Amendments to the Claims:

This listing of claims will replace all prior versions and listing of claims in the application:

Listing of Claims:

1	1.	(currently amended) A mixer circuit for generating an IF output responsive to an RF input
2		and a LO drive source, comprising:
3		a mixer core having a doubly balanced mixer including a first differentially coupled
4		transistor pair and a second differentially coupled transistor pair;
5		an RF input circuit coupled to the mixer core, the RF input circuit comprising:
6		an input first inductor having a first terminal coupled to receive an RF input signal
7		and a second terminal;
8		a biasing resistor having a first terminal coupled to the second terminal of the
9		input first inductor and a second terminal coupled to a first bias voltage;
10		a first input transistor having a control first terminal coupled to the second
11		terminal of the input first inductor, a second terminal, and a third terminal;
12		a second inductor having a first terminal coupled to the second terminal of the
13		first input transistor and to the first differentially coupled transistor pair,
14		the second inductor also having a second terminal coupled to a ground
15		potential;
16		a supply resistor having a first terminal coupled to the second third terminal of the
17		first input transistor and a second terminal coupled to a supply potential;
18		a first capacitor having a first terminal also coupled to the second third terminal of
19		the first input transistor and a second terminal coupled to the second
20		differentially coupled transistor pair; and
21		a third inductor having a first terminal coupled to the second terminal of the first
22		capacitor and a second terminal coupled to the ground potential.
1	2.	(original) The mixer circuit according to Claim 1 wherein the first differentially coupled
2		transistor pair, the second differentially coupled transistor pair and the first input
3		transistor are all npn transistors.

Attorney Docket No.: MLNR-08101

3.	(original) The mixer circuit according to Claim 1 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all pnp transistors.
4.	(original) The mixer circuit according to Claim 1 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all MOSFET transistors.
5.	(original) The mixer circuit according to Claim 1 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair and the first input transistor are all MESFET transistors.
6.	(currently amended) A mixer circuit for generating an IF output responsive to an RF input and a LO drive source, comprising: a mixer core having a doubly balanced mixer including a first differentially coupled transistor pair and a second differentially coupled transistor pair, the mixer core coupled to receive a LO drive signal, the LO drive signal having a plurality of harmonics; a low noise RF input circuit coupled to the mixer core through a folded_cascode circuit, the low noise RF input circuit coupled to receive an RF input signal, wherein the folded cascode circuit further isolates the low noise RF input circuit from the LO drive signal and the plurality of harmonics.
7.	(currently amended) A The mixer circuit as in Claim 6 wherein the folded cascode circuit comprises: a first cascode transistor having an emitter terminal coupled to a second terminal of a first capacitor and to a first terminal of a third first inductor, a collector terminal coupled to the second differentially coupled transistor pair and a base terminal, a second cascode transistor having a base terminal coupled to the base terminal of the first cascode transistor, an emitter terminal coupled to a first terminal of a second inductor and to an emitter terminal of a first transistor, and a collector terminal coupled to the first differentially coupled transistor pair,
	4.5.

		PATENT
_	_	

Attorney Docket No.: MLNR-08101

10		a second capacitor, having a first terminal coupled to the emitter terminal of the second
11	•	cascode transistor and a second terminal coupled to a the second terminal of the
12		first capacitor, the base terminal of the first cascode transistor and to the base
13		terminal of the second cascode transistor,
14		a third capacitor, having a first terminal coupled to the emitter terminal of the first
15 16		cascode transistor and a second terminal coupled to the second terminal of the second capacitor,
17		a second biasing first resistor having a first terminal coupled to the first terminal of the
18		second capacitor and a second terminal coupled to a second bias voltage.
1	8.	(currently amended) A-The mixer circuit as in Claim 7, wherein the low noise RF input
2		circuit further includes a RF feedback circuit, the RF feedback circuit comprising:
3		a second transistor having a base terminal coupled to the supply potential, an emitter
4		terminal coupled to the a collector terminal of the first input transistor and a
5		collector terminal coupled to the a first terminal of the a supply resistor and to the
6		a first terminal of the first capacitor,
7		a feedback resistor, having a first terminal coupled to the <u>a</u> base terminal of the first input
8		transistor and a second terminal,
9		a second fourth capacitor, having a first terminal coupled to the second terminal of the
10		feedback resistor and a second terminal coupled to the first terminal of the supply
11		resistor.
1	9.	(currently amended) A The mixer circuit as in Claim 7, wherein the mixer core further
2		includes a tracking supply circuit, the tracking supply circuit comprising:
3		a first diode-connected transistor having a cathode terminal coupled to the \underline{a}
4		ground potential and an anode terminal,
5		a second diode-connected transistor having a cathode terminal coupled to the
6		anode terminal of the first diode connected transistor and an anode
7		terminal,
8		a third first resistor having a first terminal coupled to the anode terminal of the
9		second diode connected transistor and a second terminal,
10		a first current supply having a first terminal coupled to the second terminal of the
11		third first resistor and a second terminal coupled to the supply potential,

12	a loop amplifier having a first terminal coupled to the second terminal of the third
13	first resistor and to the first terminal of the first current supply, a second
14	terminal coupled to the supply potential, a third terminal coupled to the
15	ground potential and a fourth terminal,
16	a fourth second resistor having a first terminal coupled to the fourth terminal of
17	the loop amplifier and a second terminal,
18	a second third transistor having a collector terminal coupled to the second
19	terminal of the fourth second resistor, a base terminal coupled to receive a
20	first LO drive signal and emitter terminal,
21	a third fourth transistor having a base terminal coupled to receive a second LO
22	drive signal, an emitter terminal coupled to the emitter terminal of the
23	second transistor and a collector terminal,
24	a fifth third resistor having a first terminal coupled to the fourth terminal of the
25	loop amplifier and a second terminal coupled to the collector terminal of
26	the third transistor
27	a second current supply having a first terminal coupled to the emitter terminal of
28	the second third transistor and to the emitter terminal of the third fourth
29	transistor and a second terminal coupled to the ground potential,
30	a first common collector amplifier having a base terminal coupled to the second
31	terminal of the fifth third resistor and to the collector terminal of the third
32	fourth transistor, a collector terminal coupled to the fourth terminal of the
33	loop amplifier, and an emitter terminal coupled to a first mixer core LO
34	input,
35	a third current supply having a first terminal coupled to the emitter terminal of the
36	first common collector amplifier and a second terminal coupled to the
37	ground potential,
38	a second common collector amplifier having a base terminal coupled to the
39	second terminal of the fourth resistor and to the collector terminal of the
40	second transistor, a collector terminal coupled to the fourth terminal of the
41	loop amplifier and an emitter terminal coupled to a second mixer core LO
42	input,

		PATENT
ttornev	Docket No.:	MLNR-08101

43 44 45		a fourth current supply having a first terminal coupled to the emitter terminal of the second common collector amplifier and a second terminal coupled to the ground potential.
1	10.	(currently amended) A-The mixer circuit as in Claim 7, wherein the low noise RF input
2		circuit further includes a tracking mixer bias current circuit coupled to the second bias
3		input terminal, the tracking mixer bias current circuit comprising:
4		a third second resistor having a first terminal coupled to the supply potential and a second
5		terminal,
6		a first diode connected transistor having a anode terminal coupled to the second terminal
7		of the third second resistor and a cathode terminal,
8		a second transistor having a collector terminal coupled to the cathode terminal of the first
9		diode connected transistor, an emitter terminal coupled to the ground potential and
10		a base terminal,
1		a loop amplifier having a first terminal coupled to the emitter terminal of the first diode
12		connected transistor and to the collector terminal of the second transistor, a
13		second terminal coupled to the second bias voltage and a third terminal,
14		a fourth third resistor having a first terminal coupled to the base terminal of the second
15		[npn] transistor and a second terminal coupled to the second terminal of the loop
16		amplifier and to the second bias voltage,
17		a bandgap voltage supply having a first terminal coupled to the ground potential and a
8		second terminal coupled to the third terminal of the loop amplifier.
1	11.	(currently amended) A The mixer circuit as in Claim 6, wherein the mixer core further
2		includes a tracking supply circuit, the tracking supply circuit comprising:
3		a first diode-connected transistor having a cathode terminal coupled to the a
4		ground potential and an anode terminal,
5		a second diode-connected transistor having a cathode terminal coupled to the
6		anode terminal of the first diode connected transistor and an anode
7		terminal,
8		a third first resistor having a first terminal coupled to the anode terminal of the
9		second diode connected transistor and a second terminal,

10	a first current supply having a first terminal coupled to the second terminal of the
11	third first resistor and a second terminal coupled to the supply potential,
12	a loop amplifier having a first terminal coupled to the second terminal of the third
13	first resistor and to the first terminal of the first current supply, a second
14	terminal coupled to the supply potential, a third terminal coupled to the
15	ground potential and a fourth terminal,
16	a fourth second resistor having a first terminal coupled to the fourth terminal of
17	the loop amplifier and a second terminal,
18	a second transistor having a collector terminal coupled to the second terminal of
19	the fourth resistor, a base terminal coupled to receive a first LO drive
20	signal and emitter terminal,
21	a third transistor having a base terminal coupled to receive a second LO drive
22	signal, an emitter terminal coupled to the emitter terminal of the second
23	transistor and a collector terminal,
24	a fifth third resistor having a first terminal coupled to the fourth terminal of the
25	loop amplifier and a second terminal coupled to the collector terminal of
26	the third transistor
27	a second current supply having a first terminal coupled to the emitter terminal of
28	the second transistor and to the emitter terminal of the third transistor and
29	a second terminal coupled to the ground potential,
30	a first common collector amplifier having a base terminal coupled to the second
31	terminal of the fifth third resistor and to the collector terminal of the third
32	transistor, a collector terminal coupled to the fourth terminal of the loop
33	amplifier, and an emitter terminal coupled to a first mixer core LO input,
34	a third current supply having a first terminal coupled to the emitter terminal of the
35	first common collector amplifier and a second terminal coupled to the
36	ground potential,
37	a second common collector amplifier having a base terminal coupled to the
38	second terminal of the fourth second resistor and to the collector terminal
39	of the second transistor, a collector terminal coupled to the fourth terminal
40	of the loop amplifier and an emitter terminal coupled to a second mixer
41	core LO input,

		<u>PATENT</u>
Attorney	Docket No.	: MLNR-08101

		•
42		a fourth current supply having a first terminal coupled to the emitter terminal of
43		the second common collector amplifier and a second terminal coupled to
44		the ground potential.
1	12.	(currently amended) A The mixer circuit as in Claim 6, wherein the low noise RF input
2		circuit further includes a RF feedback circuit coupled to the RF input circuit, the RF
3		feedback circuit comprising:
4		a second transistor having a base terminal coupled to the a supply potential, an
5		emitter terminal coupled to the collector terminal of the first input
6		transistor and a collector terminal coupled to the a first terminal of the
7		supply resistor and to the a first terminal of the first capacitor,
8		a feedback resistor, having a first terminal coupled to the a base terminal of the
9		first input transistor and a second terminal,
10		a second capacitor, having a first terminal coupled to the second terminal of the
11		feedback resistor and a second terminal coupled to the first terminal of the
12		supply resistor.
1	13.	(currently amended) A quadrature mixer circuit for generating a quadrature IF output
2		responsive to an RF input and a quadrature pair of LO drive signals, comprising:
3		a mixer core having a first doubly balanced mixer including a first differentially
4		coupled transistor pair and a second differentially coupled transistor pair
5		and a second doubly balanced mixer including a third differentially
6		coupled transistor pair and a fourth differentially coupled transistor pair;
7		an RF input circuit coupled to the mixer core, the RF input circuit comprising:
8		an input inductor having a first terminal coupled to receive an RF input signal and
9		a second terminal;
10		a biasing resistor having a first terminal coupled to the second terminal of the
11		input inductor and a second terminal coupled to a first bias voltage;
12		a first input transistor having a base terminal coupled to the second terminal of
13		the input inductor, an emitter terminal, and a collector terminal;
14		a second inductor having a first terminal coupled to the emitter of the first input
15		transistor and to the first differentially coupled transistor pair and to the

				PA7	<u> TENT</u>
ttornev	Docket	No ·	ML	NR-0	8101

16		third differentially coupled transistor pair, the second inductor also having
17		a second terminal coupled to a ground potential;
18		a supply resistor having a first terminal coupled to the collector of the first input
19		transistor and a second terminal coupled to a supply potential;
20		a first capacitor having a first terminal also coupled to the collector of the first
21		transistor and a second terminal coupled to the second differentially
22		coupled transistor pair and to the fourth differentially coupled transistor
23		pair; and
24		a third inductor having a first terminal coupled to the second terminal of the first
25		capacitor and a second terminal coupled to the ground potential.
1	14.	(currently amended) A quadrature mixer circuit for generating a quadrature IF output
2		responsive to an RF input and a quadrature pair of LO drive signals, comprising:
3		a mixer core having a first doubly balanced mixer including a first differentially coupled
4		transistor pair and a second differentially coupled transistor pair and having a
5		second doubly balanced mixer including a third differentially coupled transistor
6		pair and a fourth differentially coupled transistor pair; the mixer core coupled to
7		receive a quadrature LO drive signal, the quadrature LO drive signal having a
8		plurality of harmonics;
9		a low noise RF input circuit coupled to the mixer core through a folded cascode circuit,
10		the low noise RF input circuit coupled to receive an RF input signal, wherein the
11		folded cascode circuit further isolates the low noise RF input circuit from the
12		quadrature LO drive signal and the plurality of harmonics,
13		a first cascode capacitor, a first terminal of the first cascode capacitor coupled to the an
14		emitter terminal of a first cascode transistor and a second node of the first cascode
15		capacitor coupled to the base terminals of the first cascode transistor and a second
16		cascode transistor,
17		a second cascode capacitor, a first terminal of the second cascode capacitor coupled to the
18		base terminals of the first cascode transistor and the second cascode transistor and
19		the a second node of the second cascode capacitor coupled to the an emitter
20		terminal of the second cascode transistor.
21		

1	15.	(currently amended) A The quadrature mixer circuit as in Claim 14 wherein the folded
2		cascode circuit comprises:
3		a first cascode transistor having an emitter terminal coupled to the a second terminal of
4		the a first capacitor and to the a first terminal of the third a first inductor, a
5		collector terminal coupled to the second differentially coupled transistor pair and a
6		base terminal,
7		a second cascode transistor having a base terminal coupled to the base terminal of the first
8		cascode transistor, an emitter terminal coupled to the \underline{a} first terminal of the \underline{a}
9		second inductor and to the emitter terminal of the first transistor and a collector
10		terminal coupled to the first differentially coupled transistor pair,
11	•	a second capacitor, having a first terminal coupled to the collector terminal of the first
12		cascode transistor and a second terminal coupled to the base terminal of the first
13		cascode transistor and to the base terminal of the second cascode transistor,
14		a third capacitor, having a first terminal coupled to the emitter terminal of the second
15		cascode transistor and a second terminal coupled to the second terminal of the
16		second capacitor and to the base terminal of the first cascode transistor and to the
17		base terminal of the first second cascode transistor,
18		a second biasing first resistor having a first terminal coupled to the second terminal of the
19		second first cascode capacitor and the first terminal of the third first cascode
20		capacitor and a second terminal coupled to a second first bias voltage,
21		a third biasing second resistor having a first terminal coupled to the second first bias
22		voltage and to the second terminal of the second biasing first resistor and having a
23		second terminal,
24		a third cascode transistor having a collector terminal coupled to the fourth differentially
25		coupled transistor pair, an emitter terminal coupled to the second first terminal of
26		the third first inductor and to the emitter terminal of the first cascode transistor,
27		and a base terminal,
28		a fourth cascode transistor having a base terminal coupled to the base terminal of the third
29		cascode transistor, a collector terminal coupled the third differentially coupled
30		transistor pair and an emitter terminal coupled to the emitter terminal of the
31		second cascode transistor and to the second first terminal of the second inductor,

	PATENT
Attorney Docket No .:	MLNR-08101

32		a fourth third cascode capacitor having a first terminal coupled to the emitter terminal of
33		the third cascode transistor and a second terminal coupled to the base terminal of
34		the third and fourth cascode transistors,
35		a fifth fourth cascode capacitor having a first terminal coupled to the second terminal of
36		the fourth third cascode capacitor and to the base terminals of the third and fourth
37		cascode transistors and a second terminal coupled to the emitter terminal of the
88		fourth cascode transistor.
1	16.	(currently amended) A The quadrature mixer circuit as in Claim 15 wherein the low
2		noise RF input circuit further includes a RF feedback circuit, the RF feedback circuit
3		comprising:
4		a second transistor having a base terminal coupled to the a supply potential, an
5		emitter terminal coupled to the collector terminal of the first input
6		transistor and a collector terminal coupled to the a first terminal of the
7		supply resistor and to the a first terminal of the first capacitor,
8		a feedback resistor, having a first terminal coupled to the a base terminal of the
9		first input transistor and a second terminal,
0		a sixth second capacitor, having a first terminal coupled to the second terminal of
1		the feedback resistor and a second terminal coupled to the first terminal of
2		the supply resistor.
1	17.	(currently amended) A The quadrature mixer circuit as in Claim 16, wherein the mixer
2		core further includes a first tracking supply circuit portion coupled to the In-Phase LO
3		drive input terminals of the mixer core and a second tracking supply circuit portion
4		coupled to the Quadrature Phase LO drive input terminals of the mixer core.
1	18.	(currently amended) A The quadrature mixer circuit as in Claim 17, wherein the first
2		tracking supply circuit portion comprises:
3		a. a first diode-connected transistor having a cathode terminal coupled to the a
4		ground potential and an anode terminal;
5		b. a second diode-connected transistor having a cathode terminal coupled to the
6		anode terminal of the first diode connected transistor and an anode terminal,

/	c.	a third resistor having a first terminal coupled to the anode terminal of the second
8		diode connected transistor and a second terminal;
9	d.	a first current supply having a first terminal coupled to the second terminal of the
10		third resistor and a second terminal coupled to the supply potential;
11	e.	a loop amplifier having a first terminal coupled to the second terminal of the third
12		resistor and to the first terminal of the first current supply, a second terminal
13		coupled to the supply potential, a third terminal coupled to the ground potential
14		and a fourth terminal;
15	f.	a fourth resistor having a first terminal coupled to the fourth terminal of the loop
16		amplifier and a second terminal;
17	g.	a second third transistor having a collector terminal coupled to the second
18		terminal of the fourth resistor, a base terminal coupled to receive a first LO drive
19		signal and <u>an</u> emitter terminal;
20	h.	a third fourth transistor having a base terminal coupled to receive a second LO
21		drive signal, an emitter terminal coupled to the emitter terminal of the second
22		third transistor and a collector terminal;
23	i.	a fifth resistor having a first terminal coupled to the fourth terminal of the loop
24		amplifier and a second terminal coupled to the collector terminal of the third
25		fourth transistor;
26	j.	a second current supply having a first terminal coupled to the emitter terminal of
27		the second third transistor and to the emitter terminal of the third fourth transistor
28		and a second terminal coupled to the ground potential;
29	k.	a first common collector amplifier having a base terminal coupled to the second
30		terminal of the fifth resistor and to the collector terminal of the third fourth
31		transistor, a collector terminal coupled to the fourth terminal of the loop amplifier,
32		and an emitter terminal coupled to a first mixer core LO input;
33	1.	a third current supply having a first terminal coupled to the emitter terminal of the
34		first common collector amplifier and a second terminal coupled to the ground
35		potential;
36	m.	a second common collector amplifier having a base terminal coupled to the
37		second terminal of the fourth resistor and to the collector terminal of the second
38		third transistor, a collector terminal coupled to the fourth terminal of the loop
39		amplifier and an emitter terminal coupled to a second mixer core LO input; and

PATENT Attorney Docket No.: MLNR-08101

40	n.	a fourth current supply having a first terminal coupled to the emitter terminal of
41		the second common collector amplifier and a second terminal coupled to the
42		ground potential;
43	and wherein t	he second tracking supply circuit portion comprises:
44	0.	a third diode-connected transistor having a cathode terminal coupled to the ground
45		potential and an anode terminal;
46	p.	a fourth diode-connected transistor having a cathode terminal coupled to the
47		anode terminal of the third diode connected transistor and an anode terminal;
48	q.	a third sixth resistor having a first terminal coupled to the anode terminal of the
49		second diode connected transistor and a second terminal;
50	r.	a first fifth current supply having a first terminal coupled to the second terminal of
51		the third sixth resistor and a second terminal coupled to the supply potential;
52	s.	a second loop amplifier having a first terminal coupled to the second terminal of
53		the third sixth resistor and to the first terminal of the first fifth current supply, a
54		second terminal coupled to the supply potential, a third terminal coupled to the
55		ground potential and a fourth terminal;
56	t.	a fourth seventh resistor having a first terminal coupled to the fourth terminal of
57		the second loop amplifier and a second terminal;
58	u.	a second fourth transistor having a collector terminal coupled to the second
59		terminal of the fourth seventh resistor, a base terminal coupled to receive a first
60		LO drive signal and emitter terminal;
61	v.	a third fourth transistor having a base terminal coupled to receive a second LO
62		drive signal, an emitter terminal coupled to the emitter terminal of the second
63		fourth transistor and a collector terminal;
64	ŵ.	a fifth eighth resistor having a first terminal coupled to the fourth terminal of the
65		second loop amplifier and a second terminal coupled to the collector terminal of
66	•	the third fourth transistor;
67	x.	a second sixth current supply having a first terminal coupled to the emitter
68		terminal of the second fourth transistor and to the emitter terminal of the third
69		fourth transistor and a second terminal coupled to the ground potential;
70	y.	a first third common collector amplifier having a base terminal coupled to the
71		second terminal of the fifth eighth resistor and to the collector terminal of the third

	PATENT

Attorney Docket No.: MLNR-08101

12			fourth transistor, a collector terminal coupled to the fourth terminal of the second
73			loop amplifier, and an emitter terminal coupled to a first mixer core LO input;
74		z.	a third seventh current supply having a first terminal coupled to the emitter
75			terminal of the first third common collector amplifier and a second terminal
76			coupled to the ground potential;
77		aa.	a second fourth common collector amplifier having a base terminal coupled to the
78			second terminal of the fourth seventh resistor and to the collector terminal of the
79			second fourth transistor, a collector terminal coupled to the fourth terminal of the
80			second loop amplifier and an emitter terminal coupled to a second mixer core LO
81			input;
82		ab.	a fourth eighth current supply having a first terminal coupled to the emitter
83			terminal of the second fourth common collector amplifier and a second terminal
84			coupled to the ground potential.
1	19.	(curre	ently amended) A The quadrature mixer circuit as in Claim 15, wherein the low
2		noise	RF input circuit further includes a tracking mixer bias current circuit, the tracking
3		bias c	urrent circuit comprising:
4			a first resistor having a first terminal coupled to the supply potential and a second
5			terminal,
6			a first diode connected transistor having a anode terminal coupled to the second
7			terminal of the third resistor and a cathode terminal,
8			a second transistor having a collector terminal coupled to the cathode terminal of
9			the first diode connected transistor, an emitter terminal coupled to the
10			ground potential and a base terminal,
11			a loop amplifier having a first terminal coupled to the emitter terminal of the first
12			diode connected transistor and to the collector terminal of the second
13			transistor, a second terminal coupled to the second first bias voltage and a
14			third terminal,
15			a second resistor having a first terminal coupled to the base terminal of the second
16			transistor and a second terminal coupled to the second terminal of the loop
17			amplifier and to the second first bias voltage,
18			a bandgap voltage supply having a first terminal coupled to the ground potential
19			and a second terminal coupled to the third terminal of the loop amplifier.

1	20.	(canceled)
1	21.	(currently amended) A mixer circuit for generating an IF output responsive to an RF input
2		and a LO drive source, comprising:
3		a mixer core having a doubly balanced mixer including a first differentially coupled
4		transistor pair and a second differentially coupled transistor pair, the mixer core
5		coupled to receive a LO drive signal, the LO drive signal having a plurality of
6		harmonics;
7		a low noise single ended RF input circuit coupled to the mixer core through a cascode
8		circuit, the low noise single ended RF input circuit coupled to receive an RF input
9		signal, wherein the cascode circuit further isolates the low noise single ended RF
10		input circuit from the LO drive signal and the plurality of harmonics, the <u>low</u>
11		noise single ended RF circuit including means for providing an input impedance
12		and means for splitting a phase of the RF input signal.
1	22.	(currently amended) The mixer circuit according to Claim 6 wherein the first
2		differentially coupled transistor pair, the second differentially coupled transistor pair and
3		the first input transistor are all npn transistors.
1	23.	(currently amended) The mixer circuit according to Claim 6 wherein the first
2		differentially coupled transistor pair, the second differentially coupled transistor pair and
3		the first input transistor are all pnp transistors.
1	24.	(currently amended) The mixer circuit according to Claim 6 wherein the first
2		differentially coupled transistor pair, the second differentially coupled transistor pair and
3		the first input transistor are all MOSFET transistors.
1	25.	(currently amended) The mixer circuit according to Claim 6 wherein the first
2		differentially coupled transistor pair, the second differentially coupled transistor pair and
3		the first input transistor are all MESFET transistors.

- 1 26. (currently amended) The <u>quadrature</u> mixer circuit according to Claim 13 wherein the first
 2 differentially coupled transistor pair, the second differentially coupled transistor pair, the
 3 third differentially coupled transistor pair, the fourth differentially coupled transistor pair
 4 and the first input transistor are all npn transistors.
- 1 27. (currently amended) The <u>quadrature</u> mixer circuit according to Claim 13 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair, the third differentially coupled transistor pair, the fourth differentially coupled transistor pair and the first input transistor are all pnp transistors.
- 1 28. (currently amended) The <u>quadrature</u> mixer circuit according to Claim 13 wherein the first
 2 differentially coupled transistor pair, the second differentially coupled transistor pair, the
 3 third differentially coupled transistor pair, the fourth differentially coupled transistor pair
 4 and the first input transistor are all MOSFET transistors.
- 1 29. (currently amended) The <u>quadrature</u> mixer circuit according to Claim 13 wherein the first
 2 differentially coupled transistor pair, the second differentially coupled transistor pair, the
 3 third differentially coupled transistor pair, the fourth differentially coupled transistor pair
 4 and the first input transistor are all MESFET transistors.
- 1 30. (currently amended) The <u>quadrature</u> mixer circuit according to Claim 14 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair, the third differentially coupled transistor pair, the fourth differentially coupled transistor pair and the first input transistor are all npn transistors.
- 1 31. (currently amended) The <u>quadrature</u> mixer circuit according to Claim 14 wherein the first differentially coupled transistor pair, the second differentially coupled transistor pair, the third differentially coupled transistor pair, the fourth differentially coupled transistor pair and the first input transistor are all pnp transistors.
- 1 32. (currently amended) The <u>quadrature</u> mixer circuit according to Claim 14 wherein the first differentially coupled transistor pair, the

third differentially coupled transistor pair, the fourth differentially coupled transistor pair 3 4 and the first input transistor are all MOSFET transistors. (currently amended) The quadrature mixer circuit according to Claim 14 wherein the first 1 33. differentially coupled transistor pair, the second differentially coupled transistor pair, the 2 third differentially coupled transistor pair, the fourth differentially coupled transistor pair 3 and the first input transistor are all MESFET transistors. 4 1 34. (canceled) (canceled) 1 35. 1 36. (canceled) 1 37. (canceled) 1 38. (currently amended) The mixer circuit according to Claim 21 wherein the first differentially coupled transistor pair[,] and the second differentially coupled transistor 2 3 pair and the first input transistor are all npn transistors. (currently amended) The mixer circuit according to Claim 21 wherein the first 1 39. differentially coupled transistor pair[,] and the second differentially coupled transistor 2 3 pair and the first input transistor are all pnp transistors. (currently amended) The mixer circuit according to Claim 21 wherein the first 1 40. differentially coupled transistor pair[,] and the second differentially coupled transistor 2 pair and the first input transistor are all MOSFET transistors. 3 1 (currently amended) The mixer circuit according to Claim 21 wherein the first 41. differentially coupled transistor pair[,] and the second differentially coupled transistor 2

pair and the first input transistor are all MESFET transistors.

3