

(1) Publication number: 0 412 699 B1

# (12)

# **EUROPEAN PATENT SPECIFICATION**

(45) Date of publication of patent specification: 27.04.94 Bulletin 94/17

(51) Int. Cl.<sup>5</sup>: **C07C 381/00**, C07K 5/00, A61K 31/655

(21) Application number: 90308340.0

(22) Date of filing: 30.07.90

(54) Nitrosothiol derivatives, their production and use.

30) Priority: 07.08.89 JP 204361/89 25.01.90 JP 15240/90

(43) Date of publication of application: 13.02.91 Bulletin 91/07

(45) Publication of the grant of the patent: 27.04.94 Bulletin 94/17

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

G6 References cited:
US-A- 4 900 719
TETRAHEDRON LETTERS, vol. 26, no. 16, 1985, pages 2013-2016, GB; T.W. HART, "Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of L-cysteine and glutathione"
JOURNAL OF THE CHEMICAL SOCIETY - PERKIN TRANSACTIONS I, 1979, pages 1969-1974; R. BONNETT et al, "Nitrosation and nitrosylation of haemoproteins and related compounds. Part 2. The reaction of nitrous acid with the side chains of alpha-acyl-amino-acid esters"

(56) References cited:
TETRAHEDRON LETTERS, vol. 26, no. 32,
1985, pages 3879-3882, GB; T.W. HART et al,
"Thiolsulphonate derivatives of amino acids"
ANGEWANDTE CHEMIE, vol. 87, no. 10, 1975,
pages 372-378, Weinheim, DE; W. M. WEIGERT
et al, "D-Penicillamin - Herstellung und
Eigenschaften"
CHEMICAL ABSTRACTS, vol. 95, no. 15, 12
October 1981, page 62, abstract no. 126235k,
Columbus, Ohio, US; D. ZIEBARTH et al,
"Nitrosation of orally administered drugs under simulated stomach conditions"

(73) Proprietor: Takeda Chemical Industries, Ltd. 1-1, Doshomachi 4-chome Chuo-ku, OSAKA (JP)

(72) Inventor: Goto, Giichi
6-11, Kofudai 5-chome, Toyono-cho
Toyono-gun, Osaka, 563-01 (JP)
Inventor: Ohkawa, Shigenori
45-20, Makamicho 6-chome
Takatsuki, Osaka, 569 (JP)
Inventor: Fukumoto, Shoji
21-72, Takenodai 1-chome, Nishi-ku
Kobe, Hyogo, 673 (JP)

(74) Representative: Laredo, Jack Joseph et al Elkington and Fife Prospect House 8 Pembroke Road Sevenoaks, Kent TN13 1XR (GB)

o 412 699 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

## Description

This invention relates to novel S-nitrosothiol derivatives which are useful as medicines, especially as therapeutics for the cardiovascular diseases such as hypertension and angina pectoris.

Along with aging of society, hypertension and heart diseases have become matters of primary concern, and various cardiovascular medicines have been developed for the treatment of such diseases. There are prior art documents disclosing the production of some nitro-compounds and nitrites among the medicines [Journal of Pharmacy and Pharmacology, 31, 801 (1979)].

In the social circumstances described above, more reasonable agents are being required to be developed in the field of cardiovascular drugs, particularly antihypertensives and therapeutics for angina pectoris. However, satisfactory compounds have not yet been found. There have been no report so far for the application of S-nitrosothiol derivatives as therapeutics for angina pectoris.

#### **DETAILED DESCRIPTION**

15

5

10

As a result of the research to find out useful compounds as therapeutics for cardiovascular diseases, especially as anti-hypertensives and therapeutics for angina pectoris, the present inventors have found that the compounds represented by the formula (1):

20

$$\frac{X_{s}}{X_{t}-N}>CH-\frac{C}{C}-2NO \qquad (1)$$

25

30

40

45

wherein  $R^1$  and  $R^2$  represent respectively a hydrogen atom or a hydrocarbon residue which may be substituted;  $R^3$  is a hydrogen atom, an acyl group or a hydrocarbon residue which may be substituted;  $X^1$  is a hydrogen atom, an acyl group, a lower alkoxy group or a hydrocarbon residue which may be substituted;  $X^2$  is an acyl group or a carboxyl group which may be esterified or form an amide; and when  $X^2$  is a carboxyl group  $X^1$  is not a hydrogen atom or acetyl group, and when both  $R^1$  and  $R^2$  are hydrogen atoms  $X^1$  is not acetyl group or gamma-glutamyl group, and the salts thereof are excellent in alleviation of the cardiovascular diseases, and have completed the present invention.

The "hydrocarbon residues" in the above-mentioned "hydrocarbon residues which may be substituted" in the formula (I) include, chain-, cyclic-, saturated-, and unsaturated-hydrocarbon residues, and various combinations thereof. Chain-hydrocarbon residues include straight chain and branched alkyl groups each having 1 to 6 carbon atoms (e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, n-hexyl).

Chain unsaturated hydrocarbon residues include straight chain and branched  $C_{2-4}$ -alkenyl (e.g. vinyl, allyl, 2-butenyl), and  $C_{2-4}$ -alkynyl (e.g. propargyl, 2-butynyl).

Cyclic saturated hydrocarbon residues include monocyclic cycloalkyl having 3 to 7 carbon atoms (e.g. cyclobutyl, cyclopentyl, cyclohexyl), and bridged cyclic saturated hydrocarbon residues having 8 to 14 carbon atoms (e.g. bicyclo[3,2,1]oct-2-yl, bicyclo[3,3,1]nonan-2-yl). Cyclic unsaturated hydrocarbon residues include phenyl and naphthyl groups.

 $R^1$  and  $R^2$  may be bound with each other to form a ring of  $-(CH_2)_{n^2}$  wherein n is an integer of 2 to 6.

Substituents for these hydrocarbon residues include halogen atoms (e.g. chlorine, bromine, and iodine atoms), nitro, nitrile, hydroxyl, carboxyl,  $C_{1-4}$ -alkoxy (e.g. methyloxy, ethyloxy, propyloxy, butyloxy, isopropyloxy),  $C_{1-4}$ -alkylthio (e.g. methylthio, ethylthio, propylthio, isopropylthio, butylthio), amino, mono- or di- $C_{1-4}$ -alkyl substituted amino (e.g. methylamino, ethylamino, propylamino, dimethylamino, diethylamino), mono- or di-aralkyl substituted amino (e.g. benzylamino, 2-hydroxyphenylmethylamino), mono-or di-pyridylcarbonyl substituted amino (e.g. 3-pyridylcarbonylamino),  $C_{1-4}$  alkoxycarbonyl (e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isobutoxycarbonyl), hydroxycarbonyl,  $C_{1-6}$ -alkylcarbonyl (e.g. methylcarbonyl, carbamoyl, ethylcarbonyl, cyclohexylcarbonyl), carbamoyl, mono- or di- $C_{1-4}$ -alkyl-substituted carbamoyl (e.g. methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, butylcarbamoyl, diethylcarbamoyl, dibutylcarbamoyl), and phenyl, phenoxy, benzoyl, phenoxycarbonyl, phenyl $C_{1-4}$ -alkyl-carbamoyl (e.g. benzylcarbamoyl, phenethylcarbamoyl) and phenylcarbamoyl which may have 1 to 4 substituents [substituents in the respective phenyl group include  $C_{1-4}$ -alkyl group (e.g. methyl, ethyl, propyl, butyl, isopropyl), halogen atom (e.g. chlorine, bromine, iodine atoms), hydroxyl, benzyloxy, amino, mono- or di- $C_{1-4}$ -al-

kyl-substituted amino (e.g. methylamino, ethylamino, propylamino, dimethylamino, diethylamino, methylethylamino), nitro,  $C_{1-4}$ -alkoxycarbonyl (e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl)].

The appropriate number of the substitutents in each of these hydrocarbon residues is 1 to 3.

5

10

15

25

30

35

50

55

Acyl groups represented by R<sup>3</sup>, X<sup>1</sup>, and X<sup>2</sup> include carboxylic acyl, carbamic acyl, sulfonic acyl, and substituted oxycarboxylic acyl groups, all of which may be substituted. When an acyl group is substituted, the substituents include those for the hydrocarbon residues described above.

Carboxylic acyl groups include C1-8alkylcarbonyl such as formyl, acetyl, propionyl, butyryl, valeryl, hexanoyl, isobutyryl, and isovaleryl (which may be substituted, for example, with amino, 3-carbamoyl-1,4-dihydropyridin-1-yl, 3-carbamoyl-1-pyridyl, or phenoxy; substituted C<sub>1-6</sub>-alkylcarbonyl groups are exemplified by phenoxyacetyl, 4-aminobutyryl, aminomethylcarbonyl, 2-(3-carbamoyl-1,4-dihydropyridin-1-yl)ethylcarbamoyl, and 2-(3-carbamoylpyridin-1-yl)ethylcarbamoyl), C<sub>3-8</sub>cycloalkylcarbonyl such as cyclopentylcarbonyl and cyclohexylcarbonyl, C<sub>3-8</sub>cycloalkyl-C<sub>1-8</sub>alkylcarbonyl such as cyclopentylacetyl, C<sub>2-6</sub>alkenyl or alkynylcarbonyl such as acryloyl, crotonoyl, 2-pentenoyl, 4-pentynoyl, 2-hexenoyl, 3-hexenoyl, and 2,4-hexadienoyl, aryl carbonyl such as benzoyl, and naphthoyl, pyridylcarbonyl such as nicotinoyl, and dihydropyridylcarbonyl [which may be substituted, for example, with C1\_4alkyl (e.g. methyl, ethyl, propyl, butyl), benzyl, methoxycarbonyl, 3nitrophenyl, nitro, or 2-trifluorophenyl; substituted dihydropyridylcarbonyl groups are exemplified by N-C1-4lkyl-1,4-dihydropyridine-3-carbonyl (e.g. N-methyl-1,4-dihydropyridine-3-carbonyl, N-ethyl-1,4-dihydropyridine-3-carbonyl, N-butyl-1,4-dihydropyridine-3-carbonyl), N-benzyl-1,4-dihydropyridine-3-carbonyl, 2,6-dimethyl-5-methoxycarbonyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-ylcarbonyl, and 2,6-dimethyl-5-nitro-4-(2-trifluorophenyl-1,4-dihydropyridine-3-ylcarbonyl], pyridiniumcarbonyl (in which the nitrogen in the pyridine ring is substituted, for example with C<sub>1-4</sub>alkyl (e.g. methyl, ethyl), or benzyl, and exemplified by C<sub>1-4</sub>alkylpyridinium-3-carbonyl (e.g. methylpyridinium-3-carbonyl, ethylpyridinium-3-carbonyl, propylpyridinium-3-carbonyl), and benzylpyridinium-3-carbonyl).

Carbamic acyl groups include carbamoyl, mono- or di- substituted carbamoyl groups. The mono- and disubstituted carbamoyl groups include mono- and di-C<sub>1-4</sub>alkylcarbamoyl such as methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, butylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, and dipropylcarbamoyl, mono- and di-C<sub>3-6</sub>-alkenyl- and alkynylcarbamoyl such as allylcarbamoyl, 3-butenylcarbamoyl, 4-pentenylcarbamoyl, and diallylcarbamoyl, mono- and di-aromatic group carbamoyl such as phenylcarbamoyl, naphthylcarbamoyl, and diphenylcarbamoyl.

Sulfonic acyl groups include inorganic sulfonyl such as sodiumsulfonyl,  $C_{1-6}$ alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, and butylsulfonyl,  $C_{2-6}$ alkenyl- or alkynylsulfonyl such as allylsulfonyl, and 2-methyl-2-propenesulfonyl, and aromatic sulfonyl such as phenylsulfonyl, p-methylphenylsulfonyl, and naphthalenesulfonyl.

Substituted oxycarboxylic acyl groups include  $C_{1\_8}$ alkyloxycarbonyl which may be substituted with halogen (e.g. chlorine, bromine, iodine), cyano, benzyloxy, phenoxy, di $C_{1\_3}$ alkylamino (e.g. dimethylamino, diethylamino, dipropylamino),  $C_{1\_4}$ alkyloxy (e.g. methyloxy, ethyloxy, butyloxy, t-butyloxy),  $C_{1\_3}$ alkylthio (e.g. methylthio, ethylthio, propylthio), 4-(3-nitrophenyl)-2,6-dimethyl-3-methoxycarbonyl-1,4-dihydropyridin-5-ylcarbonylamino or dihydropyridylcarbonylamino (methyloxycarbonyl, ethyloxycarbonyl, n-propyloxycarbonyl, i-propyloxycarbonyl, n-butyloxycarbonyl, sec-butyloxycarbonyl, t-butyloxycarbonyl, n-hexyloxycarbonyl, 2-fluoroethyloxycarbonyl, 2-chloroethyloxycarbonyl, 2,2,2-trichloroethyloxycarbonyl, and 3-methyl-1,4-dihydropyridin-1-ylcarbonylaminomethyloxycarbonyl),  $C_{3\_8}$ cycloalkyloxycarbonyl (which may be substituted, for example, with halogen such as chlorine, bromine, and iodine) such as cyclopentyloxycarbonyl, and cyclohexyloxycarbonyl,  $C_{3\_8}$ cycloalkyl- $C_{1\_8}$ alkyloxycarbonyl, such as cyclopentylmethyloxycarbonyl,  $C_{2\_7}$ alkenyl- or alkynyloxycarbonyl such as allyloxycarbonyl, crotyloxycarbonyl, and 2-pentene-1-oxycarbonyl, aromatic or aromatic-aliphatic oxycarbonyl (which may be substituted, for example, with halogen such as chlorine, bromine and iodine, or nitro) such as phenyloxycarbonyl, benzyloxycarbonyl, and phenethyloxycarbonyl, and quinuclidinyl.

Lower alkoxy groups represented by X¹ include those represented by the formula: -OR⁴ [wherein R⁴ represents an alkyl group having 1 to 6 carbon atoms (e.g. methyl, ethyl, propyl, i-propyl, butyl, tert-butyl, hexyl)].

Esterified carboxyl groups represented by  $X^2$  include those represented by the formula: -CO-OR<sup>5</sup> [wherein R<sup>5</sup> represents a hydrocarbon residue which may be substituted], and the "hydrocarbon residues which may be substituted" represented by R<sup>5</sup> include the groups described above as "the hydrocarbon residues which may be substituted" represented by R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, or X<sup>1</sup>.

Amide-forming carboxyl groups represented by  $X^2$  include those represented by the formula:

wherein R<sup>6</sup> is a hydrogen atom or a hydrocarbon residue which may be substituted, and R<sup>7</sup> is a hydrogen atom or a lower alkyl group. In the formula described above, the "hydrocarbon residues which may be substituted" represented by R<sup>6</sup> include the "hydrocarbon residues which may be substituted" represented by R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>5</sup>, or X<sup>1</sup>, described above, and the lower alkyl groups represented by R<sup>7</sup> include alkyl groups having 1 to 6 carbon atoms each (e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl, n-hexyl). In the formula described above, R<sup>6</sup> and R<sup>7</sup> may constitute a cyclic amino group together with the adjacent nitrogen atom, and the cyclic amino groups formed by R<sup>6</sup>, R<sup>7</sup>, and the adjacent nitrogen atom include nitrogen-containing 5- to 7-membered heterocyclic groups, such as the groups represented by the formula:

those represented by the formula:

5

15

20

25

30

35

40

45

50

55

and those represented by the formula:

In these formula, s represents 0, 1, or 2, t represents 1, or 2, and R<sup>8</sup> represents a substituent which the cyclic amino group formed by the R<sup>6</sup>, and R<sup>7</sup> may have, or a hydrogen atom; the substituents include alkyl groups having 1 to 3 carbon atoms each (e.g. methyl, ethyl, propyl), oxo, hydroxy, phenyl, benzyl, and amino groups. The groups represented by the formula:

$$(\widehat{\mathbf{A}}) - \mathbf{NII} - \mathbf{C} - \mathbf{C} - \mathbf{C} - \mathbf{C}$$

as X1 when X1 represents an acyl group, and the groups represented by the formula:

$$R^{1}O - C - C - NII - R^{0}$$

as the substituted amino groups when  $X^2$  represents an amide-forming carboxyl group, represent the residues of amino acid derivatives, where the amino acids are not specified. The amino acids may be of D-form or L-form.  $R^s$ ,  $R^{10}$ , and  $R^{11}$  are the same or different, each representing a hydrogen atom or a lower alkyl group

which may be substituted.  $R^9$  and  $R^{10}$  may bind to each other to form a lower alkylene chain represented by the formula:  $-(CH_2)_{m^-}$  (wherein m represents an integer of 2 to 4), and A represents a hydrogen atom, lower alkyl group, or acyl group.

The residues of amino acid derivatives described above include those of derivatives of amino acids such as glycine, alanine, glutamic acid, leucine, isoleucine, phenylalanine, aspartic acid, cysteine, sarcosine, glutamine, asparagine, and proline.

When the compound of the general formula (I) has an asymmetric carbon atom, the compound may be of D-, L- or DL-form, being unaffected by the asymmetry of the group represented by X¹ or X².

Among the compounds represented by the formula (I) described above, those excellent in chemical stability are desirable, and  $R^1$  and  $R^2$  may be any group that has a steric effect contributing to stabilization of -SNO group, being desirably a  $C_{1-6}$ alkyl group such as methyl, ethyl, or propyl, phenyl, or naphthyl; when  $R^1$  and  $R^2$  are bound to each other, the group formed by  $R^1$  and  $R^2$  together with the carbon atoms to which the groups are bound is desirably cyclopentyl or cyclohexyl.

 $R^3$  is desirably a hydrogen atom, or a  $C_{8-10}$ aromatic acyl group such as benzoyl, naphthoyl, or phenylacetyl.  $X^1$  is desirably a hydrogen atom or an amino acid residue, and the amino acid is desirably glycine, aspartic acid, phenylalanine, asparagine, glutamic acid, or glutamine.  $X^2$  is desirably carboxyl, carbonylamino, or carboxyl forming an amide with an amino acid residue, and the amino acid is desirably glycine, asparagine, glutamine, aspartic acid, glutamic acid, or phenylalanine.

Among the compounds represented by the formula (I) described above, are desirable those wherein each of R¹ and R² represents  $C_{1-8}$ alkyl group, phenyl, or naphthyl, or R¹ and R² form cyclopentyl or cyclohexyl together with the carbon atoms to which R¹ and R² are bound, R³ is a hydrogen atom or a  $C_{8-10}$  aromatic acyl group, X¹ is a hydrogen atom or an amino acid residue of which amino acid is selected from the group consisting of glycine, aspartic acid, phenylalanine, asparagine, glutamic acid, and glutamine, X² is a carboxyl group, carbonylamino or a carboxyl group forming an amide with an amino acid residue of which amino acid is selected from the group consisting of glycine, aspartic acid, asparagine, glutamic acid, glutamine, and phenylalanine.

When the compound (I) of this invention is basic, the compound may form an acid adduct, especially a physiologically acceptable acid adduct; such adducts are exemplified by salts with inorganic acids (e.g. hydrochloric acid, nitric acid, phosphoric acid, hydrobromic acid), and salts with organic acids (e.g. acetic acid, propionic acid, fumaric acid, maleic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid).

The compounds of the general formula (I) can be produced by nitrosation of the compounds represented by the general formula (II).

$$X_{1} - \frac{X_{2}}{K_{1}} \subset H - \frac{C}{C} - SH \qquad ( \square )$$

wherein R1, R2, R3, X1, and X2 mean the same as described above.

5

10

15

20

30

35

40

45

55

Reagents generally used for the nitrosation of the compound (II) include nitrogen monoxide, nitrogen dioxide, dinitrogen tetraoxide, nitrosyl chloride, nitrous acid, and ethyl nitrite, but the reagents are not limited to these, and any reagent that can usually be used for nitrosation may be used.

The reaction may be conducted without any solvent or in a solvent. Any solvent may be used as far as it does not inhibit nitrosation, including water, alcohols (e.g. methanol, ethanol, propanol, butanol, tert-butanol), petroleum-composing solvents (e.g. n-hexane, n-pentane, n-heptane), aromatic solvents (e.g. benzene, toluene, pyridine), ethers (e.g. ethyl ether, tetrahydrofuran, dioxane, isopropyl ether), amides (e.g. N,N-dimethylformamide, N,N-dimethylacetamide), esters (e.g. methyl acetate, ethyl acetate, butyl acetate), halogenated hydrocarbons (e.g. dichloromethane, chloroform, dichloroethane, carbon tetrachloride), and dimethyl sulfoxide.

The reaction can be conducted at -30°C to 150°C, but is desirably conducted at a lower temperature (-5°C to 30°C). For one mole of the compound (II), desirably 1 to 5 moles of the nitrosating reagent are used. The reaction time varies depending on the properties of the compound (II) being generally 1 minute to 6 hours, desirably as short as 1 minute to 30 minutes.

The compounds (II) can be produced according to the <u>per se</u> known method [Angewandte Chemie, <u>87</u>, 372 (1975)], for example, by the procedures shown as the Reaction Formulas 1 to 4.

## EP 0 412 699 B1

$$R^{1} = \frac{R^{1} - CHO}{R^{2}} + \frac{CHO}{C} + \frac{CHO}{C$$

wherein the symbols are the same as described above.

# Reaction Formula 1

wherein R' is a  $C_{1-\delta}$  lower alkyl or benzy, and other symbols are the same as described above.

55

50

45

## Reaction Formula 2

$$\frac{R^{1} \stackrel{Br}{\downarrow} C - CHO}{R^{2} \stackrel{R^{1}}{\downarrow} C - CHO} = \frac{R^{1} \stackrel{SH}{\downarrow} C - CHO}{R^{2} \stackrel{R^{1}}{\downarrow} C - CHO}$$

$$\frac{HCN}{R^{2} \stackrel{R^{1}}{\downarrow} C - CHO} \stackrel{NH_{3}}{\longrightarrow} \frac{R^{1} \stackrel{SH}{\downarrow} C - CHO}{R^{2} \stackrel{NH_{3}}{\longrightarrow} R^{2} \stackrel{R^{1}}{\downarrow} C - CHO}$$

$$\frac{HCN}{R^{2} \stackrel{R^{1}}{\downarrow} C - CHO} \stackrel{NH_{3}}{\longrightarrow} \frac{R^{1} \stackrel{SH}{\downarrow} C - CHO}{R^{2} \stackrel{NH_{3}}{\longrightarrow} R^{2} \stackrel{NH_{3}}{\longrightarrow} R^{2}$$

wherein the symbols are the same as described above.

## Reaction Formula 3

20

45

50

55

40 wherein the symbols are the same as described above.

## Reaction Formula 4

The compound (IIa) or (IIb) thus obtained is further subjected to N-acylation, N-alkylation, N-peptide formation, or esterification, alkylation, or peptide formation at the C terminal, to give the compound (II).

These reactions can be conducted according to the per se known method.

The compounds (1) of this invention act on the cardiovascular system of mammals, exerting excellent hypotensive action, anti-arrhythmic action, anti-anginal action, cardiotonic action, or coronary vasodilation.

The compounds (I) of this invention are excellent in duration and strength of the cardiovascular action as

# EP 0 412 699 B1

compared with the known nitro compounds such as nitroglycerine and nitrites, having no or only very mild undesirable side effects in the cardiovascular, psychic-nervous, or digestive system, such as dizziness, palpation, discomfort in the chest, arrhythmia, headache, fatigue, nausea, and vomiting. The compounds are remarkably effective after oral, parenteral, or percutaneous administration. Therefore the compounds are useful as therapeutics or prophylactics for various cardiovascular disorders in mammals including humans. Among the compounds (I) of this invention, those that dilate selectively the coronary vessels are useful as the prophylactics and therapeutics for angina pectoris.

The diseases for which the compounds (I) of this invention are useful include angina pectoris, myocardial infarction, cardiac asthma, achalasia (temporary remission), coronary sclerosis (chronic ischemic heart disease, asymptomatic ischemic heart disease, arteriosclerotic heart disease), maintaining hypotensive state during operation, emergency treatment of abnormal hypertension during operation, acute heart failure, essential hypertension, and renal hypertension; the compounds can be used for prevention and treatment of these diseases.

The compounds of this invention as such or a stabilized conjugate thereof with cyclodextrin, etc. can be administered to mammals including human orally or parenterally in various forms such as tablets, granules, capsules, injections, suppositories, percutaneous preparations, buccal preparations (sublingual tablets), ointments, and cataplasms. The dose varies depending on the type of the disease to be treated and the symptom, the daily dose being generally 0.1 mg to 500 mg, desirably 1 mg to 30 mg for oral administration to an adult human.

In this specification, amino acids, protective groups, and others are sometimes shown by conventionally used abbreviations based on the IUPAC-IUB Commission on Biological Nomenclature. The abbreviations used are listed in the following.

Ac: acetyl

5

10

15

20

40

45

25 Boc: t-butoxycarbony!

OBzl: benzylester

WSC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

HOBt: 1-hydroxy-benzotriazole

Trt: trity!

30 Pen: penicillamine

Gly: glycine Ala: alanine

Val: valine Leu: leucine

5 Pro: proline

Phe: phenylalanine Tyr: tyrosine

Glu: glutamic acid
Asp: aspartic acid

The side chains of amino acid residues are represented as follows:

## **EXAMPLES**

5

10

15

20

25

30

35

40

45

55

The following Reference Examples, Working Examples, Preparation Examples, and Experimental Examples explain this invention in more detail, but should not limit this invention.

Reference Example 1 (Synthesis of the Compound A-1)

To the solution of S-trityl-L-penicillamine (69.5 g) and di-t-butyldicarbonate (46.5 g) in dichloromethane (1500 ml), was added triethylamine (20.2 ml) at 0°C, and the mixture was stirred at room temperature for 5 hours. To the reaction mixture were added ice and an aqueous solution of potassium hydrogensulfate. The organic layer was washed with an aqueous solution of potassium hydrogensulfate, water, and saturated saline, in this order, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, to give N-t-butoxycarbonyl-S-trityl-L-penicillamine (87.0 g).

In the same way the Compound A-2 listed in Table 1 described below was synthesized.

Reference Example 2 (Synthesis of the Compound B-1)

To the solution of N-t-butoxycarbonyl-S-trityl-D-penicillamine (A-2) (6.0 g) in dimethylformamide (40 ml), were added methyl iodide (1.5 ml) and potassium hydrogencarbonate (2.4 g), and the mixture was stirred for 14 hours. To the reaction mixture was added ice-water, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then with saturated saline, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, to give N-t-butoxycarbonyl-S-trityl-D-penicillamine methyl ester (6.0 g).

Reference Example 3 (Synthesis of the Compound B-2)

To the solution of N-t-butoxycarbonyl-S-trityl-L-penicillamine (A-1) (4.0 g) and 1-hydroxy-benzotriazole (abbreviated as HOBt) (1.2 g) in chloroform (40 ml) and tetrahydrofuran (16 ml), was added dropwise by ice-cooling the solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (water-soluble carbodiimide: abbreviated as WSC) (1.7 g) in chloroform (10 ml). The mixture was stirred at the same temperature for 1 hour, to which glycine ethyl ester hydrochloride (1.1 g) and triethylamine (0.85 ml) were added, and the mixture was stirred at room temperature for 12 hours. After addition of water, the organic layer was washed with an aqueous solution of potassium hydrogensulfate, water, an aqueous solution of sodium hydrogencarbonate, water and saturated saline, in this order, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, and the residue was subjected to column chromatography, to give N-t-butoxycarbonyl-S-trityl-L-penicillamylglycine ethyl ester (4.5 g).

In the same way the Compounds B-3 to B-22 and D-30 listed in Table 1 described below were synthesized.

Reference Example 4 (Synthesis of the Compound C-2)

To the solution of N-t-butoxycarbonyl-S-trityl-L-penicillamylglycine ethyl ester (B-2) (4.5 g) and 2,6-lutidine (2.8 ml) in dichloromethane (100 ml), was added dropwise at 0°C the solution of trimethylsilyl trifluorometha-

nesulfonate (3.9 ml), and the mixture was stirred for 1 hour while the temperature was gradually returned to room temperature. To the reaction mixture was added ice-water, and the organic layer was washed with 1N-hydrochloric acid, water, an aqueous solution of sodium hydrogencarbonate, water, and saturated saline, in this order, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, to give S-trityl-L-penicillamylglycine ethyl ester (3.8 g)

In the same way the Compounds C-1, and C-3 to C-22 listed in Table 1 described below were synthesized.

Reference Example 5 (Synthesis of the Compound D-3)

10

15

20

30

35

40

45

50

To the solution of S-trityl-L-penicillamylglycine ethyl ester (C-2) (3.7 g) in dichloromethane (50 ml) were added acetyl chloride (0.66 ml) and triethylamine (0.88 ml) at 0°C. The mixture was stirred at the same temperature for 15 minutes and then ice water was added. The organic layer was washed with an aqueous potassium hydrogensulfate solution, water, an aqueous sodium hydrogencarbonate solution, water and saturated saline, in this order, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, and the residue was subjected to silica gel column chromatography, to give N-acetyl-S-trityl-L-penicillamylglycine ethyl ester (3.5 g).

Reference Example 6 (Synthesis of the Compound D-4)

To the solution of S-trityl-L-penicillamylglycine ethyl ester (C-2) (5.4 g) and N-t-butoxycarbonyl-L-glutamic acid- $\alpha$ -benzyl ester (3.8 g) in chloroform (100 ml) was added WSC (2.4 g) at 0°C, and the mixture was stirred at room temperature for 3 hours. To the reaction mixture was added ice water. The organic layer was washed with an aqueous potassium hydrogensulfate solution, water, aqueous sodium hydrogencarbonate solution, water and saturated saline, in this order, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, and the residue was subjected to column chromatography, to give (4S)-4-t-butoxycarbonylamino-4-benzyloxycarbonylbutyryl-S-trityl-L-penicillamylglycine ethyl ester (8.4 g).

In the same way the Compounds D-1, D-2, D-5 to D-27 and D-29 listed in Table 1 described below were synthesized.

Reference Example 7 (Synthesis of the Compound E-5)

To the solution of (4S)-4-t-butoxycarbonylamino-4-benzyloxycarbonylbutyryl-S-trityl-L-penicillamylgly-cine ethyl ester (D-4) (8.4 g) in tetrahydrofuran (150 ml) was added 1N-sodium hydroxide (25.3 ml) and the mixture was stirred at room temperature for 2 hours. Tetrahydrofuran was evaporated off under reduced pressure, and the aqueous layer was washed twice with diethyl ether, to which an aqueous potassium hydrogensulfate solution was added to make it acidic, and the solution was extracted with ethyl acetate. The organic layer was washed with water and saturated saline, and the solvent was evaporated off under reduced pressure, to give [N- $\gamma$ -(N-t-butoxycarbonyl)-L-glutamyl-S-trityl-L-penicillamyl]glycine (7.0 g).

In the same way the Compounds E-1 to E-4, and E-6 to E-32 listed in Table 1 described below were synthesized.

Reference Example 8 (Synthesis of the Compound F-5)

The solution of [N- $\gamma$ -(N-t-butoxycarbonyl)-L-glutamyl-S-trityl-L-penicillamyl]glycine (E-5) (3.0 g) in chloroform (60 ml) was bubbled with hydrogen chloride gas at 0°C for 30 minutes. To the reaction mixture was added diethyl ether, and the crystals were collected by filtration and washed with diethyl ether. The crystals were dried under reduced pressure, to give (N- $\gamma$ -L-glutamyl-L-penicillamyl)glycine hydrochloride (1.7 g).

In the same way the Compounds F-1 to F-4, and F-6 to F-32 listed in Table 1 described below were synthesized.

Reference Example 9 (Synthesis of the Compound B-23)

To the solution of N-t-butoxycarbonyl-S-trityl-L-penicillamine (A-1)(4.0g) and HOBt (1.2g) in chloroform ( $40m\ell$ ) and tetrahydrofuran ( $15m\ell$ ), was added dropwise under ice-cooling the solution of WSC (1.7g) in chloroform ( $10m\ell$ ). The mixture was stirred at the same temperature for 1 hour, to which water was added, and the organic layer was washed with an aqueous solution of potassium hydrogensulfate, water, an aqueous solution of sodium hydrogencarbonate, water and saturated saline, in this order, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, to give HOBt ester.

## EP 0 412 699 B1

To the solution of p-sulfophenylalanine (2.0g) in water ( $40m\ell$ ), sodium hydrogencarbonate (2.1g) was added. To this solution, the solution of the HOBt ester synthesized as described above in dioxane ( $40m\ell$ ) was added, followed by addition of tetrabutylammonium hydrogensulfate (3.3g), and the mixture was stirred at room temperature for 1 hour. The solvent was evaporated off under reduced pressure and the residue was extracted with chloroform. The organic layer was washed with an aqueous solution of potassium hydrogensulfate, water and saturated saline, in this order, and dried over magnesium sulfate. The solvent was evaporated off under reduced pressure, to give tetrabutylammonium N-t-butoxycarbonyl-S-trityl-L-penicillamyl-P-sulfophenylalanine (7.5g).

In the same way the Compound D-28 listed in Table 1 described below was synthesized.

Reference Example 10 (Synthesis of the Compound C-23)

To the solution of tetrabutylammonium N-t-butoxycarbonyl-S-trityl-L-penicillamyl-p-sulfophenylalanine (B-23)(7.5g) and 2,6-lutidine (3.8m $\ell$ ) in dichloromethane (100m $\ell$ ), was added dropwise at 0°C the solution of trimethylsylyl trifluoromethanesulfonate (5.5m $\ell$ ), and the mixture was stirred for 1 hour while the temperature was gradually returned to room temperature. The solvent was evaporated off under reduced pressure and the residue was washed with diethyl ether and acetone, in this order, to give S-trityl-L-penicillamyl-p-sulfophenylalanine (3.1g).

Table 1 shows the structure, physical properties, and NMR data of the Compounds A-1 to F-32 synthesized in the Reference Examples.

| X - Pen - Y   Molecular   Related   NMR spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55       |     | 50      | 45 .           | <b>4</b> 0   | 35  | 30         | 25          | 20           | 15                            | 10         | 5                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|---------|----------------|--------------|-----|------------|-------------|--------------|-------------------------------|------------|------------------|
| X - Pen-Y  Molecular Related NMR spectra of Pen  X Configuration Y  Z formula Ref. Ex. TMS internal physical physical physical physical amorphous  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | á        | ᆏ   | •       | •              |              |     |            |             |              |                               |            |                  |
| X - Pen - Y  Molecular Related NMR spectra of Pen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |         | 2              |              |     |            |             |              |                               |            |                  |
| X Configuration Y         Z formula formula properties         Ref. Ex. TMS internal (5, ppm) in C (5, ppm) in C (5, ppm) in C (6, ppm) in C (6 |          |     | ×       | 1              | Y — Y        |     |            |             |              |                               |            |                  |
| 1 Boc L OH Trt C2sH33NO4S 1 amorphous 2 Boc D OH Trt C23H33NO4S 1 amorphous 1 Boc D OMe Trt C30H35NO4S 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lođu     | Jnd | X Conf. | igura<br>of Pe | tion Y<br>:n | 2   | 1          | Relat       | Ex.          | spectra<br>interna<br>opm) in |            | ard              |
| 2 Boc D OH Trt C28H39NO4S 1 amorphous 1 Boc D OMe Trt C30H35NO4S 2 amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> | Вос | •       |                | НО           | Trt | C29H33NO4S |             | 1.07(3H),    | 1. 13(3H),                    | 1.44(9H)   |                  |
| 2 Boc D OH Trt C23H33NO4S 1 amorphous 1 Boc D OMe Trt C30H35NO4S 2 amorphous 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |         |                |              |     | amorphous  |             | 3.41(111), 3 | 5. 32(1H),                    | 7.14-7.    | ~ <del>*</del> * |
| 2 Boc D OH Trt C23H33NO4S 1 amorphous 1 Boc D OMe Trt C30H35NO4S 2 amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |         |                |              |     |            |             | (911), 7.50- | -7.70(6H)                     | , 8. 20(11 |                  |
| amorphous  1 Boc D OMe Trt CaoHasNO.S 2 amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 5      | Вос |         | Δ              | НО           | Trt |            | -           | 1.06(3H), 1  | 1. 12(3H),                    | 1.44(9H)   |                  |
| 1 Boc D OMe Trt CooHosNO.S 2 amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |         |                |              |     | amorphous  |             | 3.46(111),4  | I. 90(1H),                    | 5.37(1H)   | _                |
| 1 Boc D OMe Trt CsoHssNO.S 2 amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |         |                |              |     |            |             | 7.10-7.36(   | (9Н), 7.56                    | 1-7.70     |                  |
| 1 Boc D OMe Trt CooHosNO.S 2 amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     | -       | -              |              |     |            |             | (84)         |                               |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B-1      | Вос |         | Q              | ОМе          | Trt | C30H35NO4S | 2           | 1.02(2H), 1  | .07(3H),                      | 1.45(9H)   |                  |
| 7. 10-7. 33(9H), 7. 53-7. 70<br>(6H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     | •       |                |              |     | amorphous  |             | 3.54(1H), 3  | . 36(3H),                     | 5.37(1H)   |                  |
| (H9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     |         | ,              |              |     |            | <del></del> | 7.10-7.33(   | 9H), 7.53                     | -7.70      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |         |                | ;            |     |            |             | (84)         |                               |            |                  |

| 5          |              |                                     |                                  |                                       |                                  |                                  |                              |                             |                            |                             |                                 |                               |                        |               |                             |                               |                             |                                |                       |
|------------|--------------|-------------------------------------|----------------------------------|---------------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------------------|----------------------------|-----------------------------|---------------------------------|-------------------------------|------------------------|---------------|-----------------------------|-------------------------------|-----------------------------|--------------------------------|-----------------------|
| 10         |              | 1. 11(311), 1. 18(311), 1. 25(311), | 1. 42(9Н), 3. 22(ІН), 3. 96(2Н), | 17(2H), 5.34(1H), 6.20(1H),           | 7. 14-7. 34(9H), 7. 57-7. 70(6H) | 1. 10(3H), 1. 13(3H), 1. 22(3H), | .42(9H), 3.43(1H), 3.95(2H), | 14(2H), 5.47(1H), 6.53(1H), | 11-7.34(9H), 7.57-7.70(6H) | 06(3H), 1.13(3H), 1.24(3H), | . 38(3Н), 1. 43(9Н), 3. 38(1Н), | 15(1H), 4. 49(1H), 5. 36(1H), | 38(1H), 7.14-7.40(9H), | (             | 88(3H), 0.92(3H), 1.05(3H), | 1.16(3H), 1.42(9H), 2.13(1H), | 31(1H), 3.66(3H), 4.47(1H), | 33(1H), 6. 34(1H), 7. 15-7. 38 | 73(6H)                |
| 15         |              | :                                   | 3. 2.                            | 5. 3,                                 | (9H)                             |                                  | 3. 4                         | 5. 4                        | (9H)                       |                             | 1. 4                            | <del>1</del> . <del>4</del> . | . 1.                   | (6H)          | 9;                          | 1. 4.                         | 3. 6                        | 3. 32                          | 7.7                   |
| 20         |              | 1.11(311),                          | 1.42(9H),                        | 4.17(2H),                             | 7.14-7.34                        | 1. 10(3H),                       | 1. 42(9H),                   | 4.14(2H),                   | 7.11-7.34                  | 1.06(3H),                   | 1.38(3H),                       | 4.15(1H),                     | 6.38(1H),              | 7.56-7.70(6H) | 0.88(3H), (                 | 1.16(3H),                     | 3.31(1H), 3                 | 5.33(1H), 6                    | (9H), 7. 55-7. 73(6H) |
| 25         |              | 3                                   |                                  |                                       |                                  | 3                                |                              |                             |                            | 3                           |                                 |                               |                        |               | က                           |                               |                             |                                |                       |
| 30         |              | Caallto N2OsS                       | amorphous                        |                                       | 4                                | C33H+0N2O5S                      | amorphous                    |                             |                            | C3+H+2N2O5S                 | amorphous                       |                               |                        |               | C35H++N2O5S                 | amorphous                     |                             |                                |                       |
| 35         |              | Trt                                 |                                  |                                       | _                                | 7rt                              | -                            |                             |                            | Trt                         |                                 |                               |                        |               | Trt                         | <del></del>                   |                             |                                |                       |
| 40         |              | Gly-OEt                             |                                  |                                       |                                  | Gly-OEt                          |                              |                             |                            | L-Ala-OEt                   |                                 |                               |                        |               | L-Val-OMe                   |                               |                             | ·                              |                       |
|            |              |                                     |                                  |                                       |                                  | Q                                |                              |                             |                            | J.                          |                                 |                               |                        |               |                             |                               |                             |                                |                       |
| <b>4</b> 5 | led)         |                                     |                                  | · · · · · · · · · · · · · · · · · · · |                                  |                                  |                              |                             |                            | <br>                        | •                               |                               |                        |               |                             |                               |                             |                                | -                     |
| 50         | l (continued | Boc                                 |                                  |                                       |                                  | Вос                              |                              |                             |                            | Boc                         |                                 | •                             |                        |               | Вос                         |                               | •                           |                                |                       |
|            | 1            | ·<br>                               |                                  |                                       |                                  |                                  | · · · · · ·                  | -1                          | <del></del>                |                             |                                 |                               |                        |               |                             | -                             |                             |                                | _                     |
| 55         | Table        | B - 2                               |                                  |                                       |                                  | B-3                              |                              |                             |                            | B-4                         |                                 |                               |                        |               | B-5                         |                               |                             |                                |                       |

| ## Boc   Continued)  ## Boc   D   L-Val-OWe   Trl   CosHNaols   3   0.87(3H), 0.90(3H), 1.05(3H), 1.05(3H), 2.12(1H), 3.20(1H), 3.70(3H), 1.43(9H), 2.12(1H), 3.20(1H), 3.70(3H), 4.48(1H), 3.20(1H), 3.70(3H), 4.48(1H), 7.16-7.38    ## Boc   L   L-Leu-OEU   Trl   CosH.sNaols   3   0.91(6H), 1.02(3H), 1.14(3H), 1.14(3H), 1.14(3H), 7.10    ## Boc   L   L-Pro-OMe   Trl   CosH.sNaols   3   1.12(3H), 1.14(3H), 1.14(3H), 7.10    ## Boc   L   L-Pro-OMe   Trl   CosH.sNaols   3   1.12(3H), 1.14(3H), 1.14(3H), 7.10    ## Boc   L   L-Pro-OMe   Trl   CosH.sNaols   3   1.12(3H), 1.14(3H), 1.16(3H), 3.27(3H), 3.27(3H), 3.27(3H), 3.27(3H), 3.20(1H), 4.10(3H), 3.27(3H), 3.20(3H), 3.20(3H), 3.20(3H), 3.20(3H), 3.20(3H), 4.09(2H), 4.81(1H), 5.29(1H), 4.20(3H), 4.2 | 55   | 50  |        | 45 | 40        | 35        | 30          | 25 | 20           | 15          | 10           | 5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------|----|-----------|-----------|-------------|----|--------------|-------------|--------------|---|
| 1-6 Boc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tabl | _   | ntinue | d) |           |           |             |    |              |             |              |   |
| Boc L L-Leu-OEt Trt C3,HisN205S 3 0.  -7 Boc L L-Leu-OEt Trt C3,HisN205S 3 0.  -8 Boc L L-Pro-OMe Trt C3,6HisN205S 3 1.  -9 Boc L L-Phe-OEt Trt C4,0HisN205S 3 1.  -9 Boc L L-Phe-OEt Trt C4,0HisN205S 3 1.  -7 7.  -7 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-6  | Вос | •      | 0  | L-Val-OMe | ł         | C35H++N2O5  | 8  | (3H),        | 0.90(3H),   | 1.05(3H),    |   |
| Boc L L-Pro-OMe Trt C3, H4, N205S 3 0.  -8 Boc L L-Pro-OMe Trt C3, H4, N205S 3 1.  -8 Boc L L-Pro-OMe Trt C4, H4, N205S 3 1.  -9 Boc L L-Phe-OEt Trt C4, H4, N205S 3 1.  -9 Boc L L-Phe-OEt Trt C4, H4, N205S 3 1.  -7 7.  -7 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |        |    |           |           | amorphous   |    | (3H),        | 1.43(9H),   | 2. 12(1H),   |   |
| Boc L L-Leu-OEt Trt Corffie N205S 3 0.  -8 Boc L L-Pro-OMe Trt Cosft vos S 3 1.  -9 Boc L L-Phe-OEt Trt Ctoft vos S 3 1.  -9 Boc L L-Phe-OEt Trt Ctoft vos S 3 1.  -9 Boc L L-Phe-OEt Trt Ctoft vos S 3 1.  -7 7.  -7 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     | •      |    |           |           |             |    | 29(1H),      | 3.70(3H),   | 4. 48(1H),   |   |
| Boc L L-Leu-OEt Trt C <sub>3</sub> 7 I <sub>4</sub> 8N <sub>2</sub> O <sub>5</sub> S 3 0.  amorphous 1.  -8 Boc L L-Pro-OMe Trt C <sub>3</sub> 5H <sub>4</sub> 2N <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 3.  -9 Boc L L-Phe-OEt Trt C <sub>4</sub> 0H <sub>4</sub> 8N <sub>2</sub> O <sub>5</sub> S 3 1.  -9 G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |        |    |           |           |             |    | 5.34(1H),    | 6.37(1H),   | 7.16-7.38    |   |
| Boc L L-Leu-OEt Trt C37H48N2O5S 3 0.  -8 Boc L L-Pro-OMe Trt C35H42N2O5S 3 1.  -8 Boc L L-Pro-OMe Trt C45H42N2O5S 3 1.  -9 Boc L L-Phe-OEt Trt C40H48N2O5S 3 1.  -9 Boc L L-Phe-OEt Trt C40H48N2O5S 3 1.  -7 7 7.  -9 Boc L L-Phe-OEt Trt C40H48N2O5S 3 1.  -7 7 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |        |    |           |           |             |    | (9H), 7.58   | -7. 68(6H)  |              |   |
| amorphous (3)  -8 Boc L L-Pro-OMe Trt C <sub>3</sub> sH <sub>4</sub> zN <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 1.  -9 Boc L L-Phe-OEt Trt C <sub>4</sub> oH <sub>4</sub> eN <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 1.  -9 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8-7  | Boc |        |    | L-Leu-OEt |           | i           | က  | 0.91(6H),    | 1.02(3H),   | 1.14(3H),    |   |
| -8 Boc L L-Pro-OMe Trt C <sub>3</sub> sH <sub>4</sub> zN <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 1.  -9 Boc L L-Phe-OEt Trt C <sub>4</sub> oH <sub>4</sub> eN <sub>2</sub> O <sub>5</sub> S 3 1.  -10 Boc L L-Phe-OEt Trt C <sub>4</sub> oH <sub>4</sub> eN <sub>2</sub> O <sub>5</sub> S 3 1.  -11 amorphous 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |        |    |           |           | amorphous   |    | 1.22(3H),    | 1. 42(9H),  | 1.30-1.80    |   |
| -8 Boc L L-Pro-OMe Trt C <sub>3</sub> sH <sub>+2</sub> N <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 1.  -9 Boc L L-Phe-OEt Trt C <sub>4</sub> oH <sub>+6</sub> N <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |        | 0  |           |           | •           |    | (311), 3, 45 | (1H), 4.13  | 1(2H), 4.55  |   |
| -8 Boc L L-Pro-OMe Trt C35H42N2O5S 3 1.  amorphous 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     | •      |    |           |           |             |    | (1H), 5.33   | (1H), 6.23  | 1(1H), 7. 10 | ı |
| -8 Boc L L-Pro-OMe Trt C <sub>3</sub> sH <sub>4</sub> zN <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 3.  -9 Boc L L-Phe-OEt Trt C <sub>4</sub> oH <sub>4</sub> eN <sub>2</sub> O <sub>5</sub> S 3 1.  amorphous 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |        |    |           |           |             |    | 7.40(9H),    | 7.50-7.75   | (H9)         |   |
| Boc L-Phe-OEt Trt C40H48N2O5S 3 1.  amorphous 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B-8  | Вос |        |    | L-Pro-OMe |           | C35H+2N2O5S | က  | 1. 12(3H),   | 1. 14(3H),  | 1.44(9H),    |   |
| -9 Boc L L-Phe-OEt Trt C.oH.eN.2O.5 3 1 amorphous 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |        |    |           |           | amorphous   |    | 1.82-2.32    | (4H), 3. 27 | -3.66(2H)    |   |
| 5.  -9 Boc L-Phe-OEt Trt C4.0H4.8N2O5S 3 1. amorphous 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     |        |    | -         |           |             |    | 3.64(3H),    | 3.97(1H),   | 4.47(1H),    |   |
| -9 Boc L-Phe-OEt Trt C4.0H4.8N2O5S 3 1. amorphous 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |        | •  |           | • • • • • |             |    |              | 7.12-7.33   | (6H),        |   |
| -9 Boc 'L L-Phe-OEt Trt C40H48N2O5S 3 1. amorphous 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |        |    |           |           |             |    |              | (H9)        |              |   |
| 1. 4. 6. 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B-9  | Вос |        |    | L-Phe-OEt | Trt       | C40H4BN2O5S | 8  | 1.03(3H),    | 1.09(3H),   | 1.16(3H),    |   |
| . 09(2H), 4.81(1H), 5.<br>. 29(1H), 7.04-7.38(1.<br>. 52-7.73(6H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |        |    |           |           | amorphous   |    | 1.43(9H),    | 3.07(2H),   | 3.20(1H),    |   |
| . 29(1H)<br>. 52-7. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |        |    |           |           |             |    | 4.09(2H),    | 4.81(1H),   | 5.29(IH),    |   |
| 7.52-7.73(6H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |        |    |           |           |             |    | . 29(1H)     | 7.04-7.38   | (14H),       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |        |    |           |           |             |    | 7. 52-7. 73  | (H9)        |              |   |

| Γ        |             |                                                            |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       |                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            | T                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | . (         | 1),                                                        | 1),                                                                                                   | 1),                                                                                                   | (911)                                                                                                                                                  | 1),                                                                                                                                                   | 23                | 54                                                                                                                                                                                                                                      | . 13-                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   | Н),                                                                                                                                                                                                                                                                                                                                            | Н),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 48-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H),                | H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | Τ,          | د.<br>ج.                                                   |                                                                                                       | 6.                                                                                                    | 55-7.64                                                                                                                                                | ), 1.24(61                                                                                                                                            | 50(411), 3.       | 15(2H), 4.                                                                                                                                                                                                                              | 38(1H), 7.                                                                                                                                                                                                                                                                                 | 67(6H)                                                                                                                                                                                                                                                            | ), 1. 41(91                                                                                                                                                                                                                                                                                                                                    | ), 6. 15(11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34(9H), 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 1. 41            | ), 4.80(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40(19H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 1.07        | 2.98(2H)                                                   | 4.75(                                                                                                 | 6.63(2H)                                                                                              | 2(10H), 7.                                                                                                                                             | 1. 17 (3H)                                                                                                                                            | 1.80-2.           | 9(2H), 4.                                                                                                                                                                                                                               | (1H), 6.                                                                                                                                                                                                                                                                                   | 7.57-7.                                                                                                                                                                                                                                                           | 1. 15(3H                                                                                                                                                                                                                                                                                                                                       | ა.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 1. 12(3H         | , 2. 94(2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 5. 07(2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 7. 12-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67(6H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 1.02(3H),   | 1.44(911),                                                 | 4.09(2H),                                                                                             | 5.87(1H),                                                                                             | 7.12-7.3                                                                                                                                               | 1.04(3H)                                                                                                                                              | 1. 43(9H)         | (1H), 4.0                                                                                                                                                                                                                               | (1H), 5.3                                                                                                                                                                                                                                                                                  | 7.34(9H)                                                                                                                                                                                                                                                          | 0.98(3H)                                                                                                                                                                                                                                                                                                                                       | 3.60(1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.41(1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.58(6H)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.05(3H)           | 2.85(1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.02(2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.11(1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.56-7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 3           |                                                            |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       | က                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | က                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | C+0H+6N2O8S | amorphous                                                  |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       | C38H+8N2O7S       | amorphous                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   | C+2H++N2O3S                                                                                                                                                                                                                                                                                                                                    | m. р. 158. 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 159.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C+7 H 50 N 2 07 S  | amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Trt         |                                                            |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       | Trt               |                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                          | <u>-</u>                                                                                                                                                                                                                                                          | Trt                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trt                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | L-Tyr-OEt   |                                                            |                                                                                                       |                                                                                                       | . , , , , ,                                                                                                                                            | _ OEt                                                                                                                                                 | L-Glu-OEt         |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | NHCHPh2                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -08z1              | L-Asp-0B21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u> | <u> </u>    |                                                            |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       |                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | د                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,_                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ontinued |             |                                                            |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       |                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 (cc    | Вос         |                                                            |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       | Вос               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | Вос                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Вос                | ,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table    | 8-10        |                                                            |                                                                                                       |                                                                                                       |                                                                                                                                                        |                                                                                                                                                       | B-11              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | 8-12                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B-13               | :<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |             | 1 (continued) Boc L-Tyr-OEt Trt C+0H+6N2O6S 3 1.02(3H), 1. | 1 (continued) Boc L-Tyr-OEt Trt C+0H+6N2O6S 3 1.02(3H), 1.07(3H), 1. amorphous 1.44(9H), 2.98(2H), 3. | 1 (continued) Boc L-Tyr-OEt Trt C+0H+6N2O8S 3 1.02(3H), 1.07(3H), 1. amorphous 4.09(2H), 4.75(1H), 5. | 1 (continued) Boc L. L-Tyr-OEt Trt C.0H.sN2OsS 3 1.02(3H), 1.07(3H), 1. amorphous 1.44(9H), 2.98(2H), 3. 4.09(2H), 4.75(1H), 5. 5.87(1H), 6.63(2H), 6. | 1 (continued) Boc L. L-Tyr-OEt Trt C.OH.6N2O8S 3 1.02(3H), 1.07(3H), 1. amorphous 4.09(2H), 4.75(1H), 5. 5.87(1H), 6.63(2H), 6. 7.12-7.32(10H), 7.55- | 1 (continued) Boc | 1 (continued) Boc L. L-Tyr-OEt Trt C+oH+6N2O8S 3 1.02(3H), 1.07(3H), 1.18 1.44(9H), 2.98(2H), 3.26 4.09(2H), 4.75(1H), 5.39 5.87(1H), 6.63(2H), 6.94 7.12-7.32(10H), 7.55-7. Poc L. L-Glu-OEt Trt C38H+8N2O,S 3 1.43(9H), 1.80-2.50(4H) | 1 (continued)  Boc L. L-Tyr-OEt Trt C+oH+6N2O8S 3 1.02(3H), 1.07(3H), 1.18 1.44(9H), 2.98(2H), 3.26 4.09(2H), 4.75(1H), 5.39 5.87(1H), 6.63(2H), 6.94 7.12-7.32(10H), 7.55-7. 1.04(3H), 1.17(3H), 1.24 Boc L. L-Glu-OEt Trt C38H+8N2O7S 3 1.43(9H), 1.80-2.50(4H) (1H), 4.09(2H), 4.15(2H) | 1 (continued) Boc L. L-Tyr-OEt Trt C+oH+6N2OaS 3 1.02(3H),1.07(3H),1.18(3H), A.09(2H), 4.75(1H), 5.39(1H), 5.87(1H), 6.63(2H), 6.94(2H), 7.12-7.32(10H),7.55-7.64(6H), Boc L. L-Glu-OEt Trt CoeH+8N2O,S 3 1.43(9H),1.80-2.50(4H),3.23 (1H),4.09(2H),4.15(2H),7.54 | 1 (continued) Boc L L-Tyr-OEt Trt C+oH+sN2OsS 3 1.02(3H), 1.07(3H), 1.18(3H), amorphous 1.44(9H), 2.98(2H), 3.26(1H), 5.87(1H), 6.63(2H), 6.94(2H), 7.12-7.32(10H), 7.55-7.64(6H), 1.04(3H), 1.17(3H), 1.24(6H), 1.04(3H), 1.80-2.50(4H), 3.23 amorphous (1H), 4.09(2H), 4.15(2H), 4.54 (1H), 5.32(1H), 6.38(1H), 7.13 7.34(9H), 7.57-7.67(6H) | 1 (continued)  Boc L. L-Tyr-OEt Trt C.oH.6N2O8S 3 1.02(3H), 1.07(3H), 1.18(3H), amorphous 4.09(2H), 2.98(2H), 3.25(1H), 5.87(1H), 6.94(2H), 7.12-7.32(10H), 7.55-7.64(6H), 7.12-7.32(10H), 7.55-7.64(6H), 1.04(3H), 1.17(3H), 1.24(6H), amorphous C. L. C.Glu-OEt Trt C.osH.8N2O,S 3 1.43(9H), 1.80-2.50(4H), 3.23 Amorphous C. H.), 4.09(2H), 4.15(2H), 4.54 C.OSH, 4.15(2H), 4.15(2H), 4.15(2H), 7.13 C.OSH, 7.77-7.67(6H) C.ONTINGED C. NHCHPh2 Trt C.osH.4N2OsS 3 0.98(3H), 1.15(3H), 1.41(9H), C.OSH.4N2OsS 3 0.98(3H), 1.15(3H), 1.41(9H), C.OSH.4N2OsS 3 0.98(3H), 1.15(3H), 1.41(9H), C.OSH.4N2OsS C.O | 1 (continued)  Boc L. L-Tyr-OEt Trt C.oH.6N208S 3 1.02(3H), 1.07(3H), 1.18(3H), 1.14(9H), 2.98(2H), 3.26(1H), 5.87(1H), 6.94(2H), 5.87(1H), 6.63(2H), 6.94(2H), 7.12-7.32(10H), 7.55-7.64(6H), 7.12-7.32(10H), 7.55-7.64(6H), 1.04(3H), 1.17(3H), 1.24(6H), 3 1.43(9H), 1.80-2.50(4H), 3.23 Amorphous C. L. L-Glu-OEt Trt C.seH.eN20,S 3 1.43(9H), 1.80-2.50(4H), 3.23 C. L. AHCHPh, Trt C.zeH.eN20,S 3 0.98(3H), 1.15(3H), 1.41(9H), C.zeH.eN20,S C. L. AHCHPh, C.zeH.eN20,S C. C. AHCHPh, C.zeH.eN20,S C. C. AHCHPh, C.zeH.eN20,S C. C. AHCHPh, C. CzeH.eN20,S C. C. AHCHPh, C. CzeH.eN20,C C. C. AHCHPh, C. CzeH.eN20,S C. C. CHP, CON CHPH, C. CZEH.eN20,S C. C. CHP, C | 1 (continued)  Boc L L-Tyr-OEt Trt C.oH.eN20eS 3 1.02(3H), 1.07(3H), 1.18(3H),  Amorphous 1.44(9H), 2.98(2H), 3.26(1H),  5.87(1H), 6.63(2H), 6.39(2H),  7.12-7.32(10H), 7.55-7.64(6H),  7.12-7.32(10H), 7.55-7.64(6H),  8c L L-Glu-OEt Trt C.oH.eN20,S 3 1.43(9H), 1.17(3H), 1.24(6H),  8c L NHCHPh2 Trt C.oH.eN20,S 3 0.98(3H), 1.15(3H), 7.13  8c L NHCHPh2 Trt C.oH.eN20,S 3 0.98(3H), 1.15(3H), 1.41(9H),  159.0 6.41(1H), 7.12-7.34(9H), 7.448 | 1 (continued)  Boc | 1 (continued)  Boc L. L-Tyr-OEt Trt C. oH. 6 N. 20 8 3 1.02(3H), 1.07(3H), 1.18(3H), 3.26(1H), amorphous  Boc L. L-Tyr-OEt Trt C. oft H. oft H | 1 (continued)  Boc L L-Tyr-OEt Trt C <sub>4.0</sub> H <sub>4.8</sub> N <sub>2</sub> O <sub>8</sub> S 3 1.02(3H), 1.07(3H), 1.18(3H), amorphous amorphous 4.09(2H), 2.98(2H), 3.26(1H), 5.39(1H), 5.39(1H), 5.39(1H), 5.39(1H), 6.63(2H), 6.34(2H), 7.55-7.64(6H), 7.12-7.32(10H), 7.55-7.64(6H), 7.12-7.32(1H), 6.33(2H), 7.55-7.64(6H), 7.12-7.32(1H), 7.55-7.64(6H), 7.13-7.32(1H), 6.15(1H), 7.13-7.32(1H), 6.15(1H), 7.13-7.32(1H), 6.15(1H), 7.13-7.32(1H), 6.15(1H), 7.13-7.32(1H), 7.13-7.32(1 | 1 (continued)  Boc L L-Tyrr-OEt Trt C <sub>4.0</sub> H <sub>4.8</sub> N <sub>2</sub> O <sub>6</sub> S 3 1.02(3H), 1.07(3H), 1.18(3H), 1.18(3 | 1 (continued)  L. L-Tyr-OEt Trt C.oH.eNzOsS 3 1.02(3H), 1.07(3H), 1.18(3H), 1.07(3H), 1.18(3H), 1.07(3H), 1.18(3H), 1.18(3H), 1.18(3H), 2.98(2H), 3.26(1H), 3.26(1H), 4.09(2H), 4.75(1H), 5.36(2H), 5.39(1H), 5.36(2H), 5.36(2H), 5.36(2H), 5.36(2H), 5.36(2H), 5.36(2H), 5.36(2H), 7.55-7.64(6H), 7.12-7.32(10H), 7.55-7.64(6H), 7.12-7.32(10H), 7.55-7.64(6H), 3.23 anorphous  Boc L L NHCHPhz Trt C.z.HN.OsS 3 0.98(3H), 1.15(3H), 1.41(9H), 1.18(3H), 1.41(9H), 1.18(3H), 1.16(3H), 1. |

| 55          | 50   | 45          |   | 40        | 35  | 30                | 25      | 20                                | 15                          | 10                                     | 5            |
|-------------|------|-------------|---|-----------|-----|-------------------|---------|-----------------------------------|-----------------------------|----------------------------------------|--------------|
| Table       |      | (continued) | _ |           |     |                   |         |                                   |                             |                                        | {            |
| B-14        | Вос  | -           |   | L-Met-OEt | Trt | C36 II+6 N2 O5 S2 | co      | 1.06(3H), 1                       | 1. 17(3H), 1. 24(3H),       | 1.24(311),                             |              |
|             |      |             |   |           |     | amorphous         | ******* | 1.43(9H),1                        | . 25-2. 24                  | . 43(9H), 1. 25-2. 24(2H), 2. 05(3H),  |              |
|             |      | •           |   |           |     |                   |         | 2.50(2H), 3                       | 50(2H), 3.22(1H), 4.16(2H), | 1.16(2H),                              |              |
|             |      |             |   |           |     |                   |         | 4. 61(1H), 5. 31(1H), 6. 40(1H),  | . 31(1H),                   | 5.40(111),                             | -            |
|             |      |             |   |           |     |                   |         | 7. 15-7. 40(9H), 7. 57-7. 67(6H)  | 9H), 7.57                   | -7.67(611)                             |              |
| 8-15        | Boc: |             |   | L-11e-0Me | Trt | C36H+BN2O5S       | 3       | 0.89(6H), 1.03(3H), 1.16(3H),     | .03(3H),                    | 1.16(311),                             |              |
|             |      |             |   |           |     | amorphous         |         | 1. $35-1$ . $52$ (                | [2H], 1, 42                 | 35-1. \$2(2H), 1. 42(9H), 1. 86(1H),   | <del>-</del> |
|             | ٠    |             |   |           |     |                   |         | 3.34(1H),3                        | 34(1H), 3.66(3H), 4.52(1H), | 4.52(1H),                              |              |
|             |      |             |   |           |     |                   |         | 5.32(1H),6                        | 38(111),                    | 32(1H), 6.38(1H), 7.15-7.42(9H),       |              |
|             |      |             |   |           |     |                   |         | 7.53-7.73(6H)                     | (H9)                        | (                                      |              |
| B-16        | Вос  |             | Q | NHCHPh2   | Trt | C+2H+4N2O3S       | B       | 0.98(3H), 1                       | 98(3H), 1.15(3H), 1.41(9H), | 1.41(9H),                              |              |
|             |      |             |   |           |     | m. р. 158. 0-     |         | 3.60(1H), 5                       | 60(1H), 5.28(1H), 6.15(1H), | 6.15(1H),                              | <u> </u>     |
|             |      |             |   |           |     | 159.0             |         | 6, 40(111); 7                     | 40(1H); 7:10-7.40(19H),     | (19H),                                 |              |
|             |      |             |   |           |     |                   |         | 7.48-7.57(6H)                     | (H9)                        |                                        |              |
|             |      |             |   |           |     |                   |         |                                   |                             |                                        |              |
| B-17        | Вос  |             | Ω | L-Leu-OEt | Trt | C37H48N2O5S       | က       | 0.82-0.91(                        | (6H), 1.05                  | 82-0.91(6H), 1.05(3H), 1.15(3H),       |              |
|             |      |             |   |           |     | amorphous         |         | 1.24(3H), 1                       | .42(9H),                    | 1. 24(3H), 1. 42(9H), 1. 30-1. 81(3H), | ÷ ;          |
|             |      |             |   |           |     |                   |         | 3.34(1H),4                        | .14(2H),                    | 34(1H), 4.14(2H), 4.51(1H), 5.33       | 33           |
|             |      | •           | , |           |     |                   |         | (1H), 6. 13(1H), 7. 15-7. 33(9H), | 1H), 7. 15                  | -7.33(9H),                             |              |
| <del></del> |      |             |   |           |     |                   |         | 7.56-7.63(6H)                     | (H9)                        |                                        |              |
|             |      |             |   |           |     |                   | -       |                                   |                             |                                        |              |
|             |      |             |   |           |     |                   |         |                                   |                             |                                        | ſ            |

|             |                                                                                                                                                    |                                                                                                                                                                         | ,                                                                                                                                       |                                                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 5           | 4(1H),                                                                                                                                             | 3(4H),                                                                                                                                                                  | 6(3H),<br>H)                                                                                                                            | 2(4II),<br>8-4. 49<br>),                                                                                                         |
| 10          | 99(3H), 1. 11(3H), 1. 14(3H),<br>42(9H), 2. 93-3. 16(2H), 3. 34(1H),<br>08(2H), 4. 77(1H), 5. 27(1H),<br>32(1H), 7. 08-7. 33(14H),<br>54-7. 63(6H) | 08(3H), 1. 17(3H), 1. 20(3H),<br>25(3H), 1. 42(9H), 1. 82-2. 43(4H),<br>20(1H), 4. 07(2H), 4. 16(2H),<br>53(1H), 5. 34(1H), 6. 39(1H),<br>15-7. 36(9H), 7. 56-7. 68(6H) | 12(3H), 1. 34(3H), 1. 41(9H),<br>06(1H), 3. 68-4. 10(2H), 3. 76(3H),<br>38(1H), 5. 21(1H), 6. 06(1H),<br>19-7. 38(10H), 7. 63-7. 73(6H) | 0. 94(6H), 1. 45(9H), 1. 80-2. 22(4H), 3. 43-3. 91(2H), 3. 70(3H), 4. 38-4. 49 (2H), 5. 43(1H), 7. 10-7. 32(9H), 7. 51-7. 63(6H) |
| 15          | 1. 11(3H) 2. 93-3. 4. 77(1H) 7. 08-7. (6H)                                                                                                         | 1. 17(3H),<br>1. 42(9H),<br>4. 07(2H),<br>5. 34(1H),<br>(9H), 7. 56                                                                                                     | 1. 34 (3F<br>3. 68-4.<br>5. 21 (1H<br>(10H), 7                                                                                          | 1. 45(9H<br>(2H), 3.<br>(1H), 7.<br>(6H)                                                                                         |
| 20          | 0. 99(3H), 1. 11<br>1. 42(9H), 2. 93<br>4. 08(2H), 4. 77<br>6. 32(1H), 7. 08<br>7. 54-7. 63(6H)                                                    | 1. 08(3H), 1. 17(3H), 1. 1. 25(3H), 1. 3. 20(1H), 4. 07(2H), 4. 4. 53(1H), 5. 34(1H), 6. 7. 15-7. 36(9H), 7. 56-7                                                       | 1. 12(3H), 1.<br>2. 06(1H), 3.<br>4. 38(1H), 5.<br>7. 19-7. 38(1                                                                        | 0. 94(6H), 1. 48<br>3. 43-3. 91(2H)<br>(2H), 5. 43(1H)<br>7. 51-7. 63(6H)                                                        |
| 25          | က                                                                                                                                                  | က                                                                                                                                                                       | က                                                                                                                                       | က                                                                                                                                |
| 30          | CioHicN2OsS<br>amorphous                                                                                                                           | C38H48N2O7S<br>amorphous                                                                                                                                                | C3+H40N2O8S<br>amorphous                                                                                                                | C35H42N2O5S<br>amorphous                                                                                                         |
| 35          | Tr.t                                                                                                                                               | +                                                                                                                                                                       | F-                                                                                                                                      | Trt                                                                                                                              |
| 40          | L-Phe-OEt                                                                                                                                          | _ 0Et<br>L-Glu-0Et                                                                                                                                                      | L-Ser-OMe                                                                                                                               | L-Pro-OMe                                                                                                                        |
|             |                                                                                                                                                    | a                                                                                                                                                                       |                                                                                                                                         | ۵.                                                                                                                               |
| 45          |                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                         |                                                                                                                                  |
| 45          |                                                                                                                                                    | Вос                                                                                                                                                                     | Вос                                                                                                                                     | Вос                                                                                                                              |
| 55 <u> </u> | 8 - 8                                                                                                                                              | B-19                                                                                                                                                                    | B-20                                                                                                                                    | B-21                                                                                                                             |

|     |             |                                                                                                                                                                                                                      |                                                                                                                                                                            | - <del></del>                                                                                  |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 5   |             |                                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                |
| 10  |             | 1. 03(3H), 1. 10(3H), 1. 17(3H),<br>1. 30(3H), 1. 43(9H), 3. 00(2H),<br>3. 16(1H), 4. 07(2H), 4. 27(2H),<br>4. 58(2H), 4. 73(1H), 5. 29(1H),<br>6. 27(1H), 6. 78(2H), 7. 05(2H),<br>7. 12-7. 30(9H), 7. 55-7. 64(6H) | 0. 92(12H), 1. 05(3H), 1. 07(3H)<br>1. 23-1. 66(16H), 1. 4'3(9H),<br>3. 02-3. 26(1H), 4. 62-4. 75(1H),<br>5. 36-5. 45(1H), 6. 37(1H),<br>7. 10-7. 43(12H), 7. 56-7. 78(8H) | 1. 07(3H), 1. 11(3H), 1. 63(2H),<br>2. 33(1H), 3. 54(3H), 7. 12-7. 32<br>(9H), 7. 56-7. 68(6H) |
| 15  |             | 1), 1. 10(3H<br>1), 1. 43(9H<br>1), 4. 07(2H<br>1), 4. 73(1H<br>1), 6. 78(2H<br>30(9H), 7.                                                                                                                           | 0. 92(12H), 1. 05(3H), 1. 07(<br>1. 23-1. 66(16H), 1. 4'3(9H),<br>3. 02-3. 26(1H), 4. 62-4. 75(<br>5. 36-5. 45(1H), 6. 37(1H),<br>7. 10-7. 43(12H), 7. 56-7. 78            | 1. 07(3H), 1. 11(3H),<br>2. 33(1H), 3. 54(3H),<br>(9H), 7. 56-7. 68(6H)                        |
| 20  |             | 1. 03(3H<br>1. 30(3H<br>3. 16(1H<br>4. 58(2H<br>6. 27(1H<br>7. 12-7.                                                                                                                                                 | 0. 92(12<br>1. 23-1.<br>3. 02-3.<br>5. 36-5.<br>7. 10-7.                                                                                                                   | 1. 07(3H<br>2. 33(1H<br>(9H), 7.                                                               |
| 25  |             | က                                                                                                                                                                                                                    | 6                                                                                                                                                                          | 4                                                                                              |
| 30  |             | C. H. S. N. O. S. amorphous                                                                                                                                                                                          | Cs+H77N3O8S2<br>amorphous                                                                                                                                                  | C25H27NO2S<br>Oily                                                                             |
| 35  |             |                                                                                                                                                                                                                      | Trt                                                                                                                                                                        | T L                                                                                            |
| 40  | ·           | CH2COOEt<br>Tyr-OEt                                                                                                                                                                                                  | SO3.Bu,N<br>DL-Phe-OH                                                                                                                                                      | ОМС                                                                                            |
| 45  | d)          |                                                                                                                                                                                                                      |                                                                                                                                                                            | ٥                                                                                              |
| 50  | (continued) | O                                                                                                                                                                                                                    | U                                                                                                                                                                          | 3                                                                                              |
| 5.5 | e -         | Вос                                                                                                                                                                                                                  | Вос                                                                                                                                                                        | =                                                                                              |
| 55  | Table       | 8-22                                                                                                                                                                                                                 | B-23                                                                                                                                                                       | C-1                                                                                            |

|    | ſ          |                                                                                                  |                                                                                                                                    |                                                                                                                                  |                                                                                                                                              |
|----|------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |            |                                                                                                  |                                                                                                                                    |                                                                                                                                  |                                                                                                                                              |
| 10 |            | _ 1                                                                                              | 1. 25(3H), 1. 27(3H), 1. 29(3H),<br>1. 62(2H), 1. 80(1H), 3. 88(2H),<br>4. 16(2H), 6. 96(1H), 7. 16-7. 37<br>(9H), 7. 62-7. 73(6H) | 23(3H), 1. 24(3H), 1. 26(3H),<br>30(3H), 1. 62(2H), 1. 78(1H),<br>14(2H), 4. 39(1H), 6. 84(1H),<br>15-7. 36(9H), 7. 63-7. 73(6H) | 0.84(3H), 0.87(3H), 1.25(3H),<br>1.26(3H), 1.64(2H), 1.79(1H),<br>2.10(1H), 3.68(3H), 4.36(1H),<br>6.80(1H), 7.14-7.34(9H),<br>7.62-7.73(6H) |
| 15 |            | 1. 24(3H), 1. 27(3H),<br>1. 64(2H), 1. 81(2H),<br>1. 16(2H), 6. 95(1H),<br>(9H), 7. 63-7. 73(6H) | 1. 25(3H), 1. 27(3H), 1. 1. 62(2H), 1. 80(1H), 3. 4. 16(2H), 6. 96(1H), 7. (9H), 7. 62-7. 73(6H)                                   | , 1. 24(3H)<br>, 1. 62(2H)<br>, 4. 39(1H)<br>6(9H), 7. 0                                                                         | 84(3H), 0. 87(3H), 1. 25<br>26(3H), 1. 64(2H), 1. 79<br>10(1H), 3. 68(3H), 4. 36<br>80(1H), 7. 14-7. 34(9H)<br>62-7. 73(6H)                  |
| 20 |            | 1. 24(3H),<br>1. 64(2H),<br>4. 16(2H),<br>(9H), 7. 61                                            | 1. 25(3H),<br>1. 62(2H),<br>4. 16(2H),<br>(9H), 7. 62                                                                              | 1. 23(3H) 1. 30(3H) 4. 14(2H) 7. 15-7. 3                                                                                         | 0. 84(3H), 0. 87<br>1. 26(3H), 1. 64<br>2. 10(1H), 3. 68<br>6. 80(1H), 7. 14<br>7. 62-7. 73(6H)                                              |
| 25 |            | 4                                                                                                | ₹                                                                                                                                  | 귝                                                                                                                                | 4                                                                                                                                            |
| 30 |            | C.s.H.s.N.O.S<br>amorphous                                                                       | C <sub>28</sub> H <sub>32</sub> N <sub>2</sub> O <sub>3</sub> S<br>amorphous                                                       | C <sub>29</sub> H <sub>3+</sub> N <sub>2</sub> O <sub>3</sub> S<br>amorphous                                                     | CooHosN2OoS<br>amorphous                                                                                                                     |
| 35 |            | T                                                                                                | ٦<br>۲                                                                                                                             | Trt                                                                                                                              | Trt                                                                                                                                          |
| 40 |            | Gly-0Et                                                                                          | Gly-0Et                                                                                                                            | L-Ala-OEt                                                                                                                        | L-Val-OMe                                                                                                                                    |
| 45 | 1)         |                                                                                                  | ۵                                                                                                                                  | ٠                                                                                                                                | _                                                                                                                                            |
| 50 | (continued |                                                                                                  |                                                                                                                                    |                                                                                                                                  |                                                                                                                                              |
|    |            |                                                                                                  |                                                                                                                                    | ==.                                                                                                                              | =                                                                                                                                            |
| 55 | Table      | C-2.                                                                                             | C-3                                                                                                                                | C - 4                                                                                                                            | C-5                                                                                                                                          |

| 5          |             |                      |                             |                             | · <u>.</u>              |               |                               |             |                               |                                |                 |                            |                              |                               |                         | <del> </del>                 |                              |                             |                            |  |
|------------|-------------|----------------------|-----------------------------|-----------------------------|-------------------------|---------------|-------------------------------|-------------|-------------------------------|--------------------------------|-----------------|----------------------------|------------------------------|-------------------------------|-------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|--|
|            |             | );                   |                             | <u>`</u>                    |                         |               | 2.4                           | H),         | 49                            | Н),                            |                 | 2.2                        | 96                           | 05-                           |                         | ,                            | <u>`</u>                     |                             | H)                         |  |
| 10         |             | , 1. 24(3H           | , 2. 06(1H                  | , 4. 31(1H                  | 6(911),                 |               | 3(6H), 1.                     | ), 1.65(2   | , 4.36-4.                     | 4-7.35(9                       |                 |                            |                              |                               | 8(6H)                   | , 1. 19(3H                   | , 3.00(2H)                   | , 6. 67 (1H)                | 9-7.70(61                  |  |
| 15         |             | , 0.86(3H), 1.24(3H) | 29(3H), 1.80(1H), 2.06(1H), | 09(2H), 3.69(3H), 4.31(1H), | 67(1H), 7.16-7.36(9II), | (84)          | 3.80-1.00(6H), 1.23(6H), 1.24 | 1-1.73(3H   | 1.84(1H), 4.12(2H), 4.36-4.49 | (1H), 6.73(1H), 7.14-7.35(9H), | (H9)            | 29(3H), 1. 34(3H), 1. 60-2 | [4H], 1.84(2H), 2.61(1H), 2. | 2H), 3. 63(3H), 4. 35(1H), 7. | 7.50-7.7                | 08(3H), 1. 18(3H), 1. 19(3H) | 58(2H), 1. 62(1H), 3. 00(2H) | 11(2H), 4.69(1H), 6.67(1H), | 01-7.38(4H), 7.59-7.70(6H) |  |
| 20         |             | 0.83(3H),            | 1.29(3H),                   | 2.09(2H),                   | 6.67(1H),               | 7.64-7.73(6H) | 0.80-1.00                     | (3H), 1. 35 | 1.84(1H),                     | (1H), 6.73                     | 7. 61-7. 73(6H) | 1. 29(3H),                 | (4H), 1.84                   | (2H), 3.63                    | 7.42(9H), 7.50-7.78(6H) | 1.08(3H),                    | 1.58(2H),                    | 4.11(2H),                   | 7.01-7.38                  |  |
| 25         |             | 4                    |                             | ·                           |                         |               | 4                             |             |                               |                                |                 | 7                          |                              |                               |                         | 4                            |                              |                             |                            |  |
| 30         |             | Coollo NoOoS         | amorphous                   |                             |                         |               | C22H+0N2O3S                   | amorphous   | •                             |                                |                 | C30 H3+N2O3S               | amorphous                    |                               | 1.                      | C35H38N2O3S                  | amorphous                    |                             |                            |  |
| 35         |             | Trt                  |                             |                             |                         |               | Trt                           |             |                               |                                |                 | Trt                        |                              |                               |                         | Trt                          |                              |                             |                            |  |
| 40         |             | L-Val-OMe            |                             |                             |                         |               | L-Leu-OEt                     |             |                               |                                |                 | L-Pro-OMe                  |                              |                               |                         | L-Phe-OEt                    |                              |                             |                            |  |
| <b>4</b> 5 | 3)          | O                    |                             |                             |                         |               | _                             |             |                               |                                |                 | ب.                         | -                            |                               |                         | 7                            |                              |                             |                            |  |
|            | nuec        |                      |                             |                             |                         |               |                               |             |                               |                                |                 |                            |                              |                               |                         |                              |                              |                             |                            |  |
| 50         | (continued) |                      |                             |                             |                         |               |                               |             |                               |                                |                 |                            |                              |                               |                         |                              | -                            |                             |                            |  |
|            | e 1         | ==                   |                             |                             |                         |               | $\equiv$                      |             |                               |                                |                 | H                          |                              |                               |                         | H                            |                              |                             |                            |  |
| 55         | Table       | 9-0                  |                             |                             |                         |               | C-7                           |             |                               |                                |                 | C-8                        |                              |                               |                         | 6-0                          |                              |                             |                            |  |

| 5  |             |                                                                                                                                                                        |                                                                                                                                                    |                                                                                           |                                                                                                                              |
|----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 10 |             | 5. 26(9H), 1. 09(3H), 1. 18(6H),<br>1. 60(2H), 1. 63(1H), 2. 93(2H),<br>4. 10(2H), 4. 64(1H), 6. 67(1H),<br>5. 75(2H), 6. 95(2H), 7. 10-7. 38<br>(9H), 7. 60-7. 70(6H) | 23(6H), 1. 24(6H), 1. 64(2H),<br>84(1H), 1. 80-2. 43(4H), 4. 10<br>(2H), 4. 14(2H), 4. 42(1H), 6. 98<br>(1H), 7. 15-7. 36(9H), 7. 63-7. 72<br>(6H) | 20(3H), 1. 21(3H), 1. 62(2H),<br>97(1H), 6. 07(1H), 7. 10-7. 32<br>(20H), 7. 60-7. 70(6H) | 17(6H), 1. 50(1H), 1. 58(2H),<br>72(1H), 3. 04(1H), 4. 76(1H),<br>96-5. 17(4H), 6. 91(1H),<br>08-7. 44(19H), 7. 55-7. 77(6H) |
| 20 |             | 0 1 4 0 0                                                                                                                                                              |                                                                                                                                                    |                                                                                           | 1. 2. 4.                                                                                                                     |
| 25 |             | ₹*                                                                                                                                                                     | 7                                                                                                                                                  | 4                                                                                         | 4                                                                                                                            |
| 30 |             | Coelle N2O,SSi<br>amorphous                                                                                                                                            | C33H+0N2OsS<br>amorphous                                                                                                                           | C37H36N2OS<br>amorphous                                                                   | C <sub>42</sub> H <sub>+2</sub> N <sub>2</sub> O <sub>5</sub> S<br>amorphous                                                 |
| 35 |             | ⊢<br>1<br>1                                                                                                                                                            | <b>⊢</b>                                                                                                                                           | 1 r t                                                                                     | F                                                                                                                            |
| 40 |             | SiMe <sub>3</sub><br>L-Tyr-OEt                                                                                                                                         | _ 0Et<br>L-Glu-0Et                                                                                                                                 | NHCHPh <sub>2.</sub>                                                                      | L-Asp-0Bz1                                                                                                                   |
|    |             | ·                                                                                                                                                                      | <b>.</b>                                                                                                                                           |                                                                                           |                                                                                                                              |
| 45 | (pa         |                                                                                                                                                                        | ·                                                                                                                                                  |                                                                                           |                                                                                                                              |
| 50 | (continued) |                                                                                                                                                                        |                                                                                                                                                    |                                                                                           |                                                                                                                              |
|    | $\vdash$    | =                                                                                                                                                                      |                                                                                                                                                    |                                                                                           | = .                                                                                                                          |
| 55 | Table       | 01-2                                                                                                                                                                   | C-11                                                                                                                                               | C-12                                                                                      | C-13                                                                                                                         |

|    |            |                                        |                             |                             |                                 | <del></del>                 |                             |                             |                        |                  |                    |                           |                                   |   |                               |                                     |                             |                          |                 |   |
|----|------------|----------------------------------------|-----------------------------|-----------------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|------------------|--------------------|---------------------------|-----------------------------------|---|-------------------------------|-------------------------------------|-----------------------------|--------------------------|-----------------|---|
| 5  |            | 4(11),                                 | 4(2H),                      |                             |                                 |                             |                             |                             |                        |                  |                    |                           | <u>-</u>                          |   |                               | (2H),                               |                             |                          |                 |   |
| 10 |            | 1(211), 1.8                            | (3H), 2. 4                  | 7.01(1H)                    | -7.79(611)                      | -1.93(3H)                   | 1.61(2H),                   | 4. 41(1H),                  | (9H),                  |                  | 1. 59(2H),         | 7.06-7.35                 | 8-7.68(61                         |   | 1. 25(3H),                    | (3H), 1.61                          | 4.38(1H),                   | (9H),                    |                 |   |
| 15 |            | 12-1. 34(911), 1. 63(211), 1. 84(111), | 20(2H), 2.05(3H), 2.44(2H), | 16(2H), 4.52(1H), 7.01(1H), | 13-7. 42(911), 7. 56-7. 79(611) | 73-0.94(6H), 0.96-1.93(3H), | 04(3H), 1.17(3H), 1.61(2H), | 79(1H), 3.68(3H), 4.41(1H), | 82(1H), 7.14-7.38(9H), | (H9)             | 21(3H), 1. 22(3H), | 96(1H), 6.06(1H), 7.06-7. | (19H), 7. 53(1H), 7. 58-7. 68(6H) |   | 88(6H), 1. 23(3H), 1. 25(3H), | 28(3H), 1. 40-1. 74(3H), 1. 61(2H), | 88(1H), 4.13(2H), 4.38(1H), | 6.81(1H), 7:15-7.37(9H), | (H9)            |   |
| 20 |            | 1. 12-1. 3                             | 1.80-2.2                    | 4.16(2H),                   | 7. 13-7. 4                      | 0.73-0.9                    | 1.04(3H),                   | 1.79(1H),                   | 6.82(1H),              | 7. 56-7. 74 (6H) | 1. 21(3H),         | 1.96(1H),                 | (19H), 7.5                        |   | 0.88(6H),                     | 1.28(3H),                           | 1.88(1H),                   | 6.81(1H),                | 7. 57-7. 72(6H) |   |
| 25 |            | 4                                      |                             |                             |                                 | 4                           |                             | <del></del>                 |                        |                  | 4                  |                           |                                   |   | 4                             |                                     |                             |                          |                 |   |
| 30 |            | C3 , H3 8 N2 03 S2                     | amorphous                   |                             |                                 | C31H38N2O3S                 | amorphous                   |                             |                        |                  | C37 H38 N2OS       | amorphous                 |                                   |   | C32H40N2O3S                   | amorphous                           |                             |                          |                 |   |
| 35 |            | Tr.                                    |                             |                             |                                 | Trt                         |                             |                             | <del></del>            |                  | Trt (              |                           |                                   |   | Trt                           | <del></del>                         |                             |                          | <del></del>     | - |
| 40 |            | L-Met-OEt                              |                             |                             |                                 | L-11e-0Me                   |                             |                             |                        |                  | NHCHPh2            | -                         |                                   |   | L-Leu-OEt                     |                                     |                             |                          | •               |   |
| 45 | J)         |                                        | :                           |                             |                                 |                             |                             |                             |                        |                  | Ω                  |                           |                                   |   | Ω                             |                                     | - <u>-</u>                  |                          |                 |   |
|    | inue       |                                        |                             |                             |                                 |                             |                             |                             |                        |                  |                    |                           |                                   |   |                               | 0                                   |                             |                          |                 |   |
| 50 | (continued |                                        | •                           |                             |                                 |                             |                             |                             |                        |                  |                    |                           |                                   | - |                               |                                     |                             |                          |                 |   |
|    |            | =                                      |                             |                             |                                 | =                           |                             |                             |                        |                  | ==                 |                           |                                   |   | æ                             |                                     |                             |                          |                 |   |
| 55 | Table      | 0-14                                   |                             |                             |                                 | C-15                        |                             |                             |                        | -                | C-16               |                           |                                   |   | C-17                          |                                     |                             |                          |                 |   |
|    |            |                                        |                             |                             |                                 | 1                           |                             |                             |                        |                  |                    |                           |                                   |   |                               |                                     |                             |                          |                 | j |

|    | _         |                                                                                                                     |                                                                                                 |                                                                                                     |                                                                             |
|----|-----------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 5  |           |                                                                                                                     | 4 II),                                                                                          | 2H),                                                                                                | 12(4H),<br>32(2H),<br>H)                                                    |
| 10 |           | , 1. 23(3H),<br>, 3. 00(2H),<br>, 6. 88(1H),<br>67-7. 72(6H)                                                        | 24(6H), 1. 27(3H),<br>82(1H), 1. 80-2. 42(4H),<br>14(2H), 4. 39(1H),<br>14-7. 36(9H)            | (3H), 1. 29(3H),<br>(1H), 3. 61-3. 98(2H),<br>(1H), 6. 79(1H),<br>, 7. 65-7. 74(6H)                 | 1. 60-2.<br>2. 90-3.<br>(1H),<br>-7. 68(6                                   |
| 15 |           | (3II), 1. 20 (3II)<br>(2H), 1. 71 (1H)<br>(2H), 4. 65 (1H)<br>-7. 36 (14H), 7.                                      |                                                                                                 | 1. 27 (3H)<br>1. 67 (1H)<br>4. 50 (1H)<br>(9H), 7.                                                  | 31(3H<br>90(1H<br>25-4.<br>H), 7.                                           |
| 20 |           | 1. 17(3H), 1. 20(3H), 1. 2<br>1. 48(2H), 1. 71(1H), 3. 0<br>4. 10(2H), 4. 65(1H), 6. 8<br>7. 00-7. 36(14H), 7. 67-7 | 1. 23(3H); 1. 24<br>1. 60(2H), 1. 82<br>4. 08(2H), 4. 14<br>6. 97(1H), 7. 14<br>7. 62-7. 73(6H) | 0. 08(9H), 1. 27(3H), 1. 1. 62(2H), 1. 67(1H), 3. 3. 68(3H), 4. 50(1H), 6. 7. 15-7. 37(9H), 7. 65-7 | 1. 05(3H), 1. 31<br>1. 82(2H), 2. 90<br>3. 68(3H), 4. 25<br>7. 12-7. 34(9H) |
| 25 |           | 4                                                                                                                   | 4                                                                                               | 4                                                                                                   |                                                                             |
| 30 |           | CasHagN2OaS<br>amorphous                                                                                            | CaaH+oN2OsS<br>oily                                                                             | C32H40N2O4SSi<br>amorphous                                                                          | C30H34N2O3S<br>amorphous                                                    |
| 35 |           |                                                                                                                     | T 1                                                                                             | Trt                                                                                                 | Tr t                                                                        |
| 40 |           | L-Phe-OEt                                                                                                           | _ OEt<br>L-Glu-OEt                                                                              | Si(Me)                                                                                              | L-Pro-OMe                                                                   |
| 45 |           | ۵                                                                                                                   | ۵ .                                                                                             |                                                                                                     | ۵                                                                           |
| 73 | ued)      | •                                                                                                                   |                                                                                                 |                                                                                                     |                                                                             |
| 50 | continued |                                                                                                                     |                                                                                                 |                                                                                                     |                                                                             |
|    | o<br>U    | =                                                                                                                   |                                                                                                 | <b>E</b>                                                                                            | Ξ .                                                                         |
| 55 | Table     | C-18                                                                                                                | 61-0                                                                                            | 0-20                                                                                                | C-21                                                                        |

| 55      |               | 50             | 45 | 40                   | 35     | 30                       | - 25 | 15<br>20                                                                                                   | 10                                                                                                  | 5     |
|---------|---------------|----------------|----|----------------------|--------|--------------------------|------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|
| rable   |               | (continued     |    |                      |        |                          |      |                                                                                                            |                                                                                                     |       |
| C - 2 2 | = '           | •              |    | ÇII2COOEt<br>Tyr-OEt | Trt    | C39H44N2O6S<br>amorphous | 4    | 1. 09(3H), 1. 18(3H), 1. 20(3H), 1. 31(3H), 1. 55(2H), 1. 64(1H),                                          | H), I. 20(3H),<br>H), I. 64(IH),                                                                    |       |
|         |               |                |    |                      |        |                          |      | 2. 95(2H), 4. 11(2H), 4. 28(2H),<br>4. 60(2H), 4. 53-4. 76(1H), 6. 69<br>6. 82(2H), 7. 01(2H), 7. 07-7. 31 | 95(2H), 4.11(2H), 4.28(2H),<br>60(2H), 4.53-4.76(1H), 6.69(1H),<br>82(2H), 7.01(2H), 7.07-7.31(9H), | ~ ~ ~ |
| 600     |               |                | -  | :                    | f      |                          |      | 7. 58-7. 69(611)                                                                                           |                                                                                                     |       |
| 87-7    | <b>-</b>      |                |    | SO3H<br>DL-Phe-OH    | -<br>- | CaaHa+N2OaS2             | 01   | *0.99(3H), 1.11(3H), 2.09(2H)<br>2.10(1H), 3.01(2H), 4.39(1H).                                             | 3H), 2.09(2H),<br>H).4-39(1H).                                                                      |       |
|         |               |                |    |                      |        |                          |      | 7, 16-8, 52(2211)                                                                                          |                                                                                                     |       |
|         |               | -              |    |                      |        |                          |      |                                                                                                            |                                                                                                     |       |
| ,       |               |                |    |                      |        | C+2H+8N2O7S              | 9    | 1.01(3H), 1.12(3H), 1.41(9H)                                                                               | H), 1. 41(9H),                                                                                      | Γ-    |
| 0-1     | Boc-L-6       | Boc-L-Glu-0Bz1 | Ω  | ОМе                  | Trt    | amorphous                |      | 1.70-2.45(4H), 3.65(3H), 3.85                                                                              | .65(3H), 3.85                                                                                       |       |
|         |               |                |    |                      |        |                          |      | (1H), 4. 35(1H), 5. 16(2H), 5. 34                                                                          | .16(2H), 5.34                                                                                       |       |
|         |               |                |    |                      |        |                          |      | (1H), 6. 54(1H), 7. 13-7. 37(14H)                                                                          | .13-7.37(14H),                                                                                      |       |
|         |               |                |    |                      |        |                          |      | 7.54-7.62(6H)                                                                                              |                                                                                                     |       |
|         |               |                |    |                      | _      | -                        |      | 1. 02(3H), 1. 13(3H), 1. 44(9H),                                                                           | II), 1. 44(9II),                                                                                    |       |
| D-2     | Boc-D-G1u-0Mc | .lu0Mc         | a  | ОМе                  | Trt    | C38H4+N2O7S              | 9    | 1.70-2.45(4H), 3.68(3H), 3.72                                                                              | .68(3H), 3.72                                                                                       |       |
|         |               |                |    |                      |        | amorphous                |      | (3H), 3.81(1H), 4.33(1H), 5.29                                                                             | .33(1H), 5.29                                                                                       |       |
|         |               |                |    |                      |        |                          |      | (1H), 6. 38(1H), 7. 14-7. 32(9H),                                                                          | .14-7.32(9H),                                                                                       |       |
|         |               |                |    |                      |        |                          |      | 7.53-7.68(6H)                                                                                              |                                                                                                     | _     |

|        | 55               | 50                  | 45 | 40      | 35  | 30           | 25 | 20                 | 15                                  | 10                | 5           |
|--------|------------------|---------------------|----|---------|-----|--------------|----|--------------------|-------------------------------------|-------------------|-------------|
| able'  | Н                | (continued)         |    |         |     |              |    |                    |                                     |                   |             |
| 0-3    | Ac               |                     |    | Gly-OEt | Trt | C30 H3+N2O+S | 5  | 1.11(3H),          | 1. 15(311),                         | 1. 25(311),       |             |
|        |                  |                     |    |         |     | amorphous    |    | 1.98(3H),          | 3, 77(111), 3.                      | 3.95(2H),         |             |
|        | •                |                     |    |         |     |              |    | 4.18(2H),          | 6. 23-6. 36                         | 23-6.36(2H), 7.16 |             |
|        |                  |                     |    |         |     |              |    | 7.35(9H),          | 7. 58-7. 67                         | 67 (6H)           |             |
|        |                  | <br> <br> <br> <br> |    |         |     |              |    | 1.12(3H),          | 1.19(                               | 311), 1. 25(311)  |             |
| 1)-4   | Boc-[,-(         | Boc-1,-Glu-0Bz1     | د۔ | Gly-0Et | Trt | C+5H53N3O8S  | 9  | 1.41(9H),          | 41(9H), 1.55-2.26(4H), 3.           | (411), 3.57       | 1           |
|        | ,<br>,<br>,<br>, |                     |    |         |     | amorphous    |    | (1H), 3.94         | 3.94(2H), 4.17                      | 4.17(211), 4.33   | <sub></sub> |
|        |                  |                     |    |         |     | ı            |    | (1H), 5.12         | 5.12(2H), 5.38                      | 38(1H), 6.23      | 3           |
|        |                  | -                   |    |         |     |              |    | (1H), 6.36(1H), 7. | (1H), 7. 14                         | 14-7. 44(1411     | ( <u>[</u>  |
|        |                  |                     |    |         | -   |              |    | 7.54-7.76(6H)      | (H9)                                |                   |             |
|        |                  |                     |    |         |     |              |    | 1.13(3H),          | 13(3H), 1. 17(3H), 1. 21(3H), 1     | 1. 21(311)        | , 1.39      |
| 5-5    | Boc-1,-(         | Boc-1,-Glu-0Bz1     | Ω  | Gly-OEt | Trt | C+ SH53N3O8S | 9  | (9H), 1.52         | (9H), 1. 52-2. 32(4H), 3. 65        | ), 3. 65(111)     | ·,          |
| )<br>) | )<br>, ·         |                     |    |         |     |              |    | 3.91(2H),          | 91(2H), 4: 12(2H), 4.               | , 4. 29(1H), 5.   | , 5. 14     |
|        |                  |                     |    | 1       |     | •            |    | (2H), 5.46         | (2H), 5.46(1H), 6.52(1H), 6.87(1H), | 2(1H), 6.8        | 7(1H),      |
|        |                  |                     | -  |         |     |              |    | 7.10-7.4           | 10-7.44(14H), 7.                    | 46-7.76(6H)       | (H)         |
|        |                  | L                   |    |         |     |              |    | 1.12(3H),          | 12(3H), 1.20(3H), 1.25(3H), 1.42    | , 1. 25(3H)       | , 1. 42     |
| 0-6    | Boc-D-           | Boc-D-Glu-OMe       | Ω  | Gly-OEt | Tr  | C39H49N3O8S  | 9  | (9H), 1. 48        | (9H), 1. 48-2. 36(4H), 3. 63(1H),   | ), 3, 63(11       | .,          |
| )<br>1 | )<br>)           |                     |    |         |     |              |    | 3.68(3H),          | 68(3H), 3.94(2H), 4.17(2H), 4.30    | , 4. 17(2H)       | , 4.30      |
|        |                  |                     |    |         |     |              |    | (IH), 5.3          | (1H), 5.34(1H), 6.26(1H), 6.48(1H), | 6(1H), 6.         | 18(1H),     |
|        |                  |                     |    |         |     |              |    | 7.15-7.34(9H), 7.  |                                     | 57-7. 67 (611)    | 1)          |
|        |                  |                     |    |         |     |              |    |                    |                                     |                   |             |

| 55    | 50               | 45       | 40        | 35  | 30              | 25 | 10<br>15<br>20                                                               | 5          |
|-------|------------------|----------|-----------|-----|-----------------|----|------------------------------------------------------------------------------|------------|
| Table | le 1 (continued) | ed)      |           |     |                 |    |                                                                              |            |
| D-7   | Boc-L-Glu-       |          | Gly-OEt   | Trt | C+sHs3N3O8S     | 9  | 1. 12(3H), 1. 15(3H), 1. 24(3H), 1. 40<br>(9H), 1. 80-2. 20(2H), 2. 35-2. 63 | 0          |
|       |                  |          |           |     | amorphous       |    | (2H), 3. 51(1H), 3. 92(2H), 4. 10(1H)                                        |            |
|       |                  |          |           |     |                 |    | 4.15(2H), 5.10(2H), 5.34(1H), 6.34                                           |            |
|       |                  |          |           |     |                 |    | (1H), 6. 94(1H), 7. 14-7. 37(14H),                                           |            |
|       |                  |          |           |     |                 |    | 7. 58-7. 67 (611)                                                            |            |
|       | l_               |          |           |     |                 |    | 1. 10(3H), 1. 18(3H), 1. 24(3H), 1. 39                                       | 6          |
| D-8   | Boc-L-Asp-0Bz1   | <u> </u> | Gly-0Et   | Trt | C H 1 N 3 0 8 S | 9  | (9H), 2. 62-2. 96(2H), 3. 51(1H), 3. 90                                      | 0 6        |
|       |                  |          |           |     | amorphous       |    | (2H), 4. 12(2H), 4. 52(1H), 5. 14(2H),                                       |            |
|       |                  |          |           |     |                 |    | 5.74(1H), 6.20-6.35(2H), 7.14-7.35                                           | 35         |
|       |                  |          |           |     |                 |    | (14H), 7.56-7.66(6H)                                                         |            |
|       | ·                |          |           |     |                 |    | 1. 09(3H), 1. 15(3H), 1. 23(3H), 1. 34                                       | T          |
| D-0   | Boc-L-Glu-0B2    |          | L-Ala-OEt | Trt | C+eHssN3O8S     | 9  | (3H), 1. 42(9H), 1. 65-2. 28(4H), 3. 61                                      | =          |
|       |                  |          |           |     | amorphous       |    | (1H), 4. 14(2H), 4. 33(1H), 4. 44(1H),                                       |            |
|       |                  |          |           |     |                 |    | 5.12(2H), 5.38(1H), 6.24(1H), 6.38                                           | ~~         |
|       |                  |          |           |     |                 |    | (IH), 7. 14-7. 44(14H), 7. 58-7. 68(6H)                                      | $\bigcirc$ |
|       |                  | •        |           |     |                 | -  | 0.85(3H), 0.89(3H), 1.12(3H), 1.21                                           |            |
| D-10  | Boc-L-Glu-0Bz]   |          | L-Val-OMe | Trt | C47H57N308S     | ဖ  | (3H), 1. 42(9H), 1. 70-2. 28(5H),                                            |            |
|       |                  |          |           |     | amorphous       |    | 3. 39(1H), 3. 65(3H), 4. 36(1H), 4. 41                                       |            |
|       |                  |          |           |     |                 |    | (1H), 5. 09(2H), 5. 46(1H), 6. 19(1H),                                       |            |
|       |                  |          |           |     |                 |    | 6. 46(1H), 7. 15-7. 41(14H), 7. 59-                                          |            |
|       |                  |          |           |     |                 |    | 7.69(6H)                                                                     |            |
|       |                  |          |           |     |                 |    |                                                                              | 7          |

|            |               | <del></del>                      |                                                                                   |                                    |   |                                                                          |                                  |                                     |                                  |          | 1                  |                                 |                        |                                       |                                     |          |
|------------|---------------|----------------------------------|-----------------------------------------------------------------------------------|------------------------------------|---|--------------------------------------------------------------------------|----------------------------------|-------------------------------------|----------------------------------|----------|--------------------|---------------------------------|------------------------|---------------------------------------|-------------------------------------|----------|
| 5          | II), 1. 15    | -                                | H), 4. 44<br>1II), 6. 38                                                          | 14H),                              |   | . 18(3H),<br>. 27(7H),                                                   | H), 4.44                         | . 10(1H),                           | 7.58-                            |          | H), 1.67           | 3.40-                           | 93(1H), 4.37           | 5.36(1H),                             | 7.49-                               |          |
| 10         | 1, 06(3H),    | 30-2.37(                         | ), 4. 26(1<br>H), 5. 37(                                                          | 15-7, 44(                          |   | 10(3H), 1<br>), 1.30-2                                                   | ), 4.34(1                        | 40(1H), 6                           | 40(14H),                         |          | ), 1. 42(9H), 1.   | . 20(1H),                       | (), 3, 93              | 12(2H),                               | 44(14H),                            |          |
| 15         | 0 88(3H), L.  | 9(9H), 1.                        | 3. 68(3H), 3. 76(1H), 4. 26(1H), 4. 44<br>(1H), 5. 07-5. 23(2H), 5. 37(1H), 6. 38 | 49(1H), 7.15-7.44(14H),<br>66(6H)  |   | 0.85-0.97(6H), 1.10(3H), 1.18(3H),<br>1.22(3H), 1.42(9H), 1.30-2.27(7H), | 61(1H), 4.11(2H), 4.34(1H), 4.44 | (1H), 5.10(2H), 5.40(1H), 6.10(1H), | 39(IH), 7. 14-7. 40(14H), 7. 58- |          | 22(3H), 1. 26(3H), | -2.34(8H), 3.06-3.20(1H), 3.40- | 3.52(1H), 3.63(3H), 3. | (1H), 4. 42(1H), 5. 12(2H), 5. 36(1H) | 6. 42(1H), 7. 10-7. 44(14H), 7. 49- |          |
| 20         | n 85(3H), 0   | (3H), 1. 39(9H), 1. 60-2. 37(5H) | 3.68(3H),<br>(1H), 5.0                                                            | (1H), 6. 49(1H)<br>7. 56-7. 66(6H) | - | 0.85-0.9<br>1.22(3H)                                                     | 3.61(1H)                         | (1H), 5. 1                          | 6.39(1H)                         | 7.67(6H) | 1. 22(3H)          | -2.34(8H                        | 3.52(1H)               | (1H), 4. 4                            | 6. 42(1H)                           | 7.72(6H) |
|            | _             |                                  |                                                                                   |                                    |   |                                                                          |                                  |                                     |                                  |          | -                  | 9                               |                        |                                       |                                     |          |
| 25         |               | 9                                |                                                                                   |                                    |   | 9                                                                        |                                  |                                     |                                  |          | <u> </u>           |                                 |                        |                                       |                                     |          |
| 30         |               | C+7H57N3O8S                      | amorphous                                                                         |                                    |   | C He . N3O & S                                                           | m. p. 177.0-                     | 179.0                               |                                  |          |                    | C+7Hs5N3O8S                     | amorphous              | ı                                     |                                     |          |
| 35         |               | Trt                              |                                                                                   |                                    |   | ←<br>                                                                    | <del></del>                      |                                     |                                  |          |                    | Trt                             |                        |                                       |                                     |          |
| 40         |               | L-Val-OMe 7                      |                                                                                   |                                    |   | 9.1-1<br>13.0-1                                                          |                                  |                                     |                                  |          |                    | L-Pro-OEt                       |                        |                                       |                                     |          |
| <b>4</b> 5 |               | ۵                                |                                                                                   |                                    |   | _                                                                        | )                                |                                     |                                  |          |                    | د                               |                        |                                       |                                     |          |
|            | ned           | 128                              | •                                                                                 |                                    |   | R ?                                                                      |                                  |                                     |                                  |          |                    | 128                             |                        |                                       |                                     |          |
| 50         | 1 (continued) | Boc-L-Glu-0Bz1                   |                                                                                   |                                    |   | Rool - 6 111-0182                                                        |                                  |                                     | -                                |          |                    | <br> Boc-L-G u-0Bz              |                        |                                       |                                     |          |
| 55         | Table         | 0-11 8                           |                                                                                   |                                    |   | , I - C                                                                  |                                  |                                     |                                  |          |                    | D-13                            |                        |                                       |                                     |          |
|            | Ta<br>        | 0                                |                                                                                   |                                    |   |                                                                          | 2                                |                                     |                                  | •        |                    | $\dot{\Box}$                    | )                      |                                       |                                     | ļ        |

| 93    | 55       | 50             | 45 | 40                             | 35  | 30                       | 25 | 20                                                                                                                                                    | 15                                                                                                               | 10                                                      | 5             |
|-------|----------|----------------|----|--------------------------------|-----|--------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|
| Table | г        | (continued)    |    |                                |     |                          |    |                                                                                                                                                       |                                                                                                                  |                                                         |               |
| D-14  | Boc - [. | Boc-L-Glu-0Bz1 |    | l,-Phe-OEt                     | £   | Cs.HssNsOsS<br>amorphous | 9  | 1. 08(3II), 1. 13(3II), 1. (9H), 1. 54-2. 24(4H), 3 3. 39(1H), 4. 12(2H), 4.                                                                          | 08(3II), 1. 13(3II), 1. 26(3II), 1. 42<br>H), 1. 54-2. 24(4H), 3. 02(2H),<br>39(1H), 4. 12(2H), 4. 32(1H), 4. 75 | 1. 26(3II),<br>, 3. 02(2II),<br>4. 32(1II),             | 1. 42         |
|       |          |                |    |                                |     |                          |    | (1H), 5. 12(<br>6. 38(2H), 7<br>7. 63(6H)                                                                                                             | H), 5. 12(2H), 5. 46(1H), 6. 20-38(2H), 7. 03-7. 38(19H), 7. 5363(6H)                                            | (19II), 6. 20<br>(19II), 7. 5                           | 53-           |
| 0-15  |          | Boc-L-Glu-0Bz1 | 7  | SiMe <sub>3</sub><br>L-Tyr-OEt | Trt | CssHe,NoOsSSi            | 9  | 0.26(9H), 1.0<br>(9H), 1.58-2.                                                                                                                        | 26(9H), 1.09(3H), 1.15(6H), 1<br>H), 1.58-2.30(4H), 2.95(2H),                                                    | 9(3H), 1. 15(6H), 1. 43<br>30(4H), 2. 95(2H), 3. 33     | 1. 43         |
|       |          |                |    |                                |     | amorphous                |    | (1H), 4. 06(2H), 4. 33(1H), 4. 70(1H),<br>5. 12(2H), 5. 49(1H), 6. 23(1H), 6. 32<br>(1H), 6. 75(2H), 6. 97(2H), 7. 10-7. 40<br>(14H), 7. 55-7. 65(6H) | 2H), 4. 33(<br>. 49(1H), 6<br>2H), 6. 97(<br>-7. 65(6H)                                                          | (1H), 4. 70(1H)<br>5. 23(1H), 6. 32<br>(2H), 7. 10-7. 4 | (1H),<br>6.32 |
| D-16  |          | Boc-L-Glu-0Bz1 |    | L-Glu-OEt                      | Trt | CsoHe, N3O, oS           | 9  | 1. 08(3H), 1. 18(3H), 1. 22(3H), 1. (3H), 1. 42(9H), 1. 80-2. 42(8H),                                                                                 | . 18(3H), 1<br>9H), 1.80-                                                                                        | 22(3H),<br>-2. 42(8H)                                   | 1. 26         |
|       | •        |                |    |                                |     | m. p. 167. 0-<br>168. 5  |    | 3. 49(1H), 4. 10(2H), 4. 12(2H), 4. 34 (1H), 4. 48(1H), 5. 11(2H), 5. 41(1H),                                                                         | 49(1H), 4. 10(2H), 4. 12(2H), 4. 34<br>H), 4. 48(1H), 5. 11(2H), 5. 41(1H)                                       | 12(2H),<br>(2H), 5. 41                                  | 4.34 (1H),    |
|       |          |                |    |                                |     |                          |    | 6. 30(1H), 6. 40(1H), 7<br>(14H), 7. 57-7. 69(6H)                                                                                                     | 30(1H), 6. 40(1H), 7.<br>4H), 7. 57-7. 69(6H)                                                                    | . 15-7. 37                                              |               |

|    |             |                                                                                                                              |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                           |
|----|-------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |             | (9II), 1. 68<br>1(LII),<br>(1II), 6. 28<br>II), 7. 50-                                                                       | H),<br>(2H),<br>H),<br>. 25(1H),                                                                                | 1. 21(3H), 1. 23(3H),<br>1. 72-2. 28(6H), 2. 05(3H),<br>3. 38(1H), 4. 15(2H),<br>4. 56(1H), 4. 97-5. 23(2H),<br>6. 25(1H), 6. 39(1H),<br>(14H), 7. 58-7. 67(6H) |
| 10 |             | ), 1. 41(9<br>H), 4. 31(<br>), 6. 09(1<br>. 36(24H)                                                                          | 19(3H), 1. 41(9H),<br>H), 2. 72-3. 12(2H)<br>32(1H), 4. 80(1H),<br>H), 5. 43(1H), 6. 25<br>03-7. 44(24H),<br>H) | (3H), 1. 23(3H),<br>-2. 28(6H), 2. 05<br>(1H), 4. 15(2H),<br>(1H), 4. 97-5. 23<br>(1H), 6. 39(1H),<br>), 7. 58-7. 67(6H)                                        |
| 15 |             | 2. 23(4II), 3. 89(1II), 4. 31(1II), 1. 6. 2 (23(4II)), 5. 36(1II), 6. 09(1II), 6. 2 (24II), 7. 10-7. 36(24II), 7. 50-58(6II) | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                          |                                                                                                                                                                 |
| 20 |             | 1. 07(3H) -2. 23(4H) 5. 10(2H) -6. 43(2H) 7. 58(6H)                                                                          | 1. 07(3H), 1. 15 1. 70-2. 27(4H) 2. 96(1H), 4. 32 4. 94-5. 22(6H) 6. 52(1H), 7. 03 7. 56-7. 64(6H)              | 1. 11(3H),<br>1. 43(9H),<br>2. 47(2H),<br>4. 34(1H),<br>5. 42(1H),<br>7. 14-7. 37                                                                               |
|    |             | 9                                                                                                                            | 9                                                                                                               | 9                                                                                                                                                               |
| 25 |             | S M                                                                                                                          | လွ                                                                                                              |                                                                                                                                                                 |
|    |             | N <sub>3</sub> O <sub>6</sub>                                                                                                | NaO.                                                                                                            | N <sub>3</sub> O <sub>8</sub> .<br>1.5-<br>3.0                                                                                                                  |
| 30 |             | Cs.Hs7NaOgS<br>amorphous                                                                                                     | CssHs3N3O10S<br>amorphous                                                                                       | C <sub>+8</sub> H <sub>59</sub> N <sub>3</sub> O <sub>8</sub> S <sub>2</sub><br>m. p. 161. 5-<br>163. 0                                                         |
| 35 |             | Tr t                                                                                                                         | F-                                                                                                              | ₩<br>₩                                                                                                                                                          |
| 40 |             | NHCHPh <sub>2</sub>                                                                                                          | L-Asp-0Bz1                                                                                                      | L-Met-OEt                                                                                                                                                       |
|    |             | .i                                                                                                                           | ت                                                                                                               | ت.                                                                                                                                                              |
| 45 | ned)        | 321                                                                                                                          | 128                                                                                                             | 12                                                                                                                                                              |
| 50 | (continued) | Boc-L-Glu-0Bz1                                                                                                               | Boc-L-Glu-0Bzl                                                                                                  | Boc-L-Glu-0Bz]                                                                                                                                                  |
| 55 | ole 1       |                                                                                                                              |                                                                                                                 |                                                                                                                                                                 |
|    | Table       | 0-17                                                                                                                         | . 1-0                                                                                                           | D-19                                                                                                                                                            |

| 5           | (2H),<br>H),                                                         | 3. 65(3H),<br>5. 22(2H),<br>H),<br>(6H)                                                                                                                   | 1.36(9H),<br>(1H), 4.03(1H),<br>6.15(1H),<br>7.08-7.36(24                                                                                                      | . 32(7H),<br>H),<br>H),.<br>H),,                                                                                                                                                        |
|-------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10          | 00-1.59                                                              | 43(1H), 3<br>1), 4.95-9<br>1), 6.45(1)                                                                                                                    | 1), 1. 36(9<br>98(1H), 4<br>1), 6. 15(1<br>1), 7. 08-7                                                                                                         | . 09(3H),<br>), 1. 30-2. 32<br>), 4. 11(2H),<br>), 5. 14(2H),<br>), 6. 40(1H),<br>. 55-7. 64(6H)                                                                                        |
| 15          | 0. 76-0. 96(6H), 1. 00-1. 59(2H)<br>1. 11(3H), 1. 20(3H), 1. 43(9H), | 1. 71-2. 30(5H), 3. 43(1H), 3. 65(3H),<br>4. 36(1H), 4. 44(1H), 4. 95-5. 22(2H),<br>5. 44(1H), 6. 28(1H), 6. 45(1H),<br>7. 08-7. 42(14H), 7. 52-7. 76(6H) | 00(3H), 1. 15(3H), 1. 36(9H),<br>53-2. 26(4H), 3. 98(1H), 4. 03(1H),<br>12(2H), 5. 33(1H), 6. 15(1H),<br>56(1H), 6. 89(1H), 7. 08-7. 36(24,<br>7. 50-7. 58(6H) | 76-0.90(6H)), 1.09(3H),<br>54(3H), 1.22(3H), 1.30-2.32(7H),<br>39(9H), 3.67(1H), 4.11(2H),<br>24(1H), 4.50(1H), 5.14(2H),<br>32(1H), 6.30(1H), 6.40(1H),<br>14-7.37(14H), 7.55-7.64(6H) |
| 20          | 0.76-0.<br>1.11(3H                                                   | 1. 71-2.<br>4. 36(1H)<br>5. 44(1H)<br>7. 08-7.                                                                                                            | 1. 00(3H)<br>1. 53-2. 5<br>5. 12(2H)<br>6. 56(1H)<br>H), 7. 50-                                                                                                | 0.76-0.90<br>1.54(3H),<br>1.39(9H),<br>4.24(1H),<br>5.32(1H),<br>7.14-7.37                                                                                                              |
|             | 9                                                                    |                                                                                                                                                           | 9                                                                                                                                                              | 9                                                                                                                                                                                       |
| 25          | (0)                                                                  |                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                         |
| 30          | C+8H59N3O8S                                                          | m. p. 159, 5-<br>160, 5                                                                                                                                   | Cs.Hs7NsOeS<br>amorphous                                                                                                                                       | C.s.H. 1 N. O. S.<br>amorphous                                                                                                                                                          |
| 35          | Trt                                                                  |                                                                                                                                                           | <b>⊢</b>                                                                                                                                                       | Trt                                                                                                                                                                                     |
| 40          | L-11e-0Me                                                            |                                                                                                                                                           | NHCHPh 2                                                                                                                                                       | L-Leu-OEt                                                                                                                                                                               |
|             | -1                                                                   |                                                                                                                                                           | Q                                                                                                                                                              | Ω                                                                                                                                                                                       |
| 45 F        | B21                                                                  |                                                                                                                                                           | 128                                                                                                                                                            | 321                                                                                                                                                                                     |
| -           | Boc-L-Glu-OBzl                                                       |                                                                                                                                                           | Boc-L-61u-0Bz1                                                                                                                                                 | Boc-L-Glu-OBz1                                                                                                                                                                          |
| 55 <u>[</u> | D-20                                                                 |                                                                                                                                                           | D-21                                                                                                                                                           | D-22 [                                                                                                                                                                                  |

| 5<br>10 |               | 02(3H), 1. 12(6H), 1. 40(9H),<br>60-2. 29(4H), 3. 03(2H), 3. 62(1H),<br>06(2H), 4. 24(1H), 4. 73(1H),<br>14(2H), 5. 36(1H), 6. 31(1H),<br>54(1H), 7. 06-7. 40(19H),<br>65-764(6H) | 11(3H), 1. 19(6H), 1. 22(3H),<br>39(9H), 1. 52-2. 42(8H), 3. 51(1H),<br>03(2H), 4. 12(2H), 4. 24(1H),<br>50(1H), 5. 14(2H), 5. 32(1H),<br>31(1H), 6. 71(1H), 7. 14-7. 36(14,<br>7. 56-7. 65(6H) | 04(9H), 1. 15(3H), 1. 16(3H),<br>42(9H), 1. 60-2. 26(4H), 3. 48(1H),<br>65(3H), 3. 86(1H), 4. 00(1H),<br>31(1H), 4. 54(1H), 5. 11(2H),<br>40(1H), 6. 32(1H), 6. 58(1H),<br>13-7. 36(14H), 7. 59-7. 69(6H) |
|---------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20      |               | 1. 02(3)<br>1. 60-2.<br>4. 06(2)<br>5. 14(2)<br>6. 54(1)<br>7. 65-7.                                                                                                              | 1. 11(3H) 1. 39(9H) 4. 03(2H) 4. 50(1H) 6. 31(1H) H), 7. 56-                                                                                                                                    | 0.04(9H),<br>1.42(9H),<br>3.65(3H),<br>4.31(1H),<br>5.40(1H),<br>7.13-7.36                                                                                                                                |
| 25      |               | 9                                                                                                                                                                                 | 9                                                                                                                                                                                               | 9                                                                                                                                                                                                         |
| 30      |               | CszHssNsOsS<br>amorphous                                                                                                                                                          | CsoHgiN3O10S<br>amorphous                                                                                                                                                                       | C. B.H. B. 18309SSi<br>amorphous                                                                                                                                                                          |
| 35      |               | Tr.                                                                                                                                                                               | Tr.                                                                                                                                                                                             | ال ا                                                                                                                                                                  |
| 40      |               | L-Phe-OEt                                                                                                                                                                         | р<br>С-61u-0Et                                                                                                                                                                                  | Si(Me) 3<br>L-Ser-OMe                                                                                                                                                                                     |
| 45      |               | C                                                                                                                                                                                 |                                                                                                                                                                                                 | ب ب                                                                                                                                                                                                       |
| 50      | 1 (continued) | Boc L Glu OB: L                                                                                                                                                                   | Boc-L-Glu-0B21                                                                                                                                                                                  | Boc-L-Glu-0Bzl                                                                                                                                                                                            |
| 55      | Table         | 0-23 8                                                                                                                                                                            | D-24 B                                                                                                                                                                                          | D-25 B                                                                                                                                                                                                    |

|                | . 63-2. 50(8H),<br>3H), 3. 71-3. 85<br>1H), 4. 77(1H),<br>. 39(1H), 7. 12-<br>(6H)                                                                                                                    | . 17(3H), 1. 30<br>2. 28(4H), 2. 97<br>2H), 4. 27(2H),<br>. 71(1H), 5. 12<br>[1H), 6. 31(1H),<br>. 10-7. 42(14                                                                                                                                                                 | 0.94(12H),<br>(9/2H), 1.37<br>H), 4.04(1H),<br>.12(2H),                                                                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 0. 97(6H), 1. 39(9H), 1. 63-2. 50(8H),<br>3. 44-3. 68(1H), 3. 64(3H), 3. 71-3. 85<br>(1H), 4. 28(1H), 4. 42(1H), 4. 77(1H),<br>5. 15(2H), 5. 36(1H), 6. 39(1H), 7. 12-<br>7. 36(14H), 7. 50-7. 62(6H) | 1. 08(3H), 1. 15(3H), 1. 17(3H), 1. 30<br>(3H), 1. 42(9H), 1. 63-2. 28(4H), 2. 97<br>(2H), 3. 39(1H), 4. 76(2H), 4. 27(2H),<br>4. 32(1H), 4. 59(2H), 4. 71(1H), 5. 12<br>(2H), 5. 46(1H), 6. 23(1H), 6. 31(1H),<br>6. 81(2H), 7. 03(2H), 7. 10-7. 42(14<br>H), 7. 54-7. 66(6H) | 0.72(3H), 0.80(3H), 0.94(12H),<br>.22-2.40(20H), 1.36(9/2H), 1.37<br>9/2H), 2.80-3.50(10H), 4.04(1H),<br>.39(1H), 4.50(1H), 5.12(2H),<br>.09-8.07(28H) |
|                | 0.97(1H), (1H), 5.15(                                                                                                                                                                                 | 1. 08((3H), (2H), 4. 32((2H), (2H), 6. 81((H), 7.                                                                                                                                                                                                                              | *0.72(<br>1.22-2<br>(9/2H)<br>4.39(1<br>7.09-8                                                                                                         |
|                | <b>.</b>                                                                                                                                                                                              | φ                                                                                                                                                                                                                                                                              | တ                                                                                                                                                      |
|                | C. C.7HssNo0s<br>amorphous                                                                                                                                                                            | CseHesNoOS<br>amorphous                                                                                                                                                                                                                                                        | CeeHsoN.O.,S.                                                                                                                                          |
|                | T t                                                                                                                                                                                                   | Trt                                                                                                                                                                                                                                                                            | N<br>Trt                                                                                                                                               |
|                | L-Pro-OMe                                                                                                                                                                                             | ÇII2COOEt<br>Tyr-OEt                                                                                                                                                                                                                                                           | SO3·Bu.N<br>DL-Phe-OH                                                                                                                                  |
| 3)             | ٥                                                                                                                                                                                                     | <b>ـ</b> ــ                                                                                                                                                                                                                                                                    | ٠ .                                                                                                                                                    |
| e 1 (continued | Boc-L-Glu-0Bz1                                                                                                                                                                                        | Boc-L-Glu-0Bz1                                                                                                                                                                                                                                                                 | Boc-L-Glu-0Bz1                                                                                                                                         |
| Table          | D-26                                                                                                                                                                                                  | D-27                                                                                                                                                                                                                                                                           | D-28                                                                                                                                                   |

|    | r              |                                                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                                    |                                                                                                      |
|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 5  |                | ), 1. 41<br>H), 3. 94<br>12(2H),<br>10-7. 32                                                                                                                                                     | , 1.83-<br>4(1H),<br>, 7.10                                                                                                                          | , 3.73<br>(8(1H),                                                                                                                  | (2 (4H), (3 (1H), (1)), (1)                                                                          |
| 10 |                | 1. 09(3H), 1. 19(3H), 1. 27(3H), 1. 41<br>(9H), 2. 64-2. 93(2H), 3. 48(1H), 3. 94<br>(2H), 4. 17(2H), 4. 55(1H), 5. 12(2H),<br>5. 66(1H), 6. 14-6. 33(2H), 7. 10-7. 32<br>(14H), 7. 52-7. 64(6H) | 1. 08(3H), 1. 18(3H), 1. 42(9H), 1. 83-<br>2. 32(4H), 3. 63-3. 72(1H), 4. 34(1H), 5. 12(2H), 5. 39(1H), 6. 49(1H), 7. 10-7. 43(15H), 7. 48-7. 56(6H) | 1. 04(3H), 1. 06(3H), 1. 43(9H), 3. 73<br>(1H), 4. 00(2H), 5. 69(2H), 6. 68(1H),<br>7. 10-7. 33(9H), 7. 54-7. 64(6H),<br>8. 28(1H) | 97(6H), 1.37(9H), 1.80-2.62(4H), 18-4.90(3H), 5.69(1H), 6.83(1H), 12-7.30(9H), 7.46-7.61(6H), 06(1H) |
| 15 |                | 1. 19 (3H) -2. 93 (2H) (2H), 4. E 5. 14-6. 3 2-7. 64 (6                                                                                                                                          | 1. 18(3H),<br>3. 63-3. 72<br>5. 39(1H),<br>), 7. 48-7.                                                                                               | 1.06(3H<br>(2H), 5.<br>(9H), 7.                                                                                                    | 1.37(9H<br>(3H), 5.<br>(9H), 7.                                                                      |
| 20 |                | 1.09(3H), 1.19(3H), 1.27(3H<br>(9H), 2.64-2.93(2H), 3.48(1<br>(2H), 4.17(2H), 4.55(1H), 5.<br>5.66(1H), 6.14-6.33(2H), 7.<br>(14H), 7.52-7.64(6H)                                                | 1.08(3H),<br>2.32(4H),<br>5.12(2H),<br>-7.43(15H)                                                                                                    | 1.04(3H),<br>(1H), 4.00<br>7.10-7.33<br>8.28(1H)                                                                                   | 0.97(6H),<br>4.18-4.90<br>7.12-7.30<br>8.06(1H)                                                      |
| 25 |                | 9                                                                                                                                                                                                | 3                                                                                                                                                    | 7                                                                                                                                  | 7                                                                                                    |
| 30 |                | C++Hs:N3OsS<br>amorphous                                                                                                                                                                         | C.1H.8N2O7S<br>amorphous                                                                                                                             | CaiHasN2OsS<br>amorphous                                                                                                           | C3+H+oN2O7S<br>amorphous                                                                             |
| 35 |                | Trt                                                                                                                                                                                              | Trt                                                                                                                                                  | <u>+</u>                                                                                                                           | T                                                                                                    |
| 40 |                | Gly-OEt                                                                                                                                                                                          | но                                                                                                                                                   | Gly-OH                                                                                                                             | НО                                                                                                   |
|    | 1)             | ب ۔                                                                                                                                                                                              | ب                                                                                                                                                    | Q                                                                                                                                  | ۵                                                                                                    |
| 45 | inue           | )Bz1                                                                                                                                                                                             | )B21                                                                                                                                                 |                                                                                                                                    | 110                                                                                                  |
| 50 | e 1 (continued | Boc-L-Asp-0Bz                                                                                                                                                                                    | Boc-L-Glu-0Bz                                                                                                                                        | Вос                                                                                                                                | Boc-L-Glu-Off                                                                                        |
| 55 | Table          | D-29                                                                                                                                                                                             | D-30                                                                                                                                                 |                                                                                                                                    | E - 2                                                                                                |

|    |              |                                                                                                                                      |                                                                                                                                          | T                                                                                                                                                     |                                                                                                        |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 5  |              | . 53<br>1H),<br>. 49-                                                                                                                | H),<br>H),<br>54-                                                                                                                        | 4), 1.71<br>4, 20-<br>06-<br>05-                                                                                                                      | 1), 1.76                                                                                               |
| 10 |              | , 1.82-2.<br>1), 5.68(1), 2.(9H), 7.                                                                                                 | 6.51(1<br>8(9H),70                                                                                                                       | , 1. 45(9)<br>70(2H),<br>0(2H), 7.<br>4(6H), 8.                                                                                                       | , 1. 39(91<br>34(4H), (<br>H)                                                                          |
| 15 |              | 0. 96(6H), 1. 36(9H), 1. 82-2. 53<br>(4H), 4. 20-4. 85(3H), 5. 68(1H),<br>6. 81(1H), 7. 13-7. 32(9H), 7. 49-<br>7. 63(6H), 8. 09(1H) | 1. 08(3Ḥ), 1. 11(3ℍ), 1. 97(3ℍ),<br>3. 89(1ℍ), 3. 97(2ℍ), 6. 51(1ℍ),<br>6. 62(1ℍ), 7. 12-7. 38(9ℍ), 7. 54-<br>7. 67(6ℍ), 7. 00-8. 00(1ℍ) | 0.89(3H), 0.97(3H), 1.45(9H), 1.71<br>-2.80(4H), 3.47-3.70(2H), 4.20-<br>4.73(2H), 5.07-5.50(2H), 7.06-<br>7.27(9H), 7.47-7.64(6H), 8.05-<br>9.00(3H) | 1. 05(3H), 1. 06(3H), 1. 39(9H), 1. 76<br>-2. 56(4H), 3. 66-4. 34(4H), 6. 64<br>(1H), 6. 00-8. 16(19H) |
| 20 |              | 0.96(6H<br>(4H), 4.<br>6.81(1H<br>7.63(6H                                                                                            | 1. 08(3H)<br>3. 89(1H)<br>6. 62(1H)<br>7. 67(6H)                                                                                         | 0.89(3H)<br>-2.80(4I<br>4.73(2H)<br>7.27(9H)<br>9.00(3H)                                                                                              | 1.05(3H) -2.56(4F)                                                                                     |
| 25 |              |                                                                                                                                      | 7                                                                                                                                        | 7                                                                                                                                                     | 7                                                                                                      |
| 30 |              | Co.H.oN2O7S<br>amorphous                                                                                                             | C28H30N2O+S<br>amorphous                                                                                                                 | CseH+3N3OeS<br>amorphous                                                                                                                              | C38H+3N3O8S<br>amorphous                                                                               |
| 35 |              | Trt                                                                                                                                  | T T                                                                                                                                      | F -                                                                                                                                                   | Trt                                                                                                    |
| 40 |              | НО                                                                                                                                   | G1y-0H                                                                                                                                   | G1y-0H                                                                                                                                                | G 1 y - OH                                                                                             |
| 45 |              | Δ                                                                                                                                    |                                                                                                                                          |                                                                                                                                                       | Q                                                                                                      |
| 50 | 1 (continued | Boc-D-Glu-OH                                                                                                                         | N C                                                                                                                                      | Boc-L-Glu-011                                                                                                                                         | Boc-L-Glu-()                                                                                           |
| 55 | Table        | ന<br> <br>ഡ                                                                                                                          | 4                                                                                                                                        | ო<br>გ                                                                                                                                                | (T)<br>(Q)                                                                                             |

| 55    | 50              | 45          | 40       | 35  | 30                  | 25          | 20                     | 15                                                     | 10                                | 5        |
|-------|-----------------|-------------|----------|-----|---------------------|-------------|------------------------|--------------------------------------------------------|-----------------------------------|----------|
| Table | e l (continued) | 1ed)        |          |     |                     |             |                        |                                                        |                                   |          |
| E-7   | Boc-D-G1u-0H    | Ω           | G1y-0H   | Trt | C38H+3N3O8S         | 7           | 0.89(3H),<br>1.70-2.76 | 89(3H), 0.96(3H), 1.45(9H), 70-2.76(4H), 3.44-3.80(2H) | 1.45(9H),<br>-3.80(2H),           |          |
|       |                 |             |          |     |                     |             | 4. 20-4. 70(211), 5.   | (211), 5. 10-5.                                        | -5.52(2H),                        |          |
|       |                 |             |          |     | •                   |             | 7.02-7.36              | .02-7.36(9H), 7.44-7.                                  | -7.68(6H),                        |          |
|       |                 | <del></del> |          | •   |                     |             | 7.90-9.45(3H)          | (3H)                                                   |                                   |          |
|       |                 |             |          |     |                     |             | *0.77(3H)              | *0.77(3H), 0.81(3H), 1.38(9H)                          | 1.38(9H),                         |          |
| E-8   | Boc-L-61u-      | <u>۔</u>    | G1y-0H   | Trt | C38H+3N3O8S         | 7           | 1.65-2.10              | 1.65-2.10(2H), 2.15-2.40(2H),                          | -2.40(2H),                        |          |
|       |                 |             |          |     | amorphous           |             | 3.34(1H),              | 3.34(1H), 3.58-3.89(2H), 4.07                          | (2H), 4.07                        |          |
|       |                 |             |          |     |                     |             | (1H), 4.40             | (1H), 6.80                                             | (1H), 4. 40(1H), 6. 80-7. 88(16H) |          |
|       |                 |             |          |     |                     |             | 7.77(1H),              | 7.77(1H), 8.42(1H), 12.28(1H)                          | 12.28(1H)                         |          |
|       |                 |             |          |     |                     |             | 0.98(3H),              | 98(3H), 1.06(3H), 1.34(9H),                            | 1.34(9H),                         |          |
| 요 - 3 | Boc-L-18p-011   | 0           | Gly-011  | Trt | C3 5 H + 1 N3 O 8 S | 7           | 2.64-3.08              | (2H), 3.60                                             | 2. 64-3. 08(2H), 3. 60-4. 70(4H), |          |
|       |                 |             |          |     | amorphous           |             | 5.90(1H),              | 6.90 - 7.30                                            | 90(1H), 6.90-7.30(11H), 7.44      |          |
|       |                 |             |          |     |                     |             | -7.66(6H)              | 66(6H), 9.54(2H)                                       |                                   |          |
|       |                 |             |          |     |                     |             | *0.78(3H)              | *0.78(3H), 0.82(3H), 1.26(3H),                         | , 1. 26(3H),                      |          |
| E-10  | Boc-L-61u-011   |             | L-Ala-OH | Trt | C37H+5N3O8S         | 7           | 1.39(9H),              | .39(9H), 1.60-2.54(4H), 3.                             | (4H), 3.33                        |          |
|       |                 | <del></del> |          |     | amorphous           | -           | (IH), 3.93             | (1H), 3. 93(1H), 4. 15(1H), 4. 53                      | (IH), 4.53                        |          |
|       |                 |             |          |     |                     | <del></del> | (1H), 7.04             | -7.38(10H                                              | (1H), 7.04-7.38(10H), 7.49-7.59   | <u> </u> |
|       |                 |             |          |     |                     |             | (6H), 8.11             | (6H), 8.11(1H), 8.38(1H), 12.                          | (1H), 12.20                       |          |
|       |                 |             | -        |     |                     |             | (11)                   |                                                        |                                   |          |
|       |                 |             |          | ļ   |                     | ,           |                        |                                                        |                                   |          |

| 55       | 50              | 45            | 40       | 35          | 30          | 25 | 15                                   | 10                                 | 5  |
|----------|-----------------|---------------|----------|-------------|-------------|----|--------------------------------------|------------------------------------|----|
| Table    | e 1 (continued) | d)            |          |             | •           |    |                                      |                                    |    |
| -        |                 | -             | :        | Ę           | 1           |    | 0.86(3H), 0.89(3H), 1.02(3H)         | H), 1. 02(3H),                     |    |
| <u>.</u> |                 |               | L-Val-OH | <br>        | C39H49N3O8S |    | 1.06(3H), 1.41(9H), 1.80-2.55        | III), 1.80-2.55                    |    |
|          |                 |               |          |             | amorphous   |    | (5II), 4. 06(1H), 4. 24-4. 48(2H),   | . 24-4. 48(211),                   |    |
|          |                 | · <del></del> |          |             |             |    | 5. 68(111), 7. 07-7. 33(1011), 7. 43 | . 33(1011), 7. 43                  |    |
|          |                 |               |          |             |             |    | (1H), 7. 53-7. 65(6H), 8. 50(2H)     | (6H), 8.50(2H)                     |    |
|          | •               |               |          |             |             |    | 0.87(3H), 0.90(3H), 1.04(3H), 1      | 11), 1.04(311), 1.08               | 82 |
| E-12     | Boc-L-G1u-011   |               | L-Val-OH | Trt         | C39H49N3O8S | 7  | (3H), 1. 41(9H), 1. 81-2. 57(5H),    | .81-2.57(5H),                      |    |
|          |                 | ۰,            |          |             | amorphous   |    | 4.07(1H), 4.25-4                     | 4.07(1H), 4.25-4.50(2H), 5.69(1H), |    |
|          |                 |               |          |             |             |    | 7.03-7.30(10H), 7.40(1H), 7.51       | 7.40(111),7.51-                    |    |
|          |                 |               |          |             |             |    | 7. 66(6H), 8. 52(2H)                 | (11)                               |    |
|          |                 |               |          |             |             |    | *0.77-0.90(6H), 0.87(3H), 0.90       | 0.87(3H), 0.90                     |    |
| E-13     | Boc-L-Glu-01    | <i>ം</i>      | L-Leu-OH | Trt         | C40H51N3O8S | _  | (3H), 1. 39(9H), 1. 30-2. 12(5H),    | .30-2.12(5H),                      |    |
|          |                 |               |          |             | amorphous   |    | 2.36(2H), 3.68(1                     | 2.36(2H), 3.68(1H), 3.94(1H), 4.22 | 2  |
|          |                 |               |          |             |             |    | (1H), 4. 49(1H), 7. 08-7. 35(10H)    | .08-7.35(10H),                     |    |
|          |                 |               |          |             |             |    | 7.50-7.62(6H),8                      | 7.50-7.62(6H), 8.07(1H), 8.18(1H)  |    |
|          |                 |               |          |             |             |    | 12.32(1H)                            |                                    |    |
|          |                 |               |          |             |             |    | *0.96(3H), 1.12(3H), 1.37(9H),       | 3H), 1. 37(9H),                    |    |
| E-14     | Boc-L-Glu-OH    | <u>`</u>      | L-Pro-OH | Trt         | C39H47N3O8S | 2  | 1. 57-2. 52(8H), 3. 06-3. 62(3H),    | .06-3.62(3H),                      |    |
|          |                 |               |          | <del></del> | amorphous   |    | 3.93(1H), 4.14(1                     | 3.93(1H), 4.14(1H), 4.27(1H), 7.09 | တ  |
|          |                 |               |          |             |             |    | (1H), 7. 10-7. 38(9H), 7. 44-7. 62   | 9H), 7.44-7.62                     |    |
|          |                 |               |          |             |             |    | (6H), 8, 10(1H), 12, 40(1H)          | 2. 40(1H)                          |    |

| 55             | 50            | 45       | <b>4</b> 0 | 35     | 30                        | 25 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                 | 10                                                                                                                                                           | 5                  |
|----------------|---------------|----------|------------|--------|---------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Table          | l (continued) | _        |            |        |                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                                              |                    |
| - 3<br>S 1 - 5 | Boc-L-Glu-()] |          | L-Phe-Oil  | T      | C.3H.sN3OsS<br>amorphous  | 7  | *0.72(3H), 0.79(3H), 1.39(9H),<br>1.66-2.12(2H), 2.20-2.36(2H),<br>2.79-3.12(2H), 3.84-4.05(1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.79(3H),<br>2H), 2.20-<br>2H), 3.84-                              | 1.39(9H),<br>2.36(2H),<br>4.05(1H),                                                                                                                          |                    |
|                |               |          |            |        |                           |    | 4. 42(1H), 4. 47(1H), 7. 06-7. 34<br>(15H), 7. 48-7. 60(6H), 7. 97(1H)<br>8. 32(1H), 12. 50(2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42(1H), 4. 47(1H), 7<br>5H), 7. 48-7. 60(6H)<br>32(1H), 12. 50(2H) | . 06-7.34<br>, 7.97(1H),                                                                                                                                     |                    |
| E-16           | Boc-L-Glu-011 |          | L-Tyr-OH   | Trt    | C43H+8N3O8S amorphous.    | 7  | 1. 00(6H), 1. 43(9H), 1. 2. 77-3. 17(2H), 3. 84(14, 70(1H), 5. 74(1H), 6. 94(2H), 6. 94(2H), 6. 94(2H), 6. 94(2H), 6. 94(2H), 6. 94(2H), 9. 94( | . 43(9H), 1<br>(2H), 3.84<br>(3.74(1H), (1H), (1H), 6.94           | 1. 00(6H), 1. 43(9H), 1. 80-2. 50(4H), 2. 77-3. 17(2H), 3. 84(1H), 4. 26(1H), 4. 70(1H), 5. 74(1H), 6. 57(1H), 6. 71 (2H), 6. 83(1H), 6. 94(2H), 7. 09-7. 38 | 71<br>71<br>7. 38  |
|                | L             |          |            |        |                           |    | (9H), 7, 53-<br>0, 99(3H), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.63(6H),                                                          | (9H), 7, 53-7, 63(6H), 6, 50-9, 90(3H)<br>0, 99(3H), 1, 09(3H), 1, 43(9H), 1, 85-                                                                            | 85-                |
| E-17           | Boc-L-Glu-OH  | <u>ا</u> | L-G1u-OH   | ₩<br>₩ | CasH47N3O10S<br>amorphous | _  | 2. 64(8H), 3<br>(1H), 5. 81(<br>(10H), 7. 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. 91(1H),<br>(1H), 6. 98<br>2-7. 74(6H                            | 2. 64(8H), 3. 91(1H), 4. 23(1H), 4. 49<br>(1H), 5. 81(1H), 6. 98(1H), 7. 10-7. 43<br>(10H), 7. 52-7. 74(6H), 8. 20-11. 6                                     | . 49<br>7. 43<br>6 |
| -18<br>8       | Boc-L-Glu-OH  |          | NHCHPh2    | Trt    | C47H51N3O8S<br>amorphous  |    | (3H) 1. 06(6H), 1. 40(9H), 1. 70-2. 50 4. 12(1H), 4. 26(1H), 5. 48(1H), (1H), 6. 61(1H), 6. 94-7. 34(20H) 7. 46-7. 55(6H), 6. 90-8. 00(1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.40(9H),<br>4.26(1H),<br>(1H), 6.94<br>(6H), 6.90                 | (3H) 1. 06(6H), 1. 40(9H), 1. 70-2. 50(4H), 4. 12(1H), 4. 26(1H), 5. 48(1H), 6. 06 (1H), 6. 61(1H), 6. 94-7. 34(20H), 7. 46-7. 55(6H), 6. 90-8. 00(1H)       | 4H),               |

| ••    | 50<br>55      | 45   | 40       | 35    | 30                        | 25 | 20                                                         | 15                                                                                                                                                                                 | 10                                                 | 5                                                                        |
|-------|---------------|------|----------|-------|---------------------------|----|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|
| Table | 1 (continued  | ued) |          |       |                           |    |                                                            |                                                                                                                                                                                    |                                                    |                                                                          |
| E-19  | Boc-L-GJu-UII |      | L-Asp-OH | Trt   | C38 H+5 N3010S            | 7  | *0.79(3H<br>1.60-2.7                                       | *0.79(3H), 0.82(3H), 1.39(9H),<br>1.60-2.78(6H), 3.36(1H), 3.95(1H),                                                                                                               | ), 1. 39(9H<br>5(1H), 3. 9                         | 4),<br>35(1H),                                                           |
|       |               |      |          |       | amorphous                 |    | 4. 40-4. 58<br>7. 49-7. 60<br>12. 51(2H)                   | .40-4.58(2H),7.08-7.38(10H),<br>.49-7.60(6H),8.11(1H),8.37(1H),<br>2.51(2H)                                                                                                        | 8-7.38(10<br>1(1H), 8.3                            | 37(1H),                                                                  |
| E-20  | Boc-L-G14-0   |      | L-Met-OH | T + + | CasHtsNaOsSz<br>amorphous | 7  | *0.78(3H)<br>-2.60(8H)<br>(1H), 4.2                        | *0.78(3H), 0.82(3H), 1.38(9H), 1.<br>-2.60(8H), 2.00(3H), 3.33(1H), 3.<br>(1H), 4.28(1H), 4.50(1H), 7.10-7.                                                                        | ), 1. 38(91)<br>), 3. 33(11)<br>0(111), 7. 1       | 1), 1. 64<br>1), 3. 95<br>10-7. 36                                       |
|       |               |      |          |       |                           |    | 8.30(1H)                                                   | 8.30(1H), 12.52(1H)                                                                                                                                                                | 7, 0. 10(1                                         | · ( )                                                                    |
| E-21  | Boc-L-Glu-011 |      | L-11e-0H | F-    | C40Hs1N3O8S<br>amorphous  | 7  | *0.70-0.<br>1.38(9H)<br>(2H), 3.3<br>4.54(1H)<br>7.60(6H), | *0.70-0.90(12H), 1.02-1.54(2H),<br>1.38(9H), 1.66-2.10(3H), 2.22-2.42(2H), 3.32(1H), 3.93(1H), 4.11(1H),<br>4.54(1H), 7.11-7.37(10H), 7.48-<br>7.60(6H), 8.00(1H), 8.08(1H), 12.42 | 02-1.54(<br>0(3H), 2.2<br>3(1H), 4.1<br>7(10H), 7. | . 54(2H),<br>, 2. 22-2. 42,<br>, 4. 11(1H),<br>), 7. 48-<br>(1H), 12. 42 |
|       |               |      |          |       |                           |    | (1H)                                                       |                                                                                                                                                                                    |                                                    |                                                                          |

| 55     |               | 50          | <b>45</b> . | 40         | 35              | 30                                                                            | 25 | 20                                                                     | 15                                                                                                                                        | 10                                                                                                                                                                                      | 5                     |
|--------|---------------|-------------|-------------|------------|-----------------|-------------------------------------------------------------------------------|----|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Table  |               | (continued) | _           |            |                 |                                                                               |    | ;                                                                      |                                                                                                                                           |                                                                                                                                                                                         |                       |
| E-22   | Boc-L-Glu-011 | 110-n1      | Q           | NIICIIPh 2 | F-              | C <sub>17</sub> H <sub>51</sub> N <sub>3</sub> O <sub>8</sub> S<br>m.p.125.5- |    | 1. 05(3H),<br>1. 67-2. 38<br>5. 46(1H),<br>7. 00-7. 30                 | 1. 05(3H), 1. 15(3H), 1. 38(9H)<br>1. 67-2. 38(4H), 3. 90(1H), 4. 0<br>5. 46(1H), 6. 13(1H), 6. 84(1H)<br>7. 00-7. 30(21H), 7. 46-7. 58(6 | 1. 05(3H), 1. 15(3H), 1. 38(9H),<br>1. 67-2. 38(4H), 3. 90(1H), 4. 01(1H),<br>5. 46(1H), 6. 13(1H), 6. 84(1H),<br>7. 00-7. 30(21H), 7. 46-7. 58(6H)                                     | (1H),                 |
| E-23   | Boc-L-G       | 110-n15-7   | Ω .         | L-Leu-OH   | . <del>(-</del> | CtoHsiNoOgS<br>amorphous                                                      | 7  | *0.63-0.9<br>1.38(9H),<br>3.88(1H),<br>7.04(1H),<br>(6H), 8.14<br>(1H) | 63-0.92(12H), 1.25<br>8(9H), 2.14-2.56(2<br>8(1H), 4.22(1H), 4.<br>4(1H), 7.15-7.36(9<br>), 8.14(1H), 8.42(1                              | *0.63-0.92(12H), 1.25-2.03(5H),<br>1.38(9H), 2.14-2.56(2H), 3.34(1H),<br>3.88(1H), 4.22(1H), 4.54(1H),<br>7.04(1H), 7.15-7.36(9H), 7.47-7.59<br>(6H), 8.14(1H), 8.42(1H), 12.44<br>(1H) | 1),<br>(1H),<br>-7.59 |
| E - 24 | Boc-L Glu-011 | II 0 - n 1  | Ω           | L-Phe-OH   | 7               | C.3H.sN3OsS<br>amorphous                                                      |    | *0.59(6H), 2.20-2.5 3.37(1H), 7.06-7.37 8.02(1H),                      | 39(9H), 2.<br>3, 94(1H), 7.<br>(15H), 7.<br>8, 37(1H),                                                                                    | *0.59(6H), 1.39(9H), 1.78-2.10(2H), 2.20-2.55(2H), 2.79-3.11(2H), 3.37(1H), 3.94(1H), 4.31-4.51(2H), 7.06-7.37(15H), 7.43-7.56(6H), 8.02(1H), 8.37(1H), 12.60(1H)                       | ),<br>(2H),<br>),     |

| 50                  | 45  | 40        | 35     | 30                        |   | 15<br>20                                                                                                                                                                                        | 10                                                                                             | 5                                                     |
|---------------------|-----|-----------|--------|---------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Table 1 (continued) | ed) |           |        |                           |   |                                                                                                                                                                                                 |                                                                                                |                                                       |
| E-25 Boc-L-Glu-OII  | 0   | L-G1u-011 | Trt    | CasH+7N3O10S<br>amorphous |   | *0.74(3H), 0.80(3H), 1.39(9H),<br>1.62-2.08(4H), 2.12-2.54(4H),<br>3.35(1H), 3.88(1H), 4.24(1H), 4.53<br>(1H), 7.04(1H), 7.11-7.37(9H),<br>7.47-7.60(6H), 8.02(1H), 8.46(1H),<br>12.34(2H)      | 0(3H), 1. 39<br>2. 12-2. 54<br>(1H), 4. 24<br>7. 11-7. 37<br>8. 02(1H),                        | (9H),<br>(4H),<br>1H), 4.53<br>(9H),<br>8.46(1H),     |
| E-26 Boc-L-Glu-Oil  | د.  | L-Ser-OH  | ۲<br>۲ | C37H45N3O9S<br>amorphous  |   | *0.80(3H), 0.85(3H), 1.39(9H),<br>1.62-2.12(2H), 2.22-2.53(2H),<br>3.34(2H), 3.56-3.77(2H),<br>3.93(1H), 4.24(1H), 4.54(1H),<br>7.06-7.35(10H), 7.48-7.61(6H),<br>8.10(1H), 8.19(1H), 12.44(1H) | 5(3II), 1. 39<br>, 2. 22-2. 53<br>-3. 77(2H),<br>(1H), 4. 54(<br>), 7. 48-7. 6<br>(1H), 12. 44 | (9H),<br>(2H),<br>1H),<br>1(6H),<br>(1H)              |
| E-27 Boc-L-Glu-OII  | Q   | L-Pro-OH  | Tr     | C39H+7N3O8S<br>amorphous  | - | *0.85(3H), 0.88(3H), 1.38(9H),<br>1.65-2.46(8H), 3.33(1H), 3.30-3.70<br>(2H), 3.75-3.97(1H), 4.20(1H),<br>4.80(1H), 6.99(1H), 7.14-7.17(9H),<br>7.43-7.55(6H), 8.17(1H), 12.42(1H)              | 3(3H), 1.38<br>3.33(1H),<br>7(1H), 4.20<br>(1H), 7.14-<br>8.17(1H),                            | (9H),<br>3.30-3.70<br>(1H),<br>7.17(9H),<br>12.42(1H) |

| <b>45</b><br><b>50</b> | 45 | 40                                              | 35       | 30                         | 25       | 20                                                                                                                                                                                                                           | 15                                                                                   | 10                                                                                                                                                                                                                    |
|------------------------|----|-------------------------------------------------|----------|----------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (continued)            |    |                                                 |          |                            |          |                                                                                                                                                                                                                              |                                                                                      |                                                                                                                                                                                                                       |
| Boc-L-Glu ()[[         |    | ÇII2 COOH<br>Tyr-OII                            | ٦ .<br>ب | C+5H51N3O11S<br>amorphous  | <i>-</i> | *0.75(3H), 0.81(3H), 1.39(9H),<br>1.60-2.14(2H), 2.21-2.46(2H),<br>2.75-3.02(2H), 3.35(1H), 3.98(<br>4.37(1H), 4.48(1H), 4.60(2H), 6(2H), 7.04-7.38(12H), 7.50-7.6<br>(6H), 8.03(1H), 8.27(1H), 12.67                        | ). 81(3H),<br>!H), 2. 21-<br>!H), 3. 35(<br>48(1H), 4<br>7. 38(12H)<br>!H), 8. 27(   | *0.75(3H), 0.81(3H), 1.39(9H),<br>1.60-2.14(2H), 2.21-2.46(2H),<br>2.75-3.02(2H), 3.35(1H), 3.98(1H),<br>4.37(1H), 4.48(1H), 4.60(2H), 6.75<br>(2H), 7.04-7.38(12H), 7.50-7.62<br>(6H), 8.03(1H), 8.27(1H), 12.67(2H) |
| Boc - L - G I u - O II |    | SO <sub>3</sub> ·Bu <sub>4</sub> N<br>DL-Phe-OH | N<br>Trt | CssHs+N+O11Sz<br>amorphous | 7        | *0.76(3H), 0.82(3H), 0.94(12H),<br>1.20-1.42(8H), 1.38(9H), 1.47-1<br>(8H), 1.72-2.15(2H), 2.20-2.41(<br>,2.80-3.30(11H), 3.94(1H), 4.41<br>(1H), 4.49(1H), 7.07-7.38(11H),<br>7.43-7.66(9H), 8.04(1H), 8.28(1<br>12.45(1H), | 3. 82(3H),<br>3H), 1. 38(<br>2. 15(2H),<br>(11H), 3. 9<br>1H), 7. 07-<br>3H), 8. 04( | *0,76(3H),0.82(3H),0.94(12H), 1,20-1,42(8H),1.38(9H),1.47-1.68 (8H),1.72-2.15(2H),2.20-2.41(2H), 2.80-3.30(11H),3.94(1H),4.41 (1H),4.49(1H),7.07-7.38(11H), 7.43-7.66(9H),8.04(1H),8.28(1H), 12.45(1H),               |
| Boc-L-Asp-OH           | L  | Gly-0H                                          | ↑r t     | CasH41N3OsS<br>amorphous   | <u>-</u> | 1. 12(3H), 1. 15(3H), 1. 28(9H),<br>2. 62-3. 05(2H), 3. 72-4. 32(3H),<br>4. 51(1H), 5. 93(1H), 6. 38-7. 39<br>(11H), 7. 53-7. 64(6H), 9. 63(2H)                                                                              | 15(3H), 1<br>2H), 3. 72-<br>93(1H), 6<br>-7. 64(6H)                                  | . 28(9H),<br>4. 32(3H),<br>. 38-7. 39                                                                                                                                                                                 |

|            |                |                                                              |                                  |                                    |                             | - i                          |                            |                                   |                 | r                                  |                | Ţ                                                | ~~                                      |                | _                            |                                   | _              |   |
|------------|----------------|--------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------------|-----------------|------------------------------------|----------------|--------------------------------------------------|-----------------------------------------|----------------|------------------------------|-----------------------------------|----------------|---|
| 5          |                | E),                                                          | ,                                | 47-7.5                             |                             |                              |                            | 53-7.61                           |                 | ?H),                               |                | 2.22                                             | 1), 4. 48                               |                | 2.22                         | <u>`</u>                          |                |   |
| 10         |                | *0.85(3H), 0.89(3H), 1.38(9H), 1.62-2.11(2H), 2.23-2.38(2H), | 3. 40(IH), 3. 91(1H), 4. 11(1H), | 7.03(1H), 7.14-7.36(9H), 7.47-7.57 | . 52(1H)                    | 1.04(3H), 1.06(3H), 1.43(9H) | 74(1H), 4.00(2H), 5.63(1H) | 65(1H), 7. 10-7. 35(9H), 7. 53-7. |                 | **1. 42(3H), 1. 49(3H), 3. 98(2H), | V.             | 1                                                | (2H), 2. 45-2. 59(2H), 3. 93(1H), 4. 43 |                | **1.37(3H), 1.42(3H), 2.08-2 | (2H), 2. 49-2. 60(2H), 3. 97(1H), |                |   |
| 15         |                | H), 0.89(3                                                   | ), 3. 91(1H                      | ), 7. 14-7.                        | (6H), 8. 03(1H), 12. 52(1H) | ), 1.06(3H                   | ), 4.00(2H                 | ), 7. 10-7.                       | 33(1H)          | 3H), 1. 49(                        |                | **1. 38(3H), 1. 43(3H), 2. 01                    | 15-2.59(2                               |                | (H), 1. 42(                  | 9-2.60(2)                         |                |   |
| 20         |                | *0.85(3)                                                     | 3.40(IH)                         | 7.03(1H)                           | (6H), 8.                    | 1.04(3H)                     | 3.74(1H)                   | 6.65(1H)                          | (6H), 8. 63(1H) | **1.42(                            | 3.99(1H)       | **1.38(3                                         | (2H), 2. 4                              | (1H)           | **1.37(3                     | (2H), 2. 4                        | 4. 41(1H)      |   |
| 0.5        |                | 7                                                            |                                  |                                    |                             | 7                            |                            |                                   |                 | —<br>∞                             |                | <del>                                     </del> | ∞                                       |                |                              | ∞                                 |                | - |
| 25         |                |                                                              |                                  |                                    |                             | 2                            |                            |                                   | -               | 20                                 | · · ·          |                                                  | ICQ                                     |                |                              | CQ                                | ·              |   |
| 30         | i              | . C3+H+0N2O7S                                                | amorphous                        |                                    |                             | C31H36N2O5S2                 | amorphous                  |                                   |                 | C7H1+N2O3S·HCQ                     | 49-54C decomp. |                                                  | C, OH, BN2O5S·HCQ                       | 84-89° decomp. |                              | C.oH.BN2O5S.HCQ                   | 89-93T decomp. |   |
| 35         |                | Trt                                                          |                                  |                                    |                             | Trt                          |                            |                                   |                 | H                                  |                |                                                  | =                                       |                |                              | ==                                |                |   |
| 40         |                | НО                                                           | ,                                | -                                  |                             | Gly-0H                       |                            |                                   |                 | G1y-0H                             |                |                                                  | HO                                      |                |                              | НО                                |                |   |
| <b>4</b> 5 | d)             |                                                              |                                  |                                    |                             |                              |                            |                                   |                 | <u>a</u>                           |                |                                                  | <u>a</u>                                |                |                              | Q                                 |                |   |
| 50<br>55   | e 1 (continued | Boc-L-G1u-011                                                |                                  | ,                                  |                             | Вос                          |                            |                                   |                 | ==                                 |                | <u> </u>                                         | II-L-GIu-0II                            |                |                              | II-D-G I n-0 II                   |                |   |
| 55         | Table          | E-31                                                         |                                  |                                    |                             | E-32                         |                            |                                   |                 | -                                  |                |                                                  | F-2                                     |                |                              | F-3                               |                |   |

|      | ſ              |                                   |                      | Т                                |                                      |                 |                             |                                  |          | 1       |                              |                                  |                    | T       |                                 |                                      |                 |                                     |                                       |                  |
|------|----------------|-----------------------------------|----------------------|----------------------------------|--------------------------------------|-----------------|-----------------------------|----------------------------------|----------|---------|------------------------------|----------------------------------|--------------------|---------|---------------------------------|--------------------------------------|-----------------|-------------------------------------|---------------------------------------|------------------|
| 5    |                | 3H),                              |                      | 2.21                             | H), 3.97                             |                 | 2.23                        | н),                              |          |         | -2.21                        | Н),                              |                    |         | .2.27                           | H), 4.18                             |                 | .3.17                               | 39(1H)                                |                  |
| 10 , |                | ), 2.01(                          |                      | ), 2.06-                         | , 3.93(2                             |                 | ), 2.03-                    | , 3.94(3                         |          |         | 1), 2.07-                    | , 3, 93(2                        |                    |         | (), 2.04-                       | , 3, 94(2                            |                 | (), 2.89-                           | (1H), 4.                              |                  |
| 15   |                | 1.42(3H                           | 37(1H)               | 1.41(3H                          | 2.69(2H)                             | (H)             | 1.42(3H                     | 2. 60(2H)                        |          |         | I. 41 (3H                    | 2. 67 (2H)                       | 38(1H)             |         | 1. 42(3H                        | 2.54(2H)                             | (H)             | 1.40(3H                             | 2H), 4.26                             |                  |
| 20   |                | **1. 35(3H), 1. 42(3H), 2. 01(3H) | 3. 94(2H), 4. 37(1H) | **1. 35(3H), 1. 41(3H), 2. 06-2. | (2H), 2. 41-2. 69(2H), 3. 93(2H), 3. | (1H), 4. 38(1H) | **1.37(3H), 1.42(3H), 2.03- | (2H), 2, 43-2, 60(2H), 3, 94(3H) | 4.41(1H) | ,       | **I. 35(3H), I. 41(3H), 2.07 | (2H), 2. 41-2. 67(2H), 3. 93(2H) | 3.96(1H), 4.38(1H) |         | **1.37(3H), 1.42(3H), 2.04-2.27 | (2H), 2. 40-2. 54(2H), 3. 94(2H), 4. | (1H), 4. 47(1H) | **1. 35(3H), 1. 40(3H), 2. 89-3. 17 | (2H), 3. 92(2H), 4. 26(1H), 4. 39(1H) |                  |
|      | ,              |                                   |                      |                                  | ~                                    |                 |                             | ∞                                |          |         |                              | ∞                                |                    |         |                                 | ∞                                    |                 |                                     | ∞                                     |                  |
| 25   |                |                                   | •                    | -                                |                                      | ď.              | -                           | 8                                |          | •       |                              | 8                                |                    |         |                                 |                                      | ရွှဲ            |                                     |                                       | ď                |
| 30   |                | CoHIBN2O+S                        | 65-72° decomp.       |                                  | C. 2 H 2 , N 3 O 8 S • H C Ø         | 121-125C decomp |                             | C.2H21N3O8S-HCQ                  | 113-1170 | decomb. |                              | C, 2H2, N3OBS·HCQ                | 127-131°C          | decomb. |                                 | C12H21N3O8S.HCQ                      | 129-135Cdecomp  |                                     | C11H19N3O8S-HCQ                       | 130-134 Cdecomp. |
| 35   |                | ×                                 |                      |                                  | Ħ                                    |                 |                             | H                                |          |         |                              | Ħ                                |                    |         |                                 | Ħ                                    |                 |                                     | Ħ                                     |                  |
| 40   |                | Gly-0H                            |                      |                                  | Gly-0H                               |                 |                             | Gly-0H                           |          |         |                              | Gly-0H                           |                    |         |                                 | Gly-0H                               |                 |                                     | Gly-0H                                |                  |
| 45   | (F             |                                   |                      |                                  |                                      |                 |                             | ۵                                |          |         |                              |                                  |                    |         |                                 | ب                                    |                 |                                     | Ω                                     |                  |
| 50   | e 1 (continued | Λc                                |                      |                                  | II-L-G u-011                         |                 |                             | H-L-G 1 u-011                    |          |         |                              | H-D-G1u-011                      |                    |         |                                 | H-L-Glu-                             |                 | <u></u>                             | H-L-Asp-011                           |                  |
| 55   | Table          | j. – G                            |                      |                                  | F-5                                  |                 |                             | F - 6                            |          |         |                              | T-                               |                    |         |                                 | F-8                                  |                 |                                     | g - 4                                 |                  |

|         | 55         | 50         | 45            | 40            | 35 | 25<br>30                                                                                      | 20                                                                   | 15                                                                                                                             | 10                                            | 5                               |
|---------|------------|------------|---------------|---------------|----|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------|
| Table   |            | (continued |               | •             |    |                                                                                               |                                                                      |                                                                                                                                |                                               |                                 |
| F - 1 0 | H-L-Glu-01 | 110-       |               | L-Ala-OH      | =  | C <sub>13</sub> H <sub>2</sub> +N <sub>3</sub> O <sub>6</sub> S·HCQ 8<br>125-128°C decomp.    |                                                                      | **1.35(6H), 1.40(3H), 2.0<br>(2H), 2.40-2.66(2H), 3.97<br>(1H), 4.37(1H)                                                       | ), 2. 06-2. 21<br>, 3. 97(1H), 4.             | 21, 4. 28                       |
| - C     |            | 110-       | _ <u>`</u>    | ,<br>L-Val-OH | Ж  | C.sH2,N3O6S.HCQ 8<br>128-133C<br>decomp.                                                      |                                                                      | **0.87(3H), 0.90(3H), 1.36(3H), 1.40<br>(3H), 1.98-2.30(3H), 2.38-2.70(2H),<br>3.98(1H), 4.13-4.23(1H), 4.46(1H)               | ), 1.36(3H), 2.38-2.7<br>(1H), 4.46           | ), 1.40<br>0(2H),<br>(1H)       |
| F-12    | H-L-Glu-OH | Н0-        | ۵             | L-Val-OH      | Н  | C15H27N3O6S-HCQ 8<br>119-124T<br>decomp.                                                      | **0.89(3H),<br>(3H), 1.96-2<br>3.95(1H), 4.                          | **0.89(3H), 0.92(3H), 1.34(3H), 1. (3H), 1. (3H), 1.96-2.31(3H), 2.42-2.61(2H), 3.95(1H), 4.07-4.20(1H), 4.92(1H)              | ), 1. 34(3H)<br>, 2. 42-2. 61<br>(1H), 4. 92( | 3H), 1.39<br>.61(2H),<br>92(1H) |
| F-13    | H0-n15-7-H | НО-        | <del>ان</del> | L-Leu-OH      | Н  | C <sub>18</sub> H <sub>29</sub> N <sub>3</sub> O <sub>6</sub> S·HC2 8<br>114-119°C<br>decomp. | **0.78(3H), 0.<br>1.40(3H), 1.53<br>(2H), 2.46-2.5<br>(1H), 4.38(1H) | **0.78(3H), 0.84(3H), 1.35(3H),<br>1.40(3H), 1.53-1.72(3H), 2.03-2.17<br>(2H), 2.46-2.58(2H), 3.92(1H), 4.34<br>(1H), 4.38(1H) | ), 1. 35(3H<br>(3H), 2. 03<br>, 3. 92(1H)     | 3H),<br>03-2.17<br>H), 4.34     |
| F - 1 4 | H-L-Glu-OH | . НО-      |               | L-Pro-OH      | Œ  | C <sub>15</sub> H <sub>25</sub> N <sub>3</sub> O <sub>6</sub> S·HC@8<br>148-152°<br>decomp.   | **1.39(3H), 1.<br>(8H), 3.80(2H)<br>4.60-4.80(1H)                    | 39(3H), 1. 41(3H), 1. 86-2., 3. 80(2H), 3. 97(1H), 4. 35-4. 80(1H)                                                             | ), 1.86-2.<br>(1H), 4.35                      | 2.67<br>35(1H)                  |

|               | 55               | 50          | 45 | 40                  | 35 | 30               |          | 10                                      |      |
|---------------|------------------|-------------|----|---------------------|----|------------------|----------|-----------------------------------------|------|
| lable         | <del>-</del> 1   | (continued) |    |                     |    |                  |          |                                         |      |
|               |                  |             |    |                     |    |                  | <u> </u> | **1. 24(3H), 1. 26(3H), 1. 96-2. 24     |      |
| F-15          | H0-110-7-K       | H0-         | ب  | L-Phe-OH            | Ħ  | C19H27N3O8S+HCQ  | ∞        | (2H), 2. 28-2. 58(2H), 2. 82-3. 29(2H), | 2H), |
| :<br>:        |                  |             |    |                     | _  | 119-125°C        |          | 3.97(1H), 4.30(1H), 4.69(1H),           | -    |
|               | •                |             |    |                     |    | decomb.          |          | 7.13-7.32(5H)                           |      |
|               |                  |             |    |                     |    |                  | -        | **1. 24(3H), 1. 26(3H), 1. 98-2. 24     |      |
| F-16          | H-L-G1u-OH       | , HO-       | د  | L-Tyr-OH            | =  | C19H27N3O7S.HCQ  | ∞        | (2H), 2. 29-2. 61(2H), 2. 74-3. 26(2H), | 2H), |
|               |                  |             |    |                     |    | 133-1390         |          | 3.94(1H), 4.30(1H), 4.69(1H), 6.72      | 7.2  |
|               |                  |             | -  |                     |    | decomp.          |          | (2H), 7.05(2H)                          |      |
|               |                  |             |    |                     |    |                  | *        | **1. 38(3H), 1. 42(3H), 1. 83-2. 30(4H) |      |
| F-17          | -    -    -    - | 110-        |    | L-G1u-OH            | =  | C, sH25N3O+S.HCQ | ∞        | 2. 39-2. 65(4H), 3. 95(1H), 4. 40(1H),  | H),  |
|               |                  |             |    |                     |    | 140-150°C        |          | 4.42(1H)                                |      |
|               |                  |             |    |                     |    | decomb.          |          |                                         |      |
|               |                  |             |    |                     |    |                  |          | *1. 29(3H), 1. 33(3H), 1. 85-2. 67(2H), | 2H), |
| 7<br>- 1<br>⊗ | H-[,-G]u-0H      | 110-        |    | NHCHPh <sub>2</sub> | Ħ  | C23H29N3O+S-HCQ  | ∞        | 3.40(1H), 3.86(1H), 4.70(1H), 6.12      | 1.2  |
|               |                  |             |    |                     |    | 140-147C         |          | (1H), 7. 12-7. 43(10H), 8. 20(1H),      |      |
|               |                  |             |    |                     |    | десошр.          |          | 8.50(1H), 9.13(1H)                      |      |
|               |                  |             |    |                     |    |                  |          | **1.39(3H), 1.44(3H), 2.10-2.23         |      |
| F-19          | -L-Glu-0         | 110-        | ب  | L-Asp-OH            | H  | C1+H22N3O8S-HC2  | ∞        | (2H), 2. 51-2. 62(2H), 2. 94(2H), 3. 97 | . 97 |
|               |                  |             |    |                     |    | 128-133C         |          | (1H), 4. 41(1H)                         |      |
|               |                  |             |    |                     |    | decomb.          |          |                                         |      |

| 55     | <b>45</b><br>50 | 45 | 40       | 35 | 25<br>30                                   | 15                                                                                                                                                                  | 5                                                 |
|--------|-----------------|----|----------|----|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Table  | 1 (continued    |    |          |    |                                            |                                                                                                                                                                     |                                                   |
| F-20   | II-1,-G1u-0II   |    | L-Met-OH | ×  | C.sHz8N3O8S2. 8<br>HC2<br>115-119°Cdecomp. | <br>**1.39(3H), 1.44(3H), 1.93-2.28<br>(4H), 2.04(3H), 2.41-2.70(4H), 4.00<br>(1H), 4.40(1H), 4.54(1H)                                                              | 33-2.28<br>(4H), 4.00                             |
| F-21   | H-L-Glu-OH      | د. | L-11e-0H | m: | CieH29N3OeS.HC@ 8<br>121-126U<br>decomp.   | **0.83(3H), 0.89(3H), 1.05-1.56<br>(2H), 1.38(3H), 1.42(3H), 1.76-1.96<br>(1H), 2.06-2.30(2H), 2.43-2.72(2H),<br>4.01(1H), 4.25(1H), 4.47(1H)                       | 1.76-1.96<br>1.76-1.96<br>3-2.72(2H),             |
| F - 22 | H-L-Glu-OH      | ۵  | NHCHPh 2 | H  | C23H29N3O4S.HC@ 8<br>120-125t<br>decomp.   | <br>*1.30(3H), 1.35(3H), 1.96-2.15<br>(2H), 2.36-2.57(2H), 2.80(1H), 3.55<br>(2H), 3.85(1H), 4.72(1H), 6.14(1H),<br>7.12-7.48(10H), 8.19(1H), 8.49(2H),<br>9.12(1H) | 5-2.15<br>1(1H), 3.55<br>6.14(1H),<br>, 8.49(2H), |
| F-23 H | II-L-G1u-011    | Ω  | L-Leu-OH | æ  | C.eHzsNsOeS.HC@8<br>125-129°C<br>decomp.   | <br>**0.70-0.79(6H), 1.36(3H), 1.41 (3H), 1.50-1.82(3H), 2.06-2.31(2H), 2.42-2.68(2H), 4.01(1H), 4.33(1H), 4.43(1H)                                                 | (), 1. 41<br>i-2. 31(2H),<br>4. 33(1H),           |

| 50       | (cont       | II-L-G1u-0II                                                                                                                                   | 7<br>11-L-Glu-01                                                                                                                                             | H-L-Glu-OH                                                                                                                                              | H-L-Glu-OH                                                                                                                                               |
|----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45       | (continued) |                                                                                                                                                |                                                                                                                                                              |                                                                                                                                                         | П                                                                                                                                                        |
|          |             | D - D                                                                                                                                          | D-77                                                                                                                                                         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                   |                                                                                                                                                          |
| 40       |             | L-Phe-011                                                                                                                                      | L-Glu-0H                                                                                                                                                     | L-Ser-OH                                                                                                                                                | L-Pro-OH                                                                                                                                                 |
| 35       |             | Ħ                                                                                                                                              | æ                                                                                                                                                            | H                                                                                                                                                       | H                                                                                                                                                        |
| 25<br>30 |             | C. 9 H 2 7 N 3 O 6 S · HCQ<br>126-129°C<br>decomp.                                                                                             | C.sH25N3O4S.HCQ<br>120-123C<br>decomp.                                                                                                                       | C13H23N3O7S-HCQ 8                                                                                                                                       | C <sub>15</sub> H <sub>25</sub> N <sub>3</sub> O <sub>8</sub> S·HC@ 8<br>137-142°<br>decomp.                                                             |
|          |             | ∞                                                                                                                                              | ∞                                                                                                                                                            | ∞                                                                                                                                                       | ∞                                                                                                                                                        |
| 15<br>20 |             | *1. 13(3H), 1. 18(3H),<br>2. 41-2. 66(2H), 2. 53(H),<br>(2H), 3. 60(1H), 3. 86(H),<br>4. 51(1H), 7. 11-7, 40(H),<br>8. 20-8. 80(3H), 12. 50(H) | *1.33(3H), 1.37(3H), 1.65-2.13(4H) 2.26-2.39(2H), 2.40-2.57(2H), 2.79 (1H), 3.46(3H), 3.88(1H), 4.23(1H), 4.61(1H), 8.14(1H), 8.41(2H), 8.48 (1H), 12.10(1H) | *1. 40(6H), 1. 88-2. 20(2H), 2. 26-2. 6 (2H), 2. 79(1H), 3. 40(2H), 3. 58(3H), 3. 86(1H), 4. 25(1H), 4. 65(1H), 8. 11 (1H), 8. 20-8. 44(3H), 12. 65(1H) | *1. 33(3H), 1. 38(3H), 1. 76-2. 24(6H), 2. 30-2. 60(2H), 2. 93(1H), 3. 50(2H), 3. 60-3. 95(3H), 4. 21-4. 30(1H), 4. 92 (1H), 8. 22-8. 62(3H), 12. 50(1H) |
| 10       |             |                                                                                                                                                | (3H), 1<br>2. 40-2.<br>3. 88(1H<br>1H), 8. 4                                                                                                                 | -2. 20(2H) 3. 40(2H) 1H), 4. 65 (3H), 12.                                                                                                               | H), 1. 38(3H), 1. 76-2. 24(6<br>60(2H), 2. 93(1H), 3. 50(2H<br>95(3H), 4. 21-4. 30(1H), 4.<br>22-8. 62(3H), 12. 50(1H)                                   |
| 5        |             | 10-2.13(2H),<br>1, 2.41-2.58<br>1, 3.45(1H),<br>1, 8.12(1H),<br>1)                                                                             | 3H), 1. 37(3H), 1. 65-2. 13(4H), 3. 39(2H), 2. 40-2. 57(2H), 2. 79. 46(3H), 3. 88(1H), 4. 23(1H), H), 8. 14(1H), 8. 41(2H), 8. 48. 2. 10(1H)                 | ), 2. 26-2. 64<br>, 3. 58(3H),<br>(1H), 8. 11<br>65(1H)                                                                                                 | 6-2.24(6H),<br>,3.50(2H),<br>0(1H),4.92<br>50(1H)                                                                                                        |

| 55     | 50           | 45       | 40                | 35  | 30                                           |   | 15                                                                                                                                                                                           | 5                                        |
|--------|--------------|----------|-------------------|-----|----------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Table  | 1 (continued | d)       |                   |     |                                              |   |                                                                                                                                                                                              |                                          |
| F - 28 |              | <u> </u> | - CH2COOH         | H   | C2.1H29N3O9S.HCQ<br>120-124T<br>decomp.      | ∞ | **1. 26(6H), 2. 01-2. 19(2H), 2. 2. 62(2H), 2. 80-2. 96(1H), 3. 12(1H), 3. 97(1H), 4. 32(1H), 4. 66 6. 85(2H), 7. 15(2H)                                                                     | 2.34-<br>12-3.25<br>66(3II),             |
| F-29   | Н-L-Glu-ОН   |          | SO3H<br>DL-Phe-OH | æ   | C19H27N3O9S2.<br>HC2<br>216-220°C<br>decomp. | ∞ | *1. 32(6H), 1. 86-2. 03(2H), 2. 24-2. 44<br>(2H), 2. 63(1H), 3. 05-3. 22(2H), 3. 78<br>(4H), 3. 96(1H), 4. 46-4. 61(2H), 7. 15<br>-7. 28(2H), 7. 42-7. 61(2H), 7. 86(1H),<br>8. 26-8. 58(3H) | 24-2.40<br>), 3.78<br>), 7.15<br>86(1H), |
| F-30   | H-L-Asp-OH   | ے        | G1y-0H            | m . | C.3H.sN3OsS.HC@<br>146-149C<br>decomp.       | ∞ | **1.39(3H), 1.45(3H), 2.94-3.21<br>(2H), 3.98(2H), 4.26(1H), 4.45(1H)                                                                                                                        | . 21<br>5(1H)                            |
| F-31   | II-L-Glu-OII |          | НО                | Ħ   | C.o.H.sN2OsS.HCQ<br>52- 55°<br>decomp.       | ∞ | **1.38(3H), 1.44(3H), 2.10-2.24<br>(2H), 2.53-2.62(2H), 4.01(1H), 4.43<br>(1H)                                                                                                               | . 24                                     |

|  |  | ν. |
|--|--|----|
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |

| **1.46(3H), 1.54(3H), 4                                                  | as respective                                    |
|--------------------------------------------------------------------------|--------------------------------------------------|
| ∞                                                                        |                                                  |
| H <sub>1+</sub> N <sub>2</sub> O <sub>3</sub> S·HCQ<br>.5-59°<br>decomp. | re isolated                                      |
| C, 57                                                                    | 3                                                |
| ж                                                                        | 32                                               |
| Gly-0H                                                                   | F-1 to F-3 and F-32 were                         |
| _3                                                                       | +<br>C                                           |
|                                                                          | ; <u>[*</u>                                      |
| Н                                                                        | Compounds                                        |
| F-32                                                                     |                                                  |
|                                                                          | -32 II L G1y-OH H C <sub>7</sub> H <sub>1+</sub> |

Table 1 (continued)

s 8 to F-3 and F-32 were isolated Compounds F-1 hydrochlorides.

measured in DMSO-d<sub>6</sub>

 $\ast\ast,$  measured in  $\text{D}_2\text{O}$ 

Working Example 1 (Synthesis of the Compound 8)

To the solution of (N-γ-L-glutamyl-D-penicillamyl)glycine hydrochloride (F-5) (0.3 g) in 1N-hydrochloric acid (0.81 ml) and methanol (1.6 ml), was added dropwise at room temperature the solution of sodium nitrite (0.11 g) in water (0.5 ml). After stirring at room temperature for 30 minutes, methanol was evaporated off under reduced pressure, and the solid precipitated by addition of acetone to the residue which was washed with acetone, to give (N-γ-L-glutamyl-S-nitroso-D-penicillamyl)glycine (0.19 g).

Working Example 2 (Synthesis of the Compound 7)

To the solution of (N- $\gamma$ -L-glutamyl-D-penicillamyl)glycine hydrochloride (0.5 g) in methanol (5 ml), was added at 0°C the solution of ethyl nitrite in ethanol (10%) (1.1 ml). At the same temperature a drop of 4N-hydrochloric acid-methanol solution was added, and the mixture was stirred for 30 minutes. The solvent was evaporated off under reduced pressure, and the resultant crystals were washed with diethyl ether, to give (N- $\gamma$ -L-glutamyl-S-nitroso-L-penicillamyl)glycine hydrochloride (0.5 g).

In the same way, the Compounds 1 to 6, 9 to 11, and 13 to 34 listed in Table 2 shown below were synthesized.

Working Example 3 (Synthesis of the Compound 12)

To the solution of (N- $\beta$ -L-aspartyl-D-penicillamyl)glycine hydrochloride (0.2 g) in 1N-hydrochloric acid (0.56 ml) and water (1.0 ml), was added dropwise at room temperature the solution of sodium nitrite (0.077 g) in water (0.5 ml). The reaction mixture was stirred at room temperature for 30 minutes, loaded onto an LH-20 column, and eluted with water. The fractions containing the desired product were freeze-dried, to give (N- $\beta$ -L-asparagyl-S-nitroso-D-penicillamyl)glycine (0.2 g).

Table 2 shows the structure, physical properties, and NMR data of the Compounds 1 to 34 obtained in the Working Examples.

30

25

5

35

40

45

50

|     | 55       |             | 50                          | 45       | AF.                      | 40            | 35                                                | 30                 | 25                                    | 20                                                                                   | 15                      | 10                                                                                       | 5                       |
|-----|----------|-------------|-----------------------------|----------|--------------------------|---------------|---------------------------------------------------|--------------------|---------------------------------------|--------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------|-------------------------|
| C C | Table    | Ø<br>7      |                             | ×        | N.O<br>N.O<br>N.O<br>N.O | >-            |                                                   |                    |                                       |                                                                                      |                         |                                                                                          |                         |
| Col | Compound | ınd         | Configuration<br>X of Pen Y | igurat:  | ition<br>en Y            | I<br>HA<br>Ph | Molecular<br>formula<br>Physical<br>properties Ex | Related<br>Ex. No. | NMR ( $\delta$ ,                      | spectra<br>ppm)in D20                                                                | I R (KI                 | IR(KBr)(cm <sup>-1</sup> )                                                               | -1)                     |
|     | T        | ж           |                             | <u> </u> | G1y-OH                   |               | C,H,3N3O,S.HCQ<br>44-48Tdecomp.                   | 2                  | 1.93(3H), 2.11<br>(2H), 4.81(1H)      | 1. 93(3H), 2. 11(3H), 4. 02<br>(2H), 4. 81(1H)                                       |                         | 3800-2350, 1735, 1681,<br>1550-1510, 1400, 1380,<br>1320, 1215, 1130, 1040,<br>1015, 660 | 1681,<br>1380,<br>1040, |
| I   | 2        | H-L-Glu-OH  | Л и – ОН                    | Q        | 0 н                      | ت             | C.oH.7N3OsS.HC@<br>amorphous                      | 2                  | 1.91(3H),<br>-2.24(2H)<br>(2H), 3.92  | 1. 91(3H), 1. 94(3H), 1. 96<br>-2. 24(2H), 2. 34-2. 61<br>(2H), 3. 92(1H), 5. 19(1H) | 3700-<br>1515,<br>1126, | 3700-2200, 1733, 1655,<br>1515, 1395, 1375, 1220,<br>1126, 990, 663                      | 1655,                   |
|     | က        | H-D-C1n-OII | 10-n1                       | <u> </u> | ОН                       | C1<br>63      | C.oH.7NgOsS.HC@<br>68-73°Cdecomp.                 | . 2                | 1.91(3H),<br>-2.16(2H),<br>(2H), 3.94 | 1. 91(3H), 1. 94(3H), 2. 02<br>-2. 16(2H), 2. 40-2. 53<br>(2H), 3. 94(1H), 5. 17(1H) | 3800-<br>1515,<br>1128, | 2200, 1735, 1650,<br>1395, 1375, 1220,<br>990, 665                                       | 1650,                   |

|     | 50<br>55        |          | 45     | 40        | 35               | 30 | 20<br>25                   | 15    | 10                    | 5              |
|-----|-----------------|----------|--------|-----------|------------------|----|----------------------------|-------|-----------------------|----------------|
| abl | le 2 (continued | nued     | (      |           |                  |    |                            |       |                       |                |
|     |                 |          |        | CaHisNa   | N30sS            |    | 1.89(3H), 1.92(3H), 1.     | 1.97  | 3700-2250             | 0, 1740, 1655, |
| 4   | Ac              | ٦        | Gly-0H | amo       | amorphous        | 2  | (3H), 3.87-3.98(2H),       |       | 1520, 1375            | 5, 1215, 1135, |
|     |                 |          |        |           |                  |    | 5.16(1H)                   |       | 1035, 665             |                |
|     |                 |          |        | -         |                  |    |                            |       |                       |                |
|     |                 |          |        | C12H2     | C12H20N+07S.HCQ  |    | 1.88(3H), 1.98(3H), 1.     | 1.90  | 3800-2150,            | , 1738, 1650,  |
| ιΩ  | H-L-Glu-011     |          | Gly-0H | 84-89     | -89°decomp.      | 2  | -2.22(2H), 2.30-2.è        | , 29  | 1525, 1415            | 5, 1392, 1371, |
|     |                 |          |        |           |                  |    | (2H), 3.81-3.99(3H),       |       | 1215, 1130            | 0, 1035, 665   |
|     |                 |          |        |           |                  |    | 5.21(1H)                   |       |                       |                |
|     |                 |          |        | C12H20N+  | 0 N + O + S      |    | 1.90(3H), 1.99(3H),        | 1.90  | 3700-2400,            | , 1640, 1520,  |
| 9   | H-L-Glu-OH      | <u>a</u> | G1y-0H | amo       | amorphous        |    | -2.13(2H), 2.26-2.6        | 5.5   | 1392, 1232            |                |
|     | •               |          |        |           |                  |    | (2H), 3. 67(1H), 3. 77(2H) | 7(2H) | $UV(H_2O): \lambda m$ | max=           |
|     |                 |          |        |           |                  |    | 5.21(1H)                   |       |                       | 340.0nm        |
|     |                 |          |        | C12H2     | C, 2H20N+O7S·HC@ |    | 1.89(3H), 1.98(3H),        | 1.90  | 3800-2200             | 0, 1738, 1650, |
| 1   | H-L-Glu-OH      | Ω        | G1y-0H | 108-113°C | 131              | 2  | -2.16(2H), 2.40-2.5        | 56    | 1525, 1415,           | , 1395, 1371,  |
| - 3 | -               |          |        | -         | decomp.          |    | (2H), 3. 91(1H), 3. 93(2H) | 3(2H) | 1220, 1132,           | ,1034, 665     |
|     |                 |          |        |           |                  |    | 5.20(1H)                   |       |                       |                |
|     |                 |          |        |           |                  |    |                            |       |                       |                |

|          | 50                |             | 45            | 40          | 35                        | 30 | 20                         | 15      | 10                          | 5           |
|----------|-------------------|-------------|---------------|-------------|---------------------------|----|----------------------------|---------|-----------------------------|-------------|
| Table    | ole 2 (continued) | inue        | (a)           |             |                           |    |                            |         |                             |             |
|          | l                 |             |               | CIZHZON     | C, 2 H 2 0 N + O, S - HCQ |    | 1. 90(3H), 1. 99(3H), 1.   | ), 1.90 | 3800-2200, 165              | 1650, 1520, |
| $\infty$ | H-D-Glu-OH        |             | G1y-0H        | 100-1050    | 2.5                       | 2  | -2.17(2H), 2.36-2.60       | . 60    | 1395, 1313, 1235,           | 1235, 1130, |
|          |                   |             |               | де          | decomp.                   |    | (2H), 3. 91(1H), 3. 94(2H) | 94(2H)  | 665                         |             |
|          |                   |             |               |             |                           |    | 5.21(1H)                   |         |                             |             |
|          |                   |             |               | CizHzol     | C12H20N107S-HC2           |    | 1.91(3H), 2.01(3H), 2.00   | ), 2.00 | 3700-2300, 1720, 1660,      | 1720, 1660, |
| တ        | H-L-Glu-          | ب.          | G1y-0H        | 98-1050     |                           | 2  | -2.24(2H), 2.30-2.60       | . 60    | 1540, 1500, 1410, 1210,     | 1410, 1210, |
|          |                   | <del></del> | <del></del> - | дe          | decomp.                   |    | (2H), 3. 95(2H), 4. 09(1H) | (11)60  | 665                         |             |
|          |                   |             |               |             |                           |    | 5.27(1H)                   |         |                             |             |
|          |                   |             |               | C11H18N3O6S | 130eS                     |    | 1. 93(3H), 2. 01(3H), 2.   | ), 2.69 | 3700-2300,                  | 1738, 1658, |
| 10       | H-L-Asp-OH        | <u> </u>    | G1y-OH        | amorphous   | snouc                     | က  | -3.06(2H), 3.92-4.02       | . 02    | 1526, 1385, 1218            | 1218        |
|          |                   |             |               |             |                           |    | (3H), 5.24(1H)             |         | UV(H <sub>2</sub> O): Amax= | a X =       |
|          |                   |             |               |             |                           |    |                            |         | •                           | 336.8nm     |
|          |                   |             |               | CIIHIBA     | C H. & N3O6S·HCQ          |    | 1,87(3H), 1,96(3H), 2.     | ), 2.80 | 3700-2200,                  | 1736, 1653, |
| =        | H-L-Asp-OH        |             | G1y-0H        | 95-100%     |                           | 2  | -3.09(2H), 3.80-4.04       | . 04    | 1535, 1210,                 | 665         |
|          |                   |             |               | ď           | decomb.                   |    | (2H), 4. 27(1H), 5. 18(1H) | 18(1H)  |                             |             |
|          |                   | · ·         |               |             |                           |    |                            |         |                             |             |
|          | •                 |             |               |             |                           |    |                            |         |                             |             |

| Table 2 (continued)    C                                            | О        | 35                           | 30 | 20<br>25                    | 15                     | 10          | 5        |
|---------------------------------------------------------------------|----------|------------------------------|----|-----------------------------|------------------------|-------------|----------|
| -L-Glu-OH L L-Ala-OH -L-Glu-OH L L-Val-OH                           |          |                              |    |                             |                        |             |          |
| H-L-Glu-OH L L-Ala-OH II-L-Glu-OH L L-Val-OH II-L-Glu-OH D L-Val-OH |          | C. 3 H 2 2 N + O 7 S • H C 2 |    | 1. 37(3H), 1. 91(3H), 2. 01 | 1 3700-2200,           | 1730, 165   | 50,      |
| -L-G u-O   L L-Val-O                                                |          | .07-112°C                    | 2  | (3H), 1. 90-2. 17(2H),      | 1520, 1455, 139        | 1390, 1370, |          |
| II-L-Glu-OH L L-Val-OH                                              |          | decomb.                      |    | 2. 39-2. 55(2H), 3. 92(1H)  | 1218, 1150,            | 835, 66     | 10       |
| -L-Glu-OH                                                           |          |                              |    | 4. 23-4. 38(1H), 5. 18(1H)  |                        |             |          |
| II-L-Glu-OH L L-Val-OH                                              | -        | C.sHzeN+D,S.HC@              |    | 0.86(3H), 0.89(3H), 1.89    | 9 3700-2250,           | 1725, 165   | 0        |
| H-L-Glu-OH D L-Val-OH                                               |          | 18-122t                      | 2  | (3H), 1, 98(3H), 0, 80      | 1520, 1394, 1372, 1220 | 1372, 122   |          |
| H-L-Glu-OH D L-Val-OH                                               |          | decomp.                      |    | 2. 23(3H), 2. 37-2. 58(2H)  | ) 1145, 1128,          | 665         |          |
| H-L-Glu-OH D L-Val-OH                                               |          | o                            |    | 3. 91(1H), 4. 12-4. 23(1H)  |                        |             |          |
| H-L-Glu-OH D L-Val-OH                                               |          |                              |    | 5.25(1H)                    |                        |             |          |
| H-L-Glu-OH D L-Val-OH 112-                                          | 0        | 1, 5 H 2 & N + O , S - HCQ   |    | 0.87(3H), 0.91(3H), 1.90    | 0 3700-2250,           | 1738, 1650, |          |
| decomp.                                                             |          | 12-117°C                     | 2  | (3H), 1.96(3H), 1.95-       | 1522, 1392,            | 1370, 1220, |          |
|                                                                     |          | decomp.                      |    | 2. 23(3H), 2. 34-2. 54      | 1145, 6,68             |             |          |
|                                                                     | <u> </u> |                              |    | (2H), 3. 90(1H), 4. 07-     |                        |             |          |
| 1                                                                   |          |                              |    | 4.26(1H), 5.30(1H)          | •                      |             |          |
| C, sH2 sN4 O, S. HCQ                                                | 0        | 1 6 H 2 8 N + O 7 S - HC@    |    | 0.70-0.92(6H), 1.46-        | 3700-2200,             | 1725, 164   | <u>ئ</u> |
| 15 H-L-Glu-OH L L-Leu-OH 120-124C                                   |          | 20-124C                      | 7  | 1.73(3H), 1.79-2.19         | 1520, 1390, 1370,      | 122         | ي.       |
| , decomp.                                                           |          | decomp.                      |    | (2H), 1.89(3H), 1.97(3H)    | ) 1210, 1150,          | 665         |          |
|                                                                     |          |                              |    | 2. 35-2. 60(2H), 3. 89(1H)  |                        |             |          |
| 9                                                                   |          |                              |    | 4. 25-4. 40(1H), 5.17(1H)   |                        |             |          |

| · ( ) : : : : : : : : : : : : : : : : : : | 5 (      |          | 35                           | 30 | 25                          | 0                                                     | 10                             | 5                                                                     |
|-------------------------------------------|----------|----------|------------------------------|----|-----------------------------|-------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|
| nnec                                      |          | 1        | C. s H 2 1 N 1 0 , S - H C @ | ,  | 1.87(3H), 2.02(3H), 1.      | 02(3H), 1.64                                          | 3650-2200, 1740,               | 40, 1625,                                                             |
| H-L-Glu-OH                                | L-Pro-01 | 120-1    | 25c<br>decomp.               | 2  | -2. 52(8H),<br>(3H), 3. 86( | -2, 52(8H), 3, 68-3, 93<br>(3H), 3, 86(1H), 5, 56(1H) | 1505, 1450, 1210, 1190,<br>665 | 10, 11, 0, 11, 20, 11, 20, 11, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 |
|                                           |          |          |                              |    |                             |                                                       |                                |                                                                       |
| -                                         |          | CiaHze   | C H 2 6 N + O , S · HCQ      |    | 1.74(3H), 1.                | 1. 74(3H), 1.87(3H), 1.90                             | 3800-2200, 1730, 1650,         | 730, 1650,                                                            |
| T -G1 u - OH.   T                         | L-Phe-OH | 122-1270 | ٦, ٢                         | 2  | -2.19(2H), 2.21-2.50        | 2. 21-2. 50                                           | 1520, 1459, 1                  | 1395, 1374,                                                           |
|                                           |          | ซ้       | decomb.                      |    | (2H), 2.75-2.98(1H),        | 2.98(1H),                                             | 1225, 1132,                    | 703                                                                   |
|                                           |          |          |                              |    | 3, 08-3, 28(                | 08-3.28(1H), 3.89(1H)                                 |                                |                                                                       |
|                                           |          |          |                              | 1  | 4.55-4.70(                  | 55-4.70(1H), 5.10(1H)                                 |                                |                                                                       |
|                                           |          |          |                              |    | 7.06-7.40(5H)               | 5H)                                                   |                                |                                                                       |
|                                           |          | C19H26   | C. 9 H 2 6 N + O 8 S - H C @ |    | 1.76(3H), 1                 | 1. 76(3H), 1. 86(3H), 1. 94                           | 3800-2200, 1                   | 1730, 1650,                                                           |
| H-L-Glu-OH L                              | L-Tyr-OH | 107-112T | 2.C                          | 2  | -2.14(2H), 2.20-2.46        | 2, 20-2, 46                                           | 1518, 1450, 1395, 1375,        | 395, 1375,                                                            |
|                                           |          | d€       | decomp.                      |    | (2H), 2.77(                 | (2H), 2. 77(1H), 3. 15(1H)                            | 1230, 1130, 1110,              | 110, 835,                                                             |
|                                           |          |          |                              |    | 3.87(1H), 4                 | 3.87(1H), 4.55-4.70(1H)                               | 670                            |                                                                       |
|                                           |          |          |                              |    | 5.08(1H), 6.70(2H),         | .70(2H),                                              |                                |                                                                       |
|                                           |          |          |                              |    | 7.03(1H)                    |                                                       |                                |                                                                       |

| 55  | 50                | <b>4</b> 5 | 45                  | 40                                     | 35                               | 30  | 25                                                                                                                                | 20                                                                                                                     | 15                                       | 10                      | 5                     |
|-----|-------------------|------------|---------------------|----------------------------------------|----------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|-----------------------|
| 7   | able 2 (continued | ued        |                     |                                        |                                  |     |                                                                                                                                   |                                                                                                                        |                                          |                         |                       |
| 1 8 | H-L-Glu-0II       |            | L-Glu-OR            | C15H2+                                 | N.O.S.HC@decomp.                 | 2   | 1.88(3H), 1.97(3H), 1.70<br>-2.50(8H), 3.90(1H),<br>4.39(1H), 5.17(1H)                                                            | 7(3H), 1.70<br>90(1H),<br>7(1H)                                                                                        | 3800-2230,<br>1520, 1455,<br>1220, 1135, | 1730,<br>1395,<br>665   | 1855,                 |
| 20  | H-L-Glu-OH        |            | NHCHPh <sub>2</sub> | C23                                    | H28N.OsS.HC@<br>-130°<br>decomp. | 2   | *1.91(3H), 1.96(3H),<br>2.20-2.57(4H), 3.40(1H),<br>3.82(1H), 5.46(1H), 6.18<br>(1H), 7.18-7.40(10H),<br>8.40(3H), 8.62(1H), 9.51 | .91(3H), 1.96(3H),<br>20-2.57(4H), 3.40(µH)<br>82(1H), 5.46(1H), 6.18<br>H), 7.18-7.40(10H),<br>40(3H), 8.62(1H), 9.51 | 3700-2150,<br>1520, 1458,<br>1232, 1125, | 1740,<br>1393,<br>1032, | 1650,<br>1372,<br>702 |
|     |                   |            |                     |                                        |                                  | .,- | (1H)                                                                                                                              |                                                                                                                        |                                          |                         |                       |
| 21  | H-L-Glu-OH        |            | L-Asp-OH            | C + H 84-                              | 2.1M.O.S.HCW<br>88t<br>decomp.   | 27  | 1. 92(3H), 2. 00(3H), 2.<br>-2. 19(2H), 2. 42-2. 55<br>(2H), 2. 86-2. 96(2H),<br>3. 93(1H), 4. 72(1H), 5.<br>(1H)                 | 0(3H), 2. 02<br>42-2. 55<br>96(2H),<br>2(1H), 5. 20                                                                    | 3700-2200,<br>1525, 1225,                | 00, 1735,<br>25, 670    | 1650,                 |
| 22  | H-L-Glu-OH        |            | N- 1 = K-7          | C15H25N+O7S.HCQ<br>104-109T<br>decomp. | 0,8.HC@                          | 2   | 1. 82-2. 26(4H), 1. 92(3H), 2. 01(3H), 2. 03(3H), 2. 37-2. 66(4H), 3. 95(1H), 4. 54(1H), 5. 20(1H)                                | ), 1. 92(3H)<br>03(3H), 2.<br>3. 95(1H),<br>0(1H)                                                                      | 3700-2200, 1520, 1225,                   | 670                     | 1650,                 |

| 5  |            |                            |                                               |                         |                          |                      |                 |                        |                       |                         |                            |                      |                            |   |                     |                          |                      |                            |                      | ,        |
|----|------------|----------------------------|-----------------------------------------------|-------------------------|--------------------------|----------------------|-----------------|------------------------|-----------------------|-------------------------|----------------------------|----------------------|----------------------------|---|---------------------|--------------------------|----------------------|----------------------------|----------------------|----------|
|    |            | 1650,                      |                                               |                         |                          |                      |                 | 45,                    |                       |                         |                            |                      |                            | İ | <del>ر</del> 5,     | 25,                      |                      |                            |                      |          |
|    |            | 16                         |                                               |                         |                          |                      |                 | 16                     |                       |                         |                            |                      |                            |   | 16                  | 12                       |                      |                            |                      |          |
|    |            | 30,                        | 670                                           |                         |                          |                      |                 | 35,                    | 700                   |                         |                            |                      |                            |   | 30,                 | 70,                      |                      |                            |                      |          |
| 10 |            | 1730,                      | 9                                             |                         |                          |                      |                 | 17                     | 7                     |                         |                            |                      |                            |   | 1730, 1645,         | 3                        |                      |                            |                      |          |
|    |            |                            | 0                                             |                         |                          |                      |                 | 0,                     | 0                     |                         |                            |                      |                            | Ì |                     | Ô                        |                      |                            |                      |          |
|    |            | -2200,                     | 122                                           |                         |                          |                      |                 | 2 2 0                  | 123                   |                         |                            |                      |                            |   | 220                 | 139                      |                      |                            |                      |          |
|    |            | 0                          | 1520, 1220,                                   |                         |                          |                      |                 | 3700-2200, 1735, 1645, | 1520, 1230,           |                         |                            |                      |                            |   | 3700-2200,          | 520, 1390, 1370, 122     | 2                    |                            |                      |          |
| 15 |            | 370                        | 52                                            |                         |                          |                      | !               | 7 0                    | 5.2                   |                         |                            |                      |                            | - | 7 0                 | 52                       | 665                  |                            |                      |          |
|    |            |                            |                                               |                         |                          |                      |                 |                        |                       |                         |                            |                      |                            |   |                     | <u>.</u>                 |                      |                            |                      |          |
|    |            | 0.82(3H), 0.88(3H), 1.22   |                                               | 77-2. 24(3H), 1. 91(3H) |                          |                      |                 |                        |                       | 2.44(2H), 3.60(1H), 3.8 | (1H), 5. 45(1H), 6. 17(1H) | 2                    | (3H), 8, 56(1H), 9, 49(1H) |   |                     | 1.76(3H), 1.92(3H), 1.96 |                      | 2. 43-2. 61(2H), 3. 95(1H) |                      |          |
|    |            | 1'                         | <u>-</u>                                      | ) [                     | 53                       | 4                    |                 | 9 1                    | 9                     | <br>∾                   | 7 (                        |                      | ) 6                        |   | 10                  |                          |                      | ) 2 (                      | $\bigcirc$           |          |
| 20 |            | 3H)                        | $\exists$                                     | 7                       | -2.                      | 4. 2                 |                 |                        | 2. 2                  | (H)                     | 6. 1                       | φ.                   | 9.4                        | - | 1.4                 | 3H)                      | (2H                  | es.                        | (18                  |          |
|    |            | ) &                        | 53                                            | $\overline{\Box}$       | 41                       | $\sim$               | $\overline{}$   | H)                     | $\sim$                | )(                      | ~                          | 0 H                  | ~                          | ļ | ~                   | 5                        | 20                   | ~                          | 27                   | ĺ        |
|    |            | 8.                         | <u>-</u> ;                                    | (3H                     | 2.                       | (TH                  | $\mathbb{H}$    | )(3                    | (31                   | 3.6                     | 3                          | 3(1                  | E)                         |   | (6 H                | . 9                      | -2.                  | (2 H                       | ა.                   | - {      |
|    |            | <u>`</u>                   | (1H), 1.27-1.53(1H),                          | 24                      | , 1. 99(3H), 2. 41-2. 53 | (2H), 3.94(1H), 4.24 | (1H), 5. 25(1H) | *1.80-2.20(2H), 1.     | (3H), 1.96(3H), 2.26- | ~                       | <del>4</del> 5             | ,7.20-7.43(10H),8.32 | 56                         |   | 0.75-1.01(6H), 1.45 | ~                        | (3H), 2.06-2.20(2H), | 61(                        | , 4.30(1H), 5.27(1H) |          |
| 25 |            | (3H                        | _;                                            | -2.                     | 3(3                      | က်                   | 5.              | 7-0                    | ij                    | 2 H                     | ic.                        | 1-7                  | ∞.                         |   | <del>_</del> ;      | 3 H                      | 2.                   | .2                         | $\Box$               | ĺ        |
|    |            | 82(                        | $\widehat{\Xi}$                               | -11                     | 6                        | Ε,                   | Ξ,              | 8                      | $\Xi$                 | 44(                     | Ξ,                         | 50                   | Η),                        |   | 75                  | 9/                       | Ê                    | -63                        | 30                   |          |
|    |            | · .                        | こ                                             | _;                      |                          | (2                   | $\Box$          | *                      | 3                     | 2:                      |                            | . 7                  | (33                        | ŀ | · .                 |                          | (3)                  | 2.                         | 4.                   | ]        |
|    |            |                            |                                               |                         | ·                        |                      |                 |                        |                       |                         |                            |                      |                            |   |                     |                          |                      |                            |                      |          |
| 30 |            | ĺ                          | 2                                             |                         |                          |                      |                 | 8                      | -2                    |                         |                            |                      |                            |   | ~~                  | 2                        |                      |                            |                      |          |
|    |            | C. 6. H. 2 8 N. 4 O. S. HC |                                               |                         |                          |                      |                 | H28N+OsS+HCQ           |                       |                         |                            |                      |                            |   | C18 H28 N+07S.HC@   |                          |                      |                            |                      |          |
|    |            | S.                         |                                               | decomp.                 |                          |                      | i               | S.                     |                       | ď.                      |                            |                      |                            |   | Ś                   |                          | ġ                    |                            |                      |          |
| 35 |            | 0,                         | چ                                             | 00                      |                          |                      |                 | 0                      | د۽                    | decomb                  |                            |                      |                            |   | Ó                   | ر۽                       | decomb               |                            |                      |          |
|    |            | N 8 3                      | 15                                            | de                      |                          |                      |                 | ¥.                     | 5.5                   | de(                     |                            |                      |                            | ľ | ₩<br>8              | 36                       | Sec                  |                            |                      |          |
|    |            | вЯз                        | 109-115C                                      |                         |                          |                      |                 | 3 H 2                  | 150-155T              |                         |                            |                      |                            |   | в Н 2               | 130-136T                 | Ö                    |                            |                      |          |
|    |            | C1                         | 10                                            |                         |                          |                      |                 | C23                    | 15                    |                         |                            |                      |                            |   | ပ်                  | 13                       |                      |                            |                      |          |
| 40 |            |                            | <u>=</u>                                      |                         |                          |                      |                 |                        | р.                    |                         |                            |                      |                            |   |                     | HC                       |                      |                            |                      | $\dashv$ |
|    |            |                            | L-Ile-0E                                      |                         |                          |                      |                 |                        | NHCHPh 2              |                         |                            |                      |                            |   |                     | L-Leu-OH                 |                      |                            |                      |          |
|    |            |                            | $\overline{}$                                 |                         |                          |                      |                 |                        | NHC                   |                         |                            |                      |                            |   |                     | -Le                      |                      |                            |                      |          |
|    | <u> </u>   |                            | <u> </u>                                      |                         |                          | -                    |                 |                        |                       |                         |                            |                      |                            |   |                     | <u> </u>                 |                      |                            |                      |          |
| 45 | (continued |                            | _                                             |                         |                          |                      |                 |                        | Q                     |                         |                            |                      |                            |   |                     |                          |                      |                            |                      |          |
|    | -i-        |                            |                                               |                         |                          |                      |                 |                        |                       |                         |                            |                      |                            |   |                     |                          |                      |                            | <del></del>          |          |
|    | 'nt        | ċ                          | n -0                                          |                         |                          |                      |                 |                        | L-Glu-0H              |                         |                            |                      |                            |   |                     | -L-G1u-OH                |                      |                            |                      | İ        |
| 50 | 00)        | L .                        | <u>, , , , , , , , , , , , , , , , , , , </u> |                         |                          |                      |                 | . l                    | n                     |                         |                            |                      |                            | Ì | L                   | n l                      |                      |                            |                      |          |
|    | 2          |                            | 19-7                                          |                         |                          |                      |                 |                        | J-7                   |                         |                            |                      |                            |   |                     | , -G                     |                      |                            |                      | 1        |
|    |            | ·<br>                      | <u>-</u> H                                    |                         |                          |                      |                 |                        | ] H                   |                         |                            |                      |                            |   |                     | H-L                      |                      |                            |                      |          |
|    | Table      |                            |                                               |                         | •                        |                      |                 |                        |                       |                         |                            |                      |                            | - |                     |                          |                      |                            |                      |          |
| 55 | Ta         |                            | 23                                            |                         |                          |                      |                 |                        | 24                    |                         |                            |                      |                            |   |                     | 25                       |                      |                            |                      | _        |
|    |            |                            |                                               |                         |                          |                      |                 |                        |                       |                         |                            |                      |                            |   |                     |                          |                      |                            |                      |          |

| 50            | 45         | 35              | 30 | 20                         | 10                      |
|---------------|------------|-----------------|----|----------------------------|-------------------------|
| 2 (continued) | nued)      |                 |    |                            |                         |
|               |            | C19H25N+0,S.HCQ | 2  | 1. 63(6H), 1. 89-2. 25     | 3700-2200, 1730, 1650,  |
| L-Glu-0H      | D L-Phe-OH | 1H 120-125℃     | 2  | (2H), 2, 30-2, 66(2H),     | 1520, 1455, 1390, 1370, |
|               |            | decomp.         |    | 2.94(1H), 3.18-3.43        | 1220, 1125, 700, 665    |
|               |            |                 |    | (1H), 3.91(1H), 4.63-      |                         |
|               |            |                 |    | 4.70(1H), 5.12(1H),        |                         |
|               |            | :               |    | 7.05-7.50(5H)              |                         |
| 1             |            | C15H2+N+O9S.HC0 |    | 0.80-2.27(4H), 1.92        | 3700-2200, 1730, 1650,  |
| T-Glu-OH      | D L-Glu-OH | H 91-96°C       | 2  | (3H), 1. 97 (3H), 2. 34-   | 1520, 1220, 665         |
|               |            | decomp.         |    | 2.64(4H), 3.95(1H),        |                         |
|               |            |                 |    | 4.34(1H), 5.25(1H)         |                         |
|               |            | C13H23N4O8S.HC2 |    | 1.94(3H), 2.03(3H),        | 3800-2200, 1735, 1650,  |
| L-Glu-0H      | L L-Ser-OH | H 89- 92°C      | 2  | 2.05-2.22(2H), 2.42-       | 1520, 1390, 1370, 1225, |
|               |            | decomb.         |    | 2.55(2H), 3.79-4.02        | 1135, 1070, 665         |
|               |            |                 |    | (3H), 4. 52(1H), 5. 29(1H) |                         |
| <u></u>       |            | C15H2+N+07S-HC0 |    | 1.87(3H), 1.90-2.36        | 3700-2200, 1735, 1630,  |
| -G1u-OH       | D L-Pro-OH | H 77-81°C       | 7  | (6H), 2.01(3H), 2.43-      | 1510, 1450, 1220, 1190, |
|               |            | decomb.         |    | 2.57(2H), 3.68-3.89        | 665                     |
|               |            |                 |    | (2H), 3.96(1H), 4.32       |                         |
| :<br>:<br>:   |            | ,               |    | (1H), 5.64(1H)             |                         |

|      | 1650,               | 670                                                                                                                                        |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                | 1655,                    | 1120,                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                      | ,000,                    | 210,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | _                   | 835,                                                                                                                                       |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                | 1735,                    | 1180,                   | 680                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                        | 1740,1                   | 1390, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3700-2200,          | 1515, 1220,                                                                                                                                |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                | 3700-2200,               | 1520, 1215,             | 1035, 1005,               |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 3/50-2200,               | 1535, 1410,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1130, 660                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 9 6                 |                                                                                                                                            |                                                                                        |                                                                                                                        |                                                                                                        | 8                        |                                                                                                                                                                                                                                                                | 6 9                      |                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | į į                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1,87(3H),1.         | , 2. 31-2. 43                                                                                                                              | -2.92(1H),                                                                             | (1H), 3.90                                                                                                             | -4.70(1H),                                                                                             | 5.11(1H), 6.             | (2H)                                                                                                                                                                                                                                                           | 1.89(3H), 1.             | , 2. 31-2. 43           | -2.97(1H),                | (1H), 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.73(1H),                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7. 28-7. 43              | -7.78(2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | Z. 00(3H), Z.            | 3.97(2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.24(1H)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1.77(3H),           | -2.12(2H)                                                                                                                                  | (2H), 2.76                                                                             | 3, 10-3, 26                                                                                                            | (1H), 4.51                                                                                             | 4.64(2H),                | (2H), 7.13                                                                                                                                                                                                                                                     | 1.79(3H),                | -2.21(2H)               | (2H), 2.82                | 3.06-3.19                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1H), 4.52                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.13(1H),                | (2H), 7. 59                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 1.91(3H),                | -3.14(2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.24(1H),                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                     | 2                                                                                                                                          |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                |                          | 2                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | C2, H28N+O, oS.     | нсд                                                                                                                                        | 108-112°C                                                                              | decomp.                                                                                                                |                                                                                                        |                          |                                                                                                                                                                                                                                                                | C19H26N4O10S2.           | нсе                     | 140-145°C                 | decomb.                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | C11H18N+U7S-HC           | 85- 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | decomp.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | CH 2 COOM           | -Tyr-OH                                                                                                                                    |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                | SO H                     | L-Phe-OH                |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                          | G1y-0H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ned) |                     | <br>                                                                                                                                       |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                |                          | 0 7                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2    | L                   | НО-119-7-Н                                                                                                                                 |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                | [                        | H-L-Glu-011             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | L                        | H-L-Asp-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service servic |
| Tab] |                     | 30                                                                                                                                         |                                                                                        |                                                                                                                        |                                                                                                        |                          |                                                                                                                                                                                                                                                                |                          | 31                      |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Table 2 (continued) | 2 (continued)  CH <sub>2</sub> COOH C <sub>2</sub> .H <sub>2</sub> 8N <sub>+</sub> O <sub>1</sub> o <sub>S</sub> · 1.77(3H), 1.87(3H), 1.9 | 2 (continued)  -L-Glu-OH   L-Tyr-OH   HCQ   2   -2.12(2H), 2.31-2.43   1515,1220, 835, | 2 (continued)  -L-Glu-OH   L-Tyr-OH   HC&   2 -2.12(2H), 2.31-2.43   1515,1220, 835,   108-112t   (2H), 2.76-2.92(1H), | 2 (continued)  CH <sub>2</sub> COOH C <sub>2</sub> .H <sub>2</sub> 8N <sub>+</sub> O <sub>1,o</sub> S· | 2 (continued)  -L-Glu-OH | 2 (continued)  L CH <sub>2</sub> COOH C <sub>2</sub> :H <sub>2</sub> 8N <sub>+</sub> O <sub>1,o</sub> S· 1.77(3H), 1.87(3H), 1.96 3700-2200, 1735, 1-101 HCQ 2.12(2H), 2.31-2.43 1515, 1220, 835, 108-112° (2H), 2.76-2.92(1H), 3.90 (1H), 4.51-4.70(1H), 6.82 | 2 (continued)  -L-Glu-OH | 2 (continued) -L-Glu-OH | 2 (continued)  L L-Tyr-OH | 2 (continued)  -L-Glu-OH L L-Tyr-OH HCQ 2 -2.12(2H), 2.31-2.43 1515,1220, 835,  -L-Glu-OH L L-Tyr-OH HCQ 2 -2.12(2H), 2.76-2.92(1H),  decomp. 3.10-3.26(1H), 3.90  (1H), 4.51-4.70(1H),  4.64(2H), 5.11(1H), 6.82  -L-Glu-OH L DL-Phe-OH HCQ 2 -2.21(2H), 1.89(3H), 1.95 3700-2200, 1735, 11  -L-Glu-OH L DL-Phe-OH HCQ 2 -2.21(2H), 2.31-2.43 1520, 1215, 1180, 11  -L-Glu-OH L DL-Phe-OH HCQ 2 -2.21(2H), 2.31-2.43 1520, 1215, 1180, 11 | 2 (continued)  -L-Glu-OH L L-Tyr-OH HCQ 2 -2.12(2H), 1.87(3H), 1.96 3700-2200, 1735, 1  -L-Glu-OH L L-Tyr-OH HCQ 2 -2.12(2H), 2.31-2.43 1515, 1220, 835, decomp.  3.10-3.26(1H), 3.90  (1H), 4.51-4.70(1H), 4.682  (2H), 7.13(2H)  -L-Glu-OH L DL-Phe-OH HCQ 2 -2.12(2H), 1.89(3H), 1.95 3700-2200, 1735, 1 decomp.  14.64(2H), 7.13(2H)  -L-Glu-OH L DL-Phe-OH HCQ 2 -2.21(2H), 2.31-2.43 1520, 1215, 1180, 1 decomp.  3.06-3.19(1H), 3.93 | 2 (continued)  -L-Glu-OH | 2 (continued)  -L-Glu-OH L L-Tyr-OH HCg 2 -2.12(2H), 2.31-2.43 1515,1220, 835, -L-Glu-OH L L-Tyr-OH HCg 2 -2.12(2H), 2.31-2.43 1515,1220, 835, -L-Glu-OH L L-Tyr-OH HCg 3.10-3.26(1H), 3.90  (1H), 4.51-4.70(1H), 6.82  (2H), 7.13(2H)  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 1.89(3H), 1.95 3700-2200, 1735, 1 1 79(3H), 1.89(3H), 1.95 3700-2200, 1735, 1 1 140-145°C (2H), 2.82-2.97(1H), 3.93  decomp. 3.06-3.19(1H), 3.93  (1H), 4.52-4.73(1H), 5.93 | 2 (continued)  -L-Glu-OH | 2 (continued)  -L-Glu-OH | 2 (continued)  -L-Glu-OH L L-Tyr-OH HCg 2 -2.12(2H), 2.31-2.43 1515,1220, 835, 10-61u-OH L L-Tyr-OH HCg 3.10-2.26(1H), 3.90  -L-Glu-OH L L-Tyr-OH HCg 3.10-3.26(1H), 3.90  -L-Glu-OH L DL-Phe-OH HCg (2H), 7.13(2H)  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1520,1215,1180, 1140-145°  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1520,1215,1180, 1140-145°  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1530,105, 680  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1530,105, 680  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1530,105, 680  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1530,105, 680  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1530,105, 680  -L-Glu-OH L DL-Phe-OH HCg 2 -2.21(2H), 2.31-2.43 1530-2200,1740,1 | 2 (Continued)  -L-Glu-OH | 2 (continued)  -L-Glu-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 5                  | 1735, 1650,<br>1115, 660                                                                                                    | 1735, 1680,<br>1400, 1315,                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 10                 | 3800-2200, 1735,<br>1520, 1210, 1115,                                                                                       | 3800-2200, 1735, 1680,<br>1540, 1505, 1400, 1315,<br>1200, 655 |
| 15<br>20           | (3H), 2.06<br>1-2.55<br>5.19(1H)                                                                                            |                                                                |
| 25                 | 1. 93(3H), 1. 96(3H), 2. 06 3800-2200, 1735, 1650, -2. 18(2H), 2. 44-2. 55 1520, 1210, 1115, 660 (2H), 3. 98(1H), 5. 19(1H) | 1. 95(3H), 2. 12(3H), 4. 05<br>(2H), 4. 83(1H)                 |
| 30                 | 2                                                                                                                           | 2                                                              |
| 35                 | C.oH.7NoOsS.HCQ<br>73-80°C<br>decomp.                                                                                       | C, H, 3 N3 O + S · HCQ<br>63 - 68°C<br>decomp.                 |
| 45                 | НО                                                                                                                          | G 1 y - OH                                                     |
| ),ued)             |                                                                                                                             |                                                                |
| rable 2 (continued | II-L-Glu-0II                                                                                                                | T.                                                             |
| Table              | က                                                                                                                           | 34                                                             |
|                    |                                                                                                                             |                                                                |

аs isolated 34 were 9, and respective hydrochlorides. 10 Compounds

the 35  $\ast$  ; measured by using DMSO-d $_6$  as the solvent and TMS internal standard.

### Preparation Examples

### Preparation Example 1

5

10

- (1) Compound 1 2 g
- (2) lactose 196 g
- (3) corn starch 50 g
- (4) magnesium stearate 2 g
- (1), (2) and 20 g of corn starch were mixed and granulated together with a paste made from 15 g of corn starch, to which 15 g of cornstarch and (4) were added. The mixture was compressed with a compress-tableting machine, to produce 2000 tablets of 3 mm in diameter containing 1 mg of (1) in each tablet.

### Preparation Example 2

15

20

- (1) Compound 2 4
- (2) lactose 194 g
- (3) corn starch 40 g
- (4) magnesium stearate 2 g
- (1), (2) and 15 g of corn starch were mixed and granulated together with a paste made from 15 g of corn starch, to which 10 g of corn starch and (4) were added. The mixture was compressed with a compress-tableting machine, to produce 2000 tablets of 5 mm in diameter containing 2 mg of (1) in each tablet.

## Preparation Example 3

25

30

35

40

45

- (1) Compound 1 100 mg
- (2) Avicel (crystalline cellulose) 300 mg
- (3) lactose 595 mg
- (4) magnesium stearate 5 mg
- (1), (2), (3) and (4) described above were mixed thoroughly, and compressed directly with a compress-tableting machine, to produce 100 sublingual tablets (3 mm in diameter) containing 1 mg of (1) in each tablet.

# Experimental Example 1

In a 20 ml-tank (37°C, aerated with 95%  $O_2$  + 5%  $CO_2$ , pH7.4), a specimen (pig left coronary descending artery (LAD), or rat aorta) was suspended. The specimen was allowed to contract by addition of  $PGF_{2\alpha}$  (6  $\mu$ M) for pig coronary artery or KCl (60 mM) or TEA (45 mM) + Ba (0.3 mM) for rat aorta, and then a test compound was added at a time or cumulatively; the relaxing effect of the compound on the constrictive tension was examined; the Compounds 1 and 2 showed a powerful relaxing effect.

# Experiment Example 2

# Relaxing effects on KC1 induced contraction in isolated rat aorta

Ring preparations of rat thoracic aorta were placed in  $20m\ell$  organ baths containing Krebs-Hemseleit solution kept at 37°C, a pH of 7.4 and gassed with 95%  $CO_2$  - 5%  $O_2$ . After steady state contraction induced by 60mM KC1, vasorelaxing effects of test compounds ( $10^{-6}$ ,  $10^{-7}$  mol/l) were examined. The vasorelaxing effects were expressed as % relaxation from the maximum contraction induced by 60mM KC1. The relaxing effects are shown in Table 3.

50

|    | Table    |       |                      | Retension |          |  |
|----|----------|-------|----------------------|-----------|----------|--|
| 5  | Compound | 10-11 | etension<br>time/min | 10-e 71   | time/min |  |
|    | 2        | 18    | 24                   | 6 2       | > 30     |  |
| 10 | 3        | 19    | 17                   | ã 0       | > 30     |  |
|    | 5        | 16    | 25                   | 4 7       | > 30     |  |
|    | 7        | 1.1   | > 30                 | 64        | > 30     |  |
| 15 | 1 1      | 1 2   | 2 0                  | 37 .      | > 30     |  |
| 70 | 13       | 19    | > 30                 | 85        | > 30     |  |
|    | 1.4      | 11 -  | 12                   | 7 4       | > 30.    |  |
| 20 | 17       | 2,0   | 1 7                  | 66        | > 30     |  |
|    | 19       | 19    | 2 0                  | 58        | > 30     |  |
|    | 24       | 26    | > 30                 | 75        | > 30     |  |
| 25 |          |       |                      |           |          |  |

Claims

30

35

40

45

50

55

Claims for the following Contracting States : AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

1. A compound of the formula:

$$X' - \frac{R'}{N}$$
 CII -  $\frac{R'}{C}$  SNO

wherein  $R^1$  and  $R^2$  are independently a hydrogen atom or a hydrocarbon residue which may be substituted;  $R^3$  is a hydrogen atom, an acyl group or a hydrocarbon residue which may be substituted;  $X^1$  is a hydrogen atom, an acyl group, a lower alkoxy group or a hydrocarbon residue which may be substituted;  $X^2$  is an acyl group or a carboxyl group which may be esterified or which may form an amide; with a proviso that when  $X^2$  is a carboxyl group  $X^1$  is not a hydrogen atom or acetyl group and that when both  $R^1$  and  $R^2$  are hydrogen atoms  $X^1$  is not an acetyl group or  $\gamma$ -glutamyl group, or a salt thereof.

- 2. A compound according to claim 1, wherein R<sup>1</sup> and R<sup>2</sup> are independently a hydrocarbon residue which may be substituted, or R<sup>1</sup> and R<sup>2</sup> may be bound to each other to form a ring of the formula: -(CH<sub>2</sub>)<sub>n</sub>- wherein n is an integer of 2 to 6.
  - 3. A compound according to claim 1, wherein X1 is an amino acid derived acyl.
- 4. A compound according to claim 1, wherein R¹ and R² are independently a hydrocarbon residue which may be substituted; R³ is a hydrogen atom, an acyl group or a hydrocarbon residue which may be substituted; X¹ is an amino acid derived acyl; X² is an acyl group or a carboxyl group which may be esterified or which may form an amide.

- A compound according to claim 1, wherein the hydrocarbon residue represented by R1, R2, R3 or X1 is a chain saturated, chain unsaturated, cyclic saturated or cyclic unsaturated hydrocarbon residue, each of which may be substituted by one to three groups selected from the class consisting of halogen atom, nitro, nitrile, hydroxyl, carboxyl, C1-4 alkoxy, C1-4 alkylthio, amino, mono- or di-C1-4 alkyl amino, mono- or diaralkylamino, mono- or di-pyridylamino, C<sub>1-4</sub> alkoxycarbonyl, cyclo C<sub>3-6</sub> alkylcarbonyl, carbamoyl, monoor di- $C_{1-4}$  alkylcarbamoyl, and phenyl, phenoxy, benzoyl, phenoxycarbonyl, phenyl  $C_{1-4}$  alkylcarbamoyl or phenylcarbamoyl group, in which each of said phenyl group may be substituted by 1 to 4 groups selected from the class consisting of C<sub>1-4</sub> alkyl, halogen atom, hydroxyl, benzyloxy, amino, mono- or di-C<sub>1-4</sub> alkyl-10 lamino, niro and C<sub>1-4</sub> alkoxycarbonyl.
  - A compound according to claim 1, wherein the acyl group represented by R3, X1 or X2 is a carboxylic, carbamic, sulfonic or oxycarboxylic acyl group, each of which may be substituted by one to three groups selected from the class consisting of halogen atom, nitro, nitrile, hydroxyl, carboxyl, C<sub>1-4</sub> alkoxy, C<sub>1-4</sub> alkylthio, amino, mono- or di-C<sub>1-4</sub> alkyl amino, mono- or di-aralkylamino, mono- or di-pyridylcarbonylamino, C<sub>1-6</sub> alkylcarbonyl, C<sub>1-4</sub> alkoxycarbonyl, cyclo C<sub>3-6</sub> alkylcarbonyl, carbamoyl, mono- or di-C<sub>1-4</sub> alkylcarbamoyl, and phenyl, phenoxy, benzoyl, phenoxycarbonyl, phenyl C<sub>1-4</sub> alkylcarbamoyl or phenylcarbamoyl group, in which each of said phenyl may be substituted by 1 to 4 groups selected from the class consisting of C<sub>1-4</sub> alkyl, halogen atom, hydroxyl, benzyloxy, amino, mono- or di-C<sub>1-4</sub> alkylamino nitro and C<sub>1-4</sub> alkoxycarbonyl.
  - A compound according to claim 1, wherein the lower alkoxy group is  $C_{1-6}$  alkoxy group.
  - A compound according to claim 1, wherein the carboxyl group which may be esterified is carboxyl or a group of the formula: -CO-OR5 wherein R5 is a hydrocarbon residue which may be substituted.
  - A compound according to claim 1, wherein the carboxyl group which may form an amide is carboxyl or a group of the formula:

$$-CO-N \binom{R^6}{R^7}$$

45

5

15

20

25

30

wherein R<sup>6</sup> is a hydrogen atom or a hydrocarbon residue which may be substituted, and R<sup>7</sup> is a hydrogen atom or a lower alkyl group or  $R^6$  and  $R^7$  may form a cyclic amino group together with the adjacent nitrogen atom.

- 40 10. A compound according to Claim 1, wherein R1 and R2 are independently a chain saturated or cyclic unsaturated hydrocarbon residue, or R1 and R2 together with the adjacent carbon atom form cyclopentyl or cyclohexyl.
  - 11. A compound according to claim 1, wherein R1 and R2 are independently C1-8alkyl group.
  - 12. A compound according to claim 1, wherein R<sup>1</sup> and R<sup>2</sup> are methyl.
  - 13. A compound according to claim 1, wherein R3 is a hydrogen atom or an acyl group.
- 14. A compound according to claim 13, wherein the acyl group is C<sub>1-8</sub> alkyl carbonyl or C<sub>8-10</sub> aryl carbonyl. 50
  - 15. A compound according to claim 1, wherein R3 is a hydrogen atom.
  - 16. A compound according to claim 1, wherein X1 is a hydrogen atom or an acyl group.
- 55 17. A compound according to claim 16, wherein the acyl group is an amino acid derived acyl group.
  - 18. A compound according to claim 17, wherein the amino acid is glycine, alanine, glutamic acid, leucine, isoleucine, phenylalanine, aspartic acid, cysteine, sarcosine, glutamine, asparagine or proline.

- 19. A compound according to claim 17, wherein the amino acid is glycine, aspartic acid, asparagine, glutamic acid, glutamine or phenylalanine.
- 20. A compound according to claim 17, wherein the amino acid is glutamic acid or aspartic acid.
  - 21. A compound according to claim 1, wherein X2 is a carboxyl group which may be esterified.
  - 22. A compound according to claim 1, wherein X2 is a carboxyl or carbamic acyl group.
- 23. A compound according to claim 22, wherein the carbamic acyl group is carbonyl amino or a carboxyl group forming an amide with an amino acid.
  - 24. A compound according to claim 23, wherein the amino acid is glycine, alanine, glutamic acid, leucine, isoleucine, phenylalanine, aspartic acid, cysteine, sarcosine, glutamine, asparagine or proline.
  - 25. A compound according to claim 23, wherein the amino acid is glycine, aspartic acid, asparagine, phenylalanine, glutamic acid or glutamine.
  - 26. A compound according to claim 1, wherein R¹ and R² are independently C₁-6 alkyl, phenyl or naphthyl, or R¹ and R² form cyclopentyl or cyclohexyl together with the adjacent carbon atom; R³ is a hydrogen atom or a C₀-10 aromatic acyl group; X¹ is a hydrogen atom or an amino acid derived acyl group in which said amino acid is selected from the group consisting of glycine, aspartic acid, phenylalanine, asparagine, glutamic acid and glutamine; X² is a carboxyl group, carbonylamino or a carboxyl group forming an amide with an amino acid residue in which said amino acid is selected from the group consisting of glycine, aspartic acid, phenylalanine, asparagine, glutamic acid and glutamine.
    - 27. A compound according to claim 1, wherein the salt is a pharmaceutically acceptable salt.
    - 28. A compound according to claim 1, which is N-(N-L-γ-Glutamyl-D-penicillamyl)glycine.
- 29. A compound according to claim 1, which is N-(N-L-γ-Glutamyl-L-penicillamyl)-L-valine.
  - 30. A compound according to claim 1, which is N-(N-L-γ-GlutamyI-L-penicillamyI)-L-phenylalanine.
  - 31. A compound according to claim 1, which is N-(N-L-γ-Glutamyl-L-penicillamyl)-L-glutamic acid.
  - 32. A compound according to claim 1, which is N-(N-L-γ-Glutamyl-D-penicillamyl)diphenylmethylamine.
  - 33. A pharmaceutical composition suitable for the therapy or prophylaxis of hypertension or angina pectoris which comprises (a) as the active ingredient, an effective amount of a compound according to claim 1 or a salt thereof and (b) a pharmaceutically acceptable carrier, excipient or diluent therefor.
    - 34. The use of a compound according to claim 1 or a salt thereof for the preparation of a medicine for the therapeutic treatment of a mammal.
  - 35. A method for producing a compound of the formula (I):

20

25

35

40

45

50

55

$$X' - \frac{R^3}{N}$$
  $CH - \frac{R^4}{C} - SNO$ 

wherein  $R^1$  and  $R^2$  are independently a hydrogen atom or a hydrocarbon residue which may be substituted;  $R^3$  is a hydrogen atom, an acyl group or a hydrocarbon residue which may be substituted;  $X^1$  is a hydrogen atom, an acyl group, a lower alkoxy group or a hydrocarbon residue which may be substituted;  $X^2$  is an acyl group or a carboxyl group which may be esterified or which may form an amide; with a proviso that when  $X^2$  is a carboxyl group  $X^1$  is not a hydrogen atom or acetyl group and that when both  $R^1$  and  $R^2$  are hydrogen atoms  $X^1$  is not acetyl group or  $\gamma$ -glutamyl group, or a salt thereof, which comprises.

(a) subjecting a compound of the formula (II):

$$X_{1} - \frac{1}{N} > CH - \frac{1}{C} - SH$$

wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $X^1$  and  $X^2$  are the same as described above to the nitrosation reaction, and, if desired,

(b) converting a product obtained by the above process (a) into a salt thereof.

# 15 Claims for the following Contracting State: ES

5

10

20

25

30

35

40

1. A method for producing a compound of the formula (I):

$$-X^{1} - \frac{R^{2}}{N} > CH - \frac{R^{1}}{C} - SNO$$

wherein R¹ and R² are independently a hydrogen atom or a hydrocarbon residue which may be substituted; R³ is a hydrogen atom, an acyl group or a hydrocarbon residue which may be substituted; X¹ is a hydrogen atom, an acyl group, a lower alkoxy group or a hydrocarbon residue which may be substituted; X² is an acyl group or a carboxyl group which may be esterified or which may form an amide; with a proviso that when X² is a carboxyl group X¹ is not a hydrogen atom or acetyl group and that when both R¹ and R² are hydrogen atoms X¹ is not acetyl group or -glutamyl group, or a salt thereof, which comprises.

(a) subjecting a compound of the formula (II):

$$\chi_1 - \frac{\chi_2}{N} > C \Pi - \frac{1}{C} - S \Pi$$

wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $X^1$  and  $X^2$  are the same as described above to the nitrosation reaction, and, if desired,

- (b) converting a product obtained by the above process (a) into a salt thereof.
- 2. A method according to claim 1, wherein R¹ and R² are independently a hydrocarbon residue which may be substituted, or R¹ and R² may be bound to each other to form a ring of the formula: -(CH₂)<sub>n</sub>- wherein n is an integer of 2 to 6.
  - 3. A method according to claim 1, wherein  $X^1$  is an amino acid derived acyl.
- 4. A method according to claim 1, wherein R¹ and R² are independently a hydrocarbon residue which may be substituted; R³ is a hydrogen atom, an acyl group or a hydrocarbon residue which may be substituted; X¹ is an amino acid derived acyl; X² is an acyl group or a carboxyl group which may be esterified or which may form an amide.
- 5. A method according to claim 1, wherein the hydrocarbon residue represented by R¹, R², R³ or X¹ is a chain saturated, chain unsaturated, cyclic saturated or cyclic unsaturated hydrocarbon residue, each of which may be substituted by one to three groups selected from the class consisting of halogen atom, nitro, nitrile, hydroxyl, carboxyl, C¹-4 alkoxy, C¹-4 alkylthio, amino, mono- or di-C¹-4 alkyl amino, mono-or di-aralkyla-

mino, mono- or di-pyridylamino,  $C_{1-4}$  alkoxycarbonyl, cyclo  $C_{3-6}$  alkylcarbonyl, carbamoyl, mono- or di- $C_{1-4}$  alkylcarbamoyl, and phenyl, phenoxy, benzoyl, phenoxycarbonyl, phenyl  $C_{1-4}$  alkylcarbamoyl or phenylcarbamoyl group, in which each of said phenyl group may be substituted by 1 to 4 groups selected from the class consisting of  $C_{1-4}$  alkyl, halogen atom, hydroxyl, benzyloxy, amino, mono- or di- $C_{1-4}$  alkylamino, niro and  $C_{1-4}$  alkoxycarbonyl.

- 6. A method according to claim 1, wherein the acyl group represented by R³, X¹ or X² is a carboxylic, carbamic, sulfonic or oxycarboxylic acyl group, each of which may be substituted by one to three groups selected from the class consisting of halogen atom, nitro, nitrile, hydroxyl, carboxyl, C¹-₄ alkoxy, C¹-₄ alkylthio, amino, mono- or di-C¹-₄ alkyl amino, mono- or di-aralkylamino, mono- or di-pyridylcarbonylamino, C¹-₃ alkylcarbonyl, C¹-₄ alkoxycarbonyl, cyclo C₃-₃ alkylcarbonyl, carbamoyl, mono- or di-C¹-₄ alkylcarbamoyl, and phenyl, phenoxy, benzoyl, phenoxycarbonyl, phenyl C¹-₄ alkylcarbamoyl or phenylcarbamoyl group, in which each of said phenyl groups may be substituted by 1 to 4 groups selected from the class consisting of C¹-₄ alkyl, halogen atom, hydroxyl, benzyloxy, amino, mono- or di-C¹-₄ alkylamino nitro and C¹-₄ alkoxycarbonyl.
  - 7. A method according to claim 1, wherein the lower alkoxy group is  $C_{1-6}$  alkoyl group.

5

30

35

55

- 8. A method according to claim 1, wherein the carboxyl group which may be esterified is carboxyl or a group of the formula: -CO-OR<sup>5</sup> wherein R<sup>5</sup> is a hydrocarbon residue which may be substituted.
- 9. A method according to claim 1, wherein the carboxyl group which may form an amide is carboxyl or a group of the formula:

$$-CO-N \Big/ \frac{R^6}{R^7}$$

wherein  $R^6$  is a hydrogen atom or a hydrocarbon residue which may be substituted, and  $R^7$  is a hydrogen atom or a lower alkyl group or  $R^6$  and  $R^7$  may form a cyclic amino group together with the adjacent nitrogen atom.

- 10. A method according to claim 1, wherein R¹ and R² are independently a chain saturated or cyclic unsaturated hydrocarbon residue, or R¹ and R² together with the adjacent carbon atom form cyclopentyl or cyclohexyl.
- 11. A method according to claim 1, wherein R1 and R2 are independently C1-6 alkyl group.
  - 12. A method according to claim 1, wherein R1 and R2 are methyl.
  - 13. A method according to claim 1, wherein R3 is a hydrogen atom or an acyl group.
- 14. A method according to claim 13, wherein the acyl group is  $C_{1-6}$  alkyl carbonyl or  $C_{6-10}$  aryl carbonyl.
  - 15. A method according to claim 1, wherein R3 is a hydrogen atom.
  - 16. A method according to claim 1, wherein X1 is a hydrogen atom or an acyl group.
  - 17. A method according to claim 16, wherein the acyl group is an amino acid derived acyl group.
  - 18. A method according to claim 17, wherein the amino acid is glycine, alanine, glutamic acid, leucine, isoleucine, phenylalanine, aspartic acid, cysteine, sarcosine, glutamine, asparagine or proline.
  - 19. A method according to claim 17, wherein the amino acid is glycine, aspartic acid, asparagine, glutamic acid, glutamine or phenylalanine.
  - 20. A method according to claim 17, wherein the amino acid is glutamic acid or aspartic acid.

- 21. A method according to claim 1, wherein X2 is a carboxyl group which may be esterified.
- 22. A method according to claim 1, wherein X2 is a carboxyl or carbamic acyl group.
- 23. A method according to claim 22, wherein the carbamic acyl group is carbonyl amino or a carboxyl group forming an amide with an amino acid.
- 24. A method according to claim 23, wherein the amino acid is glycine, alanine, glutamic acid, leucine, isoleucine, phenylalanine, aspartic acid, cysteine, sarcosine, glutamine, asparagine or proline.
  - 25. A method according to claim 23, wherein the amino acid is glycine, aspartic acid, asparagine, pheylalanine, glutamic acid or glutamine.
- 26. A method according to claim 1, wherein R¹ and R² are independently C₁-6 alkyl, phenyl or naphthyl, or R¹ and R² form cyclopentyl or cyclohexyl together with the adjacent carbon atom; R³ is a hydrogen atom or a C₀-10 aromatic acyl group; X¹ is a hydrogen atom or an amino acid derived acyl group in which said amino acid is selected from the group consisting of glycine, aspartic acid, phenylalanine, asparagine, glutamic acid and glutamine; X² is a carboxyl group, carbonylamino or a carboxyl group forming an amide with an amino acid residue in which said amino acid is selected from the group consisting of glycine, aspartic acid, phenylalanine, asparagine, glutamic acid and glutamine.
  - 27. A method according to claim 1, wherein the salt is a pharmaceutically acceptable salt.
  - 28. A method according to claim 1, wherein said compound (I) is N-(N-L-γ-Glutamyl-D-penicillamyl)glycine.
  - 29. A method according to claim 1, wherein said compound (I) is N-(N-L-γ-Glutamyl-L-penicillamyl)-L-valine.
    - A method according to claim 1, wherein said compound (I) is N-(N-L-γ-Glutamyl-L-penicillamyl)-L-phenylalanine.
- 30 31. A method of a compound according to claim 1, wherein said compound (I) is N-(N-L-γ-Glutamyl-L-peni-cillamyl)-L-glutamic acid.
  - 32. A method according to claim 1, wherein siad compound (I) is N-(N-L-γ-Glutamyl-D-penicillamyl)diphenyl-methylamine.
  - 33. A pharmaceutical composition for use in preparation of a medicine suitable for the therapy or prophylaxis of hypertension or angina pectoris which comprises (a) as the active ingredient, an effective amount of a compound as defined in claim 1 or a salt thereof and (b) a pharmaceutically acceptable carrier, excipient or diluent therefor.
  - 34. The use of a compound as defined in claim 1 or a salt thereof for the preparation of a medicine for the therapeutic treatment of a mammal.

### 45 Patentansprüche

Patentansprüche für folgende Vertragsstaaten : AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

50 1. Verbindung der Formel

55

5

10

25

35



worin

5

10

15

20

25

30

35

55

R¹ und R² unabhängig ein Wasserstoff-Atom oder ein Kohlenwasserstoff-Rest, der substituiert sein

kann, sind;

R<sup>3</sup> ein Wasserstoff-Atom, eine Acyl-Gruppe, oder ein Kohlenwasserstoff-Rest, der substitu-

iert sein kann, ist:

X1 ein Wasserstoff-Atom, eine Acyl-Gruppe, eine niedere Alkoxy-Gruppe oder ein Kohlen-

wasserstoff-Rest, der substituiert sein kann, ist;

X<sup>2</sup> eine Acyl-Gruppe oder eine Carboxyl-Gruppe, die verestert sein oder ein Amid bilden

kann, ist;

mit der Maßgabe,

daß dann, wenn X<sup>2</sup> eine Carboxyl-Gruppe ist, X<sup>1</sup> nicht ein Wasserstoff-Atom oder eine Acetyl-Gruppe ist

daß dann, wenn R¹ und R² beide Wasserstoff-Atome sind, X¹ nicht eine Acetyl-Gruppe oder eine γ-Glutamyl-Gruppe ist, oder ein Salz derselben.

- 2. Verbindung nach Anspruch 1, worin R¹ und R² unabhängig ein Kohlenwasserstoff-Rest, der substituiert sein kann, sind oder R¹ und R² aneinander gebunden sein können und dann einen Ring der Formel -(CH<sub>2</sub>)<sub>n</sub>- bilden, worin n eine ganze Zahl von 2 bis 6 ist.
- 3. Verbindung nach Anspruch 1, worin X1 ein von einer Aminosäure abgeleitetes Acyl ist.
  - 4. Verbindung nach Anspruch 1, worin

R¹ und R² unabhängig ein Kohlenwasserstoff-Rest, der substituiert sein kann, sind;

R³ ein Wasserstoff-Atom, eine Acyl-Gruppe, oder ein Kohlenwasserstoff-Rest, der substitu-

iert sein kann, ist;

X1 ein von einer Aminosäure abgeleitetes Acyl ist;

X<sup>2</sup> eine Acyl-Gruppe oder eine Carboxyl-Gruppe, die verestert sein oder ein Amid bilden

kann, ist.

- Verbindung nach Anspruch 1, worin der Kohlenwasserstoff-Rest, der durch R¹, R², R³ oder X¹ dargestellt wird, ein kettengesättigter, kettenungesättigter, cyclisch-gesättigter oder cyclisch-ungesättigter Kohlenwasserstoff-Rest ist, der jeweils durch eine bis drei Gruppen substituiert sein kann, die aus der aus einem Halogen-Atom, Nitro, Nitril, Hydroxy, Carboxyl, C¹,-4-Alkoxy, C¹,-4-Alkylthio, Amino, Mono- oder Di-C¹,-4-Alkylamino, Mono- oder Di- aralkylamino, Mono- oder Dipyridylamino, C¹,-4-Alkoxycarbonyl, Cyclo-C₃,-6-alkylcarbonyl, Carbamoyl, Mono- oder Di-C¹,-4-alkylcarbamoyl und Phenyl, Phenoxy, Benzoyl, Phenoxycarbonyl, Phenyl-C¹,-4-alkylcarbamoyl oder der Phenylcarbamoyl-Gruppe bestehenden Klasse ausgewählt sein können, wobei jede der genannten Phenyl-Gruppen durch 1 bis 4 Gruppen substituiert sein kann, die aus der aus C¹,-4-Alkyl, einem Halogen-Atom, Hydroxyl, Benzyloxy, Amino, Mono- oder Di-C¹,-4-alkylamino, Nitro und C¹,-4-Alkoxycarbonyl bestehenden Klasse ausgewählt sein können.
  - 6. Verbindung nach Anspruch 1, worin die Acyl-Gruppe, die durch R³, X¹ oder X² dargestellt wird, eine Carbonsäure-, Carbaminsäure-, Sulfonsäure- oder Oxycarbonsäure-Acyl-Gruppe ist, die jeweils durch eine bis drei Gruppen substituiert sein kann, die aus der aus einem Halogen-Atom, Nitro, Nitril, Hydroxy, Carboxyl, C₁-₄-Alkoxy, C₁-₄-Alkylthio, Amino, Mono- oder Di-C₁-₄-alkylamino, Mono- oder Diaralkylamino, Mono- oder Dipyridylcarbonylamino, C₁-₆-Alkylcarbonyl, C₁-₄-Alkoxycarbonyl, Cyclo-C₃-₆-alkylcarbonyl, Carbamoyl, Mono- oder Di-C₁-₄-alkylcarbamoyl und Phenyl, Phenoxy, Benzoyl, Phenoxycarbonyl, Phenyl-C₁-₄-alkylcarbamoyl oder der Phenylcarbamoyl-Gruppe bestehenden Klasse ausgewählt sein können, wobei jede der genannten Phenyl-Gruppen durch 1 bis 4 Gruppen substituiert sein kann, die aus

der aus C<sub>1-4</sub>-Alkyl, einem Halogen-Atom, Hydroxyl, Benzyloxy, Amino, Mono- oder Di-C<sub>1-4</sub>-alkylamino, Nitro und C<sub>1-4</sub>-Alkoxycarbonyl bestehenden Klasse ausgewählt sein können.

- 5 7. Verbindung nach Anspruch 1, worin die niedere Alkoxy-Gruppe eine C<sub>1-8</sub>-Alkoxy-Gruppe ist.
  - 8. Verbindung nach Anspruch 1, worin die Carboxyl-Gruppe, die verestert sein kann, Carboxyl oder eine Gruppe der Formel -CO-OR<sup>5</sup> ist, worin R<sup>5</sup> ein Kohlenwasserstoff-Rest ist, der substituiert sein kann.
- Verbindung nach Anspruch 1, worin die Carboxyl-Gruppe, die ein Amid bilden kann, Carboxyl oder eine Gruppe der Formel

-CO-N R

20 ist, worin

15

30

45

50

 $R^6$ 

ein Wasserstoff-Atom oder ein Kohlenwasserstoff-Rest, der substituiert sein kann, ist und

 $R^7$ 

ein Wasserstoff-Atom oder eine niedere Alkyl-Gruppe ist oder

R<sup>6</sup> und R<sup>7</sup>

zusammen mit dem benachbarten Stickstoff-Atom eine cyclische Amino-Gruppe bilden

können.

- 10. Verbindung nach Anspruch 1, worin R¹ und R² unabhängig ein kettengesättigter oder ein cyclisch-ungesättigter Kohlenwasserstoff-Rest sind oder R¹und R² zusammen mit dem benachbarten Kohlenstoff-Atom Cyclopentyl oder Cyclohexyl bilden.
  - 11. Verbindung nach Anspruch 1, worin R<sup>1</sup> und R<sup>2</sup> unabhängig eine C<sub>1-8</sub>-Alkyl-Gruppe sind.
  - 12. Verbindung nach Anspruch 1, worin R1 und R2 Methyl sind.
  - 13. Verbindung nach Anspruch 1, worin R3 ein Wasserstoff-Atom oder eine Acyl-Gruppe ist.
- 35 14. Verbindung nach Anspruch 13, worin die Acyl-Gruppe C<sub>1-6</sub>-Alkylcarbonyl- oder C<sub>6-10</sub>Arylcarbonyl ist.
  - 15. Verbindung nach Anspruch 1, worin R³ ein Wasserstoff-Atom ist.
  - 16. Verbindung nach Anspruch 1, worin X1 ein Wasserstoff-Atom oder eine Acyl-Gruppe ist.
- 40 17. Verbindung nach Anspruch 16, worin die Acyl-Gruppe eine von einer Aminosäure abgeleitete Acyl-Gruppe ist.
  - 18. Verbindung nach Anspruch 17, worin die Aminosäure Glycin, Alanin, Glutaminsäure, Leucin, Isoleucin, Phenylalanin, Asparaginsäure, Cystein, Sarcosin, Glutamin, Asparagin oder Prolin ist.
  - Verbindung nach Anspruch 17, worin die Aminosäure Glycin, Asparaginsäure, Asparagin, Glutaminsäure, Glutamin oder Phenylalanin ist.
  - 20. Verbindung nach Anspruch 17, worin die Aminosäure Glutaminsäure oder Asparaginsäure ist.
  - 21. Verbindung nach Anspruch 1, worin X<sup>2</sup> eine Carboxyl-Gruppe ist, die verestert sein kann.
  - 22. Verbindung nach Anspruch 1, worin X<sup>2</sup> eine Carboxyl- oder eine Carbaminsäure-Acyl-Gruppe ist.
- 23. Verbindung nach Anspruch 22, worin die Carbaminsäure-Acyl-Gruppe Carbonylamino oder eine mit einer Aminosäure ein Amid bildende Carboxyl-Gruppe ist.
  - 24. Verbindung nach Anspruch 23, worin die Aminosäure Glycin, Alanin, Glutaminsäure, Leucin, Isoleucin, Phenylalanin, Asparaginsäure, Cystein, Sarcosin, Glutamin, Asparagin oder Prolin ist.

- 25. Verbindung nach Anspruch 23, worin die Aminosäure Glycin, Asparaginsäure, Asparagin, Phenylalanin, Glutaminsäure oder Glutamin ist.
- 26. Verbindung nach Anspruch 1, worin

10

15

25

30

35

40

45

50

55

 $X^2$ 

R¹ und R² unabhängig C<sub>1-6</sub>-Alkyl, Phenyl oder Naphthyl sind oder R¹ und R² zusammen mit dem benachbarten Kohlenstoff-Atom Cyclopentyl oder Cyclohexyl bilden;

R<sup>3</sup> ein Wasserstoff-Atom oder eine aromatische C<sub>6-10</sub>-Acyl-Gruppe ist;

X1 ein Wasserstoff-Atom oder eine von einer Aminosäure abgeleitete Acyl-Gruppe ist, wobei die Aminosäure aus der aus Glycin, Asparaginsäure, Phenylalanin, Asparagin, Glutamin-

säure und Glutamin bestehenden Gruppe ausgewählt ist;

eine Carboxyl-Gruppe, Carbonylamino oder eine mit einem Aminosäure-Rest ein Amid bildende Carboxyl-Gruppe ist, wobei die Aminosäure aus der aus Glycin, Asparaginsäure, Phenylalanin, Asparagin, Glutaminsäure und Glutamin bestehenden Gruppe ausgewählt

ist.

- 27. Verbindung nach Anspruch 1, worin das Salz ein pharmazeutisch unbedenkliches Salz ist.
- 28. Verbindung nach Anspruch 1, die N-(N-L-γ-Glutamyl-D-penicillamyl)glycin ist.
- 29. Verbindung nach Anspruch 1, die N-(N-L-γ-Glutamyl-L-penicillamyt)-L-valin ist.
  - 30. Verbindung nach Anspruch 1, die N-(N-L-γ-Glutamyl-L-penicillamyl)-L-phenylalanin ist.
  - 31. Verbindung nach Anspruch 1, die N-(N-L-y-Glutamyl-L-penicillamyl)-L-glutaminsäure ist.
  - 32. Verbindung nach Anspruch 1, die N-(N-L-y-Glutamyl-D-penicillamyl)diphenylmethylamin ist
  - 33. Pharmazeutische Zusammensetzung, die für die Therapie oder Prophylaxe von Bluthochdruck oder Angina pectoris geeignet ist, umfassend
    - (a) als Wirkstoff eine wirksame Menge einer Verbindung nach Anspruch 1 oder eines Salzes derselben und
    - (b) ein pharmazeutisch unbedenkliches Trägermaterial, Streckmittel oder Verdünnungsmittel für diese.
  - 34. Verwendung einer Verbindung nach Anspruch 1 oder eines Salzes derselben zu Herstellung eines Medikaments zur therapeutischen Behandlung eines Säugers.
  - 35. Verfahren zur Herstellung einer Verbindung der Formel (I)

 $X^{1}$   $X^{1}$   $X^{1}$   $X^{1}$   $X^{2}$   worin

R¹ und R² unabhängig ein Wasserstoff-Atom oder ein Kohlenwasserstoff-Rest, der substituiert sein

kann, sind;

R<sup>3</sup> ein Wasserstoff-Atom, eine Acyl-Gruppe, oder ein Kohlenwasserstoff-Rest, der substituiert sein kann, ist;

X<sup>1</sup> ein Wasserstoff-Atom, eine Acyl-Gruppe, eine niedere Alkoxy-Gruppe oder ein Kohlenwasserstoff-Rest, der substituiert sein kann, ist;

X<sup>2</sup> eine Acyl-Gruppe oder eine Carboxyl-Gruppe, die verestert sein oder ein Amid bilden

kann, ist;

mit der Maßgabe,

daß dann, wenn  $X^2$  eine Carboxyl-Gruppe ist,  $X^1$  nicht ein Wasserstoff-Atom oder eine Acetyl-Gruppe ist und

daß dann, wenn  $R^1$  und  $R^2$  beide Wasserstoff-Atome sind,  $X^1$  nicht eine Acetyl-Gruppe oder eine  $\gamma$ -Glutamyl-Gruppe ist, oder eines Salzes derselben, umfassend

(a) die Durchführung einer Nitrosierungs-Reaktion mit einer Verbindung der Formel (II)

worin

5

10

15

20

25

30

35

45

50

55

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, X<sup>1</sup> und X<sup>2</sup> die gleichen sind, wie sie oben beschrieben sind, und gewünschtenfalls (b) die Überführung des durch das obige Verfahren (a) erhaltenen Produkts in ein Salz desselben.

## Patentansprüche für folgenden Vertragsstaat : ES

## 1. Verfahren zur Herstellung einer Verbindung der Formel (I)

$$\begin{array}{ccc}
R^{3} \\
| & & \\
X^{1}-N & R^{1} \\
& & | & \\
CH--C--SNC \\
/ & | & \\
X^{2} & R^{2}
\end{array}$$

worin

R¹ und R² unabhängig ein Wasserstoff-Atom oder ein Kohlenwasserstoff-Rest, der substituiert sein

kann, sind;

R<sup>3</sup> ein Wasserstoff-Atom, eine Acyl-Gruppe, oder ein Kohlenwasserstoff-Rest, der substitu-

iert sein kann, ist;

X1 ein Wasserstoff-Atom, eine Acyl-Gruppe, eine niedere Alkoxy-Gruppe oder ein Kohlen-

wasserstoff-Rest, der substituiert sein kann, ist;

40 X<sup>2</sup> eine Acyl-Gruppe oder eine Carboxyl-Gruppe, die verestert sein oder ein Amid bilden

kann, ist;

mit der Maßgabe,

daß dann, wenn X² eine Carboxyl-Gruppe ist, X¹ nicht ein Wasserstoff-Atom oder eine Acetyl-Gruppe ist

daß dann, wenn R¹ und R² beide Wasserstoff-Atome sind, X¹ nicht eine Acetyl-Gruppe oder eine γ-Glut-

amyl-Gruppe ist, oder eines Salzes derselben,

umfassend

(a) die Durchführung einer Nitrosierungs-Reaktion mit einer Verbindung der Formel (II)

worin

5

15

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, X<sup>1</sup> und X<sup>2</sup> die gleichen sind, wie sie oben beschrieben sind, und gewünschtenfalls (b) die Überführung des durch das obige Verfahren (a) erhaltenen Produkts in ein Salz desselben.

- Verfahren nach Anspruch 1, wonn R1 und R2 unabhängig ein Kohlenwasserstoff-Rest, der substituiert sein kann, sind oder R1 und R2 aneinander gebunden sein können und dann einen Ring der Formel -(CH<sub>2</sub>)<sub>n</sub>- bilden, worin n eine ganze Zahl von 2 bis 6 ist.
- Verfahren nach Anspruch 1, worin X1 ein von einer Aminosäure abgeleitetes Acyl ist. 10
  - Verfahren nach Anspruch 1, worin

R1 und R2 unabhängig ein Kohlenwasserstoff-Rest, der substituiert sein kann, sind;

 $R^3$ ein Wasserstoff-Atom, eine Acyl-Gruppe, oder ein Kohlenwasserstoff-Rest, der substitu-

iert sein kann, ist;

Χ¹ ein von einer Aminosäure abgeleitetes Acyl ist;

 $X^2$ eine Acyl-Gruppe oder eine Carboxyl-Gruppe, die verestert sein oder ein Amid bilden kann, ist.

- Verfahren nach Anspruch 1, worin der Kohlenwasserstoff-Rest, der durch R1, R2, R3 oder X1 dargestellt 20 wird, ein kettengesättigter, kettenungesättigter, cyclisch-gesättigter oder cyclisch-ungesättigter Kohlenwasserstoff-Rest ist, der jeweils durch eine bis drei Gruppen substituiert sein kann, die aus der aus einem Halogen-Atom, Nitro, Nitril, Hydroxy, Carboxyl, C<sub>1-4</sub>-Alkoxy, C<sub>1-4</sub>-Alkylthio, Amino, Mono- oder Di-C<sub>1-4</sub>alkylamino, Mono- oder Di-aralkylamino, Mono- oder Dipyridylamino, C1-4-Alkoxycarbonyl, Cyclo-C3-6alkylcarbonyl, Carbamoyl, Mono- oder Di-C1-4-alkylcarbamoyl und Phenyl, Phenoxy, Benzoyl, 25 Phenoxycarbonyl, Phenyl-C<sub>1-4</sub>-alkylcarbamoyl oder der Phenylcarbamoyl-Gruppe bestehenden Klasse ausgewählt sein können, wobei jede der genannten Phenyl-Gruppen durch 1 bis 4 Gruppen substituiert sein kann, die aus der aus C<sub>1-4</sub>-Alkyl, einem Halogen-Atom, Hydroxyl, Benzyloxy, Amino, Mono- oder Di-C<sub>1-4</sub>-alkylamino, Nitro und C<sub>1-4</sub>-Alkoxycarbonyl bestehenden Klasse ausgewählt sein können.
- 30 Verfahren nach Anspruch 1, worin die Acyl-Gruppe, die durch R3, X1 oder X2 dargestellt wird, eine Carbonsäure-, Carbaminsäure-, Sulfonsäure- oder Oxycarbonsäure-Acyl-Gruppe ist, die jeweils durch eine bis drei Gruppen substituiert sein kann, die aus der aus einem Halogen-Atom, Nitro, Nitril, Hydroxy, Carboxyl, C<sub>1-4</sub>-Alkoxy, C<sub>1-4</sub>-Alkylthio, Amino, Mono- oder Di-C<sub>1-4</sub>-alkylamino, Mono- oder Diaralkylamino,  $\label{eq:control_control_control} Mono-\ oder\ Dipyridylcarbonylamino,\ C_{1-6}-Alkylcarbonyl,\ C_{1-4}-Alkoxycarbonyl,\ Cyclo-C_{3-6}-alkylcarbonyl,\ C_{1-6}-Alkylcarbonyl,\ C_{1-6}-Alkylcarbony$ 35 Carbamoyl, Mono- oder Di-C1-4-alkylcarbamoyl und Phenyl, Phenoxy, Benzoyl, Phenoxycarbonyl, Phenyl-C<sub>1-4</sub>-alkylcarbamoyl oder der Phenylcarbamoyl-Gruppe bestehenden Klasse ausgewählt sein konnen, wobei jede der genannten Phenyl-Gruppen durch 1 bis 4 Gruppen substituiert sein kann, die aus der aus C1-4-Alkyl, einem Halogen-Atom, Hydroxyl, Benzyloxy, Amino, Mono- oder Di-C1-4-alkylamino, 40 Nitro und C<sub>1-4</sub>-Alkoxycarbonyl bestehenden Klasse ausgewählt sein können.
  - 7. Verfahren nach Anspruch 1, worin die niedere Alkoxy-Gruppe eine C<sub>1-6</sub>-Alkoxy-Gruppe ist.
- 8. Verfahren nach Anspruch 1, worin die Carboxyl-Gruppe, die verestert sein kann, Carboxyl oder eine Gruppe der Formel -CO-OR5 ist, worin R5 ein Kohlenwasserstoff-Rest ist, der substituiert sein kann. 45
  - Verfahren nach Anspruch 1, worin die Carboxyl-Gruppe, die ein Amid bilden kann, Carboxyl oder eine Gruppe der Formel

-CO-N

ist, worin

50

55

 $R^6$ ein Wasserstoff-Atom oder ein Kohlenwasserstoff-Rest, der substituiert sein kann, ist und ein Wasserstoff-Atom oder eine niedere Alkyl-Gruppe ist oder  $R^7$ 

- R<sup>6</sup> und R<sup>7</sup> zusammen mit dem benachbarten Stickstoff-Atom eine cyclische Amino-Gruppe bilden können.
- 10. Verfahren nach Anspruch 1, worin R¹ und R² unabhängig ein kettengesättigter oder ein cyclisch-ungesättigter Kohlenwasserstoff-Rest sind oder R¹und R² zusammen mit dem benachbarten Kohlenstoff-Atom Cyclopentyl oder Cyclohexyl bilden.
  - 11. Verfahren nach Anspruch 1, worin R1 und R2 unabhängig eine C1-6-Alkyl-Gruppe sind.
- 10 12. Verfahren nach Anspruch 1, worin R<sup>1</sup> und R<sup>2</sup> Methyl sind.

15

45

50

- 13. Verfahren nach Anspruch 1, worin R<sup>3</sup> ein Wasserstoff-Atom oder eine Acyl-Gruppe'ist.
- 14. Verfahren nach Anspruch 13, worin die Acyl-Gruppe C<sub>1-8</sub>-Alkylcarbonyl- oder C<sub>8-10</sub>Arylcarbonyl ist.
- 15. Verfahren nach Anspruch 1, worin R3 ein Wasserstoff-Atom ist.
- 16. Verfahren nach Anspruch 1, worin X1 ein Wasserstoff-Atom oder eine Acyl-Gruppe ist.
- Verfahren nach Anspruch 16, worin die Acyl-Gruppe eine von einer Aminosäure abgeleitete Acyl-Gruppe ist.
  - **18.** Verfahren nach Anspruch 17, worin die Aminosäure Glycin, Alanin, Glutaminsäure, Leucin, Isoleucin, Phenylalanin, Asparaginsäure, Cystein, Sarcosin, Glutamin, Asparagin oder Prolin ist.
- 19. Verfahren nach Anspruch 17, worin die Aminosäure Glycin, Asparaginsäure, Asparagin, Glutaminsäure, Glutamin oder Phenylalanin ist.
  - 20. Verfahren nach Anspruch 17, worin die Aminosäure Glutaminsäure oder Asparaginsäure ist.
- 30 21. Verfahren nach Anspruch 1, worin X<sup>2</sup> eine Carboxyl-Gruppe ist, die verestert sein kann.
  - 22. Verfahren nach Anspruch 1, worin X² eine Carboxyl- oder eine Carbaminsäure-Acyl-Gruppe ist.
- 23. Verfahren nach Anspruch 22, worin die Carbaminsäure-Acyl-Gruppe Carbonylamino oder eine mit einer Aminosäure ein Amid bildende Carboxyl-Gruppe ist.
  - 24. Verfahren nach Anspruch 23, worin die Aminosäure Glycin, Alanin, Glutaminsäure, Leucin, Isoleucin, Phenylalanin, Asparaginsäure, Cystein, Sarcosin, Glutamin, Asparagin oder Prolin ist.
- 25. Verfahren nach Anspruch 23, worin die Aminosäure Glycin, Asparaginsäure, Asparagin, Phenylalanin,
  Glutaminsäure oder Glutamin ist.
  - 26. Verfahren nach Anspruch 1, worin
    - R<sup>1</sup> und R<sup>2</sup> unabhängig C<sub>1-8</sub>-Alkyl, Phenyl oder Naphthyl sind oder R<sup>1</sup> und R<sup>2</sup> zusammen mit dem benachbarten Kohlenstoff-Atom Cyclopentyl oder Cyclohexyl bilden;
    - R<sup>3</sup> ein Wasserstoff-Atom oder eine aromatische C<sub>8-10</sub>-Acyl-Gruppe ist;
    - X1 ein Wasserstoff-Atom oder eine von einer Aminosäure abgeleitete Acyl-Gruppe ist, wobei die Aminosäure aus der aus Glycin, Asparaginsäure, Phenylalanin, Asparagin, Glutaminsäure und Glutamin bestehenden Gruppe ausgewählt ist;
    - X<sup>2</sup> eine Carboxyl-Gruppe, Carbonylamino oder eine mit einem Aminosäure-Rest ein Amid bildende Carboxyl-Gruppe ist, wobei die Aminosäure aus der aus Glycin, Asparaginsäure, Phenylalanin, Asparagin, Glutaminsäure und Glutamin bestehenden Gruppe ausgewählt ist
  - 27. Verfahren nach Anspruch 1, worin das Salz ein pharmazeutisch unbedenkliches Salz ist
  - 28. Verfahren nach Anspruch 1, die N-(N-L-y-Glutamyl-D-penicillamyl)glycin ist.
  - 29. Verfahren nach Anspruch 1, die N-(N-L-γ-Glutamyl-L-penicillamyl)-L-valin ist.

- 30. Verfahren nach Anspruch 1, die N-(N-L-y-Glutamyl-L-penicillamyl)-L-phenylalanin ist.
- 31. Verfahren nach Anspruch 1, die N-(N-L-γ-Glutamyl-L-penicillamyl)-L-glutaminsäure ist.
- 32. Verfahren nach Anspruch 1, die N-(N-L-y-Glutamyl-D-penicillamyl)diphenylmethylamin ist.
- 33. Pharmazeutische Zusammensetzung, die für die Therapie oder Prophylaxe von Bluthochdruck oder Angina pectoris geeignet ist, umfassend
  - (a) als Wirkstoff eine wirksame Menge einer Verbindung, wie sie in Anspruch 1 definiert ist, oder eines Salzes derselben und
  - (b) ein pharmazeutisch unbedenkliches Trägermaterial, Streckmittel oder Verdünnungsmittel für diese.
- 34. Verwendung einer Verbindung, wie sie in Anspruch 1 definiert ist, oder eines Salzes derselben zu Herstellung eines Medikaments zur therapeutischen Behandlung eines Säugers.

#### Revendications

5

10

15

25

30

35

- Revendications pour les Etats contractants suivants : AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE
  - 1. Composé de formule:

$$X_{1} - \frac{X_{1}}{1} > CII - \frac{1}{C} - 240$$

dans laquelle  $R^1$  et  $R^2$  sont, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical hydrocarboné qui peut être substitué;  $R^3$  est un atome d'hydrogène, un groupe acyle ou un radical hydrocarboné qui peut être substitué;  $X^1$  est un atome d'hydrogène, un groupe acyle, un groupe alcoxy inférieur ou un radical hydrocarboné qui peut être substitué;  $X^2$  est un groupe acyle ou un groupe carboxylique qui peut être estérifié ou qui peut former un amide; avec la condition que  $X^1$  n'est pas un atome d'hydrogène ou le groupe acétyle lorsque  $X^2$  est un groupe carboxylique et que  $X^1$  n'est pas un groupe acétyle ou un groupe  $\gamma$ -glutamyle lorsque  $R^1$  et  $R^2$  sont tous deux des atomes d'hydrogène, ou un sel de celui-ci.

- 2. Composé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un radical hydrocarboné qui peut être substitué ou R¹ et R² peuvent être liés l'un à l'autre pour former un cycle de formule: -(CH<sub>2</sub>)<sub>n</sub>- dans laquelle n est un nombre entier de 2 à 6.
  - 3. Composé selon la revendication 1, dans lequel X1 est un acyle dérivé d'un acide aminé.
- 45 4. Composé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un radical hydrocarboné qui peut être substitué; R³ est un atome d'hydrogène, un groupe acyle ou un radical hydrocarboné qui peut être substitué; X¹ est un acyle dérivé d'un acide aminé; X² est un groupe acyle ou un groupe carboxylique qui peut être estérifié ou qui peut former un amide.
- 5. Composé selon la revendication 1, dans lequel le radical hydrocarboné représenté par R¹, R², R³ ou X¹ est un radical hydrocarboné à chaîne saturée, à chaîne insaturée, un radical hydrocarboné cyclique saturé ou cyclique insaturé, dont chacun peut être substitué par un à trois groupes choisis dans le groupe consistant en un atome d'halogène, un groupe nitro, nitrile, hydroxyle, carboxylique, alcoxy en C₁-₄, alcoylthio en C₁-₄, amino, mono ou di(alcoyle en C₁-₄)amino, mono ou di-aralcolyamino, mono ou di-pyridylamino, alcoxy en C₁-₄-carbonyle, cycloalcoyle en C₃-₅-carbonyle, carbamoyle, mono ou di(alcoyle en C₁-₄)carbamoyle et un groupe phényle, phénoxy, benzoyle, phénoxycarbonyle, phénylalcoyle en C₁-₄-carbamoyle ou phénylcarbamoyle, dans lesquels chacun desdits groupes phényle peut être substitué par 1 à 4 groupes choisis dans le groupe consistant en un alcoyle en C₁-₄, un atome d'halogène, un groupe hydroxyle, ben-

zyloxy, amino, mono ou di(alcoyle en  $C_{1-4}$ )amino, nitro et alcoxy en  $C_{1-4}$ -carbonyle.

- 6. Composé selon la revendication 1, dans lequel le groupe acyle représenté par R³, X¹ ou X² est un groupe acyle carboxylique, carbamique, sulfonique ou oxycarboxylique dont chacun peut être substitué par 1 à 3 groupes choisis dans le groupe consistant en un atome d'halogène, un groupe nitro, nitrile, hydroxyle, carboxylique, alcoxy en C₁-₄, alcoylthio en C₁-₄, amino, mono ou di(alcoyle en C₁-₄)amino, mono ou di-aralcoylamino, mono ou di-pyridylcarbonylamino, alcoyle en C₁-₄-carbonyle, alcoxy en C₁-₄-carbonyle, cycloalcoyle en C₃-₆-carbonyle, carbamoyle, mono ou di(alcoyle en C₁-₄)-carbamoyle et un groupe phényle, phénoxy, benzoyle, phénoxycarbonyle, phényl-alcoyle en C₁-₄-carbamoyle ou phénylcarbamoyle dans lesquels chacun desdits groupes phényle peut être substitué par 1 à 4 groupes choisis dans le groupe consistant en un alcoyle en C₁-₄, un atome d'halogène, un groupe hydroxyle, benzyloxy, amino, mono ou di(alcoyle en C₁-₄)amino, nitro et alcoxy en C₁-₄-carbonyle.
- 7. Composé selon la revendication 1, dans lequel le groupe alcoxy inférieur est un groupe alcoxy en C<sub>1-6</sub>.
  - 8. Composé selon la revendication 1, dans lequel le groupe carboxylique qui peut être estérifié est un carboxyle ou un groupe de formule: -CO-OR<sup>5</sup>, dans laquelle R<sup>5</sup> est un radical hydrocarboné qui peut être substitué.
  - 9. Composé selon la revendication 1, dans lequel le groupe carboxylique qui peut former un amide est un carboxyle ou un groupe de formule:

$$-CO-N \Big< \frac{R^6}{R^7}$$

20

25

- dans laquelle R<sup>6</sup> est un atome d'hydrogène ou un radical hydrocarboné qui peut être substitué et R<sup>7</sup> est un atome d'hydrogène ou un groupe alcoyle inférieur ou R<sup>6</sup> et R<sup>7</sup> forment ensemble avec l'atome d'azote adjacent un groupe amino cyclique.
- 10. Composé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un radical hydrocarboné à chaîne saturée ou cyclique insaturée ou R¹ et R² forment ensemble avec l'atome de carbone adjacent un groupe cyclopentyle ou cyclohexyle.
  - 11. Composé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un groupe alcoyle en C<sub>1-6</sub>.
- 12. Composé selon la revendication 1, dans lequel R¹ et R² sont un méthyle.
  - 13. Composé selon la revendication 1, dans lequel R<sup>3</sup> est un atome d'hydrogène ou un groupe acyle.
- 14. Composé selon la revendication 13, dans lequel le groupe acyle est un alcoyle en C<sub>1-6</sub>-carbonyle ou un aryle en C<sub>8-10</sub>-carbonyle.
  - 15. Composé selon la revendication 1, dans lequel R<sup>3</sup> est un atome d'hydrogène.
  - 16. Composé selon la revendication 1, dans lequel X1 est un atome d'hydrogène ou un groupe acyle.
- Composé selon la revendication 16, dans lequel le groupe acyle est un groupe acyle dérivé d'un acide aminé.
  - 18. Composé selon la revendication 17, dans lequel l'acide aminé est la glycine, l'alanine, l'acide glutamique, la leucine, l'isoleucine, la phénylalanine, l'acide aspartique, la cystéine, la sarcosine, la glutamine, l'asparagine ou la proline.
  - 19. Composé selon la revendication 17, dans lequel l'acide aminé est la glycine, l'acide aspartique, l'asparagine, l'acide glutamique, la glutamine ou la phénylalanine.

- 20. Composé selon la revendication 17, dans lequel l'acide aminé est l'acide glutamique ou l'acide aspartique.
- 21. Composé selon la revendication 1, dans lequel X<sup>2</sup> est un groupe carboxylique qui peut être estérifié.
- 22. Composé selon la revendication 1, dans lequel X<sup>2</sup> est un groupe acyle carboxylique ou carbamique.
- 23. Composé selon la revendication 22, dans lequel le groupe acyle carbamique est un groupe aminocarbonyle ou un groupe carboxylique formant un amide avec un acide aminé.
- 24. Composé selon la revendication 23, dans lequel l'acide aminé est la glycine, l'alanine, l'acide glutamique, la leucine, l'isoleucine, la phénylalanine, l'acide aspartique, la cystéine, la sarcosine, la glutamine, l'asparagine ou la proline.
  - 25. Composé selon la revendication 23, dans lequel l'acide aminé est la glycine, l'acide aspartique, l'asparagine, la phénylalanine, l'acide glutamique ou la glutamine.
    - 26. Composé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un groupe alcoyle en C₁-6, phényle ou náphtyle ou R¹ et R² forment ensemble avec l'atome de carbone adjacent un groupe cyclopentyle ou cyclohexyle; R³ est un atome d'hydrogène ou un groupe acyle aromatique en C₅-10; X¹ est un atome d'hydrogène ou un groupe acyle dérivé d'un acide aminé dans lequel ledit acide aminé est choisi dans le groupe consistant en la glycine, l'acide aspartique, la phénylalanine, l'asparagine, l'acide glutamique et la glutamine; X² est un groupe carboxylique, aminocarbonyle ou un groupe carboxylique formant un amide avec un radical d'acide aminé dans lequel ledit acide aminé est choisi dans le groupe consistant en la glycine, l'acide aspartique, la phénylalanine, l'asparagine, l'acide glutamique et la glutamine.
    - 27. Composé selon la revendication 1, dans lequel le sel est un sel pharmaceutiquement acceptable.
    - 28. Composé selon la revendication 1, qui est la N-(N-L-γ-glutamyl-D-pénicillamyl)glycine.
    - 29. Composé selon la revendication 1, qui est la N-(N-L-γ-glutamyl-L-pénicillamyl)-L-valine.
    - 30. Composé selon la revendication 1, qui est la N-(N-L-γ-glutamyl-L-pénicillamyl)-phénylalanine.
    - 31. Composé selon la revendication 1, qui est l'acide N-(N-L-y-glutamyl-L-pénicillamyl)-L-glutamique.
    - 32. Composé selon la revendication 1, qui est la N-(N-L-γ-glutamyl-D-pénicillamyl)diphénylméthylamine.
  - 33. Composition pharmaceutique propre au traitement curatif ou prophylactique de l'hypertension ou de l'angine de poitrine, qui comprend (a) comme substance active, une quantité efficace d'un composé selon la revendication 1 ou d'un sel de celui-ci et (b) une matière de support, un excipient ou un diluant pharmaceutiquement acceptable pour ce composé.
    - 34. Utilisation d'un composé selon la revendication 1 ou d'un sel de celui-ci pour la préparation d'un médicament pour le traitement thérapeutique d'un mammifère.
  - 35. Procédé de préparation d'un composé de formule (I):

5

15

20

25

30

35

40

45

50

$$X' - \frac{R^2}{N}$$
 CH  $-\frac{C}{C}$  SNO

dans laquelle R¹ et R² sont, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical hydrocarboné qui peut être substitué; R³ est un atome d'hydrogène, un groupe acyle ou un radical hydrocarboné qui peut être substitué; X¹ est un atome d'hydrogène, un groupe acyle, un groupe alcoxy inférieur ou un radical hydrocarboné qui peut être substitué; X² est un groupe acyle ou un groupe carboxylique qui peut être estérifié ou qui peut former un amide; avec la condition que X¹ n'est pas un atome d'hydrogène ou le groupe acétyle lorsque  $X^2$  est un groupe carboxylique et que  $X^1$  n'est pas un groupe acétyle ou un groupe  $\gamma$ -glutamyle lorsque  $R^1$  et  $R^2$  sont tous deux des atomes d'hydrogène, ou d'un sel de celui-ci, selon lequel

(a) on soumet un composé de formule (II):

5

10

15

20

25

30

35

40

45

50

$$X_{1} - \frac{1}{N} > CII - \frac{1}{N} = SII$$

dans laquelle R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, X<sup>1</sup> et X<sup>2</sup> sont tels que défini ci-dessus, à une réaction de nitrosation et, si désiré, (b) on transforme le produit obtenu par le procédé (a) ci-dessus en un sel de celui-ci.

# Revendications pour l'Etat contractant suivant : ES

1. Procédé de préparation d'un composé de formule (I):

$$X_1 - \frac{1}{N}$$
 > CII -  $\frac{1}{N}$  = SHO

dans laquelle  $R^1$  et  $R^2$  sont, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical hydrocarboné qui peut être substitué;  $R^3$  est un atome d'hydrogène, un groupe acyle ou un radical hydrocarboné qui peut être substitué;  $X^1$  est un atome d'hydrogène, un groupe acyle, un groupe alcoxy inférieur ou un radical hydrocarboné qui peut être substitué;  $X^2$  est un groupe acyle ou un groupe carboxylique qui peut être estérifié ou qui peut former un amide; avec la condition que  $X^1$  n'est pas un atome d'hydrogène ou le groupe acétyle lorsque  $X^2$  est un groupe carboxylique et que  $X^1$  n'est pas un groupe acétyle ou un groupe  $Y^2$  est un groupe carboxylique et que  $Y^2$  peut qui peut de celui-ci, selon lequel

(a) on soumet un composé de formule (II):

$$\frac{X_{i}}{N} > CH - \frac{K_{i}}{C} = SH$$

dans laquelle R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, X<sup>1</sup> et X<sup>2</sup> sont tels que défini ci-dessus, à une réaction de nitrosation et, si désiré, (b) on transforme le produit obtenu par le procédé (a) ci-dessus en un sel de celui-ci.

- 2. Procédé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un radical hydrocarboné qui peut être substitué ou R¹ et R² peuvent être liés l'un à l'autre pour former un cycle de formule: -(CH<sub>2</sub>)<sub>n</sub>- dans laquelle n est un nombre entier de 2 à 6.
- 3. Procédé selon la revendication 1, dans lequel X1 est un acyle dérivé d'un acide aminé.
- 4. Procédé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un radical hydrocarboné qui peut être substitué; R³ est un atome d'hydrogène, un groupe acyle ou un radical hydrocarboné qui peut être substitué; X¹ est un acyle dérivé d'un acide aminé; X² est un groupe acyle ou un groupe carboxylique qui peut être estérifié ou qui peut former un amide.

- 5. Procédé selon la revendication 1, dans lequel le radical hydrocarboné représenté par R¹, R², R³ ou X¹ est un radical hydrocarboné à chaîne saturée, à chaîne insaturée, un radical hydrocarboné cyclique saturé ou cyclique insaturé, dont chacun peut être substitué par un à trois groupes choisis dans le groupe consistant en un atome d'halogène, un groupe nitro, nitrile, hydroxyle, carboxylique, alcoxy en C₁₋₄, alcoylthio en C₁₋₄, amino, mono ou di(alcoyle en C₁₋₄)amino, mono ou di-aralcolyamino, mono ou di-pyridylamino, alcoxy en C₁₋₄-carbonyle, cycloalcoyle en C₃₋6-carbonyle, carbamoyle, mono ou di(alcoyle en C₁₋₄)carbamoyle et un groupe phényle, phénoxy, benzoyle, phénoxycarbonyle, phénylalcoyle en C₁₋₄-carbamoyle ou phénylcarbamoyle, dans lesquels chacun desdits groupes phényle peut être substitué par 1 à 4 groupes choisis dans le groupe consistant en un alcoyle en C₁₋₄, un atome d'halogène, un groupe hydroxyle, benzyloxy, amino, mono ou di(alcoyle en C₁₋₄)amino, nitro et alcoxy en C₁₋₄-carbonyle.
- 6. Procédé selon la revendication 1, dans lequel le groupe acyle représenté par R³, X¹ ou X² est un groupe acyle carboxylique, carbamique, sulfonique ou oxycarboxylique dont chacun peut être substitué par 1 à 3 groupes choisis dans le groupe consistant en un atome d'halogène, un groupe nitro, nitrile, hydroxyle, carboxylique, alcoxy en C₁-₄, alcoylthio en C₁-₄, amino, mono ou di(alcoyle en C₁-₄)amino, mono ou di-aralcoylamino, mono ou di-pyridylcarbonylamino, alcoyle en C₁-ሬ-carbonyle, alcoxy en C₁-₄-carbonyle, cycloalcoyle en C₃-ሬ-carbonyle, carbamoyle, mono ou di(alcoyle en C₁-₄)-carbamoyle et un groupe phényle, phénoxy, benzoyle, phénoxycarbonyle, phényl-alcoyle en C₁-₄-carbamoyle ou phénylcarbamoyle dans lesquels chacun desdits groupes phényle peut être substitué par 1 à 4 groupes choisis dans le groupe consistant en un alcoyle en C₁-₄, un atome d'halogène, un groupe hydroxyle, benzyloxy, amino, mono ou di(alcoyle en C₁-₄)amino, nitro et alcoxy en C₁-₄-carbonyle.
- 7. Procédé selon la revendication 1, dans lequel le groupe alcoxy inférieur est un groupe alcoxy en C<sub>1-8</sub>.
  - 8. Procédé selon la revendication 1, dans lequel le groupe carboxylique qui peut être estérifié est un carboxyle ou un groupe de formule: -CO-OR<sup>5</sup>, dans laquelle R<sup>5</sup> est un radical hydrocarboné qui peut être substitué.
- Procédé selon la revendication 1, dans lequel le groupe carboxylique qui peut former un amide est un carboxyle ou un groupe de formule:

$$-CO-N \left\langle \frac{R^{6}}{R^{7}} \right\rangle$$

10

35

40

45

50

55

dans laquelle R<sup>6</sup> est un atome d'hydrogène ou un radical hydrocarboné qui peut être substitué et R<sup>7</sup> est un atome d'hydrogène ou un groupe alcoyle inférieur ou R<sup>6</sup> et R<sup>7</sup> forment ensemble avec l'atome d'azote adjacent un groupe amino cyclique.

- 10. Procédé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un radical hydrocarboné à chaîne saturée ou cyclique insaturée ou R¹ et R² forment ensemble avec l'atome de carbone adjacent un groupe cyclopentyle ou cyclohexyle.
- 11. Procédé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un groupe alcoyle en C<sub>1-6</sub>.
- 12. Procédé selon la revendication 1, dans lequel R¹ et R² sont un méthyle.
- 13. Procédé selon la revendication 1, dans lequel R³ est un atome d'hydrogène ou un groupe acyle.
- Procédé selon la revendication 13, dans lequel le groupe acyle est un alcoyle en C<sub>1-6</sub>-carbonyle ou un aryle en C<sub>6-10</sub>-carbonyle.
- 15. Procédé selon la revendication 1, dans lequel R3 est un atome d'hydrogène.
  - 16. Procédé selon la revendication 1, dans lequel X1 est un atome d'hydrogène ou un groupe acyle.

- Procédé selon la revendication 13, dans lequel le groupe acyle est un groupe acyle dérivé d'un acide aminé.
- 18. Procédé selon la revendication 17, dans lequel l'acide aminé est la glycine, l'alanine, l'acide glutamique, la leucine, l'isoleucine, la phénylalanine, l'acide aspartique, la cystéine, la sarcosine, la glutamine, l'asparagine ou la proline.
- 19. Procédé selon la revendication 17, dans lequel l'acide aminé est la glycine, l'acide aspartique, l'asparagine, l'acide glutamique, la glutamine ou la phénylalanine.
  - 20. Procédé selon la revendication 17, dans lequel l'acide aminé est l'acide glutamique ou l'acide aspartique.
  - 21. Procédé selon la revendication 1, dans lequel X2 est un groupe carboxylique qui peut être estérifié.
- 15 22. Procédé selon la revendication 1, dans lequel X<sup>2</sup> est un groupe acyle carboxylique ou carbamique.
  - 23. Procédé selon la revendication 22, dans lequel le groupe acyle carbamique est un groupe aminocarbonyle ou un groupe carboxylique formant un amide avec un acide aminé.
- 24. Procédé selon la revendication 23, dans lequel l'acide aminé est la glycine, l'alanine, l'acide glutamique, la leucine, l'isoleucine, la phénylalanine, l'acide aspartique, la cystéine, la sarcosine, la glutamine, l'asparagine ou la proline.
- 25. Procédé selon la revendication 23, dans lequel l'acide aminé est la glycine, l'acide aspartique, l'asparagine, la phénylalanine, l'acide glutamique ou la glutamine.
  - 26. Procédé selon la revendication 1, dans lequel R¹ et R² sont, indépendamment l'un de l'autre, un groupe alcoyle en C₁-e, phényle ou naphtyle ou R¹ et R² forment ensemble avec l'atome de carbone adjacent un groupe cyclopentyle ou cyclohexyle; R³ est un atome d'hydrogène ou un groupe acyle aromatique en C<sub>e-10</sub>; X¹ est un atome d'hydrogène ou un groupe acyle dérivé d'un acide aminé dans lequel ledit acide aminé est choisi dans le groupe consistant en la glycine, l'acide aspartique, la phénylalanine, l'asparagine, l'acide gluta. mique et la glutamine; X² est un groupe carboxylique, aminocarbonyle ou un groupe carboxylique formant un amide avec un radical d'acide aminé dans lequel ledit acide aminé est choisi dans le groupe consistant en la glycine, l'acide aspartique, la phénylalanine, l'asparagine, l'acide glutamique et la glutamine.
    - 27. Procédé selon la revendication 1, dans lequel le sel est un sel pharmaceutiquement acceptable.
    - 28. Procédé selon la revendication 1, qui est la N-(N-L-γ-glutamyl-D-pénicillamyl)glycine.

30

35

45

50

- Procédé selon la revendication 1, dans lequel ledit composé (I) est la N-(N-L-γ-glutamyl-L-pénicillamyl)-L-valine.
  - 30. Procédé selon la revendication 1, dans lequel ledit composé (I) est la N-(N-L-γ-glutamyl-L-pénicillamyl)-L-phénylalanine.
  - **31.** Procédé selon la revendication 1, dans lequel ledit composé (I) est l'acide N-(N-L-γ-glutamyl-L-pénicillamyl)-L-glutamique.
  - **32.** Procédé selon la revendication 1, dans lequel ledit composé (I) est la N-(N-L-γ-glutamyl-D-pénicillamyl)diphénylméthylamine.
    - 33. Composition pharmaceutique propre à être utilisée dans la préparation d'un médicament approprié au traitement curatif ou prophylactique de l'hypertension ou de l'angine de poitrine, qui comprend (a) comme substance active, une quantité efficace d'un composé selon la revendication 1 ou d'un sel de celui-ci et (b) une matière de support, un excipient ou un diluant pharmaceutiquement acceptable pour ce composé.
    - 34. Utilisation d'un composé selon la revendication 1 ou d'un sel de celui-ci pour la préparation d'un médicament pour le traitement thérapeutique d'un mammifère.

| ~ |   |   | 1 |  | • |   |
|---|---|---|---|--|---|---|
| , |   |   |   |  |   |   |
|   |   |   |   |  |   | , |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   | - |   |  |   |   |
| • |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   | , |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |
|   |   |   |   |  |   |   |