

GEOMETRÍA

Capítulo 21

ÁREAS DE REGIONES CUADRANGULARES

MOTIVATING | STRATEGY

ÁREAS DE REGIONES CUADRANGULARES

Región Cuadrada

$$S_{ABCD} = L^2$$

$$S_{ABCD} = \frac{d^2}{2}$$

Región Rectangular

$$S_{ABCD} = b.h$$

Región Paralelográmica

$$S_{ABCD} = b.h$$

$$S_{ABCD} = a.b.sen\alpha$$

Región Rombal

$$S_{ABCD} = \frac{b.a}{2}$$

Región Trapecial

$$S_{ABCD} = \frac{(b+a)h}{2}$$

1. Las áreas de las regiones cuadradas RBPQ y CREF so 9 u² y 25 u², respectivamente. Calcule el área de la región cuadrada ABCD.

RESOLUCIÓN

- Piden: $S_{ABCD} = S_x$
- En RBPQ:

$$\begin{array}{c|c}
a & 9 \\
a & 3
\end{array}$$

• En CREF:

$$\begin{array}{c|c} b & b^2 = 25 \\ b = 5 & \\ \hline \end{array}$$

Calculando S_{ABCD}:

$$S_x = 8^2$$

$$S_x = 64$$

Región Cuadrada

$$S_{ABCD} = L^2$$

$$S_{ABCD} = 64 u^2$$

2. Calcule el área de la región rectangular ABCD.

RESOLUCIÓN

- Piden: S_{ABCD}
- Los lados opuestos del rectángulo son congruentes.

AD = BC AB = CD

$$2n + 3 = n + 8$$
 $2\ell + 1 = \ell + 4$
 $n = 5$ $\ell = 3$

Calculando S_{ABCD}:

$$S_{ABCD} = (13)(7)$$

$$S_{ABCD} = 91 u^2$$

3. Determine el área de la región romboidal ABCD.

RESOLUCIÓN

- Piden: S_{ABCD}
- Los lados opuestos del romboide son congruentes.
- △AHB notable de 37° y 53°
- Calculando S_{ABCD}:

$$S_{ABCD} = (20)(8)$$

$$S_{ABCD} = 160 \text{ m}^2$$

4. El perímetro de la región rombal ABCD es 200 cm. Si la m

 ABC = 106°, calcule el área de dicha región.

RESOLUCIÓN

- Piden: S_{ABCD}
- Dato:

$$2p_{ABCD} = 200$$
 $4\ell = 200$
 $\ell = 50$

- △AOB notable de 37° y 53°
- Calculando S_{ABCD}

$$S_{ABCD} = \frac{(80)(60)}{2}$$

 $S_{ABCD} = 2400 \text{ cm}^2$

5. Calcule el área de la región trapecial ABCD.

Región Trapecial

$$S_{ABCD} = \frac{(b+a)h}{2}$$

RESOLUCIÓN

- Piden: S_{ABCD}
- △AHB notable de 45° y 45°
- Calculando S_{ABCD}

$$S_{ABCD} = \frac{(13+5)(6)}{2}$$

$$S_{ABCD} = 54 \text{ m}^2$$

6. Se muestra la distribución de terrenos de tres hermanos. ABCD y ECGF son terrenos cuadrados. Se desea conocer el área del terreno DEFH.

RESOLUCIÓN

- Piden: S_{DEFH}
- En CEFG:

En ABCD:

Calculando S_{ABCD}:

$$S_{DEFH} = (4)(2)$$

Región Rectangular

01

$$S_{\underline{\underline{\underline{}}}} = b.h$$

Región Cuadrada

$$S_{\square} = L^2$$

 $S_{DEFH} = 8 \text{ m}^2$

7. Se muestra un cartón de 16 dm², con el que se desea construir una caja sin tapa. Halle la altura de dicha caja.

RESOLUCIÓN

- Piden: altura de la caja = h
- Dato:

$$A_{TOTAL} = 16$$

$$S_1 + S_2 + S_3 + S_4 + S_5 = 16$$

$$2.h + 3.h + 2.h + 3.h + 3.2 = 16$$

$$10h + 6 = 16$$

$$10h = 10$$

$$h = 1 dm$$