20

CLAIMS

- 1. A composition comprising a mixture of
 - (A) a polymerisable compound, which undergoes polymerisation on exposure to heat or to actinic radiation, having the general formula

$$Q \left\{ (L)_{m} X \right\}_{n}$$

wherein Q is an organic charge transporting fragment, L is a linker group, X is a group capable of undergoing free radical or anionic polymerisation on exposure to heat or actinic radiation, m is 0 or 1, and n is an integer having a value of 2 or more; and

- (B) a phosphorescent material.
- 2. A composition according to claim 1, wherein the organic charge transporting fragment Q has a triplet energy level which is substantially equal to or slightly greater than the energy level of the emissive state of the phosphorescent material.
- 3. A composition according to either claim 1 or claim 2, wherein X is selected from groups containing ethylenic unsaturation and groups containing a cyclic ether moiety.
- 4. A composition according to claim 3, wherein X is a group containing an acrylic group, a vinyl group, an allyl group or an epoxide group.
- 5. A composition according to any one of claims 1 to 4, wherein Q comprises at least one group selected from carbazole and arylamine.

6. A composition according to claim 5, wherein Q has the general formula

where Ar is an optionally substituted aromatic group and Ar_1 , Ar_2 , Ar_3 and Ar_4 are the same or different optionally substituted aromatic or heteroaromatic groups or Ar_1 and Ar_2 are linked together to form with the N atom to which they are both attached, a N-containing heterocyclic group and/or Ar_3 and Ar_4 are linked together to form, with the N atom to which they are both attached, a N-containing heterocyclic group and wherein at least two of Ar_1 , Ar_2 , Ar_3 and Ar_4 are

linked to a group $-(L)_m$ -X.

- 7. A composition according to claim 6, wherein Ar₁ and Ar₂ are linked together to form, with the N atom to which they are both attached, an optionally-substituted carbazole group.
- 8. A composition according to claim 6 or claim 7 wherein Ar₃ and Ar₄ are linked together to form, with the N atom to which they are both attached, an optionally-substituted carbazole group.
- 9. A composition according to claim 8, wherein the polymerisable compound has the structure

 A composition according to claim 8, wherein the polymerisable compound has the structure

- 11. A composition according to any one of claims 1 to 4, wherein Q is an electron-transporting group selected from an aryl-substituted oxadiazole group and an aryl-substituted triazole group.
- 12. A composition according to claim 11, wherein Q is selected from a 3-phenyl-4-(1-naphthyl)-5-phenyl-1,2,4-triazole group and a 1,3-bis (N,N-t-butylphenyl)-1,3,4-oxadiazole group.
- 13. A composition according to any one of claims 1 to 12, wherein the phosphorescent material is a phosphorescent organometallic complex of a transition metal or a phosphorescent organometallic transition metal dendrimer.
- 14. A composition according to claim 13, wherein the phosphorescent material is selected from an organometallic complex of iridium, an organometallic complex of platinum and an organometallic iridium dendrimer.

- 15. A composition according to claim 14, wherein the phosphorescent material is selected from tris(2-phenylpyridine)iridium, bis(2-(2'-benzo[4,5-α]thienyl)pyridinate-N,C^{3'})iridium or 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum.
- 16. A composition according to any one of claims 1 to 15, wherein the phosphorescent material is present in the mixture at a concentration in the range of from 0.5-15 molar %, preferably 2 to 6 molar %.
- 17. A composition according to any one of claims 1 to 16 which, additionally, contains at least one initiator.
- 18. A composition according to any one of claims 1 to 16 wherein the composition does not contain a separate initiator.
- 19. A solid film comprising a thermally-induced polymerisation reaction product of a composition according to any one of claims 1 to 18.
- A solid film comprising a radiation-induced polymerisation reaction product of a composition according to any one of claims 1 to 18.
- 21. A film according to either claim 19 or claim 20 in the form of a predetermined pattern.
- 22. A laminate comprising at least two solid films according to claim 21.
- 23. An organic light emitting device comprising, laminated in sequence, a substrate, electrode, light emitting layer and counter electrode wherein the light emitting layer is selected from a film according to any one of claims 19 to 21 and a laminate according to claim 22.

- 24. A device according to claim 23, additionally comprising a holetransporting layer located between the anode and the light emitting layer.
- 25. A device according to either claim 23 or claim 24, additionally comprising a hole-blocking layer located between the light emitting layer and the cathode.
- 26. A device according to any one of claims 23 to 25, additionally comprising an electron-transporting layer located between the light emitting layer and the cathode.
- A device according to any one of claims 23 to 26 with active-matrix addressing.
- 28. A method of making a light emitting layer comprising the steps of forming a film of a composition claimed in any one of claims 1 to 18 and exposing the film to heat or actinic radiation to induce polymerisation of the polymerisable compound.
- 29. A method of making a light emitting layer according to claim 28 wherein the film is exposed to actinic radiation to induce polymerisation of the polymerisable compound.
- 30. A method according to claim 29 wherein the film is exposed to actinic radiation through a mask and then the exposed film is developed to remove unexposed material.
- 31. A method of forming a multicolour organic light emitting layer comprising the steps of
 - forming a film of a composition claimed in any one of claims 1 to18 capable of emitting light of a first colour;

- (ii) exposing the film to actinic radiation through a mask;
- (iii) removing unexposed material from the film to leave a predetermined pattern of exposed material;
- (iv) forming, on the predetermined pattern of exposed material obtained in step (iii), a film of a composition claimed in any one of claims 1 to 18 which is capable of emitting light of a second colour different from the first colour; and
- (v) exposing the film formed in step (iv) to actinic radiation through a mask.
- 32. A method according to claim 31 which comprises the further steps of
 - (vi) removing unexposed material from the film exposed in step (v) to leave a predetermined pattern of exposed material;
 - (vii) forming, on the predetermined pattern of exposed material obtained in step (vi), a film of a composition claimed in any one of claims 1 to 18 which is capable of emitting light of a third colour different from the first and second colours; and
 - (viii) exposing the film formed in step (vii) to actinic radiation through a mask.
- 33. A method according to any one of claims 28 to 32, wherein the film of the composition is formed by a technique selected from spin-coating, ink-jet printing, dip-coating, roller coating and thermal transfer.