Functional Analysis I : Topological Vector Space

Lecture by Ikhan Choi Notes by Ikhan Choi

Contents

Chapter 1. Topological vector spaces	3
1. Elementary properties	4
2. Classification	5
3. Barreled spaces	6
3.1. The Baire category theorem	6
3.2. Uniform boundedness principle	6
3.3. Open mapping theorem	6
Chapter 2. Locally convex spaces	7
1. Seminorms	8
2. The Hahn-Banach theorem	9
3. Weak topology	10
Chapter 3. Operators on Banach space	11

CHAPTER 1

Topological vector spaces

1. Elementary properties

definition - how to use the continuity of vector space operations effectively homeomorphism by translation and dialation: local base at 0 uniformity pseudometrics, basic classification translation invariant metric completely regular (up to 3.5) boundedness and continuity

2. Classification

Proposition 2.1. Let ρ be a pseudometric. Then,

$$B(0,1) \subset \frac{B(0,1) + B(0,1)}{2} \subset \frac{1}{2}B(0,2).$$

If ρ is a seminorm, then the equalities hold.

I say this as $\frac{1}{2}B(0,2)$ is "fatter" than B(0,1).

3. Barreled spaces

3.1. The Baire category theorem.

3.2. Uniform boundedness principle.

Theorem 3.1 (Uniform boundedness principle). Let X be a barreled space and Y be a topological vector space. Let $\mathcal{F} \subset B(X,Y)$. If \mathcal{F} is pointwise bounded, then \mathcal{F} is equicontinuous.

3.3. Open mapping theorem.

Theorem 3.2 (Open mapping theorem). Let X be a topological vector space and Y be a metrizable barreled space. Let $T \colon X \to Y$ be linear. If T is surjective and continuous, then T is open.

PROOF. If we let U be an open neighborhood in X, then we want to show TU is a neighborhood. Because T is surjective so that \overline{TU} is absorbent, \overline{TU} is a neighborhood. Note that an open set intersects \overline{TU} also intersects TU.

If there exist two sequences of balanced open neighborhoods $U_n \subset X$ and $V_n \subset Y$ with

- $(1) U_1 + \cdots + U_n \subset U,$
- (2) $V_n \subset \overline{TU_n}$,
- $(3) \bigcap_{n \in \mathbb{N}} V_n = \{0\},\$

then we can show $V_1 \subset TU$. Here is the proof: Suppose $y \in V_1$. Then,

$$y \cap V_1 \neq \varnothing \longrightarrow y \cap \overline{TU_1} \neq \varnothing \longrightarrow (y + V_2) \cap TU_1 \neq \varnothing$$

$$(y + TU_1) \cap V_2 \neq \varnothing \longleftrightarrow (y + TU_1) \cap \overline{TU_2} \neq \varnothing \longrightarrow ((y + TU_1) + V_3) \cap TU_2 \neq \varnothing$$

$$(y + TU_1 + TU_2) \cap V_3 \neq \varnothing \longleftrightarrow \cdots$$

From the first columns, and by the conditions (1) and (3), we obtain

$$(y+TU)\cap\bigcap_{n\in\mathbb{N}}V_n\neq\varnothing.$$

Therefore, the set y + TU contains 0, hence $y \in TU$.

Let us show the existence of such sequences. At first, take $U_n = 2^{-n}U$ for (1). Then we can take $\{V_n\}_n$ with (2) as we mentioned above. Simultaneously we can have it satisfy (3) because Y is metrizable.

COROLLARY 3.3. Let X be a metric space and Y be a barreled space. Then, the open mapping theorem holds.

PROOF. The isomorphism $Y \cong X/\ker T$ forces Y to be also metrizable.

COROLLARY 3.4 (The Banach Isomorphy). A continuous linear bijection onto a metrizable barreled space is a homeomorphism.

COROLLARY 3.5 (The first isomorphism theorem). Let $T: X \to Y$ be a bounded linear operator between Banach spaces. Then, the induced map $X/\ker T \to \operatorname{im} T$ is a topological isomorphism.

$CHAPTER \ 2$

Locally convex spaces

1. Seminorms

minkowski functional locally boundedness polar

2. The Hahn-Banach theorem

3. Weak topology

CHAPTER 3

Operators on Banach space

The range of an operator $T:X\to Y$ is closed if and only if $\operatorname{im} T\to X/\ker T$

is bounded.(maybe)