BINARY NUMBER SYSTEM

Slide by Mahadi

- Bits can be used to represent patterns
- Specifically, any system or set of symbols can be translated into bit patterns
 - o patterns of ones and zeros
 - 0 10100001101
- Example: characters from any language alphabet
- Require enough bits so that all symbols have a unique bit pattern to represent them
 - O How many bits are needed to represent the English alphabet?
- Require set of symbols is finite

How many bits?

- A bit pattern consisting of a single bit can represent at most two symbols
- -possible patterns are o and 1
- A bit pattern consisting of two bits can represent at most four symbols
- -possible patterns are 00, 01, 10 and 11
- In general, a bit pattern consisting of n bits can represent at most 2ⁿ symbols
- How many bits are needed to represent the English alphabet?
- -we can represent 26 symbols using 5 bits (25=32)
- -4 bits is not enough (24=16)

Decimal (base 10) representation

We commonly represent numbers in decimal (base 10)

Numbers are represented using patterns of the digits

{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Position of each digit represents a power of ten

Example: Consider the decimal representation 2307

$$2307 = 2 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 7 \times 10^0$$

Base n representation

- A base n system contains n distinct symbols, the digits o through n -
- Numeric values greater than n -1 are represented by a pattern of the n symbols
- The value of any symbol in the string is found by multiplying that symbol by n^p, where p is the distance from the rightmost symbol in the pattern
- Computers represent information using bit patterns, or binary (base
 representation
- Numbers represented in base 2 are usually called binary numbers

Binary (base 2) representation

- The binary representation contains two symbols: { 0, 1 }
- Position of each symbol represents a power of two
- What is the value of the binary representation **111**?

Binary representation

What is the value of the binary representation 1010?

Binary addition

Represent sum of binary numbers as a binary number

decimal addition

$$1+1+1=3$$

binary addition

$$1+1 = 10$$

$$1+1+1 = 10+1 = 11$$

Adding binary numbers

```
101
+ 10
-----
111
```

```
11 ← carry
101
+ 11
-----1000
```


Converting decimal to binary

Decimal \rightarrow \rightarrow conversion \rightarrow \rightarrow		Binary	
0 =	<mark>0×2</mark> 0	=	0
1 =	1×2 ⁰	=	1
2 =	$1\times2^{1} + 0\times2^{0}$	=	10
3 =	$1\times2^{1} + 1\times2^{0}$	=	11
4 =	$1\times2^2 + 0\times2^1 + 0\times2^0$	=	100
5 =	$1\times2^2 + 0\times2^1 + 1\times2^0$	=	101
6 =	$1\times2^2 + 1\times2^1 + 0\times2^0$	=	110
7 =	$1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$	=	111
8 =	$1\times2^3 + 0\times2^2 + 0\times2^1 + 0\times2^0$	= 1000	

Converting decimal to binary

- Repeated division by two until the quotient is zero
- What is the binary representation of 30?

Converting decimal to binary

- Repeated division by two until the quotient is zero
- What is the binary representation of 47?

Problems

Convert 1011000 to decimal representation

 Add the binary numbers 1011001 and 10101 and express their sum in binary representation

Convert 77 to binary representation

Solutions

Convert 1011000 to decimal representation

$$1011000 = 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$
$$= 64 + 16 + 8 = 88$$

 Add the binary numbers 1011001 and 10101 and express their sum in binary representation 1011001 + 10101 1101110

Convert 77 to binary representation: 1001101

The End