Kapitel 0

Definition 0.1 (Topologie): Sei X eine Menge. Eine Familie $\mathcal{T} \subset \mathcal{P}(X)$ heißt **Topologie** auf X, falls gilt:

- 1. $\emptyset, X \in \mathcal{T}$,
- 2. $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$, d.h. \mathcal{T} ist abgeschlossen unter endlichen Durchschnitten
- 3. $A_i \in \mathcal{T} \Rightarrow \cup_{i \in I} A_i \in \mathcal{T}$, d.h. \mathcal{T} ist abgeschlossen unter beliebigen Vereinigungen.

Ein Element $O \in \mathcal{T}$ heißt dann **offene Menge**.

Definition 0.2 (Punkte, Begriffe): Sei $S \subseteq X$, $p \in X$. Der Punkt p heißt

- innerer Punkt von S, falls gilt: $\exists O \in \mathcal{T} : p \in O \text{ und } O \subseteq S$,
- **äußerer Punkt** von S, falls gilt: $\exists O \in \mathcal{T} : p \in O \text{ und } O \subseteq X \setminus S$,
- Randpunkt von S, falls gilt: $\forall O \in \mathcal{T}$ mit $p \in O : O \cap S \neq \emptyset$ und $O \cap S^c \neq \emptyset$,
- Häufungspunkt von S, falls gilt: $\forall O \in \mathcal{T}$ mit $p \in O : O \setminus \{p\} \cap S \neq \emptyset$.

Proposition 0.1: p ist Randpunkt von S genau dann wenn p weder innerer Punkt noch äußerer Punkt von S ist.

Beweis: Siehe Notizen PDF Expert.

Definition 0.3 (Mengen, Begriffe): Sei $S \subseteq X$.

- $S^o := \{ p \in X : p \text{ ist innerer Punkt von } S \}$ heißt **Inneres** von S,
- $\operatorname{Ext}(S) := \{ p \in X : p \text{ ist äußerer Punkt von } S \}$ heißt Äußeres von S,
- $\partial S := \{ p \in X : p \text{ ist Randpunkt von } S \}$ heißt **Rand** von S,
- $\overline{S} := S \cup \partial S$ heißt **Abschluss** von S.

Beispiel 0.1: $X = \mathbb{R}$, $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) | a \in \mathbb{R}\}$. Betrachte S = (0, 1):

- Ist keine offene Menge,
- hat keine inneren Punkte, d.h. $S^o = \emptyset$,
- $\operatorname{Ext}(S) = (1, \infty)$
- $\partial S = (-\infty, 1]$

Definition 0.4 (Konvergenz einer Folge): Sei (X,\mathcal{T}) ein topologischer Raum, $(a_n)_{n\in\mathbb{N}}$ eine Folge in X. Die Folge heißt **konvergent** gegen $a\in X$, falls:

$$\forall O \in \mathcal{T} \text{ mit } a \in \mathcal{T} \quad \exists N \in \mathbb{N} \quad \forall n > N: \quad a_n \in O.$$

In Worten: jede offene Menge, die a enthält, enthält auch fast alle Folgenglieder a_n . Wir nennen a einen **Grenzwert** der Folge $(a_n)_{n\in\mathbb{N}}$ und schreiben $a_n\to a$.

Bemerkung 0.1: Mit dieser Definition ist der Grenzwert i.Allg. **nicht eindeutig**! Wir betrachten dazu das Beispiel von vorher: Sei $X=\mathbb{R},\,\mathcal{T}=\{\emptyset,\mathbb{R}\}\cup\{(a,\infty)|a\in\mathbb{R}\}.$ Sei $(a_n)_{n\in\mathbb{N}}=\left(\frac{1}{n}\right)_{n\in\mathbb{N}}.$ Wir sehen:

- $a_n \to 0$,
- $a_n \rightarrow -1$,
- $a_n \to a \text{ mit } a \leq 0$,

d.h. der Grenzwert ist nicht eindeutig! Um das zu berücksichtigen definieren wir folgenden Begriff:

 $\textbf{Definition 0.5} \; (\textbf{Hausdorffraum}) \colon \; \textbf{Ein topologischer Raum} \; (X,\mathcal{T}) \; \textbf{heißt} \; \textbf{Hausdorffraum} \; \textbf{falls gilt:} \\$

Für alle $x, y \in X$ mit $x \neq y$ gibt es offene Umgebungen U, V von x, y mit $U \cap V = \emptyset$

Satz 0.1 (Eindeutigkeit des Grenzwerts in Hausdorffräumen): Sei (X, \mathcal{T}) ein Hausdorffraum. Dann sind Folgengrenzwerte eindeutig.

Beweis: Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in X mit $a_n\to a$. Angenommen $a_n\to b, a\ne b$. Da $a_n\to a$, enthält eine beliebige offene Umgebung von a fast alle Folgenglieder a_n . Da (X,\mathcal{T}) Hausdorff ist, gibt es offene Umgebungen U,V von a,b mit $U\cap V=\emptyset$. U enthält fast alle Folgenglieder von $(a_n)_{n\in\mathbb{N}}$ und wegen $U\cap V=\emptyset$ kann V nicht fast alle Folgenglieder von $(a_n)_{n\in\mathbb{N}}$ enthalten. Das ist ein Widerspruch zu $a_n\to b$.