Laboratório de Circuitos Digitais Anotações de Aula - Aula 1

Prof. João Perea Martins – Dep. de Computação, FC-UNESP Email: joao.perea@unesp.br

Conteúdo: Conceitos Gerais Multivibrador Astável com o CI 555

1) LED

LED significa *Light-Emitting Diode* (**Diodo Emissor de Luz**), é usado para a emissão de luz, porém deve ser corretmente polarizado e energizado com valores corretos.

Figura 1. O LED e seu síbolo eletrônico

A tabela abaixo mostra os valores de tensão e corente que devemos apliocar no LED para o seu funcioanmento correto.

rabbia ii reiidab b beii biike rebeiii biiaadee para aiii 222							
COR DOS LEDs	VALOR DA TENSÃO (V)	CORRENTE NOS LEDs (mA)					
Vermelho	1,8 – 2,0	20					
Laranja	1,8 – 2,0	20					
Amarelo	1,8 – 2,0	20					
Verde	2,0 – 2,5	20					
Azul	2,5 – 3,0	20					
Branco	25-30	20					

Tabela 1. Tensão e corrente recomendados para um LED

Para ajustar os valores da tensão e corrente elétrica, usamos um resistor, conforme mostra a figura 2.

Figura 2. Uso de um resistor para controle da corrente e tensão no LED.

Figura 3. O conceito de ligação de Terra (GND)

O Resistor da figura 2 é calculado com a equação abaixo:

2) RESISTOR

O Resistor é um componente que converte energia elétrica em térmica.

Note que "resistência elétrica" é um fenômeno físico de oposição à passagem de corrente elétrica, enquanto "resistor" é um componente

A relação entre tensão (V), resistência (R) e corrente elétrica (I) é expressa pela lei de Ohm, como:

$$V = R * I$$

De acordo com a lei de Ohm, a tensão no LED pode ser calculada como:

$$R = \frac{(V_{alimenta \hat{a} \hat{a} \hat{o}} - V_{led})}{I}$$

A tabela 2 mostra comerciais dos resistores. Outros valores podem ser obtidos juntando resistores em série ou paralelo.

Tabela 2. Valores comericais de resitores

					5%	Resi	stores	de F	ilme d	e Carb	ono				
Tabela de Valores Comerciais															
1,0	Ω	10	Ω	100	Ω	1	ΚΩ	10	ΚΩ	100	ΚΩ	1	MΩ	10	MΩ
1,1	Ω	11	Ω	110	Ω	1,1	ΚΩ	11	ΚΩ	110	ΚΩ	1,1	MΩ	15	MΩ
1,2	Ω	12	Ω	120	Ω	1,2	ΚΩ	12	ΚΩ	120	ΚΩ	1,2	MΩ	22	MΩ
1,3	Ω	13	Ω	130	Ω	1,3	ΚΩ	13	ΚΩ	130	ΚΩ	1,3	MΩ		
1,5	Ω	15	Ω	150	Ω	1,5	ΚΩ	15	ΚΩ	150	ΚΩ	1,5	MΩ		
1,6	Ω	16	Ω	160	Ω	1,6	ΚΩ	16	ΚΩ	160	ΚΩ	1,6	MΩ	Š.	
1,8	Ω	18	Ω	180	Ω	1,8	ΚΩ	18	ΚΩ	180	ΚΩ	1,8	МΩ		
2,0	Ω	20	Ω	200	Ω	2	ΚΩ	20	ΚΩ	200	ΚΩ	2	MΩ		
2,2	Ω	22	Ω	220	Ω	2,2	ΚΩ	22	ΚΩ	220	ΚΩ	2,2	MΩ		
2,4	Ω	24	Ω	240	Ω	2,4	ΚΩ	24	ΚΩ	240	ΚΩ	2,4	MΩ		
2,7	Ω	27	Ω	270	Ω	2,7	ΚΩ	27	ΚΩ	270	ΚΩ	2,7	MΩ		
3,0	Ω	30	Ω	300	Ω	3	ΚΩ	30	ΚΩ	300	ΚΩ	3	MΩ		
3,3	Ω	33	Ω	330	Ω	3,3	ΚΩ	33	ΚΩ	330	ΚΩ	3,3	MΩ		
3,6	Ω	36	Ω	360	Ω	3,6	ΚΩ	36	ΚΩ	360	ΚΩ	3,6	MΩ		
3,9	Ω	39	Ω	390	Ω	3,9	ΚΩ	39	ΚΩ	390	ΚΩ	3,9	MΩ		
4,3	Ω	43	Ω	430	Ω	4,3	ΚΩ	43	ΚΩ	430	ΚΩ	4,3	MΩ		
4,7	Ω	47	Ω	470	Ω	4,7	ΚΩ	47	ΚΩ	470	ΚΩ	4,7	MΩ	Ĭ	
5,1	Ω	51	Ω	510	Ω	5,1	ΚΩ	51	ΚΩ	510	ΚΩ	5,1	МΩ		
5,6	Ω	56	Ω	560	Ω	5,6	ΚΩ	56	ΚΩ	560	ΚΩ	5,6	MΩ	8	
6,2	Ω	62	Ω	620	Ω	6,2	ΚΩ	62	ΚΩ	620	ΚΩ	6,2	MΩ	 	
6,8	Ω	68	Ω	680	Ω	6,8	ΚΩ	68	ΚΩ	680	ΚΩ	6,8	MΩ		
7,5	Ω	75	Ω	750	Ω	7,5	ΚΩ	75	ΚΩ	750	ΚΩ	7,5	MΩ		
8,2	Ω	82	Ω	820	Ω	8,2	ΚΩ	82	ΚΩ	820	ΚΩ	8,2	MΩ		
9,1	Ω	91	Ω	910	Ω	9,1	ΚΩ	91	ΚΩ	910	ΚΩ	9,1	MΩ		

A tabela 3 e a figura 3a mostram que os resistores podem ser identificados por cores

Tabela 3. Cores de identificação dos resistores

Tabela o: Cores de lacritificação dos resistores						
А	В	С	D	E		
Cor	1º Faixa	2º faixa	Multiplicador	Tolerância		
Preto		0	0	0		
Marrom		1	1	1	+/- 1%	
Vermelho		2	2	2	+/- 2%	
Laranja		3	3	3		
Amarelo		4	4	4		
Verde		5	5	5	+/- 0,5%	
Azul		6	6	6	+/- 0,25%	
Violeta		7	7	7	+/- 0,1%	
Cinza		8	8	8	+/- 0,05%	
Branco		9	9	9		
Dourado				X 0,1	+/- 5%	
Prata				X 0,01	+/- 10%	

Prof. Perea – DCo, FC-UNESP Email: joao.perea@unesp.br

3) SÍMBOLOS

Os componentes elétricos e eletrônicos são representados por símbolos, conforme exemplifica as figuras 4 e 5, o que permite fazer "esquemas" ou desenhos técnicos.

Figura 4. Dispositivos eletrônicos e seus símbolos

Figura 5. Dispositivos eletrônicos e seus símbolos

Prof. Perea – DCo, FC-UNESP Email: joao.perea@unesp.br

4) PROTOBOARD

A figura 5 mostram um **protoboard** ou breadboard, que é uma placa que funciona como uma matriz de contato com furos d e conexões que permitem a montagem de protótipos de circuitos eletrônicos. A figura 6 mostra a estrutura interna de conexões do Protoboard

Figura 5. Protoboard sem e com componentes

Figura 6. Conexões horizontais e verticais do Protoboard

5) NÍVEIS LÓGICOS E DE TENSÃO

No laboratório de circuitos digitais trabalhos fundamentalmente com componentes (circuitos integrados) do tipo TTL que operam com níveis lógicos alto e baixo que são especificados na Tabela x.

Nível Lógico	Representação	Representação	Tensão (V)
Alto	Н	1	5V
Baixo	L	0	0V

A figura 7 mostra que os níveis de tensão podem ter uma variação sem que seu estado (alto ou baixo) seja alterado.

Figura 7. Níveis de tensão para os níveis lógicos

6) MULTIVIBRADOR ASTÁVEL

Um Multivibrador Astável funciona como um oscilador, apresentado uma saída com pulsos altos e baixos intercalados.

Figura 1. Saída do Multivibrador Astável

A figura 8 mostra Circuito Integrado (CI) 555, que pode ser configurado como um multivrador.

Figura 8. O CI 555

A figura 9 mostra o circuito eletrônico de um multivibrador estável com o CI 555. Abaixo da figura são mostradas as equações dos tempos alto e baixo.

Figura 9. O circuito do multivibrador estável com o CI 555

EQUAÇÕES:

TH = 0.7 * (RA + RB) * C TL= 0.7 * RB * C Tp = TH +TL Frequência = 1/Tp