

Data Structures

Ch6

2024年11月15日

学而不厭 誨 人不倦

Chapter 6 图

- ☞ 6.1 引言
- ☞ 6.2 图的逻辑结构
- ☞ 6.3 图的存储结构及实现
- ☞ 6.4 最小生成树
- ☞ 6.5 最短路径
- ☞ 6.6 有向无环图及其应用
- ☞ 6.7 扩展与提高
- ☞ 6.8 应用实例

1. 最短路径

最短路径: 非带权图——边数最少的路径

最短路径: 带权图——边上的权值之和最少的路径

 v_0 到 v_4 的最短路径:

 $v_0 v_4$: 1

 $v_0 v_3 v_4$: 2

 $v_0 v_1 v_2 v_4$: 3

 $v_0 v_3 v_2 v_4$: 3

 v_0 到 v_4 的最短路径:

 $v_0 v_4$: 100

 $v_0 v_3 v_4$: 90

 $v_0 v_1 v_2 v_4$: 70

 $v_0 v_3 v_2 v_4$: 60

1. 最短路径

【单源点最短路径问题】

给定带权有向图 G=(V,E) 和源点 $v \in V$,求从 v 到 G 中其余各顶点的最短路径

【每一对顶点的最短路径问题】

给定带权有向图 G = (V, E) , 对任意顶点 vi 和vj ($i \neq j$) , 求从顶点 vi 到顶点 vj 的最短路径

6-5-1 Dijkstra算法

1. Dijkstra算法思想

最小生成树Prim算法、Kruskal算法均为贪心算法, 其中Prim算法是对图的节点贪心,而Kruskal算法是对图上的边贪心。

思想: 贪心算法(局部最优),按路径长度递增的次序产生最短路径。

贪心算法: 利用局部最优来计算全局最优。

利用已得到的顶点的最短路径来计算其它顶点的最短路径。

假设图中所示为从源点到其余各点之间的最短路径,则在这些路径中,必然存在一条长度最短者。

6-5-1 Dijkstra算法

1. Dijkstra算法思想

ν: 源点

S: 已经生成最短路径的终点

 $w < v, v_i >$: 从顶点 v 到顶点 v_i 的权值

 $dist(v, v_i)$: 表示从顶点 v 到顶点 v_i 的最短路径长度

- 1. 从未标记结点中选择距离源点最近的结点 v_k : dist (v, v_k) = min $\{dist(v, v_j), (j=1..n)\}$;
- 2. 将结点 v_k 加入最短路径终点集合 S 中: $S = S + \{v_k\}$;
- 3. 计算从刚加入结点 v_k 到 V-S 集合中未标记邻近结点 v_i 的距离:

 $\operatorname{dist}(v, v_i) = \min \{ \operatorname{dist}(v, v_i), \operatorname{dist}(v, v_k) + w < v_k, v_i > \};$

如果 源点到 v_k 的距离 $+v_k$ 到 v_i 的距离 < 源点到 v_i 的距离,则更新源点到 v_i 的距离。

6-5-1 Dijkstra算法

1. Dijkstra算法思想

算法: Dijkstra算法

输入:有向网图 G=(V, E),源点 v

- 1. 初始化: 集合 $S = \{v\}$; dist $(v, v_i) = w < v, v_i > (i=1...n)$;
- 2. 重复下述操作直到 S == V

2.1 dist
$$(v, v_k) = \min\{\text{dist}(v, v_j), (j=1..n)\};$$

$$2.2 S = S + \{v_k\};$$

2.3 dist(v, v_i)=min{dist(v, v_i), dist(v, v_k) + w< v_k, v_i >};

1. Dijkstra算法思想

初始化: $S=\{v_0\}$

 $dist(v, v_i)$: $\langle v_0, v_1 \rangle 10 \langle v_0, v_2 \rangle \infty \langle v_0, v_3 \rangle 30 \langle v_0, v_4 \rangle 100$

第一次迭代: $S=\{v_0, v_1\}$

 $dist(v, v_i)$: $\langle v_0, v_1, v_2 \rangle 60 \langle v_0, v_3 \rangle 30 \langle v_0, v_4 \rangle 100$

第二次迭代: $S=\{v_0, v_1, v_3\}$

 $dist(v, v_i)$: $\langle v_0, v_3, v_2 \rangle 50 \langle v_0, v_3, v_4 \rangle 90$

第三次迭代: $S=\{v_0, v_1, v_3, v_2\}$

 $dist(v, v_i)$: $\langle v_0, v_3, v_2, v_4 \rangle 60$

第四次迭代: $S=\{v_0, v_1, v_3, v_2, v_4\}$

2. Dijkstra算法存储结构

图采用什么存储结构呢?

邻接矩阵

如何存储dist(v, v_i)呢?

待定路径表 (当前的最短路径)

整型数组dist[n]:存储当前最短路径的长度

字符串数组path[n]:存储当前的最短路径,即顶点序列

算法: Dijkstra算法

输入:有向网图 G=(V, E),源点 v

输出:从 v 到其他所有顶点的最短路径

1. 初始化: 集合 $S = \{v\}$; dist $(v, v_i) = w < v, v_i >$, (i=0...n);

2. 重复下述操作直到 S == V

2.1 dist $(v, v_k) = \min\{\text{dist}(v, v_i), (j=0..n)\};$

 $2.2 S = S + \{v_k\};$

2.3 dist(v, v_i)=min{dist(v, v_i), dist(v, v_k) + w< v_k, v_i >};

6-5-1 Dijkstra算法

3. Dijkstra算法实现

当前的最短路径Path:

$$< v_0, v_1 > 10$$

$$\infty$$

$$< v_0, v_3 > 30$$

$$< v_0, v_4 > 100$$

dist[n]

当前的最短路径Path:

dist[n]

6-5-1 Dijkstra算法

3. Dijkstra算法实现

当前的最短路径Path:

$$\frac{\langle v_0, v_3, v_2 \rangle 50}{\langle v_0, v_3, v_4 \rangle 90}$$

dist[n] 0 10

当前的最短路径Path:

dist[n] 0 10 50 30

 V_4

 v_3

60

Dijkstra算法

0

 $\infty = 1000$

 ∞

邻接矩阵

 ∞

```
终点:
             v_1
                             v_2
                                                           v_4
                                             \nu_3
dist:
                                            30
                                                           100
                              \infty
                                                                     num=1, k =1
path:
           v_0, v_1
                            v_0, v_2
                                           v_0, v_3
                                                           v_0, v_4
                                             30
dist:
                              60
                                                           100
                                                                     num=2, k =3
                                                                           v_0, v_1
path:
           v_0, v_1
                           v_0, v_1, v_2
                                           v_0, v_3
                                                           v_0, v_4
                            局部最优
dist:
                              50
                                                           90
             0
                                                                      num=3, k =2
                                                                          v_0, v_2, v_3
path:
                           v_0, v_3, v_2
                                                         \overline{v_0,v_3,v_4}
           v_0, v_1
                                           v_0, v_3
```

```
for (num = 1; num < vertexNum; num++)
{
    for (k = 0, i = 0; i < vertexNum; i++)
        if ((dist[i] != 0) && (dist[i] < dist[k])) k = i;
    cout << path[k] << dist[k];
    for (i = 0; i < vertexNum; i++)
        if (dist[i] > dist[k] + edge[k][i]) {
            dist[i] = dist[k] + edge[k][i]; path[i] = path[k] + vertex[i];
        }
        dist[k] = 0;
}
```

6-5-1 Dijkstra算法

下标 终点	$\begin{array}{ c c c }\hline 1 \\ v_1 \end{array}$	v_2	3 v ₃	4 v ₄	S
dist path	$ \begin{array}{c c} 10 \\ v_0, v_1 \end{array} $	∞ v_0, v_2	$ \begin{array}{c} 30 \\ v_0, v_3 \end{array} $	100 v_0, v_4	v_0


```
void Dijkstra(int v)
{
    int i, k, num, dist[MaxSize];
    string path[MaxSize];
    for (i = 0; i < vertexNum; i++)
    {
        dist[i] = edge[v][i];
        path[i] = vertex[v] + vertex[i];
        /* 从源点v出发*/
        /* 初始化数组dist[n]和path[n]*/
        /* 字符串连接*/
```


下标终点	$\begin{array}{ c c c c }\hline 1 & & \\ v_1 & & \\ \end{array}$	v_2	$\frac{3}{v_3}$	4 v ₄	S
dist path	$ \begin{array}{c} 10 \\ v_0, v_1 \end{array} $	∞ v_0, v_2	$30 \\ v_0, v_3$	100 v_0, v_4	v_0
dist path					v_0, v_1
dist path	for (num = 1; num < vertexNum; num++) {				
dist path	for (k = 0, i = 0; i < vertexNum; i++) if ((dist[i] != 0) && (dist[i] < dist[k])) k = i; cout << path[k] << dist[k];				
dist path	}		_		

下标终点	1	2	3 V2	4	S
dist path	10 V: V:	v_2	v_3 30	100 V: V:	v_0
dist	v_0, v_1 0	v_0, v_2 60	v_0, v_3 30	v_0, v_4 100	v_0,v_1
path dist	v_0, v_1 v_0, v_1, v_2 v_0, v_3 v_0, v_4 for (num = 1; num < vertexNum; num++)				
path dist	for (i = 0; i < vertexNum; i++) if (dist[i] > dist[k] + edge[k][i]) { dist[i] = dist[k] + edge[k][i];				
path	dist[i] = dist[k] + edge[k][i]; $path[i] = path[k] + vertex[i];$				
dist path	} dist[k] = 0;				

下标终点	$egin{array}{c} 1 \ v_1 \end{array}$	v_2	v_3	$\begin{vmatrix} 4 \\ v_4 \end{vmatrix}$	S
dist path	$ \begin{array}{c} 10 \\ v_0, v_1 \end{array} $	∞ v_0, v_2	$30 \\ v_0, v_3$	$100 \\ v_0, v_4$	v_0
dist path	$0 \\ v_0, v_1$	$ \begin{array}{c} 60 \\ v_0, v_1, v_2 \end{array} $	$30 \\ v_0, v_3$	$100 \\ v_0, v_4$	v_0, v_1
dist path		50 v_0, v_3, v_2	$0 \\ v_0, v_3$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	v_0, v_2, v_3
dist path		$0 \\ v_0, v_3, v_2$		$ \begin{array}{c} 60 \\ v_0, v_3, v_2, v_4 \end{array} $	v_0, v_1, v_3, v_2
dist path				$0 \\ v_0, v_3, v_2, v_4$	v_0, v_1, v_3, v_2, v_4


```
/*从源点v出发*/
void Dijkstra(int v)
  int i, k, num, dist[MaxSize]; string path[MaxSize];
  for (i = 0; i < vertexNum; i++)
    dist[i] = edge[v][i]; path[i] = vertex[v] + vertex[i];
  for (num = 1; num < vertexNum; num++)
    for (k = 0, i = 0; i < vertexNum; i++)
      if ((dist[i] != 0) && (dist[i] < dist[k])) k = i; //找最小距离对应顶点k \ O(n)
    cout \ll path[k] \ll dist[k];
    for (i = 0; i < vertexNum; i++)
      if (dist[i] > dist[k] + edge[k][i]) {
         dist[i] = dist[k] + edge[k][i]; path[i] = path[k] + vertex[i];
    dist[k] = 0; //顶点k加入S集合
                          时间复杂度?
```


6-5-2 Floyd算法

问题提出

每一对顶点的最短路径问题

【问题】给定带权有向图 G = (V, E) ,对任意顶点 v_i 和 v_j ($i \neq j$),求从顶点 v_i 到顶点 v_j 的最短路径

算法1:每次以一个顶点为源头,重复执行 Dijkstra 算法 n 遍,便可得到每一对顶点之间的最短路径。

算法时间复杂度: $O(n^3)$

算法2: Floyd 算法

算法时间复杂度: $O(n^3)$

6-5-2 Floyd算法

1. Floyd算法思想

 v_k

 $w < v_i, v_i > :$ 从顶点 v_i 到顶点 v_i 的权值

 $dist_k(v_i, v_j)$: 从顶点 v_i 到顶点 v_j 经过的顶点编号不大于 k 的最短路径长度

算法: Floyd算法

输入: 带权有向图 G=(V, E)

输出:每一对顶点的最短路径

1. 初始化:假设从 v_i 到 v_j 的弧是最短路径,即 $dist_1(v_i, v_j)=w < v_i, v_j > ;$

2. 循环变量 k 从 $0\sim n-1$ 进行 n 次迭代:

 $dist_k(v_i, v_j) = min\{dist_{k-1}(v_i, v_j), dist_{k-1}(v_i, v_k) + dist_{k-1}(v_k, v_j)\}$

2. Floyd算法存储结构

如何存储dist?如何存储带权有向图?

邻接矩阵

$$\begin{cases} \operatorname{dist}_{-1}(v_i, v_j) = w < v_i, v_j > \\ \operatorname{dist}_k(v_i, v_j) = \min \{ \operatorname{dist}_{k-1}(v_i, v_j), \operatorname{dist}_{k-1}(v_i, v_k) + \operatorname{dist}_{k-1}(v_k, v_j) \} \end{cases}$$

算法: Floyd算法

输入: 带权有向图 G=(V, E)

输出:每一对顶点的最短路径

- 1. 初始化:假设从 v_i 到 v_i 的弧是最短路径,即 $dist_1(v_i, v_i)=w < v_i, v_i > ;$
- 2. 循环变量 k 从 $0\sim n-1$ 进行 n 次迭代:

$$dist_k(v_i, v_j) = min\{dist_{k-1}(v_i, v_j), dist_{k-1}(v_i, v_k) + dist_{k-1}(v_k, v_j)\}$$

3. Floyd算法实现


```
string ch[]={"A","B","C"};
void Floyd()
  int i, j, k, dist[MaxSize][MaxSize];
  string path[MaxSize][MaxSize];
  for (i = 0; i < vertexNum; i++)
    for (j = 0; j < vertexNum; j++)
     { dist[i][j] = edge[i][j];
        if (dist[i][j]!= 1000)
            path[i][j] = vertex[i] + vertex[j];
        else path[i][j] = "";
```


3. Floyd算法实现

经过
$$v_0$$
 dist₀ =
$$\begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

经过
$$v_1$$
 dist₁ =
$$\begin{bmatrix} 0 & 4 & 6 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

经过
$$v_2$$
 dist₂= $\begin{bmatrix} 0 & 4 & 6 \\ 5 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$

3. Floyd算法实现

```
AA:0
                                                                                             AB:4
                                                                                                       ABBC:6
template <class DataType>
void MGraph<DataType> :: Floyd( )
                                                                            BCCA:5
                                                                                             BB:0
                                                                                                          BC:2
                                                                                                          CC:0
                                                                                CA:3 CAAB:7
   int i, j, k, dist[MaxSize][MaxSize];
   string path[MaxSize][MaxSize];
   for (i = 0; i < vertexNum; i++)</pre>
                                           //初始化矩阵dist和path
       for (j = 0; j < vertexNum; j++)
          dist[i][j] = edge[i][j];
                                                                            O(n^2)
                                             //假设1000为边上权的最大值
          if (dist[i][j] != 1000)
              path[i][j] = vertex[i] + vertex[j]; //+为字符串连接操作
          else path[i][j] = "";
   for (k = 0; k < vertexNum; k++)
                                             //进行n次迭代
                                                                               string ch[]={"A","B","C"};
       for (i = 0; i < vertexNum; i++)
          for (j = 0; j < vertexNum; j++)
                                                                            O(n^3)
              if (dist[i][k] + dist[k][j] < dist[i][j]) {</pre>
                 dist[i][j] = dist[i][k] + dist[k][j];
                  path[i][j] = path[i][k] + path[k][j]; //+为字符串连接操作
   for (i = 0; i < vertexNum; i++)
       for (j = 0; j < vertexNum; j++)
                                                                     时间复杂度? 二
          cout << path[i][j] << ":" << dist[i][j] << "\t";</pre>
       cout << endl;</pre>
```

小结

- 1. 掌握Dijkstra算法及实现方法
- 2. 理解Floyd算法及实现方法

https://c.runoob.com/compile/12/

https://wandbox.org/

作业

- 1. 求 A 到其它各点的最短路径及长度 要求: 中间过程
- 2. 求所有顶点对之间的最短路径及长度 要求: 中间过程

Thank You ?

