PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-260519

(43) Date of publication of application: 25.09.2001

(51)Int.CI.

B41M 5/00

(21)Application number: 2000-288169

(71)Applicant: MITSUBISHI PAPER MILLS LTD

(22)Date of filing:

22.09.2000

(72)Inventor: KANEKO SATOSHI

ISHIMARU TOMOKO

ASHIDA TETSUYA

(30)Priority

Priority number: 2000010074

Priority date: 14.01.2000

Priority country: JP

(54) INK JET RECORDING MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an ink jet recording material for revising photo-like high gloss, high ink absorbability and storage stability.

SOLUTION: The ink jet recording material comprises an ink acceptive layer containing inorganic fine particles on a support. In this case, the ink acceptive layer contains a sulfine compound, a thiosulfine compound or a thiosulfone compound. Further, the layer also contains at least one compound selected from thiourea compounds, saccharides, pyridine compounds, thioether compounds disulfide compounds and thiazine compounds.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

(P2001-260519A)

(43)公開日 平成13年9月25日(2001.9.25)

(51) Int.Cl.'

識別記号

FΙ

テーマコート*(参考)

B41M 5/00

B41M 5/00

B 2H086

審査請求 未請求 請求項の数18 OL (全 13 頁)

(21)出願番号	特願2000-288169(P2000-288169)	(71)出願人	000005980
			三菱製紙株式会社
(22)出願日	平成12年9月22日(2000.9.22)		東京都千代田区丸の内3丁目4番2号
		(72)発明者	金子 智
(31)優先権主張番号	特顧2000-10074(P2000-10074)		東京都千代田区丸の内3丁目4番2号三菱
(32)優先日	平成12年 1 月14日 (2000.1.14)		製紙株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	石丸 智子
			東京都千代田区丸の内3丁目4番2号三菱
			製紙株式会社内
		(72)発明者	芦田 哲也
			東京都千代田区丸の内3丁目4番2号三菱
			製紙株式会社内
		Fターム(参	考) 2H086 BA15 BA21 BA24 BA31 BA33
			BA35 BA38 BA45 BA48
		L	

(54) 【発明の名称】 インクジェット記録材料

(57)【要約】

【課題】フォトライクの高光沢と高いインク吸収性、及び保存性が改良されたインクジェット記録材料を提供する。

【解決手段】支持体上に無機微粒子を含有するインク受容層を設けたインクジェット記録用材料において、該インク受容層にスルフィン化合物、チオスルフィン化合物あるいはチオスルホン化合物を含有するインクジェット記録材料であり、好ましくは更にチオウレア系化合物、糖類、ビリジン系化合物、チオエーテル系化合物、ジスルフィド系化合物、及びチアジン系化合物から選ばれた少なくとも1つの化合物を含有することを特徴とするインクジェット記録材料。

【特許請求の範囲】

【請求項1】 支持体上に無機微粒子を含有するインク 受容層を設けたインクジェット記録材料において、該イ ンク受容層にスルフィン酸化合物、チオスルホン酸化合 物、及びチオスルフィン酸化合物から選択される少なく とも1つの化合物を含有することを特徴とするインクジェット記録材料。

【請求項2】 支持体上に無機微粒子を含有するインク 受容層を設けたインクジェット記録材料において、該インク受容層に、(A) スルフィン酸化合物、チオスルホ 10ン酸化合物、及びチオスルフィン酸化合物の少なくとも 1つと、(B) チオウレア系化合物、(C) 糖類、

(D) ピリジン系化合物、(E) チオエーテル系化合物、(F) ジスルフィド系化合物、及び(G) チアジン系化合物から選ばれた少なくとも1つの化合物を含有することを特徴とするインクジェット用記録材料。

【請求項3】 前記化合物(B)のチオウレア系化合物が下記一般式(1)で表される構造を分子中に1個以上有する化合物の少なくとも1つである請求項2に記載のインクジェット記録材料。

【化1】

一般式 (1)

【請求項4】 前記化合物(E)のチオエーテル系化合物が下記一般式(2)で表される化合物の少なくとも1つである請求項2に記載のインクジェット記録材料。

【化2】

一般式 (2)

R1-(S-R3)m-S-R2

[一般式(2)において、R1及びR2はそれぞれ独立に、水素原子、アルキル基、芳香族基を表し、R1とR2は同一でも異なってもよく、結合して環を形成してもよい。またR1とR2の少なくとも一方は、アミノ基、アミド基、アンモニウム基、ヒドロキシ基、スルホ基、カルボキシ基、アミノカルボニル基またはアミノスルホニル基等の親水基で置換されたアルキル基、又は芳香族基である。R3は置換されてもよく、場合によっては酸素原子を有するアルキレン基を表す。mは0~10の正数を表し、mが1以上の場合R3に結合する少なくとも1つの硫黄原子はスルホニル基であってもよい。]

【請求項5】 前記化合物(F)のジスルフィド系化合物が下記一般式(3)で表される化合物の少なくとも1つである請求項2に記載のインクジェット記録材料。 【化3】

一般式 (3)

R1-S-S-R2

[一般式(3)において、R1及びR2はそれぞれ、ジス ルフィドの硫黄原子に結合している炭素原子または窒素 原子を含む有機基である。この有機基は、ジスルフィド の硫黄原子に結合している炭素原子または窒素原子と共 に置換もしくは未置換の脂肪族基、置換もしくは未置換 の芳香族基、あるいは置換もしくは未置換の複素環基を 形成したものであっても、ジスルフィドの硫黄原子に結 合している炭素原子または窒素原子に置換もしくは未置 換の脂肪族基、芳香族基、複素環基またはアミノ基、な らびにイミノ基、酸素原子、黄原子等が結合した有機基 であってもよい。またR1とR2は同一でも異なっていて もよく、結合して環を形成してもよい。またR1とR2の 上記した置換基は、アルキル基、アリール基、複素環 基、アミノ基、アミド基、イミノ基、アンモニウム基、 ヒドロキシ基、スルホ基、カルボキシ基、アミノカルボ ニル基またはアミノスルホニル基、ハロゲン原子等の置 換基である。]

【請求項6】 前記化合物(G)のチアジン系化合物がメルカプトチアジン系化合物の少なくとも1つである請求項2に記載のインクジェット記録材料。

【請求項7】 前記化合物(B)の水溶性多価金属塩が、ニッケル、亜鉛、コバルトの少なくとも1つの塩である請求項2に記載のインクジェット記録材料。

【請求項8】 前記化合物(B)のチオウレア系化合物が、チオウレア、Nーメチルチオウレア、Nーアセチルチオウレア、1,3ージフェニルチオウレア、テトラメチルチオウレア、グアニルチオウレア、4ーメチルチオセミカルバジド、1,3ービス(ヒドロキシメチル)ー2(3H)ベンズイミダゾールチオン、6ーヒドロキシー1ーフェニルー3,4ージヒドロピリミジンー2(1H)ーチオン、1ーアリルー2ーチオウレア、1,3ージメチルー2ーチオウレア、1,3ージエチルー2ーチオウレア、エチレンチオウレア、トリメチルチオウレアの少なくとも1つである請求項2に記載のインクジェット記録材料。

【請求項9】 前記化合物 (C) の糖類が、還元糖類の 少なくとも1つである請求項2に記載のインクジェット 記録材料。

【請求項10】 前記化合物 (D) のピリジン系化合物が、4ーアミノメチルピリジン、4ークロロピリジン塩酸塩、4ーヒドロキシピリジン、4ーシアノピリジン、3ーシアノピリジン、2,2'ービピリジン、イソニコチン酸アミド、イソニコチン酸メチルの少なくとも1つである請求項2に記載のインクジェット記録材料。

【請求項11】 前記化合物(E)のチオエーテル系化合物が、3,6-ジチオー1,8-オクタンジオール、ビス[2-(2-ヒドロキシエチルチオ)エチル]スルホン、3,6、9-トリチオー1,11-ウンデカンジオール、4-(メチルチオ)フェノール、2-(フェニルチオ)エタノールの少なくとも1つである請求項4に

記載のインクジェット記録材料。

【請求項12】 前記化合物 (F) のジスルフィド系化合物が、DL $-\alpha$ -リポ酸、4,4'-ジチオジモルフォリン、4,4'-ジチオジブタン酸の少なくとも1つである請求項2に記載のインクジェット記録材料。

【請求項13】 前記化合物 (G) のチアジン系化合物が、5,6-ジヒドロー(4H)-1,3-チアジンー2-チオール、3-ベンジルー1,3-チアジナンー2-チオン、3-メチルー1,3-チアジナンー2-チオン、5,6-ジヒドロー2-メチルチオー4H-1,3-チアジン、3-カルボキシメチルー6,6-ジメチルー4-オキソー1,3-チアジナン-2-チオンの少なくとも1つである請求項6に記載のインクジェット記録材料。

【請求項14】 前記支持体が、原紙の両面をポリオレフィン樹脂で被覆された支持体である請求項1~13の何れか1項に記載のインクジェット記録材料。

【請求項15】 前記インク受容層が無機微粒子を10~30g/㎡含有し、親水性バインダーを前記無機微粒子に対して、30重量%以下含有する請求項1~14の 20何れか1項に記載のインクジェット記録材料。

【請求項16】 前記無機微粒子が気相法シリカである 請求項1~15の何れか1項に記載のインクジェット記 録材料。

【請求項17】 前記気相法シリカの一次粒子の平均粒径が3~15nmで、かつBET法による比表面積が200㎡/g以上である請求項16に記載のインクジェット記録材料。

【請求項18】 前記インク受容層が更にカチオン性化 合物を含有する請求項1~17の何れか1項に記載のイ 30 ンクジェット記録材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インクジェット記録材料に関し、更に詳しくは、フォトライクな高い光沢を有し、インク吸収性に優れ、かつ印字後の保存性が改良されたインクジェット記録材料に関するものである。

[0002]

【従来の技術】インクジェット記録方式に使用される記録材料として、通常の紙やインクジェット記録用紙と称 40 される支持体上に非晶質シリカ等の顔料をポリビニルアルコール等の水溶性バインダーからなる多孔質のインク吸収層を設けてなる記録材料が知られている。

【0003】例えば、特開昭55-51583号、同56-157号、同57-107879号、同57-107879号、同57-107880号、同59-230787号、同62-160277号、同62-184879号、同62-183382号、及び同64-11877号公報等に開示のごとく、シリカ等の含珪素顔料を水系パインダーと共に紙支持体に塗布して得られる記録材料が提案されている。

【0004】また、特公平3-56552号、特開平2 -188287号、同平10-81064号、同平10 -119423号、同平10-175365号、同平1 0-193776号、同10-203006号、同10 -217601号、同平11-20300号、同平11 -20306号、同平11-34481号公報等公報に は、気相法による合成シリカ微粒子(以降、気相法シリ カと称す)を用いることが開示されている。この気相法 シリカは、一次粒子の平均粒径が数nm~数+nmの超 微粒子であり、高い光沢が得られるという特徴がある。 近年、フォトライクの記録シートが要望される中、益々 光沢性が重要視されてきており、ポリオレフィン樹脂被 覆紙(紙の両面にポリエチレン等のポリオレフィン樹脂 をラミネートしたもの)やポリエステルフィルム等の耐 水性支持体上に気相法シリカを主体とするインク受容層 が塗設された記録材料が提案されている。

【0005】従来から一般的に用いられてきた紙支持体は、それ自体がインク吸収層としての役割を有していたが、前述したポリオレフィン樹脂被覆紙等の耐水性支持体は、紙支持体と違ってインクを吸収することができないため、支持体上に設けられたインク受容層のインク吸収性が重要であり、インク受容層の空隙率を高める必要がある。従って、気相法シリカの強布量を多くし、更に、気相法シリカに対するバインダーの比率を低減する必要があった。

【0006】しかしながら気相法シリカのような無機微粒子を用いた多孔質記録材料は、印字後の保管中に印字画像が変色しやすいという問題があった。即ち、光による変色や大気中の微量ガスによる変色が生じやすかった。特に、大気中の微量ガスによる変色はより重要な問題であった。

[0007]

【発明が解決しようとする課題】従って、本発明の目的は、フォトライクの高光沢と高いインク吸収性、及び保存性が改良されたインクジェット記録用材料を提供することにある。

[0008]

【課題を解決するための手段】本発明の上記目的は、支持体上に無機微粒子を含有するインク受容層を設けたインクジェット記録材料において、該インク受容層にスルフィン酸化合物、チオスルホン酸化合物、チオスルフィン酸化合物の少なくとも1つを含有することを特徴とするインクジェット記録材料によって達成された。好ましくは更にチオウレア系化合物、糖類、ピリジン系化合物、チオエーテル系化合物、ジスルフィド系化合物、及びチアジン系化合物から選ばれた少なくとも1つの化合物を含有することを特徴とするインクジェット記録材料である。

[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。

本発明のインクジェット記録材料は、シリカ微粒子によって皮膜中に形成された空隙にインクを吸収させるものであり、高いインク吸収性を発現させるためには空隙容量を高める必要がある。このため、支持体上には比較的多量のシリカ微粒子を塗布する必要があり、また、親水性バインダー量は空隙率を高めるために減量することが好ましい。

【0010】本発明に用いられる無機微粒子としては、シリカ、アルミナ等公知の各種微粒子が挙げられるが、気相法シリカが最も好ましい。インク受容層に、気相法 10シリカは、8g/m以上含有するのが好ましく、10~30g/mの範囲で用いるのがより好ましい。この範囲より少ないと、インク吸収性が劣る。親水性バインダー量は、気相法シリカに対して40重量%以下が好ましく、更に10~30重量%がより好ましい。このように親水性バインダーの比率を小さくすることによって、インク吸収性は向上するが、印字後の保存性、特に耐ガス性が低下しやすく、本発明は、これらの性能を同時に満足させることを特徴とする。

【0011】本発明において、気相法シリカはインク受容層中に主たる割合、すなわちインク受容層の全固形分に対して気相法シリカを50重量%以上、好ましくは60重量%以上含有することが好ましい。

【0012】合成シリカには、湿式法によるものと気相法によるものがある。湿式法シリカとしては、①ケイ酸ナトリウムの酸などによる複分解やイオン交換樹脂層を通して得られるシリカゾル、または②このシリカゾルを加熱熟成して得られるコロイダルシリカ、③シリカゾルをゲル化させ、その生成条件を変えることによって数ミクロンから10ミクロン位の一次粒子がシロキサン結合をした三次元的な二次粒子となったシリカゲル、更には④シリカゾル、ケイ酸ナトリウム、アルミン酸ナトリウム等を加熱生成させて得られるもののようなケイ酸を主体とする合成ケイ酸化合物等がある。

【0013】気相法シリカは、湿式法に対して乾式法とも呼ばれ、一般的には火炎加水分解法によって作られる。具体的には四塩化ケイ素を水素及び酸素と共に燃焼して作る方法が一般的に知られているが、四塩化ケイ素の代わりにメチルトリクロロシランやトリクロロシラン類も、単独または四塩化ケイ素と混合した状態で使用することができる。気相法シリカは日本アエロジル株式会社からアエロジル、トクヤマ株式会社からアエロジル、トクヤマ株式会社からアエロジル、トクヤマ株式会社からアエロジル、トクヤマ株式会社からアエロジル、トクヤマ株式会社からアエロジル、トクヤマ株式会社からの「人人人」を明に好ましく用いられる気相法シリカの一次粒子の平均粒径は、30nm以下が好ましく、より高い光沢を得るためには、15nm以下が好ましく、より高い光沢を得るためには、15nm以下が好ましい。更に好ましくは一次粒子の平均粒径が3~15nm(特に3~10nm)でかつBET法による比表面積が200㎡/g以上(好ましくは250~500㎡/

g)のものを用いることである。本発明で云うBET法とは、気相吸着法による粉体の表面積測定法の一つであり、吸着等温線から1gの試料の持つ総表面積、即ち比表面積を求める方法である。通常吸着気体としては、窒素ガスが多く用いられ、吸着量を被吸着気体の圧、または容積の変化から測定する方法が最も多く用いられている。多分子吸着の等温線を表すのに最も著名なものは、Brunauer、Emmett、Tellerの式であってBET式と呼ばれ表面積決定に広く用いられている。BET式に基づいて吸着量を求め、吸着分子1個が表面で占める面積を掛けて、表面積が得られる。

【0015】本発明において、気相法ジリカとともに用いられる親水性パインダーとしては、公知の各種パインダーを用いることができるが、透明性が高くインクのより高い浸透性が得られる親水性パインダーが好ましく用いられる。親水性パインダーの使用に当たっては、親水性パインダーがインクの初期の浸透時に膨潤して空隙を塞いでしまわないことが重要であり、この観点から比較的室温付近で膨潤性の低い親水性パインダーが好ましく用いられる。特に好ましい親水性パインダーは完全または部分ケン化のポリビニルアルコールまたはカチオン変性ポリビニルアルコールである。

【0016】ポリビニルアルコールの中でも特に好ましいのは、ケン化度が80以上の部分または完全ケン化したものである。平均重合度200~5000のものが好ましい。

【0017】また、カチオン変性ポリビニルアルコールとしては、例えば特開昭61-10483号に記載されているような、第1~3級アミノ基や第4級アンモニウム基をポリビニルアルコールの主鎖あるいは側鎖中に有するポリビニルアルコールである。

【0018】本発明は、上記親水性バインダーと共に架 橋剤 (硬膜剤) を用いることが好ましい。架橋剤の具体 的な例としては、ホルムアルデヒド、グルタルアルデヒ ドの如きアルデヒド系化合物、ジアセチル、クロルペン タンジオンの如きケトン化合物、ビス (2-クロロエチ ル尿素) -2-ヒドロキシ-4, 6-ジクロロ-1, 3, 5トリアジン、米国特許第3, 288, 775号記 載の如き反応性のハロゲンを有する化合物、ジビニルス ルホン、米国特許第3,635,718号記載の如き反 応性のオレフィンを持つ化合物、米国特許第2, 73 2. 3 1 6 号記載の如き N - メチロール化合物、米国特 許第3,103,437号記載の如きイソシアナート 類、米国特許第3,017,280号、同2,983, 611号記載の如きアジリジン化合物類、米国特許第 3, 100, 704号記載の如きカルボジイミド系化合 物類、米国特許第3,091,537号記載の如きエポ キシ化合物、ムコクロル酸の如きハロゲンカルボキシア ルデヒド類、ジヒドロキシジオキサンの如きジオキサン 誘導体、クロム明ばん、硫酸ジルコニウム、ほう酸及び

7

ほう酸塩の如き無機架橋剤等があり、これらを1種または2種以上組み合わせて用いることができる。これらの中でも、特にほう酸またはほう酸塩が好ましい。

【0019】本発明は、気相法シリカと組み合わせて、 スルフィン酸化合物、チオスルホン酸化合物、チオスル フィン酸化合物を用いることによって、印字後の保存性 を著しく改良するものである。

【0020】スルフィン酸化合物としては、下記一般式(4)で表される化合物が好ましい。

[0021]

【化4】

一般式 (4)

R-SO₂M

【0022】一般式(4)中、Rは置換または無置換のアルキル基(好ましくは炭素数 $6\sim30$)、置換または無置換のアリール基(フェニル基、ナフチル基等で、好ましくは炭素数 $6\sim30$)を表す。Mは水素原子、アルカリ金属原子、アンモニウムを表す。

【0023】上記のRで表される基の置換基としては、 直鎖、分岐または環状のアルキル基(好ましくは炭素数 1~20)、アラルキル基(好ましくは単環または2環 で、アルキル部分の炭素数が1~3)、アルコキシ基 (好ましくは炭素数1~20)、1もしくは2置換アミ ノ基(好ましくは炭素数1~20のアルキル基、アシル 基、アルキルもしくはアリールスルホニル基であり、2 置換の場合には置換基中の炭素数の総数は20以下であ るもの)、1~3置換または無置換のウレイド基(好ま しくは炭素数1~20)、置換または無置換のアリール 基(好ましくは炭素数6~29の単環もしくは2環のも の)、置換または無置換のアリールチオ基(好ましくは 炭素数6~29)、置換または無置換のアルキルチオ基 (好ましくは炭素数1~29)、置換または無置換のア ルキルスルホキシ基(好ましくは炭素数1~29)、置 換または無置換のアリールスルホキシ基(好ましくは炭 素数6~29で単環もしくは2環のもの)、置換または 無置換のアルキルスルホニル基 (好ましくは炭素数1~ 29)、置換または無置換のアリールスルホニル基(好 ましくは炭素数6~29で単環もしくは2環のもの)、 アリールオキシ基(好ましくは炭素数6~29で単環も しくは2環のもの)、カルバモイル基(好ましくは炭素 数1~29)、スルファモイル基(好ましくは炭素数1 ~29)、ヒドロキシ基、ハロゲン原子(フッ素、塩 素、臭素、沃素)、スルホン酸基、又はカルボン酸基な どである。

【0024】これらの置換基は更に、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アリールスルホニル基、アリールスルホニル基、カルボンアミド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルキルスル

•

ホキシ基、アリールスルホキシ基、エステル基、ヒドロキシ基、カルボキシ基、スルホ基、ハロゲン原子などの置換基を有していてもよい。これらの基は互いに連結して環を形成していてもよい。またこれらの基はホモボリマー又はコポリマー鎖の一部となっていてもよい。

【0025】チオスルホン酸化合物としては、下記一般式(5)で表される化合物が好ましい。

[0026]

【化5】 一般式(5)

【0027】一般式(5)中、Zは置換または無置換アルキル基(好ましくは炭素数 $1\sim18$)、置換または無置換アリール基(好ましくは炭素数 $6\sim18$)又は置換または無置換ったい環基を表し、Yは置換または無置換芳香環(好ましくは炭素数 $6\sim18$)又は置換または無置換方の環を形成するに必要な原子を表す。Mは金属原子または有機カチオン、 π は $2\sim10$ の整数を表す。【0028】上記のZおよびYで表される基の置換基としては、例えばメチル基、エチル基等の低級アルキル基、フェニル基等のアリール基、炭素数 $1\sim8$ のアルコキシ基、塩素等のハロゲン原子、ニトロ基、アミノ基、カルボキシ基などを挙げることができる。Mで表される 金属原子としては、ナトリウム、カリウムのようなアルカリ金属原子が、有機カチオンとしては、アンモニウム、グアニジン基などが好ましい。

【0029】チオスルフィン酸化合物としては、下記一般式(6)で表される化合物が好ましい。

[0030]

【化6】 一般式(6)

【0031】一般式(6)のZ、Y、M及びnは前記一般式(5)の定義と同じである。

【0032】以下に前述したスルフィン酸化合物、チオスルホン酸化合物、及びチオスルフィン酸化合物の具体例を示すが、これらに限定されるものではない。

[0033]

【0036】上記スルフィン酸化合物、チオスルホン酸化合物、及びチオスルフィン酸化合物のインク受容層中 40における含有量は、0.1~50ミリモル/㎡が好ましくは0.2~20ミリモル/㎡がより好ましい。

【0037】本発明ではインク受容層に(A)スルフィン酸化合物、チオスルホン酸化合物、チオスルフィン酸化合物の少なくとも1つに加えて更に(B)チオウレア系化合物、(C)糖類、(D)ピリジン系化合物、

(E) チオエーテル系化合物、(F) ジスルフィド系化合物、及び(G) チアジン系化合物から選ばれた少なくとも1つの化合物を含有させるのが画像保存性からは好ましい。併用することにより化合物(A) 単独使用より

も大幅に画像保存性が改良される。化合物(B)~

10

(G) による画像保存性の改良機構が化合物 (A) とは 異なるために、補完しあって相乗効果が得られると予想 される。

【0038】本発明の化合物(B)のチオウレア系化合物としては、好ましくは前記一般式(1)の構造を分子中に1個以上有する化合物であり、チオウレア、Nーメチルチオウレア、Nーアセチルチオウレア、1,3ージフェニルチオウレア、テトラメチルチオウレア、グアニルチオウレア、4ーメチルチオセミカルバジド、1,3ービス(ヒドロキシメチル)-2(3H)ペンズイミダゾールチオン、6ーヒドロキシー1ーフェニルー3,4ージヒドロピリミジンー2(1H)ーチオン、1ーアリルー2ーチオウレア、1,3ージエチルー2ーチオウレア、エチレンチオウレア、トリメチルチオウレア、1ーカルボキシメチルー2ーチオヒダントイン、チオセミカルバジド等が挙げられる。

【0039】本発明の化合物(C)の糖類としては、例えば、Dーグルコース、Dーリボース、マルトース、セロビオース、メリビオース、ゲンチオビオース、Dーグルコサミン、Dーキシロース、Dーガラクトース、ラクトース、ビシアノース、ツラノース、ゲンチアノース、ルチノース、Lーキシロース、Lーソルボース、Dーマース、ラフィノース、スタキオース等の単糖類、少糖類はオリゴ糖とも呼ばれ、二糖からより好ましくはDーグルコース、ラクトース、Dーリボース、マルトース、トレハロース等の還元基を有する還元糖が選択される。

【0040】本発明の化合物(D)のピリジン系化合物としては、4-アミノメチルピリジン、4-クロロピリジン塩酸塩、4-ヒドロキシピリジン、4-シアノピリジン、3-シアノピリジン、2,2'ーピピリジン、イソニコチン酸アミド、イソニコチン酸メチル、3-ヒドロキシピリジン、3-ピペリジノピリジン、3-アミノメチルピリジン、2,4-ジシアノピリジン、2,4-ジヒドロキシピリジン、2,4-ジシアノピリジン、2,4-ジヒドロキシピリジン、4-クロピリジン塩酸塩、4-ヒドロキシピリジン、4-シアノピリジン、3-シアノピリジン、2,2'ーピピリジン、イソニコチン酸アミド、イソニコチン酸メチルである。

【0041】化合物(E)のチオエーテル系化合物としては、好ましくは前記一般式(2)で表される化合物であり、特に3,6-ジチオー1,8-オクタンジオール、ビス[2-(2-ヒドロキシエチルチオ)エチル]スルホン、3,6、9-トリチオー1,11-ウンデカ

ンジオール、4 ー (メチルチオ) フェノール、2 ー (フェニルチオ) エタノールが好ましい。

【0042】化合物(F)のジスルフィド系化合物としては、好ましくは前記一般式(3)で表される化合物であり、特にDL- α -リポ酸、4, 4'ージチオジモルフォリン、4, 4'ージチオジブタン酸が好ましい。

【0043】化合物(G)のチアジン系化合物としては、好ましくはメルカプトチアジン系化合物であり、特に5,6ージヒドロー(4H)-1,3ーチアジンー2ーチオール、3ーペンジルー1,3ーチアジナンー2ーチオン、3ーメチルー1,3ーチアジナンー2ーチオン、5,6ージヒドロー2ーメチルチオー4H-1,3ーチアジン、3ーカルボキシメチルー6,6ージメチルー4ーオキソー1,3ーチアジナンー2ーチオンが好ましい。

【0044】本発明の化合物(B)~(G)の化合物のインク受容層中における含有量は、0.1~50ミリモル/㎡が好ましくは0.2~20ミリモル/㎡がより好ましい。

【0045】本発明の化合物(A)~(G)相互のインク受容層への含有量の比は特に限定されないが、最大量の化合物が概略最少量の化合物の100倍以内であり、好ましくは10倍以内である。

【0046】本発明では、インク受容層を2層以上に分けて塗布しても良いし、化合物(A)~(G)を含有しないインク受容層を設けた後で化合物(A)~(G)の水性液を塗布か含浸させても良いし、インク受容層の最上層に含有させても良い。特に、インク受容層の1層の塗布液を増粘させる化合物の場合は、別に塗布するほうが好ましい。

【0047】本発明では、化合物(A)の少なくとも1種と化合物(B)~(G)の中から選択された1つ以上の化合物をインクジェット用記録材料を構成する別々の層に分けて含有させることも可能であり、記録材料として、各化合物が印字されたインク色剤に接触しているほうが耐光性の効果からは好ましく、耐ガス性からは支持体から離れた上層に各化合物を多く含有させるほうが好ましい。

【0048】本発明のインク受容層には、カチオン性化合物を含有するのが好ましい。上記化合物とカチオン性 40化合物を組み合わせて用いることによって、更に保存性が改良される。

【0049】カチオン性化合物としては、例えばカチオン性ポリマーや水溶性金属化合物が挙げられる。カチオン性ポリマーとしては、ポリエチレンイミン、ポリジアリルアミン、ポリアリルアミン、アルキルアミン重合物、特開昭59-20696号、同59-33176号、同59-33177号、同59-155088号、同60-11389号、同60-49990号、同60-83882号、同60-109894号、同62-1 50

98493号、同63-49478号、同63-115780号、同63-280681号、特開平1-40371号、同6-234268号、同7-125411号、同10-193776号公報等に記載された1~3級アミノ基、4級アンモニウム塩基を有するポリマーが好ましく用いられる。これらのカチオンポリマーの分子量は、5,000以上が好ましく、更に5,000~10万程度が好ましい。

【0050】これらのカチオン性ポリマーの使用量は気相法シリカに対して1~10重量%、好ましくは2~7 重量%である。

【0051】本発明に用いられる水溶性金属化合物とし て、例えば水溶性の多価金属塩が挙げられる。カルシウ ム、バリウム、マンガン、銅、コバルト、ニッケル、ア ルミニウム、鉄、亜鉛、ジルコニウム、クロム、マグネ シウム、タングステン、モリブデンから選ばれる金属の 水溶性塩が挙げられる。具体的には例えば、酢酸カルシ ウム、塩化カルシウム、ギ酸カルシウム、硫酸カルシウ ム、酢酸バリウム、硫酸バリウム、リン酸バリウム、塩 化マンガン、酢酸マンガン、ギ酸マンガンニ水和物、硫 酸マンガンアンモニウム六水和物、塩化第二銅、塩化ア ンモニウム銅(II)ニ水和物、硫酸銅、塩化コバルト、 チオシアン酸コバルト、硫酸コバルト、硫酸ニッケル六 水和物、塩化ニッケル六水和物、酢酸ニッケル四水和 物、硫酸ニッケルアンモニウム六水和物、アミド硫酸ニ ッケル四水和物、硫酸アルミニウム、亜硫酸アルミニウ ム、チオ硫酸アルミニウム、ポリ塩化アルミニウム、硝 酸アルミニウム九水和物、塩化アルミニウム六水和物、 臭化第一鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫 酸第二鉄、フェノールスルホン酸亜鉛、臭化亜鉛、塩化 亜鉛、硝酸亜鉛六水和物、硫酸亜鉛、酢酸ジルコニウ ム、塩化ジルコニウム、塩化酸化ジルコニウム八水和 物、ヒドロキシ塩化ジルコニウム、酢酸クロム、硫酸ク ロム、硫酸マグネシウム、塩化マグネシウム六水和物、 クエン酸マグネシウム九水和物、りんタングステン酸ナ トリウム、クエン酸ナトリウムタングステン、12タング ストりん酸n水和物、12タングストけい酸26水和物、塩 化モリブデン、12モリブドりん酸n水和物等が挙げられ る。

【0052】本発明において、特に水溶性アルミニウム 化合物あるいは周期表 4 A 族元素を含む水溶性化合物が 好ましい。水溶性アルミニウム化合物は、例えば無機塩 としては塩化アルミニウムまたはその水和物、アンモニウムミョウバン等 が知られている。さらに、無機系の含アルミニウムカチオンポリマーである塩基性ポリ水酸化アルミニウム化合物がある。特に、塩基性ポリ水酸化アルミニウム化合物がある。特に、塩基性ポリ水酸化アルミニウム化合物がある。

【0053】前記塩基性ポリ水酸化アルミニウム化合物 とは、主成分が下記の一般式1、2又は3で示され、例

えば [Al6 (OH) 15] ³⁺、 [Al8 (OH) 20] ⁴⁺、 [Al13 (OH) 34] ⁵⁺、 [Al21 (OH) 60] ³⁺、等のような塩基性で高分子の多核縮合イオンを安定に含ん

[Al2 (OH) nCl6-n] m [Al (OH) 3] nAlCl3 Aln (OH) mCl(3n-m) 0 < m < 3 n

【0055】これらのものは多木化学(株)よりボリ塩化アルミニウム(PAC)の名で水処理剤として、浅田化学(株)よりポリ水酸化アルミニウム(Paho)の名で、また、(株)理研グリーンよりピュラケムWTの 10名で、また他のメーカーからも同様の目的を持って上市されており、各種グレードの物が容易に入手できる。本発明ではこれらの市販品をそのままでも使用できるが、pHが不適当に低い物もあり、その場合は適宜pHを調節して用いることも可能である。

【0056】本発明に用いられる周期表4A族元素を含む水溶性化合物は水溶性で有れば特に制限はないがチタンまたはジルコニウムを含む水溶性化合物が好ましい。例えばチタンを含む水溶性化合物としては塩化チタン、硫酸チタンが、ジルコニウムを含む水溶性化合物としては塩化チタンは酢酸ジルコニウム、塩化ジルコニウム、オキシ塩化ジルコニウム、ヒドロキシ塩化ジルコニウム、硝酸ジルコニウム、塩基性炭酸ジルコニウム、水酸化ジルコニウム、炭酸ジルコニウム・アンモニウム、炭酸ジルコニウム・カリウム、硫酸ジルコニウム、皮酸ジルコニウム・カリウム、硫酸ジルコニウム、皮酸ジルコニウム・カリウム、硫酸ジルコニウム、皮酸ジルコニウム・カリウム、硫酸ジルコニウム、皮酸ジルコニウム・カリウム、硫酸ジルコニウム、水酸性シルコニウム・カリウム、硫酸ジルコニウム、水酸性シードが不適当に低い物もあり、その場合は適宜pHを調節して用いることも可能である。本発明に於いて、水溶性とは常温常圧下で水に1重量%以上溶解することを目安とする。

【0057】本発明において、上記水溶性の金属化合物 30 のインク受容層中の含有量は、気相法シリカに対して 0.1~10重量%が好ましく、更に好ましくは1~5 重量%である。

【0058】上記したカチオン性化合物は2種以上を併用することができる。例えば、カチオン性ポリマーと水溶性金属化合物を併用するのが好ましい。

【0059】本発明において、気相法シリカを含有するインク受容層の膜面pHが2~6であることが好ましく、特に3~5が好ましい。前述した本発明の化合物とこの膜面pHを組み合わせることによって更に保存性が 40向上する。インク受容層の膜面pHは、J. TAPPI紙パルプ試験方法N0. 49に記載の方法に従って、蒸留水を用い、30秒後に測定した表面pHである。

【0060】インク受容層のpHは、塗布液の段階で調整するのが好ましが、塗布液のpHと塗布乾燥された状態での膜面pHとは必ずしも一致しないため、塗布液と膜面pHとの関係を予め実験等によって求めておくことが所定の膜面pHにするために必要である。インク受容層塗布液のpHは、酸またはアルカリを適当に組み合わせて行われる。酸としては、塩酸、硝酸、硫酸、リン酸 50

でいる水溶性のポリ水酸化アルミニウムである。 【0054】

> 式1 式2 式3

等の無機酸、酢酸、クエン酸、コハク酸等の有機酸が用いられ、アルカリとしては、水酸化ナトリウム、アンモニア水、炭酸カリウム、リン酸三ナトリウム、または弱アルカリとして、酢酸ナトリウム等の弱酸のアルカリ金属塩が用いられる。

【0061】本発明のインク受容層は、更に皮膜の脆弱性を改良するために各種油滴を含有することができる。そのような油滴としては室温における水に対する溶解性が0.01重量%以下の疎水性高沸点有機溶媒(例えば、流動パラフィン、ジオクチルフタレート、トリクレジルホスフェート、シリコンオイル等)や重合体粒子(例えば、スチレン、ブチルアクリレート、ジビニルベンゼン、ブチルメタクリレート、ヒドロキシエチルメタクリレート等の重合性モノマーを一種以上重合させた粒子)を含有させることができる。そのような油滴は好ましくは親水性バインダーに対して10~50重量%の範囲で用いることができる。

【0062】本発明において、インク受容層に界面活性剤を添加することができる。用いられる界面活性剤はアニオン系、カチオン系、ノニオン系、ベタイン系のいずれのタイプでもよく、また低分子のものでも高分子のものでもよい。1種もしくは2種以上界面活性剤をインク受理層塗液中に添加するが、2種以上の界面活性剤を組み合わせて使用する場合は、アニオン系のものとカチオン系のものとを組み合わせて用いることは好ましくない。界面活性剤の添加量はインク受容層を構成するバインダー100gに対して0.001~5gが好ましく、より好ましくは0.01~3gである。

【0063】本発明において、インク受容層には更に、 着色染料、着色顔料、インク染料の定着剤、紫外線吸収 剤、酸化防止剤、顔料の分散剤、消泡剤、レベリング 剤、防腐剤、蛍光増白剤、粘度安定剤、pH調節剤など の公知の各種添加剤を添加することもできる。

【0064】本発明に用いられる支持体としては耐水性支持体が好ましい。耐水性支持体としては、ポリエチレンテレフタレート等のポリエステル樹脂、ジアセテート樹脂、トリアセテート樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリ塩化ビニル、ポリイミド樹脂、セロハン、セルロイド等のプラスチック樹脂フィルム、及び紙の両面にポリオレフィン樹脂をラミネートした樹脂被覆紙が挙げられる。本発明に用いられる耐水性支持体の厚みは、約50~300μm程度が好ましい。

【0065】本発明において好ましく用いられる樹脂被 覆紙を構成する原紙は、特に制限はなく、一般に用いら

れている紙が使用できるが、より好ましくは例えば写真

い。原紙を構成するパルプとしては天然パルプ、再生パ

ルプ、合成パルプ等を1種もしくは2種以上混合して用

いられる。この原紙には一般に製紙で用いられているサ

イズ剤、紙力増強剤、填料、帯電防止剤、蛍光増白剤、

染料等の添加剤が配合される。

用支持体に用いられているような平滑な原紙が好まし

容層が塗布される面(表面)は、その用途に応じて光沢面、マット面などを有し、特に光沢面が優位に用いられる。 裏面に樹脂を被覆する必要はないが、カール防止の点から樹脂被覆したほうが好ましい。 裏面は通常無光沢面であり、表面あるいは必要に応じて表裏両面にもコロ

16

ナ放電処理、火炎処理などの活性処理を施すことができる。また、樹脂被覆層の厚みとしては特に制限はないが、一般に 5 ~ 5 0 μ m の厚味に表面または表裏両面にコーティングされる。

【0066】さらに、表面サイズ剤、表面紙力剤、蛍光 増白剤、帯電防止剤、染料、アンカー剤等が表面塗布さ れていてもよい。

【0067】また、原紙の厚みに関しては特に制限はないが、紙を抄造中または抄造後カレンダー等にて圧力を印加して圧縮するなどした表面平滑性の良いものが好ましく、その坪量は30~250g/mが好ましい。

【0068】樹脂被覆紙の樹脂としては、ポリオレフィン樹脂や電子線で硬化する樹脂を用いることができる。ポリオレフィン樹脂としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテンなどのオレフィンのホモポリマーまたはエチレンープロピレン共重合体などのオレフィンの2つ以上からなる共重合体及びこれらの混合物であり、各種の密度、溶融粘度指数(メルトインデックス)のものを単独にあるいはそれらを混合して使用できる。

【0069】また、樹脂被覆紙の樹脂中には、酸化チタン、酸化亜鉛、タルク、炭酸カルシウムなどの白色顔料、ステアリン酸アミド、アラキジン酸アミドなどの脂肪酸アミド、ステアリン酸亜鉛、ステアリン酸マグネシウムなどの脂肪酸金属塩、イルガノックス1010、イルガノックス1076などの酸化防止剤、コバルトブルの、群青、セシリアンブルー、フタロシアニンブルーなどのブルーの顔料や染料、コバルトバイオレット、ファストバイオレット、マンガン紫などのマゼンタの顔料や染料、蛍光増白剤、紫外線吸収剤などの各種の添加剤を適宜組み合わせて加えるのが好ましい。

【0070】本発明において好ましく用いられる支持体である樹脂被覆紙は、走行する原紙上にポリオレフィン樹脂の場合は、加熱溶融した樹脂を流延する、いわゆる押出コーティング法により製造され、その両面が樹脂により被覆される。また、電子線により硬化する樹脂の場合は、グラビアコーター、ブレードコーターなど一般に用いられるコーターにより樹脂を塗布した後、電子線を照射し、樹脂を硬化させて被覆する。また、樹脂を原紙に被覆する前に、原紙にコロナ放電処理、火炎処理などの活性化処理を施すことが好ましい。支持体のインク受

【0071】本発明における支持体には帯電防止性、搬送性、カール防止性などのために、各種のバックコート層を塗設することができる。バックコート層には無機帯電防止剤、有機帯電防止剤、親水性バインダー、ラテックス、硬化剤、顔料、界面活性剤などを適宜組み合わせて含有せしめることができる。

【0072】本発明において、インク受容層の塗布方法 は、特に限定されず、公知の塗布方法を用いることがで きる。例えば、スライドリップ方式、カーテン方式、エ クストルージョン方式、エアナイフ方式、ロールコーティング方式、ロッドバーコーティング方式等がある。

【0073】本発明において、インクジェット記録材料には、気相法シリカを含有する層(この層は複数層であってもよい)に加え、さらにインク吸収層、インク定着層、中間層、保護層等を設けてもよい。例えば、下層に水溶性ポリマー層を塗設したり、上層に膨潤層を塗設してもよい。

[0074]

【実施例】以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。なお、部とは固形分重量部を意味する。

【0075】実施例1

支持体として、LBKP (50部)とLBSP (50部)のパルプ配合からなる120g/㎡の基紙の表面に低密度ポリエチレン (70部)と高密度ポリエチレン (20部)と酸化チタン (10部)からなる樹脂組成物を25g/㎡塗布し、裏面に高密度ポリエチレン (50部)と低密度ポリエチレン (50部)からなる樹脂組成物を25g/㎡塗布してなる樹脂被覆紙を用意した。

【0076】上記支持体上に、下記組成のインク受容層 塗液を調整し、気相法シリカの塗布量が固形分で18g /㎡となるように塗布、乾燥してインクジェット記録シートを作成した。尚、いずれの記録シートもインク受容 層の膜面pHが4.2になるように調整した。

[0077]

<記録シート1>

気相法シリカ

100部

(平均一次粒径7nm BET法による比表面積300m²/g)

ポリビニルアルコール

23部

(商品名:PVA235、(株)クラレ製、ケン化度88%、平均重合度3500)

ほう酸

両性界面活性剤

18

4部 0.3部

(商品名:SWAM AM 2150、日本サーファクタント製)

【0078】<記録シート2>上記記録シート1のポリビニルアルコールを46部に増量した。

【0079】 <記録シート3>記録シート1のインク受容層に下記化10の化合物を10ミリモル/㎡加えた。 【0080】 <記録シート4>記録シート1のインク受容層に下記化11の化合物を10ミリモル/㎡加えた。

【0081】<記録シート5>記録シート1のインク受 10 容層に下記化12を10ミリモル/㎡加えた。

【0082】<記録シート6>記録シート1のインク受容層にアスコルピン酸を10ミリモル/㎡加えた。

【0083】<記録シート7>記録シート1のインク受容層に本発明の化合物A-1を10ミリモル/㎡加えた。

【0084】<記録シート8>記録シート1のインク受容層に本発明の化合物A-7を10ミリモル/㎡加えた。

【0085】 <記録シート9 >記録シート1のインク受 20 容層に本発明の化合物B-4を10ミリモル/㎡加えた。

【0086】<記録シート10>記録シート1のインク 受容層に本発明の化合物B-9を10ミリモル/㎡加えた。

【0087】<記録シート11>記録シート1のインク 受容層に本発明の化合物C-1を10ミリモル/㎡加えた。

【0088】 【化10】

оснұснұон оснұснұон

[0089] 【化11]

OH OH

[0090] [(t12]

【0091】得られた各々のインクジェット記録シートについて、インク吸収性、印字後の保存性(耐光性及び耐ガス性)、及び光沢度を評価した。その結果を表1に示す。

【0092】<インク吸収性>インクジェットプリンター(セイコーエプソン社製PM-770C)を用いて、CMYをそれぞれ100%で印字して、印字直後にPPC用紙を印字部に重ねて軽く圧着し、PPC用紙に転写したインク量の程度を目視で観察し、下記の基準で評価した。

o ○:全く転写しない。

×:転写する。

【0093】<耐光性>インクジェットプリンター(セイコーエプソン社製PM-770C)を用いてCYMKのインクでそれぞれベタ印字を行い、アトラス社製サンテストCPS光退色試験機にて600W/㎡で30時間照射した後、印字部の濃度を測定し、画像残存率(照射後濃度/照射前の濃度)を求め、CMYK画像の内、最も残存率が低いものを表示した。

【0094】<耐ガス性>上記耐光性試験と同様に印字 30 後、空気中に室温で3ヶ月間曝露した後、印字部の濃度 を測定し、画像残存率(曝露後濃度/曝露前の濃度)を 求め、CMYK画像の内、最も残存率が低いものを表示 した。

【0095】<光沢度>JIS P-8142 (紙及び 板紙の75度鏡面光沢度試験方法) に記載の方法に従って測定した。

【0096】

記録シート	インク吸収性	保存性(%)耐光性耐がな性	備考
1	0	70 68	比較
2	×	72 80	比較
3	0	78 70	比較
4	0	77 72	比較

5 0 7 6 7 1 比較 0 7 5 7 3 比較 6 7 0 8 2 9 2 本発明 8 0 8 2 9 0 本発明 9 0 8 4 9 3 本発明 0 9 1 本発明 1 0 8 2 0 8 6 本発明 1 1 8 1

【0097】光沢度は、いずれの記録シートも60~65%で、高い光沢を示した。

19

【0098】上記結果から明らかなように、本発明の化合物を用いることによって、高いインク吸収性を維持しつつ保存性が改良される。即ち、水溶性バインダーであるポリビニルアルコールの量を減じることによってインク吸収性が向上するが、保存性、特に耐ガス性が著しく低下する。本発明は、インク吸収性と保存性が同時に改良され、かつフォトライクな高光沢が得られる。

【0099】実施例2

実施例1に用いた気相法シリカを平均一次粒径が30nmのものに代える以外は同様に試験した。その結果、イ 20

ンク吸収性及び保存性はほぼ同じ結果が得られたが、光 10 沢度が5~10%低下した。

【0100】実施例3

実施例1の本発明の記録シート7~11に、更にカチオン性化合物として、ジアリルアミン塩酸塩-二酸化硫黄共重合物(日東紡(株)製、商品名PAS-92)及び塩基性ポリ水酸化アルミニウム(理研グリーン株製のピュラケムWF)を3部使用して記録シート7A~11A、7B~11Bを作成し、実施例1と同様に評価した。その結果を表2に示す。

[0101]

【表2】

記録シート	カチオン性	インク吸収性	保有	性
	化合物		耐光性	耐がス性
7 A	P A S - 9 2	0	8 3	9 4
8 A	"	0	8 3	9 3
9 A	"	0	8 4	9 4
1 0 A	"	0	8 1	9 4
1 1 A	"	0	8 2	9 0
7 B	ピユラケム W T	0	9 2	9 7
8 B	"	0	9 2	9 7
9 B	"	0	9 1	98
1 0 B	"	0	9 0	96
1 1 B	"	Ο.	9 1	9 1

【0102】光沢度は、いずれの記録シートも60~65%で、高い光沢を示した。

【0103】上記結果から分かるように、本発明の化合物に更にカチオン性化合物として、カチオン性ポリマーあるいは水溶性金属化合物を組み合わせて用いることに 40よって、さらに保存性が向上する。

【0104】 実施例4

支持体として、LBKP(50部)とLBSP(50部)のパルプ配合からなる120g/㎡の基紙の表面に 低密度ポリエチレン(70部)と高密度ポリエチレン

<記録シート21>

気相法シリカ

(20部)と酸化チタン(10部)からなる樹脂組成物を25g/㎡塗布し、裏面に高密度ポリエチレン(50部)と低密度ポリエチレン(50部)からなる樹脂組成物を25g/㎡塗布してなる樹脂被覆紙を用意した。

【0105】上記支持体上に、下記組成のインク受容層 塗液を調整し、気相法シリカの塗布量が固形分で18g /㎡となるように塗布、乾燥してインクジェット記録シートを作成した。尚、いずれの記録シートもインク受容 層の膜面pHが4.2になるように調整した。

[0106]

100部

(平均一次粒径7nm BET法による比表面積300m²/g)

ポリビニルアルコール

23部

(商品名:PVA235、(株)クラレ製、ケン化度88%、平均重合度3500)

22

ほう酸

4部0.3部

両性界面活性剤

(商品名:SWM AM2150、日本サーファクタント製)

【0107】 <記録シート22>記録シート21のイン ク受容層にマルトースを12ミリモル/㎡加えた。

【0108】<記録シート23>記録シート21のインク受容層に本発明の化合物A-1を12ミリモル/㎡加えた。

【0109】 <記録シート24>記録シート21のインク受容層に本発明の化合物A-7を12ミリモル/m³加 to えた。

【0110】 <記録シート25>記録シート21のインク受容層に本発明の化合物B-4を12ミリモル/㎡加えた。

【0111】<記録シート26>記録シート21のインク受容層に本発明の化合物B-9を12ミリモル/㎡加えた。

【0112】<記録シート27>記録シート21のインク受容層に本発明の化合物C-1を12ミリモル/㎡加えた。

【0113】<記録シート28>記録シート21のインク受容層に本発明の化合物A-1を6ミリモル/㎡、及びN-メチルチオウレアを6ミリモル/㎡加えた。

【0114】<記録シート29>記録シート21のインク受容層に本発明の化合物A-1を6ミリモル/㎡、及

びマルトースを6ミリモル/㎡加えた。

【0115】<記録シート30>記録シート21のインク受容層に本発明の化合物A-1を6ミリモル/㎡、及びイソニコチン酸メチルを6ミリモル/㎡加えた。

【0116】<記録シート31>記録シート21のインク受容層に本発明の化合物A-1を6ミリモル/㎡、及び3,6-ジチオー1,8-オクタンジオールを6ミリモル/㎡加えた。

【0117】<記録シート32>記録シート21のインク受容層に本発明の化合物A-1を6ミリモル/㎡、及びDL-α-リポ酸を6ミリモル/㎡加えた。

【0118】<記録シート33>記録シート21のイインク受容層に本発明の化合物A-1を6ミリモル/㎡、及び5,6-ジヒドロー(4H)-1,3-チアジンー2-チオールを6ミリモル/㎡加えた。

【0119】得られた各々のインクジェット記録シートについて、実施例1~3と同様にしてインク吸収性、印字後の保存性(耐光性及び耐ガス性)、及び光沢度を評価した。その結果を表3に示す。

[0120]

【表3】

記録シート	インク吸収性	保存	性(%)	備考
•		耐光性	耐がス性。	
2 1	0	7 0	6 7	比較
2 2	\triangle	8 1	8 3	比較
2 3	0	8 3	9 1	本発明
2 4	0	8 3	9 1	本発明
2 5	0	8 4	9 3	本発明
2 6	0	8 2	9 2	本発明
2 7	0	8 1	8 7	本発明
2 8	0	8 4	9 5	本発明
2 9	0	8 5	9 7	本発明
3 0	Ο.	8 4	9 5	本発明
3 1	0	8 5	9 7	本発明
3 2	0	8 4	9 6	本発明
3 3	0	8 5	9 5	本発明

【0121】光沢度は、いずれの記録シートも60~65%で、高い光沢を示した。

【0122】上記結果から明らかなように、本発明の2種類の化合物を用いた記録シート28~33は高いインキ吸収性を維持しつつ記録シート23~27の本発明の1種類の化合物を用いるよりも更に保存性が改良される。尚、糖類を単独で用いた記録シート22は添加しな 50

い記録シート21よりもインク吸収性が低下し、耐ガス 性の改良効果も不十分であった。

【0123】実施例5

実施例4の本発明の記録シート28~33に、更にカチオン性化合物として、ジアリルアミン塩酸塩-二酸化硫 黄共重合物(日東紡(株)製、商品名PAS-92)及 び塩基性ポリ水酸化アルミニウム(理研ク゚リーン株製のピュ

24

ラケムWア) を 3 部使用して記録シート 2 8 A ~ 3 3 A 、 2 8 B ~ 3 3 B を作成し、実施例 4 と同様に評価した。 その結果を表 4 に示す。

【0124】 【表4】

記録シート	がか性 化合物	インク吸収性	保 存 性 耐光性 耐ガス	性
2 8 A	PAS-92	0	8 4 9	7
2 9 A	"	0	8 5 9	9
3 0 A	"	0	8 5 9	6
3 1 A	4	0	8 5 9	9
3 2 A	"	0	8 5 9	8
3 3 A	"	0	86 9	7
2 8 B	ピユラケム W ト	0	94 9	7
2 9 B	"	0	95 99	9
3 0 B	"	0	95 9	6
3 1 B	"	0	94 9	8
3 2 B	"	0	95 9	7
3 3 B	"	0	95 98	8

【0125】光沢度は、いずれの記録シートも60~65%で、高い光沢を示した。

【0126】上記結果から分かるように、本発明の化合物に更にカチオン性化合物として、カチオン性ポリマーあるいは水溶性金属化合物を組み合わせて用いることに

よって、特に耐ガスの保存性が向上する。

[0127]

【発明の効果】本発明によれば、高いインク吸収性、高 光沢でかつ保存性の改良されたフォトライクなインクジ ェット記録材料が得られる。