### Sentiment Analysis

Human Language from a Computational Perspective June 27, 2018

### Outline

Text classification

Machine learning algorithms

### Text classification

Many problems involve classification:

Topic

NEWS, SPORTS, ...

Author/gender

MALE, FEMALE

Spam filtering

SPAM, NOT-SPAM

### Sentiment classification

Given an input sentence, return its sentiment label:

```
+1 (POSITIVE) O (NEUTRAL) -1 (NEGATIVE)
```

(or a number on a finer scale, e.g. 1-5)

### News and stocks





### **Twitter**

V\_FSD: RT @FreeMemesKids: Love my new fidget spinner https://t.co/lcA6Ui6fsV

MegzEdits: @23Duckk Oh no the fidget spinner?

fffaraa: @ibrahimyussop Omg.. not the fidget spinner

boybrunch: RT @a1andar: The Born This Way album cover except Gaga is a fidget spinner

eve bertie: I bought a fidget spinner and I think it's the best thing I've ever done

<u>Hamza0207</u>: I broke this little girls **fidget spinner** and I legit feel so bad ??

### Algorithm requirements

Input: sequence of tokens

[OH, NO, THE, FIDGET, SPINNER, ?]

Output: label (number)

-1

## Bag of words

Simple approach: ignore the order, and just look for indicative tokens:

```
NOT GREAT DAMN LOVE HATE ...
```

Assign a weight to each token:

$$0 +1 -1 +2 -2 \dots$$

### Bag of words: classification

#### Calculate score for sentence:

```
THE ONLY REASON I LOVE MONDAYS ... ZUMBA !!!! 0 + 0 + 0 + 0 + (+2) + (-1) + 0 + (+1) + (+1) = +3
```

Since 3 > 0, predict:

+1 (POSITIVE)

# Bag of words algorithm

```
classify(L, W):
                         ▷ L: input sentence,
                            W: table of weights for words
s ← 0
i ← 1
while i \leq len(L):
   s \leftarrow s + W[L[i]]
                                 +1 \text{ if s} > 0
   i \leftarrow i + 1
                                 0 \text{ if } s = 0
return sign(s)
                                 -1 if s < 0
```

## Learning a model

How to determine the word weights?
In language models and POS tagging,
we **learned** the statistics as Counts.

Here we can learn Weights.

## Perceptron

The perceptron is a **learning** algorithm.

Input: list of samples (sentence + label)

Labels given as numbers: +1 0 -1

Output: table of weights for each word

(which can then be used to classify new sentences.)

## Perceptron

The algorithm goes over all samples repeatedly, until there are no errors. Whenever there is an error, it updates the weights of all tokens in the sample.

# Perceptron algorithm

```
X: list of input sentence (samples)
train(X, Y):
W ← [0 for all words]
                           Y: list of labels (one per sample)
while W is changing:
                         training iterations
   i ← 1
   while i ≤ len(X):
                      go through all samples
       if classify(X[i], W) \neq Y[i]:
                                       b if the model is wrong,
           update(X[i], Y[i], W)
                                          update its weights
       i \leftarrow i + 1
                         return final learned weights
return W
```

## Perceptron algorithm

update(L, y, W):

L: input sentence, y: label,

i ← 1

W: table of weights for words

while  $i \leq len(L)$ :

go through sentence tokens

 $W[L[i]] \leftarrow W[L[i]] + y$ 

 $i \leftarrow i + 1$ 

update weight by

adding y to it

#### First iteration, first sample

$$X[1] = \begin{array}{c} THIS IS GREAT \\ 0 + 0 + 0 = 0 \end{array}$$

Result: 0 (NEUTRAL)

$$Y[1] = 1 \neq 0$$



|       | THIS  | 0 |
|-------|-------|---|
| W =   | IS    | 0 |
| v v — | GREAT | 0 |
|       | AWFUL | 0 |

First iteration, first sample

$$X[1] = \begin{array}{c} THIS IS GREAT \\ 0 + 0 + 0 = 0 \end{array}$$

Result: 0 (NEUTRAL)

| Y | [1  | ] = | 1 | ≠ O |
|---|-----|-----|---|-----|
|   | L . |     |   |     |



|       | THIS  | 1 |
|-------|-------|---|
| W =   | IS    | 1 |
| v v — | GREAT | 1 |
|       | AWFUL | 0 |

**Updating weights** 

#### First iteration, second sample

$$X[2] = {THIS IS AWFUL \over 1 + 1 + 0 = 0}$$

Result: 1 (POSITIVE)

$$Y[2] = -1 \neq 1$$

|       | THIS  | 1 |
|-------|-------|---|
| W =   | IS    | 1 |
| v v — | GREAT | 1 |
|       | AWFUL | 0 |

First iteration, second sample

$$X[2] = {THIS IS AWFUL \atop 1 + 1 + 0 = 0}$$

Result: 1 (POSITIVE)

| Y[2] = - | - 1 | <b>≠</b> 1 |
|----------|-----|------------|



| THIS  | 0  |
|-------|----|
| IS    | 0  |
| GREAT | 1  |
| AWFUL | -1 |

**Updating weights** 

W =

#### Second iteration, first sample

$$X[1] = {THIS IS GREAT \atop O + O + 1 = 1}$$

Result: 1 (POSITIVE)

$$Y[1] = 1$$



|       | THIS  | 0  |
|-------|-------|----|
| W =   | IS    | O  |
| v v — | GREAT | 1  |
|       | AWFUL | -1 |

#### Second iteration, second sample

$$X[2] = {THIS IS AWFUL} \\ 0 + 0 + -1 = -1$$

| Result: | -1 (NEGATIVE | :) |
|---------|--------------|----|
|---------|--------------|----|

| THIS  | 0  |
|-------|----|
| IS    | 0  |
| GREAT | 1  |
| AWFUL | -1 |

W =





Finished iteration without updating weights, so return W.

W can now be used to classify new sentences.

|       | THIS  | 0  |
|-------|-------|----|
| W =   | IS    | 0  |
| v v — | GREAT | 1  |
|       | AWFUL | -1 |

### Problem: order matters

THAT IS NOT TRUE, IT IS GREAT

has the same tokens as

THAT IS TRUE, IT IS NOT GREAT

Will be classified the same

# Generalizing

Instead of single words, use features.

#### Examples for features:

- first token is great?
- contains NOT followed by BAD?
- contains TASTE with part of speech NN?

## Generalizing

In Bag of Words, all features are:

contains <w>?

where <w> is some word.

This is also called unigram features.

# Generalizing

### We can also use bigram features:

contains <w1> followed by <w2>?

where <w1> and <w2> are words. Or:

contains <w> with part-of-speech ?

etc

### Linear classifier

```
classify(L, F, W):
                       L: input sentence, F: features to check,
                            W: table of weights for features
s ← 0
i ← 1
while i \leq len(F):
                         go through possible features
    f ← F[i]
    if f(L):
                         by the feature f is true for L
        s ← s + W[f] > add the feature's weight to the score
    i \leftarrow i + 1
                         \triangleright 1 \text{ if } s > 0, \quad 0 \text{ if } s = 0, \quad 1 \text{ if } s > 0
return sign(s)
```

### Linear classifier

The same as the Bag of Words classifier, but using general features and not just words.

Might be even millions of features!

MegzEdits: @23Duckk Oh no the fidget spinner?

The unigram features Он and мо may not be clearly negative (weights will stay ~0), but the bigram feature Он мо is negative.

### Multi-class classifier

So far we discussed **binary** classifiers, but there can be more than two labels.

### Example:

2 (VERY POSITIVE), 1 (POSITIVE), 0, -1 (NEGATIVE), -2 (VERY NEGATIVE)

### Multi-class classifier

Instead of a single score, the classifier will have a score for each possible label, and then choose the label with the top score.



Learning: different weights for each label.

### Linear multi-class classifier

```
classify(L, F, W): ▷ L: input sentence, F: features to check
S ← [0 for all labels] W: table of weights for features for each
i ← 1
                         label
                      go through possible features
while i \leq len(F):
   f ← F[i]
   if f(L):
                      by the feature f is true for L
       S ← S + W[f] > add the feature's weight to the score
   i \leftarrow i + 1
                         for each label
return argmax(S)
```

# Back to parsing



## Perceptron for parsing

If we see the state on the left here, we need to know to apply **RIGHT-ARC**<sub>dobj</sub>



# Features for parsing

- rightmost token on the stack is <w>?
- buffer leftmost part-of-speech is ?
- second stack token is a parent?
- etc.



# Perceptron for parsing

Perceptron + word/part-of-speech

unigram, bigram features: pretty good parser.

| Parser             | UAS (%) | LAS (%) |
|--------------------|---------|---------|
| MaltParser         | 90.93   | 88.95   |
| Parsey McParseface | 94.41   | 92.55   |

# Twitter sentiment analysis

Training any model requires labeled data:

learning from examples.



# Problem: labeling

Manually annotating tweets takes time and money.

# Avoiding manual work

Automatically building a training set using the **emoticons** in the tweets:

| POSITIVE |    |    | NEGATIVE |    |     |  |
|----------|----|----|----------|----|-----|--|
| :)       | :D | :) | :(       | =( | : ( |  |
| :-)      | =) | ;) | :-(      | :/ | =/  |  |

Alec Go, Richa Bhayani, and Lei Huang. 2009. <u>Twitter sentiment classification using distant supervision.</u>

Technical report, Stanford.

### Problem: sarcasm

People sometimes say the opposite of what they mean.

# Sarcasm recognition

Sarcasm: "saying the opposite of what you mean in a way intended to make someone else feel stupid or show you are angry".

listening to Andrew Ridgley by Black Box Recorder on @Grooveshark: http://tinysong.com/cO6i #goodmusic

I guess you should expect a WONDERFUL video tomorrow. #sarcasm

#### Accuracy: 94.7%

- Oren Tsur, Dmitry Davidov, Ari Rappoport. <u>ICWSM A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Product Reviews</u>.
   <u>Fourth International AAAI Conference on Weblogs and Social Media (ICWSM) 2010</u>.
- 2. Oren Tsur, Dmitry Davidov, Ari Rappoport. <u>Semi-Supervised Recognition of Sarcastic Sentences in Twitter and Amazon</u>. <u>Computational Natural Language Learning (CoNLL) 2010</u>.

#### Multi-class labels

Hashtag- and smiley-based labels: 51 or 16 labels instead of just two (positive/negative)

| Hashtags | Smileys |
|----------|---------|
| #sad     | ;)      |
| #crazy   | :(      |
| #bored   | X(      |
| #fun     | :S      |

#### Artificial neural networks

Instead of using the score for classification, give it to another linear classifier ("multi-layer perceptron")



#### Artificial neural networks

Only the output of the last layer is actually used for classification.



## Deep neural networks

Many layers sometimes work

better.

("deep learning")



## Training neural networks

Perceptron only works for one layer.

Instead, use gradient descent algorithms.





### Sentiment treebank



# Word embedding

#### Use vectors to represent words.



# NNs for parsing

NN + word embedding features:

best parsers today.

| Parser             | UAS (%) | LAS (%) |
|--------------------|---------|---------|
| MaltParser         | 90.93   | 88.95   |
| Parsey McParseface | 94.41   | 92.55   |

#### Links

- http://www.sciencefriction.net/blog/2010/12/06/1120/
- https://www.aclweb.org/anthology/E/E17/E17-2017.pdf
- https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
- http://www.cs.huji.ac.il/~danielh/P17-1104.pdf
- https://github.com/ayushoriginal/Sentiment-Analysis-Twitter