

Sistemas Digitais (SD)

Síntese de Circuitos Sequenciais: Projecto utilizando contadores

Aula Anterior

Na aula anterior:

- ► Especificação e projecto de circuitos sequenciais síncronos:
 - Minimização do número de estados
- ► Exemplo (Mealy)

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

J

Sumário

Tema da aula de hoje:

- ► Exemplo (Moore)
- Projecto de circuitos sequenciais baseados em contadores

Bibliografia:

- M. Mano, C. Kime: Secções 5.4 a 5.7
- G. Arroz, J. Monteiro, A. Oliveira: Secção 7.1 a 7.5

Exemplo: Projecto de um Contador Ascendente/Descendente
 Síncrono de Módulo 5 (PADM5)

Diagrama de Estados

Tabela de Transição de Estados

Estad	lo Droce	onto (n)		Es	stado Se	guinte (r	n+1)	
Estau	lo Prese	ente (n)		M=0			M=1	
Q2	Q1	Q0	Q2	Q1	Q0	Q2	Q1	Q0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	0	1	1

Contadores PADM5 (cont)

Síntese das Funções de Entrada do FF0

Estac	lo Prese	onto (n)			Q(n+1) = D(n)		
Estac	io riese	ine (II)		M=0			M=1	
Q2	Q1	Q0	D2	D1	D0	D2	D1	D0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	0	1	1

$$D_0 = M Q_2 Q_1 + \overline{Q}_0 + \overline{M} \overline{Q}_2$$

Contadores PADM5 (cont)

Síntese das Funções de Entrada do FF1

Ectod	lo Prese	onto (n)			Q(n+1) = D(n)		
LSiau	io Fiese	ine (II)		M=0			M=1	
Q2	Q1	Q0	D2	D1	D0	D2	D1	D0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	0	1	1

$$D_1 = \overline{M} \overline{Q}_1 \overline{Q}_0 + M \overline{Q}_1 Q_0 + \overline{M} Q_1 Q_0 + M Q_2 Q_1$$

Contadores PADM5 (cont)

Síntese das Funções de Entrada do FF2

Ectoc	lo Prese	nto (n)			Q(n+1) = D(n)		
Estac	io riese	inte (II)		M=0			M=1	
Q2	Q1	Q0	D2	D1	D0	D2	D1	D0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	0	1	1

$$D_2 = \left(\overline{M} + \overline{Q}_2 + \overline{Q}_1 + \overline{Q}_0\right) \cdot \left(M + Q_1 + Q_0\right)$$

TÉCNICO LISBOA Síntese de Circuitos Síncronos

Contadores PADM5 (cont)

Diagrama Lógico

Contadores PADM5 (cont)

▶ O que acontece se a máquina transitar para um estado fora da gama prevista (lock-out)?

Diagrama de Estados

Lock-Out

"LOCK-OUT" (revisão)

- ► Estados de LOCK-OUT: no caso de não serem utilizados todos os estados disponíveis, pode ocorrer a situação do contador se encontrar num estado não desejado (fora da sequência de contagem) devido a ruído no circuito ou à não imposição de estado inicial.
- ▶ Nessa situação ou o contador entra na sequência de contagem pretendida ou fica indefinidamente no exterior (Lock-Out).

Exemplo de Lock-Out (1)

Exemplo de Lock-Out (2)

Lock-Out

"LOCK-OUT" (revisão)

- ➤ Solução 1: impor a transição de qualquer estado externo para um estado da sequência de contagem
- ► Solução 2: considerar uma entrada extra, de inicialização, que coloque o sistema num dos estados de contagem pretendido.

Exemplo de Lock-Out (1)

Exemplo de Lock-Out (2)

Contadores PADM5 (cont)

▶ O que acontece se a máquina transitar para um estado fora da gama prevista (lock-out)?

Diagrama de Estados

Contadores PADM5 (cont)

O que acontece se a máquina transitar para um estado fora da gama prevista (lock-out)?

Funções de Excitação dos FFs

$$\begin{split} D_2 = & \left(\overline{M} + \overline{Q}_2 + \overline{Q}_1 + \overline{Q}_0 \right) \cdot \left(M + Q_1 + Q_0 \right) \\ D_1 = & \overline{M} \ \overline{Q}_1 \ \overline{Q}_0 + M \ \overline{Q}_1 \ Q_0 + \overline{M} \ Q_1 \ Q_0 + M \ Q_2 \ Q_1 \\ D_0 = & M \ Q_2 \ Q_1 + \overline{Q}_0 + \overline{M} \ \overline{Q}_2 \end{split}$$

Estados fora da gama prevista

Tabela de Transição de Estados

	Estad	0			Q(n+1) = D(n)	
Pr	esente	e (n)		M=0			M=1	
Q2	Q1	Q0	D2	D1	D0	D2	D1	D0
0	0	0	0	1	1	1	0	1
0	0	1	1	0	1	1	1	0
0	1	0	1	0	1	1	0	1
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	0	1	1

Contadores PADM5 (cont)

▶ O que acontece se a máquina transitar para um estado fora da gama prevista (lock-out)?

Os estados, não considerados para efeito da contagem (S0,S1 e S2), permitem passar a máquina para a sequência de contagem pretendida ao fim de um ciclo de relógio.

Contadores PADM5 (cont)

▶ Projecto com Flip-Flops JK

Diagrama de Estados

Tabela de Transição de Estados

Estad	lo Drocc	onto (n)		E:	stado Se	guinte (r	ı+1)	
Estau	lo Prese	ente (n)		M=0			M=1	
Q2	Q1	Q0	Q2	Q1	Q0	Q2	Q1	Q0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	0	1	1

Contadores PADM5 (cont)

▶ Projecto com Flip-Flops JK

Tabela de Excitação do FF JK

$$\begin{array}{c|cccc} Q_n \rightarrow Q_{n+1} & J & K \\ \hline 0 \rightarrow 0 & 0 & X \\ 0 \rightarrow 1 & 1 & X \\ 1 \rightarrow 0 & X & 1 \\ 1 \rightarrow 1 & X & 0 \\ \end{array}$$

Tabela de Transição de Estados

	Е	stad	0				Estado Seguinte (n+1)														
Р	res	sente	e (n)					M=0									M=1				
Q	2	Q1	Q0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
C)	1	1	1	1	1	1	Χ	Х	0	Χ	0	1	0	0	1	Χ	Х	1	Χ	1
1		0	0	0	1	1	X	1	1	Χ	1	Χ	1	0	1	Χ	0	0	X	1	X
1		0	1	1	0	0	X	0	0	Χ	X	1	1	1	0	Χ	0	1	Χ	Χ	1
1		1	0	1	0	1	Χ	0	Χ	1	1	Χ	1	1	1	Χ	0	Χ	0	1	X
1		1	1	1	1	0	X	0	X	0	X	1	0	1	1	X	1	X	0	Χ	0

Contadores PADM5 (cont)

▶ Síntese das Funções de Entrada do FF0: J0 e K0

E	Estad	lo								Estac	do Se	guinte	e (n+1)						
Pre	esente	e (n)					M=0									M=1				
Q2	Q1	Q0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	1	1	1	1	1	1	Χ	Χ	0	X	0	1	0	0	1	Χ	Χ	1	X	1
1	0	0	0	1	1	Χ	1	1	X	1	X	1	0	1	Χ	0	0	X	1	Х
1	0	1	1	0	0	Χ	0	0	Χ	Χ	1	1	1	0	Χ	0	1	Χ	Χ	1
1	1	0	1	0	1	Χ	0	Χ	1	1	X	1	1	1	Χ	0	Χ	0	1	X
1	1	1	1	1	0	X	0	X	0	X	1	0	1	1	X	1	X	0	X	0

$$J_0 = 1$$

$$K_0 = \overline{Q}_1 + \overline{M} Q_2 + M \overline{Q}_2$$

Contadores PADM5 (cont)

Síntese das Funções de Entrada do FF1: J1 e K1

E	Estad	o								Estad	do Se	guinte	e (n+1)						
Pre	sente	e (n)					M=0									M=1				
Q2	Q1	Q0	Q2									Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	1	1	1	1	1	1	Χ	X	0	Х	0	1	0	0	1	Χ	X	1	Х	1
1	0	0	0	1	1	X	1	1	X	1	Χ	1	0	1	Χ	0	0	X	1	X
1	0	1	1	0	0	Χ	0	0	Х	Χ	1	1	1	0	Χ	0	1	Х	Χ	1
1	1	0	1	0	1	Χ	0	Χ	1	1	Χ	1	1	1	Χ	0	Χ	0	1	Χ
1	1	1	1	1	0	X	0	Х	0	Х	1	0	1	1	X	1	Χ	0	Χ	0

$$J_1 = \overline{M} \ \overline{Q}_0 + MQ_0$$
$$K_1 = \overline{M} \ \overline{Q}_0 + M \ \overline{Q}_2$$

Contadores PADM5 (cont)

▶ Síntese das Funções de Entrada do FF2: J2 e K2

	Estac	lo								Estad	do Se	Seguinte (n+1)									
Pr	esent	e (n)					M=C)								M=1					
Q2	Q1	Q0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0	
0	1	1	1	1	1	1	X	Х	0	Χ	0	1	0	0	1	X	Χ	1	Χ	1	
1	0	0	0	1	1	Χ	1	1	Χ	1	X	1	0	1	Χ	0	0	X	1	Χ	
1	0	1	1	0	0	Χ	0	0	Χ	Χ	1	1	1	0	Χ	0	1	Χ	Χ	1	
1	1	0	1	0	1	Χ	0	Χ	1	1	Χ	1	1	1	Χ	0	Χ	0	1	X	
1	1	1	1	1	0	X	0	X	0	X	1	0	1	1	X	1	X	0	X	0	

$$J_2 = 1$$

$$K_2 = \overline{M} \overline{Q}_1 \overline{Q}_0 + M Q_1 Q_0$$

CONTROLADORES BASEADOS EM CONTADORES

Exemplo: sistema de controlo de passagem de nível

▶ Premissas:

- Via férrea única
- Os automóveis não devem atravessar a linha enquanto o comboio se aproxima
- Dois sensores (S1 e S2), activados quando o comboio passa nas respectivas posições
- Sensores suficientemente afastados da passagem de nível

- ► Funcionamento:
 - Semáforos verdes, até que um comboio se aproxima, activando um dos sensores;
 - Quando é detectada a aproximação de um comboio, os semáforos devem passar para amarelo e manter-se em amarelo durante um tempo pré-determinado, após o qual mudam para vermelho;
 - Os semáforos devem manter-se vermelhos até que o comboio active o sensor do lado oposto àquele que activou quando se aproximou, mudando novamente para verde quando isso se verificar.

- ► Funcionamento (cont.):
 - Para controlar o tempo que os semáforos devem ficar amarelos, o controlador tem acesso a um contador, que aceita uma entrada de Reset (ArranqueTemp) e que gera na sua saída um valor 1, quando passou o tempo desejado para a duração do sinal amarelo;

- ▶ Simplificações:
 - Sendo uma linha de via única, nunca aparecem ao mesmo tempo comboios nas duas direcções;
 - Os comboios nunca mudam de direcção;
 - Os sensores são activados apenas por comboios.

- ► Entradas:
 - S1
 - S2
 - Temp (tempo expirou)

- ▶ Saídas:
 - Verde
 - Amarelo
 - Vermelho
 - ArranqueTemp (inicia tempo)

Fluxograma

- ► Entradas:
 - S1
 - S2
 - Temp (tempo expirou)
- ► Saídas:
 - Verde
 - Amarelo
 - Vermelho
 - ArranqueTemp (inicia tempo)

Diagrama de Estados

Exemplo: sistema de controlo de passagem de nível

- ► Entradas:
 - S1
 - S2
 - Temp (tempo expirou)
- ► Saídas:
 - Verde
 - Amarelo
 - Vermelho
 - ArranqueTemp (inicia tempo)

Diagrama de Estados

Controladores baseados em contadores

▶ Observações:

- Muitos circuitos de controlo caracterizam-se por <u>sequências</u> mais ou menos <u>regulares de estados</u> nos fluxogramas/diagramas de estado que caracterizam o seu funcionamento
- Muitos circuitos de controlo possuem um número elevado de entradas e um número elevado de saídas. Contudo:
 - o número de entradas amostradas em cada estado é frequentemente muito inferior;
 - o número de saídas activas em cada estado é, em geral, uma pequena fracção do número total de saídas do circuito.

Exemplos:

- sinais de carregamento de registos
- controlos de encaminhamento de dados

que apenas estão activos numa pequena fracção dos instantes de tempo necessários ao funcionamento.

Fluxograma

Exemplo: sistema de controlo de passagem de nível

Codificação do estado

Sequência regular de estados

 Poucas entradas amostradas em cada estado

Poucas saídas activas em cada estado

Implementação:

Contador + Descodificador

Exemplo: sistema de controlo de passagem de nível

O contador transita para o estado **000** (*Clear*) a partir de um outro estado quando está no:

- Estado E2 e S2=1
- Estado E4 e S1=1

Exemplo: sistema de controlo de passagem de nível

O contador deverá saltar directamente para o estado **011** (*Load*) quando está no estado E0 e S1=0 e S2=1

Exemplo: sistema de controlo de passagem de nível

O contador deverá contar (*Inc*) quando está no:

- Estado E0 e S1=1
- Estado E1 e Temp=1
- Estado E3 e Temp=1

Exemplo: sistema de controlo de passagem de nível

Saídas:

- Verde=1 quando E0
- Amarelo=1 quando E1 ou E3
- Vermelho=1 quando E2 ou E4

Exemplo: sistema de controlo de passagem de nível

Exercício:

 O circuito tem um erro no cálculo do valor da saída ArranqueTemp.
 Qual é a solução correcta?

Configuração genérica baseada em contador + descodificador

Configuração genérica baseada em registos de deslocamento

Próxima Aula

Tema da Próxima Aula:

- ▶ Memórias:
 - Circuitos e tecnologias de memória:
 - o RAM:
 - Estática
 - Dinâmica
 - o ROM
 - Planos de memória
 - Mapa de memória
 - Hierarquia de memória

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás