MSc. Stefano Romero

- Intercambiar datos con otros dispositivos
- Las conexiones entre dispositivos I/O, procesador y memoria se realizan a través de Buses.
- ¿Por qué existen interfaces I/O?
 - Velocidades de tx variables
 - Ancho de palabra diferente al CPU
 - Read (teclado), escritura (monitor), R/W(modem)

Device	Behavior	Partner	Data rate (Mbit/ sec)
Keyboard	Input	Human	0.0001
Mouse	Input	Human	0.0038
Voice input	Input	Human	0.2640
Sound input	Input	Machine	3.0000
Scanner	Input	Human	3.2000
Voice output	Output	Human	0.2640
Sound output	Output	Human	8.0000
Laser printer	Output	Human	3.2000
Graphics display	Output	Human	800.0000-8000.0000
Cable modem	Input or output	Machine	0.1280-6.0000
Network/ LAN	Input or output	Machine	100.0000-10000.0000
Network/ wireless LAN	Input or output	Machine	11.0000-54.0000
Optical disk	Storage	Machine	80.0000-220.0000
Magnetic tape	Storage	Machine	5.0000-120.0000
Flash memory	Storage	Machine	32.0000-200.0000
Magnetic disk	Storage	Machine	800.0000–3000.0000

- I-O se puede definir como un subsistema de componentes que mueve datos codificados entre dispositivos externos y un host (con una CPU y una MP).
- Estos subsistemas de I-O incluyen, pero no se limitan a:
 - Bloques de MP que están dedicados a las funciones de I/O.
 - Buses que proporcionan los medios para mover datos dentro y fuera del sistema.
 - Módulos de control en el host y en los periféricos.
 - Interfaces con componentes externos (teclados y discos).
 - Cableado o enlaces de comunicación entre el host del sistema y sus periféricos

Figura 6.1. Configuración de un modelo I/O [1].

Buses: 3 grupos funcionales

- 1.- Líneas de datos -> #líneas = # bits tx
- 2.- Líneas de dirección -> #líneas = máxima cantidad de memoria y disp. I-O direccionables
- 3.- Líneas de control -> gestión de acceso y uso de las líneas de datos y direcciones.

Temporización de buses

- a) Síncrono -> Buses de memoria (Problemas: Clock_Skew y Velocidad)
- b) Asíncrono -> Coordinación con señales de control (Handshaking)

<u>Arbitraje de buses</u>

- a) Centralizado: Controlador del bus es responsable de asignar el tiempo de uso del bus a cada dispositivo.
- b) Distribuido: Cada módulo tiene la lógica de control suficiente para acceder al bus y actuar de forma cooperativa.
 - Autoselección-> el dispositivo determina si es el solicitante de mayor prioridad.
 - Colisión-> varios dispositivos quieren acceder al bus-> dispositivos esperan un tiempo aleatorio antes de intentar nuevamente utilizar el bus

Hay una gran variedad de métodos de control y transmisión para diferentes equipos de I-O. No es posible conectar un sistema de buses para todos; sin embargo, algunos módulos de I-O funcionan como interfaz entre el CPU y los periféricos.

Módulo I-O:

- -Control y temp.
- -Comunicación con uP
- -Comunicación con los devices.
- -Almacenamiento temporal de datos
- -Detección de errores y comunicación al uP

- Los módulos se dividen según el propósito que tienen:
 - I-O programados
 - I-O controlador por interrupciones
 - I-O mapeo a memoria
 - Acceso directo a memoria (DMA)
 - I-O canal conectado.
- Un método no es necesariamente mejor que otro, pero la manera en que una computadora controla su I-O influye en gran medida en el diseño y el rendimiento general del sistema.
- El objetivo es saber cuándo el método de I-O empleado por una arquitectura de computadora particular es apropiado para la forma en que se usará el sistema.

Polling

Interrupciones

- ¿Qué ocurre si hay varios dispositivos conectados por interrupción?
 - Líneas de interrupción dedicadas
 - Identificar dispositivo
 - Encuesta software-> revisar el registro de estado
 - Encadenamiento

Arquitectura de I-O: Limitaciones de Polling e interrupciones

- Los accesos vistos hasta ahora resultan en necesariamente la intervención del procesador para transferir datos de un punto a otro en el computador.
- El problema con estos modos (por polling y por interrupción), se presenta de dos maneras:
 - La tasa de transferencia de I-O está limitada por la velocidad a la cual el procesador puede probar y atender un dispositivo.
 - El procesador está atado en el manejo de una transferencia de I-O, un número de instrucciones debe ser ejecutado por cada transferencia de I-O.

- En este enfoque, los dispositivos y la MP comparten el mismo espacio de direcciones. Esto significa que cada dispositivo I-O tiene reservado un bloque de memoria.
- Desde el punto de vista del CPU, esto se ve como un acceso desde la memoria.
- Esto significa que es posible usar las mismas instrucciones para mover datos hacia y desde la I-O y la memoria, lo cual simplifica el diseño del sistema. Además, la CPU no necesita preocuparse por si un dispositivo está listo, si cuenta los bytes en una transferencia o si calcula códigos de corrección de errores.

 Cuando un sistema usa DMA, el CPU descarga las instrucciones más complejas del I-O. Para efectuar la transferencia, el CPU proporciona al controlador DMA la ubicación de los bytes a transferir, el número de bytes a transferir y el dispositivo de destino o la dirección de la memoria.

Modo Ráfaga

Bibliografía

- [1] Null, L., et al. The essentials of computer organization and architecture. Jones & Bartlett Publishers, 2014.
- [2] Stallings, William. Computer organization and architecture: designing for performance. Pearson Education India, 2003.
- [3] SILBERSCHATZ, Abraham; GAGNE, Greg; GALVIN, Peter B. Operating system concepts. Wiley, 2018.

IEE240 13