Анализ моделей в теории строк для преобразования и ускорения Рефал-программ

Совместное совещание по языку Рефал ИПС им. А.К. Айламазяна РАН и МГТУ им. Н.Э. Баумана 17 июня 2023 г.

Бескванторный SMT-фрагмент

- Можно объявлять параметры: (declare-fun x () String).
- Далее параметры связываются допущениями (аксиомами): (assert (str.contains x "a")).

Описывает конечное число пропозициональных формул над операторами и предикатами.

- Существование модели поиск контрпримеров, атак, ошибок (например, в конколической интерпретации или фаззинге).
- Несуществование модели возможные оптимизации и верификация безопасности.

Теория строк: базовые структуры

- Основная операция конкатенация, базовый предикат — равенство.
 - $\bullet \ X_1 + + X_2 + + \cdots + + X_n$, X_i могут включать параметры.
 - Экзистенциальная теория теория уравнений в словах.
- Дополнительный предикат отношение подстроки $X_2 \preceq X_1$.
- $X_2 \leq X_1$ выразим через экзистенциальную теорию уравнений в словах.
- \bullet ¬ $X_2 \leq X_1$ не выразим через равенство.
- Дополнительная операция замена подстроки в строке $replace(X_1, X_2 \mapsto X_3)$.
- Естественное расширение предикат вхождения слова в регулярный язык.
 - Не ломает разрешимость экзистенциальной теории уравнений в словах.
 - Позволяет выразить отрицания для отношений подстроки, но только при константном втором аргументе.

Противоречивые строковые модели

Эксперимент: порождение малых случайных противоречивых моделей в теории строк.

- 3-5 строковых параметра;
- 3–15 аксиом;
- все строки в операторе замены и в предикате проверки на подстроку константны и имеют длину не больше 5;
- отсеиваются тривиальные противоречия (такие, как несовпадения префиксов констант в уравнениях).

Противоречивость от 20% до 30% таких малых моделей не определяется солверами сvc5 и Z3!

Теории и сложность анализа

Здесь EST — экзистенциальная теория строк (или теория уравнений в словах).

Теория	Replace All		Concat		счёт	счёт	REGEX	Сложность
	Const	\forall	Linear	\forall	букв	длин	REGEX	Сложность
EST	Х	Х	√	1	Х	Х	1	PSPACE
EST+len	X	X	✓	✓	X	✓	X	???
$\mathcal{EST}+count$	X	X	✓	✓	✓	X	X	Неразр.
$\mathcal{EST}+repl$	1	X	✓	1	X	Х	X	Неразр.
repl+SL	1	/	✓	X	X	Х	X	EXPSPACE
repl+len	1	1	✓	X	X	✓	X	Неразр.
repl+count	✓	✓	1	X	✓	X	X	Неразр.

Эксперименты с противоречивыми моделями

- Противоречивость условий на длины уравнений (12/50).
- Противоречивость условий на кратность букв (28/50).
- Рекурсивный анализ моделей как программ на языке Рефал (25/50).
- Совместно 2 и 3 (41/50).

Понятия образца и уравнения

Плоский образец — строка в смешанном алфавите переменных и констант.

Уравнение в словах — равенство между строками в смешанном алфавите.

Скажем, что образец содержит (синтаксически) открытые переменные, если число различных переменных типа выражение, входящих в него, больше 1.

Самобытность Рефала — поддержка образцов с открытыми и кратными переменными типа выражение, а также условий, порождающих уравнения в словах.

Представление моделей в Рефале

- Логические функции
- Равенство
- Предикат подстроки
- Оператор замены

- Классическое сопоставление слева направо (С)
- Рефал-сопоставление с образцом (О)
- Предварительная специализация (КМР-подобный) (Р)

No	&	$X_1 = X_2$	$X_2 \leq X_1$	$replace(X_1, X_2 \mapsto X_3)$	Успехи
1	С	С	С	С	20
2	С	C	0	0	25
3	0	0	0	0	11
4	0	C	Р	Р	9
5	0	C	C	С	11

Внутренний язык суперкомпилятоpa MSCP-A

$$\mathcal{C}_{i} = \langle C_{i}, P_{i} \rangle$$

- С_і параметризованные состояния стека.
- P_i предикаты на параметры в КНФ, содержащие литералы двух типов.
 - Отрицательные условия в форме $(X_i \neq \Phi_i)$, где Φ_i может содержать как связанные значения (параметры), так и пробегающие все возможные значения (переменные).
 - Уравнения в словах $\Delta_1=\Delta_2$, где Δ_i могут содержать только параметры, но не переменные.

Каждая конфигурация соответствует модели в теории строк ⇒ противоречивые модели влекут отсечение пути вычисления.

Нётеровость

- Множество путей, порождаемых обобщённым состоянием, включает в себя множества путей обобщаемых состояний. Т.е. определяется возрастание $\mathcal{C}_{k_i} \leq \mathcal{C}_{q}$ по вложению.
- Нет гарантии, что возрастающая последовательность $\mathcal{C}_{g_1} \trianglelefteq \mathcal{C}_{g_2} \trianglelefteq \cdots \trianglelefteq \mathcal{C}_{g_i} \trianglelefteq \ldots$ когда-нибудь стабилизируется.

В алгебрах, содержащих ассоциативные операции, существуют бесконечные возрастающие последовательности, не обладающие нётеровостью, например:

 $x_0 \ x_0, \ x_1 \ x_0 \ x_0, \ \dots, \ x_{k+1} \ x_k \ \dots \ x_0 \ x_0 \ \dots \ x_k \ x_{k+1}, \ \dots$ Над данными в свободной алгебре (древесными термами) таких последовательностей не существует, если возрастание $T_i \le T_j$ определяется наличием подстановки σ такой, что $T_j \sigma = T_i$.

Эквивалентно артиновости (фундированности, Well-Founded-Ordering) обратного отношения (\mathcal{C}_{k_i} к $\mathcal{C}_{\mathfrak{a}}$).

Алгоритм обобщения корректен, если порождаемые им состояния являются нётеровыми относительно отношения вложения путей. Свойство нётеровости гарантирует, что вместо обобщения рано или поздно выполнится вложение.

Пример прошлого года

При обобщении $(\varepsilon)(x)$ и $(\mathbf{A})(\mathbf{A}\,x')$ получается заготовка $(x_1)(x_1\,x_2)$. После чего параметры x_1 и x_2 сливаются как подряд идущие, даже если на x и x' есть рестрикция, запрещающая вхождения буквы \mathbf{A} , переносимая на x_2 .

Частичное решение: записать уравнение, устанавливающее связь между переменными после слияния — оказывается слабым, потому что негативные рестрикции всё равно теряются.

п-замкнутость

Пусть \mathscr{P} — образец (выражение); P_1,\ldots,P_n — свободные фрагменты элементов его плоского разбиения (далее кратко СФР).

- Если x_j единственная переменная, входящая в некоторый P_k , тогда x_j 0-замкнутая.
- Если $x_{j_1}, \ldots, x_{j_k} j_i$ -замкнутые переменные, входящие в P_k вместе с некоторой $x_{j_{k+1}}$, степень замкнутости которой неизвестна либо больше $\max(j_i) + 1$, тогда $x_{j_{k+1}} \max(j_i) + 1$ -замкнутая.

Дан образец P. n-ку (t_{n-1}, \ldots, t_0) такую, что t_i — количество различных переменных замкнутости i, входящих в P, назовём мерой открытости $\mu(P)$.

Решения проблемы однозначности

Решение прошлого года гарантировало нётеровость только очень ограниченных классов образцов.

Лемма

Отношение возрастания языков $(\mathscr{L}(P_i) \subset \mathscr{L}(P_j))$ нётерово для образцов замкнутости $\leqslant k$.

Доказательство: индукцией по степени замкнутости.

Решения проблемы однозначности

Но как выяснилось, выполняется более сильное утверждение.

Теорема

Отношение возрастания языков $(\mathscr{L}(\mathsf{P_i}) \subset \mathscr{L}(\mathsf{P_j}))$ нётерово для образцов, матрица кратности которых имеет ненулевой определитель.

- Ограниченность множества различных переменных \Rightarrow кратности переменных элементы конечного кортежа;
- Лемма Диксона ⇒ найдутся два кортежа, каждый элемент первого из которых не больше каждого из элементов второго. Построим различающую подстановку в «меньший» образец.
- Пустые подстановки ⇒ линейная зависимость между уравнениями на длины переменных.
- Нет пустых подстановок ⇒ возможна лишь переименовка.

Строковые модели и сопоставление в Рефале

В конфигурациях суперкомпилятора могут возникать почти произвольные условия (большое число повторных вхождений параметров, из-за особенностей прогонки).

Однако в самих образцах редко появляется больше трёх повторных переменных.

Строковые модели и сопоставление в Рефале

Что встречается:

- пассивные условия (уравнения) вида $x_1=z_1x_1z_2\dots x_nz_{n+1}$, где z_i свежие переменные. Чаще i=1. Таких условий может быть несколько.
- образцы с повторными переменными в разном контексте, «плавающими» внутри открытых. $z_1\Phi_1x_1\Phi_2z_2\Phi_3x_1\Phi_4z_3$ чаще всего повторение однократное.
- образцы, состоящие из нескольких фрагментов, погружённых в открытые переменные. Пример: $(x_1)(x_3(x_2)x_4)z_1x_1x_2z_2$

- Анализ программ на языке Рефал ⇒ анализ строковых моделей; суперкомпилятор ⇒ внутренний SMT-солвер в модели SLIA ⇒ снова суперкомпилятор.
- Эффективные Рефал-образцы и Рефал-условия ⇒ стремительная разработка достаточно эффективных программ на Рефале.
- Использование мощного сопоставления с образцом \Rightarrow анализ простых строковых моделей.