Workshop 4: solutions for week 5

- 1. (a) [0,1) is not open since it contains 0, but for all $\varepsilon > 0$, $(0 \varepsilon, 0 + \varepsilon)$ is not a subset of [0,1) (since it contains $-\varepsilon/2$, for example).
 - (b) $\mathbb{R}\setminus[0,1) = (-\infty,0)\cup[1,\infty)$ is not open since it contains 1, but for all $\varepsilon > 0$, $(1-\varepsilon,1+\varepsilon)$ is not a subset of $\mathbb{R}\setminus[0,1)$.
 - (c) $\mathbb{R}\setminus[0,1] = (-\infty,0) \cup (1,\infty)$ is open. If x > 1 we may choose $\varepsilon = 1 x > 0$. If x < 0, we may choose $\varepsilon = -x > 0$. In either case, $(x \varepsilon, x + \varepsilon) \subset \mathbb{R}\setminus[0,1]$.
 - (d) $\mathbb{R}\setminus\{2^n:n\in\mathbb{Z}\}$ is not open since it contains 0, but for all $\varepsilon>0$ there exists $N\in\mathbb{Z}^+$ such that $2^N>1/\varepsilon$, whence $0<2^{-N}<\varepsilon$. So $2^{-N}\in(0-\varepsilon,0+\varepsilon)$ but $2^{-N}\notin\mathbb{R}\setminus\{2^n:n\in\mathbb{Z}\}$.
- 2. (a) $(g \circ f)'(1) = g'(-1)f'(1) = 14$.
 - (b) $h'(1) = f'(f(1)^2) \times 2f(1)f'(1) = -8$.
- 3. (a) Assume, towards a contradiction, that there exist $x, y \in \mathbb{R}$ such that $|xy| > \frac{1}{2}(x^2 + y^2)$. Since both sides of this inequality are non-negative, it follows that

$$4|xy|^2 > (x^2 + y^2)^2$$

$$\Rightarrow 0 > x^4 - 2x^2y^2 + y^4 = (x^2 - y^2)^2.$$

But the square of a real number cannot be negative.

(b) The claim holds trivially if x = y, and is symmetric under interchange of x, y, so it suffices to prove it in the case where x > y. The function $f : [y, x] \to \mathbb{R}$, $f(t) = \ln(4+t^2)$ is differentiable. Hence, by the MVT, there exists $c \in (y, x)$ such that

$$\frac{f(x) - f(y)}{x - y} = f'(c) = \frac{2c}{4 + c^2}$$

$$\Rightarrow |f(x) - f(y)| = \frac{2|c|}{4 + c^2} |x - y| \le \frac{\frac{1}{2}(2^2 + c^2)}{4 + c^2} |x - y| = \frac{1}{2} |x - y|$$

by part (a). The claim immediately follows.