Package 'fsvm'

January 19, 2022

```
Title Fine Scale Vegetation Modeling
```

Version 2.0.0

Description This package contains functions supporting the creation and maintenance of Idaho Department of Fish and Game's Fine Scale Vegetation Modeling project. This includes loading and formatting field data as well as training and predicting from machine learning models. These functions are available as GUI in the IDFG Shiny Application 'Plant Species Locator'.

Depends R (>= 4.0.0)

SystemRequirements Python27, ArcGIS10.6, 32-bit R (for some functions)

License file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

```
Imports reticulate (>= 1.18), caret (>= 6.0.86), data.table (>= 1.14.0), dplyr (>= 1.0.5), foreign (>= 0.8.81), rgdal (>= 1.5.23), stringr (>= 1.4.0), taxize (>= 0.9.99), sp (>= 1.4.5), sf (>= 0.9.8), pROC (>= 1.17.0.1), rpart (>= 4.1.15), ranger (>= 0.12.1), caTools (>= 1.18.2), geosphere (>= 1.5.10), rgeos (>= 0.5.5), DBI (>= 1.1.1), reshape2 (>= 1.4.4), purrr (>= 0.3.4), here (>= 1.0.1), skimr (>= 2.1.3), gridExtra (>= 2.3), grid (>= 4.0.0), rlang (>= 0.4.10), lubridate (>= 1.7.10), doParallel (>= 1.0.16), foreach (>= 1.5.1), ggplot2 (>= 3.3.3), readr (>= 1.4.0), tidyr (>= 1.1.3), terra, future, furrr, RPyGeo, progressr
```

Suggests nodeHarvest, HDclassif, knitr, rmarkdown, bartMachine, kohonen, gbm, glmnet, Matrix, e1071, xgboost, arm, kernlab, MASS, sda, nnet, naivebayes, ipred, earth, brnn, frbs, elasticnet, monomyn, evtree

VignetteBuilder knitr

NeedsCompilation no

Author Robert Ritson [aut, cre],
Erin Roche [aut],
Wildlife Management Institute [ctr],
Idaho Department of Fish and Game [own, cph]

Maintainer Robert Ritson < robert.ritson@idfg.idaho.gov>

R topics documented:

Index

assignLPI	3
assign_ecoregions	4
assign_forage	4
assign_Lpi	5
assign_Plot	6
as_fsvm	7
as_fsvm2	8
finalizeFSVM	9
ForageSpecies	10
fsvm_dummy	10
fsvm_map	11
fsvm_nutrition	12
fsvm_predict	13
fsvm_train	14
fsvm_train_lite	14
fsvm_train_ranger	15
fsvm_train_ranger2	16
getBiomass	16
getCentroidMap	17
getCovariates	17
getCovariates_24k	18
getGMUExtent	19
getModels	19
getModels_ranger	21
getNutrition	22
getPredCovs	23
getPredCovs2	23
getPredictions	24
getSQLData	25
getSummary	26
getSurvey123	26
fwis_resolve	27
instaload	28
pi2fsvm	28
mapFSVM	29
predictFSVM	29
py_extract_quadpolyID	30
py_get_centroids	32
rateROC	33
rectify_taxa	33
select_quads	34
set_extent_manual	34
usda_resolve	35

37

assignLPI 3

assignLPI	Assign GPS points along LPI Survey Interval

Description

Assigns GPS points at each sampled point within a line point intercept survey. Accepts survey units in centimeters, meters, feet, or inches.

Usage

```
assignLPI(
    lpi = dat,
    x = "Longitude",
    y = "Latitude",
    ID = "TranKey",
    interval = "PointInterval",
    n = "PointsCompleted",
    units = "cm",
    azimuth = "Azimuth",
    direction = "Direction",
    datum = c("WGS84", "IDTM")
)
```

Arguments

lpi	A data frame containing a raw line point intercept survey
X	A character vector corresponding with the X coordinate of a GPS point.
у	A character string corresponding with the Y coordinate of a GPS point.
ID	A character string corresponding with the unique identifier of a survey.
interval	A character string corresponding with the interval used between points within the LPI survey.
n	A character string corresponding with the total number of points completed in an LPI survey.
units	A character string corresponding with the units of measurement used within the LPI survey. Options include centimeters ("cm"), meters ("m"), feet ("ft"), or inches ("in").
azimuth	A character string corresponding with the column containing the azimuth.
direction	A character string corresponding with the column containg the direction.
datum	A character string corresponding with the datum of the location coordinates."WGS84" and "IDTM" will automatically use the proper proj4strings for those datums. If your coordinates are in a different datum, you must provide the valid proj4string to this parameter.

Value

A data frame containing the assigned coordinates of each surveyed point along an LPI survey.

4 assign_forage

assign_ecoregions

Assign Bailey's Eco-Region to field data

Description

Converts field data into a spatial points data frame and assigns eco-region based on intersection with an eco-region shapefile (internal). Uses Idaho Transverse Mercator projection.

Usage

```
assign_ecoregions(
  DAT = field_data,
  lib_loc = "//hqwildstat/C$/Program Files/R/R-4.0.5/library"
)
```

Arguments

DAT A data frame containing at minimum two columns named "Easting" and "Nor-

thing". These are required for coercing the field data into a SpatialPoints-DataFrame (package::sp) so a geometric intersection can be performed. Best

behavior if coordinates already in Idaho Transverse Mercator projection.

lib_loc A character string corresponding with the file path to the R library.

Value

Returns a new data frame containing original data provided with the addition of an 'EcoCode' column containing a string corresponding to an eco-region (Bailey's) for each coordinate.

assign_forage

Assign Forage Utility for Game Species

Description

This function uses the 'ForageSpecies' object within fsvm to assign the forage utility of plant species for each target game species. Target game species currently include mule deer, elk, moose, and sage grouse. The forage species currently contains 821 genra, species, subspecies, and varieties of plants documented to be useful sources of forage for the four target game species.

Usage

```
assign_forage(
  fielddata = fielddata,
  target = "AcceptedName",
  lib_loc = "//hqwildstat/C$/Program Files/R/R-4.0.5/library",
  sel = "all"
)
```

assign_Lpi 5

Arguments

fielddata	A data frame containing the plant species to be classified.
target	A character string corresponding with the column name containing the plant species names. Recommended to use 'AcceptedName' since the forage species in the function will be selected by the accepted name assigned by rectify_taxa.
lib_loc	A character string corresponding with the file path to the R library.
sel	A character string for filtering the output by forage utility for target game species. Options currently include "all (default)" for no filtering, "forage only" to return only forage species for any target game species, "mule deer", "elk", "moose", and "sage grouse".

Value

A data frame containing the initial data with the appended columns 'MuleDeer', 'SageGrouse', 'Elk', and 'Moose' each containing a "Y" or "N" corresponding with their forage utility.

assign_Lpi

Assign GPS points along LPI Survey Interval

Description

Assigns GPS points at each sampled point within a line point intercept survey. Accepts survey units in centimeters, meters, feet, or inches.

Usage

```
assign_Lpi(
  lpi = dat,
  x = "Longitude",
  y = "Latitude",
  ID = "ParentGlobalID",
  interval = "Point Interval (cm)",
  n = "Points Completed",
  units = "cm",
  azimuth = "NA",
  coord.type = c("Start", "End", "NA"),
  datum = c("WGS84", "IDTM")
)
```

Arguments

lpi	A data frame containing a raw line point intercept survey
X	A character vector corresponding with the X coordinate of a GPS point.
у	A character string corresponding with the Y coordinate of a GPS point.
ID	A character string corresponding with the unique identifier of a survey.
interval	A character string corresponding with the interval used between points within the LPI survey.
n	A character string corresponding with the total number of points completed in an LPI survey.

6 assign_Plot

A character string corresponding with the units of measurement used within the LPI survey. Options include centimeters ("cm"), meters ("m"), feet ("ft"), or inches ("in").

A number between 0-360 corresponding with the cardinal direction of the line (if only coordinate point is provided). If multiple points were recorded for the line (Start, Middle, and End), leave use default character string "NA".

Coord.type

A character string corresponding with the type of coordinate provided if only one location is recorded for an LPI survey. "NA" is used if multiple points have already been recorded for an LPI. "Start" uses the provided azimuth number unaltered while "End" calculates the reverse direction (to coincide with the sampled line) to calculate the starting point based on line length.

A character string corresponding with the datum of the location coordinates. "WGS84"

A character string corresponding with the datum of the location coordinates."WGS84" and "IDTM" will automatically use the proper proj4strings for those datums. If your coordinates are in a different datum, you must provide the valid proj4string

to this parameter.

Value

A data frame containing the assigned coordinates of each surveyed point along an LPI survey.

assign_Plot

Assign polygon dimensions to a sample plot

Description

Creates a polygon for a sampled plot. Two types are currently accepted: Cover plots ("Macro") and Simple Veg Survey location ("SVS"). Macro cover plots are assumed to follow standard dimensions of a 60 meter baseline and 30 meter transects, assumes provided coordinates correspond with the baseline start and must include records for the baseline heading and transect headings; plot is drawn off of the first coordinate with the specified baseline heading and length. NAs for locations or headings are not tolerated in the function and should be removed beforehand. SVS assumes a circular region of a specified radius is sampled, drawing the specified buffer from plot center (assumed to be the provedid coordinates). Also performs unit conversions to meters "m" from centimeter, feet, or inches.

Usage

```
assign_Plot(
  dat = dat,
  x = "Longitude",
  y = "Latitude",
  ID = "GlobalID",
  size = "Radius",
  units = "m",
  type = c("SVS", "Macro"),
  proj = "WGS84",
  base_dir = "BaseHeading",
  tran_dir = "TransectHeading",
  base_len = 60,
  tran_len = 30
)
```

as_fsvm 7

Arguments

_	
dat	A data frame containing field plot coordinates and information.
x	A character string corresponding with the x coordinate in the data frame.
У	A character string corresponding with the y coordinate in the data frame.
ID	A character string corresponding with the unique identifier of each plot in the data frame.
size	Only required for type "SVS". A character string corresponding with the plot size of the buffer in the data frame.
units	A character string corresponding with the measurement units of the plot size or baseline and transect lengths. Default is meters ("m"), but arguments also accepted include centimeters ("cm"), feet ("ft"), and inches ("in").
type	A character string corresponding with the type of plot (polygon) to be drawn. Currently, only accepted arguments are "SVS" for circular buffers around a provided coordinate or "Macro" for rectangular macro cover plots beginning at the provided coordinate with and valid values for baseline heading (base_dir), transect heading (tran_dir), baseline length (base_len), and transect length (tran_len).
proj	A character string corresponding with current projection of the provided coordinates. "WGS84" and "IDTM" will automatically provide thier valid proj4strings. If a different projection is needed, a valid proj4string corresponding with with the projection must be provided.
base_dir	Only required for type "Macro". A character string corresponding with the baseline heading (in degrees) in the dataframe.
tran_dir	Only required for type "Macro". A character string corresponding with the transect heading (in degrees) in the dataframe.
base_len	Only required for type "Macro". Default value of 60 meters for a typical macro cover plot. Other numeric values may be used if a different macro protocol has been used.
tran_len	Only required for type "Macro". Default value of 30 meters for a typical macro cover plot. Other numeric values may be used if a different macro protocol has been used

Value

A 'sf' data frame containing the original data frame with geometery of the created polygons and projected IDTM coordinates appended.

as_fsvm	Format field data for machine learning analysis

Description

Creates a response variable for machine learning models based on whether data was derrived from cover plot methodology or line point intercept methodology. The field data frame should contain a column indicating methodology ("COVER" or "LPI") used to obtain each observation. This column name should be provided to the "DataType" parameter. Observations obtained using the "COVER" methodology should also contain values in a separate column corresponding with percent cover. The column name containing this information should be provdied to the "Prcnt_C" parameter.

8 as_fsvm2

Usage

```
as_fsvm(
  fielddata = fielddata_quadpolyID,
  covariates = covariates_quadpolyID,
  group = "G2",
  tax.list = "Artemisia tridentata"
)
```

Arguments

fielddata A data frame containing field data of plant species observations.

covariates A data frame containing covariate data of field observations.

group A character string corresponding with the type of model you want. Options are

"G1", "G2", "G3", or "G4" for genus, species, subspecies or variety.

tax.list A character string corresponding with the taxonomic name for which you want

to model.

Value

Returns an 'fsvm data' object, a list of five data frames: LpiCov, ObsData_plots, ObsData_pts, PLOTS, and PTS. The function 'fsvm_train()' uses the outputs 'PLOTS' AND 'PTS' for training the machine learning models. 'LpiCov' contains fielddata with a populated 'ResponseVariable' column based on the provided taxonomy inforation and 'DataType'. 'ObsData_plots' and 'ObsData_pts' correspond respectively with 'LpiCov' split by 'COVER' and 'LPI' DataTypes. 'PLOTS' and 'PTS' are the preppared data frames for machine learning analysis with 'PLOTS' containing 'Total', 'Prop', and 'Present' columns while 'PTS' contains 'Total', 'Hit', 'Present', and 'Prop' columns.

as_fsvm2

Format field data for random forest modeling

Description

Creates response variable for modeling based on survey methodology ("COVER" or "LPI" for 'DataType'). "COVER" type data uses column 'PercentCover' as response variable while "LPI" type data is given '1' (for present).

Usage

```
as_fsvm2(
  fielddata = fielddata_quadpolyID,
  covariates = covariates_quadpolyID,
  group = "G2",
  tax.list = "Artemisia tridentata"
)
```

9 finalizeFSVM

Arguments

fielddata A data frame containing field data of plant species observations. covariates A data frame containing covariate data of field observations. A character string corresponding with the type of model you want. Options are group "G1", "G2", "G3", or "G4" for genus, species, subspecies or variety.

tax.list A character string corresponding with the taxonomic name for which you want

to model.

Value

Returns an 'fsvm data' object, a list of five data frames: LpiCov, ObsData_plots, ObsData_pts, PLOTS, and PTS. The fsvm_train_ functions use the outputs 'PLOTS' AND 'PTS' for training the machine learning models. 'LpiCov' contains fielddata with a populated 'ResponseVariable' column based on the provided taxonomy inforation and 'DataType'. 'ObsData_plots' and 'Obs-Data_pts' correspond respectively with 'LpiCov' split by 'COVER' and 'LPI' DataTypes. 'PLOTS' and 'PTS' are the prepared data frames for machine learning analysis with 'PLOTS' containing 'Total', 'Prop', and 'Present' columns while 'PTS' contains 'Total', 'Hit', 'Present', and 'Prop' columns.

finalizeFSVM

Finalize FSVM SDM predictions

Description

Add QuadPolyID and Shape information back into outfile of predictFSVM

Usage

```
finalizeFSVM(
 outpath = "outpath from predictFSVM",
 shppath = "D:/Fine scale vegetation analysis/dbases_4modeling/24kpolys",
 ncore = 2
)
```

Arguments

outpath The file path of saved files from predictFSVM

shppath The file path to the 24k Quad Covariate RDS files (dbases_4modeling/24kpolys)

ncores The number of cores to utilize

Value

Resaves original files from predictFSVM with QuadPolyID and Shape info added.

10 fsvm_dummy

ForageSpecies

Forage utility of plant species for target game species.

Description

A dataset containing the utility of over 3,000 Idaho plant species to four important game species.

Usage

ForageSpecies

Format

A data frame with 3142 rows and 8 variables

Genus.corrected corrected plant genus name

species.corrected corrected plant species name, specific epithet only

subspecies.variant.corrected corrected plant subspecies or variant name, infraspecific epithet only

SpName full taxonomic name of plant species, Genus specific epithet infraspecific epithet

MuleDeer whether mule deer use the plant taxa as forage, Y or blank

SageGrouse whether sage grouse use the plant taxa as forage, Y or blank

Elk whether elk use the plant taxa as forage, Y or blank

Moose whether moose use the plant taxa as forage, Y or blank

Source

Idaho Department of Fish and Game

fsvm_dummy

Dummy data of fine scale vegetation modeling field data.

Description

A data set containg selections of field data for illustrating fsvm workflow.

Usage

fsvm_dummy

fsvm_map

Format

A data frame containing 126 rows and 10 variables

TranKey Unique transect identifier

PlotKey Unique plot identier along a transect

Source Where the data originally came from

DataType The methodology used to collect the data

Smpl_Yr The year in which the data was collected

Easting The X coordinate of the location

Northing The Y coordinate of the location

Scientific_Name_Complete The full latin binomial or trinomial

Prcnt_C Percent cover of an observation

Count Presence count of an observation

Source

Idaho Department of Fish and Game

fsvm_map

Create a map of species distribution predictions

Description

Create a map of species distribution predictions

Usage

```
fsvm_map(
  folder = "G2",
  type = "presence",
  file_path = here::here(),
  centroid_filepath = "A:/Fine scale vegetation analysis/fsvm_package/Centroids.RDS",
  file_name = "56_73A_Pseudoroegneria_spicata_NA.csv",
  title
)
```

Arguments

folder A character string of the folder group containing the target species model. Op-

tions are "G1", "G2", "G3", or "G4".

type A character string of the model type. Options are either "presence" or "per-

cent_cover".

file_path A character string corresponding with the file path leading to the 'results' folder

containing the target models.

centroid_filepath

A character string corresponding with the file path leading to the 'Centroids.RDS' folder.

12 fsvm_nutrition

file_name A character string of the target species model. Either a '.csv' file located in the

specified file paths or an R 'fsvm_predict' object.

An optional character string containing the title of the output plot, used if file_name title

is an R object.

Value

A ggplot grid object containing two maps. For "presence" data its probability of presence (not discrete) and presence (discrete) and for "percent_cover" its probability with and without limits

fsvm_nutrition

Calculate nutritional index for a species

Description

Gathers Nutritional Content database, RAP Biomass prediction, and Presence SDM for the specified plant species and calculates the nutritional index for each eCognition polygon within the extent of the SDM. NI = Prob.pres x Biomass x NutritionContent

Usage

```
fsvm_nutrition(
  sp = "Artemisia tridentata",
  title = "EOE_",
  folder = "G2",
 nu.val = "Mean_CrudeProtein",
 bio.val = "Mean_kgha",
 filepath = "A:/Fine scale vegetation analysis/understory_veg_model/ranger/results/",
  nutrition_dir = "A:/Fine scale vegetation analysis/fsvm_package/NutritionContent_bySpecies.rds"
 biomass_dir = "A:/Fine scale vegetation analysis/fsvm_package/Biomass.RDS"
)
```

Arguments

sp	A character string corresponding with a species scientific name.
title	A character string corresponding with the prediction title (typically the predicition extent).
folder	A character string corresponding with the folder (species name type) containing the prediction SDM results.
nu.val	A character string corresponding with the nutrtitional content value to use for the nutritional index calculation. Options include "Mean_CrudeProtein", "Mean_ODM", "Mean_IVDMD Default is "Mean_CrudeProtein".
bio.val	A character string corresponding with the biomass value to use for the nutritional index calculation. Options include "Mean_kgha", "Mean_lbsac", "Mean_kg". Default is "Mean_kgha".
filepath	A character string corresponding with the file path containing SDM prediction

string corresponding with the file path containing SDM prediction

RData file.

nutrition_dir A character string corresponding with the file path to the NutritionContent.rds

fsvm_predict 13

biomass_dir A character string corresponding with the file path to the folder containing the Biomass rds files.

Value

A data frame containing QuadPolyID, Presence probability, biomass, nutritional content, and nutritional index for the selected plant species.

fsvm_predict

Get predictions from trained machine learning models

Description

Selects best model from each output folder of 'fsvm_train()' and refits it with the entire data set. Function uses output list from 'getPredCovs()'

Usage

```
fsvm_predict(
  pred_covs = predcovs,
  model = mod_file,
  fsvm.dat = NA,
  fsvm.res = NA,
  file_path = "0:/Research",
  folder = "G2",
  type = "presence"
)
```

Arguments

model	A character sting corresponding to the file path containing a model output from either 'fsvm_train()' or 'getModels()'. File is a *.RData corresponding to a modeled taxonomic group (ex."Genus_species_subspecies.RData") and contains two objects: "fsvm.dat" and "fsvm.res" which contain the training data and results of model training respectively. If using objects already within R global environment, use the parameters 'fsvm.dat' and 'fsvm.res'.
fsvm.dat	The data output object from as_fsvm. An optional input to pass the object directly from R to the function instead of loading from a file.
fsvm.res	The result output object from fsvm_train. An optional input to pass the object directly from R to the function instead of loading from a file.
file_path	A character string corresponding with the file path containing the trained models.
folder	A character string corresponding with folder containing the model training file. ("G1","G2","G3","G4")
type	A character string corresponding with modeling type ("presence" or "percent_cover").
predcovs	A list of data frames returned from 'getPredCovs()'

Value

A list containing prediction model ('pred_model'), the prediction ('pred') and a character string of the best model ('best_model').

14 fsvm_train_lite

See Also

'fsvm_train', 'getModels', and 'getPredCovs'

fsvm_train

Train fine scale vegetation models with machine learning

Description

Trains the machine learning models on the provided formatted field data for 29 unique algorithms. Presence data is trained on glm, gbm, glmnet, rf, glmnet_class, xgboost, som, nodeHarvest, bart, bayesian glm, svmPoly, svmRadial, lda, sda, nnet, naive_bayes, and hdda. Percent cover data is trained on lm, glm, gbm, glmnet, rf, xgboost, rpart, rpart2, treebag, bagEarth, som, nodeHarvest, bart, bayesian glm, svmPoly, svmRadial, nnet, brnn, denfis, lasso, blasso, bridge, avnnet. This function relies on the 'caret' package.

Usage

```
fsvm_train(DAT = DAT, type = c("presence", "percent_cover"))
```

Arguments

DAT An 'fsvm data' object produced from as_fsvm

type A character string corresponding with model type. "presence" corresponds with

presence/absence oriented machine learning models and "percent_cover" corre-

sponds with proportion oriented machine learning models.

Value

An 'fsvm model' object, a list containing five lists: DATA, CONTROL, MODELS, COMPARE, and BEST. DATA contains the training data set, CONTROL contains the definitions of how the models were defined to function, MODELS contains the list of machine learning models fitted, COMPARE contains the model summaries and plots, and BEST contains the best fitted model

fsvm_train_lite

Train fine scale vegetation models with machine learning - LITE

Description

Trains the machine learning models on the provided formatted field data for 25 unique algorithms*. Presence data is trained on glm, gbm, glmnet, rf, glmnet_class, xgboost, som, bayesian glm, svm-Poly, svmRadial, lda, sda, and naivebayes. Percent cover data is trained on lm, glm, gbm, glmnet, rf, xgboost, rpart, rpart2, treebag, bagEarth, som, bayesian glm, svmPoly, svmRadial, nnet, brnn, denfis, lasso, blasso, bridge, and evtree. Algorithms are implemented using the 'caret' package. *Same as fsvm_train but without 'BART', 'nodeHarvest', 'hdda', and 'avnnet'

Usage

```
fsvm_train_lite(DAT = DAT, type = c("presence", "percent_cover"))
```

fsvm_train_ranger 15

Arguments

DAT An 'fsvm data' object produced from as_fsvm

type A character string corresponding with model type. "presence" corresponds with

presence/absence oriented machine learning models and "percent cover" corre-

sponds with proportion oriented machine learning models.

Value

An 'fsvm model' object, a list containing five lists: DATA, CONTROL, MODELS, COMPARE, and BEST. DATA contains the training data set, CONTROL contains the definitions of how the models were defined to function, MODELS contains the list of machine learning models fitted, COMPARE contains the model summaries and plots, and BEST contains the best fitted model

fsvm_train_ranger

Train random forest models for fsvm

Description

Trains random forest models using 'ranger' and 'caret' with a custom subsampling function for imbalanced data (see Evans and Cushman 2009)

Usage

```
fsvm_train_ranger(DAT = DAT, type = "presence")
```

Arguments

DAT An 'fsvm data' object produced from as_fsvm

type A character string corresponding with model type. Options are "presence" for

presence/absence data and "percent_cover" for proportion data.

Value

An 'fsvm model' object, containing 4 lists: DATA, CONTROL, MODEL, and SUMMARY. DATA contains the training data set, CONTROL contains the definitions of how the models were defined to function, MODEL contains the details of the trained model, and SUMMARY contains the model summary statistics.

16 getBiomass

fsvm_train_ranger2

Train random forest models with 24k Quad covariates

Description

Trains random forest models using 'ranger' and 'caret' with a custom subsampling function for imbalanced data (see Evans and Cushman 2009)

Usage

```
fsvm_train_ranger2(DAT = DAT, type = "presence")
```

Arguments

DAT An 'fsvm data' object produced from as_fsvm

type A character string corresponding with model type. Options are "presence" for

presence/absence data and "percent_cover" for proportion data.

Value

An 'fsvm model' object, containing 4 lists: DATA, CONTROL, MODEL, and SUMMARY. DATA contains the training data set, CONTROL contains the definitions of how the models were defined to function, MODEL contains the details of the trained model, and SUMMARY contains the model summary statistics.

getBiomass

Get Biomass Predictions

Description

Extracts biomass predictions from RAP 2021 raster

Usage

```
getBiomass(
  quads = unique(preds$pred[["QuadPolyID"]]),
  bio.file.path = "A:/Fine scale vegetation analysis/fsvm_package/Biomass.RDS"
)
```

Arguments

quads A list of QuadPolyIDs to query from the Biomass RDS files.

bio.file.path A character string corresponding with the file path to the Biomass RDS files.

Value

A data frame containing biomass predictions for each QuadPolyID in the 'quads' query list.

getCentroidMap 17

Description

Creates maps of model predictions by defined spatial extent

Usage

```
getCentroidMap(
  folder = "G2",
  type = "presence",
  files = NULL,
  file_path = here::here(),
  centroid_filepath = "A:/Fine scale vegetation analysis/fsvm_package/Covariates.RDS"
)
```

Arguments

folder	Leave default 'c("genus", "species", "subspecies")' in order to loop through all the model groups. If a different loop length is desired, then can define any of the options as single character string.
type	Leave default 'c("presence", "perecent_cover") in order to loop through all model types. If a different loop length is desired, then can define either as a single character string.
files	Leave default of 'NULL' in order to loop through all available files for a model group folder. Define a vector of character strings here if a different loop length is desired.
pred_covs	A character string corresponding with the file path for an output from 'prep_pred_covs()'.
title	A character sting corresponding with the name of the spatial extent used to create 'pred_covs' parameter.

Value

Maps are saved as *.tif files to the folder path here(file.path("results",folder,type,"maps",paste(title,".tif",sep=""))).

getCovariates	Extract eCognition QuadPolygon Covariates	

Description

This function uses the QuadPoly_IDs extracted for field data to query eCognition quadpolygon covariate data tables and return a formatted data frame of covariates ready for machine learning modeling

18 getCovariates_24k

Usage

```
getCovariates(
  dat = FieldDataPoints_QuadPolyID,
  cov.file.path = "A:/Fine scale vegetation analysis/fsvm_package/Covariates.RDS",
  rm.na = T,
  export = F
)
```

Arguments

A data frame containing the input data set (an output of 'py_extract_quadpolyID')

cov.file.path File path to covariate files on network drive. Default uses 'A:' for HQWILD-STAT.

rm.na A boolean statement indicating whether or not to remove NAs from the output

export A boolean statement indicating whether or not to export the output as an '.RData'

file.Outputs are saved to the file path 'here::here()' with the file name "Output-

Covariates_QuadPolyID.RData".

Value

A data frame containing formatted eCognition polygon covariate data ready for machine learning modeling (see 'as.fsvm'). The output is also saved as an *.RData file in the current working directory.

getCovariates_24k

Load Covariates from 24k Quads (eCognition polygons)

Description

This function loads covariate data corresponding with field data of observations (by 'QuadPolyID') to train species distribution models.

Usage

```
getCovariates_24k(
  dat = fielddata,
  cov.file.path = "A:/Fine scale vegetation analysis/dbases_4modeling/24kpolys",
  lvls.path = "0:/Research/factor_levels.rds",
  ncore = 1,
  export = F
)
```

Arguments

dat A data frame of field data (output of getSQLData). File must contain 'Quad-

PolyID' and 'Quad100k' columns indicating which 24k quad tile it is located

in

cov.file.path File path to covariate files on network drive. Default uses 'A:' for HQWILD-

STAT

getGMUExtent 19

lvls.path	File path to factor levels of covariates (for predictions)
ncore	Number of cores to process with. Default of 1 triggers single thread execution
export	A boolean statement indicating whether or not to export the output as an '.RData' file.Outputs are saved to the file path here::here()' with the file name "Output-

Covariates_QuadPolyID.RData".

Value

A data frame containing formatted eCognition polygon covariate data ready for machine learning modeling (see 'as.fsvm')

getGMUExtent Get 24k Quad Extent for GMU(s)

Description

Get file list of all 24k Quads which intersect selected GMU(s)

Usage

```
getGMUExtent(
  gmu_sel = c("6", "10A"),
  lib_loc = "//hqwildstat/C$/Program Files/R/R-4.0.5/library"
)
```

Arguments

gmu_sel A character vector of GMU names

lib_loc Location in which fsvm package is installed (accessing internal files)

Value

A list of 24k quad files (paste0('q',UID,'.rds')) intersecting the selected GMU(s)

getModels Get SDM models from field data

Description

Formats field data and trains machine learning species distribution models. Function performs data formatting, trains models, and exports the results.

20 getModels

Usage

```
getModels(
   fielddata = fielddata,
   file_path = "0:/Research",
   iterator = "Forage",
   group = "G2",
   type = "presence",
   train = "ranger",
   parallel = TRUE,
   covs = covariates,
   cov.file.path = "D:/Fine scale vegetation analysis/fsvm_package/Covariates.RDS"
)
```

Arguments

fielddata	A data frame containing formatted field data (with quadpoly IDs and rectified taxa)
file_path	A character sting corresponding with the file path to store the trained models.
iterator	A character string corresponding with the subset of taxa you would like to model. Options include "ALL" for no subset (recommended when group parameter is "G1"), "Forage" for only species in 'ForageSpecies' labeled yes, or an object containing a custom species list.
group	A character string corresponding with modeling group you want to evaluate. Must be one of "G1", "G2", "G3", or "G4". This selection also prompts which forage model data frame to use (a system file generated from 'ForageSpecies' data). This parameter also populates the subfolder name of the output.
type	A character string corresponding with the type of model you want to execute. Must be one of "presence" or "percent_cover". This also generates a subfolder name to store the output (within subfolder created by 'model' parameter).
train	A character string indicating which training function to use, "full" for 'fsvm_train', "lite" for 'fsvm_train_lite', or "ranger" for 'fsvm_train_ranger'.
parallel	A boolean statement whether or not to execute function in parallel (0.5 \ast n. cores)
covs	A data frame containing the covariates corresponding to the field data. If NA, getCovariates will be executed internally on 'fielddata'.
cov.file.path	File path to covariate files on network drive. Default uses 'A:' for HQWILD-STAT.

Value

Model outputs are saved to the folder path defined as here(file.path("models","forage.model","type","file.RDATA")) where "forage.model" corresponds with the provided 'model' parameter, "type" corresponds with the provided 'type' parameter and "file.RData" is generated from the taxonomic group modeled (ex."Genus_species_subspecies.RData").

getModels_ranger 21

getModels_ranger	Get Random Forest SDMs for field data
------------------	---------------------------------------

Description

Formats field data and trains random forest species distribution models, exporting trained models.

Usage

```
getModels_ranger(
   fielddata = fielddata,
   file_path = "0:/Research",
   iterator = c("Species1", "Species2", "Species3"),
   group = "G2",
   type = "presence",
   ncores = 1,
   covs = covariates,
   cov.file.path = "D:/Fine scale vegetation analysis/dbases_4modeling/24kpolys")
```

Arguments

fielddata	A data frame containing cleaned, formatted field data (with QuadPolyID)
file_path	A character sting corresponding with the file path to store the trained models.
iterator	A character string corresponding with the subset of taxa you would like to model. If less than 10 items in list, single thread execution automatically triggered.
group	A character string corresponding with modeling group you want to evaluate. Must be one of "G1","G2","G3", or "G4". This parameter also populates the subfolder name of the output.
type	A character string corresponding with the type of model you want to execute. Must be one of "presence" or "percent_cover". This also generates a subfolder within the group subfolder. 'model' parameter).
ncores	The number of cores to process with. Default = 1 triggers single thread execution.
covs	A data frame containing the covariates corresponding to the field data. If NA, getCovariates_24k will be executed internally on 'fielddata'.
cov.file.path	File path to covariate files on network drive. Default uses 'A:' for HQWILD-STAT.

Value

Two outputs are saved with this function. The first to the folder path defined as file.path(file_path,"models",group,type,"file.rds" is generated from the taxonomic group modeled (ex."Genus species.rds") and contains the model and summary/supplemental information from training. The second file is saved to file.path(file_path,"models","justModels",group,type,"file.rds") which contains only the model object for predictions.

22 getNutrition

|--|

Description

Gathers Nutritional Content database, RAP Biomass prediction, and Presence SDM for the specified plant species and calculates the nutritional index for each eCognition polygon within the extent of the SDM. NI = Prob.pres x Biomass x NutritionContent

Usage

```
getNutrition(
  forage_list = forage_list,
  qpid = temp$QuadPolyID,
  title = "EOE_",
  folder = "G2",
  nu.val = "Mean_CrudeProtein",
  bio.val = "Mean_kgha",
  filepath = "A:/Fine scale vegetation analysis/understory_veg_model/ranger/results/",
  nutrition_dir = "A:/Fine scale vegetation analysis/fsvm_package/NutritionContent_bySpecies.rds'
  biomass_dir = "A:/Fine scale vegetation analysis/fsvm_package/Biomass.RDS"
)
```

Arguments

forage_list

qpid	A list of QuadPolyIDs (prediction extent).
title	A character string corresponding with the prediction title (typically the predicition extent).
folder	A character string corresponding with the folder (species name type) containing the prediction SDM results.
nu.val	A character string corresponding with the nutritional content value to use for the nutritional index calculation. Options include "Mean_CrudeProtein", "Mean_ODM", "Mean_IVDMD Default is "Mean_CrudeProtein".
bio.val	A character string corresponding with the biomass value to use for the nutritional index calculation. Options include "Mean_kgha", "Mean_lbsac", "Mean_kg". Default is "Mean_kgha".
filepath	A character string corresponding with the file path containing SDM prediction RData file.
nutrition_dir	A character string corresponding with the file path to the NutritionContent.rds file.
biomass_dir	A character string corresponding with the file path to the folder containing the

Value

A list of two objects, species_indices and composite_nutrition_index which contain

Biomass rds files.

A list of plant species scientific names.

getPredCovs 23

getPredCovs	Prepare Covariates for Model Predictions	

Description

Formats covariates extracted for the entire spatial extent of the field data for use in making predictions from the trained machine learning models

Usage

```
getPredCovs(
  extent = NA,
  gmu.sel = NA,
  cov.file.path = "A:/Fine scale vegetation analysis/fsvm_package/Covariates.RDS",
  quad.sel = NA,
  export = F
)
```

Arguments

	4.1.6
extent	A data frame containing the output of 'py_extract_quadpolyID' for an extent shapefile. Use NA if providing GMU(s).
gmu.sel	A list of valid IDFG Game Management Units (GMUs) to query in GMU look-up table. All covariates within the provided GMUs will be returned. Use NA if providing an extent.
cov.file.path	File path to covariate files on network drive. Default uses 'A:' for HQWILD-STAT.
quad.sel	A vector output of set_extent_manual containing the names of the 100k quad polygons needed. This optional parameter (NA default) can help to speed up the function by restricting the number of 100k quads that need to be sorted through.
export	A boolean statement indicating whether or not to export the output as an '.RData' file.Outputs are saved to the file path 'here::here()' with the file name "Prepare_Covariates_Prediction.RData".

Value

A list of three data frames: 'pred_data', 'pred_data_ids', and 'miss_rows'. 'pred_data' contains the covariate data to be used in model predictions 'pred_data_ids' contains the QuadPolyIDs corresponding with prediction covariates. 'miss_rows' contains all observations of 'NA'.

getPredCovs2	Prepare 24k Quad Covariates for Model Predictions	
--------------	---	--

Description

Format covariates for all 24k quads within specified extent to be predicted with trained SDMs.

24 getPredictions

Usage

```
getPredCovs2(
  cov.file.path = "A:/Fine scale vegetation analysis/dbases_4modeling/24kpolys",
  lvls.path = "0:/Research/factor_levels.rds",
  ncore = 1,
  outpath = "A:/Fine scale vegetation analysis/dbases_4modeling/24kpolys_predcovs")
```

Arguments

cov.file.path File path to covariate files on network drive. Default uses 'A:' for HQWILD-

STAT.

lvls.path File path to factor levels of covariates

ncore Number of cores to process with. Default of 1 triggers conventional execution.

outpath File path where to save formatted prediction covariates.

Value

Saves outputs as RDS files in specified outpath

getPredictions

Get predictions from all models

Description

Uses parallel processing framework to loop through all model outputs (from 'fsvm_train') with 'fsvm_predict'. Iterates predictions by model type ("presence" or "percent_cover"), folders (modeling group; "genus", "species" or "subspecies"), and model files (ex. "Genus_species_subspecies.RData"). If this too slow or ineffective, may need to examine additional batch processing or command-line options.

Usage

```
getPredictions(
  pred_covs = pred_covs,
  title = "Name of a Spatial Extent",
  file_path = "0:/Research",
  type = "presence",
  folder = "G2",
  ranger = T,
  parallel = T,
  mod_files = NULL
)
```

Arguments

pred_covs An object which is output from getPredCovs().

title A character string corresponding with the name of the spatial extent used for

getPredCovs().

getSQLData 25

file_path	A character string defining file path location of the folder containing the trained models and destination of the prediction results.
type	A character vector corresponding with the model type subfolder name (either 'presence' or 'percent_cover).
folder	A character string corresponding with the group type subfolder name (either "G1", "G2", "G3", or "G4").
ranger	A boolean statement, whether or not the file path leads to a model output of 'fsvm_train_ranger'.
parallel	A boolean statement, whether or not to execute the function in parallel (0.5 * n. cores)
mod_files	Leave default of 'NULL' in order to loop through all available files for a model group folder. Define a vector of character strings here if a different loop length is desired.

Value

Model predictions are saved to the folder path file.path(file_path,"results",folder,type).

getSQLData	Get up-to-date field data from IFWIS SQL Server

Description

Get up-to-date field data from IFWIS SQL Server

Usage

```
getSQLData(sqltable = "Veg_fsvm_understory_model_data")
```

Arguments

sqltable A character string naming the SQL Table within the server containing the updated field data.

Value

An object containing up-to-date field data

26 getSurvey123

getSummary	,

Get summary of FSVM predictions

Description

Iterates through output files from 'GetPredictions' to report model summaries. Parameters can be adjusted to restrict loop lengths.

Usage

```
getSummary(
  file_path = "0:/Research",
  folder = "G2",
  type = "presence",
  mod_files = NULL
)
```

Arguments

file_path A character string defining the file path to the 'model' folder containing the

trained models.

folder A character string corresponding with a model subgroup (either "G1", "G2", "G3", "G4").

type A character string corresponding to a model type (either "presence" or "per-

cent_cover").

mod_files A character string or vector of character strings corresponding with full file

names of outputs from 'getModels'. Default (NULL) triggers loop for all files

within destination file path.

Value

A data frame containing the summary of best models for each specis, saved to the 'results' folder of the provided file path.

See Also

'getPredictions'

getSurvey123

Download Survey123 Data from ArcGIS Online

Description

Accesses ArcGIS Online (AGOL) for a permitted IDFG account user with a python script (downloadSVS.py) which downloads data from a specified survey. Requires 32-bit R unless a valid alternative py.path is specified (may be able to use default available Python with 64-bit). A valid AGOL username and password, the featureServiceID, the url of the survey, and download token must all be specified. Also requires a file path to a download folder and filename. Output format is recommended to remain "CSV", however "Shapefile" and "File Geodatabase" are valid alternatives. Only an output parameter of "CSV" will trigger the function to format the output, other formats will be returned as is.

ifwis_resolve 27

Usage

```
getSurvey123(
   py.path = "C:/Python27/ArcGIS10.6/python.exe",
   featureService_ID,
   output_format = "CSV",
   download_folder = "C:/Temp/",
   agol.username,
   agol.password
)
```

Arguments

py.path Character string of file path to a valid installation of Python. If using default

path, must be running R in 32-bit session with a valid installation of ArcGIS.

featureService_ID

A character string containing a valid feature service id for the desired survey.

See vignette for acquiring the feature service id for a desired survey.

output_format A character string corresponding with the desired output format. Must be either

"CSV", "Excel", "KML", "Shapefile", or "File Geodatabase".

download_folder

agol.username

A character string corresponding with the file path of the folder you want the

downloads to be saved to.

downloads to be saved to.

with AGOL license. MUST HAVE DEVELOPER PERMISSIONS ACTI-

A character string containing a valid ArcGIS Online IDFG account (firstname.lastname_IDFGgis)

VATED

agol.password A character string containing a valid password corresponding to specified AGOL

username.

ifwis_resolve Get Idaho Fish and Wildlife Information System (IFWIS) Taxonomic

Description

Gets IFWIS TaxonID number from scientific names

Usage

```
ifwis_resolve(dat = fielddata)
```

Arguments

dat A data frame containing scientific names of plants (or fungi)

sci.name A character string corresponding with the column which contains the latin bino-

mial of plant species.

kingdom A character sting corresponding with the taxonomic kingdom of interest. Usu-

ally should use "Plantae" for only vascular plants but can also include "Fungi"

for including fungus as well (ex. c("Plantae", "Fungi")).

28 lpi2fsvm

Value

A data frame with an appended 'TaxonID' column containg the IFWIS TaxonID for the species.

instaload

Install and load R packages with one function

Description

Loads a list of packages into workspace, installing those not detected on machine first.

Usage

```
instaload(rPack, update = F)
```

Arguments

rPack a list of valid R packages (CRAN only; remotes not yet supported)

update a boolean statement, default of FALSE. If true, currently loaded packages are

detached then all are re-installed and loaded into the session

lpi2fsvm

Convert an IDFG LPI Survey to 'fsvm' format

Description

Convert an IDFG LPI Survey to 'fsvm' format

Usage

```
lpi2fsvm(
    lpi_path = "A:/Fine scale vegetation analysis/understory_veg_model/data/FieldData/DataFormattir
    lib_loc = "C:/Users/rritson/Documents/R/win-library/4.0",
    export = TRUE
)
```

Arguments

lpi_path The file path to the folder containing the component csv files of an IDFG LPI

survey download (frmLPI.csv, tblLPI.csv, and LowerLevels.csv).

1ib_loc The file path to the R library on your machine.

export A boolean statement indicating whether to save the output file as a csv.

Value

A formatted data frame in proper 'fsvm' format with correct column headings including rectified taxa, modeling groups, ecocodes, and forage

mapFSVM 29

mapFSVM Visualize FSVM SDM predictions
--

Description

Rasterize SDM predictions for each 24k quad in extent, then mosaics tiles into one *.tif raster

Usage

```
mapFSVM(
   res,
   species,
   filepath = "K:/Wildlife/Wildlife Research/Fine_scale_vegetation_2017/Ritson",
   ncore = 1,
   outname = "GMU6_10A_pred.tif"
)
```

Arguments

res	Results file path (from predictFSVM), only 24k quads corresponding with desired extent (see getGMUExtent)
species	A list of species for which to visualize predictions; corresponds with column names of RDS files from predictFSVM
filepath	File path to store temporary files and save final mosaic raster; each species will be saved into a named folder in this path.
ncore	Number of cores to process with
outname	Name of final mosaic prediction raster, must include '.tif' at the end; file will appear in a new folder in 'filepath' with the species name of the prediction

Value

An SDM prediction mosaic raster for each species 's' in the extent 'res'

predictFSVM Get predictions from fine-scale vegetation SDMs

Description

Get predictions from FSVM species distribution models for all specified species (rangerModel) in the specified extent (quads).

Usage

```
predictFSVM(
   quads,
   rangerModel,
   N_Sample_max = NULL,
   Type_Sample_pred = "Cook",
   ncore = 1,
   outpath = "A:/Fine scale vegetation analysis/understory_veg_model/ranger2/results/RDS"
)
```

Arguments

quads List of all 24k quad files (from getPredCovs2) within spatial extent of where

you want predictions

rangerModel List of all species with random forest model files from getModels_ranger for

which you want SDM predictions

N_Sample_max Specify parameter of number of samples to use (from field data, maximized with

default NULL, which triggers max sample number detected from field data)

Type_Sample_pred

Specify parameter of sample type to use (from field data, maximized by default

'Cook')

ncore Number of processors to use for function evaluation.

outpath File path where to save output files

Value

Saves RDS files for each 24k Quad which contain predictions for all specified species.

py_extract_quadpolyID Extract eCognition quadpolygon IDs for field data

Description

Leverages the power of Python and ArcGIS using interpreter 'reticulate' to call a Python script. Creates a data frame containing merged and formatted field data associated with eCognition Quad-Poly_IDs.

Usage

```
py_extract_quadpolyID(
    py.path = "//hqwildstat/C$/Python27/ArcGIS10.6/python.exe",
    fielddata.path = "//hqwildstat/D$/Fine scale vegetation analysis/understory_veg_model/PlantSpec
    quad.path = "//hqwildstat/D$/Fine scale vegetation analysis/dbases_4modeling/blank_polys100k.gc
    output.gdb.path = "//hqwildstat/D$/Fine scale vegetation analysis/understory_veg_model/PlantSpec
```

```
output.folder.path = "//hqwildstat/D$/Fine scale vegetation analysis/understory_veg_model/Plant
output.RData = "None",
intercept.feature = "None",
newgdb.name = "Output.gdb",
quad.sel = quad.sel,
export = T,
survey = T
```

Arguments

py.path

Character string of file path to ArcGIS installed version of Python (required for running 'arcpy' module). Default is the file path where this is typically stored by ESRI. Function will not run without a valid version of ArcGIS installed before hand and must be run in a 32-bit R session.

fielddata.path Character string of file path to geodatabase or shapefile containing coordinates of field data or a shapefile of the target spatial extent in the case of prediction covariates (Must be transformed to IDTM before running function). If a geodatabase, then must include an argument for the parameter 'intercept.feature'.

quad.path

A character string corresponding with the file path to the folder containing the 100k USGS quads. Typically is "A://Fine scale vegetation analysis/dbases 4modeling/blank polys100 but needs to be changed for use in SHINY.

output.gdb.path

Character string of file path to a valid geodatabase or folder. If path is to a folder, then must provide an argument for newgdb.name. This will prompt the python script to create a new *.gdb for storing output files.

output.folder.path

Character string of file path to a valid folder for containing output *.dbf tables. This function now includes the ability now to create the specified folder along the file path if it does not already exist.

output.RData

Character string containing the name of an *.RData file for storing the formatted and merged data table. String must contain '.RData'. The default ("None") autogenerates a name based on the choice of quad.path geodatabase, either "Field-DataPoints_QuadPolyID.RData" if "blank_polys100k.gdb" or "Covariates_QuadPolyID.RData"

if "poly_merges.gdb".

intercept.feature

Character string containing the name of a file within a fielddata.path geodatabase. Default ("None") assumes the parameter fielddata.path leads to a shapefile.

newgdb.name

Character string containing the name of a new geodatabase for storing output shapefile. Default ("None") assumes the parameter output.gdb.path leads to a valid geodatabase.

quad.sel

Character string or vector containing the names of eCognition quadpolygons, limits the function to looping through only the selected polygons. Default ("None") will loop through all polygons. To select a list of quadpolygons, use the function 'fsvm::set_extent_manual()'.

export

A boolean statement. If TRUE, the function will save the output as an .RData file to the output.folder.path. If FALSE, object will not be automatically saved.

survey

A boolean statement. If TRUE, the function will treat the output as a properly formatted file containing survey data. If FALSE, only 'QuadPolyID' will be formatted.

32 py_get_centroids

Value

An R object containing merged and formatted output tables containing field data coordinates associated with QuadPoly_IDs for eCognition polygons. These will be used later for running machine learning suite of models for predicting fine scale vegetation presence/absence and percent cover. Object is saved in the provided file path (output.folder.path).

Troubleshooting

This function can be very finicky because of the Python-to-R interfacing. Crashing can be common if the parameters are not specified exactly. After a crash, the best thing to do is save your work and restart R (Ctrl + Shift + F10) and/or close R completely and reopen it. This is to make sure the connection to the file geodatabase is completely closed before trying to proceed. In the current version, it is best to leave the parameter 'quad.sel' at its default of 'None'. Otherwise, a character string with the exact name of a single specific quadpolygon may also work. If function is being particularly finicky, try with 'export' parameter as FALSE.

py_get_centroids

Get centroid locations for eCognition polygons

Description

Get centroid locations for eCognition polygons

Usage

```
py_get_centroids(
  py.path = "C:/Python27/ArcGIS10.6/python.exe",
  quad.path = "A:/Fine scale vegetation analysis/dbases_4modeling/blank_polys100k.gdb",
  output.folder.path = "C:/Users/rritson/Documents/Output",
  quad.sel = "None"
)
```

Arguments

py.path

Character string of file path to ArcGIS installed version of Python (required for running 'arcpy' module). Default is the file path where this is typically stored by ESRI. Function will not run without a valid version of ArcGIS installed before hand and must be run in a 32-bit R session.

quad.path

A character string corresponding with the file path to the folder containing the 100k USGS quads.

output.folder.path

Character string of file path to a valid folder for containing output *.dbf tables.

quad.sel

Character string or vector containing the names of eCognition quadpolygons, limits the function to looping through only the selected polygons.

rateROC 33

rateROC

Rate and Summarize Random Forest ROC values

Description

Rate and Summarize Random Forest ROC values

Usage

```
rateROC(
    filepath = "D:/Fine scale vegetation analysis/understory_veg_model/ranger2/models/G2/presence"
)
```

Arguments

filepath

File path to RDS full model files (random forest)

Value

A data frame containing the file name (species model), ROC value, and Rating (A-F)

rectify_taxa

Rectify taxonomic names and assign modeling groups

Description

Uses Integrated Taxonomic Information System to assign current accepted name and taxonomic serial number (TSN) to field data by modeling group ("G1", "G2", "G3", and "G4").

Usage

```
rectify_taxa(dat, scientific.name = "SpeciesName")
```

Arguments

dat
scientific.name

A data frame with at least one column containing taxonomic names of plants

A character string corresponding with the column in the data frame which contains the taxonomic plant names.

Value

Returns the input data frame appended with 8 additional columns: "G1", "G2", "G3", "G4", "G1TSN", "G2TSN", "G3TSN", and "G4TSN". "G1" corresponds with the accepted genera name and "G1TSN" the corresponding taxonomic serial number. "G2" corresponds with species (Genus and specific epithet only), "G3" corresponds with subspecies only (Genus specific epithet ssp. subspecies), and "G4" corresponds with varieties only (Genus specific epithet var. variety). Note, for example that "G2" and "G2TSN" would be identical for subspecies and varieties with the same taxonomic parent.

34 set_extent_manual

Troubleshooting

This function does not work well with very large data sets. If you need to rectify >1000 names, it will be best to break it into batches.

select_quads

Select 100k eCognition Quadpolygons

Description

Lists the 100k eCognition Quadpolygons containing field data. Used with set_extent_manual and $py_extract_quadpolyID$

Usage

```
select_quads(
  dat = fielddata,
  x = "X_Coord",
  y = "Y_Coord",
  lib_loc = "//hqwildstat/C$/Program Files/R/R-4.0.5/library")
```

Arguments

dat	A data frame containing the coordinates of field data. Must be in IDTM projection.
х	A character string corresponding with the column in the data frame containing the x coordinate.
У	A character string corresponding with the column in the data frame containing the y coordinate.
lib_loc	A character string corresponding with the file path to the R library.

Value

A vector containing the names of the 100k quadpolygon IDs which intersect the field data.

 set_extent_manual

Set Manual Spatial Extent

Description

Returns a list of quadpolygons which correspond with a selected extent. This includes choices of specific IDFG Regions (1-7), IDFG Game Management Units, or UIDs of 100k or 24k quadpolygons.

usda_resolve 35

Usage

```
set_extent_manual(
  extent = c("Region", "GMU", "UID_100k", "UID_24k"),
  selections = choices,
  lib_loc = "//hqwildstat/C$/Program Files/R/R-4.0.5/library")
```

Arguments

extent A character string corresponding with the extent type you want to choose from.

Choices are "Region", "GMU", "UID_110k", or "UID_24k". Multiple choices can be selected and stored as character vector, however this is probably less

useful.

selections A character vector corresponding with the selection(s) within the extent type.

lib_loc A character string corresponding with the location of the R library.

Value

A character vector containing the names of 100k quadpolygons corresponding with the selected location extents. These name should be able to be passed to 'py_extract_quadpolyID' as quad selections.

See Also

py_extract_quadpolyID

usda_resolve

Rectify USDA Plant Codes

Description

Assign scientific name based on a valid USDA plant code or assign a USDA code based on a valid scientific name. LPI codes ("HL","WL","AF", etc.) are only translated to modeling designations ("No Veg","UNKNOWN") when 'resolve = "c2n".

Usage

```
usda_resolve(dat = dat, target = "Code", resolve = c("c2n", "n2c"))
```

Arguments

dat A data frame containing raw field data with valid USDA Plant codes

target A character string corresponding with the column in the data frame to be trans-

lated. Either the USDA code when 'resolve' parameter is "c2n" or the scientific

name when 'resolve' is "n2c".

resolve A character string corresponding with type of the direction of translation. Argu-

ment may either be "c2n" to translate valid USDA codes to scientific names or

"n2c" to translate valid scientific names to USDA codes.

36 usda_resolve

Value

A data frame containing the original data with an additional column corresponding with the translation. Either "Scientific.Name" if resolve parameter is "c2n" or "Symbol" if resolve is "n2c".

Index

* datasets
ForageSpecies, 10
fsvm_dummy, 10
_
as_fsvm, 7
as_fsvm2, 8
assign_ecoregions, 4
assign_forage, 4
assign_Lpi, 5
assign_Plot, 6
assignLPI, 3
finalizeFSVM, 9
ForageSpecies, 10
fsvm_dummy, 10
fsvm_map, 11
fsvm_nutrition, 12
fsvm_predict, 13
fsvm_train, 14
<pre>fsvm_train_lite, 14</pre>
fsvm_train_ranger, 15
<pre>fsvm_train_ranger2, 16</pre>
+D: 16
getBiomass, 16
getCentroidMap, 17
getCovariates, 17
getCovariates_24k, 18
getGMUExtent, 19
getModels, 19
<pre>getModels_ranger, 21</pre>
getNutrition, 22
getPredCovs, 23
getPredCovs2, 23
getPredictions, 24
getSQLData, 25
getSummary, 26
getSurvey123, 26
ifwis_resolve, 27
instaload, 28
lni2fovm 20
lpi2fsvm, 28
mapFSVM, 29

```
predictFSVM, 29
{\tt py\_extract\_quadpolyID, 30}
py_get_centroids, 32
rateROC, 33
rectify_taxa, 33
select_quads, 34
set_extent_manual, 34
usda_resolve, 35
```