Automi a pila

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

3 marzo 2022

Aumentiamo la potenza di un FSA

Descrizione operativa dell'automa a pila

- Un FSA ha un Organo di Controllo (OC) con memoria finita e un nastro di input infinito su cui non può scrivere
- Se traduttore ha un nastro di output in cui può solo scrivere
- La "memoria" dello stato del calcolo è finita

Aumentiamo la potenza di un FSA

Aggiungiamo una memoria a impilamento:

- Infinita
- Accesso alla sola cima
- La lettura cancella
- → Funzionamento LIFO

Automa a pila

Descrizione operativa

- L'automa a pila compie una mossa in funzione di:
 - Simbolo letto dalla cima della pila
 - Stato corrente nell'FSA che costituisce l'organo di controllo
 - Opzionalmente, simbolo letto dal nastro d'ingresso
- L'automa a pila passa alla configurazione successiva:
 - cambiando stato nell'OC
 - sostituendo al simbolo in cima allo stack una stringa α di simboli (potenzialmente, $\alpha=\varepsilon$)
 - spostando (opzionalmente) la testina di lettura
 - se l'automa è un traduttore, scrivendo una stringa (potenzialmente nulla)

Riconoscitori e traduttori

Automa riconoscitore

- La stringa x in ingresso è riconosciuta (accettata) se
 - L'automa scandisce completamente x
 - Una volta scandita tutta, lo stato dell'OC è di accettazione

Automa traduttore

- Se la stringa è accettata, il nastro di scrittura contiene la sua traduzione al termine del calcolo $\tau(x)$
- Se la x non è accettata la traduzione è indefinita $\tau(x) = \bot$

Esempio: Riconoscere $\{a^nb^n|n>0\}$

Automa riconoscitore

Convenzioni di notazione

- Etichetta archi: (lettura input, cima della pila/riscrittura in pila)
- ullet Consideriamo la pila inizializzata con Z_0 per marcare il fondo

Esempio: Riconoscere $\{a^nb^n|n>0\}$

Un'alternativa

$\varepsilon-mossa$

- Questo automa effettua una mossa senza leggere dall'input
- Posso evitare di usare B come "marcatore della prima a"

Stringhe ben parentetizzate...

.. di sole parentesi tonde

Note

- \bullet È una "semplificazione" del riconoscitore di $L = \{a^nb^n\}$
- ullet Verifica solamente che il numero di a coincida con quello di b

Stringhe ben parentetizzate con parentesi tonde e quadre

Un traduttore

ullet Che traduzione effettua? (impila A e B fino alla prima c ...)

Formalizzazione

Riconoscitore e traduttore

- Automa [traduttore] a Pila : $\langle \mathbf{Q}, \mathbf{I}, \Gamma, \delta, q_0, Z_0, \mathbf{F}[, \mathbf{O}, \eta] \rangle$
- $\mathbf{Q}, \mathbf{I}, \delta, q_0, \mathbf{F}[, \mathbf{O}]$ come nell'FSA [traduttore]
- Γ alfabeto di pila (per comodità, disgiunto da \mathbf{I} ,[, \mathbf{O}])
- $Z_0 \in \Gamma$ simbolo iniziale di pila
- $\delta: \mathbf{Q} \times (\mathbf{I} \cup \{\varepsilon\}) \times \Gamma \to \mathbf{Q} \times \Gamma^*$ (n.b. δ è parziale)
- $\eta: \mathbf{Q} \times (\mathbf{I} \cup \{\varepsilon\}) \times \Gamma \to \mathbf{O}^*$ (η è definita solo dove lo è δ)

Convenzione grafica

Generalizzare lo stato

Il concetto di configurazione

- Catturare lo stato di un Automa a Pila (AP o PDA, Push-Down Automaton) richiede più informazione di quella di un FSA
- Chiamiamo lo stato di un AP configurazione $c = \langle q, x, \gamma, [z] \rangle$
 - $q \in \mathbf{Q}$: stato dell'organo di controllo
 - $x \in \mathbf{I}^*$: stringa ancora da leggere (testina sul 1º carattere di x)
 - $\gamma \in \Gamma^*$ stringa dei caratteri in pila; convenzione: la pila cresce da sinistra (basso) a destra (alto)
 - $z \in \mathbf{O}^*$ stringa scritta in output

Formalizzare la transizione

Transizione tra configurazioni

- Transizione di un AP: $c \vdash c' : \langle q, x, \gamma, [z] \rangle \vdash \langle q', x', \gamma', [z'] \rangle$
- Per chiarezza abbiamo $\gamma = \beta A$, definiamo, a seconda dei casi:
 - **1 Lettura effettiva**: con x = i.y e $\delta(q, i, A) = \langle q', \alpha \rangle$ (definita, non \bot) $[\eta(q, i, A) = w]$ abbiamo x' = y, $\gamma' = \beta \alpha$, [z' = z.w]
 - ② ε -Lettura: con x=y e $\delta(q,\varepsilon,A)=\langle q',\alpha\rangle$ (definita, non \bot) $[\eta(q,\varepsilon,A)=w]$ abbiamo $x'=y,\ \gamma'=\beta\alpha,\ [z'=z.w]$
- Nota bene: $\forall q, A, \delta(q, \varepsilon, A) \neq \bot \Rightarrow \forall i, \delta(q, i, A) = \bot$
- Se ciò non accade, l'AP è non-deterministico
 - Approfondiremo questo concetto più avanti nel corso, trattiamo per ora AP deterministici

Accettazione e traduzione

Sequenza di mosse

Definiamo ⊢
 come chiusura riflessiva, transitiva di ⊢

Accettazione e traduzione di $x \in L$

$$x \in L \land [z = \tau(x)]$$

$$\Leftrightarrow$$

$$c_0 = \langle q_o, x, Z_0, [\varepsilon] \rangle \stackrel{*}{\vdash} c_f = \langle q, \varepsilon, \gamma, [z] \rangle, q \in \mathbf{F}$$

N.b. attenzione alle ε mosse, soprattutto a fine stringa!

Automi a Pila nella pratica

Usi degli AP nel software

- Parte fondamentale degli analizzatori sintattici dei compilatori
 - Esistono strumenti sw che generano l'implementazione dell'AP a partire da specifiche sintetiche del linguaggio (corso di Formal Languages and Compilers)
- Macchina astratta che compone l'interprete di Python e Java
- Controllo di correttezza di molti data-description languages, tra cui JSON, BSON, XML, HTML-4

Proprietà degli AP (riconoscitori)

Cosa posso riconoscere?

- Un AP è in grado di riconoscere $\{a^nb^n|n>0\}$, $\{a^nb^{3n}|n>0\}$
- Posso riconoscere $\{a^nb^nc^n|n>0\}$?:
 - NO. Intuitivamente: Dopo aver impilato un simbolo per ogni a e spilato uno per ogni b, come conto le c?
 - Per la dimostrazione formale si usa l'estensione del pumping lemma per i linguaggi riconosciuti dagli AP
 - Pumping lemma esteso: Esiste un $p \geq 1$ tale per cui, data $x = pvcws \in L_{AP}, |x| \geq p$ con $|vcw| \leq p, |vc| \geq 1 \iff \forall n \in \mathbb{N}, pv^ncw^ns \in L_{AP}$
- La pila è una memoria distruttiva: per leggere occorre cancellare elementi!

Proprietà degli AP (riconoscitori) - 2

Cosa posso riconoscere?

- Un AP riconosce sia $\{a^nb^n|n>0\}$ che $\{a^nb^{2n}|n>0\}$
- Posso riconoscere $\{a^nb^n|n>0\}\cup\{a^nb^{2n}|n>0\}$
 - NO. Intuitivamente "simile" a prima:
 - ullet Se svuoto la pila per contare le prime $n\ b$ perdo memoria per le successive
 - ullet Se ne svuoto solo metà, e ce ne sono solo n non so se sono a metà pila
 - Intuitivamente: mi servirebbe "dare un'occhiata" in avanti sull'input, per un numero arbitrariamente grande di caratteri
 - Formalizzazione diversa dal precedente (non banale, diversa dal dalla precedente, serve il *double-service* lemma)

Conseguenze delle proprietà

La famiglia \mathbf{L}_{AP}

- ullet \mathbf{L}_{AP} : la famiglia di linguaggi riconosciuti dagli AP deterministici
- ullet \mathbf{L}_{AP} non è chiusa rispetto all'unione per quanto detto
- \mathbf{L}_{AP} è chiusa rispetto al complemento? Sì.
 - ullet II principio della dimostrazione è lo stesso degli FSA, scambiare ${f F}$ con ${f Q}\setminus {f F}$
- L_{AP} non è chiusa rispetto all'intersezione (perché?)

Costruire il complemento

Difficoltà nella costruzione

- \bullet La δ dell'automa va completata come per gli FSA con lo stato di errore
 - ullet Le arepsilon mosse possono introdurre non-determinismo
- Un ciclo di ε mosse può evitare che l'automa proceda (stringa non accettata, neppure dall'automa con $\mathbf{F}' = \mathbf{Q} \setminus \mathbf{F}$)
- Se esiste una sequenza $\langle q_1, \varepsilon, \gamma_1 \rangle \vdash \langle q_2, \varepsilon, \gamma_2 \rangle \vdash \langle q_3, \varepsilon, \gamma_3 \rangle$ dove solo $q_1, q_3 \in \mathbf{F}$, ma $q_2 \notin \mathbf{F}$ cosa succede?
 - Serve "forzare" l'automa ad accettare solo alla fine di una sequenza (necessariamente finita) di ε mosse
- Più della tecnica di dimostrazione è importante: per impiegare la macchina che risolve il "problema positivo" anche per risolvere il "complemento" serve essere sicuri che termini