

DEVOIR SURVEILLE

Semestre: 1 2

Session : Principale Rattrapage

Module : Théorie des langages et techniques de compilation

Classes: 3A1-10, 4INFOB

Documents autorisés : OUI NON Nombre de pages : 2

Date: 14/03/2014 Heure: 11H00 Durée: 1H00

Exercice 1: (7 pts)

Soit le langage L des mots construits sur l'alphabet $\Sigma = \{0,1\}$. Le langage L est constitué par l'ensemble des séquences de bits de taille strictement supérieure à 1 tel que le premier bit et le dernier soient identiques.

a) Donner une expression régulière pour le langage L. (2 pts)

REPONSE

1(0|1)*1 | 0(0|1)*0

b) Construire un automate à états fini non déterministe (sans ε-transition) qui reconnaisse le langage L. (2 pts)

c) Rendre cet automate déterministe. (3 pts)

état		0		1	
e ₀	Α	e ₂	С	e ₁	В
e ₁	В	e ₁	В	{e ₁ , e ₃ }	D
e ₂	С	$\{e_2, e_3\}$	E	e ₂	С
{e ₁ , e ₃ }	D	e ₁	В	{e ₁ , e ₃ }	D
$\{e_2, e_3\}$	E	$\{e_2, e_3\}$	E	e ₂	С

xercice 2 (3 pts)

On se place sur l'alphabet $\Sigma = \{a,b\}$.

a) Donner l'expression régulière relative à l'automate ci-dessus. (2 pts)

REPONSE

a*(a|b)b*

b) Construire l'automate déterministe correspondant (2 pts).

$$\epsilon$$
-fermeture (1) = {1, 2, 4, 5, 7} = A

$$\delta$$
 (A, a) = {3, 6}

$$\varepsilon$$
-fermeture ({3, 6}) = {2, 3, 4, 5, 6, 7, 9, 10, 12} = **B**

$$\delta$$
 (A, b) = {8}

$$\varepsilon$$
-fermeture (8) = {8, 9, 10, 12} = C

$$\delta$$
 (B, a) = {3, 6}

$$\varepsilon$$
-fermeture ({3, 6}) = {2, 3, 4, 5, 6, 7, 9, 10, 12} = **B**

$$\delta$$
 (B, b) = {8, 11}

$$\varepsilon$$
-fermeture ({8, 11}) = {8, 9, 10, 11, 12} = **D**

$$\delta(C, a) = \emptyset$$

$$\delta$$
 (C, b) = {11}

$$\varepsilon$$
-fermeture (11) = {10, 11, 12} = **E**

$$\delta$$
 (D, a) = \emptyset

$$\delta$$
 (D, b) = {11}

$$\varepsilon$$
-fermeture ({11}) = {10, 11, 12} = **E**

$$\delta$$
 (E, a) = \emptyset

$$\delta(E, b) = \{11\}$$

$$\epsilon$$
-fermeture (11) = {10, 11, 12} = **E**

	a	b
A	В	С
В	В	D
С	_	Е
D	_	D
E	_	Е

c) Donner l'automate minimal équivalent (3 pts)

- A BCDE
- A B CDE

Exercice 3: (6 pts)

Considérons le langage suivant L = {w ∈ {a,b}* | w commence par la sous chaine aa ou bb et contient un nombre impair de a}, Construire directement un automate à états fini déterministe qui reconnait le langage L. (2 pts)

REPONSE

(aa|bb) (ab*a|b)*ab*

- 2) On considère l'alphabet $\Sigma = \{a, b\}$, donner une expression régulière décrivant :
 - a) Le langage de tous les mots construits sur Σ qui contiennent au plus deux b et se terminant par aa. (2 pts)

REPONSE

b) Le langage $L=\{a^nb^p\}$ avec n et p entiers et l'un des deux est pair (2 pts).

REPONSE

Bon Travail