Ein universeller Trendtest. Welche Kriterien sollte ein Trendtest erfüllen?

Ludwig A. Hothorn Leibniz University Hannover, Germany

Jan 9, 2017

Kriterien I

- Angemessene Güte gegenüber allen Formen einer einseitigen Trendalternative- nicht nur gegenüber der lineare Dosis-Wirkungs-Funktion wie z.B. der Cochran-Armitage (1955) Trend Test
- Verallgemeinerbar im glmm
- Zulässiges Niveau und akzeptable Güte, auch bei kleineren Fallzahlen
- Einleuchtende Interpretierbarkeit für Nichtstatistiker, z.B. plausible Effektgröße
- Numerische Verfügbarkeit: library()
- Verfügbarkeit für korrelierte multiple Endpunkte, vorzugsweise in verschiedenen Skalen
- Dosis als qualitativer Faktor oder/und als quantitative Kovariable formulierbar
- Robust gegenüber Umkehreffekten bei hohen Dosen

Kriterien II

- Nichtparametrische Variante verfügbar
- Geschlossene Powerberechenbarkeit
- **...**
- Focussing:
- How dose is considered in selected real data examples today?
- Multiple contrast tests vs. quasi-linear regression models
- Tukey trend test
- Didactical concept: explaining R code

Motivating examples I

Five randomly selected 2016 Nature papers ([16]):

left) strong log; many concentrations; no control; comparing 2 mid) log; zero dose control; displayed qualitatively right) placebo-controlled RCT; few doses; log (nonconstant); but presented qualitatively; dose-by-time interaction

Motivating examples II

 left) both qualitative factor and quantitative dose levels right) reference drug and 2 quantitative dose levels mixed

- Qualitative factor and/or quantitative covariable
- Assuming log transformation (to some extend)
- ► Almost regression model I (x_{ij} non-random), i.e. grouped dose levels
- Why log-transformation? How log(C=0)?

Classification I

- ► I) Dose as qualitative factor ⇒ multiple contrast test
- ► II) Dose as quantitative covariable ⇒ lin-log or nonlinear regression model
- Choice (I,II) depends on number doses, aim, dose vs. concentration at target cells, ... No a-priori universal best approach
- Main aim of this talk: both MCT and lin-log model
- MCPMod approach: ...
- Tukey's idea: three dose metameters arithmetic, ordinal, lin-log covers most shapes of dose response, is simple and easy to interpret [23]
- Main results: i) MCT and Tukey trend test, ii) extensions within glmm, iii) R library tukeytrend

MCT: Motivation I

- Dose-response studies manifold aims:
 - Just any heterogeneity between the groups
 - ► Comparison vs. control (0) for several effect sizes $\mu_i \mu_0$, μ_i/μ_0 , π_i/π_0 , ...
 - A dose-related trend (global only)
 - Estimate a particular dose: MED (efficacy), LOAEL (MAXSD) (safety)
- Why order restriction?
 - ▶ Ordered alternative: $H_1: \mu_0 \le \mu_1 \le ... \le \mu_k | \mu_0 < \mu_k$,
 - Increase the power and/or
 - Achieve a specific claim, such as increasing monotone trend, or identification MED/LOAEL.
 - Notice, trade-off between restriction and robustness

Order restricted tests and related simultaneous confidence intervals I

- What means trend?
- Decomposition the monotone $H_1: \mu_0 \le \mu_1 \le ... \le \mu_k$ into all linear-elementary alternatives; e.g. k=3

$$\begin{array}{l} H_{1}^{a}: \mu_{0} = \mu_{1} = \mu_{2} < \mu_{3} \\ H_{1}^{b}: \mu_{0} = \mu_{1} < \mu_{2} < \mu_{3} \\ H_{1}^{c}: \mu_{0} < \mu_{1} = \mu_{2} < \mu_{3} \\ H_{1}^{d}: \mu_{0} < \mu_{1} = \mu_{2} = \mu_{3} \\ H_{1}^{d}: \mu_{0} < \mu_{1} = \mu_{2} = \mu_{3} \\ H_{1}^{e}: \mu_{0} < \mu_{1} < \mu_{2} = \mu_{3} \\ H_{1}^{f}: \mu_{0} < \mu_{1} = \mu_{2} < \mu_{3} \\ H_{1}^{g}: \mu_{0} = \mu_{1} < \mu_{2} = \mu_{3} \end{array}$$

- Called isotonic H₁
- Different H₁ definitions available

Order restricted tests and related simultaneous confidence intervals II

- A trend test should be sensitive against all possible elementary alternatives.
 - Not against just one, e.g. the linear trend- as the wide-spread used Cochran-Armitage trend test [3] for proportions or the Jonckheere trend test for pairwise ranks ⇒ crazy
- At least two approaches:
 - i MLE-test quadratic test statistics [4]
 - ii MCT linear test statistics
- A specific trend test, which compares vs. control:
 Williams trend test [25] typically in nonclin and clin dose finding studies

Order restricted tests and related simultaneous confidence intervals III

- **MCT I)**: A contrast is a suitable linear combination of means (or other effect sizes, e.g. π_i): $\sum_{i=0}^k c_i \bar{x}_i$
- Here i = 0...k, focusing on comparisons vs. control (placebo) (more general possible)
- MCT II): A contrast test is standardized

$$t_{Contrast} = \sum_{i=0}^{k} c_i \bar{x}_i / S \sqrt{\sum_{i}^{k} c_i^2 / n_i}$$

where $\sum_{i=0}^{k} c_i = 0$ guaranteed a $t_{df,1-\alpha}$ distributed level- α -test.

- To guarantee comparable simultaneous confidence intervals needed: $\sum sign^+(c_i) = 1$, $\sum sign^-(c_i) = 1$

Order restricted tests and related simultaneous confidence intervals IV

- MCT III): A multiple contrast test is defined as maximum test:

$$t_{MCT} = max(t_1, ..., t_q)$$

which follows jointly $(t_1, \ldots, t_q)'$ a *q*-variate *t*- distribution with degree of freedom df and the correlation matrix $R \Rightarrow$ depending on c_i , n_i but also s_i , ρ_i , ... May be complex

- MCT IV): Just the choice of a particular contrast matrix defines the respective MCT

Order restricted tests and related simultaneous confidence intervals V

Known examples (balanced design k=2)

- Dunnett one-sided [9]

$$c_i$$
 C T_1 T_2 c_a -1 0 1 c_b -1 -1 0

- Williams Procedure (as multiple contrast [6])

$$c_i$$
 C D_1 D_2 c_a -1 0 1 c_b -1 1/2 1/2

- Much more.... (interesting GrandMean [18])
- MCT V): One-sided (lower) simultaneous confidence limits:

$$\left[\sum_{i=0}^{k} c_i \bar{x}_i - S * t_{q,df,R,2-sided,1-\alpha} \sqrt{\sum_{i}^{k} c_i^2/n_i}\right]$$

Modification: Effect sizes I

- **Different effect size**: sCl for $\omega_i = \mu_i/\mu_0$
- Sasabuchi's trick of a linear form $L(\omega_i) = \sum c_i \overline{Y}_i d_i \omega_i \overline{Y}_0$ (nominator c_i , denominator d_i)
- Simultaneous Fieller-type confidence intervals for ω_i -solutions of the inequalities

$$T^2(\omega_i) = rac{L^2(\omega_i)}{S^2_{L(\omega_i)}} \leq t^2_{q,\nu,R(),1-lpha},$$

- $t_{q,\nu,R(i),1-\alpha}$ is a central q-variate t-distribution with ν degrees of freedom and correlation matrix $R(i) = [\rho_{ij}]$, where $\rho_{ii'}$ depend on c_{hi} , n_i and on unknown ratios ω_i : plug-in ML-estimators [8] \Rightarrow second trick

Modification: Effect sizes II

- **Relative effect size**: $H_0^F: F_0 = ... = F_k$ formulated in terms of the distribution functions against simple tree $H_1^F: F_0 < F_i$
- But the distribution of the rank means is unknown under H₁, neither sCl nor power can be estimated
- Using relative effect size [7], [22]:

$$p_{01} = \int F_0 dF_1 = P(X_{01} < X_{11}) + 0.5P(X_{01} = X_{11}).$$

- p_{01} is a win probability in the sense of [10]
- **sCI:** [15] Let $R_{ij}^{(0I)}$ denote the rank of X_{ij} among all $n_0 + n_I$ observations within the samples 0 and I

Tukey's trend test- Intro I

 Up to now: dose as a qualitative factor only

 Now: considering dose as quantitative covariate

Tukey's trend test I

- Three decades ago: [23] max-test on three regression models for the arithmetic, ordinal, and linear-log dose metameters of the covariate dose in a randomized one-way layout- without multiplicity adjustment
- ▶ Joint distribution? Problem: R
- ▶ Tukey's trend test based on ξ multiple linear regression models for the ξ dose transformation functions $\psi^{\xi}(D_j)$ for a vector of response variables y_{ijk} with i=1,...,I multiple endpoints in j=0,...,J dose levels with k_j unbalanced replicates

$$y_{ijk}^{\xi} = \alpha_{i\xi} + \beta_{i\xi}(\psi^{\xi}(D_{jk})) + \epsilon_{\xi ijk}$$

Tukey's trend test II

A maximum test on the slope parameters $\beta_{i\xi}$ from multiple marginal models for a global null hypothesis is performed

$$H_0:\beta_{i\xi}(\psi^{\xi}(D_j))=0$$

representing a union-intersection test.

- In the mmm-framework [20] ξ marginal models for a univariate endpoint (i = 1) or (ξ * I) marginal models for I multiple endpoints are included.
- From these parameter estimates the correlation matrix is estimated and the test is on the ξ (respective $(\xi * I)$) slope parameters $\beta_{i\xi}$.
- Joint distribution of parameter estimates from multiple marginal models [20]- without assuming a certain multivariate distribution for the data

Tukey's trend test III

- Allows max-tests on multiple linear models and estimation of adjusted p-values or simultaneous confidence intervals without the explicit formulation of the correlation matrix in lm, glm, lmm- asymptotically
- For appropriate chosen df ν , finite versions works well (various simulations)
- Example: Bivariate normal endpoints: trend test for liver and body weight (to avoid relative organ weights)

Tukey's trend test IV

Dose	BodyWt	LiverWt
0	338	11
0	319	10
0	369	13
0	373	13
0	315	10
1000	294	9
1000	294	9
1000	281	8
1000	317	9
1000	292	8

mmm formulated for slope-to-zero test for three dose scalings and 2 endpoints: six highly correlated tests on slope parameters- by means of R-code

Tukey's trend test V

elementary code

function

```
data("liv", package="SiTuR")
fitLl <-lm(LiverWt~Dose, data=liv)
fitLb <-lm(EndyWt~Dose, data=liv)
ttLl <- tukeytrendfit(fitLl, dose="Dose", scaling=c("ari", "ord", "arilog"))
ttLb <- tukeytrendfit(fitLb, dose="Dose", scaling=c("ari", "ord", "arilog"))
ctLt <- combtt(ttl, ttLb)
EXAll<-summary(asglht(cttL))</pre>
```

package tukeytrend

Tukey's trend test VI

Interpret the adjusted p-values!

Model		Test stats	p-value
covarLiv	: DoseN	-5.38	0.0000002
ordinLiv:	DoseO	-3.98	0.0001642
linlogLiv	: DoseLL	-3.98	0.0001611
covarBo	dy: DoseN	-6.04	0.0000000
ordinBoo	dy: DoseO	-5.17	0.0000003
linlogBo	dy: DoseLL	-5.17	0.0000003

Table: Tukey trend test for bivariate normal: body and liver weights

- Trends for both endpoints
- Alternatively, simultaneous confidence intervals for the slopes available- more appropriate for interpretation (not shown)

Trend test using both a covariate and a factor I

- To assume dose as a qualitative factor or a quantitative covariate result in quite different- disjoint- approaches: trend tests or non-linear models
- Common perception: trend test and (non)linear models are completely separate approaches -not necessarily!
- ► Extension of the Tukey trend test:
 - i) three regression models for the arithmetic, ordinal, and logarithmic-linear dose metameters [23] **AND ii) Williams multiple contrast**
- Background: mmm based on linear models. Tukey assumes linear models after transformation, Williams MCT assumes a factor, both belong to the lm-class. Exciting: estimation the correlation implicitely. To calculate the correlation may be rather complex!

Trend test using both a covariate and a factor II

Example: litter weight data [12]

Directed: decreasing weights. No clear trend. A possible dose plateau

Trend test using both a covariate and a factor III

4 marginal models for 6 hypotheses needed:
 3 regression models for arithmetic, ordinal and log-linear dose metameters and 3 Williams-type multiple contrasts

```
litter$dosen <- as.numeric(as.character(litter$dose)) # add a nume
fitc <- lm(weight ~ dosen, data=litter)
dfn<-fitc$df.residual
ttw <- tukeytrendfit(fitc, dose="dosen",
    scaling=c("ari", "ord", "arilog", "treat"),ctype="Williams")
exal<-summary(glht(ttw$mmm, ttw$mlf), df=dfn)</pre>
```

Dose metameter	Test statistics	<i>p</i> -value
dosenari: dosenari	-0.818	0.726
dosenord: dosenord	-1.703	0.214
dosenarilog: dosenarilog	-1.128	0.519
dosentreat: C 1	-1.863	0.156
dosentreat: C 2	-2.287	0.061
dosentreat: C 3	-2.759	0.018

► Look how insensitive any regression model for a plateau shape is!

Trend test using both a covariate and a factor IV

- More general:
 - 1. Power of Tukey trend test depends on dose metameters and design (unbalancedness, *k*) and ...
 - 2. A tiny simulation study (log-scaled doses, 10000 runs) (rather new rank versions in a recent manuscript)

shape	Williams	Tukey	TukeyWil
dose	quali	quanti	both
linear	0.85	0.89	0.87
supralin	0.95	0.76	0.87
sublin	0.81	0.96	0.89

- 3. Serious power loss for plateau profiles for dose as quantitative covariate
- 4. TukeyWilliams max-test: no serious power loss for any shape of dose response. Robustification!
- 5. TukeyWilliams max-test: interpreting covariate vs. factor (or pairwise comparison $Cvs.D_{max}$)

Formulated for non-monotonic trends I

- ► A downturn effect at high doses is likely in toxicology, i.e. a non-monotonic dose-response relationship occurs [12].
- Trend tests may be seriously biased and tests without any order restriction, such as Dunnett test, allows only groupwise inference, no claiming trend
- A double maximum test can be used, a maximum over all possible peak point doses (from k, (k-1), (k-2), ..., 1) and a maximum on the multiple contrasts (e.g. Williams-type contrasts) [5].
- This idea can be easily transferred to the Tukey trend test approach by
 - **A) defining** an so-called UmbrellaWilliams contrast, i.e. taking dose qualitatively or,

Formulated for non-monotonic trends II

- **B)** using a double maximum test on the possible peak points and the three regression models, where these pseudo dose metameters up to certain dose are generated with NA (see below object comptt).
- ▶ Although 3k instead of 3 models are subject to a maximum test, the power will be not sacrificed because these many models are highly correlated.
- Dose qualitatively

Formulated for non-monotonic trends III

Dose quantitatively

```
dl$dos500<-dl$dosen; dl$dos50<-dl$dosen
dl$dos500[dl$dosen==500] <-NA
dl$dos50[dl$dos50==50] <-NA
fitall<-lm(weight ~ dosen, data=dl)
fit500 <- lm(weight ~ dos500, data=dl)
fit50 <- lm(weight ~ dos50, data=dl)
tt50<- lm(weight ~ dos500, data=dl)
tt50
```

Dose metameter	Test statistics	<i>p</i> -value
tt50.lm.weight.dos50ari: dos50ari	-0.910	0.388
tt500.lm.weight.dos500ari: dos500ari	-1.047	0.327
tt500.lm.weight.dos500ord: dos500ord	-1.922	0.076
tt500.lm.weight.dos500arilog: dos500arilog	-1.047	0.327
ttall.lm.weight.dosenari: dosenari	-0.818	0.429
ttall.lm.weight.dosenord: dosenord	-1.703	0.117
ttall.lm.weight.dosenarilog: dosenarilog	-1.128	0.295

Inclusion of the control vs. high dose comparison I

- ► The power comparison between control vs. highdose (CvsH) and the Tukey test: CvsH-test is superior to Tukey's contrast test only when all the middle doses have identical or near identical response ([2]).
- Because such pattern occur not too frequently, they recommend Tukey's trend test alone.
- Instead focusing on the decision between CvsH-test and Tukey-test: CvsH-test can be included as 4th model in Tukey's trend test.
- ► A two-sample CvsH test is identical to a linear regression model for only two groups (by ignoring all other dose groups- technically in R transforming into NA's).

Inclusion of the control vs. high dose comparison II

- The multiplicity penalty for including a further model will be small, because a CvsH-model is highly correlated with the 3 other models.
- ▶ Notice, the comparison of the CvsH-test alone (i.e. ignoring all other doses) has a special meaning in trend testing. It is a single contrast within the [25] or [9] multiple contrast test and its combination ([13]) and is the first test in the closed testing procedure under order restriction ([11]).

```
ttw6 <- tukeytrendfit(fitw, dose="dosen",
   scaling=c("ari", "ord", "log", "arilog", "highvslow"))
Exa6 <- summary(glht(model=ttw6$mmm, linfct=ttw6$mlf, alte</pre>
```

Additional testing vs. pooled doses I

- For plateau-shaped dose-response relationships testing vs. the pooled doses may be of interest.
- E.g., in the randomized placebo-controlled dose finding trial with golimumab to treat ulcerative colitis [21] unadjusted p-values for comparisons of all individual doses vs. placebo and as well against the pooled doses.
- ► As an example the health-related quality according to IBD-Questionnaire (change from baseline after 6 weeks) was used (see their Table 2).

Additional testing vs. pooled doses II

Only summary data are available and therefore simulated normal distributed raw data were generated for the analysis here.

Additional testing vs. pooled doses III

```
lmRU <-glm(IBDQ~dose, data=rut)
Cmat3 <- c(-3, 1, 1, 1)
EXRU <- tukeytrendfit(lmRU, dose="dose",
    scaling=c("ari", "ord", "arilog", "treat"), ctype=Cmat3)
EXRRU <- summary(glht(model=EXRU$mmm, linfct=EXRU$mlf))</pre>
```

Table: Tukey Trend Test and pooled dose vs. placebo test

Dose metameter	Test statistics	<i>p</i> -value
doseari: doseari	2.0435	0.0742
doseord: doseord	2.2206	0.0494
dosearilog: dosearilog	2.2206	0.0493
dosetreat: 1	2.4785	0.0246

The p-values for a trend (log-transformed) is about 0.05, but for the pooled doses vs. placebo 0.025, not surprizing for such a plateau shape.

Considering of different covariance-adjusting models I

- Interesting: simultaneous consideration of multiple models with different formulations for the adjusting covariate
- Nonclin example: Analysis of organ weights in toxicology. It is a priori not clear how to consider the body weight: i) as relative organ weight, ii) body weight as covariate or iii) ignoring body weight (quite different biological background!)
- ► Liver weights from a 13-week study on female F344 rats administered with sodium dichromate dihydrate [1]

```
data("liv", package="SiTuR")
liv$relLiv <-liv$LiverWt/liv$BodyWt
LIVmod1<-lm(LiverWt~Dose, data=liv)
LIVmod2<-lm(relLiv~Dose, data=liv)
LIVmod3<-lm(LiverWt~Dose+BodyWt, data=liv)
tt1<- tukeytrendfit(LIVmod1, dose="Dose", scaling=c("ari", "ord", tt2<- tukeytrendfit(LIVmod2, dose="Dose", scaling=c("ari", "ord", tt3<- tukeytrendfit(LIVmod3, dose="Dose", scaling=c("ari", "ord", tt3<- tukeytrendfit(LIVmod3, dose="Dose", scaling=c("ari", "ord", tt4<- combtt(tt1,tt2, tt3)</pre>
LIVExa4 <- summary(glht(model=cttC$mmm, linfct=cttC$mlf))
```

Considering of different covariance-adjusting models II

	Model	Test stats	p-value
1	tt1.lm.LiverWt.Doseari: Doseari	-6.0358901	0.0000000
2	tt1.lm.LiverWt.Doseord: Doseord	-5.1678800	0.0000006
3	tt1.lm.LiverWt.Dosearilog: Dosearilog	-5.1678800	0.0000017
4	tt2.lm.relLiv.Doseari: Doseari	-4.7739259	0.0000055
5	tt2.lm.relLiv.Doseord: Doseord	-4.6579781	0.0000495
6	tt2.lm.relLiv.Dosearilog: Dosearilog	-4.6579781	0.0000074
7	tt3.lm.LiverWt.Doseari: Doseari	-2.4553875	0.0507073
8	tt3.lm.LiverWt.Doseord: Doseord	-2.9008284	0.0149210
9	tt3.lm.LiverWt.Dosearilog: Dosearilog	-2.9008284	0.0142968

- We pay a tiny penalty to consider several, similar modelsbecause they a highly correlated
- ▶ We achieve: the best model. Here: just liver weight
- ► Hard to solve this problem with model selection approaches (different models, but also different endpoints)
- Can be used e.g. in clinical Phase II dose findings studies with baseline values

Generalizations of Tukey trend test I

- Modification for variance heterogeneity using sandwich estimator of var-cov matrix ⇒ vignette
- Extension to multiple endpoints: normal, binary, multinomial, different-scaled
- Modification for different arithmetic-logarithmic scores ⇒ vignette
- 4. GLM: Proportions, Poisson (overdispersed) ⇒ vignette
- Rank regression: both normal or rank ⇒ paper with Frank Konietschke UniTexas soon
- Mixed effects model: repeated measures ⇒ see the vignette
- 7. Nonlinear regression models (next Dr. Christian Ritz, Copenhagen)

Further recent general mmm applications I

- Multiple normal distributed endpoints in multi-arm trials: Dunnett-type sCI
- Multiple binary endpoints in multi-arm trials: Williams-type trend test
- Multiple regression models in genetic association test [14]
- Composite binary endpoints [17]
- Subgroup analysis with claim for total, targeted and complementary populations [24]
- ► Inference on dose (randomized) and time (dependent) [19]

Take home message I

- ► Trend tests for several possible shapes are available with in glmm framework → rather relevant for nonclin and clin dose-finding studies
- TukeyWilliams trend test can be recommended: R library available, simple interpretation
- Flexibility is amazing
- Use confidence intervals (not shown above). Interpret the effect size first, e.g. slopes
- Comparison with nonlinear models (incl. model averaging resp. model selection) needed
- Basic property of mmm used: no explicit formulation of R needed!

References I

- National Toxicology Program. 13 Weeks gavage study on female F344 rats administered with Sodium dichromate dihydrate (VI) (CASRN: 7789-12-0, Study Number: C20114,TDMS Number:2011402.
- [2] Girish Aras, Allen Xue, and Thomas Liu. Tukey's contrast test versus two-sample test in a dose-response clinical trial. Statistics In Biopharmaceutical Research, 3(1):31–39, February 2011.
- [3] P. Armitage. Tests for linear trends in proportions and frequencies. *Biometrics*, 11(3):375–386, 1955.
- [4] D. J. Bartholomew. A test of homogeneity for ordered alternatives. Biometrika, 46(1-2):36-48, 1959.
- [5] F. Bretz, L. A. Hothorn, and J. C. Hsu. Identifying effective and/or safe doses by stepwise confidence intervals for ratios. Statistics in Medicine, 22(6):847–858, March 2003.
- [6] Frank Bretz. An extension of the Williams trend test to general unbalanced linear models. Computional Statistics and Data Analysis, 50(7):1735–1748, 2006.
- [7] E. Brunner and U. Munzel. The nonparametric Behrens-Fisher problem: Asymptotic theory and a small-sample approximation. *Biometrical Journal*, 42(1):17–25, 2000.
- [8] G. Dilba, F. Bretz, L. A. Hothorn, and V. Guiard. Power and sample size computations in simultaneous tests for non-inferiority based on relative margins. Statistics in Medicine, 25(7):1131–1147, April 2006.
- [9] C. W. Dunnett. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc. 50(272):1096–1121, 1955.
- [10] A. J. Hayter. Inferences on the difference between future observations for comparing two treatments. *Journal of Applied Statistics*, 40(4):887–900, APR 1 2013.
- [11] L. A. Hothorn, M. Neuhauser, and H. F. Koch. Analysis of randomized dose-finding-studies: Closure test modifications based on multiple contrast tests. *Biometrical Journal*, 39(4):467–479, 1997.
- [12] L.A. Hothorn. The two-step approach a significant ANOVA F-test before Dunnett's comparisons against a control - is not recommended. Communications in Statistics, 2015.
- [13] T. Jaki and L. A. Hothorn. Statistical evaluation of toxicological assays: Dunnett or Williams test-take both. Archives of Toxicology, 87(11):1901–1910, November 2013.
- [14] A. Kitsche, C. Ritz, and L.A. Hothorn. A general framework for the evaluation of genetic association studies using multiple marginal models. *Human Heredity*, 2016.

References II

- [15] F. Konietschke and L.A. Hothorn. Rank-based multiple test procedures and simultaneous confidence intervals. Electron J Stat, 6:738–759, 2012.
- [16] T. Kopp, E. Riedl, C. Bangert, E. P. Bowman, E. Greisenegger, A. Horowitz, H. Kittler, W. M. Blumenschein, T. K. McClanahan, T. Marbury, C. Zachariae, D. L. Xu, X. S. Hou, A. Mehta, A. S. Zandvliet, D. Montgomery, F. van Aarle, and S. Khalilieh. Clinical improvement in psoriasis with specific targeting of interleukin-23. *Nature*, 521(7551):222—4, May 2015.
- [17] GrosseRuse M., C. Ritz, and L.A. Hothorn. Simultaneous inference of a binary composite endpoint and its components. J. Biopharm Statist, 2016.
- [18] P. Pallmann and L. A. Hothorn. Analysis of means: a generalized approach using r. Journal of Applied Statistics, 43(8):1541–1560, June 2016.
- [19] P. Pallmann, M. Pretorius, and C. Ritz. Simultaneous comparisons of treatments at multiple time points: combined marginal models versus joint modeling. Statistical Methods in Medical Research, accepted for publication., 2015.
- [20] C. B. Pipper, C. Ritz, and H. Bisgaard. A versatile method for confirmatory evaluation of the effects of a covariate in multiple models. *Journal of the Royal Statistical Society Series C-Applied Statistics*, 61:315–326, 2012.
- [21] P. Rutgeerts, B. G. Feagan, C. W. Marano, L. Padgett, R. Strauss, J. Johanns, O. J. Adedokun, C. Guzzo, H. Zhang, J. F. Colombel, W. Reinisch, P. R. Gibson, and W. J. Sandborn. Randomised clinical trial: a placebo-controlled study of intravenous golimumab induction therapy for ulcerative colitis. *Alimentary Pharmacology & Therapeutics*, 42(5):504–514, September 2015.
- [22] E. J. Ryu and A. Agresti. Modeling and inference for an ordinal effect size measure. Statistics in Medicine, 27(10):1703–1717, May 2008.
- [23] J. W. Tukey, J. L. Ciminera, and J. F. Heyse. Testing the statistical certainty of a response to increasing doses of a drug. *Biometrics*, 41(1):295–301, 1985.
- [24] C. Vogel. Model-based simultaneous inference for multiple subgroups and multiple endpoints. Report, 2016.
- [25] D.A. Williams. A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics*, 27(1):103–117, 1971.