

Using Terrestrial Laser Scanner for Estimating Leaf Areas of Individual Trees in a Conifer Forest

Peng Huang

Chair for Forest Growth and Yield Science, Department of Ecology and Landscape Management, Technical University of Munich, Am Hochanger 13, D-85354 Freising, Germany

E-mail: Peng.Huang@lrz.tu-muenchen.de

Topics

1 Conventional optical Leaf area index (LAI) determination

2 Laser scanner leaf area (LA) determination

Leaf Area Index (LAI)

Watson, 1947:

The leaf area per unit area of land

relevant to agricultural yields

Needle-Leaf touch number —— LAI

A geographic position (x,y)

Coventional optical LAI determination

Measurement:

Light penetration

Instrument:

Fisheye camera LAI2000 Plant Canopy Analyser

LAI=-In Gap fraction

- Beer–Lambert law (Monsi and Saeki, 1953)
- Poisson model (Nilson, 1971)

If leaves are flat and horizontal and beams are vertical

Gap fraction =
$$(1 - \frac{LAI}{N})^N$$
, N – layer (and leaf) number

When
$$N \to \infty$$

Gap fraction = $\exp(-LAI)$

$L = -\ln P(\theta) \cdot \cos\theta / G(\theta)$

- L_e effective leaf area index
- P gap fraction
- G extinction coefficient

Leaf Spherical Distribution: $G(\theta) = 0.5$

• θ - beam zenith angle

Why $cos(\theta)$?

Clumping Effects

Hemispherical photographs from simulated forest canopies for LAI values of 2 with fraction clumping fraction of 0.3,0.5, and 0.7

Walter et al. (2003)

Clumping Effects - Conifer

Solution – Segmentation

Problems of conventional optical LAI determination

Stand oriented

- Pure conifer or pure deciduous only
- Underestimation due to clumping
- Limit on segment size (P_{0c} !=0)
- Influence of weather condition

LAIe (LAI2000G simulated by Fisheye, Zenith<43degree)

Laser Scanner for Leaf Area determination

- Individual-tree oriented
- Clumping effect above crown level eliminated
- Comparable to allometric leaf area
- No limit on segment size
- Not influenced by weather condition

Two Scans around the objective tree

Registration and Isolation – top_down view

Registration and Isolation – side view

A Canopy scanned from top and down sides?

Projection

Distance-coded false color images

Projection - coordinate system transformation

Cartesian coordinate system (X, Y, and Z)

Spherical coordinate system (θ, ϕ)

Image coordinate system (V, U)

Range image after projection

The picture is a distance-sliced image.

Segmented crown range image

The grey values represent the distance from the scanner with white indicating the empty pixels.

In real processing, distance-coded false color images were used.

2D - 3D

Segmented crown range image

The virtual 3D view of the space corresponding to a segment pair

Leaf area calculation for each segment

LA = LAD * Volume

R1 and R2 are ranges of the nearest and farthest pixel in segment A R3 is the range of the farthest pixel in segment A+B

• LA = LAD * Volume

Segment A

• LAD = LAI / Range

R1 and R2 are ranges of the nearest and farthest pixel in segment A
R3 is the range of the farthest pixel in segment A+B

R1 and R2 are ranges of the nearest and farthest pixel in segment A
R3 is the range of the farthest pixel in segment A+B

NR equals to the number of pixels whose distances R1 and R2 are ranges of the nearest and farthest pixel in segment A to the scanner are bigger than R,

R3 is the range of the farthest pixel in segment A+B

 N_E equals to the number of empty pixels

Calculation

$$L = -\ln P(\theta) \cos \theta / G(\theta)$$

$$LAI_R = (1-\alpha) LAI / \overline{SPAR}$$

 α = 0.1, the woody-to-total area ratio (Chen et al., 1997)

SPAR = 0.5, the ratio of spherically averaged shoot silhouette area to the vertically projected needle area (Stenberg et al.,1994)

Calculation 2

$$LA_n = \sum LA_s$$

LAn is one total leaf area estimate of the objective tree, LAs is the leaf area of a segment-pair

Each tree had two estimates about its total leaf area through exchange scanA and scanB

Final result:

$$LA_a = \overline{LA_n}$$

Allometric Leaf Area

$$ln(BM) = -2.4632 + 2.7573 \cdot ln(100 \cdot DBH) - 1.1194 \cdot ln(H)$$
 $(r^2 = 0.880)$

(Seifert and Müller-Starck, 2009)

$$LA_t = BM \cdot SLA$$

LAt is the allometric leaf area of a particular tree, BM is the leaf biomass of a particular tree, SLA=3.5, is the specific leaf area, (Pretzsch and Mette, 2008) DBH is the diameter at the breast height, H is the tree height $LA_i = \beta_0 + \beta_1 LA_a$

The correlations between LLA and ALA

11 trees

Discussions

Should segment be set as small as possible?

The observable $P_{\,0R}$ value was limited between $1/\left(L\times W\right)$ and $1\text{-}1/\left(L\times W\right)$

Reasons for the deviation between two estimates?

Thanks!