Solutions to Homework 6

Nathan Grigg

Section 7, Problems 1, 3, and 5

Exercise 1. Suppose that for some integer n, F contains the nth roots of unity, and K/F is a Galois extension of the form $K = F(\alpha)$, where $\alpha^n \in F$. What can you say about the Galois group G = G(K/F)?

Solution. We can say that G(K/F) is cyclic. Note that α is a root of $f(x) = x^n - \alpha^n \in F[x]$. Let ω be a primitive nth root of unity; then $\alpha \omega^i$ is a root of f(x) for each i between 0 and n-1. These numbers are all distinct, so these are all the roots of f(x), which means that we have

$$f(x) = (x - \alpha)(x - \alpha\omega) \cdots (x - \alpha\omega^{n-1}).$$

Now, any F-automorphism of K is determined by where it sends α , and it must send roots of f(x) to other roots of f(x), so it is of the form $\sigma_i(\alpha) = \alpha \omega^i$ for some i. Note that $\sigma_i \circ \sigma_j = \sigma_{i+j}$, so there is a (clearly injective) homomorphism from G to C_n given by $\sigma_i \mapsto i$. Thus G is isomorphic to a subgroup of C_n , which means that G itself is also cyclic. \square

Exercise 3. Let F be a subfield of \mathbb{C} which contains i, and let K be a Galois extension of F whose Galois group is C_4 . Is it true that K has the form $F(\alpha)$, where $\alpha^4 \in F$?

Solution. Yes. Let σ be a generator of G(K/F). Then if β is an eigenvector of σ with eigenvalue λ , we have $\beta = \sigma^4(\beta) = \lambda^4 \beta$. So $\lambda^4 = 1$.

Then since σ has finite order, it is diagonalizable, i.e., there is a basis for which the matrix for σ is diagonal whose entries are eigenvalues of σ . Suppose that $\pm i$ are not eigenvalues for σ , then the matrix for σ just has ± 1 down the diagonal, which means that σ^2 is the identity. This is a contradiction, so λ is an eigenvalue for σ for either $\lambda = i$ or $\lambda = -i$. Let γ be the corresponding eigenvector. Then

$$\gamma \sigma(\gamma) \sigma^2(\gamma) \sigma^3(\gamma) = \lambda \lambda^2 \lambda^3 \gamma^4 = -\gamma^4$$
.

Since this is fixed by σ , it is in F, so $\gamma^4 \in F$. Also, $\sigma^k(\gamma) \neq \gamma$ for k = 1, 2, 3. Hence γ is not fixed by any subgroup of $\langle \sigma \rangle$, which implies that $K = F(\gamma)$. \square

Exercise 5. Let K be a splitting field of an irreducible polynomial $f(x) \in F[x]$ of degree p whose Galois group is a cyclic group of order p generated by σ , and suppose that F contains the pth root of unity $\zeta = \zeta_p$. Show that there is an ordering $\alpha_1, \alpha_2, \ldots, \alpha_p$ of the roots of f such that

$$\beta = \alpha_1 + \zeta^{\nu} \alpha_2 + \zeta^{2\nu} \alpha_3 + \dots + \zeta^{(p-1)\nu} \alpha_p$$

is an eigenvector of σ , with eigenvalue ζ^{-v} , unless it is zero.

Proof. Let α be a root of f and let $\alpha_i = \sigma^{i-1}(\alpha)$ for each i between 1 and p. Then we can write

$$\beta = \sum_{i=0}^{p-1} \zeta^{\nu i} \sigma^i(\alpha),$$

and we have

$$\sigma(\beta) = \sigma\left(\sum_{i=0}^{p-1} \zeta^{\nu i} \sigma^i(\alpha)\right) = \sum_{i=0}^{p-1} \zeta^{\nu i} \sigma^{i+1}(\alpha) = \sum_{j=1}^p \zeta^{-\nu} \zeta^{\nu j} \sigma^j(\alpha) = \zeta^{-\nu} \beta,$$

as desired. \Box