PIC16F87X

Однокристальные 8-разрядные FLASH CMOS микроконтроллеры компании Microchip Technology Incorporated

- PIC16F873
- PIC16F874
- PIC16F876
- PIC16F877

Перевод основывается на технической документации DS30292C компании Microchip Technology Incorporated, USA.

© ООО "Микро-Чип" Москва - 2002

Распространяется бесплатно.
Полное или частичное воспроизведение материала допускается только с письменного разрешения ООО «Микро-Чип» тел. (095) 737-7545 www.microchip.ru

PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Trademarks: The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, *Fl*exROM, *fuzz*yLAB, MPASM, MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR and SelectMode are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

Микроконтроллеры, описываемые в этом документе:

- PIC16F873
- PIC16F874
- PIC16F876
- PIC16F877

Характеристика микроконтроллеров:

- Высокоскоростная RISC архитектура
- 35 инструкций
- Все команды выполняются за один цикл, кроме инструкций переходов, выполняемых за два цикла
- Тактовая частота:
 - DC 20МГц, тактовый сигнал
 - DC 200нс, один машинный цикл
- До 8к x 14 слов FLASH памяти программ До 368 x 8 байт памяти данных (ОЗУ) До 256 x 8 байт EEPROM памяти данных
- Совместимость по выводам с PIC16C73B/74B/76/77
- Система прерываний (до 14 источников)
- 8-уровневый аппаратный стек
- Прямой, косвенный и относительный режим адресации
- Сброс по включению питания (POR)
- Таймер сброса (PWRT) и таймер ожидания запуска генератора (OST) после включения питания
- Сторожевой таймер WDT с собственным RC генератором
- Программируемая защита памяти программ
- Режим энергосбережения SLEEP
- Выбор параметров тактового генератора
- Высокоскоростная, энергосберегающая CMOS FLASH/EEPROM технология
- Полностью статическая архитектура
- Программирование в готовом устройстве (используется два вывода микроконтроллера)
- Низковольтный режим программирования
- Режим внутрисхемной отладки (используется два вывода микроконтроллера)
- Широкий диапазон напряжений питания от 2.0B до 5.5B
- Повышенная нагрузочная способность портов ввода/вывода (25мА)
- Малое энергопотребление:
 - < 0.6 мA @ 3.0B, 4.0МГц
 - 20мкA @ 3.0B, 32кГц
 - < 1мкА в режиме энергосбережения

Расположение выводов

Характеристика периферийных модулей:

- Таймер 0: 8-разрядный таймер/счетчик с 8-разрядным программируемым предделителем
- Таймер 1: 16-разрядный таймер/счетчик с возможностью подключения внешнего резонатора
- Таймер 2: 8-разрядный таймер/счетчик с 8-разрядным программируемым предделителем и выходным делителем
- Два модуля сравнение/захват/ШИМ (ССР):
 - 16-разрядный захват (максимальная разрешающая способность 12.5нс)
 - 16-разрядное сравнение (максимальная разрешающая способность 200нс)
 - 10-разрядный ШИМ
- Многоканальное 10-разрядное АЦП
- Последовательный синхронный порт MSSP
 - ведущий/ведомый режим SPI
 - ведущий/ведомый режим I^2C
- Последовательный синхронно-асинхронный приемопередатчик USART с поддержкой детектирования адреса
- Ведомый 8-разрядный параллельный порт PSP с поддержкой внешних сигналов -RD,-WR, -CS (только в 40/44-выводных микроконтроллерах)
- Детектор пониженного напряжения (BOD) для сброса по снижению напряжения питания (BOR)

Расположение выводов PDIP, SOIC ٥1 MCLR/VPP-□ ← → RB6/PGC RA0/AN0 27 RA1/AN1 ' 3 PIC16F876/873 25 ☐ ←→ RB4 RA2/AN2/VREF-24 ☐ ← RB3/PGM 23 ☐ ← RB2 5 RA3/AN3/VREF+ RA4/T0CKI≺ RA5/AN4/SS 21 → RB0/INT Vss 8 OSC1/CLKIN 9 20 **→** VDD □10 OSC2/CLKOUT ◄ 18 → RC7/RX/DT RC0/T10S0/T1CKI◀ 17 → RC6/TX/CK RC1/T10SI/CCP2 ← 12 ☐ ← → RC5/SDO RC2/CCP1 ☐ 13 RC4/SDI/SDA RC3/SCK/SCL-15 **PLCC** 4 2 4 4 4 4 39 T RA4/T0CKI RB3/PGM RB2 o RA5/AN4/SS RE0/RD/AN5 RE1/WR/AN6 RE2/CS/AN7 38□ RB1 9 10 11 RB0/INT PIC16F877 35□ Voo VDD 12 13 14 Vss PIC16F874 Vss RD7/PSP7 OSC1/CLKIN RD6/PSP6 32□ OSC2/CLKOUT RC0/T1OSO/T1CK1 RD5/PSP5 15 RD4/PSP4 RC7/RX/DT 16 NC 29□ RC1/T1OSI/CCP2 RC2/CCP1 RC3/SCK/SCL RD0/PSP0 RD1/PSP1 RD2/PSP2 RD2/PSP2 RD3/PSP3 RC4/SD1/SDA RC4/SD1/SDA RC5/SDO RC6/SDO R RC4/SDI/SDA RD3/PSP3 RD2/PSP2 RD1/PSP1 RD0/PSP0 RC5/SDO **QFP** 44 443 443 34 34 34 35 35 33| NC RC7/RX/DT 32 - ◄ RC0/T1OSO/T1CKI **→**□ RD4/PSP4 2 RD5/PSP5 \vdash OSC2/CLKOUT 3 30 ₩ → OSC1/CLKIN RD6/PSP6 Vss RD7/PSP7 PIC16F877 5 ➤Ⅲ VDDVss 6 PIC16F874 **→**□ RE2/AN7/CS VDD →□□ 26 ₩ ← RE1/AN6/WR RB0/INT RE0/AN5/RD **→**□ 25 ---RB1 24 H → □□□ 10 RA5/AN4/SS RB2 RB3/PGM **→** □□□ RA4/T0CKI NC NC RB4 + RB5 + RB5/PGC -RB7/PGD + MCLR/VPP -RA0/ANO -RA0/ANO -RA2/AN2/VREF-RA3/AN3/VREF+

Параметр	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Тактовая частота	DC - 20МГц	DC - 20МГц	DC - 20МГц	DC - 20МГц
Сброс (задержка сброса)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH память программ (14-разрядных слов)	4K	4K	8K	8K
Память данных (байт)	192	192	368	368
EEPROM память данных (байт)	128	128	256	256
Прерываний	13	14	13	14
Порты ввода/вывода	Порты А,В,С	Порты A,B,C,D,E	Порты А,В,С	Порты A,B,C,D,E
Таймеры	3	3	3	3
Модуль захват/сравнение/ШИМ	2	2	2	2
Модули последовательного интерфейса	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Модули параллельного интерфейса	-	PSP	=	PSP
Модуль 10-разрядного АЦП	5 каналов	8 каналов	5 каналов	8 каналов
Инструкций	35	35	35	35

Содержание

1.0 Введение	9
2.0 Организация памяти	14
2.1 Организация памяти программ	
2.2 Организация памяти данных	
2.2.1 Регистры общего назначения	
2.2.2 Регистры специального назначения	
2.3 Регистры PCLATH и PCL	
2.3.1 Вычисляемый переход	
2.3.2 Стек	
2.4 Страницы памяти программ	
2.5 Косвенная адресация, регистры INDF и FSR	
3.0 Порты ввода/вывода	32
3.1 Регистры PORTA и TRISA	
3.2 Регистры PORTB и TRISB	
3.3 Регистры PORTC и TRISC	
3.4 Регистры PORTD и TRISD	
3.5 Регистры PORTE и TRISE	
3.6 Ведомый параллельный порт	41
4.0 EEPROM память данных и FLASH память программ	43
4.1 Регистры EECON1, EECON2	43
4.2 Чтение из EEPROM памяти данных	
4.3 Запись в EEPROM память данных	
4.4 Чтение из FLASH памяти программ	46
4.5 Запись во FLASH память программ	
4.6 Проверка записи	
4.7 Защита от случайной записи	
4.8 Операции при включенной защите кода	
4.9 Защита записи FLASH памяти программ	47
5.0 Модуль таймера TMR0	49
5.1 Прерывания от TMR0	
5.2 Использование внешнего источника тактового сигнала для TMR0	50
5.3 Предделитель	
6.0 Модуль таймера TMR1	E4
6.1 Работа TMR1 в режиме таймера	
6.2 Работа ТМR1 в режиме таимера	52
6.3 Работа TMR1 в режиме синхронного счетчика	
6.4 Работа TMR1 в режиме асинхронного счетчика	
6.4.1 Чтение/запись ТМR1 в асинхронном режиме	
6.5 Генератор ТМR1	
6.6 Сброс TMR1 триггером модуля ССР	
6.7 Сброс регистров TMR1 (TMR1H, TMR1L)	
6.8 Предделитель TMR1	54
7.0 Модуль таймера TMR2	55
7.1 Предделитель и выходной делитель ТМR2	
7.1 Предделитель и выходной делитель TWIN2	

8.0 ССР модуль (захват/сравнение/ШИМ)	57
8.1 Режим захвата	
8.1.1 Настройка вывода модуля ССР	59
8.1.2 Настройка таймера TMR1	
8.1.3 Обработка прерываний	
8.1.4 Предварительный счетчик событий модуля ССР	59
8.2 Режим сравнения	60
8.2.1 Настройка вывода модуля ССР	
8.2.2 Настройка таймера TMR1	
8.2.3 Обработка прерываний	
8.2.4 Триггер специального события	
8.3 Режим ШИМ	
8.3.1 Период ШИМ	
8.3.2 Скважность ШИМ	
8.3.3 Последовательность настройки модуля ССР в ШИМ режиме	62
9.0 Модуль ведущего синхронного последовательного порта (MSSP)	64
9.1 Режим SPI	68
9.1.1 Режим ведущего SPI	69
9.1.2 Режим ведомого SPI	70
9.2 Режим I ² C	71
9.2.1 Режим ведомого I ² C	
9.2.2 Поддержка общего вызова	
9.2.3 Работа в SLEEP режиме	
9.2.4 Эффект сброса	
9.2.5 Режим ведущего I ² C	
9.2.6 Режим конкуренции	76
9.2.7 Поддержка режима ведущего /²С	77
9.2.8 Работа в режиме ведущего I ² C	
9.2.8 Генератор скорости обмена	78
9.2.9 Формирование бита START в режиме ведущего I ² C	
9.2.10 Формирование бита повторный START в режиме ведущего I ² C	80
9.2.11 Передача данных в режиме ведущего I ² C	87
9.2.12 Прием оанных в режиме веоущего Г С	03
9.2.13 Формирование бита поотвержоения в режиме вебущего ГС	00
9.2.14 Формирование ошта STOP в режиме веоущего TC	
9.2.16 Режим конкуренции, арбитраж и конфликты шины	
9.3 Подключение к шине I ² C	
10.0 Универсальный синхронно-асинхронный приемопередатчик (USART)	92
10.1 Генератор частоты обмена USART BRG	
10.1.1 Выборка	94
10.2 Асинхронный режим USART	
10.2.1 Асинхронный передатчик USART	
10.2.2 Асинхронный приемник USART	
10.2.3 Настройка 9-разрядного асинхронного приема с детектированием адреса	
10.3 Синхронный ведущий режим USART	
10.3.1 Передача синхронного ведущего	
10.3.2 Прием синхронного ведущего	
10.4 Синхронный ведомый режим USART	
10.4.1 Передача синхронного ведомого	
·	
11.0 Модуль 10-разрядного АЦП	
11.1 Временные требования к подключению канала АЦП	
11.2 Выбор источника тактовых импульсов для АЦП	
11.3 Настройка аналоговых входов	
11.4 Аналого-цифровое преобразование	
11.4.1 Выравнивание результата преобразования	
11.5 Работа модуля АЦП в SLEEP режиме	
11.6 Эффект сброса	113

12.0 Особенности микроконтроллеров PIC16F87X	114
12.1 Биты конфигурации	
12.2 Настройка тактового генератора	
12.2.1 Режимы тактового генератора	
12.2.2 Кварцевый/керамический резонатор	
12.2.3 RC генератор	
12.3 Сброс	
12.4 Сброс по включению питания РОК	
12.5 Таймер включения питания PWRT	
12.6 Таймер запуска генератора OST	
12.7 Сброс по снижению напряжения питания BOR	
12.8 Последовательность удержания микроконтроллера в состоянии сброса	
12.9 Peructp PCON	
12.10 Прерывания	
12.10.1 Внешнее прерывание с входа RB0/INT	
12.10.2 Прерывание по переполнению TMR0	125
12.10.3 Прерывание по изменению уровня сигнала на входах RB7:RB4	
12.11 Сохранение контекста при обработке прерываний	
12.12 Сторожевой таймер WDT	
12.13 Режим энергосбережения SLEEP	
12.13.1 Выход из режима SLEEP	127
12.13.2 Выход из режима SLEEP по прерыванию	120
12.14 Внутрисхемный отладчик ICD	
12.16 Размещение идентификатора ID	
12.17 Внутрисхемное программирование ICSP	
12.17 внутрисхемное программирование 1032	
· · ·	
13.0 Система команд	
13.1 Подробное описание команд	132
14 0 Поллержка разработчиков	139
14.0 Поддержка разработчиков	139
14.1 Интегрированная среда проектирования MPLAB-IDE	139
14.1 Интегрированная среда проектирования MPLAB-IDE14.2 Ассемблер MPASM	139 140
14.1 Интегрированная среда проектирования MPLAB-IDE	139 140 140
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM 14.3 С компиляторы MPLAB-C17 и MPLAB-C18 14.4 Линкер MPLINK/ Организатор библиотек MPLIB	
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM 14.3 С компиляторы MPLAB-C17 и MPLAB-C18 14.4 Линкер MPLINK/ Организатор библиотек MPLIB 14.5 Программный симулятор MPLAB-SIM	
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 140 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141 142 142
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 140 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 140 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 140 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM 14.3 С компиляторы MPLAB-C17 и MPLAB-C18 14.4 Линкер MPLINK/ Организатор библиотек MPLIB 14.5 Программный симулятор MPLAB-SIM 14.6 Универсальный эмулятор MPLAB-ICE 14.7 ICEPIC 14.8 Внутрисхемный отладчик MPLAB-ICD 14.9 Универсальный программатор PRO MATE II 14.10 Программатор PICSTART 14.11 Демонстрационная плата PICDEM-1 14.12 Демонстрационная плата PICDEM-2 для PIC16CXXX 14.13 Демонстрационная плата PICDEM-3 для PIC16CXXX 14.14 Демонстрационная плата PICDEM-17 14.15 КееLoq (с функциями программатора) 15.0 Электрические характеристики 15.1 Электрические характеристики (Коммерческий, Промышленный) 15.2 Электрические характеристики (Коммерческий, Промышленный) 15.3 Электрические характеристики (Расширенный) 15.4 Электрические характеристики (Расширенный) 15.5 Символьное обозначение временных параметров 15.6 Временные диаграммы и спецификации	139 140 140 140 140 141 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM	139 140 140 140 140 141 141 141 141 141 141
14.1 Интегрированная среда проектирования MPLAB-IDE 14.2 Ассемблер MPASM 14.3 С компиляторы MPLAB-C17 и MPLAB-C18 14.4 Линкер MPLINK/ Организатор библиотек MPLIB 14.5 Программный симулятор MPLAB-SIM 14.6 Универсальный эмулятор MPLAB-ICE 14.7 ICEPIC 14.8 Внутрисхемный отладчик MPLAB-ICD 14.9 Универсальный программатор PRO MATE II 14.10 Программатор PICSTART 14.11 Демонстрационная плата PICDEM-1 14.12 Демонстрационная плата PICDEM-2 для PIC16CXXX 14.13 Демонстрационная плата PICDEM-3 для PIC16CXXX 14.14 Демонстрационная плата PICDEM-17 14.15 КееLoq (с функциями программатора) 15.0 Электрические характеристики 15.1 Электрические характеристики (Коммерческий, Промышленный) 15.2 Электрические характеристики (Коммерческий, Промышленный) 15.3 Электрические характеристики (Расширенный) 15.4 Электрические характеристики (Расширенный) 15.5 Символьное обозначение временных параметров 15.6 Временные диаграммы и спецификации	139 140 140 140 140 141 141 141 141 141 141

1.0 Введение

Дополнительную информацию по работе с микроконтроллерами PIC16F87X смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual". Файл Вы может получить у представителя Microchip Inc., на WEB узлах технической поддержки www.microchip.com и www.microchip.ru. Рекомендуется прочитать документацию "PICmicro™ Mid-Range Reference Manual" для лучшего понимания архитектуры микроконтроллеров и работы периферийных модулей.

В документации описывается работа четырех микроконтроллеров (PIC16F873, PIC16F874, PIC16F876 и PIC16F877). Микроконтроллеры PIC16F873/876 выпускаются в 28-выводном корпусе, а PIC16F874/877 в 40-выводном. В микроконтроллерах PIC16F873/876 ведомый параллельный порт не реализован.

На рисунках 1-1, 1-2 показаны структурные схемы 28-выводных и 40-выводных микроконтроллеров, а таблицах 1-1, 1-2 представлен список выводов.

Примечание 1. Старшие биты адреса находятся в регистре STATUS.

Puc. 1-2 Структурная схема микроконтроллеров PIC16F874 и PIC16F877

Примечание 1. Старшие биты адреса находятся в регистре STATUS.

Таблица 1-1 Назнач	716F876 T				
Обозначение вывода	№ вывода DIP	№ вывода SOIC	Тип I/O/P	Тип буфера	Описание
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Вход генератора/ вход внешнего тактового сигнала
OSC2/CLKOUT	10	10	0	-	Выход генератора. Подключается кварцевый или керамический резонатор. В RC режиме тактового генератора на выходе OSC2 присутствует тактовый сигнал CLKOUT, равный Fosc/4.
-MCLR/V _{PP}	1	1	I/P	ST	Вход сброса микроконтроллера или вход напряжения программирования. Сброс микроконтроллера происходит при низком логическом уровне сигнала на входе.
DAGANO					Двунаправленный порт ввода/вывода PORTA.
RA0/AN0	2	2	I/O	TTL	RA0 может быть настроен как аналоговый канал 0
RA1/AN1	3	3	I/O	TTL	RA1 может быть настроен как аналоговый канал 1
RA2/AN2/V _{REF-}	4	4	I/O	TTL	RA2 может быть настроен как аналоговый канал 2 или вход отрицательного опорного напряжения
RA3/AN3/V _{REF+}	5	5	I/O	TTL	RA3 может быть настроен как аналоговый канал 3 или вход положительного опорного напряжения
RA4/T0CKI	6	6	I/O	ST	RA4 может использоваться в качестве входа внешнего тактового сигнала для TMR0. Выход с открытым стоком.
RA5/-SS/AN4	7	7	I/O	TTL	RA1 может быть настроен как аналоговый канал 1 или вход выбора микросхемы в режиме ведомого SPI
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	Двунаправленный порт ввода/вывода PORTB. PORTB имеет программно подключаемые подтягивающие резисторы на входах. RB0 может использоваться в качестве входа внешних
DD4	00	00			прерываний.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	DD2
RB3/PGM	24	24	I/O	TTL	RB3 может использоваться в качестве входа для режима низковольтного программирования.
RB4	25	25	I/O	TTL	Прерывания по изменению уровня входного сигнала.
RB5	26	26	I/O	TTL	Прерывания по изменению уровня входного сигнала.
RB6/PGC	27	27	I/O	TTL/ST ⁽²⁾	Прерывания по изменению уровня входного сигнала или вывод для режима внутрисхемной отладки ICD.
RB7/PGD	28	28	I/O	TTL/ST ⁽²⁾	Тактовый вход в режиме программирования. Прерывания по изменению уровня входного сигнала или вывод для режима внутрисхемной отладки ICD. Вывод данных в режиме программирования.
					Двунаправленный порт ввода/вывода PORTC.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 может использоваться в качестве выхода генератора TMR1 или входа внешнего тактового сигнала
RC1/T1OSI/CCP2	12	12	I/O	ST	для TMR1. RC1 может использоваться в качестве входа генератора для TMR1 или вывода модуля CCP2.
RC2/CCP1	13	13	I/O	ST	RC2 может использоваться в качестве вывода модуля ССР1.
RC3/SCK/SCL	14	14	I/O	ST	RC3 может использоваться в качестве входа/выхода тактового сигнала в режиме SPI и I ² C.
RC4/SDI/SDA	15	15	I/O	ST	RC4 может использоваться в качестве входа данных в режиме SPI или вход/выход данных в режиме I ² C.
RC5/SDO	16	16	I/O	ST	RC5 может использоваться в качестве выхода данных в режиме SPI.
RC6/TX/CK	17	17	I/O	ST	RC6 может использоваться в качестве вывода передатчика USART в асинхронном режиме или вывода синхронизации USART в синхронном режиме.
RC7/RX/DT	18	18	I/O	ST	RC6 может использоваться в качестве вывода приемника USART в асинхронном режиме или вывода данных USART в синхронном режиме.
V _{SS}	8, 19	8, 19	Р	-	Общий вывод для внутренней логики и портов ввода/вывода
V_{DD}	20	20	Р	-	Положительное напряжение питания для внутренней логики и портов ввода/вывода

Обозначения: І = вход, О = выход, І/О = вход/выход, Р = питание, - = не используется,

TTL = входной буфер ТТЛ, ST = вход с триггером Шмидта.

- 1. Входной буфер с триггером Шмидта при использовании внешних прерываний.
- 2. Входной буфер с триггером Шмидта при работе в режиме последовательного программирования.
- 3. Входной буфер с триггером Шмидта в режиме RC генератора и CMOS буфер в других режимах.

Таблица 1-2 Назначение выводов микроконтроллеров PIC16F874 и PIC16F877

Обозначение	№ выв.	№ выв.	№ выв.	Тип	Тип буфера	Описание
вывода	DIP	PLCC	QFP	I/O/P		C.III.G.I.II.G
OSC1/CLKIN	13	14	30	I	ST/CMOS ⁽⁴⁾	Вход генератора / вход внешнего тактового сигнала
OSC2/CLKOUT	14	15	31	0	-	Выход генератора. Подключается кварцевый или
						керамический резонатор. В RC режиме тактового
						генератора на выходе OSC2 присутствует тактовый
-MCLR/V _{PP}	1	2	18	I/P	ST	сигнал CLKOUT, равный F _{osc} /4. Вход сброса микроконтроллера или вход напряжения
-IVICLIN V PP	'		10	1/17	31	программирования. Сброс микроконтроллера
						происходит при низком логическом уровне сигнала на
						входе.
						Двунаправленный порт ввода/вывода PORTA.
RA0/AN0	2	3	19	I/O	TTL	RA0 может быть настроен как аналоговый канал 0
RA1/AN1	3	4	20	I/O	TTL	RA1 может быть настроен как аналоговый канал 1
RA2/AN2/V _{REF-}	4	5	21	I/O	TTL	RA2 может быть настроен как аналоговый канал 2 или
	_	_				вход отрицательного опорного напряжения
RA3/AN3/V _{REF+}	5	6	22	I/O	TTL	RA3 может быть настроен как аналоговый канал 3 или
RA4/T0CKI	6	7	23	I/O	ST	вход положительного опорного напряжения RA4 может использоваться в качестве входа внешнего
KA4/TUCKI	0	,	23	1/0	31	тактового сигнала для ТМR0. Выход с открытым стоком.
RA5/-SS/AN4	7	8	24	I/O	TTL	RA1 может быть настроен как аналоговый канал 1 или
	•			0		вход выбора микросхемы в режиме ведомого SPI
						Двунаправленный порт ввода/вывода PORTB. PORTB
						имеет программно подключаемые подтягивающие
DD0/INT	00	20		1/0	TTL (OT(1)	резисторы на входах.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 может использоваться в качестве входа внешних прерываний.
RB1	34	37	9	I/O	TTL	прерывании.
RB2	35	38	10	1/0	TTL	
RB3/PGM	36	39	11	1/0	TTL	RB3 может использоваться в качестве входа для режима
TABON OIL		00		"		низковольтного программирования.
RB4	37	41	14	I/O	TTL	Прерывания по изменению уровня входного сигнала.
RB5	38	42	15	I/O	TTL	Прерывания по изменению уровня входного сигнала.
RB6/PGC	39	43	16	I/O	TTL/ST ⁽²⁾	Прерывания по изменению уровня входного сигнала или
						вывод для режима внутрисхемной отладки ICD.
DD7/DOD	40	4.4	47	1/0	TTL/ST ⁽²⁾	Тактовый вход в режиме программирования.
RB7/PGD	40	44	17	I/O	IIL/ST	Прерывания по изменению уровня входного сигнала или вывод для режима внутрисхемной отладки ICD. Вывод
						данных в режиме программирования.

- 1. Входной буфер с триггером Шмидта при использовании внешних прерываний.
- 2. Входной буфер с триггером Шмидта при работе в режиме последовательного программирования.
- 3. Входной буфер с триггером Шмидта при работе в режиме цифровых портов ввода/вывода. В режиме ведомого параллельного порта подключены входные буферы ТТЛ (для совместимости с шиной микропроцессора).
- 4. Входной буфер с триггером Шмидта в режиме RC генератора и CMOS буфер в других режимах.

Таблица 1-2 Назначение выводов микроконтроллеров PIC16F874 и PIC16F877 (продолжение)

Обозначение	№ выв.		№ выв.	Тип		Тоготт (продолжение)
вывода	DIP	PLCC	QFP	I/O/P	Тип буфера	Описание
						Двунаправленный порт ввода/вывода PORTC.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 может использоваться в качестве выхода
1100/11000/11010	10	10	02	"	01	генератора TMR1 или входа внешнего тактового сигнала
						для TMR1.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 может использоваться в качестве входа генератора
D00/00D4	47	40	00		OT	для TMR1 или вывода модуля ССР2.
RC2/CCP1	17	19	36	I/O	ST	RC2 может использоваться в качестве вывода модуля CCP1.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 может использоваться в качестве входа/выхода
TROOFGOTT GGE	10		"	"	01	тактового сигнала в режиме SPI и I ² C.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 может использоваться в качестве входа данных в
						режиме SPI или вход/выход данных в режиме I ² C.
RC5/SDO	24	26	43	I/O	ST	RC5 может использоваться в качестве выхода данных в режиме SPI.
RC6/TX/CK	25	27	44	1/0	ST	Режиме 5P1. RC6 может использоваться в качестве вывода
NCO/TA/CR	23	21	77	1/0	31	передатчика USART в асинхронном режиме или вывода
						синхронизации USART в синхронном режиме.
RC7/RX/DT	26	29	1	I/O	ST	RC6 может использоваться в качестве вывода
						приемника USART в асинхронном режиме или вывода
						данных USART в синхронном режиме. Двунаправленный порт ввода/вывода РОRTD или
						ведомый параллельный порт для подключения к шине
						микропроцессора
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL(3)	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽³⁾	
					(3)	Двунаправленный порт ввода/вывода PORTE.
RE0/-RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 может использоваться в качестве управляющего
RE1/-WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	входа чтения PSP или аналогового канала 5 RE1 может использоваться в качестве управляющего
NE I/-VVN/AINO	9	10	20	1/0	SI/IIL	входа записи PSP или аналогового канала 6
RE2/-CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 может использоваться в качестве управляющего
					_	входа выбора PSP или аналогового канала 7
V_{SS}	12,31	13,34	6, 29	Р	-	Общий вывод для внутренней логики и портов
	44.00	40.05	7.00			ввода/вывода
V_{DD}	11,32	12,35	7,28	Р	-	Положительное напряжение питания для внутренней логики и портов ввода/вывода
NC	_	1,17,	12,13,	_	_	Эти выводы внутри микросхемы не подключены.
		28,40	33,34			
	l		00,0:		l	I .

Обозначения: I = вход, O = выход, I/O = вход/выход, P = питание, - = не используется, TTL = входной буфер ТТЛ, ST = вход с триггером Шмидта.

- 1. Входной буфер с триггером Шмидта при использовании внешних прерываний.
- 2. Входной буфер с триггером Шмидта при работе в режиме последовательного программирования.
- 3. Входной буфер с триггером Шмидта при работе в режиме цифровых портов ввода/вывода. В режиме ведомого параллельного порта подключены входные буферы ТТЛ (для совместимости с шиной микропроцессора).
- 4. Входной буфер с триггером Шмидта в режиме RC генератора и CMOS буфер в других режимах.

2.0 Организация памяти

В микроконтроллерах PIC16F87X имеется три вида памяти. Память программ и память данных имеют раздельные шины данных и адреса, что позволяет выполнять параллельный доступ. Подробное описание работы с EEPROM памятью данных смотрите в разделе 4.0.

Дополнительную информацию по организации памяти смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual".

2.1 Организация памяти программ

Микроконтроллеры PIC16F87X имеют 13-разрядный счетчик команд PC, способный адресовать 8К х 14 слов памяти программ. Физически реализовано FLASH памяти программ 8К х 14 в PIC16F877/876 и 4К х 14 в PIC16F873/874. Обращение к физически не реализованной памяти программ приведет к адресации реализованной памяти.

Адрес вектора сброса – 0000h. Адрес вектора прерываний – 0004h.

Puc. 2-1 Организация памяти в микроконтроллере PIC16F877/876

PC<12:0> 13 CALL, RETURN RETFIE, RETLW Стек, уровень 1 Стек, уровень 2 Стек, уровень 8 Вектор сброса accon Вектор прерываний 0004h 0005h Страница 0 07FFh 0800h Страница 1 Внутренняя OFFFh память программ 1000h Страница 2 17FFh 1800h Страница 3 1FFFh

Puc. 2-2 Организация памяти в микроконтроллере PIC16F874/873

2.2 Организация памяти данных

Память данных разделена на четыре банка, которые содержат регистры общего и специального (SFR) назначения. Биты RP1 (STATUS<6>) и RP0 (STATUS<5>) предназначены для управления банками данных.

В таблице показано состояние управляющих битов при обращении к банкам памяти данных.

RP1: RP0	Банк
00	0
01	1
10	2
11	3

Объем банков памяти данных до 128 байт (7Fh). В начале банка размещаются регистры специального назначения, затем регистры общего назначения выполненные как статическое ОЗУ. Все реализованные банки содержат регистры специального назначения. Некоторые, часто используемые регистры специального назначения могут отображаться и в других банках памяти.

Примечание. Описание EEPROM памяти данных смотрите в разделе 4.0.

2.2.1 Регистры общего назначения

Обратиться к регистрам общего назначения можно прямой или косвенной адресацией, через регистр FSR.

Puc. 2-3 Карта памяти данных микроконтроллеров PIC16F877/876

Регистр	1	Регистр		Регистр	1	Регистр	Адре
косвенной	00h	косвенной	80h	косвенной	100h	косвенной	180
	0011	*	0011	*	10011	*	100
адресации ТМВО	01h	адресации OPTION_REG	81h	адресации	101h	адресации OPTION REG	181
TMR0 PCL	02h	PCL	82h	TMR0 PCL	101h 102h	PCL	182
		STATUS		STATUS			183
STATUS	03h		83h		103h	STATUS	
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h	DODED	105h	TDIOD	185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		1891
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18C
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18D
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Резерв ⁽²⁾	18E
TMR1H	0Fh		8Fh	EEADRH	10Fh	Резерв ⁽²⁾	18F
T1CON	10h		90h		110h		190
TMR2	11h	SSPCON2	91h		111h		1911
T2CON	12h	PR2	92h		112h		1921
SSPBUF	13h	SSPADD	93h		113h		1931
SSPCON	14h	SSPSTAT	94h		114h		1941
CCPR1L	15h		95h		115h		195
CCPR1H	16h		96h	Регистры	116h	Регистры	196
CCP1CON	17h		97h	общего	117h	общего	1971
RCSTA	18h	TXSTA	98h	назначения	118h	назначения	1981
TXREG	19h	SPBRG	99h	40.5°	119h	40.5.4	1991
RCREG	1Ah	0. 2. (0	9Ah	16 байт	11Ah	16 байт	19A
CCPR2L	1Bh		9Bh		11Bh		19B
CCPR2H	1Ch		9Ch		11Ch		19C
CCP2CON	1Dh		9Dh		11Dh		19D
ADRESH	1Eh	ADRESL	9Eh		11Eh		19E
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F
ADOONO	20h	ADOON	A0h		120h		1A0
		Down in	-	Dames		D	
		Регистры		Регистры		Регистры	
_		общего		общего		общего	
Регистры общего		назначения		назначения		назначения	
назначения		80 байт		80 байт		80 байт	
00.5			EFh		16Fh		1EF
96 байт			F0h		170h		1F0
		Доступ к		Доступ к		Доступ к	0.
		70h-7Fh		70h-7Fh		70h-7Fh	
	7Fh	1011111	FFh	''''	17Fh	'''' '''	1FF
Банк 0	1	Банк 1		Банк 2	1	Банк 3	

^{* -} не физический регистр

Закрашенные участки памяти данных не реализованы, значение при чтение 00h

- 1. Эти регистры не реализованы в РІС16F876
- 2. Резервные регистры, пользователь не должен их использовать.

Puc. 2-4 Карта памяти данных микроконтроллеров PIC16F874/873

	1	1	•		•		Адрес
Регистр		Регистр		Регистр		Регистр	
косвенной _.	00h	косвенной	80h	косвенной	100h	косвенной	180h
адресации		адресации		адресации		адресации	
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Peseps ⁽²⁾	18Eh
TMR1H	0Fh	. 33	8Fh	EEADRH	10Fh	Peseps ⁽²⁾	18Fh
T1CON	10h		90h	LL, WITT	110h	1 00002	190h
TMR2	11h	SSPCON2	91h				10011
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h	001 017(1	95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah	SFBRG	9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch		9Ch				
CCP2CON	1Dh	ADDECL	9Dh				
ADCONO	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		4006		4 4 0 1-
	20h		A0h		120h		1A0h
Регистры		Регистры					
общего		общего		Поступц		Поступц	
назначения		назначения		Доступ к 20h-7Fh		Доступ к A0h-FFh	
96 байт		96 байт					
	7Fh		FFh		17Fh		1FFh

^{* -} не физический регистр

Закрашенные участки памяти данных не реализованы, значение при чтение 00h

- 1. Эти регистры не реализованы в РІС16F873
- 2. Резервные регистры, пользователь не должен их использовать.

2.2.2 Регистры специального назначения

С помощью регистров специального назначения выполняется управление функциями ядра и периферийными модулями микроконтроллера. Регистры специального назначения реализованы как статическое ОЗУ.

В этом разделе будут описаны регистры управляющие функциями ядра микроконтроллера. Описание регистров периферийных модулей смотрите в соответствующем разделе документации.

Таблица 2-1 Регистры специального назначения

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0		poc BOR
Банк 0						ı				1 010,	BOIL
00h ⁽³⁾	INDF	Обращение к регистру, адрес которого записан в FSR (не физический регистр)									0000
01h	TMR0		таймера 0		которого	Janvican B	TOIX (IIC 4	DVISVI TCCKVII	и регистр)	0000	xxxx
02h ⁽³⁾	PCL			, гчика кома	нл РС						0000
03h ⁽³⁾	STATUS	IRP	RP1	RP0	-ТО	-PD	Z	DC	С		1xxx
04h ⁽³⁾	FSR			и косвенн		L	_				xxxx
05h	PORTA	-	-			•	чтение со	ост. выв. Р	ORTA	0x	0000
06h	PORTB	Запись в	ВЫХОДНУН			•	тояния вы				xxxx
07h	PORTC	Запись в	выходнун	о защелку	PORTC,	тение сос	тояния вь	водов РО	RTC	xxxx	xxxx
08h ⁽⁴⁾	PORTD	Запись в	выходнун	о защелку	PORTD,	нтение сос	тояния вь	іводов РО	RTD	xxxx	xxxx
09h ⁽⁴⁾	PORTE	-	-	-	-	-	RE2	RE1	RE0		-xxx
0Ah ^(1,3)	PCLATH	-	-	-	Старши	е биты сче	тчика ком	анд РС		0	0000
0Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x
0Ch	PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000
0Dh	PIR2	-	(5)	-	EEIF	BCLIF	-	-	CCP2IF	-r-0	00
0Eh	TMR1L	Младши	й байт 16-	разрядног	то таймера	a 1				XXXX	XXXX
0Fh	TMR1H	Старший	і байт 16-р	разрядного	о таймера	1					XXXX
10h	T1CON	-	-	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N		0000
11h	TMR2	Регистр	таймера 2							0000	0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000
13h	SSPBUF	, , ,	риемника	MSSP / pe		едатчика					XXXX
14h	SSPCON	WCOL	SSPOV		CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000
15h	CCPR1L			вата/срав						XXXX	XXXX
16h	CCPR1H	Старший	і байт захі	вата/сравн		1	1	ı	ı		XXXX
17h	CCP1CON	-	-	CCP1X		CCP1M3	CCP1M2		CCP1M0		0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x
19h	TXREG			ередатчика						0000	0000
1Ah	RCREG			иемника (0000	0000
1Bh	CCPR2L		Младший байт захвата/сравнения/ШИМ ССР2								XXXX
1Ch	CCPR2H	Старший байт захвата/сравнения/ШИМ ССР2								XXXX	
1Dh	CCP2CON	-	-	CCP2X		CCP2M3	CCP2M2	CCP2M1	CCP2M0		0000
1Eh	ADRESH			ультат пре			00/00:		1501:		XXXX
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/-DON	1E -	ADON	0000	00-0

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий, r = резерв. Затененные ячейки читаются как '0'.

- 1. Старший байт счетчика команд РС программно не доступен. В регистре PCLATH сохраняются старшие биты <12:8>, переписываемые в старший байт счетчика команд.
- 2. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873/876 не реализованы, всегда должны равняться нулю.
- 3. Обращение к этим регистрам можно выполнить из любого банка.
- 4. Регистры PORTD, PORTE, TRISD, TRISE не реализованы в микроконтроллерах PIC16F873/876, читаются как '0'.
- 5. Резервные биты PIR2<6> и PIE2<6> при записи в регистр PIR2 всегда должны равняться нулю.

Таблица 2-1 Регистры специального назначения (продолжение)

	2-1 Регистры				T	í – –		- 4		Сброс
Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	POR, BOR
Банк 1										
80h ⁽³⁾	INDF	Обращен	ие к регис	гру, адрес	которого	записан в	FSR (не ф	оизически	й регистр)	0000 0000
81h	OPTION_REG	-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111
82h ⁽³⁾	PCL	Младше	биты счет	чика кома	анд РС					0000 0000
83h ⁽³⁾	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xxx
84h ⁽³⁾	FSR	Регистр	адреса пр	и косвенн	ой адреса	ции				XXXX XXXX
85h	TRISA	-	-	Направле	ение выво,	дов PORT	Α			11 1111
86h	TRISB	Направле	ние вывод	дов PORT	В					1111 1111
87h	TRISC	Направле	ние вывод	дов PORT	C					1111 1111
88h ⁽⁴⁾	TRISD	Направле	ние вывод	дов PORT	D					1111 1111
89h ⁽⁴⁾	TRISE	IBF	OBF	IBOV	PSPMOD	E -	Направле	ние выв.	PORTE	0000 -111
8Ah ^(1,3)	PCLATH	-	-	-	Старши	е биты сче	тчика кома	анд РС		0 0000
8Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x
8Ch	PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000
8Dh	PIE2	-	(5)	-	EEIE	BCLIE	-	-	CCP2IE	-r-0 00
8Eh	PCON	-	-	-	-	-	-	-POR	-BOR	dd
8Fh	-	Не реалі	изовано							-
90h	-	Не реалі								-
91h	SSPCON2	GCEN		T ACKDT		RCEN	PEN	RSEN	SEN	0000 0000
92h	PR2	Регистр	периода т	аймера 2						1111 1111
93h	SSPADD	Регистр	адреса / Г	Регистр ге	нератора	скорости с	обмена			0000 0000
94h	SSPSTAT	SMP	CKE	D/-A	Р	S	R/-W	UA	BF	0000 0000
95h	-	Не реалі	изовано							
96h	-	Не реалі	изовано							-
97h	-	Не реалі	изовано							_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010
99h	SPBRG	Регистр	генератор	а скорост	и USART					0000 0000
9Ah	-	Не реалі	изовано							-
9Bh	-	Не реалі	Не реализовано							
9Ch	-	Не реализовано								-
9Dh	-	Не реалі	изовано							-
9Eh	ADRESL	Младши	й байт рез	ультат пр	еобразова					xxxx xxxx
9Fh	ADCON1	ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0	0 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий, r = резерв. Затененные ячейки читаются как '0'.

- 1. Старший байт счетчика команд РС программно не доступен. В регистре PCLATH сохраняются старшие биты <12:8>, переписываемые в старший байт счетчика команд.
- 2. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873/876 не реализованы, всегда должны равняться нулю.
- 3. Обращение к этим регистрам можно выполнить из любого банка.
- 4. Регистры PORTD, PORTE, TRISD, TRISE не реализованы в микроконтроллерах PIC16F873/876, читаются как '0'.
- 5. Резервные биты PIR2<6> и PIE2<6> при записи в регистр PIR2 всегда должны равняться нулю.

Таблица 2-1 Регистры специального назначения (продолжение)

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOF				
Банк 2														
100h ⁽³⁾	INDF	Обращен	ращение к регистру, адрес которого записан в FSR (не физический регист											
101h	TMR0	Регистр :	таймера 0							xxxx xxx				
102h ⁽³⁾	PCL	Младше	биты счет	чика кома	анд РС					0000 000				
103h ⁽³⁾	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xx				
104h ⁽³⁾	FSR	Регистр :	адреса пр	и косвенн	ой адреса	ции				xxxx xxx				
105h	-	Не реали	изовано							-				
106h	PORTB	Запись в	выходнук	защелку	PORTB, v	тение сос	тояния вь	водов РО	RTB	xxxx xxx				
107h	-	Не реали	изовано							-				
108h	-	Не реали	изовано							-				
109h	-	Не реали	изовано							-				
10Ah ^(1,3)	PCLATH	-	-	-	Старши	е биты сче	тчика ком	анд РС		0 000				
10Bh ⁽³⁾	INTCON	GIE	·											
10Ch	EEDATA	Регистр д	анных, мл	адший ба	ійт					xxxx xxx				
10Dh	EEADR	Регистр а	Регистр адреса, младший байт											
10Eh	EEDATH	-	-	Регистр д	цанных, ст	арший бай	ÍΤ			xxxx xxx				
10Fh	EEADRH	-	-	-	Регистр а	дреса, ста	арший бай	ΙΤ		xxxx xxx				
Банк 3														
180h ⁽³⁾	INDF	Обращен	ие к регист	гру, адрес	которого	записан в	FSR (He d	ризически	й регистр)	0000 000				
181h	OPTION_REG	-RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 111				
182h ⁽³⁾	PCL	Младше	биты счет	чика кома	анд РС					0000 000				
183h ⁽³⁾	STATUS	IRP	RP1	RP0	-TO	-PD	Z	DC	С	0001 1xx				
184h ⁽³⁾	FSR	Регистр	адреса пр	и косвенн	ой адреса	ции				xxxx xxx				
185h	-	Не реали	изовано							-				
186h	TRISB	Направле	ение выво	дов POR1	ГВ					1111 111				
187h	-	Не реали	изовано							-				
188h	-	Не реали	изовано							-				
189h	-	Не реали	изовано							-				
18Ah ^(1,3)	PCLATH	-												
18Bh ⁽³⁾	INTCON	GIE	GIE PEIE TOIE INTE RBIE TOIF INTF RBIF											
18Ch	EECON1	EEPGD	EEPGD WREER WREN WR RD											
18Dh	EECON2	Регистр управления 2 (физически не реализован)												
18Eh	-	Резерв												
18Fh	-	Резерв								-				

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий, r = резерв. Затененные ячейки читаются как '0'.

- 1. Старший байт счетчика команд РС программно не доступен. В регистре PCLATH сохраняются старшие биты <12:8>, переписываемые в старший байт счетчика команд.
- 2. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873/876 не реализованы, всегда должны равняться нулю.
- 3. Обращение к этим регистрам можно выполнить из любого банка.
- 4. Perистры PORTD, PORTE, TRISD, TRISE не реализованы в микроконтроллерах PIC16F873/876, читаются как '0'.
- 5. Резервные биты PIR2<6> и PIE2<6> при записи в регистр PIR2 всегда должны равняться нулю.

2.2.2.1 Perucmp STATUS

В регистре STATUS содержатся флаги состояния АЛУ, флаги причины сброса микроконтроллера и биты управления банками памяти данных.

Регистр STATUS может быть адресован любой командой, как и любой другой регистр памяти данных. Если обращение к регистру STATUS выполняется командой, которая воздействует на флаги Z, DC и C, то изменение этих трех битов командой заблокирована. Эти биты сбрасываются или устанавливаются согласно логике ядра микроконтроллера. Команды изменения регистра STATUS также не воздействуют на биты -TO и -PD. Поэтому, результат выполнения команды с регистром STATUS может отличаться от ожидаемого. Например, команда CLRF STATUS сбросит три старших бита и установит бит Z (состояние регистра STATUS после выполнения команды 000uu1uu, где u - не изменяемый бит).

При изменении битов регистра STATUS рекомендуется использовать команды, не влияющие на флаги АЛУ (SWAPF, MOVWF, BCF и BSF). Описание команд смотрите в разделе 13.0.

Примечание. Флаги С и DC используются как биты заема и десятичного заема соответственно, например, при выполнении команд вычитания SUBLW и SUBWF.

	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP Бит 7	RP1	RP0	-TO	-PD	Z	DC	С Бит 0	R – чтение бита W – запись бита U – не реализовано, читается как 0 –п – значение после РОГ –х – неизвестное
бит 7:	1 = 6	Бит выбора банк 2, 3 (10 банк 0, 1 (00	0h – 1FFh)		ой адресаці	111		значение после РОР
биты 6	11 = 10 = 01 =	: RP0 : Биты банк 3 (180 банк 2 (100 банк 1 (080 банк 0 (000	h – 1FFh) h – 17Fh) h – 0FFh)	нка при н	епосредств	енной адре	есации	
бит 4:	1 = г		или выполн	нения ком	го таймера анд CLRWI	T, SLEEP		
бит 3:	1 = г	Флаг включ после POR и после выпол	или выполн	нения ком	анды CLRW EEP	/DT		
бит 2:	1 = ⊦		ультат выг	олнения			погической о пи логическо	
бит 1:	инве 1 = 6	Флаг десяті рсное значо был перенос не было пер	ение с из младц	его полуб	байта	ианд ADD\	WF, ADDWL,	SUBWF, SUBWL), заем име
бит 0:	знач 1 = 6	рлаг перено ение был перенос не было пер	с из старше	его бита		, ADDWL,	SUBWF, SU	JBWL), заем имеет инверсн

Примечание. Флаг заема имеет инверсное значение. Вычитание выполняется путем прибавления дополнительного кода второго операнда. При выполнении команд сдвига (RRF, RLF) бит С загружается старшим или младшим битом сдвигаемого регистра.

2.2.2.2 Pezucmp OPTION REG

Регистр OPTION доступен для чтения и записи, содержит биты управления:

- Предварительным делителем TMR0/WDT;
- Активным фронтом внешнего прерывания RB0/INT;
- Подтягивающими резисторами на входах PORTB.

Примечание. Если предварительный делитель включен перед WDT, то коэффициент деления тактового сигнала для TMR0 равен 1:1.

Peructp OPTION_REG (адрес 81h или 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR

бит 7: -RBPU: Включение подтягивающих резисторов на входах PORTB

1 = подтягивающие резисторы отключены 0 = подтягивающие резисторы включены

бит 6: INTEDG: Выбор активного фронта сигнала на входе внешнего прерывания INT

1 = прерывания по переднему фронту сигнала 0 = прерывания по заднему фронту сигнала

бит 5: **TOCS**: Выбор тактового сигнала для TMR0

1 = внешний тактовый сигнал с вывода RA4/T0CKI

0 = внутренний тактовый сигнал CLKOUT

бит 4: **TOSE**: Выбор фронта приращения TMR0 при внешнем тактовом сигнале

1 = приращение по заднему фронту сигнала (с высокого к низкому уровню) на выводе RA4/T0CKI

0 = приращение по переднему фронту сигнала (с низкого к высокому уровню) на выводе RA4/T0CKI

бит 3: **PSA**: Выбор включения предделителя

1 = предделитель включен перед WDT

0 = предделитель включен перед TMR0

биты 2-0: PS2: PS0: Установка коэффициента деления предделителя

Знач	ение	Для TMR0	Для WDT
00	00	1:2	1:1
00	01	1:4	1:2
01	10	1:8	1:4
01	11	1:16	1:8
10	00	1:32	1:16
10	01	1:64	1:32
11	10	1:128	1:64
1	11	1:256	1:128

Примечание. При использовании режима низковольтного программирования и включенных подтягивающих резисторах на PORTB необходимо сбросить в '0' 3-й бит регистра TRISB для выключения подтягивающего резистора на выводе RB3.

2.2.2.3 Perucmp INTCON

Регистр INTCON доступен для чтения и записи, содержит биты разрешений и флаги прерываний: переполнение TMR0; изменения уровня сигнала на выводах PORTB; внешний источник прерываний RB0/INT.

Примечание. Флаги прерываний устанавливаются при возникновении условий прерываний вне зависимости от соответствующих битов разрешения и бита общего разрешения прерываний GIE (INTCON<7>).

Регистр INTCON (адрес 0Bh, 8Bh, 10Bh или 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								-x – неизвестное
бит 7	· GIE	Гпобапьи	ре разреше	UMA TRANL	полий			значение после POR
ONI 1			все немасн			ING		
		•	ания запре	•	Спрерыва	17171		
		oo npopsis	ann canpo	щопы				
бит 6	: PEII	Ξ : Разреше	ние преры	ваний от пе	ериферийн	ых модуле	Й	
							ерийных моду	улей
	0 = 0	прерывания	я от перифе	ерийных м	одулей зап	рещены		
6 r	. TOIT	. Daana				TMDC		
бит 5		•	ние прерыв		ереполнени	ію ІМКО		
			е разрешен е запрещен					
	0 - 1	ірсрыванис	запрещен	O				
бит 4	: INTI	Е : Разреше	ние внешн	его прерыв	вания INT			
			е разрешен					
	0 = 0	трерывание	е запрещен	0				
бит 3	o. DDI	E: Doopouid	UUAO EDODI U	DOLUMA TO 14	0140110111410		DVOROV DD7:	DD4 DODTD
ОИГЗ			ние преры е разрешен		зменению	зигнала на	входах RB7:	RB4 PORTB
			е запрещен Э					
		.pop2.20	, сапрощоп	•				
бит 2	: TOIF	: Флаг преј	рывания по	переполн	ению TMR()		
			переполне		(сбрасывае	ется програ	аммно)	
	1 = 0	тереполнен	ия TMR0 н	е было				
бит 1	. INITI	E: Фпог г∷о	IIIIIOFO EROS	u ibouida IN	ıT			
ONTI			шнего прер			IS BPIDOUD	RB0/INT (cfn	асывается программно)
			условие вн рерывания		срывания г	и выводе	TCD/IIVI (COP	acbibactor riporpainino)
				020				
бит 0							входах RB7:l	
	1 -	зафиксир	овано изм	енение vr	овня сигн	апа на ол	тном из вхо	дов RB7:RB4 (сбрасывает
	. –			J	OBINI ONIII	aria na o _f	,	(
		программи	но)				одов RB7:RB	

2.2.2.4 Peaucmp PIE1

Регистр PIE1 доступен для чтения и записи, содержит биты разрешения периферийных прерываний.

Примечание. Чтобы разрешить периферийные прерывания необходимо установить в '1' бит PEIE(INTCON<6>).

Регистр PIE1 (адрес 8Ch)

Регистр	PIE1 (ад	pec 8Ch)						
	R/W-0 ADIE	R/W-0 RCIE	R/W-0 TXIE	R/W-0 SSPIE	R/W-0	R/W-0 TMR2IE	R/W-0 TMR1IE	R – чтение бита
Бит 7	ADIE	KOIE	IAIL	SSFIE	COFFIE	TWINZIE	Бит 0	W – запись бита U – не реализовано, читается как 0 –n – значение после POR –x – неизвестное значение после POR
бит 7:	1 = п	рерывание	шение пре разрешен запрещен	0	аписи/чтен	ия ведомог	о параллелы	ного порта
бит 6:	1 = п	рерывание	ние преры разрешен запрещен	0	кончанию г	реобразов	ания АЦП	
бит 5:	1 = п	рерывание	ние преры разрешен запрещен	0	риемника С	ISART		
бит 4:	1 = п	рерывание	ние прерыв разрешен запрещен	0	ередатчика	USART		
бит 3:	1 = п	рерывание	ение преры разрешен запрещен	0	модуля син	хронного п	оследовател	ьного порта
бит 2:	1 = п	рерывание	шение прер разрешен запрещен	0	т модуля С	CP1		
бит 1:	1 = п	рерывание	шение пре е разрешен е запрещен	0	о переполн	ению ТМР2	2	
бит 0:	1 = п	рерывание	шение пре е разрешен е запрещен	0	о переполн	ению TMR [*]	1	

Примечание 1. Бит PSPIE в микроконтроллерах PIC16F873/876 не реализован, всегда должен равняться нулю.

2.2.2.5 Peaucmp PIR1

Регистр PIR1 доступен для чтения и записи, содержит флаги прерываний периферийных модулей.

Примечание. Флаги прерываний устанавливаются при возникновении условий прерываний вне зависимости от соответствующих битов разрешения и бита общего разрешения прерываний GIE (INTCON<7>). Программное обеспечение пользователя должно сбрасывать соответствующие флаги при обработке прерываний от периферийных модулей.

Регистр PIR1 (адрес 0Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
Бит 7							Бит 0

R – чтение бита

W - запись бита

U – не реализовано, читается как 0

-n - значение после POR

-х - неизвестное

значение после POR

PSPIF⁽¹⁾: Флаг прерывания от ведомого параллельного порта бит 7:

1 = произошла операция чтения или записи (сбрасывается программно)

0 = операции чтения или записи не происходило

бит 6: **ADIF**: Флаг прерывания от модуля АЦП

> 1 = преобразование АЦП завершено 0 = преобразование АЦП не завершено

RCIF: Флаг прерывания от приемника USART бит 5:

> 1 = буфер приемника USART полон 0 = буфер приемника USART пуст

бит 4: TXIF: Флаг прерывания от передатчика USART

1 = буфер передатчика USART пуст

0 = буфер передатчика USART полон

SSPIF: Флаг прерываний от модуля MSSP бит 3:

> 1 = выполнено условие возникновения прерывания от модуля MSSP (сбрасывается программно). Условия возникновения прерывания:

- SPI
 - Выполнен прием/передача данных.
- Ведомый І2С
 - Выполнен прием/передача данных.
- Ведущий І2С
 - Выполнен прием/передача данных.
 - Завершено формирование на шине бита START.
 - Завершено формирование на шине бита STOP.
 - Завершено формирование на шине бита повторный START.
 - Завершено формирование на шине бита подтверждения.
 - Обнаружено на шине формирование бита START (для режима с несколькими ведущими).
 - Обнаружено на шине формирование бита STOP (для режима с несколькими ведущими).

0 = условие возникновения прерывания от модуля MSSP не выполнено

ССР1IF: Флаг прерывания от модуля ССР1 бит 2:

Режим захвата

1 = выполнен захват значения TMR1 (сбрасывается программно)

0 = захвата значения TMR1 не происходило

Режим сравнения

1 = значение TMR1 достигло указанного в регистрах CCPR1H:CCPR1L(сбрасывается программно)

0 = значение TMR1 не достигло указанного в регистрах CCPR1H:CCPR1L

ШИМ режим

Не используется

бит 1: **TMR2IF**: Флаг прерывания по переполнению TMR2

1 = произошло переполнение TMR2 (сбрасывается программно)

0 = переполнения TMR2 не было

бит 0: **TMR1IF**: Флаг прерывания по переполнению TMR1

1 = произошло переполнение TMR1 (сбрасывается программно)

0 = переполнения TMR1 не было

Примечание 1. Бит PSPIF в микроконтроллерах PIC16F873/876 не реализован, всегда должен равняться нулю.

2.2.2.6 Perucmp PIE2

Регистр PIE1 доступен для чтения и записи, содержит биты разрешения прерываний от модуля ССР2, возникновения коллизий на шине и окончания записи в EEPROM память данных.

Регистр PIE2 (адрес 8Dh)

U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	
<u>-</u> Бит 7	Резерв	-	EEIE	BCLIE	-	-	ССР1ІЕ Бит 0	R – чтение бита W – запись бита U – не реализовано, читается как 0 –n – значение после POR –x – неизвестное
бит і бит (реализова ерв: всегда			⁄лю			значение после POR
бит	5: He	реализова	н : читается	ı как '0'				
бит 4	1 =	Е : Разреше прерывание прерывание	е разрешен	10	ончанию з	аписи в ЕІ	EPROM данны	х
бит	1 =	L IE : Разрец прерывание прерывание	е разрешен	10	возникное	ении колл	пизий на шине	
бить	ы 2-1: Не	реализова	ны: читают	ся как '0'				
бит (1 =	Р2ІЕ : Разре прерыванию прерыванию	е разрешен	10	модуля С	CP2		

2.2.2.7 Peaucmp PIR2

Регистр PIR1 доступен для чтения и записи, содержит флаги прерываний от модуля ССР2, возникновения коллизий на шине и окончания записи в EEPROM память данных.

Примечание. Флаги прерываний устанавливаются при возникновении условий прерываний вне зависимости от соответствующих битов разрешения и бита общего разрешения прерываний GIE (INTCON<7>). Программное обеспечение пользователя должно сбрасывать соответствующие флаги при обработке прерываний от периферийных модулей.

Регистр PIR2 (адрес 0Dh)

2.2.2.8 Pezucmp PCON

Регистр PCON содержит флаги, с помощью которых можно определить источник сброса микроконтроллера:

- Сброс по включению питания (POR);
- Сброс по сигналу на выводе -MCLR;
- Сброс по переполнению сторожевого таймера WDT;
- Сброс по обнаружению снижения напряжения питания (BOR).

Примечание. При включении питания бит -BOR имеет непредсказуемое значение и не должен учитываться. Бит -BOR предназначен для обнаружения последующих сбросов микроконтроллера при снижении напряжения питания. Состояние бита -BOR также непредсказуемое, если работа детектора пониженного напряжения заблокирована в битах конфигурации при программировании микроконтроллера (BODEN=0).

Регистр PCON (адрес 8Eh)

2.3 Регистры PCLATH и PCL

13-разрядный регистр счетчика команд PC указывает адрес выполняемой инструкции. Младший байт счетчика команд PCL доступен для чтения и записи. Старший байт PCH, содержащий <12:8> биты счетчика команд PC, не доступен для чтения и записи. Все операции с регистром PCH происходят через дополнительный регистр PCLATH. При любом виде сброса микроконтроллера счетчик команд PC очищается. На рисунке 2-5 показано две ситуации загрузки значения в счетчик команд PC. Пример сверху, запись в счетчик команд PC происходит при записи значения в регистр PCL (PCLATH <4:0> \rightarrow PCH). Пример снизу, запись значения в счетчик команд PC происходит при выполнении команды CALL или GOTO (PCLATH <4:3> \rightarrow PCH).

Рис. 2-5 Запись значения в счетчик команд РС PCH PCI 8 7 12 Инструкции PC изменяющие **PCL** PCLATH<4:0> AL U **PCLATH PCH** PCL 11 10 8 7 PC GOTO, CALL Opcode <10:0> **PCLATH**

2.3.1 Вычисляемый переход

Вычисляемый переход может быть выполнен командой приращения к регистру PCL (например, ADDWF PCL). При выполнении табличного чтения вычисляемым переходом следует заботиться о том, чтобы значение PCL не пересекло границу блока памяти (каждый блок 256 байт). Дополнительную информацию по выполнению вычисляемого перехода смотрите в документации AN556 «Выполнение табличного чтения».

2.3.2 Стек

PIC16F87X имеют 8-уровневый 13-разрядный аппаратный стек (см. рисунки 2-1, 2-2). Стек не имеет отображения на память программ и память данных, нельзя запись или прочитать данные из стека. Значение счетчика команд заносится в вершину стека при выполнении инструкций перехода на подпрограмму (CALL) или обработки прерываний. Чтение из стека и запись в счетчик команд PC происходит при выполнении инструкций возвращения из подпрограммы или обработки прерываний (RETURN, RETLW, RETFIE), при этом значение регистра PCLATH не изменяется.

Стек работает как циклический буфер. После 8 записей в стек, девятая запись запишется на место первой, а десятая запись заменит вторую и так далее.

- 1. В микроконтроллерах не имеется никаких указателей о переполнении стека.
- В микроконтроллерах не предусмотрено команд записи/чтения из стека, кроме команд вызова/возвращения из подпрограмм (CALL, RETURN, RETLW и RETFIE) или условий перехода по вектору прерываний.

2.4 Страницы памяти программ

Все микроконтроллеры PIC16F87X способны адресовать 8К слов памяти программ. Инструкции переходов (CALL и GOTO) имеют 11-разрядное поле для указания адреса, что позволяет непосредственно адресовать 2Кслов памяти программ. Для адресации верхних страниц памяти программ используются 2 бита в регистре PCLATH<4:3>. Перед выполнением команды перехода (CALL или GOTO) необходимо запрограммировать биты регистра PCLATH<4:3> для адресации требуемой страницы.

При выполнении инструкций возврата из подпрограммы, 13-разрядное значение для счетчика программ PC берется с вершины стека, поэтому манипуляция битами регистра PCLATH<3:4> не требуется.

Примечание. Содержимое регистра PCLATH не изменяется поле выполнения инструкции RETURN или RETFIE. Пользователь должен сам изменить значения регистра PCLATH для последующего выполнения команд GOTO и CALL.

В примере 2-1 показан переход со страницы 0 на страницу 1 памяти программ. Этот пример предполагает, что в подпрограмме сохраняется и восстанавливается значение регистра PCLATH.

Пример 2-1 Переход на 1 страницу памяти программ с 0 страницы

ORG 0x500
BSF PCLATH,3 ; Выбор страницы 1 (800h-FFFh)
CALL SUB1_P1 ; Переход на страницу 1 (800h-FFFh)
:
:
:
ORG 0x900
SUB1_P1: ; Страница 1 (800h-FFFh)
:
RETURN ; Возврат на страницу 0 (000h-7FFh)

2.5 Косвенная адресация, регистры INDF и FSR

Для выполнения косвенной адресации необходимо обратиться к физически не реализованному регистру INDF. Обращение к регистру INDF фактически вызовет действие с регистром, адрес которого указан в FSR. Косвенное чтение регистра INDF (FSR=0) даст результат 00h. Косвенная запись в регистр INDF не вызовет никаких действий (вызывает воздействия на флаги АЛУ в регистре STATUS). 9-бит косвенного адреса IRP сохраняется в регистре STATUS<7>. Пример 9-разрядной косвенной адресации показан на рисунке 2-6.

Puc. 2-6 Прямая/косвенная адресация в PIC16F87X Косвенная адресация Прямая адресация Из OPCODE RP1 RP0 **IRP** 6 0 FSR регистр 0 Выбор размещения Выбор размещения Выбор банка Выбор банка **►** 00 01 10 11 00h 180h Память данных 7Fh 1FFh Банк 0 Банк 1 Банк 2 Банк 3

Примечание. Карту памяти данных смотрите на рисунке 2-3 и 2-4.

В примере 2-1 показано использование косвенной адресации для очистки памяти данных (диапазон адресов 20h-2Fh).

Пример 2-2 Косвенная адресация

BCF STATUS, IRP ; Установить банк 0,1

MOVLW 0x20 ; Указать первый регистр в ОЗУ

MOVWF FSR

NEXT:

CLRF INDF ; Очистить регистр **INCF** FSR,F ; Увеличить адрес BTFSS FSR,4 ; Завершить?

GOTO NEXT ; Нет, продолжить очистку

CONTINUE:

; Да

3.0 Порты ввода/вывода

Некоторые каналы портов ввода/вывода мультиплицированы с периферийными модулями микроконтроллера. Когда периферийный модуль включен, вывод не может использоваться как универсальный канал ввода/вывода.

Дополнительную информацию по работе с портами ввода/вывода смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual".

3.1 Регистры PORTA и TRISA

PORTA — 6-разрядный порт ввода вывода. Все каналы PORTA имеют соответствующие биты направления в регистре TRISA, позволяющие настраивать канал как вход или выход. Запись '1' в TRISA переводит соответствующий выходной буфер в 3-е состояние. Запись '0' в регистр TRISA определяет соответствующий канал как выход, содержимое защелки PORTA передается на вывод микроконтроллера (если выходная защелка подключена к выводу микроконтроллера).

Чтение регистра PORTA возвращает состояние на выводах порта, а запись производится в защелку PORTA. Все операции записи в порт выполняются по принципу «чтение – модификация - запись», т.е. сначала производится чтение состояния выводов порта, затем изменение и запись в защелку.

RA4 - имеет триггер Шмидта на входе и открытый сток на выходе, мультиплицирован с тактовым входом ТОСКІ. Все остальные каналы PORTA имеют TTL буфер на входе и полнофункциональные выходные КМОП буферы.

Каналы PORTA мультиплицированы с аналоговыми входами АЦП и аналоговым входом источника опорного напряжения V_{REF} . Биты управления режимов работы каналов порта ввода/вывода PORTA находятся в регистре ADCON1.

Примечание. После сброса по включению питания выводы настраиваются как аналоговые входы, а чтение дает результат '0'.

Биты регистра TRISA управляют направлением каналов PORTA, даже когда они используются как аналоговые входы. Пользователь должен удостовериться, что соответствующие каналы PORTA настроены на вход при использовании их в качестве аналоговых входов.

Пример 3-1 Инициализация PORTA

BCF STATUS, RP1 STATUS, RP0 BCF ; Выбрать банк 0 **CLRF PORTA** ; Инициализация защелок PORTA **BSF** STATUS, RP0 ; Выбрать банк 1 **MOVLW** 0X06 **MOVWF** ADCON1 : Каналы PORTA – цифровые входы/выходы **MOVI W** 0xCF ; Значение для инициализации направления каналов PORTA **MOVWF TRISA** ; Настроить RA<3:0> как входы, ; настроить RA<5:4> как выходы ; Биты TRISA<7:6> всегда

; читаются как '0'.

Puc. 3-1 Структурная схема выводов RA3:RA0 и RA5 Шина Защелка данных данных D Q WR порт Q CK → I/O Защелка TRIS N D Q WR **TRIS** Vss $\overline{\mathsf{q}}$ CK аналогового входа Входной RD буфер **TRIS** TTL Q D

Puc. 3-2 Структурная схема вывода RA4/T0CKI

Примечание. Вывод имеет защитный диоды, подключенный только к V_{SS} .

Примечание. Выводы портов имеют защитные диоды, подключенные к V_{DD} и V_{SS} .

RD порт

к АЦП

Таблица 3-1 Функциональное назначение выводов PORTA

ΕN

Обозначение вывода	№ бита	Тип буфера	Описание
RA0/AN0	бит 0	TTL	Двунаправленный порт ввода/вывода или аналоговый вход
RA1/AN1	бит 1	TTL	Двунаправленный порт ввода/вывода или аналоговый вход
RA2/AN2	бит 2	TTL	Двунаправленный порт ввода/вывода или аналоговый вход
RA3/AN3	бит 3	TTL	Двунаправленный порт ввода/вывода или аналоговый вход
RA4/T0CKI	бит 4	ST	Двунаправленный порт ввода/вывода, может использоваться как ТОСКІ, выход с открытым стоком
RA5/-SS/AN4	бит 5	TTL	Двунаправленный порт ввода/вывода или вход выбора синхронного последовательного порта или аналоговый вход

Обозначение: ST = вход с триггером Шмидта; TTL = входной буфер TTL.

Таблица 3-2 Регистры и биты, связанные с работой PORTA

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
05h	PORTA	-	-	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	-	-	Регист	р направл	ения данн	ых PORTA	1		11 1111	11 1111
9Fh	ADCON1	ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0	0 0000	0 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

Примечание. При работе модуля MSSP в ведомом режиме SPI с использованием вывода -SS, АЦП должно работать в одном из следующих режимов PCFG3:PCFG0 = 0100, 0101, 011x, 1101, 1110, 1111.

3.2 Регистры PORTB и TRISB

PORTВ – 8-разрядный двунаправленный порт ввода/вывода. Биты регистра TRISB определяют направление каналов порта. Установка битва в '1' регистра TRISB переводит выходной буфер в 3-е состояние. Запись '0' в регистр TRISB настраивает соответствующий канал как выход, содержимое защелки PORTB передается на вывод микроконтроллера (если выходная защелка подключена к выводу микроконтроллера).

Три вывода PORTB мультиплицированы со схемой низковольтного программирования: RB3/PGM, RB6/PGC, RB7/PGD. Описание режима низковольтного программирования смотрите в разделе 12.0.

К каждому выводу PORTB подключен внутренний подтягивающий резистор. Бит -RBPU (OPTION REG <7>) определяет подключены (-RBPU=0) или нет (-RBPU=1) подтягивающие резисторы. Подтягивающие резисторы автоматически отключаются, когда каналы порта настраиваются на выход и после сброса по включению питания POR.

Четыре канала PORTB RB7:RB4, настроенные на вход, могут генерировать прерывания по изменению логического уровня сигнала на входе. Если один из каналов RB7:RB4 настроен на выход, то он не может быть источником прерываний. Сигнал на выводах RB7:RB4 сравнивается со значением, сохраненным при последнем чтении PORTB. В случае несовпадения одного из значений устанавливается флаг RBIF (INTCON<0>), и если разрешено, генерируется прерывание.

Это прерывание может вывести микроконтроллер из режима SLEEP. В подпрограмме обработки прерываний необходимо сделать следующие действия:

- Выполнить чтение или запись в PORTB, исключив несоответствие;
- Сбросить флаг RBIF в '0'.

Несоответствие сохраненного значения с сигналом на входе PORTB всегда устанавливает бит RBIF в '1'. Чтение из PORTB прервет условие несоответствия и позволит сбросить флаг RBIF в '0'.

Прерывания по изменению сигнала на входах рекомендуется использовать для определения нажатия клавиш, когда PORTB полностью задействован для реализации клавиатуры. Не рекомендуется опрашивать PORTB при использовании прерываний по изменению входного сигнала.

Прерывания по изменению сигнала на входах PORTB и программа переключения конфигурации этих каналов позволяет реализовать простой интерфейс обслуживания клавиатуры с выходом из режима SLEEP по нажатию клавиш (см. пример AN552 в книге Microchip Embedded Control Handbook или на WEB узлах технической поддержки www.microchip.com и www.microchip.ru).

RB0/INT вход внешнего источника прерываний, настраиваемых битом INTEDG (OPTION REG<6>). Подробное описание использования прерываний INT смотрите в разделе 12.10.1.

RBPU(2) Подтяжка Шина I/O Защелка данных данных WR порт Входной буфер тригтером Шмидта CK Защелка TRIS D Q WR TRIS Входной буфер TTL **RD TRIS** Защелка Q D RD порт ΕN Q1 RBIF Q D RD порт

ΕN

Puc. 3-4 Структурная схема выводов RB7:RB4

Vdd

Примечания:

- 1. Выводы портов имеют защитные диоды, подключенные к V_{DD} и V_{SS} .
- 2. Для включения подтягивающих резисторов необходимо установить в '1' соответствующий бит TRIS и сбросить в '0' бит -RBPU (OPTION_REG<7>).

RB7:RB6

От других

выводов RB7:RB4

Вход последовательного программирования

03

Таблица 3-3 Функциональное назначение выводов PORTB

Обозначение вывода	№ бита	Тип буфера	Описание
RB0/INT	бит 0	TTL/ST ⁽¹⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора, вход внешнего прерывания.
RB1	бит 1	TTL	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора.
RB2	бит 2	TTL	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора.
RB3/PGM ⁽³⁾	бит 3	TTL	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора или вход программирования в режиме LVP.
RB4	бит 4	TTL	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора и прерыванием по изменению входного сигнала.
RB5	бит 5	TTL	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора и прерыванием по изменению входного сигнала.
RB6/PGC	бит 6	TTL/ST ⁽²⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора и прерыванием по изменению входного сигнала. Тактовый вход в режиме программирования.
RB7/PGD	бит 7	TTL/ST ⁽²⁾	Двунаправленный порт ввода/вывода с программным включением подтягивающего резистора и прерыванием по изменению входного сигнала. Вывод данных в режиме программирования.

Обозначение: ST = вход с триггером Шмидта; TTL = входной буфер TTL.

Примечания:

- 1. Входной буфер с триггером Шмидта при использовании внешних прерываний.
- 2. Входной буфер с триггером Шмидта при работе в режиме последовательного программирования.
- 3. Низковольтное программирование (LVP) ICSP разрешено по умолчанию, что отключает функцию цифрового порта ввода/вывода RB3. Для использования RB3 в качестве цифрового ввода/вывода необходимо выключить режим низковольтного программирования.

Таблица 3-4 Регистры и биты, связанные с работой PORTB

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	Регист	Регистр направления данных PORTB							1111 1111	1111 1111
81h, 181h	OPTION_REG	-RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

3.3 Регистры PORTC и TRISC

PORTC – 8-разрядный двунаправленный порт ввода/вывода. Биты регистра TRISC определяют направление каналов порта. Установка бита в '1' регистра TRISC переводит выходной буфер в 3-е состояние. Запись '0' в регистр TRISC настраивает соответствующий канал как выход, содержимое защелки PORTC передается на вывод микроконтроллера (если выходная защелка подключена к выводу микроконтроллера).

Выводы PORTC мультиплицированы с несколькими периферийными модулями (см. таблицу 3-5). На каналах PORTC присутствует входной буфер с триггером Шмидта.

Когда модуль MSSP включен в режиме I^2 C, выводы PORTC<4:3> могут поддерживать уровни выходных сигналов по спецификации I^2 C или SMBus в зависимости от состояния бита CKE(SSPSTAT<6>).

При использовании периферийных модулей необходимо соответствующим образом настраивать биты регистра TRISC для каждого вывода PORTC (см. описание периферийных модулей). Некоторые периферийные модули отменяют действие битов TRISC принудительно настраивая вывод на вход или выход. В связи с чем не рекомендуется использовать команды "чтение - модификация - запись" с регистром TRISC.

Puc. 3-5 Структурная схема выводов RC7:RC5, RC2:RC0

Рис. 3-6 Структурная схема выводов RC4:RC3 В<u>ыбор</u> порт/периферия⁽²⁾ Данные от периферийного модуля <u>Vdd</u> Шина данных D Q I/O WR порт ·ck³–q Защелка данн D Q WR TRIS CK₹∟Q Защелка TRIS Vss RD Входные TRIS буферы с OE(3) триггером Шмидта Q D ΕN RD порт 0 **Вход SSPI**

CKE____SSPSTAT<6>

Примечания:

- 1. Выводы портов имеют защитные диоды, подключенные к V_{DD} и V_{SS} .
- 2. Сигнал режима канала вывод используется периферийным модулем или цифровой порт ввода/вывода.
- 3. Сигнал разрешения (ОЕ) от периферийного модуля, настраивать канал как выход.

Таблица 3-5 Функциональное назначение выводов PORTC

Обозначение вывода	№ бита	Тип буфера	Описание
RC0/T1OSO/T1CKI	бит 0	ST	Двунаправленный порт ввода/вывода или выход генератора TMR1 / вход тактового сигнала для TMR1.
RC1/T1OSI/CCP2	бит 1	ST	Двунаправленный порт ввода/вывода или вход генератора TMR1 или вход захвата 2 / выход сравнения 2 / выход ШИМ 2.
RC2/CCP1	бит 2	ST	Двунаправленный порт ввода/вывода или вход захвата 1 / выход сравнения 1 / выход ШИМ 1.
RC3/SCK/SCL	бит 3	ST	Двунаправленный порт ввода/вывода или вход/выход тактового сигнала модуля MSSP в SPI, I ² C режиме.
RC4/SDI/SDA	бит 4	ST	Двунаправленный порт ввода/вывода или вход данных в режиме I ² C.
RC5/SDO	бит 5	ST	Двунаправленный порт ввода/вывода или выход данных в режиме SPI.
RC6/TX/CK	бит 6	ST	Двунаправленный порт ввода/вывода или выход передатчика USART в асинхронном режиме или линия тактового сигнала USART в синхронном режиме.
RC7/RX/DT	бит 7	ST	Двунаправленный порт ввода/вывода или вход приемника USART в асинхронном режиме или линия данных USART в синхронном режиме.

Обозначение: ST = вход с триггером Шмидта.

Таблица 3-6 Регистры и биты, связанные с работой PORTC

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
07h	PORTC	RC7	RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0								uuuu uuuu
87h	TRISC	Регист	Регистр направления данных PORTC								1111 1111

Обозначения: - = не используется, читается как 0; и = не изменяется; х = не известно; q = зависит от условий.

3.4 Регистры PORTD и TRISD

PORTD и TRISD не реализованы в микроконтроллерах PIC16F873 и PIC16F876.

PORTD - 8-разрядный двунаправленный порт ввода/вывода. Биты регистра TRISD определяют направление каналов порта.

PORTD может работать как 8-разрядный микропроцессорный порт (ведомый параллельный порт), если бит PSPMODE (TRISE<4>) установлен в '1'. В режиме ведомого параллельного порта ко входам подключены буферы TTL.

(режим цифрового порта ввода/вывода) Шина Защелка данных данных D WR порт ·CK 🕽 Защелка TRIS D Q WR **TRIS** Входной буфер с триггером Шмидта RD TRIS o D ΕN RD порт

Puc. 3-7 Структурная схема выводов PORTD

Примечание. Выводы портов имеют защитные диоды, подключенные к V_{DD} и V_{SS}.

Таблица 3-7 Функциональное назначение выводов PORTD

Обозначение вывода	№ бита	Тип буфера	Описание
RD0/PSP0	бит 0	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 0.
RD1/PSP1	бит 1	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 1.
RD2/PSP2	бит 2	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 2.
RD3/PSP3	бит 3	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 3.
RD4/PSP4	бит 4	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 4.
RD5/PSP5	бит 5	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 5.
RD6/PSP6	бит 6	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 6.
RD7/PSP7	бит 7	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вывод ведомого параллельного порта бит 7.

Обозначение: ST = вход с триггером Шмидта; TTL = входной буфер TTL.

Примечание 1. В режиме цифрового ввода/вывода подключен буфер с триггером Шмидта, а в режиме ведомого параллельного порта подключен входной буфер TTL.

Таблица 3-8 Регистры и биты, связанные с работой PORTD

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	Регист	Регистр направления данных PORTD								1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMOD	E -	Рег. на	пр. данны	x PORTE	0000 -111	0000 -111

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

3.5 Регистры PORTE и TRISE

PORTE и TRISE не реализованы в микроконтроллерах PIC16F873 и PIC16F876.

PORTE имеет три вывода (RE0/-RD/AN5, RE1/-WR/AN6, RE2/-CS/AN7), индивидуально настраиваемые на вход или выход. Выводы PORTE имеют входной буфер Шмидта.

Каналы PORTE станут управляющими выводами ведомого параллельного порта, когда бит PSPMODE(TRISE<4>) установлен в '1'. В этом режиме биты TRISE<2:0> должны быть установлены в '1'. В регистре ADCON1 необходимо также настроить выводы PORTE как цифровые каналы ввода/вывода. В режиме ведомого параллельного порта к выводам PORTE подключены входные буферы TTL.

Выводы PORTE мультиплицированы с аналоговыми входами. Когда каналы PORTE настроены как аналоговые входы, биты регистра TRISE управляют направлением данных PORTE (чтение будет давать результат '0').

Примечание. После сброса по включению питания выводы настраиваются как аналоговые входы, а чтение дает результат '0'.

Puc. 3-8 Структурная схема выводов PORTE

Примечание. Выводы портов имеют защитные диоды, подключенные к V_{DD} и V_{SS} .

Таблица 3-9 Функциональное назначение выволов PORTE

Обозначение вывода	№ бита	Тип буфера	Описание
RE0/-RD/AN5	бит 0	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вход управления чтением ведомого параллельного порта или аналоговый вход: -RD 1 = Ожидание 0 = Операция чтения. Защелка PORTD подключена к выводам PORTD (если -CS = 0)
RE1/-WR/AN6	бит 1	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вход управления записью ведомого параллельного порта или аналоговый вход: -WR 1 = Ожидание 0 = Операция записи. Данные с выводов PORTD сохраняются во внутренней защелке PORTD (если -CS = 0)
RE2/-CS/AN7	бит 2	ST/TTL ⁽¹⁾	Двунаправленный порт ввода/вывода или вход выбора микросхемы ведомого параллельного порта или аналоговый вход: -CS 1 = Микросхема не выбрана 0 = Микросхема выбрана

Обозначение: ST = вход с триггером Шмидта; TTL = входной буфер TTL.

Примечание 1. В режиме цифрового ввода/вывода подключен буфер с триггером Шмидта, а в режиме ведомого параллельного порта подключен входной буфер TTL.

Регистр TRISE (адрес 89h)

R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
IBF	OBF	IBOV	PSPMODE	-	BIT2	BIT1	BIT0
Бит 7							Бит 0

R – чтение бита

W – запись бита

U – не реализовано, читается как 0

-n - значение после POR

-x - неизвестное значение после POR

Биты управления и статуса ведомого параллельного порта

бит 7: **IBF**: Бит статуса приемного буфера

1 = принят байт данных

0 = байт данных не был получен

бит 6: **ОВF**: Бит статуса передающего буфера

1 = предварительно записанный байт данных еще не прочитан

0 = выходной буфер был прочитан

бит 5: **IBOV**: Флаг переполнения приемного буфера

1 = произошла новая запись, а предыдущий байт не был прочитан (сбрасывается программно)

0 = переполнения не было

бит 4: PSPMODE: Режим работы PORTD

1 = PORTD работает как ведомый параллельный порт

0 = PORTD работает в режиме цифровых каналов ввода/вывода

бит 3: Не реализован: читается как '0'

Биты управления направлением данных PORTE

бит 2: BIT2: Направление вывода RE2/-CS/AN7

1 = вход 0 = выход

бит 1: **BIT1**: Направление вывода RE1/-WR/AN6

1 = вход 0 = выход

бит 0: **BIT0**: Направление вывода RE0/-RD/AN5

1 = вход 0 = выход

Таблица 3-10 Регистры и биты, связанные с работой PORTE

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
09h	PORTE	-	-	-	-	-	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMOD	E -	Рег. на	апр. даннь	IX PORTE	0000 -111	0000 -111
9Fh	ADCON1	ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0	0 0000	0 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

3.6 Ведомый параллельный порт

Ведомый параллельный порт (PSP) не реализован в микроконтроллерах PIC16F873 и PIC16F876.

PORTD работает как 8-разрядный параллельный порт (или порт микропроцессора), PSPMODE(TRISE<4>) установлен в '1'. В режиме ведомого данные асинхронно читаются или записываются внешними сигналами -RD (RE0/-RD) или -WR(RE1/-WR) соответственно.

Внешний микропроцессор может читать/записывать данные в PORTD. Операции чтения/записи выполняются при низком логическом уровне сигналов на входах -RD, -WR и низком логическом уровне сигнала на входе выбора микросхемы -CS. Биты TRISE (TRISE<2:0>) должны быть установлены в '1'. В регистре ADCON1 выводы RE2:RE0 должны быть настроены как цифровые каналы ввода/вывода (биты PCFG3:PCFG0).

Фактически существуют два 8-разрядных регистра: один регистр для приема данных, другой - для передачи. Пользователь записывает 8-разрядные данные в выходную защелку PORTD, а читает данные со входной защелки (обратите внимание, выходная и входная защелка имеют один и тот же адрес). В этом режиме значение битов регистра TRISE игнорируется, т.к. направлением данных управляет внешнее устройство.

Запись в PSP происходит, если выводы -CS и -WR имеют низкий уровень сигнала. После перехода сигнала на выводе -CS или -WR в высокий уровень данные сохраняются во входной защелке на такте Q2 (см. рисунок 3-10). На такте Q4 устанавливаются в '1' бит IBF(TRISE<7>) и флаг прерываний PSPIF(PIR<7>). Бит IBF может быть сброшен в '0' только чтением регистра PORTD. Бит переполнения IBOV(TRISE<5>) устанавливается в '1', если произошла следующая запись в PSP, а предыдущий байт не был прочитан.

Чтение из PSP происходит, если выводы -CS и -RD имеют низкий уровень сигнала. Немедленно сбрасывается в '0' бит OBF(TRISE<6>), указывающий, что PORTD ожидает чтение внешней шиной (см. рисунок 3-11). После перехода сигнала на выводе -CS или -RD в высокий уровень устанавливается флаг прерывания PSPIF на такте Q4 (только после такта Q2), указывая, что чтение завершено. Бит ОВF остается сброшенным в '0' пока не будут загружены новые данные в PORTD.

Когда режим PSP выключен, биты IBF и OBF равняются нулю, а предварительно установленный в '1' бит IBOV должен быть сброшен программно.

Флаг прерывания PSPIF устанавливается в '1' по завершению каждой операции чтения или записи (сбрасывается в '0' программно). Разрешить/запретить прерывания от модуля PSP можно установкой/сбросом бита PSPIE (PIE1<7>).

Puc. 3-9 Структурная схема выводов PORTD и PORTE

Примечание. Выводы портов имеют защитные диоды, подключенные к V_{DD} и V_{SS} .

Таблица 3-11 Регистры и биты, связанные с работой ведомого параллельного порта

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
08h	PORTD	Запись	Запись в выходную защелку PORTD, чтение состояния выводов PORTD							xxxx xxxx	uuuu uuuu
09h	PORTE	-	-	-	-	-	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMOD	E -	Рег. на	апр. даннь	IX PORTE	0000 -111	0000 -111
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0	0 0000	0 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

Примечание*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

4.0 EEPROM память данных и FLASH память программ

Данные из EEPROM памяти и FLASH памяти программ могут быть прочитаны/перезаписаны в нормальном режиме работы микроконтроллера во всем диапазоне напряжения питания V_{DD} . Операции выполняются с одним байтом для EEPROM памяти данных и одним словом для FLASH памяти программ. Запись производится по принципу "стирание - запись" для каждого байта или слова. Сформированная кодом программы операция стирания не может выполнена при включенной защите записи.

Доступ к памяти программ позволяет выполнить вычисление контрольной суммы. Данные, записанные в памяти программ, могут использоваться в виде: 14-разрядных чисел, калибровочной информации, серийных номеров, упакованных 7-разрядных символов ASCII и т.д. В случае обнаружения недействительной команды в памяти программ, выполняется пустой цикл NOP.

Число циклов стирания/записи смотрите в разделе электрических характеристик (для EEPROM памяти данных параметр D120, для FLASH памяти программ - D130). Число циклов стирания/записи для FLASH памяти программ значительно ниже по сравнению с EEPROM памятью данных, поэтому EEPROM память данных должна использоваться для сохранения часто изменяемых данных. Время записи данных управляется внутренним таймером, оно зависит от напряжения питания, температуры и имеет небольшой технологический "разброс" (смотрите в разделе электрических характеристик параметры D122, D133).

При записи байта или слова автоматически стирается соответствующая ячейка, а затем выполняется запись. Запись в EEPROM память программ не воздействует на выполнение программы, а при записи во FLASH память программ выполнение программы останавливается на время записи. Нельзя обратиться к памяти программ во время цикла записи. В течение операции записи тактовый генератор продолжает работать, периферийные модули включены и генерируют прерывания, которые "ставятся в очередь" до завершения цикла записи. После завершения записи выполняется загруженная команда (из-за конвейерной обработки) и происходит переход по вектору прерываний, если прерывание разрешено и условие прерывания возникло во время записи.

Доступ к функциям записи/чтения EEPROM памяти данных и FLASH памяти программ выполняется через шесть регистров специального назначения:

- EEDATA;
- EEDATH;
- EEADR:
- EEADRH:
- EECON1;
- EECON2.

Операции чтения/записи EEPROM памяти данных не приостанавливают выполнение программы. В регистре EEADR сохраняется адрес ячейки EEPROM памяти данных. Данные сохраняются/читаются из регистра EEDATA. В микроконтроллерах PIC16F873/874 объем EEPROM памяти 128 байт. Старший бит адреса в регистре EEADR всегда должен равняться нулю, потому что не поддерживается циклическая адресация (т.е. ячейка с адресом 0х80 не отображается на 0х00). В PIC16F876/877 объем EEPROM памяти данных 256 байт (используются все 8-разрядов регистра EEADR).

Чтение FLASH памяти программ не влияет на выполнение программы, а во время операции записи выполнение программы приостановлено. В спаренных регистрах EEADRH:EEADR сохраняется 13-разрядный адрес ячейки памяти программ, к которой необходимо сделать обращение. Спаренные регистры EEADRH:EEADR содержат 14-разрядные данные для записи или отображают значение из памяти программ при чтении. Также как для EEPROM памяти данных, в регистры EEADRH:EEADR должен быть загружен адрес физически реализованной памяти программ (для PIC16F873/874 от 0000h до 0FFFh, для PIC16F876/877 от 0000h до 1FFFh), потому что циклическая адресация не поддерживается (т.е. ячейка с адресом 4000h не отображается на 0000h для PIC16F877).

4.1 Pezucmpы EECON1, EECON2

Регистр EECON1 содержит биты управления косвенной записи/чтения EEPROM памяти данных и FLASH памяти программ. Регистр EECON2 физически не реализован, он используется только при операциях записи с целью предотвращения случайной записи.

Значение бита EEPGD в регистре EECON1 определяет тип памяти, к которой будет выполнено обращение. Если EEPGD = 0, то операции относятся к EEPROM памяти данных. Когда EEPGD=1, обращение происходит к FLASH памяти программ.

В операции чтения используется только один дополнительный бит RD, инициализирующий операцию чтения из указанной памяти. Установив бит RD в '1', значение ячейки памяти будет доступно в регистре данных. Бит RD не может быть сброшен программно в '0', он сбрасывается автоматически по окончании операции чтения. При чтении из EEPROM памяти данные будут доступны в регистре EEDATA в следующем машинном цикле, после установки бита RD. При чтении из FLASH памяти программ данные будут доступны в регистре EEDATA:EEDATH на втором машинном цикле, поле установки бита RD.

В операции записи используется два служебных бита WR, WREN и два бита статуса WRERR, EEIF. Бит WREN применяется для разрешения/запрещения операции записи (WREN = 0 - операция записи запрещена). Перед выполнением записи бит WREN необходимо установить в '1'. Бит WR предназначен для инициализации записи, он аппаратно сбрасывается в '0' по завершении операции записи. Флаг прерывания EEIF устанавливается в '1' по завершении записи. Этот флаг должен быть сброшен программно в '0' перед установкой бита WR.

Для EEPROM памяти данных:

После установки битов WREN, WR в '1' стирается, указанная в регистре EEADR, ячейка EEPROM памяти, а затем происходит запись данных из регистра EEDATA. Операция записи сопровождается выполнением кода программы. По завершении записи устанавливается флаг прерывания EEIF в '1'.

Для FLASH памяти программ:

После установки битов WREN, WR в '1' микроконтроллер приостанавливает выполнение программы. Стирается ячейка памяти программ, указанная в регистре EEADRH:EEADR, затем происходит запись данных из регистра EEDATH:EEDATA. По завершении записи устанавливается флаг прерывания EEIF в '1', а микроконтроллер продолжит выполнять код программы.

Бит WRERR указывает, что произошел сброс микроконтроллера PIC16F87X во время выполнения операции записи. Бит WRERR устанавливается в '1', если во время выполнения записи данных произошел сброс по сигналу -MCLR или по переполнению сторожевого таймера WDT в нормальном режиме. Проверив состояние бита WREER, пользователь может повторить запись (регистры EEDATA и EEADR не изменяют своего значения). Содержимое регистров данных, адреса и бит EEPGD не изменяется после сброса по сигналу -MCLR, по переполнению сторожевого таймера WDT в нормальном режиме.

Регистр EECON1 (адрес 18Ch)

1 01 NO1P =	(a	.дрос .о	···,					
R/W-x L	J-0	U-0	U-0	R/W-x	R/W-0 WREN	R/S-0 WR	R/S-0 RD	R – чтение бита
Бит 7	-	-	-	WKEKK	WKEN	VVK	Б ит 0	W – запись бита
								U – не реализовано, читается как 0
								–n – значение после POR
								-x - неизвестное значение после POR
бит 7:	EEPGD:	1 = F 0 = E	ELASH nan	иять програ память данн	IMM НЫХ		ять программ ния операции	чтения/записи)
биты 6	5-4: Не исп	ользую	тся: читан	отся как '0'				
бит 3:	WRERR	1 = ; WD1	запись пре	тьном режи	оизошел од	дин из сбр	осов: по сигна	алу -MCLR, по переполнению
бит 2:	WREN:	1 = 3	ение запис запись раз запись зап	•				
бит 1:	WR : И	1 = v		вировать за			кет быть толь з '0' аппаратно	ко установлен в '1') o)
бит 0:	RD: Ин	1 = v		вировать что			кет быть толь з '0' аппаратн	ко установлен в '1') o)

4.2 Чтение из EEPROM памяти данных

Для чтения из EEPROM памяти необходимо только записать адрес в регистр EEADR и сбросить бит EEPGD в '0'. После установки в '1' бита RD данные будут доступны в регистре EEDATA на следующем машинном цикле. Данные в регистре EEDATA сохраняются до выполнения следующей операции чтения или записи в EEDATA.

Рекомендованная последовательность действий при чтении из EEPROM памяти данных:

- 1. Записать адрес в регистр EEADR. Проверьте, что записанный адрес корректен для данного типа микроконтроллера.
- 2. Сбросить в '0' бит EEPGD для обращения к EEPROM памяти данных.
- 3. Инициализировать операцию чтения установкой бита RD в '1'.
- 4. Прочитать данные из регистра EEDATA.

Пример 4-1 Чтение из EEPROM памяти данных

STATUS, RP1 **BCF** STATUS, RP0 Выбрать банк 2 **MOVF** ADDR,W ; Записать адрес **MOVWF EEADR** ; ячейки **BSF** STATUS,RP0 ; Выбрать банк 3 **BCF** EECON1,EEPGD ; Выбрать EEPROM память **BSF** EECON1.RD ; Инициализировать чтение **BCF** STATUS, RP0 ; Выбрать банк 2 **MOVF** EEDATA,W : W = EEDATA

4.3 Запись в EEPROM память данных

Запись данных в EEPROM память несколько сложнее чтения. Адрес ячейки EEPROM памяти и записываемые данные должны быть помешены в соответствующие регистры специального назначения, бит EEPGD сбрасывается в '0'. Бит WREN должен всегда равняться нулю, кроме непосредственной записи в EEPROM память. Бит WR может быть установлен в '1' только, если бит WREN был установлен в предыдущих командах, т.е. биты WR, WREN не могут устанавливаться в '1' одной командой. Бит WREN должен быть сброшен в '0' после инициализации записи (на процесс записи он не влияет).

Перед записью в EEPROM память должна быть выполнена обязательная последовательность команд, предотвращающая случайную запись. Обязательная последовательность выполняется при выключенных прерываниях. Рекомендованная последовательность действий при записи в EEPROM память:

- 1. Если шаг 10 не был выполнен, то необходимо проверить, что не происходит запись (WR=0).
- 2. Записать адрес в регистр EEADR. Проверьте, что записанный адрес корректен для данного типа микроконтроллера.
- 3. Записать 8-разрядное значение в регистр EEDATA.
- 4. Сбросить в '0' бит EEPGD для обращения к EEPROM памяти данных.
- 5. Установить бит WREN в '1', разрешив запись в EEPROM память.
- 6. Запретить прерывания, если они разрешены.
- 7. Выполнить обязательную последовательность из пяти команд:
 - Запись значения 55h в регистр EECON2 (две команды, сначала в W затем в EECON2);
 - Запись значения AAh в регистр EECON2 (две команды, сначала в W затем в EECON2);
 - Установить бит WR в '1'.
- 8. Разрешить прерывания (если необходимо).
- 9. Сбросить бит WREN в '0'.
- 10. После завершения цикла записи сбрасывается в '0' бит WR, устанавливается в '1' флаг прерывания EEIF (сбрасывается программно). Если шаг 1 не выполняется, то необходимо проверить состояние битов EEIF, WR перед началом записи.

Пример 4-2 Запись в EEPROM память данных

BSF STATUS, RP1 **BSF** STATUS, RP0 ; Выбрать банк 3 **BTFSC** EECON1, WR : Проверить завершения **GOTO** ; операции записи \$-1 STATUS, RP0 **BCF** ; Выбрать банк 2 **MOVF** ADDR. W Указать адрес ячейки **MOVWF EEADR MOVF** VALUE, W ; Указать данные для записи **MOVWF EEDATA BSF** STATUS, RP0 Выбрать банк 3 **BCF** EECON1, EEPGD Выбрать EEPROM память данных **BSF** EECON1, WREN Разрешить запись в EEPROM память данных **BCF** INTCON, GIE Запретить прерывания **MOVLW** 0x55 Записать 55h в регистр EECON2 **MOVWF** EECON2 **MOVLW** 0xAA Записать AAh в регистр EECON2 **MOVWF** EECON2 **BSF** EECON1, WR Инициализировать запись **BSF** INTCON, GIE Разрешить прерывания **BCF** EECON1, WREN Запретить запись в EEPROM память данных

4.4 Чтение из FLASH памяти программ

Чтение из FLASH памяти программ очень похоже на процедуру чтения из EEPROM памяти данных, только необходимо выполнить две инструкции NOP после установки бита RD в '1'. Два пустых цикла NOP используются микроконтроллером для чтения данных из FLASH памяти программ и сохранения их в регистрах EEDATH:EEDATA. Данные в регистрах будут доступны после выполнения второй инструкции NOP. Данные в регистре EEDATH:EEDATA сохраняются до выполнения следующей операции чтения или записи в EEDATH:EEDATA.

Рекомендованная последовательность действий при чтении из FLASH памяти программ:

- 1. Записать адрес в регистры EEADRH:EEADR. Проверьте, что записанный адрес корректен для данного типа микроконтроллера.
- 2. Установить в '1' бит EEPGD для обращения к FLASH памяти программ.
- 3. Инициализировать операцию чтения установкой бита RD в '1'.
- 4. Выполнить две команды NOP, чтобы позволить микроконтроллеру произвести чтение из FLASH памяти программ.
- 5. Прочитать данные из регистров EEDATH:EEDATA.

Пример 4-3 Чтение из FLASH памяти программ

BSF BCF MOVF MOVWF MOVF MOVWF	STATUS,RP1 STATUS,RP0 ADDRL,W EEADR ADDRH,W EEADRH	; ; Выбрать банк 2 ; Записать адрес ; ячейки памяти программ ;
BSF BSF NOP NOP	STATUS,RP0 EECON1,EEPGD EECON1,RD	; Выбрать банк 3 ; Выбрать FLASH память программ ; Инициализировать чтение ; Две инструкции NOP
BCF MOVF MOVWF MOVF MOVWF	STATUS,RP0 EEDATA,W DATAL EEDATH,W DATAH	; Выбрать банк 2 ; DATAL = EEDATA ; ; DATAH = EEDATH ;

4.5 Запись во FLASH память программ

В течение операции записи выполнение программы останавливается, тактовый генератор продолжает работать, периферийные модули включены и генерируют прерывания, которые "ставятся в очередь" до завершения цикла записи. После завершения записи (параметр D133) микроконтроллер продолжает выполнять код программы с места остановки. Другим существенным отличием записи во FLASH память программ является наличие бита защиты WRT в слове конфигурации, предотвращающий любую запись в память программ (см. таблицу 4-1).

Запись данных во FLASH память программ несколько сложнее чтения. Адрес ячейки памяти программ и записываемые данные должны быть помешены в соответствующие регистры специального назначения, бит EEPG устанавливается в '1'. Бит WREN должен всегда равняться нулю, кроме непосредственной записи во FLASH память программ. Бит WR может быть установлен в '1' только, если бит WREN был установлен в предыдущих командах, т.е. биты WR, WREN не могут устанавливаться в '1' одной командой. Бит WREN должен быть сброшен программно в '0' после инициализации записи (на процесс записи он не влияет).

Перед записью во FLASH память программ должна быть выполнена обязательная последовательность команд, предотвращающая случайную запись. Обязательная последовательность выполняется при выключенных прерываниях. После обязательной последовательности должны размещаться две инструкции NOP, позволяющие микроконтроллеру произвести запись. Выполнение программы после записи начинается с инструкции, расположенной после двух команд NOP.

Рекомендованная последовательность действий при записи во FLASH память программ:

- 1. Записать адрес в регистры EEADRH:EEADR. Проверьте, что записанный адрес корректен для данного типа микроконтроллера.
- 2. Записать 14-разрядное значение в регистры EEDATH: EEDATA.
- 3. Установить в '1' бит EEPGD для обращения к FLASH памяти программ.
- 4. Установить бит WREN в '1', разрешив запись во FLASH память программ.
- 5. Запретить прерывания, если они разрешены.
- 6. Выполнить обязательную последовательность из пяти команд:
 - Запись значения 55h в регистр EECON2 (две команды, сначала в W затем в EECON2);
 - Запись значения AAh в регистр EECON2 (две команды, сначала в W затем в EECON2);
 - Установить бит WR в '1'.
- 7. Выполнить две команды NOP, чтобы позволить микроконтроллеру произвести запись во FLASH память программ.
- 8. Разрешить прерывания (если необходимо).
- 9. Сбросить бит WREN в '0'.

По завершении операции записи аппаратно сбрасывается в '0' бит WR и устанавливается в '1' флаг прерывания EEIF (флаг EEIF сбрасывается в '0' программно). Для определения окончания операции записи проверять бит WR и EEIF не обязательно, т.к. микроконтроллер не выполняет программу во время записи во FLASH память программ.

Пример 4-4 Запись во FLASH память программ

BSF	STATUS,RP1	•
BCF	STATUS,RP0	; Выбрать банк 2
MOVF	ADDRL,W	; Записать адрес
MOVWF	EEADR	; ячейки памяти программ
MOVF	ADDRH,W	•
MOVWF	EEADRH	•
MOVF	VALUEL, W	; Значение записываемое
MOVWF	EEDATA	; в память программ
MOVF	VALUEH, W	•
MOVWF	EEDATH	•
BSF	STATUS, RP0	; Выбрать банк 3
BSF	EECON1, EEPGD	; Выбрать FLASH память программ
BSF	EECON1, WREN	; Разрешить запись во FLASH память программ
BCF	INTCON, GIE	; Запретить прерывания
MOVLW	0x55	; Записать 55h в регистр EECON2
MOVWF	EECON2	•
MOVLW	0xAA	; Записать AAh в регистр EECON2
MOVWF	EECON2	•
BSF	EECON1, WR	; Инициализировать запись
NOP		•
NOP		; ;
BSF	INTCON, GIE	; Разрешить прерывания
BCF	EECON1, WREN	; Запретить запись во FLASH память программ

4.6 Проверка записи

В микроконтроллерах PIC16F87X аппаратно не проверяется значение, сохраненное при записи. Рекомендуется поверять фактически записанное значение контрольным чтением. Особенно проверку записи необходимо выполнять при возможном исчерпании гарантированного числа циклов стирания/записи.

4.7 Защита от случайной записи

Существуют условия при которых запись данных в EEPROM память или во FLASH память программ не будет выполнена. В микроконтроллерах PIC16F87X предусмотрены различные виды защиты от случайной записи. При включении питания сбрасывается в '0' бит WREN и во время счета таймера по включению питания PWRT (если он включен) запись запрещена. Обязательная последовательность команд, бит WREN предотвращают случайную запись при сбросе микроконтроллера или сбое программы.

4.8 Операции при включенной защите кода

В PIC16F87X предусмотрена раздельная защита EEPROM памяти данных (один бит в слове конфигурации) и FLASH памяти программ (два бита в слове конфигурации). Данные могут быть свободно записаны/прочитаны из EEPROM памяти данных при любом значении бита CPD. Когда защита EEPROM памяти данных включена (CPD=0), чтение запрещено внешним протоколом ICSP вне зависимости от состояния битов защиты памяти программ. Это предотвращает чтение EEPROM памяти данных микроконтроллера.

Состояние битов СР0, СР1 нельзя изменить командами микроконтроллера. Биты защиты не влияют на операцию внутреннего чтения памяти программ. Однако состояние битов зашиты и бита WRT будут создавать различные условия записи в память программ (см. таблицу 4-1).

Установленная защита памяти программ или EEPROM памяти данных может быть выключена только полным стиранием памяти микроконтроллера.

4.9 Защита записи FLASH памяти программ

В слове конфигурации размещен бит защиты записи во FLASH память программ командами микроконтроллера. Состояние этого бита может быть изменено только в режиме программирования микроконтроллеров PIC16F87X по протоколу ICSP. Эта защита может быть выключена только полным стиранием памяти микроконтроллера. Защита записи не влияет на операцию чтения FLASH памяти программ.

Таблица 4-1 Доступность операций чтения/записи FLASH памяти программ в зависимости от состояния битов защиты

Биты	конфигу	рации	Область памяти	Внутреннее	Внутренняя	ICSP	ICSP
CP1	CP0	WRT	Область памяти	чтение	запись	чтение	запись
0	0	Х	Вся память программ	Есть	Нет	Нет	Нет
0	1	0	Незащищенная область	Есть	Нет	Есть	Нет
0	1	0	Защищенная область	Есть	Нет	Нет	Нет
0	1	1	Незащищенная область	Есть	Есть	Есть	Нет
0	1	1	Защищенная область	Есть	Нет	Нет	Нет
1	0	0	Незащищенная область	Есть	Нет	Есть	Нет
1	0	0	Защищенная область	Есть	Нет	Нет	Нет
1	0	1	Незащищенная область	Есть	Есть	Есть	Нет
1	0	1	Защищенная область	Есть	Нет	Нет	Нет
1	1	0	Вся память программ	Есть	Нет	Есть	Есть
1	1	1	Вся память программ	Есть	Есть	Есть	Есть

Таблица 4-2 Регистры и биты, связанные с обращением к EEPROM памяти данных / FLASH памяти программ

	Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1										
Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Dh	PIR2	-	(1)	-	EEIF	BCLIF	-	-	CCP2IF	-r-0 00	-r-0 00
8Dh	PIE2	-	(1)	-	EEIE	BCLIE	-	-	CCP2IE	-r-0 00	-r-0 00
10Dh	EEADR	Регистр а	адреса, мл	адший ба	ЙТ					xxxx xxxx	uuuu uuuu
10Fh	EEADRH	-	-	-	Регистр а	адреса, ста	арший бай	IT		xxxx xxxx	uuuu uuuu
10Ch	EEDATA	Регистр д	цанных, мл	падший ба	ійт					xxxx xxxx	uuuu uuuu
10Eh	EEDATH	-	-	- Регистр данных, старший байт					xxxx xxxx	uuuu uuuu	
18Ch	EECON1	EEPGD	-	-	-	WRERR	WREN	WR	RD	x x000	x u000
18Dh	EECON2	Регистр у	Регистр управления 2 (физически не реализован)							-	-

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

Примечание 1. Резервные биты. При обращении всегда должны равняться нулю.

5.0 Модуль таймера TMR0

TMR0 – таймер/счетчик, имеет следующие особенности:

- 8-разрядный таймер/счетчик;
- Возможность чтения и записи текущего значения счетчика;
- 8-разрядный программируемый предделитель;
- Внутренний или внешний источник тактового сигнала;
- Выбор активного фронта внешнего тактового сигнала;
- Прерывания при переполнении (переход от FFh к 00h).

Блок схема модуля TMR0 и общего с WDT предделителя показана на рисунке 5-1.

Дополнительную информацию по работе модуля TMR0 смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual".

Когда бит TOCS сброшен в '0' (OPTION_REG<5>), TMR0 работает от внутреннего тактового сигнала. Приращение счетчика TMR0 происходит в каждом машинном цикле (если предделитель отключен). После записи в TMR0 приращение счетчика запрещено два следующих цикла. Пользователь должен скорректировать эту задержку перед записью нового значения в TMR0.

Если бит T0CS установлен в '1' (OPTION_REG<5>), TMR0 работает от внешнего источника тактового сигнала с входа RA4/T0CKI. Активный фронт внешнего тактового сигнала выбирается битом T0SE в регистре OPTION_REG<4> (T0SE=0 – активным является передний фронт сигнала). Работа модуля TMR0 с внешним источником тактового сигнала будет рассмотрена в разделе 5.2.

Предделитель может быть включен перед WDT или TMR0, в зависимости от состояния бита PSA (OPTION_REG<3>). Нельзя прочитать или записать новое значение в предделитель. Подробное описание работы с предделителем смотрите в разделе 5.3.

5.1 Прерывания от TMR0

Прерывания от TMR0 возникают при переполнении счетчика, т.е. при переходе его значения от FFh к 00h. При возникновении прерывания устанавливается в '1' бит T0IF(INTCON<2>). Само прерывание может быть разрешено/запрещено установкой/сбросом бита T0IE (INTCON<5>). Флаг прерывания от TMR0 T0IF (INTCON<2>) должен быть сброшен в подпрограмме обработки прерываний. В SLEEP режиме микроконтроллера модуль TMR0 выключен и не может генерировать прерывания.

Примечание. Биты управления TOCS, TOSE, PS2, PS1, PS0, PSA расположены в регистре OPTION_REG.

5.2 Использование внешнего источника тактового сигнала для ТМR0

Если предделитель не используется, внешний тактовый сигнал поступает непосредственно на синхронизатор. Синхронизация T0CKI с таковым сигналом микроконтроллера усложняется из-за опроса выхода синхронизатора в машинные циклы Q2 и Q4. Поэтому длительность высокого или низкого логического уровня внешнего сигнала должна быть не меньше 2T_{OSC} (плюс небольшая задержка внутренней RC цепи 20нс). Дополнительную информацию смотрите в разделе электрических характеристик.

5.3 Предделитель

8-разрядный счетчик может работать как предделитель TMR0 или выходной делитель WDT. Для простоты описания этот счетчик всегда будем называть «предделитель». Обратите внимание, что существует только один предделитель, который может быть включен перед TMR0 или WDT. Использование предделителя пред TMR0 означает, что WDT работает без предделителя, и наоборот.

Коэффициент деления предделителя определяется битами PSA и PS2:PS0 в регистре OPTION REG<3:0>.

Если предделитель включен перед TMR0, любые команды записи в TMR0 (например, CLRF 1, MOVWF 1, BSF 1,х и т.д.) сбрасывают предделитель. Когда предделитель подключен к WDT, команда CLRWDT сбросит предделитель вместе с WDT. Предделитель также очищается при сбросе микроконтроллера. Предделитель недоступен для чтения/записи.

Примечание. Запись в регистр TMR0 сбросит предделитель, если он подключен к TMR0, но не изменит его режима работы.

Perистр OPTION_REG (адрес 81h или 181h)

R/V	V-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-RE	BPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
Би	т 7							Бит 0

R – чтение бита

W – запись бита

U – не реализовано, читается как 0

-n - значение после POR

-х - неизвестное

значение после POR

бит 7: **-RBPU**:

бит 6: **INTEDG**:

бит 5: **ТОСS**: Выбор тактового сигнала для TMR0

1 = внешний тактовый сигнал с вывода RA4/T0CKI

0 = внутренний тактовый сигнал CLKOUT

бит 4: **T0SE**: Выбор фронта приращения TMR0 при внешнем тактовом сигнале

1 = приращение по заднему фронту сигнала (с высокого к низкому уровню) на выводе RA4/T0CKI

0 = приращение по переднему фронту сигнала (с низкого к высокому уровню) на выводе RA4/T0CKI

бит 3: **PSA**: Выбор включения предделителя

1 = предделитель включен перед WDT

0 = предделитель включен перед TMR0

биты 2-0: PS2: PS0: Установка коэффициента деления предделителя

Значение	Для TMR0	Для WDT
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

Таблица 5-1 Регистры и биты, связанные с работой TMR0

Адрес	Р МИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
01h,101h	TMR0	Регистр	Регистр таймера 0							xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

6.0 Модуль таймера TMR1

TMR1 – 16-разрядный таймер/счетчик, состоящий из двух 8-разрядных регистров (TMR1H и TMR1L) доступных для чтения и записи. Счет выполняется в спаренных регистрах (TMR1H: TMR1L), инкрементируя их значение от 0000h до FFFFh, далее считает с 0000h. При переполнении счетчика устанавливается в '1' флаг прерывания TMR1IF в регистре PIR1<0>. Само прерывание можно разрешить/запретить установкой/сбросом бита TMR1IE в регистре PIE1<0>.

TMR1 может работать в двух режимах:

- Режим таймера;
- Режим счетчика.

Включение модуля TMR1 осуществляется установкой бита TMR1ON в '1' (T1CON<0>).

Битом TMR1CS (T1CON<1>) выбирается источник тактовых импульсов. В режиме таймера TMR1 инкрементируется на каждом машинном цикле. Если TMR1 работает с внешним источником тактового сигнала, то приращение происходит по каждому переднему фронту сигнала.

TMR1 имеет внутренний вход сброса от СРР модуля (см. раздел 8.0).

Когда включен генератор тактовых импульсов (T1OSCEN=1), выводы RC1/T1OSI/CCP2 и RC0/T1OSO/T1CKI настроены как входы. Значение битов TRISC<1:0> игнорируется, а чтение данных с этих выводов дает результат '0'.

Управляющие биты TMR1 находятся в регистре T1CON.

Дополнительную информацию по работе модуля TMR1 смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual".

Регистр T1CON (адрес 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
-	-	T1CKPS1	T1CKPS0	T10SCEN	-T1SYNC	TMR1CS	TMR10N	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR
бит	17-6. HA	працизора	нгі. питают	יח' עבע אבי				

биты 7-6: Не реализованы: читаются как '0'

биты 5-4: T1CKPS1:T1CKPS0: Выбор коэффициента деления предделителя TMR1

11 = 1:8

10 = 1:4

01 = 1:2

00 = 1:1

бит 3: **T10SCEN:** Включение тактового генератора TMR1

1 = генератор включен

0 = генератор выключен (инвертирующий элемент и резистивная обратная связь выключены для уменьшения тока потребления)

бит 2: -T1SYNC: Синхронизация внешнего тактового сигнала

TMR1CS = 1

1 = не синхронизировать внешний тактовый

0 = синхронизировать внешний тактовый

TMR1CS = 0

Значение бита игнорируется

бит 1: TMR1CS: Выбор источника тактового сигнала

1 = внешний источник с вывода RC0/T1OSO/T1CKI (активным является передний фронт сигнала)

0 = внутренний источник Fosc/4

бит 0: **TMR1ON:** Включение модуля TMR1

1 = включен

0 = выключен

6.1 Работа TMR1 в режиме таймера

Приращение таймера происходит от внутреннего сигнала $F_{OSC}/4$, когда бит TMR1CS (T1CON<1>) сброшен в '0'. В этом режиме бит синхронизации T1SYNC (T1CON<2>) игнорируется, потому что внутренний тактовый сигнал всегда синхронизирован.

6.2 Работа TMR1 в режиме счетчика

TMR1 может работать в синхронном или асинхронном режиме в зависимости от состоянии бита TMR1CS. Когда TMR1 использует внешний тактовый сигнал, приращение таймера происходит по переднему фронту. Включив TMR1 в режим внешнего тактового сигнала счет начнется только после появления заднего фронта.

6.3 Работа TMR1 в режиме синхронного счетчика

Работа TMR1 от внешнего источника тактового сигнала выбирается установкой бита TMR1CS в '1'. В этом режиме приращение таймера происходит по каждому переднему фронту сигнала на выводе RC1/T1OSI/CCP2 (если T1OSCEN=1) или RC0/T1OSO/T1CKI (если T1OSCEN=0).

Если -T1SYNC=0, то активный фронт внешнего тактового сигнала синхронизируется с внутренним тактовым сигналом на выходе асинхронного предделителя.

В SLEEP режиме микроконтроллера счетчик не будет инкрементироваться (при наличии тактового сигнала), т.к. синхронизатор выключен (предделитель продолжает счет тактовых импульсов).

Примечание. Если T1OSCEN=0, то инвертирующий элемент и резистивная обратная связь выключены для уменьшения тока потребления.

6.4 Работа TMR1 в режиме асинхронного счетчика

Если бит -T1SYNC (T1CON<2>) установлен в '1', внешний тактовый сигнал TMR1 не будет синхронизироваться с внутренним тактовым сигналом микроконтроллера, таймер продолжает работать в режиме SLEEP микроконтроллера. Переполнение таймера вызовет «пробуждение» микроконтроллера, если разрешено прерывание от TMR1. Однако требуется осторожность при записи/чтении TMR1 (см. раздел 6.4.1).

В этом режиме TMR1 не может использоваться для захвата/сравнения данных модуля ССР.

6.4.1 Чтение/запись TMR1 в асинхронном режиме

Чтение TMR1H или TMR1L, во время счета в асинхронном режиме, гарантирует получение текущего значения счетчика (реализовано аппаратно). Однако пользователь должен иметь в виду, что чтение 16-разрядного значения выполняется по байтно. Это накладывает некоторые ограничения, т.к. таймер может переполниться между чтениями байт.

Запись в TMR1 рекомендуется выполнять после остановки таймера. Запись в регистры TMR1 во время приращения таймера может привести к непредсказуемому значению регистра.

В примерах 12-2, 12-3 документации DS33023 "PICmicro™ Mid-Range Reference Manual" представлена рекомендованная последовательность операций чтения/записи 16-разрядного значения TMR1 в асинхронном режиме.

6.5 Генератор TMR1

Резонатор подключается к выводам T1OSI (вход) и T1OSO (выход усилителя). Максимальная частота резонатора 200КГц. Тактовый генератор TMR1 (идентичный LP генератору) в основном предназначен для кварцевого резонатора 32кГц. Включение генератора производится установкой бита T1OSEN в регистре T1CON<3>, что позволяет работать TMR1 в SLEEP режиме микроконтроллера.

Пользователь должен обеспечить программную задержку, чтобы гарантировать надлежащий запуск генератора. В таблицы 6-1 указаны рекомендуемые значения конденсаторов для генератора TMR1.

Таблица 6-1 Выбор конденсаторов для генератора TMR1

Тип генератора	Частота	C1	C2				
	32 кГц	33 пФ	33 пФ				
LP	100 кГц	15 пФ	15 пФ				
	200 кГц	15 пФ	15 пФ				
Ориентировочные значения							

Протестированные резонаторы:								
32.768кГц	Epson C-001 R32.768K-A	±20 PPM						
100кГц	Epson C-2 100.00 KC-P	±20 PPM						
200кГц	STD XTL 200.000 kHz	±20 PPM						

Примечания:

- Большая емкость увеличивает стабильность генератора, но также увеличивает время запуска.
- 2. Каждый резонатор имеет собственные характеристики. Проконсультируйтесь у производителя резонаторов для правильного подбора внешних компонентов.

6.6 Сброс TMR1 триггером модуля ССР

Если модуль ССР1 или ССР2 работает в режиме сравнения с триггером специальных функций (ССР1M3 : CCP1M0=1011), то сигнал триггера сбросит TMR1.

Примечание. Сигнал с триггера специальных функций модуля ССР1 не будет устанавливать флаг TMRIF (PIR<0>) в '1'.

TMR1 должен работать в режиме синхронизированного внешнего тактового сигнала или внутреннего тактового сигнала. В асинхронном режиме эта функция не работает.

Когда запись в TMR1 совпадает с сигналом сброса от триггера специальных событий, приоритет отдается записи в TMR1.

В этом режиме модуля ССР период сброса TMR1 сохраняется в регистрах CCPRxH:CCPRxL.

6.7 Сброс регистров TMR1 (TMR1H, TMR1L)

Регистры TMR1H и TMR1L не сбрасываются в 00h при сбросе по включению питания POR и других видах сброса, кроме сброса по сигналу триггера специальных событий модуля CCP1 или CCP2.

Регистр T1CON сбрасывается в 00h при сбросе POR и BOR (TMR1 выключается, коэффициент предделителя равен 1:1). При всех остальных видах сброса значение регистра T1CON не изменяется.

6.8 Предделитель TMR1

Предделитель TMR1 очищается при записи в регистр TMR1L или TMR1H.

Таблица 6-2 Регистры и биты, связанные с работой TMR1

Адрес	Р ММ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Младши	й байт 16-	разрядног	о таймера	a 1				xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Старший	Старший байт 16-разрядного таймера 1							xxxx xxxx	uuuu uuuu
10h	T1CON	-	-	T1CKPS1	T1CKPS0	T10SCEN	-T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

*Примечание**. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

7.0 Модуль таймера TMR2

TMR2 — 8-разрядный таймер с программируемыми предделителем и выходным делителем, 8-разрядным регистром периода PR2. TMR2 может быть опорным таймером для ССР модуля в ШИМ режиме. Регистры TMR2 доступны для записи/чтения и очищаются при любом виде сброса.

Входной тактовый сигнал (F_{OSC}/4) поступает через предделитель с программируемым коэффициентом деления (1:1, 1:4 или 1:16), определяемый битами T2CKPS1:T2CKPS0 (T2CON<1:0>).

TMR2 считает, инкрементируя от 00h до значения в регистре PR2, затем сбрасывается в 00h на следующем машинном цикле. Регистр PR2 доступен для записи и чтения. После сброса значение регистра PR2 равно FFh.

Сигнал переполнения TMR2 проходит через выходной 4-разрядный делитель с программируемым коэффициентом деления (от 1:1 до 1:16 включительно) для установки флага TMR2IF в регистре PIR1<1>.

Для уменьшения энергопотребления таймер TMR2 может быть выключен сбросом бита TMR2ON (T2CON<2>) в '0'.

Дополнительную информацию по работе модуля TMR2 смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual".

Примечание 1. TMR2 может использоваться для программного выбора скорости обмена данными модуля SSP.

Регистр T2CON (адрес 12h)

U-0 R/M		R/W-0 R/W-0		R/W-0	
	PS3 TOUTPS2 TOUTPS1 T	OUTPS0 TMR2O	N T2CKPS1		R – чтение бита
Бит 7				Бит 0	W – запись бита U – не реализовано,
					читается как 0
					–n – значение после POR
					–х – неизвестное
5u+ 7:	Us necessary watered to	.a., 101			значение после POR
бит 7:	Не реализован : читается к	ак О			
биты 6-3:	TOUTPS3:TOUTPS0: Выбор 0000 = 1:1 0001 = 1:2 : : 1111 = 1:16	о коэффициента в	выходного де	лителя TMR2	
бит 2:	TMR2ON: Включение модул 1 = включен	тя TMR2			
	0 = выключен				
биты 1-0:	T2CKPS1:T2CKPS0: Выбор 00 = 1:1 01 = 1:4 1x = 1:16	, коэффициента д	еления пред	делителя ТМГ	₹2

7.1 Предделитель и выходной делитель TMR2

Счетчик предделителя и выходного делителя сбрасываются в случае:

- Записи в регистр TMR2;
- Записи в регистр T2CON;
- Любого вида сброса микроконтроллера (POR, BOR, сброс WDT или активный сигнал -MCLR).

Регистр TMR2 не очищается при записи в T2CON.

7.2 Сигнал TMR2

Сигнал переполнения TMR2 (до выходного предделителя) поступает в модуль SSP для управления скоростью передачи данных.

Таблица 7-1 Регистры и биты, связанные с работой TMR2

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Регистр	Регистр таймера 2							0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-uuu uuuu
92h	PR2	Регистр	Регистр периода таймера 2							1111 1111	1111 1111

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

*Примечание**. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

8.0 ССР модуль (захват/сравнение/ШИМ)

Каждый модуль ССР содержит 16-разрядный регистр, который может использоваться в качестве:

- 16-разрядного регистра захвата данных;
- 16-разрядного регистра сравнения;
- Двух 8-разрядных (ведущий и ведомый) регистров ШИМ.

Работа модулей ССР1 и ССР2 идентична, за исключение функционирования триггера специального события. В таблице 8-1 и 8-2 указаны ресурсы, используемые модулем ССР. Далее будет описана работа модуля ССР1. Модуль ССР2 работает аналогично, отличия будут указаны отдельно.

Модуль ССР1:

Регистр ССРR1 модуля ССР состоит из двух 8-разрядных регистров: CCPR1L (младший байт), CCPR1H (старший байт). В регистре ССР1CON находятся управляющие биты модуля ССР1, доступные для записи и чтения. В режиме сравнения триггер специального события сбрасывает таймер TMR1.

Модуль ССР2:

Регистр CCPR2 модуля CCP состоит из двух 8-разрядных регистров: CCPR2L (младший байт), CCPR2H (старший байт). В регистре CCP2CON находятся управляющие биты модуля CCP2, доступные для записи и чтения. В режиме сравнения триггер специального события сбрасывает таймер TMR1 и запускает преобразование АЦП (если АЦП включено).

Дополнительную информацию по работе модулей ССР смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual" и AN594 "Use the CCP Modules".

Таблица 8-1 Использование таймеров модулями ССР

Режим модуля ССР	Таймер
Захват	TMR1
Сравнение	TMR1
ШИМ	TMR2

Таблица 8-2 Взаимодействие двух модулей ССР

Режим ССРх	Режим ССРу	Взаимодействие
Захват	Захват	Базовый таймер TMR1
Захват	Сравнение	Модуль ССР, работающий в режиме сравнения, должен сбрасывать таймер TMR1 триггером специального события.
Сравнение	Сравнение	Модули ССР, работающие в режиме сравнения, должны сбрасывать таймер TMR1 триггером специального события.
ШИМ	ШИМ	Оба ШИМ имеют одинаковую частоту и фазу (базовый таймер TMR2)
ШИМ	Захват	Нет
ШИМ	Сравнение	Нет

Регистр CCPxCON (адрес 17h/1Dh)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
Бит 7							Бит 0

R – чтение бита

W - запись бита

U – не реализовано, читается как 0

-n - значение после POR

-х - неизвестное

значение после POR

бит 7-6: Не используются: читаются как '0'

биты 5-4: ССРхХ:ССРхҮ: Младшие биты скважности ШИМ

Режим захвата Не используются

Режим сравнения Не используются

Режим ШИМ

Два младших бита скважности. Восемь старших находятся в CCPRxL.

биты 3-0: ССРхМ3:ССРхМ0: Режим работы модуля ССРх

0000 = модуль ССРх выключен (сброс модуля ССРх)

0100 = захвата по каждому заднему фронту сигнала

0101 = захват по каждому переднему фронту сигнала

0110 = захват по каждому 4-му переднему фронту сигнала

0111 = захват по каждому 16-му переднему фронту сигнала

1000 = сравнение, устанавливает выходной сигнал (устанавливается флаг ССРхІF в '1')

1001 = сравнение, сбрасывает выходной сигнал (устанавливается флаг CCPxIF в '1')

1010 = сравнение, на выходной сигнал не влияет (устанавливается флаг CCPxIF в '1')

1011 = сравнение, триггер специальных функций (устанавливается флаг CCPxIF в '1'; на вывод CCPx не влияет). CCP1 - сброс таймера TMR1. CCP2 - сброс таймера TMR1, запуск

преобразования АЦП (если АЦП включено).

11хх = ШИМ режим

8.1 Режим захвата

При возникновении события захвата 16-разрядное значение счетчика TMR1 переписывается в регистры CCPR1L:CCPR1H модуля CPP1. Событием захвата может быть:

- Каждый задний фронт сигнала на входе RC2/CCP1;
- Каждый передний фронт сигнала на входе RC2/CCP1;
- Каждый 4-й передний фронт сигнала на входе RC2/CCP1;
- Каждый 16-й передний фронт сигнала на входе RC2/CCP1.

Тип события захвата устанавливается битами CCP1M3:CCP1M0 в регистре CCP1CON. После выполнения захвата устанавливается флаг прерывания CCP1F (PIR1<2>) в '1', который должен быть сброшен программно. Если происходит события захвата до того как предыдущие данные были прочитаны, старое значение будет потеряно.

Puc. 8-1 Структурная схема модуля ССР1 в режиме захвата **Установить** флаг CCP1IF RC2/CCP1 (PIR1<2>) Преддел. 1, 4, 16 CCPR1H CCPR1L Разрешить **∳**Детект.√ 32YP2T фронта TMR1H TMR1L CCP1CON<3:0>

8.1.1 Настройка вывода модуля ССР

Порт ввода/вывода RC2/CCP1 должен быть настроен на вход установкой бита TRISC<2> в'1'.

Примечание. Если порт ввода/вывода RC2/CCP1 настроен на выход, то захват может происходить командой из программы.

8.1.2 Настройка таймера TMR1

TMR1 должен работать в синхронизированном режиме, в случае использования внешнего тактового сигнала с вывода RC1/T1OSI/CCP2. В асинхронном режиме TMR1 модуль CCP1 работать не будет.

8.1.3 Обработка прерываний

Когда изменяется режим работы модуля ССР, необходимо запрещать прерывания сбросом бита ССР1IE (PIE<2>) в '0' для предотвращения ложных прерываний. После изменение режима работы модуля ССР1, перед разрешением прерываний, необходимо сбросить флаг ССР1IF (PIR1<2>) в '0'.

8.1.4 Предварительный счетчик событий модуля ССР

Существует четыре режима работы предварительного счетчика событий (определяется битами ССР1М3:ССР1М0). Включение режима захвата очищает предварительный счетчик событий. Переключение между типами событий не очищает счетчик событий, поэтому результат первого захвата после переключения может быть недостоверным. Любой сброс микроконтроллера очищает счетчик событий.

В примере 8-1 показано как нужно производить переключение типа события, чтобы не вызвать ложное прерывание.

Пример 8-1 Переключение типа события

CLRF CCP1CON ; Выключить ССР модуль

MOVLW NEW_CAPT_PS ; Записать W новый тип захвата и режим работы ССР

MOVWF CCP1CON ; Загрузить настройку в регистр CCP1CON

8.2 Режим сравнения

В этом режиме 16-разрядный регистр CCPR1 сравнивается со значением TMR1. Как только значения в регистрах становятся одинаковые, модуль CCP1 изменяет состояние вывода RC2/CCP1:

- Устанавливает высокий уровень сигнала;
- Устанавливает низкий уровень сигнала;
- На вывод не воздействует.

Действие при совпадении может быть выбрано битами CCP1M3:CCP1M0 в регистре CCP1CON. В момент изменения состояния вывода устанавливается флаг прерывания CCP1IF в '1'.

Рис. 8-2 Структурная схема модуля ССР1 в режиме сравнения

8.2.1 Настройка вывода модуля ССР

Для изменения состояния вывода RC2/CCP1, он должен быть настроен на выход сбросом бита TRISC<2> в '0'.

Примечание. При очистке регистра ССР1СОN на выводе RC2/CCP1 появится сигнал низкого уровня, что не является результатом сравнения или данными из выходной защелки PORTC.

8.2.2 Настройка таймера TMR1

TMR1 должен работать в синхронизированном режиме, в случае использования внешнего тактового сигнала с вывода RC1/T1OSI/CCP2. В асинхронном режиме TMR1 модуль CCP1 работать не будет.

8.2.3 Обработка прерываний

Программное изменение уровня сигнала на выходе ССР1 не вызовет генерацию прерывания. Прерывание генерируются только модулем ССР1.

8.2.4 Триггер специального события

В режиме сравнения модуля ССР1 может быть включен триггер специального события.

Триггер специального события ССР1 сбрасывает значения таймера TMR1 при каждом положительно выполненном сравнении. Регистр ССР1R является 16-разрядным программируемым регистром периода для TMR1.

Триггер специального события ССР2 сбрасывает значения таймера TMR1 и запускает преобразование АЦП (если модуль АЦП включен).

Примечание. Триггер специального события модулей ССР1 и ССР2 не устанавливает флаг прерывания TMR1IF (PIR1<0>) в '1'.

8.3 Режим ШИМ

В ШИМ режиме модуля ССР1 вывод RC2/ССР1 используется в качестве выхода 10-разрядного ШИМ. Т.к. вход ССР1 мультиплицирован с цифровым каналом порта ввода/вывода, бит направления TRISC<2> должен быть сброшен в '0'.

Примечание. Очистка регистра ССР1СОN вынудит перевести вывод ССР1 в низкий логический уровень. Низкий логический уровень не является данными из защелки PORTC.

На рисунке 8-3 показана структурная схема модуля ССР1 в ШИМ режиме. Пошаговое описание настройки модуля ССР1 в ШИМ режиме смотрите в разделе 8.3.3.

Puc. 8-3 Структурная схема модуля ССР1 в ШИМ режиме Регистр CCP1CON<5:4> длительности импульса CCPR1L CCPR1H (ведомый RC2/CCP1 R Q Сравнение 11 (1)TMR2 S TRISC<2> Сравнение Сброс таймера, 仝 вывода ССР1 PR2 и загрузка нового значения

На рисунке 8-4 показана временная диаграмма одного цикла ШИМ (период ШИМ и длительность высокого уровня сигнала). Частота ШИМ есть обратная величина периоду (1/период).

8.3.1 Период ШИМ

Период ШИМ определяется значением в регистре PR2 и может быть вычислен по формуле: Период ШИМ = [(PR2) + 1] x 4 x Tosc x (коэффициент предделителя TMR2) Частота ШИМ = 1 / Период ШИМ

Когда значение TMR2 сравнивается с PR2, выполняются следующие действия:

- TMR2 сбрасывается в 00h;
- Устанавливается высокий уровень сигнал на выводе ССР1 (Если скважность равна 0%, то сигнал в высокий уровень устанавливаться не будет);
- Модуль ШИМ начинает новый цикл, загружая значение из регистра ССРR1L в ССРR1H.

Примечание. Выходной делитель TMR2 (см. раздел 7.1) не влияет на частоту ШИМ. Он может использоваться для отсчета времени, когда необходимо изменить скважность ШИМ.

8.3.2 Скважность ШИМ

Скважность ШИМ определяется битами в регистрах CCPR1L и CCP1CON<5:4>. Для 10-разрядного ШИМ старшие восемь бит сохраняются в регистре CCPR1L, а младшие два бита в регистре CCPCON<5:4> (CCPR1L:CCPCON<5:4>). Для вычисления длительности сигнала высокого уровня, воспользуйтесь следующей формулой:

Длительность импульса ШИМ = (CCPR1L:CCPCON<5:4>) x Tosc x (коэффициент предделителя TMR2)

Биты в регистре CCPR1L и CCP1CON<5:4> могут быть изменены в любое время, но значение в регистре CCPR1H не изменяется, пока не произойдет соответствие PR2 и TMR2. В ШИМ режиме регистр CCPR1H доступен только для чтения.

Регистр CCPR1H и внутренняя двух разрядная защелка образуют буфер ШИМ. Эффект буферизации необходим при записи нового значения длительности импульса ШИМ.

Когда значение CCPR1H и 2-разрядной внутренней защелки соответствует значению TMR2 и внутреннему 2-разрядному счетчику, в такте Q2 на выводе CCP1 будет установлен низкий уровень сигнала.

Расчет максимального разрешения ШИМ для данной частоты можно вычислить по формуле (бит):

$$= \frac{\log(\frac{Fosc}{Fpwm})}{\log(2)}$$

Примечание. Если длительность импульса ШИМ больше периода ШИМ, вывод ССР1 не будет иметь низкий уровень сигнала.

8.3.3 Последовательность настройки модуля ССР в ШИМ режиме

Рекомендованная последовательность включения модуля ССР в ШИМ режиме:

- 1. Установить период ШИМ в регистре PR2;
- 2. Установить длительность импульса в регистрах CCPR1L и CCP1CON <5:4>;
- 3. Настроить вывод ССР1 как выход, сбросив бит TRISC<2>;
- 4. Настроить предделитель и включить TMR2 в регистре T2CON;
- 5. Включить ССР1 в режиме ШИМ.

Таблица 8-3 Соответствие частоты ШИМ и разрешения ШИМ при тактовой частоте микроконтроллера 20МГц

Частота ШИМ	1.22кГц	4.88кГц	19.53кГц	78.12кГц	156.3кГц	208.3кГц
Коэффициент предделителя TMR2	16	4	1	1	1	1
Значение PR2	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Разрешение ШИМ (бит)	10	10	10	8	7	5.5

Таблица 8-4 Регистры и биты, связанные с работой модуля ССР в режиме захват/сравнение и модуля TMR1

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс	Другие
										POR, BOR	сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	-	(1)	-	EEIF	BCLIF	-	-	CCP2IF	-r-0 00	-r-0 00
8Dh	PIE2	-	(1)	-	EEIE	BCLIE	-	-	CCP2IE	-r-0 00	-r-0 00
87h	TRISC	Регист	о направі	пения РС	RTC					1111 1111	1111 1111
0Eh	TMR1L	Младші	ий байт 1	6-разряд	ного тай	мера 1				xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Старши	ій байт 1	6-разряд	ного тайм	лера 1				xxxx xxxx	uuuu uuuu
10h	T1CON	-	-	T1CKPS1	T1CKPS0	T10SCEN	-T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Младші	ий байт з	ахвата/с	равнения	и/ШИМ СС	CP1			xxxx xxxx	uuuu uuuu
16h	CCPR1H	Старши	ій байт за	ахвата/ср	авнения	/ШИМ СС	P1			xxxx xxxx	uuuu uuuu
17h	CCP1CON	-	-	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Младші	Младший байт захвата/сравнения/ШИМ ССР2								uuuu uuuu
1Ch	CCPR2H	Старши	Старший байт захвата/сравнения/ШИМ ССР2							xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	-	-	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

Примечание*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

Примечание 1. Резервные биты. При обращении всегда должны равняться нулю.

Таблица 8-5 Регистры и биты, связанные с работой модуля ССР в режиме ШИМ и модуля TMR2

Адрес	РМЯ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	-	(1)	-	EEIF	BCLIF	-	-	CCP2IF	-r-0 00	-r-0 00
8Dh	PIE2	-	(1)	-	EEIE	BCLIE	-	-	CCP2IE	-r-0 00	-r-0 00
87h	TRISC	Регистр	о направл	пения РС	RTC					1111 1111	1111 1111
11h	TMR2	Регист	р таймер	a 2						0000 0000	0000 0000
92h	PR2	Регистр	о периода	а таймер	a 2					1111 1111	1111 1111
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-uuu uuuu
15h	CCPR1L	Младші	ий байт з	ахвата/с	равнения	і/ШИМ СС	CP1			xxxx xxxx	uuuu uuuu
16h	CCPR1H	Старши	ій байт за	ахвата/ср	авнения	/ШИМ СС	:P1			xxxx xxxx	uuuu uuuu
17h	CCP1CON	-	-	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Младші	ий байт з	ахвата/с	равнения	и/ШИМ СС	CP2			xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Старши	Старший байт захвата/сравнения/ШИМ ССР2								uuuu uuuu
1Dh	CCP2CON	-	-	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

Примечание*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

Примечание 1. Резервные биты. При обращении всегда должны равняться нулю.

9.0 Модуль ведущего синхронного последовательного порта (MSSP)

Модуль ведущего синхронного последовательного порта (MSSP) может использоваться для связи с периферийными микросхемами или другими микроконтроллерами. Периферийными микросхемами могут быть: EEPROM память, сдвиговые регистры, драйверы ЖКИ, АЦП и др. Модуль MSSP может работать в одном из двух режимах:

- Последовательный периферийный интерфейс (SPI);
- Inter-Integrated Circuit (I²C).

На рисунке 9-1 показана структурная схема модуля MSSP в режиме SPI, а на рисунках 9-5, 9-9 в двух разных режимах I²C.

Дополнительно смотрите техническую документацию AN734 "Using the PICmicro SSP for Slave I^2C^{TM} Communication" и AN735 "Using the PICmicro MSSP Module for I^2C^{TM} Communication".

SSPSTAT (адрес 94h) Регистр статуса модуля MSSP

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/-A	Р	S	R/-W	UA	BF
Бит 7						•	Бит 0

R – чтение бита

W – запись бита

U – не реализовано, читается как 0

-n - значение после POR

-х - неизвестное

значение после POR

бит 7: SMP: Фаза выборки бита

Ведущий режим SPI

1 = опрос входа в конце периода вывода данных

0 = опрос входа в середине периода вывода данных

Ведомый режим SPI

Для режима ведомого SPI этот бит всегда должен быть сброшен в '0'

Ведущий или ведомый режим I²C

1 = управление длительностью фронта выключено в стандартном режиме (100кГц и 1МГц)

0 = управление длительностью фронта включено в скоростном режиме (400кГц)

бит 6: СКЕ: Выбор фронта тактового сигнала (см. рис. 9-2, 9-3 и 9-4)

SPI режим, CKP=0

1 = данные передаются по переднему фронту сигнала на выводе SCK

0 = данные передаются по заднему фронту сигнала на выводе SCK

SPI режим, CKP=1

1 = данные передаются по заднему фронту сигнала на выводе SCK

0 = данные передаются по переднему фронту сигнала на выводе SCK

Ведущий или ведомый режим I^2C

1= входные уровни соответствуют спецификации SMBus

0= входные уровни соответствуют спецификации I²C

бит 5: **D/-A:** Бит Данные/Адрес (только для режима I^2 C)

1 = последний принятый или переданный байт является информационным

0 = последний принятый или переданный байт является адресным

бит 4: **P:** Бит STOP (только для режима I^2 C)

Этот бит сбрасывается в '0' когда модуль MSSP выключен, SSPEN=0.

1 = указывает, что бит STOP был обнаружен последним (этот бит равен '0' после сброса)

0 = бит STOP не является последним

бит 3: **S:** Бит START (только для режима I^2 C)

Этот бит сбрасывается в '0' когда модуль MSSP выключен, SSPEN=0.

1 = указывает, что бит START был обнаружен последним (этот бит равен '0' после сброса)

0 = бит START не является последним

бит 2: \mathbf{R} /- \mathbf{W} : Бит чтения/записи (только для режима $\mathbf{I}^2\mathbf{C}$)

Значение бита действительно только после совпадения адреса и до приема бита START, STOP или -ACK.

Ведомый режим I²C

1 = чтение

0 = запись

Ведущий режим I²C

1 = выполняется передача данных

0 = передачи данных не происходит

Логическое ИЛИ этого бита с битами SEN, RSEN, PEN, RCEN или ACKEN укажет на неактивное состояние модуля MSSP.

бит 1: **UA**: Флаг обновления адреса устройства (только для режима 10-разрядного I^2C)

1 = необходимо обновить адрес в регистре SSPADD

0 = обновление адреса не требуется

бит 0: **BF:** Бит статуса буфера

Прием (SPI и I²C режимы)

1 = прием завершен, буфер SSPBUF полон

0 = прием не завершен, буфер SSPBUF пуст

Передача (только I^2 С режима)

1 = выполняется передача данных (исключая биты -ACK и STOP), буфер SSPBUF полон

0 = передача данных завершена (исключая биты -ACK и STOP), буфер SSPBUF пуст

SSPCON (адрес 14h) Регистр управления модуля MSSP

R/W-0								
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR

бит 7: WCOL: Бит конфликта записи

Ведущий режим

1 = запись в SSPBUF была выполнена при не выполнении условий шины I²C

0 = конфликта не было

Ведомый режим

1 = была предпринята попытка записи в SSPBUF во время передачи предыдущего байта

0 = конфликта не было

бит 6: **SSPOV:** Бит переполнения приемника

SPI режим

1 = принят новый байт в то время как SSPBUF содержит предыдущие данные(байт в SSPSR будет потерян). В ведомом режиме пользователь должен прочитать содержимое регистра SSPBUF даже, если только передает данные. В ведущем режиме бит в '1' не устанавливается, т.к. каждая операция инициализируется записью в SSPBUF. (сбрасывается в '0' программно)

0 = нет переполнения

I²C режим

1 = принят новый байт в то время как SSPBUF содержит предыдущие данные. Значение бита не действительно при передаче данных. (сбрасывается в '0' программно)

0 = нет переполнения

бит 5: **SSPEN:** Бит включения модуля MSSP

Когда модуль включен, соответствующие порты ввода/вывода настраиваются на выход или вход <u>SPI режим</u>

1 = модуль MSSP включен, выводы SCK, SDO, SDI, -SS используются модулем MSSP

0 = модуль MSSP выключен, выводы работают как цифровые порты ввода/вывода

I²C режим

1 = модуль MSSP включен, выводы SDA, SCL используются модулем MSSP

0 = модуль MSSP выключен, выводы работают как цифровые порты ввода/вывода

бит 4: СКР: Бит выбора полярности тактового сигнала

<u>SPI режим</u>

1 = пассивный высокий уровень сигнала

0 = пассивный низкий уровень сигнала

Ведомый режим I²C

Управление тактовым сигналом SCK

1 = не управлять тактовым сигналом

0 = удерживать тактовый сигнал в низком логическом уровне (используется для подготовки данных)

Ведущий режим I²C

Не имеет значения

биты 3-0: SSPM3:SSPM0: Режим работы модуля MSSP

 $0000 = ведущий режим SPI, тактовый сигнал = <math>F_{OSC}/4$

0001 = ведущий режим SPI, тактовый сигнал = F_{OSC}/16

0010 = ведущий режим SPI, тактовый сигнал = F_{OSC}/64

0011 = ведущий режим SPI, тактовый сигнал = выход TMR2 / 2

0100 = ведомый режим SPI, тактовый сигнал с вывода SCK. Вывод -SS подключен к MSSP

0101 = ведомый режим SPI, тактовый сигнал с вывода SCK. Вывод -SS не подключен к MSSP

0110 = ведомый режим I_2^2 С, 7-разрядная адресация

0111 = ведомый режим I^2 С, 10-разрядная адресация

1000 = ведущий режим I^2 C, тактовый сигнал = $F_{OSC}/(4 * (SSPADD+1))$

1011 = программная поддержка ведущего режима I²C (ведомый режим выключен)

1110 = программная поддержка ведущего режима I^2 C, 7-разрядная адресация с разрешением прерываний по приему бит START и STOP

1111 = программная поддержка ведущего режима I^2C , 10- разрядная адресация с разрешением прерываний по приему бит START и STOP

1001, 1010, 1100, 1101 = резерв

SSPCON2 (адрес 91h) Регистр управления модуля MSSP

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR

- бит 7: GCEN: Бит разрешения поддержки общего вызова (только для ведомого режима I²C)
 - 1 = разрешить прерывания при приеме в регистр SSPSR адреса общего вызова (0000h)
 - 0 = поддержка общего вызова выключена
- бит 6: **ACKSTAT**: Бит статуса подтверждения (только для ведущего режима I^2C)

Передача ведущего I²C

- 1 = подтверждения не было получено от ведомого
- 0 = подтверждение от ведомого было получено
- бит 5: **АСКDТ:** Бит подтверждения (только для ведущего режима I^2 C)

Прием ведущего I²C

Значение этого бита передается при разрешении формирование бита подтверждения.

- 1 = подтверждение
- 0 = нет подтверждения
- бит 4: **ACKEN:** Сформировать бит подтверждения (только для ведущего режима I²C)
 - 1 = на выводах SCL, SDA формируется бит ACKDT. Аппаратно сбрасывается в '0'
 - 0 = подтверждение не формируется
- бит 3: **RCEN:** Разрешить прием данных (только для ведущего режима I²C)
 - $1 = разрешить прием данных с шины <math>I^2C$
 - 0 = приемник выключен
- бит 2: **PEN:** Сформировать бит STOP (только для ведущего режима I²C)
 - 1 = на выводах SCL, SDA формируется бит STOP. Аппаратно сбрасывается в '0'
 - 0 = бит STOP не формируется
- бит 1: **RSEN:** Сформировать бит повторный START (только для ведущего режима I^2 C)
 - 1 = на выводах SCL, SDA формируется бит повторный START. Аппаратно сбрасывается в '0'
 - 0 = бит повторный STAT не формируется
- бит 0: **SEN**: Сформировать бит START (только для ведущего режима I^2 C)
 - 1 = на выводах SCL, SDA формируется бит START. Аппаратно сбрасывается в '0'
 - 0 = бит START не формируется

Примечание. Для битов ACKEN, RCEN, PEN, RSEN, SEN. Если I^2 С модуль не находится в пассивном состоянии, то ни один из битов не может быть установлен в '1' (поставлен в очередь), не может быть выполнена запись в регистр SSPBUF (или запись в регистр SSPBUF заблокирована).

9.1 Режим SPI

B SPI режиме возможен одновременный синхронный прием/переда 8-разрядных данных. Модуль MSSP поддерживает четыре режима SPI с типовым использованием трех выводов микроконтроллера:

- Вход последовательных данных (SDI);
- Выход последовательных данных (SDO);
- Тактовый сигнал (SCK).

Дополнительно может быть задействован четвертый вывод для работы в режиме ведомого.

• Выбор ведомого (-SS).

При инициализации SPI необходимо определить параметры работы битами SSPCON<5:0>, SSPSTAT<7:6>. Управляющие биты определяют следующие параметры работы:

- Ведущий режим (SCK выход);
- Ведомый режим (SCK вход);
- Полярность тактового сигнала (пассивный уровень SCK);
- Фаза выборки входных данных (в середине или конце передачи бита);
- Активный фронт тактового сигнала (передний, задний);
- Частота тактового сигнала (только в ведущем режиме);
- Режим выбора ведомого (только в режиме ведомого).

На рисунке 9-1 показана структурная схема модуля MSSP в SPI режиме.

Для включения модуля MSSP необходимо установить бит SSPEN (SSPCON<5>) в '1'. Для сброса или перенастройки режима SPI рекомендуется сбросить бит SSPEN в '0', выполнить изменения параметров работы, а затем вновь установить бит SSPEN в '1'. После включения MSSP в режиме SPI выводы SDI, SDO, SCK, -SS используются последовательным портом. Для корректной работы последовательного порта биты регистров TRIS должны быть настроены следующем образом:

- SDI, автоматически управляется SPI модулем;
- SDO, бит TRISC<5> должен быть сброшен в '0';
- SCK (ведущий режим), бит TRISC<3> = 0;
- SCK (ведомый режим), бит TRISC<3> = 1;
- -SS, бит TRISA<5> = 1, в регистре ADCON1 вывод RA5 должен быть настроен как цифровой порт ввода/вывода (см. раздел 11.0).

Любая нежелательная функция последовательного порта может быть выключена, настраивая соответствующие биты регистров направления данных TRIS.

Рис. 9-1 Структурная схема модуля MSSP в SPI режиме

9.1.1 Режим ведущего SPI

Ведущий шины может инициализировать передачу данных в любой момент, поскольку он генерирует тактовый сигнал, и определяет когда ведомый должен передать данные в соответствии с используемым протоколом (см. рисунок 9-2).

В режиме ведомого данные передаются/приняты после их записи/чтения из регистра SSPBUF. Если в SPI режиме требуется только принимать данные, вывод SDO может быть заблокирован (настроен как вход). Данные с вывода SDI последовательно сдвигаются в регистр SSPSR с установленной скоростью. Каждый принятый байт загружается в регистр SSPBUF (как нормально полученный байт) с формированием прерываний и воздействием на соответствующие биты статуса. Эта функция может быть полезна при реализации "монитора шины".

Полярность тактового сигнала устанавливается битом СКР (SSPCON<4>), что позволяет получить различные методы передачи данных (см. рисунок 9-2). Данные всегда передаются старшим битом вперед. В ведущем режиме частота тактового сигнала выбирается программно:

- F_{OSC}/4 (или T_{CY});
- F_{OSC}/16 (или 4 x T_{CY});
- F_{OSC}/64 (или 16 x T_{CY});
- Выход таймера TMR2 / 2.
- Максимальная частота передачи данных 5МГц при тактовой частоте микроконтроллера 20МГц.

Бит СКЕ определяет по какому фронту тактового сигнала необходимо выполнять прием данных. Параметры выборки входных данных устанавливаются битом SMP. Поле загрузки принятых данных в регистр SSPBUF устанавливается флаг прерываний SSPIF в '1'.

9.1.2 Режим ведомого SPI

В режиме ведомого данные передаются/принимаются по внешнему тактовому сигналу на выводе SCK. Когда принимается последний бит байта, устанавливается в '1' флаг прерываний SSPIF (PIR1<3>). Внешний тактовый сигнал должен удовлетворять требованиям длительности низкого и высокого логического уровня, описанным в разделе электрических характеристик.

В SLEEP режиме микроконтроллера ведомый может принимать/передавать данные. После приема данных микроконтроллер выходит из режима SLEEP.

Примечания:

- 1. В режиме ведомого SPI с поддержкой выбора ведомого по сигналу на выводе -SS (SSPCON<3:0>=0100), SPI модуль сброшен, если на выводе -SS напряжение питания V_{DD} .
- 2. В режиме ведомого SPI и СКЕ = 1, необходимо разрешить управление с вывода -SS.

Puc. 9-3 Временная диаграмма работы модуля MSSP в режиме ведомого SPI (CKE=0)

Таблица 9-1 Регистры и биты, связанные с работой модуля MSSP в режиме SPI

Адрес	РМЯ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Буфер п	Буфер приемника MSSP / регистр передатчика							xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/-A	Р	S	R/-W	UA	BF	0000 0000	0000 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

Примечание*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

9.2 Режим I²C

Модуль MSSP полностью поддерживает все функции ведущих и ведомых устройств, включая поддержку общего вызова, аппаратные прерывания по детектированию битов START и STOP для определения занятости шины I^2 C в режиме ведущего (при конкуренции на шине). В MSSP модуле реализована поддержка стандартного режима 7, 10-разрядной адресации.

Дополнительно смотрите техническую документацию AN578 "Use of the SSP Module in the I²C Multi-Master Environment".

Фильтр "glitch" подключен к выводам SDA и SCL, когда они настроены на вход. Фильтр работает в режимах 100кГц и 400кГц. В режиме 100кГц, когда выводы SDA и SCL настроены на выход, фильтр контролирует длительность формируемых сигналов в не зависимости от тактовой частоты микроконтроллера.

Для работы с шиной I^2 С используется два вывода SCL (сигнал синхронизации) и SDA (данные). Выводы SDA и SCL автоматически настраиваются при включении режима I^2 С. Включение модуля MSSP выполняется установкой бита SSPEN (SSPCO<5>) в '1'.

Для управления модулем MSSP в режиме I^2 С используется шесть регистров:

- SSPCON, регистр управления MSSP;
- SSPCON, регистр управления 2 MSSP;
- SSPSTAT, регистр статуса MSSP;
- SSPBUF, буфер приемника/передатчика;
- SSPSR, сдвиговый регистр (пользователю не доступен);
- SSPADD, регистр адреса.

В регистре SSPCON устанавливается требуемый режим I^2 C. С помощью четырех битов (SSPCON<3:0>) можно выбрать один из режимов I^2 C:

- Ведомый режим I²C, 7-разрядная адресация;
- Ведомый режим I²C, 10-разрядная адресация;
- Ведущий режим I²C, тактовый сигнал = F_{OSC}/(4 * (SSPADD+1));
- Программная поддержка ведущего режима I²C (реализовано для совместимости с другими PICmicro).

При выборе любого режима I^2C выводы SCL и SDA должны быть настроены на вход, установкой соответствующих битов регистра TRISC в '1'. После выбора режима I^2C и установки бита SSPEN в '1' выводы SDA, SCL подключаются к модулю MSSP. Для нормальной работы модуля I^2C к выводам SCL, SDA должны быть подключены внешние подтягивающие резисторы.

Бит CKE (SSPSTAT<6>) устанавливает уровни сигналов на выводах SCL, SDA в ведущем и ведомом режимах. Если CKE =1, то выходные уровни соответствуют спецификации SMBus. Когда CKE=0, выходные уровни соответствуют спецификации I^2 C.

Регистр SSPSTAT содержит биты статуса передачи данных: обнаружение на шине битов START (S) или STOP (P), флаг приема байта данных или адреса, указатель загрузки старшего байта 10-разрядного адреса, бит операции приема/передачи.

В регистр SSPBUF загружаются данные для передачи по шине I^2 C, и из него читаются принятые данные. Регистр SSPSR выполняет сдвиг принимаемых/передаваемых данных. При приеме данных регистры SSPBUF, SSPSR работают как двухуровневый буфер приемника. Буфер позволяет принимать следующий байт до чтения предыдущего принятого байта из регистра SSPBUF. Когда байт полностью загружен в SSPSR, он передается в регистр SSPBUF и устанавливается флаг прерывания SSPIF в '1'. Если полностью принят следующий байт до чтения предыдущего байта из SSPBUF, то устанавливается бит SSPOV (SSPCON<6>) в '1', а байт в регистре SSPSR будет потерян.

В регистр SSPADD записывается адрес ведомого устройства. В 10-разрядном режиме пользователь должен сначала записывать старший байт адреса (1111 0 A9 A8 0). После соответствия старшего байта адреса необходимо загрузить младший байт адреса (A7:A0).

9.2.1 Режим ведомого I²C

В режиме ведомого I²C выводы SCL, SDA должны быть настроены на вход. Модуль MSSP автоматически изменит направление вывода SDA при передачи данных ведомым. Структурная схема модуля MSSP в режиме ведомого I²C показана на рисунке 9-5.

При совпадении адреса или после приема байта данных (если предварительно совпал адрес) аппаратно генерируется бит подтверждения (-ACK), а затем данные из регистра SSPSR загружаются в SSPBUF.

Существует несколько условий, при которых бит -АСК не формируется (эти условия могут возникать одновременно):

- Бит BF (SSPSTAT<0>) = 1 перед приемом данных;
- Бит переполнения SSPOV (SSPSTAT<6>) = 1 перед приемом данных.

Если бит BF = 1, то значение из SSPSR не переписывается в регистр SSPBUF, а биты SSPIF и SSPOV устанавливаются в '1'. В таблице 9-2 показаны операции после приема байта при различных значениях битов ВF, SSPOV. В затененных ячейках показана ситуация, когда вовремя не был сброшен бит переполнения SSPOV в '0'. Заметьте, что бит BF аппаратно сбрасывается в '0' при чтении из регистра SSPBUF, а бит SSPOV необходимо сбрасывать в '0' программно.

Минимальная длительность логических уровней входного сигнала синхронизации SCL должна удовлетворять требованиям раздела электрических характеристик (см. параметры 100 и 101).

Puc. 9-5 Структурная схема модуля MSSP в режиме ведомого I²C

Таблица 9-2 Операции после приема байта при различных значениях битов BF, SSPOV

Биты стату	са приемника	Запись из SSPSR	Формирование	Установка флага	
BF	SSPOV	в SSPBUF	бита -АСК	прерываний SSPIF	
0	0	Есть	Есть	Есть	
1	0	Нет	Нет	Есть	
1	1	Нет	Нет	Есть	
0	1	Есть	Нет	Есть	

9.2.1.1 Адресация

После включения модуля MSSP ожидается формирование на шине бита START. Получив бит START, принимается 8 бит в сдвиговый регистр SSPSR. Выборка битов происходит по переднему фронту синхронизирующего сигнала на выводе SCL. По заднему фронту восьмого такта сигнала SCL значение в регистре SSPSR<7:1> сравнивается с содержимым регистра SSPADD. Если значение адреса совпадает, а биты BF и SSPOV равны нулю, то выполняются следующие действия:

- a) Значение регистра SSPSR загружается SSPBUF по 8-му заднему фронту сигнала SCL;
- b) Устанавливается флаг BF в '1' (буфер полон) по 8-му заднему фронту сигнала SCL;
- с) Генерируется бит -АСК;
- d) Устанавливается флаг прерываний SSPIF (PIR1<3>) в '1' по 9-му заднему фронту сигнала SCL.

В режиме ведомого при 10-разрядной адресации необходимо принять два байта адреса. Пять старших бит первого байта определяют: является ли полученный байт первым байтом 10-разрядного адреса. Бит R/-W(SSPSTAT<2>) должен быть настроен для приема второго байта адреса. Для 10-разрядной адресации первый байт адреса должен иметь формат '1111 0 A9 A8 0', где A9:А8 два старших бита адреса. Рекомендуемая последовательность действий при 10-разрядной адресации (шаги 7-9 для передачи ведомым):

- 1. Принять старший байт адреса (устанавливаются биты SSPIF, BF и UA (SSPSTAT<1> в '1').
- 2. Записать младший байт адреса в регистр SSPADD (аппаратно сбрасывается бит UA в '0' и "отпускается" линия SCL).
- 3. Выполнить чтение из регистра SSPBUF (сбрасывается бит BF в '0') и сбросить флаг SSPIF в '0'.
- 4. Принять младший байт адреса (устанавливаются биты SSPIF, BF и UA (SSPSTAT<1> в '1').
- 5. Записать старший байт адреса в регистр SSPADD (аппаратно сбрасывается бит UA в '0' и "отпускается" линия SCL).
- 6. Выполнить чтение из регистра SSPBUF (сбрасывается бит BF в '0') и сбросить флаг SSPIF в '0'.
- 7. Принять бит повторный START.
- 8. Принять старший байт адреса (устанавливаются биты SSPIF и BF в '1').
- 9. Выполнить чтение из регистра SSPBUF (сбрасывается бит BF в '0') и сбросить флаг SSPIF в '0'.

Примечание. В 10-разрядном режиме после команды повторный START (шаг 7) не требуется обновлять значение в регистре SSPADD. В данном случае требуется соответствие только первого байта адреса.

9.2.1.2 Прием данных ведомым

Если бит R/-W в адресном байте равен нулю, а принятый адрес совпадает с адресом устройства, то бит R/-W в регистре SSPSTAT сбрасывается в '0'. Принятый адрес загружается в регистр SSPBUF.

Если бит BF (буфер полон) или SSPOV (переполнение буфера) установлен в '1', то бит подтверждения -АСК не формируется. Эту ошибку необходимо обработать программно.

Прерывание от модуля MSSP генерируются при каждом принятом байте с шины I^2 C, установкой флага SSPIF (PIR<3>) в '1' (сбрасывается программно). Регистр SSPSTAT используется для определения типа принятого байта.

Примечание. Значение регистра SSPBUF будет обновлено, если SSPOV=1 BF=0. Если было выполнено чтение из регистра SSPBUF но не был сброшен бит SSPOV в '0', то бит -ACK не формируется.

9.2.1.3 Передача данных ведомым

Если бит R/-W в адресном байте равен '1', а принятый адрес совпадает с адресом устройства, то бит R/-W в регистре SSPSTAT устанавливается в '1'. Принятый адрес загружается в регистр SSPBUF. Бит -ACK формируется девятым битом, после чего линия SCL удерживается в низком логическом уровне. Передаваемые данные должны быть записаны в регистр SSPBUF, после чего они автоматически переписываются в регистр SSPSR. После записи данных необходимо "отпустить" сигнал SCL установкой бита CKP(SSPCON<4>) в '1'. Ведущий шины контролирует состояние линии SCL, ожидая смены уровня сигнала. Восемь бит загруженных данных последовательно сдвигаются по заднему фронту сигнала SCL, что гарантирует достоверное значение данных на линии SDA (см. рисунок 9-7).

Модуль MSSP генерирует прерывание по каждому переданному байту, устанавливая бит SPPIF в '1' по заднему фронту девятого такта сигнала SCL. Флаг SSPIF должен быть сброшен программно. Регистр SSPSTAT используется для определения статуса передачи данных.

Ведущее устройство формирует бит подтверждения АСК на девятом такте сигнала SCL для каждого принятого байта. Если бит подтверждения АСК не сформирован (высокий уровень сигнала SDA), передача данных завершена. Логика ведомого устройства настраивается на обнаружение бита STATR.

Если бит подтверждения ACK был получен (низкий уровень сигнала SDA), в регистр SSPBUF необходимо записать новый байт для передачи. Линию SCL также необходимо "отпустить", установкой бита CKP в '1'.

9.2.2 Поддержка общего вызова

Процедура адресации на шине I^2 С такова, что первый после START байт определяет, к какому из ведомых устройств обращается ведущий шины. Исключением является адрес общего вызова, при использовании которого теоретически должны откликнуться все ведомые.

Адрес общего вызова – один из восьми зарезервированных адресов шины I^2C , все биты которого равны нулю (в том числе и бит R/-W).

Распознавание адреса общего вызова включается установкой бита GCEN (SSPCON2<7>) в '1'. Следующий за START байт помещается в регистр SSPSR и сравнивается с содержимым SSPADD и фиксированным адресом общего вызова

При получении адреса общего вызова, содержимое SSPSR переписывается в регистр SSPBUF (устанавливается бит BF в '1') по заднему фронту восьмого такта. На девятом такте формируется бит подтверждения (-ACK) и устанавливается флаг прерываний SSPIF в '1'.

Содержимое регистра SSPBUF позволяет определить получение общего вызова.

В 10-разрядном режиме требуется обновить содержимое регистра SSPADD для проверки соответствия младшего байта адреса после установки бита UA(SSPSTAT<1>) в '1'. Если получен адрес общего вызова в 10-разрядном режиме адресации при GCEN=1, то обновлять значение адреса не требуется. После формирование бита подтверждения ведущее устройство начнет принимать данные (см. рисунок 9-8).

9.2.3 Работа в SLEEP режиме

Ведомый I^2 С может принимать адресные байты или байты данных в SLEEP режиме микроконтроллера. После приема байта микроконтроллер выходит из SLEEP режима, если разрешены прерывания от MSSP модуля.

9.2.4 Эффект сброса

При сбросе микроконтроллера модуль MSSP выключается, и прекращается любой обмен данными.

Таблица 9-3 Регистры и биты, связанные с работой модуля MSSP в режиме I²C

	таблица 3-3 г стистры и биты, связанные с работой модуля моог в режиме г о										
Адрес	Р МЯ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	-	(1)	-	EEIF	BCLIF	-	-	CCP2IF	-r-0 00	-r-0 00
8Dh	PIE2	-	(1)	-	EEIE	BCLIE	-	-	CCP2IE	-r-0 00	-r-0 00
13h	SSPBUF	Буфер п	риемника	MSSP / pe	егистр пер	едатчика				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
93h	SSPADD	Регистр	Регистр адреса / Регистр генератора скорости обмена							0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/-A	Р	S	R/-W	UA	BF	0000 0000	0000 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

Примечание*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

Примечание 1. Резервные биты. При обращении всегда должны равняться нулю.

9.2.5 Режим ведущего I²C

В режиме ведущего поддерживается генерация прерываний при обнаружении на шине битов START и STOP. Биты STOP (P) и START (S) в регистре SSPSTAT равны '0' после сброса микроконтроллера или при выключенном модуле MSSP. Шина находится в неактивном состоянии, если бит P=1 или оба бита S, P равны '0'.

В режиме ведущего выводы SCL, SDA управляются аппаратно.

Следующие события на шине I²C могут привести к установки флага прерываний SSPIF в '1':

- Выполнено условие START;
- Выполнено условие STOP;
- Передан/принят байт данных;
- Передан бит подтверждения:
- Выполнено условие повторный START.

Рис. 9-9 Структурная схема модуля MSSP в режиме ведущего I²C Шина данных

9.2.6 Режим конкуренции

В режиме конкуренции, прерывания поле START и STOP позволяет определить, когда шина I²C свободна. Биты S и P сбрасываются в '0' при сбросе микроконтроллера или при выключении модуля MSSP. Управление шиной может быть перехвачено, когда бит P=1 или шина простаивает (S=0 и P=0). Если шина занята, можно разрешить прерывания от MSSP для обнаружения бита STOP на шине.

При конкуренции линия SDA должна проверяться на соответствия уровня, при ожидаемом высоком уровне на выходе. Эта проверка производится автоматически, а результат помещается в бит BCLIF.

Арбитраж на шине I²C может быть потерян во время:

- Передачи адреса;
- Передачи данных;
- Формирования бита START;
- Формирования бита повторный START;
- Формирования бита АСК.

9.2.7 Поддержка режима ведущего I²C

Ведущий режим включается соответствующей настройкой битов SSPM в регистре SSPCON и установкой в '1' бита SSPEN. После включения ведущего режима аппаратно могут выполняться следующие функции:

- Формирование бита START на линии SCL и SDA;
- Формирование бита повторный START на линии SCL и SDA;
- Записью в регистр SSPBUF инициализируется передача байта данных/адреса;
- Формирование бита STOP на линии SCL и SDA;
- Настройка порта I²C на прием данных;
- Формирование бита подтверждения АСК после приема байта на линии SCL и SDA.

Примечание. Модуль MSSP в ведущем режиме не имеет стека событий. Это означает, что пользователь не может к примеру инициировать передачу бита START и произвести запись в SSPBUF до того, как START будет завершен. При попытке осуществления подобной операции будет установлен бит WCOL в '1', указывая, что запись в регистр SSPBUF не произошла.

9.2.8 Работа в режиме ведущего I²C

Ведущий формирует на шине I^2 С тактовый сигнал и биты START, STOP. Текущий обмен данными завершается после формирования бита STOP или повторный START. Поскольку бит повторный START инициирует новый обмен данными, шина I^2 С остается занятой.

Передатчик ведущего выдает данные на линию SDA, а тактовый сигнал на линию SCL. Первый передаваемый байт содержит 7-разрядный адрес приемника (при 7-разрядной адресации устройств) и бит направления данных R/-W=0. После каждого переданного 8-разрядного байта принимается бит подтверждения ACK. Биты SATR и STOP формируется для указания начала и завершения передачи данных.

В режиме приема ведущем на шину I²C сначала выдается байт, содержащий 7-разрядный адрес передатчика (при 7-разрядной адресации устройств) и бит направления данных R/-W = 1. Данные принимаются с линии SDA, а на линии SCL формирует тактовый сигнал. После каждого принятого байта формируется бит подтверждения. Биты SATR и STOP формируется для указания начала и завершения передачи данных.

Генератор скорости обмена BRG используется для установки требуемой частоты тактового сигнала на линии SCL – 100кГц, 400кГц или 1МГц. Значение для перезагрузки BRG берется из 7 младших бит регистра SSPADD. BRG начинает работу сразу после записи данных в регистр SSPBUF. Как только операция завершена (передан последний бит байта и принят бит подтверждения) генератор BRG останавливается, вывод SCL "отпускается".

Рекомендованная последовательность действий при передаче данных:

- 1. Инициировать START установкой бита SEN в регистре SSPCON2.
- 2. Ожидать прерывание (если оно разрешено) или установку бита SSPIF после завершения выполнения START.
- 3. Записью в SSPBUF инициируется передача адреса.
- 4. 7 бит адреса (при 7-разрядной адресации) и бит направления данных выдается на SDA.
- 5. Принять подтверждение ACK от приемника, результат записывается в бит ACKSTAT регистра SSPCON2
- 6. По заднему фронту девятого такта устанавливается бит SSPIF в '1'.
- 7. Записью в SSPBUF инициируется передача данных.
- 8. 8 бит данных выдаются на SDA.
- 9. Принять подтверждение ACK от приемника, результат записывается в бит ACKSTAT регистра SSPCON2.
- 10. По заднему фронту девятого такта устанавливается бит SSPIF в '1'.
- 11. Инициировать STOP установкой бита PEN в регистре SSPCON2.
- 12. Ожидать прерывание (если оно разрешено) или установку бита SSPIF после завершения выполнения STOP.

9.2.8 Генератор скорости обмена

В ведущем режиме, значение для перезагрузки BRG берется из младших 7 бит регистра SSPADD (см. рисунок 9-10). После загрузки SSPADD в BRG, счетчик BRG считает, декрементируя до нуля (в тактах Q2 и Q4), и останавливается до следующей перезагрузки, которая не всегда производится автоматически. Если после окончания счета сигнал на линии SCL должен перейти в высокий уровень, перезагрузка производится только после этого перехода (см. рисунок 9-11).

Примечание. Скорость обмена = F_{OSC} / (4 x (SSPADD + 1))

SSPM3:SSPM0 SSPADD<6:0>
SSPM3:SSPM0 SSPADD<6:0>
SSPM3:SSPM0 SSPADD<6:0>
SSPM3:SSPM0 SSPADD<

SCL БРОЗВИНИЕ ПЕРЕЗВГРУЗКОЙ

CLKOUT BRG СЧЕТЧИК

FOSC/4

9.2.9 Формирование бита START в режиме ведущего I²C

Чтобы инициировать формирование бита START на шине I^2 C, необходимо установить бит SEN (SSPCON2<0>) в '1'. Если на линиях SCL и SDA высокий уровень сигнала, BRG загружается значением из регистра SSPADD <6:0> и начинает счет. Если по окончанию отсчета времени T_{BRG} сохраняется высокий уровень на SCL и SDA, сигнал SDA переводится в низкий логический уровень. Перевод SDA в низкий уровень, в то время когда на линии SCL высокий, и есть бит START на шине I^2 C. После формирования бита START устанавливается бит S и флаг прерывания SSPIF в '1', BRG загружается новым значением и начинает счет. По окончании счета бит SEN (SSPCON2<0>) автоматически сбрасывается в '0', генератор останавливается, на SDA остается низкий уровень сигнала. Формирование бита START завершено.

Примечание. Если в начале формирования бита START на SDA или SCL присутствует низкий уровень или во время выполнения START низкий уровень на SCL появляется раньше, чем на SDA, устанавливается флаг прерывания BCLIF (конфликт шины), выполнение START прекращается, MSSP переходит в состояние ожидания.

9.2.9.1 Флаг WCOL

Если во время формирования бита START производится попытка записи в SSPBUF, устанавливается бит WCOL, а запись не происходит.

Примечание. Поскольку MSSP не имеет стека событий, установка любого из младших 5 битов регистра SSPCON2 до завершения формирования бита START запрещено.

9.2.10 Формирование бита повторный START в режиме ведущего I²C

Чтобы инициировать формирование бита повторный START, необходимо установить бит RSEN (SSPCON2<1>) в то время, когда модуль MSSP находится в режиме ожидания. При включении формирования бита повторный START линия SCL переводится в низкий логический уровень. Когда на SCL устанавливается низкий уровень сигнала, BRG перезагружается содержимым регистра SSPADD<6:0> и начинает отсчет, при этом SDA "отпускается" в высокий уровень. Если по окончанию счета BRG, на линии SDA сохраняется высокий уровень, SCL также "отпускается". BRG вновь перезагружается и начинает отсчет. Если по окончании отсчета времени T_{BRG} сохраняется высокий уровень на линиях SCL и SDA, сигнал SDA переводится в низкий уровень. После формирования бита повторный START на шине I^2 C устанавливается бит S (SSPSTAT<3>) в '1'. Флаг SSPIF не будет установлен в '1' до тех пор, пока BRG не перезагрузится новым значением и начнет счет.

Примечания:

- Если бит RSEN установлен в '1' во время выполнения какой либо операции на шине, то не будет выполнено никаких действий.
- 2. Если на SDA низкий уровень при переходе SCL из низкого уровня в высокий или низкий уровень на SCL появляется раньше, чем на SDA, устанавливается флаг прерывания BCLIF (конфликт шины), формирование бита повторный START прекращается, MSSP переходит в состояние ожидания.

Сразу после установки бита SSPIF пользователь может загрузить регистр SSPBUF 7-разрядным адресом (для 7-разрядного режима адресации) или старшим байтом 10-разрядного адреса. По завершению передачи 8 бит и получения подтверждения АСК, можно передать байт данных или младший байт адреса.

9.2.10.1 Флаг WCOL

Если во время формирования бита повторный START производится попытка записи в SSPBUF, устанавливается бит WCOL, а запись не происходит.

Примечание. Поскольку MSSP не имеет стека событий, установка любого из младших 5 битов регистра SSPCON2 до завершения формирования бита повторный START запрещено.

WWW.MICROCHIP.RU - поставки и техподдержка на русском языке

9.2.11 Передача данных в режиме ведущего I²C

Для инициализации передачи байта данных, 7-разрядного адреса или любой части 10-разрядного адреса нужно просто записать байт в регистр SSPBUF. В результате чего установится бит BF в '1', а BRG начнет формировать сигнал для передачи данных. Каждый передаваемый бит будет выдаваться на SDA по заднему фронту сигнала SCL. Низкий уровень на SCL удерживается в течение одно периода BRG. Данные должны поступать на SDA до прихода переднего фронта на SCL (см. раздел временных характеристик). После отпускания SCL в высокий уровень на время Т_{ВRG} данные должны удерживаться на SDA в том же состоянии. По окончании передачи 8-го бита сбрасывается флаг BF в '0', а ведущий "отпускает" SDA с тем, чтобы принять бит подтверждения. По заднему фронту 9-го такта значение ACK записывается в бит ACKSTAT регистра SSPCON2. В этот же момент устанавливается флаг SSPIF в '1', а BRG отключается до следующей операции на шине оставляя низкий уровень на SCL и отпуская SDA (см. рисунок 9-14).

9.2.11.1 Флаг ВF

В режиме передачи данных бит BF (SSPSTAT<0>) аппаратно устанавливается в '1' после записи данных в регистр SSPBUF и аппаратно сбрасывается после передачи 8 бит данных.

9.2.11.2 Флаг WCOL

Если во время передачи данных производится попытка записи в регистр SSPBUF, устанавливается бит WCOL в '1', а запись не происходит. Бит WCOL сбрасывается программно.

9.2.11.3 Флаг ACKSTAT

В режиме передачи данных бит ACKSTAT(SSPCON2<6>) равен нулю, если ведомый сформировал подтверждение. Ведомый посылает подтверждение, если он распознал адрес (включая общий вызов) или корректно принял данные.

9.2.12 Прием данных в режиме ведущего I²C

Прием данных ведущем шины I^2 С разрешается установкой бита RCEN(SSPCON2<3>) в '1'.

Примечание. При установке бита RCEN в '1' модуль MSSP должен находиться в режиме ожидания.

BRG начинает формировать тактовый сигнал SCL, для приема данных в сдвиговый регистр SSPSR. Каждый бит данных будет приниматься с SDA по заднему фронту SCL. По заднему фронту 8-го такта, значение из SSPSR переписывается в SPPBUF, устанавливается бит BF и SSPIF в '1', BGR останавливается, удерживая SCL в низком уровне, а модуль MSSP переходит в режим ожидания. После чтения регистра SSPBUF аппаратно сбрасывается бит BF в '0'. По окончанию приема, ведущий может сформировать бит подтверждения установкой бита ACKEN (SSPCON2<4>) в '1'.

9.2.12.1 Флаг ВҒ

В режиме приема данных бит BF (SSPSTAT<0>) аппаратно устанавливается в '1' после загрузки данных в регистр SSPBUF и аппаратно сбрасывается после чтения регистра SSPBUF.

9.2.12.2 Флаг SSPOV

При приеме данных бит SSPOV устанавливается в '1', если в момент приема 8-го бита следующего байта бит BF=1 после приема предыдущего байта.

9.2.12.3 Флаг WCOL

Если во время приема данных производится попытка записи в регистр SSPBUF, устанавливается бит WCOL в '1', а запись не происходит. Бит WCOL сбрасывается программно.

9.2.13 Формирование бита подтверждения в режиме ведущего I²C

Для инициализации формирования бита подтверждения на шине I^2 С необходимо установить бит ACKEN (SSPCON2<4>) в '1'. При установке этого бита на SCL выдается низкий уровень сигнала, а на SDA содержимое бита ACKDT. Если нужно подтвердить прием, бит ACKDT должен быть равен нулю. По окончанию счета BRG линия SCL "отпускается". Как только SCL перейдет из низкого уровня в высокий, BRG опять начнет счет. После окончания счета SCL переводится в низкий уровень, бит ACKEN автоматически сбрасывается в '0', устанавливается флаг прерывания SSPIF в '1', BGR останавливается, а модуль MSSP переходит в режим ожидания (см. рисунок 9-16).

9.2.13.1 Флаг WCOL

Если во время формирования бита подтверждения производится попытка записи в SSPBUF, устанавливается бит WCOL в '1', а запись не происходит.

9.2.14 Формирование бита STOP в режиме ведущего I²C

Чтобы инициировать формирование бита STOP, необходимо установить бит PEN (SSPCON2<2>) в '1'. По окончании приема/передачи данных, после прохождения заднего фронта тактового сигнала на SCL удерживается низкий уровень сигнала. При установки бита PEN ведущий выдает низкий уровень на линию SDA, перезагружает BRG и начинает счет до нуля. По окончании счета линия SCL "отпускается". Через время T_{BRG} , после установки высокого уровня на SCL, "отпускается" SDA. Когда на SDA появляется высокий уровень сигнала, устанавливаются биты P и SSPIF в '1', бит PEN автоматически сбрасывается в '0', а генератор BRG останавливается (см. рисунок 9-17).

9.2.14.1 Флаг WCOL

Если во время формирования бита STOP производится попытка записи в SSPBUF, устанавливается бит WCOL в '1', а запись не происходит.

9.2.15 Синхронизация тактового сигнала

Синхронизация тактового сигнала производится каждый раз во время приема/передачи данных, формирования бита START или STOP и т.д. При "отпускании" ведущем SCL (SCL должен перейти в высокий уровень). В этот момент BRG приостанавливается пока на SCL не появится высокий уровень сигнала. При появлении сигнала высокого уровня на SCL генератор BRG перегружается значением из SSPADD<6:0> и начинает счет. Это гарантирует, что длительность высокого уровня сигнала на SCL всегда будет не меньше Т_{ВRG}, даже если другое устройство на шине удерживает тактовый сигнал.

Рис. 9-18 Временная диаграмма синхронизации тактового сигнала при передаче данных ведущем шины

9.2.16 Режим конкуренции, арбитраж и конфликты шины

В режиме конкуренции необходимо поддерживать правила арбитража шины. Во время передачи адреса/данных на SDA ведущий может потерять арбитраж, если он формирует высокий уровень сигнала, а другой ведущий сформировал низкий уровень на SDA. При переходе SCL в высокий уровень, сигнал на SDA изменяться не может. Если на SDA ожидается высокий уровень, а в действительности низкий, значит возник конфликт шины. Обнаружив конфликт шины, ведущий устанавливает флаг прерывания ВСLIF в '1', прекращает текущую операцию на шине и переводит порт I²C в режим ожидания (см. рисунок 9-19).

Если при возникновении конфликта шины выполнялась передача данных, она обрывается, устанавливается бит ВБ в '1', а линии SCL и SDA "отпускаются" в высокое состояние. В регистр SSPBUF может быть произведена запись, причем запись в SSPBUF инициирует передачу независимо от того, в какой момент передатчик отключился при возникновении конфликта шины. Если пользователь обрабатывает прерывания по конфликту шины, после освобождение шины он может продолжить обмен, сформировав бит START.

Если при возникновении конфликта выполнялось формирование бита START, повторный START, STOP или ACK, выполняемая операция обрывается, SCL и SDA "отпускаются", а соответствующий бит управления в SSPCON2 сбрасывается в '0'. Если пользователь обрабатывает прерывания по конфликту шины, после освобождение шины он может продолжить обмен, сформировав бит START.

Ведущий продолжает следить за состоянием шины, и при появлении бита STOP устанавливается флаг прерывания SSPIF в '1'.

В режиме конкуренции использование прерывания при обнаружении битов START и STOP позволяет определить занятость шины. Управление шиной может быть перехвачено при установленном бите Р или сброшенных битах S и P.

9.2.16.1 Конфликт шины при формировании бита START

Во время формирования бита START конфликт шины возникает если:

- В начале START на SDA или SCL низкий уровень сигнала (см. рисунок 9-20);
- На SCL низкий уровень появляется раньше чем на линии SDA (см. рисунок 9-21).

Во время формирования бита START сигналы SCL и SDA продолжают отслеживаться. Если SCL или SDA имеют низкий уровень сигнала, то формирование бита START прекращается, устанавливается флаг BCLIF в '1', а модуль MSSP переходит в режим ожидания (см. рисунок 9-20).

Бит START начинается при наличии высокого уровня сигнала на линиях SCL и SDA. Если на SCL появляется низкий уровень раньше, чем на SDA, возникает конфликт шины, поскольку это подразумевает, что другой ведущий пытается в это время передать данные.

Если во время счета BRG на SDA появляется низкий уровень сигнала, BRG сбрасывается, а на SDA формируется низкий уровень раньше времени (см. рисунок 9-22). Если же на SDA высокий уровень, низкий уровень формируется в конце счета BRG. Генератор BRG перезагружается и считает до нуля. Если в это время на SCL появится низкий уровень, конфликт шины не возникает. В конце счета BRG SCL переводится в низкий уровень.

Примечание. Конфликт шины во время START не возникает, потому что два или более ведущих могут сформировать START одновременно, но при этом один из них первым переведет SDA в низкий уровень. Конфликт шины не возникает, поскольку ведущие могут продолжить арбитраж во время передачи адреса, данных, формировании бита повторный START и STOP.

9.2.16.2 Конфликт шины при формировании бита повторный START

Во время формирования бита повторный START конфликт шины возникает если:

- На SDA низкий уровень при переходе SCL из низкого уровня в высокий (см. рисунок 9-23);
- SCL переходит в низкий уровень раньше SDA, что указывает на то, что другой ведущий пытается передать данные (см. рисунок 9-24).

После "отпускания" линии SDA сигнал на выводе должен перейти в высокий уровень, после чего BRG перезагружается и начинает счет. Затем "отпускается" SCL и при появлении на нем высокого уровня опрашивается SDA. Если на SDA низкий уровень сигнала, значит произошел конфликт шины, т.е. другой ведущий пытается передать данные. Если на SDA высокий уровень, то BRG снова перезагружается и начинается счет. Если SDA переходит в низкий уровень до окончания счета, конфликт шины не происходит, поскольку два или более ведущих могут пытаться получить доступ к шине одновременно.

Если на линии SCL сигнал переходит в низкий уровень до окончания счета, а на SDA сохраняется высокий уровень, значит, произошел конфликт шины, т.е. другой ведущий пытается передать данные.

Если по окончании счета BGR на SCL и SDA высокий уровень, то SDA переводится в низкий уровень, а BRG перезагружается и начинает счет. По окончании счета, независимо от уровня сигнала на SCL он переводится в низкий уровень (см. рисунок 9-24).

Puc. 9-23 Временная диаграмма конфликта шины во время формирования бита повторный START (случай 1)

9.2.16.3 Конфликт шины при формировании бита STOP

Во время формирования бита STOP конфликт шины возникает если:

- После "отпускания" линии SDA и окончания счета BRG на SDA по-прежнему низкий уровень сигнала (см. рисунок 9-25);
- После "отпускания" линии SDA сигнал на SCL переходит в низкий уровень до того, как на SDA перейти в высокий уровень (см. рисунок 9-26).

Формирование бита STOP начинается с перевода линии SDA в низкий уровень, затем SCL "отпускается". После появления на SCL высокого уровня BRG перезагружается и начинает счет. По окончании счета SDA "отпускается", BRG перезагружается и снова начинает счет и опрашивает SDA. Если на нем низкий уровень или на SCL появился низкий уровень до перехода SDA в высокий, значит, произошел конфликт шины, т.е. другой ведущий пытается передать пачные

Puc. 9-26 Временная диаграмма конфликта шины во время формирования бита STOP (случай 2)

9.3 Подключение к шине I²C

Для стандартного режима I^2 С значение резисторов Rp и Rs (см. рисунок 9-27) зависит от следующих параметров:

- Напряжение питания;
- Емкость шины;
- Количество устройств на шине (входной ток + ток утечки).

Напряжение питания ограничивает минимальное значение сопротивления Rp, из-за ограничения минимального тока стока 3 MA при V_{OL} max = 0.4 B.

Например:

$$V_{DD}$$
 = 5B +/- 10% V_{OL} max = 0.4 В при 3мА

Rp min =
$$(5.5 - 0.4) / 0.003 = 1.7 \text{ кОм}$$

Максимальное значение Rs определяется допустимым уровнем шума.

Емкость шины определяется суммарная емкостью проводников и выводов. Емкость определяет максимальное значение Rp из-за допустимой длительности фронта.

Бит SMP в регистре SSPSTAT включает управление длительностью фронта SDA и SCL для того, чтобы фронты этих сигналов удовлетворяли спецификации при работе в скоростном режиме с частотой 400 кГц.

Устройства на шине I^2 С должны иметь один источник питания, к которому подключаются подтягивающие резисторы.

10.0 Универсальный синхронно-асинхронный приемопередатчик (USART)

USART — это модуль последовательного ввода/вывода, который может работать в полнодуплексном асинхронном режиме для связи с терминалами, персональными компьютерами или синхронном полудуплексном режиме для связи с микросхемами ЦАП, АЦП, последовательными EEPROM и т.д.

USART может работать в трех режимах:

- Асинхронный, полный дуплекс;
- Ведущий синхронный, полудуплекс;
- Ведомый синхронный, полудуплекс.

Биты SPEN (RCSTA<7>) и TRISC<7:6> должны быть установлены в '1' для использования выводов RC6/TX/CK и RC7/RX/DT в качестве портов универсального синхронно-асинхронного приемопередатчика. Модуль USART поддерживает режим детектирования 9-разрядного адреса для работы в сетевом режиме.

TXSTA (адрес 98h) Регистр управления и статуса передатчика

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0			
CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D]	R – чтение бита	1
Бит 7							Бит 0		W – запись бита	
									U – не реализовано,	
									читается как 0	
									–n – значение после POR	Ш
									-х - неизвестное	
									значение после POR	╛╿

бит 7: **CSRC:** Выбор источника тактового сигнала

Синхронный режим

1 = ведущий, внутренний тактовый сигнал от BRG 0 = ведомый, внешний тактовый сигнал с входа СК

<u>Асинхронный режим</u> Не имеет значения

бит 6: ТХ9: Разрешение 9-разрядной передачи

1 = 9-разрядная передача 0 = 8-разрядная передача

бит 5: **ТХЕN:** Разрешение передачи

1 = разрешена 0 = запрещена

Примечание. В синхронном режиме биты SREN/CREN отменяют действие бита TXEN.

бит 4: SYNC: Режим работы USART

1 = синхронный0 = асинхронный

бит 3: Не используется: читается как '0'

бит 2: **BRGH:** Выбор высокоскоростного режима

<u>Синхронный режим</u> Не имеет значения

Асинхронный режим

1 = высокоскоростной режим 0 = низкоскоростной режим

бит 1: **TRMT:** Флаг очистки сдвигового регистра передатчика TSR

1 = TSR пуст 0 = TSR полон

бит 0: ТХ9D: 9-й бит передаваемых данных (может использоваться для программной проверки четности)

RCSTA (адрес 18h) Регистр управления и статуса приемника

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	
Ι	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	R – чтение бита
	Бит 7							Бит 0	W – запись бита
									U – не реализовано,
									читается как 0
									–n – значение после POR
									–х – неизвестное
									значение после POR

бит 7: **SPEN:** Разрешение работы последовательного порта

1 = модуль USART включен (выводы RC7/RX/DT, RC6/TX/CK подключены к USART)

0 = модуль USART выключен

бит 6: **RX9:** Разрешение 9-разрядного приема

1 = 9-разрядный прием 0 = 8-разрядный прием

бит 5: **SREN:** Разрешение одиночного приема

Синхронный режим

1 = разрешен одиночный прием 0 = запрещен одиночный прием

Сбрасывается в '0' по завершению приема.

Примечание. В режиме ведомого не имеет значения

<u>Асинхронный режим</u> Не имеет значения

бит 4: **CREN:** Разрешение приема

Синхронный режим

1 = прием разрешен (при установке бита CREN автоматически сбрасывается бит SREN)

0 = прием запрещен

Асинхронный режим

1 = прием разрешен 0 = прием запрещен

бит 3: ADDEN: Разрешение детектирования адреса

Асинхронный 9-разрядный прием (RX9=1)

1 = детектирование адреса разрешено. Если бит RSR<8>=1, то генерируется прерывание и загружается приемный буфер.

0 = детектирование адреса запрещено. Принимаются все байты, девятый бит может использоваться для проверки четности.

Асинхронный 8-разрядный прием (RX9=0)

Не имеет значения

Синхронный режим

Не имеет значения

бит 2: FERR: Ошибка кадра, сбрасывается при чтении регистра RCREG

1 = произошла ошибка кадра 0 = ошибки кадра не было

бит 1: **OERR:** Ошибка переполнения внутреннего буфера, устанавливается в '0' при сбросе бита CREN

1 = произошла ошибка переполнения 0 = ошибки переполнения не было

бит 0: **RX9D:** 9-й бит принятых данных (может использоваться для программной проверки четности)

10.1 Генератор частоты обмена USART BRG

BRG используется для работы USART в синхронном ведущем и асинхронном режимах. BRG представляет собой отдельный 8-разрядный генератор скорости обмена в бодах, период которого определяется значением в регистре SPBRG. В асинхронном режиме бит BRGH (TXSTA<2>) тоже влияет на скорость обмена (в синхронном режиме бит BRGH игнорируется). В таблице 10-1 указаны формулы для вычисления скорости обмена в бодах при различных режимах работы модуля USART (относительно внутреннего тактового сигнала микроконтроллера).

Учитывая требуемую скорость и F_{OSC}, выбирается самое близкое целое значение для записи в регистр SPBRG, рассчитанное по формулам приведенным в таблице 10-1. Затем рассчитывается ошибка скорости обмена.

В некоторых случаях может быть выгодно использовать высокоскоростной режим работы USART (BRGH=1), поскольку уравнение FOSC / (16 (X + 1)) позволяет уменьшить погрешность скорости. Запись нового значения в регистр SPBRG сбрасывает таймер BRG, гарантируя немедленный переход на новую скорость.

Таблица 10-1 Формулы расчета скорости обмена данными

SYNC	BRGH = 0	BRGH = 1
	(4	(4
0	(Асинхронный) Скорость обмена = F _{OSC} / (64 (X + 1))	(Асинхронный) Скорость обмена = F _{OSC} / (16 (X + 1))
1	(Синхронный) Скорость обмена = F _{OSC} / (4 (X + 1))	(Синхронный) Скорость обмена = F _{OSC} / (4 (X + 1))

X = значение регистра SPBRG (от 0 до 255)

Таблица 10-2 Регистры и биты, связанные с работой генератора BRG

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Регистр	Регистр генератора скорости USART							0000 0000	0000 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий.

10.1.1 Выборка

Сигнал с входа RC7/RX/DT опрашивается цепью мажоритарного детектора три раза за такт передачи, чтобы определить, высокого или низкого уровня сигнал присутствует на входе. Если выбран низкоскоростной режим (BRRH=0), то выборка производится по седьмому, восьмому и девятому заднему фронту тактового сигнала х16. Если BRGH = 1 (выбран высокоскоростной режим), выборка производится на втором такте сигнала х4 тремя запросами).

Таблица 10-3 Скорость обмена в асинхронном режиме (BRGH=0)

Скорость	F _{OSC} = 20 M		sna B aomine	F _{OSC} = 16 M			F _{OSC} = 10 МГц			
обмена (К)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	
0,3	-	-	-	-	-	-	-	-	-	
1,2	1,221	1,75	255	1,202	0,17	207	1,202	0,17	129	
2,4	2,404	0,17	129	2,404	0,17	103	2,404	0,17	64	
9,6	9,766	1,73	31	9,615	0,16	25	9,766	1,73	15	
19,2	19,531	1,72	15	19,231	0,16	12	19,531	1,72	7	
28,8	31,250	8,51	9	27,778	3,55	8	31,25	8,51	4	
33,6	34,722	3,34	8	35,714	6,29	6	31,25	6,99	4	
57,6	62,500	8,51	4	62,500	8,51	3	52,083	9,58	2	
Максим.	312,5	· -	0	250	-	0	156,250	-	0	
Миним.	1.221	-	255	0.977	-	255	0.610	-	255	

Скорость	F _{OSC} = 4 MF	Ц		$F_{OSC} = 3,686$	F _{OSC} = 3,6864 МГц				
обмена (K)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)			
0,3	0,300	0	207	0,3	0	191			
1,2	1,202	0,17	51	1,2	0	47			
2,4	2,404	0,17	25	2,4	0	23			
9,6	8,929	6,99	6	9,6	0	5			
19,2	20,833	8,51	2	19,2	0	2			
28,8	31,250	8,51	1	28,8	0	1			
33,6	-	-	-	-	-	=			
57,6	62,500	8,51	0	57,6	0	0			
Максим.	62,500	-	0	57,6	-	0			
Миним.	0,244	-	255	0,225	-	255			

Таблица 10-4 Скорость обмена в асинхронном режиме (BRGH=1)

Скорость	F _{OSC} = 20 M	ІГц		F _{OSC} = 16 M	Гц		F _{OSC} = 10 МГц			
обмена (К)	Реальная скорость	Ошибка %	Значение SPBRG (десят.)	Реальная скорость	. SPB		Реальная скорость	Ошибка %	Значение SPBRG (десят.)	
0,3	-	-	-	-	-	-	-	-	-	
1,2	_	-	-	-	-	-	-	-	-	
2,4	_	-	-	-	-	-	2,441	1,71	255	
9,6	9,615	0,16	129	9,615	0,16	103	9,615	0,16	64	
19,2	19,231	0,16	64	19,231	0,16	51	19,531	1,72	31	
28,8	29,070	0,94	42	29,412	2,13	33	28,409	1,36	21	
33,6	33,784	0,55	36	33,333	0,79	29	32,895	2,10	18	
57,6	59,524	3,34	20	58,824	2,13	16	56,818	1,36	10	
Максим.	1250	_	0	1000	-	0	625	_	0	
Миним.	4,883	-	255	3,906	-	255	2,441	-	255	

Скорость	F _{OSC} = 4 MΓ	·ц		F _{OSC} = 3,6864 МГц				
обмена (K)	Реальная скорость	Ошибка %	SPRRG I		Ошибка %	Значение SPBRG (десят.)		
0,3	-	-	-	-	-	-		
1,2	1,202	0,17	207	1,2	0	191		
2,4	2,404	0,17	103	2,4	0	95		
9,6	9,615	0,16	25	9,6	0	23		
19,2	19,231	0,16	12	19,2	0	11		
28,8	27,798	3,55	8	28,8	0	7		
33,6	35,714	6,29	6	32,9	2,04	6		
57,6	62,500	8,51	3	57,6	0	3		
Максим.	250	-	0	230,4	-	0		
Миним.	0,977	-	255	0,9	-	255		

10.2 Асинхронный режим USART

В этом режиме USART использует стандартный формат NRZ: один стартовый бит, восемь или девять битов данных и один стоповый бит. Наиболее часто встречается 8-разрядный формат передачи данных. Интегрированный 8-разрядный генератор BRG позволяет получить стандартные скорости передачи данных. Генератор скорости обмена может работать в одном из двух режимов: высокоскоростной (x16 BRGH=1 TXSTA<2>), низкоскоростной (x64 BRGH=0 TXSTA<2>). Приемник и передатчик последовательного порта работают независимо друг от друга, но используют один и тот же формат данных и одинаковую скорость обмена. Бит четности аппаратно не поддерживается, но может быть реализован программно, применяя 9-разрядный формат данных. Все данные передаются младшим битом вперед. В SLEEP режиме микроконтроллера модуль USART(асинхронный режим) выключен. Выбор асинхронного режима USART выполняется сбросом бита SYNC в '0' (TXSTA<4>).

Модуль USART в асинхронном режиме состоит из следующих элементов:

- Генератор скорости обмена;
- Цепь опроса;
- Асинхронный передатчик;
- Асинхронный приемник.

10.2.1 Асинхронный передатчик USART

Структурная схема асинхронного передатчика USART показана на рисунке 10-1. Главным в передатчике является сдвиговый регистр TSR, который получает данные из буфера передатчика TXREG. Данные в регистр TXREG загружаются программно. После передачи стопового бита предыдущего байта, в последнем машинном такте цикла BRG, TSR загружается новым значением из TXREG (если оно присутствует), после чего устанавливается флаг прерывания TXIF (PIR1<4>). Прерывание может быть разрешено или запрещено битом TXIE (PIE1<4>). Флаг TXIF устанавливается независимо от состояния бита TXIE и не может быть сброшен в '0' программно. Очистка флага TXIF происходит только после загрузки новых данных в регистр TXREG. Аналогичным образом бит TRMT (TXSTA<1>) отображает состояние регистра TSR. Бит TRMT доступен только на чтение и не может вызвать генерацию прерывания.

Примечания:

- 1. Регистр TSR не отображается на память и не доступен для чтения.
- 2. Флаг TXIF устанавливается в '1' только, когда бит TXEN=1 и сбрасывается автоматически в '0' после загрузки новых данных в регистр TXREG.

Для разрешения передачи необходимо установить бит TXEN (TXSTA<5>) в '1'. Передача данных не начнется до тех пор, пока в TXREG не будут загружены новые данные; не придет очередной тактовый импульс от генератора BRG (см рисунок 10-2). Можно сначала загрузить данные в TXREG, а затем установить бит TXEN. Как правило, после разрешения передачи регистр TSR пуст, таким образом, данные записываемые в TXREG сразу передаются в TSR, а TXREG остается пустым. Это позволяет реализовать слитную передачу данных (см. рисунок 10-3). Сброс бита TXEN в '0' вызовет немедленное прекращение передачи, сброс передатчика и перевод вывода RC6/TX/CK в третье состояние.

Для разрешения 9-разрядной передачи необходимо установить бит TX9 (TXSTA<6>) в '1'. Девятый бит данных записывается в бит TX9D (TXSTA<0>). Девятый бит данных должен быть указан до записи в регистр TXREG, потому что данные, записанные в регистр TXREG, могут быть сразу загружены в сдвиговый регистр TSR (если он пуст).

Рекомендованная последовательность действий для передачи данных в асинхронном режиме:

- Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 10.1).
- Выбрать асинхронный режим сбросом бита SYNC в '0' и установкой бита SPEN в '1'.
- Если необходимо, разрешить прерывания установкой бита TXIE в '1'.
- Если передача 9-разрядная, установить бит ТХ9 в '1'.
- Разрешить передачу установкой бита TXEN в '1', автоматически устанавливается флаг TXIF.
- Если передача 9-разрядная, записать 9-й бит данных в TX9D.
- Записать данные в регистр TXREG.
- Если используются прерывания, то биты GIE и PEIE в регистре INTCON должны быть установлены в '1'.

Таблица 10-5 Регистры и биты, связанные с рабо	той передатчика USART в асинхронном режиме
---	--

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	Регистр	данных пе	редатчика	USART					0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр	Регистр генератора скорости USART								0000 0000

Обозначения: - = не используется, читается как 0; и = не изменяется; х = не известно; q = зависит от условий. Примечание*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

10.2.2 Асинхронный приемник USART

Структурная схема асинхронного приемника USART показана на рисунке 10-4. Данные подаются на вход RC7/RX/DT в блок восстановления данных, представляющий собой скоростной сдвиговый регистр, работающий на частоте в 16 раз превышающей скорость передачи или F_{OSC}.

Включение приемника производится установкой бита CREN регистра RCSTA в '1'.

Главным в приемнике является сдвиговый регистр RSR. После получения стопового бита данные переписываются в регистр RCREG, если он пуст. После записи в регистр RCREG выставляется флаг прерывания RCIF (PIR1<5>). Прерывание можно разрешить/запретить установкой/сбросом бита RCIE (PIE1<5>). Флаг RCIF доступен только на чтение, сбрасывается аппаратно при чтении из регистра RCREG. Регистр RCREG имеет двойную буферизацию, т.е. представляет собой двухуровневый буфер FIFO. Поэтому можно принять 2 байта данных в FIFO RCREG и третий в регистр RSR. Если FIFO заполнен и обнаружен стоповый бит третьего байта, устанавливается бит переполнения приемника OERR (RCSTA<1>). Байт, принятый в RSR, будет потерян. Для извлечения двух байт из FIFO необходимо дважды прочитать регистр RCREG. Бит OERR нужно программно очистить сбросом бита CREN, т.е. запрещением приема. В любом случае, если бит OERR установлен, логика приемника выключена.

Бит ошибки кадра FERR (RCSTA<2>) устанавливается в '1', если не обнаружен стоповый бит. FERR и девятый бит принятых данных буферизируются так же, как принятые данные. Рекомендуется сначала прочитать регистр RCSTA, затем RCREG, чтобы не потерять информацию RX9D и FERR.

Puc. 10-5 Временная диаграмма приема данных

Примечание к рисунку. На временной диаграмме показан последовательный прием трех байт. Регистр RCREG (приемный буфер) читается после приема трех байт, поэтому устанавливается бит OERR в '1'.

Рекомендованные действия при приеме данных в асинхронном режиме:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 10.1).
- 2. Выбрать асинхронный режим сбросом бита SYNC в '0' и установкой бита SPEN в '1'.
- 3. Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- 4. Если прием 9-разрядный, установить бит RX9 в '1'.
- 5. Разрешить прием установкой бита CREN в '1'.
- 6. Ожидать установку бита RCIF, или прерывание, если оно разрешено битом RCIE.
- 7. Считать 9-й бит данных (если разрешен 9-разрядный прием) из регистра RCSTA и проверить возникновение ошибки.
- 8. Считать 8 бит данных из регистра RCREG.
- 9. При возникновении ошибки переполнения сбросить бит CREN в '0'.
- 10. Если используются прерывания, то биты GIE и PEIE в регистре INTCON должны быть установлены в '1'.

Таблица 10-6 Регистры и биты, связанные с работой приемника USART в асинхронном режиме

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000	0000 000x
1Ah	RCREG	Регистр	данных пр	иемника (JSART					0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр	Регистр генератора скорости USART							0000 0000	0000 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. *Примечание**. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

10.2.3 Настройка 9-разрядного асинхронного приема с детектированием адреса

Рекомендованная последовательность действия при использовании детектора адреса:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 10.1).
- 2. Выбрать асинхронный режим сбросом бита SYNC в '0' и установкой бита SPEN в '1'.
- 3. Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- 4. Установить бит RX9 в '1' для включения 9-разрядного приема.
- 5. Установить бит ADDEN в '1' для разрешения детектирования адреса.
- 6. Разрешить прием установкой бита CREN в '1'.
- 7. Ожидать установку бита RCIF или прерывание, если оно разрешено битом RCIE.
- 8. Считать 8 бит данных из регистра RCREG для проверки адресации устройства.
- 9. При возникновении ошибки переполнения сбросить бит CREN в '0'.
- 10. Если принятый адрес соответствует адресу устройства, сбросить биты ADDEN и RCIF в '0' для начала приема данных.

Puc. 10-6 Структурная схема асинхронного приемника USART в режиме детектирования адреса

Примечание к рисунку. На временной диаграмме показан последовательный прием байта данных и байта адреса. Байт данных не записывается в RCREG, т.к. ADDEN=1, а бит8 = 0.

Puc. 10-8 Временная диаграмма приема данных с первым адресным байтом Стартовый Стартовый RC7/RX/DT бит бит √Бит 0∕уБит Бит 0 Бит 8 Стоповый Передача байта из Стоповы бит сдвигового регистра в буфер СЛОВО 1 Бит 8 = 1, адресный байт Бит 8 = 0, байт данных **RCREG** Чтение **RCREG** RCIF (флаг прерываний ADEN = 1 **'**1' (разрешение детектирования адреса)

Примечание к рисунку. На временной диаграмме показан последовательный прием байта адреса и байта данных. Байт данных не записывается в RCREG, т.к. ADDEN не был сброшен в '0' (ADDEN=1), а бит8 = 0.

Таблица 10-7 Регистры и биты, связанные с работой приемника USART в асинхронном режиме

Адрес	РМЯ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000	0000 000x
1Ah	RCREG	Регистр	данных пр	иемника (JSART					0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр	генератор	а скорост		0000 0000	0000 0000				

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. *Примечание**. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

10.3 Синхронный ведущий режим USART

В ведущем синхронном режиме данные передаются полудуплексом, т.е. прием и передача не происходит одновременно. При передаче запрещен прием и наоборот. Синхронный режим включается установкой бита SYNC (TXSTA<4>) в '1'. Также необходимо включить модуль USART, установкой бита SPEN (RCSTA<7>) в '1', для настройки портов ввода/вывода RC6/TX/CK и RC7/RX/DT в качестве тактового сигнала СК и линии данных DT соответственно. В режиме ведущего модуль USART формирует тактовый сигнал СК. Выбор режима ведущего производится установкой бита CSRC (TXSTA<7>) в '1'.

10.3.1 Передача синхронного ведущего

Структурная схема передатчика USART показана на рисунке 10-1. Главным в передатчике является сдвиговый регистр TSR. Сдвиговый регистр получает данные из буфера передатчика TXREG. В регистр TSR не загружаются новые данные, пока не будет передан последний бит предыдущего байта. После передачи последнего бита предыдущего байта TSR загружается новым значением из TXREG (если оно присутствует), и устанавливается флаг прерывания TXIF (PIR1<4>). Это прерывание может быть разрешено/запрещено битом TXIE (PIE1<4>). Флаг TXIF устанавливается вне зависимости от состояния бита TXIE и может быть сброшен только загрузкой новых данных в регистр TXREG. Также, как TXIF отображает состояние TXREG, бит TRMT (TSTA<1>) показывает состояние регистра TSR. Этот бит не вызывает генерацию прерывания, доступен только на чтение и устанавливается в '1', когда регистр TSR пуст. Регистр TSR не отображается на память и не доступен пользователю.

Передача разрешается установкой бита TXEN (TXSTA<5>), но не начнется до тех пор, пока не будут загружен регистр TXREG. Данные появятся на выходе по первому переднему фронту тактового сигнала СК. Выходные данные стабилизируются к заднему фронту тактового сигнала (см. рисунок 10-9). Можно сначала загрузить данные в TXREG, и потом установить бит TXEN в '1' (см. рисунок 10-10). Это полезно при низких скоростях передачи данных, когда генератор BRG остановлен, а биты TXEN, CREN, SREN сброшены в нуль. Установка бита TXEN в '1' запустит генератор BRG, который немедленно начнет формировать тактовый сигнал. Обычно после разрешения передачи регистр TSR пуст, и в результате записи в TXREG данные переписываются в TSR, что позволяет реализовать слитную передачу данных.

Сброс бита ТХЕN в '0' вызовет немедленное прекращение передачи, остановку логики передатчика и переведет выводы СК, DT в третье состояние. Установка бита CREN или SREN во время передачи вызовет ее прекращение и переведет вывод DT в третье состояние (для приема данных), а вывод СК останется выходом тактового сигнала, если бит CSRC установлен. Логика передатчика не сбрасывается, хотя отключена от вывода, для сброса логики передатчика необходимо очистить бит TXEN. Если бит SREN был установлен в '1', чтобы прервать текущую передачу и принять одиночное слово, то получив слово бит SREN сбросится. Последовательный порт продолжит передачу, если установлен бит TXEN. Линия данных DT переключится из третьего состояния для начала передачи данных. Чтобы это предотвратить, необходимо сбросить бит TXEN в '0'.

Для разрешения 9-разрядной передачи, необходимо установить бит TX9 (TXSTA<6>) в '1'. Девятый бит данных записывается в бит TX9D (TXSTA<0>). Девятый бит данных должен быть указан до записи в регистр TXREG, потому что данные, записанные в регистр TXREG, могут быть сразу загружены в сдвиговый регистр TSR.

Рекомендованная последовательность действий для передачи данных в синхронном ведущем режиме:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 10.1).
- 2. Выбрать синхронный ведущий режим установкой битов SYNC, SPEN и CSRC в '1'.
- 3. Если необходимо, разрешить прерывания установкой бита TXIE в '1'.
- 4. Если передача 9-разрядная, установить бит ТХ9 в '1'.
- 5. Разрешить передачу установкой бита TXEN в '1'.
- 6. Если передача 9-разрядная, записать 9-й бит данных в ТХ9D.
- 7. Записать данные в регистр TXREG.
- 8. Если используются прерывания, то биты GIE и PEIE в регистре INTCON должны быть установлены в '1'.

WWW.MICROCHIP.RU - поставки и техподдержка на русском языке

Таблица 10-8 Регистры и биты, связанные с работой передатчика USART в синхронном ведущем режиме

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы	
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000	
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000	
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x	
19h	TXREG	Регистр	данных пе	редатчика	USART					0000 0000	0000 0000	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010	
99h	SPBRG	Регистр	Регистр генератора скорости USART							0000 0000	0000 0000	

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. **Примечание*.** Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

10.3.2 Прием синхронного ведущего

В синхронном режиме прием разрешается установкой битов CREN (RCSTA<4>) или SREN (RCSTA<5>) в '1'. Линия данных RC7/RX/DT опрашивается по заднему фронту тактового сигнала. Если бит SREN установлен в '1', то принимается одиночное слово. Если бит CREN установлен в '1', то в не зависимости от состояния бита SREN будет производится поточный прием данных. Получив последний бит очередного слова, данные переписываются из RSR в регистр RCREG (если он пуст). После записи в регистр RCREG выставляется флаг прерывания RCIF (PIR1<5>). Прерывание можно разрешить/запретить установкой/сбросом бита RCIE (PIE1<5>). Флаг RCIF доступен только на чтение, сбрасывается аппаратно при чтении из регистра RCREG. Регистр RCREG имеет двойную буферизацию, т.е. представляет собой двухуровневый FIFO. Поэтому можно принять 2 байта данных в FIFO RCREG и третий в регистр RSR. Если FIFO заполнен и обнаружен последний бит третьего байта, устанавливается бит переполнения приемника ОERR (RCSTA<1>) в '1'. Байт принятый в RSR будет потерян. Для извлечения двух байт из FIFO необходимо дважды прочитать из регистра RCREG. Бит OERR нужно программно очистить сбросом бита CREN, т.е. запрещением приема. В любом случае, если бит OERR установлен, логика приема отключена.

Девятый бит принятых данных буферизируются так же, как принятые данные. Рекомендуется сначала прочитать регистр RCSTA, затем RCREG, чтобы не потерять бит записанный в RX9D.

Рекомендованные действия при приеме данных в синхронном ведущем режиме:

- 1. Установить требуемую скорость передачи с помощью регистра SPBRG и бита BRGH (см. раздел 10.1).
- 2. Выбрать синхронный ведущий режим установкой битов SYNC, SPEN и CSRC в '1'.
- 3. Сбросить биты SREN и CREN в '0'.
- 4. Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- 5. Если прием 9-разрядный, установить бит RX9 в '1'.
- 6. Если необходимо выполнить одиночный прием, установите бит SREN в '1'. Для поточного приема установите бит CREN в '1'.
- 7. Ожидать установку бита RCIF, или прерывание, если оно разрешено битом RCIE.
- 8. Считать 9-й бит данных (если разрешен 9-разрядный прием) из регистра RCSTA и проверить возникновение ошибки.
- 9. Считать 8 бит данных из регистра RCREG.
- 10. При возникновении ошибки переполнения сбросить бит CREN в '0';
- 11. Если используются прерывания, то биты GIE и PEIE в регистре INTCON должны быть установлены в '1'.

Таблица 10-9 Регистры и биты, связанные с работой приемника USART в синхронном ведущем режиме

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000	0000 000x
1Ah	RCREG	Регистр	данных пр	иемника (JSART					0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Регистр	Регистр генератора скорости USART								0000 0000

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. *Примечание**. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

10.4 Синхронный ведомый режим USART

Режим ведомого отличается от ведущего тем, что микроконтроллер использует тактовый сигнал с входа RC6/TX/CK, а не формирует его самостоятельно. Это позволяет устройству принимать и передавать данные в SLEEP режиме. Выбрать режим ведомого можно сбросом бита CSRC (TXSTA<7>) в '0'.

10.4.1 Передача синхронного ведомого

Работа передатчика в обоих синхронных режимах одинакова, за исключением работы ведомого в SLEEP режиме микроконтроллера.

Если в TXREG были записаны два слова подряд и исполнена команда SLEEP, выполняются следующие действия:

- а) Первое слово сразу записывается в TSR и передается по мере прихода тактового сигнала.
- b) Второе слово остается в TXREG
- с) Флаг TXIF не устанавливается в '1'.
- d) После передачи первого слова, второе слово передается из TXREG в TSR, и устанавливается флаг TXIF в '1'
- e) Если установлен бит TXIE в '1', микроконтроллер выходит из режима SLEEP, происходит переход по вектору 0004h, если GIE=1.

Рекомендованная последовательность действий для передачи данных в синхронном ведомом режиме:

- 1. Выбрать синхронный ведомый режим установкой битов SYNC, SPEN в '1' и сбросом CSRC в '0'.
- Сбросить биты SREN и CREN в '0'.
- 3. Если необходимо, разрешить прерывания установкой бита ТХІЕ в '1'.
- 4. Если передача 9-разрядная, установить бит ТХ9 в '1'.
- 5. Разрешить передачу установкой бита TXEN в '1'.
- 6. Если передача 9-разрядная, записать 9-й бит данных в ТХ9D.
- 7. Для начала передачи записать данные в регистр TXREG.
- 8. Если используются прерывания, то биты GIE и PEIE в регистре INTCON должны быть установлены в '1'.

Таблица 10-10 Регистры и биты, связанные с работой передатчика USART в синхронном ведомом режиме

Адрес	Р МИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	Регистр	Регистр данных передатчика USART								0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий.

Примечание*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

10.4.2 Прием синхронного ведомого

Работа приемника в обоих синхронных режимах одинакова, кроме работы в режиме SLEEP. В синхронном ведомом режиме не учитывается состояние бита SREN.

Если перед выполнением команды SLEEP был разрешен прием (бит CREN = 1), то модуль USART может принять слово в SLEEP режиме микроконтроллера. По окончанию приема данные передаются из регистра RSR в RCREG. Если бит RCIE = 1, микроконтроллер выйдет из режима SLEEP. Если GIE=1, произойдет переход по адресу вектора прерываний 0004h.

Рекомендованные действия при приеме данных в синхронном ведомом режиме:

- 1. Выбрать синхронный ведомый режим установкой битов SYNC, SPEN в '1' и сбросом CSRC в '0'.
- 2. Если необходимо, разрешить прерывания установкой бита RCIE в '1'.
- 3. Если прием 9-разрядный, установить бит RX9 в '1'.
- 4. Установите бит CREN в '1' для разрешения приема.
- 5. Ожидать установку бита RCIF, или прерывание, если оно разрешено битом RCIE.
- 6. Считать 9-й бит данных (если разрешен 9-разрядный прием) из регистра RCSTA и проверить возникновение ошибки.
- Считать 8 бит данных из регистра RCREG.
- 8. При возникновении ошибки переполнения сбросить бит CREN в '0'.
- 9. Если используются прерывания, то биты GIE и PEIE в регистре INTCON должны быть установлены в '1'.

Таблица 10-11 Регистры и биты, связанные с работой приемника USART в синхронном ведомом режиме

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	RCIE	TXIE	SSPIE	CCP1E	TMR2IE	TMR1IE	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	Регистр	Регистр данных приемника USART								0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. **Примечание***. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

11.0 Модуль 10-разрядного АЦП

Модуль аналого-цифрового преобразования (АЦП) имеет пять каналов у 28-выводных микросхем и восемь каналов у 40/44-выводных микросхем.

Входной аналоговый сигнал через коммутатор каналов заряжает внутренний конденсатор АЦП C_{HOLD} . Модуль АЦП преобразует напряжение, удерживаемое на конденсаторе C_{HOLD} в соответствующий 10-разрядный цифровой код методом последовательного приближения. Источник верхнего и нижнего опорного напряжения может быть программно выбран с выводов V_{DD} , V_{SS} , RA2 или RA3.

Допускается работа модуля АЦП в SLEEP режиме микроконтроллера, при этом в качестве источника тактовых импульсов для АЦП должен быть выбран RC генератор.

Для управления АЦП в микроконтроллере используется 4 регистра:

- Регистр результата ADRESH (старший байт);
- Регистр результата ADRESL (младший байт);
- Регистр управления ADCON0;
- Регистр управления ADCON1.

Регистр ADCON0 используется для настройки работы модуля АЦП, а с помощью регистра ADCON1 устанавливается какие входы микроконтроллера будут использоваться модулем АЦП и в каком режиме (аналоговый вход или цифровой порт ввода/вывода).

Дополнительную информацию по работе с модулем АЦП смотрите в технической документации "PICmicro Mid-Range MCU Family Reference Manual" (DS33023).

ADCON0 (адрес 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/-DONE	-	ADON	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR

```
биты 7-6: ADCS1:ADCS0: Выбор источника тактового сигнала
```

 $00 = F_{OSC}/2$

 $01 = F_{OSC}/8$

 $10 = F_{OSC}/32$

11 = F_{RC} (внутренний RC генератор модуля АЦП)

биты 5-3: CHS2:CHS0: Выбор аналогового канала

000 = канал 0, (RA0/AN0)

001 = канал 1, (RA1/AN1)

010 = канал 2, (RA2/AN2)

011 = канал 3, (RA3/AN3)

100 = канал 4, (RA5/AN4)

101 = канал 5, $(RE0/AN5)^{(1)}$

110 = канал 6, (RE1/AN6)⁽¹⁾

111 = канал 7, (RE2/AN7) $^{(1)}$

бит 2: **GO/-DONE**: Бит статуса модуля АЦП

Если ADON=1

1 = модуль АЦП выполняет преобразование (установка бита вызывает начало преобразования)

0 = состояние ожидания (аппаратно сбрасывается по завершению преобразования)

бит 1: Не используется: читается как '0'

бит 0: ADON: Бит включения модуля АЦП

1 = модуль АЦП включен

0 = модуль АЦП выключен и не потребляет тока

Примечание 1. Эти каналы не реализованы в микроконтроллерах PIC16F873/ PIC16F876.

ADCON1 (адрес 9Fh)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0
Бит 7							Бит 0

R – чтение бита W – запись бита

U – не реализовано, читается как 0

–n – значение после POR

значение после POR

–х – неизвестное

бит 7: АDFM: Формат сохранения 10-разрядного результата

1 = правое выравнивание, 6 старших бит ADRESH читаются как '0'

0 = левое выравнивание, 6 младших бит ADRESL читаются как '0'

биты 6-4: Не используются: читаются как '0'

биты 3-0: PCFG3:PCFG0: Управляющие биты настройки каналов АЦП

PCGF3: PCGF0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	V _{REF} +	V _{REF} -	Кан./ V _{REF} ⁽²⁾
0000	Α	Α	Α	Α	Α	Α	Α	Α	V_{DD}	Vss	8/0
0001	Α	Α	Α	Α	V _{REF} +	Α	Α	Α	RA3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	V_{DD}	V_{SS}	5/0
0011	D	D	D	Α	V _{REF} +	Α	Α	Α	RA3	V_{SS}	4/1
0100	D	D	D	D	Α	D	Α	Α	V_{DD}	V_{SS}	3/0
0101	D	D	D	D	V _{REF} +	D	Α	Α	RA3	V_{SS}	2/1
011x	D	D	D	D	D	D	D	D	V_{DD}	V_{SS}	0/0
1000	Α	Α	Α	Α	V _{REF} +	V_{REF} -	Α	Α	RA3	RA2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	V_{DD}	V_{SS}	6/0
1010	D	D	Α	Α	V_{REF} +	Α	Α	Α	RA3	V_{SS}	5/1
1011	D	D	Α	Α	V_{REF} +	V_{REF} -	Α	Α	RA3	RA2	4/2
1100	D	D	D	Α	V _{REF} +	V _{REF} -	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	V _{REF} +	V_{REF} -	Α	Α	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	V_{DD}	V_{SS}	1/0
1111	D	D	D	D	V_{REF} +	V_{REF} -	D	Α	RA3	RA2	1/2

А = аналоговый вход

D = цифровой канал ввода/вывода

Примечания:

- 1. Эти каналы не реализованы в микроконтроллерах PIC16F873/ PIC16F876.
- 2. В этом столбце указывается число аналоговых каналов, доступных для выполнения преобразования, и число входов источника опорного напряжения.

В регистре ADRESH:ADRESL сохраняется 10-разрядный результат аналого-цифрового преобразования. Когда преобразование завершено, результат преобразования записывается в регистр ADRESH:ADRESL, после чего сбрасывается флаг GO/-DONE (ADCON0<2>) и устанавливается флаг прерывания ADIF. Структурная схема модуля АЦП показана на рисунке 11-1.

После включения и конфигурации АЦП выбирается рабочий аналоговый канал. Соответствующие биты TRIS аналоговых каналов должны настраивать порт ввода/вывода на вход. Перед началом преобразования необходимо выдержать временную паузу, расчет которой приведен в разделе 11.1.

Рекомендованная последовательность действий для работы с АЦП:

- 1. Настроить модуль АЦП:
 - Настроить выводы как аналоговые входы, входы V_{REF} или цифровые каналы ввода/вывода (ADCON1);
 - Выбрать входной канал АЦП (ADCON0);
 - Выбрать источник тактовых импульсов для АЦП (ADCON0);
 - Включить модуль АЦП (ADCON0).
- 2. Настроить прерывание от модуля АЦП (если необходимо):
 - Сбросить бит ADIF в '0';
 - Установить бит ADIE в '1';
 - Установить бит РЕІЕ в '1';
 - Установить бит GIE в '1'.
- 3. Выдержать паузу, необходимую для зарядки конденсатора Сноьы.
- 4. Начать аналого-цифровое преобразование:
 - Установить бит GO/-DONE в '1' (ADCON0).
- Ожидать окончания преобразования:
 - Ожидать пока бит GO/-DONE не будет сброшен в '0'; ИЛИ
 - Ожидать прерывание по окончанию преобразования.

- 6. Считать результат преобразования из регистров ADRESH:ADRESL, сбросить бит ADIF в '0', если это необходимо.
- 7. Для следующего преобразования необходимо выполнить шаги начиная с пункта 1 или 2. Время преобразования одного бита определяется как время Т_{AD}. Минимальное время ожидания перед следующим преобразованием должно составлять не менее 2T_{AD}.

Примечание к рисунку 1. Эти каналы не реализованы в микроконтроллерах PIC16F873/ PIC16F876.

11.1 Временные требования к подключению канала АЦП

Для обеспечения необходимой точности преобразования, конденсатор C_{HOLD} должен успевать полностью заряжаться до уровня входного напряжения. Схема аналогового входа АЦП показана на рисунке 11-2. Сопротивления R_S и R_{SS} непосредственно влияют на время зарядки конденсатора C_{HOLD} . Величина сопротивления ключа выборки (R_{SS}) зависит от напряжения питания V_{DD} (см. рисунок 11-2). Максимальное рекомендуемое значение внутреннего сопротивления источника аналогового сигнала 10кОм. При меньших значениях сопротивления источника сигнала - меньше суммарное время преобразования.

После того, как будет выбран один из нескольких аналоговых входных каналов, но прежде чем будет производиться преобразование, должно пройти определенное время. Для нахождения данного времени воспользуетесь уравнением 11-1. Это уравнение дает результат с ошибкой в ½ LSb (2048 шагов АЦП). Ошибка в ½ LSb, это максимальная погрешность, позволяющая функционировать модулю АЦП с необходимой точностью.

Дополнительную информацию по расчету T_{ACQ} смотрите в технической документации "PICmicro Mid-Range MCU Family Reference Manual" (DS33023).

Уравнение 11-1 Вычисление временной задержки

```
T_{ACQ} = Время задержки усилителя + Время заряда конденсатора C_{HOLD} + Температурный коэффициент = T_{AMP} + T_C + T_{COFF} = 2мкс + T_C + [(Teмпература - 25°C)(0.05мкс/°C)]

T_C = - C_{HOLD} (R_{IC} + R_{SS} + R_{S}) Ln(1/2047) = - 120πΦ (1κOм + 7κOм + 10κOм) Ln(0.0004885) = 16.47мкс

T_{ACQ} = 2мкс + 16.47мкс + [(50°C - 25°C)(0.05мкс/°C)] = 19.72мкс
```

Примечания:

- 1. Напряжение источника опорного напряжения V_{REF} не влияет на уравнение.
- 2. Конденсатор C_{HOLD} после преобразования не разряжается.
- 3. Максимальное рекомендуемое значение внутреннего сопротивления источника аналогового сигнала 10кОм. Это необходимо для компенсации внутреннего тока утечки.
- После того, как преобразование завершено, необходимо программно обеспечить задержку не менее 2.0Т_{AD}, прежде чем начнете следующее преобразование. В течение этого времени конденсатор С_{HOLD} не подключен к выбранному входному каналу АЦП.

Обозначения:

 $\begin{array}{lll} C_{PIN} & - \text{ входная емкость;} \\ V_T & - \text{ пороговое напряжение;} \\ I_{LEAKAGE} & - \text{ ток утечки вывода;} \\ R_{IC} & - \text{ сопротивление соединения;} \\ SS & - \text{ переключатель защелки;} \\ C_{HOLD} & - \text{ конденсатор защелки.} \end{array}$

11.2 Выбор источника тактовых импульсов для АЦП

Время получения одного бита результата определяется параметром T_{AD} . Для 10-разрядного результата требуется как минимум 12 T_{AD} . Параметры тактового сигнала для АЦП определяются программно, T_{AD} может принимать следующие значения:

- 2Tosc;
- 8T_{OSC};
- 32Tosc;
- Внутренний RC генератор модуля АЦП (2-6мкс).

Для получения корректного результата преобразования необходимо выбрать источник тактового сигнала АЦП, обеспечивающий время T_{AD} не менее 1.6 мкс.

В таблице 11-1 указано максимальное значение тактовой частоты микроконтроллера для каждого режима синхронизирующего сигнала АЦП.

Таблица 11-1 Максимальное значение F_{OSC} удовлетворяющие требованию к T_{AD} (для микроконтроллеров с нормальным диапазоном напряжения питания (F))

Вы	Fosc	
Режим	ADCS1:ADCS0	Максимум
2T _{OSC}	00	1.25МГц
8T _{OSC}	01	5МГц
32T _{OSC}	10	20МГц
RC ^(1,2,3)	11	Примечание 1

Примечания:

- 1. Типовое значение времени T_{AD} RC генератора АЦП равно 4мкс, может варьироваться от 2мкс до 6мкс.
- 2. Когда тактовая частота микроконтроллера больше 1МГц, рекомендуется использовать RC генератор АЦП только для работы в SLEEP режиме.
- 3. Для микроконтроллеров с расширенным диапазоном напряжений питания (LF) данные параметры смотрите в разделе электрических характеристик.

11.3 Настройка аналоговых входов

Регистры ADCON1, TRISA и TRISE отвечают за настройку выводов АЦП. Если выводы микросхемы настраиваются как аналоговые входы, то при этом должны быть установлены соответствующие биты в регистре TRIS. Если соответствующий бит сброшен в '0', вывод микросхемы настроен как цифровой выход со значениями выходных напряжений V_{OH} или V_{OL} .

Модуль АЦП функционирует независимо от состояния битов CHS2:CHS0 и битов TRIS.

Примечания:

- 1. При чтении содержимого регистра порта нули будут установлены в тех разрядах, которые были настроены как аналоговые входы. Настроенные на цифровой вход каналы будут преобразовывать входные аналоговые уровни в цифровые, что однако не окажет влияния на точность преобразования.
- Значения напряжений, подаваемых на выводы, настроены как аналоговые входы, включая выводы (AN7:AN0), могут влиять на ток потребления входного буфера, который может выйти за пределы значений, оговоренных в технической спецификации.

11.4 Аналого-цифровое преобразование

Сброс бита GO/-DONE в '0' во время преобразования приведет к его прекращению. При этом регистры результата (ADRESH:ADRESL) не изменят своего содержимого. После досрочного завершения преобразования необходимо обеспечить временную задержку $2T_{AD}$. Выдержав требуемую паузу, можно начать новое преобразования установкой бита GO/-DONE в '1'.

На рисунке 11-3 показана последовательность получения результата после установки бита GO/-DONE в '1'.

Примечание. Бит GO/-DONE и бит включения АЦП должны устанавливаться разными командами.

Рис. 11-3 Последовательность получения результата после установки бита GO/-DONE в '1' TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10, TAD11 b9 b8 b7 b6 b5 b2 b0 h4 h3 b₁ Начало преобразования Отключение конденсатора Chold от аналогового входа (100нс) Установка бита GO в '1' Загрузка результата в ADRES Сброс бита GO в '0' Установка бита ADIF в '1' Подключение конденсатора Chold к аналоговому входу

11.4.1 Выравнивание результата преобразования

10-разрядный результат преобразования сохраняется в спаренном 16-разрядном регистре ADRESH:ADRESL. Запись результата преобразования может выполняться с правым или левым выравниванием, в зависимости от значения бита ADFM (см. рисунок 11-4). Не задействованные биты регистра ADRESH:ADRESL читаются как '0'. Если модуль АЦП выключен, то 8-разрядные регистры ADRESH и ADREL могут использоваться как регистры общего назначения.

11.5 Работа модуля АЦП в SLEEP режиме

Модуль АЦП может работать в SLEEP режиме микроконтроллера при условии, что источником импульсов преобразования АЦП будет внутренний RC генератор (ADCS1:ADCS0=11). При выборе RC генератора импульсов модуль АЦП сделает задержку в один машинный цикл перед началом преобразования. Это позволяет программе пользователя выполнить команду SLEEP, тем самым уменьшить "цифровой шум" во время преобразования. После завершения преобразования аппаратно сбрасывается бит GO/-DONE в '0', результат преобразования сохраняется в регистре ADRESH:ADRESL. Если разрешено прерывание от АЦП, то микроконтроллер выйдет из режима SLEEP. Если же прерывание было запрещено, то после преобразования модуль АЦП будет выключен, хотя бит ADON останется установленным.

Если был выбран другой источник тактовых импульсов АЦП (не внутренний RC генератор), то выполнение программой инструкции SLEEP прервет процесс преобразования и выключит модуль АЦП, оставив установленным бит ADON. Выключение модуля АЦП уменьшит ток потребления микроконтроллера.

Примечание. Для работы модуля АЦП в SLEEP режиме необходимо выбрать внутренний RC генератор (ADCS1:ADCS0=11), инструкция SLEEP должна быть выполнена сразу после команды, устанавливающей бит GO/-DONE в '1'.

11.6 Эффект сброса

При сбросе микроконтроллера значения всех его регистров устанавливаются по умолчанию. Сброс выключает модуль АЦП, а также останавливает процесс преобразования, если он был начат. Все выводы, используемые модулем АЦП, настраиваются как аналоговые входы.

Регистры ADRESH, ADRESL после сброса POR будут содержать неизвестное значение, а после остальных видов сброса не изменят своего значения.

Таблица 11-2 Регистры и биты, связанные с работой модуля АЦП

	Tuestage 17 21 circles in circles in contact of page 101 mogy 1717 (2)										
Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF*	ADIF	RCIF	TXIF	SSPIF	CCP1F	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE*	ADIE	ADIE RCIE TXIE SSPIE CCP1E TMR2IE TMR1IE						0000 0000	0000 0000
1Eh	ADRESH	Старший	Старший байт результата преобразования							xxxx xxxx	uuuu uuuu
9Eh	ADRESL	Младши	й байт рез	ультата п	реобразов	зания				xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ -DONE	-	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0	0 0000	0 0000
85h	TRISA	-	-	Регистр	направле	ния данны	x PORTA			11 1111	11 1111
05h	PORTA	-	-	Регистр	Регистр защелки PORTA						0u 0000
89h*	TRISE	IBF	OBF	IBOV PSPM - Регистр напр. PORTE					0000 -111	0000 -111	
09h*	PORTE	-	-	-	-	-	RE2	RE1	RE0	xxx	uuu

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий.

*Примечание**. Эти регистры/биты в микроконтроллерах PIC16F873, PIC16F876 не реализованы.

12.0 Особенности микроконтроллеров PIC16F87X

В настоящее время, устройства работающие в режиме реального времени часто содержат микроконтроллер как основной элемент схемы. PIC16F87X имеют много усовершенствований повышающие надежность системы, снижающие стоимость устройства и число внешних компонентов. Микроконтроллеры PIC16F87X имеют режимы энергосбережения и возможность защиты кода программы.

Основные достоинства:

- Выбор тактового генератора
- Сброс:
 - сброс по включению питания (POR);
 - таймер включения питания (PWRT);
 - таймер запуска генератора (OSC);
 - сброс по снижению напряжения питания (BOR).
- Прерывания
- Сторожевой таймер (WDT)
- Режим энергосбережения (SLEEP)
- Защита кода программы
- Область памяти для идентификатора
- Внутрисхемное программирование по последовательному порту (ICSP)
- Режим низковольтного последовательного программирования
- Режим внутрисхемной отладки (ICD)

В микроконтроллеры PIC16F87X встроен сторожевой таймер WDT, который может быть выключен только в битах конфигурации микроконтроллера. Для повышения надежности сторожевой таймер WDT имеет собственный RC генератор.

Дополнительных два таймера выполняют задержку старта работы микроконтроллера. Первый, таймер запуска генератора (OST), удерживает микроконтроллер в состоянии сброса, пока не стабилизируется частота тактового генератора. Второй, таймер включения питания (PWRT), срабатывает после включения питания и удерживает микроконтроллер в состоянии сброса в течение 72мс (типовое значение), пока не стабилизируется напряжение питания. В большинстве приложений эти функции микроконтроллера позволяют исключить внешние схемы сброса.

Режим SLEEP предназначен для обеспечения сверхнизкого энергопотребления. Микроконтроллер может выйти из режима SLEEP по сигналу внешнего сброса, по переполнению сторожевого таймера или при возникновении прерываний.

Выбор режима работы тактового генератора позволяет использовать микроконтроллеры в различных приложениях. Режим тактового генератора RC позволяет уменьшить стоимость устройства, а режим LP снизить энергопотребление. Биты конфигурации микроконтроллера используются для указания режима его работы.

Дополнительную информацию по работе с микроконтроллерами PIC16F87X смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual".

12.1 Биты конфигурации

Биты конфигурации расположены в памяти программ по адресу 2007h, они могут быть запрограммированы в '0' или оставленными в '1'. Заметьте, что адрес 2007h расположен за пределами пользовательской памяти программ. Фактически, к конфигурационному регистру (область памяти 2000h - 3FFFh) можно обратиться только в режиме программирования микроконтроллера.

Слово конфигурации (адрес 2007h)

CP0 DEBUG - WRT CPD LVP BODEN CP1 CP0 -PWRTE WDTE FOSC1 FOSC0 Бит 13 Бит 0 биты 13-10: **СР1:СР0:** Биты защита памяти программ ⁽²⁾ биты 5-4 11 = защита памяти программ выключена 10 = защищена память программ с адресами 1F00h-1FFFh (PIC16F877/876) 10 = зашищена память программ с адресами 0F00h-0FFFh (PIC16F874/873) 01 = защищена память программ с адресами 1000h-1FFFh (PIC16F877/876) 01 = защищена память программ с адресами 0800h-0FFFh (PIC16F874/873) 00 = защищена память программ с адресами 0000h-1FFFh (PIC16F877/876) 00 = защищена память программ с адресами 0000h-0FFFh (PIC16F874/873) бит 11: **DEBUG**: Бит включения режима внутрисхемной отладки 1 = внутрисхемная отладка выключена, выводы RB6 и RB7 работают как каналы вводы/вывода 0 = внутрисхемная отладка включена, выводы RB6 и RB7 используются отладчиком бит 10: Не реализован: читается как '1' WRT: Бит разрешения записи во FLASH память программ бит 9: 1 = разрешена запись во FLASH память программ через регистры управления EECON 0 = запрещена запись во FLASH память программ через регистры управления EECON бит 8: CPD: Бит защиты EEPROM памяти данных 1 = защита памяти данных выключена 0 = защита памяти данных включена бит 7: **LVP**: Бит разрешения низковольтного программирования 1 = вывод RB3/PGM работает как PGM, режим низковольтного программирования включен 0 = вывод RB3/PGM работает как цифровой порт ввода/вывода, вывод HV используется для программирования микроконтроллера **BODEN:** Бит разрешения сброса по снижению напряжения питания (3) бит 6: 1 = разрешен сброс BOR 0 = запрещен сброс BOR -PWRTE: Бит разрешения работы таймера включения питания (3) бит 3: 1 = PWRT выключен 0 = PWRT включен бит 2: **WDTE**: Бит разрешения работы сторожевого таймера 1 = WDT включен 0 = WDT выключен биты 1-0: FOSC1:FOSC0: Биты выбора режима тактового генератора 11 = RC генератор 10 = HS генератор 01 = XT генератор 00 = LP генератор

Примечания:

- 1. При стирании всей памяти микроконтроллера в слово конфигурации записывается значение 3FFFh.
- 2. Чтобы установить защиту памяти программ, все пары СР1:СР0 должны иметь одинаковое значение.
- При возникновении сброса по снижению напряжения питания (BOR) автоматически запускается таймер PWRT, независимо от состояния бита -PWRTE.

12.2 Настройка тактового генератора

12.2.1 Режимы тактового генератора

Микроконтроллеры PIC16F87X могут работать в одном из четырех режимов тактового генератора. Указать режим тактового генератора можно при программировании микроконтроллера в битах конфигурации (FOSC1:FOSC0):

- LP низкочастотный резонатор;
- XT обычный резонатор;
- HS высокочастотный резонатор;
- RC внешняя RC цепочка.

12.2.2 Кварцевый/керамический резонатор

В режимах тактового генератора XT, LP и HS кварцевый или керамический резонатор подключается к выводам OSC1/CLKIN, OSC2/CLKOUT (см. рисунок 12-1). Для микроконтроллеров PIC16F87X нужно использовать резонаторы с параллельным резонансом. Использование резонаторов с последовательным резонансом может привести к получению тактовой частоты, не соответствующей параметрам резонатора. В режимах XT, LP и HS микроконтроллер может работать от внешнего источника тактового сигнала OSC1 (см. рисунок 12-2).

Puc. 12-1 Подключение кварцевого/керамического резонатора в HS, XT и LP режиме тактового генератора

Puc. 12-2 Подключение внешнего тактового сигнала в HS, XT и LP режиме тактового генератора

Примечания:

- 1. Смотрите таблицы 12-1, 12-2 для выбора емкости конденсаторов.
- 2. Для некоторых типов резонаторов может потребоваться последовательно включенный резистор.
- 3. Значение сопротивления RF варьируется в зависимости от выбранного режима генератора.

Таблица 12-1 Параметры конденсаторов для керамического резонатора (оценочные значения)

Режим	Частота	OSC1(C1)	OSC2(C2)					
XT	455 кГц	68-100пФ	68-100пФ					
	2.0 МГц	15-68пФ	15-68пФ					
	4.0 МГц	15-68пФ	15-68пФ					
HS	8.0 МГц	10-68пФ	10-68пФ					
	16.0 МГц	10-22пФ	10-22пФ					
	Смотрите примечание к таблице 12-2							

Резонаторы, используемые при тестировании							
455кГц	±0.3%						
2.0МГц	±0.5%						
4.0МГц	Murata Erie CDA4.00MG	±0.5%					
8.0МГц	8.0МГц Murata Erie CDA8.00МТ						
16.0МГц	±0.5%						
Все резонаторы не имели паразитной емкости.							

Таблица 12-2 Параметры конденсаторов для кварцевого резонатора (оценочные значения)

Режим	Частота	OSC1(C1)	OSC2(C2)
LP	32 кГц	33пФ	33пФ
	200 кГц	15пФ	15пФ
XT	200 кГц	47-68пФ	47-68пФ
	1 МГц	15пФ	15пФ
	4 МГц	15пФ	15пФ
HS	4 МГц	15пФ	15пФ
	8 МГц	15-33пФ	15-33пФ
	20 МГц	15-33пФ	15-33пФ

Резонаторы, используемые при тестировании								
32кГц	Epson C-001R32.768K-A	±20PPM						
200кГц	STD XTL 200.000KHz	±20PPM						
1МГц	ECS ECS-10-13-1	±50PPM						
4МГц	ECS ECS-40-20-1	±50PPM						
8МГц	EPSON CA-301 8.000M-C	±30PPM						
20МГц	EPSON CA-301 20.000M-C	±30PPM						

Примечания:

- 1. Большая емкость увеличивает стабильность генератора, но увеличивается и время запуска.
- 2. Значения емкости конденсаторов, указанные в таблице, являются оценочными, т.к. каждый резонатор имеет собственные характеристики. Проконсультируйтесь у производителя резонаторов для правильного подбора внешних компонентов.
- 3. Последовательный резистор Rs может потребоваться в HS и XT режиме для предотвращения возбуждения резонатора на низкой частоте.
- 4. При переходе к другим типам микроконтроллеров PICmicro необходимо проверить режим тактового генератора.

12.2.3 RC генератор

В приложениях, не требующей высокостабильной тактовой частоты, возможно использовать RC режим генератора, уменьшающий стоимость устройства. Частота RC генератора зависит от напряжения питания, значения сопротивления (R_{EXT}), емкости (C_{EXT}) и рабочей температуры. Дополнительно частота будет варьироваться в некоторых пределах из-за технологического разброс параметров кристалла. Различные паразитные емкости также будут влиять на частоту генератора, особенно при малых значениях C_{EXT} . Необходимо учитывать технологический разброс параметров внешних компонентов R и C. На рисунке 12-3 показана схема подключения RC цепочки к PIC16F87X.

Puc. 12-3 Схема подключения RC цепочки PIC16F87X

Рекомендованные значения:

 $3\kappa Om \le R_{EXT} \le 100\kappa Om$ $C_{EXT} > 20\pi \Phi$

12.3 Сброс

PIC16F87X различает следующие виды сбросов:

- Сброс по включению питания POR;
- Сброс по сигналу -MCLR в нормальном режиме работы;
- Сброс по сигналу -MCLR в SLEEP режиме;
- Сброс от WDT в нормальном режиме работы;
- Сброс от WDT в режиме SLEEP;
- Сброс по снижению напряжения питания BOR.

Некоторые регистры не изменяются после любого вида сброса, но после сброса по включению питания POR они содержат неизвестное значение. Большинство регистров сбрасываются в начальное состояние при сбросах POR, BOR, -MCLR и WDT в нормальном режиме, -MCLR в режиме SLEEP. Сброс WDT в SLEEP режиме рассматривается как возобновление нормальной работы и на значение регистров не влияет. Биты -TO и -PD принимают определенные значения при различных видах сброса (см. таблицу 12-4). Программное обеспечение может использовать эти биты для детектирования вида сброса микроконтроллера. Состояние регистров специально назначения после сброса смотрите в таблице 12-6.

Упрощенная структурная схема сброса показана на рисунке 12-4.

На входе -MCLR есть внутренний фильтр, не пропускающий короткие импульсы. Необходимо отметить, что сброс WDT не управляет выводом -MCLR.

Примечание 1. Это отдельный RC генератор.

12.4 Сброс по включению питания POR

Интегрированная схема POR удерживает микроконтроллер в состоянии сброса, пока напряжение V_{DD} не достигнет требуемого уровня (от 1.2В до 1.7В). Для включения схемы POR необходимо соединить вывод -MCLR с V_{DD} через резистор, не требуя внешней RC цепочки, обычно используемой для сброса. Максимальное время нарастания V_{DD} смотрите в разделе «электрические характеристики». Схема POR не выполняет сброс микроконтроллера при снижении напряжения V_{DD} .

Когда микроконтроллер переходит в режим нормальной работы из состояния сброса, рабочие параметры (напряжение питания, частота, температура и т.д.) должны соответствовать указанным в разделе «электрические характеристики». Если рабочие параметры не удовлетворяют требованиям, микроконтроллер должен находиться в состоянии сброса.

Дополнительную информацию смотрите в документации AN607 "Power-up Trouble Shooting".

12.5 Таймер включения питания PWRT

Таймер включения питания обеспечивает задержку в 72мс (номинальное значение) по сигналу схемы сброса POR. Таймер включения питания работает от внутреннего RC генератора и удерживает микроконтроллер в состоянии сброса по активному сигналу от PWRT. Задержка PWRT позволяет достигнуть напряжению V_{DD} номинального значения.

Битом -PWRTE в слове конфигурации можно выключить (-PWRTE=1) или включить (-PWRTE=0) таймер включения питания. Время задержки PWRT варьируется в каждом микроконтроллере и зависит от напряжения питания и температуры (см. раздел «электрические характеристики» параметр 33).

12.6 Таймер запуска генератора OST

Таймер запуска генератора обеспечивает задержку в 1024 такта генератора (вход OSC1) после окончания задержки от PWRT (если она включена). Это гарантирует, что частота кварцевого/керамического резонатора стабилизировалась. Задержка OST включается только в режимах HS, XT и LP тактового генератора после сброса POR или выхода микроконтроллера из режима SLEEP.

12.7 Сброс по снижению напряжения питания BOR

Битом BODEN в слове конфигурации можно выключить (BODEN = 0) или включить (BODEN = 1) детектор снижения напряжения питания. Если напряжение V_{DD} опускается ниже 4.0B (см. параметр D005 V_{BOR}) на время больше(или равное) T_{BOR} (см. параметр 35, 100мкс), произойдет сброс по снижению напряжения питания. Если длительность снижения напряжения питания меньше T_{BOR} , сброс микроконтроллера не произойдет.

При любом виде сброса (POR, -MCLR, WDT и т.д.) микроконтроллер находится в состоянии сброса, пока напряжение V_{DD} не будет выше V_{BOR} . После нормализации напряжения питания микроконтроллер находится в состоянии сброса еще 72мс (см. параметр 33, T_{PWRT}).

Если напряжение питание V_{DD} стало ниже V_{BOR} во время работы таймера по включению питания, микроконтроллер возвращается в состояние сброса BOR, а таймер инициализируется заново. Каждый переход напряжения питания V_{DD} через границу V_{BOR} инициализирует PWRT, создавая задержку в 72мс. При включении схемы BOD всегда нужно включать таймер PWRT.

12.8 Последовательность удержания микроконтроллера в состоянии сброса

При включении питания выполняется следующая последовательность удержание микроконтроллера в состоянии сброса: сброс POR, задержка PWRT (если она разрешена), задержка OST (после завершения задержки PWRT). Полное время задержки изменяется в зависимости от режима работы тактового генератора и состояния бита -PWRTE.

Если сигнал -MCLR удерживается в низком уровне достаточно долго (дольше времени всех задержек), после перехода -MCLR в высокий уровень программа начнет выполняться немедленно (см. рисунок 14-10). Это может быть полезно при одновременном запуске нескольких микроконтроллеров, работающих параллельно.

В таблице 12-5 показано состояние некоторых регистров специального назначения.

12.9 Perucmp PCON

Регистр PCON (адрес 8Eh) содержит два бита статуса питания.

Бит 0 - -BOR (детектор пониженного напряжения питания)

Бит -BOR имеет неопределенное значение после сброса POR. Пользователь должен программно установить бит -BOR в '1' и проверять его состояние при возникающих сбросах микроконтроллера. Ели -BOR =0, то произошел сброс по снижению напряжения питания (BOR). Бит -BOR не устанавливается в '1' аппаратно и имеет непредсказуемое значение, если детектор пониженного напряжения питания выключен (BODEN=0).

Бит 1 - -POR (сброс по включению питания)

Бит сбрасывается в '0' при возникновении сброса POR. Пользователь должен программно установить этот бит в '1' после сброса по включению питания. При последующих сбросах, если -POR=0 то произошел сброс по включению питания (или напряжение V_{DD} стало слишком низким).

Таблица 12-3 Время задержки при различных видах сброса

Режим	Сбро	C POR	Сброс BOR	Выход из режима SLEEP	
генератора	-PWRTE=0	-PWRTE=1	сорос вок		
XT, HS, LP	72мс + 1024 T _{OSC}	1024 Tosc	72мс + 1024 T _{OSC}	1024 Tosc	
RC	72мс	-	72мс	_	

Таблица 12-4 Состояние некоторых битов регистров STATUS/PCON

-POR	-BOR	-TO	-PD				
0	Х	1	1	Сброс по включению питания			
0	Х	0	Х	Недействительный -TO, если установлен -POR			
0	Х	Х	0	Недействительный -PD, если установлен -POR			
1	0	1	1	Сброс по снижению напряжения питания			
1	1	0	u	Сброс от WDT			
1	1	0	0	Выход из режима SLEEP от WDT			
1	1	u	u	Сброс -MCLR при нормальном режиме работы			
1	1	1	0	Сброс -MCLR в SLEEP режиме			

Обозначения: и = не изменяется; х = неопределенное значение

Таблица 12-5 Состояние особых регистров после сброса

Вид сброса	Счетчик команд РС	Регистр STATUS	Регистр PCON
Сброс по включению питания	000h	0001 1xxx	0x
Сброс по сигналу -MCLR в нормальном режиме	000h	000u uuuu	uu
Сброс по сигналу -MCLR в SLEEP режиме	000h	0001 0uuu	uu
Сброс от WDT	000h	0000 luuu	uu
Выход из режима SLEEP от WDT	PC + 1	uuu0 0uuu	uu
Сброс по снижению напряжения питания	000h	0001 luuu	u0
Выход из режима SLEEP от прерываний	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Обозначения: - = не используется, читается как '0'; и = не изменяется; х = не известно.

Примечание 1. При выходе из режима SLEEP по возникновению прерывания, если GIE=1, в счетчик команд PC загружается вектор прерываний (0004h).

Таблица 12-6 Состояние регистров специального назначения после сброса

Регистр	р Микроконтроллер		Сброс POR или BOR	Сброс -MCLR или WDT	Выход из режима SLEEP по прерыванию или WDT		
W	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	873	874	876	877	-	_	1
TMR0	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	873	874	876	877	0000 0000	0000 0000	PC+ 1 ⁽²⁾
STATUS	873	874	876	877	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	873	874	876	877	0x 0000	0u 0000	uu uuuu
PORTB	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	873	874	876	877	xxx	uuu	uuu
PCLATH	873	874	876	877	0 0000	0 0000	u uuuu
INTCON	873	874	876	877	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
PIR1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu ⁽¹⁾
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾
PIR2	873	874	876	877	-r-0 00	-r-0 00	-r-u uu ⁽¹⁾
TMR1L	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	873	874	876	877	00 0000	uu uuuu	uu uuuu
TMR2	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
T2CON	873	874	876	877	-000 0000	-000 0000	-uuu uuuu
SSPBUF	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
CCPR1L	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	873	874	876	877	00 0000	uu uuuu	uu uuuu
RCSTA	873	874	876	877	0000 000x	0000 000x	uuuu uuuu
TXREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
RCREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
CCPR2L	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	873	874	876	877	00 0000	uu uuuu	uu uuuu
ADRESH	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	873	874	876	877	0000 00-0	0000 00-0	uuuu uu-u
OPTION REG	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISA	873	874	876	877	11 1111	11 1111	uu uuuu
TRISB	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISC	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISD	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISE	873	874	876	877	0000 -111	0000 -111	uuuu -uuu
PIE1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
PIE2	873	874	876	877	-r-0 00	-r-0 00	-r-u uu
PCON	873	874	876	877	dd	uu	uu
PR2	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
SSPADD	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	873	874	876	877	00 0000	00 0000	uu uuuu
TXSTA	873	874	876	877	0000 -010	0000 -010	uuuu -uuu
SPBRG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
ADRESL	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON1	873	874	876	877	0 0000	0 0000	u uuuu
EEDATA	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATH	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADRH	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
EECON1	873	874	876	877	x x000	u u000	u uuuu
EECON2	873	874	876	877	-	-	-
Official		<u> </u>	, J. U				a = 0000000

Обозначения: - = не используется, читается как '0'; и = не изменяется; х = не известно; q = зависит от условий.

Примечания:

- 1. Один или несколько битов INTCON, PIR1 и/или будут изменены при выходе из режима SLEEP.
- 2. Если бит GIE=1 при выходе из режима SLEEP, в счетчик команд будет загружен вектор прерываний (0004h).
- 3. Смотрите в таблице 12-5 состояние битов регистра STATUS.

12.10 Прерывания

PIC16F87X имеют 14 источников прерываний. Регистр INTCON содержит флаги отдельных прерываний, биты разрешения этих прерываний и бит глобального разрешения прерываний.

Если бит GIE (INTCON<7>) установлен в '1', разрешены все немаскированные прерывания. Если GIE=0, то все прерывания запрещены. Каждое прерывание в отдельности может быть разрешено/запрещено установкой/сбросом соответствующего бита в регистрах INTCON, PIE1 и PIE2. При сбросе микроконтроллера бит GIE сбрасывается в '0'.

При возвращении из подпрограмме обработки прерывания, по команде RETFIE, бит GIE аппаратно устанавливается в '1' разрешая все немаскированные прерывания.

В регистре INTCON находятся флаги следующих прерываний: внешнего сигнала INT, изменения уровня сигнала на входах RB7:RB4, переполнения TMR0.

В регистрах PIR1, PIR2 содержатся флаги прерываний периферийных модулей микроконтроллера, а в регистрах PIE1, PIE2 соответствующие биты разрешения прерываний. В регистре INTCON находится бит разрешения прерываний от периферийных модулей.

При переходе на подпрограмму обработки прерываний бит GIE аппаратно сбрасывается в '0', запрещая прерывания, адрес возврата из подпрограммы обработки прерываний помещается в стек, а в счетчик команд PC загружается вектор прерывания 0004h. Источник прерываний может быть определен проверкой флагов прерываний, которые должны быть сброшены программно перед разрешением прерываний, чтобы избежать повторного вызова.

Для внешних источников прерываний (сигнал INT, изменения уровня сигнала на входах RB7:RB4) время перехода на подпрограмму обработки прерываний будет составлять 3-4 машинных цикла. Точное время перехода зависит от конкретного случая, оно одинаково для 1 и 2-х цикловых команд. Флаги прерываний устанавливаются независимо от состояния соответствующих битов маски и бита GIE.

Примечание. Индивидуальные флаги прерываний устанавливаются независимо от состояния соответствующих битов маски и бита GIE.

Примечание. PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не реализованы.

12.10.1 Внешнее прерывание с входа RB0/INT

Внешнее прерывание с входа RB0/INT происходит: по переднему фронту сигнала, если бит INTEDG (OPTION_REG<6>) установлен в '1'; по заднему фронту сигнала, если бит INTEDG сброшен в '0'. Когда активный фронт сигнала появляется на входе RB0/INT бит INTF (INTCON<1>) устанавливается в '1'. Прерывание может быть запрещено сбросом бита INTE (INTCON<4>) в '0'. Флаг прерывания INTF должен быть сброшен программно в подпрограмме обработки прерываний. Прерывание INT может вывести микроконтроллер из режима SLEEP, если бит INTE=1 до перехода в режим SLEEP. Состояние бита GIE определяет, переходить на подпрограмму обработки прерываний после выхода из режима SLEEP. На рисунке 12-11 показана временная диаграмма выхода микроконтроллера из режима SLEEP по прерыванию с входа RB0/INT.

12.10.2 Прерывание по переполнению TMR0

Переполнение таймера TMR0 (FFh \rightarrow 00h) устанавливает флаг T0IF (INTCON<2>) в '1'. Прерывание от TMR0 можно разрешить/запретить установкой/сбросом бита T0IE(INTCON<5>). Описание работы модуля TMR0 смотрите в разделе 5.0.

12.10.3 Прерывание по изменению уровня сигнала на входах RB7:RB4

Изменение уровня сигнала на входах RB7:RB4 вызывает установку флага RBIF(INTCON<0>). Прерывание можно разрешить/запретить установкой/сбросом бита RBIE(INTCON<4>). Описание работы PORTB смотрите в разделе 3.2.

12.11 Сохранение контекста при обработке прерываний

При переходе на подпрограмму обработки прерываний в стеке сохраняется только адрес возврата. Как правило, необходимо сохранять значения ключевых регистров при обработке прерываний (например, регистр W и STATUS), что выполняется программным способом.

Для PIC16F873/874, регистр W_TEMP должен быть определен в обоих банках (0, 1) с одинаковым смещением относительно базового адреса банка (т.e.), если регистр W_TEMP определен в банке 0 с адресом 0x20, то он должен быть определен в банке 1 с адресом 0xA0). Регистры PCLATH_TEMP и STATUS_TEMP могут быть определены только в одном банке.

Т.к. старшие 16 байт каждого банка микроконтроллеров PIC16F876/877 доступны во всех банках, то регистры STATUS_TEMP, PCLATH_TEMP и W_TEMP могут быть размещены в этой области. В примере 12-1 показан текст программы сохранения контекста.

Пример 12-1 Сохранение и восстановление регистров STATUS, W и PCLATH

MOVWF	W_TEMP	;Сохранить W в регистре ;текущего банка
SWAPF	STATUS,W	;Обменять местами полубайты и сохранить в W
CLRF MOVWF	STATUS STATUS TEMP	;Выбрать банк 0 :Сохранить регистр STATUS
MOVF	PCLATH,W	,оохранить регистр от Атоо
MOVWF	PCLATH_TEMP	;Сохранить регистр PCLATH
:		; Код программы обработки прерываний
:		, код программы обработки прерывании
MOVF	PCLATH_TEMP,W	
MOVWF	PCLATH	;Восстановить регистр PCLATH
SWAPF	STATUS_TEMP,W	;Прочитать регистр STATUS_TEMP
MOVWF	STATUS	;в W, восстанавливая банк памяти программ ;Переписать W в регистр STATUS
SWAPF	W TEMP,F	;Обменять местами полубайты в W_TEMP
SWAPF	W_TEMP,W	;Обменять местами полубайты в W_TEMP и записать в W

12.12 Сторожевой таймер WDT

Встроенный сторожевой таймер WDT работает от отдельного RC генератора, не требующего внешних компонентов. Это позволяет работать сторожевому таймеру WDT при выключенном тактовом генераторе (выводы OSC1, OSC2) в SLEEP режиме микроконтроллера. В нормальном режиме работы при переполнении WDT происходит сброс микроконтроллера. Если микроконтроллер находится в SLEEP режиме, переполнение WDT выводит его из режима SLEEP с продолжением нормальной работы. WDT выключен, если WDTE = 0 в слове конфигурации.

Время переполнения зависит от температуры, напряжения питания V_{DD} и разброса технологических параметров микроконтроллера (см. раздел "электрические характеристики"). Если требуется большее время переполнения WDT, необходимо программно подключить предделитель в регистре OPTION_REG с максимальным коэффициентом деления 1:128.

Примечания:

- 1. Команды CLRWDT и SLEEP сбрасывают сторожевой таймер и предделитель, если он подключен к WDT, откладывая сброс устройства.
- 2. Команда CLRWDT сбрасывают сторожевой таймер и предделитель, если он подключен к WDT, но не изменяет коэффициент деления предделителя.

Примечание. Биты PSA, PS2:PS0 находятся в регистре OPTION_REG.

Таблица 12-7 Регистры и биты, связанные с работой WDT

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR, BOR	Другие сбросы
2007h	Слово конф.	LVP	BOREN	CP1	CP0	-PWRTE	WDTE	FOSC1	FOSC0	uuuu uuuu	uuuu uuuu
81h.181h	OPTION_REG	-RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. *Примечание.* Затененные биты не влияют на работу WDT.

12.13 Режим энергосбережения SLEEP

Переход в режим энергосбережения происходит по команде SLEEP. При переходе в режим SLEEP сторожевой таймер WDT сбрасывается, но продолжает работать. В регистре STATUS бит -PD сбрасывается в '0', бит -TO устанавливается в '1', тактовый генератор микроконтроллера выключен. Порты ввода/вывода остаются в том же состоянии, что и до выполнения команды SLEEP (высокий уровень, низкий уровень, третье состояние).

Для снижения энергопотребления в SLEEP режиме все каналы ввода/вывода должны быть подключены к V_{DD} или V_{SS} при отсутствии токов из внешней схемы через выводы портов, выходы модуля компараторов и источника опорного напряжения выключены. Выводы находящиеся в третьем состоянии должны иметь высокий или низкий уровень сигнала, чтобы избежать токов переключения входных буферов. Вход T0CKI должен быть подключен к V_{DD} или V_{SS} для снижения энергопотребления. Должны учитываться внутренние подтягивающие резисторы, включенные на входах PORTB. На входе -MCLR должен быть высокий уровень сигнала.

12.13.1 Выход из режима SLEEP

Микроконтроллер выйдет из режима SLEEP по одному из следующих событий:

- 1. Внешний сброс по сигналу на входе -MCLR;
- 2. Переполнение сторожевого таймера WDT (если он разрешен);
- 3. Периферийное прерывание (по сигналу INT, изменение уровня сигнала на входах RB7:RB4 и др.).

Внешний сброс по сигналу -MCLR вызывает сброс микроконтроллера. Два других события вызывают продолжение выполнения программы.

Биты -TO и -PD в регистре STATUS могут использоваться для определения причины сброса микроконтроллера. Бит -PD сбрасывается в '0' при переходе в режим SLEEP. Бит -TO сбрасывается в '0' если произошло переполнение WDT.

Список прерываний от периферийных модулей, которые могут вывести микроконтроллер из режима SLEEP:

- 1. Чтение/запись PSP (только для PIC16F874/877);
- 2. Переполнение TMR1 в режиме асинхронного счетчика;
- 3. Прерывание от модуля ССР;
- 4. Триггер специального события (ТМR1 должен работать в режиме асинхронного счетчика);
- 5. Обнаружение START/STOP на шине I²C модулем MSSP;
- 6. Прием/передача байта в режиме ведомого SPI/I²C;
- 7. Прием/передача USART в ведомом синхронном режиме;
- 8. Завершение преобразования АЦП (когда используется внутренний RC генератор для АЦП);
- 9. Завершение записи в ЕЕРКОМ.

Другие прерывания от периферийных модулей не могут вывести микроконтроллер из режима SLEEP.

При выполнении команды SLEEP происходит предвыборка следующей инструкции (PC+1). Если прерывание должно выводить микроконтроллер из режима SLEEP, соответствующий бит разрешения прерывания устанавливается в '1'. Микроконтроллер выходит из режима SLEEP независимо от состояния бита GIE. Если GIE=0, выполняется следующая инструкция после SLEEP без перехода по вектору прерываний. Если GIE=1, исполняется следующая инструкция после SLEEP и происходит переход на подпрограмму обработки прерываний (адрес 0004h). Когда выполнение какой-либо команды при выходе из режима SLEEP нежелательно, необходимо поле команды SLEEP использовать инструкцию NOP.

12.13.2 Выход из режима SLEEP по прерыванию

Когда бит глобального разрешения прерываний GIE сброшен в '0', а бит разрешения периферийных прерываний и соответствующий флаг прерывания установлен в '1', то возникнет одно из следующих событий:

- Если прерывание возникает перед выполнением команды SLEEP, то вместо инструкции SLEEP будет выполнен пустой цикл NOP, WDT и предделитель WDT не будут сброшены, бит -TO не будет установлен в '1', а бит -PD не будет сброшен в '0'.
- Если прерывание возникает в течение или после выполнения инструкции SLEEP, то микроконтроллер немедленно выйдет из режима SLEEP, а команда SLEEP выполняется полностью. WDT и предделитель WDT сброшены, бит -TO установлен в '1', бит -PD сброшен в '0'.

Даже если флаги прерываний были проверены перед выполнением команды SLEEP, они могут быть установлены в течение выполнения инструкции SLEEP. Для контроля полного выполнения команды SLEEP проверьте состояние бита -PD. Если -PD = 1, то вместо инструкции SLEEP был выполнен пустой цикл NOP.

Для гарантированного сброса WDT перед инструкцией SLEEP рекомендуется использовать команду CLRWDT.

Puc.12-11 Временная диаграмма выхода микроконтроллера из режима SLEEP по прерыванию с входа RB0/INT

Примечания:

- Режим генератора XT, HS или LP. 1.
- 2. T_{OST} = 1024 T_{OSC} (не масштабный рисунок). Для RC режима генератора задержка отсутствует.
- Предполагается, что GIE=1. После выхода из режима SLEEP произойдет переход по вектору прерывания.
- 4. СLKOUT не доступен для этих режимов генератора, но показан для пояснения диаграммы.

12.14 Внутрисхемный отладчик ICD

Если бит DEBUG в слове конфигурации равен нулю, то разрешен режим внутрисхемной отладки. Эта функция предоставляет простые функции отладки кода программы при использовании MPLAB ICD. Для работы отладчика используется часть ресурсов микроконтроллера, показанных в таблице 12-8.

Таблица 12-8 Ресурсы, используемые для режима внутрисхемной отладки

Порты ввода/вывода	RB6, RB7
Стек	1 уровень
Память программ	Последние 100h слов
Память данных	0x070 (0xF0, 0x170, 0x1F0)
	0x1EB - 0x1EF

Для использования режима внутрисхемной отладки схема устройства должна предусматривать возможность подключения к выводам -MCLR/V_{PP}, V_{DD}, GND, RB6 и RB7, аналогично режиму внутрисхемного программирования ICSP.

12.15 Защита кода программы

Если защита кода программы (EEPROM памяти данных) не была включена, то память программ (EEPROM память данных) может быть прочитана для проверки программирования.

12.16 Размещение идентификатора ID

Четыре ячейки памяти программ (2000h-2003h) предназначены для размещения идентификатора, которые могут использоваться для сохранения контрольной суммы или другой информации. Эти ячейки недоступны программе микроконтроллера, но могут быть прочитаны и изменены при программировании. Используются только 4 младших бита каждой ячейки.

12.17 Внутрисхемное программирование ICSP

Микроконтроллеры PIC16F87X могут быть запрограммированы по последовательному интерфейсу в готовом изделии. Программирование выполняется по двум линиям последовательно интерфейса (данные, синхронизация) и трем дополнительным линиям: напряжение питания, общий провод, напряжение программирования. Это позволяет изготавливать платы с не запрограммированными микроконтроллерами, а затем загружать в них программу перед поставкой изделия. Данная функция также позволяет обновлять программное обеспечение микроконтроллеров.

В режиме программирования ICSP при выполнении операции стирания всей памяти (включая снятие защиты) напряжение питания должно быть от 4.5В до 5.5В. Все остальные операции программирования могут быть выполнены во всем диапазоне напряжений питания.

Дополнительную информацию смотрите в спецификации программирования DS39025.

12.18 Режим низковольтного программирования

Бит LVP в слове конфигурации используется для разрешения режима низковольтного программирования. Этот режим позволяет запрограммировать микроконтроллер по интерфейсу ICSP при одном источнике питания (не требуется подавать напряжение V_{IHH} на вывод -MCLR). По умолчанию LVP=1, разрешая низковольтное программирование. При этом вывод RB3/PGH используется для низковольтного программирования и перестает быть цифровым портом ввода/вывода. Микроконтроллер переходит в режим программирования, когда на выводе RB3/PGM высокий уровень сигнала. Режим стандартного программирования по прежнему доступен (когда на выводе -MCLR напряжение V_{IHH}).

Примечания:

- 1. Режим стандартного программирования всегда доступен, независимо от состояния бита LVP.
- 2. В режиме низковольтного программирования вывод RB3/PGM не может использоваться как цифровой порт ввода/вывода.
- 3. В режиме низковольтного программирования бит TRISB<3> должен быть сброшен в '0' для отключения подтягивающего резистора на входе.
- 4. В режиме низковольтного программирования вывод RB3/PGM не должен оставаться неподключенным. Если на RB3 высокий уровень сигнала, то микроконтроллер находится в режиме программирования.
- 5. Режим низковольтного программирования разрешен по умолчанию. Для выключения режима низковольтного программирования бит LVP в слове конфигурации должен равняться нулю.
- 6. Выключение режима LVP обеспечивает максимальную совместимость с микроконтроллерами PIC16CXXX.

Если режим низковольтного программирования не используется, бит LVP должен быть сброшен в '0', вывод RB3/PGM становится цифровым портом ввода/вывода. Бит LVP может быть изменен только в стандартном режиме программирования (когда на выводе -MCLR напряжение V_{IHH}). Когда бит LVP=0, возможен только стандартный режим программирования/проверки микроконтроллера.

В режиме программирования ICSP при выполнении операции стирания всей памяти (включая снятие защиты) напряжение питания должно быть от 4.5В до 5.5В. Все остальные операции программирования могут быть выполнены во всем диапазоне напряжений питания.

13.0 Система команд

Каждая команда микроконтроллеров PIC16F87X состоит из одного 14-разрядного слова, разделенного на код операции (OPCODE), определяющий тип команды и один или несколько операндов, определяющие операцию команды. Полный список команд смотрите в таблице 13-2. Команды разделены на следующие группы: байт ориентированные команды, бит ориентированные команды управления и операций с константами. Описание полей кода операции смотрите в таблице 13-1.

Для байт ориентированных команд 'f' является указателем регистра, а 'd' указателем адресата результата. Указатель регистра определяет, какой регистр должен использоваться в команде. Указатель адресата определяет, где будет сохранен результат. Если 'd'=0, результат сохраняется в регистре W. Если 'd'=1, результат сохраняется в регистре, который используется в команде.

В бит ориентированных командах 'b' определяет номер бита участвующего в операции, а 'f' - указатель регистра, который содержит этот бит.

В командах управления или операциях с константами 'k' представляет восемь или одиннадцать бит константы или значения литералов.

Система команд аккумуляторного типа, ортогональна и разделена на три основных группы:

- Байт ориентированные команды;
- Бит ориентированные команды;
- Команды управления и операций с константами.

Все команды выполняются за один машинный цикл, кроме команд условия, в которых получен истинный результат и инструкций изменяющих значение счетчика команд PC. В случае выполнения команды за два машинных цикла, во втором цикле выполняется инструкция NOP. Один машинный цикл состоит из четырех тактов генератора. Для тактового генератора с частотой 4 МГц все команды выполняются за 1мкс, если условие истинно или изменяется счетчик команд PC, команда выполняется за 2мкс.

Мнемоника команд, поддерживаемая ассемблером MPASM, показана в таблице 13-2. На рисунке 13-1 показан форма команд трех основных групп.

Примечание. Для совместимости программного обеспечения со следующими версиями микроконтроллеров PICmicro не используйте команды TRIS и OPTION.

Во всех примерах используется следующий формат шестнадцатеричных чисел: 0xhh, где h - шестнадцатеричная цифра.

Таблица 13-1 Описание полей кода операции

Поле	Описание
f	Адрес регистра (от 0х00 до 0х7F)
W	Рабочий регистр (аккумулятор)
b	Номер бита в 8-разрядном регистре
k	Константа (данные или метка)
Х	Не имеет значения (0 или 1). Ассемблер
	генерирует х=0 для совместимости
	программы микроконтроллера с
	инструментальными средствами
d	Указатель адресата результата операции:
	d = 0 - результат сохраняется в регистре w
	d = 1 - результат сохраняется в регистре f
	По умолчанию d = 1
label	Имя метки
TOS	Вершина стека
PC	Счетчик команд
PCLATH	Буфер старшего байта счетчика команд
GIE	Бит глобального разрешения прерываний
WDT	Сторожевой таймер
-TO	Флаг переполнения WDT
-PD	Флаг сброса по включению питания
dest	Приемник, регистр w или регистр памяти
[]	Дополнительные параметры
()	Содержимое
\rightarrow	Присвоение
<>	Битовое поле
€	Из набора
Курсив	Термин, определяемый пользователем

Рис 13-1 Форма команд трех основных групп

Таблица 13-2 Список команд микроконтроллеров PIC16F87X

Мнемоника		Описание		14-разрядный код	Изм.	Прим.
команд	команды		Циклов	Бит 13 Бит 0	флаги	прим.
Байт ориентированные команды						
ADDWF	f,d	Сложение W и f	1	00 0111 dfff ffff	C,DC,Z	1,2
ANDWF	f,d	Побитное 'И' W и f	1	00 0101 dfff ffff	Z	1,2
CLRF	f	Очистить f	1	00 0001 1fff ffff	Z	2
CLRW	-	Очистить W	1	00 0001 0xxx xxxx	Z	
COMF	f,d	Инвертировать f	1	00 1001 dfff ffff	Z	1,2
DECF	f,d	Вычесть 1 из f	1	00 0011 dfff ffff	Z	1,2
DECFSZ	f,d	Вычесть 1 из f и пропустить если 0	1(2)	00 1011 dfff ffff		1,2,3
INCF	f,d	Прибавить 1 к f	1	00 1010 dfff ffff	Z	1,2
INCFSZ	f,d	Прибавить 1 к f и пропустить если 0	1(2)	00 1111 dfff ffff		1,2,3
IORWF	f,d	Побитное 'ИЛИ' W и f	1	00 0100 dfff ffff	Z	1,2
MOVF	f,d	Переслать f	1	00 1000 dfff ffff	Z	1,2
MOVWF	f	Переслать W в f	1	00 0000 1fff ffff		
NOP	-	Нет операции	1	00 0000 0xx0 0000		
RLF	f,d	Циклический сдвиг f влево через перенос	1	00 1101 dfff ffff	С	1,2
RRF	f,d	Циклический сдвиг f вправо через перенос	1	00 1100 dfff ffff	С	1,2
SUBWF	f,d	Вычесть W из f	1	00 0010 dfff ffff	C,DC,Z	1,2
SWAPF	f,d	Поменять местами полубайты в регистре f	1	00 1110 dfff ffff		1,2
XORWF	f,d	Побитное 'исключающее ИЛИ' W и f	1	00 0110 dfff ffff	Z	1,2
		Бит ориентированные	команд			
BCF	f,b	Очистить бит b в регистре f	1	01 00bb bfff ffff		1,2
BSF	f,b	Установить бит b в регистре f	1	01 01bb bfff ffff		1,2
BTFSC	f,b	Проверить бит b в регистре f, пропустить если 0	1(2)	01 10bb bfff ffff		3
BTFSS	f,b	Проверить бит b в регистре f, пропустить если 1	1(2)	01 11bb bfff ffff		3
Команды управления и операций с константами						
ADDLW	k	Сложить константу с W	1	11 111x kkkk kkkk	C,DC,Z	
ANDLW	k	Побитное 'И' константы и W	1	11 1001 kkkk kkkk	Z	
CALL	k	Вызов подпрограммы	2	10 0kkk kkkk kkkk		
CLRWDT	-	Очистить WDT	1	00 0000 0110 0100	-TO,-PD	
GOTO	k	Безусловный переход	2	10 1kkk kkkk kkkk		
IORLW	k	Побитное 'ИЛИ' константы и W	1	11 1000 kkkk kkkk	Z	
MOVLW	k	Переслать константу в W	1	11 00xx kkkk kkkk		
RETFIE	-	Возврат из подпрограммы с разрешением прерываний	2	00 0000 0000 1001		
RETLW	k	Возврат из подпрограммы с загрузкой константы в W	2	11 01xx kkkk kkkk		
RETURN	-	Возврат из подпрограммы	2	00 0000 0000 1000		
SLEEP	-	Перейти в режим SLEEP	1	00 0000 0110 0011	-TO,-PD	
SUBLW	k	Вычесть W из константы	1	11 110x kkkk kkkk	C,DC,Z	
XORLW	k	Побитное 'исключающее ИЛИ' константы и W	1	11 1010 kkkk kkkk	Z	

Примечания:

- 1. При выполнении операции "чтение модификация запись" с портом ввода/вывода исходные значения считываются с выводов порта, а не из выходных защелок. Например, если в выходной защелке было записана '1', а на соответствующем выходе низкий уровень сигнала, то обратно будет записано значение '0'.
- 2. При выполнении записи в TMR0 (и d=1) предделитель TMR0 сбрасывается, если он подключен к модулю TMR0.
- 3. Если условие истинно или изменяется значение счетчика команд PC, то инструкция выполняется за два цикла. Во втором цикле выполняется команда NOP.

Примечание. Дополнительное описание команд микроконтроллеров PIC16F87X смотрите в технической документации DS33023 "PICmicro™ Mid-Range Reference Manual".

13.1 Подробное описание команд

ADDLW	Сложить константу с W		
Синтаксис:	[label] ADDLW k		
Операнды:	$0 \le k \le 255$		
Операция:	$(W) + k \rightarrow (W)$		
Измен. флаги:	C, DC, Z		
Описание:	Содержимое регистра W складывается с 8-разрядной		
	константой 'k'. Результат сохраняется в регистре W.		
ADDWF	Сложение W и f		
Синтаксис:	[/abe/] ADDWF f,d		
Операнды:	$0 \le f \le 127$		
Опорошия	$d \in [0,1]$		
Операция:	$(W) + (f) \rightarrow (dest)$		
Измен. флаги:	C, DC, Z		
Описание:	Сложить содержимое регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат		
	сохраняется в регистре 'f'.		
ANDLW	Побитное 'И' константы и W		
Синтаксис:	[label] ANDLW k		
Операнды:	$0 \le k \le 255$		
Операция:	(W) .AND. $k \rightarrow (W)$		
Измен. флаги:	Z		
Описание:	Выполняется побитное 'И' содержимого регистра W и		
	8-разрядной константы 'k'. Результат сохраняется в		
	регистре W.		
ANDWE	Побитноо 'И' W и f		
ANDWF	Побитное 'И' W и f		
Синтаксис:	[/abe/] ANDWF f,d		
	[label] ANDWF f,d $0 \le f \le 127$		
Синтаксис:	[/abe/] ANDWF f,d		
Синтаксис: Операнды:	[label] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$		
Синтаксис: Операнды: Операция:	[/abe/] ANDWF f,d $0 \le f \le 127$ $d ∈ [0,1]$ (W) .AND. (f) \to (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'.		
Синтаксис: Операнды: Операция: Измен. флаги:	[/abe/] ANDWF f,d $0 \le f \le 127$ $d ∈ [0,1]$ (W) .AND. (f) → (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1,		
Синтаксис: Операнды: Операция: Измен. флаги:	[/abe/] ANDWF f,d $0 \le f \le 127$ $d ∈ [0,1]$ (W) .AND. (f) \to (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'.		
Синтаксис: Операнды: Операция: Измен. флаги: Описание:	[/abe/] ANDWF f,d $0 \le f \le 127$ d ∈ [0,1] (W) .AND. (f) \rightarrow (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.		
Синтаксис: Операнды: Операция: Измен. флаги: Описание:	[label] ANDWF f,d $0 \le f \le 127$ d \in [0,1] (W) .AND. (f) \rightarrow (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF	$ [label] \qquad \text{ANDWF} \qquad f, d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) \text{ .AND. (f)} \rightarrow (\text{dest}) \\ Z \\ \\ \text{Выполняется побитное 'И' содержимого регистров W и 'f'.} \\ \\ \text{Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.} \\ \\ \textbf{Очистить бит b в регистре f} \\ [label] \qquad \text{BCF} \qquad f, b $		
Синтаксис: Операнды: Операция: Измен. флаги: Описание:	$[label]$ ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \to (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если $d=0$, результат сохраняется в регистре W. Если $d=1$, результат сохраняется в регистре 'f'. C Очистить бит b в регистре C		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF	$ [label] \qquad \text{ANDWF} \qquad f, d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) \text{ .AND. (f)} \rightarrow (\text{dest}) \\ Z \\ \\ \text{Выполняется побитное 'И' содержимого регистров W и 'f'.} \\ \\ \text{Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.} \\ \\ \textbf{Очистить бит b в регистре f} \\ [label] \qquad \text{BCF} \qquad f, b $		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСЕ Синтаксис: Операнды:	$[label]$ ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. $(f) \to (dest)$ Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если $d=0$, результат сохраняется в регистре W. Если $d=1$, результат сохраняется в регистре 'f'. Очистить бит b в регистре f $[label]$ BCF f,b $0 \le f \le 127$ $0 \le b \le 7$		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операнды: Операция:	$[label]$ ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Очистить бит b в регистре f $[label]$ BCF f,b $0 \le f \le 127$ $0 \le b \le 7$ $0 \rightarrow (f < b >)$		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операнды: Операция: Измен. флаги:	$ [label] \qquad \text{ANDWF} \qquad f, d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) \text{ .AND. } (f) \rightarrow (\text{dest}) \\ Z \\ \\ \text{Выполняется побитное 'И' содержимого регистров W и 'f'.} \\ \\ \text{Если } d=0, \text{ результат сохраняется в регистре W. Если } d=1, \\ \\ \text{результат сохраняется в регистре 'f'.} \\ \\ \\ \textbf{Очистить бит b в регистре f} \\ [label] \qquad \text{BCF} \qquad f, b \\ 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \\ 0 \rightarrow (f < b >) \\ \\ \text{Het} \\ \end{aligned} $		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСБ Синтаксис: Операнды: Операция: Измен. флаги: Описание:	[/abe/] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) → (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Очистить бит b в регистре f [/abe/] BCF f,b $0 \le f \le 127$ $0 \le b \le 7$ $0 \to (f < b >)$ Нет Очистить бит 'b' в регистре 'f'.		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операнды: Операция: Измен. флаги: Описание:	$[label] \qquad \text{ANDWF} \qquad f, d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) \text{ .AND. } (f) \rightarrow (\text{dest}) \\ Z \\ \text{Выполняется побитное 'И' содержимого регистров W и 'f'.} \\ \text{Если } d=0, \text{ результат сохраняется в регистре W. Если } d=1, \\ \text{результат сохраняется в регистре 'f'.} \\ \\ \textbf{Очистить бит b в регистре f} \\ [label] \qquad \text{BCF} \qquad f, b \\ 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \\ 0 \rightarrow (f < b >) \\ \text{Нет} \\ \text{Очистить бит 'b' в регистре 'f'.} \\ \\ \textbf{Установить бит b в регистре f} \\ }$		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операция: Измен. флаги: Описание: ВSF Синтаксис:	[label] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) → (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Очистить бит b в регистре f [label] BCF f,b $0 \le f \le 127$ $0 \le b \le 7$ $0 \to (f < b >)$ Нет Очистить бит 'b' в регистре 'f'. Установить бит b в регистре f [label] BSF f,b		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операнды: Операция: Измен. флаги: Описание:	$[label] \qquad \text{ANDWF} \qquad f, d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) \text{ .AND. } (f) \rightarrow (\text{dest}) \\ Z \\ \text{Выполняется побитное 'И' содержимого регистров W и 'f'.} \\ \text{Если } d=0, \text{ результат сохраняется в регистре W. Если } d=1, \\ \text{результат сохраняется в регистре 'f'.} \\ \\ \textbf{Очистить бит b в регистре f} \\ [label] \qquad \text{BCF} \qquad f, b \\ 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \\ 0 \rightarrow (f < b >) \\ \text{Нет} \\ \text{Очистить бит 'b' в регистре 'f'.} \\ \\ \textbf{Установить бит b в регистре f} \\ }$		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операция: Измен. флаги: Описание: ВSF Синтаксис:	[/abe/] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) → (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Очистить бит b в регистре f [/abe/] BCF f,b $0 \le f \le 127$ $0 \le b \le 7$ $0 \to (f < b >)$ Нет Очистить бит 'b' в регистре 'f'. Установить бит b в регистре f [/abe/] BSF f,b $0 \le f \le 127$		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВSF Синтаксис: Операнды:	[/abe/] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) → (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Очистить бит b в регистре f [/abe/] BCF f,b $0 \le f \le 127$ $0 \le b \le 7$ $0 \to (f < b >)$ Нет Очистить бит 'b' в регистре f [/abe/] BSF f,b $0 \le f \le 127$ $0 \le b \le 7$		
Синтаксис: Операнды: Операция: Измен. флаги: Описание: ВСF Синтаксис: Операция: Измен. флаги: Описание: ВSF Синтаксис: Операнды: Описание:	$[label]$ ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Очистить бит b в регистре f $[label]$ BCF f,b $0 \le f \le 127$ $0 \le b \le 7$ $0 \rightarrow (f < b >)$ Нет Oчистить бит 'b' в регистре f $[label]$ BSF f,b $0 \le f \le 127$ $0 \le b \le 7$ $1 \rightarrow (f < b >)$		

BTFSC	Проверить бит b в регистре f, пропустить если 0
Синтаксис:	[/abe/] BTFSC f,b
Операнды:	$0 \le f \le 127$ $0 \le b \le 7$
Операция:	пропустить если (f) = 0
Измен. флаги:	Нет
Описание:	Если бит 'b' в регистре 'f' равен '1', то исполняется следующая инструкция. Если бит 'b' в регистре 'f' равен '0', то следующая инструкция не выполняется, команда выполняется за два цикла. Во втором цикле выполняется NOP.

BTFSS	Проверить бит b в регистре f, пропустить если 1
Синтаксис:	[/abe/] BTFSS f,b
Операнды:	$0 \le f \le 127$ $0 \le b \le 7$
Операция:	пропустить если (f) = 1
Измен. флаги:	Нет
Описание:	Если бит 'b' в регистре 'f' равен '0', то исполняется следующая инструкция. Если бит 'b' в регистре 'f' равен '1', то следующая инструкция не выполняется, команда выполняется за два цикла. Во втором цикле выполняется NOP.

CALL Вызов подпрограммы

Синтаксис:	[label]	CALL	k
Операнды:	$0 \le k \le 20$	47	
Операция:	$(PC) + 1 - k \rightarrow PC < 1$ (PCLATH)	,	2:11>
Измен. флаги:	Нет	•	
Описание:	(PC+1) по адреса за PC<10:0> команд Р	мещается в ве пружаются из к . Два старших (дрес следующей инструкции ршину стека. Одиннадцать бит ода команды в счетчик команд бита загружаются в счетчик гистра PCLATH. Команда CALL па.

CLRF	Очистить f		
Синтаксис:	[label]	CLRF	f
Операнды:	$0 \le f \le 12$	27	
Операция:	$00h \rightarrow (f$)	
	$1 \rightarrow Z$		
Измен. флаги:	Z		

Очистить содержимое регистра 'f' и установить флаг Z

CLRW	Очистить W
Синтаксис:	[/abe/] CLRW
Операнды:	Нет
Операция:	$00h \rightarrow (W)$
	$1 \rightarrow Z$
Измен. флаги:	Z
Описание:	Очистить содержимое регистра W и установить флаг Z

Описание:

Очистить WDT
[/abe/] CLRWDT
Нет
00h $ ightarrow$ WDT, 00h $ ightarrow$ предделитель WDT, 1 $ ightarrow$ -TO 1 $ ightarrow$ -PD
-TO, -PD
Инструкция CLRWDT сбрасывает WDT и предделитель, если он подключен к WDT. В регистре STATUS устанавливает биты -TO и -PD.

COMF	Инвертировать f
Синтаксис:	[/abe/] COMF f,d
Операнды:	$0 \le f \le 127$ $d \in [0,1]$
Операция:	$(-f) \rightarrow (dest)$
Измен. флаги:	Z
Описание:	Инвертировать все биты в регистре 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.

DECF	Вычесть 1 из f
Синтаксис:	[/abe/] DECF f,d
Операнды:	$0 \le f \le 127$ $d \in [0,1]$
Операция:	$(f) - 1 \rightarrow (dest)$
Измен. флаги:	Z
Описание:	Декрементировать содержимое регистра 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.

DECFSZ	Вычесть 1 из f и пропустить если 0
Синтаксис:	[/abe/] DECFSZ f,d
Операнды:	$0 \le f \le 127$ $d \in [0,1]$
Операция:	(f) - 1 \to (dest); пропустить если результат равен 0
Измен. флаги:	Нет
Описание:	Декрементировать содержимое регистра 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Если результат не равен '0', то исполняется следующая инструкция. Если результат равен '0', то следующая инструкция не выполняется, команда выполняется за два цикла. Во втором цикле выполняется NOP.

GOTO	Безусловный переход
Синтаксис:	[/abe/] GOTO k
Операнды:	$0 \le k \le 2047$
Операция: Измен. флаги:	k → PC<10:0>, (PCLATH<4:3>) → PC<12:11> HeT
Описание:	Выполнить безусловный переход. Одиннадцать бит адреса загружаются из кода команды в счетчик команд PC<10:0>. Два старших бита загружаются в счетчик команд PC<12:11> из регистра PCLATH. Команда GOTO выполняется за два цикла.

INCF	Прибавить 1 к f
Синтаксис:	[<i>label</i>] INCF f,d
Операнды:	0 ≤ f ≤ 127
Операция:	$d \in [0,1]$ (f) + 1 \rightarrow (dest)
Измен. флаги:	Z
Описание:	Инкрементировать содержимое регистра 'f'. Если d=0,
списание.	результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
INCFSZ	Прибавить 1 к f и пропустить если 0
Синтаксис:	[/abe/] INCFSZ f,d
Операнды:	$0 \le f \le 127$
	d ∈ [0,1]
Операция:	(f) + 1 \rightarrow (dest); пропустить если результат равен 0
Измен. флаги:	Нет
Описание:	Инкрементировать содержимое регистра 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'. Если результат не равен '0', то исполняется следующая инструкция. Если результат равен '0', то следующая инструкция не выполняется, команда выполняется за два цикла. Во втором цикле выполняется NOP.
IORLW	Побитное 'ИЛИ' константы и W
Синтаксис:	[/abe/] IORLW k
Операнды:	$0 \le k \le 255$
Операция:	(W) .OR. $k \rightarrow (W)$
Измен. флаги:	Z
Описание:	Выполняется побитное 'ИЛИ' содержимого регистра W и 8-разрядной константы 'k'. Результат сохраняется в регистре W.
IORWF	Побитное 'ИЛИ' W и f
Синтаксис:	[/abe/] IORWF f,d
Операнды:	0 ≤ f ≤ 127
	d ∈ [0,1]
Операция:	(W) .OR. (f) \rightarrow (dest)
Измен. флаги:	Z
Описание:	Выполняется побитное 'ИЛИ' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
MOVF	Переслать f
Синтаксис:	[/abe/] MOVF f,d
Операнды:	$0 \le f \le 127$
0	d ∈ [0,1]
Операция:	$(f) \to (dest)$

Содержимое регистра 'f' пересылается в регистр

адресата. Если d=0, значение сохраняется в регистре W. Если d=1, значение сохраняется в регистре 'f'. d=1 используется для проверки содержимого регистра 'f на

Измен. флаги: Описание: Ζ

ноль.

MOVLW	Переслать константу в W
Синтаксис:	[/abe/] MOVLW k
Операнды:	$0 \le k \le 255$
Операция:	$k \rightarrow (W)$
Измен. флаги:	Нет
Описание:	Переслать константу 'k' в регистр W. В неиспользуемых битах ассемблер устанавливает '0'.

MOVWF	Переслать W в f
Синтаксис:	[<i>label</i>] MOVWF f
Операнды:	$0 \le f \le 127$
Операция:	(W) o (f)
Измен. флаги:	Нет
Описание:	Переслать содержимое регистра W в регистр 'f'.

NOP	Нет операции
Синтаксис:	[/abe/] NOP
Операнды:	Нет
Операция:	Нет операции
Измен. флаги:	Нет
Описание:	Нет операции

RETFIE	Возврат из подпрограммы с разрешением прерываний
Синтаксис:	[/abe/] RETFIE
Операнды:	Нет
Операция:	$TOS \rightarrow PC$ $1 \rightarrow GIE$
Измен. флаги:	Нет
Описание:	Возврат из подпрограммы обработки прерываний. Вершина стека TOS загружается в счетчик команд PC. Устанавливается в '1' флаг глобального разрешения прерываний GIE(INTCON<7>). Инструкция выполняется за 2 цикла.

RETLW	Возврат из подпрограммы с загрузкой константы в W
Синтаксис:	[<i>label</i>] RETLW k
Операнды:	$0 \le k \le 255$
Операция: Измен. флаги:	$k \rightarrow (W)$ TOS \rightarrow PC HeT
Описание:	В регистр W загружается 8-разрядная константа. Вершина стека TOS загружается в счетчик команд PC. Инструкция выполняется за 2 цикла.

RETURN	Возврат из подпрограммы
Синтаксис:	[/abe/] RETURN
Операнды:	Нет
Операция:	$TOS \to PC$
Измен. флаги:	Нет
Описание:	Возврат из подпрограммы. Вершина стека TOS загружается в счетчик команд PC. Инструкция выполняется за 2 цикла.

RLF	Циклический сдвиг	f влево через перенос

Синтаксис: [label] RLF f,d

Операнды: $0 \le f \le 127$ $d \in [0,1]$

Операция: См. описание

Измен. флаги: С

Описание: Выполняется циклический сдвиг влево содержимого

регистра 'f' через бит C регистра STATUS. Если d=0, результат сохраняется в регистре W. Если d=1, результат

сохраняется в регистре 'f'.

RRF Циклический сдвиг f вправо через перенос

Синтаксис: [/abe/] RRF f,d

Операнды: $0 \le f \le 127$ $d \in [0,1]$

Операция: См. описание

Измен. флаги: С

Описание: Выполняется циклический сдвиг вправо содержимого

регистра 'f' через бит С регистра STATUS. Если d=0, результат сохраняется в регистре W. Если d=1, результат

сохраняется в регистре 'f'.

SLEEP Перейти в режим SLEEP

Синтаксис: [/abe/] SLEEP

Операнды: Нет

Операция: $00h \rightarrow WDT$

00h
ightarrow предделитель WDT

 $\begin{array}{c} 1 \rightarrow \text{- TO} \\ 0 \rightarrow \text{- PD} \end{array}$

Измен. флаги: -TO, -PD

Описание: Сбросить флаг включения питания -PD в '0'. Установить

флаг переполнения WDT -TO в '1'. Очистить таймер WDT и его предделитель. Перевести микроконтроллер в режим SLEEP и выключить тактовый генератор.

SUBLW Вычесть W из константы

Синтаксис: [/abe/] SUBLW k

Операнды: $0 \le k \le 255$ Операция: $k - (W) \to (W)$ Измен. флаги: C, DC, Z

Описание: Вычесть содержимое регистра W из 8-разрядной

константы 'k'. Результат сохраняется в регистре W.

SUBWF	Вычесть W из f
Синтаксис:	[/abe/] SUBWF f,d
Операнды:	$0 \le f \le 127$ $d \in [0,1]$
Операция:	$(f) - (W) \rightarrow (dest)$
Измен. флаги:	C, DC, Z
Описание:	Вычесть содержимое регистра W из регистра 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
SWAPF	Поменять местами полубайты в регистре f
Синтаксис:	[/abe/] SWAPF f,d
Операнды:	$0 \le f \le 127$
Операция:	d ∈ [0,1] (f<3:0>) \rightarrow (dest<7:4>) (f<7:4>) \rightarrow (dest<3:0>)
Измен. флаги:	Нет
Описание:	Поменять местами старший и младший полубайты регистра 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
XORLW	Побитное 'исключающее ИЛИ' константы и W
Синтаксис:	[label] XORLW k
Операнды:	$0 \le k \le 255$
Операция:	(W) .XOR. $k \rightarrow (W)$
Измен. флаги:	Z
Описание:	Выполняется побитное 'исключающее ИЛИ' содержимого регистра W и 8-разрядной константы 'k'. Результат сохраняется в регистре W.
XORWF	Побитное 'исключающее ИЛИ' W и f
Синтаксис:	[/abe/] XORWF f,d
Операнды:	$0 \le f \le 127$
Опорошия	$d \in [0,1]$
Операция:	(W) .XOR. (f) \rightarrow (dest) Z
Измен. флаги:	
Описание:	Выполняется побитное 'исключающее ИЛИ' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.

14.0 Поддержка разработчиков

Микроконтроллеры PICmicro обеспечены большим спектром аппаратных и программных инструментальных средств проектирования:

- Интегрированная среда проектирования:
- Программное обеспечение MPLAB-IDE.
- Ассемблер/Компилятор/Линкер:
 - Ассемблер MPASM;
- Компиляторы MLAB-C17 и MPLAB-C18;
- Линкер MPLINK/ Организатор библиотек MPLIB.
- Симулятор:
 - Программный симулятор MLAB-SIM.
- Эмуляторы:
 - Внутрисхемный эмулятор реального времени MPLAB-ICE;
 - ICÉPIC.
- Внутрисхемный отладчик:
 - MLAB-ICD для микроконтроллеров семейства PIC16F87X.
- Программаторы:
 - Универсальный программатор PRO MATE II;
 - Недорогой программатор PICSTART для начала работы с PICmicro.
- Недорогие демонстрационные платы:
 - PICDEM-1;
 - PICDEM-2;
 - PICDEM-3;
 - PICDEM-17;
 - KeeLog.

14.1 Интегрированная среда проектирования MPLAB-IDE

Программное обеспечение MPLAB-IDE предназначено для разработки программного обеспечения 8-разрядных микроконтроллеров PICmicro, работающее под управлением операционной системы Windows.

Основные характеристики MPLAB-IDE:

- Многофункциональные возможности:
 - Редактор;
 - Симулятор;
 - Программатор (приобретается отдельно);
 - Эмулятор (приобретается отдельно).
- Полнофункциональный редактор.
- Организатор проекта.
- Настройка панелей инструментов и параметров отображения.
- Строка состояния.
- Интерактивная помощь.

MPLAB-IDE позволяет Вам:

- Редактировать исходные файлы написанные на языке ассемблера или С.
- Быстро выполнять трансляцию и компиляцию проекта автоматически загружая параметры используемого микроконтроллера PICmicro.
- Выполнять отладку программы с использованием:
 - Исходных файлов;
- Листинга программы;
- Объектного кода.

Однотипная работа инструментальных модулей интегрированной среды проектирования MPLAB-IDE позволяет легко перейти от программного симулятора MPLAB-SIM к использованию полнофункционального эмулятора.

14.2 Ассемблер MPASM

MPASM - полнофункциональный универсальный макроассемблер для всех семейств микроконтроллеров PICmicro. Ассемблер может генерировать шестнадцатиразрядный файл пригодный для записи в микроконтроллер или формировать перемещаемые объектные файлы для линкера MPLINK.

MPASM имеет интерфейс командной строки и оконный интерфейс, работает под управлением операционной системы Windows 3.X и выше, может работать как автономное приложение. MPASM генерирует объектные файлы, шестнадцатеричные HEX файлы в стандарте Intel, файл карты памяти (для детализации использования памяти микроконтроллера), файл листинга программы (текст программы совмещен с кодами микроконтроллера) и файл отладки для MPLAB-IDE.

Особенности MPASM:

- MPASM и MPLINK интегрированы в MPLAB-IDE;
- MPASM поддерживает систему макрокоманд, упрощающих написание текста программы;
- Позволяет выполнять компиляцию условных блоков текста программы;
- Директивы MPASM дают возможность управлять компиляцией исходного текста программы.

14.3 С компиляторы MPLAB-C17 и MPLAB-C18

MPLAB-C17 и MPLAB-C18 - полнофункциональные ANSI 'C' компиляторы с интегрированной средой обработки для микроконтроллеров семейств PIC17CXXX и PIC18CXXX соответственно. Для упрощения отладки текста программы компиляторы обеспечивают интеграцию в средства проектирования с передачей информации об используемых переменных в формате совместимом с MPLAB-IDE.

14.4 Линкер MPLINK/ Организатор библиотек MPLIB

MPLINK - линкер перемещаемых объектных файлов, сгенерированных программами MPASM, MPLAB-C17 и MPLAB-C18. Линкер выполняет связь объектных файлов с предварительно компилированными файлами библиотек и файлами сценария.

MPLIB - организатор библиотек предварительно откомпилированных исходных файлов, которые нужно использовать с MPLINK. Когда подпрограмма библиотечного файла вызывается из исходного файла, в приложение будет включена только необходимый модуль. Это позволяет эффективно использовать большие библиотеки в различных приложениях. MPLIB управляет созданием и изменением библиотечных файлов.

Особенности MPLINK:

- MPLINK работает совместно с MPASM, MPLAB-C17 и MPLAB-C18;
- MPLINK позволяет разбивать память микроконтроллера на разделы.

Особенности MPLIB:

- MPLIB упрощает подключение дополнительных файлов потому, что позволяет подключить одну библиотеку вместо множества мелких файлов;
- MPLIВ группирует связанные модули;
- MPLIB позволяет добавлять, изменять, удалять и заменять модули в библиотечных файлах.

14.5 Программный симулятор MPLAB-SIM

Симулятор MPLAB-SIM позволяет проследить выполнение программы микроконтроллеров PICmicro на уровне команд по шагам или в режиме анимации. На любой команде выполнение программы может быть остановлено для проверки и изменения памяти. Функции стимула позволяют моделировать сигнал с логическими уровнями на входах микроконтроллера. MPLAB-SIM полностью поддерживает символьную отладку, используя MPLAB-C17, MPLAB-C18 и MPASM. MPLAB-SIM является доступным и удобным средством отладки программ микроконтроллеров PICmicro.

14.6 Универсальный эмулятор MPLAB-ICE

Универсальный эмулятор MPLAB-CE обеспечивает разработчиков полным набором инструментальных средств для проектирования устройств с применением микроконтроллеров PICmicro. Управление работой эмулятора выполняется из интегрированной среды проектирования MPLAB-IDE с возможностью редактирования, компиляции, загрузки и выполнения программы.

Заменяемые поды позволяют быстро перенастроить эмулятор для работы с другим типом микроконтроллеров. Универсальная архитектура MPLAB-ICE дает возможность поддерживать новые типы микроконтроллеров PICmicro.

Эмулятор MPLAB-ICE был разработан как система эмуляции (анимации) в реальном масштабе времени с дополнительными возможностями, присутствующих в дорогих инструментальных средствах. Эмулятор работает под управлением распространенной операционной системы Microsoft Windows 3.x/95/98.

MPLAB-ICE 2000 - полнофункциональная система эмуляции с усовершенствованными функциями трассировки, триггеров и управляющих особенностей. Оба эмулятора используют одинаковые поды и работают во всех допустимых режимах микроконтроллеров PICmicro.

14.7 ICEPIC

ICEPIC - недорогой эмулятор, предназначенный для однократно программируемых (ОТР) 8-разрядных микроконтроллеров семейств PIC16C5X, PIC16C6X, PIC16C7X и PIC16CXXX. Модульная структура позволяет поддерживать все типы микроконтроллеров семейства PIC16C5X и PIC16CXXX за счет сменных подов.

14.8 Внутрисхемный отладчик MPLAB-ICD

Внутрисхемный отладчик MPLAB-ICD является мощным недорогим инструментом отладки программы. Работа MPLAB-ICD основана на функции внутрисхемной отладки Flash микроконтроллеров семейства PIC16F87X. Эта особенность, совместно с функцией внутрисхемного последовательного программирования, позволяет запрограммировать микроконтроллер непосредственно из среды проектирования MPLAB IDE. MPLAB-ICD дает возможность быстро выполнить отладку программы, выполняя ее по шагам или в режиме реального времени.

14.9 Универсальный программатор PRO MATE II

Универсальный программатор PRO MATE II может работать автономно и под управлением PC совместимого компьютера. Для максимальной надежности программирования в программаторе PRO MATE II можно указать напряжения V_{DD} и V_{PP} . В программатор встроен ЖКИ дисплей для вывода сообщений об ошибках и клавиатура для ввода команд. Модульная колодка позволяет программировать микросхемы в различных корпусах. В автономном режиме программатор PRO MATE II может проверять микроконтроллер и устанавливать биты защиты.

14.10 Программатор PICSTART

Недорогой программатор PICSTART (PICSTART+CE) предназначен для начала работы с микроконтроллерами PICmicro, подключается к PC совместимому компьютеру через COM (RS-232) порт и работает под управлением интегрированной среды проектирования MPLAB-IDE. PICSTART поддерживает все микроконтроллеры PICmicro в корпусах до 40 выводов. Микроконтроллеры с большим числом выводов (PIC16C92X, PIC17C76X) поддерживаются при использовании адаптеров.

14.11 Демонстрационная плата PICDEM-1

Демонстрационная плата PICDEM-1 предназначена для микроконтроллеров PIC16C5X (PIC26C54, PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 и PIC17C44. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, потенциометр для моделирования аналогового входа, выключатели и восемь светодиодов подключенных к PORTB.

14.12 Демонстрационная плата PICDEM-2 для PIC16CXXX

Демонстрационная плата PICDEM-2 предназначена для микроконтроллеров PIC16C62, PIC16C64, PIC16C65, PIC16C73 и PIC16C74. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, потенциометр для моделирования аналогового входа, последовательная EEPROM для демонстрации работы шины I²C, выводы для подключения ЖКИ и дополнительной клавиатуры.

14.13 Демонстрационная плата PICDEM-3 для PIC16CXXX

Демонстрационная плата PICDEM-3 предназначена для микроконтроллеров PIC16C923 и PIC16C924 выполненных в 44-выводном PLCC корпусе с интегрированным ЖКИ модулем. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, выключатели; потенциометр для моделирования аналогового входа; термистор; выводы для подключения ЖКИ и дополнительной клавиатуры; 12-разрядный ЖКИ для отображения времени, даты и температуры; дополнительный интерфейс RS-232; программное обеспечение работающее под управлением операционной системы Windows 3.х для передачи данных на PC совместимый компьютер.

14.14 Демонстрационная плата PICDEM-17

Демонстрационная плата PICDEM-17 предназначена для микроконтроллеров PIC17C752, PIC17C756, PIC17C762 и PIC17C766. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя.

14.15 KeeLoq (с функциями программатора)

Оценочная система KeeLoq предназначена для микросхем HCS фирмы Microchip. В состав комплекта входит: ЖКИ дисплей для отображения изменяющихся кодов, декодер, интерфейс программирования.

Табли	ца 1	4-1 V	1нстр	руме	нтал	ьные	е сре	дств	ва пр	оект	иров	зания	тог	комп	ании	1 Mic	rochi	р	ı	ı	ı		
MCP2510																							>
MCRFXXX																			^	>	>	٨	
нсѕххх				7						>							>	>					
24CXX/ 25CXX/ 93CXX				>						>													
PIC18CXX2	>		>	>	>				>	>			>										
PIC17C7XX	>	>		>	>	>			>	>						>							
PIC17C4X	>	>		>	>	>			>	>		>											
PIC16C9XX	>			>	>	>	>		>	>				^									
PIC16F8XX	>			>	^			^	^	٨													
PIC16C8X	>			>	>	>	>		>	>		>											
PIC16C7XX	>			>	^	^	^		^	٨													
PIC16C7X	>			>	>	>	>	*	>	>		+>	+ /										
PIC16F62X	>			>	*				*	**													
PIC16CXXX	^			^	^	^	^		^	٨		>											
PIC16C6X	>			>	>	>	>	*	>	>			+/										
PIC16C5X	>			>	>	>	>		>	>	>	>											
PIC14000	>			>	>	>			>	>					>								
PIC12CXXX	>			>	>	>	>		>	>	>												
	MPLAB-IDE	MPLAB-C17	MPLAB-C18	MPASW/MPLINK	MPLAB-ICE	PICMASTER	ICEPIC	MPLAB-ICD	PICSTART	PRO MATE II	SIMICE	PICDEM-1	PICDEM-2	PICDEM-3	PICDEM-14A	PICDEM-17	KeeLoq	КееLoq транспондеры	Программатор microID	DEMO microlD 125kFų	Проверка коллизий microlD 125кГц	Проверка коллизий microID 13.56МГц	DEMO MCP2510 CAN
			аммн ечен			Эмуляторы		Отладчик	Ірограмма-	торы		Į	Демс	нстр	аци	ОННЬ	е и с	отла,	дочн	ые п	лать		

WWW.MICROCHIP.RU – поставки и техподдержка на русском языке

15.0 Электрические характеристики

Максимально допустимые значения (*)

Предельная рабочая температура	от -55°C до +125°C
Температура хранения	от -65°C до +150°C
Напряжение V _{DD} относительно V _{SS}	от -0.3В до +7.5В
Напряжение -MCLR относительно V _{SS}	от 0В до +14В
Напряжение RA4 относительно V _{SS}	от 0В до +8.5В
Напряжение на остальных выводах относительно V _{SS}	от -0.3В до V _{DD} +0.3В
Рассеиваемая мощность ⁽¹⁾	
Максимальный ток вывода V _{SS}	300мА
Максимальный ток вывода V _{DD}	250мА
Входной запирающий ток I_{IK} ($V_I < 0$ или $V_I > V_{DD}$)	±20мА
Выходной запирающий ток I_{OK} ($V_O < 0$ или $V_O > V_{DD}$)	±20мА
Максимальный выходной ток стока канала ввода/вывода	
Максимальный выходной ток истока канала ввода/вывода	25мА
Максимальный выходной ток стока портов ввода/вывода PORTA, PORTB и PORTE	200мА
Максимальный выходной ток истока портов ввода/вывода PORTA, PORTB и PORTE	200мА
Максимальный выходной ток стока портов ввода/вывода PORTC и PORTD	200мА
Максимальный выходной ток истока портов ввода/вывода PORTC и PORTD	200мА

Примечание 1. Потребляемая мощность рассчитывается по формуле: $P = V_{DD} x \{I_{DD} - \Sigma I_{OH}\} + \Sigma \{(V_{DD} - V_{OH}) x I_{OH}\} + \Sigma (V_{OL} x I_{OL})$

Примечание *. Выход за указанные значения может привести к необратимым повреждениям микроконтроллера. Не предусмотрена работа микроконтроллера в предельном режиме в течении длительного времени. Длительная эксплуатация микроконтроллера в недопустимых условиях может повлиять на его надежность.

Примечание. PORTD, PORTE не реализованы в микроконтроллерах PIC16F873/876.

Примечание. Броски напряжения на выводе -MCLR ниже V_{SS} приводят к появлению больших токов (около 80мA), что может привести к срабатыванию защелки. Поэтому рекомендуется последовательно включать резистор сопротивлением от 50ОМ до 100Ом для подачи низкого уровня на этот вывод вместо непосредственного подключения к V_{SS} .

Puc. 15-1 График рекомендованных комбинаций значений напряжения питания и тактовой частоты

ДЛЯ PIC16LF87X-04 (коммерческий и промышленный температурный диапазон)

6.0 V
5.5 V
5.0 V
4.5 V
4.0 V
3.5 V
2.5 V
2.0 V
4 MHz
4 MHz
10 MHz
Частота

FMAX = (6.0 MHz/V) (VDDAPPMIN - 2.0 V) + 4 MHz

Puc. 15-2 График рекомендованных комбинаций значений напряжения питания и тактовой частоты для PIC16I F87X-04 (коммерческий и промышленный температурный диалазон)

Примечания:

- 1. V_{DDAPPMIN} минимальное напряжение питания микроконтроллера в устройстве.
- 2. F_{MAX} максимальная частота 10МГц.

Рис. 15-3 График рекомендованных комбинаций значений напряжения питания и тактовой частоты для PIC16F87X-04 (все температурные диапазоны)

Puc. 15-4 График рекомендованных комбинаций значений напряжения питания и тактовой частоты для PIC16F87X-10 (расширенный температурный диапазон)

15.1 Электрические характеристики (Коммерческий, Промышленный)

PIC16F873/874/876/877-04 (Коммерческий, Промышленный) PIC16F873/874/876/877-20 (Коммерческий, Промышленный) PIC16LF873/874/876/877-04 (Коммерческий, Промышленный)

PIC16F873/874876/877-04 Temnepatryphый диапазон: Коммерческий 0°C ≤ T _A ≤ +70°C Промышленный 0°C ≤ T _A ≤ +70°C Промышленный 0°C ≤ T _A ≤ +70°C Промышленный 0°C ≤ T _A ≤ +85°C Примечание Обоз. Описание Мин. Тип.** Макс. Ед. Примечание		_	6LF873/874/876/877-04 рческий, Промышленный)	Стандартные рабочие условия (если не указано иное) Температурный диапазон: Коммерческий 0°С ≤ T _A ≤ +70°С						
PIC-16F873/874/876/877-20 Температурный диапазон: Коммерческий 0°C ≤ Т _л ≤ +5°C Промышленный 40°C ≤ Т _л ≤ +5°C Промышленный 40°C ≤ Т _л ≤ +5°C Промышленный 40°C ≤ Т _л ≤ +5°C Примечание Промышленный 40°C ≤ Т _л ≤ +5°C Промышленный 40°C ≤ T _л		` '	,	C		E		- 7		
Кв пар. Обоз. Описание Ми. Тип.** Макс. Ед. Примечание D001 Напряжение питания 16LF87X 2.0 - 5.5 B LP, XT, RC режим генератора (от DC до 4МГц) L										
№ пар. Обоз. Описание Мин. Тип.** Макс. Ед. Примечание 0001 Напряжение питания 16LF87X 2.0 - 5.5 B LP, XT, RC режим генератора (от DC до 4МГц) 0001 16F87X 4.0 - 5.5 B LP, XT, RC режим генератора (от DC до 4МГц) 0002 Vor Напряжение сохранения данных в Озу (1) - 1.5 - B LP, XT, RC режим генератора (от DC до 4МГц) 0002 Vor Напряжение сохранения данных в Озу (1) - 1.5 - B B SP вежим генератора (200 до 200 до 20				Темпера						
No						1				
D001	№ пар.			Мин.	1ИП.^^	макс.	ЕД.	Примечание		
D001		V_{DD}								
D001A V _{DR} 4.5 5.5 B B GN включен, F _{MAX} =4MГц ⁽⁷⁾ D002 V _{DR} Напряжение сохранения данных в ОЗУ ⁽¹⁾ - 1.5 - B B BOR включен, F _{MAX} =4MГц ⁽⁷⁾ D003 V _{POR} Стартовое напряжение V _{DD} для формирования POR - V _{SS} - B Смотрите раздел "сброс POR" формирования POR" формирования POR D004 S _{VDD} Скорость нарастания V _{DD} для формирования POR 0.05 - - - B/MC Смотрите раздел "сброс POR" формирования POR" D005 V _{BOD} Напряжение детектора BOD 3.7 4.0 4.35 B Бит BODEN = 0 D010 16LF87X - 0.6 2.0 MA XT, RC режим генератора F _{OSC} = 4MГц, V _{DD} =3.0B D010 16LF87X - 1.6 4 MA RC режим генератора F _{OSC} = 4MГц, V _{DD} =3.0B, WDT выключен D013 16LF87X - 20 35 MKA LP режим генератора F _{OSC} = 32КГц, V _{DD} =5.5B D015 ΔI _{BOR} Ток потребления BOR ⁽⁸⁾ - 85 200 MKA U _{DD} =3.0B, WDT включен, от-40°C до +85°C					-			(от DC до 4МГц)		
D002 V _{DR} Напряжение сохранения данных в ОЗУ ⁽¹⁾ 5.5 В ВОК включен, F _{MAX} =4MГц ⁽⁷⁾ D003 V _{POR} So OSY ⁽¹⁾ Стартовое напряжение V _{DD} для формирования POR - V _{SS} - B C Cмотрите раздел "сброс POR" формирования POR - V _{SS} - B Cмотрите раздел "сброс POR" формирования POR D004 S _{VDD} Cкрость нарастатния V _{DD} для формирования POR 0.05 B/Mc C Cмотрите раздел "сброс POR" формирования POR D010 Hanpяжение детектора BOD 3.7 4.0 4.35 B Бит BODEN = 0 D010 Ток потребления ^(2,5) - 0.6 2.0 MA XT, RC режим генератора Fosc = 4MГц, V _{DD} =3.0B WDT выключен D010 16LF87X - 1.6 4 MA RC режим генератора Fosc = 4MГц, V _{DD} =5.5B D010A 16LF87X - 20 35 MKA LP режим генератора Fosc = 2MГц, V _{DD} =5.5B WDT выключен D013 16F87X - 7 15 MA HS режим генератора Fosc = 2MГц, V _{DD} =5.5B D015 ΔI _{BOR} Ток потребления BOR ⁽⁶⁾ - 85 200 MKA Бит BODEN = 0, V _{DD} =5.B D020 16LF87X - 7.5 30 MKA V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021 16LF87X - 10.5 42 MKA V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021A <td< td=""><td>D001</td><td></td><td>16F87X</td><td></td><td>-</td><td>5.5</td><td>В</td><td></td></td<>	D001		16F87X		-	5.5	В			
D002 V _{DR} Напряжение сохранения данных в ОЗУ (1) - 1.5 - B D003 V _{POR} Стартовое напряжение V _{DD} для формирования POR - V _{SS} - B Смотрите раздел "сброс POR" формирования POR формирования POR D005 V _{SOD} Напряжение детектора BOD 3.7 4.0 4.35 B Бит ВОDEN = 0 D010 Ток потребления (2.5) 16LF87X - 0.6 2.0 MA XT, RC режим генератора Fosc = 4MГц, V _{DD} =3.0B D010 16F87X - 1.6 4 MA RC режим генератора Fosc = 4MГц, V _{DD} =5.6B D010A 16F87X - 20 35 MrA LP режим генератора Fosc = 32кГц, V _{DD} =5.0B D013 16F87X - 7 15 MA HS режим генератора Fosc = 32кГц, V _{DD} =5.5B D013 16F87X - 7 15 MA HS режим генератора Fosc = 20МГц, V _{DD} =5.BB D015 ΔI _{BOR} Ток потребления BOR(6) - 85 200 MrA NT BODEN = 0, V _{DD} =5.BB D020	D001A							HS режим генератора		
D003 V _{POR} C Стартрове напряжение V _{DD} для формирования POR формирования POR - V _{SS} - B CМОТРИТЕ РАЗДЕЛ "СБРОС РОК" формирования POR формирования POR D004 S _{VDD} Скорость нарастания V _{DD} для формирования POR 0.05 - B/MC CМОТРИТЕ РАЗДЕЛ "СБРОС РОК" формирования POR формирования POR 3.7 4.0 4.35 B БИТ ВОDEN = 0 D010 IbD IDD Ток потребления (2.5) 16LF87X - 0.6 2.0 MA XT, RC режим генератора Fosc = 4M/Гц, V _{DD} =3.0B D010 16F87X - 1.6 4 MA RC режим генератора Fosc = 4M/Гц, V _{DD} =3.0B D010A 16LF87X - 20 35 MKA LP режим генератора Fosc = 32R/Гц, V _{DD} =3.0B, WDT выключен D013 16F87X - 7 15 MA HS режим генератора Fosc = 32R/Гц, V _{DD} =3.0B, WDT выключен D015 ΔI _{BOR} Ток потребления BOR ⁽⁶⁾ - 85 200 MKA БИТ ВОDEN = 0, V _{DD} =5.B D020 16LF87X - 7.5 30 MKA БИТ ВОDEN = 0, V _{DD} =5.B D020 16F87X - 10.5 42 MKA V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021 16F87X - 0.9 5 MKA V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 0.9 5 MKA V _{DD} =3.0B, WDT включен, от -40°C до				V_{BOR}		5.5		BOR включен, F _{мах} =4МГц ⁽⁷⁾		
D004 SVDD Скорость нарастания VDD для формирования POR 0.05 - - B/MC Смотрите раздел "сброс POR" формирования POR D005 VBOD Напряжение детектора BOD 3.7 4.0 4.35 B Бит BODEN = 0 D010 10p 16LF87X - 0.6 2.0 MA XT, RC режим генератора Fosc = 4MГц, Vop=3.0B D010 16F87X - 1.6 4 MA RC режим генератора Fosc = 4MГц, Vop=5.5B D010A 16LF87X - 20 35 MкА RC режим генератора Fosc = 32кГц, Vbp=3.0B, WDT выключен D013 16F87X - 7 15 MA HS режим генератора Fosc = 20MГц, Vbp=5.5B D015 ΔI _{BOR} Ток потребления BOR ^(B) - 85 200 мкА Бит BODEN = 0, Vbp=5.5B D020 16LF87X - 7.5 30 мкА Уbp=3.0B, WDT включен, от -40°C до +85°C D021 16F87X - 10.5 42 мкА Vbp=3.0B, WDT включен, от -40°C до +85°C D021A 16F87X			в ОЗУ ⁽¹⁾	-		-				
D005 V _{ВОО} Напряжение детектора ВОО 3.7 4.0 4.35 В Бит ВОDEN = 0 D010 10D Ток потребления (2.5) - 0.6 2.0 MA XT, RC режим генератора Fosc = 4MГц, V _{DD} =3.0B D010 16F87X - 1.6 4 MA RC режим генератора Fosc = 4MГц, V _{DD} =5.5B D010A 16F87X - 20 35 MKA LP режим генератора Fosc = 32кГц, V _{DD} =3.0B, WDT выключен D013 16F87X - 7 15 MA HS режим генератора Fosc = 20MГц, V _{DD} =3.0B, WDT выключен D015 ΔI _{BOR} Ток потребления ВОR ⁽⁶⁾ - 85 200 мкА Бит ВОDEN = 0, V _{DD} =5.B D020 16LF87X - 7.5 30 MKA Бит ВОDEN = 0, V _{DD} =5.B D020 16LF87X - 7.5 30 MKA V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021 16F87X - 10.5 42 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 1.5 <td></td> <td>V_{POR}</td> <td>формирования POR</td> <td>-</td> <td>V_{SS}</td> <td>-</td> <td>В</td> <td></td>		V_{POR}	формирования POR	-	V _{SS}	-	В			
Dot	D004	S _{VDD}		0.05	-	-	В/мс	Смотрите раздел "сброс POR"		
Положения (2.5) Положения	D005	V_{BOD}		3.7	4.0	4.35	В	Бит BODEN = 0		
D010			Ток потребления (2,5)							
D010A				-		2.0	мА	$F_{OSC} = 4M\Gamma$ ц, $V_{DD} = 3.0B$		
D013 16F87X - 7 15 мА HS режим генератора Fosc = 20MГц, V _{DD} =5.5B D015 ΔI _{BOR} Ток потребления ВОR ⁽⁶⁾ - 85 200 мкА Бит ВОDEN = 0, V _{DD} =5.B D020 Ток потребления в SLEEP режиме (3.5) ОКА МКА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D020 16F87X - 10.5 42 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021 16F87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от -40°C до +70°C D021A 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C	D010			-	1.6	4	мА			
D015 ∆I _{BOR} Ток потребления ВОR ⁽⁶⁾ - 85 200 мкА Бит ВОDEN = 0, V _{DD} =5В D020 16LF87X - 7.5 30 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D020 16F87X - 10.5 42 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от 0°C до +70°C D021A 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021A 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C	D010A		16LF87X	-		35	мкА	F _{OSC} = 32кГц, V _{DD} =3.0B, WDТ выключен		
D020 Ток потребления в SLEEP режиме (3,5) D020 16LF87X - 7.5 30 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D020 16F87X - 10.5 42 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от 0°C до +70°C D021A 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C	D013			1	7	15	мА			
D020 16LF87X - 7.5 30 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D020 16F87X - 10.5 42 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от 0°C до +70°C D021 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C	D015	ΔI_{BOR}	Ток потребления BOR ⁽⁶⁾		85	200	мкА	Бит BODEN = 0, V_{DD} =5B		
D020 16F87X - 10.5 42 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от 0°C до +70°C D021 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021A 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C		I _{PD}	Ток потребления в SLEEP режиме	e ^(3,5)						
D021 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDТ включен, от 0°C до +70°C D021 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDТ включен, от -40°C до +85°C D021A 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDТ включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDТ включен, от -40°C до +85°C	D020		16LF87X	-	7.5	30	мкА			
D021 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от 0°C до +70°C D021 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C D021A 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDT включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C	D020		16F87X	-	10.5	42	мкА			
D021 16F87X - 1.5 16 мкА V _{DD} =4.0B, WDТ включен, от -40°C до +85°C D021A 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDТ включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDТ включен, от -40°C до +85°C	D021		16LF87X	-	0.9	5	мкА	V _{DD} =3.0B, WDT включен,		
D021A 16LF87X - 0.9 5 мкА V _{DD} =3.0B, WDТ включен, от -40°C до +85°C D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDТ включен, от -40°C до +85°C	D021		16F87X	-	1.5	16	мкА	V _{DD} =4.0B, WDT включен,		
D021A 16F87X - 1.5 19 мкА V _{DD} =4.0B, WDT включен, от -40°C до +85°C	D021A		16LF87X	-	0.9	5	мкА	V _{DD} =3.0B, WDT включен,		
	D021A		16F87X	-	1.5	19	мкА	V _{DD} =4.0B, WDT включен,		
	D023	ΔI_{BOR}	Ток потребления BOR ⁽⁶⁾	-	85	200	мкА			

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

- Предел, до которого может быть понижено напряжение питания V_{DD} без потери данных в ОЗУ.
- Ток потребления в основном зависит от напряжения питания и тактовой частоты. Другие факторы, влияющие на ток потребления: выходная нагрузка и частота переключения каналов ввода/вывода; тип тактового генератора; температура и выполняемая программа. Измерения I_{DD} проводилось в следующих условиях: внешний тактовый сигнал (меандр); каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD}; -MCLR = V_{DD}; WDT выключен/выключен, указано в спецификации.
- 3. Потребляемый ток в SLEEP режиме не зависит от типа тактового генератора. При измерении тока все каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD} или V_{SS} .
- 4. В RC режиме генератора ток через внешний резистор не учитывается. Ток, протекающий через внешний резистор, может быть рассчитан по формуле $Ir = V_{DD}/2R_{EXT}$ (мА), где R_{EXT} в кОм.
- 5. Генератор TMR1 дополнительно потребляет 20мкА (если включен). Этот параметр используется при разработке устройств, но не тестируется.
- 6. Δ ток дополнительный потребляемый ток, если периферийный модуль включен. Этот ток должен быть добавлен к I_{DD} или I_{PD} .
- 7. Когда BOR включен, микроконтроллер будет нормально работать, пока напряжение питания не опустится ниже V_{BOR}.

15.2 Электрические характеристики (Коммерческий, Промышленный)

PIC16F873/874/876/877-04 (Коммерческий, Промышленный) PIC16F873/874/876/877-20 (Коммерческий, Промышленный) PIC16LF873/874/876/877-04 (Коммерческий, Промышленный)

Рабочее	напряж	ение питания V _{DD} должно	Стандартные рабочие условия (если не указано иное)						
		значению,	Температу						
		вделе 15.1				•	ленный -40°С ≤ T _A ≤ +85°С		
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание		
	V _{IL}	Входное напряжение низкого уров	RHA	i		i	-		
	V IL	Канал порта ввода/вывода	1						
D030		ТТЛ буфер	V _{SS}	_	0.8	В	V _{DD} = от 4.5B до 5.5B		
D030A		1171 0) ФОР	V _{SS}	_	0.15V _{DD}	В	иначе		
D031		Триггер Шмидта	V _{SS}	_	0.2V _{DD}	В	vina io		
D032		-MCLR, OSC1 (RC) ⁽¹⁾	V _{SS}	_	0.2V _{DD}	В			
D033		OSC1 (XT, HS, LP)	V _{SS}	_	0.3V _{DD}	В			
2000		Выводы RC3, RC4	V 33		0.00				
D034		Триггер Шмидта	Vss		$0.3V_{DD}$	В			
D034A		SMBus	-0.5	_	0.6	В			
B00 17 (V _{IH}	Входное напряжение высокого ур		<u> </u>	0.0				
	* 111	Канал порта ввода/вывода]						
D040		ТТЛ буфер	2.0	_	V_{DD}	В	V _{DD} = от 4.5B до 5.5B		
D040A		c) 4 op	0.25V _{DD} +0.8	_	V _{DD}	В	иначе		
D041		Триггер Шмидта	0.8V _{DD}	_	V _{DD}	В	7.1.0		
D042		-MCLR	0.8V _{DD}	_	V_{DD}	В			
D042A		OSC1 (XT, HS, LP)	0.7V _{DD}	_	V_{DD}	В			
D043		OSC1 (RC) ⁽¹⁾	0.9V _{DD}	_	V_{DD}	В			
20.0		Выводы RC3, RC4	0.0100		100				
D044		Триггер Шмидта	$0.7V_{DD}$	_	V_{DD}	В			
D044A		SMBus	1.4	-	5.5	В			
D070	I _{PURB}	Ток через подтягивающие	50	250	400	мкА	V_{DD} = 5.0B, V_{PIN} = V_{SS}		
		резисторы PORTB					от -40°С до +85°С		
	I _{IL}	Входной ток утечки (2,3)							
D060		Порт ввода/вывода	-	-	±1	мкА	$V_{SS} \leq V_{PIN} \leq V_{DD}$, 3-e coct.		
D061		-MCLR, RA4/T0CKI	-	-	±5	мкА	$V_{SS} \leq V_{PIN} \leq V_{DD}$		
D063		OSC1	-	-	±5	мкА	$V_{SS} \leq V_{PIN} \leq V_{DD}, XT, HS, LP$		
	V_{OL}	Выходное напряжение низкого ур	овня				$V_{DD} = 4.5B$		
D080		Канал ввода/вывода	-	-	0.6	В	I _{OL} =8.5 мА, -40°С до +85°С		
D083		OSC2/CLKOUT (RC)	_	-	0.6	В	I _{OL} =1.6 мА, -40°С до +85°С		
	V _{OH}	Выходное напряжение высокого у	ровня	•		•	V _{DD} =4.5B		
D090		Канал ввода/вывода ⁽³⁾	V _{DD} - 0.7	-	-	В	I _{OH} =-3.0 мА,-40°С до +85°С		
D092		OSC2/CLKOUT (RC)	V _{DD} - 0.7	_	-	В	I _{OH} =-1.3 мА,-40°С до +85°С		
D150*	V _{OD}	Напряжение на выходе с	-	-	8.5	В	RA4		
		открытым стоком							
		Емкостная нагрузка на выходах							
D100	C _{OSC2}	Вывод OSC2	-	-	15	пФ	XT, HS, LP		
D101	C_{IO}	Все каналы ввода/вывода и	-	-	50	пΦ			
		OSC2 в RC режиме							
D102	Св	SCL, SDA в режиме I ² C	-	-	400	ПФ			
		EEPROM память данных				T			
D120	E _D	Число циклов стирание/запись	100K	-	-	C/3	5B @ 25°C		
D121	V_{DRW}	Напряжение питания для	V_{MIN}	-	5.5	В	V _{мім} - минимальное		
		записи/чтения					напряжение питания		
D122	T_{DEW}	Время цикла стирание/запись	-	4	8	МС			
	_	FLASH память программ	1	T	1		T		
D130	E _P	Число циклов стирание/запись	1000	-	-	C/3	5B @ 25°C		
D131	V_{PR}	Напряжение питания для чтения	V_{MIN}	-	5.5		V _{MIN} - минимальное		
D132A	V_{PEW}	Напряжение питания для	V_{MIN}	-	5.5		напряжение питания		
-	_	стирания/записи		_					
D133	T_{PEW}	Время цикла стирание/запись	_	4	8				

^{* -} Эти параметры определены, но не протестированы.

- 1. В RC режиме генератора на входе OSC1 включен триггер Шмидта. Не рекомендуется использовать внешний тактовый сигнал для PIC16F87X в RC режиме тактового генератора.
- 2. Ток утечки на выводе -MCLR зависит от приложенного напряжения. Параметры указаны для нормального режима работы. В других режимах может возникнуть больший ток утечки.
- 3. Отрицательный ток показывает, что он вытекает из вывода.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

15.3 Электрические характеристики (Расширенный) PIC16F873/874/876/877-04 (Расширенный) PIC16F873/874/876/877-10 (Расширенный)

	_	6F873/874/876/877-04 6F873/874/876/877-10 (Расширенный)	Стандартные рабочие условия (если не указано иное) Температурный диапазон: Расширенный -40°C ≤ T _A ≤ +125°C					
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание	
	V_{DD}	Напряжение питания	l		l	I		
D001			4.0	-	5.5	В	LP, XT, RC режим генератора	
D001A			4.5		5.5	В	HS режим генератора	
			V_{BOR}		5.5	В	BOR включен, F _{MAX} =4МГц ⁽⁷⁾	
D002	V_{DR}	Напряжение сохранения данных в ОЗУ ⁽¹⁾	-	1.5	-	В		
D003	V _{POR}	Стартовое напряжение V _{DD} для формирования POR	-	V _{SS}	-	В	Смотрите раздел "сброс POR"	
D004	S _{VDD}	Скорость нарастания V _{DD} для формирования POR	0.05	-	-	В/мс	Смотрите раздел "сброс POR"	
D005	V_{BOD}	Напряжение детектора BOD	3.7	4.0	4.35	В	Бит BODEN = 0	
	I_{DD}	Ток потребления ^(2,5)						
D010			-	1.6	4	мА	RC режим генератора $F_{OSC} = 4M\Gamma_{LL}, V_{DD} = 5.5B$	
D013			-	7	15	мА	HS режим генератора $F_{OSC} = 10M\Gamma_{U}, V_{DD} = 5.5B$	
D015	ΔI_{BOR}	Ток потребления BOR ⁽⁶⁾	_	85	200	мкА	Бит BODEN = 0, V _{DD} =5B	
	I_{PD}	Ток потребления в SLEEP режиме	e (3,5)					
D020A			-	10.5	60	мкА	V _{DD} =4.0B, WDT включен	
D021B			-	1.5	30	мкА	V _{DD} =4.0B, WDT выключен	
D023	ΔI_{BOR}	Ток потребления BOR ⁽⁶⁾	-	85	200	мкА	Бит BODEN = 0, V_{DD} =5B	

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

- 1. Предел, до которого может быть понижено напряжение питания V_{DD} без потери данных в ОЗУ.
- Ток потребления в основном зависит от напряжения питания и тактовой частоты. Другие факторы, влияющие на ток потребления: выходная нагрузка и частота переключения каналов ввода/вывода; тип тактового генератора; температура и выполняемая программа. Измерения I_{DD} проводилось в следующих условиях: внешний тактовый сигнал (меандр); каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD}; -MCLR = V_{DD}; WDT выключен/выключен, указано в спецификации.
- 3. Потребляемый ток в SLEEP режиме не зависит от типа тактового генератора. При измерении тока все каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD} или V_{SS} .
- 4. В RC режиме генератора ток через внешний резистор не учитывается. Ток, протекающий через внешний резистор, может быть рассчитан по формуле $Ir = V_{DD}/2R_{EXT}$ (мA), где R_{EXT} в кОм.
- 5. Генератор TMR1 дополнительно потребляет 20мкА (если включен). Этот параметр используется при разработке устройств, но не тестируется.
- 6. Δ ток дополнительный потребляемый ток, если периферийный модуль включен. Этот ток должен быть добавлен к I_{DD} или I_{PD} .
- 7. Когда BOR включен, микроконтроллер будет нормально работать, пока напряжение питания не опустится ниже V_{BOR}.

15.4 Электрические характеристики (Расширенный) PIC16F873/874/876/877-04 (Расширенный) PIC16F873/874/876/877-10 (Расширенный)

		ение питания V _{DD} должно значению,	Стандарт Температу				если не указано иное) енный -40°С ≤ Т _А ≤ +125°С
указанно		вделе 15.3		•	riariacori. i		
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
	V _{IL}	Входное напряжение низкого уров	вня				
D030 D030A		Канал порта ввода/вывода ТТЛ буфер	V _{SS} V _{SS}	-	0.8 0.15V _{DD}	B B	V _{DD} = от 4.5B до 5.5B иначе
D031 D032		Триггер Шмидта -MCLR, OSC1 (RC) ⁽¹⁾	V _{SS} V _{SS}	- -	0.2V _{DD} 0.2V _{DD}	B B	
D033		OSC1 (XT, HS, LP) Выводы RC3, RC4	V _{SS}	-	0.3V _{DD}	В	
D034 D034A	\ /	Триггер Шмидта SMBus	-0.5	-	0.3V _{DD} 0.6	B B	
	V_{IH}	Входное напряжение высокого ур	овня Г	ı			T
D040 D040A		Канал порта ввода/вывода ТТЛ буфер	2.0 0.25V _{DD} +0.8	- -	$V_{DD} \ V_{DD}$	B B	V _{DD} = от 4.5B до 5.5B иначе
D041		Триггер Шмидта	$0.8V_{DD}$	-	V_{DD}	В	
D042		-MCLR	$0.8V_{DD}$	-	V_{DD}	В	
D042A		OSC1 (XT, HS, LP)	$0.7V_{DD}$	-	V_{DD}	В	
D043		OSC1 (RC) ⁽¹⁾ Выводы RC3, RC4	0.9V _{DD}	-	V _{DD}	В	
D044 D044A		Триггер Шмидта SMBus	0.7V _{DD} 1.4	-	V _{DD} 5.5	B B	
D070	I _{PURB}	Ток через подтягивающие резисторы РОКТВ	50	250	400	мкА	V _{DD} = 5.0B, V _{PIN} = V _{SS}
	I _{IL}	Входной ток утечки (2,3)			l .		
D060 D061		Порт ввода/вывода -MCLR, RA4/T0CKI		-	±1 ±5.0	мкА мкА	$V_{SS} \le V_{PIN} \le V_{DD}$, 3-e coct. $V_{SS} \le V_{PIN} \le V_{DD}$
D063		OSC1	-	-	±5.0	мкА	$V_{SS} \le V_{PIN} \le V_{DD}$, XT, HS, LP
	V_{OL}	Выходное напряжение низкого уре	овня			1	V _{DD} = 4.5B
D080A D083A		Канал ввода/вывода OSC2/CLKOUT (RC)	-	- -	0.6 0.6	B B	I _{OL} =7.0 мА I _{OL} =1.2 мА
	V _{OH}	Выходное напряжение высокого у		1	1		V _{DD} =4.5B
D090A D092A		Канал ввода/вывода ⁽³⁾ OSC2/CLKOUT (RC)	$V_{DD} - 0.7$ $V_{DD} - 0.7$	-	-	B B	I _{OH} =-2.5 MA I _{OH} =-1.0 MA
D150*	V _{OD}	Напряжение на выходе с открытым стоком	-	-	8.5	В	RA4
D400		Емкостная нагрузка на выходах	ı	I	4.5		LVT HO LD
D100 D101	C _{OSC2} C _{IO}	Вывод OSC2 Все каналы ввода/вывода и OSC2 в RC режиме	-	-	15 50	пФ пФ	XT, HS, LP
D102	Св	SCL, SDA в режиме I ² C EEPROM память данных	-	-	400	ПФ	
D120	E _D	Число циклов стирание/запись	100K	l _	_	C/3	5B @ 25°C
D121	V _{DRW}	Напряжение питания для записи/чтения	V _{MIN}	-	5.5	В	V _{мім} - минимальное напряжение питания
D122	T _{DEW}	Время цикла стирание/запись	-	4	8	МС	The state of the s
D120		FLASH память программ	1000	1		CIO	ED @ 25°C
D130 D131	E_P V_PR	Число циклов стирание/запись	V _{MIN}	-	- 5.5	C/3	5В @ 25°C V _{мім} - минимальное
D131 D132A	V _{PEW}	Напряжение питания для чтения Напряжение питания для стирания/записи	V _{MIN}	-	5.5 5.5		то т
D133	T _{PEW}	Стирания/записи Время цикла стирание/запись эметры определены, но не протестиров:	-	4	8		

- 1. В RC режиме генератора на входе OSC1 включен триггер Шмидта. Не рекомендуется использовать внешний тактовый сигнал для PIC16F87X в RC режиме тактового генератора.
- Ток утечки на выводе -MCLR зависит от приложенного напряжения. Параметры указаны для нормального режима работы. В других режимах может возникнуть больший ток утечки.
- Отрицательный ток показывает, что он вытекает из вывода.

^{* -} Эти параметры определены, но не протестированы.

** - В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

15.5 Символьное обозначение временных параметров

Символьное обозначение временных параметров имеет один из следующих форматов:

1. TppS2ppS (только спецификация I_{χ}^{2} C) 3. $T_{\text{CC:ST}}$ (только спецификация I^2C) 2. TppS

T				
F	Частота	Т	Время	

Строчные символы (рр) и их значение

pp				
СС	CCP1	osc	OSC1	
ck	CLKOUT	rd	-RD	
cs	-CS	rw	-RD или -WR	
di	SDI	sc	SCK	
do	SDO	SS	-SS	
dt	Входные данные	tO	T0CKI	
io	Канал ввода/вывода	t1	T1CKI	
mc	-MCLR	wr	-WR	

Прописные символы и их значение

S				
F	Задний фронт	Р	Период	
Н	Высокий уровень	R	Передний фронт	
1	Неверный (3-е состояние)	V	Верный	
L .	Низкий уровень	Z	3-е состояние	
Только I ² C	• •			
AA	Доступ вывода	High	Высокий уровень	
BUF	Шина свободна	Low	Низкий уровень	

 $T_{CC:ST}$ (только спецификация I^2C)

	(1011-110 0110-411-4111-110)			
CC				
HD	Удержание	SU	Установка	
ST				
DAT	Сохранение данных на входе	STO	Условие STOP	
STA	Условие START	Low	Низкий уровень	

Puc. 15-5 Нагрузочные параметры

 $R_{L} = 4640 M$

 C_L = 50пФ (для всех выводов, кроме OSC2, включая PORTD и PORTE в режиме портов ввода/вывода) C_L = 15пФ (для вывода OSC2)

Примечание. PORTD, PORTE не реализованы в микроконтроллерах PIC16F873/876.

15.6 Временные диаграммы и спецификации

Таблица 15-1 Параметры внешнего тактового сигнала

		15-1 Параметры внешнего тактового сигнала					
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
	Fosc	Частота внешнего тактового сигнала ⁽¹⁾	DC	-	4	МГц	XT, RC
			DC	-	4	МГц	HS режим (-04)
			DC	-	10	МГц	HS режим (-10)
			DC	-	20	МГц	HS режим (-20)
			Dc	-	200	кГц	LP режим
		Частота генератора ⁽¹⁾	DC	-	4	МГц	RC режим
			0.1	-	4	МГц	XT режим
			4	-	10	МГц	HS режим (-10)
			4	-	20	МГц	HS режим (-20)
			5	-	200	кГц	LP режим
1	Tosc	Период внешнего тактового сигнала ⁽¹⁾	250	-	-	нс	XT, RC режим
			250	-	-	HC	HS режим (-04)
			100	-	-	HC	HS режим (-10)
			50	-	-	HC	HS режим (-20)
			5	-	-	МКС	LP режим
		Период генератора ⁽¹⁾	250	-	-	HC	RC режим
			250	-	10000	HC	XT режим
			250	-	-	HC	HS режим (-04)
			100	-	250	HC	HS режим (-10)
			50	-	250	HC	HS режим (-20)
			5	-	-	МКС	LP режим
2	T _{CY}	Время выполнения инструкции ⁽¹⁾	200.0	T _{CY}	DC	HC	$T_{CY} = 4/F_{OSC}$
3	TosL,	Длительность высокого/низкого уровня	100	-	-	HC	XT режим
	TosH	CLKIN (OSC1)	2.5	-	-	мкс	LP режим
		·	15			HC	HS режим
4	TosR,	Длительность переднего/заднего фронта	-	-	25	HC	XT режим
	TosF	внешнего тактового сигнала (OSC1)	-	-	50	HC	LP режим
			-	-	15	нс	HS режим

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Примечание 1. Машинный цикл микроконтроллера равняется 4 периодам тактового сигнала. Все приведенные значения основываются на характеристиках конкретного типа генератора в стандартных условиях при выполнении программы. Выход за указанные пределы может привести к нестабильной работе генератора и/или к большему потребляемому току. Все микроконтроллеры проверены в режиме "Мин." при внешнем тактовом сигнале на выводе OSC1/CLKIN.

Таблица 15-2 Параметры CLKOUT и каналов ввода/вывода

№ пар.	Обоз.	Описание		Мин.	Тип.**	Макс.	Ед.	Примечание
10*	TosH2ckL	От OSC1 ↑ до CLKOUT ↓		-	75	200	НС	(1)
11*	TosH2ckH	От OSC1 ↑ до CLKOUT ↑		-	75	200	нс	(1)
12*	TckR	CLKOUT длит. переднего фронта		-	35	100	HC	(1)
13*	TckF	CLKOUT длит. заднего фронта		-	35	100	нс	(1)
14*	TckL2ioV	От CLKOUT ↓ до установл. выхода		-	-	0.5T _{CY} +20	НС	(1)
15*	TioV2ckH	От установл. входа до CLKOUT ↑		Tosc+200	-	-	нс	(1)
16*	TckH2iol	Удержание входа после CLKOUT ↑		0	-	-	нс	(1)
17*	TosH2ioV	От OSC1 ↑ до установл. выхода		-	100	255	нс	
18*	TosH2iol	Удержание входа после OSC1 ↑	F	100	-	-	нс	
			LF	200	-	-	HC	
19*	TioV2osH	Переход в режим входа относ. OSC	:1↑	0	-	-	НС	
20*	TioR	Длительность переднего фронта	F	-	10	40	HC	
		на выходе порта ввода/вывода	LF	-	-	145	HC	
21*	TioF	Длительность заднего фронта на	F	-	10	40	HC	
		выходе порта ввода/вывода	LF	-	ı	145	HC	
22***	Tinp	Длит. высокого/низкого уровня INT	•	T _{CY}	-	-	НС	
23***	Trbp	Длит. высокого/низкого уровня RB7	:RB4	T _{CY}	-	-	HC	

^{* -} Эти параметры определены, но не протестированы.

Примечание 1. Измерения проведены в RC режиме генератора, где CLKOUT = 4 x T_{OSC}.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

^{*** -} Асинхронные события, не связанные с внутренним тактовым сигналом.

 Рис. 15-8 Временная диаграмма сброса, WDT, OST, PWRT

 VDD
 (1)

 MCLR
 (2)

 PWRT
 (32)

 OSC
 (32)

 Внутренний сброс от WDT
 (34)

 Канал ввода/вывода
 (34)

Рис. 15-9 Временная диаграмма работы ВОD

VBOR ---- 35 →

Таблица 15-3 Параметры сброса, WDT, OST, PWRT, BOR

№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
30	TmcL	Длительность импульса -MCLR	2	-	-	МКС	V _{DD} =5B,-40°С до +85°С
31*	Twdt	Период переполнения WDT (без предделителя)	7	18	33	МС	V _{DD} =5B,-40°C до +85°C
32	Tost	Период OST	-	1024Tosc	-	-	T _{OSC} = период OSC1
33*	Tpwrt	Период PWRT	28	72	132	мс	V _{DD} =5B,-40°C до +85°C
34	T _{IOZ}	От сброса -MCLR или WDT до перевода каналов ввода/вывода 3-е состояние	-	-	2.1	МКС	
35	T _{BOR}	Длительность импульса BOR	100	-	-	МКС	$V_{DD} \le V_{BOR} (D005)$

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 15-4 Параметры внешнего тактового сигнала для TMR0 и TMR1

		15-4 і іараметры ві			лінала ,				_	_	
№ пар.	Обоз.	(Описан	ие		Мин.	Тип.**	Макс.	Ед.	Примечание	
40*	Tt0H	Длительность вы	сокого	Без преддел	ителя	0.5T _{CY} +20	-	-	НС	Также должен	
		уровня T0CKI		С преддели	телем	10	-	-	HC	выполняться	
41*	Tt0L	Длительность ни	зкого	Без преддел	ителя	0.5T _{CY} +20	-	-	HC	параметр 42	
		уровня T0CKI		С преддели	телем	10	-	-	HC	парамстр +2	
42*	Tt0P	Период T0CKI		Без предделителя		T _{CY} +40	-	-	HC		
				С предделителем		20 или (T _{CY} +40)/N	-	-	нс	N = коэфф.предд.	
45*	Тt1H Длительность Синхр.реж. без пре		еддел.	0.5T _{CY} +20	-	-	нс				
		высокого	Синхр	о. режим с	F	15	-	-	нс	Также должен	
		уровня T1CKI	предд	цел.	LF	25	-	-	нс	выполняться	
			Асинх	фонный	F	30	-	-	нс	параметр 47	
			режи	М	LF	50	-	-	HC		
46*	Tt1L	Длительность	Синхр	о.реж. без пре	еддел.	0.5T _{CY} +20	-	-	HC		
		низкого уровня	Синхр	о. режим с	F	15	-	-	HC	Также должен	
		T1CKI	предд	цел.	LF	25	-	-	HC	выполняться	
			Асинхронный		F	30	-	-	HC	параметр 47	
			режи	М	LF	50	-	-	HC		
47*	Tt1P	Период T1CKI	Синхр режи	оонный м	F	30 или (T _{CY} +40)/N	-	-	НС	N = коэфф.предд.	
					LF	50 или (T _{CY} +40)/N	-	-	нс	N = коэфф.предд.	
			Асинх	фонный	F	60	-	-	нс		
			режи	M	LF	100	-	-	нс		
	Ft1	Частота резонато (T1OSCEN=1)	ора для)а для TMR1		DC	-	200	кГц		
48	TCKE1	Задержка от акт сигнала до прира			гового	2T _{OSC}	-	7T _{OSC}	ı		

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

RC1/T1OSI/CCP2
RC2/CCP1
(Режим захвата)

RC1/T1OSI/CCP2
RC2/CCP1
(Режим сравнения или ШИМ)

53 → - 54

Рис. 15-11 Временная диаграмма захват/сравнение/ШИМ

Таблица 15-5 Параметры захват/сравнение/ШИМ (ССР1 и ССР2)

№ пар.	Обоз.	Ċ)писание <u> </u>	,	Мин.	Тип.**	Макс.	Ед.	Примечание
50*	TccL	Сигнал низкого	Без предделителя		0.5T _{CY} +20	-	-	нс	
		уровня ССР1 и	С предделителем	F	10	-	-	HC	
		CCP2		LF	20	•	-	HC	
51*	TccL	Сигнал высокого	Без предделителя		0.5T _{CY} +20	ı	-	HC	
		уровня ССР1 и	С предделителем	F	10	ı	-	HC	
		CCP2		LF	20	-	-	HC	
52*	TccP	Период входного	сигнала ССР		(3T _{CY} +40)/N	-	-	HC	N = коэфф.предд.
53*	TccR	Время установле	ние высокого	F	-	10	25	НС	
		уровня сигн. на в	ых. ССР1 и ССР2	LF	-	25	45	НС	
54*	TccF	Время установле	ремя установление низкого		-	10	25	HC	
		уровня сигн. на в	ых. ССР1 и ССР2	LF	-	25	45	HC	

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 15-6 Параметры работы ведомого параллельного порта (только PIC16F874/877)

№ пар.	Обоз.	Описание		Мин.	Тип.**	Макс.	Ед.	Примечание
62	TdtV2H	Установка данных перед -WR↑ или		20	-	-	НС	
		-CS↑			-	-	HC	Только для расшир. диап.
63*	TwrH2dtl	Удержание данных после	F	20	-	-	нс	
		-WR↑ или -CS↑	LF	35	-	-	нс	
64	TrdL2dtV	Формирование данных после		-	-	80	нс	
		-RD↓ и -CS↓		-	-	90	HC	Только для расшир. диап.
65	TrdH2dtl	Неправильные данные после -R				30		
00	Humzuli	или -CS↑		10	-	30	HC	

^{* -} Эти параметры определены, но не протестированы.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Puc. 15-13 Временная диаграмма работы модуля MSSP в режиме ведущего SPI (CKE=0, SMP=0)

Таблица 15-7 Параметры работы модуля MSSP в режиме SPI

№ пар.	Обоз.	Описание		Мин.	Тип.**	Макс.	Ед.	Примечание
70*	TssL2scH, TssL2scL	-SS↓ перед SCK↑ или SCK↓		T _{CY}	-	-	НС	
71*	TscH	Высокий уров. сигн. SCK (ведомый реж.)		T _{CY} + 20	-	-	HC	
72*	TscL	Низкий уров. сигн. SCK (ведомый реж.)		T _{CY} + 20	-	-	нс	
73*	TdiV2scH, TdiV2scL	Установка данных на входе SDI относительно фронта SCK		100	-	-	HC	
74*	TscH2diL, TscL2diL	Удержание данных на входе SDI относительно фронта SCK		100	-	-	НС	
75*	TdoR	Длительность переднего фронта	F	-	10	25	HC	
		на выходе SDO	LF	-	25	50	HC	
76*	TdoF	Длительность заднего фронта на S	DO	-	10	25	HC	
77*	TssH2doZ	Перевод SDO в 3-е сост. после SS1		10	-	50	HC	
78*	TscR	Длительность переднего фронта на SCK (режим ведущего)	F LF	-	10 25	25 50	HC HC	
79*	TscF	Длит. заднего фронта на SCK (веду	·щий)	-	10	25	нс	
80*	TscH2doV, TscL2doV	Достоверные данные на SDO после фронта SCK	F LF	-	-	50 145	HC HC	
81*	TdoV2scH, TdoV2scL	Установка данных на выходе SDO после фронта SCK		T _{CY}	-	-	НС	
82*	TssL2doV	Достов. данные на вых. SDO после SS↓		-	-	50	нс	
83*	TscH2ssH, TscL2ssH	SS↑ после фронта SCK		1.5T _{CY} + 40	-	-	НС	

^{* -} Эти параметры определены, но не протестированы.

Рис. 15-17 Временная диаграмма формирования битов START/STOP на шине I^2C

Таблица 15-8 Параметры формирования битов START/STOP на шине I^2 С

№ пар.	Обоз.	Описа	ание	Мин.	Тип.**	Макс.	Ед.	Примечание
90	Tsu:sta	Установка	Режим 100 кГц	4700	-	-	нс	Только при формировании
		условия START	Режим 400 кГц	600	-	-		бита повторный START
91	Thd:sta	Удержание	Режим 100 кГц	4000	-	-	нс	После этого форм. первый
		условия START	Режим 400 кГц	600	-	-		импульс тактового сигнала
92	Tsu:sto	Установка	Режим 100 кГц	4700	-	-	нс	
		условия STOP	Режим 400 кГц	600	-			
93	Thd:sto	Удержание	Режим 100 кГц	4000	-	-	нс	
		условия STOP	Режим 400 кГц	600	-	-		

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 15-9 Параметры формирования бита данных на шине I²C

№ пар.	Обоз.	от нараметры формиров Описани	• • • • • • • • • • • • • • • • • • • •	Мин.	Макс.	Ед.	Примечание
100	Thigh	Длительность	Режим 100 кГц	4.0	-	МКС	Мин. F _{OSC} 1.5МГц
	Ŭ	высокого уровня	Режим 400 кГц	0.6	-	мкс	Мин. F _{OSC} 10МГц
		тактового сигнала	Модуль SSP	0.5T _{CY}	-		
101	Tlow	Длительность низкого	Режим 100 кГц	4.7	-	МКС	Мин. F _{OSC} 1.5МГц
		уровня тактового	Режим 400 кГц	1.3	-	МКС	Мин. F _{OSC} 10МГц
		сигнала	Модуль SSP	0.5T _{CY}	-		
102	Tr	Долит. переднего	Режим 100 кГц	ı	1000	HC	
		фронта на SDA и SCL	Режим 400 кГц	20 + 0.1 Cb	300	HC	10пФ ≤ Сb ≤ 400пФ
103	Tf	Долит. заднего	Режим 100 кГц	-	300	HC	
		фронта на SDA и SCL	Режим 400 кГц	20 + 0.1 Cb	300	нс	10пФ ≤ Сb ≤ 400пФ
90	Tsu:sta	Установка условия	Режим 100 кГц	4.7	-	МКС	Только при формировании
		START	Режим 400 кГц	0.6	-	МКС	бита повторный START
91	Thd:sta	Удержание условия	Режим 100 кГц	4.0	-	МКС	После этого форм. первый
		START	Режим 400 кГц	0.6	-	МКС	импульс тактового сигнала
106	Thd:dat	Удержание данных на	Режим 100 кГц	0	-	HC	
		входе	Режим 400 кГц	0	0.9	МКС	
107	Tsu:dat	Установка данных на	Режим 100 кГц	250	-	HC	Примечание 2
		входе	Режим 400 кГц	100	-	HC	
92	Tsu:sto	Установка условия	Режим 100 кГц	4.7	-	MKC	
		STOP	Режим 400 кГц	0.6	-	MKC	
109	Taa	Достоверность	Режим 100 кГц	-	3500	HC	Примечание 1
		сигнала на выходе	Режим 400 кГц	-	-	HC	
110	Tbuf	Время не занятости	Режим 100 кГц		-	МКС	Задержка перед новой
		шины	Режим 400 кГц	1.3	-	МКС	передачей
	Cb	Емкостная нагрузка лин	ИИ	-	400	пΦ	

- 1. Необходимо выдерживать эту минимальную задержку относительно заднего фронта SCL, чтобы избежать ложное формирование битов START и STOP.
- Устройства с высокоскоростным режимом обмена (400кГц) могут использоваться в стандартном режиме (100кГц), но требование Tsu:dat ≥ 250нс необходимо выполнять. Это условие автоматически будет выполняться, если не возникает удержания линии SCL в низком логическом уровне. Если возникает удержание линии SCL в низком логическом уровне, то необходимо сформировать бит данных на SDA Tr.max + Tsu:dat = 1000 + 250 = 1250 нс (согласно спецификации I²C) прежде, чем SCL будет "отпущена".

Puc. 15-19 Временная диаграмма работы передатчика USART в ведущем/ведомом синхронном режиме

Таблица 15-10 Параметры работы передатчика USART в ведущем/ведомом синхронном режиме

№ пар.	Обоз.	Описание		Мин.	Тип.**	Макс.	Ед.	Примечание
120	TckH2dtV	Действ. данные после перехода	F	-	-	80	НС	
		такт. сигнала в высокий уровень	LF	-	-	100	НС	
121	Tckrf	Длительность заднего/переднего	F	-	-	45	НС	
		фронта такт. сигн. (ведущий)	LF	-	-	50	НС	
122	Tdtrf	Длительность переднего/заднего	F	-	-	45	НС	
		фронта данных	LF	-	-	50	HC	

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Puc. 15-20 Временная диаграмма работы приемника USART в ведущем/ведомом синхронном режиме

Таблица 15-11 Параметры работы приемника USART в ведущем/ведомом синхронном режиме

№ пар.	Обоз.	з. Описание		Тип.**	Макс.	Ед.	Примечание
125	TdtV2ckL	Установка данных после СК↓	15	-	-	нс	
126	Tckl 2dl	Удержание данных после СК↓	15	_	_	HC	

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 15-12 РІС16F87X-04 (Коммерческий, Промышленный, Расширенный) РІС16F87X-10 (Расширенный) РІС16F87X-20 (Коммерческий, Промышленный) РІС16LF87X-04 (Коммерческий, Промышленный)

№ пар.	Обоз.	Описание		Мин.	Тип**	Макс.	Ед.	Примечание
A01	N _R	Разрядность		-	-	10	бит	$V_{REF} = V_{DD} = 5.12B,$
		•						$V_{SS} \le V_{AIN} \le V_{REF}$
A03	E _{IL}	Интегральная погрешность		-	-	< ± 1	LSb	$V_{REF} = V_{DD} = 5.12B,$
								$V_{SS} \le V_{AIN} \le V_{REF}$
A04	E _{DL}	Дифференциальная		-	-	< <u>±</u> 1	LSb	$V_{REF} = V_{DD} = 5.12B,$
		погрешность						$V_{SS} \le V_{AIN} \le V_{REF}$
A06	Eoff	Ошибка смещения		-	-	< ± 2	LSb	$V_{REF} = V_{DD} = 5.12B,$
								$V_{SS} \le V_{AIN} \le V_{REF}$
A07	E _{GN}	Ошибка усиления		-	-	< ± 1	LSb	$V_{REF} = V_{DD} = 5.12B,$
		<i>p</i> N						$V_{SS} \le V_{AIN} \le V_{REF}$
A10	-	Монотонность ⁽³⁾		Гара	антируе	ется	-	$V_{SS} \le V_{AIN} \le V_{REF}$
A20	V_{REF}	Опорное напряжение		2.0	-	$V_{DD} + 0.3$	В	Минимальное значение
		(V _{REF+} -V _{REF-})						для 10-разрядного АЦП
A21	V_{REF^+}	Положительное опорное нап	ıp.	$AV_{DD} - 2.5$		$AV_{DD} + 0.3$	В	
A22	V_{REF}	Отрицательное опорное нап	p.	$AV_{SS} - 0.3$		V _{REF+} - 2.0	В	
A25	V_{AIN}	Аналоговый вход		$V_{SS} - 0.3$	-	$V_{REF} + 0.3$	В	
A30	Z_{AIN}	Сопротивление источника си		-	-	10.0	кОм	
A40	I _{AD}		F	-	220	-	мкА	Среднее потребление при
			LF	-	90	-	мкА	включенном АЦП ⁽¹⁾
A50	I _{REF}	Потребляемый ток от источн	ика	10	-	1000	мкА	Во время выборки V _{AIN} .
		опорного напряжения ⁽²⁾						Основано на дифферинц.
								значении заряда Сного до
						40		V _{AIN} .
				-	-	10	мкА	Во время преобразования.

^{* -} Эти параметры определены, но не протестированы.

- 1. Выключенный модуль АЦП не потребляет тока, кроме токов утечки.
- 2. Ток со входа RA3 или V_{DD} в зависимости от выбранного источника опорного напряжения.
- 3. Результат АЦП никогда не уменьшается с увеличением напряжения на входе и не имеет кодов отсутствия напряжения.

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Примечание. Если используется внутренний RC генератор для АЦП, то добавляется время T_{CY} перед запуском АЦП, позволяющее выполнить команду SLEEP.

Таблица 15-13 Параметры работы модуля АЦП

№ пар.	Обоз.	Описание	-	Мин.	Тип.**	Макс.	Ед.	Примечание
130	T_{AD}	Период тактового сигнала	F	1.6	-	-	МКС	Основа T _{OSC} , V _{REF} ≥ 3.0 В
		ΑЦΠ	LF	3.0	-	-	МКС	Основа T_{OSC} , $V_{REF} ≥ 2.0 В$
			F	2.0	4.0	6.0	МКС	RC генератор АЦП
			LF	3.0	6.0	9.0	МКС	RC генератор АЦП
131	T_{CNV}	Время преобразования ⁽¹⁾			-	12	T_{AD}	
132	T_{ACQ}	Время выборки		(2)	40	-	МКС	
				10*	-	-	МКС	Примечание 3
134	T_{GO}	Старт преобразования относительно Q4		-	T _{OSC} /2***	-	-	Примечание 4

^{* -} Эти параметры определены, но не протестированы.

- .
 Perистр ADRESL может быть прочитан в следующем цикле.
- 2. Смотрите раздел 11.1 для выбора минимального значения.
- 3. Минимальное время задержка усилителя. Может использоваться, если напряжение на входе изменилось не более, чем на 1 LSb (т.е. 20мВ @ 5.12В) от последнего измерения.
- 4. Если используется внутренний RC генератор для АЦП, то добавляется время T_{CY} перед запуском АЦП, позволяющее выполнить команду SLEEP.

^{** -} В столбце "Тип." приведены параметры при V_{DD} =5.0В @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

^{*** -} Оценочное значение.

16.0 Характеристики микроконтроллеров

Графики в этом разделе не проверены и предназначены только для оценки при разработке устройств. В некоторых графиках представлены данные вне рабочего диапазона (в частности для напряжения питания V_{DD}). Это только информационные данные.

Данные, представленные в этом разделе, являются среднестатистическим результатом испытаний большого числа микроконтроллеров в течение длительного времени. Типовое значение подразумевает среднее, а минимальное и максимальное - соответственно (среднее - 3σ) и (среднее + 3σ), где σ - стандартный разброс.

WWW.MICROCHIP.RU – поставки и техподдержка на русском языке

Puc. 16-7 График зависимости F_{OSC} от V_{DD} при различных R

Puc. 16-9 График зависимости F_{OSC} от V_{DD} при различных R

Puc. 16-15 График зависимости среднего периода WDT от V_{DD}

3.5

4.0

VDD (B)

4.5

5.0

2.5

3.0

0.2

0.0 L

5.5

Рис. 16-21 График зависимости минимального и максимального V_{IN} от V_{DD} (вход с триггером Шмидта, от -40°C до +125°C)

17.0 Корпуса микроконтроллеров

17.1 Описание обозначений на корпусах микроконтроллеров

28 - выводный PDIP

Пример

28 - выводный SOIC

Пример

Обозначения:

XX..X
Тип микроконтроллера*

YY
Две цифры года изготовления

WW
Две цифры номера недели изготовления считая с 1 января.

NNN
Алфавитно-цифровой код

Примечание. Если тип микроконтроллера не помещается в одну строку, то он будет перемещен на другую строку, ограничивая число доступных символов для информации заказчика.

^{*} Стандартная маркировка ОТР микросхем состоит из: типа микроконтроллера, код года, код недели, код завода изготовителя, код упаковщика кристалла в корпус. Изменение маркировки микросхемы выполняется за отдельную плату. Для QTР микроконтроллеров стоимость маркировки входит в цену микросхем QTP.

Описание обозначений на корпусах микроконтроллеров (продолжение)

40 - выводный PDIP

Пример

44 - выводный TQFP

Пример

44 - выводный MQFP

Пример

44 - выводный PLCC

Пример

Тип корпуса: 28-выводный PDIP - 300mil

Единицы изм	ерения		Дюймы*		N	1иллиметрь	ı
Пределы ра	змеров	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		28			28	
Расстояние между выводами	р		0.100			2.54	
Высота корпуса	Α	0.140	0.150	0.160	3.56	3.81	4.06
Толщина корпуса	A2	0.125	0.130	0.135	3.18	3.30	3.43
Расстояние между корпусом и платой	A1	0.015			0.38		
Ширина корпуса с выводами	Е	0.300	0.310	0.352	7.62	7.87	8.26
Ширина корпуса	E1	0.275	0.285	0.295	6.99	7.24	7.49
Длина корпуса	D	1.345	1.365	1.385	34.16	34.67	35.18
Длина нижней части вывода	L	0.125	0.130	0.135	3.18	3.30	3.43
Толщина вывода	С	0.008	0.012	0.015	0.20	0.29	0.38
Ширина верхней части вывода	B1	0.040	0.053	0.065	1.02	1.33	1.65
Ширина нижней части вывода	В	0.016	0.019	0.022	0.41	0.48	0.56
Полная ширина корпуса с выводами	eВ	0.320	0.350	0.430	8.13	8.89	10.92
Угол фаски верхней части корпуса	α	5	10	15	5	10	15
Угол фаски нижней части корпуса	β	5	10	15	5	10	15

* Основные размеры. Эквивалент JEDEC: MO-095

Тип корпуса: 28-выводный SOIC - 300mil

Единицы изм	ерения		Дюймы*		N	1иллиметрь	<u> </u>
Пределы ра	змеров	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		28			28	
Расстояние между выводами	р		0.050			1.27	
Толщина корпуса с выводами	Α	0.093	0.099	0.104	2.36	2.50	2.64
Толщина корпуса	A2	0.088	0.091	0.094	2.24	2.31	2.39
Расстояние между корпусом и платой	A1	0.004	0.008	0.012	0.10	0.20	0.30
Ширина корпуса с выводами	E	0.394	0.407	0.420	10.01	10.34	10.67
Ширина корпуса	E1	0.288	0.295	0.299	7.32	7.49	7.59
Длина корпуса	D	0.695	0.704	0.712	17.65	17.87	18.08
Размер ориентирующей фаски	h	0.010	0.020	0.029	0.25	0.50	0.74
Длина нижней части вывода	L	0.016	0.033	0.050	0.41	0.84	1.27
Угол наклона нижней части вывода	φ	0	4	8	0	4	8
Толщина вывода	C	0.009	0.011	0.013	0.23	0.28	0.33
Ширина вывода	В	0.014	0.017	0.20	0.36	0.42	0.51
Угол фаски верхней части корпуса	α	0	12	15	0	12	15
Угол фаски нижней части корпуса	β	0	12	15	0	12	15

^{*} Основные размеры.

Эквивалент JEDEC: MS-013

Тип корпуса: 40-выводный PDIP - 600mil

Единицы изм	ерения		Дюймы*		N	Лиллиметрь	ol
Пределы раз	змеров	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		40			40	
Расстояние между выводами	р		0.100			2.54	
Высота корпуса	Α	0.160	0.175	0.190	4.06	4.45	4.83
Толщина корпуса	A2	0.140	0.150	0.160	3.56	3.81	4.06
Расстояние между корпусом и платой	A1	0.015			0.38		
Ширина корпуса с выводами	Е	0.595	0.600	0.625	15.11	15.24	15.88
Ширина корпуса	E1	0.530	0.545	0.560	13.46	13.84	14.22
Длина корпуса	D	2.045	2.058	2.065	51.94	52.26	52.45
Длина нижней части вывода	L	0.120	0.130	0.135	3.05	3.30	3.43
Толщина вывода	С	0.008	0.012	0.015	0.20	0.29	0.38
Ширина верхней части вывода	B1	0.030	0.050	0.070	0.76	1.27	1.78
Ширина нижней части вывода	В	0.014	0.018	0.022	0.36	0.46	0.56
Полная ширина корпуса с выводами	eВ	0.620	0.650	0.680	15.75	16.51	17.27
Угол фаски верхней части корпуса	α	5	10	15	5	10	15
Угол фаски нижней части корпуса	β	5	10	15	5	10	15

^{*} Основные размеры.

Эквивалент JEDEC: MO-011

Тип корпуса: 44-выводный TQFP

Единицы измерения		Дюймы			Миллиметры*		
Пределы раз	змеров	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		44			44	
Расстояние между выводами	р		0.031			0.80	
Число выводов с одной стороны	n1		11			11	
Толщина корпуса с выводами	Α	0.039	0.043	0.047	1.00	1.10	1.20
Толщина корпуса	A2	0.037	0.039	0.041	0.95	1.00	1.05
Расстояние между корпусом и платой	A1	0.002	0.004	0.006	0.05	0.10	0.15
Длина нижней части вывода	L	0.018	0.024	0.030	0.45	0.60	0.75
Длина вывода	(F)		0.039		1.00		
Угол наклона нижней части вывода	φ	0	3.5	7	0	3.5	7
Ширина корпуса с выводами	Е	0.463	0.472	0.482	11.75	12.00	12.25
Длина корпуса с выводами	D	0.463	0.472	0.482	11.75	12.00	12.25
Ширина корпуса	E1	0.390	0.394	0.398	9.90	10.00	10.10
Длина корпуса	D1	0.390	0.394	0.398	9.90	10.00	10.10
Толщина вывода	С	0.004	0.006	0.008	0.09	0.15	0.20
Ширина вывода	В	0.012	0.015	0.017	0.30	0.38	0.44
Размер ориентирующей фаски	CH	0.025	0.035	0.045	0.64	0.89	1.14
Угол фаски верхней части корпуса	α	5	10	15	5	10	15
Угол фаски нижней части корпуса	β	5	10	15	5	10	15

^{*} Основные размеры.

Эквивалент JEDEC: MS-026

Тип корпуса: 44-выводный MQFP

Единицы измерения		Дюймы		Миллиметры*			
Пределы ра	змеров	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		44			44	
Расстояние между выводами	р		0.031			0.80	
Число выводов с одной стороны	n1		11			11	
Толщина корпуса с выводами	Α	0.079	0.086	0.093	2.00	2.18	2.35
Толщина корпуса	A2	0.077	0.080	0.083	1.95	2.03	2.10
Расстояние между корпусом и платой	A1	0.002	0.006	0.010	0.05	0.15	0.25
Длина нижней части вывода	L	0.029	0.035	0.041	0.73	0.88	1.03
Длина вывода	(F)		0.063			1.6	
Угол наклона нижней части вывода	φ	0	3.5	7	0	3.5	7
Ширина корпуса с выводами	E	0.510	0.520	0.530	12.95	13.20	13.45
Длина корпуса с выводами	D	0.510	0.520	0.530	12.95	13.20	13.45
Ширина корпуса	E1	0.390	0.394	0.398	9.90	10.00	10.10
Длина корпуса	D1	0.390	0.394	0.398	9.90	10.00	10.10
Толщина вывода	С	0.005	0.007	0.009	0.13	0.18	0.23
Ширина вывода	В	0.012	0.015	0.018	0.30	0.38	0.45
Размер ориентирующей фаски	CH	0.025	0.035	0.045	0.64	0.89	1.14
Угол фаски верхней части корпуса	α	5	10	15	5	10	15
Угол фаски нижней части корпуса	β	5	10	15	5	10	15

^{*} Основные размеры.

Эквивалент JEDEC: MS-022

Тип корпуса: 44-выводный PLCC

Единицы измерения		Дюймы*			Миллиметры		
Пределы ра:	змеров	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		44			44	
Расстояние между выводами	р		0.050			1.27	
Число выводов с одной стороны	n1		11			11	
Толщина корпуса с выводами	Α	0.165	0.173	0.180	4.19	4.39	4.57
Толщина корпуса	A2	0.145	0.153	0.160	3.68	3.87	4.06
Расстояние между корпусом и платой	A1	0.020	0.028	0.035	0.51	0.71	0.89
Высота ориентирующей фаски	A3	0.024	0.029	0.34	0.61	0.74	0.86
Размер ориентирующей фаски	CH1	0.040	0.045	0.050	1.02	1.14	1.27
Размер ориентирующей фаски	CH2	0.000	0.005	0.010	0.00	0.13	0.25
Ширина корпуса с выводами	E	0.685	0.690	0.695	17.40	17.53	17.65
Длина корпуса с выводами	D	0.685	0.690	0.695	17.40	17.53	17.65
Ширина корпуса	E1	0.650	0.653	0.656	16.51	16.59	16.66
Длина корпуса	D1	0.650	0.653	0.656	16.51	16.59	16.66
Расстояние между выводами	E2	0.590	0.620	0.630	14.99	15.75	16.00
Расстояние между выводами	D2	0.590	0.620	0.630	14.99	15.75	16.00
Толщина вывода	С	0.008	0.011	0.013	0.20	0.27	0.33
Ширина верхней части вывода	B1	0.026	0.029	0.032	0.66	0.74	0.81
Ширина нижней части вывода	В	0.013	0.020	0.021	0.33	0.51	0.53
Угол фаски верхней части корпуса	α	0	5	10	0	5	10
Угол фаски нижней части корпуса	β	0	5	10	0	5	10

* Основные размеры. Эквивалент JEDEC: MO-047

17.2 Правила идентификации типа микроконтроллеров PIC16F87X

Чтобы определить параметры микроконтроллеров воспользуйтесь ниже описанным правилом.

Микроконтроллер PIC16F87X ⁽¹⁾ , PIC16F87XT ⁽²⁾ , $4.0B \le V_{DD} \le 5.5B$ PIC16LF87X ⁽¹⁾ , PIC16LF87XT ⁽²⁾ , $2.0B \le V_{DD} \le 5.5B$ Максимальная тактовая частота $04 = 4M\Gamma \mu$ $10 = 10M\Gamma \mu$ $20 = 20M\Gamma \mu$ Температурный диапазон $- = \text{от } 0^{\circ}\text{C } \text{до } +70^{\circ}\text{C}$ $I = \text{от } -40^{\circ}\text{C } \text{до } +85^{\circ}\text{C}$ $E = \text{от } -40^{\circ}\text{C } \text{до } +125^{\circ}\text{C}$ Корпус PQ = MQFP PT = TQFP SO = SOIC SP = тонкий PDIP P = PDIP L = PLCC	<u>PART№</u> Микроконтроллер	<u>Х</u> Температурный диапазон	<u>/XX</u> Корпус	<u>ХХХ</u> Образец			
РІС16LF87X ⁽¹⁾ , РІС16LF87XT ⁽²⁾ , $2.0B \le V_{DD} \le 5.5B$ Максимальная тактовая частота $04 = 4M\Gamma \mu$ $10 = 10M\Gamma \mu$ $20 = 20M\Gamma \mu$ Температурный диапазон $- = \text{от } 0^{\circ}\text{C до } +70^{\circ}\text{C}$ $I = \text{от } -40^{\circ}\text{C до } +85^{\circ}\text{C}$ $E = \text{от } -40^{\circ}\text{C до } +125^{\circ}\text{C}$ Корпус $PQ = MQFP$ $PT = TQFP$ $SO = SOIC$ $SP = \text{тонкий PDIP}$ $P = PDIP$							
Максимальная тактовая частота	PIC16F87	7X ⁽¹⁾ , PIC16F87XT ⁽²⁾	$4.0B \le V_D$	$_{D} \le 5.5B$			
04 = 4МГц 10 = 10МГц 20 = 20МГц Температурный диапазон - = от 0°С до +70°С I = от -40°С до +85°С E = от -40°С до +125°С Корпус РQ = MQFP РТ = TQFP SO = SOIC SP = тонкий PDIP P = PDIP	PIC16LF8	87X ⁽¹⁾ , PIC16LF87XT	$^{-(2)}$, 2.0B \leq 3	$V_{DD} \le 5.5B$			
- = от 0°С до +70°С I = от -40°С до +85°С E = от -40°С до +125°С Корпус РО = MQFP РТ = TQFP SO = SOIC SP = тонкий PDIP P = PDIP	Максимальная такт	04 = 4МГц 10 = 10МГц					
I = от -40°C до +85°C E = от -40°C до +125°C Корпус PQ = MQFP PT = TQFP SO = SOIC SP = тонкий PDIP P = PDIP	Температурный диа	апазон					
E = от -40°C до +125°C Корпус PQ = MQFP PT = TQFP SO = SOIC SP = тонкий PDIP P = PDIP		- = от 0°C до +70°C					
Корпус PQ = MQFP PT = TQFP SO = SOIC SP = тонкий PDIP P = PDIP		I = от -40°С до +85°С					
PQ = MQFP PT = TQFP SO = SOIC SP = тонкий PDIP P = PDIP	E = от -40°С до +125°С						
PQ = MQFP PT = TQFP SO = SOIC SP = тонкий PDIP P = PDIP	Корпус						
PT = TQFP SO = SOIC SP = тонкий PDIP P = PDIP	Rophlyo	PQ = MQFP					
SP = тонкий PDIP P = PDIP							
P = PDIP		SO = SOIC					
		SP = тонкий PDIP					
L = PLCC							
		L = PLCC					

Пример

- 1. PIC16F877-20/P 301 = коммерческий температурный диапазон, корпус PDIP, 20МГц, нормальный диапазон напряжения питания, код QTP 301.
- PIC16LF876-04I/SO = промышленный температурный диапазон, корпус SOIC, 4МГц, расширенный диапазон напряжения питания.
- 3. **PIC16F877-10E/P** = расширенный температурный диапазон, корпус PDIP, 10МГц, нормальный диапазон напряжения питания.

- 1. F = CMOS FLASH; LF = CMOS FLASH с расширенным напряжением питания.
- 2. T = для работы в условиях вибрации, только корпуса SOIC, PLCC, MQFP, TQFP.

Уважаемые господа!

OOO «Микро-Чип» поставляет полную номенклатуру комплектующих фирмы Microchip Technology Inc

и осуществляет качественную техническую поддержку на русском языке.

С техническими вопросами Вы можете обращаться по адресу support@microchip.ru

По вопросам поставок комплектующих Вы можете обращаться к нам по телефонам:

(095) 963-9601 (095) 737-7545

и адресу sales@microchip.ru

На сайте www.microchip.ru

Вы можете узнать последние новости нашей фирмы, найти техническую документацию и информацию по наличию комплектующих на складе.