暨南大学本科实验报告专用纸

课程名称	运筹学	成绩评定	. 	_
实验项目名称	-维函数最小值	_指导老师_	吴乐秦	
实验项目编号 2				几房_
学生姓名	音学号	20221011	49	
学院 信息科学技术学	院 系 数学系 专业	信息管理与	与信息系统	
实验时间 2024 年 4 月		_	_	95%
				
目录				
1. 实验目的				
2. 实验原理与理论分析				2
2.1. 最速下降法				2
2.2. 牛顿法		• • • • • • • • • • • • • • • • • • • •	•••••	2
2.3. 割线法				2
3. 代码框架				3
4. 核心代码构成				3
5. 正确性测试				3
5.1. 测试数据准备				3
5.2. 测试结果				3
6. 各方法不同情况下的性	能表现与分析			3
6.1. 对于:				3
6.2. 对于:				3
6.3. 测试结果总结				
7. 附录				
7.1. 代码				
^ -				

暨南大学本科实验报告专用纸(附页)

1. 实验目的

实现利用迭代方法计算一维函数最小值的自定义函数。函数能处理最基本的异常,并比较这些方法在收敛速度上的表现。

2. 实验原理与理论分析

本次实验选用最速下降法, 牛顿法和割线法。

2.1. 最速下降法

对于当前搜索点 x_k ,有梯度 $d_k = -\nabla f(x_k)$ 。取合适的步长因子 $\alpha_k s.t. f(x_k + \alpha_k d_k) < f(x_k)$ 则

$$x_{k+1} = x_k + \alpha_k d_k \tag{1}$$

2.2. 牛顿法

对于二次可微函数f(x),取二次 Taylor 展开

$$f(x_k + s) \approx q(k)(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$$
 (2)

将上式右侧极小化, 有迭代方程

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) \tag{3}$$

2.3. 割线法

利用两次迭代值 x_k , x_{k-1} 在导函数图像上与 x 轴形成的交点作为新的迭代点, 近似替代牛顿法中导函数的作用,即

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{\nabla f(x_n) - \nabla f(x_{n-1})} \nabla f(x_n) \tag{4}$$

暨南大学本科实验报告专用纸(附页)

3.	代码框架
J.	

4. 核心代码构成 完整代码见 7.附录

5. 正确性测试

完整测试代码见 7.附录

- 5.1. 测试数据准备
- 5.2. 测试结果

6. 各方法不同情况下的性能表现与分析

完整测试代码见 7.附录

6.1. 对于:

6.1.1. 测试结果猜想:

6.1.2. 测试过程:

6.1.3. 测试分析:

6.2. 对于:

6.2.1. 测试结果猜想:

暨南大学本科实验报告专用纸(附页)

- 6.2.2. 测试过程:
- 6.2.3. 测试分析:
- 6.3. 测试结果总结
- 7. 附录
- 7.1. 代码
- 7.2. 仓库

全部代码、与 x86 可执行程序均同步在本人的 github:

https://github.com/GYPpro/optimizeLec本次实验报告存放在/WEE2文件夹下

声明:本实验报告所有代码与测试均由本人独立完成,修改和 commit 记录均在 repo 上公开。