Differentiating velocity with respect to time allows for autocorrelation in time and spatially-varying drift in the model.

(Continuous Time Correlated Random Walk, Johnson et al. 2008)

At time t and location $\{X(t), Y(t)\}'$,

 $dv_{x}(t)$

 $dv_{v}(t)$

 $\begin{vmatrix} (\mu_{x} - v_{x}(t)) \\ (\mu_{y} - v_{y}(t)) \end{vmatrix}$

Mean drift

Instantaneous velocity at time t (damping force)

Controls autocorrelation

Derivative of **Brownian motion**

We will numerically approximate (Euler-Maruyama)

Differentiating velocity with respect to time allows for autocorrelation in time and spatially-varying drift in the model.

At time t and location $\{X(t), Y(t)\}'$,

How can we understand this equation?

$$\begin{bmatrix} \frac{dv_{x}(t)}{dt} \\ \frac{dv_{y}(t)}{dt} \end{bmatrix} = \beta \begin{bmatrix} (\mu_{x} - v_{x}(t)) \\ (\mu_{y} - v_{y}(t)) \end{bmatrix} + \sigma \begin{bmatrix} \frac{dW_{v_{x}}(t)}{dt} \\ \frac{dW_{v_{y}}(t)}{dt} \end{bmatrix}$$