第十五届全国大学生数学竞赛初赛试卷参考答案 (非数学 A 类, 2023 年)

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分

题号			三	四	五	六	总分
满分	30	14	14	14	14	14	100
得分							

注意:

- 1. 所有答题都须写在本试卷指定的答题区域内.
- 2. 密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3. 如答题空白不够,可写在当页背面,并标明题号.

得分 评阅人 一、(本题 30 分, 每小题 6 分)

(1)
$$\lim_{x\to 3} \frac{\sqrt{x^3+9}-6}{2-\sqrt{x^3-23}} =$$
 ______.
(2) 设 $z=f(x^2-y^2,xy)$,且 $f(u,v)$ 有连续的二阶偏导

数,则
$$\frac{\partial^2 z}{\partial x \partial y} =$$

(3) 设
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
, 则 $f^{(n)}(0) =$ ______

(3) 设
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
, 则 $f^{(n)}(0) =$ ______.

(4) 幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{2n}}{n(2n-1)}$ 的收敛域为 ______.

(5) 设曲面
$$\Sigma$$
 是平面 $y + z = 5$ 被柱面 $x^2 + y^2 = 25$ 所截得的部分,则
$$\iint_{\Sigma} (x + y + z) dS = \underline{\qquad}.$$

解答.(1)使用洛必达法则,得

$$\lim_{x \to 3} \frac{\sqrt{x^3 + 9} - 6}{2 - \sqrt{x^3 - 23}} = \lim_{x \to 3} \frac{\frac{3x^2}{2\sqrt{x^3 + 9}}}{-\frac{3x^2}{2\sqrt{x^3 - 23}}} = -\lim_{x \to 3} \frac{\sqrt{x^3 - 23}}{\sqrt{x^3 + 9}} = -\frac{1}{3}.$$

(2)

$$z_{x} = 2xf_{1} + yf_{2},$$

$$z_{xy} = 2x(f_{11}(-2y) + xf_{12}) + f_{2} + y(f_{21}(-2y) + xf_{22})$$

$$= f_{2} - 4xyf_{11} + 2(x^{2} - y^{2})f_{12} + xyf_{22}.$$

(3)
$$f(x) = -\frac{1}{x-1} + \frac{1}{x-2}.$$

$$f^{(n)}(x) = (-1)^{n+1} \cdot n! \left(\frac{1}{(x-1)^{n+1}} - \frac{1}{(x-2)^{n+1}}\right).$$

$$f^{(n)}(0) = n! \left(1 - \frac{1}{2^{n+1}}\right).$$

(4) 因为
$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{n(2n-1)}} = 1$$
,所以收敛半径为 1. 当 $x = \pm 1$ 时, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)}$ 绝对收敛,故收敛域为 $[-1,1]$.

(5) Σ 的方程为 z = 5 - y, 故

$$dS = \sqrt{2} dx dy.$$

 Σ 在 xOy 平面的投影 $D_{xy}: x^2 + y^2 \leqslant 25$, 故

$$I = \sqrt{2} \iint_{D_{xy}} (x+5) dx dy = 5\sqrt{2} \iint_{D_{xy}} dx dy = 125\sqrt{2}\pi.$$

得分	
评阅人	

二、(本题 14 分) 解方程

$$(x^2 + y^2 + 3) \frac{dy}{dx} = 2x(2y - \frac{x^2}{y}).$$

解答. 原方程变形为
$$\frac{y dy}{x dx} = \frac{2(2y^2 - x^2)}{x^2 + y^2 + 3}$$
.

令
$$u = x^2, v = y^2$$
, 则原方程化为 $\frac{\mathrm{d}v}{\mathrm{d}u} = \frac{2(2v - u)}{u + v + 3}$. (5 分)

解方程
$$2v-u=0, u+v+3=0$$
, 得到 $u=-2, v=-1$, 再令 $U=u+2, V=v+1$, 上述方程化为 $\frac{\mathrm{d}V}{\mathrm{d}U}=\frac{2(2V-U)}{U+V}$. (8分)

作变量替换
$$W = \frac{V}{U}$$
 得到 $U \frac{\mathrm{d}W}{\mathrm{d}U} = -\frac{W^2 - 3W + 2}{W + 1}$. (11 分)

这是分离变量方程,解之得 $U(W-2)^3 = C(W-1)^2$,回代得

得分	
评阅人	

三、(本题 14 分) 设 Σ_1 是以 (0,4,0) 为顶点且与曲面 $\Sigma_2: \frac{x^2}{3} + \frac{y^2}{4} + \frac{z^2}{3} = 1(y>0)$ 相切的圆锥面,求曲面 Σ_1 与 Σ_2 所围成的空间区域的体积.

解答. 设 $L \to xOy$ 平面上过点 (0,4) 且与 $\frac{x^2}{3} + \frac{y^2}{4} = 1$ 相切于点 (x_0, y_0) 的直线,则 $\frac{x_0^2}{3} + \frac{y_0^2}{4} = 1$ 且切线斜率 $\frac{y_0 - 4}{x_0} = -\frac{4x_0}{3y_0}$,解得 $x_0 = \pm \frac{3}{2}$, $y_0 = 1$.

显然, Σ_1 与 Σ_2 分别是切线 L 和曲线 $\frac{x^2}{3} + \frac{y^2}{4} = 1$ 绕 y 轴旋转而成的曲面,它们的交线位于平面 $y_0 = 1$ 上. (8 分)

记该平面与 Σ_1, Σ_2 围成的空间区域分别记为 Ω_1 和 Ω_2 .

由于 Σ_1 是底面圆的半径为 $\frac{3}{2}$, 高为 3 的圆锥体,所以其体积 $V_1 = \frac{1}{3} \cdot \pi (\frac{3}{2})^2 \cdot 3 = \frac{9\pi}{4}$. 又 Ω_2 的体积为

$$V_2 = \iiint_{\Omega_2} dV = \int_1^2 dy \iint_{x^2 + z^2 \le 3(1 - \frac{y^2}{4})} dx dz = \pi \int_1^2 3(1 - \frac{y^2}{4}) dy = \frac{5\pi}{4}.$$

因此,曲面 Σ_1 与 Σ_2 所围成的空间区域的体积为 $\frac{9\pi}{4} - \frac{5\pi}{4} = \pi$. (14 分)

得分	
评阅人	

四、(本题 14 分)
设
$$I_n = n \int_1^a \frac{\mathrm{d}x}{1+x^n}$$
, 其中 $a > 1$. 求极限 $\lim_{n \to \infty} I_n$.

解答. 记 $b = \frac{1}{a}$, 则 0 < b < 1. 作变量替换 $x = \frac{1}{t}$, 得到

$$I_n = \int_b^1 \frac{nt^{n-1}}{t(1+t^n)} dt = \int_b^1 \frac{d(\ln(1+t^n))}{t}.$$

分部积分得

$$I_n = \ln 2 - \frac{\ln(1+b^n)}{b} + \int_b^1 \frac{\ln(1+t^n)}{t^2} dt.$$

当 $t \in [b,1]$ 时, $\frac{\ln(1+t^n)}{t^2} \leqslant t^{n-2}$,

$$0 \leqslant \int_b^1 \frac{\ln(1+t^n)}{t^2} \mathrm{d}t \leqslant \int_b^1 t^{n-2} \mathrm{d}t = \frac{1-b^{n-1}}{n-1}.$$

显然,
$$\lim_{n \to \infty} \frac{1 - b^{n-1}}{n-1} = 0$$
. 由夹逼准则, $\lim_{n \to \infty} \int_b^1 \frac{\ln(1 + t^n)}{t^2} dt = 0$.

得分	
评阅人	

五、(本题 14 分) 设 f(x) 在 [0,1] 上有连续的导数 且 f(0) = 0. 求证:

$$\int_0^1 f^2(x) dx \le 4 \int_0^1 (1-x)^2 |f'(x)|^2 dx,$$

并求使上式成为等式的 f(x).

解答. 由分部积分法

$$\int_0^1 f^2(x) dx = (x-1)f^2(x)\Big|_0^1 - \int_0^1 (x-1)2f(x)f'(x) dx$$
$$= 2\int_0^1 (1-x)f'(x) \cdot f(x) dx.$$

......(4 分)

由 Cauchy 积分不等式,有

$$\int_0^1 (1-x)f'(x) \cdot f(x) dx \le \left(\int_0^1 (1-x)^2 (f'(x))^2 dx \right)^{\frac{1}{2}} \left(\int_0^1 f^2(x) dx \right)^{\frac{1}{2}}.$$

于是

$$\int_0^1 f^2(x) dx \le 4 \int_0^1 (1-x)^2 |f'(x)|^2 dx.$$

.....(10 分)

等式成立时应有常数 c 使得 (1-x)f'(x)=cf(x). 因此当 $x\in(0,1)$ 时, 有

$$((1-x)^c f(x))' = (1-x)^{c-1} ((1-x)f'(x) - cf(x)) = 0.$$

因而存在常数 d 使得 $f(x) = d(1-x)^{-c}$ (0 < x < 1).

得分	
评阅人	

六、(本题 14 分) 设数列 $\{x_n\}$ 满足 $x_0 = \frac{1}{3}$, $x_{n+1} = \frac{x_n^2}{1-x_n+x_n^2}$, $n \ge 0$. 证明: 无穷级数 $\sum_{n=0}^{\infty} x_n$ 收敛并求其

解答. 方法1. 根据数学归纳法可知 $x_n > 0$. 此外, $x_{n+1} - x_n = -\frac{x_n(1 - x_n)^2}{1 - x_n + x_n^2} < 0$. 故 x_n 单调递减, $x_n \leqslant \frac{1}{3}$. 于是, $x_{n+1} = x_n \cdot \frac{x_n}{1 - x_n + x_n^2} \leqslant \frac{4}{9}x_n$, x_n 收敛于 0. (6 分) 令 $f(x) = \frac{x}{1+x}, x > 0$,不难验证 f(x) 严格单调递增且其反函数为 $f^{-1}(x) = \frac{x}{1-x}$. 注意到 $x_{n+1} = f(f^{-1}(x_n) - x_n)$,故

$$f^{-1}(x_{n+1}) = f^{-1}(x_n) - x_n, \quad x_n = f^{-1}(x_n) - f^{-1}(x_{n+1}).$$

$$\sum_{i=0}^n x_i = f^{-1}(x_0) - f^{-1}(x_{n+1}).$$

$$\sum_{i=0}^\infty x_i = f^{-1}(x_0) - f^{-1}(0) = \frac{1}{2}.$$
(14 $\frac{1}{2}$)

解答. 方法2. 证明 x_n 收敛于 0 同方法1.

注意到

$$x_n = \frac{x_n}{1 - x_n} - \frac{x_{n+1}}{1 - x_{n+1}}.$$

$$\sum_{i=0}^n x_i = \frac{x_0}{1 - x_0} - \frac{x_{n+1}}{1 - x_{n+1}}.$$

$$\sum_{i=0}^{\infty} x_i = \frac{x_0}{1 - x_0} = \frac{1}{2}.$$
(14 分)