

Name:_____

Calculator Free Section (No notes or calculators. Formula sheet provided.)

Time allowed - 25 minutes

Question 1 [2, 3, 3, 3, 4 marks]

$$\int_{-1}^{2} 2(x+1)^3 dx$$
a) Evaluate $\int_{-1}^{2} 2(x+1)^3 dx$

b) Find the area enclosed by the curve $y = x^2 - 1$ and $y = 7 - x^2$

 $\int \frac{e^{5x} + 3 + e^x}{4e^{3x}} dx = \frac{e^{5x} - 2 - e^x}{8e^{3x}} + c$

 $\frac{d}{dx} \int_{4}^{e^{x}} e^{2t} + 3t \ dt$

Question 2 [4 marks]

Find the x-coordinate of all stationary points of the function

 $f(x) = \frac{(x-1)^2}{e^x}$

Question 3 [4 marks]
$$y = 8 - 2e^{x-4} \text{ and } y = -\frac{1}{4}x + 5$$
The graphs of $y = 8 - 2e^{x-4}$ and $y = 8 - 2e^{x-4}$ and $y = -\frac{1}{4}x + 5$
exact area between $y = 8 - 2e^{x-4}$ and $y = -\frac{1}{4}x + 5$ and the y-axis.

ATMAM Unit 3 – Test 2 – 2017

Name:_____

Calculator Assumed Section (1 A4 page of notes allowed. Formula sheet provided.)

$\label{eq:time_allowed} \textbf{Time allowed} - \textbf{30 minutes}$

Question 4 [3 marks]

the tank after 24 hours?

 $W'(t) = \frac{1}{75}(20t - t^2 + 600)$ Water flows into a tank at a rate given by: where W'(t) is measured in L/hour and t is in hours. Initially, there are 200 L of water in the tank. How many litres of water are in

Question 5 [3 marks]

A part of the function $g(x) = x^2 - 4$ is shown. The area of the region marked A is the same as the area of the region marked B. Evaluate the exact value of a

Question 6 [2, 4, 3 marks]
An object moves along the x-axis with acceleration $a = (3t-2)m/s^2$. Initially it is at the origin and moving with speed $7.5 m/s$ in a negative direction.
(a) Find an expression for velocity in terms of t.
(b) When and where does the object change direction?
(c) How far does the object travel in the first 5 seconds?

Question 7 [1, 2, 3 marks] Certain medical tests require the patient to be injected with a solution containing 0.5 micrograms (µg) of the radioactive substance Technetium-99. This material decays according to the rule: $T = T_0 e^{-0.1155t}$ where *t* is the time in hours from injection. a) What is the value of T_0 ? b) What is the half-life of Technetium-99? How long is the amount of Technetium-99 left in the patient's system less than 1% of the initial amount? Give your answer to the nearest hour.

Question 8

[5, 1 marks]

b) Describe how you could better estimate the distance travelled by the train during the first six seconds than by the method used in part (a).