The Gaussian distribution and the Central Limit Theorem Peter Ralph 1 October 2020 - Advanced Biological Statistics	
Stochastic minute: the Central Limit Theorem and the Normal distribution	
The CLT The Central Limit Theorem says, roughly, that net effect of the <i>sum</i> of a bunch of small, <i>independent</i> random things can be well-approximated by a Gaussian distribution, almost regardless of the details.	
2.2	

The CLT

The Central Limit Theorem says, roughly, that net effect of the *sum* of a bunch of small, *independent* random things can be well-approximated by a Gaussian distribution, almost regardless of the details.

For instance: say X_1, X_2, \ldots, X_n are independent, random draws with mean μ and standard deviation σ .

Then, the difference between the "true" mean, $\mu\text{,}$ and the sample mean is Gaussian,

$$ar{x} = rac{1}{n} \sum_{i=1}^n X_i pprox ext{Normal} \left(\mu, rac{\sigma}{\sqrt{n}}
ight).$$

2 . 2

2 . 3

2.3

The Gaussian distribution

Also called the Normal distribution: see previous slide.

The Gaussian distribution

Also called the Normal distribution: see previous slide.

Saying that a random number Z "is Normal":

$$Z \sim ext{Normal}(\mu, \sigma)$$

means that

$$\mathbb{P}igg\{Z\geq rac{x-\mu}{\sigma}igg\}=\int_x^\inftyrac{1}{\sqrt{2\pi}}e^{-u^2/2}du.$$

The Gaussian distribution

Also called the Normal distribution: see previous slide.

Saying that a random number Z "is Normal":

$$Z \sim ext{Normal}(\mu, \sigma)$$

means that

$$\mathbb{P}igg\{Z\geq rac{x-\mu}{\sigma}igg\}=\int_x^\inftyrac{1}{\sqrt{2\pi}}e^{-u^2/2}du.$$

2.3

2 . 4

2 . 4

What to remember:

- 1. Z is probably no more than a few times σ away from μ
- 2. Using R,

 $\begin{tabular}{llll} rnorm(10, &mean=3, &sd=2) &\# & random &simulations \\ pnorm(5, &mean=3, &sd=2) &\# &probabilities \\ qnorm(0.975, &mean=3, &sd=2) &\# &quantiles \\ \end{tabular}$

A demonstration

Let's check this, by doing:

find the sample mean of 100 random draws from some distribution

lots of times, and looking at the distribution of those sample means.

A demonstration

Let's check this, by doing:

find the sample mean of 100 random draws from some distribution

lots of times, and looking at the distribution of those sample means.

Claim: no matter the distribution we sample from, it should look close to Normal.

Distribution of 1,000 sample means

2 . 8

2 . 9

2 . 9

Relationship to the t distribution

If Y and Z_1,\ldots,Z_n are independent $\mathrm{Normal}(0,\sigma)$, and

$$X = rac{Y}{\sqrt{rac{1}{n}\sum_{j=1}^{n}Z_{j}^{2}}}$$

then

 $X \sim \text{StudentsT}(n)$.

Relationship to the t distribution

If Y and Z_1,\ldots,Z_n are independent $\mathrm{Normal}(0,\sigma)$, and

$$X = rac{Y}{\sqrt{rac{1}{n}\sum_{j=1}^{n}Z_{j}^{2}}}$$

then

$$X \sim \mathrm{StudentsT}(n).$$

More usefully, a sample mean divided by its standard error is $\!\!\!^*t$ distributed.

Relationship to the t distribution If Y and Z_1,\dots,Z_n are independent $\operatorname{Normal}(0,\sigma)$, and $X = \frac{Y}{\sqrt{\frac{1}{n}\sum_{j=1}^n Z_j^2}}$ then $X \sim \operatorname{Students} T(n).$ More usefully, a sample mean divided by its standard error is* t distributed. This is thanks to the Central Limit Theorem. (* usually, approximately)