Oxlo Project Spectre: A Portable Security Research Platform for Wireless Environments

Andrew Lopez

Department of Electrical Engineering and Computer Science Florida Atlantic University LinkedIn: https://www.linkedin.com/in/configures

Abstract—Oxlo Project Spectre is a custom-built, pocket-sized hardware platform that integrates an ESP32 dual-core system-on-chip with a 2.8 in TFT touchscreen (240×320), resistive touch input, microSD storage, an onboard audio amplifier, and USB-to-UART programming in a 3D-printed enclosure. It is powered at 5 V via either Micro-USB or USB-C, offering flexibility in mobile scenarios. The goal is a reproducible device for wireless environment research, rapid embedded prototyping, and educational use. This paper details the architecture, board capabilities, design trade-offs, and use cases; provides initial evaluation data; and outlines limitations, ethics, and future Oxlo hardware directions.

Index Terms—embedded systems, ESP32, Wi-Fi, Bluetooth, BLE, portable devices, open hardware, security research, touch-screen UI

I. INTRODUCTION

Portable, self-contained tools that integrate compute, display, input, and storage are valuable for wireless research and embedded education. Many development kits provide strong silicon but lack cohesive mechanicals and on-device UX. Oxlo Project Spectre addresses this gap with an ESP32-based core, SPI TFT + touch, microSD logging, USB programming, audio output, and a printable Oxlo-branded case. Contributions include an integrated hardware design, reproducible build documentation, and an evaluation of field usability.

II. RELATED WORK

Work spans bare ESP32-based development modules and SDKs [1]–[3], handheld network instruments, and open-source UIs. Oxlo Project Spectre positions itself between general-purpose boards and fixed-function tools: pocketable, interactive, and reproducible with commodity parts. Technical details of the ESP32 architecture and radios are documented by Espressif [4]; relevant wireless standards include IEEE 802.11 [5] and Bluetooth Core v4.2 [6]. LCD specifications derive from the JC2432A028N documentation [7], while board-level characteristics follow the ESP32-2432S028R specification [8].

III. SYSTEM ARCHITECTURE

A. Overview

The core of the system is the ESP32-2432S028R module, based on the ESP32 dual-core MCU running up to 240 MHz with 520 KB SRAM, 448 KB ROM, and 4 MB embedded Flash [4], [8]. The SoC integrates IEEE 802.11 b/g/n Wi-Fi

and Bluetooth v4.2 radios. The board drives a 2.8 in TFT LCD (JC2432A028N) with 240×320 resolution and an ILI9341V controller over SPI [7], [9]. The display supports 65K colors (16-bit RGB), a 12 o'clock viewing direction, and uses a four-LED backlight rated around 80 mA typical [7]. Resistive touch sensing is provided via an XPT2046-compatible controller [10].

A push–push microSD slot enables removable logging. Auxiliary circuits include a small speaker amplifier, RGB LED, and a photosensor input for adaptive brightness; a DHT11 header is available for basic temperature and humidity sensing. BOOT/RESET buttons provide flashing control. The system is powered at 5 V, with input available through either Micro-USB or USB-C. Typical current consumption is approximately 115 mA under nominal operation [8]. The module's nominal outline is 50 mm × 86 mm.

B. Compute and Connectivity

The ESP32 provides dual-core LX6 processors, integrated Wi-Fi MAC/PHY, Bluetooth radios, on-chip RAM, and rich peripherals [4]. SDKs support STA/AP modes and security features for IEEE 802.11 [5], along with classic Bluetooth and BLE GATT roles [2], [6].

C. Display and Touch

The JC2432A028N LCD module provides a 2.8 in diagonal active area, 240×RGB×320 resolution, an ILI9341V controller, and a resistive touch overlay driven over SPI [7], [9], [10]. Partial updates and double buffering maintain interactivity for on-device UI.

D. Storage

Removable storage is supported via a microSD slot. FAT file systems implemented in ESP-IDF or Arduino cores enable buffered writes and rolling logs [2], [3].

E. Audio and Indicators

An SC8002B-class audio amplifier drives a 4 **\equiv**, 2 W speaker for tones and alerts [11]. An RGB LED provides multicolor status indication, while a photosensor can be used for adaptive brightness or environment-aware features.

F. Power

The board accepts 5 V input via either Micro-USB or USB-C connectors, simplifying power selection in the field and ensuring compatibility with common cables and chargers [8]. Typical operating current is on the order of 115 mA under nominal UI/activity.

G. Enclosure

The Oxlo 3D-printed enclosure prioritizes pocketability, durability, and protection. It incorporates tolerance allowances for the TFT bezel, screw-boss reinforcement, USB clearance, and surface texture for grip. The design includes cavities for heat-set threaded inserts, enabling secure repeated assembly with metal fasteners, which extends the enclosure's lifetime compared to plastic-only fastening. Design files are provided in both .3mf and Autodesk Fusion 360 (.f3d) formats, allowing for direct 3D printing or parametric modification.

IV. CAPABILITIES

Wireless: Wi-Fi scanning/measurement and BLE/BT discovery through ESP-IDF and Arduino cores [2], [3].

On-device UI: Touchscreen menus, dashboards, and controls without a host.

Logging: SD-card storage for CSV/binary logs; USB serial for debug.

Extensibility: GPIO/I²C/SPI/UART breakouts, RGB LED, photosensor, DHT11 interface.

Power: Accepts 5 V input via either Micro-USB or USB-C, improving flexibility in portable setups.

V. USE CASES

A. Education

Hands-on labs for MCU peripherals, SPI display pipelines, touch input, BLE scanning, and Wi-Fi measurement.

B. Security Research (Ethical)

With explicit authorization, Oxlo Project Spectre supports environment-assessment tasks such as device discovery and controlled testbed experiments. This paper does not prescribe offensive workflows; we emphasize legal and ethical use [12].

C. Rapid Prototyping

Self-contained HMI + logging makes Oxlo Project Spectre a convenient front end for IoT demos, portable loggers, and sensor-UX experiments.

VI. EVALUATION

A. Methodology

Firmware was built with ESP-IDF and Arduino. Benchmarks included redraw latency, BLE advertisement throughput, Wi-Fi scan frequency, SD write rate, and idle current.

B. Results

Prototype testing indicated that partial UI redraws averaged roughly 16 ms per updated region; BLE scanning processed approximately 120 advertisements per second; a full sweep of the 2.4 GHz band could be performed about eight times per minute; sequential microSD writes reached on the order of 1.8 MB/s; and idle current with the display active measured about 115 mA.

VII. DISCUSSION

Strengths include portability, integrated UX, and reproducibility. Limitations include resistive-touch responsiveness, modest 320×240 resolution, and no integrated battery. The 115 mA operating point enables practical portable use with external packs, but motivates future power domain work.

VIII. FUTURE WORK

Planned directions: integrated battery/charging, higherresolution capacitive display, modular accessory header, secure element, and a unified Oxlo UI/data schema across devices.

IX. CONCLUSION

Oxlo Project Spectre demonstrates that a compact, touchscreen ESP32 platform with flexible power input can effectively support wireless research, education, and prototyping. Open mechanicals and schematics make it practical to reproduce and extend.

ACKNOWLEDGMENTS

Thanks to mentors and peers for feedback on usability and documentation.

REFERENCES

- Espressif Systems, ESP32 Datasheet, 2025, module specifications and electrical characteristics. [Online]. Available: https://www.espressif. com/en/support/documents/technical-documents
- [2] ——, "Esp-idf programming guide," https://docs.espressif.com/projects/ esp-idf/en/latest/, 2025.
- [3] I. Grokhotkov and Contributors, "Arduino core for the esp32," https://github.com/espressif/arduino-esp32, 2025.
- [4] Espressif Systems, ESP32 Technical Reference Manual, 2025, architecture, peripherals, and subsystem details. [Online]. Available: https://www.espressif.com/en/support/documents/technical-documents
- [5] IEEE Std 802.11-2020: Wireless LAN MAC/PHY Specifications, IEEE Std., 2020.
- [6] Bluetooth Core Specification v4.2, Bluetooth SIG Std., 2014.[Online]. Available: https://www.bluetooth.com/specifications/specs/core-specification-4-2/
- [7] Jiangsu Chimei Electronic, JC2432A028N 2.8-inch TFT LCD Module Datasheet, 2024, internal PDF: JC2432A028N.pdf.
- [8] Ai-Thinker / AiTrip, ESP32-2432S028R Specifications (EN), 2025, internal PDF: ESP32-2432S028 Specifications-EN.pdf.
- [9] Ilitek, IL19341 TFT LCD Single Chip Driver, 2012. [Online]. Available: https://www.displayfuture.com/Display/datasheet/controller/IL19341.pdf
- [10] XPTek / Texas Instruments, XPT2046 Resistive Touch Screen Controller (ADS7846 Compatible), 2011. [Online]. Available: https://www.ti.com/lit/ds/symlink/ads7846.pdf
- [11] Silan Microelectronics, SC8002B Audio Power Amplifier Datasheet, 2018. [Online]. Available: https://www.silan.com.cn
- [12] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, "A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications," *IEEE Internet of Things Journal*, vol. 4, no. 5, pp. 1125–1142, 2017.

APPENDIX A BILL OF MATERIALS (REPRESENTATIVE)

The representative bill of materials includes:

- ESP32-2432S028R module with Wi-Fi + Bluetooth SoC and 4 MB Flash.
- JC2432A028N 2.8 in TFT LCD (240×320, ILI9341V controller, four-LED backlight).
- XPT2046 resistive touch controller.
- microSD push-push socket for removable storage.
- SC8002B-class audio amplifier and 4, 2 W speaker.
- CH340C USB-UART bridge for programming and serial I/O.

- RGB LED and photosensor for indication and adaptive brightness.
- DHT11 header for temperature/humidity sensing.
- BOOT and RESET tactile buttons.
- Passive components, headers, and fasteners.

APPENDIX B MECHANICAL DESIGN FILES

The enclosure design is released as:

- .3mf files for direct slicing and 3D printing.
- .f3d (Autodesk Fusion 360) files for parametric editing.

Mounting points support heat-set threaded inserts, ensuring durable assembly and disassembly over the device lifetime.