On the Feasibility of Training Neural Networks with Visibly Watermarked Dataset

Sanghyun Hong*, Tae-hoon Kim^, Tudor Dumitras*, Jonghyun Choi°

Bird

Overview

• Data collected separately by enterprises and users is hard to be shared with others because *shared data can be stolen*.

Threat Model

Company A

Company/User B

- Company A wants to share a dataset collected from the users with Company B
- Company A still wants to claim the ownership of the data to prevent Company
 B resells the data to others or leaks the data

Our Solution

• Prior work:

- Cryptographic solutions (Homomorphic encryption or MPCs) are computationally expensive and, once data is shared, they cannot prevent claiming ownership from B
- Solutions conceal secrets (Stenography and Invisible watermarking) are susceptible to data augmentations/changes

• Our solution:

• Use *visible watermarking* on datasets shared with other companies and users

DeepStamp Framework

Objectives

- Purpose of the visible watermarks on datasets
 - Visibly Intact: watermarks embedded to data clearly visible to humans
 - Hard to Remove: watermarks are hard to be removed by adversaries
 - Minimize Accuracy Drops: a network trained with watermarked data minimizes the accuracy drop compared to the clean network

DeepStamp

• In Training:

- Training a watermarking network (W) using clean data and a watermark as inputs with three discriminator networks (F, V, D)
- Discriminators use the data with synthesized watermarks from *W* and the static watermarked data as their counterparts
- Leverages the Generative Multi-Adversarial Network (GMAN)

• In Stamping:

• Using the trained watermarked network (W), synthesize the optimal watermarks for clean data and watermark

Preliminary Results

Network	Baseline	Static	DeepStamp
AlexNet	82.74	78.50	79.59
VGG16	94.00	92.71	92.74
ResNet50	95.37	94.88	94.18

- Using visible watermarking causes the acc.
 drops in all cases, but the drops are minimal when the network capacity is high
- DeepStamp framework can minimize the accuracy drop further than the static (additive) watermarking method(s).
- [Results are mentioned in the paper] Our watermarked dataset can be used to train other networks (the data is **transferrable**)

Acknowledgement

 This research is partially supported by Department of Defense and the "Global University Project" grant funded by the GIST in 2018.

