UNIVERSITY OF PATRAS - SCHOOL OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION: SYSTEMS AND AUTOMATIC CONTROL

THESIS

of the student of the Department of Electrical and Computer Engineering of the School of Engineering of the University of Patras

KARADIMOS ALEXIOS OF LOUKAS

STUDENT NUMBER: 1046820

Subject

Robotic surgical tool manipulator - Recognition, control and manipulation of laparoscopic tools

Supervisor

Associate Professor Dr. Evangelos Dermatas

Thesis Number:

ΠΙΣΤΟΠΟΙΗΣΗ

Πιστοποιείται ότι η διπλωματική εργασία με θέμα

Robotic surgical tool manipulator - Recognition, control and manipulation of laparoscopic tools

του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Karadimos Alexios of Loukas

(A.M.: 1046820)

παρουσιάστηκε δημόσια και εξετάστηκε στο τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών στις

__/__/___

Ο Επιβλέπων

Ο Διευθυντής του Τομέα

Evangelos Dermatas Associate Professor Dr.

Kazakos Demosthenes $Assistant\ Professor\ Dr.$

3 CONTENTS

Contents

1	Introduction					
2	Robotic arm Kinematic Analysis 2.1 Robotic arm, DH parameters & Forward Kinematics 2.2 Inverse Kinematics 2.2.1 Decoupling Technique 2.2.2 Workspace constraints & Singularity points 2.2.3 Solutions for 7DoF numerically 2.2.4 Comparison of Inverse Kinematics Techniques	4 4 4 5 5 5				
3	Grasping 3.1 Gripper & Forward Kinematics	5 5 6 6				
4	Laparoscopic tool recognition with Computer Vision 4.1 Tool detection	6 6				
5	Laparoscopic tool manipulation 5.1 Pivoting motion with respect to Fulcrum Point	6				
6	Path Planning 6.0.1 Collision avoidance	6 6				
7	Trajectory Planning 7.1 Trajectory planning in cartesian coordinates	6 6 7				
8	Simulation with the ROS framework	7				
No	Nomenclature					
Li	st of Figures	9				
Li	List of programs					
Bi	ibliography	9				

Introduction 4

1 Introduction

2 Robotic arm Kinematic Analysis

2.1 Robotic arm, DH parameters & Forward Kinematics

i	$\theta_i \text{ (rad)}$	$L_{i-1} \ ({\rm m})$	d_i (m)	α_{i-1} (rad)
1	θ_1	0	0.36	0
2	$ heta_2$	0	0	$-\pi/2$
3	θ_3	0	0.36	$\pi/2$
4	$ heta_4$	0	0	$\pi/2$
5	θ_5	0	0.4	$-\pi/2$
6	θ_6	0	0	$-\pi/2$
7	θ_7	0	0	$\pi/2$

$${}^{i-1}M_i = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & L_{i-1} \\ s\theta_i ca_{i-1} & c\theta_i ca_{i-1} & -sa_{i-1} & -sa_{i-1}d_i \\ s\theta_i sa_{i-1} & c\theta_i sa_{i-1} & ca_{i-1} & ca_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2.2 Inverse Kinematics

2.2.1 Decoupling Technique

$$R_{target} = \begin{bmatrix} i_x & j_x & k_x \\ i_y & j_y & k_y \\ i_z & j_z & k_z \end{bmatrix} \, {}^{0}\mathbf{p}_{5} = {}^{0}M_{4}{}^{4}\mathbf{p}_{5} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

$$\theta_{6} = atan2 \left(\pm \sqrt{1 - k_y^2}, k_y \right) \qquad (2.2.1)$$

$$\theta_{7} = atan2 \left(-j_y, i_y \right)$$

$$\theta_{5} = atan2 \left(-k_z, k_x \right)$$

$$\theta_{2} = atan2 \left(\sqrt{p_x^2 + p_y^2}, {}^{1}p_{5z} \right) \pm \varphi$$

$$\varphi = acos \left(\frac{d_3^2 + \|{}^{1}p_5\|^2 - d_5^2}{2d_3\|{}^{1}p_5\|} \right)$$

$$\theta_{4} = atan2 \left(\pm \sqrt{1 - c_4^2}, c_4 \right) , c_4 = \frac{\|{}^{1}p_5\|^2 - d_3^2 - d_5^2}{2d_3d_5}$$

$$\theta_{1} = atan2 \left(\pm \frac{p_y}{\sqrt{p_x^2 + p_y^2}}, \pm \frac{p_x}{\sqrt{p_x^2 + p_y^2}} \right)$$

5 Grasping

- 2.2.2 Workspace constraints & Singularity points
- 2.2.3 Solutions for 7DoF numerically
- 2.2.4 Comparison of Inverse Kinematics Techniques

3 Grasping

3.1 Gripper & Forward Kinematics

Barrett Technology, Inc.
625 Mount Auburn Street, Cambridge, MA 02138 U.S.A.
www.barrett.com Ph +617-252-9000 Fx +617-252-9021 mfg@barrett.com

Figure 1: Barrett Hand gripper (model BH8-282) dimensions

3.2 Gripper Inverse Kinematics

The following Inverse Kinematics analysis referes to one finger of the Barrett Hand gripper, which has 3 revolute joints. Finger 3 has only 2 revolute joints for which the angle solutions are the same with the solutions of the last 2 joints of the other fingers. Let

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

be the position of the grasp point for one finger. The first angle can easily be calculated as

$$\varphi_1 = atan2\left(p_y, p_x\right) \tag{3.2.1}$$

Next, we calculate the third angle based on the law of cosines (see fig.)

$$\cos\left(\pi - \varphi_3 - \frac{2\pi}{9}\right) = \frac{L_2^2 + L_3^2 - p^2}{2L_2L_3}$$

$$\cos\left(\varphi_3 + \frac{2\pi}{9}\right) = \frac{p^2 - L_2^2 - L_3^2}{2L_2L_3}$$

Force closure 6

$$\varphi_3 = atan2 \left[\pm \sqrt{1 - \left(\frac{p^2 - L_2^2 - L_3^2}{2L_2L_3}\right)^2}, \frac{p^2 - L_2^2 - L_3^2}{2L_2L_3} \right] - \frac{2\pi}{9}$$
 (3.2.2)

3.3 Force closure

The planar case, the spatial case & convex hull test.

3.4 Firm grasping algorithm & Force control

4 Laparoscopic tool recognition with Computer Vision

4.1 Tool detection

4.2 Calculation of grasping points

5 Laparoscopic tool manipulation

5.1 Pivoting motion with respect to Fulcrum Point

6 Path Planning

6.0.1 Collision avoidance

Find path points (position and orientation) by avoiding collisions

6.0.2 Pick and place algorithm

7 Trajectory Planning

7.1 Trajectory planning in cartesian coordinates

Connect the points from path planning with line segments and add more points if needed

- 7.2 Trajectory planning in joint angles space
- 8 Simulation with the ROS framework

Nomenclature

- $^{i-1}\mathbf{p}_{iO}$ Position vector from the origin of the coordinate frame $\{i\}$ to the origin of the coordinate frame $\{i-1\}$
- $^{i-1}M_i$ Transformation matrix from coordinate frame $\{i\}$ to coordinate frame $\{i-1\}$
- $^{i-1}R_i$ Rotation matrix from coordinate frame $\{i\}$ to coordinate frame $\{i-1\}$
- c_i Shorthand notation for $cos\theta_i$
- J^{\dagger} Geometric Jacobian or the Pseudoinverse of the Jacobian
- s_i Shorthand notation for $sin\theta_i$

9 LIST OF FIGURES

List of Figures

List of programs

Bibliography

[1] Sachin Chitta et al. "ros_control: A generic and simple control framework for ROS". In: *The Journal of Open Source Software* (2017). DOI: 10.21105/joss.00456. URL: http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf.

- [2] Carlos Faria et al. "Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance". In: *Mechanism and Machine Theory* 121 (2018), pp. 317–334. ISSN: 0094-114X. DOI: https://doi.org/10.1016/j.mechmachtheory.2017.10.025. URL: http://www.sciencedirect.com/science/article/pii/S0094114X17306559.
- [3] Carlos Faria et al. "Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance". In: *Mechanism and Machine Theory* 121 (Mar. 2018), pp. 317–334. DOI: 10.1016/j.mechmachtheory.2017.10.025.
- [4] M. R. Hasan et al. "Modelling and Control of the Barrett Hand for Grasping". In: 2013 UKSim 15th International Conference on Computer Modelling and Simulation. Apr. 2013, pp. 230–235. DOI: 10.1109/UKSim.2013.142.
- [5] Reza N. Jazar. Theory of Applied Robotics, Kinematics, Dynamics, and Control (2nd Edition). Springer, Boston, MA, 2010. ISBN: 978-1-4419-1750-8. DOI: 10.1007/978-1-4419-1750-8.
- [6] I. Kuhlemann et al. "Robust inverse kinematics by configuration control for redundant manipulators with seven DoF". In: 2016 2nd International Conference on Control, Automation and Robotics (ICCAR). Apr. 2016, pp. 49–55. DOI: 10.1109/ICCAR.2016.7486697.
- [7] Kevin M Lynch and Frank C. Park. *Modern Robotics: Mechanics, Planning, and Control.* English (US). Cambridge University Press, 2017. ISBN: 978-1107156302.
- [8] Victor F. Muñoz et al. "Pivoting motion control for a laparoscopic assistant robot and human clinical trials". In: *Advanced Robotics* 19 (2005), pp. 694–712.