Transformer: Intuition

We try to briefly explain what each the "moving parts" of the Transformer is doing.

General

Each of the paths in the Transformer is a vector of length $d_{
m model}$

ullet sometimes just referred to as d

Having a common length simplifies the architecture

- can stack Transformer blocks (since input and output are same size)
- Self-Attention and Cross-Attention:
 - lacktriangle map a query of size d to an output of size d
- Needed for the Residual Connection (Add and Norm)
 - adding the input of Attention to the output of Attention
 - o need to be same length

Residual connections

• Residual connections from Intro course (RNN Residual Networks.ipynb)

Encoder

The Encoder style Transformer can either be used

- stand-alone: create a fixed length, alternate length representation of the input
 - for further processing: e.g., Classification
- as part of an Encoder-Decoder architecture
 - lacksquare transform the Input sequence f x in a *processed sequence* $ar{f h}_{(1)},\ldots,ar{f h}_{(ar{T})}$
 - to be consumed by a Decoder

Encoder Self-Attention

The Self-Attention allows each $ar{\mathbf{h}}_{(ar{t}\,)}$ to depend on the **complete** input sequence $\mathbf{x}.$

If we view $ar{\mathbf{h}}_{(ar{t}\,)}$ as the "meaning" of $\mathbf{x}_{(t)}$

- it is a meaning based on the full context
 - lacksquare not just the preceding elements $\mathbf{x}_{(1:t-1)}$

By making the meaning dependent on the full context, we can disambiguate the meaning of the world "it"

 $\label{picture} Picture from: https://1.bp.blogspot.com/-AVGK0ApREtk/WaiAuzddKVI/AAAAAAAB_A/WPV5ropBU-cxrcMpqJBFHg73K9NX4vywwCLcBGAs/s1600/image2.png$

Decoder

The salient characteristic of a Decoder style Transformer is the autoregressive behavior

- generates an output one token at a time
- by appending each generated token to the sequence of already-generated tokens

The Decoder style Transformer can either be used

- stand-alone: for generative tasks
- as part of an Encoder-Decoder architecture

Decoder Self-Attention

The input needs to decide why of the previously-generated Decoder outputs (now Decoder inputs) to attend to.

There are multiple potential uses for this

- to help generate the "next" token (goal of the Decoder), by referencing the partially complete Decoder output
- to help in the Cross Attention step
 - decide which part of the Inputs x (Decoder Outputs) to attend to
 - "looking up" facts, e.g., our Question Answering example or Language Translation example

Note the use of Causal Masking

• we can only reference the Decoder output already generated

Decoder-Encoder Cross-Attention

The output of the Decoder Self-Attention is used as a "query"

- to reference the relevant part of the Input ${\bf x}\,$

Feed Forward Network (FFN)

Maps the output of the Decoder-Encoder Attention into the "next output token".

- actually: it is still an embedding of the next token, rather than the true next token
 - that way: it can be appended to the already-generated output to become the Decoder input for next position

This acts as a Classifier

- mapping the input
- to a vector of logits
 - one element per possible element of the Output Vocabulary

There is some evidence that

- the parameters of the FFN are where "world knowledge" is stored
 - every "fact" learned during training

Linear

This layer is append only to the final block in the stacked Transformer blocks.

It acts as a typical Classifier

- ullet "classifies" the final block's output of length d
- returning a vector
 - whose length is equal to number of elements of the Vocabulary
 - each element is a logit
 - to be converted into probability distribution over elements of the Vocabulary

Softmax

Converts the logit for each possible element of the Vocabulary

• into Probability that the element is the next Decoder Output

```
In [2]: print("Done")
```

Done