Tutorial 11: Database Recovery Techniques CS3402 Database Systems

Question 1

• Given the read and write operations for 4 transactions and the system log before a system crash, describe the recovery based on the **deferred update** recovery strategy.

 T_1 T_2 read item(B)

read_item(*D*)

write_item(D)

read_item(B)
write_item(B)
read_item(D)
write_item(D)

read_item(A)
write_item(A)
read_item(C)
write_item(C)

read_item(B)
write_item(B)
read_item(A)
write_item(A)

[start_transaction, T_1] [write_item, T_1 , D, 20] [commit, T_1] [checkpoint] [start_transaction, T_{4}] [write_item, T_4 , B, 15] [write_item, T_4 , A, 20] [commit, T_{A}] [start_transaction, T_2] [write_item, *T*₂, *B*, 12] [start_transaction, T_3] [write_item, *T*₃, *A*, 30] [write_item, *T*₂, *D*, 25]

Question 1 (Answer)

- Redo-logging (deferred update): Log → COMMIT → change
- There is no need to redo the write_item operations of T₁ because it is committed before the last checkpoint.
- T₂ and T₃ are ignored because they did not reach their commit points.
- T₄ is redone because its commit point is after the last system checkpoint.

[start_transaction, T_1]
[write_item, T ₁ , D, 20]
[commit, T_1]
[checkpoint]
[start_transaction, T_4]
[write_item, <i>T</i> ₄ , <i>B</i> , 15]
[write_item, <i>T</i> ₄ , <i>A</i> , 20]
[commit, T_4]
[start_transaction, T_2]
[write_item, <i>T</i> ₂ , <i>B</i> , 12]
[start_transaction, T_3]
[write_item, <i>T</i> ₃ , <i>A</i> , 30]
[write_item, T ₂ , D, 25]

Question 2

• Given the read and write operations for 4 transactions and the system log before a system crash, describe the recovery based on the **immediate update** recovery strategy.

<i>T</i> ₁
read_item(A)
read_item(<i>D</i>)
write_item(D)

T ₂
read_item(<i>B</i>)
write_item(B)
read_item(<i>D</i>)
write_item(D)

<i>T</i> ₃
read_item(A)
write_item(A)
read_item(C)
write_item(C)

<i>T</i> ₄	
read_item(<i>B</i>)	
write_item(B)	
read_item(A)	
write_item(A)	

[start_transaction, T_1]
[write_item, <i>T</i> ₁ , <i>D</i> , 20]
[commit, T_1]
[checkpoint]
[start_transaction, T_4]
[write_item, <i>T</i> ₄ , <i>B</i> , 15]
[write_item, <i>T</i> ₄ , <i>A</i> , 20]
[commit, T_4]
[start_transaction, T_2]
[write_item, <i>T</i> ₂ , <i>B</i> , 12]
[start_transaction, T_3]
[write_item, <i>T</i> ₃ , <i>A</i> , 30]
[write_item, <i>T</i> ₂ , <i>D</i> , 25]

Question 2 (Answer)

- Undo-logging (immediate update): Log → change → COMMIT
- There is no need to undo the write_item operations of T₁ because it is committed before the last checkpoint.
- There is no need to undo any write_item for T₄ because it has a commit record.
- T₂ and T₃ are undone because they did not reach their commit points.

[start_transaction, T ₁]
[write_item, <i>T</i> ₁ , <i>D</i> , 20]
[commit, T ₁]
[checkpoint]
[start_transaction, T_4]
[write_item, <i>T</i> ₄ , <i>B</i> , 15]
[write_item, <i>T</i> ₄ , <i>A</i> , 20]
[commit, T_4]
[start_transaction, T_2]
[write_item, <i>T</i> ₂ , <i>B</i> , 12]
[start_transaction, T_3]
[write_item, T ₃ , A, 30]
[write_item, T ₂ , D, 25]