1. Определения

Определение **1.1.** Диофантовым уравнение называется уравнение, которое можно решить в \mathbb{Z} .

Определение **1.2.** a делится на b (a : b, b|a), если $\exists c \in \mathbb{Z} : a = bc$.

Теорема 1.1 (О делении с остатком).
$$a,b \in \mathbb{Z}, \exists ! (q,r) : \begin{cases} q,r \in \mathbb{Z} \\ a = b \cdot q + r \\ 0 \leqslant r < |b| \end{cases}$$

Onpedenehue 1.3. Пусть $I \subset \mathbb{Z}$. I называется идеалом, если

$$\left\{\begin{array}{l} m,n\in I\Rightarrow m+n\in I\ (\text{замкнутость по сложению})\\ m\in I\Rightarrow \forall k\in\mathbb{Z}\colon k\cdot m\in I\ (\text{замкнутость по домножению})\\ I\neq\varnothing \end{array}\right.$$

Теорема 1.2. В \mathbb{Z} любой идеал главный.

Определение 1.4. Пусть $a, b \in \mathbb{Z}$. Тогда $d - \text{HOД}(a, b) = \gcd(a, b) = (a, b)$

Теорема 1.3. 1. $\forall a, b \; \exists d = (a, b)$

- $2. \exists x, y \in \mathbb{Z} : d = ax + by$
- 3. ax + by = c имеет решение $\iff c : d$.

Определение 1.5. a,b — взаимно просты, если (a,b)=1, то есть $\langle a,b\rangle=\mathbb{Z}$

Лемма.
$$\begin{cases} ab : c \\ (a,c) = 1 \end{cases} \Rightarrow b : c.$$

 $extbf{Onpedenehue}$ 1.6. $x \in \mathbb{Z}, x \neq \pm 1$, тогда x- простое число, если $x=x_1x_2 \iff \left[egin{array}{c} x_1=\pm 1 \\ x_2=\pm 1 \end{array}
ight. orall x_1, x_2$

Свойство *.
$$x$$
 — обладает свойством *, $\iff x \neq \pm 1 \land ab : x \Rightarrow \begin{bmatrix} a : x \\ b : x \end{bmatrix}$

Утверждение 1.4. p — простое $\iff p$ — обладает свойством *.

Теорема 1.5 (Основная теорема арифметики). Пусть $n \in \mathbb{Z}, n \neq 0$. Тогда n единственным образом с точностью до перестановки сомножителей, представимо в виде $(p_i - \text{простые}, p_i > 0)$

$$n = \varepsilon p_1 p_2 \dots p_k, \varepsilon = \pm 1 = \operatorname{sign}(n).$$

Или, иными словами, существует единственное каноническое разложение:

$$n = \varepsilon p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}, \varepsilon = \pm 1 = \text{sign}(n), a_i > 0, p_1 < p_2 < \dots < p_k.$$

Определение 1.7. $n \in \mathbb{Z}, n \neq 0, p$ — простое, тогда степень вхождения $(V_p(n) = k)$ p в n — $\max\{k \mid n : p^k\}$

В терминах разложения: $n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$. $V_p(n)=a_i$, а если p нет в разложении, то $V_p(n)=0$.

Определение 1.8. $m-\mathrm{HOK}\ (\mathrm{LCM},\ [a,b]),\ \mathrm{если}\ m \ \vdots\ a,m \ \vdots\ b\ \mathtt{u}\ \forall n\ n \ \vdots\ a \land n \ \vdots\ b \Rightarrow n \ \vdots\ m$

Определение 1.9. Группой называется пара (G,*), где G — множество, а $*: G \times G \to G$ — бинарная операция, так что выполнены свойства:

- 1. $\forall a, b, c \in G : (a * b) * c = a * (b * c)$. Ассоциативность.
- 2. $\exists e \in G : \forall a \in G \ a * e = e * a = a$. Существование нейтрального элемента.
- 3. $\forall a \in G \exists a^{-1} : a * a^{-1} = a^{-1} * a = e$. Существование обратного элемента.

Определение 1.10. Группа G называется абелевой, если $\forall x, y \in G : x * y = y * x$.

Определение 1.11. Кольцо — тройка $(R, +, \cdot)$ $(R - \text{множество}, +, \cdot : R \times R \to R)$, такая что:

- 1–4. (R, +) абелева группа. Нейтральный элемент обозначается 0, обратный к a -a.
 - 5. $a \cdot (b+c) = a \cdot b + a \cdot c$ и $(b+c) \cdot a = b \cdot a + b \cdot c$. Дистрибутивность.

Onpedeneuue 1.12. Кольцо R называется ассоциативным, если выполнено

6.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
.

 $Onpedenetue \ 1.13.$ Кольцо R называется коммутативным, если

7.
$$a \cdot b = b \cdot a$$

Определение 1.14. Кольцо R называется кольцом с 1, если

8.
$$\exists 1 \in R : 1 \cdot a = a \cdot 1 = a$$

Определение **1.15**. Коммутативное ассоциативное кольцо с 1 называется полем, если выполнена

9.
$$\forall a \in R \setminus \{0\} \ \exists b \in R \ ab = 1 \land 1 \neq 0$$

Определение 1.16. Пусть $a, b \in \mathbb{Z}$, говорят, что a сравнимо с b по модулю n ($a \equiv b \pmod n$), если (a - b) : n. Эквивалентное определение: a и b имеют одинаковые остатки по модулю n.

Onpedenehue 1.17. Фактор множества по отношению \equiv обозначается $\mathbb{Z}/n\mathbb{Z}$.

Теорема 1.6. Пусть $n \in \mathbb{N}$. Тогда класс $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$, где $\overline{a} + \overline{b} = \overline{a + b} \wedge \overline{a} \cdot \overline{b} = \overline{a \cdot b}$ — ассоциативное коммутативное кольцо с единицей.

Определение 1.18. Пусть R — коммутативное ассоциативное кольцо с единицей. Тогда $\forall a \in R: a$ — делитель нуля $\Rightarrow \exists b \neq 0: ab = 0$.

Лемма. $\forall a, b, c \in R : ab = ac \land a$ — не делитель нуля $\Rightarrow b = c$.

Лемма. $a \in R$: a — обратим $\Rightarrow a$ — не делитель нуля.

Теорема 1.7. $\forall a \in Z : \overline{a} \in \mathbb{Z}/n\mathbb{Z}$. Тогда:

- 1. \overline{a} обратим \iff (a, n) = 1
- 2. \overline{a} делитель нуля \iff $(a, n) \neq 1$.

Следствие. n- простое $\Rightarrow \mathbb{Z}/n\mathbb{Z}-$ поле.

Определение 1.19. \forall ассоциативного кольца с 1 R: R — называется кольцом без делителей нуля (область целостности), если делитель нуля только 0. $ab = 0 \iff a = 0 \lor b = 0$.

Определение 1.20. Гомоморфизмом колец $f: R_1 \mapsto R_2$ называется такое отображение, что $\forall r_1, r_2 \in R_1: f(r_1 + r_2) = f(r_1) + f(r_2), f(r_1 r_2) = f(r_1) \cdot f(r_2), f(1) = 1.$

Определение 1.21. Гомоморфизмом группы $f: G_1 \mapsto G_2$ называется такое отображение, что $\forall g_1, g_2 \in G_1: f(g_1g_2) = f(g_1) \cdot f(g_2)$.

Определение 1.22. R_1, R_2 — кольца. Рассмотрим $(R_1 \times R_2, +, \cdot) : (r_1, r_2) +_{R_1 \times R_2} (r'_1 r'_2) \coloneqq (r_1 +_{R_1} r_2, r_2 +_{R_2} r'_2)$, где $+_{R_1 \times R_2}, +_{R_1}, +_{R_2}$ — операции сложения для соответствующих множеств. Тоже самое для умножения. Тогда $R_1 \times R_2$ — тоже кольцо, т.к. соответствующие свойства операций унаследуются, что можно проверить самостоятельно. Но заметка: если R_1 и R_2 были областями целостности, то их произведение областью целостности почти никогда не будет.

Определение 1.23. Биективный гомоморфизм (групп, колец, ...) (называется изоморфизмом, \cong) если каждым a_i задано ровно одно b_i и наоборот.

Теорема 1.8 (Китайская теорема об остатках). Пусть (m,n)=1, тогда $\mathbb{Z}/mn\mathbb{Z}\cong\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$.

Теорема 1.9 (КТО 2). $m_1, m_2, m_3, \ldots, m_n \in \mathbb{Z} \wedge (m_i, m_j) = 1 \Rightarrow \mathbb{Z}/m_1, m_2, \ldots, m_n \mathbb{Z} \mapsto \mathbb{Z}/m_1 \mathbb{Z} \times \mathbb{Z}/m_2 \mathbb{Z} \ldots$ - изоморфизм колец.

Теорема 1.10 (КТО без колец). $\forall m_1, \ldots, m_n \in \mathbb{Z} : \forall i, j(m_i, m_j) = 1, \forall a_1, \ldots, a_n \Rightarrow \exists x_0 \in Z : x \equiv a_1 \pmod{m_1} \land \ldots \land x \equiv a_n \pmod{m_n} \iff x \equiv x_0 \pmod{\prod_i m_i}$

Определение 1.24. Пусть C — группа $(a \in C)$, тогда порядок элемента a: $\mathrm{ord}(a) = \{\min k \in \mathbb{N} \mid a^k = 1\}$. А если такого k нет, то $\mathrm{ord}(a) = \infty$

Лемма. Пусть G — группа $(a \in G)$. $\langle a \rangle = \{a, a^2, \dots; a^{-1}, (a^{-1})^2, \dots, e\} = \{a^k \mid k \in \mathbb{Z}\}$. Тогда $(\langle a \rangle, *)$ — группа.

 $Onpedenehue\ 1.25.\ \langle a \rangle$ называется циклической группой, порожденной $a.\ G$ — циклическая группа $\iff \exists a \in G\colon G\cong \langle a \rangle$

Теорема 1.11 (О классификации циклических групп). ord $a = \infty \Rightarrow \langle a \rangle \cong (\mathbb{Z}, +)$. ord $a = k \in \mathbb{N} \Rightarrow \langle a \rangle \cong (\mathbb{Z}/k\mathbb{Z}, +)$

Теорема 1.12 (Теорема Лангранжа). Пусть G — группа. $\forall G$ — n-элементная группа, тогда $\forall a \in G : n \ \vdots \ \text{ord} \ a$

 ${\it Cnedcmeue.}\,\,G-$ конечная группа $(a\in G)\Rightarrow a^{|G|}=e$

Утверждение 1.13. G — группа (|G|=n). G — циклическая $\iff \exists a \in G : \text{ord } a=n$. МТФ: $\overline{a}, \overline{a}^2, \ldots$ — периодична с периодом p-1. Утверждение: $\exists \overline{a} : p-1$ — наименьший период этой последовательности.

Определение 1.26. R — ассоциативное кольцо, тогда $R^* = \{a \in R | \exists a^{-1}\}$ — группа обратимых элементов.

 $m{Onpedenehue 1.27.}$ Рассмотрим $R=\mathbb{Z}/n\mathbb{Z}$. Тогда $R^*=\{\overline{a}\in\mathbb{Z}/n\mathbb{Z}\mid \exists \overline{b}: \overline{a}\overline{b}=1\}=\{\overline{a}\in\mathbb{Z}/n\mathbb{Z}\mid (a,n)=1\}$. Тогда $|R^*|=arphi(n)$ — функция Эйлера.

Теорема 1.14 (Теорема Эйлера). $\forall b \in (\mathbb{Z}/n\mathbb{Z})^* = b^{\varphi(n)} = 1$

Теорема 1.15 (Теорема Эйлера). $\forall a \in \mathbb{Z} : (a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$

Теорема 1.16 (Теорема о первообразном корне). $p \in \mathbb{Z}$ — простое $\Rightarrow (\mathbb{Z}/p\mathbb{Z})^*$ — циклическая.

Определение 1.28. Подгруппа группы G — пара (H,*), где $H \subset G, *$ — замкнуто относительно H. Обозначается \leqslant .

Определение 1.29. Подгруппа группы G порожденная множеством S ($S \subset G$) — наименьшая по включению подгруппа G, содержащая все элементы S.

$$\langle S \rangle = \bigcap_{H \leqslant G, S \subset H} H.$$

Теорема 1.17. $\forall S \subset G \colon \langle S \rangle = \{a_1^{\varepsilon_1} \dots a_k^{\varepsilon_k} \mid \forall i \in I a_i \in S \land \varepsilon_i = \pm 1\}$

Теорема 1.18.
$$(\mathbb{Z}/n\mathbb{Z})^*$$
 — циклическая $\iff \begin{cases} n=p^k & p>2$ — простое $n=2p^k & \text{см. выше} \\ n=2\vee n=4 \end{cases}$

Утверждение 1.19. G_1, G_2, G — группы (конечные).

- 1. $G \cong G_1 \times G_2$. $(|G_1|, |G_2|) \neq 1 \Rightarrow G$ не циклическая.
- 2. $(|G_1|,|G_2|)=1$ и G_1,G_2 циклическая $\Rightarrow G_1 \times G_2$ циклическая. (KTO).

Теорема 1.20. $a \in (\mathbb{Z}/p\mathbb{Z})^*$. Тогда $x^2 = a$ имеет решение $\iff a^{\frac{p-1}{2}} = 1$

Теорема 1.21. $\pi(n)$ — количество простых на [1,n]. Тогда $\lim_{n\to+\infty} = \frac{\pi(n)}{\frac{n}{\log n}} = 1$.

 $\pmb{Cnedcmeue}$. Случайное число на 1,n- простое с вероятностью $\frac{1}{\ln n}$

Теорема 1.22 (Тест Люка). Пусть $b \in \mathbb{Z}$, такое что $b^{n-1} = 1 \pmod n$ и $b^{\frac{n-1}{p_i}} \neq 1 \pmod n$. Тогда n- простое.

Определение 1.30. Если n — составное, но $a^{n-1} \equiv 1 \pmod{n}$, то a — свидетель простоты.