CSE 251 Electronic Devices and Circuits

Lecture 1

Course instructor:

Ankan Ghosh Dastider (AGD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, Brac University

Email: ankan.ghosh@bracu.ac.bd

Lecture 1: Introduction

Mathematical Operations

- Addition: $4 + 5 \rightarrow 9$ $(0100 + 0101 \rightarrow 1001)$
- Subtraction: $10 9 \rightarrow 1$ (1010 + 0111 \rightarrow 0001)
- Multiplication: 5x4 = 4+4+4+4+4 = 20
- Division: 10/2 = 2 can be subtracted from 10, 5 times

Digital Logic Circuit

Addition: $4 + 5 \rightarrow 9 (0100 + 0101 \rightarrow 1001)$

Logic gates are basically switches

The faster you can operate these switches, the faster you can complete the functions!!!

Mechanical switch

- Bulky and heavy
- Mechanical wear over time
- Noisy
- Ultra slow
- Requires lots of energy to operate

Electromechanical Relay

Vacuum tube

- To ensure current
 passes along one
 direction and stops
 flowing in the other
 direction
- Gate allows us to control this is a more robust way

Vacuum tubes

- Bulky
- Lots of energy
- Not scalable

Electronic switches

- No moving parts
- Scalable
- High speed

5GHz computer → 5 billion operations per second !!!

What are electronic circuits?

Any circuit consisting of semiconductors.

Transistor: probably the most impactful invention of the present world

Why do we need this course?

```
High Level Programming \rightarrow Assembly language \rightarrow Machine language \rightarrow Architecture... (C, C++, etc.) (x86, ARM, CUDA, etc.) (100110) (RISC, CISC, etc.)
```

...Architecture \rightarrow System level \rightarrow Gate \rightarrow Transistor

```
(Register, (AND, OR, etc.)
```

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Why do we need electronic circuits?

Digital Electronics

- Boolean logic
- Addition, subtraction, multiplication, division

Analog Electronics

 Amplifiers, radio transmitter and receivers, modulator

Power Electronics

- Motor control
- AC to DC conversion or vice versa
- HVDC circuits
- Charge control circuits