### ADAPTIVE DISTRIBUTED CONTROL STATISTICAL PHYSICS FOR

David H. Wolpert

NASA Ames Research Center

http://ic.arc.nasa.gov/people/dhw/



NASA-ARC-03-097

### THE GOLDEN RULE

#### DO NOT:

Find a value of a variable x, that optimizes a function

#### INSTEAD:

that optimizes an expectation value Find a distribution over x,

### ADWANTAGES

1) Arbitrary data types.

2) Leverages continuous-space optimization.

("Gradient descent for symbolic variables".)

3) Akin to interior point methods.

Deep connections with statistical physics and game theory. So

- Especially suited for distributed domains. Especially suited for very large problems.

#### ROADMAP

1) What is distributed control, formally?

2) Review information theory

3) Optimal control policy for distributed agents

4) How to find that policy in a distributed way

## WHAT IS DISTRIBUTED CONTROL?

- I) A set of N agents: Joint move  $x = (x_1, x_2, ..., x_N)$
- 2) Since they are distributed, their joint probability is a product distribution:

$$q(x) = \prod_i q_i(x_i)$$

This definition of distributed agents is adopted from (extensive form) noncooperative game theory.

### EXAMPLE: KSAT

$$x = \{0, 1\}^{N}$$

A set of many disjunctions, "clauses", each involving K bits.

E.g.,  $(x_2 \alpha x_6 \alpha^{\sim} x_7)$  is a clause for K = 3

satisfies all clauses. G(x) is #violated clauses. Goal: Find a bit-string x that simultaneously

For us, this goal becomes: find a  $q(x) = \prod_i q_i(x_i)$ tightly centered about such an x.

The canonical computationally difficult problem

#### ROADMAP

1) What is distributed control, formally?

2) Review information theory

3) Optimal control policy for distributed agents

4) How to find that policy in a distributed way

## REVIEW OF INFORMATION THEORY

that you will observe a value i generated from P(i). 1) Want a quantification of how "uncertain" you are

to equal the sum of the uncertainties for i and for i' 2) Require the uncertainty at seeing the IID pair (i, i)

3) This forces the definition

uncertainty(i) = -ln[P(i)]

## REVIEW OF INFORMATION THEORY - 2

4) So expected uncertainty is the Shannon entropy

 $S(P) \propto -\alpha_i P(i) \ln[P(i)]$ 

· Concave over P

 $\alpha(P)$  is infinite at border of space of all P

5) Information in P, I(P), is what's left after the uncertainty is removed: -S(P).

#### ROADMAP

1) What is distributed control, formally?

2) Review information theory

3) Optimal control policy for distributed agents

4) How to find that policy in a distributed way

## ITERATIVE DISTRIBUTED CONTROL

- I) s is current uncertainty of what x to pick, i.e., uncertainty of where q(x) is concentrated.
- Early in the control process, high uncertainty.
- 2) Find q minimizing  $E_q(G)$  while consistent with s.
- 3) Reduce s. Return to (2).
- 4) Terminate at a q with good (low)  $E_q(G)$ .

Can do  $(2)\alpha$  (3) without ever explicitly specifying s

## ITERATIVE DISTRIBUTED CONTROL - 2

1) The central step is to "find the q that has lowest  $E_{\alpha}(G)$  while consistent with S(q) = s". 2) So we must find the critical point of the Lagrangian

$$L(q, T) = E_q(G) + T[s - S(q)]$$

i,e., find the q and T such that  $\alpha L/\alpha q = \alpha L/\alpha T = 0$ 

"free energy" in mean-field theory), economics • Deep connections with statistical physics (L is

3) Then we reduce s; repeat (find next critical point).

### EXAMPLE: KSAT

1)  $S(q) = -\sum_{i} [b_{i} \ln(b_{i}) + (1 - b_{i}) \ln(1 - b_{i})]$ 

where  $b_i$  is  $q_i(x_i = \text{TRUE})$ 

 $\sum_{clauses j, x, i} \prod_i q_i(x_i) K_j(x)$ 2)  $\mathbf{E}_q(G) = \sum_{clauses j, x} q(x) K_j(x)$ 

where  $K_i(x) = 1$  iff x violates clause j

Our algorithm: i) Find q minimizing  $E_q(G)$  - TS(q);

ii) Lower T and return to (i).

#### ROADMAP

- 1) What is distributed control, formally?
- 2) Review information theory
- 3) Optimal control policy for distributed agents
- 4) How to find that policy in a distributed way

#### 5

### DISTRIBUTED SEARCH FOR a

So control reduces to finding q such that  $\alpha L/\alpha q=0$ 

1) Since the agents make their moves in a distributed way, that q is a product distribution.

2) But they must also find that q in a distributed way.

3) There are two cases to consider:

i) Know functional form of G.

ii) Don't know functional form of G - must sample.

# MINIMIZING L(q) VIA GRADIENT DESCENT

1) Each i works to minimize  $L(q_i, q_{(i)})$  using only partial information of the other agents' distribution, q<sub>(i)</sub>. 2) The  $q_i(x_i)$  component of  $\alpha L(q)$ , projected onto the space of allowed  $q_i(x_i)$ , is

$$\alpha E_{q_{(i)}}(G \mid x_i) + m(q_i(x_i))$$

$$dxq[\alpha E_{q_{(i)}}(G \mid x_i) + ln(q_i(xq))]$$

The subtracted term ensures q stays normalized

### GRADIENT DESCENT - 2

- 3) Each agent i knows its value of  $ln(q_i(x_i))$ .
- 4) Each agent i knows the  $E_{q(i)}(G \mid x_i)$  terms.

Each agent knows how it should change its q; under gradient descent over L(q)

- Gradient descent, even for categorical variables (!), and done in a distributed way.
- 6) Similarly the Hessian can readily be estimated (for Newton's method), etc.

### EXAMPLE: KSAT

- Evaluate  $E_{q(i)}(G \mid x_i)$  the expected number of violated clauses if bit i is in state  $x_i$  for every  $i, x_i$
- 2) In gradient descent, decrease each  $q_i(x_i)$  by

$$\alpha[\mathbb{E}_{q_{(i)}}(G \mid x_i) + T \ln[q_i(x_i)] - \text{const}_j]$$

easy-to-evaluate normalization constant. where a is the stepsize, and const, is an

We actually have a different T for each clause, and adaptively update all of them.

## ADAPTIVE DISTRIBUTED CONTROL

1) In adaptive control, don't know functional form of G(x). So use Monte Carlo:

Sample G(x) repeatedly according to q;

Each i independently estimates  $\mathbf{E}_{q(i)}(\mathbf{G} \mid x_i)$ for all its moves  $x_i$ ; Only 1 MC process, no matter how many agents

So each q, can adaptively estimate its update

### EXAMPLE: KSAT

- Top plot is Lagrangian value vs. iteration;
- Middle plot is average (under q) number of constraint violations;
- Bottom plot is mode (under q) number of constraint violations.



#### CONCLUSION

- I) A distributed system is governed by a product distribution q, by definition.
- 2) So distributed adaptive control is adaptive search for the q that optimizes  $E_q(G)$ .
- e.g., gradient descent, with or without Monte Carlo sampling. 3) That search can be done many ways,