Hurtownie Danych – laboratorium lista 5

Table of Contents

Zadanie 1. Przygotowanie powtarzalności procesu ETL	2
Zadanie 2. Wymiar Czasowy	2
Tworzenie tabeli:	3
Tworzenie tabeli pomocniczych:	4
Insertowanie danych:	5
Zadanie 3. Elementarne czyszczenie danych	6
Zadanie 4. Proces Extract – Transform – Load	7
Zadanie 5. ETL (prawie) bez SQLa	12
Insert Helpers:	12
DIM_TIME:	13
DIM_PRODUCT:	15
Wnioski:	17

Zadanie 1. Przygotowanie powtarzalności procesu ETL

Przygotować instrukcję usuwającą każdą z tabel utworzonych w trakcie pracy nad listą 4.

```
IF EXISTS (
    FROM INFORMATION SCHEMA. TABLES
   WHERE TABLE SCHEMA = 'Czech' AND TABLE NAME = 'FACT SALES'
DROP TABLE Czech.FACT_SALES;
IF EXISTS (
   SELECT *
   FROM INFORMATION SCHEMA. TABLES
   WHERE TABLE_SCHEMA = 'Czech' AND TABLE_NAME = 'DIM_CUSTOMER'
DROP TABLE Czech.DIM CUSTOMER;
IF EXISTS (
   SELECT *
   FROM INFORMATION SCHEMA. TABLES
   WHERE TABLE SCHEMA = 'Czech' AND TABLE NAME = 'DIM PRODUCT'
DROP TABLE Czech.DIM PRODUCT;
IF EXISTS (
    SELECT *
   FROM INFORMATION SCHEMA. TABLES
   WHERE TABLE SCHEMA = 'Czech' AND TABLE NAME = 'DIM SALESPERSON'
DROP TABLE Czech.DIM SALESPERSON;
IF EXISTS (
   SELECT *
   FROM INFORMATION SCHEMA. TABLES
   WHERE TABLE SCHEMA = 'Czech' AND TABLE NAME = 'DIM TIME'
DROP TABLE Czech.DIM_TIME;
```

Zadanie 2. Wymiar Czasowy

Przygotować wymiar czasowy: utworzyć i wypełnić danymi tabelę DIM_TIME. Tabela DIM_TIME powinna być tabelą zawierającą wymiar czasowy (klucze obce do tej tabeli znajdują się w tabeli faktów). Tabela DIM_TIME powinna zawierać następujące kolumny:

- PK_TIME (klucz główny liczba całkowita postaci yyyymmdd format taki sam jak kolumn OrderDate, ShipDate)
- Rok
- Kwartał
- Miesiąc

- Miesiąc słownie (wykorzystać tabelę pomocniczą z 12 rekordami dokonać odpowiedniego złączenia)
- Dzień tygodnia słownie (wykorzystać tabelę pomocniczą z 7 rekordami dokonać odpowiedniego złączenia)
- Dzień miesiąca

Tworzenie tabeli:

```
CREATE TABLE Czech.DIM_TIME (
    PK_TIME INT, -- np. 20240421
    Rok INT,
    Kwartal INT,
    Miesiac INT,
    Miesiac_Slow NVARCHAR(20),
    Dzien_Tygodnia_Slow NVARCHAR(20),
    Dzien_Miesiaca INT
    CONSTRAINT PK_DIM_TIME PRIMARY KEY (PK_TIME)
);
```

Tworzenie tabeli pomocniczych:

```
| IF OBJECT_ID('tempdb..#Miesiace') IS NOT NULL
    DROP TABLE #Miesiace;
IF OBJECT_ID('tempdb..#DniTygodnia') IS NOT NULL
    DROP TABLE #DniTygodnia;
|CREATE TABLE #Miesiace (
    Miesiac INT PRIMARY KEY,
    Miesiac Slow NVARCHAR(20)
);
INSERT INTO #Miesiace (Miesiac, Miesiac Slow)
VALUES
(1, 'Styczeń'), (2, 'Luty'), (3, 'Marzec'), (4, 'Kwiecień'),
(5, 'Maj'), (6, 'Czerwiec'), (7, 'Lipiec'), (8, 'Sierpień'),
(9, 'Wrzesień'), (10, 'Październik'), (11, 'Listopad'), (12, 'Grudzień');
|CREATE TABLE #DniTygodnia (
    Dzien_Tygodnia INT PRIMARY KEY,
    Dzien_Tygodnia_Slow NVARCHAR(20)
);
INSERT INTO #DniTygodnia (Dzien_Tygodnia, Dzien_Tygodnia_Slow)
VALUES
(1, 'Niedziela'), (2, 'Poniedziałek'), (3, 'Wtorek'), (4, 'Środa'),
(5, 'Czwartek'), (6, 'Piątek'), (7, 'Sobota');
```

Insertowanie danych:

```
WITH CTE_Dates AS (
   SELECT CAST('20110531' AS DATE) AS D
   UNION ALL
    SELECT DATEADD(DAY, 1, D)
    FROM CTE Dates
   WHERE D < '20141231'
INSERT INTO Czech.DIM TIME
(PK_TIME, Rok, Kwartal, Miesiac, Miesiac_Slow, Dzien_Tygodnia_Slow, Dzien_Miesiaca)
SELECT
   CONVERT(INT, FORMAT(D, 'yyyyMMdd')) AS PK_TIME,
   DATEPART(YEAR, D) AS Rok,
DATEPART(QUARTER, D) AS Kwartal,
   DATEPART(MONTH, D) AS Miesiac,
   m.Miesiac_Slow,
    dt.Dzien_Tygodnia_Slow,
   DATEPART(DAY, D) AS Dzien_Miesiaca
FROM CTE Dates
JOIN #Miesiace m ON DATEPART(MONTH, D) = m.Miesiac
JOIN #DniTygodnia dt ON DATEPART(WEEKDAY, D) = dt.Dzien Tygodnia
OPTION (MAXRECURSION 10000);
```

	PK_TIME	Rok	Kwartal	Miesiac	Miesiac_Slow	Dzien_Tygodnia_Slow	Dzien_Miesiaca
1	20110531	2011	2	5	Maj	Wtorek	31
2	20110601	2011	2	6	Czerwiec	Sroda	1
3	20110602	2011	2	6	Czerwiec	Czwartek	2
4	20110603	2011	2	6	Czerwiec	Piatek	3
5	20110604	2011	2	6	Czerwiec	Sobota	4
6	20110605	2011	2	6	Czerwiec	Niedziela	5
7	20110606	2011	2	6	Czerwiec	Poniedzialek	6
8	20110607	2011	2	6	Czerwiec	Wtorek	7
9	20110608	2011	2	6	Czerwiec	Sroda	8
10	20110609	2011	2	6	Czerwiec	Czwartek	9
11	20110610	2011	2	6	Czerwiec	Piatek	10
12	20110611	2011	2	6	Czerwiec	Sobota	11
13	20110612	2011	2	6	Czerwiec	Niedziela	12
14	20110613	2011	2	6	Czerwiec	Poniedzialek	13
15	20110614	2011	2	6	Czerwiec	Wtorek	14

Zadanie 3. Elementarne czyszczenie danych

Zamienić wszystkie wartości NULL:

- w kolumnie Color (tabela DIM_PRODUCT) na "Unknown",
- w kolumnie SubCategoryName (tabela DIM_PRODUCT) na "Unknown",
- w kolumnie CountryRegionCode na 000,
- w kolumnie Group na "Unknown".

```
--zadanie 3. lista 5

JUPDATE Czech.DIM_PRODUCT

SET Color = 'Unknown'
WHERE Color IS NULL;

JUPDATE Czech.DIM_PRODUCT

SET SubCategoryName = 'Unknown'
WHERE SubCategoryName IS NULL;

JUPDATE Czech.DIM_CUSTOMER

SET CountryRegionCode = '000'
WHERE CountryRegionCode IS NULL;

JUPDATE Czech.DIM_CUSTOMER

SET [Group] = 'Unknown'
WHERE [Group] IS NULL;
```

Zadanie 4. Proces Extract – Transform – Load

Używając Visual Studio utworzyć projekt typu Integration Services (wybierając z Menu File - > New Project) zawierający zapytania SQL opracowane w zadaniach 1-4.1 z listy 4 oraz w zadaniach 1-3 z listy 5.

Utworzony pakiet powinien działać sekwencyjnie i wykonywać następujące zadania:

a) Usunąć tabele z przedrostkiem DIM i FACT (oczywiście usunąć tylko te, które istnieją)

b) Utworzyć tabele z przedrostkiem DIM i FACT

c) Wypełnić tabele danymi (instrukcje INSERT INTO)

d) Dodać więzy integralności z zadania 4.1 z listy 4 (bez sprawdzania poprawności integralności)

e) Obsłużyć błędy i wyjątki – zakładka Event Handlers

f) Wyświetlić informację o pozytywnie zakończonym procesie

Tabele zostały utworzone pomyślnie:

- ⊞ Czech.DIM_TIME

Przykładowe dane z DIM_PRODUCT

	ProductID	Name	ListPrice	Color	SubCategoryName	CategoryName	Weight	Size	IsPurchased
90	807	HL Headset	124.73	Unknown	Headsets	Components	NULL	NULL	1
91	808	LL Mountain Handlebars	44.54	Unknown	Handlebars	Components	NULL	NULL	1
92	809	ML Mountain Handlebars	61.92	Unknown	Handlebars	Components	NULL	NULL	1
93	810	HL Mountain Handlebars	120.27	Unknown	Handlebars	Components	NULL	NULL	1
94	811	LL Road Handlebars	44.54	Unknown	Handlebars	Components	NULL	NULL	1
95	813	HL Road Handlebars	120.27	Unknown	Handlebars	Components	NULL	NULL	1
96	814	ML Mountain Frame - Black,	348.76	Black	Mountain Frames	Components	2.73	38	1
97	815	LL Mountain Front Wheel	60.75	Black	Wheels	Components	NULL	NULL	1
98	816	ML Mountain Front Wheel	209.03	Black	Wheels	Components	NULL	NULL	1
99	817	HL Mountain Front Wheel	300.22	Black	Wheels	Components	NULL	NULL	1
100	819	ML Road Front Wheel	248.39	Black	Wheels	Components	850.00	NULL	1

Zadanie 5. ETL (prawie) bez SQLa

Przygotować proces ETL analogiczny do opisanego w zad. 4. Dla wymiaru czasowego i co najmniej jednego innego wymiaru przygotować import danych korzystając z narzędzi dostępnych w zakładce Data Flow, m.in. OLE DB Source/Destination, Merge Join, Sort, Transformations, Derived Column, Fuzzy Lookup, Fuzzy Grouping, itp.

Insert Helpers:

W SQL Execution Task Insert Helpers zostawione zostały kwerendy uzupełniające dane o tabelach DIM_Customer, DIM_SalesPerson oraz FACT_Sales.

DIM_TIME:

Strategia wypełnienia DIM_TIME danymi:

- a) Wygenerowanie danych o wszystkich datach z zakresu zebranych danych (31.05.2011 – 07.07.2014) – skrypt C#
- b) Wypełnienie tabeli DIM_TIME wygenerowanymi danymi

Generacja danych:

```
public override void CreateNewOutputRows()
{
    DateTime startDate = new DateTime(2011, 5, 31);
    DateTime endDate = new DateTime(2014, 7, 7);

    while (startDate <= endDate)
    {
        Output0Buffer.AddRow();
        Output0Buffer.Data = (uint) int.Parse(startDate.ToString("yyyyMMdd"));
        Output0Buffer.Rok = (ushort) startDate.Year;
        Output0Buffer.Rok = (ushort) startDate.Month - 1) / 3 + 1);
        Output0Buffer.Miesiac = (byte) ((startDate.Month;
        Output0Buffer.DzienMiesiaca = (byte) startDate.Day;
        Output0Buffer.MiesiacSlownie = startDate.ToString("MMMM", new System.Globalization.CultureInfo("pl-PL"));
        Output0Buffer.DzienTygodniaSlownie = startDate.ToString("dddd", new System.Globalization.CultureInfo("pl-PL"));
        startDate = startDate.AddDays(1);
    }
}</pre>
```

Typy danych:

- Data Unsigned 8-byte int
- Rok Unsigned 2-byte int
- Kwartal Unsigned 1-byte int
- Miesiac Unsigned 1-byte int

- DzienMiesiaca Unsigned 1-byte int
- MiesiacSlownie String
- DzienTygodniaSlownie string

Uzupełnienie tabeli DIM_TIME:

DIM_PRODUCT:

Strategia wypełnienia DIM_PRODUCT:

- Pobieramy interesujące nas dane z tabeli Products
- Pobieramy ProductID z SalesOrderDetail (wszystkie produkty które się sprzedały chociaż raz)
- Sortujemy dane z tabeli Product po ProductID
- Sortujemy dane z tabeli SalesOrderDetail po ProductID z użyciem opcji Remove rows with duplicate sort values, aby pozbyć się duplikatów
- Merge Join danych o Produktach z ProductID produktów, które się sprzedały, aby zostawić tylko informację o produktach, które zostały zakupione.
- Lookup z tabelą SubCategory:
 - Jeśli w produkcie istnieje SubCategoryld Match wysyłamy dane do Lookup Category – gdzie dodajemy informację o kategorii
 - Jeśli w produkcie nie istnieje SubCategoryld No Match wysyłamy dane do Derived Column (Unknown Category and SubCategory) – gdzie dodajemy pola CategoryName i SubcategoryName wypełnione wartościami "Unknown"

- Łączymy dane o kategoriach i wysyłamy je do DerivedColumn (IsPurchased) gdzie dodajemy informację o tym czy produkt jest kupiony (zgodnie z instrukcją)
- Uzupełniamy tabelę DIM_PRODUCT przygotowanymi danymi.

Wnioski:

- Proces ETL może być w pełni zautomatyzowany w ramach jednego pakietu SSIS, obejmującego usuwanie, tworzenie i uzupełnianie tabel danymi. Dzięki zastosowaniu Execute SQL Task i Data Flow Task, możliwe jest rozdzielenie logiki tworzenia struktur i ładowania danych.
- Możemy zoptymalizować tworzenie **Wymiaru Czasu (DIM_TIME)** za pomocą jednokrotnego przejścia przez wszystkie daty z zakresu, bez potrzeby sprawdzania ich występowania przy przeglądaniu każdego rekordu tabeli **FACT_SALES.**
- Zmiana wartości **NULL** na neutralne oznaczenia ("Unknown", "000") pozwala ujednolicić dane i przygotować je do dalszej analizy.
- Proces ETL może być wykonany przy minimalnym użyciu języka SQL. Korzystając
 z narzędzi takich jak Sort, Merge Join, Lookup, Derived Column czy Union All
 możemy stworzyć bardzo zaawansowane zapytania wypełniające tabele danymi, bez
 użycia SQL.
- Przy przetwarzaniu danych z niepełnym dopasowaniem (np. brak kategorii/subkategorii) ważne jest uwzględnienie No Match Output oraz uzupełnienie brakujących kolumn, żeby uniknąć problemów ze spójnością danych.
- Za pomocą EventHandlers jesteśmy w stanie dokładnie przeanalizować błędy występujące za równo w danych fragmentach procesu ETL jak i w całym procesie.