UCS1602: COMPILER DESIGN

Finite Automata

Session Objectives

- To learn concepts finite automata
- To study about Non deterministic finite automata,
 Deterministic finite automata
- To study about conversion of RE to NFA
- To study about conversion of NFA to DFA
- To study about conversion of RE to DFA

Session Outcomes

- At the end of this session, participants will be able to
 - Understand the concepts of NFA, DFA
 - Understand the conversion of RE to NFA, NFA to DFA and DFA minimization

Outline

- Introduction about NFA and DFA
- Conversion of RE to NFA
- Conversion of NFA to DFA
- Conversion of RE to DFA

Finite Automata

Outline

- Regular expressions = specification
- Finite automata = implementation
- 2 Types DFA, NFA
- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Need only to encode the current state

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Deterministic Finite Automata

• A DFA is a 5-tuple (S, Σ , δ , s_0 , F) where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a state $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Simulating a DFA

- Input string x terminated by an eof. A DFA D
- Output yes if accepts else no

```
S:= s0

a:= nextchar()

while a ≠ eof do

S:= move(S,a)

a:= nextchar()

end do

if S is in Fthen

return "yes"

else return "no"
```


Example DFA

A DFA that accepts (a | b)*abb

Nondeterministic Finite Automata

An NFA is a 5-tuple (S, Σ, δ, s₀, F) where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a set of states $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Transition Graph

 An NFA can be diagrammatically represented by a labeled directed graph called a transition graph

557

Transition Table

 The mapping δ of an NFA can be represented in a transition table

$$\delta(0,\mathbf{a}) = \{0,1\}$$
 $\delta(0,\mathbf{b}) = \{0\}$
 $\delta(1,\mathbf{b}) = \{2\}$
 $\delta(2,\mathbf{b}) = \{3\}$

State	Input a	Input b
0	{0, 1}	{0}
1		{2}
2		{3}

Direct Conversion of RE to DFA

From Regular Expression to DFA Directly (Algorithm)

 Augment the regular expression r with a special end symbol # to make accepting states important

$$r \rightarrow (r)\#$$

- Construct a syntax tree for (r)#
 Alphabets → leaf node
 Operators → inner node
- Number each alphabet including #
- Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos

Syntax Tree of (a|b)*abb#

Annotating the Tree

- nullable(n): the subtree at node n generates languages including the empty string
- firstpos(n): set of positions that can match the first symbol of a string generated by the subtree at node n
- lastpos(n): the set of positions that can match the last symbol of a string generated be the subtree at node n
- followpos(i): the set of positions that can follow position i in the tree

Annotating the Tree Cont...

Node <i>n</i>	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	{ <i>i</i> }	{ <i>i</i> }
	$nullable(c_1)$ or $nullable(c_2)$	$firstpos(c_1)$ \cup $firstpos(c_2)$	$lastpos(c_1)$ \cup $lastpos(c_2)$
, \ c ₁ c ₂	$nullable(c_1)$ and $nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1)$ $\cup firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1)$ $\cup lastpos(c_2)$ else $lastpos(c_2)$
* C ₁	true	$firstpos(c_1)$	$lastpos(c_1)$

Syntax Tree of (a|b)*abb#

followpos

```
for each node n in the tree do
       if n is a cat-node with left child c_1 and right child c_2 then
                for each i in lastpos(c_1) do
                       followpos(i) := followpos(i) \cup firstpos(c_2)
                end do
        else if n is a star-node
                for each i in lastpos(n) do
                       followpos(i) := followpos(i) \cup firstpos(n)
                end do
        end if
end do
```


Algorithm

```
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_0\} and is unmarked
while there is an unmarked state T in Dstates do
       mark T
       for each input symbol a \in \Sigma do
               let U be the set of positions that are in followpos(p)
                       for some position p in T,
                       such that the symbol at position p is a
               if U is not empty and not in Dstates then
                       add U as an unmarked state to Dstates
               end if
               Dtran[T,a] := U
        end do
```

5521

Example

	Node	followpo s	
	1	{1, 2, 3}	
	2	{1, 2, 3}	$\boxed{}$
	3	{4}	
	4	{5}	
	5	{6}	
	6	- b	b
1	star		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1,	/28/2021		a a 22

DFA states

$$A = \{1,2,3\}$$

$$= \{1,2,3,4\} \rightarrow B$$

$$= \{1,2,3\} \rightarrow A$$

$$Dtran(B,a) = followpos(1) Ufollowpos(3)$$

$$=\{1,2,3,4\} \rightarrow B$$

$$=\{1,2,3,5\} \rightarrow C$$

$$Dtran(C,a) = followpos(1) Ufollowpos(3)$$

$$= \{1,2,3,4\} \rightarrow B$$

$$Dtran(C,b) = followpos(2) Ufollowpos(5)$$

$$=\{1,2,3,6\} \rightarrow D$$

$$Dtran(D,a) = followpos(1) Ufollowpos(3)$$

$$= B$$

$$Dtran(D,b) = followpos(2)$$

$$= \{1,2,3\} = A$$

Transition table

States	Input symbol	
	а	b
Α	В	A
В	В	С
С	В	D
D	В	Α

Summary

- NFA
- DFA
- RE to NFA
- NFA to DFA
- RE to DFA

Check your understanding?

- 1. Convert the following regular expression into DFA
 - (a)ba(a/b)*ab
 - (b) $(a^* / b^*)^*$
 - (c) (a/b)*(ac)*

