

Instituto de Ciências Exatas e Biológicas - ICEB

Programação de Computadores I – BCC 701 Aula 08

Exercício 1

A série de Fibonacci é formada pela sequência:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Escreva um programa que gere os N primeiros termos da série de FIBONACCI, sabendo-se que para existir esta série serão necessários pelo menos três termos. O programa sempre solicita uma entrada de N, quando esta é menor ou igual a 2.

A seguir, duas ilustrações de execuções do programa.

Execução 1

DIGITE A QUANTIDADE DE TERMOS: 2
ERRO: DIGITE UM VALOR >= 3
DIGITE A QUANTIDADE DE TERMOS: 5
1 1 2 3 5

Execução 2

D]	IGI:	ľE .	A Ç)UZ	TU	IDA	DE D	E TE	RMOS	: 10
1	1	2	3	}	5	8	13	21	34	55

Exercício 2

Refaça o exercício anterior, mas agora calculando a soma dos n primeiros termos.

A seguir, duas ilustrações de execuções do programa.

Execução 1

DIGITE A QUANTIDADE DE TERMOS: 2
ERRO: DIGITE UM VALOR >= 3
DIGITE A QUANTIDADE DE TERMOS: 5
SOMATÓRIO DO 5 PRIMEIROS TERMOS: 12

Execução 2

DIGITE A QUANTIDADE DE TERMOS: 10 SOMATÓRIO DO 10 PRIMEIROS TERMOS: 143

Cálculo Aproximado para o Valor de π

Universidade Federal de Ouro Preto - UFOP

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

O valor de π pode ser aproximado pelo somatório:

$$\pi \approx 4 \times \sum_{i=0}^{n} \frac{\left(-1\right)^{i}}{2 \times i + 1}$$

Quanto maior for o valor de n, mais próximo de π é o valor calculado.

Exercício 3

Escreva um programa Scilab que solicita ao usuário o número n e a seguir calcula o valor aproximado para π . O programa imprime o valor calculado e o valor de π pré-definido no Scilab. Utilize o comando **for**.

A seguir, duas ilustrações de execuções do programa.

Execução 1

CÁLCULO DO VALOR APROXIMADO DE Pi UTILIZANDO O for

DIGITE O VALOR DE n: 500

VALOR DE Pi APROXIMADO: 3.143589

VALOR PRÉDEFINIDO DE Pi NO SCILAB: 3.141593

Execução 2

CÁLCULO DO VALOR APROXIMADO DE PI UTILIZANDO O for

DIGITE O VALOR DE n: 1000

VALOR DE Pi APROXIMADO: 3.142592

VALOR PRÉDEFINIDO DE Pi NO SCILAB: 3.141593

Exercício 4

Faça um novo programa utilizando o comando **while**. Agora o critério de parada será atingido quando uma determinada precisão for alcançada. O algoritmo será:

- 1. calcule o valor de π com uma parcela, piAnterior
- 2. calcule outro valor de π com duas parcelas, piPosterior
- 3. enquanto o valor absoluto da diferença entre piPosterior e piAnterior for maior que a precisão, acrescente uma nova parcela ao cálculo de π e compare com a soma anterior.

Universidade Federal de Ouro Preto - UFOP

Instituto de Ciências Exatas e Biológicas – ICEB

 $\overline{4}$. quando a diferença entre piPosterior e piAnterior for menor ou igual a precisão, imprima o valor aproximado de π .

A seguir, duas ilustrações de execuções do programa.

Execução 1

CÁLCULO DO VALOR APROXIMADO DE PI UTILIZANDO while

DIGITE O VALOR DA PRECISÃO (ex: 0.0001): 0.0001

VALOR DE PI APROXIMADO: 3.141643

VALOR PRÉDEFINIDO DE PI NO SCILAB: 3.141593

Execução 2

Exercício 5

Escreva um programa que receba vários números inteiros e imprima a quantidade de números primos dentre os números que foram digitados. O programa acaba quando se digita um número menor ou igual a 0.

A seguir, uma ilustração da entrada e da saída de uma execução do programa.

Entrada

```
DIGITE UM NÚMERO INTEIRO QUALQUER: 2
DIGITE UM NÚMERO INTEIRO QUALQUER: 36
DIGITE UM NÚMERO INTEIRO QUALQUER: 9
.
.
.
DIGITE UM NÚMERO INTEIRO QUALQUER: 0
```

Saída

FORAM DIGITADOS 4 NÚMEROS PRIMOS.

Universidade Federal de Ouro Preto - UFOP

Instituto de Ciências Exatas e Biológicas - ICEB

Exercício 6

Faça um programa para calcular o valor de S, dado por:

$$S = \frac{1}{N} + \frac{2}{N-1} + \frac{3}{N-2} + \dots + \frac{N-1}{2} + \frac{N}{1}$$

sendo N é fornecido pelo usuário através do teclado.

A seguir, uma ilustração da entrada e saída de uma execução do programa.

Entrada

DIGITE A QUANTIDADE DE TERMOS: 50

Saída

SOMATÓRIO COM 50 TERMOS: 179.459

Exercício 7

O valor aproximado do número $\boldsymbol{\pi}$ pode ser calculado através da seguinte série:

$$S = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \frac{1}{9^3} \cdots$$

sendo $\pi = \sqrt[3]{S \times 32}$. Faça um programa que calcule e imprima o valor de π usando os 51 primeiros termos da séria acima.

A seguir, uma ilustração da entrada e saída de uma execução do programa.

Entrada

DIGITE A QUANTIDADE DE TERMOS: 50

Saída

VALOR DE PI COM 50 PARCELAS: 3.14159