

Geometrical Deep Learning on 3D Models: Classification for Additive Manufacturing

Project Road Map

Bouziane, Nouhayla nouhayla.bouziane@tum.de

Ebid, Ahmed ge75roz@mytum.de

Srinivas, Aditya Sai aditya.srinivas@tum.de

Bok, Felix felix.bok@tum.de

Kiechle, Johannes johannes.kiechle@tum.de

April 26, 2021

Contents

Ove	rview & Timetable	2
Proj	ect Roles	3
Mile	stones	3
3.2	Milestone 2 - Synthetic Data Generation	5
3.4	Milestone 4 - Experiments	7
3.5	Milestone 5 - Deployment	8
3.6	Milestone 6 - Documentation	ç
	Proj Mile 3.1 3.2 3.3 3.4 3.5	Overview & Timetable Project Roles Milestones 3.1 Milestone 1 - Data Preprocessing

1 Overview & Timetable

2 Project Roles

General responsibility	Person
Project Management	Bok, Felix
DevOps	Kiechle, Johannes
Data	Bouziane, Nouhayla Ebid, Ahmed
Deep Learning	Srinivas, Aditya Sai
Documentation & Presentation	Bouziane, Nouhayla Ebid, Ahmed

3 Milestones

For measuring the cape estimate the following scale was used:

3.1 Milestone 1 - Data Preprocessing

• Work Packages + Cape Estimates

- Download dataset 1
- Cleaning data 5
- Normalization of the data 8
- Align all models 13
- Find the right voxelization algorithm 40 (high complexity, many dependencies)
- Conversion to voxel representation 40 (high complexity, many dependencies)
- Evaluate resulting representations 20

Deliverables

- Possible to download all data from ABC dataset
- Tested voxelization algorithm
- Voxelized ABC dataset all normalized (same size, same resolution)
- 3D plot function for models in voxel representation

Risk	Mitigation
Understanding of the given format	Read more documentation,
Difficulty to align models	Group data with the same alignments into subsets
Integrity of the data	Filter dataset
Objects not appearing in the same orientation	Re-orientation of data models
Size of the data needed	Set up enough storage on LRZ Data Science Stor-
	age, Use only a few models locally
Voxel model has defects	Use another algorithm for voxelization, extensive
	(manual) testing

3.2 Milestone 2 - Synthetic Data Generation

• Work Packages + Cape Estimates

- Create basic defects 5
- Control the position and orientation of the defect 8
- Control the size of the defects 40 (high complexity, many dependencies)
- Identify different defect shapes 40 (high complexity, many dependencies)
- Generate/ store labels for models 100 (high complexity, many dependencies, expert needed)
- Scale code to work on large datasets 2

• Deliverables

- For each model in the ABC dataset a printable and non-printable version can be generated
- Different kind of defects can be added
- Labeled dataset

Risk	Mitigation
Inability to determine whether an object is printable	Hypothesise a rule, exclude critical models
or not	
Models are too diverse	Divide dataset into subsets of similar objects
Defects created do not look as expected	Find alternative approach to introducing defects or
	apply re-meshing
Inconsistent hole sizes with different objects	Split up faces into smaller sub-faces
Defect created is not uniform in shape	Re-meshing

3.3 Milestone 3 - Modeling

• Work Packages + Cape Estimates

- Setup torch pipeline framework 100 (high complexity, many dependencies, low level of detail, expert needed)
 - * Create on-the-fly dataloader
 - * Getting data and models aligned
 - * Setup MLflow
 - * Implement performance metrics
 - * Integrate Weights and Biases (WB) for real-time monitoring of training
- Collection and implementation of different model architectures 20

Deliverables

- Runnable training pipeline
- Different models architectures to train

Risk	Mitigation
Do not find suitable model	Good research
Mismatch between behaviour of loss curves and per-	Use different performance metrics, manual
formance metrics	
Undetected bug in the model implementation	Test implementation, code reviews, start small in the
	model and the training data and slowly increase com-
	plexity
Overutilization of compute resoures	Implementation of on-the-fly dataloader

3.4 Milestone 4 - Experiments

• Work Packages + Cape Estimates

- Perform runs of different 5
- Evaluate performance 40 (high complexity, many dependencies, expert needed)
 - * Re-evaluate procedure of standardize/normalize data if performance is not satisfying
 - * Investigate 3D shape candidates for which prediction fails and try to find reasoning

Deliverables

- One model with a decent performance
- Final model package

Risk	Mitigation
All deployed models fail to achieve descent perfor-	Consult additional literature, get feedback of supervi-
mance and we do not know why	sors, test code, manual checks
The performance of the best model is worse than ex-	Run comprehensive hyper-parameter optimization
pected/desired	

3.5 Milestone 5 - Deployment

• Work Packages + Cape Estimates

- Write complete inference pipeline 5
- Get Field data 5
- Test with Field data 20
- Benchmark inference pipeline 5

• Deliverables

- Field tested inference pipeline

Risk	Mitigation
Good model is too large	Know inference hardware limitations and use it when
	building a model
Inference takes too much time to run	Know inference hardware limitations, optimize perfor-
	mance
Inference pipeline does not work with field data	Get field data early on and use it as an orientation
Performance on field data not as good as on syn-	Get field data early on and use it as an orientation,
thetic dataset	add performance metric using field data in the testing
	phase

3.6 Milestone 6 - Documentation

• Work Packages + Cape Estimates

- Write documentation 40 (low level of detail)
- Prepare final presentation 13

• Deliverables

- Final documentation
- Final presentation

Risk	Mitigation
Too little time left	Start early on writing, good planning