

<u>Lecture 7: Hypothesis Testing</u>

6. Behaviors of Type 1 and Type 2

课程 > Unit 2 Foundation of Inference > (Continued): Levels and P-values

> Errors for One-Sided Tests

6. Behaviors of Type 1 and Type 2 Errors for One-Sided Tests

How Type 1 Error Changes as Theta decreases

3/3 points (graded)

In the problems on the previous page, as well as in the examples in lecture, the level and power of the one-sided tests are determined by the type 1 and type 2 errors at the **boundary** of Θ_0 and Θ_1 . In the following problems, we will explore the qualitative reasons for this.

Setup:

let $X_1,\ldots,X_n\stackrel{iid}{\sim} X\sim \mathbf{P}_{\mu^*}$ where $\mu^*\in\mathbb{R}$ is the true unknown mean of X, and the variance σ^2 of X is fixed. The associated statistical model is $\left(E,\left\{\mathbf{P}_{\mu}
ight\}_{\mu\in\mathbb{R}}
ight)$ where E is the sample space of X.

We conduct a one-sided hypothesis test with the following hypotheses:

$$H_0: \mu^* \leq \mu_0 \qquad \Longleftrightarrow \Theta_0 = (-\infty, \mu_0]$$

 $H_1: \mu^* > \mu_0 \qquad \Longleftrightarrow \Theta_1 = (\mu_0, +\infty)$

Note the boundary between Θ_0 and Θ_1 . You use the statistical test:

$$\psi_n \; = \; \mathbf{1} \left(T_n > q_lpha
ight) \ ext{where} \quad T_n \; = \; \sqrt{n} rac{\overline{X}_n - \mu_0}{\sigma}.$$

Questions:

Which of following regions correspond the type 1 error α_{ψ_n} (μ_0) for large n? Note that μ_0 the boundary point of Θ_0 and Θ_1 .

(The figures on left column depicts the distribution of \overline{X}_n while the ones on the right depict the distribution of \overline{X}_n . Figures not drawn to scale.)

Which orange curve below is the graph of the distribution of \overline{X}_n for $\mu < \mu_0$, (i.e. for μ in the interior of Θ_0)? The grey curve is the graph the distribution of \overline{X}_n for $\mu = \mu_0$.

As μ decreases from μ_0 (i.e., moving away from the boundary of Θ_0 and Θ_1), does the type 1 error $\alpha_{\psi_n}(\mu)$ increase, decrease, or not exhibit a simple trend?

increase

decrease

does not exhibit a simple trend

一类和二类错误的变化,来源于判断标准(C)和两个假设分布之间的距离。

Solution:

At $\mu=\mu_0$ and when n is large, $T_n\sim\mathcal{N}\left(0,1\right)$ by the CLT. Therefore, when n is large, the type 1 error $\mathbf{P}_{\mu_0}\left(T_n>q_{\alpha}\right)$ is geometrically approximately the area of the "right tail" of standard normal distribution defined by the line $T_n=q_{\alpha}$.

The area of the shaded region is the type 1 error of ψ_n at μ_0 : \mathbf{P}_{μ_0} $\Big(\overline{T}_n>q_lpha\Big)$.

Alternatively, since

$$T_n \, = \, \sqrt{n} rac{\overline{X}_n - \mu_0}{\sigma} \, > \, q_lpha \, \iff \, \overline{X}_n > \, \mu_0 + q_lpha rac{\sigma}{\sqrt{n}},$$

we have

$$\mathbf{P}_{\mu_0}\left(T_n>q_lpha
ight) \ = \ \mathbf{P}_{\mu_0}\left(\overline{X}_n>\mu_0+q_lpharac{\sigma}{\sqrt{n}}
ight),$$

which is the area of the "right tail" of the distribution of \overline{X}_n to the right of $\overline{X}_n = \mu_0 + q_\alpha \frac{\sigma}{\sqrt{n}}$. By the CLT, for n large, the distribution of \overline{X}_n is approximately Gaussian, with mean $\mathbb{E}\left[X\right]$ and variance $\frac{\sigma}{\sqrt{n}}$.

The area of the shaded region is the type 1 error of ψ_n at μ_0 : $\mathbf{P}_{\mu_0}\left(\overline{X}_n>\mu_0+q_{lpha}\frac{\sigma}{\sqrt{n}}
ight)$.

Since $\mu=\mathbb{E}\left[X\right]$, the CLT implies that \overline{X}_n is approximately Gaussian with mean μ for large n. Recall the variance of X is fixed at σ , so the distribution of \overline{X}_n for $\mu<\mu_0$ is a simple shift, without rescaling, to the left of the distribution of \overline{X}_n at μ_0 .

Finally, to look for a trend for the type 1 error $\alpha_{\psi_n(\mu)}$ as μ decreases from μ_0 , first observe that the threshold

$$au_{n,lpha} = \mu_0 + q_lpha rac{\sigma}{\sqrt{n}}$$

of the test

$$\psi = \mathbf{1}\left(T_n > q_lpha
ight) = \mathbf{1}(\overline{X}_n > au_{n,lpha})$$

does **not** depend on the parameter μ . The only thing that changes as μ changes is the distribution of \overline{X}_n , which shifts to the **left** as μ decreases. Since the type 1 error $\alpha_{\psi_n}(\mu) = \mathbf{P}_{\mu}(\overline{X}_n > \tau)$ is the area of the tail to the **right** of τ , we see that the type 1 error continues to decrease as μ (and the distribution of \overline{X}_n) moves to the left.

The distribution of \overline{X}_n at μ_0 , the boundary point between Θ_0 and Θ_1 ; The distribution of \overline{X}_n at $\mu<\mu_0$ (orange curve), a shift to the left from the distribution at μ_0

The type 1 error $\alpha_{\psi_n}(\mu)$ in the interior of Θ_0 is smaller than the type 1 error $\alpha_{\psi_n}(\mu_0)$ at the boundary of Θ_0 and Θ_1 .

Remark: The type 2 error $\beta_{\psi_n}(\mu) = 1 - \mathbf{P}_{\mu}(\overline{X}_n > \tau)$ decreases as μ increases from μ_0 : as μ increases, the distribution of \overline{X}_n shifts without rescaling to the right but the threshold τ remains constant. This implies $\mathbf{P}_{\mu}(\overline{X}_n > \tau)$ continues to increases as μ moves to the right from the boundary of Θ_0 and Θ_1 , and hence the Type 2 error continues to decrease.

认证证书是什么?

6. Behaviors of Type 1 and Type 2 Errors for One-Sided Tests

© 保留所有权利