ZudinKD 28122024-101709

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 3081 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 8 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 713 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 0 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 10060 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 2369 МГц до 2471 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -74 дБм 2) -77 дБм 3) -80 дБм 4) -83 дБм 5) -86 дБм 6) -89 дБм 7) -92 дБм 8) -95 дБм 9) -98 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.30786 - 0.28683i, s_{31} = -0.28887 - 0.31005i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -37 дБн 2) -39 дБн 3) -41 дБн 4) -43 дБн 5) -45 дБн 6) -47 дБн 7) -49 дБн 8) -51 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r+mf_{\Pi \Psi}|$ Какой комбинацией $\{n;m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 4?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

- $1) \ \{17;3\} \quad 2) \ \{10;-13\} \quad 3) \ \{24;-125\} \quad 4) \ \{17;3\} \quad 5) \ \{31;19\} \quad 6) \ \{10;-45\} \quad 7) \ \{10;-61\}$
- 8) $\{10; -29\}$ 9) $\{24; -61\}$

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 408 МГц, частота ПЧ 22 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 1202 MΓ_{II}
- 2) 816 MΓ_{II}
- 430 MΓ_{ΙΙ}
- 4) 22 MΓ_{II}.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 0.5 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 5 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 10.8 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 4.3 дБ 2) 4.9 дБ 3) 5.5 дБ 4) 6.1 дБ 5) 6.7 дБ 6) 7.3 дБ 7) 7.9 дБ 8) 8.5 дБ 9) 9.1 дБ

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 28 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 200 МГц?

Варианты ОТВЕТА:

1) $9.6 \text{ n}\Phi$ 2) $14.1 \text{ n}\Phi$ 3) $26.5 \text{ n}\Phi$ 4) $18 \text{ n}\Phi$