Universidade Federal de Santa Catarina - UFSC

Programa de Pós-graduação em Engenharia Elétrica - PGEEL

EEL5102-57: Métodos Numéricos de Otimização I - Primeira Prova.

Aluno:

Data: 19/04/2024.

- 1 (2,0 pontos). Considere $f(x,y)=1.5x^2+y^2-2xy+2x^3+0.5x^4$. Determine e classifique todos os pontos estacionários desta função.
- 2 (2,0 pontos). Determine para quais valores de μ a função $f(x,y)=x^2+y^2-2\mu xy$ possui um ponto de mínimo local.
- (3,0 pontos) Considere a função $f(x)=(x_1+x_2^2)^2$. Em $x_0=[0\ -1]^T$ tem-se disponível a direção de busca $p=[-1\ 1]^T$. Nesse sentido, responda os seguintes itens:
 - (a) Mostre que p é uma direção de descida em x_0 e calcule todos os pontos estacionários de $f(x_0 + \alpha p)$.
 - (b) Quais dos pontos estacionários determinados acima atendem a condição de curvatura presente nas condições fortes de Wolfe¹?
 - (c) Verifique se as condições fortes de Wolfe são atendidas para α =5/2.
- (3.0 pontos) Considere o problema de minimizar a função $f(x,y)=3x^2+y^4$. Sendo $x_0=[1 -2]^T$ o ponto inicial:
 - (a) Aplique uma iteração do método de Newton² considerando passo unitário na busca linear.
 - (b) Aplique uma iteração do método do Gradiente. Para obter o tamanho de passo, aplique as condições de Wolfe com interpolação quadrática³ considerando como tentativa inicial α =1.
 - (c) Qual dos métodos acima obteve a maior redução de f(x,y)?

$$_{2}\,\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

 $[|]f(x_k + \alpha p_k)| \le f(x_k) + c_1 \alpha \nabla f_k^{\mathsf{T}} p_k \ e |\nabla f(x_k + \alpha p_k)^{\mathsf{T}} p_k| \le c_2 |\nabla f_k^{\mathsf{T}} p_k|, \ \text{com } c_1 = 10^{-4} \ e \ c_2 = 0.9.$

³ $\alpha_1 = -\frac{\phi'(0)\alpha_0^2}{2[\phi(\alpha_0) - \phi(0) - \phi'(0)\alpha_0]}$