Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Capitolo 1	Spazi euclidei	Pagina 4
1.1	$E_n(\mathbb{R})$, spazio euclideo di dimensione n	4

Capitolo 1

Spazi euclidei

1.1 $E_n(\mathbb{R})$, spazio euclideo di dimensione n

Definizione 1.1.1: Spazio euclideo

Si dice **spazio euclideo** di dimensione n sul campo \mathbb{R} la struttura costituita da uno spazio affine $A_n(\mathbb{R})$ il cui spazio vettoriale $V_n^{\circ}(\mathbb{R})$ sia dotato di un prodotto scalare "." definito positivo.

Definizione 1.1.2: Ortogonalità tra sottospazi

Siano $S_h = [P, V_h]$ e $S_k = [Q, V_k]$ due sottospazi lineari di $E_n(\mathbb{R})$. Diremo che S_h è **ortogonale** a S_k se

$$V_h \subseteq V_k^{\perp}$$
 oppure $V_h \supseteq V_k^{\perp}$

Osservazione: La relazione di ortogonalità è simmetrica. Infatti se $S_h \perp S_k$ allora

1.
$$V_h \subseteq V_k^{\perp} \implies V_h^{\perp} \supseteq \left(V_k^{\perp}\right)^{\perp} = V_k \implies V_k \subseteq V_h^{\perp} \implies S_k \perp S_h$$

$$2. \ V_h \supseteq V_k^{\perp} \implies V_h^{\perp} \subseteq \left(V_k^{\perp}\right)^{\perp} = V_k \implies V_k \supseteq V_h^{\perp} \implies S_h \perp S_k$$

In entrambi i casi $S_h \perp S_k \iff S_k \perp S_h$. Quindi diremo semplicemente che S_h e S_k sono ortogonali.

Proposizione 1.1.1

In $E_2(\mathbb{R})$, dati la retta r e il punto H, esiste un'unica retta passante per H e ortogonale a r.

Dimostrazione: Dimostriamo prima di tutto l'esistenza della retta, successivamente ci occuperemo dell'unicità. Poniamo $r:[P,V_1]$ e definiamo una $s:[H,V_1^{\perp}]$. s è una retta poiché $\mathbb{R}^2=V_1\oplus V_1^{\perp}$, per la formula di Grassmann V_1^{\perp} ha dimensione 1, quindi s è una retta. $H\in s$ per costruzione e $r\perp s$ perché $V_1^{\perp}\subseteq V_1^{\perp}$, cioè lo spazio di traslazione della retta s contiene la direzione ortogonale a V_1 . Ora l'unicità della retta segue dall'unicità dello spazio di traslazione e poiché esso ha dimensione 1, anche la retta è unica.

Proposizione 1.1.2

In $E_3(\mathbb{R})$, siano assegnati una retta r e un piano α . Dato un punto H

- 1. esiste un'unica retta s passante per H e ortogonale al piano α
- 2. esiste un unico piano β passante per H e ortogonale alla retta r

Dimostrazione: Dimostriamo i 2 punti separatamente

- 1. poniamo $\alpha = [P, V_2]$ e $s = [H, V_2^{\perp}]$. s è una retta perché $\dim(V_2^{\perp}) = 1$, poiché $\mathbb{R}^3 = V_2 \oplus V_2^{\perp}$ per la formula di Grassmann. $H \in s$ e $s \perp \alpha$ valgono per costruzione.
- 2. poniamo $r = [Q, V_1]$ e definiamo $\beta = [H, V_1^{\perp}]$. Verifichiamo che β sia un piano. Osserviamo che dato che

$$\underbrace{\mathbb{R}^3}_3 = \underbrace{V_1}_1 \oplus \underbrace{V_1^{\perp}}_2 \implies \dim(V_1^{\perp}) = 2$$

quindi β è un piano. $H \in \beta$ e $\beta \perp r$ valgono per costruzione. L'unicità del piano segue dall'unicità di V_2 di dimensione 2 e perpendicolare a V_1 .

☺

Proposizione 1.1.3

Siano $r:[P,V_1]$ e $\alpha=[Q,V_2]$ rispettivamente una retta e un piano di $E_3(\mathbb{R})$. Se $r\perp\alpha$ abbiamo che

- 1. $r \perp s \quad \forall s \subseteq \alpha$, cioè r è perpendicolare a ogni retta s contenuta nel piano α
- 2. $\alpha\perp\beta\quad\forall\beta\supseteq r,$ cio
è α è perpendicolare a ogni piano β contenent
er

Dimostrazione: Dimostriamo i 2 punti separatamente

1. Sia $s \subseteq \alpha$ con $s = [H, V'_1]$, allora

$$\underbrace{V_1' \subseteq V_2}_{\text{poiché } s \subseteq \alpha} = \underbrace{V_1^{\perp}}_{\text{poiché } r \perp s} \implies r \perp s$$

2. Sia $\beta \subseteq \alpha$ con $\beta = [H, V_2']$, allora

$$\underbrace{V_2'\supseteq V_1}_{\text{poiché }\beta\supseteq r} = \underbrace{V_2^{\perp}}_{\text{poiché }r\perp\alpha} \implies \alpha\perp\beta$$

