Grafo ponderado

Un **grafo ponderado** o **grafo con peso** es un grafo con etiquetas numéricas en las aristas denominadas **pesos de las aristas**.

Árbol de expansión mínima

Un **árbol de expansión mínima** en un grafo ponderado conexo es un árbol de expansión que tiene la menor suma de los pesos de sus aristas.

$$W(G) = \sum_{e \in E(G)} w(e)$$

Algoritmo de Kruskal

Input: Un grafo ponderado conexo *G* con *n* vértices.

Output: Un árbol de expansión mínima T.

Iteración:

1.
$$V(T) = V(G)$$

2.
$$E(T) = \emptyset$$

- 3. Mientras T sea disconexo
 - a. Seleccione e una arista en G con peso mínimo que une dos componentes de T.

b.
$$T = T \cup \{e\}$$

Arista

T ←	Arista	It
4	cd	6
2	e c	7
3	e f	8
4	9 c	ዓ
5	e p	١٥
	-(<u>5</u>	11

Algoritmo de Prim

Input: Un grafo ponderado conexo G.

Output: Un árbol de expansión mínima T.

Iteración:

1.
$$V(T) = \{x\}$$

2.
$$E(T) = \emptyset$$

- 3. Para i = 1 hasta n 1
 - a. Seleccione $e = uv : u \in V(T)$, $v \notin V(T)$ una arista en G con peso mínimo.

b.
$$V(T) = V(T) \cup \{v\}$$

c.
$$E(T) = E(T) \cup \{e\}$$

$$0. \quad \chi = h$$

- 1 he
- e. fp

W(T)=22

- 2. Kl
- م م ه

- 3.
- jK

fg

- 4.
- Fj

fe

9 69

5.

- 10 00
- 77 i.