Staatsexamen 46115 / 2021 / Frühjahr

Thema 2 / Teilaufgabe 1 / Aufgabe 3 (L1, L2, L3 regulär oder kontextfrei)

Stichwörter: Reguläre Sprache, Kontextfreie Sprache

Sei $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$ die Menge aller natürlichen Zahlen mit 0. Betrachten Sie die folgenden Sprachen.

(a)
$$L_1 = \{ a^{3n}b^{2n}a^n \mid n \in \mathbb{N}_0 \}$$

nicht kontextfrei

(b)
$$L_2 = \{ a^{3n}a^{2n}b^n \mid n \in \mathbb{N}_0 \}$$

kontextfrei.

Der Ausdruck lässt umformen in: $L_2 = \{ a^{5n}b^n \mid n \in \mathbb{N}_0 \}$

$$P \! = \Big\{$$

 $S \rightarrow aaaaaSb \mid \varepsilon$

}

(c)
$$L_3 = \{ (ab)^n a (ba)^n b (ab)^n \mid n \in \mathbb{N}_0 \}$$

nicht kontextfrei

Geben Sie jeweils an, ob L_1 , L_2 und L_3 kontextfrei und ob L_1 , L_2 und L_3 regulär sind. Beweisen Sie Ihre Behauptung und ordnen Sie jede Sprache in die kleinstmögliche Klasse (regulär, kontextfrei, nicht kontextfrei) ein. Für eine Einordnung in kontextfrei zeigen Sie also, dass die Sprache kontextfrei und nicht regulär ist.

Erfolgt ein Beweis durch Angabe eines Automaten, so ist eine klare Beschreibung der Funktionsweise des Automaten und der Bedeutung der Zustände erforderlich. Erfolgt der Beweis durch Angabe eines regulären Ausdruckes, so ist eine intuitive Beschreibung erforderlich. Wird der Beweis durch die Angabe einer Grammatik geführt, so ist die Bedeutung der Variablen zu erläutern.

Hilf mit! Das ist ein Community-Projekt. Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind sehr willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net
Der TEX-Quelltext dieses PDFs kann unter folgender URL aufgerufen werden:

 $\verb|https://github.com/hbschlang/lehramt-informatik/blob/main/Staatsexamen/46115/2021/03/Thema-2/Teilaufgabe-1/Aufgabe-3.tex | the control of the control of$