ASSIGNMENT 1 MAT2002 MATRICES

July 29, 2020

Solve the following questions:

1. Verify Cayley-Hamilton theorem for the given matrix and hence find A^{-1} .

$$A = \left[\begin{array}{rrr} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{array} \right].$$

2. Find the eigenvalues and eigenvectors of

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{array} \right]$$

and verify the following

- (i) sum of the eigenvalues = trace of A.
- (ii) product of eigenvalues = Det(A).

3. Find the eigenvalues and eigenvectors of

$$A = \left[\begin{array}{rrr} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{array} \right]$$

and verify the following: (1) A^{-1} exists or not. (2) eigenvectors are mutually orthogonal or not.

- 4. Reduce the quadratic form $2x_1x_2 + 2x_1x_3 2x_2x_3$ to the canonical form by an Orthogonal transformation.
- 5. Reduce the quadratic form $Q = -6x^2 + 6xy 6y^2$ to the canonical form by an Orthogonal transformation. What kind of conic section is described by the equation if Q = -18.

6. Determine the eigenvalues of matrix given below(using properties) and verify whether matrix is diagonalizable or not

$$A = \left[\begin{array}{ccc} 6 & 2 & 3 \\ 0 & 6 & 6 \\ 0 & 0 & 6 \end{array} \right]$$

7. Find the Fourier series for the function f(x) = |x|, in the interval $x \in (-\pi, \pi)$.

8. Find the Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 < x \le \pi. \end{cases}$ and hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$

1

- 9. Obtain Fourier series of cosine terms for the function $f(x) = \begin{cases} x, & 0 < x \le \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} \le x < \pi. \end{cases}$
- 10. Find the Fourier series of y up to second harmonic from the following table:

X	0	1	2	3	4	5
У	4	8	17	7	6	2

11. Obtain the first three coefficients in the Fourier cosine series for y, where y is given in the following table:

X	0	30	60	90	120	150	180
У	0	5224	8097	7850	5499	2626	0