

**SPACE
DIVISION**

GE Report No. 76SDS4200
December 1975

NASA CR-

147483

MODULAR BIOWASTE MONITORING SYSTEM

FINAL REPORT

(NASA-CR-147483) MODULAR BIOWASTE
MONITORING SYSTEM Final Report (General
Electric Co.) 203 p HC \$7.75 CSCL 06K

N76-18789

Unclassified
G3/54 18409

CONTRACT NAS9-13748

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

JOHNSON SPACE CENTER

HOUSTON, TEXAS 77058

GENERAL ELECTRIC

Foreword

This report summarizes the Biowaste Monitoring System Flight Prototype Model Development. NASA technical direction was provided by Mr. R. L. Sauer, Contract Technical Monitor and by Mr. J. B. Westover.

Table Of Contents

	Page
FOREWORD	
1.0 SUMMARY	1
2.0 BACKGROUND	1
3.0 CONCEPTUAL DESIGN STUDY	2
4.0 FLIGHT PROTOTYPE MODEL	5
4.1 Design	6
4.2 Fabrication And Assembly	6
4.3 Performance Evaluation	10
4.4 Recommendations	10
5.0 GROUND SUPPORT EQUIPMENT	11
6.0 APPENDIX	14
6.1 OM And H Manual	14
6.2 Supplemental Design Information	15
6.3 Supplemental Fabrication Information	16
6.4 Test Report	17
6.5 GSE Supplemental Information	18

MODULAR BIOWASTE MONITORING SYSTEM
FINAL REPORT

1.0 SUMMARY

The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting SHUTTLE life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation test.

2.0 BACKGROUND

The acquisition of crew biomedical data has been an important task on all manned space missions from Project Mercury through the Skylab Program. The monitoring of biowastes from the crew is a valuable part of this activity. On early missions, emphasis was placed on the collection and return of biowaste samples for post mission analysis; on later missions such as Skylab, equipment for inflight measurement of urine/feces volume or mass was also added. For SHUTTLE, sampling and real-time measurements plus an increase in automation are anticipated requirements. The Modular Biowaste Monitoring System program, Contract NAS9-13748, was intended to be a first step in defining and developing biowaste monitoring hardware for use in the SHUTTLE ORBITER and/or SPACELAB programs.

The effort under Contract NAS9-13748 was accomplished in two steps. An initial conceptual design effort established requirements and defined an overall modular system for monitoring urine and fecal biowastes. This effort was followed by the design, fabrication and performance evaluation of flight prototype hardware for the collection, volume measurement and sampling of urine.

3.0 CONCEPTUAL DESIGN STUDY

The objective of the conceptual design study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting SHUTTLE life science experimental and diagnostic programs. Table 1-1 lists the general performance requirements for the system. These requirements were expanded, with the assistance of the NASA Technical Monitor, into a detail performance requirements specification.

Table 1-2 summarizes results of the conceptual design study. As noted, the modular concept as applied to the Biowaste Monitoring System is feasible and will permit scaling the system capability to fit the need for a specific SHUTTLE mission. Two independent baseline subsystems are recommended, a urine S/S for urine collection and volume measurement and a feces S/S for feces collection and mass measurement. These baseline configurations presume that, as a minimum, volume or mass measurement will be required to complement the urine and feces collection capability of the system. Eight other modules are proposed for extending the baseline capability to meet the full performance requirement of the Biowaste Monitoring System. These modules are for urine analysis and for urine and feces sampling and storage.

Table 1-1 Modular Biowaste Monitoring System
General Performance Requirements

- (a) The modular system shall provide for the collection and automatic sampling and storage of urine and feces.
- (b) The modular system shall automatically measure urine volume and feces mass in real time.
- (c) The modular system shall include an automatic capability for limited (Na^+ , K^+ , Ca^{++} , Cl^- and TBD ions and pH) real time chemical analysis of individual micturitions.
- (d) The modular system shall provide for multipersonal use, both male and female.
- (e) The modular system shall be automated to minimize spacecraft crew time requirements.
- (f) The system shall be modular in configuration so that functional capability can be easily increased or decreased depending on the life science requirements for a particular shuttle mission.

TABLE 1-2 SUMMARY, CONCEPTUAL DESIGN STUDY RESULTS

MODULAR APPROACH PRACTICAL

- 2 INDEPENDENT BASELINE S/S's
- 8 ADD-ON MODULES (URINE ANALYSIS, URINE AND FECES SAMPLING AND STORAGE AND FLUSH FLUID)
- TAILORED PLUMBING/WIRING INTERCONNECT HARDWARE

POWER/WEIGHT MAY BE EXCESSIVE, PARTICULARLY FOR TOTAL CAPABILITY

- REVIEW SAMPLING REQUIREMENTS
 - QUANTITY/TYPE/SIZE
 - STORAGE VOLUME/TEMPERATURE
 - FLUSH FLUIDS (CROSS-CONTAMINATION)

INTEGRATION WITH WCS PRACTICAL

- WCS CAN BE COMPLETELY INTEGRATED INTO BIOWASTE MONITORING SYSTEM
- POTENTIAL PROBLEM AREAS, REVIEW/DETERMINE
 - EQUIPMENT LOCATION
 - POWER AVAILABILITY
 - FLUID DISPOSAL

These add-on modules, then, provide the necessary operating flexibility for meeting the anticipated variable experimental and diagnostic requirements of the SHUTTLE program. Each add-on module includes structural support elements with provision for mating with corresponding interface points in each baseline S/S assembly. However, each possible baseline S/S and add-on module combination will require a specifically tailored interconnect cabling and plumbing assembly.

Based on estimates for the total capability of the Biowaste Monitoring System and maximum mission conditions (6 men, 30 days), total weight and power (307 lbs. plus 445 lbs. of expendables and 565 watts peak) may be incompatible with SHUTTLE capability. Since the bulk of the weight and power required are to satisfy sampling requirements, a review of sample size, quantity and type, storage temperature and need for refrigerated storage and cross-contamination requirements is recommended.

Integration of the Shuttle Waste Collection System (WCS) with the Biowaste Monitoring System was investigated. As presently defined, the WCS is readily integrated into the Biowaste Monitoring System. Equipment commonality is excellent, however, a possible equipment installation problem exists for an integrated assembly.

The conceptual design study is covered in detail in GE report No. 74SD4254.

4.0 FLIGHT PROTOTYPE MODEL

The function of the BMS flight prototype model is to collect, measure the volume and sample urine from each micturition of selected SHUTTLE crew members.

Figure 4-1 shows the basic unit; Figure 4-2 the system block diagram.

Major design requirements are summarized in Table 4-1.

4.1 Design

The BMS flight prototype model description and operation are as described in the O, M and H Manual, GE report No. 75SDS4217, included herein as appendix 6.1.

Specifications, analyses and design activity supporting the generation of flight quality drawings defining the BMS flight prototype model are reported in detail and chronologically in the following interim reports:

"Interim Design Status Report", December 1974,
GE Report No. 75SDS4203.

"Preliminary Design Review Report", January 1975,
GE Report No. 75SDS4206.

"Critical Design Review Report", May 1975,
GE Report No. 75SDS4224.

Other supplemental design information is included in appendix 6.2.

4.2 Fabrication And Assembly

The BMS prototype model was fabricated and assembled to substantially reflect the flight design in form and function. In some instances, commercial quality parts were substituted for high rel parts. Also the level of inspection was less than that normally employed for flight quality hardware. However, all critical dimensions were inspected to assure compliance with the drawings. In addition; limited burn-in of electronic parts was accomplished (see appendix 6.3).

FIGURE 4-1 FLIGHT PROTOTYPE MODEL, LESS URINAL AND PORTABLE WATER RESERVOIR ASSEMBLIES

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 4-2 BMS FLIGHT PROTOTYPE BLOCK DIAGRAM

Table 4-1 BMS Flight Prototype Major Design Requirements Summary

Urine Collection

- Male/Female Users
- Pneumatic Transport
- Micturition Volume
 - 1000 ml Maximum
 - 35 ml Minimum
- Micturition Rate
 - 25 ml/Second Maximum

Urine Volume Measurement

- Each Micturition
- Real Time
- Error, \pm 2% Maximum (Of Actual Volume)

Urine Sampling

- User Option
- 0 to 20 ml (User Controlled)
- Chemical Additive (For Preservation)
- Cross-Contamination, 0.5 ml Maximum

System Operation

- Semi-Automatic
- 28 VDC and 115/200 Volt, 400 Hz, 3 Phase, 4 Wire
Wye Connected Power
- Water Flush (For Cross-Contamination Control)
- WCS* Interconnection (For Transport Airflow and Fluid Dump)
- Data to TLM
 - Micturition Volume
 - User ID
 - Container Number
- Crew Size, 7 Users Maximum

*SHUTTLE Waste Collection System

Deviations in the flight prototype model from the flight design have been recorded. Broadly, these changes encompassed drawing errors, changes in cycle timing and substitution of a solenoid valve (Skinner type B2, two-way NC subminiature) for the check valve located downstream of the urine pump.

4.3 Performance Evaluation

Laboratory tests of the BMS flight prototype model were conducted to demonstrate operability under both normal and contingency operating modes and to obtain performance data. The tests were divided into four categories, i.e., operational procedures, volume measurement, sampling and mechanical/electronic. Test results are reported in detail in Appendix 6.4. No operational or performance deficiencies were uncovered.

4.4 Recommendations

Based on the experience with the flight prototype model, incorporation of several design changes into the final flight design is recommended.

These are:

- (a) Relocate the solenoid valve to a position downstream (instead of upstream) of the sampling port. This change will reduce the residual volume between the phase separator and sampling port, thereby increasing the effectiveness of the PURG cycle.
- (b) Add a 15 second delay after initiation of PURG or DUMP cycles to prevent volume measurement and start of these cycles until the end of the delay period. This will assure stabilization of the fluid vortex in the phase separator before volume measurement occurs.

(c) Improve linearity of the volume measurement. Although not mandatory, the convenience of one equation (for calculating volume) over the current four equations is obvious. Also the number of calibration tests may be substantially reduced if the volume measurement is linear.

5.0 GROUND SUPPORT EQUIPMENT

To facilitate testing, both at GE and NASA, GSE as shown in Figures 5-1 and 5-2 and was designed and fabricated. The "console" controls power to the BMS flight prototype, provides a transport airflow and odor filtering capability plus TLM decoder and paper tape recorder and provides a convenient mounting and stowage arrangement for the flight prototype model. Additional information is included in appendix 6.5.

FIGURE 5-1 GROUND SUPPORT EQUIPMENT (PLUS BMS SAMPLE CONTAINERS)

BACK VIEW

FRONT VIEW

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 5-2 GROUND SUPPORT EQUIPMENT WITH BMS FLIGHT PROTOTYPE HARDWARE ATTACHED

6.0

6.0 APPENDIX

6.1 O, M and H Manual, GE Report No. 75SDS4217.

PRELIMINARY

GE Document No. 75SDS4217
December 1975

MODULAR BIOWASTE MONITORING SYSTEM

FOR

SHUTTLE ORBITER

OPERATING, MAINTENANCE

AND

HANDLING PROCEDURES

CONTRACT NAS9-13748

General Electric Company
Space Division
Valley Forge Space Center
P. O. Box 8555
Philadelphia, Pennsylvania 19101

~~PRECEDING PAGE BLANK NOT FEMED~~

Foreword

This document defines the Operating, Maintenance and Handling procedures for the SHUTTLE ORBITER Biowaste Monitoring System. NASA technical direction was provided by Mr. R. L. Sauer, Contract Technical Monitor, and Mr. J. B. Westover.

Table of Contents

	<u>Page</u>
Foreword	
PART I - SYSTEM DATA	
1.0 GENERAL DESCRIPTION	1
2.0 SYSTEM ELEMENTS	7
2.1 System Operation	7
2.2 Element Description	9
2.2.1 Urine Collection	12
2.2.2 Phase Separation	14
2.2.3 Volume Measurement	16
2.2.4 Sampling	17
2.2.5 Cross-Contamination Control	19
2.2.6 Control	21
3.0 OPERATING LIMITATIONS AND RESTRICTIONS	23
PART II - MISSION OPERATIONAL PROCEDURES	
4.0 NORMAL PROCEDURES	24
4.1 Installation in SHUTTLE ORBITER	24
4.1.1 Mechanical	24
4.1.2 Electrical	24
4.2 Post Installation Checkout	24
4.2.1 Installation/Interface Verification	24
4.2.2 System Test	24
4.3 Inflight Operation	27
4.3.1 Power ON	27
4.3.2 Volume Measurement/Sampling Option	27
4.3.3 Volume Measurement Only Option	28
4.3.4 Flush Water Reservoir Refill	28
4.3.5 Sample Container Removal	29
5.0 CONTINGENCY PROCEDURES	30
5.1 Power Input	30
5.2 Equipment Malfunction	31
5.2.1 Urine Collection	31
5.2.2 Purge	32

Table of Contents (Continued)

	<u>Page</u>
5.2.3 Sampling	32
5.2.4 Dump	34
5.2.5 Flush	34
5.3 User Error	34
5.4 Sample Container ID	35
PART III - GROUND OPERATING AND MAINTENANCE PROCEDURES	
6.0 PRELAUNCH PROCEDURES	36
6.1 Receiving Inspection	36
7.0 POST RECOVERY PROCEDURES	36
7.1 Receiving Inspection	36
7.2 System Test	36
7.3 Refurbishment	36
7.4 Failure Analysis	37
8.0 OPERATING LOG	37
PART IV - APPENDIX	
9.0 SYSTEM OPERATING SEQUENCE	38
10.0 DRAWING LIST	44
11.0 MISCELLANEOUS	51
11.1 TLM Output Interpretation	51
11.2 Pressure Sensor Adjustment	52
11.3 Airflow Sensor Adjustment	53

PRELIMINARY

PART I - SYSTEM DATA

1.0 GENERAL DESCRIPTION

The basic function of the Biowaste Monitoring System (BMS) is to support SHUTTLE ORBITER life science experimental and diagnostic programs. This is accomplished thru the collection, volume measurement and sampling of urine from each micturition of selected crew members. Major system design requirements are summarized in Table 1-1.

Figure 1-1 illustrates the functional aspects of the BMS. The system equipments for performing these functions are, with three exceptions, contained within one integrated assembly as shown in Figure 1-2. A urinal assembly and portable flush water reservoir assembly are located TBD; sample containers, prior to and after use, are stored TBD.

Interfaces with the SHUTTLE ORBITER are summarized in Table 1-2. Figures 1-3 and 1-4 show the location of the system for both launch and operational use. For launch and until deployed for operational use, the system will be stored TBD; for operational use, the system will be located TBD. The sample containers, after use, may be stored at ambient conditions or refrigerated.

Table 1-1. BMS Major Design Requirements Summary

Urine Collection

- Male/Female Users
- Pneumatic Transport
- Micturition Volume
 - 1000 ml Maximum
 - 35 ml Minimum
- Micturition Rate
 - 25 ml/Second Maximum

Urine Volume Measurement

- Each Micturition
- Real Time
- Error, \pm 2% Maximum (Of Actual Volume)

Urine Sampling

- User Option
- 0 to 20 ml (User Controlled)
- Chemical Additive (For Preservation)
- Cross-Contamination, 0.5 ml Maximum

System Operation

- Semi-Automatic
- 28 VDC and 115/200 Volt, 400 Hz, 3 Phase, 4 Wire
Wye Connected Power
- Water Flush (For Cross-Contamination Control)
- WCS* Interconnection (For Transport Airflow and Fluid Dump)
- Data to TLM
 - Micturition Volume
 - User ID
 - Container Number
- Crew Size, 7 Users Maximum

*SHUTTLE Waste Collection System

FIGURE 1-1 BMS FUNCTIONAL BLOCK DIAGRAM

FIGURE 1-2 BMS ASSEMBLY (LESS URINAL, SAMPLE CONTAINER AND PORTABLE WATER RESERVOIR ASSEMBLIES)

Table 1-2. SHUTTLE ORBITER/BMS Interface Summary

Location (Operational)

- Adjacent to WCS
- Sample Container Storage TBD

Mechanical

- Fuel Cell Water Supply Via QD
- WCS Via Flex Hose

Transport Airflow
Fluid Dump

Electrical

- 28 VDC and 115/200 Volt, 400 Hz, 3 Phase, 4 Wire Y Connected Power, Panel Location TBD
 - TBD Watts Maximum (Peak)
 - TBD Watts Average

Communication

- TLM Input
 - Micturition Volume
 - User ID
 - Sample Container Number

Environmental

- Thermal Energy Rejected to Ambient
 - TBD BTU/Hour Average

FIGURE 1-3. BMS LAUNCH INSTALLATION

FIGURE 1-4. BMS OPERATIONAL INSTALLATION

2.0 SYSTEM ELEMENTS

2.1 System Operation

Figures 2-1 illustrate the system block diagram. Briefly, the system operating sequence for urine collection, volume measurement and sampling is as follows:

- a. The user activates the BMS. This supplies power to the various system elements and automatically activates the WCS. This latter action provides the transport airflow and waste fluid dump source necessary for operating the BMS.
- b. The user adjusts the urinal and micturates.
- c. During micturition, the phase separator conditions and stores the incoming urine. Conditioning consists of transport air removal, gross particulate filtering and mixing to achieve a homogeneous urine mixture.
- d. When micturition is completed, the user replaces the urinal and initiates the purge cycle. Volume measurement data are obtained at initiation of the purge cycle.
- e. The purge cycle replaces the fluid residual in the urine pump, sampling port and associated plumbing with urine from the just completed micturition.
- f. The user installs a sample container.
- g. The user controls filling of the sample container via manual control of urine pump action.

FIGURE 2-1 BMS BLOCK DIAGRAM

- h. The user removes the filled sample container.
- i. The user initiates the dump cycle, causing the remaining urine to be pumped from the phase separator to the WCS for disposal.
- j. Volume measurement data, user ID and sample container number are automatically sent to the TLM connection. This event occurs at the completion of the dump cycle.
- k. At completion of the dump cycle, a water flush cycle is automatically initiated. Water from the flush water reservoir is flushed thru the system to remove the urine residual and thus minimize cross-contamination between samples.
- l. After completion of the flush cycle, the system (and WCS) is automatically deactivated, ready for the next user.

The above sequence is shown in Figures 2-2 and 2-3 and is defined in greater detail in Part II and in the Appendix of this document. Note that most functions performed by the system are accomplished automatically but with each step manually initiated by the user. Also, sampling is at the option of the user in which case the purge and sampling cycles are omitted.

2.2 Element Description

Functionally, the BMS can be divided into some six areas, (1) urine collection, (2) phase separation, (3) volume measurement, (4) sampling, (5) water flush, (6) and control logic and power conditioning. Equipments to implement these functions, with the exception of the portable flush water tank, are packaged in a single assembly of approximately 0.5 ft³ and with overall dimensions of 9 X 10 X 10.5 inches. When mounted for operational use, one surface will be

FUNCTION	FUNCTION INITIATION
POWER VIA CKT BKR	
POWER ON VIA COLL SWITCH ACTUATION (PHASE SEPARATOR, ELECTRONICS ACTIVATED; WCS ACTIVATED VIA BMS)	USER
SET USER ID SELECT SWITCH	USER
OPERATING STATUS CHECK	AUTOMATIC
POSITION URINAL/MICTURATE	USER
ACTUATE PURGE SWITCH	USER
- OBTAIN VOLUME MEASUREMENT DATA	AUTOMATIC
URINE PUMP ON	AUTOMATIC
INSTALL SAMPLE CONTAINER	USER
- ACTUATE SAMP SWITCH TO FILL SAMPLE CONTAINER	USER
- REMOVE SAMPLE CONTAINER	USER
- ACTUATE DUMP SWITCH	USER
URINE DUMP TO WCS	AUTOMATIC
FLUSH CYCLE	AUTOMATIC
POWER OFF, SYSTEM READY FOR NEXT USER	AUTOMATIC
DATA TO TLM (VOLUME DATA, USER ID, SAMPLE CONTAINER ID)	AUTOMATIC
ACTUATE DUMP SWITCH	USER
- OBTAIN VOLUME MEASUREMENT DATA	AUTOMATIC
URINE DUMP TO WCS	AUTOMATIC
FLUSH CYCLE	AUTOMATIC
POWER OFF, SYSTEM READY FOR NEXT USER	AUTOMATIC
DATA TO TLM	AUTOMATIC

Figure 2-2 BMS Operating Sequence Summary

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 2-3 TOTAL ESTIMATED BMS OPERATING TIME AFTER MICTURITION

secured to the deck immediately adjacent to the WCS. Total weight of the dry assembly (less sample containers) is 26.3 lbs.

The basic BMS assembly consists of the functional elements mounted within an aluminum structure on appropriately located support members. Protective aluminum panels are provided for enclosing the structure, certain of which are removable as required for maintenance. For safety considerations, electronic and fluid components are isolated from each other and the habitable environment. All interface connection points are mounted on one side of the structure. These provide connections to the flush water reservoir, power/telemetry cable, WCS dump connection and WCS ON-OFF control.

2.2.1 Urine Collection

Figure 2-4 shows the hardware used for urine collection, consisting essentially of a funnel shaped urinal and dual flex hoses. All incoming fluid (urine or flush water) is conveyed by the transport air thru the larger diameter flex hose from the urinal and into the phase separator. The smaller flex hose directs flush water from the flush water pump to the urinal. The flush water enters the urinal from two small spray nozzles. The nozzles are spaced and oriented to cover the inner surface of the urinal with a film of flush water. The transport airflow prevents escape of the flush water into the environment.

The urinal is a contact (fitted) type suitable for both male and female users. The urinal may be hand held or mated to the WCS urinal position adjustment mechanism. This latter mode is recommended for users in the seated position. For female use, whether hand held or mated to the WCS

FIGURE 2-4 (a). BMS URINE COLLECTION

FIGURE 2-4 (b). BMS URINE COLLECTION ASSEMBLY (INTERFACE CAP REMOVED)

adjustment mechanism, the urinal must be positioned against the user with about a 7 to 10 lb. force (automatically provided by WCS position adjustment mechanism). This approach provides positive urine containment. Also, the positioning force results in the labia being opened thereby assuring a more integrated, direct flow of urine. For female use, the transport air enters the urinal along a flow restrictive circumferential opening. The resulting high velocity airflow, directed at the labia/vulva area and the opening of the labia (as noted above), effectively removes any urine residual.

Protection of users from microbiological cross-contamination is an important consideration. The BMS accomplishes this protection by personalizing the interface between the urinal opening and the user. Each user is provided with his or her urinal interface cap. The personalized interface cap is placed over the urinal opening (snap fit) and removed after micturition is completed. The interface cap may be cleaned and/or sanitized by the user as required or desired.

2.2.2 Phase Separation

The phase separator assembly is shown in Figure 2-6 and consists of the phase separator, phase separator motor drive, pressure, rpm and airflow sensors and dryer. The major functions of the phase separator are to store and condition the incoming urine prior to sampling and/or volume measurement. Conditioning consists of transport air removal, gross particulate filtering and mixing (to assure a homogeneous urine mixture).

The phase separator is a dynamic type, utilizing a rotating impellor within a stationary outer housing. The centrifugal action caused by the rotating impellor forms a liquid (urine) vortex within the inner periphery of the stationary housing, the transport air being removed from the center of the

FIGURE 2-6. PHASE SEPARATOR ASSEMBLY

vortex. The rotating impellor is driven by a 200 volt, 3 phase, 400 HZ induction torque motor. An integral gearbox is used to reduce the output speed to about 400 rpm under no load condition.

The rpm, pressure and airflow sensors provide diagnostic information to the system control electronics. The rpm and pressure sensors alert the user to possible phase separator malfunction conditions. This assures the user that the phase separator is rotating and that no more than a minimal residual volume of fluid is in the phase separator. The pressure and rpm sensors are also used in the system to determine volume measurement data as noted in Section 2.2.3 below. The airflow sensor assures the user that the BMS is connected to the WCS and that the WCS is operational.

Under some environmental conditions, moisture can condense on inner surfaces of the pressure sensor and thereby cause a malfunction. A silica gel dryer, located within the phase separator housing, is provided to prevent this type malifunction. The dryer is sized for the maximum SHUTTLE ORBITER mission.

2.2.3 Volume Measurement

Total micturition volume measurement is accomplished by using the phase separator assembly as a volume sensor. The instantaneous fluid volume in the rotating urine vortex is proportional to the peripheral pressure generated by the vortex divided by the rotational speed of the impellor squared. Thus for the specific phase separator geometry,

$$\text{Urine Volume} = K \left(\frac{P}{SW^2} \right)^X \quad (1)$$

where P = vortex peripheral pressure, psi

W = Impellor rotational velocity, rad/sec.

S = urine specific gravity

K and X = constants (values as determined for each specific BMS assembly)

When micturition is completed, as indicated by user initiation of the purge or dump cycles (see operating sequence in Part II of this document), volume measurement data, i.e. vortex pressure and rotational velocity, are stored for subsequent dump to the SHUTTLE ORBITER TLM system. When received at the ground station, this data is combined (assuming an average value for S) using equation (1) to give the total micturition volume. When specific gravity data is available from post flight analysis of the urine samples, the volume measurement may be recalculated using the actual value of S.

2.2.4 Sampling

The sampling assembly and typical sample container are shown in Figures 2-7 and 2-8. The sample container is similar to that of a common laboratory syringe. If a sample is desired, the user inserts the sample container into the sampling assembly so that the container "needle" penetrates the duck bill septum in the sampling port. Needle penetration continues until the needle contacts the tip seal, thereby blocking the outlet flow path. The sample container is then rotated 90° to lock it in position. If this rotation is not accomplished, urine pump action is inhibited and the sample container cannot be filled. On user command via the SAMP switch, the urine pump forces urine into the sample container via the needle, moving the sample container piston toward the filled end. The sample size, up to 20 ml maximum, is controlled by the user via the SAMP switch. The sample container is back lighted to assist the user in visually estimating the sample size. In case of an overfill malfunction, the piston is positively retained in the sample container; the container is designed to withstand the maximum pressure capability of the urine pump. The sample container is coded with an identification number which is read by an optical ID reader integral with the sampling assembly. When the sample container is filled, the user removes the sample container from the sampling assembly, caps the needle and transfers the container to

FIGURE 2-7. SAMPLING ASSEMBLY

FIGURE 2-8. SAMPLE CONTAINER

storage. Note that the position of the piston is a ready visual indication of the use condition of the sample container.

2.2.5 Cross-Contamination Control

2.2.5.1 Purge

At the completion of the previous BMS use cycle, the urine pump, solenoid valve, sampling port and connecting tubing are filled with a flush water/urine mixture. This residual mixture is predominately flush water; the urine constituent (from the preceding micturition) will be less than 0.5 grams of the total. If a urine sample is desired, this residual mixture must be purged from the system. This is accomplished automatically on user command (by actuation of the PURG switch). Actuation of the PURG switch operates the urine pump for a fixed time period (1.6 seconds) sufficient to dump the residual mixture to the WCS. Thus at the end of the purge cycle, the urine pump, solenoid valve, sampling port and connecting tubing are filled with "fresh" urine and the sampling cycle can be accomplished without significant cross-contamination of the sample.

2.2.5.2 Flush

The last function to be accomplished during a system use cycle is a water flush. This water flush of the entire system is provided to minimize the urine residual remaining in the system and thus minimize cross-contamination from sample to sample. The water flush also minimizes odors due to urine decomposition and microorganism growth.

The equipments for accomplishing this function are a portable flush water reservoir (See Figure 2-9), and motor driven pump. The portable tank is a bladder type design having a capacity of 5 liters of water. This capacity,

FIGURE 2-9(a). PORTABLE FLUSH WATER TANK ASSEMBLY

FIGURE 2-9(b). FLUSH WATER PUMP

is sufficient for one day of operational use of the system under maximum (7) user conditions. However, refilling on a 24-hour cycle is required. Fuel cell product water (or equal) is used for the supply; attachment is via the flex hose and quick disconnect connector. Water flushing of the system is accomplished automatically at the end of the dump cycle. The pump pressurizes water from the reservoir, the water entering the system via the urinal. About 60 ml of water are used per flush; two flushes are required for a complete flush cycle after each system use.

2.2.6 Control

Figure 2-10 shows the system electronics package. This package contains the power conditioning circuitry and logic for controlling the various system operations. The user initiates the various steps in the system operating cycle via the control/display panel, see Figure 2-11. Thus on commands from the user, via the control panel, the electronics automatically directs the urine collection, purge, volume measurement, sampling and water flush functions. The various system sensors provide feedback information. This information is electronically correlated and forms the basis for the next step in the cycle.

The control/display panel provides the operating interface between the user and the system. As such, the displays provide system operating information to the user while the controls provide the means for the user to initiate system actions. Controls are minimal, consisting of four toggle switches with corresponding status lights, two circuit breakers and a multi-position user identification selector switch. The latter is designed to minimize user ID error by requiring rotation to the RSET position before setting to the user's ID number.

FIGURE 2-10 BMS ELECTRONICS

FIGURE 2-11 CONTROL/DISPLAY PANEL

Five malfunction conditions are indicated by a flashing condition of the COLL switch status light. A check for these malfunction conditions is automatically made immediate following user activation of the COLL switch. Phase separator rpm, the presence of fluid in the phase separator and transport airflow from the WCS are checked by built-in test sensors. A low phase separator rpm indicates probably phase separator failure; fluid in the phase separator exceeding a minimum volume indicates possible failure of the urine pump. The airflow sensor determines that the BMS is connected to the WCS and that the WCS is operational. Incorrect setting of user ID and sample container installed are the remaining two malfunction conditions indicated by a flashing condition of the COLL switch status light. Until corrected, these latter three malfunction conditions inhibit further system operation. If the malfunction indication persists, contingency operating procedures must be investigated.

Two use options are provided, a volume measurement and sampling option and a volume measurement only option. Actuation of either the PURG, SAMP and/or DUMP switches completes the user control inputs needed to complete a total use cycle. For the volume measurement only option, the DUMP switch is used (PURG and SAMP bypassed). In this use option, the system automatically measures the total micturition volume and flushes the system with water from the portable flush water tank. For the volume measurement and sampling option, a urine sample is also obtained.

3.0 OPERATING LIMITATIONS AND RESTRICTIONS

TBD

PART II-MISSION OPERATIONAL PROCEDURES

4.0 NORMAL PROCEDURES

4.1 Installation in SHUTTLE ORBITER

4.1.1 Mechanical

- a. TBD (BMS assembly, portable water reservoir, sample containers) location in SHUTTLE ORBITER and interconnected to WCS. Special tools, etc. TBD

4.1.2 Electrical

- a. TBD power/TLM cable connection(s) to TBD location(s) in SHUTTLE ORBITER and to WCS.
- b. TBD ground cable connection between BMS and SHUTTLE ORBITER ground (TBD location).

4.2 Post Installation Checkout

The intent of post installation checkout is to verify successful BMS operation when installed in the SHUTTLE ORBITER. Checkout will consist of two activities, installation/interface verification and system test, as specified below.

4.2.1 Installation/Interface Verification

- a. Visually verify that each individual installation specified in 4.1 above has been accomplished.
- b. Fill portable flush water reservoir by mating reservoir flex fill line quick disconnect with mating fuel cell water supply disconnect. Determine visually that tank is completely filled.

4.2.2 Integrated System Test

4.2.2.1 Power ON

- a. Apply electrical power to BMS by actuation of PWR ON/CKT BKR switches.

4.2.2.2 Volume Measurement/Sampling Option

4.2.2.2.1 Collection Cycle

- a. Verify that Purg, SAMP and DUMP switch actuation prior to COLL switch actuation will not cause BMS operation.
- b. Start collection cycle by actuation of COLL switch.
- c. Select representative user ID and apply to BMS via USER ID SEL switch.
- d. Verify that COLL switch status light goes from flashing to full on condition. If flashing continues, a possible hardware malfunction is indicated; removal from the spacecraft for further testing may be required.
- e. Verify that the WCS is operational.
- f. Inject 500 ± 0.5 ml of ambient temperature potable water into the system via the urinal. Place urinal in stand-up position to prevent trapping fluid in the urinal hose. Input rate should be controlled (operator judgment) to less than 25 ml/second.

4.2.2.2.2 Purge Cycle

- a. Initiate the purge cycle by actuation of the PURG switch.
- b. Verify that PURG switch light activated to full on condition and COLL switch status light turned off.
- c. At end of the purge cycle, verify that PURG switch status light off and SAMP switch status light activated to flashing condition.

4.2.2.2.3 Sampling Cycle

- a. Connect sample container. Verify that SAMP switch status light does not go to full on condition until sample container in locked position and that sample container illumination lights are activated to full on condition.
- b. Acquire sample by single or multiple actuations of SAMP switch.

- c. Remove sample container. Verify that SAMP switch status and sample container illumination lights turned off and DUMP switch light is activated to flashing condition.

4.2.2.2.4 Dump Cycle

- a. Initiate dump cycle by actuation of the DUMP switch. Verify that DUMP switch status light changed from flashing to full on condition.
- b. Verify that micturition volume measurement data, user ID and sample container number transmitted to SHUTTLE ORBITER TLM.
- c. Verify by calculation that volume measurement data is consistent with the 500 ml input and that user ID and sample container number were correctly determined by the system. NOTE: The system must contain a liquid residual from a recent test for accurate volume measurement results.
- d. Verify that first urinal water flush occurs about 65 seconds (for 500 ml input) after initiation of dump cycle and that second urinal flush occurs about 40 seconds after completion of first flush input.
- e. Verify that the DUMP switch status light out and WCS deactivated about 40 seconds after completion of second urinal water flush.

4.2.2.3 Volume Measurement Only Option

4.2.2.3.1 Collection Cycle

- a. Start collection cycle by actuation of COLL switch.
- b. Select representative user ID and apply to BMS via USER ID SELECT switch.
- c. Inject 500 ± 0.5 ml of ambient temperature potable water into the system via the urinal. Place urinal in stand-up position to prevent trapping fluid in the urinal hose.

Input rate should be controlled (operator judgement) to less than 25 ml/second.

4.2.2.3.2 Dump Cycle

- a. Initiate dump cycle by actuation of DUMP switch. Verify that DUMP switch light activated to full on condition and that COLL switch status light off.
- b. Verify that volume measurement data, user ID and sample container number (not installed code) transmitted to SHUTTLE ORBITER TLM.
- c. Verify that volume measurement data, user ID and sample container number (not installed code) were correctly determined by the system.
- d. Verify initiation and completion of the automatic flush cycle as in 4.2.2.2.4 (d) and (e) above.
- e. Remove electrical power from system by actuation of PWR ON/CKT BKR switch. Verify that switch status lights off.

4.3 Inflight Operation

4.3.1 Power ON

- a. At start of mission operations, apply power to BMS by actuation of PWR ON/CKT BKR switch. For normal conditions, leave power ON for mission duration.

4.3.2 Volume Measurement/Sampling Option

- a. Actuate COLL switch.
- b. Set user ID via USER ID SEL switch.
- c. Position urinal (either stand-up or sit-down position).
- d. Micturate.
- e. Replace urinal.
- f. Actuate PURG switch

- g. When SAMP switch status light activated to flashing condition, install sample container (translation plus rotation to lock in place).
- h. Fill sample container to "level" desired by single or multiple actuations of SAMP switch.
- i. Remove sample container, cap needle end and return to storage.
- j. Actuate DUMP switch.

4.3.3 Volume Measurement Only Option

- a. Actuate COLL switch.
- b. Set user ID via USER ID SEL switch.
- c. Position urinal (either stand-up or sit-down position).
- d. Micturate.
- e. Replace urinal.
- f. Actuate DUMP switch.

4.3.4 Flush Water Reservoir Refill

- a. At approximate 24 hour intervals, refill the portable flush water reservoir using the following procedure.
 1. Disconnect the reservoir flex line quick disconnect (from the BMS structure).
 2. Mate the flex line quick disconnect to the fuel cell water supply, located TBD.
 3. Visually verify that the tank is completely filled.
 4. Disconnect from the fuel cell supply and reconnect to the BMS.

4.3.5 Sample Container Removal

Depending on several factors, a residual pressure build-up within the sample container may occur when a sample is obtained. Thus, each sample container should be removed from the sampling port in two steps as follows.

- a. Rotate and withdraw the sample container about 0.1 inches; hold in this position for about 5 seconds. This allows any residual pressure to vent back into the sampling assembly instead of externally.
- b. Complete withdrawal of the sampling container and recap the needle tip end.

5.0 CONTINGENCY PROCEDURES

During inflight operation of the BMS, an event or combination of events effecting the performance of the BMS may occur. Depending on the event, subsequent inflight operation at a reduced performance level or complete shut-down of the BMS may be required. Power failure, BMS component failure and/or user error are examples of these events. These events and contingency operating procedures to minimize their impact are discussed below.

5.1 Input Power

Momentary (or sustained) interruption of input electrical power to the BMS during BMS operation will terminate further system operation. The system logic elements will reset to their "zero" condition, i.e., system ready for next user; as a consequence, both BMS and WCS hardware elements will be deactivated.

External evidence of this condition will be signaled by:

- a. no airflow into the urinal.
- b. no airflow blower noise.
- c. all control switch status lights out.

The following contingency procedure is recommended:

- a. When power is restored, proceed normally by actuation of the COLL switch followed by inserting user ID via the USER ID SEL switch. This will start both the BMS and WCS and permit initiation of further system functions.
- b. If a sample is desired, proceed directly and normally thru the PURG, install sample container, SAMP, remove sample container, DUMP routine. If no sample is required (or had already been acquired) go direct to DUMP.

This contingency procedure will assure that the system has been emptied and flushed and consequently ready for the next user. Note that urine and/or flush water will remain trapped in the BMS during the shut-down period and this will not constitute a hazard to the spacecraft or crew (fluid retention is due to a combination of surface tension forces and equipment geometry). However, if loss of power occurs prior to volume measurement, a significant measurement error may result. This is due to possible loss of fluid from the BMS to the WCS during initial start-up after power is restored.

5.2 Equipment Malfunction

Malfunction of either BMS or WCS equipment may prevent implementing the various system cycles. Depending on the location of the malfunction, the following contingency operating procedures are recommended.

5.2.1 Urine Collection

a. WCS Malfunction

Failure of the WCS phase separator, blower, or urine pump (or the associated controls) can prevent effective urine collection by the BMS. Evidence of WCS failure will be signaled by both the BMS and WCS control panel displays and, if blower failure, loss of airflow and lack of blower noise. In this situation, follow appropriate WCS emergency operating procedures.

b. BMS Malfunction

Failure of the BMS phase separator or urine pump (or associated control logic) can prevent effective urine collection by the BMS. Evidence of this type malfunction will be continued flashing of the COLL switch status light. In this situation (and without micturating) proceed directly to DUMP. After completion of the DUMP cycle, restart the system by actuation of the COLL switch.

If abnormal flashing of the COLL switch status light continues, disconnect the BMS and use the WCS for the remainder of the mission.

5.2.2 PURGE

a. Cycle Malfunction

Failure of the urine pump, solenoid valve or associated control logic can prevent effective purge action. Possible failure may be evidenced visually by lack of status light indication when PURG switch is actuated or by a continued ON status indication (for more than 1.6 seconds) coupled with an acoustic indication of urine pump action (or lack thereof).

If the purge cycle will not start (no status light or pump noise), use the DUMP switch to control purging manually. In place of actuating the PURG switch, actuate the DUMP switch and in about 2 seconds actuate the COLL switch to stop the pump action. This action duplicates the automatic purge cycle.

If the purge cycle does not terminate automatically in 1.6 seconds, stop the purge action by reactivating the COLL switch.

Since failure of the purge cycle normally will inhibit the sampling cycle, obtain a sample by activating the DUMP switch to start the urine pump and immediately install a sample container. Stop sampling action by reactivating COLL switch; remove sample container and reactivate DUMP switch to complete cycle.

5.2.3 Sampling

a. Container Installation Malfunction

Translation and rotation is required to properly position the sample container in the sampling assembly. If the container is incorrectly

installed or the container position markers are missing or incorrectly located, electronic verification of sample container connection to the sampling port and readout of sample container number cannot be accomplished. The SAMP switch status light will continue flashing as evidence of lack of connection verification. Correct by removal and reinstalling the sample container or by replacing with an alternate container. If correction verification still cannot be achieved (SAMP switch status light remains in flashing condition), proceed as in (b) below or remove the sample container, and go directly to the dump cycle (without obtaining a sample).

b. Cycle Malfunction

Failure of the urine pump, solenoid valve or associated electronics can prevent filling of the sample container. Both visual (sample container does not fill) and/or acoustic (no pump noise) indications will denote this type malfunction.

If the purge cycle operated normally, a sample may be obtained by actuation of the DUMP switch rather than the SAMP switch. In this mode, sample size may be controlled by using the COLL switch to stop the urine pump action.

5.2.4 Dump

a. Failure of urine pump, solenoid valve and associated control logic can prevent the urine remaining in the phase separator from being dumped to the WCS for disposal. Evidence of this type failure will be indicated by continued operation of the system coupled with possible lack of pump noise. Thus the system will not automatically shut off (maximum normal dump cycle time is about 3 minutes). Terminate dump cycle operation by activation of the COLL switch and then reactivation of the DUMP switch. If automatic shut-off still does not occur, terminate system operation via the PWR ON/CKT BKR switches, disconnect the BMS from the WCS and use the WCS for the remainder of the mission.

5.2.5 Flush

Failure of the flush portion of the dump cycle may be determined by visual inspection of the urinal during the dump cycle. Failure of the flush equipment will not prevent completion of the dump cycle and therefore will not be automatically brought to the attention of the user. After verifying that the portable flush water reservoir is filled and properly connected, request instructions regarding the collection of further urine samples.

5.3 User Error

Since each system operating cycle (except flush) is manually initiated by the user, inadvertent improper sequencing may occur. If desired, this user sequencing error may be corrected by reactivation of the COLL switch followed by activation of the PURG or DUMP switches as desired. Note that sampling must be preceded by a purge cycle.

5.4 Sample Container ID

A liquid droplet or film covering the sample container ID sensors located in the sampling assembly can result in an incorrect container ID or indicate (incorrectly) to the system that a sample container is installed. In this latter instance, the sampling assembly illumination lights will be activated and the COLL switch indicator light will be flashing. This condition may be caused by septum leakage or incorrect removal of the sample container (see 4.3.5). In either case, the liquid must be removed from the sensors before further system operation can occur. A soft absorbant material is suitable for this purpose. If the septum is leaking, replacement of the septum may be readily accomplished using the special tool provided.

PART III-GROUND OPERATING AND MAINTENANCE PROCEDURES

6.0 PRELAUNCH PROCEDURES

Prelaunch procedures as specified below, shall be accomplished at the launch site prior to installation in the SHUTTLE ORBITER.

6.1 Receiving Inspection

Upon receipt of flight hardware at the launch site, identify and verify completeness of material received based on accompanying documentation. Also, perform a visual inspection for possible shipping and handling damage.

7.0 POST RECOVERY PROCEDURES

Post recovery test and maintenance, as noted below, shall be accomplished at the suppliers manufacturing facility or other facility as specified by NASA.

7.1 Receiving Inspection

Verify completeness of material received and perform a visual inspection for possible damage due to flight operations and subsequent post recovery operations.

7.2 System Test

Using suitable test equipment, determine operability of the system by performing a system test using the same procedure as specified in Part II, Section 4.2.2 of this document but with the following exception: Substitute a disinfectant solution (type TBD) for the potable water used during the collection cycle.

7.3 Refurbishment

Normal between mission maintenance shall be performed after each mission as specified below (personnel shall be suitably protected¹).

¹ Appropriate techniques are required during disassembly, component handling and cleaning and reassembly to preclude microbiological contamination.

- a. Disassemble the system, i.e. remove those components in the fluid loop.
- b. Remove and dispose of the silica gel dryer.
- c. Disinfect, clean and inspect the fluid loop components (for signs of excessive wear or other possible failure modes).
- d. Replace elastomer seals and silica gel dryer.
- e. Check operability of fluid loop components via performance testing.
- f. Reassemble system.
- g. Using suitable test equipment, verify system operation using the same procedure as specified in Part II, section 4.2.2 of this document.
- h. Check calibration and recalibrate if necessary.

7.4 Failure Analysis

7.4.1 General

In addition to the system external visual and/or audible indications of the cause of system malfunction, a test connector is provided (located on electronics box adjacent to sampling assembly) for monitoring the pressure sensor output as a further means of failure analysis (and for BMS calibration). Measurement data and WCS control signal validity may be determined via the available TLM output connector.

8.0 OPERATING LOG

TBD (record all tests, maintenance performed, inspection results, etc.)

PART IV - APPENDIX

9.0 SYSTEM OPERATING SEQUENCE

REF: BMS Block Diagram and Control/Display Panel Layout

1.0 POWER ON

- 1.1 Both POWER ON/CIRCUIT BREAKER switches actuated at start of mission operations.
- 1.2 Power from SHUTTLE applied to system.

2.0 COLLECTION CYCLE

- 2.1 User actuates COLL switch. Actuating COLL switch applies electrical power to system hardware (phase separator, internal power supply, sensors and control logic) and simultaneously actuates WCS.

NOTE: No action if PURG, SAMP, or DUMP switches actuated before COLL switch.

Also the COLL switch, at user option, may be actuated at any time during a purge, sampling, or dump cycle to override these functions. This action immediately returns the system to collection cycle operation.

- 2.2 COLL switch status light activated to flashing condition until satisfactory operating status check (2.4 below) completed by programmer.

- 2.3 User positions USER ID SEL switch via reset position.

- 2.4 Operating Status Check (Self-monitor).

- 2.4.1 Airflow sensor verifies minimum transport airflow condition exists. If below minimum airflow, COLL switch status light is held in the flashing condition and further system operation inhibited.

2.4.2 Sample container position sensor verifies sample container not installed and thus dump line open to WCS from urine pump. If sample container installed, COLL switch status light remains in the flashing condition and system operation inhibited.

2.4.3 To minimize user ID error, the USER ID SEL switch must be returned to RSET position before setting to user ID position. If this sequence is not followed, the COLL switch status light remains in the flashing condition and further system operation inhibited.

2.4.4 Phase separator RPM SENSOR indicates minimum rpm achieved and therefore phase separator is operating properly. If below minimum rpm, COL switch status light stays in flashing condition; further system operation is not inhibited.

2.4.5 Phase separator PRESSURE SENSOR indicates fluid residual volume in phase separator below a minimum level and therefore capable of accepting a maximum volume micturition. If fluid minimum residual volume exceeded, COLL switch status light remains in flashing condition; further system operation is not inhibited.

2.4.6 If conditions causing the COLL switch status light flashing state cannot be corrected, instigate contingency operating procedures.

2.5 Assuming operating status is GO, i.e., WCS and phase separator operational, the user properly identified and sample container not installed, COLL switch status light activated from flashing condition to solid (full on) condition.

2.6 User positions urinal (seated or standing position optional).

2.7 User micturates.

2.8 Urine conveyed into phase separator by transport airflow; transport air rejected to WCS concurrently with micturition.

2.9 User returns urinal to stowed position.

3.0 VOLUME MEASUREMENT/SAMPLING OPTION

3.1 PURGE CYCLE

3.1.1 User actuates PURG switch.

3.1.2 PURG switch status light activated to full-on condition and COLL switch status light off.

3.1.3 Store volume measurement data for subsequent dump to TLM. Start urine pump and energize solenoid valve SV; operate for fixed time period (1.6 seconds) to pump approximately 15 ml of urine from the phase separator. This action replaces the residual liquid in the pump and associated plumbing with urine.

3.1.4 Stop urine pump and deenergize valve SV. PURG switch status light off, SAMP switch status light activated to flashing condition.

3.2 SAMPLING CYCLE

3.2.1 User connects sample container to sampling port. This action blocks urine flow to dump.

3.2.2 Verify engagement of sampling container (locked position) with sampling port. At verification, activate SAMP switch status light to full on condition. Also activate sample container illumination lights to full on condition.

3.2.3 If verification of sample container connection to sampling port cannot be obtained, inhibit the sampling sequence (3.2.4 below). Remove sample container and override sequence by user initiation of dump cycle (4.0 below).

3.2.4 Acquire sample by user operation of SAMP switch. Closing of SAMP switch starts urine pump and energize valve SV; urine pump stopped and valve SV deenergize when switch closure terminated by user. This on-off pump control may be repeated as desired by the user until the sample container is filled with the desired quantity of urine (as determined by visual observation of the sample container by the user).

NOTE: SAMP switch action inhibited until purge cycle (3.1) has been completed.

3.2.5 On first SAMP switch closure (3.2.4 above), store User ID and sample container number for subsequent dump to TLM.

3.2.6 User removes sample container. At removal verification, SAMP switch status light and sample container illumination lights deactivated to off condition; DUMP switch status light activated to flashing condition.

3.3 DUMP CYCLE

3.3.1 User actuates DUMP switch; DUMP switch status light activated from flashing to full on condition.

NOTE: If sample container has not been removed, DUMP switch status light remains in flashing condition.

3.3.2 Start urine pump and energize solenoid valve SV to empty phase separator to dump. Continue operation for 25.6 seconds after volume in phase separator reduced to about 40 ml (as determined by the pressure sensor).

- 3.3.3 When urine pump off and valve SV deenergized, energize flush water pump, injecting flush water from the portable tank into the system via the urinal.
- 3.3.4 On flush pump actuation, send volume measurement data, User ID and sample container number to SHUTTLE ORBITER TLM interface.
- 3.3.5 Operate the flush water pump for 3.2 seconds (until about 60 ml of flush water has been injected into the system).
- 3.3.6 After a 6.4 second delay, operate urine pump and energize valve SV for 33.6 seconds.
- 3.3.7 Repeat 3.3.4 thru 3.3.6.
- 3.3.8 DUMP switch status light out and WCS, phase separator, etc., deactivated.
- 3.3.9 System ready for next user.

4.0 VOLUME MEASUREMENT ONLY OPTION

4.1 DUMP CYCLE

- 4.1.1 User actuates DUMP switch; DUMP switch light activated to full-on condition and COLL switch status light off.
- 4.1.2 On DUMP switch actuation, volume measurement data and User ID stored and sent to SHUTTLE ORBITER TLM interface as in 3.3.4 above. Also indicate no sample container by 0000 number code.
- 4.1.3 Same as 3.3.2
- 4.1.4 Same as 3.3.3

4.1.5 Same as 3.3.5.

4.1.6 Same as 3.3.6.

4.1.7 Same as 3.3.7.

4.1.8 Same as 3.3.8.

4.1.9 System ready for next user.

10.0 DRAWING LIST

BMS Assembly	ER 47E231825*
Phase Separator Assembly	ER 47D231800
Housing, Inlet Side	ER 47D231801
Housing, Motor Side	ER 47D231802
Impeller	ER 47D231803
Basket	ER 47C231804
Screen	ER 47B231805
Detail, "O" Ring	ER 47C231806
Motor	ER 47C231807
Shaft	ER 47C231816
Shim	ER 47C231819
Bag Assembly Silica Gel	ER 47C231822
Exhaust	ER 47C231841
RPM Sensor Assembly	ER 47B231915
Bracket	ER 47C231911
Shim	ER 47B231912
Air Flow Sensor Assembly	ER 47D231917
PC Board D and T	ER 47D231918
Plate	ER 47D231919
Sensor Bracket #1	ER 47D231920
Sensor Bracket #2	ER 47D231921

* Enclosed

DRAWING LIST (Continued)

Transformer Output	ER 47D231895
Transformer, Saturable	ER 47D231894
Power Convert D and T	ER 47D231880
Wire List	ER 47A231878
Interconnect Diagram	ER 47J231879*
PWB Assembly A2, A/D Convert	ER 47D231892
A/D Convert, D and T	ER 47D231882
A/D Convert, Schematic	ER 47J231877
PWB Assembly A1, Control Logic	ER 47D231891
Control Logic, D and T	ER 47D231881
Control Logic, Schematic	ER 47J231876
Sample Container	ER 47C231808
Pressure Transducer	ER 47C231818
Flange, Prem. Transducer	ER 47C231821
Pump, Gear	ER 47C231824
Valve Support	ER 47B231843
Cover, Front	ER 47D231826
Cover, Aft	ER 47D231837
Adapter, Air Return	ER 47D231837
Details	ER 47D231821
Magnetics, Gen. Notes	ER 47A231914
Matched Diodes, Pwr Supply	ER 47A231922
Selected Resistor, Pwr Supply	ER 47A231923

* Enclosed

DRAWING LIST (Continued)

Sampling Port	ER 47D231810
Housing, Sample Container	ER 47C231809
Housing Septum	ER 47C231811
Housing, Sample Bypass	ER 47C231812
Bracket, Support	ER 47C231820
Septum	ER 47C231823
Sampling Port Sensor Assembly	ER 47D231900
Housing	ER 47C231901
Shaft	ER 47B231902
Nut	ER 47A231903
Shim	ER 47B231904
PC Board Assembly	ER 47D231905
PC Board D and T	ER 47D231906
Cable Clamp	ER 47D231907
Urinal Assembly	ER 47D231840
Funnel	ER 47C231838
Cap	ER 47C231839
Flush Water	ER 47C231846
Connector	ER 47C231844
Connector	ER 47C231845
Tank Assembly	ER 47D231828
Tank	ER 47D231829
Bladder	ER 47D231830

DRAWING LIST (Continued)

Tank Assembly (Continued)

Stand Pipe ER 47D231833

Nut ER 47C231831

Filter ER 47B231832

Piping ER 47C231836

Hose ER 47C231834

Fitting ER 47C231842

Tubing Det. ER 47C231817

Control Box Assembly ER 47E231924

Cover Assembly ER 47C231883

Bezel Assembly ER 47E231889

Plate, Control Panel ER 47D231893

Container Assembly ER 47E231888

Guard, Switch ER 47E231887

Diode Board Assembly ER 47C231910

Power Supply Assembly ER 47D231886

Bracket Assembly ER 47D231899

Bracket, Filter ER 47D231885

Choke, Input ER 47D231898

Schematic ER 47D231875

PBW Assembly A3, Pwr Convert ER 47D231890

Choke, \pm 15 V Output ER 47D231897

Choke, + 5V/+22 V Output ER 47D231896

**ORIGINAL PAGE IS
OF POOR QUALITY**

FOLDOUT FRAME

NOTES*

- 1-INTERPRETATION OF DRAWING TERMS AND TOLERANCES
PER S3009
2-MARK 23991-ER47E23/825G PER 118A1526 1.214

3-TORQUE REQUIREMENTS:

THREAD SIZE
*4-40UNC 5-6 IN LBS
*6-32UNC 7-8 IN LBS

4-MARK REFERENCE DESIGNATIONS PER 118A1524 APPROX
AS SHOWN, REF DES IN PARENTHESIS () ARE SHOWN
FOR REFERENCE ONLY.

FOR REFERENCE ONLY.
5-FOR ELECTRICAL CONNECTIONS SEE WIRE LIST, ITEM 39.
WIRE PER 5300142/G.

REVISIONS		DATE	APPROVED
REV.	DESCRIPTION		
1.78			

-10.53 ~~88~~

SEE SEPARATE PLATES

GENERAL ELECTRIC

ORBITER BIOWASTE MONITORING SYSTEM

BLAZER CODE IDENT NO
E 23991 ER47E231824
SCALE 1/1 SHEET 2

2

- 49 -

FOLDOUT FRAME 2

12

11

10

FOLDOUT FRAM

ORIGINAL PAGE IS
OF POOR QUALITY

SECURITY CLASS: UNCLASSIFIED ER47J231879

DO NOT FRAME

NOTES

1. INTERPRETATION OF ELECTRICAL OR ELECTRONIC SYMBOLS AND REFERENCE DESIGNATIONS PER ANSI STANDARD Y32.2-1970 AND USA STANDARD Y32.1G-1968
 2. FOR ASSEMBLY DRAWING SEE 47E251924GI
 3. CAUTION: TO PREVENT POSSIBLE DANGEROUS ELECTRICAL SHOCK, IT MUST BE ATTACHED TO SPACECRAFT STRUCTURE VIA LOW RESISTANCE GROUNDING STRAP.

11.0 MISCELLANEOUS

11.1 TLM Output Interpretation

Three words are transmitted by the BMS electronics via the telemetry output. These words contain sync, 16 bits of data, and one parity bit. They are transmitted in a Manchester II code to the s/c telemetry system.

Word 1 consists of two logic "1" data bits, followed by a ten-bit binary number ($S_{10} \rightarrow S_1$) representing the sample container number, followed by a four-bit binary number ($I_4 \rightarrow I_1$) representing the user ID.

For example, if S_{10} and S_1 were a "1" and S_9 through S_2 were "0", this would indicate that sample container 513 had been used to collect the urine sample. Similarly, if I_3 were a "1" and I_4 , I_2 , and I_1 were "0", this would indicate that the sample was from User 4.

Word 2 consists of a 12-bit binary word representing the rotational period of the motor ($\tau_{12} + \tau_1$) followed by four zeros. Thus, the decimal equivalent of this binary word, τ , is a number ranging from 0 to 4096. To obtain the period in seconds, multiply by 48×10^{-6} . For example, if τ equals 4096, the period is .19661 seconds corresponding to a rate of 60/.19661 or 305 rpm. Similarly, for $\tau = 3072$, the period is .14746 seconds corresponding to 406.9 rpm.

Word 3 consists of a 12-bit binary word representing the pressure ($P_{12} \rightarrow P_1$) followed by four unused bits. The pressure reading may be interpreted as follows. The buffered pressure transducer voltage, V , is presented to the A/D converter. This voltage, as seen at the test connector, is adjusted so that the range of interest lies between 0 to +10 volts. The voltage read by the A/D converter is the decimal equivalent of $P_{12} \rightarrow P_1$ (P) times 10 volts,

divided by 4096, or $V = P/409.6$. Thus for $P = 4096$ the pressure transducer output voltage is $V = \frac{4096}{409.6} = 10$ volts. For $P = 2048$, the corresponding voltage is 5 volts.

11.2 Pressure Sensor Adjustment

Offset and gain adjustments are located as shown in Figure 11-1.

FIGURE 11-1 ADJUSTMENT LOCATIONS

11.3 Airflow Sensor Adjustment

The airflow sensor adjustment pots are located as shown in Figure 2-9(b).

Normally, the 5K pot should be used.

6.2 Supplemental Design Information

The following GE internal memos and vendor data are intended to supplement/update previous design information contained in the interim, PDR and/or CDR reports:

- PIR 1R60-75-208, "Preliminary Tests On Sample Container".
- PIR 1R60-75-143, "Front Panel Switches For BMS".
- PIR 1R60-75-144, "Response To CDR Action Item No. 2".
- PIR 1R60-75-148, "Response To CDR Action Item No. 16?".
- PIR 1R54-BMS-1050, "Thermal Analysis Of PCB A1 Of The BMS Electronics".
- PIR 1R60-75-153, "Micropump Priming".
- PIR 1R60-75-157, "Test Of Expansion Bladder Material".
- PIR 1R60-75-159, "Design Optimization Of BMS Septa".
- PIR 1R54-1092, "Thermal Analysis Of BMS Assembly".

Vendor Data

- Phase Separator Motor data, 1tr from IMC Magnetics Corp.
- Flush Pump (serial No. 1063), Micropump test data sheets.
- Urine Pump (serial No. 1062), Micropump test data sheets.
- Pressure Sensor, operating and calibration data from Setra Systems, Inc.

GENERAL ELECTRICSPACE DIVISION
PHILADELPHIA**PROGRAM INFORMATION REQUEST / RELEASE**

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	1R60	75	208	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM	J. K. Mangialardi, Engineer - Environmental Engineering, Room #U-2437, VFSC	TO	G. L. Fogal, Bioengineering Programs Room #U-2437, VFSC Extension - 5636
DATE SENT	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
12-12-75			

SUBJECT
Preliminary Tests On Sample Container

INFORMATION REQUESTED/RELEASED

The following tests were performed on the sample containers using standard Becton Dickinson & Co. syringes modified as required:

1. Pressure Tests

These tests were made to determine the sample containers capability to withstand internal pressures with the rubber piston being held by a backup washer pinned to the container wall as shown:

Pressure was applied in increments of 5 psi. The corresponding change in diameter, if any, was checked at the 5 cc's and 15 cc's mark.

The results were:

Pressure	Dia @ 15 cc's	Dia @ 5 cc's
0 psig	.848 in	.842 in
5 "	.848 "	.842 "
10 "	.847 "	.840 "
15 "	.847 "	.841 "
20 "	.848 "	.842 "

Distribution: R. W. Murray	PAGE NO.	RETENTION REQUIREMENTS	
		COPIES FOR	MASTERS FOR
		<input type="checkbox"/> 1 MO.	<input type="checkbox"/> 3 MOS.
		<input type="checkbox"/> 3 MO.	<input type="checkbox"/> 6 MOS.
		<input type="checkbox"/> 6 MO.	<input type="checkbox"/> 12 MOS.
		<input type="checkbox"/> 12 MO.	<input type="checkbox"/> MOS.
		<input type="checkbox"/>	<input type="checkbox"/> DONT DESTROY
PRECEDING PAGE BLANK NOT FILMED	1 OF 4		

Pressure	Dia @ 15 cc's	Dia @ 5 cc's
25 psig	.850 in	.842 in
30 "	.852 "	.842 "
35 "	.852 "	.844 "
40 "	.851 "	.843 "
45 "	.851 "	.842 "
50 "	.852 "	.844 "

The test was stopped at this point as there was no need for further data.

The diametrical expansion in the range of operation of the sample container is obviously insignificant.

2. Freezing Test Without Expansion Ring

These test were made to determine the sample container capability to withstand freezing after being totally filled and without an expansion ring. The sample container was filled with water after attaching a stop at the end of the container as shown and was placed in the freezer compartment of the lab refrigerator.

After several hours the container was removed and found to have increased in diameter as follows:

	D ¹	D ²	D ³
Before Freezing	.853 in	.847 in	.842 in
After Freezing	.865 in	.850 in	.845 in

The container was not significantly damaged although the surface was substantially crazed near the halfway length. Also the rubber piston had partially extruded between the clamped plate and the end tabs. This test was repeated with the same effect.

The same test was repeated using urine. The distortion appeared to be less significant:

	D ¹ in	D ² in	D ³ in
Before Freezing	.851 in	.847 in	.843 in
After Freezing	.857 in	.848 in	.843 in

Extrusion of the rubber septum however was still significant.

3. Freezing Test With Expansion Ring

An expansion ring was made by inserting a 3/4" O.D. X 1/8" wall X 5/8" long latex rubber tube between the piston and the stop plate. The freezing test described in the previous section repeated with the following results:

	D ¹ in	D ² in	D ³ in
Before Freezing	.850 in	.847 in	.844 in
After Freezing	.855 in	.852 in	.852 in

A second sample was also tested with the following results:

	D ¹ in	D ² in	D ³ in
Before Freezing	.850 in	.846 in	.842 in
After Freezing	.850 in	.851 in	.843 in

In either case the piston moved back approximately 3/16 in. after the sample container was returned to ambient temperature.

There was no indication of damage or extrusion as experienced without the expansion ring. Water was used as fluid for the later two tests.

PROGRAM INFORMATION REQUEST / RELEASE

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
		1R60	75	143	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM V. Long	TO G. Fogal		
DATE SENT 6/10/75	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
SUBJECT FRONT PANEL SWITCHES FOR BMS			

INFORMATION REQUESTED/RELEASED

The North American Rockwell document MF0004-002, Electrical Design Requirements for Electrical Equipment utilized on the Space Shuttle Vehicle, specifies that switches used shall be of environmentally or hermetically sealed type. Several switch types were considered.

Dialight manufactures attractive illuminated pushbutton switches of reportedly high reliability. However, none are environmentally sealed. They also manufacture some solid state contactless logic switches. These would suffice functionally for all of the front panel switches except the URINE COLLECT switch which must switch 28 volts DC. The solid state switches, however, do not contain qualifiable components, i.e., hermetically sealed transistors, LEDs, etc.

Microswitch offers some unilluminated push buttons which would be satisfactory and fit the space restraints of the present BMS electronics box. These push buttons are hermetically sealed type 703PBI. These don't appear, however, to offer a good panel seal.

Microswitch also offers an illuminated hermetically sealed push button. This switch, Series 2, is rather long and appears to be of questionable mechanical sturdiness. It might be possible to modify the switch slightly to reinforce it. The BMS enclosure, however, would have to be enlarged to get it to fit. In addition, panel seal would be a problem.

The Microswitch Toggle, TL Series, switch presently selected is environmentally sealed and has been used in a manned environment. In addition, it is much shorter than the Microswitch illuminated push buttons. The lamps chosen for indicators are manufactured by Control Switch, are sealed, and have a ruggedized filament with an average life of 60,000 hours.

A letter from J. Curtis, Man/System Branch, NASA - Marshall Space Flight Center indicates that the only notable place push buttons were used on Skylab was on the M131 experiment on the human vestibular function. The illuminated push buttons used were manufactured by Jayel Products Inc., Gardena, California. These are relatively small switches incorporating an hermetically sealed switch element and a sealed lamp assembly (not relampable, but replaceable as a unit). Functionally, they would meet all BMS electrical requirements, but would have to be modified to provide a panel seal. While the element is sealed, any liquid landing on the control panel could seep around the edges of the push button into the interior of the control box.

DISTRIBUTION: E. Belensz
A. Gorawitz
G. L. Fogal (3)
J. K. Mangialardi
R. W. Murray

ORIGINAL PAGE IS
OF POOR QUALITY

PAGE NO.	RETENTION REQUIREMENTS	
	COPIES FOR	MASTERS FOR
	<input type="checkbox"/> 1 MO.	<input type="checkbox"/> 3 MOS.
	<input type="checkbox"/> 3 MO.	<input type="checkbox"/> 6 MOS.
	<input type="checkbox"/> 6 MO.	<input type="checkbox"/> 12 MOS.
	<input type="checkbox"/> MO.	<input type="checkbox"/> MOS.
	ECONOTESTED	

PIR 1R50-75-143

Page 2

Based upon our investigation it is recommended that the TL Toggle Switch be used for this unit. It is a qualified device, meeting all electrical requirements and providing a panel seal.

The Jayel illuminated push button switch should be considered further for application to future units. If a panel seal can be effected, it would be entirely satisfactory.

Solid state switches also have potential application. They are contactless and very reliable. More investigation is required, however, to determine if a qualifiable one may be obtained.

SERIES 2 DIGITAL/ANALOG DISPLAY MODULAR UNITS

Barrier Mount

- MODULES ASSEMBLE EASILY, WITHOUT SPECIAL TOOLS
- UP TO FOUR-LAMP INDICATION
- THOUSANDS OF COLOR DISPLAY AND CIRCUIT CONTROL COMBINATIONS

Barriers serve as mounting devices and separate the display screens to prevent accidental operation. The desired number of units are combined in a strip and snapped into the panel slot.

BARRIERS ON SHORT SIDES

BARRIERS ON LONG SIDES

Flange Mount*

*Also refer to page A13 for details of MIL-S-22885 assembled devices.

Flange mounted units are supplied with the mounting devices ready-attached. They can be individually installed or replaced, and permit an overlay panel. Optional spacing barriers can be used to separate groupings.

FLANGES ON LONG SIDES

FLANGES ON SHORT SIDES

FRONT OF PANEL RELAMPING

TYPE 2C200 AND 2F200 HOUSINGS ARE RELAMPED WITHOUT TOOLS

Type 2C200 (operator-indicator) and 2F200 (indicator only) housings have a separate lampholder sector that can be removed to enable replacement of lamps or filters, without tools. The unit is keyed to maintain proper orientation.

1. Remove display screen/lampholder assembly.
2. Relamp and replace assembly.

LAMPS: T-1-3/4 flange base lamps are recommended.

1.

2.

1.

2.

USE LAMP TOOL WITH TYPE 2C AND 2F HOUSINGS

To easily remove and replace lamps or color filters from Type 2C (operator-indicator) or 2F (indicator only) housings, a Catalog Listing 15PA32 lamp tool is inserted into the socket until it bottoms against the lamp base flange. The glass bulb portion of the lamp is gripped, when installing.

1. Remove display screen.
2. Relamp with 15PA32 tool and replace screen.

LAMPS: T-1-3/4 grooved base lamps are recommended.

ORIGINAL PAGE IS
OF POOR QUALITY

SEALED PUSHBUTTON SWITCHES

Type "700PB"

This type of pushbutton answers the need for maximum protection of contacts in applications where there are rapid changes in atmospheric and environmental conditions. "HM" basic switches (described on page 10) are used in the pushbutton assembly to achieve savings in size and weight without sacrificing precision performance. The over-center snap actuator mechanism provides a definite feel of switching action and prevent tease actuation. Operation is momentary; switches are operated when the button is pushed and released when the pressure is removed from the button.

Military Specifications: ("HM" basic switches)

MIL-E-5272 (Explosion-proof)

MIL-S-8805 (Corrosion-resistance)

Seal Definition: Hermetic (basic switches)

(Enclosure Design Symbol per MIL-S-8805)

Temperature Range: -67°F to +158°F

Circuitry: Two Single-Pole Double-Throw Circuits

Three Single-Pole Double-Throw Circuits

Four Single-Pole Double-Throw Circuits

Electrical Rating: 3 amps. ind., 5 amps. res., 28 vdc and 115 vac 400 cps.

Operating Force: 2-Pole—30 oz. approx.

3-Pole—35 oz. approx.

4-Pole—40 oz. approx.

Button Options

The concave buttons are available in three colors: black, red and green as noted in the ORDER GUIDE.

ORDER GUIDE

Circuitry	Weight	Dimension "A"	Button Color	Order This Listing
Two-Pole	0.8 oz.	.656 max.	Black	702PB1
			Red	702PB2
			Green	702PB3
Three-Pole	1.1 oz.	.905 max.	Black	703PB1
			Red	703PB2
			Green	703PB3
Four-Pole	1.3 oz.	1.183 max.	Black	704PB1
			Red	704PB2
			Green	704PB3

Dimensions

Electrical Rating:

VOLTAGE	SEA LEVEL		AMPERAGE		MAXIMUM INRUSH
	IND.	RES.	IND.	RES.	
30 DC	3	5	2.5	5	24
250 AC	—	5	—	—	—

Operating Force: 35 oz. (approx.)

Weight: 2.5 oz. max.

Order This Listing: 2PB901-T2

Note: For variations of this listing contact a MICRO SWITCH Branch Office.

Type "2PB900"

2PB901-T2

"2PB900" momentary-action (push-on release-off) pushbutton switches are recommended for applications that require a compact weather-proof manual switch. Concave black plastic buttons and an overcenter snap mechanism provide a good operating feel and prevent tease operation.

Seal Definition: Panel, bushing, plunger and terminal seals enable this switch to meet the submergence requirements of MIL-STD-108D up to 10 psi water pressure for one hour. The panel, bushing and plunger seals are contained in the chrome finish knurled facenut. The two single-pole double-throw basic switches are potted into the brass enclosure to seal them from back of panel contaminants.

Temperature Range: -65°F to +158°F.

Circuitry: Two single-pole double-throw circuits

~~ORIGINAL PAGE IS
OF POOR QUALITY~~

GENERAL ELECTRIC
SPACE DIVISION
PHILADELPHIA

PROGRAM INFORMATION REQUEST/RELEASE

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	1R60	75	144	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM J. K. Mangialardi, Engineer-Environmental
Engineering, Room #U-1243, VFSC X-5499 *[initials]* TO G. L. Fogal, Bioengineering Program Manager
Room #U-1240, VFSC

DATE SENT	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
6-9-75			

SUBJECT

Response To C.D.R. Action Item #2

INFORMATION REQUESTED/RELEASED

The following action item was generated during the BMS Critical Design Review held on May 5 and 6, 1975:

"Check on capability of filled portable tank to withstand internal fluid pressure resulting from thermal expansion."

The maximum ambient temperature specified for the BMS is 100°F.

The maximum structural and storage temperatures are 120°F and 150°F, respectively.

Although the water tank will normally be filled and used only at ambient temperatures, the following analysis is based on the assumption that the water tank is filled to maximum capacity at maximum filling pressure (= 17 psi) and exposed to 150°F for several hours.

The increase in water volume due to temperature change from 70°F to 150°F is 2.8896 in³.

The increase in volume for the aluminum tank for the same ΔT = 1.2741 in³.

The net volume of water that must be accommodated to prevent overpressure in the tank is

$$2.889 \text{ in}^3 - 1.274 \text{ in}^3 = 1.655 \text{ in}^3 = 27.13 \text{ cc's}$$

cc: T. J. Greiner
J. K. Mangialardi
R. W. Murray

PAGE NO.	RETENTION ON REEL ELEMENTS	
COPIES FOR	MASTER FOR	
<input type="checkbox"/> TWO	<input type="checkbox"/> FULL	
<input type="checkbox"/> THREE	<input type="checkbox"/> FULL	
<input type="checkbox"/> FOUR	<input type="checkbox"/> FULL	
<input type="checkbox"/> FIVE	<input type="checkbox"/> FULL	
1 OF 2		

The pressure capability of the aluminum tank is 95 psi. This capability is significantly reduced by the observation port which is made from a Lexan disk .125 thick with a maximum calculated pressure rating of 58 psi.

The pressure calculations are based on a safety factor four times the operating pressures and meet the requirements of the ASME Pressure Vessel Code Section VIII.

The restrained expansion of approximately 27 cc's of water, even though somewhat lessened by water compressibility, rubber tank bladder compression, and initial elastic expansion of the aluminum tank would cause internal pressures far in excess of the permissible 58 psi unless relieved by some internal device which will absorb the 27 cc's of water volume increase.

This device will be a 200 cc volume closed pores foam rubber sleeve (or equivalent) added along the tank stem pipe.

The usable volume of the tank without the additional sleeve is a nominal 5,125 cc's.

The volume of the sleeve is reduced to 129.5 cc's @ 8 psi which is the minimum filling water pressure and 92.7 cc's at 17 psi which is the maximum filling pressure.

The usable volume of water with the additional sleeve will then vary from a minimum of 4,995 to a maximum of 5,032 cc's approximately.

The foam sleeve will further compress to accommodate the 27.13 cc's due to net water expansion at 150°F. The pressure required is approximately 30 psi which is well below the 58 psi allowable due to the Lexan window.

GENERAL ELECTRIC
SPACE DIVISION
PHILADELPHIA

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	1R60	75	148	

PROGRAM INFORMATION REQUEST / RELEASE

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM J. K. Mangialardi, Engineer-Environmental Engineering, Room #U-1243, VFSC X-5499 TO G. L. Fogal, Bioengineering Program Manager Room #U-1240, VFSC

DATE SENT	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
6-10-75			

SUBJECT

Response to C.D.R. Action Item #16

INFORMATION REQUESTED/RELEASED

The following action item was generated during the BMS Critical Design Review held on May 5 and 6, 1975:

"Confirm that liquid retention on outer phase separator screen is not significant for BMS application"

The response to this action item was obtained by actual test using a screen of the same wire diameter and mesh size as specified on Drawing ER47B231805.

The size of the test screen was 2.25 I.D. x 1.75 high with an area of 17.8 in² which is approximately 5% larger than the designed part.

The screen was slip fitted over an existing adapter plate attached to a motor set to rotate at 375 rpm.

The motor speed was checked with a strobotac (General Radio Company, Type 1531-A).

The test was performed in the following steps:

1. Measure weight of screen = 10 grams
2. Measure weight of water retained by screen under static conditions = 3 to 4 grams. (Note: This is a difficult measurement due to the effect of gravity. The results are approximate and are intended to give only an indication of the effectiveness of the dynamic action of the phase separator).

Distribution	PAGE NO.	RETENTION PER ELEMENTS	
J. K. Mangialardi R. W. Murray	1 . 2	COPIES FOR MASTERS FOR	
		<input type="checkbox"/> 1 PC	<input type="checkbox"/> 3 MASTERS
		<input type="checkbox"/> 3 PCS	<input type="checkbox"/> 6 MASTERS
		<input type="checkbox"/> 6 PCS	<input type="checkbox"/> 12 MASTERS
		<input type="checkbox"/> 10 PCS	<input type="checkbox"/> 20 MASTERS
		<input type="checkbox"/> 15 PCS	<input type="checkbox"/> 30 MASTERS
		<input type="checkbox"/> 20 PCS	<input type="checkbox"/> 40 MASTERS

PIR 1R60-75-148

-2-

June 10, 1975

3. Measure weight of water retained by screen after placing same on the adapter plate and rotating it at 375 rpm for 30 seconds. The water retained was between 0.1 to 0.2 grams.

This test confirms that liquid retention on the phase separator screen is not significant.

h

SPACE DIVISION
PHILADELPHIA

PROGRAM INFORMATION REQUEST / RELEASE

		*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
PIR NO.		U	- 1R54	BMS	1050	
*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED						
FROM			TO	J. Billings		
F. Drummond	<i>J.D.</i>					
DATE SENT	DATE INFO. REQUIRED	PROJECT AND REQ. NO.			REFERENCE DIR. NO.	
6/18/75					1R54-998	
SUBJECT	THERMAL ANALYSIS OF PCB A1 OF THE BMS ELECTRONICS					

INFORMATION REQUESTED/RELEASED

Summary

The temperature rises of the piece parts of the subject PCB have been calculated. These temperature rises must be added to the BMS assembly temperature in order to obtain maximum part temperatures. The assembly temperature is not known at this time since the pump and phase separator motor heat dissipations are not defined.

Requirements

The critical parts of the PWB A1 in the BMS electronics are listed on Table 1 along with their heat dissipation and duty cycle.

Analysis - Math Model

The PWB A1, shown in Figure 1 has been modeled mathematically in a 277 node model. The substrate is an .062" thick laminated fiberglass covered with an 0.003" thick film of copper. The effective conductivity of the card is 1.088 BTU Hr. in °F. This card is supported on the two long sides (4.5") by "Bircher" clips. An effective contact conductance of 0.236 BTU per inch of length, per °F was used to couple the board to the clip. The clip is riveted at each end to the box, giving an effective conductance of 0.666 BTU/hr °F. Approximately 50 wires (25 - 24 gage and 25 - 26 gage) connect to the bottom of the PWB. An average length of 5" was assumed for these wires to the box-mounted connector.

All the input data to the math model is given in the appendix, including the predicted PWB temperatures (Table A). A reference or sink temperature of 100°F was assumed. ³

Results

The significant temperatures of the PCB from Table A have been extracted and are shown on Table 2. These temperatures are listed under Δt_{tl} . Since the reference temperature was 100°F, the 100 was subtracted so that the

G. Fogal, U1240
J. Billings, U2446
L. Blomstrom, U2439

J. Mangialardi, U1243
V. Young, U2446

**ORIGINAL PAGE IS
OF POOR QUALITY**

PAGE NO.	RETENTION REQUIREMENTS	
	COPIES FOR	MASTERS FOR
<input type="checkbox"/> 1 MO.	<input type="checkbox"/> 3 MO.	
<input type="checkbox"/> 3 MO.	<input type="checkbox"/> 6 MO.	
<input type="checkbox"/> 6 MO.	<input type="checkbox"/> 12 MO.	
<input type="checkbox"/> 12 MO.	<input type="checkbox"/> 40 MO.	
CONSTRUCTION		

result is a temperature rise above the environment. The values shown under Δt_2 are the temperature difference required to transfer the heat from the part to the board. Under Δt_3 are the temperature differences within the piece part to transfer the heat to the case. The last column gives the maximum temperature of the piece parts. It will be seen that this column is blank as is the column marked T_{sink} . The sink (or box) temperature is not yet known since the assembly has not been analyzed in adequate detail. This analysis must await the determination of the final heat dissipations of the pump and separator motors.

However, it should be noted that the required sink temperature must equal or exceed 65°C (149°F) in order for the critical temperature of any part to be attained or exceeded. There is a low probability that the temperature of the assembly will reach 65°C . A preliminary analysis (ref. 1) indicated that, with no heat loss, the average temperature at the end of one hour of continuous operation will be 140°F (60°C).

ORIGINAL PAGE IS
OF POOR QUALITY

Table 1
CRITICAL PARTS REQUIREMENTS

<u>Piece Part</u>	<u>Limit Temperature °C</u>	<u>Heat Dissipation mW</u>	<u>Duty Cycle %</u>
Urine Pump Relay Driver - A49	125	80	39
Flush Pump Relay Driver - A50		80	10
Sample Lamp Driver - A29		60	17
Dump Switch Lamp Driver - A30		60	30
Flush Lamp Driver - A31		60	10
Sample Collect Lamp Driver - A32		60	40
Sample Container Lamp Driver - A51		120	70
Power/Phase Separator Relay Driver - A33		80	100
S.C. ID. Sensor Bias Driver - A35	125	30	13
Resistor, Carbon - R1	100	123	100
Resistor, WireWound - R27	125	420	17
Integrated Circuit Logic - Var.	125	0.6 @	100

(25 total)

Figure 1
PWB A-1 Parts Layout

(.725, .575).

.320 X .45 DEC
TYP 2 PLACES
(4.325, .575) —

ORIGINAL PAGE IS
OF POOR QUALITY

Table 2
PREDICTED PERFORMANCE OF SIGNIFICANT PARTS

<u>Piece Part</u>	<u>T_{sink}</u> <u>°F/°C</u>	<u>Δt₁</u> <u>°F/°C</u>	<u>Δt₂</u> <u>°C</u>	<u>Δt₃</u> <u>°C</u>	<u>T_{more}</u> <u>°F/°C</u>
A49 - Urine Pump Relay Driver	9.8/5.4	.13			4.68
A50 - Flush Pump Relay Driver	11.05/6.14	.03			1.2
A29 - Sample Lamp, Driver	11.96/6.64	.04			1.5
A30 - Dump Switch Lamp Driver	11.96/6.64	.08			3.0
A31 - Flush "On" Lamp Driver	11.2/6.2	.025			0.9
A32 - Sample Collect Lamp Driver	9.9/5.5	0.1			3.6
A51 - Sample Container Lamp Driver	8.0/4.4	.04			1.5
A33 - Power/Phase Separator Relay Drive	8.45/4.7	.34			12.0
A35 - S.C. ID. Sensor Bias Relay	9.36/5.2	.017			.6
R1 - Resistor	7.42/4.0	.01			-
Integrated Circuit Logic	9.0/5.0 (maximum)	<.01			~.1

$$(1) T_{max} = T_{sink} + \Delta t_1 + \Delta t_2 + \Delta t_3$$

Δt_1 - temperature rise of piece part above case.

Δt_2 - tempeature difference, PCB to piece part case.

Δt_3 - temperature rise of PCB under piece part above sink.

APPENDIX

- Figure A1 A schematic of the nodal matrix used in
 the analysis showing heat dissipator locations.
- Table A1 Conductive Couplings
- Table A2 Nodal Heat Dissipations
- Table A3 Predicted Temperature Distributions

Figure A1
Iodide Matrix

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE A1

BTS
CONDUCTION CONNECTIONS BTU/HR-F

I	J	C(I,J)	I	J	C(I,J)	I	J	C(I,J)
1	2	0.13494000	2	3	0.13494000	3	4	0.13494000
4	5	0.13494000	5	6	0.13494000	6	7	0.13494000
7	8	0.13494000	8	9	0.13494000	9	10	0.13494000
10	11	0.13494000	11	12	0.13494000	12	13	0.13494000
13	14	0.13494000	14	15	0.13494000	15	16	0.13494000
16	17	0.13494000	18	19	0.13494000	19	20	0.13494000
20	21	0.13494000	21	22	0.13494000	22	23	0.13494000
23	24	0.13494000	24	25	0.13494000	25	26	0.13494000
26	27	0.13494000	27	28	0.13494000	28	29	0.13494000
29	30	0.13494000	30	31	0.13494000	31	32	0.13494000
32	33	0.13494000	33	34	0.13494000	1	18	0.03373000
2	19	0.03373000	3	20	0.03373000	4	21	0.03373000
5	22	0.03373000	6	23	0.03373000	7	24	0.03373000
8	25	0.03373000	9	26	0.03373000	10	27	0.03373000
11	28	0.03373000	12	29	0.03373000	13	30	0.03373000
14	31	0.03373000	15	32	0.03373000	16	33	0.03373000
19	36	0.05397000	20	37	0.05397000	21	38	0.05397000
22	39	0.05397000	23	40	0.05397000	24	41	0.05397000
25	42	0.05397000	26	43	0.05397000	27	44	0.05397000
28	45	0.05397000	29	46	0.05397000	30	47	0.05397000
31	48	0.05397000	32	49	0.05397000	33	50	0.05397000
35	36	0.03373000	36	37	0.03373000	37	38	0.03373000
38	39	0.03373000	39	40	0.03373000	40	41	0.03373000
41	42	0.03373000	42	43	0.03373000	43	44	0.03373000

TABLE A1 (continued)

39	56	0,05397000	40	57	0,05397000	41	58	0,05397000
42	59	0,05397000	43	60	0,05397000	44	61	0,05397000
45	62	0,05397000	46	63	0,05397000	47	64	0,05397000
48	65	0,05397000	49	66	0,05397000	50	67	0,05397000
52	53	0,13494000	53	54	0,13494000	54	55	0,13494000
55	56	0,13494000	56	57	0,13494000	57	58	0,13494000
58	59	0,13494000	59	60	0,13494000	60	61	0,13494000
61	62	0,13494000	62	63	0,13494000	63	64	0,13494000
64	65	0,13494000	65	66	0,13494000	66	67	0,13494000
53	70	0,05397000	54	71	0,05397000	55	72	0,05397000
56	73	0,05397000	57	74	0,05397000	58	75	0,05397000
59	76	0,05397000	60	77	0,05397000	61	78	0,05397000
62	79	0,05397000	63	80	0,05397000	64	81	0,05397000
65	82	0,05397000	66	83	0,05397000	67	84	0,05397000
69	70	0,03373000	70	71	0,03373000	71	72	0,03373000
72	73	0,03373000	73	74	0,03373000	74	75	0,03373000
75	76	0,03373000	76	77	0,03373000	77	78	0,03373000
78	79	0,03373000	79	80	0,03373000	80	81	0,03373000
81	82	0,03373000	82	83	0,03373000	83	84	0,03373000
70	87	0,05397000	71	88	0,05397000	72	89	0,05397000
73	90	0,05397000	74	91	0,05397000	75	92	0,05397000
76	93	0,05397000	77	94	0,05397000	78	95	0,05397000
79	96	0,05397000	80	97	0,05397000	81	98	0,05397000
82	99	0,05397000	83	100	0,05397000	84	101	0,05397000
86	87	0,13494000	87	88	0,13494000	88	89	0,13494000
89	90	0,13494000	90	91	0,13494000	91	92	0,13494000
92	93	0,13494000	93	94	0,13494000	94	95	0,13494000
91	96	0,13494000	96	97	0,13494000	97	98	0,13494000

TABLE A1 (continued)

105	106	0.13494000	106	107	0.13494000	107	108	0.13494000
108	109	0.13494000	109	110	0.13494000	110	111	0.13494000
111	112	0.13494000	112	113	0.13494000	113	114	0.13494000
114	115	0.13494000	115	116	0.13494000	116	117	0.13494000
117	118	0.13494000	118	119	0.13494000	119	103	0.03373000
87	104	0.03373000	88	105	0.03373000	89	106	0.03373000
90	107	0.03373000	91	108	0.03373000	92	109	0.03373000
93	110	0.03373000	94	111	0.03373000	95	112	0.03373000
96	113	0.03373000	97	114	0.03373000	98	115	0.03373000
99	116	0.03373000	100	117	0.03373000	101	118	0.03373000
104	121	0.05397000	105	122	0.05397000	106	123	0.05397000
107	124	0.05397000	108	125	0.05397000	109	126	0.05397000
110	127	0.05397000	111	128	0.05397000	112	129	0.05397000
113	130	0.05397000	114	131	0.05397000	115	132	0.05397000
116	133	0.05397000	117	134	0.05397000	118	135	0.05397000
120	121	0.03373000	121	122	0.03373000	122	126	0.03373000
123	124	0.03373000	124	125	0.03373000	125	126	0.03373000
126	127	0.03373000	127	128	0.03373000	128	129	0.03373000
129	130	0.03373000	130	131	0.03373000	131	132	0.03373000
132	133	0.03373000	133	134	0.03373000	134	135	0.03373000
121	136	0.05397000	122	138	0.05397000	123	140	0.05397000
124	141	0.05397000	125	142	0.05397000	126	143	0.05397000
127	144	0.05397000	128	145	0.05397000	129	146	0.05397000
130	147	0.05397000	131	148	0.05397000	132	149	0.05397000
133	150	0.05397000	134	151	0.05397000	135	152	0.05397000
137	138	0.13494000	138	139	0.13494000	139	140	0.13494000
140	141	0.13494000	141	142	0.13494000	142	143	0.13494000
143	144	0.13494000	144	145	0.13494000	145	146	0.13494000

TABLE A1 (continued)

156	157	0.13494000	157	158	0.13494000	158	159	0.13494000
159	160	0.13494000	160	161	0.13494000	161	162	0.13494000
162	163	0.13494000	163	164	0.13494000	164	165	0.13494000
165	166	0.13494000	166	167	0.13494000	167	168	0.13494000
168	169	0.13494000	169	170	0.13494000	170	171	0.03373000
138	155	0.03373000	139	156	0.03373000	140	157	0.03373000
141	158	0.03373000	142	159	0.03373000	143	160	0.03373000
144	161	0.03373000	145	162	0.03373000	146	163	0.03373000
147	164	0.03373000	148	165	0.03373000	149	166	0.03373000
150	167	0.03373000	151	168	0.03373000	152	169	0.03373000
155	172	0.05397000	156	173	0.05397000	157	174	0.05397000
158	175	0.05397000	159	176	0.05397000	160	177	0.05397000
161	178	0.05397000	162	179	0.05397000	163	180	0.05397000
164	181	0.05397000	165	182	0.05397000	166	183	0.05397000
167	184	0.05397000	168	185	0.05397000	169	186	0.05397000
171	172	0.03373000	172	173	0.03373000	173	174	0.03373000
174	175	0.03373000	175	176	0.03373000	176	177	0.03373000
177	178	0.03373000	178	179	0.03373000	179	180	0.03373000
180	181	0.03373000	181	182	0.03373000	182	183	0.03373000
183	184	0.03373000	184	185	0.03373000	185	186	0.03373000
172	199	0.05397000	173	200	0.05397000	174	201	0.05397000
175	202	0.05397000	176	203	0.05397000	177	204	0.05397000
178	205	0.05397000	179	206	0.05397000	180	207	0.05397000
181	208	0.05397000	182	209	0.05397000	183	210	0.05397000
184	211	0.05397000	185	212	0.05397000	186	213	0.05397000
198	199	0.13490000	199	200	0.13490000	200	201	0.13490000
201	202	0.13490000	202	203	0.13490000	203	204	0.13490000
204	205	0.13490000	205	206	0.13490000	206	207	0.13490000

TABLE A1 (continued)

199	216	0.05397000	200	217	0.05397000	201	218	0.05397000
202	219	0.05397000	203	220	0.05397000	204	221	0.05397000
205	222	0.05397000	206	223	0.05397000	207	224	0.05397000
208	225	0.05397000	209	226	0.05397000	210	227	0.05397000
211	228	0.05397000	212	229	0.05397000	213	230	0.05397000
215	216	0.03373000	216	217	0.03373000	217	218	0.03373000
218	219	0.03373000	219	220	0.03373000	220	221	0.03373000
221	222	0.03373000	222	223	0.03373000	223	224	0.03373000
224	225	0.03373000	225	226	0.03373000	226	227	0.03373000
227	228	0.03373000	228	229	0.03373000	229	230	0.03373000
230	231	0.03373000	232	233	0.03373000	233	234	0.03373000
234	235	0.03373000	235	236	0.03373000	236	237	0.03373000
237	238	0.03373000	238	239	0.03373000	239	240	0.03373000
240	241	0.03373000	241	242	0.03373000	242	243	0.03373000
243	244	0.03373000	244	245	0.03373000	245	246	0.03373000
246	247	0.03373000	247	248	0.03373000	249	250	0.03373000
250	251	0.03373000	251	252	0.03373000	252	253	0.03373000
253	254	0.03373000	254	255	0.03373000	255	256	0.03373000
256	257	0.03373000	257	258	0.03373000	258	259	0.03373000
259	260	0.03373000	260	261	0.03373000	261	262	0.03373000
262	263	0.03373000	263	264	0.03373000	264	265	0.03373000
215	232	0.13494000	232	249	0.13494000	216	233	0.13494000
233	250	0.13494000	217	234	0.13494000	234	251	0.13494000
218	235	0.13494000	235	252	0.13494000	219	236	0.13494000
236	253	0.13494000	220	237	0.13494000	237	254	0.13494000
221	238	0.13494000	238	255	0.13494000	222	239	0.13494000
239	256	0.13494000	223	240	0.13494000	240	257	0.13494000
224	241	0.13494000	241	250	0.13494000	225	242	0.13494000

TABLE A1 (continued)

230	247	0.13494000	247	264	0.13494000	231	248	0.13494000
17	34	0.03373000	18	35	0.05397000	50	51	0.03373000
35	52	0.05397000	34	51	0.05397000	51	68	0.05397000
67	68	0.13494000	52	69	0.05397000	68	85	0.05397000
84	85	0.03373000	69	86	0.05397000	85	102	0.05397000
102	119	0.03373000	103	120	0.05397000	119	136	0.05397000
135	136	0.03373000	120	137	0.05397000	134	153	0.05397000
153	170	0.03373000	154	171	0.05397000	170	187	0.05397000
186	187	0.03373000	171	198	0.05397000	187	214	0.05397000
213	214	0.13490000	198	215	0.05397000	214	231	0.05397000
248	265	0.13490000	18	266	0.11800000	35	267	0.02950000
52	268	0.11800000	69	269	0.02950000	86	270	0.11800000
103	271	0.11800000	120	272	0.02950000	137	273	0.11800000
154	274	0.11800000	171	275	0.02950000	198	276	0.11800000
34	277	0.11800000	51	278	0.02950000	68	279	0.11800000
85	280	0.02950000	102	281	0.11800000	119	282	0.11800000
136	283	0.02950000	153	284	0.11800000	170	285	0.11800000
187	286	0.02950000	214	287	0.11800000	266	287	0.14300000
267	268	0.14300000	268	269	0.14300000	269	270	0.14300000
270	271	0.10930000	271	272	0.14300000	272	273	0.14300000
273	274	0.10730000	274	275	0.14300000	275	276	0.14300000
277	278	0.14300000	278	279	0.14300000	279	280	0.14300000
280	281	0.14300000	281	282	0.10930000	282	283	0.14300000
283	284	0.14300000	284	285	0.10930000	285	286	0.14300000
286	287	0.14300000	277	300	0.66600000	287	300	0.66600000
266	300	0.66600000	276	300	0.66600000	251	300	0.00324000
252	300	0.00324000	253	300	0.00324000	254	300	0.00324000

TABLE A2

QGEN TABLE - WATTS (OR TEMP FOR BOUNDARY NODES)

2	0.0156	3	0.0156	4	0.0040	5	0.0040	
7	0.0050	8	0.0050	9	0.0100	10	0.0100	
11	0.0030	12	0.0030	13	0.0120	14	0.0120	
15	0.0050	16	0.0050	20	0.0500	21	0.0250	
22	0.0260	23	0.0260	24	0.0500	25	0.0010	
26	0.0125	27	0.0250	28	0.0250	29	0.0375	
30	0.0375	31	0.0170	53	0.0400	54	0.0400	
55	0.0020	56	0.0020	75	0.0006	76	0.0006	
77	0.0006	78	0.0006	79	0.0006	80	0.0006	
81	0.0006	82	0.0006	83	0.0006	84	0.0006	
121	0.0006	122	0.0006	123	0.0006	124	0.0006	
125	0.0006	126	0.0006	127	0.0006	128	0.0006	
129	0.0006	130	0.0006	131	0.0006	132	0.0006	
133	0.0006	134	0.0006	135	0.0006	172	0.0006	
173	0.0006	174	0.0006	175	0.0006	176	0.0006	
177	0.0006	178	0.0006	179	0.0006	180	0.0006	
181	0.0006	182	0.0006	183	0.0006	184	0.0006	
185	0.0006	186	0.0006	236	0.0430	237	0.0260	
239	0.0050	241	0.0050	245	0.0380	246	0.0760	
247	0.0150	300	100.0000	0	0.	0	0.	

TABLE A3

CALCULATED TEMPERATURES

FOR PWB A1

ORIGINAL PAGE B
OF POOR QUALITY

(1)	108.567	(2)	109.401	(3)	110.256	(4)	110.828	(5)	111.369	(6)	111.655	(7)	111.940	(8)	112.
(9)	112.048	(10)	111.879	(11)	111.487	(12)	111.098	(13)	110.417	(14)	109.536	(15)	103.472	(16)	107.
(17)	106.822	(18)	105.234	(19)	107.731	(20)	109.816	(21)	110.782	(22)	111.447	(23)	111.896	(24)	112.
(25)	111.830	(26)	111.778	(27)	111.757	(28)	111.530	(29)	111.154	(30)	110.360	(31)	109.057	(32)	107.
(33)	105.957	(34)	104.049	(35)	105.774	(36)	107.717	(37)	109.174	(38)	109.928	(39)	110.425	(40)	110.
(41)	110.927	(42)	110.828	(43)	110.743	(44)	110.615	(45)	110.349	(46)	109.918	(47)	109.222	(48)	108.
(49)	107.076	(50)	105.814	(51)	104.396	(52)	106.435	(53)	108.008	(54)	108.972	(55)	109.233	(56)	109.
(57)	109.705	(58)	109.817	(59)	109.817	(60)	109.733	(61)	109.560	(62)	109.272	(63)	108.847	(64)	108.
(65)	107.530	(66)	106.681	(67)	105.768	(68)	104.844	(69)	105.354	(70)	107.295	(71)	107.993	(72)	108.
(73)	108.664	(74)	108.865	(75)	108.992	(76)	109.014	(77)	108.948	(78)	108.792	(79)	108.536	(80)	108.
(81)	107.690	(82)	107.106	(83)	106.447	(84)	105.752	(85)	105.066	(86)	106.200	(87)	106.732	(88)	107.
(89)	107.586	(90)	107.871	(91)	108.072	(92)	108.193	(93)	108.229	(94)	108.181	(95)	108.049	(96)	107.
(97)	107.527	(98)	107.142	(99)	106.691	(100)	106.197	(101)	105.693	(102)	105.221	(103)	105.711	(104)	106.
(105)	106.377	(106)	106.681	(107)	106.935	(108)	107.128	(109)	107.253	(110)	107.308	(111)	107.292	(112)	107.
(113)	107.045	(114)	106.819	(115)	106.534	(116)	106.200	(117)	105.835	(118)	105.465	(119)	105.121	(120)	105.
(121)	105.600	(122)	105.934	(123)	106.241	(124)	106.502	(125)	106.705	(126)	106.842	(127)	106.913	(128)	106.
(129)	106.851	(130)	106.721	(131)	105.527	(132)	106.274	(133)	105.968	(134)	105.623	(135)	105.258	(136)	104.
(137)	104.775	(138)	105.122	(139)	105.470	(140)	105.792	(141)	106.068	(142)	106.284	(143)	106.436	(144)	106.
(145)	106.543	(146)	106.501	(147)	106.398	(148)	106.234	(149)	106.009	(150)	105.724	(151)	105.336	(152)	105.
(153)	104.629	(154)	103.849	(155)	104.352	(156)	104.833	(157)	105.259	(158)	105.509	(159)	105.872	(160)	106.
(161)	105.153	(162)	105.197	(163)	106.108	(164)	106.127	(165)	105.011	(166)	105.825	(167)	105.548	(168)	105.
(169)	104.640	(170)	104.046	(171)	103.136	(172)	103.925	(173)	104.573	(174)	105.114	(175)	105.543	(176)	105.
(177)	105.939	(178)	106.075	(179)	106.113	(180)	106.120	(181)	106.097	(182)	106.044	(183)	105.939	(184)	105.
(185)	105.311	(186)	104.606	(187)	103.613	(188)	102.499	(189)	103.549	(190)	104.343	(191)	105.000	(192)	105.
(203)	105.823	(204)	105.938	(205)	105.989	(206)	106.012	(207)	105.032	(208)	106.049	(209)	106.072	(210)	106.
(211)	106.000	(212)	105.609	(213)	104.714	(214)	103.316	(215)	103.298	(216)	103.816	(217)	104.452	(218)	104.
(219)	106.105	(220)	106.255	(221)	106.045	(222)	105.974	(223)	105.916	(224)	105.954	(225)	105.984	(226)	105.
(227)	106.456	(228)	107.042	(229)	107.165	(230)	106.082	(231)	105.102	(232)	103.487	(233)	103.893	(234)	104.
(235)	105.256	(236)	106.520	(237)	106.537	(238)	106.051	(239)	105.964	(240)	105.855	(241)	105.925	(242)	105.
(243)	106.110	(244)	106.541	(245)	107.576	(246)	108.088	(247)	106.603	(248)	105.572	(249)	103.576	(250)	103.
(251)	106.425	(252)	105.185	(253)	106.158	(254)	106.277	(255)	105.957	(256)	105.833	(257)	105.748	(258)	105.
(259)	107.828	(260)	106.027	(261)	105.474	(262)	107.278	(263)	107.589	(264)	106.630	(265)	105.763	(266)	105.
(267)	103.329	(268)	104.974	(269)	105.414	(270)	105.660	(271)	105.399	(272)	104.943	(273)	104.421	(274)	103.
(275)	102.095	(276)	100.641	(277)	100.915	(278)	102.589	(279)	103.890	(280)	104.405	(281)	104.782	(282)	104.
(283)	104.555	(284)	104.238	(285)	103.400	(286)	102.226	(287)	100.765						

GENERAL ELECTRICSPACE DIVISION
PHILADELPHIA**PROGRAM INFORMATION REQUEST / RELEASE**

PIR NO.	CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	IR60	75	153	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM:
J. Greiner, Engineer, Env. Engineering
U-1243, VFSC

TO

DISTRIBUTION

DATE SENT	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
6/27/75			

SUBJECT
MICROPUMP PRIMING**INFORMATION REQUESTED/RELEASED****OBJECT:** To determine the self priming characteristics of the Micropump 04-71-303-1421 and to develop a suitable configuration to ensure pump priming in WCS usage.**PROCEDURE:** With 1/8" i.d. tubing connect the pump outlet to a check valve and a water column so that the pump and outlet line remain dry. Determine the maximum pressure gradient against which the pump will pump air. Repeat this procedure after wetting the pump gears and draining. Connect a water reservoir to the inlet of the pump, using 3/16" i.d. tubing (see Figure 1). The inlet and outlet lines should be air filled. Determine the pressure gradient against which the pump will self prime.

Connect an air bypass line from the pump outlet back to the reservoir and determine the new priming characteristics of the system, by repeating the preceding determination. Measure the influence of different size bypass lines by measuring flow rates through the outlet and bypass lines.

RESULTS:

pump air-dried	pumps air against 12.5" H ₂ O
pump wet, drained	pumps air against 15" H ₂ O
Inlet 6" of 3/16" i.e.	pump primes system against
Outlet 2" of 1/8" i.d. } air filled	14" H ₂ O
1/8" bypass line	pump primes against > 4" H ₂ O

Bypass i.d.	Pumping rate	Bypass flow rate
.125"	512 ml/min	436 ml/min
.030	903	34

NOTE: Pumping rate does not include bypass flow.

CONCLUSIONS: The maximum pressure gradient against which the pump will self prime depends on the relative volumes of air in the inlet and outlet lines. If the air entrapped in the inlet line is of a small enough volume to be compressed into the volume of the outlet line prior to the check valve, at a pressure below 12.5" H₂O, then the system can prime itself. To ensure system priming against a positive pressure gradient, a bypass line from the pump outlet to the phase separator is recommended. Since prompt priming is achieved with a .125" i.d. bypass line, at the expense of a high bypass flow rate, and a low bypass flow rate is obtained with an .030" i.d. bypass, at the expense of an extended priming time, an intermediate size should be chosen for the bypass line.cc: G. Fogal
J. Mangialardi**ORIGINAL PAGE IS
OF POOR QUALITY**

PAGE NO.	RETENTION REQUIREMENTS	
	COPIES FOR	MASTERS FOR
	<input type="checkbox"/> 1 MO.	<input type="checkbox"/> 3 MO.
	<input type="checkbox"/> 3 MOS.	<input type="checkbox"/> 6 MOS.
	<input type="checkbox"/> 6 MOS.	<input type="checkbox"/> 12 MOS.
	<input type="checkbox"/> 12 MOS.	<input type="checkbox"/> 18 MOS.
	<input type="checkbox"/> 18 MOS.	<input type="checkbox"/> 24 MOS.
	<input type="checkbox"/> 24 MOS.	<input type="checkbox"/> PERMANENT
	<input type="checkbox"/> DRAFT COPY	

FIGURE 1 PRIMING TEST SET-UP

GENERAL ELECTRIC
SPACE DIVISION
PHILADELPHIA

PIR NO.	CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	1R60	75	157	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

PROGRAM INFORMATION REQUEST / RELEASE

FROM J. K. Mangialardi, Engineer-Environmental Engineering, Room #U-1243, VFSC X-5499 *QJW* **TO** G. L. Fogal, Bioengineering Programs Mgr. Room #U-1240, VFSC

DATE SENT	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
7-23-75		BMS	

SUBJECT

Test of Expansion Bladder Material

INFORMATION REQUESTED/RELEASED

A. INTRODUCTION

The flush water tank needs an expansion bladder to minimize the build up of internal pressure due to thermal expansion of water in the aluminum shell at temperatures up to 150°F.

The general requirements for the bladder were established in PIR 1R60-75-144 and are:

Type: Close Cell Foam Rubber

Working Volume: 200 cm³ at Ambient Pressure

Performance: Compress by 27.13 cm³ when pressurized from 17 PSIG to 30 PSIG

- The 17 PSIG level represents the maximum filling pressure from the water supply. The 30 PSI is a conservative working limit for the tank. The 27.13 cm³ compression is required to accommodate the maximum expansion of the water in the filled tank.

B. DESCRIPTION OF TEST

A sample piece of soft foam rubber with close cell structure has been obtained from the Stockwell Rubber Company and has been tested for conformance to our requirements.

The sample piece is in the form of a strip, has a volume of 44.43 cm³ and is identified by Stockwell as SR-11-N, MIL-R-6130 B, Type 2, Grade A, Soft.

The rubber strip was placed in a small sealed test chamber filled with water and connected to a pump as shown on the following page.

The tests runs were made in two steps:

1. The test chamber was pressurized by operating the pump with valve A open, valve B closed, and using valve C to control the pressure at the desired level.

Distribution
R. W. Murray
T. J. Greiner
J. Schwartz
E. Belensz

ORIGINAL PAGE IS
OF POOR QUALITY

PAGE NO.	RETENTION REQUIREMENTS	
	COPIES FOR	MASTERS FOR
1	<input type="checkbox"/> 1 MOS.	<input type="checkbox"/> 3 MOS.
	<input type="checkbox"/> 3 MOS.	<input type="checkbox"/> 6 MOS.
	<input type="checkbox"/> 6 MOS.	<input type="checkbox"/> 12 MOS.
	<input type="checkbox"/> MOS.	<input type="checkbox"/> MOS.
	<input type="checkbox"/>	<input type="checkbox"/> DO NOT DESTROY

TEST SET UP

2. Valve A was closed, valve B was opened and the effluent water was collected in a beaker and measured. The weight represented the volume that the rubber had compressed at the set pressure. Note that for water 1 gm = 1 cm³.

Additional test runs were made using the same procedure after removing the sample piece from the test chamber to establish a correction factor for the elasticity chamber itself without the foam rubber.

The test results are summarized and plotted in the attached Figure 1.

C. CONCLUSION

The test sample was compressed by 5.5 cm³ when pressurized from .. to 30 PSIG. If instead of making a special bladder we use the commercially available material tested, the equivalent total volume required is:

$$V = 44.43 \text{ cm}^3 \times 27.13 \text{ cm}^3 / 5.5 \text{ cm}^3 = 219 \text{ cm}^3$$

which is quite close to the ideal 200 cm³ calculated in the referenced PIR.

As suggested, the foam rubber will be added in the form of two longitudinal strips bonded to the inside of the aluminum shell. This arrangement has the obvious advantage of eliminating the long term effect of water permeation, or loss of performance due soaking through broken, if the foam rubber were to be used as a bladder inside the main bladder as originally planned. The strips will also work as air channels for internal venting between the bladder and the tank wall.

SUMMARY OF TEST DATA

PRESSURE psi	WEIGHT OF WATER CUT - GRAMS		
	TOTAL	- CONTAINER	= NET
35	32.8	3.7	29.1
30	31.0	3.7	27.3
28	30.5	3.7	26.8
25	29.2	3.7	25.5
23	28.3	3.9	24.5
20	26.3	3.4	22.9
17	25.2	3.7	21.5
13	24.3	3.7	18.1
-10	18.1	3.4	14.7
30 *	4.4	3.5	0.9
20 *	4.5	3.9	0.7
10 *	4.2	3.9	0.4

* TEST CHAMBER WITHOUT FOAM CLEEEF STRIP

COMPRESSION OF FOAM RUBBER STRIP
STOCKWELL RUBBER COMPANY - SIZE 1" x .84" x 6.13"

FIGURE 1 - SUMMARY OF TEST DATA FOR FOAM RUBBER STRIP EXPOSED TO AIR.

SPACE DIVISION
PHILADELPHIA

PROGRAM INFORMATION REQUEST/RELEASE

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	1R60	75	159	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM J. Greiner, Engineer Room U1234, VFSC - X4387	TO Distribution		
DATE SENT 8-1-75	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
SUBJECT DESIGN OPTIMIZATION OF BMS SEPTA			

INFORMATION REQUESTED/RELEASED

OBJECT: To evaluate various materials and determine the optimum choice for the septum for the urine sampling part in the BMS.

PROCEDURE: Several septa were made of each material to be evaluated. The needle insertion force was determined several times with a Hunter force gauge, for each septum. The septa were then subjected to a cyclic life test as described in PIR 133 of 5-15-75. Each septum was tested for 500 cycles or until failure. Plexiglass holders of .428 and .421 diameter were used, depending on results of needle insertion force tests and initial leak tests. Following testing of several septa of RTV700 and of RTV620, the in-house mold was polished and the corners rounded. More septa were then fabricated and tested.

The materials evaluated were:

RTV630 fabricated in-house
RTV700

Modified RTV
DPR242 rubber
Vinyl plastisol fabricated by DeBell & Richardson

Distribution: G. Fogal J. Mangialardi	PAGE NO. 1 4 OF _____	RETENTION REQUIREMENTS
		COPIES FOR
		<input type="checkbox"/> 1 MO.
		<input type="checkbox"/> 3 MO.
		<input type="checkbox"/> 6 MO.
		<input type="checkbox"/> 12 MO.
		<input type="checkbox"/> MO.
		<input type="checkbox"/> DONOT DESTROY
		MASTERS FOR
		<input type="checkbox"/> 3 MO.
		<input type="checkbox"/> 6 MO.
		<input type="checkbox"/> 12 MO.
		<input type="checkbox"/> MO.
		<input type="checkbox"/> DONOT DESTROY

Insertion Force Test Results:

<u>Septum</u>	<u>Material</u>	<u>Holder dia. (in.)</u>	<u>Force (lb.)</u>
1	DB & R modified RTV	.421	10.2
2	DB & R DPR 242	.421	5.8
3	DB & R Vinyl plastisol	.421	7.0
		.428	4.4
4,5,6	GE RTV 700	.421	6.3,5.2
17	GE RTV 700 (polished mold)	.421 .428	3.2 6.1
10	GE RTV 630 (a)	.428 .421	9.8 12.3
11	GE RTV 630 (b)	.428 .421	6.8 10.1
13, 14	GE RTV 630 (c)	.428 .421	5.6 11.6
15,16,18	GE RTV 630 (c) (w/polished mold)	.428	7.3,9.8

Life Test Results:

<u>Septum</u>	<u>Material</u>	<u>Holder dia. (in.)</u>	<u>Results</u>
4	RTV 700	.421	stopped test @ 114 cycles due to septum wear
6	RTV 700 w/teflon sprayed needle	.421	worn @ 122 cycles, stop @ 519 worn, no leakage
8	RTV 700 w/teflon sprayed needle	.421	243 cycles - slightly worn 555 cycles - stop test - worn & torn but no leakage
9	RTV 700	.421	102 cycles
10	RTV 630 (a)	.421	252 cycles - worn, leaking, stop test
11	RTV 630 (b)	.421	72 cycles - wearing, no leak 500 cycles - worn, no leak, stop test
12	RTV 630 (b)	.421	250 cycles - leaking
13	RTV 630 (c)	.421	21 cycles - stop test as needle will not retract properly
14	RTV 630 (c)	.428 .421	leaks won't work
15	RTV 630 (c) polished mold	.428	516 cycles - no signs of wear no leak
16	RTV 630 (c) polished mold	.428	566 cycles - no signs of wear no leak
17	RTV 700 polished mold	.421	340 some sign of wear, no leak 362 leaks 543 leaks badly, stop test septum torn
18	RTV 630 (c)	.428	504 cycles - no wear, no leak, stop test

Conclusion: RTV 630, in a 10:1 ratio of compound to catalyst, cured for two hours at 200°F results in a satisfactory septum. Difficulties were encountered due to the unpolished condition of the mold - polishing and rounding sharp edges made a significant improvement in the quality of the septum produced. These septa did not leak under pressure and showed no signs of abrasive wear after more than 500 needle insertion/withdrawal cycles. They did exhibit a tendency to allow a small quantity of water to cling to the needle as it was withdrawn, but their superior wear resistance is considered to be more important.

GENERAL ELECTRIC

SPACE DIVISION
PHILADELPHIA

PROGRAM INFORMATION REQUEST/RELEASE

PIR NO.	*CLASS, LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	-1R54	-	1092	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM F. Drummond Room U2439, X4659	TO J. Mangialardi Room U1243		
DATE SENT 8/6/75	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
SUBJECT THERMAL ANALYSIS OF BMS ASSEMBLY			

INFORMATION REQUESTED/RELEASED

SUMMARY

On the basis of continuous operation of the BMS for 1.0 hour, or 12 cycles, the maximum component temperatures were:

Phase Separator Drive Motor	80°C
Urine Pump	69
Flush Pump	38
A1 Logic Card - Electronics	48
Power Supply - Electronics	108

1.0 INTRODUCTION

The BMS assembly is a mechanism for obtaining urine samples from the crew of the shuttle. Figure 1 is an exploded schematic of the assembly. Heat dissipation in the BMS is located in the phase separator drive motor, the urine pump, the flush pump and the electronics. The duty cycle of the equipment is shown on Figure 2. This figure gives a cycle time of 300 secs. Since no realistic duty cycle, or frequency of operation, is available, Mr. John Mangialardi suggested 1 hour of continuous operation.

2.0 REQUIREMENTS

The limiting temperature requirements for the critical items of the BMS assembly are shown on Table 1.

Table 1

BMS Critical Temperature Requirements

Phase Separator Motor	130°C
Urine Pump Motor	90°C
Flush Pump Motor	90°C
A1 Logic Card	125°C
Power Supply	125°C

G. Fogal U1240	S. Peck U4212	PAGE NO.	RETENTION REQUIREMENTS	
J. Billings U2446	L. Blomstrom U2439		COPIES FOR	MASTERS FOR
V. Young U2446			<input type="checkbox"/> 1 MO.	<input type="checkbox"/> 3 MOS.
			<input type="checkbox"/> 3 MOS.	<input type="checkbox"/> 6 MOS.
			<input type="checkbox"/> 6 MOS.	<input type="checkbox"/> 12 MOS.
			<input type="checkbox"/> MOS.	<input type="checkbox"/> MOS.
			<input type="checkbox"/>	<input type="checkbox"/> DONOT DESTROY
		OF		

PIR: U-TR54-1092
Page: 2
8/6/75

3.0 MODEL DESCRIPTION

A 28 node model was developed for the BMS. Table 2 lists the nodal elements and describes them. Table 3 presents the math model input data to the computer. A conductivity of 90 Btu/hrft²F was used for the aluminum and a conductance of 68.0 Btu/hrft²F was assumed for joints. During operation of the phase separator an air flow rate of 8 cfm passes through the separator. For the first 100 seconds of operation urine at 98°F is assumed in contact with the phase separator walls. Connection to the air is 1.43 Btu/hr°F and to the urine is 10.0 Btu/hr°F. No convection from the outer surface of the assembly to the shuttle environment is included nor is any conduction to the shuttle structure. These assumptions were made because there is no established provision to install the BMS in the shuttle.

4.0 ANALYSIS

In the performance of the heat up of the BMS the heat inputs were average values for a cycle except for the convection between the urine (node 28) and the phase separator body. This heat exchange was restricted to the first 100 seconds of a cycle with none in the subsequent 200 seconds. Convection to the air (node 20) followed an inverse pattern. A total of 12 cycles were run, for a total time of 1 hour.

5.0 RESULTS AND DISCUSSION

Table 4 presents the final temperatures of all the elements of the model. Figure 3 is a plot of the heat dissipating elements of the model. Note that node 14 is the housing for the electronics and not the parts themselves. Shown separately on Table 3 are the logic card maximum temperatures and the power supply maximum temperatures. These temperatures are based on the temperature rises above the environment calculated separately for these components. The calculations for the card are contained in Reference 1 and in the appendix for the power supply.

Referring to Table 4 and Figure 3 it is seen that none of the calculated temperatures exceed the allowable limits. It should be noted however that:

This analysis provides only "worst case" heat up characteristics, but no cool down characteristics. It is reasonable to assume that the BMS will be bolted into the shuttle and will be "bathed" in the shuttle environment. Therefore when the BMS is not in use it will tend to return to the ambient temperature level of the shuttle.

MODEL TEMPERATURES IN DEG-F

Logic Card - 48
Power Supply - 108

Table 4

TIME =	105.000	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
1	33.93	3	37.89	5	39.92	7	37.99	9	37.99	11	43.75	13	37.94	15	37.94	17	36.33	19	39.34	21	39.34	23	36.33	25	30.11	27	39.34	29	39.34	31	37.93	33	37.93	35	37.93	37	37.93	39	37.93	41	37.93	43	37.93	45	37.93	47	37.93	49	37.93	51	37.93	53	37.93	55	37.93	57	37.93	59	37.93	61	37.93	63	37.93	65	37.93	67	37.93	69	37.93	71	37.93	73	37.93	75	37.93	77	37.93	79	37.93	81	37.93	83	37.93	85	37.93	87	37.93	89	37.93	91	37.93	93	37.93	95	37.93	97	37.93	99	37.93	101	37.93

FIG. 6-1054-1074
Page: 3
8/6/75

(15, 27 top, not shown)
(16, Bottom, not shown)

ORIGINAL PAGE IS
OF POOR QUALITY

EXPLODED SCHEMATIC
OF BMF ASS'Y SHOWING
NODE NUMBERS
FIGURE 1

PIR: U-1R54-1092
Page: 4
8/6/75

Est. System Operating Time for 300 avg. Micturition

Figure 2

PIR: U-1R54-1092
Page: 5
8/6/75

Table 2
Node Description

<u>Node Number</u>	<u>Description</u>
1	Phase Separator Body
2	Gear Box, Phase Separator
3	Motor, Phase Separator
4-11	Central Mounting Plate
12	Flush Pump and Motor
13	Urine Pump and Motor
14	Power Supply & Electronics Ass'y
15	Housing Top, Front
16	Housing, Bottom
17	Housing, Rear Surface
18	Housing, Right Side, Front
19	Housing, Left Side, Front
20	Cooling Air, (Boundary Node)
21-24	Housing Front
25	Housing, Right Side, Rear
26	Housing, Left Side, Rear
27	Housing, Top, Rear
28	Urine (Boundary Node)

ORIGINAL PAGE IS
OF POOR QUALITY

Table 3
 Computer Input

ORIGINAL PAGE IS
 OF POOR QUALITY

25, 26, 15, 6, 15, 6, 165., 105., 105., N0, N0, C
 25, 25

Model Size and Time Limits
 Boundary Nodes

57
 1, 4, 5, 27, 15, 5, 27, 1, 6, 2, 1, 7, 2, 1, 27, 1, 9, 2, 27
 1, 16, 5, 2, 1, 11, 2, 1, 2, 7, 21, 2, 3, 1, 157, 3, 12, 1, 361, 2, 13, 1, 361
 12, 5, 9, 412, 5, 6, 5, 412, 5, 6, 7, 5, 412, 7, 5, 412, 5, 9, 4, 412, 9, 15, 2, 412
 15, 11, 2, 412, 1, 21, 1, 23, 1, 634, 1, 23, 1, 634, 1, 24, 1, 634, 2, 12, 6, 316
 3, 12, 2, 316, 4, 13, 2, 316, 5, 13, 2, 316, 5, 13, 26, 2, 75, 13, 25, 2, 75, 15, 27, 3, 156
 21, 22, 2, 344, 4, 25, 25, 25, 24, 2, 344, 21, 25, 2, 344,
 21, 19, 2, 523, 24, 19, 2, 523, 22, 13, 2, 523, 23, 12, 2, 523, 21, 15, 2, 733
 22, 15, 6, 733, 7, 15, 5, 425, 6, 15, 6, 425, 7, 27, 6, 1635, 6, 27, 2, 1635, 15, 13, 2, 3393
 25, 27, 2, 141, 15, 19, 6, 2393, 25, 27, 6, 141, 17, 25, 2, 772, 17, 26, 2, 772, 17, 27, 6, 343
 4, 11, 2, 492, 12, 13, 6, 333, 14, 27, 1, 634, 14, 26, 2, 267, 1, 26, 1, 436
 1, 2, 12,

C.
 C.

Heat Dissipation

6, 22, 56, 425, 12, 4, 5, 13, 37, 63, 15, 17, 25, 22, 545., 6, 23, 553., 54

1

27
 12, 11, 2, 33, 3, 6, 33, 4, 5, 2152, 5, 2152, 6, 2, 2152, 7, 9, 2152, 3, 2, 2152
 9, 11, 2, 3162, 11, 3, 2152, 12, 3, 2152, 13, 2, 243, 14, 1, 24, 15, 2, 2392
 16, 7, 17, 2, 127, 13, 2, 2392, 19, 6, 2392, 22, 3, 547, 21, 6, 2136, 22, 6, 2136
 23, 6, 2162, 6, 5, 2137, 25, 2, 2534, 23, 2, 2534, 27, 2, 2534

Heat Capacitance

PIR: U-1R54-1092
Page: 7
8/6/75

Figure 3

Thermal Response of Heat
Dissipating Elements

PIR: U-1R54-1092
Page: 8
8/6/75

Appendix

The attached data show (Figure A1) the electric analog model of the power supply of BMS and (Figure A2) the detail element temperatures of the logic card.

The analysis performed for the power supply network shown on Figure 1A included the Power Supply PWB as a lumped man element, dissipating 0.58W ~ uniformly. Subsequent discussions with Steve Peck have shown that the dissipation can vary from 0.814W to 1.055W. The average Q/A for the PWB ($Q = .814$) is 50.8 mw/in^2 while discrete locations (CR2-CR7) is 336.8 mw/in^2 , and the A2 Hybrid is 390.6 mw/in^2 . At this stage of the analysis it is not possible to perform a detailed analysis of the PWB assembly. Therefore, the average PWB temperature was determined and the local temperature determined by Q/A ratios. These temperatures are shown in Table 1A. It should be noted that no conduction in the board was considered except locally and neither was conduction from the board to the box through the mounting screws. These effects will tend to reduce local temperatures but not more than $10 - 15^\circ\text{C}$.

In reviewing this assembly, the fact that this assembly will be located in a pressurized environment. Therefore, conduction through the air will assist in cooling the PWB. However, since there is no "g" field there will be no convection. Air conduction and radiation to a relatively low environmental temperature will compensate for the poor conduction in the board, poor contact of the components with the board, and the relatively isolated mounting of the board.

ORIGINAL PAGE IS
OF POOR QUALITY

PIR: U-1R54-1092
Page: 9
8/6/75

ORIGINAL PAGE IS
OF POOR QUALITY

214

** Radiation connection, linearized
and based on $(\frac{g}{M})_{AVG}$.*

Ned's 14

Young, Wm. H. - see Wm. H. Young

PIR: U-1R54-1092
Page: 10
8/6/75

Table 2A
PREDICTED PERFORMANCE OF SIGNIFICANT PARTS

	<u>Piece Part</u>	<u>T_{sink}</u> °F/°C	<u>Δt₁</u> °F/°C	<u>Δt₂</u> °C	<u>Δt₃</u> °C	<u>T_{max}</u> °F/°C
A49	- Urine Pump Relay Driver	*	9.8/5.4	.13	4.68	41.2
A50	- Flush Pump Relay Driver		11.05/6.14	.03	1.2	38.4
A29	- Sample Lamp, Driver		11.96/6.64	.04	1.5	39.2
A30	- Dump Switch Lamp Driver		11.96/6.64	.08	3.0	40.7
A31	- Flush "On" Lamp Driver		11.2/6.2	.025	0.9	38.1
A32	- Sample Collect Lamp Driver		9.9/5.5	0.1	3.6	40.2
A51	- Sample Container Lamp Driver		8.0/4.4	.04	1.5	36.9
A33	- Power/Phase Separator Relay Drive		8.45/4.7	.34	12.0	48.
A35	- S.C. ID. Sensor Bias Relay		9.36/5.2	.017	.6	36.8
R1	- Resistor		7.42/4.0	.01	-	35.
	Integrated Circuit Logic		9.0/5.0	<.01	~.1	36.1

(1) $T_{max} = T_{sink} + \Delta t_1 + \Delta t_2 + \Delta t_3$

Δt_1 - temperature rise of piece part above case.

Δt_2 - temperature difference, PCB to piece part case.

Δt_3 - temperature rise of PCB under piece part above sink.

*From Figure 3, the sink temperature of Node 14 is 31°C.

TABLE II
POWER SUPPLY PWB TEMPERATURES

Component	Dissipation (each, mw)*	Dissipation Total, mw	Heated Area, in ²	Q/A mw/in ²	Q/AL Q/AT	ΔT _L	T _{mx Local}
CR1A/1B	151	302	0.472	~640.	9.7	65.4	105.4
CR2A12B	10	384	0.57	673.	10.2	68.8	108.8
CR3A/3B	10						
CR4/5/6/7	86						
A3	28	28	.585	47.8	.7	4.7	44.7
A4	1	1	.431	-	-	-	-
T2	390	390	1.56	250.	3.79	25.6	65.6
T1	5	5	.562	-	-	-	-
A1	110	110	.64	~172	2.61	17.6	57.6
A2	264	264	.64	412.5	6.25	42.2	82.2

*Worst Case, 1055 mw Total; Q/A (Avg.) = 65.9 mw/in²; ΔT_{pwb - env} = 67.5°L

IMC MAGNETICS CORP., Executive Offices, 570 Main Street, Westbury, New York 11591 • (516) 334-7070
• TWX (510) 222-4469

May 21, 1975

General Electric Company
P.O. Box 8555
Philadelphia, PA 19101

Attention: John K. Mangialardi, Room U-1243, VFSC

Subject: Phase Separator Drive Motor IMC P/N BT 2910G-2

Reference: G.E. Purchase Order 028-841027
IMC W.O. X3144

Dear John:

Enclosed please find the speed-torque data on the
Phase Separator Drive Motor.

The outline drawing has also been corrected to reflect
the motor which we are supplying to you. Please note that
the current is 0.3 amps rather than the 0.7 amps previously
stated. The 0.7 amps was based on a 115 volts line to line
winding.

The unit will be shipped to you shortly.

If you have any questions, please do not hesitate to
call me.

Very truly yours,

IMC MAGNETICS CORP.

Robert Altschuler

Robert Altschuler
Sr. Project Engineer

RA/ds
Encls.

cct: J. Pinner
G. Egan
F. Fisher
Mesa Technical

ORIGINAL PAGE IS
OF POOR QUALITY

Temp. Rise with
G.H. @ N.L.=41°C

TEST DATA									
V	A	W1	W2	WT	T	N	W _{CUT}	W _{LOSS}	HP
200	0.26	37.5	-17.5	20	0	5950			
0.27	42	-14	26	2	5900	0.73	12.3.021	31.2	
0.29	49	-11	38	4	5850	17.3	20.7.023	45.6	
0.30	54	-7	47	6	5800	25.7	21.3.034	54.6	
0.33	60	-4	56	8	5700	33.7	23.2.045	60.2	
0.37	71	0	68	10	5600	40.7	27.3.056	59.8	
0.42	75	1	76	11	5200	47.1	43	45.3	56.1
0.62	95	-23	73	7.4	0				

WITH 14.645 GEAR RATIO

500	0.39	45	-12	33	53	39014.4	18.6	43.7
200					195	0		

1	2	3	4	5	6	7	8	9	10
12	12.107-21/50	200	0.3	400	3	3800	386	8	T.E.

ORIGINAL PAGE IS
OF POOR QUALITY

MICRO PUMP

PARTS LIST NO. 1421

PART NO. 80221

DATE January 19, 1975

REV January 19, 1975

TEST SPECIFICATION 1421

MODEL NO. 04-71-303-1421

CUSTOMER REF General Electric Co.

SERIAL NO. 1063

TEMPERATURE 70°-80° F.

TEST FLUID Water

POWER 200 V. 400~ 3Ø

TEST

1. PROOF PRESSURE: WHEN PRESSURIZED WITH AIR @ 40 PSIG MIN.,
PUMP DRIVEN ASSEMBLY (P/N 80182) MUST NOT LEAK WHEN HELD
UNDER WATER FOR A TWO (2) MINUTE TEST PERIOD. NOT MORE THAN
ONE (1) MINUTE SETTLING TIME IS ALLOWED BEFORE TEST PERIOD.

DATE OF TEST April 3-75

PASSED X FAILED _____

Gary Martineau
SIGNATURE

MICRO PUMP

PARTS LIST NO. 1421

PART NO. 80221

DATE January 19, 1975

REV January 19, 1975

TEST SPECIFICATION 1421

MODEL NO. 04-71-303-1421

CUSTOMER REF General Electric Co.

SERIAL NO. 1063

TEMPERATURE 70°-80° F.

TEST FLUID Water

POWER 200 V. 400~ 30

TEST

1. PROOF PRESSURE: WHEN PRESSURIZED WITH AIR @ 40 PSIG MIN.,
PUMP DRIVEN ASSEMBLY (P/N 80182) MUST NOT LEAK WHEN HELD
UNDER WATER FOR A TWO (2) MINUTE TEST PERIOD. NOT MORE THAN
ONE (1) MINUTE SETTLING TIME IS ALLOWED BEFORE TEST PERIOD.

DATE OF TEST April 3-75

PASSED X FAILED

Mary Martensal
SIGNATURE

2. STARTING CURRENT: WITH PUMP & MOTOR CONNECTED FOR NORMAL OPERATION,
 STARTING CURRENT SHALL NOT EXCEED 0.9 AMPS. AND SHALL DROP
 TO NORMAL OPERATING (.55 AMP. MAX.) WITHIN 2 SECONDS.

STARTING CURRENT .4 AMPS

AFTER 2 SECONDS .2 AMPS

DATE OF TEST April 3 75

PASSED X FAILED _____

Harry Martineau
 SIGNATURE

3. NORMAL OPERATION: FLUID TEMP. 72°

	PRESS.		FLOW	CURRENT			POWER	P.F.
	IN	OUT		P-1	P-2	P-3		
REQ'D	0	0	50 gpm	--	--	--	--	--
ACTUAL	0	0	52 G.P.M.	.2	.2	.2	33	.45

DATE OF TEST April 3 75

PASSED X FAILED _____

Harry Martineau
 SIGNATURE

4. DIALECTRIC STRENGTH

1000 VOLTS, 60 CYCLES, FOR ONE (1) SEC. (RATE OF APPLICATION
500 V/SEC)

LEADS ABC (TIED TOGETHER) TO FRAME Motor pump SN #1063

DATE OF TEST 3-17-75

PASSED / FAILED —

Tom M. Wright
SIGNATURE

5. INSULATION RESISTANCE

500 VOLTS + 10% D.C., RESISTANCE MUST EXCEED 500 MEGOHMS

LEADS ABC (TIED TOGETHER) TO FRAME Motor pump SN #1063

DATE OF TEST 3-17-75

PASSED / FAILED —

Tom M. Wright
SIGNATURE

POST TEST OPERATIONS:

DRAIN PUMP

SEAL PORTS WITH CAPPLUG "K-5"

MICROPUMP

TEST

04-71-303-1421 S/N 1062

(G.E. PHILADELPHIA) VALLEY FORGE

1. TEST USING WATER @ 100°F.
2. 200 V., 400 V., 3Ø
3. MEASURE FLOW AT 16 PSI 18 GPH
- 3a. MEASURE FLOW AT 4 PSI 22 GPH
4. WHAT PRESSURE (MAX.) FOR 300 CC/MIN. 72 PSI
5. MUST NOT DECOUPLE AT BLOCKED FLOW.
6. PRESSURE AT BLOCKED FLOW 96 PSI
7. WATTS @ 15 PSI 35

Bob Otten, Jr.
BOB OTTEN

10/2/75
DATE

GLOBE MOTOR 33A2217A

22000/5500 RPM

16 - 40 WATTS

200V 400 HZ 3Ø

MODEL 204 PRESSURE TRANSDUCER OPERATING INSTRUCTIONS

GENERAL INFORMATION

Your Setra transducer has been carefully calibrated before shipment to you, and it should be handled with the same care given any precision instrument. Pressure range and dimensions are reported on the specifications bulletin for the transducer.

AMBIENT CONDITIONS

Do not use in ambient conditions corrosive to anodized aluminum, or submerged in liquids or subjected to spray or drip. The unit is not designed for use in very high vibration environment.

ATMOSPHERIC REFERENCE (Gage pressure transducers only).

Lower range units are subject to excessive thermal zero shift unless vented to atmosphere. The electrical cable provides this equalization vent. Do not seal the electrical cable when installing. Fluids or gases other than clean dry air should not be allowed to enter the cable.

ELECTRICAL CONNECTIONS:

<u>Cable Lead</u>	<u>Function</u>
White	positive excitation
Yellow	positive output
Brown	negative output
Black	negative excitation
Shield	case

ELECTRICAL

The pressure transducer must be operated with the case connected either to the negative excitation terminal or to the negative output terminal. Failure to do this may result in damage to or unsatisfactory operation of the unit. This connection may be made by connecting shield and back (-excitation) leads or shield and brown leads together. Most effective shielding against noise will be obtained by using the shield and -excitation leads.

Circuit is reversed voltage protected for at least 5 minutes. Internal transient suppression network is provided for short duration transients to 150 volts.

ADJUSTMENTS

Remove cover of transducer to get access to adjustments.

ZERO PRESSURE OUTPUT

Can be adjusted to zero by potentiometer as shown in diagram. Unit factory-adjusted to zero output.

SENSITIVITY

Can be adjusted by potentiometer as shown on outline diagram. Unit factory-adjusted to order specification.

LINEARITY DO NOT TOUCH

Factory-adjusted for best linearity. Touching any adjustments other than zero output or sensitivity may necessitate recalibration.

REVISIONS	DRAWN <i>O/H</i>	SETRA SYSTEMS, INC.	
	CHECKED <i>P/C</i>	ADJUSTMENTS MODEL 204 PRESSURE TRANSDUCER	
	APPROVED <i>D/S</i>	For G.E. Spec #ER47C231818	REV.

110171CW

Setra
Systems

TRANSDUCER CALIBRATION CERTIFICATE

MODEL: 204 SER. NO.: 6196

PRESSURE RANGE: 070-6 PSID

EXCITATION: 24 VOLTS D.C.

ZERO PRESSURE OUTPUT*: .715 mv

FULL RANGE SENSITIVITY*: .5023 VOLTS

OUTPUT NOISE: .145 mv RMS

DATE OF INSPECTION: 6-16-75

INSPECTOR: J.H.M.

PURCHASED BY: G.F.

PURCHASE ORDER NO: 0205410211

SETRA JOB ORDER NO: 3209

* AT $70 \pm 5^{\circ}$ F.

+51038

OUTPUT(VDC)

-2

-1

0

1

2

3

4

5

6

7

8

9

10

.015

.06

.12

.18

.24

.30

.36

.42

.48

.54

.60

PRESSURE(PSID)

NE

6.3 Supplemental Fabrication Information

The following GE internal memo is intended to supplement/update previous data contained in the interim, PDR and/or CDR reports:

PIR 1R60-75-171, "Electrical Component Burn-In".

PROGRAM INFORMATION REQUEST/RELEASE

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	-1R60	-75	-171	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM V. P. Long, Room #U-2432, VFSC		TO G. L. Fogal, Bioengineering Program Manager Room #U-1240, VFSC			
DATE SENT 9-10-75	DATE INFO. REQUIRED	PROJECT AND REQ. NO.		REFERENCE DIR. NO.	
SUBJECT ELECTRICAL COMPONENT BURN - IN					

INFORMATION REQUESTED/RELEASED

Since the BMS is a non-flight unit, it was decided to burn-in the majority of the components after board assembly during board checkout and system test. Most components are flat pack devices which are surface soldered and, therefore, easily removable, several components, however, have many leads which are inserted into the multilayer boards. Since these would be difficult to replace, it was decided to burn these in prior to board assembly.

One MN5203 A/D converter, two MN2002 references, two Spectrum Technology oscillators and nine DH006CH drivers fall into this category and were burned in as follows:

The A/D converter, references and oscillator were burned in for 336 hours at room temperature in a breadboard circuit exactly the same as the BMS printed wire boards. The DH006CH relay drivers were tested in a special fixture, in which they drove a resistive load equivalent to the relay. These drivers were tested at room temperature for 168 hours. In addition one driver was connected to the exact type relay being driven and cycled 35,000 times with no effect on either the driver or the relay. This is greater by a factor of 10 than the expected use of the relay.

cc: G. L. Fogal (3)
A. GarawitzORIGINAL PAGE IS
OF POOR QUALITYPAGE NO.
1 1
OF

RETENTION REQUIREMENTS	
COPIES FOR	MASTERS FOR
<input type="checkbox"/> 1 MO.	<input checked="" type="checkbox"/> 3 MOS.
<input type="checkbox"/> 3 MOS.	<input type="checkbox"/> 6 MOS.
<input type="checkbox"/> 6 MOS.	<input type="checkbox"/> 12 MOS.
<input type="checkbox"/> 12 MOS.	<input type="checkbox"/> 24 MOS.
<input type="checkbox"/> 24 MOS.	<input type="checkbox"/> FONOTATED

6.4 Test Report

PIR 1R60-75-XXX, "BMS Flight Prototype Test Results".

GENERAL ELECTRICSPACE DIVISION
PHILADELPHIA**PROGRAM INFORMATION REQUEST / RELEASE**

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	- 1R60 -	75	- 205	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM <i>JL</i> G. L. Fogal, Bioengineering Programs Room #U-2437, VFSC Extension - 5636	TO DISTRIBUTION		
DATE SENT 12-8-75	DATE INFO. REQUIRED	PROJECT AND REQ. NO. Modular Biowaste Monitoring System	REFERENCE DIR. NO.
SUBJECT BMS Flight Prototype Test Results			

INFORMATION REQUESTED/RELEASED**1.0 SUMMARY**

Operability of the BMS flight prototype model was demonstrated and operating performance data obtained using both urine and water as input fluids. No operational limitation were uncovered.

2.0 OBJECTIVE

Demonstrate operability of the BMS flight prototype model under both normal and contingency operating modes and obtain performance data.

3.0 TEST HARDWARE

BMS flight prototype, GE drawing ER47E231825, plus associated GSE hardware.

4.0 TEST DESCRIPTION

Tests of the flight prototype model were divided into four categories, i.e. operational procedures, volume measurement, sampling and mechanical/electronic.

Specific tests and results are as described below.

4.1 Mission Operational Procedures**4.1.1 Normal Procedures**

The integrated system test procedures as defined in the BMS OM and H Manual 75SDS4217, section 4.2.2. were successfully performed.

cc: G. L. Fogal (3) V. P. Long J. K. Mangialardi R. W. Murray	PAGE NO. 1 OF 30	RETENTION REQUIREMENTS	
		COPIES FOR	MASTERS FOR
		<input type="checkbox"/> 1 MO.	<input type="checkbox"/> 3 MOS.
		<input type="checkbox"/> 3 MOS.	<input type="checkbox"/> 6 MOS.
		<input type="checkbox"/> 6 MOS.	<input type="checkbox"/> 12 MOS.
		<input type="checkbox"/> MOS.	<input type="checkbox"/> MOS.
		<input type="checkbox"/>	<input type="checkbox"/> DO NOT DESTROY

4.1.2 Emergency Procedures

The contingency operating procedures as defined in the BMS OM and H Manual 75SDS4217, section 5.0 were successfully demonstrated.

4.2 Volume Measurement

4.2.1 Calibration

Two calibration tests were performed. After completing the first calibration, subsequent tests indicated that the fluid residual in the phase separator could be substantially reduced by increased the pump-out time following each flush water input. To accomplish this reduction in residual, the pumpout time was increased from 6.4 to 33.6 seconds. The pressure sensor zero offset was also readjusted to the same offset value observed during the first calibration tests. However no change was made in the pressure sensor gain adjustment. A second calibration was then performed. Results of these two calibration tests are shown in table 1 and plotted in Figures 1 and 2. Figure 3 shows an example of the raw data obtained from the TLM output.

Inspection of Figure 1 shows that an approximate calibration may be achieved by use of four linear sections and deriving a fluid volume equation for each section. This was accomplished with results as shown in Tables 2 and 3. The fluid volume equations are based on the theoretical equation

$$V = k \left[\frac{P}{S\omega^2} \right]^X \quad (1)$$

Where

V = Fluid volume
P = Pressure at phase separator periphery
 ω = rpm of phase separator
S = Fluid specific gravity
X and k = Constants

FIGURE 1(a) FIRST CALIBRATION TEST

FIGURE I (b) SECOND CALIBRATION TEST

FIGURE 2(a) FIRST CALIBRATION TEST

FIGURE 2(b) SECOND CALIBRATION TEST

	1055	
	3178	
	0000	
--	0003	
	1059	
	3175	
	0000	
--	0002	
	1061	
	3178	
	0000	
--	0001	
	1057	
	3178	
	0000	
--	0007	
	1061	→ PRESSURE
	3177	→ RPM
	0009	→ SAMPLE CONTAINER NUMBER
--	0006	→ USER ID
	1059	
	3178	
	0006	
--	0005	
	1062	
	3178	
	0000	
--	0004	
	1056	
	3178	
	0000	
--	0003	
	1059	
	3177	
	0000	
--	0002	
	1062	
	3178	
	0000	
--	0001	

FIGURE 3 TYPICAL TLM OUTPUT
(ACTUAL TAPE RECORD, 150 GRAM
INPUTS, SECOND CALIBRATION TEST)

Table 1 Calibration Test Data

Test Sample Grams	(PW ² /S) ¹	
	1st Calibration Test	2nd Calibration Test
10	1.229	0.346
25	2.500	1.425
50	4.373	3.719
75	6.407	5.578
100	8.111	7.621
150	10.975	10.693
200	13.631	13.454
250	16.313	16.093
300	18.912	18.726
350	21.290	-----
400	23.532	23.491
500	27.192	27.322
600	30.392	30.648
700	33.608	33.783
800	36.590	36.839
900	39.424	39.727

1. Mean value; based on 10 ambient temperature (70 to 75 °F) water samples and P and W equivalent pressure and rpm values X10⁻³ are as recorded by the GSE printer via the BMS TLM output.

Table 2 Fluid Volume Equations, First Calibration Test

Range		Equation ¹
Volume	$\left[\frac{PW^2}{S} \right]$	
1. Under 50 ml	Under 4.4	$V = 7.7 \left[\frac{PW^2}{S} \right]^{1.268}$
2. 50 to 100 ml	4.4 to 8.1	$V = 9.55 \left[\frac{PW^2}{S} \right]^{1.122}$
3. 101 to 425 ml	8.1 to 24.5	$V = 6.889 \left[\frac{PW^2}{S} \right]^{1.286}$
4. Over 425 ml	Over 24.5	$V = 2.791 \left[\frac{PW^2}{S} \right]^{1.572}$

¹Where

V = Fluid volume in ml

P = TLM output $\times 10^{-3}$ (pressure equivalent)

W = TLM output $\times 10^{-3}$ (rpm equivalent)

S = Specific gravity of fluid

Table 3 Fluid Volume Equations, Second Calibration Test

Range		Equation ¹
Volume	(PW ² /S)	
1. Under 50 ml	Under 3.7	$V = 20.53 \left[\frac{PW^2}{S} \right]^{0.6777}$
2. 50 to 100 ml	3.7 to 7.6	$V = 14.06 \left[\frac{PW^2}{S} \right]^{0.9661}$
3. 101 to 425 ml	7.6 to 24.6	$V = 8.188 \left[\frac{PW^2}{S} \right]^{1.232}$
4. Over 425 ml	Over 24.6	$V = 2.778 \left[\frac{PW^2}{S} \right]^{1.57}$

¹Where

V = Fluid volume in ml

P = TLM output X10⁻³ (pressure equivalent)

W = TLM output X10⁻³ (rpm equivalent)

S = Specific gravity of fluid

Table 4 Conversion Of TLM Outputs

RPM

$$\text{Phase separator RPM} = \frac{1250000}{\text{TLM rpm output}}$$

PRESSURE

$$\text{Pressure sensor voltage} = \frac{\text{TLM Pressure output}}{409.6}$$

Note: As adjusted by the vendor, a pressure sensor output of 10.00 volts corresponds to 0.6 psi. However, to compensate for a higher than anticipated pressure output, the pressure sensor gain was reduced. Thus as set for the second calibration test, a 10.00 volt output corresponds roughly to about 0.65 psi.

P and ω may be calculated from the TLM output (as shown in Table 4) or the TLM output may be used directly. Since the TLM output of rpm is actually proportional to $1/\omega$ then,

$$V = k^1 \left[\frac{PW^2}{S} \right]^x \quad (2)$$

Where

$$\begin{aligned} P &= \text{TLM output (pressure equivalent)} \\ W &= \text{TLM output (rpm equivalent)} \end{aligned}$$

For convenience, both P and W are divided by 1000.

The values of X in the fluid value equations, Tables 2 and 3, were calculated as in the following example (for Table 3, equation 4):

$$X = \frac{\log 900 - \log 500}{\log \left[\frac{PW^2}{S} \right]_{900} - \log \left[\frac{PW^2}{S} \right]_{500}} = \frac{0.25527}{0.16258} = 1.570$$

The value k^1 was then determined from equation (2) above. Thus

$$k^1 = \frac{V}{\left[\frac{PW^2}{S} \right]^x} = \frac{900}{(39.727)}^{1.570} = 2.778$$

and the equation (2) then becomes $V = 2.778 \left[\frac{PW^2}{S} \right]^{1.570}$ for fluid volumes greater than 425 ml.

4.2.2 Measurement Error

The standard deviation of (PW^2/S) was calculated for each calibration data point and plotted in Figure 4. This repeatability error represents the minimum which can be expected for the BMS.

FIGURE 4 REPEATABILITY ERROR

If the approximate fluid volume equations noted in section 4.2.1 are used, an addition error due to non-linearity (over each equation volume range) must be added to the repeatability error. Tables 7 and 6 show the magnitude of this linearity error. Table 7 shows the range of the combined error. If a smaller measurement error is desired, additional data points must be obtained and a calibration curve (rather than approximation equations) used, or additional fluid volume equations derived.

4.2.3 Fluid Temperature

The previously discussed calibration tests were made using ambient temperature (70 to 75°F) water as the fluid. Approximately 100°F water was also used to verify the pressure sensor temperature compensation feature. The latter appears to be operating as planned, see Table 8.

4.2.4 Urine Samples

Table 9 shows measurement results using urine samples. Comparing with Table 7, the measurement error appears to be somewhat larger than predicted by the calibration data. However, if Table 7 is based on a ± 3 sigma repeatability error, then the data of Table 9 is reasonably consistent with the calibration data.

4.2.5 Effect of Flush Cycle

Several test runs were made with the flush water tank disconnected to assess the effect of the flush cycle on the calibration. Using 400 ml ambient temperature water samples, PW²/S averaged 23.103 as compared to 23.491 with the flush tank operative (or about an 8 ml difference).

Table 5 Linearity Error, First Calibration Test

Input	Calculated Volume ¹	Linearity Error	
10 grams	10.00 ml	0.00 ml	0.00 %
25	24.61	-0.39	-1.56
50	50.00	0.00	0.00
75	76.75	1.75	2.33
100	101.67	1.67	1.67
150	150.01	0.01	0.00
200	198.23	-1.77	-0.89
250	249.73	-0.27	-0.11
300	302.02	2.02	0.67
350	351.71	1.71	0.49
400	399.95	-0.05	-0.01
500	502.00	2.00	0.40
600	597.94	-2.06	0.34
700	700.37	0.37	0.05
800	800.51	0.51	0.06
900	900.11	0.11	0.01

¹Using Table 2 equations

Table 6 Linearity Error, Second Calibration Test

Input	Calculated Volume ¹	Linearity Error	
10 grams	10.00 ml	0.00 ml	0.00 %
25	26.10	1.10	4.40
50	50.01	0.01	0.02
75	73.99	-1.01	-1.35
100	99.96	-0.04	-0.04
150	151.71	1.71	1.14
200	201.34	1.34	0.67
250	251.05	1.05	0.42
300	302.57	2.59	0.86
400	400.06	0.06	0.01
500	500.10	0.10	0.02
600	598.94	-1.06	-0.18
700	697.89	-2.11	-0.30
800	799.53	-0.47	-0.06
900	900.11	0.11	0.01

¹Using Table 3 equations

Table 7 Combined Error Range¹

Input	Linearity Error ³	Repeatability Error ² (2 sigma)	Combined Error (range)
10 grams	0.00 %	\pm 26.24 %	+26.24 to -26.24 %
25	4.40	\pm 4.93	+ 9.38 to - .58
50	0.02	\pm 1.70	+ 1.72 to - 1.68
75	-1.35	\pm 2.08	+ 0.73 to - 3.43
100	-0.04	\pm 0.90	+ 0.86 to - 0.94
150	1.14	\pm 0.48	+ 1.62 to + 0.66
200	0.67	\pm 0.76	+ 1.43 to - 0.09
250	0.42	\pm 0.54	+ 0.96 to - 0.12
300	0.86	\pm 0.28	+ 1.14 to + 0.58
400	0.01	\pm 0.30	+ 0.31 to - 0.29
500	0.02	\pm 0.24	+ 0.26 to - 0.22
600	-0.18	\pm 0.30	+ 0.12 to - 0.48
700	-0.30	\pm 0.20	- 0.10 to - 0.50
800	-0.06	\pm 0.18	+ 0.12 to - 0.24
900	0.01	\pm 0.10	+ 0.11 to - 0.09

¹Second Calibration Test Data

²Standard Deviation From Mean, ± 2 Sigma Level

³Using Table 3 Equations

Table 8 Warm Water Samples

Input Sample		$\frac{(PW^2)}{S}$	Calculated Volume ¹
Quantity	Temperature		
200 grams	100 °F	13.390	200.16 ml
200	101	13.392	200.19
400	100	23.411	398.40
400	100	23.441	399.01
600	101	30.629	598.36
600	103	30.742	601.83

¹Using Table 3 Equations

Table 9 Urine Samples

Input Sample		$(\frac{PW^2}{S})^1$	Calculated Weight ²	Error
Quantity	Temperature			
231. grams	98 °F	14.992	230.1 grams	-.04%
217.	75	14.415	219.2	1.01
172.5	75	11.949	174.0	0.87
95.5	75	7.227	95.0	-0.52
45.	98	3.058	43.8	-2.67
23.	75	1.338	25.0	8.69
20.	75	1.159	22.7	13.50
200.	40 ³	13.541	202.9	1.45
200.	60 (est.)	13.491	202.0	1.00
97.5	98	7.442	97.8	0.31
82	75	5.965	78.9	-3.78
70.5	75	5.122	68.1	-3.40
65.5	75	4.810	64.1	-2.14
47.	75	3.455	47.6	1.28

¹S=1.0

²Using Table 3 Equations And S=1.0 For Calculated Weight Comparison

³Refrigerated Sample

4.2.6 Test Procedure Error

The data noted in preceding sections also includes a procedural error, i.e., the difference between the input sample weight recorded and the actual weight of the sample. This error is estimated to be less than ± 0.5 grams.

4.2.7 Maximum Volume

With the pressure sensor zero offset and gain adjusted as for the second calibration test, the maximum measureable volume is about 970 ml. Since fluid pressures were somewhat higher than anticipated, further adjustment (to achieve 1000 ml measurements) was outside the pressure sensor gain adjust range. Thus, for all input volumes exceeding about 970 ml, the TLM pressure equivalent output P will be constant at 4096.

4.2.8 Vortex Uniformity

During fluid input, the fluid vortex in the phase separator is increasing in depth. Depending on the rate of fluid input, uniformity of vortex depth is lagging the fluid input. To assure vortex uniformity, a 10 to 15 second delay after completion of fluid input and actuation of PURG or DUMP switches was used in obtaining the data noted above (and is recommended for operational use).

4.3 Sampling

4.3.1 General

Both water and urine samples were obtained using the PURG/SAMP sequence. The total sample volume was easily controlled via the SAMP switch. After a few trials, fluid leakage thru the septum was observed. This leakage may have been caused by a small burr on the tip of the sample container "needle".

The septum was replaced and the needles deburred; no further leakage occurred. As a byproduct problem, fluid leakage thru the septum activates the sample container ID sensors. This causes the system to believe that a sample container is in place and thus inhibits other system operations. This condition is evident by the flashing COLL switch indicator light and by the sampling assembly illumination light ON condition. The system can be returned to normal by removing the fluid film from the ID sensors.

4.3.2 Overfill Protection

Several sample containers were completely filled (and thus subjected to full urine pump pressure) without leakage. However, internal venting of this pressure on removal of the sample container did not occur, resulting in external fluid release in the sampling assembly cavity (and activation of the ID sensors as noted in 4.3.1 above). This problem was eliminated by adding a second hole in the sample container needle. This second hole was located 0.100 inches further towards the needle tip from the first hole. Thus, after inadvertant overfilling (pressurizing) of the sample container, withdrawing the sample container about 0.100 inches and holding in this position for 5 to 10 seconds permits the sample container to vent internally (as originally planned). The sample container may then be removed. Note that for small fluid volume inputs to the system, a mixture of fluid and air will be pumped into the sample container. To offset any residual compression of this air, the above withdrawal procedure should be used.

4.3.3 Cross - Contamination

No rigorous evaluation of cross - contamination was attempted. Instead, first cut evaluation was made by adding a 87 ml fresh urine fluid input followed by the dump and flush cycles. A second 50 ml fresh water fluid input was then added.

Next, a 10 ml sample was obtained (via a sample container) and visually compared with the fresh water input. No difference in color was observed. A second test using 54 ml of urine and followed by a 50 ml fresh water input gave the same result.

The phase separator residual was found to be about 12 ml. This volume was determined by removing the phase separator inlet side housing (immediately following the last flush cycle) and pouring out the residual fluid.

The residual consists of flush water and carryover from the previous fluid input. The worse case is a very large previous urine input so that the carryover is essentially urine, i.e., flush water from previous cycle has negligible effect on residual composition. Under this condition (large urine input), and based on a 12 ml residual and two 59 ml flush water cycles, 0.343 ml of urine will remain in the residual, (compared to the 0.5 maximum specified). For a relatively small (100 ml) urine input, 0.272 ml will be retained in the residual for mixing with next fluid input. For the above worse case condition, Figure 5 shows the percentage of urine in the next fluid input carried over from the previous input.

If a lower cross-contamination level is desired, a second flush can be initiated before the next system use.

4.3.4 Septum Life

Separate septum life tests were accomplished (see PIR 1R60-75-159 for details). Test results indicate a septum life in excess of 500 sample container insertion/withdrawal cycles.

4.3.5 Storage

A prototype sample container was filled with urine and stored at 0°F. The subsequent freezing action did not damage or expand the sample container.

* WORSE CASE CONDITION

FIGURE 5 CROSS-CONTAMINATION

4.3.6 Purge Volume

Purge volume was determined indirectly by noted the pressure sensor output voltage (via the test connector) just before and after actuation of the PURG switch. These values were then related to fluid volume using Figure 2. The purge volume was consistant at 14 ml for the fluid inputs checked (150,200 and 700 ml).

4.4 Mechanical/Electrical

4.4.1 Mechanical

4.4.1.1 Operating Time

Figure 6 shows system operating time from start of the dump cycle to automatic shut-off. Note that the time from start DUMP to TLM out includes a 25.6 sec delay triggered when the pressure sensor output drops to about 0.7 volts (equivalent to about 40 ml remaining in the phase separator).

The apparent higher pump-out rate for an increase in input volume may be due to two factors. As the input volume increases, the input pressure to the urine pump increases thus increasing the flow rate. When the fluid volume remaining in the phase separator drops to below about 75 ml, some air starts to be pumped along with the fluid, the proportion of air increasing as pump-out continues. Thus the fluid flow rate drops and a proportionate longer time is required before the 40 ml trigger (cut-off) level is reached.

4.4.1.2 Urine Pump Rate

Figure 7 shows the average urine pump flow rate required to reduce the initial input volume down to the 40 ml cut-off level.

FIGURE 6 CYCLE TIME

FIGURE 7 URINE PUMP FLOW RATE

4.4.1.3 Flush Water Use

With the urinal hose disconnected from the phase separator, the flush water input was collected and weighted. The amount per flush averaged 59 ml. Assuming an effective portable flush water reservoir capacity of 5.0 liters (total volume minus 5%), 42 BMS use cycles are possible before refilling the portable reservoir.

4.4.1.4 Transport Airflow

The pressure drop due to the transport air flow was measured in two separate tests: one for the urinal hose and urinal; the other for the BMS hardware without the urinal or outlet hoses connected. Test results are shown in Figure 8. Curve A shows the pressure drop at various flow rates for the urinal hose only. Curve B shows the results for the BMS without the urinal or outlet hose. The two curves are added to show the total pressure drop through the system.

The plots do not show the contribution of the outlet hose. The ID of this hose is larger than that of the urinal hose and the length has been arbitrarily selected (as it will depend on the relative position of the BMS and the WCS). In its present configuration, this hose contributes a pressure drop of 1/2 inch W. G. Max. at 8 CFM.

4.4.1.5 Component Operating Temperatures

During the calibration tests, the BMS (with aft cover removed for access to the test connector) was operated almost continuously over periods ranging up to about three hours duration. At no time did the surface of such active elements as the motors or electronic box feel more than slightly warm to the touch.

4.4.2 Electrical

FIGURE 8 AIRFLOW/PRESSURE DROP

4.4.2.1 Shock Hazard

The resistance between the ground strap terminal and the phase separator motor was determined to be less than 0.01 ohm (lower reading limited by sensitivity of meter). Similar results were obtained for the ground strap terminal and bezel combination.

4.4.2.2 Limit Voltage Operation

A DC Input range of 24 to 32 volts did not appear to influence the operation of the BMS.

4.4.2.3 Input Power

Table 10 shows the phase separator motor power characteristics; Table 11 shows the phase separator motor power as a function of input fluid volume. Based on these two tables, phase separator input power will range from about 24 to 34 watts.

BMS peak input power occurs at actuation of either the PURGE, SAMP or DUMP switches. At this instant, the urine pump, phase separator, solenoid valve and electronics are all operating. Thus peak power required for the BMS is as shown in Table 12.

4.5 Misc. Observations/Data

4.5.1 Airflow Sensor

The airflow sensor set point must accommodate the increased air temperature due to 100°F fluid inputs. Thus the set point, if based on cooler ambient temperature airflow, may be too low. This will cause the airflow sensor to erroneously indicate a low airflow condition for 100°F fluid inputs.

4.5.2 Number of Tests

Between 400 and 500 COLL/DUMP sequences were successfully completed to obtain the test data noted in this report.

Table 10 Phase Separator Power¹

Motor Speed	Motor Power	
	Input	Output
398.1 rpm	20 watts	0 watts
394.8	28	8
391.4	38	17
388.1	47	25
381.4	56	34
368.0	67	40

¹As Supplied by Motor Vendor

Table 11 Phase Separator Operating Speed

Input Volume ¹	Operating Speed Range ²
0 ml	395.6 to 396.4 rpm
50	393.9 to 394.3
100	393.7 to 394.3
200	393.3 to 393.9
300	393.2 to 393.6
400	393.0 to 393.3
500	393.2 to 394.1
600	392.8 to 394.1
700	392.7 to 394.6
800	392.6 to 393.0
900	392.7 to 393.1

¹Ambient Temperature Water

²Data From Second Calibration Test; Input Voltage Frequency Constant at 398/399 Hz

Table 12 Estimated BMS Peak Power

Component	Est. Power Required	
	400 Hz	DC
Phase Separator	34 watts	--
Urine Pump	25	--
Solenoid Valve	--	7 watts
Electronics	--	1
	<u>59 watts</u>	<u>8 watts</u>

6.5 GSE Supplemental Information

GE sketch 56236-680, "Interconnect Wiring Diagram", BMS GSE.

PIR 1R60-75-160, "Ground Station Receiver Design".

Recorder, Model DPP-7, Datel Systems, Inc.

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE IS
OF POOR
QUALITY

5

4

TOP

3

2

TB 1

TB 2

- 1 +5 V DC (WH)
- 2 RET (BLK)
- 3 RET (BLK)
- 4 +15 V DC (R)
- 5 -15 V DC (WH)
- 6 TLM FROM BMS
- 7 TLM FROM BMS
- 8 TLM -HD
- 9 BLOWER
- 10 BLOWED

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES.
TOLERANCES ON:

FRACTIONS DECIMALS ANGLES

\pm \pm \pm

ALL SURFACES

MATL

SIGNATURES DAY NO. VR

DRAWN T. L. KLEIN CHECKED

ISSUED

ENGRG

MFG

MATLS

GENERAL ELECTRIC
DEPT LOC

INTERCONNECT
WIRING DIAGRAM

SIZE CODE IDENT NO
B BMS SK 56236-68C

SCALE SHEET

5

4

TOP

3

2

D

D

C

C

B

B

A

A

GENERAL ELECTRICSPACE DIVISION
PHILADELPHIA**PROGRAM INFORMATION REQUEST/RELEASE**

PIR NO.	*CLASS. LTR.	OPERATION	PROGRAM	SEQUENCE NO.	REV. LTR.
	U	1R60	75	160	

*USE "C" FOR CLASSIFIED AND "U" FOR UNCLASSIFIED

FROM V. P. Long, Jr.
Room U-2432, VFSC, Ext. 1469

TO G. L. Fogal
Room U-1240, VFSC, Ext. 5636

DATE SENT 8/7/75	DATE INFO. REQUIRED	PROJECT AND REQ. NO.	REFERENCE DIR. NO.
---------------------	---------------------	----------------------	--------------------

SUBJECT
GROUND STATION RECEIVER DESIGN

INFORMATION REQUESTED/RELEASED

The ground station receiver accepts the serial data transmitted by the BMS decodes, stores, and converts it to a printed format.

Referring to schematic 1, the incoming Manchester II biphase data is converted to TTL level by A3 and its associated circuits. It should be noted that the input is transformer-coupled into A3. A18 and A7 form a transition detector resetting A15. A15 is a counter used to extract a 2 MHz clock from the data. A16 is a 16 MHz crystal oscillator which drives A15. The generated 2 MHz clock is used to sample the incoming data stream A5, A6, and A8 forming a detector for the illegal Manchester II bit characterizing sync. Upon its detection, a 1 MHz clock is formed which is used to clock the remaining 16 bits of data (17 bits minus parity) into the data storage register consisting of A20, A30, A29, A28, A27 and A26. This process is repeated for the remaining two words in a transmission.

Referring to schematic 2, A37 is a timer which activates the print cycle approximately one millisecond after detection of the first sync. A9, A10, A11, A14, A24 and A25 perform the logic necessary to control selector switches A38, A39, A40, A48, A49, A50 and A45 which select the data to be printed on each line. A53 through A60 perform a binary-to-binary-coded-decimal conversion upon the received data. The resultant outputs are presented to the printer.

A35 provides the necessary pulse width for the PRINT command. The pulse width is not critical, the one millisecond value being in the middle of the acceptable range (1 microsecond to 300 microseconds). The PRINT command is delayed by A34 to allow time for the data to settle after being switched at the end of the preceding line.

Figures 6 and 7 are timing diagrams for the above processes. Figures 3, 4 and 5 contain wiring details.

G. Fogal (3)
File

PAGE NO. 1 OF 1	RETENTION REQUIREMENTS	
	COPIES FOR	EXACTORS FOR
<input type="checkbox"/> 1 MOS.	<input type="checkbox"/> 3 MOS.	
<input type="checkbox"/> 3 MOS.	<input type="checkbox"/> 5 MOS.	
<input type="checkbox"/> 6 MOS.	<input type="checkbox"/> 12 MOS.	
<input type="checkbox"/> 12 MOS.	<input type="checkbox"/> 24 MOS.	
<input type="checkbox"/> 48 MOS.		

ORIGINAL PAGE IS
OF POOR QUALITY

FOLD	3	2	B																																																																				
REVISIONS																																																																							
ZONE	LTR	DESCRIPTION		DATE	APPROVED																																																																		
D C I																																																																							
<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td colspan="3" style="padding: 5px;">UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES. TOLERANCES ON: FRACTIONS DECIMALS ANGLES \pm \pm \pm</td> <td colspan="3" style="padding: 5px;">SIGNATURES</td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">DRAWN</td> <td style="text-align: center;">DAY</td> <td style="text-align: center;">MO</td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">CHECKED</td> <td style="text-align: center;">YR</td> <td></td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">ISSUED</td> <td></td> <td></td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">ENGRG</td> <td></td> <td></td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">MFG</td> <td></td> <td></td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">MATERIAL</td> <td></td> <td></td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">SIZE</td> <td colspan="2" style="text-align: center;">CODE IDENT NO.</td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">B</td> <td colspan="2"></td> </tr> <tr> <td colspan="3"></td> <td style="text-align: center;">SCALE</td> <td colspan="2"></td> </tr> <tr> <td colspan="3"></td> <td></td> <td colspan="2" style="text-align: center;">SHEET</td> </tr> </table> <p style="text-align: center;">GENERAL ELECTRIC DEPT LOC</p> <p style="text-align: center;">RECEIVER</p> <p style="text-align: right;">DIST TO</p>						UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES. TOLERANCES ON: FRACTIONS DECIMALS ANGLES \pm \pm \pm			SIGNATURES						DRAWN	DAY	MO				CHECKED	YR					ISSUED						ENGRG						MFG						MATERIAL						SIZE	CODE IDENT NO.					B						SCALE							SHEET	
UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES. TOLERANCES ON: FRACTIONS DECIMALS ANGLES \pm \pm \pm			SIGNATURES																																																																				
			DRAWN	DAY	MO																																																																		
			CHECKED	YR																																																																			
			ISSUED																																																																				
			ENGRG																																																																				
			MFG																																																																				
			MATERIAL																																																																				
			SIZE	CODE IDENT NO.																																																																			
			B																																																																				
			SCALE																																																																				
				SHEET																																																																			

FOLD

3

2

FOLDOUP FRAME 2

A19-7
A19-8
A19-9
A19-10

+5V 2.7K
100PF
A19-11

REVISIONS

ZONE	LTR	DESCRIPTION	DATE	APPROVED

ORIGINAL PAGE IS
OF POOR QUALITY

PRINT
FORMAT

2 3 4 5
5 7 4 5
0 0 0 6
3 5 4 4
2 3 1 0
0 0 0 4
3 3 1 3
4 0 2 1

(2)

PULL UP
+5 VOLTS

UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES. TOLERANCES ON: FRACTIONS DECIMALS ANGLES			SIGNATURES	DAY	MO	YR
			DRAWN			
			CHECKED			
			ISSUED			
			ENGRG			
			MFG			
			MATL.	MATERIALS		

GENERAL ELECTRIC
DEPT LOC

BINARY-TO-BCD / PRINTER CONTROL

SIZE	CODE IDENT NO.
B	
SCALE	

SHEET

DIST
TO

FOLD

3

2

FOLDOUT FRAME 2

FROM	TO
A60 - 6	A47 - 1
A60 - 5	A47 - 2
A60 - 4	A47 - 3
A60 - 3	A47 - 4
A60 - 2	A47 - 5
A60 - 1	A47 - 6
A59 - 5	A47 - 7
A59 - 4	A46 - 1
A59 - 3	A46 - 2
A59 - 2	A46 - 3
A59 - 1	A46 - 4
A58 - 5	A44 - 4
A58 - 4	A44 - 5
A58 - 3	A44 - 6
A58 - 2	A44 - 7
A58 - 1	A43 - 1
A57 - 6	A46 - 5
A57 - 5	A46 - 6
A57 - 4	A46 - 7
A57 - 3	A44 - 1
A57 - 2	A44 - 2
A57 - 1	A44 - 3
A56 - 5	A43 - 2
A56 - 4	A43 - 3
A56 - 3	A43 - 4
A56 - 2	A43 - 5
A56 - 1	A43 - 6
A55 - 5	A43 - 7
A55 - 3	A36 - 2
A55 - 2	A36 - 3
A55 - 1	A36 - 4

UNLESS OT
DIMENSION
TOLERAT
FRACTIONS
+
-
ALL SURFA
MATL.

FOL

B

REVISIONS

ZONE	LTR	DESCRIPTION	DATE	APPROVED

NOTE: ALL "TO" ENTRIES ARE RETURNED TO +5 Volts
VIA a 2.4K RESISTOR.

(3)

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES.
TOLERANCE IS ON:

FRACTIONS DECIMALS ANGLES
 $\frac{+}{-}$ \pm \pm

ALL SURFACES

MATL-

SIGNATURES

DAY MO YR

DRAWN

CHECKED

ISSUED

ENGRG

MFG

MATS

GENERAL ELECTRIC
DEPT LOC

RESISTOR PULLUP LOCATIONS FOR:
SN74185 INTEGRATED CIRCUITS

SIZE CODE IDENT NO.

B

SCALE

SHEET

DIST TO

FOLD

3

2

WOLDOOT FRAME

C1

FROM	TO
C1-A1	C1-A3, C1-B2
C1-A2	NC
C1-A3	C1-A1, C1-A4
C1-A4	C1-A3, C1-A5, C3-8
C1-A5	C1-A4, C1-A6
C1-A6	C1-A5, C1-A7
C1-A7	C1-A6
C1-A8	NC
C1-A9	C4-3
C1-A10	C4-7
C1-A11	NC
C1-A12	NC
C1-A13	C4-2
C1-A14	C3-5
C1-A15	C3-1
C1-B1	C3-12
C1-B2	C1-A1, C1-B3
C1-B3	C1-B2, C1-B6
C1-B4	NC
C1-B5	NC
C1-B6	C1-B3, C1-B7
C1-B7	C1-B6, C1-B11
C1-B8	C4-1
C1-B9	C4-5
C1-B10	NC
C1-B11	C1-B7
C1-B12	NC
C1-B13	NC
C1-B14	C3-14
C1-B15	C4-6

C2

FROM	TO
C2-A1	NC
C2-A2	NC
C2-A3	NC
C2-A4	NC
C2-A5	NC
C2-A6	NC
C2-A7	NC
C2-A8	NC
C2-A9	NC
C2-A10	NC
C2-A11	NC
C2-A12	NC
C2-A13	C3-3
C2-A14	NC
C2-A15	C3-7
C2-B1	NC
C2-B2	NC
C2-B3	NC
C2-B4	NC
C2-B5	C4-14
C2-B6	NC
C2-B7	C3-4
C2-B8	NC
C2-B9	NC
C2-B10	C2-2
C2-B11	C3-6
C2-B12	C3-13
C2-B13	NC
C2-B14	C4-4
C2-B15	C4-8

C3

FROM	TO
C3-1 (P44)	C1-A15
C3-2 (P45)	C2-B10
C3-3 (P46)	C2-A13
C3-4 (P47)	C2-B7
C3-5 (P48)	C1-A4
C3-6 (P49)	C2-B11
C3-7 (P50)	C2-A15
C3-8 (P15)	C1-A4
C3-9 (P14)	NC
C3-10 (P13)	NC
C3-11 (P12)	NC
C3-12 (P11)	C1-B1
C3-13 (P10)	C2-B2
C3-14 (P9)	C1-B14

FOLDOUT FRAME

ORIGINAL PAGE IS
OF POOR QUALITY

UNLESS
DIMENS
TOLERA
FRACTION
+ -
ALL SUR
MATERIAL

REVISIONS

ZONE	LTR	DESCRIPTION	DATE	APPROVED

C3C4

FROM	TO
-1 (P44)	C1-A15
-2 (P45)	C2-B10
-3 (P46)	C2-A13
-4 (P47)	C2-B17
-5 (P48)	C1-A4
-6 (P49)	C2-B11
-7 (P50)	C2-A15
-8 (P15)	C1-A4
-9 (P14)	NC
-10 (P13)	NC
-11 (P12)	NC
-12 (P11)	C1-B1
-13 (P10)	C2-B2
-14 (P9)	C1-B14

FROM	TO
C4-1 (P12)	C1-B8
C4-2 (P53)	C1-A13
C4-3 (P54)	C1-A9
C4-4 (P55)	C2-B14
C4-5 (P56)	C1-B9
C4-6 (P57)	C1-B15
C4-7 (P58)	C1-A10
C4-8 (P23)	C2-B15
C4-9 (P22)	NC
C4-10 (P21)	NC
C4-11 (P20)	NC
C4-12 (P19)	NC
C4-13 (P18)	NC
C4-14 (P17)	C2-B5

NOTES:

1. C1, C2 are located on the rear of the DIGITAL PANEL PRINTER

2. C3, C4 are located within the output jack field of the wire wrap board. The P-numbers refer to the output pin numbers in the jack field.

(4)

UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES. TOLERANCES ON: FRACTIONS. DECIMALS ANGLES \pm \pm \pm		SIGNATURES	DAY	MO	YR
		DRAWN			
		CHECKED			
		ISSUED			
		ENGRG			
		MFG			
		MATLS			
ALL SURFACES MATL.		GENERAL ELECTRIC DEPT LOC			
		IN-TRAC CONNECTIONS - WIRE WRAP CONNECT TO DANIEL PRINTER			
		SIZE	CODE IDENT NO.		
		B			
		SCALE	SHEET		

C5

C5-1 (P36)	+5 VOLT
C5-2 (P37)	NC
C5-3 (P38)	-15 VOLT
C5-4 (P39)	NC
C5-5 (P40)	DATA
C5-6 (P41)	NC
C5-7 (P42)	DATA
C5-8 (P7)	NC
C5-9 (P6)	NC
C5-10 (P5)	NC
C5-11 (P4)	NC
C5-12 (P3)	-15 VOLT
C5-13 (P2)	NC
C5-14 (P1)	+5VOLT

C6

C6-1 (P64)	VC
C6-2 (P65)	NC
C6-3 (P66)	NC
C6-4 (P67)	NC
C6-5 (P68)	NC
C6-6 (P69)	NC
C6-7 (P70)	GND
C6-8 (P35)	GND
C6-9 (P34)	NC
C6-10 (P33)	NC
C6-11 (P32)	NC
C6-12 (P31)	NC
C6-13 (P30)	NC
C6-14 (P29)	NC

ORIGINAL PAGE IS
OF POOR QUALITY

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES
TOLERANCES ARE IN THOUSANDS OF AN INCH
FRACTIONAL TOLERANCES ARE IN HUNDREDTHS OF AN INCH
+ = MAXIMUM
- = MINIMUM

ALL SURFACES
MATL.

REVISIONS

ZONE	LTR	DESCRIPTION	DATE	APPROVED

D

C

NOTES:

1. C5,C6 are located within the output jack field of the wire wrap board. The Pnumbers refer to the output pin numbers in the jack field.

(5)

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES.
TOLERANCES ON:

FRACTIONS DECIMALS ANGLES
 \pm \pm \pm

ALL SURFACES

SIGNATURES	DAY	MO	YR
DRAWN			
CHECKED			
ISSUED			
ENGRG			
MFG			
MATLS			

GENERAL ELECTRIC

DEPT LOC

INTERCONNECTIONS - WIRE WRAP BOARD
TO POWER SUPPLY & DATA

SIZE CODE IDENT NO.

B

SCALE

SHEET

DIST TO

TOP ↑

3

2

FOLDOUT FRAME 2

FIGURE 6 RECEIVE TIMING

FIGURE 7 PRINT TIMING

DIGITAL PANEL PRINTER

Model DPP - 7

• THERMAL PRINthead
USES NO INK OR
HAMMERS

• PANEL-MOUNTING
FEATHERWEIGHT (2.3 LB.)

• 6 DIGITS AND SIGN UP
TO 3 LINES PER SECOND

• +5VDC OR AC LINE
POWER

• INCLUDES ALL BCD TTL
ELECTRONICS

DATEL
SYSTEMS, INC.

COVERED BY
GSA CONTRACT
NO. GS-00S-27959

DATEL
SYSTEMS, INC.

DPP-7

ADVANCE
REMOTE
PRINT

Connect a miniature
DPP - 7 Thermal
Printer to your Digital
Panel Meter.
The DPP - 7 under-
stands a DPM's
language!!

ORIGINAL PAGE IS
OF POOR QUALITY

DPP-7 DIGITAL PANEL PRINTER

FEATURES

- 3 Lines/Second OEM-Reliable Thermal Printer
- Includes All Electronics for BCD Inputs
- 6 Numeric Columns and Sign
- Selectable Leading Zero Blanking
- Positive or Negative True TTL/DTL Inputs
- +5VDC Power (2.3 lbs.) or AC (4.2 lbs.)
- \$475.00 Single Quantity
- Last Line Visible Immediately After Printing

DESCRIPTION

Imagine a low cost 7-column panel-mounting printer just slightly larger than most digital panel meters. Imagine this lightweight, high-reliability digital panel printer installed in your instrument or system front panel. And imagine an inkless, non-impact thermal printing method with only two moving parts which will last for years.

This is Date's miniature 3 line per second DPP-7 thermal panel printer. A no-nonsense, simple to apply, OEM-designed digital output device that weighs in at only 2.3 pounds (1.1Kg). OEM features are designed in to the DPP-7 such as selectable leading zero blanking, selectable positive or negative true coding inputs and choice of +5VDC or AC line power. Full parallel TTL input BCD electronics are included as standard.

Other OEM design features include a selection of printout formats, manual print and advance front panel switch, and a low-paper switch output. A unique mounting technique uses an aluminum housing which attaches directly through a front panel cutout. This housing permanently holds the electronics, although the mechanical assembly can be completely removed for paper replacement using a single front panel thumbscrew. As the mechanical assembly is removed, it disconnects from the internal electronics PC board connectors, so that no internal power voltages are exposed during paper reloading. However, the external PC board connectors at the rear of the case remain connected to the internal electronics.

The housing supports the weight of the mechanical assembly and is mounted on a front panel through a 4.50" x 2.72" cutout and secured by four screws. Three DPP-7 panel printers can conveniently be mounted across a 19" x 3-1/2" high rack mount panel.

OEM pricing makes the DPP-7 ideal for instrument products. Comparable impact parallel printers with BCD decoding and drive electronics usually list for more than the DPP-7.

Standard 1-3/4" wide thermographic papers are used in handy 150 foot rolls giving about 9,000 lines per roll with 5 lines per inch. The 7-segment digits are .155" high with left-of-digit decimal points selectable at each digit. Seven column printing formats include sign and six digits or 2-channel (ident) digits, sign and 4 data digits. Other 7 column decimal formats are also available.

The DPP-7 Digital Panel Printer extends back 6.2" from the front surface of the mounting panel (8.62" for the AC powered versions), including space allowance for the two 30-conductor PC board connectors or AC fuses.

Three universal AC line voltages (100, 115, and 230 VAC) will power the DPP-7 Printer as well as +5VDC at 20 watts average (8 Amps peak).

The DPP-7 is ruggedly built, using a simple, but sophisticated mechanical design which is optimized for heavy duty OEM applications. A proprietary printhead character coating allows the head to be conservatively rated at 3 million lines.

HIGHLIGHTS

2.3 Lb. Panel-Mounting Featherweight

At 2.3 pounds (1.1Kg) the DPP-7 DC version is one of the lightest panel-mounted recording instruments available. It is directly compatible with the size, shape and interfacing of Digital Panel Meters.

OEM Reliable – only Two Moving Parts

Instead of the usual assembly of ratchets and gears, the DPP-7 Digital Panel Printer needs only two long-life moving parts – a linear solenoid and rotary clutch. Two 1/8" excursions of this solenoid connected to the one-direction rotary clutch cause one line advance. There are no banging hammers or twirling printwheels to fail and to cost extra in assembly. All electronics use low power Schottky TTL logic, assuring minimal heat rise and long, service-free life. Components have been generously derated and were selected particularly for their OEM reliability. A full one-year warranty provides further assurance of product excellence. An absolute minimum of maintenance is needed. Printhead cleaning required in other thermal printers can safely be ignored because of the wiping action of the paper.

Complete with Binary Coded Decimal Inputs

Datel's Miniature DPP-7 Printer is complete with BCD electronics. Many competitive printers don't include full parallel BCD or if they do, it is an expensive additional chassis with bulky cabling and unique power requirements. Datel's little DPP-7 printer is ready to use and all BCD I/O logic (with selectable positive or negative true TTL coding) is built in.

+5VDC or AC Line Powered

Take your pick of power voltages. Use either +5 Volts DC or 100, 115, or 230 Volts AC, 47 to 440 Hz. The +5VDC printer offers the smallest package, only 6.2 inches (158 mm) deep and only 2.3 pounds (1.1Kg). The +5V version requires a regulated power supply capable of 8 Armps peak during print cycles while the AC version can accept a variety of universal worldwide power voltages and is slightly longer than the DC version.

Thermal Printhead

Printing couldn't be simpler. Heat-sensitive thermographic paper is positioned under six decimal digits in 7-segment format. Each digit consists of conductive thickfilm resistor matrix segments deposited on a ceramic substrate. Segment-parallel, digit-serial power pulses are applied to each digit for 25 milliseconds. I^2R heating then darkens the paper in contact with the heated segments, leaving crisp, black printed digits. A proprietary, thermally conductive surface on the thickfilm elements has high wear resistance allowing a conservative 3 million line printhead life. Characters are formed along the bottom edge of the printhead so they may be viewed immediately after printing.

ORIGINAL PAGE IS
OF POOR QUALITY

SPECIFICATIONS (TYPICAL @ +25°C UNLESS NOTED)

General

Number of columns: 7

7-column formats available:

- a) Leading ± sign and 6 decimal digits
- b) 2 leading ident or channel digits, ±sign and 4 data digits

Decimal digit format:

7-segment 0 to 9 digits .155" (4 mm) high with 10° slant and selectable left decimal point.

Printing method:

Thick film thermal print head, black characters on white paper (using 3M Type 161 paper)

Printer paper:

1.75" wide x 150 feet long, (44.5 mm x 45 m), 3M-type 161 thermal paper roll with the thermal surface facing away from the center of the roll.

Paper advance:

Via linear solenoid and one-direction rotary clutch.

Performance

Max. printing rate: 3 lines per second

Print and paper advance cycle: 330 milliseconds

Line spacing: 0.2 inch (5 mm)

Line density: 5 lines per inch

Line capacity per paper roll: approx. 9,000 lines

Minimum print head life: 3 million lines

Average print pulse on-time: 25 mSec. (height varied by temperature feedback)

Inputs

DTL/TTL compatible, selectable positive or negative true, level sensitive. TTLLS low power Schottky logic used on all inputs.

Logic Levels:

Positive true:	$+2.0V \leq "1" \leq +5.0V$	Note TTLLS logic levels
	$0V \leq "0" \leq +0.5V$	
Negative true	$0V \leq "1" \leq +0.5V$	
	$+2.0V \leq "0" \leq +5.0V$	

Note: Pullup resistors to +5V may be optionally removed on all inputs and outputs.

Data: (24 lines)

Full parallel BCD (1-2-4-8), selectable positive or negative true, 1 TTLLS load plus 10 K ohm pullup to +5V. May be used with Form A (normally open) or Form C (normally closed) switch closure inputs. Level sensitive (rise-time non-critical).

Change Data Polarity: (Pin C1-B11)

Selects input polarity of data, decimal points and ± sign simultaneously.

LOW = positive true coding

HIGH = negative true coding

6 TTLLS loads, plus 1 K ohm pullup to +5V, level sensitive

Print and Advance Command: (Pin C1-B14)

Level sensitive for Form A or Form B contact closure,

selectable positive or negative true.

1 TTLLS load plus 10K ohm pullup to +5V.

Pulse Width: 1 microsecond to 200 mSec (data must be valid 1 μsec. after leading edge and 500 nSec. before the print command).

Maximum print command rate: 3 per second.

Paper advance automatically occurs after digit printing. Holding print command TRUE longer than the busy output is true (200 to 330 mSec, typ) causes continuous 3 lines/sec. printing.

Change Print Polarity: (Pin C1-B7)

HIGH = negative true coding

LOW = positive true coding

1 TTLLS load, plus 10K ohm pullup to +5V, level sensitive.

Leading Zero Suppress: (Pin C1-B4) blanks all leading zero's to the left of decimal point except a zero just left of the decimal point

HIGH = Leading 0's blanked

LOW = full print (no suppression)

2 Low Power TTL loads, plus 10K ohm pullup to +5V, level sensitive.

Minus Sign: (Pin C1-B1)

Selectable positive or negative true using data level select input.

1 TTLLS load, plus 10K ohm pullup to +5V, level sensitive.

Plus Sign: (Pin C1-A5)

(Selectable positive or negative true using change data polarity input). (Minus sign must also be printed since it is used as the horizontal portion of the plus sign).

1 TTLLS load, plus 10K ohm pullup to +5V, level sensitive.

Note: Printing "plus" sign only results in vertical portion of plus sign. See above. Usable as 100% overrange digit.

Blanked Character:

Created by loading 1-1-1-1 in a given column. Can be hard-wired.

Decimal Points: (6 lines)

1 TTLLS load, plus 10K ohm pullup to +5V, level sensitive.

(Selectable positive or negative true using change data polarity inputs).

No-Print Paper Advance: (Pin C1-A3)

Ground this line 70 ± 5 mSec to advance one line. Hold to ground for continuous advance at 6.7 lines per second.

1 TTLLS load plus 10K ohm pullup to +5V.

No Print Paper Advance:

May also be created by loading the illegal BCD character 1-1-1-1 in all decimal locations, and disabling all decimal points and ± signs, then initiating a print/advance command.

Test: (Pin C2-B6)

LOW = ± .8 .8 .8 .8 .8 printout when print/advance command is given.

1 TTLLS load, plus 10K ohm pullup to +5V, level sensitive.

Change Busy Polarity: (Pin C1-A2)

HIGH = positive true busy out

LOW = negative true busy out

1 TTLLS load, plus 10K ohm pullup to +5V, level sensitive.

SPECIFICATIONS

Outputs

DTL/TTL compatible

Positive true: $0V \leq "0" \leq +0.4V$
 $+2.4V \leq "1" \leq +5.0V$

Negative true: $+2.4V \leq "0" \leq +5.0V$
 $0V \leq "1" \leq +0.4V$

Busy: (Pin C2-B12) (Open collector TTL 7438 with 1K ohm pullup to +5V)

Remains TRUE during print and advance cycle (approximately 200 to 330 milliseconds). Data inputs may be changed 500 nSec. after transition to TRUE. Next print command can be enabled when busy goes FALSE. Selectable positive or negative true. 10 TTL loads.

Out of Paper: (Pin C2-B4) see dwg. pg. 10

Switch opening via mechanical pawl when approx. 6' (2m) of paper are left on roll. Paper roll visually indicates "low paper" within 10 to 15 feet (3 to 4.5m) of end of roll using red stripe on roll. Switch is in series with PC board contacts which disconnect if printer mechanism is not completely seated in case. Open switch contacts or print mechanism removed will disable both local and remote print command. Pin C2-B4 has an internal 1K ohm pullup to +5V normally grounded by switch before paper is low.

Front Panel

LED red power-on lamp

Paper Quantity Indicator:

Mechanical pointer which rides on paper roll, indicating relative amount of paper left.

Paper Roll Replacement:

By sliding out front panel printer assembly. PC board interlock automatically disconnects all power to printer assembly and power supply with electronics remain with housing case. Removal by a single Dzus-type front panel thumbscrew.

Print/Remote/Advance

Front panel 3 position toggle switch, stable in center position (REMOTE), must be held in top (ADVANCE) or bottom (PRINT) positions.

ADVANCE:

When switch is held up, the printer continuously advances paper without printing at a 6.7 line per second rate. Paper may be manually advanced simply by pulling paper out of front opening at any time.

REMOTE:

Center position enables all external inputs.

PRINT:

When switch is pushed down, printer prints one line and stops. After print and advance, external input is accepted even if the switch is held down.

Temperature Ranges

Operating: 0 to +40°C (to +50°C at derated speed)

Storage: -25°C to +85°C (Paper darkens above +60°C)

Active printhead temperature sensor is employed to maintain proper print head temperature at all ambient temperatures and during warmup.

Power Supply

+5 Volt Version:

4 Amps average current (20 watts dissipation) at 3 lines/sec. max. printing rate. (10 Watts, typ in standby)

Segment-parallel, character-serial printing requires +5V @ 8 Amps peak, duty cycle is 10 to 90% during print and advance period.*

Separate PC board connection available to supply "clean" ($\pm 2\%$ @ .3 Amp) 5 volts to logic section. Logic spikes must be held to 50mV max. pk-pk.

Unregulated +5V ($\pm 10\%$) connected through 1/4" spade terminal connector, 16 gauge wire or larger not to exceed ten feet (3 meters).

Fuse:

7 Amp SLO-BLO, 1/4" x 1-1/4"

"8 Amp current pulses on and off during print and advance cycle from 10 to 90% duty cycle (depends on character printed, leading zeros, etc.). 8 Amp, 5 to 20 msec. pulses occur several times per second in standby.

Power consumption varies with print rate, leading zeroes, digits printed, signs and decimal points.

Power Supply

AC Version:

105-125 VAC, 57-63 Hz @ 40 watts max (10 watts, typ standby)

Optional:

205-240 VAC, 47-63 Hz @ 40 watts max (10 watts, typ standby)

Optional:

90-110 VAC, 47-63 Hz @ 40 watts max (10 watts, typ standby)

AC Fuse: 1/4" x 1-1/4" Buss MDL or equivalent 1/2 A, SLO-BLO, 115VAC, 1/4A, SLO-BLO, 230 VAC.

Note: Case is isolated from 5V ground and AC line. A separate spade terminal is included to ground case.

+5V, 200mA max. logic power out available with AC version.

Connectors

Data and Controls: (and optional logic +5V)

(2) 30-conductor (15 per side).

Double-sided PC board connectors.

0.1" centers, Viking #3VH15/1JN-5 or equivalent (\$3.95 each, 2 included with printer).

+5V Power

(2) 1/4" spade terminal connectors, included.

AC Power

(1) Double 1/4" spade terminal connector. Mates to a 9115 AC line cord (included).

Weight (with housing and full paper roll)

5 Volt Version: 2.3 lbs. (1.1Kg)

AC Version: 4.2 lbs. (1.9Kg)

Dimensions (Uses #4 hardware)

Front panel mounting cutout:

4.50" WIDE x 2.72" HIGH (115 mm x 69 mm)

Front panel Bezel dimensions:

5.25" WIDE x 2.82" HIGH (134 mm x 72 mm)

Depth behind front surface of mounting panel including clearance for rear PC connectors and fuses:

5V Version: 6.2" (158 mm)

AC Version: 8.7" (221 mm) **ORIGINAL PAGE IS OF POOR QUALITY**

MECHANICAL DIMENSIONS

ORIGINAL PAGE IS
OF POOR QUALITY

INPUT/OUTPUT CONNECTIONS

DDP-7 PRINTER PINOUT

Refer to the drawings on the bottom of page 6.

Connector Pinouts Are Shown As Viewed From Rear Of Printer

Connector C1		Connector C2	
A	B	A	B
1. Dec Pt .0000	Sign "—"	1. BCD 8,000	BCD 800,000
2. Chg. Busy Polarity	Dec Pt .00000	2. BCD 80,000	BCD 80,000
3. No Print Advance	Dec Pt .000000	3. BCD 200,000	End of Paper
4. Logic & Pwr. Gnd.	Leading Zero Suppress	4. BCD 800	Logic & Pwr. Gnd.
5. Sign "I"	Dec Pt .000	5. BCD 20,000	Enable Print Test
6. Dec Pt .0	Chg. Print Polarity	6. BCD 2,000	BCD 800
7. Dec Pt .00	BCD 80	7. BCD 200	BCD 20,000
8. BCD 400,000	BCD 8	8. BCD 1,000	BCD 2,000
9. BCD 20	BCD 40,000	9. BCD 100	BCD 200
10. BCD 2	Chg. Data Polarity	10. BCD 10	Busy
11. BCD 100,000		11. BCD 1	+5V Logic Power
12. BCD 10,000		12. BCD 13	BCD 10
13. BCD 40	+5V Logic Power	13. BCD 14	BCD 1
14. BCD 400	Print Command	14. BCD 15	
15. BCD 4,000	BCD 4	15. BCD 16	

NOTES

- +5V contacts (C1-B13 & C2-B13) are internally connected
- Ground contacts (C1-A4 & C2-B5) are internally connected
- On DC Models, +5V Contacts (C1-B13 & C2-B13) are used for logic power input (5V ±2% @ .3A,

logic spikes less than 50mV, pk-pk). These +5V logic power contacts may be connected to the high current +5V spade terminal if external regulation will hold +5 ± .25VDC at the printer while printing. (Current 8 Amps max)

- On AC Models, +5V contacts (C1-B13 & C2-B13) will provide +5V power out at 200mA max.

GROUND C1-B11 AND C1-B7 FOR POSITIVE TRUE INPUTS. DON'T FLOAT.

BCD INPUTS Binary Coded Decimal inputs are shown cross-referenced to their corresponding connectors and pins.

For other print formats (see ordering guide, pg. 12) blanked columns will appear between digits shown..

CONNECTOR	100,000's				10,000's				1,000's				100's				10's				1's				CONNECTOR	
	DIGIT 6				DIGIT 5				DIGIT 4				DIGIT 3				DIGIT 2				DIGIT 1					
C1	8	4	2	1	B	4	2	1	A	4	2	1	A	4	2	1	B	4	2	1	B	4	2	1	C1	
C2	B	1	A	8	2	B	8	A	1	B	10	13	B	7	B	11	A	8	13	9	B	14		B	15	C2

± sign located here on type 2 print format

MOUNTING DETAILS

PAPER LOADING

HOW TO LOAD PAPER

- Shut off all power to the printer if the printer uses a separate power switch.
- Slide out the printer mechanism by first loosening the front panel thumbscrew counterclockwise until it stops. Pull the thumbscrew firmly straight out and the front panel/printer assembly will slide out all the way. Some force may be needed to release the internal PC connection.
- Raise the paper loading door by pulling forward until it stops. This automatically lifts the thermal printhead from the paper drive roller (see photo). Remove any paper from a previous roll.
- Pull the remaining paper backward out from under the printhead. Grasp both ends of the paper roll axle with fingertips and pull straight up out of the printer assembly. The axle will slide past the circular axle retaining spring as shown in the photo.

Inserting new roll

- Slide the paper roll axle out of the used paper roll and reinsert the axle in a new roll. Do not discard axle!!! The paper roll is Datel part number 9101 supplied only in boxes of ten rolls. Orderbox number 9114 (\$19.95). Spare axles are Datel part number 9062, \$5 each.
- Slide the new roll and the axle past the retaining spring and insert the paper

over the pad and under the printhead ribbon cable (see photo) until paper appears at front panel slot. Be sure the paper is threaded from the rear and passes over the roll. Paper should be cut straight across for easy insertion. Only the outside paper surface is treated for printing.

- Pull paper through front panel slot, close the paper loading door and slide the printer mechanism back into the housing. Press the front panel printer assembly firmly into the housing as far as it will go. This will seat the internal PC board connection.
- Rotate the thumbscrew clockwise until it stops and turn on power. Paper may be manually advanced simply by pulling out of the front slot.

Reloading summary:

- Loosen thumbscrew, pull out mechanism.
- Lift paper loading door.
- Lift out used roll and reinsert axle in new roll.
- Press new roll and axle into axle slot past circular spring.
- Thread paper over top of roll and under printhead out through front panel slot. Close door.
- Push mechanism back into housing and retighten thumbscrew.

APPLICATIONS

An ideal use for the DPP-7 is to record analog values from a BCD output A/D converter or Digital Panel Meter. A simple external clock circuit or an A/D converter with an adjustable conversion rate can be used to form a printing data logger. With the addition of Datel's digital time-of-day clock and data acquisition module, a complete multi-channel logging system can be made. See page 11.

Most scientific and analytical instruments with digital interfacing capability will have full parallel BCD outputs which can be directly connected to the DPP-7.

Use the DPP-7 with Datel's autoranging DM-2000AR Digital Panel Meter to create an analog sampling system with 3½ digit resolution over 3 decades from 200mV to 20V full scale. See page 11.

Using the DPP-7 printer with a DPM will allow faster sampling than taking readings by hand or by visual sampling of the DPM readout. Longer-term variations and drifts are more easily viewed when the printer and DPM work hand-in-hand.

± SIGN WIRING

APPLICATIONS

BCD Source to Printer Block Diagram

When used with a Digital Panel Meter or A/D converter with BCD output, the interconnections with the Printer are made as shown here. The converter or DPM's output connects to the printer input. The EOC (Busy) output generates a print pulse using a monostable and a system gate inhibits further conversions until the print and advance are completed.

A basic interface of this type is detailed in the circuit on page 11. More logic may be required if any coding is inverted although this may be accommodated by the selectable coding feature of the DPP-7. Some types of conversion systems might require time-synchronous levels and would need more circuitry than shown here. Important circuit details have been omitted for clarity.

BLANKED COLUMNS

Many applications require one or more columns to be blanked. For example, if a printout is needed which displays a 4-digit data value with sign and then a 0 to 9 channel identification digit, the printout would be:

$\pm 9999 \ 9$

In order to continually blank the second column, the illegal BCD digit 1-1-1-1 is hard-wired as follows. The typical example shown here assumes negative true coding:

The data is negative true because pin C1-B11 is floated and the internal pullup resistor to +5V automatically causes negative true data coding. Other columns can be blanked in a similar manner. With positive true coding (C1-B11 and C1-B7 grounded), internal pullup resistors on all BCD data inputs will automatically blank all unused columns.

End of Paper Switch

The end of paper switch is connected in series with a PC board connector as shown. Opening the switch inhibits further print pulses.

FUSES

AC Fuses — are replaced using the fuseholder on the rear panel.

The fuses are:

100 or 115 VAC: 1/2 Amp Buss MDL SLO-BLO
1/4" x 1-1/4" or equivalent

230 VAC: 1/4 Amp Buss MDL SLO-BLO
1/4" x 1-1/4" or equivalent

DC Fuses — are replaced by removing the 4 sheet metal screws and the top cover (see photo). The fuse clip is located on the top inside edge of the inner PC card. Use a 1/4" x 1-1/4" Littlefuse 3AG SLO-BLO 7 Amp fuse or equivalent.

APPLICATIONS

TYPICAL 16-CHANNEL PRINTING DATA LOGGER BLOCK DIAGRAM

The DPP-7 Printer can be combined with other Datel off-the-shelf modules to create a complete multichannel printing data logger as suggested here. Circuit details such as power, trim, hard-wired inputs, bypassing and full system logic have been omitted for clarity.

With the addition of Datel's Model DTC-8300 Digital Clock, a single 2 channel digital multiplexer and control for the Printer input, the printout will also record the time of day at selected intervals. Contact Datel for applications assistance.

TYPICAL PRINTOUT:

CHANNEL	VALUE
07	+ 08.95
08	- 12.36
09	- 04.47
10	+ 10.12
"	"
"	"
16	- 19.03
12	59.59

Hours Min/Sec

APPLICATION EXAMPLE:

DIGITAL PANEL METER TO PRINTER INTERFACE

The typical interface circuit shown will connect a DPP-7 Printer and a Datel DM-2000AR Autoranging Digital Panel Meter. The DPM will shift decimal points over three full scale ranges ($\pm .1999V$, $\pm 1.999V$, and $\pm 19.99V$) and the DPP-7 Printer will automatically print out data with the sign and correctly positioned decimal points. The DM-2000AR Digital Panel Meter is internally set to make two samples per second of analog input voltages. The leading edge of the EOC (Busy) line from the DPM is used to trigger one of the monostables in the 74123 integrated cir-

cuit. Thirty-three milliseconds later, the EOC line is low and valid BCD data is available from the DPM. The first 50mS monostable times out and triggers the second monostable in the 74123. This second monostable produces a 2 microsecond print pulse. The next start pulse from the DPM's internal start clock commands another sampling interval and a printout 50 milliseconds after sampling. The entire operation is controlled by the DPM start clock at about 2 samples and printouts per second. This clock can be slowed down or controlled externally (see DM-2000AR data sheet).

ORDERING GUIDE & PRINT FORMATS

Datel's products are available both direct and through GSA. If you are connected with a military or federal agency or receive federal funds, you may be entitled to purchase Datel's Digital Panel Printers and other products through

the General Services Administration to expedite requisitioning and order processing. Datel's printer is covered under FSC Group 66-17, Part II, GSA Contract No. GS-OOS-27959. Contact Datel for assistance.

Model 9114, Box of 10 paper rolls

MODEL NUMBER

DPP-7

Power
D = +5VDC
A = 115VAC
J = 100VAC
E = 230VAC

Print Format

- 1 = ±.9.9.9.9.9.9
 - 2 = .9.9±.9.9.9.9
 - 3 = .9 .9.9.9.9.9
 - 4 = .9.9.9 .9.9.9
 - 5 = .9.9.9.9 .9.9
 - 6 = .9.9.9.9.9 .9
- (Note: .9.9 .9.9.9 printout format can be derived from type 2 format by hard-wiring a blanked sign)

Prices (1-9) (includes 2 connectors, a roll of paper, and a 9115 line cord if an AC version).

DPP-7	\$475.00
Model 9114, Box of 10 paper rolls, 150 ft. per roll	\$ 19.95

SALES OFFICES AND TELEPHONE NUMBERS (For Applications Assistance Call Datel's Direct Offices)

NORTH AMERICA - Direct Offices

Datel Systems (Home Office) Canton, Mass.	617-828-8000
Datel Systems Santa Ana, Calif.	714-835-2751
Datel Systems Santa Ana, Calif. (LA Exchange)	213-933-7256
Datel Systems Sunnyvale, Calif.	408-733-2424

INTERNATIONAL - Direct Subsidiaries

Datel Systems GmbH, Muenchen, W. Germany	089/78 40 45
Datel Systems SARL Paris, France	603-06-74
Datel KK Tokyo, Japan	499-0631
Datel (U.K.) Ltd. Basingstoke U.K. (0256) 66721	

AUTHORIZED SALES REPRESENTATIVES (N.A.)

Huntsville, Alabama	205-837-1601	Albuquerque, New Mexico	505-345-2481
Phoenix, Arizona	602-996-6130	Liverpool, New York	315-622-2350
Westminster, Colorado	303-427-5299	Cleveland, Ohio	216-486-0782
Lighthouse Pt., Florida	305-943-3076	Dayton, Ohio	513-294-2838
Longwood, Florida	305-422-3686	King-of-Prussia, Pennsylvania	215-265-5211
St. Petersburg, Florida	813-441-1301	Pittsburgh, Pennsylvania	412-243-1111
Honolulu, Hawaii	808-946-1533	Dallas, Texas	214-238-7157
Chicago, Illinois	312-585-5485	Houston, Texas	713-783-2900
Indianapolis, Indiana	317-293-0696	Arlington, Virginia	703-522-5666
Olathe, Kansas	913-782-1177	Seattle, Washington	206-958-4166
Troy, Michigan	313-524-2920	Milwaukee, Wisconsin	414-464-5555
Minneapolis, Minnesota	612-544-9393	Montreal, Canada	514-389-8051
Hazelwood, Missouri	314-731-5200	Ottawa, Ontario Canada	613-237-6150
Raleigh, North Carolina	919-834-3961	Rexdale, Ontario Canada	416-678-0401
Fort Lee, New Jersey	201-224-6911		

AUTHORIZED SALES REPRESENTATIVES (Foreign)

Digital Electronics (Mktg.) Pty., Ltd. Sydney, Australia	43 6668	Techmation, Amsterdam, The Netherlands	020-456955
Bacher Elektronische Geräte Ges. MBH Vienna, Austria	83 63 96 0	David J. Reid Ltd. Auckland 1, N.Z.	492-189
Sotronic S.A., Brussels, Belgium . . .	734-58-68, 734-63-96	Morgensterne & Co. A/S Oslo 5 Norway	37 29 40
A/S Danbridge Copenhagen, Denmark	(01-27) Asta 1575 (01-77) Sundby 4106	Peter Jones Elec. Equip. (Pty.) Ltd. Johannesburg, S. Africa	22-3658
Havulinna Oy, Ilti, Linki, Finland . . .	(90) 661451	Aupoca Electronica y Sistemas Madrid 16, Spain	457-53-12
M/I Engineering, Tel Aviv, Israel . . .	244090, 236334	AB Nordqvist & Berg Stockholm, Sweden	08-69-04-001
3G-Electronics s.r.l., Milano, Italy . . .	544291, 543096	Intertest AG, Bern, Switzerland . . .	031/277481

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

DATEL
SYSTEMS, INC. 1020 TURNPIKE STREET, CANTON, MASS. 02021

TEL. (617) 828-8000 TWX 710-348-0135
TELEX 924461