Demultiplexers (Data Flow Modeling)

1.1 AIM: 1x2 Demultiplexer [DMUX]

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

DMUX_1by2_df

1.4 LOGIC EXPRESSION:

$$Y_0 = (\sim S) \& i$$

 $Y_1 = S \& i$

1.5 BOOLEAN EXPRESSION:

$$Y_0 = \overline{S}i$$
$$Y_1 = Si$$

1.6 TRUTH TABLE [Input Data: i]:

INPUT	OUTPUT		
S	\mathbf{Y}_{0}	\mathbf{Y}_{1}	
0	i	0	
1	0	i	

1.7 VERILOG CODE (DMUX_1by2_df.v):

module DMUX_1by2_df(y,s,i);

input i;

input s;

output [1:0]y;

assign y[0] = (-s)&i;

assign y[1] = (s)&i;

endmodule

1.8 TEST BENCH (DMUX_1by2_df_tb.v):

```
module DMUX_1by2_df_tb();
reg i,s;
wire [1:0]y;

DMUX_1by2_df x1(y,s,i);

initial
begin
s=1'b0;i=1'b1;
#10 s=1'b1;i=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

1.10 RESULT:

1x2 Demultiplexer is simulated and implemented in Data Flow Modeling.

Demultiplexers (Behavioral Flow Modeling)

1.1 AIM: 1x2 Demultiplexer [DMUX]

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

1.4 LOGIC EXPRESSION:

$$Y_0 = (\sim S) \& i$$

 $Y_1 = S \& i$

1.5 BOOLEAN EXPRESSION:

$$Y_0 = Si$$

$$Y_1 = Si$$

1.6 TRUTH TABLE [Input Data: i]:

INPUT	OUTPUT		
S	\mathbf{Y}_{0}	\mathbf{Y}_{1}	
0	i	0	
1	0	i	

1.7 VERILOG CODE (DMUX_1by2_bf.v):

module DMUX_1by2_bf(y,s,i);
input i;
input s;
output [1:0]y;
reg [1:0]y;
always@(s,i)
case(s)
1'b0:begin y[0]=i;y[1]=0;end
1'b1:begin y[0]=0;y[1]=i;end
endcase
endmodule

1.8 TEST BENCH (DMUX_1by2_bf_tb.v):

```
module DMUX_1by2_bf_tb();
reg i,s;
wire [1:0]y;
DMUX_1by2_bf x1(y,s,i);
initial
begin
s=1'b0;i=1'b1;
#10 s=1'b1;i=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

1.10 RESULT:

1x2 Demultiplexer is simulated and implemented in Behavioral Flow Modeling.

1.1 AIM: 1x4 Demultiplexer [DMUX]

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

1.4 LOGIC EXPRESSION:

$$Y_0 = (\sim S_1) \& (\sim S_0) \& i$$

 $Y_1 = (\sim S_1) \& (S_0) \& i$
 $Y_2 = (S_1) \& (\sim S_0) \& i$
 $Y_3 = (S_1) \& (S_0) \& i$

1.5 BOOLEAN EXPRESSION:

$$Y_0 = \underline{S_1} \underline{S_0} i$$

$$Y_1 = \overline{S_1} \underline{S_0} i$$

$$Y_2 = S_1 \overline{S_0} i$$

$$Y_3 = S_1 S_0 i$$

1.6 TRUTH TABLE:

INI	PUT	OUTPUT				
S_1	S_0	\mathbf{Y}_{0}	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_3	
0	0	i	0	0	0	
0	1	0	i	0	0	
1	0	0	0	i	0	
1	1	0	0	0	i	

1.7 VERILOG CODE (DMUX_1by4_bf.v):

module DMUX_1by4_bf(y,s,i); input i; input [1:0]s; output [3:0]y; reg [3:0]y; always@(s,i) case(s)
2'b00:begin y=0;y[0]=i;end
2'b01:begin y=0;y[1]=i;end
2'b10:begin y=0;y[2]=i;end
2'b11:begin y=0;y[3]=i;end endcase endmodule

1.8 TEST BENCH (DMUX_1by4_bf_tb.v):

```
module DMUX_1by4_bf_tb();
reg i;
reg [1:0]s;
wire [3:0]y;

DMUX_1by4_bf x1(y,s,i);

initial
begin
s=2'b00;i=1'b1;
#10 s=2'b01;i=1'b1;
#10 s=2'b10;i=1'b1;
#10 s=2'b11;i=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

1.10 RESULT:

1x4 Demultiplexer is simulated and implemented in Behavioral Flow Modeling.

1.1 AIM: 1x8 Demultiplexer [DMUX]

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

DMUX_1by8_bf

1.4 LOGIC EXPRESSION:

$$\begin{split} Y_0 &= (\sim S_2) \& (\sim S_1) \& (\sim S_0) \& i \\ Y_1 &= (\sim S_2) \& (\sim S_1) \& (S_0) \& i \\ Y_2 &= (\sim S_2) \& (S_1) \& (\sim S_0) \& i \\ Y_3 &= (\sim S_2) \& (S_1) \& (\sim S_0) \& i \\ Y_4 &= (S_2) \& (\sim S_1) \& (\sim S_0) \& i \\ Y_5 &= (S_2) \& (S_1) \& (\sim S_0) \& i \\ Y_6 &= (S_2) \& (S_1) \& (\sim S_0) \& i \\ Y_7 &= (S_2) \& (S_1) \& (S_0) \& i \\ \end{split}$$

1.5 BOOLEAN EXPRESSION:

$$\begin{split} Y_0 &= \overline{S_2} \overline{S_1} \overline{S_0} i \\ Y_1 &= \overline{S_2} \overline{S_1} \underline{S_0} i \\ Y_2 &= \overline{S_2} S_1 \overline{S_0} i \\ Y_3 &= \overline{S_2} \underline{S_1} \underline{S_0} i \\ Y_4 &= S_2 \overline{S_1} \overline{S_0} i \\ Y_5 &= S_2 \overline{S_1} \underline{S_0} i \\ Y_6 &= S_2 S_1 \overline{S_0} i \\ Y_7 &= S_2 S_1 S_0 i \end{split}$$

1.6 TRUTH TABLE:

	INPUT		OUTPUT							
S ₂	S_1	S ₀	\mathbf{Y}_{0}	Y ₁	Y ₂	Y ₃	Y_4	Y ₅	Y ₆	\mathbf{Y}_7
0	0	0	i	0	0	0	0	0	0	0
0	0	1	0	i	0	0	0	0	0	0
0	1	0	0	0	i	0	0	0	0	0
0	1	1	0	0	0	i	0	0	0	0
1	0	0	0	0	0	0	i	0	0	0
1	0	1	0	0	0	0	0	i	0	0
1	1	0	0	0	0	0	0	0	i	0
1	1	1	0	0	0	0	0	0	0	i

1.7 VERILOG CODE (DMUX_1by8_bf.v): module DMUX_1by8_bf(y,s,i); input i; input [2:0]s; output [7:0]y; reg [7:0]y; always@(s,i) case(s) 3'b000:begin y=0;y[0]=i;end3'b001:begin y=0;y[1]=i;end 3'b010:begin y=0;y[2]=i;end3'b011:begin y=0;y[3]=i;end3'b100:begin y=0;y[4]=i;end

3'b101:begin y=0;y[5]=i;end3'b110:begin y=0;y[6]=i;end

3'b111:begin y=0;y[7]=i;end

endcase endmodule

1.8 TEST BENCH (DMUX_1by8_bf_tb.v):

```
module DMUX_1by8_bf_tb();
reg i;
reg [2:0]s;
wire [7:0]y;
DMUX_1by8_bf x1(y,s,i);
initial
begin
s=3'b000;i=1'b1;
#10 s=3'b001;i=1'b1;
#10 s=3'b010;i=1'b1;
#10 s=3'b011;i=1'b1;
#10 s=3'b100;i=1'b1;
#10 s=3'b101;i=1'b1;
#10 s=3'b110;i=1'b1;
#10 s=3'b111;i=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

RESULT:

1x8 Demultiplexer is simulated and implemented in Behavioral Flow Modeling

Demultiplexers (Structural Flow Modeling)

1.1 AIM: 1x2 Demultiplexer [DMUX]

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

1.4 LOGIC EXPRESSION:

$$Y_0 = (\sim S) \& i$$

 $Y_1 = S \& i$

1.5 BOOLEAN EXPRESSION:

$$Y_0 = \overline{S}i$$
$$Y_1 = Si$$

1.6 TRUTH TABLE [Input Data: i]:

INPUT	OUTPUT		
S	\mathbf{Y}_{0}	\mathbf{Y}_{1}	
0	i	0	
1	0	i	

1.7 VERILOG CODE (DMUX_1by2_sf.v):

module DMUX_1by2_sf(y,s,i); input i;

input s;

output [1:0]y;

wire [1:0]y;

and $(y[0],(\sim s),i);$

and (y[1],(s),i);

endmodule

1.8 TEST BENCH (DMUX_1by2_sf_tb.v):

```
module DMUX_1by2_sf_tb();
reg i,s;
wire [1:0]y;

DMUX_1by2_sf x1(y,s,i);

initial
begin
s=1'b0;i=1'b1;
#10 s=1'b1;i=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

1.10 RESULT:

1x2 Demultiplexer is simulated and implemented in Structural Flow Modeling.

1.6 AIM: 1x4 Demultiplexer [DMUX]

1.7 SOFTWARE USED: Xilinx Vivado 2022.2

1.8 SYMBOL:

DMUX_1by4_sf

1.9 LOGIC EXPRESSION:

$$Y_0 = (\sim S_1) \& (\sim S_0) \& i$$

 $Y_1 = (\sim S_1) \& (S_0) \& i$
 $Y_2 = (S_1) \& (\sim S_0) \& i$
 $Y_3 = (S_1) \& (S_0) \& i$

1.2 BOOLEAN EXPRESSION:

$$Y_0 = \overline{\underline{S_1}} \overline{S_0} i$$

$$Y_1 = \overline{S_1} \underline{S_0} i$$

$$Y_2 = S_1 \overline{S_0} i$$

$$Y_3 = S_1 S_0 i$$

1.10 TRUTH TABLE:

INPUT		OUTPUT			
S_1	S_0	\mathbf{Y}_{0}	\mathbf{Y}_3		
0	0	i	0	0	0
0	1	0	i	0	0
1	0	0	0	i	0
1	1	0	0	0	i

1.7 VERILOG CODE (DMUX_1by4_sf.v):

```
module DMUX_1by4_sf(y,s,i); input i; input [1:0]s; output [3:0]y; wire [3:0]y; and (y[0],~s[0],~s[1],i); and (y[1],s[0],~s[1],i); and (y[2],~s[0],s[1],i); and (y[3],s[0],s[1],i); endmodule
```

1.11 TEST BENCH (DMUX_1by4_sf_tb.v):

```
module DMUX_1by4_sf_tb();
reg i;
reg [1:0]s;
wire [3:0]y;
DMUX_1by4_sf x1(y,s,i);
initial
begin
s=2'b00;i=1'b1;
#10 s=2'b01;i=1'b1;
#10 s=2'b10;i=1'b1;
#10 s=2'b11;i=1'b1;
#10 $finish;
end
endmodule
```


1.13 **RESULT:**

1x4 Demultiplexer is simulated and implemented in Structural Flow Modeling.

1.1 AIM: 1x4 Demultiplexer using 1x2 Demultiplexer

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

_....

1.4 LOGIC EXPRESSION:

$$Y_0 = (\sim S_1) \& (\sim S_0) \& i$$

$$Y_1 = (\sim S_1) \& (S_0) \& i$$

$$Y_2 = (S_1) \& (\sim S_0) \& i$$

$$Y_3 = (S_1) \& (S_0) \& i$$

1.1 BOOLEAN EXPRESSION:

$$Y_0 = \overline{\underline{S_1}} \overline{S_0} i$$

$$Y_1 = \overline{S_1} \underline{S_0} i$$

$$Y_2 = S_1 \overline{S_0} i$$

$$Y_3 = S_1 S_0 i$$

1.5 TRUTH TABLE:

INPUT OUTPUT			PUT		
S_1	S_0	Y_0 Y_1 Y_2			
0	0	i	0	0	0
0	1	0	i	0	0
1	0	0	0	i	0
1	1	0	0	0	i

1.7 VERILOG CODE (DMUX_1by4_using_2by1.v):

module DMUX_1by4_using_2by1(y,s,i); input i; input [1:0]s; output [3:0]y;

wire [1:0]a;

DMUX_1by2_sf m1(a,s[1],i); DMUX_1by2_sf m2(y[1:0],s[0],a[0]); DMUX_1by2_sf m3(y[3:2],s[0],a[1]);

endmodule

1.8 TEST BENCH (DMUX_1by4_using_2by1_tb.v):

```
module DMUX_1by4_using_1by2_tb();
reg i;
reg [1:0]s;
wire [3:0]y;

DMUX_1by4_using_2by1 x1(y,s,i);

initial
begin
s=2'b00;i=1'b1;
#10 s=2'b01;i=1'b1;
#10 s=2'b10;i=1'b1;
#10 s=2'b11;i=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

1.10 RESULT:

1x4 Demultiplexer using 1x2 Demultiplexer is simulated and implemented