浙江水学

本科实验报告

课程名称: 数字视音频处理

姓 名: 钱旭峰

学院: 计算机科学与技术学院

系: 计算机科学与技术

专 业: 计算机科学

学 号: 3140102491

指导教师: 杨莹春

2016年 12月 27日

浙江大学实验报告

课程名称: <u>数字视音频处</u>	上理 实验	<u>。</u> 类型:	设计实验
实验项目名称:	Project:语音差	异分析	
学生姓名: <u>钱旭峰</u>	专业:计算机科学与技术	学号: <u>3</u>	140102491
司组学生姓名: <u>无</u>		指导老师:	杨莹春

Project: 语音差异分析

- 一、 实验目的和要求
- 1. 掌握如何用 GMM(Gaussian Mixture Model)的方法来进行说话人辨识(Speaker Identification);
- 2. 掌握如何利用 parrt 软件进行元音三角形的分析;
- 3. 掌握说话人识别的基本原理和过程;
- 4. 理解 MFCC 特征提取。
- 二、主要仪器设备
- 1. matlab R2015a: 用于编程
- 2. 录音机: 用于语音的录制、采集
- 3. Praat: 用于语音的元音三角形及基频图等分析

三、 操作方法与实验步骤

1. 语音采集使用

两首诗歌的朗诵:

登鹳雀楼 王之涣

白日依山尽,黄河入海流。欲穷千里目,更上一层楼。八千里路云和 月。

在这个实验中我们首先录下 15 周的录音,在以其他同学的第一周的录音作为训练数据,训练说话人模型的函数 gmm_estimate,以自己剩余 14 周的录音作为测试数据,检测识别的正确率,实验中一般会出现误识别的现象,我们将分析误识别的几段语音和我们自己的语音的特征差别,并设计检测容易误识别的语音样本的算法

首先将其他同学第一周的录音建立模型,自己的 2[~]15 周录音与建立模型的录音放在一起作为测试数据,并找出自己所有语句中测试得分比模型录音高(被误识别为模型录音)的那些语句。

3140102491-W1	2016/9/25 15:21	文件夹
3140102491-W2	2016/10/1 12:08	文件夹
3140102491-W3	2016/10/11 22:14	文件夹
3140102491-W4	2016/10/15 13:09	文件夹
3140102491-W5	2016/10/24 11:15	文件夹
3140102491-W6	2016/11/7 0:10	文件夹
3140102491-W7	2016/12/16 19:14	文件夹
3140102491-W8	2016/12/16 19:21	文件夹
3140102491-W9	2016/12/16 19:31	文件夹
3140102491-W10	2016/12/17 18:51	文件夹
3140102491-W11	2016/12/17 18:56	文件夹
3140102491-W12	2016/12/17 19:06	文件夹
3140102491-W13	2016/12/18 12:14	文件夹
3140102491-W14	2016/12/18 12:19	文件夹
3140102491-W15	2016/12/18 12:24	文件夹

模型识别:

先用自己第一周的模型测试,计算出最低分数 self score。再依次对其他每个同学的录音建模,用自己的录音测试,并筛选出自己的录音中测试得分最接近于模型的录音语句。由于每建立一个模型,都能测试出最接近模型录音的一句自己的录音,而我们一共可以建立 46 个模型,这样一来就能统计出自己录音中最容易被误识别的那些语句。只要分析出这些语句的特征,即可推测出容易被误识别的特征。

代码通过 wavread 以及 melcepst 读取.wav 文件并提取特征 train_feature (12维MFCC), 然后使用 gmm_estimate 为说话人训练模型 (16阶 GMM), 得到模型的 3个参数 [mu, sigma, c]。最后将被测特征 test_feature 和要比对的说话人模型参数传入函数 lmultigauss, 即得到该被测特征与指定模型的比对得分 1Y。

代码中的 [YM, Y] = lmultigauss(x, mus, sigm, c) 试图计算模型匹配得分,得到 YM, Y 两个参数。对 Y 求 mean,即该段测试语音得分与对应模型的比对得分。

代码训练了1个说话人的模型,测试了13组特征,最终 score 为得分数组,得分数组的第i行第j列的值代表第i个测试语音与第j个说话人模型的得分,分数高则表示更匹配。

四、实验结果与分析

实验结果:

-17.6661	'3140102491-W1'	-17.6661	-20.6401	'3140104620-W1'	-29.8344
-13.8796	'3140102491-W1'	-13.8796	-19.0009	'3140104327-W1'	-29.7069
-14.3506	'3140102491-W1'	-14.3506	-21.9167	'3140104620-W1'	-32.3619
-16.9761	'3140102491-W1'	-16.9761	-20.489	'3140104620-W1'	-27.8008
-14.9119	'3140102491-W1'	-14.9119	-21.1029	'3140104620-W1'	-30.1907
-14.1885	'3140102491-W1'	-14.1885	-22.757	'3140104726-W1'	-34.7332
-19.8529	'3140104620-W1'	-20.6905	-20.4178	'3140104726-W1'	-29.6304
-16.8296	'3140104620-W1'	-18.1267	-19.6011	'3140104108-W1'	-31.9127
-21.4391	'3140104620-W1'	-22.0834	-21.2414	3140104620-W1'	-30.0815
-15.7144	'3140102491-W1'	-15.7144	-19.9035	'3140104108-W1'	-28.4478
-17.2541	'3140102491-W1'	-17.2541	-21.6498	'3140104620-W1'	-32.0573
-10.7755	'3140102491-W1'	-10.7755	-21.9033	'3140104726-W1'	-32.4292
-18.1783	'3140102491-W1'	-18.1783	-23.9426	'3140104726-W1'	-33.1263
-15.9662	'3140102491-W1'	-15.9662	-24.6596	'3140104620-W1'	-34.6525
-19.7988	'3140102491-W1'	-19.7988	-25.6679	'3140104620-W1'	-35.1164
-18.088	'3140102491-W1'	-18.088	-23.0749	'3140104108-W1'	-32.8147
-16.6759	'3140102491-W1'	-16.6759	-23.1415	'3140104620-W1'	-32.3573
-15.2554	'3140102491-W1'	-15.2554	-26.0695	'3140104726-W1'	-35.4264

等共有 15 张表(详见 result.xlsx 文件)

匹配的正确率:

曲线很奇怪

之后我分析了对于第二周的 N3.wav 的误识别的情况:

在第二周的 N3.wav 3140104620 同学将近比我高 10 分,以下是具体分析:

听感特征:

第一周语音:

- 1.噪音较多
- 2.呼吸气的声音较重
- 3.音色较为低沉
- 4.前面慢后面快

误识别语音(3140104620-W1):

- 1.噪音较少
- 2.没有呼吸气的声音
- 3.音较高
- 4.速度均匀

频谱分析:

第一周录音:

误识别录音:

标准:

基频分析:

第一周录音:

误识别语音:

强度分析:

第一周录音:

误识别语音:

标准:

共振峰分析:

第一周语音:

误识别语音:

标准:

五、 心得与体会

经过本次实验,我对于 Praat 这个软件已经可以做到熟练使用,了解了如何分析两段语音的差别,提取语图,基频,强度,共振峰。同时,我解了如何识别以及对这个算法的改进,我语音识别在将来的生活中会有很多的实际作用,将会对我未来的发展有很大的作用。