Naive bayes classification

Classification

Regression

Classification

Classification

Classification

Credit Card Fraud Detection

· Bayes Rule-

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

 $P(A|B) P(B) = P(A \cap B) = P(B|A) P(A)$ $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$

- Bayes Rule-
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In machine learning, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features.

Bayes Classifier-p(smallpox|spots)?

- Bayes Rule-
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$p(\text{smallpox}|\text{spots}) = \frac{p(\text{spots}|\text{smallpox}) \times p(\text{smallpox})}{p(\text{spots})}$$

Example-

$$p(\text{smallpox}) = 0.001$$

$$p(\text{spots}|\text{smallpox}) = 0.9$$

 $p(\text{spots}) = 0.081$

$$p(\text{smallpox}|\text{spots}) = 0.9 \times 0.001/0.081$$

$$= 0.011,$$

Bayes Classifier- p(smallpox|spots)?

How many misclassifications happened for Class H1?

Errors are committed due to region R2 colored in light blue and is given by p(H1) p(x/H1) dx

Bayes Classifier- To minimize the

average risk
$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$
Average list

Desgn a dassifier
$$Clsiscal$$
Spain Foldor

AssignSpain

Again spain

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x}$$

Each decision is weighted by the product of two factors-the cost involved in making the decision and the relative frequency (i.e., prior probability) with which it occurs

First two terms on the right-hand side represent correct decisions/classifications, whereas the last two terms represent incorrect decisions

- $p_i = prior probability$ that the observation vector \mathbf{x} (representing a realization of the random vector \mathbf{X}) corresponds to an object in class C_1 , with i = 1, 2, and $p_1 + p_2 = 1$
- $c_{ij} = \text{cost of deciding in favor of class } \mathcal{C}_i \text{ represented by subspace } \mathcal{H}_i \text{ when class } \mathcal{C}_j \text{ is true (i.e., observation vector } \mathbf{x} \text{ corresponds to an object in class } \mathcal{C}_1), \text{ with } i, j = 1, 2$
- $p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_i)$ = conditional probability density function of the random vector \mathbf{X} , given that the observation vector \mathbf{x} corresponds to an object in class \mathcal{C}_1 , with i = 1, 2.

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x}$$

The intention is to determine a strategy for the minimum average risk. Because we require that a decision be made, each observation vector \mathbf{x} must be assigned in the overall observation space \mathcal{X} to either \mathcal{X}_1 or \mathcal{X}_2 . Thus,

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{L}} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{L}=\mathcal{L}} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{L}=\mathcal{L}} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) \mathbf{x} + c_{12}p_2 \int_{\mathcal{L}} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$

We now observe the fact that-

$$\int_{\infty} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} = \int_{\infty} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x} = 1$$

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{X} - \mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{X} - \mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) \mathbf{x} + c_{12}p_2 \int_{\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$

$$\mathcal{R} = c_{21}p_1 + c_{22}p_2$$

+
$$\int_{\mathcal{X}} [p_2(c_{12}-c_{22}) p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) - p_1(c_{21}-c_{11}) p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1)] d\mathbf{x}$$

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{X}_2} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{X}_2} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x}$$

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{X}-\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{X}-\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) \mathbf{x} + c_{12}p_2 \int_{\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x}$$

$$\mathcal{R} = c_{21}p_1 + c_{22}p_2 + \int_{\Re} \left[p_2(c_{12} - c_{22}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) - p_1(c_{21} - c_{11}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) \right] d\mathbf{x}$$

$$p_1(c_{21}-c_{11}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) > p_2(c_{12}-c_{22}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2)$$

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{X} - \mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} + c_{21}p_1 \int_{\mathcal{X} - \mathcal{X}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) \mathbf{x} + c_{12}p_2 \int_{\mathcal{X}} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$

$$\mathcal{R} = c_{21}p_1 + c_{22}p_2$$

$$+ \int_{\mathbb{R}} \left[p_2(c_{12} - c_{22}) \ p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) - p_1(c_{21} - c_{11}) \ p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) \right] d\mathbf{x}$$

$$p_1(c_{21} - c_{11}) \ p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) > p_2(c_{12} - c_{22}) \ p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2)$$

Bayes Classifier Rule-

If, for an observation vector x, the likelihood ratio $\Lambda(x)$ is greater than the threshold ξ , assign x to class & Otherwise, assign it to class &

 $\Lambda(\mathbf{x}) = rac{p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1)}{p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2)}$ Threshold

Let us define-

Threshold
$$\xi = \frac{p_2(c_{12} - c_{22})}{p_1(c_{21} - c_{11})}$$

$$p_1(c_{21}-c_{11}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) > p_2(c_{12}-c_{22}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2)$$

Bayes Classifier Rule-

If, for an observation vector \mathbf{x} , the likelihood ratio $\Lambda(\mathbf{x})$ is greater than the threshold ξ , assign \mathbf{x} to class \mathcal{C}_1 . Otherwise, assign it to class \mathcal{C}_2 .

Let us define-Likelihood Ratio

$$\Lambda(\mathbf{x}) = \frac{p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1)}{p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2)}$$

hreshold

$$\xi = \frac{p_2(c_{12} - c_{22})}{p_1(c_{21} - c_{11})}$$

Multivariate Gaussian Distribution

Univariate Gaussian Function-

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Gauss

(30 April 1777 – 23 February 1855) German mathematician and physicist

Multivariate Gaussian Distribution

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

Consider m=2-variable case-
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \ \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

$$p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_i) = \frac{1}{(2\pi)^{m/2}(\det(\mathbf{C}))^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_i)^T \mathbf{C}^{-1}(\mathbf{x} - \mathbf{\mu}_i)\right)$$

$$\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

 $p(x; \mu, \Sigma) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp \left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right) \cdot \frac{1}{\sqrt{2\pi}\sigma_2} \exp \left(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

 $= \frac{1}{2\pi \begin{vmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{vmatrix}^{1/2}} \exp \left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^T \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix} \right)$

 $= \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2\sigma_r^2}(x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$

 $= \frac{1}{2\pi\sigma_1\sigma_2} \exp \left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^T \begin{vmatrix} \frac{1}{\sigma_1^2}(x_1 - \mu_1) \\ \frac{1}{\sigma_2^2}(x_2 - \mu_2) \end{vmatrix}\right)$

$$-\frac{1}{2\sigma^2}(x-\mu)^2$$

$$\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Bayes Classifier in Gaussian Environment

$$p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_i) = \frac{1}{(2\pi)^{m/2}(\det(\mathbf{C}))^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{C}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)\right)$$

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Frequency and Likelihood tables of 'Color'

Frequency Table

Likelihood Table

		Stol	en?
		Yes	No
1000 No.	Red	3	2
Color	Yellow	2	3

Frequency and Likelihood tables of 'Type'

Frequency Table

Likelihood Table

		Stolen?	
		Yes	No
	Sports	4	2
Type	SUV	1	3

		Stolen?	
		P(Yes)	P(No)
	Sports	4/5	2/5
Туре	SUV	1/5	3/5

Frequency and Likelihood tables of 'Origin'

Frequency Table

Likelihood Table

		Stolen?	
	-	Yes	No
	Domestic	2	3
Origin	Imported	3	2

		Stolen?	
	1	P(Yes)	P(No)
Origin	Domestic	2/5	3/5
	Imported	3/5	2/5

Color	Туре	Origin	Stolen
Red	SUV	Domestic	?

Since 0.144 > 0.048, Which means given the features RED SUV and Domestic, our example gets classified as 'NO' the car is not stolen.

Example

Name	Yellow	Sweet	Long
Mango	350	450	0
Banana	400	300	350
Others	50	100	50

Step 1-: frequency table

Name	Yellow	Sweet	Long	Total
Mango	350	450	0	650
Banana	400	300	350	400
Others	50	100	50	150
Total	800	850	400	1200

Step 2: Draw the likelihood table for the features against the classes.

Name	Yellow	Sweet	Long	Total
ivallie	Tellow	Sweet	Long	iotai
Mango	350/800=P(Mango Yellow)	450/850	0/400	650/1200=P(Mango)
Banana	400/800	300/850	350/400	400/1200
Others	50/800	100/850	50/400	150/1200
Total	800=P(Yellow)	850	400	1200

Classify the fruit which is long, sweet and yellow

Step 4:

 Calculate. In our example, the maximum probability is for the class banana, therefore, the fruit which is long, sweet and yellow is a banana by Naive Bayes Algorithm.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
DI	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

P(PlayTennis	= yes) = 9/14 = .64
P(PlayTennis	= no) = 5/14 = .36

NAIVE BAYES CLASSIFIER Example - 1

	Outlook	Υ	N	H u m id ity	Υ	N
	sunny	2/9	3/5	high	3/9	4/5
	overcast	4/9	0	n o rm a l	6/9	1/5
	rain	3/9	2/5			
	Tempreature			W in dy		
	hot	2/9	2/5	Strong	3/9	3/5
	m ild	4/9	2/5	Weak	6/9	2/5
	cool	3/9	1/5			
•						