

Architecture Tutorial – Capstone 2019

Outline

- What is Architecture?
- How to create an Architecture?
 - Stakeholders and project settings
 - Architecture significant requirements
 - Design and Modeling
 - Documentation
 - Prediction and Control
- Organizational Aspects

Software Architecture Definitions

Software architecture is the structure or structures of the system, which comprise software elements, the externally visible properties of those elements, and the relationships among them.

[Software Architecture in Practice, L.Bass, P.Clements, R.Kazman]

Software architecture is the fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution.

[Systems and software engineering — Architecture description, ISO Standard 42010]

Software architecture is the set of design decisions which, if made incorrectly, may cause your project to be cancelled.

[E. Woods]

■ Software architecture is the set of **principal design decisions** made about the **system**.

[Software Architecture: Foundations, Theory, and Practice, E.Dashofy, N.Medvidovic, R. Taylor.]

Architecting vs. Architecture

Activities

Design
Modeling
Communication
Negotiation

Artefacts

Design Decisions
Blueprints & Models
Documentation
Implemented Decisions

Architectures: The Artifact

... provide guidance

- Plan for constructing a system
- Technical leadership and coordination
- Standards and consistency

... enable communication

- Clear technical vision and roadmap
- Explicit documentation for communication

... balance technical risks

- Identification and mitigation
- Definition of solution concepts
- Anticipation (preparation) for changes

... manage the inherent **complexity** of software

- Products to be built
- Increasing interconnection of systems
- Integration with legacy systems
- Collaboration of organizational units

Architecting: The Activity

Architect as a Mediator and Communicator

What are the challenges?

- Complexity of the system itself
- Interconnection of the systems
- Continuous change of the system
- Distributed development processes
- Technology choice
- Integration with already existing systems
- Conflicting quality requirements
 - Time to market
 - Maintainability
 - Fault tolerance
 - **...**

What is the solution?

- Develop your system architecture centric
- In your architecture:
 - Identify crucial challenges
 - Find appropriate solutions for these challenges

The Big Picture of Architecting

When to Spend Architecting Effort... ... in the Rational Unified Process (RUP)

Inception	Elaboration	Construction	Transition

Stakeholders and Project Settings

Typical Stakeholders

The Role of Stakeholders and their Involvement

- Stakeholders have concerns
 - Concerns form the product...
 - ... and drive the architecture
- The architect has to
 - Identify and know the stakeholders!
 - Involve the stakeholders early and continuously!
 - Know their concerns!
 - Real needs, wishes
 - **Manage their expectations!**
 - Prioritize: not every wish can be fulfilled
 - Make tradeoffs

Task: Identify the key stakeholders of the project

Architecture Significant Requirements

Architectural Drivers

Business goals

- Customer organization
- Developing organization

Quality attributes

- System in use
- System under development

Key functional requirements

- Unique properties
- Make system viable

Constraints

- Organizational and technical
- Cost and time

- cause complexity
- might be competing
- might be interpreted differently
- need to be managed
- → are captured in architecture scenarios

Architecture Driver Template

Categorization	
Driver Name	Concise short name
Driver ID	Unique identifier
Status	[Open, Elicited, Under Design, Designed, Under Realization, Realized, Done]
Priority	[High - Medium – Low]

Responsibilities		
Supporter	Stakeholders supporting the driver	
Sponsor	Stakeholders paying for the driver	
Author	Responsible for filling this template	
Inspector	Stakeholders reviewing this driver	

Description		Quantification
Environment	Context and/or initial situation applying to this driver	 Measurable effects applying to the environment
Stimulus	The event, trigger or condition arising from this driver	Measurable effects applying to the stimulus
Response	The expected reaction of the system to the driver event (black box view putting no constraints on the design)	 Measurable effects applying to the response Measurable indicators that the driver has been achieved by the architecture

Architecture Driver Example

Categorization		
Driver Name	Application startup time	
Driver ID	AD.01.PERFORMANCE	
Status	Realized	
Priority	High	

Responsibilities		
Supporter	Carla Customer	
Sponsor	Mike Manager	
Author	Arnold Architect	
Inspector	Alfred Architect	

Description		Quantification
Environment	The application is installed on the system and has been started before at least once. The application is currently closed and the system is running on normal load.	■ Previous starts >= 1
Stimulus	A user starts the application from the Windows start menu.	
Response	The application starts and is ready for inputting search data in less than 1 second. The application is ready for fast answers to search queries after 5 seconds.	Initial startup time < 1sFull startup time < 5s

Architecture Driver Example Most Important

Categorization		Responsibilities
Driver Name	Application startup time	Supporter
Driver ID	AD.01.PERFORMANCE	Sponsor
Status	Realized	Author
Priority	High	Inspector
Description		Quantification
Environment	The application is installed on the system and has been started before at least once. The application is currently closed and the system is running on normal load.	■ Previous starts >= 1
Stimulus	A user starts the application from the Windows start menu.	
Stilliulus		
Response	The application starts and is ready for inputting search data in less than 1 second. The application is ready for fast answers to search queries after 5 seconds.	Initial startup time < 1sFull startup time < 5s

Notations for Architecture Drivers

Business Goals

- Natural Language
- Links to Other Documents

Constraints

- Natural Language
- Links to Other Documents

Quality Attributes

- Drivers
- Scenarios
- Links to Other Documents
- (Use Cases)

Key Functional Requirements

- Use Cases
- User Stories / Epics
- Driver
- Scenario
- Natural Language
- Links to Other Documents

Design

Architectural Scope

Many Candidates, Varying Characteristics

Technologies

Dimensions

Decompose by addressing different dimensions

Software (Structure & Behavior)

Data

Data, data types, data formats handled by the system

Functions

Features, app logic and their mapping to components & modules of the system

Environment
(Hardware &
Infrastructure & Tools)

Deployment

 System distribution, execution environment, and tool chains

Activities

 Activities done with the system, responsibility within the system

Technologies

Technologies used by the system

Data | Functions | Deployment | Activities | Technologies

IESE

Topics to think about – Data & Functions

	Run	time	Devi	time	
Data		Syst	em		Data
Functions					Functions

Runtime	Devtime
 What does the system do and what do the systems in the context do? What are functions and data at the interface to external systems? How do I decompose the functionality in executable components? How should the components communicate and what interfaces should they use/provide? What data is exchanged how many times? Where is the data created, transported, processed and stored within the system? 	 How are data structures defined? What data formats are needed? How is the software partitioned in the development environment? What are units at development time that should be compiled and tested separately? How can modules be divided so redundant code can be prevented? How can modules be decoupled?

Topics to think about – Deployment

	Runtime	Devt	time
Deployment		System	Deployment
Runti	me	Devtime	

- What processes do exist during runtime?
- Where are processes/tasks allocated and executed?
- How do processes communicate with one another?
- What execution environments do I need? (e.g. Application Server)
- How to partition the SW into parallel tasks?
- Who operates the software in what location?

- How do runtime components (allocated to processes/tasks) map to development units?
- How are the compilation units mapped to deployable artifacts?
- How are deployment units created?
- How does the tool chain look like for building and deploying the software to the final execution environment?
- How are modules mapped to teams?

Topics to think about – Activities

Runtime	Devtime
How does operation of the system look like?	 Who is involved in the development and delivery of the software system? Who is responsible for what system portions? How is the development, quality assurance and delivery of the software organized in terms of processes and organizational units? How to assign the modules to development iterations?

Topics to think about – Technologies

Runtime	Devtime
 What technologies are used at runtime? What technologies are used for communication between the system and external systems? What are properties of candidate technologies (bandwidth, latency, throughput, processing power, energy consumption, etc.) 	 What tools are being used for development and delivery? How are the tools connected/integrated?

Notation: Architecture Decomposition Framework

Architecture Design Process

Architecture: Essential Principles

Abstraction

Extraction of the "essentials"

Modularization & Localization of concerns

- Hierarchical decomposition (Divide & conquer)
- Create modular units with clearly defined interfaces and dependencies
- Create modular solutions that can be changed in one place

Separation of Concerns

Reduce aspects to the relevant information (e.g. view-based)

Encapsulation & Information hiding

- Avoid global variables
- Restrict access/visibility to internals

Uniformity

- Interfaces should be implemented consistently with the same mechanisms (e.g. interface classes, ...)
- Usage of communication protocols

Architecture Design Decisions

- Design Decisions Balance competing concerns
- Some Design Decisions are made early in the lifecycle
 - Typically have far-reaching effects
 - Are hard to change (in later phases or future projects)
- → The impact of architecture design decisions has to be known!

Decision Rationale Template

Decision Name	Concise short name
Design Decision ID	Unique identifier
Explanation	Explanation of the decision rationale

Pros & Opportunities

- Points in favor
- Anticipations of future

Assumptions & Quantifications

- Assumption made about the driver solution (or parts of it)
- Measurable effects applying to the driver solution (or parts of it)

Cons & Risks

- Points against
- Unknown or open aspects

Trade-Offs

- Trade-offs to other design decisions, quality attributes, solutions concepts, architecture drivers
- Potentially impacted if this solution changes

Manifestation Links

Links to models, diagrams, additional documentation

Decision Rationale Example

Decision Name	Decoupled loading of search data	
Design Decision ID	DD.01	
Explanation	Loading the search data is done in a separate thread. The application's UI can be started and used for typing in search queries before the search data is actually loaded.	

Pros & Opportunities

Data loading time does not add on startup time

Cons & Risks

 Loading in separate thread requires synchronization and makes implementation more difficult

Assumptions & Quantifications

Data can be loaded in 5s

Trade-Offs

Maintainability, understandability

Manifestation Links

Driver Solution Template

Driver Name	Concise short name	
Driver ID	Unique identifier	
Steps	 Logical flow to explain driver solution (white box view explaining the design) The glue between design decisions (accepted and discarded) Putting all related design decisions in a combined and larger context 	
Related Design Decisions	ACCEPTED Link to design decision (detailed description) to enable traceability	DISCARDED Link to design decision (detailed description) to enable traceability

Pros & Opportunities

- Points in favor
- Anticipations of future

Assumptions & Quantifications

- Assumption made about the driver solution (or parts of it)
- Measurable effects applying to the driver solution (or parts of it)

Cons & Risks

- Points against
- Unknown or open aspects

Trade-Offs

- Trade-offs to other design decisions, quality attributes, solutions concepts, architecture drivers
- Potentially impacted if this solution changes

Manifestation Links

Links to models, diagrams, additional documentation

Driver Solution Example

Driver Name	Application startup time
Driver ID	AD.01.PERFORMANCE.
Steps	 Application always stores preprocessed index-structures on updates of searchable items On startup, loading of search data is moved to a separate thread The UI is started and ready for user input while loading of search data is ongoing After loading the search data, searches can be done without the user noticing that search was not available before
Related Design Decisions	 DD.01 Decoupled loading of search data DD.12 Preprocessed index-structures of search data

Pros & Opportunities

Very fast startup time, application directly usable by user

Cons & Risks

- More effort in realization
- Loading in separate thread requires synchronization and makes implementation more difficult

Assumptions & Quantifications

- Data can be loaded in 5s
- User rarely sends a search in less than 4s after start is completed

Trade-Offs

Maintainability, understandability

x Architecture Drivers (Input)

x Driver Solutions (Output)

y Decision Rationales (Output)

z Architecture Diagrams (Output)

Minimum Set of Views

- Context Delineation: System Context Diagram
- Deployment View: Deployment Diagram
- Function View:
 - Structural Part: Component Diagram
 - Behavioral Part: Sequence Diagram
 - Package Diagram/ Class Diagram
- Data View:
 - Data Flow Diagram
 - Class Diagram/ Database Model
- Activity View: Allocating Responsiblity

- Ensure Quality Drivers
 - Use patterns
 - Consolidate and align all the models

Documentation

Who uses the Architecture Documentation?

Developer

Architect

Projectleader

Manager

Quality Engineer

Software Architecture Document – Example

Example Architecture Document

Authors: Matthias Naab Dominik Rost

A publication by Fraunhofer IESE

1 1.1 1.2 1.3 1.4	Introduction Project Context & Document Goals System Goals Stakeholders Stakeholder Reading Guide	1 1 1 1 2
2 2.1 2.2 2.3 2.4	Architecture Drivers Business Goals Key Functional Requirements Quality Requirements Constraints	3 5 7 10
3.1 3.2 3.3 3.4	Architecture Overview and Key Architecture Cond Context Delineation Component Overview Platform-Product-Relationship Layering	12 13 16 16
4 4.1 4.2 4.3	Detailed Solutions for Architectural Drivers Deployability Decentralization of Computation Performance	18 18 19 21
5.1 5.2 5.3 5.4 5.5	Solution Concepts for Cross Cutting Concerns Internationalization Logging Multi Tenancy License Models	22 22 22 22 22 22 22
6 6.1	Methodology Fraunhofer ACES ADF	23 23
7	Glossary	24

Tool Support for Architecture Modeling

- First use paper
- Then use some Modeling tool (Enterprise Architect for example)
- Use word for documenting things

Prediction and Control

You can start your implementation

In the real world the story only starts...

Evolution
Migration
Reconstruction

. . .

So, be brave!

Organizational Aspects

Expected Outcome

- Architecture Model
- Architecture Document
 - Architecture Drivers
 - Design Decisions
 - Scenario Solutions
- Technology Assessment
- Lessons Learned

Organizational Aspects

- Architects from every team
 - Discuss inside the team and other stakeholders to design the system
 - Discuss with other teams' architects to align the architectures
 - Manifest the architecture
- Other members of the team
 - Help architects to take decisions
 - Provide feedback on technological matters

Contact for Your Architecture Task:

Rodrigo Falcão

Phone: +49 (0)631 / 6800-2159

Mail: rodrigo.falcao@iese.fraunhofer.de

architecture@iese.fraunhofer.de architecture.iese.fraunhofer.de