

A Deep Dive into Advanced Anomaly Detection Techniques

By Hajar Kaddouri

Structure

- 1. Introduction
- 2. EDA
- 3. Preprocessing4. Comprehensive Approach5. Conclusion

Introduction

The Imperative of Detecting Fraudulent Transactions:

- 1. Financial Loss: Billions of dollars are lost annually due to undetected fraudulent transactions.
- 2. Customer Trust: Maintaining the trust of customers is vital. If a customer falls victim to a fraudulent transaction, the trust they have in the banking institution may be lost, which is often difficult to rebuild.

Problem statement

Identify fraudulent credit card transactions using machine learning. Given the imbalance between fraudulent and non-fraudulent transactions. By using a comprehensive technique that include unsupervised and then supervised models.

DATASETS

	DAIASEIS
credit_card	NFORMATIONS ABOUT DATASETS: https://www.kaggle.com/code/iabhishekofficial/
	d-fraud-detection/input

**

- l/credit-car he data provided consists of two tables: "cc info,"
 - and "transactions,". containing details of credit card transactions that

occurred between August 1st and October 30th.

- It's clean data (no null no nan no duplicate.

The both files merged to one dataframe (294588, 9) credit_card_lim

credit_card

date

transaction dollar am ount

Long

Lat

Lat

it

city

state

zipcode

Part I - EDA

From this distribution we can expect to perform:

- Normalizing (scale the data)
- Handling Imbalanced Data.

Part II - Preprocessing

Data Preprocessing:

- > One-hot encoding for credit card numbers
- > Normalization using standard scaler.

Feature Engineering:

- > Calculate the rolling count of transactions for each card
- Calculate the mean and standard deviation for the rolling count of transactions

Part II - K-Means Clustering

In the k-means clustering process, the optimal number of clusters was 2

Number of anomalies detected by KMeans: 14730

	cluster	distance_to_center	kmeans_anomaly
277391	0	2.633927	0
201068	0	0.577556	0
278181	0	3.113150	1
29066	0	0.850952	0
230996	0	1.524767	0

Combining the result from the rolling mean technique and k-means:

Total anomalies after combining: 20364

	kmeans_anomaly	count_anomaly	combined_anomaly
277391	0	1	1
201068	0	1	1
278181	1	1	1
29066	0	1	1
230996	0	1	1

Part III - Supervised LM

- > Splitting the dataset

 x = columns (local and transactions)

 y = ['combined_anomaly']
- > Applying SMOTE oversampling on training data 290588 Vs 20364
- > Hyperparameter grids
- ➤ Model training using GridSearchCV

The best model is Gradient Boosting

```
[INFO] Ensemble Model Results:
Random Forest Score: 0.95
Random Forest Precision: 0.65
Random Forest Recall: 0.73
Random Forest F1 Score: 0.69
Gradient Boosting Score: 0.97
Gradient Boosting Precision: 0.84
Gradient Boosting Recall: 0.73
Gradient Boosting F1 Score: 0.78
```


rolling statistics

(CADF-2)

Framework

K-Means clustering

Combining the results in new column

Random Forest

Gradient Boostin

97%

THANKS

Challenges & Questions

- https://github.com/hajar-kaddouri/Final-Project2023
- https://shiftprocessing.com/credit-card-fraud-statistics/