NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

 $\mathbf{A})$

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

 $y(t-\theta) = x(t-\theta) + \int_{t-\theta T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{t-2T}^{t-4T} x(\tau-2T) d\tau$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 8. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 2. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- D) reale

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- A) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

 \mathbf{C})

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

1

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **B)** pari rispetto alla variabile f
- C) reale
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (n 2^{n-1} + 2) u[n]$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) è reale
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- ${f B}$) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-2T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

1

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- E) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 7. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) reale
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - 3T - \theta) + \int_{t - 2T - \theta}^{t - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- B) Nessuna delle altre risposte
- **C)** $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 6. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e h[n] = 0 per n > 0.

B) Il sistema è causale

C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

Esercizio 7. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- \mathbf{C}) pari rispetto alla variabile f
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- D) con parte reale nulla

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

2

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

$$\mathbf{B)} \ M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \, \forall (s_0,t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Con	mpito					8	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- B) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- D) reale

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - T - \theta) + \int_{t - 3T}^{t - 2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - \theta} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

$\begin{array}{c} 6 \text{ febbraio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) reale
- \mathbf{D}) pari rispetto alla variabile f

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

$\begin{array}{c} 6 \text{ febbraio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha parte reale nulla
- C) è reale
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-2T) + \int_{t-2T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z^{-2}}$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 4. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{D}) pari rispetto alla variabile f

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) con parte reale nulla
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

A)
$$h[n] = u[n] [n + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

$\begin{array}{c} 6 \text{ febbraio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_{t}^{(x)} \neq M_{s}^{(x)} \in M_{t}^{(y)} = M_{s}^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 8. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) con parte reale nulla
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **C)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- A) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) con parte reale nulla
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z^{-2}}$
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{C}) pari rispetto alla variabile f
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

E)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - 3T - \theta) + \int_{t - 2T - \theta}^{t - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \pi \sum_{n=\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{k=0}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha parte reale nulla
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = (n-2) 2^n u[n]$$

C)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1:	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	$_{ m sta}$									

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- **B)** pari rispetto alla variabile f
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** ha parte reale nulla

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) è reale
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- **D)** ha parte reale nulla

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2] .$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) reale
- \mathbf{D}) pari rispetto alla variabile f

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

E) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-2z}$$

D)
$$Y(z) = \frac{1}{1 - 2z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

1

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) reale
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) è reale
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha parte reale nulla
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

1

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = 2\pi \sum_{n=\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-2z^{-2}}$
- C) $Y(z) = \frac{1}{1-2z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau kT)$
- **B)** $\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **B)** pari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) reale

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27
Faore	Grio 1 9 9 4 5 6 7 9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- E) Nessuna delle altre risposte

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

1

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- D) con parte reale nulla

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) è reale
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-2T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-2T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{t-2T}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **C)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau kT)$
- **B)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

2

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- **A)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) è reale
- **D)** ha parte reale nulla

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

D)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

E) Nessuna delle altre risposte

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t = 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) con parte reale nulla
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- D) reale

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

1

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-2z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

 $y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{t-2T-\theta}^{t-T-\theta} x(\tau-2T-\theta) d\tau$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) è reale

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T - \theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{t-6T}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) $Y(z) = \frac{1}{1-4z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{t-2T}^{t-T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- D) reale

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 5. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- D) ha parte reale nulla

Esercizio 6. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{t-6T}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = (n 2^{n-1} + 2) u[n]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

A) reale

- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau kT)$
- **D)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau kT)$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- \mathbf{B}) pari rispetto alla variabile f
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- **B)** pari rispetto alla variabile f
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)} = M_t^{(y)} = M_s^{(y)} = 0$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_{\star}^{(x)} = M_{s}^{(x)} \in M_{\star}^{(y)} \neq M_{s}^{(y)}, \forall (s_0, t_0)$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- C) con parte reale nulla
- D) reale

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2] \; .$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) con parte reale nulla
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{1-2z}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

E)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

B) esiste almeno una coppia
$$(s_0,t_0)$$
 tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

C) esiste almeno una coppia
$$(s_0,t_0)$$
 tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T - \theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

D)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

 $a(t-\theta) =$

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **C)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 2. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- $\mathbf{B})$ Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

B)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **D)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

D)
$$y(t-\theta) = x(t-\theta) + \int_{t-\theta T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [n + 4 \times 3^n]$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) con parte reale nulla
- C) reale

D) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)} = M_t^{(y)} = M_s^{(y)} = 0$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) con parte reale nulla
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

E)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) con parte reale nulla
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

D)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

 $y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) reale
- **D)** pari rispetto alla variabile f

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{n=\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **B)** pari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D**) reale

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{1-4z^{-2}}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) è reale
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{t-6T}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{t-\theta}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

- B) Nessuna delle altre risposte
- **C)** $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{r=\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)} = M_t^{(y)} = M_s^{(y)} = 0$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 8. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- C) pari rispetto alla variabile f
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 2. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **B)** pari rispetto alla variabile f
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- D) reale

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{t-2T-\theta}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-2z}$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 7. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) ha parte reale nulla
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{2}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- $\mathbf{A)} \ M_t^{(x)} \neq M_s^{(x)} \ \mathrm{e} \ M_t^{(y)} = M_s^{(y)}, \, \forall (s_0,t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-2T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{t=-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

D)
$$Y(z) = \frac{1}{1 - 4z^{-2}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{t-\theta T}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E) Nessuna delle altre risposte

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) con parte reale nulla

- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2] \; .$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

 $\mathbf{A})$

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- E) Nessuna delle altre risposte

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{t-2T-\theta}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{t-2T}^{t-T} x(\tau - 2T) d\tau$$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) è reale
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) ha parte reale nulla

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) $Y(z) = \frac{1}{1-4z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **C)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = n \, 2^n u[n-1] + 2\delta[n]$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 6. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E) Nessuna delle altre risposte

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.

C) Il sistema è causale.

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 5. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) ha parte reale nulla
- C) è reale
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

2

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

1

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - 3T - \theta) + \int_{t - 2T - \theta}^{t - \theta} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T - \theta} x(\tau - 2T - \theta) d\tau$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{z}z^{-4}}$
- E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- **B)** pari rispetto alla variabile f
- C) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{C}) pari rispetto alla variabile f
- D) reale

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- **D)** Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- E) Nessuna delle altre risposte

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t) + \int_{t-\theta T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{t-\theta T}^{t-4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) \, dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) \, dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)} = M_t^{(y)} = M_s^{(y)} = 0$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **C)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- **A)** pari rispetto alla variabile f
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- D) reale

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) è reale
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- B) reale
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

1

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- E) Nessuna delle altre risposte

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- **B)** ha parte reale nulla
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - \theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T - \theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 2. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- **B)** pari rispetto alla variabile f
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- E) Nessuna delle altre risposte

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome						
Cognome						
Matricola						
Compito			7	0		
	 1	١.۵		-	-	i i

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha parte reale nulla
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72
Egerc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-2z^{-2}}$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) reale

- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- A) $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau kT)$
- **B)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = 2\pi \sum_{n=0}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha parte reale nulla
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74
Eserc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 6. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	75

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Risnos	zt a									

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha parte reale nulla
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e h[n] = 0 per n > 0.

- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	77

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- $\bf A)$ ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{B}) pari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) reale

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

1

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

D)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	78

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) ha parte reale nulla
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-2) 2^n u[n]$

C)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-2z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-2T}^{t} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	79

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) è reale
- **D)** ha parte reale nulla

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

2

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	80

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) con parte reale nulla
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau kT)$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale

C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-2z}$$

E) Nessuna delle altre risposte

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	81

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{t-2T}^{t-\theta} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **B)** pari rispetto alla variabile f
- C) reale
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	82

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau kT)$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- E) Nessuna delle altre risposte

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_{s}^{(x)} = E\{x(t_0)\}$$
 $M_{s}^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_{t}^{(x)} \neq M_{s}^{(x)}$ e $M_{t}^{(y)} = M_{s}^{(y)}$, $\forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)} = M_t^{(y)} = M_s^{(y)} = 0$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 8. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	83

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

1

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - 4z^{-2}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) con parte reale nulla
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n 2^{n-1} + 2) u[n]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	84

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) è reale
- D) ha parte reale nulla

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n 2^{n-1} + 2) u[n]$$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_c^{(x)} = E\{x(t_0)\}$$
 $M_c^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	85

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 2. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{t-\theta T}^{t-4T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	86

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau-\theta-2T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

$$\mathbf{B)} \ M_t^{(x)} = M_s^{(x)} \ \mathrm{e} \ M_t^{(y)} \neq M_s^{(y)}, \, \forall (s_0,t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 8. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) è reale

$\begin{array}{c} 6 \text{ febbraio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	87

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 = \pm \pi$
- B) ha parte reale nulla
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- D) è reale

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-2z}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

D)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

D)

$$y(t-\theta) = x(t-2T) + \int_{t-2T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

 $y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{t-2T}^{t} x(\tau-2T) d\tau$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha parte reale nulla
- C) è reale
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-2T}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

 \mathbf{C})

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{t-2T}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n] [n + 4 \times 3^n]$$

$\begin{array}{c} 6 \text{ febbraio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	89

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$
- B) $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau kT)$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) è reale
- **D)** ha parte reale nulla

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_{s}^{(x)} = E\{x(t_0)\}$$
 $M_{s}^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	90

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

1

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) reale
- \mathbf{D}) pari rispetto alla variabile f

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	91

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

B)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **C)** $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_c^{(x)} = E\{x(t_0)\}$$
 $M_c^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) con parte reale nulla
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

D)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

1

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) è reale
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- D) ha parte reale nulla

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

 \mathbf{C})

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = (n 2^{n-1} + 2) u[n]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	94

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- D) reale

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{t-2T}^{t-T-\theta} x(\tau - 2T) d\tau$$

C)

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	95

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{t-2T}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 5. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) è reale
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- **D)** ha parte reale nulla

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = 2\pi \sum_{n=\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	Cognome										
Ma	tricola										
Co	Compito					9	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rienos	eta									

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 4. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) reale

- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{D}) pari rispetto alla variabile f

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{t-2T}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{n=\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [n + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	97

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{n=0}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

B)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{t-2T}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	98

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia
$$(s_0,t_0)$$
 tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C) esiste almeno una coppia
$$(s_0,t_0)$$
 tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) reale
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{D}) pari rispetto alla variabile f

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	99

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{t-\theta}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

 $y(t - \theta) = x(t) + \int_{t-cT}^{t-3T} y(\tau - \theta - T) d\tau + \int_{t-cT}^{t-4T} x(\tau - 2T) d\tau$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 7. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) con parte reale nulla
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- D) reale

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	100

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** ha parte reale nulla

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n] [n + 4 \times 3^n]$$

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

D) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	101

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 2. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- **B)** pari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	102

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta T}^{t-3T-\theta} y(\tau-T) d\tau + \int_{t-\theta T}^{t-4T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- D) è reale

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	103

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{t-6T}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T - \theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$

Esercizio 7. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) è reale
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	104

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- D) è reale

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e h[n] = 0 per n > 0.

- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - 3T - \theta) + \int_{t - 2T - \theta}^{t - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{2}z^{-1})^4}$
- E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	105

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 5. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

1

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** pari rispetto alla variabile f

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

$\begin{array}{c} 6 \text{ febbraio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	106

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

1

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	107

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **C)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

B)

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

 $y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- A) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau kT)$
- C) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) è reale
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- **D)** Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	108

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- **D)** con parte reale nulla

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - T - \theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	109

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- B) reale
- \mathbf{C}) pari rispetto alla variabile f

D) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - 4z^{-2}}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-2T) + \int_{t-2T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	110

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

B)
$$h[n] = (n-2) 2^n u[n]$$

C)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) è reale
- C) ha parte reale nulla
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	111

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- ${\bf A)}$ esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - T - \theta) + \int_{t - 3T}^{t - 2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - \theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 = \pm \pi$
- B) è reale
- C) ha parte reale nulla
- **D)** ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	112

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{t-2T}^{t-4T} x(\tau-2T) d\tau$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau kT)$
- C) $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 7. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	113

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- C) esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

1

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 8. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

C) reale

D) con parte reale nulla

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	114

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **C)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 4. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

1

- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) con parte reale nulla
- D) reale

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T - \theta} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

B)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	115

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [n + 4 \times 3^n]$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) reale

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_{s}^{(x)} \neq M_{s}^{(x)} \in M_{s}^{(y)} \neq M_{s}^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	116

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- D) reale

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T - \theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

C)

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	117

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{r=\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{n=\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t) + \int_{t-\theta T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{t-\theta T}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) con parte reale nulla
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	118

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = (n-2) 2^n u[n]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

D)
$$Y(z) = \frac{1}{1-2z}$$

E) Nessuna delle altre risposte

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- $\bf A$) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- \mathbf{D}) pari rispetto alla variabile f

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	119

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) ha parte reale nulla
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) è reale

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0
- C) Il sistema è causale.

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-4z^{-4}}$
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	120

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-2z}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 5. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 6. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_{t}^{(x)} \neq M_{s}^{(x)} \in M_{t}^{(y)} \neq M_{s}^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	121

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) \, dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) \, dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) reale
- \mathbf{C}) pari rispetto alla variabile f
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-2z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	122

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) $Y(z) = \frac{1}{1-4z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{t-\theta}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$

C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 4. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{C}) pari rispetto alla variabile f
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = n \, 2^n u[n-1] + 2\delta[n]$
- C) $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

2

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	123

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

E)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

 $\mathbf{A})$

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

B)

C)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

$$y(t - \theta) = x(t - \theta) + \int_{t - \theta}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	124

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n] [n + 4 \times 3^n]$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

E)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2] .$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) con parte reale nulla
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	125

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 2. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) con parte reale nulla
- C) reale

D) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-2z}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	126

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 4. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) reale
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{t=\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = (n-2) 2^n u[n]$$

C)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - 4z^{-4}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	127

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)} = M_t^{(y)} = M_s^{(y)} = 0$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2].$$

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

C)

$$y(t - \theta) = x(t - T - \theta) + \int_{t-3T}^{t-2T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

Esercizio 6. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) pari rispetto alla variabile f
- B) reale
- \mathbf{C}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	128

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) è reale
- C) ha parte reale nulla

D) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

C)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	129

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [n + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha parte reale nulla
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) è reale

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	130

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D**) reale

Esercizio 4. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_{\star}^{(x)} \neq M_{s}^{(x)} \in M_{\star}^{(y)} = M_{s}^{(y)}, \forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	131

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

Esercizio 3. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- **B)** pari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) reale

Esercizio 4. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

B)
$$h[n] = (n-2) 2^n u[n]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t - \theta) = x(t - 3T - \theta) + \int_{t - 2T - \theta}^{t - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

C)

D)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

 $y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T) d\tau$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	132

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1-2z^{-2}}$

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- **A)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau kT)$
- C) $\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$

Esercizio 7. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) ha parte reale nulla
- C) è reale
- **D)** ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{t-6T}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	133

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

B) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T}^{t - 3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t - 4T - \theta} x(\tau - 2T) d\tau$$

B)

$$y(t - \theta) = x(t) + \int_{t - 6T}^{t - 3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t - \theta) = x(t - \theta) + \int_{t - \theta T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 4. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

- A) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- **B)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$
- C) $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$
- **D)** $\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau kT)$

Esercizio 5. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) è reale
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) ha parte reale nulla

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-2z}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	134

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- B) con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [n + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - \theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T - \theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-4T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	135

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

1

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

D)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z^{-4}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) è reale
- **D)** ha parte reale nulla

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	136

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- \mathbf{A}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- B) reale
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

1

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_{s}^{(x)} \neq M_{s}^{(x)} \in M_{s}^{(y)} = M_{s}^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [n + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

 \mathbf{C})

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

Esercizio 8. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	137

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) con parte reale nulla
- B) reale
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

 $y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-2z}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

D)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

E)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale 1 per $0 \le t < \tau/2$, -1 per $\tau/2 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \, \forall (s_0, t_0)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	138

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha parte reale nulla
- D) è reale

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

D)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

Esercizio 6. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 7. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	139

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t) + \int_{t-6T}^{t-3T} y(\tau - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-\theta) + \int_{t-\theta}^{t-3T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - \theta) + \int_{t - 6T - \theta}^{t - 3T - \theta} y(\tau - T) d\tau + \int_{-\infty}^{t - 4T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t) + \int_{t-6T}^{t-3T} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-4T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-\theta) + \int_{t-6T}^{t-3T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-4T-\theta} x(\tau - 2T) d\tau$$

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **D)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 6. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) con parte reale nulla
- D) reale

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n-2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 8. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-2) 2^n u[n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	140

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{C}) pari rispetto alla variabile f
- \mathbf{D}) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)} = M_t^{(y)} = M_s^{(y)} = 0$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **C)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	141

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- C) con parte reale nulla
- D) reale

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 5. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove A e ϕ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **D)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **C)** $Y(z) = \frac{1}{1-2z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	142

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 2. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- **D)** ha parte reale nulla

Esercizio 3. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t + \phi)$, dove $A \in \phi$ sono variabili casuali statisticamente indipendenti ed uniformemente distribuite tra $-\pi$ e $+\pi$, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

E) Nessuna delle altre risposte

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4t}u(t)$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 4T^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{(\pi k + 2T)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \frac{1}{4} \sum_{-\infty}^{+\infty} \frac{1}{\pi^2 k^2 + 8T^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	143

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

Esercizio 3. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f)=\alpha f+\beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm\pi$
- B) è reale
- C) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- D) ha parte reale nulla

Esercizio 5. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 6. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n 2^{n-1} + 2) u[n]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 8. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	144

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{n=\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = 2\pi \sum_{n=\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- ${f B})$ ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- \mathbf{C}) pari rispetto alla variabile f
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

D)

$$y(t-\theta) = x(t-2T) + \int_{t-3T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = A\cos(2\pi f_0 t)$, dove A è una variabile casuale uniformemente distribuita tra 1 e 2, e f_0 è pari a 1 kHz. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- **B)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}=M_t^{(y)}=M_s^{(y)}=0$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	145

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 2. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$

- C) è reale
- **D)** ha parte reale nulla

Esercizio 5. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

B)

$$y(t - \theta) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

Esercizio 7. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_c^{(x)} = E\{x(t_0)\}$$
 $M_c^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$
- **D)** $M_t^{(x)} = M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	146

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 2. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 3. (1 punto) Sia dato il sistema:

$$y(t) = x(t - T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-T-\theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau-2T) d\tau$$

B)

$$y(t - \theta) = x(t - 2T) + \int_{t - 3T}^{t - 2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

Esercizio 4. (1 punto) Sono dati un segnale reale e pari x(t) e un segnale reale e dispari y(t). Il segnale z(t) = x(t) + y(t) ha trasformata di Fourier Z(f)

- A) reale
- B) ha parte reale pari e parte immaginaria dispari rispetto alla variabile f
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- \mathbf{D}) pari rispetto alla variabile f

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-4z^{-4}}$
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 6. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = x[n] + 2x[n+1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 8. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

B)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome								
Cognome								
Matricola								
Compito	147							
Eserc	izio 1 2 3 4 5 6 7 8							

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.

Esercizio 2. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt \qquad M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0, t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$
- **B)** $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **C)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$

Esercizio 3. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 4. (1 punto) E' dato un segnale reale x(t) sempre maggiore di +1 per il quale x(t+T)=x(T-t). La sua trasformata di Fourier X(f)

- A) è reale
- B) ha sempre la fase $\Phi(f)$ dipendente in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) ha sempre il modulo M(f) dipendente in modo lineare da f, cioè $M(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$
- D) ha parte reale nulla

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T) + \int_{t-2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

D)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$

Esercizio 7. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 8. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-t^2/(2T^2)}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-(2\pi k)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = 2\pi \sum_{-\infty}^{+\infty} e^{-2\pi k^2} e^{j\frac{2\pi}{T}k\tau}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	148

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-\vartheta-i\tau)$, dove le α_i sono variabili casuali binarie che possono assumere in modo equiprobabile i valori -1 e +1, ϑ è una variabile casuale indipendente uniformemente distribuita tra 0 e τ , e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

A)
$$M_t^{(x)} \neq M_s^{(x)}$$
 e $M_t^{(y)} \neq M_s^{(y)}$, $\forall (s_0, t_0)$

B)
$$M_t^{(x)} = M_s^{(x)}$$
 e $M_t^{(y)} = M_s^{(y)}$, $\forall (s_0, t_0)$

C)
$$M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$$

D)
$$M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} \neq M_s^{(y)}, \forall (s_0, t_0)$$

Esercizio 2. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

Esercizio 4. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- B) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 5. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 6. (1 punto) Sia dato il sistema:

$$y(t) = x(t-T) + \int_{t-3T}^{t-2T} y(\tau - T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

A)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T-\theta}^{t-2T-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-\theta} x(\tau-\theta-2T) d\tau$$

B)

$$y(t-\theta) = x(t-2T) + \int_{t-2T}^{t-2T} y(\tau - \theta - 2T) d\tau + \int_{-\infty}^{t} x(\tau - 2T) d\tau$$

C)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-2T}^{t-2T} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t} x(\tau-2T) d\tau$$

D)

$$y(t-\theta) = x(t-T-\theta) + \int_{t-3T}^{t-2T} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-\theta} x(\tau - 2T) d\tau$$

Esercizio 7. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 8. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) reale
- **B)** con parte reale nulla
- C) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- **D)** la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $0 \in \pm \pi$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	149

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un segnale $x(t) = \sum_{-\infty}^{+\infty} r(t - kT)$ dove $r(t) = e^{-4|t|}$. Trovare lo sviluppo in serie di Fourier, nell'intervallo [-T/2, T/2], della funzione di autocorrelazione di x(t). Indicare quale risultato è corretto.

A)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} \delta(\tau - kT)$$

B)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{\pi^4 k^4 + 16T^4} e^{j\frac{2\pi}{T}k\tau}$$

C)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 4T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

D)
$$\phi_x(\tau) = \sum_{-\infty}^{+\infty} \frac{4T^2}{(\pi^2 k^2 + 8T^2)^2} e^{j\frac{2\pi}{T}k\tau}$$

Esercizio 2. (1 punto) E' dato un segnale reale x(t) tale per cui x(t) = -x(-t). Il segnale y(t) = x(t-T) ha trasformata di Fourier Y(f)

- A) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori $\pm \pi/2$
- B) la cui fase $\Phi(f)$ dipende in modo lineare da f, cioè $\Phi(f) = \alpha f + \beta$, dove α è una costante reale e β può assumere solo i valori 0 e $\pm \pi$
- C) reale
- D) con parte reale nulla

Esercizio 3. (1 punto) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 4. (1.5 punti) Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 5. (1.5 punti) Si consideri il processo casuale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-i\tau)$, dove le α_i sono variabili casuali binarie statisticamente indipendenti che possono assumere in modo equiprobabile i valori -1 e +1, e r(t) vale t per $0 \le t < \tau/4$, $\tau/2 - t$ per $\tau/4 \le t < 3\tau/4$, $t - \tau$ per $3\tau/4 \le t < \tau$ e 0 altrove. Sia y(t) = |x(t)|. Si calcolino le seguenti medie temporali

$$M_t^{(x)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t; s_0) dt$$
 $M_t^{(y)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} y(t; s_0) dt$

su di una realizzazione dei processi x(t) e y(t), e le seguenti medie di insieme

$$M_s^{(x)} = E\{x(t_0)\}$$
 $M_s^{(y)} = E\{y(t_0)\}$

ad un generico istante di tempo t_0 . Quale delle seguenti affermazioni è vera?

- **A)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)}=M_s^{(x)}$ e $M_t^{(y)}\neq M_s^{(y)}$
- **B)** $M_t^{(x)} \neq M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- C) $M_t^{(x)} = M_s^{(x)} \in M_t^{(y)} = M_s^{(y)}, \forall (s_0, t_0)$
- **D)** esiste almeno una coppia (s_0,t_0) tale per cui $M_t^{(x)} \neq M_s^{(x)}$ e $M_t^{(y)} \neq M_s^{(y)}$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 7. (1.5 punti) Un filtro numerico ha relazione ingresso-uscita:

$$y[n] = 0.5x[n] + 2x[n+2] + \frac{7}{4}y[n-1] - \frac{3}{8}y[n-2]$$
.

Dire quale delle seguenti affermazioni è corretta.

- A) Il sistema è stabile secondo il criterio di stabilità BIBO ed è realizzabile.
- B) Il sistema è instabile secondo il criterio di stabilità BIBO e non è realizzabile.
- C) Il sistema è stabile secondo il criterio di stabilità BIBO e non è realizzabile.
- D) Il sistema è instabile secondo il criterio di stabilità BIBO ed è realizzabile.

Esercizio 8. (1 punto) Sia dato il sistema:

$$y(t) = x(t - 3T) + \int_{t-2T}^{t} y(\tau - T) d\tau + \int_{-\infty}^{t-T} x(\tau - 2T) d\tau$$

Quale delle seguenti relazioni ingresso-uscita è vera?

 $\mathbf{A})$

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T}^{t} y(\tau - T - \theta) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau - 2T) d\tau$$

B)

$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-T) d\tau + \int_{-\infty}^{t-T} x(\tau-2T) d\tau$$

C)

$$y(t - \theta) = x(t - 3T) + \int_{t - 2T}^{t} y(\tau - \theta - T) d\tau + \int_{-\infty}^{t - T} x(\tau - 2T) d\tau$$

D)
$$y(t-\theta) = x(t-3T-\theta) + \int_{t-2T-\theta}^{t-\theta} y(\tau-\theta-T) d\tau + \int_{-\infty}^{t-T-\theta} x(\tau-2T-\theta) d\tau$$