

Διαγώνισμα

Тупоу В

Μαθηματικά

Γενικά Θεματά

Υ ΙΑΚΩΒΟΥ ΠΟΛΥΛΑ 24, ΠΕΖΟΔΡΟΜΟΣ

oxdot frontistirio.filomatheia@gmail.com

4 26610 20144

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΙΛΟΜΑΘΕΙΑ

Τα διαγωνίσματα "Τύπου Β" περιέχουν θέματα σύμφωνα με τις οδηγίες του υπουργείου. Συγκεκριμένα

- για το γυμνάσιο 2 θέματα θεωρίας όπου το καθένα καλύπτει ένα αντικείμενο της εξεταστέας ύλης καθώς και 3 ασκήσεις ίδιου τύπου.
- για το λύκειο 4 θέματα.
- α. Το πρώτο θέμα αποτελείται από δύο μέρη. Το πρώτο μέρος περιέχει πέντε (05) ερωτήσεις αντικειμενικού τύπου (πολλαπλής επιλογής, Σωστού Λάθους, αντιστοίχισης). Στο δεύτερο μέρος ζητείται η απόδειξη μίας απλής πρότασης (ιδιότητας, λήμματος, θεωρήματος ή πορίσματος), που είναι αποδεδειγμένη στο σχολικό εγχειρίδιο.
- β. Το δεύτερο θέμα αποτελείται από μία άσκηση που είναι εφαρμογή ορισμών, αλγορίθμων ή προτάσεων (ιδιοτήτων, θεωρημάτων, πορισμάτων).
- γ. Το τρίτο θέμα αποτελείται από μία άσκηση που απαιτεί από τον μαθητή ικανότητα συνδυασμού και σύνθεσης εννοιών και αποδεικτικών ή υπολογιστικών διαδικασιών.
- δ. Το τέταρτο θέμα αποτελείται από μία άσκηση ή ένα πρόβλημα που η λύση του απαιτεί από τον μαθητή ικανότητες συνδυασμού και σύνθεσης γνώσεων, αλλά και την ανάληψη πρωτοβουλιών για την ανάπτυξη στρατηγικών επίλυσής του.

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 🖫 : 6932327283 - 6955058444

3 Ιουλίου 2020

ΔΙΑΓΩΝΙΣΜΑ ΤΥΠΟΥ : Β - ΓΕΝΙΚΑ ΘΕΜΑΤΑ Γ' ΑΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Μονοτονία ακρότατα

ΘΕΜΑ Α

Α.1 Έστω μια συνάρτηση $f:A\to\mathbb{R}$ και Δ ένα διάστημα του πεδίου ορισμού της. Πότε η συνάρτηση f λέγεται γνησίως αύξουσα στο διάστημα Δ ; *Μονάδες 8*

Α.2 Να δώσετε τον ορισμό του ολικού ελάχιστου μιας συνάρτησης f με πεδίο ορισμού ένα σύνολο A.

Μονάδες 7

Α.3 Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη.

- α. Αν μια συνάρτηση $f:A\to\mathbb{R}$ είναι γνησίως μονότονη σε ένα διάστημα $\Delta\subseteq A$ του πεδίου ορισμού της, τότε έχει το πολύ μια ρίζα στο Δ .
- β. Από τη σχέση $f(x) \geq 3$ για κάθε $x \in D_f$ συμπεραίνουμε ότι το 3 είναι ολικό ελάχιστο της f .
- γ. Η συνάρτηση $f(x) = \frac{1}{x}$ είναι γνησίως φθίνουσα στο \mathbb{R}^* .
- δ. Η συνάρτηση $f(x) = \ddot{3}x + 2$ δεν έχει ακρότατα.
- ε. Αν για μια συνάρτηση f ισχύει f(2) < f(3) με $2, 3 \in \Delta$ τότε είναι η f είναι γνησίως αύξουσα στο διάστημα Δ .

Μονάδες 10

OEMA B

Δίνονται οι ακόλουθες συναρτήσεις $f:A\to\mathbb{R}$ και $g:B\to\mathbb{R}$ με τύπους $f(x)=\frac{1}{x-2}-x^3$ και $g(x)=\ln{(x-1)}$.

Β.1 Να βρείτε τα πεδία ορισμού A, B των συναρτήσεων f, g αντίστοιχα.

Μονάδες 5

- **Β.2** Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στα διαστήματα $(-\infty, 2)$, $(2, +\infty)$, ενώ η g είναι γνησίως αύξουσα στο $(1, +\infty)$.
- **B.3** Να δείξετε ότι η συνάρτηση g f είναι γνησίως αύξουσα.

Μονάδες 10

ΘΕΜΑ Γ

Γ.1 Να λύσετε την ανίσωση

$$2e^{2-x} - \ln{(x-1)} \le x^3 - 8$$

Μονάδες 8

Δίνεται η συνάρτηση $f(x) = \frac{2}{x} - \ln x$.

Γ.2 Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία της.

Μονάδες 7

Γ.3 Να λύσετε την ανίσωση

$$\frac{2}{x^2+1} - \frac{2}{2x^2+7} > \ln \frac{x^2+1}{2x^2+7}$$

Μονάδες 10

ΘΕΜΑ Δ

Δίνεται η συνάρτηση $f(x)=ax^3+\beta x^2+\gamma x+\delta$ με $a,\beta,\gamma,\delta\in\mathbb{R}$. Γνωρίζουμε ότι η f είναι περιττή και ότι η C_f διέρχεται από τα σημεία A(-1,-4) και B(2,26).

Δ.1 Να δείξετε ότι $a = 3, \beta = 0, \gamma = 1, \delta = 0.$

Μονάδες 7

Δ.2 Να μελετήσετε την f ως προς τη μονοτονία.

Μονάδες 8

Δ.3 Να λύσετε την ανίσωση

$$(x^2 - 3)^3 - (2x - 1)^3 < \frac{-x^2 + 2x + 2}{3}$$

Μονάδες 8

Διάρκεια εξετάσεων : 3 ώρες.