TD N° 1: Introduction et rappels

EXERCICE 1. Montrer que pour toute matrice $X \in \mathbb{R}^{n \times m}$, $\operatorname{Ker}(X) = \operatorname{Ker}(X^{\top}X)$. En déduire que les rangs suivant sont identiques : $\operatorname{rg}(X) = \operatorname{rg}(X^{\top}X) = \operatorname{rg}(XX^{\top}) = \operatorname{rang}(X^{\top})$.

Exercice 2. Montrer que $\hat{\beta}^{(\ell_2)} \stackrel{\Delta}{=} X^+ y$ est une solution du problème des moindres carrées :

$$\underset{\beta \in \mathbb{R}^p}{\arg \min} \|y - X\beta\|^2 \quad , \tag{1}$$

avec $y \in \mathbb{R}^n$ et $X \in \mathbb{R}^{n \times p}$, et que de plus parmi toute les solutions c'est la solution de norme (euclidienne) minimale.

EXERCICE 3.

1) Calculer la SVD de la matrice

$$X = \begin{bmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n_1}} & \frac{1}{\sqrt{n_2}} \end{bmatrix} ,$$

en prenant des vecteurs $\mathbb{1}_{C_1}$, $\mathbb{1}_{C_2}$ les indicatrices d'ensembles C_1 , C_2 formant une partition de l'ensemble $[\![1,n]\!]$, en supposant qu'il y a n_1 (resp. n_2) observations dans la classe C_1 (resp. C_2). On notera que $\mathbb{1}_{C_1} + \mathbb{1}_{C_2} = \mathbb{1}_n$, et $\mathbb{1}_1\mathbb{1}_2 = 0 \in \mathbb{R}^n$.

2) Donner X^+ , la pseudo-inverse de la matrice X.

EXERCICE 4.

1) Calculer la SVD de la matrice

$$X = \begin{bmatrix} \alpha_1 x_1 + \alpha_2 x_2 & x_1 & x_2 \end{bmatrix} ,$$

sous la contrainte $(x_1, x_2) \in \mathbb{R}^n \times \mathbb{R}^n$, $||x_1|| = ||x_2|| = 1$, $x_1^{\top} x_2 = 0$ et $(\alpha_1, \alpha_2) \in \mathbb{R}^2$.

2) Donner X^+ , la pseudo-inverse de la matrice X.

EXERCICE 5.

1) Calculer la SVD de la matrice

$$X = \begin{bmatrix} \mathbb{1}_n & \mathbb{1}_{C_1} & \mathbb{1}_{C_2} \end{bmatrix} ,$$

en prenant des vecteurs $\mathbbm{1}_{C_1}$, $\mathbbm{1}_{C_2}$ les indicatrices d'ensembles C_1, C_2 formant une partition de l'ensemble $[\![1,n]\!]$. On notera que $\mathbbm{1}_{C_1}+\mathbbm{1}_{C_2}=\mathbbm{1}_n$, et $\mathbbm{1}_1\mathbbm{1}_2=0\in\mathbb{R}^n$, on supposera qu'il y a n_1 (resp. n_2) observations dans la classe C_1 (resp. C_2).