1054 - Efficient Pseudo Code

Sometimes it's quite useful to write pseudo codes for problems. Actually you can write the necessary steps to solve a particular problem. In this problem you are given a pseudo code to solve a problem and you have to implement the pseudo code efficiently. Simple! Isn't it?:)

```
pseudo code
{
    take two integers n and m
    let p = n ^ m (n to the power m)
    let sum = summation of all the divisors of p
    let result = sum MODULO 1000,000,007
}
```

Now given \mathbf{n} and \mathbf{m} you have to find the desired result from the pseudo code. For example if $\mathbf{n} = 12$ and $\mathbf{m} = 2$. Then if we follow the pseudo code, we get

```
pseudo code
{
    take two integers n and m
    so, n = 12 and m = 2
    let p = n ^ m (n to the power m)
    so, p = 144
    let sum = summation of all the divisors of p
    so, sum = 403, since the divisors of p are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144
    let result = sum MODULO 1000,000,007
    so, result = 403
}
```

Input

Input starts with an integer $T \leq 5000$, denoting the number of test cases.

Each test case will contain two integers, $n \ (1 \le n)$ and $m \ (0 \le m)$. Each of n and m will be fit into a 32 bit signed integer.

Output

For each case of input you have to print the case number and the result according to the pseudo code.

Sample Input	Output for Sample Input
3	Case 1: 403
12 2	Case 2: 28
12 1	Case 3: 3751
36 2	