sequences

- Nº 1) Determine the domain of definition and calculate the first three terms of each of the following sequences
 - 1) $U_n = 2n-3$ 2) $U_n = \sqrt{n-1}$ 3) $U_n = \frac{n-1}{n+2}$ 4) $U_n = \frac{2^n}{n}$
- Nº2) For each of the following recursive sequences, Calculate the
 - first four terms and express U_{n+2} in terms of U_n . 1) $\begin{cases} U_0 = 0 \\ U_{n+1} = 2U_n 3 \end{cases}$ $\begin{cases} U_1 = -2 \\ U_{n+1} = \sqrt{U_n + 3} \end{cases}$ $\begin{cases} U_0 = 0 \\ U_{n+1} = U_n \frac{1}{n+1} \end{cases}$
- Ni3) Discuss the sense of variation of the following sequences: 1) $U_n = 5n^3 - 3$ 2) $U_n = n + \frac{2}{n}$ 3) $U_n = \frac{n+1}{n-1}$ 4) $U_n = \sqrt{n} - 1$
- Nº 4) Let the sequence (Un) defined by { Uo=2 Un+1 = 2Un-3 for any new
- show, by induction, that $U_n = 3 2^n$ $N^2 \delta$ Let the sequence (U_n) defined by $\begin{cases} U_{n+1} = \frac{1}{2}U_n 1 \end{cases}$ for any new show, by induction, that Un >- 2
- NEG) Let (Un) be the sequence defined by { Unit = 2Un 1 for any " show, by induction that Un = 2"+1
- NS7) show, by induction over n, each of the fallowing relation
 - a) $2^{n} > n$ for every $n \in \mathbb{N}$ b) $1^{2} + 2^{2} + 3^{2} + - + n^{2} = \frac{n(n+1)(2n+1)}{n(n+1)(2n+1)}$ (newt)
 - c) 32n-27 is divisible by 7 for every n EN
- Nº 8/a/ Calculate x so that the terms x+1, 2x, x-1, taken this order, form an Arithmetic sequence b) same question for 2x, 2x+1, 6x-2
- NEG) Determine an Arithmetic sequence of its 11th term is 2 and its 21th term is 50

NEIO) the 5th and the 11th Jerms of an A. S are - 3 and 15. What is the sum of the first fourty terms of this sequence NEW the sum of 3 consecutive terms of an A.S is 36 and their product is 276. What are these terms? N=12) Consider the sequence (U_n) defined by $\begin{cases} U_{n+1} = \frac{9}{6-U_n} \end{cases}$, $n \in \mathbb{N}$ consider the sequence (Vn) defined by Vn = 1 1) show that the sequence (Vn) is an arithmetic sequence and Define precisely the first term and the difference 2) Express Vn, then Un interms of n N° 13) Let (U_n) be the sequence defined by $\{U_n=-2\}$ $U_n=-2$ $U_n=-2$ new. for every natural number n 2) suppose that $V_n = 1 + \frac{1}{U_n}$, for all n of IN a) Show that the sequence (Vn) is a rithmetic and define precisely its difference and its first term b) Express Vn then Un in terms of n. WE14) a) the first two terms of a G.S is 2 and \(\frac{1}{2}\). What is the loth term?

b) the 3rd and the 9th terms of a G.S are 3 and 27. What is the first term of this sequence? c) the sum of 3 consecutive terms of a G.S is 43 and their product is 216. What are these terms? d) Determine the real number is so that 4x, 2x-1, x+4 are three consecutive terms of a 6.5. NEIS) Let the sequence (Un) defined by { Un= 200+1 ; new 1) a) Calculate U, Uz, Uz, U3 (U1) is neither Arithmetic no geometric b) show that the sequence (U1) is neither Arithmetic no geometric 2) suppose that Vn = Un+1 a) show that (Vn) is a G.S and determine the ratio a and the first term Vo b) Calculate Vn then Un interms of n 3) Calculate Sn = Vo +V,+ -+ V, then deduce T,= Lo+L',+ -+ V, interms

- I) Consider the sequence (I_n) defined, for all integers $n \ge 1$, as $I_n = \int_0^n \frac{(\ln x)^n}{x^2} dx$.
 - 1) Prove that $I_n \ge 0$.
 - 2) Show that $I_{n+1} \le I_n$ and deduce the sense of variations of (I_n) .
 - 3) Justify that the sequence (In) is convergent.
 - 4) Using integration by parts, prove that: $I_{n+1} = -\frac{1}{e} + (n+1)I_n$.
 - 5) a- Using parts 2) and 4), prove that $I_n \le \frac{1}{ne}$. b- Determine $\lim_{n \to \infty} I_n$.
- Consider the sequence (U_n) defined, for all integers $n \ge 1$, by $U_n = \int_1^e x^2 (\ln x)^n dx$.
 - 1) Using integration by parts, prove that $U_{n+1} = \frac{1}{3} (e^3 (n+1)U_n)$.
 - 2) Prove that all terms of the sequence (U_n) are positive, and show that $U_n \le \frac{e^3}{n+1}$.
 - 3) a- Prove , for all x in the interval $\left[1;e\right]$, that $\left(\ln x\right)^{n+1} \leq \left(\ln x\right)^n$. b- Prove that $U_{n+1} \leq U_n$ and that $U_n \geq \frac{e^3}{n+4}$.
 - 4) Calculate $\lim_{n\to+\infty} U_n$ and $\lim_{n\to+\infty} n U_n$.
 - Consider the sequence (U_n) defined as: $U_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$ where $n \in \mathbb{N}$.
 - 1) a- Calculate Uo. From ing that Uo = 14.
 - a- For all n∈ N, show that U_n ≥ 0.
 b- For all 0 ≤ x ≤ 1, prove that (U_n) is decreasing.
 c- Deduce that (U_n) is convergent.
 - 3) a- For all $n \in \mathbb{N}$, show that $U_{n+1} + U_n = \frac{1}{1+2n}$. b- Deduce the limit of U_n as n tends to $+\infty$.
- Consider the sequence (u_n) defined by $u_1 = \frac{1}{2}$ and for all natural numbers $n \ge 1$; $u_{nn} = \frac{n+1}{2n}u_n$
 - 1) a- Use mathematical induction to prove that $u_n > 0$ for all $n \ge 1$, b- Prove that the sequence (u_n) is decreasing. Deduce that (u_n) is convergent.
 - 2) Let (v_n) be the sequence defined, for all $n \ge 1$, by $v_n = \ln \left(\frac{u_n}{n}\right)$
 - a- Prove that (v_n) is an arithmetic sequence whose common difference $d = -\ln 2$ and determine its first term.
 - b- Express v_n in terms of n, then verify that $u_n = \frac{n}{2^n}$

The then deduce The listlist - tun intermed in U_n) and (V_n) are two sequences defined for every $n \in N$ by: 1) Let (W_n) be the sequence defined by $W_n = U_n + V_n$ a) Calculate W_n in terms of n and show that (W_n) is a geometric sequence whose first term and common b) Calculate $S = W_0 + W_1 + \dots + W_n$ 2) Let (t_n) be the sequence defined by $t_n = U_n - V_n$ a) Calculate t_n in terms of n and show that (t_n) is an arithmetic sequence whose first term and common b) Calculate $S' = t_0 + t_1 + \dots + t_n$. 3) Express U_n in terms of W_n and t_n then deduce the sum $S_n = U_0 + U_1 + \dots + U_n$ I A sequence (Ch) is defined by \\ U_{n+1} = \frac{2U_n+6}{5} where nEN. i) a) Calculate U, and Uz. b) verify that (Un) is neither arithmetic non geometric sequence 2). Let Vn = Un - 2 where new. a) show that (Vn) is a geometric sequence whose ration and first term vo are to be determined. b) Express vn in terms of n, and deduce that Un=2+(3) of variations of (un). 4) Calculate the sum; S=V2+V3+---+ V19 then Deduce the sum; S=U2+U3+---+ V19 (Un) and (Vn) are two sequences defined for every $n \in \mathbb{N}$ by $\begin{cases} U_0 = 1 \\ and \\ U_{n+1} = \frac{1}{2}(2U_n + V_n) \end{cases}$ and $\begin{cases} V_0 = 2 \\ and \\ V_{n+1} = \frac{1}{2}(U_n + 2V_n) \end{cases}$ 1) Calculate U, and V, . 2) show, by induction, that Un - Vn <0 for every ne N 3) show that the sequence (4) is strictly increasing and the sequence (V) is strictly decreasing. 4) suppose that Wint = where new. a) show that (Wn) is a geometric sequence whose first term W, and common ratio is are to be determined b) Calculate W, and the sum S = W+W2+ -+ Wn in terms of n

I. Let (U_n) be the sequence defined by $\begin{cases} U_0 = 0 ; U_1 = 4 \\ U_{n+2} = \frac{1}{2}(U_{n+1} + U_n) \end{cases}$

- 1) a) calculate U_2 and U_3
- b) Verify that (U_n) is neither arithmetic nor geometric sequence.
- 2) Suppose that $W_n = U_{n+1} U_n$ where $n \in N$
- a) Express W_{n+1} in terms W_n and deduce that (W_n) is a geometric sequence whose first term W_0 and the common ratio r are to be determined.

14-tu ich

- b) Calculate W_n in terms of n and deduce according to the values of n the sense of variations of
- c) Calculate the sum $S_n = W_0 + W_1 + \dots + W_n$ in terms of n.
- 3) Suppose in this part $U_0 = U_1 = 1$. Show that, for every $n \in \mathbb{N}^*$, $U_n^2 = U_{n-1} \times U_{n+1}$.

II. Let (U_n) be a sequence defined by: $\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{1}{2}U_n + 3; & n \in \mathbb{N} \end{cases}$

- 1) Calculate U_1 and U_2 and verify that the sequence (U_n) is neither arithmetic nor geometric.
- 2) . Show, by induction, that $U_n < 6$ for ever n
- 3). Consider the sequence (V_n) defined by: $V_n = U_n 6$
- a) Show that (V_n) is a geometric sequence and determine its common ratio and its first term V_0 .

 b) Calculate V_n in terms of n and deduce U_n in terms of n.
- c) Calculate $\lim_{n \to +\infty} V_n$
- d) Calculate the sum $S = V_3 + V_4 + V_5 + \dots + V_{20}$ and deduce $S' = U_3 + U_4 + U_5 + \dots + U_{20}$

III. Consider the sequence (I_n) defined by: $\begin{cases} I_0 = 1 \\ I_{n+1} = I_n + 2^{n+1} \end{cases}$

- 1) Calculate I_l , I_{2i} , I_{3i} , then deduce the sequence (I_n) is neither arithmetic nor geometric.
- 2) a) Show using mathematical induction that: $I_n = 2^{n+1} 1$.
 - b) Study the sense of variation of the sequence In
- 3) Consider the sequence: $I_n = I_n + 1$.
 - a) Show that the sequence (J_n) is a geometric sequence whose first term J_0 and common ratio q are to be determined.
 - b) Calculate the sum: $S_n = J_0 + J_1 + J_2 + \cdots + \cdots J_n$
 - c) Calculate the product: $P_1 = J_0 \times J_1 \times J_2 \times ... J_n$