Calcul différentiel

Cours		2
1	Dériv	vée selon un vecteur, dérivées partielles
	1.1	Dérivée selon un vecteur
	1.2	Dérivées partielles dans une base
2	Diffé	rentielle
	2.1	Notation $o(h)$
	2.2	Différentielle d'une application en un point
	2.3	Différentielle d'une application sur un ouvert
	2.4	Cas où $E=\mathbb{R}$: fonctions d'une variable réelle
	2.5	Cas où E est euclidien
3	Appl	ications de classe \mathcal{C}^1
4	Opérations sur les applications différentiables, sur les applications \mathcal{C}^1	
	4.1	Linéarité
	4.2	Composée avec une application bilinéaire ou multilinéaire
	4.3	Composition d'applications différentiables
	4.4	Dérivée le long d'un arc
	4.5	Calcul des dérivées partielles d'une fonction composée
	4.6	Caractérisation des applications constantes
5	Vecte	eurs tangents à une partie d'un espace normé de dimension finie
6	Annexes	
	6.1	Annexe : caractérisation par des dérivées partielles des fonctions de classe \mathcal{C}^1 10
	6.2	Annexe : caractérisation des fonctions de plusieurs variables qui sont constantes 10
	6.3	Annexe : espace tangent à une partie définie par une équation implicite
Exercic	es	11
Exe	ercices	et résultats classiques à connaître
	Dériv	vées partielles en coordonnées polaire
	Un c	alcul de différentielle
		xemple d'équation aux dérivées partielles
Exercices du CCINP		
Exe	ercices	
Pet	its pro	blèmes d'entrainement

72. Calcul différentiel

Sauf mention contraire, E et F designent des espaces vectoriels normés de dimension finie sur \mathbb{R} .

1 Dérivée selon un vecteur, dérivées partielles

1.1 Dérivée selon un vecteur

<u>Définition</u>. Soit $f: E \to F$ une fonction définie sur un ouvert U. Soit $a \in U$ et $v \in E$. On dit que f admet un dérivée en a selon v lorsque :

$$\begin{array}{ccc} \mathbb{R} & \to & F \\ t & \mapsto & f(a+tv) \end{array}$$

est dérivable en 0.

Dans ce cas, on note $D_v f(a)$ la dérivée en 0 de cette application, et on l'appelle **dérivée de** f en a selon v.

Remarque.

- Comme U est ouvert, c'est un voisinage de a, et donc il existe $\delta > 0$ tel que, $\forall t \in [-\delta, \delta]$, $a + tv \in U$: la fonction $t \mapsto f(a + tv)$ est définie au voisinage de 0.
- $D_v f(a)$ est un élément de F.

Exemple. On considère :

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Montrer que f admet une dérivée en (0,0) selon tout vecteur $v=(\alpha,\beta)$. La fonction f est-elle continue en (0,0)?

1.2 Dérivées partielles dans une base

Définition. On suppose E muni d'une base $\mathcal{B} = (e_1, \dots, e_n)$. On considère $f: E \to F$ une fonction définie sur U ouvert de E, et $a \in U$.

Si f est dérivable en a selon e_i pour $i \in \{1, ..., p\}$, on dit que f admet des dérivées partielles dans la base \mathcal{B} , et on note :

$$\partial_i f(a) = D_{e_i} f(a)$$

Remarque.

• En notant (a_1, \ldots, a_n) les coordonnées dans \mathcal{B} de a, $\partial_i f(a)$ est, si elle existe, la dérivée en a_i de :

$$t \mapsto f(a_1e_1 + \dots + te_i + \dots + a_ne_n)$$

- On utilise aussi la notation $\frac{\partial f}{\partial x_i}(a)$ pour désigner $\partial_i f(a)$.
- Lorsqu'une base \mathcal{B} de E est fixée, on identifie f(x) et $f(x_1, \ldots, x_n)$, où (x_1, \ldots, x_n) sont les coordonnées de x dans \mathcal{B} .
- Souvent, $E = \mathbb{R}^2$ (ou $E = \mathbb{R}^3$) et la base \mathcal{B} est canonique. On note alors $f:(x,y) \mapsto f(x,y)$ et les dérivées partielles, lorsqu'elles existent, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.

Exemple. On considère :

$$\begin{array}{cccc} f: \, \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & \begin{cases} \frac{xy^2}{x^2+y^4} & \text{ si } (x,y) \neq (0,0) \\ 0 & \text{ si } (x,y) = (0,0) \end{cases} \end{array}$$

Montrer que f admet des dérivées partielles en tout point, et les calculer.

Exemple. Calculer les trois dérivées partielles dans la base canonique, en un point quelconque, de l'application :

$$f: (r, \varphi, \theta) \mapsto (r \cos \theta \cos \varphi, r \cos \theta \sin \varphi, r \sin \theta)$$

2 Différentielle

2.1 Notation o(h)

Définition. Soit $\alpha: E \to F$ définie sur un voisinage de 0_E . On dit que :

$$\alpha(h) = \mathop{o}_{h \to 0_E}(h)$$

lorsque $\|\alpha(h)\|_F = \underset{h \to 0_E}{o}(\|h\|_E)$, c'est-à-dire :

$$\frac{1}{\|h\|_E}\alpha(h)\xrightarrow[h\to 0_E]{} 0_F$$

2.2 Différentielle d'une application en un point

Rappel. Pour $f: \mathbb{R} \to \mathbb{R}$ définie sur un intervalle ouvert I, et $a \in I$, on dit que f est dérivable en a si et seulement s'il existe $\ell \in \mathbb{R}$ telle que :

$$f(a+h) = f(a) + \ell h + o_{h\to 0}(h)$$

et l'application $h \mapsto \ell h$ est linéaire. C'est cette application linéaire qui permet la généralisation de la dérivation aux fonctions de variable vectorielle.

<u>Définition.</u> Soit $f: E \to F$ une fonction définie sur un ouvert U, et $a \in U$. On dit que f **est différentiable en** a lorsqu'il existe une application linéaire $\ell \in \mathcal{L}(E, F)$ telle que :

$$f(a+h) = f(a) + \ell(h) + o_{h\to 0_E}(h)$$

L'application ℓ est alors unique, et appelée différentielle de f en a, notée $\mathrm{d}f(a)$.

Remarque.

- La différentielle de f en a s'appelle aussi **application linéaire tangente à** f **en** a.
- La différentiabilité de f en a, c'est l'existence d'un développement limité à l'ordre 1 en a :

$$f(a+h) = f(a) + df(a)(h) + \underset{h \to 0_E}{o}(h)$$

où $df(a) \in \mathcal{L}(E, F)$.

• On note souvent $df(a) \cdot h$ pour désigner (df(a))(h).

Exemple. Déterminer la différentielle en a = (2, 1) de :

$$f: (x,y) \mapsto x^2 y^3$$

Exemple. Calculer la différentielle en $M \in \mathcal{M}_n(\mathbb{R})$ de :

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$
$$X \mapsto X^2$$

Exemple. Soit E un espace euclidien et $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint de E. Montrer que :

$$f: x \mapsto \langle x, u(x) \rangle$$

est différentiable en tout $a \in E$, et calculer sa différentielle.

Proposition. Soit $f: E \to F$ définie sur U ouvert.

• Si f est constante, alors elle est différentiable en tout point de u et :

$$\forall a \in U, \ \mathrm{d}f(a) = 0_{\mathcal{L}(E,F)}$$

• Si f est (la restrictuion d'une application) linéaire, alors elle est différentiable en tout point de u et :

$$\forall a \in U, df(a) = f$$

Proposition. Si f est différentiable en a, alors f est continue en a.

Proposition. Si f est différentiable en a, alors f admet des dérivées en a selon tout vecteur et :

$$D_v f(a) = df(a) \cdot v$$

Corollaire. Si $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et si f est différentiable en a, alors f admet des dérivées partielles en a dans la base \mathcal{B} et :

$$\forall h \in E, \ df(a) \cdot h = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a)$$

où (h_1, \ldots, h_n) sont les coordonnées de h dans \mathcal{B} .

Définition. Dans le cas particulier où $E = \mathbb{R}^n$ et $F = \mathbb{R}^m$, lorsque $f : \mathbb{R}^n \to \mathbb{R}^m$ est différentiable en a, on appelle **matrice jacobienne de** f **en** a la matrice de df(a) dans les bases canoniques :

$$J_f(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix} \in \mathcal{M}_{mn}(\mathbb{R})$$

où f_1, \ldots, f_p sont les fonction coordonnées de f.

2.3 Différentielle d'une application sur un ouvert

<u>Définition</u>. Soit $f: E \to F$ une fonction définie sur un ouvert U. On dit que f est différentiable sur U lorsqu'elle est différentiable en tout point $a \in U$. On appelle différentielle de f sur U l'application :

$$\begin{array}{ccc}
\mathrm{d}f & \to & \mathcal{L}(E, F) \\
a & \mapsto & \mathrm{d}f(a)
\end{array}$$

Remarque. Les physiciens écrivent :

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \mathrm{d}x_i$$

et ils ont bien raison.

En effet, en notant $x_i: x \mapsto x_i$ l'application qui, à un vecteur x de E, associe sa coordonnée x_i dans la base $\mathcal{B} = (e_1, \ldots, e_n)$ de E, on définit une application linéaire. On a donc :

$$\forall a \in U, \ dx_i(a) = x_i$$

et donc, pour tout $h \in E$:

$$dx_i(a) \cdot h = x_i(h) = h_i$$

Finalement, pour tout $a \in U$, on a les égalités dans F:

$$\forall h \in E, \ df(a) \cdot h = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a)$$
$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) dx_i(a) \cdot h$$

donc, dans $\mathcal{L}(E,F)$:

$$\forall a \in U, \ df(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) dx_i(a)$$

ce qui peut encore s'écrire, dans $(\mathcal{L}(E,F))^U$:

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \mathrm{d}x_i$$

4/14 http://mpi.lamartin.fr 2024-2025

2.4 Cas où $E = \mathbb{R}$: fonctions d'une variable réelle

Proposition. Soit $f: \mathbb{R} \to F$ une fonction d'une variable réelle, définie sur un intervalle ouvert U, et $a \in U$. f est différentiable en a si set seulement si f est dérivable en a. Dans ce cas :

$$f'(a) = \mathrm{d}f(a) \cdot 1$$

Remarque. Ainsi, l'application linéaire tangente de f en a est l'application :

$$h \mapsto f'(a)h$$

2.5 Cas où E est euclidien

Définition. Soit $f: E \to \mathbb{R}$ une fonction numérique définie sur un ouvert U, et $a \in U$. On suppose que E est un espace euclidien, et que f est différentiable en a.

Alors il existe un unique vecteur, appelé gradient de f en a, et noté $\nabla f(a)$, tel que :

$$\forall h \in E, \ df(a) \cdot h = \langle \nabla f(a), h \rangle$$

Remarque. Ainsi, lorsque f est différentiable en a:

$$f(a+h) = f(a) + \langle \nabla f(a), h \rangle + \underset{h \to 0}{o}(h)$$

Proposition. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de E. Alors :

$$\nabla f(a) = \sum_{k=1}^{n} \frac{\partial f}{\partial x_k}(a) e_k$$

En particulier, lorsque $E = \mathbb{R}^n$ et \mathcal{B} est la base canonique :

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right)$$

Interprétation géométrique. Si $\nabla f(a) \neq 0$, alors $\nabla f(a)$ est positivement colinéaire au vecteur unitaire selon lequel la dérivée de f en a est maximale.

Remarque. Bref, $\nabla f(a)$ indique la direction de plus grande variation de f: le vecteur unitaire v pour lequel $D_v f(a)$ est maximale est:

$$v = \frac{1}{\|\nabla f(a)\|} \nabla f(a)$$

3 Applications de classe C^1

<u>Définition</u>. Soit $f: E \to F$ une fonction définie sur un ouvert U. On dit que f est de classe C^1 sur U lorsqu'elle est différentiable en tout point de U, et que :

$$df: U \to \mathcal{L}(E, F)$$

$$a \mapsto df(a)$$

est continue sur U.

Remarque. Comme $\mathcal{L}(E,F)$ est de dimension finie, toutes les normes y sont équivalentes.

Théorème.

Soit $f: E \to F$ une fonction définie sur un ouvert U, et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Alors f est de classe \mathcal{C}^1 sur U si et seulement si les dérivées partielles de f dans la base \mathcal{B} existent et sont continues sur U.

Dans ce cas:

$$\mathrm{d}f(a) \cdot h = \sum_{j=1}^{n} h_j \frac{\partial f}{\partial x_j}(a)$$

Remarque. Ce résultat est indépendant du choix de la base.

Exemple. Montrer que :

$$h: (r, \varphi, \theta) \mapsto (r \cos \theta \cos \varphi, r \cos \theta \sin \varphi, r \sin \theta)$$

est de classe C^1 sur \mathbb{R}^3 .

Exemple. Montrer que :

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$

est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$, mais pas sur \mathbb{R}^2 .

4 Opérations sur les applications différentiables, sur les applications \mathcal{C}^1

4.1 Linéarité

Proposition. Soit $f,g: E \to F$ deux fonctions définies sur U ouvert, $a \in U$, $\lambda, \mu \in \mathbb{R}$. Si f et g sont différentiables en a, alors $\lambda f + \mu g$ aussi et :

$$d(\lambda f + \mu g)(a) = \lambda df(a) + \mu dg(a)$$

Proposition. Si f et g sont de classe C^1 sur U, alors $\lambda f + \mu g$ l'est aussi.

Proposition. Si f et g admettent des dérivées en a selon un vecteur v, alors $\lambda f + \mu g$ aussi et :

$$D_v(\lambda f + \mu g)(a) = \lambda D_v f(a) + \mu D_v g(a)$$

<u>Proposition.</u> Si E est muni d'une base \mathcal{B} , si f et g admettent des dérivées partielles en a alors $\lambda f + \mu g$ aussi

$$\forall i, \ \partial_i(\lambda f + \mu g)(a) = \lambda \partial_i f(a) + \mu \partial_i g(a)$$

4.2 Composée avec une application bilinéaire ou multilinéaire

Proposition. Soit $f: E \to F$ et $g: E \to G$ deux fonctions définies sur U ouvert, $a \in U$. Soit $B: F \times G \to H$ une application bilinéaire. Si f et g sont différentiables en a, alors $B(f,g): x \mapsto B(f(x),g(x))$ aussi et :

$$\forall h \in E, \ d\big(B(f,g)\big)(a) \cdot h = B\big(df(a) \cdot h, g(a)\big) + B\big(f(a), dg(a) \cdot h\big)$$

Proposition. Si f et g sont de classe C^1 sur U, alors B(f,g) l'est aussi.

6/14 http://mpi.lamartin.fr 2024-2025

$$d(M(f_1,...,f_p))(a) \cdot h = M(df_1(a) \cdot h, f_2(a),..., f_p(a)) + M(f_1(a), df_2(a) \cdot h,..., f_p(a)) + ... + M(f_1(a), f_2(a),..., df_p(a) \cdot h,)$$

Proposition. Si les f_k sont de classe C^1 sur U, alors $M(f_1, \ldots, f_p)$ l'est aussi.

4.3 Composition d'applications différentiables

Règle de la chaîne. Soit $E \xrightarrow{f} F \xrightarrow{g} G$ deux applications, avec f définie sur U ouvert de E, g définie sur V ouvert de F et f à valeurs dans V.

Soit $a \in U$. Si f est différentiable en a et g différentiable en f(a), alors $g \circ f$ est différentiable en a et :

$$d(g \circ f)(a) = dg(f(a)) \circ df(a)$$

Proposition. Si f et g sont de classe \mathcal{C}^1 sur U et V respectivement, alors $g \circ f$ est \mathcal{C}^1 sur U.

4.4 Dérivée le long d'un arc

$$(f \circ \gamma)'(t) = \mathrm{d}f(\gamma(t)) \cdot \gamma'(t)$$

Dans le cas où E est muni d'une base $\mathcal{B} = (e_1, \dots, e_n)$, et que x_1, \dots, x_n désignent les applications coordonnées de γ dans cette base, cela s'écrit :

$$(f \circ \gamma)'(t) = \sum_{k=1}^{n} x'_{k}(t) \frac{\partial f}{\partial x_{k}}(a)$$

Proposition. Si γ et f sont de classe \mathcal{C}^1 sur I et U respectivement, alors $f \circ \gamma$ est \mathcal{C}^1 sur I.

Corollaire. Soit $[0,1] \xrightarrow{\gamma} E \xrightarrow{F} F$ deux applications, avec γ un arc défini sur un intervalle [0,1], f définie sur un ouvert U et γ à valeurs dans U. Soit $a = \gamma(0)$ et $b = \gamma(1)$. Si γ est de classe \mathcal{C}^1 sur [0,1] et f de classe \mathcal{C}^1 sur U, alors:

$$f(b) - f(a) = \int_0^1 df(\gamma(t)) \cdot \gamma'(t) dt$$

Remarque. En particulier, avec $\gamma(t) = a + tv$:

$$f(a+v) = f(a) + \int_0^1 df(a+tv) \cdot v dt$$

Exemple. Soit f de classe C^1 sur \mathbb{R}^2 et t: (u(t), v(t)) de classe C^1 sur \mathbb{R} . Montrer que :

$$h: t \mapsto f(u(t), v(t))$$

est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer h'(t) à l'aide des dérivées partielles de f et des dérivées de u et v.

Exemple. Soit f de classe \mathcal{C}^1 sur \mathbb{R}^3 et t:(u(t),v(t),w(t)) de classe \mathcal{C}^1 sur \mathbb{R} . Montrer que :

$$h: t \mapsto f(u(t), v(t), w(t))$$

est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer h'(t) à l'aide des dérivées partielles de f et des dérivées de u, v et w.

2024-2025 http://mpi.lamartin.fr 7/14

4.5 Calcul des dérivées partielles d'une fonction composée

Exemple. Soit

$$\begin{array}{ccc} f: \mathbb{R}^3 & \to & F \\ (x_1, x_2, x_3) & \mapsto & f(x_1, x_2, x_3) \end{array}$$

de classe \mathcal{C}^1 sur un ouvert V, et

$$\begin{array}{ccc} g: \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (u,v) & \mapsto & \left(g_1(u,v), g_2(u,v), g_3(u,v)\right) \end{array}$$

de classe \mathcal{C}^1 sur un ouvert U et à valeurs dans V.

On considère la composée :

$$h: (u,v) \mapsto f(g_1(u,v), g_2(u,v), g_3(u,v))$$

Justifier que h est \mathcal{C}^1 sur V, et exprimer les dérivées partielles de h en fonction de celles de f et g.

Exemple. Dans le plan euclidien usuel, exprimer le gradient en coordonnées polaires.

Exemple. Écrire les dérivées partielles de :

$$(u_1,\ldots,u_m)\mapsto f(x_1(u_1,\ldots,u_m),\ldots,x_m(u_1,\ldots,u_m))$$

4.6 Caractérisation des applications constantes

Théorème.

Soit $f: E \to F$ une fonction définie et de classe \mathcal{C}^1 sur U ouvert, avec E et F deux espaces vectoriels normés de dimension finie. On suppose U convexe. Alors :

f est constante sur $u \iff df$ est nulle sur U

Remarque. Le résultat est encore valable si U n'est que connexe par arcs.

5 Vecteurs tangents à une partie d'un espace normé de dimension finie

Définition. Soit X une partie non vide de E et $x \in X$.

On dit qu'un vecteur $v \in E$ est **tangent à** X **en** x lorsqu'il existe $\varepsilon > 0$ et un arc γ : $]-\varepsilon, \varepsilon[\to E, \lambda]$ valeurs dans X, dérivable en 0, et tel que $\gamma(0) = x$ et $\gamma'(0) = v$.

On note T_xX l'ensemble des vecteurs tangents à X en x.

Exemple. Pour X est un ouvert de E et $x \in X$, déterminer T_xX .

Exemple. Pour X = a + F sous-espace affine de E et $x \in X$, déterminer $T_x X$.

Exemple. Lorsque E est euclidien, X = S(0,1) la sphère unité et $x \in X$, déterminer T_xX .

Exemple. Pour $E = \mathbb{R}^3$, X graphe d'une fonction numérique $f: \mathbb{R}^2 \to \mathbb{R}$ définie sur un ouvert U et $x \in X$, montrer que T_xX est un plan vectoriel.

Exemple. Déterminer l'ensemble des vecteurs tangents à $SO_n(\mathbb{R})$ en I_n .

Théorème.

Soit $g:E\to\mathbb{R}$ une fonction numérique de classe \mathcal{C}^1 sur un ouvert U. On considère l'ensemble :

$$X = \{x \in U, \ q(x) = 0\}$$

Si $x \in X$ et $dg(x) \neq 0_{\mathcal{L}(E,\mathbb{R})}$, alors :

$$T_x X = \operatorname{Ker} \left(\operatorname{d} g(x) \right)$$

C'est un hyperplan, comme noyau d'une forme linéaire non nulle.

Preuve. Démonstration hors programme.

8/14 http://mpi.lamartin.fr **2024-2025**

Si $x \in X$ et $\nabla g(x) \neq 0_E$, alors :

$$T_x X = (\nabla g(x))^{\perp}$$

C'est un hyperplan, et $\nabla g(x)$ en est un vecteur orthogonal.

Corollaire. Lorsque $E = \mathbb{R}^3$ et :

$$X = \{(x, y, z), g(x, y, z) = 0\}$$

alors, pour $m \in X$, si $\nabla(g)(m) \neq (0,0,0)$, l'ensemble T_mX des vecteurs tangents à X en m est l'hyperplan d'équation :

$$\frac{\partial g}{\partial x}(m)x + \frac{\partial g}{\partial y}(m)y + \frac{\partial g}{\partial z}(m)z = 0$$

Exemple. Dans \mathbb{R}^2 , déterminer l'espace tangent à un point l'ensemble :

$$X = \{(x, y), x^2 + y^2 - 1 = 0\}$$

Exemple. Dans \mathbb{R}^2 , déterminer l'espace tangent à un point l'ensemble :

$$X = \{(x, y), y^2 - 4(1 - x^2)x^2 = 0\}$$

Exemple. Dans \mathbb{R}^3 , déterminer l'espace tangent à un point l'ensemble :

$$X = \{(x, y, z), x^2 + y^2 - z^2 + 1 = 0\}$$

Annexes

6.1 Annexe : caractérisation par des dérivées partielles des fonctions de classe \mathcal{C}^1

Définition. Soit $f: E \to F$ une fonction définie sur un ouvert U. On dit que f est de classe \mathcal{C}^1 $\mathbf{sur}\ U$ lorsqu'elle est différentiable en tout point de U, et que :

$$df: U \to \mathcal{L}(E, F)$$

$$a \mapsto df(a)$$

est continue sur U.

Théorème.

Soit $f: E \to F$ une fonction définie sur un ouvert U, et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. Alors f est de classe C^1 sur U si et seulement si les dérivées partielles de f dans la base \mathcal{B} existent et sont continues sur U.

Dans ce cas:

$$df(a) \cdot h = \sum_{j=1}^{n} h_j \frac{\partial f}{\partial x_j}(a)$$

Preuve.

 \Rightarrow On suppose f de classe \mathcal{C}^1 . Alors les dérivées partielles existent et, pour tout $a \in U$ et $k \in \{1, ..., n\}$, on

$$\frac{\partial f}{\partial x_h}(a) = \mathrm{d}f(a) \cdot e_h$$

a : $\frac{\partial f}{\partial x_k}(a) = \mathrm{d}f(a) \cdot e_k$ Mais $a \mapsto \mathrm{d}f(a)$ est continue et $\mathcal{L}(E,F) \to F$ $\ell \mapsto \ell(e_k)$

est aussi continue, car linéaire sur un espace de dimen-

sion finie. Par composition $a \mapsto \mathrm{d} f(a) \cdot e_k$ est continue. On a montré que les $\frac{\partial f}{\partial x_k}$ existent et sont continues

1. Montrons que f est différentiable en tout $a \in U$. Soit $a = a_1e_1 + a_2e_2 \in U$. On cherche une application linéaire ℓ telle que, avec $h = h_1 e_1 + h_2 e_2$ au voisinage de (0,0):

$$f(a+h) = f(a) + \ell(h) + o_{h\to 0}(h)$$

Écrivons:

$$\begin{split} f(a+h) - f(a) \\ &= f(a+h_1e_1 + h_2e_2) - f(a+h_1e_1) \\ &+ f(a+h_1e_1) - f(a) \\ \\ &= h_2 \frac{\partial f}{\partial x_2}(a+h_1e_1) + \mathop{o}_{h_2 \to 0}(h_2) \\ &+ h_1 \frac{\partial f}{\partial x_1}(a) + \mathop{o}_{h_1 \to 0}(h_1) \\ \\ &= h_2 \left(\frac{\partial f}{\partial x_2}(a) + \mathop{o}_{h_1 \to 0}(1) \right) + \mathop{o}_{h_2 \to 0}(h_2) \\ &+ h_1 \frac{\partial f}{\partial x_1}(a) + \mathop{o}_{h_1 \to 0}(h_1) \\ &\quad \text{par continuit\'e de } \frac{\partial f}{\partial x_2} \text{ en } a \\ \\ &= h_1 \frac{\partial f}{\partial x_1}(a) + h_2 \frac{\partial f}{\partial x_2}(a) + \mathop{o}_{h \to 0}(h) \\ &\quad \text{car } |h_k| \leqslant \|h\| \text{ pour } \| \cdot \|_{\infty} \text{ par exemple} \\ &= \ell(h) + \mathop{o}_{h \to 0}(h) \end{split}$$

avec ℓ : $h\mapsto h_1\frac{\partial f}{\partial x_1}(a)+h_2\frac{\partial f}{\partial x_2}(a)$ linéaire. Donc f est différentiable en a, et :

$$df(a): h \mapsto h_1 \frac{\partial f}{\partial x_1}(a) + h_2 \frac{\partial f}{\partial x_2}(a)$$

2. Montrons que $a \mapsto df(a)$ est continue sur U. On a obtenu ci-dessus :

$$\begin{array}{ccc} \mathrm{d} f : \, U & \to & \mathcal{L}(E,F) \\ & a & \mapsto & \ell_1 \frac{\partial f}{\partial x_1}(a) + \ell_2 \frac{\partial f}{\partial x_2}(a) \end{array}$$

où $\ell_k: E \to \mathbb{R}$ associe à un vecteur sa k- $x \mapsto x_k$

ième coordonnée dans \mathcal{B} . La continuité sur U des $\frac{\partial f}{\partial x_k}$ justifie donc celle de df.

6.2 Annexe : caractérisation des fonctions de plusieurs variables qui sont constantes

Théorème.

Soit $f : E \to F$ une fonction définie et de classe C^1 sur U ouvert, avec E et F deux espaces vectoriels normés de dimension finie. On suppose U convexe. Alors:

f est constante sur $u \iff df$ est nulle sur U

Remarque. Le résultat est encore valable si U n'est que connexe par arcs.

• Si f est constante, sa différentielle est nulle.

Supposons que df soit nulle sur U. Soit $a, b \in U$. Comme U est convexe, l'arc $\gamma: [0,1] \rightarrow E$ $t \mapsto a + t(b-a)$ tracé sur U et est de classe \mathcal{C}^1 . On a donc :

$$f(b) - f(a) = \int_0^1 df (\gamma(t)) \cdot \gamma'(t) dt$$
$$= \int_0^1 0 dt \operatorname{car} df = 0$$

On a montré que f est constante sur U.

Preuve.

10/14 http://mpi.lamartin.fr 2024-2025

6.3 Annexe : espace tangent à une partie définie par une équation implicite

Théorème.

Soit $g: E \to \mathbb{R}$ une fonction numérique de classe \mathcal{C}^1 sur un ouvert U. On considère l'ensemble :

$$X = \{x \in U, \ g(x) = 0\}$$

Si $x \in X$ et $dg(x) \neq 0_{\mathcal{L}(E,\mathbb{R})}$, alors :

$$T_x X = \operatorname{Ker} \left(\operatorname{d} g(x) \right)$$

c'est un hyperplan, comme noyau d'une forme linéaire non nulle.

Preuve. Cette démonstration est hors programme, car l'inclu-

sion \bigcirc n'est pas accessible avec les outils à notre disposition. On peut cependant montrer l'inclusion directe. Soit $v \in T_x X$. Alors il existe $\gamma:]-\varepsilon, \varepsilon[\to E$ un arc dérivable, à valeurs dans X, tel que $\gamma(0) = x$ et $\gamma'(0) = v$. Alors :

$$\forall t \in]-\varepsilon, \varepsilon[, \ g(\gamma(t)) = 0$$

En dérivant, on a donc :

$$\forall t \in]-\varepsilon, \varepsilon[, dg(\gamma(t)) \cdot \gamma'(t) = 0$$

et en particulier lorsque t=0 :

$$dg(x) \cdot v = 0$$

On a montré que $v \in \text{Ker}(dg(x))$, et donc :

$$T_x X \subset \operatorname{Ker} (dg(x))$$

Exercices et résultats classiques à connaître

Dérivées partielles en coordonnées polaire

72.1

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit $g: \mathbb{R}^2 \to \mathbb{R}$ par :

$$g(r, \theta) = f(r\cos\theta, r\sin\theta)$$

Exprimer les dérivées partielles de f en fonction de celles de g.

Un calcul de différentielle

72.2

On définit $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ par :

$$f(M) = \operatorname{tr}(M^2)$$

Montrer que f est différentiable, et calculer sa différentielle en tout $A \in \mathcal{M}_n(\mathbb{R})$.

Un exemple d'équation aux dérivées partielles

72.3

Utiliser les coordonnées polaires pour résoudre :

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2axy$$

2024-2025 http://mpi.lamartin.fr 11/14

GNP 58

72.4

GNP 33.23

On pose : $\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} \text{ et } f(0,0) = 0.$

- 2. Démontrer que f admet des dérivées partielles en tout point de \mathbb{R}^2 .
- 3. f est-elle de classe C^1 sur \mathbb{R}^2 ? Justifier.

72.5

GNP 52.3

Soit $\alpha \in \mathbb{R}$.

On considère l'application définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{si } (x,y) = (0,0). \end{cases}$$

- 3. Dans cette question, on suppose que $\alpha = 0$.
 - (a) Justifier l'existence de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur $\mathbb{R}^2\setminus \big\{(0,0)\big\}$ et les calculer.
 - (b) Justifier l'existence de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$ et donner leur valeur.
 - (c) f est-elle de classe C^1 sur \mathbb{R}^2 ?

72.6

GNP 57.2

- 1. Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} .
 - (b) Donner la définition de « f différentiable en (0,0) ».
- 2. On considère l'application définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(b) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

72.7

1. Soit E et F deux \mathbb{R} -espaces vectoriels normés de dimension finie. Soit $a \in E$ et soit $f: E \longrightarrow F$ une application.

Donner la définition de « f différentiable en a ».

2. Soit $n \in \mathbb{N}^*$. Soit E un \mathbb{R} -espace vectoriel de dimension finie n. Soit $e = (e_1, e_2, \dots, e_n)$ une base de E.

On pose :
$$\forall x \in E$$
, $||x||_{\infty} = \underset{1 \le i \le n}{\operatorname{Max}} |x_i|$, où $x = \sum_{i=1}^n x_i e_i$.

On pose : $\forall (x, y) \in E \times E$, $||(x, y)|| = \text{Max}(||x||_{\infty}, ||y||_{\infty})$.

On admet que $\|.\|_{\infty}$ est une norme sur E et que $\|.\|$ est une norme sur $E \times E$.

Soit $B: E \times E \longrightarrow \mathbb{R}$ une forme bilinéaire sur E.

- (a) Prouver que $\exists C \in \mathbb{R}^+ / \forall (x,y) \in E \times E, |B(x,y)| \leq C ||x||_{\infty} ||y||_{\infty}.$
- (b) Montrer que B est différentiable sur $E \times E$ et déterminer sa différentielle en tout $(u_0, v_0) \in E \times E$.

Exercices

72.8

On définit $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ par :

$$f(M) = M^3$$

Montrer que f est différentiable, et calculer sa différentielle en tout $M \in \mathcal{M}_n(\mathbb{R})$.

72.9

Déterminer les fonction $f:\mathbb{R}^2\to\mathbb{R}$ de classe \mathcal{C}^1 qui sont solution de l'équation :

$$\frac{\partial f}{\partial x}(x,y) + xyf(x,y) = 0$$

Petits problèmes d'entrainement

72.10

Pour $(x,y) \in \mathbb{R}^2$ avec $(x,y) \neq (0,0)$, on pose :

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

- (a) Montrer que l'on peut prolonger f par continuité en (0,0).
- (b) Calculer les dérivées partielles de f en $(x, y) \neq (0, 0)$.
- (c) Calculer les dérivées partielles de f en (0,0).
- (d) La fonction f est-elle de classe C^1 sur \mathbb{R}^2 ?
- (e) La fonction f est-elle de classe C^2 ?

72.11

Soit f définie sur $U = \{(x, y) \in \mathbb{R}^2, xy \neq 1\}$ par :

$$f(x,y) = \operatorname{Arctan}(x) + \operatorname{Arctan}(y) - \operatorname{Arctan}\left(\frac{x+y}{1-xy}\right)$$

- (a) Montrer que U est ouvert, et que f est C^1 sur U.
- (b) Montrer que, pour tout $(x,y) \in U$, $\frac{\partial f}{\partial x}(x,y) = 0$.
- (c) Donner, pour tout $(x, y) \in U$, le gradient grad f(x, y).
- (d) En déduire les valeurs de f(x, y).

72.12

On étudie l'application $f: M \mapsto M^{-1}$ définie sur l'ouvert $GL_n(\mathbb{R})$.

- (a) En exploitant l'égalité $(I_n + H)(I_n H) = I_n H^2$, établir que f est différentiable en I_n .
- (b) En déduire que f est différentiable en toute matrice $M \in \mathrm{GL}_n(\mathbb{R})$ et exprimer sa différentielle.

72.13

Montrer que l'application :

$$\varphi: (x,y) \mapsto \sum_{n=0}^{+\infty} (-1)^n \frac{(x+iy)^n}{(2n)!}$$

est de classe \mathcal{C}^1 .

72.14

On donne : $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$

On définit, pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$:

$$\Gamma(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t}$$

et, pour $f: \mathbb{R} \to \mathbb{R}$ continue et bornée, on définit, pour x,t réels :

$$Kf(x,t) = \begin{cases} \int_{-\infty}^{+\infty} f(y)\Gamma(x-y,t) \, dy & \text{si } t > 0\\ f(x) & \text{si } t = 0 \end{cases}$$

- (a) Montrer que Kf est dérivable par rapport à sa première variable sur $\mathbb{R} \times \mathbb{R}_+^*$.
- (b) Montrer que $\frac{\partial (Kf)}{\partial x}$ est continue sur $\mathbb{R} \times \mathbb{R}_+^*$.
- (c) Montrer que Kf est dérivable par rapport à sa seconde variable sur $\mathbb{R} \times \mathbb{R}_{+}^{*}$.
- (d) Montrer que $\frac{\partial (Kf)}{\partial t}$ est continue sur $\mathbb{R} \times \mathbb{R}_+^*$.
- (e) Conclure que Kf est \mathcal{C}^1 sur $\mathbb{R} \times \mathbb{R}_+^*$.

72.15

Déterminer les fonction $f:\mathbb{R}^2\to\mathbb{R}$ de classe \mathcal{C}^1 qui sont solution de l'équation :

$$3\frac{\partial f}{\partial x} - 2\frac{\partial f}{\partial y} = x$$

en effectuant le changement de variable $\begin{cases} u = x + y \\ v = 2x + 3y \end{cases}$

72.16

Une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est dite homogène de degré $\alpha \in \mathbb{R}$ lorsque :

$$\forall t > 0, \ \forall (x, y) \in \mathbb{R}^2, \ f(tx, ty) = t^{\alpha} f(x, y)$$

On suppose ici f de classe \mathcal{C}^1 .

(a) Montrer que, si f est homogène de degré α , alors :

$$\forall (x,y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y)$$

(b) Montrer la réciproque.

|72.17|

Soit X une partie non vide de E espace normé, et a intérieur à X. Déterminer l'espace tangent T_aX des vecteurs tangents à X en a.

72.18

Soit B la boule unité euclidienne fermée. Déterminer les vecteurs tangents à B en a, où a est un élément de la sphère unité.

72.19

Déterminer l'ensemble tangent à $SL_n(\mathbb{R})$ en I_n .

72.20

- (a) Déterminer l'espace tangent à $O_n(\mathbb{R})$ en I_n .
- (b) Déterminer l'espace tangent à $O_n(\mathbb{R})$ en une matrice $\Omega \in O_n(\mathbb{R})$.

72.21

On considère l'ensemble $X \subset \mathbb{R}^3$ d'équation f(x, y, z) = 0 où :

$$f(x,y,z) = (x^2 + y^2 + z^2 + 3)^2 - 16(x^2 + y^2)$$

- (a) Y a-t-il des points de X où df s'annule?
- (b) Déterminer l'espace tangent $T_{(3,0,0)}X$.
- (c) Décrire l'intersection de X avec le plan d'équation $z = \lambda, \lambda \in \mathbb{R}$.
- (d) Comprendre que X est la surface obtenue en faisant tourner un cercle autour d'une droite contenue dans le plan du cercle. Quelle est la forme obtenue?

72.22

On souhaite dans cet exercice déterminer la différentielle du déterminant. On note :

$$\det: \mathcal{M}_n(\mathbb{R} \to \mathbb{R} \\ A \mapsto \det(A)$$

(a) Justifier que l'application det est différentiable, et même \mathcal{C}^1 .

Pour une matrice A, on note a_{ij} son coefficient générique.

- (b) En exploitant le développement par rapport à une ligne ou une colonne, exprimer à l'aide des cofacteurs de A les dérivées partielles $\frac{\partial \det}{\partial a_{ii}}(A)$.
- (c) En déduire la différentielle de det.