$12a_{0369} (K12a_{0369})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -478134295627u^{38} + 149778839704u^{37} + \dots + 783747150866b - 1669436053919, \\ &- 19258298275u^{38} - 10323980760u^{37} + \dots + 783747150866a + 8187780738725, \\ &u^{39} - 2u^{38} + \dots + 10u - 1 \rangle \\ I_2^u &= \langle b + a + u - 1, \ a^2 + 4au - 2a + 3, \ u^2 - u - 1 \rangle \\ I_3^u &= \langle b + u, \ a - 2u - 1, \ u^2 + u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4.78 \times 10^{11} u^{38} + 1.50 \times 10^{11} u^{37} + \dots + 7.84 \times 10^{11} b - 1.67 \times 10^{12}, \ -1.93 \times 10^{10} u^{38} - 1.03 \times 10^{10} u^{37} + \dots + 7.84 \times 10^{11} a + 8.19 \times 10^{12}, \ u^{39} - 2 u^{38} + \dots + 10 u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0245721u^{38} + 0.0131726u^{37} + \dots - 11.4436u - 10.4470 \\ 0.610062u^{38} - 0.191106u^{37} + \dots - 5.42326u + 2.13007 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.819512u^{38} + 1.59433u^{37} + \dots - 1.16490u - 11.5383 \\ 1.45415u^{38} - 1.77227u^{37} + \dots - 15.7020u + 3.22140 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 4.72658u^{38} - 5.95208u^{37} + \dots - 44.4581u + 17.4015 \\ -2.05862u^{38} + 2.32509u^{37} + \dots + 22.0842u - 3.94672 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.46589u^{38} + 3.88914u^{37} + \dots + 4.27839u - 17.1124 \\ -0.582048u^{38} + 0.868548u^{37} + \dots + 13.4013u + 0.570488 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.883550u^{38} - 0.877719u^{37} + \dots - 20.4637u - 8.99829 \\ 1.11038u^{38} - 0.900266u^{37} + \dots - 10.7236u + 2.76872 \end{pmatrix}$$

(ii) Obstruction class = -1

$$= -\frac{627190064793}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{37} + \dots - \frac{1173686425629}{391873575433}u + \frac{611656068405}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \dots - \frac{1173686425629}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \dots - \frac{1173686425629}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \frac{106433701951}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \frac{106433701951}{391873575433}u^{38} + \frac{1064333701951}{391873575433}u^{38} + \frac{106433701951}{391873575433}u^{38} + \frac{106433701951}{391873575433}u^{38} + \frac{106433701951}{391873575433}u^{38} + \frac{106433701951}{391873575433}u^{38} + \frac{106433701951}{39187575433}u^{38} + \frac{106433701951}{39187575433}u^{38} + \frac{106433701951}{391875575433}u^{38} + \frac{106433701951}{39187575433}u^{38} + \frac{106433701951}{39187575433}u^{38} + \frac{106433701951}{39187575433}u^{38} + \frac{106433701951}{39187575433}u^{38} + \frac{106433701951}{3918757575433}u^{38} + \frac{106433701951}{3918757575433}u^{38} + \frac{106433701951}{3918757575433}u^{38} + \frac{106433701951}{3918757575433}u^{38} + \frac{106433701951}{391875757543}u^{38} + \frac{106433701951}{391875757543}u^{38} + \frac{106433701951}{391875757543}u^{38} + \frac{106433701951$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{39} + 15u^{38} + \dots + 111u + 1$
c_2, c_5	$u^{39} + 3u^{38} + \dots + 3u + 1$
c_3, c_4, c_9 c_{10}	$u^{39} - u^{38} + \dots + 4u - 4$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$u^{39} + 2u^{38} + \dots + 10u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{39} + 25y^{38} + \dots + 6327y - 1$
c_{2}, c_{5}	$y^{39} - 15y^{38} + \dots + 111y - 1$
c_3, c_4, c_9 c_{10}	$y^{39} - 49y^{38} + \dots + 368y - 16$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^{39} - 54y^{38} + \dots + 102y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.020110 + 0.131184I		
a = -1.009270 + 0.527233I	2.30767 - 2.27298I	10.27248 + 3.27626I
b = 0.286806 - 1.184210I		
u = -1.020110 - 0.131184I		
a = -1.009270 - 0.527233I	2.30767 + 2.27298I	10.27248 - 3.27626I
b = 0.286806 + 1.184210I		
u = -1.04641		
a = 3.22469	7.09140	13.7060
b = -1.92904		
u = 1.073560 + 0.109186I		
a = -0.557430 - 0.305343I	5.55859 + 1.07065I	15.4669 - 1.4412I
b = -0.051344 - 0.282062I		
u = 1.073560 - 0.109186I		
a = -0.557430 + 0.305343I	5.55859 - 1.07065I	15.4669 + 1.4412I
b = -0.051344 + 0.282062I		
u = 1.062930 + 0.284051I		
a = -1.64402 - 0.62028I	4.46872 + 6.29211I	12.7084 - 7.5348I
b = 0.93533 + 1.43760I		
u = 1.062930 - 0.284051I		
a = -1.64402 + 0.62028I	4.46872 - 6.29211I	12.7084 + 7.5348I
b = 0.93533 - 1.43760I		
u = -1.109570 + 0.405465I		
a = -2.09516 + 0.56202I	12.9852 - 8.7765I	14.1494 + 5.9356I
b = 1.43927 - 1.50328I		
u = -1.109570 - 0.405465I		
a = -2.09516 - 0.56202I	12.9852 + 8.7765I	14.1494 - 5.9356I
b = 1.43927 + 1.50328I		
u = 0.801500		
a = 2.55587	-0.106375	16.7010
b = -1.10388		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.476965 + 0.626572I		
a =	1.09357 + 0.93891I	9.07010 - 0.79273I	12.42094 - 0.46386I
b =	0.323319 - 1.133120I		
u =	0.476965 - 0.626572I		
a =	1.09357 - 0.93891I	9.07010 + 0.79273I	12.42094 + 0.46386I
b =	0.323319 + 1.133120I		
u =	0.783899		
a =	0.595351	5.58284	18.2860
b =	-1.19130		
u =	0.311989 + 0.683555I		
a =	0.474675 - 0.108825I	8.56307 + 5.06640I	11.02566 - 5.09114I
b =	-0.86174 - 1.47607I		
u =	0.311989 - 0.683555I		
a =	0.474675 + 0.108825I	8.56307 - 5.06640I	11.02566 + 5.09114I
	-0.86174 + 1.47607I		
u =	-1.213320 + 0.300422I		
a =	-0.625507 + 1.072000I	14.4735 - 2.4041I	15.9891 + 0.I
	-0.039879 - 0.445738I		
	-1.213320 - 0.300422I		
a =	-0.625507 - 1.072000I	14.4735 + 2.4041I	15.9891 + 0.I
	-0.039879 + 0.445738I		
	-0.268654 + 0.522744I		
a =	0.312554 + 0.528929I	0.30789 - 3.54473I	8.22087 + 8.01132I
	-0.417052 + 1.216500I		
	-0.268654 - 0.522744I		
	0.312554 - 0.528929I	0.30789 + 3.54473I	8.22087 - 8.01132I
	$\frac{-0.417052 - 1.216500I}{0.427022 + 0.220204I}$		
	-0.437639 + 0.390994I		
	1.41608 - 0.38982I	0.876008 + 0.412132I	11.41445 + 0.11588I
b =	-0.040008 + 0.660042I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.437639 - 0.390994I		
a = 1.41608 + 0.38982I	0.876008 - 0.412132I	11.41445 - 0.11588I
b = -0.040008 - 0.660042I		
u = -0.409866		
a = 0.871979	0.600340	16.7330
b = -0.319381		
u = 1.59193		
a = -1.99806	7.67890	0
b = 1.49492		
u = -1.60820		
a = -1.60477	13.8022	0
b = 1.53392		
u = 0.198091 + 0.297215I		
a = 0.72132 - 1.56787I	-1.45987 + 0.82313I	-0.72620 - 2.45968I
b = 0.125739 - 0.795889I		
u = 0.198091 - 0.297215I		
a = 0.72132 + 1.56787I	-1.45987 - 0.82313I	-0.72620 + 2.45968I
b = 0.125739 + 0.795889I		
u = -1.67666		
a = -2.65337	8.75767	0
b = 1.89462		
u = 1.73600 + 0.03045I		
a = 1.06886 + 1.00878I	12.24790 + 2.91315I	0
b = -0.56637 - 1.46214I		
u = 1.73600 - 0.03045I		
a = 1.06886 - 1.00878I	12.24790 - 2.91315I	0
b = -0.56637 + 1.46214I		
u = 1.74422		
a = -3.10810	17.2035	0
b = 2.23888		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.74314 + 0.07213I		
a = 1.88603 - 1.11976I	14.5204 - 7.7607I	0
b = -1.29148 + 1.58672I		
u = -1.74314 - 0.07213I		
a = 1.88603 + 1.11976I	14.5204 + 7.7607I	0
b = -1.29148 - 1.58672I		
u = -1.74624 + 0.02105I		
a = 0.433151 + 0.263501I	15.7407 - 1.5655I	0
b = -0.044228 - 0.773960I		
u = -1.74624 - 0.02105I		
a = 0.433151 - 0.263501I	15.7407 + 1.5655I	0
b = -0.044228 + 0.773960I		
u = 1.75579 + 0.11113I		
a = 2.51996 + 0.96207I	-16.2979 + 10.9754I	0
b = -1.85527 - 1.45871I		
u = 1.75579 - 0.11113I		
a = 2.51996 - 0.96207I	-16.2979 - 10.9754I	0
b = -1.85527 + 1.45871I		
u = 1.78103 + 0.07205I		
a = 0.318355 + 0.567328I	-14.1664 + 4.0147I	0
b = 0.0141751 + 0.0635167I		
u = 1.78103 - 0.07205I		
a = 0.318355 - 0.567328I	-14.1664 - 4.0147I	0
b = 0.0141751 - 0.0635167I		
u = 0.104256		
a = -11.5099	3.32525	1.86210
b = 1.46674		

II.
$$I_2^u = \langle b + a + u - 1, a^2 + 4au - 2a + 3, u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ -a - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a + u \\ -a - 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a + u \\ -a - 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u + 1 \\ -a - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_9 c_{10}	$(u^2-2)^2$
c_6, c_7, c_8	$(u^2+u-1)^2$
c_{11}, c_{12}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4, c_9 c_{10}	$(y-2)^4$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 0.821854	4.27683	12.0000
b = 0.796180		
u = -0.618034		
a = 3.65028	4.27683	12.0000
b = -2.03225		
u = 1.61803		
a = -0.821854	12.1725	12.0000
b = 0.203820		
u = 1.61803		
a = -3.65028	12.1725	12.0000
b = 3.03225		

III.
$$I_3^u = \langle b+u, \ a-2u-1, \ u^2+u-1 \rangle$$

(i) Arc colorings

and Are colorings
$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2u + 1 \\ -u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u + 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u + 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u + 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 2

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_4, c_9 c_{10}	u^2
<i>C</i> ₅	$(u+1)^2$
c_6, c_7, c_8	$u^2 - u - 1$
c_{11}, c_{12}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_9 c_{10}	y^2
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 2.23607	-0.657974	2.00000
b = -0.618034		
u = -1.61803		
a = -2.23607	7.23771	2.00000
b = 1.61803		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{39}+15u^{38}+\cdots+111u+1)$
c_2	$((u-1)^2)(u+1)^4(u^{39}+3u^{38}+\cdots+3u+1)$
c_3, c_4, c_9 c_{10}	$u^{2}(u^{2}-2)^{2}(u^{39}-u^{38}+\cdots+4u-4)$
<i>C</i> ₅	$((u-1)^4)(u+1)^2(u^{39}+3u^{38}+\cdots+3u+1)$
c_6, c_7, c_8	$(u^{2} - u - 1)(u^{2} + u - 1)^{2}(u^{39} + 2u^{38} + \dots + 10u + 1)$
c_{11}, c_{12}	$((u^2 - u - 1)^2)(u^2 + u - 1)(u^{39} + 2u^{38} + \dots + 10u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{39} + 25y^{38} + \dots + 6327y - 1)$
c_2,c_5	$((y-1)^6)(y^{39}-15y^{38}+\cdots+111y-1)$
c_3, c_4, c_9 c_{10}	$y^{2}(y-2)^{4}(y^{39}-49y^{38}+\cdots+368y-16)$
c_6, c_7, c_8 c_{11}, c_{12}	$((y^2 - 3y + 1)^3)(y^{39} - 54y^{38} + \dots + 102y - 1)$