1.7 Par Aleatório Discreto

1.7.1. Introdução

Suponhamos que o resultado de uma experiência aleatória é um par de valores reais, isto é, para um mesmo indivíduo da população registamos o valor de duas grandezas. Por exemplo o peso e a altura de um indivíduo da população em estudo, o caudal máximo e mínimo num certo ponto de um rio num determinado mês, a temperatura mínima e a máxima registada num local em determinado dia, o número de pintas obtidas no lançamento de dois dados, etc. Podemos pensar em diferentes situações em que o resultado da experiência aleatória é um par de valores, nestas situações a variável aleatória associada a esta experiência será bidimensional e podemos representá-la pelo par (X, Y) ao qual chamamos um *par aleatório*, abreviadamente p.a..

Neste curso iremos dedicar-nos apenas aos pares aleatórios discretos.

Tal como no caso univariado a distribuição de probabilidade de uma p.a. discreto é caracterizada pela sua f.m.p. conjunta.

1.7.2. Distribuições de um par aleatório

Definição 1: Um par aleatório (p.a.). (X,Y) diz-se discreto se e só se existe um conjunto $A = \{(x_i, y_j), i, j = 1, 2, ...\}$ finito ou infinito numerável tal que $P((X,Y) \in A) = 1$. E à colecção de valores $p_{ij} = P(X = x_i, Y = y_j)$, i, j = 1, 2, ..., com $\sum_{i,j} p_{ij} = 1$, chama-se a função massa de probabilidade conjunta (f.m.p.) do p.a.

Exemplo: Uma loja de electrodomésticos vende televisores da marca X e da marca Y. A função massa de probabilidade conjunta do número de televisores vendidos diariamente é a seguinte:

Y\X	0	1	2
0	0.12	0.25	0.13
1	0.05	0.30	0.01
2	0.03	0.10	0.01

Verifique que se trata de uma f.m.p..

Suponhamos agora que estávamos interessados em saber qual a probabilidade de se venderem 2 televisores da marca X, ou seja, P(X=2). Para obtermos esta probabilidade precisamos de conhecer a distribuição marginal da v.a. X. O mesmo se pode dizer relativamente à v.a. Y. Como devemos proceder?

Aplicando o teorema da probabilidade total é fácil ver que:

$$P(X = 2) = \sum_{j=0}^{2} P(X = 2, Y = j) = 0.13 + 0.01 + 0.01 = 0.15$$

De uma maneira geral teremos:

$$P(X = i) = \sum_{i} P(X = i, Y = j) = p_{i, i}, i = 1, 2, ...$$
(1)

Analogamente se calcula

$$P(Y = j) = \sum_{i} P(X = i, Y = j) = p_{.j}, j = 1, 2, ...$$
(2)

Definição 2: À colecção de valores $\{p_{i.}\}_{i\in\mathbb{N}}$ e $\{p_{.j}\}_{j\in\mathbb{N}}$ chama-se f.mp. da distribuição marginal de X e de Y respectivamente.

A partir da distribuição conjunta podemos obter ainda mais duas distribuições condicionais.

Definição 3: i) A distribuição condicional de X|Y = y tem f.m.p. dada por

$$P(X = i | Y = j) = \frac{p_{ij}}{p_{.i}}, i = 1, 2, ..., para cada j fixo$$
 (3)

ii) A distribuição condicional de Y|X = x tem f.m.p. dada por

$$P(Y = j | X = i) = \frac{p_{ij}}{p_i}, j = 1, 2, ... para cada i fixo$$
 (4)

1.7.3. Independência

De um modo geral para conhecermos a f.m.p. conjunta precisamos de uma distribuição marginal e de uma distribuição condicional. De facto, a partir das equações anteriores podemos concluir que:

$$p_{ij} = P(X = i)P(Y = j|X = i) = P(X = i|Y = j)P(Y = j) = i = 1, 2, ...$$

Definição 4: Um p.a. tem margens independentes sse

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i), \forall i, j$$
(5)

Abreviadamente $p_{ij} = p_i.p_{.j}$, $\forall i,j$. Neste caso as distribuições marginais determinam univocamente a distribuição conjunta.

1.7.4. Momentos do par aleatório

Podemos definir momentos em relação à origem ou centrados.de um p.a. (X, Y).

Definição 5: Seja (X,Y) um p.a. discreto ao valor médio $E(X^kY^l) = \sum_{i,j} x_i^k y_j^l p_{ij}$ chama-se *momento de ordem* (k+l) *em relação à origem*, desde que exista o correspondente momento absoluto.

Definição 6: Seja (X,Y) um p.a. discreto e $\mu_X = E(X)$ e $\mu_Y = E(Y)$, ao valor médio $E\{(X - \mu_X)^k (Y - \mu_Y)^l\} = \sum_{i,j} (x_i - \mu_X)^k (y_j - \mu_Y)^l p_{ij}$ chama-se *momento centrado de ordem* (k+l), desde que exista o correspondente momento absoluto.

Definição 7: Em particular o 2° momento centrado, isto é, k=l=1, é a *covariância de* (X,Y). E ao cociente

$$\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} \tag{6}$$

chama-se o *coeficiente de correlação* do par (X,Y).

TEOREMA: (designaldade de *Cauchy-Schwarz*): Sejam X e Y duas v.a.'s com variâncias finitas. Então, Cov(X,Y) existe. Além disso,

$$E^{2}\{(X - \mu_{X})(Y - \mu_{Y})\} \leq Var(X)Var(Y)$$

tendo-se a igualdade sse existir um número real $\alpha \neq 0$ tal que $P(\alpha X + Y = 0) = 1$. Deste teorema resulta imediatamente que $|\rho| \leq 1$.

Exercício: Para o exemplo anterior calcule:

- a) As funções massa de probabilidade marginais de X e de Y.
- b) A função distribuição marginal de X.
- c) A probabilidade de que num determinado dia a marca Y seja mais vendida do que a marca X.
- **d)** A probabilidade de se vender pelo menos um televisor da marca X num dia em que se venderam 2 da marca Y.
- e) A covariância de X e Y. Que conclui?