

Systèmes mécaniques

Assemblages, Fonctions techniques, Liaisons mécaniques

Dr. S. Soubielle

Dans ce cours, nous allons...

... Définir ce qu'est un assemblage mécanique

... Et les documents qui le définissent : plan d'ensemble, nomenclature, procédure de montage

... Définir ce qu'est une fonction technique

- ... Et comment on la caractérise
- ... En s'appuyant sur des exemples concrets

... Définir ce qu'est une liaison mécanique

- ... Notion de degré de liberté et de degré de liaison
- ... Liaisons mécaniques normalisées
- ... Schéma cinématique

Notion d'assemblage

Définitions

1. Ensemble de pièces mécaniques liées entre elles par des composants démontables, généralement normalisés (vis, écrous, clavettes, circlips, etc.), et/ou par des procédés indémontables (collage, frettage, soudage, etc.)

2. Action d'assembler entre elles des pièces mécaniques en utilisant des procédés démontables ou indémontables.

Objets et informations nécessaires à l'assemblage

- L'intégralité des pièces constitutive de l'assemblage, y compris visserie, et fluides constitutifs (graisse, colle, etc.)
- Les outils : clés de serrage, clés spéciales, maillet, etc.
- Les instructions de montage

Plan d'ensemble (1/3)

Plan de fabrication et plan d'ensemble

Le plan de fabrication

- Est destiné à fabriquer la pièce
- Représente les caractéristiques de matières, formes, dimensions et de traitements (thermiques, de surface, peinture, etc.) d'une pièce
- Spécifie les niveaux de défauts admissibles (états de surface, dimensionnels, géométriques)

Le plan d'ensemble

- Représente un assemblage (ou un sous-assemblage) en situation assemblée (et/ou éclatée).
- Peut avoir différentes fonctions distinctes
 - → Instructions de montage
 - → Instructions pour la réparation
 - → Instruction destinées au client utilisateur

Plan d'ensemble (2/3)

- Attributs usuels Exemple n°1 : Assemblage arbre intermédiaire
 - Assemblage en vue(s) extérieure(s), vue(s) en coupe, et/ou év. vue(s) éclatée(s)
 - Vue(s) en perspective axonométrique, si utile(s) à la compréhension
 - Cotes d'encombrement, entre parenthèses
 - Cotes de montage et/ou de réglage
 - Numérotation des pièces (ou désignation en texte), avec év. l'indication de quantité
 - Indications utiles pour le montage, par ex. : collage, graissage, couple de serrage, etc.
 - La masse de l'ensemble

Arbre central (plein) et vis --> à ne jamais couper

Plan d'ensemble (3/3)

Attributs usuels – Ex. n°2 : « Levier pivotant complet »

Nomenclature (1/2)

Définition

- Liste des pièces constitutive d'un assemblage
- Elle peut être incluse au plan d'ensemble, ou constituer un document séparé

Données contenues

- Position de la pièce (= N° sur le plan d'ens.)
- Quantité (pour chaque référence d'article)
- Numéro d'identification (= numéro d'article)
- Désignation

Pos.	Quantité U	nité Numéro d'identification	Dénomination/caractéristiques
1	1	40-520-002	Levier de manœuvre
2	1	40-520-003	Agrégat de ressort
3	1	40-520-004	Levier de surveillance
4	1	40-520-005	Contrôle de l'épaisseur
5	1	40-520-111	Boîter de levier pivotant usiné
6	1	40-520-112	Axe de calandre
7	1	40-520-113	Rouleau à disque
8	2	40-520-114	Boulon
9	2		Goupille élastique ISO 8752-5x10-Ac
10	2		Rondelle ISO 7089-6-200HV
11	2		Vis t cy ISO 4762-M6x12-8.8
12	2		Vis à tête bombée ISO 14583-M6x10-8.8
13	1		Vis t cy ISO 4762-M8x20-8.8
14	2		Vis s t 6p c ISO 4026-M6x8-45H
15	1		Vis s t 6p c ISO 4026-M8x40-45H
16	1		Ec 6p ISO 4032-M8-8
17	3		Rondelle d'ajustage DIN 988-15/21x0,1
18	1		Roulement radial de butée à billes DIN 628-3202 A-2Z
19	1		Clip ale int DIN 472-35x1,5
20	1		Rondelle DIN 7349-8-Ac
21	1		Rondelle élastique DIN EN 16983-A-8,2/16×0,9
22	1		Vis t 6p ent fil ISO 4017-M8x16-8.8
23	1		Bouchon de fermeture nature 38,4x12,5

Extrait de Normes 2018, p. 503

À quoi sert la nomenclature ?

- Logistique et gestion des stocks : connaitre les besoins en numéros d'articles et nombre de pièces, et planifier l'approvisionnement, organiser la sortie de stock, etc.
- Assemblage : permettre au monteur de contrôler qu'il a toutes les pièces avant de commencer le montage

Nomenclature (2/2)

Exercice d'application

Créer la nomenclature correspondante au sous-ensemble « Assemblage arbre intermédiaire ». Données :

- 1. Les roues dentées ont resp. 40 et 27 dents¹.
- 2. Toutes les pièces sont en acier non-inox, sauf le joint torique, qui est en NBR, 70 Shore A.

Pos.	Qté	Désignation
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	

Ces données seront supposées suffisantes pour la désignation

Procédure de montage

Définition et fonction

- Document illustré décrivant les étapes successives de montage d'un système mécanique, précisant le détail des pièces et outils nécessaires
- Requis pour le montage des systèmes mécaniques complexes et/ou destinés à être assemblés par du personnel peu qualifié

Fonctions techniques (1/2)

Composant mécanique et fonctions techniques

- Chaque composant d'un système mécanique remplit une ou plusieurs fonctions techniques (FT)
- La sélection et/ou le design de chaque composant mécanique présuppose l'identification et la caractérisation des FT à satisfaire

Caractériser = qualifier + quantifier

- Qualifier la fonction technique, par du texte
 - Un verbe d'action, par ex. : transmettre, assurer, guider, maintenir, isoler, évacuer, exercer, convoyer, collecter, etc.
 - Un (ou des) complément(s) d'objet, par ex. : le mouvement, la force, la poussée, le couple, la position, la pression, la chaleur, l'étanchéité, en translation, en rotation, la lubrification, etc.

Quantifier la fonction technique, par des chiffres

Valeurs nominales de vitesse, force, couple, pression, température, distance, position, angle, tension électrique, intensité électrique, etc.

Fonctions techniques (2/2)

Exemple simplifié¹ – Arbre intermédiaire

	en e	-
Pos.	Désignation	Fonction technique
1	Arbre de transmission – Ø18	Transmettre le mouvement de la roue dentée 2 à la roue dentée 3
2	Roue dentée – Ø18, Z = 40	Transmettre le mouvement du moteur à l'arbre intermédiaire 1
3	Roue dentée – Ø18, Z = 27	Transmettre le mouvement de l'arbre interm. 1 à l'arbre de sortie
4	Entretoise pour arbre – Ø18, largeur 4	Assurer l'écartement de 4 mm entre la roue dentée 2 et la roue dentée 3
5	Clavette DIN 6885-A – 6×6×32	Transmettre le couple de la roue dentée 2 à la roue dentée 3 par l'intermédiaire de l'arbre 1
6	Circlip DIN 471 – 18×1,2	Assurer le maintien en pos. axiale de l'empilement roue dentée 2 + entretoise 4 + roue dentée 3
7	Rdl ISO 7093 – 8-A4	Assurer le blocage axial du guidage de l'arbre 1 avec le boîtier
8	Vis t cy 6pc ISO 4762 – M8×40-A4-70	Assurer le maintien en pos. de la rondelle 7 sur l'arbre int. 1
9	O-ring 14,00×1,78 – NBR 70	Assurer l'étanchéité du réducteur

L'exemple présenté ici ne fait que qualifier les fonctions techniques.

Liaison mécanique & schéma cinématique (7

Modélisation cinématique

- Représentation schématisée des sous-ensembles mobiles et des liaisons mécaniques entre ces sous-ensembles
- Outil de visualisation utile à la compréhension des mouvements, et servant de base pour le paramétrage analytique (cinématique et dynamique des solides)

Exemple – Assemblage arbre intermédiaire

Liaison mécanique & schéma cinématique

Notion de degré de liberté

- Mouvement possible d'un solide (translation ou rotation), selon une direction du repère orthogonal
- Un objet libre dans l'espace possède six degrés de libertés
 - Trois translations $\rightarrow T_x$, T_y , T_z
 - Trois rotations $\rightarrow R_x, R_y, R_z$

Notion de degré de liaison

Composante de mouvement, rotation ou translation, qui est empêchée par une liaison mécanique :

Nb de d° de liaison = 6 – Nb de d° de liberté

P.ex.: pivot --> 1 degré de liberté (1 rotation) --> 5 degrés de liaison

Liaison mécanique & schéma cinématique (3/6

Les 11 liaisons mécaniques (1/2)

Désignation	Représentation schématisée	Image animée	Degrés de liberté	Degrés de liaison
Ponctuelle (de normale Z)			T_{x}, T_{y} R_{x}, R_{y}, R_{z}	$T_z = 0$
Linéaire rectiligne (d'axe x et de normale z)		*	T_{x} , T_{y} R_{x} , R_{z}	$T_z = 0$ $R_y = 0$
Linéaire annulaire (de direction Z)	-		T_z R_x , R_y , R_z	$T_x = 0$ $T_y = 0$
Rotule	Ý		R_x , R_y , R_z	$T_x = 0$ $T_y = 0$ $T_z = 0$
Pivot glissant (d'axe x)	P		T _x R _x	$T_{y} = T_{z} = 0$ $R_{y} = R_{z} = 0$

Liaison mécanique & schéma cinématique (4)

Les 11 liaisons mécaniques (2/2)

Désignation	Représentation schématisée			Image animée	Degrés de liberté	Degrés de liaison
Appui plan (de normale z)	1				T_x, T_y R_z	$T_z = 0$ $R_x = R_y = 0$
Pivot (d'axe z)		P	†		R_z	$T_x = T_y = T_z = 0$ $R_x = R_y = 0$
Glissière (de direction x)	-	×	4		T_{x}	$T_{y} = T_{z} = 0$ $R_{x} = R_{y} = R_{z} = 0$
Hélicoïdale (d'axe x et de pas p)	-	þ	7		R_x (=2 π /P. T_x)	$T_x = P/2\pi.R_x$ $T_y = T_z = 0$ $R_y = R_z = 0$
Rotule à doigt (rotation z bloquée)	J			Z Y	R_{x} , R_{y}	$T_x = T_y = T_z = 0$ $R_z = 0$

Liaison mécanique & schéma cinématique (5/6)

Exemple – Moteur à explosion de modélisme

Liaison mécanique & schéma cinématique (6/6

Exercice d'application – Presse étau

Identifier les sous-ensembles mobiles et construire le schéma cinématique correspondant

Des questions?

Références normatives principales

ISO 3952 Schémas cinématiques — Symboles graphiques