

Universidad Nacional de Colombia Facultad de Ciencias Topología General

1. Sean τ y τ' dos topologías sobre X. Si $\tau' \supset \tau$, ¿qué implica la conexidad de X en una topología sobre la otra?

Solución: Note que si X es conexo en la topología τ' , entonces en la topología τ también lo es. Supongamos que no, entonces existen dos abiertos disjuntos A y B tales que $X = A \cup B$, como $\tau \subset \tau'$ entonces $A, B \in \tau'$, luego X no sería conexo.

La contrarrecíproca nos dice que si X es disconexo en τ entonces es disconexo en τ' , sin embargo que X sea conexo en τ no implica conexidad en la topología τ' . Por ejemplo, considere los espacios topológicos (\mathbb{R},τ) , (\mathbb{R},τ_ℓ) , con τ la topología usual, es claro que $\tau\subset\tau_\ell$. Sabemos que \mathbb{R} es conexo en la topología usual, pero \mathbb{R}_ℓ no lo es. La prueba de esto se encuentra en el ejercicio 7.

2. Sea $\{A_n\}$ una secuencia de subespacios conexos de X, tal que $A_n \cap A_{n+1} \neq \emptyset$ para todo n. Demuestra que $\bigcup A_n$ es conexo.

Demostración. Supongamos que no, esto es

$$\bigcup_{n} A_n = B \cup C$$

con $B \cap C = \emptyset$ y $B, C \neq \emptyset$. Tomemos $A_1 \subset B$, en efecto

$$I := \{i \in \mathbb{N} : A_i \subset C\} \neq \emptyset,$$

de lo contrario $C=\emptyset$ y esto no es posible. El principio del buen orden garantiza que I tiene un elemento mínimo, digamos k, esto nos da que $A_{k-1}\subset B$, así $A_k\cap A_{k-1}=\emptyset$, una contradicción.

3. Sea $\{A_{\alpha}\}$ una colección de subespacios conexos de X; sea A un subespacio conexo de X. Muestra que si $A \cap A_{\alpha} \neq \emptyset$ para todo α , entonces $A \cup (\bigcup A_{\alpha})$ es conexo.

Demostración. Note que

$$A \cup \bigcup_{\alpha} A_{\alpha} = \bigcup_{\alpha} (A \cup A_{\alpha})$$

y como $A\subset\bigcap_{\alpha}(A\cup A_{\alpha})$, y $A\neq\emptyset$, entonces por el punto anterior se concluye lo deseado. \qed

4. Demuestra que si X es un conjunto infinito, entonces es conexo en la topología del complemento finito.

Demostración. Suponga que no, entonces $X = A \cup B$ con A, B abiertos disjuntos, como A y B son disjuntos tenemos que $B = A^c$, entonces B es finito ya que $A \in \tau$, como $B \in \tau$ y $A = B^c$, se sigue que A es finito, lo que contradice que X es infinito.

5. Un espacio es *totalmente disconexo* si sus únicos subespacios conexos son conjuntos de un solo punto. Muestra que si *X* tiene la topología discreta, entonces *X* es totalmente disconexo. ¿Es cierto el recíproco?

Demostración. En efecto $A = \{x\}_{x \in X}$ es conexo ya que no pueden haber dos abiertos disjuntos no vacíos cuya unión sea $\{x\}$. Si |A| > 2, note que

$$A = \bigcup_{x \in A} \{x\}$$

y por tanto A no es conexo, ya que los singletones son abiertos disjuntos en la topología discreta.

El recíproco no es cierto. $\mathbb Q$ no es conexo con la topología usual y los únicos subespacios conexos de $\mathbb Q$ son los conjuntos de un solo punto

Si Y es un subespacio de $\mathbb Q$ que contiene dos puntos p y q, se puede elegir un número irracional a entre p y q, tal que

$$Y = (Y \cap (-\infty, a)) \cup (Y \cap (a, +\infty))$$

y la topología usual no es la misma topología discreta xd.

6. Sea $A \subset X$. Muestra que si C es un subespacio conexo de X que intersecta tanto A como X - A, entonces C intersecta ∂A .

Demostración. Suponga que $C \cap \partial A = \emptyset$, como $\overline{A} = \mathring{A} \cup \partial A$ entonces $C \cap A \subset \mathring{A}$, análogamente $\overline{X - A} = (X - A) \cup \partial (X - A)$ y $C \cap (X - A) \subset (X - A)$, además

$$C = (C \cap A) \cup (C \cap (X - A)) \subset (X - A) \cup \mathring{A},$$

como C es conexo, entonces C cae enteramente en $(X \stackrel{\circ}{-} A)$ o en \mathring{A} , esto contradice que $C \cap (X - A)$ y $C \cap A$.

7. ¿Es el espacio \mathbb{R}_{ℓ} conexo? Justifica tu respuesta.

Falso, en efecto

$$\mathbb{R}_{\ell} = (-\infty, 0) \cup [0, \infty)$$

y esta es una disconexión.

8. Determina si \mathbb{R}^{ω} es conexo en la topología uniforme.

Sean $A,B\subset\mathbb{R}^\omega$ los conjuntos de todas las sucesiones acotadas y no acotadas respectivamente. En efecto $A\cup B=\mathbb{R}^\omega$ y $A\cap B=\emptyset$, nos falta ver que A y B son abiertos. Si $a\in\mathbb{R}^\omega$, la bola $B(a,\varepsilon)$ si $\varepsilon<1$ está totalmente contenida en

$$(a_1-1,a_1+1)\times\cdots\times(a_n-1,a_n+1)\times\cdots$$

Creo que no entendí bien esa mondá pana

9. Sea A un subconjunto propio de X, y sea B un subconjunto propio de Y. Si X e Y son conexos, muestra que

$$(X \times Y) - (A \times B)$$

es conexo.

10. Sea $\{X_{\alpha}\}_{{\alpha}\in J}$ una familia indexada de espacios conexos; sea X el espacio producto

$$X = \prod_{\alpha \in J} X_{\alpha}.$$

Sea $\mathbf{a} = (a_{\alpha})$ un punto fijo de X.

- *a*) Dado cualquier subconjunto finito K de J, sea X_K el subespacio de X que consiste en todos los puntos $\mathbf{x}=(x_\alpha)$ tales que $x_\alpha=a_\alpha$ para $\alpha\notin K$. Muestra que X_K es conexo.
- b) Demuestra que la unión Y de los espacios X_K es conexa.
- c) Demuestra que X es igual a la clausura de Y; concluye que X es conexo.
- 11. Sea $p: X \to Y$ un mapeo cociente. Demuestra que si cada conjunto $p^{-1}(\{y\})$ es conexo, y si Y es conexo, entonces X es conexo.
- 12. Sea $Y \subset X$; sean X e Y conexos. Demuestra que si A y B forman una separación de X Y, entonces $Y \cup A$ y $Y \cup B$ son conexos.