TP5MATH-F113

TP5: Trigonométrie

1. Quelle est la mesure en degrés d'un angle de $\pi/10$ radians? À quelle fraction d'un tour complet cet angle correspond-t-il?

- 2. Si $\alpha \in [0, \pi/2]$ est tel que $\sin(\alpha) = 1/5$, que vaut $\cos(\alpha)$? (On demande la valeur exacte, sans utiliser de calculatrice).
- 3. Soit ABC un triangle rectangle en A. On donne AB = 5 cm et $\hat{B} = \pi/6$ rad. Représenter la situation et déterminer les longueurs AC et BC.
- 4. Si ABC est rectangle en A, que AB vaut 5 unités et BC vaut 6 unités, que vaut AC? Quelle est la mesure de l'angle \hat{C} ?
- 5. Soit ABC un triangle; on donne BC = 25, AC = 36 et $\hat{B} = 72^{\circ}$.
 - a) Déterminer le troisième côté et les deux autres angles en degrés.
 - b) Déterminer la mesure de \hat{B} en radians (sans calculatrice).
- 6. Un chemin fait un angle de 10 degrés avec l'horizontale. De quelle altitude monte-t-on après 5 km sur ce chemin?
- 7. À l'aide du cercle trigonométrique, déterminer les nombres suivants (valeur exacte) en utilisant les symétries adéquates.
 - (a) $\cos(5\pi/6)$
- (d) $\cos(3\pi)/4$
- (g) $\sin(-4\pi/3)$

- (b) $\sin(-\pi/4)$
- (e) $\sin(-\pi/2)$
- (h) $\cos(5\pi/4)$

- (c) $\cos(3\pi/4)$
- (f) $\cos(7\pi/3)$
- (i) $\cos(-7\pi/6)$
- 8. Vérifier les identités trigonométriques suivantes :
 - (a) $1 + \tan^2(x) = \frac{1}{\cos^2(x)}$,

- (e) $\sin^2(x) = \frac{\tan^2(x)}{1 + \tan^2(x)}$
- (b) $\cos(2x) = \cos^2(x) \sin^2(x)$,
- (f) $(\sin x + \cos x)^2 = 1 + \sin(2x)$,
- (c) $\sin(2x) = 2\sin(x)\cos(x)$, (d) $(\sin x + \cos x)^2 = 1 + \sin(2x)$,
- (g) $\sin(x)\cos(x) = \frac{\tan(x)}{1+\tan^2(x)}$.
- 9. Résoudre les équations suivantes :
 - (a) $\sin(x) = 1$,
- (c) $\tan(7x-1) = 0$ (e) $\sin(3x+1) = \frac{\sqrt{2}}{2}$
- (b) $\cos(3x) = -1$
- (d) $\sin^2(x)\cos(1-x) = 0$
- 10. Déterminer

 - (a) $\{x \mid \cos(x) > 2\}$ (b) $\{x \mid \cos(x) = \sin(x)\}$ (c) $\{x \mid \sin(x) > 0\}$
- 11. Déterminer le cosinus de l'angle entre les vecteurs du plan dont les composantes (dans un système de coordonnées cartésiens) sont données par :
 - a) (1,-1) et (2,3)
 - b) (5,-2) et (4,10)