2 задача: Дерево отрезков (2)

4 модуль, 2 семестр

ФИВТ МФТИ, 2019

Описание by Илья Белов

1. Текст задачи:

Последовательность единиц

Дан массив из нулей и единиц a_0 , a_1 , ..., a_{n-1} . Для каждого запроса [left, right] найдите такой подотрезок a_l , a_{l+1} , ..., a_r этого массива ($0 \le left \le l \le r \le right \le n$), что числа a_l , a_{l+1} , ..., a_r являются максимально возможной последовательностью единиц.

Требуемое время ответа на запрос - O(log n).

Формат входных данных

Описание каждого теста начинается с двух чисел n и m - длины массива и числа интересующих подотрезков.

В следующей строке содержится *п* нулей и единиц.

Далее следуют описания подотрезков, каждое описание состоит из двух чисел *left* и *right*, обозначающих левый и правый конец подотрезка ($0 \le left \le right \le n$).

Формат выходных данных

Для каждого примера выведите m чисел: искомую максимальную длину последовательности единиц для каждого из подотрезков.

Пример

in	out
10 4	0
0101111011	3
2 2	4
1 5	1
0 9	
9 9	

2. Описание алгоритма

Для каждого отрезка строки a в дереве будем хранить 4 параметра:

- 1) Длину отрезка *len*
- 2) Длину префикса единиц *pref*
- 3) Длину суффикса единиц suf
- 4) Максимальную длину последовательности единиц на отрезке seq

Для каждой вершины при построении будем вычислять эти параметры рекурсивно следующий образом:

Самый нижний слой:

$$len[i] = 1$$
, $pref = suf = seq = 1$ if $a[i] == 1$ else 0

Остальные слои:

Пусть left и right - левый и правый ребёнок вершины i соответственно

$$len[i] = len[left] + len[right]$$

$$pref[i] = len[left] + pref[right] if len[left] == pref[left] else pref[left]$$

$$suf[i] = suf[left] + len[right]$$
 if $len[right] == suf[right]$ else $suf[right]$

seq[i] = max(seq[left], seq[right], suf[left] + pref[right])

При запросе вершины будут возвращать seq[i] если отрезок в запросе совпадает с отрезком в вершине и max(seq[left], seq[right]) иначе

3. Доказательство корректности

Доказательство корректности работы дерева отрезков смотри на https://e-maxx.ru/algo/segment_tree

4. Время работы и дополнительная память

$$T = O(n + mlog n)$$
$$M = O(n)$$

5. Доказательство времени работы и дополнительной памяти Докажем доп память.

Мы должны хранить каждый слой бинарного дерева, а это в общей сложности $\frac{n}{2}+\frac{n}{4}+...+2+1=n$ вершин (в случае $n=2^k$, иначе асимптотика не изменится так как в худшем случае кол-во вершин будет n+logn). Получаем M=O(n)

Докажем время работы.

1) Построение

Как указано выше, вершин в дереве будет O(n). При построении дерева значение каждой вершины вычисляется один раз за O(1). Следовательно, время построения всего дерева будет O(n)

2) Запросы

На каждой высоте дерева рекурсией затрагивается не более чем 4 вершины, высота дерева O(logn), следовательно один запрос работает на O(logn)

Итоговое время работы алгоритма с m запросами получаем T = O(n + mlogn)