Orthogonal Sets

If for set $\{ ec{u}_1, \ldots, ec{v}_n \}$ for $j
eq k, \, ec{u}_j \perp ec{u}_k.$

If Set S is orthogonal, the vectors of S are linearly independent.

Expansion in Orthogonal Basis

If we have an Orthogonal Basis $\{ec{u}_1,\ldots,ec{v}_n\}$ in \mathbb{R}^n then for any $ec{w}\in\mathbb{R}^n$,

$$\vec{w} = c_1 \vec{u}_1 + \dots + c_n \vec{v}_n$$

 C_q can be found using $c_q = rac{ec{w} \cdot ec{u}_q}{ec{u}_q \cdot ec{u}_q}$

Length of a Vector in the basis of an orthogonal set

If
$$ec{w} = c_1 ec{u}_1 + \dots + c_n ec{v}_n = (ec{w} \cdot ec{u}_1) ec{u}_1 + \dots + (ec{w} \cdot ec{u}_n) ec{v}_n$$

$$||ec{w}|| = \sqrt{(ec{w} \cdot ec{u}_1)^2 + \cdots + (ec{w} \cdot ec{u}_n)^2}$$