CA4 - Eirik H?yheim

April 9, 2021

1 CA4 - Eirik Høyheim

1.1 Imports

```
[1]: import pandas as pd
   import numpy as np
   import copy
   import time
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import LabelEncoder, StandardScaler
   from sklearn.impute import SimpleImputer
   from sklearn.pipeline import make_pipeline
   from sklearn.decomposition import KernelPCA, PCA
   from sklearn.model_selection import GridSearchCV, cross_val_score
   from sklearn.metrics import confusion_matrix
   from sklearn.svm import SVC
   from sklearn.linear_model import LogisticRegression
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import roc_curve, auc
   from sklearn.model_selection import StratifiedKFold
   from numpy import interp
```

1.2 Visualization

We can see that the h2o feature makes it easier to seperate class 0 from 1 and 2 because the majority of all plantes that does not have water, is non-habitable. There is also some features that seems to have alot of consentrated points, as in feature flare_prob and radiation_level. alien_prob is on a "weird" scale, since it goes from about -20 to 20, and not positive procent points.

```
[4]: sns.pairplot(train_no_nan, hue="target")
plt.show()

C:\Users\eirik\Anaconda3\lib\site-packages\seaborn\distributions.py:369:
```

UserWarning: Default bandwidth for data is 0; skipping density estimation.
 warnings.warn(msg, UserWarning)
C:\Users\eirik\Anaconda3\lib\site-packages\seaborn\distributions.py:369:

C:\Users\eirik\Anaconda3\lib\site-packages\seaborn\distributions.py:369:
UserWarning: Default bandwidth for data is 0; skipping density estimation.
warnings.warn(msg, UserWarning)

C:\Users\eirik\Anaconda3\lib\site-packages\seaborn\distributions.py:369:
UserWarning: Default bandwidth for data is 0; skipping density estimation.
 warnings.warn(msg, UserWarning)

Non of the features is linearly seperable out of the box. flare_prob and radiation_level seems to be very skeewed, which fits with the observations we did in the box- and violin plots.

1.3 Pipline with kernel, SVM using Kernel PCA

```
param_grid
                = [{'kernelpca_n_components': param_range3,
                     'kernelpca_kernel':['rbf'],
                     'kernelpca_gamma': param_range4,
                    'svc__C': param_range,
                     'svc_kernel': ['linear']},
                   {'kernelpca_n_components': param_range3,
                    'kernelpca_kernel':['rbf'],
                    'kernelpca_gamma': param_range4,
                     'svc__C': param_range,
                    'svc_gamma': param_range2,
                    'svc_kernel': ['rbf']}
       ] # param_grid containing all parameters that I want to change to get the _{f L}
    →most optimal solution for the SVM algorithm
   # Inner loop
   gs = GridSearchCV(estimator = pipe_svc,
                     param_grid = param_grid,
                     scoring = 'accuracy',
                                = 10,
                               = -1) # Searching through all possible_
                     n jobs
    →combinations from param_grid. Cross-validation with 10 folds
   t1 = time.time()
   gs = gs.fit(X train, y train) # Fit the training data to grid search to find
    → the parameters that gives the highest score
   t2 = time.time()
   print(f"Best score: {gs.best_score_}")
   print(f"Best params:\n{gs.best_params_}") # Printing out the best parameters⊔
    → for further use
   print(f"Time: {(t2-t1):.3f}s")
   Best score: 0.8724221105527639
   Best params:
   {'kernelpca_gamma': 0.030999999999996, 'kernelpca_kernel': 'rbf',
   'kernelpca_n_components': 6, 'svc_C': 2.5, 'svc_gamma': 3.6, 'svc_kernel':
   'rbf'}
   Time: 214.269s
[6]: clf = gs.best_estimator_
   clf.fit(X_train, y_train)
   print(f"Test accuracy: {clf.score(X_test, y_test):.3f}") # Looking at how the

∪
    →model preformed against the test set
```

Test accuracy: 0.865

CV accuracy: 0.872 +/- 0.028

As we can see, the model was not able to predict 0 (non-habitable) right only four times. The model was not as efficient of seperating between class 1 (potentially-habitable) and class 2 (very-habitable). It guessed 23 times that the class was 2 when it was 1, and 40 times 1 when the class was 2. Overall, the model guessed more right than wronge, but in the future it would be a good idea to do some feature enginering to seperate label 1 and 2 to make it easier for the model to seperate between the two classes.

1.4 Pipeline with regularization, Logistic Regression using L1 and L2 regularization

```
[9]: pipe_lr = make_pipeline(StandardScaler(),
                            PCA(),
                            LogisticRegression(random_state=1)) # Pipeline_
     →containing Standard Scaler, PCA and Logitsic Regression
   param_range = np.arange(0.1, 6, 0.1) # For regularization parameter C.
   param_grid
                 = [
        {'pca_n_components': [None, 5, 6],
         'logisticregression_C': param_range,
         'logisticregression__penalty': ['12'],
         'logisticregression__solver': ['newton-cg', 'lbfgs', 'saga', 'sag']},
        {'pca_n_components': [None, 5, 6],
         'logisticregression_C': param_range,
         'logisticregression_penalty': ['l1'],
         'logisticregression_solver': ['liblinear']}
       ] # param_grid containing all parameters that I want to change to get the \Box
     →most optimal solution for the SVM algorithm
   gs = GridSearchCV(estimator = pipe_lr,
                      param_grid = param_grid,
                      scoring
                                 = 'accuracy',
```

```
cv
                                  = -1) # Searching through all possible_
                       n_{jobs}
      →combinations from param_grid. Cross-validation with 10 fold
     t1 = time.time()
     gs = gs.fit(X_train, y_train) # Fit the training data to grid search to find_
     → the parameters that gives the highest score
     t2 = time.time()
     print(f"Best score: {gs.best_score_}")
     print(f"Best params:\n{gs.best params }")
     print(f"Time: {(t2-t1):.3f}s")
    Best score: 0.8558492462311558
    Best params:
    {'logisticregression__C': 0.8, 'logisticregression__penalty': '12',
    'logisticregression_solver': 'newton-cg', 'pca_n_components': None}
    Time: 321.635s
[10]: clf = gs.best_estimator_
     clf.fit(X_train, y_train)
     print(f"Test accuracy: {clf.score(X_test, y_test):.3f}")
    Test accuracy: 0.843
[11]: # cross validation
     pipe_lr = make_pipeline(StandardScaler(),
                             PCA(n_components=None),
                             LogisticRegression(penalty='11',
                                                random state=1,
                                                 C=0.3,
                                                 solver='liblinear')) # a pipline__
     →containing the best parameters found in the grid search
     scores = cross_val_score(estimator=pipe_lr,
                             X=X_train,
                             y=y_train,
                             cv=10,
                                        # 10 cross-validation
                             n_{jobs=-1}
     print(f"CV accuracy: {np.mean(scores):.3f} +/- {np.std(scores):.3f}") # going_
      →through a cross valdiation with the best parameters to see how stable the
      \rightarrow model is
```

CV accuracy: 0.852 +/- 0.023

```
[12]: # confusion matrix
y_pred = clf.predict(X_test)
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)

fig, ax = plt.subplots(figsize=(2.5, 2.5))
ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
for i in range(confmat.shape[0]):
    for j in range(confmat.shape[1]):
        ax.text(x=j, y=i, s=confmat[i, j], va='center', ha='center')

plt.xlabel('Predicted label')
plt.ylabel('True label')

plt.tight_layout()
plt.show()
```


Logistic regression missclassified class 1 and 2 more than SVM. It also had a worse score than SVM.

1.5 Bonus, Random Forest with PCA

```
[13]: pipe_forest = make_pipeline(
    PCA(),
    RandomForestClassifier(random_state=1, n_jobs=-1, n_estimators=1000)
)

param_range = np.arange(14, 20, 1) # For max_depth

param_range2 = np.arange(2, 3, 1) # for min_samples_split

param_range3 = np.arange(1, 2, 1) # for min_samples_leaf
```

```
param_grid
         {'randomforestclassifier_max_depth': param_range,
          'pca_n_components': [5, 6],
          'randomforestclassifier_min_samples_split': param_range2,
          'randomforestclassifier__min_samples_leaf': param_range3,
          'randomforestclassifier_oob_score': [True],
          'randomforestclassifier__criterion': ['gini', 'entropy']
         }
     1
     gs = GridSearchCV(estimator=pipe_forest,
                       param_grid=param_grid,
                       scoring='accuracy',
                       cv=5, # fewer cross-validations to reduce time usage
                       n_jobs=-1
     t1 = time.time()
     gs = gs.fit(X_train, y_train)
     t2 = time.time()
     print(gs.best_score_)
     print(gs.best_params_)
     print(f"Time: {(t2-t1):.3f}s")
    0.8865064671729576
    {'pca_n_components': 6, 'randomforestclassifier_criterion': 'gini',
    'randomforestclassifier__max_depth': 17,
    'randomforestclassifier min samples leaf': 1,
    'randomforestclassifier__min_samples_split': 2,
    'randomforestclassifier__oob_score': True}
    Time: 194.008s
[14]: clf = gs.best_estimator_
     clf.fit(X_train, y_train)
     print(f"Test accuracy: {clf.score(X_test, y_test):.3f}")
    Test accuracy: 0.886
[15]: # Cross val
     pipe_forest = make_pipeline(
         KernelPCA(kernel='linear',
                  n_components=6),
         RandomForestClassifier(random_state=1, n_jobs=-1, n_estimators=2000,_
     →max_depth=17, oob_score=True, criterion='gini')
     scores = cross_val_score(estimator=pipe_forest,
```

CV accuracy: 0.887 +/- 0.025

```
[16]: # Confusion matrix
y_pred = clf.predict(X_test)
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)

fig, ax = plt.subplots(figsize=(2.5, 2.5))
ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
for i in range(confmat.shape[0]):
    for j in range(confmat.shape[1]):
        ax.text(x=j, y=i, s=confmat[i, j], va='center', ha='center')

plt.xlabel('Predicted label')
plt.ylabel('True label')

plt.tight_layout()
plt.show()
```


Random forrest predicted the same amount to be class zero as SVM, but managed to predict more classes right when label was 1 and 2 compared to both SVM and Logistic Regression.

1.6 Submission to Kaggle

1.6.1 Best model of SVM and Logistic regression

The model with the highest training score and test score was SVM.

Score on Kaggle public leaderboard: 0.88554

1.6.2 Random Forest

```
[18]: pipe_forest = make_pipeline(
         KernelPCA(kernel='linear',
                  n components=6),
         RandomForestClassifier(random_state=1, n_jobs=-1, n_estimators=2000,_
     →max_depth=17, oob_score=True, criterion='gini')
     pipe_forest.fit(X, y)
     imr = SimpleImputer(missing_values=np.nan, strategy="median")
     imr = imr.fit(test_raw.values)
     test = copy.copy(imr.transform(test_raw.values))
     y_predictions = pipe_forest.predict(test)
     my_submission = {"Id": [], "Predicted": []}
     for pred_id, pred in enumerate(y_predictions):
         my_submission["Id"].append(pred_id)
         my_submission["Predicted"].append(int(pred))
     submission_ready = pd.DataFrame(my_submission)
     submission_ready.to_csv("submissions/random_forest__pca__strategy_median",_
      →index=False)
```

Score on Kaggle public leaderboard: **0.89608** This was my highest score on the public leaderboard.

1.7 ROC-curve

All code below taken from lecture 6, part 2b and https://github.com/rasbt/python-machine-learning-book-3rd-edition/blob/master/ch06/ch06.ipynb with some modifications to fit the data

```
fig = plt.figure(figsize=(7, 5))
mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []
# Loop through folds of CV
for i, (train, test) in enumerate(cv):
    probas = pipe_lr.fit(X_train2[train],
                         y train[train]).predict proba(X train2[test]) #___
 → Predict probability of classes
    # False Positive and True Positive Rates (thresholds for the decision_
 \rightarrow function)
    fpr, tpr, thresholds = roc_curve(y_train[test],
                                      probas[:, 1],
                                      pos_label=2)
    # Add to mean True Predictive Rate in a smoothed variant (interpolated)
    mean_tpr += interp(mean_fpr, fpr, tpr)
    roc_auc = auc(fpr, tpr)
    plt.plot(fpr,
             tpr,
             label='ROC fold %d (area = %0.2f)'
                   % (i+1, roc_auc))
plt.plot([0, 1],
         [0, 1],
         linestyle='--',
         color=(0.6, 0.6, 0.6),
         label='random guessing')
# Average True Positive Rate
mean_tpr /= len(cv)
mean\_tpr[0] = 0.0
mean\_tpr[-1] = 1.0
# Average AUC
mean_auc = auc(mean_fpr, mean_tpr)
plt.plot(mean_fpr, mean_tpr, 'k--',
         label='mean ROC (area = %0.2f)' % mean_auc, lw=2)
plt.plot([0, 0, 1],
         [0, 1, 1],
         linestyle=':',
         color='black',
         label='perfect performance')
plt.xlim([-0.05, 1.05])
```

```
plt.ylim([-0.05, 1.05])
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')
plt.legend(loc="lower right")

plt.tight_layout()
plt.show()
```


As we can see from the ROC-curve, there are almost no false positivs and almost a "perfect" (no false positivs) ROC-curve. This indicates that it is fearly easy to seperate class 0 (non-habitable) and class 2 (very-habitable).