1. From last time

- a. Created minimized FSM for a BCD code checker
 - i. BCD code checker outputs a 0 if the previous 4-bit sequence was between 0-9, and 1 otherwise
- b. Filled out state table
 - i. Used minimized FSM to fill out new table
- c. Assigned binary codes to minimize amount of logic
 - i. Try to assign states and their successors adjacent to each other (1 Hamming distance away)
 - ii. Create K-map to help us assign codes

Duncout State	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x =1	
i	*	*	1	1	
*	0*	1*	1	1	
0*	00*	~(00*)	1	1	
1*	~(00*)	~(00*)	1	1	
00*	i	i	0	0	
~(00*)	i	i	0	1	

Minimized FSM State Table

			AB	'	
		00	01	11	10
_	0	i	*	0*	00*
C	1	~(00*)	1*		

Minimized FSM State Binary Code Assignments

- d. Make binary code table from the above
 - i. Be careful when assigning values!
 - ii. Table states don't line up exactly with table above

Dracout State	Binary	Pres	ent S	tate	Input	Ne	xt St	ate	Output
Present State	Code	Α	В	С	х	Α'	B'	Ċ	Z
i	000	0	0	0	0	0	1	0	1
i	000	0	0	0	1	0	1	0	1
~(00*)	001	0	0	1	0	0	0	0	0
~(00*)	001	0	0	1	1	0	0	0	1
*	010	0	1	0	0	1	1	0	1
*	010	0	1	0	1	0	1	1	1
1*	011	0	1	1	0	0	0	1	1
1*	011	0	1	1	1	0	0	1	1
00*	100	1	0	0	0	0	0	0	0
00*	100	1	0	0	1	0	0	0	0
	101	1	0	1	0	d	d	а	d
	101	1	0	1	1	d	d	а	d
0*	110	1	1	0	0	1	0	0	1
0*	110	1	1	0	1	0	0	1	1
	111	1	1	1	0	d	d	d	d
	111	1	1	1	1	d	d	d	d

- e. Create K-maps for each flip flop based on input and present state in table above
 - i. Be careful when entering values from the binary code table!
 - ii. Some states are missing and are don't cares, like 101
 - iii. Can insert missing inputs into table and write don't cares there to make filling K-maps easier

A'		AB										
		00	01	11	10							
Сх	00	0	(1	1)	0							
	01	0	/0	10	0							
CX	11	0	0	d	d							
	10	0	0	d	d							
		A' =	$B\overline{Cx}$									

B'		AB										
		00	01	11	10							
C	00	1	1	0	0							
	01	1	1/	0	0							
Сх	11)0	0	d	d							
	10	0	0	d	d							
$B' = \overline{AC}$												

C'			Α	В								
		00	01	11	10							
	00	0	0	0	0							
Сх	01	0	$\sqrt{1}$	7	0							
	11	0	1	Ŋ	d							
	10	0	$\sqrt{1}$	d	d							
	C' = Bx + BC											

- f. Use derivations from the K-maps to design initial combinational circuit
- g. Create a K-Map based on flip-flops to determine the output combinational circuit
 - i. Since this is a Mealy model, we also use the input
 - ii. Don't cares are in same position as K-maps above

$$z = B + \overline{AC} + \overline{Ax}$$

- 2. Vending machine example
 - a. Design a vending machine that only takes dimes and quarters
 - i. Merchandise is dispensed (z = 1) when the sum of the inputs ≥ 30 cents
 - ii. Machine does not give change
 - b. $x_1 = quarter, x_2 = dime$
 - i. Assume that it is not possible to input both quarters and dimes simultaneously
 - ii. Two input, single output
 - c. Will use a Mealy model
 - i. Provides for simpler logic in the end
 - d. First, create state transition diagram
 - i. Inputs are (x_1, x_2) for (quarter, dime)
 - ii. Input (0, 0) is omitted, would just cause machine to stay in its current state

- e. Next, minimize the number of states using the Partition Minimization Procedure
 - i. $P_1 = (i, 10, 20, 25)$
 - ii. $P_2 = (i) (10) (20, 25)$
 - 1. 20 and 25 have same k-successors (i for both) so they stay together
- f. Draw new state transition diagram, with new state called 20+

- g. Assign code words next
 - i. $ceil(log_2 3) = 2 flip flops$
 - ii. S_i starts in 00
 - iii. No way to place all adjacent states 1 Hamming distance away
 - 1. Do the best we can, though

		Α							
		0	1						
В	0	i	20+						
D	1	10							

- h. Next, create binary code table
 - i. Don't have to create state transition table since this is simple enough
 - ii. Will do the same as previous problem and add empty rows to the table for don't cares

Duccount	Dinor	Presen	t State	Inp	uts	Next	State	0
Present State	Binary Code	Α	В	X ₁	X ₂	A'	B'	Output z
i	00	0	0	0	0	0	0	0
i	00	0	0	0	1	0	1	0
i	00	0	0	1	0	1	0	0
		0	0	1	1	d	d	d
10	01	0	1	0	0	0	1	0
10	01	0	1	0	1	1	0	0
10	01	0	1	1	0	0	0	1
		0	1	1	1	d	d	d
20+	10	1	0	0	0	1	0	0
20+	10	1	0	0	1	0	0	1
20+	10	1	0	1	0	0	0	1
		1	0	1	1	d	d	d
		1	1	0	0	d	d	d
		1	1	0	1	d	d	d
		1	1	1	0	d	d	d
		1	1	1	1	d	d	d

- i. Finally, create K-maps from table above
 - i. Be careful when entering values into K-map!
 - 1. For example, (A, B, x_1 , x_2) = 0011 is missing since we can't have (x_1 , x_2) = (1, 1)
 - 2. Make those inputs don't cares like normal
 - 3. We added extra rows to the binary code table
 - a. This way, we know exactly where the don't cares go

A'		АВ			B'		АВ			Z			Α	В			
		00	01	11	10			00	01	11	10			00	01	11	10
	00	0	0	d	1)		00	0	[1	d)	0		00	0	0	d	0
	01	0	1	d)	0		01	1	0	d	0		01	0	0	d	1
X ₁ X ₂	11	d	d	d	d	X ₁ X ₂	11	d	d	d	d	X ₁ X ₂	11	d	d	d	d
	10	1	0	d	0		10	0	0	d	0		10	0	1	3	<u>1</u> J
Α' =	$= A\overline{x_1}$	<u>x</u> 2 +	Bx2 +	$+ar{A}ar{B}$	X ₁		B' = E	$3\overline{x_1} \ \overline{x_2}$	$\bar{2} + \bar{A}$	$\bar{B}x_2$			z = A	x ₂ + [3x ₁ +	Ax ₁	

3. Debugging an FSM

- a. One good way of seeing if your FSM you drew was right is to give a stream of inputs into your FSM
 - i. For example, with the vending machine, give a dime, then a dime, then a quarter
 - ii. See what states you land at, and if those are what you expect
 - iii. Also see what outputs you get, and if those are what you expect as well