

Tugas Mandiri 2

Pengantar Sistem Digital

2023-2024 Gasal

IQI

Petunjuk Pengerjaan

- Kerjakan dengan tulisan tangan (boleh menggunakan digital pen).
- Tuliskan Nama, Kelas, dan NPM pada setiap lembar jawaban.
- Tuliskan penjelasan dari cara mendapatkan jawaban tersebut.
- Tugas mandiri dikumpulkan Kamis, 14 September 2023 pukul 23.55 pada slot yang sudah disediakan di SCELE.
- Jika mengumpulkan telat sebelum pukul 08.00 pada hari Jumat, akan dikenakan penalti sebesar 50 poin. Setelah waktu tersebut, tugas mandiri tidak akan dinilai.

Pengumpulan Submisi

Kumpulkan jawaban dengan format PDF *file*. Apabila ditulis tangan, hasil pekerjaan di-*scan* atau difoto dan dimasukan ke dalam satu *file* berformat .pdf.

Berikut format penamaan file:

Contoh:

TM2_ABC_2306123456_PakEsde.pdf

Format penamaan file yang salah akan diberikan penalti sebesar 5 poin.

#PSDisFun

- Rilis 07/09/2023 pukul 18.00 WIB
- Revisi 1 07/09/2023 pukul 21.03 WIB Soal Excess 3 No 1
- Revisi 2 08/09/2023 pukul 18.41 WIB Soal 2,4,2,1 No 1
- Revisi 3 11/09/2023 pukul 21.35 WIB Menambahkan penalti untuk format penamaan file yang salah
- 1. [30] Lengkapilah tabel berikut!

Desimal	8,4,-2,-1	Excess-3	2,4,2,1	excess-6
23				
	1000 0101			
		0110 1001 0011		
			0010 0000 0100 <mark>1011</mark>	
				1011 0111 1000 0110

- 2. [25] Ubah bilangan desimal berikut menjadi heksadesimal *floating point IEEE 754* 32-bit single precision
 - a. -23.[empat digit terakhir NPM Anda]
 - b. 2023.2024
- 3. [25] Lakukan operasi pada bilangan floating point IEEE 754 32-bit berikut beserta hasilnya dalam heksadesimal IEEE 754 32-bit!
 - a. 0xAA7BCA1A 0xCC206A04
 - b. 0xCE225061 + (0x68FFF0AA + 0x58A10000)
- 4. [20] Dalam komputasi floating-point, rounding mode (mode pembulatan) adalah konsep penting yang mempengaruhi hasil perhitungan saat angka tidak dapat direpresentasikan secara tepat dalam format floating-point.
 - a. Apa yang dimaksud dengan *rounding mode* (mode pembulatan) dan mengapa ini penting dalam perhitungan floating-point?
 - b. Jelaskan beberapa jenis *rounding mode* yang umum digunakan dalam perhitungan floating-point serta penggunaan masing-masing.