

Forecasting: principles and practice

Rob J Hyndman

3.1 Dynamic regression

Regression with ARIMA errors

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + e_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that e_t was WN.
- Now we want to allow e_t to be autocorrelated.

Regression with ARIMA errors

Regression models

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \mathbf{e}_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that e_t was WN.
- Now we want to allow e_t to be autocorrelated.

$$\mathbf{y}_t = p_0 + p_1 \mathbf{x}_{1,t} + \cdots + p_k \mathbf{x}_{k,t} + n_t,$$

$$(1 - \phi_1 B)(1 - B)n_t = (1 + \theta_1 B)e_t,$$

Regression with ARIMA errors

Regression models

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \mathbf{e}_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that e_t was WN.
- Now we want to allow e_t to be autocorrelated.

$$\mathbf{y}_t = p_0 + p_1 \mathbf{x}_{1,t} + \cdots + p_k \mathbf{x}_{k,t} + n_t,$$

$$(1 - \phi_1 B)(1 - B)n_t = (1 + \theta_1 B)e_t,$$

Regression with ARIMA errors

Regression models

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \mathbf{e}_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that e_t was WN.
- Now we want to allow e_t to be autocorrelated.

$$\mathbf{y}_t = p_0 + p_1 \mathbf{x}_{1,t} + \cdots + p_k \mathbf{x}_{k,t} + n_t,$$

$$(1 - \phi_1 B)(1 - B)n_t = (1 + \theta_1 B)e_t,$$

Regression with ARIMA errors

Regression models

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \mathbf{e}_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that e_t was WN.
- Now we want to allow e_t to be autocorrelated.

$$\mathbf{y}_t = p_0 + p_1 \mathbf{x}_{1,t} + \cdots + p_k \mathbf{x}_{k,t} + n_t,$$

$$(1 - \phi_1 B)(1 - B)n_t = (1 + \theta_1 B)e_t,$$

Regression with ARIMA errors

Regression models

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \mathbf{e}_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that e_t was WN.
- Now we want to allow e_t to be autocorrelated.

$$\mathbf{y}_t = p_0 + p_1 \mathbf{x}_{1,t} + \cdots + p_k \mathbf{x}_{k,t} + n_t,$$

$$(1 - \phi_1 B)(1 - B)n_t = (1 + \theta_1 B)e_t,$$

Regression with ARIMA errors

Regression models

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \mathbf{e}_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that e_t was WN.
- Now we want to allow e_t to be autocorrelated.

$$\mathbf{y}_t = p_0 + p_1 \mathbf{x}_{1,t} + \cdots + p_k \mathbf{x}_{k,t} + n_t,$$

$$(1 - \phi_1 B)(1 - B)n_t = (1 + \theta_1 B)e_t,$$

##Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + n_t$$

where n_t is ARMA process.

##Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + n_t$$

where n_t is ARMA process.

Stochastic trend

##Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + n_t$$

where n_t is ARMA process.

Stochastic trend

##Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + n_t$$

where n_t is ARMA process.

Stochastic trend

##Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + n_t$$

where n_t is ARMA process.

Stochastic trend

Periodic seasonality

Fourier terms for seasonality

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = \sum_{k=1}^K \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + n_t$$

- \blacksquare n_t is non-seasonal ARIMA process.
- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- Choose *K* by minimizing AICc.

US Accidental Deaths

Lab Session 14

Dynamic regression models

Sometimes a change in $x_{
m t}$ does not affect y instantaneously

Dynamic regression models

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.

Dynamic regression models

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.

Dynamic regression models

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.

Dynamic regression models

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.

Dynamic regression models

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.

Dynamic regression models

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.

Dynamic regression models

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.