

Prof. Dr.-Ing. **Sikora**

Elvira Fleig, Rolf Jongebloed

Rechenübung Signale & Systeme (WiSe 2023/2024)

Zeitdiskrete Signale (10. Termin)

| 22.01 - 28.01.2024 |

Hinweise

- Die Aufgabenblätter zur Rechenübung stehen jeweils vor dem jeweiligen Termin auf dem ISIS-Portal zum Download bereit.
- Aufgaben, die mit [HA] bzw. [AK] beginnen, sind Hausaufgaben bzw. alte Klausuraufgaben, die als Hausaufgabe bearbeitet werden sollen. Diese werden zusätzlich in den freiwilligen Tutorien vorgerechnet bzw. besprochen.

1 Zeitdiskrete Signale

- 1.1 Gegeben sei das Signal $u=\{0,\frac{1}{\sqrt{2}},1,\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}},-1,-\frac{1}{\sqrt{2}}\}$. Die Abtastfrequenz betrage $f_T=8kHz$.
- a) Skizziere u(n).
- b) Gib zwei mögliche Werte für die Frequenz des ursprünglichen zeitkontinuierlichen Sinussignals an.
- c) Gib weiterhin die entsprechenden normierten Kreisfrequenzen an.

2 Eigenschaften zeitdiskreter Signale

2.1 Skizziere die folgenden Signale. Gib jeweils Mittelwert, Energie, Leistung und Varianz im Bereich $0 \le n \le 5$ an.

a)
$$u_1 = \{0, 2, -2, 0, 1, -1\}$$

b)
$$u_2(n) = (\frac{1}{2})^n \cdot \sigma(n)$$

c) **[HA]:**
$$u_3(n) = \prod_3 (n-1)$$

3 Kreuzkorrelation und Autokorrelation

3.1 Bestimme die KKF $r_{uv}(k)$ sowie die AKF $r_{vv}(k)$ für folgende Signalpaare.

a)
$$u = \{1, -1, 1, -1\}, v = \{1, 0, 2, 0\}$$

b) **[HA]:**
$$u = \{1, 2, 2, 1\}, v = \{1, 0, 0, -1\}$$

2 Seite(n) output.tex

1 Zeitdiskrete Signale

- 1.1 Gegeben sei das Signal $u=\{0,\frac{1}{\sqrt{2}},1,\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}},-1,-\frac{1}{\sqrt{2}}\}$. Die Abtastfrequenz betrage $f_T=8kHz$.
- a) Skizziere u(n).
- b) Gib zwei mögliche Werte für die Frequenz des ursprünglichen zeitkontinuierlichen Sinussignals an.
- c) Gib weiterhin die entsprechenden normierten Kreisfrequenzen an.

$$f_T = 8kHz = 7$$
 Abtatsperiede: $T_T = \frac{1}{f_T} = 0,125ms$

4 Periode: 8.T7 => Tu=8.T7 = 1 ms

$$f_u = \frac{1}{T_u} = 1RHz$$

$$\sin\left(\frac{2\pi}{T_u}\cdot t\right) = \sin(w_u\cdot t) = \sin(2\pi \cdot f_u\cdot t)$$

$$\frac{8}{\sqrt{3}} \cdot 8 \cdot \frac{8}{\sqrt{3}} = \frac{8}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

sin (2TI. 1kHz. ()

to: Signalfrequenz

f. Abtostfrequine

$$f_{1} = NkHz = 1 \quad \Omega_{1} = 3\pi \cdot \frac{NkHz}{8kHz} = \frac{\pi}{4}$$

$$f_{2} = 9kHz = 1 \quad \Omega_{2} = 3\pi \cdot \frac{9kHz}{8kHz} = \frac{9\pi}{4}$$

$$\Omega_{n} = 3\pi \cdot \frac{f_{n}}{f_{1}}$$

$$Allgemein: f_{n} = f_{1} + (n-1) \cdot f_{1}$$

2 Eigenschaften zeitdiskreter Signale

2.1 Skizziere die folgenden Signale. Gib jeweils Mittelwert, Energie, Leistung und Varianz im Bereich $0 \le n \le 5$ an.

a)
$$u_1 = \{0, 2, -2, 0, 1, -1\}$$

b)
$$u_2(n) = (\frac{1}{2})^n \cdot \sigma(n)$$

c) **[HA]:**
$$u_3(n) = \prod_3 (n-1)$$

$$W_{U1}(0.5) = \sum_{n=0}^{\infty} U^{2}(n) = 4+4+1+1=10$$

Varianz:
$$6u^{2}(n_{1}, n_{2}) = P_{1}(n_{1}, n_{2}) - Mu^{2}(n_{1}, n_{2})$$

= $\frac{6}{3} - 0^{2} = \frac{6}{3}$

$$S_{u_2}(0,5) = \frac{1365}{6144} - \left(\frac{24}{64}\right)^2 = \frac{469}{4096}$$

3 Kreuzkorrelation und Autokorrelation

3.1 Bestimme die KKF $r_{uv}(k)$ sowie die AKF $r_{vv}(k)$ für folgende Signalpaare.

a)
$$u = \{1, -1, 1, -1\}, v = \{1, 0, 2, 0\}$$

b) **[HA]:**
$$u = \{1, 2, 2, 1\}, v = \{1, 0, 0, -1\}$$

01)

KKF:

$$r_{uv}(k; n_1, n_2) := \sum_{n=n_1}^{n_2-k} u(n) \cdot v(n+k)$$

AKF:

$$r_{uu}(k; n_1, n_2) := \sum_{n=n_1}^{n_2-k} u(n) \cdot u(n+k)$$

$$W_u(n_1,n_2) = r_{uu}(0;n_1,n_2)$$

Papierstreitenmethode:

				-1				KNF	K
uk):	4	-1	1	- 1				KINF	
		-R	>	1	0	2	0	-1	-3
			4	٥	2	0		1	-2
		1	0	2	0			-3	- 1
	1	0	2	0				3	0
u	0	2	0					-2	1
0	2	0						2	2
2	0							0	3

Faltungsmethode:

10

	_						0 -				
			1	2	2	J				L	
						1	0	0	- 1	-3	
					1	O	٥	-1		-2	
				1	0		-1			-1	
			٨	0	D	-1				0	
		1	υ		-1					1	
	1	S	0							2	
1	٥	0	- A							3	
									_		

100-1

rw(2)= {0,2,0,5,0,2,0}

RUe Signale & Systeme | WiSe 2023/2024 | Termin 10 Seite 2 von 2

4 Faltung und zyklische Faltung

4.1 Bestimme Faltung und zyklische Faltung der Signale $u=\{1,2,3,4\}$ und $v=\{1,0,-1,0\}$.

U+V(k)={1,2,2,2,-3,-4,0}

Zyklische Falty:

(4) v(R)= 7-2,-2,2,2)