Quantum NV Sieve 개선

https://youtu.be/NSHziEblrwY

개선 요소

- 1. 가장 큰 복잡도를 갖는 곱셈 과정을 위해 덧셈기 변경 + AND gate 사용
 - 이전 구현은 알고리즘 완성이 목표여서 최적화를 크게 신경 안 씀
 - 이번 개선에서는 depth 감소에 집중하기 위해 out of place 방식의 Draper adder 사용
 - Toffoli depth 1인 AND gate 적용
- 2. Fixed-point 연산 적용
 - 더 정밀한 격자 감소 및 연산 (sieve factor인 γ 및 모든 벡터에 대해)
 - 격자 감소 범위를 조금 더 정밀하게 잡을 수 있음
 - 클래식 구현에서 사용되는 sieve factor는 0.97이며 1에 가까울수록 좋음
 - 그러나 기존 구현에서는 소수점 단위로 설정할 수 없었음 > 개선
 - Quantum에서 Floating point 연산보다 효율적이라고 함

Draper adder (out of place)

- In place 구현은 out of place에 비해 상대적으로 Toffoli depth가 높음
 - 이번 개선에서는 depth 최적화를 위해 Cuccaro CDKM 대신 out of place + Draper adder 사용

Adder	Year	Toffoli Count	Toffoli Depth	Qubit Count	
VBE RCA [14]	1995	4n - 2	4n - 2	3n + 1	
Cuccaro RCA [2]	2004	2n - 1	2n - 1	2n + 2	
Draper In-place CLA [3]	2004	$10n - 3\omega(n) - 3\omega(n-1)$ $-3 \lfloor \log n \rfloor - 3 \lfloor \log(n-1) \rfloor - 7$	$8 + \lfloor \log n \rfloor + \lfloor \log(n-1) \rfloor + \lfloor \log \frac{n}{3} \rfloor + \lfloor \log \frac{n-1}{3} \rfloor$	$4n - \omega(n) - \lfloor \log n \rfloor$	
Draper Out-of-place CLA [3]	2004	$5n - 3\omega(n) - 3\lfloor \log n \rfloor - 1$	$4 + \lfloor \log n \rfloor + \lfloor \log \frac{n}{3} \rfloor$	$4n+1-\omega(n)-\lfloor\log n\rfloor$	

- Quantum NV Sieve에서 Toffoli gate가 사용되는 함수 (아래 함수들에서 Toffoli, 덧셈기 사용됨)
 - Rank번 호출되는 함수
 - COMPLEMENT_pos
 - outDraper_adder
 - COMPLEMENT_neg
 - Muliplication

- 1번 호출되는 함수 (Rank 관련 x)
 - CSA_Draper
 - COMPLEMENT_rR_c
 - outDraper_adder

<mark>각 함수마다 연산 대상이 다르며 Toffoli gate에 따라 Td 결정, AND gate 적용 시의 실제 Td는 아래와 같이 계산</mark> Td = (3×(Rank×bitsize)) + Rank×(bit_size²×sqr_bit_size) + sqr_bit_size + sqr_bit_size + sqr_bit_size

AND gate 적용

• AND gate는 대상 큐비트가 O이라면, Toffoli gate와 동일하게 동작


```
def quantum_and(eng, a, b, c):
    ancilla = eng.allocate_qubit()
    H | c
    CNOT | (b, ancilla)
    CNOT | (c, a)
    CNOT | (c, b)
    CNOT | (a, ancilla)
    Tdag | a
    Tdag | b
    T | ancilla
    CNOT | (a, ancilla)
    CNOT | (c, b)
    CNOT | (c, a)
    CNOT | (b, ancilla)
   H | c
    SIC
```

- 개선 구현에서는 Out of Place 방식의 덧셈기를 사용했으며, 타겟 큐비트가 새로 할당되었으므로 O의 상태
 - → 따라서 큰 구조적 변경 없이 ancilla qubit 추가하여 AND gate가 적용된 덧셈기 사용

자원 추정

- 현재 QIP 심사 중인 버전에 자원 추정이 누락된 부분 발견.. 😟
 - 리뷰 받을 때 수정 예정
 - 개선 버전에서는 T-depth 정확하게 계산하도록...

Takahashi adder (In place) + Toffoli gate (T-depth 4) 적용 vs Draper adder (Out of place) + AND gate (T-depth 1) 적용

• #CNOT, #1qCliff: 크게 변동 없음

• #T gate: 모든 경우에서 약 2배 감소

• FD: 최소 2배 ~ 최대 16배 감소

• *Td*: 이전 버전이 잘못 계산 되었음 (Toffoli가 쓰이는 모든 곳에 대한 depth가 아니라, Mul에 대한 Td만 계산함..)

Table 2: Resource Estimation of quantum NV Sieve oracle (R10D10 means the rank and the dimension of the Table 2: Resource Estimation of quantum NV Sieve oracle (R10D10 means the rank and the dimension of the lattice are 10).

Case #CNOT #1qCliff #TT-depth (Td)Full depth (FD)Qubit (M)Td-MFD-M216.1767 $2^{13.9067}$ $2^{15.7118}$ 27.6037 211.5264 $2^{12.5454}$ $2^{20.1491}$ $2^{24.0718}$ R10D10 $2^{23.7110}$ $2^{18.9097}$ $2^{16.6143}$ $2^{18.4212}$ $2^{8.4470}$ $2^{14.2190}$ $2^{15.2640}$ $2^{29.4830}$ R20D20 215.2810 216.9202 $2^{32.2012}$ $2^{20.5672}$ $2^{18.2624}$ R30D30 $2^{34.1896}$ $2^{21.7859}$ $2^{19.4808}$ 221.2880 216.0566 $2^{18.1329}$ $2^{27.4860}$ R40D40 $2^{20.3885}$ $2^{22.1958}$ 219.0527 228.6692 $2^{22.6998}$ 29.6165 216.6674 235.7201 R50D50 $2^{23.4836}$ $2^{29.6924}$ $2^{21.1729}$ $2^{22.9802}$ $2^{9.8595}$ $2^{17.1715}$ $2^{19.8329}$ 237.0044 R60D60 220.4848 238.0853 $2^{24.1348}$ $2^{21.8228}$ 223.6301 $2^{10.0660}$ 217.6005 R70D70

Table 3: Quantum cost for Grover's search on quantum NV Sieve.

Case	#Total gates	T-depth (Td)	Full depth (FD)	Qubit (M)	Quantum cost	Td- M	$FD ext{-}M$
R10D10	$2^{18.1267}$	$2^{8.6073}$	$2^{12.5264}$	$2^{12.5456}$	$2^{30.6532} \cdot r$	$2^{21.1529}$	$2^{25.0720}$
R20D20	$2^{20.8481}$	$2^{9.4470}$	$2^{15.2190}$	$2^{15.2640}$	$2^{35.0664} \cdot r$	$2^{24.7110}$	$2^{32.4830}$
R30D30	$2^{22.5012}$	9454	$2^{16.2810}$	$2^{16.9202}$	$2^{37.7823} \cdot r$	$2^{26.8656}$	$2^{33.2012}$
R40D40	$2^{23.7199}$	$2^{10.353}$.	$2^{17.0566}$	$2^{18.1329}$	$2^{39.7765} \cdot r$	$2^{28.4860}$	$2^{35.1895}$
R50D50	$2^{24.6308}$	$2^{10.6165}$	$2^{17.6674}$	$2^{19.0527}$	$2^{41.2938} \cdot r$	$2^{29.6692}$	$2^{36.7201}$
R60D60	$2^{25.4150}$	$2^{10.8595}$	$2^{18.1715}$	$2^{19.8329}$	$2^{42.5865} \cdot r$	$2^{30.6924}$	$2^{38.0044}$
R70D70	$2^{26.0655}$	$2^{11.0660}$	$2^{18.6005}$	$2^{20.4848}$	$2^{43.6661} \cdot r$	$2^{31.5509}$	$2^{39.0853}$

lattice are 10).

ı									
	Case	#CNOT	#1qCliff	#T	T-depth (Td)	Full depth (FD)	Qubit (M)	Td- M	FD-M
	R10D10	$2^{16.0685}$	$2^{14.2921}$	$2^{14.7054}$	$2^{11.0443}$	$2^{10.5565}$	$2^{10.6329}$	$2^{21.6772}$	$2^{21.2458}$
	R20D20	$2^{18.6200}$	$2^{16.7937}$	$2^{17.2083}$	$2^{13.5521}$	211.6821	$2^{12.4424}$	$2^{25.9945}$	$2^{24.1245}$
į	R30D30	$2^{20.2122}$	$2^{18.3524}$	$2^{18.7801}$	$2^{15.1241}$	$2^{12.4795}$	$2^{13.5543}$	$2^{28.6784}$	$2^{26.0238}$
	R40D40	$2^{21.3774}$	$2^{19.5197}$	$2^{19.9337}$	$2^{16.2734}$	$2^{12.8570}$	$2^{14.3445}$	$2^{30.6179}$	$2^{27.2015}$
	R50D50	$2^{22.2717}$	$2^{20.4010}$	$2^{20.8160}$	$2^{17.1802}$	$2^{13.1656}$	$2^{14.9614}$	$2^{32.1416}$	$2^{28.1271}$
	R60D60	$2^{23.0307}$	$2^{21.1551}$	$2^{21.5701}$	$2^{17.9293}$	$2^{13.4146}$	$2^{15.4768}$	$2^{33.4061}$	$2^{28.8914}$
	R70D70	$2^{23.6705}$	$2^{21.7907}$	$2^{22.2057}$	$2^{18.5675}$	$2^{13.8495}$	$2^{15.9188}$	$2^{34.4863}$	2 ^{29.7603}
1									

Table 3: Quantum cost for Grover's search on quantum NV Sieve.

Case	#Total gates	T-depth (Td)	Full depth (FD)	Qubit (M)	Quantum cost	Td-M	$FD ext{-}M$
R10D10	$2^{16.8175}$	$2^{11.0443}$	$2^{10.5565}$	$2^{10.6329}$	$2^{27.3740} \cdot r$	$2^{21.6772}$	$2^{21.2458}$
R20D20	$2^{19.3494}$	$2^{13.5521}$	$2^{11.6821}$	$2^{12.4424}$	$2^{31.0315} \cdot r$	$2^{25.9945}$	$2^{24.1245}$
R30D30	$2^{20.9313}$	$2^{15.1241}$	$2^{12.4795}$	$2^{13.5543}$	$2^{33.4108} \cdot r$	$2^{28.6784}$	$2^{26.0238}$
R40D40	$2^{22.0942}$	$2^{16.2734}$	$2^{12.8570}$	$2^{14.3445}$	$2^{34.9512} \cdot r$	$2^{30.6179}$	$2^{27.2015}$
R50D50	$2^{22.9837}$	$2^{17.1802}$	$2^{13.1656}$	$2^{14.9614}$	$2^{36.1493} \cdot r$	$2^{32.1416}$	$2^{28.1271}$
R60D60	$2^{23.7407}$	$2^{17.9293}$	$2^{13.4146}$	$2^{15.4768}$	$2^{37.1553} \cdot r$	$2^{33.4061}$	$2^{28.8914}$
R70D70	$2^{24.0570}$	$2^{18.5675}$	$2^{13.8495}$	$2^{15.9188}$	$2^{37.9065} \cdot r$	234.4863	$2^{29.7603}$
t .							

Fixed-point

- 고정 소수점 연산
 - 고정된 자릿수를 사용 (정수, 소수)
 - 사칙연산에 있어 효율적 (정수 연산과 동일하게 수행 가능)
 - 적은 수의 비트를 사용함
- 격자의 Dimension과 별개로 정밀도를 위해 소수파트 추가
 - 즉, R50D50인 경우, 정수 부분의 길이가 50-bit, 소수 부분은 별개로 큐비트 할당

Fixed-point arithmetic in quantum

Addition

• 기존 덧셈 방식과 동일

Multiplication

- 기존 곱셈 방식과 동일하게 Toffoli gate 사용
- 소수 부분 $(m \ qubit)$ 이 존재하기 때문에 곱셈 후 해당 부분을 위한 큐비트도 2배로 증가 $(2m \ qubit)$
 - 정수 부분: n qubit $\rightarrow 2n$ qubit, 소수 부분: m qubit $\rightarrow 2m$ qubit

2's Complement

- 기존과 동일하게 최상위 비트 기준으로 양/음수 판단하여 조건에 맞게 모든 비트 반전
- 2. 소수 부분을 제외한 **정수 부분의 LSB에만 1을 더해줌** (for 2의 보수)

알고리즘 구현 정확성 테스트

- 소수자리 사용하지 않는 경우 in 고정 소수점 버전
 - 이전 구현: 1011000 → -40
 → 심사 중인 논문에 단계별 결과 값이 있으며, 해당 벡터와 동일한 벡터 사용
 - 고정 소수점 구현 결과 값: 1011000.0000 → -40.0000
 → 정상 동작
- 소수자리 사용하는 경우 in 고정 소수점 버전
 - 입력 벡터: v=(5.5,1.0,1.0,3.0,1.0), c=(6.0,4.0,4.0,1.0,8.0), $sqr \gamma R=32.0$ (나머지 벡터는 0)
 - 고정 소수점 구현 결과 값: → 1010111.0100 → -39.25 1010111.0100 → 0101000.1011 → 0101000.1100 → -40+0.75→ -39.25
 - 실제 계산 값도 -39.25로 구현 정확성 확보

```
X | v_arr[0][1]

X | v_arr[0][2]

X | v_arr[0][4]

X | v_arr[1][2]
```

X | v_arr[2][2]

X | v_arr[3][2]

X | v_arr[3][3]

X | v_arr[4][2]

X | c_arr[0][3]

X | c_arr[0][4]

X | c_arr[1][4]

X | c_arr[2][4]

X | c_arr[3][2]

X | c_arr[4][5]

X | sqr_rR[9]

자원 추정

- 기존 R10D10 ~ R70D70과 더불어 정밀도에 따른 자원도 추정하기 위해 소수부분 2자리, 4자리 추가하여 실험 중
 - 현재 R70D70의 소수 2자리, 4자리만 남은 상태 (실험 2개)

• 기존 구현에서 디멘션이 소수 자리만큼 늘어나는 것과 유사하므로 이에 해당하는 추가 자원이 사용될 것으로 보임

• 고정소수점 연산이 헷갈려서 다시 보긴 할 예정

• 실험 완료 후 개선 논문으로 우선 작성할 계획

감사합니다