

Εικονική Μνήμη (1/2)

Λειτουργικά Συστήματα Υπολογιστών 6ο Εξάμηνο, 2019-2020

Εικονική Μνήμη - Σύνοψη

- Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - ➤ Χειρισμός από το ΛΣ
- Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - ➤ Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- Απεικόνιση Αρχείων στην Εικονική Μνήμη

Εικονική Μνήμη - Σύνοψη

- ◆ Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - ➤ Χειρισμός από το ΛΣ
- Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - → Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- Απεικόνιση Αρχείων στην Εικονική Μνήμη

Κύρια Μνήμη (1)

- ◆ Κάθε CPU αναφέρεται απευθείας σε καταχωρητές και μνήμη
- Συσκευές Ε/Ε εκτελούν Απευθείας Πρόσβαση στη Μνήμη (Direct Memory Access - DMA)

Κύρια Μνήμη (1)

- ◆ Κάθε CPU αναφέρεται απευθείας σε καταχωρητές και μνήμη
- Συσκευές Ε/Ε εκτελούν Απευθείας Πρόσβαση στη Μνήμη (Direct Memory Access - DMA)

Μεταγλώττιση – Φόρτωση - Εκτέλεση

Μετατοπίσιμος κώδικας

- ◆ Ο κώδικας *διορθώνεται* με βάση τον πίνακα μετατόπισης
- Στο χρόνο μεταγλώττισης (συνδέτης) ή εκτέλεσης (φορτωτής)

Μετατοπίσιμος κώδικας

- ◆ Ο κώδικας *διορθώνεται* με βάση τον πίνακα μετατόπισης
- Στο χρόνο μεταγλώττισης (συνδέτης) ή εκτέλεσης (φορτωτής)

Μετατοπίσιμος κώδικας

- ◆ Ο κώδικας *διορθώνεται* με βάση τον πίνακα μετατόπισης
- Στο χρόνο μεταγλώττισης (συνδέτης) ή εκτέλεσης (φορτωτής)

- ◆ Ο πιο συχνός τρόπος μετάφρασης διευθύνσεων
- Ο χώρος φυσικών διευθύνσεων χωρίζεται σε πλαίσια σταθερού μεγέθους (π.χ., 4096 bytes)
- Ο χώρος λογικών / εικονικών διευθύνσεων
 χωρίζεται σε σελίδες, ίδιου μεγέθους με τα πλαίσια
- ◆ Κάθε σελίδα αντιστοιχίζεται σε οποιοδήποτε πλαίσιο
 - → χωρίς περιορισμό συνεχόμενης αποθήκευσης
 - → η διεργασία ζει σε διάσπαρτα φυσικά τμήματα
 - ⇒ αλλά σε γραμμικό χώρο εικονικών διευθύνσεων
- ◆ Το Υλικό (ΜΜU) αναλαμβάνει τη μετάφραση

- Διακριτοί, γραμμικοί χώροι εικονικών διευθύνσεων
- Προστασία μνήμης
 - → Μια διεργασία δεν μπορεί καν να αναφερθεί σε ξένες διευθύνσεις

- Διακριτοί, γραμμικοί χώροι εικονικών διευθύνσεων
- Προστασία μνήμης
 - → Μια διεργασία δεν μπορεί καν να αναφερθεί σε ξένες διευθύνσεις

- Διακριτοί, γραμμικοί χώροι εικονικών διευθύνσεων
- Προστασία μνήμης
 - → Μια διεργασία δεν μπορεί καν να αναφερθεί σε ξένες διευθύνσεις

- Διακριτοί, γραμμικοί χώροι εικονικών διευθύνσεων
- Προστασία μνήμης
 - → Μια διεργασία δεν μπορεί καν να αναφερθεί σε ξένες διευθύνσεις
- Μοιραζόμενη μνήμη, με αντιστοίχιση στο ίδιο πλαίσιο

- Διακριτοί, γραμμικοί χώροι εικονικών διευθύνσεων
- Προστασία μνήμης
 - → Μια διεργασία δεν μπορεί καν να αναφερθεί σε ξένες διευθύνσεις
- Μοιραζόμενη μνήμη, με αντιστοίχιση στο ίδιο πλαίσιο

- Διακριτοί, γραμμικοί χώροι εικονικών διευθύνσεων
- Προστασία μνήμης
 - → Μια διεργασία δεν μπορεί καν να αναφερθεί σε ξένες διευθύνσεις
- Μοιραζόμενη μνήμη, με αντιστοίχιση στο ίδιο πλαίσιο
- ◆ Δεν έχει εξωτερικό κατακερματισμό

- ◆ Μετάφραση διευθύνσεων με πίνακες σελίδων
 - Τηρούνται από το ΛΣ, τους συμβουλεύεται το υλικό
- ◆ Μέγεθος σελίδας; 4 KB 16MB
 - → Μεγάλο μέγεθος → μικρό κόστος διαχείρισης
 - μικρότεροι πίνακες σελίδων
 - εντονότερος εσωτερικός κατακερματισμός
 - → Μικρό μέγεθος
 - αποφεύγεται ο εσωτερικός κατακερματισμός
 - μεγαλύτερο κόστος διαχείρισης

- ◆ Μέγεθος σελίδας 2ⁿ. **Γιατί** πρέπει να είναι δύναμη του 2;
- ◆ Διεύθυνση των m bits, χώρος εικονικών διεύθυνσεων 2^m
- ◆ Εικονική διεύθυνση: αριθμός σελίδας + μετατόπιση

αριθμός σελίδας (page number)	μετατόπιση (offset)
р	d
m – n	n

- ◆ Μέγεθος σελίδας 2ⁿ. **Γιατί** πρέπει να είναι δύναμη του 2;
- ◆ Διεύθυνση των m bits, χώρος εικονικών διεύθυνσεων 2^m
- ◆ Εικονική διεύθυνση: αριθμός σελίδας + μετατόπιση

αριθμός σελίδας (page number)	μετατόπιση (offset)
р	d
m – n	n

- ◆ Μέγεθος σελίδας 2ⁿ. Γιατί πρέπει να είναι δύναμη του 2;
- ◆ Διεύθυνση των *m* bits, χώρος εικονικών διεύθυνσεων 2^m
- ◆ Εικονική διεύθυνση: αριθμός σελίδας + μετατόπιση

- ◆ Μέγεθος σελίδας 2ⁿ. Γιατί πρέπει να είναι δύναμη του 2;
- ◆ Διεύθυνση των *m* bits, χώρος εικονικών διεύθυνσεων 2^m
- ◆ Εικονική διεύθυνση: αριθμός σελίδας + μετατόπιση

- ◆ Μέγεθος σελίδας 2ⁿ. Γιατί πρέπει να είναι δύναμη του 2;
- ◆ Διεύθυνση των *m* bits, χώρος εικονικών διεύθυνσεων 2^m
- ◆ Εικονική διεύθυνση: αριθμός σελίδας + μετατόπιση

- ◆ Μέγεθος σελίδας 2ⁿ. Γιατί πρέπει να είναι δύναμη του 2;
- ◆ Διεύθυνση των m bits, χώρος εικονικών διεύθυνσεων 2^m
- ◆ Εικονική διεύθυνση: αριθμός σελίδας + μετατόπιση

Διεπίπεδη Σελιδοποίηση

- ◆ Επιβολή δικαιωμάτων πρόσβασης
 - → με bits προστασίας ανά σελίδα εικονικής μνήμης
- ◆ Π.χ., για μοιραζόμενη μνήμη
 - ➤ Μία διεργασία μπορεί να γράψει, οι άλλες μόνο διαβάζουν
- ◆ Bits πρόσβασης
 - **→ R**ead, **W**rite, e**X**ecute
- ◆ Βit εγκυρότητας
 - **→ V**alid, Invalid
- ◆ Σε περίπτωση μη επιτρεπόμενης πρόσβασης;

- ◆ Επιβολή δικαιωμάτων πρόσβασης
 - → με bits προστασίας ανά σελίδα εικονικής μνήμης
- ◆ Π.χ., για μοιραζόμενη μνήμη
 - ➤ Μία διεργασία μπορεί να γράψει, οι άλλες μόνο διαβάζουν
- ◆ Bits πρόσβασης
 - **→ R**ead, **W**rite, e**X**ecute
- ◆ Bit εγκυρότητας
 - **→ V**alid, Invalid
- Σε περίπτωση μη επιτρεπόμενης πρόσβασης;
 - ➤ Trap! Εξαίρεση σελίδας Page fault

σελίδα 0 σελίδα 1 σελίδα 2 σελίδα 3 σελίδα 4 Εικονική Μνήμη

2	
5	
1	
7	
0	
Πίνακας σελίδων	

σελίδα 0 σελίδα 1 σελίδα 2 σελίδα 3 σελίδα 4

Εικονική Μνήμη

2	r, x	V
5	r, x	V
1	r	V
7	r, w	V
0		i

Πίνακας σελίδων

σελίδα 0 σελίδα 1 σελίδα 2 σελίδα 3 σελίδα 4

Εικονική Μνήμη

2	r, x	V
5	r, x	V
1	r	V
7	r, w	V
0		i

Πίνακας σελίδων

r, x	V	
r, x	V	
r	V	
r, w	V	
	i	
Ίίνακας		
'nΛ		
	r, χ r r, w	

◆ Ποιες σελίδες είναι κειμένου-κώδικα, ποιες δεδομένων;

Εικονική Μνήμη - Σύνοψη

- Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - ➤ Χειρισμός από το ΛΣ
- Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - → Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- Απεικόνιση Αρχείων στην Εικονική Μνήμη

Virtual Memory – Εικονική Μνήμη

- ◆ Εικονική μνήμη: Λογική μνήμη διαχωρισμένη από τη φυσική μνήμη
 - *⇒ ανεξαρτησία* από το μέγεθος της φυσικής μνήμης
 - χώρος λογικών διευθύνσεων πολύ μεγαλύτερος από χώρο φυσικών διευθύνσεων
 - ▼Τα υπό εκτέλεση προγράμματα βρίσκονται μερικώς στην κύρια μνήμη
 - τα υπόλοιπα δεδομένα πού βρίσκονται;
- ◆ Υλοποίηση:
 - ➤ Κατ' απαίτηση σελιδοποίηση (demand paging)
 - ➤ Κατ' απαίτηση κατάτμηση (demand segmentation)

σελίδα 0 σελίδα 1 σελίδα 2 σελίδα 3 σελίδα 4 σελίδα 5 σελίδα 6 σελίδα Ν Εικονική

Μνήμη

πλαίσιο 0
πλαίσιο 1
πλαίσιο 2

πλαίσιο 5
πλαίσιο F
Φυσική
Μνήμη

σελίδα 0 σελίδα 1 σελίδα 2 σελίδα 3 σελίδα 4 σελίδα 5 σελίδα 6 σελίδα Ν Εικονική Μνήμη

Πίνακας Σελίδων (αρκεί;) πλαίσιο 0
πλαίσιο 1
πλαίσιο 2

•
πλαίσιο F
Φυσική
Μνήμη

Βασικές δομές

◆ Πίνακας σελίδων

- Περιλαμβάνει τις μεταφράσεις των διευθύνσεων μόνο για τις λογικές διευθύνσεις σελίδων που βρίσκονται ήδη στη μνήμη
- ▼ Τον συμβουλεύεται ο επεξεργαστής (MMU) για κάθε αναφορά στη μνήμη
- Περιλαμβάνει πληροφορία για δικαιώματα πρόσβασης (bit εγκυρότητας, bit πρόσβασης)
- ▼ Το ΛΣ είναι υπεύθυνο για την τήρηση του πίνακα σελίδων κάθε διεργασίας

Χάρτης μνήμης

- → Περιλαμβάνει όλη την πληροφορία για τη μνήμη κάθε διεργασίας
- Διευρυμένος πίνακας σελίδων με πληροφορίες και για τις σελίδες που βρίσκονται στο δίσκο (π.χ. σε ποιο block του δίσκου βρίσκεται μια σελίδα που δεν είναι απεικονισμένη στη μνήμη)

Εικονική Μνήμη - Σύνοψη

- Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - ➤ Χειρισμός από το ΛΣ
- Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - → Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- Απεικόνιση Αρχείων στην Εικονική Μνήμη

Εικονική Μνήμη - Σύνοψη

- Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - ➤ Χειρισμός από το ΛΣ
- Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - → Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- Απεικόνιση Αρχείων στην Εικονική Μνήμη

Σελιδοποίηση κατ' απαίτηση (Demand Paging)

- ◆ Σελίδες εικονικής μνήμης ζουν σε *φυσική μνήμη* και δίσκο
- Όταν μια διεργασία χρειαστεί συγκεκριμένη σελίδα (αναφορά), τότε φέρε τη στη μνήμη
 - → Πλεονεκτήματα;
 - Λιγότερη Είσοδος / Έξοδος
 - Γρηγορότερη απόκριση η διεργασία ξεκινά αμέσως
 - Περισσότερες διεργασίες / περισσότεροι χρήστες
- Παρόμοια με την Εναλλαγή (swapping)
 - ➤ Σε επίπεδο σελίδας, με pager

Μεταφορά σελίδων από/προς Δίσκο

Μεταφορά σελίδων από/προς Δίσκο

 Όχι κατ΄ ανάγκη σε συνεχόμενα πλαίσια ή συνεχόμενα τμήματα στο δίσκο

◆ Είναι *κάθε* αναφορά στο χώρο εικονικών διευθύνσεων *έγκυρη*;

- ◆ Είναι *κάθε* αναφορά στο χώρο εικονικών διευθύνσεων *έγκυρη*;
- ◆ Επιπλέον bit στον πίνακα σελίδων: Valid Invalid

- ◆ Είναι *κάθε* αναφορά στο χώρο εικονικών διευθύνσεων *έγκυρη*;
- ◆ Επιπλέον bit στον πίνακα σελίδων: Valid Invalid

- ◆ Είναι *κάθε* αναφορά στο χώρο εικονικών διευθύνσεων *έγκυρη*;
- Επιπλέον bit στον πίνακα σελίδων: Valid Invalid
- ◆ Τι συμβαίνει αν γίνει αναφορά σε Invalid σελίδα; Page Fault

1	V	
	i	
	i	
4	V	
3	V	
	i	
	i	
	i	
Πίνακας		
σελίδων		

V	
i	
i	
V	
V	
i	
i	
i	
Πίνακας σελίδων	

◆ Ποιος ξέρει πού είναι οι σελίδες στο δίσκο;

◆ Ποιος ξέρει πού είναι οι σελίδες στο δίσκο;

1	V	
	i	
	i	
4	V	
3	V	
	i	
i		
	i	
Πίνακας		
σελίδων		

m	1	
d		1
d		6
m	4	
m	3	
d		3
d		4
-	-	-
Χάρτης μνήμης		

- ◆ Ποιος ξέρει *πού* είναι οι σελίδες στο δίσκο;
 - → Το ΛΣ (χάρτης μνήμης)

1	V		
	i		
	i		
4	V		
3	V		
	i		
i			
	i		
Πίνακας σελίδων			

m	1	
		1
d		1
d		6
m	4	
m	3	
d		3
d		4
-	-	-
Χάρτης μνήμης		

0		
1	А	
2		
3	E	
4	D	
5		
6		
7		
Φυσική Μνήμη		

- ◆ Ποιος ξέρει πού είναι οι σελίδες στο δίσκο;
 - ▼ To ΛΣ (χάρτης μνήμης)
- Αναφορά σε σελίδα που δεν υπάρχει στη μνήμη;

1	V		
	i		
	i		
4	V		
3	V		
	i		
i			
	i		
Πίνακας σελίδων			

m	1	
		1
d		1
d		6
m	4	
m	3	
d		3
d		4
-	-	-
Χάρτης μνήμης		

0		
1	А	
2		
3	E	
4	D	
5		
6		
7		
Φυσική Μνήμη		

- ◆ Ποιος ξέρει πού είναι οι σελίδες στο δίσκο;
 - ▼ To ΛΣ (χάρτης μνήμης)
- Αναφορά σε σελίδα που δεν υπάρχει στη μνήμη;

1	V
	i
	i
4	V
3	V
	i
	i
	i
Πίνακας	
σελίδων	

m	1	
d		1
d		6
m	4	
m	3	
d		3
d		4
-	-	-
Χάρτης μνήμης		

0	
1	А
2	
3	Е
4	D
5	
6	
7	
Φυσική Μνήμη	

- ◆ Ποιος ξέρει πού είναι οι σελίδες στο δίσκο;
 - ▼ To ΛΣ (χάρτης μνήμης)
- Αναφορά σε σελίδα που δεν υπάρχει στη μνήμη;
 - → Page fault!

Εικονική Μνήμη - Σύνοψη

- Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - → Χειρισμός από το ΛΣ
- Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - → Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- Απεικόνιση Αρχείων στην Εικονική Μνήμη

Σφάλμα Σελίδας – Page Fault (1)

- ◆ Εξαίρεση: Το ΛΣ ξυπνάει
- Το πρόγραμμα έκανε αναφορά σε άκυρη σελίδα

Σφάλμα Σελίδας – Page Fault (1)

- ◆ Εξαίρεση: Το ΛΣ ξυπνάει
- Το πρόγραμμα έκανε αναφορά σε άκυρη σελίδα

Σφάλμα Σελίδας – Page Fault (1)

- ◆ Εξαίρεση: Το ΛΣ ξυπνάει
- Το πρόγραμμα έκανε αναφορά σε άκυρη σελίδα
- ◆ Γιατί; Το ΛΣ μελετά το χάρτη μνήμης του

Σφάλμα Σελίδας – Page Fault (1)

- ◆ Εξαίρεση: Το ΛΣ ξυπνάει
- Το πρόγραμμα έκανε αναφορά σε άκυρη σελίδα
- ◆ Γιατί; Το ΛΣ μελετά το χάρτη μνήμης του
 - → Μη επιτρεπόμενη πρόσβαση π.χ. λόγω bug
 - τερματισμός προγράμματος ("Segmentation Fault")

Σφάλμα Σελίδας – Page Fault (1)

- ◆ Εξαίρεση: Το ΛΣ ξυπνάει
- Το πρόγραμμα έκανε αναφορά σε άκυρη σελίδα
- ◆ Γιατί; Το ΛΣ μελετά το χάρτη μνήμης του
 - → Μη επιτρεπόμενη πρόσβαση π.χ. λόγω bug
 - τερματισμός προγράμματος ("Segmentation Fault")
 - ➤ Επιτρεπόμενη πρόσβαση, η σελίδα είναι στο δίσκο
 - πρέπει να έρθει στην Κύρια Μνήμη
 - έως τότε, η διεργασία σε τι κατάσταση βρίσκεται;

- Βρες ένα ελεύθερο πλαίσιο μνήμης
 - ➤ Υπάρχει πάντα;
- Φέρε τα δεδομένα της σελίδας από το δίσκο σε αυτό το πλαίσιο
- ◆ Θέσε ανάλογη εγγραφή στον πίνακα σελίδων
 - → Mε bit εγκυρότητας Valid
- Επίστρεψε από τη διακοπή, στην εντολή που προκάλεσε την εξαίρεση
- Η ΚΜΕ τι κάνει, μέχρι να έρθει η σελίδα στην Κύρια Μνήμη;

◆ Πόσο κοστίζει να έρθει μια σελίδα από το δίσκο;

- ◆ Πόσο κοστίζει να έρθει μια σελίδα από το δίσκο;
 - → Ας πούμε ~10ms. Τι κάνει η ΚΜΕ όλη αυτή την ώρα;

- ◆ Πόσο κοστίζει να έρθει μια σελίδα από το δίσκο;
 - → Ας πούμε ~10ms. Τι κάνει η ΚΜΕ όλη αυτή την ώρα;

- Πόσο κοστίζει να έρθει μια σελίδα από το δίσκο;
 - → Ας πούμε ~10ms. Τι κάνει η ΚΜΕ όλη αυτή την ώρα;
- Χειρισμός σφάλματος σελίδας σε πραγματικά συστήματα
 - ⇒ ασύγχρονος χειρισμός, σε δύο στάδια

- Πόσο κοστίζει να έρθει μια σελίδα από το δίσκο;
 - → Ας πούμε ~10ms. Τι κάνει η ΚΜΕ όλη αυτή την ώρα;
- Χειρισμός σφάλματος σελίδας σε πραγματικά συστήματα
 - ⇒ ασύγχρονος χειρισμός, σε δύο στάδια
- ◆ Αρχικοποίηση Ε/Ε
 - όταν ενεργοποιείται η ρουτίνα χειρισμού σφάλματος σελίδας
 - το ΛΣ ζητά από το δίσκο να γεμίσει ένα πλαίσιο μνήμης με τη ζητούμενη σελίδα (DMA)
 - → η διεργασία αλλάζει κατάσταση, περνά σε αναμονή

- ◆ Πόσο κοστίζει να έρθει μια σελίδα από το δίσκο;
 - → Ας πούμε ~10ms. Τι κάνει η ΚΜΕ όλη αυτή την ώρα;
- Χειρισμός σφάλματος σελίδας σε πραγματικά συστήματα
 - ⇒ ασύγχρονος χειρισμός, σε δύο στάδια
- ◆ Αρχικοποίηση Ε/Ε
 - όταν ενεργοποιείται η ρουτίνα χειρισμού σφάλματος σελίδας
 - το ΛΣ ζητά από το δίσκο να γεμίσει ένα πλαίσιο μνήμης με τη ζητούμενη σελίδα (DMA)
 - → η διεργασία αλλάζει κατάσταση, περνά σε αναμονή
- Ολοκλήρωση Ε/Ε
 - → όταν ο δίσκος ολοκληρώσει τη μεταφορά → διακοπή
 - → το ΛΣ διορθώνει τον πίνακα σελίδων
 - → η διεργασία γίνεται έτοιμη

Σελιδοποίηση κατ'απαίτηση – Κόστος

- ◆ Ρυθμός σφαλμάτων σελίδας p, $0 \le p \le 1$
 - → p = 0: δεν γίνονται ποτέ σφάλματα σελίδας
 - → p = 1: κάθε πρόσβαση προκαλεί σφάλμα σελίδας
- Πραγματικός χρόνος πρόσβασης
 - **→** Effective Access Time
 - EAT = (1 p) x t_m+
 p x (κόστος σφάλματος σελίδας +
 κόστος swap out + κόστος swap in +
 κόστος επανεκκίνησης)
 - \Rightarrow π.χ., για p = 1‰, t_m = 200ns, t_{pf} = 8ms = 8x10⁶ns
 - EAT = 8200ns, χρόνος πρόσβασης 40 φορές μεγαλύτερος!

Εικονική Μνήμη - Σύνοψη

- Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - ➤ Χειρισμός από το ΛΣ
- ◆ Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - ➤ Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- Απεικόνιση Αρχείων στην Εικονική Μνήμη

- ◆ Η νέα διεργασία είναι αντίγραφο της παλιάς
- Κληρονομεί όλα τα ανοιχτά αρχεία και αντίγραφο της μνήμης της αρχικής διεργασίας
- ◆ Από εκεί και πέρα, εκτελείται ανεξάρτητα
- ◆ Πόσο κοστίζει η δημιουργία της;

- ◆ Η νέα διεργασία είναι αντίγραφο της παλιάς
- Κληρονομεί όλα τα ανοιχτά αρχεία και αντίγραφο της μνήμης της αρχικής διεργασίας
- ◆ Από εκεί και πέρα, εκτελείται ανεξάρτητα
- ◆ Πόσο κοστίζει η δημιουργία της;
 - → Αντιγράφεται όλη η μνήμη της παλιάς διεργασίας
 - → Πάντα;

- ◆ Η νέα διεργασία είναι αντίγραφο της παλιάς
- Κληρονομεί όλα τα ανοιχτά αρχεία και αντίγραφο της μνήμης της αρχικής διεργασίας
- ◆ Από εκεί και πέρα, εκτελείται ανεξάρτητα
- ◆ Πόσο κοστίζει η δημιουργία της;
 - → Αντιγράφεται όλη η μνήμη της παλιάς διεργασίας
 - → Πάντα;
- ♦ Όχι! Σε συστήματα εικονικής μνήμης
 - → Αντιγραφή κατά την Εγγραφή Copy-on-Write (COW)

- ◆ Η νέα διεργασία είναι αντίγραφο της παλιάς
- Κληρονομεί όλα τα ανοιχτά αρχεία και αντίγραφο της μνήμης της αρχικής διεργασίας
- ◆ Από εκεί και πέρα, εκτελείται ανεξάρτητα
- ◆ Πόσο κοστίζει η δημιουργία της;
 - → Αντιγράφεται όλη η μνήμη της παλιάς διεργασίας
 - → Πάντα;
- ♦ Όχι! Σε συστήματα εικονικής μνήμης
 - → Αντιγραφή κατά την Εγγραφή Copy-on-Write (COW)

- ◆ Η νέα διεργασία είναι αντίγραφο της παλιάς
- Κληρονομεί όλα τα ανοιχτά αρχεία και αντίγραφο της μνήμης της αρχικής διεργασίας
- ◆ Από εκεί και πέρα, εκτελείται ανεξάρτητα
- ◆ Πόσο κοστίζει η δημιουργία της;
 - → Αντιγράφεται όλη η μνήμη της παλιάς διεργασίας
 - → Πάντα;
- ♦ Όχι! Σε συστήματα εικονικής μνήμης
 - → Αντιγραφή κατά την Εγγραφή Copy-on-Write (COY

- ◆ Η νέα διεργασία είναι αντίγραφο της παλιάς
- Κληρονομεί όλα τα ανοιχτά αρχεία και αντίγραφο της μνήμης της αρχικής διεργασίας
- ◆ Από εκεί και πέρα, εκτελείται ανεξάρτητα
- ◆ Πόσο κοστίζει η δημιουργία της;
 - → Αντιγράφεται όλη η μνήμη της παλιάς διεργασίας
 - → Πάντα;
- ♦ Όχι! Σε συστήματα εικονικής μνήμης
 - → Αντιγραφή κατά την Εγγραφή Copy-on-Write (COW)

- ◆ Μετά τη δημιουργία νέας διεργασίας, μοιράζονται σελίδες
 - με διαφορετικά δικαιώματα πρόσβασης

- Μετά τη δημιουργία νέας διεργασίας, μοιράζονται σελίδες
 - με διαφορετικά δικαιώματα πρόσβασης
- ◆ (Ότ)αν η διεργασία προσπαθήσει να γράψει σε κάποια σελίδα
 - Εύρεση νέου πλαισίου, αντιγραφή και αλλαγή του πίνακα σελίδων

Εικονική Μνήμη - Σύνοψη

- Σελιδοποίηση
 - → Λογικές διευθύνσεις, Πίνακες Σελίδων
- ◆ Εικονική Μνήμη με σελιδοποίηση
- Δυναμική σύνδεση με μοιραζόμενες βιβλιοθήκες
- ◆ Σελιδοποίηση κατ' απαίτηση
- ◆ Σφάλμα σελίδας
 - ➤ Χειρισμός από το ΛΣ
- Δημιουργία διεργασιών σε συστήματα Εικονικής Μνήμης
 - → Αντιγραφή κατά την Εγγραφή (Copy-on-Write)
- ◆ Απεικόνιση Αρχείων στην Εικονική Μνήμη

- Αντί για read() και write(), πρόσβαση σε αρχεία με load και store
 - ⇒ απλουστεύει τον προγραμματισμό
- ◆ το αρχείο απεικονίζεται σε συνεχόμενο χώρο εικονικής μνήμης
- ◆ Ε/Ε με σελιδοποίηση κατ'απαίτηση
 - → όταν η διεργασία αναφερθεί σε μια νέα σελίδα
 - →το ΛΣ γεμίζει το αντίστοιχο πλαίσιο με δεδομένα από το δίσκο


```
fd = open("file");
vaddr = mmap(..., fd, ...);
... access vaddr + offset C...
```



```
Φυσική Μνήμη
```

```
fd = open("file");

vaddr = mmap(..., fd, ...);
... access vaddr + offset C...
```



```
Φυσική Μνήμη
```

```
fd = open("file");

vaddr = mmap(..., fd, ...);
... access vaddr + offset C...
```


fd = open("file");

vaddr = mmap(..., fd, ...);
... access vaddr + offset C...

fd = open("file");

vaddr = mmap(..., fd, ...);
... access vaddr + offset C...

fd = open("file");

vaddr = mmap(..., fd, ...);
... access vaddr + offset C...

Ερωτήσεις;

Ερωτήσεις;

Ερωτήσεις;

και στη λίστα:

OS@lists.cslab.ece.ntua.gr