LEIBNIZ UNIVERSITÄT HANNOVER FAKULTÄT FÜR MATHEMATIK UND PHYSIK PROF. DR. M. SCHÜTT MSC. S. BRANDHORST

Einführung in die Algebraische Zahlentheorie Sommersemester 2016 Blatt 2

Hinweis: Für manche (Teil)Aufgaben ist der Einsatz eines gängigen Computeralgebra-Systems empfehlenswert

- 1. Sei K ein Körper.
 - (a) Sei $K \subset L$ eine endliche Körpererweiterung. Zeige, dass L der ganze Abschluß von K in L ist.
 - (b) Sei K(t) der Körper der rationalen Funktionen über K. Zeige, dass K ganzabgeschlossen in K(t) ist.
- 2. Sei $\mathbb{Q} \subset K$ eine quadratische Körpererweiterung und sei $x \in K$. Zeige, dass x genau dann ganz über \mathbb{Q} ist, wenn $N_{K/\mathbb{Q}}(x)$ und $Tr_{K/\mathbb{Q}}(x)$ ganze Zahlen sind.
- 3. Finde eine Formel für die Anzahl von Möglichkeiten, eine gegebene ganze Zahl n als Summe von zwei Quadraten zu schreiben (In Abhängigkeit von der Primfaktorzerlegung von n).
 - (a) Berechnen Sie die Legendre-Symbole $(\frac{79}{97})$, $(\frac{307}{877})$ und $(\frac{3163}{7001})$.
 - (b) Für welche Primzahlen $p \geq 7$ ist -15 ein quadratischer Rest modulo p? Geben Sie Ihre Antwort in Abhängigkeit von der Restklasse von p modulo 60 an. **Hinweis:** Die möglichen Reste einer Primzahl $p \geq 7$ modulo 60 sind gegeben durch \mathbb{Z}_{60}^{\times} (warum?). Berechnen Sie das Legendre–Symbol $\left(\frac{-15}{p}\right)$.
 - (c) Wie bestimmt man eine Lösung von $x^2 \equiv a \mod p$ falls $\left(\frac{a}{p}\right) = +1$? Zeigen Sie:
 - (i) Falls $p \equiv 3 \bmod 4$, so ist $x = a^{\frac{p+1}{4}} \bmod p$ eine Lösung.
 - (ii) Falls $p \equiv 5 \mod 8$, so ist $a^{\frac{p-1}{4}} \equiv \pm 1 \mod p$ (warum?) und

$$\begin{array}{ll} x=a^{\frac{p+3}{8}} \bmod p, & \text{falls } a^{\frac{p-1}{4}} \equiv +1 \bmod p; \\ x=2a \cdot (4a)^{\frac{p-5}{8}} \bmod p, & \text{falls } a^{\frac{p-1}{4}} \equiv -1 \bmod p; \end{array} \right\} \text{ eine L\"osung.}$$

Hinweis: Gute Ideen für $p \equiv 1 \mod 8$ sind herzlich willkommen!