Zespół	Radosław Smoter Arkadiusz Halat
Numer grupy	LK3
Nazwa ćwiczenia	Rozwiązywanie równań różniczkowych - Simulink
Numer ćwiczenia	2
Data oddania	10.04.2022
Prowadzący przedmiot	Mgr inż. Denys Gutenko
Ocena	

Modelowanie Układów Dynamicznych

Modelowanie układów dynamicznych

Spis treści

Cel ćwiczenia	3
Układy w programie Simulink	4
Zadanie 1	
Zadanie 2	4
Zadanie 3	5
Wyniki	6
Zadanie 1	6
Zadanie 2	6
Zadanie 3	7
Opis działania programu	8
Wnioski	9
Uwagi	10

Cel ćwiczenia

Rozwiązywanie układów równań różniczkowych na potrzeby modelowania układów dynamicznych, w sytuacjach, gdy "prawdziwe" problemy nie posiadają rozwiązań możliwych do osiągnięcia drogą analityczną.

Układy w programie Simulink

Zadanie 1.

Układ 1: Rozwiązanie zadania 1.

Zadanie 2.

Układ 2: Rozwiązanie zadania 2.

Zadanie 3.

Układ 3: Rozwiązanie zadania 3.

Wyniki

Zadanie 1.

Wykres 1: Wyniki zadania 1.

Zadanie 2.

Wykres 2: Wyniki zadania 2.

Zadanie 3.

Wykres 3: Wyniki zadania 3.

Opis działania programu

Wnioski

Istnieje wiele metod rozwiązywania równań różniczkowych. Znajdują one swoje zastosowanie w sytuacjach, gdy dokładne rozwiązywanie równań jest niemożliwe. Wiele z tych metod osiąga podobne wyniki, gdy skala jest mała, jednak różnią się nieznacznie nie tylko między sobą, ale też rozwiązaniem dokładnym. Stąd, znajomość i umiejętność zastosowania odpowiedniej metody, której złożoność obliczeniowa jest adekwatna do zadanego problemu oraz uzyskuje przybliżenie o akceptowalnej niedokładności, jest istotne w pracy inżyniera.

Uwagi

W zadaniu numer 3, niemożliwe jest otrzymanie rozwiązania za pomocą metody kanonicznej, stąd zastosowano metodę zmiennej pomocniczej.