CLIPPEDIMAGE= JP410187954A

PAT-NO: JP410187954A

DOCUMENT-IDENTIFIER: JP 10187954 A

TITLE: FINGERPRINT READER SYSTEM PROVIDED WITH INTEGRATED

RESISTOR FOR HEATING

PUBN-DATE: July 21, 1998

INVENTOR-INFORMATION:

NAME

LEGER, FRANCOIS

ASSIGNEE-INFORMATION:

NAME

THOMSON CSF

COUNTRY

N/A

APPL-NO: JP09302956

APPL-DATE: November 5, 1997

INT-CL (IPC): G06T001/00;G01K003/00;G06T007/00

ABSTRACT:

PROBLEM TO BE SOLVED: To individually measure generated electric charges by providing a sensor including a means for generating a

transient internal

thermal change on the matrix of sensitive elements.

SOLUTION: A fingerprint sensor is an integrated circuit having a rectangular

form sized enough for executing the read of fingerprint. This integrated

circuit includes the matrix of sensitive elements formed from active

pyroelectric layers arranged between the matrixes of upside and downside

electrodes. An integrated circuit 20 includes a resistor 29 for heating near

the sensitive elements of sensor in the area of these sensitive elements.

Then, the sensitive element of sensor is transiently heated

03/11/2003, EAST Version: 1.03.0002

by the resistor for heating. On the pyroelectric surface of sensor, a finger having a fingerprint or not to move is held. The sensor provides an analog signal expressing the image of fingerprint to an output. The respective analog images generated by the sensor are displayed on the screen of video frequency terminal for enabling the immediate evaluation of picture quality of images provided by the sensor constantly.

COPYRIGHT: (C) 1998, JPO

#### (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平10-187954

(43)公開日 平成10年(1998)7月21日

| (51) Int.Cl. <sup>6</sup> |      | 識別記号 | FΙ   |       |     |  |
|---------------------------|------|------|------|-------|-----|--|
| G06T                      | 1/00 |      | G06F | 15/64 | G   |  |
| G01K                      | •    |      | G01K | 3/00  |     |  |
| G06T                      | 7/00 |      | G06F | 15/62 | 460 |  |
|                           |      |      |      |       |     |  |

|                                                 |                                                        | 審查請求    | 未請求 請求項の数11 OL (全 6 頁)                                                                                                                                                                           |  |  |
|-------------------------------------------------|--------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (21)出願番号                                        | 特願平9-302956                                            | (71)出願人 | <ul> <li>人 591000827</li> <li>トムソンーセーエスエフ<br/>THOMSON-CSF<br/>フランス国、75008・パリ、ブルバール・オースマン・173</li> <li>者 フランソワ・レジエ<br/>フランス国、38400・サン・マルタン・デール、リユ・ボール・プラン、7</li> <li>人 弁理士 川口 義雄 (外1名)</li> </ul> |  |  |
| (22)出顧日<br>(31)優先権主張番号<br>(32)優先日<br>(33)優先権主張国 | 平成9年(1997)11月5日<br>96 13453<br>1996年11月5日<br>フランス (FR) |         |                                                                                                                                                                                                  |  |  |
|                                                 |                                                        |         |                                                                                                                                                                                                  |  |  |

# (54) 【発明の名称】 一体型の加熱用抵抗器を備えた指紋読取りシステム

## (57)【要約】

【課題】 感受エレメントのマトリックスの感受エレメ ント中の過渡現象により生成された電荷を個別に測定す ることを可能にするセンサを含む指紋読取りシステムを 提供する。

【解決手段】 指紋読取りシステムは、その指紋を読み 取る指を押しつけるセンサを含む。このセンサは、温度 変化に敏感なエレメントの活性表面、および感受エレメ ントの温度の過渡的な変化を生み出す一体型の加熱用抵 抗器を有する。このセンサは、動かない指紋の安定した 画像を提供する。このシステムは、指紋の画像を表示お よび処理する手段を含む。開示した装置は、特に個人を 認証するための装置に適用することができる。



#### 【特許請求の範囲】

【請求項1】 感受エレメントのマトリックスおよびマ ルチプレクサを有し、このマトリックスの感受エレメン ト中の過渡現象により生成された電荷を個別に測定する ことを可能にするセンサを含む指紋読取りシステムであ って、このマトリックスが、その一面が開いてマトリッ クスに指を押しつけることができるパッケージに入れら れ、また指紋の全体像を構成するマトリックスパターン に対応する電気信号を提供するマトリックスであり、こ 内部の熱変化を生み出す手段を含むセンサである、この 熱変化を適用した後でマトリックスの信号を読み取る手 段を含むシステム。

【請求項2】 熱変化が、感受エレメントのマトリック スと接触する指紋の線の溝と隆起の間の熱伝導の差によ って収集された電荷の空間変化を生み出す、請求項1に 記載の指紋読取りシステム。

【請求項3】 センサの感受エレメントのマトリックス の過渡的な内部温度の変化が、感受エレメントのマトリ ルチプレクサによる電荷の読取りと同期して動作するセ ンサを加熱する加熱用抵抗器により得られる、請求項1 に記載の指紋読取りシステム。

【請求項4】 感受エレメントのマトリックスが複数の 列に構成され、センサが列と同数の加熱用抵抗器を含 み、各加熱用抵抗器がそれぞれの列と関連し、ある列の 信号の読取りがこの列に対応する抵抗器を加熱した後で 実列される、指紋の完全な画像を再構成する、請求項3 に記載の指紋読取りシステム。

【請求項5】 ただ一つの加熱用抵抗器が、マトリック スの全てのエレメントに対して備えられる、請求項3に 記載の指紋読取りシステム。

【請求項6】 加熱用抵抗器が、マトリックスの個々の 感受エレメントに対して備えられる、請求項3に記載の 指紋読取りシステム。

【請求項7】 感受エレメントのマトリックスが、パイ 口電気ポリマーの層およびこの層の両側の電極から構成 される、請求項1に記載の指紋読取りシステム。

【請求項8】 加熱用抵抗器が、例えばチタニウムなど 板と同じレベルで作成される、請求項3に記載の指紋読 取りシステム。

【請求項9】 センサが提供する画像を表示および処理 する手段を含む、請求項1に記載の指紋読取りシステ 4.

【請求項10】 センサが提供した画像と、認証する個 人に対応する事前に記録した画像とを比較することによ って個人の認証を実列する、請求項1に記載の指紋読取 りシステム。

熱することによって、マトリックスの各感受エレメント の効率の自動試験を実列する手段を含む、請求項1に記 載のシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特に個人を認証す るための装置で使用する指紋読取りシステムに関する。 [0002]

【従来の技術】指紋分析に基づいて個人を認証する多く のセンサが、感受エレメントのマトリックスの過渡的な 10 のシステムは、識別すべき個人の指紋の画像を獲得する ために使用される、少なくとも一つのセンサを含む。現 在使用されているシステムでは、指をセンサの上に載 せ、センサの読取り表面は必然的に指のサイズとほぼ等 しいサイズでなければならない。このセンサは、それが 与える指紋の画像と、例えばチップカードなどの適当な 媒体に記憶された参照指紋の画像とを比較するのに使用 される分析システムと関連している。

【0003】ほとんどの場合には、センサはアナログタ イプの情報要素を与え、分析システムは指紋の画像をデ ックスと接触して配置された、過渡電流が通過するとマ 20 ジタル処理するための演算を使用するので、アナログデ ジタル変換器により、センサ出力で指紋の画像をデジタ ル化しなければならない。特定の構造では、センサはデ ジタル化した画像を直接送る。

> 【0004】指紋読取りシステムは、しばしば指の画像 をとらえるビデオカメラなどの光学装置の使用に基づく が、同一の指の簡単な写真があれば、同一の画像をカメ ラの出力で得、それによりシステムを欺くことができ る。この欠点を克服するために、特定のシステムでは、 それが実際に本物の指であってセンサの前に置かれた写 30 真ではないことを確認するために、プリズムまたはマイ クロプリズムを使用し、指紋の線がプリズムに接触しな い部分でのみ光を反射させる。したがって、写真は無効 となる。しかし、光学システムは、センサの前に置かれ た指が、実際に本物の指であって例えば成形した指では ないことを確認するために使用することはできない。光 学システムには、例えば体積が大きい、製造コストが高 いなどといったその他の欠点もある。

【0005】半導体産業のバッチ処理の可能性を利用し て、指紋によって個人を認証する装置を作成する、その の金属の蒸着により、パイロ電気コンデンサの下側金属 40 他の手段が提案されている。この方法で作成した装置 は、コストが低くなる可能性があり、センサの一体化、 ならびに、認証装置の処理シーケンスの全てまたは― 部、特にセンサの出力における画像のデジタル化、参照 画像の記憶、および認証といった動作の一体化という利 点を提供する。指紋読取りセンサは、複数の列および列 に構成された感受エレメントのマトリックスを有し、指 紋の線の隆起がセンサの感受エレメントに接触している か接触していないかによって、異なる電気信号を与え

【請求項11】 センサの感受エレメントを過渡的に加 50 【0006】指紋を読み取る様々な手段についての特許

が出願されている。

【0007】米国特許第4353056号には、センサの感受エレメントのキャパシタンスの変化に基づく読取りの原理が記述されている。

【0008】その他のシステムは、圧力、温度、または 圧力および温度以外のものに対して感受性のある構成要素を有するセンサを含み、圧力および/または温度についての空間情報を電気信号に変換し、続いてこれを例えばCCDマトリックスにすることができる半導体ベースのマルチプレクサで収集する。米国特許第439477 103号には、この種類の原理が記述されている。

【0009】圧電効果および/またはパイロ電気効果に基づくセンサは、その感受エレメントに加えられた圧力および/または熱に対して感受性を有するので、最も価値がある。この機構により、指紋の読取り中に、その指が放出する固有の熱を介して、それが実際に生きている個人の一部であることを確認することが可能になる。熱および/または圧力の変化を引き起こす、指の中の血液の脈流による変化を検出することもまた可能であるので、指紋の認証の信頼性はさらに高くなる。

[0010]

【発明が解決しようとする課題】半導体基板に一体化されたセンサが与える電気信号には短寿命であるという欠点があり、これを一定時間維持するために特定のシステムが必要となる。信号が短寿命になるのは、センサ上の物理的影響(温度、圧力など)の変化によって電荷が誘導されるためである。結果として、その出力における信号は、物理的影響が平衡に達したときには消滅している傾向がある。信号消滅の時定数は、数ミリ秒からより好都合な場合では数秒の範囲である。

【0011】この実際の結果として、指をセンサ上に置いたときから開始して一連の画像が生成される。これらの画像のコントラストの画質は安定せず、これらの画像は消失する傾向がある。これにより、認識システムは、最も認証に適した画像を発見するために、センサが絶えず生成する全ての画像を分析する必要があるので、その仕事は複雑になる。

【0012】センサ外部の励起を用いるシステムが提案されている。これらは、例えば、マイクロ波の形態でエネルギービームを送出するためのシステムである。しか 40 し、これらはシステムを複雑にし、その体積およびコストを増加させる。

【0013】電子メモリにより、指紋の画像の消滅の影響を軽減することができる。しかし、これにより、センサがメモリ記憶を可能にする技術を必要とするので、その設計は複雑になり、その製造コストは増加する。十分に精密で、信頼性が高く、安価で、センサが生成した全ての画像の中でどれが最良の画像であるかを決定することができるシステムを構築することは非常に困難である。

[0014]

【課題を解決するための手段】本発明は、感受エレメントのマトリックスおよびマルチプレクサを有し、このマトリックスの感受エレメント中の一時的な又は過渡的な現象により生成された電荷を個別に測定することを可能にするセンサを含む指紋読取りシステムであって、このマトリックスが、その一面が開いてマトリックスに指を押しつけることができるパッケージに入れられ、また指紋の全体像を構成するマトリックスパターンに対応する電気信号を提供するマトリックスであり、このセンサが、感受エレメントのマトリックスの過渡的な(一時的な)内部の熱変化を生み出す手段を含むセンサである、この熱変化を適用した後でマトリックスの信号を読み取る手段を含むシステムを提案することによって、従来技術の欠点を軽減することを提案する。

【0015】このセンサの局所的な温度変化は、パイロ電気材料のセンサ中で局所的な電荷を生み出す効果を有する。

【0017】この熱の放散およびそれによる各感受エレメントの温度変化は、したがって、センサのこれらの感受エレメント上に、指紋の隆起が存在するか、または溝が存在するかによって大きくなるか、または小さくなる。この現象は、パイロ電気層の熱変化の空間変調を生み出し、その結果マルチプレクサが収集する電荷の空間変調を生み出す。指が動かないこと、および電荷の読取りが順次列われることから、読取りシステムは静止画像を生成することになる。パイロ電気層の温度上昇は依然として小さく、約1Kより下である。

【0018】感受エレメントの温度の過渡的な局所変化は、感受エレメントのマトリックスと接触させて配置した加熱用抵抗器によって得られる。この加熱用抵抗器は、過渡電流が通過すると、マルチプレクサによる電荷の読取りと同期して動作するセンサを加熱する。この過渡電流は、ジュール効果による電力の放散により、局所的に温度を上げる。

【0019】第一の実施形態では、感受エレメントのマトリックスは複数の列に構成され、この場合、センサは感受エレメントの列と同数の加熱用抵抗器を含む。それぞれの列に関連する各加熱用抵抗器は、この列と平列になり、これを加熱する。マルチプレクサは、列ごとに感受エレメントの電荷を読み取る。個々の列は次々に読み取られ、ゼロにリセットされる。加熱電流は、例えば列の読取りの直後や、パイロ電気コンデンサの電荷をリセットする間に、列と関連する各抵抗器に流される。指全

体の画像は、システムにより再構成される。

【0020】別の実施形態では、ただ一つの加熱用抵抗器を使用して、マトリックスの全ての感受エレメントを加熱する。蛇列コイルの形状をしたこの単一の抵抗器は、センサの表面全体を横切り、感受エレメントの間を通過してこれらを加熱する。抵抗器に電流を流した後、感受エレメントのコンデンサの電荷は、指紋の完全な画像を表す。この画像を、マトリックスの各感受エレメントが生み出す電荷を記憶することにより固定し、続いて順次読み取って、指紋の完全な画像を再構成する。例え 10ばこの画像を順次読み取る間に、抵抗器に電流を流すこともできる。

【0021】エレメントごとに感受エレメントの読取りを列う場合を考慮することもできる。この場合には、列および列のアドレッシングが必要であり、エレメントごとに一つの抵抗器が必要となる。

【0022】本発明の別の態様は、例えばシステム外部にありセンサに適用する温度源および/または圧力源を使用することなく、マトリックスの各感受エレメントの正確な動作の自動試験を実列する可能性にある。実際に、抵抗器またはセンサに一体化された抵抗器によってセンサの感受エレメントを過渡的に加熱することで、感受エレメントのコンデンサ中で短寿命の電荷を生み出し、これらの電荷を検査することにより、マトリックスの各感受エレメントが適切に動作していることを確認することができるようになる。

【0023】本発明のその他の特徴は、添付の図面に関連する、以下の実施形態の詳細な説明から明らかになるものとする。

#### [0024]

【発明の実施の形態】図1は、加熱用抵抗器を含む指紋センサを示す概略図である。指紋センサ10は、指紋の読取りを実列するのに十分なサイズの四角形の形状を有する集積回路である。この集積回路は、上側電極と下側電極のマトリックス配列との間に配置された活性のパイロ電気層で形成された感受エレメントのマトリックスを含む。下側電極は半導体基板上にあり、この基板には、その配列の各電極上にパイロ電気層が生成した電荷を処理できる集積電子回路が形成される。この集積回路は、センサの外側に電気信号を伝送する接続ピン14で接続センサの外側に電気信号を伝送する接続ピン14で接続わられた支持13に含まれ、これら全ての電気信号は、所与の時間で活性のパイロ電気層の温度パターンの画像を表す。下側電極がマトリックス配列の形状に構成されることにより、パイロ電気層が連続体である場合でも、個別のパイロ電気感受エレメントの配列を得ることができる。

【0025】図2は、センサの感受エレメントの領域でこの感受エレメントの付近に加熱用抵抗器29を含む集積回路20の一部を示す概略図である。

【0026】この集積回路は以下のものを含む。

【0027】-原則としてシリコン基板である半導体基板22。この基板上には、電荷の読取りおよび処理をするための回路が形成される。これらの回路は、例えばCCD(電荷結合装置または電荷移動回路)や、CMOS回路である。これらは、シリコン集積回路を製造する現在の技術によって製造される。これらの回路は、次々に形成されるパイロ電気エレメントのマトリックスパターンの関数として、一つの配列に構成される。

6

0 【0028】-基板上に析出または付着させた断熱材2 4。

【0029】一下側金属板26および上側金属板27で構成され、その間にパイロ電気材料の層28が位置するパイロ電気コンデンサ。上側金属板27は感受エレメントの全てのコンデンサに共通であり、熱の横向きの伝搬を制限するために穴を開ける(網状にする)ことができる。下側金属板26は、コンデンサの電荷の読取りを実列するマルチプレクサ23のアクセス38に接続される。加熱用抵抗器29は、下側電極26と同じレベルでで成され、アクセス30でマルチプレクサ23の過渡電流発生器に接続される。

【0030】-熱の横方向への放散を制限するために、 その熱伝搬が基本的にセンサ平面と垂直でなければならない、感受エレメントに付着させた薄い保護層32。

【0031】パイロ電気層の材料は、例えばポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデントリフルオロエチレン(PVDF-TrFE)、ポリシアン化ビニリデン酢酸ビニル(PVDCN-VAc)や、ポリシアン化ビニリデンフッ化ビニリデン(PVDCN-VDF)にすることができる。その他のタイプの感受層、詳細にはパイロ圧電パラメータの関数として電荷を生成するものは全て可能である。

【0032】上述の共重合体の場合は、使用する主な効果は、共重合体の温度変化により誘導される電荷の生成である。

【0033】図3は、集積回路と同じ平面上に位置するパイロ電気コンデンサの下側板36および加熱用抵抗器37の平面における、集積回路35を示す部分図である。加熱用抵抗器37は、軸XX'を有するパイロ電気コンデンサの下側板の列の間で集積回路を横切り、これらの列と平列になる。加熱用抵抗器37は、パイロ電気コンデンサの下側金属板36と同時に、例えばチタニウムを蒸着させることにより作成される。

【0034】列ごとに読み取る場合は、抵抗器は感受エレメントの列と関連する。完全な画像を読み取る場合には、ただ一つの抵抗器がセンサの全ての感受エレメントと関連する。

【0035】図4は、一組の隣接する感受エレメント4 1、42、43を示す概略図であり、これらの上に指紋 50 44の一部に対応する指の一部を押しつける。この指紋

の拡大した表面を図4に示す。この位置で、指紋は、二 つの隆起50および51と一つの溝53とを有する。隆 起50および51はそれぞれ感受エレメント41および 43と接触するが、溝53は感受エレメント42と接触 しない。感受エレメントを過渡的に加熱する間、それぞ れに隆起50および51と接触する感受エレメント41 および43上でセンサに押しつけられた指から放散され る熱流F1は、指紋の溝53があるために指と接触しな い感受エレメント42から放散される熱流F2より大き によって過渡的な熱変化が生じる間に、感受エレメント 中の温度の空間変化が生じ、その結果熱変化と正確に一 致するパイロ電気コンデンサ中の電荷の空間変化が生じ る。

【0036】次に、加熱用抵抗器を備え、読み取る指紋 のサイズにほぼ等しい表面積を有するセンサから提供さ れる指紋の画像を、表示および処理する手段を含む、本 発明による指紋読取りシステムの例示的な実施形態につ いての説明を、以下に与えるものとする。

【0037】このシステムは、上記に記述したようにセ 20 ンサ60を含む。このセンサ60の感受エレメントは、 一つまたは複数の加熱用抵抗器で過渡的に加熱される。 センサ60のパイロ電気表面で、指紋63を有する動か ない指62は支持される。センサ60は指紋63の画像 を表すアナログ信号を出力64に提供する。センサの出 力64は、最初に指紋の画像を表示するスクリーンを有 するビデオ周波端末66に接続され、次にアナログデジ タル変換器70のアナログ入力68に接続される。 コン バータ70のデジタル出力72は、デジタルメモリ80 の入力に接続される。このメモリの出力は、例えばマイ 30 クロコンピュータ90などの処理および計算システムの デジタル入力82に接続される。

【0038】センサ60が生成する各アナログ画像は、 センサ60が絶えず提供する画像の画質の即時評価を可 能にするビデオ周波端末66のスクリーンに表示され る。最良の指紋63の画像を見いだすために、センサの パイロ電気表面上で指62の位置をわずかに移動させる ことができるが、この指の移動速度はセンサの出力にお ける画像の周波数に適合するように制限される。

【0039】この最初の段階で、指紋の画像はビデオ周 40 22 半導体基板 波端末66に表示されるのみであり、システムからは指 紋の画像は得られない。ビデオ周波端末66は、図示は しないが周知の順応システムを含み、これにより、セン サの出力で、アナログ信号を標準的なビデオ周波スクリ ーンで表示することができるビデオ周波信号に変換する ことができる。

【0040】満足できる画像であると考えられる場合に は、この画像を獲得し、アナログデジタル変換器70に よりビット数Nに基づいてデジタル化する。変換器70 から提供されたデジタル化した画像は、数メガヘルツと 50 いう比較的速い速度でデジタルメモリ80に記憶され る。このデジタルメモリ80は、各感受エレメントのレ ベルをコード化するためにセンサの感受エレメントの数 にビット数Nをかけた積にほぼ相当する、中程度のサイ ズである。

【0041】デジタルメモリ80に記憶されたデジタル 化した画像は、続いて、マイクロコンピュータ90のデ ジタル入力(並列ポートまたは直列ポート)が許可する 入力速度と両立する数百キロヘルツの範囲の、メモリに い。このことにより、加熱用抵抗器を電流が流れること 10 記憶する際の速度より遅い速度でマイクロコンピュータ 90に伝送される。

【0042】本発明の目的であるシステムは、どのよう な画像再構築アルゴリズムも必要としない。ただし、マ イクロコンピュータ90に記憶した画像を、まず最初 に、その画質を改善するために周知の方法で処理する。 続いて、指紋の認識に有効な情報を抽出する処理を列 う。検索アルゴリズムは、認証する個人に対応する事前 に記録した指紋画像と比較することにより、記憶した指 紋を認証することを可能にする。これらの形状認識アル ゴリズムは、例えば、輪郭を抽出する処理演算や、輪郭 ベクトル化演算、またはその他のタイプの処理演算を使 用することができる。有効な指紋の画像は、実際には、 この指紋の隆起および溝に対応する一組の輪郭である。 認証するためには、検出した数組の輪郭を、認証する個 人に対応する事前に記録した数組の輪郭と比較すること になる。その後、数組の輪郭は、これらの輪郭を説明す るベクトルの表の形状で記憶することができる。

## 【図面の簡単な説明】

【図1】指紋センサの概略図である。

【図2】感受エレメントの領域のセンサの構成を示すダ イアグラム的な断面図である。

【図3】加熱用抵抗器の例示的な実施形態を示す図であ

【図4】指紋による感受エレメントの熱放散を示す図で

【図5】本発明による指紋読取りシステムを示すブロッ クダイアグラムである。

### 【符号の説明】

- 20 集積回路
- - 23 マルチプレクサ
  - 24 断熱材
  - 26 下側金属板
  - 27 上側金属板
  - 28 パイロ電気材料の層
  - 29 加熱用抵抗器
  - 30 アクセス
  - 32 保護層
  - 38 アクセス

