# LA6 Linear Operator Equations, FTLA

**KYB** 

Thrn, it's a Fact
mathrnfact@gmail.com

July 17, 2021

## Overview

#### Ch3. Linear Operators

- 3.4 Linear Operator Equations
- 3.5 Existence and Uniqueness of Solutions
- 3.6 The Fundamental Theorem; Inverse Operators

(c) 
$$\mathcal{L}(X,U) \cong F^{m \times n}$$
.

- $\triangleright \mathcal{L}(F,F) \cong F$
- $\blacktriangleright \ \mathcal{L}(X,F) := X^* \ \text{(algebraic) dual space of} \ X$

$$\mathcal{L}(X,F) \cong \mathcal{L}(F^n,F) \cong (\mathcal{L}(F,F)^n)$$

- $ightharpoonup \mathcal{L}(F,U) \cong \mathcal{L}(F,F^m) \cong (\mathcal{L}(F,F))^m$

#### Ex 3.4.9

Let V be a vector space over a eld F, let  $\hat{x} \in V$ , and let S be a subspace of V. Prove that if  $\tilde{x} \in \hat{x} + S$ , then  $\tilde{x} + S = \hat{x} + S$ . Interpret this result in terms of the solution set  $\hat{x} + \ker(T)$  for a linear operator equation T(x) = b.

## Goal: The First Isomorphism Theorem

If  $L: X \to U$  is linear, then there is an isomorphism  $\tilde{L}: X/\ker L \to \mathcal{R}(L)$ .

#### Ex 3.4.13

Let V be a vector space over a eld F, and let S be a proper subspace of V. Prove that the relation  $\sim$  dened by  $u \sim v$  if and only if  $uv \in S$  is an equivalence relation on V.

#### Ex 3.4.14

For any vector  $u \in V$ , let [u] denote the equivalence class of u under  $\sim$ . We denote the set of all equivalence classes by V/S and define addition and scalar multiplication on V/S by

$$[u] + [v] = [u + v], \quad \alpha[u] = [\alpha u].$$

- (a) Show that +, · are well-defined.
- (b) Show that V/S is a vector space over F.

Ex 3.4.14 (a)

 $+: V/S \times V/S \rightarrow V/S$  is well-defined.

 $\cdot: F \times V/S \to V/S$  is well-defined.

Ex 3.4.14 (b)

V/S is a vector space over  ${\cal F}.$ 

#### Ex 3.4.15

Now let X and U be vector spaces over a field F, and let  $L:X\to U$  be a linear operator. Define  $T:X/\ker(L)\to \mathcal{R}(L)$  by

$$T([x]) = L(x)$$
 for all  $[a] \in X/\ker(L)$ .

- (a) Prove that T is a well-defined linear operator.
- (b) Prove that T is an isomorphism.
- (c) Let  $u \in \mathcal{R}(L)$  be given, and let  $\hat{x} \in X$  be a solution to L(x) = u. In terms of  $X/\ker(L)$ , what is the solution set to L(x) = u? How can you describe  $X/\ker(L)$  in terms of linear operator equations of the form L(x) = v,  $v \in \mathcal{R}(L)$ ?

## Ex 3.4.15(a)

- 1. T is well-defined.
- 2. T is linear.

Ex 3.4.15(b)

 ${\cal T}$  is an isomorphism.

 $[\hat{x}]$  is the solution set of L(x)=u, where  $u=L(\hat{x}).$ 

## Observation

For 
$$L(x) = u$$
,

- 1. Existence
- 2. Uniqueness

- 1. There is a solution to L(x) = b if and only if  $b \in \mathcal{R}(L)$
- 2. Let  $b \in \mathcal{R}(L)$ . A solution to L(x) = b is unique if and only if  $\ker(L) = \{0\}$ .

- 1.  $\operatorname{nullity}(T) = \dim(\ker(L))$
- 2. T is singular  $\iff \ker T \neq \{0\} \iff \text{nullity}(T) \geq 1$ .
- 3. T is nonsingular  $\iff \ker T = \{0\} \iff \text{nullity}(T) = 0 \iff T$  is injective.

#### **Theorem**

Let  $T: X \to U$  be an injective linear operator. Then  $\dim X \leq \dim U$ .

#### Proof

#### Main idea

- 1.  $\mathcal{R}(T)$  is a subspace of U.
- 2. If  $\{x_1, \dots, x_n\}$  is a basis of X, then  $\operatorname{span}\{T(x_1), \dots, T(x_n)\} = \mathcal{R}(T)$ .

- 1.  $\operatorname{rank}(T) = \dim(\mathcal{R}(L))$
- 2. If  $\dim X = \operatorname{rank} T$ , T is full rank.
- 3. T is surjective  $\iff$  rank  $T = \dim U \iff \mathcal{R}T = U$ .

#### **Theorem**

If T is surjective, then  $\dim X \ge \dim U$ .

$$M:\mathbb{R}^n o \mathbb{R}^3$$
 by

$$M(x) = \begin{bmatrix} x_1 + 3x_2 - x_3 - x_4 \\ 2x_1 + 7x_2 - 2x_3 - 3x_4 \\ 3x_1 + 8x_2 - 3x_3 - 16x_4 \end{bmatrix}$$

Find rank and nullity.

**Proof** 

$$\begin{bmatrix} 1 & 3 & -1 & -1 \\ 2 & 7 & -2 & -3 \\ 3 & 8 & -3 & -16 \end{bmatrix} x \Rightarrow \mathcal{R}(M) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 7 \\ 8 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ -16 \end{bmatrix} \right\}$$

## Elementary "column" operation $\implies$ range does not change!

$$\begin{bmatrix} 1 & 3 & -1 & -1 \\ 2 & 7 & -2 & -3 \\ 3 & 8 & -3 & -16 \end{bmatrix}$$

## Elementary "row" operation $\implies$ kernel does not change!

$$\begin{bmatrix} 1 & 3 & -1 & -1 \\ 2 & 7 & -2 & -3 \\ 3 & 8 & -3 & -16 \end{bmatrix}$$

Is the following statement a theorem?

Let X and U be vector spaces over a eld F, and let  $T:X\to U$  be linear. Then  $\{x_1,x_2,\cdots,x_n\}\subset X$  is linearly independent if and only if  $\{T(x_1),T(x_2),\cdots,T(x_n)\}\subset U$  is linearly independent.

If it is, prove it. If it is not, give a counterexample.

Suppose X and U are vector spaces over a eld F, with U nite-dimensional, and  $L: X \to U$  is linear. Let  $\{u_1, u_2, \cdots, u_m\}$  be a basis for U and assume that, for each j,  $L(x) = u_j$  has a solution  $x \in X$ . Prove that L is surjective.

#### Proof

- 1. Let  $y \in Y$ .
- 2. Let  $x_j$  be a solution to  $L(x) = u_j$ . Then  $\operatorname{span}\{L(x_1), \dots, L(x_m)\} \subseteq \mathcal{R}(L) \subseteq U$ .

Suppose  $T:X\to U$  is an injective linear operator. Prove T defines (induces) an isomorphism between X and a subspace of U.

#### Proof

 $\ker T = \{0\}$ . By the First Isomorphism Theorem,

$$X/\{0\} \to \mathcal{R}(T)$$
  
 $[x] \mapsto T(x)$ 

is an isomorphism.

Claim) 
$$X/\{0\} \cong X$$
.

- 1.  $[x] = \{x\}$
- 2.  $X/\ker T \to X$  by  $[x] \mapsto x$  is an isomorphism.

Let V be a vector space over a eld F, and let S,T be subspaces of V. Since S and T are vector spaces in their own right, we can dene the product  $S \times T$  (see Ex 2.2.15). We can also dene the subspace S+T of V (see Ex 2.3.21). Dene a linear operator  $L: S \times T \to S+T$  by L((s,t))=s+t.

- (a) Prove that  $\ker(L)$  is isomorphic to  $S \cap T$  and find an isomorphism.
- (b) Suppose  $S \cap T = \{0\}$ . Prove that  $S \times T$  is isomorphism to S + T and that L is an isomorphism.

## Fundamental Theorem of Linear Algebra

If  $T: X \to U$  is linear, then  $\dim X = \operatorname{nullity} T + \operatorname{rank} T$ .

By the First Isomorphism Theorem,  $X/\ker(T)\to \mathcal{R}(T)$  is an isomorphism. Thus  $\dim(X/\ker(T))=\mathcal{R}(T)$ .

$$\dim(X) = \operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(\ker(T)) + \dim(X/\ker(T)).$$

## Question

Suppose  $\{[x_1], \dots, [x_r]\}$  is a basis for  $X/\ker(T)$ . Then  $\{x_1, \dots, x_r\}$  is linearly independent.

Let  $\{y_1, \dots, y_k\}$  be a basis for  $\ker(T)$ . Then  $\{x_1, \dots, x_r, y_1, \dots, y_k\}$  is a basis for X.

## Quiz

For given a basis for X, can always we divide the basis by two parts,



- ▶ Suppose  $\dim X = \dim U$  and  $T: X \to U$ . Then T is bijective  $\iff T$  is injective  $\iff T$  is surjective.
- ▶ Def) For  $A \in F^{m \times n}$  ,  $col(A), \mathcal{N}(A)$ .
- Let  $A \in F^{n \times n}$  and  $\{x_1, \dots, x_n\}$  be a basis. Then A is invertible  $\iff \{Ax_1, \dots, Ax_n\}$  is a basis for  $F^n$ .

Let X and U be nite-dimensional vector spaces over a eld F, let  $\mathcal{X} = \{x_1, x_2, \cdots, x_n\}$  and  $\mathcal{U} = \{u_1, u_2, \cdots, u_m\}$  be bases for X and Y respectively, and let  $T: X \to U$  be linear. Prove that T is invertible if and only if  $[T]_{\mathcal{X},\mathcal{U}}$  is an invertible matrix.

Construct a different proof to Theorem 104, as follows: Choose vectors  $x_1, \dots, x_k$  in X such that  $\{T(x_1), \dots, T(x_k)\}$  is a basis for  $\mathcal{R}(T)$ , and choose a basis  $\{y_1, \dots, y_l\}$  for  $\ker(T)$ . Prove that  $\{x_1, \dots, x_k, y_1, \dots, y_l\}$  is a basis for X.

Let F be a field and suppose  $A \in F^{m \times n}$ ,  $B \in F^{n \times p}$ . Prove that  $rank(AB) \leq rank(A)$ .

Prove that a strictly diagonally dominant matrix  $A \in \mathbb{C}^{n \times n}$  is nonsingular.

Let X and U be vector spaces over a field F, and let  $T: X \to U$  be linear.

- (a) There exists a left inverse of S of  $T \iff T$  is injective.
- (b) There exists a right inverse of S of  $T \iff T$  is surjective.

Let  $A \in F^{m \times n}$  and  $B \in F^{n \times m}$ .

- ▶ left inverse of  $A: BA = I_n$
- ightharpoonup right inverse of  $A:AB=I_m$
- (a) There exists a left inverse of B of  $A \iff \mathcal{N}(A) = \{0\}.$
- (b) There exists a right inverse of B of  $A \iff \operatorname{col}(A) = F^m$ .

## Ex 3.6.23 $\sim$ 26) Change of Coordinate

1. Let  $\mathcal{X}, \mathcal{Y}$  be two bases of X, and let  $x \in X$ .

$$[x]_{\mathcal{X}} \mapsto [x]_{\mathcal{Y}} = C[x]_{\mathcal{X}}$$

2. 
$$L: X \to X \implies [L]_{\mathcal{X},\mathcal{X}} = \underbrace{\qquad} [L]_{\mathcal{Y},\mathcal{Y}} \underbrace{\qquad}$$
.

3. 
$$T: X \to U \implies [L]_{\mathcal{X},\mathcal{U}} = \underbrace{\hspace{1cm}} [L]_{\mathcal{Y},\mathcal{V}} \underbrace{\hspace{1cm}} .$$

# The End