Your email address will be recorded when you submit this form. Not ee18btech11026@ilith.ac.in? Switch account $AC + b \text{ is convex!}$ $AC + b \text{ is convex}$ $AC + b \text{ is convex set}, C \subseteq \mathbb{R}^n, A \in \mathbb{R}^{mxn}, b \in \mathbb{R}^m, \text{ then } AC + b = \{Ax + b x \in C\} \subseteq \mathbb{R}^m$ $True$ $False$ $Let x \text{ be a } n - \text{ length vector and } x_i \text{ is the } i^{th} \text{ entry of } x.$ $Convex \text{ (always)}$ $Not \text{ convex}$ $Convex \text{ (always)}$ $Convex \text{ when p>= 0}$ $Convex \text{ when p>= 1}$ $\text{Intersection of half spaces is convex}$ $\text{ Union of half spaces is convex}$ $\text{ Simplex is a polyhedron}$ $\text{ Polyhedron is a simplex}$ $X \text{ is convex!}$	C is ?
If C is a convex set, $C\subseteq\mathbb{R}^n$, $A\in\mathbb{R}^{mxn}$, $b\in\mathbb{R}^m$, then $AC+b=\{Ax+b x\in C\}\subseteq\mathbb{R}^m$ \bigcirc True \bigcirc False Let x be a $n-$ length vector and x_i is the i^{th} entry of x . The set C is defined as $C=\{x:\left(\sum_{i=1}^n x_i ^p\right)^{1/p}\le 1\}$. Then C Convex (always) \bigcirc Not convex \bigcirc Convex when p>= 0 \bigcirc Convex when p>= 1 Which of the following are true? \bigcirc Intersection of half spaces is convex \bigcirc Union of half spaces is convex \bigcirc Simplex is a polyhedron \bigcirc Polyhedron is a simplex	C is ?
If C is a convex set, $C\subseteq\mathbb{R}^n$, $A\in\mathbb{R}^{mxn}$, $b\in\mathbb{R}^m$, then $AC+b=\{Ax+b x\in C\}\subseteq\mathbb{R}^m$ \bigcirc True \bigcirc False Let x be a $n-$ length vector and x_i is the i^{th} entry of x . The set C is defined as $C=\{x:\left(\sum_{i=1}^n x_i ^p\right)^{1/p}\le 1\}$. Then C Convex (always) \bigcirc Not convex \bigcirc Convex when p>= 0 \bigcirc Convex when p>= 1 Which of the following are true? \bigcirc Intersection of half spaces is convex \bigcirc Union of half spaces is convex \bigcirc Simplex is a polyhedron \bigcirc Polyhedron is a simplex	C is ?
$AC+b=\{Ax+b x\in C\}\subseteq\mathbb{R}^m$ $\bigcirc \text{ True }$ $\bigcirc \text{ False }$ Let x be a $n-\text{length vector and }x_i \text{ is the }i^{th}\text{entry of }x.$ The set C is defined as $C=\{x:\left(\sum_{i=1}^n x_i ^p\right)^{1/p}\leq 1\}.$ Then C $\bigcirc \text{ Convex (always)}$ $\bigcirc \text{ Not convex }$ $\bigcirc \text{ Convex when p>=0}$ $\bigcirc \text{ Convex when p>=1}$ Which of the following are true? $\bigcirc \text{ Intersection of half spaces is convex }$ $\bigcirc \text{ Union of half spaces is convex }$ $\bigcirc \text{ Union of half spaces is convex }$ $\bigcirc \text{ Simplex is a polyhedron }$ $\bigcirc \text{ Polyhedron is a simplex }$	C is ?
True False Let x be a $n-$ length vector and x_i is the i^{th} entry of x . The set C is defined as $C = \{x : \left(\sum_{i=1}^{n} x_i ^p\right)^{1/p} \le 1\}$. Then C Convex (always) Not convex Convex when $p >= 0$ Convex when $p >= 1$ Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	C is ?
Let x be a $n-$ length vector and x_i is the i^{th} entry of x . The set C is defined as $C=\{x:\left(\sum_{i=1}^n x_i ^p\right)^{1/p}\leq 1\}$. Then i Convex (always) Not convex Convex when p>= 0 Convex when p>= 1 Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	C is ?
The set C is defined as $C = \{x : \left(\sum_{i=1}^n x_i ^p\right)^{1/p} \le 1\}$. Then C Convex (always) Not convex Convex when p>= 0 Convex when p>= 1 Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	C is $?$
The set C is defined as $C = \{x : \left(\sum_{i=1}^n x_i ^p\right)^{1/p} \le 1\}$. Then C Convex (always) Not convex Convex when p>= 0 Convex when p>= 1 Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	C is $?$
Convex (always) Not convex Convex when p>= 0 Convex when p>= 1 Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	C is ?
Not convex Convex when p>= 0 Convex when p>= 1 Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	
Convex when p>= 0 Convex when p>= 1 Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	
Which of the following are true? Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	
 Intersection of half spaces is convex Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex 	
Union of half spaces is convex Simplex is a polyhedron Polyhedron is a simplex	
Simplex is a polyhedron Polyhedron is a simplex	
Polyhedron is a simplex	
X is convex!	
X is convex!	
$V = \{(x, y), \dots, y \in \mathbb{R}^n\}$	
$X = \{(x,y): y \ge -x^2, x \in \mathbb{R}\}$ O True	
○ False	
1. Which of the following sets is convex?	
a) $\{(x,y) \in R^2/xy \ge 1, x \ge 0, y \ge 0\}$ b) $\{(x,y) \in R^2/xy \ge 1\}$ c) $\{(x,y) \in R^2/xy \le 1, x \ge 0, y \ge 0\}$	
$\bigcirc a$	
○ b	
O c	
Equivalent representation of a norm ball of radius r and center $ar{\mathbf{x}}_c$ is	
$S = \{ar{\mathbf{x}}_c + rar{\mathbf{u}} ar{\mathbf{u}} \leq 1\}$ $S = \{ar{\mathbf{x}}_c + rar{\mathbf{u}}\}$	
Option 1 Option 2	
$S = \{ar{\mathbf{x}}_c + rar{\mathbf{u}} ar{\mathbf{u}} = 1\}$ $S = \{rar{\mathbf{x}}_c + ar{\mathbf{u}} ar{\mathbf{u}} \leq 1\}$	
Option 3 Option 4	
If C is an affine set, $y \in C$ and $x \in C$, then set $V = C - y = \{x - y \mid x \in C\}$ is	
Affine Convex	
O Subspace	
All of the above	
Which operation does not preserve convexity always	
O Intersection	
Union	
Affine map Projection	
O Projection	
2. The closed line segment between (1,1) and (1,1) can be written as the set a) $\{(x,y) \in R^2/(x,y) = (2\gamma - 1, 2\gamma - 1), \forall \gamma \in [0,1]\}$ b) $\{(x,y) \in R^2/(x,y) = (\gamma, 1 - \gamma), \forall \gamma \in [0,1]\}$	et.
c) $\{(x,y) \in R^2/x = y\}$	
○ a○ b	
O °	
Lot C. C. and C. ha comments in ma.	
LELV. U. ADO U. DO CONVOY CATE IN IUAN AND LAFD C. III There	
Let C, C ₁ , and C ₂ be convex sets in \mathbb{R}^n and let $\beta \in \mathbb{R}$ then $(a) \ \beta C := \{z \in \mathbb{R}^n \mid z = \beta x, x \in C\} \text{ is convex}$	
Let C, C ₁ , and C ₂ be convex sets in \mathbb{R}^n and let $\beta \in \mathbb{R}$ then (a) $\beta C := \{z \in \mathbb{R}^n \mid z = \beta x, x \in C\}$ is convex. (b) $C_1 + C_2 := \{z \in \mathbb{R}^n \mid z = x_1 + x_2, x_1 \in C_1, x_2 \in C_2\}$ is convex.	iex.
(a) $\beta C := \{z \in \mathbb{R}^n \mid z = \beta x, x \in C\}$ is convex.	ex.
(a) $\beta C := \{z \in \mathbb{R}^n \mid z = \beta x, x \in C\}$ is convex. (b) $C_1 + C_2 := \{z \in \mathbb{R}^n \mid z = x_1 + x_2, x_1 \in C_1, x_2 \in C_2\}$ is conv	ex.

Submit