§3. Свойства сходящихся последовательностей.

Теорема 3.1 (о единственности предела). Если данная последовательность имеет предел, то он единственный.

▶Пусть число а — предел последовательности $\{x_n\}$, $a = \lim_{n \to \infty} x_n$. В противоположность тому, что требуется доказать, предположим, что

Рис. 3.1. К доказательству теоремы 3.1

существует число b такое, что $b = \lim_{n \to \infty} x_n$, при этом $a \neq b$. Для определённости будем считать, что a < b. Выберем положительное число $\varepsilon < (b-a)/2$, тогда ε — окрестности точек a и b не будут иметь общих точек, $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \emptyset$ (рис. 3.1,

(a+b)/2 — середина отрезка [a, b]). Из определения 2.1 следует, что существуют натуральные числа $N_1(\epsilon)$ и $N_2(\epsilon)$ такие, что при $n > N_1(\epsilon)$ справедливо утверждение $x_n \in U_{\epsilon}(a)$, а при $n > N_2(\epsilon)$ — утверждение $x_n \in U_{\epsilon}(b)$. Обозначим через $N(\epsilon)$ максимальное из чисел $N_1(\epsilon)$ и $N_2(\epsilon)$, для $n > N(\epsilon)$ члены последовательности x_n будут одновременно принадлежать двум непересекающимся промежуткам $U_{\epsilon}(a)$ и $U_{\epsilon}(b)$, что невозможно. Это противоречие доказывает теорему. ◀

Теорема 3.2 (об ограниченности сходящейся последовательности). Сходящаяся последовательность ограничена.

▶Пусть $\{x_n\}$ — сходящаяся последовательность, $a=\lim_{n\to\infty}x_n$. Возьмём любое число $\epsilon>0$. Из определения предела числовой последовательности (определение 2.1) следует, что найдётся натуральное число $N(\epsilon)$ такое, что при $n>N(\epsilon)$ верно утверждение $x_n\in U_\epsilon$ (а) или $a-\epsilon< x_n< a+\epsilon$. За пределами окрестности U_ϵ (а) остались члены последовательности с номерами, меньшими или равными $N(\epsilon)$: $x_1,x_2,...,x_{N(\epsilon)}$. Пусть $M=\max\{|x_1|,|x_2|,...,|x_{N(\epsilon)}|,|a-\epsilon|,|a+\epsilon|\}$. При указанном выборе числа М неравенство $|x_n|\leq M$ выполняется для любого натурального n, а это и означает, что данная последовательность ограничена (определение 1.3). \blacktriangleleft

Замечание 3.1. Теорема, обратная к теореме 3.2, неверна, и ограниченная последовательность может не иметь предела (см. пример 2.2).

Теорема 3.3 (о предельном переходе в неравенстве). Пусть даны последовательности $\{x_n\}$, $\{y_n\}$ и для $\forall n \in \mathbb{N}$ выполняется неравенство $x_n \leq y_n$. Если $\lim_{n \to \infty} x_n = a$, а $\lim_{n \to \infty} y_n = b$, то $a \leq b$.

 \blacktriangleright Доказывая от противного, предположим, что a > b и возьмём положительное число $\varepsilon < (a-b)/2$. Из определения предела числовой

последовательности (определение 2.1) следует, что найдутся натуральные числа $N_1(\epsilon)$ и $N_2(\epsilon)$ такие, что при $n>N_1(\epsilon)$ имеем: $x_n\in U_\epsilon(a)$, а при $n>N_2(\epsilon)$ — $y_n\in U_\epsilon(b)$. Пусть $N(\epsilon)=\max\{\,N_1(\epsilon),\,N_2(\epsilon)\,\}$, для $n>N(\epsilon)$

Рис. 3.2. К доказательству теоремы 3.3

члены последовательности x_n будут принадлежать промежутку $U_{\varepsilon}(a)$, а члены последовательности y_n — промежутку $U_{\varepsilon}(b)$, при этом $U_{\varepsilon}(a)\cap U_{\varepsilon}(b)=\varnothing$, так как $b+\varepsilon < b+\frac{a-b}{2}=\frac{a+b}{2}$; $a-\varepsilon > a-\frac{a-b}{2}=\frac{a+b}{2}$ (рис. 3.2). Отсюда при $n>N(\varepsilon)$ имеем неравенство: $x_n>y_n$, противоречащее условию теоремы: $x_n\le y_n$ для \forall $n\in \mathbb{N}$. Полученное противоречие доказывает теорему. \blacktriangleleft

Замечание 3.2. Из утверждения: неравенство $x_n < y_n$ верно для $\forall n \in \mathbb{N}$, вообще говоря, не следует неравенство a < b, где $a = \lim_{n \to \infty} x_n$, $b = \lim_{n \to \infty} y_n$.

Так, например, неравенство 1/n < 2/n верно для $\forall n \in \mathbb{N}$, а $\lim_{n \to \infty} (1/n) = \lim_{n \to \infty} (2/n) = 0$.

Теорема 3.4 (о сжатой последовательности). Пусть даны три последовательности $\{x_n\}$, $\{y_n\}$, $\{z_n\}$, при этом для $\forall\, n\!\in\! N$ выполняется неравенство

 $\mathbf{x}_{\mathbf{n}} \leq \mathbf{y}_{\mathbf{n}} \leq \mathbf{z}_{\mathbf{n}}$. Если $\exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, то $\exists \lim_{n \to \infty} y_n = a$.

▶ Возьмём любое число $\varepsilon > 0$. Из определения предела числовой последовательности (определение 2.1) следует, что можно найти натуральные числа $N_1(\varepsilon)$ и $N_2(\varepsilon)$ такие, что при $n > N_1(\varepsilon)$ верно неравенство $a - \varepsilon < x_n < a + \varepsilon$, а при $n > N_2(\varepsilon)$ неравенство $a - \varepsilon < z_n < a + \varepsilon$. Пусть $N(\varepsilon) = \max\{N_1(\varepsilon), N_2(\varepsilon)\}$, при $n > N(\varepsilon)$ одновременно выполняются вышеприведённые неравенства для x_n и z_n . Используя эти неравенства, а также неравенство из условия теоремы, приходим к утверждению: неравенство $a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon$ верно при $n > N(\varepsilon)$. Итак, показано, что для любого $\varepsilon > 0$ можно найти натуральное число $N(\varepsilon)$ такое, что для $n > N(\varepsilon)$ будет выполняться неравенство $a - \varepsilon < y_n < a + \varepsilon$. А это и означает, в силу определения предела числовой последовательности, что $a = \lim_n y_n$. \blacktriangleleft

Арифметические операции над сходящимися последовательностями

Определение 3.1. Пусть даны две последовательности $\{x_n\}$, $\{y_n\}$. Последовательности $\{x_n + y_n\}$, $\{x_ny_n\}$ называются суммой и произведением

данных последовательностей, а последовательность $\{x_n/y_n\}$. — их частным при условии, что $y_n \neq 0$ при $\forall n \in \mathbb{N}$.

Теорема 3.5 (об арифметических операциях над сходящимися последовательностями). Если $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$, то $\lim_{n\to\infty} (x_n + y_n) = a + b$, $\lim_{n\to\infty} x_n y_n = ab$, а если при этом $b \neq 0$, то $\lim_{n\to\infty} (x_n/y_n) = a/b$.

▶Докажем, что верно второе равенство из заключения теоремы. Доказательства справедливости остальных приведены, например, в [1]. Рассмотрим разность $x_n y_n - ab$. Прибавив к ней и вычтя из неё произведение $y_n a$, после группировки слагаемых получим: $x_n y_n - ab = y_n (x_n - a) + a(y_n - b)$. В силу свойств абсолютных величин (§5 глава 1) для модуля этой разности имеем:

$$|x_n y_n - ab| \le |y_n (x_n - a)| + |a(y_n - b)| \Rightarrow$$

 $|x_n y_n - ab| \le |y_n| |x_n - a| + |a| |y_n - b|.$ (3.1)

Последовательность $\{y_n\}$ ограничена как сходящаяся (теорема 3.2), поэтому существует положительное число M такое, что неравенство $|y_n| < M$ выполняется для \forall $n \in \mathbb{N}$ (определение 1.3).

Возьмём любое число $\varepsilon > 0$. Поскольку $\lim_{n \to \infty} x_n = a$ и $\lim_{n \to \infty} y_n = b$, то по выбранному ε можно найти натуральные числа $N_1(\varepsilon)$ и $N_2(\varepsilon)$, такие, что для $n > N_1(\varepsilon)$ верно неравенство: $|x_n - a| < \frac{\varepsilon}{2M}$, а для $n > N_2(\varepsilon)$ — неравенство $|y_n - b| < \frac{\varepsilon}{2|a|}$. Пусть $N(\varepsilon) = \max\{N_1(\varepsilon), N_2(\varepsilon)\}$, для $n > N(\varepsilon)$ одновременно выполняются выше приведённые неравенства для x_n и y_n . В правой части (3.1) заменим $|y_n|$ на M, $|x_n - a|$ на $\frac{\varepsilon}{2M}$, $|y_n - b|$ на $\frac{\varepsilon}{2|a|}$, имеем: $|x_n y_n - ab| < M \cdot \frac{\varepsilon}{2M} + |a| \cdot \frac{\varepsilon}{2|a|} = \varepsilon$.

Итак, для \forall ε>0 найдено число натуральное N(ε) такое, что для n>N(ε) верно неравенство $|x_ny_n-ab|<$ ε, отсюда $\lim_{n\to\infty}x_ny_n=ab$ (определение 2.1).

Пример 3.1. Найти $\lim_{n\to\infty} \frac{2^{n+1}+3}{2^n-1}$.

▶ Оба члена дроби под знаком предела поделим на 2^n , получим: $\frac{2^{n+1}+3}{2^n-1} = \frac{2+3/2^n}{1-1/2^n} = \frac{2+3(1/2)^n}{1-(1/2)^n}.$ Поскольку $\lim_{n\to\infty} (1/2)^n = 0$ (пример 2.1), то $\lim_{n\to\infty} \frac{2^{n+1}+3}{2^n-1} = \lim_{n\to\infty} \frac{2+3(1/2)^n}{1-(1/2)^n} = 2$ в силу теоремы 3.5. \blacktriangleleft