

DEPARTMENT OF ECONOMICS SECOND CYCLE DEGREE IN

ECONOMICS AND ECONOMETRICS

Dynamic Matrix Factor Models and the EM Algorithm: A Nowcasting Framework for Mixed-Frequency Data in the Euro Area

Dissertation in Macroeconometrics

Defended by:

Supervisor:

Davide Delfino

Prof. Matteo Barigozzi

ID Number: 1126595

Session 1st Academic Year 2024–2025

Research Overview

Research Topic:

Nowcasting GDP with Dynamic Factor Models:

• Vector-based (DFM) vs Matrix-based (DMFM) models

Contribution:

First empirical nowcasting application of Dynamic Matrix Factor Models (DMFMs)

Key Question:

Does the matrix formulation enhance GDP nowcasting performance when using a set mainly based on high-frequency indicators?

Factor Models: Literature Evolution

The Model: State-Space Representations

Factor Models

Dynamic Factor Model

$$y_t = \Lambda f_t + \xi_t$$
$$f_t = A f_{t-1} + v_t$$

Dynamic Matrix Factor Model

$$Y_t = RF_tC^{\top} + E_t$$
$$F_t = AF_{t-1}B^{\top} + U_t$$

DMFM Vectorized:

$$y_t = (C \otimes R)f_t + e_t$$

$$f_t = (B \otimes A)f_{t-1} + u_t$$

DMFM Key Innovation

Preserves the natural matrix structure of macroeconomic and financial datasets.

Estimation Strategy: Quasi-Maximum Likelihood

Log Likelihood Mis-Specification

• DMFM covariance decomposition:

$$\Omega_{Y_{\mathcal{T}}} = (I_{\mathcal{T}} \otimes C \otimes R) \frac{\Omega_{F_{\mathcal{T}}}}{(I_{\mathcal{T}} \otimes C \otimes R)}^{\top} + \Omega_{E_{\mathcal{T}}}$$

• Diagonal structure imposed on the idiosyncratic component:

$$\Omega_{E_T} \approx I_T \otimes \operatorname{diag}(K) \otimes \operatorname{diag}(H)$$

• Quasi log-likelihood (QML):

$$\ell(Y_T; \theta) = -\frac{\rho_1 \rho_2 T}{2} \log(2\pi) - \frac{1}{2} \log |\Omega_{Y_T}| - \frac{1}{2} Y_T^\top \Omega_{Y_T}^{-1} Y_T$$

No closed-form solution for QML due to unobserved latent factors.

EM Algorithm

Recursive EM algorithm with Kalman smoother to estimate latent factors and maximize the expected log-likelihood.

Estimation Strategy: EM Algorithm

For the vectorized DMFM, iterate the EM until convergence

E-Step:

• Kalman Smoother Given observed data Y_T and current parameters $\hat{\theta}^{(n)}$, compute the smoothed estimates (means and covariances) of the latent factors over time:

$$f_{t\mid T}^{(n)} = \mathbb{E}_{\hat{ heta}^{(n)}}[f_t\mid Y_T], \quad \Pi_{t\mid T}^{(n)} = \mathsf{Var}_{\hat{ heta}^{(n)}}(f_t\mid Y_T)$$

Q-function Computation
 Use the smoothed estimates to compute the expected complete log-likelihood:

$$Q(\theta, \hat{\theta}^{(n)}) = \mathbb{E}_{\hat{\theta}^{(n)}} \left[\ell(Y_T \mid F_T; \theta) \mid Y_T \right] + \mathbb{E}_{\hat{\theta}^{(n)}} \left[\ell(F_T; \theta) \mid Y_T \right]$$

M-Step:

• Parameter Update

Maximize $Q(\theta, \hat{\theta}^{(n)})$ to update model parameters:

$$\hat{ heta}^{(n+1)} = rg \max_{ heta} Q(heta, \hat{ heta}^{(n)})$$

Recursive Nowcasting Procedure

Built a Tensor for the Entire Dataset

 \forall vintages t_{ν}

Empirical Application Overview

Focus:

Nowcasting GDP for Euro Area countries using both vector and matrix formulations of Dynamic Factor Models (DFMs).

Key Intuition:

Dynamic Matrix Factor Models (DMFMs) enable country-level nowcasting by leveraging cross-country information embedded in the matrix structure.

Key Questions:

- Does matrix modeling improve country-level nowcasting?
- Does including mainly high-frequency data is sufficient for GDP nowcasting?

Dataset Construction

Data Collection

Source: "EA-MD-QD" dataset (January 2000 - April 2025).

- Country Selection: Germany, France, Italy, Spain
- Variable Selection: 39 monthly and GDP quarterly macroeconomic series

Tensor Dimensions: $p_1 = 4$, $p_2 = 40$, T = 300

Data Preparation

COVID-19 Treatment:

Exclusion of real variables from March 2020 to July 2021.

Release Schedule:

Application of a mask according to the the release delays of the selected variables.

DMFM Factor

Factor Selection

- Missing Values Imputation: Cen & Lam (2025).
- Factor Selection & Loading Estimation: Yu et al. (2022).

Single Row and Column Factor:

$$k_1 = 1 \& k_2 = 1$$

DMFM Factor Interpretation

Row Loadings: EA Membership Effect

Country	DE	FR	IT	ES
Loading	0.899	1.078	1.024	0.990

Table: Estimated Row Loadings

DMFM Factor

Column Loadings: Business Cycle Dynamics

Figure: Estimated Column Loadings Ordered by Variables' Weight

DMFM Factor

Euro Area Business Cycle Factor

The Euro Area Business Cycle Factor is aligned with Euro Area Recessions confirming the interpretation.

Nowcast Comparison

DMFM Outperforms DFM

Accuracy

in Pre- and Post-COVID Periods

Responsiveness to News

During COVID and Recovery Phase

RMSFE Comparison:

RMSFE

Time Series Comparison:

Spain & France

Germany & Italy

Interpretation:

DMFM proves most effective for countries highly linked to the EMU, especially during periods of strong cross-country economic interdependence.

Future Research Directions

Extensions to Model Specification

- Introduce higher-order dynamics in the DMFM transition equation.
- Expand the dataset to cover additional countries and variables.

Interpreting Nowcasts with Neural Networks

• Break down nowcast revisions not just by *variable type*, but also for *country* to uncover the main cross-country drivers of GDP nowcasts.

Long-Term Goal:

Investigate cross-country information spillovers during critical economic periods to support more targeted and effective monetary policy decisions.

Conclusion

Main Contribution:

First application of Dynamic Matrix Factor Models (DMFMs) to GDP nowcasting.

Key Result:

Including cross-country dynamics through DMFM improves nowcasting accuracy and responsiveness to news, especially in times of heightened interconnectedness.

Dynamic Matrix Factor Models and the EM Algorithm:

A Nowcasting Framework for Mixed-Frequency Data in the Euro Area

Appendix

Supplementary Tables & Figures

Matrix-Variate Time Series: sequences of two-dimensional arrays evolving over time.

- $p_1 \rightarrow \text{rows (e.g., countries, assets)}$
- $p_2 \rightarrow$ columns (e.g., macroeconomic indicators, integrated volatility)
- ullet T o slices over time (e.g., daily, monthly, quarterly observations)

Country	GDP Growth	Unemployment Rate	 Industrial Production
Germany	$X_{t,11}$	$X_{t,12}$	 $X_{t,1p}$
France	$X_{t,21}$	$X_{t,22}$	 $X_{t,2p}$
Italy	$X_{t,31}$	$X_{t,32}$	 $X_{t,3p}$
Spain	$X_{t,41}$	$X_{t,42}$	 $X_{t,4p}$

Matrix-valued time series dataset for a specific time t.

Back to Nowcasting Diagram

N	ID	Series Name Class Category				Delay		
	(1) National Accounts / Real Economy							
1	GDP	Real Gross Domestic Product R H Q						
(2) Labor Market								
2	UNETOT	Unemployment: Total R H M				45		
(3) Exchange and Interest Rates								
3	REER42	Real Exchange Rate (42 countries)	hange Rate (42 countries) F H M					
(4) Industrial Production and Turnover								
4	IPMN	Industrial Production Index: Manufacturing		Н	М	45		
(5) Prices								
5	HICPOV	HICP: Overall Index N H		Н	М	40		
(6) Confidence Indicators								
6	ESENTIX	Economic Sentiment Indicator C S		М	5			
(7) Others								
7	SHIX	Share Price Index	F	S	М	1		

Table: A Sample of Selected Macroeconomic Variables and Their Release Delays

Country	Month	DMFM		DFM		
		Pre-COVID	Post-COVID	Pre-COVID	Post-COVID	
Germany	M1	0.6469	0.7361	0.6493	1.0490	
	M2	0.6373	0.6833	0.6512	0.9078	
	M3	0.6289	0.6959	0.6294	0.8488	
France	M1	0.3747	0.6481	0.4505	0.6992	
	M2	0.3585	0.6098	0.4468	0.6861	
	М3	0.3498	0.5916	0.4405	0.6895	
Italy	M1	0.3222	0.8192	0.3031	1.0025	
	M2	0.3084	0.8045	0.2964	1.4274	
	М3	0.3186	0.8185	0.2953	1.3826	
Spain	M1	0.2723	0.4434	0.3882	0.6004	
	M2	0.2438	0.4753	0.3782	0.5828	
	M3	0.2399	0.4775	0.3796	0.5761	

Table: RMSFE pre- and post-COVID for DMFM and DFM Across Euro Area Countries

Smoothed GDP - 2025Q1

EM Log-Likelihood Convergence

◆ Back to EM algorithm

Euro Area GDP Composition

Nowcasts Comparison - Spain

Nowcasts Monthly Revision - Spain

Nowcasts Comparison - Franch

Nowcasts Comparison - Germany

Nowcasts Comparison - Italy

