$$(a,b) = (a) + (b)$$
 in a PID

Why? $(a,b) = (z_1a + z_2b)$ is all finite linear combinations of a and b, which is just the same as the thing on the right. Commutativity we sweep under the rug by using that we're in a domain.

Example naming.

Infinite ring w/ zero-divisors: $M_n(F)$

Infinite domain: \mathbb{Z}

Irreducible polynomial: $x + 2 \in \mathbb{Z}[x]$.

Definitions.

Faithful: $\sigma_g = \sigma_{g'}$ (also, kernel of homomorphism of group action is identity). **Transitive:** Only one orbit.

Examples.

Problem. Count the number of conjugates (123)(45) in S_5 .

$$\binom{5}{3}2! = 20$$

$$\begin{aligned} \left| \mathcal{O}_{(123)(45)} \right| &= \left[S_5 : C_{S_5} \left((123) \left(45 \right) \right) \right] \\ 20 &= 120 / \left| C_{S_5} \left((123) \left(45 \right) \right) \right| \end{aligned}$$

Problem. Given $G = Z_{450} = \langle x \rangle$:

- (1) Count all generators.
- (2) Find all elements of order 25.

Part 1:
$$\phi(450) = 1 \cdot 3 \cdot 2 \cdot 4 \cdot 5 = 120$$
.

Part 2:

$$|x^a| = \frac{450}{(450, a)} = 25$$

Thus, (450, a) = 18. Find one element, then note that G has a unique subgroup of order 25. Thus, there are $\phi(25) = 20$ elements which generate that unique subgroup. We can use this to find all 20 elements of order 18.

Chinese Remainder Theorem. If you want to solve

$$x \equiv a_1 \bmod I$$
$$x \equiv a_2 \bmod J$$

you want $x = a_1i + a_2j$. Use Euclidian algorithm.

Manipulating ideals. $I \cap J = IJ$ if and only if I and J are comaximal (I+J=R, where R is the ring we're considering).

In a domain, (a) = (b) implies a = rb and b = sa so a = arb, and thus that r is a unit.