Name:

1.13 PreTest2: Graphing sequences

1. A sequence f is shown below as a graph and as a table.

n	f(n)
0	16
1	8
2	4
3	2
4	1

(a) Is sequence f geometric or arithmetic? Explain how you know.

(b) Write an equation to define sequence f recursively.

(c) For term f(n), what are some values of that make sense to use? What are some values of n that don't make sense to use? Explain your reasoning.

2. Here are two sequences:

Sequence A

term number	value
0	$\frac{1}{9}$
1	$\frac{1}{3}$
2	1
3	3
4	9

- (a) For sequence A, describe a way to produce each new term from the previous term.
- (b) For sequence B, describe a way to produce each new term from the previous term.
- (c) Write a definition for the n^{th} term of sequence A. (an explicit formula, not a recursive one)
- (d) Write a definition for the n^{th} term of sequence B.
- (e) If these sequences continue, then which is greater, A or B? Explain or show how you know.

Q

2

- 3. A linear function f is graphed below.
 - (a) Write down it's slope. m =

-3 -2 -1

- (c) Write down the equation of the line.
- (d) State the coordinates of the point Q.
- 4. Write the linear equation $y 1 = \frac{1}{2}(x + 8)$ in the form y = mx + c.

- 5. Given f(x) = (x-1)(x+5)
 - (a) Sketch the function. Label the vertex as an ordered pair and mark the intercepts with their values.

(b) Expand the function to standard form, $f(x) = ax^2 + bx + c$ where $a, b, c \in \mathbb{R}$.

- 6. The function $f(x) = -\frac{1}{2}x^2 + 2x$ is shown on the graph.
 - (a) Write down its vertex as an ordered pair.

- (c) Write down f(0).
- (d) Write down two solutions to f(x) = 0.

- 7. Consider the function $f(x) = x^2 + 4x 12$. (graph it to answer the questions)
 - (a) This function can also be written in the form $f(x) = (x p)^2 16$. Write down the value of p.
 - (b) The graph of f has two solutions for f(x) = 0. Write down the solutions (or roots, zeros) of the function.
 - (c) Hence, write down the function in factored form, f(x) = (x a)(x b).

- 8. Given two functions, a quadratic function $f(x) = 0.8x^2 + 3.2x 2$ and a linear function g(x) = 0.8x + 1.2.
 - (a) Graph the parabola y = f(x), marking the y-intercept and the vertex as an ordered pair.
 - (b) Find the coordinates of the two intercepts with the x-axis, the roots or zeros of f(x).
 - (c) Plot the linear function, y = g(x). Mark and label the two intersections of the two functions f(x) = g(x) as ordered pairs.

9. A dart is shot vertically upwards.

The path of the dart can be modelled by the equation $h(t) = 8t - t^2$ where h(t) is the height in meters of the dart after t seconds.

- (a) Plot a graph of this equation and hence sketch it below, showing the coordinates of the vertex and axes intercepts.
- (b) Find the t-intercepts and explain what these values represent.
- (c) Find the equation of the axis of symmetry, and state what this tells you in the context of the problem.

