

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امير خورسندي

پاییز ۱۴۰۲

تشكيلات ورودي / خروجي

مقدمه

• تشکیلات ورودی اخروجی یا دستگاه های جانبی امکان برقراری ارتباط کامپیوتر با محیط پیرامون را فراهم می کنند.

• این محیط می تواند در رابطه با کاربر و یا یک فرایند صنعتی و ... باشد.

• عموماً سرعت این واحدها بسیار کمتر از پردازنده اصلی است.

• برای جبران این اختلاف نیاز به مدار واسط و ارتباط با حافظه است.

مثال هایی از دستگاه های جانبی

- صفحه نمایش

 - متنی گرافیکی
 - صفحه کلید
 - چاپگر
 - ماتریسی
 - ليزرى
- دیسک مغناطیسی

مثال هایی از دستگاه های جانبی (ادامه)

- انواع سنسور: دما، سرعت، شتاب، شدت نور و ...
 - مبدل آنالوگ به دیجیتال (ADC)
 - مبدل دیجیتال به آنالوگ
 - اسكنر
 - پلاتر

•

مدار واسط

- تبدیل سیگنال ها
 - هم زمان سازی
 - تبدیل داده ها
- هماهنگ کردن عملکرد

ارتباط از طریق گذرگاه مشترک

ارتباط پردازنده با حافظه و دستگاه جانبی

•دو گذرگاه مجزا

•گذرگاه داده مشترک با گذرگاه کنترل مجزا

•گذرگاه داده و کنترل مشترک

نگاشت آدرس ورودی/خروجی

- نگاشت در فضای آدرس مجزا
- دستورات مجزا برای کار با ورودی/خروجی

- نگاشت در فضای آدرس حافظه
 - دستورات یکسان با حافظه
- مدار واسط بر اساس آدرس اعلام شده از سوی پردازنده دستگاه مورد نظر را فعال می کند.

∖dd	ress:	0xC	FA0

CS	RS1	RS0	عملكرد
0	X	X	هیچ ثباتی انتخاب نمی شود.
1	0	0	انتخاب ثبات پورت A
1	0	1	انتخاب ثبات پورت B
1	1	0	انتخاب ثبات كنترل
1	1	1	انتخاب ثبات وضعيت

امير خورسندي امير خورسندي

مثال (ادامه)

Address	CS	RS1	RS0	عملكرد
!0xCFA0	0	X	X	هیچ ثباتی انتخاب نمی شود.
0xCFA0	1	0	0	انتخاب ثبات پورت A
0xCFA1	1	0	1	انتخاب ثبات پورت B
0xCFA2	1	1	0	انتخاب ثبات كنترل
0xCFA3	1	1	1	انتخاب ثبات وضعيت

CS: 1 1 0 0 1 1 1 1 1 0 0 0 x x

انواع تبادل اطلاعات

- توازی در ارسال
 - پشت سر هم
 - موازی

- همزمانی
- همزمان
- غير همزمان

تبادل داده همزمان

• هر ارسال داده با لبه پالس ساعت انجام می شود.

• امکان اعوجاج، تاخیر و ایجاد نویز در سیگنال پالس ساعت هست.

ارسال داده غیر همزمان

• هر دستگاه پالس ساعت خود را دارد.

• سرعت کار دو دستگاه می تواند متفاوت باشد.

امير خورسندي المير خورسندي

روش کنترل ارسال با سیگنال Strobe

کنترل از سمت مبدا:

روش کنترل ارسال با سیگنال Strobe (ادامه)

كنترل از سمت مقصد:

روش کنترل ارسال با سیگنال Handshake

کنترل از سمت مبدا:

روش کنترل ارسال با سیگنال Handshake (ادامه)

كنترل از سمت مقصد:

اولین ورودی به صف اولین خروجی از آن خواهد بود.

تبادل اطلاعات کامپیوتر با ادوات ورودی/خروجی

وش برنامه ریزی شده

وقفه

• ارتباط مستقيم با حافظه (DMA)

اولويت وقفه

• تعیین می کند بین دو یا چند دستگاه که همزمان تقاضای وقفه کرده اند، کدام یک ابتدا سرویس بگیرد.

- بر دو نوع می تواند باشد:
 - نرم افزاری
 - سخت افزاری

اولويت وقفه زنجيره اي

اولویت وقفه زنجیره ای (ادامه)

اولويت وقفه موازي

روتین نرم افزاری وقفه

- وقفه های با اولویت پایین تر غیرفعال شوند.
 - محتوای ثبات ها ذخیره شوند.
 - وتین وقفه اجرا شود.
 - محتوای ثبات ها بازگردانده شوند.
 - امكان وقفه با اولويت پايين فعال شود.

روتین نرم افزاری وقفه (ادامه)

انتقال مستقيم اطلاعات ورودي/خروجي به حافظه

