

USING CATEGORICAL VARIABLES IN LINEAR MODELS

Jolene Liu, Sarah Kim, and Cesar Acosta-Mejia

Department of Industrial and Systems Engineering University of Southern California

September 18, 2018

INTRODUCTION

- Categorical variables can be numerical/non-numerical
 - N. doors of a car
- Regression models with categorical variables
 - Numerical
 - Factors (using binary variables)
- Does it matter?

INTRODUCTION

- Models may be similar or very different
- With a small example we show that it is possible that the adjusted R-squared can be negative in the former case and close to one in the latter
 - We use data visualization to explain the difference
- We show that the fit of regression models may be very different
 - When numerical categorical variables are considered as continuous or as factors

Consider fitting a linear model with a categorical variable X_1 with three levels (1,7,13) and a continuous variable X_2

<i>X</i> ₁	X_2	Υ
1	1.0	4.31
1	3.5	7.70
1	6.0	9.08
7	1.0	4.25
7	3.5	5.36
7	6.0	6.60
13	1.0	0.54
13	3.5	3.31
13	6.0	5.63

Consider fitting a linear model with a categorical variable X_1 with three levels (1,7,13) and a continuous variable X_2

First consider X_1 as continuous

X_1	X_2	Y
1	1.0	4.31
1	3.5	7.70
1	6.0	9.08
7	1.0	4.25
7	3.5	5.36
7	6.0	6.60
13	1.0	0.54
13	3.5	3.31
_13	6.0	5.63

When both X_1 and X_2 are included in the model as *continuous variables*

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.60628 0.59018 7.805 0.000233 ***
x1 -0.32250 0.04926 -6.547 0.000607 ***
x2 0.81400 0.11822 6.886 0.000463 ***
```

```
Residual standard error: 0.7239 on 6 degrees of freedom Multiple R-squared: 0.9377, Adjusted R-squared: 0.9169 F-statistic: 45.14 on 2 and 6 DF, p-value: 0.000242
```


Now consider X_1 as categorical variable

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1810 0.6245 6.695 0.00112 **
x17 -1.6267 0.6276 -2.592 0.04873 *
x17 -3.8700 0.6276 -6.166 0.00163 **
x2 0.8140 0.1255 6.485 0.00130 **
```

```
Residual standard error: 0.7687 on 5 degrees of freedom Multiple R-squared: 0.9414, Adjusted R-squared: 0.9063 F-statistic: 26.8 on 3 and 5 DF, p-value: 0.001654
```

In this example, both models fit the data well, showing similar adequacy of fit values

Now let us consider the following observations

<i>X</i> ₁	X_2	Y
0	-0.10	19.19
0	2.53	22.74
0	4.86	23.91
1	0.26	7.07
1	2.55	7.93
1	4.87	8.93
2	0.08	20.63
2	2.62	23.46
2	5.09	25.75

If both X_1 and X_2 are included in the model as *continuous variables* Coefficients:

Residual standard error: 8.505 on 6 degrees of freedom

Multiple R-squared: 0.05259, Adjusted R-squared: -0.2632

F-statistic: 0.1665 on 2 and 6 DF, p-value: 0.8504

If both X_1 and X_2 are included in the model as *continuous variables*

Coefficients:

```
Residual standard error: 8.505 on 6 degrees of freedom Multiple R-squared: 0.05259, Adjusted R-squared: -0.2632 F-statistic: 0.1665 on 2 and 6 DF, p-value: 0.8504
```

- R² is close to 0.05, the explained variation of the response about the fitted equation is negligible
- The Adjusted R-squared is negative and equal to -0.23632
- Both predictors X_1 and X_2 seem not to be useful for predicting Y

When factor X_1 is properly defined using indicator variables X_{11} and X_{12} , as shown

<i>X</i> ₁	<i>X</i> ₂	Y
0	-0.10	19.19
0	2.53	22.74
0	4.86	23.91
1	0.26	7.07
1	2.55	7.93
1	4.87	8.93
2	0.08	20.63
2	2.62	23.46
2	5.09	25.75

X ₁₁	<i>X</i> ₁₂	X_2	Y
0	0	-0.10	19.19
0	0	2.53	22.74
0	0	4.86	23.91
1	0	0.26	7.07
1	0	2.55	7.93
1	0	4.87	8.93
0	1	0.08	20.63
0	1	2.62	23.46
0	1	5.09	25.75

the result is

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
```

(Intercept) 19.9650 0.5802 34.413 3.90e-07 ***

x11 -14.0760 0.6703 -20.998 4.54e-06 ***

x12 1.1974 0.6705 1.786 0.13418

x2 0.8155 0.1378 5.920 0.00196 **

Residual standard error: 0.8207 on 5 degrees of freedom

Multiple R-squared: 0.9926, Adjusted R-squared: 0.9882

F-statistic: 225 on 3 and 5 DF, p-value: 9.416e-06

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.9650 0.5802 34.413 3.90e-07 ***

x11 -14.0760 0.6703 -20.998 4.54e-06 ***

x12 1.1974 0.6705 1.786 0.13418

x2 0.8155 0.1378 5.920 0.00196 **

Residual standard error: 0.8207 on 5 degrees of freedom

Multiple R-squared: 0.9926, Adjusted R-squared: 0.9882

F-statistic: 225 on 3 and 5 DF, p-value: 9.416e-06
```

- These values show that the fitted model is highly significant
- The R-squared is very close to 1
- The set of two predictors explain 99.26% of the response variability
- The adjusted R-squared is also high, 0.988

The corresponding fitted equations for prediction at each level are given by

$$E[Y] = \begin{cases} 19.9650 & +0.8155X_2 & \text{when } X_1 = 0\\ (19.9650 - 14.076) + 0.8155X_2 & \text{when } X_1 = 1\\ (19.9650 + 1.1974) + 0.8155X_2 & \text{when } X_1 = 2 \end{cases}$$

When factor X_1 is properly defined using indicator variables X_{11} and X_{12} , as shown

<i>X</i> ₁	<i>X</i> ₂	Υ
0	-0.10	19.19
0	2.53	22.74
0	4.86	23.91
1	0.26	7.07
1	2.55	7.93
1	4.87	8.93
2	0.08	20.63
2	2.62	23.46
2	5.09	25.75

<i>X</i> ₁₁	<i>X</i> ₁₂	X_2	Y
0	0	-0.10	19.19
0	0	2.53	22.74
0	0	4.86	23.91
1	0	0.26	7.07
1	0	2.55	7.93
1	0	4.87	8.93
0	1	0.08	20.63
0	1	2.62	23.46
0	1	5.09	25.75

R-squared = 0.0526

R-squared = 0.9926

Consider a model with two predictors,

- Continuous
- Categorical with three levels 0, 1, and 2

If both variables are included in the model as continuous then a fitted plane is found. Residuals are computed by the squared distance of each observation from that plane

If X_2 is included in the model using binary variables, then for each level j = 0, 1, 2 a fitted equation is found. Residuals are computed by the squared distance of each observation from the fitted equation associated with that level j

In the lower plot both models provide about the same fit. In this case defining the categorical variable as continuous or as categorical does not change the model performance

- The R library MASS includes the dataframe Cars93
- It is a selection of 93 car models from the Consumer Reports
- It includes 26 variables, such as manufacturer, price, fuel efficiency, engine's size and power, car's size and other properties such as number of airbags, drive train, and origin
- stat.ethz.ch/R-manual/R-devel/library/MASS/html/Cars93.html

- Consider predicting the city mileage of a new car
- Based on the number of revolutions per minute at maximum horsepower and the weight of the car
- Denote the city mileage MPG.city by Y, the RPM by X_1 , and the weight by X_2

If both predictors are considered in the model as *continuous variables*Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.688e+01 4.254e+00 11.020 <2e-16 ***
     2.582e-05 5.906e-04 0.044
                                         (0.965)
RPM
                                         <2e-16 ***
           -8.021e-03 5.974e-04 -13.426
Weight
Residual standard error: 3.055 on 90 degrees of freedom
Multiple R-squared: 0.7109, Adjusted R-squared: 0.7045
F-statistic: 110.6 on 2 and 90 DF, p-value: < 2.2e-16
                                                     Contractiction
Analysis of Variance Table
         Df Sum Sq Mean Sq F value Pr(>F)
          1 382.96 382.96 41.03 6.687e-09 ***
RPM
Weight 1 1682.58 1682.58 180.27 < 2.2e-16 ***
Residuals 90 840.03 9.33
```



```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.688e+01 4.254e+00 11.020 <2e-16 ***
       2.582e-05 5.906e-04 0.044 0.965
RPM
           -8.021e-03 5.974e-04 -13.426 <2e-16 ***
Weight
Residual standard error: 3.055 on 90 degrees of freedom
Multiple R-squared: 0.7109, Adjusted R-squared: 0.7045
F-statistic: 110.6 on 2 and 90 DF, p-value: < 2.2e-16
Analysis of Variance Table
         Df Sum Sq Mean Sq F value Pr(>F)
RPM
          1 382.96 382.96 41.03 6.687e-09 ***
          1 1682.58 1682.58 180.27 < 2.2e-16 ***
Weight
Residuals 90 840.03 9.33
```

The coefficients table shows that RPM is not significant, while the Analysis of Variance Table shows the opposite.


```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.688e+01 4.254e+00 11.020 <2e-16 ***
     2.582e-05 5.906e-04 0.044 0.965
RPM
           -8.021e-03 5.974e-04 -13.426 <2e-16 ***
Weight
Residual standard error: 3.055 on 90 degrees of freedom
Multiple R-squared: 0.7109, Adjusted R-squared: 0.7045
F-statistic: 110.6 on 2 and 90 DF, p-value: < 2.2e-16
Analysis of Variance Table
         Df Sum Sq Mean Sq F value Pr(>F)
          1 382.96 382.96 41.03 6.687e-09 ***
RPM
Weight 1 1682.58 1682.58 180.27 < 2.2e-16 ***
Residuals 90 840.03 9.33
```

This contradiction may indicate that the model with two continuous variables is not appropriate.

Consider RPM as a categorical variable

RPM	3800	4000	4100	4200	4400	4500	4600	4800	5000	5100	5200	5300
cars	1	2	1	3	1	1	4	13	10	1	10	1
RPM	5400	5500	5550	5600	5700	5750	5800	5900	6000	6200	6300	6500
cars	4	8	1	6	2	1	4	1	14	1	1	2

with 3800 RPM as the base level

To build that model, 23 binary variables are needed

Coefficients:

```
Estimate Std. Error Pr(>|t|)
Intercept 47.0412933 2.8621954 < 2e-16 ***
RPM4000
          0.0342904 2.7698998 0.990159
RPM4100
       -2.9223233 3.1880935 0.
       -0.7249827 2.6034637 0.781498
RPM4200
RPM4400 -1.3397479 3.1883602 0.675664
RPM4500
        0.7186849 3.1926716 0.822573
RPM4600
       -1.5487233 2.5236976 0.541479
RPM4800
       -0.9590356 2.3407744 0.683307
       -1.0926181 2.3804357 0.647699
RPM5000
        -4.3596932 3.2058604 0.178349
RPM5100
RPM5200
       -1.7374400 2.3966732 0.470977
         0.2620712 3.1884275 0.934734
RPM5300
RPM5400
        -0.3257535 2.5468986 0.898604
RPM5500
       -1.3766630 2.4127084 0.570160
RPM5600
        1.2049205 2.4703716 0.627297
RPM5700
          7.6789698 2.7990959 0.007768
RPM5750
       -5.0104987 3.2380632 0.126415
RPM5800 -2.6969918 2.5358764 0.291302
RPM5900 13.2127342 3.2469691 0.000125
RPM6000
       -0.5621574 2.3544584 0.812008
RPM6200 -1.8352000 3.1930724 0.567361
RPM6300 -1.0297425 3.2185995 0.749999
RPM6500
       -5.9714850 2.7955638 0.036278 *
Weight
         -0.0077677 0.0004885 < 2e-16 ***
Residual standard error: 2.254 on 68 degrees of freedom
Multiple R-squared: 0.8811,
                              Adjusted R-squared: 0.8391
F-statistic: 20.99 on 24 and 68 DF, p-value: < 2.2e-16
```

The fit has improved, but not all RPM levels are significant.

- Consider level-by-level. Categorial predictor7+ 完的知识证据 登山祖 贻.

Combining non significant levels with the base RPM level 3800 Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.4630971 1.2738638 35.689 < 2e-16 ***
RPM5700 8.7948426 1.6131799 5.452 4.50e-07 ***
RPM5900 14.3836351 2.2755915 6.321 1.04e-08 ***
RPM6500 -4.8634115 1.6113206 -3.018 0.00333 **
Weight
           -0.0075944   0.0004038   -18.807   < 2e-16 ***
Residual standard error: 2.243 on 88 degrees of freedom
Multiple R-squared: 0.8477, Adjusted R-squared: 0.8407
F-statistic: 122.4 on 4 and 88 DF, p-value: < 2.2e-16
Analysis of Variance Table
         Df Sum Sq Mean Sq F value Pr(>F)
         3 683.98 227.99 45.328 < 2.2e-16 ***
RPM
Weight 1 1778.97 1778.97 353.686 < 2.2e-16 ***
Residuals 88 442.62
                      5.03
```



```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.4630971 1.2738638 35.689 < 2e-16 ***
RPM5700 8.7948426 1.6131799 5.452 4.50e-07 ***
RPM5900 14.3836351 2.2755915 6.321 1.04e-08 ***
RPM6500 -4.8634115 1.6113206 -3.018 0.00333 **
Weight
           -0.0075944   0.0004038   -18.807   < 2e-16 ***
Residual standard error: 2.243 on 88 degrees of freedom
Multiple R-squared: 0.8477, Adjusted R-squared: 0.8407
F-statistic: 122.4 on 4 and 88 DF, p-value: < 2.2e-16
Analysis of Variance Table
         Df Sum Sq Mean Sq F value Pr(>F)
         3 683.98 227.99 45.328 < 2.2e-16 ***
RPM
          1 1778.97 1778.97 353.686 < 2.2e-16 ***
Weight
Residuals 88 442.62
                      5.03
Model explains 84.77% of the variability of city mileage (15% over first model)
```


X.O.D.+与各种 population可能也outlier是没好.

CONCLUSIONS

- Care should be taken when dealing with numerical categorical variables
- Do not use a numerical categorical variable as continuous, ... blindly
- Fit both models (factor as continuous, factor as a factor), ... then compare
- Spreadsheets
- Useful to identify outliers

REFERENCES

- Akritas M. (2015), Probability & Statistics with *R* for Engineers and Scientists, Pearson.
- Chapman, C., Feit E. M. (2015), R for Marketing Research and Analytics, Springer, New York.
- Crawley M. (2014), Statistics: An Introduction Using R, 2nd Edition, New York: Wiley.
- Gardener M. (2012), Statistics for Ecologists Using R and Excel: Data Collection, Exploration, Analysis and Presentation, Pelagic Publishing.
- Gujarati D. and Porter D. (2009), Basic Econometrics, 5th Edition, New York: McGraw Hill.
- Kuiper S. (2008), Introduction to Multiple Regression: How much is Your Car Worth? *Journal of Statistics Education*, Vol. 16(3). http://www.amstat.org/publications/jse/datasets/
- R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL www.r-project.org/.
- Kutner M.H., Neter J., Nachsteim C.J., Li W. (2004), Applied Linear Statistical Models, New York: McGraw-Hill.
- Montgomery D.C., Peck E.A., Vining G.G. (2013), Introduction to Linear Regression Analysis, 5th Edition, New York: Wiley.
- Mendenhall W. and Sincich T., (2011), A Second Course in Statistics: Regression Analysis, 7th Edition, Pearson.

USING CATEGORICAL VARIABLES IN LINEAR MODELS

Questions?

USING CATEGORICAL VARIABLES IN LINEAR MODELS

Thank you!