Due Date:

March 31, 2020

(12 Farvardin 98)

#### In the name of god

#### **Advanced Robotics**

Homework Assignment #4-1



**1** | P a g e

- 1) Prove each of the following:
- I) For a skew-symmetric matrix S(a) of a vector (a) and a rotation matrix  $\,R\,$  and a vector  $\,X\,$

<sub>a-</sub> 
$$S(\alpha a + \beta b) = \alpha S(a) + \beta S(b)$$

b- 
$$S(a)p = a \times p$$

$$c-RS(a)R^T = S(Ra)$$

$$d X^T S X = 0$$

e-
$$S(k)^3 = -S(k)$$

II) Given the euler angle transformation

$$R = R_{z,\psi} R_{y,\theta} R_{z,\varphi}$$

Show that  $\frac{d}{dt}R = S(\omega)R$  where

$$\omega = \{c_{\psi}s_{\theta}\dot{\phi} - s_{\psi}\dot{\theta}\}i + \{s_{\psi}s_{\theta}\dot{\phi} + c_{\psi}\dot{\theta}\}j + \{\dot{\psi} + c_{\theta}\dot{\phi}\}k$$

III) Repeat Problem part (II) this time for the Roll-Pitch-Yaw transformation. In other words find an explicit expression for  $\omega$  such that  $\frac{d}{dt}R = S(\omega)R$ 

Due Date:

March 31, 2020

(12 Farvardin 98)

### In the name of god

# Advanced Robotics Homework Assignment #4-1

**2** | Page



- 2) some common kinematic singularities that occur in 6-dof manipulator with revolute and prismatic joints are mentioned below. Use Geometric Jacobian and prove singularity existence in each of the following:
- a)Two collinear Revolute joint Axes



b) Three Coplanar and Parallel Revolute Joint Axes



c) Four Revolute Joint Axes Intersecting at a Common Point



- d) Four Coplanar Revolute Joints
- e) Six Revolute Joints Intersecting a Common Line

Due Date: March 31, 2020 (12 Farvardin 98)

#### In the name of god

### **Advanced Robotics** Homework Assignment #4-1



**3** | P a g e

3) The spatial 3R manipulator is shown in its zero position. Let p be the coordinates of the origin of  $\{b\}$  expressed in  $\{s\}$ .



- a) Write down the Jacobian (Geometric Jacobian).(use method of Spong's book)
- b) In its zero position (configuration shown in figure ), suppose we wish to make the end-effector move with linear velocity V=(10;0;0) (V is expressed in  $\{s\}$  frame ). What are the required input joint velocities ?
- c) Suppose that the robot is in the configuration  $\theta_1 = 0$ ,  $\theta_2 = 45$ ,  $\theta_3 = -45$  Assuming static equilibrium, suppose that we wish to generate an end-effector force fb = (10; 0; 0), where fb is expressed with respect to the end-effector frame({b} frame). What are the required input joint torques?

Due Date: March 31, 2020 (12 Farvardin 98)

### In the name of god

## **Advanced Robotics** Homework Assignment #4-1



**4** | P a g e

4) Answer the following questions for the 4R planar manipulator (this planer 4-DOF robot is a redundant robot)



- a) Write down the Jacobian (Geometric Jacobian).( with **two different method** arbitrary for sure)
- b) Suppose that the manipulator is in static equilibrium at the configuration and that a force f = (10; 10; 0) and a moment m = (0; 0; 10) are applied to the tip (both f and m are expressed with respect to the fixed frame{s}). What are the torques experienced at each joint?