

PRACTICA II SEGUNDO EXAMEN PARCIAL

OPERACIONES CON VECTORES

- 1. Con respecto a los vectores en IR^3 u=(-1,1,0), v=(1,0,2), w=(-2,4,4). Calcule, si es posible:
 - a) $\frac{\left\|\operatorname{Pr}oy_{3u}^{(-4v)}\right\|}{u\cdot w}$
 - b) $(u \times w) + ||(v + w) \times (v w)|| =$
 - c) $u 5w + ||v|| (3u \times w) =$
 - d) ¿Es el vector ($u \times v$) paralelo al vector (u 2v)? <u>Justifique</u>.
- 2. Dados los siguientes vectores a = (2,4,5), b = (7,-2,4), c = (3,0,-1) de IR^3 . Calcule de ser posible
 - a) $a \times (2b+c) =$
 - b) $a-5b+||c||(3a\times b)=$
 - c) Calcule la medida del ángulo interno determinado por los vectores $\,a\,$ y $\,c\,$.
- 3. Dados los siguientes vectores a = (3, 1, -4), b = (2, 5, 6), w = (1, 4, 8). Calcule de ser posible
 - a) $3c a \times (b \times c) =$
 - b) $(a \cdot c)b (a \cdot b)c =$
 - c) $\left\| \frac{2(b \times a)}{\|a\|} \right\| =$
- 4. Determine tres vectores A = (a,3,2), B = (2,b,1) y C = (4,-1,c). Tal que A sea perpendicular a B, B sea perpendicular a C y C sea perpendicular a A.
- 5. Dados los siguientes vectores a = (2,4,5), b = (7,-2,4), c = (3,0,-1), calcule de ser posible
 - a) a) $||a \times (2b+c)|| =$
 - b) b) $5b + (3a \times b) =$
- 6. Los siguientes son tres puntos en el espacio IR^3 P=(3,-2,1), Q=(4,5,-2), R=(-2,3,4)
 - a) Calcule la proyección del vector \overrightarrow{PQ} sobre el vector \overrightarrow{PR} .
 - b) Obtenga en IR^3 un vector V que sea unitario y paralelo al vector \overrightarrow{PQ} .
 - c) Calcule la medida del ángulo interno del triángulo cuyo vértice es el punto Q.

- 7. Sean A = (-3,5), B = (2,1) y $C = (\frac{3}{2}, \frac{11}{2})$ los vértices de un triángulo. Determine:
 - a) Determine si el $\triangle ABC$ es isósceles o no.
 - b) Encuentre el área del $\triangle ABC$.
 - c) ¿Es recto el ángulo cuyo vértice corresponde al punto A?
- 8. Con respecto a los vectores en IR^3 : u = (-1,1,0), v = (1,0,2), w = (-2,4,4)
 - a) Determine si los vectores $\left(u-\frac{1}{2}w\right)$ y $\left(3v\times u\right)$ son ortogonales.
 - b) Calcule, si es posible:

i.
$$\frac{\left\|\operatorname{Pr}oy_{u}^{\left(-5v\right)}\right\|}{u\cdot w}$$

- ii. $(u \times u) + (u \cdot u)$
- iii. ¿Es el ángulo comprendido entre los vectores u y v un ángulo agudo? <u>Justifique</u>.

TRIANGULOS Y ANGULOS

- 9. Considere el triángulo determinado por los vértices A = (2, -1, 0), B = (5, -4, 3), C = (1, -3, 2) encuentre:
 - a) Area
 - b) La medida en grados del ángulo interno B
- 10. Calcule el volumen del paralelepípedo (caja con lados paralelos) que tiene un vértice en el origen y otros tres vértices en los puntos A = (4,3,-7), B = (-3,5,6) y C = (5,-4,3).
- 11. Calcule el área del triángulo de vértices A = (4,3,-7), B = (-3,5,6) y C = (5,-4,3). ¿Cuál es la medida del ángulo interno con vértice en el punto A ,en el punto B y en el punto C?
- 12. Se llaman ángulos directores de un vector v a los ángulos que forma el vector con cada uno de los semiejes positivos x, y, z. Los cosenos directores son los cosenos de los ángulos directores.
 - a) Calcule la medida de los tres ángulos directores del vector v = (4,-2,4)
 - b) Calcule la medida de los tres cosenos directores de v = (4,-2,4)

- 13. Dados los puntos A = (2,-1,0), B = (5,-4,3) y C = (1,-3,2), los cuales corresponden a los vértices de un triangulo, entonces:
 - a) Encuentre el área del triángulo $\triangle ABC$
 - b) Encuentre el perímetro del triángulo $\triangle ABC$

RECTAS Y PLANOS EN EL ESPACIO

14. Determine la ecuación del plano que contiene a los puntos P=(2,3,0), Q=(-1,0,0) y al punto de intersección de las rectas ℓ_1 y ℓ_2 , cuyas ecuaciones están dadas por

$$\ell_1$$
: $x = 2 - 3t$; $y + 4 = t$; $z = t$
 y
 ℓ_2 : $x + 1 = t$; $y = -3 - 4t$; $z - 1 = -6t$

- 15. Determine las ecuaciones paramétricas de la recta L que contiene al punto $A=\left(4,-3,3\right)$ y que es perpendicular al plano con ecuación 3x-3y+2z=12. ¿Pertenece el punto $C=\left(2,-1,5\right)$ a la recta L? Explique.
- 16. Determine la ecuación del plano π que contiene a los puntos B = (-1, -2, 7), D = (-3, 0, 3) y que es paralelo a la recta con ecuaciones simétricas $\frac{x+2}{2} = y = \frac{z-1}{-4}$.
- 17. Determine el punto de intersección de la recta que contiene los puntos A = (-1, 2, 2) y B = (3, -1, 6) con el plano xz.
- 18. Dados los puntos P = (1,1,-4), Q = (2,-2,3) y R = (-3,1,4), determine la ecuación normal del plano que los contiene.

19. Escriba la ecuación del plano que contiene a la recta de ecuaciones paramétricas dadas por

$$x = 2t$$
, $y = 3$, $z = 1 + 4t$, $t \in IR$

y contiene al punto de intersección de las rectas de ecuaciones

$$L_1: \frac{x+1}{2} = y-1 = -\frac{z}{2}$$
 y $L_2: x-2 = \frac{y-5}{2} = -(z+3)$

20. Escriba la ecuación del plano que contiene a la recta de ecuaciones paramétricas dadas por

$$x = -1 + 3t$$
, $y = 5 + 2t$, $z = 2 - t$, $t \in IR$

y es perpendicular al plano de ecuación 2x-4y+2z=9.

21. Indique si las rectas se intersecan, son paralelas o son alabeadas (oblicuas); si se intersecan, indique cuál es el punto de intersección.

a)
$$N: \frac{x+1}{4} = \frac{y}{3} = z+3$$

a)
$$N: \frac{x+1}{4} = \frac{y}{3} = z+3$$
 y $R: \frac{x-2}{3} = \frac{y+2}{4} = \frac{z}{2}$

b)
$$\ell_1: x = 2 - 3t; \quad y + 4 = t; \quad z = t$$

 $\ell_2: x + 1 = t; \quad y = -3 - 4t; \quad z - 1 = -6t$

c)
$$L:\begin{cases} x = 2 - 3t \\ y = 2t \end{cases}$$
 $y : \frac{x - 1}{2} = y - 3 = \frac{z}{-4}$

d)
$$L: \frac{x-2}{3} = \frac{y+2}{4} = \frac{z}{2}$$
 $y \quad M: \frac{x+1}{4} = \frac{y}{3} = z+3$

22. Encuentre la Ecuación del plano que contiene a la recta (x, y, z) = (4, -11, 8) + t(5, 4, 2) y es paralelo al segmento que une los puntos P = (3,-1,5) y Q = (-7,4,8)

23. Encuentre la ecuación del plano que pasa por el punto A = (4,5,-3) y es paralelo al plano 3x - 2y + 5z = 4

24. Considere las ecuaciones de las dos rectas ℓ_1 y ℓ_2

$$\ell_1$$
: $x = 2 - 3t$; $y + 4 = t$; $z = t$
 ℓ_2 : $x + 1 = t$; $y = -3 - 4t$; $z - 1 = -6t$

- a) Determine si ambas rectas se intersecan. Cuál es el punto de intersección en caso de que ambas rectas se intersequen?
- b) Cuál es la medida del ángulo que se determina entre las dos rectas?
- c) Escriba una ecuación cartesiana para el plano que contiene a ambas rectas.
- d) Escriba las ecuaciones simétricas de una tercera recta perpendicular a las dos rectas dadas, en su punto de intersección.

25. Encuentre las ecuaciones paramétricas y ecuaciones simétricas de la recta de intersección de los planos:

- (1) 3x-4y+14z=7 y 2x+3y-19z=-18(2) 2x-3y+5z=4 y -5x+6y-3z=-2(3) -x+2y+z=0 y 2x-y+2z=-8

26. Halle la ecuación del plano que contiene los puntos A = (4,3,-7), B = (-3,5,6) y C = (5, -4, 3).

27. Encuentre una ecuación para el plano que contiene a las rectas L y M de ecuaciones

$$L: \begin{cases} x = 2 - 3t \\ y = 2t \\ z = 3 + t \end{cases} \qquad M: \frac{x - 1}{2} = y - 3 = \frac{z}{-4}$$

28. Si la recta de ecuaciones paramétricas

$$\ell = \begin{cases} x = 2 + 3t \\ y = -4t \\ z = 5 + t \end{cases}$$

interseca al plano que pasa por los puntos P = (1,0,2), Q = (3,-1,6) y R = (5,2,4). Encuentre el ángulo que se forma entre la recta y plano.

29. Encuentre la <u>ecuación del plano</u> que contiene a los puntos A = (3,-1,5), B = (-7,4,8) y es paralelo a la recta (x, y, z) = (4, -11, 8) + t(5, 4, 2).

ESPACIOS Y SUBESPACIOS VECTORIALES

30. Considere el conjunto $IR^2 - \overline{\{(x,0)\}}$ para el cual se define la operación \oplus como

$$(x, y) \oplus (z, w) = (3 + x + z, yw)$$

- a) Demuestre que \oplus es una operación conmutativa.
- b) Calcule, si existe, el elemento neutro de la operación \oplus .
- c) Determine, si existe el elemento inverso bajo la operación \oplus .
- d) Determine, si existe, el elemento inverso de (2,3).
- 31. En IR^2 se define una operación * así:

$$(a,b)*(m,n) = (am+bn,b+n)$$

- a) Determine si la operación * es conmutativa.
- b) Obtenga el elemento inverso aditivo de (a,b) sabiendo que el neutro de la operación * es el vector (1,0).
- 32. Considere el conjunto $V=IR^2$, para el cual se define una operación interna \oplus como

$$(x, y) \oplus (z, w) = (2x, 3w + y)$$

- a) Calcule $(2,-1) \oplus (3,2)$
- b) Demuestre que \oplus es una operación conmutativa.
- c) Calcule, si existe, el elemento neutro de la operación \oplus .
- d) Determine, si existe el elemento inverso bajo la operación \oplus .
- e) Determine, si existe, el elemento inverso de $\left(\frac{4}{9}, -1\right) \oplus \left(-3, \frac{5}{2}\right)$.
- 33. Considere el conjunto $V = IR^2$, para el cual se define una operación interna \oplus como

$$(x, y) \oplus (z, w) = (2x - z, y + 3w)$$

- a) Es conmutativa la operación?
- b) Es asociativa la operación?

34. En IR^3 se define una operación cerrada \oplus así:

$$(x, y, z) \oplus (a,b,c) = (x+a, y+b+2, 2zc)$$

- a) Calcule $(3,2,-2) \oplus (1,0,-1)$
- b) Es conmutativa la operación?
- c) Es asociativa la operación?
- d) Demuestre que $\left(0,-2,\frac{1}{2}\right)$ es el elemento neutro de la operación \oplus
- e) Calcule, si existe, el elemento inverso de un vector arbitrario (x, y, z) bajo la operación \oplus .
- 35. En IR^3 se define una operación cerrada \oplus así:

$$(x, y, z) \oplus (m, n, p) = (x + 2m, y - n + 2, -zp)$$

- a) Demuestre que $\left(0,-2,\frac{1}{2}\right)$ es el elemento neutro derecho de la operación \oplus
- b) ¿Cuál es el elemento inverso derecho de un vector arbitrario (x, y, z) bajo la operación \oplus .
- 36. En el conjunto de las $M_{2\times 2}$ se define la operación \oplus así:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus \begin{bmatrix} m & n \\ p & q \end{bmatrix} = \begin{bmatrix} am & b+n-2 \\ c+p & d+q+2dq \end{bmatrix}$$

- a) Es conmutativa la operación?
- b) Es asociativa la operación?
- c) Encuentre la matriz (elemento) neutro de la operación $\,\oplus\,$
- d) Encuentre la matriz inversa de la operación \oplus
- 37. En IR^2 se define una operación interna \oplus así:

$$(x, y) \oplus (m, n) = (x + 2m, y + n - 4)$$

- a) Es conmutativa la operación?
- b) Es asociativa la operación?
- c) Halle, si existe, el elemento neutro derecho de la operación \oplus
- d) Calcule el elemento inverso derecho de cada vector bajo esta operación \oplus
- 38. Sea $U = \{A \in M(3, IR) / A \text{ es diagonal}\}$. Muestre que U es subespacio vectorial de $M_{3\times3}$.

- 39. Sea $S = \{(x, y, z) \in \mathbb{R}^3 / y = 3x, z = -2x\}$. ¿Es S subespacio vectorial de \mathbb{R}^3 con la suma usual de vectores y la multiplicación usual de vector por escalar?¿Por qué?
- 40. Sea $S = \{(x, y, z) \in IR^3 / z = 2x y\}$. ¿Es S subespacio vectorial de IR^3 con la suma usual de vectores y la multiplicación usual de vector por escalar?
- 41. Sea $S = \{(x, y, z) \in IR^3 / x 2y z = 0\}$. ¿Es S subespacio vectorial de IR^3 con la suma usual de vectores y la multiplicación usual de vector por escalar?
- 42. Considere el conjunto $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / 2a + b = 0 \ \land \ c + d = 1 \right\}$. Analice las propiedades que debería de cumplir W para ser subespacio vectorial de $M_{2\times 2}$ bajo las operaciones usuales de suma de matrices y multiplicación escalar matricial.
- 43. Considere M, $M = \left\{ \begin{bmatrix} a & b+c \\ -b+c & a \end{bmatrix} / a, b \in IR \right\}$, subconjunto de $M_{2\times 2}$. Determine si el conjunto M es subespacio vectorial de $M_{2\times 2}$.
- 44. Muestre que si $A \in M(n, m, IR)$, entonces $S = \{x \in IR^m / Ax = 0_n\}$ es un subespacio de IR^m .
- 45. Muestre que el conjunto $H,H=\left\{A=A^T/A\in M_{2\times 2}\right\}$ es un subespacio vectorial de $M_{2\times 2}$, bajo las operaciones usuales de suma de matrices y multiplicación por escalar definidas como se conocen.
- 46. Considere M, $M = \left\{ p(x) = ax^2 + bx + c / c = 2ab \right\}$ subconjunto de los polinomios de grado menor o igual a 2. Determine si el conjunto M es subespacio vectorial de P_2 .
- 47. Considere el conjunto $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \ / \ 2a + b = 0 \ \land \ c + d = 1 \right\}$. Determine si W es subespacio vectorial del espacio vectorial $M_{2\times 2}$ bajo las operaciones usuales de suma de matrices y multiplicación escalar matricial.

48. Considere el conjunto
$$W, W \subset M_{2\times 2}$$
, $W = \left\{ \begin{bmatrix} a & d \\ c & b \end{bmatrix}; a, b \in IR \land ab \leq 0, c+d=1 \right\}$.

Determine si W es subespacio vectorial del espacio vectorial $M_{2\times 2}$ bajo las operaciones usuales de suma de matrices y multiplicación escalar matricial.

COMBINACION LINEAL, DEPENDENCIA E INDEPENDENCIA LINEAL

49. Escriba si es posible el vector $\begin{bmatrix} 5 & 1 \\ -1 & 9 \end{bmatrix}$ como combinación lineal de los vectores

$$\left\{ \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ -1 & 3 \end{bmatrix} \right\}$$

- 50. Escriba, si es posible, el vector $\begin{bmatrix} 2 & 2 \\ -1 & 3 \end{bmatrix}$ como combinación lineal del conjunto de vectores $\left\{ \begin{bmatrix} 5 & 1 \\ -1 & 9 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -2 & 0 \end{bmatrix} \right\}$
- 51. Sean u = (4,2,6), l = (2,5,1) y m = (1,-1,0) vectores de IR^3 .¿Es (5,-2,4) combinación lineal de los vectores u,l,m?
- 52. Sea $S = \{(2,2,1),(1,3,1),(3,7,2)\}$. Escriba el vector (4,3,1) como combinación lineal de los vectores de S.
- 53. Investigue si el conjunto N, $N_{3\times2}$ es linealmente dependiente o independiente. Justifique su respuesta de acuerdo con la definición.

$$N = \left\{ \begin{bmatrix} 1 & 3 \\ -1 & 3 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ -7 & 2 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 6 & 1 \\ 1 & -3 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 4 & 4 \\ 6 & 1 \\ 0 & 5 \end{bmatrix} \right\}$$

54. Determine si el conjunto $P = \{(3,1,-1),(2,2,1)\}$ es linealmente independiente o linealmente dependiente. Explique.

- 55. Sean u=(4,2,6), l=(2,5,1) y m=(1,-1,0) vectores de IR^3 . ¿Es $\{u,l,m\}$ un conjunto linealmente independiente? Justifique
- 56. Considere el conjunto $G = \{1-3x+2x^2, 1+x+4x^2, 1-7x\}$ que es subconjunto de P_2 .
 - a) Utilice la definición para determinar si G genera o no a P_2 .
 - b) Utilice la definición para determinar si G es linealmente dependiente o linealmente independiente.

BASES Y CONJUNTO GENERADOR

- 57. Sean u=(4,2,6), l=(2,5,1) y m=(1,-1,0) vectores de IR^3 . ¿Es $\{u,l,m\}$ un conjunto generador de IR^3 ? Justifique
- 58. Sea $K = \{(1,2,-1),(-2,1,-3),(6,2,4)\}$, ¿Es K un conjunto generador de IR^3 ?. Justifique su respuesta de acuerdo con la definición.
- 59. Sea $S = \{(2,2,1), (1,3,1), (3,7,2)\}$. Determine si S es un conjunto generador de IR^3
- 60. Determine si el conjunto $W = \{(1,-1),(2,3)\}$ es base de IR^2 . Explique.
- 61. Sean u = (4, 2, 6), l = (2, 5, 1) y m = (1, -1, 0) vectores de IR^3 . ¿Es $\{u, l, m\}$ una base de IR^3 ?
- 62. Sea $S = \{(1,3,1), (2,7,3), (1,2,2)\}$
 - a) Demuestre que S es un conjunto generador de IR^3
 - b) Utilice el resultado en (a) y escriba el vector (4,5,6) como combinación lineal de los vectores de S.
 - c) Es S una base de IR^3
- 63. Encuentre una base y la dimensión para el subespacio solución del sistema homogéneo dado por

$$\begin{cases} x - 3y + z = 0 \\ -2x + 2y - 3z = 0 \\ 4x - 8y + 5z = 0 \end{cases}$$

- 64. Considere el conjunto $G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$ subconjunto de IM_{2X2} (matrices de tamaño 2×2).
 - a) Utilice la definición para determinar si G genera o no a $M_{2\times 2}$
 - b) Utilice la definición para determinar si G es linealmente dependiente o linealmente independiente.
- 65. Encuentre una base y la dimensión para el subespacio de IR^3 dado por

$$H = \{(x, y, z) / 2x - 3y - 4z = 0\}$$

- 66. Considere el conjunto $G = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix} \right\}$ que es subconjunto de IR^4 .
 - a) Utilice la definición para determinar si G genera o no a IR⁴
 - b) Utilice la definición para determinar si G es linealmente dependiente o linealmente independiente.
- 67. Considere el conjunto $M = \{x^2 + 3, 4x, -x + 5\}$ que es subconjunto de P_2 :
 - a) Determine si *M* es linealmente dependiente o linealmente independiente.
 - b) Determine, usando la definición, si M genera a P_2 .
 - c) ¿Es M base de P_2 ? <u>Justifique</u>.
- 68. Considere el conjunto, $S,S=\left\{A_1,A_2,A_3,A_4\right\}$ que es subconjunto $M_{2\times 2}$. Con

$$A_{1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

- a) Determine si *M* es linealmente dependiente o linealmente independiente.
- b) Determine, usando la definición, si S genera a $M_{2\times 2}$.
- c) ¿Es S base de $M_{2\times 2}$? <u>Justifique</u>.