

Database Lesson 2. Relational databases

Viet-Trung Tran

Is.hust.edu.vn/~trungtv/

Learning Map

Sequence	Title			
1	ntroduction to Databases			
2	Relational Databases			
3	Relational Algebra			
4	Structured Query Language – Part 1			
5	Structured Query Language – Part 2			
6 Constraints and Triggers				
7 Entity Relationship Model				
8	Functional Dependency			
9	Normalization			
10	Storage - Indexing			
11	11 Query Processing			
12	12 Transaction Management – Part 1			
13	Transaction Management – Part 2			

Outline

- 1. Relational data model
- 2. Constraints

Learning objectives

- •Upon completion of this lesson, students will be able to:
 - Recall some basic concepts of relational data model.
 - Show some constraints of relational data model.

Keywords

Data model	A set of concepts used to describe the structure of a database: data types, relationships, constraints, semantics
Relation	Is thought of as a table of values, each row in the table represents a collection of related data values.
Key	An attribute or a set of attributes in the relation, which can identify a tuple uniquely.
Integrity constraints	Provide a way of ensuring that changes made to the database by aut horized users do not result in a loss of data consistency.

1. Relational data model

- 1.1. Introduction
- 1.2. Database Basic concepts

1.1. Different data models

- Hierarchical database model
- Network model
- Object-oriented database model
- Relational model
- Entity-relationship model
- Document model

• ...

1.2. Relational data model

- Is very simple model, was first introduced by Ted Codd of IBM Research in 1970.
- Used by most of commercial database systems.
- Query with high-level languages.
- Efficient implementations.
- Based on mathematical theory, closed to file structure and data structure, there are three sets of terminology:

Relation	Table	File	
Tuple	Row	Record	
Attribute	Column	Field	

1.3. Basic concepts

Relations

 are saved in the format of tables, which have rows and columns.

Relation instance/state

actual contents at given point in time. The lowercase letters
 q, r, s denote relation states.

Database

a set of named relations (or tables).

1.3. Basic concepts [2]

a single row of a table, which contains a single record for the Tuple at relation. The letters t, u, v denote tuples. • is the number of tuples in a relation. Cardinality is the number of attributes in a relation. Degree (arity)

1.4. Relational schema

- Relational schema: structural description of relations in database.
- •A relation schema R of degree n, denoted by $R(A_1, A_2, ..., A_n)$, is made up of a relation name R and a list of attributes $A_1, A_2, ..., A_n$
- Each attribute A_i has values belong to domain Di of Ai, denoted by dom(A_i)
- •An n-tuple t in a relation r(R) is denoted by $t = \langle v_1, v_2, ..., v_n \rangle$, where v_i is the value corresponding to attribute A_i . Both $t[A_i]$ and $t.A_i$ (and sometimes t[i]) refer to the value v_i in t for attribute A_i

1.4. Relational schema [2]

- Notice that the uppercase letters Q, R, S denote relation names.
- A relation (or relation state) r of the relation schema $R(A_1, A_2, ..., A_n)$, also denoted by r(R), is a set of n-tuples $r = \{t_1, t_2, ..., t_m\}$. Each n-tuple t is an ordered list of n-values t $= \langle v_1, v_2, ..., v_n \rangle$, where each value $v_i, 1 \le i \le n$, is an element of dom (A_i) or is a special NULL value.
- A relation (or relation state) r(R) is a mathematical relation of degree n on the domains $dom(A_1)$, $dom(A_2)$, ..., $dom(A_n)$, which is a subset of the Cartesian product of the domains that define R:
- $r(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$

1.5. An example

student(student_id, first_name, last_name, dob, gender, address, note, clazz_id)

13

2. Constraints

- 2.1. Introduction
- 2.2. Types of constraints
- 2.3. An example

2.1. Introduction

- Every relation has some conditions that must hold for it to be a valid relation.
- These conditions are called Relational Integrity Constraints.
- Provide a way of ensuring that changes made to the database by authorized users do not result in a loss of data consistency.

2.2. Types of constraints

- Key constraints
- Domain constraints
- Referential integrity constraints

2.2.1. Key constraints

- •A key is an attribute or a set of attributes in the relation, which can identify a tuple uniquely.
- Key constraints enforce the following
 - in a relation with a key, no two tuples can have identical values for key attributes.
 - a key can not have NULL values.
 - Key constraints are also referred to as Entity Constraints.

2.2.1. Key constraints [2]

- •Superkey: An attribute, or a set of attributes, that uniquely identifies a tuple within a relation.
- Candidate Key:
 - Superkey (K) such that no proper subset is a superkey within the relation
 - In each tuple of the relation, values of K uniquely identify that tuple (uniqueness)
 - No proper subset of K has the uniqueness property (irreducibility)
- Primary Key: Candidate key selected to identify tuples uniquely within a relation. Each key attribute of primary key has its name underlined.

2.2.1. Key constraints [3]

- Alternate Keys: Candidate keys that are not selected to be the primary key.
- Minimal key: a minimal set of attributes that can be used to identify a single tuple.
- Foreign Key:
 - Attribute, or set of attributes, within one relation that matches candidate key of some relation
 - Used to model relationships between relations
 - Each key attribute of foreign key has its name italic

2.2.2. Domain constraints

- Attributes have specific values in real-world scenario. Every attribute is bound to have a specific range of values.
- Within each tuple, the value of each attribute A must be an atomic value from the domain dom(A).
- •The data types associated with domains:
 - standard numeric data types for integers (short integer, integer, and long integer) and real numbers (float, double precision float).
 - Characters, Booleans, fixed-length strings, and variable-length strings, date, time, timestamp, and money, or other special data types.
 - a subrange of values from a data type.
 - an enumerated data type in which all possible values are explicitly listed.

2.2.2 Domain constraints [2]

- Null value
 - Represents value for an attribute that is currently unknown or not applicable for any tuple;
 - deals with incomplete or exceptional data;
 - represents the absence of a value and is not the same as zero or spaces

2.2.2. Domain constraints [3]

- Referential integrity constraints
 - Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a key attribute of a relation that can be referred in other relation.
 - Referential integrity constraint states that if a relation refers to a key attribute of a different or same relation, then that **key element must** exist.

2.3. An example

- student(student_id, first_name, last_name, dob, gender, address, note, clazz_id)
- subject(subject_id, name, credit, percentage_final_exam)
- enrollment(student_id, subject_id, semester, midterm_score, final_score)

2.3. An example [2]

student

student_id	first_name	last_name	dob	gender	address	note	clazz_id
1234	David	Beckham	12/21/1997	Male	London, UK		1
1238	Theresa	May	08/06/1998	Female	London, UK		1
1452	David	Cameron	07/06/1997	Male	Bangor, UK		1
1497	Tony	Blair	03/01/1999	Male	Bath, UK		2
1516	John	Major	03/01/1998	Male	Bradford		2
1542	Margaret	Thatcher	05/08/1997	Female	Cambridge		2

subject

Subject						
	subject_id	name	credit	percentage_ final_exam		
	IT3090	Databases	3	0.7		
	IT4843 Data integration		3	0.7		
	IT4868	IT4868 Web mining IT2000 Introduction to ICT		0.6		
	IT2000			0.5		
	IT3020 Discrete Mathematics		2	0.7		
	IT3030	Computer Architectures	3	0.7		

Foreign key

Primary key

enrollment subject_id midterm_score student_id final score semester 20171 7 8 IT3090 20171 9 8 1452 IT3090 20171 6 6 1234 IT2000 20162 5 8 1234 IT3020 20171 8 9 IT3030 20171 7 1452 9 1238 IT3020 20162 7

Foreign key

Remark

- Relational data model
- Constraints
 - Key constraints
 - Domain constraints
 - Referential integrity constraints

Quiz 1.

	Quiz Number	1	Quiz Type	Ouiz Type	OX	Example Select	
	Quiz Nullibei	±					
	Question	Relations: are saved in the format of					
	Example	B. Rows					
		C. Columns					
		D. Tuples					
	Answer	A					
	Feedback	In relational data model, relations are saved in the format of Tables. The format stores the relation among entities. A table has rows and column where rows represents records and columns represent the attributes.					

Quiz 2.

Ovim Numahan	2	Ouis Tura	OX	Example Select	
Quiz Number	2	Quiz Type			
Question	Each key attribute has its name underlined A. Super key B. Primary key C. Foreign key D. Candidate key				
Example					
Answer	В				
Feedback		ry key. By conve	andidate key. Each r ention, all attributes	relation has at most s of a primary key 27	

Summary

- Relational data model
 - Relations, relation instance/state, relation schema
 - Database, tuple
 - Cardinality, degree
- Constraints
 - Key constraints
 - Domain constraints
 - Referential integrity constraints

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Next lesson: Relational Algebra

- Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, 3r d edition, Mc Graw Hill, 2003.
- Elmasri and Navathe, Fundamentals of Database Systems, 6th edition, Addison-Wesley, 2011.