福州大学 2010~2011 学年第一学期考试 A 卷

考生姓名 101/20026

题号	-	=	Ξ	四	总分	累分人
题分	18	22	40	. 20	100	签名
得分				:		

考生注意事项:1、本试卷共_6_页,请查看试卷中是否有缺页。

2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、选择题(每小题 3 分,共 18 分)

नि <u>ग</u> े	评卷人

1、若x=12.30 是经过四舍五入得到的近似数,则它有几位有效数字2

为互异结点, /,(x) 为拉格朗日插值基函数, 则

$$\sum_{i=0}^{4} \frac{(x-x_i)l_i(x)}{2}$$

$$f(x)=x^{1}<\varphi$$

3、设 $f(x) = 3x^5 + 4x^4 + x^3 + 1$ 和节意 $x_k = k/2, k = 0.1$ · 则差商 $f(x_0, x_1)$ (a) 4 (b) 2 (c) 3 (d) 1

组
$$\begin{cases} x_1 + 3 \alpha x_2 = 4 \\ 2 \alpha x_1 + x_2 = -3 \end{cases}$$
,其中 a 为实数.

方法收敛的充要条件是a满足以下条件:

(a)
$$|a| < \frac{1}{6}$$

(a)
$$|a| < \frac{1}{6}$$
 (b) $|a| > \frac{2}{3}$

$$\left(c\right)$$
 jaje $\frac{\sqrt{6}}{6}$

$$y=0$$
 $y=0$ $y=$

A=
$$\begin{pmatrix} 1 & 7 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 2 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 \\ 0 & 2 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 0 \\ 0 & -3 & 2 \\ 0 & -3 & 2 \\ 0 & -3 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 0 \\ 0 & -3 & 2 \\ 0 & -3 & 2 \\ 0 & -3 & 2 \end{pmatrix}$

3、(10分)用最小二乘注求拟合函数 y = a + bx + cx * 使其与下列数据相拟合

Ĺ	х,	-1	0	1	2			1
	у,	1	2	2	1:	22		
		(olx)=1		() = X		$\frac{1}{(x)} = x^{22}$	= XV	= 6
	(0	00,00)	= = = =	=4				
	(,C	$p_{Q_l}(Q_l) =$	三氢化	= 2	[(o,y)=	= 3 yr =	U
	(((17y) =	= = X	yi=3	- /		ZX Xi	
	(4	D, , Oz) =	支が	' = S	į	$(Q_2, (Q_2), =$	3 X; =	18
	$(\varphi_z$	2/f)=	3 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	hi=.7.			,	ko u
		[Vo;	0	100,0		00,00)	[X]	(60,4)
				10,01		(((() () ()	\	= (4,19
		10,	1001	U2141) (P2/P2)/	/ (x >/	(6,4)

$$\begin{pmatrix}
4 & 2 & 6 \\
2 & 6 & 8
\end{pmatrix}
\begin{pmatrix}
8_1 \\
8_2 \\
6 & 8
\end{pmatrix}
=
\begin{pmatrix}
6 \\
8_1 \\
8_2
\end{pmatrix}
=
\begin{pmatrix}
6 \\
7
\end{pmatrix}
=
\begin{pmatrix}
7 \\
8_1 \\
8_2
\end{pmatrix}
=
\begin{pmatrix}
7 \\
7
\end{pmatrix}
=
\begin{pmatrix}
7 \\
8_1 \\
8_2
\end{pmatrix}
=
\begin{pmatrix}
7 \\
7
\end{pmatrix}
=
\begin{pmatrix}
7 \\
8 \\
8
\end{pmatrix}
=
\begin{pmatrix}
7 \\
8 \\
8
\end{pmatrix}
=
\begin{pmatrix}
8 \\
18
\end{pmatrix}
=
\begin{pmatrix}
8 \\$$

0 084 0.2 B7498 取步长 1=0.2 (小数点后保留 4 位有效数字) $(y_p = y_n + h \cdot f(x_n \cdot y_n) = y_n + a \ge x(x_n - y_n) = a \ge x_n + a y_n$ $y_c = y_n + h \cdot f(x_n \cdot t_1, y_p) = y_n + a \ge x(x_n \cdot t_1 - a \ge x_n - a \ge x_n - a \ge y_n)$ $= y_n + a \times (a \times x_n - a \times y_n + a \times x_n)$ [jn+! = = [jp+ye) $= \alpha/6x_n + \alpha 84y_n + \alpha 04$ = = (azxntusynt albxntasyntaoy) = 0.18xn + 0.824n+002 $(8\,\%)$ 设 $R = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ 试用 蒙斯霍尔德变换 对 矩阵 A 进行 QR 分解,其中 a;=(0,2,0)T Q 为正交矩阵, R 为上三角阵 (8分) $||f||^{2} = |f||^{2}$ $\begin{cases} |f| = sgn(0) \cdot ||a_{1}||_{2} = -2 \\ |f| = o(\sigma_{1} + a_{11}) = 4 \end{cases}$ $U_1 = a_1 + \sigma_1 e_1 = (-2, 2, 0)$ $H_1 = 1 - \beta_1^{-1} U_1 U_1^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad H_1 A = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix}$ (*,0) T. S Tz=Sgn(2) 1/02/1 = 152 B=02 (02 + A24) = \$ 8 ttz=az+5ze1=(1+5-2) 772=1-851. Uz.UzT H2HA= HIA=R $Q = (H_i)^T = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

2=2

y(xn-h) =-y(xn)+h.y((xn) = 1/2 y"

3、(8 分) 用二步法 $y_{n+1} = y_n + \frac{h}{2} [\alpha f(x_n, y_n) + \beta f(x_{n-1}, y_{n-1})]$ 求解一阶常微分方程

初值问题 $\begin{cases} \nu' = f(x,y) \\ \nu(x_0) = y_0 \end{cases}$ 问:如何选择参数 α,β 的值,才使该方法的阶数尽可能地

高?写出此时的局部截断误差主项,并说明该方法是几阶的。

 $7n+1 = y(x_{n}+h) - y_{n+1}$ $= y(x_{n}) + h \cdot y(x_{n}) + \frac{h^{2}}{2} \cdot y''(x_{n}) + \frac{h^{3}}{3!} \cdot y'''(x_{n}) + \frac{h^{4}}{4!} \cdot y''(x_{n}) + \frac{h^{3}}{4!} \cdot y''(x_{n})$

 $= \frac{(h-\frac{h}{2}d)y'(x_n)+}{(1-\frac{h}{2}-\frac{h}{2})hy'(x_n)+(1+\frac{h}{\beta})-\frac{h^2}{2}y''(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}{+(\frac{1}{2}d-\frac{h}{2})y''(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+}{(1+\frac{h}{\beta})-\frac{h^2}{2}y'(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}{+(\frac{1}{6}-\frac{h}{2})y''(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+}{(1+\frac{h}{\beta})-\frac{h^2}{2}y'(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}{+(\frac{1}{6}-\frac{h}{4})y'(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+}{(1+\frac{h}{\beta})-\frac{h^2}{2}y'(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}{+(\frac{1}{6}-\frac{h}{4})y'(x_n)+(\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+(h-\frac{h}{2})hy'(x_n)+(h-\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}{+(\frac{1}{6}-\frac{h}{4})h^3y''(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+(h-\frac{h}{6}-\frac{h}{4})hy'(x_n)+(h-\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}{+(\frac{1}{6}-\frac{h}{4})h^3y''(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+(h-\frac{h}{6}-\frac{h}{4})hy'(x_n)+(h-\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}{+(h-\frac{h}{6}-\frac{h}{4})h^3y''(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+(h-\frac{h}{6}-\frac{h}{4})hy'(x_n)+(h-\frac{h}{6}-\frac{h}{4})hy'(x_n)}{+(h-\frac{h}{6}-\frac{h}{4})hy'(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+(h-\frac{h}{6}-\frac{h}{4})hy'(x_n)}{+(h-\frac{h}{6}-\frac{h}{4})hy'(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+(h-\frac{h}{6}-\frac{h}{6})hy'(x_n)}{+(h-\frac{h}{6}-\frac{h}{6})hy'(x_n)}$ $= \frac{(h-\frac{h}{2}d)y'(x_n)+(h-\frac{h}{6}-\frac{h}{6})hy'(x_n)}{+(h-\frac{h}{6}-\frac{h}{6})hy'(x_n)}$

 $\beta = -1, d = 1$

Tn+1 - 适的。(M) O(M) 六例为区是二阶的。

(Infl)a

(m+1) = (m+1) = (m+1)

1) m (m+1/m2) \times^{m-3} (c(x) + (m+1) m (m+1) \times^{m-2} (p(x) + (m+1) m (m+1) \times^{m-2} (p(x) + (m+1) m \times^{m-2} (p(x)) = (m+1) m (m-1) \times^{m-2}