

DUAL H BRIDGE DRIVER

■GENERAL DESCRIPTION

The NJM2670 is a general-purpose 60V dual H-bridge drive IC. It consists of a pair of H-bridges, a thermal shut down circuit and its alarm output. The alarm output can detect application problems and the system reliability will be significantly improved if monitored by Micro Processor.

Therefore, it is suitable for two-phase stepper motor application driven by microprocessor.

■ PACKAGE OUTLINE

■ FEATURES

Wide Voltage Range (4V to 60V)Wide Range of Current Control (5 to 1500mA)

• Thermal overload Protection

• Package Outline (DIP-22, EMP-24)

■ PIN CONNECTION

NJM2670

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Maximum Supply Voltage	V_{MM}	60	V
Logic Supply Voltage	V_{CC}	7	V
Input Voltage Range	V_{IN}	-0.3 to 7	V
Output Current	l _{out}	1.5	Α
Power Dissipation@T(GND)=25°C	P _{D25}	5	W
Power Dissipation@T(GND)=125°C	P _{D125}	2	W
Operating Junction Temperature	Topr	-40 ~ 85	°C
Storage Temperature	Tstg	- 55 ~ 150	°C

■ RECOMENNDO OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{MM}		4	-	55	V
Logic Voltage Range	V _{CC}		4.75	5.00	5.25	V
Maximum Output Current	l _{OUT}		-	-	1.3	Α
Total Power Dissipation	P_D	T _{GND} =25°C	-	-	5	W
	P_{D}	T _{GND} =125°C	-	-	2.2	W

■THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Thermal resistance	Rth _{j-GND}	DIP22 package.	-	11	-	°C/W
	Rth _{j-A}	DIP22 package. Note	-	40	-	°C/W
	Rth _{j-GND}	EMP24 package.	i	13	1	°C/W
	Rth _{j-A}	EMP24 package. Note	ı	42	ı	°C/W

Note : All ground pins soldered onto a 20 cm 2 PCB copper area with free air convection, T_A =+25 $^\circ$ C

■ ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
GENERAL						•
Quiescent current	Icc	Enable=H,IN1=IN3=L,IN 2=IN4=H	-	40	-	mA
Thermal shutdown	Ttsd		-	170	-	°C
Off-State leak current	Itsd- _{LEAK}	TSD ARM=5V	-	-	50	μΑ
Thermal alarm output saturation	Vtsd	lo=5mA	1	0.5	0.7	V
Dead time protection	Td		-	1	-	μs
LOGIC						
Input LOW voltage	Vi_L		-	-	0.6	V
Input HIGH voltage	Vi _H		2	-	-	V
Input HIGH current	li _H	Vi=2.4V	-	-	20	μΑ
Input LOW current	li∟	Vi=0.4V	-0.4	-	-	mA
OUTPUT						
Upper transistor saturation	V_{OU1}	lo=1000mA	-	1.3	1.5	V
	V_{OU2}	lo=1300mA	-	1.5	1.8	V
	V_{OL1}	lo=1000mA	-	0.5	0.8	V
Lower transistor saturation	V_{OL2}	lo=1300mA	-	0.8	1.3	V
Upper diode forward	V_{fU1}	lo=1000mA	-	1.3	1.6	V
	V_{fU2}	lo=1300mA	-	1.6	1.9	V
Lower diode forward	V_{fL1}	lo=1000mA	-	1.3	1.6	V
	V_{fL2}	lo=1300mA	-	1.6	1.9	V
Output leakage current	Lo- _{LEAK}	V _{MM} =50V	-	-	1	mA
Upper diode recoverly time	Trr _U		-	250	-	ns
Lower diode recoverly time	Trr∟		-	250	-	ns

■TYPICAL APPLICATION

1). Bipolar Stepping Motor

2). Single Phase DC Motor

■TYPICAL APPLICATION 1

■TYPICALAPPLICATION 2

■TYPICAL APPLICATION 3

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.