Mobile Adhoc Networks

COCSC20

Wi-Fi

- Wi-Fi:
 - name is NOT an abbreviation
- Wireless Local Area Network (WLAN) technology.
- WLAN and Wi-Fi often used synonymous.
- Typically in 2.4 and 5 GHz bands.
- Based on IEEE 802.11 family of standards.

IEEE

- IEEE (Institute of Electrical and Electronics Engineers) established the 802.11 Group in 1990. Specifications for standard ratified in 1997.
- Initial speeds were 1 and 2 Mbps.
- IEEE modified the standard in 1999 to include:
 - 802.11b
 - 802.11a
 - 802.11g
 - 802.11n
 - 802.11ac

WLAN (Wi-Fi)

802.11 Wireless Standards						
IEEE Standard	802.11a	802.11b	802.11g	802.11n	802.11ac	
Year Adopted	1999	1999	2003	2009	2014	
Frequency	5 GHz	2.4 GHz	2.4 GHz	2.4/5 GHz	5 GHz	
Max. Data Rate	54 Mbps	11 Mbps	54 Mbps	600 Mbps	1 Gbps	
Typical Range Indoors*	100 ft.	100 ft.	125 ft.	225 ft.	90 ft.	
Typical Range Outdoors*	400 ft.	450 ft.	450 ft.	825 ft.	1,000 ft.	

Wi-Fi Channels

802.11 - Architecture of an Infrastructure Network

- Station (STA)
 - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS)
 - group of stations using the same radio frequency
- Access Point
 - station integrated into the wireless LAN and the distribution system
- Portal
 - bridge to other (wired) networks
- Distribution System
 - interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

Wi-Fi (802.11) Scanning

Passive Scanning

- (1) Beacons sent from APs access point
- (2) Association Request sent from H1 to selected AP
- (3) Association Response sent from AP to H1

Active Scanning

- (1) Probe Request (broadcast) sent from H1
- (2) Probe Response sent from APs
- (3) Association Request sent from H1 to selected AP
- (4) Association Response sent from AP to H1

Wi-Fi Alliance Mission Statement

- Non-profit organization
- Certify the interoperability of products and services based on IEEE 802.11 technology
- Grow the global market for Wi-Fi® CERTIFIED products and services across all market segments, platforms, and applications
- Rigorous interoperability testing requirements

Certificate & Logo

Wi-Fi[®] Interoperability Certificate

Certification ID: 24567832AP

This certificate represents the capabilities and features that have passed the interoperability testing governed by the Wi-Fi Alliance.

Detailed descriptions of these features can be found at www.wi-fi.org/certificate

Certification Date: February 14, 2004
Category: Access Point
Company: Name of Company

Product: Wireless LAN Access Point/Router Model#EX1010

Model/SKU #: EX1010

This product has passed Wi-Fi certification testing for the following standards:

IEEE Standard	Security	Quality of Service	Public Access
802.11a 802.11b 802.11g 802.11n	WPA - Personal WPA - Enterprise WPA2 - Personal (802.11i) WPA2 - Enterprise (802.11i)	WME (802.11e EDCA profile) WSM (802.11e HCCA profile)	
Regulatory	Supplicant		
802.11d 802.11h	EAP-TLS EAP-TTLS/MSCHAPV2 EAP-TTLS/PAP PEAPV0/EAP-MSCHAPV2 PEAPV1/EAP-GTC PEAPV1/EAP-MD5 EAP-SIM		
	Authentication Server		
	EAP-TLS EAP-TTLS/MSCHAPV2 EAP-TTLS/PAP PEAPV0/EAP-MSCHAPV2 PEAPV1/EAP-GTC PEAPV1/EAP-MD5		

For more information: www.wi-fi.org/certified_products

Certificate inside packaging (optional)

- Logo on product packaging (mandatory)
- Helps retailers and consumers

Infrastructure vs. Ad-Hoc Networks

Infrastructure-Less (Ad-Hoc)

- Ad-hoc means 'for this purpose'
- No need for infrastructure (like routers, cell towers, etc.)
- MANET: **M**obile **A**d-Hoc **Net**work

Routing

- Packets may need to traverse multiple links to reach destination
- Mobility causes route changes

Ad-Hoc Routing Protocol

- An ad-hoc routing protocol is a convention that controls how nodes decide which way to route packets between computing devices in a mobile ad-hoc network
- Foundation in most protocols: neighbor discovery
 - Nodes send periodic announcements as broadcast packets (beacon messages, alive messages, ...)
 - Can embed "neighbor table" into such messages; allows nodes to learn "2-hop neighborhood"
- Popular types of routing protocols:
 - Proactive
 - Reactive
 - Geographic

Proactive: "Link-State" Algorithms

 Each node shares its link information so that all nodes can build a map of the full network topology

Link Link A-B A-B B-C B-C C-D C-D Link A-B C B-C C-D Link A-B B-C C-D

 Assuming the topology is stable for a sufficiently long period, all nodes will have the same topology information

Proactive: "Link-State" Algorithms

- Link information is updated when a link changes state (goes up or down)
 - by sending small "hello" packets to neighbors
- Nodes A and C propagate the existence of link A-C to their neighbors and, eventually, to the entire network

Reactive: DSR

- Dynamic Source Routing
- Search for route when needed only
 - Search using Route Request (RREQ) broadcasts
 - Response using Route Reply (RREP) message
- Every message along route contains entire path to help intermediate nodes to decide what to do with message

Represents a node that has received RREQ for D from S

Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ

 Node H receives packet RREQ from two neighbors: potential for collision

 Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their transmissions may collide

 Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Reply in DSR

← Represents RREP control message

Data Delivery in DSR

Packet header size grows with route length

Proactive vs Reactive

• Reactive:

- Only establish/maintain routes between nodes needed them (in contrast: tables store ALL routes)
- Store entire route in each message; message size grows with route length
- Route requests cause "flooding"

• Proactive:

- Route information always available; no need to search for route (but route information can be outdated)
- Continuous exchange of route change updates

Geographic Routing

- Nodes use location information to make routing decisions
 - sender must know the locations of itself, the destination, and its neighbors
 - location information can be queried or obtained from a location broker
 - location information can come from GPS (Global Positioning System) or some other form of positioning technology.

Unicast Location-Based Routing

- One single destination
- Each forwarding node makes localized decision based on the location of the destination and the node's neighbors (greedy forwarding)
- Challenge: packet may arrive at a node without neighbors that could bring packet closer to the destination (voids or holes)

Geocasting

- Packet is sent to all or some nodes within specific geographic region
- Example: query sent to all sensors within geographic area of interest
- Routing challenge:
 - propagate a packet near the target region (similar to unicast routing)
 - distribute packet within the target region (similar to flooding)

Thank You

Contact me:

gauravsingal789@gmail.com

Gaurav.singal@nsut.ac.in

www.gauravsingal.in

LinkedIn: https://www.linkedin.com/in/gauravsingal789/

Twitter: https://twitter.com/gaurav_singal