

Noções de Inferência Estatística

ESTIMAÇÃO

Estatística Aplicada

Ana Maria Nogales Vasconcelos

Maria Teresa Leão Costa

- Como generalizar resultados de uma amostra para a população de onde ela foi extraída?
- Como testar hipóteses com base em amostras?

Conceitos Básicos

- Objetivo da Inferência Estatística:
 - Fazer generalizações sobre uma POPULAÇÃO, com base nos dados de uma amostra.

Definições Preliminares

- População é o conjunto de todos os elementos ou resultados sob investigação (que apresentam pelo menos uma característica em comum)
- Amostra é qualquer subconjunto da população.

Exemplo

A prefeitura de uma cidade deseja estudar as condições de vida em uma pequena invasão formada por seis domicílios. Uma das características que foi pesquisada no estudo é a quantidade de moradores em cada domicílio. Os dados obtidos são apresentados a seguir:

Domicílio	Número de Moradores
A	6
В	12
С	1
D	7
Е	3
F	7

- População domicílios de uma invasão da cidade
 - Tamanho da população: N=6
- Variável estudada:
 - X número de moradores por domicílio variável quantitativa discreta
- Duas casas são sorteadas e o número de moradores das mesmas é registrado.
 - Determinar o espaço amostral desta experiência aleatória
 - Determinar a probabilidade de ocorrer cada um dos resultados

Seleção COM reposição

Resultado	Amostra	Probabi- lidade
(A,A)	(6, 6)	1/36
(A,B)	(6,12)	1/36
	(6, 1)	1/36
(A, C)	(6, 7)	
(A,D)	(6,7)	1/36
(A,E)	(6,3)	1/36
(A,F)	(6,7)	1/36
(B,A)	(12,6)	1/36
(B,B)	(12,12)	1/36
(B, C)	(12, 1)	1/36
(B,D)	(12,7)	1/36
(B,E)	(12,3)	1/36
(B,F)	(12,7)	1/36
(C,A)	(1,6)	1/36
(C,B)	(1,12)	1/36
(C,C)	(1, 1)	1/36
(C,D)	(1,7)	1/36
(C,E)	(1,3)	1/36
(C,F)	(1,7)	1/36
(D,A)	(7,6)	1/36
(D,B)	(7,12)	1/36
(D,C)	(7, 1)	1/36
(D,D)	(7,7)	1/36
(D,E)	(7,3)	1/36
(D,F)	(7,7)	1/36
(E,A)	(3, 6)	1/36
(E,B)	(3,12)	1/36
(E,C)	(3, 1)	1/36
(E,D)	(3,7)	1/36
(E,E)	(3,3)	1/36
(E,F)	(3,7)	1/36
(F,A)	(7, 6)	1/36
(F,B)	(7,12)	1/36
(F,C)	(7, 1)	1/36
(F,D)	(7,7)	1/36
(F,E)	(7,3)	1/36
(F,F)	(7,7)	1/36
(- 12)	(, , , ,	., 50

Sejam:

X₁ - o número de moradores do primeiro domicílio selecionado

e

X₂ - o número de moradores da segundo domicílio selecionado.

Valores de X₁ e X₂ dependem da amostra selecionada.

Amostra Aleatória Simples

Seja a experiência aleatória

E: selecionar ao acaso um elemento da população e verificar o valor de uma variável em estudo X.

Repetimos *n* vezes esta experiência aleatória *E* e portanto temos:

$$(X_1, X_2, ..., X_n)$$

 $(X_1, X_2, ..., X_n)$ onde X_i , i = 1, ..., n é o resultado eventual da i-ésima seleção.

AMOSTRA ALEATÓRIA SIMPLES DE TAMANHO n

9

Determine para cada amostra o valor de **W**.

$$W = \frac{X_1 + X_2}{2}$$

D 1/ 1		Probabi-	147
Resultado	Amostra	lidade	W
(A,A)	(6, 6)	1/36	6
(A,B)	(6,12)	1/36	9
(A, C)	(6, 1)	1/36	3,5
(A,D)	(6,7)	1/36	6,5
(A,E)	(6,3)	1/36	4,5
(A,F)	(6,7)	1/36	6,5
(B,A)	(12, 6)	1/36	9
(B,B)	(12,12)	1/36	12
(B, C)	(12, 1)	1/36	6,5
(B,D)	(12,7)	1/36	9,5
(B,E)	(12,3)	1/36	7,5
(B,F)	(12,7)	1/36	9,5
(C,A)	(1,6)	1/36	3,5
(C,B)	(1,12)	1/36	6,5
(C,C)	(1, 1)	1/36	1
(C,D)	(1,7)	1/36	4
(C,E)	(1,3)	1/36	2
(C,F)	(1,7)	1/36	4
(D,A)	(7, 6)	1/36	6,5
(D,B)	(7,12)	1/36	9,5
(D,C)	(7, 1)	1/36	4
(D,D)	(7,7)	1/36	7
(D,E)	(7,3)	1/36	5
(D,F)	(7,7)	1/36	7
(E,A)	(3, 6)	1/36	4,5
(E,B)	(3,12)	1/36	7,5
(E, C)	(3, 1)	1/36	2
(E,D)	(3,7)	1/36	5
(E,E)	(3,3)	1/36	3
(E,F)	(3,7)	1/36	5
(F,A)	(7, 6)	1/36	6,5
(F,B)	(7,12)	1/36	9,5
(F,C)	(7, 1)	1/36	4
(F,D)	(7,7)	1/36	7
(F,E)	(7,7) (7,3)	1/36	5
(F,F)	(7,7)	1/36	7

Determine para cada amostra o valor de **W**.

$$W = \frac{X_1 + X_2}{2}$$

Resultado	Amostra	Probabi- lidade	W
(A,A)	(6, 6)	1/36	6
(A,B)	(6,12)	1/36	9
(A, C)	(6, 1)	1/36	3,5
(A,D)	(6,7)	1/36	6,5
(A,E)	(6,3)	1/36	4,5
(A,F)	(6,7)	1/36	6,5
(B,A)	(12, 6)	1/36	9
(B,B)	(12,12)	1/36	12
(B, C)	(12, 1)	1/36	6,5
(B,D)	(12,7)	1/36	9,5
(B,E)	(12,3)	1/36	7,5
(B,F)	(12,7)	1/36	9,5
(C,A)	(1,6)	1/36	3,5
(C,B)	(1,12)	1/36	6,5
(C,C)	(1, 1)	1/36	1
(C,D)	(1,7)	1/36	4
(C,E)	(1,3)	1/36	2
(C,F)	(1,7)	1/36	4
(D,A)	(7,6)	1/36	6,5
(D,B)	(7,12)	1/36	9,5
(D,C)	(7, 1)	1/36	4
(D,D)	(7,7)	1/36	7
(D,E)	(7,3)	1/36	5
(D,F)	(7,7)	1/36	7
(E,A)	(3,6)	1/36	4,5
(E,B)	(3,12)	1/36	7,5
(E, C)	(3, 1)	1/36	2
(E,D)	(3,7)	1/36	5
(E,E)	(3,3)	1/36	3
(E,F)	(3,7)	1/36	5
(F,A)	(7,6)	1/36	6,5
(F,B)	(7,12)	1/36	9,5
(F,C)	(7, 1)	1/36	4
(F,D)	(7,7)	1/36	7
(F,E)	(7,3)	1/36	5
(F,F)	(7,7)	1/36	7

Observe que o valor de W varia conforme a amostra selecionada!

Determine para cada amostra o valor de **W**.

$$W = \frac{X_1 + X_2}{2}$$

ESTATÍSTICA

Resultado	Amostra	Probabi- lidade	W
(A,A)	(6, 6)	1/36	6
(A,B)	(6,12)	1/36	9
(A,C)	(6, 1)	1/36	3,5
(A,D)	(6,7)	1/36	6,5
(A,E)	(6,3)	1/36	4,5
(A,F)	(6,7)	1/36	6,5
(B,A)	(12, 6)	1/36	9
(B,B)	(12,12)	1/36	12
(B,C)	(12, 1)	1/36	6,5
(B,D)	(12,7)	1/36	9,5
(B,E)	(12,3)	1/36	7,5
(B,F)	(12,7)	1/36	9,5
(C,A)	(1,6)	1/36	3,5
(C,B)	(1,12)	1/36	6,5
(C,C)	(1, 1)	1/36	1
(C,D)	(1,7)	1/36	4
(C,E)	(1,3)	1/36	2
(C,F)	(1,7)	1/36	4
(D,A)	(7,6)	1/36	6,5
(D,B)	(7,12)	1/36	9,5
(D,C)	(7, 1)	1/36	4
(D,D)	(7,7)	1/36	7
(D,E)	(7,3)	1/36	5
(D,F)	(7,7)	1/36	7
(E,A)	(3, 6)	1/36	4,5
(E,B)	(3,12)	1/36	7,5
(E,C)	(3, 1)	1/36	2
(E,D)	(3,7) (3,3) (3,7)	1/36	5
(E,E)	(3,3)	1/36	3
(E,F)	(3,7)	1/36	5
(F,A)	(7, 6)	1/36	6,5
(F,B)	(7,12)	1/36	9,5
(F,C)	(7, 1)	1/36	4
(F,D)	(7,7)	1/36	7
(F,E)	(7,3)	1/36	5
(F,F)	(7,7)	1/36	7

Observe que o valor de W varia conforme a amostra selecionada!

Parâmetro e Estatística

Definição: - PARÂMETRO

Um PARÂMETRO é uma medida usada para descrever uma característica da população.

Exemplos:

$$\mu = \frac{\displaystyle\sum_{i=1}^{N} x_i}{N} \rightarrow \textit{m\'edia da população}$$

$$\frac{\displaystyle\sum_{i=1}^{N} (x_i - \mu)^2}{N} \rightarrow \textit{variância da população}$$

$$\pi = \frac{\textit{n\'um.elementos da população com a característica em estudo}}{N} \rightarrow \textit{proporção populacional}$$

Definição: - ESTATÍSTICA

Um ESTATÍSITCA é uma característica da amostra, ou seja, uma ESTATÍSTICA T é uma função de $x_1, x_2, ..., x_n$, os elementos da amostra.

Exemplos:

$$\begin{split} \overline{X} &= \frac{\sum_{i=1}^{n} X_i}{n} \rightarrow \text{m\'edia da amostra} \\ &= \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1} \\ S^2 &= \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1} \rightarrow \text{variância da amostra} \\ \hat{P} &= \frac{n\'um.elementos da amostra com a característica em estudo}{n} \rightarrow \text{proporção da amostra} \\ X_{(1)} &= \min(X_1, X_2, ..., X_n) \rightarrow \text{menor valor da amostra} \end{split}$$

OBSERVAÇÕES:

■ Toda ESTATÍSTICA é uma variável aleatória.

Como a ESTATÍSTICA "T" é uma variável aleatória deseja-se determinar a distribuição de probabilidade de T denominada DISTRIBUIÇÃO AMOSTRAL da estatística T ou DISTRIBUIÇÃO DE AMOSTRAGEM.

ESTATÍSTICA

	Resultado	Amostra	Probabi- lidade	W
	(A,A)	(6, 6)	1/36	6
	(A,B)	(6,12)	1/36	9
	(A,C)	(6, 1)	1/36	3,5
	(A,D)	(6,7)	1/36	6,5
	(A,E)	(6,3)	1/36	4,5
_	— (A,F)	(6,7)	1/36	6,5
	(B,A)	(12, 6)	1/36	9
	(B,B)	(12,12)	1/36	12
	(B, C)	(12, 1)	1/36	6,5
	(B,D)	(12,7)	1/36	9,5
_	(B,E)	(12,3)	1/36	7,5
	(B,F)	(12,7)	1/36	9,5
	(C,A)	(1,6)	1/36	3,5
	(C,B)	(1,12)	1/36	6,5
	(C,C)	(1, 1)	1/36	1
	(C,D)	(1,7)	1/36	4
	(C,E)	(1,3)	1/36	2
	(C,F)	(1,7)	1/36	4
	(D,A)	(7, 6)	1/36	6,5
	(D,B)	(7,12)	1/36	9,5
	(D,C)	(7, 1)	1/36	4
	(D,D)	(7,7)	1/36	7
	(D,E)	(7,3)	1/36	5
	(D,F)	(7,7)	1/36	7
	(E,A)	(3, 6)	1/36	4,5
	(E,B)	(3,12)	1/36	7,5
	(E,C)	(3, 1)	1/36	2
	(E,D)	(3,7)	1/36	5
	(E,E)	(3,3)	1/36	3
	(E,F)	(3,7)	1/36	5
	(F,A)	(7, 6)	1/36	6,5
	(F,B)	(7,12)	1/36	9,5
	(F,C)	(7, 1)	1/36	4
	(F,D)	(7,7)	1/36	7
	(F,E)	(7,3)	1/36	5
	(F,F)	(7,7)	1/36	7

Distribuição de W:

W	p(w)
1	1/36
2	2/36
3	1/36
3,5	2/36
4	4/36
4,5	2/36
5	4/36
6	1/36
6,5	6/36
7	4/36
7,5	2/36
9	2/36
9,5	4/36
12	1/36
TOTAL	1

Distribuição Amostral de W

W	p(w)
1	1/36
2	2/36
3	1/36
3,5	2/36
4	4/36
4,5	2/36
5	4/36
6	1/36
6,5	6/36
7	4/36
7,5	2/36
9	2/36
9,5	4/36
12	1/36
TOTAL	1

Distribuição Amostral de W

W	p(w)
1	1/36
2	2/36
3	1/36
3,5	2/36
4	4/36
4,5	2/36
5	4/36
6	1/36
6,5	6/36
7	4/36
7,5	2/36
9	2/36
9,5	4/36
12	1/36
TOTAL	1

$$E(W) = 6$$
 e $V(W) = 6$

Seleção SEM reposição

Resultado	Amostra	Probabi-lidade
(A,B)	(6,12)	1/30
(A,C)	(6, 1)	1/30
(A,D)	(6,7)	1/30
(A,E)	(6,3)	1/30
(A,F)	(6,7)	1/30
(B,A)	(12, 6)	1/30
(B,C)	(12, 1)	1/30
(B,D)	(12,7)	1/30
(B,E)	(12,3)	1/30
(B,F)	(12,7)	1/30
(C,A)	(1,6)	1/30
(C,B)	(1,12)	1/30
(C,D)	(1,7)	1/30
(C,E)	(1,3)	1/30
(C,F)	(1,7)	1/30
(D,A)	(7,6)	1/30
(D,B)	(7,12)	1/30
(D,C)	(7, 1)	1/30
(D,E)	(7,3)	1/30
(D,F)	(7,7)	1/30
(E,A)	(3, 6)	1/30
(E,B)	(3,12)	1/30
(E,C)	(3, 1)	1/30
(E,D)	(3,7)	1/30
(E,F)	(3,7)	1/30
(F,A)	(7,6)	1/30
(F,B)	(7,12)	1/30
(F,C)	(7, 1)	1/30
(F,D)	(7,7)	1/30
(F,E)	(7,3)	1/30

ESTATÍSTICA

Resultado	Amostra	Probabi- lidade	
(A,B)	(6,12)	1/30	9
(A,C)	(6, 1)	1/30	3,5
(A,D)	(6,7)	1/30	6,5
(A,E)	(6,3)	1/30	4,5
(A,F)	(6,7)	1/30	6,5
(B,A)	(12, 6)	1/30	9
<i>(B,C)</i>	(12, 1)	1/30	6,5
(B,D)	(12,7)	1/30	9,5
(B,E)	(12,3)	1/30	7,5
(B,F)	(12,7)	1/30	9,5
(C,A)	(1, 6)	1/30	3,5
(C,B)	(1,12)	1/30	6,5
(C,D)	(1,7)	1/30	4
(C,E)	(1,3)	1/30	2
(C,F)	(1,7)	1/30	4
(D,A)	<i>(</i> 7 , <i>6)</i>	1/30	6,5
(D,B)	(7,12)	1/30	9,5
(D,C)	(7, 1)	1/30	4
(D,E)	(7,3)	1/30	5
(D,F)	(7,7)	1/30	7
(E,A)	(3, 6)	1/30	4,5
(E,B)	(3,12)	1/30	7,5
(E,C)	(3, 1)	1/30	2
(E,D)	(3,7)	1/30	5
(E,F)	(3,7)	1/30	5
(F,A)	(7, 6)	1/30	6,5
(F,B)	(7,12)	1/30	9,5
<i>(F,C)</i>	(7, 1)	1/30	4
(F,D)	(7,7)	1/30	7
(F,E)	(7,3)	1/30	5

Distribuição de W:

W	p(w)
2	2/30
3,5	2/30
4	4/30
4,5	2/30
5	4/30
6,5	6/30
7	2/30
7,5	2/30
9	2/30
9,5	4/30
TOTAL	1

Distribuição Amostral de X Seleção sem reposição

W	p(w)
2	2/30
3,5	2/30
4	4/30
4,5	2/30
5	4/30
6,5	6/30
7	2/30
7,5	2/30
9	2/30
9,5	4/30
TOTAL	1

Distribuição Amostral de X Seleção sem reposição

W	p(w)
2	2/30
3,5	2/30
4	4/30
4,5	2/30
5	4/30
6,5	6/30
7	2/30
7,5	2/30
9	2/30
9,5	4/30
TOTAL	1

$$E(\overline{X}) = 6$$
 e $V(\overline{X}) = 4.8$

Resultado	Amostra	Probabi- lidade	W		
(A,A)	(6, 6)	1/36	6	(1,1)	1
(A,B)	(6,12)	1/36	9	(1,1)	1
(A,C)	(6, 1)	1/36	3,5	(1,0)	0,5
(A,D)	(6,7)	1/36	6,5	(1,1)	1
(A,E)	(6,3)	1/36	4,5	(1,0)	0,5
(A,F)	(6,7)	1/36	6,5	(1,1)	1
(B,A)	(12, 6)	1/36	9	(1,1)	1
(B,B)	(12,12)	1/36	12	(1,1)	1
(B,C)	(12, 1)	1/36	6,5	(1,0)	0,5
(B,D)	(12,7)	1/36	9,5	(1,1)	1
(B,E)	(12,3)	1/36	7,5	(1,0)	0,5
(B,F)	(12,7)	1/36	9,5	(1,1)	1
(C,A)	(1,6)	1/36	3,5	(0,1)	0,5
(C,B)	(1,12)	1/36	6,5	(0,1)	0,5
(C,C)	(1, 1)	1/36	1	(0,0)	0
(C,D)	(1,7)	1/36	4	(0,1)	0,5
(C,E)	(1,3)	1/36	2	(0,0)	0
(C,F)	(1,7)	1/36	4	(0,1)	0,5
(D,A)	(7, 6)	1/36	6,5	(1,1)	1
(D,B)	(7,12)	1/36	9,5	(1,1)	1
(D,C)	(7, 1)	1/36	4	(1,0)	0,5
(D,D)	(7,7)	1/36	7	(1,1)	1
(D,E)	(7,3)	1/36	5	(1,0)	0,5
(D,F)	(7,7)	1/36	7	(1,1)	1
(E,A)	(3, 6)	1/36	4,5	(0,1)	0,5
(E,B)	(3,12)	1/36	7,5	(0,1)	0,5
(E, C)	(3, 1)	1/36	2	(0,0)	0
(E,D)	(3,7)	1/36	5	(0,1)	0,5
(E,E)	(3,3)	1/36	3	(0,0)	0
(E,F)	(3,7)	1/36	5	(0,1)	0,5
(F,A)	(7, 6)	1/36	6,5	(1,1)	1
(F,B)	(7,12)	1/36	9,5	(1,1)	1
(F,C)	(7, 1)	1/36	4	(1,0)	0,5
(F,D)	(7,7)	1/36	7	(1,1)	1
(F,E)	(7,3)	1/36	5	(1,0)	0,5
(F,F)	(7,7)	1/36	7	(1,1)	1

Distribuição Amostral (continuação)

Suponha que um domicílio é considerado densamente ocupado se moram no mesmo domicílio mais de 5 pessoas.

Sejam :

- Y, o número de domicílios densamente ocupados da amostra;
- *P* , a proporção de domicílios densamente ocupados da amostra.

Distribuição Amostral de **P** Seleção COM reposição

\hat{P}	$P(\hat{p})$
0	4/36
0,5	16/36
1	16/36
TOTAL	1

$$\mu_{\hat{P}} = \frac{2}{3} \quad e \quad \sigma_{\hat{P}}^2 = \frac{1}{9}$$

Distribuição Amostral de **P** Seleção SEM reposição

P	$P(\hat{p})$
0	2/30
0,5	16/30
1	12/30
TOTAL	1

$$\mu_{\hat{p}} = \frac{2}{3} \quad e \quad \sigma_{\hat{p}}^2 = \frac{8}{90}$$

Distribuição Amostral da Média da Amostra

- Seja X uma v.a. com média μ e variância σ^2 , e seja uma amostra aleatória de tamanho n, $(X_1, X_2, ..., X_n)$. Então, $\mu_{\overline{X}} = \mu \qquad e \qquad \sigma_{\overline{X}}^2 = \frac{\sigma^2}{m}$
- Amostragem de Populações Normais:
 - Se a variável estudada na população tem distribuição $N(\mu, \sigma^2)$, então a distribuição amostral de \overline{X} também segue uma distribuição normal com média $\mu_{\overline{X}} = \mu$ e variância $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$.

Exemplo 1

Uma amostra de tamanho 10 foi selecionada de uma população com distribuição N(15,40).

Qual a probabilidade da média da amostra ser:

- a) inferior a 13?
- b) entre 12 e 17,5?
- c) superior a 18?

E se a população não tiver distribuição Normal...

E se a população não tiver distribuição Normal...

Teorema 2:

• Para amostras aleatórias simples $(X_1,X_2,...,X_n)$ retiradas de uma população com média μ e variância σ^2 , a distribuição amostral da média da amostra

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

aproxima-se, para n grande, de uma distribuição normal

com média
$$\mu_{\overline{X}} = \mu$$
 e variância $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$.

TEOREMA CENTRAL DO LIMITE

Exemplo 2

Em uma grande cidade os inquilinos pagam em média 1550 u.m. (unidades monetárias) de aluguel com desvio padrão de 225 u.m., e a distribuição dos aluguéis é assimétrica à direita.

Deseja-se saber qual a probabilidade de que a média de aluguel dos inquilinos de uma amostra de tamanho 100 selecionada desta população:

- a) esteja entre 1500 e 1575 u.m;
- b) Seja superior a 1540 u.m.

Distribuição Amostral de $\hat{m{P}}$

Vamos considerar uma população em que a proporção de elementos portadores de uma certa característica é π .

Assim, considere a variável X, tal que:

$$X = \begin{cases} 1 & se \ o \ elemento \ \acute{e} \ portador \ da \ caracter\'istica \\ 0 & se \ o \ elemento \ n\~ao \ \acute{e} \ portador \ da \ caracter\'istica \end{cases}$$

$$\mu = \pi \quad e \quad \sigma^2 = \pi(1-\pi)$$

Observe que:

$$\pi = \frac{\textit{n\'um. de elementos da população com a caracter\'istica}}{n} = \frac{\sum\limits_{i=1}^{N} X_i}{N}$$

Logo a PROPORÇÃO é uma particular média.

Retirada uma amostra aleatória simples de tamanho n dessa população e, se indicarmos por:

$$\sum_{i=1}^{n} X_i \to total \ de \ indivíduos \ com \ a \ característica \ na \ amostra$$

lacktriangle Definindo como \hat{P} a *proporção de elementos da amostra* com a característica em estudo, isto é,

$$\hat{P} = \frac{\sum_{i=1}^{n} X_i}{n} = \overline{X}$$

Logo \hat{P} é também um caso particular de \bar{X} e portanto, são válidos os resultados encontrados para \bar{X} Assim, $\mu_{\hat{P}} = \pi \quad e \quad \sigma_{\hat{P}}^2 = \frac{\pi(1-\pi)}{n}$

Grandes Amostras:

■ Se **n** é grande, pelo TEOREMA CENTRAL DO LIMITE (*uma vez que X não é normal*) temos que:

$$\hat{P} \sim N\left(\pi, \frac{\pi(1-\pi)}{n}\right)$$

Exemplo 3

- Suponha que 95% das peças produzidas em uma fábrica não apresentam defeito. Selecionada uma amostra de 100 peças, qual a probabilidade de que a proporção de peças perfeitas da amostra ser:
- a) maior que 0,97?
- b) apresente uma diferença da proporção de peças perfeitas produzidas na fábrica em menos de 0,01?