Dynamical Systems: Homework #3

Due on 25th January, 2019

Aditya Vijaykumar

(Acknowledgements - I would like to thank Divya Jagannathan for discussions.)

Problem 1

Given $\overline{\lim_{t\to\infty}} f(t) = a \neq \pm \infty$, we can think of two broad cases:

Case I - $\lim_{t \to \infty} f(t)$ exists $\implies \lim_{t \to \infty} f(t) = a$.

- (a) $\lim_{t \to \infty} [f(t) a \epsilon] = -\epsilon$
- (b) $\overline{\lim}_{t \to \infty} [f(t) a \epsilon] = -\epsilon$
- (c) $\lim_{t \to \infty} [f(t) a + \epsilon] = \epsilon$
- (d) $\overline{\lim}_{t \to \infty} [f(t) a + \epsilon] = \epsilon$

Case II - $\lim_{t\to\infty} f(t)$ does not exist $\implies f(t) \le a$ as $t\to\infty$.

- (a) $\lim_{t\to\infty} [f(t) a \epsilon]$ does not exist.
- (b) $\overline{\lim}_{t \to \infty} [f(t) a \epsilon] = -\epsilon$
- (c) $\lim_{t\to\infty} [f(t) a + \epsilon]$ does not exist
- (d) $\overline{\lim}_{t\to\infty} [f(t) a + \epsilon] = \epsilon$

Problem 2

content...

Problem 3

The most general quadratic time-independent Hamiltonian for a system with n degrees of freedom is,

$$H = \frac{1}{2} \sum_{i=1,j=1}^{n} A_{ij} q_i q_j + B_{ij} p_i p_j + C_{ij} q_i p_j$$

where $A_{ij} = A_{ji}$, $B_{ij} = B_{ji}$, $C_{ij} = C_{ji}$, and q_i and p_i are the generalized positions and momenta respectively. Using Hamilton's equations of motion, one can write,

$$\dot{q}_i = \sum_{j=1}^n B_{ij} p_j + C_{ij} q_j (2 - \delta_{ij})$$
 and $\dot{p}_i = -\sum_{j=1}^n A_{ij} q_j - C_{ij} p_j (2 - \delta_{ij})$