BIOS 667, Spring 2017 Midterm

- 1. Consider the model $E[Y] = X\beta$, $cov(Y) = \Sigma$, where Y is an $n \times 1$ random vector distribted as multivariate normal with mean $X\beta$ and covariance matrix Σ ; β is $p \times 1$ and Σ depends on a $q \times 1$ vector θ that is functionally unrelated to β .
 - (a) True or false: The REML estimator of the regression coefficients β are obtained by maximizing the REML likelihood with respect to β . Explain briefly (1–3 sentences).
 - (b) True or false: The REML estimator of β is unbiased. Explain briefly.
 - (c) True or false: The maximum-likelihood (full likelihood, not REML likelihood) estimator of β is unbiased. Explain briefly.
- 2. In the TLC study, in the "Active" group, suppose that, using i to index subjects, the otucome vector $(Y_{i1}, Y_{i2}, Y_{i3}, Y_{i4})^{\top}$ is distributed as multivariate normal with mean $(25, 14, 16, 18)^{\top}$ in $\mu g/dL$, and covariance matrix

$$50 \left[\begin{array}{cccc} 1 & 0.5 & 0.5 & 0.4 \\ & 1 & 0.6 & 0.5 \\ & & 1 & 0.5 \\ & & & 1 \end{array} \right].$$

Define $A_i = (Y_{i2} + Y_{i3} + Y_{i4})/3$.

All numerical values must be simplified and reduced as much as possible.

- (a) Find the mean and variance of A_i .
- (b) Find $cov(Y_{i1}, A_i)$.
- (c) Find the conditional mean and variance of A_i given Y_{i1} .
- (d) What is the point of this question?
- 3. In the TLC study, one of the study statisticians asked for fitting 6 separate linear regression models: regression of Y_{ij} on Y_{i1} (with intercept), j=2,3,4, for i in the Active group, and separately for i in the Placebo group. The estimated slopes (standard errors) were:

$$\begin{array}{cccc} & A & P \\ j{=}2 & 0.613(0.202) & 0.901(0.0877) \\ j{=}3 & 0.600(0.208) & 0.961(0.0898) \\ j{=}4 & 0.912(0.231) & 0.848(0.106) \end{array}$$

- (a) The said statistician wanted to test the hypothesis that, at each occasion j, the corresponding true population slopes, say α_{1j} (A) and α_{0j} (P) are equal in the two groups. Why?
- (b) Perform the test for j = 2 only (the test can be either exact or approximate).
- (c) The tests above for j=2,3,4 are correlated. How would you test all three hypotheses as a single hypothesis, $H_0: \alpha_0 = \alpha_1$ (vectors) versus $H_0: \alpha_0 \neq \alpha_1$? You can use the full original data set.

BIOS 667, Spring 2017, 2nd Midterm Exam

The notation for linear mixed models established in class will be used, Y_{ij} , b_i , ν_{ij} , μ_{ij} , x_{ij} , Y_i , X_i , n_i , G, R_i , Y_i etc. Also, normality (uni- or multi-, as appropriate) of Y_i given b_i and normality of b_i are assumed throughout.

1. Suppose that in a longitudinal study there are 2 observations for each subject. Consider the model

$$\nu_{ij} = \mathbb{E}[Y_{ij}|b_i] = (\beta_1 + b_{i1}) + (\beta_2 + b_{i2})x_{ij}$$

where $x_{i1} = 0$, $x_{i2} = 1$, $\beta_1 = 1$, $\beta_2 = 1$, $g_{11} = g_{12} = 1$, $g_{22} = 4$, $R_i = I_{2\times 2}$, $i=1, \ldots, K$. The covariate x_{ij} varies over time, for example, a treatment indicator in a cross-over study, dose of a drug that is intentionally varied over time, etc.

In the following, simplify the answers as much as possible.

- (a) Give two interpretations of β_2 .
- (b) Compute $corr(Y_{i1}, Y_{i2})$.
- (c) Find the marginal distribution of the response vector Y_i .
- (d) Find the best linear unbiased predictor (BLUP) of b_{i2} based on only Y_{i2} (not the vector Y_i).
- (e) Find the prediction mean squared error of the BLUP in the last part.
- (f) A random subject drawn from the same population has 0 observations. What is the BLUP of b_{i2} for that subject? What is the prediction mean squared error?
- (g) From this part on, assume that β is unknown (and possibly different from the numerical values given above).

Define $D_i := Y_{i2} - Y_{i1}$. What is the distribution of D_i ? Explain how β_2 can be estimated using only the D_i 's. The variance of the best linear unbiased estimator of β_2 based on the D_i 's is δ/K . Find the value of δ .

- (h) Suppose that β is estimated by weighted least squares (WLS), using the vectors $\{Y_i\}$. The variance of the WLS estimator of β_2 is γ/K . Find the value of γ .
- 2. Consider the model M_1 :

$$\nu_{ij} = \mathbb{E}[Y_{ij}|b_i] = (\beta_1 + b_{i1}) + (\beta_2 + b_{i2})x_{ij}.$$

Using data from a large number of independent subjects, the model parameters were estimated by REML (not full ML) and the maximized -2 log-likelhood was 200.

A model differing from M_1 only by not having b_{i2} in it was estimated by REML (using the same data) and the maximized -2 log-likelhood was 205.

In the context of model M_1 , and given the above information, is it possible to test the null hypothesis $g_{22} = 0$ against the alternative hypothesis $g_{22} > 0$. If yes, give the details. If no, explain why.