ЛЕКЦИЯ 13.1 ЗАДАЧА ЧИСЛЕННОГО РЕШЕНИЯ СИСТЕМЫ НЕЛИ-НЕЙНЫХ УРАВНЕНИЙ. ЛОКАЛИЗАЦИЯ РЕШЕНИЯ. МЕТОД НЬЮТОНА

1. Нелинейные системы. Постановка задачи

Надо решить систему уравнений

$$\begin{cases}
f_1(x_1, x_2, \dots, x_n) = 0, \\
f_2(x_1, x_2, \dots, x_n) = 0, \\
\vdots \\
f_n(x_1, x_2, \dots, x_n) = 0,
\end{cases}$$
(1)

где $f_1, f_2, ..., f_n$ – заданные нелинейные функции. Среди них могут быть и линейные функции, но нелинейность хотя бы одной приводит к нелинейной системе уравнений. Система (1) называется *нелинейной*.

Систему (1) можно записать в векторном виде

$$\bar{F}(\bar{x}) = \bar{0},\tag{2}$$

где

$$\bar{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \bar{F}(\bar{x}) = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) \end{pmatrix}, \bar{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

 $ar{x}$ – вектор неизвестных, $ar{F}$ – вектор-функция от вектора $ar{x}$. Решением системы (2) называется вектор $ar{x}$, при подстановке которого в систему (2) она превращается в тождество. Точное решение по нашей традиции будем обозначать $ar{x}$, приближённое - $ar{x}^*$: $ar{F}(ar{x}^*) \approx ar{0}$ в пределах заданной точности. Задача состоит в вычислении $ar{x}^*$.

2. Локализация решения

Решение имеет два этапа, как и в одномерном случае: предварительный этап локализации (отделения) решения и основной этап итерационного уточнения. На предварительном определяется область локализации решения. Здесь уместны те же замечания, что и для нелинейных уравнений. Локализация очень важна: от неё во многом зависит успех

решения, т.е. сходимость итерационного процесса и её скорость. Она осуществляется исследованием теперь уже многомерной функции \bar{F} .

Методы исследования самые разнообразные, они сильно зависят от функции, поэтому невозможно дать общий универсальный алгоритм. Область локализации (отделения) решения в многомерном случае – это область n-мерного векторного пространства. Чаще всего это n-мерный шар $S_a(r)$

$$S_a(r) = \{ \bar{x} \in \mathbb{R}^n | ||\bar{x} - a|| \le r \}$$

векторного пространства \mathbb{R}^n с центром в точке a радиуса r. Точки шара находятся на расстоянии не больше r от центра a. Или это может быть n-мерный прямоугольный параллелепипед $P_a(d_1;...;d_n)$

$$P_a(d_1; ...; d_n) = \{\bar{x} \in \mathbb{R}^n | |x_i - a_i| \le d_i, i \in \{1, ..., n\} \}$$

с центром в точке a размером $2d_i$ по i-й оси.

Локализация решения в многомерном пространстве гораздо сложнее, чем на числовой оси. Эта задача требует особого подхода и для метода, и для уравнения. Например, в двумерном случае можно применить графический способ: на координатной плоскости изобразить кривые $f_1(x_1,x_2)=0$ и $f_2(x_1,x_2)=0$ и определить по чертежу примерное расположение их точек пересечения. Это и есть решения системы

$$\begin{cases}
f_1(x_1, x_2) = 0, \\
f_2(x_1, x_2) = 0.
\end{cases}$$

3. Метод Ньютона

3.1. Алгоритм метода

Пусть решение \bar{x} изолировано в некоторой области локализации и в ней имеется приближение $\bar{x}^{(k)}$ к \bar{x} . Предполагая, что функции f_i непрерывно дифференцируемы по всем аргументам в некоторой области, содержащей \bar{x} и $\bar{x}^{(k)}$, разложим f_i в ряды Тейлора в точке \bar{x} в окрестности $\bar{x}^{(k)}$:

$$\begin{cases} f_{1}(\bar{x}) = f_{1}(\bar{x}^{(k)}) + \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} f_{1}(\bar{x}_{k}) \Big(x_{j} - x_{j}^{(k)} \Big) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f_{1}(\bar{x}_{k}) \Big(x_{i} - x_{i}^{(k)} \Big) \Big(x_{j} - x_{j}^{(k)} \Big) + \cdots, \\ f_{2}(\bar{x}) = f_{2}(\bar{x}^{(k)}) + \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} f_{2}(\bar{x}_{k}) \Big(x_{j} - x_{j}^{(k)} \Big) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f_{2}(\bar{x}_{k}) \Big(x_{i} - x_{i}^{(k)} \Big) \Big(x_{j} - x_{j}^{(k)} \Big) + \cdots, \\ \vdots \\ f_{n}(\bar{x}) = f_{n}(\bar{x}^{(k)}) + \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} f_{n}(\bar{x}_{k}) \Big(x_{j} - x_{j}^{(k)} \Big) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f_{n}(\bar{x}_{k}) \Big(x_{i} - x_{i}^{(k)} \Big) \Big(x_{j} - x_{j}^{(k)} \Big) + \cdots. \end{cases}$$

Для вторых частных производных достаточно потребовать их существования в точке $\bar{x}^{(k)}$. Если \bar{x} и $\bar{x}^{(k)}$ достаточно близки, то эту систему можно линеаризовать, т.е. пренебречь в ней членами второго порядка и выше:

$$\begin{cases} f_1(\bar{x}^{(k)}) + \sum_{j=1}^n \frac{\partial}{\partial x_j} f_1(\bar{x}_k) \Big(x_j - x_j^{(k)} \Big) \approx f_1(\bar{x}) = 0, \\ f_2(\bar{x}^{(k)}) + \sum_{j=1}^n \frac{\partial}{\partial x_j} f_2(\bar{x}_k) \Big(x_j - x_j^{(k)} \Big) \approx f_2(\bar{x}) = 0, \\ \vdots \\ f_n(\bar{x}^{(k)}) + \sum_{j=1}^n \frac{\partial}{\partial x_j} f_n(\bar{x}_k) \Big(x_j - x_j^{(k)} \Big) \approx f_n(\bar{x}) = 0, \\ \Rightarrow \begin{cases} f_1(\bar{x}^{(k)}) + \sum_{j=1}^n \frac{\partial}{\partial x_j} f_1(\bar{x}_k) \Big(x_j - x_j^{(k)} \Big) = 0, \\ \vdots \\ f_n(\bar{x}^{(k)}) + \sum_{j=1}^n \frac{\partial}{\partial x_j} f_n(\bar{x}_k) \Big(x_j - x_j^{(k)} \Big) = 0, \\ \vdots \\ f_n(\bar{x}^{(k)}) + \sum_{j=1}^n \frac{\partial}{\partial x_j} f_n(\bar{x}_k) \Big(x_j - x_j^{(k)} \Big) = 0 \end{cases}$$

 $(f_i(\bar{x})=0,\$ так как $\bar{x}-$ точное решение системы). Запишем эти равенства как точные (не забывая, что они на самом деле приближённые) и получим систему уравнений для нахождения компонент x_i точного вектора решения \bar{x} . В матричной форме она имеет вид

$$\bar{F}(\bar{x}^{(k)}) + \bar{F}'(\bar{x}^{(k)})(\bar{x} - \bar{x}^{(k)}) = \bar{0},\tag{3}$$

где

$$\bar{F}'(\bar{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} f_1(\bar{x}) & \frac{\partial}{\partial x_2} f_1(\bar{x}) & \cdots & \frac{\partial}{\partial x_n} f_1(\bar{x}) \\ \frac{\partial}{\partial x_1} f_2(\bar{x}) & \frac{\partial}{\partial x_2} f_2(\bar{x}) & \cdots & \frac{\partial}{\partial x_n} f_2(\bar{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} f_n(\bar{x}) & \frac{\partial}{\partial x_2} f_n(\bar{x}) & \cdots & \frac{\partial}{\partial x_n} f_n(\bar{x}) \end{pmatrix},$$

 $ar{F}'$ - функциональная матрица частных производных вектор-функции $ar{F}$, которая называется матрицей Якоби, $ar{F}'ig(ar{x}^{(k)}ig)$ – матрица Якоби в точке $ar{x}^{(k)}$. Решая систему (3) относительно $ar{x}$, получаем вектор $ar{x}$:

$$\bar{x} - \bar{x}^{(k)} = -\left(\bar{F}'(\bar{x}^{(k)})\right)^{-1} \cdot \bar{F}(\bar{x}^{(k)}) \Rightarrow \bar{x} = \bar{x}^{(k)} - \left(\bar{F}'(\bar{x}^{(k)})\right)^{-1} \cdot \bar{F}(\bar{x}^{(k)}).$$

Теперь вспомним, что мы вычислили \bar{x} на самом деле приближённо, и этот вектор принимаем за следующее приближение к корню $\bar{x}^{(k+1)}$:

$$\bar{x} \approx \bar{x}^{(k)} - \left(\bar{F}'(\bar{x}^{(k)})\right)^{-1} \cdot \bar{F}(\bar{x}^{(k)}) \ \Rightarrow \ \bar{x}^{(k+1)} = \bar{x}^{(k)} - \left(\bar{F}'(\bar{x}^{(k)})\right)^{-1} \cdot \bar{F}(\bar{x}^{(k)}).$$

Итак, получили расчётную формулу метода Ньютона для систем нелинейных уравнений

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - (\bar{F}'(\bar{x}^{(k)}))^{-1} \cdot \bar{F}(\bar{x}^{(k)}),$$
 (4)

 $k=0,1,2,\ldots$. Начальная итерация $\bar{x}^{(0)}$ задана. Она выбирается в области локализации. Понятно, что для осуществимости метода необходимо, чтобы все матрицы Якоби $\bar{F}'(\bar{x}^{(k)})$ были невырожденными.

На каждом шаге метода Ньютона надо вычислять обратную матрицу $\left(F'(\bar{x}^{(k)})\right)^{-1}$. А это очень трудоёмкая операция. Во-первых, нужно вычислить частные производные $\frac{\partial}{\partial x_j} f_i(\bar{x}_k)$ в точке \bar{x}_k – всего n^2 производных; во-вторых, надо обратить матрицу частных производных Якоби, а это очень трудоёмкая операция.

Для уменьшения трудоёмкости метода можно не считать $\bar{x}^{(k+1)}$ по явной формуле, а решать на каждом шаге систему линейных уравнений. Обозначим

$$\bar{y}^{(k)} = \bar{x}^{(k+1)} - \bar{x}^{(k)}.$$

Вектор $\bar{y}^{(k)}$ находится как решение линейной системы

$$\bar{F}'(\bar{x}^{(k)})\bar{y}^{(k)} = -\bar{F}(\bar{x}^{(k)})$$

(это просто преобразованная расчётная формула (4)). Новая итерация $ar{x}^{(k+1)}$ тогда равна

$$\bar{x}^{(k+1)} = \bar{y}^{(k)} + \bar{x}^{(k)},$$

$$k = 0, 1, 2, \dots$$

При такой реализации метода нам не надо обращать матрицу, вместо этого на каждом шаге решается линейная система. Это тоже трудоёмкая операция, но менее «рискованная» с точки зрения погрешности, чем обращение матрицы. Но всё равно надо каждый раз считать матрицу Якоби.

Эти недостатки устраняются различными модификациями. Рассмотрим одну из них. Она называется *упрощённым методом Ньютона*.

3.2. Упрощённый метод Ньютона

Вычисления можно упростить, используя на каждом шаге одну и ту же матрицу Якоби. Это значит, что она вычисляется один раз: в начале для итерации $\bar{x}^{(0)}$. А затем подставляется в расчётную формулу (3) на каждом шаге. Это и есть упрощённый метод Ньютона. Его расчётная формула следующая:

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} - \bar{F}'_0 \cdot \bar{F}(\bar{x}^{(k)}),$$

где $\bar{F}_0' = \left(\bar{F}'(\bar{x}^{(0)})\right)^{-1}$, k=0,1,2,... . Матрица \bar{F}_0' вычисляется перед запуском процесса, а потом подставляется каждый раз в расчётную формулу.

Можно вычислять $\bar{x}^{(k+1)}$ неявно, решая систему уравнений

$$Aar{y}^{(k)}=-ar{F}ig(ar{x}^{(k)}ig),$$
 где $A=ar{F}'ig(ar{x}^{(0)}ig),$ $ar{y}^{(k)}=ar{x}^{(k+1)}-ar{x}^{(k)},$ $k=0,1,2,\ldots$. Новая итерация $ar{x}^{(k+1)}$ равна $ar{x}^{(k+1)}=ar{y}^{(k)}+ar{x}^{(k)}.$

Число итераций упрощённого метода Ньютона для достижения заданной точности решения существенно возрастает по сравнению с классическим методом. Мы позже увидим, что упрощённый метод имеет линейную скорость сходимости, тогда как классический – квадратичную. Но общие вычислительные затраты могут оказаться меньше. Дело в том, что, во-первых, матрица Якоби вычисляется только один раз, а во-вторых, на каждом шаге решается линейная система с одной и той же матрицей и разыми правыми частями.

3.3. Сходимость и оценка погрешности

Наиболее просто условия сходимости и оценка погрешности формулируются следующей теоремой.

Теорема 1. Пусть в некоторой окрестности решения \bar{x} системы функции f_i (i=1,...,n) дважды непрерывно дифференцируемы по всем аргументам и матрица Якоби \bar{F}' не вырождена. Тогда найдётся такая малая δ -окрестность решения \bar{x} , что при произвольном выборе начального приближения $\bar{x}^{(0)}$ в ней итерационная последовательность метода Ньютона не выходит за пределы этой окрестности, сходится к \bar{x} и верна оценка

$$\Delta \bar{x}^{(k+1)} = \|\bar{x}^{(k+1)} - \bar{x}\| \le \frac{1}{\delta} \|\bar{x}^{(k)} - \bar{x}\|^2,$$

 $k = 0, 1, 2, \dots$

Под δ -окрестностью решения \bar{x} здесь понимается либо шар $S_{\bar{x}}(\delta)$ с центром в \bar{x} радиуса δ , либо куб $P_{\bar{x}}(\delta;...;\delta)$ с центром в \bar{x} размерами 2δ по всем осям. Теорема ничего не говорит ни о значении, ни хотя бы об оценке δ . Поэтому эту окрестность надо находить исследованием конкретного уравнения.

Но из теоремы следует важный вывод: метод Ньютона имеет квадратичную скорость сходимости. А это позволяет использовать простой критерий останова итерационного процесса:

$$\left\|\bar{x}^{(k)} - \bar{x}^{(k-1)}\right\| < \varepsilon,$$

где $\varepsilon > 0$ – заданная точность.

Что касается упрощённого метода Ньютона, то он сходится со скоростью геометрической прогрессии, если начальное приближение $\bar{x}^{(0)}$ достаточно близко к решению \bar{x} . А значит, его скорость сходимости линейная. Причём знаменатель прогрессии тем меньше, чем ближе $\bar{x}^{(0)}$ к \bar{x} . Поэтому для достижения нужной точности за меньшее число шагов надо как можно качественнее локализовать решение.

В качестве критерия останова можно взять выполнение неравенств

$$\left|x_i^{(k)} - x_i^{(k-1)}\right| < \varepsilon,$$

i=1,...,n, где $\epsilon>0$ – заданная точность. По этому правилу оценивается погрешность итераций любого метода с линейной скоростью сходимости при условии, что знаменатель прогрессии достаточно мал. Оно здесь применяется к каждой компоненте решения.

Пример. Рассмотрим систему

$$\begin{cases}
f_1(x, y) = x \sin y + y - 2, \\
f_2(x, y) = y \sin x + x - 3.
\end{cases}$$

Якобиан системы равен

$$A(x,y) = \begin{pmatrix} \sin y & x \cos y + 1 \\ y \cos x + 1 & \sin x \end{pmatrix}.$$

Возьмём начальное приближение $x^{(0)}=0$, $y^{(0)}=1$ и запустим итерационный процесс метода Ньютона по формуле (4). Последовательность приближений приведена в таблице 1.

Табл. 1

k	0	1	2	3	4
$\chi^{(k)}$	0	2,378	2,803	2,839	2,839
$y^{(k)}$	1	0,578	0,541	0,540	0,540

Оценка погрешности 4-й итерации равна $\|\bar{x}^{(4)} - \bar{x}^{(3)}\| = 1,4 \cdot 10^{-4}$. Тогда $x^* = 2,839$, $y^* = 0,540$.

Если же решать систему с постоянной матрицей A, вычисленной в начальной точке, то высокой точности приближения не удается достичь. На восьмом шаге $\|\bar{x}^{(8)} - \bar{x}^{(7)}\| = 0,054$. Затем последовательность приближений «уходит» от найденного ранее решения. Если взять другое начальное приближение $x^{(0)} = 2$, $y^{(0)} = 0,3$, то на восьмом шаге для постоянной матрицы $A \|\bar{x}^{(8)} - \bar{x}^{(7)}\| = 8 \cdot 10^{-4}$ и решение найдено. В таком случае, когда нет быстрой сходимости к точному решению, но достигнуто хорошее приближение, то можно считать это вычисление локализацией. А далее итерации продолжаются от найденного приближения с переменной матрицей $A(x^{(k)}, y^{(k)})$.