Rings

Definition. A ring $\langle R, +, \cdot \rangle$ is a set R, given with binary operations + ("addition") and \cdot ("multiplication"), that satisfies:

- \mathcal{R}_1 : $\langle R, + \rangle$ is an abelian group, written additively (so we have 0 and -a and a-b)
- \mathcal{R}_2 : multiplication is associative
- \mathcal{R}_3 : the **distributive laws** hold for all $a, b, c \in R$:

$$a(b+c) = ab + ac$$
 and $(a+b)c = ac + bc$.

(We typically omit \cdot , and use the usual rules that multiplication is done before addition and subtraction. As above.)

Definition. A ring is **commutative** if its multiplication operation is commutative.

Theorem 18.8. In any ring R,

- (1). 0a = a0 = 0 for all $a \in R$
- (2). a(-b) = (-a)b = -ab for all $a, b \in R$
- (3). (-a)(-b) = ab for all $a, b \in R$.

Proof. (1) 0a + 0a = (0 + 0)a = 0a = 0a + 0; now cancel 0a.

(2) ab + a(-b) = a(b-b) = a0 = 0 = ab + (-ab); cancel ab to get a(-b) = -ab. ab + (-a)b = (a-a)b = 0b = 0 = ab + (-ab); cancel ab to get (-a)b = -ab.

(3) Apply (2) twice to get
$$(-a)(-b) = -(-a)b = -(-ab) = ab$$
.

Examples of Rings

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} . These always have the usual addition and multiplication operations
- $\langle \mathbb{Z}_n, +_n, \cdot_n \rangle$ for all $n \in \mathbb{Z}^+$ $(a \cdot_n b)$ is the remainder you get when you divide $ab \in \mathbb{Z}$ by n)
- $M_n(\mathbb{R})$ for all $n \in \mathbb{Z}^+$: this is the ring of $n \times n$ matrices with entries in \mathbb{R} , under matrix addition and matrix multiplication. It is *not commutative*.
- the (trivial) ring $\langle \{0\}, +, \cdot \rangle$ (the same as \mathbb{Z}_1)
- If R_1, \ldots, R_n are rings, then so is $R_1 \times \cdots \times R_n$, with + and \cdot defined componentwise. If R_1, \ldots, R_n are commutative, then so is $R_1 \times \cdots \times R_n$.

Unity Elements

Definition. A unity element of a ring R is an identity element for its multiplication operation. It is customarily denoted 1. ($\langle R, \cdot \rangle$ is not (usually) a group, but it is a binary algebraic structure, so 1 is unique if it exists: 1 = 11' = 1'.)

[&]quot;R is a ring with unity" means what it says

"R is a ring with unity 1" is the same as above, and it also says that the unity element is called "1".

"R is a ring with unity $1 \neq 0$ " is the same as above, and it also requires that $R \neq (0)$.

Homomorphisms

Definition. A homomorphism from a ring R to a ring R' is a function $\phi: R \to R'$ such that

- (a). $\phi(a+b) = \phi(a) + \phi(b)$ for all $a, b \in R$ and
- (b). $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$.

An **isomorphism** is a bijective homomorphism.

Definition. The **kernel** of a ring homomorphism $\phi: R \to R'$ is the subset

$$\ker \phi = \{ a \in R : \phi(a) = 0 \}$$
.

As is the case for groups, a ring homomorphism is injective if and only if its kernel is trivial.

Examples of Ring Homomorphisms

- The inclusion maps $(0) \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{R} \to \mathbb{C}$ are homomorphisms
- For all $n \in \mathbb{Z}^+$ the "reduction modulo n" map $\gamma \colon \mathbb{Z} \to \mathbb{Z}_n$ is a ring homomorphism (18.11)
- The map $(n \mapsto 2n) \colon \mathbb{Z} \to 2\mathbb{Z}$ is a group homomorphism but not a ring homomorphism
- For any ring R the identity map $id_R: R \to R$ is a ring homomorphism
- If $\phi: R \to R'$ and $\psi: R' \to R''$ are ring homomorphisms then so is their composition $\psi \circ \phi: R \to R''$.

Units, etc.

Definition. Let R be a ring with unity 1 (we will *not* assume $1 \neq 0$ here). Then a **unit** in R is an element with a multiplicative inverse.

Examples

- 0 is a unit in the trivial ring (\neq the book)
- The sets of units in \mathbb{Q} , \mathbb{R} , and \mathbb{C} are \mathbb{Q}^* , \mathbb{R}^* , and \mathbb{C}^* , respectively.
- The units in \mathbb{Z} are ± 1 .
- What are the units in \mathbb{Z}_n ?

For any ring R with unity, its units form a group under multiplication. This is denoted R^* and called the **group of units** of R.

Division Rings and Fields

Definition. A division ring or skew field is a ring R with $1 \neq 0$ such that all nonzero elements are units (i.e., $\langle R \setminus \{0\}, \cdot \rangle$ is a group).

Definition. A **field** is a commutative division ring.

Examples of fields include \mathbb{Q} , \mathbb{R} , and \mathbb{C} (but not \mathbb{Z}).

Definition. A strictly skew field is a noncommutative division ring.

Zero Divisors

Definition. A **zero divisor** in a ring R is a nonzero element $a \in R$ such that ab = 0 or ba = 0 for some *nonzero* $b \in \mathbb{R}$.

Let R be a ring with 1. If $a \in R$ is a zero divisor then a is not a unit.

Proof. If $a \in R$ is a unit and ab = 0, then

$$b = 1b = a^{-1}ab = a^{-1}0 = 0$$
,

and similarly if ba = 0 then b = 0. Therefore a is not a zero divisor.

Units and Zero Divisors in \mathbb{Z}_n

Let $n \in \mathbb{Z}^+$, let a be a nonzero element of \mathbb{Z}_n , and let $g = \gcd(a, n)$. Since then 0 < a < n, we have 0 < g < n.

Now if g = 1 then there are $x, y \in \mathbb{Z}$ such that xa + yn = 1, so $xa \equiv 1 \pmod{n}$, and therefore $x \mod n$ (the remainder you get when you divide x by n) is a multiplicative inverse for a in \mathbb{Z}_n

If g > 1 then 0 < n/g < n, so $n/g \in \mathbb{Z}_n$, and $a \cdot (n/g) = (a/g)n$ is a multiple of n, so $a \cdot_n (n/g) = 0$ in \mathbb{Z}_n . Therefore a is a zero divisor in \mathbb{Z}_n , so it is not a unit.

Therefore, we have proved:

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \} .$$

We also showed that the set of zero divisors in \mathbb{Z}_n is

$$\{a \in \mathbb{Z}_n : a \neq 0 \text{ and } \gcd(a, n) \neq 1\}$$
.