270423ST25.txt SEQUENCE LISTING

<110>	ELIOT, MARC KLONJKOWSKI, BERNARD			
<120>	RECOMBINANT ADENOVIRAL VECTORS AND APPLICATIONS THEREOF			
<130>	270423US0XPCT			
<140> <141>	10/530,712 2005-04-08			
<150> <151>	PCT/FR03/02964 2003-10-08			
<150> <151>	FR 02/12472 2002-10-08			
<160>	12			
<170>	PatentIn version 3.3			
<210> <211> <212> <213>	1 32 DNA Artificial Sequence			
<220> <223>	Synthetic DNA			
<400> ttggcg	1 cgcc catcatcaat aatatacagg ac	32		
<210> <211> <212> <213>	27 DNA			
<220> <223>	Synthetic DNA			
<400> gctcta	2 gacc tgcccaaaca tttaacc	27		
<210> <211> <212> <213>	3 28 DNA Artificial Sequence			
<220> <223>	Synthetic DNA			
<400> 3 gctctagagg gtgattatta acaacgtc 28				
<210> <211> <212> <213>	4 32 DNA Artificial Sequence			

<220>	2704233123.6x6		
<223>	Synthetic DNA		
<400> ccgacg	4 tcga ccataaactt tgacattagc cg	32	
<210> <211> <212> <213>	5 38 DNA Artificial Sequence		
<220> <223>	Synthetic DNA		
<400> gctcta	5 gagc gaagatctcc aacagcaata cactcttg	38	
<210> <211> <212> <213>	6 30 DNA Artificial Sequence		
<220> <223>	Synthetic DNA		
<400> gataag	6 gatc acgcggcctt aaattctcag	30	
<210> <211> <212> <213>	7 32 DNA Artificial Sequence		
<220> <223>	Synthetic DNA		
<400> gataag	7 gatc aacagaaaca ctctgttctc tg	32	
<210> <211> <212> <213>	8 40 DNA Artificial Sequence		
<220> <223>	Synthetic DNA		
<400> 8 agctttgttt aaacggcgcg ccgggatttt ggtcatgaac 40			
<210> <211> <212> <213>	9 37 DNA Artificial Sequence		
<220> <223>	Synthetic DNA		

<400> ccggcg	9 cgcc gtttaaacaa agctatccgc tcatgaa	37
<210> <211> <212> <213>	10 27 DNA Artificial Sequence	
<220> <223>	Synthetic DNA	
<400> cggccga	10 actc ttgagtgcgc agcgaga	27
<210> <211> <212> <213>	11 29 DNA Artificial Sequence	
<220> <223>	Synthetic DNA	
<400> ggcgcg	11 ccga gagacaacgc tggacacgg	29
<210> <211> <212> <213>	12 3609 DNA Canine adenovirus type 2	
<220> <221> <222> <223>	misc_signal (62)(99) Four repeated GGTCA motifs; left ITR sequences	
<220> <221> <222> <223>	misc_signal (197)(200) 5'TTTA/G-3' type AII encapsidation signal	
<220> <221> <222> <223>	misc_signal (206)(209) 5'TTTA/G-3' type AIII encapsidation signal	
<220> <221> <222> <223>	misc_signal (207)(219) 5'TTGN8CG-3' type AI encapsidation signal	
<220> <221> <222> <223>	misc_signal (228)(212) 5'TTTA/G-3' type AIV encapsidation signal	
<220> <221> <222> <223>	misc_signal (239)(242) 5'-TTTA/G-3' type AV encapsidation signal Page 3	

```
<220>
        misc_signal (250)..(253) 5'-TTTA/G-3' type AVI encapsidation signal
<221>
<222>
<223>
<220>
        misc_signal
(258)..(261)
5'-TTTA/G-3' type AVII encapsidation signal
<221>
<222>
<223>
<220>
        misc_signal
(272)..(275)
5'-TTTA/G-3' type AVIII encapsidation signal
<221>
<222>
<223>
<220>
        misc_signal (306)..(309) 5'-TTTA/G-3' type AIX encapsidation signal
<221>
<222>
<223>
<220>
<221>
<222>
        misc_signal
        (341)..(344)
5'-TTTA/G-3' type AX encapsidation signal
<223>
<220>
        misc_signal (377)..(380) 5'-TTTA/G-3' type AXI encapsidation signal
<221>
<222>
<223>
<220>
        misc_signal
(388)..(391)
5'-TTTA/G-3' type AXII encapsidation signal
<221>
<222>
<223>
<220>
<221>
<222>
        TATA_signal (409)..(415)
<223>
        TATA box of the E1A promoter
<220>
        misc_feature (439)..(439)
<221>
<222>
        E1A transcription initiation site
<223>
<400>
                                                                                    60
catcatcaat aatatacagg acaaagaggt gtggcttaaa tttgggtgtt gcaaggggcg
gggtcatggg acggtcaggt tcaggtcacg ccctggtcag ggtgttccca cgggaatgtc
                                                                                   120
cagtgacgtc aaaggcgtgg ttttacgaca gggcgagttc cgcggacttt tggccggcgc
                                                                                   180
cccqqqtttt tgggcgttta ttgattttgc ggtttagcgg gtggtgcttt taccactgtt
                                                                                   240
                                                                                   300
tgcggaagat ttagttgttt atggagctgg ttttggtgcc agttcctcca cggctaatgt
                                                                                   360
caaagtttat gtcaatataa cagaaacact ctgttctctg tttacagcac cccacccggt
                                                                                   420
ggtttttcgc cacgcctttg ggttaatttt atttccctat acgcggcctt aaattctcag
                                                                                   480
tgcagacgaa agaggactac tcttgagtgc gcagcgagaa gagttttctc ttcgctgtgt
                                               Page 4
```

ctcatatatt ttctgaaaaa	tgaaatatac	tattgtgccg	gcgccgcgca	atctccatga	540
ttatgtttta gagctactgg	aagagtggca	gccggactgc	cttgactgtg	agtattctca	600
tggcagcccc tcgccgccta	ctctgcacga	tctttttgat	gttgagctgg	agacttctca	660
cagccctttt gtgggcctgt	gtgattcctg	tgcggaggct	gacactgatt	cgagtgcgag	720
cactgaggct gattctgggt	ttagtccttt	atccactccg	ccggtttcac	ctattccacc	780
gcatcccacc tctcctgcta	gcatttctga	cgacatgttg	ctgtgcttag	aggaaatgcc	840
cacctttgat gacgaggacg	aggttcgaag	cgcggcgacc	acctttgagc	ggtgggaaaa	900
cacttttgac ccccatgtgg	gtcctatttt	tggctgtttg	cgctgtgctt	tttatcaaga	960
gcaggatgat aatgcacttt	gtgggctttg	ctatctaaag	gcccttgccg	aaggtaagtt	1020
ttaatttaaa tgtttgggca	ggttaaatgt	ttgggcaggt	taaatgtttt	aggtgtgtat	1080
tgatttttaa ttttgctttt	tagtgccttt	tgctatgcct	gtacgttcag	aacccgcttc	1140
ggctggagct gaggaggaag	atgatgaagt	tatttttgtg	tctgccaaac	ctgggggcag	1200
aaagaggtca gcagctactc	cctgtgagcc	agatggggtc	agcaaacgcc	cttgcgtgcc	1260
agagcctgag caaacagaac	ctttggattt	gtctttgaag	ccacgcccga	actaatctcc	1320
ttgagcacaa agcaataaag	taatcttgtt	taacaagttt	gcctacattt	gtggttttac	1380
ggggcggggc gaggagtata	taatgccaaa	agccagtgcc	tgcttcatta	agcttttaga	1440
ctgagctaag agcaggtagt	atggaccctc	ttaagatttg	tgaaaactac	cttactttta	1500
gagctataat taggggaagt	actttgtcgc	ctggatttt	taggcggtgg	tgttttcctg	1560
ccttggctga tgtggtgggc	aatatagtgg	aacaggagga	aggcaggttt	tggcaaattt	1620
tacctgaaaa ccacgctttt	tggggtcttt	tgcgcagggg	ctttactgtt	gcttctttta	1680
ctgaaattat tacagcagct	cagctggaaa	atagaggtag	acagttggcc	tttttagctt	1740
ttatatcatt tttgctacgc	aactggcctt	ctgactctgt	agtgcctgaa	gctgacagac	1800
ttgacctggt ctgtgcgccg	gcatggagca	gaatgagata	tggagccaga	ccgccaggtt	1860
aatcaacgac ctccaagatt	ccgtgctcga	ggagcagggg	tccgcggaag	aggaagagtg	1920
cgaagaagcg cttttagcag	gggacagcga	cgacccatta	ttcgggtaga	tgacttgcag	1980
ctgcccgacc ccctgtatgt	tatgcaagct	ttgcaacggg	accacacttt	agaaatgccc	2040
agagggcagg tagattttag	ctggattgag	gctgaagaga	ggcgggtagg	tcccacagac	2100
gagtggtact ttgaggctgt	gaagacttac	aaagctaagc	cgggagatga	cttgcaaact	2160
ataatcaaaa actatgccaa	gatttcctta	gaatgtgggg	ccgtgtatga	aattaattct	2220
aagattaggg ttacgggggc	ttgctacatt	attggtaatt	gtgccgtgct	taggcctaac	2280
ctgcctgctg gagaagcaat	gtttgaggtt	ttgaatgttg	attttattcc	ttctattggt	2340

tttatggaaa	ggatagtgtt	ttccaatgtt	atttttgatt	gcaggaccac	cgcaactgta	2400
gtgtgttgca	ttagtgaaag	aaacaccttg	tttcacaatt	gtgtttttc	tggccctcac	2460
atgttatgtt	tggaccttag	ggcgggggcg	gaggtgaggg	gctgtcactt	tgtgggggcg	2520
gtgtgtgcgt	tgcgtagcaa	ggggctgtac	agtattcgag	tcaaaaatag	catttttgaa	2580
aagtgtgctt	ttggggtggt	gaccgggtca	aaggcttcta	ttagccattg	catgtttaag	2640
gattgtacct	gctctattat	gctggggggt	cagggcacta	ttgcccatag	tcagtttatt	2700
gtaactactt	ctgctgaggc	ccccatgaac	ctgcaactgt	gcacttgcga	gggtaatgga	2760
agtcatgtag	ttccattggg	gaatattcac	tttgcttctc	accgggaagc	ttcgtggcct	2820
acgttttatg	caaacacctt	ggttcgggtg	cgcttgtata	tgggccggcg	ccggggagtt	2880
tttcacccca	agcagtctac	tttgtcaatg	tgtgtaattg	cagcccctcg	gggggttgtg	2940
cagagaattt	atttgtttgg	tgtgtatgat	gctacttgtg	ccattatgca	actgggcgag	3000
gcaggcaatg	ctgctagtga	aagactgtgt	acttgcgggt	tcagacacag	caccccttcc	3060
ctgcgggcca	cctatgtaac	tgacaccagg	attgaccggg	agctgaactc	tcaagacacg	3120
gctgagttct	ttagcagtga	tgaagataat	ttttaggtga	gtagatgggc	gtggtttggg	3180
ggagtataaa	aggggcgcgg	tacgtggctg	tgtatttaca	gccatggacc	ctcaacagaa	3240
ggggcttgtg	aacacgtgtt	ttgtgactac	gcgtattccg	tcttgggcag	gagcaagaca	3300
gaatgtcacc	gggtcagatt	tagaaggaaa	gcccgtgccc	tcagatgtgc	tggaaagtgg	3360
acgcccgctt	gcagccccgc	gcatcagaac	tttgtatgag	gagcagcagc	tgaacatgct	3420
tgcggtgaat	gttcttttgg	atgagctgaa	gatccaggtg	gctgccatgc	aaaactctgt	3480
gactgctatt	cagcgagaag	taaatgatct	aaagcaacga	atcgcccgag	attaatgtaa	3540
aaataaaatt	tatttctttt	ttgaatgata	ataccgtgtc	cagcgttgtc	tgtctgtaat	3600
agttctatg						3609