강화학습 PBL 2025.05.15

TSP Policy based Transformer

임베디드시스템공학과 김정현 컴퓨터공학과 정환길 산업경영공학과 한근형

Review

Value-based (Only Transformer Encoder)

Review

Value-based (Full Transformer)

Contents

- 1. Objective
- 2. Method
- 3. Result
- 4. Conclusion

Objective

- 과제 목적
 - Transformer의 Encoder 구조와 policy-based(REINFORCE) 방식을 통해서 Traveling Salesman Problem 해결
- 제약 사항
 - State
 - ► (x, y) coordinates of each city & the status of each city
 - Action
 - ► Acity to visit next time \Rightarrow Choose the next city by $\pi\theta(a|s)$
 - ► You should mask the visited cities
 - Reward
 - ► -1 × distance between the cities

Summary

- 학습 데이터 (커리큘럼 학습)
 - ▶ 노드 수가 적은 문제부터 노드 수가 많은 복잡한 문제 순으로 학습
 - ▶ 단계가 바뀔 때마다 경험 캐시를 비워 새로운 분포로 학습

단계	도시 개수	에피소드 수
1	10	1,400
2	10, 20	2,400
3	20, 30, 40	3,200

• 하이퍼 파라미터 및 실험 환경

 항목	값
임베딩 차원 (EMB_DIM)	128
헤드 수 / 레이어 수	8 / 4
드롭아웃 비율	0.1
옵티마이저 / 학습률	Adam / 2e-4
배치 크기	24 에피소드
감쇠율 γ	1.0 (에피소드 단위)
그래디언트 클리핑	1.0
AMP	활성화

실험 환경

✓ OS: Ubuntu 22.04.3 LTS x86_64 CPU: Intel Xeon W-2255 (20) @ 4.500GHz GPU: NVIDIA Quadro RTX 5000 16GBMemory: 128491MiB

AMP (Automatic Mixed Precision)

- ✓ 연산 일부를 FP16(half)로 처리 \rightarrow GPU 메모리 절약, 연산 속도↑
- ✓ torch.cuda.amp.GradScaler 로 작은 값의 기울기도 안전하게 스케일링

- State (좌표 포함 7가지 차원)
 - 1. 절대 좌표 (x, y)
 - ▶ [0,1] 구간에서 무작위로 생성된 도시의 위치
 - 2. 상대 좌표 (dx, dy)
 - \rightarrow dx = x_i x_cur, dy = y_i y_cur
 - ▶ 현재 머물러 있는 도시(current city)와의 상대적 방향
 - 3. 거리 정보 (d_norm)
 - ▶ 상대 좌표의 크기, 즉 "지금 있는 도시에서 이 도시까지의 직선 거리"
 - 4. 방문 여부 (visited)
 - ▶ 이미 경로에 포함된 도시는 1, 미포함 도시는 0으로 표시
 - ▶ 방문한 도시는 다시 방문하지 않도록 마스킹할 때 사용
 - 5. 현재 도시 표시 (is_current)
 - ▶ 원-핫(one-hot) 방식으로, 현재 모델이 머물고 있는 도시만 1, 나머지는 0

Transformer Encoder

- Positional encoding 사용 X
- Categorical 분포로 다음 도시 선택(샘플링 또는 greedy argmax)
- Self-Attention
 - ▶ 각도시 임베딩이 서로 얼마나 중요한지 가중치(attention)를 계산

REINFORCE

- ▶ Policy → 모델이 어떤 도시를 선택할지에 대한 확률 분포를 출력
- 샘플링 (rollout)
 - ▶ 모델이 매 단계마다 도시를 확률적으로 선택 (sampling)
 - ▶ 전체 경로 길이를 L_sample 계산
- 손실 함수 (Loss)

$$\mathcal{L} = -\sum_{t=1}^T \log \pi(a_t \mid s_t) \; imes \; R$$

- $\circ log\pi(a_t \mid s_t)$: 선택된 행동(도시) 확률의 로그
- \circ R: 에피소드 전체 보상((-)경로 길이)
- \circ 짧은 경로를 만들면 R가 커지므로((-) 길이 \to 큰 값), 손실이 줄어들도록 학습

Self-Critical Baseline

- REINFORCE는 보상이 **분산(variance)이 커서 학습이 불안정 →** 기준 경로를 하나 더 굴려서 보상
- 기존 경로를 greedy만으로 한번 더 풀어서 아래와 같이 보상을 계산
 - 1. **샘플 경로** → 보상 R_s
 - 2. **Greedy 경로**(argmax만 사용) \rightarrow 보상 R_q
 - 3. Advantage: $A=R_s-R_g$
 - 4. 변경된 손실: $\mathcal{L} = -\sum_t \log \pi(a_t) \; imes \; A$
 - 샘플 경로가 더 짧으면 R_s 가 크고, A>0 \rightarrow 정책을 강화(확률↑)
 - 샘플 경로가 더 길면 $A < 0 \rightarrow$ 정책을 억제(확률)

Result

■ 학습 결과

• 총 소요 시간: **약 14분**

실험 환경:

► OS: Ubuntu 22.04.3 LTS x86_64

► CPU: Intel Xeon W-2255 (20) @ 4.500GHz

► GPU: NVIDIA Quadro RTX 5000 16GBMemory: 128491MiB

- ✓ 학습 곡선의 수렴이 300 에피소드 이후부터 진행
- ✓ 차이가 0에 가까움 → 안정적으로 수렴
- ✓ 음수 구간 증가 → 샘플링 경로가 baseline보다 짧은 에피소드가 자주 등장

Result

■ 학습 결과

- 각 도시 수(N=10, 20, 30)에 따라 각각 5문제 테스트
 - ► TSP10_avg_gap = 6.94%
 - ► TSP20_avg_gap = 10.63%
 - ► TSP30_avg_gap = 14.04%

→ Overall avg gap 10.54% over 15 instances

전체 실험 결과 비교

Problem	Optimal	Q-learning Best	DQN Method 1	DQN Method 2 (Instance)	DQN Method 3 (Generalization)	Value-based: Transformer Method (Encoder only)	Value-based: Transformer Method (Full)	Policy-based: Transformer Method (Encoder only)
Problem 1	3.3478	3.5113 (+4.88%)	3.3478 (+0.00%)	3.6692 (+9.60%)	8.6396 (+158.07%)	3.6896 (+10.21%)	3.4717 (+3.70%)	3.707 (+10.75%)
Problem 2	4.1313	4.5012 (+8.95%)	4.1313 (+0.00%)	5.4612 (+32.19%)	12.1222 (+193.42%)	4.4312 (+7.26%)	4.1857 (+1.32%)	4.6261 (+11.976%)
Problem 3	4.4684	5.3281 (+19.24%)	4.4684 (+0.00%)	5.1575 (+15.42%)	11.8222 (+164.57%)	5.0166 (+12.27%)	4.8078 (+7.60%)	4.8842 (+9.399%)
Problem 4	3.8637	4.3309 (+12.09%)	3.8637 (+0.00%)	5.0688 (+31.19%)	9.0085 (+133.16%)	4.8316 (+25.05%)	4.5003 (+16.48%)	4.06881 (+5.307%)
Problem 5	4.1212	4.6724 (+13.37%)	4.1216 (+0.01%)	4.6414 (+12.62%)	10.8255 (+162.68%)	4.3914 (+6.56%)	4.4337 (+7.58%)	4.7863 (+15.709%)

Conclusion

Summary

- 풍부한 입력 표현과 Pre-Norm 구조로 Transformer가 "어디서 어떻게 이동할지"를 더 명확히 학습
- Self-Critical Baseline과 미니배치 업데이트로 REINFORCE 특유의 높은 분산을 안정적으로 낮춤
- AMP, 클리핑 조합으로 학습 효율과 탐색성을 동시에 확보

Limitations

• Policy-based(REINFORCE): 높은 분산, roll-out으로 돌아오는 정보량이 제한적, 장기 의존성 처리 어려움

