CWRU DSCI351-351M-451: Week15a-p Logistic Regression

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

01 December, 2022

Contents

	15.1.2.1 Class Re	eadings, Assignments, Syllabus Topics	2
	15.1.2.1.1	Course Evaluations Are Open Now	2
	15.1.2.1.2	Reading, Lab Exercises, SemProjects	2
	15.1.2.2 Syllabus	3	2
15.1.3	Logistic Regression	on	2
		, Preparing data for, and how to evaluate, logistic regression	4
	15.1.3.2 Logistic	regression theory	4
	15.1.3.2.1	What is a logistic regression?	4
	15.1.3.2.2	A linear regression	4
	15.1.3.2.3	Why do we need a transformation function?	4
	15.1.3.2.4	What can we measure that is a continuous variable?	5
	15.1.3.2.5	How can we transform it to be in the range we want?	6
	15.1.3.2.6	How can allow negative values?	7
	15.1.3.2.7	Interpreting the results	8
	15.1.3.3 Logistic	regressions in R	8
	15.1.3.3.1	glm() "generalized linear models"	8
	15.1.3.3.2	Formula	8
	15.1.3.3.3	Useful parameters	9
	15.1.3.3.4	Functions working with glm	9
	15.1.3.3.5	Inputs	9
	15.1.3.4 Preparir	$\log \operatorname{data}$	9
	15.1.3.4.1	Exploration	9
	15.1.3.4.2	Sampling	10
	15.1.3.4.3	Why sample before processing?	10
	15.1.3.4.4	Scaling variables	10
	15.1.3.4.5	Scaling variables	11
	15.1.3.4.6	Things to check for	12
	15.1.3.4.7	Missingness: How to handling missing values	12
	15.1.3.5 Building	g models	12
	15.1.3.5.1	Initial models	12
	15.1.3.5.2	Stepwise variable selection	12
	15.1.3.5.3	Other model types	13
	15.1.3.5.4	Others	13
	15.1.3.6 Evaluati	ing glms	13
	15.1.3.6.1	broom	13
	15.1.3.6.2	broom	13
	15.1.3.6.3	broom	14
	15.1.3.6.4	Coefficients	14
	15.1.3.6.5	Kev metrics	14

15.1.3.6.6 Classification rates 15 15.1.3.6.7 Classification rates 16 15.1.3.7 Links 16
15.1.2.1 Class Readings, Assignments, Syllabus Topics
15.1.2.1.1 Course Evaluations Are Open Now
• lets get to 90% response rate
• We want statistically significant results!
- I look for suggestions on how to improve the course
• https://webapps.case.edu/courseevals/
15.1.2.1.2 Reading, Lab Exercises, SemProjects
 Readings: For today: ISLR 3.1,3.2 For next class: French & Bruckman 2020 Laboratory Exercises: LE7: Due Thursday Dec. 8nd LE7: Office Hours: (Class Canvas Calendar for Zoom Link) Wednesday @ 4:00 PM to 5:00 PM, Will Oltjen Saturday @ 3:00 PM to 4:00 PM, Kristen Hernandez Office Hours are on Zoom, and recorded Semester Projects DSCI 451 Students Biweekly Update 6 Due Friday November 18th DSCI 451 Students * Next All DSCI 351/351M/451 Students: * Peer Grading of Report Out #3 is Given out today Exams * Final: Monday December 19, 2022, 12:00PM - 3:00PM, Nord 356 or remote
15.1.2.2 Syllabus
15.1.3 Logistic Regression
library(dplyr)
Attaching package: 'dplyr'
<pre>## The following objects are masked from 'package:stats': ## ## filter, lag</pre>
<pre>## The following objects are masked from 'package:base':</pre>
The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

##

library(ggplot2)
library(broom)

Day:Date	Foundation	Practicum	Reading	Due
w01a:Tu:8/30/22	ODS Tool Chain	R, Rstudio, Git		
w01b:Th:9/1/22	Setup ODS Tool Chain	Bash, Git, Slack, Agile	PRP4-33	LE1
w02a:Tu:9/6/22	Bash-Git-Knuth- Lit.Prog.	RIntroR	PRP35-64	
w02b:Th:9/8/22	What is Data Science	OIS:Intro2R	OIS1,2	
w02Pr:Fr:9/9/22			PRP65-93	451 Update1
w03a:Tu:9/13/22	Data Intro	Data Analytic Style	PRP94-116	LE2 LE1 Due
w03b:Th:9/15/22	Rand. Var. Normal Dist.	Git, Rmds, Loops	OIS4	
w04a:Tu:9/20/22	Tidy Check Explore	Tidy GapMinder	EDA1-31	
w04b:Th:9/22/22	Inference, DSCI Process	Other Distrib. 7 ways	R4DS1-3	LE3 LE2 Due
w04Pr:Fr:9/23/22			EDA32-58	451 Update2
w05a:Tu:9/27/22	OIS4 Rand. Var.	EDA of PET Degr.	OIS5	
w05b:Th:9/29/22	OIS5 Found. of Infer.	Multivar Corr. Plot	R4DS4-6	
w05Pr:Fr:9/30/22				451 RepOut1
w06a:Tu:10/4/22	Pred., Algorithm, Model		R4DS7-8	
w06b:Th:10/6/22	Summ. Stats & Vis.	Anscombe's Quartets	R4DS9-16	LE4 LE3 Due
w06Pr:Fr:10/7/22				451 Update3
w07a:Tu:10/11/22	Midterm Rev. Tidy Data	Correl Plots Summ Stats	OIS6.1-2	PeerRv1 Due
w07b:Th:10/13/22	HypoTest, Infer. Recap	Penguin EDA, Sampling		
w08a:Tu:10/18/22	MIDTERM	EXAM		
w08b:Th:10/20/22	Programming & Coding	Code Packaging		LE4 Due
w08Pr:Fr:10/21/22				451 Update4
Tu:10/24,25	CWRU	FALL BREAK	R4DS17-21	
w09b:Th:10/27/22	Cat. Inf. 1 & 2 propor.	Indep. Test,2-way tables	OIS6.3-4	LE5
w09Pr:Fr:10/28/22				451 RepOut2
w10a:Tu:11/1/22	Goodness of Fit, χ^2 test	t-tests 1&2 means	OIS7.1-4	
w10b:Th:11/3/22	Num. Infer, Cont. Tables	Stat. Power		
w10Pr:Fr:11/4/22				451 Update5
w11a:Tu:11/8/22	Sample & Effect Size	Stat. Power GGmap	OIS8	PeerRv2 Due
w11b:Th:11/10/22	Regr Part 1, Test & Train	Curse of Dimen.	ISLR1,2.1,2	LE6 LE5 Due
w12a:Tu:11/15/22	Regr. Outliers	Regr Part 2, GIS	OIS9	
w12b:Th:11/17/22	Mult.Regr., Var. Select	Regr. Diagnostics		
w12Pr:Fr:11/18/22				451 Update6
w13a:Tu:11/22/22	Log. Regr.	Mult. Regression	ISLR3.1	LE7 LE6 due
w13b:Th:11/24/22	Statistical learning	Logistic Regr.	ISLR3.2	
w13Pr:Fr:11/25/22				451 RepOut3
w14a:Tu:11/23/22		GIS Trends	ISLR4.1-3	
Th,Fr:11/24,25	THANKSGIVIING	Vacation		
w15a:Tu:11/29/22	Classificat., Sup. Lrning	Log. Regr. & ML		PeerRv3 Due
w15b:Th:12/1/22	Clustering, Unsup. Lrn-	Caret, Broom 4 modeling	Fr.Br.2020	
	ing			
w15SPr:Fr:12/2/22				
w16a:Tu:12/6/22	Big Data Analytics	Dist. Comp., Hadoop	Khalil.2020	
w16b:Th:12/8/22	Final Exam Review		Mirletz,2015	LE7 due
Friday 12/12	SemProj	Final Report		SemProj4 due
Monday 12/19	FINAL EXAM	12:00-3:00pm	Nord 356	or remote

Figure 1: DSCI351-351M-451 Syllabus

```
library(forcats)
library(caret)
```

Loading required package: lattice

15.1.3.1 What is, Preparing data for, and how to evaluate, logistic regression

15.1.3.2 Logistic regression theory

15.1.3.2.1 What is a logistic regression?

- A logistic regression is a linear regression,
 - applied to categorical outcomes
 - by using the "logit", or log odds, transformation function.

15.1.3.2.2 A linear regression

- A linear regression
 - uses a line of best fit
 - * (the old y = mx + c)
 - * what we would call $Y = \beta_0 + \beta_1 X + \epsilon$
 - $-\,$ over multiple variables to predict a continuous variable.

{Are you familiar with qplot command?}

```
set.seed(777)
y_n <- rnorm(1000, 100, 25)
x_n <- y_n + rnorm(1000, 30, 20)

?qplot
qplot(x_n, y_n) + geom_smooth(method = "lm", se = FALSE) + theme_minimal()</pre>
```

`geom_smooth()` using formula = 'y ~ x'

15.1.3.2.3 Why do we need a transformation function?

• If you're trying to predict

```
- whether someone survives (1) or dies (0),
```

- does it make sense to say they're
 - * -0.2 alive, 0.5 alive, or 1.1 alive?

```
y_b \leftarrow rbinom(1000, size = 1, prob = .89)

qplot(y_b, binwidth = .5)
```



```
x_b <- y_b + rnorm(1000)
qplot(x_b, y_b) + geom_smooth(method = "lm", se = FALSE) + theme_minimal()</pre>
```


15.1.3.2.4 What can we measure that is a continuous variable?

- We can measure the *probability* of someone surviving.
 - This gives us data in the range [0,1]
 - * which is better,
 - but still not our ideal of $[-\infty, +\infty]$.

15.1.3.2.5 How can we transform it to be in the range we want?

- $\bullet~$ The odds of something happening are
 - the probability of it happening versus
 - the probability of it not happening can help us.

$$\frac{p}{1-p}$$

As probability can never be less than 0 or greater than 1,

• we get a range between $[0, +\infty]$.

15.1.3.2.6 How can allow negative values?

- $\bullet~$ The final step in this transformation
 - is to take the log of the odds,
 - which is commonly called the *logit*.

This gets us to $[-\infty, +\infty]$.

```
logit <- log(odds_y)
qplot(prob_y, logit) + theme_minimal()</pre>
```



```
#install.packages("optiRum")
library(optiRum)
logits <- -4:4
odds <- logit.odd(logits)
probs <- odd.prob(odds)
pred_class <- logits >= 0
```

knitr::kable(data.frame(logits, odds, probs, pred_class))

15.1.3.2.7 Interpreting the results

logits	odds	probs	pred_class
-4	0.0183156	0.0179862	FALSE
-3	0.0497871	0.0474259	FALSE
-2	0.1353353	0.1192029	FALSE
-1	0.3678794	0.2689414	FALSE
0	1.0000000	0.5000000	TRUE
1	2.7182818	0.7310586	TRUE
2	7.3890561	0.8807971	TRUE
3	20.0855369	0.9525741	TRUE
4	54.5981500	0.9820138	TRUE

15.1.3.3 Logistic regressions in R

15.1.3.3.1 glm() "generalized linear models"

• The glm function is used for performing logistic regressions.

It can be used for other linear models too.

```
?glm
glm(vs ~ mpg , data = mtcars, family = binomial(link = "logit"))

##
## Call: glm(formula = vs ~ mpg, family = binomial(link = "logit"), data = mtcars)
##
## Coefficients:
## (Intercept) mpg
## -8.8331 0.4304
##
## Degrees of Freedom: 31 Total (i.e. Null); 30 Residual
## Null Deviance: 43.86
## Residual Deviance: 25.53 AIC: 29.53
```

15.1.3.3.2 Formula

- R uses a formula system for specifying a model.
 - You put the outcome variable on the left
 - A tilde (~) is used for saying "predicted by"
 - Exclude an intercept term by adding -1 to your formula
 - You can use a . to predict by all other variables e.g. y $\,\sim\,$.
 - Use a + to provide multiple independent variables e.g. y ~ a + b
 - You can use a: to use the interaction of two variables e.g. y ~ a:b
 - You can use a * to use two variables and their interaction e.g. y ~ a*b
 - * (equivalent to y \sim a + b + a:b)
 - You can construct features on the fly
 - * e.g. y ~ log(x) -or use I() when adding values
 - * e.g. y ~ I(a+b)

For more info, check out ?formula

15.1.3.3.3 Useful parameters

- na.action can be set to amend the handling of missing values in the data
- model,x,y controls whether you get extra info about the model and data back.
 - Setting these to FALSE saves space

```
df <-
  data.frame(
    Function = c(
      "coefficients",
      "summary",
      "fitted",
      "predict",
      "plot",
      "residuals"
    ),
    Purpose = c(
      "Extract coefficients",
      "Output a basic summary",
      "Return the predicted values for the training data",
      "Predict some values for new data",
      "Produce some basic diagnostic plots",
      "Return the errors on predicted values for the training data"
    )
  )
knitr::kable(df)
```

15.1.3.3.4 Functions working with glm

Function	Purpose
coefficients	Extract coefficients
summary	Output a basic summary
fitted	Return the predicted values for the training data
predict	Predict some values for new data
plot	Produce some basic diagnostic plots
residuals	Return the errors on predicted values for the training data

```
# kable is a simple way to make good looking tables in Rmd
?knitr::kable
```

15.1.3.3.5 Inputs

- You can provide a glm with continuous and categorical variables.
 - Categorical variables get transformed into indicator (dummy) variables
 - Continuous variables should ideally be scaled

15.1.3.4 Preparing data

15.1.3.4.1 Exploration

• Many ways to explore your data for outliers, patterns, issues etc.

```
mtcarsVars <- mtcars[, colnames(mtcars)[colnames(mtcars) != "vs"]]
mtcarsOut <- mtcars[, "vs"]
library(caret)
featurePlot(mtcarsVars, mtcarsOut)</pre>
```


15.1.3.4.2 Sampling

• Commonly, we will take a training sample and a testing sample.

```
set.seed(77887)
trainRows <- createDataPartition(mtcarsOut, p = .7 , list = FALSE)
training_x <- mtcarsVars[trainRows,]
training_y <- mtcarsOut[trainRows]
testing_x <- mtcarsVars[-trainRows,]
testing_y <- mtcarsOut[-trainRows]</pre>
```

15.1.3.4.3 Why sample before processing?

- Sampling before scaling etc
 - prevents information about the test data leaking into our model.

By preventing such leaks

• we get a truer view of how well our model generalizes later.

15.1.3.4.4 Scaling variables

- minmax Express numbers
 - as a percentage of the maximum
 - * after subtracting the minimum.

This results in range [0,1]

- for training data
 - but can result in a different range in test data
 - and, therefore, production!

$$\frac{x - \min(x)}{\max(x) - \min(x)}$$

- z-score Express numbers
 - as the distance from the mean * in standard deviations.

This results in a range that's notionally $[-\infty, +\infty]$

• and results will be in the same range in test data.

$$\frac{x-mean(x)}{sd(x)}$$

Perform z-score scaling in R with the scale function:

```
x \leftarrow rnorm(50, mean = 50, sd = 10)
x_s <- scale(x, center = TRUE, scale = TRUE)</pre>
summary(x_s)
```

```
V1
##
           :-2.36115
   \mathtt{Min}.
##
  1st Qu.:-0.62046
## Median :-0.05326
## Mean
          : 0.00000
## 3rd Qu.: 0.65266
           : 2.53141
## Max.
```

##

15.1.3.4.5 Scaling variables

- Use caret package to scale multiple variables simultaneously and
 - get a reusable scaling model for applying to test data,
 - and eventually production data.

```
transformations <- preProcess(training_x)</pre>
scaledVars <- predict(transformations, training_x)</pre>
knitr::kable(t(summary(scaledVars)))
```

mpg	Min.	1st	Median	Mean:	3rd Qu.:	Max.:
	:-1.57103	Qu.:-0.78724	:-0.09845	0.00000	0.51909	2.15002
cyl	Min. :-1.106	1st Qu.:-1.106	Median:	Mean: 0.000	3rd Qu.:	Max. : 1.106
			0.000		1.106	
disp	Min. :-1.2010	1st	Median	Mean : 0.0000	3rd Qu.:	Max. : 1.8380
		Qu.:-0.8254	:-0.4695		0.7957	
hp	Min. :-1.2558	1st	Median	Mean: 0.0000	3rd Qu.:	Max. : 2.5603
		Qu.:-0.6895	:-0.4333		0.6050	
drat	Min. :-1.5108	1st	Median:	Mean: 0.0000	3rd Qu.:	Max. : 2.2614
		Qu.:-0.8329	0.1058		0.6447	
wt	Min.	1st	Median:	Mean:	3rd Qu.:	Max.:
	:-1.52343	Qu.:-0.63886	0.02664	0.00000	0.30394	2.09156
qsec	Min.	1st	Median	Mean:	3rd Qu.:	Max.:
	:-1.72302	Qu.:-0.55308	:-0.02315	0.00000	0.52982	2.57785
am	Min. $:-0.9364$	1st	Median	Mean: 0.0000	3rd Qu.:	Max. : 1.0215
		Qu.:-0.9364	:-0.9364		1.0215	
gear	Min. :-1.0623	1st	Median:	Mean: 0.0000	3rd Qu.:	Max. : 1.5096
		Qu.:-1.0623	0.2236		0.2236	
carb	Min. :-1.0289	1st	Median	Mean : 0.0000	3rd Qu.:	Max. : 2.9151
		Qu.:-0.4654	:-0.4654		0.6614	

15.1.3.4.6 Things to check for

- Correlated variables
- Low variance columns

the caret package is very useful for these

15.1.3.4.7 Missingness: How to handling missing values

- $\bullet\,$ Common methods for coping with missing data:
 - Removing rows with missing values
 - * Con: reduces sample size
 - * Pro: use only complete data
 - [Continuous variables only] Putting in a default value like mean
 - * Con: tends to flatten model coefficient for variable
 - * Pro: simple to do
 - Putting in a predicted value
 - * Con: requires another set of data
 - * Pro: realistic values
 - [Continuous variables only] Making variable a categorical with an explicit missing category
 - * Con: information loss on continuous variables
 - * Pro: explicit modeling of missingness

15.1.3.5 Building models

15.1.3.5.1 Initial models

- I try to build some candidate models:
 - All variables
 - A few strongest variables

15.1.3.5.2 Stepwise variable selection

```
##
## Call:
  glm(formula = training_y ~ mpg + qsec, family = binomial(link = "logit"),
       data = training_x)
##
## Deviance Residuals:
                       1Q
                               Median
                                               3Q
         Min
                                                          Max
                                        2.110e-08
## -3.020e-05 -2.110e-08 -2.110e-08
                                                    2.714e-05
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1033.391 973364.150 -0.001
                                                0.999
                                                0.999
## mpg
                    7.609
                            8028.474
                                       0.001
```

```
## qsec 48.745 47742.325 0.001 0.999
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3.1841e+01 on 22 degrees of freedom
## Residual deviance: 1.7960e-09 on 20 degrees of freedom
## AIC: 6
##
## Number of Fisher Scoring iterations: 25
```

15.1.3.5.3 Other model types

- Different logistic regression variants
 - like the glmnet, glm packages
- Different models
 - like classification trees

15.1.3.5.4 Others

- You can also try with different loss or error functions
- You should try "common sense" models

15.1.3.6 Evaluating glms

15.1.3.6.1 broom

• Use broom to make tidy versions of model outputs.

```
library(broom)
# Coefficients
knitr::kable(tidy(steppedmodel))
```

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	-1033.390667	973364.150	-0.0010617	0.9991529
mpg	7.609363	8028.474	0.0009478	0.9992438
qsec	48.744843	47742.325	0.0010210	0.9991854

15.1.3.6.2 broom

• Use broom to make tidy versions of model outputs.

Fitted data knitr::kable(head(augment(steppedmodel)))

.rownames	training_y	mpg	qsec	.fitted	.resid	.std.resid	.hat	.sigma	.cooksd
Mazda RX4	0	21.0	16.46	-71.25393	0	0	1.1e-06	9.7e-06	0
Datsun 710	1	22.8	18.61	47.24433	0	0	9.0e-07	9.7e-06	0
Hornet 4 Drive	1	21.4	19.44	77.04944	0	0	2.0e-06	9.7e-06	0
Hornet	0	18.7	17.02	-61.45836	0	0	1.1e-06	9.7e-06	0
Sportabout									
Valiant	1	18.1	20.22	89.95952	0	0	3.2e-06	9.7e-06	0
Duster 360	0	14.3	15.84	-	0	0	4.8e-06	9.7e-06	0
				152.45847					

15.1.3.6.3 broom

• Use broom to make tidy versions of model outputs.

Key statistics

knitr::kable(glance(steppedmodel))

null.deviance	df.null	logLik	AIC	BIC	deviance	df.residual	nobs
31.84128	22	0	6	9.406483	0	20	23

15.1.3.6.4 Coefficients

- Are the coefficient signs in the right directions?
- How significant are they?
- How important are they?

15.1.3.6.5 Key metrics

- Residual deviance is a measure of how much error is in the model,
 - after considering all the variables in the model.
 - The smaller the residual deviance, the better.

deviance

deviance(fullmodel)

[1] 3.650173e-10

Akaike's information criterion (AIC)

- is a measure of information captured by a model
 - and penalizes more variables over fewer variables.
- The smaller the AIC, the better.

AIC information theory

The Akaike information criterion (AIC)

- is an estimator of out-of-sample prediction error
 - and thereby relative quality of statistical models
 - for a given set of data.
- Given a collection of models for the data,
 - AIC estimates the quality of each model,
 - relative to each of the other models.
- Thus, AIC provides a means for model selection.

AIC is founded on information theory.

- When a statistical model is used
 - to represent the process that generated the data,
 - the representation will almost never be exact;
- so some information will be lost
 - by using the model to represent the process.
- AIC estimates the relative amount of information lost by a given model:
 - the less information a model loses,
 - the higher the quality of that model.

AIC(fullmodel)

[1] 22

15.1.3.6.6 Classification rates

- A Confusion Matrix
 - is a specific table layout that allows
 - * visualization of the performance of an algorithm,
 - * typically a supervised learning one.
 - Each row of the matrix represents
 - * the instances in a predicted class
 - * while each column represents the instances in an actual class.
 - The name stems from the fact that it makes it easy to see
 - * if the system is confusing two classes
 - * (i.e. commonly mislabeling one as another).

It is a special kind of contingency table,

- with two dimensions ("actual" and "predicted"),
 - and identical sets of "classes" in both dimensions
 - (each combination of dimension and class
 - is a variable in the contingency table).

A contingency table

- (also known as a **cross tabulation** or **crosstab**)
- is a type of table in a matrix format
 - that displays the (multivariate) frequency distribution of the variables.
- They are heavily used in
 - survey research, business intelligence, engineering, & scientific research.
- They provide a basic picture of
 - the interrelation between two variables
 - and can help find interactions between them.

Lets look at the confusion matrix

- On the **training** data
- And **predicting** on the training data

```
training_pred <-
   ifelse(predict(steppedmodel, training_x) > 0, "1", "0")
training_pred <- factor(training_pred)
training_y <- factor(training_y)
confusionMatrix(training_pred, training_y)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
            0 12 0
##
            1 0 11
##
##
##
                  Accuracy: 1
##
                    95% CI: (0.8518, 1)
       No Information Rate: 0.5217
##
       P-Value [Acc > NIR] : 3.173e-07
##
##
##
                     Kappa: 1
##
##
    Mcnemar's Test P-Value : NA
##
```

```
##
               Sensitivity: 1.0000
##
               Specificity: 1.0000
            Pos Pred Value: 1.0000
##
##
            Neg Pred Value: 1.0000
##
                Prevalence: 0.5217
##
            Detection Rate: 0.5217
##
      Detection Prevalence: 0.5217
         Balanced Accuracy: 1.0000
##
##
##
          'Positive' Class : 0
##
```

15.1.3.6.7 Classification rates

- Now lets look at the confusion matrix
 - On the **testing** data
 - And **predicting** on the testing data

```
testing_pred <- ifelse(predict(fullmodel, testing_x) > 0, "1", "0")
testing_pred <- factor(testing_pred)
testing_y <- factor(testing_y)
confusionMatrix(testing_pred, testing_y)</pre>
```

```
## Confusion Matrix and Statistics
##
             Reference
## Prediction 0 1
##
            0 3 0
##
            1 3 3
##
##
                  Accuracy : 0.6667
##
                    95% CI: (0.2993, 0.9251)
##
       No Information Rate: 0.6667
       P-Value [Acc > NIR] : 0.6503
##
##
##
                     Kappa : 0.4
##
    Mcnemar's Test P-Value: 0.2482
##
##
##
               Sensitivity: 0.5000
               Specificity: 1.0000
##
##
            Pos Pred Value: 1.0000
            Neg Pred Value: 0.5000
##
##
                Prevalence: 0.6667
##
            Detection Rate: 0.3333
##
      Detection Prevalence: 0.3333
##
         Balanced Accuracy: 0.7500
##
##
          'Positive' Class: 0
##
```

15.1.3.7 Links

Steph Locke