Professeur: Rachid BELEMOU

Lycée : Oued Eddahab

COURSLa droite dans le plan

Niveau: TCT - BIOF

Année : 2017-2018

1. REPERE DU PLAN

a. Définition

$$\overrightarrow{(i; j)}$$
 en posant : $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$.

Remarque:

Si OIJ est un triangle isocèle rectangle en O, alors le Repère est OrthoNormé (R.O.N.)

b. Repérage d'un point

On repère un point M par le « trajet » qui mène à lui à partir de l'origine, en exprimant le vecteur \overrightarrow{OM} en fonction des vecteurs unitaires \overrightarrow{OI} et \overrightarrow{OJ} .

Si
$$\overrightarrow{OM} = x \overrightarrow{OI} + y \overrightarrow{OJ}$$
, alors x et y sont les coordonnées de M et on note M(x ; y).

Exemple:

Dans le repère (O, I, J) on a M(4; 3)

4 est l'abscisse de M

3 est l'ordonnée de M

2. COORDONNEES D'UN VECTEUR DANS UN R.O.N.

a. Définition

Soit (O, I, J) un repère du plan.

Pour tout vecteur \overrightarrow{u} , il existe un couple (x; y) tel que $\overrightarrow{u} = x \overrightarrow{OI} + y \overrightarrow{OJ}$ que l'on appelle ses **coordonnées**. Les notations suivantes sont équivalentes :

• u(x;y)

 $\bullet \quad \stackrel{\rightarrow}{u} \left(\begin{array}{c} x \\ y \end{array} \right)$

Exemple:

Dans le repère (O, I, J) on a $\overrightarrow{u}(3; -2)$

3 est l'**abscisse** de \vec{u}

-2 est l'ordonnée de *u*

b. Égalité vectorielle

Soit deux vecteurs
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$

$$\overrightarrow{u} = \overrightarrow{v}$$
 si et seulement si
$$\begin{cases} x = x' \\ \text{et} \\ y = y' \end{cases}$$

c. Opérations sur les vecteurs

Soit deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, et λ un nombre réel. Alors on a :

$$\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \end{pmatrix} \qquad \overrightarrow{u} - \overrightarrow{v} \begin{pmatrix} x - x' \\ y - y' \end{pmatrix} \qquad \lambda \overrightarrow{u} \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$$

$$\overrightarrow{u} - \overrightarrow{v} \quad \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$$

$$\lambda \stackrel{\rightarrow}{u} \left(\begin{array}{c} \lambda x \\ \lambda y \end{array} \right)$$

d. Calcul des coordonnées d'un vecteur AB

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points distincts.

Alors le vecteur \overrightarrow{AB} a pour coordonnées : $\begin{pmatrix} x_B - x_A \\ v_B - v_A \end{pmatrix}$

Exemple:

Si A(2; 1) et B(5; -1) Alors
$$\overrightarrow{AB}$$
 $\begin{pmatrix} 5-2 \\ -1-1 \end{pmatrix}$ \overrightarrow{AB} $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$

e. Milieu d'un segment

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points.

Alors le milieu I du segment [AB] a pour coordonnées $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$

3. VECTEURS COLINEAIRES.

Théorème : $\overrightarrow{u} \begin{pmatrix} x \\ v \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ v' \end{pmatrix}$ sont colinéaires si et seulement si xy' - x'y = 0

$$\stackrel{\rightarrow}{u} \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$
 et $\stackrel{\rightarrow}{v} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ sont colinéaires.

 $xy'-x'y=3\times 4-2\times 6=12-12=0$ donc \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

4. DISTANCE ENTRE DEUX POINTS DANS UN REPERE ORTHONORME.

Soient A $(x_A; y_A)$ et B $(x_B; y_B)$ deux points situés dans un repère orthonormé du plan.

En appliquant le théorème de Pythagore au triangle rectangle ABM, on a:

$$AB^2 = AM^2 + BM^2$$

$$\Leftrightarrow AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

$$\Leftrightarrow AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Professeur: Rachid BELEMOU

Lycée

: Oued Eddahab

COURS La droite dans le plan

Niveau: TCT - BIOF

Année : 2017-2018

Equations cartésiennes d'une droite

6) Vecteur directeur d'une droite :

a) Définition

Soit (d) une droite du plan.

Un vecteur directeur d'une droite (d) est un vecteur non nul \vec{u} qui possède la même direction que la droite (d).

Exemple 1:

Toute droite possède une infinité de vecteurs directeurs.

Remarque: Soit \vec{u} un vecteur directeur de la droite (d). Tout vecteur non nul et colinéaire au vecteur \vec{u} est aussi vecteur directeur de cette droite.

Exemple 2:

Remarques:

• Deux points distincts quelconques de la droite (d) définissent un vecteur directeur de cette droite.

• La donnée d'un point A et d'un vecteur \vec{u} non nul définissent une unique droite (d).

• Deux droites (d) et (d') sont parallèles si tout vecteur directeur de l'une est aussi vecteur directeur de l'autre.

7) Equations cartésiennes d'une droite

a) Propriété

Toute droite (d) a une équation de la forme ax + by + c = 0

avec $(a; b) \neq (0; 0)$. Un vecteur directeur de (d) est \vec{u} (-b; a)

Remarque: Une droite (d) admet une infinité d'équations cartésiennes En effet, si ax + by + c = 0 est une équation cartésienne de (d), alors pour tout réel k non nul, kax + kby + kc = 0 est une autre équation de la même droite.

b) Propriété réciproque

L'ensemble des points M (x; y) vérifiant l'équation : ax + by + c = 0 avec $(a; b) \neq (0; 0)$ est une droite de vecteur directeur $\vec{u}(-b; a)$

Démonstration:

c) Exemples

Exemple 1 : Déterminer l'équation cartésienne d'une droite, connaissant un point et un vecteur directeur

Soit (O; ι ; \jmath) un repère du plan

Déterminer une équation cartésienne de la droite d passant par le point A(1 ; -1) et de vecteur directeur \vec{u} (-1; 3).

Exemple 2 : Déterminer l'équation cartésienne d'une droite connaissant deux points distincts de la droite

Soit (O; ι ; ι) un repère du plan.

Déterminer une équation cartésienne de la droite d passant par les points A (5; 13) et B (10; 23).

Exemple 3 : Déterminer l'équation cartésienne d'une droite à partir de sa représentation graphique

Soit (O ; ι ; ι) un repère du plan. Déterminer une équation cartésienne de la droite d, tracée ci-dessous

d) Equation réduite d'une droite

Soit (d) une droite du plan.

- Si (d) n'est pas parallèle à l'axe des ordonnées, alors il existe un unique couple de réels (m,p) tel que l'équation y=mx+p soit une équation de (d) qui peut aussi s'écrire sous la forme : mx-y+p=0
- Si (d) est parallèle à l'axe des ordonnées, alors il existe un unique réel c tel que l'équation x=c soit une équation de (d).

Remarque: Soit (d) une droite non parallèle à l'axe des ordonnées.

Son équation réduite peut donc s'écrire sous la forme: y = mx + p.

• Nous avons vu dans les classes précédentes, que le nombre m est le coefficient directeur de la droite (d).

L'équation réduite peut aussi s'écrire sous la forme mx - y + p = 0. Un vecteur directeur de cette droite est donc (1; m)

• Cette droite (d) est la représentation graphique de la fonction affine : f(x) = mx + p.

Exemple:

Soit (d) la droite d'équation cartésienne: 4x + 2y + 3 = 0

8) Récapitulatif : Equations cartésiennes et équations réduites

	Cas où $b=0$ et $a \neq 0$	Cas où $a = 0$ et $b \neq 0$	Cas où $c = 0$ et $a \neq 0$ et $b \neq 0$	Cas où $c \neq 0$ et $a \neq 0$ et $b \neq 0$
Equation cartésienne	ax + 0 + c = 0 $ax + c = 0$	0 + by + c = 0 $by + c = 0$	ax + by + 0 = 0 $ax + by = 0$	ax + by + c = 0
Equation réduite	$x = -\frac{c}{a}$	$y = -\frac{c}{b}$	$y = -\frac{a}{b}x$	$y = -\frac{a}{b}x + -\frac{c}{b}$
Représentation graphique	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$y = -\frac{a}{b}x 3$ 2 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

9) Positions relatives de deux droites

1) Propriété

Deux droites (d) et (d'), d'équations respectives ax + by + c = 0 et a'x + b'y + c' = 0 sont parallèles si et seulement si : ab' - a'b = 0

2) Démonstration :

3) Exemples

Exemple 1: Dans un repère du plan (O; \vec{i} ; \vec{j}), la droite d_1 a pour équation : 2x + y - 3 = 0 et d_2 a pour équation : -4x - 2y + 5 = 0. Les droites d_1 et d_2 sont-elles parallèles ? Justifier votre réponse.

Exemple 2: Dans un repère du plan (O; \vec{i} ; \vec{j}), la droite d_1 a pour équation : 3x + 2y - 3 = 0 et d_2 a pour équation : -x + 2y + 5 = 0. Les droites d_1 et d_2 sont-elles parallèles ? Justifier votre réponse.

Remarque:

Soit la droite (d) d'équation : y = mx + p et (d') : y' = m'x + p' (d) et (d') sont parallèles si et seulement si m = m'