PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-097216

(43)Date of publication of application: 08.04.1997

(51)Int.Ol.

G06F 12/14 G09C 1/00 G09C 1/00 G11B 20/10 G11B 20/12

HO4L

(21)Application number: 08-098950

(71)Applicant:

9/08

SONY CORP

(22)Date of filing:

19.04.1996

(72)Inventor:

OSAWA YOSHITOMO

SAKO YOIOHIRO KURIHARA AKIRA KAWASHIMA ISAO

(30)Priority

Priority number: 07189309

Priority date: 25.07.1995

Priority country: JP

(54) SIGNAL RECORDING DEVICE, SIGNAL RECORDING MEDIUM AND SIGNAL REPRODUCING DEVICE

PROBLEM TO BE SOLVED: To make it difficult to perform illegal decode or

illegal copy.

SOLUTION: This signal reproducing device reproduces enciphered data from a digital recording medium 101 recording the enciphered data, to which one enciphering processing has been performed at least, and key storage place information instructing for the place to arrange one piece of key information for deciphering at least, and this device is provided with a reproducing head device 212 for reading the enciphered data and key storage place information from the recording medium 101, TOC decoder 219, CPU 224 or the like and a digital signal processing circuit 220 for deciphering the enciphered data by using the key information of the place designated based on the key storage place information.

LEGAL STATUS

[Date of request for examination]

22.08.2001

[Date of sending the examiner's decision of rejection]

13.09.2005

[Kind of final disposal of application other than the examiner's

decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3758231

[Date of registration]

13.01.2006

[Number of appeal against exeminer's decision of rejection]

2005-19838

[Date of requesting appeal against examiner's decision of

13.10.2005

rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-97216

(43)公開日 平成9年(1997)4月8日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ					技術表示	箇所
G06F 12/14	320		G 0 6	F 1	2/14		320B		
G09C 1/00	630	7259 – 5 J	G 0 9	С	1/00		630A		
	660	7259 – 5 J					660D	•	
G11B 20/10		7736-5D	G11	B 2	0/10		H		
20/12	102	9295-5D		2	0/12		102		
		審查請求	未請求	請求項	夏の数11	OL	(全 25 頁)	最終頁に	続く
(21)出顧番号	特顧平8-98950		(71) 出	人類と	0000021	185			
					ソニー	朱式会	社		
(22)出顧日	平成8年(1996)4	月19日			東京都	品川区	北品川6丁目	7番35号	
			(72) \$	御者	大澤	義知			
(31)優先権主張番号	特願平7-189309				東京都	品川区:	北岛川6丁目	7番35号	ソニ
(32)優先日	平7 (1995) 7月25	日			一株式	会社内			
(33)優先権主張国	日本(JP)		(72) \$	è明者	佐古	僅一郎			
					東京都	品川区:	化品川6丁目	7番35号	ソニ
					一株式	会社内			
			(72)多	è明者	栗原:	章			
					東京都	品川区	北岛川6丁目	7番35号	ソニ
					一株式	会社内			
			(74)	人野分	弁理士	小池	晃 (外2	名)	
			Î					最終頁に	生

(54) 【発明の名称】 信号記録装置、信号記録媒体、及び信号再生装置

(57)【要約】

【課題】 不法解読や不法コピーの防止を困難にする。 【解決手段】 少なくとも一つの暗号化処理が施された暗号化されたデータと、当該暗号化を解くための少なくとも一つの鍵情報が配置される場所を指示する鍵格納場所情報とが記録されてなるディジタル状記録媒体101から暗号化データを再生する信号再生装置であり、記録媒体101から暗号化データと鍵格納場所情報を読み取る再生へッド装置12,TOCデコーダ219、及びCPU224等と、鍵格納場所情報に基づいて指定された場所の鍵情報を用いて、暗号化データを復号化するディジタル信号処理回路220とを有する。

【特許請求の範囲】

【請求項1】 信号記録媒体に対して暗号化した信号を 記録する信号記録装置において、

入力信号を暗号化する少なくとも一つの信号暗号化手段 と

上記少なくとも一つの信号暗号化手段にて使用する暗号 化の鍵情報が配置される場所を指示する鍵格納場所情報 を入力する鍵格納場所情報入力手段とを有することを特 徴とする信号記録装置。

【請求項2】 上記鍵格納場所情報を信号記録媒体のユーザがアクセスできない特定の位置に記録することを特徴とする請求項1記載の信号記録装置。

【請求項3】 上記鍵情報を、信号記録媒体上又は当該 信号記録媒体以外の場所に配置することを特徴とする請 求項1記載の信号記録装置。

【請求項4】 上記鍵情報を暗号化する鍵情報暗号化手段と、上記鍵情報暗号化手段にて使用する暗号化の鍵情報が配置される場所を指示する格納情報指示情報を入力する格納情報指示情報入力手段とを、設けることを特徴とする請求項1記載の信号記録装置。

【請求項5】 少なくとも一つの暗号化処理が施された暗号化信号と、当該暗号化信号の暗号化を解くための少なくとも一つの鍵情報が配置される場所を指示する鍵格納場所情報とが記録されてなることを特徴とする信号記録媒体。

【請求項6】 上記鍵格納場所情報が記録される位置は、ユーザがアクセスできない特定の位置であることを 特徴とする請求項5記載の信号記録媒体。

【請求項7】 上記鍵格納場所情報は暗号化されており、当該鍵格納場所情報の暗号化の鍵情報をも記録してなることを特徴とする請求項5記載の信号記録媒体。

【請求項8】 少なくとも一つの暗号化処理が施された暗号化信号と、当該暗号化信号の暗号化を解くための少なくとも一つの鍵情報が配置される場所を指示する鍵格納場所情報とが記録されてなる信号記録媒体から上記暗号化信号を再生する信号再生装置であって、

上記信号記録媒体から上記暗号化信号及び上記鍵格納場 所情報を読み取る読み取り手段と、

上記鍵格納場所情報に基づいて指定された場所の上記鍵 情報を用いて、上記暗号化信号の当該暗号化を解く復号 手段とを有することを特徴とする信号再生装置。

【請求項9】 上記読み取り手段は、信号記録媒体のユーザがアクセスできない特定の位置に記録された上記鍵格納場所情報を読み取ることを特徴とする請求項8記載の信号再生装置。

【請求項10】 信号記録媒体以外の場所に配置された 上記鍵情報を取り出す取り出し手段を備えることを特徴 とする請求項8記載の信号再生装置。

【請求項11】 上記鍵情報は暗号化されており、上記 読み取り手段は、当該鍵情報の暗号化の鍵情報が配置さ れる場所を指示する情報をも読み取ることを特徴とする 請求項8記載の信号再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コピーの防止や不 正使用を阻止するための信号記録装置、信号記録媒体、 及び信号再生装置に関する。

[0002]

【従来の技術】近年において、光ディスク等の信号記録 媒体の大容量化と普及により、記録されている信号の著 作権を保護するために、不法なコピーの防止が重要とさ れていてきいる。すなわち、ディジタルオーディオデー タやディジタルビデオデータの場合には、コピー或いは ダビングにより劣化の無い複製物を容易に生成でき、ま たコンピュータデータの場合には、元のデータと同一の データが容易にコピーできるため、既に不法コピーによ る著作権の侵害等の弊害が生じてきているのが実情であ る。

【0003】このようなことから、上記不法コピーの防止を目的として、オリジナルの信号記録媒体に不法コピー防止のための所定のIDビットを記録しているものがある。

【0004】例えば、いわゆるR-DAT (Rotary head Digital Audio Taperecoder) と称されるディジタルオーディオ信号記録再生装置における上記不法コピー防止のための方式としては、信号記録媒体としてのディジタルオーディオテープ上に記録されるディジタルオーディオ信号のメインデータエリアに、ディジタルコピーの禁止や段階的な世代コピーを禁止(すなわち世代制限)するための禁止コード(いわゆるSCMS:シリアルコピー管理システムの規格の禁止コード)を記録しておき、ディジタルオーディオ信号記録装置がこの禁止コードを検出したときに、新たなディジタルオーディオテープ上への当該ディジタルオーディオ信号のコピー記録を禁止するような方式が採用されている。

【0005】また、信号記録媒体に記録された例えばディジタルビデオ信号の不法コピーを防止するためには、上記R-DATにおける記録再生装置間での不法コピー防止の方式と同様に、オリジナルのディジタル記録媒体に不法コピー防止のための所定のIDビット(CGMS:コピー世代管理システムの規格の禁止コード)を記録することが考えられる。

【0006】さらに、コンピュータデータの場合には、ファイル内容自体を暗号化鍵情報を用いて暗号化し、それを正規の登録された使用者にのみ使用許諾することが行われている。なおこれは、情報流通の形態として、情報が暗号化されて記録されたディジタル記録媒体を配布しておき、使用者が必要とした内容について料金を払って鍵情報を入手し、暗号を解いて利用可能とするようなシステムに結び付くものである。

[0007]

【発明が解決しようとする課題】ところが、上述したような従来の信号記録媒体用の禁止コードや暗号鍵情報は、特開平5-173891号公報に示されるように、記録媒体上のユーザからアクセスされるシステム固有の特定の場所に記録されている。なお、上記禁止コードや暗号鍵情報も、通常暗号化されていている。

【0008】このように、上記禁止コードや暗号鍵情報の配置がそれぞれの暗号化手法において任意の場所で固定的であると、互換性がなくなる虞れがある。また、禁止コードや暗号鍵情報を固定的に配置すれば、暗号化の手法も固定化されることになり、柔軟性、拡張性に乏しく、フォーマット自身の寿命を縮めてしまう可能性がある。

【0009】さらに、暗号鍵情報や禁止コードは、例えばユーザからアクセス可能な場所にあるため、悪意のあるユーザによる解読や不法コピーの対象になりやすかった。

【0010】そこで、本発明は上述したような実情に鑑みてなされたものであり、不法解読や不法コピーを困難にする信号記録装置及び信号再生装置、並びに信号記録 媒体を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明の信号記録装置及び信号記録媒体は、入力信号を暗号化した暗号化信号と、当該暗号化の鍵情報が配置される場所を指示する鍵格納場所情報とを信号記録媒体に記録することにより、上述の課題を解決する。

【0012】また、本発明の信号再生装置は、本発明の信号記録媒体から信号を再生するにあたって、当該信号記録媒体から暗号化信号及び鍵格納場所情報を読み取り、鍵格納場所情報に基づいて指定された場所の鍵情報を用いて、暗号化信号を復号することにより、上述の課題を解決する。

【0013】すなわち、本発明によれば、信号記録媒体には鍵情報の場所を指示する鍵格納場所情報を記録し、信号再生の際には当該鍵格納場所情報に基づいて鍵情報を取り出すようにすることで、鍵情報を容易に取り出せないようにしている。

[0014]

【発明の実施の形態】以下、本発明に係るいくつかの好ましい実施の形態について、図面を参照しながら説明する。

【0015】図1は、本発明の実施の形態となる信号記録装置の一構成例を概略的に示すブロック図である。この図1において、入力端子11には、例えばアナログのオーディオ信号やビデオ信号をディジタル変換して得られたデータやコンピュータデータ等のディジタルデータが供給されている。この入力ディジタルデータは、インターフェース回路12を介して、セクタ化回路13に送

られ、所定データ量単位、例えば2048バイト単位で セクタ化される。

【0016】このセクタ化されたデータは、スクランブル処理回路14に送られてスクランブル処理が施される。この場合のスクランブル処理は、同一バイトパターンが連続して表れないように、すなわち同一パターンが除去されるように、入力データをランダム化して、信号を適切に読み書きできるようにすることを主旨としたランダム化処理のことである。

【 O O 1 7 】上記スクランブル処理あるいはランダム化処理されたデータは、ヘッダ付加回路15に送られて、各セクタの先頭に配置されるヘッダデータが付加された後、誤り訂正符号化回路16に送られる。

【0018】次に誤り訂正符号化回路16では、データ 遅延及びパリティ計算を行ってパリティを付加する。

【0019】次の変調回路17では、所定の変調方式に 従って、例えば8ビットデータを16チャンネルビット の変調データに変換し、同期付加回路18に送る。同期 付加回路18では、上記所定の変調方式の変調規則を破 る、いわゆるアウトオブルールのパターンの同期信号を 所定のデータ量単位で付加し、駆動回路すなわちドライ バ19を介して記録ヘッド20に送っている。

【0020】記録ヘッド20は、例えば光学的あるいは 磁気光学的な記録を行うものであり、ディスク状の記録 媒体21に上記変調された記録信号の記録を行う。この ディスク状記録媒体21は、スピンドルモータ22により回転駆動される。

【0021】なお、上記スクランブル処理回路14は、必須ではなく、また、ヘッダ付加回路15の後段に挿入して、ヘッダ付加されたディジタルデータに対してスクランブル処理を施して誤り訂正符号化回路16に送るようにしてもよい。

【0022】ここで、セクタ化回路13、スクランブル処理回路14、ヘッダ付加回路15、誤り訂正符号化回路16、変調回路17、及び同期付加回路18のいずれか少なくとも1つの回路は、入力に対して暗号化処理を施して出力するような構成を有している。好ましくは、2つ以上の回路で暗号化処理を施すことが挙げられる。【0023】この暗号化処理を施すことが挙げられる。

【0023】この暗号化処理の鍵情報は、例えば媒体固有の識別情報、媒体の出荷先の地域を表す仕向け情報

(Regional Code) や、製造元識別情報、販売者識別情報、あるいは、記録装置やエンコーダの固有の識別情報、カッティングマシンやスタンパ等の媒体製造装置の固有の識別情報、外部から供給される識別情報等を少なくとも一部に用いることができるものである。上記回路13~18の少なくとも1つ、好ましくは2以上で当該健情報を用いた入力データに対する暗号化処理が施される。

【0024】この場合、回路13~18のどの回路において暗号化処理が施されたかも選択肢の1つとなってお

り、再生時に正常な再生信号を得るために必要な鍵と考えられる。すなわち、1つの回路で暗号化処理が施されていれば、6つの選択肢の1つを選ぶことが必要となり、2つの回路で暗号化処理が施されていれば、2つの回路の組み合わせの数に相当する15個の選択肢の内から1つを選ぶことが必要となる。6つの回路13~18の内の1~6つの回路で暗号化処理が施される可能性がある場合には、さらに選択肢が増大し、この組み合わせを試行錯誤的に見つけることは困難であり、充分に暗号の役割を果たすものである。

【0025】さらに、暗号化の鍵情報を所定タイミング、例えばセクタ周期で切り換えることが挙げられる。この所定タイミングで鍵情報の切り換える場合に、切り換えを行うか否かや、切換周期、複数の鍵情報の切換順序等の情報も鍵として用いることができ、暗号化のレベルあるいは暗号の難易度、解き難さ、解読の困難さをさらに高めることができる。

【0026】また、上述した鍵情報は、後述する暗号鍵格納場所情報により指示される媒体101上の位置、或いは当該媒体101上以外の位置に格納されるものである。上記鍵格納場所情報は、例えば上記インターフェース回路12からTOC (Table of contents)生成回路23を介して端子24に送られる情報であり、また、インターフェース回路12から直接的に端子25に送られる情報である。これらの端子24、25からの鍵格納場所情報が、記録媒体101の例えば後述するTOC領域、或いはその他の所定位置に記録されるようになされている。なお、以下の説明では、TOC領域に鍵格納場所情報が記録される場合を例に挙げている。

【0027】次に、各回路13~18の構成及び暗号化処理の具体例について説明する。

【0028】先ず、セクタ化回路13においては、例え ば図2に示すような偶数・奇数バイトのインターリーブ 処理を行わせることが挙げられる。すなわち、図2にお いて、上記図1のインターフェース回路12からの出力 を、2出力の切換スイッチ31に送り、この切換スイッ チ31の一方の出力を偶奇インターリーバ33を介して セクタ化器34に送り、切換スイッチ31の他方の出力 をそのままセクタ化器34に送っている。セクタ化器3 4では、例えば入力データの2048バイト単位でまと めて1セクタとしている。このセクタ化回路13の切換 スイッチ32の切換動作を、鍵となる1ビットの制御信 号で制御するわけである。偶奇インターリーバ33は、 図3のAに示すような偶数バイト36aと奇数バイト3 6 bとが交互に配置された入力データの1セクタ分を、 図3のBに示すように、偶数データ部37aと奇数デー タ部37bとに分配して出力する。さらに、図3のCに 示すように、1セクタ内の所定の領域39を鍵情報によ り特定し、この領域39内のデータについてのみ偶数デ ータ部39aと奇数データ部39bとに分配するように

してもよい。この場合には、領域39の特定の仕方を複数通り選択できるように設定することもでき、鍵情報の選択肢をさらに増加させて暗号化のレベルをより高めることもできる。

【0029】次に、スクランブル処理回路14には、例 えば図4に示すように、15ビットのシフトレジスタを 用いたいわゆるパラレルブロック同期タイプのスクラン ブラを用いることができる。このスクランブラのデータ 入力用の端子35には、LSB (最下位ビット)が時間 的に先となる順序、いわゆるLSBファーストで、上記 セクタ化回路13からのデータが入力される。スクラン ブル用の15ビットのシフトレジスタ14aは、排他的 論理和(ExOR)回路14bを用いて生成多項式 x¹⁵+x +1に従ったフィードバックがかけられ、15ビットの シフトレジスタ14aには、図5に示すようなプリセッ ト値 (あるいは初期値) が設定されるようになってお り、図5のプリセット値の選択番号は、例えばセクタア ドレスの下位側4ビットの値に対応させて、セクタ単位 でプリセット値が切り換えられるようになっている。シ フトレジスタ14 aからの出力データと端子35からの 入力データとは、ExOR回路14cにより排他的論理和が とられて、端子14dより取り出され、図1のヘッダ付 加回路15に送られる。

【0030】ここで、上記生成多項式及びプリセット値 (初期値)を、所定の識別番号等の鍵情報に応じて変化 させるようにすることができる。すなわち、上記生成多 項式を変化させるには、例えば図6に示すような構成を 用いればよい。この図6において、15ビットのシフト レジスタ14aの各ビットからの出力が切換スイッチ1 4 f の各被選択端子に送られ、この切換スイッチ14 f は制御端子14gからの例えば4ビットの制御データに よって切換制御され、切換スイッチ14fからの出力は ExOR回路14bに送られている。このような構成の制御 端子14gの制御データを変化させることにより、生成 多項式 $x^{15} + x^n + 1$ のnを変化させることができる。 また、上記プリセット値を変化させるには、上記図5の プリセット値テーブルの各プリセット値を、例えば16 バイトの識別情報の各バイト値と論理演算することが挙 げられる。この場合の識別情報としては、上述したよう な媒体固有の識別情報、製造元識別情報、販売者識別情 報や、記録装置やエンコーダの固有の識別情報、媒体製 造装置固有の識別情報、外部から供給される識別情報 等、あるいはこれらの組み合わせや他の情報との組み合 わせ等を用いることができ、また上記論理演算として は、排他的論理和 (ExOR) や、論理積 (AND)、論理和 (OR)、シフト演算等を使用できる。なお、生成多項式 を変化させるための構成は図6の構造に限定されず、シ フトレジスタの段数や取り出すタップ数を任意に変更し てもよい。

【0031】次に、ヘッダ付加回路15について説明す

る。先ず、図7はセクタフォーマットの具体例を示しており、1セクタは、2048バイトのユーザデータ領域41に対して、4バイトの同期領域42と、16バイトのヘッダ領域43と、4バイトの誤り検出符号(EDC)領域44とが付加されて構成されている。誤り検出符号領域44の誤り検出符号は、ユーザデータ領域41及びヘッダ領域43に対して生成される32ビットのCRC符号から成っている。ヘッダ付加回路15での暗号化処理としては、同期いわゆるデータシンクに対して、ヘッダのアドレス及びCRCに対して施すことが挙げられる。

【0032】セクタの同期すなわちデータシンクに対して暗号化処理を施す一例としては、4バイトの同期領域42の各バイトに割り当てられたバイトパターンを、図8の「A」、「B」、「C」、「D」にてそれぞれ表すとき、2ビットの鍵情報を用いて、この4バイトの内容をバイト単位でシントあるいはローテートすることが挙げられる。すなわち、2ビットの鍵が「0」のとき「ABCD」、「1」のとき「BCDA]、「2」のとき「CDAB]、「3」のとき「DABC」のように切り換えることにより、この鍵が合致しないとセクタの同期がとれなくなり、正常な再生が行えない。なお、上記バイトパターン「A」、「D」としては、例えばISO646のキャラクタコード等を使用できる。

【0033】ヘッド領域43内には、図9に示すように、いわゆる巡回等すであるCRC45、コピーの許可/不許可やコピー計で管理等のためのコピー情報46、多層ディスクのどの点がを示す層47、アドレス48、予備49の各領域が支けられている。この内で、アドレス48の32ビットにビットスクランブル、この場合には、ビット単位で、最適処理を施すことにより、暗号化が行える。また、「1045の生成多項式として、 \mathbf{x}^{16} + \mathbf{x}^{15} + \mathbf{x}^{2} + $\mathbf{1}$ = $\mathbf{1}$ こられている場合、第2、第3項の \mathbf{x}^{15} 、 \mathbf{x}^{2} の代 「二、 \mathbf{x}^{15} ~ \mathbf{x} に対応する15ビットを鍵に応じて受じ、一ることが挙げられる。また、CRC45の16ビットと鍵情報とを論理演算することも挙げられる。

【0034】なお、正正護情報は、上述したように、媒体固有の識別情報。「二元識別情報、販売者識別情報や、記録装置やエン・・グ、あるいは媒体製造装置の固有の識別情報、クロー・供給される識別情報等、あるいはこれらの組みに、一一他の情報との組み合わせ等を用いることができる。

【0035】次に、い訂正符号化回路16の具体例を図10に示す。これではいて、誤り訂正符号化の1フレームは1 12トあるいは148シンボルのデータから成り、ロース・グ付加回路15からのディジタルデータが14 12 毎にまとめられて、第1の符号化器であるC1 - グ52に供給される。C1エンコーダ52では、バースのPパリティが付加され、イン

ターリーブのための遅延回路53を介して第2の符号化 器であるC2エンコーダ54に送られる。C2エンコー ダ54では14バイトのQパリティが付加され、このQ パリティは遅延回路55を介してC1エンコーダ52に 帰還されている。このC1エンコーダ52からのP、Q パリティを含む170バイトが取り出されて、遅延回路 56を介し、インバータ部57aを有する再配列回路5 7を介して出力され、図1の変調回路17に送られる。 【0036】このような誤り訂正符号化回路において暗 号化処理を施す場合には、例えば再配列回路57内のイ ンバータ部57aの各バイト毎に、暗号の鍵情報に応じ てインバータを入れるか入れないかの選択を行わせるよ うにすることが挙げられる。すなわち、基準構成におい ては、22バイトのP、Qパリティに対して再配列回路 57のインバータ部57aのインバータによる反転が行 われて出力されるが、これらのインバータのいくつかを 無くしたり、C1データ側にいくつかのインバータを入 れて反転して出力させたりすることが挙げられる。

【0037】このようなデータ変換を施す場合、基準構 成からの違いの程度によって誤り訂正不能確率が変化 し、違いが少ないときには最終的な再生出力におけるエ ラー発生確率がやや高くなる程度であるのに対し、違い が多いときには全体的にエラー訂正が行われなくなって 殆ど再生できなくなるような状態となる。すなわち、例 えばC1エンコーダについて見ると、誤り訂正能力を示 す指標であるいわゆるディスタンスが9であるため、最 大4バイトまでのエラー検出訂正が行え、消失(イレー ジャ) ポインタがあれば最大8バイトまでの訂正が可能 であることから、違いが5箇所以上あると、C1符号で は常に訂正不可又は誤訂正となる。違いが4箇所の場合 は、他に1バイトでもエラーが生じると訂正不可という 微妙な状態となる。違いが3、2、1箇所と減少するに つれて、誤り訂正できる確率が増えてゆく。これを利用 すれば、オーディオやビデオのソフトを提供する場合等 に、ある程度は再生できるが完璧ではなく時々乱れる、 といった再生状態を積極的に作り出すことができ、該ソ フトの概要だけを知らせる用途等に使用することができ

【0038】この場合、予めインバータの変更を行う場所を例えば2箇所程度規定しておく方法と、変更箇所を 鍵情報に応じてランダムに選び、最低個数を2箇所程度 に制限する方法と、これらを複合する方法とが挙げられ る。

【0039】さらに、インバータの挿入あるいは変更位置としては、図10の再配列回路57の位置に限定されず、例えばC1エンコーグ52の前段や後段等の他の位置やこれらの位置を組み合わせるようにしてもよい。複数の位置の場合に、異なる鍵を用いるようにしてもよい。また、インバータを用いる以外に、ビット加算や種々の論理演算を用いるようにしてもよい。また、シフト

レジスタを用いて変換したり、各種関数演算により変換する等、さまざまな暗号化手法が適用できることは勿論であり、それらを組み合わせて使用することも可能である。

【0040】ここで、図11は、上記誤り訂正符号化回路16の他の具体例として、再配列回路57内のインバータ部57aの後段の位置に排他的論理和(ExOR)回路群61を挿入し、C1エンコーダ52の前段すなわち入力側の位置にもExOR回路群66を挿入した例を示している。

【0041】具体的に、ExOR回路群61は、C1エンコ ーダ52から遅延回路56、及び上記再配列回路57の インバータ部57aを介して取り出される170バイト のデータ、すなわち情報データC1_{170n+169}~C1 170n+22 及びパリティデータP1170n+21 ~P1 170n+14 、Q1170n+13 ~Q1170nのデータに対して排 他的論理和 (ExOR) 回路を用いたデータ変換を行い、Ex OR回路群66は、148バイトの入力データB_{148n}~B 148n+147に対して排他的論理和(ExOR)回路を用いたデ ータ変換を行う。これらのExOR回路群61、66に用い られるExOR回路は、1バイトすなわち8ビットの入力デ ータと1ビットの制御データで指示される所定の8ビッ トデータとの排他的論理和 (ExOR) をそれぞれとるよう な8ビットExOR回路であり、このような8ビットExOR回 路(所定の8ビットデータがオール1の場合はインバー 夕回路に相当する)が、ExOR回路群61では170個、 ExOR回路群66では148個用いられている。

【0042】この図11においては、170ビットの鍵 情報が端子62に供給され、いわゆるDラッチ回路63 を介してExOR回路群61内の170個の各ExOR回路にそ れぞれ供給されている。Dラッチ回路63は、イネーブ ル端子64に供給された1ビットの暗号化制御信号に応 じて、端子62からの170ビットの鍵情報をそのまま ExOR回路群61に送るか、オールゼロ、すなわち170 ビットの全てを"O"とするかが切換制御される。ExOR 回路群61の170個の各ExOR回路の内、Dラッチ回路 63から"O"が送られたExOR回路は、再配列回路57 内のインバータ部57aからのデータをそのまま出力 し、Dラッチ回路63から"1"が送られたExOR回路 は、再配列回路57内のインバータ部57aからのデー タを反転して出力する。オールゼロのときには、再配列 回路57内のインバータ部57aからのデータをそのま ま出力することになる。また、ExOR回路群66について は、148個のExOR回路を有し、鍵情報が148ビット であること以外は、上記ExOR回路群61の場合と同様で あり、端子67に供給された148ビットの鍵情報がD ラッチ回路68を介してExOR回路群66内の148個の ExOR回路にそれぞれ送られると共に、Dラッチ回路68 はイネーブル端子69の暗号化制御信号により148ビ ットの鍵情報かオールゼロかが切換制御される。

【0043】この図11の例において、ExOR回路群61は、C1エンコーダ52から遅延回路56、インバータ部57aを介して取り出される170バイトのデータとしての情報データC1 $_{170n+169}$ ~C1 $_{170n+22}$ 及びパリティデータP1 $_{170n+21}$ ~P1 $_{170n+14}$ 、Q1 $_{170n+13}$ ~Q1 $_{170n}$ のデータに対して排他的論理和(ExOR)回路を用いたデータ変換を行っているが、パリティデータについてはデータ変換を行わず、残り148バイトの情報データC1 $_{170n+169}$ ~C1 $_{170n+22}$ に対して、148ビットの鍵情報に応じたデータ変換を行わせるようにしてもよい。

【0044】この図11の回路においても、上記図10の場合と同様な作用効果が得られることは勿論である。また、ExOR回路群61、66のいずれか一方のみを使用するようにしたり、いずれか一方あるいは双方の選択も暗号化の鍵として用いるようにすることもできる。

【0045】なお、上記鍵情報は、上述したように、媒体固有の識別情報、製造元識別情報、販売者識別情報や、記録装置やエンコーダあるいは媒体製造装置の固有の識別情報、外部から供給される識別情報等、あるいはこれらの組み合わせや他の情報との組み合わせ等を用いることができる。

【0046】なお、上記データ変換手段としてのExOR回 路群61、66の代わりに、AND、OR、NAND、 NOR、インバート回路群等を使用してもよい。また、 8ビット単位で1ビットの鍵情報あるいは鍵データによ る論理演算を行う以外にも、8ビットの情報データに対 して8ビットの鍵データで論理演算を行わせてもよく、 さらに、情報データの1ワードに相当する8ビットの内 の各ビットに対してそれぞれAND、OR、ExOR、 NAND、NOR、インバート回路を組み合わせて使用 してもよい。この場合には、例えば148バイトすなわ ち148×8ビットのデータに対して、148×8ビッ トの鍵データが用いられることになり、さらにAND、 OR、ExOR、NAND、NOR、インバート回路を 組み合わせて使用する場合には、これらの組み合わせ自 体も鍵として用いることができる。また、論理演算以外 に、データの位置を変える転置や、データの値を置き換 える置換等も上記データ変換として使用できる。また、 シフトレジスタを用いて変換したり、各種関数演算によ り変換する等、さまざまな暗号化手法が適用できること は勿論であり、それらを組み合わせて使用することも可 能である。

【0047】次に、図1の変調回路17での暗号化処理について、図12を参照しながら説明する。この図12において、入力端子71には、上記誤り訂正符号化回路16からのデータが8ビット(1バイト)毎に供給され、入力端子72には8ビットの鍵情報が供給されており、これらの8ビットデータは、論理演算回路の一例としてのExOR回路73に送られて排他的論理和がとられ

る。このExOR回路73からの8ビット出力が、所定の変調方式の変調器、例えば8-16変換回路74に送られて、16チャンネルビットに変換される。この8-16変換回路74での8-16変調方式の一例としてはいわゆるEFMプラス変調方式が挙げられる。

【0048】この図12の例では、データ変調の前に8ビットの鍵情報を用いた暗号化処理を施しているが、鍵情報のビット数は8ビットに限定されず、また、8-16変調の際の変換テーブルの入出力の対応関係を鍵情報に応じて変化させるようにしてもよい。鍵情報には、上述した媒体固有の識別情報等を使用できることは勿論である。

【0049】次に、同期付加回路18について説明する。同期付加回路18では、例えば図13に示すような4種類の同期ワードS0~S3を用いて、上記8-16変調のフレーム単位で同期をとっている。この8-16変調フレーム(例えばEFMプラスフレーム)は、例えば85データシンボルである1360チャンネルビットから成り、この1フレーム1360チャンネルビット毎に32チャンネルビットの同期ワードが付加されると共に、このフレームを上記C1符号やC2符号に対応させて構造化し、C1符号系列の先頭フレームの同期ワードと他のフレームの同期ワードを異ならせる等して、上記4種類の同期ワードS0~S3を使い分けている。これらの同期ワードS0~S3は、直前のワードの"1"、"0"の状態やいわゆるデジタルサムあるいは直流値等に応じてそれぞれ2つの同期パターンa、bを有している

【0050】このような4種類の同期ワードS0~S3の選択を、例えば図14に示すような回路を用いて、2ビットの鍵情報75に応じて変更することにより、暗号化が行える。すなわち、上記4種類の同期ワードS0~S3を指定する2ビットデータ76の各ビットと、上記2ビットの鍵情報75の各ビットとが、2つのExOR回路77、78によりそれぞれ排他的論理和され、新たな同期ワード指定データ79となる。これにより、上記フレーム構造における同期ワードの使い方あるいはフレーム構造内での各種同期ワードの使用位置が変更され、暗号化がなされることになる。

【0051】なお、同期ワードの種類数をさらに増やしてそれらの内から4種類の同期ワードを取り出す取り出し方を暗号化の鍵により決定するようにしてもよい。この鍵情報としては、上述した媒体固有の識別情報等が使用できる。

【0052】次に図15は、記録媒体の一例としての光ディスク等のディスク状記録媒体101を示している。このディスク状記録媒体101は、中央にセンタ孔102を有しており、このディスク状記録媒体101の内間から外周に向かって、プログラム管理領域であるTOC(table of contents)領域となるリードイン(leadin

)領域103と、プログラムデータが記録されたプログラム領域104と、プログラム終了領域、いわゆるリードアウト(lead out)領域105とが形成されている。オーディオ信号やビデオ信号再生用光ディスクにおいては、上記プログラム領域104にオーディオやビデオデータが記録され、このオーディオやビデオデータの時間情報等が上記リードイン領域103で管理される。【0053】当該図15の記録媒体101において、前記鍵格納場所情報は、リードイン領域103に、TOC情報の一部として記録される。再生時には、上記鍵格納場所情報を読み出し、この読み出した鍵格納場所情報に基づいて、前記暗号化を復号するための鍵情報を取り出すようにする。

【0054】なお、上記鍵格納場所情報にて格納場所が指示される鍵情報の当該格納場所については後述する。 【0055】次に、上記ディスク状記録媒体101からデータを再生する再生装置について、図16を用いて説明する。

【0056】図16において、上記ディスク状記録媒体101は、スピンドルモータ211により回転駆動され、光学ピックアップ装置等の再生へッド装置212により当該記録媒体101の記録内容が読み取られる。【0057】再生へッド装置212により読み取られた信号は、2値化回路213にて2値のディジタルデータに変換され、ディジタル信号処理回路220に送られる。また、上記2値化回路213にて2値に変換されたディジタルデータのうち、TOC領域から読み出されたディジタルデータのうち、TOC領域から読み出されたデータは、TOCデコーダ219に送られてデコード処理され、このデコード処理により得られるTOC情報がCPU224に送られる。

【0058】当該CPU224は、上記TOCデコーダ219からのデータより、前記鍵格納場所情報を取り出す。CPU224は、当該鍵格納場所情報に基づいて、鍵情報を後述するようにして取り出し、この鍵情報をディジタル信号処理回路220の複数の暗号鍵情報蓄積回路2221~222kに蓄積させる。

【0059】ディジタル信号処理回路220は、複数の復号器 $221_1 \sim 221_N$ と複数の暗号鍵情報蓄積回路 $222_1 \sim 222_N$ を有してなるものであり、各復号器 $221_1 \sim 221_N$ は、上記図1の構成のセクタ化回路 $13 \sim$ 同期付加回路18までの構成に対応する逆処理を行うものである。すなわち、前述したように、これら回路 $13 \sim 18$ の少なくとも1つ、好ましくは2以上で、鍵情報を用いた暗号化処理が施されたときに、当該ディジタル信号処理回路220では、これら回路 $13 \sim 18$ のうち暗号化処理に関わった回路に対応する復号器に対して、それぞれ暗号鍵情報蓄積回路 $222_1 \sim 222_N$ に蓄積した鍵情報を用いて当該暗号化を解くようにする。

【0060】より具体的に説明すると、ディジタル信号 処理回路220は、図17に示すような構成を復号器2

 21_1 ~ 221_N に対応して設けてなるものであり、この 図17の端子113に上記2値化回路213からの出力 データが供給される。この図17において、同期分離回 路114では、上記図1の同期付加回路18で付加され た同期信号の分離が行われる。同期分離回路114から のディジタル信号は、復調回路115に送られて、上記 図1の変調回路17の変調を復調する処理が行われる。 具体的には、16チャンネルビットを8ビットのデータ に変換するような処理である。復調回路 1 1 5 からのデ ィジタルデータは、誤り訂正復号化回路116に送られ て、図1の誤り訂正符号化回路16での符号化の逆処理 としての復号化処理が施される。以下、セクタ分解回路 117によりセクタに分解され、ヘッダ分離回路118 により各セクタの先頭部分のヘッダが分離される。これ らのセクタ分解回路117及びヘッダ分離回路118 は、上記図1のセクタ化回路13及びヘッダ付加回路1 5に対応するものである。次に、デスクランブル処理回 路119により、上記図1のスクランブル処理回路14 におけるスクランブル処理の逆処理としてのデスクラン ブル処理が施され、この出力データが端子120から出 力されて、図16の出力端子223に送られる。

【0061】ここで、前述したように、記録時に図1のセクタ化回路13にて暗号化処理が施されている場合には、セクタ分解回路117にて暗号化の際の鍵情報を用いた暗号の復号化処理が行われ、以下同様に、図1のスクランブル処理回路14での暗号化処理に対応してデスクランブル処理回路119での暗号復号化処理が、図1のヘッダ付加回路15での暗号化処理に対応してへッダ分離回路118での暗号復号化処理が、図1の誤り訂正符号化回路16での暗号化処理に対応して誤り訂正復号化回路116での暗号復号化処理が、図1の変調回路17での暗号化処理に対応して復調回路115での暗号復号化処理が、さらに図1の同期付加回路18での暗号化処理に対応して同期分離回路114での暗号復号化処理が、さらに図1の同期付加回路18での暗号化処理が、さらに図1の同期付加回路18での暗号化処理に対応して同期分離回路114での暗号復号化処理が、それぞれ行われるようになっている。

【0062】ところで、本発明の再生装置のCPU224は、上述したように、上記TOCデコーダ219から供給された鍵格納場所情報に基づいて、実際に鍵情報が格納されている位置を求め、当該鍵格納場所情報に対応する場所に格納されている鍵情報を取り出し、当該取り出した鍵情報を、上記各復号器2211~221nに対応する暗号鍵情報蓄積回路2221~222nに蓄積させ、当該蓄積した鍵情報を用いて上記復号処理を行うようにしている。

【0063】このようなことを行うため、本発明では、図18に示すようなデータ構造の鍵格納場所情報 KP_1 \sim KP_N を、ディジタル信号処理回路220内のそれぞれの復号器 21_1 \sim 221_N 毎に用意し、当該鍵格納場所情報 KP_1 \sim KP_N が前記記録媒体101のTOC領域に配置されている。

【0064】ここで、上記各鍵格納場所情報 $KP_1 \sim KP_N$ は、この図18に示すように、セクタアドレス情報とオフセット情報とバイト数情報と属性情報とからなるものである。すなわち、これら各鍵格納場所情報 $KP_1 \sim KP_N$ は、ある復号器で暗号化を解くために必要な暗号鍵情報 CKが、セクタアドレス情報にて示されるセクタ内において、オフセット情報にて示される位置(先頭バイトからオフセット情報にて示される位置のバイト)からバイト数情報にて示される長さのバイト分に納められていることを示している。なお、属性情報としては、復号器 $221_1 \sim 221_N$ の使用の有無や、その他の情報を納めることができる。

【0065】次に、上記鍵格納場所情報テーブルを用いた場合の図16の再生装置における復号処理の流れを以下に説明する。

【0066】図16の再生装置は、ディスク状記録媒体101が交換される度に、全ての復号器 221_1 ~ 221_N ,暗号化鍵情報蓄積装置 222_1 ~ 222_N をリセットすると共に、ディスク状記録媒体101の全セクタアドレスをアクセス可能なモードに設定する。

【0067】次に、再生装置は、ディスク状記録媒体1010TOC領域から上記鍵格納場所情報 $KP_1\sim KP_N$ を読み出し、これら鍵格納場所情報 $KP_1\sim KP_N$ において各々の復号器 $221_1\sim 221_N$ のエントリに示された属性情報により、該当する復号器の使用の有無を判断する。ここで、もしもその復号器が使用される場合には、鍵格納場所としてセクタアドレス情報に示されているセクタの内容を読み出して(特殊なアドレスが書かれている場合については後述する)、さらにこのセクタから上記オフセット情報とバイト数情報にて示される範囲の情報を読み出して暗号鍵情報を取り出した後、その暗号鍵情報を暗号鍵情報蓄積手段2221にでいて繰り返す。

【0068】その後、再生装置は、ユーザのアクセス領域制限モードに移行する。

【0069】次に、再生装置はユーザのコマンドを受け付け、これに応じてユーザデータを読み出し、当該ユーザデータに施されている暗号化を上記暗号鍵情報蓄積手段222に蓄積した暗号鍵情報に基づいて解く。

【0070】以下に、上記鍵情報とその格納場所、及び 鍵格納場所情報について説明する。

【0071】ここで、セクタアドレス情報にて示されるセクタアドレスとしては、ディスク状記録媒体101上の全てのセクタを対象にできるので、例えばセクタアドレス情報が4バイトの2の補数形式で表されているとし、例えばTOC領域のようなシステムで使用する領域が(0fffffffh)にあるとしたとき、その中に収められている本来は別の目的、例えば製造履歴の記

録などに利用するために書き込まれている認識情報を暗号鍵情報として指定することができることになる。例えば、製造履歴情報がTOC領域のセクタ内の先頭から160バイト目の16バイト分に記録されているとしたとき、オフセット情報=16バイトとすれば、これらにより上記製造履歴の認識情報を指定することができる。

【0072】また、例えば、セクタアドレスとして(0ffffffff)のような負の値を設定して、ユーザがアクセス不可能な領域(この場合、例えばリードインエリア等)に書かれた暗号鍵情報を指定することで、暗号鍵をユーザから隠すことができるようになる。

【0073】さらに例えば上記ディスク状記録媒体101が複数の記録層を持つものであるとしたとき、当該記録媒体101上のデータ記録層とは別の記録層のセクタアドレスが例えば(7ffffffh)から減少していくように定められているような場合において、セクタアドレス情報として(7ffffffh)を指定することで、当該記録媒体101上のデータ記録層とは別の記録層の最初のセクタに収められた暗号鍵情報を指定することができる。

【0074】また、セクタアドレス情報に特殊なアドレスが書かれている例として、ディスク状記録媒体101上に存在しないセクタアドレスの番号、例えば(9000000h)から(0efffffh)等を下記に挙げるような情報それぞれに割り当てることにより、セクタアドレスという統一的な表現で種々の情報を暗号鍵情報として取り扱うことができる。

【0075】この場合は、通常のセクタから鍵情報を読み出す構成の代わりに、媒体上の別の記録形式、例えはバーコード、ウォブリング、紫外線等で書かれた情報や、図16に示す装置内のEEPROM225などに記録されている記録/再生装置固有の識別情報や装置の出荷先の地域を表す仕向け情報(Regional Code)や、装置に接続若しくは内蔵されているICカードやいわゆるPCMCIA(Personal Computer Memory Card International Association)などの情報蓄積装置226に蓄積された情報や、通信インターフェイス227を介するモデム/LANなどの通信装置から供給される情報や、キーボード228やリモコン送信装置232からリモコン受信手段229により受信した外部装置から供給される情報等を、識別情報として取り出すようにする。

【0076】ここで、例えば鍵格納場所情報を読み出したとき、例えばディスク状記録媒体101の盤面上に記録されたバーコードBCに収められた情報を鍵情報とすることが、上記特殊なセクタアドレス(90000000h)としてセクタアドレス情報に指定されていた場合、通常の読み出し装置とは独立に設けられているバーコード読み取り装置210からの情報をバーコード解読装置233にて解

読し、この解読した情報をCPU224に送るようにすれば、上述同様に鍵情報を復号器に設定することができる。

【0077】なお、キーボード228やリモコン送信装置232及びリモコン受信手段229のような人と対話的に入力を行うような装置が、暗号鍵格納場所として指定されたときには、装置に内蔵または接続された表示回路230及びディスプレイ装置231などを使って、上記操作する人に対して暗号鍵の入力を促す工程が、鍵情報の読み取り工程の手前に必要となる。

【0078】このような特殊セクタアドレスを使う場合には、鍵格納場所情報のオフセット情報やバイト数情報に対しては、それぞれの情報や装置固有の意味を持たせることにより、装置間の相違点を吸収することができる。例えば、暗号鍵情報をモデムから読み込むような指定が行われた場合、暗号鍵情報の配布会社の電話番号の指定に、オフセット情報を使う例が考えられる。

【0079】また、暗号鍵情報を用いて暗号化を解く場合の他の例としては、セクタ単位で復号できる復号器Aと、媒体単位で復号できる復号器Bがあった場合、例えば上記セクタ単位の復号器Aにて暗号鍵を読み出した後、当該復号器Aに暗号鍵を設定する動作を復号器Bの暗号鍵を取り出す動作の前に行うことにより、復号器Bの暗号鍵の隠匿性をより増すことができる。

【0080】なお、上述の説明では、記録装置で複数の暗号化処理を行い、それに対応して再生装置に複数の復号器を設ける例を挙げているが、本発明は基本的には一つの暗号化処理とそれに対応する一つの復号器を設けるものであっても適用できることは言うまでもない。

【0081】上述したように、本発明の上記構成例によれば、暗号鍵情報の配置場所をその装置の持つ復号器に応じて用意(必要ならば複数用意)し、それぞれに配置場所を指し示すポインタ(鍵格納場所情報)を媒体上に記録することにより、暗号鍵情報の配置場所を媒体上の任意の位置に柔軟に指定することが可能となり、例えばユーザアクセス不能な場所を指定することにより暗号鍵情報の隠匿性を高めることができる。また、すでに物理フォーマットで規定されている任意の認識情報を指定したり、媒体の物理的特徴(例えば記録面を複数もつ媒体の別の記録層)を指定することにより、不法な複製に対する抑止力を高めたり、複数の暗号鍵を一つのセクタ内に一まとめにしておけるので、多数の暗号鍵に対して高速アクセスが可能となる。

【0082】また、鍵格納場所情報の指す鍵情報は、媒体上の通常の読み出し手段で読み出されるデータ領域のみならず、別の記録方法で媒体上に記録された情報を指定することも可能である。さらに、鍵格納場所情報が指す鍵情報は、媒体上のみならず、記録再生装置に付随する論理デバイスも指定できるので、記録再生装置の内部情報(認識番号など)を指定したり外部装置からの暗号

鍵の入力にも対応できる。

【0083】また、鍵情報の組み合わせは、媒体の原盤 毎に変更可能なので、再生装置におけるそれぞれの復号 器の特性を生かして、鍵情報の一部分しか使わないな ど、原盤作製者の意向にそった媒体の作製が容易に行え る。

【0084】もちろんこの配置方法は、一般的な暗号化 手法の鍵情報配置においても応用可能であることは言う までもない。

【0085】次に、図17の各構成要素における暗号復号化処理について、説明する。

【0086】先ず、図17の同期分離回路114での暗号復号化処理は、上記図13や図14と共に説明したように、複数種類、例えば4種類の同期ワードの使い方あるいはフレーム構造内での各種同期ワードの使用位置が鍵情報に応じて変更され、暗号化がなされたものを、鍵情報に応じて検出することで行われる。

【0087】次に、復調回路115での暗号復号化処理は、図19に示すように、同期分離回路114から16-8変換回路131に送られて16チャンネルビットが8ビットデータに変換されたものを、上記図12のExOR回路73に対応するExOR回路132に送り、端子133からの8ビットの鍵情報との排他的論理和をとることで、図12の入力端子71に供給された8ビットデータに相当するデータが復元され、これが誤り訂正復号化回路116に送られる。

【0088】次に、誤り訂正復号化回路116では、例 えば上記図10の誤り訂正符号化処理の逆処理が、図2 0の構成により行われる。

【0089】この図20において、上記復調回路115 にて復調されたデータの170バイトあるいは170シ ンボルを1まとまりとして、インバータ部172aを有 する再配列回路142を介し、遅延回路143を介して 第1の復号器であるC1デコーダ144に送られてい る。このC1デコーダ144に供給される170バイト のデータの内22バイトがP、Qパリティであり、C1 デコーダ144では、これらのパリティデータを用いた 誤り訂正復号化が施される。C1デコーダ144から は、170バイトのデータが出力されて、遅延回路14 5を介して第2の復号器であるC2デコーダ146に送 られ、パリティデータを用いた誤り訂正復号化が施され た後、さらに遅延回路147を介して第3の復号器であ るC3デコーダ148に送られる。ここで、遅延回路1 47及びC3デコーダ148は、上記遅延回路143及 びC1デコーダ144と同様のものであり、この遅延回 路とC1デコーダの組を複数組設けるようにしてもよ い。このC3デコーダ148で最終的な誤り訂正復号化 が施され、パリティ無しの148バイトのデータが取り 出される。この148バイトのデータは、上記図10の C1エンコーダ52に入力される148バイトのデータ

に相当するものである。

【0090】そして、図10の誤り訂正符号化回路の再配列回路57内のインバータ部57aで、インバータの有無による暗号化が施されている場合には、図20の誤り訂正復号化回路の再配列回路142内のインバータ部142aにて、対応する暗号復号化を行うことが必要とされる。この他、図10と共に説明した各種暗号化処理に対応して、その暗号化を解くための逆処理となる暗号復号化が必要とされることは勿論である。

【0091】ここで、図21は、上記図11の誤り訂正符号化回路の具体的構成に対応する誤り訂正復号化回路の具体的な構成を示す図である。

【0092】この図21において、上記図11の再配列回路57内のインバータ部57aの出力側に挿入されたExOR回路群61に対応して、再配列回路142のインバータ部142aの入力側及び遅延回路143の入力側の位置に、ExOR回路群151が挿入され、図11のC1エンコーグ52の入力側に挿入されたExOR回路群66に対応して、C3デコーダ148の出力側にExOR回路群156が挿入されている。

【0093】これらのExOR回路群151、156は、上述したように、図11のExOR回路群61、66によるデータ変換をそれぞれ復号化するためのデータ変換を施すものであり、ExOR回路群151は、例えば170個の8ビットExOR回路により、またExOR回路群156は、148個の8ビットExOR回路によりそれぞれ構成されている。なお、記録側の図11の誤り訂正符号化回路のExOR回路群61で、パリティデータを除く148バイトの情報データに対して鍵情報に応じたデータ変換が施されている場合には、ExOR回路群151は148個の8ビットExOR回路により構成されることは勿論である。

【0094】この図21の端子152には、図11の端 子62に供給される鍵情報に相当する170ビットの鍵 情報が供給され、いわゆるDラッチ回路153を介して ExOR回路群151内の170個の各ExOR回路にそれぞれ 供給されている。Dラッチ回路153は、イネーブル端 子154に供給された1ビットの暗号化制御信号に応じ て、端子152からの170ビットの鍵情報をそのまま ExOR回路群151に送るか、オールゼロ、すなわち17 Oビットの全てを"O"とするかが切換制御される。ま た、ExOR回路群156については、148個のExOR回路 を有し、鍵情報が図11の端子67に供給される鍵情報 と同様の148ビットであること以外は、上記ExOR回路 群151の場合と同様であり、端子157に供給された 148ビットの鍵情報がDラッチ回路158を介してEx OR回路群156内の148個のExOR回路にそれぞれ送ら れると共に、Dラッチ回路158はイネーブル端子15 9の暗号化制御信号により148ビットの鍵情報かオー ルゼロとするかが切換制御される。

【0095】このように、誤り訂正回路のインバータや

ExOR回路等を暗号化の鍵として使うことにより、簡易で 大きな暗号化が実現できる。また、このインバータ等の 数を制御することにより、絶対再生不可能な暗号化レベ ルのデータとか、エラー状態が悪くなると再生不可能と なるデータとか、セキュリティレベルの要求に応じて対 応できる。すなわち、インバータやExOR回路等の個数を コントロールすることにより、エラー状態の良いときは 再生でき、悪くなると再生ができなくなるような制御も 可能となり、また、エラー訂正のみでは回復不可能な絶 対再生不可能状態を形成することもできる。また、暗号 化の鍵としては、上記図示の例のように1箇所当たり百 数十ビットもの大きなビット数となり、鍵のビット数の 大きな暗号化ができるため、データセキュリティが向上 する。しかも、このようなエラー訂正符号化回路やエラ 一訂正復号化回路を、いわゆるLSIやICチップのハ ードウェア内で実現することにより、一般ユーザからは アクセスが困難であり、この点でもデータセキュリティ が高いものとなっている。

【0096】次に、セクタ分解回路117においては、 上記図2、図3と共に説明したように、記録時に上記セクタ化回路13で偶数・奇数バイトのインターリーブに よる暗号化が施されている場合に、この偶奇インターリ ーブを解くような逆の処理、いわゆるデインターリーブ 処理を施すものである。

【0097】また、ヘッダ分離回路118においては、記録時に、上記ヘッダ付加回路15において、上記図7~図9と共に説明したような暗号化処理、すなわちセクタ同期となるデータシンクのバイトパターンの転置や、アドレス、CRCの変更がなされている場合に、これを復元するような暗号復号化処理を施すものである。

【0098】次に、図22は、デスクランブル処理回路 119の具体例を示しており、端子161には、図17 のヘッダ分離回路118からのディジタルデータが供給 されている。この端子161からのディジタルデータ は、例えば上記図4に示すような構成を有するスクラン ブラ163でデスクランブル処理され、出力端子164 より取り出される。このスクランブラ163について の、上記図4と共に説明したような生成多項式165及 びプリセット値(あるいは初期値)166を、認証機構 171からの暗号の鍵情報に応じて変化させることによ り、暗号復号化を行うことができる。この認証機構17 1では、上記ヘッダ情報167のコピー情報46の内容 や、媒体固有のあるいは再生装置固有の固有識別情報1 72や、製造者、販売者等の共通識別情報173や、外 部から与えられる外部識別情報174等により、暗号の 鍵情報を生成し、この鍵情報に応じて生成多項式165 やプリセット値166を制御する。

【0099】これらの各回路114~119のいずれで 暗号復号化処理が必要とされるかの情報も、暗号の鍵情報となることは前述した通りである。また、暗号の鍵情

報を所定周期、例えばセクタ周期で切り換えることができ、この切換を行うか否かや、切換周期等も鍵とすることにより、暗号化の難易度が高められる。

【0100】次に、本発明の第2の実施の形態について説明する。この第2の実施の形態は、上述した第1の実施の形態の構成を部分的に変更したものであり、全体の基本構成は、前述した図1に示す通りである。この図1の構成の各回路13~18の内の変更部分について以下説明する。

【0101】図1のセクタ化回路13は前述した第1の 実施の形態と同様に構成すればよいが、スクランブル処理回路14については、図23に示す構成を用いている。

【0102】この図23に示すスクランブル処理回路1 4において、データ入力用の端子35には、LSB(最 下位ビット)が時間的に先となる順序、いわゆるLSB ファーストで、図1のセクタ化回路13からのデータが 入力される。スクランブル用の15ビットのシフトレジ スタ14aは、排他的論理和 (ExOR) 回路14bを用い て生成多項式 $x^{15} + x^4 + 1$ に従ったフィードバックが かけられ、15ビットのシフトレジスタ14aには、図 24に示すようなプリセット値(あるいは初期値)が設 定されるようになっており、図24のプリセット値の選 択番号は、例えばセクタアドレスの下位側4ビットの値 に対応させて、セクタ単位でプリセット値が切り換えら れるようになっている。シフトレジスタ14 aからの出 カデータと端子35からの入力データとは、ExOR回路1 4 c により排他的論理和がとられて、端子14 d より取 り出され、図1のヘッダ付加回路15に送られる。

【0103】ここで、上記プリセット値(初期値)を、所定の識別番号等の鍵情報に応じて変化させるようにすることができる。すなわち、上記図24のプリセット値テーブルの各プリセット値を、例えば16バイトの識別情報の各バイト値と論理演算することが挙げられる。この場合の識別情報としては、上述したような媒体固有の識別情報、製造元識別情報、販売者識別情報や、記録装置やエンコーダの固有の識別情報、媒体製造装置固有の識別情報、外部から供給される識別情報等、あるいはこれらの組み合わせや他の情報との組み合わせ等を用いることができ、また上記論理演算としては、排他的論理和(ExOR)や、論理積(AND)、論理和(OR)、シフト演算等を使用できる。

【0104】次に、この第2の実施の形態のセクタフォーマットとしては、例えば、図25に示すようなものを用いている。

【0105】この図25に示すように、1セクタは、1行172バイトの12行、すなわち2064バイトから成り、この中にメインデータ2048バイトを含んでいる。12行の最初の行の先頭位置には、4バイトのID (識別データ)と、2バイトのIED (IDエラー検出

符号)と、6バイトのRSV (予備)とがこの順に配置されており、最後の行の終端位置には、4バイトのED C (エラー検出符号)が配置されている。

【0106】上記ID(識別データ)の4バイトは、図26に示すように、MSB側の最初のバイト(ビットb31~b24)はセクタ情報から成り、残りの3バイト(ビットb23~b0)はセクタ番号から成っている。セクタ情報は、MSB側から順に、1ビットのセクタフォーマットタイプ、1ビットのトラッキング方法、1ビットの反射率、1ビットの予備、2ビットのエリアタイプ、2ビットの層番号の各情報から成っている。

【0107】図1のヘッダ付加回路15では、このよう なセクタフォーマットにおいて、例えば上記ID(識別 データ)の内のセクタ番号の24ビットに対して、上記 鍵情報に応じて例えばビット単位でのスクランブル処理 である転置処理を施すことにより、暗号化を施すことが できる。また、上記2バイトのIED(IDエラー検出 符号)の生成多項式や、4バイトのEDC (エラー検出 符号)の生成多項式等を上記鍵情報に応じて変更するこ とによっても、あるいはこれらの情報と鍵情報とを論理 演算することによっても、暗号化を施すことができる。 【0108】次に、図1の誤り訂正符号化回路16とし ては、図27に示すような構成の回路が用いられる。こ の符号化は、図28に示すような積符号あるいはブロッ ク符号が用いられる。図27において、入力端子310 には、前記図1のヘッダ付加回路15からのデータが供 給され、この入力データは、第1の符号化器であるPO エンコーダ311に送られる。このPOエンコーダ31 1への入力データは、図28に示すように、B。。~B 191,171の172バイト×192行のデータであり、P Oエンコーダ311では、172列の各列192バイト のデータに対して、それぞれ16バイトずつのリード・ ソロモン(RS)符号としてのRS(208,192,17)の外 符号 (PO) を付加している。POエンコーダ311か らの出力データは、前述したような暗号化のためのデー 夕変換回路312を介して、インターリーブ回路313 に送られてインターリーブ処理され、PIエンコーダ3 14に送られる。このPIエンコーダ314では、図2 8に示すように、上記POパリティが付加された172 バイト×208行のデータの各行の172バイトのデー 夕に対して、それぞれ10バイトずつのRS(182,172, 11) の内符号 (PI) を付加している。従って、このP Iエンコーダ314からは、182バイト×208行の データが出力されることになる。この出力データは、前 述したような暗号化のためのデータ変換回路315を介 して、出力端子316より取り出される。

【0109】ここで、データ変換回路312については、POエンコーダ311が各列毎の192バイトの入力データに対して16バイトのPOパリティを付加して208バイトのデータを出力することから、この16バ

イトのパリティに対して、あるいは208バイトのデータ全体に対して、前述したようなデータ変換を行うことにより暗号化を施すことができる。このデータ変換は、前述したように、入力される鍵情報に応じて施すようにしてもよい。また、データ変換回路315については、PIエンコーダ314が各行の172バイトのデータに対して、それぞれ10バイトずつのPIパリティを付加して182バイトのデータを出力することから、この10バイトのパリティに対して、あるいは182バイトのデータ全体に対してデータ変換を行うことにより暗号化を施すことができる。

【0110】上記データ変換は、具体的には、前記図1 O、図11と共に説明したように、インバータを所定位 置に配設したり、ExOR回路群により鍵情報に応じて選択 的にデータを反転させたり、その他、AND、OR、NA ND、NOR 回路群等を使用してもよい。また、8ビット単 位で1ビットの鍵情報あるいは鍵データによる論理演算 を行う以外にも、8ビットの情報データに対して8ビッ トの鍵データで論理演算を行わせてもよく、さらに、情 報データの1ワードに相当する8ビットの内の各ビット に対してそれぞれAND、OR、ExOR、NAND、NOR、イ ンバート回路を組み合わせて使用してもよい。また、A ND、OR、ExOR、NAND、NOR、インバート回路を組み 合わせて使用する場合には、これらの組み合わせ自体も 鍵として用いることができる。また、論理演算以外に、 データの位置を変える転置や、データの値を置き換える 置換等も上記データ変換として使用できる。また、シフ トレジスタを用いて変換したり、各種関数演算により変 換する等、さまざまな暗号化手法が適用できることは勿 論であり、それらを組み合わせて使用することも可能で ある.

【0111】誤り訂正符号化された上記182バイト×208行のデータは、行についてインターリーブされ、13行ずつ16のグループに分けられて、各グループが記録セクタに対応付けられる。1セクタは、182バイト×13行の2366バイトとなるが、これらが変調されて、図29に示すように1行当たり2つの同期コードSYが付加される。変調には、前述した第1の実施の形態と同様に8-16変換が用いられるが、1行は2つのシンクフレームに分けられ、1シンクフレームは、32チャネルビットの同期コードSYと1456チャネルビットのデータ部とから成っている。図29は、変調され同期付加されて得られた1セクタ分の構造を示し、この図29に示す1セクタ分の38688チャネルビットは、変調前の2418バイトに相当する。

【0112】図29の変調出力信号には、8種類の同期 コードSY0~SY7が用いられており、これらの同期 コードSY0~SY7は、上記8-16変換の状態(ス テート)に応じて、ステート1及び2のときが図30の (a)、ステート3及び4のときが図30の(b)の同 期パターンとなっている。

【0113】このような8種類の同期コードSY0~SY7の選択を、例えば図31に示すような回路を用いて、3ビットの鍵情報に応じて変更することにより、暗号化が行える。すなわち、上記8種類の同期コードSY0~SY7を指定する3ビットデータ321の各ビットとを、3つのExOR回路323,324,325によりそれぞれ排他的論理和をとることにより、新たな同期コード指定データ326とする。これにより、上記フレーム構造における同期コードの使い方あるいはフレーム構造内での各種同期コードの使用位置が変更され、暗号化がなされることになる。勿論、その3ビットに対して鍵情報に応じてデータを転置したり、置換したり、シフトレジスタにより変換したりできる。また、これは関数変換でもかまわない。

【0114】以上説明した本発明の第2の実施の形態における効果も、前述した第1の実施の形態の場合と同様である。

【0115】次に、上述した本発明の第2の実施の形態の記録側の構成に対して、再生側の基本構成は、前記図17と同様であり、上記第2の実施の形態に示した各部の変更箇所に対応して変更された逆処理がそれぞれ施される。例えば、上記図27に示す誤り訂正符号化に対する逆処理は、図32のような構成の誤り訂正復号化回路により実現できる。

【0116】すなわち、この図32において、入力端子 330には前記図17の復調回路115からの出力信号 であり、上記図27の出力端子316からの出力に相当 する上記図28の積符号の182バイト×208行のデ ータが供給されている。この入力端子330からのデー タは、データ逆変換回路331に送られて、上記図27 のデータ変換回路315の逆処理が行われる。データ逆 変換回路331からの出力データは、PI(内符号)デ コーダ332に送られて、上記図27のPIエンコーダ 314の逆処理としての復号化処理すなわちPI符号を 用いた誤り訂正処理が施され、上記図28の172バイ ト×208行のデータとなる。PIデコーダ332から の出力データは、デインターリーブ回路333で上記イ ンターリーブ回路313での逆処理が施され、データ逆 変換回路334に送られて上記図27のデータ変換回路 312の逆処理が行われた後、PO(外符号)デコーダ 335に送られる。POデコーダ335では、上記図2 7のPOエンコーダ311の逆処理としての復号化処理 すなわちPO符号を用いた誤り訂正処理が施され、図2 8の元の172バイト×192行のデータが出力端子3 36を介して取り出される。上記図27のデータ変換回 路312、315でのデータ変換の際に鍵情報を用いる 場合には、各端子318、319にそれぞれ供給した鍵 情報を、図32のデータ逆変換回路334、331の各

端子339、338にそれぞれ供給して、これらの鍵情報に応じてデータ逆変換を行わせればよい。

【0117】以上説明した本発明の第2の実施の形態における効果も、前述した第1の実施の形態の場合と同様である。

【0118】なお、本発明は、上述した実施の形態のみに限定されるものではなく、例えば、データ変換としては、インバータやExORの例を示しているが、この他、ビット加算や、各種論理演算等によりデータ変換を行わせてもよいことは勿論である。また、暗号化の鍵情報に応じてデータを置換したり、転置したり、シフトレジスタを用いて変換したり、各種関数演算により変換する等、さまざまな暗号化手法が適用できることは勿論であり、それらを組み合わせて使用することも可能である。この他、本発明の要旨を逸脱しない範囲で種々の変更が可能である。

[0119]

【発明の効果】本発明においては、信号記録媒体には鍵情報の場所を指示する鍵格納場所情報を記録し、信号再生の際には当該鍵格納場所情報に基づいて鍵情報を取り出すようにすることにより、鍵情報を容易に取り出せないようにしているため、不法解読や不法コピーを防止することができる。

【図面の簡単な説明】

【図1】本発明の信号記録装置の一構成例を示すブロック回路図である。

【図2】セクタ化回路における偶数・奇数バイトのインターリーブを実現するための構成例を示すブロック回路図である。

【図3】偶数・奇数バイトのインターリーブを説明する ための図である。

【図4】スクランブラの一例を示す回路図である。

【図5】スクランブラのプリセット値を示す図である。

【図6】生成多項式が可変のスクランブラの一例を示す 図である。

【図7】セクタフォーマットの一例を示す図である。

【図8】セクタ内の同期領域での暗号化の一例を説明するための図である。

【図9】セクタ内のヘッダ領域の一例を示す図である。

【図10】誤り訂正符号化回路の一例を示す図である。

【図11】誤り訂正符号化回路の他の例を示す図である。

【図12】変調回路での暗号化処理の一例を説明するための図である。

【図13】変調信号に付加される同期ワードの具体例を 示す図である。

【図14】同期付加回路での暗号化の一例を説明するための図である。

【図15】データ記録媒体の一例を示す図である。

【図16】本発明の信号再生装置の一構成例を示すブロ

ック回路図である。

【図17】信号再生装置のディジタル信号処理回路の具体的構成を示すブロック回路図である。

【図18】鍵格納場所情報テーブルについて説明するための図である。

【図19】復調回路での暗号化処理の一例を説明するための図である。

【図20】誤り訂正復号化回路の一例を示す図である。

【図21】誤り訂正復号化回路の他の例を示す図であ る。

【図22】デスクランブル処理回路の一例を示す図である。

【図23】スクランブラの他の例を示す図である。

【図24】図21のスクランブラのプリセット値の一例 を示す図である。

【図25】セクタフォーマットの他の例を示す図である。

【図26】図23のセクタフォーマットにおけるセクタ 内のヘッダ領域の一例を示す図である。

【図27】誤り訂正符号化回路の他の例を示すブロック図である。

【図28】誤り訂正符号の具体例としての積符号を示す 図である。

【図29】セクタの信号フォーマットの一例を示す図である。

【図30】変調信号に付加される同期ワードの他の具体例を示す図である。

【図31】同期付加回路での暗号化の他の例を説明するための図である。

【図32】誤り訂正復号化回路の他の例を示すブロック図である。

【符号の説明】

13 セクタ化回路、 14 スクランブル処理回路、 15 ヘッダ付加回路、 16 誤り訂正符号化回路、 17 変調回路、 18 同期付加回路、57, 142 再配列回路、 61,66,151,156 ExOR回路群、114 同期分離回路、 115 復調回路、 116 誤り訂正復号化回路、117 セクタ分解回路、 118 ヘッダ分離回路、 119 デスクランブル処理回路、 220 ディジタル信号処理回路、 2211~221N 復号器、 2221~222N 暗号鍵情報蓄積回路、 224 CPU

【図1】

【図2】

【図3】

【図4】

【図5】

選択番号	プリセット値	選択番号	プリセット値
. 0	\$0001	В	\$4080
1	\$4000	9	\$2040
2	\$2000	10	\$1020
3	\$1000	11	\$0810
4	\$0800	12	\$0408
5	\$0400	13	\$0204
6	\$0200	14	\$0102
7	\$0100	15	\$4081

【図6】

【図8】

【図9】

【図13】

サイズ合計:2072パイト

月期ワード	符号ワード							
	mab 同期パターンe lst	ntsb 同期パターンも isb						
SO	0001001001000000000010000000000	100100100100000000001000000000000000000						
\$1	00010000010000000000100000000000	10010000010000000000100000000000						
\$2	000001000100000000001000000000	1000010001000000000100000000001						
83	000010000100000000000100000000000000000	1000100001000000000010000000000						

【図10】

【図11】

2047

セクタ

【図16】

【図17】

【図20】

【図21】

【図23】

【図24】

選択番号	プリセット値	避択番号	プリセット値
0	\$0001	8	\$0010
1	\$5500	9	\$5000
2	\$0002	10	\$0020
3	\$2A00	11	\$2001
4	\$0004	12	\$0040
5	\$5400	13	\$4002
6	\$0008	14	\$0080
7	\$2800	15	\$0005

【図25】

	172/11	
	4M1 2M1 6M1	,
1	ID IED RSV メインデータ160パイト(Do~D159)	
	メインデータ172パイト(D160~D331)	
	メインデータ172パイト(D332~D503)	
125		
- 1	メインデータ172パイト(D ₁₇₀₄ ~D ₁₈₇₈)	
<u> </u>	メインデータ1 68パイト(D1880~D2047)	EDC
		4/8/1

【図26】

【図28】

		l a		17211			ł a	PI 10/4/F	
_									
1	١	B _{0.0}	Bo.1		Bo.170	B 0.171	B Q. 172		Bo.181
		B _{1.0}	B1.1		B1.170	B1.171	B1.172		B1.181
		B2.0	B2.1		B2.170	B 2.171	B 2.172		B2.181
192行				•			_	•	
`		B _{189,0}	B189.1		B189.170	B189.171	B189.172		B189.181
		B190.0	B190.1		B190.170	B190.171	B190.172		B190.101
Į	, .	B 191.0	B191,1		B191.170	B191, 171	B191.172		B191.181
		B 192.0	B192,1		B192.170	B192,171	B192.172		B192.181
55 165				٠.				•	
Ţ		B 207, 0	B 207.1		B207.170	B207. 171	B207.172		B207, 181

【図29】

【図30】

```
(a)ステート1及び2
         (MSB)
              (LSB) (MSB)
         SYO
    SY5
        SY1
    SY5
 SY2
    SY5
 SY3
    SY5
        ( b ) ステート 3及び4
        (MSB) (LSB) (MSB) (LSB) (LSB) (LSB) (LSB)
 SY4
    SY5
 SYI
    SY6
13紀
        SY2
    SY6
        SY3
    SY6
 SY4
    SY6
 SY1
    SY7
        SY2
    SY7
 SY3
    SY7
 SY4
    SY7
        シンクフレーム
     シンクフレーム
```

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

HO4L 9/08

HO4L 9/00 601A

(72)発明者 川嶋 功

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
,	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	Потить

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.