ZILFIMIAN

Regularization/GLM (Q6L7)

0% (0/21)

X	1	Overdispersion	in Poisson	Regression of	curs when
	Ι.	Over dispersion	111 1 0133011	regression oc	Cuis wileli

- (A) var(Y|X)>var(Y)
- (B) var(Y|X)>mean(Y|X)
- C Variance is decreasing
- D I do not know

X 2. Which one of these is the measure for goodness of fit for Poisson Regression?

- (A) Ordinal R^2
- B Chi-square & Pseudo R^2
- C I do not know
- D There are not measure for it

X 3. Which one of these is the correct interpretation of the coefficient of Poisson Regression?

- (A) For a 1-unit increase in X, we expect a b1 unit increase in Y.
- B For a 1-unit increase in X, we expect b1 percentage increase in Y.
- \bigcirc For a 1-percentage increase in X, we expect b1 percentage increase in Y.
- \bigcirc For a 1-percentage increase in X, we expect b1 unit increase in Y.
- (E) I do not know

X 4. In Poisson regression...

- (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
- (B) The distribution of the maximum likelihood estimates is multivariate normal.
- The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
- D I do not know

5. Pseudo R-Squared Measures are calculated based on...

- (A) The likelihood function
- (B) Chi-squared value
- C I do not know
- (D) Overdispersion term

6.	In the case of intercept-only model
A	The mean of the dependent variable equals the exponential value of intercept
\bigcirc B	The mean of the dependent variable equals the intercept
\overline{C}	The mean of the dependent variable equals 0
D	I do not know
7. e^(-	In(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: -0.2)=0.78
(A)	One unit increase in female brings a 0.2 decrease in ln(lambda).
B	Being female decreases the average number of articles by 0.78 percent
$\left(c \right)$	Being female decreases the average number of articles by 22%
(D)	I do not know
	While running the Poisson Regression we will have never faced with the value of obda
В	1
$\left(C\right)$	2
D	I do not know
9.	Why does not quasi-Poisson model have AIC?
(A)	Quasi-Poisson is used quasi-likelihood instead of log-likelihood estimates.
B	Quasi-Poisson does not use iterative estimation
(C)	I do not know
10.	Why Poisson regression is called log-linear?
(A)	Because we use a log link to estimate the logarithm of the average value of the dependent variable
B	Because we use a log values of independent variable
C	Because we use a log value of an independent variable is transformed to linear
	I do not know
	A B C D 8. Ia A B C D 9. A B C 10. A B C

ANNA_0 Page 2 of 5

X	11.	In the multiple linear regression, we assume that
	A	The number of observations is much larger than the number of variables (n>>p)
	B	The number of observations is slightly larger than the number of variables (n>p)
	C	The number of observations equals than the number of variables (n=p)
	D	The number of observations is lees than the number of variables (n <p)< th=""></p)<>
	E	It is not important
	F	I do not know
×	12.	The way of solving the problem of a large number of variables is
	A	Subset Selection & Shrinkage (Regularization)
	\bigcirc B	Shrinkage (Regularization) & Maximum Likelihood estimation
	(c)	Dimension Reduction & OLS estimation
	\bigcirc	I do not know
	E	The absence of the right answer
×	13.	The bias of an estimator (e.g. z^) equalsHint: the OLS coefficients are unbias
	:) (A)	E(z^) - z
	(B)	$E(z^2) - [E(z)]^2$
		$[E(z^2) - E(z)]^2$
	\sim	
	(D)	E(z^2)
	(E)	I do not know
X	14.	Which of following is not a type of regularization:
	A	L1 - Lasso
	B	L2 - Ridge
	(c)	Elastic Net
		L3 - Passo
	E	I do not know
×	15.	The main idea of regularization is
	A	To introduce a small amount of bias in order to have less variance.
	B	To introduce a small amount of variance in order to have less bias.
	C	To introduce a small amount of variance and bias in order to have less bias.
	D	I do not know

ANNA_0 Page 3 of 5

X	16.	With which function we can show regularization in R
	A	glmnet()
	B	regular()
	(c)	lm()
	\bigcirc	glm()
	E	I do not know
×	17.	How the tune of any parametr can be made
	(A)	using Cross validation
	B	It is impossible
	C	I do not now
	D	using larger sample
	E	only having population
×	18.	Elastic Net is
	A	the combination of L1 and L2 regularization
	B	the combination of L2 and L3 regularization
	C	is independent from other types of refularization
	D	I do not know
	E	not a type of regularization
×	19.	Regularization is used only for
	A	Poisson Regression
	B	Linear Regression
	C	Logistic Regression
	D	any regression
	E	I do not know
×	20.	Regularization can solve the problem of
	(A)	heteroscedasticity
	В	multicollinearity
	C	autocorrelation
	D	I do not know

ANNA_0 Page 4 of 5

X 21. Multicollinearity occurs when

- A rank(X)<m (m is the number of explanatory variables)
- (B) var(ϵ)= σ^2 I
- (c) E(ϵ)=0
- D cov(εi,εj)=const
- E I do not know

ANNA_0 Page 5 of 5