# ΕCE445 Παράλληλοι και Δικτυακοί Υπολογισμοί

# Χειμερινό Εξάμηνο 2022-2023 Εργασία 2

Ομάδα φοιτητών: Ιωάννης Ρούμπος - 2980 Γεράσιμος Αγοράς - 2947

## Άσκηση 1

a) \_\_\_\_\_ Σειριακός αλγόριθμος\_\_\_\_\_ X: Input array Y: Output array n: length of array ω: η-οστή ρίζα της μονάδας procedure  $fft(x, y, n, \omega)$ if n=1 then y[0] = x[0]else **for** k=0 **to**  $\frac{n}{2}$  - 1 p[k] = x[2k]s[k] = x[2k+1]end fft(p, q,  $\frac{n}{2}$ ,  $\omega^2$ ) fft(s, t,  $\frac{n}{2}$ ,  $\omega^2$ ) for k=0 to n-1  $y[k] = q[k \mod (\frac{n}{2})] + \omega^k t[k \mod (\frac{n}{2})]$ end end

Υπολογισμός κόστους:

$$\mathsf{T(n)} = \sum\nolimits_{n = 1}^{logn} {\sum\nolimits_{j = 0}^{{2^{s - 1}}} {\frac{{n}}{{2^s}}} } = \sum\nolimits_{n = 1}^{logn} {\frac{{n}}{{2^s}}} * {2^{s - 1}} = \sum\nolimits_{n = 1}^{logn} {\frac{{n}}{2}} = \mathsf{O(nlogn)}$$

b) \_\_\_\_\_ Παράλληλος αλγόριθμος\_\_\_\_

X: Input array Y: Output array n: length of array ω: η-οστή ρίζα της μονάδας procedure fft(x\_myID, y\_myID, n) r = log(n)MPI COMM RANK(&myID) R myID = x myID

```
for m=0 to r-1
          S_myID = R_myID
         j = (b_0 ... b_{m-1}, 0, b_{m+1} ... b_{r-1})
          k = (b_0 \dots b_{m-1}, 1, b_{m+1} \dots b_{r-1})
          if myID = j
                   MPI SEND(S<sub>J</sub>, k)
                   MPI_RECV(S<sub>K</sub>, k)
          end
          if myID = k
                   MPI SEND(S<sub>J</sub>, j)
                   MPI_RECV(S_K, j)
          end
         R_{myID} = S_J + S_K \times \omega^{(bm, bm-1 ... b0, 0 ... 0)}
          MPI BARRIER()
end
y = R_myID
otherID = (b_{r-1} ... b_2, b_1, b_0)
if myID ≠ otherID
          if myID < otherID
                   MPI SEND(y, otherID)
                   MPI_SEND(y_myID, otherID)
          end else
                    MPI_SEND(y_myID, otherID)
                   MPI SEND(y, otherID)
          end
end
Υπολογισμός κόστους:
T(n) = (t_c + t_s + t_w) \log(n)
Όπου:
          t<sub>c</sub>: κόστος πολλαπλασιασμού και πρόσθεσης
          t₅: κόστος εκκίνησης των διεργασιών
          tw: κόστος μεταφοράς ανά λέξη
Για τον παράλληλο χρόνο εκτέλεσης έχουμε:
T(p) = t_c*nlog(n)/p + t_s*log(p) + t_w*nlog(p)/p = O(nlog(n)) για p \le n
```

Καθώς αναλυτικότερα έχουμε:

- nlog(n) πράξεις οι οποίες χωρίζονται στις p διεργασίες, q όπου q και προκύπτει q παράγοντας του q
- το setup time είναι log(p) από τον αρχικό τύπο, λόγω του Divide And Conquer χαρακτήρα του αλγορίθμου
- ο παράγοντας του tw είναι n/p επαναπροσδιορισμοί των συνιστωσών για κάθε διεργασία για τα log(p) στάδια

Χρονοβελτίωση: S = t<sub>c</sub>\*n\*log(n)/T<sub>(b)</sub>(p) = 
$$\frac{p*n*log(n)}{n*log(n) + \frac{ts}{tc}*p*log(p) + \frac{tw}{tc}*n*log(p)}$$

$$\frac{\text{Απόδοση: E = T(b)(1)/T(b)(p) =} \frac{1}{1 + \frac{ts*p*log(p)}{tc*n*log(n)} + \frac{tw*log(p)}{tc*log(n)}}$$

d)

$$\frac{dS/dp = \frac{(\frac{p*n*\log(n)}{n*\log(n) + \frac{ts}{tc}*p*\log(p) + \frac{tw}{tc}*n*\log(p)})}{dp} = \frac{n*\log(n)\left(n*\log(n) + \frac{ts}{tc}*p*\log(p) + \frac{tw}{tc}*n*\log(p)\right) - p*n*\log(n)\left(\frac{ts}{tc}*\log(p) + \frac{ts}{tc} + \frac{tw}{tc}*\frac{n}{p}\right)}{\left(n*\log(n) + \frac{ts}{tc}*p*\log(p) + \frac{tw}{tc}*n*\log(p)\right)^{2}} = 0$$

$$n * log(n) \left( n * log(n) + \frac{ts}{tc} * p * log(p) + \frac{tw}{tc} * n * log(p) \right) - p * n * log(n) \left( \frac{ts}{tc} * log(p) + \frac{ts}{tc} + \frac{tw}{tc} * \frac{n}{p} \right) = 0 \Leftrightarrow$$

$$(ἐστω n=256) 2048 \left( 2048 + \frac{ts}{tc} * p * log(p) + \frac{tw}{tc} * 256 * log(p) \right) - p * 2048 \left( \frac{ts}{tc} * log(p) + \frac{ts}{tc} + \frac{tw}{tc} * \frac{256}{p} \right) = 0 \Leftrightarrow$$

$$256 * \frac{tw}{tc} * log(p) = -2048 + p * \frac{ts}{tc} + 256 \Leftrightarrow \frac{tw}{tc} * log(p) = -1792 + p * \frac{1}{256} * \frac{ts}{tc}$$

e)

$$dE/dp = \frac{(\frac{1}{1 + \frac{ts*p*\log(p)}{tc*n*\log(n)} + \frac{tw*\log(p)}{tc*\log(n)}})}{dp} = \frac{\frac{ts*\log(p)}{tc*n*\log(n)} + \frac{ts}{tc*n*\log(n)} + \frac{1}{p}*\frac{tw}{tc*\log(n)}}{\left(1 + \frac{ts*p*\log(p)}{tc*n*\log(n)} + \frac{tw*\log(p)}{tc*\log(n)}\right)^{2}} = 0$$

$$\frac{ts*\log(p)}{tc*n*\log(n)} + \frac{ts}{tc*n*\log(n)} + \frac{1}{p}*\frac{tw}{tc*\log(n)} = 0 \Leftrightarrow \text{(\'eotw n=256)} \quad \frac{ts*\log(p)}{tc*2048} + \frac{ts}{tc*2048} + \frac{1}{p}*\frac{tw}{tc*8} = 0$$

### Άσκηση 2

Εκτελούμε τον σειριακό αλγόριθμο του FFT, ο οποίος είναι βασισμένος στον Cooley-Tukey αλγόριθμο που φαίνεται στο αρχείο  $fft_serial.c$  με μεγέθη  $2^{10}...$   $2^{20}$  και οι χρόνοι σε δευτερόλεπτα που παίρνουμε είναι:

| K = 10 | 0.000604976 | K = 16 | 0.0286929 |
|--------|-------------|--------|-----------|
| K = 11 | 0.00123422  | K = 17 | 0.0574807 |
| K = 12 | 0.00292676  | K = 18 | 0.121656  |
| K = 13 | 0.00593098  | K = 19 | 0.260288  |
| K = 14 | 0.00644857  | K = 20 | 0.584439  |
| K = 15 | 0.0134876   |        |           |

## Άσκηση 3

Προσθέτοντας OpenMP στον αλγόριθμο που χρησιμοποιήσαμε στην Άσκηση 2 (fft\_parallel.c), και με μεγέθη τα ίδια που χρησιμοποιήσαμε παραπάνω παρατηρούμε ότι για αριθμό threads m=6 παρουσιάζεται overhead στο μέγεθος k=10 (size  $=2^{10}$ ). Αυτό μας οδηγεί στο να πάρουμε μετρήσεις μέχρι και για αριθμό threads ίσο με 5.

Άσκηση 4

Οι μετρήσεις που παίρνουμε για τους διάφορους εκθέτης του μεγέθους k και τα διάφορα πλήθη νημάτων m φαίνονται στον παρακάτω πίνακα. Το speedup που φαίνεται σε κάθε περίπτωση είναι σε σύγκριση με το αντίστοιχο μέγεθος για την εκτέλεση σε 1 νήμα.

| K vs M | 1           | 2                      | 3                      | 4                      | 5                      |
|--------|-------------|------------------------|------------------------|------------------------|------------------------|
| 10     | 0.000604976 | 0.000275948<br>(x2.19) | 0.000242511<br>(x2.49) | 0.00027853<br>(x2.17)  | 0.000335888<br>(x1.8)  |
| 11     | 0.00123422  | 0.00049004<br>(x2.52)  | 0.000390815<br>(x3.16) | 0.000407605<br>(x3.03) | 0.000375046<br>(x3.29) |
| 12     | 0.00292676  | 0.00102307<br>(x2.86)  | 0.000719739<br>(x4.07) | 0.000712662<br>(x4.1)  | 0.000654538<br>(x4.47) |
| 13     | 0.00593098  | 0.00193173<br>(x3.07)  | 0.00140042<br>(x4.23)  | 0.00133922<br>(x4.43)  | 0.00129183<br>(x4.59)  |
| 14     | 0.00644857  | 0.00346731<br>(x1.86)  | 0.00218747<br>(x2.94)  | 0.00202571<br>(x3.18)  | 0.00192914<br>(x3.34)  |
| 15     | 0.0134876   | 0.00673193<br>(x2)     | 0.00532629<br>(x2.53)  | 0.00458149<br>(x2.94)  | 0.00582581<br>(x2.31)  |
| 16     | 0.0286929   | 0.0150378<br>(x1.9)    | 0.0108064<br>(x2.65)   | 0.0131791<br>(x2.18)   | 0.00795992<br>(x3.6)   |
| 17     | 0.0574807   | 0.0313205<br>(x1.83)   | 0.0210725<br>(x2.73)   | 0.0340494<br>(x1.69)   | 0.0256495<br>(x2.24)   |
| 18     | 0.121656    | 0.0646525<br>(x1.88)   | 0.0443356<br>(x2.74)   | 0.0575643<br>(x2.11)   | 0.0533176<br>(x2.28)   |
| 19     | 0.260288    | 0.137451<br>(x1.89)    | 0.0970999<br>(x2.68)   | 0.112899<br>(x2.3)     | 0.10246<br>(x2.54)     |
| 20     | 0.584439    | 0.305693<br>(x1.91)    | 0.221649<br>(x2.64)    | 0.211489<br>(x2.76)    | 0.220866<br>(x2.65)    |

Το καλύτερο speedup που παρατηρούμε είναι αυτό για μέγεθος =  $2^{13}$  και threads = 5, με βελτίωση της τάξης του 459%.



(Οι μετρήσεις αυτές βρίσκονται αναλυτικά στο excel εντός του zip, sheet "ex4")

Εκτελούμε τον σειριακό FFTW για μέγεθος =  $2^{13}$  και ο χρόνος που παίρνουμε είναι ίσος με 0.000721484, καλύτερος δηλαδή από την καλύτερη υλοποίηση μας (0.00129183). Αυτό φανερώνει πως ο παράλληλος αλγόριθμος του FFT χρήζει μεγαλύτερης βελτίωσης.

(Για το compile του fftw.c, χρησιμοποιούμε τα flags: gcc -Wall -g fftw.c -o fftw -lfftw3 -lm)

## Άσκηση 5

Παρακάτω έχουμε τον χρόνο εκτέλεσης για διάφορους αριθμούς threads στον αλγόριθμο Monte-Carlo. Παρατηρούμε ότι για το ενδεικτικό μέγεθος =  $10^9$  έχουμε speed-up μέχρι και για αριθμό threads ίσο με 4, ενώ όταν πάμε στα 5 εμφανίζεται overhead και το execution time χειροτερεύει.



Στο αρχείο excel που συμπεριλαμβάνεται στο zip υπάρχουν χρόνοι και για άλλα μεγέθη (sheet "ex5").

#### ПАРАРТНМА

## Περιγραφή μηχανήματος

• Αριθμός πυρήνων: 8

• Μεγέθη κρυφής μνήμης: L1d cache: 128KiB

L1i cache: 128KiB L2 cache: 1MiB L3 cache: 6MiB

# Κώδικας Άσκησης 2 (π.χ.)

Ακολουθεί ο κώδικας για το ερώτημα 2. Όνομα Αρχείου «fft\_serial.c»

```
* Ergasia 2 - Askhsh 2
* Roumpos Ioannis - 2980
* Agoras Gerasimos - 2947
***********************************
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <string.h>
#include <time.h>
#include <omp.h>
#define pi 3.14159265358979323846
unsigned int bitReverse(unsigned int x, int size)
    int n = 0;
    for (int i = 0; i < log2(size); i++)
        n <<= 1;
        n = (x \& 1);
        x >>= 1;
    return n;
}
void fft(complex double* input, complex double* output, int
size)
    int k, j, i;
```

```
complex double expTable[size/2];
    // bit reversal of the given array
    for (i = 0; i < size; ++i) {
        int rev = bitReverse(i, size);
        output[i] = input[rev];
    }
    // Trigonometric Table
    for (k = 0; k < size / 2; k++) {
        expTable[k] = cexp(-2*pi*k/size*I);
    int n, halfsize, tablestep;
    double complex temp;
    // Cooley-Tukey decimation-in-time radix-2 FFT
    for (n = 2; n \le size; n *= 2) {
        halfsize = n/2;
        tablestep = size / n;
        for (i = 0; i < size; i += n) {
            for(j = i, k = 0; j < i + halfsize; j++, k +=
tablestep) {
                temp = output[j + halfsize] * expTable[k];
                output[j + halfsize] = output[j] - temp;
                output[j] += temp;
            }
        if (n == size) // Prevent overflow in size *= 2
            break;
    }
}
int main(int argc,char* argv[]){
    struct timespec tv1, tv2;
    if(argc != 2) {
        printf("Give correct number of arguments!!");
        return -1;
    }
    int n = atoi(argv[1]);
    if((ceil(log2(n)))!=floor(log2(n)))){
        printf("Size must be a power of 2!!");
        return -1;
    }
    double complex* input = malloc(n*sizeof(double complex));
    if (input == NULL) {
        printf("Error in malloc!");
        return -1;
    }
```

```
double complex* output = malloc(n*sizeof(double complex));
    if (output == NULL) {
       printf("Error in malloc!");
        return -1;
    }
   printf("Input array\n");
    for(int i=0; i<n; i++) {
        input[i] = (i+1) + 0*I;
        printf("%lf +
%lf*i\n",creal(input[i]),cimag(input[i]));
   clock gettime(CLOCK MONOTONIC RAW, &tv1);
    fft(input,output,n);
    clock gettime(CLOCK MONOTONIC RAW, &tv2);
   printf("\nOutput array\n");
    for(int i=0; i<n; i++) {
       printf("%lf +
%lf*i\n",creal(output[i]),cimag(output[i]));
   printf ("Total time = %10g seconds\n",
                 (double) (tv2.tv nsec - tv1.tv nsec) /
1000000000.0 +
                (double) (tv2.tv_sec - tv1.tv_sec));
    free(input);
    free (output);
    return 0;
}
```

# Κώδικας Άσκησης 3 (π.χ.)

Ακολουθεί ο κώδικας για το ερώτημα 3. Όνομα Αρχείου «fft\_parallel.c»

```
/******************
* Ergasia 2 - Askhsh 3
* Roumpos Ioannis - 2980
* Agoras Gerasimos - 2947
**************************
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <string.h>
#include <time.h>
#include <omp.h>
```

```
#define pi 3.14159265358979323846
unsigned int bitReverse (unsigned int x, int size)
    int n = 0;
    for (int i = 0; i < log2(size); i++)
        n <<= 1;
        n \mid = (x \& 1);
        x >>= 1;
    return n;
}
void fft(complex double* input, complex double* output, int
size)
{
    int k, j, i;
    complex double *expTable = malloc(size/2*sizeof(double
complex));
    if(expTable == NULL)
        return;
    // bit reversal of the given array
    #pragma omp parallel for shared(output) private(i)
    for (i = 0; i < size; ++i) {
        int rev = bitReverse(i, size);
        output[i] = input[rev];
    }
    #pragma omp parallel for shared(expTable, size) private(k)
    for(k = 0; k < size / 2; k++){
        expTable[k] = cexp(-2*pi*k/size*I);
    int n, halfsize, tablestep;
    double complex temp;
    #pragma omp parallel
private(n, halfsize, tablestep, i, j, k, temp) shared(output)
    for (n = 2; n \le size; n *= 2) {
        halfsize = n/2;
        tablestep = size / n;
    #pragma omp for
        for(i = 0; i < size; i += n){
            for (j = i, k = 0; j < i + halfsize; j++, k +=
tablestep) {
                temp = output[j + halfsize] * expTable[k];
                output[j + halfsize] = output[j] - temp;
                output[j] += temp;
            }
        }
        if(n == size)
```

```
break;
    }
    free(expTable);
}
int main(int argc,char* argv[]){
    struct timespec tv1, tv2;
    if(argc != 2) {
        printf("Give correct number of arguments!!");
        return -1;
    }
    int n = atoi(argv[1]);
    n = pow(2, n);
    double complex* input = malloc(n*sizeof(double complex));
    if (input == NULL) {
       printf("Error in malloc!");
        return -1;
    double complex* output = malloc(n*sizeof(double complex));
    if (output == NULL) {
        printf("Error in malloc!");
        return -1;
    }
    /*printf("Input array\n");
    for(int i=0; i<n; i++) {
        input[i] = (i+1) + 0*I;
        printf("%lf +
%lf*i\n",creal(input[i]),cimag(input[i]));
    } * /
    clock gettime(CLOCK MONOTONIC RAW, &tv1);
    fft(input,output,n);
    clock_gettime(CLOCK_MONOTONIC RAW, &tv2);
    /*printf("\nOutput array\n");
    for(int i=0; i<n; i++){
        printf("%lf +
%lf*i\n",creal(output[i]),cimag(output[i]));
    printf("N = %.2lf ", log2(n));
    printf ("Total time = %10g seconds\n",
                 (double) (tv2.tv nsec - tv1.tv nsec) /
1000000000.0 +
                 (double) (tv2.tv_sec - tv1.tv_sec));
    free(input);
    free(output);
    return 0;
}
```

### Κώδικας Άσκησης 4 (π.χ.)

Ακολουθεί ο κώδικας για το ερώτημα 4. Όνομα Αρχείου «fftw.c»

```
/**********
* Ergasia 2 – Askhsh 4
* Roumpos Ioannis - 2980
* Agoras Gerasimos - 2947
******************************
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <fftw3.h>
int main(int argc,char* argv[]){
    struct timespec tv1,tv2;
    int N = atoi(argv[1]);
    N = pow(2, N);
    fftw complex *in,*out;
    fftw plan p;
    in = (fftw complex*) fftw malloc(sizeof(fftw complex) *
N);
    for (int i=0; i < N; i++) {
        in[i][0] = i+1;
        in[i][1] = 0;
    out = (fftw complex*) fftw malloc(sizeof(fftw complex) *
N);
    clock gettime(CLOCK MONOTONIC RAW, &tv1);
    p = fftw plan dft 1d(N, in, out, FFTW FORWARD,
FFTW ESTIMATE);
    fftw execute(p); /* repeat as needed */
    clock gettime (CLOCK MONOTONIC RAW, &tv2);
    fftw_destroy_plan(p);
    printf ("Total time = %10g seconds\n",
                 (double) (tv2.tv nsec - tv1.tv nsec) /
100000000.0 +
                 (double) (tv2.tv sec - tv1.tv sec));
    fftw free(in); fftw free(out);
    return 0;
}
```

## Κώδικας Άσκησης 5 (π.χ.)

Ακολουθεί ο κώδικας για το ερώτημα 5. Όνομα Αρχείου «mc\_parallel.c»

```
* Ergasia 2 – Askhsh 5
* Roumpos Ioannis - 2980
* Agoras Gerasimos - 2947
******************************
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
#include <time.h>
inline double f(double x)
     return sin(cos(x));
}
// WolframAlpha: integral sin(cos(x)) from 0 to 1 = 0.738643
                                      0.73864299803689018
//
     0.7386429980368901838000902905852160417480209422447648518
714116299
int main(int argc, char *argv[])
     double a = 0.0;
     double b = 1.0;
     unsigned long n = 24e8;
     long tseed = time(0);
     if (argc == 2) {
           tseed = atol(argv[1]);
     }
     else if (argc == 3) {
          n = atol(argv[1]);
           tseed = atol(argv[2]);
     const double h = (b-a)/n;
     const double ref = 0.73864299803689018;
     double res = 0;
     double t0, t1;
     unsigned long i;
    t0 = omp get wtime();
#pragma omp parallel
     double local res = 0;
     double xi;
```

```
unsigned short buffer[3];
   buffer[0] = 0;
   buffer[1] = 0;
   buffer[2] = tseed+omp_get_thread_num();
#pragma omp for
    for (i = 0; i < n; i++) {
          xi = erand48(buffer);
        local_res += f(xi);
#pragma omp atomic
     res += local_res;
}
   res *= h;
   t1 = omp_get_wtime();
     printf("Result=%.16f Error=%e Rel.Error=%e Time=%lf
seconds\n", res, fabs(res-ref), fabs(res-ref)/ref, t1-t0);
     return 0;
}
```