Signali i sustavi

Ponovljeni prvi međuispit - 13. srpanj 2009.

- 1. Zadan je signal $x(n) = n(\mu(n) \mu(n-32))$. Snaga tog signala je:

- a) 0 b) 9455 c) 10416 d) 11440 e) 12529
- 2. Zadan je signal $x(t) = 2\cos(2t) + 4\sin(4t)$. Energija tog signala je:

- a) 0 b) 2 c) 8 d) 10 e) ∞
- 3. Koja od navedenih funkcija $f: \mathbb{R} \to \mathbb{R}$ nije niti parna niti neparna?

- a) $f(x) = \sqrt{1-x^2}$ b) f(x) = |x-1| + |x+1| c) $f(x) = \frac{1-x}{1+x}$ d) $f(x) = \ln \frac{1-x}{1+x}$ e) $f(x) = \log \frac{1-\sin(x)}{1+\sin(x)}$
- 4. Je li signal $x(n) = \cos(\frac{\pi}{8}n^3 + 3)$ periodičan? Ako je, koji mu je period?
 - a) periodičan je, $T_p = 2$

- b) periodičan je, $T_p = 4$ c) periodičan je, $T_p = 8$ d) periodičan je, $T_p = 16$
- e) Signal nije periodičan!
- Izračunajte generaliziranu derivaciju aperiodičkog signala zadanog slikom.

- a) $\frac{1}{2}\mu(-t)$ b) $-\frac{1}{2}\mu(t) \delta(t-3)$ c) $\frac{1}{2}\mu(-t) \delta(t-3)$ d) $\frac{1}{2}\mu(-t) \delta(t) 2\delta(t-3)$ e) $-\frac{1}{2}\mu(t)$

- Ako za koeficijente linijskog spektra odnosno rastava u Fourierov red nekog periodičkog signala vrijede sljedeći izrazi, a ostali koeficijenti spektra su jednaki nuli, koji od navedenih signala nema snagu P=20?
- a) $|X_{-1}|^2 = |X_1|^2 = 3$, $|X_2|^2 = |X_{-2}|^2 = 7$ b) $|X_{-1}|^2 = |X_1|^2 = 8$, $|X_2|^2 = |X_{-2}|^2 = 2$ c) $|X_{-1}|^2 = |X_1|^2 = 6$, $|X_2|^2 = |X_{-2}|^2 = 4$ d) $|X_{-1}|^2 = |X_1|^2 = 5$, $|X_2|^2 = |X_{-2}|^2 = 5$ e) $|X_{-1}|^2 = |X_1|^2 = 1$, $|X_2|^2 = |X_{-2}|^2 = 8$
- Ako je poznato da su jedini koeficijenta rastava u Fourierov red različiti od nule $X_1 = X_{-1} = 1$, $X_4 = -j$ i $X_{-4} = j$ traženi signal je:
 - a) $x(t) = 2\cos(t) 2\sin(4t)$ uz $T_p = \pi$ b) $x(t) = 2\cos(2t) 2\sin(8t)$ uz $T_p = 2\pi$ c) $x(t) = 2\cos(2t) + 2\sin(8t)$

- uz $T_p = 2\pi$ d) $x(t) = 2\cos(3t) 2\sin(12t)$ uz $T_p = \frac{2\pi}{3}$ e) $x(t) = 2\cos(3t) + 2\sin(12t)$ uz $T_p = \frac{2\pi}{3}$
- Zadan je kontinuirani periodički signal $x(t) = 30\cos(20t + \frac{\pi}{3}) + 60\sin(80t + \frac{\pi}{4})$. Ako je $T_p = \frac{\pi}{10}$, koja kružna frekvencija i koji fazni kut odgovaraju komponenti spektra X_{-4} ?
 - a) $\Omega_{-4} = -80$, $\phi_{-4} = -\frac{3\pi}{4}$ b) $\Omega_{-4} = -80$, $\phi_{-4} = \frac{\pi}{4}$ c) $\Omega_{-4} = 80$, $\phi_{-4} = \frac{\pi}{4}$ d) $\Omega_{-4} = -4$, $\phi_{-4} = \frac{\pi}{4}$ e) $\Omega_{-4} = -80$, $\phi_{-4} = -\frac{3\pi}{4}$

- e) $\Omega_{-4} = -80$, $\phi_{-4} = -\frac{3\pi}{4}$
- Izračunaj razvoj u Fourierov red periodičkog signala zadanog slikom uz $T_p=2$.
 - a) $X_k = \begin{cases} \frac{j}{k\pi} \cos(k\pi), & k \neq 0 \\ \infty, & k = 0 \end{cases}$ b) $X_k = \begin{cases} \frac{j}{k\pi} \cos(k\pi), & k \neq 0 \\ 0, & k = 0 \end{cases}$ c) $X_k = \begin{cases} \frac{1}{k\pi} \cos(k\pi), & k \neq 0 \\ \infty, & k = 0 \end{cases}$ d) $X_k = \begin{cases} \frac{j}{k\pi} \sin(k\pi), & k \neq 0 \\ j, & k = 0 \end{cases}$ e) $X_k = \begin{cases} \frac{j}{k\pi} \sin(k\pi), & k \neq 0 \\ 0, & k = 0 \end{cases}$

- - $\frac{1}{3}$
- 10. Koeficijenti rastava nekog kontinuiranog periodičkog signala u Fourierov red su $X_k = \sqrt{3} \cdot 2^{-|k|}$ za $k \neq 0$ i $X_0 = 0$, $k \in \mathbb{Z}$ Snaga tog signala je:
- (na) 0 b) 1 c) 2 d) 3 e) 4

- Ako znate da su kontinuirani kompleksni aperiodički signal x(t) i pripadni spektar $X(\omega)$ Fourierov transformacijski par, dakle $x(t) \bigcirc X(\omega)$, odredite što dobivamo inverznom transformacijom konjugiranog spektra $X^*(\omega)$.
- \bigcirc a) x(t)
- b) x(-t)

- c) $x^*(t)$ d) $x^*(-t)$ e) Ništa od navedenoga!
- Fourierova transformacija signala $x(t) = e^{-t(j+1)} \mu(t)$ je:
- a) $\pi \delta(\Omega+1) + \frac{1}{j(\Omega+1)}$ b) $\pi \delta(\Omega+1) + \frac{1}{1+j(\Omega+1)}$ c) $1 + \pi \delta(\Omega+1) + \frac{1}{1+j(\Omega+1)}$ d) $\frac{1}{1+j(\Omega+1)}$ e) $\frac{1}{j(\Omega+1)}$

- a) Koristimo Fourierov red s pripadnom Parsevalovom relacijom $\lim_{T\to\infty} \int_{-T}^{T} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$.
- b) Koristimo Fourierov integral s pripadnom Parsevalovom relacijom $\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$.
- c) Koristimo Fourierov reci's pripacinom Parsevalovom relacijom $\lim_{T\to\infty} \int_{-T}^{T} |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |X_k|^2$
- d) Koristimo Fourierev integral s pripadnom Parsevalovom relacijom $\lim_{T\to\infty} \int_{-T}^{T} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$.
- e) Koristimo Fourierov red s prinacinom Parsevalovom relacijom $\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |X_k|^2$
- 14. Zadan je signal $x(t) = e^{-t}$ (Abenite amplitudu spektra za k = 0 pri rastavu u Fourierov red.
 - a) -1 b) 1 e) j d) 0 e) 2n

- 15. Samo jedan od zadanih spektara (DTFT) odgovara vremenski diskretnom signalu koji ima različitu energiju! Koji je to spektar?

- Zadan je kontinuirani signal $x(t) = \cos(t/4)$. Ako signal otipkamo s nekim periodom T_S dobijemo diskretni signal x(n). Koju transformaciju možemo primijeniti sa računanje spektra signala x(n)?
 - a) DTFS uz $T_S = \pi$ b) CTFS us $T_S = \pi$ c) DTFS uz $T_S = 1$ d) CTFS uz $T_S = 1$

- e) DTFS uz bilo koji Ts > 0
- Kolika je vrijednost spektralne komponente za k=2 spektra diskretnog periodičnog signala $\sin(\frac{\pi n}{4})$ uz N jednak temeljnom periodu? a) $X_2 = 0$ b) $X_2 = \frac{1}{2}$ c) $X_2 = -\frac{1}{2}$ d) $X_2 = \frac{1}{2}$ e) $X_2 = -\frac{1}{2}$

- 18. Zadan je spektar $X(e^{\omega}) = e^{\omega}(\mu(\omega+1) \mu(\omega-1))$. Kolika je vrijednost signala x(n) u koracima 1 i -1?
 - a) $x(-1) = \frac{1}{x}$, $x(1) = \frac{\sin(2)}{3x}$ b) x(-1) = 1, x(1) = 0 c) x(-1) = 0, $x(1) = \frac{\sin(2)}{2x}$ d) $x(-1) = \frac{1}{x}$, x(1) = 0

- e) x(-1) = 1, $x(1) = \frac{\sin(2)}{2}$
- Kolika je vrijednost amplitudnog spektra za $\omega = \frac{\pi}{2}$ diskretnog signala $x(n) = 2^{-n} \mu(n)$?

- a) $\frac{2}{\sqrt{3}}$ b) $\frac{2}{\sqrt{3}}$ c) $\frac{1}{\sqrt{3}}$ e) 1
- Izračunaj spektar periodičnog diskretnog signala čiji je jedan period zadan slikom!

- a) $X_k = 2\sin(\frac{2\pi}{5}k)$ b) $X_k = 2\cos(\frac{2\pi}{5}k)$ c) $X_k = \frac{2}{5}\sin(\frac{2\pi}{5}k)$ d) $X_k = \frac{2}{5}\cos(\frac{2\pi}{5}k)$ e) $X_k = \frac{5}{2\pi k}\sin(\frac{2\pi}{5}k)$