2)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-200101

(43) Date of publication of application: 15.07.2004

(51)Int.CI.

H01M 4/58 H01M 10/40 // C01G 51/00

(21)Application number: 2002-369581

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

20.12.2002

(72)Inventor: MIYAZAKI SHINYA

NISHIDA NOBUMICHI

(54) NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND ITS MANUFACTURING METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery in which loading performance and cycle performance are improved even if additional amount of zirconium is small as less than 1 mol%.

SOLUTION: In this non-aqueous electrolyte secondary battery, cobalt complex oxide, containing lithium of hexagonal crystals which are added by 0.01 mol% or more and 0.9 mol% or less of zirconium by coprecipitation in synthesizing a cobalt compound (for example, cobalt carbonate and cobalt hydroxide) to become the cobalt source is used as a positive electrode active material. Because of this, compared with such a case that zirconium is added in baking a cobalt complex oxide containing lithium, zirconium by a smaller amount is added more homogeneously on the surface of the cobalt complex oxide containing lithium. In this case, it is preferable that a crystallite diameter in (110) vector direction of the positive electrode active

material is 900 & angst; or more and 1,100 & angst; or less. By this, without accompanying capacity reduction or safety reduction, the improvement of cycle performance can be achieved.

LEGAL STATUS

[Date of request for examination]

12.07.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出顧公開番号

特**ബ2004-200101** (P2004-200101A)

(43) 公開日 平成16年7月15日(2004.7.15)

(51) Int.Cl. 7	FI		テーマコード(参考)
HO1M 4/58	HO1M	4/58	4G048
HO1M 10/40	HO1M	10/40 Z	5H029
// CO1G 51/00	. CO1G	51/00 A	5H05O .

審査請求 未請求 請求項の数 4 〇L (全 13 頁)

(21) 出願番号 (22) 出願日	特願2002-369581 (P2002-369581)	(71) 出願人	000001889
	平成14年12月20日 (2002.12.20)	(71) 山殿人	三洋電機株式会社
	•		大阪府守口市京阪本通2丁目5番5号
	•	(74) 代理人	100103735
			弁理士 鈴木 隆盛
		(74) 代理人	100102635
			弁理士 浅見 保男
		(74) 代理人	100106459
			弁理士 高橋 英生
		(74) 代理人	100105500
			弁理士 武山 吉孝
		(72) 発明者	宮崎 晋也
•			大阪府守口市京阪本通2丁目5番5号 三
			洋電機株式会社内
•	۸ .	1	
	· *		最終頁に続く
	····		弁理士 高橋 英生 100105500 弁理士 武山 吉孝 宮崎 晋也 大阪府守口市京阪本通2丁目5番5号 洋電機株式会社内

(54) 【発明の名称】非水電解質二次電池およびその製造方法

(57) 【要約】

【課題】ジルコニウムが1mol%未満と少量の添加量であっても、負荷性能およびサイクル性能が向上した非水電解質二次電池を提供する。

【解決手段】本発明の非水電解質二次電池は、コバルト源となるコバルト化合物(例えば、炭酸コバルト、水酸化コバルト)の合成時の共沈によりジルコニウム0.01mol%以上、0.9mol%以下添加された六方晶系のリチウム含有コバルト複合酸化物を正極活物質として用いるようにしている。このため、リチウム含有コバルト複合酸化物の焼成時にジルコニウムを添加する場合に比べて、少量でリチウム含有コバルト複合酸化物の表面に均質にジルコニウムが添加されるようになる。この場合、正極活物質の(110)ベクトル方向の結晶子径が900人以上、1100人以下であるのが望ましい。これにより、容量低下や安全性低下を伴うことなく、サイクル性能の向上を達成できるようになった。

【特許請求の範囲】

【請求項1】

リチウムイオンの吸蔵・放出が可能な正極活物質と、リチウムイオンの吸蔵・放出が可能な負極活物質と、非水系電解質とを備えた非水電解質二次電池であって、前記正極活物質はコパルト源としてのコパルト化合物の合成時に共沈によりジルコニウムが0.01モル%以上、0.9モル%以下添加された六方晶系のリチウム含有コパルト複合酸化物であることを特徴とする非水電解質二次電池。

【請求項2】

前記正極活物質は(110)ベクトル方向の結晶子径が 900Å以上、1100Å以下で、かつ、前記ジルコニーウムが前記リチウム含有コバルト複合酸化物の表面に均一に分散していることを特徴とする請求項1に記載の非 水電解質二次電池。

【請求項3】

リチウムイオンの吸蔵・放出が可能な正極活物質と、リ チウムイオンの吸蔵・放出が可能な負極活物質と、非水 系電解質とを備えた非水電解質二次電池の製造方法であ って、

コバルト源となるコバルト化合物を熱分解生成するための初期コバルト化合物にジルコニウムを正極活物質として0.01モル%以上、0.9モル%以下添加されるように共沈させる共沈工程と、

前記ジルコニウムが共沈されたコバルト化合物からなる 第1成分と、リチウム源となるリチウム化合物からなる 第2成分とを混合して混合物とする混合工程と、

前記混合物を焼成する焼成工程とを備えたことを特徴と する非水電解質二次電池の製造方法。

【請求項4】

前記焼成工程において、前記混合物を(110)ベクトル方向の結晶子径が900A以上、1100A以下になるように焼成することを特徴とする請求項3に記載の非水電解質二次電池の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はリチウムイオンの吸蔵・放出が可能な正極活物質と、リチウムイオンの吸蔵・放出が可能な負極活物質と、非水系電解質とを備えた非水電解質二次電池および その製造方法に関する。

[0002]

【従来の技術】

近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられる電池として、リチウムイオンを吸蔵・放出できる合金もしくは炭素材料などを負極活物質とし、コバルト酸リチウム(LiCo〇2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2〇4)等のリチウム含有遷移金属

酸化物を正極活物質とする非水電解質二次電池が、小型 軽量でかつ高容量で充放電可能な電池として実用化され るようになった。

[0003]

上述した非水電解質二次電池の正極活物質に用いられるリチウム含有遷移金属酸化物のうち、ニッケル酸リチウム (LiNiO2) にあっては、高容量であるという特徴を有する反面、安全性に劣りかつ過電圧が大きいという欠点を有することからコバルト酸リチウムよりも劣っていた。また、マンガン酸リチウム (LiMn2O4) にあっては、資源が豊富で安価であるという特徴を有する反面、低エネルギー密度で高温でマンガン自体が溶解するという欠点を有することからコバルト酸リチウムよりも劣っていた。このため、現在においては、リチウム含有遷移金属酸化物としてコバルト酸リチウム(LiCoO2)を用いることが主流となっている。

[0004]

ところで、コバルト酸リチウム(LiCoO2)はリチウムに対して4V以上の電位に曝されるため、これを非水電解質二次電池の正極活物質に用いると、充放電サイクルを繰り返す毎に正極からコバルトが溶出するようになる。このため、正極が劣化して、サイクル後の容量特性、負荷特性が低下するといった問題を生じた。そこで、リチウム源とコバルト源を焼成してコバルト酸リチウムを合成する際に、ジルコニウムを1~10mol%添加して、負荷性能、サイクル性能を向上させた非水電解質二次電池が特許文献1(特開平4-319260号公報)にて提案されるようになった。

【特許文献1】

30 特開平4-319260号公報

[0005]

【発明が解決しようとする課題】

しかしながら、ジルコニウムは電池反応(充放電反応)に寄与しないため、ジルコニウムの添加量が増大するに伴って電池容量が低下するという問題を生じた。例2ば、コバルト酸リチウムに添加するジルコニウムの添加量が1mol%であれば、無添加時に比べて容量が3%低下することが明らかになった。

そこで、本発明においては、電池容量を低下させないよ うな少量(1mol%未満)のジルコニウムの添加量で あっても、負荷性能およびサイクル性能が向上した非水 電解質二次電池を提供することを目的とするものであ る。

[0006]

【課題を解決するための手段】

上記目的を達成するため、本発明の非水電解質二次電池は、コバルト源としてのコバルト化合物(例えば、炭酸コバルト、水酸化コバルト)の合成時に共沈によりジルコニウムが0.1mol%以上で、0.9mol%以下添加された六方晶系のリチウム含有コバルト複合酸化物

を正極活物質として用いるようにしている。ここで、炭 酸コパルト、水酸化コパルトなどのコパルト化合物の合 成時に共沈によりジルコニウムが添加されていると、リ チウム含有コパルト複合酸化物の焼成時にジルコニウム を添加する場合に比べて、少量でリチウム含有コパルト 複合酸化物の表面に均質にジルコニウムが添加されるよ うになる。

[0007]

上述のようにジルコニウムを共沈により均質に添加する と、例えば、0.5mol%の添加量であっても、焼成 10 時の不均質な5.0mol%の添加量となる添加に相当 するサイクル性能改善効果が得られることが明らかにな った。そして、0.01mo1%の添加量であっても、 焼成時の不均質な1.0m01%の添加量に相当するの で、ジルコニウムの添加量の下限値は0.01mol% にするのが望ましい。また、ジルコニウムの添加量が 1. 0mol%では3%以上の容量低下があるため、ジ .ルコニウムの添加量は0.01mo1%以上で、0.9 mol%以下であるのが望ましい。この結果、ジルコニ ウムの少量の添加で、サイクル性能の向上を達成できる 20 ようになる。

[0008]

この場合、リチウム含有コバルト複合酸化物の(11 0)ベクトル方向の結晶子径が900人以下であると、 充電状態での熱安定性が低下することが明らかになっ た。また、リチウム含有コバルト複合酸化物の(11 0) ペクトル方向の結晶子径が1100 A以上になる と、連続充電時の安全性が低下するとともに、サイクル 性能が低下することが明らかになった。これらのことか ら、良好なサイクル性能、熱安定性を得るためには(1) 10)ベクトル方向の結晶子径が900人以上、110 0 人以下のリチウム含有コバルト複合酸化物を選択して 用いることが望ましい。

[0009]

そして、上記のような正極活物質を得るためには、コバ ルト源となるコバルト化合物を熱分解生成するための初 期コパルト化合物にジルコニウムを正極活物質として 0.01mo1%以上、0.9mo1%以下添加される ように共沈させる共沈工程と、ジルコニウムが共沈され たコバルト化合物からなる第1成分と、リチウム源とな 40 るリチウム化合物からなる第2成分とを混合して混合物 とする混合工程と、混合物を焼成する焼成工程とを備え るようにすればよい。この場合、焼成工程においては、 正極活物質が(110)ベクトル方向の結晶子径が90 0 A以上、1100 A以下になるように焼成する工程で あることが望ましい。

[0010]

なお、本発明においては、熱的安定性に優れて高い安全 性を示すとともに、高温時のサイクル特性が向上し、充 るために、特定の正極活物質を用いた点にその特徴が有 る。したがって、負極材料、セパレータ材料、非水電解 質材料、結着剤材料などについては、従来より公知の材 料を用いることができる。

[0011]

【発明の実施の形態】

ついで、本発明の実施の形態を以下に説明するが、本発 明はこの実施の形態に何ら限定されるものでなく、本発 明の目的を変更しない範囲で適宜変更して実施すること が可能である。

[0012]

1. 正極活物質の作製

まず、硫酸コパルト·(CoSO4)溶液に所定量の硫酸 ジルコニウム (2 r S O4) を添加した後、炭酸水素ナ トリウム (NaHCO3) を加えることによって、炭酸 コパルト(CoCO3)合成時にジルコニウム(Zr) を共沈させた。この後、これらを熱分解反応により、コ バルト源の出発原料としてのジルコニウム添加の四酸化 三コパルト(Co3O4)を得た。ついで、リチウム源の 出発原料として炭酸リチウム(Li2CO3)を用意した 後、リチウムとコバルトのモル比が1:1になるように 秤量した。ついで、これらを乳鉢で混合した後、得られ た混合物を空気中で850℃で20時間焼成して、ジル コニウムが表面に添加されたコバルト酸リチウム (Li CoO2)の焼成体を合成した。この後、合成した焼成 体を平均粒径が10μmになるまで粉砕して正極活物質 とした。

[0013]

ここで、ジルコニウム (Zr) の添加量が0.01mo 1%となるように合成された正極活物質を正極活物質α とした。同様に、0.10mol%となるものを正極活 物質βとし、0.50mol%となるものを正極活物質 γ とし、0.90mo1%となるものを正極活物質 δ と し、1.00mol%となるものを正極活物質εとし、 2. 00mo1%となるものを正極活物質ζとした。ま た、ジルコニウム(Zr)の添加量が0(無添加)とな るものも合成し、これを正極活物質 η とした。なお、ジ ルコニウム(Zェ)の添加量はICP(Inductivery Co upled Plasma;プラズマ発光分析)により分析して得ら れた値である。

[0014]

2. 正極活物質の特性値の測定

得られた正極活物質α~ηをXRD (X-Ray Diffractio n) により測定すると、六方晶系のコパルト酸リチウム (LiCoO₂) であることが明らかとなった。また、 シェラーの式を用いて結晶子径((110)ベクトル方 向の結晶子径)を求めると、正極活物質α(2 r:0. 01mo1%) は1001Åであり、正極活物質β(Z r:0.10mol%)は985Aであり、正極活物質 電保存時の劣化を抑制した非水電解質二次電池を提供す 50 γ(Ζι:0.50mol%)は978Aであり、正極

活物質 δ (Z r: 0. 90 m o 1%)は 95 2 A r δ δ 0、正極活物質 ϵ (Z r: 1. 00 m o 1%)は 94 7 A r δ 0、正極活物質 δ 0 (Z r: 2. 00 m o 1%)は 93 2 A r δ 0、正極活物質 δ 1 (無添加)は 10 15 A r δ 0 δ 0.

[0015]

ついで、得られた正極活物質 $\alpha \sim \eta$ をそれぞれ 2 g づつ 用意し、これらの各正極活物質をそれぞれ 1 5 0 m l の イオン交換水が充填された容積が 2 0 0 m l のビーカー 内に加えた。この後、ビーカー中に撹拌子を入れ、薄い * 10

*フィルムでピーカーをシールした後、30分間撹拌した。ついで、撹拌した各溶液をメンプレンフィルター(PTFE製で孔径が0.1 μmのもの)にて吸引適過した後、濾液をISFET(Ion-Selective Fieldeffect Transistor:ゲート電極が電解液中のある種のイオンに対して感受性を持つ電界効果トランジスタ)電極を備えたpHメータにて測定した結果、下記の表1に示すような結果が得られた。

【0016】 【表1】

質の	Z r の 添加量 (mol%)	結 晶 子 サ イ ズ (A)	рН
α	0.01	1001	10.3
β	0.10	985	10.3
γ	0.50	978	10.4
δ	0.90	952	10.4
٤٠	1.00	947	1 0 . 5
ζ	2.00	932	10.7
η	無添加	1015	10.3

[0017]

上記表1の結果から明らかなように、ジルコニウムの添加量が増大するに伴って、結晶子径が減少するが、逆にpH値が増大することが分かる。

[0018]

3. 正極の作製

ついで、上述のように作製された各正極活物質 $\alpha \sim \eta$ を用いて、これらの各正極活物質が 85 質量部で、導電剤としての炭素粉末が 10 質量部で、結着剤としてのポリフッ化ビニリデン(PVdF)粉末が 5 質量部となるように混合して、正極合剤を作製した。ついで、得られた正極合剤をN-メチルピロリドン(NMP)と混合して正極スラリーとした後、この正極スラリーを厚みが 20 μ mの正極集電体(アルミニウム箔あるいはアルミニウム合金箔)の両面にドクターブレード法により塗布して、正極集電体の両面に活物質層を形成した。これを乾燥させた後、圧縮ロールを用いて所定の厚み(例えば 1

 $70 \, \mu$ m) になるまで圧延し、所定寸法(例えば幅が $5 \, mm$ で、長さが $500 \, mm$)に切断して、正極 a b, c, d, e, f, gをそれぞれ作製した。 【0019】

なお、正極活物質 α (2 r : 0. 01 m o 1%)を用いたものを正極 a とし、正極活物質 β (2 r : 0. 10 m o 1%)を用いたものを正極 b とし、正極活物質 γ (2 r : 0. 50 m o 1%)を用いたものを正極 c とし、正極活物質 δ (2 r : 0. 90 m o 1%)を用いたものを正極 d とし、正極活物質 ϵ (2 r : 1. 00 m o 1%)を用いたものを正極 e とし、正極活物質 δ (δ r : 2. 00 m o 1%)を用いたものを正極 f とし、正極活物質 δ (δ r : 2. 00 m o 1%)を用いたものを正極 f とし、正極活物質 δ (δ r : 2 m δ r :

4. 負極の作製

一方、天然黒鉛粉末が95質量部で、結着剤としてのポ 50 リフッ化ビニリデン (PVdF) 粉末が5質量部となる

ように混合した後、これをN-メチルピロリドン (NM P) と混合して負極スラリーとした。この後、得られた負極スラリーを厚みが 18μ mの負極集電体 (銅箔) の片面にドクタープレード法により塗布して、負極集電体の片面に活物質層を形成した。これを乾燥させた後、圧縮ロールを用いて所定の厚み (例えば 155μ m) になるまで圧延し、所定寸法 (例えば幅が57mmで、長さが550mm) に切断して、負極を作製した。

[0021]

5. 非水電解質二次電池の作製

ついで、上述のように作製した各正極 a, b, c, d, e, f, gと、上述のようにして作製した負極とをそれぞれ用い、これらの間にポリプロピレン製微多孔膜からなるセパレータを介在させて積層した後、これらを渦巻状にそれぞれ巻回して渦巻状電極群とした。これらをそれぞれ円筒状の金属製外装缶に挿入した後、各集電体から延出する集電タブを各端子に溶接し、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との等体積混合溶媒に、LiPF6を1モル/リットル溶解した非水電解液を注入した。

[0022]

この後、外装缶の開口部に正極蓋を取り付けて封口して、定格容量が1500mAh(高さが65mmで、直径が18mm)の非水電解質二次電池をそれぞれ作製した。なお、正極aを用いたものを電池Aとし、正極bを用いたものを電池Bとし、正極cを用いたものを電池Cとし、正極dを用いたものを電池Dとし、正極eを用いたものを電池Eし、正極fを用いたものを電池Fとし、正極gを用いたものを電池Gとした。

[0023]

6. 電池特性の測定

(1) 初期容量

これらの各電池A~Gを用いて、25℃の温度環境で、1500mA(1It:Itは定格容量(mA)/1h(時間)で表される数値)の充電電流で、電池電圧が4.2Vになるまで定電流充電した後、電池電圧が4.2Vの定電圧で終止電流が30mAになるまで定電圧充電した。この後、1500mA(1It)の放電電流で電池電圧が2.75Vになるまで放電させるという充放電を1回だけ行って、放電時間から1サイクル目の放電40容量(初期容量)を求めると、下記の表2に示すような結果となった。

[0024]

(2) 25℃での容量維持率

ついで、これらの各電池A~Gを用いて、25℃の温度、環境で、1500 mA(1It)の充電電流で、電池電圧が4. 2Vになるまで定電流充電した後、電池電圧が4. 2Vの定電圧で終止電流が30 mAになるまで定電圧充電した。この後、1500 mA(1It)の放電電流で電池電圧が2. 75Vになるまで放電させ、これを1 サイクル目の充放電とした。ついで、このような充放電を300 サイクル繰り返して行い、1 サイクル目の放電容量に対する300 サイクル目の放電容量の比率

(%)を25℃での容量維持率(%)として求めると、 下記の表2に示すような結果となった。

[0025]

(3) 60℃での容量維持率

同様に、これらの各電池A~Gを用いて、60℃の温度 環境で、1500mA(1It)の充電電流で、電池電 圧が4.2 Vになるまで定電流充電した後、電池電圧が 4.2 Vの定電圧で終止電流が30mAになるまで定電 圧充電した。この後、1500mA(1It)の放電電 流で電池電圧が2.75 Vになるまで放電させ、これを 1 サイクル目の充放電とした。ついで、このような充放 電を300 サイクル繰り返して行い、1 サイクル目の放 電容量にたいする300 サイクル目の放電容量の比率 (%)を60 ℃での容量維持率(%)として求めると、 下記の表2 に示すような結果となった。

[0026]

(4) 充電正極の熱分析 (DSC発熱開始温度の測定) ついで、これらの各電池A~Gを用いて、25℃の温度 環境で、100μAの充電電流で、電池電圧が4.2 V になるまで定電流充電した。この後、これらの各電池をドライボックス中で分解して正極を取り出し、ジメチルカーボネートで洗浄し、真空乾燥して試験片を得た。これらの試験片40mgに対してエチレンカーボネートを10mg加えた後、アルゴン雰囲気下でアルミニウム製のセル中に封口した。ついで、これらのセルを示差走査 熱量計 (DSC) に入れて、昇温速度が5℃/minで昇温させて、各試料片が自己発熱を開始する温度 (DSC発熱開始温度) を測定すると、下記の表2に示すような結果となった。

[0027]

【表2】

電池	正極流	舌物質の特	性値	DSC 発熱開	初期容量	25℃ 容量維	60℃
種類		結晶子サ イズ(A)	p H値	光热品 始温度 (℃)	(m A h)	持率	持率 (%)
Α	0. 01	1001	10.3	178	1650	8 9	7 4
В	0.10	985	10.3	176	1648	9 1	7 6
С	0.50	978	10.4	1 7 5	1630	9 2	7 7
D	0.90	952	10.4	173	1610	9 4	7 6
E	1. 00	947	10.5	170	1590	9 4	7 3
F	2. 00	932	10.7	1 6 7	1 5 5 0	9 4	7 3
G	なし	1015	10.3	1 7 8	1650	8 5	7 0

[0028]

[0029]

7. ジルコニウムの均質添加について

上述した例においては、ジルコニウムの添加量を減少させるために、正極活物質(LiCoO₂)の表面に均質にジルコニウムを添加した正極活物質を用いる例について説明した。即ち、炭酸コバルト(CoCO₃)合成時にジルコニウム(Zr)を共沈させた後、これを熱分解反応によりジルコニウム添加の四酸化三コバルト(Co_3O_4)を得、これに炭酸リチウム(Li_2CO_3)を添加し、焼成してジルコニウム添加のコバルト酸リチウム(Li_1CoO_2)の焼成体とする例について説明した。

[0030]

ここでは、正極活物質(LiCoO₂)の表面に均質にジルコニウムを添加すると、ジルコニウムを不均質に添加した場合と比較してどの程度ジルコニウムの添加量を減少させることが可能になるかを、以下に検討した。このため、リチウム源の出発原料として炭酸リチウム(Li2CO₃)を用意するとともに、コバルト源の出発原料として四酸化三コバルト(Co₃O₄)を用意した後、これらをリチウムとコバルトのモル比が1:1になるように秤量して混合した後、さらに、ジルコニウム源として酸化ジルコニウム(ZrO₂)を加えて混合した。ついて、得られた混合物を空気中で850℃で20時間焼成して、ジルコニウムが不均質に添加されたコバルト酸リチウム(LiCoO₂)の焼成体を合成した。

[0031]

40 なお、ジルコニウム(2r)の添加量(なお、添加量は 1 CPにより分析して得られた値である)が1.00 m o 1 %となるように合成された正極活物質を正極活物質 θ とし、5.00 m o 1 %となるものを正極活物質 ι とした。ついで、得られた正極活物質 θ , ι を ι RDにより測定すると、六方晶系のコパルト酸リチウム(ι Li CoO2)であることが明らかとなった。また、シェラーの式を用いて結晶子径((110) ベクトル方向の結晶子径)を求めると、正極活物質 θ (2r:1.00 m o 1%)は997Aであり、正極活物質 ι (2r:5.00 0 m o 1%)は990Aであった。

[0032]

ついで、得られた正極活物質heta, ι のp Hを上述と同様 に測定すると、下記の表3に示すような結果が得られ た。上述のように作製された各正極活物質 $\, heta\,$, $\,\iota\,$ を用い て、上述と同様に正極h, iをそれぞれ作製した。な お、正極活物質hetaを用いたものを正極hetaとし、正極活物 質ィを用いたものを正極iとした。ついで、上述のよう に作製した各正極h, iを用いて、上述と同様に非水電 解質二次電池H, Iをそれぞれ作製した。なお、正極 h を用いたものを電池Hとし、正極 i を用いたものを電池 * 10

* I とした。

[0033]

これらの各電池H、Iを用いて、上述と同様な方法によ り、初期容量、25℃での容量維持率(%)、60℃で の容量維持率(%)をそれぞれ求めると、下記の表3に 示すような結果となった。なお、下記の表3には、上述 した電池A, C, Dの結果も併せて示している。

[0034]

【表3】

電池	正極	活物質の特	初期容量	2 5 ℃	60℃	
種類	Z r 添加 量(mo1%)	結晶子サ イズ(A)	pH値	(m A h)	容量維 持率 (%)	容量維 持 率 (%)
Α	0.01	1001	10.3	1650	8 9	7 4
С	0.50	9 7 8	10.4	1630	9 2	7 7
D	0.90	952	10.4	1610	9 4	7 6
Н	1.00	997	10.8	1592	8 6	7 1
I	5.00	990	11.0	1410	9 1	7 2

[0035]

上記表3の結果から明らかなように、表面に均質にジル コニウムを0.50mol%添加した正極活物質(Li CoOz)を用いた電池Cと、ジルコニウムを不均質に 5. 00mol%添加した正極活物質 (LiCoO2) を用いた電池 I とを比較すると、電池Cの方が25℃お よび60℃での容量維持率が向上していることが分か る。また、表面に均質にジルコニウムを0.01mol %添加した正極活物質 (LiCoO2) を用いた電池A と、ジルコニウムを不均質に1.00mol%添加した 正極活物質(LiCoO2)を用いた電池Hとを比較す ると、電池Aの方が25℃および60℃での容量維持率 が向上していることが分かる。これらのことから、表面 に均質にジルコニウムを添加すると、少量で効果的な添 加が可能となることが分かる。

[0036]

8. 他の添加元素についての検討

上述した例においては、コバルト酸リチウム(LiCo 〇2) に異種元素としてジルコニウム(2r)を添加す る例について検討したが、ここでは他の異種元素として 30 で、硫酸コパルト (CoSO4) 溶液に所定量の硫酸チ タン(TiSO4)を添加した後、炭酸水素ナトリウム (NaHCO3) を加えることによって、炭酸コパルト (CoCO3) 合成時にチタン(Ti)を共沈させた。 この後、これらを熱分解反応により、コバルト源の出発 原料としてのチタン添加の四酸化三コバルト(Co 3O4)を得た。ついで、リチウム源の出発原料として炭 酸リチウム(Li2CO3)を用意した後、リチウムとコ パルトのモル比が1:1になるように秤量した。つい で、これらを乳鉢で混合した後、得られた混合物を空気 中で850℃で20時間焼成して、チタン添加のコバル ト酸リチウム (LiCoO2) の焼成体を合成した。こ の後、合成した焼成体を平均粒径が10μmになるまで 粉砕して正極活物質とした。

[0037]

ここで、チタン(Ti)の添加量(なお、添加量はIC Pにより分析して得られた値である)が0.50mol %となるように合成された正極活物質を正極活物質 κ と た。ついで、得られた正極活物質 κ , λ をXRDにより チタン(Ti)を添加した場合について検討した。そこ 50 測定すると、六方晶系のコバルト酸リチウム(LiCo

〇2) であることが明らかとなった。また、シェラーの 式を用いて結晶子径((110)ペクトル方向の結晶子 径) を求めると、正極活物質κ(Ti:0.50mol %) は925Aであり、正極活物質入(Zr:0.90 mo1%) は890Aであった。

13

[0038]

ついで、得られた正極活物質κ、λのpHを上述と同様 に測定すると、下記の表4に示すような結果が得られ ・た。また、上述のように作製された各正極活物質κ, λ を用いて、上述と同様に正極j, kをそれぞれ作製し た。なお、正極活物質κを用いたものを正極 j とし、正 極活物質入を用いたものを正極kとした。ついで、上述 のように作製した各正極j, kを用いて、上述と同様に* *非水電解質二次電池」, Kをそれぞれ作製した。なお、 正極」を用いたものを電池」とし、正極kを用いたもの を電池Kとした。

[0039]

これらの各電池J、Kを用いて、上述と同様な方法によ り、25℃での容量維持率(%)、60℃での容量維持 率(%)およびDSC発熱開始温度をそれぞれ求める と、下記の表4に示すような結果となった。なお、下記 の表4には、上述した電池C, Dの結果も併せて示して 10 いる。

[0040]

【表4】

種類	添加元素	添加量 (モル%)	結 晶 子 サ イ ズ (A)	рΗ	DSC発熱 開始温 度(℃)	25℃ 容量維 持 率 (%)	
С	Zr	0.50	978	10.4	175	9 2	7 7
D	Z r	0.90	952	10.4	173	9 4	7 6
J	Тi	0.50	925	10.5	165	9 2	7 5
К	T i	0.90	890	10.6	162	9 3	7 5

[0041]

上記表4の結果から明らかなように、ジルコニウム(2 r) に代えてチタン(Ti) を添加した場合、同じ添加 量であっても結晶子径が小さくなるとともに p H 値が上 昇して、DSC発熱開始温度が10℃以上も低下してい ることが分かる。このことから、コバルト酸リチウム (LiCoO2) に異種元素としてチタン(Ti)を添 加するよりもジルコニウム(Zr)を添加した方が効果 的であることが分かる。換言すると、コバルト酸リチウ ム(LiCoO₂)の表面に均質にジルコニウムを添加 すると、熱安定性を保持したまま(高い結晶性を保持し たまま)、25℃(常温)容量維持率および60℃(高 温) 容量維持率を向上させることが可能である。 [0042]

9. 結晶子径についての検討

ついで、表面に均質にジルコニウム(Zr)を添加した コパルト酸リチウム(LiCoO2)の結晶子径の大き さについて検討した。そこで、正極活物質α(Ζ r: 0.01mo1%)を合成する際に焼成温度を変化させ

A), $\alpha 2$ (899A), $\alpha 3$ (952A), $\alpha 4$ (9 97Å), $\alpha 5 (1048Å$), $\alpha 6 (1100Å$), α7 (1152Å), α8 (1200Å) を作製した。 [0043]

また、正極活物質 δ (2 r : 0 · 9 0 m o 1 %) を合成 する際に焼成温度を変化させて、結晶子径がそれぞれ異 なる正極活物質 § 1 (854Å), § 2 (902Å), $\delta 3 (950 \text{Å}), \delta 4 (997 \text{Å}), \delta 5 (1050)$ $-\dot{A}$), $\delta 6$ (1101Å), $\delta 7$ (1153Å), $\delta 8$ (1201A)を作製した。同様に、正極活物質 n (無 添加)を合成する際に焼成温度を変化させて、結晶子径 がそれぞれ異なる正極活物質η1(848Α),η2 (896A), $\eta 3 (950A)$, $\eta 4 (998A)$, $\eta 5 (1048 \text{Å}), \eta 6 (1101 \text{Å}), \eta 7 (11$ 50A), η8 (1200A) を作製した。

[0044]

ついで、上述のように作製された各正極活物質 α $1 \sim \alpha$ 8、δ1~δ8およびη1~η8を用いて、上述と同様 にして正極a1~a8, d1~d8, g1~g8をそれ て、結晶子径がそれぞれ異なる正極活物質 α 1 (851 50 ぞれ作製した。なお、正極活物質 α 1 \sim α 8 を用いたも

のを正極a1~a8とし、正極活物質ô1~ô8を用い たものを正極 $d1\sim d8$ とし、正極活物質 $\eta1\sim\eta8$ を 用いたものを正極g1~g8とした。ついで、上述のよ うに作製した各正極 a 1~a 8, d 1~d 8, g 1~g 8を用いて、上述と同様に非水電解質二次電池A1~A 8, D1~D8, G1~G8をそれぞれ作製した。な お、正極a1~a8を用いたものを電池A1~A8と し、正極d1~d8を用いたものを電池D1~D8と し、正極g1~g8を用いたものを電池G1~G8とし

[0045]

これらの各電池A1~A8, D1~D8, G1~G8を 用いて、上述と同様な方法により25℃での容量維持率 (%)を求めた。この後、正極活物質α1~α8(図1 の〇印)、 δ 1 \sim δ 8 (図1の Δ 印)、 η 1 \sim η 8 (図 1の□印)の結晶子径を横軸に表し、25℃での容量維 持率(%)を縦軸としてグラフに表すと、図1に示すよ うな結果が得られた。

[0046]

図1に示すグラフの結果から明らかなように、ジルコニ 20 ウムの添加量を0.01mol%,0.90mol%に 固定し、焼成温度を変化させて正極活物質(2rが表面 に均質に添加されたLiCoO2)の結晶子径(A)を 変化させた場合、結晶子径が1100Aを超えたコパル ト酸リチウム (LiCoO2) を用いると、ジルコニウ ムが無添加の正極活物質 η 1 (848A), η 2 (89 6A), η3 (950A) を用いた電池G1, G2, G 3よりも、25℃でのサイクル容量維持率が下回ること が分かる。このことから、ジルコニウムの添加量を0. 01mo1%あるいは0.90mo1%に固定した場 合、結晶子径が1100A以下になるように調製したコ バルト酸リチウム (LiCoO2) を用いるのが望まし いことが分かる。

[0047]

一方、これらの各電池A1~A8, D1~D8, G1~ G8を用いて、上述と同様な方法によりDSC発熱開始 温度を測定した。この後、正極活物質α1~α8(図2 の \bigcirc 印)、 δ 1 \sim δ 8 ($\boxed{2}$ 0 \triangle 印)、 η 1 \sim η 8 ($\boxed{2}$ 2の□印)の結晶子径を横軸に表し、DSC発熱開始温 度 (℃) を縦軸としてグラフに表すと、図2に示すよう 40 サイクル容量維持率の関係を示すグラフである。 な結果が得られた。

[0048]

図2に示すグラフの結果から明らかなように、結晶子径 が低下するとDSC発熱開始温度が低下するとともに、 結晶子径が900人を下回るようになると、ジルコニウ ムが無添加の正極活物質η1 (848Å) を用いた電池 G1よりも、DSC発熱開始温度が低下することが分か る。このことから、ジルコニウムの添加量を0.01m o 1 % あるいは 0.90 m o 1 % に固定した場合、結晶 子径が900人以上になるように調製したコバルト酸リ チウム(LiCoO₂)を用いるのが望ましいことが分

[0049]

10 かる。

これらのことから、良好なサイクル性能、熱安定性を得 るためには(110)ベクトル方向の結晶子径が900 A以上、1100A以下のリチウム含有コパルト複合酸 化物を選択して用いる必要がある。これにより、ジルコ ニウムの少量の添加(0.01mo1%以上で、0.9 0mol%以下)で、容量低下や安全性低下を伴うこと なく、サイクル性能の向上を達成できるようになる。

[0050] 【発明の効果】

上述したように、本発明においては、コバルト源として のコパルト化合物(例えば、炭酸コパルト、水酸化コバ ルト)の合成時に共沈によりジルコニウムが0.1mo 1%以上で、0.9mol%以下添加された六方晶系の リチウム含有コパルト複合酸化物を正極活物質として用 いるようにしている。この結果、ジルコニウムの少量の 添加で、容量低下や安全性低下を伴うことなく、サイク ル性能の向上を達成できるようになる。

[0051]

なお、上述した実施の形態においては、正極活物質とし て表面に均質にジルコニウムが添加された六方晶系のリ チウム含有コパルト酸化物を用いる例について説明した が、六方晶系のリチウム含有コバルト酸化物のコバルト の一部を、パナジウム(V)、クロム(C·r)、鉄(F e)、マンガン(Mn)、ニッケル(Ni)、アルミニ ウム(A1)などで置換したリチウム含有コバルト酸化 物を用いるようにしてもよい。

【図面の簡単な説明】

【図1】コバルト酸リチウムの結晶子径と、25℃での

【図2】コパルト酸リチウムの結晶子径と、DSC発熱 開始温度の関係を示すグラフである。

[図2]

フロントページの続き

(72) 発明者 西田 伸道

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内

Fターム(参考) 4G048 AA04 AB02 AC06 AD03 AE05

5H029 AJ02 AJ05 AK03 AL07 AM03 AM05 CJ11 CJ21 EJ01 HJ01

HJ05 HJ06

5H050 AA02 AA07 BA17 CA08 CB08 DA02 DA09 EA02 GA02 HA01

HA05 HA06