- [§2.3] 2. (a) No. For all nonzero $n \in \mathbb{Z}$, f attempts to assign more than one element of \mathbb{R} .
 - (b) Yes. For all $n \in \mathbb{Z}$, f assigns exactly one element of \mathbb{R} .
 - (c) No. Although $2 \in \mathbb{Z}$, it cannot be in the domain of f (to avoid division by zero).
 - 6. (a) Domain: $\mathbb{Z}^+ \times \mathbb{Z}^+$

Range: \mathbb{Z}^+

- (b) Domain: \mathbb{Z}^+ Range: $\{x \in \mathbb{Z} \mid 1 \le x \le 9\}$
- 8. (f) -2
 - (g) $\lfloor \frac{1}{2} + 1 \rfloor = \boxed{1}$
 - (h) $\left[0 + 1 + \frac{1}{2}\right] = \boxed{2}$
- 23. (a) Yes.

f is one-to-one: $2x + 1 \neq 2y + 1$ when $x \neq y$.

f is onto: for all $y \in \mathbb{R}$ there is an $x \in \mathbb{R}$ such that 2x + 1 = y. Namely, $x = \frac{y-1}{2}$.

- (b) No. For example, f(1) = 2 = f(-1).
- 28. $f: \mathbb{R} \to \mathbb{R}$ is not invertible because there is no $x \in \mathbb{R}$ such that $e^x \leq 0$.

 $f: \mathbb{R} \to \mathbb{R}^+$ is invertible because it is:

- one-to-one because e^x is strictly increasing, and
- onto because for all $y \in \mathbb{R}^+$ there is an $x \in \mathbb{R}$ such that $e^x = y$. Namely, $x = \log_e(y)$.
- 31. (a) $f(S) = \{1, 0, 3\}$

$$\begin{array}{c|c} x & f(x) \\ \hline \pm 2 & \lfloor 4/3 \rfloor = 1 \\ \pm 1 & \lfloor 1/3 \rfloor = 0 \\ 0 & \lfloor 0/3 \rfloor = 0 \\ 3 & |9/3| = 3 \end{array}$$

(b) $f(S) = \{1, 0, 3, 5, 8\}$

$$\begin{array}{c|cc}
x & f(x) \\
\hline
4 & \lfloor 16/3 \rfloor = 5 \\
5 & |25/3| = 8
\end{array}$$

- 36. $f \circ g$ is $f(g(x)) = f(x+2) = (x+2)^2 + 1$ $g \circ f$ is $g(f(x)) = g(x^2 + 1) = x^2 + 3$
- 38. f(g(x)) = a(cx + d) + b and g(f(x)) = c(ax + b) + d. Rearrangement gives

$$f(g(x)) = acx + ad + b$$
 and
 $g(f(x)) = acx + cb + d$,

where the acx term is common, so ad + b = cb + d is necessary and sufficient for $f \circ g = g \circ f$.

39. f is invertible because it is:

- one-to-one because $ax + b \neq ay + b$ when $a \neq 0$ and $x \neq y$, and
- onto because, given $a \neq 0$, for all $y \in \mathbb{R}$ there is an $x \in \mathbb{R}$ such that ax + b = y. Namely, $x = \frac{y-b}{a}$ and $a \neq 0$.

Therefore the inverse of f is

$$f^{-1}(y) = \frac{y-b}{a} \quad (a \neq 0).$$

64.

(plotted over gridlines by hand)