Dynamic Difficulty Adjustment

Hunter Welch
Computer Science Senior Seminar
April 18, 2020

Overview

- Why should we care
- Background
- Hunicke Experiment
- Emotion Based Dynamic Difficulty Adjustment
- MDDA

Why Do We Care

- Developers want to sell copies
- Players want to have a good experience
- 65% of American adults play video games

Overview

- Why should we care
- Background
- Hunicke Experiment
- EDDA
- MDDA

Flow and Difficulty

- Want to put players in a state of flow
- Difficulty helps put players in flow

What is Flow

- Mihaly Csikszentmihalyi (Me-high Cheek-sent-me-high)
 - Hungarian-American Psychologist
- Highly focused mental state
 - o In the zone
 - Time

Why is it hard to get correct

- Difference in perceived vs actual difficulty
- New player vs. professional

Static Difficulty

- Most have at least 3
 - Can be more
- Difficult to find correct setting
 - Takes time

What does DDA Mean

- Changing difficulty
- When is a change determined

Overview

- Why should we care
- Background
- Hunicke Experiment
- Emotion Based Dynamic Difficulty Adjustment
- Multiplayer Dynamic Difficulty Adjustment

Hunicke Experiment

- Hunicke and The Case for Dynamic Difficulty Adjustment in Games
- Game used
- FPS loop
- Gave players health
 - Formula to determine the probability of death
- 20 participants
 - Rated their own gaming ability

What Was Found

- 2.4 Less deaths
 - Self rating didn't affect the amount of deaths
- More enjoyment from higher skilled players

	Mean	Standard Deviation
Unadjusted	6.4	2.108185
Adjusted	4	2.951459

[3]

Overview

- Why should we care
- Background
- Hunicke Experiment
- Emotion Based Dynamic Difficulty Adjustment
- Multiplayer Dynamic Difficulty Adjustment

Emotion-Based DDA (EDDA)

What is it?

Emotion-Based DDA (EDDA)

- Frommel et al. wrote Emotion-based Dynamic Difficulty Adjustment Using Parameterized Difficulty and Self-Reports of Emotion
- Wanted to see if DBSR was an effective way to track player emotion
- Wanted to see if EDDA was an effective way to determine when to change the game

What they did

- Used the game Space Jump
- Players played on 3 different difficulties
 - o EDDA
 - Increasing difficulty
 - Constant difficulty
- 66 participants

Dialogue-Based Self-Reports

Questions from Non-Player Character (NPC)

[2]

What Was Found

Less player death in EDDA

DBSR measured player frustration/boredom as accurately as standard

survey

Overview

- Why should we care
- Background
- Hunicke Experiment
- Emotion Based Dynamic Difficulty Adjustment
- Multiplayer Dynamic Difficulty Adjustment

Multiplayer Dynamic Difficulty Adjustment

- Baldwin et al. wrote Crowd-Pleaser:
 Player Perspectives of Multiplayer
 Dynamic Difficulty Adjustment in Video
 Games
- What is it?
 - DDA, but in a multiplayer setting
- Why is MDDA more difficult

The setup

- 154 participants total
 - 125 completed the full survey
- 2 different perspectives from each person
 - o Why?
- In the context of Call of Duty
 - Not in the study

Determination

When will it be decided a player needs a boost

- Before the match starts (In the lobby)
- During the match

Component	Attribute	LPP	HPP
Determination	Pre-gameplay	4.2	3.8667
	During Gameplay	4.7067	3.78

Automation

Who will determine when a player needs help

- System
- The LPP or teammates

Component	Attribute	LPP	HPP
Automation	Applied by System	4.6454	3.922
	Applied by Player(s)	4.1418	3.766

Recipient

Who will get the boost

- The LPP
- Everyone on the LPP's team

Component	Attribute	LPP	HPP
Recipient	Individual	4.5664	4.021
	Team	4.1189	3.1818

Skill Dependency

What kind of boost is given

- Movement speed boost
- Health boost

Component	Attribute	LPP	HPP
Skill Dependency	Skill Dependent	4.4478	4.6045
	Skill Independent	4.5672	3.5896

User Action

How does the LPP apply the boost

- Interaction
- Automatic application

Component	Attribute	LPP	HPP
Lloor Action	Action Required	4.5231	4.3923
User Action	Action Not Required	4.4077	3.6615

Duration

How Long will the boost be applied

- 1 time
- 2 or more times
- Amount of time

Component	Attribute	LPP	HPP
Duration	Single-use	4.5827	4.5267
	Multi-use	4.9921	3.7795
	Time-based	4.685	4.189

Visibility

Who knows that a player gets the boost

- The player that receives the boost knows
- Teammates and/or enemies (can include recipient)
- No one knows a boost was applied

Component	Attribute	LPP	HPP
Visibility	Recipient	5.0794	3.8492
	Non-recipient	3.9206	4.3571
	No one	3.881	3.6111

Conclusion

- Flow and difficulty
- Different ways to determine when to intervene
 - Look at numbers
 - Look at emotions
- More difficult in MDDA

Questions?

References

- [1]Alexander Baldwin, Daniel Johnson, and Peta Wyeth. 2016. Crowd-Pleaser: Player Perspectives of Multiplayer Dynamic Difficulty Adjustment in Video Games. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY '16). Association for Computing Machinery, New York, NY, USA, 326–337.
 - DOI:https://doi-org.ezproxy.morris.umn.edu/10.1145/2967934.2968100
- [2]Julian Frommel, Fabian Fischbach, Katja Rogers, and Michael Weber. 2018. Emotion-based Dynamic Difficulty Adjustment Using Parameterized Difficulty and Self-Reports of Emotion. In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY '18). Association for Computing Machinery, New York, NY, USA, 163–171.

 DOI:https://doi-org.ezproxy.morris.umn.edu/10.1145/3242671.3242682
- [3]Robin Hunicke. 2005. The case for dynamic difficulty adjustment in games. In Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer entertainment technology (ACE '05). Association for Computing Machinery, New York, NY, USA, 429–433. DOI:https://doi-org.ezproxy.morris.umn.edu/10.1145/1178477.1178573
- [42019 Essential Facts About the Computer and Video Game Industry. (2019, August 19). Retrieved April 15, 2020, from https://www.theesa.com/esa-research/2019-essential-facts-about-the-computer-and-video-game-industry/

References cont.

- [5]Ben Cowley, Darryl Charles, Michaela Black, and Ray Hickey. 2008. Toward an understanding of flow in video games. Comput. Entertain. 6, 2, Article 20 (July 2008), 27 pages. DOI:https://doi-org.ezproxy.morris.umn.edu/10.1145/1371216.1371223
- [6]Thomas Constant and Guillaume Levieux. 2019. Dynamic Difficulty Adjustment Impact on Players' Confidence. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). Association for Computing Machinery, New York, NY, USA, Paper 463, 1–12. DOI: https://doi-org.ezproxv.morris.umn.edu/10.1145/3290605.3300693