COMP20003 Algorithms and Data Structures Complexity Analysis

Nir Lipovetzky
Department of Computing and
Information Systems
University of Melbourne
Semester 2

So far...

- We have looked at one calculation (fib):
 - Obvious algorithm slow.
 - Memoization faster but takes space.
 - Storing last values in variables more time and space efficient.
- We have estimated computation time by counting operations.

COMP 20003 Algorithms and Data Structures

. . .

Outline of the first few lectures

- Algorithms: general
- This subject: details
- Algorithm efficiency
- Computational complexity
 - Data structures
 - Basic data structures
 - Algorithms on basic data structures
 - Complexity analysis of algorithms on basic ds's

2 20003 Algorithms and Data Structures

This lecture

- Formalize approach:
 - Characterize run time of any algorithm
 - Identify the most expensive operation.
 - Count that operation.
 - Express in terms of input size n.

COMP 20003 Algorithms and Data Structures

Textboook • Skiena: Chapter 2, Algorithm Analysis COMP 20003 Algorithms and Data Structures 35

Big-O definition

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that f(N) < c₀*g(N) for all N > N₀.
- Notice:
 - We are only interested in large N, N > N₀.

COMP 20003 Algorithms and Data Structures

Big-O definition

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that f(N) < c₀*g(N) for all N > N₀.
- Examples:
 - $x^2 + 33$ is in $O(x^2)$
 - $x^2 + 33x + 17$ is in $O(x^2)$
 - $15x^2 + 33x + 17$ is in $O(x^2)$

COMP 20003 Algorithms and Data Structures

4.40

Exercizes

- $x^2 + 33$ is in $O(x^2)$
 - For $c_0 = ?$, $N_0 = ?$: $X^2 + 33 < c_0 x^2$

for all $N > N_0$

- $x^2 + 33x + 17$ is in $O(x^2)$
 - For $c_0 = ?$, $N_0 = ?$ $X^2 + 33x + 17 < c_0 x^2$
- $15x^2 + 33x + 17$ is in $O(x^2)$
 - For $c_0 = ?$, $N_0 = ?$ $15X^2 + 33x + 17 < c_0 x^2$

COMP 20003 Algorithms and Data Structures

Big-O heuristics

- Examples:
- $x^2 + 33$ is in $O(x^2)$
- $x^2 + 33x + 17$ is in $O(x^2)$
- $15x^2 + 33x + 17$ is in $O(x^2)$
- Easy way to classify functions into big-O
 - Drop the lower order terms.
 - Forget about constants.

COMP 20003 Algorithms and Data Structures

Why?

3-13

 Why can we drop constants and lower order terms?

COMP 20003 Algorithms and Data Structures

Terminology

- Examples:
- $x^2 + 33$ is in $O(x^2)$
- $x^2 + 33x + 17$ is in $O(x^2)$
- $15x^2 + 33x + 17$ is in $O(x^2)$
- Actually all these are also in O(x3)...
- ... and in O(2ⁿ).....
- But we are usually most interested in the closest bound.

COMP 20003 Algorithms and Data Structures

. . . .

Big-O

- Easy way to classify functions into big-O
 - Drop the lower order terms.
 - Forget about constants.
- What does this give us?
 - A theoretical way to compare growth rate.
 - Machine-independent
 - Ignoring constants not completely practical.

03 Algorithms and Data Structures

Big-O arithmetic

- If a program is in stages:
 - Stage 1 operates on m inputs, is linear O(m)
 - Then Stage 2 operates on n inputs, is linear O(n)
 - · Whole program is
 - $O(m) + O(n) = O(max(m,n)) \leftarrow Big-O Addition$
 - If m << n, then O(n)
- If the program operates on each of n inputs m times, program is
 - $O(m) * O(n) = O(m*n) \leftarrow Big-O Multiplication$

OMP 20003 Algorithms and Data Structure

Big-O hierarchy

- Dominance Relation
 - $n! >> 2^n >> n^3 >> n^2 >> n \log n$
 - n log n >> n >> log n >> 1
- The base of log n doesn't matter, because:
 - Changing base of log_an →log_cn ?
 - Log_cn = log_an * log_ca
 - Log_ca is a constant and is lost in Big-O notation
 - Doesn't make a big difference:
 - $Log_2(10^{\circ}6) = 19.9 \quad Log_3(10^{\circ}6) = 12.5 \quad Log_{100}(10^{\circ}6) = 3$

Workshops

- Workshops start this week.
- If you haven't been able to enrol, just attend a convenient workshop.
 - To register, send e-mail to madalain@unimelb.edu.au
- Workshops are a great place to clarify concepts and ask questions!

COMP 20003 Algorithms and Data Structures

3-18

Unix from the student labs

- ssh dimefox.eng.unimelb.edu.au (or nutmeg.eng.unimelb.edu.au)
- mkdir <dir_name>
- cd <dir_name>
- Is
- touch <filename>
- less <filename>
- MobaXterm (or other) editor --- write your program, remember to save!
- gcc <filename>
- a.out
- gcc -o program_filename> <filename>
- ./<program_filename>
- More on GCC: https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.htm

COMP 20003 Algorithms and Data Structures

So far....

- Computational complexity so far
 - Intuitive: Fibonacci
 - Big-O as upper bound
 - Formal Definition
 - Calculation unrolling the loop
 - Discarding constants
 - Discarding lower order terms
- Now
 - More complicated big-O arithmetic
 - Θ- and Ω- notation

This lecture

3-21

- Big-O examples and fine points
- Other bounds: O() vs. $\Omega()$ vs. $\Theta()$
- Average case vs. worst case
- Concrete analysis of algorithms on basic data structures

COMP 20003 Algorithms and Data Structures

```
Big-O addition

• Loop:
for(i=0;i<m; i++)
{
    printf("%d\n",i);
}
for(i=0;i<n;i++)
{
    printf("%d\n",i);
}
```

Big-O arithmetic

- Successive operations add:
 - O(m) + O(n) = O(m+n)
- Single loops multiply:
 - O(m)*O(n) = O(mn)
- Smaller variables can drop out:
 - For n > m, O(m+n) = O(n)

COMP 20003 Algorithms and Data Structures

Lower order terms Previously we showed x² + 3x is in O(x²) We can drop the 3x lower order term Useful for big-O analysis: n! >> 2ⁿ >> n³ >> n² >> n log n >> n >> log n >> 1

Big-O is an upper bound

- f(n) is O(g(n)) means
 f(N) < c₀*g(N) for all N > N₀
- g(N) is an upper bound:
 - y=x is in O(f(x))
 - Note: it is also in O(f(x2)), BUT
- Usually we use O() to mean the lowest upper bound, but by definition it is really any upper bound.

COMP 20003 Algorithms and Data Structures

1-30

Exercizes

- What is the difference between:
 - O(log₂N) and O(log₁₀N)?
 - O(log₂N) and O(log₂N²)?
- What is the complexity of a 2-stage algorithm where stage 1 is in O(n²) and stage2 is in O(m)?
- Is 2^{n+1} in $O(2^n)$?
- Is (n+1)⁵ in O(n⁵)?

COMP 20003 Algorithms and Data Structures

More exercizes

- Show that big-O relationships are transitive, i.e. that
 - If f(n) = O(g(n)), and
 - g(n) = O(h(n)), then
 - f(n) = O(h(n))
 - " = " is an accepted abuse of notation

OMP 20003 Algorithms and Data Structures

Big-Omega is a lower bound

- Upper bound: O(g(n))
 - f(n) is O(g(n)): $f(N) < c_0^*g(N)$ for all $N > N_0$
 - 17x is O(x), 17x is also O(x2)
- Lower bound: $\Omega(g(n))$
 - f(n) is $\Omega(g(n))$ if g(n) is O(f(n))
 - x is Ω(x), x² is Ω(x)

COMP 20003 Algorithms and Data Structures

Big-Theta is the growth rate

- Tight bound: $\Theta(g(n))$
 - f(n) is Θ(g(n)) when
 - f(n) is O(g(n)) and f(n) is $\Omega(g(n))$
- Example:
 - $f(x) = x^2$ is:
 - O(x²), O(x³), O(2x)....
 - $\Omega(x)$, $\Omega(x^2)$, $\Omega(1)$
 - Θ(x²)

COMP 20003 Algorithms and Data Structures

1-34

Examples

• Given the following functions f(n) and g(n), is f in O(g(n)) or is f in $\Omega(g(n))$, or both?

f(n)	g(n)
n + 100	n + 200
log ₂ n	log ₁₀ n
2 ⁿ	2 ⁿ⁺¹

COMP 20003 Algorithms and Data Structures

Average, worst, and best case analysis

- Given an unsorted list or array of items, searching for one item require looking at:
 - n items in the worst case
 - n/2 items on average
 - 1 item if you are lucky
- Average case and worst case analysis are useful.

OMP 20003 Algorithms and Data Structures

Average, worst, and best case analysis

- Average case analysis is often difficult!
 - Have to average over all possible inputs
- Worst case analysis and big-O are the most useful and the most widely used!

"Every science has a big lie. The big lie of complexity is worst case analysis." [C. Papadimitriou]

COMP 20003 Algorithms and Data Structures

1-37

Skiena:

The Algorithm Design Manual

• Chapter 2: Sections 2.1 through 2.4

COMP 20003 Algorithms and Data Structures

3-38

- Next section:
 - Simple data structures and algorithms.
 - · Complexity analysis with concrete examples.

COMP 20003 Algorithms and Data Structures