# DETECTING FRAUDULENT TRANSACTIONS

SUPERVISED LEARNING CAPSTONE

CHATHURA BRAHAKMANAGE

# DETECTING FRAUDULENT TRANSACTIONS

#### **MOTIVATION**

- Fraud can be defined as money or property being obtained through false pretenses
- According to Statista, in 2018, US merchants lost an estimate of \$6.4 billion dollars in payment card fraud loss in 2018
- Fraud detection can:
  - Save businesses and consumers millions of dollars
  - Improve existing fraud detection models
  - Enhance customer experience



### **GOAL**

Use historical Vesta's real-world
 e-commerce transaction and build a
 supervised learning model to predict
 whether a transaction is fraud or not



# **OVERVIEW**

- DATASET
- CLASS IMBALANCE STRATEGY
- MODEL METRIC
- BASELINE MODELS
- RESULT
- FUTURE WORK

#### **DATA SET**

- Collected by Vesta's fraud protection system and digital security partners
- There are 590,540 online transactions
- Data types (434 attributes):
  - Transaction records
  - Identity Data



# **CLASS IMBALANCE**



- There are 569,877 observations of normal transactions
- Only 20,663 transactions are fraud

# MODEL METRIC: ROC AUC





# MODEL METRIC

- Other metrics to consider:
  - False negative rate
  - False positive rate
  - Accuracy



# **UNDERSAMPLING**

 Create class balance by randomly selecting equal amounts of normal and fraudulent observations



# **BASELINE MODELS**

#### **RANDOMFOREST**

- Hyperparameters:
  - on\_estamators = 100
  - Performed well with a score of 0.91 and accuracy of 83%
  - False negative rate 14%
  - False positive rate 19%
  - Longer computational time



#### FEATURE IMPORTANCE



- Transaction amount and counting matches appears to be the most important features in detecting fraud.
  - Our feature engineered variables also made it in the top ten with interactions between transaction amount and card information.

#### GRADIENT BOOSTING

- Hyperparameters:
  - O Random\_state = 42
  - The initial gradient boosting model has a score of 0.88 and accuracy score of 81%
  - False negative rate 16%
  - False positive rate 22%
  - Computational time was significantly longer than Random Forest models



#### FEATURE IMPORTANCE



Count of card information matches, and Vesta feature engineered variables appear to the top contributing factors in detecting fraud for this model.

### LOGISTIC REGRESSION

- Hyperparameters:
  - Feature selection with lasso (shrinkage method)
  - ROC score of 0.737 and accuracy of 81%
  - False negative rate 24%
  - False positive rate 28%
  - The computation time for logistic was relatively fast



#### MODEL RESULT

Logistic regression model perform better than random guess with a ROC score of 0.83 on the test set

- Poor performance in classifying normal transactions
   Random forest with all features performed that best
   with a ROC score of 0.89 on the test set
- Best model in ROC score and lowest false negative rate
- Short computational time
   Gradient boosting was a close match to random forest with a ROC score of 0.88 on the test set
- Comparable to Random Forest, but slightly lower
   ROC score and higher false rates
- Longest computational time



## **FUTURE WORK**

- Exploring oversampling methods and utilize different imbalanced class techniques
- More observations may improve the random forest model's performance
- Engineer more features with transaction amount, card columns, count columns and time features



# THE END-