Table 1: Relative root mean squared errors of the methods

	PMORF	CDMORF	RMORF	SC	ERC	ST	MTSC	MORI
Andro	0.6235	0.6228	0.5573	0.5591	0.6624	0.6944	0.6837	0.596
y_1	0.5621	0.5370	0.4704	0.5317	0.6697	0.6800	0.6890	0.552
y_2	0.5266	0.4874	0.4781	0.3871	0.3440	0.3523	0.3561	0.408
y_3	0.5449	0.5897	0.5014	0.4505	0.5519	0.6021	0.5458	0.514
y_4	0.5428	0.5845	0.5033	0.5058	0.5542	0.6078	0.5552	0.519
y_5	0.7887	0.7763	0.7086	0.7341	0.9618	0.9861	1.0175	0.803
y_6	0.7756	0.7622	0.6820	0.7455	0.8926	0.9382	0.9386	0.780
ATP1D	0.4352	0.4294	0.4288	0.3803	0.3858	0.3782	0.3786	0.418
y_1	0.4795	0.4697	0.4758	0.4718	0.4685	0.4692	0.4678	0.476
y_2	0.4675	0.4519	0.4680	0.4358	0.4437	0.4377	0.4438	0.464
y_3	0.4394	0.4376	0.4410	0.4304	0.4353	0.4351	0.4303	0.433
y_4	0.3817	0.3799	0.3621	0.2608	0.2706	0.2555	0.2544	0.339
y_5	0.4677	0.4568	0.4712	0.4519	0.4558	0.4555	0.4558	0.470
y_6	0.3753	0.3807	0.3548	0.2313	0.2410	0.2162	0.2197	0.326
ATP7D	0.6046	0.5981	0.5755	0.5366	0.5693	0.5629	0.5570	0.587
y_1	0.7680	0.7540	0.7197	0.7606	0.7582	0.7710	0.7605	0.762
y_2	0.6153	0.6216	0.6106	0.6397	0.6667	0.6601	0.6646	0.634
y_3	0.5636	0.5592	0.5522	0.5632	0.5777	0.5820	0.5797	0.571
y_4	0.4885	0.4792	0.4505	0.2891	0.3559	0.3420	0.3199	0.430
y_5	0.7014	0.6933	0.6729	0.6940	0.7264	0.7193	0.7292	0.705
y_6	0.4909	0.4814	0.4470	0.2729	0.3307	0.3033	0.2880	0.422
California Housing	0.6610	0.6628	0.6676	0.6196	0.6154	0.6296	0.6438	0.649
y_1	0.6719	0.6715	0.6802	0.6452	0.6411	0.6569	0.6869	0.671
y_2	0.6501	0.6542	0.6550	0.5941	0.5896	0.6024	0.6008	0.626
EDM	0.7166	0.7210	0.7232	0.7435	0.7319	0.7612	0.7620	0.720
y_1	0.7100	0.7063	0.7085	0.7663	0.7656	0.8143	0.8145	0.732
y_2	0.7231	0.7356	0.7380	0.7207	0.6981	0.7080	0.7095	0.708
ENB	0.1504	0.1515	0.1518	0.1285	0.1168	0.1172	0.1211	0.121
y_1	0.1091	0.1105	0.1111	0.0725	0.0561	0.0536	0.0643	0.059
y_2	0.1916	0.1926	0.1925	0.1845	0.1776	0.1807	0.1778	0.183

Table 2: Relative root mean squared errors of the methods

	PMORF	CDMORF	RMORF	SC	ERC	ST	MTSC	MORF
Jura	0.6049	0.6146	0.6099	0.5731	0.5903	0.5860	0.5880	0.5930
y_1	0.6747	0.6788	0.6709	0.6765	0.7032	0.7013	0.7032	0.6847
y_2	0.5416	0.5401	0.5445	0.5086	0.5318	0.5262	0.5274	0.5465
y_3	0.5984	0.6250	0.6144	0.5342	0.5361	0.5305	0.5333	0.5477
M5Spec	0.7078	0.7044	0.7060	0.6645	0.6642	0.7025	0.7005	0.7172
y_1	0.7095	0.7060	0.7077	0.6554	0.6770	0.7178	0.7255	0.7247
y_2	0.7086	0.7051	0.7067	0.6671	0.6608	0.6994	0.6938	0.7174
y_3	0.7053	0.7019	0.7035	0.6709	0.6548	0.6904	0.6822	0.7094
MP5Spec	0.6721	0.5909	0.6733	0.6433	0.6036	0.6109	0.6174	0.6380
y_1	0.6724	$\boldsymbol{0.5925}$	0.6736	0.6422	0.6015	0.6103	0.6185	0.6382
y_2	0.6691	0.5856	0.6703	0.6428	0.6029	0.6087	0.6142	0.6356
y_3	0.6746	0.5950	0.6759	0.6432	0.6066	0.6133	0.6190	0.6399
y_4	0.6721	0.5903	0.6734	0.6449	0.6033	0.6114	0.6179	0.6384
MP6Spec	0.6680	0.6697	0.6674	0.6271	0.6257	0.6113	0.6402	0.6384
y_1	0.6662	0.6679	0.6656	0.6262	0.6203	0.6100	0.6384	0.6369
y_2	0.6670	0.6687	0.6664	0.6358	0.6308	0.6100	0.6390	0.6373
y_3	0.6703	0.6721	0.6697	0.6229	0.6298	0.6133	0.6425	0.6403
y_4	0.6685	0.6703	0.6679	0.6233	0.6219	0.6120	0.6410	0.6389
Polymer	0.6750	0.7126	0.6379	0.6914	0.6082	0.6335	0.6553	0.6418
y_1	0.7899	0.8444	0.7260	0.7147	0.7050	0.6372	0.7547	0.6931
y_2	0.8714	0.9066	0.7907	0.9606	0.7379	0.7591	0.7427	0.7872
y_3	0.5520	0.5854	0.5452	0.5678	0.4997	0.5818	0.5775	0.5643
y_4	0.4868	0.5138	0.4896	0.5226	0.4903	0.5558	0.5461	0.5224
Stock	0.7335	0.7359	0.7594	0.7082	0.7060	0.7075	0.7145	0.7232
y_1	0.8472	0.8503	0.8565	0.8483	0.8213	0.8379	0.8528	0.8293
y_2	0.7860	0.7880	0.7981	0.7797	0.7668	0.7674	0.7759	0.7708
y_3	0.5672	0.5695	0.6238	0.4968	0.5299	0.5172	0.5148	0.5695

Table 3: Relative root mean squared errors of the methods

	PMORF	CDMORF	RMORF	SC	ERC	ST	MTSC	MORF
Slump	0.2596	0.2641	0.2660	0.2701	0.3039	0.3036	0.3163	0.2942
y_1	0.2277	0.2263	0.2332	0.2398	0.2710	0.2722	0.2794	0.2388
y_2	0.3135	0.3210	0.3191	0.3315	0.3616	0.3653	0.3720	0.3547
y_3	0.2377	0.2450	0.2457	0.2390	0.2792	0.2733	0.2974	0.2892
OES97	0.4134	0.4225	0.4156	0.3956	0.4144	0.4106	0.4110	0.4289
y_1	0.4041	0.4196	0.4077	0.4011	0.4333	0.4359	0.4363	0.4310
y_2	0.3514	0.3779	0.3476	0.3586	0.3806	0.3887	0.3869	0.3735
y_3	0.3847	0.4038	0.3771	0.3853	0.3935	0.4025	0.4023	0.3879
y_4	0.4617	0.4530	0.4656	0.4378	0.4410	0.4316	0.4330	0.4641
y_5	0.4574	0.4496	0.4542	0.3869	0.4320	0.4178	0.4188	0.4562
y_6	0.5690	0.5686	0.5773	0.5991	0.5913	0.5857	0.5864	0.6225
y_7	0.3506	0.3737	0.3498	0.3174	0.3421	0.3276	0.3276	0.3543
y_8	0.3644	0.3904	0.3625	0.3632	0.4014	0.4060	0.4060	0.3928
y_9	0.6063	0.6093	0.5964	0.6004	0.6070	0.6148	0.6150	0.6285
y_{10}	0.3547	0.3771	0.3503	0.3124	0.3304	0.3235	0.3247	0.3554
y_{11}	0.4471	0.4286	0.4643	0.3394	0.3965	0.3678	0.3685	0.4477
y_{12}	0.2305	0.2660	0.2274	0.2332	0.2647	0.2714	0.2721	0.2508
y_{13}	0.5571	0.5257	0.5838	0.5016	0.5049	0.4904	0.4905	0.5654
y_{14}	0.2252	0.2581	0.2241	0.2246	0.2642	0.2661	0.2671	0.2566
y_{15}	0.4432	0.4567	0.4508	0.4502	0.4553	0.4540	0.4536	0.4555
y_{16}	0.4063	0.4020	0.4113	0.4184	0.3926	0.3863	0.3869	0.4202
OES10	0.5278	0.5188	0.5335	0.5026	0.5248	0.5248	0.5253	0.5581
y_1	0.2747	0.2780	0.2798	0.2791	0.3726	0.3739	0.3721	0.3192
y_2	0.4741	0.4340	0.4765	0.3722	0.3851	0.3841	0.3881	0.4979
y_3	0.6804	0.6854	0.6892	0.6842	0.6791	0.6797	0.6794	0.697
y_4	0.3879	0.4015	0.3965	0.3550	0.3778	0.3772	0.3785	0.4079
y_5	0.7023	0.6687	0.7084	0.6377	0.6746	0.6718	0.6775	0.7246
y_6	0.6598	0.6373	0.6762	0.5833	0.6005	0.6013	0.6006	0.6897

Table 4: Relative root mean squared errors of the methods

	PMORF	CDMORF	RMORF	SC	ERC	ST	MTSC	MORI
y_7	0.6007	0.6008	0.6094	0.5845	0.5707	0.5704	0.5712	0.6300
y_8	0.2734	0.2806	0.2642	0.2761	0.3523	0.3529	0.3518	0.3064
y_9	0.2570	0.2927	0.2478	0.2409	0.3113	0.3108	0.3117	0.2583
y_{10}	0.6082	0.5727	0.6163	0.5509	0.5582	0.5579	0.5597	0.6355
y_{11}	0.6056	0.5965	0.6128	0.6629	0.6443	0.6439	0.6448	0.6683
y_{12}	0.5010	0.4857	0.5166	0.5228	0.5275	0.5283	0.5274	0.556'
y_{13}	0.5469	0.5487	0.5476	0.5426	0.5538	0.5541	0.5533	0.5579
y_{14}	0.7086	0.6554	0.7369	0.6235	0.6573	0.6586	0.6561	0.7640
y_{15}	0.5797	0.5814	0.5760	0.5600	0.5617	0.5616	0.5628	0.6040
y_{16}	0.5838	0.5823	0.5818	0.5656	0.5697	0.5697	0.5704	0.612
Puma8NH	0.7768	0.7907	0.7780	0.7978	0.8131	0.8149	0.8269	0.796
y_1	0.9033	0.9019	0.9062	0.9109	0.9553	0.9582	0.9736	0.934
y_2	0.8977	0.8970	0.9062	0.9520	0.9553	0.9569	0.9716	0.935
y_3	0.5293	0.5731	0.5216	0.5306	0.5288	0.5296	0.5356	0.518
Water Quality	0.9115	0.9126	0.9096	0.9209	0.9130	0.9154	0.9182	0.912
y_1	0.9284	0.9324	0.9306	0.9361	0.9286	0.9302	0.9337	0.932
y_2	0.9795	0.9773	0.9803	1.0008	0.9842	0.9876	0.9900	0.980
y_3	0.9453	0.9563	0.9504	0.9699	0.9513	0.9549	0.9594	0.956
y_4	0.9117	0.9070	0.9127	0.9320	0.9126	0.9189	0.9166	0.916
y_5	0.9126	0.9138	0.9044	0.9195	0.9136	0.9127	0.9227	0.914
y_6	0.8349	0.8385	0.8348	0.8410	0.8379	0.8412	0.8421	0.835
y_7	0.9620	0.9586	0.9615	0.9898	0.9689	0.9716	0.9724	0.970
y_8	0.9160	0.9192	0.9183	0.9269	0.9168	0.9183	0.9196	0.915
y_9	0.8283	0.8267	0.8153	0.8157	0.8189	0.8196	0.8259	0.817
y_{10}	0.9038	0.9052	0.9026	0.8952	0.8977	0.8976	0.9019	0.899
y_{11}	0.9232	0.9203	0.9127	0.9227	0.9272	0.9277	0.9334	0.922
y_{12}	0.9048	0.9073	0.9046	0.9228	0.9200	0.9232	0.9230	0.911
y_{13}	0.9497	0.9551	0.9499	0.9547	0.9522	0.9547	0.9590	0.948
y_{14}	0.8616	0.8589	0.8567	0.8651	0.8525	0.8572	0.8549	0.852
Wisconsin Cancer	0.9503	0.9430	0.9453	0.9341	0.9141	0.9104	0.9133	0.907
y_1	0.9403	0.9216	0.9246	0.8952	0.8747	0.8693	0.8719	0.880
y_2	0.9603	0.9644	0.9660	0.9731	0.9534	0.9515	0.9546	0.935