2.Übung Maß- und Wahrscheinlichkeitstheorie 2 WS2019

1. Die Lebesguezerlegung lässt sich natürlich unabhängig von der Sigmaadditivität der beteiligten Maße definieren, wir nennen also

$$\nu = \nu_1 + \nu_2$$

ganz allgemein eine Lebesgue-Zerlegung von ν bezüglich μ , wenn $\nu_1 \ll \mu$ und $\nu_2 \perp \mu$ gilt. Zeigen Sie, dass eine solche Zerlegung (wenn sie existiert, was nur für sigmaendliches μ und ν garantiert ist) eindeutig bestimmt ist.

- 2. Die ϵ - δ Bedingung (zu jedem $\epsilon > 0$ gibt es ein $\delta > 0$, sodass aus $\mu(A) < \delta$ die Ungleichung $\nu(A) < \epsilon$ folgt) für die absolute Stetigkeit muss nicht gelten, wenn ν nicht endlich ist: geben Sie ein Beispiel für zwei Maßfunktionen μ und ν mit μ endlich, ν sigmaendlich, und $\nu \ll \mu$, aber die ϵ - δ -Bedingung gilt nicht.
- 3. Geben Sie ein Beispiel für zwei Maßfunktionen μ und ν mit μ endlich, ν sigmaendlich aber nicht endlich, und $\nu \ll \mu$, und die ϵ - δ -Bedingung gilt, oder beweisen Sie, dass es kein solches Beispiel gibt (das vorige Beispiel wird gelegentlich so formuliert, dass "nicht einmal dann, wenn μ endlich und ν sigmaendlich ist", die ϵ - δ -Bedingung gelten muss; diese Formulierung ist nicht ganz gerechtfertigt, weil es ja umso schwieriger ist, die Bedingung zu erfüllen, je kleiner μ ist).
- 4. $f:[a,b]\to\mathbb{R}$ heißt Lipschitz-stetig, wenn es eine Konstante M gibt, sodass für $a\leq s\leq t\leq b$ $|f(t)-f(s)|\leq M(t-s)$ gilt. Zeigen Sie:
 - (a) f ist absolutstetig,
 - (b) $g = \frac{d\mu_f}{d\lambda}$ erfüllt $|g| \leq M$ fast überall.

Insgesamt ist f genau dann Lipschitz-stetig, wenn

$$f(x) = \int_{[a,x]} g d\lambda$$

mit einer beschränkten messbaren Funktion g.

5. Es sei

$$F(x) = \begin{cases} 0 & \text{für } x < 0 \\ x & \text{für } 0 \le x < 1 \\ (x+1)^2 & \text{für } 1 \le x < 2 \\ 9 & \text{für } x \ge 2 \end{cases}$$

und

$$G(x) = \begin{cases} 0 & \text{für } x < 0 \\ x + 1 & \text{für } 0 \le x < 2 \\ x^2 & \text{für } 2 \le x < 3 \\ 9 & \text{für } x > 3 \end{cases}$$

Bestimmen Sie die Lebesguezerlegung von μ_G bezüglich μ_F und die Radon-Nikodym Dichte des absolutstetigen Anteils.

- 6. F sei eine nichtnegative Verteilungsfunktion und $G(x) = F(x)^2, x \in \mathbb{R}$.
 - (a) Zeigen Sie: G ist eine Verteilungsfunktion,
 - (b) Zeigen Sie: $\mu_G \ll \mu_F$
 - (c) Bestimmen Sie $\frac{d\mu_G}{d\mu_F}$.
- 7. $\nu_n, n \in \mathbb{N}$ seien sigmaendliche Maße auf dem sigmaendlichen Maßraum $(\Omega, \mathfrak{S}, \mu), \ \nu = \sum \nu_n. \ \nu_{nc} \ll \mu, \ \nu_{ns} \perp \mu$ sei die Lebesgue-Zerlegung vun ν bezüglich μ . Zeigen Sie, dass $\nu_s = \sum_n \nu_{ns}$ und $\nu_c = \sum_n \nu_{nc}$ eine Lebesgue-Zerlegung von ν ist. Ist ν auch sigmaendlich, dann ist

$$\frac{d\nu_c}{d\mu} = \sum_n \frac{d\nu_{nc}}{d\mu}$$

(ist ν nicht sigmaendlich, dann ist die rechte Seite immer noch eine Radon-Nikodym Dichte, aber diese muss nicht eindeutig bestimmt sein).