Due: September 2, 2023

1. Exercise 3.14149 (Solver: John Gimbel)

If a and b are even integers, then so is a + b.

Solution:

Let a and b be even integers. Then there exist integers j and k such that a = 2j and b = 2k. But then

$$a + b = 2j + 2k = 2(j + k)$$
.

Since $j + k \in \mathbb{N}$, a + b is even.

2. Exercise 2.718 (Solver: Jill Faudree)

Let *X* be a set.

- a) An intersection of topologies on *X* is a topology on *X*.
- **b)** A union of topologies on *X* need not be a topology.

Solution (part a):

Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies and let $\mathcal{T} = \bigcap_{\alpha} \mathcal{T}_{\alpha}$. Observe that \emptyset and X belong to \mathcal{T} as they belong to each \mathcal{T}_{α} .

Suppose $\{U_{\beta}\}$ is a family of sets in \mathcal{T} and let $U = \bigcup_{\beta} U_{\beta}$. Fix α and observe that each $U_{\beta} \in \mathcal{T}_{\alpha}$. Since \mathcal{T}_{α} is a topology, $U \in \mathcal{T}_{\alpha}$. Since α is arbitrary, $U \in \cap \mathcal{T}_{\alpha} = \mathcal{T}$.

The proof that a finite intersection of sets in \mathcal{T} belongs to \mathcal{T} is essentially similar.

Solution (part b):

Let $X = \{1, 2, 3\}$. Let $\mathcal{T}_1 = \{\emptyset, \{1, X\}\}$ and let $\mathcal{T}_2 = \{\emptyset, \{2\}, X\}$. It is easy to see that these are topologies. Let $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{1\}, \{2\}, X\}$. Observe that \mathcal{T} is not closed under taking unions as $\{1\}$ and $\{2\}$ are elements of \mathcal{T} but $\{1, 2\}$ is not.

3. Exercise 9 (Solver: Elizabeth Allman)

Let X be a metric space. Show that the collection of open balls in X forms the basis of a topology.

Solution:

We start with a technical lemma.

Lemma 3.1. Suppose $B_1 = B_{r_1}(x_1)$ and $B_2 = B_{r_2}(x_2)$ are open balls in X and $x_3 \in B_1 \cap B_2$. Then there is an r > 0 such that $B_r(x_3) \subseteq B_1 \cap B_2$.

Proof. Let $r = \min(r_1 - d(x_3, x_1), r_2 - d(x_3, x_2))$ and observe that r > 0. Now suppose $z \in B_r(x_3)$. The triangle inequality implies

$$d(x_1, z) \le d(x_1, x_3) + d(x_3, z)$$

$$< d(x_1, x_3) + r$$

$$\le d(x_1, x_3) + (r_1 - d(x_3, x_1))$$

$$= r_1$$

Hence $z \in B_{r_1}(x_1) = x_1$. Similarly $z \in B_2$, and hence $B_r(z) \subseteq B_1 \cap B_2$.

Continuing with the solution of the problem, let \mathcal{B} be the collection of open balls in X. Fix $x \in X$ and note that $\bigcup_{r>0} B_r(x) = X$. Hence \mathcal{B} covers X. Moreover, by Lemma 3.1, \mathcal{B} satisfies the refinement property. Hence by the topology construction lemma, \mathcal{B} generates a topology on X, and the open sets are simply the unions of open balls.