Análisis Matemático II - Tarea 7

Fecha límite: domingo 21 de noviembre a las 23:59 horas Andrés Casillas García de Presno

1. **Desigualdad de interpolación.** Sean $1 \le p < s < r \le \infty$. Prueba que, si $f \in L^p(\Omega) \cap L^r(\Omega)$, entonces $f \in L^s(\Omega)$ y se cumple que

$$||f||_s \le ||f||_p^{1-\alpha} ||f||_r^\alpha,$$

donde $\alpha \in (0,1)$ satisface que $\frac{1}{s} = \frac{1-\alpha}{p} + \frac{\alpha}{r}$ si $r < \infty$ y $\alpha := 1 - \frac{p}{s}$ si $r = \infty$.

Solución

Caso 1: $r < \infty$

Veamos que

$$\frac{1}{s} = \frac{1}{\frac{p}{(1-\alpha)}} + \frac{1}{\frac{r}{\alpha}}$$

donde $s, \frac{p}{(1-\alpha)}, \frac{r}{\alpha} \in [1, \infty)$ pues $\alpha < 1 \le r$ y $(1-\alpha) < 1 \le p$.

Como $f \in L^p(\Omega)$ entonces $|f|^{(1-\alpha)} \in L^{\frac{p}{(1-\alpha)}}(\Omega)$ pues $||f|^{(1-\alpha)}|^{\frac{p}{(1-\alpha)}} = |f|^{(1-\alpha)\frac{p}{(1-\alpha)}} = |f|^p$ es integrable.

Análogamente, dado que $f \in L^r(\Omega)$ tenemos que $|f|^{\alpha} \in L^{\frac{r}{\alpha}}(\Omega)$.

Así, por el ejercicio 2, sabemos que $|f|^{(1-\alpha)}|f|^{\alpha}=|f|\in L^s(\Omega)$, es decir, $||f||^s$ es integrable en Ω , pero $||f||^s=|f|^s$, de forma que $f\in L^s(\Omega)$.

Dado que $||f||_q = ||f||_q$ para toda $q \in [1, \infty]$, tenemos, por el ejercicio 2, que

$$||f||_s \le |||f|^{(1-\alpha)}||_{\frac{p}{(1-\alpha)}}|||f|^{\alpha}||_{\frac{r}{\alpha}}$$
 (1)

donde

$$|||f|^{(1-\alpha)}||_{\frac{p}{(1-\alpha)}} = \left[\int_{\Omega} ||f|^{(1-\alpha)}|^{\frac{p}{(1-\alpha)}}\right]^{\frac{1-\alpha}{p}} = \left[\int_{\Omega} |f|^{p}\right]^{\frac{1-\alpha}{p}} = ||f||_{p}^{(1-\alpha)}$$

y análogamente

$$|||f|^{\alpha}||_{\frac{r}{\alpha}} = \left[\int_{\Omega} ||f|^{\alpha}|^{\frac{r}{\alpha}}\right]^{\frac{\alpha}{r}} = \left[\int_{\Omega} |f|^{r}\right]^{\frac{\alpha}{r}} = ||f||_{r}^{\alpha}$$

Sustituyendo en (1) tenemos que

$$||f||_s \le ||f||_p^{(1-\alpha)} ||f||_r^{\alpha}$$

Caso 2: $r = \infty$

Como $f \in L^{\infty}(\Omega)$ y (s-p) > 0 entonces $|f|^{s-p} \in L^{\infty}(\Omega)$. Además, como $f \in L^p(\Omega)$ entonces $|f|^p$ es integrable en Ω , es decir, $|f|^p \in L^1(\Omega)$. Por la desigualdad de Holder (proposición 14.21) aplicada a $|f|^{s-p}$ y $|f|^p$ tenemos que

$$|f|^{s-p}|f|^p \in L^1(\Omega)$$

i.e.

$$|f|^s \in L^1(\Omega)$$

es decir es integrable en $\Omega,$ de forma que $f\in L^s(\Omega).$ Además, dicho resultado nos dice que

$$|||f|^s||_1 \le |||f|^{s-p}||_{\infty} |||f|^p||_1$$

donde

$$|||f|^s||_1 = \int_{\Omega} |f|^s = ||f||_s^s$$

$$|||f|^p||_1 = \int_{\Omega} |f|^p = ||f||_p^p$$

$$|||f|^{s-p}||_{\infty} = \inf\{c \in \mathbb{R} : |f(x)|^{s-p} \le c \quad p.c.t.x \in \Omega\}$$

Veamos que si $k = ||f||_{\infty}$ entonces $k^{s-p} = |||f|^{s-p}||_{\infty}$.

Como s - p > 0, entonces

$$|f(x)| \le k \iff |f(x)|^{s-p} \le k^{s-p} \quad p.c.t.x \in \Omega$$

Ahora bien, supongamos que k^{s-p} no es el ínfimo de $|f|^{(s-p)}$ p.c.t. $x \in \Omega$. Entonces existe un k' tal que

$$|f(x)|^{(s-p)} \le k' < k^{s-p} \qquad pctx \in \Omega$$

entonces, como $\frac{1}{(s-p)} > 0$,

$$|f(x)| \le k'^{\frac{1}{(s-p)}} < k \qquad pctx \in \Omega$$

de forma que $k'^{\frac{1}{(s-p)}}=\|f\|_{\infty}$, lo cual es una contradicción. Así, $k^{s-p}=\||f|^{s-p}\|_{\infty}$ de forma que

$$|||f|^{s-p}||_{\infty} = ||f||_{\infty}^{s-p}$$

y así

$$||f||_s^s \le ||f||_\infty^{s-p} ||f||_p^p$$

y como $1 \le s$

$$||f||_s \le ||f||_{\infty}^{1-\frac{p}{s}} ||f||_p^{\frac{p}{s}}$$

2. Desigualdad de Hölder generalizada. Sean $r, p_1, \ldots, p_m \in [1, \infty)$ tales que $\frac{1}{p_1} + \cdots + \frac{1}{p_m} = \frac{1}{r}$. Prueba que, para cualesquiera $f_j \in L^{p_j}(\Omega)$, $1 \leq j \leq m$, se cumple que $\prod_{j=1}^m f_j \in L^r(\Omega)$ y

$$\left\| \prod_{j=1}^{m} f_{j} \right\|_{r} \leq \prod_{j=1}^{m} \|f_{j}\|_{p_{j}}.$$

Solución

Demostrémoslo por inducción sobre m.

Caso base: m=2

Sean
$$r, p, q \in [1, \infty)$$
 tales que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ y $f \in L^p(\Omega), g \in L^q(\Omega)$.

Como f,g son medibles, entonces |fg| es medible (proposiciones 14.11, 14.13). La afrimación es trivial si f=0 o g=0, de forma que supomgamos que ambas son distintas de cero. Por el Lema 14.20 tenemos que $||f||_p \neq 0$, $||g||_q \neq 0$. Veamos que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ es equivalente a $\frac{r}{p} + \frac{r}{q} = 1$ i.e. $\frac{1}{p} + \frac{1}{q} = 1$. Notemos además que, como $p,q \in [1,\infty)$ y por hipótesis $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, entonces r < p y r < q de forma que $\frac{p}{r} \in (1,\infty)$, $\frac{q}{r} \in (1,\infty)$. Así, para cada $x \in \Omega$ aplicamos la desigualdad de Young a la pareja de números

$$a_x := \left(\frac{|f(x)|}{\|f\|_p}\right)^r \quad b_x := \left(\frac{|g(x)|}{\|g\|_q}\right)^r$$

Notemos que $a_x, b_x \ge 0$ pues $|f(x)| \ge 0$ y $||f||_p > 0$ y análogamente para g.

Así, tenemos que

$$a_x b_x \le \frac{r}{p} a_x^{\frac{p}{r}} + \frac{r}{q} b_x^{\frac{q}{r}}$$

$$\left(\frac{|f(x)|}{\|f\|_p}\right)^r \left(\frac{|g(x)|}{\|g\|_q}\right)^r \le \frac{r}{p} \left(\frac{|f(x)|}{\|f\|_p}\right)^p + \frac{r}{q} \left(\frac{|g(x)|}{\|g\|_q}\right)^q$$

$$|f(x)g(x)|^r \le \|f\|_p^r \|g\|_q^r \left(\frac{r|f(x)|^p}{p\|f\|_p^p} + \frac{r|g(x)|^q}{q\|g\|_q^q}\right)$$

Como $f \in L^p(\Omega)$, $g \in L^q(\Omega)$ entonces el lado derecho de la desigualdad es integrable. El teorema 14.15 implica que $|fg|^r$ es integrable i.e. $fg \in L^r(\Omega)$.

Integrando la desigualdad obtenida llegamos a que

$$\int_{\Omega} |fg|^r \le ||f||_p^r ||g||_q^r \left(\frac{r}{p||f||_p^p} \int_{\Omega} |f|^p + \frac{r}{q||g||_q^q} \int_{\Omega} |g|^q \right)$$

$$||fg||_r^r \le ||f||_p^r ||g||_q^r \left(\frac{r}{p} + \frac{r}{q}\right) = ||f||_p^r ||g||_q^r \left(\frac{1}{\frac{p}{r}} + \frac{1}{\frac{q}{r}}\right) = ||f||_p^r ||g||_q^r$$

como $r \ge 1$

$$||fg||_r \le ||f||_p ||g||_q$$

Hipótesis de inducción

Supongamso que dados $r, p_1, \ldots, p_m \in [1, \infty)$ tales que $\frac{1}{p_1} + \cdots + \frac{1}{p_m} = \frac{1}{r}$ se tiene que para cualesquiera $f_j \in L^{p_j}(\Omega)$, $1 \leq j \leq m$, se cumple que $\prod_{j=1}^m f_j \in L^r(\Omega)$ y

$$\left\| \prod_{j=1}^{m} f_{j} \right\|_{r} \leq \prod_{j=1}^{m} \|f_{j}\|_{p_{j}}$$

Paso Inductivo

Sean $r, p_1, \ldots, p_m, p_{m+1} \in [1, \infty)$ tales que $\frac{1}{p_1} + \cdots + \frac{1}{p_m} + \frac{1}{p_{m+1}} = \frac{1}{r}$ y sean $f_j \in L^{p_j}(\Omega), 1 \leq j \leq (m+1)$.

Sea p tal que $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$. Por hipótesis de inducción tenemos que $\prod_{j=1}^m f_j \in L^p(\Omega)$ y por hipótesis $f_{m+1} \in L^{m+1}(\Omega)$ de forma que, como $\frac{1}{p} + \frac{1}{p_{m+1}} = \frac{1}{r}$, por el caso base tenemos que $\prod_{j=1}^{m+1} f_j \in L^r(\Omega)$.

Denotemos por $f:=f_{m+1},g:=\prod_{j=1}^m f_j$. Por hipótesis de inducción sabemos que

$$\left\| \prod_{j=1}^{m} f_{j} \right\|_{p} \leq \prod_{j=1}^{m} \|f_{j}\|_{p_{j}}$$

y por el caso base sabemos que

$$||fg||_r \le ||f||_{p_{m+1}} ||g||_p$$

i.e.

$$\left\| \prod_{j=1}^{m+1} f_j \right\|_r \le \|f_{m+1}\|_{p_{m+1}} \left\| \prod_{j=1}^m f_j \right\|_p$$

de forma que, por transitividad, tenemos que

$$\left\| \prod_{j=1}^{m+1} f_j \right\|_r \le \|f_{m+1}\|_{p_{m+1}} \prod_{j=1}^m \|f_j\|_{p_j}$$

i.e.

$$\left\| \prod_{j=1}^{m+1} f_j \right\|_r \le \prod_{j=1}^{m+1} \|f_j\|_{p_j}$$

3. Prueba que, si $|\Omega| < \infty$ y $f \in L^{\infty}(\Omega)$, entonces

$$||f||_{\infty} = \lim_{p \to \infty} |\Omega|^{-1/p} ||f||_p.$$

Solución

 $\underline{\text{Caso 1:}} |\Omega| = 0$

En dado caso f estaría definida en un conjunto nulo, de forma que, por definición, $||f||_{\infty} = 0$. Así, dado que $\lim_{p\to\infty} |\Omega|^{-\frac{1}{p}} ||f||_p = \lim_{p\to\infty} 0 ||f||_p = \lim_{p\to\infty} 0 = 0$ tenemos que

$$||f||_{\infty} = \lim_{p \to \infty} |\Omega|^{-\frac{1}{p}} ||f||_p$$

 $\underline{\mathrm{Caso}\ 2:}\ |\Omega|>0$

Sea $\epsilon>0$ y consideremos el siguiente conjunto:

$$\Omega' := \{ x \in \Omega : |f(x)| \ge ||f||_{\infty} - \epsilon \}$$

Por la proposición 14.12 sabemos que Ω' es medible.

Probemos que $0 < |\Omega| < \infty$.

 $|\Omega'| < |\Omega| < \infty$ dado que $\Omega' \subset \Omega$.

Ahora bien, supongamos que $|\Omega'| = 0$, entonces $\{x \in \Omega : |f(x)| \ge \|f\|_{\infty} - \epsilon\}$ es nulo, pero entonces $\|f\|_{\infty} - \epsilon \ge |f(x)|$ p.c.t. $x \in \Omega$, de

forma que, por definición de $||f||_{\infty}$ tendríamos que $||f||_{\infty} - \epsilon \ge ||f||_{\infty}$ lo cual es una contradiccón.

Así, $0 < |\Omega'| < \infty$.

Como $\Omega' \subset \Omega$ tenemos que

$$||f||_p = \left(\int_{\Omega} |f|^p\right)^{\frac{1}{p}} \ge \left(\int_{\Omega'} |f|^p\right)^{\frac{1}{p}}$$

Ahora bien, dada $p \in [1, \infty)$, como en Ω' se cumple que $|f|^p \ge (\|f\|_{\infty} - \epsilon)^p$ entonces

$$\left(\int_{\Omega'} |f|^p\right)^{\frac{1}{p}} \ge \left(\int_{\Omega'} (\|f\|_{\infty} - \epsilon)^p\right)^{\frac{1}{p}} = \left((\|f\|_{\infty} - \epsilon)^p \int_{\Omega'} 1\right)^{\frac{1}{p}} = (\|f\|_{\infty} - \epsilon)|\Omega'|^{\frac{1}{p}}$$

Por transitividad tenemos que

$$||f||_p \ge (||f||_{\infty} - \epsilon)|\Omega'|^{\frac{1}{p}}$$

Ahora bien, por la proposición 14.31 tenemos que

$$||f||_p \le |\Omega|^{\frac{1}{p}} ||f||_{\infty}$$

y así

$$|\Omega|^{\frac{1}{p}} ||f||_{\infty} \ge ||f||_{p} \ge (||f||_{\infty} - \epsilon) |\Omega'|^{\frac{1}{p}}$$

y como $0 < |\Omega| < \infty$

$$||f||_{\infty} \ge ||f||_p |\Omega|^{-\frac{1}{p}} \ge (||f||_{\infty} - \epsilon) |\Omega'|^{\frac{1}{p}} |\Omega|^{-\frac{1}{p}}$$

Notemos que esto se cumple para toda $\epsilon > 0$ y toda $p \in [1, \infty)$, así que

$$\lim_{p\to\infty} ||f||_{\infty} = ||f||_{\infty} \qquad \lim_{p\to\infty} (||f|| - \epsilon) |\Omega'|^{\frac{1}{p}} |\Omega|^{-\frac{1}{p}} = (||f||_{\infty} - \epsilon)$$

de forma que, para toda $\epsilon > 0$,

$$||f|| \ge \lim_{p \to \infty} ||f||_p |\Omega|^{-\frac{1}{p}} \ge ||f|| - \epsilon$$

lo cual implica

$$||f||_{\infty} = \lim_{p \to \infty} |\Omega|^{-\frac{1}{p}} ||f||_{p}$$