$11n_{132} (K11n_{132})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -7.33308 \times 10^{15} u^{20} - 1.72888 \times 10^{17} u^{19} + \dots + 1.09599 \times 10^{19} b - 8.78124 \times 10^{18}, \\ &- 2.80505 \times 10^{18} u^{20} + 4.20368 \times 10^{18} u^{19} + \dots + 7.67190 \times 10^{19} a - 6.10889 \times 10^{19}, \\ &- u^{21} - u^{20} + \dots - 18u + 28 \rangle \\ I_2^u &= \langle u^8 + 3u^6 + u^5 + 2u^4 + u^3 + u^2 + b + u - 1, \ -u^2 + a - 2, \ u^9 + 4u^7 + u^6 + 5u^5 + 2u^4 + 3u^3 + 2u^2 + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 30 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -7.33 \times 10^{15} u^{20} - 1.73 \times 10^{17} u^{19} + \dots + 1.10 \times 10^{19} b - 8.78 \times 10^{18}, \ -2.81 \times 10^{18} u^{20} + 4.20 \times 10^{18} u^{19} + \dots + 7.67 \times 10^{19} a - 6.11 \times 10^{19}, \ u^{21} - u^{20} + \dots - 18 u + 28 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0365627u^{20} - 0.0547932u^{19} + \dots + 1.60738u + 0.796268 \\ 0.000669086u^{20} + 0.0157746u^{19} + \dots - 0.933535u + 0.801219 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0196295u^{20} - 0.0100507u^{19} + \dots + 1.18048u + 0.217188 \\ 0.00797850u^{20} - 0.0158077u^{19} + \dots + 0.180611u - 0.795772 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0142692u^{20} + 0.0411108u^{19} + \dots - 0.773349u + 1.95583 \\ -0.00351504u^{20} + 0.0137854u^{19} + \dots - 0.476341u + 0.0864955 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0138798u^{20} - 0.0293691u^{19} + \dots + 1.58093u + 0.793197 \\ 0.00952514u^{20} - 0.0122960u^{19} + \dots + 0.486832u + 0.362072 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0196295u^{20} - 0.0100507u^{19} + \dots + 1.18048u + 0.217188 \\ 0.0175759u^{20} - 0.0166603u^{19} + \dots + 0.195992u + 0.0352752 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.00205357u^{20} - 0.0267111u^{19} + \dots + 1.37648u + 0.252463 \\ 0.0175759u^{20} - 0.0166603u^{19} + \dots + 0.195992u + 0.0352752 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.00205357u^{20} - 0.0267111u^{19} + \dots + 1.37648u + 0.252463 \\ 0.0175759u^{20} - 0.0166603u^{19} + \dots + 0.195992u + 0.0352752 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{445709904941671169}{2739962993558394511}u^{20} - \frac{891361635722125989}{5479925987116789028}u^{19} + \cdots + \frac{14080564157258258655}{2739962993558394514}u + \frac{2949485749258559055}{1369981496779197257}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_6	$u^{21} + u^{20} + \dots - 18u - 28$
c_2	$u^{21} + 33u^{20} + \dots - 1972u - 784$
<i>c</i> ₃	$u^{21} - 24u^{19} + \dots + 1851u - 281$
c_4, c_5, c_8	$u^{21} + 2u^{20} + \dots - 12u - 11$
c_7, c_{10}	$u^{21} - 3u^{20} + \dots - 10u - 47$
<i>c</i> ₉	$u^{21} - 17u^{19} + \dots + 73u - 13$
c_{11}	$u^{21} - 4u^{20} + \dots + 19u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{21} + 33y^{20} + \dots - 1972y - 784$
c_2	$y^{21} - 87y^{20} + \dots + 22145008y - 614656$
<i>c</i> ₃	$y^{21} - 48y^{20} + \dots + 982063y - 78961$
c_4, c_5, c_8	$y^{21} + 26y^{20} + \dots - 846y - 121$
c_7, c_{10}	$y^{21} + 7y^{20} + \dots - 7232y - 2209$
c_9	$y^{21} - 34y^{20} + \dots + 2495y - 169$
c_{11}	$y^{21} - 4y^{20} + \dots + 319y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.667126 + 0.763695I		
a = 0.82594 - 1.23941I	1.34010 - 2.53227I	0.85890 + 6.43019I
b = 0.258218 + 1.151380I		
u = -0.667126 - 0.763695I		
a = 0.82594 + 1.23941I	1.34010 + 2.53227I	0.85890 - 6.43019I
b = 0.258218 - 1.151380I		
u = -0.354561 + 1.008430I		
a = -0.227436 + 0.200357I	-7.02572 + 3.49738I	-2.24629 - 2.87148I
b = 0.917813 - 0.821950I		
u = -0.354561 - 1.008430I		
a = -0.227436 - 0.200357I	-7.02572 - 3.49738I	-2.24629 + 2.87148I
b = 0.917813 + 0.821950I		
u = -0.135425 + 0.749831I		
a = 2.26639 + 0.24841I	1.72913 + 0.18094I	3.57258 - 0.16926I
b = 0.299503 - 0.694156I		
u = -0.135425 - 0.749831I		
a = 2.26639 - 0.24841I	1.72913 - 0.18094I	3.57258 + 0.16926I
b = 0.299503 + 0.694156I		
u = 0.137433 + 0.625721I		
a = 0.041014 - 0.214438I	-1.28019 - 1.09527I	-2.70112 + 3.21254I
b = 0.721689 + 0.405487I		
u = 0.137433 - 0.625721I		
a = 0.041014 + 0.214438I	-1.28019 + 1.09527I	-2.70112 - 3.21254I
b = 0.721689 - 0.405487I		
u = 0.576539 + 0.104726I		
a = 0.14734 - 1.76070I	-4.46536 - 3.00711I	1.90224 + 0.80232I
b = -0.906943 - 0.072981I		
u = 0.576539 - 0.104726I		
a = 0.14734 + 1.76070I	-4.46536 + 3.00711I	1.90224 - 0.80232I
b = -0.906943 + 0.072981I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
\overline{u} =	=-0.534365	,	
a =	= 2.09662	1.11788	11.2410
b =	=-0.0562424		
\overline{u}	= 0.07520 + 1.61647I		
a =	= -0.453620 - 0.070826I	-8.87305 + 0.26805I	-1.47803 + 0.75243I
b =	= -0.793621 - 0.491574I		
\overline{u} :	= 0.07520 - 1.61647I		
a =	= -0.453620 + 0.070826I	-8.87305 - 0.26805I	-1.47803 - 0.75243I
_ b =	= -0.793621 + 0.491574I		_
u =	= 1.10769 + 1.23434I		
a =	= 0.723626 + 0.961597I	-7.93629 + 2.97451I	-2.24011 - 2.11283I
_ b =			
u =	= 1.10769 - 1.23434I		
a =	= 0.723626 - 0.961597I	-7.93629 - 2.97451I	-2.24011 + 2.11283I
b =			
u =	= -0.31257 + 1.99292I		
a =	= -0.345671 + 0.172538I	-17.7841 - 0.7836I	-1.50922 + 0.14627I
	= -1.21980 + 1.39213I		
	= -0.31257 - 1.99292I		
a =	= -0.345671 - 0.172538I	-17.7841 + 0.7836I	-1.50922 - 0.14627I
	=-1.21980-1.39213I		
	= 0.42977 + 2.01390I		_
	= -0.984072 - 0.475371I	-18.4994 + 10.2668I	-1.32790 - 4.15834I
	=-1.34381+1.14589I		
u =	0.12011		
	= -0.984072 + 0.475371I	-18.4994 - 10.2668I	-1.32790 + 4.15834I
	=-1.34381-1.14589I		
	= -0.08976 + 2.09219I		_
	= -1.363250 + 0.356504I	-10.14110 - 4.18838I	-1.95156 + 4.03302I
_ b =	= -1.099090 - 0.439233I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.08976 - 2.09219I		
a = -1.363250 - 0.356504I	-10.14110 + 4.18838I	-1.95156 - 4.03302I
b = -1.099090 + 0.439233I		

$$\text{II. } I_2^u = \langle u^8 + 3u^6 + u^5 + 2u^4 + u^3 + u^2 + b + u - 1, \ -u^2 + a - 2, \ u^9 + 4u^7 + u^6 + 5u^5 + 2u^4 + 3u^3 + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{8} - 3u^{6} - u^{5} - 2u^{4} - u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{8} + 3u^{6} + u^{5} + 2u^{4} + u^{3} + u^{2} + u - 1 \\ 2u^{8} + u^{7} + 7u^{6} + 5u^{5} + 7u^{4} + 5u^{3} + 3u^{2} + 3u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{8} + u^{7} - 3u^{6} + 3u^{5} - u^{4} + 3u^{3} + u^{2} + 2 \\ -2u^{8} - u^{7} - 7u^{6} - 4u^{5} - 7u^{4} - 2u^{3} - 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{8} + 3u^{6} + u^{4} - 2u^{3} - 2u^{2} - 2u - 1 \\ -u^{8} - 3u^{6} - u^{5} - 2u^{4} - u^{3} - 2u^{2} - 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{8} + 3u^{6} + u^{5} + 2u^{4} + u^{3} + u^{2} + u - 1 \\ u^{8} + u^{7} + 4u^{6} + 4u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + 2u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{8} + u^{7} + 7u^{6} + 5u^{5} + 7u^{4} + 5u^{3} + 3u^{2} + 3u - 1 \\ u^{8} + u^{7} + 4u^{6} + 4u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{8} + u^{7} + 7u^{6} + 5u^{5} + 7u^{4} + 5u^{3} + 3u^{2} + 3u - 1 \\ u^{8} + u^{7} + 4u^{6} + 4u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + 2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^8 3u^7 8u^6 12u^5 15u^4 12u^3 14u^2 7u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^9 + 4u^7 + u^6 + 5u^5 + 2u^4 + 3u^3 + 2u^2 + 1$
c_2	$u^9 + 8u^8 + 26u^7 + 45u^6 + 45u^5 + 22u^4 - u^3 - 8u^2 - 4u - 1$
c_3	$u^9 + u^8 - 2u^7 - 3u^6 - u^5 + 4u^4 + 7u^3 + 6u^2 + 3u + 1$
c_4,c_5	$u^9 + u^8 + 5u^7 + 5u^6 + 9u^5 + 10u^4 + 7u^3 + 8u^2 + 2u + 1$
c_6	$u^9 + 4u^7 - u^6 + 5u^5 - 2u^4 + 3u^3 - 2u^2 - 1$
<i>C</i> ₇	$u^9 - 2u^8 - u^7 + 4u^6 - 3u^5 + 4u^3 - 3u^2 + 1$
<i>C</i> ₈	$u^9 - u^8 + 5u^7 - 5u^6 + 9u^5 - 10u^4 + 7u^3 - 8u^2 + 2u - 1$
<i>C</i> 9	$u^9 - 3u^8 - u^7 + 9u^6 - 2u^5 - 10u^4 + 7u^3 + 2u^2 - u - 1$
c_{10}	$u^9 + 2u^8 - u^7 - 4u^6 - 3u^5 + 4u^3 + 3u^2 - 1$
c_{11}	$u^9 - 3u^8 + 6u^7 - 7u^6 + 4u^5 + u^4 - 3u^3 + 2u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^9 + 8y^8 + 26y^7 + 45y^6 + 45y^5 + 22y^4 - y^3 - 8y^2 - 4y - 1$
c_2	$y^9 - 12y^8 + 46y^7 - 39y^6 + 113y^5 - 46y^4 + 83y^3 - 12y^2 - 1$
c_3	$y^9 - 5y^8 + 8y^7 + y^6 - 9y^5 - 8y^4 + y^3 - 2y^2 - 3y - 1$
c_4, c_5, c_8	$y^9 + 9y^8 + 33y^7 + 59y^6 + 39y^5 - 36y^4 - 85y^3 - 56y^2 - 12y - 1$
c_7,c_{10}	$y^9 - 6y^8 + 11y^7 - 2y^6 - 11y^5 + 4y^4 + 8y^3 - 9y^2 + 6y - 1$
<i>c</i> ₉	$y^9 - 11y^8 + 51y^7 - 123y^6 + 180y^5 - 168y^4 + 111y^3 - 38y^2 + 5y - 1$
c_{11}	$y^9 + 3y^8 + 2y^7 - y^6 + 8y^5 + 9y^4 - y^3 - 8y^2 + 5y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.338665 + 0.974837I		
a = 1.164390 + 0.660286I	-1.24626 + 1.32727I	-0.553077 - 1.214568I
b = 0.35504 - 1.42610I		
u = 0.338665 - 0.974837I		
a = 1.164390 - 0.660286I	-1.24626 - 1.32727I	-0.553077 + 1.214568I
b = 0.35504 + 1.42610I		
u = -0.447524 + 0.951550I		
a = 1.29483 - 0.85168I	1.95197 - 1.71727I	4.44186 + 1.84082I
b = 0.362962 + 1.048500I		
u = -0.447524 - 0.951550I		
a = 1.29483 + 0.85168I	1.95197 + 1.71727I	4.44186 - 1.84082I
b = 0.362962 - 1.048500I		
u = -0.738179		
a = 2.54491	0.518289	-4.57070
b = 0.647287		
u = 0.318685 + 0.594099I		
a = 1.74861 + 0.37866I	-4.97869 + 4.28681I	0.36640 - 5.34247I
b = 1.063670 - 0.538027I		
u = 0.318685 - 0.594099I		
a = 1.74861 - 0.37866I	-4.97869 - 4.28681I	0.36640 + 5.34247I
b = 1.063670 + 0.538027I		
u = 0.15926 + 1.58292I		
a = -0.480277 + 0.504206I	-9.14564 - 1.83774I	-3.46986 + 2.95801I
b = -0.605320 - 0.206182I		
u = 0.15926 - 1.58292I		
a = -0.480277 - 0.504206I	-9.14564 + 1.83774I	-3.46986 - 2.95801I
b = -0.605320 + 0.206182I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^9 + 4u^7 + \dots + 2u^2 + 1)(u^{21} + u^{20} + \dots - 18u - 28) $
c_2	$(u^9 + 8u^8 + 26u^7 + 45u^6 + 45u^5 + 22u^4 - u^3 - 8u^2 - 4u - 1)$ $\cdot (u^{21} + 33u^{20} + \dots - 1972u - 784)$
c_3	$(u^9 + u^8 - 2u^7 - 3u^6 - u^5 + 4u^4 + 7u^3 + 6u^2 + 3u + 1)$ $\cdot (u^{21} - 24u^{19} + \dots + 1851u - 281)$
c_4, c_5	$(u^9 + u^8 + 5u^7 + 5u^6 + 9u^5 + 10u^4 + 7u^3 + 8u^2 + 2u + 1)$ $\cdot (u^{21} + 2u^{20} + \dots - 12u - 11)$
c_6	$ (u^9 + 4u^7 + \dots - 2u^2 - 1)(u^{21} + u^{20} + \dots - 18u - 28) $
	$ (u^9 - 2u^8 + \dots - 3u^2 + 1)(u^{21} - 3u^{20} + \dots - 10u - 47) $
c_8	$(u^9 - u^8 + 5u^7 - 5u^6 + 9u^5 - 10u^4 + 7u^3 - 8u^2 + 2u - 1)$ $\cdot (u^{21} + 2u^{20} + \dots - 12u - 11)$
<i>c</i> 9	$(u^9 - 3u^8 - u^7 + 9u^6 - 2u^5 - 10u^4 + 7u^3 + 2u^2 - u - 1)$ $\cdot (u^{21} - 17u^{19} + \dots + 73u - 13)$
c_{10}	$(u^9 + 2u^8 + \dots + 3u^2 - 1)(u^{21} - 3u^{20} + \dots - 10u - 47)$
c_{11}	$(u^{9} - 3u^{8} + 6u^{7} - 7u^{6} + 4u^{5} + u^{4} - 3u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{21} - 4u^{20} + \dots + 19u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^9 + 8y^8 + 26y^7 + 45y^6 + 45y^5 + 22y^4 - y^3 - 8y^2 - 4y - 1)$ $\cdot (y^{21} + 33y^{20} + \dots - 1972y - 784)$
c_2	$(y^9 - 12y^8 + 46y^7 - 39y^6 + 113y^5 - 46y^4 + 83y^3 - 12y^2 - 1)$ $\cdot (y^{21} - 87y^{20} + \dots + 22145008y - 614656)$
c_3	$(y^9 - 5y^8 + 8y^7 + y^6 - 9y^5 - 8y^4 + y^3 - 2y^2 - 3y - 1)$ $\cdot (y^{21} - 48y^{20} + \dots + 982063y - 78961)$
c_4, c_5, c_8	$(y^9 + 9y^8 + 33y^7 + 59y^6 + 39y^5 - 36y^4 - 85y^3 - 56y^2 - 12y - 1)$ $\cdot (y^{21} + 26y^{20} + \dots - 846y - 121)$
c_7, c_{10}	$(y^9 - 6y^8 + 11y^7 - 2y^6 - 11y^5 + 4y^4 + 8y^3 - 9y^2 + 6y - 1)$ $\cdot (y^{21} + 7y^{20} + \dots - 7232y - 2209)$
c_9	$(y^9 - 11y^8 + 51y^7 - 123y^6 + 180y^5 - 168y^4 + 111y^3 - 38y^2 + 5y - 1)$ $\cdot (y^{21} - 34y^{20} + \dots + 2495y - 169)$
c_{11}	$(y^9 + 3y^8 + 2y^7 - y^6 + 8y^5 + 9y^4 - y^3 - 8y^2 + 5y - 1)$ $\cdot (y^{21} - 4y^{20} + \dots + 319y - 1)$