摄像头的 D5 信号
10	IO17	LCD_B3	OV_D6	N	1, RGBLCD 的 B3 信号 2, 摄像头的 D6 信号
11	IO18	LCD_G7	OV_D7	N	1, RGBLCD 的 G7 信号 2, 摄像头的 D7 信号
12	IO8	LCD_G6 ADC_IN	REMOTE_OUT	N	1, RGBLCD 的 G6 信号 2, ADC 输入信号 3, 红外发送信号
13	IO19	USB_D-		N	USB D-信号
14	IO20	USB_D+		N	USB D+信号
15	IO3	LCD_G5	I2S_MCLK	N	1, RGBLCD 的 G5 信号 2, 音频的 MCLK 信号
16	IO46	LCD_G4	I2S_SCK	N	1, RGBLCD 的 G4 信号

					止点原于 DNESP32S3 开友板教程
					2, 音频的 SCK 信号
17	IO9	LCD_G3	I2S LRCK	N	1,RGBLCD 的 G3 信号
17	17	LCD_G3	125_LKCK	11	2,音频的 LRCK 信号
18	IO10	LCD_G2	I2S_SDIN	N	1,RGBLCD 的 G2 信号
10	1010	LCD_G2			2, 音频的 SDIN 信号
19	IO11	SPI_MOSI		N	SPI2 口的 MOSI 信号
20	IO12	SPI_SCK		N	SPI2 口的 SCK 信号
21	IO13	SPI_MISO		N	SPI2 口的 MISO 信号
22	IO14	LCD_R7	IAC CDOLLE	N	1,RGBLCD的 R7信号
22	1014		I2S_SDOUT		2,音频的 SDOUT 信号
23	IO21	LCD_R6	LCD_CS	N	1,RGBLCD的 R6信号
23	1021	LCD_K0	LCD_CS	11	2, SPILCD的CS信号
24	IO47	LCD_R5	OV_VSYNC	N	1, RGBLCD的 R5 信号
24	1047	LCD_K3	01_131110	19	2, 摄像头的 VSYNC 信号
25	IO48	LCD_R4	OV_HREF	N	1,RGBLCD的 R4信号
	1040	ECD_K4	O V_IIIdDI	14	2,摄像头的 HREF 信号
26	IO45	LCD_R3	OV_PCLK	N	1,RGBLCD的R3信号
	10.5	202_10	O V_T CEN	11	2,摄像头的 PCLK 信号
		IIC_INT			1, XL9555 的 INT 信号
27	IO0	BOOT	1WIRE_DQ	N	2,BOOT 按键信号
		2001			3,DHT11/DS18B20信号
28	IO35			Y	勿用
29	IO36			Y	勿用
30	IO37			Y	勿用
31	IO38	CT_SCL	OV_SCL	N	1,触摸 IC 的 SCL 信号
31	1030	C1_SCL	O V_SCL	11	2,摄像头的 SCL 信号
32	IO39	CT_SDA	OV_SDA	N	1, 触摸 IC 的 SDA 信号
32	100)	01_0011	0 1 _5211	11	2, 摄像头的 SDA 信号
33	IO40	CT_INT	LCD_DC	N	1, 触摸 IC 的 INT 信号
			202_20		2, SPILCD 的 DC 信号
34	IO41	IIC_SDA		N	IIC0的 SDA 信号
35	IO42	IIC_SCL		N	IIC0的 SCL 信号
36	RXD0	U0RXD		N	串口 RX 信号
37	TXD0	U0TXD		N	串口 TX 信号
38	IO2	TF_CS	REMOTE_IN	N	1, 触摸 IC 的 CS 信号
			TEMOTE_IIV	11	2, 红外发送信号
39	IO1	LED		N	LED 信号

表 1.2.2.1 DNESP32S3 IO 资源分配总表

表 1.2.2.1 中,引脚栏即 ATK-MWS3S 模组的引脚编号;GPIO 栏则表示 GPIO;连接资源栏表示了对应 GPIO 所连接到的网络;独立栏,表示该 IO 是否可以完全独立(不接其他任何外设和上下拉电阻)使用,通过一定的方法,可以达到完全独立使用该 IO,Y 表示可做独立 IO,N表示不可做独立 IO;连接关系栏,则对每个 IO 的连接做了简单的介绍。

该表在: A 盘 3, 原理图 文件夹下有提供 Excel 格式,并注有详细说明和使用建议,大家可以打开该表格的 Excel 版本,详细查看。

第二章 实验平台硬件资源详解

本章,我们将节将向大家详细介绍正点原子 DNESP32S3 各部分的硬件原理图,让大家对该开发板的各部分硬件原理有个深入理解,并向大家介绍开发板的使用注意事项,为后面的学习做好准备。

本章将分为如下两节:

- 2.1, 开发板原理图详解;
- 2.2, 开发板使用注意事项;

2.1 开发板原理图详解

2.1.1 模组

正点原子 DNESP32S3 开发板选择的是 ATK-MWS3S 模组作为主控模组,该模组功能非常强大,它拥有的资源包括: 384KB ROM、512KB SRAM、16MB FLASH、8MBP SRAM、高达240MHz 主频、支持 KPU 神经网络等,详见 1.2 节的表 1.2.1.1。

模组的原理如图 2.1.1.1 所示:

图 2.1.1.1 模组原理图

图中 U1 为我们的主控模组: ATK-MWS3S 模组。

2.1.2 引出 IO 口

正点原子 DNESP32S3 通过排针引出了 28 个 IO 口,如图 2.1.2.1 所示:

图 2.1.2.1 引出 IO 口

这是开发板 IO 引出端口,总共四组主 IO 引出口: P1、P3、P4 和 P5, P1 采用 2*12 单排针引出,P3 采用 1*4 单排针引出,P4 采用 2*3 双排针引出,P5 采用 2*3 双排针引出,除去电源等相关管脚,能做普通 IO 的只有 28 个。

2.1.3 USB 串口/串口 1 选择接口

正点原子 DNESP32S3 板载的 USB 串口和 ATK-MWS3S 模组的串口是通过两个跳线帽把 P4 的 1, 3 和 2, 4 脚连接起来的,如图 2.1.3.1 所示:

图 2.3.1.1 USB 串口/串口 1 选择接口

图中 TXD/RXD 是相对 CH340 来说的,也就是 USB 串口的发送和接收脚。而 U0RX 和 U0TX 则是相对于 ATK-MWS3S 模组来说的。这样,通过对接,就可以实现 USB 串口和 ATK-MWS3S 模组的串口通信了。

这样设计的好处就是使用上非常灵活。比如需要用到外部 TTL 串口和 ATK-MWS3S 模组通信的时候,只需要拔了跳线帽,通过杜邦线连接外部 TTL 串口,就可以实现和外部设备的串口通信了;又比如我有个板子需要和电脑通信,但是电脑没有串口,那么你就可以使用开发板的RXD 和 TXD 来连接你的设备,把我们的开发板当成 USB 转 TTL 串口用了。

2.1.4 LCD 模块&WIRELESS 接口

正点原子 DNESP32S3 板载的 LCD 模块接口电路如图 2.1.4.1 所示:

图 2.1.4.1 LCD 模块接口

图中 WIRELESS 是一个通用的液晶模块接口和无线模块接口,支持正点原子 NRF24L01/RFID 等无线模块和 SPILCD 模块。SPILCD 模块包括: 1.3、2.4 尺寸的 SPILCD 模块。

2.1.5 复位电路

正点原子 DNESP32S3 的复位电路如图 2.1.5.1 所示:

图 2.1.5.1 复位电路

因为 ATK-MWS3S 模组是低电平复位的,所以我们设计的电路也是低电平复位的,这样这个复位按钮不仅可以用来复位 ATK-MWS3S 模组,还可以复位 SPILCD。

2.1.6 EEPROM

正点原子 DNESP32S3 板载的 EEPROM 电路如图 2.1.6.1 所示:

图 2.1.6.1 EEPROM

EEPROM 芯片我们使用的是 24C02,该芯片的容量为 2Kb,也就是 256 个字节,对于我们普通应用来说是足够了的。当然,你也可以选择换大容量的芯片,因为我们的电路在原理上是兼容 24C02~24C512 全系列 EEPROM 芯片的。

这里我们把 A0~A2 均接地,对 24C02 来说也就是把地址位设置成了 0 了,写程序的时候要注意这点。

2.1.7 温湿度传感器接口

正点原子 DNESP32S3 板载的温湿度传感器接口电路如图 2.1.7.1 所示:

图 2.1.7.1 温湿度传感器接口

该接口(U4)支持 DS18B20/DS1820/DHT11 等单总线数字温湿度传感器。1WIRE_DQ 是传感器的数据线,该信号连接在 ATK-MWS3S 模组的 IOO 上。

2.1.8 光环境传感器

正点原子 DNESP32S3 板载了一个光环境传感器,可以用来感应周围光线强度、接近距离和红外线强度等,该部分电路如图 2.1.8.1 所示:

图 2.1.8.1 光敏传感器电路

图中的 U7 就是光环境传感器: AP3216C,它集成了光照强度、近距离、红外三个传感器功能于一身,被广泛应用于各种智能手机。该芯片采用 IIC 接口,IIC_SCL 和 IIC_SDA 分别连接 IO42 和 IO41 上。

2.1.9 红外接收头

正点原子 DNESP32S3 板载的红外接收头电路如图 2.1.9.1 所示:

图 2.1.9.1 红外接收头

LF0038 是一个通用的红外接收头,几乎可以接收市面上所有红外遥控器的信号,有了它,就可以用红外遥控器来控制开发板了。REMOTE_IN 为红外接收头的输出信号,该信号连接在在 ATK_MWS3S 模组的 IO2 上。

2.1.10 红外发送头

正点原子 DNESP32S3 板载的红外发送头电路如图 2.1.10.1 所示:

图 2.1.10.1 红外接收头

SI2302 是一个通用的红外发送头,可以作为红外遥控器发送红外信号,REMOTE_OUT 为红外发送头的输出信号,该信号连接在 ATK_MWS3S 模组的 IO8 上。

2.1.11 LED

正点原子 DNESP32S3 板载只有 1 个红色的 LED, 其原理图如图 2.1.11.1 所示:

图 2.1.11.1 LED

其中 PWR 是系统电源指示灯,为蓝色。LED 接在 IO1 上。

2.1.12 按键

正点原子 DNESP32S3 板载总共有 5 个输入按键,其原理图如图 2.1.12.1 所示:

图 2.1.12.1 输入按键

上图中的 KEY0~KEY3 按键都是通过 IO 扩展 IC 来读取按键的电平,BOOT 按键另一端连接在 ATK-MWS3S 模组的 IO0 上。

2.1.13 摄像头模块接口

正点原子 DNESP32S3 板载了一个摄像头模块接口,其原理图如图 2.1.13.1 所示:

图 2.1.13.1 OLED/摄像头模块接口

图中 P2 是接口可以用来连接正点原子摄像头模块。

2.1.14 有源蜂鸣器

正点原子 DNESP32S3 板载了一个有源蜂鸣器,其原理图如图 2.1.14.1 所示:

图 2.1.14.1 有源蜂鸣器

有源蜂鸣器是指自带了震荡电路的蜂鸣器,这种蜂鸣器一接上电就会自己震荡发声。而如果是无源蜂鸣器,则需要外加一定频率(2~5Khz)的驱动信号,才会发声。这里我们选择使用有源蜂鸣器,方便大家使用。

图中 Q1 是用来扩流,R7 则是一个限流电阻,避免在ATK_MWS3S 模组复位的时候,蜂鸣器可能发声的现象。BEEP 信号直接连接在XL9555 扩展IC 的 P0_3 管脚上面。

2.1.15 TF 卡接口

正点原子 DNESP32S3 板载了一个 TF 卡(小卡/Micro SD 卡)接口,其原理图如图 2.1.15.1 所示:

图 2.1.15.1 TF卡接口

图中 TF_CARD 为 TF 卡接口,采用 SPI 方式驱动,理论上最大速度可以达到 24MB/S,非常适合需要高速存储的情况。

注意: TF卡接口和 SPILCD接口共用一个 SPI接口。

2.1.16 ATK 模块接口

正点原子 DNESP32S3 板载了 ATK 模块接口,其原理图如图 2.1.16.1 所示:

图 2.1.16.1 ATK 模块接口

如图所示, U3 是一个 1*6 的排座,可以用来连接正点原子推出的一些模块,比如:蓝牙串口模块、GPS 模块、MPU6050 模块等。有了这个接口,我们连接模块就非常简单,插上即可工作。

2.1.17 多功能端口

正点原子 DNESP32S3 板载的多功能端口,是由 P3 构成的一个 4PIN 端口,其原理图如图 2.1.17.1 所示:

图 2.1.17.1 多功能端口

从上图,大家可能还看不出这个多功能端口的全部功能,别担心,下面我们会详细介绍。 上图的 1 号管脚连接电位器 RV1 的滑动端。通过将 1 号和 2 号管脚连接(使用跳线帽), 可以实现 ADC 输入功能。如果将 2 号和 3 号管脚连接(同样使用跳线帽),则可以实现红外发 送功能。

2.1.18 电源

正点原子 DNESP32S3 开发板板载的电源供电部分,其原理图如图 2.1.18.1 所示:

图 2.1.18.1 电源

图中 U11 和 U12 是一样的芯片,这是一款稳压芯片(LDO),型号为: RT9013-33GB,作

用是将 5V 电压稳压成 3.3V, 给开发板和 ES8388 提供 3.3V 电源。K1 是开发板的总电源开关,F1 为 1000ma 自恢复保险丝,用于保护 USB。

这里还有 USB 供电部分没有列出来,其中 VUSB 就是来自 USB 供电部分,我们将在 2.1.19 节进行介绍。

2.1.19 电源输入输出接口

正点原子 DNESP32S3 开发板板载了两组简单电源输入输出接口,其原理图如图 2.1.19.1 所示:

图 2.1.19.1 电源

图中,VOUT1 和 VOUT2 分别是 3.3V 和 5V 的电源输入输出接口,有了这 2 组接口,我们可以通过开发板给外部提供 3.3V 和 5V 电源了,虽然功率不大(最大 500ma),但是一般情况都够用了,大家在调试自己的小电路板的时候,有这两组电源还是比较方便的。同时这两组端口,也可以用来由外部给开发板供电。

图中 D2 和 D3 为 TVS 管,可以有效避免 VOUT 外接电源/负载不稳的时候(尤其是开发板外接电机/继电器/电磁阀等感性负载的时候),对开发板造成的损坏。同时还能一定程度防止外接电源接反,对开发板造成的损坏。

2.1.20 USB 通信接口

正点原子 DNESP32S3 板载了 USB 通信接口(USB_Slave/JTAG), 其原理图如图 2.1.20.1 所示:

图 2.1.20.1 USB_Slave 接口

USB_Slave 是 USB 从机接口,使用的是 Type C USB 座,通过 USB 线连接电脑可以用于 USB 从机通信,如: USB CDC、USB MSC、USB HID 等。

注意: USB_Slave 可以作为 JTAG 接口,用来下载和调试代码。

2.1.21 USB 串口

正点原子 DNESP32S3 开发板板载了一个 USB 串口, 其原理图如图 2.1.21.1 所示:

图 2.1.21.1 USB 串口

USB 转串口芯片,我们选择的是 CH340C,无需外部晶振,是 CH340G 的升级版本,非常好用。USB_UART 是一个 Type C USB 座,提供 CH340C 和电脑通信的接口,同时可以给开发板供电,VUSB 就是来自电脑 USB 的电源,USB_UART 是本开发板的主要供电口。

2.1.22 音频编解码器

正点原子 DNESP32S3 开发板板载 ES8388 高性能音频编解码芯片,其原理图如图 2.1.22.1 所示:

2.1.22.1 音频编解码芯片

ES8388 是一款高性能、低功耗、高性价比的立体声多媒体数字信号编解码器。该芯片内部集成了 24 位高性能 DAC&ADC,可以播放最高 192K@24bit 的音频信号,并且支持 3D 音效等功能。不仅如此,该芯片还结合了立体声差分麦克风的前置放大与扬声器、耳机和差分、立体声线输出的驱动,减少了应用时必要的外部组件,直接可以驱动耳机($16\Omega@40mV$)。

ES8388 内部不带功放,因此不能直接接喇叭,需要外加功放芯片。上图中的 U10 是一颗功放芯片,型号为: MD8002A,该芯片最大输出功率可达 3W,我们开发板所使用的喇叭为: 8Ω /1W,因此完全可以用该芯片驱动。

图中, SPK-和 SPK+连接板载的 8Ω 1W 小喇叭。MIC 是板载的咪头,可用于录音机实验,实现录音。PHONE 是 3.5mm 耳机输出接口,可以用来接耳机。LINE_IN 则是线路输入接口,可以用来外接线路输入,实现立体声录音。

该芯片采用 I2S 与 ATK-MWS3S 模组的 I2S 接口连接,图中: I2S_MCLK/I2S_SCK/I2S_LR CK/I2S_SDIN/I2S_SDOUT 分别接在 ATK-MWS3S 模组的: IO3/IO46/IO9/IO10/IO14 上。IIC_SC L 和 IIC_SDA 也是与 AP3216C 等传感器共用一个 IIC 接口。

2.1.23 RGB LCD 接口

DNESP32S3 核心板板载了 RGB LCD 接口, 此部分电路如图 2.1.23.1 所示:

图 2.1.23.1 RGB LCD 接口

图中,J1(RGBLCD)就是 RGB LCD 接口,采用 RGB565数据格式,并支持触摸屏。该接口仅支持 RGB 接口的液晶(不支持 MCU 接口的液晶),注意本开发板仅支持正点原子 4.3 寸 RGB 屏。

2.2 开发板使用注意事项

为了让大家更好的使用正点原子 DNESP32S3 开发板,我们在这里总结该开发板使用的时候尤其要注意的一些问题,希望大家在使用的时候多多注意,以减少不必要的问题。

- 1, 1个 USB 供电最多 500mA,且由于导线电阻存在,供到开发板的电压,一般都不会有 5V,如果使用了很多大负载外设,比如 SPILCD 和多个外设一起工作,那么可能引起 USB 供电不够,所以作者建议可以同时插 2个 USB 口,这样供电可以更足一些。
- 2, 当你想使用某个 IO 口用作其他用处的时候,请先看看开发板的原理图,该 IO 口是否有连接在开发板的某个外设上,如果有,该外设的这个信号是否会对你的使用造成干扰,先确定无干扰,再使用这个 IO。比如 IO8 就不怎么适合用做输入检测,因为他接了红外发送传感器,随时可能会受到干扰。
- 3, 开发板上的跳线帽比较多,大家在使用某个功能的时候,要先查查这个是否需要设置 跳线帽,以免浪费时间。

至此,本手册的实验平台(正点原子 DNESP32S3 开发板)的硬件部分就介绍完了,了解了整个硬件对我们后面的学习会有很大帮助,有助于理解后面的代码,在编写软件的时候,可以事半功倍,希望大家细读! 另外正点原子开发板的其他资料及教程更新,都可以在技术论坛www.openedv.com/forum.php 下载到,大家可以经常去这个论坛获取更新的信息。