Springer Handbook of Nanomaterials

Springer Handbook provides a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical and applied sciences. The world's leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters comprising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of scientific and technical information.

The volumes are designed to be useful as readable desk reference book to give a fast and comprehensive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibliographies. References to extensive sources are provided.

Han Springer Han dbook

of Nanomaterials

Robert Vajtai (Ed.)

With 685 Figures and 64 Tables

Editor
Robert Vajtai
Rice University
Department of Mechanical Engineering and Materials Science
6100 Main MS-321
Houston, TX 77005-1827
USA

ISBN: 978-3-642-20594-1 e-ISBN: 978-3-642-20595-8

DOI 10.1007/978-3-642-20595-8

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2013942548

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Production and typesetting: le-tex publishing services GmbH, Leipzig Senior Manager Springer Handbook: Dr. W. Skolaut, Heidelberg Typography and layout: schreiberVIS, Seeheim Illustrations: le-tex publishing services GmbH, Leipzig; Hippmann GbR, Schwarzenbruck

Cover design: eStudio Calamar Steinen, Barcelona Cover production: WMXDesign GmbH, Heidelberg Printing and binding: Stürtz GmbH, Würzburg

Printed on acid free paper

Springer is part of Springer Science+Business Media (www.springer.com)

61/3180/YL 5 4 3 2 1 0

Foreword

Nanomaterials are based on structures with characteristic features on the scale of nanometers. This size is small if we compare with normal things around us, but it is not particularly small on the atomic scale. In fact, distances between individual atoms are typically a tenth of a nanometer (an Ångström), so a piece of a material with a side of a nanometer may contain hundreds or even a thousand atoms. Therefore a nanomaterial usually has some resemblance to a bulk material based on the same atoms, but the normal material has been modified to reach superior properties such as higher mechanical strength, different optical and magnetic performance, permeability to a fluid, or something else. Thus nanomaterials may allow us to obtain properties that were previously impossible to achieve, impractical to manufacture, or too expensive for use on a scale large enough to be significant in daily life.

Among the general public, and even the scientific community, nanomaterials are widely perceived as *new* in many different way – newly invented, newly used by human cultures, and newly studied.

In fact, nanomaterials are not new at all. Nature itself is filled with nanofeatures that have evolved in biological systems, one well known example being moths' eyes with nanostructured surfaces that provide antireflection and allow efficient use of feeble light.

Looking at history, we can also see that human beings have been using nanomaterials of various sorts for a very long time. Let us take three examples: nanocarbons, nanometals, and nanoceramics.

Nanocarbons can be created in abundance on the nanometer scale when organic matter burns. Such carbon nanoparticles were used by humans as far back as forty thousand years ago to depict and decorate. The particles were mixed with fat and used for painting in the caves of Altamira and Lascaux in Spain and France, to mention two especially striking and well known cases. This kind of carbon, in principle, is also an essential ingredient in ink and printing paste, and it was used by monastic scribes and by Gutenberg and his followers to make texts of explosive cultural significance and stunning beauty.

Nanometals have also been utilized for thousands of years. An example is the world famous Lycurgus glass cup, now in the holdings of the British Museum. This

cup, which was probably created in Rome during the 4th century AD, contains embedded nanoparticles of gold and silver. Because of these particles, the cup normally seems to be a light green color, but it becomes ruby red when light is shone through it. The Lycurgus cup is a wonder of craftsmanship from Antiquity, and it is based on nanotechnology.

Finally, let's consider *nanoce-ramics*. The world's most widely used artificial material is the nanoceramic cement, which was used extensively by the Romans in constructing buildings, baths and aqueducts. Furthermore, recent archaeological discoveries indicate that the Romans were not the first, that the Macedonians were using cement centuries earlier.

Prof. Claes-Göran Granqvist

Department of
Engineering Sciences
Solid State Physics
Uppsala University
Sweden

Even research on nanomaterials is not as new as it seems. The term apparently began appearing in the titles of scientific publications only 15 years ago. But today's *nano* was the subject of an older literature under the term *ultrafine*.

As the examples above indicate, nanomaterials are well rooted in the past. But they are also very much of the future. Let us consider a few specific examples.

Nanocarbons, used for cave painting and the printing of the Gutenberg Bible, are very much in focus today, in the forms of fullerenes, nanotubes and nanodiamonds, all of which offer a multitude of possibilities for future technology. Two-dimensional carbon in the form of graphene has unique properties directly based on quantum physics, and it may have important applications in transparent electronics and elsewhere. Graphane, its hydrogenated cousin, is exciting in its own right.

Nanometals, employed by the Romans to create the amazing Lycurgus glass cup, are the basis today for manifold applications, including thermal collectors that harness the sun's energy and innovative *plasmonic* solar cells. Indeed, *plasmonics* is becoming a household word because of its relevance for light-emitting diodes, sen-

sors and catalysts for chemical reactions, just to mention a few technologies.

Thus many aspects of nanomaterials are indeed truly new and are the subject of intense worldwide interest in today's academic and industrial research laboratories. This *Handbook*, which is a testimony to this growing body of knowledge, presents welcome and authoritative surveys over nanocarbons, nanometals and nanoceramics in its first three parts. Other sections cover nanocomposites and nanoporous materials, as well as organic and biological nanomaterials. Applications and impacts are discussed at the end, together with important questions of toxicology, hazards and safety. These

issues are of great importance. We should remember the terrible impact that asbestos – in fact, a natural nanomaterial – had on human health before it was widely banned. We certainly do not want to discover one day that, in our quest for new materials to solve technological problems, we have unleashed another dangerous nanomaterial into the world.

The editor and authors are to be congratulated on the successful completion of this *Handbook of Nanomaterials*. It will surely be a work of great and lasting importance for the scientific community.

Uppsala, November 2012 Prof. Claes G. Granqvist

Foreword

It has been more than a decade since President Bill Clinton talked about the promise of nanotechnology and the importance of increasing investments in nanoscale science and engineering research in a speech at the California Institute of Technology on January 21, 2000. In his remarks, the President recalled Richard Feynman's American Physical Society talk there in 1959. The following week, in his State of the Union Address, President Clinton announced his 21st Century Research Fund, a \$3 billion budget increase, which included the multiagency national nanotechnology initiative (NNI). The first year's budget allocation to NNI was close to half a billion US\$, nearly doubling what the agencies had been spending on nanoscale research; and with the continuous support of succeeding administrations the budget quadrupled in a decade. This strong federal support, initially based on the promise of a revolutionary new technology, was justified by steady scientific and technological advances at the nanometer scale and by the growth of commercial applications, especially in biotechnology and nanoelectronics, offering new ways to tackle disease and new industrial tools and toys. As President Clinton's former science advisor, I am confident that he is as pleased with the progress in nanotechnology as are all of us - inside and outside government - who worked with him to develop and implement the NNI.

One way to define nanotechnology, perhaps, is that it is the knowledge and engineering (design and control) of physical, chemical, and biological systems at the nanometer (10⁻⁹ m) scale – from the size of individual molecules to dimensions of the order 100 nm. Nanotechnology is, by its nature, a field of synthesis and synergy often requiring physics, chemistry, biology, and almost all areas of engineering in the performance of research and engineering design, for example inventing and optimizing the tools needed to synthesize and manipulate matter at the nanometer scale. As with other new fields, rapid advances in nanotechnology have led to specialization into subdisciplines, one of the most natural and important being *nanomaterials*.

Nanomaterials science and engineering includes the production, properties, and applications of materials at the nanometer scale; it is a part of nanotechnology and at the same time, evidently, a subfield of materials

science. The main goal of materials science – macroscopic and nanoscale - is providing new and improved building blocks for engineers in all fields. That said, nanomaterials science has distinct features compared to the more mature science and engineering of macroscopic materials, the most salient being its revolutionary nature. New materials and groups of materials with surprising properties continue to be discovered - graphene and topological insulators are two examples from the recent past. As with all exploration at the frontiers of knowledge, it is impossible to predict what discoveries will be made or how those discoveries might lead to applications, commercial or otherwise. But the history of science and technology suggests that some

Prof. Neal Lane
Malcolm Gillis University
Professor,
Department of Physics
and Astronomy,
Senior Fellow,
James A. Baker III Institute
for Public Policy
Rice University
Houston, Texas

of those advances will surpass all our expectations. Already we are seeing the benefits of nanotechnology in computers and telecommunication devices, computer chips and sensors in automobiles, electric car batteries, medicines and sun creams, tablecloths and socks, tennis rackets, boats, golf clubs - and more. Given the likelihood that ongoing research will yield many more nanomaterials, with surprising properties and, at the same time, the continued exponential growth in the number of applications, it seems clear that nanomaterials will, at some level, transform most aspects of our lives. It is not too much of a stretch to suggest that President Clinton's policy decision to set up the NNI, which has supported thousands of scientists and engineers working in the field, has indeed helped move us closer to realizing Feynman's prediction - or, perhaps we should say his vision – of a revolutionary new technology. In the world of *nanomaterials* there is still plenty of room at the bottom to use Richard Feynman's famous words.

A handbook, by one definition, is a compilation of knowledge about a particular field, collected into a single volume publication that is convenient to use as a ready reference. Since *nanomaterials* science can now be considered a self-sufficient discipline, a handbook is appropriate and timely. This new *Springer Handbook of Nanomaterials* targets several audiences: researchers working in industry or academia, as well as graduate students studying related fields. The organization of the book follows the usual classification scheme of macroscopic materials science, with information of a materials group – e.g., metals – collected together;

other aspects can be followed easily by using the well-developed index.

Putting together a handbook in a new field is a formidable challenge. I would like to congratulate the editor and all of the authors who collaborated to plan, collect materials, and write this important groundbreaking *Springer Handbook of Nanomaterials*.

Houston, January 2013

Neal Lane

Preface

Those who control materials, control technology, stated Eiji Kobayashi, Senior Advisor of Panasonic Corporation, explaining the importance of materials science and engineering. I would translate this quote to those who control nanomaterials control nanotechnology; and, considering the effect of the development of nanomaterials and nanotechnology on our global infrastructure, it is not too bold to state that those control technology at large, too. Nanomaterials have a determinant role in many of advanced products around us. Stamp-sized sound recording devices, modern passenger and fighter jets, spaceships and space stations, extreme tall buildings and long bridges, none of these could be created without these marvelous materials. As one could not foresee 50 years ago, the fast development that provided the opportunity for these objects to be realized, now we cannot imagine our life without them.

The editor considers materials science as the knowledge of structure; properties of materials predicted or explained with the help of this knowledge; experimental and theoretical tools designed and established for preparing, characterizing and modifying processes, and last but not least showing application possibilities of the resulted materials. After defining nanomaterials we can simply transpose this description for nanomaterials science. Materials are considered nanomaterials when their structure, processing, characterization or application differ from the macroscopic materials and this difference relates to the – normally sub-100 nm – feature size. The description of the nanomaterials in this Springer Handbook follows the thorough but concise explanation of the synergy of structure, properties, processing, and applications. Specifically, our aim was to point out the distinction between the properties of bulk and nanomaterials and the reasons for these differences.

To fulfill these goals, we provide a balanced report of the literature of each materials group. The format follows the well-established structure of the Springer Handbooks with chapters as the basic units that are organized into several groups. In each chapter, authors cover materials of their expertise, however, they focus not only on their own work, but report the interesting and important efforts in the community, establishing a balance between references and scientific results reported in tables and figures. We describe nanomaterials in textbook style for newcomers, encyclopedia-like elements and – to follow the fast-space of new results – review or research papers for the experienced reader. Beyond scientific and moral correctness we also look for clarity by concise and easy-to-follow text, well-designed and clear figures which were all professionally drawn by graphics designers.

The book is divided in Parts A to G and covers carbon-based nanomaterials: fullerenes, nanotubes, nanofibers and nanodiamond, noble and common metals and alloys, ceramic materials, crystalline and glassy oxides and other compounds; composites, hybrid structures and solutions as well as porous metals, ceramics and silicon; organic and bio-nanomaterials, bones and fibers and select applications, respectively. This higher level structure conforms to the macroscopic classification of materials and it is composed of chapters. Each chapter is self-consistent and builds up of similar parts, history, definitions, production of the given materials, properties, and applications. All of these parts are richly illustrated and consist of a balanced ratio of important basics and recent results.

My pleasant obligation is to thank all of the help I received in planning and implementing the handbook. First of all, I need to acknowledge the diligent work of the authors in developing the chapters which involves more effort than a review paper, and the reward is not so immediate and evident. Their expertise, energy and time are greatly appreciated. I also would like to thank the advices and help of my colleagues at Rice University and at Rensselaer Polytechnic Institute; as well as Professors Thomas F. George, Bob Curl, Phaedon Avouris, Li Song and Jinquan Wei for keeping contact with many authors. The great workmanship of the Springer publishing team and the continuous support of the managing editors Mayra Castro and Werner Skolaut are also appreciated. I also need to thank my colleagues and friends, Laszlo B. Kish, Claes-Goran Granqvist, Pulickel M. Ajayan and Richard W. Siegel that the collaboration with them oriented me to nanomaterials science. Last, but not least, I thank for the help and patience of my wife, Agnes, without her I would have not been able to finish this job.

I wish the reader a pleasant and beneficial time when using the Springer Handbook of Nanomaterials, and

I hope that it serves as a frequently opened reference work.

Houston, November 2012

Robert Vajtai

About the Editor

Robert Vajtai is a Faculty Fellow at Rice University, Houston, Texas, in the Department of Mechanical Engineering and Materials Science. His expertise covers synthesis, processing, characterization of physical and chemical properties of new, advanced material forms and structures. More specifically Dr. Vajtai's interests are in nanostructured materials, nanocomposites and nanomaterials; as well as their applications in thermal management, energy storage, microelectromechanical systems, sensors and electronic devices.

Dr. Vajtai received his scientific education in physics and his Ph.D. degree in solid-state physics from the University of Szeged (then named Jozsef Attila University), Hungary. From 1987 to 2002 he was a faculty member of the Department of Experimental Physics at the University of Szeged, Hungary. He was rewarded by the Bolyai Fellowship of the Hungarian Academy of Sciences for 1999-2000. He spent sabbaticals as a Fellow of the Swedish Institute in The

glosseintragAAngstrom Laboratory in Uppsala, Sweden, in the years 1998 and 1999; as an Eötvös Fellow at the EPFL in Lausanne, Switzerland in 1995/1996 and visited the Max Planck Institute in Göttingen, Germany, in 1993 via a Max Planck Fellowship. Before moving to Rice University in 2008, Dr. Vajtai spent eight years at the Rensselaer Polytechnic Institute, Troy, New York, where he was a Laboratory Manager at the Rensselaer Nanotechnology Center managing the carbon nanotechnology laboratories.

Dr. Vajtai started his research as a physicist studying laser-metal interaction, melting and oxidation of refractive metals and the nonlinear behavior of the far-from equilibrium processes and systems. Later he developed methods for pulse-probe spectroscopy of biomaterials as well as OH radicals used for the study of organic contamination of the atmosphere by airborne LIDAR systems. His research in materials science started with the synthesis of nanometals and nanosized oxides for the development of sensors. This lead to a new method for the preparation of germanium nanoparticles for building inverse opals used in infrared optical sensing. His most significant contribution is related to the synthesis of different forms of nanocarbons such as carbon nanotubes, graphene and macroscopic systems designed and built from these carbon allotropes, e.g., electromechanical parts and nanotube wires. Recently, his interest extended to various atomically thin layers, hexagonal boron nitride, transition-metal dichalcogenides and oxides.

He has more than 145 journal publications in peer reviewed scientific journals and he delivered numerous invited, keynote and plenary lectures on the topic.

Dr. Vajtai is a passionate teacher, he lectured physics, thermodynamics and electrodynamics courses with hundreds of experimental demonstrations; introductory and advanced courses of materials science. He received several mentoring awards, among those the Siemens-Westinghouse Mentoring Award.

Robert Vajtai is a Faculty Fellow in the Department of Mechanical Engineering & Materials Science at Rice University. He received his undergraduate and Ph.D. degrees from the University of Szeged, then named Jozsef Attila University, Hungary.

List of Authors

Maya Bar-Sadan

Ben-Gurion University
Department of Chemistry
Be'er Sheba , Israel

e-mail: barsadan@bgu.ac.il

Giovanni Barcaro

Italian National Research Council Institute for the Physical and Chemical Processes Via Giuseppe Moruzzi 1 56124 Pisa, Italy

e-mail: barcaro@ipcf.cnr.it; giobarc@gmail.com

Paolo Bettotti

University of Trento
Department of Physics, Nanoscience Laboratory
via Sommarive 14
38123 Povo, Italy
e-mail: bettotti@science.unitn.it

Alfredo Caro

Los Alamos National Laboratory Materials Science and Technology Division Los Alamos, NM 87544, USA e-mail: caro@lanl.gov

Eunhyea Chung

Korea Institute of Science and Technology (KIST) Center for Water Resource Cycle Hwarangno 14-gil 5, Seongbuk-gu Seoul 136-791, Korea e-mail: echung@kist.re.kr

Suzanne A. Ciftan Hens

ITC/International Technology Center 8100 Brownleigh Road Raleigh, NC 27617, USA e-mail: shens@itc-inc.org

Vicki L. Colvin

Rice University
Office of Research, Chemistry
6100 Main Str.
Houston, TX 77005, USA
e-mail: colvin@rice.edu

Rodolfo Cruz-Silva

Shinshu University Research Center for Exotic Nanocarbons Wakasato 380-8553 Nagano, Japan e-mail: rcruzsilva@shinshu-u.ac.jp

Pratap Kumar Deheri

ShayoNano Singapore Pte Ltd. 609969 Singapore e-mail: dehe0001@e.ntu.edu.sq

Libo Deng

University of Manchester School of Materials Oxford Road Manchester, M13 9PL, UK e-mail: libo.deng@manchester.ac.uk

Yi Ding

Shandong University
School of Chemistry and Chemical Engineering
27 South Shan Da Road
Jinan, 250100, China
e-mail: yding@sdu.edu.cn

Huanli Dong

Chinese Academy of Sciences Institute of Chemistry, Key Laboratory of Organic Solids Zhongguancun North First Street 2 Beijing, 100190, China e-mail: dhl522@iccas.ac.cn

Mildred S. Dresselhaus

Massachusetts Institute of Technology Physics; Electrical Engineering 77 Massachusetts Ave Cambridge, MA 02139, USA e-mail: millie@mgm.mit.edu

Dimple P. Dutta

Bhabha Atomic Research Centre Chemistry Division Mumbai, 400085, India e-mail: dimpled@barc.gov.in

Hellmut Eckert

University of Sao Paulo Department of Physics Av. Trabalhador Saocarlense 400 Sao Carlos, SP 13566-590, Brazil e-mail: eckert@ifsc.usp.br

Morinobu Endo

Shinshu University Research Centre for Exotic Nanocarbons 380-8553 Nagano, Japan

e-mail: endo@endomoribu.shinshu-u.ac.jp

Adam W. Feinberg

Carnegie Mellon University Department of Biomedical Engineering 700 Technology Dr. Pittsburgh, PA 15219, USA e-mail: feinberg@andrew.cmu.edu

Alessandro Fortunelli

IPCF Consiglio Nazionale delle Ricerche (CNR) via Giuseppe Moruzzi 1 56124 Pisa, Italy e-mail: alessandro.fortunelli@cnr.it

Yogeeswaran Ganesan

Intel Corporation 5200 NE Elam Young Parkway Hillsboro, OR 97124, USA e-mail: yogiganesan@gmail.com

Wei Gao

Los Alamos National Laboratory Center for Integrated Nanotechnology Bikini Atoll Rd Los Alamos, NM 87545, USA e-mail: wei.gaofanyi@gmail.com

Thomas F. George

University of Missouri-St. Louis Office of the Chancellor, Center for Nanoscience One University Boulevard St. Louis, MO 63121, USA e-mail: tfgeorge@umsl.edu

Lei Gong

University of Manchester School of Materials Oxford Road Manchester, M13 9PL, UK

e-mail: lei.gong@stud.manchester.ac.uk

Takuya Hayashi

Shinshu University Department of Electrical and Electronic Engineering 380-8553 Nagano, Japan

e-mail: hayashi@endomoribu.shinshu-u.ac.jp

Wenping Hu

Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing, 100190, China e-mail: huwp@iccas.ac.cn

Erik H. Hároz

Rice University **Electrical and Computer Engineering** 6100 Main Str. Houston, TX 77005, USA e-mail: enano@rice.edu

Quentin Jallerat

Carnegie Mellon University **Biomedical Engineering** 700 Technology Drive Pittsburgh, PA 15206, USA e-mail: qjallera@andrew.cmu.edu

Heli Jantunen

University of Oulu Department of Electrical Engineering Erkki Koiso-Kanttilankatu 3 Oulu 90014, Finland e-mail: heli.jantunen@oulu.fi

Song Jin

University of Wisconsin-Madison Department of Chemistry 1101 University Ave. Madison, WI 53706, USA e-mail: jin@chem.wisc.edu

Kaushik Kalaga

Rice University

Department of Mechanical Enginnering &

Materials Science 6100 Main Str.

Houston, TX 77005, USA

e-mail: kalaga.kaushik@gmail.com

Ji-Hee Kim

Rice University

Department of Electrical and Computer

Engineering 6100 Main Str.

Houston, TX 77005, USA

e-mail: withphys@gmail.com

Yoong A. Kim

Shinshu University

Department of Electrical and Electronic

Engineering

380-8553 Nagano, Japan

e-mail: yak@endomoribu.shinshu-u.ac.jp

lan A. Kinloch

University of Manchester

School of Materials

Oxford Road

Manchester, M13 9PL, UK

e-mail: ian.kinloch@manchester.ac.uk

Imre Kiricsi (deceased)

Junichiro Kono

Rice University

Electrical and Computer Engineering & Physics and

Astronomy 6100 Main Str.

Houston, TX 77005, USA

e-mail: kono@rice.edu

Krisztián Kordás

University of Oulu

Department of Electrical Engineering

Erkki Koiso-Kanttilankatu 3

Oulu 90570, Finland

e-mail: lapy@ee.oulu.fi

Gábor Kozma

University of Szeged

Department of Applied and Environmental

Chemistry

Dugonics tér 13

6720 Szeged, Hungary

e-mail: kozmag@chem.u-szeged.hu

Jarmo Kukkola

University of Oulu

Department of Electrical Engineering

Erkki Koiso-Kanttilankatu 3

Oulu 90014, Finland

e-mail: jarmo.kukkola@gmail.com

Ákos Kukovecz

University of Szeged

Department of Applied and Environmental

Chemistry

Rerrich Béla tér 1

Szeged, Hungary

e-mail: kakos@chem.u-szeged.hu

Vinod Kumar

Banaras Hindu University

Department of Zoology

Lanka, Varanasi, 221005, India

e-mail: mail2vinod2@gmail.com

Zoltán Kónya

University of Szeged

Department of Applied and Environmental

Chemistry

Rerrich Bela tér 1

6720 Szeged, Hungary

e-mail: konya@chem.u-szeged.hu

Jaesang Lee

Korea Institute of Science and Technology (KIST)

Center for Water Resource Cycle

Hwarangno 14-gil 5

Seoul 136-791, Korea

e-mail: lee39@kist.re.kr

Seunghak Lee

Korea Institute of Science and Technology (KIST)

Center for Water Resource Cycle

Hwarangno 14-gil 5

Seoul 136-791, Korea

e-mail: seunglee@kist.re.kr

Renat R. Letfullin

Rose-Hulman Institute of Technology Physics and Optical Engineering 5500 Wabash Avenue Terre Haute, IN 47803-3999, USA e-mail: letfullin@rose-hulman.edu

Roi Levi

Weizmann Institute of Science Department of Materials and Interfaces 234 Herzl Street Rehovot 76100, Israel e-mail: roi.levi@weizmann.ac.il

Zuzanna A. Lewicka

Rice University Department of Chemistry 6100 Main Street Houston, TX 77005, USA e-mail: zuzannal@rice.edu

Longtu Li

Tsinghua University Materials Science & Engineering Beijing, 100084, China e-mail: Ilt-dms@mail.tsinghua.edu.cn

Shaily Mahendra

University of California, Los Angeles Civil and Environmental Engineering 5732 Boelter Hall Los Angeles, CA 90095, USA e-mail: mahendra@seas.ucla.edu

Balaji P. Mandal

Bhabha Atomic Research Centre Chemistry Division Mumbai, 400085, India e-mail: bpmandal@barc.gov.i

Fei Meng

University of Wisconsin-Madison Department of Chemistry 1101 University Avenue Madison, WI 53706, USA e-mail: fmeng@chem.wisc.edu

Guowen Meng

Chinese Academy of Sciences Institute of Solid State Physics Hefei, Anhui 230031, China e-mail: gwmeng@issp.ac.cn

Younès Messaddeg

Université Laval Department of Physics 2375, rue de la Terrasse Québec, Québec G1V 0A6, Canada e-mail: younes.messaddeq@copl.ulaval.ca

Jyri-Pekka Mikkola

Åbo Akademi University Department of Chemical Engineering Biskopsgatan 8 Åbo-Turku 20500, Finland e-mail: jyri-pekka.mikkola@chem.umu.se; jyri-pekka.mikkola@abo.fi

Melinda Mohl

University of Oulu Department of Electrical Engineering Erkki Koiso-Kanttilankatu 3 Oulu 90570, Finland e-mail: memohl@ee.oulu.fi

Aarón Morelos-Gómez

Shinshu University Institute of Carbon Science and Technology 4-17-1 Wakasato 380-8553 Nagano, Japan e-mail: amorelos@shinshu-u.ac.jp

Stephen A. Morin

Harvard University Chemistry and Chemical Biology 12 Oxford Street Cambridge, MA 02138, USA e-mail: smorin@gmwgroup.harvard.edu

Marcelo Nalin

Federal University of Sao Carlos Department of Chemistry Rodovia Washington Luiz, SP-310 Sao Carlos, Sao Paulo, Brazil e-mail: mnalin@ufscar.br

Sebastien Nanot

Rice University

Electrical and Computer Engineering & Physics and

Astronomy 6100 Main Street

Houston, TX 77098, USA

e-mail: sebastien.nanot@gmail.com

Rachelle N. Palchesko

Carnegie Mellon University Biomedical Engineering Pittsburgh, PA 15219, USA

e-mail: rachelle@andrew.cmu.edu

Cary L. Pint

Vanderbilt University Department of Mechanical Engineering 2301 Vanderbilt Place Nashville, TN 37215, USA e-mail: Cary.L.Pint@vanderbilt.edu

Gael Poirier

Federal University of Alfenas Institute of Science and Technology Rodovia José Aurélio Vilela 11999 Poços de Caldas, MG CEP 37715-400, Brazil e-mail: gael.poirier@unifal-mg.edu.br

Thalappil Pradeep

Indian Institute of Technology Madras Department of Chemistry Chennai, 600 036, India e-mail: pradeep@iitm.ac.in

István Pálinkó

University of Szeged Department of Organic Chemistry Dóm tér 8 6720 Szeged, Hungary e-mail: palinko@chem.u-szeged.hu

Raju V. Ramanujan

Nanyang Technological University School of Materials Science and Engineering 50 Nanyang Ave. 639798 Singapore

e-mail: ramanujan@ntu.edu.sg

Sundara Ramaprabhu

Indian Institute of Technology, Madras Department of Physics Chennai, 600 036, India e-mail: ramp@iitm.ac.in

Jayshree Ramkumar

Bhabha Atomic Research Centre **Analytical Chemistry Division** Mumbai, 400085, India e-mail: jrk@barc.gov.in

Arava L.M. Reddy

Rice University Department of Mechanical Engineering and Materials Science 6100 Main Str. Houston, TX 77005, USA e-mail: leela@rice.edu

Vincent C. Reyes

University of California, Los Angeles Department of Civil and Environmental Engineering 5732 Boelter Hall Los Angeles, CA 90095, USA e-mail: vincecreyes@ ucla.edu

Sidney J.L. Ribeiro

Sao Paulo State University - UNESP Institute of Chemistry Araraquara, SP 14801-970, Brazil e-mail: Sidney@iq.unesp.br

William D. Rice

Los Alamos National Laboratory National High Magnetic Field Laboratory Los Alamos, NM 87545, USA e-mail: wdrice@lanl.gov

Silvia H. Santagneli

Sao Paulo State University - UNESP Institute of Chemistry Araraguara, SP 14801-970, Brazil e-mail: santagneli@ig.unesp.br

Preeti S. Saxena

Banaras Hindu University Department of Zoology Lanka, Varanasi, Uttar Pradesh 221005, India e-mail: pssaxena@rediffmail.co

Olga A. Shenderova

International Technology Center 8100 Brownleigh Road Raleigh, NC 27617, USA

e-mail: oshenderova@itc-inc.org

Rakesh Shukla

Bhabha Atomic Research Centre Chemistry Division Mumbai, 400085, India e-mail: rakesh@barc.gov.in

Shashwat Shukla

Nanyang Technological University 639798 Singapore

e-mail: shas0002@e.ntu.edu.sg

Theruvakkattil S. Sreeprasad

Kansas State University Department of Chemical Engineering 1011 Durland Hall Manhattan, KS 66502, USA e-mail: sprasad@k-state.edu

Anchal Srivastava

Banaras Hindu University Department of Physics Lanka, Varanasi, Uttar Pradesh 221005, India e-mail: anchalbhu@gmail.com

Saurabh Srivastava

National Physical Laboratory Biomedical Instrumentation Section, New Rajender Nagar, New Delhi 110012, India e-mail: saurabhnpl@gmail.com

Yan Sun

Beihang University (BUAA) School of Biological Science and Medical Engineering 37 Xueyuan Road, Haidian District Beijing, 100191, China e-mail: sunyan@buaa.edu.cn

Mária Szabó

University of Szeged Applied and Environmental Chemistry 1 Rerrich Béle tér 6720 Szeged, Hungary e-mail: szmaria@chem.u-szeged.hu

John M. Szymanski

Carnegie Mellon University Department of Biomedical Engineering 700 Technology Drive Pittsburgh, PA 15219, USA e-mail: jszymans@andrew.cmu.edu

András Sápi

University of Szeged Department of Applied and Environmental Chemistry 1 Rerrich square 6720 Szeged, Hungary e-mail: sapia@chem.u-szeged.hu

Reshef Tenne

Weizmann Institute of Science Department of Materials and Interfaces Rehovot 76100, Israel e-mail: Reshef.tenne@weizmnn.ac.il

Humberto Terrones

Pennsylvania State University **Physics Department** S104 Davey Lab University Park, PA 16802, USA e-mail: hzt2@psu.edu

Mauricio Terrones

Pennsylvania State University Department of Physics and Materials Science and Engineering University Park, PA 16802, USA e-mail: mut11@psu.edu

Nicholas A. Thompson

Rice University Department of Physics & Astronomy 6100 Main Str. Houston, TX 77005, USA e-mail: nt7@rice.edu

Bipul Tripathi

Banaras Hindu University Department of Physics Lanka, Varanasi, Uttar Pradesh 221005, India e-mail: bipultripathi@gmail.com

Ferdinando Tristán López

Shinshu University

Faculty of Engineering, Research Center for Exotic Nanocarbons

380-8553 Nagano, Japan

e-mail: ftristan@shinshu-u.ac.jp

Avesh K. Tyagi

Bhabha Atomic Research Centre Chemistry Division Mumbai, 400085, India

e-mail: aktyagi@barc.gov.in

Géza Tóth

University of Oulu Department of Electrical Engineering Erkki Koiso-Kanttilankatu 3 Oulu 90570, Finland e-mail: geza@ee.oulu.fi

Robert Vajtai

Rice University Department of Mechanical Engineering and Materials Science 6100 Main Str. Houston, TX 77005-1827, USA e-mail: robert.vajtai@rice.edu

Sofia M. Vega Díaz

Shinshu University Research Center for Exotic Nanocarbons 380-8553 Nagano, Japan e-mail: smvd@shinshu-u.ac.jp

Aravind Vijayaraghavan

University of Manchester School of Computer Science Manchester, M13 9PL, UK e-mail: aravind@cs.man.ac.uk

Xiaohui Wang

Tsinghua University Department of Materials Science & Engineering Beijing, 100084, China

e-mail: wxh@mail.tsinghua.edu.cn

Xuan Wang

Rice University

Department of Electrica and Computer Engineering 6100 Main Str.

Houston, TX 77005, USA e-mail: xw13@rice.edu

Qiaoling Xu

Chinese Academy of Sciences Key Laboratory of Materials Physics (CAS), Anhui Key Laboratory of Nanomaterials and Nanostructures Anhui, 230031, China

Robert J. Young

University of Manchester School of Materials Oxford Road Manchester, M13 9PL, UK

e-mail: qlxu@issp.ac.cn

e-mail: robert.young@manchester.ac.uk

Ling Zhang

Carnegie Mellon University Department of Biomedical Engineering 700 Technology Drive Pittsburgh, PA 15219, USA e-mail: zling03@gmail.com

Shaopeng Zhang

Tsinghua University Department of Materials Science and Engineering Beijing, 100084, China e-mail: zspthu@gmail.com

Zhonghua Zhang

Shandong University School of Materials Science and Engineering Jingshi Road 17923 Shandong, 250061, China e-mail: zh_zhang@sdu.edu.cn

Contents

Fo	reword by Claes–Göran Granqvistreword by Neal Lane	
1	Science and Engineering of Nanomaterials Robert Vajtai	
	1.1 History and Definition of Nanomaterials	
	1.2 Formation of Nanomaterials	
	1.3 Properties of Nanomaterials	
	1.4 Typical Applications of Nanomaterials	
	1.5 Concluding Remarks	
	1.6 About the Contents of the Handbook	
	References	• • •
D-	aut A. NanaCarbana	
Pā	art A NanoCarbons	
2	Graphene – Properties and Characterization	
	Aravind Vijayaraghavan	
	2.1 Methods of Production	
	2.2 Properties	
	2.3 Characterization	
	2.4 Applications	
	2.5 Conclusions and Outlook	
	References	•••
3	Fullerenes and Beyond: Complexity, Morphology,	
_	and Functionality in Closed Carbon Nanostructures	
	Humberto Terrones	
	3.1 Geometry and Structural Features of Fullerenes	
	3.2 Methods of Synthesis of Fullerenes and Proposed Growth Models.	
	3.3 Physicochemical Properties of Fullerenes	
	3.4 Applications of Fullerenes and Beyond	
	3.5 Conclusions	
	References	•••
4	Single-Walled Carbon Nanotubes	
	Sebastien Nanot, Nicholas A. Thompson, Ji-Hee Kim, Xuan Wang,	
	William D. Rice, Erik H. Hároz, Yogeeswaran Ganesan, Cary L. Pint,	
	Junichiro Kono	
	4.1 History	
	4.2 Crystallographic and Electronic Structure	

	4.3	Synthesis	111
	4.4	Optical Properties	115
	4.5	Transport Properties	123
	4.6	Thermal and Mechanical Properties	128
	4.7	Concluding Remarks	135
	Refer	rences	135
5	Mult	i–Walled Carbon Nanotubes	
S		Kukovecz, Gábor Kozma, Zoltán Kónya	147
	5.1	Synthesis	148
	5.2	Chemistry of MWCNTs	153
	5.3	Properties	157
	5.4	Selected Applications	163
		ences	169
6		ified Carbon Nanotubes	
		n Morelos-Gómez, Ferdinando Tristán López, Rodolfo Cruz-Silva,	4.00
	-	M. Vega Díaz, Mauricio Terrones	189
	6.1	Doped Carbon Nanotubes	191
	6.2 6.3	Defects in Carbon Nanotubes	193
		Nanotube Chemical Functionalization	197
	6.4 6.5	Properties of Modified Carbon Nanotubes	203
	6.6	Characterization of Modified Carbon Nanotubes	208 215
	6.7	Applications of Modified Carbon Nanotubes Toxicity and Biocompatibility	215
	6.8	•	210
	6.9	Conclusions Outlook and Perspectives	220
		rences	221
	Kelei	ences	221
7		on Nanofibers	
		g A. Kim, Takuya Hayashi, Morinobu Endo, Mildred S. Dresselhaus	233
	7.1	Similarity and Difference Between Carbon Fibers	
		and Carbon Nanofibers	234
	7.2	Growth and Structural Modifications of Carbon Nanofibers	238
	7.3	Applications of Carbon Nanofibers	251
	7.4	Conclusions	257
	Refer	ences	258
8	Nand	odiamonds	
	0lga	A. Shenderova, Suzanne A. Ciftan Hens	263
	8.1	Stability of Diamond at the Nanoscale	264
	8.2	Types of Nanodiamonds and Methods of Nanodiamond Synthesis	267
	8.3	Detonation Nanodiamond Processing and Modification	278
	8.4	Fluorescent Nanodiamonds	284

Part C NanoCeramics

13	Nanocrystalline Functional Oxide Materials					
	Rakes	h Shukla, Dimple P. Dutta, Jayshree Ramkumar, Balaji P. Mandal,				
	Avesh	K. Tyagi	517			
	13.1	Synthesis Methods	518			
	13.2	Optical Properties of Oxide Nanomaterials	524			
	13.3	Sorbent Properties of Oxide Nanomaterials	532			
	13.4	Catalytic Properties of Oxide Nanomaterials	536			
	13.5	Oxide Nanomaterials in Ionics	538			
	13.6	Conclusions	541			
	Refere	ences	542			
14	Piezo	electric Nanoceramics				
	Xiaoh	ui Wang, Shaopeng Zhang, Longtu Li	553			
		Introduction to BSPT	554			
	14.2	Synthesis of BSPT Nanopowders via Sol-Gel Method	555			
	14.3	Sintering of BSPT Nanoceramics	556			
	14.4	Grain Size Effect on the Properties of BSPT Ceramics	563			
	14.5	Summary	567			
	Refere	ences	568			
15	Graph	nite Oxide				
		70	571			
	15.1		572			
		Characterization, Chemical Structure and Properties	576			
	15.3	Applications	589			
		Concluding Remarks	592			
		ences	592			
16	Comp	ound Crystals				
-0	-	vi, Maya Bar-Sadan, Reshef Tenne	605			
	16.1		605			
	16.2	Synthetic Methods	608			
	16.3	Physical Properties	618			
	16.4	Applications	628			
	16.5	Conclusions	630			
		ences	631			
17	Grown	th of Nanomaterials by Screw Dislocation				
Τ1		eng, Stephen A. Morin, Song Jin	639			
	17.1	Classical Crystal Growth Theories	640			
	17.1	Theories for Screw-Dislocation-Driven Growth of Nanomaterials	642			
	17.3	Structural Characterization of these Nanomaterials	645			
	17.4	Generality of Dislocation - Driven Nanomaterial Growth	649			
	17.5	Rational Growth of Dislocation-Driven Nanomaterials –	6.5.0			
		General Strategies	658			

	17.6 Applications
	17.7 Summary and Perspectives
	References
18	Glasses on the Nanoscale
	Hellmut Eckert, Sidney J.L. Ribeiro, Silvia H. Santagneli, Marcelo Nalin,
	Gael Poirier, Younès Messaddeq
	L8.1 Studying Medium-Range Order in Glasses and Nanoceramics 66
	18.2 Nanoceramics 67
	18.3 Perspectives and Concluding Remarks
	References
Pai	t D NanoComposites
	Carbon in Polymer
	Robert J. Young, Libo Deng, Lei Gong, Ian A. Kinloch
	L9.1 Materials Basics
	19.2 Carbon Nanotube Composites
	L9.3 Graphene Composites
	19.4 Conclusions
	References
20	Nanoparticle Dispersions
	Krisztián Kordás, Jarmo Kukkola, Géza Tóth, Heli Jantunen, Mária Szabó,
	András Sápi, Ákos Kukovecz, Zoltán Kónya, Jyri–Pekka Mikkola 72'
	20.1 Stabilization of Nanoparticle Dispersions
	20.2 Nanoparticle Dispersion in Practice
	20.3 Dispersions of Carbon Nanomaterials
	20.4 Drying Dispersions on Surfaces
	20.5 Concluding Remarks
	References
Pai	t E Nanoporous Materials
21	Nanoporous Metals
	Yi Ding, Zhonghua Zhang77
	21.1 Preparation of Nanoporous Metals
	21.2 Properties of Nanoporous Metals
	21.3 Applications
	21.4 Concluding Remarks and Prospects
	References 81
,	
22	Zeolites
	stván Pálinkó, Zoltán Kónya, Ákos Kukovecz, Imre Kiricsi
	22.1 Common Zeolite Frameworks

	22.2	Zeolite and Zeolite-Related Molecular Sieves	823
	22.3	Natural Zeolites: Occurrence and Formation	825
	22.4	Methods of Identification and Characterization	828
	22.5	Synthesis of Zeolitic Materials	830
	22.6	Ion Exchange, Sorption, and Diffusion in Microporous Materials	836
	22.7	Acid-Base Properties of Zeolites	841
	22.8	Stability and Modification of Zeolite Structures	843
	22.9	Zeolites as Catalysts	846
		Some Special Applications of Zeolites	848
		Conclusions	850
		nces	850
23	Porou	s Anodic Aluminum Oxide	
	Qiaolir	ng Xu, Guowen Meng	859
	23.1	Background	859
	23.2	Preparation of AAO Templates	860
	23.3	Nanostructures Constructed in AAO Templates	862
	23.4	Conclusions and Outlook	879
	Refere	nces	879
٦ <i>١</i> .	Dorou	s Silicon	
24		Bettotti	883
	24.1	Basics of Porous Silicon Electrochemistry and Formation Models	884
	24.2	Other Etching Methods	886
	24.2	Porous Silicon Structural Properties	887
	24.3		890
	24.5	Light Emission from Porous Silicon	891
		The Pele of the Surface	
	24.6	The Role of the Surface	891
	24.7	Applications of Porous Silicon	892
	24.8	Conclusions	897
	кетеге	nces	898
Рa	rt F (Organic and Bionanomaterials	
25	_	ic Nanomaterials	
		Dong, Wenping Hu	905
		Preparation/Synthesis of Organic Nanomaterials	905
	25.2	Properties of Organic Nanomaterials	910
	25.3	Applications	925
	25.4	Concluding Remarks	930
	Refere	nces	932
26		composites as Bone Implant Material	
		Kumar, Bipul Tripathi, Anchal Srivastava, Preeti S. Saxena	941
	26.1	The Quest for a Suitable Bone Implant	942
	26.2	Pono	01.2

List of Abbreviations

α-SMA	α-smooth muscle actin	ARPES	angle-resolved photoemission
p-NP	<i>p</i> -nitrophenol		spectroscopy
0-D	zero-dimensional	ASTM	American Society for Testing and
1-D	one-dimensional		Materials
2-D	two-dimensional	ATQD	N-(4-aminophenyl)- N' -(4'-(3-triethoxy-
2-PAM	2-pyridine-aldoxime methiodide		silyl-propyl-ureido)phenyl-1,4-quinon-
2Q	double-quantum		enediimine)
3-D	three-dimensional	ATP	adenosine-5'-triphosphate
3Q	triple-quantum	ATRP	atom-transfer radical polymerization
4Нор	4-hexadecyloxyphenyl	AWWA	American Water Works Association
Α		В	
AA	ascorbic acid	BASF	Badische Anilin und Soda Fabrik
AAM	anodized aluminum membrane	bcc	body-centered cubic
AAO	anodic aluminum oxide	BCF	Burton-Cabrera-Frank
AAO	anodized aluminum oxide	BCP	biphasic calcium phosphate
AAS	atomic absorption spectroscopy	BDAC	benzyldimethylammoniumchloride
Ab	antibody	BDNF	brain-derived neurotrophic factor
AC	alternating current	BEP	Brønsted-Evans-Polanyi relations
Acac	acetylacetone	BES	Office of Basic Energy Sciences
ACNT	aligned carbon nanotube	BET	Brunauer–Emmett–Teller
ACQ	aggregation-caused quenching	BF	bright field
AChE	acetylcholine esterase	BFGF	basic fibroblast growth factor
ACP	amorphous calcium phosphate	BG	back-gate
AD	arc discharge	BHJ	bulk heterojunction
AEE	aggregation-enhanced emission	bioMEMS	biological microelectromechanical
AES	Auger electron spectroscopy		system
AES	3-(2-aminoethylaminopropyl)trimethoxy-	BMG	bulk metallic glass
	silane	BN	boron nitride
AFC	alkaline fuel cell	BOM	bubble overlapping mode
AFC	antiferromagnetically coupled	BP	buckypaper
AFM	atomic force microscopy	BPEA	9,10-bis(phenylethynyl)anthracene
AIE	aggregation-induced emission	BS	black silicon
AIEE	aggregation-induced enhanced	BSA	bovine serum albumina
	emission	BSI	British Standards Institution
ALD	atomic layer deposition	BSPP	bis(p-sulfonatophenyl) phenylphosphine
AlPO	aluminophosphate		dihydrate dipotassium
AM	alveolar macrophage	BT	barium titanate
anti-EGFR	anti-epidermal growth factor receptor	BT	benzenethiol
AOC	aromatic organic compounds	BTCP	β -tricalcium phosphate
APC	antigen-presenting cell	2101	p treaterant prospilate
APES	aminopropyltrimethoxysilane	C	
APPES	ambient pressure photoelectron		
ALLES		C ₁₆ TAB	hexadecyl trimethyl ammonium bromide
APS	spectroscopy 3-aminopropyltrimethoxysilane	C ₁₆ IAB C-PANI	conductive camphorsulfonic acid-doped
		C-FAINI	emeraldine PANI
APT	atom probe tomography	CODT	
APTES	(aminopropyl) triethoxysilane	C3DT	1,3-Propanedithiol
APTS	3-aminopropyltriethoxysilane	CALDUAD	contact angle
AR	analytical reagent	CALPHAD	calculation of phase diagrams
AR	aspect ratio	CAM	cluster aggregation mode

CBED	convergent-beam electron diffraction	DAPI	4',6-diamidino-2-phenylindole
CBEV	coordination-dependent bond-energy	DAPRAL	copolymer of maleic anhydride and
	variation		α-olefin
CCDB	Cambridge crystallographic data base	DBR	distributed Bragg mirror
CCG	chemically converted graphene	DC	dendritic cell
CCT	correlated color temperature	DC	direct current
CCVD	catalytic chemical vapor deposition	DCE	1.2-dichloroethane
CD	cyclodextrin	DD-PTCDI	N,N'-di(dodecyl)-perylene-3,4,9,10-
CFR	continuous flow reactor	DD-I ICDI	tetracarboxylic diimide
CHP	cyclohexylpyrrolidone	DDA	
	3 1 3	DDA DDAB	discrete dipole approximation
CHT	chymotrypsin		didecyldimethylammonium bromide
CIE	International Commission on	DDC	N,N'-dicyclohexylcarbodiimide
CID	Illumination	DEFC	direct ethanol fuel cell
CIP	current in the plane	DEG	diethylene glycol
CMG	chemically modified graphene	DF	defluoridation capacity
CMOS	complementary	DF	density function
	metal-oxide-semiconductor	DFAC	direct formic acid fuel cell
CMP	chemical-mechanical planarization	DFT	density functional theory
CNF	carbon nanofiber	DFTB	density functional tight binding
CNM	carbon nanotube membrane	DGU	density-gradient ultracentrifugation
CNT	carbon nanotube	DI	deionized
CN-TFMBE	1-cyano-trans-1,2-bis(3',5'-bis-trifluoro-	DIC	differential interference contrast
	methyl-biphenyl)ethylene	DLC	diamond-like carbon
CO	cuboctahedron	DLS	dynamic light scattering
COD	1,5-cyclooctadiene	DLVO	Derjaguin-Landau-Verwey-Overbeek
COLI	collagen I	DMA	dimethylamide
COLIV	collagen IV	DMEU	1,3-dimethyl-2-imidazolidinone
COST	Cooperation in Science and Technology	DMF	dimethylformamide
COSY	correlation spectroscopy	DMFC	direct methanol fuel cell
COT	1,3,5-cyclooctatriene	DMPO	5,5-dimethyl-pyrroline <i>N</i> -oxide
ср	close packed	DMSA	dimercaptosuccinic acid
СP	coherent phonon	DMSO	dimethyl sulfoxide
CP	cross polarization	DNA	deoxyribonucleic acid
CPP	conduction perpendicular to plane	DND	detonation nanodiamond
CPP	current perpendicular to the plane	DOS	density of states
CPS	collected photo signal	DOX	doxorubicin
CS	cross section	dpa	displacements per atom
CS-PCL	chitosan-graft-PCL	DPPTE	1,2-dipalmitoyl-sn-glycero-3-phospho-
CSA	chemical shift anisotropy		thioethanol
CSP	colloidal silver preparation	DQ	double quantum
CT	charge transfer	DR	draw ratio
CTA^+	cetyl-triamine cation	DRG	dorsal root ganglion
CTA	cetyltrimethylammonium	DRIFT	diffuse reflectance infrared
CTAB	cetyltrimethylammonium bromide		Fourier-transform
CV	crystal violet	DSC	differential scanning calorimetry
CV	cyclic voltammetry	DT	decanethiol
CVD	chemical vapor deposition	DTAB	dodecyltrimethylammonium bromide
CW	continuous-wave	DTE	desaminotyrosyl-tyrosine ethyl ester
CuPC	copper phthalocyanine	DWCNT	double-walled carbon nanotube
CuTCNQ	copper tetracyanoquinodimethane	DWNT	double-walled nanotubes
0410112	copper terraej ano quino anniemane	Dox	doxorubicin
D			
		E	
D4R	double four ring		
DAAQ	1,5-diaminoanthraquinone	ECD	electrochemical deposition
DAFC	direct alcohol fuel cell	ECDL	electrochemical double layer

ECELL ECM ECP ECSA ED ED EDAX EDC EDL EDLC EDS	environmental cell extracellular matrix electronically conducting polymer electrochemically active surface area electrodialysis electron diffraction energy dispersive analysis 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide electrical double layer electric double-layer capacitor energy-dispersive x-ray spectroscopy	FIPOS FIT FITC FLG FMR FN FND FND FND	full isolation by porous oxidized silicon fluctuation-induced tunneling fluorescein isothiocyanate few-layer graphene ferromagnetic resonance fibronectin fluorescent carboxylated HPHT ND fluorescently enhanced ND finite-pulse radio frequency-driven recoupling
EDS EDTA	ethylenediaminetetraacetic acid		
EDX	energy-dispersive x-ray spectroscopy	GMR	giant magnetoresistance
EELS	electron energy-loss spectroscopy	GN	gold nanoparticle
EFM	electrostatic force microscopy	GNC	gold nanoparticle cluster
EG	evaporated gold	GNP	gold nanoparticle
EIS	electrochemical impedance spectroscopy	GNP	graphite nanoplatelet
EL	electroluminescence	GNR	gold nanorod
ELISA	enzyme-linked immuno sorbent assay	GNR	graphene nanoribbon
EM	electromagnetic	GO	graphene oxide
EMI	electromagnetic interference	GOX	glucose oxidase
EOF	electroosmotic flow	GSH	glutathione
EPA	Environmental Protection Agency	GTBMD	generalized tight-binding molecular
EPR EPS	electron paramagnetic resonance		dynamics
EQE	extracellular polymeric substance external quantum efficiency	Н	
ESC	embryonic stem cell		
Loc			
ESR	electron spin resonance	HA	humic acid
ESR ESR	electron spin resonance equivalent series resistance	HA HAADF	humic acid high-angle annular dark field
ESR ESR ETEM	electron spin resonance equivalent series resistance environmental TEM	HA HAADF HATU	high-angle annular dark field
ESR	equivalent series resistance environmental TEM	HAADF	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-
ESR ETEM	equivalent series resistance	HAADF	high-angle annular dark field
ESR ETEM EXAFS	equivalent series resistance environmental TEM extended x-ray absorption fine structure	HAADF HATU	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate
ESR ETEM EXAFS EIAP(S)O EPITH	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate	HAADF HATU HAZ HC HCCN	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure
ESR ETEM EXAFS ElAP(S)O	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate	HAADF HATU HAZ HC HCCN HCI	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion
ESR ETEM EXAFS EIAP(S)O EPITH	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells	HAADF HATU HAZ HC HCCN HCI hcp	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed
ESR ETEM EXAFS EIAP(S)O EPITH F-SWCNT	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT	HAADF HATU HAZ HC HCCN HCI hcp HDA	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine
ESR ETEM EXAFS EIAP(S)O EPITH	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy	HAADF HATU HAZ HC HCCN HCI hcp HDA	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition—
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition—desorption—recombination
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition—desorption—recombination hydrodesulfurization
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition—desorption—recombination hydrodesulfurization
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA FEB	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing field emission scanning electron	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES HEV HF HG	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid hydrazinium graphene
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA FEB FES FESEM	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing field emission scanning electron microscope	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES HEV HF HG HIV	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid hydrazinium graphene human immunodeficiency virus
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA FEB FES FESEM	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing field emission scanning electron microscope field-effect transistor	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES HEV HF HG HIV HL60	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid hydrazinium graphene human immunodeficiency virus human promyelocytic leukemia
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA FEB FES FESEM FET FF	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing field emission scanning electron microscope field-effect transistor fill factor	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES HEV HF HG HIV HL60 HMDA	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid hydrazinium graphene human immunodeficiency virus human promyelocytic leukemia hexamethylenediamine
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA FEB FES FESEM FET FF	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing field emission scanning electron microscope field-effect transistor fill factor fast Fourier transform	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES HEV HF HG HIV HL60 HMDA HMO	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid hydrazinium graphene human immunodeficiency virus human promyelocytic leukemia hexamethylenediamine hydrous manganese dioxide
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA FEB FES FESEM FET FF FFT FGO	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing field emission scanning electron microscope field-effect transistor fill factor fast Fourier transform functionalized GO	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES HEV HF HG HIV HL60 HMDA HMO HMOG	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid hydrazinium graphene human immunodeficiency virus human promyelocytic leukemia hexamethylenediamine hydrous manganese dioxide heavy metal oxide glass
ESR ETEM EXAFS EIAP(S)O EPITH F f-SWCNT FABMS FBI FBR fcc fct FDA FEB FES FESEM FET FF	equivalent series resistance environmental TEM extended x-ray absorption fine structure element aluminophosphosilicate epithelial cells functionalized SWCNT fast atom bombardment mass spectroscopy Federal Bureau of Investigation fluidized bed reactor face-centered cubic face-centered tetragonal Food and Drug Administration ferrocene/ethanol/benzylamine fluctuation-enhanced sensing field emission scanning electron microscope field-effect transistor fill factor fast Fourier transform	HAADF HATU HAZ HC HCCN HCI hcp HDA HDD HDDR HDS HDT HEPES HEV HF HG HIV HL60 HMDA HMO	high-angle annular dark field 2-(7-aza-1 <i>H</i> -benzotriazole-l-yl)-1,1,3,3,- tetramethyluronium hexafluorophosphate heat-affected zone hexagonal channel highly curved carbon nanostructure highly charged ion hexagonal close packed hexadecylamine 1,2-hexadecanediol hydrogenation—decomposition— desorption—recombination hydrodesulfurization hexadecanethiol 4-(2-hydroxyethyl)-1-piperazineethane- sulfonic acid hybrid electric vehicle hydrofluoric acid hydrazinium graphene human immunodeficiency virus human promyelocytic leukemia hexamethylenediamine hydrous manganese dioxide

HOMO	highest occupied molecular orbital	ISO	International Standards Organization
HOPG	highly oriented pyrolytic graphite	ITO	indium tin oxide
HP	Hall-Petch	IZA	International Zeolite Association
HPA	hexylphosphonic acid		
HPC-Py	pyrene-labeled hydroxypropyl cellulose	K	
HPHT	high-pressure high-temperature		_
HPMC	Hydroxypropylmethyl cellulose	KE	Kirkendall effect
HPSMAP	poly(styrene-co-maleic anhydride)	KK	Kramers-Kronig
	carrying pyrene		
HSMA	hydrolyzed poly(styrene-co-maleic)	L	
1 2011	anhydrite	Ŧ. A	
h-PSMA	hydrolyzed-poly(styrene-alt-maleic	LA	longitudinal acoustic
	anhydride)	LAM	laminin
HREM	high-resolution electron microscopy	LB	Langmuir–Blodgett technique
HRN	helical rosette nanotube	LB94	van Leeuwen–Baerends
HRP	horseradish peroxidase	LBL	layer-by-layer
HRSEM	high-resolution scanning electron	LCD	liquid-crystal display
	microscope	LDA	local density approximation
HRTEM	high-resolution transmission electron	LDOS	local density of states
	microscopy	LED	light-emitting diode
HSA	human serum albumin	LEED	low energy electron diffraction
hSKMC	human skeletal muscle cell	LIB	lithium-ion battery
HTT	heat treatment temperature	LMP	Larson–Miller plot
HWHM	half-width at half-maximum	LN	less noble
HiPCO	high-pressure carbon monoxide	LPM	large-pore mordenite
im co	mgn pressure carbon monoxide	LPS	lipopolysaccharide
1		LSC	limbal stem cells
		LSP	longitudinal surface plasmon
IANH	International Alliance for NanoEHS	LSPR	localized surface plasmon resonance
IANII		LTA	Linde type A
IC	(environment, health, safety)		
	integrated circuit	LUMO	lowest unoccupied molecular orbital
ICP MS	inductively coupled plasma	LYM	lymphocytes
ICP-MS	inductively coupled plasma mass	M	
	spectrometry	M	
IE	immersion-electrodeposition	3.6	
IF	immunofluorescence	M	metalloid
IF	inorganic fullerene-like nanoparticle	MA	mechanical alloying
iFF	isotactic polypropylene	MAE	magnetic anisotropy energy
IFSS	interfacial shear strength	MALDI-TOF	matrix-assisted laser desorption/
Ig	immunoglobulin		ionization-time of flight
IgG	immunoglobulin G	MAPO	metalaluminophosphate
Ih	icosahedron	MAPSO	metalaluminophosphosilicates
IKVAV	laminin derived self-assembling peptide	MAS	magic angle spinning
IKVAV-PA	IKVAV polyacrylamide	MBE	molecular beam epitaxy
IL	interleukin	MC	metal cluster
IL	ionic liquid	MCFC	molten carbonate fuel cell
IMR	intramolecular rotation	MCL	maximum contamination limit
INCO	International Nickel Company	MCS	ethylene glycol monomethyl ether
INT	inorganic nanotube	MD	molecular dynamics
IP	iminopyrrole	MDA	malondialdehyde
IPCE	incident photon to charge carrier	MDA	mercaptodecanoic acid
II CL	efficiency	MEA	membrane electrode assembly
iPSC	induced pluripotent stem cell	MEMS	microelectromechanical system
	infrared		mesoflower
IR	DID ALEO	MF	HESOHOWET
ipr	isolated pentagon rule	MF	microfiltration

MFC	microbial fuel cell	NGF	nerve growth factor
MFI	melt-flow index	NHAP	nanohydroxyapatite
MFM	magnetic force microscopy	nHAp	nanohydroxyapatite particle
MGM	metal-graphite multilayer	n-HApC	nanohydroxyapatite/chitosan
MHAP	micron particulate hydroxyapatite	NHS	<i>N</i> -hydroxysuccinimidyl ester
ML	monolayer	NIOSH	National Institute for Occupational Safety
MN	more noble		and Health
MNM	manufactured nanomaterials	NIR	near infrared
MNPM	metallic nanoporous material	NM	noble metal
MO	methyl orange	NMP	<i>N</i> -methyl-pyrrolidone
MOCVD	metalorganic chemical vapor deposition	Nmpd	N-methylpyridinium
MOF	metal-organic framework	Nmpr	<i>N</i> -methylpyrrole
MOKE	magneto-optical Kerr effect	NMR	nuclear magnetic resonance
MPB	morphotropic phase boundary	NO-IF	nanooctahedra-IF
MPC	monolayer-protected cluster	NP	nanoparticle
MPCF	mesophase pitch-based carbon fiber	NPG	nanoporous graphite
MPS	mercaptopropyltrimethoxysilane	NPG/GC	NPG supported by glassy carbon
MPTMS	mercaptopropyltrimethoxysilane	111 0/00	electrode
MR	magnetic resonance	NPGC	nanoporous gold composite
MRAM	magnetic random-access memory	NPM	nanoporous metal
MRI	magnetic resonance imaging	NPNT	nanoporous nanotube
mRNA	messenger RNA	NPS	nanoporous silver
MRR	material removal rate	NR	nanorod
MRSw	magnetic relaxation switching	NSC	neural stem cell
MSA	mercaptosuccinic acid	NSM	nanostructured materials
MSC	mesenchymal stem cell	NT	nanotube
MSE	mercurous sulfate electrode	NTS	nanostructured transformable steel
MTBD	[7-methyl-1,5,7-triazabicyclo[4.4.0]dec-	NV	nitrogen-vacancy
1,1122	5-ene][bis(perfluoroethylsulfonyl)imide]	NW	nanowire
MWCNT	multiwalled carbon nanotube	1111	
MWNT	multiwalled nanotubes	0	
N		O/F	oxidant-to-fuel
		OCP	open-circuit potential
NaBBS	sodiumbutylbenzene sulfonate	OCT	optical coherence tomography

NaBBS	sodiumbutylbenzene sulfonate
NaDDBS	sodium dodecylbenzene sulfonate
NADH	nicotinamide adenine dinucleotide
NaOBS	sodium octylbenzene sulfonate
NaPSS	polystyrene sulfonate sodium salt
NBE	near-band-edge
NC	nanocrystalline
nc-AFM	noncontact AFM
ND	nanodiamond
NDO	ozone-modified nanodiamond
ND-PTCDI	N,N'-di(nonyldecyl)-perylene-3,4,9,10-
	tetracarboxylic diimide
NEMS	nanoelectromechanical system
NEUT	neutrophils
NEXAFS	near-edge x-ray absorption fine structure
NF	nanofeatures
NF	nanofiltration
NFA	nanostructured ferritic alloy
NG	natural highly-oriented pyrolytic
	graphite

OCT optical coherence tomography octadecylamine ODA ODE octadecene orientation distribution function ODF octadecylphosphonic acid **ODPA** octadecyltrimethoxysilane ODS oxide dispersion strengthened **ODS OER** oxygen evolution reaction **OFET** organic field-effect transistor Oh octahedron OLoptical-limiting OLC onion-like carbon OLED organic light-emitting diode OPD O-phenylenediamine OPH organophosphorus hydrolase oxidized PS **OPS** OPV organic photovoltaic ORR oxygen reduction reaction OSN organic solvent nanofiltration OTM one-temperature model

P		PGLA	copolymer of PGA and PLLA
РЗНТ	naly(2 havylthianhana)	PGM pIh	platinum group metal polyicosahedron
P3OT	poly(3-hexylthiophene) poly(3-octylthiophene)	PIPAAm	responsive poly(N -isopropylacrylamide)
PA	peptide amphiphile	PL	photoluminescence
PA-6	prepared a nylon-6	PL-PEG	phospholipid polyethylene glycol
PAA	poly(acrylic acid)	PLA	poly-ethylene oxide
PABS	polyaminobenzene sulfonic acid	PLA PLA	pulsed laser ablation
PAFC	phosphoric acid fuel cell	PLE	photoluminescence excitation
PAGE	polyacrylamide gel electrophoresis	PLGA	poly(lactic-co-glycolic) acid
PAH	polycyclic aromatic hydrocarbon	PLLA	poly(L-lactic) acid
PAN	polyacrylonitrile	PM	dipropylene glycol monomethylether
PANI	polyaniline	PMMA	poly-methyl methacrylate
PATS	polythiophene derivatives	PMN-PT	PbMg _{1/3} Nb _{2/3} O ₃ -PbTiO ₃
PBO	poly(<i>p</i> -phenylene benzobisoxazole)	PmPV	poly(<i>m</i> -phenylenevinylene-co-2,5-
PBS	phosphate buffered saline	I IIII V	dioctoxy-p-phenylenevinylene)
PC		PN	phosphorus-nitrogen
PC	pentagonal column	PNIPAm	
	photonic crystal		poly(<i>N</i> -isopropyl acrylamide)
PC PC	polycarbonate principal component	PNP PP	plasmonic
			polypropylene
PCA	principal component analysis	pp	peak-to-peak
PCB	polychlorinated biphenyl	PPCP	1,2,3,4,5-pentaphenyl-1,3-
PCE	power conversion efficiency	DT	cyclopentadiene
PCF	photonic crystal fiber	PT	PbTiO ₃
PCL C	poly(ε-caprolactone)	PPE	poly-p-phenyleneethynylene
PCL-G	PCL-gelatin	PPF	propylene fumarate
PDDA	poly(diallyldimethyl)ammonium	PPTA	poly phenylene terephthalamide
DDDD	chloride	PPV	poly-p-phenylenevinylene
PDDP	1-phenyl-3-((dimethylamino)styryl)-5-	PPy	polypyrrole
DDEAGMA	((dimethylamino)phenyl)-2-pyrazoline	PRR	pattern recognition receptor
PDEAEMA	poly(2-diethylaminoethyl methacrylate)	PS	polystyrene
PDGF	platelet-derived growth factor	PS PG PEG	porous silicon
PDLC	polymer-dispersed liquid-crystal	PS-PFS	poly(styrene-b-ferrocenyldimethylsilane)
PDMS	polydimethylsiloxane	PSD	photo signal detector
PDOS	phonon density of states	PSS	poly(sodium 4-styrenesulfonate)
PE	photoelectron	PSS	polystyrene sulfonate
PE	polyethylene	PSU	polysulfonate
PEC	photoelectrochemical	PSU	polysulfone
PECVD	plasma-enhanced CVD	PSVPh	poly(styrene-co-vinyl phenol)
PEDOT	poly(3,4-ethylenedioxythiophene)	Pt-NPG	platinum-decorated nanoporous gold
PEEk	produced poly(ether ether ketone)	Pt-NPGL	platinum-plated nanoporous gold leaf
PEG	polyethylene glycol	PTCDI	<i>N</i> , <i>N</i> ′-di(propoxyethyl)perylene-3,4,9,10-
PEI	polyethyleneimine	DECE	tetracarboxylic diimide
PEL	permissible occupational exposure	PTCE	track-etched polycarbonate
DEL CEG	limit	PTFE	polytetrafluoroethylene
PEMFC	proton exchange membrane fuel cell	PU	polyurethane
PEN	Project on Emerging Nanotechnologies	PV	pervaporation
PEO	poly(ethylene oxide)	PV	photovoltaic
PES	potential energy surface	PVA	polyvinyl alcohol
PET	polyethylene terephthalate	PVC	polyvinylchloride
PFG	pulsed-field-gradient	PVD	physical vapor deposition
PFM	piezoelectric force microscopy	PVDF	polyvinyldifluoride
PG	PCL-gelatin	PVP	polyvinyl pyrrolidone
PG	proteoglycan	PW	plane wave
PGA	poly(glycolic acid)	pzc	point of zero charge

PZN-PT PZT	PbZn _{1/3} Nb _{2/3} O ₃ -PbTiO ₃ Pb(Zr,Ti)O ₃	SBU SC	secondary building unit simple cubic
		SC	sodium cholate
Q		SCC	stress corrosion cracking
		SCE	saturated calomel electrode
QC	quantum cluster	SCR	space-charge region
QD	quantum dot	SD	standard deviation
QEXAFS	quick EXAFS	SDBS	sodium dodecylbenzene sulfate
QHE	quantum Hall effect	SDCH	samaria-doped ceria
_		SDS	sodium dodecyl sulfate
R		SEC	size exclusion chromatography
D.C.C.		SEI	solid–electrolyte interphase
R6G	rhodamine 6G	SEIRA	surface-enhanced infrared absorption
RA	right angle	SEM SES	scanning electron microscopy
RBM	radial breathing mode	SES SERS	scanning electron spectroscopy
RCF	rabbit corneal fibroblast	SEKS SET	surface-enhanced Raman scattering single-electron transistor
RE	rare-earth	SF SF	silk fibroin
rebar	reinforcement bar	SFF	solid freedom fabrication
REDOR	rotational echo double resonance	SFG SFG	sum-frequency generation
RF	radio frequency	SFM	
RFDR	radiofrequency-driven recoupling	SGS	scanning force microscopy spaced superconducting electrode
RFID	radiofrequency identification	SHE	standard hydrogen electrode
RGB	red green blue	SIM	standard hydrogen electrode structured illumination microscopy
RGD	Arg-Gly-Asp	SIMS	secondary-ion mass spectrometry
RGO rhBMP-2	reduced graphene oxide	siRNA	silenced RNA
IIIDWIP-2	recombinant human bone morphogenic	SL	superlattice
RHE	protein-2	SLS	solution_liquid_solid
RIA	reversible hydrogen electrode	SMA	shape-memory alloy
RIE	radioimmuno assay reactive-ion etching	SMAD	solvated metal atom dispersion
RIR	restriction of intramolecular rotation	SNR	signal-to-noise ratio
RJS		SOCT	sodium octanoate
RKKY	rotary jet spinning Rudermann–Kittel–Kasuya–Yosida	SOFC	solid oxide fuel cell
RM RM	reactive milling	SOI	silicon-on-insulator
RMS	microscale surface roughness	SP	surface plasmon
RNA	ribonucleic acid	SP-STM	spin-polarized scanning tunneling
RO	reverse osmosis	~~ ~~~	microscopy
ROS	reactive oxygen species	SPM	scanning probe microscopy
RPC	retinal progenitor cells	SPM	small-pore mordenite
RRR	redox replacement reaction	SPP	surface plasmon polariton
RRS	resonant Raman scattering	SPR	surface plasmon resonance
RT	room temperature	SPS	spark plasma sintering
RT-PCR	real-time polymerase chain reaction	SQ	single quantum
R&D	research and development	SQUID	superconducting quantum interference
	1		device
S		SRNF	solvent resistant nanofiltration
		SS	stainless steel
S-W	Stone-Wales	SSA	specific surface area
S/L	solid/liquid	SSNMR	solid-state nuclear magnetic resonance
SA	sliding angle	STEM	scanning transmission electron
SA	solar ablation		microscopy
SAED	selected-area electron diffraction	STM	scanning tunneling microscopy
SAM	self-assembled monolayer	STORM	stochastic optical reconstruction
SANS	small -angle neutron scattering		microscopy
SAPO	silicoaluminophosphate	STS	scanning tunneling spectroscopy
SAXS	small-angle x-ray scattering	SWCNT	single-walled carbon nanotube

SWNH	single-wall nanohorn	U	
SWNT	single-walled nanotube		
SXRD	surface x-ray diffraction	UF	ultrafiltration
ShdH	Shubnikov–de Haas	UHP	ultrahigh pressure
Si-MEMS	silicon microelectromechanical system	UHV	ultrahigh vacuum
Si-nc	silicon nanocrystal	UNCD	ultrananocrystalline diamond
		UPD	underpotential deposition
T		UV	ultraviolet
-		UV-VIS	ultraviolet-visible
TA	thioctic acid	UVR	ultraviolet radiation
TA	transverse acoustic		
TAMRA	tetramethylrhodamine	V	
TASA	template-assisted self-assembly		
TCNQ	tetracyanoquinodimethane	vdW	van der Waals
TCO	transparent conductive oxide	VGCF	vapor-grown carbon fiber
TDABr	tetradodecylammonium bromide	VHS	van Hove singularity
TDDFT	time-dependent density-functional-	VLS	vapor–solid–liquid
	theory	VPC	vacuum pyrolysis/carbothermal
TDPA	tetradecylphosphonic acid	VRH	variable range hopping
TE	transition metal element	VS	vapor–solid
TEG	tetra(ethylene glycol)	VSFG	vibrational sum-frequency generation
TEM	transmission electron microscopy	VSM	vibrating sample magnetometry
TEOS	tetraethyl orthosilicate	VSS	vapor–solid–solid
TEP	thermoelectric power	Van	vancomycin
TFT	thin-film transistor		
TG	top gate	W	
TGA	thermogravimetric analysis		
TGA	thioglycolic acid	WAXD	wide angle x-ray diffraction
TGF-β	transforming growth factor	WC	tungsten carbide
THF	tetrahydrofuran	WG	waveguide
THPC	tetrakismethyl)phosphonium chloride	WHO	World Health Organization
TIC	toxic industrial chemical		
TIPS	thermally induced phase separation	X	
TL	transition-metal element		
TMAH	tetramethylammonium hydroxide	XANES	x-ray absorption near-edge spectroscopy
TMR	tunnel magnetoresistance	XAS	x-ray absorption spectroscopy
TNF-α	tumor necrosis factor	xc	exchange-correlation
TNT	2-methyl-1,3,5-trinitrobenzene	XPS	x-ray photoelectron spectroscopy
TO	truncated octahedron	XRD	x-ray diffraction
TOAB	tetraoctylammonium bromide	3.6	
TOF	turnover frequency	Υ	
TOP	trioctylphosphine		
TOPO	trioctylphosphine oxide	YAB	$YAl_3(BO_3)_4$
TPA	tetrapropylammonium	YAM	$Y_4Al_2O_9$
TPD	temperature programmed desorption	Y-CNT	Y-shaped carbon nanotube
TPI	2,4,5-triphenylimidazole	_	
TPL	two-photon luminescence	Z	
TPP	1,3,5-triphenyl-2-pyrazoline		
TSP	transverse surface plasmon	ZAP	zone axis pattern
TSW	Thrower-Stone-Wales	ZHDS	hydroxydodecylsulfate
TTCP	tetracalcium phosphate	ZHS	zinc hydroxysulfate
TWC	three-way catalyst	ZLC	zero-length-column
ThT	thioflavin T	ZSM	zeolite sieve of molecular porosity