日本国特許庁 JAPAN PATENT OFFICE

18.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年12月13日

出 願 番 号 Application Number:

特願2004-359888

[ST. 10/C]:

[JP2004-359888]

出 願 人
Applicant(s):

キヤノン株式会社

2005年 3月31日

161

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 0011727-01 【整理番号】 平成16年12月13日 【提出日】 特許庁長官 殿 【あて先】 G03G 15/20 【国際特許分類】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 白潟 二郎 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 武田 昌平 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 渡辺 岡樹 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 【氏名】 若原 伸一郎 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 竹松 浩二 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 西村 貢市郎 【氏名】 【特許出願人】 000001007 【識別番号】 【氏名又は名称】 キヤノン株式会社 御手洗 富士夫 【代表者】 【代理人】 【識別番号】 100086818 【弁理士】 高梨 幸雄 【氏名又は名称】 【先の出願に基づく優先権主張】 特願2003-427808 【出願番号】 平成15年12月24日 【出願日】 【手数料の表示】 【予納台帳番号】 009623 16,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1

【物件名】

【物件名】

【物件名】

【包括委任状番号】

図面 1

要約書 1

9703877

【書類名】特許請求の範囲

【請求項1】

コイルと、前記コイルを内部に配置し、該コイルからの磁束の作用によって発熱する発 熱体と、を有し、該発熱体の熱により被加熱材上の像を加熱する加熱装置において、

該発熱体のキュリー点温度は定着温度よりも大きく装置の耐熱温度より小さい温度であ り、所定の被加熱材サイズに対応した領域よりも外側の領域の厚みを、前記所定の被加熱 材サイズに対応した領域よりも大きくすることを特徴とする加熱装置。

【請求項2】

前記発熱体の厚みは、前記発熱体の温度が定着温度での表皮深さよりも大きいことを特 徴とする請求項1記載の加熱装置。

【請求項3】

前記所定の被加熱材サイズに対応した領域よりも外側の領域における前記発熱体の厚み は、前記発熱体の温度がキュリー点温度における表皮深さよりも大きいことを特徴とする 請求項2記載の加熱装置。

【請求項4】

前記発熱体は中空ローラであり、前記発熱体の厚みの変化は前記発熱体の内径が変化す ることで形成されることを特徴とする請求項1乃至3の何れかに記載の加熱装置。

【請求項5】

前記発熱体の被加熱材搬送領域内の温度を所望の定着温度になるように前記コイルに電 力を供給する電力供給手段を有することを特徴とする請求項1乃至4の何れかに記載の加 熱装置。

【書類名】明細書

【発明の名称】加熱装置

【技術分野】

[0001]

本発明は、誘導発熱する発熱体の発熱により、搬送される被加熱材を加熱する加熱装置 に関する。

【背景技術】

[0002]

特許文献1には、加熱源として高周波誘導を利用した電磁誘導加熱方式の定着装置が提 案されている。

[0003]

この定着装置は、金属導体(誘導発熱体)からなる中空の定着ローラの内部にコイルが同心状に配置されており、このコイルに高周波電流を流して生じた高周波磁界により定着ローラに誘導渦電流を発生させ、定着ローラ自体の表皮抵抗によって定着ローラそのものをジュール発熱させるようになっている。

[0004]

この電磁誘導加熱方式の定着装置によれば、電気-熱変換効率がきわめて向上するため 、ウォームアップタイムの短縮化が可能となる。

[0005]

このような電磁誘導加熱方式の定着装置であっても、被加熱材としての通紙可能な最大サイズ記録材の全域を所定の定着温度で温めてトナー画像定着するように作動するために、実際にトナー画像を定着する以上のエネルギーを消費し、また、通紙される記録材が小サイズであり、それが連続して通紙されたとき、定着部の通紙域ではない領域(非通紙部領域)がトナー画像の定着温度以上に昇温(過昇温)して機内昇温や被加熱材の熱劣化などを引き起こす。

[0006]

この電磁誘導加熱方式の定着装置の非通紙部昇温対応手段としては例えば特許文献2~4に記載される磁束遮蔽手段を具備させることが有効である。

【特許文献1】特開昭59-33787号公報

【特許文献2】特開平9-171889号公報

【特許文献3】特開平10-74009号公報

【特許文献4】特開2003-123957号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

しかしながら、そのような磁束遮蔽手段を具備させた電磁誘導加熱方式の加熱装置においては、通紙する被加熱材サイズによって上記磁束遮蔽手段の遮蔽域を変化させる機構が必要となるため、装置が複雑化してコストアップする。

[0008]

また、非通紙部昇温の対応手段としては他に通紙スピードの低下(スループットダウン)、放熱手段の当接等があるが、機械の生産性低下を招いたり、放熱手段追加による装置の複雑化、コストアップの課題がある。

[0009]

そこで、非通紙部昇温対策として、電磁誘導発熱性部材のキュリー点温度を定着温度近 傍に設定することで、電磁誘導発熱性部材の温度がキュリー点温度までに制限され、それ 以上に昇温していく過昇温が防止する技術が知られている。

[0010]

更に、近年の省エネルギー化や立上げ時間の迅速化の要求から電磁誘導加熱方式の加熱 装置の電磁誘導発熱性部材は低熱量化のために薄肉化してきている。このため、キュリー 点温度到達後の磁力線の浸透深さるよりも電磁誘導発熱性部材の厚さが小さい場合が考え

[0011]

そこで本発明は、電磁誘導加熱方式の加熱装置において、発熱体のキュリー点温度に達した部分での漏れ磁束を低減することで、漏れ磁束による近傍に配置された電気パーツ等への影響の懸念を無くすことができる装置を提供することを目的とする。

[0012]

また、キュリー点温度に達しない領域である最小通紙サイズの被加熱材搬送領域に対応する発熱体の肉厚は薄肉化することで、発熱体全体の熱容量を低減することができ、電磁誘導発熱性部材温度の立上げ時間等を迅速に行うことができる装置を提供することを目的とする。

【課題を解決するための手段】

[0013]

上記目的を達成するための本発明に係る加熱装置の代表的な構成は、コイルと、前記コイルを内部に配置し、該コイルからの磁束の作用によって発熱する発熱体と、を有し、該発熱体の熱により被加熱材上の像を加熱する加熱装置において、該発熱体のキュリー点温度は定着温度よりも大きく装置の耐熱温度より小さい温度であり、所定の被加熱材サイズに対応した領域よりも外側の領域の厚みを、前記所定の被加熱材サイズに対応した領域よりも大きくすることを特徴とする。

【発明の効果】

[0014]

上記本発明においては、漏れ磁束の密度を指数的に低減することができるので、発熱体のキュリー点温度に達した部分での漏れ磁束を低減することで、漏れ磁束による近傍に配置された電気パーツ等への影響の懸念を無くすことができる。

[0015]

また、発熱体全体の熱容量を低減することができ、電磁誘導発熱性部材温度の立上げ時間等を迅速に行うことができる。

【発明を実施するための最良の形態】

[0016]

本発明の加熱装置は、搬送される記録材にトナーによる未定着画像を形成し、加熱装置において加熱定着させる複写機、プリンター等に用いられる定着装置として用いるのが最 良の形態である。

【実施例1】

[0017]

以下、本発明の実施の形態を図面に基づいて説明する。

[0018]

(1) 画像形成装置例

図1は本発明の実施の形態に係る電磁誘導加熱装置を画像加熱定着装置として備えた画像形成装置の一例の概略構成図である。本例の画像形成装置100は転写式電子写真プロセス利用、レーザー走査露光方式の画像形成装置(複写機、プリンター、ファクシミリ、それらの複合機能機等)である。

[0019]

101は原稿台ガラスであり、この原稿台ガラス101の上に原稿Oを画像面を下向きにして所定の載置基準に従って載置し、その上から原稿圧着板102を被せてセットする。コピースタートキーが押されると、移動光学系を含む画像光電読取装置(リーダ部)103が動作して原稿台ガラス101上の原稿Oの下向き画像面の画像情報が光電読取処理される。原稿台ガラス101上に原稿自動送り装置(ADF、RDF)を搭載して原稿を

[0020]

104は回転ドラム型の電子写真感光体(以下、感光ドラム)であり、矢印の時計方向に所定の周速度にて回転駆動される。感光ドラム104はその回転過程で、帯電装置105により所定の極性・電位の一様な帯電処理を受け、その一様帯電面に対して画像書き込み装置106による像露光しを受けることで一様帯電面の露光明部の電位が減衰して感光ドラム104面に露光パターンに対応した静電潜像が形成される。画像書き込み装置106は本例の場合はレーザースキャナであり、不図示のコントローラからの指令により、上記の光電読取装置103で光電読取した原稿画像情報の時系列電気デジタル画素信号に対応して変調されたレーザー光しを出力し、回転する感光ドラム104の一様帯電面を走査露光して原稿画像情報に対応した静電潜像を形成する。

[0021]

次いで、その静電潜像が現像装置107によりトナー画像として現像され、転写帯電装置108の位置において、給紙機構部側から感光ドラム104と転写帯電装置108との対向部である転写部に所定の制御タイミングにて給送された記録材Sに感光ドラム104面側から静電転写される。

[0022]

給紙機構部は、本例の画像形成装置の場合は、第一~第四のカセット給紙部109~112、MPトレー(マルチ・パーパス・トレー)113、及び反転再給紙部114からなり、それ等から記録材Sが転写部に選択的に給送される。115は転写部に対して記録材をタイミング給送するレジストローラである。

[0023]

転写部で感光ドラム104面側からトナー画像の転写を受けた記録材は、感光ドラム104面から分離され、定着装置116へ搬送されて未定着トナー画像の定着処理を受け、排紙ローラ117により装置外部の排紙トレー118上に排紙される。

[0024]

一方、記録材分離後の感光ドラム104面はクリーニング装置119により転写残りトナー等の付着汚染物の除去を受けて清掃されて繰り返して作像に供される。

[0025]

両面コピーモードの場合は、定着装置116を出た第一面コピー済みの記録材が反転再給紙部114に導入されて転写部に反転再給送されることで記録材の第二面に対するトナー画像の転写がなされ、再び定着装置116を通って両面コピーとして排紙ローラ117により装置外部の排紙トレー118上に排紙される。

[0026]

(2) 加熱装置(定着装置) 116

図2は定着装置116の要部の正面模型図、図3は要部の拡大横断面模型図である。この定着装置116は、加熱ローラ型で、電磁誘導加熱方式の加熱装置であり、互いに圧接させて定着ニップ部Nを形成させた一対の定着部材と加圧部材として上下並行2本の加熱ローラ1と加圧ローラ2を主体とする。

[0027]

発熱体として加熱ローラ(以下、定着ローラと記す) 1 は誘導発熱体製の中空(円筒状)のローラ(電磁誘導発熱性部材)であり、その外周面にトナー離型層 1 a を形成具備させてある。本例においてそのトナー離型層 1 a は P T F E 3 0 μ m で構成されている。この定着ローラ 1 はその両端部側をそれぞれ定着装置の手前側と奥側の側板 2 1 \cdot 2 2 間に軸受(ベアリング) 2 3 を介して回転可能に支持させて配設してある。また内空部には磁場(磁束)発生手段としての加熱アセンブリ(励磁コイルユニット) 3 を挿入してその両端部側をそれぞれ定着装置の手前側と奥側の保持部材 2 4 \cdot 2 5 に非回転に固定支持させて配置してある。

[0028]

加圧ローラ2は、鉄製の芯金2aと、該芯金の外回りに同心一体にローラ状に形成具備 出証特2005-3029058 させたシリコーンゴムの耐熱性弾性体層 2 b と、さらにその外周面に形成したトナー離型層 2 c と、からなる弾性ローラである。トナー離型層 2 c は上記定着ローラ 1 のトナー離型層 1 a と同様である。この加圧ローラ 2 は上記定着ローラ 1 の下側に並行に配列して、芯金 2 a の両端部側をそれぞれ定着装置の手前側と奥側の側板 2 1 · 2 2 間に軸受 2 6 を介して回転自在に保持させて、かつ定着ローラ 1 の下面に対して不図示の付勢手段により弾性体層 2 b の弾性に抗して所定の押圧力にて圧接させて加熱部としての所定幅の定着ニップ部 N を形成させている。

[0029]

電磁誘導発熱性部材としての定着ローラ1を構成する誘導発熱体は、ニッケル、鉄、強磁性SUS、鉄ーニッケル合金、鉄ーニッケルークロム合金、ニッケルーコバルト合金等の磁性金属(導電体、磁性体)、特開2000−39797号公報等に開示されるように、キュリー点温度を所望に調整した整磁合金等である。本例ではキュリー点温度(磁性の無くなる温度)を220℃に設定した、鉄ーニッケル合金を用いている。

[0030]

このキュリー点温度は装置の許容上限温度より小さく設定しており、例えば、装置が耐熱温度に達しないように装置部品の耐熱温度よりも低い温度に設定してもよい。装置の耐熱温度としては、例えば定着性を向上させるために表層にシリコンゴム層を接着してある加熱ローラの表層ゴムとローラ芯金の接着耐久温度や、ローラ内部に設けられたコイルの被覆樹脂(材料)の耐熱温度が挙げられる。また、ローラのキュリー点の温度を高温オフセットが発生する温度よりもキュリー点の温度を低く設定してもよい。

[0031]

[0032]

定着ローラ1の内空部に挿入した加熱アセンブリ3は磁場発生手段であり、ホルダー (外装ケース体) 4、励磁コイル5、磁性コア61・62等の組み立て体であり、ホルダー4内に励磁コイル5と磁性コア61・62を格納保持させてある。この加熱アセンブリ3を定着ローラ1の内空部に挿入して所定の角度姿勢でかつ定着ローラ1の内面に対して非接触に所定の隙間間隔をあけた状態にして両端部側をそれぞれ定着装置の手前側と奥側の保持部材24・25に非回転に固定支持させて配置してある。

[0033]

ホルダー4には、PPS系樹脂、PEEK系樹脂、ポリイミド樹脂、ポリアミド系樹脂 ポリアミドイミド系樹脂、セラミック、液晶ポリマー、フッ素樹脂等の耐熱性・非磁性材料が適している。

[0034]

励磁コイル 5 は加熱に十分な交番磁束を発生するものでなければならないが、そのためには抵抗成分が低く、インダクタンス成分を高くとる必要がある。励磁コイル 5 の芯線として ϕ 0 . $1\sim0$. 3 の細線を略 8 $0\sim1$ 6 0 本ほど束ねたリッツ線を用いている。細線には絶縁被覆電線を用いている。また磁性コア 6 1 · 6 2 を周回するようにホルダー 4 の内側底面の形状に合せて横長舟型に複数回巻回して励磁コイルとしてある。励磁コイル 5 は定着ローラ 1 の長手方向に巻かれており、ホルダー 4 の内壁と磁性コア 6 1 · 6 2 によって保持されている。 5 a · 5 b は上記励磁コイル 5 の 2 本の外方引出しリード線(コイル供給線)であり、電力制御装置(励磁回路) 5 2 に接続してある。

[0035]

磁性コア61・62は横断面T字型に配置されている。磁性コア61・62は例えばフ 出証特2005-3029058 *ェライト・パーマロイ等の高磁率の部材であり、損失の少ない材料で選別することが好ましい。

[0036]

7は定着ローラ1の温度検知手段としてのサーミスタであり、定着ローラ1の表面に対して弾性部材により押圧して弾性的に接触させて配置してある。このサーミスタ7の検出温度信号が制御回路51に入力する。温度検知手段7はサーミスタに限らず、温度検知素子であればよく、また接触式でも非接触式でも構わない。

[0037]

8は定着前ガイド板であり、作像機構部側から定着装置116に搬送された記録材Sを定着ニップ部Nの入口部に案内する。9は分離爪であり、定着ニップ部Nに導入されて定着ニップ部Nを出た記録材Sが定着ローラ1に巻き付くのを抑え、定着ローラ1から分離させる役目をする。10は定着後ガイド板であり、定着ニップ部Nの出口部を出た記録材Sを排紙案内する。

[0038]

制御回路51は画像形成装置のメイン電源スイッチがONされると、駆動源(モーター)Mを起動させる。その回転駆動力が動力伝達系を介して定着ローラ1の一端部側に固着させた定着ローラギアGに伝達されることで、定着ローラ1が図3において矢印Aの時計方向に所定の周速度にて回転駆動される。加圧ローラ2はこの定着ローラ1の回転駆動に従動して矢印の反時計方向Bに回転する。

[0039]

また、制御回路51は電力制御装置52を起動させて、定着ローラ1内に配設した加熱アセンブリ3の励磁コイル5に電力制御装置52からコイル供給線5a・5bを介して電力(本実施例においては10kHz~100kHzの範囲の高周波電流)を供給する。

[0040]

これにより、加熱アセンブリ3から発生する磁束(交番磁界)の作用で誘導発熱部材である定着ローラ1が誘導発熱(うず電流損によるジュール熱)する。この定着ローラ1の温度が温度検知手段であるサーミスタ7で検出され、その検出温度信号が制御回路51に入力する。制御回路51はこのサーミスタ7から入力する定着ローラ1の検出温度が所定の定着温度、本例の場合は200 $\mathbb C$ に維持されるように電力制御装置52から加熱アセンブリ3の励磁コイル5への供給電力を制御して定着ローラ温度を温調する。

[0041]

上記のように定着ローラ1・加圧ローラ2が回転駆動され、定着ローラ1が加熱アセンブリ3の励磁コイル5への電力供給により誘導発熱して所定の定着温度に温調された状態において、画像形成装置の前記転写部において静電的に転写された未定着トナー画像 t を担持した記録材Sが定着装置116の定着ニップ部Nに導入されて挟持搬送されていく。この挟持搬送過程で記録材S上の未定着トナー画像 t が定着ローラ1の熱とニップ圧で永久固着画像として記録材面に定着される。

[0042]

(3) 定着装置の非通紙部領域の過昇温防止

定着ローラ1はサーミスタ7により表面温度が200℃となるように温調制御されているため、スタンバイ時や通紙時の通紙域においては定着ローラ温度が前記のキュリー点温度220℃を超えることはない。このとき、磁場発生手段から発生した磁力線Fは図5の(a)のように誘導発熱体である定着ローラ1の表面に集中して通り、誘導発熱体1の内部に浸透するに従って指数的に密度が低下していく(表皮効果)。今、磁束密度が0.368倍まで低減する深さを浸透深さるとよび、一般に次式で表される。

[0043]

$\delta = (\pi * f * \mu * \sigma)^{-1/2}$

f:磁場発生手段の励磁電流周波数

μ:誘導発熱体の透磁率 σ:誘導発熱体の導電率 表皮抵抗Rsは

 $Rs = \rho / \delta$ (ρ :固有抵抗)で表され、この表皮抵抗によるジュール熱により定着ローラ1は加熱される。

[0044]

一方、小サイズ紙を連続して通紙した場合の非通紙部においては用紙に奪われる熱が無いため、上記ジュール熱により定着ローラ1の温度が上昇していく。この温度上昇が定着ローラ1のキュリー点温度である220℃に達すると、定着ローラ1の磁性が無くなる(透磁率が1となる)。

[0045]

この場合、上式で表される浸透深さるが一気に増加し、結果、表皮抵抗Rsが一気に低下する。このため、キュリー点温度である220℃に達するとそれ以降の定着ローラ1の加熱が行われなくなり、非通紙部昇温を220℃で抑えることが可能となる。

[0046]

このように誘導発熱体である定着ローラ1のキュリー点温度を定着ローラ1の非通紙領域に発生する非通紙部昇温の所望の値に設定することで、複雑な構成を用いたり、生産性を低下させたりすることなく、非通紙部昇温にかかわる問題を解決することが可能となる

[0047]

上記についていま少し具体的に説明する。本例の定着装置116において記録材Sの通紙は中央基準搬送でなされる。図2において、Cはその中央基準線である。P1は通常のスループットで送る最大通紙幅、P2は通常のスループットで送る最小用紙幅である。本例においては、P1は320[mm]、P2は150[mm]である。

[0048]

定着ローラ1の温度検知手段であるサーミスタ7は上記の最小用紙幅P2の領域内に対応する定着ローラ表面部分の温度を検知するように配置されていて、定着ローラ1はこの領域の定着ローラ表面温度が所定の定着温度、本例では200℃に立ち上げられて温調維持されるように、上記のサーミスタ7を含む制御系51・52で励磁コイル5への電力供給が制御される。

[0049]

定着装置116に対して記録紙Sとして小サイズ紙(通紙幅が最小用紙幅P2以上で、最大通紙幅P1よりも小さい用紙)の連続通紙がなされたとき、定着ローラ1の小サイズ紙通紙領域に対応する定着ローラ部分の温度は上記のサーミスタ7を含む制御系51・52によって所定の定着温度である200℃に温調維持されるけれども、最大通紙幅P1と小サイズ紙通紙領域との差領域である非通紙部領域に対応する定着ローラ部分は非通紙部昇温現象により所定の定着温度である200℃以上に昇温していく。

[0050]

しかし、本例においては、電磁誘導発熱性部材である定着ローラ1のキュリー点温度を220℃に設定してあるから、非通紙部領域に対応する定着ローラ部分の温度が220℃に到達すると、該定着ローラ部分の磁性が急激に低下することで該該定着ローラ部分の温度はキュリー点温度220℃以上には上がらない。すなわち、非通紙部領域の昇温は最大で定着ローラ1に設定したキュリー点温度220℃までに制限され、それ以上に昇温していく過昇温が防止される。

[0051]

(4) 定着ローラ1の肉厚設定

本実施例の電磁誘導発熱性部材である定着ローラ1の長手方向に沿う肉厚分布形状を図4の(a)に示す。すなわち、定着ローラ1の肉厚に関して、キュリー点温度到達部領域(非通紙部昇温によりキュリー点温度に到達する領域となる、最大通紙幅P1と、小サイズ紙(通紙幅が最小用紙幅P2以上で、最大通紙幅P1よりも小さい用紙)の通紙領域との差領域部)の肉厚tkを、常に所定の定着温度である200℃に温調維持されてキュリー点温度には到達しない領域である最小用紙幅P2に対応する定着ローラ部分の肉厚tn

に対して厚くしてある。

[0052]

即ち、所定サイズ紙に対応した領域のローラの厚みに対して、対応した領域よりも外側の領域のローラの厚みを厚くしている。

[0053]

ここで、所定サイズ紙に対応した領域とは、必ずしも所定サイズ紙の紙幅でなくても良く、紙の走行領域の交差、ローラの材質や、搬送速度によって決まる昇温領域により適宜対応幅は変更可能である。また、本発明では所定サイズ紙は最大搬送可能サイズよりも小さい紙サイズを例に説明したが、これに限らず、例えば最大搬送可能サイズであってもよい。この場合、最大搬送領域外の領域の磁束漏れを低減できる。

[0054]

本実施例においては、前記のように、定着ローラ1は鉄とニッケルの配合比率等の設定によりそのキュリー点温度(磁性の無くなる温度)が220 $^{\circ}$ に設定されている。キュリー点温度に達する前の透磁率 $_{\mu}$ は100*4 $_{\pi}$ *10 $^{-7}$ [H/m] であり、キュリー点温度に達した後の透磁率 $_{\mu}$ qは4 $_{\pi}$ *10 $^{-7}$ [H/m] である。また、導電率 $_{\sigma}$ は1.3*10 6 [S/m] である。

[0055]

[0056]

定着ローラ1はサーミスタ7により表面温度が200℃となるように温調制御されているため、スタンバイ時や通紙時の通紙域においては定着ローラ温度が上記キュリー点温度220℃を超えることはない。このため、磁場発生手段3から発生した磁力線は次式で表される浸透深さるだけ定着ローラ1に浸透して定着ローラ1内部を通る。

[0057]

 $\delta = (\pi * f * \mu * \sigma)^{-1/2} = 0.00014 [m] = 0.14 [mm]$

f:磁場発生手段の励磁電流周波数

μ:誘導発熱体の透磁率

σ:誘導発熱体の導電率

一方、小サイズ紙を連続して通紙した場合の非通紙部においては用紙に奪われる熱が無いため、上記ジュール熱により定着ローラ1の温度が上昇していく。この温度上昇が定着ローラ1のキュリー点温度である 220 $\mathbb C$ に達すると、定着ローラ7の磁性が無くなる。すなわち透磁率が $4\pi*10^{-7}$ となる。この場合、上式で表される浸透深さ8 が一気に増加し、

 $\delta = (\pi * f * \mu q * \sigma)^{-1/2} = 0.0014$ [m] = 1.4 [mm] となる。ここで、周波数は 100 k H z で計算している。

[0058]

これにより、表皮抵抗が低下し、キュリー点温度である220℃に達するとそれ以降の 定着ローラ1の加熱が行われなくなり非通紙部昇温を220℃で抑えることが可能となる

[0059]

一方、小サイズ紙の連続通紙時にキュリー点温度に達する P 2 領域より外側の肉厚 t k は 1.5 [mm] であるため、キュリー点温度到達後の磁力線の浸透深さ 1.4 [mm] より大きい。よって、小サイズ紙の連続時に定着ローラ 1 がキュリー点温度に達しても磁力線は大部分が定着ローラ 1 の肉厚内部にとどまり、外部への漏れ磁束はほとんど発生しない。

[0060]

でいため、例えば前記発熱体の温度を制御する制御回路等に接続された信号線への電磁的な影響を防止することができる。

[0061]

また、キュリー点温度に達しない領域である P 2 領域の肉厚 t n は 0.5 [mm] と薄肉化されているので、定着ローラ全体の熱容量を低減することができ、定着ローラ温度の立上げ時間等を迅速に行うことができる。

[0062]

定着ローラ肉厚 t n・ t k の変化は定着ローラの内径 φ d n ・ φ d k 側で行い、定着ローラ外形側は紙搬送に所望の形状に設定されているので、紙搬送に悪影響無く、上記漏れ磁束防止と定着ローラ熱容量低下の効果を発揮できる。

[0063]

また、定着ローラ肉厚変化を図4の(a)のように段階的にではなく、図4の(b)のように連続的に変化させても同等の効果が期待できる。また、用紙搬送が片側基準搬送の場合は図4の(c)ように各サイズの用紙位置に合わせて形状を変化させれば良い。Dは片側基準線である。

[0064]

また、本例においては定着ローラ非通紙部に対応する部分の肉厚 t k をキュリー点に達したのちの浸透深さより大きくしたが、そこまで大きくしなくても厚さに対して磁束密度の減衰効果は指数関数的に得られるため、浸透深さ以下であっても厚くすれば大きな効果は得られる。

[0065]

また、実際の市場で使われる加熱装置の場合は様々な紙サイズが存在するため、明確に通紙部と非通紙部に対応させて肉厚を変更しなくてもよい。少なくともある小サイズを通紙した場合の通紙領域中央側の肉厚よりも非通紙昇温が発生する非通紙部の肉厚の方が厚ければ漏れ磁束低減する効果を得ることができる。漏れ磁束低減の観点から見ると、より好ましくは最小サイズの通紙領域よりも非通紙部領域の肉厚を大きくすることで全ての紙に対して磁束漏れ低減効果を得ることができる。

【実施例2】

[0066]

図6は本実施例に係る電磁誘導加熱方式の加熱装置としての定着装置116の概略断面図である。本実施例の定着装置は、前述の実施例1の定着装置116(図3)において定着ローラ1をエンドレスで可撓性の定着フィルム1Aの形態にしたものである。

[0067]

フィルムガイド部材13・励磁コイル5が加熱アセンブリ3として一体的に設けられ、該フィルムガイド部材13と、駆動ローラ14と、テンションローラ15との間に、電磁誘導発熱性部材としてのエンドレスベルト状の定着フィルム1Aが懸回張設されている。加熱アセンブリ3のフィルムガイド部材13の下面部と従動回転弾性加圧ローラ2とを定着フィルム1Aを挟んで圧接させて定着ニップ部Nを形成させており、中央基準搬送で記録材Sを該定着ニップ部Nに導入して挟持搬送させることで、定着フィルム1Aの電磁誘導発熱とニップ圧により未定着トナー画像tを記録材Sに定着させる。その他の装置構成や温度制御系の構成は実施例1の定着装置116と同様である。

[0068]

定着フィルム 1 A の層構成は、図 7 の(a)に、長手方向(通紙方向に直交する方向)の拡大横断面模型図に示したように、鉄ーニッケル合金からなる誘導発熱体層 a の表面をシリコーンゴムからなる厚さ 2 0 0 $[\mu$ m] の弾性層 b で被覆し、さらに厚さ 3 0 $[\mu$ m] フッ素樹脂の離型層 c で被覆してある。誘導発熱体層 a の厚みは長手中央部分で 5 0 $[\mu$ m]、端部で 2 0 0 $[\mu$ m] になるように長手方向で徐変させてある。

[0069]

誘導発熱体層 a は整磁合金で、キュリー点温度が220℃になるように設定されており 、小サイズの用紙を中央基準搬送で連続通紙した場合には非通紙部に対応する誘導発熱体 層部分は当該温度 2 2 0 ℃に達しそれ以上の発熱をしないようになっており、小サイズ紙 通紙時の非通紙部昇温(過昇温)が抑えられる。

[0070]

定着ニップ部 N は図 6 の(b)に長手方向断面に示すように、フィルムガイド部材 13 の下面部と従動回転加圧ローラ 2 とを定着フィルム 1 A を挟んで圧接させて定着ニップ部 N を形成されているが、フィルムガイド部材 13 の下面部は中央が $100[\mu m]$ 出っ張るような下凸形状を形成してあり、上記定着フィルム 1 A の長手厚さ変化をキャンセルして、定着ニップ部 N での定着フィルム 1 A の形状が紙搬送に好適な下凸 $50[\mu m]$ になるように設定されている。

[0071]

上記の構成により、実施例1の定着装置と同様に、非通紙部昇温時の磁束漏れを誘導発 熱体層 a の厚さで低減しながら、好適な紙搬送を実現することができる。

[0072]

[その他]

1) 本発明の電磁誘導加熱方式の加熱装置は、実施例の画像加熱定着装置としての使用に限られず、未定着画像を記録用紙に仮定着する仮定着装置、定着画像を担持した記録用紙を再加熱してつや等の画像表面性を改質する表面改質装置等の像加熱装置としても有効である。またその他、例えば、紙幣等のしわ除去用の熱プレス装置や、熱ラミネート装置、紙等の含水分を蒸発させる加熱乾燥装置など、シート状部材を加熱処理する加熱装置として用いても有効であることは勿論である。

[0073]

2) 誘導発熱部材は誘導発熱体単体の部材として構成することもできるし、該誘導発熱体の層を含む、耐熱性樹脂・セラミックス等の他の材料層との2層以上の複合層部材として構成することもできる。

[0074]

3) 磁場発生手段による誘導発熱体の誘導加熱は実施例の内部加熱方式に限られず、磁 東発生手段を誘導発熱体の外側に配設した外部加熱方式の装置構成にすることもできる。 【図面の簡単な説明】

[0075]

- 【図1】実施例1における画像形成装置の概略構成図
- 【図2】実施例1における定着装置の要部の正面模型図
- 【図3】実施例1における定着装置の要部の拡大横断面模型図
- 【図4】(a)、(b)、c)はそれぞれ定着ローラの長手方向に沿う肉厚分布形状を示す図
- 【図 5】 (a) は電磁誘導発熱部材のキュリー点温度以下における作用磁力線の様子を示す概略図、(b) キュリー点温度以上における磁力線の様子を示す概略図
- 【図6】実施例2における定着装置の要部の拡大横断面模型図
- 【図7】(a)は定着フィルムの層構成模型図、(b)は定着ニップ部の様子を示す 長手断面模型図

【符号の説明】

[0076]

116・・電磁誘導過熱方式の定着装置、1・・定着ローラ(発熱体、電磁誘導発熱部材)、2・・加圧ローラ、3・・加熱アセンブリ(磁場発生手段)、5・・励磁コイル、6・・磁性コア、7・・温度検知手段(サーミスタ)、1A・・定着フィルム(発熱体、電磁誘導発熱部材)、13・・フィルムガイド部材

【図2】

【図4】

【図6】

【書類名】要約書

【要約】

【課題】コイルと、前記コイルを内部に配置し、該コイルからの磁束の作用によって発熱 する発熱体と、を有し、該発熱体の熱により被加熱材上の像を加熱する加熱装置において 、発熱体のキュリー点温度に達した部分での漏れ磁束を低減することで、漏れ磁束による 近傍に配置された電気パーツ等への影響の懸念を無くすこと、発熱体全体の熱容量を低減 して、発熱体温度の立上げ時間等を迅速に行うこと。

【解決手段】発熱体のキュリー点温度は定着温度よりも大きく装置の耐熱温度より小さい 温度であり、所定の被加熱材サイズに対応した領域よりも外側の領域の厚みを、前記所定 の被加熱材サイズに対応した領域よりも大きくすること。

【選択図】図4

認定・付加情報

特願2004-359888 特許出願の番号

5 0 4 0 2 1 2 7 0 4 6 受付番号

特許願 書類名

0091 第二担当上席 担当官

平成16年12月16日 作成日

<認定情報・付加情報>

【特許出願人】

000001007 【識別番号】

東京都大田区下丸子3丁目30番2号 【住所又は居所】

【氏名又は名称】 キヤノン株式会社

申請人 【代理人】

> 100086818 【識別番号】

東京都目黒区自由が丘2丁目9番23号 ラポー 【住所又は居所】

ル自由が丘301号 高梨特許事務所

高梨 幸雄 【氏名又は名称】

特願2004-359888

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由] 住 所 1990年 8月30日 新規登録

住 所 東京都大田 氏 名 キヤノン株式

東京都大田区下丸子3丁目30番2号 キヤノン株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019690

International filing date: 22 December 2004 (22.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-359888

Filing date: 13 December 2004 (13.12.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

