Lichtstrahlenspiel-Struktogramme

Marius Spix

31. Januar 2014

Abbildungsverzeichnis

1	Solver: Grundalgorithmus
2	Solver: Einzelschritte, Methode step()
3	Strategie: LonelyFieldStrategy
4	Solver: IntersectionStrategy
5	Solver: IntersectionStrategy Teil 2
6	Solver: TryAndErrorStrategy
7	Hook: TryAndErrorStrategy

Abbildung 2: Solver: Einzelschritte, Methode step()

Abbildung 3: Strategie: LonelyFieldStrategy

Abbildung 4: Solver: IntersectionStrategy

zusätzliche lokale Variablen	
summe {Maximale Anzahl Lichtfelder, die in die Richtungen von m	<i>löglichkeit</i> verteilt
werden können}	
vertRange	
{bereits von diesem Algorithmus verteilte Leuchtkraft} rangeZuVert	
{noch zu verteilende Leuchtkraft} andereRichtungen	
{Umkehrung von <i>möglichkeit</i> }	
$summe \leftarrow m\"{o}glichkeiten \cdot verfRange$	
summe < verblRange	
j	n
Es kann maximal <i>summe</i> Leuchtkraft auf die Richtungen verteilt werden.	
Daher muss der Rest in die anderen Richtungen verteilt werden.	
$andereRichtungen \leftarrow \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} - m \ddot{o} glichkeit$	Ø
$rangeZuVert \leftarrow verblRange - summe - vertRange$	~
Verteile den rangeZuVert auf die Richtungen aus andereRichtungen	
true	

Abbildung 5: Solver: IntersectionStrategy Teil 2

Abbildung 6: Solver: TryAndErrorStrategy

lokale Variablen richtungen {Menge von Richtungen} undoManager {lokaler UndoManager}

r"uckg"angigIstM"oglich(undoManager)

 $r\"{u}ckg\"{a}ngig(undoManager)$

 $richtungen \leftarrow richtungen \setminus richtung$

Abbildung 7: Hook: TryAndErrorStrategy