$f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

f₁(1285) MASS

<u>VALUE</u>	(Me\	/)			EVTS		DOCUMENT ID		TFCN	COMMENT
			O		<u> </u>	:				1.8. See the ideogram
below.	_	0.0	Ū	••••		-	Error merades s	Jeare .	140101 01	1.0. See the lacegram
1281.0	\pm	8.0					DICKSON	16	CLAS	$2.55 \gamma p \rightarrow \eta \pi^+ \pi^- p$
1287.4	\pm	3.0			87		ABLIKIM	15 P	BES3	$J/\psi \rightarrow K^+K^-3\pi$
1281.10	б±	0.39	θ±	0.45	5	1	LEES	12X	BABR	$ au^- ightarrow \pi^- f_1(1285) \nu_{ au}$
1285.1	\pm	1.0	+	1.6 0.3		2	ABLIKIM	11 J	BES3	$J/\psi ightarrow \; \omega (\eta \pi^+ \pi^-)$
1281	±	2	±	1			AUBERT	07 AU	BABR	10.6 $e^+e^- \to f_1(1285) \pi^+ \pi^- \gamma$
1276.1	\pm	8.1	\pm	8.0	203		BAI	04J	BES2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
1274	\pm	6			237		ABDALLAH	03н	DLPH	$^{91.2}_{K_{S}^{0}} e^{+} e^{-}_{\pi^{\mp}} + X$
1280	\pm	4					ACCIARRI	01 G	L3	3
1288	\pm	4	\pm	5	20k		ADAMS	01 B	B852	18 GeV $\pi^- p \rightarrow K^+ K^- \pi^0 n$
1284	\pm	6			1400		ALDE	97 B	GAM4	$100 \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
1281	\pm	1					BARBERIS	97 B		450 $pp \to pp2(\pi^{+}\pi^{-})$
1281	\pm	1					BARBERIS	97C		$450 pp \rightarrow ppK_S^0 K^{\pm} \pi^{\mp}$
1280	±					3	ANTINORI	95		300,450 $pp \rightarrow$
1200	_	_					7.11110111	33		$pp2(\pi^{+}\pi^{-})$
1282.2	\pm	1.5					LEE	94	MPS2	$18 \pi^- p \rightarrow K^+ \overline{K}^0 2\pi^- p$
1279	\pm	5					FUKUI	91 C	SPEC	8.95 $\pi^- p \to \underline{\eta} \pi^+ \pi^- n$
1278	\pm	2			140		ARMSTRONG	89		$300 pp \to K\overline{K}\pi pp$
1278	±	2					ARMSTRONG	89 G	OMEG	85 $\pi^+ p \rightarrow 4\pi\pi p, pp \rightarrow 4\pi pp$
1280.1	\pm	2.1			60		RATH	89	MPS	21.4 $\pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} \pi^{0} n$
1285	\pm	1			4750	4	BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}^0 \pi^- n$
1280	\pm	1			504		BITYUKOV	88	SPEC	32.5 $\pi^- p \to K^+ K^- \pi^0 n$
1280	\pm	4					ANDO	86	SPEC	
1277	±				420		REEVES	86		6.6 $p\overline{p} \rightarrow KK\pi X$
1285	\pm						CHUNG	85	SPEC	$8 \pi^- p \rightarrow NK\overline{K}\pi$
1279	±				604		ARMSTRONG			85 $\pi^+ p \rightarrow K \overline{K} \pi \pi p$,
12.5	_	_			001		7.11.11.5777.677.6	0.	020	$pp \rightarrow K\overline{K}\pi pp$
1286	\pm	1					CHAUVAT	84	SPEC	ISR 31.5 <i>pp</i>
1278	\pm	4					EVANGELIS	81	OMEG	12 $\pi^- p \to \eta \pi^+ \pi^- \pi^- p$
1283	\pm	3			103		DIONISI	80	HBC	$4 \pi^- p \rightarrow K \overline{K} \pi n$
1282	\pm	2			320		NACASCH	78	HBC	$0.7, 0.76 \ \overline{p}p \rightarrow K\overline{K}3\pi$
1279	\pm	5			210		GRASSLER	77	HBC	16 π^{\mp} p
1286	\pm	3			180		DUBOC	72	HBC	$1.2 \; \overline{p} p \rightarrow \; 2K4\pi$
1283	\pm	5					DAHL	67	HBC	1.6 – $4.2 \pi^- p$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1284.2	± 2.2			⁵ AAIJ	14Y	LHCB	$\overline{B}_{(s)}^0 \rightarrow J/\psi 2(\pi^+\pi^-)$
1281.9	± 0.5			⁵ SOSA	99	SPEC	$pp \rightarrow p_{slow}$
							$(K_S^0 K^+ \pi^-) p_{fast}$
1282.8	± 0.6			⁵ SOSA	99	SPEC	$pp \rightarrow p_{slow}$
				000/1		0 0	$(K_S^0 K^- \pi^+) p_{\text{fast}}$
1270	± 10			AMELIN	95	VES	
1270	± 10			AIVILLIIV	93		$\begin{array}{ccc} 37 & \pi^{-} & N \rightarrow \\ & \pi^{-} & \pi^{+} & \pi^{-} & \gamma & N \end{array}$
1280	\pm 2			ABATZIS	94	OMEG	450 $pp \to pp^{2}(\pi^{+}\pi^{-})$
1282	\pm 4			ARMSTRONG	93 C	E760	$\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
1270	\pm 6	± 10		ARMSTRONG	92 C		300 $pp \rightarrow pp\pi^{+}\pi^{-}\gamma$
1281	\pm 1			ARMSTRONG	89E		300 $pp \to pp2(\pi^+\pi^-)$
1279	\pm 6	± 10	16	BECKER	87	MRK3	$e^+e^- o \phi K \overline{K} \pi$
1286	± 9			GIDAL	87	MRK2	$e^+e^{\perp} \rightarrow$
1007			252	DITYUUKOV	0.45	CDEC	$e^{+}e^{-}\eta\pi^{+}\pi^{-}$
1287	± 5		353	BITYUKOV 6 TORNQVIST	84B		$32 \pi^- p \to K^+ K^- \pi^0 n$
~ 1279			21		82B	RVUE	100 = VV
1275	± 6		31	BROMBERG	80		$100 \ \pi^- p \rightarrow K \overline{K} \pi X$
1288	± 9		200	GURTU	79	HBC	$4.2 K^- p \rightarrow n \eta 2\pi$
~ 1275			46	⁷ STANTON	79		$8.5 \pi^- p \rightarrow n2\gamma 2\pi$
1271	± 10		34	CORDEN	78	OMEG	$12-15 \pi^- p \rightarrow K^+ K^- \pi n$
1295	± 12		85	CORDEN	78	OMEG	$12-15 \pi^- p \rightarrow n5\pi$
1292	± 10		150	DEFOIX	72	HBC	$0.7 \ \overline{p}p \rightarrow 7\pi$
1280	\pm 3		500	8 THUN	72	MMS	$13.4 \pi^{-} p$
1303	± 8		300	BARDADIN		HBC	$8 \pi^+ p \rightarrow p6\pi$
1283	\pm 6			BOESEBECK	71	HBC	$16.0 \pi p \rightarrow p5\pi$
1270	\pm 10			CAMPBELL	69	DBC	$2.7 \pi^+ d$
1285	\pm 7			LORSTAD	69	HBC	$0.7 \overline{p}p$, 4,5-body
1290	± 7			D'ANDLAU	68	HBC	1.2 $\overline{p}p$, 5–6 body
1230	_ '	1		D / IIIDE/ IO	30		1.2 pp, 0 0 body

 $^{^{1}\,\}mathrm{Using}$ the $2\pi^{+}\,2\pi^{-}$ and $\pi^{+}\,\pi^{-}\,\eta$ modes of $\mathit{f}_{1}(1285)$ decay.

² The selected process is $J/\psi \rightarrow \omega \, a_0(980) \, \pi$.

³ Supersedes ABATZIS 94, ARMSTRONG 89E.

⁴ From partial wave analysis of $K^+ \, \overline{K}{}^0 \, \pi^-$ system.

⁵ No systematic error given.

⁶ From a unitarized quark-model calculation.

⁷ From phase shift analysis of $\eta \pi^+ \pi^-$ system.

⁸ Seen in the missing mass spectrum.

 $f_1(1285)$ mass (MeV)

f₁(1285) WIDTH

Only experiments giving width error less than 20 MeV are kept for averaging.

<u>VALUE (MeV)</u> 22.7± 1.1 OUR A	<u>EVTS</u> VERAGE	DOCUMENT ID Error includes so	ale fa	TECN ctor of 1	COMMENT 1.5. See the ideogram below.
18.4 ± 1.4 18.3 ± 6.3	87	DICKSON ABLIKIM	16 15P	CLAS BES3	2.55 $\gamma p \rightarrow \eta \pi^+ \pi^- p$ $J/\psi \rightarrow K^+ K^- 3\pi$
$22.0\pm \ 3.1^{+}_{-}\ 1.5$		$^{ m 1}$ ABLIKIM	11 J	BES3	$J/\psi \rightarrow \omega (\eta \pi^+ \pi^-)$
$35 \pm 6 \pm 4$		AUBERT	07 AU	BABR	10.6 e ⁺ e ⁻ \rightarrow $f_1(1285) \pi^+ \pi^- \gamma$ $J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
40.0± 8.6± 9.3	203	BAI	04 J	BES2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
HTTP://PDG.LE	BL.GOV	Page 3	,	Cr	eated: 5/30/2017 17:20

	29	± 12		237	ABDALLAH	03н	DLPH	91.2 $e^{+}e^{-} \rightarrow K_{S}^{0}K^{\pm}\pi^{\mp} + X$
	45	± 9 ±	7	20k	ADAMS		B852	18 GeV $\pi^- p \rightarrow$
		. 10		1.400	ALDE	075	C 4 1 4 4	$K^{+}K^{-}\pi^{0}n$
		± 18		1400	ALDE	97B		$100 \ \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
		± 3			BARBERIS	97B	OMEG	450 $pp \to pp2(\pi^{+}\pi^{-})$
		± 2			BARBERIS	97 C	OMEG	$450 pp \rightarrow pp K_S^0 K^{\pm} \pi^{\mp}$
	36	± 5			² ANTINORI	95	OMEG	300,450 $pp \rightarrow p$ $pp2(\pi^+\pi^-)$
	29.0	\pm 4.1			LEE	94	MPS2	$18 \pi^- p \rightarrow K^+ \overline{K}{}^0 2\pi^- p$
	25	\pm 4		140	ARMSTRON	NG 89	OMEG	300 $pp \rightarrow K\overline{K}\pi pp$
	22	\pm 2		4750	³ BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}{}^0 \pi^- n$
	25	\pm 4		504	BITYUKOV	88		32.5 $\pi^- p \to K^+ K^- \pi^0 n$
	19	\pm 5			ANDO	86	SPEC	$8 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
	32	\pm 8		420	REEVES	86	SPEC	6.6 $p\overline{p} \rightarrow KK\pi X$
	22	± 2			CHUNG	85		$8 \pi^- p \rightarrow NK\overline{K}\pi$
	32	± 3		604	ARMSTRON	NG 84	OMEG	85 $\pi^+ p \to \underline{K} \overline{K} \pi \pi p$,
	24	± 3			CHAUVAT	84	SPEC	$pp \rightarrow K\overline{K}\pi pp$ ISR 31.5 pp
		\pm 3 \pm 10		103	DIONISI	80		$4 \pi^{-} p \rightarrow K \overline{K} \pi n$
		± 10 3 ± 6.7		320	NACASCH	78	HBC	$0.7, 0.76 \overline{p}p \rightarrow K\overline{K}3\pi$
_			nt 1150		ing data for av			
			i use	the follow				_
	32.4	\pm 5.8			⁴ AAIJ	14Y		$\overline{B}_{(s)}^0 \to J/\psi 2(\pi^+\pi^-)$
	18.2	2± 1.2			⁴ SOSA	99	SPEC	$pp \rightarrow p_{slow} (K_S^0 K^+ \pi^-)$
	19.4	± 1.5			⁴ SOSA	99	SPEC	$p_{fast} p_{p o p_{Slow}} (K_{S}^0 K^- \pi^+) p_{fast}$
	40	\pm 5			ABATZIS	94	OMEG	450 $pp \to pp2(\pi^{+}\pi^{-})$
	31	\pm 5			ARMSTRON	NG 89E	OMEG	300 $pp \to pp2(\pi^{+}\pi^{-})$
	41	± 12			ARMSTRON	VG 89G	OMEG	85 $\pi^+ p \rightarrow 4\pi \pi p, pp \rightarrow$
								$4\pi pp$
)±10.9 ±20		60	RATH	89	MPS	$21.4 \; \pi^{-} p \to \; K_{S}^{0} K_{S}^{0} \pi^{0} n$
	14	$^{+20}_{-14}$ ±	10	16	BECKER	87	MRK3	$e^+e^- \rightarrow \phi K \overline{K} \pi$
	26	± 12			EVANGELIS	81	OMEG	12 $\pi^- p \to \eta \pi^+ \pi^- \pi^- p$
	25	± 15		200	GURTU	79	HBC	$4.2 K^- p \rightarrow n\eta 2\pi$
\sim	10				⁵ STANTON	79	CNTR	$8.5 \pi^- p \rightarrow n2\gamma 2\pi$
	24	± 18		210	GRASSLER	77	HBC	16 $\pi^{\mp}p$
		\pm 5		150	⁶ DEFOIX	72	HBC	$0.7 \ \overline{p} p \rightarrow 7\pi$
		± 9		180	⁶ DUBOC	72	HBC	$1.2 \overline{p}p \rightarrow 2K4\pi$
	37	± 5		500	⁷ THUN	72	MMS	13.4 $\pi^- p$
		± 10			BOESEBEC		HBC	$16.0 \pi p \rightarrow p5\pi$
		± 15			CAMPBELL		DBC	$2.7 \pi^{+} d$
	60	± 15			⁶ LORSTAD	69	HBC	0.7 $\overline{p}p$, 4,5-body
	35	± 10			⁶ DAHL	67	HBC	$1.6-4.2 \pi^{-} p$
				:				
					$\omega \rightarrow \omega a_0(980)$			
					RMSTRONG 8			
					of $K^+\overline{K}{}^0\pi^-$ s	system.		
		systema [.]			· + -			
	~ Fr	om pnase	snift	analysis of	f $\eta\pi^+\pi^-$ syste	em.		

⁷ Seen in the missing mass spectrum.

f₁(1285) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	4π	$(33.5^{+}_{-}\ \stackrel{2.0}{1.8})\ \%$	S=1.3
Γ_2	$\pi^0\pi^0\pi^+\pi^-$	$(22.3^{+}_{-}\ \overset{1.3}{1.2})\ \%$	S=1.3
Γ ₃	$2\pi^+2\pi^-$	$(11.2^{+}_{-}\ \stackrel{0.7}{0.6})\ \%$	S=1.3
Γ_4	$ ho^{0}\pi^{+}\pi^{-}$	$(11.2^{+~~0.7}_{-~~0.6})~\%$	S=1.3
Γ_5	$ ho^{0} ho^{0}$	seen	
Γ_6	$^{ ho^0 ho^0}$	< 7 × 10	-4 CL=90%
Γ_7	$\eta\pi^+\pi^-$	(35 \pm 15)%	
Γ ₈	$\eta\pi\pi$	$(52.0^{+}_{-}\ \overset{1.8}{2.1})\ \%$	S=1.2

 $[\]frac{6}{2}$ Resolution is not unfolded.

CONSTRAINED FIT INFORMATION

An overall fit to 7 branching ratios uses 19 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=33.5$ for 15 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$f_1(1285) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

¹ Assuming a ρ -pole form factor.

² Published value multiplied by $\eta \pi \pi$ branching ratio 0.49.

³ Published value divided by 2 and multiplied by the $\eta \pi \pi$ branching ratio 0.49.

⁴ Published value multiplied by the $\eta\pi\pi$ branching ratio 0.52.

f_1 (1285) BRANCHING RATIOS

$\Gamma(K\overline{K}\pi)/\Gamma(4\pi)$		Γ_{11}/Γ_1
VALUE	DOCUMENT ID TECH	<u>COMMENT</u>
	r includes scale factor of 1.3.	610
0.271±0.016 OUR AVERAGE	_	
0.265 ± 0.014	2 ADMSTDONE 007 OM	EG 450 pp \rightarrow pp $K_S^0 K^{\pm} \pi^{\mp}$
0.28 ±0.05	² ARMSTRONG 89E OME ³ ARMSTRONG 89G OME	$= G 300 pp \rightarrow ppt_1(1285)$
$0.37 \pm 0.03 \pm 0.05$		$=$ G 85 $\pi p \rightarrow 4\pi X$
¹ Using $2(\pi^+\pi^-)$ data from		
² Assuming $\rho \pi \pi$ and a_0 (98)		
3 4 π consistent with being ϵ	intirely $ ho\pi\pi$.	
$\Gamma(\pi^0\pi^0\pi^+\pi^-)/\Gamma_{ m total}$		$\Gamma_2/\Gamma = \frac{2}{3}\Gamma_1/\Gamma$
VALUE	DOCUMENT ID	- / 3 -/
0.223 + 0.013 OUR FIT Erro	u inalisata anda faatau af 1.2	
0.223 _ 0.012 OOK FIT	r includes scale factor of 1.5.	
F(2-+2) /F		F. /F_ 1F. /F
$\Gamma(2\pi^+2\pi^-)/\Gamma_{\text{total}}$	DOCUMENT ID	$\Gamma_3/\Gamma = \frac{1}{3}\Gamma_1/\Gamma$
VALUE	DOCUMENT ID	
0.112+0.007 OUR FIT Erro	r includes scale factor of 1.3.	
Γ(₀ 0_+)/Γ		$\Gamma_4/\Gamma = \frac{1}{3}\Gamma_1/\Gamma$
$\Gamma(\rho^0\pi^+\pi^-)/\Gamma_{\text{total}}$	DOCUMENT ID	$14/1 = \frac{3}{3} 1/1$
VALUE		
0.112 ^{+0.007} _{-0.006} OUR FIT Erro	r includes scale factor of 1.3.	
$\Gamma(ho^0\pi^+\pi^-)/\Gamma(2\pi^+2\pi^-)$		Γ_4/Γ_3
VALUE	DOCUMENT ID	TECN COMMENT
• • • We do not use the follo	wing data for averages, fits, I	imits, etc. • • •
1.0 ± 0.4	GRASSLER 77	HBC 16 GeV π^{\pm} p
E(-0 -0) /E		F /F
$\Gamma(\rho^0 \rho^0)/\Gamma_{\text{total}}$	DOCUMENT ID	Γ ₅ /Γ
VALUE	DOCUMENT ID	
seen	BARBERIS 00C	$450 pp \rightarrow p_f 4\pi p_S$
$\Gamma(4\pi^0)/\Gamma_{ m total}$		Γ ₆ /Γ
VALUE (units 10^{-4}) CL%	DOCUMENT ID	TECN COMMENT
< 7 90		GAM4 $100 \pi^- p \rightarrow 4\pi^0 n$
	ALDE OF	G/(W)+ 100 % p / +% //
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\eta\pi^+\pi^-)$		Γ_{13}/Γ_{7}
VALUE (%) EVTS	DOCUMENT ID TE	
0.86±0.16±0.20 2.3k	¹ DOROFEEV 11 VI	ES $\pi^- N \to \pi^- f_1(1285) N$
	he region corresponding to f_0	(980) in the $\pi^+\pi^-$ mass spec-
trum.		

$\Gamma(\eta\pi\pi)/\Gamma_{\text{total}}$		DOCUMENT	· ID			$\Gamma_8/\Gamma=(\Gamma_9{+}\Gamma_{10})/\Gamma$
0.520 ^{+0.018} _{-0.021} OUR FIT	Error inc	•		of 1.2	2.	
$\Gamma(4\pi)/\Gamma(\eta\pi\pi)$						$\Gamma_1/\Gamma_8 = \Gamma_1/(\Gamma_9 + \Gamma_{10})$
VALUE		DOCUMENT	ID		TECN	COMMENT
$0.64^{+0.06}_{-0.05}$ OUR FIT	Error inclu	des scale facto	or of	1.2.		
0.41±0.14 OUR AVER						
$0.37 \pm 0.11 \pm 0.11$, 10=	BOLTON		92	MRK3	$J/\psi \rightarrow \gamma f_1(1285)$
0.64 ± 0.40		GURTU				-
• • • We do not use the	าe following	g data for aver	ages	, fits,	limits,	etc. • • •
0.93 ± 0.30		¹ GRASSLEF	₹	77	HBC	16 π^{\mp} p
1 Assuming $ ho\pi\pi$ and	$a_0(980) \pi$					- · · · · · · · ·
$\Gamma(2\pi^+2\pi^-)/\Gamma(\eta\pi\pi$	π)					Г ₃ /Г ₈
VALUE		DOCUMENT LEES	· ID		TECN	COMMENT
$0.28 \pm 0.02 \pm 0.02$		¹ LEES		12X	BABR	$ au^- ightarrow \pi^- f_1(1285) u_{ au}$
¹ Assuming B(f_1 (128	$(5) \rightarrow \pi \pi \tau$					= '
-			_			
$\Gamma(a_0(980)\pi$ [ignoring	g a ₀ (980)	$\rightarrow K\overline{K}])/\Gamma$	$\lceil(\eta \eta)\rceil$	$\tau\pi)$		$\Gamma_9/\Gamma_8 = \Gamma_9/(\Gamma_9 + \Gamma_{10})$
VALUE	<u>CL%</u>	<u>DOCUMENT</u>	ID		TECN	COMMENT
0.72±0.08 OUR FIT 0.72±0.07 OUR AVE						
0.72 ± 0.07 COR AVI $0.74\pm0.02\pm0.09$	INAGE	DICKSON		16	CLAS	$\gamma p \rightarrow f_1(1285) p$
0.72 ± 0.15		GURTU				$4.2 K^{-} p$
$0.6 \begin{array}{c} +0.3 \\ -0.2 \end{array}$		CORDEN		78		$12-15 \pi^{-} p$
0.2						·
• • • We do not use the	ne following	g data for aver	ages			
>0.69	95	ACHARD		02 B	L3	$183-209 \ e^{+} \ e^{-} \rightarrow e^{+} \ e^{-} \eta \pi^{+} \pi^{-}$
0.28 ± 0.07		ALDE		97 R	GAM4	$100 \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
1.0 ± 0.3		GRASSLEF	₹	77		• •
. <u> </u>						· · · · · · · · · · · · · · · · · · ·
$\Gamma(K\overline{K}\pi)/\Gamma(\eta\pi\pi)$					Γ ₁	$_{1}/\Gamma_{8}=\Gamma_{11}/(\Gamma_{9}+\Gamma_{10})$
VALUE		DOCUMENT ID				MMENT
0.176±0.012 OUR FIT		cludes scale fac	ctor	of 1.1		
0.176 ± 0.012 OUR AVE $0.216 \pm 0.010 \pm 0.031$		DICKSON	16	CI	۸ς	f (100E) -
$0.210\pm0.010\pm0.031$ $0.166\pm0.01~\pm0.008$		BARBERIS	16 980			$ ho ightarrow f_1(1285) p$ $ ho ho p ightarrow ho_f f_1(1285) p_s$
0.42 ± 0.15		GURTU	79			$2K^-p$
0.42 ± 0.13 0.5 ± 0.2		CORDEN				$-15 \pi^- p$
0.30 ± 0.20 0.20 ± 0.08		DEFOIX				$7 \overline{p} p \rightarrow 7\pi$
0.16 ± 0.08		CAMPBELL	69			$\pi^+ d$
¹ CORDEN 78 assum and MANAK 00A fo	or discussio	n.		lomin	antly 1	++. See BARBERIS 980 t. (See under a_0 (980)).

$\Gamma(K\overline{K}^*(892))/\Gamma_t$	total			Γ ₁₂ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
not seen			$0.7,0.76 \overline{p}p$	
• • • We do not use				
seen 1	^L ACHARD 07	7 L3	183–209 e ⁺	$e^- ightarrow~e^+e^-K_S^0K^\pm\pi^\mp$
$^{ m 1}$ A clear signal of	19.8 ± 4.4 events	observed at	thigh Q^2 .	
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{tot}$	tal			Γ ₁₃ /Γ
VALUE (%)	EVTS DOC	CUMENT ID	TECN	COMMENT
$0.30\!\pm\!0.055\!\pm\!0.074$	2.3k ¹ DO	ROFEEV	11 VES	$\pi^- N \to \pi^- f_1(1285) N$
¹ Value obtained s trum. The syte obtained from P	matic error include	correspond s the unce	ling to f_0 (98) rtainty on th	0) in the $\pi^+\pi^-$ mass spece partial width $f_1 o \eta\pi\pi$
$\Gamma(ho^{\pm}\pi^{\mp})/\Gamma_{ m total}$				Γ ₁₄ /Γ
VALUE (%)	<u>CL%</u> <u>DOC</u>	CUMENT ID	TECN	COMMENT
<0.31	95 DO	ROFEEV	11 VES	$\pi^- \text{N} \rightarrow \pi^- f_1(1285) \text{N}$
$\Gamma(\gamma ho^0)/\Gamma_{ m total}$				Γ ₁₅ /Γ
VALUE (units 10^{-2})			TECN	COMMENT
	Fror includes so			o - - • · · · · · •
2.8±0.7±0.6 • • • We do not use	AMEL the following data			$37 \pi^- N \rightarrow \pi^- \pi^+ \pi^- \gamma N$
<5	_	_		32 $\pi^- p \rightarrow \pi^+ \pi^- \gamma n$
$\Gamma(\gamma ho^0)/\Gamma(2\pi^+2\pi^+)$	-	OCUMENT II) TECI	$\Gamma_{15}/\Gamma_3 = \Gamma_{15}/\frac{1}{3}\Gamma_1$ COMMENT
0.48±0.13 OUR FIT				COMMENT
0.45 ± 0.18				$\sqrt{3} J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
	$\gamma f_1(1285) ightarrow \gamma f_1(1285) ightarrow \gamma f_1(1285)$ given by		$5 imes10^{-4}$ an	d B $(J/\psi \rightarrow \gamma f_1(1285) \rightarrow$
$\Gamma(\eta\pi\pi)/\Gamma(\gamma\rho^0)$				$\Gamma_8/\Gamma_{15} = (\Gamma_9 + \Gamma_{10})/\Gamma_{15}$
VALUE	DOCUMENT ID	TECN		18/115 — (191110)/115
9.7±1.9 OUR FIT	Error includes sca	ale factor of	f 2.4.	See the ideogram below.
21.3 ± 4.4			$\gamma p \rightarrow f_1$	-
$10.0\pm1.0\pm2.0$	BARBERIS	98c OME	G 450 pp →	$p_f f_1(1285) p_s$
7.5 ± 1.0	¹ ARMSTRONG	92c OME	G 300 <i>pp</i> →	$pp\pi^+\pi^-\gamma$, $pp\eta\pi^+\pi^-$
$^{ m 1}$ Published value	multiplied by 1.5.			

$\Gamma(\gamma \rho^0)/\Gamma(K\overline{K}\pi)$

 Γ_{15}/Γ_{11}

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following d	ata for averages, fits	, limits, e	tc. • • •
>0.035	90 1	COFFMAN 90	MRK3	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
1 Using B($J/\psi ightarrow \gamma f$	$_{1}(1285) \rightarrow$	$\gamma \gamma \rho^0$)=0.25 × 10	$^{-4}$ and E	$3(J/\psi \rightarrow \gamma f_1(1285) \rightarrow$
$\gamma K \overline{K} \pi = < 0.72 \times 10^{-3}$	3 - 3	,		· · · · · · · · · · · · · · · · · · ·

$\Gamma(\phi\gamma)/\Gamma(K\overline{K}\pi)$

 Γ_{16}/Γ_{11}

COMMENT

U.82±U.21±U.20	19	BITTUNUV	88	SPEC	32.5 π $p \rightarrow$
					$\kappa^+ \kappa^- \pi^0 n$
• • • We do not us	se the following data	for averages, fit	s, limi	ts, etc. •	• •
< 0.50	95	BARBERIS	98C	OMEG	
					$p_f f_1(1285) p_s$
< 0.93	95	AMELIN	95	VES	$37 \pi^- N \rightarrow$
					$\pi^-\pi^+\pi^-\gamma$ N

DOCUMENT ID

$f_1(1285)$ REFERENCES

DICKSON	16	PR C93 065202	R. Dickson et al.	(JLab CLAS Collab.)
ABLIKIM	15P	PR D92 012007	M. Ablikim <i>et al.</i>	(BES III Collab.)
AAIJ	14Y	PRL 112 091802	R. Aaij <i>et al.</i>	(LHCb Collab.)
LEES	12X	PR D86 092010	J.P. Lees et al.	(BABAR Collab.)
ABLIKIM	11J	PRL 107 182001	M. Ablikim et al.	(BES III Collab.)
DOROFEEV	11	EPJ A47 68	V. Dorofeev et al.	(SERP, MIPT)
PDG	10	JP G37 075021	K. Nakamura <i>et al.</i>	(PDG Collab.)
ACHARD	07	JHEP 0703 018	P. Achard et al.	(L3 Collab.)
AUBERT	07AU	PR D76 092005	B. Aubert et al.	(BABÀR Collab.)

HTTP://PDG.LBL.GOV

Page 10

BAI ABDALLAH ACHARD ACCIARRI ADAMS BARBERIS MANAK SOSA BARBERIS ALDE	04J 03H 02B 01G 01B 00C 00A 99 98C 97B	PL B594 47 PL B569 129 PL B526 269 PL B501 1 PL B516 264 PL B471 440 PR D62 012003 PRL 83 913 PL B440 225 PAN 60 386 Translated from YAF 60	J.Z. Bai et al. J. Abdallah et al. P. Achard et al. M. Acciarri et al. G.S. Adams et al. D. Barberis et al. J.J. Manak et al. M. Sosa et al. D. Barberis et al. D. Alde et al.	(BES Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (BNL E852 Collab.) (WA 102 Collab.) (BNL E852 Collab.) (WA 102 Collab.) (GAMS Collab.)
BARBERIS BARBERIS AMELIN ANTINORI ABATZIS LEE ARMSTRONG ARMSTRONG BOLTON BITYUKOV	97B 97C 95 95 94 94 93C 92C 92 91B	PL B413 217 PL B413 225 ZPHY C66 71 PL B353 589 PL B324 509 PL B323 227 PL B307 394 ZPHY C54 371 PL B278 495 SJNP 54 318 Translated from YAF 54	D. Barberis et al. D. Barberis et al. D.V. Amelin et al. F. Antinori et al. S. Abatzis et al. J.H. Lee et al. T.A. Armstrong et al. T.A. Bolton et al. S.I. Bityukov et al.	(WA 102 Collab.) (WA 102 Collab.) (VES Collab.) (ATHU, BARI, BIRM+) (ATHU, BARI, BIRM+) (BNL, IND, KYUN, MASD+) (FNAL, FERR, GENO+) (ATHU, BARI, BIRM+) (Mark III Collab.) (SERP)
FUKUI COFFMAN ARMSTRONG ARMSTRONG ARMSTRONG RATH AIHARA BIRMAN BITYUKOV MIR	91C 90 89 89E 89G 89 88B 88 88	PL B267 293 PR D41 1410 PL B221 216 PL B228 536 ZPHY C43 55 PR D40 693 PL B209 107 PRL 61 1557 PL B203 327 Photon-Photon 88, 126	S. Fukui et al. D.M. Coffman et al. T.A. Armstrong et al. T.A. Armstrong, M. Ben T.A. Armstrong et al. M.G. Rath et al. H. Aihara et al. A. Birman et al. S.I. Bityukov et al. R. Mir	(SUGI, NAGO, KEK, KYOT+) (Mark III Collab.) (CERN, CDEF, BIRM+) JPC (ATHU, BARI, BIRM+) (CERN, BIRM, BARI+) (NDAM, BRAN, BNL, CUNY+) (TPC-27 Collab.) (BNL, FSU, IND, MASD) JP (SERP) (Mark III Collab.)
Conference ALDE BECKER GIDAL ANDO REEVES CHUNG ARMSTRONG BITYUKOV CHAUVAT TORNQVIST EVANGELIS BROMBERG DIONISI GURTU STANTON CORDEN NACASCH GRASSLER DEFOIX DUBOC THUN BARDADIN BOESEBECK CAMPBELL LORSTAD D'ANDLAU DAHL	87 87 86 86 88 84 84 84 82 80 80 79 78 78 77 72 72 72 71 71 69 69 68 67	PL B198 286 PRL 59 186 PRL 59 2012 PRL 57 1296 PR D34 1960 PR D34 1960 PRL 55 779 PL 146B 273 PL 144B 133 PL 148B 382 NP B203 268 NP B178 197 PR D22 1513 NP B169 1 NP B151 181 PRL 42 346 NP B144 253 NP B144 253 NP B135 203 NP B121 189 NP B44 125 NP B46 429 PRL 28 1733 PR D4 2711 PL 34B 659 PRL 22 1204 NP B14 63 NP B5 693 PR 163 1377	D.M. Alde et al. J.J. Becker et al. G. Gidal et al. A. Ando et al. D.F. Reeves et al. S.U. Chung et al. T.A. Armstrong et al. S.I. Bityukov et al. P. Chauvat et al. N.A. Tornqvist C. Evangelista et al. C.M. Bromberg et al. C. Dionisi et al. A. Gurtu et al. N.R. Stanton et al. M.J. Corden et al. R. Nacasch et al. H. Grassler et al. J. Duboc et al. J. Duboc et al. R. Thun et al. M. Bardadin-Otwinowska K. Boesebeck (AACH, J.H. Campbell et al. B. Lorstad et al. C. d'Andlau et al. O.I. Dahl et al.	(LANL, BRUX, SERP, LAPP) (Mark III Collab.) (LBL, SLAC, HARV) (KEK, KYOT, NIRS, SAGA+) IJP (FLOR, BNL, IND+) JP (BNL, FLOR, IND+) JP (ATHU, BARI, BIRM+) JP (SERP) (CERN, CLER, UCLA+) (HELS) (BARI, BONN, CERN+) (CIT, FNAL, ILLC+) (CERN, MADR, CDEF+) (CERN, ZEEM, NIJM, OXF) (OSU, CARL, MCGI+) JP (BIRM, RHEL, TELA+) JP (PARIS, MADR, CERN) (AACH3, BERL, BONN+) (CDEF, CERN) (PARIS, LIVP) (STON, NEAS)