## 1 Conway-Maxwell Poisson (COM-Poisson, CMP) and Properties

The p.m.f. for Conway-Maxwell Poisson (CMP) is:

$$P(Y = y | \lambda, \nu) = \frac{\lambda^y}{(y!)^{\nu}} \frac{1}{Z(\lambda, \nu)}$$

 $Z(\lambda,\nu)=Z$  is the normalization constant, i.e.  $Z(\lambda,\nu)=Z=\sum_{y=0}^{\infty}\frac{\lambda^{y}}{(y!)^{\nu}}$ , which doesn't have closed form in general. The domain for parameters is  $\lambda,\nu>0$  and  $0<\lambda<1,\nu=0$ . The parameter  $\nu$  controls the dispersion: 1) when  $\nu=1$ , the CMP is Poisson distribution, 2) when  $\nu<1$ , the distribution is over-dispersed and 3) when  $\nu>1$ , the distribution is under-dispersed. When  $\nu\to\infty$ , the CMP approaches a Bernoulli distribution, while  $\nu=0$ , it reduces to a geometric distribution.

To model the mean and dispersion simultaneously, two linear models are used for parameters  $\lambda$  and  $\nu$ , i.e.  $\log(\lambda) = x'\beta$  and  $\log(\nu) = g'\gamma$ , in this manuscript, I further define  $\theta' = (\beta', \gamma')$ .

To derive the SSP for CMP regression, the keys are gradient and Hessian for log-likelihood. In the following part of this section, I will define some notations and give some necessary properties for CMP.

Assume there are n independent  $Y_i \sim CMP(\lambda_i, \nu_i)$ . Denote  $\eta_i = (log(\lambda_i), \nu_i)'$ ,  $Z_i = Z(\lambda_i, \nu_i)$  The log-likelihood for  $i^{th}$  observation is:

$$l_i(\boldsymbol{\eta}_i) = y_i log(\lambda_i) - log(y_i!)\nu_i - log(Z_i)$$

Since  $E(Y_i) = \frac{\partial log(Z_i)}{\partial log(\lambda_i)}, Var(Y_i) = \frac{\partial^2 log(Z_i)}{\partial log(\lambda_i)^2}, E(log(Y_i!)) = -\frac{\partial log(Z_i)}{\partial \nu_i}, Var(log(Y_i!)) = \frac{\partial^2 log(Z_i)}{\partial \nu_i^2}$  and  $Cov(Y_i, log(Y_i!)) = -\frac{\partial^2 log(Z_i)}{\partial log(\lambda_i)\partial \nu_i}$ , the gradient for  $l_i$  (w.r.t  $\boldsymbol{\eta}_i$ ) is:

$$\frac{\partial l_i}{\partial \boldsymbol{\eta}_i} = \begin{pmatrix} y_i - E(Y_i) \\ E(\log(Y_i!)) - \log(y_i!) \end{pmatrix}$$

And the Hessian for  $l_i$  (w.r.t  $\eta_i$ ) is:

$$\frac{\partial^2 l_i}{\partial \boldsymbol{\eta_i} \partial \boldsymbol{\eta_i'}} = \begin{pmatrix} -Var(Y_i) & Cov(Y_i, log(Y_i!)) \\ Cov(Y_i, log(Y_i!)) & -Var(log(Y_i!)) \end{pmatrix}$$

The moments  $E(Y_i)$ ,  $Var(Y_i)$ ,  $E(log(Y_i!))$ ,  $Var(log(Y_i!))$  and  $Cov(Y_i, log(Y_i!))$  by using the following approximation for normalizing constant  $Z_i$ :

$$Z_{i} = \frac{e^{\nu_{i}\lambda_{i}^{1/\nu_{i}}}}{\lambda_{i}^{\frac{\nu_{i}-1}{2\nu_{i}}}} \left(1 + c_{1}(\nu_{i}\lambda_{i}^{1/\nu_{i}})^{-1} + c_{2}(\nu_{i}\lambda_{i}^{1/nu_{i}})^{-2} + \mathcal{O}(\lambda_{i}^{\frac{-3}{\nu_{i}}})\right)$$

The approximation works well when  $\lambda_i \geq 2$  and  $\nu_i \leq 1$ , and this can be helpful when updating/calculating the gradient and hessian matrix.

If we use models  $\log(\lambda_i) = x_i'\beta$  and  $\log(\nu_i) = g_i'\gamma$ , by using chain rule, the gradient for  $l_i$  (w.r.t  $\theta$ ) is:

$$\frac{\partial l_i}{\partial \boldsymbol{\theta}} == \begin{pmatrix} [y_i - E(Y_i)] \boldsymbol{x_i} \\ \nu_i [E(log(Y_i!)) - log(y_i!)] \boldsymbol{g_i} \end{pmatrix}$$

And the Hessian for  $l_i$  (w.r.t  $\boldsymbol{\theta}$ ) is:

$$\frac{\partial^2 l_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta'}} = \begin{pmatrix} -Var(Y_i)\boldsymbol{x_i}\boldsymbol{x_i}' & \nu_i Cov(Y_i, log(Y_i!))\boldsymbol{x_i}\boldsymbol{g_i}' \\ \nu_i Cov(Y_i, log(Y_i!))\boldsymbol{g_i}\boldsymbol{x_i}' & -\nu_i [\nu_i Var(log(Y_i!) - E(log(Y_i!)) + log(y_i!))]\boldsymbol{g_i}\boldsymbol{g_i}' \end{pmatrix}$$

## 2 SSP for CMP

By denoting  $a_i = [y_i - E(Y_i|\hat{\boldsymbol{\theta}}_{MLE})]$  and  $b_i = \nu_i(\hat{\boldsymbol{\theta}}_{MLE})[E(log(Y_i!)|\hat{\boldsymbol{\theta}}_{MLE}) - log(y_i!)]$ , we define

$$\boldsymbol{V}_c = \frac{1}{rn^2} \sum_{i=1}^n \frac{1}{\pi_i} \begin{pmatrix} a_i^2 \boldsymbol{x_i} \boldsymbol{x_i}' & a_i b_i \boldsymbol{x_i} \boldsymbol{g_i}' \\ a_i b_i \boldsymbol{g_i} \boldsymbol{x_i}' & b_i^2 \boldsymbol{g_i} \boldsymbol{g_i}' \end{pmatrix}$$

where r is the subsample size, with subsampling probabilities  $\pi_i$  for all data points.

Further we denote the observed information matrix as

$$\boldsymbol{M}_{X} = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} A_{i} & B_{i} \\ B'_{i} & C_{i} \end{pmatrix}$$

where

$$\begin{split} A_i &= Var(Y_i|\hat{\boldsymbol{\theta}}_{MLE})\boldsymbol{x_i}\boldsymbol{x_i}'\\ B_i &= -\nu_i(\hat{\boldsymbol{\theta}}_{MLE})Cov(Y_i,log(Y_i!)|\hat{\boldsymbol{\theta}}_{MLE})\boldsymbol{x_i}\boldsymbol{g_i}'\\ C_i &= \nu_i(\hat{\boldsymbol{\theta}}_{MLE})[\nu_i(\hat{\boldsymbol{\theta}}_{MLE})Var(log(Y_i!|\hat{\boldsymbol{\theta}}_{MLE}) - E(log(Y_i!|\hat{\boldsymbol{\theta}}_{MLE})) + log(y_i!))]\boldsymbol{g_i}\boldsymbol{g_i}' \end{split}$$

Then follow the same steps as in OSMAC, we can show that as  $n \to \infty$  and  $r \to \infty$ , conditional on full data matrix  $\mathcal{F}_n = \mathbf{X}, \mathbf{y}$  in probability,

$$V^{-1/2}(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{MLE}) \to N(0, \boldsymbol{I})$$

where  $\boldsymbol{V} = \boldsymbol{M}_X^{-1} \boldsymbol{V}_c \boldsymbol{M}_X^{-1}$  and  $\tilde{\boldsymbol{\theta}}$  is the sub-sampling estimates for  $\boldsymbol{\theta}$ . Then under A-optimality criterion, the sub-sampling probabilities (SSPs)  $\pi_i^{mMSE}$  are proportional to  $||\boldsymbol{M}_X^{-1} \begin{pmatrix} a_i \boldsymbol{x}_i \\ b_i \boldsymbol{g}_i \end{pmatrix}||$ , while under L-optimality criterion,  $\pi_i^{mVc} \propto$ 

$$||\begin{pmatrix} a_i \boldsymbol{x}_i \\ b_i \boldsymbol{g}_i \end{pmatrix}||$$
. In other words:

$$\pi_{i}^{mMSE} = \frac{||\boldsymbol{M}_{X}^{-1}\begin{pmatrix} [y_{i} - E(Y_{i}|\hat{\boldsymbol{\theta}}_{MLE})]\boldsymbol{x}_{i} \\ \nu_{i}(\hat{\boldsymbol{\theta}}_{MLE})[E(log(Y_{i}!)|\hat{\boldsymbol{\theta}}_{MLE}) - log(y_{i}!)]\boldsymbol{g}_{i} \end{pmatrix}||}{\sum_{j=1}^{n}||\boldsymbol{M}_{X}^{-1}\begin{pmatrix} [y_{j} - E(Y_{j}|\hat{\boldsymbol{\theta}}_{MLE})]\boldsymbol{x}_{j} \\ \nu_{j}(\hat{\boldsymbol{\theta}}_{MLE})[E(log(Y_{j}!)|\hat{\boldsymbol{\theta}}_{MLE}) - log(y_{j}!)]\boldsymbol{g}_{j} \end{pmatrix}||}$$

$$\pi_{i}^{mVc} = \frac{||\begin{pmatrix} [y_{i} - E(Y_{i}|\hat{\boldsymbol{\theta}}_{MLE})]\boldsymbol{x}_{i} \\ \nu_{i}(\hat{\boldsymbol{\theta}}_{MLE})[E(log(Y_{i}!)|\hat{\boldsymbol{\theta}}_{MLE}) - log(y_{i}!)]\boldsymbol{g}_{i} \end{pmatrix}||}{\sum_{j=1}^{n}||\begin{pmatrix} [y_{j} - E(Y_{j}|\hat{\boldsymbol{\theta}}_{MLE})]\boldsymbol{x}_{i} \\ \nu_{j}(\hat{\boldsymbol{\theta}}_{MLE})[E(log(Y_{j}!)|\hat{\boldsymbol{\theta}}_{MLE}) - log(y_{i}!)]\boldsymbol{g}_{j} \end{pmatrix}||}$$

## 3 Necessity for fitting CMP model

Here I first generate the data by CMP distribution.

There are n=10000 independent observations, with  $Y_i \sim CMP(\lambda_i, \nu_i)$  for i=1,2,...,n. The  $\lambda_i$  and  $\nu_i$  are modeled as:

$$\lambda_i = \exp(x_{i1})$$
$$\nu_i = \exp(1 + g_{i1})$$

where  $x_{i1} \stackrel{i.i.d.}{\sim} N(0,1)$  and  $g_{i1} \stackrel{i.i.d.}{\sim} N(1,1)$  The following two plots show the fitted mean and median for 1) Poisson regression, 2) CMP regression, with constant  $\nu_i = \nu$  (constant CMP) and 3) CMP with  $\nu_i$  modeled by  $g_{i1}$  (full CMP).



The MSEs  $(\frac{(Y_i-\bar{Y})^2}{n})$  for mean are 1) Poisson: 2.269, 2) constant CMP: 2.273 and 3) full CMP: 0.391. The Poisson model and constant dispersion CMP model

are not good for handling extreme observations. Therefore, it's necessary to take dispersion into account and CMP is a good choice.

The running time for these three: 1)Poisson: 0.03s, 2) constant CMP: 2.40s and 3) full CMP: 3.59s. This shows that CMP regression is much more computational expensive than regular Poisson regression, which suggests the necessity of sub-sampling.

## 4 Sub-sampling in CMP

To fit the CMP regression model, although we can use regular Newton-Raphson method to maximize the likelihood, the information matrix may not be stable. Therefore (as far as I know), there are two methods to deal with that: 1) use direct optimization strategy, such as L-BFGS-B and 2) optimize  $\beta$  and  $\gamma$  in an alternative way, i.e. hold one part fixed when fitting another. The alternating method reduces the problem into a two-step Newton-Raphson/ IRWLS problem.

Here I use the package implementing L-BFGS-B, and modify the objective likelihood function a bit to allow for optimization of weighted log-likelihood. To be more specific, I change:

```
sum(y*log(lambda) - nu*lgamma(y+1) - logz)

to

sum(weights*(y*log(lambda) - nu*lgamma(y+1) - logz))
```

The weights are normalized such that the summation of weights equals to sample size. Therefore, I can use the modified functions to maximizes the weighted likelihood.

Then I use the bootstrap (B=500) to calculate the MSE for  $\beta$ ,  $\gamma$  and the overall  $\theta$ . Well...



It seems that the gradient and hessian (numerically evaluated) is not stable, and the variations for evaluating gradient and hessian are larger than the variation for uniform subsampling, especially for  $\beta$ . ( $\gamma$  is always better than  $\beta$ , in the limited simulations)