COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

TRIANGULATION OF IMPLICIT SURFACE WITH SINGULARITIES

MASTER'S THESIS

2021

BC. KRISTÍNA KORECOVÁ

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

TRIANGULATION OF IMPLICIT SURFACE WITH SINGULARITIES

MASTER'S THESIS

Study Programme: Computer Graphics and Geometry

Field of Study: Mathematics

Department: Department of Algebra and Geometry Supervisor: doc. RNDr. Pavel Chalmovianský, PhD.

Bratislava, 2021

Bc. Kristína Korecová

vedúci práce

študent

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Študijný program: Študijný odbor: Typ záverečnej práce: Jazyk záverečnej práce: Sekundárny jazyk:		Bc. Kristína Korecová počítačová grafika a geometria (Jednoodborové štúdium, magisterský II. st., denná forma) matematika diplomová anglický slovenský				
	•	gulation of implicitely defined surfaces gulácia implicitne definovaných plôch				
Anotácia:						
Ciel':						
Literatúra:						
Kľúčové slová:						
Vedúci: Katedra: Vedúci katedry:	FMFI.KA	r. Pavel Chalmovianský, PhD. G - Katedra algebry a geometrie r. Pavel Chalmovianský, PhD.				
Spôsob sprístupnenia elektronickej verzie práce: prípustná pre vlastnú VŠ						
Dátum zadania:	19.10.202	1				
Dátum schválenia	a: 20.10.202	prof. RNDr. Július Korbaš, CSc. garant študijného programu				

Abstrakt

TODO Abstrakt po Slovensky

Kľúčové slová: TODO Kľúčové slová

Abstract

TODO Abstract in English

Keywords: TODO Keywords

Contents

In	trod	uction	1
1	Sur	face triangulation and its application	3
2	Theoretical background		
	2.1	Implicit surfaces	5
	2.2	ADE singularities	9
	2.3	Non-isolated translation surface singularities	12
	2.4	Tringulation of regular implicit srufaces	12
	2.5	Data structures for triangulation algorithm	12
3	Oui	contributions	13
	3.1	Triangulation adaptive to the local curvature	13
	3.2	Triangulation of ADE singularities	13
	3.3	Triangulation of non-isolated singularities of translation surfaces	20
4	Res	m ults	21
	4.1	Quality criteria	21
	4.2	Comparison with TODO	21
5	Fut	ure work	23
\mathbf{C}	onclu	ısion	25
\mathbf{A}	ppen	dix A	29
\mathbf{A}	ppen	dix B	31

viii *CONTENTS*

List of Figures

2.1	Implicit surfaces with corresponding equations	5
2.2	Isolated and non-isolated singularity	6
2.3	Normal cut	7
2.4	Visualisation of curvature of the double-torus	8
2.5	Finite Dynkin diagrams	11
3.1	Adaptive height of the new triangle	13
3.2	A_{n-} singularities	14
3.3	A_{n+-} singularities	15
3.4	D_{n+-} singularities	16
3.5	D_{n-} singularities	16
3.6	Intersection of D_{n} singularities with plane $z=0$	16
3.7	Triangulation vectors for two branches of D_{n} singularities	17
3.8	E_n singularities	17
3.9	Intersection of E_{7++} and E_{8++} singularities with plane $z=0$	18
3.10	Triangulation of A_{n-} singularity	18
3 11	Equidistant points on ellipse	19

List of Tables

xii LIST OF TABLES

Introduction

TODO Introduction

2 Introduction

Chapter 1

Surface triangulation and its application

Chapter 2

Theoretical background

2.1 Implicit surfaces

Implicit functions are a tool for surface representation and manipulation. In computer graphics, they can be used for modelling of complex surfaces using boolean operations, realistic animations, rendering and other.

Implicit functions do not define the boundary explicitly, instead the surface is defined as a zero set of a function.

Definition 1 Given a function $F : \mathbb{R}^3 \to \mathbb{R}$, one can define an implicit surface as a set of points that fullfil F(x, y, z) = 0.

Some examples of implicit surfaces and their equations can be seen on image 2.1.

Normal vector of the implicit surface in point (x_0, y_0, z_0) is normalized gradient of the implicit function in that point.

Definition 2 Gradient vector of an implicit function $F: \mathbb{R}^3 \to \mathbb{R}$ is defined as

$$\nabla F(x,y,z) = \left(\frac{\partial F(x,y,z)}{\partial x}, \frac{\partial F(x,y,z)}{\partial y}, \frac{\partial F(x,y,z)}{\partial z}\right).$$

$$x^2 + y^2 + z^2 - 1 = 0$$

$$x^2 + y^2 - z^2 = 0$$

$$x^2 + y^2 - z^2 = 0$$

$$x = 0$$

$$x^2 + y^2 - z^2 = 0$$

$$x = 0$$

Figure 2.1: Implicit surfaces with corresponding equations.

Figure 2.2: Isolated and non-isolated singularity.

If $\nabla F(x,y,z) \neq 0$, we can define normal vector of F as a normalized gradient vector

$$N(F(x,y,z)) = \frac{\nabla F(x,y,z)}{\|\nabla F(x,y,z)\|} \quad for \quad \nabla F(x,y,z) \neq 0.$$

Points lying on the implicit surface can be classified as regular or singular based on the value of the gradient vector in that point.

Definition 3 Point P = (x, y, z) lying on the implicit surface is said to be regular, if $\nabla F(x, y, z) \neq 0$. On the contrary, point P is said to be singular, if $\nabla F(x, y, z) = 0$.

Singular points can be further classified as isolated or non-isolated based on their surroundings.

Definition 4 Singular point P is said to be isolated, if there exists an open ball $B_{\varepsilon}(P)$, which does not contain any other singular point. Singular point P is said to be non-isolated if it is not isolated.

On the image 2.2 we can see example of isolated and non-isolated singularities.

Curvature of a surface

Curvature is a fundamental concept in differential geometry of curves and surfaces. In case of curves, curvature is a measure of how much does the curve differ from a straight line. It is defined as the inverse of the radius of the osculating circle, which is the second order approximation of the curve.

For surfaces, curvature is a measure of how much does the surface differ from a plane. The definition of the curvature of a surface is not as straightforward as in the case of curves, as the curvature depends on the choice of the direction in which we measure the curvature.

Figure 2.3: Normal cut of the parametric surface S(u, v).

The idea of measuring the curvature of a surface has a long history in mathematics. One of the first contributors was a mathematician Carl Friedrich Gauss, who developed the idea of the Gaussian curvature of surfaces. In this subsection, we are drawing from the summary presented by Tiago Novello et al. [6].

Normal curvature of the surface

Let S be a parametric surface

$$S(u,v): \mathbb{R}^2 \to \mathbb{R}^3$$

$$S(u, v) = (S_x(u, v), S_y(u, v), S_z(u, v)).$$

Let us denote the normal vector of the surface S in the point S(u,v) as $\overrightarrow{n(u,v)}$.

We will define the normal curvature of the surface as a function of the location of the point on the surface given by parameters u and v and the unit tangent vector in that point \overrightarrow{u} .

Definition 5 Normal cut of a surface S in the regular point P in the direction of the unit tangent vector \overrightarrow{u} is defined as an intersection of the surface S and a plane given by the vectors \overrightarrow{u} and $\overrightarrow{n(u,v)}$.

The visualisation of the normal cut is shown on the image 2.3. It is clear, that the normal cut is a plane curve lying on the surface, we will denote this normal cut as $\nu_S(u, v, \overrightarrow{u})$.

Definition 6 Oriented normal curvature of the surface in the regular point P in the direction of the unit tangent vector \overrightarrow{u} is defined as the curvature of the normal cut $\nu_S(u, v, \overrightarrow{u})$. Non-oriented normal curvature is defined as an absolute value of the oriented normal curvature.

Definition 7 Minimal and maximal curvature in the point P = S(u, v) are defined as

$$\kappa_{min}(u, v) = \min_{\overrightarrow{u} \in T_P(u, v)} \nu_S(u, v, \overrightarrow{u}),$$

Figure 2.4: Visualisation of curvature of the double-torus.

$$\kappa_{max}(u, v) = \max_{\overrightarrow{u} \in T_P(u, v)} \nu_S(u, v, \overrightarrow{u}),$$

where $T_S(u, v)$ is a tangent plane of the surface S in the point P.

Minimal and maximal curvature are called principal curvatures.

Definition 8 Gaussian curvature is defined as a product of principal curvatures:

$$\kappa_G(u, v) = \kappa_{min}(u, v)\kappa_{max}(u, v).$$

Gaussian curvature describes the shape of the suface in the local neighborhood of the point. The points where Gaussian curvature is positive are called eliptic points. The points where Gaussian curvature is negative are called hyperbolic points. The points where only one of κ_{min} , κ_{max} is zero are called parabolic and the points where both κ_{min} and κ_{max} are zero are called planar. The shape of the surface in the local neighborhoods of the points is as follows:

- \bullet elliptic points \longrightarrow sufrace is curved like a sphere,
- hyperbolic points \longrightarrow surface is curved like a saddle,
- parabolic points \longrightarrow surface is curved like a parabolic cylinder,
- planar points \longrightarrow surface is flat.

Gaussian curvature is an instrinsic propery, which means it is independent of the placement of the surface in the space.

Definition 9 Mean curvature is defined as an arithmetic mean of principal curvatures:

$$\kappa_M(u,v) = \frac{\kappa_{min}(u,v) + \kappa_{max}(u,v)}{2}.$$

Minimal, maximal, Gaussian and mean curvature are visualized on the image 2.4.

Curvature formulas for implicit surface

A version of curvature formulas for implicit surfaces appeared in [7] and were reformulated, summarized and prooved by Ron Goldman [3]. In this subsection we will point out these formulas.

Let $F: \mathbb{R}^3 \to R$ be an implicit function which defines surface by the equation F(x,y,z) = 0. Let us denote $F_t = \frac{\partial F}{\partial t}$ and $F_{ts} = \frac{\partial^2 F}{\partial t \partial s}$. Hessian matrix - the matrix of second derivatives is defined as

$$H(F) = \begin{pmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{yx} & F_{yy} & F_{yz} \\ F_{zx} & F_{zy} & F_{zz} \end{pmatrix},$$

and the adjoint of the Hessian is defined as

$$H^*(F) = \begin{pmatrix} F_{yy}F_{zz} - F_{yz}F_{zy} & F_{yz}F_{zx} - F_{yx}F_{zz} & F_{yx}F_{zy} - F_{yy}F_{zx} \\ F_{xz}F_{zy} - F_{xy}F_{zz} & F_{xx}F_{zz} - F_{xz}F_{zx} & F_{xy}F_{zx} - F_{xx}F_{zy} \\ F_{xy}F_{yz} - F_{yx}F_{zy} & F_{yx}F_{xz} - F_{xx}F_{yz} & F_{xx}F_{yy} - F_{xy}F_{yx} \end{pmatrix}.$$

We can now formulate the formulas of Gaussian, mean, minimal and maximal curvature.

Gaussian curvature of the implicit surface defined by function F is given by

$$\kappa_G = \frac{\nabla F * H^*(F) * \nabla F^T}{|\nabla F|^4}.$$

Mean curvature of the implicit surface defined by function F is given by

$$\kappa_{M} = \frac{\nabla F * H^{*}(F) * \nabla F^{T} - |\nabla F|^{2} Trace(H)}{2|\nabla F|^{3}}.$$

The principal curvatures κ_{min} and κ_{max} can be calculated from Gaussian curvature and mean curvature as

$$\kappa_{min}, \kappa_{max} = \kappa_M \pm \sqrt{\kappa_M^2 - \kappa_G}.$$

2.2 ADE singularities

ADE singularities, also reffered to as du Val singularities are a specific class of simple, isolated surface singularities. They were first TODO.

ADE classification and simply laced Dynkin diagrams

Definition 10 [4] A vector space L over field F, with an operation $L \times L \to L$, denoted (x,y) = [xy] and called the bracket or commutator of x and y, is called Lie algebra over F if the following axioms are satisfied:

- The bracket operation is bilinear.
- [xx] = 0 for all x in L.
- [x[yz]] + [y[zx]] + [z[xy]] = 0 for all $x, y, z \in L$.

Simple Lie algebra is non-abelian Lie algebra, which contains no nonzero proper ideals.

Semisimple Lie algebra is a direct sum of simple Lie algebras.

There is a one-to-one Correspondence between Lie algebras and Lie groups.

Dynkin diagrams are graphs which classify semisimple Lie algebras (or equivalently semisimple Lie groups). Simply laced Dynkin diagrams are undirected diagrams with no multiple edges. Lie algebras which correspond to simply laced Dynkin diagrams are called simply laced Lie algebras.

ADE in ADE singularities reffers to ADE classification, which is used when some objects have a pattern that corresponds to simply laced Dynkin diagrams.

Simple Lie algebras over algebraically closed field (and their corresponding Lie groups) are classified based on their Dynkin diagrams as

- \bullet A_n n >= 1,
- B_n n >= 2,
- $\bullet C_n \quad n >= 3,$
- D_n n >= 4,
- E_6, E_7, E_8, F_4, G_2 .

The corresponding Dynkin diagrams can be seen on image 2.5.

Simply laced Dynkin diagrams are simple Dynkin diagrams with no directed and no multiple edges. A_n, D_n, E_6, E_7 and E_8 are therefore all simply laced Dynkin diagrams.

ADE singularities are in correspondence with simply laced Dynkin diagrams, each ADE singularity has its corresponding simply laced Dynkin diagram and equivalently, each simply laced Dynkin diagram corresponds to an ADE singularity. These singularities are denoted based on their corresponding Dynkin diagram.

The ADE surface singularities were classified by Arnold's [2] and they are specified by their normal forms. When working in complex space, each singularity has a single normal form:

- A_n $F(x, y, z) = x^{n+1} + y^2 + z^2$,
- D_n $F(x, y, z) = yx^2 + y^{n-1} + z^2$,

Figure 2.5: Finite Dynkin diagrams[1].

•
$$E_6$$
 $F(x, y, z) = x^3 + y^4 + z^2$,

•
$$E_7$$
 $F(x, y, z) = x^3 + xy^3 + z^2$,

•
$$E_8$$
 $F(x,y,z) = x^3 + y^5 + z^2$.

Each ADE singularity on a surface can be locally expressed by their normal form. In the real case, changing the signs in these equations produces different surfaces and therefore, ADE singularities can be further classified by their signature.

Definition 11 Let's mark real surface singularities based on their signature as follows:

•
$$A_{n\pm\pm}$$
 $F(x,y,z) = x^{n+1} \pm y^2 \pm z^2$,

•
$$D_{n\pm\pm}$$
 $F(x,y,z) = yx^2 \pm y^{n-1} \pm z^2$,

•
$$E_{6\pm\pm}$$
 $F(x,y,z) = x^3 \pm y^4 \pm z^2$,

•
$$E_{7\pm\pm}$$
 $F(x,y,z) = x^3 \pm xy^3 \pm z^2$,

•
$$E_{8\pm\pm}$$
 $F(x,y,z) = x^3 \pm y^5 \pm z^2$.

The most common example of a surface with ADE singularity is an ordinary cone. Given as the zero set of the function $F(x, y, z) = x^2 - y^2 - z^2$, cone has a singular point P = (0, 0, 0). This singular point is an example of A_{1--} singularity.

Correspondence between $SO(3,\mathbb{R})$ group and ADE singularities

 $SO(3,\mathbb{R})$ is special orthogonal group over the field of real numbers in three dimensions. It is also called 3D rotation group, as it is a group of all rotations about the origin in \mathbb{R}^3 .

Definition 12 $SO(3,\mathbb{R})$ is a group of 3×3 orthogonal matrices of real numbers with determinant 1.

$$SO(3,\mathbb{R}) = \left\{ A \in \mathbb{R}^{3\times 3} \mid AA^T = I, \ det(A) = 1 \right\}.$$

Simply laced Dynkin diagrams correspond to all finite subgroups of $SO(3,\mathbb{R})$. Finite subgroups of $SO(3,\mathbb{R})$ are the rotational symmetry groups of

- pyramid with n vertices (cyclic subgroup \overline{C}_n),
- double pyramid with n vertices (dihedral subgroup \overline{D}_n),
- platonic solids
 - tetrahedron (tetrahedral subgroup \overline{T})
 - octahedron (octahedral subgroup \overline{O})
 - icosahedron (icosahedral subgroup \overline{I})

These correspond to simply laced Dynkin diagrams:

- $A_n \iff \overline{C}_{n+1}$,
- $D_n \iff \overline{D}_{n+2}$,
- $E_6 \iff \overline{T}$,
- $E_7 \iff \overline{O}$,
- $E_8 \iff \overline{I}$.

The conclusion is that ADE singularities correspond to finite subgroups of $SO(3,\mathbb{R})$, which represent certain types of symmetries in \mathbb{R}^3 .

2.3 Non-isolated translation surface singularities

2.4 Tringulation of regular implicit srufaces

2.5 Data structures for triangulation algorithm

Chapter 3

Our contributions

3.1 Triangulation adaptive to the local curvature

As we explained in the beginning of chapeter 2.1, curvature of the surface is a measure of how much the surface bends.

The triangulation of the surface should be accurate enough, but also memory efficient. This can be achieved by creating a triangulation which is locally adaptive to the curvature of the surface. Therefore having smaller triangles in the places where the surface is curved and having bigger triangles where surface is flatter.

In this section we will present our implementation of the triangulation adaptive to the local curvature.

In the original algorithm, the height of the triangle which is projected to the surface is set to the constant value $\frac{\sqrt{3}}{2}e$, where e is the required length of the side of the triangle. To achieve the adaptivity of the triangles size, we set the height of the triangle to depend on the curvature in the given point, as shown in the image 3.1.

3.2 Triangulation of ADE singularities

Analysis of the geometry of ADE singularities

ADE singularities are simple, isolated surface singularities, which can be expressed by corresponding implicit equations.

Figure 3.1: Adaptive height of the new triangle.

Figure 3.2: A_{n--} singularities. [5]

We already know, that A_{1-} singularity is locally represented as a cone. In this section we will discuss geometric structure of other ADE surface singularities.

Definition 13 (TODO rewrite) Let's define branch of ADE singularity as the part of the surface, which is connected to the rest only by the singular point.

For our needs, we will pick one triangulation vector for each branch of each ADE singularity. This triangulation vector is normalized vector either in the direction of rotation symmetry axis or an intersection of reflection symmetry planes of the corresponding branch. If the branch has only one reflection symmetry plane, the triangulation vector will be picked to lie in the reflection symmetry plane.

In the general case, triangulation vectors will serve us as a partial information about the orientation of a singularity with respect to its normal form.

A_n singularities

As we can see from the equations $F(x, y, z) = x^{n+1} \pm y^2 \pm z^2$, A_{n-+} singularities are just rotated A_{n+-} singularities and A_{n++} singularities are a single point if n is odd and reflected A_{n--} singularities if n is even. We will therefore only discuss geometry of A_{n--} and A_{n+-} singularities.

 A_{n--} singularities are topologically equivalent to a cone if n is odd, therefore they have two branches. If n is even, they are topologically equivalent to a half cone or a plane, therefore they have a single branch. As n gets bigger, the tip of the cone gets sharper. As A_{n--} singularities are rotationally symmetrical, we will pick the direction of axis of symmetry as triangulation vector. For a normal form, the triangulation vectors are (1,0,0) (and (-1,0,0) if n is odd). First four A_{n--} singularities can be seen on image 3.2.

 A_{n+-} singularities are topologically equivalent to a cone if n is odd, therefore they have two branches. In the contrary with the previous singularities, as n gets bigger, the tip of the cone gets less sharp and flatter. Branches of these singularities have reflection symmetry planes x = 0 and y = 0, therefore we will pick the vectors (0, 0, 1) and (0, 0, -1) as the triangulation vectors.

Figure 3.3: A_{n+-} singularities. [5]

If n is even, A_{n+-} singularities are topologically equivalent to a plane with shape similar to hyperbolic paraboloid, therefore they have a single branch. First four A_{n+-} singularities can be seen on image 3.3. For this case, we will pick the vector (1,0,0) as a triangulation vector as these singularities have reflection symmetry planes y=0 and z=0.

D_n singularities

Given by equations $F(x, y, z) = yx^2 \pm y^{n-1} \pm z^2$, we will consider 8 categories. For given sign combination and parity of n, the singularities are topologically equivalent, with sharper(or flatter) features around the singularities for increasing value of n similar to A_n singularities.

We can therefore say that D_n singularities can be classified into 8 categories locally represented by the following equations:

- D_{4++} $yx^2 + y^3 + z^2$
- D_{5++} $yx^2 + y^4 + z^2$
- D_{4+-} $yx^2 + y^3 z^2$
- D_{5+-} $yx^2 + y^4 z^2$
- D_{4-+} $yx^2 y^3 + z^2$
- D_{5-+} $yx^2 y^4 + z^2$
- D_{4--} $yx^2 y^3 z^2$
- D_{5--} $yx^2 y^4 z^2$.

Now we will look at some equivalences between these 8 categories. D_{4++} singularity is reflected D_{4+-} singularity. D_{5++} singularity is reflected D_{5--} singularity. D_{5-+} singularity is reflected D_{5+-} singularity. D_{4-+} singularity is reflected D_{4--} singularity.

We will therefore only analyze geometry of D_{n+-} singularities and D_{n--} singularities.

Figure 3.4: D_{n+-} singularities. [5]

Figure 3.5: D_{n--} singularities. [5]

 D_{n+-} singularities are topologically equivalent to a plane when n is even and to a cone when n is odd. Again, as n gets bigger, the features around singularities get sharper. Symmetry planes of these singularities are x = 0 and z = 0, therefore we pick (0, 1, 0) (and (0, -1, 0) when n is odd) as trinauglation vectors. First four D_{n+-} singularities can be seen on image 3.4.

 D_{n-} singularities are topologically equivalent to a cone when n is odd and to a 3 halfcones connected in the singular point when n is even. First four D_{n-} singularities can be seen on image 3.5.

Symmetry plane for all branches of these singularities is z = 0, the intersection of the surface and plane z = 0 is displayed on image 3.6.

For D_{n-} singularity, the intersections of the two branches where $y \geq 0$ are bounded by curves y = 0 and $x^2 = y^{n-2}$. For given r, we will pick the triangulation vectors

Figure 3.6: Intersection of D_{n-} singularities with plane z=0.

Figure 3.7: Triangulation vectors for two branches of D_{n-} singularities.

Figure 3.8: E_n singularities. [5]

as $(r, \frac{1}{2}r^{\frac{2}{n-2}}, 0)$ and $(-r, \frac{1}{2}r^{\frac{2}{n-2}}, 0)$. The resulting vectors are displayed on image 3.7 by blue arrow. Parameter r is changed based on the length of the edge of triangulation triangle.

The third branch where $y \leq 0$ has has another plane of symmetry x = 0, therefore triangulation vector for this branch is chosen as (0, -1, 0).

E_6, E_7 and E_8 singularities

Given by equations $F(x, y, z) = x^3 \pm y^4 \pm z^2$, $F(x, y, z) = x^3 \pm xy^3 \pm z^2$ and $F(x, y, z) = x^3 \pm y^5 \pm z^2$, we can see the following equivalences: E_{6++} singularity is reflected E_{6--} singularity. E_{6+-} singularity is reflected E_{6-+} singularity. E_{7+-} , E_{7-+} and E_{7--} are all reflected E_{7++} singularity. E_{8+-} , E_{8-+} and E_{8--} are all reflected E_{8++} singularity.

We will only analyze geometry of E_{6++} , E_{6+-} , E_{7++} and E_{8++} singularities. These singularities are displayed on the image 3.8.

Both E_{6++} and E_{6+-} are topologically equivalent to a plane, thus they each have only one branch. The planes of symmetry of both of these branches are y = 0 and z = 0, therefore we pick (-1, 0, 0) as the triangulation vector.

 E_{7++} singularity is topologically equivalent to a cone, therefore it has two branches. The plane of symmetry of this singularity is z=0.

 E_{8++} singularity is also topologically equivalent to a plane, therefore it has only one branch. This branch has only one plane of symmetry z=0.

We will again look at the intersection of the surfaces with the plane of symmetry,

Figure 3.9: Intersection of E_{7++} and E_{8++} singularities with plane z=0.

Figure 3.10: Triangulation of A_{n--} singularity.

this is displayed on image 3.9.

For E_{7++} singularity, we will pick (-1,0,0) and $(\frac{1}{2}r^{\frac{3}{2}},-r,0)$ as triangulation vectors. For E_{8++} singularity, we will pick (-1,-1,0) as a triangulation vector. These vectors are displayed on the image 3.9 as blue arrows.

Analytical calculation of local triangulation of some ADE singularities

For given edge size e, we want to calculate the local triangulation of ADE singularities, such that edges on the border of the local triangulation have length e.

A_{n--} singularities

For A_{n-} singularities, we create a disc of 6 isosceles triangles with vertex in the singular point. The bases of these triangles create regular hexagon in the plane P parallel to the plane x = 0, as showed on the image 3.10. Given by equation $x^{n+1} - y^2 - z^2 = 0$, we will find the distance of the plane P from the plane x = 0 for the given length e of the sides of the hexagon.

Let e be the length of the side of the hexagon, then the circumscribed circle has radius e. This circle is identical with the intersection of the surface and the plane x = h. The equation of the intersecting circle is $y^2 + z^2 = h^{n+1}$ therefore, the radius can be also expressed as $r = h^{\frac{n+1}{2}}$, which emerges $h = e^{\frac{2}{n+1}}$. Knowing the distance of the plane, one can easily calculate the length of the arms of the triangles using

Figure 3.11: Equidistant points on ellipse.

Pythagorean theorem:

$$a^2 = h^2 + e^2 \implies a = \sqrt{e^{\frac{4}{n+1}} + e^2}$$

D_n singularities

Some D_n singularities have branches with elliptical intersection with a plane parallel to the plane y = 0. As ellipses have 2 axes of symmetry, we will create 8 triangles for these branches.

Let's have an ellipse E with semi-major axis a and semi-minor axis b. We'll create eight triangles with apex in the singular point. The other points of the triangles lie on the ellipse and they have the same length of the base.

As displayed on image 3.11, we pick the leftmpost, the rightmost, the top and the bottom points. Then we can calculate the point P on ellipse equidistant from points P_1 and P_2 .

$$\frac{1}{2}(a,b) + \frac{t}{2}(b,a) \in E \implies \frac{(a+tb)^2}{4a^2} + \frac{(b+ta)^2}{4b^2} = 1$$

$$4b^2(a^2 + 2atb + t^2b^2) + 4a^2(b^2 + 2atb + t^2a^2) - a^2b^2 = 0$$

$$4(b^4 + a^4)t^2 + 8ab(b^2 + a^2)t + 7a^2b^2 = 0$$

$$t = \frac{ab(\sqrt{3a^4 + 2a^2b^2 + 3b^4} - a^2 - b^2)}{a^4 + b^4}$$

 E_6, E_7 and E_8 singularities

Numerical calculation of local triangulation of ADE singularities

3.3 Triangulation of non-isolated singularities of translation surfaces

Chapter 4

Results

- 4.1 Quality criteria
- 4.2 Comparison with TODO

Chapter 5

Future work

Conclusion

TODO Conclusion

26 Conclusion

Bibliography

- [1] Dynkin diagram.
- [2] Normal forms for functions near degenerate critical points, the weyl groups of a k, d k, e k and lagrangian singularities. Functional Analysis and its applications, 6:254–272, 1972.
- [3] Ron Goldman. Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design, 22(7):632–658, 2005.
- [4] James E Humphreys. Introduction to Lie algebras and representation theory, volume 9. Springer Science & Business Media, 2012.
- [5] Dr. Richard Morris. 3d viewer-generator.
- [6] TIAGO NOVELLO, VINÍCIUS DA SILVA, GUILHERME SCHARDONG, LUIZ SCHIRMER, HÉLIO LOPES, and LUIZ VELHO. Differential geometry of implicit surfaces. 2021.
- [7] Michael Spivak. A comprehensive introduction to differential geometry, volume 3. Publish or Perish, Incorporated, 1975.

28 BIBLIOGRAPHY

Appendix A

30 BIBLIOGRAPHY

Appendix B