

Maths for Computer Science Calculus

Prof. Magnus Bordewich

Sequences and limits

Sequences

Sequences of events are common in the world around us:

- 1. Your birthdays occurring each year
- 2. The sequence of events leading up to the first world war
- 3. The barcode of items going through a till...

What they have in common is an order of a set of things.

Mathematically we define a sequence to be exactly this:

A sequence is the ordered values of some function $f: \mathbb{N} \mapsto S$ given by

E.g. The sequence $1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \dots$

Is given by $f(x) = \frac{1}{2^x}$.

It could also be written $\left\{\frac{1}{2^n}\right\}$, or u_0 , u_1 , ..., where $u_n = \frac{1}{2^n}$.

A subsequence can be written $\left\{\frac{1}{2^n}\right\}_{n=3}^5 = \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}$

Sequences

A sequence $\{u_n\}$ may be:

- Monotonic
 - Increasing, or
 - Decreasing
- Strictly monotonic
- Bounded above
- Bounded below
- Bounded: bounded above and below

- Either
 - $u_{i+1} \ge u_i$ for all i.
 - $u_{i+1} \le u_i$ for all i.
- $u_{i+1} > u_i$ for all i or $u_{i+1} < u_i$ for all i.
- $u_i \leq M$ for some $M \in \mathbb{R}$.
- $u_i \ge m$ for some $m \in \mathbb{R}$.
- $m \le u_i \le M$ for some $m, M \in \mathbb{R}$.

Sequences: examples

- 1. $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is a bounded, strictly monotonic, decreasing sequence. Upper bound is 1, and is attained, the lower bound is 0 and is never attained.
- 2. $\{(-2)^n\}$ is an oscillating, unbounded sequence.
- 3. $\left\{\frac{(-1)^n}{n}\right\}_{n=1}^{\infty}$ is an oscillating, bounded sequence. Lower bound -1 is attained at n=1, upper bound 1/2 is attained at n=2.
- 4. $\left\{1 + \frac{(-1)^n}{n}\right\}_{n=1}^{\infty}$ is not monotonic, but values appear to be clustering closer and closer to 1.

Limits

A point u^* is the limit of sequence $\{u_n\}$ if for every $\epsilon>0$, there is a number N_{ϵ} such that for all $n>N_{\epsilon}$, $|u_n-u^*|<\epsilon$.

This is written $\lim_{n\to\infty} u_n = u^*$.

Examples:

1. The limit of $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is 0, or $\lim_{n\to\infty}\frac{1}{n}=0$.

Pick any small $\epsilon > 0$, e.g. $\epsilon = 0.01$. Then for any n > 100 we have $\frac{1}{n} < 0.01$, so we could use $N_{0.01} = 100$.

But we need to be able to do this for every $\epsilon > 0$.

In this case it is OK: take $N_{\epsilon} = \frac{1}{\epsilon}$.

Limits

A point u^* is the limit of sequence $\{u_n\}$ if for every $\epsilon > 0$, there is a number N_{ϵ} such that for all $n > N_{\epsilon}$, $|u_n - u^*| < \epsilon$.

Examples:

1. What is the limit of $\left\{\frac{(-1)^n}{n^{2+(-1)^n}}\right\}_{n=1}^{\infty}$?

$$\frac{-1}{1}$$
, $\frac{1}{2^3}$, $\frac{-1}{3}$, $\frac{1}{4^3}$,...

It doesn't matter that this is oscillating or that it is not monotonic, if we take $N_{\epsilon} = \frac{1}{\epsilon}$, then $|u_n - 0| < \epsilon$ for all $n > N_{\epsilon}$ still. So the limit is still 0.

Limit examples

What is
$$\lim_{n \to \infty} \left(\frac{5^{n+1} + 7^{n+1}}{5^{n} - 7^{n}} \right)$$
 ?

The general term is
$$\left(\frac{5^{n+1}+7^{n+1}}{5^{n}-7^{n}}\right) = \left(\frac{5\left(\frac{5}{7}\right)^{n}+7}{\left(\frac{5}{7}\right)^{n}-1}\right)$$

Since $\frac{5}{7} < 1$, as n gets large $\left(\frac{5}{7}\right)^n$ goes to 0, so the bracket above tends to $\frac{7}{-1} = -7$.

Hence
$$\lim_{n\to\infty} \left(\frac{5^{n+1}+7^{n+1}}{5^{n}-7^{n}}\right) = -7.$$

Limit examples

What is
$$\lim_{n\to\infty} \left(\frac{1^2+2^2+\cdots+n^2}{n^2}\right)$$
 ?

The general term
$$u_n$$
 is $\left(\frac{1^2+2^2+\cdots+n^2}{n^2}\right) = \left(\frac{\frac{n(n+1)(2n+1)}{6}}{n^2}\right) = \frac{n}{3} + \frac{1}{2} + \frac{1}{6n}$

As n increases without bound, so will u_n . The sequence diverges, and we write

$$\lim_{n\to\infty} \left(\frac{1^2 + 2^2 + \dots + n^2}{n^2} \right) \to \infty.$$

Note: not =, as infinity is not a number.

Limits: arithmetic

Let $\{u_n\}$ and $\{v_n\}$ be sequences such that $\lim_{n\to\infty}u_n=L$ and $\lim_{n\to\infty}v_n=M$.

Then

- $\{u_n + v_n\}$ is a sequence such that $\lim_{n \to \infty} (u_n + v_n) = L + M$.
- $\{u_nv_n\}$ is a sequence such that $\lim_{n\to\infty}(u_nv_n)=LM$.
- $\left\{\frac{u_n}{v_n}\right\}$ is a sequence such that, provided $M \neq 0$, $\lim_{n \to \infty} \left(\frac{u_n}{v_n}\right) = \frac{L}{M}$.

Indeterminate form

A limit of the form $\{u_nv_n\}$ or $\left\{\frac{u_n}{v_n}\right\}$ where the above does not apply.

I.e. if $\lim_{n\to\infty}u_n=0$ and $\lim_{n\to\infty}v_n\to\infty$, we cannot say if $\lim_{n\to\infty}(u_nv_n)$ exists.

Or if
$$L = M = 0$$
, we cannot say if $\lim_{n \to \infty} \left(\frac{u_n}{v_n}\right)$ exists.

Fundamental Theorem for Sequences

Theorem: Every increasing sequence that is bounded above tends to a limit. Conversely, every decreasing sequence that is bounded below tends to a limit.

Proof: Let $\{u_n\}$ be an increasing sequence that is bounded above. Then there must be a least upper bound L such that L is an upper bound and no number less than L is an upper bound.

Since L is the least upper bound, if we take any smaller number $L - \epsilon$, then there is some u_N such that $u_N > L - \epsilon$. But since the sequence is increasing, for all n > N we have $L - \epsilon < u_n \le L$, where the second inequality is because L is an upper bound. Therefore L is the limit of $\{u_n\}$.

The proof for a decreasing sequence is similar.

Algorithmic consequences: roots

Consider the sequence defined by:

$$u_n = \frac{1}{2} \left(u_{n-1} + \frac{a}{u_{n-1}} \right)$$

for some positive number a and $u_0 > 0$.

Let $u_i = k\sqrt{a}$ for some k > 0 then

$$\begin{split} u_{i+1} - \sqrt{a} &= \frac{1}{2} \left(k \sqrt{a} + \frac{1}{k} \sqrt{a} \right) - \sqrt{a} = \sqrt{a} \left(\frac{k}{2} + \frac{1}{2k} - 1 \right) \\ &= \frac{\sqrt{a}}{2k} (k^2 + 1 - 2k) = \frac{\sqrt{a}}{2k} (k - 1)^2 > 0. \end{split}$$

So $u_i > \sqrt{a}$ for all $i \ge 1$.

Observe that

$$u_i - u_{i+1} = u_i - \frac{1}{2} \left(u_i + \frac{a}{u_i} \right) = \frac{1}{2u_i} \left(u_i^2 - a \right) > 0,$$

so the sequence is decreasing for all i > 1.

Hence $\{u_n\}_1^{\infty}$ is decreasing and bounded below, therefore converges to a limit.

Algorithmic consequences: roots

Consider the sequence defined by:

$$u_n = \frac{1}{2} \left(u_{n-1} + \frac{a}{u_{n-1}} \right)$$

for some positive number a and $u_0 > 0$.

Hence $\{u_n\}_1^{\infty}$ is decreasing and bounded below, therefore converges to a limit L.

L must satisfy
$$L = \frac{1}{2} \left(L + \frac{a}{L} \right)$$
, i.e. $L^2 = \frac{L^2}{2} + \frac{a}{2}$ whence $L^2 = a$.

So we can **algorithmically compute** a square root for a using the recurrence relation above and the process will converge.

Euler's number e

Euler's number e and the related exponential function $f(x) = e^x$ (sometimes written exp(x)) have great significance in mathematics and calculus.

We will define e to be the limit: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$.

How do we even know the limit exists?

Consider u_n . Expanding out the bracket $u_n = 1 + n \cdot \frac{1}{n} + \binom{n}{2} \left(\frac{1}{n}\right)^2 + \dots + \binom{n}{n} \left(\frac{1}{n}\right)^n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right) < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 1 + \frac{1-\left(\frac{1}{2}\right)^n}{1-\frac{1}{n}} < 3.$

where the penultimate inequality comes from the geometric progression formula.

The sequence is increasing (extra term in u_n and coefficients increase), and bounded above by 3, hence converges to a limit we call e.