

# **A83T**

System Configuration 说明书

# 文档履历

| 版本号   | 日期         | 制/修订人 | 内容描述   |
|-------|------------|-------|--------|
| V1. 0 | 2014-10-20 |       | 建立初始版本 |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |
|       |            |       |        |



# 目录

| 1. | 系统     |                        | 6   |
|----|--------|------------------------|-----|
|    | 1.1.   | [product]              | . 6 |
|    | 1.2.   | [platform]             | 6   |
|    | 1.3.   | [target]               | . 6 |
|    | 1.4.   | [charging_type]        | 6   |
|    | 1.5.   | [key_detect_en]        | . 7 |
|    | 1.6.   | [power_sply]           | 7   |
|    | 1.7.   | [gpio_bias]            | 8   |
|    | 1.8.   | [card_boot]            | 9   |
|    | 1.9.   | [card_boot0_para]      | 9   |
|    | 1.10.  | [card_boot2_para]      | 10  |
|    | 1.11.  | [twi_para]             | 11  |
|    | 1.12.  | [uart_para]            | 11  |
|    | 1.13.  | [force_uart_para]      |     |
|    | 1.14.  | [jtag_para]            | 12  |
|    | 1.15.  | [clock]                |     |
|    | 1.16.  | [pm_para]              | 12  |
| 2. | SDRAM. |                        | 13  |
|    | 2.1.   | [dram_para]            | 13  |
| 3. | GMAC   |                        | 14  |
|    | 3.1.   | [gmac0]                | 14  |
| 4. | STANDB | Y                      | 16  |
|    | 4.1.   | [wakeup_src_para]      | 16  |
|    | 4.2.   | [sys_pwr_dm_para]      | 17  |
|    | 4.3.   | [dynamic_standby_para] | 17  |
| 5. | I2C 总线 |                        | 18  |
|    | 5.1.   | [twi0]                 | 18  |
|    | 5.2.   | [twi1]                 | 18  |
|    | 5.3.   | [twi2]                 | 19  |
| 6. | 串□(UA  | RT)                    | 19  |
|    | 6.1.   | [uart0]                | 19  |
|    | 6.2.   | [uart1]                | 20  |
|    | 6.3.   | [uart2]                | 20  |
|    | 6.4.   | [uart3]                | 21  |
|    | 6.5.   | [uart4]                | 21  |
| 7. | SPI 总线 |                        | 22  |
|    | 7.1.   | [spi0]                 | 22  |
|    | 7.2.   | [spi1]                 | 22  |
|    | 7.3.   | [spi_devices]          | 23  |
|    | 7.4.   | [spi_board0]           | 23  |
| 8. | 触摸屏    |                        | 23  |
|    | 8.1.   | [rtp_para]             | 23  |
|    | 8.2.   | [ctp_para]             | 24  |

#### 第 4 页 共 75 页

|     | 8.3.            | [ctp_list_para]     | 25       |
|-----|-----------------|---------------------|----------|
|     | 8.4.            | [tkey_para]         | 25       |
| 9.  | 温度              |                     | 26       |
|     | 9.1.            | [ths_para]          | 26       |
|     | 9.2.            | [cooler_table]      | 27       |
| 10. | 闪石              | 字                   | 28       |
|     | 10.1.           | [nand0_para]        | 28       |
| 11. | 显力              |                     | 29       |
|     | 11.1.           | [disp_init]         | 29       |
|     | 11.2.           | [lcd0_para]         | 30       |
|     | 11.3.           | [hdmi_para]         | 33       |
|     | 11.4.           | [pwm0_para]         | 33       |
|     | 11.5.           | [tvout_para]        | 33       |
|     | 11.6.           | [tvin_para]         | 33       |
| 12. | 摄值              | 象头(CSI)             | 33       |
|     | 12.1.           | [csi0]              | 33       |
| 13. | SD              | / MMC               |          |
|     | 13.1.           | [mmc0_para]         |          |
|     | 13.2.           | [mmc1_para]         |          |
|     | 13.3.           | [mmc2_para]         |          |
| 14. | SIN             | / 卡                 |          |
| 15. |                 | B 控制标志              |          |
|     | 15.1.           | [usbc0]             |          |
|     | 15.2.           | [usbc1]             |          |
|     | 15.3.           | [usbc2]             |          |
| 16. | US              | B Device            |          |
|     | 16.1.           | [usb_feature]       |          |
|     | 16.2.           | [msc_feature]       |          |
| 17. |                 | B Serial Feature    |          |
|     | 17.1.           | [serial_feature]    |          |
| 18. |                 | ±                   |          |
| 10. | 18.1.           | [motor_para]        |          |
| 19. |                 | 力感应(G Sensor)       |          |
| 17. | 19.1.           | [gsensor_para]      |          |
| 20. |                 | 力感应(G Sensor)自动扫描配置 |          |
| 20. | 20.1.           | [gsensor_list_para] |          |
| 21. |                 | Fi                  |          |
| 21. | 21.1.           | [rf_para]           |          |
|     | 21.2.           | [in_para]           |          |
| 22. |                 | 于(blueteeth)        |          |
| 44. | 22.1.           | [bt_para]           |          |
| 23. |                 | S                   |          |
| 23. | 23.1.           | [gps_para]          |          |
| 24. |                 | [gps_para]          |          |
| ∠+. |                 | [3g para]           | 50<br>50 |
|     | // <b>+</b> . I | 1.12 1/01/01        | 11.1     |

#### 第 5 页 共 75 页

| 25. | 陀螺仪                        | 51 |
|-----|----------------------------|----|
|     | 25.1. [gy_para]            | 51 |
|     | 25.2. [gy_list_para]       | 51 |
| 26. | 光感(light sensor)           | 52 |
|     | 26.1. [ls_para]            | 52 |
|     | 26.2. [ls_list_para]       | 52 |
| 27. | 罗盘 Compass                 | 53 |
|     | 27.1. [compass_para]       | 53 |
|     | 27.2. [compass_list_para]  |    |
| 28. |                            |    |
|     | 28.1. [audio0]             |    |
| 29. |                            |    |
|     | 29.1. [s_cir0]             |    |
|     | 29.2. [cir]                |    |
| 30. |                            |    |
|     | 30.1. [pmu1_para]          |    |
|     | 30.2. [pmu1_regu]          |    |
| 31. |                            |    |
| 32. |                            |    |
|     | 32.1. CPU DVFS             |    |
|     |                            |    |
|     |                            |    |
|     |                            |    |
|     | 32.1.4. [vf_table2]        |    |
|     | 32.2.1. [gpu_dvfs_table]   |    |
|     | 32.3. DRAM DVFS            |    |
|     | 32.3.1. [dram_scene_table] |    |
| 33. |                            |    |
| 34. |                            |    |
| 35. |                            |    |
| 36. |                            |    |
| 37. |                            |    |
| 38. | · -1                       |    |

# 1. 系统

### **1.1.**[product]

| 配置项             | 配置项含义  |
|-----------------|--------|
| Version = "100" | 配置的版本号 |
| machine = "f1"  | 方案名字   |

#### 配置举例:

[product]

version = "100"

machine = "f1"

### 1.2.[platform]

| 配置项         | 配置项含义                          |
|-------------|--------------------------------|
| eraseflag=1 | 量产时是否擦除。0: 不擦, 1: 擦除(仅仅对       |
|             | 量产工具,升级工具无效)                   |
| next_work=3 | PhoenixUSBPro 烧写完后样机的行为. 0: 不做 |
|             | 任何处理, 2: 重启, 3: 关机, 4: 重新烧写    |

#### 配置举例:

; eraseflag - 1 erase data partition, 0 - do not erase data partition

; next\_work - action after burn, 0x0 by config, 0x1 normal, 0x2 reboot, 0x3 shutdown,0x4 reupdate

\_\_\_\_\_

[platform]

eraseflag = 0

next\_work=3

### **1.3.**[target]

| 配置项               | 配置项含义                                 |
|-------------------|---------------------------------------|
| boot_clock=xx     | 启动频率; xx 表示多少 MHZ                     |
| storage_type = -1 | 启动介质选择 0 : nand, 1: card0,2: card2,-1 |
|                   | (defualt)自动扫描启动介质:                    |

#### 配置举例:

[target]

 $boot\_clock = 1008$ 

storage\_type = -1

### 1.4.[charging\_type]

| 配置项 | 配置项含义 |
|-----|-------|
|-----|-------|

| charging_type = 1 | 为1,才能进入安卓关机充电模式;为0是进入 |
|-------------------|-----------------------|
|                   | boot standby 进行充电。    |

注: 如果想进入安卓关机充电功能,应该务必加上以上内容。

### 1.5. [key\_detect\_en]

| 配置项            | 配置项含义                       |
|----------------|-----------------------------|
| keyen_flag = 1 | 当 keyen_flag = 1 时,支持按键检测;当 |
|                | keyen_flag = 0 时,不支持按键检测    |

配置举例:

[key\_detect\_en]

 $keyen_flag = 1$ 

### 1.6.[power\_sply]

| 配置项                 | 配置项含义               |
|---------------------|---------------------|
| dcdc1_vol = 1003000 | dcdc1 的输出电压, 3000mV |
| dcdc2_vol = 1000900 | dcdc2 的输出电压,900mV   |
| dcdc3_vol = 1000900 | dcdc3 的输出电压,900mV   |
| dcdc4_vol = 1000900 | dcdc4 的输出电压,900mV   |
| dcdc5_vol = 1001200 | dcdc5)的输出电压,1200mV  |
| dcdc6_vol = 1000900 | dcdc5)的输出电压,900mV   |
| aldo1_vol = 1800    | aldo2 的输出电压,1200mV  |
| aldo2_vol = 1001800 | aldo2 的输出电压,1800mV  |
| aldo3_vol = 1003000 | aldo3 的输出电压,3000mV  |
| eldo2_vol = 1800    | aldo3 的输出电压,1800mV  |
| dldo2_vol = 4200    | aldo3 的输出电压,4200mV  |
| dldo4_vol = 2800    | aldo3 的输出电压,2800mV  |
| fldo2_vol = 1000900 | aldo3 的输出电压,900mV   |
| dldo1_vol = 2800    | aldo3 的输出电压,2800mV  |

#### 配置说明:

电压名称 = 100XXXX :表示把该路电压设置为 XXXX 指定的电压值,同时打开输出开关

电压名称 = 000XXXX :表示把该路电压设置为 XXXX 指定的电压值,同时关闭输出开关,当有需要

时由内核驱动打开

电压名称 = 0 : 表示关闭该路电压输出开关,不修改原有的值

#### 配置举例:

;-----

;

; 各路电压输出语法说明:

•

; 电压名称 = 100XXXX :表示把该路电压设置为 XXXX 指定的电压值,同时打开输出开关

; 电压名称 = 000XXXX :表示把该路电压设置为 XXXX 指定的电压值,同时关闭输出开关,当有需

要时由内核驱动打开

```
电压名称 = 0
                       :表示关闭该路电压输出开关,不修改原有的值
[power_sply]
dcdc1\_vol
                          = 1003000
dcdc2_vol
                          = 1000900
dcdc3_vol
                          = 1000900
dcdc4_vol
                          = 1000900
dcdc5_vol
                          = 1001200
dcdc6_vol
                          = 1000900
aldo1_vol
                          = 1800
                          = 1001800
aldo2_vol
aldo3_vol
                          = 1003000
eldo2_vol
                          = 1800
dldo2_vol
                          =4200
dldo4_vol
                          = 2800
fldo2_vol
                          = 1000900
dldo1_vol
                          = 2800
```

### **1.7.** [gpio\_bias]

| 配置项                          | 配置项含义                                    |
|------------------------------|------------------------------------------|
| pb_bias ="axp81x:dcdc1:3000" | PB 的 bias 电压为 axp81x 的 dcdc1, 输出为 3000mV |
| pc_bias="axp81x:dcdc1:3000"  | PC 的 bias 电压为 axp81x 的 dcdc1, 输出为 3000mV |
| pd_bias="axp81x:aldo1:1800"  | PD 的 bias 电压为 axp81x 的 aldo1, 输出为 1800mV |
| pe_bias="axp81x:dcdc1:3000"  | PE 的 bias 电压为 axp81x 的 dcdc1, 输出为 3000mV |
| pf_bias="axp81x:dcdc1:3000"  | PF 的 bias 电压为 axp81x 的 dcdc1, 输出为 3000mV |
| pg_bias="axp81x:dcdc1:3000"  | PG 的 bias 电压为 axp81x 的 dcdc1, 输出为 3000mV |
| ph_bias="axp81x:dcdc1:3000"  | PH 的 bias 电压为 axp81x 的 dcdc1, 输出为 3000mV |
| pl_bias="axp81x:aldo3;3000"  | PL 的 bias 电压为 axp81x 的 aldo3, 输出为 3000mV |

注意: 调整 GPIO 电压时,必须保证 bias 电压和调整后的 GPIO 电压匹配,不然重则烧坏物理器件,轻则 GPIO 驱动能力不足导致设备无法使用或不稳定等问题.

```
配置举例:
;------
; normal config: eg. px_bias = "pmu_name:supply_name:voltage"
; pmu_name = axp809, axp806
; supply_name = dcdc1, dcdc2, aldo1, gpio1ldo, etc...
;
; special config: eg. px_bias = "floating"
; when the gpio is float, use it
; and the register will ignore it(use default value)
```

; special config: eg. px\_bias = "constant:voltage"

when the gpio connect a constant voltage, use it

; and the register will set a matching value

:-----

[gpio\_bias]

;pa\_bias = "axp81x:dcdc1:3000" pb\_bias = "axp81x:dcdc1:3000" pc\_bias = "axp81x:dcdc1:3000" pd\_bias = "axp81x:aldo1:1800" pe\_bias = "axp81x:dcdc1:3000" = "axp81x:dcdc1:3000" pf\_bias = "axp81x:dcdc1:3000" pg\_bias ph\_bias = "axp81x:dcdc1:3000" pl\_bias = "axp81x:aldo3:3000"

### 1.8.[card\_boot]

| 配置项                   | 配置项含义                          |
|-----------------------|--------------------------------|
| logical_start = 40960 | 启动卡逻辑起始扇区                      |
| sprite_gpio0 =        | 卡量产 gpio led 灯配置               |
| most work -2          | 1-不做任何动作, 2-重启, 3-关机, 4-量产, 5- |
| next_work = 2         | 正常启动                           |

举例配置:

[card\_boot]

logical\_start = 40960

sprite\_gpio0 =

 $next_work = 2$ 

### 1.9.[card\_boot0\_para]

| 配置项                | 配置项含义                  |
|--------------------|------------------------|
| card_ctrl=0        | 卡量产相关的控制器选择 0          |
| card_high_speed=xx | 速度模式 0 为低速, 1 为高速      |
| card_line=4        | 代表 4 线卡                |
| sdc_d1=xx          | sdc 卡数据 1 线信号的 GPIO 配置 |
| sdc_d0=xx          | sdc 卡数据 0 线信号的 GPIO 配置 |
| sdc_clk=xx         | sdc 卡时钟信号的 GPIO 配置     |
| sdc_cmd=xx         | sdc 命令信号的 GPIO 配置      |
| sdc_d3=xx          | sdc 卡数据 3 线信号的 GPIO 配置 |
| sdc_d2=xx          | sdc 卡数据 2 线信号的 GPIO 配置 |

配置举例:

[card0\_boot\_para]

 $\begin{array}{lll} card\_ctrl &= 0 \\ card\_high\_speed = 1 \\ card\_line &= 4 \\ sdc\_d1 &= port:PF0<2><1><2><default> \\ sdc\_d0 &= port:PF1<2><1><2><default> \\ sdc\_clk &= port:PF2<2><1><2><default> \\ sdc\_cmd &= port:PF3<2><1><2><default> \\ \end{array}$ 

= port:PF4<2><1><2><default>

= port:PF5<2><1><2><default>

1.10. [card\_boot2\_para]

| 配置项                | 配置项含义                  |
|--------------------|------------------------|
| card_ctrl=2        | 卡启动控制器选择 2             |
| card_high_speed=xx | 速度模式 0 为低速, 1 为高速      |
| card_line=8        | 8线卡                    |
| sdc_ cmd =xx       | sdc 命令信号的 GPIO 配置      |
| sdc_clk =xx        | sdc 卡时钟信号的 GPIO 配置     |
| sdc_d0=xx          | sdc 卡数据 0 线信号的 GPIO 配置 |
| sdc_d1 =xx         | sdc 卡数据 1 线信号的 GPIO 配置 |
| sdc_d2=xx          | sdc 卡数据 2 线信号的 GPIO 配置 |
| sdc_d3=xx          | sdc 卡数据 3 线信号的 GPIO 配置 |
| sdc_d4=xx          | sdc 卡数据 4 线信号的 GPIO 配置 |
| sdc_d5=xx          | sdc 卡数据 5 线信号的 GPIO 配置 |
| sdc_d6=xx          | sdc 卡数据 6 线信号的 GPIO 配置 |
| sdc_d7=xx          | sdc 卡数据 7 线信号的 GPIO 配置 |
| sdc_2xmode=1       | 设置内部控制器的采样模式, 默认配置为 1  |
| sdc_ddrmode=1      | 是否使用 ddr 模式, 默认配置为 1   |

#### 配置举例:

sdc\_d3

sdc\_d2

[card2\_boot\_para] card\_ctrl = 2 card\_high\_speed = 1 card\_line = 8

 $sdc\_cmd$ = port:PC06<3><1><2><default> sdc\_clk = port:PC05<3><1><2><default>  $sdc_d0$ = port:PC08<3><1><2><default> sdc\_d1 = port:PC09<3><1><2><default>  $sdc\_d2$ = port:PC10<3><1><2><default>  $sdc_d3$ = port:PC11<3><1><2><default>  $sdc\_d4$ = port:PC12<3><1><2><default>  $sdc\_d5$ = port:PC13<3><1><2><default> = port:PC14<3><1><2><default>  $sdc_d6$ sdc\_d7 = port:PC15<3><1><2><default>

 $sdc_2xmode = 1$  $sdc_ddrmode = 1$ 

### 1.11. [twi\_para]

| 配置项          | 配置项含义                   |
|--------------|-------------------------|
| twi_port= xx | Boot 的 twi 控制器编号        |
| twi_scl=xx   | Boot 的 twi 的时钟的 GPIO 配置 |
| twi_sda=xx   | Boot 的 twi 的数据的 GPIO 配置 |

#### 配置举例:

[twi\_para]

 $twi_port = 0$ 

twi\_scl = port:PH02<2><default><default><default> twi\_sda = port:PH03<2><default><default><default>

### **1.12.** [uart\_para]

| 配置项                | 配置项含义              |
|--------------------|--------------------|
| uart_debug_port=xx | Boot 串口控制器编号       |
| uart_debug_tx=xx   | Boot 串口发送的 GPIO 配置 |
| uart_debug_rx=xx   | Boot 串口接收的 GPIO 配置 |

#### 配置举例:

[uart\_para]

uart\_debug\_port = 0

uart\_debug\_tx = port:PB09<2><1><default><default>
uart\_debug\_rx = port:PB10<2><1><default><default>

# 1.13. [force\_uart\_para]

| 配置项                 | 配置项含义                       |
|---------------------|-----------------------------|
| force_uart_port = 0 | kernel 打印使用的 uart 控制器号. 0~4 |
| force_uart_tx=xx    | 串口发送的 GPIO 配置               |
| force_uart_rx=xx    | 串口接收的 GPIO 配置               |

此项用于配置 kernel 使用哪路 uart 控制器来打印.

发布的固件都是不带卡打印的, 打印口被 SD 卡占用, 可以通过本项来配置 kernel 用其他的 uart 口打印.

#### 配置举例:

[force\_uart\_para]

force\_uart\_port = 0

force\_uart\_tx = port:PF02<3><1><default><default> force\_uart\_rx = port:PF04<3><1><default><default>

### 1.14. [jtag\_para]

| 配置项            | 配置项含义                   |
|----------------|-------------------------|
| jtag_enable=xx | JTAG 使能                 |
| jtag_ms=xx     | 测试模式选择输入(TMS) 的 GPIO 配置 |
| jtag_ck=xx     | 测试时钟输入(TMS) 的 GPIO 配置   |
| jtag_do=xx     | 测试数据输出(TDO) 的 GPIO 配置   |
| jtag_di=xx     | 测试数据输入(TDI)的 GPIO 配置    |

配置举例:

[jtag\_para]

jtag\_enable = 1

jtag\_ms= port:PF00<3><default><default><default><default>jtag\_ck= port:PF05<3><default><default><default>jtag\_do= port:PF03<3><default><default><default>jtag\_di= port:PF01<3><default><default><default>

### 1.15. [clock]

| 配置项         |              | 配置项含义                    |
|-------------|--------------|--------------------------|
| pll_ve      | = 432        | VE 时钟频率                  |
| ;pll_periph | = 600        | PERIPH 时钟默认 600M, 不要修改.  |
| pll_gpu     | = 432        | GPU 时钟频率                 |
| pll_hsic    | = 480        | HSIC 时钟频率                |
| pll_de      | = 504        | DE 时钟频率                  |
| apb2_parent | = pll_periph | 设置 apb2 的时钟源为 pll_periph |
| apb2        | = 40         | apb2 总线时钟频率              |

配置举例:

[clock]

pll\_ve = 432
;pll\_periph = 600
pll\_gpu = 432
pll\_hsic = 480
pll\_de = 504
apb2\_parent = pll\_periph
apb2 = 40

### 1.16. [pm\_para]

| 配置项                | 配置项含义                                    |
|--------------------|------------------------------------------|
|                    | if 1 == standby_mode, then support super |
| $standby_mode = x$ | standby;                                 |
|                    | else, support normal standby.            |

| 配置举例:                                               |
|-----------------------------------------------------|
| ;                                                   |
| ; if 1 == standby_mode, then support super standby; |
| ; else, support normal standby.                     |
| ;                                                   |
| [pm_para]                                           |
| standby mode - 1                                    |

# 2. SDRAM

# 2.1.[dram\_para]

| 配置项            | 配置项含义                                       |
|----------------|---------------------------------------------|
| dram_clk =xx   | DRAM 的时钟频率,单位为 MHz;它为 24 的整数倍,最低不得低于 120,   |
| dram_type =xx  | DRAM 类型:                                    |
|                | 2 为 DDR2                                    |
|                | 3 为 DDR3                                    |
| dram_zq=xx     | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_odt_en=xx | ODT 是否需要使能                                  |
|                | 0: 不使能                                      |
|                | 1: 使能                                       |
|                | 一般情况下,为了省电,此项为0                             |
| dram_para1=xx  | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_para2 =xx | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_mr0 =xx   | DRAM CAS 值,可为 6,7,8,9; 具体需根据 DRAM 的规格书和速度来确 |
|                | 定                                           |
| dram_mr1 =xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_mr2 =xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_mr3 =xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr0=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr1=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr2=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr3=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr4=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr5=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr6=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr7=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr8=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr9=xx   | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr10=xx  | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
| dram_tpr11=xx  | DRAM 控制器内部参数,由原厂来进行调节,请勿修改                  |
|                | 1                                           |

| dram_tpr12=xx | DRAM 控制器内部参数,由原厂来进行调节,请勿修改 |
|---------------|----------------------------|
| dram_tpr13=xx | DRAM 控制器内部参数,由原厂来进行调节,请勿修改 |

#### 配置举例:

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

;sdram configuration

;dram\_para2 = 0x00001200 ;代表启用 dram 双通道;dram\_para2 = 0x00001100 ;代表启用 dram 单通道

[dram\_para]

dram\_clk = 732 dram\_type = 7

 $dram_zq = 0x3bfb$ 

 $dram\_odt\_en \hspace{1.5cm} = 1$ 

 $\begin{array}{lll} dram\_para1 & = 0x10E40000 \\ dram\_para2 & = 0x0000 \\ dram\_mr0 & = 0x1840 \\ dram\_mr1 & = 0x40 \\ dram\_mr2 & = 0x8 \\ dram\_mr3 & = 0x2 \end{array}$ 

 $dram\_tpr0 = 0x0048A192$  $dram\_tpr1 = 0x01B1B18d$  $dram\_tpr2 = 0x00076052$ 

 $\begin{array}{ll} dram\_tpr3 & = 0 \\ dram\_tpr4 & = 0 \\ dram\_tpr5 & = 0 \\ dram\_tpr6 & = 0 \\ dram\_tpr7 & = 0 \end{array}$ 

 $dram_tpr8 = 1$ 

 $\frac{-1}{\text{dram\_tpr9}} = 0$ 

 $dram_tpr10 = 0$ 

 $dram\_tpr11 = 0x5005$ 

 $dram_tpr12 = 0$ 

 $dram_tpr13 = 0xC00$ 

### 3. GMAC

### 3.1. [gmac0]

平板方案未使用 gmac, 暂不处理.

| 配置项 | 配置项含义 |
|-----|-------|
|-----|-------|

#### 第 15 页 共 75 页

| gmac_used   | = 0 |  |
|-------------|-----|--|
| gmac_txd0   | =   |  |
| gmac_txclk  | =   |  |
| gmac_txen   | =   |  |
| gmac_gtxclk | =   |  |
| gmac_rxd0   | =   |  |
| gmac_rxdv   | =   |  |
| gmac_rxclk  | =   |  |
| gmac_txerr  | =   |  |
| gmac_rxerr  | =   |  |
| gmac_col    | =   |  |
| gmac_crs    | =   |  |
| gmac_clkin  | Ē   |  |
| gmac_mdc    | =   |  |
| gmac_mdio   |     |  |
|             |     |  |

#### 配置举例:

gmac\_used

[gmac0]

gmac\_txd0 =
gmac\_txd1 =
gmac\_txd2 =
gmac\_txd3 =
gmac\_txd4 =
gmac\_txd5 =
gmac\_txd6 =

=0

gmac\_txd7 =

gmac\_txclk = gmac\_txen =

gmac\_gtxclk =

gmac\_rxd0 =

| gmac_rxd1  | = |
|------------|---|
| gmac_rxd2  | = |
| gmac_rxd3  | = |
| gmac_rxd4  | = |
| gmac_rxd5  | = |
| gmac_rxd6  | = |
| gmac_rxd7  | = |
| gmac_rxdv  | = |
| gmac_rxclk | = |
| gmac_txerr | = |
| gmac_rxerr | = |
| gmac_col   | = |
| gmac_crs   | = |
| gmac_clkin | = |
| gmac_mdc   | = |
| gmac_mdio  | = |



#### [wakeup\_src\_para] **4.1.**

| 配置项           | 配置项含义                  |
|---------------|------------------------|
| wakeup_src0   |                        |
| wakeup_src_wl | wifi 唤醒源的 pin 设置.      |
| wakeup_src_bt | bluetooth 唤醒源的 pin 设置. |
| bb_wake_ap    | 3g 唤醒源的 pin 设置.        |

此项用于配置 GPIO 唤醒源

### 配置举例: ; wakeup\_src\_para: sometimes, u would like to add more wakeup src in standby mode, these para will be help;

- u need to make sure the standby mode support the wakeup src. Also, some hw condition must be guaranteed.
- see: scene\_lock for more help info;
- wakeup\_src: to make the scenario work, the wakeup src is needed.

```
[wakeup_src_para]
wakeup_src0
wakeup_src_wl
                    = port:PL04<6><default><default><0>
wakeup_src_bt
                    = port:PL05<6><default><default><0>
bb_wake_ap
```

#### 关于 GPIO 唤醒源配置的说明:

- 1. 默认情况下,对于唤醒源为 PL, PM, AXP\_PORT 的情况,以上配置是可直接使用。
- 2. 对于其他 io 口,若要求能唤醒系统,需要通过 scene\_manager 启用 extended\_standby, 配置供电依赖关系, 从而支持唤醒源的检测;
- 3. 本配置中,对于 wakeup\_src0 这一子键,命名上没有限制,可根据需要配置为脚本解析系统支持的任意名字。
- 4. 本配置中,关心这一唤醒源的模块,需自行处理该唤醒源对应的 io 口的配置。Pm 管理模块只是在进入 standby 时,enable 中断,无多余操作。
- 5. 本配置在 pm 模块初始化后生效,支持使用 extended\_standby 的接口,进行动态 disable/enable;

### 4.2. [sys\_pwr\_dm\_para]

根据 soc 的特性,开关后会影响系统稳定性的 power\_domain 交由系统管理,属于 sys\_pwr\_dm. 在 soc 整合完毕后, sys\_pwr\_dm 即固定了。归为 sys\_pwr\_dm 的供电,会由系统进行管理,进行掉电或 开电操作;

若出于方案的差异化需求,不希望系统对特定的 power\_domain 进行操作,需将特定的 power\_domain 从 sys\_pwr\_dm 拿掉;

以下范例:将 vcc-io 的供电管理,从 arisc 拿掉,从而,进入 suspend 状态时,系统不会关闭 vcc-io 对应的 regulator: dcdc1;

支持哪些 pwr\_domain 属性的更改,需参考 pmu\_regu 的描述,或咨询系统研发人员;

 $; sys\_pwr\_dm\_para$ 

;this para is used to change default sys\_pwr\_dm config when necessary.

; allowed sys\_pwr\_dm is such as follow:

; vdd-cpua

; vdd-cpub

; vdd-gpu

vcc-dram

; vdd-sys

which is compatible with pmu regu config. see: [pmu1\_regu] for more info.

value: 0: del the pwr\_dm from sys\_pwr\_dm\_mask;

1: add the pwr\_dm into sys\_pwr\_dm\_mask;

;-----

[sys\_pwr\_dm\_para]

vcc-io = 0

### 4.3. [dynamic\_standby\_para]

| 配置项                  | 配置项含义            |  |
|----------------------|------------------|--|
| enable=x             | 0: 下面的所有配置项不起作用; |  |
|                      | 1: 下面的所有配置项起作用   |  |
| dram_selfresh_flag=x | 0: 待机时 dram 进自刷新 |  |

#### 1: 待机时 dram 不进自刷新

配置举例:

;------

;dynamic\_standby\_para

; enable:

value: 0: all config is ignored.

; 1: all config is effective.

; dram\_selfresh\_flag:

; value: 0: dram will not enter selfresh,

this config is used for stop dram entering selfresh, in case of dram memory have bug.

; 1: dram will enter slefresh.

,

;------

[dynamic\_standby\_para]

enable = 0

 $dram\_selfresh\_flag = 1$ 

# 5. I2C 总线

主控有3个I2C(twi)控制器

### 5.1.[twi0]

| 配置项          | 配置项含义                |
|--------------|----------------------|
| twi_used =xx | TWI 使用控制: 1 使用, 0 不用 |
| twi_scl =xx  | TWI SCK 的 GPIO 配置    |
| twi_sda=xx   | TWI SDA 的 GPIO 配置    |

#### 配置举例:

[twi0]

twi\_used = 1

twi\_scl = port:PH0<2><default><default><default> twi\_sda = port:PH1<2><default><default><

### 5.2.[twi1]

| 配置项          | 配置项含义                |
|--------------|----------------------|
| twi_used =xx | TWI 使用控制: 1 使用, 0 不用 |
| twi_scl =xx  | TWI SCK 的 GPIO 配置    |
| twi_sda=xx   | TWI SDA 的 GPIO 配置    |

配置举例:

[twi1]

 $twi_used = 1$ 

twi\_scl = port:PH2<2><default><default><default> twi\_sda = port:PH3<2><default><default><

### 5.3.[twi2]

| 配置项          | 配置项含义                |
|--------------|----------------------|
| twi_used =xx | TWI 使用控制: 1 使用, 0 不用 |
| twi_scl =xx  | TWI SCK 的 GPIO 配置    |
| twi_sda=xx   | TWI SDA 的 GPIO 配置    |

#### 配置举例:

[twi2]

twi\_used = 1

twi\_scl = port:PH4<2><default><default><default> twi\_sda = port:PH5<2><default><default><default>

# 6. 串口(UART)

主控有 5 路 uart 接口, 5 路支持 4 线或者 2 线通讯(但十分不建议用 uart0 作为控制台以外的用途),实例中,有些路仅仅写出 2 路的配置形式,但实际使用时只要将其按照 4 路的格式补全,也能支持 4 线通讯

### 6.1.[uart0]

| 配置项                 | 配置项含义                 |
|---------------------|-----------------------|
| uart_used =xx       | UART 使用控制: 1 使用, 0 不用 |
| uart_port =xx       | UART 端口号              |
| uart_type = xx      | UART 类型               |
| uart_tx =xx         | UART TX 的 GPIO 配置     |
| uart_rx=xx          | UART RX 的 GPIO 配置     |
| uart_regulator = xx | UART 的供电选择            |

#### 配置举例:

[uart0]

 $uart\_used = 1$   $uart\_port = 0$   $uart\_type = 2$ 

uart\_tx = port:PB09<2><1><default><default>
uart\_rx = port:PB10<2><1><default><default>

uart\_regulator = "vcc-io"

### 6.2.[uart1]

| 配置项                 | 配置项含义                 |
|---------------------|-----------------------|
| uart_used           | UART 使用控制: 1 使用, 0 不用 |
| uart_port           | UART 端口号              |
| uart_type           | UART 类型               |
| uart_tx             | UART TX 的 GPIO 配置     |
| uart_rx             | UART RX 的 GPIO 配置     |
| uart_rts            | UART RTS 的 GPIO 配置    |
| uart_cts            | UART CTS 的 GPIO 配置    |
| uart_regulator = xx | UART 的供电选择            |

#### 配置举例:

[uart1]

 $uart\_used = 1$   $uart\_port = 1$   $uart\_type = 4$ 

 $\begin{array}{lll} uart\_tx & = port:PG06<2><1><default><default>\\ uart\_rx & = port:PG07<2><1><default><default>\\ uart\_rts & = port:PG08<2><1><default><default>\\ uart\_cts & = port:PG09<2><1><default><default>\\ \end{array}$ 

uart\_regulator = "vcc-io"

# 6.3.[uart2]

| 配置项                 | 配置项含义                 |
|---------------------|-----------------------|
| uart_used =xx       | UART 使用控制: 1 使用, 0 不用 |
| uart_port =xx       | UART 端口号              |
| uart_type =xx       | UART 类型               |
| uart_tx =xx         | UART TX 的 GPIO 配置     |
| uart_rx=xx          | UART RX 的 GPIO 配置     |
| uart_rts=xx         | UART RTS 的 GPIO 配置    |
| uart_cts=xx         | UART CTS 的 GPIO 配置    |
| uart_regulator = xx | UART 的供电选择            |

#### 配置举例:

[uart2]

 $uart\_used$  = 1  $uart\_port$  = 2  $uart\_type$  = 4

uart\_tx= port:PB00<2><1><default><default>uart\_rx= port:PB01<2><1><default><default>uart\_rts= port:PB02<2><1><default><default>uart\_cts= port:PB03<2><1><default><default>

uart\_regulator = "vcc-io"

### 6.4.[uart3]

| 配置项                 | 配置项含义                 |
|---------------------|-----------------------|
| uart_used =xx       | UART 使用控制: 1 使用, 0 不用 |
| uart_port =xx       | UART 端口号              |
| uart_type =xx       | UART 类型               |
| uart_tx =xx         | UART TX 的 GPIO 配置     |
| uart_rx=xx          | UART RX 的 GPIO 配置     |
| uart_rts=xx         | UART RTS 的 GPIO 配置    |
| uart_cts=xx         | UART CTS 的 GPIO 配置    |
| uart_regulator = xx | UART 的供电选择            |

#### 配置举例:

[uart3]

 $uart\_used = 0$   $uart\_port = 3$   $uart\_type = 4$ 

 $\begin{array}{lll} uart\_tx & = port:PG10<3><1><default><default><\\ uart\_rx & = port:PG11<3><1><default><default><\\ uart\_rts & = port:PG12<3><1><default><default><\\ uart\_cts & = port:PG13<3><1><default><default><\\ default><\\ default>$ 

uart\_regulator = "vcc-io"

### 6.5.[uart4]

| 配置项                 | 配置项含义                 |
|---------------------|-----------------------|
| uart_used =xx       | UART 使用控制: 1 使用, 0 不用 |
| uart_port =xx       | UART 端口号              |
| uart_type =xx       | UART 类型               |
| uart4_tx =xx        | UART TX 的 GPIO 配置     |
| uart4_rx=xx         | UART RX 的 GPIO 配置     |
| uart_cts=xx         | UART CTS 的 GPIO 配置    |
| uart_regulator = xx | UART 的供电选择            |

#### 配置举例:

[uart4]

uart\_used = 0 uart\_type = 4

uart\_tx= port:PE10<3><1><default><default><default>uart\_rx= port:PE11<3><1><default><default>uart\_rts= port:PE12<3><1><default><default>uart\_cts= port:PE13<3><1><default><default>

# 7. SPI 总线

### 7.1.[spi0]

| 配置项                | 配置项含义                     |
|--------------------|---------------------------|
| spi_used =xx       | SPI 使用控制: 1 使用, 0 不用      |
| spi_cs_bitmap =xx  | 由于 SPI 控制器支持多个 CS,这一个参数表示 |
|                    | CS 的掩码;                   |
| spi_cs0 =xx        | SPI CS0 的 GPIO 配置         |
| spi_sclk =xx       | SPI CLK 的 GPIO 配置         |
| spi_mosi=xx        | SPI MOSI 的 GPIO 配置        |
| spi_miso=xx        | SPI MISO 的 GPIO 配置        |
| spi_regulator = xx | SPI 的供电选择                 |

#### 配置举例:

[spi0]

spi\_used = 0 spi\_cs\_bitmap = 1

spi\_mosi= port:PC00<3><default><default><default><default>spi\_miso= port:PC01<3><default><default><default><default>spi\_sclk= port:PC02<3><default><default><default><default>spi\_cs0= port:PC03<3><1><default><default>

spi\_regulator = "vcc-io"

### 7.2.[spi1]

| 配置项                | 配置项含义                     |
|--------------------|---------------------------|
| spi_used =xx       | SPI 使用控制: 1 使用, 0 不用      |
| spi_cs_bitmap =xx  | 由于 SPI 控制器支持多个 CS,这一个参数表示 |
|                    | CS 的掩码;                   |
| spi_cs0 =xx        | SPI CS0 的 GPIO 配置         |
| spi_sclk =xx       | SPI CLK 的 GPIO 配置         |
| spi_mosi=xx        | SPI MOSI 的 GPIO 配置        |
| spi_miso=xx        | SPI MISO 的 GPIO 配置        |
| spi_regulator = xx | SPI 的供电选择                 |

#### 配置举例:

[spi1]

 $spi\_used = 0$ 

spi\_cs\_bitmap = 1

spi\_cs0 = port:PG06<3><1><default><default>< spi\_sclk = port:PG07<3><default><default><default> spi\_mosi = port:PG08<3><default><default><default>< spi\_miso = port:PG09<3><default><default><default><

spi\_regulator = "vcc-io"

### 7.3.[spi\_devices]

| 配置项            | 配置项含义                                 |
|----------------|---------------------------------------|
| spi_dev_num=xx | 该项目直接和下面的[spi_board0]相关,它指定           |
|                | 主板连接 spi 设备的数目,假如有 N 个 SPI 设          |
|                | 备那么[spi_devices]中就要有 N 个([spi_board0] |
|                | 到[spi_board(N-1)])配置                  |

配置举例:

[spi\_devices]

 $spi_dev_num = 1$ 

### **7.4.**[spi\_board0]

| 配置项              | 配置项含义                           |
|------------------|---------------------------------|
| modalias=xx      | Spi 设备名字,                       |
| max_speed_hz =xx | 最大传输速度 (HZ)                     |
| bus_num =xx      | Spi 设备控制器序号                     |
| chip_select=xx   | 理论上可以选 0, 1, 2, 3, 目前只支持 1, 2(芯 |
|                  | 片没引出接口)                         |
| mode=xx          | SPI MOSI 的 GPIO 配置可选值 0-3       |

配置举例:

[spi\_board0]

modalias = "m25p32"

 $max\_speed\_hz = 33000000$ 

bus\_num = 0 chip\_select = 0

mode = 0

# 8. 触摸屏

### **8.1.** [rtp\_para]

电阻屏的配置参数, 现在一般不用.

配置举例:

[rtp\_para]

rtp\_used =0

 $rtp\_screen\_size = 5$ 

 $rtp\_regidity\_level = 5$ 

 $rtp\_press\_threshold\_enable = 0$ 

 $rtp\_press\_threshold = 0x1f40$ 

 $rtp\_sensitive\_level = 0xf$ 

 $rtp_exchange_x_y_flag = 0$ 

#### **8.2.** [ctp\_para]

#### 电容屏配置参数.

| 配置项                   | 配置项含义                      |
|-----------------------|----------------------------|
| ctp_used              | 该选项为是否开启电容触摸,支持的话置 1,反     |
|                       | 之置 0                       |
| ctp_name              | tp 的 name,必须配,与驱动保持一致      |
| ctp_twi_id            | 用于选择 i2c adapter, 可选 1, 2  |
| ctp_twi_addr          | 指明 i2c 设备地址,与具体硬件相关        |
| ctp_screen_max_x      | 触摸板的x轴最大坐标                 |
| ctp_screen_max_y      | 触摸板的y轴最大坐标                 |
| ctp_revert_x_flag     | 是否需要翻转 x 坐标, 需要则置 1, 反之置 0 |
| ctp_revert_y_flag     | 是否需要翻转 y 坐标,需要则置 1,反之置 0   |
| ctp_exchange_x_y_flag | 是否需要 x 轴 y 轴坐标对换           |
| ctp_int_port          | 电容屏中断信号的 GPIO 配置           |
| ctp_wakeup            | 电容屏唤醒信号的 GPIO 配置           |
| ctp_power_ldo         | 电容屏供电 ldo                  |
| ctp_power_ldo_vol     | 电容屏供电 ldo 电压               |
| ctp_power_io          | 电容屏供电 gpio                 |
| ctp_gesture_wakeup    | 是否支持手势唤醒. 0: 不支持, 1: 支持.   |

#### 配置举例:

[ctp\_para]

ctp\_used = 1 $ctp\_gesture\_wakeup = 0$ =0

 $ctp\_twi\_id$ 

=0x5dctp\_twi\_addr

= "gt9271\_mb976a9" ctp\_name

ctp\_screen\_max\_x = 1200= 1920ctp\_screen\_max\_y

 $ctp\_revert\_x\_flag = 0$ ctp\_revert\_y\_flag =0 $ctp\_exchange\_x\_y\_flag = 1$  ctp\_int\_port = port:PH07<6><default><default><default><ctp\_wakeup = port:PH06<1><default><1>
ctp\_power\_ldo = "vcc-ctp"

ctp\_power\_ido\_vol = 3000 ctp\_power\_io =

### 8.3. [ctp\_list\_para]

#### 触摸屏自动扫描配置.

| 配置项          | 配置项含义               |
|--------------|---------------------|
| ctp_det_used | 0 or 1,是否使用自动检测功能   |
| ft5x_ts      | 0 or 1, 检测时是否扫描此类触屏 |
| gt82x        | 0 or 1, 检测时是否扫描此类触屏 |
| gslX680      | 0 or 1, 检测时是否扫描此类触屏 |
| gt9xx_ts     | 0 or 1, 检测时是否扫描此类触屏 |
| gt811        | 0 or 1, 检测时是否扫描此类触屏 |
| zet622x      | 0 or 1, 检测时是否扫描此类触屏 |
| aw5306_ts    | 0 or 1, 检测时是否扫描此类触屏 |

#### 配置举例:

[ctp\_list\_para]
ctp\_det\_used = 1
ft5x\_ts = 1
gt82x = 1
gslX680 = 1
gt9xx\_ts = 0
gt9xxnew\_ts = 1
gt811 = 1
zet622x = 1
aw5306\_ts = 1

### 8.4. [tkey\_para]

TP 按键配置,对于支持 TP 按键的触摸屏才需要.

| 配置项              | 配置项含义                                |
|------------------|--------------------------------------|
| tkey_used=xx     | 是否启支持 TP 按键, 0: 不支持, 1: 支持. A83T 不支持 |
| tkey_twi_id=xx   | TP 按键使用的 twi 通道                      |
| tkey_twi_addr=xx | TP 按键对应的 twi 设备地址                    |
| tkey_int=xx      | TP 按键中断号                             |

配置举例:

[tkey\_para]

 $\begin{array}{lll} tkey\_used & = 0 \\ tkey\_twi\_id & = \\ tkey\_twi\_addr & = \\ tkey\_int & = \\ \end{array}$ 

# 9. 温度

# **9.1.** [ths\_para]

| .1. [tms_       | _para_ |                                     |
|-----------------|--------|-------------------------------------|
| 配置项             |        | 配置项含义                               |
| ths_used        | = 1    | 总开关,为 0 thermal 功能关闭                |
| ths_trend       | = 0    | Thermal 趋势判断功能,目前关闭                 |
| ths_trip_count  | = 6    | Trip_point 数目(注意必须和下面的 ths_trip1_*— |
|                 |        | 致)                                  |
| ths_trip1_0     | = 50   | 对应的 trip_point 温度                   |
| ths_trip1_1     | = 60   | 注意,最后一个强制作为关机使用                     |
| ths_trip1_2     | = 70   |                                     |
| ths_trip1_3     | = 85   |                                     |
| ths_trip1_4     | = 95   |                                     |
| ths_trip1_5     | = 105  |                                     |
| ths_trip1_0_min | = 0    | 和上面的表对应,注意                          |
| ths_trip1_0_max | = 1    | 1) 0和3对应的 cooler_count=4 (下节描述)的对   |
| ths_trip1_1_min | = 1    | 应关系                                 |
| ths_trip1_1_max | = 2    | 2) ths_trip1_2 是强制作为关机用的            |
| ths_trip1_2_min | = 2    | 3) 注意必须                             |
| ths_trip1_2_max | = 3    | trip1_0_max == trip1_1_min ,        |
| ths_trip1_3_min | = 3    | 后面以此类推                              |
| ths_trip1_3_max | = 5    |                                     |
| ths_trip1_4_min | = 5    |                                     |
| ths_trip1_4_max | = 7    |                                     |
| ths_trip1_5_min | = 7    |                                     |
| ths_trip1_5_max | = 7    |                                     |

#### 配置举例:

[ths\_para]

 $\begin{array}{ll} ths\_used & = 1 \\ ths\_trend & = 0 \\ ths\_trip1\_count & = 6 \\ ths\_trip1\_0 & = 50 \\ ths\_trip1\_1 & = 60 \\ ths\_trip1\_2 & = 70 \\ \end{array}$ 

| ths_trip1_3     | = 85  |
|-----------------|-------|
| ths_trip1_4     | = 95  |
| ths_trip1_5     | = 105 |
| ths_trip1_6     | =0    |
| ths_trip1_7     | =0    |
| ths_trip1_0_min | =0    |
| ths_trip1_0_max | = 1   |
| ths_trip1_1_min | = 1   |
| ths_trip1_1_max | = 2   |
| ths_trip1_2_min | = 2   |
| ths_trip1_2_max | = 3   |
| ths_trip1_3_min | = 3   |
| ths_trip1_3_max | = 5   |
| ths_trip1_4_min | = 5   |
| ths_trip1_4_max | = 7   |
| ths_trip1_5_min | = 7   |
| ths_trip1_5_max | = 7   |
| ths_trip1_6_min | =0    |
| ths_trip1_6_max | = 0   |
| ths_trip2_count | = 1   |
| ths_trip2_0     | = 105 |
|                 |       |



# 9.2. [cooler\_table]

cpu cooler 等级的设置. 由当前温度来决定 cpu 运行在哪个等级.

| 配置项                                  | 配置项含义                                |
|--------------------------------------|--------------------------------------|
| cooler_count = 8                     | Cooler 支持的 state 数目,每个代表一档           |
| cooler0 = "2016000 4 2016000 4"      | 每个 cooler 代表一档,分别表示                  |
| cooler1 = "1800000 4 1800000 4"      | 允许 cpu 允许的最大频率,允许 cpu 的最大数目,         |
| cooler2 = "1608000 4 1608000 4"      | 保留做其它用途,保留做其它用途                      |
| cooler3 = "1200000 4 1200000 4"      | 4294967295 用来表示 0xffffffff , 用来区分正常频 |
| cooler4 = "1200000 4 1200000 2"      | 率;                                   |
| cooler5 = "1200000 4 4294967295 0"   |                                      |
| cooler6 = "1200000 2 4294967295 0 1" | 最后两行末尾的 1 表示对 GPU 进行频率限制.            |
| cooler7 = "1200000 1 4294967295 0 1" |                                      |

#### 配置举例:

[cooler\_table]

 $cooler\_count = 8$ 

cooler0 = "2016000 4 2016000 4"

cooler1 = "1800000 4 1800000 4"

cooler2 = "1608000 4 1608000 4"

cooler3 = "1200000 4 1200000 4"

cooler4 = "1200000 4 1200000 2"

cooler5 = "1200000 4 4294967295 0" cooler6 = "1200000 2 4294967295 0 1" cooler7 = "1200000 1 4294967295 0 1"

# 10. 闪存

### **10.1.** [nand0\_para]

| 配置项              | 配置项含义                         |
|------------------|-------------------------------|
| nand_support_2ch | nand0 是否使能双通道                 |
| nand0_used =xx   | nand0 模块使能标志                  |
| nand0_we =xx     | nand0 写时钟信号的 GPIO 配置          |
| nand0_ale =xx    | nand0 地址使能信号的 GPIO 配置         |
| nand0_cle =xx    | nand0 命令使能信号的 GPIO 配置         |
| nand0_ce1 =xx    | nand0 片选 1 信号的 GPIO 配置        |
| nand0_ce0 =xx    | nand0 片选 0 信号的 GPIO 配置        |
| nand0_nre =xx    | nand0 读时钟信号的 GPIO 配置          |
| nand0_rb0=xx     | nand0 Read/Busy 1 信号的 GPIO 配置 |
| nand0_rb1 =xx    | nand0 Read/Busy 0 信号的 GPIO 配置 |
| nand0_d0=xx      | nand0 数据总线信号的 GPIO 配置         |
| nand0_d1=xx      |                               |
| nand0_d2=xx      |                               |
| nand0_d3=xx      | /                             |
| nand0_d4=xx      | /                             |
| nand0_d5=xx      | /                             |
| nand0_d6=xx      | /                             |
| nand0_d7=xx      | /                             |
| nand0_ce2=xx     | nand0 片选 2 信号的 GPIO 配置        |
| nand0_ce3=xx     | nand0 片选 3 信号的 GPIO 配置        |
| nand0_ndqs=xx    | nand0 ddr 时钟信号的 GPIO 配置       |

#### 配置举例:

[nand0\_para]

 $nand\_support\_2ch = 0$ 

 $nand0\_used = 0$ 

nand0\_we = port:PC00<2><default><default><default><nand0\_ale = port:PC01<2><default><default><default><default><nand0\_cle = port:PC02<2><default><default><default><default><default><nand0\_ce1 = port:PC03<2><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><default><def

| nand0_rb0  | = port:PC06<2> <default><default></default></default>                    |
|------------|--------------------------------------------------------------------------|
| nand0_rb1  | = port:PC07<2> <default><default></default></default>                    |
| nand0_d0   | = port:PC08<2> <default><default></default></default>                    |
| nand0_d1   | = port:PC09<2> <default><default></default></default>                    |
| nand0_d2   | = port:PC10<2> <default><default></default></default>                    |
| nand0_d3   | = port:PC11<2> <default><default></default></default>                    |
| nand0_d4   | = port:PC12<2> <default><default></default></default>                    |
| nand0_d5   | = port:PC13<2> <default><default></default></default>                    |
| nand0_d6   | = port:PC14<2> <default><default></default></default>                    |
| nand0_d7   | = port:PC15<2> <default><default></default></default>                    |
| nand0_ce2  | = port:PC17<2> <default><default><default></default></default></default> |
| nand0_ce3  | = port:PC18<2> <default><default></default></default>                    |
| nand0_ndqs | = port:PC16<2> <default><default><default></default></default></default> |

# 11. 显示

# **11.1.** [disp\_init]

| 配置项                       | 配置项含义                                                         |
|---------------------------|---------------------------------------------------------------|
| disp_init_enable=xx       | 是否进行显示的初始化设置                                                  |
| disp_mode =xx             | 显示模式:                                                         |
|                           | 0:screen0 <screen0,fb0></screen0,fb0>                         |
| screen0_output_type=xx    | 屏 0 输出类型(0:none; 1:lcd; 2:tv; 3:hdmi; 4:vga)                  |
| screen0_output_mode =xx   | 屏 0 输出模式(used for tv/hdmi output, 0:480i 1:576i 2:480p 3:576p |
|                           | 4:720p50 5:720p60 6:1080i50 7:1080i60 8:1080p24 9:1080p50     |
|                           | 10:1080p60 11:pal 14:ntsc)                                    |
| screen1_output_type=xx    | 屏 1 输出类型(0:none; 1:lcd; 2:tv; 3:hdmi; 4:vga)                  |
| screen1_output_mode=xx    | 屏 1 输出模式(used for tv/hdmi output, 0:480i 1:576i 2:480p 3:576p |
|                           | 4:720p50 5:720p60 6:1080i50 7:1080i60 8:1080p24 9:1080p50     |
|                           | 10:1080p60 11:pal 14:ntsc)                                    |
| fb0_format=xx             | fb0 的格式(4:RGB655 5:RGB565 6:RGB556 7:ARGB1555                 |
|                           | 8:RGBA5551 9:RGB888 10:ARGB8888 12:ARGB4444)                  |
| fb0_pixel_sequence=xx     | fb0 的 pixel sequence(0:ARGB 1:BGRA 2:ABGR 3:RGBA)             |
| fb0_scaler_mode_enable=xx | fb0 是否使用 scaler mode,即使用 FE                                   |
| fb0_width=xx              | fb0 的宽度,为 0 时将按照输出设备的分辨率                                      |
| fb0_height=xx             | fb0 的高度,为 0 时将按照输出设备的分辨率                                      |
| fb1_format=xx             | fb1 的格式 (4:RGB655 5:RGB565 6:RGB556 7:ARGB1555                |
|                           | 8:RGBA5551 9:RGB888 10:ARGB8888 12:ARGB4444)                  |
| fb1_pixel_sequence=xx     | fb1 的 pixel sequence(0:ARGB 1:BGRA 2:ABGR 3:RGBA)             |
| fb1_scaler_mode_enable=xx | fb1 是否使用 scaler mode,即使用 FE                                   |
| fb1_width=xx              | Fb1 的宽度,为 0 时将按照输出设备的分辨率                                      |
| fb1_height=xx             | Fb1 的高度,为0时将按照输出设备的分辨率                                        |

| lcd0_backlight | Lcd0 的背光初始值,0~255 |
|----------------|-------------------|
| lcd1_backlight | Lcd1 的背光初始值,0~255 |

#### 配置举例:

[disp\_init]

screen0\_output\_type = 1 screen0\_output\_mode = 4

screen1\_output\_type = 3 screen1\_output\_mode = 4

 $fb0\_format &= 0 \\ fb0\_width &= 0 \\ fb0\_height &= 0 \\$ 

 $\begin{array}{ll} fb1\_format & = 0 \\ fb1\_width & = 0 \\ fb1\_height & = 0 \\ \end{array}$ 

 $\begin{array}{ll} lcd0\_backlight & = 50 \\ lcd1\_backlight & = 50 \end{array}$ 

### 11.2. [lcd0\_para]

#### LCD 屏 0 的配置.

| 配置项                      | 配置项含义                                                      |
|--------------------------|------------------------------------------------------------|
| lcd_used=xx              | 是否使用 lcd0                                                  |
| lcd_driver_name = "xx"   | 定义驱动名称                                                     |
| lcd_bl_0_percent = 0     | 背光矫正, 亮度 0%对应背光等级的 0% (255 * 0% = 0)                       |
| lcd_bl_40_percent = 23   | 背光矫正, 亮度 40%对应背光等级的 23% (255 * 23% = 58.6)                 |
| lcd_bl_100_percent = 100 | 背光矫正, 亮度 100%对应背光等级的 100% (255 * 100% = 255)               |
| lcd_if =xx               | lcd 接口(0:hv(sync+de); 1:8080; 2:ttl; 3:lvds, 4:dsi; 5:edp) |
| lcd_x=xx                 | Lcd 分辨率 x                                                  |
| lcd_y =xx                | Lcd 分辨率 y                                                  |
| lcd_width = xx           | Lcd 屏宽度                                                    |
| lcd_height = xx          | Lcd 屏高度                                                    |
| lcd_dclk_freq = xx       | Lcd 频率                                                     |
| lcd_pwm_used =           | Pwm 是否使用                                                   |
| lcd_pwm_ch =             | Pwm 通道                                                     |
| lcd_pwm_freq=xx          | Pwm 频率                                                     |
| lcd_pwm_pol =xx          | pwm 属性, 0:positive; 1:negative                             |

#### 第 31 页 共 75 页

| lcd nwm max limit =      | Lcd backlight PWM 最高限制,以亮度值表示.                                    |
|--------------------------|-------------------------------------------------------------------|
| lcd_pwm_max_limit = 255  | 比如 150,表示背光最高只能调到 150, 0~255 范围内的亮度值将                             |
| 255                      | 会被线性映射到 0~150 范围内                                                 |
| lcd_hbp=xx               | Lcd 行后沿时间                                                         |
| lcd_ht=xx                | Lcd 行时间                                                           |
|                          |                                                                   |
| lcd_hspw = xx            | Led 行同步脉宽                                                         |
| lcd_vbp=xx               | Lcd 场后沿时间                                                         |
| lcd_vt=xx                | Lcd 场时间                                                           |
| lcd_vspw=xx              | Lcd 场同步脉宽                                                         |
| lcd_frm=xx               | Lcd 格式, 0:disable; 1:enable rgb666 dither; 2:enable rgb656 dither |
| lcd_dsi_if = 2           | Lcd MIPI DSI panel Interface, 这个参数只有在 lcd_if=4 时才有效。              |
|                          | 定义 MIPI DSI 屏的两种类型,设置相应值的对应含义为:                                   |
|                          | 0: Video mode                                                     |
|                          | 1: Command mode                                                   |
|                          | Video mode 的 LCD 屏,是实时刷屏的,有 ht,hbp 等时序参数的                         |
|                          | 定义; Command mode 的屏,屏上带有显示 Buffer,一般会有一个                          |
|                          | TE 引脚.                                                            |
| lcd_dsi_lane = 4         | Lcd MIPI DSI panel Data Lane number, 这个参数只有在 lcd_if=4 时           |
|                          | 才有效。设置相应值的对应含义为:                                                  |
|                          | 1: 1 data lane                                                    |
|                          | 2: 2 data lane                                                    |
|                          | 3: 3 data lane                                                    |
|                          | 4: 4 data lane                                                    |
| lcd_dsi_format = 0       | Lcd MIPI DSI panel Data Pixel Format,这个参数只有在 lcd_if=4 时           |
|                          | 才有效。设置相应值的对应含义为:                                                  |
|                          | 0: Package Pixel Stream, 24bit RGB                                |
|                          | 1: Loosely Package Pixel Stream, 18bit RGB                        |
|                          | 2: Package Pixel Stream, 18bit RGB                                |
|                          | 3: Package Pixel Stream, 16bit RGB                                |
| lcd_dsi_te = 0           | Lcd MIPI DSI panel Tear Effect, 这个参数只有在 lcd_if=4 时才有              |
|                          | 效。设置相应值的对应含义为:                                                    |
|                          | 0: frame trigged automatically                                    |
|                          | 1: frame trigged by te rising edge                                |
|                          | 2: frame trigged by te falling edge                               |
|                          | 设置为 0 时,刷屏间隔时间为 lcd_ht × lcd_vt;设置为 1 或 2 时,                      |
|                          | 刷屏间隔时间为两个 te 脉冲。                                                  |
| lcd_gamma_en=xx          | Lcdgamma 校正使能                                                     |
| lcd_bright_curve_en=xx   | Lcd 亮度曲线校正使能                                                      |
| lcd_cmap_en=xx           | Lcd 调色板函数使能                                                       |
| lcdgamma4iep=xx          | 智能背光参数, lcd gamma vale*10;decrease it while lcd is not bright     |
| <i>S.</i>                | enough; increase while lcd is too bright                          |
| lcd_bl_en=xx             | 背光使能的 GPIO 配置                                                     |
| lcd_power=xx             | Lcd 电源                                                            |
| -                        |                                                                   |
| lcd_power1 = "vcc-lcd-0" | lcd 使用的供电.                                                        |

#### 第 32 页 共 75 页

| lcd_power2 = "vcc_dsi"       | dsi 使用的供电.        |
|------------------------------|-------------------|
| lcd_gpio_0 = xxx             | lcd_gpio_0 的引脚配置. |
| lcd_gpio_1 = xxx             | lcd_gpio_1 的引脚配置. |
| lcd_io_regulator1 = "vcc-pd" | lcd 的 io 供电配置     |

#### 配置举例:

[lcd0\_para]

 $lcd\_used = 1$ 

lcd\_driver\_name = "lt070me05000"

 $\begin{array}{lll} lcd\_bl\_0\_percent &= 0 \\ lcd\_bl\_40\_percent &= 23 \\ lcd\_bl\_100\_percent &= 100 \\ lcd\_if &= 4 \\ lcd\_x &= 1200 \\ \end{array}$ 

lcd\_y = 1920 = 94  $lcd\_width$ lcd\_height = 150 = 156 lcd\_dclk\_freq = 1 lcd\_pwm\_used =0lcd\_pwm\_ch lcd\_pwm\_freq = 50000 = 1lcd\_pwm\_pol

lcd\_pwm\_max\_limit = 255 lcd hbp = 80

 $\begin{array}{ll} lcd\_hbp & = 80 \\ lcd\_ht & = 1320 \end{array}$ 

lcd\_hspw = 20

 $lcd\_vbp = 20$ 

lcd\_vt = 1960

lcd\_vspw = 1

lcd\_frm = 0

lcd\_cmap\_en = 0

lcd\_dsi\_if = 2 lcd\_dsi\_lane = 4

lcd\_dsi\_format = 0

 $lcd_dsi_te = 0$ 

lcd\_gamma\_en = 0

 $lcd\_bright\_curve\_en = 0$ 

lcdgamma4iep = 22

lcd\_bl\_en = port:PD24<1><0><default><1>

 lcd\_power
 = "vcc-dsi-18"

 lcd\_power1
 = "vcc-lcd-0"

 lcd\_power2
 = "vcc\_dsi"

lcd\_gpio\_0 = port:PD25<1><0><default><0> lcd\_gpio\_1 = port:PD26<1><0><default><0>

lcd\_io\_regulator1 = "vcc-pd"

### 11.3. [hdmi\_para]

hdmi 的配置, 平板未使用.

[hdmi\_para]

 $hdmi_used = 0$ 

### 11.4. [pwm0\_para]

[pwm0\_para]

 $pwm\_used = 0$ 

pwm\_positive = port:PD28<2><0><default><default>

### 11.5. [tvout\_para]

tvout 的配置, 平板未使用.

[tvout\_para]

tvout\_used = tvout\_channel\_num = tv\_en =

### 11.6. [tvin\_para]

tvout 的配置, 平板未使用.

tvin\_used = tvin\_channel\_num =

# 12. 摄像头(CSI)

A83T CSI 的 sysconfig 部分对应的字段为: [csi0]。

下面举例说明在实际使用中应该如何配置:需要配置[csi0]的公用部分和[csi0]的 vip\_dev(x)部分。

### 12.1. [csi0]

| 配置项 | 配置项含义 |
|-----|-------|

#### 第 34 页 共 75 页

| vip_used               | 使用 mipi 接口的 sensor 请填 1。                              |
|------------------------|-------------------------------------------------------|
| vip_mode               | 一般填 0。                                                |
| vip_dev_qty            | mipi 接口暂时不支持复用,填 1。                                   |
| vip_define_sensor_list | 如果配置了 system/etc/hawkview/sensor_list_ cfg.ini 文件,填1, |
|                        | 默认填 0。                                                |
| vip_csi_mck            | Mipi mclk 信号的 GPIO 配置。                                |
| vip_csi_sck            | CSI0 CCI 时钟信号的 GPIO 配置。                               |
|                        | 如果使用 CSI0 内部 CCI 需要配置该项                               |
| vip_csi_sda            | CSI0 CCI 数据信号的 GPIO 配置。                               |
|                        | 如果使用 CSIO 内部 CCI 需要配置该项                               |
| vip_csi_pck            | pck 时钟输入引脚.                                           |
| vip_csi_hsync          | hsync 同步信号输入引脚                                        |
| vip_csi_vsync          | vsync 同步信号输入引脚                                        |
| vip_csi_d0             | 数据输入引脚 0                                              |
| vip_csi_d1             | 数据输入引脚 1                                              |
| vip_csi_d2             | 数据输入引脚 2                                              |
| vip_csi_d3             | 数据输入引脚 3                                              |
| vip_csi_d4             | 数据输入引脚 4                                              |
| vip_csi_d5             | 数据输入引脚 5                                              |
| vip_csi_d6             | 数据输入引脚 6                                              |
| vip_csi_d7             | 数据输入引脚 7                                              |
| vip_csi_d8             | 数据输入引脚 8                                              |
| vip_csi_d9             | 数据输入引脚 9                                              |
| vip_dev0_mname         | 设置 sensor 0 名称,如"ov5648 "。                            |
| vip_dev0_pos           | 摄像头位置前置填"front",后置填"rear"。                            |
| vip_dev0_lane          | 请参考实际模组的 lane 数目填写。                                   |
| vip_dev0_twi_id        | CSI 使用的 IIC 通道序号,查看具体方案原理图,使用 twi0                    |
|                        | 填 0,如果使用 CSI 内部 CCI 接口则可以不填                           |
| vip_dev0_twi_addr      | 请参考实际模组的 8bit ID 填写,如 0x6c。                           |
| vip_dev0_isp_used      | 如果是 RAW sensor 必须填 1, YUV 填 0。                        |
| vip_dev0_fmt           | 如果是 RAW 格式填 1, YUV 填 0。                               |
| vip_dev0_stby_mode     | 填 0。                                                  |
| vip_dev0_vflip         | Sensor 图像垂直翻转。                                        |
| vip_dev0_hflip         | Sensor 图像水平翻转。                                        |
| vip_dev0_iovdd         | IOVDD 配置,请参考实际原理图填写。                                  |
| vip_dev0_iovdd_vol     | IOVDD 电压值一般为 2.8V(2800000)。                           |
| vip_dev0_avdd          | AVDD 配置,如"axp15_aldo2"。                               |
| vip_dev0_avdd_vol      | AVDD 电压值,一般为 2.8V(2800000)。                           |
| vip_dev0_dvdd          | DVDD 配置,如"axp22_eldo1"。                               |
| vip_dev0_dvdd_vol      | DVDD 电压值参考 datasheet,1.2/1.5/1.8V。                    |
| vip_dev0_afvdd         | VCM 电源配置一般不用配置。                                       |
| vip_dev0_afvdd_vol     | VCM 电压值为 2.8V。                                        |
| vip_dev0_power_en      | Sensor power enable 引脚 GPIO 配置。                       |

#### 第 35 页 共 75 页

| vip_dev0_reset      | Sensor reset 引脚 GPIO 配置。            |
|---------------------|-------------------------------------|
| vip_dev0_pwdn       | Sensor power down 引脚 GPIO 配置。       |
| vip_dev0_flash_en   | 闪光灯 enable 引脚 GPIO 配置。              |
| vip_dev0_flash_mode | 闪光灯 flash mode 引脚 GPIO 配置。          |
| vip_dev0_af_pwdn    | VCM driver power down 引脚 GPIO 配置。   |
| vip_dev0_act_used   | 模组包含 VCM driver 时候填 1。              |
| vip_dev0_act_name   | VCM driver 名字,如"ad5820_act "。       |
| vip_dev0_act_slave  | VCM driver slave 地址。                |
| vip_dev1_mname      | 设置 sensor 1 名称,如"ov5648 "。          |
| vip_dev1_pos        | 摄像头位置前置填"front",后置填"rear"。          |
| vip_dev1_lane       | 请参考实际模组的 lane 数目填写。                 |
| vip_dev1_twi_id     | CSI 使用的 IIC 通道序号,查看具体方案原理图,使用 twi0  |
|                     | 填 0,如果使用 CSI 内部 CCI 接口则可以不填。        |
| vip_dev1_twi_addr   | 请参考实际模组的 8bit ID 填写,如 0x6c。         |
| vip_dev1_isp_used   | 如果是 RAW sensor 必须填 1, YUV 填 0。      |
| vip_dev1_fmt        | 如果是 RAW 格式填 1, YUV 填 0。             |
| vip_dev1_stby_mode  | 填0。                                 |
| vip_dev1_vflip      | Sensor 图像垂直翻转。                      |
| vip_dev1_hflip      | Sensor 图像水平翻转。                      |
| vip_dev1_iovdd      | IOVDD 配置,请参考实际原理图填写。                |
| vip_dev1_iovdd_vol  | IOVDD 电压值一般为 2.8V(2800000)。         |
| vip_dev1_avdd       | AVDD 配置,如"axp15_aldo2"。             |
| vip_dev1_avdd_vol   | AVDD 电压值,一般为 2.8V(2800000)。         |
| vip_dev1_dvdd       | DVDD 配置,如"axp22_eldo1"。             |
| vip_dev1_dvdd_vol   | DVDD 电压值参考 datasheet, 1.2/1.5/1.8V。 |
| vip_dev1_afvdd      | VCM 电源配置一般不用配置。                     |
| vip_dev1_afvdd_vol  | VCM 电压值为 2.8V。                      |
| vip_dev1_power_en   | Sensor power enable 引脚 GPIO 配置。     |
| vip_dev1_reset      | Sensor reset 引脚 GPIO 配置。            |
| vip_dev1_pwdn       | Sensor power down 引脚 GPIO 配置。       |
| vip_dev1_flash_en   | 闪光灯 enable 引脚 GPIO 配置。              |
| vip_dev1_flash_mode | 闪光灯 flash mode 引脚 GPIO 配置。          |
| vip_dev1_af_pwdn    | VCM driver power down 引脚 GPIO 配置。   |
| vip_dev1_act_used   | 模组包含 VCM driver 时候填 1。              |
| vip_dev1_act_name   | VCM driver 名字,如"ad5820_act "。       |
| vip_dev1_act_slave  | VCM driver slave 地址。                |

#### 配置举例:

[csi0]

 $vip\_used$  = 1  $vip\_mode$  = 0  $vip\_dev\_qty$  = 2 vip\_define\_sensor\_list = 0

vip\_csi\_pck= port:PE00<2><default><default><default>vip\_csi\_mck= port:PE01<2><default><default><default><default>vip\_csi\_hsync= port:PE02<2><default><default><default>vip\_csi\_vsync= port:PE03<2><default><default><default>

vip\_csi\_d0 = vip\_csi\_d1 =

vip\_csi\_d2 = port:PE06<2><default><default> = port:PE07<2><default><default> vip\_csi\_d3 vip\_csi\_d4 = port:PE08<2><default><default> = port:PE09<2><default><default>< vip\_csi\_d5 = port:PE10<2><default><default> vip\_csi\_d6 vip\_csi\_d7 = port:PE11<2><default><default> vip\_csi\_d8 = port:PE12<2><default><default> = port:PE13<2><default><default> vip\_csi\_d9

vip\_csi\_sck= port:PE14<2><default><default><default>vip\_csi\_sda= port:PE15<2><default><default><default>

vip\_dev0\_mname = "ov8858\_4lane"

vip\_dev0\_pos = "rear"

vip\_dev0\_lane = 4

 $vip_dev0_twi_i = 0$ 

 $vip_dev0_twi_addr = 0x20$ 

vip\_dev0\_isp\_used = 1

vip\_dev0\_fmt = 1

vip\_dev0\_stby\_mode = 1

vip\_dev0\_vflip = 0

 $vip_dev0_hflip = 0$ 

vip\_dev0\_iovdd = "axp81x\_dldo3"

 $vip_dev0_iovdd_vol = 2800000$ 

 $vip_dev0_avdd = "axp81x_dldo4"$ 

 $vip_dev0_avdd_vol = 2800000$ 

vip\_dev0\_dvdd = "axp81x\_eldo1"

 $vip_dev0_dvdd_vol = 1200000$ 

vip\_dev0\_afvdd = "axp81x\_dldo3"

 $vip_dev0_afvdd_vol = 2800000$ 

vip\_dev0\_power\_en =

vip\_dev0\_flash\_en = vip\_dev0\_flash\_mode = vip\_dev0\_af\_pwdn =

```
vip_dev0_act_used = 1
```

vip\_dev0\_act\_name = "dw9714\_act"

 $vip\_dev0\_act\_slave = 0x18$ 

vip\_dev1\_mname = "hi253" vip\_dev1\_pos = "front"

vip\_dev1\_lane = 1vip\_dev1\_twi\_id = 0vip\_dev1\_twi\_addr = 0x40=0vip\_dev1\_isp\_used vip\_dev1\_fmt =0vip\_dev1\_stby\_mode = 1= 0vip\_dev1\_vflip = 0vip\_dev1\_hflip

vip\_dev1\_iovdd = "axp81x\_dldo3"

 $vip_dev1_iovdd_vol = 2800000$ 

vip\_dev1\_avdd = "axp81x\_dldo4"

 $vip_dev1_avdd_vol = 2800000$ 

vip\_dev1\_dvdd = "axp81x\_eldo3"

 $vip\_dev1\_dvdd\_vol$  = 1800000  $vip\_dev1\_afvdd$  = ""  $vip\_dev1\_afvdd\_vol$  = 2800000

vip\_dev1\_power\_en =

vip\_dev1\_flash\_en = vip\_dev1\_flash\_mode =

vip\_dev1\_af\_pwdn =

## 13. SD / MMC

## 13.1. [mmc0\_para]

| 配置项             | 配置项含义                                                    |
|-----------------|----------------------------------------------------------|
| sdc_used=xx     | SDC 使用控制: 1 使用, 0 不用                                     |
| sdc_detmode=xx  | 检测模式: 1-gpio 轮询检测, 2-gpio 中断检测, 3-卡常在(不可                 |
|                 | 拔插), 4 - manual mode(from proc file system node), 5-DAT3 |
|                 | 检测                                                       |
| Sdc_buswidth=xx | 位宽: 1-1bit, 4-4bit                                       |
| sdc_d1=xx       | SDC DATA1 的 GPIO 配置                                      |

| sdc_d0=xx           | SDC DATA0 的 GPIO 配置                           |
|---------------------|-----------------------------------------------|
| sdc_clk=xx          | SDC CLK 的 GPIO 配置                             |
| sdc_cmd=xx          | SDC CMD 的 GPIO 配置                             |
| sdc_d3=xx           | SDC DATA3 的 GPIO 配置                           |
| sdc_d2=xx           | SDC DATA2 的 GPIO 配置                           |
| sdc_det=xx          | SDC DET 的 GPIO 配置                             |
| sdc_use_wp=xx       | SDC 写保护配置: 1 使用, 0 不用                         |
| sdc_wp=xx           | SDC WP 的 GPIO 配置                              |
| sdc_isio=xx         | 是否是 sdio card,0:不是,1:是                        |
| sdc_regulator=xx    | 假如过卡支持 SD3.0 或者 emmc4.5 的 UHS-I/DDR、HS200,    |
|                     | 这里就要写成 sdc_regulator = "axp22_eldo2" (原理图上对应的 |
|                     | PMU 供电输出)                                     |
| sdc_power_supply=xx | SD 卡供电选择                                      |

注意 sdc\_regulator 和 sdc\_power\_supply 的区别: 前者给卡内部控制器供电,后者给卡供电

#### 配置举例:

[mmc0\_para]

 $sdc\_used$  = 1  $sdc\_detmode$  = 1  $sdc\_buswidth$  = 4

 sdc\_clk
 = port:PF02<2><1><2><default>

 sdc\_cmd
 = port:PF03<2><1><2><default>

 sdc\_d0
 = port:PF01<2><1><2><default>

 sdc\_d1
 = port:PF00<2><1><2><default>

 sdc\_d2
 = port:PF05<2><1><2><default>

 sdc\_d3
 = port:PF04<2><1><2><default>

 sdc\_det
 = port:PF06<0><1><2><default>

sdc\_use\_wp = 0
sdc\_wp =
sdc\_isio = 0
sdc\_regulator = "none"
sdc\_power\_supply = "vcc-card"

## 13.2. [mmc1\_para]

| 配置项            | 配置项含义                                  |
|----------------|----------------------------------------|
| sdc_used=xx    | SDC 使用控制: 1 使用, 0 不用                   |
| sdc_detmode=xx | 检测模式: 1-gpio 轮询检测, 2-gpio 中断检测,        |
|                | 3-卡常在(不可拔插), 4 - manual mode(from proc |
|                | file system node),5-DAT3 检测            |
| bus_width=xx   | 位宽: 1-1bit, 4-4bit                     |
| sdc_d1=xx      | SDC DATA1 GPIO 配置                      |
| sdc_d0=xx      | SDC DATA0 GPIO 配置                      |

| sdc_clk=xx          | SDC CLK GPIO 配置                        |
|---------------------|----------------------------------------|
| sdc_cmd=xx          | SDC CMD GPIO 配置                        |
| sdc_d3=xx           | SDC DATA3 GPIO 配置                      |
| sdc_d2=xx           | SDC DATA2 GPIO 配置                      |
| sdc_det=xx          | SDC DET GPIO 配置                        |
| sdc_use_wp=xx       | SDC 写保护配置: 1 使用, 0 不用                  |
| sdc_wp=xx           | SDC WP GPIO 配置                         |
| sdc_isio =xx        | 是否是 sdio card,0:不是,1:是                 |
| sdc_regulator =xx   | 假如过卡支持 SD3.0 或者 emmc4.5 的              |
|                     | UHS-I/DDR 、 HS200 , 这 里 就 要 写 成        |
|                     | sdc_regulator = "axp22_eldo2" (原理图上对应的 |
|                     | PMU 供电输出)                              |
| sdc_power_supply=xx | 卡供电选择                                  |

### 配置举例:

[mmc1\_para]

 $sdc\_used$  = 1  $sdc\_detmode$  = 4  $sdc\_buswidth$  = 4

 sdc\_clk
 = port:PG00<2><1><2><default>

 sdc\_cmd
 = port:PG01<2><1><2><default>

 sdc\_d0
 = port:PG02<2><1><2><default>

 sdc\_d1
 = port:PG03<2><1><2><default>

 sdc\_d2
 = port:PG04<2><1><2><default>

 sdc\_d3
 = port:PG05<2><1><2><default>

 $sdc_det = sdc_use_wp = 0$ 

sdc\_wp

sdc\_isio = 1

sdc\_regulator = "none"
sdc\_power\_supply = "none"

## 13.3. [mmc2\_para]

| 配置项              | 配置项含义                                  |
|------------------|----------------------------------------|
| sdc_used=xx      | SDC 使用控制: 1 使用, 0 不用                   |
| sdc_detmode=xx   | 检测模式: 1-gpio 轮询检测, 2-gpio 中断检测,        |
|                  | 3-卡常在(不可拔插), 4 - manual mode(from proc |
|                  | file system node),5-DAT3 检测            |
| Sdc_bus_width=xx | 位宽: 1-1bit, 4-4bit, 8-8bit             |
| sdc_d1=xx        | SDC DATA1 GPIO 配置                      |
| sdc_d0=xx        | SDC DATA0 GPIO 配置                      |
| sdc_clk=xx       | SDC CLK GPIO 配置                        |
| sdc_cmd=xx       | SDC CMD GPIO 配置                        |

#### 第 40 页 共 75 页

| sdc_d3=xx           | SDC DATA3 GPIO 配置               |
|---------------------|---------------------------------|
| sdc_d2=xx           | SDC DATA2 GPIO 配置               |
| sdc_d4 =xx          | SDC DATA4GPIO 配置                |
| sdc_d5 =xx          | SDC DATA5 GPIO 配置               |
| sdc_d6 =xx          | SDC DATA6 GPIO 配置               |
| sdc_d7 =xx          | SDC DATA7 GPIO 配置               |
| sdc_det=xx          | SDC DET GPIO 配置                 |
| sdc_use_wp=xx       | SDC 写保护配置: 1 使用, 0 不用           |
| sdc_wp=xx           | SDC WP GPIO 配置                  |
| emmc_rst = xx       | Emmc 的 reset 管脚                 |
| sdc_isio=xx         | 是否是 sdio card,0:不是, 1: 是        |
| sdc_regulator=xx    | 假如过卡支持 SD3.0 或者 emmc4.5 的       |
|                     | UHS-I/DDR 、 HS200 , 这 里 就 要 写 成 |
|                     | sdc_regulator = "axp22_eldo2"   |
| sdc_power_supply=xx | 卡供电选择                           |
| sdc_2xmode=xx       | 设置内部控制器的采样模式, 默认配置为 1           |
| sdc_ddrmode=xx      | 是否使用 ddr 模式, 默认配置为 1            |
|                     |                                 |

#### 配置举例:

[mmc2\_para]

 $sdc\_used$  = 0  $sdc\_detmode$  = 3  $sdc\_buswidth$  = 8

= port:PC05<3><1><2><default> sdc\_clk = port:PC06<3><1><2><default>  $sdc\_cmd$ = port:PC08<3><1><2><default>  $sdc_d0$ = port:PC09<3><1><2><default>  $sdc\_d1$ = port:PC10<3><1><2><default>  $sdc\_d2$ = port:PC11<3><1><2><default> sdc\_d3 sdc\_d4 = port:PC12<3><1><2><default> sdc\_d5 = port:PC13<3><1><2><default>  $sdc\_d6$ = port:PC14<3><1><2><default> = port:PC15<3><1><2><default> sdc\_d7 = port:PC16<3><1><2><default> emmc\_rst

sdc\_det = sdc\_use\_wp = 0
sdc\_wp = sdc\_isio = 0
sdc\_regulator = "none"
sdc\_power\_supply = "vcc-emmc"

 $sdc_2xmode = 1$  $sdc_ddrmode = 1$ 

# 14. SIM 卡

### sim卡的配置, 平板未使用.

| [smc_para] |   |
|------------|---|
| smc_used   | = |
| smc_rst    | = |
| smc_vppen  | = |
| smc_vppp   | = |
| smc_det    | = |
| smc_vccen  | = |
| smc_sck    | = |
| smc_sda    | = |

# 15. USB 控制标志

## 15.1. [usbc0]

| Lawrence ]             |                                    |
|------------------------|------------------------------------|
| 配置项                    | 配置项含义                              |
| usb_used =xx           | USB 使能标志(xx=1 or 0)。置 1,表示系统中      |
|                        | USB 模块可用,置 0,则表示系统 USB 禁用。         |
|                        | 此标志只对具体的 USB 控制器模块有效。              |
| usb_port_type =xx      | USB 端口的使用情况。(xx=0/1/2)             |
|                        | 0: device only 1: host only 2: OTG |
| usb_detect_type=xx     | USB 端口的检查方式。                       |
|                        | 0: 无检查方式 1: vbus/id 检查             |
| usb_id_gpio=xx         | USB ID pin 脚配置。具体请参考 gpio 配置说明。    |
|                        | 《配置与 GPIO 管理.doc》                  |
| usb_det_vbus_gpio=xx   | USB DET_VBUS pin 脚配置。如果 GPIO 提供    |
|                        | pin, 请参考 gpio 配置说明《配置与 GPIO 管      |
|                        | 理.doc》。如果的 AXP 提供 pin,则配置为:        |
|                        | "axp_ctrl"。                        |
| usb_drv_vbus_gpio=xx   | USB DRY_VBUS pin 脚配置。具体请参考 gpio    |
|                        | 配置说明。《配置与 GPIO 管理.doc》             |
| usb_restrict_gpio=xx   | USB 限流控制 pin 脚                     |
|                        | USB RESTRICT_GPIO pin 脚配置。具体请参考    |
|                        | gpio 配置说明。《配置与 GPIO 管理.doc》        |
| usb_host_init_state=xx | host only 模式下,Host 端口初始化状态。        |
|                        | 0: 初始化后 USB 不工作 1: 初始化后 USB        |
|                        | 工作                                 |
| usb_restric_flag=xx    | Usb 限流标志位                          |

|                         | 0: 不使能限流功能 1: 使能限流功能 |
|-------------------------|----------------------|
| usb_restric_voltage=xx  | 限流开启的条件              |
|                         | 电压值小于设置值,则开启限流       |
| usb_restric_capacity=xx | 限流开启的条件              |
|                         | 电量值小于设置值,则开启限流       |

#### 配置举例:

[usbc0]

usb\_used = 1 usb\_port\_type = 2 usb\_detect\_type = 1

usb\_id\_gpio = port:PH11<0><1><default><default>

usb\_det\_vbus\_gpio = "axp\_ctrl"

usb\_drv\_vbus\_gpio = port:power4<1><0><default><0>

usb\_restrict\_gpio =
usb\_host\_init\_state = 0
usb\_restric\_flag = 0
usb\_restric\_voltage = 3550000
usb\_restric\_capacity= 5

## 15.2. [usbc1]

| 配置项                    | 配置项含义                                |
|------------------------|--------------------------------------|
| usb_used =xx           | <b>USB</b> 使能标志(xx=1 or 0)。置 1,表示系统中 |
| X                      | USB 模块可用,置 0,则表示系统 USB 禁用。           |
|                        | 此标志只对具体的 USB 控制器模块有效。                |
| usb_port_type =xx      | USB 端口的使用情况。(xx=0/1/2)               |
|                        | 0: device only 1: host only 2: OTG   |
| usb_detect_type=xx     | USB 端口的检查方式。                         |
|                        | 0: 无检查方式 1: vbus/id 检查               |
| usb_drv_vbus_gpio=xx   | USB DET_VBUS pin 脚配置。具体请参考 gpio      |
|                        | 配置说明。《配置与 GPIO 管理.doc》               |
| usb_restrict_gpio=xx   | USB 限流控制 pin 脚                       |
|                        | USB RESTRICT_GPIO pin 脚配置。具体请参考      |
|                        | gpio 配置说明。《配置与 GPIO 管理.doc》          |
| usb_host_init_state=xx | host only 模式下,Host 端口初始化状态。          |
|                        | 0: 初始化后 USB 不工作 1: 初始化后 USB          |
|                        | 工作                                   |
| usb_restric_flag=xx    | Usb 限流标志位                            |
|                        | 0: 表不设限流,1开启限流                       |
| usb_not_suspend=xx     | 该控制器是否支持 remote wakeup               |
|                        | 1: 支持; 0: 不支持                        |

配置举例:

### [usbc1]

usb\_used = 0
usb\_port\_type = 1
usb\_detect\_type = 0
usb\_drv\_vbus\_gpio =
usb\_restrict\_gpio =
usb\_host\_init\_state = 1
usb\_restric\_flag = 0
usb\_not\_suspend = 0

## 15.3. [usbc2]

| 配置项                    | 配置项含义                              |
|------------------------|------------------------------------|
| usb_used =xx           | USB 使能标志(xx=1 or 0)。置 1,表示系统中      |
|                        | USB 模块可用,置 0,则表示系统 USB 禁用。         |
|                        | 此标志只对具体的 USB 控制器模块有效。              |
| usb_port_type =xx      | USB 端口的使用情况。(xx=0/1/2)             |
|                        | 0: device only 1: host only 2: OTG |
| usb_detect_type=xx     | USB 端口的检查方式。                       |
|                        | 0: 无检查方式 1: vbus/id 检查             |
| usb_drv_vbus_gpio=xx   | USB DET_VBUS pin 脚配置。具体请参考 gpio    |
|                        | 配置说明。《配置与 GPIO 管理.doc》             |
| usb_restrict_gpio=xx   | USB 限流控制 pin 脚                     |
|                        | USB RESTRICT_GPIO pin 脚配置。具体请参考    |
| X \                    | gpio 配置说明。《配置与 GPIO 管理.doc》        |
| usb_host_init_state=xx | host only 模式下,Host 端口初始化状态。        |
|                        | 0: 初始化后 USB 不工作 1: 初始化后 USB        |
|                        | 工作                                 |
| usb_restric_flag=xx    | Usb 限流标志位                          |
|                        | 0: 表不设限流,1开启限流                     |

### 配置举例:

### [usbc2]

 $usb\_used = 0$ 

usb\_port\_type = 1

usb\_detect\_type = 0

 $usb\_drv\_vbus\_gpio =$ 

usb\_restrict\_gpio =

 $usb\_host\_init\_state = 1$ 

usb\_restric\_flag = 0

## 16. USB Device

## 16.1. [usb\_feature]

| 配置项                  | 配置项含义      |
|----------------------|------------|
| vendor_id=xx         | USB 厂商 ID  |
| mass_storage_id =xx  | U 盘 ID     |
| adb_id =xx           | USB 调试桥 ID |
| manufacturer_name=xx | USB 厂商名    |
| product_name=xx      | USB 产品名    |
| serial_number=xx     | USB 序列号    |

#### 配置举例:

[usb\_feature]

 $\begin{array}{lll} vendor\_id & = 0x18D1 \\ mass\_storage\_id & = 0x0001 \\ adb\_id & = 0x0002 \end{array}$ 

manufacturer\_name = "USB Developer"

product\_name = "Android" serial\_number = "20080411"

## 16.2. [msc\_feature]

| 配置项             | 配置项含义                     |
|-----------------|---------------------------|
| vendor_name=xx  | U盘 厂商名                    |
| product_name=xx | U盘产品名                     |
| release=xx      | 发布版本                      |
| luns=xx         | U 盘逻辑单元的个数(PC 可以看到的 U 盘盘符 |
|                 | 的个数)                      |

#### 配置举例:

[msc\_feature]

vendor\_name = "USB 2.0"

product\_name = "USB Flash Driver"

release = 100 luns = 3

## 17. USB Serial Feature

### 17.1. [serial\_feature]

| 配置项           | 配置项含义                |
|---------------|----------------------|
| serial_unique | usb 序列号开关,0: 不用,1: 用 |

配置举例:

[serial\_feature]

serial\_unique = 1

## 18. 马达

### **18.1.** [motor\_para]

| 配置项                    | 配置项含义                   |
|------------------------|-------------------------|
| motor_used =xx         | 是否启用马达,启用置1,反之置0        |
| motor_shake=xx         | 马达使用的 GPIO 配置. 用于给马达供电. |
| motor_ldo = xx         | 指明马达由 axp 哪一路电压供电       |
| motor_ldo_voltage = xx | Axp 供电的该路电压为 xx mv      |

配置举例:

[motor\_para]

motor\_used =

motor\_shake = 0

motor\_ldo = vcc-vibrator

motor\_ldo\_voltage = 3300

注意事项:

motor\_shake = port:power3<1><default><default><1>

默认 io 口的输出应该为 1,这样就不会初始化之后就开始震动了。

假设  $motor\_shake = 0$  ,说明没有指定 gpio 引脚,那么就会设置 axp 的引脚为马达供电,优先考虑 gpio 配置。

## 19. 重力感应(G Sensor)

### 19.1. [gsensor\_para]

| 配置项 | 配置项含义 |
|-----|-------|
|-----|-------|

| gsensor_used=xx     | 是否支持 gsensor                          |
|---------------------|---------------------------------------|
| gsensor_twi_id =xx  | I2C 的 BUS 控制选择, 0: TWI0;1:TWI1;2:TWI2 |
| gsensor_twi_addr=xx | 芯片的 I2C 地址                            |
| gsensor_int1=xx     | 中断 1 的 GPIO 配置                        |
| gsensor_int2=xx     | 中断 2 的 GPIO 配置                        |

#### 配置举例:

[gsensor\_para]

 $gsensor\_used$  = 1  $gsensor\_twi\_id$  = 1  $gsensor\_twi\_addr$  = 0x1E

gsensor\_int1 = port:PH08<6><1><default><default> gsensor\_int2 = port:PH09<6><1><default><default>

# 20. 重力感应(G Sensor)自动扫描配置

注:目前方案中支持 gsensor 的类型有以下列表,作为自动检测加载的时候使用,为'1'时检测加载,为'0'时不检测。

# 20.1. [gsensor\_list\_para]

| 配置项              | 配置项含义               |
|------------------|---------------------|
| gsensor_det_used | 0 or 1, 是否使用自动检测功能  |
| lsm9ds0_acc_mag  | 0 or 1, 是否使用自动检测功能  |
| bma250           | 0 or 1, 检测时是否扫描此类触屏 |
| mma8452          | 0 or 1, 检测时是否扫描此类触屏 |
| mma7660          | 0 or 1, 检测时是否扫描此类触屏 |
| mma865x          | 0 or 1, 检测时是否扫描此类触屏 |
| afa750           | 0 or 1, 检测时是否扫描此类触屏 |
| lis3de_acc       | 0 or 1, 检测时是否扫描此类触屏 |
| lis3dh_acc       | 0 or 1, 检测时是否扫描此类触屏 |
| kxtik            | 0 or 1, 检测时是否扫描此类触屏 |
| dmard10          | 0 or 1, 检测时是否扫描此类触屏 |
| dmard06          | 0 or 1, 检测时是否扫描此类触屏 |
| mxc622x          | 0 or 1, 检测时是否扫描此类触屏 |
| fxos8700         | 0 or 1, 检测时是否扫描此类触屏 |
| lsm303d          | 0 or 1, 检测时是否扫描此类触屏 |

### 配置举例:

[gsensor\_list\_para]

gsensor\_det\_used = 1 lsm9ds0\_acc\_mag = 1

| bma250     | = 1 |
|------------|-----|
| mma8452    | = 1 |
| mma7660    | = 1 |
| mma865x    | = 1 |
| afa750     | = 1 |
| lis3de_acc | = 1 |
| lis3dh_acc | = 1 |
| kxtik      | = 1 |
| dmard10    | =0  |
| dmard06    | = 1 |
| mxc622x    | = 1 |
| fxos8700   | = 1 |
| lsm303d    | = 0 |

## 21. WiFi

## 21.1. [rf\_para]

| 配置项               | 配置项含义                     |
|-------------------|---------------------------|
|                   | 选择的模组:                    |
|                   | 0- none                   |
|                   | 1- ap6181(wifi)           |
|                   | 2- ap6210(wifi+bt)        |
|                   | 3- rt18188eu(wifi)        |
| module_num        | 4- rt18723au(wifi+bt)     |
|                   | 5- rt18723bs(wifi+bt)     |
|                   | 6- esp8089(wifi)          |
|                   | 7- ap6476(wifi+bt+fm+gps) |
|                   | 8- ap6330(wifi+bt+fm)     |
|                   | 9- gb9663(wifi+bt+fm)     |
| module_power1     | 模组供电1,请参考 PMU 使用文档        |
| module_power1_vol | 模组供电1电压                   |
| module_power2     | 模组供电2,请参考 PMU 使用文档        |
| module_power2_vol | 模组供电2电压                   |
| module_power3     | 模组供电3,请参考 PMU 使用文档        |
| module_power3_vol | 模组供电3电压                   |
| power_switch      |                           |
| chip_en           | 8723bs WiFi、BT 功能总使能脚     |
| lpo_use_apclk     | 模组使用的系统32k 时钟             |

### 配置举例:

[rf\_para]

module\_num = 9

module\_power1 = "vcc-wifi-io"

module\_power1\_vol =
module\_power2 = ""
module\_power2\_vol =

module\_power3 = ""
module\_power3\_vol =
power\_switch =
chip\_en =

lpo\_use\_apclk = "ac10032k2"

## **21.2.** [wifi\_para]

| 配置项         | 配置项含义              |
|-------------|--------------------|
| wifi_used   | 是否使用 WiFi          |
| wifi_sdc_id | WiFi 使用的 sdio 接口编号 |

| wifi_usbc_id        | WiFi 使用的 USB 接口编号   |
|---------------------|---------------------|
|                     | WiFi 使用的 USB 控制器类型  |
| wifi_usbc_type      | 1- EHCI(speed 2.0)  |
|                     | 2- OHCI(speed 1.0)  |
| wl_reg_on           | WiFi 功能使能 GPIO      |
| wl_host_wake        | WiFi 唤醒主控 GPIO      |
| wl_host_wake_invert | wl_host_wake 是否接反相器 |

说明: [wifi\_para]下的配置项是 usb 和 sdio 接口 wifi 共用的。

配置举例:

[wifi\_para]

wl\_reg\_on = port:PL08<1><default><default><0> wl\_host\_wake = port:PL04<4><default><default><0>

wl\_host\_wake\_invert = 0

# 22. 蓝牙(blueteeth)

# 22.1. [bt\_para]

| 配置项                 | 配置项含义               |
|---------------------|---------------------|
| bt_used             | 是否使用 BT             |
| bt_uart_id          | BT 连接的 UART 接口编号    |
| bt_rst_n            | BT_RESET 脚          |
| bt_wake             | BT_WAKE_AP 脚        |
| bt_host_wake        | AP_WAKE_BT 脚        |
| bt_host_wake_invert | bt_host_wake 是否接反相器 |

配置举例:

 $bt\_used$  = 1  $bt\_uart\_id$  = 1

bt\_rst\_n = port:PL07<1><default><default><0>
bt\_wake = port:PL06<1><default><default><0>
bt\_host\_wake = port:PL05<4><default><default><0>

bt\_host\_wake\_invert = 0

## 23. GPS

## 23.1. [gps\_para]

| 配置项           | 配置项含义                                       |
|---------------|---------------------------------------------|
| gps_used      | GPS 使能标志位。0: 禁用; 1: 使能                      |
| gps_uard_id   | GPS 使用的串口号                                  |
| gps_vbat      | GPS 的供电选择. 比如 vcc-io                        |
| gps_standby_n | GPS 的 standby 引脚. 0: standby, 1: 非 standby. |
| gps_rst_n     | GPS 的 reset 引脚. 0: reset, 1: 非 reset.       |
| gps_clk       | GPS 的时钟源.                                   |

配置举例:

[gps\_para]

 $gps\_used$  = 1  $gps\_uard\_id$  = 2  $gps\_vbat$  =

gps\_standby\_n = port:PC17<1><default><default><0>
gps\_rst\_n = port:PC18<1><default><default><0>

 $gps\_clk = "ac10032k3"$ 

## 24. 3G

# 24.1. [3g\_para]

| 配置项            | 配置项含义                                    |
|----------------|------------------------------------------|
| 3g_used        | 3G 使能标志位。                                |
|                | 0: 禁用; 1: 使能                             |
| 3g_usbc_num    | 3G 使用到的 USB 控制器编号。                       |
|                | 0: USB0; 1: USB1; 2: USB2; 3: USB3 等     |
| 3g_uart_num    | 3G 使用到的 UART 控制器编号。                      |
|                | 0: UART0; 1: UART1; 2: UART2; 3: UART3 等 |
| bb_name        | 3G 模组名称。如"mu509"                         |
| bb_vbat        | gpio 配置,电池引脚。                            |
| bb_on          | 保留                                       |
| bb_pwr_on      | gpio 配置,供电引脚。                            |
| bb_wake        | gpio 配置,A31 睡眠唤醒 3G 模组。                  |
| bb_rf_dis      | gpio 配置,用来控制无线发射模块。                      |
| bb_rst         | gpio 配置,用来复位 3G 模组。                      |
| bb_dldo        | 电源控制配置                                   |
| bb_dldo_min_uV | 电压下限                                     |

| bb dldl max uV | 电压上限 |
|----------------|------|
|                |      |

### 配置举例:

[3g\_para]

3g\_used = 0 3g\_usbc\_num = 3 3g\_uart\_num = 4

bb\_name = "mu509"

bb\_vbat = bb\_on = bb\_pwr\_on = bb\_wake = bb\_rf\_dis = bb\_rst = bb\_rb\_nds = bb\_rst = bb\_rb\_nds = bb\_rb\_nds = bb\_rb\_nds = bb\_rb\_nds = bb\_rb\_nds = bb\_nds = bb\_nd

bb\_dldo = "axp22\_sw0" bb\_dldo\_min\_uV = 5000000 bb\_dldo\_max\_uV = 5000000



## 25.1. [gy\_para]

| 配置项         | 配置项含义              |
|-------------|--------------------|
| gy_used     | 陀螺仪使能标志位。0:禁用;1:使能 |
| gy_twi_id   | 陀螺仪使用的 twi 通道号.    |
| gy_twi_addr | 陀螺仪 twi 设备地址.      |
| gy_int1     | 陀螺仪中断 GPIO 引脚一.    |
| gy_int2     | 陀螺仪中断 GPIO 引脚二.    |

### 配置举例:

[gy\_para]

 $gy\_used$  = 1  $gy\_twi\_id$  = 1  $gy\_twi\_addr$  = 0x6a

gy\_int1 = port:PH08<6><1><default><default>
gy\_int2 = port:PH09<6><1><default><default>

## 25.2. [gy\_list\_para]

陀螺仪自动扫描列表.

| 配置项 | 配置项含义 |
|-----|-------|
|-----|-------|

| gy_det_used | 是否支持自动扫描; 0: 不支持, 1: 支持 |
|-------------|-------------------------|
| lsm9ds0_gyr | 是否扫描 lsm9ds0            |
| 13gd20_gyr  | 是否扫描 13gd20             |
| bmg160_gyr  | 是否扫描 bmg160             |

### 配置举例:

[gy\_list\_para]

 $\begin{array}{ll} gy\_det\_used & = 1 \\ lsm9ds0\_gyr & = 1 \\ l3gd20\_gyr & = 0 \\ bmg160\_gyr & = 1 \end{array}$ 

# 26. 光感(light sensor)

## 26.1. [ls\_para]

| 配置项             | 配置项含义                                 |
|-----------------|---------------------------------------|
| ls_used =xx     | 是否支持 ls                               |
| ls_twi_id=xx    | I2C 的 BUS 控制选择, 0: TWI0;1:TWI1;2:TWI2 |
| ls_twi_addr =xx | 芯片的 I2C 地址                            |
| ls_int=xx       | 中断的 GPIO 配置                           |

### 配置举例:

[ls\_para]

 $ls\_used = 1$ 

ls\_twi\_id = 1

 $ls_twi_addr = 0x39$ 

ls\_int = port:PH10<6><1><default><default>

## **26.2.** [ls\_list\_para]

光感自动扫描列表.

| 配置项            | 配置项含义                   |
|----------------|-------------------------|
| [ls_list_para] | 是否支持自动扫描; 0: 不支持, 1: 支持 |
| ltr_501als     | 是否扫描 ltr_501als         |
| jsa1212        | 是否扫描 jsa1212            |
| jsa1127        | 是否扫描 jsa1127            |

#### 配置举例:

[ls\_list\_para]

ls\_det\_used = 1 ltr\_501als = 1 jsa1212 = 0jsa1127 = 1

# 27. 罗盘 Compass

## 27.1. [compass\_para]

| 配置项                  | 配置项含义                                 |
|----------------------|---------------------------------------|
| compass_used=xx      | 是否支持 compass                          |
| compass_twi_id=xx    | I2C 的 BUS 控制选择, 0: TWI0;1:TWI1;2:TWI2 |
| compass_twi_addr =xx | 芯片的 I2C 地址                            |
| compass_int1=xx      | 中断的 GPIO 配置一                          |
| compass_int2=xx      | 中断的 GPIO 配置二                          |

目前都用轮询, 不用中断方式.

### 配置举例:

[compass\_para]

 $\begin{array}{lll} compass\_used & = 1 \\ compass\_twi\_id & = 1 \\ compass\_twi\_addr & = 0x1E \end{array}$ 

compass\_int1 = port:PH08<6><1><default><default><compass\_int2 = port:PH09<6><1><default><default><

## 27.2. [compass\_list\_para]

| 配置项              | 配置项含义                   |
|------------------|-------------------------|
| compass_det_used | 是否支持自动扫描; 0: 不支持, 1: 支持 |
| lsm9ds0          | 是否扫描 lsm9ds0            |
| lsm303d          | 是否扫描 lsm303d            |
| akm8963          | 是否扫描 akm8963            |

### 配置举例:

[compass\_list\_para]

 $compass\_det\_used = 1$ 

lsm9ds0 = 1

lsm303d = 0 akm8963 = 1

## 28. 音频

## 28.1. [audio0]

| 配置项                 | 配置项含义       |
|---------------------|-------------|
| audio_int_ctrl      | 耳机检测中断引脚配置  |
| audio_pa_ctrl       | 功放控制引脚配置    |
| speaker_val         | 暂时无用        |
| headset_val         | 耳机增益        |
| single_speaker_val  | 单喇叭增益       |
| double_speaker_val  | 双喇叭增益       |
| speaker_double_used | 双喇叭标志,0单喇叭  |
| earpiece_val        | 听筒增益        |
| mainmic_val         | 主 mic 增益    |
| headsetmic_val      | 耳机 mic 增益   |
| ts3a225_gpio_ctrl   | 富士康方案耳机检测脚  |
| dmic_used           | 数字 mic 使用标志 |
| adc_digital_val     | 数字 mic 增益   |
| agc_used            | 硬件 agc 使用标志 |
| drc_used            | 硬件 drc 使用标志 |
| analog_bb           | 模拟 bb 使用标志  |
| digital_bb          | 数字 bb 使用标志  |

```
配置举例:
[audio0]
audio_int_ctrl
                        = port:PL12<6><default><default><0>
audio_pa_ctrl
                        = port:PG13<1><default><default><0>
;aif3_voltage
                    = "axp15_cldo3"
speaker_val = 0x1b
headset_val = 0x3b
single\_speaker\_val = 0x19
double\_speaker\_val = 0x19
speaker\_double\_used = 1
earpiece_val = 0x1e
mainmic_val = 0x4
headsetmic\_val = 0x4
ts3a225_gpio_ctrl
                             = port:PG12<6><default><default><0>
dmic\_used = 1
adc\_digital\_val = 0xc0c0
agc\_used = 0
drc\_used = 1
analog\_bb = 0
```

 $digital_bb = 0$ 

## 29. 红外

## 29.1. [s\_cir0]

### 接收端配置.

| 配置项               | 配置项含义                     |
|-------------------|---------------------------|
| ir_used           | 平台是否使用 ir. 0: 不使用, 1: 使用. |
| ir_rx             | 红外 IC 的接收引脚               |
| ir_power_key_code | power 按键对应的键值             |
| ir_addr_code      | 接收的设备地址码                  |

### 配置举例:

[s\_cir0]

 $\begin{array}{ll} ir\_used & = 0 \\ ir\_rx & = \\ ir\_power\_key\_code & = 0x0 \\ ir\_addr\_code & = 0x0 \end{array}$ 

## 29.2. [cir]

### 发送端配置.

| 配置项     | 配置项含义                     |
|---------|---------------------------|
| ir_used | 平台是否使用 ir. 0: 不使用, 1: 使用. |
| ir_tx   | 红外 IC 的发送引脚               |

### 配置举例:

[cir]

ir\_used =

ir\_tx = port:PH07<2><default><default>

# 30. PMU 电源

## **30.1.** [pmu1\_para]

| 配置项          | 相关说明                                                           |
|--------------|----------------------------------------------------------------|
| pmu_used     | 是否使用 AXPxx: 0:不使用,1:使用                                         |
| pmu_id       | 0:axp19x,1:axp22x,2:axp806,3:axp808,4:axp809,5:axp803,6:axp813 |
| pmu_twi_addr | AXPxx 通信 I2C 地址                                                |
| pmu_twi_id   | AXPxx 挂接在主控的哪个 I2C 控制口(0, 1, 2)                                |
| pmu_irq_id   | irq 号 (0 irq0,1 irq1,·····)                                    |

### 第 56 页 共 75 页

| pmu_battery_rdc         | 电池通路内阻,单位 m $\Omega$                                     |  |
|-------------------------|----------------------------------------------------------|--|
| pmu_battery_cap         | 电池容量,单位 mAh,如果配置改值,计量方式为库仑计方式,                           |  |
|                         | 否则为电压方式                                                  |  |
| pmu_batdeten            | 电池检查使能控制: 0:使能 1:使能                                      |  |
|                         |                                                          |  |
| pmu_chg_ic_temp         | 智能充电,PMU 温度设置。配置为 0 关闭此功能.                               |  |
|                         | 目标是在 PMU 温度恒定的情况下,使充电电流达到最大值                             |  |
| pmu_runtime_chgcur      | 设置开机时充电电流大小,单位 mA, 仅支持:300/450/600/750                   |  |
|                         | /900/1050/1200/1350/1500/1650/1800/1950/2100             |  |
| pmu_earlysuspend_chgcur | 设置关屏时充电电流大小,单位 mA, 仅支持:                                  |  |
|                         | 300/4500/600/750/900/1050/1200/1350/1500/1650/1800/1950/ |  |
|                         | 2100                                                     |  |
| pmu_suspend_chgcur      | 设置待机时充电电流大小,单位 mA,仅支持: 300/4500/600/750                  |  |
|                         | /900/1050/1200/1350/1500/1650/1800/1950/2100             |  |
| pmu_shutdown_chgcur     | 设置关机时充电电流大小,单位 mA,仅支持: 300/4500/600/750                  |  |
|                         | /900/1050/1200/1350/1500/1650/1800/1950/2100             |  |
| pmu_init_chgvol         | 设置充电完成时电池目标电压,仅支持: 4100/4200/4220/4240mV                 |  |
| pmu_init_chgend_rate    | 设置充电结束时电流占恒流值的百分比: 10/15                                 |  |
| pmu_init_chg_enabled    | 开机后充电使能初始值: 0: 不开充电, 1: 开充电                              |  |
| pmu_init_bc_en          | BC 模块的使能控制, BC 模块为硬件自动识别 USB 及 AC 口的模                    |  |
|                         | 块. 1: 使能, 0: 不使能.                                        |  |
| pmu_init_adc_freq       | ADC 采样频率设定值: 100/200/400/800 Hz                          |  |
| pmu_init_adcts_freq     | TS ADC 采样频率设定值: 100/200/400/800 Hz                       |  |
| pmu_init_chg_pretime    | 涓流充电超时时间: 40/50/60/70 分钟                                 |  |
| pmu_init_chg_csttime    | 恒流超时时间: 360/480/600/720 分钟                               |  |
| pmu_batt_cap_correct    | 满足电池容量校正条件后是否校正电池容量控制 0:不校正 1:                           |  |
|                         | 校正                                                       |  |
| pmu_bat_regu_en         | 充电结束时, 充电开关是否关闭: 0: 关闭 1: 不关闭                            |  |
| pmu_bat_para1           | 电池空载电压为 3.13V 对应的电量值                                     |  |
| pmu_bat_para2           | 电池空载电压为 3.27V 对应的电量值                                     |  |
| pmu_bat_para3           | 电池空载电压为 3.34V 对应的电量值                                     |  |
| pmu_bat_para4           | 电池空载电压为 3.41V 对应的电量值                                     |  |
| pmu_bat_para5           | 电池空载电压为 3.58V 对应的电量值                                     |  |
| pmu_bat_para6           | 电池空载电压为 3.52V 对应的电量值                                     |  |
| pmu_bat_para7           | 电池空载电压为 3.55V 对应的电量值                                     |  |
| pmu_bat_para8           | 电池空载电压为 3.57V 对应的电量值                                     |  |
| pmu_bat_para9           | 电池空载电压为 3.59V 对应的电量值                                     |  |
| pmu_bat_para10          | 电池空载电压为 3.61V 对应的电量值                                     |  |
| pmu_bat_para11          | 电池空载电压为 3.63V 对应的电量值                                     |  |
| pmu_bat_para12          | 电池空载电压为 3.64V 对应的电量值                                     |  |
| pmu_bat_para13          | 电池空载电压为 3.66V 对应的电量值                                     |  |
| pmu_bat_para14          | 电池空载电压为 3.7V 对应的电量值                                      |  |
| pmu_bat_para15          | 电池空载电压为 3.73V 对应的电量值                                     |  |

### 第 57 页 共 75 页

| pmu_bat_para16             | 电池空载电压为 3.77V 对应的电量值                              |  |
|----------------------------|---------------------------------------------------|--|
| pmu_bat_para17             | 电池空载电压为 3.78V 对应的电量值                              |  |
| pmu_bat_para18             | 电池空载电压为 3.8V 对应的电量值                               |  |
| pmu_bat_para19             | 电池空载电压为 3.82V 对应的电量值                              |  |
| pmu_bat_para20             | 电池空载电压为 3.84V 对应的电量值                              |  |
| pmu_bat_para21             | 电池空载电压为 3.85V 对应的电量值                              |  |
| pmu_bat_para22             | 电池空载电压为 3.87V 对应的电量值                              |  |
| pmu_bat_para23             | 电池空载电压为 3.91V 对应的电量值                              |  |
| pmu_bat_para24             | 电池空载电压为 3.94V 对应的电量值                              |  |
| pmu_bat_para25             | 电池空载电压为 3.98V 对应的电量值                              |  |
| pmu_bat_para26             | 电池空载电压为 4.01V 对应的电量值                              |  |
| pmu_bat_para27             | 电池空载电压为 4.05V 对应的电量值                              |  |
| pmu_bat_para28             | 电池空载电压为 4.08V 对应的电量值                              |  |
| pmu_bat_para29             | 电池空载电压为 4.1V 对应的电量值                               |  |
| pmu_bat_para30             | 电池空载电压为 4.12V 对应的电量值                              |  |
| pmu_bat_para31             | 电池空载电压为 4.14V 对应的电量值                              |  |
| pmu_bat_para32             | 电池空载电压为 4.15V 对应的电量值                              |  |
| pmu_usbvol_limit           | USB 适配器限压功能控制 0: 不使能 1: 使能                        |  |
| pmu_usbcur_limit           | USB 适配器限流功能控制 0: 不使能 1: 使能                        |  |
| pmu_usbvol                 | 设置 USB 适配器限压值: 4000/4100/4200/4300/4400/4500/4600 |  |
|                            | 4700 mV,0-不限压                                     |  |
| pmu_usbcur                 | 设置 USB 适配器限流值: 500/900mA, 0-不限流                   |  |
| pmu_usbvol_pc              | 设置 USB 连接 PC 时限压值: 4000/4100/4200/4300/4400/4500  |  |
|                            | 4600/4700 mV,0-不限压                                |  |
| pmu_usbcur_pc              | 设置 USB 连接 PC 时限流值: 500/900mA, 0-不限流               |  |
| pmu_pwroff_vol             | PMU 关机时,硬件低电保护电压设置值: 2600/2700/2800/2900          |  |
|                            | /3000/3100/3200/3300 mV                           |  |
| pmu_pwron_vol              | PMU 开机后,硬件低电保护电压设置值: 2600/2700/2800/2900          |  |
|                            | /3000/3100/3200/3300 mV                           |  |
| pmu_pekoff_time            | 长按键关机时间设置值: 4000/6000/8000/10000 ms               |  |
| pmu_pekoff_func            | 长按键功能配置项: 0: 长按键后关机 1: 长按键后重启                     |  |
| pmu_pekoff_en              | 长按键后是否关闭 PMU: 0: 不关闭 1: 关闭                        |  |
| pmu_pekoff_delay_time      | 长按键关机激活时间设置, 0/10/20/30/40/50/60/70 秒             |  |
| pmu_peklong_time           | 报长按键消息时间设定值: 1000/1500/2000/2500 ms               |  |
| pmu_pekon_time             | 关机情况下按键多长时间后启动设置: 128/1000/2000/3000 ms           |  |
| pmu_pwrok_time             | PWROK 启动延时时间设置值: 8/16/32/64 ms                    |  |
| pmu_pwrok_shutdown_en      | 长按 PWROK 键 6s 是否关机,使能位                            |  |
| pmu_reset_shutdown_en      | Reset 键重启时,是否关闭所有的 ldo/dcdc, 0: 不关闭, 1: 关闭。       |  |
| pmu_battery_warning_level1 | 低电报警门限 level 1 设置值百分比: 5~20,每步设置 1%               |  |
| pmu_battery_warning_level2 | 低电报警门限 level 2 设置值百分比: 0~15,每步设置 1%               |  |
| pmu_restvol_adjust_time    | 电池电量更新时间设置值: 30/60/120 s                          |  |
| pmu_ocv_cou_adjust_time    | 根据 OCV 校正电池电量更新时间值: 30/60/120 s                   |  |
| pmu_chgled_func            | CHGLED 功能控制: 0: 马达驱动 1: 充电状态指示                    |  |
| ,                          |                                                   |  |

### 第 58 页 共 75 页

| pmu_chgled_type   | CHGLED 作为充电状态指示时指示功能控制: 0: 方式 A 1: 方   |  |
|-------------------|----------------------------------------|--|
|                   | 式B                                     |  |
| pmu_vbusen_func   | N_VBUSEN 工作方式控制: 0: 作为输入脚 1: 作为输出脚     |  |
| pmu_reset         | 长按键 16s 后 PMU 是否重启控制: 0: 不重启 1: 重启     |  |
| pmu_IRQ_wakeup    | 在关机和休眠状态下 IRQ 为低电平时是否触发开机和唤醒控制         |  |
|                   | 0: 不开机或不唤醒 1: 开机或唤醒                    |  |
| pmu_hot_shutdowm  | PMU 过温后是否关机 0: 不关机 1: 关机               |  |
| pmu_inshort       | 是否手动设置 ACIN/VBUS 短路控制 0: PMU 自动检测 1: 手 |  |
|                   | 动设置 ACIN 和 VBUS 为短路                    |  |
| power_start       | 火牛开机选择                                 |  |
|                   | 0: 不允许插火牛直接开机,必须通过判断: 满足以下条件可以         |  |
|                   | 直接开机:长按 power 按键,前次是系统状态,如果电池电量过       |  |
|                   | 低,则不允许开机                               |  |
|                   | 1: 任意状态下,允许插火牛直接开机,同时要求电池电量足够          |  |
|                   | 高                                      |  |
|                   | 2: 不允许插火牛直接开机,必须通过判断: 满足以下条件可以         |  |
|                   | 直接开机:长按 power 按键,前次是系统状态,不要求电池电量       |  |
|                   | 3: 任意状态下,允许插火牛直接开机,不要求电池电量             |  |
| pmu_temp_enable   | 电池温度检测使能控制: 0: disable 1: enable       |  |
| pmu_charge_ltf    | 充电下限电池温度对应的电压                          |  |
| pmu_charge_htf    | 充电上限电池温度对应的电压                          |  |
| pmu_discharge_ltf | 关机下限电池温度对应的电压                          |  |
| pmu_discharge_htf | 关机上限电池温度对应的电压                          |  |
| pmu_temp_para1    | 电池温度-25 度对应的电压                         |  |
| pmu_temp_para2    | 电池温度-15 度对应的电压                         |  |
| pmu_temp_para3    | 电池温度-10 度对应的电压                         |  |
| pmu_temp_para4    | 电池温度-5 度对应的电压                          |  |
| pmu_temp_para5    | 电池温度 0 度对应的电压                          |  |
| pmu_temp_para6    | 电池温度 5 度对应的电压                          |  |
| pmu_temp_para7    | 电池温度 10 度对应的电压                         |  |
| pmu_temp_para8    | 电池温度 20 度对应的电压                         |  |
| pmu_temp_para9    | 电池温度 30 度对应的电压                         |  |
| pmu_temp_para10   | 电池温度 40 度对应的电压                         |  |
| pmu_temp_para11   | 电池温度 45 度对应的电压                         |  |
| pmu_temp_para12   | 电池温度 50 度对应的电压                         |  |
| pmu_temp_para13   | 电池温度 55 度对应的电压                         |  |
| pmu_temp_para14   | 电池温度 60 度对应的电压                         |  |
| pmu_temp_para15   | 电池温度 70 度对应的电压                         |  |
| pmu_temp_para16   | 电池温度 80 度对应的电压                         |  |

### 配置举例:

[pmu1\_para]

pmu\_used = 1 pmu\_id = 6

| pmu_twi_addr            | = 0x34 |
|-------------------------|--------|
| pmu_twi_id              | = 0    |
| pmu_irq_id              | =0     |
| pmu_battery_rdc         | = 133  |
| pmu_battery_cap         | = 2962 |
| pmu_batdeten            | = 1    |
| pmu_chg_ic_temp         | = 0    |
| pmu_runtime_chgcur      | = 1000 |
| pmu_earlysuspend_chgcur | = 1000 |
| pmu_suspend_chgcur      | = 1800 |
| pmu_shutdown_chgcur     | = 1950 |
| pmu_init_chgvol         | = 4200 |
| pmu_init_chgend_rate    | = 20   |
| pmu_init_chg_enabled    | = 1    |
| pmu_init_bc_en          | = 0    |
| pmu_init_adc_freq       | = 800  |
| pmu_init_adcts_freq     | = 800  |
| pmu_init_chg_pretime    | = 70   |
| pmu_init_chg_csttime    | = 720  |
| pmu_batt_cap_correct    | = 1    |
| pmu_bat_regu_en         | = 1    |
|                         |        |
| pmu_bat_para1           | = 0    |
| pmu_bat_para2           | = 0    |
| pmu_bat_para3           | = 0    |
| pmu_bat_para4           | =0     |
| pmu_bat_para5           | = 0    |
| pmu_bat_para6           | = 0    |
| pmu_bat_para7           | =1     |
| pmu_bat_para8           | = 1    |
| pmu_bat_para9           | = 2    |
| pmu_bat_para10          | = 3    |
| pmu_bat_para11          | = 4    |
| pmu_bat_para12          | = 12   |
| pmu_bat_para13          | = 17   |
| pmu_bat_para14          | = 29   |
| pmu_bat_para15          | = 43   |
| pmu_bat_para16          | = 48   |
| pmu_bat_para17          | = 53   |
| pmu_bat_para18          | = 56   |
| pmu_bat_para19          | = 60   |
| pmu_bat_para20          | = 66   |
| pmu_bat_para21          | = 71   |
| pmu_bat_para22          | = 77   |
| pmu_bat_para23          | = 77   |
| pina_oac_para23         | - 01   |

| pmu_bat_para24             | = 85   |
|----------------------------|--------|
| pmu_bat_para25             | = 90   |
| pmu_bat_para26             | = 95   |
| pmu_bat_para27             | = 98   |
| pmu_bat_para28             | = 100  |
| pmu_bat_para29             | = 100  |
| pmu_bat_para30             | = 100  |
| pmu_bat_para31             | = 100  |
| pmu_bat_para32             | = 100  |
|                            |        |
| pmu_usbvol_limit           | = 0    |
| pmu_usbcur_limit           | = 0    |
| pmu_usbvol                 | = 4000 |
| pmu_usbcur                 | = 0    |
| pmu_usbvol_pc              | = 4400 |
| pmu_usbcur_pc              | = 500  |
| pmu_pwroff_vol             | = 3300 |
| pmu_pwron_vol              | = 2600 |
| pmu_pekoff_time            | = 6000 |
| pmu_pekoff_func            | = 0    |
| pmu_pekoff_en              | = 1    |
| pmu_pekoff_delay_time      | = 0    |
| pmu_peklong_time           | = 1500 |
| pmu_pekon_time             | = 1000 |
| pmu_pwrok_time             | = 64   |
| pmu_pwrok_shutdown_en      | = 0    |
| pmu_reset_shutdown_en      | = 1    |
| pmu_battery_warning_level1 | = 15   |
| pmu_battery_warning_level2 | 2 = 0  |
| pmu_restvol_adjust_time    | = 60   |
| pmu_ocv_cou_adjust_time    | = 60   |
| pmu_chgled_func            | =0     |
| pmu_chgled_type            | =0     |
| pmu_vbusen_func            | = 1    |
| pmu_reset                  | = 0    |
| pmu_IRQ_wakeup             | = 1    |
| pmu_hot_shutdowm           | = 1    |
| pmu_inshort                | = 0    |
| power_start                | = 0    |
|                            |        |
| pmu_temp_enable            | = 0    |
| pmu_charge_ltf             | = 2261 |
| pmu_charge_htf             | = 388  |
| pmu_discharge_ltf          | = 3200 |
| pmu_discharge_htf          | = 237  |
|                            |        |

| pmu_temp_para1  | = 7466 |
|-----------------|--------|
| pmu_temp_para2  | = 4480 |
| pmu_temp_para3  | = 3518 |
| pmu_temp_para4  | = 2786 |
| pmu_temp_para5  | = 2223 |
| pmu_temp_para6  | = 1788 |
| pmu_temp_para7  | = 1448 |
| pmu_temp_para8  | = 969  |
| pmu_temp_para9  | = 664  |
| pmu_temp_para10 | = 466  |
| pmu_temp_para11 | = 393  |
| pmu_temp_para12 | = 333  |
| pmu_temp_para13 | = 283  |
| pmu_temp_para14 | = 242  |
| pmu_temp_para15 | = 179  |
| pmu temp para16 | = 134  |

### 30.2. [pmu1\_regu]

#### 供电依赖关系表.

regulator18 regulator19

regulator20

regulator21

regulator22

#### [pmu1\_regu] $regulator\_count = 23$ = "axp81x\_dcdc1 none vcc-emmc vcc-usb0-33 vcc-io vcc-io-gps vcc-io1 vcc-sensor" regulator1 = "axp81x\_dcdc2 none vdd-cpua" regulator2 regulator3 = "axp81x\_dcdc3 none vdd-cpub" = "axp81x\_dcdc4 none vdd-gpu" regulator4 = "axp81x\_dcdc5 none vcc-dram" regulator5 = "axp81x\_dcdc6 none vdd-sys vdd-usb0-09 vdd-hdmi-09" regulator6 = "axp81x\_dcdc7 none" regulator7 = "axp81x\_rtc none" regulator8 "axp81x\_aldo1 none vcc-dsi-18 vcc-csi2-18 vcc-lvds-18 vcc-efuse-18 vcc-hdmi-18 vcc-pd" regulator9 = "axp81x\_aldo2 none vdd-drampll vdd-lpddr-18 vcc-pll vcc-adc vcc-cpvdd vcc-ldoin" regulator10 regulator11 = "axp81x\_aldo3 none vcc-avcc vcc-pl" = "axp81x\_dldo1 none vcc-wifi-io vcc-io2" regulator12 = "axp81x\_dldo2 none vcc-lcd-0" regulator13 regulator14 = "axp81x\_dldo3 none afvcc-csi iovdd-csi" regulator15 = "axp81x\_dldo4 none avdd-csi" regulator16 = "axp81x\_eldo1 1 dvdd-csi-12" regulator17 = "axp81x\_eldo2 1 vcc\_dsi" = "axp81x\_eldo3 1 dvdd-csi-18"

= "axp81x\_fldo1 none vcc-hsic-12"

= "axp81x\_fldo2 none vdd-cpus"

= "axp81x\_gpio0ldo none vcc-ctp" = "axp81x\_gpio1ldo none vcc-card" regulator23 = "axp81x\_dc1sw 1"

此表, 为电源拓扑结构的配置。

第一列,为 ldo/dcdc的 name。如 axp81x\_dcdc1。

第二列,为 ldo 之间依赖关系的配置项,如 eldo 的输入端为 dcdc1,则 eldo 此配置为 1,代表此路 ldo 依赖于 ldo1 对应的 axp81x\_dcdc1。如果,不依赖于其他 ldo,则配置成 none。

第三列,为系统电配置项,当为系统电时,配置为 sys,否则配置成 none。系统电,是指除了 super standby 外,处于常开状态,驱动中各个模块调用 regulator\_disable 函数,无法关闭此路输出。

从第四列,开始,为各个模块 supply id 的配置项,供各个驱动模块调用,regulator 获得句柄时使用。supply id 之间以空格隔开,每个 supply id 规定为 20 个字符以内,每个 ldo 支持的 supply id 个数无限制。

注意: 第一列的 ldo/dcdc 的 name,不要去修改, standby 会根据这个 name 来区分各路电。

第二列的 Ido 之间依赖关系,请根据实际原理图去配置。

第三列,系统电,与芯片内部的 power domin 有关,系统进入 standby 时,会决定是否关闭此路电。修改请慎重。

## 31. Recovery 键配置

| 配置项     |     | 配置项含义                    |
|---------|-----|--------------------------|
| key_min | = 3 | 作为 recovery 功能的按键的键值范围下限 |
| key_max | = 5 | 作为 recovery 功能的按键的键值范围上限 |

配置举例:

[recovery\_key]

key\_min =

 $key_max = 5$ 

说明:

通常情况下,一块方案板上的按键个数不同,或者排列不同,这都导致了方案商在选择作为开机阶段 recovery 功能的按键有所不同。该键值配置用于作为 recovery 功能的按键的键值范围落在 key\_min 到 key\_max 之间。

### 32. DVFS

### **32.1. CPU DVFS**

A83T 平台有三份 VF 表, 分别对应 slow, normal, fast 的 IC, 不同批次的 IC 的频率性能有差异, 用这三份表来区分.

## **32.1.1.** [dvfs\_table]

| 配置项            | 配置项含义          |
|----------------|----------------|
| vf_table_count | 平台包含的 vf 表的个数. |

配置示例:

[dvfs\_table]

 $vf\_table\_count = 3$ 

## 32.1.2. [vf\_table0]

### 对应频率性能为 slow 的 IC.

| <b>第7 59 7</b> 等 | 新 <b>罗</b> 诺泰以                           |
|------------------|------------------------------------------|
| 配置项              | 配置项含义                                    |
| L_max_freq       | cluster()的 cpu 支持的最高频率                   |
| L_boot_freq      | 内核启动阶段 cluster0 的 cpu 频率.                |
|                  | 即从 cpufreq 驱动加载到 android 进入主界面之前的 cpu 频率 |
| L_min_freq       | cluster0 的 cpu 支持的最低频率                   |
| L_LV_count       | cluster0 的 cpu 频率电压等级数                   |
| L_LV1_freq       | cluster0 的 cpu 第一级 (最高) 频率               |
| L_LV1_volt       | L_LV1_freq 频点对应的电压                       |
| L_LV2_freq       | cluster0的 cpu 第二级 (次高) 频率                |
| L_LV2_volt       | L_LV2_freq 频点对应的电压                       |
| L_LV3_freq       | cluster0 的 cpu 第三级频率                     |
| L_LV3_volt       | L_LV3_freq 频点对应的电压                       |
| L_LV4_freq       | cluster0 的 cpu 第四级频率                     |
| L_LV4_volt       | L_LV4_freq 频点对应的电压                       |
| L_LV5_freq       | cluster0 的 cpu 第五级频率                     |
| L_LV5_volt       | L_LV5_freq 频点对应的电压                       |
| L_LV6_freq       | cluster0 的 cpu 第六级频率                     |
| L_LV6_volt       | L_LV6_freq 频点对应的电压                       |
| L_LV7_freq       | cluster0 的 cpu 第七级频率                     |
| L_LV7_volt       | L_LV7_freq 频点对应的电压                       |
| L_LV8_freq       | cluster0 的 cpu 第八级频率                     |
| L_LV8_volt       | L_LV8_freq 频点对应的电压                       |
| B_max_freq       | Cluster1 的 cpu 支持的最高频率                   |
| B_boot_freq      | 内核启动阶段 cluster1 的 cpu 频率.                |
|                  | 即从 cpufreq 驱动加载到 android 进入主界面之前的 cpu 频率 |
| B_min_freq       | Cluster1 的 cpu 支持的最低频率                   |
| B_LV_count       | Cluster1 的 cpu 频率电压等级数                   |
| B_LV1_freq       | Cluster1 的 cpu 第一级 (最高) 频率               |
| B_LV1_volt       | L_LV1_freq 频点对应的电压                       |

#### 第 64 页 共 75 页

| B_LV2_freq | Cluster1 的 cpu 第二级 (次高) 频率 |
|------------|----------------------------|
| B_LV2_volt | L_LV2_freq 频点对应的电压         |
| B_LV3_freq | Cluster1 的 cpu 第三级频率       |
| B_LV3_volt | L_LV3_freq 频点对应的电压         |
| B_LV4_freq | Cluster1 的 cpu 第四级频率       |
| B_LV4_volt | L_LV4_freq 频点对应的电压         |
| B_LV5_freq | Cluster1 的 cpu 第五级频率       |
| B_LV5_volt | L_LV5_freq 频点对应的电压         |
| B_LV6_freq | Cluster1 的 cpu 第六级频率       |
| B_LV6_volt | L_LV6_freq 频点对应的电压         |
| B_LV7_freq | Cluster1 的 cpu 第七级频率       |
| B_LV7_volt | L_LV7_freq 频点对应的电压         |
| B_LV8_freq | Cluster1 的 cpu 第八级频率       |
| B_LV8_volt | L_LV8_freq 频点对应的电压         |

注: A83T 为 cluster0 和 cluster1 同频. 也就是八个核任何时候频率都一样,除非核处于关闭状态对 vf\_tbale1 和 vf\_table2 也一样.

#### 配置示例:

[vf\_table0]

;little

L\_max\_freq = 1800000000 L\_boot\_freq = 1608000000

L\_min\_freq = 480000000

 $L_LV_count = 8$ 

 $L_LV1_freq = 1800000000$ 

 $L_LV1_volt = 1080$ 

 $L_LV2_freq = 1608000000$ 

 $L_LV2_volt = 1000$ 

 $L_LV3_freq = 1412000000$ 

 $L_LV3_volt = 920$ 

 $L_LV4_freq = 1008000000$ 

 $L_LV4_volt = 840$ 

 $L_LV5_freq = 0$ 

 $L_LV5_volt = 840$ 

 $L_LV6\_freq = 0$ 

 $L_LV6_volt = 840$ 

 $L_LV7_freq = 0$ 

 $L\_LV7\_volt = 840$ 

 $L_LV8\_freq = 0$ 

 $L\_LV8\_volt = 840$ 

;big

 $B_{max_freq} = 1800000000$ 

 $B_{boot_freq} = 1608000000$ 

 $B_{min}_{freq} = 480000000$ 

 $B_LV_count = 8$ 

 $B_LV1_freq = 18000000000$ 

 $B_LV1_volt = 1080$ 

 $B_LV2_freq = 1608000000$ 

 $B_LV2_volt = 1000$ 

 $B_LV3_freq = 1412000000$ 

 $B_LV3_volt = 920$ 

 $B_LV4_freq = 1008000000$ 

 $B_LV4_volt = 840$ 

 $B_LV5_freq = 0$ 

 $B_LV5_volt = 840$ 

 $B_LV6_freq = 0$ 

 $B_LV6_volt = 840$ 

 $B_LV7_freq = 0$ 

 $B\_LV7\_volt = 840$ 

 $B_LV8\_freq = 0$ 

 $B\_LV8\_volt = 840$ 

### 32.1.3. [vf\_table1]

对应频率性能为 normal 的 IC.

| 配置项        | 配置项含义                  |
|------------|------------------------|
| L_max_freq | cluster0 的 cpu 支持的最高频率 |

### 第 66 页 共 75 页

| L_boot_freq | 内核启动阶段 cluster0 的 cpu 频率.                |  |
|-------------|------------------------------------------|--|
| L_000t_freq | 即从 cpufreq 驱动加载到 android 进入主界面之前的 cpu 频率 |  |
| L_min_freq  | cluster0 的 cpu 支持的最低频率                   |  |
| L_LV_count  | cluster0 的 cpu 频率电压等级数                   |  |
| L_LV1_freq  | cluster0 的 cpu 第一级 (最高) 频率               |  |
| L_LV1_volt  | L_LV1_freq 频点对应的电压                       |  |
| L_LV2_freq  | cluster0 的 cpu 第二级 (次高) 频率               |  |
| L_LV2_volt  | L_LV2_freq 频点对应的电压                       |  |
| L_LV3_freq  | cluster0 的 cpu 第三级频率                     |  |
| L_LV3_volt  | L_LV3_freq 频点对应的电压                       |  |
| L_LV4_freq  | cluster0 的 cpu 第四级频率                     |  |
| L_LV4_volt  | L_LV4_freq 频点对应的电压                       |  |
| L_LV5_freq  | cluster0 的 cpu 第五级频率                     |  |
| L_LV5_volt  | L_LV5_freq 频点对应的电压                       |  |
| L_LV6_freq  | cluster0 的 cpu 第六级频率                     |  |
| L_LV6_volt  | L_LV6_freq 频点对应的电压                       |  |
| L_LV7_freq  | cluster0 的 cpu 第七级频率                     |  |
| L_LV7_volt  | L_LV7_freq 频点对应的电压                       |  |
| L_LV8_freq  | cluster0 的 cpu 第八级频率                     |  |
| L_LV8_volt  | L_LV8_freq 频点对应的电压                       |  |
| B_max_freq  | Cluster1 的 cpu 支持的最高频率                   |  |
| B_boot_freq | 内核启动阶段 cluster1 的 cpu 频率.                |  |
|             | 即从 cpufreq 驱动加载到 android 进入主界面之前的 cpu 频率 |  |
| B_min_freq  | Clusterl 的 cpu 支持的最低频率                   |  |
| B_LV_count  | Clusterl 的 cpu 频率电压等级数                   |  |
| B_LV1_freq  | Cluster1 的 cpu 第一级 (最高) 频率               |  |
| B_LV1_volt  | B_LV1_volt L_LV1_freq 频点对应的电压            |  |
| B_LV2_freq  | Cluster1 的 cpu 第二级 (次高) 频率               |  |
| B_LV2_volt  | L_LV2_freq 频点对应的电压                       |  |
| B_LV3_freq  | Cluster1 的 cpu 第三级频率                     |  |
| B_LV3_volt  | L_LV3_freq 频点对应的电压                       |  |
| B_LV4_freq  | Cluster1 的 cpu 第四级频率                     |  |
| B_LV4_volt  | L_LV4_freq 频点对应的电压                       |  |
| B_LV5_freq  | Cluster1 的 cpu 第五级频率                     |  |
| B_LV5_volt  | L_LV5_freq 频点对应的电压                       |  |
| B_LV6_freq  | Cluster1 的 cpu 第六级频率                     |  |
| B_LV6_volt  | L_LV6_freq 频点对应的电压                       |  |
| B_LV7_freq  | Cluster1 的 cpu 第七级频率                     |  |
| B_LV7_volt  | L_LV7_freq 频点对应的电压                       |  |
| B_LV8_freq  | Cluster1 的 cpu 第八级频率                     |  |
| B_LV8_volt  | L_LV8_freq 频点对应的电压                       |  |

[vf\_table1]

;little

 $L\_max\_freq = 2016000000$ 

 $L_min_freq = 480000000$ 

 $L_LV_count = 8$ 

 $L_LV1_freq = 2016000000$ 

 $L_LV1_volt = 1080$ 

 $L_LV2_freq = 18000000000$ 

 $L_LV2_volt = 1000$ 

 $L_LV3_freq = 1608000000$ 

 $L_LV3_volt = 920$ 

 $L_LV4_freq = 12000000000$ 

 $L_LV4_volt = 840$ 

 $L_LV5_freq = 0$ 

 $L_LV5_volt = 840$ 

 $L_LV6_freq = 0$ 

 $L\_LV6\_volt = 840$ 

 $L_LV7_freq = 0$ 

 $L_LV7_volt = 840$ 

 $L_LV8_freq = 0$ 

 $L_LV8_volt = 840$ 

;big

 $B_{max_freq} = 2016000000$ 

 $B_{min}freq = 480000000$ 

 $B\_LV\_count = 8$ 

 $B_LV1_freq = 2016000000$ 

 $B\_LV1\_volt = 1080$ 

 $B_LV2_freq = 18000000000$ 

 $B\_LV2\_volt = 1000$ 

 $B_LV3_freq = 1608000000$ 

B\_LV3\_volt = 920

B\_LV4\_freq = 1200000000

 $B_LV4_volt = 840$ 

 $B_LV5_freq = 0$ 

 $B_LV5_volt = 840$ 

 $B_LV6_freq = 0$ 

 $B_LV6_volt = 840$ 

 $B_LV7_freq = 0$ 

 $B_LV7_volt = 840$ 

 $B_LV8_freq = 0$ 

 $B_LV8_volt = 840$ 

## 32.1.4. [vf\_table2]

### 对应频率性能为 fast 的 IC.

| 配置项         | 配置项含义                                    |
|-------------|------------------------------------------|
| L_max_freq  | cluster0 的 cpu 支持的最高频率                   |
| L_boot_freq | 内核启动阶段 cluster0 的 cpu 频率.                |
|             | 即从 cpufreq 驱动加载到 android 进入主界面之前的 cpu 频率 |
| L_min_freq  | cluster0 的 cpu 支持的最低频率                   |
| L_LV_count  | cluster() 的 cpu 频率电压等级数                  |
| L_LV1_freq  | cluster0 的 cpu 第一级 (最高) 频率               |
| L_LV1_volt  | L_LV1_freq 频点对应的电压                       |
| L_LV2_freq  | cluster0 的 cpu 第二级 (次高) 频率               |
| L_LV2_volt  | L_LV2_freq 频点对应的电压                       |
| L_LV3_freq  | cluster0 的 cpu 第三级频率                     |
| L_LV3_volt  | L_LV3_freq 频点对应的电压                       |
| L_LV4_freq  | cluster0 的 cpu 第四级频率                     |
| L_LV4_volt  | L_LV4_freq 频点对应的电压                       |
| L_LV5_freq  | cluster0 的 cpu 第五级频率                     |
| L_LV5_volt  | L_LV5_freq 频点对应的电压                       |
| L_LV6_freq  | cluster0 的 cpu 第六级频率                     |
| L_LV6_volt  | L_LV6_freq 频点对应的电压                       |
| L_LV7_freq  | cluster0 的 cpu 第七级频率                     |
| L_LV7_volt  | L_LV7_freq 频点对应的电压                       |
| L_LV8_freq  | cluster0 的 cpu 第八级频率                     |
| L_LV8_volt  | L_LV8_freq 频点对应的电压                       |

### 第 69 页 共 75 页

| B_max_freq  | Cluster1 的 cpu 支持的最高频率                   |  |
|-------------|------------------------------------------|--|
| B_boot_freq | 内核启动阶段 cluster1 的 cpu 频率.                |  |
|             | 即从 cpufreq 驱动加载到 android 进入主界面之前的 cpu 频率 |  |
| B_min_freq  | Cluster1 的 cpu 支持的最低频率                   |  |
| B_LV_count  | Cluster1 的 cpu 频率电压等级数                   |  |
| B_LV1_freq  | Cluster1 的 cpu 第一级 (最高) 频率               |  |
| B_LV1_volt  | L_LV1_freq 频点对应的电压                       |  |
| B_LV2_freq  | Cluster1 的 cpu 第二级 (次高) 频率               |  |
| B_LV2_volt  | L_LV2_freq 频点对应的电压                       |  |
| B_LV3_freq  | Cluster1 的 cpu 第三级频率                     |  |
| B_LV3_volt  | L_LV3_freq 频点对应的电压                       |  |
| B_LV4_freq  | Cluster1 的 cpu 第四级频率                     |  |
| B_LV4_volt  | L_LV4_freq 频点对应的电压                       |  |
| B_LV5_freq  | Cluster1 的 cpu 第五级频率                     |  |
| B_LV5_volt  | L_LV5_freq 频点对应的电压                       |  |
| B_LV6_freq  | Cluster1 的 cpu 第六级频率                     |  |
| B_LV6_volt  | L_LV6_freq 频点对应的电压                       |  |
| B_LV7_freq  | Cluster1 的 cpu 第七级频率                     |  |
| B_LV7_volt  | L_LV7_freq 频点对应的电压                       |  |
| B_LV8_freq  | Cluster1 的 cpu 第八级频率                     |  |
| B_LV8_volt  | L_LV8_freq 频点对应的电压                       |  |

### 配置示例:

[vf\_table2]

;little

L\_max\_freq = 2016000000 L\_min\_freq = 480000000

L\_LV\_count = 8

 $L_LV1\_freq = 2016000000$ 

 $L_LV1_volt = 1080$ 

 $L_LV2_freq = 18000000000$ 

 $L_LV2_volt = 1000$ 

 $L_LV3_freq = 1608000000$ 

 $L_LV3_volt = 920$ 

 $L_LV4_freq = 12000000000$ 

 $L_LV4_volt = 840$ 

 $L_LV5_freq = 0$ 

 $L_LV5_volt = 840$ 

 $L_LV6_freq = 0$ 

 $L_LV6_volt = 840$ 

 $L_LV7_freq = 0$ 

 $L_LV7_volt = 840$ 

 $L_LV8_freq = 0$ 

 $L_LV8_volt = 840$ 

;big

 $B_{max_freq} = 2016000000$ 

 $B_{min}_{freq} = 480000000$ 

 $B_LV_count = 8$ 

 $B_LV1_freq = 2016000000$ 

 $B_LV1_volt = 1080$ 

 $B_LV2_freq = 18000000000$ 

 $B_LV2_volt = 1000$ 

 $B_LV3_freq = 1608000000$ 

 $B\_LV3\_volt = 920$ 

 $B_LV4_freq = 12000000000$ 

 $B\_LV4\_volt = 840$ 

 $B_LV5_freq = 0$ 

B\_LV5\_volt = 840

 $B_LV6_freq = 0$ 

 $B_LV6_volt = 840$ 

 $B_LV7_freq = 0$ 

 $B\_LV7\_volt = 840$ 

 $B_LV8\_freq = 0$ 

 $B\_LV8\_volt = 840$ 

### 32.2. GPU DVFS

## $32.2.1. \quad [gpu\_dvfs\_table]$

| 配置项            | 配置项含义                      |
|----------------|----------------------------|
| G_normal_level | gpu 正常运行的等级.               |
| G_dvfs_enable  | gpu dvfs 使能. 1: 使能, 0: 不使能 |
| G_LV_count     | gpu VF 表的等级数               |
| G_LV0_freq     | 第一级 VF 表的频率 (最低)           |
| G_LV0_volt     | 第一级 VF 表的电压                |
| G_LV1_freq     | 第二级 VF 表的频率                |
| G_LV1_volt     | 第二级 VF 表的电压                |
| G_LV2_freq     | 第三级 VF 表的频率                |
| G_LV2volt      | 第三级 VF 表的电压                |
| G_LV3_freq     | 第四级 VF 表的频率                |
| G_LV3_volt     | 第四级 VF 表的电压                |
| G_LV4_freq     | 第五级 VF 表的频率                |
| G_LV4_volt     | 第五级 VF 表的电压                |
| G_LV5_freq     | 第六级 VF 表的频率                |
| G_LV5_volt     | 第六级 VF 表的电压                |
| G_LV6_freq     | 第七级 VF 表的频率                |
| G_LV6_volt     | 第七级 VF 表的电压                |
| G_LV7_freq     | 第八级 VF 表的频率                |
| G_LV7_volt     | 第八级 VF 表的电压                |
| G_LV8_freq     | 第九级 VF 表的频率 (最高)           |
| G_LV8_volt     | 第九级 VF 表的电压                |

android 层根据场景来指定当前设置的等级.

### 配置示例:

[gpu\_dvfs\_table]

 $G\_normal\_level = 4$ 

 $G_dvfs_enable = 1$ 

 $G_LV_count = 9$ 

 $G_LV0_freq = 252$ 

 $G_LV0_volt = 700$ 

 $G_LV1\_freq = 288$ 

 $G_LV1_volt = 740$ 

 $G_LV2_freq = 456$ 

 $G\_LV2\_volt = 800$ 

 $G_LV3_freq = 504$ 

 $G_LV3_volt = 840$ 

 $G_LV4_freq = 624$ 

 $G_LV4_volt = 900$ 

 $G_LV5_freq = 648$ 

 $G_LV5_volt = 940$ 

 $G_LV6_freq = 672$ 

 $G_LV6_volt = 1000$ 

 $G_LV7_freq = 696$ 

 $G_LV7_volt = 1040$ 

 $G_LV8\_freq = 744$ 

 $G_LV8_volt = 1100$ 

### 32.3. DRAM DVFS

### 32.3.1. [dram\_scene\_table]

| 配置项                  | 配置项含义          |
|----------------------|----------------|
| LV_count = 2         | LV 数目          |
| LV1_scene = 1        | 第一个场景的编号       |
| LV1_freq = 456000000 | 第一个场景的 dram 频率 |
| LV2_scene = 2        | 第二个场景的编号       |
| LV2_freq = 384000000 | 第二个场景的 dram 频率 |

# 

 $LV1\_scene = 1$ 

 $LV1\_freq = 456000000$ 

 $LV2\_scene = 2$ 

 $LV2\_freq = 384000000$ 

注: A83T android 层定义的四个场景如下:

| 场景名称              | DRAM 频率   |  |
|-------------------|-----------|--|
| 黑屏音乐              | 168M (最小) |  |
| 本地视频播放            | 384M      |  |
| 主界面               | 456M      |  |
| 旋转/退出 (normal 场景) | 732M (最大) |  |

在不同的场景下, android 层通过 sysfs 节点, 通知 dram dvfs 驱动去设置 dram 频率.

# 33. Pinctrl 测试

| 配置项          | 配置项含义                        |
|--------------|------------------------------|
| Vdevice_used | 作为 pinctrl test 的虚拟设备,为 1 使能 |
| Vdevice_0    | 虚拟设备的 gpio0 脚设置              |
| Vdevice_1    | 虚拟设备的 gpio1 脚设置              |

#### 配置举例:

[Vdevice]

 $Vdevice\_used = 0$ 

Vdevice\_0 = port:PH10<5><1><2><default> Vdevice\_1 = port:PH11<5><1><2><default>

# 34. [s\_uart0]

| 配置项         | 配置项含义                        |
|-------------|------------------------------|
| s_uart_used | 使能 cpus 的 uart,为 1 使能,为 0 关闭 |
| s_uart_tx   | Uart 口发送引脚配置                 |
| s_uart_rx   | Uart 接收引脚配置                  |

#### 配置举例:

[s\_uart0]

s\_uart\_used = 1

 $s\_uart\_tx$  = port:PL02<2><default><default><default><s\\_uart\\_rx = port:PL03<2><default><default><default><

## 35. [s\_rsb0]

| 配置项        | 配置项含义                           |
|------------|---------------------------------|
| s_rsb_used | 使能 cpus 使用 rsb 总线,为 1 使能,为 0 关闭 |
| s_rsb_sck  | Rsb 时钟引脚设置                      |
| s_rsb_sda  | Rsb 数据引脚设置                      |

#### 配置举例:

[s\_rsb0]

 $s_rsb_used = 1$ 

s\_rsb\_sck = port:PL00<2><1><2><default> s\_rsb\_sda = port:PL01<2><1><2><default>

## 36. [s\_jtag0]

| 配置项            | 配置项含义                   |
|----------------|-------------------------|
| s_jtag_used=xx | JTAG 使能                 |
| s_jtag_tms=xx  | 测试模式选择输入(TMS) 的 GPIO 配置 |
| s_jtag_tck=xx  | 测试时钟输入(TMS) 的 GPIO 配置   |
| s_jtag_tdo=xx  | 测试数据输出(TDO) 的 GPIO 配置   |
| s_jtag_tdi=xx  | 测试数据输入(TDI)的 GPIO 配置    |

### 配置举例:

[s\_jtag0]

 $s_{jtag}used = 0$ 

 s\_jtag\_tms
 = port:PL04<2><1><2><default>

 s\_jtag\_tck
 = port:PL05<2><1><2><default>

 s\_jtag\_tdo
 = port:PL06<2><1><2><default>

 s\_jtag\_tdi
 = port:PL07<2><1><2><default>

## **37.** [s\_powchk]

| 配置项                       | 配置项含义                          |
|---------------------------|--------------------------------|
| s_powchk_used= 0x80000000 | 是否打开这个功能,如果 bit31 为 1 则使用这个    |
|                           | 功能, bit0 和 bit1 为 1 分别代表当电源状态和 |
|                           | 功耗异常时唤醒系统                      |
| s_power_reg=0x02309621    | 电源状态的描述,一般为 1 代表,这里电在休         |
|                           | 眠时是打开的状态, bit 的具体定义要看          |
|                           | aw_pm.h 里的定义                   |

| s_system_power=50 | 是休眠是允许的最大功耗是 50mW, 如果大于 |
|-------------------|-------------------------|
|                   | 此数,代表异常                 |

配置举例:

;-----

;s\_powchk cpus power check

;s\_powchk\_used --power check whether used for arisc in super standby

; bit31:enable power updat, bit1:wakeup when power state exception

; bit0:wakeup when power consumption exception

;s\_power\_reg the expected regs stand for power on/off state

;s\_system\_power the limit maxmum power consumption when super standby (unit: mw)

[s\_powchk]

s\_powchk\_used = 0x80000000 s\_power\_reg = 0x00880010

 $s_system_power = 50$ 

### 38. Declaration

This document is the original work and copyrighted property of Allwinner Technology ("Allwinner"). Reproduction in whole or in part must obtain the written approval of Allwinner and give clear acknowledgement to the copyright owner.

The information furnished by Allwinner is believed to be accurate and reliable. Allwinner reserves the right to make changes in circuit design and/or specifications at any time without notice. Allwinner does not assume any responsibility and liability for its use. Nor for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Allwinner. This datasheet neither states nor implies warranty of any kind, including fitness for any particular application.