

Democratizing Al Model Training on Kubernetes with Kubeflow TrainJob and JobSet

Andrey Velichkevich (@andreyvelich) - Apple Yuki Iwai (@tenzen-y) - Cyber Agent, Inc.

Train Al Models - Expectations

Train Al Models - Reality

Challenges for Model Training on Kubernetes

Models are becoming more complex

Large datasets need to be distributed across training nodes

Efficent management of compute resources is essential

Diversity of ML frameworks is increasing

New distributed technologies need to be adopted

What Users Want

"I just want to scale my PyTorch code"

What is Kubeflow?

What is Training Operator?

History of Training Operator and Batch WG

Kubeflow Training V2

Kubeflow Training V2 Goals

Simple to use and scale

Python is the main user interface

Enables quick fine-tuning of LLMs

Provides robust support for the ML ecosystem

Streamline dataset and pre-trained model initialization

Consolidates efforts between Kubernetes and Kubeflow communities

Torch Distributed & LLM Fine-Tuning Demo

Goal One: Simplicity and Flexibility

Simplicity: CRDs for Different Personas

LLM Runtime Lifecycle for Fine-Tuning

Simplicity: Python is the Main Interface


```
from kubeflow.training import TrainingClient

for r in TrainingClient().list_runtimes():
    print(f"Name: {r.name}, Phase: {r.phase}, Devices: {r.device} x {r.device_count}\n")

Name: jax-distributed, Phase: pre-training, Devices: TPU-v5e-64GB x 2

Name: torch-distributed, Phase: pre-training, Devices: GPU-Tesla-V100-16GB x 2

Name: torch-tune-llama-3.2-1b, Phase: post-training, Devices: GPU-Tesla-V100-16GB x 16
```


Data Scientists

```
from kubeflow.training import (
    HuggingFaceDatasetConfig,
    TrainerConfig,
    LoraConfig,
)

TrainingClient().train(
    dataset_config=HuggingFaceDatasetConfig(
        storage_uri="tatsu-lab/alpaca",
    ),
    trainer_config=TrainerConfig(
        lora_config=LoraConfig(r=4),
    ),
    runtime_ref="torch-tune-llama-3.2-1b",
)
```

Simplicity: TrainJob API

Flexibility: TrainingRuntime API

Flexibility: TrainingRuntime API


```
replicatedJobs:
- name: trainer-node
  . . .
  containers:
  - name: trainer
    image: docker.io/kubeflow/torch-llm-trainer
    resources:
      limits:
        nvidia.com/gpu: 4
    volumeMounts:
    - mountPath: /workspace/dataset
      name: storage-initializer
    - mountPath: /workspace/model
      name: storage-initializer
  volumes:
  name: storage-initializer
    persistentVolumeClaim:
      claimName: storage-initializer
```


Trainer

Storage Volume

Robust Support for ML Ecosystem

Frameworks	KF V2 Plugin	Phase	KF V1 CRD
O PyTorch	Torch	Supported	PyTorchJob
† TensorFlow	TensorFlow	In Progress	TFJob
Hugging Face	Torch & HF	In Progress	PyTorchJob
A deepspeed	MPI	In Progress	MPIJob
MLX	MPI	Design	No Support
	PlainML	Design	JAXJob
ا خرخہ PaddlePaddle	PlainML	Design	PaddleJob
XGBOOST	PlainML	Design	XGBoostJob

Flexibility: Kubeflow Job Pipeline Framework

Flexibility: Kubeflow Job Pipeline Framework

Register to Kubeflow TrainingOperator

MLOps Engineers

Goal Two: Scalability & Cost

TrainJob is Scalable and Cost Efficient

TrainJob optimizes GPU cost by delegating I/O tasks to CPU nodes

TrainJob is using Kubernetes native workloads: JobSet + Job

TrainJob operates Pods concurrently, but Kubeflow Training V1 creates Pods sequentially

Kubeflow Training V2 Summary

- ✓ Simple to use and scale
- ✓ Python is the main user interface
- ✓ Enables quick fine-tuning of LLMs
- ✓ Provides robust support for the ML ecosystem.
- ✓ Streamline dataset and pre-trained model initialization
- Consolidates efforts between Kubernetes and Kubeflow communities.

Future Work

Implement more runtimes for LLMs fine-tuning

Support for MPI V2 and other ML frameworks KEP-2170: Kubeflow Training V2

Improve Kubernetes for AI training workloads

Serial Job Execution: sigs.k8s.io/jobset#680

Elastic JobSet: sigs.k8s.io/jobset#463

Stateful Index Jobs for volume management: sigs.k8s.io/jobset#572

Multi Cluster Job dispatching with Kueue

Support Quota management and Job Queueing with Kueue

Get Involved

Kubeflow AutoML and Training WG

- Join the CNCF Slack
 - #kubeflow-training
- Participate in <u>the Kubeflow Training V2</u>
- AutoML and Training WG <u>bi-weekly meetings</u>:
 - Wednesdays 2pm UTC
 - Wednesdays 5pm UTC

Kubernetes Batch WG

- Join the Kubernetes Slack
 - o <u>#wq-batch</u>
- Participate in the <u>the WG Batch</u>
- Batch WG <u>bi-weekly meetings</u>:
 - Thursdays 3pm CET
 - Thursdays 3pm PT

Thanks to our Contributors!

saileshd1402

terrytangyuan

YosiElias

varshaprasad96

vsoch

Thank you!

Andrey Velichkevich

- Email: andrey.velichkevich@gmail.com
- GitHub: <u>andreyvelich</u>
- Slack
- <u>LinkedIn</u>
- <u>BlueSky</u> and <u>Twitter</u>

Yuki Iwai

- Email: yuki.iwai.tz@gmail.com
- GitHub: <u>tenzen-y</u>
- Slack
- <u>LinkedIn</u>

Please scan the QR Code above to leave feedback on this session