Plot Your Data!

Bernat Gel

PMPPC-IGTP Can Ruti Campus, Badalona @bernatgel We all like pretty images in papers

Images (might) help us convey a message

... but they can do more than that

Raw Data

Paper Figures

Plot Everything!

aCGH

Custom aCGH design

Very noisy probes ── Custom analysis

5 samples from blood with small insertions/deletions

rCGH Bioconductor package


```
Dídac
Barroso
```

```
cgh <- readAgilent(my.data.file)
cgh <- adjustSignal(cgh)
cgh <- segmentCGH(cgh)
cgh <- EMnormalize(cgh)</pre>
```


.

chr17

chr17

Conclusion: Custom normalization and Custom analysis

CNV

Benchmark of algorithms for CNV calling from NGS data, at single exon level, for genetic diagnostics

Testing 5 algorithms 4 real genetics diagnostics datasets Sensitivity 100% Maximum Specificity

One one-exon deletion in NF1 was not found by the algorithms

But is was validated by MLPA!

We tried optimizing algorithm parameters

We tried optimizing the optimizator

They never found the deletion

Plot our data

Show soft-clipped reads

Show soft-clipped reads

View -> Preferences -> Alignments
View soft-clipped bases

BLAST

ALU

What about the MLPA validation?

MLPA probe

What about the MLPA validation?

It was a false positive

We finally got the 100% sensitivity we were looking for

Many other examples: variant calling, SNP-arrays...

Plot Your Data!

Raw Data

Paper Figures

