Fenómenos de Transferência II 1º Teste – 11 de Abril de 2023

O enunciado do teste é composto por duas páginas (veja o verso desta folha)

I. Uma partícula de carvão queima numa atmosfera gasosa enriquecida (40% de percentagem molar em oxigénio) a 1400 K, à pressão atmosférica (1,013x10⁵ Pa). O processo é limitado pela difusão de O₂ em sentido oposto ao do CO que se forma, através de uma reacção instantânea com o carvão à sua superfície. O carvão, constituído por esferas com diâmetro de 0,6 mm, consiste em carbono puro com uma massa específica de 1280 kg.m⁻³.

$$2C_{(s)} + O_{2(g)} - 2CO_{(g)}$$

Considere:

 $D_{O2\text{-mistura gasosa}} = 1x10^{-4} \text{ m}^2\text{s}^{-1}$ R = 8,314 Pa.m³.mole⁻¹.K⁻¹

Nas alíneas seguintes, de a) a d) assuma que o processo de difusão ocorre em estado estacionário.

- a) Faça um esquema do processo que está a ocorrer, apresente a respectiva equação de conservação de massa e explicite as condições fronteira que considerou.
- b) Com base na sua resposta à alínea a) deduza uma expressão para a velocidade de difusão do oxigénio e calcule o valor da velocidade de difusão do oxigénio. = -1.1x10 mal/o Q = -10.4TR1 (n.4)
- c) Quanto tempo demora uma partícula de carvão a arder completamente? (10
- d) Se o processo se realizar à temperatura de 1000 K qual é a velocidade de queima da partícula de carvão? Justifique a sua resposta (analise com cuidado o impacto da temperatura nos vários parâmetros relevantes.
- II. Pretende-se transferir oxigénio para o meio aquoso de um reactor biológico, através da utilização de um "manto" de gás contendo oxigénio, o qual cobre toda a superfície do meio aquoso. A concentração inicial de oxigénio no meio aquoso é de 1 kg/m³. Se a concentração do oxigénio no meio aquoso for subitamente elevada à superfície para 9 kg/m³, calcule:

-155×10 malla

IE 28

9,8m

- a) A concentração de oxigénio, 1 hora depois da elevação de concentração à superfície, a 1 cm de profundidade. 1,018 kg/m3
- b) O fluxo de oxigénio a essa profundidade (1 cm), após 30 min e após 1 hora. Compare os valores 3,13×10-12 Kg m-20-1 2,29 x 10-9 obtidos e comente. K9m-20-1

 $D_{O2-água} = 10^{-9} \text{ m}^2/\text{s}$

$$\frac{c_{As} - c_{A}}{c_{As} - c_{A0}} = erf\left(\frac{z}{\sqrt{4Dt}}\right)$$

$$J_{A}^{*} = -D \frac{\partial c_{A}}{\partial z} = \sqrt{D/\pi t} e^{-z^{2}/4Dt} (c_{As} - c_{A0})$$

$$J_{A}^{*} \Big|_{z=0} = \sqrt{D/\pi t} (c_{As} - c_{A0})$$

Table 7-1.	Error function values.	For negative a,	erf(a) is negative
	THE SHARE WELL AND		

a	erf(a)	a	erf(a)	a	crf(a)
		- Charles	San		
0.0	0.0	0.48	0.50275	0.96	0.82542
0.04	0.04511	0.52	0.53790	1.00	0.84270
0.08	0.09008	0.56	0.57162	1.10	0.88021
0.12	0.13476	0.60	0.60386	1.20	0.91031
0.16	0.17901	0.64	0.63459	1.30	0.93401
0.20	0.22270	0.68	0.66378	1.40	0.95229
0.24	0.26570	0.72	0.69143	1.50	0.96611
	G.30788	0.76	0.71754	1.60	0.97635
0.28	0.34913	0.80	0.7421	1.70	0.98379
0.32		0.84	0.76514	1.80	0.98909
0.36	0.38933		0.78669	2.00	0.99532
0.40	0.42839	0.88		3.24	0.99999
0.44	0.46622	0.92	0.80677	3.21	0,3777

Cotação:

1. Commencios: Em estado tromatente, o rector a decoentemes e por inso altera-re as longo de tempo e o fless difusional não à

Comstance

Observer - de que gruendo sa 1, JA 1, logo reso

a) 2 valores -> 1,9

b) 5 valores -) 4,8

c) 3 valores - 2.8

d) 2,5 valores -> 2

e) 3,5 valores → 3

aionaissapar tenib

11.

a) 2 valores -) 2

b) 2 valores $\rightarrow 4,5$

(Coursiana)

extraply among 3°

(Intexior de coixa) ATENÇÃO STNATS!

Resolução Teste 2014 - 2018 FT2

CA

WL

emba

2

3=

DADOS: $y_{02} = 0.50$ T = 1400 K $P_{4} = 10^{5} \text{ Pa}$ $N_{202} = -N_{02}$ Reação Instantânea com a superfície: $C(n) + 02(g) \longrightarrow C02(g)$ Despera = 1 mm $\rho = 1280 \text{ kg/m}^3$ $D_{02} - mine = 1 \times 10^{-4} \text{ m}^2/n$ $R = 8.314 \text{ Pa m}^3 \text{ mol}^{-1} \text{ K}^{-1}$

a) Estado Estacionário Q=?

A - 02 B - C02

Germetria Espínica -> Espera de convas

Eq. Cimetica: Nax = /A (Nax + NBx) - CDA-B d/A , C= Protat &

Egr. Germeniagos: NA x K2 = NAI x R12 (=) NA = [NAI x R12 x 1/H2], à medida que a disea.

02 Yoz = 0,5 x = 00

(1) - Onde come seago e ma negachere enferea. Como enta reago é immentanco, o parso fente é control e ma difenção. Varago >>> difenção = a = a = a. Partembo. Voe = 0 visto que o oxigênção chega e xeago logo muito xapião.

(2) - Justificavol pala (oi de Roundt, pais 02 é considerado um composeo puro e ideal: $y_A = \partial_A \times \partial_C \times y_A^* \quad (=) y_A = y_A^* = 0.5$

Moz = Yoz (Noz + Nesz) - P Doz-mios x dyoz Nesz - Noz)

RT dz

 $(=) No2 dx = -\frac{PD}{RT} dy_{02} (=) No2 \times R^2 \times 1 dx = -\frac{PD}{RT} dy_{02}$

Q = NA1 × 411 R12 (=) NO2 = Q 411 R12

(=) Q $x R^{2} \times 1 dx = -PD dyoz$ Cond. Frontaina 4TT RT RT RT

 $\frac{Q}{4\pi} \int_{x=R_1}^{x=\infty} \frac{1}{x^2} dx = -\frac{PD}{RT} \int_{y_{0z=0}}^{y_{0z=0}} \frac{dy_{0z}}{dy_{0z=0}}$

(=) $Q \left[-\frac{1}{2}\right]^{\infty} = -\frac{PD}{RT} \left[\frac{1}{2}\right]^{0.5}$ (=) $Q \times 1 = -\frac{PD}{RT} \times 0.5$ (=) $Q = -0.5 PD \times 4TT \times RI$

CAR WLAS! 2=

= 11.00

e) Q=? T=1100K

 $Q = -0.5 \times P \times D \times 4\pi \times R_1 = -3.44 \times 10^{-6} \text{ modelos} \qquad Queciente = -3.44 \times 10^{-6} = 1.27$ $-2.7 \times 10^{-6} = 1.27$

R: Diminui num paren de 1,27 (grandezas inversamente proporcionais)

2). $C_{A0} = 2 \text{ mol/L}$ t = 45 min $t = 45 \text{ m$

a) $0c_{02} - accounte = 5 \times 10^{-5} \text{ m}^{2}/\Omega$. $C_{Ap} = ?$ $c_{pm^{3}} = 5 \text{ mod}/C$

 $\alpha = \frac{2}{\sqrt{40t}} = \frac{4 \times 10^{-2} \text{ pm}}{\sqrt{4 \times 5 \times 10^{-5} \text{ pm}^2 n^{-4} \times 45 \times 60 \text{ m}}} = 0,0544$ $A \to CO_2$

 $ext(1ail) = ext(0,0544) = 1 - (1 + 0,2784 \times 0,0544 + 0,2344 \times 0,0544^2 + 0,0781 \times 0,0544^4)^{-4}$ =0,061

CAN - CA = DOP(a) (=> CAN - 5 = 0,061 (=> CAN - 5 = 0,061 CAN - 0,12186 CAD - CAO - CAD - Q CAD - Q

(=>0,93907 CAD = 4187814 (=) CAD = 5,2 mis2/L/

b) t=20 CA=?

 $\alpha = \frac{2}{\sqrt{40t}} = \frac{4 \times 10^{-2} \text{ m}}{\sqrt{4 \times 5 \times 10^{-5} \times 2 \times 3600}} = 0.033$

ext (101) = ext (0,033) = 0,037

 $\frac{CAn - CA}{CAD - CAD} = \frac{201}{5/2} \left(\frac{3033}{5/2} \right) = \frac{5/2 - CA}{5/2 - 2} = \frac{0.037}{5/2} = \frac{0.037}{5/$

Kendugaie Tente 2019 - FT2

(1). 2=5 cm Zo=2 cm T=298,15K P=1,013×105 Pa (1 atm)

 $D = 0.102 \times 10^{-4} \text{ mm}^2/\text{o}$ $P^* = 59 \text{ mm/Hg}$ 1 otm - 760 mm/Hg 2c = 0.078 atm $p^* = 0.078 \times 1.013 \times 10^5 \text{ atm}$ $2c = 0.078 \times 1.013 \times 10^5 \text{ atm}$ $2c = 0.078 \times 1.013 \times 10^5 \text{ atm}$ = +864,08 Pa

a) t = 24h R=8,34 Jmel-1K-1 H=46 g/mel p=0,789 g/cm3 Z=?

Germotica Barro - tibo

Egrupgie de Cernexionis: Nai51 = Nazx 52

Os plusos NAI e Nas sois constantes ma direção 2, sondo SI e Se as superficus de embrada e saida, sesspetivamente, constantes.