

FREE UNIVERSITY BRUSSELS

CLASS: ECONOMETRICS

Assignment Econometrics 2023

Professor:
Jeroen Kerkhof
Faculty of Economic Sciences

Group: Aleksandr Medvedev Mahina Lynn Lokwa

Contents

1	\mathbf{Sele}	ction bias	4
	1.1	Real life examples	4
	1.2	Elon Musk on Rogan	5
2	Sim	Iulation Study	6
	2.1	Question 1	6
	2.2	Question 2	6
	2.3	Question 3	6
	2.4	Question 4	7
	2.5	Question 5	1
	2.6	Question 6&7	2
	2.7	Question 8	25
	2.8	Question 9	26
3	Emr	pirical Investigation 2	8
	3.1		28
	3.2	•	28
	3.3	· ·	29
	3.4	•	29
	3.5		29
	3.6	·	30
	3.7	•	30
	3.8	·	31
	3.9		31
	3.10		32
	3.11		33
	-	-v	36
		·	37
			37

List of Figures

1		7
2		8
3		8
4		9
5		9
6		0
7		.0
8		1
9		3
10		4
11		4
12		5
13		5
14		6
15		6
16		7
17		7
18		8
19		8
20		9
21		9
22		20
23		20
24		21
25		21
26		22
27		22
28		23
29		23
30		24
31		24
32		25
List	of Tables	
1	Simulation combinations	6
2		25
3		27

4	Descriptive statistics for the sleep data	28
5	Regression results	29
6	Regression results with totwrk, age and educ	30
7	Regression results with totwrk, age and educ	31
8	Regression results with totwrk, age, educ, yngkid and agesq	
9	Regression results for the sleep model for males	33
10	Regression results for the sleep model for females	34
11	Regression results for the sleep model for males and females	36
12	F-statistics	37
13	Regression results for Question 15	39

1 Selection bias

1.1 Real life examples

Selection bias is a critical issue in econometrics, occurring when vital information about a sample is neglected, leading to wrong conclusions. This bias can significantly distort the validity of econometric studies.

Example 1: Impact of Job Training Programs on Employment

Consider a study assessing the effectiveness of job training programs. If the sample only includes individuals who voluntarily enrolled in these programs, there is a high likelihood that these participants are more motivated or skilled than the average unemployed person.

Impact: This selection bias leads to overestimating the effectiveness of the training programs, as the results need to account for the inherent differences between those who choose to enroll and those who do not.

Example 2: Health Insurance and Overall Health Levels

In a study assessing the health levels of individuals with health insurance, there is a tendency to overlook those without insurance. People with a healthy lifestyle will probably be less interested in health insurance. Because their health quality is already high, the improvement in health due to treatment (getting insurance) might not be as profound as for the other group. Consequently, the study might falsely conclude that health insurance leads to better health outcomes.

Impact: Such bias could lead to misguided health policies that overestimate the effectiveness of health insurance on health outcomes.

Example 3: Analysis of Subsidized Housing Benefits on Employment Rates

In this example, consider a study assessing the impact of subsidized housing on employment rates. The study focuses on individuals who have successfully applied for and received subsidized housing. This group may inherently differ from the general population in ways that could affect employment rates, such as having lower incomes, different family compositions, or varying levels of education.

Impact: By only examining individuals in subsidized housing, the study might conclude that such housing leads to higher or lower employment rates. However, this conclusion could be skewed because it fails to account for the pre-existing differences between those who receive housing subsidies and those who do not.

Handling selection bias

Across econometric studies, randomized trials are a fundamental strategy to combat selection bias, the goal being to compare "apples to apples". We want two groups that are the same on average, but only differ in the treatment provided.

1.2 Elon Musk on Rogan

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, emerged in late 2019 and rapidly evolved into a global health crisis. Characterized by symptoms ranging from mild flu-like signs to severe respiratory distress, the virus's profound impact on the lungs. This severe lung condition, seen in critical COVID-19 cases, impairs the body's ability to supply oxygen to vital organs. Consequently, many patients required mechanical ventilation support. Ventilators became a critical lifeline, providing necessary oxygen by taking over the body's breathing process when the lungs failed, allowing patients to survive the most severe phase of the illness while their immune systems fought the virus.

Let p_{1i} be the probability of death on the ventilator, p_{0i} be the probability of death without the ventilator, and $x_i = \{1, 0\}$ is the dummy variable where 1 indicates the patient being put on the ventilator and 0 indicates the patient not put on the ventilator, for all severe cases.

We would be interested in the difference between the mortality rates of the group of people who were put on the ventilators and those who were not:

$$E[p_{1i}|x_i=1] - E[p_{0i}|x_i=0]. (1)$$

These are the values that we can observe. Subtracting and adding an unobserved outcome $E[p_{0i}|x_i=1]$ gives:

$$E[p_{1i}|x_i=1] - E[p_{0i}|x_i=1] + E[p_{0i}|x_i=1] - E[p_{0i}|x_i=0].$$
(2)

The first part of the equation is the average causal effect between the two groups, and the second part of the equation is the selection bias, namely the difference between the mortality rates of people who were not on the ventilation system, have they been put on the ventilation and people who were not on the ventilation system and were not put on the ventilation.

$$\underbrace{E[p_{1i}|x_i=1] - E[p_{0i}|x_i=1]}_{\text{Average causal effect}} + \underbrace{E[p_{0i}|x_i=1] - E[p_{0i}|x_i=0]}_{\text{Selection bias}}.$$
 (3)

Elon Musk does not consider the selection bias mentioned above thus arriving at a wrong conclusion.

2 Simlulation Study

2.1 Question 1

We start by creating the x values for n = 100 and n = 1000 normally distributed with an expected value of 20 and a variance of 2, $x_1 \sim N(20, 2)$. Then we proceeded with adding a constant, creating a n x 2 matrix X.

The figures below provide a visual description of the X matrices.

$$X_{100} = \begin{bmatrix} 1 & x_{1,1} \\ \vdots & \vdots \\ 1 & x_{1,100} \end{bmatrix} \quad X_{1000} = \begin{bmatrix} 1 & x_{1,1} \\ \vdots & \vdots \\ 1 & x_{1,1000} \end{bmatrix}$$

2.2 Question 2

Here we created the error terms for each simulation for the heteroskedastic and homoskedastic case each with n=100 and n=1000, set the true values for β , namely $\beta_1=1,\ \beta_2=2$. Each scenario was simulated 2^{16} times with $\sigma=0.3/\sqrt{20}$.

num obs	heteroskedastic	homoskedastic
	$\epsilon_i \sim N(0, \sigma^2 x_i)$	$\epsilon_i \sim N(0, \sigma^2 \bar{x}_i)$
n = 100,	$\epsilon_i \sim N(0, \sigma^2 x_i)$	$\epsilon_i \sim N(0, \sigma^2 \bar{x}_i)$

Table 1: Simulation combinations

2.3 Question 3

Given the simple linear regression model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{4}$$

We have generated dependent variable y for each of the simulations combinations, the resulting generalized matrix is the following:

$$Y = \begin{bmatrix} y_1^{(1)} & \cdots & y_1^{(S)} \\ \vdots & \ddots & \vdots \\ y_n^{(1)} & \cdots & y_n^{(S)} \end{bmatrix}$$

2.4 Question 4

Figure 1

Figure 1 and Figure 2 plots the average error term for the heteroskedastic case. As we can see both distributions are centred around zero as expected by the definition of the error term above. The smaller sample size, namely n=100 seem to follow the t-distribution by having a bit fatter tails than the distribution in the Figure 2. The latter gets closer to normal distribution as the sample size grows, which is also expected by the statistical theory.

Results for the homoskedastic average errors are reported in the Figure 3 and Figure 4, the description of the behaviour of these graphs are similar to those in the heteroskedastic case.

We can observe the heteroskedasticity with the scatter plot, such as in Figure 5 and Figure 6. The higher the x-axis of the fitted value, the higher the peak values will be for the squared error term. This represents the definition of heteroskedasticity.

In contrast to previous figures Figure 7 and Figure 8 represent the homoskedastic squared error terms, where peaks are on average the same and do not depend on the fitted values.

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

2.5 Question 5

In case of the heteroskedastic case the Ω matrix would be the product of the σ^2 and the corresponding x values x_i .

$$\Omega_{Het} = \begin{bmatrix} \sigma^2 x_1 & 0 & \cdots & 0^{(n)} \\ 0 & \sigma^2 x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0^{(n)} & 0 & \cdots & \sigma^2 x_n \end{bmatrix}$$

For the homoskedastic case we will have:

$$\Omega_{Hom} = \sigma^2 \begin{bmatrix} 1 & 0 & \cdots & 0^{(n)} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0^{(n)} & 0 & \cdots & 1 \end{bmatrix}$$

The difference being in the values of the diagonal, since the error term is homoskedastic the values on the diagonal would always be (approximately) 1, whereas in the heteroskedastic case the variance would be different for each observation.

2.6 Question 6&7

For question 6 and 7 we have calculated $2 \times S \widehat{\beta_{OLS}}$ and $2 \times S \widehat{\beta_{GLS}}$ estimates, where S was the number of simulations using homoskedastic and heteroscedastic case. Next we have generated $2 \times S$ t - tests also for GLS and OLS and homoscedastic and heteroscedastic case. The formula for the t values was:

$$t = \frac{\hat{\beta} - c}{SE(\hat{\beta})} \tag{5}$$

Where c is a constant that is used for a t-test (true value) and 0 for a model test. This is additionally explained with an example.

For β_0 the t - test would look like this:

$$t = \frac{\hat{\beta}_0 - 1}{SE(\hat{\beta}_0)} \tag{6}$$

And the model test:

$$t = \frac{\hat{\beta}_0}{SE(\hat{\beta}_0)} \tag{7}$$

The standard error of $\hat{\beta}$ is the square root of the diagonal of the covariance matrix for β .

When calculating the GLS standard errors for all simulations we had to resort to some rewritings of the original formula to get the desired $2 \times S$ shape instead of 2×1 .

Given the covariance matrix for GLS:

$$Cov(\beta_{GLS}) = \sigma^2 (X^t \Omega_x^{-1} X)^{-1}$$
(8)

We looked at $X^t\Omega_x^{-1}$ and created the new variable XO_1. The result of that matrix is:

$$XO_1 = \begin{bmatrix} \frac{1}{x_1} & \cdots & \frac{1}{x_n} \\ 1 & \cdots & 1 \end{bmatrix}$$

Next we proceeded with the rest of the formula to get the standard errors.

$$GLS(SE) = \sqrt{(\sigma^2(XO_1 \cdot X)^{-1})}$$
(9)

Where σ^2 is now 1 x S row vector and $(XO_1 \cdot X)^{-1}$ is 2 x 1 resulting in the final result of 2 x S GLS standard errors.

The graphics below show us the distributions of the t-statistics for the regular t-test and the model test. Homoskedastic results for $\widehat{\beta_{OLS}}$ are not present as they are identical to the GLS results.

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

As we can see the distributions for the t-test seem to follow the normal distribution with the range from -3 to 3 which is expected by the standard normal distribution. Sometimes the values are above or below the expected region but this is due to randomness in the simulation. We can also see that the model test distributions look normal but skewed. The econometric theory says that the f-values should be distributed χ_p^2 with p degrees of freedom asymptotically, however this will happen in the case if the true values of β vector are indeed 0, otherwise we get the results that are present in the study, namely the distributions for the model test are not perfectly χ_p^2 but rather skewed t / normal depending on the sample size.

2.7 Question 8

eta_0	β_1	Simulation combination
0.05235291	0.05204773	hom_100_GLS
0.0151062	0.01507568	het_100_GLS
0.05654907	0.05938721	het_100_OLS
0.05235291	0.05204773	hom_100_OLS
0.04962158	0.05021667	hom_1000_GLS
0.00985718	0.00952148	het_1000_GLS
0.04676819	0.04893494	het_1000_OLS
0.04962158	0.05021667	hom_1000_OLS

Table 2: Rejection rates at $\alpha = 0.05$

As we can see in the Table 2 when naively using OLS in heteroscedastic case the rejection rate is close to the desired 5% but doesn't truly represent the reality. It is important to note that the β_{OLS} covariance matrix is estimated using the assumption of homoscedasticity, which is obviously does not hold in heteroscedastic case. For the GLS in homoscedastic case the rejection rates are identical, since both OLS and GLS have the same covariance matrix.

$$Cov(\beta_{OLS}) = \sigma^2(X^t X)^{-1} \tag{10}$$

GLS rejection rates show more realistic results for the heteroscedastic simulations, as the estimation for the covariance of β_{GLS} includes the Ω matrix which is not equal to identity matrix in the heteroscedastic case.

$$Cov(\beta_{GLS}) = \sigma^2(X^t \Omega_x^{-1} X)^{-1}$$
(11)

2.8 Question 9

When adjusting the standard errors to White standard errors it makes the t-tests in the heteroscedastic case more precise, in other words the desired rejection rate goes to α asymptotically.

We have adjusted the standard errors using this formula:

$$White(SE) = (X^{t}X)^{-1}X^{t}diag(e_{1}^{2}, e_{2}^{2}, ..., e_{n}^{2})X(X^{t}X)^{-1}$$
(12)

Where $diag(e_1^2, e_2^2, ..., e_n^2)$ is the diagonal of the squared residuals. This gave us the White standard errors for 1 simulation, however we had to have the standard errors for all simulations. We used the following manipulations to get to the desired format:

$$A = (X^t X)^{-1} X^t \tag{13}$$

$$A^2 = A \odot A \tag{14}$$

White(
$$SE$$
) = $\sqrt{(A^2 \cdot e^2)}$ (15)

Where e^2 is 1 x S vector of squared residuals. Using the obtained White standard errors yields the following rejection rate table.

β_0	eta_1	Simulation combination
0.06466675	0.06607056	het_100_GLS_white
0.06466675	0.06607056	het_100_OLS_white
0.04930115	0.04942322	het_1000_GLS_white
0.04930115	0.04942322	het 1000 OLS white

Table 3: Rejection rates at $\alpha = 0.05$, White SE

The findings clearly show the convenience of White standard errors as they remove the gap between the OLS and GLS rejection rates and show rejection rates closer to 0.05 and grow towards 0.05 as sample size increases, which is what we want to see given α rejection rate.

3 Empirical Investigation

3.1 Question 1

age Count mean std min 250 50% 75% max age 600,00000 38,82000 11,37000 23,00000 29,00000 36,00000 48,00000 65,00000 black 600,00000 305,620000 205,20000 1,00000 177,75000 35,00000 533,75000 70,000000 clerical 600,00000 1,80000 20,30000 1,00000 1,00000 0,00000 1,00000 1,00000 construct 600,00000 1,2850000 2,820000 1,00000 1,00000 1,000000 1,00000 1,00000 carrier 600,00000 1,2850000 2,820000 1,00000 1,									
black 600.00000 3.055000 0.22000 0.000000 0.000000 0.000000 0.000000 1.000000 case 600.00000 352,60000 205,20000 1.000000 1.77,750000 356,50000 533,750000 706,000000 clerical 600.00000 0.180000 1.000000 0.000000 0.000000 0.000000 1.000000 construct 600.00000 1.2550000 2.820000 1.000000 12.000000 12.000000 16.000000 42500.000000 gamry4 600.00000 989,58000 9.2850000 0.000000 1.000000 15.00000 17.000000 gallhth 600.00000 0.755000 0.32000 0.00000 1.00000		count	mean	std	min	25%	50%	75%	max
case 600.00000 356.26000 205.20000 1.000000 1.77.75000 356.50000 533.75000 706.000000 clerical 600.000000 0.180000 0.330000 0.000000 0.000000 0.000000 0.000000 1.000000 construc 600.000000 12.850000 2.820000 1.000000 12.00000 12.00000 13750.000000 25000000 gdhlth 600.00000 989.58000 928.59000 0.000000 1.00000	age	600.000000	38.820000	11.370000	23.000000	29.000000	36.000000	48.000000	65.000000
clerical 600.00000 0.180000 0.330000 0.000000 0.000000 0.000000 0.180000 1.000000 construct 600.000000 0.030000 0.150000 0.000000 0.000000 0.030000 1.000000 cluc 600.000000 12.850000 2.820000 1.000000 12.000000 12.000000 13750.000000 42500.000000 garns74 600.00000 9899.58000 9528.590000 0.000000 2500.000000 2850.000000 13750.000000 42500.00000 garns74 600.000000 0.880000 0.320000 0.000000 1.000000 1.000000 1.000000 leis1 600.000000 4718.19000 916.29000 2990.00000 418.525000 4545.00000 5244.00000 7417.00000 leis2 600.00000 4542.54000 915.03000 1677.00000 3992.50000 4489.00000 516.00000 7297.00000 leis3 600.00000 1.44000 0.650000 -1.050000 1.060000 1.510000 1.800000 1.00000	black	600.000000	0.050000	0.220000	0.000000	0.000000	0.000000	0.000000	1.000000
construc 600.000000 0.030000 0.150000 0.000000 0.000000 0.000000 1.000000 1.000000 educ 600.000000 12.850000 2.820000 1.000000 12.000000 12.000000 13750.000000 47500.000000 gdhith 600.000000 0.880000 0.320000 0.000000 1.000000 <t< td=""><td>case</td><td>600.000000</td><td>356.260000</td><td>205.200000</td><td>1.000000</td><td>177.750000</td><td>356.500000</td><td>533.750000</td><td>706.000000</td></t<>	case	600.000000	356.260000	205.200000	1.000000	177.750000	356.500000	533.750000	706.000000
educ 600.00000 12.850000 2.820000 1.000000 12.000000 12.000000 16.000000 17.00000 earns74 600.000000 9895,50000 9528,590000 0.000000 2500,000000 8250,000000 13750,00000 42500,000000 gdhlth 600.000000 0.850000 0.320000 0.000000 1.000000 244.00000 7417.000000 1.000000 4542.50000 915.03000 1677.000000 3999.250000 4546.000000 5053.250000 7282.000000 300000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	clerical	600.000000	0.180000	0.330000	0.000000	0.000000	0.000000	0.180000	1.000000
earns74 600.000000 9899.580000 9528.590000 0.000000 2500.000000 8250.000000 13750.000000 42500.000000 ghlth 600.000000 0.880000 0.320000 0.000000 1.000000 7417.000000 1623 600.00000 4601.040000 919.060000 1677.00000 3999.250000 4546.000000 5116.00000 7297.000000 1633 600.00000 4542.540000 915.030000 1677.00000 0.000000 0.000000 1.000000 <td>construc</td> <td>600.000000</td> <td>0.030000</td> <td>0.150000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.030000</td> <td>1.000000</td>	construc	600.000000	0.030000	0.150000	0.000000	0.000000	0.000000	0.030000	1.000000
gdhlth 600.00000 0.880000 0.320000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 7.000000 1.000000 1.000000 7.000000 1.000000 1.000000 7.000000 1.000000 4645.00000 5244.00000 7297.000000 1.00000 1.00000 4546.000000 516.000000 7297.000000 1.00000 1.00000 7297.000000 1.00000 1.000000<	educ	600.000000	12.850000	2.820000	1.000000	12.000000	12.000000	16.000000	17.000000
inllf 600.000000 0.750000 0.430000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 7.1000000 1.000000 7.1000000 <td>earns74</td> <td>600.000000</td> <td>9899.580000</td> <td>9528.590000</td> <td>0.000000</td> <td>2500.000000</td> <td>8250.000000</td> <td>13750.0000000</td> <td>42500.000000</td>	earns74	600.000000	9899.580000	9528.590000	0.000000	2500.000000	8250.000000	13750.0000000	42500.000000
leis1 600.000000 4718.190000 916.290000 2090.000000 4108.250000 4649.500000 5244.000000 7417.000000 leis2 600.000000 4601.040000 919.060000 1677.000000 3999.250000 4546.000000 5116.000000 7297.000000 leis3 600.000000 4542.540000 915.030000 1677.000000 3938.500000 4489.000000 5053.250000 7282.000000 lhrwage 449.000000 1.440000 0.650000 -1.050000 1.060000 1.510000 1.840000 3.570000 lothine 600.000000 6.240000 4.220000 0.000000 0.000000 1.000000 1.000000 1.066000 matr 600.000000 0.560000 0.380000 0.000000 1.000000 <	gdhlth	600.000000	0.880000	0.320000	0.000000	1.000000	1.000000	1.000000	1.000000
leis2 600.000000 4601.040000 919.060000 1677.000000 3999.250000 4546.000000 5116.000000 7297.000000 smsa 600.000000 4542.540000 915.030000 1677.000000 3938.500000 4489.000000 5053.250000 7282.000000 smsa 600.00000 0.400000 0.490000 0.000000 0.000000 1.000000 1.000000 lothinc 600.00000 6.240000 4.220000 0.000000 0.000000 8.610000 9.33000 10.660000 male 600.00000 0.560000 0.50000 0.000000 0.000000 1.000000 372.750000 372.750000	inlf	600.000000	0.750000	0.430000	0.000000	0.000000	1.000000	1.000000	1.000000
leis3 600.00000 4542.540000 915.030000 1677.000000 3938.500000 4489.00000 5053.250000 7282.00000 smsa 600.000000 0.400000 0.490000 0.000000 0.000000 1.000000 1.000000 lhrwage 449.00000 1.440000 0.650000 -1.050000 1.060000 1.510000 1.840000 3.570000 lothinc 600.00000 6.240000 4.220000 0.000000 0.000000 8.61000 9.33000 1.060000 male 600.000000 0.560000 0.500000 0.000000 0.000000 1.000000 1.000000 1.000000 prot 600.00000 0.660000 0.470000 0.000000 1.000000	leis1	600.000000	4718.190000	916.290000	2090.000000	4108.250000	4649.500000	5244.000000	7417.000000
smsa 600.00000 0.40000 0.490000 0.000000 0.000000 1.000000 1.000000 lhrwage 449.00000 1.44000 0.650000 -1.050000 1.060000 1.510000 1.840000 3.570000 lothinc 600.00000 6.240000 4.220000 0.000000 0.000000 8.610000 9.330000 10.660000 male 600.000000 0.560000 0.500000 0.000000 1.000000 1.000000 1.000000 prot 600.000000 0.660000 0.470000 0.000000 1.000000 1.000000 1.000000 rkall 600.000000 3434.70000 531.550000 1380.00000 3137.250000 3415.50000 3712.750000 6110.00000 selfe 600.00000 0.130000 0.330000 755.00000 3255.00000 3525.00000 3695.00000 3525.00000 3695.00000 3653.50000 6110.00000 591.0000 3525.00000 3653.50000 6110.00000 591.0000 3525.00000 3653.500000 6110.00000 591.0000 352	leis2	600.000000	4601.040000	919.060000	1677.000000	3999.250000	4546.000000	5116.000000	7297.000000
lhrwage 449.00000 1.440000 0.650000 -1.050000 1.060000 1.510000 1.840000 3.570000 lothinc 600.000000 6.240000 4.220000 0.000000 0.000000 8.610000 9.330000 10.660000 male 600.000000 0.560000 0.500000 0.000000 1.000000 3712.750000 6110.000000 3712.750000 3135.00000 3137.250000 3415.500000 3712.750000 6110.000000 3100000 3080.00000 3255.000000 3525.000000 3525.000000 3525.000000 3525.000000 3653.500000 6110.000000 300000 300000 300000 300000 300000 300000 300000 3000000 3000	leis3	600.000000	4542.540000	915.030000	1677.000000	3938.500000	4489.000000	5053.250000	7282.000000
lothinc 600.000000 6.240000 4.220000 0.000000 0.000000 8.610000 9.330000 10.660000 male 600.000000 0.560000 0.500000 0.000000 0.000000 1.000000 1.000000 1.000000 marr 600.000000 0.820000 0.380000 0.000000 1.000000 3712.750000 6110.000000 3712.75000 6110.000000 3712.750000 6110.000000 3712.75000 6110.000000 3712.75000 6110.000000 3712.75000 6110.000000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000 3712.750000	smsa	600.000000	0.400000	0.490000	0.000000	0.000000	0.000000	1.000000	1.000000
male 600.000000 0.560000 0.500000 0.000000 0.000000 1.000000 1.000000 1.000000 marr 600.000000 0.820000 0.380000 0.000000 1.000000 1.000000 1.000000 1.000000 prot 600.000000 0.660000 0.470000 0.000000 0.000000 1.000000 1.000000 1.000000 rkall 600.000000 3434.700000 531.050000 1380.000000 3137.250000 3415.500000 3712.750000 6110.000000 selfe 600.00000 0.130000 0.330000 0.000000 0.000000 0.000000 3255.000000 1.000000 sleep 600.00000 3376.200000 507.180000 1335.000000 3995.00000 3255.000000 3653.500000 6110.00000 south 600.000000 5233.720000 8361.310000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 sperky75 600.000000 0.480000 0.500000 0.000000 10.00000 272.500000 2686.	lhrwage	449.000000	1.440000	0.650000	-1.050000	1.060000	1.510000	1.840000	3.570000
marr 600.00000 0.820000 0.380000 0.000000 1.000000 3712.750000 6110.000000 1.000000 3415.500000 3712.750000 6110.000000 3.000000 3.000000 0.000000 0.000000 3712.750000 6110.000000 3.000000 0.000000 0.000000 3712.750000 6110.000000 3.000000 3.000000 0.000000 0.000000 3.000000 <	lothinc	600.000000	6.240000	4.220000	0.000000	0.000000	8.610000	9.330000	10.660000
prot 600.00000 0.660000 0.470000 0.000000 0.000000 1.000000 1.000000 1.000000 rkall 600.00000 3434.70000 531.050000 1380.000000 3137.250000 3415.500000 3712.750000 6110.00000 selfe 600.00000 0.130000 0.330000 0.000000 0.000000 0.000000 0.000000 1.000000 sleep 600.00000 3259.040000 448.370000 755.000000 308.000000 3255.000000 3525.000000 4695.000000 spnaps 600.00000 3376.20000 507.180000 1335.000000 3095.000000 3555.000000 3653.500000 6110.00000 south 600.00000 0.19000 0.39000 0.000000 0.000000 0.000000 0.000000 75000.00000 sperk75 600.00000 0.48000 0.500000 0.000000 0.000000 0.000000 1.000000 1.000000 totwrk 600.000000 2102.760000 958.91000 0.000000 1538.00000 2272.50000 268.50000	male	600.000000	0.560000	0.500000	0.000000	0.000000	1.000000	1.000000	1.000000
rIxall 600.000000 3434.700000 531.050000 1380.000000 3137.250000 3415.500000 3712.750000 6110.000000 selfe 600.000000 0.130000 0.330000 0.000000 0.000000 0.000000 1.000000 sleep 600.000000 3259.040000 448.370000 755.000000 308.000000 3255.000000 3525.000000 4695.000000 spnaps 600.00000 3376.20000 507.180000 1335.000000 3095.000000 3653.500000 6110.000000 south 600.00000 0.190000 0.390000 0.000000 0.000000 0.000000 0.000000 1.000000 spsepay 600.000000 5233.720000 8361.310000 0.000000 0.000000 0.000000 9000.00000 75000.00000 spwrk75 600.000000 0.480000 0.500000 0.000000 0.000000 200000 1.000000 totwrk 600.000000 0.220000 0.400000 0.000000 1538.00000 2272.500000 2686.500000 6415.000000 worksc	marr	600.000000	0.820000	0.380000	0.000000	1.000000	1.000000	1.000000	1.000000
selfe 600.00000 0.130000 0.330000 0.000000 0.000000 0.000000 0.000000 1.000000 sleep 600.000000 3259.040000 448.370000 755.000000 3098.000000 3255.000000 3525.000000 4695.000000 slpnaps 600.00000 3376.20000 507.180000 1335.000000 3095.000000 3355.000000 3653.500000 6110.00000 south 600.00000 0.190000 0.390000 0.000000 0.000000 0.000000 0.000000 0.000000 75000.00000 spepay 600.00000 5233.720000 8361.310000 0.000000 0.000000 0.000000 9000.00000 75000.00000 spwrk75 600.000000 0.48000 0.500000 0.000000 0.000000 0.000000 1.000000 1.000000 totwrk 600.000000 2102.760000 958.910000 0.000000 1538.00000 2272.500000 2686.50000 6415.000000 worksrm 600.000000 2079.160000 961.430000 0.000000 1506.750000 2	prot	600.000000	0.660000	0.470000	0.000000	0.000000	1.000000	1.000000	1.000000
sleep 600.000000 3259.040000 448.370000 755.000000 3008.000000 3255.000000 3525.000000 4695.000000 slpnaps 600.000000 3376.200000 507.180000 1335.000000 3095.000000 3355.000000 3653.500000 6110.000000 south 600.00000 0.190000 0.390000 0.000000 0.000000 0.000000 0.000000 0.000000 75000.000000 spepay 600.00000 5233.720000 8361.310000 0.000000 0.000000 0.000000 9000.00000 75000.00000 spepay 600.00000 0.480000 0.500000 0.000000 0.000000 0.000000 1.000000 75000.000000 speray 600.000000 2102.760000 958.910000 0.000000 1538.000000 2272.500000 2686.500000 6415.000000 union 600.000000 2079.160000 961.430000 0.000000 1506.750000 2263.000000 2638.00000 6415.000000 workscal 600.00000 23.610000 12.450000 0.000000 10.0000	rlxall	600.000000	3434.700000	531.050000	1380.000000	3137.250000	3415.500000	3712.750000	6110.000000
slpnaps 600.000000 3376.200000 507.180000 1335.000000 3095.000000 3355.000000 3653.500000 6110.000000 south 600.00000 0.190000 0.390000 0.000000 0.000000 0.000000 0.000000 1.000000 spepay 600.00000 5233.720000 8361.310000 0.000000 0.000000 0.000000 9000.00000 75000.000000 spwrk75 600.00000 0.480000 0.500000 0.000000 0.000000 0.000000 1.000000 1.000000 totwrk 600.00000 2102.760000 958.910000 0.000000 1538.000000 2272.500000 2686.500000 6415.000000 worksrd 600.00000 20.79160000 961.430000 0.000000 1506.750000 2263.000000 2638.00000 6415.000000 workscrd 600.00000 23.610000 12.450000 0.000000 17.00000 30.000000 220.00000 250.00000 exper 600.00000 1.979000 12.450000 0.000000 10.000000 17.00000 30	selfe	600.000000	0.130000		0.000000	0.000000	0.000000	0.000000	1.000000
south 600.000000 0.190000 0.390000 0.000000 0.000000 0.000000 0.000000 1.000000 spepay 600.000000 5233.720000 8361.310000 0.000000 0.000000 0.000000 9000.00000 75000.000000 spwrk75 600.00000 0.480000 0.500000 0.000000 0.000000 0.000000 1.000000 1.000000 totwrk 600.00000 2102.760000 958.910000 0.000000 1538.000000 2272.500000 2686.500000 6415.000000 worknrm 600.00000 2079.160000 961.430000 0.000000 1506.750000 2263.00000 2638.00000 6415.00000 workscnd 600.00000 23.610000 126.340000 0.000000 0.000000 0.000000 0.000000 2638.000000 6415.000000 exper 600.00000 19.970000 12.450000 0.000000 17.000000 30.00000 55.000000 yrgkid 600.000000 11.850000 11.640000 0.000000 0.000000 9.000000 19.250000	sleep	600.000000	3259.040000	448.370000	755.000000	3008.000000	3255.000000	3525.000000	4695.000000
spepay 600.00000 5233.72000 8361.310000 0.000000 0.000000 0.000000 9000.00000 75000.000000 spwrk75 600.00000 0.480000 0.500000 0.000000 0.000000 0.000000 1.000000 1.000000 totwrk 600.00000 2102.760000 958.910000 0.000000 1538.000000 2272.500000 2686.500000 6415.000000 union 600.00000 0.200000 0.400000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 workscnd 600.00000 23.610000 126.340000 0.000000 0.000000 0.000000 2638.000000 6415.000000 exper 600.00000 19.97000 12.450000 0.000000 17.00000 30.00000 55.000000 yrgkid 600.00000 0.140000 0.340000 0.000000 0.000000 17.000000 30.00000 55.000000 yrsmarr 600.000000 5.180000 3.840000 0.350000 2.890000 4.510000 6.290000 35.51000	slpnaps	600.000000	3376.200000	507.180000	1335.000000	3095.000000	3355.000000	3653.500000	6110.000000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	south	600.000000	0.190000	0.390000	0.000000	0.000000	0.000000	0.000000	1.000000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	spsepay	600.000000	5233.720000	8361.310000	0.000000	0.000000	0.000000	9000.000000	75000.000000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	spwrk75								
worknrm 600.00000 2079.160000 961.430000 0.000000 1506.750000 2263.000000 2638.000000 6415.000000 workscnd 600.000000 23.610000 126.340000 0.000000 <									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	worknrm	600.000000	2079.160000	961.430000	0.000000	1506.750000	2263.000000	2638.000000	6415.000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	worksend	600.000000	23.610000	126.340000		0.000000	0.000000	0.000000	1205.000000
yrsmarr 600.00000 11.850000 11.640000 0.000000 0.000000 9.000000 19.250000 43.000000 hrwage 449.00000 5.180000 3.840000 0.350000 2.890000 4.510000 6.290000 35.510000	-								
hrwage 449.000000 5.180000 3.840000 0.350000 2.890000 4.510000 6.290000 35.510000	yngkid								
<u> </u>	yrsmarr	600.000000					9.000000		
$\operatorname{agesq} \qquad 600.00000 1636.370000 956.360000 529.000000 841.000000 1296.000000 2304.000000 4225.0000000 3204.00000000000000000000000000000000000$	hrwage								
	agesq	600.000000	1636.370000	956.360000	529.000000	841.000000	1296.000000	2304.000000	4225.000000

Table 4: Descriptive statistics for the sleep data

We proceeded with the loading of the data set and looking at the descriptive statistics which are summarized in Table 4.

Upon the investigation of the descriptive statistics we have found a few nuances that should be mentioned. First, the 'hrwage' and 'lhrwage' rows contained only 449 values out of a sample of 600 and had different sample statistics due to log transformation, second we noticed that the data set contained a lot of dummy variables.

3.2 Question 2

Given the model:

$$sleep_i = \beta_0 + \beta_1 totwrk_i + \varepsilon_i \tag{16}$$

The sign of the β_1 will be negative, as people trade off work and sleep. In other words if the amount of total work will increase it would negatively affect the sleep time amount.

3.3 Question 3

		R-square No. Obse			.	
	coef	std err	t	P> t	[0.025]	0.975]
const totwrk	3580.2901 -0.1528				3498.279 -0.188	3662.301 -0.117

Table 5: Regression results

Running the first regression model yields the results summarized in the Table 5.

The constant means the amount of sleep in minutes per week that people get no matter the amount of time they work. An average person sleeps a certain amount of hours a day regardless of the work hours and this fact is reported in the constant β_0 .

3.4 Question 4

If the totwrk will increase by 2 hours (120 minutes) then the effect on sleep would be $120\beta_1$.

$$120(-0.1528) = -18.336\tag{17}$$

That means if we increase the work hours by 2 then it would reduce the amount of sleep in minutes by 18.336 per week, or approximately (18.336/7) 2.62 minutes per day. We do not find this to be a large effect.

3.5 Question 5

Adding the new variables to our model, namely educ and age will result in the following equation:

$$sleep_i = \beta_0 + \beta_1 totwrk_i + \beta_2 educ_i + \beta_3 age_i + \varepsilon_i \tag{18}$$

We expect the signs for β_2 and β_3 to be negative. The level of education might negatively affect sleep because during schooling, the amount of time available for sleep is limited. After graduation, people with higher education will usually get more demanding jobs, hence indirectly reducing the amount of sleep. When people are born, they usually sleep for 10 - 12 hours a day, but this reduces with time as the children grow older. As an adult, you have more responsibilities than a child, affecting sleep time. It is important to remember that the signs of the β coefficients are subject to change as we add new variables to the model and be aware that existing model might not perfectly explain sleep variable.

3.6 Question 6

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P}> \mathbf{t} $	[0.025	0.975]
const	3621.2172	123.116	29.413	0.000	3379.423	3863.012
totwrk	-0.1494	0.018	-8.301	0.000	-0.185	-0.114
educ	-12.2426	6.358	-1.926	0.055	-24.729	0.244
age	2.8177	1.579	1.784	0.075	-0.284	5.919

Table 6: Regression results with totwrk, age and educ.

The educ has a negative effect on the sleep amount as expected. However, the age seems to have an inverse relationship. Both variables are statistically insignificant at $\alpha = 0.05$, suggesting that they should not be used for predicting the sleep time amount.

3.7 Question 7

If someone were to work 5 more hours per week (300 minutes) then the change in sleep would be as follows.

Holding other parameters constant apart from the increase in total work amount:

$$sleep_i = \beta_0 + 300\beta_1 + \beta_2 educ_i + \beta_3 aqe_i + \varepsilon_i \tag{19}$$

Substituting β_1 into equation gives:

$$-44.82 = 300(-0.1494) \tag{20}$$

An additional 5 hours per week will reduce weekly sleep time by approximately 45 minutes. Since we are talking about weekly data, this means on a daily scale, the sleep will be reduced by 45/7, which is approximately 6 minutes. We do not find this value a large trade-off since potential benefits from additional work will outweigh 6 minutes lost in sleep.

3.8 Question 8

As previously expected, the education (educ) variable has a negative sign, meaning that the more years of schooling you have, the less sleep time you get. The magnitude suggests that you will lose approximately 12 minutes of weekly sleep time for each year of schooling. This also makes sense as the more sophisticated your education becomes, the more time people might need to invest to graduate, get the desired results, etc. As discussed above, there is a higher chance that people with better education might get more demanding jobs, thus indirectly reducing sleep time.

3.9 Question 9

Given the output result below the current model explains approximately 12% of the variation in the data. This is because other potential factors might affect the sleeping behaviour such as the place where you live or your health.

	R-square Adj. R-sc		
Omnibus:	67.297	Durbin-Watson:	2.047
Prob(Omnibus)	0.000	Jarque-Bera (JB):	192.388
Skew:	-0.545	Prob(JB):	1.67e-42
Kurtosis:	5.551	Cond. No.	1.66e + 04

Notes:

[2] The condition number is large, 1.66e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Table 7: Regression results with totwrk, age and educ.

The *totwrk* variable can potentially correlate with age and especially with the level of education. Python output also suggests that there is a presence of strong multicollinearity meaning that the variables in the model can potentially be highly correlated.

3.10 Question 10

Adding a new dummy variable yngkid and agesq will give us:

$$sleep_i = \beta_0 + \beta_1 totwrk_i + \beta_2 educ_i + \beta_3 age_i + \beta_4 yngkid_i + \beta_5 agesq_i + \varepsilon_i$$
 (21)

With the following estimation results:

	\mathbf{coef}	std err	\mathbf{t}	$P \! > t $	[0.025]	$\boldsymbol{0.975}]$
const	3828.7290	262.316	14.596	0.000	3313.550	4343.908
totwrk	-0.1466	0.018	-8.028	0.000	-0.182	-0.111
educ	-12.0644	6.369	-1.894	0.059	-24.572	0.443
age	-8.6049	12.499	-0.688	0.491	-33.152	15.942
agesq	0.1383	0.148	0.933	0.351	-0.153	0.429
$\mathbf{y}\mathbf{n}\mathbf{g}\mathbf{k}\mathbf{i}\mathbf{d}$	9.5107	53.274	0.179	0.858	-95.118	114.140

Table 8: Regression results with totwrk, age, educ, yngkid and agesq.

We can now see that the added variables do not help us to improve the model, as they are both statistically insignificant at the level $\alpha = 0.05$.

3.11 Question 11

Now we have to estimate the same model but for men and women separately.

$$sleep_i = \beta_0 + \beta_1 totwrk_i + \beta_2 educ_i + \beta_3 age_i + \beta_4 yngkid_i + \beta_5 agesq_i + \beta_6 male = 1 + \varepsilon_i$$
(22)

We have chosen a subset of existing data where the *male* dummy variable equals to 1, meaning we haven chose all the males from the sample and estimated the model again.

Dep. Vari	Dep. Variable:		sleep		R-squared:		
Model:		OLS	OLS		Adj. R-squared:		
Method:		Least Squ	uares	F-stati	stic:	13.35	
Date:		Sat, 16 De	ec 2023	Prob (F-statistic	e): 7.30e-12	
Time:		18:51:	11	Log-Lil	kelihood:	-2504.6	
No. Obser	$\operatorname{rvations}$:	338		AIC:		5021.	
Df Residu	als:	332		BIC:		5044.	
Df Model:	:	5					
Covarianc	e Type:	nonrobust					
	coef	std err	t	$P> \mathbf{t} $	[0.025]	0.975]	
const	3640.2288	337.088	10.799	0.000	2977.131	4303.326	
totwrk	-0.1865	0.027	-6.956	0.000	-0.239	-0.134	
educ	-11.6004	8.149	-1.424	0.156	-27.630	4.430	
age	5.7909	15.845	0.365	0.715	-25.378	36.960	
agesq	-0.0213	0.186	-0.114	0.909	-0.388	0.345	
$\mathbf{y}\mathbf{n}\mathbf{g}\mathbf{k}\mathbf{i}\mathbf{d}$	82.5022	62.612	1.318	0.189	-40.664	205.669	
Omni	Omnibus:		Durbin-Watson: 2.0		2.022		
Prob	Prob(Omnibus):		Jarque-Bera (JB): 47.		47.818		
Skew	:	-0.339	$\mathbf{Prob}(\mathbf{JB})$: 4.13			.13e-11	
Kurte	osis:	4.713	` /		65e + 04		

Notes:

Table 9: Regression results for the sleep model for males

Table 9 summarized the regression results for males. Only total work minutes per week seem to have a statistically significant effect on the *sleep* variable. The adjusted

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 4.65e+04. This might indicate that there are strong multicollinearity or other numerical problems.

R-squared has increased, meaning that now the model explains approximately 16% of the variation in sleep for males, which is an improvement from previous results. On the other hand, the existing model still suffers from multicollinearity, meaning that some of the independent variables correlate.

For the females all we have to do is to select data, where the *male* dummy variable is equals to 0. Namely:

$$sleep_i = \beta_0 + \beta_1 totwrk_i + \beta_2 educ_i + \beta_3 age_i + \beta_4 yngkid_i + \beta_5 agesq_i + \beta_6 male = 0 + \varepsilon_i$$
(23)

Dep. Variable:		sleep		R-squa	0.112	
Model:		OLS		Adj. R-squared:		0.094
Method:		Least Squares		F-stati	6.446	
Date:		Sat, 16 Dec 2023		Prob (e): 1.16e-05	
Time:		18:51:11		Log-Li	-1962.4	
No. Observations:		262		AIC:	3937.	
Df Residuals:		256		BIC:		3958.
Df Model:		5				
Covariance Type:		nonrobust				
	coef	std err	t	$P> \mathbf{t} $	[0.025]	0.975]
const	4277.0584	418.076	10.230	0.000	3453.753	5100.364
totwrk	-0.1400	0.029	-4.791	0.000	-0.198	-0.082
educ	-14.2456	10.166	-1.401	0.162	-34.266	5.775
age	-29.8172	20.060	-1.486	0.138	-69.321	9.687
\mathbf{agesq}	0.3628	0.241	1.508	0.133	-0.111	0.837
$\mathbf{y}\mathbf{n}\mathbf{g}\mathbf{k}\mathbf{i}\mathbf{d}$	-201.3997	99.856	-2.017	0.045	-398.044	-4.755
Omnibus:		57.031	Durbin-Watson: 1.7		1.747	
Prob(Omnibus)): 0.000	Jarque-Bera (JB): 215		215.068	
Skew:		-0.849	Prob(JB): 1.99		.99e-47	
Kurtosis:		7.101	Cond. No. 3.956		95e + 04	

Notes:

Table 10: Regression results for the sleep model for females

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 3.95e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Estimating the model for females results in Table 10. We can now observe the difference between the male model. First, the yngkid dummy variable is now statistically significant at $\alpha=0.05$, which means that it helps predict females' sleep time. Although we now have an additional helpful variable in explaining sleep, the adjusted R-squared dropped to 9.4%; thus, the current model explains less sleep variance than males.

What is also interesting is that the coefficient size and sign vary between males and females. The variables age and yngkid are positive for males and negative for females. This means that as men grow older, they actually sleep more, and having young children does not negatively impact their sleep, in fact, it is positive, so men sleep more when they have young children (yngkid) is one if children < 3 years old are present). In contrast, females sleep less with age and sleep ≈ 30 minutes less per day if a young child is in the family. One of the possible explanations might be that females care more about their children and spend more time with them.

3.12 Question 12 & 13

Now we would like to estimate the model accounting for both male and female at the same time. The male is now a binary variable, being 1 when the observation is for a male and 0 for female. male = 1, 0.

 $sleep_i = \beta_0 + \beta_1 totwrk_i + \beta_2 educ_i + \beta_3 age_i + \beta_4 yngkid_i + \beta_5 agesq_i + \beta_6 male_i + \varepsilon_i$ (24)

Dep. Variable:		sleep		R-squa	0.130	
Model:		OLS		Adj. R-squared:		0.121
Method:		Least Squares		F-statistic:		14.79
Date:		Sat, 16 Dec 2023		Prob (e): 8.59e-16	
Time:		18:51:11		Log-Lil	-4472.4	
No. Observations:		600		AIC:	8959.	
Df Residuals:		593		BIC:		8990.
Df Model:		6				
Covariance Type:		nonrobust				
	coef	std err	t	$P> \mathbf{t} $	[0.025]	0.975]
const	3842.8329	261.403	14.701	0.000	3329.444	4356.222
totwrk	-0.1637	0.020	-8.350	0.000	-0.202	-0.125
educ	-13.0459	6.359	-2.052	0.041	-25.534	-0.558
\mathbf{age}	-8.8835	12.452	-0.713	0.476	-33.340	15.573
\mathbf{agesq}	0.1371	0.148	0.928	0.354	-0.153	0.427
$\mathbf{y}\mathbf{n}\mathbf{g}\mathbf{k}\mathbf{i}\mathbf{d}$	-8.2672	53.616	-0.154	0.878	-113.568	97.034
\mathbf{male}	88.2285	37.717	2.339	0.020	14.153	162.304
Omnibus:		66.472	Durbin-Watson: 2.0			2.071
Prob(Omnibus)): 0.000	-			93.463
Skew:		-0.532	()		78e-43	
Kurtosis:		5.570	Cond. No. 4.30e		30e+04	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.3e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Table 11: Regression results for the sleep model for males and females

This model is an improvement to the previous two because it accounts for both males and females. It is easier to make conclusions for the whole population with

this model. For example, we have found a few significant differences between the males and females in the previous section, which is also consistent with what we find in Table 11, namely, being a male is statistically significant in predicting the sleeping time. However, what has changed now is that yngkid and age do not play much of a role in predicting sleep, but education educ does. The agesq variable has not helped in predicting sleep, not for males or females, and did not help with the existing model, suggesting this variable might not be needed in the model.

Total minutes worked (totwrk), as expected, still plays a significant role in predicting sleep, as it has been a critical variable in every model, suggesting that work is significant at the population level and does not vary in importance between genders.

The *const* variables remain significant for biological reasons. Namely, people need the same basic level of sleep in order to function correctly, so it makes sense that this variable has been statistically significant at all times during the study.

Adjusted R-squared has improved for females but worsened for males. This is because the model improves the prediction at the population level at the cost of the individual level.

3.13 Question 14

F-statistic:	14.79	
Prob (F-statistic):	8.59e-16	

Table 12: F-statistics

Taking the result reported in Table 12 from the regression summary we can see that the probability of F-statistic is basically 0 that means that the model in fact adds value and helps in predicting sleep.

3.14 Question 15

Before we start with the last question it is important to say that we would have started improving the model by trying to remove multicollinearity by removing some variables, but since in the assignment document we were asked to only add variables to the existing model we decided to not change the original set up.

After several experiments with different variables, we have pursued the model described in Table 13. First of all, with our new model including the new variable south, all key indicators, such as adjusted R-squared and AIC, have improved slightly, second, the new variable is not only statistically significant but also has

the biggest coefficient out of all other variables besides the constant, which may signify the importance of living in the south.

The reasoning behind this strong effect needs to be clarified. One possible explanation might be that the sunset is usually earlier near the equator; hence, people might get to sleep earlier; also, if talking on a state level, the difference between governments, for example in the US, might play a role. Since the original document does not explain the exact definition of the *south* variable, we would need more information on the *south* variable to explain why the effect is so strong.

Dep. Variable:		sleep		R-squared:		0.143
Model:		OLS		Adj. R-squared:		0.132
Method:		Least Squares		F-statistic:		14.06
Date:		Sat, 16 Dec 2023		Prob (F-statistic)		e): 6.31e-17
Time:		18:51:11		Log-Likelihood:		-4468.1
No. Observations:		600		AIC:		8952.
Df Residuals:		592		BIC:		8987.
Df Model:		7				
Covariance Type:		nonrobust				
	coef	std err	t	$P> \mathbf{t} $	[0.025]	0.975]
const	3759.7722	261.313	14.388	0.000	3246.558	4272.986
totwrk	-0.1681	0.020	-8.605	0.000	-0.207	-0.130
educ	-12.1322	6.326	-1.918	0.056	-24.557	0.293
age	-6.2186	12.408	-0.501	0.616	-30.587	18.150
\mathbf{agesq}	0.1065	0.147	0.724	0.470	-0.182	0.395
$\mathbf{y}\mathbf{n}\mathbf{g}\mathbf{k}\mathbf{i}\mathbf{d}$	-17.6216	53.376	-0.330	0.741	-122.450	87.207
\mathbf{male}	95.6125	37.565	2.545	0.011	21.835	169.390
south	127.7070	43.738	2.920	0.004	41.806	213.608
Omnibus:		64.903				2.047
Prob(Omnibus):		0.000	• ()		89.982	
Skew:		-0.516	· /		57e-42	
Kurtosis:		5.556	Cond	. No.	4.3	33e + 04

Notes:

Table 13: Regression results for Question 15

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 4.33e+04. This might indicate that there are strong multicollinearity or other numerical problems.