

End Term (Even) Semester Examination May-June 2025

Roll no.	
Name of the Program and semester: BCA - II Sem Name of the Course: Introduction to Operating Systems Course Code: TBC-203	
Time: 3 hour Max	imum Marks: 100
Note: (i) All the questions are compulsory. (ii) Answer any two sub questions from a, b and c in each main question. (iii) Total marks for each question is 20 (twenty). (iv) Each sub-question carries 10 marks.	
Q1. a. What is process scheduling? Why it is needed? Define any two types of preempalgorithms in short.	2X10=20 Marks) otive scheduling
b. Discuss the Bakery Algorithm for the critical section with its working for critic	al section.
c. What is the situation of Deadlock? Define the necessary conditions of deadlock example.	with the help of an
Q2. a. Consider the following page reference string: 2,3,1,2,5,6,7,7,1,0,5,4,6,2,3,0,1. Assuming demand paging with three frames, how many page faults would occurreplacement algorithm.	2X10=20 Marks) ar for the FCFS page
b. What is the need of "Multi-Level Feedback Queue Algorithm". Define in detail	l.
c. What is Page Fault? Explain the process with the help of a diagram. Also, define the help of a diagram.	e swapping. define with
Q3. (2	2X10=20 Marks)
a. Define the following in short:	
I. Multi level queue scheduling algorithm	
II. Critical Section	
III. Hypervisor	
IV. Paging	
V. Thrashing	

b. What is the need of disk scheduling algorithm? Define C-SCAN disk scheduling algorithm with

example.

c. Differentiate "kernel" and Shell" in at least 10 points.

End Term (Even) Semester Examination May-June 2025

Q4. (2X10=20 Marks)

a. What is the average waiting time and average turn around time of all processes for FCFS, SJF algorithm?

Processes	Burst Time	Arrival	
P1	10	3	
P2	1	1	
P3	2	0	
P4	1	4	
P5	5	2	

- b. Define How 'UNIX" operating system works. Define in detail.
- **c.** Define Starvation. Which algorithm works with minimum starvation in OS Process Scheduling Algorithms.

Q5. (2X10=20 Marks)

- **a.** What are threads? Discuss different types of threads. What resources are used when a thread is created? How do they differ from those used when a process is created?
- **b.** Define the following:
 - I. Process Control Block
 - II. Dual Mode Operating
 - III. System Call
 - IV. Semaphore
 - V. UNIX
- c. Define how memory management works in an operating system.