Simple linear regression

Herman Kamper

http://www.kamperh.com/

Winning 100-metre men's Olympic time from 1896 to 2008

Missing years: 1914, 1940, 1944

The model

A simple linear regression model predicts the output as a linear function of the input feature x:

$$f(x; w_0, w_1) = w_0 + w_1 x$$

We refer to w_0 and w_1 as the *parameters* of the model.

To choose w_0 and w_1 , we are given a data set of previous input-output measurements:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots (x^{(N)}, y^{(N)})\}$$

I will sometimes just write this as:

$$\left\{ (x^{(n)}, y^{(n)}) \right\}_{n=1}^{N}$$

How do we choose w_0 and w_1 based on the data? We need some way to measure the "goodness" or "badness" of the parameters, given the data.

Loss function

(Sometimes called the cost function.)

How "good" is the fit of wo, w, to this data?

$$J(w_0, w_i) = \sum_{n=1}^{N} (y^{(n)} - f(x^{(n)}; w_0, w_i))^2$$

This is called the "squared loss" or the "residual sum of squares" (RSS).

Optimization

Want to find wo, w, to minimise J(wo, wi)

Strategy: Set
$$\frac{\partial J}{\partial w_0} = 0$$
 and $\frac{\partial J}{\partial w_0} = 0$

$$J(\omega_{0}, \omega_{1}) = \sum_{n=1}^{N} (y^{(n)} - f(x^{(n)}; \omega_{0}, \omega_{1}))^{2}$$

$$= \sum_{n=1}^{N} (y^{(n)} - (\omega_{0} + \omega_{1}, x^{(n)}))^{2}$$

J

$$= \sum_{n=1}^{N} 2(y^{(n)} - w_0 - w_1 x^{(n)}) \cdot (-1)$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x}))^2$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})) \cdot (-1)(x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - y - w_1 (x^{(n)} - \overline{x})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - \overline{y}) \cdot (x^{(n)} - \overline{y})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - \overline{y}) \cdot (x^{(n)} - \overline{y})$$

$$= \sum_{n=1}^{N} 2(y^{(n)} - \overline{y}) \cdot (x^{(n)} - \overline{$$

 $\frac{\partial \omega}{\partial \sigma} = \sum_{n=1}^{\infty} \frac{\partial \omega}{\partial \sigma} \left(\beta_{(n)} - \omega^{0} - \omega^{1} x_{(n)} \right)^{2} \left[\text{Case } \mathbf{0} \right]$

 $= \sum_{n=1}^{\infty} \frac{3}{3^{n}} \left(y^{(n)} - \overline{y} + w_{n} \overline{x} - w_{n} x^{(n)} \right)^{2}$

 $\frac{9m^{3}}{9}$ > 0 and $\frac{9m^{3}}{9}$ > 0

 $\mathcal{J}(\omega_{\bullet},\omega_{\bullet}) = \sum_{n=1}^{\infty} \left(\mathcal{G}^{(n)} - (\omega_{\bullet} + \omega_{\bullet} z^{(n)}) \right)^{2}$

 $\frac{\partial m^{\circ}}{\partial t} = \sum_{\nu=1}^{\infty} \frac{\partial m^{\circ}}{\partial t} \left(\lambda_{(\nu)} - (m^{\circ} + m^{\prime} x_{(\nu)}) \right)_{5}$

Hat used to indicate particular value. Bor used to indicate estimated mean

Model fit

Model predictions

- Estimated winning time in 1914: 10.901 s
- Estimated winning time in 2012: 9.595 s (actual time: 9.63 s)
- Estimated winning time in 2592: 1.863 s