Exercises in Introductory Physics I

Exercise Sheet 4 due to 13.11.23, 11:59 AM

Constant Friction

1. What mass $m_{\rm loc}$ does a locomotive need to have so it can pull a number of wagons with a total mass of $m_{\rm wag} = 500\,{\rm t}$ on a horizontal track and constantly accelerate them from $v_0 = 0$ to $v_1 = 80\,{\rm km/h}$ within a distance of $d = 12\,{\rm km}$. The friction coefficient between the wheels of the locomotive and the track is $\mu = 0.12$. (3P)

Dynamic Friction

- 1. A boat with mass m=1.5 t is travelling at a speed of $v_0=100$ km/h when its engine is shut off. The magnitude of the frictional force $\vec{f_k}$ between boat and water is proportional to the speed v of the boat $f_k(v)=v\cdot 70$ kg/s.
 - a) Find the time required for the boat to slow down to $v_1 = 50 \,\mathrm{km/h}$. (2P)
 - b) Draw a v(t) graph of the boats speed for a 20 s interval after the shutdown of the engine. (1P)

Circular Motion

1. For roller coasters in Germany the maximum tolerable acceleration is 6g (This is for the total acceleration acting on a person riding the roller coaster). A roller coaster runs through a loop (radius $r_{\text{loop}} = 30 \,\text{m}$) with a constant speed v (see figure below).

Hint: The roller coaster does not accelerate between point 1 and 2

- a) Draw a F(t) diagram for the force the track exerts on the wagons and the passengers rolling safely through the loop, from Point 1 to 5. (2P)
- b) Draw a F(t) diagram for the total net force acting on the wagons and the passengers rolling safely through the loop, from Point 1 to 5 (2P)
- c) What is the maximum allowed speed for the roller coaster when entering the loop? (So that the maximum acceleration is not exceeded) (2P)

Lecturer: R. Valiullin Teaching assistants: R. Rose, M. Muetze

d) What is the minimum allowed speed for the roller coaster when entering the loop? (So that the roller coaster does not fall off the tracks) (1P)

Elliptical Path

- 1. A car is moving with a constant speed along an elliptical path. The semi-major and semi-minor axes of the ellipse are A and B. The coefficient of friction between car and surface is μ .
 - a) Find the points where the acceleration is minimal and maximal. (1P)
 - b) Find the maximum speed so that the car does not start sliding from the path. (1P)