Recognition of Linear and Star Variants of Leaf Powers is in P

Bergougnoux Benjamin.

Joint work with Svein Høgemo, Jan Arne Telle and Martin Vatshelle

WG 2022, June 24, 2022

University of Bergen, Norway

Leaf Powers

Graph theoretical approach

[Nishimura, Ragde and Thilikos 2000]

A graph G is the k-leaf power of a tree T if

- ightharpoonup V(G) is the set of leaves of T and
- ▶ for every $u, v \in V(G)$, $uv \in E(G) \iff \operatorname{dist}_T(u, v) \leqslant k$.

Leaf Powers = $\bigcup_{k \in \mathbb{N}} k$ -Leaf Powers.

2

Graph theoretical approach

[Nishimura, Ragde and Thilikos 2000]

A graph G is the k-leaf power of a tree T if

- ightharpoonup V(G) is the set of leaves of T and
- ▶ for every $u, v \in V(G)$, $uv \in E(G) \iff \mathsf{dist}_T(u, v) \leqslant k$.

Leaf Powers = $\bigcup_{k \in \mathbb{N}} k$ -Leaf Powers.

ightharpoonup T is called a **leaf root** of G.

Example of 3-leaf power

Example of 3-leaf power

Example of 3-leaf power

Phylogenetics

Classical phylogeny problem

- ▶ Input: phylogenetic distance matrix D of a set X of organisms.
- ▶ Output: a **tree** T with set of **leaves** X such that, for every $x, y \in X$, the distance between x, y in T is **close to** D[x, y].

4

Relations with other graph classes

5

Recognition of k-leaf power

Open question

Can we recognize k-leaf powers in polynomial time?

$Value \; of \; k$	Polynomial Time Algorithms
2	Trivial: disjoint union of cliques
3	[Nishimura, Ragde, Thilikos, 2000] [Brandstädt, Le, 2006]
4	[Nishimura, Ragde, Thilikos, 2000] [Brandstädt, Le, Sritharan, 2006]
5	[Chang, Ko, 2007]
6	[Ducoffe, 2019]

Parameterized Complexity

[Eppstein and Havvaei, IPEC 2018]

k-leaf powers of bounded degeneracy are recognizable in FPT time $(O(f(k) \cdot n^{O(1)}))$.

[Lafond, SODA 2022]

k-leaf powers are recognizable in **XP time** $(O(n^{f(k)}))$.

7

Leaf Powers = $\bigcup_{k \in \mathbb{N}} k$ -Leaf Powers.

Open question

Can we recognize leaf powers in polynomial time?

It might be better to not focus on k the distance value:

- ightharpoonup Recognizing k-leaf powers might be harder than leaf powers!
- ▶ Algorithms for $k \le 6$ does not seem to **generalize**.
- ightharpoonup XP algorithm of [Lafond, 2022] relies heavily on k.

Tree Structural Approach

Open question

Given a class C of trees. Can we recognize **leaf powers with a leaf root in** C in polynomial time?

- ▶ No distance bound allows to use alternative models.
- ► Might lead to interesting results!

Tree Structural Approach

Open question

Given a class C of trees. Can we recognize **leaf powers with a leaf root in** C in polynomial time?

- ▶ No distance bound allows to use alternative models.
- ► Might lead to interesting results!

[Brandstädt, Hundt, 2008]

Unit interval graphs are exactly leaf powers with a caterpillar leaf root.

Our results

Linear Leaf Powers

Linear leaf powers are graphs with a leaf root that is a subdivided caterpillar.

Our results

Linear Leaf Powers

Linear leaf powers are graphs with a leaf root that is a **subdivided caterpillar**.

[B., Høgemo, Telle, Vatshelle, 2022]

Linear Leaf Powers are equivalent to **Co-TT graphs**.

[Golovach, Heggernes, Lindzey, McConnell, Dos Santos, Spinrad, Szwarcfiter, 2014]

Co-TT graphs can be recognized in $O(n^2)$ time.

10

Our results

NeS Model: intersection model for leaf powers

[B., Høgemo, Telle, Vatshelle, 2022]

We can recognize in **polynomial time leaf powers** with a **Star NeS model**.

Star NeS model

Neighborhood Subtree with center c and radius r

Neighborhood Subtree with center c and radius r

Neighborhood Subtree with center c and radius r

Neighborhood Subtree with center \boldsymbol{c} and radius \boldsymbol{r}

Powerful model

[Bibelnieks, Dearing, 1993] + [Brandstädt, Hundt, Mancini, Wagner, 2010]

A graph is a **leaf power** iff it admits a **NeS model**.

- ► NeS models are a nice generalization of Interval models!
- Many properties on leaf powers are easy to prove thanks to NeS models.

Adding a universal vertex

Adding a universal vertex

Star NeS model

Star NeS model: NeS model whose embedded tree is a star.

[B., Høgemo, Telle, Vatshelle, 2022]

We can recognize in polynomial time leaf powers with a Star NeS model.

- $ightharpoonup X = \{v \in V(G) \mid c \in T_v\}$ is a clique.
- ▶ The lines of the star induces a partition \mathcal{B} of $V(G) \setminus X$.

- ightharpoonup We can assume w.l.o.g. that X is a maximal clique.
- ▶ We have $cc(G X) \sqsubseteq \mathcal{B}$.

16

▶ For each $B \in \mathcal{B}$, $G[X \cup B]$ is an X-interval graph.

▶ For each $B \in \mathcal{B}$, $G[X \cup B]$ is an X-interval graph.

▶ There is a **natural order** on the vertices of X: a < b < c.

▶ There is a **natural order** on the vertices of X: a < b < c.

▶ There is a **natural order** on the vertices of X: a < b < c.

ightharpoonup a < b < c is an elimination order...

Some Observations

ightharpoonup a < b < c is an elimination order...

Some Observations

ightharpoonup a < b < c is an elimination order...

Removable vertex

x is \mathcal{B} -removable from $Y \subseteq X$ if N(x) is not minimal in at most 1 block of \mathcal{B} .

Good Partition

A **good partition** of a graph G is a pair (X, \mathcal{B}) with:

- ► X a maximal clique.
- ▶ \mathcal{B} a partition of $V(G) \setminus X$.

with the following properties:

- 1. $cc(G X) \sqsubseteq \mathcal{B}$
- 2. For each $B \in \mathcal{B}$, $G[X \cup B]$ is an X-interval graph.
- 3. There exists an elimination order $(x_1, ..., x_t)$ of X such that $\forall i \in [t], x_i$ is \mathcal{B} -removable from $\{x_i, ..., x_t\}$.

Algorithm

[B., Høgemo, Telle, Vatshelle, 2022]

We can decide whether a graph admits a **good partition** in **polynomial time**.

- 1. Check if G is **chordal**.
- 2. For every **maximal clique** X, try to construct a good partition **greedily**.

Star with $\mathcal{A} = \mathsf{CC}(G-X)$ and check if every $B \in \mathcal{A}$ induces an X-interval with X.

Find $x_1 \in X$ such that $X \cup \mathsf{notmin}(x_1, X, \mathcal{A})$ induces an X-interval.

 x_1 is now \mathcal{A} -removable from X

Merge the blocks of A in notmin (x_1, X, A)

 x_1 is now \mathcal{A} -removable from X

Find $x_2 \in Y$ such that $X \cup \mathsf{notmin}(x_2, Y, \mathcal{A})$ induces an X-interval.

Merge the blocks of \mathcal{A} in $\mathsf{notmin}(x_2, Y, \mathcal{A})$

 x_2 is now ${\mathcal A}$ -removable from Y

When $Y = \emptyset$, we return (X, A).

 (x_1, x_2, \dots, x_t) is an elimination order! x_i is \mathcal{A} -removable from $\{x_i, x_{i+1}, \dots, x_t\}$.

[B., Høgemo, Telle, Vatshelle, 2022]

▶ If the algo. returns a pair (X, A), then it is a **good partition**.

- ▶ If the algo. returns a pair (X, A), then it is a **good partition**.
- ▶ If there exists a **good partition**, then the algo. returns one.

- ▶ If the algo. returns a pair (X, A), then it is a **good partition**.
- ▶ If there exists a **good partition**, then the algo. returns one.
 - ▶ If the algo. follows an **elimination order** $(x_1, ..., x_t)$ of some good partition, then it returns a **good partition**.

- ▶ If the algo. returns a pair (X, A), then it is a **good partition**.
- ▶ If there exists a **good partition**, then the algo. returns one.
 - ▶ If the algo. follows an **elimination order** $(x_1, ..., x_t)$ of some good partition, then it returns a **good partition**.
 - ▶ (Crux) If the algo. stops following $(x_1, ..., x_t)$, then it follows the elimination order of another good partition.

- ▶ If the algo. returns a pair (X, A), then it is a **good partition**.
- ▶ If there exists a **good partition**, then the algo. returns one.
 - ▶ If the algo. follows an **elimination order** $(x_1, ..., x_t)$ of some good partition, then it returns a **good partition**.
 - ▶ (Crux) If the algo. stops following $(x_1, ..., x_t)$, then it follows the elimination order of another good partition.
- ► Everything can be done in **polynomial time**.

Conclusion

We can recognize in polynomial time linear leaf powers and leaf powers with a Star NeS model.

- ► Can we recognize **leaf powers** in polynomial time?
- ► Continue the **tree structural approach!**
 - ► Embedded tree with **two internal nodes**.
 - ► Vertices with **non-trivial subtrees** induce a **clique**.

We can recognize in polynomial time linear leaf powers and leaf powers with a Star NeS model.

- ► Can we recognize **leaf powers** in polynomial time?
- Continue the tree structural approach!
 - ► Embedded tree with **two internal nodes**.
 - ► Vertices with **non-trivial subtrees** induce a **clique**.

▶ Leaf-Rank(G) = min{ $k \in \mathbb{N} \mid G$ is a k-leaf power }.

Conjecture

For every leaf power G, we have Leaf-Rank $(G) \leq n^{O(1)}$.

Thank you

