Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2021 Entrega $n^{\circ}8$

1. Se considera

$$\langle f, g \rangle = \int_{-1}^{1} f''(x)g''(x)dx.$$

- a) Probar que \langle , \rangle es un producto interno en S_m , el espacio generado por $\{x^2, x^3, \dots, x^m\}$ para $m \geq 3$.
- b) Hallar una base ortonormal para S_3 .
- c) Hallar la mejor aproximación en S_3 , en el sentido de cuadrados mínimos, para $g(x) = x^5$.

Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2021 Entrega n°8 - Resolución del ejercicio

- 1a) Para probar que \langle , \rangle es un producto interno para S_m , debemos ver que se satisfacen las siguientes condiciones:
 - Es bilineal y simétrico, es decir que $\langle \alpha f_1 + f_2, g \rangle = \alpha \langle f_1, g \rangle + \langle f_2, g \rangle$ y $\langle f, g \rangle = \langle g, f \rangle$: esto es directo (derivar e integrar son lineales y el producto conmuta).

 - Además $\langle f, f \rangle = 0 \Leftrightarrow f'' \equiv 0$. Pero si $f'' \equiv 0$ entonces f' es constante y f lineal, pero la única función lineal en el espacio generado por $\{x^2, x^3, \dots, x^m\}$ para $m \geq 3$ es $f \equiv 0$.
- 1b) Para hallar dicha base ortonormal, aplicaremos el proceso de ortonormalización de Gram-Schmidt a la base $\{x^2, x^3\}$:
 - $q_1 = x^2, ||q_1||^2 = \langle x^2, x^2 \rangle = \int_{-1}^1 4 dx = 8 \Rightarrow p_1 = \frac{x^2}{2\sqrt{2}}$
 - $q_2 = x^3 \langle x^3, \frac{x^2}{2\sqrt{2}} \rangle \frac{x^2}{2\sqrt{2}} = x^3 \underbrace{\int_{-1}^1 \frac{6x}{\sqrt{2}}}_{\text{sim. impar}} dx \frac{x^2}{2\sqrt{2}} = x^3,$

$$||q_2||^2 = \langle x^3, x^3 \rangle = \int_{-1}^1 (6x)^2 dx \underset{(6x)^2 \text{ par}}{=} 72 \int_0^1 x^2 dx = \frac{72}{3} = 24 \implies p_2 = \frac{x^3}{2\sqrt{6}}.$$

Luego, la base ortonormal pedida es $\left\{\frac{x^2}{2\sqrt{2}}, \frac{x^3}{2\sqrt{6}}\right\}$.

1c) Para hallar la mejor aproximación en el sentido de cuadrados mínimos de $g(x) = x^5$ sobre el subespacio S_3 debemos hallar la proyección ortogonal de g sobre dicho subespacio. Si $\{p_1, p_2\}$, es una base ortonormal de S_3 , entonces la proyección ortogonal de g sobre S_3 , $P_{S_3}(g)$, se obtiene mediante la fórmula:

$$P_{S_3}(g) = \langle g, p_1 \rangle p_1 + \langle g, p_2 \rangle p_2.$$

Tenemos:

•
$$\langle g, p_1 \rangle = \langle x^5, \frac{x^2}{2\sqrt{2}} \rangle = \frac{20}{\sqrt{2}} \underbrace{\int_{-1}^1 \underbrace{x^3}_{\text{impar}} dx} = 0.$$

•
$$\langle g, p_2 \rangle = \langle x^5, \frac{x^3}{2\sqrt{6}} \rangle = \frac{60}{\sqrt{6}} \int_{-1}^1 x^4 dx = 4\sqrt{6}.$$

De esta forma:

$$P_{S_3}(g) = 4\sqrt{6} \frac{x^3}{2\sqrt{6}} = 2x^3.$$