NorESM user workshop 2020

Alok K. Gupta, Yanchun He, Mats Bentsen

Agenda

- HPC infrastructures and NorESM workflow
- Downloading NorESM
- NorESM-2 structure
- Basic steps to execute model
- Few namelist variables to set up model and writing restart files
- user_nl_* files to modify namelist; SourceMods to debug source files
- Continue run, branch run, hybrid run
- Cloning experiment
- Changing processors count

HPC machines

Fram

System Lenovo NeXtScale nx360

Number of Cores 32256

Number of nodes 1006

CPU type Intel E5-2683v4 2.1 GHz

Intel E7-4850v4 2.1 GHz (hugemem)

Per node 32 cores; 64 GiB memory

Island topology; 9216 cores per island

We are using Intel compilers on both machine

Betzy

BullSequana XH2000

Number of Cores 172032

Number of nodes 1344

CPU type AMD® Epyc™ 7742 2.25GHz

Per node 128 cores; 256 GiB memory

 Recently, in testing phase and have approx. 15-25% efficiency for most experiments of NorESM

Information taken from Sigma2 website :- https://www.sigma2.no/

Web services:

- Research Data Archive: https://archive.norstore.no/
- Diagnostic output : http://ns2345k.web.sigma2.no/
- ESGF node : https://noresg.nird.sigma2.no/thredds/
- NorESM git repository: https://github.com/NorESMhub
- NIRD tootkit : https://apps.sigma2.no/nird
- NorESM documentation: https://noresm-docs.readthedocs.io/en/latest/
- NorESM inputdata Server : https://www.noresm.org/inputdata

Recent technical development

- Distributed NorESM repository Like as CESM- public
- Support for new system Betzy
- More documentations NorESM user guide
- MICOM changes to BLOM Bergen Layered Ocean Model
- user_nl_blom consistent like as user_nl_cam ...
- Few bug fixes related to uninitialized variables
- Implementation of inputdata server:- CAM-OSLO and BLOM specific data can be downloaded automatically
- Implementation of CMIP6 compsets
- License

Workflow

Model git repository cime, cam, blom, cice, clm, rtm, ..

https://github.com/NorESMhub

Model Simulation

Mostly, shared folder

FRAM – Betzy – HPC Machines

Post-processing Diagnostics, CMORization

NIRD - National e-Infrastructure for Research Data

Published and archived: CMIP6, CMIP5...

Longterm storage

Downloading CMIP6 version of NorESM

- git clone clone the remote repository locally
 git clone https://github.com/NorESMhub/NorESM NorESM
 cd NorESM
 git tag list all tags
 git checkout tags/release-noresm2.0.2 b noresm
- checkout tag release-noresm2.0.2 to noresm
- release-noresm2.0.2 version to reproduce CMIP6 results of NorESM2
 ./manage_externals/checkout_externals
- Also check once External.cfg as it specifies which tag will be checkedout
- checkout_externals will clone whole repository and checkout tags on path specified in External.cfg

NorESM framework

NorESM/CESM execution strategy

1 day for NorESM-1 CMIP5
1 hour coupling for NorESM-2

NorESM structure

Most general scripts for creating, submitting, machines related setting, IO code (PIO), data components, coupler code, archiving scripts

NorESM specific information CMIP6 related key experiments

Coupled experiments configurations and processors settings

components

All active components and their default namelist settings, processors and **experiments** setting when not fully coupled

cime

- scripts
 create_newcase, create_clone, query_config
- scripts/Tools: mostly tools for setting, building and executing experiment, checks inputdata, archive data; some of these tools/scripts are linked to experiment directory when you create an experiment
- scripts/lib/CIME: contains mostly python scripts to execute these tools

cime/src/

components

data_comps - Data driven components

stub_comps - Stub components

xcpl_comps - Dead components- only for

technical system testing

drivers

mct – model coupling tootkit

externals

pio – parallel IO code

share

This module exists to collect code shared between various components

components

cam – atmosphere; cice – sea-ice; cism – ice sheet; clm – land; blom, pop – ocean; mosart, rtm – river transport; ww3 – wave model

Every component have **src** and **cime_config** directories

cime_config:

buildlib – build particular component library

buildnml – build particular component namelist

config_pes.xml – processors configuration for particular compsets

config_compsets.xml – compsets with some data components

Steps to execute an experiment

- Create an experiment create_newcase
- Configure an experiment case.setup
- Build an experiment case.build
- Set WALLTIME and SIMULATION RUN TIME in env_batch.xml and env_run.xml
- Run an experiment *case.submit*

Creating an experiment

Create an experiment using **create_newcase**; usually I create a directory *cases* where I want to keep experiments. **noresm/cime/scripts/create_newcase --help**Will provide you all the options;

../noresm/cime/scripts/create_newcase --case N1850OCBDRDDMS_f09_tn14 --compset N1850OCBDRDDMS --res f09_tn14 --machine fram --project nn2345k --run-unsupported

- -- case name of experiment
- -- compset Short name of compsets
- -- res grid resolution
- -- machine name of machine
- -- project CPU hours account
- --run-unsupported scientifically unsupported resolution with compset

Compsets

- An experiment with some sets of components and forcing
- List of all compsets

```
./query_config --compsets list all existing compsets;
```

- ./query_config --compsets allactive
- ./query_config --compsets blom
- All compsets starting with N are NorESM related compsets

- The compset longname has the specified order atm, Ind, ice, ocn, river, glc wave cesmoptions
- The notation for the compset longname is

TIME_ATM[%phys]_LND[%phys]_ICE[%phys]_OCN[%phys]_ROF[%phys]_GLC[%phys]_WAV[%phys][_ESP%phys][_BGC%phys]

- Where for the specific compsets below the following is supported
- TIME = Time period (e.g. 2000, HIST, RCP8...)
- ATM = [CAM40, CAM50, CAM54, CAM60]; LND = [CLM45, CLM50, SLND]; ICE = [CICE, DICE, SICE]
- OCN = [DOCN, ,AQUAP, SOCN, BLOM]; ROF = [RTM, MOSART, SROF] ; GLC = [CISM1, CISM2, SGLC]
- WAV = [WW3, DWAV, XWAV, SWAV]; ESP = [SESP]; BGC = optional BGC scenario
- The OPTIONAL %phys attributes specify submodes of the given system
- For example DOCN%DOM is the data ocean model for DOCN
- ALL the possible %phys choices for each component are listed.
- ALL data models must have a %phys option that corresponds to the data model mode
- Each compset node is associated with the following elements
- - Iname; alias; support (optional description of the support level for this compset)
- Each compset node can also have the following attributes
- grid (optional regular expression match for grid to work with the compset)

Few coupled compsets:

TIME_ATM[%phys]_LND[%phys]_ICE[%phys]_OCN[%phys]_ROF[%phys]_GLC[%phys]_WAV[%phys][_ESP%phys][_BGC%phys]

- N1850frc2 : 1850_CAM60%NORESM%FRC2_CLM50%BGC-CROP_CICE%NORESM-CMIP6_BLOM %ECO_MOSART_SGLC_SWAV_BGC%BDRDDMS
- NHISTfrc2 : HIST_CAM60%NORESM%FRC2_CLM50%BGC-CROP_CICE%NORESM-CMIP6_BLOM %ECO_MOSART_SGLC_SWAV_BGC%BDRDDMS
- NSSP126frc2 : SSP126_CAM60%NORESM %FRC2_CLM50%BGC-CROP_CICE%NORESM-CMIP6_BLOM %ECO_MOSART_SGLC_SWAV_BGC%BDRDDMS
- N1850frc2 -short name of compset

Defining compsets (experiment)/files

 Within components (not fully coupled – data atmosphere, stub atmosphere, stub or data ocean, ..)

```
cam/cime_config/config_compsets.xml
cice/cime_config/config_compsets.xml
clm/cime_config/config_compsets.xml
pop/cime_config/config_compsets.xml
cism/cime_config/config_compsets.xml
blom/cime_config/config_compsets.xml
```

Fully coupled compsets:

cime_config/config_compsets.xml

Grids:

 ./query_config --grids provide description of all grids; --long provides deailed description.

alias: f19_tn14 (only for compsets that are not _POP)

non-default grids are: atm:1.9x2.5 Ind:1.9x2.5 ocnice:tnx1v4

mask is: tnx1v4

alias: T62_tn14 (only for compsets that are not _CAM) non-default grids are: atm:T62 Ind:T62 ocnice:tnx1v4

 NorESM supported grid: f19_tn14, f09_tn14, f09_tn0254, T62_tn14, TL319_tn14, TL319_tn0254, f09_f09_mg17, f19 f19 mg17...

Grid resolution

- **f19 1.9x2.5** = 1.9 degree latitude and 2.5 degree longitude resolution = 144x96
- **f09 0.9x1.25** = 0.9 degree latitude and 1.25 degree longitude resolution = 288x192
- **f02 0.23x0.31** =0.23 degree latitude and 0.31 degree longitude resolution = 1152x768
- tnx1v1,tnx1v3, tnx1v4 = tripolar 1 degree grid= 360x384
- tnx0.25v1, tnx0.25v3, tnx0.25v4 = tripolar quarter degree ocean grid =1440x1152 ; 1,3,4 version number
 - NorESM2 is using mostly version 4 which not includes Caspian sea
- **T62**, **TL319** = approx. 2 degree Gaussian and 0.5 degree spectral grid used for data atmosphere

cime/config/cesm/config_grids.xml

Mapping files

- There is different resolution for ocean, atmosphere and river runoff grid
- Coupler is used to interpolate/transfer fields from one grid to another grid
- Map files are generated for weight factors (cime/tools) and these factors are stored; for that purpose ESMF tool is used.
- Below some list of map files:

```
map_tnx1v4_to_fv0.9x1.25_aave_da_170609.nc
map_tnx1v4_to_fv1.9x2.5_aave_da_170609.nc
map_fv0.9x1.25_to_tnx1v4_aave_da_170609.nc
map_fv1.9x2.5_to_tnx1v4_aave_da_170609.nc
map_r05_to_tnx1v4_e1000r300_170609.nc
cime/config/cesm/config_grids.xml
```

Configuring experiment

- ./case.setup; Creates namelists and various files and directories needed in order to build and run the case.
- Any changes to env_mach_pes.xml and env_case.xml must be made before running this.
- To run this initially for the experiment, simply run:
 - ./case.setup
- To rerun after making changes to env_mach_pes.xml, run:
 ./case.setup --reset
 - ./case.setup --clean do not remove user_nl_* files and Macros file

Creating executable

- ./case.build
- You can see all software module in env_mach_specific.xml and all compiler flags in Macros.make
- Processors configuration in env_mach_pes.xml
- ./case.build it will create namelist files and compile all the required libraries (mct, gptl, csm_share and pio) and components (cam, blom, clm, cice, ..). Finally, build the binary cesm.exe;
 - found in \$CIME_OUTPUT_ROOT/\$CASE/bld
- After this, you can modify only env_batch.xml; env_run.xml files and user_nl_* files
- ./case.build --clean component removes object files of components
- ./case.build --clean-all removes bld directory

Setting simulation period and restart files option

- Modify env_run.xml in experiment directory
- *STOP_OPTION* nseconds,nsecond,nminutes,nminute,nhours,nhour,nmonths, nyears
- STOP_N

 numerical value

Writing restart files in middle of simulation:

Restart files are written end of the simulation by default; But, if you are having a long simulation of 100 years; for safety reason you want to write restart files at some frequency you can set below option

- REST_OPTION
- nseconds,nsecond,nminutes,nminute,nhours,nhour,nmonths, nyears
- REST_N; numerical value
- DOUT_S_SAVE_INTERIM_RESTART_FILES; TRUE or FALSE

Setting wallclock time

- Experiment directory env_batch.xml
 XML block for case.run
 in that set JOB_WALLCLOCK_TIME
- XML block for case.st_archive
 in that also set JOB_WALLCLOCK_TIME
- Here also you can modify project for CPU hours if required usually, it is set during experiment creation

Executing experiment

- ./case.submit
- It will first update all the namelist if/or made any corrections after in env_run.xml, env_batch.xml and user_nl_*
- Then, It will submit two jobs scripts .case.run and case.st_archive
 - .case.run executes the model
 - case.st_archive is a dependent job on .case.run. On
 successful completion of .case.run, it is executed and copy
 output to short term archiving
- Before calling it check all namelist parameters and job WALLCLOCK time

Checking inputdata

- ./check_input_data scripts check missing inputdata during ./case.build and ./case.submit
- It downloads missing data from NorESM/CESM server during ./case.submit by invoking ./check_input_data -download
- BLOM and CAM-OSLO related data exists only on NorESM server; if you are using older version of NorESM then, you have to copy these data.

Information about experiment and its status

README.case

it logs all the information regarding experiment which grids resolution, compsets, which NorESM repository tag and time step

CaseStatus

it logs all information what you have done with experiment such as setting up experiment; building experiment; executing experiment with time stamps

Successful completion

- Check file CaseStaus 2019-07-29 04:05:11: case.run starting 2019-07-29 04:05:26: model execution starting 2019-07-31 20:49:23: model execution success 2019-07-31 20:49:24: case.run success 2019-08-01 10:14:28: st archive starting 2019-08-01 10:17:12: st archive success 2019-08-01 10:17:12: case.submit starting 2019-08-01 10:17:13: case.submit success case.run:380071.service2, case.st_archive:380072.service2 2019-08-02 22:00:00: case.run starting 2019-08-02 22:00:16: model execution starting 2019-08-05 02:02:45: model execution success 2019-08-05 02:02:45: case.run error
- See log file for details: /work/agu002/noresm/NOICPL_N1850_f19_tn14_210619_sal4/run/cesm.log.380071.service2.190802-220000

ERROR: RUN FAIL: Command 'mpiexec mpt -n 450 /work/agu002/noresm/NOICPL N1850 f19 tn14

210619 sal4/bld/cesm.exe >> cesm.log.\$LID 2>&1 ' failed

Timing statistics

- Stored within timing sub-directory in experiment directory
- File name cesm_timing.\$CASE.*

CPL COMM Time: 92517.608 seconds

 It provides information on grid type, run length, compset, processors configuration and many others. Most important are timing statics: Model throughput, Model cost and run time

```
Overall Metrics:
   Model Cost:
                                    pe-hrs/simulated year
                           303.71
   Model Throughput:
                            36.67
                                    simulated years/day
   Init Time :
                      94.799 seconds
   Run Time
               : 235636.536 seconds
                                            6.456 seconds/day
   Final Time :
                       0.132 seconds
   Actual Ocn Init Wait Time
                                     19219.605 seconds
   Estimated Ocn Init Run Time
                                         0.000 seconds
   Estimated Run Time Correction :
                                         0.000 seconds
      (This correction has been applied to the ocean and total run times)
Runs Time in total seconds, seconds/model-day, and model-years/wall-day
CPL Run Time represents time in CPL pes alone, not including time associated with data exchange with other components
                                            6.456 seconds/mday
                                                                      36.67 myears/wday
    TOT Run Time:
                 235636.536 seconds
   CPL Run Time:
                 47160.812 seconds
                                            1.292 seconds/mday
                                                                     183.20 myears/wday
   ATM Run Time:
                   53940.430 seconds
                                            1.478 seconds/mday
                                                                     160.18 myears/wday
   LND Run Time:
                                            0.000 seconds/mday
                                                                       0.00 myears/wday
                       0.000 seconds
   ICE Run Time: 97041.644 seconds
                                            2.659 seconds/mday
                                                                      89.03 myears/wday
   OCN Run Time: 214741.568 seconds
                                            5.883 seconds/mday
                                                                      40.23 myears/wday
   ROF Run Time:
                                            0.122 seconds/mday
                                                                    1935.54 myears/wday
                  4463.872 seconds
   GLC Run Time:
                       0.000 seconds
                                            0.000 seconds/mday
                                                                       0.00 myears/wday
                                            0.000 seconds/mday
   WAV Run Time:
                       0.000 seconds
                                                                       0.00 myears/wday
                                            0.000 seconds/mday
                                                                       0.00 myears/wday
   ESP Run Time:
                       0.000 seconds
```

2.535 seconds/mday

93.39 myears/wday

Continuing an experiment

- CONTINUE_RUN in env_run.xml; TRUE or FALSE
 But, you need all restart files and rpointer.* files in run folder
- RESUBMIT in env_run.xml; an integer value
 it will auto resubmit till specified value; you will have total simulation
 period STOP_N*(RESUBMIT+1)
- when you are having WALLCLOCK time limitation on system. For example, you want to have 200 years simulation and WALLCLOCK time limitation is 5 days; you are able to simulate 10 model years/day; to complete 200 model years simulation set RESUBMIT=3, STOP_N to 50 and STOP_OPTION to nyears

Changing a namelist parameter

- Within experiment directory there are user_nl_* files
- If you plan to modify any default namelist parameter and want to use some extra namelist parameter then, you can add them to these relevant files
- For example you want to have extra cam output user_nl_cam fincl1 = 'FSN200','FSN200C','FLN200'
- http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/x2172.ht ml
- Example for user_nl_clm

```
finidat =
'/cluster/shared/noresm/inputdata/cesm2_init/b.e20.B1850.f09_g17.pi_control.all.297/0308-01-
01/b.e20.B1850.f09_g17.pi_control.all.297.clm2.r.0308-01-01-00000.nc'
use_init_interp = .true.
```

reset_snow = .true.

Best practice for tuning parameter

Changing source code

• Within experiment, there is a directory name **SourceMods**; inside that there are sub-directories like as below; example from one data atmosphere experiment

src.cice src.datm src.drof src.drv src.blom src.sglc src.share src.slnd src.swav

- BLOM will use f77 style header files (*.h) and if modified, then one
 must put all dependent source files to SourceMods/src.blom
- put relevant source file to relevant model sub-directory and build the model again using ./case.build and then, submit
- Once satisfied, you can commit it to repository
- Best practice for modifying code

Namelist and SourceMods

- --user-mods-dir option in create_newcase
 - --user-mods-dir USER_MODS_DIR

USER_MODS_DIR name of directory which contains user_nl_* and SourceMods

- If used it will copy whole structure to experiment.
- Usually, used when you want some typical settings for particular experiments.
- Exists under cime_config/usermods_dirs
 components/cime_config/usermods_dirs

xmlquery and xmlchange

- xmlquery:- provides the information and it is value which are sets in *.xml files
- xmlchange :- is used to change of values/parameters set in *.xml files
- xmlquery --help xmlchange --help
- Examples:
 - ./xmlchange --id STOP_OPTION --val nyears
 - ./xmlquery --value STOP_OPTION
 - ./xmlchange STOP_OPTION=nyears,STOP_N=1

Branch run

- http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersg uide/x1894.html
- Mostly used for tuning experiments and investigating parameter affects
- RUN_TYPE to "branch"
- RUN_REFDIR directory containing reference data
- RUN_REFCASE name of reference case
- RUN_REFDATE Reference date branch run
- GET_REFCASE TRUE else you have to copy data to run folder

Hybrid run

- It could have reference files from many experiments
- RUN_TYPE to "hybrid"
- RUN_REFDIR directory containing reference data
- RUN_REFCASE name of reference case
- RUN_REFDATE Reference date for hybrid run
- GET_REFCASE TRUE else you have to copy data to run folder
- RUN_STARTDATE Run start date (yyyy-mm-dd).
- Can be used for together combinations of initial/restart files
- In a hybrid initialization, the ocean model does not start until the second ocean coupling

Cloning run

- It creates an exact copy of the experiment
- create_clone --case abcdef --clone old_case
- You can do desired modifications before building and submitting executable
- You should not modify env_case.xml, env_build.xml
- README.case will be having same information as old_case; so edit it if have made some modifications or used different model version to backtrace

Setting processors count example for fully coupled code

```
<grid name=
 <mach name=
   <pes pesize=</pre>
                      compset=
      <comment>none</comment>
     <ntasks>
       <ntasks atm>768</ntasks atm>
       <ntasks lnd>256</ntasks lnd>
       <ntasks rof>8</ntasks rof>
       <ntasks ice>504</ntasks ice>
       <ntasks ocn>186</ntasks ocn>
       <ntasks glc>768</ntasks glc>
       <ntasks wav>300</ntasks wav>
       <ntasks cpl>768</ntasks cpl>
     </ntasks>
     <nthrds>
       <nthrds atm>1</nthrds atm>
       <nthrds lnd>1</nthrds lnd>
       <nthrds rof>1</nthrds rof>
       <nthrds ice>1</nthrds ice>
       <nthrds ocn>1</nthrds ocn>
       <nthrds glc>1</nthrds glc>
       <nthrds wav>1</nthrds wav>
        <nthrds cpl>1</nthrds cpl>
     </nthrds>
     <rootpe>
       <rootpe atm>0</rootpe atm>
       <rootpe lnd>0</rootpe lnd>
       <rootpe rof>256</rootpe rof>
       <rootpe ice>264</rootpe ice>
       <rootpe ocn>768</rootpe ocn>
       <rootpe glc>0</rootpe glc>
       <rootpe_wav>0</rootpe_wav>
       <rootpe cpl>0</rootpe cpl>
      </rootpe>
    </pes>
  </mach>
</grid>
```

Total number of processors = ntasks_atm + ntasks_ocn

0 ntasks_atm

rootpe_ocn=ntasks_atm rootpe_rof=ntasks_Ind rootpe_ice=ntasks_Ind+ntasks_rof

Processors count

- env_mach_pes.xml; within experiment
- config_pes.xml; within cime_config or components/*/cime_config
- For atmosphere, you can set maximum number of processors nlat/ 3*atmosphere levels; for NorESM2 32 atmosphere levels.....
- For blom, you have to look relevant directory
- components/blom/bld/"gridname"
 - there are *patch.input.** files, You should use last numerical values of these files as a processors count
- Land is quite trivial, you can set whatever number you want
- CICE uses auto decomposition and you can set any processors count and based on that it will choose parallel method

Configuration files for porting to new machines

cime/config/cesm

config_machines.xml - machine related settings, where are inputdata or where to execute model or copy output, which modules to use...

config_batch.xml - setting batch queue setting (slurm, PBS, ..)
config_compilers.xml - compilers related settings

cime_config/ components/*/cime_config
 config_pes.xml – processors distribution settings

```
<machine MACH=
 OESC-Lenovo NexiScale HS, 32-way nodes, dual 16-core Xeon ES-2003@2.100Hz, 04 Gib per node, os is Linux, batch system is SLURHK/DESC
 <0S>LINUX</0S>
 <COMPILERS>intel</COMPILERS>
 <MPILIBS>impi</MPILIBS>
 CIME OUTPUT ROOT>/cluster/work/users/$USER/noresm</CIME OUTPUT ROOT>
         <modules>
           <command name="purge">--force</command>
           <command name="load">StdEnv</command>
           <!-- dilo Deactivated THT settings -->
           <!--command name="load">intel/2016a</command-->
           <!--command name="load">netCDF-Fortran/4.4.3-intel-2016a</command-->
           <!--command name="load">PnetCDF/1.8.1-intel-2016a</command-->
           <!--command name="load">CMake/3.5.2-intel-2016a</command-->
           <command name="1
                                    '>intel/2018a</command>
                                    >netCDF-Fortran/4.4.4-intel-2018a-HDF5-1.8.19</command>
           <command name="load
           <command name="load</pre>
                                    '>PnetCDF/1.8.1-intel-2018a</command>
           <command name='
                                    '>CMake/3.9.1</command>
         </modules>
      </module system>
      <environment variables>
                                       ">64M</env>
        <env name="
                                                         '>lustre</env>
         <env name=
         <env name="I MP:</pre>
                                       ILESYSTEM">on</env>
      </environment variables>
      <resource limits>
         <resource name="RLIMIT STACK">-1</resource>
      </resource limits>
                  ">netCDF-Fortran/4.4.4-intel-2018a-HDF5-1.8.19</command>
    <command name=
                   >PnetCDF/1.8.1-intel-2018a</command>
    <command name='
                  ">CMake/3.9.1</command>
  <env name="
                     >64M</env>
                               ">lustre</env>
  <env name=
  <env name=
                           >on</env>
 </environment variables>
                        ">-1</resource>
</machine>
```

config_batch.xml

```
<batch system MACH="fram" type="</pre>
  <batch_submit>sbatch/batch_submit>
  <submit args>
   <arg flag="--time" name="$JOB_WALLCLOCK_TIME"/>
   <arg flag="-p" name="$JOB_QUEUE"/>
   <arg flag="--account" name="$PROJECT"/>
 </submit args>
 <directives>
   <directive> --ntasks={{ total_tasks }}</directive>
   <directive> --export=ALL</directive>
   <directive> --switches=1</directive>
 </directives>
 <queues>
   <queue walltimemax="00:59:00" nodemin="1" nodemax="288" default="true">normal
  </gueues>
</batch_system>
```


config_compilers.xml

```
<compiler MACH="fram">
                                                       Set compilers FLAGS
<CPPDEFS>
                                                       NETCDF and PNETCDF path
 <append> -D$(OS) </append>
                                                       Compilers/wrapper used on machine
</CPPDEFS>
                                                       MODEL related flags
<FFLAGS>
 <append> -xCORE-AVX2 -no-fma </append>
</FFLAGS>
<NETCDF PATH>$(EBROOTNETCDFMINFORTRAN)</NETCDF PATH>
<PNETCDF PATH>$(EBROOTPNETCDF)</PNETCDF PATH>
<MPI PATH>$(MPI ROOT)</MPI PATH>
<MPI LIB NAME>mpi</MPI LIB NAME>
<FFLAGS>
  <append DEBUG="FALSE"> -O2 </append>
  <append MODEL="blom"> -r8 </append>
</FFLAGS>
<MPICC> mpiicc </MPICC>
<MPICXX> mpiicpc </MPICXX>
<MPIFC> mpiifort </MPIFC>
<PIO FILESYSTEM HINTS>lustre</PIO FILESYSTEM HINTS>
<SLIBS>
  <append>-mkl=sequential -Inetcdff -Inetcdf</append>
</SLIBS>
</compiler>
```