MU5IN075 Network Analysis and Mining 5. Random Graph Models II

Esteban Bautista-Ruiz, Lionel Tabourier

LIP6 - CNRS and Sorbonne Université

first_name.last_name@lip6.fr

October 12, 2021

Uniform graph generation with fixed degree distribution

Notion of uniform generation

Until now 3 random models, 2 different families of models:

- Erdős-Rényi
- 2. Watts-Strogatz, Barabási-Albert

Why are they fundamentally different?

- ER: there is a target set (graphs with fixed density) all graphs have the same probability to be produced
- BA, WS: no explicit target set. . .
 - ⇒ ER model is uniform (or homogeneous)

Uniform graph generation with fixed degree distribution

Notion of uniform generation

Until now 3 random models, 2 different families of models:

- Erdős-Rényi
- 2. Watts-Strogatz, Barabási-Albert

Why are they fundamentally different?

- 1. ER: there is a target set (graphs with fixed density) all graphs have the same probability to be produced
- 2. BA, WS: no explicit target set...
 - \Rightarrow ER model is uniform (or homogeneous)

Uniform graph generation with fixed degree distribution

Notion of uniform generation

Until now 3 random models, 2 different families of models:

- 1. Erdős-Rényi
- 2. Watts-Strogatz, Barabási-Albert

Why is it important?

Because we cannot say that a BA is a *standard* SF graph or that a WS is a *standard* graph with small-world properties

⇒ more relevant to have uniform graph generation

Notion of uniform generation

Until now 3 random models, 2 different families of models:

- Erdős-Rényi
- 2. Watts-Strogatz, Barabási-Albert

Why is it important?

Because we cannot say that a BA is a *standard* SF graph or that a WS is a *standard* graph with small-world properties

 \Rightarrow more relevant to have uniform graph generation

Uniform graph generation with fixed degree distribution

Configuration model and variants
A few words on switching methods
The bipartite case

Outline

Uniform graph generation with fixed degree distribution

- Configuration model and variants
- A few words on switching methods
- The bipartite case

2/1

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods
The bipartite case

The configuration model

Degree distribution

 p_1, p_2, p_3, \dots

Draw nodes degree according to the distribution

2 4 3 2 1 3

1 2 4 3 2 1 3

Associate to any node half-edges (stubs)

Draw random pairs of stubs and connect then

Deal with possible loops or multi-edges

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods
The bipartite case

The configuration model

Degree distribution

 $\textit{p}_1,\textit{p}_2,\textit{p}_3,\dots$

Draw nodes degree according to the distribution

→ degree sequence

2 4 3 2 1

Associate to any node half-edges (stubs)

Draw random pairs of stubs and connect them

Deal with possible loops or multi-edges

....

Configuration model and variants

A few words on switching methods

The bipartite case

The configuration model

Degree distribution

$$p_1, p_2, p_3, \dots$$

Draw nodes degree according to the distribution

 \rightarrow degree sequence

Associate to any node half-edges (stubs)

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods The bipartite case

The configuration model

Degree distribution

$$p_1, p_2, p_3, \dots$$

Draw nodes degree according to the distribution

→ degree sequence

4 3 2

Associate to any node half-edges (stubs)

Draw random pairs of stubs and connect them

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods The bipartite case

The configuration model

Degree distribution

$$p_1, p_2, p_3, \dots$$

Draw nodes degree according to the distribution

→ degree sequence

4 3

Associate to any node half-edges (stubs)

Draw random pairs of stubs and connect them

Deal with possible loops or multi-edges

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods The bipartite case

Implementing the configuration model

Table : node *i* occurs exactly $d^{\circ}(i)$ times

6 6

Algorithm 1: Generating a graph with fixed degree se-

i = 2m

while i > 0 do

u = random (0, i - 1)

swap boxes u and i-1v = random (0, i - 2)

swap boxes v and i-2i = i-2

edge (u, v) created* end

* to be discussed...

Configuration model and variants

A few words on switching methods
The bipartite case

Deal with possible loops or multi-edges

Answer 1: generation with rejection

Loop or multi-edge generated, restart the generation process

Uniform graph generation with fixed degree distribution

Configuration model and variants
A few words on switching methods
The bipartite case

Deal with possible loops or multi-edges

- advantage: uniform generation
- drawback: can be long...

1.2s

average number of trials (1000 nodes): 2180

17300 average generation time (1000 nodes):

8.1s

Quiz: for what kind of distribution can it be long?

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods
The bipartite case

Deal with possible loops or multi-edges

Answer 2: suppress loops or multiple edges

When a loop or a multiedge is generated, exclude it

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods
The bipartite case

Deal with possible loops or multi-edges

- advantage: fast
- drawback: does not have the exact degree sequence

after loops and multi-edges deletion, become:

NE EO

Configuration model and variants

A few words on switching methods The bipartite case

Deal with possible loops or multi-edges

Answer 3: reconnect

When a loop or a multiedge is generated, switch to destroy it

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods The bipartite case

Deal with possible loops or multi-edges

• advantage: relatively fast, have the exact sequence

• drawback: not uniform = biased

number of triangles for 1000 graphs

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods
The bipartite case

Deal with possible loops or multi-edges

• advantage: relatively fast, have the exact sequence

drawback: not uniform = biased

number of triangles for 1000 graphs

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods
The bipartite case

Properties – Comparison

	real	fixed d.d.	
density	low	?	
connectedness	giant comp.	?	
distances	low	?	
degree	heterogeneous	?	
clustering	high	?	
communities	yes	?	

ALE

Configuration model and variants

A few words on switching methods
The bipartite case

Properties - Comparison

	real	fixed d.d.
density	low	low
connectedness	giant comp.	giant comp.
distances	low	low
degree	heterogeneous	heterogeneous
clustering	high	lower
communities	yes	no

 \rightarrow heterogeneous degree only partly accounts for the c.c. \rightarrow see practical work

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods

The bipartite case

Other implementation: switching method

Principle

- start from a graph with the given degree sequence
- iterate switching of edge ends
- after a *sufficient amount* of switches, the graph produced is a random element of the set of graphs

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods

The bipartite case

Other implementation: switching method

Why does it work?

- The degree of any node remains unchanged so we keep the degree sequence unchanged
- The process is a Markov chain
 - can be seen as a random walk in the set of graphs (defined by this degree sequence)
 - after a while, we visit all elements with the same probability (not proved here)
 - if we make enough switches, we obtain a random graph with this degree sequence

Uniform graph generation with fixed degree distribution

Configuration model and variants

A few words on switching methods

The bipartite case

Other implementation: switching method

Why does it work?

- The degree of any node remains unchanged so we keep the degree sequence unchanged
- The process is a Markov chain
 - can be seen as a random walk in the set of graphs (defined by this degree sequence)
 - after a while, we visit all elements with the same probability (not proved here)
 - if we make enough switches, we obtain a random graph with this degree sequence

8/1

Configuration model and variants

A few words on switching methods

The bipartite case

Other implementation: switching method

When to stop switchings?

Measuring some features (ex: clustering) during the process until these features do not evolve any more...

credits image: I.Miklós and J.Podani

Uniform graph generation with fixed degree distribution

Configuration model and variants
A few words on switching methods
The bipartite case

Graph with fixed degree sequence: the bipartite case

Newman, Watts, Strogatz - PNAS, 2002

- Bipartite graph: two distinct types of nodes *U* and *V* → links between *U* and *V*
- ullet Projection: if u_1 and u_2 connected to v in bipartite
 - $\rightarrow u_1$ and u_2 are connected in the *U*-projection

уз

bipartite data richer, but not always available

Uniform graph generation with fixed degree distribution

Configuration model and variants
A few words on switching methods

The bipartite case

Graph with fixed degree sequence: the bipartite case

Newman, Watts, Strogatz - PNAS, 2002

Underlying bipartite structure ⇒ cliques in the projection

Bipartite configuration model

- fixed degree sequence for nodes X: $d_1^X, d_2^X, \dots, d_{n_X}^X$
- fixed degree sequence for nodes Y: $d_1^y, d_2^y, \dots, d_{n_Y}^y$
- random connections
- ightarrow no possible self-loops, but multiedges still a problem

Uniform graph generation with fixed degree distribution

Configuration model and variants
A few words on switching methods
The bipartite case

Graph with fixed degree sequence: the bipartite case

Newman, Watts, Strogatz - PNAS, 2002

Experimental results - comparison of the projections:

	average degree		clustering coef.	
projected network	Model	Real	Model	Real
Company directors	14.53	14.44	0.590	0.588
Movie actors	125.6	113.4	0.084	0.199
Physics collaboration	16.74	9.27	0.192	0.452

Conclusions:

- more realistic clustering
- than ER, or usual configuration model on unipartite networks
- still no large-scale structure

visible on scientific collaboration networks

E E 86 E

Configuration model and variants
A few words on switching methods

The bipartite case

Graph with fixed degree sequence: the bipartite case

Newman, Watts, Strogatz - PNAS, 2002

Experimental results - comparison of the projections:

	average degree		clustering coef.	
projected network	Model	Real	Model	Real
Company directors	14.53	14.44	0.590	0.588
Movie actors	125.6	113.4	0.084	0.199
Physics collaboration	16.74	9.27	0.192	0.452

Conclusions:

- more realistic clustering than ER, or usual configuration model on unipartite networks
- still no large-scale structure
 visible on scientific collaboration networks

Uniform graph generation with fixed degree distribution

Configuration model and variants
A few words on switching methods
The bipartite case

Perspective: more models

- Fix other constraints beyond degree distribution? but how?
- Exponential Random Graphs
- Stochastic Block Model
- Spatial models
-
- → still many open research questions