SOLUTIONS

- 1. (a) False, hierarchy theorem.
- (b) True, Savitch's theorem.
- (c) True, PSPACE is closed under complement.
- (d) Open, stated in lecture.

- (e) True, follows from definition.
- (f) Open, implies NP = coNP (considering language $0SAT \cup 1\overline{SAT}$); negation implies PSPACE \neq NP.
- (g) Open, equivalent to NP = coNP.
- (h) Open, stated in lecture.
- (i) False, implies PSPACE = EXPSPACE.
- (j) True, recompute bits of first reduction.
- (k) Open, equivalent to NP = coNP.
- (l) True, SAT is decidable.
- (m) False, implies PSPACE = NL.
- (n) Open, equivalent to P = NP.

(o) True, $PATH \in P$.

- (p) True, NL = coNL.
- 2. First, show that C is in EXPTIME. Here's the algorithm:

"On input $\langle M, w, i, j, \alpha \rangle$:

- 1. Run M on w for j steps. If it halts in fewer steps, reject.
- **2.** Accept if the *i*th symbol of the configuration of the *j*th step is α . Otherwise, reject."

To analyze the running time of this algorithm, observe that to simulate one step of M we only need to update M's configuration and the counter which records how long M has been running. Both can be done within O(j) steps (actually much less is possible, but unnecessary here). We run M for at most j steps, so the total running time of this algorithm is $O(j^2)$, and that is exponential in the size of the input, because j represented in binary, so $|j| = \log_2 j$ and thus $j^2 = (2^{|j|})^2 = 2^{2|j|} \le 2^{2n}$, where n is the length of the entire input.

Second, we show that C is EXPTIME-hard, that is, that every language in EXPTIME is polynomial time reducible to C. Let $A \in \text{EXPTIME}$ where M decides A in time 2^{n^k} . Modify M so that when it accepts it first moves its head to the left-hand end of the tape and then enters the accept state q_{accept} . Then the reduction of A to C is the polynomial time computable function f, where $f(w) = \langle M, w, 1, j, q_{\text{accept}} \rangle$ and $j = 2^{n^k}$.

3. First, $SOLITAIRE \in NP$ because we can check in polynomial time that a solution works.

Second, show that $3SAT \leq_{P} SOLITAIRE$.

Given ϕ with k variables x_1, \ldots, x_k and l clauses c_1, \ldots, c_l , first remove any clauses that contain both x_i and $\overline{x_i}$. These clauses are useless anyway and would mess up the coming construction. Construct the following $l \times k$ game G.

If x_i is in clause c_i put a blue stone in row c_i , column x_i .

If $\overline{x_i}$ is in clause c_i put a red stone in row c_i , column x_i .

(We can make it a square $m \times m$ by repeating a row or adding a blank column as necessary without affecting solvability).

Claim: ϕ is satisfiable iff G has a solution.

- (\rightarrow) : Take a satisfying assignment. If x_i is true (false), remove the red (blue) stones from the corresponding column. So, stones corresponding to true literals remain. Since every clause has a true literal, every row has a stone.
- (\leftarrow): Take a game solution. If the red (blue) stones were removed from a column, set the corresponding variable true (false). Every row has a stone remaining, so every clause has a true literal. Therefore ϕ is satisfied.

4. Show that $A_{TM} \leq_{\mathrm{m}} INP$.

Assume (to get a contradiction) that TM R decides INP. Construct the following TM S deciding A_{TM} .

"On input $\langle M, w \rangle$:

1. Construct the following TM M_1 :

"On input x:

- 1. If $x \in EQ_{REX\uparrow}$, accept.
- **2.** Run M on w.
- **3.** If M accepts w, accept."
- **4.** Run R on M_1 .
- **5.** If R accepts, accept; otherwise, reject."

Observe that if M accepts w, then $L(M_1) = \Sigma^*$, and if M doesn't accept w, then $L(M_1) = EQ_{\text{REX}\uparrow}$. So, $L(M_1) \in P$ exactly when M accepts w.

- 5. (a) Obviously ODD- $PARITY \in L$ and we know $L \subseteq NL$. We proved that PATH is NP-complete and so every language in NL is log-space reducible to PATH. Note: Giving a direct reduction from ODD-PARITY to PATH is possible too.
 - (b) If $PATH \leq_{\mathbf{L}} ODD\text{-}PARITY$ then $PATH \in \mathbf{L}$ and thus $NL = \mathbf{L}$, solving a big open problem.
- 6. We can assume without loss of generality that our BPP machine makes exactly n^r coin tosses on each branch. Thus the problem of determining the probability of accepting a string reduces to counting how many branches are accepting and comparing this number with $\frac{2}{3}2^{(n^r)}$.
 - So given w, we generate all binary strings x of length n^r (we can do this in PSPACE) and simulate M on w using x as the source of randomness. If M accepts, then we increment a count. At the end, we see how many branches have accepted. If that number is more than $\frac{2}{3}2^{(n^r)}$ we accept else we reject. This works because of the definition of what it means for a BPP machine to accept. If $w \in L$ then more than $\frac{2}{3}$ of M's branches must accept. If $w \notin L$ then at most $\frac{1}{3}$ of its branches can accept.
- 7. (a) No, the prover for #SAT is not a weak Prover, as far as we know. Calculating the cooeficients of the polynomials seems to require more than polynomial time.
 - (b) The class weak-IP = BPP. Clearly, BPP \subseteq weak-IP because the Verifier can simply ignore the Prover. Conversely, weak-IP \subseteq BPP because we can make a BPP machine which simulates both the Verifier and the weak Prover P. If $w \in A$ then P causes the Verifier to accept with high probability and so will the BPP machine. If $w \notin A$ then P causes the Verifier to accept with low probability and so will the BPP machine.