Лабораторная работа №8

Выполнил студент Абушек Дмитрий Олегович

1032203018

Цель лабораторной работы

• Изучить и построить модель конкуренции двух фирм

Теоретическое введние

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Теоретическое введние

Обозначим:

\$N\$ - число потребителей производимого продукта.

\$\$\$ – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

\$М\$ – оборотные средства предприятия

\$\tau\$ - длительность производственного цикла

\$р\$ - рыночная цена товара

\$\widetilde{p}\$ - себестоимость продукта, то есть переменные издержки на производство единицы продукции

\$\delta\$ - доля оборотных средств, идущая на покрытие переменных издержек

\$k\$ - постоянные издержки, которые не зависят от количества выпускаемой продукции

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Теоретическое введние. Построение математической модели (1)

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$SQ = q - k\frac{p}{S} = q(1 - \frac{p}{p} {cr})$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p = p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr} = q_k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, q(s/p) = 0 при p_{cr} и обладает свойствами насыщения.

Теоретическое введние. Построение математической модели (2)

Уравнения динамики оборотных средств приобретает (1):

 $\frac{dM}{dt} = -\frac{M \cdot delta}{\lambda + NQp - k} = -\frac{M \cdot delta}{\lambda + Nq(1 - \frac{p}{p - k})p - k}$

Теоретическое введние. Построение математической модели (3)

Уравнения динамики оборотных средств приобретает (2):

 $\frac{dM}{dt} = -\frac{M \cdot (\frac{p}{p_{cr}}-1) - M^2 (\frac{h}{tau \cdot (p)})^2 - (p_{cr})^{nq} - k$$

Теоретическое введние. Построение математической модели (4)

В обсуждаемой модели параметр \$\delta\$ всюду входит в сочетании с \$\tau\$. Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: \$\delta = 1\$, а параметр \$\tau\$ будем считать временем цикла, с учётом сказанного.

Задание лабораторной работы. Вариант 1

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

```
 $$ a_1 = \frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_{cr}}{\frac{p_
```

также введена нормировка $t = c \cdot 1$ Theta\$

Задание лабораторной работы. Вариант 1

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед \$M_1 M_2\$ будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

Задачи

- 1. Изучить модель конкуренции двух фирм
- 2. Построить графики изменения оборотных средств двух фирм для обоих случаев

Ход выполнения лабораторной работы

Математическая модель

По представленному выше теоретическому материалу были составлены модели на обоих языках программирования.

Решение с помощью программ

Результаты работы кода на Julia и Open Modelica для первого случая:

Результаты работы кода на Julia и Open Modelica для второго случая:

Анализ полученных результатов. Сравнение языков.

- В итоге проделанной работы на языках Julia и OpenModelica мы построили графики изменения оборотных средств для двух фирм для случаев, когда конкурентная борьба ведётся только рыночными методами и когда, помимо экономического фактора влияния, используются еще и социально-психологические факторы
- Кроме того, построение модели конкуренции двух фирм на языке OpenModelica занимает значительно меньше строк кода, чем аналогичное построение на Julia

Вывод

Вывод

В ходе выполнения лабораторной работы была изучена модель конкуренции двух фирм и в дальнейшем построена модель на языках Julia и Open Modelica.

Список литературы. Библиография

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Документация по OpenModelica: https://openmodelica.org/
- [3] Решение дифференциальных уравнений: https://www.wolframalpha.com/
- [4] Мальтузианская модель роста: https://www.stolaf.edu//people/mckelvey/envision.dir/malthus.html
- [5] Математические модели конкурентной среды: https://dspace.spbu.ru/bitstream/11701/12019/1/Gorynya 2018.pdf