

Generating Synthetic Documents for Cross-Encoder Re-Rankers: A Comparative Study of ChatGPT and Human Experts

Arian Askari, Mohammad Aliannejadi, Evangelos Kanoulas, Suzan Verberne Leiden University and University of Amsterdam

Study

- An investigation on the usefulness of LLMs in generating training data in a novel direction:
 - o generating synthetic documents instead of synthetic queries
- We present the ChatGPT-RetrievalQA dataset for both full-ranking and re-ranking setups
 - With 24,322 queries, 26,882 responses generated by ChatGPT, and 58,546 human-generated responses
 - Queries from four different domains including Medicine,
 Finance, Reddit, and Wikipedia

Domain-level re-ranker effectiveness

Domain	Model	MAP	NDCG	Recall		
Medicine	CE _{Human}	.397	.419	.395		
	CE _{ChatGPT}	.379	.400	.377		
	CE _{Human}	.257	.399	.251		
	CE _{ChatGPT}	.250	.368	.245		
Reddit	CE _{Human}	.323	.418	.543		
	CE	.302	.391	.522		
Wikipedia	CE _{Human}	.149	.152	.135		
	CE _{ChatGPT}	.163	.159	.144		

- Our results confirm that:
 - it is possible to train effective cross-encoder (CE) re-rankers by training them on ChatGPT-generated responses even for domain-specific queries.

BM25 on human VS. ChatGPT responses

Split	Source	MAP	NDCG	Recall	
Test	Human	.143	.184	.520	
	ChatGPT	.370	.396	.898	

- BM25 is less effective on human-generated responses:
 - Indicating that human-generated responses are more challenging to match with queries
 - o Possible reason: higher lexical overlap in the GPT output

Experimental setup

Main Results and Findings

[SEP]

- For out-of-domain re-ranking:
 - cross-encoder re-ranking models trained on
 LLM-generated responses are significantly more
 effective than those trained on human responses.

Document is

generated by human

[SEP]

- For in-domain re-ranking:
 - The human-trained re-rankers outperform the LLM-trained re-rankers.

• Conclusions:

[CLS]

Query

- LLMs have **high potential** in generating training data for neural retrieval models and can be used to augment training data, especially in domains with smaller amounts of labeled data.
- This work is particularly advantageous for domain-specific tasks where relying on LLM-generated output as a direct response to a user query can be risky.

Comparing the effectiveness of cross-encoder re-rankers fine-tuned on human and ChatGPT responses

Model	I	n-domain set	ting		Out-of-domain setting							
	ChatGl	ChatGPT-RetrievalQA (Ours)			TREC DL'19		TREC DL'20		MS MARCO DEV			
	MAP	NDCG	MRR	MAP	NDCG	MRR	NDCG	MRR	MAP	NDCG	MRR	MRR
BM25	.143	.184	.240	.377	.506	.858	.286	.480	.819	.195	.234	.187
MiniLM _{Human}	.310	.384	.460	.326	.451	.833	.269	.376	.913	.130	.155	.118
MiniLM _{ChatGPT}	.294	.362	.444	.342	.510	.903	.344	.539	.978	.226	.267	.218
TinyBERT	.244	.310	.367	.294	.360	.741	.277	.364	.791	.128	.154	.116
TinyBERT	.231	.291	.358	.328	.488	.924	.303	.460	.972	.194	.231	.185