# СОДЕРЖАНИЕ

| Введение                                                            | 4  |
|---------------------------------------------------------------------|----|
| 1 Обзор системы VLC                                                 | 6  |
| 1.1 Li-Fi и VLC                                                     | 6  |
| 1.2 Li-Fi передатчик                                                | 6  |
| 1.3 Li-Fi приёмник                                                  | 8  |
| 2 Методы модулирования излучения                                    | 10 |
| 2.1 On-Off Keying                                                   | 10 |
| 2.2 Методы импульсной модуляции                                     | 11 |
| 2.2.1 Модуляция длительности импульса                               | 11 |
| 2.2.2 Фазово-амплитудная модуляция                                  | 12 |
| 2.2.3 Мультиплексирование с ортогональным частотным разделением ка- |    |
| налов (OFDM)                                                        | 13 |
| 2.2.4 Цветовая манипуляция (CSK)                                    | 14 |
| Список использованных источников                                    | 17 |

#### ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

РЧ — радио частоты.

VLC (visible light communication) — связь по видимому свету.

ИК — инфракрасный.

LED (Light emitting diode) — светодиод.

AP (Access point) — точка доступа.

PLC (Power-line communication) — связь по электросети.

PoE (Power over Ethernet) — питание через Ethernet.

RGB (Red-green-blue) — красный-синий-зелёный.

MIMO (Multiple-input-mulitple-outputs) — несколько входов и выходов.

IM/DD (Intensity modulation and direct detection) — модуляция интенсивности и прямое детектирования.

OFDM (Orthogonal frequency division multiplexing) — мультиплексирование с ортогональным частотным разделением каналов.

OWC (Optical wireless communication) — оптическая беспроводная коммуникация.

Li-Fi — light fidelity.

Wi-Fi — wireless fidelity.

IM — intensity modulation.

DD — direct detection.

IEEE (Institute of Electrical and Electronics Engineers) — институт электроники и инжинеров электроники.

LD (laser diode) — лазерный диод.

FPS (frames per second) — кадры в секунду.

ИМ — импульсная модуляция.

CSM (color shift modulation) — цветовая манипуляция.

NRZ — non-return-to-zero [on-off-keying].

PWM (pulse width modulation) — модуляция длительности импульса.

PPM (pulse position modulation) — фазово-амплитудная модуляция.

OPPM (overlapping pulse position modulation) — перекрывающаяся фазовоамплитудная модуляция.

MPPM (multipulse pulse position modulation) — многоимпульсная фазовоамплитудная модуляция. VPPM (variable pulse position modulation) — переменная фазово-амплитудная модуляция.

#### ВВЕДЕНИЕ

Спустя тридцать лет после появления первых коммерческих мобильных коммуникационных систем, беспроводная связь эволюционировала в обыкновенное удобство как газ или электричество. Экспоненциальный рост в мобильном трафике в течение последних трёх десятилетий привет к масштабному разворачиванию беспроводных систем. Как следствие, ограниченный доступный РЧ-диапазон является объектом постоянного переиспользования и межканальной интерференции, что значительно ограничивает ёмкость сетей. Таким образом, было много различных предупреждений о грядущем «кризисе РЧ спектра» [1], так как требования к передачи мобильных данных данных продолжают расти, в то время как спектральная эффективность сетей насыщается, даже несмотря на введение новых стандартов и значительный технологический прогресс в этой области. По оценкам, к 2022 году более 77 эксабайтов (1060 байт) трафика будет передаваться через мобильные устройства каждый месяц (около одного зеттабайта в год) [2]. В середине прошлого десятилетия было предложено использование связи по видимому свету (VLC) в качестве потенциального решения для избежания «кризиса РЧ спектра».

В течение прошлого десятилетия значительные усилия были направлены на изучение альтернативных частей электро-магнитного спектра, которые потенциально смогут разгрузить большую часть трафика из загруженного РЧ диапазона. Было продемонстрировано использование миллиметровых волн в коммуникации в 28 ГГц диапазоне, а так же использование видимого и ИК света. Это особенно полезно, так как освещение – удобство, которое имеется практически в любой жилой среде и для которого существует готовая инфраструктура. Использование видимого света для высокоскоростных линий связи становится возможно из-за использования LED. В этом смысле концепт комбинирования функций освещения и коммуникации позволяет экономить энергию (и деньги) и сократить углеродный след. Во-первых, установка точек доступа (АР) является достаточно тривиальной задачей, так как можно переиспользовать уже существующую инфраструктуру с использованием готовых технологий, таких как связь по электросети (PLC) и питание через Ethernet (PoE). Во-вторых, так как освещение обычно работает в помещениях даже в течение светлого времени суток, дополнительное питание передатчиков будет незначительным. Помимо этого, видимый свет включает в себя сотни ТГц свободного канала, что на четыре порядка больше, чем полный РЧ спектр до 30 ГГц, включая миллиметровый

спектр. Оптическое излучение, в общем, не интерферирует с другими радио волнами и не мешает работе чувствительного электрического оборудования. Таким образом, свет идеален для беспроводного покрытия в местах, чувствительных к электромагнитному излучению (например, больницы, самолёты, топливно-химические и атомные электростанции и другие). Помимо этого, так как свет не может проникать через непрозрачные поверхности (стены), создается более высокий уровень безопасности соединения. Эта же особенность может быть использована для избежания интерференции между двумя соседними сетями.

В течение последних десяти лет, было проведено значительное количество исследований об улучшении скорости передачи между двумя устройствами с использованием существующих светодиодов в лабораторных условиях. В 2012 году была достигнута скорость передачи данных выше 1 Гб/с с использованием белых фосфорных LED [3], и 3.4 Гб/с с помощью красно-сине-зелёного (RGB) LED [4]. Также была продемонстрирована [5] схожая гигабитная система с белым фосфорным LED в виде матрицы 4 на 4 в конфигурации несколько входов и выходов (MIMO). Теоретическая структура для достижимой ёмкости модуляции интенсивности и прямого детектирования (IM/DD) с использованием мультиплексирования с ортогональным частотным разделением каналов (OFDM) была показана в [6]. Для успешной реализации системы мобильной связи необходима готовая сетевая система. Это и есть то, что называется Li-Fi – сетевое мобильное высокоскоростное VLC решение для беспроводной связи [7]. Гарольд Хаас, которому принадлежит идея создания Li-Fi [8], предлагает использовать Li-Fi как комплиментарную сеть для облегчения нагрузки на РЧ спектр, так как значительная часть нагрузки на текущие Wi-Fi сети сможет быть перемещена на Li-Fi сети.

#### 1 ОБЗОР СИСТЕМЫ VLC

#### 1.1 Li-Fi и VLC

Концепт VLC был представлен Гаральдом Хаасом на конференции TED Talk в 2011 году [9]. Было предложено использование модуляции интенсивности излучения — IM (intensity modulation), а для приёмника (фотодетектор) применять прямое детектирование — DD (direct detection). Работа такой системы описывается стандартом IEEE 802.15.7 [10]. VLC предлагается использовать как замену проводам и волокну для передачи данных [8], а именно для соединения формата «от точки к точке», то есть предполагается, что каждый передатчик соединен только с одним приёмником.

Этот формат соединения и отличается VLC от Li-Fi: последний описывает сеть с двусторонней коммуникацией и наличием многих передатчиком и приёмников, предполагается соединение между одним источником и многими приёмниками – соединение формата «от многих точек к точке». Такой тип соединения схож с уже существующим и широко распространенным протоколом Wi-Fi: он тоже позволяет обеспечить мобильность пользователей и незаметное переключение между передатчиками. По сути, стандарт Li-Fi включает в себя стандарт VLC, то проиллюстрировано на схеме 1.1.

### 1.2 Li-Fi передатчик

Зачастую в системах передачи информации с помощью видимого света в качестве передатчика выбирается светодиодный светильник<sup>1</sup> [11, 12, 13]. Он представляет из себя полноценное осветительное устройство, состоящее из LED источник излучения, балласта, корпуса и других компонентов. LED источник может состоять из одного или нескольких светодиодов, которые управляются с помощью управляющей микросхемы – контроллера, который контролирует ток, питающий светодиод и меняющий его яркость. Когда светодиодный светильник используется для коммуникации, контроллер модернизируется для передачи данных с помощью модуляции излучения. Примером простейшей модуляции является On-Off Keying, то есть «нули» и «единицы» передаются как два разных уровня интенсивности света.

<sup>&</sup>lt;sup>1</sup>LED luminaire



Рисунок 1.1 — Принципиальная схема Li-Fi и VLC [8]

Важнейшим преимуществом Li-Fi системы является возможность использования её для освещения вместо обычных светильников. В таком случае, функции передачи информации и освещения не должны мешать работе друг друга. Белый свет является превалирующим, так как при таком освещении цвет предметов выглядит естественным, как при солнечном освещении. Для освещений внутри и снаружи помещений всё чаще применяют LED светодиоды, так как они являются экономичными и надёжными. Тогда белый свет можно получить следующими способами:

- а) Синий светодиод с фосфором это источник света, состоящий из синего InGaN светодиода, покрытого жёлтым фосфором. Синий свет от источника поглощается фосфором и переизлучается на широком спектре от красного до зелёного, тем самым генерируя белый свет. Изменение цветовой температуры излучаемого света достигается за счёт изменения толщины фосфорного покрытия.
- б) RGB светодиод это три светодиода (красный, синий и зелёный), при смешении света от которых, получается белый свет. Этот тип светодиодов подходит для Li-Fi систем, чем фосфорные светодиоды, так как последние значительно ограничены временем релаксации фосфора, что может снизить скорость передачи данных (так как оказывается невозможно модулировать интенсивность такого светодиода с

частотой выше нескольких МГц [3]). Кроме того, при использовании RGB светодиодов возможно применение цветовой манипуляции – метода модуляции с разделением каналов по длинам волн, что позволяет повысить скорость передачи данных [14] (раздел 2.2.4).

в) Лазерный диод (LD) – в 2011 году в лаборатории Sandia [15] предложили использовать комбинацию четырёх цветных лазерных диодов (красный, синий, зелёный, жёлтый) для получения белого света. Авторы получили очень яркий собранный пучок света, который хорошо подходит для освещения мест, требующих высокую освещенность. Так как лазерное излучение может нанести вред человеку (и из-за коллимированности плохо освещает большую площадь), авторы использовали рассеиватели. Полученное излучение уже не имеет некоторых лазерных характеристик, однако лазерные диоды являются значительно более эффективными, чем RGB светодиоды. В [16] авторы использовали три лазерных диода (рисунок 1.2) для создания источника света для VLC системы. Они смогли добиться скорости передачи данных до 5 Гб/с.



Рисунок 1.2 — Принципиальная схема источника в VLC системе в [16] с использованием лазерных диодов. В левой части схемы изображены три цветных лазера: красный, синий и зелёный соответственно; в правой части: разделители пучка и детекторы, устройства для совмещения лучей, зеркало, рассеиватель. На выходе получается свет белого цвета.

## 1.3 Li-Fi приёмник

В качестве приёмников в Li-Fi системах чаще всего используются а) фотодетекторы – фотодиоды,

#### б) датчики изображения – камеры.

Фотодетектор — полупроводниковое устройство, которое генерирует ток при падении на него света. Современные коммерческие фотодетекторы могут детектировать с частотой до десятков М $\Gamma$ ц.

Кроме фотодетекторов, возможно применение камер, которые уже есть в большинстве техники (смартфоны, планшеты, ноутбуки), что может упростить интеграцию этих устройств в Li-Fi систему. Кроме того, возможно применение Li-Fi для передачи информации в рамках интернета вещей [17]. Возможность использовать потребительские камеры появляется из-за того, что камера представляет из себя матрицу фотодиодов. Важным отличием является их количество, что делает быстрый сбор и обработку информации с них затруднительным. Это связано со снимаемой камерой частотой кадров в секунду. Несмотря на значительные ограничения по пропускной способности, есть способы повышения скорости приёма информации, например — использование эффекта Rolling shutter [18]. Этот эффект заключается в следующем: так как количество пикселей в камере велико, считывание информации с них происходит построчно (или по столбцам). Если модулировать излучение с периодом, меньшим, чем время считывания одного столбца (строки), то в каждом столбце (строке) будет информация о передаче символа.

Тем не менее, использование фотодиодов остается более предпочтительным, так как с использованием их возможно достижение скорости передачи данных в несколько  $\Gamma$ б/с [4].

#### 2 МЕТОДЫ МОДУЛИРОВАНИЯ ИЗЛУЧЕНИЯ

В VLC системах информация кодируется при помощи модуляции фазы, амплитуды и интенсивности. При рассмотрении различных схем модуляции необходимо не забывать об использовании системы в качестве освещения, так как некоторые параметры могут влиять на психо-физическое состояние человека. Некоторые такие параметры:

- а) затемнение для разных сценариев освещения необходимы различные уровни освещенности [19]. Если для освещения общественных пространств обычно достаточно света в интервале 30-100 лк, то для освещения офисов и жилых помещений нужно освещение 300-1000 лк. Современные светодиодные драйверы, управляющие питанием светодиодов, позволяют устанавливать любые необходимые уровни освещения в зависимости от сценария использования и требований по экономии энергии;
- б) смягчение мерцания так как модуляция интенсивности подразумевает высокочастотное изменение интенсивности источника света, необходимо выбирать такой интервал частот, который не воспринимается человеческим глазом. Было показано ([20]), что заметное мерцание освещения в течение продолжительного периода времени может привести к физиологическим последствиям у людей. Основной стандарт, описывающий системы VLC и Li-Fi IEEE 802.15.7 [10] рекомендует использовать частоту модулирования интенсивности не ниже 200 Гц.

Рассмотрим четыре типа модуляции, которые применяются в VLC:

- a) On-Off Keying (OOK);
- б) импульсная модуляция (ИМ);
- в) мультиплексирование с ортогональным частотным разделением каналов;
- г) цветовая манипуляция (CSM);

# 2.1 On-Off Keying

Самым простым методом модуляции излучения является On-Off Keying (OOK). Биты данных «1» и «0» здесь кодируются включенным и выключенным состоянием светодиода. На самом деле, не обязательно полностью выключать светодиод, достаточно лишь уменьшения интенсивности его излучения до некого порогового уровня. Такой тип модуляции часто применяется в волоконных коммуникациях.

При использовании такой модуляции с синим фосфорным светодиодом, скорость передачи данных будет значительно ограниченна (из-за времени релаксации энергетических уровней фосфора — частота модуляции может быть не выше нескольких МГц [21]). Если же использовать ООК, при котором светодиод не выключается, а его интенсивности уменьшается до порогово значения, как было описано выше, то возможно получение пропускной способности порядка десятков Мб/с [22]. Если же использовать синий фильтр, чтобы убрать из сигнала свет жёлтого фосфора, то можно повысить пропускную способность до 40 Мб/с [21]. Аналогично в [23, 24] было предложено комбинирование синего фильтра и аналогового выравнивания на приёмнике для достижения скорости передачи данных 100 и 125 Мб/с соответственно. Если использовать лавинный фотодиод (а не р-і-п фотодиод), то можно ещё больше повысить пропускную способность [25]. Это связано с тем, что лавинный светодиод обладает более высокой чувствительностью и может регистрировать малые световые мощности. В таком случае пропускная способность системы возрастает до 230 Мб/с [25].

Эта схема модуляции может быть использована и с RGB светодиодом, который имеет более быстрый отклик. В [26] было продемонстрирована схема для передачи данных с RGB светодиодом, ООК схемой модуляции и р-i-п фотодиодом в качестве фотоприёмника. Достигнутая скорость передачи данных составила 477 Мб/с.

### 2.2 Методы импульсной модуляции

Несмотря на то, что ООК имеет ряд преимуществ (простота и лёгкость реализации), оно имеет значительное ограничение — низкая скорость передачи данных. Поэтому были разработаны альтернативные методы модуляции, которые основаны на длительности (PWM) и положении импульса (PPM).

### 2.2.1 Модуляция длительности импульса

Модуляция длительности импульса (PWM) является эффективным методом модуляции с помощью затемнения. Импульсы несут кодированный сигнал, а длительность импульсов определяет уровень освещенности. Из-за этого возможно изменять уровень освещенности без изменения интенсивности импульсов, так как сиг-

нал кодируется длительностью импульса, во время которого светодиод работает на постоянной мощности. К минусам PWM относится достаточно низкая скорость передачи информации (4.8 Кб/с в [27]).

### 2.2.2 Фазово-амплитудная модуляция

Фазово-амплитудная модуляция (PPM) основана на фазе импульса. В этой схеме модуляции длительность символа разделена на несколько интервалов одинаковой длительности, в одном из которых находится импульс. Тогда кодирование информации происходит с помощью положения импульса в конкретном интервале. Так как этот метод модуляции является достаточно простым, он был одним из первых, применённых в VLC системах — [28, 29]. Существуют различные вариации этой схемы, например для передачи данных в условиях плохого соединения можно использовать PPM с адаптивной частотой передачи и повторением сигналов [30].

Так как PPM предполагает передачу только одного импульса за временной интервал, это приводит к низкой скорости передачи данных и спектральной эффективности (спектральная эффективность — это скорость передачи данных, с которой возможно передавать информацию через конкретную полосу пропускания, характеризует эффективность использования частотного диапазона). Чтобы преодолеть эти проблемы были предложены альтернативные варианты PPM — перекрывающиеся фазово-амплитудные модуляции (OPPM), в которых, как следует из названия, возможно передавать несколько импульсов за временной интервал [29]. Кроме того, возможно и перекрывание нескольких символов (смотри рисунок 2.1). Использование OPPM позволяет иметь более детальный контроль над уровнем освещения, решает проблему низкой спектральной эффективности и скорости передачи данных по сравнению с ООК и PPM [31].

В [33] была предложена другая схема, основанная на PPM, которая аналогично OPPM даёт возможность передавать несколько импульсов за интервал длительности символа. В отличии от OPPM, однако, здесь импульс не обязательно должен быть непрерывным (смотри рисунок 2.1). Это позволяет повысить спектральную эффективность по сравнению с OPPM [29].

В самом стандарте, описывающем системы VLC и Li-Fi, IEEE 802.15.7 [10] предлагается альтернативная схема модуляции — переменная фазово-амплитудная модуляция (VPPM), которая имеет ряд общих черт с PPM и PWM. Как и в первой,



Рисунок 2.1 — Схематическая диаграмма, показывающая различия между модуляцией длительности импульса (PWM), фазово-амплитудной модуляцией (PPM), переменной фазово-амплитудной модуляцией (VPPM), перекрывающейся фазово-амплитудной модуляцией (OPPM) и многоимпульсной фазово-амплитудной модуляцией (MPPM).  $S_n$  обозначает n-ный символ. [32]

данные кодируются фазой импульса, в то время как возможно изменение длительности импульса при необходимости. В результате этого, VPPM имеет высокую надёжность и простоту, и позволяет детально варьировать уровень освещения, как и в PWM 2.2.1.

# 2.2.3 Мультиплексирование с ортогональным частотным разделением каналов (OFDM)

Преимущество мультиплексирования с ортогональным частотным разделением каналов (OFDM), которое широко применяется в РЧ-коммуникациях, является отсутствие межсимвольной интерференции, которая может появляться в описанных выше методах модуляции из-за нелинейности частотного отклика каналов связи. Было предложено использовать OFDM и для систем передачи данных по видимому свету [34]. Особенностью OFDM является то, что канал разделяется на несколько ортогональных несущих, данные по которым передаются параллельно потоками,

модулируемыми по несущим. Проблема применения OFDM для беспроводных систем связи по видимому свету заключается в том, что OFDM генерирует комплексные биполярные сигналы, которые необходимо сконвертировать в действительные сигналы.

Другой проблемой OFDM является нелинейность отношения приложенного тока к интенсивности света LED [35]. Это выражается в отношении пиковой к средней мощности и было изучено в [36, 36]. Там авторы предлагают в качестве решения использование светодиода в небольшом интервале мощности, на котором это отношение квазилинейное.

Несмотря на эти недостатки, OFDM имеет высокие перспективы, и было показано, что возможно достижение скорости передачи до нескольких Гб/с с использованием одного светодиода [3, 37].

### 2.2.4 Цветовая манипуляция (CSK)

В стандарте IEEE 802.15.7 [10] описывается ещё один тип модуляции, который был разработан специально для использования в беспроводных системах связи по видимому свету — цветовая манипуляция (CSK). Суть этого метода заключается в отдельном модулировании трёх цветовых компонент RGB светодиода.



Рисунок 2.2 — Цветовое пространство СІЕ 1931 [10]

CSK модуляция основана на модели цветового пространства CIE 1931 [38] (рисунок 2.2, таблица 2.1), на которой всем видимым человеческим глазом цветам

присвоена пара (x,y) координат. Все это пространство разделено на семь полос, представленных в таблице 2.1

Таблица 2.1 — Семь полос, используемых в CSK, их коды, центральные длины волн и координаты на цветовом пространстве [10]

| Полоса (нм) | Код   | Центральная длина волны (нм) | (x,y)          |
|-------------|-------|------------------------------|----------------|
| 380 - 478   | (000) | 429                          | (0.169, 0.007) |
| 478 - 540   | (001) | 509                          | (0.011, 0.733) |
| 540 - 588   | (010) | 564                          | (0.402, 0.597) |
| 588 - 633   | (011) | 611                          | (0.669, 0.331) |
| 633 - 679   | (100) | 656                          | (0.729, 0.271) |
| 679 - 726   | (101) | 703                          | (0.734, 0.265) |
| 726 - 780   | (110) | 754                          | (0.734, 0.265) |

Суть алгоритма кодирования информации заключается в следующем [10]:

- а) выбираются три точки в цветовом пространстве, которые соответствуют цветам RGB светодиода получается треугольник;
- б) в зависимости от выбранной схемы кодирования (4-CSK, 8-CSK, 16-CSK четыре, восемь и шестнадцать символов, соответственно) определяются координаты символов на плоскости. По сути это является задачей на оптимизацию, так как необходимо выбрать координаты так, чтобы расстояние между ними было наибольшим (это необходимо для минимизации интерференции между символами);
  - в) по координатам символов вычисляется яркость компонент RGB светодиода:

$$x_s = P_i x_i + P_j x_j + P_k x_k$$

$$y_s = P_i y_i + P_j y_j + P_k y_k$$

$$P_i + P_j + P_k = 1$$

$$(2.1)$$

Здесь  $(P_i, P_j, P_k)$  – яркости компонент светодиода,  $(x_s, y_s)$  – цветовые координаты символа на цветовой плоскости (рисунок 2.2),  $(x_{ijk}, y_{ijk})$  – координаты центральных длин волн компонент светодиода на цветовой плоскости.

Для большего уменьшения межсимвольной интерференции возможно использовать светодиоды с четырьмя цветовыми компонентами (циан, синий, желтый, красный), так как тогда форма области на цветовой диаграмме будет четырёхуголь-

ником (а не треугольником, как в случае RGB светодиода), что позволит расположить символы дальше друг от друга [39].

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Study on the future UK spectrum demand for terrestrial mobile broadband applications: Rep. / Ofcom: 2013. Jun.
- 2. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022: Rep. / Cisco: 2019. Feb. Access mode: https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf (online; accessed: April 6, 2021).
- 3. 1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation / A. M. Khalid, G. Cossu, R. Corsini et al. // IEEE Photonics Journal. 2012. Oct. Vol. 4, no. 5. P. 1465–1473.
- 4. 3.4 Gbit/s visible optical wireless transmission based on RGB LED/G. Cossu, A. M. Khalid, P. Choudhury et al. // Optics Express. 2012. Dec. Vol. 20, no. 26. P. B501. Access mode: https://doi.org/10.1364/oe.20.00b501.
- 5. Azhar A., Tran T., O'Brien D. A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications // IEEE Photonics Technology Letters. 2013. Jan. Vol. 31, no. 6. P. 918–929.
- 6. Dimitrov S., Haas H. Information rate of ofdm-based optical wireless communication systems with nonlinear distortion // Journal of Lightwave Technology. 2013. Vol. 31, no. 6. P. 918–929.
- 7. VLC: Beyond Point-to-Point Communication / B. Harald, S. Nikola, T. Dobroslav et al. // IEEE Communications Magazine. 2014.
- 8. What is LiFi? / Harald Haas, Liang Yin, Yunlu Wang, Cheng Chen // J. Lightwave Technol. 2016. Mar. Vol. 34, no. 6. P. 1533—1544. Access mode: http://jlt.osa.org/abstract.cfm?URI=jlt-34-6-1533.
- 9. Haas Harald. Wireless data from every light bulb. 2011. Июль. Режим доступа: https://www.ted.com/talks/harald\_haas\_wireless\_data\_from\_every\_light\_bulb (дата обращения: 6 апреля 2021 г.).
- 10. IEEE 802.15.7-2018 IEEE Standard for Local and metropolitan area networks—Part 15.7: Short-Range Optical Wireless Communications. 2018. Access mode: https://standards.ieee.org/standard/802\_15\_7-2018.html (online; accessed: 2021-03-21).

- 11. High-speed visible light communications using multiple-resonant equalization / H. Le Minh, D. O'Brien, G. Faulkner et al. // IEEE Photonics Technology Letters. 2008. Vol. 20, no. 14.
- 12. Komine T., Haruyama S., Nakagawa M. Performance evaluation of narrow-band OFDM on integrated system of power line communication and visible light wireless communication // 1st International Symposium on Wireless Pervasive Computing. 2006. P. 1–6.
- 13. Komine T., Nakagawa M. Fundamental analysis for visible-light communication system using LED lights // IEEE Trans. Consum. Electron. 2004. Vol. 50, no. 1. P. 100–107.
- 14. Bian Rui, Tavakkolnia Iman, Haas Harald. 15.73 Gb/s Visible Light Communication With Off-the-Shelf LEDs // Journal of Lightwave Technology. 2019. May. Vol. 37, no. 10. P. 2418–2424. Access mode: https://doi.org/10.1109/jlt.2019.2906464.
- 15. Four-color laser white illuminant demonstrating high color-rendering quality / A. Neumann, J. J. Wierer, W. Davis et al. // Optics Express. 2011. Jul. Vol. 19, no. S4. P. A982. Access mode: https://doi.org/10.1364/oe.19.00a982.
- 16. Hussein Ahmed Taha, Elmirghani Jaafar M. H. Mobile Multi-Gigabit Visible Light Communication System in Realistic Indoor Environment // Journal of Lightwave Technology. 2015. Aug. Vol. 33, no. 15. P. 3293–3307. Access mode: https://doi.org/10.1109/jlt.2015.2439051.
- 17. Decoding methods in LED-to-smartphone bidirectional communication for the IoT / Alexis Duquel, Razvan Stanica, Herve Rivano, Adrien Desportes // 2018 Global LIFI Congress (GLC). IEEE, 2018. Feb. Access mode: https://doi.org/10.23919/glc.2018.8319118.
- 18. Demonstration of A Visible Light Receiver Using Rolling-Shutter Smartphone Camera / Tuan-Kiet TRAN, Huu-Thuan HUYNH, Duc-Phuc NGUYEN et al. // 2018 International Conference on Advanced Technologies for Communications (ATC). IEEE, 2018. Oct. Access mode: https://doi.org/10.1109/atc.2018.8587521.
- 19. Artūras Žukauskas, Michael Shur, Remis Gaska. Introduction to solid-state lighting. New York: J. Wiley, 2002. ISBN: 9780471215745.

- 20. Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources / S. M. Berman, D. S. Greehouse, I. L. Bailey et al. // Optom. Vis. Sci. 1991. Aug. Vol. 68, no. 8. P. 645–662.
- 21. Wireless high-speed data transmission with phosphorescent white-light LEDs / J. Grubor, S. C. J. Lee, K.-D. Langer et al. // 33rd Eur. Conf. Exhib. Opt. Commun.—Post-Deadline Papers. 2007. Sep. P. 1–2.
- 22. Park S. Information broadcasting system based on visible light signboard // Wireless Opt. Commun. 2007. P. 311–313.
- 23. Minh H. L. High-speed visible light communications using multiple-resonant equalization // IEEE Photon. Technol. Lett. 2008. Jul. Vol. 20, no. 14. P. 1243–1245.
- 24. Vucic J. 125 Mbit/s over 5 m wireless distance by use of OOK-Modulated phosphorescent white LEDs // 35th ECOC. 2009. Sep. P. 1–2.
- 25. Vucic J. 230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs // Conf. OFC/NFOEC. 2010. Mar. P. 1–3.
- 26. Fujimoto N., Mochizuki H. 477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit // Optical Fiber Communication Conf./Nat. Fiber Optic Engineers Conf. Anaheim, CA, USA, 2013. Mar.
- 27. Sugiyama H., Haruyama S., Nakagawa M. Brightness control methods for illumination and visible-light communication systems // 3rd ICWMC. 2007. Mar. P. 78.
- 28. Georghiades C. Modulation and coding for throughput-efficient optical systems // IEEE Trans. Inf. Theory. 1994. Sep. Vol. 40, no. 5. P. 1313–1326.
- 29. shan Shiu D., Kahn J. Differential pulse-position modulation for power-efficient optical communication // IEEE Trans. Commun. 1999. Aug. Vol. 47, no. 8.
- 30. Wireless infrared transmission: How to reach all office space / F. Gfeller, W. Hirt, M. de Lange, B. Weiss // Mobile Technol. Hum. Race / Ed. by IEEE 46th Veh. Technol. Conf. Vol. 3. 1996. Apr. P. 1535–1539.
- 31. Bai Bo, Xu Zhengyuan, Fan Yangyu. Joint LED dimming and high capacity visible light communication by overlapping PPM // The 19th Annual Wireless and Optical Communications Conference (WOCC 2010). IEEE, 2010. May. Access

- mode: https://doi.org/10.1109/wocc.2010.5510410.
- 32. Pathak P. H. et al. "Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. // IEEE COMMUNICATIONS SURVEYS TUTORIALS. 2015. Vol. 17, no. 4. P. 2047–2077.
- 33. Sugiyama H., Nosu K. MPPM: a method for improving the band-utilization efficiency in optical PPM // Journal of Lightwave Technology. 1989. Mar. Vol. 7, no. 3. P. 465–472. Access mode: https://doi.org/10.1109/50.16882.
- 34. Visible light communication using OFDM / M. Afgani, H. Haas, H. Elgala, D. Knipp // 2nd Int. Conf. / Ed. by TRIDENTCOM. 2006. P. 129–134.
- 35. VLC: Beyond point-to-point communication / H. Burchardt, N. Serafimovski, D. Tsonev et al. // IEEE Commun. Mag. 2014. Jul. Vol. 52, no. 7. P. 98–105.
- 36. Elgala Hany, Mesleh Raed, Haas Harald. A study of LED nonlinearity effects on optical wireless transmission using OFDM // 2009 IFIP International Conference on Wireless and Optical Communications Networks. Institute of Electrical and Electronics Engineers (IEEE), 2009. Apr. Access mode: https://doi.org/10.1109/wocn.2009.5010576.
- 37. Tsonev D. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride LED // IEEE Photon. Technol. Lett. 2014. Apr. Vol. 26, no. 7. P. 637–640.
- 38. CIE // Commission Internationale de lEclairage / Ed. by Cambridge Univ. Press. Cambridge, U.K., 1931.
- 39. Singh Ravinder, OFarrell Timothy, David John P. R. An Enhanced Color Shift Keying Modulation Scheme for High-Speed Wireless Visible Light Communications // Journal of Lightwave Technology. 2014. Jul. Vol. 32, no. 14. P. 2582–2592. Access mode: https://doi.org/10.1109/jlt.2014. 2328866.