

Mathematics prerequisites

Elements of Set Theory

Definition

A set is a collection of pairwise distinct objects called elements.

A set can be defined in two ways:

- in extension: we give the list of elements;
- in comprehension: we give a common property verified by the elements of the set.

Example

Let E be the set of even integers between 0 and 10. Then the elements of E are 0, 2, 4, 6, 8 et 10. We write $E = \{0, 2, 4, 6, 8, 10\}$.

Notes

To say that a mathematical object x is an element of a set A, we write: $x \in A$. When x is not an element of A, we write: $x \notin A$.

With E = $\{0, 2, 4, 6, 8, 10\}$, we have : $4 \in E$ et $5 \notin E$.

Definition Empty Set

There exists a set which does not contain any element, it is the empty set denoted ∅.

Set Cardinality

The cardinality of a set is the number of elements in that set. The cardinal of a set A is denoted card(A)

Inclusion

Set A is a subset of Set B if all the elements of A are elements of B, in other words $\forall x, x \in A \Rightarrow x \in B$

We note it $A \subseteq B$ (A included in B).

Example: $\{0, 1, 2\} \subseteq \{0, 1, 2, 3\} \subseteq \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Definition

Two sets A and B are equal when they have the same elements. We write : A = B. Thereby, A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Example: If $E = \{0, 2, 4, 6, 8, 10\}$ and $F = \{6, 8, 10, 0, 2, 4, 6, 8\}$, we have E = F.

Set of subset

Let A be a set, the set of parts of A denoted P(A) is the set of subsets of A.

Note

We always have:

- $\varnothing \in P(A)$ because $\varnothing \subseteq A$,
- $A \in P(A)$ because $A \subseteq A$.

Set Operations

Intersection

If A and B are two sets, we denote $A \cap B$ the set of mathematical objects that belong to A and B. $A \cap B$ reads « A inter B » or « the intersection of A and B ». We note that $A \cap B$ is a subset of A and a subset of B.

Example if $E = \{0, 2, 4, 6, 8, 10\}$ and $F = \{3, 10, 2, 8, 8, 5\}$, then $E \cap F = \{2, 8, 10\}$.

Union

If A and B are two sets, we denote $A \cup B$ the set of mathematical objects that belong to A or B. A \cup B reads «A union B» or «the union of A and B». Note that A and B are subsets of A \cup B.

Example if $E = \{0, 2, 4, 6, 8, 10\}$ and $F = \{3, 10, 2, 8, 8, 5\}$, then $E \cup F = \{0, 2, 3, 4, 5, 6, 8, 10\}$.

Properties

Idempotence : $A \cup A = A$

Commutativity : $A \cup B = B \cup A$

Associativity : $A \cup (B \cup C) = (A \cup B) \cup C$

Idempotence : $A \cap A = A$

Commutativity : $A \cap B = B \cap A$

Associativity : $A \cap (B \cap C) = (A \cap B) \cap C$

Neutral element : A $\cup \varnothing = A$ Neutral element : A $\cap \Omega = A$

Distributivity

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \text{ et } A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Difference

 $A\B = \{elements in A but not in B\}$

Symmetric difference

 $A \triangle B = \{elements in A \cup B but not in A \cap B\} = (A \cup B) \setminus (A \cap B)$

Complementary

 $\overline{A} = \Omega \setminus A$

Properties

Involution : $\overline{\overline{A}} = A$

Morgan's Law : $\overline{A \cap B} = \overline{A} \cup \overline{B} \ and \ \overline{A \cup B} = \overline{A} \cap \overline{B}$

Cartesian product

The Cartesian product of two sets A and B noted A \times B is the set defined by:

 $A \times B = \{(a, b) \text{ where } a \in A \text{ et } b \in B\}.$

A 1 × · · · × A k = {(a 1, . . . , a k) where $a_i \in A_i$ for all $i \in \{1, . . . , k\}$ }.

Example:

For the RGB computer color coding system ("Red, Green, Blue"), a color is an element of $[0, 255] \times [0, 255] \times [0, 255] = [0, 255]^3$ two colors that have the same triplet are equal; we can define color sets:

{predominantly green color} = { $(r, g, b) : g \ge (r + b)$ }

Application to Haskell

In programming languages, like Haskell, some objects are declared/defined with a certain data type:

- Bool is interpreted as the set {True, False},
- Int is interpreted as the set of integers between -2⁶³ et 2⁶³ -1.
- Integer is interpreted as the set of relative integers.
- Float is interpreted as the set of single precision floating point numbers.
- String is interpreted as the set of character strings

The symmetric difference (A∆B) corresponds to the symbol | in Haskell

Overview of functions

Definitions

Let A and B two non empty sets. Let \mathcal{R} be a relation from A to B. La relation \mathcal{R} is a function if any element x of A is related to at most one element of B. i.e. For any element x of A, for any element y of B and for any element z of B if x is related to y and x is related to z then y = z.

$$\forall x \in A, \forall y \in B, \forall z \in B, x R y \land x R z \Rightarrow y = z$$

In other words, the same causes are said to produce the same effects.

Note

Let f be a function f from A to B. if x is related to y by f, then:

- We denote f(x) = y.
- y is called image of x by f and x is called antecedent of y by f.
- A is called the starting set and B is called the ending set.
- We write $f: A \to B$ $x \to f(x)$

Example

Let E be the relation from the IR set of real numbers to the Z set of relative integers which to any real number associates its integer part (the largest of the integers smaller than this number). The relation E is a function. 3.2 is related to 3.

$$E(3,2) = 3$$
, $E(-6,2) = 7$. At any time, $E(3,2)$ Always gives 3.
 $E: IR \rightarrow Z$
 $x \rightarrow E(x)$

Counterexample

Consider the relationship \Re of Z (set of relative integers) toward Z which to any relative integer x associates the relative integer y such that x is the square of y. This relation is not a function. Because :

- 4 is the square of 2. So 4 R 2
- 4 is the square of -2. So $4 \Re -2$
- 4 is related to more than one element (-2 and 2). The relation \Re is therefore not a function.

The same causes do not produce the same effects. Indeed, if \Re is a function, what would be $\Re(4)$? 2 or -2? At one time we will have 2, at another time we will have -2!

Definitions

Let f be a function from set A to set B. The image of the function f, denoted Im(f) is the subset of B made up of all the images of the elements of the starting set A.

The inverse image of an element y of the target set B, denoted $f^{-1}(y)$, is the set of elements of A whose image by the function f is y.

The inverse image of a part P of the target set B, denoted f⁻¹ (P), is the set of elements of A whose image by the function f is contained in P.

Let f be the function defined by $f(x) = x^2 + 2$, complete relationships f(0) = ... $f^1(6) =$ Im(f) = $f^1([11; 27]) =$

Definition

The definition set of a function f is the set of elements x for which f(x) exists. We denote D(f) this set (or simply Df).

Function operations

Let f and g be two functions defined from A to B. we consider that on B are defined the operators +, -, \times , \div . We define their sum, difference, product and quotient by stating that:

•
$$(f + g)(x) = f(x) + g(x)$$

$$\bullet \quad (f-g)(x) = f(x) - g(x)$$

•
$$(f \times g)(x) = f(x) \times g(x)$$

$$\bullet \ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Function composition

Definition

The composite function $(g \circ f)$ of two functions f and g is defined by $(g \circ f)(x) = g(f(x))$

The definition set of $g \circ f$ is the set of all x in the definition set of f such that f(x) is in the definition set of g.

Example (to be completed)

1.
$$f(x) = x^2$$
 and $g(x) = 2x + 1$ then

a.
$$(f \circ g)(x) = ...$$

b.
$$(g \circ f)(x) = ...$$

2.
$$f(x) = x^2 + 1$$
 et $g(x) = \frac{1}{x}$ then

a.
$$g(f(x)) = ...$$

b.
$$f(g(x)) = ...$$

3.
$$f(x) = \sqrt{x}$$
 et $g(x) = 2x - 6$ then

a.
$$(f \circ g)(x) = ...$$

b.
$$(g \circ f)(x) =$$

Extension and restriction of a function

Definition

Let f be a function defined from a set A to a set B. Let C be a subset of A (C \subseteq A). The restriction of f on C denoted $f|_{C}$ is the function defined from C to B such that for all

$$x \in C, f|_{C}(x) = f(x)$$

Let f be a function defined from a set A to a set B. Let C be a set such that C contains A (A \subseteq C). Let g be a function from C to B. the function h from C to B defined by:

- $\bullet \quad \forall \ x \in \ A, \ h(x) \ = \ f(x)$
- $\forall x \in C \backslash A, h(x) = g(x)$

is called extension of the function f on C.

Multivariate function

Definition

Let f be a function from a set A to a set B. f is a multivariate function if A is a Cartesian product of at least two sets. That is to say there exists k greater than or equal to 2 such that

$$A = A_1 \times \cdots \times A_k = \{(a_1, \dots, a_k) \text{ where } a_i \in A_i \text{ pour tout } i \in \{1, \dots, k\}\}.$$

$$f: A \to B$$

$$\left(x_{1}, x_{2}, \dots, x_{k}\right) \to f\left(x_{1}, x_{2}, \dots, x_{k}\right)$$

Example

$$f: IR^2 \to IR$$

 $(x, y) \to \sqrt{x^2 + y^2}$

Parametric functions

Let m be an element of a set denoted by M. Let f be a function from A to B. The function f is parametrized by m if $\forall x \in A$, f(x) is expressed in terms of m. We denote f_m .

Example

Let m be a real number.

$$f: IR \to IR$$

 $x \to f(x) = 2x + m$

f is a function parameterized by m.

Let k be a real number.

$$f: IR \to IR$$

$$x \to \sqrt{x^2 + k^2} \text{ is a function parameterized by k}$$

Note

if f_m is a function parameterized in m from A to B (with m belonging to M), then f_m comes from the function g defined as:

$$g: A \times M \to B$$

 $(x,m) \to f_m(x)$

 $\boldsymbol{f}_{m}\left(\mathbf{x}\right)$ is obtained by fixing the variable m in the function g.

Application to Haskell

This is applied in Haskell through the following concepts:

- Currying,
- Higher Order Function,
- Parameterized Functions