

Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models

Florence Bockting Stefan T. Radev Paul-Christian Bürkner



# Introductory example One factorial design with three levels



- ➤ Investigate treatment-effect on some dependent variable (e.g. plant growth)
  - treatment 1
  - treatment 2
  - control



### Introductory example Expert expectations



- ➤ Investigate treatment-effect on some dependent variable (e.g. plant growth)
  - treatment 1
  - treatment 2
  - control

### **Expert assumptions:**

- ▶ treatment 1,2 ≥ control
- ▶ treatment 1 < treatment 2</p>



### Introductory example Expert expectations



- ▶ Investigate treatment-effect on some dependent variable (e.g. plant growth)
  - treatment 1
  - treatment 2
  - control

### **Expert assumptions:**

- ▶ treatment 1,2 ≥ control
- ▶ treatment 1 < treatment 2</p>



### Introductory example Statistical model



 $\beta_0 \sim \text{Normal}(\mu_0, \sigma_0)$  $\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$  $\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$  $s \sim \text{Normal}^+(\sigma)$ 

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

$$y_i \sim \text{Normal}(\theta_i, s)$$



## The problem Translate expert beliefs into corresponding priors





 $\beta_0 \sim \text{Normal}(\mu_0, \sigma_0)$ 

 $\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$ 

 $\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$ 

 $s \sim \text{Normal}^+(\sigma)$ 

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

 $y_i \sim \text{Normal}(\theta_i, s)$ 



### The problem is actually not new Expert prior elicitation has a long history



- ➤ Recent review: Mikkola et al. (2023)
- ▶ Historically, methods focused on model parameters
- Recent shift to methods that focus on prior predictive distribution
  - ➤ e.g., da Silva et al. (2019); Hartmann et al. (2020); Manderson & Goudie (2023)

| query information from expert | translate     | $ ightarrow$ prior $oldsymbol{eta} \sim oldsymbol{p_{\lambda}}$ |
|-------------------------------|---------------|-----------------------------------------------------------------|
| Parameter space               | 2             | Parameter space                                                 |
| Observable spac               | e             | Parameter space                                                 |
| Parameter/ Obse               | ervable space | Parameter space ou meth                                         |

## Our contribution to the problem Overview of our prior elicitation method



Bockting, F., Radev, S. T., & Bürkner, P. C. (2024). Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models. arXiv preprint arXiv:2308.11672.



## Our contribution to the problem Overview of our prior elicitation method



Bockting, F., Radev, S. T., & Bürkner, P. C. (2024). Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models. arXiv preprint arXiv:2308.11672.



## A closer look into our method Initialize hyperparameter vector



$$\beta_0 \sim \text{Normal}(\mu_0, \sigma_0)$$

$$\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$$

$$\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$$

$$s \sim \text{Normal}^+(\sigma)$$

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

$$y_i \sim \text{Normal}(\theta_i, s)$$

ISBA, 06 July 2024

# A closer look into our method Initialize hyperparameter vector



$$\beta_0 \sim \text{Normal}(\mu_0, \sigma_0)$$

$$\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$$

$$\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$$

$$s \sim \text{Normal}^+(\sigma)$$

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

$$y_i \sim \text{Normal}(\theta_i, s)$$



# A closer look into our method Initialize hyperparameter vector





 $\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$ 

 $\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$ 

 $s \sim \text{Normal}^+(\sigma)$ 

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

 $y_i \sim \text{Normal}(\theta_i, s)$ 





# A closer look into our method Simulate from the generative model ...



 $\beta_0 \sim \text{Normal}(\mu_0^{ini}, \sigma_0^{ini})$ 

 $\beta_1 \sim \text{Normal}(\mu_1^{ini}, \sigma_1^{ini})$ 

 $\beta_2 \sim \text{Normal}(\mu_2^{ini}, \sigma_2^{ini})$ 

 $s \sim \text{Normal}^+(\sigma^{ini})$ 

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

 $y_i \sim \text{Normal}(\theta_i, s)$ 



## A closer look into our method ... and compute the elicited statistics









### A closer look into our method Learn hyperparameter vector via batch SGD



Compute loss based on simulated data and expert expectations

$$L(\lambda) = \alpha_1 L_1 \left( \min y_{pred}^{trt \ 1}, \min \hat{y}_{pred}^{trt \ 1} \right) + \alpha_2 L_2 \left( q_p^{trt \ 1}, \hat{q}_p^{trt \ 1} \right) + \dots + \alpha_6 L_6 \left( q_p^{crt}, \hat{q}_p^{crt} \right)$$

### A closer look into our method Learn hyperparameter values via batch SGD



Compute loss based on simulated data and expert expectations

$$L(\lambda) = \alpha_1 L_1 \left( \min y_{pred}^{trt \ 1}, \min \hat{y}_{pred}^{trt \ 1} \right) + \alpha_2 L_2 \left( q_p^{trt \ 1}, \hat{q}_p^{trt \ 1} \right) + \dots + \alpha_6 L_6 \left( q_p^{crt}, \hat{q}_p^{crt} \right)$$

 $\blacktriangleright$  Compute gradient of loss w.r.t.  $\lambda$  and adjust  $\lambda$  in the opposite direction of the gradient

$$\lambda \leftarrow \lambda - \delta \sum_{m=1}^{M} \alpha_m \frac{\partial L_m}{\partial \lambda}$$

### A closer look into our method Learn hyperparameter values via batch SGD



Compute loss based on simulated data and expert expectations

$$L(\lambda) = \alpha_1 L_1 \left( \min y_{pred}^{trt \ 1}, \min \hat{y}_{pred}^{trt \ 1} \right) + \alpha_2 L_2 \left( q_p^{trt \ 1}, \hat{q}_p^{trt \ 1} \right) + \dots + \alpha_6 L_6 \left( q_p^{crt}, \hat{q}_p^{crt} \right)$$

 $\blacktriangleright$  Compute gradient of loss w.r.t.  $\lambda$  and adjust  $\lambda$  in the opposite direction of the gradient

$$\lambda \leftarrow \lambda - \delta \sum_{m=1}^{M} \alpha_m \frac{\partial L_m}{\partial \lambda}$$

Repeat until max. number of epochs

update
$$(\lambda^{init}) \mapsto \lambda^{t_1}$$
...
update $(\lambda^{t_{\max-1}}) \mapsto \lambda^{t_{\max}}$ 

## A closer look into our method Convergence diagnostics



$$\beta_0 \sim \text{Normal}(\mu_0, \sigma_0)$$

$$\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$$

$$\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$$

$$s \sim \text{Normal}^+(\sigma)$$

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

$$y_i \sim \text{Normal}(\theta_i, s)$$



### Reminder: The problem

### Translate expert beliefs into corresponding priors





 $\beta_0 \sim \text{Normal}(\mu_0, \sigma_0)$ 

 $\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$ 

 $\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$ 

 $s \sim \text{Normal}^+(\sigma)$ 

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

 $y_i \sim \text{Normal}(\theta_i, s)$ 



## A closer look into our method Results: learned vs. expert-elicited statistics





## A closer look into our method Results: Learned prior distributions



$$\beta_0 \sim \text{Normal}(\mu_0, \sigma_0)$$

$$\beta_1 \sim \text{Normal}(\mu_1, \sigma_1)$$

$$\beta_2 \sim \text{Normal}(\mu_2, \sigma_2)$$

$$s \sim \text{Normal}^+(\sigma)$$

$$\theta_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

$$y_i \sim \text{Normal}(\theta_i, s)$$



ISBA, 06 July 2024

### Sensitivity analysis

### Sensitivity of learned prior distributions





### Sensitivity analysis (30 replications with varying seed)



### Sensitivity analysis

### Sensitivity of learned elicited statistics







# Sensitivity analysis Approaches for dealing with sensitive results



➤ Elicit additional expert information and incorporate it in the learning algorithm



# Sensitivity analysis Approaches for dealing with sensitive results



- Elicit additional expert information and incorporate it in the learning algorithm
- ➤ Select plausible prior distributions among learned hyperparameter values







# Sensitivity analysis Approaches for dealing with sensitive results



- Elicit additional expert information and incorporate it in the learning algorithm
- ➤ Select plausible prior distributions among learned hyperparameter values
- ▶ Model averaging







- ➤ Make the method actually Bayesian ...
  - ➤ Explicitly represent uncertainty about the elicitation process and learn a posterior distribution of the hyperparameter values
- ➤ Instead of learning the hyperparameters of a prespecified family learn the whole joint distribution on the model parameters
  - ▶ Work in progress preprint is coming soon
- ▶ Approaches that deal with multiple expert beliefs
- ➤ Work out helpful diagnostics

ISBA, 06 July 2024



florence.bockting@tu-dortmund.de

- ▶ Interface to R/Stan (current implementation is in Python TensorFlow)
- ➤ Tutorial paper for practitioners
- ▶ Applications
  - ➤ I am looking for collaborators who have an application (+ an expert) and are willing to try out the method.



### Thank you for your attention.

### **Contact:**



Florence Bockting
TU Dortmund
University, GER

florence.bockting@ tu-dortmund.de



Stefan T. Radev Rensselaer Polytechnic Institute, NY, USA

radevs@rpi.edu



Paul-Christian Bürkner
TU Dortmund
University, GER

https://paulbuerkner.github.io/



### Thank you for your attention.

### Project website: (under construction)

https://florence-bockting.github.io/PriorLearning/index.html



### References



- Albert, I., Donnet, S., Guihenneuc-Jouyaux, C., Low-Choy, S., Mengersen, K., & Rousseau, J. (2012). Combining Expert Opinions in Prior Elicitation. *Bayesian Analysis*, 7(3), 503-532.
- da Silva, E. D. S., Kuśmierczyk, T., Hartmann, M., & Klami, A. (2023). Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching. *Journal of Machine Learning Research*, 24(67), 1-51.
- Hartmann, M., Agiashvili, G., Bürkner, P., & Klami, A. (2020). Flexible prior elicitation via the prior predictive distribution. In Conference on Uncertainty in Artificial Intelligence (pp. 1129-1138). PMLR.
- Manderson, A. A., & Goudie, R. J. (2023). Translating predictive distributions into informative priors. ArXiv preprint.
- Mikkola, P., Martin, O. A., Chandramouli, S., Hartmann, M., Pla, O. A., Thomas, O., ... & Klami, A. (2021). Prior knowledge elicitation: The past, present, and future. ArXiv preprint.