* Policy Iteration:

Algorithm

Step 1: (Initialization) (quess an initial tolicy μ^{o}

Step 2: (Folicy evaluation) Given the stationary policy µ, Compute corresponding average and differential costs x and h (i) Satisfying

 $\lambda^{k} + h^{k}(i) = g(i, \mu^{k}(i)) + \sum_{i=1}^{m} p(i, \mu^{k}(i), j) h^{k}(j) \quad \forall i \in [n]$ $\mu_{\kappa}(u) = 0$

Step 3: (Policy improvement) Obtain a new stationary policy μ^{k+1} Satisfying, where \forall i, $\mu^{k+1}(i)$ is such that

 $g(i, \mu^{k+1}(i)) + \sum_{i=1}^{k+1} P(i, \mu^{k+1}(i), j) h^{k}(j)$ $= \min_{u \in \mathcal{U}(i)} \left\{ g(i, u) + \sum_{j=1}^{m} \mathcal{P}(i, u, j) h^{k}(j) \right\}$

If $\lambda^{k+1} = \lambda^k$ and $h^{k+1}(i) = h^k(i) \forall i$, then stop else return to step 2 and repeat.

* The algorithm is based only the following proposition:

Proposition 2: Under assumption I, in the policy iteration algo, for each k we either have

 $\lambda^{k+1} < \lambda^{k}$

or else we have

 $\lambda^{k+1} = \lambda^k$, $h^{k+1}(i) \leq h^k(i)$, $i \in [n]$

twithermore, the algorithm terminates and the policies μ^k and μ^{k+1} Obtained upon termination are optimal.

Proof: To simplify notation, denote $\mu^{k} = \mu$, $\mu^{k+1} = \overline{\mu}$, $\lambda^{k} = \lambda$, $\lambda^{k+1} = \overline{\lambda}$, $h^k = h$, $h^{k+1} = \overline{h}$. Define for N = 1, 2, ... $h_{N}(i) = g(i, \overline{\mu}(i)) + \sum_{j=1}^{n} P(i, \overline{\mu}(i), j) h_{N-1}(j) , i \in [n]$ Where $h_0(i) = h(i)$ Note that $h_N(i)$ is the N-stage cost of policy $\overline{\mu}$ starting from i when the termination cost function is h. Thus we have $\overline{\lambda} = \overline{J_{\overline{\mu}}}(i) = \lim_{N \to \infty} \frac{1}{N} h_{N}(i) \quad \forall i \in [n]$ Since the contribution of the terminal cost function vanishes as $N \to \infty$. By definition of μ and by Prop |C|, we have $\forall i$ $h_i(i) = \mathcal{L}(i, \overline{\mu}(i)) + \sum_{j=1}^{n} \mathcal{L}(i, \overline{\mu}(i), j) h_0(j)$ $\leq g(i,\mu(i)) + \sum_{i=1}^{n} P(i,\mu(i),j) h_o(j)$ $= \lambda + h_{\sigma}(i)$ the above equation we also obtain $h_{2}(i) = g(i, \overline{\mu}(i)) + \sum_{i=1}^{m} P(i, \overline{\mu}(i), j) h_{i}(j)$ $\leq g(i,\overline{\mu}(i)) + \sum_{i}^{n} P(i,\overline{\mu}(i),j)(\lambda + h_0(j))$ $\leq \lambda + g(i,\mu(i)) + \sum_{i=1}^{n} P(i,\mu(i),j) h_{o}(i)$ = $2\lambda + h_0(i)$ and proceeding in this way, Vi and N we have $\frac{1}{N}h_{N}(i) \leq \lambda + \frac{1}{N}h_{o}(i)$ and by taking limit as $N \rightarrow \infty$, we get $\overline{\lambda} \leq \lambda$. If $\overline{\lambda} = \lambda$ then μ^{k+1} is a policy improvement step for assoc. SSPP with cost per stage $g(i,u) - \lambda$ Furthermore, h(i) and Th(i) are the optimal costs starting from

Furthermore, h(i) and Th(i) are the optimal costs starting from i and corresponding to μ and $\overline{\mu}$, respectively, is associated SSPP. Thus by a previous proposition $\overline{h(i)} \leqslant h(i) \quad \forall i.$

Let us now show that when the algorithm terminates with $\overline{\lambda} = \lambda$ and $\overline{h}(i) = h(i) \ \forall \ i \in [n]$, μ and $\overline{\mu}$ are optimal. We have then $\forall \ i$

 $\lambda + h(i) = \overline{\lambda} + \overline{h}(i) = g(i, \overline{\mu}(i)) + \sum_{j=1}^{m} f(i, \overline{\mu}(i), j) \overline{h}(j)$ $= g(i, \overline{\mu}(i)) + \sum_{j=1}^{m} f(i, \overline{\mu}(i), j) h(j)$ $= \min_{u \in u(i)} \left\{ g(i, u) + \sum_{j=1}^{m} f(i, u, j) h(j) \right\}$

Thus λ and h satisfy Bellman's equation. By prop 1, λ must be equal to optimal average cost.

Furthermone, $\overline{\mu}(i)$ attains minimum of rihs. of the Bellman's equation $\forall i$. So $\overline{\mu}$ is optimal.