

3. laboratorijska vježba

Modeliranje dinamičkog sustava zakreta kamere te projektiranje diskretnog sustava upravljanja

1. Uvod

Cilj ove laboratorijske vježbe jest modelirati dinamički sustav zakreta kamere. Sustav je sličan fizikalnom njihalu te je potrebno opisati model sustava diferencijalnom jednadžbom i napraviti linearizaciju modela te usporediti ponašanje lineariziranog i stvarnog dinamičkog sustava pobuđenog step pobudom i impulsnom pobudom. Zatim je potrebno složiti upravljačku strukturu upravljanja zakretom kamere koristeći regulator obrađen na predavanju. Na kraju je potrebno usporediti odzive reguliranog sustava u slučaju korištenja diskretnog i u slučaju korištenja kontinuiranog regulatora.

PRIPREMA ZA VJEŽBU

Slika 1: Fizikalno njihalo

Na Slici 1 prikazana je kamera pričvršćena jednim krajem za podlogu (strop) tako da bez djelovanja ulaznog momenta i vanjskih sila visi u vertikalnoj ravnini prema dolje. Kamera se može modelirati kao fizikalno njihalo ako tijelo kamere aproksimiramo valjkom duljine l. Kameru zakreće motor koji se nalazi u vrhu kamere s kojim je pričvršćena za podlogu. Dinamiku motora nećemo uzimati u obzir nego pretpostavimo da možemo ostvariti proizvoljni moment M_u . Osim ulaznog momenta M_u , na kameru djeluju gravitacija $g = 9.81 m/s^2$, sila trenja suprotna tangencijalnoj brzini gibanja centra mase $F_{tr} = -bv$, a centar mase nalazi se na polovici duljine kamere $l_{cm} = \frac{l}{2}$. Parametri kamere su sljedeći: m = 0.5 kg, l = 0.1 m, b = 10 kg/s. Kao pripremu za vježbu potrebno je:

- a) Napisati diferencijalnu jednadžbu koja opisuje ovisnost kuta φ o ulaznom momentu M_u .
- b) Izvesti linearizaciju modela u radnoj točki φ_0 , M_{u0} za koju vrijedi da su derivacije signala φ jednake
- c) Odrediti prijenosnu funkciju $G_P(s) = \frac{\Phi(s)}{M_n(s)}$.

Slika 2: Sustav upravljanja.

Za proces dobiven u prvom zadatku pripreme za vježbu potrebno je pripremiti upravljačku strukturu kao na Slici 2 te napraviti sljedeće:

- a) Za radnu točku $M_{u0} = 0$, koristeći naredbe u Matlabu tf, operacije zbrajanja i množenja te minreal, odrediti regulator $G_R(s) = \frac{1}{G_P(s)} \frac{G_m(s)}{1 - G_m(s)}$ ako je zadano vladanje zatvorenog kruga PT2S član sa zadanim $\zeta = 0.6$ i $\omega_n = 2$.
- b) Odrediti period uzorkovanja T i diskretizirati regulator prema Tustinu koristeći naredbu u Matlabu c2d.
- c) Diskretizirati proces ZOH metodom koristeći naredbu u Matlabu c2d.

RAD NA RAČUNALU

星 Zadatak 1

Koristeći rezultate iz pripreme potrebno je uvrstiti sljedeće parametre njihala:

g = 9.81

b = 10

m=0.5

1=0.1

te napraviti sljedeće zadatke. Kao pomoć koristite pripremljenu simulacijsku shemu zakretkamere.mdl stvarnog i lineariziranog modela kamere i skriptu parametrikamere.m.

- a) Simulirati stvarni (nelinearni) sustav i linearizirani sustav u programskom paketu Simulink te usporediti odzive zakreta φ na ulazni moment oblika impulsa realiziran razlikom dva stepa pomaknuta u vremenu za 0.1. Amplituda pulsa iznosi $M_u - M_{u0}$, gdje varirajte M_u s vrijednostima 0.5, 1.05 i 1.1, a $M_{u0}=0$. Kakvo je odstupanje lineariziranog modela od nelinearnog s obzirom na svaku od tri vrijednosti M_u (povećava se, smanjuje se, ostaje jednako)?
- b) Simulirati stvarni (nelinearni) sustav i linearizirani sustav u programskom paketu Simulink te usporediti odzive zakreta φ na ulazni moment oblika stepa: $u(t) = M_{u0}S(t) + \Delta MS(t-5)$, gdje je M_{u0} radna točka oko koje je napravljena linearizacija, a $\Delta M = M_u - M_{u0}$ dodatni pomak iz radne točke. Pripazite da na stvarni sustav treba doći cijela pobuda u(t) dok na linearizirani sustav dovedete samo pomak iz radne točke, dakle $\Delta MS(t-5)$, a na izlazu lineariziranog sustava pribrojite

vrijednost zakreta u radnoj točki φ_0 . Varirajte M_{u0} i M_u prema zadanim vrijednostima radne točke φ_0 i stacionarnim vrijednostima zakreta stvarnog sustava φ_{ss} u tablici tako da svaki redak tablice odgovara jednoj simulaciji. Upišite tražene vrijednosti stacionarnog stanja lineariziranog sustava. Kako odstupanje lineariziranog modela od stvarnog modela ovisi o radnoj točki, a kako o pobudi?

OD 11' 4	O . 1			1
Lablica L	Simulacua	promiena	parametara	ulaznog momenta.
I COOTICO II	Dilliance	promijona	parameter	arazmog momena.

			stacionarna vrijednost	stacionarna vrijednost
M_{u0}	φ_0 [°]	M_u	stvarnog sustava φ_{ss}	lineariziranog sustava $arphi_{sslin}$
			u stupnjevima [°]	u stupnjevima [°]
	0		20	
	0		40	
	0		60	
	0		90	
	45		60	
	55		60	

c) Pokrenite skriptu crtanjezakreta.m za vizualizaciju stvarnog zakreta kamere.

ZADATAK 2

Koristeći regulator određen u drugom zadatku pripreme potrebno je napraviti sljedeće zadatke. Koristite blokove Transfer Fcn i Discrete Transfer Fcn u koji možete ubaciti prijenosnu funkciju iz radnog prostora Matlaba u obliku Numerator: GR.num{1}, Denominator: GR.den{1} te u diskretni blok upisati pod Sample Time period uzorkovanja T.

- a) Koristeći naredbu pzmap u Matlabu nacrtati polove i nule otvorenog diskretnog kruga (diskretnog lineariziranog sustava s diskretnim regulatorom) u kompleksnoj ravnini za radnu točku $M_{u0}=0$. Promijenite metodu diskretizacije regulatora na 'matched' te komentirajte položaj polova i nula otvorenog kruga.
- b) Simulirajte regulacijski krug s kontinuiranim regulatorom i stvarnim sustavom te regulacijski krug s kontinuiranim regulatorom i lineariziranim sustavom za referentni signal zakreta oblika skokovite funkcije (step) amplitude φ_{ref} iznosa 30 i 60 stupnjeva. Postoji li pogreška u stacionarnom stanju između regulacijskog kruga sa stvarnim i lineariziranim sustavom?
- c) Simulirajte regulacijski krug s kontinuiranim regulatorom te regulacijski krug s diskretnim regulatorom za referentni signal zakreta oblika skokovite funkcije (step) amplitude φ_{ref} iznosa 30 i 60 stupnjeva. Primijetite i komentirajte odstupanje odziva u slučaju korištenja diskretnog i u slučaju korištenja kontinuiranog regulatora za obje reference.