Preconditioning of systems of partial differential equations[1]

Chenxiao Tian

School of Mathematical Sciences, Peking University

December 20, 2020

Outline

- Mrylov Space Methods and Preconditioning
 - Krylov Space Methods
 - Preconditioning

- Example of Second-order Elliptic operaters
- 3 Example of Parameter-dependent Problem

Assumption

Let X be a separable, real Hilbert space, with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|\cdot\|$, and assume that $\mathscr{A}: X \to X$ is a symmetric isomorphism on X, i.e.

$$\mathscr{A}, \mathscr{A}^{-1} \in \mathscr{L}(X, X).$$

Linear System

Find $x \in X$ such that

$$\mathscr{A}x = f$$

where the right-hand side $f \in X$ is given.

Definition

If the operator $\mathscr A$ and the right-hand side f are given, then the Krylov space of order m is given as

$$K_m = K_m(\mathscr{A}, f) = \operatorname{span}\{f, \mathscr{A}f, \dots, \mathscr{A}^{m-1}f\}.$$

Solution and Approximation

If the operator $\mathscr A$ is SPD, the unique solution $x \in X$ of the linear system can be characterized as

$$x = \arg\min_{y \in X} E(y),$$

where

$$E(y) = \langle \mathscr{A}y, y \rangle - 2\langle f, y \rangle.$$

The approximation $x_m \in K_m$ is defined as

$$x_m = \underset{y \in K_m}{\operatorname{arg \, min}} E(y),$$

Alternatively, $x_m \in K_m$ solves the Galerkin system

$$\langle \mathscr{A} x_m, y \rangle = \langle f, y \rangle, \qquad y \in K_m.$$

This leads to the conjugate gradient method.

Theorem

If the operator $\mathscr{A}:X\to X$ is a SPD isomorphism. If the sequence $\{x_m\}$ is generated by the conjugate gradient method, then

$$\|x - x_m\|_{\mathscr{A}} \leqslant 2\alpha^m \|x - x_0\|_{\mathscr{A}},$$

where
$$\|x\|_{\mathscr{A}} = \langle x, \mathscr{A}x \rangle$$
, and $\alpha = (\sqrt{\kappa(\mathscr{A})} - 1)/(\sqrt{\kappa(\mathscr{A})} + 1)$.

Solution and Approximation

If the operator $\mathscr A$ is symmetric, the unique solution $x\in X$ of the linear system can be characterized as

$$x = \arg\min_{y \in X} \|\mathscr{A}y - f\|^2.$$

The approximation $x_m \in K_m$ is defined as

$$x = \arg\min_{y \in K_m} \|\mathscr{A}y - f\|^2.$$

Theorem

If the operator $\mathscr{A}: X \to X$ is a symmetric isomorphism. If the sequence $\{x_m\}$ is generated by the minimum residual method, then

$$\|\mathscr{A}(x-x_{2m})\| \leqslant 2\alpha^m \|\mathscr{A}(x-x_0)\|,$$

where
$$\alpha = (\kappa(\mathscr{A}) - 1)/(\kappa(\mathscr{A}) + 1)$$
.

Example

Laplace equation

Let Ω be a bounded domain in \mathbb{R} . Consider the Laplace equation with Dirichlet boundary condition

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Example

Weak Formulation

Denote

$$X = H_0^1(\Omega) \subset L^2(\Omega) \subset H^{-1}(\Omega) = X^*.$$

Define $\mathscr{A}: X \to X^*$ by

$$\langle \mathscr{A}u, v \rangle = \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x, \qquad u, v \in X.$$

The weak formulation for the problem is

$$\mathcal{A}u = f$$
,

where the right-hand side $f \in X^*$ is given, and the unknown $u \in X$.

Preconditioning

- In fact, the Krylov space method can't be used directly when solving the problem above.
- Since the operator $\mathscr A$ map functions in X out of the space, and has unbounded spectrum.
- How can we solve the problem with the Krylov space method?
- Now we introduce a preconditioner.

Preconditioning

Assumptions

- **1** X is a Hilbert space, and X^* is the dual of X.
- ② $\langle \cdot, \cdot \rangle$ is the duality pairing between X^* and X, while $\langle \cdot, \cdot \rangle_X$ is the inner product on X.
- **3** The operator $\mathscr{A} \in \mathscr{L}(X,X^*)$ is an isomorphism mapping. Also \mathscr{A} is symmetric in the sense that $\forall x,y \in X$, $\langle \mathscr{A}x,y \rangle = \langle \mathscr{A}y,x \rangle$.

Linear System

Find $x \in X$ such that

$$\mathscr{A}x = f$$
,

where the right-hand side $f \in X^*$ is given.

Preconditioning

Defination

The preconditioner $\mathscr{B}: X^* \to X$ for \mathscr{A} is an isomorphism mapping. Furthermore, \mathscr{B} is SPD in sence that $\langle \cdot, \mathscr{B} \cdot \rangle$ is an inner product on X^* .

Remark

- The preconditioner is a Riesz operator mapping X^* to X.
- $(\mathscr{B}^{-1}\cdot,\cdot)$ is an inner product on X.
- **③** The operator $\mathscr{BA} \in \mathscr{L}(X,X)$ is an isomorphism mapping X to itself.
- The operator $\mathscr{BA} \in \mathscr{L}(X,X)$ is symmetric in the inner product $\langle \cdot, \mathscr{B} \cdot \rangle$ on X, but may not be symmetric in the original inner product $\langle \cdot, \cdot \rangle_X$.
- **③** If the operater \mathscr{A} is SPD. Then $\mathscr{B}\mathscr{A}$ is SPD with respect to the inner product $\langle \mathscr{B}^{-1} \cdot, \cdot \rangle$ and $\langle \mathscr{A} \cdot, \cdot \rangle$.
- The preconditioner \(\mathscr{B} \) is not unique.

Example of Second-order Elliptic operaters

Example of Second-order Elliptic operaters

The elliptic operator $\mathscr{A}: H^1_0(\Omega) \to H^{-1}(\Omega)$ defined by

$$\langle \mathscr{A}u,v\rangle = a(u,v) = \int_{\Omega} (A\nabla u)\cdot \nabla v\,\mathrm{d}x, \qquad u,v\in H^1_0(\Omega).$$

Here, we assume that $A=A(x)\in\mathbb{R}^{n\times n}$ is uniformly SPD, i.e. there are positive constants c_0 and c_1 such that

$$c_0 |\xi|^2 \leqslant \xi^T A(x) \xi \leqslant c_1 |\xi|^2, x \in \Omega, \xi \in \mathbb{R}^n.$$

Then the preconditioner could be

$$\mathscr{B} = (-\Delta)^{-1} : H^{-1}(\Omega) \to H_0^1(\Omega).$$

The condition number of $\mathscr{B}\mathscr{A}$ satisfies $\kappa(\mathscr{B}\mathscr{A}) \leqslant c_1/c_0$.

Example of Parameter-dependent Problem

Reaction-diffusion equation

Consider the boundary value problem

$$\begin{cases} -\varepsilon^2 \Delta u + u = f, & \text{in } \Omega. \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$

where $\varepsilon > 0$ is a small parameter.

- Our goal is to produce a preconditioner \mathscr{B} for the operator \mathscr{A} such that the condition number $\kappa(\mathscr{B}\mathscr{A})$ could be uniformly bounded with respect to the parameters.
- The natural norm for the solution u is

$$||u||_{I^2 \cap \varepsilon H_0^1} = (||u||_0^2 + \varepsilon^2 ||\nabla u||_0^2)^{1/2},$$

where $\|\cdot\|$ denotes the norm in $H^s(\Omega)$.

Example of Parameter-dependent Problem

• We want to find a norm for f, such that

$$\|u\|_{l^2\cap\varepsilon H_0^1}\leqslant c\,\|f\|_{?}\,,$$

where the constant c is independent of ε . Formally we have

$$u = (I - \varepsilon^2 \Delta)^{-1} f, \qquad ||u||_{I^2 \cap \varepsilon H_0^1} = \langle (I - \varepsilon^2 \Delta) u, u \rangle.$$

Notice

$$\langle (I - \varepsilon^2 \Delta) u, u \rangle = \langle f, (I - \varepsilon^2 \Delta)^{-1} f \rangle$$

$$= \langle (I - \varepsilon^2 \Delta)^{-1} f, (I - \varepsilon^2 \Delta)^{-1} f \rangle$$

$$+ \varepsilon^2 \langle (-\Delta) (I - \varepsilon^2 \Delta)^{-1} f, (I - \varepsilon^2 \Delta)^{-1} f \rangle.$$

Example of Parameter-dependent Problem

• We can define an ε -dependent norm on f by

$$||f||_{*\varepsilon}^{2} = \langle f, (I - \varepsilon^{2} \Delta)^{-1} f \rangle$$

$$= \inf_{f = f_{0} + f_{1}, f_{0} \in L^{2}, f_{1} \in H^{-1}} (||f_{0}||_{0}^{2} + \varepsilon^{-2} ||f_{1}||_{-1}^{2}).$$

Then

$$||u||_{I^2\cap\varepsilon H_0^1}=||f||_{*\varepsilon}^2.$$

• The preconditioner is $(I - \varepsilon^2 \Delta)^{-1}$.

Reference

K. A. Mardal and R. Winther, "Preconditioning discretizations of systems of partial differential equations," *Numerical Linear Algebra with Applications*, vol. 18, no. 1, pp. 1–40, 2011.