## Wireless Networks

### Daniel Zappala

CS 660 Computer Networks Brigham Young University

## **Wireless Access Points**



### Wireless Mesh Networks



- extend the wireless network, just need power, not power+Internet
- provide Internet access to a city without laying fiber to the home (\$100K per mile)

## Ad Hoc Links



- what happens when users are out of range?
- why not extend the network using other users?

## Ad Hoc Links



- what happens when users are out of range?
- why not extend the network using other users?

### Mobile Ad Hoc Wireless Networks



- what if there is no infrastructure at all: natural disaster, developing country
- depend only on mobile, wireless nodes
- the network can change at any time!

### Mobile Ad Hoc Wireless Networks



- what if there is no infrastructure at all: natural disaster, developing country
- depend only on mobile, wireless nodes
- the network can change at any time!

## Ad Hoc Routing

- How do you route packets in an ad hoc network?
  - source and destination are not necessarily in range of each other – must rely on other nodes to relay packets
  - nodes are mobile network constantly changes
  - fixed infrastructure is not necessarily present

## **DSDV: Destination Sequence Distance Vector**

- Perkins and Bhagwat, ACM SIGCOMM 1994
- proactive
- based on Bellman-Ford routing algorithm
- each node maintains a list of all destinations and the number of hops to each destination, plus a sequence number
  - periodically send routing vector (may be an incremental update) to neighbors
  - destination periodically increments sequence number to allow new routes to propagate
  - nodes choose shortest route with highest sequence number
  - nodes use a settling time to avoid reacting immediately to each routing change

# **OLSR: Optimized Link State Routing Protocol**

- RFC 3636, www.olsr.org, www.olsr.net
- proactive
- tailors a link-state routing protocol for use in ad hoc networks
- based on efficient flooding
  - MPRs (multipoint relays) selected as nodes that will forward broadcast messages
  - cover the whole network, but without every node retransmitting each packet
- uses link-state advertisements
  - only MPRs generated LSAs to reduce number of control messages
  - LSA may contain only links to nodes that have selected the MSR as their local MSR
  - nodes form link-state map using LSAs
- Flash MPR demo

## **AODV: Ad Hoc On-Demand Distance Vector**

- Mobicom 2000, RFC 3561, moment.cs.ucsb.edu/AODV/aodv.html
- reactive
- find route to destination with broadcast
  - broadcast a route request message
  - node that receives it sets a pointer back to source
  - node that has a route may respond to first route request with a route reply, otherwise forward the request
  - destination will always answer first request with route reply
  - route reply follows pointers back to source, establishes routing tables
- routes maintained as long as they are used

## **AODV** Route Request/Reply



 may not always be shortest route – packet loss due to bit errors or collisions (congestion) may cause a route request to be delayed or dropped

# **Approaches to Unicast Routing**

### flooding

- broadcast all packets, detect duplicates with sequence numbers
- high overhead, good fault tolerance at low data rates

#### proactive

- pre-compute and maintain all routes to all destinations
- high overhead to maintain routes that won't be used

#### reactive

- compute routes on demand
- low overhead, increased latency

#### hybrid

- aggregate nodes into zones
- proactive routing inside each zone
- reactive routing between zones
- may provide better compromise between overhead, latency

## **Unicast Routing Architecture**

#### flat

- all nodes treated equally
- simple but may not scale well

#### hierarchical

- aggregate nodes into multiple levels of clusters
- nominate nodes as heads of a cluster
- better scalability
- more complex, single point of failure (cluster head)

#### zone

- aggregate nodes into zones based on location (2-level hierarchy)
- run flat or hierarchical within each zone
- compromise between flat and hierarchical