Machine Reading Comprehension

ONE SPAN-EXTRACT + TWO MULTI-CHOICE

Google Natural Questions

The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets.

Example

Question: where is the bowling hall of fame located Wikipedia page: International Bowling Hall of Fame Long answer: The World Bowling Writers (WBW) International Bowling Hall of Fame was established in 1993 and is located in the International Bowling Museum and Hall of Fame, on the International Bowling Campus in Arlington, Texas.

Short answer: Arlington, Texas

1. Dataset contain a source document, a annations, and some long answer or short answer candidates.

```
"example id": 3902,
"document_url": "http://wikipedia.org/en/strings"
"question_text": "what is a string",
"document_text": "<P> A string is a list of characters in order . </P>",
"annotations": [{
  "long answer": { "start token": 0, "end token": 12 },
  "short answers": [{ "start token": 5, "end token": 8 }],
  "yes no answer": "NONE",
}],
"long answer candidates": [
 {"start token": 0, "end token": 12, "top level": True}
```

2 Node construct

Long document is chunked into multi small span.

The bounds of sentences is constructed using Spacy.

The bounds of paragraphs is constructed using Long candidate end. Only one document is constructed in one sample.

Document Fragment

Paragraph

Sentence

Token

Relational Embedding

$$e_{ij} = \frac{\left(\boldsymbol{h}_{i}\mathbf{W}^{Q}\right)\left(\boldsymbol{h}_{j}\mathbf{W}^{K}\right)^{\mathrm{T}} + \boldsymbol{h}_{i}\mathbf{W}^{Q}\left(\boldsymbol{a}_{ij}^{K}\right)^{\mathrm{T}}}{\sqrt{d_{z}}}$$

$$\boldsymbol{z}_{i} = \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}\left(\boldsymbol{h}_{j}\mathbf{W}^{V} + \boldsymbol{a}_{ij}^{V}\right).$$

$$\alpha_{ij} = \operatorname{softmax}_{j}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}.$$

Short Answer:

From Token level Node score

Long Answer:

From Paragraph level Node score

Document Node:

Give Yes and No.

Model	LA. F1	SA. F1
BERT-base+Model-III	68.9	51.9
-Graph module	63.9	51.0
-Long answer prediction	65.1	51.4
-Short answer prediction	68.2	-
-Relational embedding	68.8	51.7
-Graph integration layer	68.3	51.1
-Self-attention layer	68.4	51.2

RACE (Lai et al. 2017): RACE consists of two subsets: RACE-M and RACE-H respectively corresponding to middle school and high school difficulty levels, which is recognized as one of the largest and most difficult datasets in multi-choice reading comprehension.

Passage: Runners in a relay race pass a stick in one direction. However, merchants passed silk, gold, fruit, and glass along the Silk Road in more than one direction. They earned their living by traveling the famous Silk Road. ... The Silk Road was made up of many routes, not one smooth path. They passed through what are now 18 countries. The routes crossed mountains and deserts and had many dangers of hot sun, deep snow and even battles...

Question: The Silk Road became less important because _ .

- A. it was made up of different routes
- B. silk trading became less popular
- C. sea travel provided easier routes
- D. people needed fewer foreign goods

Passage Sentence Selection

Cosine score:

$$\mathbf{D}^{pa} = Cosine(\mathbf{H}^{a}, \mathbf{H}^{p_{i}}) \in R^{|A| \times |p_{i}|} \qquad \alpha = SoftMax(\mathbf{I}^{a})$$

$$\mathbf{D}^{pq} = Cosine(\mathbf{H}^{q}, \mathbf{H}^{p_{i}}) \in R^{|Q| \times |p_{i}|} \qquad \mathbf{q} = \alpha^{T} \mathbf{H}^{q} \in R^{l}$$

$$\mathbf{\bar{D}}^{pa} = MaxPooling(\mathbf{D}^{pa}) \in R^{|A|} \qquad \mathbf{\bar{P}}_{j} = \mathbf{H}_{j}^{p_{i}} W_{2} \mathbf{q} \in R^{l}$$

$$\mathbf{\bar{D}}^{pq} = MaxPooling(\mathbf{D}^{pq}) \in R^{|Q|} \qquad \mathbf{\bar{P}}^{pq} = Max(\mathbf{\bar{P}}_{1}\mathbf{\bar{P}}_{2}, \mathbf{\bar{P}}_{2})$$

$$score = \frac{\sum_{k=1}^{|A|} \mathbf{\bar{D}}_{k}^{pa}}{|A|} + \frac{\sum_{k=1}^{|Q|} \mathbf{\bar{D}}_{k}^{pq}}{|Q|} \qquad score = W_{3}^{T} \mathbf{\bar{P}}^{pq}$$

Bilinear score:

$$\begin{aligned} \mathbf{D}^{pa} &= Cosine(\mathbf{H}^{a}, \mathbf{H}^{p_{i}}) \in R^{|A| \times |p_{i}|} & \alpha &= SoftMax(\mathbf{H}^{q}W_{1}) \in R^{|Q| \times l} \\ \mathbf{D}^{pq} &= Cosine(\mathbf{H}^{q}, \mathbf{H}^{p_{i}}) \in R^{|Q| \times |p_{i}|} & \mathbf{q} &= \alpha^{T}\mathbf{H}^{q} \in R^{l} \\ \bar{\mathbf{D}}^{pa} &= MaxPooling(\mathbf{D}^{pa}) \in R^{|A|} & \bar{\mathbf{P}}_{j} &= \mathbf{H}_{j}^{p_{i}}W_{2}\mathbf{q} \in R^{l}, j \in [1, |p_{i}|] \\ \bar{\mathbf{D}}^{pq} &= MaxPooling(\mathbf{D}^{pq}) \in R^{|Q|} & \hat{\mathbf{P}}^{pq} &= Max(\bar{\mathbf{P}}_{1}\bar{\mathbf{P}}_{2}, ..., \bar{\mathbf{P}}_{|p_{i}|}) \in R^{l} \\ core &= \frac{\sum_{k=1}^{|A|} \bar{\mathbf{D}}_{k}^{pa}}{|A|} + \frac{\sum_{k=1}^{|Q|} \bar{\mathbf{D}}_{k}^{pq}}{|A|} & score &= W_{3}^{T}\hat{\mathbf{P}}^{pq} + W_{4}^{T}\hat{\mathbf{P}}^{pa} \end{aligned}$$

Answer Option Interaction

$$\mathbf{G} = SoftMax(\mathbf{H}^{a_i}W_5\mathbf{H}^{a_jT}) \in R^{|A_i| \times |A_j|}$$

$$\mathbf{H}^{a_{i,j}} = ReLU(\mathbf{G}\mathbf{H}^{a_j}) \in R^{|A_i| \times l}$$

$$\hat{\mathbf{H}}^{a_i} = [\{\mathbf{H}^{a_{i,j}}\}_{j \neq i}] \in R^{|A_i| \times (m-1)l}$$

$$\bar{\mathbf{H}}^{a_i} = \hat{\mathbf{H}}^{a_i}W_6 \in R^{|A_i| \times l}$$

$$g = \sigma(\bar{\mathbf{H}}^{a_i}W_7 + \mathbf{H}^{a_i}W_8 + b)$$

$$\mathbf{H}^{o_i} = g * \mathbf{H}^{a_i} + (1 - g) * \bar{\mathbf{H}}^{a_i}$$

Answer Options

$$\mathbf{G}^{qo} = SoftMax(\mathbf{H}^{q}W_{9}\mathbf{H}^{oT})$$

$$\mathbf{G}^{oq} = SoftMax(\mathbf{H}^{o}W_{10}\mathbf{H}^{qT})$$

$$\mathbf{E}^{q} = \mathbf{G}^{qo}\mathbf{H}^{o}, \mathbf{E}^{o} = \mathbf{G}^{oq}\mathbf{H}^{q}$$

$$\mathbf{S}^{q} = ReLU(\mathbf{E}^{q}W_{11})$$

$$\mathbf{S}^{o} = ReLU(\mathbf{E}^{o}W_{12})$$

$$egin{aligned} \mathbf{S}^{q ext{-}o} &= MaxPooling(\mathbf{S}^q) \ \mathbf{S}^{o ext{-}q} &= MaxPooling(\mathbf{S}^o) \ g &= \sigma(\mathbf{S}^{q ext{-}o}W_{13} + \mathbf{S}^{o ext{-}q}W_{14} + b) \ \mathbf{M}^{q ext{-}o} &= g * \mathbf{S}^{o ext{-}q} + (1 - g) * \mathbf{S}^{o ext{-}q} \end{aligned}$$

Objective Function

$$\mathbf{C} = [\mathbf{M}^{p - q}; \mathbf{M}^{p - o}; \mathbf{M}^{q - o}]$$

$$L(A_k | P, Q) = -log \frac{\exp(V^T \mathbf{C}_k)}{\sum_{j=1}^m \exp(V^T \mathbf{C}_j)}$$

	BERT _{base}	BERT _{large}	XLNet _{large}
base encoder	64.6	71.8	80.1
+ DCMN	66.0 (+1.4)	73.8 (+2.0)	81.5 (+1.4)
$+$ DCMN $+$ P $_SS$	66.6 (+2.0)	74.6 (+2.8)	82.1 (+2.0)
$+$ DCMN $+$ P $_{-}OI$	66.8 (+2.2)	74.4 (+2.6)	82.2 (+2.1)
+ DCMN + ALL (DCMN+)	67.4 (+2.8)	75.4 (+3.6)	82.6 (+2.5)

Model	RACE-M/H	RACE
HAF (Zhu et al. 2018)	45.0/46.4	46.0
MRU (Tay, Tuan, and Hui 2018)	57.7/47.4	50.4
HCM (Wang et al. 2018b)	55.8/48.2	50.4
MMN (Tang, Cai, and Zhuo 2019)	61.1/52.2	54.7
GPT (Radford 2018)	62.9/57.4	59.0
RSM (Sun et al. 2019)	69.2/61.5	63.8
OCN (Ran et al. 2019)	76.7/69.6	71.7
XLNet (Yang et al. 2019)	85.5/80.2	81.8
BERT _{base} *	71.1/62.3	65.0
BERT _{large} *	76.6/70.1	72.0
XLNet _{large} *	83.7/78.6	80.1
Our Models		
$BERT_{base}^* + DCMN$	73.2/64.2	67.0
$BERT_{large}^* + DCMN$	79.2/72.1	74.1
$BERT_{large}^* + DCMN + P_{SS} + A_{OI}$	79.3/74.4	75.8
$XLNet_{large}^* + DCMN + P_{SS} + A_{OI}$	86.5/81.3	82.8
Human Performance		
Turkers	85.1/69.4	73.3
Ceiling	95.4/94.2	94.5

Dual Multi-head Co-attention for Multichoice Reading Comprehension

Dual Multi-head Co-attention for Multichoice Reading Comprehension

Dual Multi-head Co-attention for Multichoice Reading Comprehension

Decoder

$$O_i = \text{DUMA}(E^P, E^{QA_i})$$

$$L(A_r|P, Q) = -\log \frac{\exp(W^T O_r)}{\sum_{i=1}^s \exp(W^T O_i)}$$

model	dev	test
FTLM++ [Sun et al., 2019a]	58.1*	58.2*
BERT _{large} [Devlin et al., 2018]	66.0*	66.8*
XLNet [Yang <i>et al.</i> , 2019]	-	72.0*
RoBERTa _{large} [Liu et al., 2019]	85.4*	85.0*
RoBERTa _{large} +MMM [Jin et al., 2020]	88.0*	88.9*
ALBERT _{xxlarge} [Lan et al., 2020]	89.2	88.5
Our model	89.3	90.4
Our model + multi-task learning[Wan, 2020]	-	91.8

model	test (M/H)	source	
HAF [Zhu et al., 2018a]	46.0(45.0/46.4)*		
MRU [Tay et al., 2018]	50.4(57.7/47.4)*		
HCM [Wang et al., 2018]	50.4(55.8/48.2)*		
MMN [Tang et al., 2019]	54.7(61.1/52.2)*		
GPT [Radford et al., 2018]	59.0(62.9/57.4)*	publication	
RSM [Sun et al., 2019b]	63.8(69.2/61.5)*		
OCN [Ran et al., 2019]	71.7(76.7/69.6)*		
XLNet [Yang et al., 2019]	81.8(85.5/80.2)*		
XLNet _{xxlarge} +DCMN+	82.8(86.5/81.3)*		
[Zhang et al., 2020]	02.0(00.3/01.3)		
XLNet + DCMN+	82.8(86.5/81.3)		
RoBERTa	83.2(86.5/81.8)		
DCMN+ (ensemble)	84.1(88.5/82.3)	landarboard	
RoBERTa + MMM	85.0(89.1/83.3)	leaderboard	
ALBERT (single)	86.5(89.0/85.5)		
ALBERT (ensemble)	89.4(91.2/88.6)		
ALBERT _{xxlarge} [Lan et al., 2020]	86.6(89.0/85.5)		
$ALBERT_{xxlarge} + DUMA$	88.0(90.9/86.7)	our model	
ALBERT _{xxlarge} +DUMA(ensemble)	89.8(92.6/88.7)		

RACE Leaderboard

Model	Report Time	Institute	RACE	RACE-	RACE- H
Human Ceiling Performance	Apr 15, 2017	CMU	94.5	95.4	94.2
Amazon Mechanical Turker	Apr 15, 2017	CMU	73.3	85.1	69.4
Megatron-BERT (ensemble)	Mar 13, 2020	NVIDIA Research	90.9	93.1	90.0
ALBERT + DUMA (ensemble)	Mar 18, 2020	SJTU & Huawei Noah's Ark Lab	89.8	92.6	88.7
Megatron-BERT	Mar 13, 2020	NVIDIA Research	89.5	91.8	88.6
ALBERT (ensemble)	Sep 26, 2019	Google Research & TTIC	89.4	91.2	88.6
UnifiedQA	May 02, 2020	AI2 & UW	89.4	-	-
ALBERT + DUMA	Feb 08, 2020	SJTU & Huawei Noah's Ark Lab	88.0	90.9	86.7
T5*	May 02, 2020	Google	87.1	-	-

Leaderboard

Report Time	Model	Accuracy
	Human Ceiling Performance Tencent & Cornell & UW & AI2 Sun et al., 2019	98.6
	Human Performance Tencent & Cornell & UW & AI2 Sun et al., 2019	95.5
Feb 26, 2020	ALBERT-xxlarge + DUMA + Multi-Task Learning IBM Research AI Wan et al., 2020	91.8
Feb 05, 2020	ALBERT-xxlarge + DUMA SJTU & Huawei Noah's Ark Lab Zhu et al., 2020	90.4
Oct 01, 2019	RoBERTa-Large + MMM MIT & Amazon Alexa Al Jin et al., 2019	88.9
Jul 21, 2019	XLNet-Large River Valley High School, Singapore https://github.com/NoviScl/XLNet_DREAM	72.0
