©UNET. Junio, 2009. Sanabria Irma y Tellez Neyra

PROBLEMAS PROPUESTOS.

Dadas las siguientes afirmaciones indique sí es verdadero o falso

1	El momento cinético y el momento de una fuerza se definen con respecto a un punto	
	u origen	
2	El momento cinético de un cuerpo es igual al producto del momento de inercia por	
	la velocidad angular	
3	Sí el momento cinético total de un sistema arbitrario se conserva, el torque total	
	también se conserva.	
4	Un cuerpo de masa M y de radio R, girando con velocidad lineal V, tiene un	
	momento cinético igual a MVR	

m_1 m_2 m_2

PROBLEMAS GENERALES

Problema 1 En el sistema de la figura la cuerda que une al bloque de masa m_1 está enrollada alrededor del cilindro pequeño de la polea y la cuerda que une al bloque de masa m_2 está enrollada alrededor del cilindro grande. La polea está formada por dos cilindros sólidos unidos tal y como se ve en la figura. El sistema está inicialmente en reposo y se suelta.

Los datos son los siguientes: m_1 = 10 kg m_2 =30kg Los discos que forman la polea son de masa y radio, respectivamente:

Cilindro Grande M=20 kg R_2 = 0,5 m Cilindro pequeño m=10 kg R_1 =0,2 m

Para el sistema formado por la polea y los bloques,

- ¿Cuál es el valor del torque externo sobre el sistema? (en Nm)
- 2. Y ¿Cuál es el valor de la aceleración angular de la polea? (en rad/s²)
- 3. ¿Cuál es la rapidez de la masa m₂ a los 4 s. de estarse moviendo?
- 4. El momento cinético total del sistema a los 4 s. de estarse moviendo es: (en kgm²/s)

Sí en el instante de tiempo t = 4 s, se rompe la cuerda que sujeta a m_1

5. Se puede afirmar que a partir de ese momento cambian:

a)
$$\alpha$$
 de la polea, la aceleración de las masas y $\sum \tau_{ext}$

)	dl/dt,		$\sum \tau_{\text{ext}}$		
	y po	la lea	α	de	la

$$\begin{array}{c} \text{La} \quad \text{aceleración} \\ \text{de las masas y} \\ \text{α de la polea} \end{array} \right) \quad \begin{array}{c} \text{dl/dt} \\ \sum \tau \end{array}$$

 m_1

370

Problema 2

Se dispone el siguiente arreglo tal y como se indica en la figura. El bloque m₁ está conectado a una cuerda enrollada a una polea de masa m y radio R1. El bloque de masa m2 está conectado a una cuerda enrollada a una polea de masa M y radio R2. El sistema (bloques-poleas) parte del reposo y considere que los planos inclinados son lisos.

Datos

 $m_1=6 \text{ kg} \quad m_2=3 \text{ kg} \quad m_3=9.8 \text{ m/s}^2$

Para las Poleas:

M = 4 kgm = 1kg

 $R_1 = 0.50$ $R_2 = 0.25$ m

- 1. ¿Cuál es el torque externo neto aplicado al sistema (bloques poleas)?
- 2. ¿Cuál es la aceleración de la masa m₁?
- 3. ¿Cuál es la tensión de la cuerda T1?

Para el instante t = 5 s. Determinar:

- 4. La energía cinética del bloque de masa m₂.
- 5. El valor del momento cinético del bloque m1
- 6. El momento cinético total del sistema respecto al punto "O", es:
- 7. Si en instante t=6s se corta la cuerda que sujeta a m1, entonces a partir de ese momento se puede afirmar:

a) aumenta la	b) disminuye	c) aumentan las	d) aumentan las	e) aumentan
energía cinética de	la energía cinética	energías cinéticas	energías cinéticas	todas las energías
m ₁ , y disminuyen	de m_1 , y	de m_1 y de la	de m_1 y m_2 , y	cinéticas
las energías	aumentan las	polea, y	disminuye la	
cinéticas de la polea	energías cinéticas	disminuye la	energía cinética	
y de m ₂	de la polea y de	energía cinética	de la polea.	
	m_2	de m ₂ .		

Problema 3 Una carga de m₁ cuelga de una cuerda enrollada en el cilindro grande de una polea, y un contrapeso de masa m2 cuelga de otra cuerda enrollada del cilindro pequeño de la misma polea (tal y como se muestra en la figura). El sistema se libera desde el reposo.

Para el sistema formado por la polea, cuerdas, m1 y m₂, determinar que:

1. El torque externo aplicado sobre el sistema es:

a)
$$\frac{d\vec{L}}{dt}$$
 b) M_2gR_2 c) $\frac{d\vec{p}}{dt}$ d) M_1gR_1 e) Ninguna de las anteriores

2. El contrapeso (m₂) experimenta una aceleración de:

disminuye

constante

cero

©UNET. Junio, 2009. Sanabria Irma y Tellez Neyra

 m_2

30°

 $Ip = 2,7 \text{ kgm}^2$ $R_1 = 0.5 \text{ m}$ $R_2 = 0,25m$ $g = 9.8 \text{ m/s}^2$ $m_1 = 20 \text{ kg}$ $m_2 = 30 \text{ kg}$

anteriores

- 3. Y el momento cinético total del sistema en el instante de tiempo t = 6s es

4. Si en el instante de tiempo t = 6s. se rompe la cuerda que sujeta a m1, entonces a partir de ese instante, se puede afirmar que:

a) m_1	b) m ₁ se mueve	c) La polea se muev	e d) m ₂ comienza	e) Ninguna de	
comienza a	con velocidad	con velocidad	a frenar	las	
frenar	constante	angular constante	2	anteriores	
5. Y dos segundos después de romperse la cuerda se puede afirmar que:					
dĪ.	b) $\sum \vec{\tau}_{\text{ext}}$	c) \vec{L}_{sist} d) $\sum \vec{\tau}_{\text{ext}}$ se hace	e) Ninguna de	
a) $\stackrel{\text{did}}{\longrightarrow}$ permaned	ce diaminus	-7 -SISC		las	

permanece

constante

©UNET. Junio, 2009. Sanabria Irma y Tellez Neyra

Problema 4 Una plataforma de masa M = 40 Kg y radio R = 4 m. gira libremente a 6 rad/s. Un niño de masa m= 20 Kg corre tangencialmente hacia una plataforma con velocidad constante tal y como se observa en la figura. Al llegar a la plataforma se agarra de la misma y queda girando con ella con un $\omega_f = 2.5$ rad/s.

1. Con respecto al sistema formado por el niño y la plataforma justo antes y después de que el niño se suba a la plataforma se puede afirmar en cuanto a la Energía Cinética (E) y el momento cinético o angular (L) que:

a)
$$\boxed{\text{Eo} = \text{Ef} \; ; \; \text{Lo} = \text{Lf}}$$
 b) $\boxed{\text{Eo} > \text{Ef} \; ; \; \text{Lo} = \text{Lf}}$ c) $\boxed{\text{Eo} < \text{Ef} \; ; \; \text{Lo} = \text{Lf}}$ d) $\boxed{\text{Eo} = \text{Ef} \; ; \; \text{Lo} = \text{Lf}}$

- 2. Y se puede calcular que la velocidad inicial con la que el niño corría antes de subirse en la plataforma es:
- 3. Si ahora el niño se arrima un metro hacia adentro, entonces el nuevo ω de la plataforma será:

Problema 5. En un parque infantil un niño de masa m_{π} observa un tiovivo que está en reposo y decide montarse sobre él, para esto sale corriendo hacia el tiovivo con velocidad constante $\stackrel{\circ}{V_n}$. Si el niño salta sobre el tiovivo y cae en el punto P cuya posición es ${\it r}_{\it P}$, determine: Nota: el tiovivo puede considerarse

Datos: $m_{,,} = 40 \, kg$ $\vec{v}_n = 4\hat{i}(m/s)$ $\vec{r}_n = 2\hat{j}(m)$ $R_{\tau} = 2m$

 $m_T = 20kg$

como un disco de masa $m_{\scriptscriptstyle T}$ y radio $_{R_{\scriptscriptstyle T}}$.

- 1. ¿Cuál es la velocidad angular del niño y el tiovivo una vez que estén girando juntos?
- 2. Si el niño se mueve sobre el tiovivo 0.5 m hacia el centro del tiovivo, ¿Cuál es la nueva velocidad angular del sistema niño+tiovivo en esta oportunidad?
- 3. Si en otro instante, el niño esta localizado en la periferia del tiovivo y salta desde el punto P con una velocidad de $\vec{v} = 3.2 \hat{i} \frac{m}{c}$, ¿Cuál será la nueva velocidad angular del tiovivo?

Problema 6. Un muchacho de masa "m" se desliza con una rapidez de 1 m/s por una superficie de hielo de roce despreciable como se observa en la figura. Al final de la superficie se encuentra una plataforma circular (Disco) de masa Mp = 100 Kg. Y radio R=2m, que rota libremente con una velocidad angular $\vec{\omega}_s = 2\hat{k} rad/s$. La plataforma está casi enterrada en la nieve al ras del piso y La muchacha llega tangencialmente al borde de la plataforma en el punto A (-2,0,0) m, se agarra firmemente de ella y queda sentada en el borde de la misma rotando junto con ella.

- Para lo planteado, al comparar la situación justo antes de que el muchacho llegue a la plataforma con el instante en que quedan rotando juntas se puede afirmar que:
- b) Solo se c) Solo se d) Solo se e) Sólo se conserva la conservan \vec{p} y conserva el $E_o = E_f$; $\vec{L}_o = \vec{L}_f$ conservan E y $\it L$ energía momento cinético $\vec{p}_o = \vec{p}_f$
- 2) Si la velocidad angular de la plataforma después de que la muchacha cae sobre ella es $\vec{\omega}_{\epsilon} = 0.4375 \,\hat{k} \, rad \,/ \, s$ entonces la masa de la muchacha (en kg) debe ser:
- 3) Cual será la velocidad tangencial (en m/s) del muchacho si , estando en un instante cualquiera en el punto A , se suelta
- 4) Considerando la situación anterior, la plataforma queda rotando con un ω_{c} (en rad/s) de: