Contingency Tables

Andy Grogan-Kaylor

19 Sep 2020

Key Concepts and Commands

- Matrices of data
- Probabilities, risks, and odds
- χ^2 Tests
- tabulate x y, row col chi2

Flipping Two Coins

Figure 1: Forthcoming Coin Emoji From Apple

Figure 2: Forthcoming Coin Emoji From Apple

Setup

- . clear all
- . set seed 3846

Good value labels are **key** here.

```
. label define nickel ///
> 1 "heads for nickel" ///
> 0 "tails for nickel" // define value label
. label define quarter ///
> 1 "heads for quarter" ///
> 0 "tails for quarter" // define value label
```

```
. set obs 1000 // 1000 observations number of observations (_N) was 0, now 1,000 \,
```

- . * curiously it takes around 1000 obs for the proportions
- . * below to "take hold"
- . generate nickel = rbinomial(1, .75) // unfair nickel
- . generate quarter = rbinomial(1, .5) // fair quarter
- . label values nickel nickel // assign value label
- . label values quarter quarter // assign value label

The Graph We Think We Want But Don't

- . graph bar, over(nickel) scheme(burd) title(Nickel) name(nickel)
- . graph bar, over(quarter) scheme(burd) title(Quarter) name(quarter)
- . graph combine nickel quarter, title(Nickel And Quarter) scheme(burd)
- . graph export unhelpfulgraph.png, width(500) replace (file unhelpfulgraph.png written in PNG format)

Nickel And Quarter

Figure 3: A Graph That May Not Be That Helpful

Crosstabulation

. tabulate nickel quarter, row col

frequency
row percentage
column percentage

	quarter		
nickel	tails for	heads for	Total
tails for nickel	104	140	244
	42.62	57.38	100.00
	21.62	26.97	24.40
heads for nickel	377	379	756
	49.87	50.13	100.00
	78.38	73.03	75.60
Total	481	519	1,000
	48.10	51.90	100.00
	100.00	100.00	100.00

Graphing (Mosaic Plot)

- . * ssc install spineplot // mosaicplots (spineplots)
- . * ssc install scheme-burd, replace // BuRd graph scheme
- . spineplot nickel quarter, scheme(burd)
- . graph export nickel-quarter.png, width(500) replace (file nickel-quarter.png written in PNG format)

Figure 4: Mosaic Plot

Bar Chart

Does a bar chart work to visualize these relationships?

- . graph bar, over(quarter) over(nickel) scheme(burd)
- . graph export nickel-quarter-bar1.png, width(500) replace (file nickel-quarter-bar1.png written in PNG format)

Figure 5: Bar Chart 1

Bar Chart (2)

Option asyvars adds a crucial color element.

- . graph bar, over(quarter) over(nickel) scheme(burd) asyvars
- . graph export nickel-quarter-bar2.png, width(500) replace (file nickel-quarter-bar2.png written in PNG format)

Horizontal Bar Chart

And hbar may improve legibility even more.

- . graph hbar, over(quarter) over(nickel) scheme(burd) asyvars
- . graph export nickel-quarter-bar3.png, width(500) replace (file nickel-quarter-bar3.png written in PNG format)

Figure 6: Bar Chart 2

Figure 7: Bar Chart 3

1961 French Skiiers

. clear all

Define Matrix

```
. matrix input FrenchSkiiers = (31, 109 \ 17, 122)
```

- . matrix rownames FrenchSkiiers = Placebo AscorbicAcid
- . matrix colnames FrenchSkiiers = Cold NoCold
- . matrix list FrenchSkiiers

FrenchSkiiers[2,2]

Cold NoCold
Placebo 31 109
AscorbicAcid 17 122

Theme Music

Polo And Pan on YouTube

Try Making a Data Set From Matrix

```
. symat FrenchSkiiers, name(count)
number of observations will be reset to 2
Press any key to continue, or Break to abort
number of observations (_N) was 0, now 2
```

. list

	count1	count2
1.	31	109
2.	17	122

Enter Data By Hand

There are many alternative commands to do this, but the easiest way is using edit.

I have already done this. Note the structure of the data is different from above.

- . use "FrenchSkiiers.dta", clear
- . list // list the data

	Tx	Outcome	Count
1.	Ascorbic Acid	Cold	17
2.	Ascorbic Acid	No Cold	122
3.	Placebo	Cold	31
4.	Placebo	No Cold	109

Mosaic Plot

- . spineplot Tx Outcome, scheme(burd)
- . graph export FrenchSkiiers1.png, width(500) replace (file FrenchSkiiers1.png written in PNG format)

Figure 8: Mosaic Plot Attempt 1

Mosaic Plot (2)

- . spineplot Outcome Tx [fweight=Count], scheme(burd) // order matters to interpretabili \gt ty
- . graph export FrenchSkiiers2.png, width(500) replace (file FrenchSkiiers2.png written in PNG format)

Definitions and Notation

Counts

- c_{ij} c_{ij} $c_{i\bullet}$
- c_{ij} c_{ij} $c_{i\bullet}$
- $c_{\bullet j}$ $c_{\bullet j}$ $c_{\bullet \bullet}$

Figure 9: Mosaic Plot Attempt 2

Probabilities

 p_{ij} p_{ij} $p_{i\bullet}$

 p_{ij} p_{ij} $p_{i\bullet}$

 $p_{\bullet j}$ $p_{\bullet j}$ $p_{\bullet \bullet}$

Terms

 p_{ij} are joint probabilities.

 $p_{i\bullet}$ and $p_{\bullet j}$ are marginal probabilities.

 $p_{ij} \mid p_{i \bullet}$ and $p_{ij} \mid p_{ \bullet j}$ are conditional probabilities.

Formulas

Counts

$$\sum_{1}^{i} \sum_{1}^{j} c_{ij} = N$$

Probabilities

$$\sum_{1}^{i} \sum_{1}^{j} p_{ij} = 1.0$$

Expected Probabilities p and Counts m or Frequencies

$$p_{ij} = p_{i \bullet} p_{\bullet j}$$

$$m_{ij} = \frac{m_{i \bullet} m_{\bullet j}}{m_{\bullet \bullet}}$$

Observed counts are represented by c while expected counts are represented by m.

Fundamental Rule

conditional = joint / marginal

. tabulate Tx Outcome [fweight = Count], cell row col

Key
frequency row percentage
column percentage cell percentage

	Out	come	
Tx	No Cold	Cold	Total
Placebo	109	31	140
	77.86	22.14	100.00
	47.19	64.58	50.18
	39.07	11.11	50.18
Ascorbic Acid	122	17	139
	87.77	12.23	100.00
	52.81	35.42	49.82
	43.73	6.09	49.82
Total	231	48	279
	82.80	17.20	100.00
	100.00	100.00	100.00
	82.80	17.20	100.00

[.] display 6.09 / 49.82

Independence (Robert Mare)

If independence is true, then joint probabilities = products of marginal probabilities.

That is, under independence, the conditional distribution equals the marginal distribution.

Under independence, row membership provides no information about the column distribution; and column membership provides no information about the row distribution.

Independence is a model, which is never exactly true in the real world.

^{.12224006}

[.] display 17/139

^{.12230216}

Observed vs. Expected

. tabulate Tx Outcome [fweight = Count]

	Outcor	ne	
Tx	No Cold	Cold	Total
Placebo	109	31	140
Ascorbic Acid	122	17	139
Total	231	48	279

- . scalar N = 31 + 109 + 17 + 122
- . scalar A = ((31 + 17)*(31 + 109)) / N // expected count
- . scalar B = ((31 + 109)*(109 + 122)) / N // expected count
- . scalar C = ((31 + 17) * (17 + 122)) / N // expected count
- . scalar D = ((17 + 122) * (109 + 122)) / N // expected count
- . matrix FS = (A, B \setminus C, D) // matrix of expected values
- . matrix rownames FS = Placebo AscorbicAcid // rownames
- . matrix colnames FS = Cold NoCold // column names
- . matrix list FS

FS[2,2]

Cold NoCold
Placebo 24.086022 115.91398
AscorbicAcid 23.913978 115.08602

Chi-Square Test

$$\chi^2 = \Sigma \tfrac{(O-E)^2}{E}$$

- . scalar chisquare = $(31 24.086022)^2 / 24.086022 + ///$
- > (109 115.91398)^2 / 115.91398 + ///
- > (17 23.913978)^2 / 23.913978 + ///
- > (122 115.08602)^2 / 115.08602
- . scalar list chisquare
 chisquare = 4.8114124

Compare With Tabulate

- . use "FrenchSkiiers.dta", clear
- . tabulate Tx Outcome [fweight = Count], row col chi2

frequency
row percentage
column percentage

Outcome
Tx No Cold Cold Total

Placebo	109	31	140
	77.86	22.14	100.00
	47.19	64.58	50.18
Ascorbic Acid	122	17	139
	87.77	12.23	100.00
	52.81	35.42	49.82
Total	231	48	279
	82.80	17.20	100.00
	100.00	100.00	100.00
Pears	son chi2(1) =	4.8114	Pr = 0.028

Risk Differences and Risk Ratios (Relative Risk)

Following Viera, 2008:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

	Develop Out	come	Do Not Develop Outcome
Exposed		a	b
Not Exp	oosed	\mathbf{c}	d

$$\begin{split} R &= \frac{a}{a+b} \text{ (in Exposed)} \\ RR &= \frac{\text{risk in exposed}}{\text{risk in not exposed}} = \frac{a/(a+b)}{c/(c+d)} \end{split}$$

Calculating a Risk Ratio

. tabulate Tx Outcome [fweight = Count]

	Outco	me	
Tx	No Cold	Cold	Total
Placebo Ascorbic Acid	109 122	31 17	140 139
Total	231	48	279

- . display 31/140
- .22142857
- . display 17/139
- .12230216
- . display (17/139) / (31/140)
- .55233233
- . csi 17 31 122 109 // also has an intuitive dialog box

	Exposed	Unexposed	Total
Cases Noncases	17 122	31 109	48 231
Total	139	140	279
Risk	.1223022	.2214286	.172043

L	Point estimate	[95% Conf. Interval]
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop	0991264 .5523323 .4476677 .2230316	18685920113937 .3209178 .9506203 .0493797 .6790822
_	chi2(1) =	4 81 Pr>chi2 = 0 0283

Odds Ratios

	Develop Outcome	Do Not Develop Outcome
Exposed	a	b
Not Exp	osed c	d

OR =

odds that exposed person develops outcome odds that unexposed person develops outcome

$$= \frac{\frac{a}{a+b}/\frac{b}{a+b}}{\frac{c}{c+d}/\frac{d}{c+d}} = \frac{a/b}{c/d} = \frac{ad}{bc}$$

Properties of the Odds Ratio (Robert Mare)

In general for the 2 X 2 Table,

0 < OR < 1

indicates that one row is less likely to make the first response than the other row.

 $1 < OR < \infty$

indicates that one row is more likely to make the first response than the other row.

Calculate Odds Ratio

. tabulate Tx Outcome [fweight = Count]

	Outcor		
Tx	No Cold	Cold	Total
Placebo	109	31	140
Ascorbic Acid	122	17	139
Total	231	48	279

- . display (17 * 109)/(122 * 31)
- .48995241
- . csi 17 31 122 109, or // also has an intuitive dialog box

	Exposed	Unexposed	Total
Cases	17	31	48
Noncases	122	109	231

					
Total	139	140	279		
Risk	.1223022	.2214286	.172043		
	Point e	estimate	[95% Conf.	Interval]	
Risk difference	0991264		1868592	0113937	
Risk ratio	.5523323		.3209178	.9506203	
Prev. frac. ex.	.4476677		.0493797	.6790822	
Prev. frac. pop	.223	30316			
Odds ratio	.489	9524	.2588072	.9282861	(Cornfie

chi2(1) = 4.81 Pr>chi2 = 0.0283