Notes

April 25, 2014

riemanns method

pde $L[u] = u_{\xi\eta} + a(\xi, \eta)u_{\xi} + b(\xi, \eta)u_{\eta} + c(\xi, \eta)u = F(\xi, \eta)$. Boundary conditions $u(\xi, phi(\xi)) = f(\xi), u_{\xi}(\xi, \phi(\xi)) = g(\xi)$ for curve $C: \eta = \phi(\xi)$ with $\phi'(\xi) < 0$.

auxiliary problem, we obtained conditions defining v(x,y). (ξ_0,η_0) lies above curve $C=C_1,C_2$ is vertical line from C_1 to (ξ_0,η_0) and C_3 is horizontal line.

pde M[v] = 0 in (at least in region $C_1C_2C_3$) $(M[v] = v_{xy} - (av)_x - (bv)_y + cv$. Boundary conditions $v_y - av = 0$ on C_2 and $v_x - bv = 0$ on C_3 and $v(\xi_0, \eta_0) = 1$.

last time $\int \int_{C_1C_2C_3} v(x,y)F(x,y) dxdy = \int_{C_1} [(v_x - bv) dx - u(v_y - av) dy] - \frac{1}{2} (u(Q)v(Q) + u(R)v(R)) + u(\xi_0, \eta_0)$. Representation for $u(\xi_0, \eta_0)$ in terms of boundary data and v(x, y)

v(x,y) from this problem is the riemann function $R(\xi_0,\eta_0;x,y)$.

assume a,b,c are constants, the riemann function for $L[u] = u_{\xi\eta} + au_{\xi} + bu_{\eta} + cu$ can be found explicitly. $M[v] = v_{xy} - av_x - bv_y + cv = 0$. $v = e^{bx+ay} \cdot w$, $v_x = (w_x + bw)e^{bx+ay}$, $v_y = (wy + aw)e^{bx+ay}$ and $v_{xy} = (w_{xy} + aw_x + bw_y + baw)e^{bx+ay}$.

$$(w_{xy} + aw_x + bw_y + abw) - a(w_x + bw) - b(w_y + aw) + cw = 0$$

$$w_{xy} - abw + cw = 0 = w_{xy} + (c - ab)w$$

$$(w_x + bw) - bw = 0$$

$$w_x(x, \eta_0) = 0 \text{ for } x \le \xi_0$$

$$w(\xi_0, \eta_0) = e^{-(b\xi_0 + a\eta_0)}$$

$$w(x, \eta_0) = e^{-(b\xi_0 + a\eta_0)} \text{ for } x \le \xi_0$$

$$v_y - av = 0 \text{ for } x = \xi_0$$

$$(w_y + aw) - aw = 0 \text{ for } y \le \eta_0$$

$$w(\xi_0, \eta_0) = e^{-(b\xi_0 + a\eta_0)}$$

$$w(\xi_0, y) = e^{-(b\xi_0 + a\eta_0)}$$

w is a constant along C_2 and C_3 so divide off the constant to get w=1. wait! $v=e^{bx+ay}\frac{w}{e^{b\xi_0+a\eta_0}}$ so this change gives w=1 on the boundary.

Idea: maybe there is a solution of one symmetric variable. $z = (\xi_0 - x)(\eta_0 - y) \ge 0$. Try w = h(z)

$$w_x = h'(z)z_x$$
 $z_x = -(\eta_0 - y)$
 $w_y = h'(z)z_y$ $z_y = -(\xi_0 - x)$
 $w_{xy} = h'(z)z_{xy} + h''(x)z_x z_y$ $x_x z_y = z, z_{xy=1}$