

- Oregon Atlantic Company produces two paper products
 - Newsprint
 - Wrapping paper
- Labor
 - Need 5 minutes per yard of newsprint
 - Need 8 minutes per yard of wrapping paper
 - Company has 4,800 minutes per week
- Profit
 - Make \$0.20 for a yard of newsprint
 - Make \$0.25 for a yard of wrapping paper
- Demand
 - 500 yards of newsprint per week
 - 400 yards of wrapping paper per week

- List of weekly goals
 - Limit overtime to 480 minutes
 - Achieve profit of \$300
 - Fulfill the demand for the products in order of magnitude of their profits
 - Avoid underutilization of production capacity
- Q: Can the Oregon Atlantic Company achieve all their weekly goals?
- Primary decision variables
 - x = number of yards of newsprint
 - y = number of yards of wrapping paper

• Amount of labor needed in minutes to produce x yards of newsprint and y yards of wrapping paper

$$5x + 8y$$

Company has 4,800 minutes, but they are okay with 480 extra

$$5x + 8y \le 4800 + 480 = 5280$$

Written as a linear program

Minimize d_1^+

Subject to $5x + 8y + d_1^- - d_1^+ = 5280$

- Goal 2: Achieve profit of \$300 each week
 - Profit from producing x yards of newsprint and y yards of wrapping paper 0.2x + 0.25y
 - We would like to maintain weekly profit above \$300

$$0.2x + 0.25y \ge 300$$

• Written as a linear program

Minimize
$$d_2^-$$

Subject to
$$0.2x + 0.25y + d_2^- - d_2^+ = 300$$

- Goal 3: Fulfill the demand for newsprint and wrapping paper
 - Based on weekly demands, we want

$$x \ge 500$$
$$y \ge 400$$

• We want to prioritize fulfilling demands according to their profit

$$\frac{Profit\ of\ newsprint}{Profit\ of\ wrapping\ paper} = \frac{0.2}{0.25} = \frac{20}{25} = \frac{4}{5}$$

Written as a linear program

Minimize
$$4d_3^- + 5d_4^-$$

Subject to $x + d_3^- - d_3^+ = 500$
 $y + d_4^- - d_4^+ = 400$

- Goal 4: Avoid the underutilization of production capacity
 - Remember that company has 4,800 minutes of normal production
 - We would like to use all this production

$$5x + 8y \ge 4800$$

• Written as a linear program

Minimize
$$d_5^-$$

Subject to
$$5x + 8y + d_5^- - d_5^+ = 4800$$

- Class activity
 - Split up class into 4 groups
 - Give each group different ordering of goals according to priority
 - Each group solves goal programming model
 - Compare and discuss the results from the 4 groups

Division of class

Group IV: Last Initial U-Z **Download Sheet 4**

Group I: Last Initial A-G **Download Sheet 1**

Group III: Last Initial O-T **Download Sheet 3**

Group II: Last Initial H-N Download Sheet 2

Same set of constraints for all groups

$$5x + 8y + d_{1}^{-} - d_{1}^{+} = 5280$$

$$0.2x + 0.25y + d_{2}^{-} - d_{2}^{+} = 300$$

$$x + d_{3}^{-} - d_{3}^{+} = 500$$

$$y + d_{4}^{-} - d_{4}^{+} = 400$$

$$5x + 8y + d_{5}^{-} - d_{5}^{+} = 4800$$

$$x, y, d_{i}^{-}, d_{i}^{+} \ge 0$$

- Recall the objectives for minimization
 - d_1^+ (Limit Overtime)
 - d_2^- (Achieve Profit)
 - $4\overline{d}_3^- + 5\overline{d}_4^-$ (Fulfill Demand)
 - d_5^- (Avoid Underutilization of Labor)

- Different groups are different branches of the same company
 - Group 1 doesn't prioritize labor and cares most about minimizing cost and increasing the desired profit
 - Group 2 cares most about profit and fulfilling demand and least about the utilization of labor
 - Group 3 cares most about fulfilling the demands of their customers and least about reaching the desired profit
 - Group 4 cares most about making sure their employees reach the desired regular production capacity and the ideal overtime scenario

Division of priorities

Group IV

Priority 1 Priority 2

Priority 3

 $4\bar{d}_3^- + 5d_4^-$ Priority 4

Group I

 $d_1^+ \\ d_2^-$ Priority 1 Priority 2

 $4d_3^- + 5d_4^-$ Priority 3

 d_5^- Priority 4

Group III

 $4d_3^- + 5d_4^-$ Priority 1

Priority 2

Priority 3

Priority 4

Group II

Priority 1 d_2^-

 $4d_{3}^{-} + 5d_{4}^{-}$ d_{5}^{-} d_{1}^{+} Priority 2

Priority 3

Priority 4

Goal Programming in Excel

- Instructions for solving goal programming problem in Excel
 - Top priority objective has been optimized (see tab Priority 1)
 - Almost all groups have different initial solutions (Group I and IV identical)
 - Copy sheet Priority 1 and rename Priority 2 (right click on tab)

Goal Programming in Excel

- Instructions for solving goal programming problem
 - Create new constraint in tab Priority 2 based on previous results for Priority 1

Set value equal to previous minimization

Formula with MMULT

4		x	У		d1^-	d1^+	d2^-	d2^+	d3^-	d3^+	d4^-	d4^+	d5^-	d5^+			
5	Constraints:														Us	d Constraint Valu	
6	Labor overtime			8	1	-1	. 0	() (() (0		0 0		5280 =	5280
7	Profit		0.2	0.25	0	0	1	-1	L C	() (0		0 0		300 =	300
8	Demand x		1	0	0	0	0	() 1	-1	L (0		0 0		500 =	500
9	Demand y		0	1	0	0	0	() () () :	1 -1		0 0		400 =	400
10	Labor underti		5	8	0	0	0	() (() () (1 -1		4800 =	4800
11	Priority 1														#\	VALUE! =	0

Recall your group's objectives in order of priority

Group IV	Group I					
Priority 1 d_5^- Priority 2 d_1^+ Priority 3 d_2^- Priority 4 $4d_3^- + 5d_4^-$	Priority 1 d_1^+ Priority 2 d_2^- Priority 3 $4d_3^- + 5d_4^-$ Priority 4 d_5^-					
Group III Priority 1 $4d_3^- + 5d_4^-$ Priority 2 d_5^- Priority 3 d_1^+ Priority 4 d_2^-	$egin{aligned} & \operatorname{Group} \ II & d_2^- \ & Priority \ 2 & 4d_3^- + 5d_4^- \ & Priority \ 3 & d_5^- \ & Priority \ 4 & d_1^+ \end{aligned}$					

• We want to fill in the following table

Decision Variables	x	у	d_1^-	d_1^+	d_2^-	d_2^+	d_3^-	d_{3}^{+}	d_4^-	d_4^+	d_5^-	d_{5}^{+}	
Group I													
Group II													
Group III													
Group IV													

The End

