Locality-sensitive hashing without false negatives in ℓ_1

Negev Shekel-Nosatzki, Chen-Yu Yang, Parthiban Loganathan

Department of Computer Science Columbia University

COMS 6998: Algorithmic Techniques for Massive Data December 2015

Outline

- 1 Locality Sensitive Hashing Introduction
- 2 Our LSH construction

- 3 Conjecture
- 4 Future work

Locality Sensitive Hashing

Goal: A data structure to distinguish between close and far points with near-linear space and sub-linear query time. Can be used in Nearest Neighbor Search for example.

Definition (informal)

A locality sensitive hash function, LSH is a random hash function $h: \mathbb{R}^d \to U$ (h drawn from a family \mathcal{H} , U some finite set) such that

- 1. $d(q, p) \le r \implies \Pr[h(q) = h(p)] = P_1$ is "not-so-small"
- 2. $d(q,p) > cr \implies \Pr[h(q) = h(p)] = P_2$ is "small"

Generally, $P_1 < P_2$ and we use n^{ρ} hash tables where:

$$\rho = \frac{\log(1/P_1)}{\log(1/P_2)}.$$

Locality Sensitive Hashing in Hamming

From class, LSH for Hamming Space $\{0,1\}^d$ with distance metric $(x,y) = |\{x_i \neq y_i\}|$.

The hash family, $\mathcal{H}: \{g: \{0,1\}^d \to \{0,1\}^k\}$, is defined as:

$$g(p) := (h_1(p), h_2(p), \dots, h_k(p)),$$

where

$$h_i(p) := p_j \text{ for random } j \leftarrow [d].$$

For NNS, we maintain $L = n^{\rho}$ such Hamming-LSH tables g.

- ▶ It's **covering** guarantees collision for $||x y|| \le r$. ie. Probability of false negatives is 0.
- ► Far points collide with low probability.
- ► Chooses **correlated hash functions** instead of electing them independently to cover all ways in which two points can be *r* apart.
- Performance is almost as good as t we saw in clawhere we had constant probability of t actives. The algorithm is efficient if $r = \Theta(\log n)$

- ▶ It's **covering** guarantees collision for $||x y|| \le r$. ie. Probability of false negatives is 0.
- ► Far points collide with low probability.
- ► Chooses **correlated hash functions** instead of electing them independently to cover all ways in which two points can be *r* apart.
- ▶ Performance is almost as good as what we saw in class where we had constant probability of false negatives. The algorithm is efficient if $r = \Theta(\log n)$.

- ▶ It's **covering** guarantees collision for $||x y|| \le r$. ie. Probability of false negatives is 0.
- ► Far points collide with low probability.
- ▶ Chooses **correlated hash functions** instead of selecting them independently to cover all ways in which two points can be *r* apart.
- ▶ Performance is almost as good as what we saw in class where we had constant probability of false negatives. The algorithm is efficient if $r = \Theta(\log n)$.

- ▶ It's **covering** guarantees collision for $||x y|| \le r$. ie. Probability of false negatives is 0.
- ► Far points collide with low probability.
- ▶ Chooses **correlated hash functions** instead of selecting them independently to cover all ways in which two points can be *r* apart.
- ▶ Performance is almost as good as what we saw in class where we had constant probability of false negatives. The algorithm is efficient if $r = \Theta(\log n)$.

Pagh's LSH Definition

[Pagh'16] Given $S \subseteq \{0,1\}^d$, c > 1 and $r \in \mathbb{N}$ there exists a data structure with parameter ρ such that:

- ▶ On query $y \in \{0,1\}^d$ the data structure us guaranteed to return $x \in S$ with ||x y|| < cr if there exists $x' \in S$ with $||x' y|| \le r$.
- ▶ The size is $O(dn^{1+\rho})$ bits where n = |S|.
- ▶ The expected query times is $O(n^{\rho}(1+d/w))$, where w is the word length.
- Parameter ρ is a function of n, r and c bounded by $\rho \leq \min\left(\ln 4/c + \frac{\log r}{\log n}, 1/c + \frac{r}{\log n}\right)$. If $\log\left(n\right)/cr \in \mathbf{N}$, then $\rho = 1/c$.

Pagh LSH Construction

 $\mathcal{H}_{\mathcal{A}} = \{x \mapsto x \land a | a \in \mathcal{A}\}$ where $\mathcal{A} \subseteq \{0,1\}^d$ is a set of bit masks. We go through all $h \in \mathcal{H}_{\mathcal{A}}$ and check for collisions.

$$\mathcal{A}(m) = \{a(v) | v \in \{0, 1\}^{r+1} \setminus \{\mathbf{0}\}\} \text{ where } a(v)_i = \langle m(i), v \rangle \ \forall \ v \in \{0, 1\}^{r+1} \text{ and } m : \{1, \dots, d\} \to \{0, 1\}^{r+1}.$$

Pick random function m uniformly.

Example: this procedure produces the following covering set when m(i) is the binary representation of i:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

1 samples the coordinate. More efficient than having $\binom{d}{r}$ possible values for a.

- Goal: Create an efficient Hashing that always collide close points and rarely collide far points
- Plan: ▶ Embed ℓ1 into Hamming
 - ► Hash Hamming
- Embed: Assuming $x \in [M]^d$, we can embed x to $\{0,1\}^{Md}$ us a unary embedding (as we saw in Ps) and hash that.
 - Eff.: $T = \mathcal{O}(M \cdot d \cdot n^{\rho})$ $S = \mathcal{O}(M \cdot d \cdot n^{1+\rho})$

Goal: Create an efficient Hashing that always collide close points and rarely collide far points

- Plan: \blacktriangleright Embed $\ell 1$ into Hamming
 - ► Hash Hamming

Embed: Assuming $x \in [M]^d$, we can embed x to $\{0,1\}^{Md}$ using unary embedding (as we saw in PS4) and hash that

Eff.: $T = \mathcal{O}(M \cdot d \cdot n^{\rho})$

 $S = \mathcal{O}(M \cdot d \cdot n^{1+\rho})$

- Goal: Create an efficient Hashing that always collide close points and rarely collide far points
- Plan: \blacktriangleright Embed $\ell 1$ into Hamming
 - ► Hash Hamming
- Embed: Assuming $x \in [M]^d$, we can embed x to $\{0,1\}^{Md}$ using unary embedding (as we saw in PS4) and hash that.
 - Eff.: $ightharpoonup T = \mathcal{O}(M \cdot d \cdot n^{\rho})$
 - $S = \mathcal{O}(M \cdot d \cdot n^{1+\rho})$

- Goal: Create an efficient Hashing that always collide close points and rarely collide far points
- Plan: ► Embed ℓ1 into Hamming
 - ► Hash Hamming
- Embed: Assuming $x \in [M]^d$, we can embed x to $\{0,1\}^{Md}$ using unary embedding (as we saw in PS4) and hash that.
 - Eff.: $T = \mathcal{O}(M \cdot d \cdot n^{\rho})$ $S = \mathcal{O}(M \cdot d \cdot n^{1+\rho})$

- Goal: Create an efficient Hashing that always collide close points and rarely collide far points
- Plan: \blacktriangleright Embed $\ell 1$ into Hamming
 - ► Hash Hamming
- Embed: Assuming $x \in [M]^d$, we can embed x to $\{0,1\}^{Md}$ using unary embedding (as we saw in PS4) and hash that.
 - Eff.: $ightharpoonup T = \mathcal{O}(M \cdot d \cdot n^{\rho})$
 - $S = \mathcal{O}(M \cdot d \cdot n^{1+\rho})$

- Goal: Create an efficient Hashing that always collide close points and rarely collide far points
- Plan: ► Embed ℓ1 into Hamming
 - ► Hash Hamming
- Embed: Assuming $x \in [M]^d$, we can embed x to $\{0,1\}^{Md}$ using unary embedding (as we saw in PS4) and hash that.
 - Eff.: $T = \mathcal{O}(M \cdot d \cdot n^{\rho})$ $S = \mathcal{O}(M \cdot d \cdot n^{1+\rho})$
 - Can we do better?

ℓ_1 Embedding Setup

► Can we use Sampling?

- ▶ Random Sampling will miss far points too often
- ightharpoonup Grid shifting can cut close points exponential (in r or d) cost to avoid that prob.

Our Solution - Modulo Embedding

- ► Keep close points close
- Contract distance of far points but keep them far enough
 (> cr) with constant probability
- ▶ Amplify probability by iterating and concatenating

ℓ_1 Embedding Setup

- ► Can we use Sampling?
 - ▶ Random Sampling will miss far points too often
 - Grid shifting can cut close points exponential (in r or d) cost to avoid that prob.
- Our Solution Modulo Embedding
 - ► Keep close points close
 - Contract distance of far points but keep them far enough
 (> cr) with constant probability
 - Amplify probability by iterating and concatenating

ℓ_1 Embedding Setup

- ► Can we use Sampling?
 - ▶ Random Sampling will miss far points too often
 - Grid shifting can cut close points exponential (in r or d) cost to avoid that prob.
- ▶ Our Solution Modulo Embedding
 - ► Keep close points close
 - ▶ Contract distance of far points but keep them far enough (>cr) with constant probability
 - ▶ Amplify probability by iterating and concatenating

Modulo Mapping

▶ Define $f_{\alpha}: \mathbb{N} \to \{0,1\}^{\alpha}$ to be the following mapping with parameter α :

$$f_{\alpha}(x) = \begin{cases} 0^{\alpha - \beta} 1^{\beta}, & \text{if } \beta < \alpha \\ 1^{2\alpha - \beta} 0^{\beta - \alpha}, & \text{otherwise} \end{cases}$$

Where $\beta = x \pmod{2\alpha}$.

 \triangleright Example with $\alpha = 5$:

$$\beta = 0 \to 00000$$
 $\beta = 5 \to 11111$
 $\beta = 1 \to 00001$ $\beta = 6 \to 11110$

$$\beta = 2 \rightarrow 00011$$
 $\beta = 7 \rightarrow 11100$

$$\beta = 2 \rightarrow 00011 \quad \beta = 7 \rightarrow 11100$$

$$\beta = 3 \to 00111 \quad \beta = 8 \to 11000$$

$$\beta = 4 \rightarrow 01111 \quad \beta = 9 \rightarrow 10000$$

Modulo Mapping

▶ Define $f_{\alpha}: \mathbb{N} \to \{0,1\}^{\alpha}$ to be the following mapping with parameter α :

$$f_{\alpha}(x) = \begin{cases} 0^{\alpha - \beta} 1^{\beta}, & \text{if } \beta < \alpha \\ 1^{2\alpha - \beta} 0^{\beta - \alpha}, & \text{otherwise} \end{cases}$$

Where $\beta = x \pmod{2\alpha}$.

 \triangleright Example with $\alpha = 5$:

$$\beta = 0 \to 00000$$
 $\beta = 5 \to 11111$
 $\beta = 1 \to 00001$ $\beta = 6 \to 11110$

$$\beta = 2 \to 00011$$
 $\beta = 7 \to 11100$

$$\beta = 2 \to 00011 \quad \beta = 7 \to 11100$$

$$\beta = 3 \rightarrow 00111 \quad \beta = 8 \rightarrow 11000$$

$$\beta = 4 \to 01111 \quad \beta = 9 \to 10000$$

• f_{α} preserves modulo distance!

$$||f_{\alpha}(x) - f_{\alpha}(y)||_{Ham} = ||f_{\alpha}(|x - y|)||_{1}$$

= \(\text{min}(x - y) \) (\(\text{mod } 2\alpha\), \(y - x) \) (\(\text{mod } 2\alpha\))

$\ell 1 \to \text{Hamming Modulo Embedding - Construction}$

- ▶ Define $T: [M]^d \to \{0,1\}^*$ as follows:
 - ▶ Randomly pick k = log(n) integers $\alpha_1...\alpha_k$ from [A, 2A], where $A = \max(5cr, \log(M))$
 - ▶ Run $f_{\alpha_j}(x_i)$ for each $i \in [d], j \in [k]$
 - ► Concatenate all strings
- ▶ Given input $x \in [M]^d$, we will hash T(x) using Pagh with $r' = k \cdot r$

$\ell 1 \to \text{Hamming Modulo Embedding - Analysis}$

- ▶ Final Dimension: $\mathcal{O}(d \cdot \log(n) \cdot (r + \log(M)))$ (but also now we are in bit-space, so representation and computation are $\log(M)$ faster).
 - $T = \mathcal{O}((r + \log(M)) \cdot \log(n) \cdot d \cdot n^{\rho})$
- When $r = \Theta(\log(n))$ (this is where Pagh focus on and when his algo is optimal and $\rho = 1/c$) our expected query time is $T = \mathcal{O}(\operatorname{polylog}(n, M) \cdot d \cdot n^{1/c})$ which is much faster than any existing deterministic $\ell 1$ NNS algorithm with near-linear space.

Conjecture behind Construction

► Conjecture: The modulo function keeps close points close all the time, and any far point will stay far on average. Specifically:

$$\forall x > 1, \forall A \ge \log(x), \alpha \sim \mathcal{U}[A, 2A] :$$

$$\mathbb{E}_{\alpha}[\min(x \mod 2\alpha, -x \mod 2\alpha)] \ge \min(x, \epsilon\alpha)$$

For some constant ϵ

- ▶ As long as we sample $\alpha_i \geq 2cr/\epsilon$, then expectation for far coordinates is larger than 2cr.
- Variance is bounded by range
- ightharpoonup After $\log(n)$ times O(1) far points will become close
- Cannot be 100% correct for any A (think about $x = LCM(\alpha_1 \dots \alpha_k) + 1$)
 - It's okay since $LCM(\alpha_1 \dots \alpha_k) > M$

Test of conjecture

- ▶ We run the following experiments
- ► Completeness Test
 - ▶ Test all $[2^{26}], K = 20, cr \in [4, 50].$
 - No far points becomes close in T = 10 rounds for each cr.
- ▶ Big Numbers Test
 - ► Each round randomly sample 2^{20} numbers in $[2^{60}], K = 20, cr \in \{4, 10, 50, 100\}.$
 - No far points becomes close in T = 100 rounds for each cr.

What if r is big?

- ▶ If we need to hash with big r, we can replace r factor with d and pay constant growth in exponent and denominator (trade-off)
- ▶ Divide each coordinate by $\frac{r\Delta}{d}$ (for some constant $\Delta < c 1$) and round them to the nearest integer.
- ▶ far point might contract to $\frac{cr}{1+\Delta}$, so we hash (using Pagh) with $c' = \frac{c}{1+\Delta}$.
- ► Final dimension becomes $\mathcal{O}(\log(n)(d^2 + d\log(M))/\Delta)$ and the time becomes $\approx n^{\rho + \Delta}$.

Acknowledgements

- ▶ Alex for helping us with our project direction.
- ▶ Pagh, Rasmus. "Locality-sensitive hashing without false negatives." arXiv preprint arXiv:1507.03225 (2015).

End

Thank you

Questions?

