Antiderivadas T(X) (X)
ANTIDERNAR.

ANTIDERIVADA.

Definición Una función F recibe el nombre de **antiderivada** de f en un intervalo I si F'(x) = f(x) para toda x en I.

F(X) =
$$f(x)$$
 = $f(x)$ = $f(x$

CONSTANTE I NTEGRAGION ANTI PERIVADA BAS/CA O PARTICULAR ANT/MBRIVANA MAS GENERAL.

¿ COURD ENCOUTRAR F(X) (X DERIVAN N-1 X —> n X ANTINERIVAR. n+1 ANTIMBRIVAR

$$f(x) \qquad f'(x)$$

$$e^{x} \qquad e^{x}$$

$$TAN^{'}x \qquad \frac{1}{1+x^{2}}$$

$$Im x \qquad \frac{1}{x}$$

$$f(x) \qquad f(x)$$

$$f(x) = (x)$$

$$F(x) = lmx$$

$$f(x) = \frac{1}{1+x^2}$$

$$F(x) = TAN'x$$

BÁJICA

		•		
	Función	Antiderivada particular	Función	Antiderivada particular
8	$\supset cf(x)$	cF(x)	sen x	$-\cos x$
	f(x) + g(x)	F(x) + G(x)	$\rightarrow \sec^2 x$	tan x
	$x^n (n \neq -1)$	$\left(\frac{x^{n+1}}{n+1}\right)$	sec x tan x	sec x
	$\left(\frac{1}{x}\right)$	$\ln x $	$\sqrt{\frac{1}{\sqrt{1-x^2}}}$	$sen^{-1}x$
	$\rightarrow e^x$	e^x	$\frac{1}{1+x^2}$	tan ⁻¹ x
	b^x	$\frac{b^x}{\ln b}$	cosh x	senh x
	$\cos x$	sen x	senh x	$\cosh x$

$$f(x) = 2x^3 - \frac{2}{3}x^2 + 5x$$

$$F(x) = 2x^{3} - \frac{3}{3}x^{2} + 5x$$

$$F(x) = 2\left(\frac{x}{3+1}\right) - 2\left(\frac{x}{3+1}\right) + 5\left(\frac{x}{1+1}\right)$$

$$F(x) = 2\left(\frac{x}{3+1}\right) - \frac{2}{3}\left(\frac{x}{3}\right) + 5\left(\frac{x}{2}\right)$$

$$F(x) = \frac{1}{2}x^{4} - \frac{2}{9}x^{3} + \frac{5}{2}x^{2}$$

$$F(x) = \frac{1}{2}x^{4} - \frac{2}{9}x^{3} + \frac{5}{2}x^{2}$$

$$F(x) + c = \frac{1}{2}x^{4} - \frac{2}{9}x^{3} + \frac{5}{2}x^{2} + \frac{5}{3}x$$

$$F(x) + c = \frac{1}{2}x^{4} - \frac{2}{9}x^{3} + \frac{5}{3}x = f(x)$$

$$= 2x^{3} - \frac{2}{3}x^{2} + 5x = f(x)$$

$$\dot{+}'(\chi) = 2\chi^3 - 2\chi^2 + 5\chi = f(\chi)$$

$$f(x) = \sqrt[3]{x^2} + x\sqrt{x}$$

$$f(x) = \chi^{2/3} + \chi \cdot \chi^{-1/2}$$

$$f(x) = \chi^{2/3} + \chi^{-1/2}$$

$$f(x) = \chi^{-1/3} + \chi^{-1/3}$$

$$f(x) =$$

$$g(t) = \frac{1+t+t^{2}}{\sqrt{t}}$$

$$g(t) = \frac{1}{\sqrt{t}} + \frac{t}{\sqrt{t}} + \frac{t}{\sqrt{t}}$$

$$g(t) = \frac{1}{\sqrt{t}} + \frac{t}{\sqrt{t}}$$

$$r(\theta) = \sec \theta \tan \theta - 2e^{\theta}$$

$$R(0) = 2ECO-2(0)$$

$$R'(e) = 9ECO7ANO-2C = \Gamma(O)$$

$$g(v) = 2 \cos v - \boxed{\frac{3}{\sqrt{1 - v^2}}}$$

$$f(x) = e^{2} = (\partial_{x} + 1)$$

$$Cowstante$$

$$f(x) = e^{2} \times (\partial_{x} + 1)$$

