1 Formal Development

Lemma 1 (Value inversion). Inversion lemma for values:

- 1. If v : uint, then v = n
- 2. If $v : \mathsf{bool}$, then $v = \top$ or $v = \bot$
- 3. If $v : \sigma[n]$, then $v = [c_i]_n$ and $c_i : \sigma$

Lemma 2 (Soundness of scalar expressions). If

- 1. $\Gamma \vdash e : \sigma^{\ell} \leadsto \widetilde{e}$
- 2. $\Gamma \sim \rho$
- 3. $\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$

Then

- (a) $\rho \vdash e \downarrow v$
- (b) $v : \sigma$
- (c) $\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa$

where either $\ell = \mathcal{P}$, $\widetilde{v} = v$, and $\kappa = \cdot$ or $\exists r, m$. $\ell = m$, $\widetilde{v} = r$, $\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}_1', \widehat{\rho}_2'; \cdot$, and $\mathcal{D}_m(\widehat{\rho}_1'[r], \widehat{\rho}_2'[r]) = v$.

Proof. Proof by Induction on (1).

Lemma 3 (Soundness of array expressions). If

- 1. $\Gamma \vdash e : \sigma^{\ell}[n] \leadsto \widetilde{e}$
- 2. $\Gamma \sim \rho$
- 3. $\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$

Then

- (a) $\rho \vdash e \downarrow [c_i]_n$
- (b) $[c_i]_n : \sigma[n]$
- (c) $\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa$

where either $\widetilde{v} = [c_i]_n$ and $\kappa = \cdot$ or $\exists r_i, m.$ $\widetilde{v} = [r_i]_n$, $\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; \cdot$, and $\forall i.$ $\mathcal{D}_m(\widehat{\rho}'_1[r_i], \widehat{\rho}'_2[r_i]) = c_i$.

Proof. Proof by Induction on (1).

Lemma 4 (Target semantics correspondence). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

3.
$$\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$$

4.
$$\rho \vdash s \downarrow \rho'; O$$

then:

(a)
$$\widetilde{\rho} \vdash \widetilde{s} \Longrightarrow \widetilde{\rho}'; \kappa$$

(b)
$$\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; O$$

Lemma 5 (Soundness of source semantics). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

then,
$$\rho \vdash s \downarrow \rho'; O$$

Theorem 6 (Soundness). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

3.
$$\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$$

then:

(a)
$$\rho \vdash s \downarrow \rho'; O$$

(b)
$$\widetilde{\rho} \vdash \widetilde{s} \Longrightarrow \widetilde{\rho}'; \kappa$$

(c)
$$\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; O$$

 ${\it Proof.}$ Follows from Lemma 4 and 5.