Introduction to Maths, Flowcharts, and Pseudocode - Algorithms (MATH1812)¹

John S Butler (TU Dublin)

Mathematics - Single Loop

Mathematics Example 1

The mathematical expression

$$\sum_{i=0}^{6} 3i,$$

can be expanded as,

$$\sum_{i=0}^{6} 3i = 3(0) + 3(1) + 3(2) + 3(3) + 3(4) + 3(5) + 3(6),$$

$$\sum_{i=0}^{6} 3i = 63.$$

Mathematics Example 2

The mathematical expression

$$10 + \sum_{j=-3}^{2} (2 + \frac{j}{2}),$$

can be expanded as,

$$10 + \sum_{j=-3}^{2} (2 + \frac{j}{2}) = 10 + (2 + \frac{-3}{2}) + (2 + \frac{-2}{2}) + (2 + \frac{-1}{2})$$
$$+ (2 + \frac{0}{2}) + (2 + \frac{1}{2}) + (2 + \frac{2}{2}),$$
$$10 + \sum_{j=-3}^{2} (2 + \frac{j}{2}) = 20.5.$$

Flowchart - Single Loop Flowchart Example 1 i=O Sum=0

Flowchart Example 2

Pseudocode - Single Loop

Pseudocode Example 1

Python Pseudocode

```
1 # Setting up the initial Sum value
4 # For loop from 0 to 6 with steps of 1
5 for i in range(0,7):
     Sum=Sum+3*i
8 return Sum
```

The line by line output of the code for Example 1 is:

Loop count	i	Sum
0	0	0+3(0)=0
1	1	0+3(1)=3
2	2	3+3(2)=9
3	3	9+3(3)=18
4	4	18+3(4)=30
5	5	30+3(5)=45
6	6	45+3(6)=63
		63

Pseudocode Example 2

Python Pseudocode

```
1 # Setting up the initial Sum value as 10
4 # For loop from -3 to 2 with steps of 1
5 for j in range(-3,3):
     Sum=Sum+(2+j/2)
8 return Sum
```

The line by line output of the code for Example 2 is:

Loop count	j	Sum
0	-3	10+(2-3/2)=10.5
1	-2	10.5+(2-2/2)=11.5
2	-1	11.5+(2-1/2)=13
3	0	13+(2-0/2)=15.0
4	1	15+(2+1/2)=17.5
5	2	17.5+(2+2/2)=20.5
		20.5

¹Course Website: https://sites.google.com/dit.ie/math1812/home

Mathematics - Sequential Loops

Example 3

The mathematical expression

$$-3 + \sum_{i=0}^{4} -2i + \sum_{j=-10}^{-6} (j+1)^{2},$$

can be expanded as,

$$-3 + \sum_{i=0}^{4} -2i + \sum_{j=-10}^{-6} (j+1)^{2} =$$

$$-3 +$$

$$-2(0) + -2(1) + -2(2) + -2(3) + -2(4) +$$

$$(-10+1)^{2} + (-9+1)^{2} + (-8+1)^{2} + (-7+1)^{2} + (-6+1)^{2},$$

written in tabular form:
$$\begin{array}{c|ccccc} i & 0 & 1 & 2 & 3 & 4 \\ \hline -2i & -2(0) & -2(1) & -2(2) & -2(3) & -2(4) \\ \end{array}$$
 where the bottom row is summed giving,

$$\sum_{i=0}^{4} -2i = -20,$$

the second summation is written in tabular form,

$$\sum_{j=-10}^{-6} (j+1)^2 = 255,$$

bringing this all together,

$$-3 + \sum_{i=0}^{4} -2i + \sum_{j=-10}^{-6} (j+1)^2 = -3 - 20 + 255 = 232.$$

Flowchart - Sequential Loops

Pseudocode - Sequential Loops

Example 3

Python Pseudocode

```
1 # Setting up the initial Sum value
 2 Sum=-3
 4 for i in range(0,5):
5 Sum=Sum+(-2*i)
6 print(Sum)
7 print(i)
9 for j in range(-10,-5):
10 Sum=Sum+(j+1)*(j+1)
11 print(Sum)
12 print(j)
14 Sum
```

The line by line output of the code for Example 3 is:

	Count	Loop	Sum
-	0		-3
_		i	-2i
	1	0	-3-2(0)
	2	1	-3-2(1)=-5
	3	2	-5-2(2)=-9
	4	3	-9-2(3)=-15
	5	4	-15-2(4)=-23
		j	(j+1)(j+1)
	6	-10	-23+(-10+1)(-10+1)=58
	7	-9	58+(-9+1)(-9+1)=122
	8	-8	122+(-8+1)(-8+1)=171
	9	-7	171+(-7+1)(-7+1)=207
	10	-6	207+(-6+1)(-6+1)=232
			232

Mathematics - Double Loop

Example 4 - Double Loop

The mathematical expression

$$\sum_{i=0}^{3} \sum_{j=0}^{3} (i^2 + 3j),$$

can be expanded as,

$$\sum_{i=0}^{3} \sum_{j=0}^{2} (3j+i^2) = (0^2+3\times0) + (1^2+3\times0) +$$

$$(2^2+3\times0) + (3^2+3\times0) +$$

$$(0^2+3\times1) + (1^2+3\times1) +$$

$$(2^2+3\times1) + (3^2+3\times1) +$$

$$(0^2+3\times2) + (1^2+3\times2) +$$

$$(2^2+3\times2) + (3^2+3\times2)$$

$$= 78$$

$3j + i^2$	0	1	2	3
j/i	0	1	2	3
0	0	1	4	9
1	3	4	7	12
2	3	4	7	12

Flowchart - Double Loop

Pseudocode - Double Loop

Example 4 - Double Loop

Python Pseudocode

```
1 # Setting up the initial Sum value
2 Sum=0
3
4 for i in range(0,4):
5    for j in range(0,3):
6        Sum=Sum+i*i+3*j
7 print(Sum)
```

The line by line output of the code for Example 3 is:

Count	i	j	Sum
0			0
			$Sum = Sum + i^2 + 3 * j$
1	0	0	$0 + 0^2 + 3 * 0 = 0$
2	1	0	$0 + 1^2 + 3 * 0 = 1$
3	2	0	$1 + 2^2 + 3 * 0 = 5$
4	3	0	$5 + 3^2 + 3 * 0 = 14$
5	0	1	$14 + 0^2 + 3 * 1 = 17$
6	1	1	$17 + 1^2 + 3 * 1 = 21$
7	2	1	$21 + 2^2 + 3 * 1 = 28$
8	3	1	$28 + 3^2 + 3 * 1 = 40$
9	0	2	$40 + 0^2 + 3 * 2 = 46$
10	1	2	$46 + 1^2 + 3 * 2 = 53$
11	2	2	$53 + 2^2 + 3 * 2 = 63$
12	3	2	$63 + 3^2 + 3 * 2 = 78$
			78

Quick-Find

```
Pseudocode - Quick Find
   Python Pseudocode
  1 def Union(p,q,ID):
          pID=ID[p]
qID=ID[q]
  2
  3
  4
  5
          if(pID==qID)
  6
                return Connected
  7
          for i in range(0,10):
  8
                if ID[i]==pID:
  9
 10
                        ID[i]=qID
          count=count-1
 11
      return ID
 12
```


Pseudocode - Quick Union

Python Pseudocode Find Root

Python Pseudocode Connect

Flowchart Quick Union **Flow Chart Find Root** root p, ID p!=ID[p] yes p=ID[p] Return p Flow Chart Connect Nodes p, q, ID, count rootpID=root(p) rootqID=root(q) pID==qID no ID[rootpID]=rootqID Return ID count=count-1 Return ID