Appendix: Actionable Insights for Multivariate Time-series for Urban Analytics

Anika Tabassum¹³, Supriya Cinthavali², Varisara Tansakul², B. Aditya Prakash³

¹Department of Computer Science, Virginia Tech

²Oak Ridge National Laboratory

³College of Computing, Georgia Tech

¹anikat1@vt.edu, ²{chinthavalis,tansakulv}@ornl.gov, ³ badityap@cc.gatech.edu

1 Additional Details on Sec 3

1.1 Proof of Lemma 3.1

Proof. Following is the proof for different i, j, and k.

- Case i = 1, k = T: Trivial. Since, there is only on segment from 1 to T and only one path.
- Case i=1, k < T: (By induction). Suppose, T=k+1, then the number of paths is $2^{k+1-k-1}=2^0=1$. This is trivial, because from s_{jk} there is only one possible edge $s_{jk}-s_{k(k+1)}$ and thus there is only one possible path. Suppose, with T=k+q where q>k, the number of paths is 2^{q-1} . We need to show, with T=k+q+1, the number of paths become 2^q . Since q+1>q, all the paths that can be possible to reach from s_{jk} to $s_{j(k+q)}$ can also be possible to reach from s_{jk} to $s_{j(k+q+1)}$ using the edge $s_{j(k+q)}-s_{j(k+q+1)}$. That is, 2^{q-1} paths possible from s_{jk} to $s_{j(k+q+1)}$ using the edge $s_{j(k+q)}-s_{j(k+q+1)}$. Again, by the edge construction property of G, a path

Again, by the edge construction property of G, a path ends when end timestamp of a node is T=k+q+1. If we remove the timestamp k+q and consider only $k, k+1, \ldots, k+q-1, k+q+1$, then the number of possible paths become 2^{q-1} to reach k+q+1 (by induction). Because, all edges that used nodes ended with k+q now can use nodes ended with k+q+1.

Thus, the total number of possible paths with and without using the edge $s_{j(k+q)} - s_{j(k+q+1)}$ becomes $2^{q-1} + 2^{q-1} = 2^{q-1+1} = 2^q$ (proved).

- Case i>1, k=T: Following the above if we consider T=i and the k=1. The number of paths is $2^{T-k-1}=2^{i-1-1}=2^{i-2}$.
- Case otherwise: Hence, if there are 2^{i-2} paths possible to reach a node s_{ij} and 2^{T-k-1} possible paths to reach timestamp T from a node s_{jk} . The total number of paths possible through the edge $s_{ij} s_{jk}$ or e_{ijk} is $p_{ijk} = 2^{(i-2)+(T-k-1)}$.

Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

1.2 Proof of Corollary 3.1

Proof. According to the path property of G, every path starts from i=1 and ends at timestamp T. For i=1, k=T there is only one path possible (the whole segmentation). For 1 < j < T-1, the first node of all other paths in G has to start from some s_{1j} . Consider j=k, using Lemma ?? we find p_{1kk} . Thus, $K=1+\sum_{k=2}^{T-1}p_{1kk}=1+2^{T-2}-1=2^{T-2}$.

1.3 Proof of Lemma 3.2

Proof. We discuss separate proof for time and space complexity.

Time complexity: (i) Case serial: The first term is to calculate π_{rest} for each e_{ijk} . Total e_{ijk} in G is $O(T^3)$. The second term is to solve α using Gradient Descent learning, and the third term is to solve \mathbf{r}_j for every cutpoint c_j .

(ii) Case Parallel: Parallelization can be applied in Find-RaTSS for $\pi_{\rm rest}$ computation, then the total time complexity will be distributed among n processors and hence this is $O(\frac{T^3}{n}mf)$. However, time complexity of gradient descent and \mathbf{r}_j computation is similar as in serial cases.

Space complexity: (i) Case serial: The first term O(m) is to store π_{rest} and π_B . Since we need O(m) π_{rest} and O(m) π_B for m time-series. Hence $O(m) + O(m) = O(2m) \approx O(m)$.

(ii) Case parallel: To store final computation of π_{rest} and π_B it takes O(m). Whereas the second term O(mn) is to store temporary π_{rest} computation for each processor among n processors, O(mn) is the number of possible edges in a segment graph G. Hence temporary space for n processor and final computation of π_B and π_{rest} is O(mn) + O(m) = O(m + mn).

2 Additional Details on Sec. 4

Additional experiments: Feature ablation test For feature robustness by we use feature ablation test. Tbl. 1 shows how rationalization affected on the Synthetic, ChickenDance and GrandMal dataset by removing each feature used in RaTSS.

Figure 1: Find-RaTSS finds the most affected counties facing damage. The rationalizations \mathbf{r}_j for corresponding c_j are mapped in US county map (Higher r_j^u with brighter red).

Table 1: Feature Ablation test in terms of F1-score for Ground-truth datasets. f_1 : mean, f_2 : variance, f_3 : min, f_4 : max

Dataset	Features removed			
	f_1	f_2	f_3	f_4
Gaussian	0.52	0.44	0.49	0.64
ChickenDance	0.73	0.86	0.401	0.643
Great Barbet	0.5	0.5	0	1.0

was published around June 2016 after c_1^{-1} . This is not easy to find such low traffic easily by visualizing the time-series or using any other baselines from Sec. ?? (as buried with other high traffic articles).

2.1 Additional Case-studies: Hurricane Irma

Fig. 1 shows our rationalizations for Hurricane Irma.

Rationalizations for c ₁	Avg. traffic across c ₁	
Calculator	6819	
Ahrar Ah-shams	4589	
Christopher Paul Neil	3850	
88th academy awards	1813	
World largest companies by sector	223	
Joker Comics	142	

⁽a) Time-series with segmentation

Figure 2: Find-RaTSS finds the rationalization from Wikipedia during the period 2015-2017.

Additional Case-study in general dataset (Wikipedia) To understand the importance of content and improve advertisement strategies, we consider the web traffic of 3000 Wikipedia articles from 2015 July-2017 October. The segmentation mark a different season of a year (around the end of 2015, middle of 2016, and beginning of 2017 in Fig. 2(a)). We find overall, the majority of articles/rationalizations (64%) by Find-RaTSS are eventful. Fig. 2(b) shows an example of the rationalizations by Find-RaTSS across the first cutpoint c_1 . We observe Find-RaTSS considers some low-traffic articles, e.g., 'World's largest companies by sector' within top 10 along with the high traffic ones. The reason is, 'Forbes Global 2000' for worlds largest companies

⁽b) Rationalization

¹https://www.forbes.com/sites/forbespr/2016/05/25/forbes-14th-annual-global-2000-the-worlds-biggest-public-companies-2/#21ca87643c44