US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

Publication Date

Inventor(s)

20250262064

A1

August 21, 2025

Seifert; Jody L. et al.

INTERVERTEBRAL SPACER AND PLATE

Abstract

Embodiments herein are generally directed to spinal implants, systems, apparatuses, and components thereof that can be used in spinal fusion and/or stabilization procedures, as well as methods of installation. The spinal implants may include an intervertebral spacer and a plate member.

Inventors: Seifert; Jody L. (Birdsboro, PA), Burkhardt; Alex (Akron, PA), Gahman; Kevin

(Douglassville, PA), Glerum; Chad (Pennsburg, PA), Weiman; Mark (Downingtown, PA), Matthews; John (San Diego, CA), Ashleigh; Michael (Phoenixville, PA), Gill; Sean (Boothwyn, PA), Miccio; Mark (Lynbrook, NY)

Applicant: GLOBUS MEDICAL, INC. (AUDUBON, PA)

Family ID: 1000008586623

Appl. No.: 19/202083

Filed: May 08, 2025

Related U.S. Application Data

parent US continuation 18338802 20230621 parent-grant-document US 12295863 child US 19202083

parent US continuation 17477597 20210917 parent-grant-document US 11723780 child US 18338802

parent US continuation 16008088 20180614 parent-grant-document US 11123199 child US 17477597

parent US continuation 14802229 20150717 parent-grant-document US 10016282 child US 16008088

Publication Classification

Int. Cl.: A61F2/44 (20060101); **A61F2/30** (20060101)

U.S. Cl.:

CPC

A61F2/447 (20130101); A61F2/4455 (20130101); A61F2002/3008 (20130101); A61F2002/30266 (20130101); A61F2002/30383 (20130101); A61F2002/30387 (20130101); A61F2002/30433 (20130101); A61F2002/30507 (20130101); A61F2002/30538 (20130101); A61F2002/30556 (20130101); A61F2002/30578 (20130101); A61F2002/30579 (20130101); A61F2002/30593 (20130101); A61F2002/30604 (20130101); A61F2/30749 (20130101); A61F2002/30777 (20130101); A61F2002/30836 (20130101); A61F2002/30841 (20130101); A61F2002/30878 (20130101); A61F2002/3093 (20130101); A61F2002/30957 (20130101)

Background/Summary

CROSS REFERENCE TO RELATED APPLICATION [0001] The present application is a continuation of U.S. patent application Ser. No. 18/338,802, filed Jun. 21, 2023 (published as U.S. Pat. Pub. No. 2023-0329878), which is a continuation of U.S. patent application Ser. No. 17/477,597, filed on Sep. 17, 2021, now U.S. Pat. No. 11,723,780, which is a continuation of U.S. patent application Ser. No. 16/008,088, filed Jun. 14, 2018, now U.S. Pat. No. 11,123,199, which is a continuation of U.S. patent application Ser. No. 14/802,229, filed Jul. 17, 2015, now U.S. Pat. No. 10,016,282, the entire contents of each of which are hereby incorporate by reference in their entirety for all purposes.

FIELD OF THE INVENTION

[0002] The present disclosure relates to intervertebral devices and methods used to install these devices.

BACKGROUND OF THE INVENTION

[0003] Many types of spinal irregularities can cause pain, limit range of motion, or injure the nervous system within the spinal column. These irregularities can result from, without limitation, trauma, tumor, disc degeneration, and disease. One example of a spinal irregularity that may result from disc degeneration is spinal stenosis, the narrowing of a spinal canal, which can result in the compression of spinal nerves such as the spinal cord or cauda equina. In turn, the nerve compression can result in pain, numbness, or weakness. Other examples of conditions that can result from disc degeneration are osteoarthritis and disc herniation.

[0004] Often, these irregularities can be treated by performing a discectomy and/or immobilizing a portion of the spine. For example, treatment can include a surgical procedure that involves removal and replacement of an affected intervertebral disc with a prosthesis and the subsequent fusion of adjacent vertebrae. The prosthesis, such as an interbody cage or spacer, may be used either alone or in combination with one or more additional devices such as rods, screws, and/or plates.

SUMMARY OF THE INVENTION

[0005] Some embodiments herein are directed a vertebral fusion device that can include a spacer member comprising a first mating element; and a fixation member comprising a first bore extending therethrough and a second mating element, the second mating element configured to articulably engage the first mating element.

[0006] Other embodiments herein are directed to a vertebral fusion device that can include a first endplate comprising a first extension portion, the first extension portion comprising a first bore extending therethrough; a second endplate comprising a second extension portion, the second extension portion comprising a second bore extending therethrough; a first ramp configured to

mate with the first and second endplates; a second ramp configured to mate with the first and second endplates; wherein the first and second bores each comprise an axis wherein at least one of the axes intersects a vertical, longitudinal plane of the device; and wherein the vertebral fusion device comprises an adjustable height.

[0007] Y et other embodiments herein are directed to a vertebral fusion device that can include a first endplate comprising a first extension portion, the first extension portion comprising a first bore extending therethrough; a second endplate comprising a second extension portion, the second extension portion comprising a second bore extending therethrough; a first ramp configured to mate with the first and second endplates; a second ramp configured to mate with the first and second endplates; wherein the first and second bores each comprise an axis wherein at least one of the axes intersects a vertical, longitudinal plane of the device.

[0008] Some embodiments herein are directed to a method of installing a vertebral fusion device that can include providing a vertebral fusion device in a collapsed configuration, comprising: a first endplate comprising a first extension portion and a second endplate comprising a second extension portion, both the first and second endplates extending from a first side of the device to a second side of the device; and a first ramp and a second ramp, both the first ramp and the second ramp being configured to mate with the first and second endplates, and both the first ramp and the second ramp extending from the first side of the device to the second side of the device, wherein at least one of the first and second sides of the device is configured to pivotably expand about a pivot point; wherein the device defines a first angle with respect to the pivot point. The method can also include transitioning the fusion device from the collapsed configuration to an expanded configuration, comprising: pivotably expanding at least one of the first and second sides of the device about the pivot point until the device defines a second angle with respect to the pivot point, wherein the second angle is greater than the first angle; and inserting a first fastener into a bore in the first extension portion and inserting a second fastener into a bore in the second extension portion.

[0009] Other embodiments herein are directed to a method of installing a vertebral fusion device that can include providing a vertebral fusion device in a collapsed configuration, comprising: a first endplate comprising a first extension portion and a second endplate comprising a second extension portion, both the first and second endplates extending from a first side of the device to a second side of the device; and a first ramp and a second ramp, both the first ramp and the second ramp being configured to mate with the first and second endplates, and both the first ramp and the second ramp extending from the first side of the device to the second side of the device, wherein at least one of the first and second sides of the device is configured to pivotably expand about a pivot point; wherein the device defines a first angle with respect to the pivot point. The method can also include transitioning the fusion device from the collapsed configuration to an expanded configuration, comprising: pivotably expanding at least one of the first and second sides of the device about the pivot point until the device defines a second angle with respect to the pivot point, wherein the second angle is greater than the first angle; and inserting a first fastener into the first extension portion along a first axis and inserting a second fastener into the second extension portion along a second axis, wherein at least one of the first and second axes is offset from a vertical, longitudinal plane of the vertebral fusion device.

[0010] Still other embodiments herein are directed to a method of installing a vertebral fusion device that can include providing a vertebral fusion device in a collapsed configuration, comprising: a first endplate comprising a first extension portion and a second endplate comprising a second extension portion, both the first and second endplates extending from a first side of the device to a second side of the device; and a first ramp and a second ramp, both the first ramp and the second ramp being configured to mate with the first and second endplates, and both the first ramp and the second ramp extending from the first side of the device to the second side of the device, wherein at least one of the first and second sides of the device is configured to pivotably

expand about a pivot point; wherein the device defines a first angle with respect to the pivot point. The method can also include transitioning the fusion device from the collapsed configuration to an expanded configuration, comprising: pivotably expanding at least one of the first and second sides of the device about the pivot point until the device defines a second angle with respect to the pivot point, wherein the second angle is greater than the first angle; adjusting a position of at least one of the first and second extension portions relative to a body portion of at least one of the first and second endplates; and inserting a first fastener into the first extension portion along a first axis and inserting a second fastener into the second extension portion along a second axis, wherein at least one of the first and second axes is offset from a vertical, longitudinal plane of the vertebral fusion device.

[0011] Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating certain embodiments, are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:

[0013] FIG. **1**A illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0014] FIG. **1**B illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0015] FIGS. **2**A-**2**C illustrate perspective views of one embodiment of a vertebral fusion device described herein;

[0016] FIG. **2**D illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0017] FIG. **3**A illustrates a perspective view of one embodiment of a vertebral fusion device described herein;

[0018] FIG. **3**B illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0019] FIG. **4** illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0020] FIG. **5** illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0021] FIG. **6** illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0022] FIG. 7A illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0023] FIG. **7**B illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0024] FIGS. **8**A-**8**B illustrate schematic views of one embodiment of a vertebral fusion device described herein;

[0025] FIG. **9** illustrates a schematic view of one embodiment of a vertebral fusion device described herein;

[0026] FIGS. **10**A-**10**B illustrate schematic views of one embodiment of a vertebral fusion device described herein:

[0027] FIGS. 11A-11B illustrate schematic views of one embodiment of a vertebral fusion device

described herein;

[0028] FIGS. **12**A-**12**B illustrate exploded views of one embodiment of a vertebral fusion device described herein;

[0029] FIGS. **12**C-**12**D illustrate perspective views of one embodiment of a vertebral fusion device described herein;

[0030] FIG. **12**E illustrates a cross-sectional view of one embodiment of a vertebral fusion device described herein;

[0031] FIG. **12**F illustrates a perspective view of one embodiment of a vertebral fusion device described herein;

[0032] FIG. **13**A illustrates an exploded view of one embodiment of a vertebral fusion device described herein; and

[0033] FIGS. **13**B-**13**E illustrate perspective views of one embodiment of a vertebral fusion device described herein.

DETAILED DESCRIPTION

[0034] In a spinal fusion procedure, affected tissue between adjacent vertebrae may be removed and replaced with a prosthesis, such as an interbody cage, spacer, or other spinal implant. A plate and/or screws may also be used to secure the prosthesis within the intervertebral disc space. The intervertebral disc space can be accessed via various approaches (e.g., anterior, posterior, transforaminal, and/or lateral). In a lateral procedure, the prosthesis may be inserted through an incision on a patient's side; advantageously, this type of approach may generally avoid muscles and nerves that may otherwise be encountered in an anterior, posterior, and/or transforaminal approach. However, a lateral approach may be difficult in a patient's lumbar spine (e.g., between the L4 and L5 vertebrae), as the patient's bones, nerves, and/or musculature, such as the iliac crest, lumbar plexus, and/or psoas, can inhibit the trajectory of the screws. Accordingly, disclosed herein are vertebral fusion devices that can include an interbody spacer and a plate configured for use in lateral lumbar interbody fusion (LLIF) procedures, and that can enable implant and screw placement even in the vicinity of the iliac crest and other anatomy.

[0035] Some embodiments herein may be directed to vertebral fusion devices that can be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). For example, the device may have a length (e.g., as measured between a leading end and a trailing end) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The device may also have a length that is configured to laterally span a vertebral endplate. For example, the device may have a length in the range of from about 35 mm to about 65 mm. The device may also have a width in the range of from about 15 mm to about 30 mm. Some embodiments herein may be directed to expandable vertebral fusion devices that can be configured for use in lateral procedures. The expandable vertebral fusion devices described herein may have a variable height and may be configured to collapse to a smaller height prior to insertion and/or expand to a larger height after insertion. In some embodiments, the expanded height can be from about 25% to about 200% greater than the collapsed height. In other embodiments, the expanded height can be from about 100% to about 150% greater than the collapsed height. In some embodiments, the collapsed height can be in the range of from about 5 mm to about 10 mm, and/or the expanded height can be in the range of from about 15 mm to about 20 mm. In some embodiments, the expandable vertebral fusion devices may also have a variable lordotic angle. These devices may include one or more members configured to pivot about a pivot point. These devices may be configured to collapse to a smaller angle (e.g., 10.4°) prior to insertion and/or expand to a larger angle (e.g., 22.5°) after insertion. Accordingly, these devices may be configured for use in minimally-invasive surgery (MIS). For example, they may be inserted through a relatively small incision and/or through a cannula, thereby reducing trauma to the patient. Conversely, the expandable vertebral fusion devices described herein may be configured to expand to a width greater than that of other implants in the art, without requiring a larger incision.

Furthermore, the height and/or lordotic angle of the expandable vertebral fusion devices may be adjusted after insertion, thereby providing a customized fit within the intervertebral space. [0036] Components of all of the devices and systems disclosed herein can be made of materials known to those skilled in the art, including metals (e.g., titanium), metal alloys (e.g., stainless steel, titanium alloys, and/or cobalt-chromium alloys), ceramics, polymers (e.g., poly ether ketone (PEEK), polyphenylene sulfone (PPSU), polysulfone (PSU), polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), polyacetals, or mixtures or co-polymers thereof), allograft, and/or combinations thereof. For example, a spacer member as described herein may include a polymeric material and a fixation member as described herein may include a metallic material. In some embodiments, the systems and devices may include radiolucent and/or radiopaque materials. In other embodiments, one or more components may be coated with a bone growth-enhancing material, such as hydroxyapatite. The components can also be machined and/or manufactured using techniques known to those skilled in the art. For example, polymeric components may be injectionmolded or blow-molded. Additionally, the devices disclosed herein may be used together with materials that encourage bone growth, such as bone graft material, demineralized bone matrix, bone chips, and/or bone morphogenetic proteins. In some embodiments, these materials may advantageously be packed into hollow areas of the devices described herein. [0037] As described herein, the spinal implants of the present disclosure may be configured for placement between two adjacent vertebrae, for example, as part of a spinal fusion procedure. These spinal implants may be referred to as, without limitation, interbody spacers, interbody fusion devices, vertebral fusion devices, interbody cages, and/or intervertebral cages. Each of the spinal implants described herein may include superior and/or inferior surfaces that are configured to engage and/or contact a vertebral endplate or other vertebral surface. In some embodiments, the superior and/or inferior surfaces may be convex, corresponding to the topography of the endplates. Additionally, the superior and/or inferior surfaces of each of the spinal implants described herein may include one or more texturizing members. Examples of such texturizing members include, but are not limited to, projections, bumps, teeth, grooves, peaks, spikes, and/or knurling. These texturizing features may advantageously enhance the interaction or fiction, and/or reduce movement, between the implant and the vertebrae. The spinal implants of the present disclosure may be configured for insertion between adjacent vertebrae. In some embodiments, the spinal implants described herein may be configured for insertion between lumbar vertebrae (e.g., between L4-L5 vertebrae). The spinal implants described herein may be configured for insertion using a minimally-invasive procedure (e.g., through a cannula). The spinal implants described herein may be configured for insertion using a variety of approaches. In some embodiments, the spinal implants may be configured for lateral insertion. In other embodiments, the spinal implants of the present disclosure may be configured for anterior, posterior, and/or transforaminal insertion. Those skilled in the art may appreciate that directional terms such as "anterior," "posterior," "superior," "inferior," "top," and "bottom," and the like may be used herein for descriptive purposes and do not limit the orientation(s) in which the devices may be used. For example, those skilled in the art may appreciate that, in use, a "superior" surface may be installed adjacent an inferior vertebra, and vice versa. Accordingly, a feature described as being on top may actually be oriented towards the bottom after installation.

[0038] Some embodiments disclosed herein are directed to a vertebral fusion device that can include a spacer member and a fixation member (e.g., plate). The spacer member and the fixation member can be separate, or they can be integrated. In some embodiments, the device can include two or more fixation members and/or a multi-piece fixation member. In some embodiments, the fixation member(s) may be configured to move relative to the spacer member along one or more paths. The fixation member can include a bore configured to receive a fastener (e.g., bone screw, anchor, and/or staple) therethrough. These embodiments can advantageously direct the trajectory of a fastener, and/or can enable a user to alter the trajectory of a fastener, so as to avoid anatomical

structures such as the lumbar plexus, psoas major, and/or iliac crest. In some embodiments, the spacer member can be expandable. For example, the spacer member can include a variable height and/or a variable lordotic angle.

[0039] Turning now to FIGS. **1**A-B, some embodiments herein are directed to a vertebral fusion device that can include a spacer member and a fixation member. With respect to FIG. **1**A, vertebral fusion device **10** can include a spacer member **2** and a fixation member **4**, wherein the fixation member 4 may be configured to be offset from a vertical, longitudinal plane 6 of the spacer member 2. The spacer member 2 may be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). For example, the spacer member 2 may have a length (e.g., as measured between a leading end **14** and a trailing end **16**) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The spacer member **2** may also have a length that is configured to laterally span a vertebral endplate. For example, the spacer member **2** may have a length in the range of from about 40 mm to about 60 mm. The fixation member **4** may include at least one bore **8** configured to receive a fastener **12** therethrough. The fastener **12** may be, for example, a bone screw, anchor, staple, or spike. In some embodiments, the fixation member 4 may include two, three, four, or more bores configured to receive a fastener therethrough. In some embodiments, at least two bores may be horizontally and/or vertically displaced from each other. The fixation member **4** may have a height that is greater than a height of the spacer member **2**. For example, the fixation member **4** may have a height that is greater than a distance between two adjacent vertebrae. In some embodiments that include two bores, the two bores may be spaced apart by a distance that is greater than a distance between two adjacent vertebrae. The fixation member 4 may be configured to be offset (e.g., anteriorly) from the vertical, longitudinal plane $\bf 6$ by an angle α , for example, in the range of from about 5° to about 90°. In some embodiments, a may be in the range of from about 5° to about 45°. In other embodiments, a may be in the range of from about 20° to about 30°. [0040] Other embodiments herein are directed to methods of installing the vertebral fusion device **10**. In these embodiments, the spacer member **2** may be inserted along a first trajectory (e.g., laterally). The first trajectory may be along and/or parallel to the vertical, longitudinal plane **6**. The fixation member 4 may be inserted along a second trajectory that intersects the first trajectory (e.g., obliquely and/or anterolaterally). The first and second trajectories may intersect to form the angle α, for example, in the range of from about 5° to about 90°. Fastener **12** may be inserted into bore **8** along a third trajectory that intersects the first trajectory (e.g., obliquely and/or anterolaterally). In some embodiments, the third trajectory may be parallel to the second trajectory. [0041] An alternative embodiment is illustrated in FIG. 1B. As illustrated therein, vertebral fusion device **30** may include some or all of the features of vertebral fusion device **10**, unless expressly described otherwise. Additionally, vertebral fusion device **30** may include a securing member **32**. The securing member 32 may include a head 34 and an elongate body 36. The head 34 may be configured to engage a tool such as an inserter and/or a driver. The elongate body **36** may include an engagement feature such as threading or ratcheting. For example, in some embodiments the securing member 32 may be a screw. The securing member 32 may be configured to couple the spacer member **2** and/or the fixation member **4**. For example, the elongate body **36** may be configured to engage a threaded opening **31** in the fixation member **4** and/or a threaded opening **33** in the spacer member **2**. In use, after the spacer member **2**, the fixation member **4**, and/or the fastener **12** are inserted, the fixation member **4** may be coupled with the spacer member **2**. In some embodiments, this step can include coupling the securing member 32 with the fixation member 4 and the spacer member 2, for example, by threading the securing member 32 therein. The securing member 32 may also be inserted along a trajectory (e.g., a fourth trajectory) that is offset from the vertical, longitudinal plane **6**. The fourth trajectory may be parallel to the second and/or third trajectories, as described herein with respect to vertebral fusion device **10**.

[0042] Some embodiments herein are directed to a vertebral fusion device that can include a spacer

member and a fixation member, wherein the fixation member is configured to move relative to the spacer member when it is coupled thereto. Turning to FIGS. 2A-C, some embodiments herein are directed to a vertebral fusion device **50** that can include a spacer member **52** and a fixation member **54**. As illustrated in FIG. **2**B, the spacer **52** can include a first (e.g., leading) end **56**, a second (e.g., trailing) end **58**, a first (e.g., anterior) side **66**, and a second (e.g., posterior) side **68**. The spacer member 52 may include an upper (e.g., superior) surface 60, a lower (e.g., inferior) surface (not shown), and an outer side surface **62** along an outer perimeter thereof. The spacer member **52** may be generally rectangular. In some embodiments, the outer side surface **62** can include at least one curved portion **70**, as illustrated, for example, in FIG. **2**C. The curved portion **70** may appear curved (e.g., concave) when viewed from the upper surface **60** and/or the lower surface. The curved portion **70** may be located at the trailing end **58** and/or anterior side **66** of the spacer member **52**. As illustrated in FIGS. **2**A-C, the curved portion may extend at least partially along the trailing end **58** and/or anterior side **66**. As illustrated in FIGS. **2**A-B, the spacer member **52** can include a central cavity 64. In some embodiments, the central cavity 64 may be configured to receive bone growth material therein. The spacer member **52** may be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). For example, the spacer member 52 may have a length (e.g., as measured between the leading end 56 and the trailing end **58**) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The spacer member **52** may also have a length that is configured to laterally span a vertebral endplate. For example, the spacer member 52 may have a length in the range of from about 40 mm to about 60 mm.

[0043] In some embodiments, the spacer member 52 can include a first mating element 72, as illustrated in FIG. 2B. As illustrated in FIG. 2B, the first mating element 72 can include a groove, slot, notch, channel, and/or recess. In some embodiments, the groove, slot, notch, channel, and/or recess may include a tapered cross-section. In other embodiments, it may include a T-shaped cross-section, and may be referred to as a T-slot. In yet other embodiments, the first mating element 72 can include a protrusion, projection, lip, and/or overhang. The protrusion and/or projection can also include a tapered cross-section. The first mating element 72 can extend along a curved path. The first mating element may be disposed on the curved portion 70 of the outer side surface 62. In some embodiments, the first mating element 72 may be disposed on at least a portion of the trailing end 58 and at least a portion of the anterior side 66.

[0044] The fixation member **54** can include a second mating element **74**. As illustrated in FIG. **2**C, the second mating element **74** can be disposed on a coupling portion **80** of the fixation member. The coupling portion **80** may be configured to be at least partially disposed between the upper and lower surfaces of the spacer member **52**. The coupling portion **80** may be generally perpendicular to a fixation portion **82** of the fixation member **54**. In some embodiments, the second mating element **74** can include a groove, slot, notch, channel, and/or recess. The groove, slot, notch, channel, and/or recess may include a tapered cross-section. In other embodiments, it may include a T-shaped cross-section, and may be referred to as a T-slot. In yet other embodiments, the second mating element **74** can include a protrusion, projection, lip, and/or overhang. The protrusion and/or projection can also include a tapered cross-section. The first and/or second mating elements **72**, **74** may each extend along a curved path. In some embodiments, the first and second mating elements **72**, **74** may include the same radius of curvature.

[0045] In some embodiments, the first mating element **72** can include a groove and the second mating element **74** can include a protrusion, or vice versa. Those skilled in the art may appreciate that when the first and second mating elements **72**, **74** are engaged, they may form a joint (e.g., a dovetail joint, a tongue and groove joint, and/or a splice joint). Accordingly, the fixation member **54** may be configured to jointedly couple to the spacer member **52**. The second mating element **74** may be configured to articulably, pivotably, and/or slideably engage the first mating element **72**. The second mating element **74** may be disposed on a leading side of the fixation member **54**. For

example, the fixation member **54** may be configured to articulate at least partially about the spacer member 52 by translating the second mating element 74 along the first mating element 72. [0046] The fixation member **54** may include at least one bore **76**, as illustrated in FIG. **2**A. The bore **76** may be disposed on the fixation portion **82** of the fixation member **54**. The bore **76** may be configured to receive a fastener therethrough. The fastener may be, for example, a bone screw, anchor, staple, or spike. In some embodiments, the fixation member 54 may include two, three, four, or more bores configured to receive a fastener therethrough. In some embodiments, at least two bores may be horizontally and/or vertically offset from each other. As illustrated in FIG. 2A, the fastener member **54** can include two bores **76** that are horizontally and vertically offset from each other. The fixation member 54 may be configured to extend beyond the upper surface 60 and/or the lower surface of the spacer member **52**. In some embodiments, at least one bore **76** may be located above the upper surface **60** of the spacer member **52** when the spacer member **52** and the fixation member **54** are articulably coupled. The fixation member **54** may have a height that is greater than a height of the spacer member **52** (e.g., as measured between the upper surface **60** and the lower surface). For example, the fixation member 4 may have a height that is greater than a distance between two adjacent vertebrae. In some embodiments that include two bores, the two bores may be spaced apart by a distance that is greater than a distance between two adjacent vertebrae. The fixation member **54** can also include a receptacle **78** therethrough. The receptacle **78** can include a threaded interior. In some embodiments, the receptacle **78** can be configured to threadably receive an inserter or implant holder therein. The fixation portion **82** of the fixation member 54 can also include one or more notches 84, as illustrated in FIG. 2A. The notches 84 may each be configured to engage a protrusion, such as a tab, on the inserter. In use, the protrusion may key into the notch 84 and/or the spacer member 52, advantageously inhibiting motion of the fixation member **54** during insertion.

[0047] In some embodiments, the vertebral fusion device **50** can also include a locking member (not shown). The locking member can be configured to reversibly engage the spacer member **52** and/or the fixation member **54**. In some embodiments, the locking member can include a clamp, clasp, and/or catch. The locking member can be configured to inhibit movement of the fixation member **54** relative to the spacer member **52** when in a locked configuration. When in an unlocked configuration, the locking member can allow movement of the fixation member **54** relative to the spacer member **52**. The vertebral fusion device **50** can reversibly transition between the locked and unlocked configuration.

[0048] Also described herein are methods for installing the vertebral fusion device **50**. These methods can include providing the vertebral fusion device **50**, wherein the spacer member **52** and the fixation member **54** are articulably, pivotably, and/or slideably engaged (e.g., the first and second mating elements 72, 74 may be articulably, pivotably, and/or slideably engaged). In embodiments that include a locking member, the vertebral fusion device **50** may be provided in the locked configuration as described herein. In some embodiments, the vertebral fusion device 50 may be provided (e.g., inserted) between two adjacent vertebrae (e.g., between the L4 and L5 vertebrae), for example, along a lateral approach. In some embodiments, an inserter may be coupled to the vertebral fusion device **50** during the insertion process, for example, by threadably engaging the receptacle **78** and/or keying into the notches **84**. In some embodiments, the inserter may be coupled to both the fixation member **54** and the spacer member **52**. Advantageously, the inserter may inhibit movement of the fixation member **54** during insertion and/or placement. In embodiments that include a locking member, the device **50** may then be unlocked, e.g., by releasing the locking member. A position (e.g., orientation) of the fixation member **54** (e.g., the position of bore **76**) may then be adjusted relative to the spacer member **52**. The position of the fixation member 54 may be adjusted, for example, by articulating, pivoting, and/or sliding the fixation member **54** along the path defined by the first mating element **72**. The method can also include inserting a first fastener member into the bore 76. In some embodiments, the first fastener

member may be inserted along an anterolateral trajectory. In other embodiments, the first fastener member may be inserted along an upwards trajectory (e.g., towards a superior vertebra). In use, those skilled in the art may appreciate that the vertebral fusion device **50** may advantageously enable a user to adjust the position of the bore **76**, thereby adjusting fastener placement. Accordingly, a user may be able to position the bore **76** to avoid certain anatomical structures such as the psoas major, lumbar plexus, and/or iliac crest.

[0049] An alternative embodiment, vertebral fusion device **100**, is illustrated in FIG. **2**D. Unless expressly described otherwise, vertebral fusion device **100** may include some or all of the features of vertebral fusion device **50**. For example, vertebral fusion device **100** may include a spacer member **114** which includes some or all of the same features as spacer member **52**. Vertebral fusion device 100 can include a modified fixation member 102. The fixation member 102 can include a threaded post **104**, a coupling portion **106**, and a fixation portion **108**. The fixation portion **108** can include one or more bores (not shown) as described with respect to fixation member 54. The coupling portion 106 can include some or all of the features of coupling portion 80 (e.g., a mating element as described herein). The threaded post 104 can extend, e.g., proximally, from the coupling portion **106**. The fixation portion **108** can include a through-hole **110** configured to receive at least a portion of the threaded post **104** therethrough. The through-hole **110** may include a smooth (e.g., non-threaded) interior surface. The fixation portion **108** may be coupled to an actuator **112**. The actuator 112 may include a threaded hole configured to mate with the threaded post 104. The actuator 112 can also include an exterior tool-engaging surface. In some embodiments, the actuator **112** can include a nut. In use, the fixation portion **108** may be configured to translate along an axis defined by the threaded post 104, towards and/or away from the spacer member 114. [0050] Also described herein are methods for installing the vertebral fusion device **100**. These methods can be the same or similar to those described with respect to the vertebral fusion device **50**. Additionally, the step of adjusting a position (e.g., orientation) of the fixation member **102** can include adjusting (e.g., increasing and/or reducing) a distance between the spacer member 114 and the fixation member **102**. The distance can be measured horizontally. The step of adjusting the fixation member **102** can include engaging the actuator **112**. In embodiments where the actuator **112** includes a nut, this step can include threading or unthreading the nut along the threaded post **104**. As the nut travels along the threaded post **104**, it may advantageously also cause translational motion of the fixation member **102** in the same direction (e.g., proximally and/or distally). Advantageously, the ability to adjust the position of the fixation member 102 (e.g., the bore(s)) by translation and articulation can provide increased freedom to a user with regards to fastener placement.

[0051] Other embodiments herein are directed to a vertebral fusion device that can include a movable (e.g., articulable and/or translatable) fixation member as described herein and that can also include an expandable spacer member. The expandable spacer member can include a variable height (e.g., as measured between an upper surface and a lower surface). The expandable spacer member may be generally rectangular, and in some embodiments may be configured for lateral insertion as described herein. Turning to FIGS. 3A-B, vertebral fusion device 150 can include expandable spacer member **152**. The expandable spacer member **152** can include a first (e.g., upper) endplate **156**, a second (e.g., lower) endplate **158**, a frame **160**, an articulating screw support **162**, a link **164**, and a nut **166**. The expandable spacer member **152** may also include a drive link (not shown). The drive link may be configured to engage the first and second endplates **156**, **158** and may be configured to pull and/or displace the endplates **156**, **158** relative to the frame **160**. The expandable spacer member 152 may also include a first (e.g., distal and/or leading) end 170 and a second (e.g., proximal and/or trailing) end 172. In some embodiments, vertebral fusion device 150 may include one or more features of the devices described in U.S. Patent Publication No. 2014/0249628, entitled "ARTICULATING EXPANDABLE INTERVERTEBRAL IMPLANT," published on Sep. 4, 2014, which is hereby incorporated by reference herein in its entirety for all

purposes.

[0052] The frame **160** can include one or more lift ramps **168** on the upper and/or lower surfaces thereof. Each lift ramp **168** may have a surface that is inclined from an intermediate portion of the frame **160** towards the proximal end **172**. Each lift ramp **168** may be configured to slideably engage an expansion ramp **174** on the first and/or second endplates **156**, **158**. Each expansion ramp **174** may have a surface that is inclined from an intermediate portion of the first and/or second endplates **156**, **158** towards the distal end **170**. In use, the spacer member **152** may be expanded by translating the frame **160** relative to the first and second endplates **156**, **158**. The lift ramps **168** may engage the expansion ramps **174** and urge the first and second endplates **156**, **158** apart, thereby increasing the height of the spacer member **152**.

[0053] The nut **166** can include internal threads that may be configured to mate with external threads of the link **164**. The nut **166** can also include one or more tool-engaging portions **176** disposed on an outer surface thereof. The nut **166** may be rotatably retained along a fixed axial orientation within the articulating screw support **162**. In use, a tool (e.g., a driver) may engage and rotate the nut **166**. As the nut **166** rotates, link **164** may be advanced or withdrawn with respect to the frame **160**, thereby moving endplates **156**, **158** with respect to the frame **160** and causing an expansion or contraction of the height of the expandable spacer member **152**.

[0054] The articulating screw support **162** may be movably (e.g., slideably, articulably, and/or pivotably) coupled to the frame **160**. The frame **160** can also include a first mating element **178**. The first mating element **178** can include a groove, slot, notch, channel, and/or recess. In some embodiments, the groove, slot, notch, channel, and/or recess may include a tapered cross-section. In other embodiments, it may include a T-shaped cross-section, and may be referred to as a T-slot. In yet other embodiments, the first mating element **178** can include a protrusion, projection, lip, and/or overhang. The protrusion and/or projection can also include a tapered cross-section. The first mating element **178** may be disposed on a curved portion of the trailing end **172**. In some embodiments, the first mating element **178** may be disposed on at least a portion of the trailing end **172** and/or at least a portion of an anterior side.

[0055] The articulating screw support **162** can include a second mating element **180**. The second mating element **180** may be disposed on an inner surface of the articulating screw support **162**. In some embodiments, the second mating element **180** can include a groove, slot, notch, channel, and/or recess. The groove, slot, notch, channel, and/or recess may include a tapered cross-section. In other embodiments, it may include a T-shaped cross-section, and may be referred to as a T-slot. In yet other embodiments, the second mating element **180** can include a protrusion, projection, lip, and/or overhang. The protrusion and/or projection can also include a tapered cross-section. The first and/or second mating elements **178**, **180** may each extend along a curved path. In some embodiments, the first and second mating elements **178**, **180** may include the same radius of curvature.

[0056] In some embodiments, the first mating element **178** can include a groove and the second mating element **180** can include a protrusion, or vice versa. Those skilled in the art may appreciate that when the first and second mating elements **178**, **180** are engaged, they may form a joint (e.g., a dovetail joint, a tongue and groove joint, and/or a splice joint). Accordingly, the articulating screw support **162** may be configured to jointedly couple to the expandable spacer member **152**. The second mating element **180** may be configured to articulating screw support **162** may be configured to articulate at least partially about the expandable spacer member **152** by translating the second mating element **180** along the first mating element **178**.

[0057] In some embodiments, the articulating screw support **162** can be configured to engage a fixation member, such as fixation member **154**, illustrated in FIG. **3B**, or any other fixation members described herein. The fixation member **154** can be directly or indirectly attached, mounted, and/or coupled to the articulating screw support **162**. In some embodiments, the fixation

member **154** can be mechanically coupled to the articulating screw support **162**. In use, the nut **166** can be movable, thereby enabling expansion and/or contraction of the expandable spacer member **152** from a variety of approaches. Additionally, the fixation member can also be movable, thereby enabling a user to position the fixation member in an orientation that avoids certain anatomical structures as described herein.

[0058] As illustrated in FIG. 3B, in some embodiments, the fixation member 154 can be indirectly engaged with the articulating screw support 162. The vertebral fusion device 150 can include a threaded post 182. In some embodiments, the threaded post 182 may be an axial extension of link 164 (e.g., the threaded post 182 may extend lengthwise along axis 186). The fixation member 154 can include some or all of the features of fixation member 102. For example, fixation member 154 can include a through-hole 184 configured to receive at least a portion of the threaded post 182 therethrough. The through-hole 184 may include a smooth (e.g., non-threaded) interior surface. The vertebral fusion device 150 may also include an actuator 188. The actuator 188 may include a threaded hole configured to mate with the threaded post 182. The actuator 188 may also include an exterior tool-engaging surface. In some embodiments, the actuator 188 can include a nut. In use, the fixation member 154 may advantageously be configured to translate along the axis 186, towards and/or away from the expandable spacer member 152.

[0059] Also described herein are methods for installing the vertebral fusion device **150**. These methods can include providing the vertebral fusion device **150** in a collapsed configuration, wherein the device **150** has a first height (e.g., as measured from an upper surface of endplate **156** to a lower surface of endplate 158). In some embodiments, this step can include inserting the vertebral fusion device between two adjacent vertebrae (e.g., between the L4 and L5 vertebrae), for example, along a lateral, oblique, or anterolateral approach. These methods can also include adjusting a position (e.g., orientation) of the link **164** and/or the fixation member **154** relative to the expandable spacer member **152**. The position of the link **164** and/or fixation member **154** can be adjusted, for example, by articulating, pivoting, and/or sliding the articulating screw support 162 along the path defined by the first mating element 178. These methods can also include expanding the vertebral fusion device **150** to an expanded configuration, wherein the device **150** has a second height that is greater than the first height. This step can include rotating the nut **166**, thereby applying a force to the frame **160** and separating the endplates **156**, **158** as described herein. In some embodiments, this step can also include inserting a tool (e.g., a driver) which engages and rotates the nut **166**. The tool can be inserted along a lateral, oblique, or anterolateral approach. Advantageously, a curved path of the first mating element **178** can enable actuation of nut **166** at an angle with respect to a longitudinal axis of spacer **152**. In this manner, spacer member **152** may be inserted into the body along a non-linear path, for example during a transforaminal, posterior, and/or lateral insertion, and articulating screw support **162** may be positioned to be more readily accessible along the insertion path (e.g., oblique and/or anteriolateral) to a tool end which engages nut 166 for rotation, thereby minimizing disturbance of body tissue. In some embodiments, the device **150** can be inserted along a lateral path and the tool can be inserted along an oblique and/or anteriolateral path. In other embodiments, the device **150** can be inserted along an oblique and/or anteriolateral path and articulated into a lateral position (e.g., the expandable spacer member 152 can articulate relative to the link **164** and/or fixation member **154**).

[0060] The method can also include inserting a first fastener member into a bore on the fixation member **154**. In some embodiments, the first fastener member may be inserted along an anterolateral and/or oblique trajectory. In other embodiments, the first fastener member may be inserted along an upwards trajectory (e.g., towards a superior vertebra). In use, those skilled in the art may appreciate that the vertebral fusion device **150** may advantageously enable a user to adjust the position of the bore, thereby adjusting fastener placement. Accordingly, a user may be able to position the bore to avoid certain anatomical structures such as the psoas major, lumbar plexus, and/or iliac crest.

[0061] In some embodiments, for example, those relating to the vertebral fusion device illustrated in FIG. 3B, the step of adjusting a position (e.g., orientation) of the fixation member 154 can include adjusting (e.g., increasing and/or reducing) a distance between the spacer member 152 and the fixation member 154. The distance can be measured along axis 186. The step of adjusting the fixation member 154 can include engaging the actuator 188. In embodiments where the actuator 188 includes a nut, this step can include threading or unthreading the nut along the threaded post 182. As the nut travels along the threaded post 182, it may advantageously also cause translational motion of the fixation member 154 in the same direction (e.g., proximally and/or distally). Advantageously, the ability to adjust the position of the fixation member 154 (e.g., the bore(s)) by translation and articulation can provide increased freedom to a user with regards to fastener placement.

[0062] Turning to FIG. **4**, some embodiments herein are directed to a vertebral fusion device **200** that can include a spacer member **202** and a first movable fixation member **204**. The first movable fixation member **204** can be configured to be moveably (e.g., articulably, pivotably, and/or slideably) coupled and/or engaged to the spacer member **204**, as described herein with respect to, e.g., vertebral fusion devices **50**, **100**, and/or **150**. For example, the first movable fixation member 204 can include a second mating element configured to engage a corresponding first mating element on the spacer member **202**. In some embodiments, the first movable fixation member **204** can be configured to translate towards and/or away from the spacer member **202**, for example, as described herein with respect to vertebral fusion device **100**. The first movable fixation member **204** can include a height that, when coupled to the spacer member **202**, extends from a central portion 206 of the spacer member to a position above and/or beyond an upper or lower surface 208, **210** of the spacer member **202**. As illustrated in FIG. **4**, the height of the first movable fixation member **204** can extend beyond/above the upper surface **208** of the spacer member **202**. In these embodiments, the first movable fixation member **204** may be referred to as an upper fixation member. In other embodiments, the height of the first movable fixation member **204** can extend beyond/below the lower surface **210** of the spacer member. In these embodiments, the first movable fixation member **204** may be referred to as a lower fixation member.

[0063] As illustrated in FIG. **4**, in some embodiments, the first movable fixation member **204** can include a single bore **212**. The bore **212** can be configured to receive a fastener (e.g., a bone screw, anchor, and/or staple) therethrough. In other embodiments, the first movable fixation member **204** can include two or more bores. The two or more bores may be horizontally displaced relative to each other (e.g., displaced along a width of the fixation member **204**). In some embodiments, the two or more bores may be vertically aligned (e.g., aligned along the height of the fixation member **204**).

[0064] As illustrated in FIG. 4, the vertebral fusion device **200** can include a second fixation member **214**. The second fixation member **214** may be movable or stationary. In embodiments where the second fixation member **214** is movable, it may include some or all of the same features as first fixation member **204**. In these embodiments, the spacer member **202** may include an additional mating element (e.g., curved tongue or groove) configured to engage a corresponding mating element on the second fixation member **214**. In embodiments where the second fixation member **214** is stationary, it may be coupled (e.g., attached) to the spacer member **202**. In some embodiments, the second fixation member **214** and the spacer member **202** can together make up a unitary body. The second fixation member **214** can include a height that, when coupled to the spacer member **202**, extends from the central portion **206** of the spacer member **202** to a position above and/or beyond an upper or lower surface **208**, **210** of the spacer member **202**. As illustrated in FIG. **4**, the height of the second fixation member **214** can extend beyond/below the lower surface **210** of the spacer member **202**. In these embodiments, the second fixation member may be referred to as the lower fixation member. In other embodiments, the height of the second fixation member **214** can extend beyond/above the upper surface **208** of the spacer member **202**. In these

embodiments, the second fixation member may be referred to as the upper fixation member. As illustrated in FIG. **4**, the second fixation member **214** may extend away from the spacer member **202** in a direction opposite that of the first fixation member **204**.

[0065] Embodiments herein are also directed to methods of installing the vertebral fusion device **200**. These methods can include some or all of the steps described herein with respect to vertebral fusion devices **50**, **100**, and **150**, for example. These methods can include providing the vertebral fusion device **200**, wherein the spacer member **202** and the fixation member **204** are articulably, pivotably, and/or slideably engaged (e.g., the first and second mating elements (not shown) may be articulably, pivotably, and/or slideably engaged). In embodiments that include a locking member, the vertebral fusion device **200** may be provided in a locked configuration. The locking member may inhibit movement of the movable fixation member(s). In some embodiments, the vertebral fusion device **200** may be provided (e.g., inserted) between two adjacent vertebrae (e.g., between the L4 and L5 vertebrae), for example, along a lateral approach. In embodiments that include a locking member, the device **200** may then be unlocked, e.g., by releasing the locking member. A position (e.g., orientation) of the first movable fixation member **204** (e.g., the position of bore **212**) may then be adjusted relative to the spacer member **202**. The position of the first movable fixation member **204** may be adjusted, for example, by articulating, pivoting, and/or sliding the fixation member **204** along the path defined by the first mating element. In some embodiments, this step can also include axially translating the fixation member **204** towards and/or away from the spacer member **202**. The method can also include inserting a first fastener member into the bore **212**. In some embodiments, the first fastener member may be inserted along an anterolateral trajectory. In other embodiments, the first fastener member may be inserted along an upwards trajectory (e.g., towards a superior vertebra).

[0066] In embodiments where the second fixation member **214** is stationary, a second fastener member can be inserted into bore **216** either before or after the first fastener member is inserted into bore **212**. Advantageously, the second fixation member **214**, when stationary, can provide stability to the device **200** while the first fixation member **204** can provide adjustable fastener placement. In embodiments where the second fixation member **214** is movable, methods herein can also include the steps of adjusting a position (e.g., orientation) of the second fixation member **214** relative to the spacer member **202** and inserting a fastener member into a bore thereof. In these embodiments, the first and second fixation members **204**, **214** may advantageously be independently adjustable. Accordingly, each of the first and second fixation members **204**, **214** may be positioned differently to accommodate the particular anatomical features of a patient and/or the planned trajectory of the associated fastener (e.g., towards the inferior vertebra or towards the superior vertebra).

[0067] Other embodiments herein are directed to vertebral fusion devices that can include a spacer member and a fixation member, wherein the fixation member is configured to translate (e.g., telescope, extend, and/or retract) relative to the spacer member. In some embodiments, the fixation member may be configured to translate along a horizontal axis. In other embodiments, the fixation member may be configured to translate along a vertical axis. In yet other embodiments, the fixation member may be configured to translate along an axis that defines an angle in the range of from about 0° to about 180° relative to a side surface of the spacer member.

[0068] As illustrated in FIG. 5, vertebral fusion device **250** can include a spacer member **252** and a fixation member **254**, wherein the fixation member **254** can be translatably coupled to and/or engaged with the spacer member **252**. The spacer member **252** can include a first (e.g., distal and/or leading) side **256**, a second (e.g., proximal and/or trailing) side **258**, a third (e.g., anterior) side **260**, and/or a fourth (e.g., posterior) side **262**. The four sides can define a generally rectangular shape. The spacer member **252** can include a vertical, longitudinal plane **274**. The spacer member **252** can also include a cavity **264**. The cavity **264** can include an opening **266** on the third side **260** of the spacer member **252**. The spacer member **252** can also include a first mating element (not shown).

The first mating element of the spacer member 252 can be configured to engage the second mating element **268** of the fixation member **254**, described herein. In some embodiments, the spacer member 252 can include two or more first mating elements. The first mating element may be disposed within the cavity **264**. The first mating element can include, for example, a ramp, rack, and/or track. In some embodiments, the first mating element can define a curved, angled, and/or straight path. The path may extend generally transversely towards and/or away from the opening **266**. In some embodiments, the path may be parallel to a horizontal plane of the spacer member **252**. In other embodiments, the path may be perpendicular or skewed to the horizontal plane. [0069] The fixation member **254** can include a second mating element **268**. The fixation member **254** can include two or more second mating elements **268**. The second mating element **268** may be configured to be disposed within the cavity **264** of the spacer member **252**. The second mating element **268** can include, for example, a ramp, rail, rod, pinion, and/or other element configured to engage with and translate relative to the mating element of the spacer member **252**. As illustrated in FIG. 5, the two second mating elements **268** can each include a rail. The second mating element **268** may also define a path. The path of the second mating element **268** may be parallel to the path of the first mating element. The second mating element(s) **268** may each have different features (e.g., length, curvature, and/or angle). The second mating element **268** may be coupled perpendicularly to the fixation member **254**. In other embodiments, the second mating element **268** may be at a non-perpendicular angle (e.g., less than 90°) relative to the fixation member **254**. The fixation member **254** may be angled in any direction relative to the second mating element(s) **268** and/or spacer member 252. For example, the fixation member 254 may be angled towards the second side **258** (e.g., obliquely and/or anterolaterally), as illustrated in FIG. **5**. In other embodiments, the fixation member **254** may be angled towards an upper surface **270** or a lower surface (not shown) of the spacer member **252**. The fixation member **254** can include one or more bores **278** extending therethrough, wherein each may be configured to receive a fastener therein. Each bore **278** can include an axis **276**. When the device **250** is in an assembled configuration, the axis 276 can be offset (e.g., anterolaterally and/or obliquely) from the vertical, longitudinal plane **274** by an angle β , for example, in the range of from about 5° to about 90°. In some embodiments, β may be in the range of from about 5° to about 45°. In other embodiments, B may be in the range of from about 20° to about 30°. The second mating element **268** may be statically or dynamically (e.g., pivotably and/or articulably) coupled to the fixation member 254. In use, the fixation member 254 may be configured to translate at least partially into and out of the cavity 264 of the spacer member **252**. This may occur as the mating elements of the spacer member **252** and the fixation member **254** engage each other (e.g., two rails coupled to the fixation member **254** may slide along two tracks within the cavity **264** of the spacer member **252**).

[0070] In some embodiments, the device may further include an actuator (not shown). The actuator may be configured to urge translation of the fixation member **254** relative to the spacer member **252**. In some embodiments, the actuator may be configured to engage a tool, such as a driver. In other embodiments, the device **250** may further include a locking member (not shown). The locking member may be configured to maintain the position of the fixation member **254** relative to the spacer member **252**. In some embodiments, the locking member may be configured to inhibit retraction of the fixation member **254** towards the cavity **264**. In other embodiments, the mating elements may be configured to inhibit retraction of the fixation member **254**. For example, the mating elements may include teeth and/or ratcheting.

[0071] Embodiments herein are also directed to methods of installing the vertebral fusion device **250**. These methods can include providing the vertebral fusion device **250** in a collapsed configuration. In some embodiments, this step can include inserting the vertebral fusion device **250** between adjacent vertebrae along a lateral trajectory as described herein. In the collapsed configuration, the vertebral fusion device **250** may include a first width. In some embodiments, the first width may be equal to a width of the spacer member **252** as measured from third side **260** to

the fourth side **262**. An outer surface **272** of the fixation member **254** may be a first distance from the third surface **260** of the spacer member **252**. Additionally, when in the collapsed configuration, at least a portion of the mating element **268** may be located within the cavity **264** of the spacer member **252**. In some embodiments, the fixation member **254** may also be partially or completely located within the cavity **264**. Furthermore, when in the collapsed configuration, the vertebral fusion device **250** may include outer dimensions (e.g., length, width, and/or height) that are not greater than the outer dimensions of the spacer member **252** alone. When in the collapsed configuration, the device **250** may also be fully contained within the intervertebral disc space of a patient.

[0072] These methods can also include the step of transitioning the vertebral fusion device 250 from the collapsed configuration to an expanded configuration. In the expanded configuration, the device 250 can include a second width that is greater than the first width. The outer surface 272 of the fixation member 254 may be at a second distance from the third surface 260, wherein the second distance is greater than the first distance. A portion of the mating element 268 may be located outside the cavity 264. The transitioning step can include translating (e.g., extending) the fixation member 254 away from the spacer member 252 (e.g., anteriorly). This step can be performed by directly urging the fixation member 254 away from the spacer member 252, or indirectly by engaging the actuator. In some embodiments, this step can include sliding the mating element 268 of the fixation member 254 along the mating element of the spacer member 252. In some embodiments, the fixation member 254 may translate along an axis that is not parallel to the horizontal plane of the spacer member 252. In other embodiments, the fixation member 254 may translate, rotate, and/or pivot away from the spacer member 252. In embodiments that include a locking member, these methods can also include locking the fixation member 254 in the expanded configuration.

[0073] Some methods can further include inserting a fastener into bore **278** along axis **276**. In some embodiments, this step can include inserting the fastener at an angle, relative to the vertical, longitudinal plane **274**, in the range of from about 5° to about 90°. In other embodiments, this step can include inserting the fastener along an anterolateral and/or oblique trajectory. Advantageously, a user may be able to install the spacer member **252** and fixation member **254** along a first trajectory, and may be able to install the fastener(s) along a second trajectory. In use, when the fastener is installed along an anterolateral and/or oblique trajectory, various anatomical structures may advantageously be avoided, as described herein.

[0074] Turning to FIG. **6**, some embodiments herein are directed to a vertebral fusion device **300** that can include a spacer member **302** and a fixation member **304**. The spacer member **302** can include features of the other spacer members described herein. For example, the spacer member **302** may be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). The spacer member **302** may have a length (e.g., as measured between a leading end **306** and a trailing end **308**) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The spacer member **302** may also have a length that is configured to laterally span a vertebral endplate. For example, the spacer member **302** may have a length in the range of from about 40 mm to about 60 mm.

[0075] The fixation member **304** can include a base element **310** and a movable element **312**. The base element **310** can include a first (e.g., superior) end **314**, a second (e.g., inferior) end **316**, a distal surface **318**, and a proximal surface **320**. The base element **310** can also include at least one bore **322** configured to receive a fastener **323** therethrough. The base element **310** can be configured to engage the spacer member **302**, for example, at the trailing end **308** thereof. For example, the base element **310** can be statically or dynamically (e.g., pivotably and/or articulably) engaged with the spacer member **302**. In some embodiments, the base element **310** can be integrated with the spacer member **302**. In other embodiments, a coupling member, such as a set screw, can be configured to couple the base element **310** with the spacer member **302**. In yet other

embodiments, the base element **310** may not be engaged with the spacer member **302**. [0076] The movable element **312** can include a fastener portion **330** extending from a coupler portion **328**. In some embodiments, when assembled, the fastener portion **330** may be superior to the coupler portion **328**, or vice versa. The fastener portion **330** can include a bore **332** configured to receive a fastener **333** therethrough. The coupler portion **328** can be configured to couple and/or engage the base element **310**. In some embodiments, the coupler portion **328** can be configured to be at least partially received within the base element **310**. In other embodiments, the coupler portion **328** may be coupled to the distal surface **318** or proximal surface **320** of the base element **310**.

[0077] The base element **310** may be configured to be movably coupled with the movable element **312**. Accordingly, the base element **310** can include a first coupling feature **324** that can be configured to engage a second coupling feature **326** on the movable element **312**. In some embodiments, the first coupling feature 324 may be disposed at the first end 314 of the base element **310**. In other embodiments, the first coupling feature **324** may be disposed at the second end **316** of the base element **310**. The second coupling feature **326** may be disposed on the coupler portion **328** of the movable element **312**. In some embodiments, the first coupling feature **324** can include a protrusion, such as a prong, pin, bump, tongue, and/or rail, and the second coupling feature **326** can include a receptacle, such as a slot, channel, hole, groove, ledge, and/or track. In other embodiments, the first coupling feature **324** can include a receptacle and the second coupling feature **326** can include a protrusion. In yet other embodiments, the first and second coupling features 324, 326 may be coupled via a joint (e.g., a dovetail joint, a tongue and groove joint, and/or a splice joint). In some embodiments, the second coupling feature 326 may be configured to translate (e.g., slide) along the first coupling feature 324. In other embodiments, the second coupling feature **326** may be configured to pivot about the first coupling feature **324**. As illustrated in FIG. **6**, the first coupling feature **324** can include a slot at the first end **314** of the base element, and the second coupling feature 326 can include a flange extending from the coupler portion 328 of the movable element **312**. In some embodiments, the slot at the first end **314** of the base element **310** can include the first coupling feature **324** therein. In other embodiments, the fixation member **304** can include two or more movable elements engaged with the base element **310**. For example, the fixation member **304** can include an upper movable element configured to translate superiorly and/or a lower movable element configured to translate inferiorly.

[0078] In use, the fixation member **304** may be configured to reversibly transition between an extended configuration and a retracted configuration. In the retracted configuration, the fixation member **304** may have a first height. In some embodiments, the height may be measured from the fastener portion **330** of the movable element **312** to the second end **316** of the base element **310**. The fastener portion **330** may be separated from the second end **316** by a first distance. In some embodiments, at least a section of the coupler portion **328** may be disposed within the base element **310**. In the extended configuration, the fixation member **304** may have a second height that is greater than the first height. The fastener portion **300** may be separated from the second end **316** by a second distance that is greater than the first distance. In some embodiments, the section of the coupler portion **328** that was disposed within the base element **310** may be outside of the base element **310**. In some embodiments, the device **300** may also include a locking member (not shown). In these embodiments, the locking member may be configured to inhibit extension and/or contraction of the movable element **312**. For example, the locking member may include teeth, ratcheting, a fastener, and/or other blocking features.

[0079] Also described herein are methods for installing the vertebral fusion device **300**. These methods can include providing the vertebral fusion device **300** in a retracted configuration as described herein. In some embodiments, this step can include inserting the device **300** between adjacent vertebrae (e.g., L4-L5 vertebrae) along a lateral trajectory. These methods can also include transitioning the fixation member **304** from the retracted configuration to the extended

configuration, for example, by extending the movable element **312**. In some embodiments, the movable element **312** can translate (e.g., slide) relative to the base element **310**. For example, the movable element **312** can telescope at least partially out of the base element **310**. In other embodiments, this step can include pivoting the movable element **312** away from the base element **310**. This step can be performed by directly urging the movable element **312** away from the base element **310**, for example, by sliding the movable element **312** at least partially out of the slot on the base element **310**. In other embodiments, this step can be performed indirectly by activating an actuator engaged with the movable element **312**. In embodiments that include a locking member, the method can also include locking the fixation member **304** in the extended configuration. [0080] Some methods can further include inserting fastener **323** into bore **322** and/or inserting fastener **333** into bore **332**. Those skilled in the art may appreciate that the dynamic capability of the movable element **312** can advantageously enable a user to adjust a position of the fastener **333** based on the particular anatomy of an individual patient. Accordingly, some methods can further include extending and/or retracting the movable element **312** multiple times so as to calibrate and/or improve the location of fastener placement.

[0081] The vertebral fusion devices described herein can be used with one or more fasteners (e.g., bone screw, anchor, and/or staple). In any of these embodiments, a curved fastener can be used. One example is illustrated in FIG. 7A. Turning now to FIG. 7A, some embodiments herein are directed to a vertebral fusion device **350** that can include a spacer member **352**, a fixation member **354**, and a curved fastener **356**. In some embodiments, the device **350** can also include a straight fastener **374**. The spacer member **352** and fixation member **354** can include some or all of the features of the spacer members and fixation members described herein. For example, the spacer member 352 may be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). The spacer member 352 may have a length (e.g., as measured between a leading end **306** and a trailing end **308**) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The spacer member **352** may also have a length that is configured to laterally span a vertebral endplate. For example, the spacer member **352** may have a length in the range of from about 40 mm to about 60 mm. [0082] The fixation member **354** can include a first (e.g., superior) end **362**, a second (e.g., inferior) end **364**, a distal surface **366**, and a proximal surface **368**. The fixation member **354** can also include at least one bore configured to receive a fastener therethrough. As illustrated in FIG. 7A, the first end **362** can include a first bore **370** and the second end **364** can include a second bore **372**. The first and/or second bores **370**, **372** can each include an axis (not shown). In some embodiments, at least one axis (e.g., the axis of first bore **370**) can be perpendicular to the fixation member **354**. In other embodiments, at least one axis can be configured to be parallel to a vertical, longitudinal plane **351** of the spacer member **352**. In some embodiments, the fixation member **354** can include a height (e.g., as measured from the first end **362** to the second end **364**) that is greater than a height of the base member 352. In other embodiments, the height of the fixation member **354** can be less than or equal to the height of the base member **352**. In yet other embodiments, the device **350** may have a height that is configured to fit within a disc space.

[0083] The fixation member **354** can be configured to engage the spacer member **352**, for example, at the trailing end **360** thereof. For example, the fixation member **354** can be statically or dynamically (e.g., pivotably and/or articulably) engaged with the spacer member **352**. In some embodiments, the fixation member **354** can be integrated with the spacer member **352**. In other embodiments, a coupling member, such as a set screw, can be configured to couple the fixation member **354** with the spacer member **352**. In yet other embodiments, the fixation member **354** may not be engaged with the spacer member **352**.

[0084] The curved fastener **356** can include a curved, elongate body **376** extending from a head **378**. The elongate body **376** can be curved along a longitudinal axis thereof. In use, the elongate body **376** may be configured to curve away from the spacer member **352**. The elongate body **376**

may be configured to pass through a bore (e.g., first bore 370 and/or second bore 372). Accordingly, the body **376** may have a diameter and/or width that is less than a diameter of first bore **370**. The curved fastener **356** can be any suitable fastener member configured to couple an implant to a bone. For example, the curved fastener **356** can include an anchor, staple, and/or screw. In some embodiments, the body **376** can be threaded. In other embodiments, the body **376** can include one or more backout-prevention members, such as teeth and/or ratcheting. The body **376** can include a tapered tip. In some embodiments, the curved fastener **356** can be cannulated. The head 378 may be enlarged and/or rounded. In other embodiments, the head 378 may be cylindrical, conical, and/or frustoconical. The head **378** may be configured to engage the fixation member **354**. For example, the head may be configured to rest within one of the bores. As illustrated in FIG. 7A, curved fastener **356** can be engaged with the first (e.g., superior) bore **370** and straight fastener **374** can be engaged with the second (e.g., inferior) bore **372**. In other embodiments, curved fastener **356** can be engaged with the second (e.g., inferior) bore **372** and straight fastener **374** can be engaged with the first (e.g., superior) bore **370**. [0085] Embodiments herein are also directed to methods of installing the vertebral fusion device **350**. These embodiments can include providing the device **350** as described herein with respect to other vertebral fusion devices. For example, in some embodiments, this step can include inserting the device **350** into a space, such as between adjacent vertebrae (e.g., L4-L5 vertebrae), along a lateral trajectory. In some embodiments, the spacer member **352** and the fixation member **354** may be coupled prior to insertion. In other embodiments, the spacer member **352** and the fixation member 354 may be coupled after insertion (e.g., in situ). The method can also include inserting the curved fastener **356** into the first bore **370** at the first (e.g., superior) end **362** of the fixation member **354**. Furthermore, the curved fastener **356** can be inserted along a curved trajectory that is coaxial with the longitudinal axis of the body **376**. In some embodiments, this step can include inserting the body **376** into a superior vertebra. Those skilled in the art may appreciate that this

[0086] The vertebral fusion devices described herein may include a fastener configured to follow a trajectory that has been selected and/or altered to avoid certain anatomical structures as described herein. As described herein with respect to vertebral fusion device 350, in some embodiments, a curved fastener may be included. In an alternative embodiment, illustrated in FIG. 7B, the vertebral fusion device 350 can include one, two, or more fasteners 380 configured for lateral insertion along a posterior angle. The fastener 380 can include an elongate body 382 extending from a head 384. The elongate body 382 can extend along axis 386 in a straight line. The elongate body 382 can include a length configured for insertion through bore 370 at an angle to the vertical, longitudinal plane 351. In some embodiments, the elongate body 382 may have a length that is less than that of other fasteners (e.g., curved fastener 356 and/or straight fastener 374). Those skilled in the art may appreciate that fastener insertion along a posterior angle may entail the risk of injury to various anatomical structures. However, the shorter length of elongate body 382 may advantageously enable insertion in a posterior direction while inhibiting possible injury that may be caused by a fastener protruding into the body.

curved trajectory in the superior vertebra may advantageously be configured to avoid certain

anatomical structures as described herein.

[0087] In use, after the spacer member **352** and the fixation member **354** have been installed, the fastener **380** may be inserted into the first bore **370** in a posterior and/or posterolateral direction (e.g., towards posterior side **388** of spacer member **352**). The fastener **380** may also be inserted into a superior vertebra (e.g., an L4 vertebra). As illustrated in FIG. **7B**, the fastener **380** may be inserted along a trajectory such that the axis **386** intersects the vertical, longitudinal plane **351** of the spacer member **352**. The axis **386** and the plane **351** may intersect to form an angle γ that can be in the range of from about 5° to about 90°. In other embodiments, γ can be in the range of from about 20° to about 30°. In some embodiments, the fastener **380** may be inserted along a trajectory such that the distal

tip **390** of the fastener **380** does not protrude beyond the posterior side **388** of the spacer member **352**. Those skilled in the art may appreciate that the use of fastener **380** along this posterior approach may enable placement of the fastener while avoiding certain anatomical structures as described herein. In some embodiments, a fastener (e.g., curved fastener **356**, straight fastener **374**, and/or fastener **380**) may be also inserted into the second bore **372** and/or an inferior vertebra (e.g., an L5 vertebra).

[0088] In some embodiments, one or more bores of a fixation member may be angled to direct the trajectory of a fastener. As illustrated in FIGS. **8**A-B, vertebral fusion device **400** can include a spacer member **402** and a fixation member **404**. The spacer member **402** and the fixation member **404** can include some or all of the features of the spacer members and fixation members described herein, unless described otherwise. As illustrated in FIG. 8B, the fixation member 404 can include a first (e.g., superior) end **406**, a second (e.g., inferior) end **408**, a distal surface **410**, and a proximal surface **412**. The first end **406** can include a first bore **414** and the second end **408** can include a second bore **416**. In some embodiments, the first and/or second ends **406**, **408** can include two or more bores. As illustrated in FIG. **8**A, for example, the first end **406** can include first bore **414** and bore **418**. The first bore **414** can include an axis **420** that can be non-perpendicularly angled relative to the spacer member **402** and/or the fixation member **404**. As illustrated in FIG. **8**A, axis **420** can be configured to intersect a vertical, longitudinal plane **422** of the spacer member **352**. Axis **420** may extend in a posterior and/or posterolateral direction (e.g., towards posterior side **426** of spacer member **402**). The axis **420** and the plane **422** may intersect to form an angle (not shown) that can be in the range of from about 5° to about 90°. In other embodiments, the angle can be in the range of from about 5° to about 45°. In yet other embodiments, the angle can be in the range of from about 20° to about 30°. As illustrated in FIG. **8**B, axis **420** can also be configured to intersect a horizontal, longitudinal plane **424** of the spacer member **352**. Axis **420** may extend in an upward or superior direction (e.g., away from superior surface 428 of the spacer member 402). The axis **420** and the plane **424** may intersect to form an angle & that can be in the range of from about 5° to about 90°. In other embodiments, & can be in the range of from about 5° to about 45°. In yet other embodiments, 8 can be in the range of from about 20° to about 30°. Any other bores disposed on the fixation member **404** (e.g., bore **418**) can include an axis having a similar trajectory as described with respect to axis **420**.

[0089] In use, after the spacer member **402** and the fixation member **404** have been installed, a fastener **430** may be inserted into the first bore **414** along axis **420**. As illustrated in FIGS. **8**A-B, a curved fastener (e.g., curved fastener **356**) may be inserted therein. In other embodiments, a straight fastener may be used. The fastener may be a screw, anchor, and/or staple. The fastener may be inserted from an anterolateral and/or oblique position, and may extend posteriorly and/or posterolaterally. Advantageously, the angled axis **420** of bore **414** can direct a fastener away from certain anatomical structures as described herein, including, without limitation, the iliac crest, psoas major, dura, and/or lumbar plexus.

[0090] Turning now to FIG. **9**, an alternative embodiment of a vertebral fusion device is illustrated. Vertebral fusion device **450** can include a spacer member **452**, a fixation member **454**, and a clamp member **456**. The spacer member **452** and fixation member **454** can include some or all of the features of the spacer members and fixation members described herein. For example, the spacer member **452** may be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). The spacer member **452** may have a length (e.g., as measured between a leading end and a trailing end) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The spacer member **452** may also have a length that is configured to laterally span a vertebral endplate. For example, the spacer member **452** may have a length in the range of from about 40 mm to about 60 mm. The spacer member **452** can also include a plurality of horizontal grooves at a trailing end thereof. In some embodiments, the grooves can be disposed on a proximal surface and/or on an inner surface of the

spacer member **452**. Each groove can include a non-symmetrical slope. For example, each groove can be slanted, tapered, and/or sawtooth-shaped. The grooves can be configured to engage the clamp member **456** as described further herein.

[0091] In some embodiments, the spacer member **452** may be configured to engage the fixation member **454**. The fixation member **454** can include a first (e.g., superior) end **458** and a second (e.g., inferior) end **460**. The fixation member **454** can also include at least one bore configured to receive a fastener therethrough. As illustrated in FIG. **9**, the second end **460** can include a single bore **462** therethrough. In some embodiments, the fixation member **454** may include only one bore. In other embodiments, the first end **458** may not include any bores. In yet other embodiments, the second end **460** may not include any bores. In some embodiments, the fixation member **454** can include a height (e.g., as measured from the first end **458** to the second end **460**) that is greater than a height of the spacer member **452**. In other embodiments, the height of the fixation member **454** can be less than or equal to the height of the spacer member **452**. In yet other embodiments, the device **450** may have a height that is configured to fit within a disc space (e.g., between two adjacent vertebrae).

[0092] The clamp member **456** can include first and second prongs **464**, **466** extending generally perpendicularly from a body portion **468**. The body portion **468** can be straight or curved. In some embodiments, the body portion **468** may be curved. In some embodiments, the body portion **468** may include a radius of curvature that is greater than that of a fastener body and not larger than that of a fastener head. The body portion **468** and first and second prongs **464**, **466** may define a U-shaped opening **470**. Each prong **464**, **466** can include a tip **472**, **474** having a retention feature **476**, **478** thereon. The retention feature **476**, **478** may include a projection angled away from the tip, such as a sawtooth, barb, or ratchet. The retention feature **476**, **478** may be configured to engage the grooves on the spacer member **452**.

[0093] Also described herein are methods for installing the vertebral fusion device **450**. These embodiments can include providing the device **450** as described herein with respect to other vertebral fusion devices. For example, in some embodiments, this step can include inserting the device **450** into a space, such as between adjacent vertebrae (e.g., L4-L5 vertebrae), along a lateral trajectory. In some embodiments, the spacer member **452** and the fixation member **454** may be coupled prior to insertion. In other embodiments, the spacer member **452** and the fixation member **454** may be coupled after insertion (e.g., in situ). A fastener **480** can be inserted into the bore **462** on the second end **460** of the fixation member **454**. Any of the fasteners described herein can be used. In some embodiments, this step can include inserting the fastener **480** into an inferior vertebra.

[0094] Methods described herein can also include placing the clamp member **456** above the fixation member **454**. In some embodiments, this step can include superficially placing the clamp member **456** on a surface (e.g., a lateral surface) of a superior vertebra. A fastener **482** can then be inserted within the U-shaped opening **470** of the clamp member **456**. The fastener **482** may also be inserted above the fixation member **454**. Those skilled in the art may appreciate that the fastener **482** may not be inserted into a bore in the fixation member. Advantageously, this feature may provide a user with greater flexibility with regarding fastener placement. The methods can also include translating (e.g., compressing) the clamp member **456** towards the spacer member **452** until the retention features **476**, **478** of the clamp member **456** engage the grooves on the spacer member **452**. Those skilled in the art may appreciate that features of the clamp member **456** and the spacer member 452 may form a ratcheting mechanism, wherein the grooves of the spacer member 452 enable translation of the clamp member **456** towards spacer member (e.g., in an inferior and/or downward direction) and inhibit translation of the clamp member 456 in the reverse direction (e.g., superior and/or upward). Additionally, the head of the fastener member 482 may inhibit lateral motion of the clamp member **456**. In other embodiments, those skilled in the art may appreciate that the fixation member **454** can include a bore at the first end **458** only, and the clamp member

456 can be placed below the fixation member **454** (e.g., on an inferior vertebra). [0095] Turning to FIGS. **10**A-B, an alternative embodiment of a vertebral fusion device is illustrated. Vertebral fusion device **500** can include a spacer member **502**. The vertebral fusion device **500** can also include a fastener **506**. The spacer member **502** can include some or all of the features of the spacer members described herein, unless described otherwise. As illustrated in FIGS. **10**A-B, the spacer member **502** can include a leading end **508**, a trailing end **510**, a first (e.g., anterior) side **512**, a second (e.g., posterior) side **514**, an upper (e.g., superior) side **516**, and a lower (e.g., inferior) side **518**. The spacer member **502** may be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). The spacer member **502** may have a length (e.g., as measured between leading end **508** and trailing end **510**) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The spacer member **502** may also have a length that is configured to laterally span a vertebral endplate. For example, the spacer member **502** may have a length in the range of from about 40 mm to about 60 mm.

[0096] The spacer member **502** may also include a receptacle **520** (e.g., a bore and/or channel) configured to receive at least a portion of fastener **506** therethrough, as illustrated in FIG. **10**B. In some embodiments, the receptacle **520** can include an opening on the upper and/or lower sides **516**, **518**. In other embodiments, the receptacle **520** can include an opening on the first and/or second sides **512**, **514**. The receptacle **520** can include an axis **526**. In some embodiments, the axis **526** can be generally straight; in other embodiments, the axis **526** can be generally curved. As illustrated in FIG. **10**B, the axis **526** can be offset from a vertical plane (e.g., longitudinal vertical plane **522** and/or transverse vertical plane **524**) of the spacer member **502**. The axis **526** may be offset from a vertical plane of the spacer member **502** by an angle in the range of from about 5° to about 90°. In some embodiments, the axis **526** may be offset from a vertical plane of the spacer member **502** by an angle in the range of from about 5° to about 45°. In other embodiments, the axis **526** may be offset from a vertical plane of the spacer member **502** by an angle in the range of from about 20° to about 30°. In some embodiments, the axis **526** can intersect a vertical plane of the spacer member **502**. The spacer member **502** can include a locking member and/or a retention member, such as ratcheting, teeth, barbs, and/or blades, which can be configured to retain the fastener **506** therein. [0097] The vertebral fusion device **500** may or may not include a fixation member (not shown). In some embodiments, the spacer member **502** may be configured to engage a fixation member. In some embodiments, the fixation member may be configured to engage one or more areas of the spacer member **502**, such as the leading end **508**, trailing end **510**, first side **512**, second side **514**, upper side **516**, and/or lower side **518**. In some embodiments, the fixation member may be configured to engage an outer surface of the spacer member 502. In other embodiments, the fixation member may be configured to engage an inner surface of the spacer member 502. The fixation member can include one or more dimensions (e.g., length, width, and/or height) that are not larger than that of the spacer member **500**. The fixation member may be generally flat and/or planar. The fixation member may include a bore passing therethrough, and may be configured to receive the fastener **506** therein.

[0098] The spacer member **502** may be configured to engage (e.g., receive) the fastener **506**. As illustrated in FIG. **10**A, the fastener **506** can include an elongate body **528** extending from a head **530**. The fastener **506** can include a screw, anchor, and/or staple. The fastener **506** can include one or more features of the fasteners described herein. The elongate body **528** can be threaded. The elongate body **528** can be configured to pass through the bore **520** of the spacer member **502**. The elongate body **528** can have a length that can be configured to be greater than an intervertebral space, as illustrated in FIG. **10**A. The length of the elongate body **528** can be greater than the height of the spacer member **502**. As illustrated in FIG. **10**A, the elongate body **528** can be configured to engage two adjacent vertebral bodies.

[0099] Embodiments herein are also directed to methods of installing the vertebral fusion device

500. These methods can include providing the device **500** as described herein with respect to other vertebral fusion devices. For example, in some embodiments, this step can include inserting the device **500** into a space, such as between adjacent vertebrae (e.g., L4-L5 vertebrae), along a lateral trajectory. Methods described herein can also include the step of inserting the fastener **506** through the bore **520** of the spacer member **502**. In some embodiments, when the fastener **506** is inserted, it can extend above and below the device 500 (e.g., beyond upper and lower sides 516, 518). In other embodiments, when the fastener **506** is inserted, it can be located within a perimeter of the device 500 (e.g., within the leading end 508, trailing end 510, first side 512, and second side 514). In some embodiments, this step can include inserting the fastener **506** through an inferior vertebra, the device **500**, and a superior vertebra. In other embodiments, this step can include inserting the fastener **506** through a superior vertebra, the device **500**, and an inferior vertebra. In some embodiments, the fastener **506** can be inserted from an anterolateral and/or oblique position (e.g., between a direct lateral and direct anterior point of entry). In other embodiments, the fastener **506** can be inserted from a position anterior to the iliac crest. Advantageously, those skilled in the art may appreciate that these approaches may enable retention of the device **500** between adjacent vertebral bodies while avoiding certain anatomical structures. Some embodiments can also include locking the fastener 506 relative to the spacer member 502. This step can include actuating the locking member. In other embodiments, a retention member may retain the fastener **506** relative to the spacer member **502** without a separate actuation step.

[0100] Turning now to FIGS. 11A-B, an alternative embodiment of a vertebral fusion device is illustrated. Vertebral fusion device **550** can include a spacer member **552** and a fixation member **554**. The spacer member **552** and the fixation member **554** can include some or all of the features of the spacer members and fixation members herein, unless described otherwise. For example, the spacer member **552** may be configured for insertion between adjacent vertebrae via a lateral procedure (e.g., lateral lumbar interbody fusion). The spacer member 552 may have a length (e.g., as measured between a leading end and a trailing end) that is about 100-300% greater than a width thereof (e.g., as measured in the anterior-posterior direction). The spacer member 552 may also have a length that is configured to laterally span a vertebral endplate. For example, the spacer member 552 may have a length in the range of from about 40 mm to about 60 mm. As illustrated in FIGS. **11**A-B, the spacer member **552** can also include one or more retention members **556**. In some embodiments, the spacer member **552** can include a plurality of retention members **556**. Each retention member **556** can be configured to urge, encourage, and/or retain the vertebral fusion device **550** within an intervertebral space. In some embodiments, each retention member **556** can include a spike, anchor, and/or shim. Advantageously, the retention member(s) **556** can be deployable, extendable, and/or expandable. In some embodiments, the retention member(s) 556 may be located within the spacer member **552**. Each retention member **556** may be configured to transition between a retracted state, wherein the retention member 556 is contained within the spacer member **552**, to a deployed state, wherein at least a portion of the retention member **556** is protruding beyond the spacer member 552. In some embodiments, the spacer member 552 can include one or more holes, for example, on upper surface **558**, through which the retention member(s) **556** can pass. In other embodiments, the device **550** can further include an actuator (not shown) that can be configured to deploy and/or retract the retention member(s) **556**. [0101] In some embodiments, the spacer member **552** may be configured to engage the fixation member **554**. In these embodiments, the fixation member **554** may be configured to statically or dynamically (e.g., pivotably and/or articulably) engage the spacer member **552** as described herein. The fixation member **554** can include a first (e.g., superior) end **560** and a second (e.g., inferior) end **562**. The fixation member **554** can also include at least one bore configured to receive a fastener therethrough. As illustrated in FIGS. 11A-B, the second end 562 can include a single bore **564** therethrough. In some embodiments, the fixation member **554** may include only one bore. In other embodiments, the first end **560** may not include any bores. In yet other embodiments, the

second end **562** may not include any bores. In some embodiments, the fixation member **554** can include a height (e.g., as measured from the first end **560** to the second end **562**) that is greater than a height of the spacer member **552** (e.g., as measured between the upper surface **558** and lower surface **559**). In other embodiments, the height of the fixation member **554** can be less than or equal to the height of the spacer member **552**. When in an assembled configuration, as illustrated in FIGS. **11**A-B, the first end **560** may not extend beyond the upper surface **558** of the spacer member **552**, while the second end **562** may extend beyond the lower surface **559** of the spacer member **552**.

[0102] Also described herein are methods for installing the vertebral fusion device **550**. These embodiments can include providing the device **550** as described herein with respect to other vertebral fusion devices. For example, in some embodiments, this step can include inserting the device **550** into a space, such as between adjacent vertebrae (e.g., L4-L5 vertebrae), along a lateral trajectory. In some embodiments, the spacer member **552** and the fixation member **554** may be coupled prior to insertion. In other embodiments, the spacer member **552** and the fixation member **554** may be coupled after insertion (e.g., in situ). The vertebral fusion device **550** may be provided with the retention member(s) **556** in a retracted configuration. In this configuration, the retention member(s) **556** may be retained within the spacer member **552**. A fastener **566** can be inserted into the bore **564** on the second end **562** of the fixation member **554**. A ny of the fasteners described herein can be used. In some embodiments, this step can include inserting the fastener **566** into an inferior vertebra. The methods can also include transitioning the retention member(s) **556** from the retracted configuration to the deployed configuration. This step can include deploying, extending, and/or expanding the retention member(s) **556** so that they are at least partially protruding beyond an outer surface (e.g., upper surface 558) of the spacer member 552. This step can also include engaging (e.g., gripping, biting, penetrating, and/or piercing) a superior vertebra with the retention member(s) **556**. Those skilled in the art may appreciate that because the device **550** uses internal retention member **556** to engage the superior vertebra, a user advantageously may avoid interference from the iliac crest and other anatomical features. [0103] Turning now to FIGS. **12**A-F, an alternative embodiment of a vertebral fusion device is

illustrated. Unless otherwise described herein, vertebral fusion device 600 can include some or all of the features of the vertebral fusion devices described in U.S. patent application Ser. No. 14/449,428, entitled "VARIABLE LORDOSIS SPACER AND RELATED METHODS OF USE," filed Aug. 1, 2014, U.S. Patent Publication No. 2014/0163683, entitled "EXPANDABLE VERTEBRAL IMPLANT," published Jun. 12, 2014, and U.S. Patent Publication No. 2013/0023993, entitled "EXPANDABLE FUSION DEVICE AND METHOD OF INSTALLATION THEREOF," published Jan. 23, 2013, all of which are hereby incorporated by reference herein in their entireties for all purposes. Vertebral fusion device **600** can include a first (e.g., upper and/or superior) endplate **602**, a second (e.g., lower and/or inferior) endplate **604**, a first engagement, angled, or ramped body **606**, and a second engagement, angled or ramped body 608. As illustrated in FIG. 12C, the device 600 can also include a first side 601 and a second side **603**. As described further herein, vertebral fusion device **600** can include an adjustable height and/or lordotic angle. In these embodiments, the first and/or second endplates **602**, **604** may be configured to pivot about a pivot point, as described herein with respect to vertebral fusion device **800**. The vertebral fusion device **600** may be wedge-shaped along a latitudinal axis. For example, the device **600** may have a height that increases from the first side **601** to the second side **603**. In some embodiments, the first and/or second ramped bodies **606**, **608** may be wedge-shaped. [0104] First endplate **602** can include a body portion that can include a first (e.g., leading and/or distal) end 610 a second (e.g., trailing and/or proximal) end 612, a first (e.g., posterior) side 618, and a second (e.g., anterior) side **620**. The body portion of the first endplate **602** can also include an outer surface **614**, an inner surface **616**, an upper surface **622**, and a lower surface **628**. As illustrated in FIG. 12A, the upper surface 622 can include a plurality of protrusions (e.g., bumps,

teeth, and/or peaks) configured to engage a vertebral body. The upper surface **622** can be generally planar, concave, and/or convex. The first endplate **602** can include one or more mating features **624**. In some embodiments, the mating feature(s) **624** may be located on the inner surface **616**. In other embodiments, the first side **618** may include at least one mating feature **624**, and the second side **620** may include at least one mating feature **624**. In yet other embodiments, the first and/or second sides **618**, **620** can each include a mating feature at the first end **610**, a mating feature at an intermediate portion, and a mating feature at the second end **612**.

[0105] As illustrated in FIG. **12**A, the first endplate **602** can also include a first extension portion **648**. The first extension portion **648** can extend, e.g., vertically, from the second end **612** of the body portion of the first endplate **602**. The first extension portion **648** can have a height that is greater than a height of the body portion of the first endplate **602**. For example, the first extension portion **648** may extend beyond the upper surface **622**. In some embodiments, the first extension portion **648** may be coupled (e.g., attached, joined, and/or connected) to the first endplate **602**. In some embodiments, the first extension portion **648** may be moveably (e.g., articulably) coupled to the body portion of the first endplate **602**, for example, as described herein with respect to vertebral fusion device **50**. For example, the body portion of the first endplate **602** and the extension portion **648** may together form a dovetail joint. In some embodiments, the first extension portion **648** and the body portion of first endplate **602** may each include a different material (e.g., a metal and/or a polymer). In other embodiments, the first extension portion **648** and the body portion of the first endplate **602** may form a unitary body. The first extension portion **648** can include a bore **650** passing therethrough. The bore **650** can be configured to receive a fastener **651** therein. The first extension portion **648** can also include a receptacle **654**. The receptacle **654** may at least partially overlap the bore **650**. The receptacle **654** may be configured to receive a retention member **656** therein.

[0106] As illustrated in FIG. **12B**, the bore **650** can include an axis **652**. In some embodiments, axis **652** may be generally parallel to a longitudinal axis (e.g., midline) **626** of the first endplate **602**. In other embodiments, axis **652** may be skewed relative to the longitudinal midline **626**. In yet other embodiments, axis **652** may be configured to intersect a vertical, longitudinal plane **658** of the assembled device **600**, as illustrated in FIG. **12**C. In some embodiments, the axis **652**, bore **650**, and/or first extension portion **648** may be horizontally offset from the longitudinal midline **626** and/or vertical, longitudinal plane **658**. In some embodiments, the axis **652**, bore **650**, and/or first extension portion **648** may be horizontally offset towards the second side **620**. As illustrated in FIG. **12**C, the axis **652** can intersect the plane **658** by an angle ε . In some embodiments, & can be in the range of from about 0° to about 90°. In other embodiments, ε can be in the range of from about 20° to about 30°. In some embodiments, another angle γ can be provided, as shown in FIG. **12B**. In some embodiments, axis **652** can be arranged from 0-90 degrees off angle γ .

[0107] Second endplate **604** can include some or all of the same features as the first endplate **602**. In some embodiments, the first and second endplates **602**, **604** may be symmetrical with respect to each other. As illustrated in FIG. **12**A, second endplate **604** can include a body portion that can include a first (e.g., leading and/or distal) end **630**, a second (e.g., trailing and/or proximal) end **632**, a first (e.g., posterior) side **634**, and a second (e.g., anterior) side **636**. The body portion of the second endplate **604** can also include an outer surface **638**, an inner surface **640**, an upper surface **642**, and a lower surface **644**. The lower surface **644** can include a plurality of protrusions (e.g., bumps, teeth, and/or peaks) configured to engage a vertebral body. The lower surface **644** can be generally planar, concave, and/or convex. The second endplate **604** can include one or more mating features **646**. In some embodiments, the mating feature(s) **646** may be located on the inner surface **640**. In other embodiments, the first side **634** may include at least one mating feature **646**, and the second side **636** may include at least one mating feature **646**. In yet other embodiments, the first and/or second sides **634**, **636** can each include a mating feature at the first end **630**, a mating

feature at an intermediate portion, and a mating feature at the second end **632**.

[0108] As illustrated in FIG. **12**A, the second endplate **604** can also include a second extension portion **660**. The second extension portion **660** can extend, e.g., vertically, from the second end **632** of the body portion of the second endplate **604**. The second extension portion **660** can have a height that is greater than a height of the body portion of the second endplate **604**. For example, the second extension portion 660 may extend beyond the lower surface 644. In some embodiments, the second extension portion **660** may be coupled (e.g., attached, joined, and/or connected) to the body portion of the second endplate **604**. In some embodiments, the second extension portion **660** may be articulably coupled to the body portion of the second endplate **604**, for example, as described herein with respect to vertebral fusion device **50**. For example, the body portion of the second endplate **604** and the second extension portion **660** may together form a dovetail joint. In some embodiments, the second extension portion **660** and the body portion of the second endplate **604** may each include a different material (e.g., a metal and/or a polymer). In other embodiments, the second extension portion **660** and the body portion of the second endplate **604** may form a unitary body. The second extension portion **660** can include a bore **662** passing therethrough. The bore **662** can be configured to receive a fastener **663** therein. The second extension portion **660** can also include a receptacle **664**. The receptacle **664** may at least partially overlap the bore **662**. The receptacle **664** may be configured to receive a retention member **666** therein. [0109] As illustrated in FIG. **12**B, the bore **662** can include an axis **668**. In some embodiments, axis **668** may be generally parallel to a longitudinal axis (e.g., midline) **670** of the second endplate **604**. In other embodiments, axis **668** may be skewed relative to the longitudinal midline **670**. In yet other embodiments, axis 668 may be configured to intersect a vertical, longitudinal plane (not shown) of the second endplate **604**, which may be coplanar with the vertical, longitudinal plane **658** of the first endplate **602**. In some embodiments, the axis **668**, bore **662**, and/or second extension portion **660** may be horizontally offset from the longitudinal midline **670** and/or vertical, longitudinal plane. In some embodiments, the axis **668**, bore **662**, and/or second extension portion **660** may be horizontally offset towards the second side **636**. In some embodiments, the axis **668** can intersect the plane (e.g., including plane **658**) by an angle. In some embodiments, the angle can be in the range of from about 0° to about 90°. In other embodiments, the angle can be in the range of from about 5° to about 45°. In yet other embodiments, the angle can be in the range of from about 20° to about 30°. In still other embodiments, the angle can be equal to ε as described herein. [0110] As illustrated in FIG. 12B, mating feature 624 of the first endplate 602 may be inclined (e.g., may extend from lower surface **628** towards upper surface **622**) along longitudinal axis **626** in a direction from the second end **612** towards the first end **610**. In some embodiments, mating feature **624** may be angled, e.g., towards the first end **610**. In other embodiments, mating feature **624** may be inclined along the longitudinal axis **626** in a direction from the first end **610** towards the second end **612**. In some embodiments, mating feature **646** of the second endplate **604** may be declined (e.g., may extend from upper surface **642** towards lower surface **644**) along longitudinal axis **670** in a direction from the second end **632** towards the first end **640**. In some embodiments, mating feature **646** may be angled, e.g., towards the first end **630**. In other embodiments, mating feature **646** may be declined along the longitudinal axis **670** from the first end **630** towards the

[0111] As described further herein, the first and/or second endplates **602**, **604** may be configured to engage (e.g., mate with) the first ramped body **606**. As illustrated in FIG. **12**A, the first ramped body **606** can include a first (e.g., leading and/or distal) end **672**, a second (e.g., trailing and/or proximal) end **674**, a first (e.g., posterior) side portion **676**, and a second (e.g., anterior) side portion **678**. As illustrated in FIG. **12**B, the first ramped body **606** can also include a third (e.g., superior) end **680** and a fourth (e.g., inferior) end **682**. The third end **680** may include one or more mating features **684** configured to engage the first endplate **602** and the fourth end **682** may include one or more mating features **686** configured to engage the second endplate **604**. The first side

second end **632**.

portion **676** and/or the second side portion **678** can include one or more mating features **684**, **686** configured to engage the first and/or second endplates **602**, **604**. In some embodiments, the first end **672** can include two or more mating features **684** on the third end **680** and two or more mating features **686** on the fourth end **682**. Each of the mating features of the first ramped body **606** may be configured (e.g., shaped) to mate with a corresponding mating feature **624**, **646** on the first and/or second endplates 602, 604. Mating features 684, 686 may have substantially similar inclinations, when in an assembled configuration, as their corresponding mating features 624, 646. In some embodiments, each mating feature **684** is inclined towards the first end **672** of the first ramped body **606**, and each mating feature **686** is declined towards the first end **672** of the first ramped body **606**. In other embodiments, mating feature **684** and mating feature **686** may diverge from each other along a longitudinal axis from a position relatively adjacent to the second end 674 to a position relatively adjacent to the first end 672. In yet other embodiments, the mating features **684**, **686** may be angled, e.g., towards the first end **672**. In still other embodiments, one or more mating features **684** may be inclined towards the second end **674** of the ramped body **606** and/or one or more mating features **686** may be declined towards the second end **674** of the ramped body **606**. In some embodiments, one or more mating features **684**, **686** can include a protrusion (e.g., a tongue, rail, and/or shoulder). In other embodiments, one or more mating features **684**, **686** can include a recess (e.g., a groove, track, and/or channel). In some embodiments, for example, as illustrated in FIG. 12B, the mating features 684, 686 can alternate longitudinally along the first and/or second sides 676, 678. In other embodiments, for example, as illustrated in FIG. 12B, the mating features **684**, **686** can alternate transversely along the first and/or second sides **676**, **678**. Each mating feature **684** on the first ramped body **606** can be generally the same. Each mating feature **686** may be generally the same. In some embodiments, at least one mating feature **684** and/or **686** may include different properties as compared to the other mating features **684**, **686**. [0112] The mating features **624**, **646** on the first and/or second endplates **602**, **604** as described herein may be configured to form a slidable joint with a corresponding mating feature **684 686** on the first ramped body **606**. Accordingly, the first ramped body **606** may be configured to slideably engage the first and/or second endplates **602**, **604**. The slideable joint may advantageously enable the vertebral fusion device **600** to transition reversibly between expanded and contracted configurations. The slidable joint may include, for example, a tabled splice joint, a dovetail joint, a tongue and groove joint, or another suitable joint. In some embodiments, one or more mating features on the first and/or second endplates 602, 604 can include a recess (e.g., a groove, track, and/or channel), and one or more mating features on the first ramped body 606 can include a protrusion (e.g., a tongue, rail, and/or shoulder) configured to slide within the groove. In other embodiments, one or more mating features on the first and/or second endplates 602, 604 can include a protrusion and one or more mating features on the first ramped body 606 can include a recess.

[0113] As illustrated in FIG. 12A, the second end 674 of the first ramped body 606 can include a first threaded bore 688 passing longitudinally therethrough. The first threaded bore 688 may be configured to receive (e.g., threadably engage) a threaded member 704 of an actuator 702. As illustrated in FIG. 12A, the threaded member 704 of the actuator 702 can include a proximal end having a tool-engaging recess 710. As illustrated in FIGS. 12A-B, the actuator 702 can also include a washer 706 and/or a snap ring 708. The second end 674 of the first ramped body 606 can also include a second bore 690 passing longitudinally therethrough. In some embodiments, the second bore 690 may be threaded. The second bore 690 may be configured to engage an inserter. In other embodiments, the second bore 690 can advantageously be configured for use as an access port to enable graft material to be delivered into a cavity 692 (illustrated in FIG. 12C) of the device 600. The second bore 690 may be laterally displaced from the first threaded bore 688. In some embodiments, the first threaded bore 688 may be located adjacent to the second side 678 of the first ramped body 606 and the second bore 690 may be located adjacent to the first side 676, or vice

versa. In other embodiments, the first threaded bore **688** may be anteriorly offset relative to the second bore **690**, or vice versa. In some embodiments, illustrated in FIG. **12**E, the second bore **690** can be located adjacent to the second side **678** and/or anteriorly offset relative to the first threaded bore **688**. In these embodiments, the device **600** may be advantageously configured to engage an inserter at an angle offset from the plane **658**, thereby enabling a user to position the device **600** in a direct lateral orientation, e.g., in a patient's lumbar spine, while reducing interaction with the psoas muscle.

[0114] The first threaded bore **688** and/or the second bore **690** can include an axis that is horizontally offset from the vertical, longitudinal plane **658**. In some embodiments, the axis (e.g., of the first threaded bore **688** and/or the second bore **690**) can be horizontally offset towards the second side **678**. In some embodiments, the axis of the first threaded bore **688** and/or the second bore **690** can intersect the plane **658** to form an angle. In some embodiments, the angle can be in the range of from about 0° to about 90°. In other embodiments, the angle can be in the range of from about 5° to about 45°. In yet other embodiments, the angle can be in the range of from about 20° to about 30°. In still other embodiments, the angle can be equal to & as described herein. [0115] When in an assembled configuration, the second ramped body **608** can be disposed adjacent to the first ramped body **606**. Second ramped body **608** can include one or more mating features configured to engage corresponding mating features **624**, **646** on the first and/or second endplates **602**, **604**. The mating features on the second ramped body **608** can include some or all of the same features as the mating features **684**, **686** of the first ramped body **606**. As illustrated in FIG. **12**A, the second ramped body **608** can include a first bore **694**. The first bore **694** can be configured to be coaxial with the first threaded bore **688** of the first ramped body **606** when in an assembled configuration. The first bore **694** may be configured to receive the head portion of the actuator **702** therein. In use, the head portion may be configured to rotate within the first bore **694**. The second ramped body **608** can also include a second bore **696**. The first and/or second bores **694**, **696** may be threaded. In some embodiments, the second bore **696** can be configured to engage an inserter. The second bore **696** can be configured to be coaxial with the second bore **690** of the first ramped body **606** when in an assembled configuration. The second bore **696** can be laterally displaced from the first bore **694**. In some embodiments, the first bore **694** may be located adjacent to a second side **698** of the second ramped body **606** and the second bore **696** may be located adjacent to a first side **697**, or vice versa. In other embodiments, the first bore **694** may be anteriorly offset relative to the second bore **696**, or vice versa. In some embodiments, illustrated in FIG. **12**E, the second bore **696** can be located adjacent to the second side **698** and/or anteriorly offset relative to the first bore **694**. In these embodiments, the device **600** may be advantageously configured to engage an inserter at an angle offset from the plane **658**, thereby enabling a user to position the device **600** in a direct lateral orientation, e.g., in a patient's lumbar spine, while reducing interaction with the psoas muscle.

[0116] The first bore **694** and/or the second bore **696** can include an axis that is horizontally offset from the vertical, longitudinal plane **658**. In some embodiments, the axis of the first bore **694** and/or the second bore **696** can be horizontally offset towards the second side **698**. In some embodiments, the axis of the first bore **694** and/or the second bore **696** can intersect the plane **658** to form an angle. In some embodiments, the angle can be in the range of from about 0° to about 90°. In other embodiments, the angle can be in the range of from about 5° to about 45°. In yet other embodiments, the angle can be equal to E as described herein.

[0117] The vertebral fusion device **600** can advantageously include an adjustable height and/or lordotic angle. In some embodiments, the device **600** may be expandable. The vertebral fusion device **600** may advantageously be configured to reversibly transition between a collapsed configuration and an expanded configuration. In the collapsed configuration, for example, as illustrated in FIG. **12**D, the vertebral fusion device **600** can include a first height (e.g., as measured

from the upper surface **622** of the first endplate **602** to the lower surface **644** of the second endplate **604**). In the expanded configuration, for example, as illustrated in FIG. **12**F, the vertebral fusion device **600** can include a second height that is greater than the first height. In some embodiments, the second height can be from about 25% to about 200% greater than the first height. In other embodiments, the second height can be from about 100% to about 150% greater than the first height. In some embodiments, the first height can be in the range of from about 5 mm to about 10 mm, and/or the second height can be in the range of from about 15 mm to about 20 mm. In some embodiments, the change in height can be caused by movement of the first and second endplates **602**, **604** towards and/or away from each other. In these embodiments, the first and second endplates **602**, **604** can be separated by a first distance when in the collapsed configuration and a second distance when in the expanded configuration, wherein the second distance is greater than the first distance. Those skilled in the art may appreciate that, in use, the height of the vertebral fusion device **600** can be adjusted to accommodate an individual patient's anatomy. Additionally, the device **600** may be inserted into an intervertebral space in the collapsed configuration, which may entail less trauma to surrounding tissue due to its smaller size.

[0118] Embodiments herein are also directed to methods of installing the vertebral fusion device **600**. Methods can include providing the device **600** in the collapsed configuration, for example, as illustrated in FIG. **12**D. In some embodiments, this step can include providing (e.g., inserting) the device **600** between two adjacent vertebrae (e.g., between the L4 and L5 vertebrae). In some embodiments, the device **600** can be inserted using an inserter, such as a straight inserter or an angled inserter. In these embodiments, the methods of installation can include coupling the inserter with the device **600**, for example, threading a threaded member of the inserter into the second bore **690**, **696** of the first and/or second ramps **606**, **608**. In some embodiments, the device **600** may be inserted along a lateral approach, for example, when a straight inserter is used. In other embodiments, the device **600** can be inserted along an anterolateral and/or oblique approach, for example, when an angled inserter is used. In these embodiments, the device **600** can be subsequently pivoted into a lateral orientation while in the intervertebral space. In some embodiments, the device **600** may be inserted using minimally invasive methods. In some embodiments, the intervertebral space may be prepared beforehand, for example, by performing a discectomy to remove some or all of the intervertebral disc.

[0119] Methods herein can also include expanding the device **600**, for example, by transitioning the device **600** from the collapsed configuration to the expanded configuration. To expand the device **600**, the second ramped body **608** may be moved towards the first ramped body **606**, or vice versa. As the first and second ramps **606**, **608** translate towards each other, the respective mating features of the first and second ramps **606**, **608** may push against corresponding mating features on the first and second endplates **602**, **604**, thereby pushing the first and second endplates **602**, **604** apart and increasing the height of the device **600**.

[0120] In some embodiments, the step of expanding the device **600** can include actuating the actuator **702**. This step can include applying a rotational force to the threaded member **704** to threadably engage the first ramped body **606**. The rotational force can be added directly (e.g., manually) and/or indirectly (e.g., through a driver or other tool). In some embodiments, as the threaded member **704** is rotated in a first direction, the threaded member **704** may pull the first ramped body **606** towards the second ramped body **608**. As the first ramped body **606** moves towards the second ramped body **608**, the mating features on the first ramped body **606** may engage the mating features on the first and/or second endplates **602**, **604**, thereby pushing (e.g., wedging) the first and second endplates **602**, **604** apart. In other embodiments, as the threaded member **704** is rotated in a second direction, the threaded member **704** may push the first ramped body **606** away from the second ramped body **608**. Those skilled in the art may appreciate that the device **600** may be reversibly expandable. Accordingly, some embodiments can include reducing the height of the device **600**, for example, by bringing the first and second endplates **602**, **604**

together.

[0121] In some embodiments, the device **600** can include a locking member configured to lock the device **600** in a desired configuration (e.g., at a desired height). In other embodiments, after the device **600** is expanded, bone growth material may be introduced into the cavity **692** through a channel **691**, as illustrated in FIG. **12**F. The channel **691** may pass through the first and/or second endplates 602, 604 from the outer surface 614, 638 to the cavity 692. In some embodiments, the channel **691** may be located on the second side **620**, **636** of the first and/or second endplates **602**, **604**. Advantageously, the channel **691** may be positioned at a location (e.g., on the second side **620** and/or 636) configured to enable direct access by a surgeon in situ. In embodiments that include movable extension portions **648**, **660**, methods herein can also include the step of adjusting a position of one or both extension portions **648**, **660** relative to at least one of the body portions of the first and second endplates **602**, **604**. In some embodiments, this step may be accomplished by translating (e.g., sliding) one or both extension portions **648**, **660** along the respective body portions of the first and second endplates 602, 604. For example, this step can include sliding a tongue member of at least one of the first and second extension portions 648, 660 within a groove member of at least one of the respective body portions of the first and/or second endplates **602**, **604**. In other embodiments, the first and/or second extension portions **648**, **660** may be pivoted and/or articulated relative to the respective body portions of the first and/or second endplates **602**, **604**. Some embodiments can also include locking the position of at least one of the first and second extension portions **648**, **660** relative to the respective body portions of the first and/or second endplates **602**, **604**.

[0122] Methods herein can also include the step of inserting fastener **651** into bore **650** and/or inserting fastener 663 into bore 662. This step can include inserting fastener 651 along an axis (e.g., axis 652) that is configured to intersect the longitudinal axis 626 and/or the vertical, longitudinal plane **658**. This step can also include inserting fastener **663** along an axis (e.g., axis **668**) that is configured to intersect the longitudinal axis **670** and/or the vertical, longitudinal plane **658**. In some embodiments, this step can include inserting fastener **651** and/or fastener **663** along an anterolateral and/or oblique trajectory. In other embodiments, this step can include inserting fastener 651 into a superior vertebra and inserting fastener 663 into an inferior vertebra. As described herein, those skilled in the art may appreciate that this trajectory may advantageously avoid certain anatomical structures, such as the psoas major, lumbar plexus, and/or iliac crest. Accordingly, in some embodiments, device **600** may be inserted laterally between lumbar vertebrae and subsequently coupled to the vertebrae with minimal interference. After the fasteners **651** and/or **663** have been inserted, they may be secured by retention member 656 and/or 666. The retention members 656, 666 may be disposed within the receptacles 654, 664. The retention members 656, 666 may be configured to rotate until a portion of the retention members 656, 666 overlaps the bore 650, 662 and prevents the fasteners **651**, **663** from backing out. Those skilled in the art may appreciate that in some embodiments, the fasteners **651**, **663** may be inserted prior to expansion of the device **600**. [0123] Turning now to FIGS. **13**A-E, an alternative embodiment of a vertebral fusion device is illustrated. Unless otherwise described herein, vertebral fusion device **800** can include some or all of the features of the vertebral fusion devices described in U.S. patent application Ser. No. 14/449,428, entitled "VARIABLE LORDOSIS SPACER AND RELATED METHODS OF USE," filed Aug. 1, 2014, U.S. Patent Publication No. 2014/0163683, entitled "EXPANDABLE VERTEBRAL IMPLANT," published Jun. 12, 2014, and U.S. Patent Publication No. 2013/0023993, entitled "EXPANDABLE FUSION DEVICE AND METHOD OF INSTALLATION THEREOF," published Jan. 23, 2013. Vertebral fusion device **800** can include a first (e.g., upper and/or superior) endplate **802**, a second (e.g., lower and/or inferior) endplate **804**, a first engagement, angled or ramped body **806**, and a second engagement, angled surface or ramped body **808**. As illustrated in FIG. **13**D, the device **800** can also include a first side **801** and a second side **803**. As described further herein, vertebral fusion device **800** can include an adjustable

height and/or lordotic angle. In some embodiments, one or both of the first and second sides **801**, **803** may be configured to pivotably expand about a pivot point P. The vertebral fusion device **800** may be wedge-shaped along a latitudinal axis, such as seen from the front view shown in FIG. **13**D. For example, the device **800** may have a height that increases from the first side **801** to the second side **803**. In some embodiments, the first and/or second ramped bodies **806**, **808** may be wedge-shaped.

[0124] As illustrated in FIG. 13A, first endplate 802 can include a body portion that can include a first (e.g., leading and/or distal) end 810, a second (e.g., trailing and/or proximal) end 812, a first (e.g., posterior) side 818, and a second (e.g., anterior) side 820. The first endplate 802 can extend from the first side 801 to the second side 803 of the device 800. The body portion of the first endplate 802 can also include an outer surface 814, an inner surface 816, an upper surface 822, and a lower surface 828. The upper surface 822 can include a plurality of protrusions (e.g., bumps, teeth, and/or peaks) configured to engage a vertebral body. The upper surface 822 can be generally planar, concave, and/or convex. As described further herein, the first endplate 802 can include one or more mating features. In some embodiments, the mating feature(s) may be located on the inner surface 816. The first side 818 may include at least one mating feature 823, and the second side 820 may include at least one mating feature 824. In yet other embodiments, the first and/or second sides 818, 820 can each include a mating feature at the first end 810, a mating feature at an intermediate portion, and/or a mating feature at the second end 812.

[0125] As illustrated in FIG. **13**A, the first endplate **802** can also include a first extension portion **848**. The first extension portion **848** can extend from the second end **812** of the body portion of the first endplate **802**. The first extension portion **848** can have a height that is greater than a height of the body portion of the first endplate **802**. For example, the first extension portion **848** may extend beyond the upper surface **822**. In some embodiments, the first extension portion **848** may be coupled (e.g., attached, joined, and/or connected) to the body portion of the first endplate **802**. In some embodiments, the first extension portion **848** may be moveably (e.g., articulably and/or jointedly) coupled to the body portion of the first endplate **802**, for example, as described herein with respect to vertebral fusion device **50**. For example, the body portion of the first endplate **802** and the extension portion **848** may together form a dovetail joint. In some embodiments, the first extension portion **848** and the body portion of the first endplate **802** may each include a different material (e.g., a metal and/or a polymer). In other embodiments, the first extension portion 848 and the body portion of the first endplate **802** may form a unitary body. The first extension portion **848** can include a bore **850** passing therethrough. The bore **850** can be configured to receive a fastener therein. The first extension portion **848** can also include a receptacle **854**. The receptacle **854** may at least partially overlap the bore **850**. The receptacle **854** may be configured to receive a retention member **856** therein.

[0126] As illustrated in FIG. 13B, the bore 850 can include an axis 852. In some embodiments, axis 852 may be generally parallel to a longitudinal axis (e.g., midline) and/or a vertical, longitudinal plane 858 of the assembled device 800. In other embodiments, axis 852 may be skewed relative to the vertical, longitudinal plane 858. In yet other embodiments, axis 852 may be configured to intersect the vertical, longitudinal plane 858. In some embodiments, the axis 852, bore 850, and/or first extension portion 848 may be horizontally offset from the longitudinal midline and/or vertical, longitudinal plane 858. In some embodiments, the axis 852, bore 850, and/or first extension portion 848 may be horizontally offset towards the second side 820. In other embodiments, the axis 852, bore 850, and/or first extension portion 848 may be horizontally offset towards the first side 818. In some embodiments, the axis 852 can intersect the plane 858 by an angle in the range of from about 0° to about 90°. In other embodiments, the axis 852 can intersect the plane 858 by an angle in the range of from about 5° to about 45°. In yet other embodiments, the axis 852 can intersect the plane 858 by an angle in the range of from about 20° to about 30°.

[0127] Second endplate **804** can include some or all of the same features as the first endplate **802**.

In some embodiments, the first and second endplates **802**, **804** may be symmetrical with respect to each other. As illustrated in FIG. **12**A, second endplate **804** can include a body portion that can include a first (e.g., leading and/or distal) end **830**, a second (e.g., trailing and/or proximal) end **832**, a first (e.g., posterior) side **834**, and a second (e.g., anterior) side **836**. The second endplate **804** can extend from the first side **801** to the second side **803** of the device **800**. As illustrated in FIG. **13**A, the body portion of the second endplate **804** can also include an outer surface **838**, an inner surface **840** (illustrated in FIG. **13**D), an upper surface **842**, and a lower surface **844**. The lower surface **844** can include a plurality of protrusions (e.g., bumps, teeth, and/or peaks) configured to engage a vertebral body. The lower surface **844** can be generally planar, concave, and/or convex. As described further herein, the second endplate **804** can include one or more mating features. In some embodiments, the mating feature(s) may be located on the inner surface **840**. The first side **834** may include at least one mating feature **845**, and the second side **820** may include at least one mating feature **846**. In yet other embodiments, the first and/or second sides **834**, **836** can each include a mating feature at the first end **830**, a mating feature at an intermediate portion, and/or a mating feature at the second end **832**.

[0128] As illustrated in FIG. **13**A, the second endplate **804** can also include a second extension portion **860**. The second extension portion **860** can extend from the second end **832** of the body portion of the second endplate **804**. The second extension portion **860** can have a height that is greater than a height of the body portion of the second endplate **804**. For example, the second extension portion **860** may extend beyond the lower surface **844**. In some embodiments, the second extension portion 860 may be coupled (e.g., attached, joined, and/or connected) to the body portion of the second endplate **804**. In some embodiments, the second extension portion **860** may be articulably and/or jointedly coupled to the body portion of the second endplate 804, for example, as described herein with respect to vertebral fusion device **50**. For example, the body portion of the second endplate **804** and the second extension portion **860** may together form a dovetail joint. In some embodiments, the second extension portion **860** and the body portion of the second endplate **804** may each include a different material (e.g., a metal and/or a polymer). In other embodiments, the second extension portion **860** and the body portion of the second endplate **804** may form a unitary body. The second extension portion **860** can include a bore **862** passing therethrough. The bore **862** can be configured to receive a fastener therein. The second extension portion **860** can also include a receptacle **864**. The receptacle **864** may at least partially overlap the bore **862**. The receptacle **864** may be configured to receive a retention member **866** therein. [0129] As illustrated in FIG. 13B, the bore 862 can include an axis 868. In some embodiments, axis

868 may be generally parallel to a longitudinal axis (e.g., midline) and/or the vertical, longitudinal plane **858**. In other embodiments, axis **868** may be skewed relative to the vertical, longitudinal plane **858**. In yet other embodiments, axis **868** may be configured to intersect the vertical, longitudinal plane **858**. In some embodiments, the axis **868**, bore **862**, and/or second extension portion **860** may be horizontally offset from the longitudinal midline and/or vertical, longitudinal plane **858**. In some embodiments, the axis **868**, bore **862**, and/or second extension portion **860** may be horizontally offset towards the second side **836**. In other embodiments, the axis **868**, bore **862**, and/or second extension portion **860** may be horizontally offset towards the first side **834**. In some embodiments, the axis **868** can intersect the plane **858** by an angle in the range of from about 0° to about 90°. In other embodiments, the axis **868** can intersect the plane **858** by an angle in the range of from about 5° to about 45°. In yet other embodiments, the axis **868** can intersect the plane **858** by an angle in the range of from about 20° to about 30°.

[0130] Mating feature **823** may be generally similar to mating feature **824**, except that mating feature **824** may have different (e.g., larger) dimensions than mating feature **823**. In some embodiments, mating features **823**, **824** of the first endplate **802** may be inclined (e.g., may extend from lower surface **828** towards upper surface **822**) along longitudinal axis **826** (illustrated in FIG. **13**C) in a direction from the second end **812** towards the first end **810**. In some embodiments,

mating features **823**, **824** may be angled, e.g., towards the first end **810**. In other embodiments, mating features **823**, **824** may be inclined along the longitudinal axis **826** in a direction from the first end **810** towards the second end **812**. Mating feature **845** may be generally similar to mating feature **846**, except that mating feature **846** may have different (e.g., larger) dimensions than mating feature **845**. In some embodiments, mating features **845**, **846** of the second endplate **804** may be declined (e.g., may extend from upper surface **842** towards lower surface **844**) along longitudinal axis **826** in a direction from the second end **832** towards the first end **830**. In some embodiments, mating features **845**, **846** may be angled, e.g., towards the first end **830**. In other embodiments, mating features **845**, **846** may be declined along the longitudinal axis **826** from the first end **830** towards the second end **832**. Those skilled in the art may appreciate that mating features **823**, **824** of the first endplate **802** may be symmetrical to (e.g., mirror images of) mating features **845**, **846** of the second endplate **804**.

[0131] As described further herein, the first and/or second endplates **802**, **804** may be configured to engage (e.g., mate with) the first ramped body **806**. As illustrated in FIG. **13**A, the first ramped body **806** can include a first (e.g., leading and/or distal) end **872**, a second (e.g., trailing and/or proximal) end 874, a first (e.g., posterior) side portion 876, and a second (e.g., anterior) side portion 878. The first ramped body 806 can also include a third (e.g., superior) end 880 and a fourth (e.g., inferior) end 882. The first ramped body 806 may extend from the first side 801 to the second side **803** of the device **800**. The first ramped body **806** can include a plurality of mating features configured to engage the mating features on the first and/or second endplates **802**, **804**. As illustrated in FIGS. 13A and 13E, the third end 880 can include one or more mating features 883 on the first side **876** and one or more mating features **884** on the second side **878**. The fourth end **882** can include one or more mating features **885** on the first side **876** and one or more mating features **886** on the second side **878**. Those skilled in the art may appreciate that mating features **884**, **886** may extend in generally opposite vertical directions. Additionally, mating features **883**, **885** may extend in generally opposite vertical directions. In some embodiments, the first side portion **876** can include at least two mating elements **883** and at least two mating elements **885**. In other embodiments, the second side portion **878** can include at least two mating elements **884** and at least two mating elements **886**. In some embodiments, the first end **872** of the first ramped body **806** can include mating features **883**, **884**, **885**, and **886**.

[0132] Each of the mating features of the first ramped body **806** may be configured (e.g., shaped) to mate with a corresponding mating feature on the first and/or second endplates 802, 804. The mating features 883, 884 may be configured to engage the mating features 823, 824 of the first endplate **802**. The mating features **885**, **886** may be configured to engage the mating features **845**, **846** of the second endplate **804**. Mating features **884**, **886** may have substantially similar inclinations, when in an assembled configuration, as their corresponding mating features **824**, **846**. In some embodiments, each mating feature **884** is inclined towards the first end **872** of the first ramped body **806**, and each mating feature **886** is declined towards the first end **872** of the first ramped body **806**. In other embodiments, mating feature **884** and mating feature **886** may diverge from each other along a longitudinal axis from a position relatively adjacent to the second end 874 to a position relatively adjacent to the first end **872**. In yet other embodiments, the mating features **884**, **886** may be angled, e.g., towards the first end **872**. In still other embodiments, one or more mating features **884** may be inclined towards the second end **874** of the first ramped body **806** and/or one or more mating features **886** may be declined towards the second end **874** of the first ramped body **806**. In some embodiments, one or more mating features **884**, **886** can include a protrusion (e.g., a tongue, rail, and/or shoulder). In some embodiments, the protrusion can be integrally formed with the body of the first ramped body **806**, or can be a separate component. For example, in some embodiments, a series of external pins can create a protrusion in the form of a rail. In other embodiments, one or more mating features **884**, **886** can include a recess (e.g., a groove, track, and/or channel). In some embodiments, for example, as illustrated in FIGS. **13**A and 13E, the mating features 884, 886 can alternate longitudinally along the second side 878. Each mating feature 884 on the first ramped body 806 can be generally the same. Each mating feature 886 may be generally the same. In some embodiments, at least one mating feature 884 and/or 886 may include different properties as compared to the other mating features 884, 886. Mating feature(s) 883 may be similar to mating feature(s) 884, except that mating feature(s) 884 may have different (e.g., larger) dimensions than mating feature(s) 886 may have different (e.g., larger) dimensions than mating feature(s) 885. In some embodiments, the mating features 883, 885 can alternate longitudinally along the first side 876. In other embodiments, the mating features 883, 884 can alternate transversely along the third end 880 of the first and/or second sides 876, 878. In yet other embodiments, the mating features 885, 886 can alternate transversely along the fourth end 882 of the first and/or second sides 876, 878. In some embodiments, each mating feature 883 may be generally the same. In other embodiments, each mating features 885 may be generally the same. In yet other embodiments, at least one of the mating features 883, 885 may include different properties as compared to the other mating features 883, 885.

[0133] The mating features **823**, **824** on the first endplate **802** may be configured to form a slidable joint with a corresponding mating feature **883**, **884** on the first ramped body **806**. The mating features **845**, **846** on the second endplate **804** may be configured to form a slidable joint with a corresponding mating feature **885**, **886** on the first ramped body **806**. Accordingly, the first ramped body **806** may be configured to slideably engage the first and/or second endplates **802**, **804**. The slideable joint may advantageously enable the vertebral fusion device **800** to transition reversibly between expanded and contracted configurations. The slidable joint may include, for example, a tabled splice joint, a dovetail joint, a tongue and groove joint, or another suitable joint. In some embodiments, one or more mating features on the first and/or second endplates **802**, **804** can include a recess (e.g., a groove, track, and/or channel), and one or more mating features on the first ramped body **806** can include a protrusion (e.g., a tongue, rail, and/or shoulder) configured to slide within the groove. In other embodiments, one or more mating features on the first and/or second endplates **802**, **804** can include a protrusion and one or more mating features on the first ramped body **806** can include a recess.

[0134] The mating features **883**, **884**, **885**, **886** on the first ramped body **806** may be curved in order to impart curvature to the first and second sides **801**, **803** of the device **800**. Advantageously, one or more of the curvatures of the mating features **883**, **884**, **885**, **886** can be in the form of a helix, which results in the first endplate **802** and the second endplate **804** moving not just parallel away from one another, but also at an angle (as shown in FIG. **13**D). The mating features of the first ramped body **806** may have a radius of curvature about the pivot point P. Furthermore, as the mating features of the first ramped body **806** may be complementary to corresponding mating features on the first and second endplates **802**, **804**, the mating features on the first and/or second endplates **802**, **804** may also be curved (e.g., may include a radius of curvature about the pivot point P).

[0135] As illustrated in FIG. 13A, the second end 874 of the first ramped body 806 can include a first threaded bore 888 passing longitudinally therethrough. The first threaded bore 888 may be configured to receive (e.g., threadably engage) a threaded member 904 of an actuator 902. As illustrated in FIG. 13A, the threaded member 904 of the actuator 902 can include a proximal end having a tool-engaging recess 910. The actuator 902 can also include a washer 906 and/or one or more snap rings 908, 909. The second end 874 of the first ramped body 806 can also include a second bore 890 passing longitudinally therethrough. In some embodiments, the second bore 890 may be threaded. The second bore 890 may be configured to engage an inserter. In other embodiments, the second bore 890 can advantageously be configured for use as an access port to enable bone growth material to be delivered into a cavity of the device 800. The second bore 890 may be laterally displaced from the first threaded bore 888. In some embodiments, the first

threaded bore **888** may be located adjacent to the second side **878** of the first ramped body **806** and the second bore **890** may be located adjacent to the first side **876**, or vice versa. In other embodiments, the first threaded bore **888** may be anteriorly offset relative to the second bore **890**, or vice versa. In some embodiments, the second bore **890** can be located adjacent to the second side **878** and/or anteriorly offset relative to the first threaded bore **888**. In these embodiments, the device **800** may be advantageously configured to engage an inserter at an angle offset from the plane **858**, thereby enabling a user to position the device **800** in a direct lateral orientation, e.g., in a patient's lumbar spine, while reducing interaction with the psoas muscle. [0136] The first threaded bore **888** and/or the second bore **890** can include an axis that is horizontally offset from the vertical, longitudinal plane 858. In some embodiments, the axis (e.g., of the first threaded bore **888** and/or the second bore **890**) can be horizontally offset towards the second side **878**. In some embodiments, the axis (e.g., of the first threaded bore **888** and/or the second bore **890**) can be parallel or skewed relative to the vertical, longitudinal plane **858**. In other embodiments, the axis of the first threaded bore 888 and/or the second bore 890 can intersect the plane **858** to form an angle. In some embodiments, the angle can be in the range of from about 0° to about 90°. In other embodiments, the angle can be in the range of from about 5° to about 45°. In yet other embodiments, the angle can be in the range of from about 20° to about 30°. [0137] When in an assembled configuration, the second ramped body **808** can be disposed adjacent to the first ramped body **806**. The second ramped body **808** can extend from the first side **801** to the second side **803** of the device **800**. Second ramped body **808** can include one or more mating features configured to engage corresponding mating features 823, 824, 845, 846 on the first and/or second endplates **802**, **804**. The mating features on the second ramped body **808** can include some or all of the same features as the mating features 883, 884, 885, 886 of the first ramped body 806. For example, the mating features on the second ramped body **808** can be curved in order to impart curvature to the first and second sides **801**, **803** of the device **800**. As illustrated in FIG. **13**A, the second ramped body **808** can include a first bore **894**. The first bore **894** can be configured to be coaxial with the first threaded bore **888** of the first ramped body **806** when in an assembled configuration. The first bore **894** may be configured to receive the head portion of the actuator **902** therein. In use, the head portion may be configured to rotate within the first bore **894**. The second ramped body **808** can also include a second bore **896**. The first and/or second bores **894**, **896** may be threaded. In some embodiments, the second bore **896** can be configured to engage an inserter. The second bore **896** can be configured to be coaxial with the second bore **890** of the first ramped body **806** when in an assembled configuration. The second bore **896** can be laterally displaced from the first bore **894**. In some embodiments, the first bore **894** may be located adjacent to a second side **898** of the second ramped body **808** and the second bore **896** may be located adjacent to a first side **897**, as illustrated in FIG. **13**A. In other embodiments, the first bore **894** may be located adjacent to the first side 897 and the second bore 896 may be located adjacent to the second side **898**. In other embodiments, the first bore **894** may be anteriorly offset relative to the second bore **896**, or vice versa. In some embodiments, the second bore **896** can be located adjacent to the second side **898** and/or anteriorly offset relative to the first bore **894**. In these embodiments, the device **800** may be advantageously configured to engage an inserter at an angle offset from the plane **858**, thereby enabling a user to position the device **800** in a direct lateral orientation, e.g., in a patient's lumbar spine, while reducing interaction with the psoas muscle. [0138] The first threaded bore **894** and/or the second bore **896** can include an axis that is horizontally offset from the vertical, longitudinal plane **858**. In some embodiments, the axis of the first bore **894** and/or the second bore **896** can be horizontally offset towards the second side **898**. In some embodiments, the axis of the first bore **894** and/or the second bore **896** can be parallel and/or skewed relative to the plane **858**. In other embodiments, the axis of the first bore **894** and/or the second bore **896** can intersect the plane **858** to form an angle. In some embodiments, the angle can

be in the range of from about 0° to about 90°. In other embodiments, the angle can be in the range

of from about 0° to about 45°. In yet other embodiments, the angle can be in the range of from about 20° to about 30°.

[0139] The vertebral fusion device **800** can advantageously include an adjustable height and/or lordotic angle. In some embodiments, the device **800** may be expandable. The vertebral fusion device **800** may advantageously be configured to reversibly transition between a collapsed configuration and an expanded configuration. In the collapsed configuration, for example, as illustrated in FIGS. **13**B-C, the vertebral fusion device **800** can include a first height (e.g., as measured from the upper surface **822** of the first endplate **802** to the lower surface **844** of the second endplate **804**). In some embodiments, the device **800** (e.g., first and second endplates **802**, **804**) may define a first angle when in the collapsed configuration. In other embodiments, the first and second endplates **802**, **804** may be generally parallel when in the collapsed configuration. In some embodiments, the first endplate **802** and the second endplate **804** can begin at an angle, and can be expanded to a greater angle.

[0140] In the expanded configuration, for example, as illustrated in FIGS. 13D-E, the vertebral fusion device **800** can include a second height that is greater than the first height. In some embodiments, the second height can be from about 25% to about 200% greater than the first height. In other embodiments, the second height can be from about 100% to about 150% greater than the first height. In some embodiments, the first height can be in the range of from about 5 mm to about 10 mm, and/or the second height can be in the range of from about 15 mm to about 20 mm. In some embodiments, the change in height can be caused by movement of the first and second endplates 802, 804 towards and/or away from each other. In these embodiments, the first and second endplates **802**, **804** can be separated by a first distance when in the collapsed configuration and a second distance when in the expanded configuration, wherein the second distance is greater than the first distance. Those skilled in the art may appreciate that, in use, the height of the vertebral fusion device **800** can be adjusted to accommodate an individual patient's anatomy. Additionally, the device **800** may be inserted into an intervertebral space in the collapsed configuration, which may entail less trauma to surrounding tissue due to its smaller size. [0141] In other embodiments, at least one of the first and second endplates **802**, **804** may be configured to pivot about pivot point P, illustrated in FIG. 13D. In these embodiments, the change in height can be caused by pivoting the first and/or second endplates **802**, **804** about pivot point P. In these embodiments, the first and second endplates **802**, **804** be oriented at a first angle when in the collapsed configuration. The first and/or second endplates **802**, **804** can pivot apart about the pivot point P to expand the device **800** and orient the first and second endplates **802**, **804** at a second angle. In some embodiments, the first (e.g., collapsed) angle can be in the range of from about 5° to about 20°. For example, the first angle may be about 10.4°. In other embodiments, the second (e.g., expanded) angle can be in the range of from about 10° to about 40°. For example, the second angle may be about 22.5°. Those skilled in the art may appreciate that in some embodiments, the device **800** can be expanded by both the linear and pivotal movement of the first and/or second endplates 802, 804 away from each other.

[0142] Embodiments herein are also directed to methods of installing the vertebral fusion device **800**. Methods can include providing the device **800** in the collapsed configuration, for example, as illustrated in FIGS. **13**B-C. In some embodiments, this step can include providing (e.g., inserting and/or positioning) the device **800** between two adjacent vertebrae (e.g., between the L4 and L5 vertebrae). In some embodiments, the device **800** can be inserted using an inserter, such as a straight inserter or an angled inserter. In these embodiments, the methods of installation can include coupling the inserter with the device **800**, for example, threading a threaded member of the inserter into the second bore **890**, **896** of the first and/or second ramped bodies **806**, **808**. In some embodiments, the device **800** may be inserted along a lateral approach, for example, when a straight inserter is used. In other embodiments, the device **800** can be inserted along an anterolateral and/or oblique approach, for example, when an angled inserter is used. In these

embodiments, the device **800** can be subsequently pivoted into a lateral orientation while in the intervertebral space. In some embodiments, the device **800** may be inserted using minimally invasive methods. In some embodiments, the intervertebral space may be prepared beforehand, for example, by performing a discectomy to remove some or all of the intervertebral disc. [0143] Methods herein can also include expanding the device **800**, for example, by transitioning the device **800** from the collapsed configuration to the expanded configuration. This step can include pivotably expanding at least one of the first and second sides 801, 803 of the device 800. In some embodiments, the first and second sides 801, 803 may be pivotably expanded at a same angular rate of change about the pivot point P. To expand the device **800**, at least one of the first and second ramped bodies **806**, **808** may be translated relative to at least one of the first and second endplates **802**, **804**. For example, the second ramped body **808** may be moved (e.g., translated) towards the first ramped body **806**, or vice versa. The mating features of the first and/or second ramped bodies 806, 808 may engage the mating features of the first and/or second endplates 802, 804. As the first and second ramped bodies 806, 808 translate towards each other, the respective mating features of the first and second ramped bodies **806**, **808** may push against corresponding mating features on the first and second endplates 802, 804, thereby pushing (e.g., pivoting) the first and second endplates 802, 804 apart and increasing the height and/or angle of the device 800. The device 800 can be expanded until it defines a second angle with respect to the pivot point P, wherein the second angle is greater than the first angle.

[0144] In some embodiments, the step of expanding the device **800** can include actuating the actuator 902. This step can include inserting the threaded member 904 into the first bore 894 of the second ramped body **808** and the first threaded bore **888** of the first ramped body **806**. This step can also include applying a rotational force to the threaded member 904 to threadably engage the first ramped body **806**. The rotational force can be added directly (e.g., manually) and/or indirectly (e.g., through a driver or other tool). In some embodiments, as the threaded member **904** is rotated in a first direction, the threaded member **904** may pull the first ramped body **806** towards the second ramped body **808**. As the first ramped body **806** moves towards the second ramped body **808**, the mating features on the first ramped body **806** may engage the mating features on the first and/or second endplates 802, 804, thereby pushing (e.g., wedging and/or pivoting) the first and second endplates 802, 804 apart. In other embodiments, as the threaded member 904 is rotated in a second direction, the threaded member 904 may push the first ramped body 806 away from the second ramped body **808**. Those skilled in the art may appreciate that the device **800** may be reversibly expandable. Accordingly, some embodiments can include reducing the height and/or angle of the device **800**, for example, by bringing the first and second endplates **802**, **804** together. [0145] In some embodiments, the device **800** can include a locking member configured to lock the device **800** in a desired configuration (e.g., at a desired height and/or angle). In these embodiments, the methods can further include locking the device **800** in the expanded configuration. In other embodiments, after the device **800** is expanded, bone growth material may be introduced into a cavity within the device **800** through the second bores **890** and/or **896** of the first and second ramped bodies **806**, **808**. In some embodiments, the first and/or second endplate **802**, **804** can include a channel passing from an outer surface to an inner surface and configured to receive bone graft material therethrough. In embodiments that include movable extension portions **848**, **860**, methods herein can also include the step of adjusting a position of one or both extension portions **848**, **860** relative to at least one of the body portions of the first and second endplates **802**, **804**. In some embodiments, this step may be accomplished by translating (e.g., sliding) one or both extension portions **848**, **860** along the respective body portions of the first and second endplates **802**, **804**. For example, this step can include sliding a tongue member of at least one of the first and second extension portions **848**, **860** within a groove member of at least one of the respective body portions of the first and/or second endplates **802**, **804**. In other embodiments, the first and/or second extension portions **848**, **860** may be pivoted and/or articulated relative to the respective

body portions of the first and/or second endplates **802**, **804**. Some embodiments can also include locking the position of at least one of the first and second extension portions **848**, **860** relative to the respective body portions of the first and/or second endplates **802**, **804**.

[0146] Methods herein can also include the step of inserting a first fastener into bore **850** along first axis **852** and/or a second fastener into bore **862** along second axis **868**. In some embodiments, this step can include inserting the fastener(s) along an axis that is parallel and/or skewed relative to the vertical, longitudinal plane 858. In other embodiments, this step can include inserting the fastener(s) along an axis that is configured to intersect the vertical, longitudinal plane **858**. In some embodiments, this step can include inserting the fastener(s) along an anterolateral and/or oblique trajectory. In other embodiments, this step can include inserting the first fastener into a superior vertebra and inserting the second fastener into an inferior vertebra. As described herein, those skilled in the art may appreciate that this trajectory may advantageously avoid certain anatomical structures, such as the psoas major, lumbar plexus, and/or iliac crest. Accordingly, in some embodiments, device **800** may be inserted laterally between lumbar vertebrae and subsequently coupled to the vertebrae with minimal interference. After the fasteners have been inserted, they may be secured by retention member **856** and/or **866**. The retention members **856**, **866** may be disposed within the receptacles **854**, **864**. The retention members **856**, **866** may be configured to rotate until a portion of the retention members **856**, **866** overlaps the bore **850**, **862** and prevents the fasteners from backing out. Those skilled in the art may appreciate that in some embodiments, the first and/or second fasteners may be inserted prior to expansion of the device **800**. [0147] The devices described herein can be used in combination with various other implants and tools used in spinal surgery. In some embodiments, the implants described herein can be accompanied with other stabilizing members, including plates, rods and pedicle screws. In addition, the devices can be used with prosthetic devices or other fusion based devices. [0148] The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims. Although individual embodiments are discussed herein, the invention covers all combinations of all those embodiments.

Claims

- 1. A vertebral fusion device comprising: a first endplate including a first plate adapted to contact a first vertebral body; a second endplate including a second plate adapted to contact a second vertebral body adjacent to the first vertebral body, both the first and second plates extending from a first side of the device to a second side of the device; and a first ramp and a second ramp, both the first ramp and the second ramp being configured to mate with the first and second plates, and both the first ramp and the second ramp extending from the first side of the device to the second side of the device, wherein at least one of the first and second sides of the device is configured to pivotably expand about a pivot point, wherein in an expanded height at least one of the first and second sides pivotably expands about the pivot point until the device defines an angle with respect to the pivot point.
- **2**. The device of claim 1, wherein the expanded height is greater than a collapsed height by a percentage in the range of 100% to 150%.
- **3**. The device of claim 1, wherein the first endplate has protrusions to engage the first vertebral body and the second endplate contains protrusions configured to engage the second vertebral body.
- **4.** The device of claim 1, wherein the first and second endplates having mating features configured to engage with mating features of the first and second ramps.
- **5.** The device of claim 1, wherein at least one of the first and second sides of the device expands by translating at least one of the first and second ramps relative to at least one of the first and second

endplates.

- **6.** The device of claim 1, wherein: the first ramp includes a first end and a second end, the second end includes a first threaded bore passing longitudinally therethrough, the second ramp comprises a first bore configured to be coaxial with the first threaded bore of the first ramp, and at least one of the first and second sides of the device is configured to expand by threadably inserting a threaded member into the first threaded bore of the first ramp and the first bore of the second ramp.
- 7. The device of claim 6, wherein: the first ramp further includes a second bore passing longitudinally through the second end of the first ramp and laterally displaced from the first threaded bore thereof; the second ramp further includes a second bore laterally displaced from the first threaded bore thereof, wherein the second bore is configured to be coaxial with the second bore of the first ramp; and wherein the second bore of the first ramp and the second bore of the second ramp are configured to receive bone growth material.
- **8.** The device of claim 1, wherein the vertebral fusion device is configured to be locked in the expanded configuration.
- **9.** A vertebral fusion device comprising: a first endplate comprising a first plate and a first extension extending laterally from the first plate; a second plate comprising a second plate and a second extension extending laterally from the second plate, both the first and second plates extending from a first side of the device to a second side of the device; a first ramp and a second ramp, both the first ramp and the second ramp being configured to mate with the first and second plates, and both the first ramp and the second ramp extending from the first side of the device to the second side of the device, wherein at least one of the first and second sides of the device is configured to pivotably expand about a pivot point; a first fastener configured to be received into the first extension along a first axis; and a second fastener configured to be received into the second extension along a second axis, wherein at least one of the first and second axes is offset from a vertical, longitudinal plane of the vertebral fusion device, wherein in an expanded height at least one of the first and second sides pivotably expands about the pivot point until the device defines an angle with respect to the pivot point.
- **10**. The device of claim 9, wherein at least one of the first and second axes intersects the vertical, longitudinal plane of the device.
- **11**. The device of claim 9, wherein the first extension and the second extension are each offset from the longitudinal midline of the vertebral fusion device.
- **12**. The device of claim 9, wherein the first fastener is inserted into a first bore on the first extension, the second fastener is inserted into a second bore on the second extension, and at least one of the first and second bores is horizontally offset towards the second side of the device.
- **13**. The device of claim 9, wherein the vertebral fusion device is configured to be inserted between two adjacent vertebrae using a lateral approach.
- **14.** The device of claim 9, wherein the first fastener is inserted along an oblique trajectory.
- **15**. The device of claim 9, wherein the expanded height is greater than a collapsed height by a percentage in the range of 100% to 150%.
- **16**. The device of claim 9, wherein the first endplate has protrusions to engage the first vertebral body and the second endplate contains protrusions configured to engage the second vertebral body.
- **17**. The device of claim 9, wherein the vertebral fusion device is configured to be locked in the expanded configuration.