Computational Intelligence

Unit # 4.2

Acknowledgement

 The slides of this lecture have been taken from the lecture slides of "CSE659 – Computational Intelligence" by Dr. Sajjad Haider.

General Scheme of EAs

A Typical Evolutionary Algorithm Cycle

- 1. Let g = 0 be the generation counter.
- 2. Initialize a population C_g of N individuals, i.e. $C_g = \{\vec{C}_{g,n} | n = 1, \dots, N\}$.
- 3. While no convergence
 - (a) Evaluate the fitness $\mathcal{F}_{EA}(\vec{C}_{g,n})$ of each individual in population C_g
 - (b) perform cross-over:
 - i. select two individuals \vec{C}_{g,n_1} and \vec{C}_{g,n_2}
 - ii. produce offspring from \vec{C}_{g,n_1} and \vec{C}_{g,n_2}
 - (c) perform mutation
 - i. select one individual $\vec{C}_{g,n}$
 - ii. mutate $\vec{C}_{g,n}$
 - (d) select the new generation C_{g+1}
 - (e) evolve the next generation: let g = g + 1

The 8-Queen Problem

The 8-Queen Problem: Representation

The 8-Queen Problem: Fitness Evaluation

- Penalty of one queen: the number of queens she can check.
- Penalty of a configuration:
 the sum of the penalties of all queens.
- Note: penalty is to be minimized
- Fitness of a configuration: inverse penalty to be maximized

The 8-Queen Problem: Mutation

- Small variation in one permutation, e.g.:
 - swapping values of two randomly chosen positions

The 8-Queens Problem: Crossover

- Combining two permutations into two new permutations:
 - choose random crossover point
 - copy first parts into children
 - create second part by inserting values from other parent:
 - in the order they appear there
 - beginning after crossover point
 - skipping values already in child

BoxCar 2D - Evolving a Car

http://boxcar2d.com/about.html

Representation

• Each car is a set of 8 randomly chosen vectors: direction and magnitude. All the vectors radiate from a central point (0,0) and are connected with triangles.

Representation

 For each wheel there is a value specifying its radius and the location of its center along with axle angle.

Chromosome Representation

The design of the chromosome is probably the most important step in making a successful genetic algorithm.

Fitness: how far the car goes on the terrain when run (using Box2D physics engine).

Crossover

Ca	Angle0	Mag0	Anglel	Magl													WheelVertex0	AxleAngle0	WheelRadius0	WheelVertex1	AxleAngle1	Wheell
A	0.769	2.614	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	2.507	0.814	1.963	0.392	2.872	3	5.284	0.434	7	2.625	1.191
В	0.535	2.682	0.732	2.256	0.422	0.149	0.676	0.578	0.709	2.774	0.592	2.623	0.519	1.531	0.924	0.404	-1	0.704	0.122	4	0.167	0.409
AB	0.535	2.682	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	2.507	0.814	1.963	0.392	2.872	3	5.284	0.434	7	2.625	0.409
BA	0.769	2.614	0.732	2.256	0.422	0.149	0.676	0.578	0.709	2.774	0.592	2.623	0.519	1.531	0.924	0.404	-1	0.704	0.122	4	0.167	1.191

Crossover

Mutation

Car	Angle	0 Mag0									Angle5	Mag5					WheelVertex0	AxleAngle0	WheelRadius0	WheelVertex1	AxleAnglel	WheelRadius1
AB	0.535	2.682	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	2.507	0.814	1.963	0.392	2.872	3	5.284	0.434	7	2.625	0.409
AB_m	0.535	2.682	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	0.940	0.814	1.963	0.392	2.872	4	5.284	0.434	7	2.625	0.409

Evolving a Car - Demo

https://www.youtube.com/watch?v=TLTRb2R
 Qnu0

- 50 generations of boxcar3d:
- https://www.youtube.com/watch?v=TyCwy2Iy
 eeU

Evolving Bipedal Robot Walk

Nao Body

Knee Pitch

Hip Pitch

Parameter Learning

 Evolutionary algorithms are used to learn the parameters of the following PFS based periodic function:

$$f(t) = C + \sum_{n=1}^{N} A_n \sin\left(n\frac{2\pi}{T}t + \phi_n\right), \forall t \in \Re$$

• N varies for different joints and depending upon its value we need to learn the corresponding number of A, C, T and ϕ parameters.

https://www.desmos.com/calculator/lab9nylxsi

Fitness Function

- During this parameter searching and optimization exercise, the evolutionary algorithm was guided by a composite fitness function that consists of the following characteristics:
 - Speed: Distance traveled by the simulated Nao during the allotted 8 seconds
 - Straightness: Straightness of the walk
 - Stability: Stability of the walk computed through gyroscope reading

Video - Comparison of different walks

 http://www.youtube.com/watch?v=3cj-UQN6rj0

Evolutionary Art: Mona Lisa Evolution

 Problem: paint a replica of the Mona Lisa using only 50 semi transparent polygons

Evolutionary Art: Mona Lisa Evolution

DEMO:

https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Evolutionary Art: Mona Lisa Evolution

- A candidate solution is a set of 50 transparent polygons of various colors on the canvas
- Representation: for each polygon there is a real vector
- describing the shape, the location and the color of the
- polygon
- Fitness (to minimize): sum of the differences in color components (RGB) on each pixel between the phenotype and the target image
- Standard crossover and mutation on real vectors

DEMO: https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Thanks