Determine the probabilities when adding up 5 Bernoulli trials if each trial has chance 0.84. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 6 probabilities, letting x vary from 0 to 5. For each probability, n = 5 and p = 0.84. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{5}C_{0})(0.84)^{0}(1-0.84)^{5-0}$	0.000105
1	$({}_{5}C_{1})(0.84)^{1}(1-0.84)^{5-1}$	0.00275
2	$({}_{5}C_{2})(0.84)^{2}(1-0.84)^{5-2}$	0.0289
3	$({}_{5}C_{3})(0.84)^{3}(1-0.84)^{5-3}$	0.152
4	$({}_{5}C_{4})(0.84)^{4}(1-0.84)^{5-4}$	0.398
5	$({}_{5}C_{5})(0.84)^{5}(1-0.84)^{5-5}$	0.418

Determine the probabilities when adding up 4 Bernoulli trials if each trial has chance 0.7. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 5 probabilities, letting x vary from 0 to 4. For each probability, n = 4 and p = 0.7. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_4C_0)(0.7)^0(1-0.7)^{4-0}$	0.0081
1	$({}_{4}C_{1})(0.7)^{1}(1-0.7)^{4-1}$	0.0756
2	$({}_{4}C_{2})(0.7)^{2}(1-0.7)^{4-2}$	0.265
3	$({}_{4}C_{3})(0.7)^{3}(1-0.7)^{4-3}$	0.412
4	$({}_{4}C_{4})(0.7)^{4}(1-0.7)^{4-4}$	0.24

 $\begin{array}{l} \mid x_i \mid \Pr(\mathsf{x}) \mid x \cdot \Pr(\mathsf{x}) \mid x - \mu \mid (x - \mu)^2 \mid (x_i - \mu)^2 \cdot \Pr(\mathsf{x}) \mid | \vdots - \vdots |$

Determine the probabilities when adding up 2 Bernoulli trials if each trial has chance 0.4. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 3 probabilities, letting x vary from 0 to 2. For each probability, n = 2 and p = 0.4. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{2}C_{0})(0.4)^{0}(1-0.4)^{2-0}$	0.36
1	$({}_{2}C_{1})(0.4)^{1}(1-0.4)^{2-1}$	0.48
2	$({}_{2}C_{2})(0.4)^{2}(1-0.4)^{2-2}$	0.16

Determine the probabilities when adding up 4 Bernoulli trials if each trial has chance 0.21. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 5 probabilities, letting x vary from 0 to 4. For each probability, n = 4 and p = 0.21. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(<i>x</i>)
0	$({}_{4}C_{0})(0.21)^{0}(1-0.21)^{4-0}$	0.39
1	$({}_{4}C_{1})(0.21)^{1}(1-0.21)^{4-1}$	0.414
2	$({}_{4}C_{2})(0.21)^{2}(1-0.21)^{4-2}$	0.165
3	$({}_{4}C_{3})(0.21)^{3}(1-0.21)^{4-3}$	0.0293
4	$({}_{4}C_{4})(0.21)^{4}(1-0.21)^{4-4}$	0.00194

 $\begin{array}{l} \mid x_i \mid \Pr(\mathsf{x}) \mid x \cdot \Pr(\mathsf{x}) \mid x - \mu \mid (x - \mu)^2 \mid (x_i - \mu)^2 \cdot \Pr(\mathsf{x}) \mid | \vdots - \vdots |$

Determine the probabilities when adding up 5 Bernoulli trials if each trial has chance 0.63. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 6 probabilities, letting x vary from 0 to 5. For each probability, n = 5 and p = 0.63. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{5}C_{0})(0.63)^{0}(1-0.63)^{5-0}$	0.00693
1	$({}_{5}C_{1})(0.63)^{1}(1-0.63)^{5-1}$	0.059
2	$({}_{5}C_{2})(0.63)^{2}(1-0.63)^{5-2}$	0.201
3	$({}_{5}C_{3})(0.63)^{3}(1-0.63)^{5-3}$	0.342
4	$({}_{5}C_{4})(0.63)^{4}(1-0.63)^{5-4}$	0.291
5	$({}_{5}C_{5})(0.63)^{5}(1-0.63)^{5-5}$	0.0992

Determine the probabilities when adding up 5 Bernoulli trials if each trial has chance 0.06. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 6 probabilities, letting x vary from 0 to 5. For each probability, n = 5 and p = 0.06. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{5}C_{0})(0.06)^{0}(1-0.06)^{5-0}$	0.734
1	$({}_{5}C_{1})(0.06)^{1}(1-0.06)^{5-1}$	0.234
2	$({}_{5}C_{2})(0.06)^{2}(1-0.06)^{5-2}$	0.0299
3	$({}_{5}C_{3})(0.06)^{3}(1-0.06)^{5-3}$	0.00191
4	$({}_{5}C_{4})(0.06)^{4}(1-0.06)^{5-4}$	6.09e-05
5	$({}_{5}C_{5})(0.06)^{5}(1-0.06)^{5-5}$	7.78e-07

Determine the probabilities when adding up 6 Bernoulli trials if each trial has chance 0.61. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 7 probabilities, letting x vary from 0 to 6. For each probability, n = 6 and p = 0.61. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$(_6C_0)(0.61)^0(1-0.61)^{6-0}$	0.00352
1	$(_6C_1)(0.61)^1(1-0.61)^{6-1}$	0.033
2	$(_6C_2)(0.61)^2(1-0.61)^{6-2}$	0.129
3	$(_6C_3)(0.61)^3(1-0.61)^{6-3}$	0.269
4	$(_6C_4)(0.61)^4(1-0.61)^{6-4}$	0.316
5	$(_6C_5)(0.61)^5(1-0.61)^{6-5}$	0.198
6	$(_6C_6)(0.61)^6(1-0.61)^{6-6}$	0.0515

Determine the probabilities when adding up 3 Bernoulli trials if each trial has chance 0.1. Each trial could be thought of as a spin of the spinner below.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 4 probabilities, letting x vary from 0 to 3. For each probability, n = 3 and p = 0.1. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{3}C_{0})(0.1)^{0}(1-0.1)^{3-0}$	0.729
1	$({}_{3}C_{1})(0.1)^{1}(1-0.1)^{3-1}$	0.243
2	$({}_{3}C_{2})(0.1)^{2}(1-0.1)^{3-2}$	0.027
3	$({}_{3}C_{3})(0.1)^{3}(1-0.1)^{3-3}$	0.001