LMAFY1101 - Exercices - Série 3

Probabilités

Exercice 1

On considère deux évènements A et B associés à une même expérience.

- 1. À l'aide de l'intersection, de l'union et du complémentaire, décrire (en formule mathématique) les évènements suivants :
 - a. Les deux évènements se produisent;
 - b. Au moins un des évènements se produit;
 - c. Aucun évènement ne se produit;
 - d. Exactement un des évènements se produit.
- 2. Montrez que si A et B sont indépendants, alors c'est le cas aussi de A et B^c , de A^c et B et de A^c et B^c .
- 3. On sait que P(A) = 0.4, $P(A \cup B) = 0.7$ et P(B) = p. Trouver p tel que :
 - a. A et B soient incompatibles;
 - b. A et B soient indépendants.

Exercice 2

- 1. On dispose d'un dé rouge ayant 4 faces portant les numéros 1, 2, 3 et 4. Ce dé rouge n'est pas équilibré : on a deux fois plus de chance d'obtenir une face portant un nombre pair qu'une face portant un nombre impair. Calculez la probabilité d'obtenir chacune des faces.
- 2. Un deuxième dé bleu ayant 3 faces, numérotées de 1 à 3, est également à disposition. Ce dé bleu est aussi déséquilibré : la probabilité de voir apparaître chacune des faces est inversement proportionnelle au numéro indiqué sur celle-ci. Calculez la probabilité d'obtenir chacune des faces.
- 3. Considérons l'expérience de lancer les deux dés simultanément. Les résultats possibles de cette expérience sont-ils équiprobables ? Justifiez.

Exercice 3

Pour un lot contenant 40000 pièces, on a les informations suivantes :

- 80% des pièces contiennent moins de 70mg de cuivre (évènement A);
- 60% des pièces sont grises (évènement B);
- 50% des pièces ont un poids supérieur à 400g (évènement C);
- 75% des pièces grises contiennent moins de 70mg de cuivre ;
- 50% des pièces contenant moins de 70mg de cuivre ont un poids supérieur à 400g ;
- parmi les pièces contenant plus de 70mg de cuivre et qui ne sont pas grises, il y en a 40% qui ont un poids supérieur à 400g.
- 1. Si une pièce est choisie au hasard, quelle est la probabilité qu'il s'agisse d'une pièce qui n'est pas grise et qui contient plus de 70mg de cuivre ?
- 2. Si une pièce est choisie au hasard, quelle est la probabilité qu'il s'agisse d'une pièce qui contient plus de 70mg de cuivre et dont le poids est inférieur à 400g?
- 3. Si une pièce est choisie au hasard, quelle est la probabilité qu'il s'agisse d'une pièce grise contenant plus de 70mg de cuivre mais ayant un poids inférieur à 400g?

Exercice 4

Une maladie atteint 3% d'une population donnée. Un test de dépistage donne les résultats suivants :

Chez les individus malades, 95% des tests sont positifs et 5% négatifs.

Chez les individus non malades, 1% des tests sont positifs et 99% négatifs.

On choisit un individu au hasard.

- 1. Construisez l'arbre de cette expérience aléatoire en indiquant les probabilités de chaque événement.
- 2. Quelle est la probabilité que la personne choisie ne soit pas malade, sachant que le test est positif ?
- 3. Quelle est la probabilité que la personne choisie soit malade, sachant que le test est négatif ?

Exercice 5

Une urne contient 8 boules rouges et 4 boules noires indiscernables au toucher.

- 1. On effectue au hasard un tirage de deux boules simultanément de l'urne. On note $0N_1$ l'événement « on n'a obtenu aucune boule noire »; $1N_1$ l'événement « on a obtenu une seule boule noire »; $2N_1$ l'événement « on a obtenu deux boules noires ». Calculez $P(0N_1)$, $P(1N_1)$ et $P(2N_1)$.
- 2. Après ce premier tirage, on effectue à nouveau un tirage sans remise de deux boules de l'urne (qui à présent contient 10 boules). On note $0N_2$ l'événement « on n'a obtenu aucune boule noire au tirage n°2 »; $1N_2$ l'événement « on a obtenu une seule boule noire au tirage n°2 »; $2N_2$ l'événement « on a obtenu deux boules noires au tirage n°2 ».

- a. Calculez $P(0N_2|0N_1)$, $P(0N_2|1N_1)$ et $P(0N_2|2N_1)$
- b. Calculez $P(0N_2)$, $P(1N_2)$ et $P(2N_2)$.
- c. On note 2N l'évènement « au bout des deux tirages, on a obtenu deux boules noires ». Calculez P(2N).

Exercice 6

Supposons que dans une loterie il y ait n tickets, dont un ensemble prédéfini de m (m < n) tickets gagnants. Il y a n joueurs, et ils choisiront un ticket au hasard successivement parmi les billets disponibles. Nous voulons savoir si l'ordre de jouer a une importance dans cette expérience, càd est-ce que, par exemple, le 1er joueur a plus de chance de gagner que le dernier ou le contraire ? Soit A_i l'événement "le ième joueur gagne un prix". Calculez, en fonction de n et m, $P(A_1)$, $P(A_2)$ et $P(A_3)$. Concluez.

Exercice 7

Supposons qu'un avion long-courrier ait quatre moteurs et ait besoin d'au moins de trois pour voler. Un autre avion a deux moteurs et a besoin d'au moins d'un pour voler. Nous supposons que les moteurs sont indépendants et supposons que chacun a une probabilité $p \in (0,1)$ de rester fonctionnel pendant un vol. Lequel des deux avions est le plus sûr? Justifiez.

Exercice 8

- 1. Deux dés (non pipés) sont lancés et les nombres apparaissant sont observés. Le résultat sera noté par le couple (X,Y) où X désigne la face résultante du premier dé et Y celle du deuxième.
 - a. Calculer la probabilité que X + Y = 6 à la main, puis vérifier à l'aide de R.
 - b. Calculer la probabilité que X=2 ou Y=2 à la main, puis vérifier à l'aide de R.
- 2. Utiliser la fonction replicate pour estimer la probabilité que la somme de sept dés soit supérieure à 30.
- 3. Un dé est lancé à plusieurs reprises. Estimez la probabilité que vous observiez 5 pour la 3ème fois au bout de 10 tirages.

Exercice 9

Le type de sang humain (O, A, B et AB) est réparti dans une population selon les pourcentages suivants.

О	A	В	AB
$\overline{45}$	40	11	4

Si on tire au hasard 33 individus, quelle et la probabilité d'observer 9 de type A et 2 de type AB. Calculer cette probabilité à la main, puis vérifier à l'aide de R.

Exercice 10

Refaites toutes les questions de l'exercice 5, mais cette fois-ci il n'est pas demandé de calculer les probabilités exactes, mais de les estimer en utilisant des simulations en R.