Algorithmic Operation Research

Theodora Panagea - 1115201400135 Anna-Aikaterini Kavvada - 1115201500050

18-10-2019

1

Let $C \subseteq \mathbb{R}^n$ be a convex set with $x_1,...x_k \in C$ and let θ_1 , . . . , $\theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0$ and $\theta_1 + ... + \theta_k = 1$. Show that $\theta_1 x_1 + ... + \theta_k x_k \in C$.

Solution:

We will start by proving the question for i=3 which is trivial. So, suppose i=3 and we also have $x_1,x_2,x_3\in C$ and $\theta_1+\theta_2+\theta_3=1$ with $\theta_1,\theta_2,\theta_3\geq 0$. We will show that

$$\theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \in C \quad (1)$$

There is at least one of the θ_i that does not equal 1. Now, assume, without loss of generality that $\theta_i \neq 1$, where

$$\theta_1 + \theta_2 + \theta_3 = 1 \iff$$

$$\theta_2 + \theta_3 = 1 - \theta_1 \iff , (1 - \theta_1 > 0)$$

$$\frac{\theta_2 + \theta_3}{1 - \theta_1} = 1 \Rightarrow$$

$$1 = m_1 + m_2 = \frac{\theta_2 + \theta_3}{1 - \theta_1} \Rightarrow$$

$$m_1 = \frac{\theta_2}{1 - \theta_1} \quad (2) \quad and \quad m_2 = \frac{\theta_3}{1 - \theta_1} \quad (3) \Rightarrow$$

$$\theta_2 = m_1(1 - \theta_1) \quad and \quad \theta_3 = m_2(1 - \theta_2)$$

Thus, from (1), (2) and (3), we have

$$\theta_1 x_1 + (1 - \theta_1)(m_1 x_1 + m_2 x_3)$$
 (4)

Since C is convex and $x_2, x_3 \in C$, we conclude that $(m_1x_1 + m_2x_3) \in C$ as "extensions". Thus, since both points are in the convex C, then the function is in C as well.

Now that we have proven that the function belongs to set C for i=3, we can prove with the same steps that it is also true for the general example i=k where

$$\theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_k \in C \quad (5)$$

. Following the method above, we find that

$$\theta_1 + \theta_2 + \dots + \theta_k = 1 \iff$$

$$\theta_2 + \theta_3 + \dots + \theta_k = 1 - \theta_1 \iff , (1 - \theta_1 > 0)$$

$$\frac{\theta_2 + \theta_3 + \dots + \theta_k}{1 - \theta_1} = 1 \Rightarrow$$

$$m_1 = \frac{\theta_2}{1 - \theta_1} \quad (6) \quad \dots \quad m_{k-1} = \frac{\theta_k}{1 - \theta_1} \quad (7)$$

. As in the proof for i=3 it is easy to see that from the (5),(6) and (7) we have

$$\theta_1 x_1 + (1 - \theta_1)(m_1 x_1 + m_2 x_3 + \dots + m_{k-1} x_k)$$
 (8)

. Thus, we show that since C is convex and all points $x_1, x_2, ..., x_k \in C$ then $(m_1x_1+m_2x_3+\ldots+m_{k-1}x_k)\in C$. So the function given is proved to be convex and belong to set C.

Show that a set is convex if and only if its intersection with any line is convex.

Solution:

We have a convex set S. Suppose we have a convex set A.

 \Rightarrow

Let's take two points $p_1, p_2 \in S \cup A$, and point p is on the line segment of p_1p_2 .

- $p \in S$ because S is convex
- $p \in A$ because A is convex

So
$$p \in S \cap A$$

Since the two points p_1 and p_2 are arbitrary, we can assume that $S \cap A$ as well. (even in the case where $S \cap A$ is null it is convex)

 \leftarrow

Let $L \cap C$ which is convex for all lines in L. Assume that C is not convex, thus $\exists x, y \in C$, with $\lambda \in [0, 1]$, where

$$\lambda x + (1 - \lambda)y \notin C$$

. But, the line $ax + (1-a)y, a \in \mathbb{R}$ intersects with C, thus, the intersection is convex.

The line segment between x,y belongs to the intersection $\lambda x + (1-\lambda)y$, thus belonging to C as well, which negates our previous assumption, proving that C is indeed convex.

Show that a set is affine if and only if its intersection with any line is affine. **Solution:**

As proved above in question (3), the intersection of convex set S with $\underline{\text{any}}$ line is convex.

Let's take two points x_1 and x_2 , where $x_1, x_2 \in S$. From the proof above, we know that the line between these two points is convex. Thus, the convex combination of x_1 and x_2 belongs to the intersection and expectedly to S. To conclude, since the line belongs to convex set S, the set is affine.

A set C is midpoint convex, if whenever two points $a,b\in C$, the average or midpoint (a+b)/2 is in C. Obviously, a convex set is midpoint convex. Prove that if C is closed and midpoint convex, then C is convex.

Solution:

Show that the convex hull of a set S is the intersection of all convex sets that contain S. (The same method can be used to show that the conic, or affine, or linear hull of a set S is the intersection of all conic sets, or affine sets, or subspaces that contain S.

Solution:

What is the distance between two parallel hyperplanes $\{x\in Rn: aTx=b1\}$ and $\{x\in Rn: aTx=b2\}$? Solution:

Let a and b be distinct points in \mathbb{R}^n . Show that the set of all points that are closer (in Euclidean norm) to a than b is a halfspace. **Solution:**