## Author index to volume 5 (1993)

| Andreassen, S., see Olesen, K.G.                                                                  | 269-281   |
|---------------------------------------------------------------------------------------------------|-----------|
| Ash, D., G. Gold, A. Seiver and B. Hayes-Roth, Guaranteeing real-time response                    |           |
| with limited resources                                                                            | 49- 66    |
| Barreto, J.M. and F.M. de Azevedo, Connectionist expert systems as medical                        |           |
| decision aid                                                                                      | 515-523   |
| Bayazitoglu, A., see Smith, J.W., Jr.                                                             | 125-142   |
| Beddoes. M.P., see Xiang, Y.                                                                      | 293-314   |
| Beinlich, I.A., see Rutledge, G.W.                                                                | 67- 82    |
| Chen, W., see Cousins, S.B.                                                                       | 315-340   |
| Cho, S. and J.A. Reggia, Multiple disorder diagnosis with adaptive competitive<br>neural networks | 469-487   |
| Cousins, S.B., W. Chen and M.E. Frisse, A tutorial introduction to stochastic                     | 102 101   |
| simulation algorithms for belief networks                                                         | 315-340   |
| Davenport, J.C., see Hammond, P.                                                                  | 431-446   |
| Dawant., see Uckun, S.                                                                            | 31- 48    |
| De Azevedo, F.M., see Barreto, J.M.                                                               | 515-523   |
| Deželić, G., see Kern, J.                                                                         | 213-223   |
| Downing, K.L., Physiological applications of consistency-based diagnosis                          | 9- 30     |
| Dürrigl, T., see Kern, J.                                                                         | 213-223   |
| Dybowski, R., W.R. Gransden and I. Phillips, Towards a statistically oriented                     |           |
| decision support system for the management of septicaemia                                         | 489-502   |
| Dye, J.W., see Levitt, T.S.                                                                       | 365 – 387 |
| Eisen, A., see Xiang, Y.                                                                          | 293-314   |
| Fagan, L.M., see Rutledge, G.W.                                                                   | 67- 82    |
| Farr, B.R., see Rutledge, G.W.                                                                    | 67- 82    |
| Fitzpatrick, F.J., see Hammond, P.                                                                | 431 – 446 |
| Fox, J., On the soundness and safety of expert systems                                            | 159-179   |
| Fox, J., see Huang, J.                                                                            | 415-430   |
| Frisse, M.E., see Cousins, S.B.                                                                   | 315-340   |
| Gappa, U., F. Puppe and S. Schewe, Graphical knowledge acquisition for                            |           |
| medical diagnostic expert systems                                                                 | 185 - 211 |
| Giuse, D.A., N.B. Giuse and R.A. Miller, Consistency enforcement in medical                       | 202 000   |
| knowledge base construction                                                                       | 245 - 252 |
| Giuse, N.B., see Giuse, D.A.                                                                      | 245 – 252 |
| Gold, G., see Ash, D.                                                                             | 49 - 66   |
| Gordon, C., see Huang, J.                                                                         | 415 – 430 |
| Gransden, W.R., see Dybowski, R.                                                                  | 489 – 502 |
| Hammond, P., J.C. Davenport and F.J. Fitzpatrick, Logic-based integrity                           |           |
| constraints and the design of dental prostheses                                                   | 431 – 446 |
| Hayes-Roth, B., see Ash, D.                                                                       | 49- 66    |

| Hedgcock Jr., M.W., see Levitt, T.S.                                                                                                              | 365 – 38  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Horn, W., see Widmer, G.                                                                                                                          | 225 - 243 |
| Huang, J., J. Fox, C. Gordon and A. Jackson-Smale, Symbolic decision support                                                                      |           |
| in medical care                                                                                                                                   | 415-430   |
| Jackson-Smale, A., see Huang, J.                                                                                                                  | 415 – 436 |
| Johnston, S.E., see Levitt, T.S.                                                                                                                  | 365 – 38  |
| Kern, J., G. Deželić, T. Dürrigl and S. Vuletić, Medical decision making based                                                                    |           |
| on inductive learning method                                                                                                                      | 213-223   |
| Lanzola, G. and M. Stefanelli, Inferential knowledge acquisition                                                                                  | 253-268   |
| Levitt, T.S., M.W. Hedgcock Jr., J.W. Dye, S.E. Johnston, V.M. Shadle and                                                                         |           |
| D. Vosky, Bayesian inference for model-based segmentation of computed                                                                             |           |
| radiographs of the hand                                                                                                                           | 365-387   |
| Lindstrom, D.P., see Uckun, S.                                                                                                                    | 31 - 48   |
|                                                                                                                                                   |           |
| Lucas, P.J.F., The representation of medical reasoning models                                                                                     | 395 – 414 |
| Masic, N. and G. Pfurtscheller, Neural network based classification of single-trial                                                               | 502 512   |
| EEG data                                                                                                                                          | 503-513   |
| Miller, R.A., see Giuse, D.A.                                                                                                                     | 245 – 252 |
| Nagele, B., see Widmer, G.                                                                                                                        | 225-243   |
| Neapolitan, R.E., Computing the confidence in a medical decision obtained from                                                                    |           |
| an influence diagram                                                                                                                              | 341 – 363 |
| Olesen, K.G. and S. Andreassen, Specification of models in large expert systems                                                                   |           |
| based on causal probabilistic networks                                                                                                            | 269-281   |
| Pant, B., see Xiang, Y.                                                                                                                           | 293-314   |
| Pfurtscheller, G., see Masic, N.                                                                                                                  | 503-513   |
| Phillips, I., see Dybowski, R.                                                                                                                    | 489-502   |
| Polaschek, J.X., see Rutledge, G.W.                                                                                                               | 67- 82    |
| Poole, D., see Xiang, Y.                                                                                                                          | 293-314   |
| Puppe, F., see Gappa, U.                                                                                                                          | 185-211   |
| Luppe, 14, see Guppu, et                                                                                                                          | 105 - 211 |
| Reggia, J.A., Neural computation in medicine                                                                                                      | 143 – 157 |
| Reggia, J.A., see Cho, S.                                                                                                                         | 469-487   |
| Rutledge, G.W., G.E. Thomsen, B.R. Farr, M.A. Tovar, J.X. Polaschek, I.A. Beinlich, L.B. Sheiner and L.M. Fagan, The design and implementation of |           |
|                                                                                                                                                   | (7 00     |
| a ventilator-management advisor                                                                                                                   | 67- 82    |
| Schewe, S., see Gappa, U.                                                                                                                         | 185-211   |
| Seiver, A., see Ash, D.                                                                                                                           | 49- 66    |
| Shadle, V.M., see Levitt, T.S.                                                                                                                    | 365 - 387 |
| Sheiner, L.B., see Rutledge, G.W.                                                                                                                 | 67- 82    |
| Shortliffe, E.H., The adolescence of AI in Medicine: Will the field come of age in                                                                | 02 104    |
| the '90s?                                                                                                                                         | 93-106    |
| Smith Jr., J.W. and A. Bayazitoglu, Exploring the relationship between rationality                                                                |           |
| and bounded rationality in medical knowledge-based systems                                                                                        | 125-142   |
| Stefanelli, M., European research efforts in medical knowledge-based systems                                                                      | 107 – 124 |
| Stefanelli, M., see Lanzola, G.                                                                                                                   | 253 – 268 |
| Thomsen, G.E., see Rutledge, G.W.                                                                                                                 | 67- 82    |
| Tovar, M.A., see Rutledge, G.W.                                                                                                                   | 67- 82    |

| Uckun, S., B.M. Dawant and D.P. Lindstrom, Model-based diagnosis in intensive |           |
|-------------------------------------------------------------------------------|-----------|
| care monitoring: The YAQ approach                                             | 31- 48    |
| Vosky, D., see Levitt, T.S.                                                   | 365-387   |
| Vuletić, S., see Kern, J.                                                     | 213 – 223 |
| Widmer, G., W. Horn and B. Nagele, Automatic knowledge base refinement:       |           |
| Learning from examples and deep knowledge in rheumatology                     | 225 – 243 |
| Xiang, Y., B. Pant, A. Eisen, M.P. Beddoes and D. Poole, Multiply sectioned   |           |
| Bayesian networks for neuromuscular diagnosis                                 | 293-314   |
| Yap, R.H.C., A constraint logic programming framework for constructing DNA    |           |
| restriction maps                                                              | 447-464   |



## Subject index to volume 5 (1993)

| Abduction                       | 125                | Image segmentation         | 365           |
|---------------------------------|--------------------|----------------------------|---------------|
| AIM research                    | 93                 | Image understanding        | 365           |
| Anytime algorithms              | 49                 | Inductive learning         | 213           |
| Argumentation                   | 415                | Inference model            | 107           |
| Associative memories            | 515                | Influence diagram          | 341           |
| ATMS                            | 9                  | Intelligent monitoring     | 9, 31         |
|                                 |                    | Intensive-care monitoring  | 67            |
| Bayesian inference              | 365                | 6                          |               |
| Bayesian network                | 293                | Knowledge acquisition      | 245, 253      |
| Belief network(s)               | 315, 341           | Knowledge-based systems    | 107, 253, 431 |
| Biomedical computing            | 143                | Knowledge base refinement  | 225           |
| Diemeter companie               |                    | Knowledge bases            | 159           |
| Causal probabilistic networks   | 269                | Knowledge compilation      | 225           |
| Clinical physiologic model      | 67                 | Knowledge engineering      | 245           |
| Compartmental models            | 9                  | Knowledge engineering      |               |
| Competition                     | 469                | methods                    | 125           |
| Computational neuroscience      | 143                | Knowledge sharing and      | -             |
| Computer-aided design           | 431                | reusability                | 253           |
| Connectionist models            | 143                | ,                          |               |
| Consistency-based diagnosis     | 9                  | Learning                   | 469           |
| Constraints                     | 447                | Logic databases            | 431           |
| Critiquing                      | 431                | Logic programming          | 159, 447      |
|                                 |                    | Logic programming in       | ,             |
| Data model                      | 415                | medicine                   | 395           |
| Decision support                | 489                | Logistic regression models | 489           |
| Decision theory                 | 49                 | 8                          |               |
| Decomposition                   | 293                | Machine learning           | 225           |
| Deep and shallow knowledge      | 225                | Mathematical modeling      | 67            |
| Deep knowledge                  | 269                | Medical decision making    | 213           |
| Diagnosis                       | 31, 49, 469        | Medical decision support   |               |
| Diagnostic reasoning            | 185                | systems                    | 93            |
| DNA                             | 447                | Medical diagnosis and test |               |
| Domain model                    | 415                | interpretation             | 125           |
|                                 |                    | Medical expert system(s)   | 185, 225      |
| Evaluation                      | 107                | Medical informatics        | 93, 245       |
| Expert systems                  | 159, 269, 395, 515 | Medical knowledge bases    | 245           |
| Expert system shells            | 185                | Medical knowledge          |               |
|                                 |                    | representation             | 395           |
| GDE                             | 9                  | Medical problem solving    | 125           |
| Graphical knowledge acquisition | 185                | Model-based reasoning      | 31            |
|                                 |                    | Model-based processing     | 365           |
| Hand movements experiment       | 503                | Models                     | 269           |
| Hand radiographs                | 365                | Molecular biology          | 447           |
| Hospital information systems    | 107                | Multiple disorders         | 469           |
|                                 |                    | •                          |               |
| ICU monitoring                  | 49                 | Neural models              | 143           |

| Neural network based         |          | Relative frequencies        | 489      |
|------------------------------|----------|-----------------------------|----------|
| prediction                   | 503      | Repeated structures         | 269      |
| Neural networks              | 469, 515 | Representation formalisms   | 107      |
| Neuromuscular diagnosis      | 293      | Resource limitations        | 49       |
|                              |          | Restriction mapping         | 447      |
| Objective relative frequency | 341      | Rheumatoid arthritis        | 213      |
| Ontology                     | 107      | Rheumatology                | 185, 225 |
| Oxford System of Medicine    | 159      |                             |          |
| •                            |          | Septicaemia                 | 489      |
| Parallel computation         | 143      | Simulation and modeling of  |          |
| Probabilistic influence      |          | ventilation                 | 67       |
| diagrams                     | 489      | Single-trial multi-channel  |          |
| Probabilistic reasoning      | 293      | EEG data                    | 503      |
| Problem space computational  |          | Statistics                  | 489      |
| models                       | 125      | Stochastic simulation       |          |
| Prolog                       | 431      | algorithms                  | 315      |
| Prosthetic dentistry         | 431      | Subjective probability      | 341      |
|                              |          | Symbolic decision procedure | 415      |
| QMR                          | 245      | •                           | 1        |
| QMR-KAT                      | 245      | Task model                  | 415      |
| Qualitative computation      | 67       | Theorem proving             | 395      |
| Qualitative reasoning        | 9        |                             |          |
| Quantitative computation     | 67       | Variance                    | 341      |
|                              |          | Ventilator management       | 31,67    |
| Real time                    | 49       |                             |          |