AE 242 Aerospace Measurements Laboratory

Position measurement

Robots operating in factory

Maps for navigation

Inter planetary mission

Driverless car

Maps for adventure

Ballistic missiles

Presentation material from book "Understanding GPS principles and applications" Elliot D. Kaplan and Christopher J. Hegarty (editors)

Use of GPS / GNSS

GNSS - Global Navigation Satellite System

GPS - Introduction

- GPS Global Positioning system
- Owned and operate by DoD, USA
- Similar to radio service
- Free to use service
- Designed in such a way that can be used over the whole globe
- Consist of three segment: Space, Control & Monitor and user

GPS - Introduction

- Space- Space vehicle (satellites)
- Control & Monitor Few stations on the ground, which monitor satellite motion, clock etc. sends correction terms to satellite for rebroadcast
- User Radio receiver for processing information received from GPS satellites

IRNSS - Introduction

- IRNSS Indian Regional Navigation Satellite System. Navlc
- Owned and operate by ISRO, India
- Similar to radio service
- Free to use service
- Designed in such a way that it can be used over the Indian subcontinent. 1500 km from Indian Boundary
- Consist of three segment: Space, Control& Monitor and user

GPS and IRNSS

GPS constellation

- 24 satellites at 20200 km
- Mean orbital period is ~ 12 hours
- Four or more satellites visible over the globe

https://en.wikipedia.org/wiki/Global Positioning System

IRNSS constellation

- Orbital height 36000 km
- Three Geo stationary
- Four Geosynchronous
- Four or more satellites visible over IRNSS primary coverage area
- https://www.isro.gov.in/irnss-programme
- https://en.wikipedia.org/wiki/Indian_Regional Navigation Satellite System

- ➤ Transmitter (Foghorn) Transmitting signal at regular interval
- How to find distance from foghorn?

- ➤ A receiver having precise synchronized clock with transmitter clock
- ➤ By measuring time of signal travel, distance from transmitter can be estimated
- Receiver can be somewhere on the circle

- By measuring time of signal travel from two transmitter
- Receiver can be at the intersection of two circles

- ➤ By measuring time of signal travel from two transmitter
- > Receiver can be at the intersection of two circles
- Correct location can be obtained if we know receiver is on which side of line joining transmitters

- > By measuring time of signal travel from three transmitters
- Receiver will be at the intersection of three circles, ambiguity in position is resolved

Assumptions

- ➤ Transmitter and receiver clocks are synchronized
- ➤ No errors in measurement of time

- Position estimate will have error
- Bounds on error will depend on error band of individual receiver

- > Errors may not be constant in all the receivers
- Is the error dependent on the placement of transmitters?
- Can this concept extended to 3D positioning?

- Assume ranging measurement possible using signal from single satellite
- User will be somewhere on the sphere

- Assume ranging measurement possible using signal from two satellites
- User will be somewhere on the intersection of two spheres (circle)

- Assume ranging measurement possible using signal from three satellites
- User will be somewhere on the intersection of third sphere with the circle (two points)

- Range measurement
 - ➤ Position of transmitter (satellite) is required
 - ➤ Clock synchronization (between satellite and user) is required
- ➤ How many satellites for three dimensional position estimation?