Graph similarity

Laura Zager and George Verghese EECS, MIT

March 2005

Words you won't hear today

- impedance matching
- thyristor
- oxide layer
- VARs

Some quick definitions

$$G(V,E) \leftarrow$$
 a graph **G**

- *V* — the set of *vertices* or *nodes*
- $E \subset V \times V$ the set of edges can be directed or undirected.

The Königsberg bridge problem (18th c.)

The Four Color Theorem (1976)

Graph theory: some perspective

The Königsberg bridge problem (18th c.)

The Four Color Theorem (1976)

Erdös and Rényi random graph models (1959)

Graph theory: some perspective

The Königsberg bridge problem (18th c.)

The Four Color Theorem (1976)

Erdös and Rényi random graph models (1959)

present and future:

graphs that arise in the natural world

Applications

- Comparing biological networks
 - Deriving phylogenetic trees from metabolic pathway data [Heymans, Singh, 2003].
- Social network mapping
 - Small world phenomena [Milgram, 1967; Watts, 1999].

- Web searching
 - Improving searching results using WWW structure [Kleinberg, 1999].
- Chemical structure matching
 - Finding similar structures in a chemical database [Hattori et al., 2003].

Applications

- Comparing biological networks
 - Deriving phylogenetic trees from metabolic pathway data [Heymans, Singh, 2003].
- Social network mapping
 - Small world phenomena [Milgram, 1967; Watts, 1999].

- Web searching
 - Improving searching results using WWW structure [Kleinberg, 1999].
- Chemical structure matching
 - Finding similar structures in a chemical database [Hattori et al., 2003].

one common thread: similarity

 Isomorphism – identifying a bijection between the nodes of two graphs which preserves (directed) adjacency.

- Corneil & Gotlieb, Journal of the ACM, 1970.
- Pelillo, Neural Computation, 1999.
- Ullman, Journal of the Assoc. of Computing Machinery, 1976.

 Isomorphism – identifying a bijection between the nodes of two graphs which preserves (directed) adjacency.

- Corneil & Gotlieb, Journal of the ACM, 1970.
- Pelillo, Neural Computation, 1999.
- Ullman, Journal of the Assoc. of Computing Machinery, 1976.

isomorphism

 Edit distance – given a cost function on edit operations (e.g. addition/deletion of nodes and edges), determine the minimum cost transformation from one graph to another.

- Bunke, IEEE Trans. Pattern Analysis and Machine Int., 1999.
- Messmer & Bunke, IEEE Trans. Pattern Analysis and Machine Int., 1998.

- Maximum common subgraph identifying the `largest' isomorphic subgraphs of two graphs.
- Minimum common supergraph identifying the `smallest' graph that contains both graphs.

sub

- Fernandez & Valiente, Pattern Recognition Letters, 2001.
- Bunke, Jiang & Candel, Computing, 2000.

 Statistical methods – assessing aggregate measures of graph structure (e.g. degree distribution, diameter, betweenness measures).

- Albert, Barabasi, Reviews of Modern Physics, 2002
- Dill, Kumar, et al., ACM Transactions on Internet Technology, 2002.
- Watts, Small Worlds, 1999.

Iterative methods:

Two graph elements (e.g., edges or nodes) are similar if their neighborhoods are similar.

- Blondel, Van Dooren, et al., SIAM Review, 2004.
- Jeh & Widom, 8th Intl. Conf. on Knowledge Discovery and Data Mining, 2002.
- Melnik, Garcia-Molina, 18th Intl. Conf. on Data Engineering, 2002.
- Heymans & Singh, Bioinformatics, 2003.

- Motivated by demands of web searching
 - Step 1: Use text-based search methods to identify a candidate graph containing relevant websites and their neighbors.

Kleinberg, J.M. Authoritative sources in a hyperlinked environment. *Journal of the ACM*. 1999

- Relevant search results might be:
 - Hubs pages which point to many good authorities
 - Authorities pages which are pointed to by many good hubs

 Step 2: Compute hub and authority scores for every node in the candidate graph.

- Denote:
 - $x_{1p}(k)$ = hub score of node p at iteration k
 - $x_{2p}(k)$ = authority score of node p at iteration k
- Update rule:

$$x_{2p}(k+1) = \sum_{q:(q,p)\in E} x_{1q}(k)$$

i.e. the sum of hub scores of nodes that point to node p

$$x_{1p}(k+1) = \sum_{q:(p,q)\in E} x_{2q}(k)$$

i.e. the sum of authority scores of nodes that are pointed to by node p

• Normalize the scores so that $\sum_{p} x_{ip} = 1$ and repeat.

- Denote:
 - $x_{1p}(k)$ = hub score of node p at iteration k
 - $x_{2p}(k)$ = authority score of node p at iteration k
- Update rule:

$$x_{2p}(k+1) = \sum_{q:(q,p)\in E} x_{1q}(k)$$

i.e. the sum of hub scores of nodes that point to node p

$$x_{1p}(k+1) = \sum_{q:(p,q)\in E} x_{2q}(k)$$

i.e. the sum of authority scores of nodes that are pointed to by node p

• Normalize the scores so that $\sum_{p} x_{ip} = 1$ and repeat.

Denote:

- $x_{1p}(k)$ = hub score of node p at iteration k
- $x_{2p}(k)$ = authority score of node p at iteration k

Update rule:

- Stack the scores $x_{1p}(k)$ into a vector $[x_1]_k$, then stack $[x_1]_k$ and $[x_2]_k$.
- Let B be the *node-node adjacency matrix* of the candidate graph. Then:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{k+1} = \begin{bmatrix} 0 & B \\ B' & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_k$$

nodes	x ₁ hub scores	x ₂ authority scores		
1	0.374	0		
2	0.242	0		
3	0.467	0		
4	0	0.365		
5	0	0.467		
6	0	0.365		
7 0		0.308		

• for a good read, see "The Ongoing Search for Efficient Web Search Algorithms," SIAM News, November 2004.

Blondel, Van Dooren, et al., 2004*

 Views Kleinberg's iteration as a comparison between the web graph and a hub-authority graph:

 Observe that the matrix form of Kleinberg's update can be written as follows:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{k+1} = \begin{bmatrix} 0 & B \\ B' & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_k = (A \otimes B + A' \otimes B') \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_k$$

Is this generalizable to any two graphs G_A and G_B?

*Blondel, V., Gajardo, A., Heymans, M., Senellart, P., Van Dooren, P. A measure of similarity between graph vertices: applications to synonym extraction and web searching. *SIAM Review*, v. 46(4), 647-666. 2004.

$$x_{1p}(k+1) = \sum_{q:(p,q)\in E} x_{2q}(k)$$

$$x_{2p}(k+1) = \sum_{q:(q,p)\in E} x_{1q}(k) + \sum_{q:(p,q)\in E} x_{3q}(k)$$

$$x_{3p}(k+1) = \sum_{q:(q,p)\in E} x_{2q}(k)$$

$$x_{1p}(k+1) = \sum_{q:(p,q)\in E} x_{2q}(k)$$

$$x_{2p}(k+1) = \sum_{q:(q,p)\in E} x_{1q}(k) + \sum_{q:(p,q)\in E} x_{3q}(k)$$

$$x_{3p}(k+1) = \sum_{q:(q,p)\in E} x_{2q}(k)$$

$$x_{1p}(k+1) = \sum_{q:(p,q)\in E} x_{2q}(k)$$

$$x_{2p}(k+1) = \sum_{q:(q,p)\in E} x_{1q}(k) + \sum_{q:(p,q)\in E} x_{3q}(k)$$

$$x_{3p}(k+1) = \sum_{q:(q,p)\in E} x_{2q}(k)$$

$$x_{1p}(k+1) = \sum_{q:(p,q)\in E} x_{2q}(k)$$

$$x_{2p}(k+1) = \sum_{q:(q,p)\in E} x_{1q}(k) + \sum_{q:(p,q)\in E} x_{3q}(k)$$

$$x_{3p}(k+1) = \sum_{q:(q,p)\in E} x_{2q}(k)$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{k+1} = \begin{bmatrix} 0 & B & 0 \\ B' & 0 & B \\ 0 & B' & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_k = \underbrace{(A \otimes B + A' \otimes B')}_{k} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_k$$

(use this construction for automatic synonym extraction)

Blondel, Van Dooren, et al., 2004

• In general, the nodes of two graphs G_A and G_B can be compared via the following update:

$$\overline{x}_{k+1} = (\underline{A \otimes B + A' \otimes B'})\overline{x}_k$$

Ex.

similarity scores

nodes 1		2	3	
1	0.443	0.104	0	
 2 0.280 3 0.086 4 0.222 5 0 		0.396	0.086	
		0.396	0.280 0.222	
		0.049		
		0.104	0.443	

- Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores.
- Couple the definitions in the following manner:
 - x_{ij} = similarity between node *i* in G_B and node *j* in G_A
 - = sum of pairwise similarities between adjacent edges
 - y_{ii} = similarity between edge *i* in G_B and edge *j* in G_A .
 - = sum of similarities of source and terminal nodes

- Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores.
- Couple the definitions in the following manner:
- = similarity between node i in G_B and node j in G_A
- = sum of pairwise similarities between adjacent edges
- y_{ij} = similarity between edge *i* in G_B and edge *j* in G_A .
 - = sum of similarities of source and terminal nodes

- Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores.
- Couple the definitions in the following manner:
 - x_{ij} = similarity between node *i* in G_B and node *j* in G_A
 - = sum of pairwise similarities between adjacent edges
 - y_{ij} = similarity between edge *i* in G_B and edge *j* in G_A .
 - = sum of similarities of source and terminal nodes

Coupled edge and node scoring

- Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores.
- Couple the definitions in the following manner:
 - x_{ij} = similarity between node *i* in G_B and node *j* in G_A
 - = sum of pairwise similarities between adjacent edges
 - y_{ii} = similarity between edge *i* in G_B and edge *j* in G_A .
 - = sum of similarities of source and terminal nodes

$$\overline{X}_{k+1} = \left[A_S \otimes B_S + A_T \otimes B_T \right] \overline{y}_k$$

$$\overline{y}_{k+1} = \left[A_S' \otimes B_S' + A_T' \otimes B_T'\right] \overline{x}_k$$

$$\begin{bmatrix} A_S \end{bmatrix}_{ij} = \begin{cases} 1 & s(j) = i \\ 0 & else \end{cases} \qquad \begin{bmatrix} A_T \end{bmatrix}_{ij} = \begin{cases} 1 & t(j) = i \\ 0 & else \end{cases}$$

Example

Blondel, Van Dooren, et al. similarity scores

nodes	1	2	3	
1	0.443	0.104	0	
2	0.280	0.396	0.086	
3	0.086	0.396	0.280	
4 0.222		0.049	0.222	
5 0		0.104	0.443	

Coupled model similarity scores

nodes	1	2	3	
1	0.324	0.054		
2 0.177		0.587	0.018	
3	0.018	0.587	0.177	
4 0.127		0.010	0.127	
5	0	0.054	0.324	

- Assign a correspondence between nodes and/or edges of each graph to maximize some performance criteria.
 - The Approach: apply Hungarian algorithm to node similarity matrix to maximize the sum of matched scores.

1	3	7		1	3	7
3	2	4		3	2	4
4	8	3		4	8	3

- Task: subgraph matching
 - Generate a random graph, G.
 - Select a subgraph, S.
 - Compute the node similarity matrices between G and S.
 - Apply the Hungarian algorithm to `best' match the nodes of S to those in G by finding a matching the <u>maximizes the sum of</u> matched scores.
 - Record successes for nodes that are matched with their original identifier.

<u>S</u>

- Task: subgraph matching
 - Generate a random graph, G
 - Select a subgraph, S
 - Compute the node similarity matrices between G and S
 - Apply the Hungarian algorithm to `best' match the nodes of S to those in G by finding a matching the maximizes the sum of matched weights.
 - Record successes for nodes that are matched with their original identifier

Using local edge similarity to improve scores:

$$x_{aa}^{,*} = x_{aa}^{,} + m_{aa}^{,}$$

Exploring the impact of node labeling:

Current/future work

- How does graph structure (e.g., cycles, paths, completeness) impact similarity scores?
- What can be inferred about a pair of graphs from a similarity measurement?
- What kinds of tasks is this measure appropriate for?

Acknowledgments

- George Verghese, MIT
- Sandip Roy, WSU
- Paul Van Dooren, Université catholique de Louvain

Work supported by a NSF Graduate Research Fellowship.