§ 5.5 Max Nowher's Fundamental Theorem

Intersection yell $F \cdot G := \sum_{P \in P^2} I(P, F \cap G) P$.

- . Leg $(\Sigma n_P P) := \Sigma n_P$
- · \(\sum_{P} > \sum_{mp} \) \(\operatorname{\text{df}} \) \(\operatorname{\text{Np}} > \operatorname{\text{Mp}} \) \(\operatorname{\text{P}} \)
- . Intersection get $F \cdot G := \sum_{P \in P^2} I(P, F \cap G) P$.

Face (Bézous's thm) F.G is a positive zero-cycle of degree mn

55.2 Question: When $\exists B \text{ Sit}, B \cdot F = HF - G \cdot F ?$ $(\Leftarrow H = BG \text{ mod } F)$

Noether's conditions are satisfied at P W.V.x. F.G.H. if

 $H_* \in (F_*, G_*) \triangleleft \mathcal{O}_p(\mathcal{P}^2)$

This (max Noether's fundamental theorem) F,G,H=Proj. Place coros gcd(F,G)=1. Then

 $\exists A,B \text{ s.t.} H = AF + BG \Leftrightarrow \text{norther's conditions are satisfied}$ at each $P \in F \cap G$.

Pf:
$$\Rightarrow$$
) $H = AF + BG \Rightarrow H_* = A_*F_* + B_*G_*$ at $\forall P \Rightarrow V$
 \Leftrightarrow) WMA: $V(F,G,Z) = \phi$
 $F_* = F(XY,I)$, $G_* = G(X,Y,I)$, $H_* = H(X,Y,I)$
Morthon's analytism $\Rightarrow H_* = 0 \in \mathcal{O}_P(P^*)/(F_*,G_*)$
 $\Leftrightarrow 2.7$, $P^{op} G \Rightarrow H_* = 0 \in k[x,Y]/(F_*,G_*)$
 $\Rightarrow H_* = \alpha F_* + 6G_*$ $\alpha,b \in k[x,Y]$.
 $\Rightarrow Z^Y H = AF + BG$ $\Leftrightarrow x \in k[x,Y]$.
 $\Rightarrow H = A'F + B'G$ $\Leftrightarrow x \in k[x,Y]/(F_*G)$
 $\Rightarrow H = A'F + B'G$ $\Leftrightarrow x \in k[x,Y]/(F_*G)$
 $\Rightarrow H = A'F + B'G$ $\Leftrightarrow x \in k[x,Y]/(F_*G)$

criteria that noether's conditions holds 6H (mod F)

Prop 1 . F.G. H = Plane curves $P \in FNG$. Noether's worditions holds at P if any of the following are true.

- 1) F&G meet transversally at P and PEH
- 2) P simple on F & I(P, HNF) > I(P,GNF)
- 3) F & G has distinct tangents at P and $m_p(H) \ge m_p(F) + m_p(G) 1$

$$Pf: (2). P \text{ simple } \Rightarrow \mathcal{O}_{P}(F) = DVR \Rightarrow \text{ ord } P$$

$$I(P, H \cap F) \geq I(P, G \cap F) \Rightarrow \text{ ord } P(H) \geq \text{ ord } P(G)$$

$$\Rightarrow \overline{H}_{w} \in (\overline{G}_{w}) \wedge \mathcal{O}_{P}(F)$$

$$\Rightarrow \overline{H}_{w} = 0 \in \mathcal{O}_{P}(F) | \overline{G}_{w} | = \mathcal{O}_{P}(P^{2}) / \overline{F}_{w}.G_{w}$$

(3). WMA:
$$P = [0:0:1]$$
 & $M_P(H_*) \ge M_P(F_*) + M_P(G_*) - 1$

$$H_* \subseteq I^{M+N-1} \subseteq (F_*, G_*) \subseteq O_P(\mathbb{P}^2)$$
have distinct togets

Cor If either

- i) #FNG = degf. deg G & FNG = H. or
- 2) FNG Simple on F & H.F > G.F, then

$$\exists B \text{ s.t.} \quad B \cdot F = H \cdot F - G \cdot F$$

\$ 5.6 Applications of Noether's Theorem.

A found interesting consequences

Rep 2:
$$C, C' = aubics$$
. $Q = Conic$

$$C'.C = \sum_{i=1}^{q} P_{i}. \quad \& \quad Q.C = \sum_{i=1}^{q} P_{i}$$
Then P_{7}, P_{8}, P_{9} lie on a straight.

Pf:
$$F=C$$
, $G=Q$, $H=C'$ in (2) of COT . IZ

Cor 1 (Pascal). If a hexagon his inscribed in an ir. conic, then
the opposize sided meet in collinear points.

Pf:
$$C = 41 \cdot 1 \cdot 5$$

 $C' = 1 \cdot 1 \cdot 1 \cdot 5$
 $G = 0$
 $Rep = 3$

Cor2. (Pappus)
$$L_1, l_2 = line$$
 $P_1, P_2, P_3 \in L_1$, $Q_1, Q_2, Q_3 \in L_2$

$$L_{\bar{i}\bar{j}} = \overline{P_{\bar{i}}Q_{\bar{j}}}$$

$$R_R = L_{\bar{i}\bar{j}} \cap l_{\bar{j}\bar{i}} + \langle i_1\bar{j}, q_3 \rangle$$

> R1, R2, R3 = Colliner.

Pip3.
$$C = Trr. Cubic$$
, $C', C'' = cubics$

$$C'C = \sum_{i=1}^{9} P_i \left(Simple \text{ on } C, \text{ may not distinat} \right)$$

$$C''.C = \sum_{i=1}^{8} P_i + Q \Rightarrow Q = P_9$$

Addition on a cubic:

Prop 4. (C. 19) forms an abelian of with 0 big the identity.

C' = 4625 $C'' = H_1H_5H_5$ $POOP 3 \Rightarrow T' = T''$

