## NOM:

## INTERRO DE COURS – SEMAINE 9

**Exercice 1** – Soit f la fonction dont la courbe représentative  $\mathcal{C}_f$  est donnée ci-dessous.

Déterminer graphiquement :



- 2. l'image de -2 par f,
- 3. les éventuels antécédents de -6 par f,
- 4. les éventuels antécédents de 8 par f,
- 5. les éventuels antécédents de -7 par f,
- 6. l'ordonnée du point de  $C_f$  d'abscisse 4,
- 7. les solutions de l'équation f(x) = 6,
- 8. le maximum de f et pour quelle valeur il est atteint,
- 9. les solutions de l'inéquation  $f(x) \le 6$ .



**Solution :** Graphiquement, j'obtiens les réponses suivantes :

- 1. f(-1) = -4,
- 2. l'image de -2 par f est 0,
- 3. les antécédents de -6 par f sont 0 et 1,
- 4. l'antécédent de 8 par f est 4.2,
- 5. -7 n'a pas d'antécédent par f,
- 6. l'ordonnée du point de  $\mathcal{C}_f$  d'abscisse 4 est 6,
- 7. les solutions de l'équation f(x) = 6 sont -3 et 4,
- 8. le maximum de f est 14 et il est atteint pour x = 5,
- 9. l'inéquation  $f(x) \le 6$  est vérifiée sur l'intervalle [-3,4].

**Exercice 2** – Soit f une fonction définie sur  $\mathbb{R}_+$  dont voici le tableau de variation.

Les affirmations suivantes sont-elles vraies ou fausses? Justifier brièvement.

- 1. f est croissante sur  $[4, +\infty[$ ,
- 2. f est décroissante sur  $[0, +\infty[$ ,
- 3.  $\forall x \in \mathbb{R}_+, \quad f(x) > 0$ ,
- 4.  $\exists x \in \mathbb{R}_+, \quad f(x) < 0,$
- 5.  $\exists x \in \mathbb{R}_+, \quad f(x) = 2,$
- 6.  $f(4) \leq f(5)$ .



## **Solution:**

- 1. VRAI, le tableau de variation présente une flèche ascendante sur l'intervalle  $[4, +\infty[$ .
- 2. FAUX, puisque f est croissante sur l'intervalle  $[4, +\infty[$ .
- 3. FAUX, car  $4 \in \mathbb{R}_+$  et f(4) = 0.
- 4. FAUX, le tableau affirme que le minimum de f est 0, donc il n'existe pas de réel ayant une image strictement négative.
- 5. VRAI, comme f(0) = 3 et f(4) = 0, il y a forcément un réel  $x \in [0, 4]$  tel que f(x) = 2.
- 6. VRAI, comme f est croissante sur [4,5], en particulier  $f(4) \le f(5)$ .

Exercice 3 – Étudier la parité des fonctions suivantes.

1. 
$$f(x) = x^3 + x$$
,

3. 
$$f(x) = x^5 + \frac{1}{x} - x^3$$
,

2. 
$$f(x) = x^4 + \frac{1}{x^2}$$

4. 
$$f(x) = \sqrt{x^3 + x^2 - 2}$$
.

## **Solution:**

1. f est une fonction polynomiale donc définie sur  $\mathbb{R}$  et  $\mathbb{R}$  est symétrique par rapport à 0.

$$f(-x) = (-x)^3 + (-x) = -x^3 - x = -(x^3 + x) = -f(x),$$

donc la fonction f est impaire.

2. f est la somme d'une fonction polynomiale et d'une fraction rationnelle dont la seule valeur interdite est 0. Elle est donc définie sur  $\mathbb{R}^*$  et  $\mathbb{R}^*$  est symétrique par rapport à 0.

$$f(-x) = (-x)^4 + \frac{1}{(-x)^2} = x^4 + \frac{1}{x^2} = f(x),$$

donc la fonction f est paire.

3. f est la somme d'une fonction polynomiale et d'une fraction rationnelles dont la seule valeur interdite est 0. Elle est donc définie sur  $\mathbb{R}^*$  et  $\mathbb{R}^*$  est symétrique par rapport à 0.

$$f(-x) = (-x)^5 + \frac{1}{-x} - (-x)^3 = -x^5 - \frac{1}{x} + x^3 = -\left(x^5 + \frac{1}{x} - x^3\right) = -f(x),$$

donc la fonction f est impaire.

4. Je remarque que  $f(1) = \sqrt{0} = 0$  et que f(-1) n'est pas définie (il faudrait prendre la racine carrée de -2, impossible). Donc l'ensemble de définition de f n'est pas symétrique par rapport à 0 et f ne peut être ni paire ni impaire.