Appendix A

Index of Python Programs

Readers can download the Python program files via GitHub:

https://github.com/springer-math/dynamical-systems-with-applications-using-python

These files will be kept up-to-date and extra files will be added in the forthcoming years.

A.1 IDLE Python Programs

These files include solutions to the Exercises listed in Chapter 1.

```
euclid_algorithm.py --- See Exercise 10.

F2C.py --- See Exercise 1(a).

F2K.py --- Converts degrees Fahrenheit to Kelvin.

fibonacci.py --- Lists first n terms of the Fibonacci sequence.

fmu.py --- The logistic function.

fractal_tree.py --- Plots a fractal tree.

fractal_tree_color.py --- Plots a color fractal tree.

grade.py --- Converts a score to a grade.

guess_number.py --- Guess the number game.

koch_snowflake.py --- See Exercise 1(d).

koch_square.py --- Plots a Koch square fractal.

Pythag_Triples.py --- See Exercise 1(c).

sierpinski.py --- Plots a Sierpinski triangle fractal.

sierpinski_square.py --- Plots a Sierpinski square fractal.
```

Appendix: ©Springer

```
sum_primes.py --- See Exercise 1(b).
sum_n.py --- Sums the natural numbers to n.
```

A.2 Anaconda Python Programs

If you have difficulty with the animation programs in Spyder, you have to change the backend to run an animation in the IPython console. You can do that by running

In[1]: %matplotlib qt5

646

before the animation. If you don't want to use this command every time, you can go to: Tools, Preferences, IPython Console, Graphics, Backend, and change it from "Inline" to "Automatic."

```
Program_01a.py --- Solve a simple ODE.
Program_01b.py --- Solve a second order ODE.
Program_01c.py --- Plot two curves on one graph.
Program_01d.py --- Subplots.
Program_O1e.py --- Surface and contour plot in 3D.
Program_01f.py --- A parametric curve in 3D.
Program_01g.py --- Animation of a simple curve.
Program_02a.py --- Solve a separable ODE.
Program_02b.py --- Solve the logistic ODE.
Program_02c.py --- Power series solution.
Program_02d.py --- Power series solution for van der Pol.
Program_02e.py --- Plot series solution against numerical
                   solution.
Program_02f.py --- Solve a linear first order ODE.
Program_02g.py --- Solve a linear second order ODE.
Program_03a.py --- Plot the phase portrait of a linear system.
Program_03b.py --- Plot the phase portrait of a nonlinear
                   system.
Program_03c.py --- Finding critical points.
Program_04a.py --- Phase portrait and time series of Holling-
                   Tanner model.
```

Appendix 647

```
Program_05a.py --- Limit cycle of a Fitzhugh-Nagumo system.
Program_05b.py --- Approximate and numerical solutions to ODEs.
Program_05c.py --- Error between one-term and numerical
                   solution.
Program_05d.py --- Lindstedt-Poincare technique.
Program_06a.py --- Contour plot.
Program_06b.py --- Surface plot.
Program_07a.py --- Animation of a simple curve.
Program_07b.py --- Animation of a subcritical Hopf bifurcation.
Program_07c.py --- Animation of a SNIC bifurcation.
Program_08a.py --- The Rossler attractor.
Program_08b.py --- The Lorenz Attractor.
Program_08c.py --- The Belousov-Zhabotinsky reaction.
Program_08d.py --- Animation of a Chua circuit bifurcation.
Program_09a.py --- Simple Poincare return map.
Program_09b.py --- Hamiltonian with two degrees of freedom plot.
Program_09c.py --- Phase portrait and Poincare map for the
                   Duffing system.
Program_09d.py --- Bifurcation diagram of Duffing equation.
Program_10a.py --- Computing Lyapunov quantities.
Program_10b.py --- Division algorithm for multivariate
                   polynomials.
Program_10c.py --- S-polynomial.
Program_10d.py --- Computing the Groebner basis.
Program_10e.py --- Computing Groebner basis of Lyapunov
                   quantities.
Program_10f.py --- Animation of a homoclinic limit cycle
                   bifurcation.
Program_10g.py --- Animation of a homoclinic limit cycle
                   bifurcation.
Program_11a.py --- Animation of a Lienard limit cycle.
Program_12a.py --- The method of steps.
Program_12b.py --- Plot of solution by method of steps.
Program_12c.py --- The Mackey-Glass DDE.
Program_12d.py --- The Lang-Kobayashi DDEs.
```

```
Program_13a.py --- Computing bank interest.
Program_13b.py --- Solving a second order recurrence relation.
Program_13c.py --- The Leslie matrix, eigenvalues and
                   eigenvectors.
Program_14a.py --- Graphical iteration of the tent map.
Program_14b.py --- Bifurcation diagram of the logistic map.
Program_14c.py --- Computing Lyapunov exponents for the
                   logistic map.
Program_14d.py --- Iteration of the Henon map.
Program_14e.py --- Lyapunov exponents of the Henon map.
Program_15a.py --- Point plot for a Julia set.
Program_15b.py --- Colormap of a Julia set.
Program_15c.py --- Color Mandelbrot set.
Program_15d.py --- Color Newton fractal Julia set.
Program_16a.py --- Intersection of implicit curves.
Program_16b.py --- Chaotic Attractor of the Ikeda map
Program_16c.py --- Bifurcation diagram of the Ikeda map.
Program_17a.py --- The Koch curve.
Program_17b.py --- Chaos game and the Sierpnski triangle.
Program_17c.py --- Barnsley's fern.
Program_17d.py --- Subplots of tau, D_q and f(alpha)
                   multifractal spectra.
Program_18a.py --- Generating a multifractal image
Program_18b.py --- Counting pixels in a color image.
Program_18c.py --- Image and statistical analysis on
                   microbes.png
Program_18d.py --- Fast Fourier transform of a noisy signal
Program_18e.py --- Iterative map and power spectra
Program_18f.py --- Fast Fourier transform of Lena image
Program_18g.py --- Edge detection in Lena image
Program_19a.py --- Chaos control in the logistic map.
Program_19b.py --- Chaos control in the Henon map.
Program_19c.py --- Chaos synchronization between two Lorenz
                   systems.
Program_19d.py --- Generalized synchronization.
Program_20a.py --- The generalized delta learning rule.
```

Appendix 649

```
Program_20b.py --- The discrete Hopfield network.

Program_20c.py --- Iteration of a minimal chaotic neuromodule.

Program_20d.py --- Bifurcation diagram of neuromodule.

Program_21a.py --- The Hodgkin-Huxley equations.

Program_21b.py --- The Fitzhugh-Nagumo half-adder.

Program_21c.py --- Phase portrait Josephson junction limit cycle.

Program_21d.py --- Animated Josephson junction limit cycle.

Program_21e.py --- Pinched hysteresis of a memristor.
```

absorptive nonlinearity, 407	ArtistAnimation, 178
action potential, 114, 559	assay for neuronal degradation,
activation	577
function, 521, 550	associative memory, 524, 531
level, 532	asymptotic expansion, 127
potential, 522	asymptotically stable
ADALINE network, 524	critical point, 152
affine linear transformation, 440	asynchronous updating, 536
age class, 106, 333	attractor, 193
Airy equation, 61	attributes, 529
algebraicity of limit cycles, 283	autocatalysis, 204
All or None principle, 560	autonomous differential equation,
Alzheimer's disease, 577	54
ampere, 48	autonomous system, 186
Ampere's law, 405	auxiliary system approach, 507
Anaconda, 14	average Lyapunov exponent, 366
Anaconda Python programs, 646	ax.set title, 235
anemia, 374	Axes3D(fig), 235
angiogenesis, 308	axial flow compressors, 175
angular frequency of the wave,	axon, 521, 558
406	
animation, 26	Baby computer, 571
Spyder, 646	backpropagation, 526
ants and termites, 96	algorithm, 528
aperiodic, 201, 360	backward training, 388
behavior, 196	ballistic propagation, 571
append, 262	bandwidth, 407
applying a damper, 493	Barnsley's fern, 441
arrhythmic, 495	basin of attraction, 159, 193, 372,
Artificial Intelligence Group, 526	388
artificial neural networks, 520	basis, 253

batch data, 530	blowflies, 360
Belousov-Zhabotinski reaction,	bluegill sunfish, 104
204, 212	
	Boston housing data, 529
Bendixson's criterion, 123	boundaries of periodic orbits, 391
bias, 521	box-counting dimension, 443, 448
bifurcating limit cycles from a	brain functions, 521
center, 258	Briggs-Rauscher, 204
bifurcation	bursting, 310
curve, 167	butterfly effect, 200
diagram, 166	BZ reaction, 204
at infinity, 273	
point, 362	canny edge detector, 477
value, 164	canonical form, 66, 67, 186
bifurcation diagram	Cantor
CR resonator, 409	- · · · ·
DDE	multifractal, 454
field components, 313	set, 235, 435
Mackey-Glass, 307	capacitance, 49
Duffing equation, 232	capacitor, 49
Gaussian map, 370	cardioid, 393
Ikeda map, 425	cardiology, 492
Josephson junction, 575	carrying capacity, 38
limit cycles, 177	cavity ring (CR) resonator, 408
logistic map, 365	cavity round-trip time, 408
neuromodule, 544	cell body, 558
periodically forced	center, 69, 148, 246
pendulum, 233	manifold
SFR resonator, 422	theorem, 191
SNIC, 178	changing the system parameters,
binarize, 475	493
binary half adder, 565	chaologist, 492
biology, 374	chaos, 194 , 196 , 350 , 353 , 409
bipolar activation function, 522	control, 541 , 552
bistability, 174, 175, 368, 421	synchronization, 505
bistable, 175, 206, 370, 408	chaos control
cycle, 203	OGY method, 493
device, 407, 421	periodic proportional pulses,
neuromodule, 543	513
optical resonator, 495	chaos game, 439
region, 233, 241, 409, 414	chaotic
solution, 176	attractor, 197, 229, 415
bistable region, 544	dynamics, 199
blit, 178	phenomena, 348
•	· /

	1 . 1
chaotic attractor	completely
Hénon map, 501	integrable, 221
neuromodule, 542	reduced, 254
Sierpiński, 440	complex eigenvalues, 69, 330
Chapman cycle, 211	complex iterative equation, 417
characteristic	complex(x,y), 396
equation, 302, 330	compound interest, 329
exponent, 283	computer algebra, 252
multiplier, 219	concentrations, 44
charge density, 405	conditional Lyapunov exponents,
chemical	506
kinetics, 44, 86, 117, 204,	conductivity, 406
505, 561	conformal mapping, 386
reaction, 59	conservation of energy, 146
signals, 521	conservation of mass, 86
substance, 61	conservative, 146
chemical law of mass action, 44	contact rate, 212
Chua's circuit, 51, 117, 201, 493,	content-addressable memory, 532
514	continuation lines, 20
circle map, 221	continuous Hopfield model, 532
circular frequency of light, 410	contour plot, 24
classical symmetry argument, 248	control curves, 499
classification of critical points, 71	control engineering, 526
climate change, 314	control parameter, 495
clipping problem, 451	control region, 495
clockwise bistable cycle, 632	controlling chaos
clockwise hysteresis, 241, 410	Hénon map, 498
cluster, 524	logistic map, 497
cmap, 396	conversational agents, 526
CMOS oscillators, 571	convex closed curve, 123
coarse Hölder exponent, 450	convoluted surfaces, 191
codimension-1 bifurcation, 182	coordinates of an image, 474
codimension-2 bifurcation, 182	core area of the fiber, 413
coexistence, 96	corollary to Poincaré-Bendixson
coexisting chaotic attractors, 372	theorem, 120
col, 69	correlation dimension, 450
collect, 128	coulomb, 48
comb(k,s), 459	counterclockwise hysteresis, 410
common typing errors, 20	coupler, 412
commutative ring, 252	- ,
commutative ring, 232 competing species, 96, 110, 140	critical point, 55, 72, 186, 191, 300
complete synchronization, 506	at infinity, 276

culling, 106	dimension, 448
policy, 337	direction
current, 48	field, 66
density, 405	vector, 66
cusp, 84	discrete Fourier transform, 479
cylindrical polar coordinates, 193	discrete Hopfield model, 536
	dispersive nonlinearity, 407
damping, 116	displacement function, 247
damping coefficient, 282	distributive laws, 252
dangerous bifurcation, 174	divergence test, 248
Daphnia dentifera, 104	domain of stability, 97, 193, 388
dashed curve, 22	double-coupler fiber ring
data, 545	resonator, 410, 428
data mining, 520	double Hopf bifurcation, 308, 322
databases, 529	double-scroll attractor, 203
DDE, 298	double-well potential, 151
dde23, 315	$D_q, 448$
ddeint, 298	driver system, 506, 507
def, 6	dsolve, 57
defibrillator, 495	Duffing
defraction, 61	equation, 129, 227
degenerate	system, 493, 611
critical point, 148	Dulac's criterion, 122
node, 70	Dulac's theorem, 273
degree, 273	
degree lexicographical order, 253	$E_C, 191$
delay differential equation, 298	economic model, 117, 322, 332
deleted neighborhood, 121	economics, 92, 374, 382, 453, 505
delta learning rule, 524, 526	edge detection
dendrites, 521, 558	Roberts, 485
depolarization, 559	Sobel, 485
depolarize, 566	eig, 342
derivative of the Poincaré map	eigenvector, 72
test, 220	El Niño, 313
desired vector, 527	electric
deterministic chaos, 195, 492	circuit, 48, 92, 117, 201, 532
deterministic system, 520	displacement, 405
$D_f, 441$	displacement vector, 405
dielectric, 406	field, 412, 417, 495
difference equation, 328, 551	field strength, 405
differential amplifier, 407	flux density, 405
diffusion limited aggregates	electromotive force (EMF), 49
(DLA), 453	elementary steps, 44

elliptic integral, 259	Fibonacci sequence, 343
EMF, 49	field, 253
energy level, 227	figsize, 107
enrichment of prey, 106	fine focus, 246
ENSO model, 313	first integral, 146
Enthought Canopy, 14	first iterative method, 419, 422,
environmental effects, 106	552
environmental model, 313	first return map, 216
epidemic, 61, 85, 106, 117, 212	first-order difference equation,
	328
epilepsy, 577	fish population, 38, 181, 345
epoch, 524	
equilibrium point, 55	Fitzhugh-Nagumo
ergodicity, 366, 495	equations, 116
error backpropagation rule, 528	oscillator, 114
error function, 527	system, 563
erythrocytes, 374	fixed point, 55, 355
$E_S, 72, 186, 191$	period m, 221
E_U , 72, 186, 191	period N, 357
Euclidean dimension, 448	period one, 217, 414, 497
Euclid's algorithm, 29	period two, 498
exact, 39	fixed size box-counting algorithm,
exact differential equation, 39	451
excitatory, 521, 558	fixed weight box-counting
existence and uniqueness	algorithm, 451
limit cycle, 117	flow, 118
existence theorem, 53	focal values, 247
extinct, 96	fold bifurcation, 182
	for loop, 6
Fabry-Perot	forced system, 227
interferometer, 407	forward rate constant, 46
resonator, 407	fossil dating, 59
farad, 49	Fourier spectrum, 478
Faraday's law, 49	Fourier transform, 477
of induction, 404	fractal, 434, 441
fast Fourier transform, 480	attractor, 197, 441
feedback, 175, 407, 420	dimension, 441
feedback mechanism, 543	Cantor set, 442
feedforward single layer network,	Koch curve, 442
523	Koch square, 442
Feigenbaum constant, 365	Sierpiński triangle, 442
Ferranti Mark 1, 571	geometry, 434
FFT, 480	structure, 196, 201, 386
fiber parameters, 423	fragmentation ratios, 449
noer parameters, 420	magmemation ratios, 449

$f(\alpha)$ spectrum, 448	Hamiltonian systems
FuncAnimation, 178, 207	with two degrees of freedom,
Function, 57	221
function approximators, 526	handcrafted patterns, 541
fundamental memory, 536	hard bifurcation, 174
fuzzy discs, 451	Hartman's theorem, 79
	harvesting, 106, 181
Gauss's law	policy, 337
electricity, 405	Hausdorff dimension, 448
magnetism, 405	Hausdorff index, 441
Gauss-Newton method, 528	Hausdorff-Besicovich dimension,
Gaussian input pulse, 421	450
Gaussian map, 368	Heaviside function, 523
Gaussian pulse, 638	Hebb's learning law, 522
generalized delta rule, 528	Hebb's postulate of learning, 536
generalized fractal dimensions,	help command, 20
448	Hénon map, 370 , 445 , 451 , 609 ,
generalized mixed Rayleigh	612
Liénard equations, 267	henry, 49
generalized synchronization, 507	heteroclinic
gestation period, 304	bifurcation, 234
GitHub, 2	orbit, 120, 150, 234, 274
global bifurcation, 260, 273	tangle, 234
global warming, 314	heterogeneous, 448
globally asymptotically stable,	hidden layer, 524, 528, 603
194, 211	high pass filter, 484
glucose in blood, 60	Hilbert numbers, 273
Gröbner bases, 252	Hints for programming, 20
gradient, 66	history, 176
gradient vector, 527	history function, DDEs, 298
graphene nano-ribbon, 573	Hodgkin-Huxley equations, 114,
graphic, 120	560
graphical method, 351, 417	Holling-Tanner model, 101, 139,
gray scale, 458, 473	164
Green's theorem, 122	homoclinic
Gross National Product (GNP),	bifurcation, 200, 234, 261
374	loop, 260, 261, 267
Guido van Rossum, 2	orbit, 150, 234, 274
	tangle, 234
Hénon-Heiles Hamiltonian, 225	homogeneous, 448
haematopoiesis, 306	homogeneous differential
Hamiltonian, 146, 611	equation, 40
	- ·

Hopf	information dimension, 450
bifurcation, 170, 182, 303	inhibitory, 521, 558
singularity, 182	initial value problem, 38
Hopfield network, 156, 531, 551,	input vector, 521
610, 613	insect population, 109, 345, 616
Hopfield neural network, 525	instability, 421
horseshoe dynamics, 235	* *
host-parasite system, 104	instant physician, 526
human population, 85, 343	integrable, 223
hyperbolic hyperbolic	integrate and fire neuron, 116
v -	Integrated Development
attracting, 283	Environment, 2, 14
critical point, 79	integrating factor, 34
fixed point, 220, 371	intensity, 412
iterated function system, 440	interacting species, 95, 626
repelling, 283	intermittency, 203, 212, 363
stable limit cycle, 220	route to chaos, 365
unstable limit cycle, 220	invariant, 118, 201, 416
hyperpolarize, 566	axes, 82, 98
hyperpolarized, 559	inverse discrete Fourier
hysteresis, 175, 371, 421	transform, 479
curves, 313	inverted Koch snowflake, 609
Josephen junction, 574	inverted Koch square, 438
IDE 14	inverted pendulum, 322
IDE, 14	io.imsave, 474
ideal, 252	isoclines, 67
IDLE, 2	isolated periodic solution, 114
IDLE Python programs, 645	isothermal chemical reaction, 86
if, elif, else, 6	iterated function system (IFS),
Ikeda	440
DDE, 310	iteration, 328
map, 375, 414, 428, 513	,
im, 396	I1: 171
image analysis, 453	Jacobian, 171
image compression, 434, 484	Jacobian matrix, 78, 192, 205,
incident, 407	371, 502
indentation level, 20	Jaynes-Cummings model, 595
index, 125	Jordan curve, 121, 286
inductance, 49	Josephson junction
infected population, 105	mathematical model, 573
infectives, 85	Josephson junction (JJ), 571
inflation unemployment model,	jth point of period i, 357
382	Julia set, 386, 389, 434, 612
infodict, 107	color, 390

theorem, 227 tori, 227 kernel machines, 525 281 large parameter, 286 local results, 290	
kernel machines, 525 local results, 290	
1011101 11100111100, 020	
Kerr theorem, 293	
effect, 407, 413 limit cycle, 106, 114, 118, 206,	
type, 413 595, 611	
kinetic energy, 146 hyperbolic, 259	
Kirchhoff's neuron, 116	
current law, 49 nonexistence, 608	
laws, 532 3-D, 195	
voltage law, 49 Lindstedt-Poincaré technique, 131	1
Koch linear differential equation, 34	
curve, 436 linear phase shift, 412, 423	
snowflake, 464 linear stability analysis, 56, 300,	
square, 436 417	
linear transformation, 187	
linearization, 78	
ladybirds and aphids, 99 linearized system, 78	
lambdas, 315 Lipschitz	
laminarize, 494 condition, 53	
Lang-Kobayashi equations, 310 continuous, 53	
Laplace transform, 50 local bifurcation, 273	
large-amplitude limit cycle, 175 log-log plot, 445	
bifurcation, 175 logic gates, 407	
laser, 182, 374, 410, 494 logic operations, 565	
model, 310 logistic	
LaTeX, 24 equation, 38, 302	
law of mass action, 86 function, 6	
learning process, 521 growth, 101	
learning rate, 527 map, 360, 497, 612	
least mean squared (LMS) Lorenz	
algorithm, 524 attractor, 201	
legend, 23, 107 equations, 199, 494	
Legendre transformation, 450 loss in the fiber, 412	
Leslie Lotka-Volterra model, 99, 164,	
matrix, 334 212, 304	
model, 333 low-gain saturation function, 523	
lexicographical order, 253 low pass filter, 484	
lie detector, 526 lowest common multiple, 256	
Liénard Lyapunov	
equation, 248 quantity, 247	
plane, 282 stability, 531	

Lyapunov domain of stability, 155	mathematical model, 574
Lyapunov exponent, 197, 366, 612	meshgrid, 157
Lorenz system, 603	meteorology, 199
Lyapunov function, 151, 154, 194,	method of multiple scales, 134
247, 284, 550, 607	method of steepest descent, 527
Hopfield network, 532	method of steps, 299
Lyapunov quantities, 290	mgrid, 425
Lyapunov stability theorem, 152	micro-parasite—zooplankton—
lynx and snowshoe hares, 99	fish system,
Tylix and showshoe hares, 33	104
Mac OS, 2	minimal chaotic neuromodule,
Mackey-Glass model, 306	542
magnetic field vector, 405	minimal Gröbner basis, 257
magnetic flux, 405	mixed fundamental memories, 537
magnetostrictive ribbon, 494	mixing, 353
Mandelbrot, 443	modulo, 254
Mandelbrot set, 389, 391, 434	monomial, 253
manifold, 72	ordering, 253
	mortgage assessment, 526
Maple, 26	motif, 434
math module, 4	mplot3d, 207
Mathematica, 26	multi-electrode array, 577
MATLAB, 26	* '
MATLAB code to Python, 603	multidegree, 254
matplotlib, 18	multifractal, 447, 472, 602
maximal interval of existence, 54,	formalism, 448
62, 118	Hénon map, 459
Maxwell's equations, 404	Sierpiński triangle, 459
Maxwell-Bloch equations, 406	spectra, 448
Maxwell-Debye equations, 406	multistability, 174
McCulloch-Pitts neuron, 522	multistable, 151, 175, 206, 241,
MEA, 577	543
mean, 545	murder, 60
infectivity period, 212	muscle model, 60
latency period, 212	mutual exclusion, 96
mechanical oscillator, 91	myimages, 292
DDE, 321	mylein sheath, 558
mechanical system, 117, 176	
Melnikov	national income, 332
function, 259	negative
integral, 258	limit set, 118
memory devices, 407	semiorbit, 118
memristance, 52	negatively, invariant, 118
memristor, 51, 572, 573	net reproduction rate, 339

network architecture, 521	nullclines, 67
neural network, 375, 505, 521	numerical solutions, 42
DDE, 315	numpy, 18
neuristor, 572	пишру, 10
	occasional proportional feedback
neurodynamics, 541	(OPF), 494
neurological assay, 577	ODE, 34
neuromodule, 541	odeint, 42, 57
neuron	OGY method, 495
module, 375	ohm, 49
neuron(s), 114, 521, 551, 558	Ohm's law, 48
neuronal model, 521	optical
neurotransmitters, 558	bistability, 407
Newton fractal, 395, 602	computer, 407
Newton's law of cooling, 60	fiber, 410
Newton's law of motion, 146	fiber double ring, 410
Newton's method, 395, 528	memories, 407
noise, 497	oscillators, 572
NOLM, 404	resonator, 176
with feedback, 410	sensor, 408
nonautonomous system, 116, 227	optimal sustainable, 340
nonconvex closed curve, 124	optogenetics, 578
nondegenerate	orbit, 66, 118
critical point, 148, 246	ordinary differential equation, 34
nondeterministic chaos, 195, 492	oscillation of a violin string, 114
nondeterministic system, 520	oscillatory threshold logic, 563
nonexistence of limit cycles, 123	output vector, 521
nonhyperbolic	ozone production, 211
critical point, 79, 151, 607	,
fixed point, 371	parasitic infection, 111
nonlinear	Parkinson's disease, 577
center, 247	partial differential equations, 34
optics, 374	partition function, 448
phase shift, 412	Pascal's triangle, 464
refractive index coefficient,	passive circuit, 51
413	Peixoto's theorem in the plane,
nonlinearity, 175, 407	164
nonperiodic behavior, 196	pendulum, 147, 159, 241
nonsimple canonical system, 67	double, 593
normal form, 164, 170	perceptron, 522
normalized eigenvector, 340	perihelion, 593
not robust, 101	period, 259
notebook, 14	bubblings, 368
np.mgrid, 88	limit cycle, 103, 119, 205

undoublings, 368	positive
period-doubling, 203	limit set, 118
period-doubling bifurcations to	semiorbit, 118
chaos, 363	positively, invariant, 118
period-n cycle, 195	potato man, 394
period-one behavior, 350	potential difference, 48
period-two, 196	potential energy, 146, 151
behavior, 350	potential function, 151
period-three behavior, 351	pow(x,y), 315
periodic periodic	power, 412
behavior, 115	law, 443
orbit, 259	spectra, 199, 203
windows, 363	of a waterwheel, 92
periodicity, 348, 353	power-splitting ratio, 412
permittivity of free space, 405	pprint, 57
perturbation methods, 127	Prandtl number, 200
phase portrait, 66	preallocate, 20
phase shift, 412	predation, 104
physiology, 505	rate, 101
piecewise, 300, 315	predator-prey, 117
piecewise linear function, 523	DDE, 304
pinched hysteresis, 52, 574	models, 99
pitchfork bifurcation, 167	system, 109
pixels, 451	probe vector, 536
planar manifold, 187	propagation, 412
plastics, 453	psychological profiling, 526
plt.axes, 292	PyDDE, 298
Poincaré	pydelay, 298, 311
compactification, 275	Pyragas's method, 493
map, 119, 199, 216, 259, 371,	Python
495	based exam, 607 , 613
section, 216, 611	files download, 2
Poincaré-Bendixson theorem, 120,	-
227, 281, 287	qth moment, 448
Poisson brackets, 223	qualitative behavior, 66
polar coordinates, 69, 276	qualitatively equivalent, 74
pole placement technique, 496	quasi-periodicity, 221
pollution, 106	quasi-polynomials, 302
polymer, 453	quasiperiodic, 544, 552
population, 92	route to chaos, 203
of rabbits, 86	quasiperiodic forcing, 228
population model, 614	quiver, 88

Rössler	reversed fundamental memories,
attractor, 194	537
system, 194	RGB image, 474
radioactive decay, 610	rgb2gray, 477
randint(a,b), 459	ring, 252
random behavior, 195	ringing, 241
Raspberry Pi, 2	RLC circuit, 51, 117
rate constant, 45	roach:fish population, 338
rate-determining step, 45	robust, 103
Rational(1,2), 376	Rotating Wave Approximation
rationally independent, 221	(RWA), 312
ravel, 157	rsolve, 342
Rayleigh number, 200	rubbers, 453
Rayleigh system, 115	
re, 396	S-polynomial, 256
reaction rate equation, 45	saddle point, 69, 148
real distinct eigenvalues, 68	saddle-node bifurcation, 165
recurrence relation, 328	saddle-node on an invariant cycle
recurrent neural network, 524,	bifurcation, 176
531	safe bifurcation, 174
red blood cells, 374	save image, 472
red and grey squirrels, 96	savefig, 22
reduced, 262	scaling, 443, 448
reduced Gröbner basis, 257	scatter, 425
reflected, 407	sea lions and penguins, 96
refractive index, 407	seasonal effects, 106
refractive nonlinearity, 407	seasonality, 212
refuge, 106	second iterative method, 420,
regionprops, 477	422, 552
regulator poles, 496	second order linear difference
relative permeabilities, 406	equation, 330
relative permittivities, 406	second part of Hilbert's sixteenth
repeated real eigenvalues, 70	problem, 272
repolarization, 559	second-order differential equation,
resistance, 49	50
resonance terms, 173	secular term, 131
resonant, 173	sedimentary rocks, 453
response system, 506, 508	self-similar, 448
restoring coefficient, 282	self-similar fractal, 441
restoring force, 116	self-similarity, 434
restrictions in programming, 291	semistable
return map, 247, 607	critical point, 56
reverse rate constant, 46	limit cycle, 118, 220, 286

sensitivity to initial conditions, 196, 348, 353, 492	manifold, 72, 79, 186, 191, 495
separable differential equation, 35	
separation of variables, 35	node, 69
separatrix, 151	staircases, 356
cycle, 261	stationary point, 55
• .	std, 545
series solutions, 42	steady state, 51, 103
SFR, 403	stem cell, 578
resonator, 409, 412	stiff system, 47, 212
sharks and fish, 99	stiffness, 116
Sierpiński triangle, 439	stochastic methods, 520
sigmoid function, 523	stock market analysis, 453
signal processing, 453, 482	stoichiometric equations, 45
simple canonical system, 68	Stokes's theorem, 405
simple nonlinear pendulum, 146	strange attractor, 197
simply connected domain, 123	stretching and folding, 348
singlet, 212	strictly dominant, 336
singular node, 70	structurally
Smale horseshoe map, 234, 373	stable, 103, 164
Smale-Birkhoff theorem, 235	unstable, 101, 164
small perturbation, 56, 417	subcritical Hopf bifurcation, 174,
small-amplitude limit cycle, 246	200
soft bifurcation, 174	subharmonic oscillations, 229
solar system, 492	subplots, 22, 107
solution curves, 36	summing junction, 521
solve, 88, 258	superconductor, 573
soma, 521, 558	supercritical Hopf bifurcation,
spatial vector, 405	174
spectrum of Lyapunov exponents,	supervised learning, 524
197	surface plot, 24
speed of light, 406	susceptible population, 105
spike train, 559 spin-glass states, 537	susceptibles, 85
	sustainable, 338
spirals, 355 spurious steady state, 537	switches, 407
SR flip-flop, 569	symbols, 57
	sympy, 15
stability, 151, 190	synaptic
diagram, 420 stable	cleft, 558
	gap, 558
critical point, 55, 152 fixed point, 361, 388	vesicles, 558
focus, 69	weights, 521
limit cycle, 103, 118	synchronization, 494, 505, 541
ппп сусте, 105, 116	synchronization, 494, 505, 541

synchronization of chaos, 505	uint8, 476
synchronous updating, 537	unconstrained optimization
	problem, 527
target vector, 524, 527	uncoupled, 187
targeting, 497	uniform asymptotic expansion,
$\tau(q), 449$	127
Taylor series expansion, 56, 78,	uniform harvesting, 341
371, 417	unipolar activation function, 522
tent map, 348, 608	uniqueness theorem, 53
3D plot, 23	universality, 365
three-dimensional system, 186	Unix, 2
threshold, 559	unstable
logic, 564	critical point, 55, 153
value, 85	fixed point, 361, 388
time series, 105, 364	focus, 69
chaos detection, 198	limit cycle, 118
plot, 198	manifold, 72, 79, 186, 191
Tinkerbell map, 601	node, 68
Toda Hamiltonian, 240	unsupervised learning, 524
topological dimension, 448	-
topologically equivalent, 74	vacuum, 405
torus, 228	vacuum tube oscillator, 571
total degree, 253	value of homes in Boston, 529
totally	van der Pol equation, 130
connected, 388	van der Pol system, 114, 259
disconnected, 388	vector field, 66
training, 524	plot, 533
trajectory, 66, 118	velocity of light, 413
transcritical bifurcation, 167	Verhulst's equation, 38, 96
transfer function, 521, 551	virus, mobile phone, 592
transient, 51	viscosity, 200
transmitted, 407	viscous fingering, 434
transversal, 247	volt, 48
transversely, 216	voltage drop, 48
travelling salesman problem, 531	
triangular pulse, 421	wave equations, 404
trigsimp, 130	wave vector, 406
trivial fixed point, 356	wavelength, 406
turbulence, 453, 492	light, 413
2D plot, 21	W_C , 191
two-neuron module, 533	while loop, $6, 29$

Windows, 2 wing rock, 175 WinPython, 14 W_S , 79, 191 W_U , 79, 191

X-ray spectroscopy, 453

XOR gate, 522

You Tube, 386

youngest class harvesting, 339

 $Z_q, 448$