Partie entière

Exercice 1 ★★

Soit $x \in \mathbb{R}_+$. Montrer que $\left| \sqrt{\lfloor x \rfloor} \right| = \left\lfloor \sqrt{x} \right\rfloor$.

Exercice 2 ★★★

Montrer que pour tout $n \in \mathbb{N}$, $\left\lfloor \sqrt{n} + \sqrt{n+1} \right\rfloor = \left\lfloor \sqrt{4n+2} \right\rfloor$.

Exercice 3 ★★

Soit $n \in \mathbb{N}^*$. Etablir que

$$\forall x \in \mathbb{R}, \quad \sum_{k=0}^{n-1} \left[x + \frac{k}{n} \right] = \lfloor nx \rfloor.$$

Exercice 4 ★

Calcul d'une partie entière

On se propose de calculer la partie entière du réel

$$\alpha = \sum_{k=1}^{10000} \frac{1}{\sqrt{k}}.$$

1. Établir que :

$$\forall n \in \mathbb{N}^*, \ \frac{1}{\sqrt{n+1}} < 2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}}.$$

2. En déduire $[\alpha]$.

Exercice 5 ★

Prouver que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$,

$$\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor.$$

Exercice 6 ★★

Prouver que $\forall x \in \mathbb{R}$,

$$\left\lfloor \frac{x+1}{2} \right\rfloor + \left\lfloor \frac{x}{2} \right\rfloor = \lfloor x \rfloor.$$

Exercice 7 ★

Partie fractionnaire d'un réel

On définit *la partie fractionnaire* d'un nombre réel x par

$$\{x\} = x - \lfloor x \rfloor.$$

- **1.** Calculer {54, 465} et {-36, 456}.
- **2.** Soit $x \in \mathbb{R}$. Comparer $\{x\}$ et $\{-x\}$.
- 3. Prouver que la fonction définie sur $\mathbb R$ par

$$x \longmapsto \{x\}$$

est périodique et tracer son graphe.

Exercice 8 ★

Déterminer l'ensemble des valeurs prises par l'expression

$$[x+y]-[x]-[y]$$

lorsque x et y décrivent \mathbb{R} .

Exercice 9 ★★

Une addition par paliers

Un classique.

1. Soit $m \in \mathbb{N}$. Déterminer les entiers naturels k tels que

$$\left|\sqrt{k}\right| = m.$$

2. Soit $n \ge 0$. Calculer en fonction de n,

$$u_n = \sum_{k=0}^{n^2 + 2n} \left\lfloor \sqrt{k} \right\rfloor.$$

Exercice 10 ★

Deux équations avec partie entière

Un tracé

Résoudre sur $\mathbb R$ les équations

1.
$$|2x-1| = |x+1|$$
;

2.
$$|x+3| = |x-1|$$
.

Exercice 11 ★

Tracer le graphe de la fonction f définie sur $\mathbb R$ par

$$x \mapsto \left[\left| \frac{3}{2} - x \right| \right].$$

Exercice 12 ★

Une inégalité sur la partie entière

Etablir que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$:

$$0 \leqslant \lfloor nx \rfloor - n \lfloor x \rfloor \leqslant n - 1.$$

Bornes supérieures et inférieures

Exercice 13 ★★ Point fixe

Soit f une application *croissante* de [0,1] dans [0,1]. On souhaite montrer que f admet un point fixe, c'est-à-dire que'il existe $l \in [0, 1]$ tel que f(l) = l.

- 1. On pose $A = \{x \in [0,1] \mid f(x) \ge x\}$. Montrer que A est non vide et majorée.
- **2.** On note alors $c = \sup A$. Montrer que $c \in [0, 1]$.
- **3.** Montrer que $c \le f(c)$.
- **4.** Montrer que $f(c) \in A$. Conclure.

Exercice 14 ★★★

ENSEA 2010

Pour $n \in \mathbb{N}^*$, on note s_n la somme des chiffres de l'écriture décimale de n.

- **1.** Montrer que $s_n \le 9(\log_{10} n + 1)$.
- 2. Montrer que la suite $\left(\frac{S_{n+1}}{S_n}\right)$ est bornée. Quelles sont les bornes supérieure et inférieure de l'ensemble des valeurs de cette suite? Sont-elles atteintes?

Exercice 15 ***

Soient A et B deux ensembles non vides et f une application bornée de A \times B dans \mathbb{R} . Comparer $\sup_{x \in A} \left(\inf_{y \in B} f(x, y) \right)$ et $\inf_{y \in B} \left(\sup_{x \in A} f(x, y) \right)$.

Exercice 16 ★★

Soit f une application bornée de $\mathbb R$ dans $\mathbb R$. Pour $x \in \mathbb R$, on pose

$$g(x) = \inf_{y \ge x} f(y)$$
 et $h(x) = \sup_{y > x} f(y)$

Déterminer le sens de variation de g et h.

Exercice 17 ★

Etudier l'existence puis déterminer le cas échéant les bornes supérieure et inférieure des ensembles suivants:

$$\mathbf{1.} \ \mathcal{A} = \left\{ 1 - \frac{2}{n}, \ n \in \mathbb{N}^* \right\}$$

1.
$$\mathcal{A} = \left\{ 1 - \frac{2}{n}, \ n \in \mathbb{N}^* \right\};$$
 5. $\mathcal{E} = \left\{ \frac{2^n}{2^m + 3^{n+m}}, \ (m, n) \in \mathbb{N}^2 \right\};$

2.
$$\mathcal{B} = \left\{1 - \frac{1}{m} - \frac{1}{n}, (m, n) \in (\mathbb{Z}^*)^2\right\};$$

2.
$$\mathcal{B} = \left\{1 - \frac{1}{m} - \frac{1}{n}, (m, n) \in (\mathbb{Z}^*)^-\right\};$$

3. $\mathcal{C} = \left\{1 - \frac{1}{n-m}, (m, n) \in \mathbb{Z}^2, m \neq n\right\};$
6. $\mathcal{F} = \left\{\frac{n+2}{n+1} + \frac{q-1}{q+1}, (n, q) \in \mathbb{N}^2\right\};$

4.
$$\mathcal{D} = \left\{ \frac{pq}{p^2 + q^2}, \ (p, q) \in (\mathbb{N}^*)^2 \right\}$$

4.
$$\mathcal{D} = \left\{ \frac{pq}{p^2 + q^2}, \ (p, q) \in (\mathbb{N}^*)^2 \right\};$$
 7. $\mathcal{G} = \left\{ \frac{mn}{m^2 + mn + n^2}, \ (m, n) \in (\mathbb{N}^*)^2 \right\}.$

Exercice 18 ★

Soient A et B deux parties non vides et bornées de \mathbb{R} . Montrer que $A \cup B$ est non vide et bornée et que

$$\sup(A \cup B) = \max \left[\sup(A), \sup(B)\right]$$

et

$$\inf(A \cup B) = \min [\inf(A), \inf(B)].$$

Exercice 19 ★

Un calcul de bornes

Prouver l'existence puis calculer les bornes supérieures et inférieures de l'ensemble

$$A = \{ (-1)^n / n \mid n \ge 1 \}.$$

Exercice 20 ★

Bornes d'une somme de parties

Soient A et B des parties non vides de \mathbb{R} . On définit

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Montrer que si A et B sont bornées, alors A + B l'est aussi et que

$$\inf(A + B) = \inf(A) + \inf(B)$$

et

$$\sup(A + B) = \sup(A) + \sup(B).$$

Exercice 21 ★★

Distance à une partie

Pour tout $A \subset \mathbb{R}$ *non vide* et tout $x \in \mathbb{R}$, on pose

$$d(x, A) = \inf\{ |x - a| | a \in A \}.$$

(expression qui se lit : « distance de $x \grave{a} A$ »)

- 1. Donner une interprétation géométrique de d(x, A) sur la droite réelle.
- **2.** Examiner les cas où A = [0, 1] et x = 1, 2, 1/2 ou -3.
- **3.** On revient au cas général. Justifier l'existence de d(x, A).
- **4.** La borne inférieure d(x, A) est-elle un plus petit élément? Illustrer par divers exemples.
- **5.** Caculer $d(x, \mathbb{R} \setminus \mathbb{Q})$ pour tout $x \in \mathbb{R}$. Même question avec $d(x, \mathbb{Q})$.
- **6.** Soit $(x, y) \in \mathbb{R}^2$. Montrer que

$$|d(x, A) - d(y, A)| \leq |x - y|.$$

Densité

Exercice 22 ★★★

Montrer que A = $\{\sqrt{m} - \sqrt{n}, (m, n) \in \mathbb{N}^2\}$ est dense dans \mathbb{R} .

Exercice 23 ★★

Soit f une application de \mathbb{R} dans \mathbb{R} telle que

$$\forall (x, y) \in \mathbb{R}^2, \ f(x + y) = f(x) + f(y)$$

On pose a = f(1).

- 1. Déterminer f(0).
- **2.** Montrer que pour tout $n \in \mathbb{N}$, f(n) = an.
- **3.** Montrer que pour tout $n \in \mathbb{Z}$, f(n) = an.
- **4.** Montrer que pour tout $r \in \mathbb{Q}$, f(r) = ar.
- **5. a.** Soit $x \in \mathbb{R}$. Montrer qu'il existe deux suites de rationnels (α_n) et (β_n) convergeant vers x telles que $\alpha_n \le x \le \beta_n$.
 - **b.** On suppose f croissante. Montrer que f(x) = x pour tout $x \in \mathbb{R}$.
- **6.** Déterminer toutes les applications croissantes f de $\mathbb R$ dans $\mathbb R$ telles que

$$\forall (x, y) \in \mathbb{R}^2, \ f(x + y) = f(x) + f(y)$$

Exercice 24 ★

Les affirmations suivantes sont-elles vraies? On justifiera à chaque fois sa réponse.

- **1.** Si \mathcal{A} est une partie de \mathbb{R} dense dans \mathbb{R} , alors $\mathbb{R} \setminus \mathcal{A}$ n'est pas dense dans \mathbb{R} .
- **2.** \mathbb{Z} est dense dans \mathbb{R} .
- **3.** Si \mathcal{A} et \mathcal{B} sont deux parties de \mathbb{R} telles que $\mathcal{A} \subset \mathcal{B}$ et \mathcal{A} est dense dans \mathbb{R} , alors \mathcal{B} est également dense dans \mathbb{R} .
- **4.** Il existe des parties de \mathbb{R} bornées et denses dans \mathbb{R} .

Exercice 25 ★★

Etablir que $E = \{r^3 \mid r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Irrationnels

Exercice 26 ★★

Irrationnalité de e

Soit n un entier supérieur ou égal à 2. On définit une fonction g par $g(x) = e^{-x} \sum_{k=0}^{n} \frac{x^k}{k!}$ pour $x \in [0,1]$. On définit également une fonction h par $h(x) = g(x) + e^{-x} \frac{x^n}{n!}$.

- 1. Montrer que g est strictement décroissante sur [0, 1].
- 2. En déduire que $\sum_{k=0}^{n} \frac{1}{k!} < e$.
- **3.** Montrer que h est strictement croissante sur [0, 1].
- **4.** En déduire que $e < \left(\sum_{k=0}^{n} \frac{1}{k!}\right) + \frac{1}{n!}$.
- **5.** On suppose que e est rationnel. Il existe donc deux entiers naturels p,q tels que $e=\frac{p}{q}$. Montrer par l'absurde que q>n.
- 6. Conclure.

Exercice 27 ***

Théorème de Beatty

Soit α et β deux réels non nuls tels que $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. On suppose $\alpha > 1$ et α *irrationnel*. On pose

$$A = \{ \lfloor n\alpha \rfloor \mid n \in \mathbb{N}^* \} \text{ et } B = \{ \lfloor n\beta \rfloor \mid n \in \mathbb{N}^* \}$$

- 1. Montrer que $\beta > 1$ et que β est également irrationnel.
- **2.** On suppose qu'il existe un couple $(p, q) \in (\mathbb{N}^*)^2$ tel que $\lfloor p\alpha \rfloor = \lfloor q\beta \rfloor$. On pose alors $k = \lfloor p\alpha \rfloor = \lfloor q\beta \rfloor$.
 - **a.** Montrer que $p-\frac{1}{\alpha}<\frac{k}{\alpha}< p$ et $q-\frac{1}{\beta}<\frac{k}{\beta}< q$ et aboutir à une contradiction.
 - **b.** En déduire que $A \cap B = \emptyset$.
- **3.** On suppose qu'il existe $k \in \mathbb{N}^*$ qui n'est ni dans A ni dans B.
 - **a.** Montrer qu'il existe un couple $(p,q) \in \mathbb{N}^2$ tel que $\lfloor p\alpha \rfloor < k < \lfloor (p+1)\alpha \rfloor$ et $\lfloor q\beta \rfloor < k < \lfloor (q+1)\beta \rfloor$.
 - **b.** Montrer que $p < \frac{k}{\alpha} < p+1-\frac{1}{\alpha}$ et $q < \frac{k}{\beta} < q+1-\frac{1}{\beta}$ et aboutir à une contradiction.
 - **c.** En déduire que $A \cup B = \mathbb{N}^*$.

Exercice 28 ★★

Soit $n \in \mathbb{N}$ impair tel que $n \ge 3$. On pose $\varphi = \arccos \frac{1}{\sqrt{n}}$. On souhaite montrer que $\frac{\varphi}{\pi}$ est irrationnel.

- 1. Pour $k \in \mathbb{N}$, on pose $A_k = \left(\sqrt{n}\right)^k \cos k\varphi$. Montrer que pour tout $k \in \mathbb{N}^*$, $A_{k+1} + nA_{k-1} = 2A_k$.
- **2.** En déduire que les A_k sont des entiers.
- 3. Montrer qu'aucun des A_k n'est divisible par n.
- 4. Conclure en raisonnant par l'absurde.

Exercice 29 ★

Prouver que le nombre $\frac{\ln(2)}{\ln(3)}$ est irrationnel.

Exercice 30 ★

Le réel $r = \sqrt{2} + \sqrt{3}$ est-il rationnel?

Exercice 31

Rationnels et irrationnels

Que dire de x + y et xy dans les quatre cas suivants?

1. $x, y \in \mathbb{Q}$;

3. $x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}$;

2. $x, y \in \mathbb{R} \setminus \mathbb{Q}$;

4. $y \in \mathbb{Q}, x \in \mathbb{R} \setminus \mathbb{Q}$.

Exercice 32 ★

Racines carrées d'entiers

Montrer que si $n \in \mathbb{N}$, \sqrt{n} est rationnel si et seulement si n est un carré parfait (ie de la forme m^2 avec $m \in \mathbb{N}$).

Intervalles

Exercice 33 ★

Soit $(a, b) \in \mathbb{R}^2$ tel que $a \le b$. Montrer que

$$[a,b] = \{(1-t)a + tb, \ t \in [0,1]\}$$

Exercice 34

Prouver l'égalité

$$\bigcup_{n \ge 1} \left| \frac{1}{n}, \frac{2}{n} \right| =]0, 1[\cup]1, 2[.$$

Relations binaires

Exercice 35 ★

Soit φ une application de \mathbb{R} dans \mathbb{R} . Pour tous réels a, b on pose

$$a \leq_{\varphi} b \iff \varphi(b) - \varphi(a) \geqslant |b - a|$$
.

- **1.** Montrer que \leq_{φ} est une relation d'ordre sur \mathbb{R} .
- **2.** Montrer que cet ordre est total si et seulement si pour tous réels $a, b, |\varphi(b) \varphi(a)| \ge |b a|$.
- **3.** Quel ordre obtient on si $\varphi = Id_{\mathbb{R}}$?

Exercice 36 ★

Soit X un ensemble de cardinal supérieur à 1. On munit $\mathcal{P}(X)$ de l'ordre \subset . On note $E \subset \mathcal{P}(X)$ l'ensemble des singletons de E.

- 1. E possède-t-il un plus grand élément?
- **2.** E possède-t-il une borne supérieure ?

Exercice 37 ★★

L'ordre lexicographique

On définit une relation binaire sur \mathbb{N}^2 par

$$x \le y$$
 si et seulement si $\begin{pmatrix} x_1 < y_1 \\ \text{ou} \\ x_1 = y_1 \text{ et } x_2 \le y_2 \end{pmatrix}$

où
$$x = (x_1, x_2)$$
 et $y = (y_1, y_2)$

- **1.** Prouver que \leq est une relation d'ordre sur \mathbb{N}^2 .
- **2.** L'ordre est-il total?
- 3. On pose $A = \{(p, p), p \in \mathbb{N}\}$ et

$$B = \{(2, 10^p), p \in \mathbb{N}\}.$$

Les parties A et B de (\mathbb{N}^2 , \leq) sont-elles majorées ? Possèdent-elles un plus grand élément ? Une borne supérieure ?

Exercice 38 ★

Soit E un ensemble.

- **1.** Montrer que la relation d'inclusion notée \subset est un ordre sur $\mathcal{P}(E)$.
- **2.** L'ordre est-il total?
- 3. On pose pour tout $(A, B) \in \mathcal{P}(E)^2$,

$$\sup(A, B) = \sup(\{A, B\})$$
 et $\inf(A, B) = \inf(\{A, B\})$.

- **a.** Justifier ces définitions. On exprimera $\sup(A, B)$ et $\inf(A, B)$ en fonction des sous-ensembles A et B à l'aide des symboles \cup et \cap .
- **b.** Montrer plus généralement que toute partie non vide \mathcal{F} de $(\mathcal{P}(E), \subset)$ admet une borne inférieure et une borne supérieure que l'on explicitera à l'aide de \mathcal{F} en utilisant les symboles \cap et \cup .

Exercice 39 ★

Soit E un ensemble muni d'une relation d'équivalence \mathbb{R} . Pour $x \in E$, on appelle classe d'équivalence de x l'ensemble $C(x) = \{y \in E \mid x\mathcal{R}y\}$. Montrer que les classes d'équivalences forment une partition de E.

Exercice 40 ★★

1. Montrer que la relation $\mathcal R$ définie sur $\mathbb R$ par

$$x\mathcal{R}y \iff xe^y = ye^x$$

est une relation d'équivalence.

2. Soit $x \in \mathbb{R}$. Quel est le nombre d'éléments de la classe d'équivalence de x?

Exercice 41 ★

On définit une relation binaire $\mathcal R$ sur $\mathbb C$ par

$$z\mathcal{R}z'\iff |z|=|z'|$$

Montrer que \mathcal{R} est une relation d'équivalence et décrire géométriquement les classes d'équivalence.

Exercice 42 ★

On définit sur $\mathbb Z$ la relation $\mathcal R$ par

 $x\mathcal{R}y$ si et seulement si x + y est pair.

Montrer que $\mathcal R$ est une relation d'équivalence et déterminer les classes d'équivalence.

Exercice 43 ★

On définit la relation d'équivalence $\mathcal R$ sur $\mathbb R$ par

$$x\mathcal{R}y \iff x^2 - y^2 = x - y$$

Montrer que \mathcal{R} est une relation d'équivalence et déterminer les cardinaux des classes d'équivalence.

Exercice 44 ★★ Conjugaison

Soit E un ensemble. On rappelle que E^E est l'ensemble des applications de E dans E. Si f et g sont deux éléments de E^E , on dira que f est conjuguée à g s'il existe une bijection φ de E dans E telle que $f = \varphi^{-1} \circ g \circ \varphi$. On notera alors $f \sim g$.

- 1. a. Montrer que \sim est une relation d'équivalence sur E^E .
 - $\boldsymbol{b}.\;$ Quelle est la classe d'équivalence de Id_{E} ?
 - **c.** Quelle est la classe d'équivalence d'une application constante?
- **2.** On suppose dans cette question que $E = \mathbb{R}$.
 - **a.** Soit $a \in \mathbb{R}^*$. Les applications $f: x \mapsto x^2$ et $g: x \mapsto ax^2$ sont-elles conjuguées?
 - **b.** Les applications sin et cos sont-elles conjuguées?

Exercice 45 ***

On définit une relation binaire \mathcal{R} sur \mathbb{R}^2 par

$$(x, y)\mathcal{R}(x', y') \iff |x' - x| \le y' - y$$

- 1. Montrer que \mathcal{R} est une relation d'ordre. L'ordre est-il total?
- **2.** On pose A = $\{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le 1\}$. Montrer que sup A = $(0, \sqrt{2})$.

Exercice 46 **

Soient \mathcal{C} et \mathcal{C}' deux cercles du plan, de centres respectifs O, O' et de rayons respectifs R et R'. On dit que \mathcal{C} est inférieur à \mathcal{C}' si $OO' \leq R' - R$. On note alors $\mathcal{C} \leq \mathcal{C}'$. Montrer qu'il s'agit d'une relation d'ordre dans l'ensemble des cercles du plan.

Exercice 47 ★★

Dans \mathbb{N}^* , on considère la relation \mathcal{R} suivante :

$$p\mathcal{R}q \iff \exists n \in \mathbb{N}^* \quad q = p^n$$

- 1. Démontrer que \mathcal{R} est une relation d'ordre. Cet ordre est-il total?
- **2.** La partie {2, 3} est-elle majorée?

Exercice 48 ★

Soient E un ensemble, (F, \leq) un ensemble ordonné et $f: E \to F$ une application injective. On définit dans E la relation \mathcal{R} par $x\mathcal{R}y \iff f(x) \leq f(y)$. Montrer que \mathcal{R} est une relation d'ordre sur E.