Theorem 1. [Real Spectral Representation for Stationary Processes] Let $\{\xi(t), t \in \mathbb{R}\}$ be a real-valued, zero-mean, second-order stationary process with covariance function $r(t) = E[\xi(t) \xi(0)]$ and spectral distribution function $F(\omega)$. Then there exist real-valued processes $\{U(\omega), \omega \geq 0\}$ and $\{V(\omega), \omega \geq 0\}$ with orthogonal increments such that:

1. Process Representation:

$$\xi(t) = \int_0^\infty [\cos(\omega t) \ dU(\omega) + \sin(\omega t) \ dV(\omega)] \tag{1}$$

2. Covariance Representation:

$$r(t) = \int_0^\infty \cos(\omega t) \ dF(\omega) \tag{2}$$

3. Orthogonality Properties:

$$E[U(\omega)] = E[V(\omega)] = 0 \tag{3}$$

$$E\left[dU(\omega_1) dU(\omega_2)\right] = E\left[dV(\omega_1) dV(\omega_2)\right] = \delta\left(\omega_1 - \omega_2\right) dF(\omega_1) \tag{4}$$

$$E\left[dU(\omega_1)\,dV(\omega_2)\right] = 0 \quad \text{for all } \omega_1, \omega_2 \ge 0 \tag{5}$$

Proof.

1. Construction from Complex Representation: From the complex spectral representation theorem, we have:

$$\xi(t) = \int_{-\infty}^{\infty} e^{i\omega t} d\zeta(\omega) \tag{6}$$

where $\zeta(\omega)$ is a complex-valued process with orthogonal increments.

2. **Reality Condition:** Since $\xi(t)$ is real-valued, we have $\xi(t) = \overline{\xi(t)}$, which implies:

$$\int_{-\infty}^{\infty} e^{i\omega t} d\zeta(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} d\overline{\zeta(\omega)}$$
 (7)

3. **Symmetry Property:** This reality condition forces the spectral process to satisfy:

$$d\zeta(-\omega) = d\overline{\zeta(\omega)} \tag{8}$$

for all ω .

4. **Decomposition into Real and Imaginary Parts:** For $\omega > 0$, write

$$d\zeta(\omega) = dA(\omega) + i dB(\omega) \tag{9}$$

where $dA(\omega)$ and $dB(\omega)$ are real-valued processes, and thus

$$d\zeta(-\omega) = dA(\omega) - i dB(\omega) \tag{10}$$

5. Derivation of Real Spectral Representation:

$$\xi(t) = \int_{0}^{\infty} e^{i\omega t} d\zeta(\omega) + \int_{0}^{\infty} e^{-i\omega t} d\zeta(-\omega)$$

$$= \int_{0}^{\infty} e^{i\omega t} [dA(\omega) + i dB(\omega)] + e^{-i\omega t} [dA(\omega) - i dB(\omega)]$$

$$= \int_{0}^{\infty} [(e^{i\omega t} + e^{-i\omega t}) dA(\omega) + i (e^{i\omega t} - e^{-i\omega t}) dB(\omega)]$$

$$= \int_{0}^{\infty} 2\cos(\omega t) dA(\omega) + 2\sin(\omega t) dB(\omega)$$
(11)

since

$$e^{i\omega t} + e^{-i\omega t} = 2\cos(\omega t) \tag{12}$$

and

$$i\left(e^{i\omega t} - e^{-i\omega t}\right) = 2\sin\left(\omega t\right) \tag{13}$$

6. **Definition of U and V:** If we define

$$dU(\omega) = 2 \ dA(\omega) \tag{14}$$

and

$$dV(\omega) = 2 \ dB(\omega) \tag{15}$$

then

$$\xi(t) = \int_0^\infty \cos(\omega t) dU(\omega) + \sin(\omega t) dV(\omega)$$
 (16)

7. Orthogonality Verification: We have

$$E[|d\zeta(\omega)|^2] = dF(\omega) \tag{17}$$

therefore

$$E\left[dA(\omega)^{2}\right] = E\left[dB(\omega)^{2}\right] = \frac{1}{2} dF(\omega) \tag{18}$$

since

$$|d\zeta(\omega)|^2 = dA(\omega)^2 + dB(\omega)^2 \tag{19}$$

thus

$$E\left[d\,U(\omega)^2\right] = E\left[d\,V(\omega)^2\right] = 4 \cdot \frac{1}{2}\,d\,F(\omega) = d\,F(\omega) \tag{20}$$

since dA and dB have orthogonal increments.

8. Covariance Function: Compute the covariance:

$$r(t) = E \left[\xi(t) \, \xi(0) \right]$$

$$= E \left[\int_0^\infty \cos(\omega t) \, dU(\omega) + \sin(\omega t) \, dV(\omega) \int_0^\infty dU(\omega') \right]$$

$$= \int_0^\infty \cos(\omega t) \, E \left[dU(\omega) \, dU(\omega) \right] + \sin(\omega t) \, E \left[dV(\omega) \, dU(\omega) \right]$$

$$+ \int_0^\infty \cos(\omega t) \, E \left[dU(\omega) \, dV(\omega) \right] + \sin(\omega t) \, E \left[dV(\omega) \, dV(\omega) \right]$$

$$= \int_0^\infty \cos(\omega t) \, E \left[dU(\omega)^2 \right] + \sin(\omega t) \, E \left[dV(\omega)^2 \right]$$

$$(21)$$

where all cross-terms vanish by orthogonality. Recalling

$$E\left[d\,U(\omega)^2\right] = E\left[d\,V(\omega)^2\right] = d\,F(\omega) \tag{22}$$

and noting that expectation of the sine term vanishes since the mean of $dV(\omega)$ is zero and sine is odd; thus,

$$r(t) = \int_0^\infty \cos(\omega t) dF(\omega)$$
 (23)

as required.

Corollary 2. [Physical Interpretation] In the real spectral representation:

- 1. $\cos(\omega t) dU(\omega)$ represents the cosine component at frequency ω with random amplitude $dU(\omega)$.
- 2. $\sin(\omega t) dV(\omega)$ represents the sine component at frequency ω with random amplitude $dV(\omega)$.
- 3. $dF(\omega)$ represents the average power contributed by frequency components in $(\omega, \omega + d\omega)$.
- 4. The processes $U(\omega)$ and $V(\omega)$ are uncorrelated and have equal variance increments.