2023.12.8 第 21 次作业

卢科政 夏业志

2024年1月1日

题目 1. (书 8.12 题) 设一导线的电导率为 σ ,介电常数为 ϵ ,通以角频率 ω 的交流电。(1) 导线中的传导电流与位移电流之比是多少? (2) 已知铜的电导率 $\sigma=5.9\times10^7\Omega^{-1}\cdot m^{-1}$,分别计算铜导线载有频率为 50Hz 和 3.0×10^{11} Hz 的交流电时,传导电流密度与位移电流密度的大小之比。

解答. (1). 传导电流与位移电流的大小之比为:

$$\frac{I_0}{I_d} = |\frac{\sigma ES}{dD/dt \cdot S}| = |\frac{\sigma E}{\omega \epsilon E}| = \frac{\sigma}{\omega \epsilon}$$

 $(2).f = 2\pi\omega$,带入数值即可。

题目 2. (书 8.17 题) 两个分别为 R_1 和 R_2 的电阻与一个电容器构成如图所示的电路。电容器由两个圆形极板组成,其半径为 b,间距为 d,电源电压为 U_0 ,当电路达到稳定时开关 K 断开,求: (1)t 时刻电容器内部的位移电流;(2) 电容器两个极板之间的磁感应强度 B 的分布;(3) 从电容器流出的能量密度。(图见 P420)

解答. (1) 以电容器 C 处电流向上为 z 轴正方向,建立柱坐标系 (r,θ,z) 。

稳定时电容器电压为

$$U_C = \frac{R_1}{R_1 + R_2} U_0$$

K 断开后, 取 C 和 R_1 的回路, 电路方程满足:

$$R_1 \frac{dq}{dt} + \frac{q}{C} = 0$$

解得: $q = q_0 e^{-\frac{t}{R_1 C}} = C U_C e^{-\frac{t}{R_1 C}}$

位移电流:

$$I_D = \frac{dq}{dt} = -\frac{U_0}{R_1 + R_2} e^{-\frac{t}{R_1 C}}$$

电容器电容: $C = \frac{\epsilon_0 \pi b^2}{d}$ 则位移电流为:

$$I_D = -\frac{U_0}{R_1 + R_2} e^{-\frac{td}{R_1 \epsilon_0 \pi b^2}}$$

(2). 利用安培环路定理, 在电容器中作一个半径为 r 的圆:

$$B \cdot 2\pi r = \mu_0 I(r) = \mu_0 \frac{I_d r^2}{b^2}$$

解得:

$$B = \frac{\mu_0 r}{2\pi b^2} \cdot \frac{U_0}{R_1 + R_2} e^{-\frac{td}{R_1 \epsilon_0 \pi b^2}}$$

(3) 由于 $\vec{E} = \frac{q}{Cd}$,则能量密度为:

$$\vec{S} = |\vec{E} \times \vec{H}| = \left| \frac{q}{Cd} \cdot \frac{B}{\mu_0} \right| = \frac{\epsilon_0 b U_0^2 R_1}{2(R_1 + R_2)^2 d^2 C} e^{-\frac{2t}{R_1 C}}$$

(其中 $C = \frac{\epsilon_0 \pi b^2}{d}$)

题目 3. (书题 8.19) 已知电磁场的电场为 $\vec{E} = E_0 cos(\omega \sqrt{\epsilon_0 \mu_0} z - \omega t) \vec{e_x}$, 求 (1) 电磁波的磁场 H;(2) 能流 密度矢量及其在一个周期内的平均值。

解答. (1). 坐标系为 (x,y,z), 电场的方向为 $\vec{e_x} = (1,0,0)$.

根据

$$\vec{K} \times \vec{E} = \vec{H}, K = \omega \sqrt{\epsilon \mu}$$

K 的方向为电磁波的运动方向,需要与电场方向垂直,且默认在真空中,假设为:

$$\vec{K} = \omega \sqrt{\epsilon_0 \mu_0} (0, \cos\theta, \sin\theta)$$

则:

$$\vec{H} = \frac{1}{\mu_0 \omega} \vec{K} \times \vec{E} = \sqrt{\frac{\epsilon_0}{\mu_0}} E(0, sin\theta, -cos\theta)$$

(2). 能流密度矢量:

$$\vec{S} = \vec{E} \times \vec{H} = \sqrt{\frac{\epsilon_0}{\mu_0}} E^2(0, \cos\theta, \sin\theta)$$

一个周期内:

$$S_{ave} = \int_{0}^{2\pi/\omega} \sqrt{\frac{\epsilon_0}{\mu_0}} E^2(t) dt = \frac{1}{2} \sqrt{\frac{\epsilon_0}{\mu_0}} E_0^2$$

方向依然为 $(0, \cos\theta, \sin\theta)$

题目 4. (课本 8.20) 空气中均匀平面电磁波入射到平板媒质中 (长宽厚均足够大), 空气中的波长为 $\lambda_0 = 600m$, 媒质的参数为: $\sigma = 4.5$, $\epsilon_r = 80$, $\mu_r = 1$. 求电磁波入射媒质后的波长 λ , 相速度 v_p

解答. 入射平板媒质前后电磁波的频率不变,则有:

$$\lambda = \frac{\lambda_0}{n} = \frac{\lambda_0}{\sqrt{\epsilon_r \mu_r}} = 67m\tag{1}$$

相速度:

$$v_p = \frac{1}{\sqrt{\epsilon \mu}} = 3.35 \times 10^7 m/s \tag{2}$$

题目 5. (课本 8.21) 两半径为 R 的圆形导体平板构成一平行板电容器, 两极板的间距为 d, 两极板间充满介电常数为 ϵ , 电导率为 σ 的介质, 设两极板间加入缓变的电压 $u = U_m \cos \omega t$, 略去边缘效应. 求 (1) 电容器内的瞬时坡印廷矢量和平均坡印廷矢量;(2) 进入电容器的平均功率;(3) 电容器内损耗的瞬时功率和平均功率.

解答. (1)

首先计算 H, 利用叠加原理将面电流密度 j 分为导体电流对应的电场 j_1 以及电容器电压改变对应的电场 j_2 :

$$j_1 = \frac{1}{\pi R^2} \frac{U_m \cos \omega t}{\frac{1}{\sigma} \frac{d}{\pi R^2}} = \frac{\sigma U_m}{d} \cos \omega t \tag{3}$$

利用公式 Q = CU 并对其求导有:

$$j_2 = \frac{1}{\pi R^2} \frac{dQ}{dt} = \frac{C}{\pi R^2} \frac{du}{dt} = -\frac{\epsilon \pi R^2}{d} \omega U_m \sin \omega t \tag{4}$$

利用安培环路定理有:

$$H = \frac{1}{2\pi r} \pi r^2 (j_1 + j_2) = \frac{r}{2} \left(\frac{\sigma U_m}{d} \cos \omega t - \frac{\epsilon \pi R^2}{d} \omega U_m \sin \omega t\right)$$
 (5)

假设 E 的方向为从上向下, 则 H 的方向为: 从上往下看沿顺时针方向. 利用公式 $S=\vec{E}\times\vec{H}, (E=\frac{U_m\cos\omega t}{d})$ 可得:

$$\vec{S} = -\frac{rU_m}{2d} \left(\frac{\sigma U_m}{d} \cos^2 \omega t - \frac{\epsilon \pi R^2}{2d} \omega U_m \sin 2\omega t\right) \vec{e_r}$$
 (6)

对时间求平均, $\overline{\sin 2\omega t} = 0$, $\overline{\cos^2 \omega t} = \frac{1}{2}$, 所以平均坡印廷矢量为:

$$\overline{\vec{S}} = -\frac{\sigma r U_m^2}{4d^2} \vec{e_r} \tag{7}$$

(2)

用公式 $\oint_s \vec{S} \cdot d\vec{A} = -\frac{d}{dt}(W + W_n)$ 可知:

$$P = 2\pi Rd \cdot |S(R)| = \frac{\pi \sigma R^2 U_m^2}{2d} \tag{8}$$

(3)

电容器内的损耗由焦耳效应产生,则有:

$$P_Q = \frac{u^2}{R} = \frac{\pi \sigma R^2 U_m^2 \cos^2 \omega t}{d} \tag{9}$$

对时间求平均 $\overline{\cos^2 \omega t} = \frac{1}{2}$, 则有:

$$\overline{P_Q} = \frac{\pi \sigma R^2 U_m^2}{2d} \tag{10}$$