

Прогноз размещения (количество и сумма) новых процедур на ЭТП РТС-тендер в следующем месяце

Солодов Алексей Валерьевич

# 1. ПОСТАНОВКА ЗАДАЧИ



### Что за компания?



РТС-тендер – электронная площадка, отобранная Министерством финансов РФ и ФАС России для проведения закупок в электронной форме для государственных и муниципальных нужд в соответствии с 44-Ф3.

### Что важно?

- 1. Обеспечение бесперебойной работы
- 2. Создание удобств для работы пользователей
- 3. Заработок компании

## Что поможет в достижении целей?

### Знание ожидаемого количества проводимых процедур!

Зная количество можно:

- 1. Посчитать доходы (количество процедур \* тариф)
- 2. Спрогнозировать нагрузку на:
  - Портал площадки
  - Колл-центр

### Как решать задачу?

- Шаг 1. Собрать данные о ранее размещенных процедурах
- Шаг 2. Агрегировать данные на основе факторов, которые предположительно оказывают влияние
- Шаг 3. Создать модель и сделать прогноз
- Шаг 4. Проверить получившиеся результаты

### Какие метрики будем смотреть?

 Средняя абсолютная погрешность

 Средняя относительная погрешность

$$\Delta A = \frac{\sum_{k=1}^{N} (P_k - A_k)}{N}$$

$$\Delta a = \frac{\sum_{k=1}^{N} (P_k - A_k)}{\sum_{k=1}^{N} A_k}$$

– Среднее значение  $\mathit{RMSLE} = \sqrt{\sum_{i=1}^N \frac{1}{N} (log(y_i+1) - log(\widetilde{y}_i+1))^2}$ 

# 2. АНАЛИЗ

### Какие данные есть?

Данные о закупках проведенных на площадке с 01.10.2010 Особенности данных:

- 1. До 1.01.2014 закупки проводились в соответствии с другим законом. Сейчас 44-ФЗ, был 94-ФЗ
- 2. С 1.01.2016 полностью перестроен Общероссийский классификатор продукции по видам экономической деятельности

## Какие данные будем использовать?

Данные о процедурах размещенных с 1.01.2016. Будем использовать следующие параметры:

- Номер
- Дата размещения
- Адрес поставки
- Цена контракта
- ОКПД2
- Данные о заказчике
- Данные о преференциях

## Как получим и агрегируем данные?

- 1. Создаем запрос в БД MS SQL, который содержит необходимые нам поля
- 2. Задаем условия в запросе, отделяющие некорректные данные (тестовые, отмененные и т.п.)
- 3. Агрегируем данные по выбранным параметрам и временным интервалам
- 4. Делаем выгрузку

# 3. МЕТОДИКА РЕШЕНИЯ



## Какую методику будем использовать?

Объединим все временные последовательности в один датасет и будем пользоваться обычными алгоритмами машинного обучения

### Какие алгоритмы будем применять?

- Линейная регрессия
- Случайный лес
- Градиентный бустинг (библиотека lightGBM)

### Как реализуем?

Шаг 1 Загружаем данные в ноутбук

Шаг 2 Делаем преобразование melt, после которого получаем «вытянутый» датасет состоящий из 3 колонок «код сущности», «временной интервал», значение (количество или сумма)

Шаг 3 Генерируем фичи, на основе данных о предыдущих месяцах (размещение в предыдущем месяце, разница за месяц)

Шаг 4 Обучаем модель и делаем предсказание

Шаг 5 Смотрим результаты

### Какие гипотезы будем проверять?

Создаем датасеты по следующим критериям:

- По «отрасли». Предположительно, закупки товаров должны повторяться с некоторой периодичностью
- По региону. Предположительно, закупки в регионах так же должны иметь некоторый порядок
- По региону и отрасли. Предположительно, должна быть закономерность между закупками, проводимыми по различным регионам и отраслям
- По региону и уровню субъекта организатора. Более детальное разбиение по региону
- По региону, уровню субъекта, преференциям.

### Что в итоге проверяли?

Для каждого полученного датасета:

- 1. Создали отдельные наборы фичей (данные за 1 месяц, 2 месяца, 3 месяца, 12 месяцев, 24 месяца)
- 2. Определили baseline и сняли для него метрики
- 3. Для каждого набора фичей провели обучение и сделали прогноз на 5 месяцев с использованием LR, RF, LGB
- 4. Сняли метрики и сравнили с baseline

#### **TEKCT**

#### Прогноз размещения (на основе данных по отраслям)



# 4. РЕЗУЛЬТАТЫ



## Что получилось?

### В большинстве случаев, алгоритмы дают точность ниже baseline!

Для разбиения по «отраслям»:

Baseline - RMSLE =0.4474,  $\Delta A = 5704$ ,  $\Delta a = 14.7\%$ 

|           | LR2    | RF2    | LGB2   | LR3    | RF3    | LGB3   | LR4    | RF4    | LGB4   |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| RMSLE     | 1.1115 | 0.5019 | 0.4276 | 0.6854 | 0.4544 | 0.4586 | 1.1815 | 0.5094 | 0.4486 |
| Abs error | 5726   | 6621   | 7602   | 7045   | 5720   | 6253   | 7633   | 5738   | 7918   |
| %         | 14.75  | 17.05  | 19.58  | 18.15  | 14.73  | 16.11  | 19.66  | 14.78  | 20.40  |

|           | LR12   | RF12   | LGB12  | LR24   | RF24   | LGB24  |
|-----------|--------|--------|--------|--------|--------|--------|
| RMSLE     | 1.1669 | 0.5107 | 0.4486 | 1.2892 | 0.5104 | 0.4486 |
| Abs error | 7673   | 5721   | 7918   | 8117   | 5680   | 7918   |
| %         | 19.77  | 14.74  | 20.40  | 20.91  | 14.63  | 20.40  |

## Что можно попробовать?

- 1. Попробовать ограниченный набор фич
  - Перебираем в цикле все комбинации из двух фич и ищем лучшую по характеристикам
  - В цикле добавляем третью фичу и смотрим, улучшились ли характеристики
  - Продолжаем добавлять характеристики, пока качество улучшается

### 2. Комбинация моделей

• Пробуем скомбинировать модели. В рамках проекта просто брал среднее арифметическое предсказаний

## Что получилось в итоге?

- Совместная модель дает более сбалансированный результат (особенно ощутимо проявляется на датасетах с большим количеством строк) Но в большинстве случаев и она хуже baseline
- Попытка отобрать отдельные фичи для прогноза, практически всегда дает улучшение результата, но не всегда улучшает baseline

Baseline - RMSLE = 0.62653,  $\Delta A = 5704$ ,  $\Delta a = 14.7\%$ 

|           | CE4    | LR12   | RF12   | LGB12  | CE12   | LR24   | RF24   | LGB24  | CE24   | MAE    | MRSLE  |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| RMSLE     | 0.5965 | 0.7841 | 0.6592 | 0.5600 | 0.5970 | 0.7841 | 0.6594 | 0.5600 | 0.5971 | 0.6948 | 0.6008 |
| Abs error | 6040   | 7372   | 5978   | 6573   | 6057   | 7372   | 5981   | 6573   | 6056   | 3788   | 5029   |
| %         | 15.56  | 18.99  | 15.40  | 16.93  | 15.60  | 18.99  | 15.41  | 16.93  | 15.60  | 9.76   | 12.96  |

## Лучший результат

Данные агрегированы:

по регионам и

уровням субъекта заказчика

Лучший набор:

['Last-1 Month Proc', 'Last-11 Month Proc',

'Last-2 Month Diff', 'RegCode']

Показатели:

**RMSLE** = **0.5769**,  $\triangle$ **A** = **2774**,  $\triangle$ **a** = **7.14**%

#### TEKCT

#### Прогноз размещения





# 5. ЗАКЛЮЧЕНИЕ

### выводы

- 1. Простейшую базовую модель улучшить очень не просто. Из **399** измерений параметров в ходе работы лучше baseline было только **81**!
- 2. Удалось найти модель которая по всех характеристикам улучшила baseline. **RMSLE** = **0.5769**,  $\Delta$ **A** = **2774**,  $\Delta$ **a** = **7.14**%
- 3. Комбинирование результатов делает модель более сбалансированной и зачастую дает выигрыш в результатах над одиночными моделями

### Что дальше?

- Представить модель руководству, как базовый вариант
- Попробовать построить модель на данных размещения на всех площадках
- Попробовать различные комбинации имеющихся моделей для повышения качества
- Попробовать использовать временные ряды
- Посмотреть на более низкий уровень сегментации. Построить модели для предсказания количества по отраслям. Данный прогноз можно использовать в маркетинговых целях, рассматривая площадку ни как единое целое, а как совокупность небольших отраслевых площадок



# Спасибо за внимание!