$$t_0 = -\sqrt{3}/3 = -0.577350$$
 e $t_1 = \sqrt{3}/3 = 0.577350$
 $A_0 = A_1 = 1$.

Então,

$$I \approx 5[A_0g(t_0) + A_1g(t_1)] = 5[e^{-5 + 5\sqrt{3}/3} + e^{-5 - 5\sqrt{3}/3}] =$$

$$= 5[e^{-2.113249} + e^{-7.886751}] = 0.606102.$$

Sabemos que com seis casas decimais,

$$\int_0^{10} e^{-x} dx = 0.999955.$$

Assim, o verdadeiro erro, com seis casas decimais, é

$$|errol| = |0.999955 - 0.606102| = 0.393853$$

Para que $|E_{TR}| \le 0.393853$, na regra dos Trapézios, seria necessário tabelar f(x) em, no mínimo, 16 pontos (m ≥ 15).

E, para a regra 1/3 de Simpson, $|E_{SR}| \le 0.393853$, implica m ≥ 8 e seria necessário portanto, tabelar a função em 9 pontos.

EXERCÍCIOS

 Calcule as integrais a seguir pela regra dos Trapézios e pela de Simpson, usando quatro e seis divisões de [a, b].

Compare os resultados:

a)
$$\int_{1}^{2} e^{x} dx$$

b)
$$\int_{1}^{4} \sqrt{x} dx$$

c)
$$\int_2^{14} \frac{\mathrm{dx}}{\sqrt{x}}$$
.

- Usando as integrais do exercício anterior com quantas divisões do intervalo, no mínimo, podemos esperar obter erros menores que 10⁻⁵?
- 3. Calcule o valor aproximado de $\int_0^{0.6} \frac{dx}{1+x}$ com três casas decimais de precisão usando
 - a) Simpson
 - b) Trapézios.
- 4. Em que sentido a regra de Simpson é melhor do que a regra dos Trapézios?
- 5. Qual o erro máximo cometido na aproximação de $\int_0^4 (3x^3 3x + 1) dx$ pela regra de Simpson com quatro subintervalos?

Calcule por Trapézios e compare os resultados.

- 6. Determinar h, a distância entre x_i e x_{i+1} , para que se possa avaliar $\int_0^{\pi/2} \cos(x) dx$ com erro inferior a $\varepsilon = 10^{-3}$ pela regra de Simpson.
- 7. Use a regra 1/3 de Simpson para integrar a função abaixo entre 0 e 2 com o menor esforço computacional possível (menor número de divisões e maior precisão). Justifique. Trabalhe com três casas decimais.

$$f(x) = \begin{cases} x^2 & \text{se } 0 \le x \le 1 \\ (x+2)^3 & \text{se } 1 < x \le 2 \end{cases}$$

8. A regra dos Retângulos repetida é obtida quando aproximamos f(x), em cada subintervalo, por um polinômio de interpolação de grau zero. Encontre a regra dos Retângulos bem como a expressão do erro, fazendo:

17. Considere a integral:

$$I = \int_0^1 e^{-x^2} dx$$
.

- a) Estime I pela regra de Simpson usando h = 0.25.
- b) Estime I por Quadratura Gaussiana com 2 pontos.
- c) Sabendo que o valor exato de I (usando 5 casas decimais) é 0.74682, pede-se:
 - c1) compare as estimativas obtidas em (a) e (b);
 - quantos pontos seriam necessários para que a regra dos Trapézios obtivesse a mesma precisão que a estimativa obtida para I em (b)?

 y(t) = ab^t. Além do teste de alinhamento ser razoável para esta função, a outra possibilidade apresenta problemas. Verifique.

13. Para
$$j = 0$$
, $a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$.

Para
$$j \ge 1$$
, $a_j = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(jx) dx$.

Para
$$j \ge 1$$
, $b_i = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(jx) dx$.

CAPÍTULO 7

1.	<i>a</i>)	n	4	6	
	2	Trapézios	4.6950759	4.6815792	
		Simpson	4.670873	4.6707894	

2.	a)	n	(a)	(b)	(c)
		Trapézios	249	238	1382
		Simpson	10	20	80

3.
$$\varepsilon \leq 5 \times 10^{-4}$$
.

- a) 0.4700171.
- b) 0.4702288.
- 5. Erro por Simpson: Zero

$$I_{s} = 172$$

Por Trapézios, com 5 pontos, I_{TR} = 184 ($IE_{TR}I \le 24$)

- h < 0.580819.
- 7. $I_s = 44.0833...$ com erro zero.
- 10. $m \ge 8$.
- 11. b) $I_{TR} = 2.086$.
- 12. $w_0 = w_2 = 4/3$ $w_1 = -2/3$.
- 13. 4.227527 (Trapézios no primeiro intervalo e o restante por 1/3 Simpson).
- 14 a) Trapézios: 6.203.

Simpson: 6.208.

b) Trapézios: 0.55509.

Simpson: 0.55515.

15.
$$I_s = 0.69315$$
.

$$ln(2) = 0.693147.$$

16.
$$I_s = 0.785392$$
.

$$\pi / 4 \simeq 0.785398$$
.

17. a) Is =
$$0.746855$$

b)
$$I_{QG} = 0.746594$$

c2) m = 27 (se usarmos
$$M_2 \le 2$$
)

CAPÍTULO 8

1.
$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}y'_n)$$

3.	<i>a</i>) e <i>c</i>)	h	Euler Aperfeiçoado	Euler
	8	0.5	-3	-5
		0.25	-3	-1.75
		0.125	-3	-2.375
		0.1	-2.999995	-2.499994

6.
$$y_{n+1} = y_n + \frac{h}{2}(f_n + f_{n+1}).$$

8.	h	Euler	Euler Aperfeiçoado	R. Kutta 4ª ordem
	0.2	2.047879	1.906264	1.909298
	0.1	1.979347	1.90854	1.909297
	0.05	1.944512	1.909108	1.909298
	0.025	1.926953	1.909251	1.909298