

## Definições

Coleção interligada de computadores autônomos com capacidade de comunicação.

A interligação é concretizada por meios físicos de transmissão, como cabos e ondas de rádio.

A comunicação é a troca de informações organizada de acordo com a geografia e a natureza dos dados.

A comunicação não é indispensável para o funcionamento de cada computador, ou seja, cada computador é autônomo.



# Tipos de Redes

LAN

**MAN** 

WAN



## Topologias

#### **FÍSICA:**

Arranjo físico de equipamentos, considerando os meios de propagação.

Anel, barramento, estrela, malha...

#### LÓGICA:

Arranjo lógico de equipamentos, considerando protocolos de comunicação e hierarquias Ethernet, Token Ring, Arcnet...



## Modelo TCP/IP









# Física 1

- Trabalha com os bits 0 e 1
- Define taxa de transferência, tensões e características do meio
- Controla o acesso ao meio
- Faz controle básico mas não trata erros de transmissão



# Enlace 2

- Trabalha com endereço MAC
- Controlar o fluxo
- Estabelece protocolo de comunicação entre sistemas diretamente conectados. Ex: PPP, NetBios
- Detecta e pode corrigir erros da camada 1



# Rede 3

- Responsável pelo endereçamento dos pacotes
- Converte endereço IP em endereço MAC
- Determina o roteamento dos pacotes



# Transporte 4

- Prepara os dados vindos da camada de sessão em pacotes e envia para a camada de rede
- No caso dos pacotes vindos da camada de rede, remonta o dado e envia para a camada de sessão
- Controla o fluxo, a ordenação dos pacotes e o controle de erros
- Pode trabalhar de forma orientada à conexão ou não. Ex: TCP, UDP, ICMP



# Sessão 5

- Permite que aplicações em maquinas diferentes estabeleçam comunicação
- Define a forma de transmissão dos dados
- Marca os dados de forma que seja possível tratar alguns erros



# Apresentação 6

- Faz a compressão dos dados vindos da camada de aplicação
- Nesta camada, é possível criptografar os dados



# Aplicação 7

- Identifica e estabelece quais aplicações devem ser usadas, assim como seus protocolos.
- Exemplos de protocolos: HTTP, SMTP, POP3, IMAP, FTP, SSH, Telnet, DNS, Torrent



### Ethernet

Conjunto de tecnologias de camada física com um protocolo de controle de acesso ao meio

Compatível entre implementações distintas

Tecnologia barata e escalável para LANs



## **Quadro Ethernet**

Permite envio de dados de camadas superiores com informações de controle

Previne corrupção de dados através de um tipo de verificação, o Frame Check Sequence (FCS)

Permite a comunicação entre dispositivos que compartilham o acesso ao mesmo meio





## Quadro Ethernet

#### Preâmbulo (Preamble):

Sequência alternada de 1 e 0 no início de cada pacote. Usa um campo de sincronização SFD para indica que a porção contendo dados da mensagem irá na sequência. Esse campo só foi necessário nos enlaces assíncronos (10Mb/s). Nos enlaces atuais ele não existe.

#### **Destination Address:**

Endereço MAC do destinatário

#### **Source Address:**

Endereço MAC do remetente



## Quadro Ethernet

#### Type/Length:

Indica o tamanho em Bytes do campo de dados

#### Data:

Dados que deverão ser passados a próxima camada. Deve ter tamanho mínino de 46 bytes e máximo de 1500 bytes

#### **FCS – Frame Check Sequence:**

Contem o Cyclic Redundancy Check (CRC). Faz checagem baseada em algorítimos matemáticos para verificação da integridade dos quadros transmitidos. Identifica quadros corrompidos, porém não os corrige.



## Endereçamento Ethernet

Cada dispositivo deve ter um endereço único formado por 48bits exibido em hexadecimal

A primeira metade do endereço (24 bits) identifica o fabricante e a segunda metade (24 bits) identifica de forma única o dispositivo





## CSMA/CD

"Carrier Sense Multiple Access with Collision Detection"

Algoritmo para prevenir, detectar e tratar colisões em redes Ethernet

Colisões ocorrem quando duas estações disputam o acesso ao meio simultaneamente



#### **Alguns exemplos:**

Cabo UTP (Unshielded Twisted Pair, ou par trançado não blindado) – 10BaseT, 100BaseT

Cabo STP (Shielded Twisted Pair, ou par trançado blindado) – 10BaseT, 100BaseT

Coaxial fino (Thin Ethernet – 10Base2) – operam com apenas 10 Mbit/s – CONECTOR BNC

Coaxial grosso (Thick Ethernet – 10Base5) – operam com apenas 10 Mbit/s – CONECTOR AUI



#### Categoria 1:

Refere-se ao cabo telefônico UTP tradicional que pode transportar voz, mas não dados. A maioria dos cabos telefônicos anteriores a 1983 era de cabos pertencentes à Categoria 1

#### Categoria 2:

Esta categoria certifica o cabo UTP para transmissões de dados de até 4 Mbps (megabits por segundo). Contém quatro pares trançados

#### Categoria 3:

Esta categoria certifica o cabo UTP para transmissões de dados de até 10 Mbps. Contém quatro pares trançados com cerca de nove torções por metro

#### Categoria 4:

Esta categoria certifica o cabo UTP para transmissões de dados de até 16 Mbps. Contém quatro pares trançados

#### Categoria 5:

Esta categoria certifica o cabo UTP para transmissões de dados de até 100 Mbps. Contém quatro pares trançados de fio de cobre

#### Categoria 5e e 6:

Esta categoria certifica o cabo UTP para transmissões de dados em Gigabit Ethernet. Contém quatro pares trançados de fio de cobre

#### Dividido nos padrões EIA/TIA T568A e T568B







## Dispositivos MDI/MDI-X

#### MDI:

Placas de rede, roteadores...

#### MDI-X:

Hubs, switchs...





### Periféricos de Rede

#### NIC – Network Interface Card

- É a famosa placa de rede
- Atua na camada 2

#### Repetidor

- Amplifica/regenera o sinal
- Em linhas gerais, todo dispositivo de rede funciona como repetidor
- Atua na camada 1

#### HUB

- Replica os sinais para todas as suas portas
- Trabalha da mesma forma que o repetidor
- Atua na camada 1



## Periféricos de Rede

#### **Bridge**

- Conecta duas redes, n\u00e3o necessariamente do mesmo protocolo
- Trabalham apenas com redirecionamento de pacotes
- Atua na camada 2

#### **Switch**

- Ao contrário do hub, envia os pacotes apenas para a porta de destino
- Seu funcionamento é semelhante ao de uma bridge
- Atua na camada 2

#### Roteador

- Trabalha com endereçamento lógico
- Define as rotas que os pacotes devem seguir
- Atua na camada 3



## Dominio de Colisão x Broadcast

#### Dominio de Broadcast:

Um domínio de broadcast é um segmento lógico de uma rede de computadores em que um computador ou qualquer outro dispositivo conectado à rede é capaz de se comunicar com outro sem a necessidade de utilizar um dispositivo de roteamento

#### Dominio de Colisão:

Área lógica onde os pacotes podem colidir uns contra os outros, em particular no protocolo Ethernet



## Dominio de Colisão x Broadcast





### **Protocolos**

#### **TCP – Transmission Control Protocol**

- Atua na camada 4, porém, em alguns casos atua também na camada 5
- Orientado à conexão
- Controla o fluxo e o congestionamento

| 0                   | 15 16     |   |   |   |   |   |                      |                                  |
|---------------------|-----------|---|---|---|---|---|----------------------|----------------------------------|
| Número Porta Origem |           |   |   |   |   |   | Número Porta Destino |                                  |
| Número Seqüenciação |           |   |   |   |   |   |                      |                                  |
| ACKNOWLEDMENT       |           |   |   |   |   |   |                      |                                  |
| Tamanho             | Reservado | U | Α | Р | R | S | F                    | Tamanho da Janela de Transmissão |
| do                  |           | R | C | S | S | Y | Ι                    |                                  |
| Cabeçalh            |           | G | K | H | Τ | Ν | Ν                    |                                  |
| ٥                   |           |   |   |   |   |   |                      |                                  |
| Checksum            |           |   |   |   |   |   | Ponteiro Urgente     |                                  |
| Opções              |           |   |   |   |   |   |                      |                                  |
| Dados               |           |   |   |   |   |   |                      |                                  |



## TCP – Comportamento

- Utiliza a ideia de janela deslizante com tamanho variável
- O sequence number indica o numero do pacote enviado
- O acknowledgement (ACK) indica o próximo byte esperado
- Toda vez que um pacote chega ao seu destino um ACK é enviado como resposta
- O tamanho da janela é aumentado à medida que são recebidos ACKs
- As retransmissões são baseadas em timeout



## TCP - Sequenciamento

Os dados enviados são repetidos (ou ecoados) nas respostas ACK





### TCP - Funcionamento

- Um timeout é iniciado toda vez que um segmento é transmitido
- O timeout é cancelado quando o ACK correspondente é recebido
- Se um pacote é perdido mas os pacotes seguintes são recebidos, são enviados ACKs de mesmo valor (duplicados)
- O recebimento de três ACKs duplicados força a retransmissão do segmento perdido e cancela o timeout (fast retransmit)



## TCP – Retransmissão

Perda do pacote e retransmissão por timeout





## TCP – Retransmissão

ACK duplicado e timeout "curto"





## TCP – Retransmissão

#### ACK cumulativo





## TCP - Fast Retransmit



### TCP – Controle de Fluxo

- O receptor TCP tem um buffer para armazenar os pacotes
- Os processos podem ser lentos para ler desse buffer
- O emissor não deve enviar dados rápido demais de modo que o buffer fique cheio





## TCP - Three-way handshake



### TCP – Controle de fluxo

- Window: número de pacotes esperado.
- É gradualmente aumentado quando possível.
- É diminuido quando a rede fica congestionada.





### TCP – Falha no controle de fluxo

- Diminuição da janela, após repetidas falhas.
- Reenvio a partir do ponto de falha.





## Three-way handshake is a LIE!!!

- Segundo RFC793
- •Temos na verdade um 4-way handshake



- cwnd (congstion window) = quantidade de bytes que podem ser transmitidos
- threshold = controla o crescimento da janela
- MTU (maximum transmission unit) = 1500 bytes (ethernet)
- txwnd (janela de transmissão = mínimo entre rcvwnd e cwnd
- MSS (maximum segment size) = MTU 20 bytes (cabeçalho TCP) 20 bytes (cabeçalho IP)
- MSS mínimo = 536 bytes



- cwnd (congstion window) = 1 byte (MSS)
- Threshold = 65535 bytes
- rcvwnd informado pela requisição SYN (abertura de conexão)
- Trata perdas (timeout ou duplicação) como congestionamento.
- Se ocorre timeout, reinicia em slow start.
- Se ocorre 3 ACKs duplicados, diminui a oferta. threshold = cwnd / 2
- Slow Start → Inicia com cwnd = 1. Enquanto cwnd < threshold, duplica cwnd a cada ACK recebido.
- Congestion Avoidande → Enquanto cwnd >= threshold, incrementa cwnd em 1 a cada ACK recebido.

# Comportamento a partir de slow start até atingir congestion avoidance



#### Comportamento serrilhado do TCP



Imagem dos slides do Prof. Aguiar

### **Protocolos**

#### **IP – Internet Protocol**

- Atua na camada 3
- Responsável pelo endereçamento dos pacotes

| 0                       | 4 8       | 15                 | 16                          |          | 32 |  |  |  |  |
|-------------------------|-----------|--------------------|-----------------------------|----------|----|--|--|--|--|
| Versão                  | Tamanho   | Tipo Serviço (TOS) |                             |          |    |  |  |  |  |
|                         | Cabeçalho |                    |                             |          |    |  |  |  |  |
|                         | Identif   | icação             | Flag Offset de Fragmentação |          |    |  |  |  |  |
| Tempo de Vida Protocolo |           |                    |                             | Checksum |    |  |  |  |  |
| (T                      | TL)       |                    |                             |          |    |  |  |  |  |
| Endereço IP Origem      |           |                    |                             |          |    |  |  |  |  |
| Endereço IP Destino     |           |                    |                             |          |    |  |  |  |  |
| Opções                  |           |                    |                             |          |    |  |  |  |  |
| Dados                   |           |                    |                             |          |    |  |  |  |  |



### **Protocolos**

#### **UDP – User Datagram Protocol**

- Atua na camada 4
- Não é orientado à conexão

| Source IP address        |  |  |  |  |  |  |  |  |  |
|--------------------------|--|--|--|--|--|--|--|--|--|
| Destination IP address   |  |  |  |  |  |  |  |  |  |
| Zero Protocol UDP Length |  |  |  |  |  |  |  |  |  |



### **Protocolos**

#### ICMP – Internet Control Message Protocol

- Atua na camada 3
- São as mensagens de controle de equipamentos de rede

| 0<br>0   1   2   3 | 4   5   6   7            | 8 9 | 1<br>0   1 | 2 | 3 | 4 | 5                   | 6                     | 7 | 8 | 9 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 7 | 8 | 9 | 3<br>0 1 |
|--------------------|--------------------------|-----|------------|---|---|---|---------------------|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|
| Version            | Version IHL TOS/DSCP/ECN |     |            |   |   |   | Total Length        |                       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|                    | Identification           |     |            |   |   |   | F                   | Flags Fragment Offset |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| Time to            | Time to Live Protocol    |     |            |   |   |   |                     | Header Checksum       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
|                    | Source Address           |     |            |   |   |   | Destination Address |                       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |
| Typ                | Туре                     |     |            |   |   |   |                     | Checksum              |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |



### Encaminhamento de Pacotes

- Dentro do mesmo domínio de rede, os pacotes são encaminhados com base no endereço MAC
- Pacotes destinados para fora do mesmo domínio de rede são encaminhados com base no IP
- A cada salto entre domínios de rede diferentes, o IP é usado para determinar o destino e o MAC para encaminhar o pacote dentro do domínio de rede
- Para determinar "o caminho correto", o endereço MAC é alterado a cada salto



## Address Resolution Protocol

- O quê?
  - Resolução de endereços *IP* em endereços MAC.
  - Anunciaçã de novo endereço MAC na rede local.
- Por quê?
  - Dado um *IP*, como determinar o *MAC?*
  - Manutenção do cache de mapeamento.
- Como?
  - Pacotes de requisição / resposta ARP.
  - Difusão local um broadcast a nível de enlace caracteriza um protocolo de enlace, não de rede.

## Address Resolution Protocol

- Quando?
  - Quando o MAC do destinatário é desconhecido.
  - Após o vencimento do cache.
  - Ao iniciar a máquina.
- No IPv6, dá lugar ao Neighbor Discovery Protocol.

## Address Resolution Protocol

#### Suponha que um host A queira saber o MAC de um host B

| MAC<br>destino | MAC<br>origem | controle | Cabeçalho<br>LLC | IP<br>destino | MAC<br>destino | IP<br>origem | MAC<br>origem | CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|---------------|----------|------------------|---------------|----------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1111           | MAC A         | controle |                  | IP B          | ?              | IP A         | MAC A         | CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |               |          |                  | ,             |                |              | ,             | A CONTRACTOR OF THE PARTY OF TH |
|                |               |          | Req              | uisição A     | RP gerad       | da por A     | em broad      | cast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAC<br>destino | MAC<br>origem | controle | Cabeçalho<br>LLC | IP<br>destino | MAC<br>destino | IP<br>origem | MAC<br>origem | CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAC A          | MAC B         | controle |                  | IP B          | 7              | IP A         | MAC A         | CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Resposta ARP gerada por B e enviada para A

## Ataque por ARP Spoofing

- O quê?
  - Alteração maldosa do cache de mapeamento ARP (às vezes chamada de ARP cache poisoning).
- Por quê?
  - Passive sniffing: fuçar o tráfego.
  - Man-in-the-middle: alterar o tráfego
  - Denial of Service: interromper o tráfego.
- Como?
  - Através de pacotes de anunciação ARP forjados.
  - Em geral, divulga-se o MAC do atacante com o IP do Gateway.

## FTP, HTTP, SSH, SMTP, SQL

#### FTP – File Tranfer Protocol

- Transferência de arquivos numa rede
- Por padrão, usa as portas TCP/20 para transferência de dados e TCP/21 para controle

#### **HTTP – Hypertext Transfer Protocol**

- Trabalha no tratamento de requisições entre cliente e servidor, normalmente para sites
- Por padrão, usa a porta TCP/80

#### SSH – Secure Shell

- Acesso seguro à administração remota e tunelamento de conexões
- Por padrão, usa a porta TCP/22



## FTP, HTTP, SSH, SMTP, SQL

#### **SMTP – Simple Mail Transfer Protocol**

- Usado para transmissão de e-mails
- Por padrão, usa a porta TCP/25

#### **SQL – Structured Query Language**

- Linguagem de programação de banco de dados
- Por padrão, usa a porta TCP-UDP/156. Em casos específicos usa as portas TCP-UDP/3306 e TCP-UDP/5432



### Sockets

- Constituem canais lógicos de comunicação.
- São caracterizados por:
  - Endereço de rede, no caso o IP.
  - Número de porta de 2<sup>16</sup> bits (0 a 65535).
- Multiplexam o canal físico de comunicação.



## Sockets

- Os sistema operacional determina qual processo recebe os pacotes oriundos de uma porta específica.
- Alterar esta relação requer privilégios elevados.

## Sockets – Faixas de portas

- 0 a 1023 Portas bem conhecidas (well-known ports). Enumeram serviços oferecidos.
- 1024 a 49151 Portas registradas. Utilizadas por aplicações comerciais.
- 49152 a 65535 Portas privadas (ou dinâmicas). Utilizadas a esmo pelos usuários.
- O órgão que regula as faixas é o *Internet Assigned Numbers Authority (IANA)*.

www.iana.org/assignments/port-numbers

### Well-known sockets

- São portas padronizadas para serviços comuns.
- Processos → Serviços (daemons).
- Alterar a porta padrão requer privilégios de root.



## Visualizando portas ativas com netstat

- Com netstat descobrimos as mais variadas informações sobre o subsistema de rede.
- Sintaxe
  - \$ netstat
  - -n exibe a informação em formato numérico.
  - -a exibe sockets em modo de escuta ou não.
  - t exibe sockets TCP.
  - -u exibe sockets UDP.
  - -p exibe os processos ligados aos sockets.

## Investigando portas ativas com *nmap*

- Uma das mais poderosas ferramentas para auditoria e mapeamento de redes é o nmap.
- Uma versão gráfica simples e útil é o zenmap.
- Sua sintaxe é complexa, por isso, veremos exemplos específicos.
  - # nmap -A -sT -sU -t4 < localhost | ip | fqdn > exibe as portas TCP e UDP ativas na máquina especificada e detecta o SO.
  - Experimente estes dois:
    - \$ nmap -A -T4 scanme.nmap.org
    - \$ nmap -A -T4 playground.nmap.org

## Domain Name System

- O quê?
  - Mapeamento de nomes literais em IPs.
- Por quê?
  - Quantidade imensa de máquinas na Internet.
  - Dificuldade de memorizar IPs.
  - Dinamismo de endereços.
- Como?
  - Regisições aos servidores de nomes.
  - Banco de dados hierárquicamente distribuído.

## Domain Name System

- A nomeação de máquinas numa rede segue um esquema hierárquico.
- Os nomes são agrupados em domínios, que por sua vez são agrupados em domínios superiores.
- A separação de domínios é feita por ".".
- O domínio raiz é identificado por ".".
- O agrupamento é mais local à esquerda e mais global à direita.

## Domain Name System

- Alguns domínios de primeiro nível (top-level domains) são: org, com, gov, br, etc.
- Nomes completos são chamados de FQDN.
- Domínio da UFRJ: ufrj.br.
- Domínio do DCC: dcc.ufrj.br.
  - Subdomínio de ufrj.br.
- Em geral, a máquina que contém páginas HTML se chama www.
  - www.dcc.ufrj.br contém as páginas do DCC.
  - www.ufrj.br contém as páginas da UFRJ.

### Servidores raiz no mundo

- Apontam para os servidores de nomes responsáveis pelos toplevel domains.
- O servidor soberano sobre um domínio é chamado de authoritative name server.
- Uma lista dos top-level domains pode ser obtida em http:// www.iana.org/domains/root/db/
- Busque por root servers in the world em maps.google.com.

## Descobrindo DNS primário e secundário

- O aquivo /etc/resolv.conf contém informações sobre servidores de nomes, domínios locais e resolução de nomes.
- Uma entrada de servidor de nomes é na forma

```
nameserver <ip_do_servidor>
```

- O primeiro registro é o DNS primário e o segundo é o DNS secundário.
- Execute

```
$ cat /etc/resolv.conf
```

## Registros DNS

 Em servidores de nomes, registros são guardados com uma sintaxe específica:

 $A \leftrightarrow \text{registros comuns } IPv4.$ 

 $AAAA \leftrightarrow$  registros comuns IPv6.

*CNAME* ↔ apelidos, nomes alternativos.

MX ← servidores de e-mail.

*NS* ↔ servidores de nomes.

*HINF0* ↔ informações de hardware.

PTR↔mapeamento reverso endereço→nome.

S0A ← autoridade sobre uma zona.

## Consultas DNS com dig

- O programa dig faz consultas DNS detalhadas.
- Ele imprime informação no formato em que os registros são usualmente armazenados.
- Sintaxe:

```
$ dig [opções] < nome > [tipo] [@servidor] $ tipo \'e um dos tipos de registros DNS vistos.
```

@servidor é opcional e especifica o servidor utilizado para a consulta.

[opções] pode ser uma ou mais das listadas na próxima página.

## dig – opções

- +[no]short [não]devolve apenas o IP.
- +[no]answer [não]devolve a seção de resposta.
- +[no]authoritative [não]devolve a seção de autoridade.
- +[no]question [não]devolve a resposta.
- +[no]all [não]devolve todas as seções.
- +[no]stats [não]devolve tempos de resposta.
- +[no]additional [não]devolve informações adicionais.
- +[no]trace [não]rastreia os servidores visitados.

## Consultas DNS com dig

Consultas interessantes:

```
$ dig yahoo.com
$ dig yahoo.com NS
$ dig ssh.dcc.ufrj.br
$ dig dcc.ufrj.br NS
$ dig google.com MX
$ dig debian.org
$ dig inter.net AXFR @ns02.eusc.inter.net
$ dig @luit.iitg.ernet.in iitg.ernet.in
 axfr
```

### Descobrindo e alterando o nome local

- O aquivo /etc/hostname contém o nome do computador local em uma linha única.
- Visualizando o nome:
  - \$ hostname
- Visualizando o nome totalmente qualificado:
  - \$ hostname --fqdn
- Alterando o nome (temporariamente):
  - \$ sudo hostname <novo nome>
- Para alterar definitivamente, edite o arquivo /etc/hostname como root.

### Descobrindo o nome de domínio

- O nome de de domínio constitui a parte do FQDN após o primeiro ponto.
- Em geral, depende dos arquivos /etc/hosts e /etc/hosts.conf.
- Visualizando o nome:
  - \$ dnsdomainname
- O nome de domínio não pode ser alterado através deste comando.

#### Dynamic Host Configuration Protocol

- Provê uma forma de configurar máquinas:
  - Fornecendo um IP dinâmico.
  - Indicando DNS primário e secundário.
  - Informando o Gateway padrão.
- É largamente utilizado por provedores.
- Permite fixar IPs para máquinas chave na rede.
- Dispensa a atribuição de IPs estáticos.
- Facilita o ingresso de notebooks na rede.
- Facilita a ampliação da rede local.

#### Network Address Translation

- Comunicação de uma rede privada com uma rede exterior.
- Toda comunicação deve partir de dentro.
- Ocultamento da estrutura interna da rede.
- Economia de endereços públicos.
- Roteador possui um endereço externo público.

# Endereçamento *IPv4*

- Deve ser único dentro das redes alcançáveis.
- Composto de 32 bits (ou 4 bytes).
- Representado em 4 números decimais, em geral.
- Dividido em cinco classes: A, B, C, D e E.

# Notação decimal pontuada

- Mais amigável.
- Simples e rápido de visualizar e escrever

11001000110010010000001101001101

= 200.201.3.77

#### Estruturação de endereços *IP*

- A porção de rede equivale a um edifício.
- A porção de estação equivale a um apartamento.
- Há bits para rede e bits para estação.



# Cálculo de endereços IP

- Simples conversão binário decimal e vice-versa
- Cada 8 bits = 1 octeto

#### Exemplo:

11001000.11001001.00000011.01001101

11001000 = 200

11001001 = 201

00000011 = 3

00000011 = 77

Endereço decimal = 200.201.3.77

#### Classes de endereços *IP*

- Definem redes com tamanhos diferentes.
- A classificação se baseia no primeiro octeto.
- Classes A, B e C: utilizadas normalmente
- Classe D: utilizada para multicast.
- Classe E: reservada para pesquisas.

# Classes de endereços IP

| Classe | Informações                  | referentes ao        |                    |                                  |                                   |
|--------|------------------------------|----------------------|--------------------|----------------------------------|-----------------------------------|
|        | Bits de<br>ordem<br>superior | Primeiro<br>endereço | Último<br>endereço | Número de<br>redes por<br>classe | Número de<br>estações<br>por rede |
| Α      | 0                            | 0                    | 127                | 126*                             | 16M                               |
| В      | 10                           | 128                  | 191                | 16K                              | 64K                               |
| С      | 110                          | 192                  | 223                | 2M                               | 254                               |
| D      | 1110                         | 224                  | 239                |                                  | 1                                 |
| E      | 11110                        | 240                  | 247                |                                  |                                   |

<sup>\*</sup> A faixa 127.x.y.z corresponde ao loopback.

#### Administração de endereços *IP*

- Endereços públicos:
  - Únicos.
  - Distribuição dinâmica pelos ISPs.
- Endereços reservados:
  - Atribuídos pelo IANA pela FAPERJ, no Rio.
  - Estáticos e possuídos por instituições.
- Endereços privados.
- Endereços especiais.

#### Whois service directory

- O comando whois busca informações sobre domínios, endereços, instituições e indivíduos.
- Um whois no site do IANA: http://whois.iana.org/
- Com ele é possível achar informações interessantes sobre máquinas na Internet.
- Sintaxe:

```
$ whois <endereço_ip>
```

#### Alguns endereços interessantes

Experimente os endereços abaixo:

```
$ whois 146.164.0.0
$ whois 201.51.150.0
$ whois 202.12.27.0
$ whois 192.203.230.0
$ whois 192.112.36.0
$ whois 128.0.0.0
```

#### Endereços privados

- Não utilizados publicamente.
- Redes sem visibilidade mundial.
- Economia de endereços públicos.
- Faixas especiais nas classes A, B e C:

10.0.0.0 a 10.255.255.255.

172.16.0.0 a 172.31.255.255.

192.168.0.0 a 192.168.255.255.

# Endereços especiais

| Primeiro octeto | Segundo octeto | Terceiro octeto          | Quarto octeto             | Significado do endereço   |
|-----------------|----------------|--------------------------|---------------------------|---------------------------|
| 0               | 0              | 0                        | 0                         | Estação atual             |
| 127             | Loopback       |                          |                           |                           |
| Sequênci        | e estação      | Estação na rede<br>atual |                           |                           |
| Porção          | de rede        | Sequência                | Endereço da rede<br>atual |                           |
| Porção          | de rede        | Sequênc                  | ia de uns                 | Difusão em rede<br>remota |
| 255             | 255            | 255                      | 255                       | Difusão na rede<br>local  |

#### Máscaras de sub-rede

- São a base para a existência das sub-redes.
- Extendem as máscaras-padrão.
- Máscaras-padrão:
  - Classe A: 255.0.0.0.
  - Classe B: 255.255.0.0.
  - Classe C: 255.255.255.0.
- Notação com barra:
  - Indica o número de bits de rede.
  - Todos estes tem o valor 1.

#### Sub-redes

- Multiplexam um único IP público.
- Externamente, parecem uma única rede.
- Internamente, são múltiplas redes.
- Aproveitam a amplitude de certas classes:
  - A classe A permite 16M estações em uma rede.
  - É possível criar sub-redes com menos estações.

#### Cálculo de Sub-redes

 Podem ser representadas pela notação decimal pontuada ou pelo numero de bits

11111111111111111111111111100000000

255.255.255.0

=

/24

#### Identificação de Endereço IP

- Depende da sua máscara de rede.
- Um endereço IP pode ser:
  - Rede
  - Host
  - Broadcast
- Endereço de rede é o primeiro endereço do range de IPs.
- Endereço de broadcast é o último endereço do range de IPs.
- Endereço de host são todos os endereços IPs restantes.

#### Identificação de Endereço IP

#### **Exemplos:**

- Identifique e classifique cada endereço abaixo:
  - 146.164.10.2 255.255.255.0
  - 200.201.34.176 255.255.0.0
  - 176.20.82.3 /30
- Diga se os endereços dados estão na mesma rede:
  - ip: 192.168.12.62 masc: 255.255.255.192 e ip: 192.168.12.68 masc: 255.255.255.192
  - Ip: 212.84.175.93/17 e 212.84.223.93/17

# VLSM – Variable Length Subnet Masking

- Técnica que permite dividir uma rede em outras sub-redes de tamanhos diferentes.
- É um processo recursivo.

#### Exemplo:

- Uma filial de um escritório será aberta em uma nova cidade. São necessários:
  - 10 computadores para o setor financeiro
  - 10 computadores para a gerência
  - 63 computadores para os funcionários
  - 28 computadores para o SAC
  - 5 computadores para o setor de RH

- De maneira simples, é a quantidade de dados transferidos de um lugar a outro
- Pela sua ampla aplicabilidade, vamos considerar apenas no âmbito de redes
- Dessa forma, definimos como a taxa média de transferência de dados através de um link
- Para transferências baseadas no protocolo TCP calculamos o throughput como:

TCP Window size em bits
----- = Throughput em bits por segundo
Latência em segundos

- Como visto, os sistemas usam o TCP Window Scaling para definir automaticamente o TCP Window Size
- Nos sistemas Windows o padrão é 64KB e podem ir até 16MB
- Nos sistemas Linux isso é ativado no arquivo /proc/sys/net/ipv4/tcp\_window\_scaling e difinido nos arquivos /proc/sys/net/ipv4/tcp\_rmem e /proc/sys/net/ipv4/tcp\_wmem

- Alguns exemplos:
- Calcular o throughput de um host windows com latência para o gateway de 2ms

```
TCP Window Size = 64KB * 8 = 524.288 bits
```

Latência = 2 ms = 0.002 segundos

524.288 / 0.002 = 262.114.000 bits/segundo

Convertendo para megabits temos aproximadamente 262Mb/s de transferência entre o host e o gateway

2. Calcular o throughput de uma rede com 10 hosts windows tendo como base uma latência de 25ms para determinado site

TCP Window Size = 64KB \* 8 = 524.288 bits

Latência = 25 ms = 0.025 segundos

524.288 / 0.025 = 20.971.520 bits/segundo ~ 21Mb/s

Como a rede tem 10 hosts windows então seu throughput total é de 210Mb/s ou 26,25 MB/s

OBS: O host windows foi usado por questão de simplicidade. Caso seja uma rede mista devemos calcular seu total considerando cada tamanho específico. Ex: 2 Win + 3 Linux + ...

3. Considere que temos 2 datacenters distintos, um em cada cidade, e temos um link de 10Gb/s entre eles com uma latência de 30ms. Qual o throughput esperado entre eles? Por comodidade, assuma TCP Window de 64KB.

TCP Window Size = 64KB \* 8 = 524.288 bits

Latência = 30ms = 0.030 segundos

524.288 / 0.030 = 17.476.266 bits/segundo ~ 17.4Mb/s

Note que o throughput, apesar do link de 10Gb/s, atingirá apenas 17.4Mb/s

- No exemplo 3 o link estava subutilizado. Para melhorar esse problema temos duas opções: Alterar o TCP Window Size ou diminuir a latência
- Muitas vezes a latência é difícil, ou até mesmo impossível, de ser melhorada. Então vamos trabalhar no TCP Window Size que é o lado mais fácil
- Como o link é de 10Gb/s e queremos nos aproximar ao máximo disso, temos o seguinte cálculo:

10.000.000.000b/s \* 0.030s = 300.000.000 bits ou 37.5KB

- Vale notar que embora com essa redução a taxa de transferência melhore sensivelmente, o uso de memória usada para buffer aumenta.
- Existem também outros fatores que devem ser considerados como taxa de perda de pacotes, jitter (variação da latência), processamento, barramento e etc

- Roteamento é o nome dado ao processo em que se escolhe qual roteador deve ser usado para que um pacote seja enviado ao seu destino
- Os protocolos de roteamento determinam e/ou atualizam o conteúdo das tabelas de roteamento
- De acordo com o conteúdo das tabelas de roteamento, a escolha do roteador é feita pela análise do prefixo que corresponde ao endereço de destino
- Esses protocolos se dividem em dois tipos:
  - Interior Gateway Protocol (IGP), que distribuem as informações dentro de sistemas autônomos (AS)
  - Exterior Gateway Protocol (EGP), que distribuem as informações entre sistemas autônomos (AS) distintos

- Os protocolos do tipo interno são baseados em dois tipos:
  - Vetor de distância
  - Estado do enlace
- Um sistema autônomo (AS) é um conjunto de redes, ou uma única rede, que além de estar sob uma gestão comum tem características e políticas de roteamento comuns
- Cada AS distinto recebe um número de identificação, que é chamado de ASN

 Vamos imaginar que exista uma empresa com algumas filiais conectada na internet e que disponibilize serviços como e-mail e web. Se os Ips públicos usados nesses serviços são fornecidos por um provedor então a rede dessa empresa seria vista como uma extensão do AS do provedor que ela utiliza.



 Vamos agora imaginar que essa mesma empresa use um segundo ISP para balancear o trafego de entrada e saída e contar com uma redundância. A matriz então pede um range próprio de IPs para que essa rede não continue submissa as politicas do ISP 1 e ISP 2 e consiga, por exemplo, controlar totalmente o balanceamento.



- RIP (Routing Information Protocol)
  - Algoritmo Bellman-Ford
  - Facil configuração
  - Baixo poder de computação
  - Bom para pequenos ambientes
  - Convergência lenta
  - Grande consumo de banda (broadcast da tabela a cada 30 segundos)

- IGRP (Interior Gateway Protocol)
  - Determina o melhor caminho entre dois pontos
  - Considera a largura de banda e a latência
  - Converge mais rápido que o RIP
  - Sem limitação de saltos
  - Evita loops
  - Proprietário da CISCO
- EIGRP (Enhanced Interior Gateway Protocol)
  - Combina protocolos baseados em vetor de distancia e estado de enlace
  - Divulga apenas as redes que sofreram alterações
  - Também é proprietário da CISCO

- OSPF (Open Shortest Path First)
  - Projetado para grandes redes
  - Permite criar áreas de roteamento
  - Área de roteamento é uma coleção de sub-redes relacionadas
  - Redes pequenas podem usar uma única área
  - Envia mensagens Link State Advertisement (LSA) para informar aos vizinhos o estado dos enlaces conhecidos
- BGP (Border Gateway Protocol)
  - Protocolo de roteamento interdomínios
  - Criado pra ser usado nos roteadores principais da internet
  - Evita loops

# Algumas Referências

- GOMES SOARES, Luiz Fernando; LEMOS DE SOUZA, Guido; Colcher, Sérgio – Redes de Computadores das LANs MANs e WANs às Redes ATM, Campus.
- TANENBAUM, Andrew S. Computer Networks, Third Edition, PTR Prentice Hall.
- TITTEL, Ed Teoria e problemas de redes de computadores, Bookman.
- SCHRODER, Carla Redes Linux Livro de Receitas O'Reillly media.
- Cisco Network Academy, disponível em http://cisco.netacad.net, acessado em 06/08/2015, às 16:08.

# HORADO TAG!