Spark

Screen Shots of the analysis

1. Launching an Amazon EMR cluster

2. Create an S3 Bucket and Upload data and CSV file to S3 bucket

3. Connecting to the Hadoop main node by using SSH

4. Running spark

5. Imports and initializing the spark.

6. Load data and create a view

7. Querying and analyzing the resulting dataset

8. Other results

```
rcalar spark.time(spark.sql("SELECT Year, avg((NASDelay /ArrDelay)*100) from delay_flights WHERE Year is NOT NULL GROUP BY Year").show())

Yearlavg(((CAST(NASDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE))) * CAST(100 AS DOUBLE))))

20031

20041

2010

30.6259259179419241

2010

31.1193122399377031

20041

10.245700617699581

10.6386888373129]

20051

30.6552562941321

20081

30.6552562941321

20081

20081

30.6552562941321
```

Year wise carrier delay from 2003-2010

```
| Cast |
```

Year wise NAS delay from 2003-2010

Year wise Weather delay from 2003-2010

```
scala> spark.time(spark.sql("SELECT Year, avg((WeatherDelay /ArrDelay)*100) from delay_flights MHERE Year is NOT NULL GROUP BY Year").show());

I'vear|avg(((CAST(WeatherDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) * CAST(100 AS DOUBLE)))|

120031
12004
12006|
12006|
12006|
12006|
12006|
12006|
12009|
12005|
12009|
12008|
12009|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12009|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
12008|
1
```

```
scalar spark.time(spark.sql("SELECT Year, avg((WeatherDelay /ArrDelay)*100) from delay_flights WHERE Year is NOT NULL GROUP BY Year").show());

| Year|avg(((CAST(WeatherDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) * CAST(100 AS DOUBLE)) |
| 2003|
| 2004|
| 4.042975783210287|
| 2010|
| 2.0923312955584664|
| 4.580694183997953|
| 2004|
| 6.4475279970916555|
| 2005|
| 8.4509715149616|
| 2009|
| 8.45316651317982263|
| 3.725439085080955|
| **Time taken: 689 ms
```

```
scala> spark.time(spark.sql("SELECT Year, avg((WeatherDelay /ArrDelay)*100) from delay_flights WHERE Year is NOT NULL GROUP BY Year").show());

|Year|avg(((CAST(WeatherDelay AS DOUBLE)) / CAST(ArrDelay AS DOUBLE)) * CAST(180 AS DOUBLE)))|

|2003| 7.8319479664511205|
|2007| 4.042975783210087|
|2010| 2.9023312955584664|
|2006| 4.580604183967953|
|2006| 6.447279787916555|
|2008| 5.85969715189161|
|2009| 9.453166515137982963|
|2008| 3.7254490054008955|

Time taken: 735 ms
```

```
scala» spark.time(spark.sql("SELECT Year, avg((WeatherDelay /ArrDelay)*100) from delay_flights WHERE Year is NOT NULL GROUP BY Year").show());

[Year|avg(((CAST(WeatherDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) * CAST(180 AS DOUBLE)))|

[2003]

7.8319479664511205

4.942975783210287

[2004]

4.588604183996795

[2004]

6.4475279791916555

[2005]

8.88604183997953

[2006]

9.45316615137982363

3.72544900540089355

Time taken: 743 ms
```

Year wise late aircraft delay from 2003-2010

Year wise security delay from 2003-2010

```
Scalar spark.time(spark.sql("SELECT Year, avg((SecurityDelay /ArrDelay)*100) from delay_flights WHERE Year is NOT NULL GROUP BY Year").show());

| Year|avg(((CAST(SecurityDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) * CAST(100 AS DOUBLE))) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) * CAST(100 AS DOUBLE))) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) * CAST(100 AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE))) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE) / CAST(ArrDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay AS DOUBLE)) |
| Year|avg(((CAST(SecurityDelay AS DOUBLE)) / CAST(ARRDelay
```

9. Terminating the Cluster and cleaning the S3 bucket

