Math 582 Introduction to Set Theory Lecture 19

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

March 9, 2009

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

Supremum

 $^{\square}$ HW4 (Week 8, Exercise 4): Let $X \subset \mathbf{ON}$ be a set. Then (J X is an ordinal which is greater than or equal to all elements of X:

- (a) $\bigcup X \geq \alpha$ for all $\alpha \in X$ (an upper bound),
- (b) If $\gamma \geq \alpha$ for all $\alpha \in X$ then $\bigcup X \leq \gamma$ (least among upper bounds.)

We denote $\bigcup X$ by $\sup X$, the supremum of X.

Limit and Successor Ordinals

The following trivial lemma summarizes the important properties of successor and limit ordinals.

Lemma

Let $\alpha \in \mathbf{ON}$.

1 α is a limit ordinal if and only if $\alpha \neq 0$ and $\{\beta \mid \beta < \alpha\}$ has no largest member.

In this case, $\alpha = \sup \alpha = \sup \{\beta \mid \beta < \alpha \}.$

② α is a successor ordinal if and only if $\{\beta \mid \beta < \alpha\}$ has a largest member.

In this case, $\alpha = S(\beta)$, where β is largest in $\{\beta \mid \beta < \alpha\}$ and $\sup \alpha = \beta$.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

4/1

Supremum

Supremum

Lemma

Let $X, Y \subseteq \mathbf{ON}$.

If for every $\alpha \in X$ there is a $\beta \in Y$ with $\alpha \leq \beta$, then $\sup X \leq \sup Y$.

Additionally,

if for every $\beta \in Y$ there is an $\alpha \in X$, then $\sup X = \sup Y$.

Proof.

Suppose for each $\alpha \in X$, there is a $\beta \in Y$ with $\alpha \leq \beta$. Since sup Y is an upper bound of Y, $\alpha \leq \sup Y$ for each $\alpha \in X$ (sup Y is an upper bound of Y).

Therefore, $\sup X \leq \sup Y$, since $\sup X$ is the least upper bound of X.

The second part follows by the antisymmetry of \leq on **ON**, since then $\sup X \leq \sup Y$ and $\sup Y \leq \sup X$.

Addition on **ON**

Definition (Ordinal addition)

For all ordinals β ,

$$\begin{array}{rcl} \beta + \mathbf{0} & = & \beta \\ \beta + \mathcal{S}(\alpha) & = & \mathcal{S}(\beta + \alpha) \\ \beta + \alpha & = & \sup\{\beta + \xi \, \big| \, \xi < \alpha\} \end{array} \qquad \text{when } \alpha \text{ is a limit}$$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

7/1

Ordinal Addition

Formal justification

Formally, for each β , define $\mathbf{G}_{\beta}: \mathbf{V} \to \mathbf{V}$ so that

- (i) $G_{\beta}(t) = 0$ unless t is a function and $dom(t) = \alpha \in ON$,
- (ii) $\mathbf{G}_{\beta}(t) = \beta$ when $\alpha = 0$,
- (iii) $\mathbf{G}_{\beta}(t) = S(t(\delta))$ when $\alpha = S(\delta)$,
- (iv) $\mathbf{G}_{\beta}(t) = \sup\{t(\xi) \mid \xi < \alpha\}$ when α is a limit.

 \mathbf{G}_{β} is just a formula $\varphi(\beta, x, y)$ where β is a parameter, x is the argument to \mathbf{G}_{β} and y is the value. Since each of the above four cases is mutually distinct and collectively exhaustive, for each β we can prove $\forall x \exists ! y \varphi(\beta, x, y)$. So, \mathbf{G}_{β} is a class function for each β .

The Transfinite Recursion Theorem gives a unique class function $+_{\beta}: \mathbf{ON} \to \mathbf{V}$ for each β satisfying the clauses of ordinal addition: $+_{\beta}(\alpha) = \beta + \alpha$.

Consequences

$$\begin{array}{rcl} \beta + \mathbf{0} & = & \beta \\ \beta + S(\alpha) & = & S(\beta + \alpha) \\ \beta + \alpha & = & \sup\{\beta + \xi \, \big| \, \xi < \alpha\} & \text{when } \alpha \text{ is a limit} \end{array}$$

- \clubsuit Let $\alpha = 1$ and we get $\beta + 1 = S(\beta)$. (I'll write $\beta + 1$ for $S(\beta)$.)
- ◆ Ordinal addition agrees with addition on natural numbers (only the 0 and successor clauses are relevant.)
- \clubsuit $\omega < \omega + 1 < \omega + 2 < \omega + 3 < \ldots < \omega + n < \ldots$ (for $n < \omega$.)
- \bullet $\omega + \omega = \sup\{\omega + n \mid n \in \omega\}$, and is a limit ordinal.
- \clubsuit 1 + ω = sup{1 + $n \mid n < \omega$ } = ω , $n + \omega = \omega$ for every $n < \omega$.
- ♣ So, $1 + \omega \neq \omega + 1$ (ordinal addition is not commutative.)

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009 9 / 1

Ordinal Addition

Successor and addition

Lemma

For every ordinal α ,

$$S(\alpha) = \alpha + 1.$$

From now on I will write ' $\alpha + 1$ ' for ' $S(\alpha)$ '.

Proof.

$$\alpha + 1 = S(\alpha + 0) = S(\alpha).$$

Order Laws for addition

Lemma (Order)

Suppose $\beta < \gamma$. Then for every α

- (a) $\alpha + \beta < \alpha + \gamma$,
- (b) $\beta + \alpha \leq \gamma + \alpha$ and \leq cannot be replaced by <.

To see the last clause in (b):

$$1 < 2 \text{ but } 1 + \omega = \omega = 2 + \omega.$$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

11 /

Ordinal Addition

Proof of (a)

(a). Proof by transfinite induction on γ .

We will show that $\beta < \gamma$ implies $\alpha + \beta < \alpha + \gamma$.

Suppose $\beta < \gamma$ and that $\alpha + \beta < \alpha + \delta$ whenever $\beta < \delta < \gamma$ (the inductive hypothesis.)

The proof breaks into the successor case and the limit case ($\gamma=0$ cannot arise.)

 $\mathfrak{P} = \delta + 1$. Then, $\beta \leq \delta$ and $\alpha + \beta \leq \alpha + \delta$ (by i.h.), so

$$\begin{array}{rcl} \alpha+\beta & \leq & \alpha+\delta & \text{i.h.} \\ & < & (\alpha+\delta)+1 \\ & = & \alpha+(\delta+1) & \text{def. of +} \\ & = & \alpha+\gamma. \end{array}$$

Proof of (a) continued

Inductive Hypothesis: $\alpha + \beta < \alpha + \delta$ whenever $\beta < \delta < \gamma$.

 $\ \ \ \gamma$ is a limit. Since $\beta<\gamma$ and γ is a limit ordinal (there is no greatest ordinal in γ), there is a $\delta<\gamma$ with $\beta<\delta<\gamma$. So,

$$\begin{array}{lll} \alpha+\beta & < & \alpha+\delta & \text{ i.h.} \\ & \leq & \sup\{\alpha+\xi\,\big|\,\xi<\gamma\} & \text{ sup an upper-bound} \\ & = & \alpha+\gamma & \text{ def. of +} \end{array}$$

✓ So, $\alpha + \beta < \alpha + \gamma$ whenever $\beta < \gamma$ by transfinite induction.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

13 /

Ordinal Addition

Proof of (b)

(b). Suppose $\beta < \gamma$. Proof by transfinite induction on α . We will show that $\beta + \alpha \leq \gamma + \alpha$.

 $^{\bowtie}$ $\alpha = S(\delta)$. Then, $\beta + \delta \leq \gamma + \delta$ (i.h.) implies

$$\beta + (\delta + 1) = (\beta + \delta) + 1 \le (\gamma + \delta) + 1 = \gamma + (\delta + 1).$$

 $^{\square}$ α is a limit. Then, $\beta + \xi \leq \gamma + \xi$ for all $\xi < \alpha$. So

$$\sup\{\beta + \xi \mid \xi \le \alpha\} \le \sup\{\gamma + \xi \mid \xi < \alpha\};$$

that is, $\beta + \alpha \leq \gamma + \alpha$ by definition of addition.

Left Cancellation law

Lemma (Left Cancellation)

 $\alpha + \beta = \alpha + \gamma$ implies $\beta = \gamma$, for all α, β, γ .

The Right Cancellation law is **not** generally true: $\beta + \alpha = \gamma + \alpha$ does not necessarily imply $\beta = \gamma$:

 $1 + \omega = 2 + \omega \text{ but } 1 \neq 2.$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

15 / 1

Ordinal Addition

Proof of Lemma

Suppose $\alpha + \beta = \alpha + \gamma$.

Then exactly one of $\beta < \gamma$ or $\gamma < \beta$ or $\beta = \gamma$.

If $\beta < \gamma$ then $\alpha + \beta < \alpha + \gamma$ by the Order Lemma (a).

If $\gamma < \beta$ then $\alpha + \gamma < \alpha + \beta$ by the Order Lemma (a).

✓ Therefore, it must be that $\beta = \gamma$.

Associativity of Addition

Lemma (Associativity)

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
 for all α, β, γ .

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

17 /

Ordinal Addition

Proof of Associativity

The proof is by transfinite induction on γ .

 $\gamma = 0$. Then

$$(\alpha + \beta) + 0 = \alpha + \beta = \alpha + (\beta + 0)$$

 $\gamma = \delta + 1$. Assume (i.h.) that $(\alpha + \beta) + \delta = \alpha + (\beta + \delta)$. Then

$$(\alpha + \beta) + \gamma = (\alpha + \beta) + (\delta + 1)$$

$$= ((\alpha + \beta) + \delta) + 1$$

$$= (\alpha + (\beta + \delta)) + 1$$

$$= \alpha + ((\beta + \delta) + 1)$$

$$= \alpha + (\beta + (\delta + 1))$$

$$= \alpha + (\beta + \gamma)$$

Proof of Associativity continued

Suppose γ is a limit. Assume (i.h.) that $(\alpha + \beta) + \delta = \alpha + (\beta + \delta)$ for all $\delta < \gamma$.

First, $\beta + \gamma = \sup\{\beta + \delta \mid \delta < \gamma\}$, and this is limit ordinal by the Order lemma – if $\delta < \delta'$ then $\beta + \delta < \beta + \delta'$, so that $\{\beta + \delta \mid \delta < \gamma\}$ has no greatest element.

Then,

$$(\alpha + \beta) + \gamma = \sup\{(\alpha + \beta) + \delta \mid \delta < \gamma\}$$

$$= \sup\{\alpha + (\beta + \delta) \mid \delta < \gamma\} \qquad \text{i.h.}$$

$$= \sup\{\alpha + \xi \mid \xi < \beta + \gamma\} \qquad \qquad *$$

$$= \alpha + (\beta + \gamma) \qquad \beta + \gamma \text{ a limit}$$

We finish the case with a proof of *.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

Proof of Associativity continued

Proof of

※ $\sup\{\alpha + (\beta + \delta) \mid \delta < \gamma\} = \sup\{\alpha + \xi \mid \xi < \beta + \gamma\}$

- (i) If $\delta < \gamma$, then $\beta + \delta < \beta + \gamma$ by the Order lemma, so $\alpha + (\beta + \delta) \in \{\alpha + \xi \mid \xi < \beta + \gamma\};$
- (ii) If $\xi < \beta + \gamma$ then $\xi < \beta + \delta$ for some $\delta < \gamma$ (since $\beta + \gamma$ is a limit.) By the Order lemma

$$\alpha + \xi < \alpha + (\beta + \delta) \in {\alpha + (\beta + \delta) | \delta < \gamma}.$$

Thus, from (i) and (ii) it follows that *

$$\sup\{\alpha + (\beta + \delta) \mid \delta < \gamma\} = \sup\{\alpha + \xi \mid \xi < \beta + \gamma\}.$$

✓ Therefore, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ for all α, β, γ .

Subtraction

Lemma (Subtraction)

If $\alpha \leq \beta$ then there is a unique ordinal γ such that $\alpha + \gamma = \beta$.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

Ordinal Addition

Proof of Subtraction Lemma

Fix α . The proof is by transfinite induction on β . The theorem trivially holds when $\beta < \alpha$. By Left Cancellation it is sufficient to prove the existence of ξ .

$$\beta = \alpha. \text{ Then } \alpha + \mathbf{0} = \beta.$$

$$\beta = \delta + 1$$
 and $\alpha < \beta$. Assume (i.h.) that $\alpha + \xi = \delta$. Then $\alpha + (\xi + 1) = (\alpha + \xi) + 1 = \delta + 1 = \beta$.

 β a limit and $\alpha < \beta$. Let $\eta = \sup\{\xi \mid \exists \gamma < \beta (\alpha + \xi = \gamma)\}$. Then

 \checkmark The proof is completed once we bridge the gap with ① and ②.

Two points in proof

1 $\eta = \sup\{\xi \mid \exists \gamma < \beta (\alpha + \xi = \gamma)\}\$ is a limit.

Let $\xi < \eta$, so that there is a δ with $\xi \le \delta \le \eta$ and $\alpha + \delta < \beta$. Since β is a limit, by the i.h. there is a $\delta'' > \delta' > \delta$ with

$$\alpha + \delta < \alpha + \delta' < \alpha + \delta'' < \beta.$$

By the Order Lemma (a), $\xi \leq \delta < \delta' < \eta$. So, η has no greatest element.

If $\alpha + \xi < \beta$ then $\xi < \eta$. On the other hand, if $\xi < \eta$, then there is some $\delta \geq \xi$ with $\delta \in \eta$, so

$$\alpha + \xi < \alpha + \delta < \beta$$
.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

Ordinal Multiplication

Multiplication on **ON**

Definition (Ordinal multiplication)

For all ordinals β ,

$$\begin{array}{rcl} \beta \cdot 0 & = & 0 \\ \beta \cdot (\alpha + 1) & = & \beta \cdot \alpha + \beta \\ \beta \cdot \alpha & = & \sup \{\beta \cdot \xi \, \big| \, \xi < \alpha \} \end{array} \qquad \text{when } \alpha \text{ is a limit}$$

Formal justification

Formally, for each β , define $\mathbf{G}_{\beta}: \mathbf{V} \to \mathbf{V}$ (a formula in the language of set theory) so that

- (i) $\mathbf{G}_{\beta}(t) = 0$ unless t is a function and $dom(t) = \alpha \in \mathbf{ON}$,
- (ii) $\mathbf{G}_{\beta}(t) = 0$ when $\alpha = 0$,
- (iii) $\mathbf{G}_{\beta}(t) = t(\delta) + \beta$ when $\alpha = S(\delta)$,
- (iv) $\mathbf{G}_{\beta}(t) = \sup\{t(\xi) \mid \xi < \alpha\}$ when α is a limit.

 \mathbf{G}_{β} is a formula $\varphi(\beta, x, y)$ where β is a parameter, x is the argument to \mathbf{G}_{β} and y is the value. Since each of the above four cases is mutually distinct and collectively exhaustive, for each β we can prove $\forall x \exists ! y \varphi(\beta, x, y)$. So, \mathbf{G}_{β} is a class function for each β .

The Transfinite Recursion Theorem gives a unique class function $\cdot_{\beta}: \mathbf{ON} \to \mathbf{V}$ for each β satisfying the clauses of ordinal addition: $\cdot_{\beta}(\alpha) = \beta \cdot \alpha.$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

Ordinal Multiplication

Examples of Multiplication

$$\begin{array}{rcl} \beta \cdot 0 & = & 0 \\ \beta \cdot (\alpha + 1) & = & \beta \cdot \alpha + \beta \\ \beta \cdot \alpha & = & \sup \{\beta \cdot \xi \, \big| \, \xi < \alpha \} \end{array} \qquad \text{when } \alpha \text{ is a limit}$$

- $A \cdot \beta \cdot 1 = \beta \cdot (0+1) = 0 + \beta = \beta$
- $\triangle \beta \cdot 2 = \beta \cdot 1 + \beta = \beta + \beta$.
- $A \cdot 3 = \beta \cdot 2 + \beta = \beta + \beta + \beta$
- $\triangle \beta < \beta \cdot 2 < \beta \cdot 3 < \beta \cdot 4$
- \bullet $\beta \cdot \omega = \sup\{\beta \cdot n \mid n < \omega\}$ is a limit ordinal.
- $\clubsuit 1 \cdot \omega = \sup\{1 \cdot n \mid n < \omega\} = \omega,$
- $\clubsuit 2 \cdot \omega = \sup\{2 \cdot n \mid n < \omega\} = \omega,$
- ♣ So, $2 \cdot \omega \neq \omega \cdot 2$. Thus, multiplication is not commutative.

27 / 1

Exponentiation on **ON**

Definition (Ordinal exponentiation)

For all ordinals β ,

$$eta^0=1$$
 $eta^{lpha+1}=eta^{lpha}\cdoteta$ $eta^{lpha}=\sup\{eta^{\xi}\,|\,\xi when $lpha$ is a limit$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory Lecture

March 9, 2009

Ordinal Exponentiation

Formal justification

Formally, for each β , define $\mathbf{G}_{\beta}: \mathbf{V} \to \mathbf{V}$ (a formula in the language of set theory) so that

- (i) $\mathbf{G}_{\beta}(t) = 0$ unless t is a function and $dom(t) = \alpha \in \mathbf{ON}$,
- (ii) $\mathbf{G}_{\beta}(t) = 1$ when $\alpha = 0$,
- (iii) $\mathbf{G}_{\beta}(t) = t(\delta) \cdot \beta$ when $\alpha = S(\delta)$,
- (iv) $\mathbf{G}_{\beta}(t) = \sup\{t(\xi) \mid \xi < \alpha\}$ when α is a limit.

 \mathbf{G}_{β} is a formula $\varphi(\beta, x, y)$ where β is a parameter, x is the argument to \mathbf{G}_{β} and y is the value. Since each of the above four cases is mutually distinct and collectively exhaustive, for each β we can prove $\forall x \exists ! y \varphi(\beta, x, y)$. So, \mathbf{G}_{β} is a class function for each β .

The Transfinite Recursion Theorem gives a unique class function $\mathbf{F}_{\beta}: \mathbf{ON} \to \mathbf{V}$ for each β satisfying the clauses of ordinal addition: $\mathbf{F}_{\beta}(\alpha) = \beta^{\alpha}$.

Examples of Multiplication

$$\begin{array}{rcl} \beta^0 & = & 1 \\ \beta^{\alpha+1} & = & \beta^\alpha \cdot \beta \\ \beta^\alpha & = & \sup\{\beta^\xi \, \big| \, \xi < \alpha\} & \text{when } \alpha \text{ is a limit} \end{array}$$

- \clubsuit $\beta^1 = \beta$, $\beta^2 = \beta \cdot \beta$, $\beta^3 = \beta \cdot \beta \cdot \beta$,
- \clubsuit 1^{β} = 1 for all β ,
- $\clubsuit 2^{\omega} = \sup\{2^n \mid n < \omega\} = \omega,$
- $3^{\omega} = \omega$
- $\clubsuit \sup\{n^{\omega} \mid n < \omega\} = \omega \neq \omega^{\omega} = \sup\{\omega^{n} \mid n < \omega\}$

Kenneth Harris (Math 582

Math 582 Introduction to Set Theory Lecture

March 9, 2009

31 / 1

The ordinals

Initial segment of the ordinal numbers

We can continue counting into the transfinite:

$$0,1,2,\ldots,\omega,\omega+1,\omega+2,\ldots,\omega\cdot 2,\ldots,\omega\cdot 3,\ldots,\omega\cdot \omega,\ldots,\omega^3,\ldots,\omega^\omega,\ldots,\omega^\omega,\ldots,\omega^\omega,\ldots,\omega_1,\ldots$$

Eventually we reach the first ordinal number after ω which has a greater cardinality than ω ; this uncountable ordinal is ω_1 and its cardinality is \aleph_1 .

All ordinals we have generated so far, ω^{ω} , $\omega^{\omega^{\omega}}$ etc., are countable ordinals. The existence of ω_1 depends on a new axiom, the Power Set Axiom, which we will introduce shortly.