Category of sheaves of modules

1 Sheaves of modules, quasi-coherent and coherent sheaves

Definition 1. Let X be a ringed space with structure sheaf \mathcal{O}_X . A **sheaf of (left)** \mathcal{O}_X -modules is a sheaf \mathcal{F} on X such that for every open set $U \subseteq X$, $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module, and for every inclusion of open sets $V \subseteq U$, the restriction map $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ is compatible with the restriction map $\rho_{UV} : \mathcal{O}_X(U) \to \mathcal{O}_X(V)$ in the sense that for every $s \in \mathcal{O}_X(U)$ and $m \in \mathcal{F}(U)$, we have

$$\rho_{UV}(s \cdot m) = \rho_{UV}(s) \cdot \rho_{UV}(m).$$

Yang: To be continued...

Example 2. Let X be a scheme. The structure sheaf \mathcal{O}_X is a sheaf of \mathcal{O}_{X} -modules. More generally, any quasi-coherent sheaf (to be defined later) is a sheaf of \mathcal{O}_{X} -modules. In particular, if $X = \operatorname{Spec} A$ is an affine scheme, then for any A-module M, the associated sheaf \widetilde{M} is a sheaf of \mathcal{O}_{X} -modules. Yang: To be continued...

Definition 3. Let X be a scheme. A sheaf of \mathcal{O}_X -modules \mathcal{F} is called **quasi-coherent** if for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a morphism of free \mathcal{O}_U -modules, i.e., there exists an exact sequence of sheaves of \mathcal{O}_U -modules

$$\mathcal{O}_{IJ}^{(I)} \to \mathcal{O}_{IJ}^{(J)} \to \mathcal{F}|_{IJ} \to 0$$
,

where *I*, *J* are (possibly infinite) index sets. Yang: To be continued...

Definition 4. Let X be a scheme. A sheaf of \mathcal{O}_X -modules \mathcal{F} is called **coherent** if it is quasi-coherent and for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a morphism of finite free \mathcal{O}_U -modules, i.e., there exists an exact sequence of sheaves of \mathcal{O}_U -modules

$$\mathcal{O}_U^m \to \mathcal{O}_U^n \to \mathcal{F}|_U \to 0,$$

where m, n are finite integers. Yang: To be continued...

2 As abelian categories

Theorem 5. Let X be a ringed space. The category of sheaves of \mathcal{O}_X -modules is an abelian category. Yang: To be continued...

Theorem 6. Let X be a scheme. The category of quasi-coherent sheaves on X is an abelian category. Yang: To be continued...

Date: August 30, 2025, Author: Tianle Yang, My Homepage

Theorem 7. Let X be a noetherian scheme. The category of coherent sheaves on X is an abelian category. Yang: To be continued...

3 Relevant functors

Theorem 8. Let X be a ringed space. The global sections functor

$$\Gamma(X,-): (\text{Sheaves of } \mathcal{O}_X\text{-modules}) \to (\mathcal{O}_X(X)\text{-modules})$$

is left exact. Yang: To be continued...

Theorem 9. Let $f: X \to Y$ be a morphism of ringed spaces. The direct image functor

 $f_*: (Sheaves of \mathcal{O}_X\text{-modules}) \to (Sheaves of \mathcal{O}_Y\text{-modules})$

is left exact. Yang: To be continued...

Theorem 10. Let $f: X \to Y$ be a morphism of ringed spaces. The inverse image functor

 $f^*: (\text{Sheaves of } \mathcal{O}_Y\text{-modules}) \to (\text{Sheaves of } \mathcal{O}_X\text{-modules})$

is right exact. Yang: To be continued...

4 Cohomological theory

Theorem 11. Let X be a ringed space and \mathcal{F} a sheaf of \mathcal{O}_X -modules. Then the cohomology groups $H^i(X,\mathcal{F})$ are $\mathcal{O}_X(X)$ -modules for all $i \geq 0$. Yang: To be continued...

Theorem 12. Let X be a scheme and \mathcal{F} a quasi-coherent sheaf on X. Then the cohomology groups $H^i(X,\mathcal{F})$ are $\mathcal{O}_X(X)$ -modules for all $i \geq 0$. Yang: To be continued...

Theorem 13. Let X be a noetherian scheme and \mathcal{F} a coherent sheaf on X. Then the cohomology groups $H^i(X,\mathcal{F})$ are $\mathcal{O}_X(X)$ -modules for all $i \geq 0$. Yang: To be continued...