Taylor's Series: Truncation Error

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!} f''(x_0) + \dots + \frac{h^m}{m!} f^{[m]}(x_0) + \frac{h^{m+1}}{(m+1)!} f^{[m+1]}(\zeta)$$

$$\zeta \in (x_0, x_0 + h)$$

- *E.g.:* Compute $e^{0.1}$ (T.V. = 1.105170918075648)
- Use x_0 =0, h=0.1.
 - First-order approx. (m=1), 1+h = 1.1, Error = 0.00517
 - From Taylor's series, residual = $0.005 e^{\zeta}$ (range 0.005 to 0.0055)
 - Second-order approx. (m=2), $1+h+h^2/2 = 1.105$, Error = 0.000171
 - From Taylor's series, residual = $0.000167 e^{\zeta}$ (range 0.000167 to 0.000184)

Roots of Nonlinear Equations: Introduction and types of methods

- f(x)=0. "A root" is ξ , i.e., $f(\xi)=0$
- *Graphical method*: Plot and see the intersection with x-axis. Not very accurate. Zoom-in improves accuracy, less efficient.
- Analytical: E.g., for quadratic, cubic, and quartic equations.
 Not possible for general cases.
- *Numerical*: Works for most cases. Need to look at accuracy and efficiency.

Broadly classified: Bracketing and Open methods

Bracketing: First bracket the root and then refine the bracket

Open: Start from an initial guess (sometimes, more than one values) and try to move towards ξ .

Roots of Nonlinear Equations: Bracketing methods

Initial Bracket: By finding a change of sign of f(x)

E.g.,

- (a) $x^3 1.2500000x^2 1.5625250x + 1.9530938 = 0$
- (b) $x^3 1.2502000x^2 1.56249999x + 1.95343750 = 0$

Solid Line: (a) Dashed Line: (b)

Roots of Nonlinear Equations: Bracketing methods

- Search technique is used to bracket the root
- Choice of increment is problem-specific
- Large increment may not be able to bracket a root
- Small increment increases the computational time of bracketing (but will generally reduce the effort in refining)

Once a bracket is obtained, how to refine the bracket? Leads to different methods:

Bisection, False Position, Modified False Position...

We assume that a bracket $[x_l, x_u]$ has been obtained, i.e., $f_l \cdot f_u$ is negative.

Roots of Nonlinear Equations: Bisection Method

Reduce the bracket to half at each step:

- Find f_m at the midpoint of the interval, i.e., $f_m = f\left(\frac{x_l + x_u}{2}\right)$
- The new bracket will be $[x_l, x_m]$ if $f_l \cdot f_m$ is negative or $[x_m, x_u]$ if $f_u \cdot f_m$ is negative (Typically not multiplied, just sign comparison)
- Repeat till desired accuracy is achieved

Example: Find the root with a 1% accuracy

$$x^3 - 1.2500000x^2 - 1.5625250x + 1.9530938 = 0$$

$$f(x)=-7.922$$
 at $x=-2$ and 1.265 at $x=-1$

(To bracket the other two roots between 1.2 and 1.3, we need a fine increment of 0.01)

Bisection: Example

Iteration	X _l	X _u	f_l	f_{u}	X _m	ε _r (%)	$f_{\rm m}$
no.					$= (x_1 + x_u)/2$		
1	-2	-1	-7.92186	1.265619	-1.5		-1.89062
2	-1.5	-1	-1.89062	1.265619	-1.25	20	5E-08
3	-1.5	-1.25	-1.89062	5E-08	-1.375	9.090909	-0.86132
4	-1.375	-1.25	-0.86132	5E-08	-1.3125	4.761905	-0.4104
5	-1.3125	-1.25	-0.4104	5E-08	-1.28125	2.439024	-0.20022
6	-1.28125	-1.25	-0.20022	5E-08	-1.26563	1.234568	-0.09888
7	-1.26563	-1.25	-0.09888	5E-08	-1.25781	0.621118	Not needed

Error: Approx. Error (ε) = Current Approx. - Previous Approx.

Note: The table shows relative error.

Also note the small function value at the second iteration

At any iteration, $\varepsilon = Half of bracket length (Always > True Error)$

Indicates that the error reduces by a factor of 2 at each iteration: Called "Linear

Convergence"

Roots of Nonlinear Equations: Order of Convergence

- Denote by $x^{(i)}$, the estimate of the root at the i^{th} iteration
- If an iterative sequence $x^{(0)}$, $x^{(1)}$, $x^{(2)}$... converges to the root ξ , (which means the true error at iteration i is $e^{(i)} = \xi x^{(i)}$) and if

$$\lim_{i \to \infty} \frac{\left| e^{(i+1)} \right|}{\left| e^{(i)} \right|^p} = C$$

then p is the **order of convergence** and C the **asymptotic error constant**. The convergence is called linear if p=1, quadratic if p=2, and cubic if p=3 (p does not have to be an integer).

• For bisection method, <u>using approx. error as a proxy for true error</u> (as we approach the root, these tend to be the same)

$$\frac{\left|e^{(i+1)}\right|}{\left|e^{(i)}\right|} = \frac{1}{2}$$

Implying linear convergence and error constant of 0.5

Roots of Nonlinear Equations: Order of Convergence

- For linearly convergent methods: C must be less than 1
- For superlinearly convergent methods (p>1): Not necessary
- Convergent methods: Approximate Error at any iteration is representative of True Error at the previous iteration

$$x^{(i+1)} - x^{(i)} \cong \xi - x^{(i)}$$

• For the bisection method, the approximate error at the nth iteration is $\frac{\Delta x^{(0)}}{2^n}$

which means the number of iterations for a desired accuracy are known *a priori*.

Bisection Method: Comments

- Magnitude of f(x) is given no consideration in shrinking the bracket
- •Root SHOULD be closer to the end where the function magnitude is smaller

Linear Interpolation, False Position, or Regula Falsi Method

• Giving weight to f_l and f_u in choosing the bracket at the next iteration may work better

•The most common method: a **linear interpolation** between the two end points to estimate where the function will be zero (which indicates a **false position** of the root, Latin *Regula*

Falsi)

Linear Interpolation: Algorithm

• Using similar triangles, denoting the "false position" as \widetilde{x} ,

$$\frac{\widetilde{x} - x_l}{-f_l} = \frac{x_u - \widetilde{x}}{f_u} \implies \widetilde{x} = x_l - f_l \frac{x_u - x_l}{f_u - f_l} = x_u - f_u \frac{x_u - x_l}{f_u - f_l}$$

- •Again, \widetilde{x} will replace either x_i or x_u .
- Same Example

Linear Interpolation: Example

Iteration	X _l	X _u	f_l	f_u	\tilde{x}	ε _r (%)	$ ilde{ ilde{f}}$
no.							J
1	-2	-1	-7.92186	1.265619	-1.13775		0.639949
2	-2	-1.13775	-7.92186	0.639949	-1.2022	5.360842	0.287417
3	-2	-1.2022	-7.92186	0.287417	-1.23013	2.270632	0.122192
4	-2	-1.23013	-7.92186	0.122192	-1.24183	0.941715	-

Error reduces by a factor of about 0.4 at both steps, indicating a possibly *linear convergence*

Linear Interpolation: Error Analysis

- Similar to Taylor's series, equation for interpolation of data by a polynomial (details later in "Approximation")
- •For linear interpolation between two points, x_l and x_u , it is written as

$$f(x) = f(x_u) + (x - x_u) \frac{f_u - f_l}{x_u - x_l} + (x - x_u)(x - x_l) \frac{f''(\zeta)}{2}; x, \zeta \in (x_l, x_u)$$

Taylor's:
$$f(x) = f(x_u) + (x - x_u)f'(x_u) + \frac{(x - x_u)^2}{2!}f''(\zeta); \zeta \in (x, x_u)$$

•If we assume the function to be uniformly concave/convex, one end of the interval, x_{l} (or x_{l}), remains fixed, say, $x^{(0)}$, and

$$x^{(i+1)} = x^{(0)} - f_0 \frac{x^{(0)} - x^{(i)}}{f_0 - f_i}$$