Accesso Multiplo al Canale Condiviso

Il sottolivello MAC ha la responsabilità fondamentale di gestire l'accesso a un canale di comunicazione condiviso, evitando errori dovuti alle collisioni (interferenze tra trasmissioni simultanee). Questa gestione si basa su regole specifiche definite nei protocolli di accesso al canale.

Classificazione dei Protocolli di Accesso

I protocolli di accesso si dividono in due categorie principali:

1. Accesso Ordinato

- Il diritto di trasmissione viene assegnato a una stazione alla volta
- Basato su criteri predefiniti
- Elimina completamente le collisioni
- Esempio: Token Ring

2. Accesso Casuale

- Le stazioni trasmettono quando necessario
- Possibilità di collisioni che devono essere gestite
- Si suddivide ulteriormente in:
 - Protocolli senza rivelazione del canale (es. ALOHA)
 - Protocolli con rivelazione del canale (es. CSMA)

ALOHA e Varianti

ALOHA Puro

- Primo protocollo ad accesso casuale (Università delle Hawaii)
- Caratteristiche:
 - Trasmissione immediata quando necessario
 - Nessun controllo preventivo del canale
 - In caso di collisione: ritrasmissione dopo tempo casuale
- Performance:
 - Throughput massimo: Ge^(-2G) frame/tempo
 - G = numero medio trasmissioni per unità di tempo
 - Utilizzo massimo del canale: 18.4%
- Meccanismo di backoff:
 - Tempo di attesa: casuale tra [0, (K-1)T]
 - T = tempo trasmissione frame
 - K = parametro configurabile (può dipendere dal numero di collisioni)

Slotted ALOHA

- Evoluzione dell'ALOHA puro
- Modifiche principali:
 - Tempo diviso in slot discreti
 - Trasmissioni permesse solo all'inizio degli slot
 - Sincronizzazione tramite stazione centrale
- Vantaggi:
 - Dimezza la vulnerabilità alle collisioni
 - Raddoppia l'utilizzo massimo del canale (36.8%)
 - Collisioni possibili solo tra frame nello stesso slot

CSMA (Carrier Sense Multiple Access)

Il CSMA introduce il concetto di "ascolto del canale" prima della trasmissione. Esistono tre varianti principali:

1. CSMA 1-persistente

- Funzionamento:
 - Ascolto continuo del canale
 - Se libero: trasmissione immediata (probabilità 1)
 - Se occupato: attesa e ricontrollo continuo
- Caratteristiche:
 - Data rate superiore al 50%
 - Problemi:
 - Non considera ritardo di propagazione
 - Rischio elevato di collisioni dopo liberazione del canale

2. CSMA non-persistente

- Approccio più conservativo:
 - Se canale occupato: attesa tempo casuale prima di ricontrollare
 - Non monitora continuamente il canale
- Vantaggi:
 - Riduce probabilità di collisioni
 - Migliore utilizzo del canale
- Svantaggi:
 - Latenza maggiore
 - Possibile sottoutilizzo del canale

3. CSMA p-persistente

- Utilizzato su canali slotted
- Algoritmo:
 - Se canale libero: trasmette con probabilità p
 - Se non trasmette: attende prossimo slot (prob. 1-p)
 - Ripete processo fino a trasmissione o rilevazione occupazione
- Caratteristiche:
 - Buon compromesso tra prestazioni e collisioni
 - Richiede sincronizzazione degli slot

CSMA/CD (Collision Detection)

Il CSMA/CD è l'evoluzione del CSMA che include la rilevazione delle collisioni durante la trasmissione.

- Caratteristiche principali:
 - Ascolta durante la trasmissione (listen while talking)
 - Rilevazione analogica delle collisioni
 - Interruzione immediata in caso di collisione
 - Invio jamming signal per notifica
 - Utilizzo di exponential backoff per ritrasmissione
- Gestione collisioni:
 - 1. Rilevazione differenza tra segnale trasmesso e letto
 - 2. Interruzione immediata trasmissione
 - 3. Invio jamming sequence
 - 4. Calcolo tempo attesa con exponential backoff
 - 5. Ritentativo trasmissione

Ethernet (IEEE 802.3)

Caratteristiche Fondamentali

- Standard dominante per reti LAN
- Topologia logica: bus
- Mezzo condiviso tra le stazioni
- Protocollo di accesso: CSMA/CD

Frame Ethernet

La struttura del frame Ethernet è composta da:

- 1. **Preambolo** (7 byte)
 - Sequenza di bit per sincronizzazione
 - Pattern: 10101010 ripetuto

2. SFD - Start Frame Delimiter (1 byte)

- Marca inizio effettivo del frame
- Pattern: 10101011

3. Indirizzi MAC (6 byte ciascuno)

- Destinazione (DA)
- Sorgente (SA)
- Formato: 48 bit univoci
- Primi 3 byte: identificatore produttore
- Ultimi 3 byte: numero seriale dispositivo

4. Campo Lunghezza/Tipo (2 byte)

- Se ≤ 1500: indica lunghezza dati
- Se ≥ 1536: indica protocollo livello superiore
- 5. **Dati** (0-1500 byte)
 - Payload effettivo
 - Incapsulamento PDU livello superiore
- 6. **Padding** (0-46 byte)
 - Garantisce lunghezza minima frame (64 byte)
 - Necessario per corretta rilevazione collisioni

7. FCS - Frame Check Sequence (4 byte)

- CRC a 32 bit
- Controllo errori di trasmissione

Controllo Errori

La rilevazione degli errori in Ethernet si basa su:

8. CRC (Cyclic Redundancy Check)

- Polinomio generatore standard
- Calcolo su tutti i campi eccetto preambolo e SFD
- Capacità di rilevazione:
 - Tutti gli errori singoli
 - Tutti gli errori doppi
 - Burst errors fino a 32 bit
 - 99.99% altri errori

9. Lunghezza Minima Frame

- 64 byte (512 bit) richiesti
- Garantisce rilevazione collisioni
- Formula: Lmin/C ≥ 2T
 - Lmin = lunghezza minima frame
 - C = velocità trasmissione

Token Ring (IEEE 802.5)

Principi di Funzionamento

- Topologia ad anello fisico o logico
- Accesso controllato tramite token
- Caratteristiche:
 - No collisioni
 - Throughput garantito
 - Complessità maggiore di Ethernet

Meccanismo Token Passing

- 10. Token circolante nell'anello
- 11. Stazione con dati da trasmettere:
 - Cattura token
- Trasmette frame
- Reinserisce token dopo completamento
- 12. Limitazione tempo massimo possesso token

Frame Token Ring

Struttura del frame:

- 13. SD (Starting Delimiter)
 - Marca inizio frame
 - Pattern speciale non ambiguo
- 14. AC (Access Control)
 - Tipo frame (token/dati)
 - Priorità
 - Prenotazione

15. FC (Frame Control)

- Tipo dati (LLC/gestione)
- Controllo rete
- 16. Indirizzi MAC

- Destinazione e sorgente
- 6 byte ciascuno

17. **Dati**

- Payload effettivo
- Lunghezza variabile

18. FCS

- CRC per controllo errori
- 4 byte

19. ED (Ending Delimiter)

- Marca fine frame
- Bit di errore e frame copiato

20. FS (Frame Status)

- Acknowledgment dal destinatario
- Indicatori frame riconosciuto/copiato

Confronto con Ethernet

Token Ring offre:

- Prestazioni deterministiche
- No collisioni
- Priorità gestibile
- Complessità maggiore
- Costo superiore
- Meno flessibilità

Ethernet domina il mercato per:

- Semplicità
- Costo inferiore
- Scalabilità
- Prestazioni sufficienti per la maggior parte delle applicazioni