R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

conditionnel

Independance

Anneve

R3.08

Probabilités

François Morellet 40 000 carrés

R3.08 Probabilités

Ce sont coups du hasard, dont on n'est point garant.

Molière

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépendance

Annexe

2/49

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilite

Probabilité

Indépendance

Annexe

Définitions

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

.

Rappels

Probabilités

Probabilité

Indépendanc

Anneve

<u>Définitions</u>

Un ensemble E est dit dénombrable s'il existe une bijection de $\mathbb N$ sur E.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilités

Probabilité

Indépendanc

Anneve

<u>Dé</u>finitions

Un ensemble E est dit dénombrable s'il existe une bijection de $\mathbb N$ sur E.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Rappels

Probabilités

Probabilité

land dan amalan

Anneve

Définitions

Un ensemble E est dit dénombrable s'il existe une bijection de $\mathbb N$ sur E.

Exemple

2N est dénombrable.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

Rappels

Probabilités

Probabilité conditionnelle

Indépend

Anneve

Définitions

Un ensemble E est dit dénombrable s'il existe une bijection de \mathbb{N} sur E.

Exemple

2N est dénombrable.

 $f: \mathbb{N} \to 2\mathbb{N}$ définie par f(n) = 2n est une bijection.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilité

FIODADIIILE

conditionne

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilité:

Probabilité conditionnelle

Indépendan

Anneve

Définition

L'ensemble des parties d'un ensemble est l'ensemble de toutes ses parties ou sous-ensembles.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

rian

Rappels

Probabilité:

Probabilité

conditionnen

Anneve

Définition

L'ensemble des parties d'un ensemble est l'ensemble de toutes ses parties ou sous-ensembles.

Notation

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

rian

Rappels

Probabilité:

Probabilité ...

Conditionnen

Anneve

Définition

L'ensemble des parties d'un ensemble est l'ensemble de toutes ses parties ou sous-ensembles.

Notation

 $\mathcal{P}(E)$

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

Plan

Rappels

Probabilité

Probabilité ...

conditionnelle

Anneve

Définition

L'ensemble des parties d'un ensemble est l'ensemble de toutes ses parties ou sous-ensembles.

Notation

 $\mathcal{P}(E)$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

Rappels

Probabilité:

Probabilité

Conditionnell

Anneve

Définition

L'ensemble des parties d'un ensemble est l'ensemble de toutes ses parties ou sous-ensembles.

Notation

 $\mathcal{P}(E)$

$$E = \{0, 1\}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilité:

Probabilité

. . .

Anneye

Définition

L'ensemble des parties d'un ensemble est l'ensemble de toutes ses parties ou sous-ensembles.

Notation

 $\mathcal{P}(E)$

$$E = \{0, 1\}$$

 $\mathcal{P}(E) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Rappels

Probabilitá

1 Tobabilite

conditionn

пиерепиансе

Annexe

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

1 1411

Rappels

Probabilités

Probabilité conditionnelle

Indépendance

Annexe

Définition

Une partition d'un ensemble E est un ensemble de parties de E disjointes et non vides, dont la réunion est E.

R3.08 Probabilités

Rappels

Définition

Une partition d'un ensemble E est un ensemble de parties de E disjointes et non vides, dont la réunion est E.

R3.08 Probabilités

Rappels

Définition

Une partition d'un ensemble E est un ensemble de parties de E disjointes et non vides, dont la réunion est E.

$$E = \{1, 2, 3, 4, 5, 6\}$$

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

Rappels

Probabilites

Probabilité conditionnelle

тисрепаан

Annexe

Définition

Une partition d'un ensemble E est un ensemble de parties de E disjointes et non vides, dont la réunion est E.

$$E = \{1, 2, 3, 4, 5, 6\}$$

$$P = \{2, 4, 6\}$$
 et $I = \{1, 3, 5\}$ forment une partition de E .

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilitá

1 TODADIIILE

conditionne

Independance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilités

Probabilité

Indépendanc

۸ -- -- -- -

Image

Soit $f: E \to F$ une application.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

I Iaii

Rappels

Probabilité

Probabilité

Indépendanc

۸

Image

Soit $f: E \rightarrow F$ une application.

Pour tout partie A de E, $f(A) = \{f(x), x \in A\}$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Anneve

Image

Soit $f: E \rightarrow F$ une application.

Pour tout partie A de E, $f(A) = \{f(x), x \in A\}$

Cas particulier : l'image de f est f(E).

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Rappels

....

Probabilites

Probabilité conditionnelle

Indépend

Anneve

Image

Soit $f: E \to F$ une application.

Pour tout partie A de E, $f(A) = \{f(x), x \in A\}$

Cas particulier : l'image de f est f(E).

Image réciproque

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Rappels

. . .

Probabilites

conditionnelle

паерепаапс

Annexe

Image

Soit $f: E \to F$ une application.

Pour tout partie A de E, $f(A) = \{f(x), x \in A\}$

Cas particulier : l'image de f est f(E).

Image réciproque

Pour toute partie B de F, $f^{-1}(B) = \{x, x \in E \text{ et } f(x) \in B\}$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

.

1 1/ 1

Anneve

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendan

Anneve

Propriétés

 $f(A \cup B) = f(A) \cup f(B)$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

Indánandana

Λ

- $f(A \cup B) = f(A) \cup f(B)$
- $f(A \cap B) \subset f(A) \cap f(B)$ (égalité si et seulement si f est injective)

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Rappels

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

- $f(A \cup B) = f(A) \cup f(B)$
- $f(A \cap B) \subset f(A) \cap f(B)$ (égalité si et seulement si f est injective)
- $f(\overline{A}) = \overline{f(A)}$ si et seulement si f est bijective

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

rian

Rappels

Probabilités

Probabilité

Indépendance

Λ -----

- $f(A \cup B) = f(A) \cup f(B)$
- $f(A \cap B) \subset f(A) \cap f(B)$ (égalité si et seulement si f est injective)
- $f(\overline{A}) = \overline{f(A)}$ si et seulement si f est bijective
- $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

гіан

Rappels

Probabilités

Probabilité conditionnelle

. ..

۸ -- -- -- -

- $f(A \cup B) = f(A) \cup f(B)$
- $f(A \cap B) \subset f(A) \cap f(B)$ (égalité si et seulement si f est injective)
- $f(\overline{A}) = \overline{f(A)}$ si et seulement si f est bijective
- $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

rian

Rappels

Probabilités

Probabilité conditionnelle

Indépend

Anneve

- $f(A \cup B) = f(A) \cup f(B)$
- $f(A \cap B) \subset f(A) \cap f(B)$ (égalité si et seulement si f est injective)
- $f(\overline{A}) = \overline{f(A)}$ si et seulement si f est bijective
- $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
- $\bullet \ f^{-1}\left(\overline{A}\right) = \overline{f^{-1}(A)}$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rannels

Probabilités

Probabilité

.

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

)lan

Rappel

Probabilités

Probabilité

Indépendance

Annexe

Je réputais presque pour faux tout ce qui n'était que vraisemblable.

Discours de la méthode, René Descartes

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Indépendanc

Annexe

Je réputais presque pour faux tout ce qui n'était que vraisemblable.

Discours de la méthode, René Descartes

Expérience aléatoire

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Kappeis

Probabilités

Probabilité conditionnelle

Indépendanc

Annexe

Je réputais presque pour faux tout ce qui n'était que vraisemblable.

Discours de la méthode, René Descartes

Expérience aléatoire

Une expérience aléatoire est une expérience reproductible dont on ne connaît pas l'issue (le résultat) à l'avance tout en en connaissant toutes les issues possibles.

R3.08 Probabilités

Probabilités

Je réputais presque pour faux tout ce qui n'était que vraisemblable.

Discours de la méthode. René Descartes

Expérience aléatoire

Une expérience aléatoire est une expérience reproductible dont on ne connaît pas l'issue (le résultat) à l'avance tout en en connaissant toutes les issues possibles.

L'ensemble des issues possibles est appelé l'univers des possibles et souvent noté Ω.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

гіап

Kappeis

Probabilités

Probabilité conditionnelle

Indépendanc

Anney

Je réputais presque pour faux tout ce qui n'était que vraisemblable.

Discours de la méthode, René Descartes

Expérience aléatoire

Une expérience aléatoire est une expérience reproductible dont on ne connaît pas l'issue (le résultat) à l'avance tout en en connaissant toutes les issues possibles.

L'ensemble des issues possibles est appelé l'univers des possibles et souvent noté $\Omega.$

Un élément ω de Ω est aussi appelé réalisation possible ou épreuve.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-de Vosges

Plan

Rappel

Probabilités

Probabilité

Independance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ГІЛІІ

Rappels

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Exemples

Une expérience aléatoire consiste à relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Exemples

Une expérience aléatoire consiste à relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

Kappeis

Probabilités

Probabilité conditionnelle

independan

Annexe

Exemples

Une expérience aléatoire consiste à relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

Une expérience aléatoire consiste à relever la suite des nombres lus sur la face supérieure d'un dé parfait lancé à n reprises $(n \ge 1)$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépend

Anneye

Exemples

Une expérience aléatoire consiste à relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

Une expérience aléatoire consiste à relever la suite des nombres lus sur la face supérieure d'un dé parfait lancé à n reprises $(n \ge 1)$.

$$\Omega = \{1,2,3,4,5,6\}^{\it n}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

таррсіз

Probabilités

Probabilité conditionnelle

Indépend

Anney

Exemples

Une expérience aléatoire consiste à relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

Une expérience aléatoire consiste à relever la suite des nombres lus sur la face supérieure d'un dé parfait lancé à n reprises $(n \ge 1)$.

$$\Omega = \{1, 2, 3, 4, 5, 6\}^n$$

Une expérience aléatoire consiste à relever le nombre de 6 lus sur la face supérieure d'un dé parfait lancé à n reprises ($n \ge 1$).

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

гіан

....

Probabilités

Probabilité conditionnelle

Indépen

Annex

Exemples

Une expérience aléatoire consiste à relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

Une expérience aléatoire consiste à relever la suite des nombres lus sur la face supérieure d'un dé parfait lancé à n reprises $(n \ge 1)$.

$$\Omega = \{1, 2, 3, 4, 5, 6\}^n$$

Une expérience aléatoire consiste à relever le nombre de 6 lus sur la face supérieure d'un dé parfait lancé à n reprises $(n \ge 1)$.

$$\Omega = \{0, 1, 2, 3, \cdots, n\}$$

R3.08 Probabilités

Departement Informatique IUT de Saint-Dié-des-Vosges

Plar

Rannels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

conditionnic

пиерепиансе

Annexe

R3.08 Probabilités

Probabilités

Événement

Un sous-ensemble A de Ω est appelé un événement.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

i idii

Mappeis

Probabilités

Probabilité

Indépendance

Anneve

Événement

Un sous-ensemble A de Ω est appelé un événement.

Un événement A est dit réalisé lors d'une expérience aléatoire si l'épreuve ω réalisée ou obtenue appartient à A.

R3.08 Probabilités

Probabilités

Événement

Un sous-ensemble A de Ω est appelé un événement.

Un événement A est dit réalisé lors d'une expérience aléatoire si l'épreuve ω réalisée ou obtenue appartient à A.

 Ω peut être fini, infini dénombrable ou infini non dénombrable.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

гіан

Probabilités

Probabilité conditionnelle

Indépendance

Annexe

Événement

Un sous-ensemble A de Ω est appelé un événement.

Un événement A est dit réalisé lors d'une expérience aléatoire si l'épreuve ω réalisée ou obtenue appartient à A.

 Ω peut être fini, infini dénombrable ou infini non dénombrable.

Exemples

R3.08 Probabilités

Probabilités

Événement

Un sous-ensemble A de Ω est appelé un événement.

Un événement A est dit réalisé lors d'une expérience aléatoire si l'épreuve ω réalisée ou obtenue appartient à A.

 Ω peut être fini, infini dénombrable ou infini non dénombrable.

Exemples

Pour $\Omega = \{P, F\}$, les événements sont \emptyset , $\{P\}$, $\{F\}$ et $\{P, F\}$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

Probabilités

Probabilites

conditionnelle

Independance

Annex

Événement

Un sous-ensemble A de Ω est appelé un événement.

Un événement A est dit réalisé lors d'une expérience aléatoire si l'épreuve ω réalisée ou obtenue appartient à A.

 Ω peut être fini, infini dénombrable ou infini non dénombrable.

Exemples

Pour $\Omega = \{P, F\}$, les événements sont \emptyset , $\{P\}$, $\{F\}$ et $\{P, F\}$.

Ce sont les éléments de $\mathcal{P}(\Omega)$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

Probabilités

FioDabilites

conditionnelle

Indépendanc

Annex

Événement

Un sous-ensemble A de Ω est appelé un événement.

Un événement A est dit réalisé lors d'une expérience aléatoire si l'épreuve ω réalisée ou obtenue appartient à A.

 Ω peut être fini, infini dénombrable ou infini non dénombrable.

Exemples

Pour $\Omega = \{P, F\}$, les événements sont \emptyset , $\{P\}$, $\{F\}$ et $\{P, F\}$.

Ce sont les éléments de $\mathcal{P}(\Omega)$.

Pour $\Omega = \{0, 1, 2, 3, \dots, n\}$, les événements sont les 2^{n+1} éléments de $\mathcal{P}(\Omega)$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

i iaii

_

Probabilités

Probabilité conditionnelle

Indépendance

Annex

Événement

Un sous-ensemble A de Ω est appelé un événement.

Un événement A est dit réalisé lors d'une expérience aléatoire si l'épreuve ω réalisée ou obtenue appartient à A.

 Ω peut être fini, infini dénombrable ou infini non dénombrable.

Exemples

Pour $\Omega = \{P, F\}$, les événements sont \emptyset , $\{P\}$, $\{F\}$ et $\{P, F\}$.

Ce sont les éléments de $\mathcal{P}(\Omega)$.

Pour $\Omega = \{0, 1, 2, 3, \dots, n\}$, les événements sont les 2^{n+1} éléments de $\mathcal{P}(\Omega)$.

Par exemple : \emptyset , $\{2\}$, $\{0,1,2,3,4\}$ qui est l'événement Au plus quatre 6, ...

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

²lan

Rappels

Probabilités

Probabilité

Indépendance

Annexe

11/49

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Anneve

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

conditionnent

۸ -- -- -- -

Tribu

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Fiaii

Rappels

Probabilités

Probabilité

1 1/ 1

Anneve

Tribu

a)
$$\Omega \in \mathcal{T}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

. .

Probabilités

conditionnelle

Indépendanc

Anneye

Tribu

a)
$$\Omega \in \mathcal{T}$$

b)
$$\forall A \in \mathcal{T} \ \overline{A} \in \mathcal{T}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Fiaii

rappeis

Probabilités

Probabilité conditionnelle

Indépendance

Λ -- -- ---

Tribu

a)
$$\Omega \in \mathcal{T}$$

b)
$$\forall A \in \mathcal{T} \ \overline{A} \in \mathcal{T}$$

c)
$$orall (A_i)_{i\geq 1}$$
 , $A_i\in \mathcal{T}$, $igcup_{i=1}^{+\infty} A_i\in \mathcal{T}$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Probabilités

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Remarque 1

Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, $igcup_{i=1}^n A_i \in \mathcal{T}$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

гіан

Kappels

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Remarque 1

Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, $igcup_{i=1}^n A_i \in \mathcal{T}$

Démonstration : on pose $A_i = \emptyset$ pour $i \ge n + 1$.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

.

Kappeis

Probabilités

Probabilité conditionnelle

1 1/ 1

Anneve

Remarque 1

Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, $igcup_{i=1}^n A_i \in \mathcal{T}$

Démonstration : on pose $A_i = \emptyset$ pour $i \ge n + 1$.

Remarque 2

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

i iaii

Rappels

Probabilités

Probabilité

Annovo

Remarque 1

Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, $igcup_{i=1}^n A_i \in \mathcal{T}$

Démonstration : on pose $A_i = \emptyset$ pour $i \ge n + 1$.

Remarque 2

$$orall (\mathcal{A}_i)_{i\geq 1}$$
 , $\mathcal{A}_i\in\mathcal{T}$, $\displaystyle\bigcap_{i=1}^{+\infty}\mathcal{A}_i\in\mathcal{T}$

R3.08 Probabilités

Probabilités

Remarque 1

Pour tout entier n > 1,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, $igcup_{i=1}^n A_i \in \mathcal{T}$

Démonstration : on pose $A_i = \emptyset$ pour i > n + 1.

Remarque 2

$$orall (\mathcal{A}_i)_{i\geq 1}$$
 , $\mathcal{A}_i\in\mathcal{T}$, $\displaystyle\bigcap_{i=1}^{+\infty}\mathcal{A}_i\in\mathcal{T}$

Démonstration : on utilise b) et c).

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendance

Annexe

13/49

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

Exemple 1

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Probabilités

Probabilité

Indépendanc

Annexe

Exemple 1

Soit $A \subset \Omega$.

 $\mathcal{T} = \{\emptyset, A, \overline{A}, \Omega\}$ est une tribu sur Ω .

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

· iaii

Probabilités

conditionnelle

Anneve

Exemple 1

Soit $A \subset \Omega$.

 $\mathcal{T} = \{\emptyset, A, \overline{A}, \Omega\}$ est une tribu sur Ω .

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

i idii

Probabilités

Probabilité conditionnelle

. ./

Anneve

Exemple 1

Soit $A \subset \Omega$.

 $\mathcal{T} = \{\emptyset, A, \overline{A}, \Omega\}$ est une tribu sur $\Omega.$

Exemple 2

 $\mathcal{P}(\Omega)$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité

1-------

Anneve

Espace probabilisable

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

ı ıaıı

Rappels

Probabilités

Probabilité

Indépendanc

Anneve

Espace probabilisable

Soit Ω un ensemble et \mathcal{T} une tribu sur Ω . (Ω, \mathcal{T}) est appelé espace probabilisable.

,) est appeie espace probabilisable

R3.08 Probabilités

Probabilités

Espace probabilisable

Soit Ω un ensemble et \mathcal{T} une tribu sur Ω . (Ω, \mathcal{T}) est appelé espace probabilisable.

Événement certain

R3.08 Probabilités

Probabilités

Espace probabilisable

Soit Ω un ensemble et \mathcal{T} une tribu sur Ω .

 (Ω, \mathcal{T}) est appelé espace probabilisable.

Événement certain

 Ω est appelé l'événement certain : il est réalisé quelle que soit l'issue de l'expérience aléatoire.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

I Iaii

Rappels

Probabilités

Probabilité

Indépendanc

Anneye

Espace probabilisable

Soit Ω un ensemble et $\mathcal T$ une tribu sur Ω .

 (Ω, \mathcal{T}) est appelé espace probabilisable.

Événement certain

 Ω est appelé <mark>l'événement certain</code> : il est réalisé quelle que soit l'issue de l'expérience aléatoire.</mark>

Evénement impossible

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

i iaii

Probabilités

Probabilité

conditionnelle

.

Espace probabilisable

Soit Ω un ensemble et $\mathcal T$ une tribu sur $\Omega.$

 (Ω, \mathcal{T}) est appelé espace probabilisable.

Événement certain

 Ω est appelé <mark>l'événement certain : il est réalisé quelle que soit l'issue de l'expérience aléatoire.</mark>

Evénement impossible

 \emptyset est appelé <mark>l'événement impossible : il n'est pas réalisé quelle que soit l'issue de l'expérience aléatoire.</mark>

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

Indépendance

Annexe

Événement élémentaire

R3.08 Probabilités

Probabilités

Événement élémentaire

Un singleton $\{\omega\}$ de $\mathcal T$ est appelé événement élémentaire.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Annexe

Événement élémentaire

Un singleton $\{\omega\}$ de $\mathcal T$ est appelé événement élémentaire.

Événement contraire

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Probabilités

Probabilité conditionnelle

Independan

Annexe

Événement élémentaire

Un singleton $\{\omega\}$ de $\mathcal T$ est appelé événement élémentaire.

Événement contraire

L'événement \overline{A} (complémentaire de A dans Ω) est dit l'événement contraire de A.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

.

Rappels

Probabilités

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

1-44---

Annexe

Événements incompatibles

16/49

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

гіан

Rappeis

Probabilités

Probabilité conditionnelle

. ..

Anneve

Événements incompatibles

Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

. . .

Probabilités

Probabilité

Indépendan

Anneve

Événements incompatibles

Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$. Soit $(A_i)_{i \in I}$ (I ensemble fini ou non) une famille d'événements.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Événements incompatibles

Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$. Soit $(A_i)_{i \in I}$ (I ensemble fini ou non) une famille d'événements. $(A_i)_{i \in I}$ est une famille d'événements incompatibles (dans leur ensemble) si pour toute suite finie $(i_j)_{1 \leq j \leq n}$ de I

$$\bigcap_{i=1}^n A_{i_j} = \emptyset$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Probabilités

conditionnelle

Événements incompatibles

Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$. Soit $(A_i)_{i \in I}$ (I ensemble fini ou non) une famille d'événements. $(A_i)_{i \in I}$ est une famille d'événements incompatibles (dans leur ensemble) si pour toute suite finie $(I_i)_{1 \le i \le n}$ de I

$$\bigcap_{i=1}^n A_{i_j} = \emptyset$$

Remarque

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Probabilités

Probabilité

conditionnelle

.

Événements incompatibles

Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$. Soit $(A_i)_{i \in I}$ (I ensemble fini ou non) une famille d'événements. $(A_i)_{i \in I}$ est une famille d'événements incompatibles (dans leur ensemble) si pour toute suite finie $(i_j)_{1 \leq j \leq n}$ de I

$$\bigcap_{j=1}^n A_{i_j} = \emptyset$$

Remarque

Les événements de $(A_i)_{i\in I}$ sont incompatibles deux à deux si et seulement s'ils sont incompatibles dans leur ensemble.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilités

Probabilité conditionnelle

Indépend

Anney

Événements incompatibles

Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$. Soit $(A_i)_{i \in I}$ (I ensemble fini ou non) une famille d'événements. $(A_i)_{i \in I}$ est une famille d'événements incompatibles (dans leur ensemble) si pour toute suite finie $(i_j)_{1 \leq j \leq n}$ de I

$$\bigcap_{i=1}^n A_{i_j} = \emptyset$$

Remarque

Les événements de $(A_i)_{i\in I}$ sont incompatibles deux à deux si et seulement s'ils sont incompatibles dans leur ensemble.

$$\forall i, j \in I \ A_i \cap A_j = \emptyset \Leftrightarrow \forall (i_j)_{1 \leq j \leq n} \ \bigcap_{j=1}^n A_{i_j} = \emptyset$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

²lan

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Probabilités

Système complet d'événements

R3.08 Probabilités

Probabilités

Système complet d'événements

Une suite finie ou dénombrable d'événements formant une partition de Ω est un système complet (ou famille complète) d'événements.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

²lan

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Probabilités

Tribu engendrée par une partie ou un ensemble de parties

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

ı ıaıı

Probabilités

Probabilité conditionnelle

Indépendan

Annexe

Tribu engendrée par une partie ou un ensemble de parties

On appelle tribu engendrée par une partie A (respectivement un ensemble de parties \mathcal{E}) de Ω la plus petite tribu (pour l'inclusion) contenant A (respectivement \mathcal{E}).

R3.08 Probabilités

Probabilités

Tribu engendrée par une partie ou un ensemble de parties

On appelle tribu engendrée par une partie A (respectivement un ensemble de parties \mathcal{E}) de Ω la plus petite tribu (pour l'inclusion) contenant A(respectivement \mathcal{E}).

Notation

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

I Iaii

Probabilités

Probabilité conditionnelle

тисрепцат

Annexe

Tribu engendrée par une partie ou un ensemble de parties

On appelle tribu engendrée par une partie A (respectivement un ensemble de parties \mathcal{E}) de Ω la plus petite tribu (pour l'inclusion) contenant A (respectivement \mathcal{E}).

Notation

 $\mathcal{T}(A)$, $\mathcal{T}(\mathcal{E})$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

ndépendanc

Anneve

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-desVosges

Plan

Rappel

Probabilités

Probabilité

1...17...................

Anneve

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité

Anneve

Exemple 1

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

ı ıaıı

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Exemple 1

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

Exemple 2

Si Ω est fini ou dénombrable, $\mathcal{P}(\Omega)$ est la tribu engendrée par les singletons de Ω .

R3.08 Probabilités

Probabilités

Exemple 1

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

Exemple 2

Si Ω est fini ou dénombrable, $\mathcal{P}(\Omega)$ est la tribu engendrée par les singletons de Ω .

Exemple 3

19/49

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

- In In

Probabilités

Probabilité conditionnelle

Indépendanc

Exemple 1

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

Exemple 2

Si Ω est fini ou dénombrable, $\mathcal{P}(\Omega)$ est la tribu engendrée par les singletons de Ω .

Exemple 3

La tribu engendrée par tous les intervalles $]-\infty,a],]-\infty,a[,]a,+\infty[, [a,+\infty[,]a,b[,]a,b], [a,b[$ et [a,b] (a et b réels) est appelée tribu borélienne de $\mathbb R$ et notée $\mathcal B(\mathbb R)$.

19/49

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ГІЛІІ

ixappeis

Probabilités

Probabilité conditionnelle

Indépendanc

Anne

Exemple 1

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

Exemple 2

Si Ω est fini ou dénombrable, $\mathcal{P}(\Omega)$ est la tribu engendrée par les singletons de Ω .

Exemple 3

La tribu engendrée par tous les intervalles $]-\infty,a],]-\infty,a[,]a,+\infty[, [a,+\infty[,]a,b[,]a,b], [a,b[$ et [a,b] (a et b réels) est appelée tribu borélienne de $\mathbb R$ et notée $\mathcal B(\mathbb R)$.

On démontre que $\mathcal{B}(\mathbb{R})$ est engendrée par les intervalles du type $]-\infty,a]$ (a réel).

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

rian

Probabilités

Probabilité conditionnelle

independanc

Exemple 1

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

Exemple 2

Si Ω est fini ou dénombrable, $\mathcal{P}(\Omega)$ est la tribu engendrée par les singletons de Ω .

Exemple 3

La tribu engendrée par tous les intervalles $]-\infty,a],]-\infty,a[,]a,+\infty[,[a,+\infty[,]a,b[,]a,b],[a,b[$ et [a,b] (a et b réels) est appelée tribu borélienne de $\mathbb R$ et notée $\mathcal B(\mathbb R)$.

On démontre que $\mathcal{B}(\mathbb{R})$ est engendrée par les intervalles du type $]-\infty,a]$ (a réel).

De plus, si I est un intervalle, $I \cap \mathcal{B}(\mathbb{R})$ est une tribu notée $\mathcal{B}(I)$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Pian

Rappel

Probabilités

Probabilité

Indépendanc

Annex

Exemple 1

$$\mathcal{T}(A) = \{\emptyset, A, \overline{A}, \Omega\}.$$

Exemple 2

Si Ω est fini ou dénombrable, $\mathcal{P}(\Omega)$ est la tribu engendrée par les singletons de Ω .

Exemple 3

La tribu engendrée par tous les intervalles $]-\infty,a],]-\infty,a[,]a,+\infty[,[a,+\infty[,]a,b[,]a,b],[a,b[]et [a,b] (a et b réels) est appelée tribu$

borélienne de \mathbb{R} et notée $\mathcal{B}(\mathbb{R})$. On démontre que $\mathcal{B}(\mathbb{R})$ est engendrée par les intervalles du type $]-\infty,a]$ (a réel).

De plus, si I est un intervalle, $I \cap \mathcal{B}(\mathbb{R})$ est une tribu notée $\mathcal{B}(I)$.

Félix Édouard Justin Émile Borel (1871-1956) : mathématicien français.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité conditionne

Indépendance

Annexe

20/49

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappeis

Probabilités

Probabilité

conditionnelle

Annovo

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

гіан

...

Probabilités

Probabilité

Indépendan

۸ -- -- -- -

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} \to [0,1]$ telle que

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

Rappels

Probabilités

Probabilité

Indépendan

۸ -- -- -- -

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} \to [0,1]$ telle que

a)
$$P(\Omega)=1$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

i idii

Probabilités

Probabilité

Indépendan

Anneve

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} o [0,1]$ telle que

- a) $P(\Omega) = 1$
- b) pour toute suite $(A_i)_{i>1}$, d'événements incompatibles :

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

i iaii

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} \to [0,1]$ telle que

- a) $P(\Omega) = 1$
- b) pour toute suite $(A_i)_{i\geq 1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty}A_i\right)=\sum_{i=1}^{+\infty}P(A_i)$$

R3.08 Probabilités

Probabilités

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} \to [0,1]$ telle que

- a) $P(\Omega) = 1$
- b) pour toute suite $(A_i)_{i\geq 1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty}A_i\right)=\sum_{i=1}^{+\infty}P(A_i)$$

Espace probabilisé

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

rian

Probabilités

Probabilité

Indépenda

Λ -----

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} o [0,1]$ telle que

- a) $P(\Omega) = 1$
- b) pour toute suite $(A_i)_{i\geq 1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty}A_i\right)=\sum_{i=1}^{+\infty}P(A_i)$$

Espace probabilisé

 Ω muni de la tribu $\mathcal T$ et d'une probabilité P est appelé espace probabilisé.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

i idii

Probabilités

Probabilité conditionnelle

Indépendan

Λ -- -- ---

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} \to [0,1]$ telle que

- a) $P(\Omega) = 1$
- b) pour toute suite $(A_i)_{i\geq 1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty}A_i\right)=\sum_{i=1}^{+\infty}P(A_i)$$

Espace probabilisé

 Ω muni de la tribu $\mathcal T$ et d'une probabilité P est appelé espace probabilisé.

Notation

R3.08 Probabilités

Probabilités

Probabilité

Soit (Ω, \mathcal{T}) un espace probabilisable.

On appelle probabilité une application $\mathcal{T} \to [0,1]$ telle que

- a) $P(\Omega) = 1$
- b) pour toute suite $(A_i)_{i\geq 1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty}A_i\right)=\sum_{i=1}^{+\infty}P(A_i)$$

Espace probabilisé

 Ω muni de la tribu \mathcal{T} et d'une probabilité P est appelé espace probabilisé.

Notation

 (Ω, \mathcal{T}, P)

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

Rappels

Probabilités

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Doobabilies

Conditionin

.

Anneve

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

conditionn

Indépendance

Anneve

a)
$$P(\emptyset) = 0$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendan

Anneve

- a) $P(\emptyset) = 0$
- **b)** Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, A_i incompatibles, $P\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n P(A_i)$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plar

Rappels

Probabilités

Probabilité conditionnelle

conditionnenc

Anneve

- a) $P(\emptyset) = 0$
- **b)** Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, A_i incompatibles, $P\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n P(A_i)$

c)
$$\forall A \in \mathcal{T}, P(\overline{A}) = 1 - P(A)$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Independar

Annexe

- a) $P(\emptyset) = 0$
- **b)** Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, A_i incompatibles, $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$

- c) $\forall A \in \mathcal{T}$, $P(\overline{A}) = 1 P(A)$
- **d)** $\forall A, B \in \mathcal{T}, P(A \cup B) = P(A) + P(B) P(A \cap B)$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

тарреіз

Probabilités

Probabilité conditionnelle

independanc

Anneye

- a) $P(\emptyset) = 0$
- **b)** Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, A_i incompatibles, $P\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n P(A_i)$

- c) $\forall A \in \mathcal{T}, P(\overline{A}) = 1 P(A)$
- **d)** $\forall A, B \in \mathcal{T}, P(A \cup B) = P(A) + P(B) P(A \cap B)$
- **e)** Si $A \subset B$ alors $P(A) \leq P(B)$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Annex

- a) $P(\emptyset) = 0$
- **b)** Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, A_i incompatibles, $P\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n P(A_i)$

- c) $\forall A \in \mathcal{T}, P(\overline{A}) = 1 P(A)$
- **d)** $\forall A, B \in \mathcal{T}, P(A \cup B) = P(A) + P(B) P(A \cap B)$
- e) Si $A \subset B$ alors $P(A) \leq P(B)$
- **f)** $\forall A, B \in \mathcal{T}$, $P(A) \leq P(A \cup B)$ et $P(A \cap B) \leq P(A)$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Annex

Propriétés

- a) $P(\emptyset) = 0$
- **b)** Pour tout entier $n \ge 1$,

$$orall (A_i)_{1 \leq i \leq n}$$
 , $A_i \in \mathcal{T}$, A_i incompatibles, $P\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n P(A_i)$

- c) $\forall A \in \mathcal{T}, P(\overline{A}) = 1 P(A)$
- **d)** $\forall A, B \in \mathcal{T}, P(A \cup B) = P(A) + P(B) P(A \cap B)$
- e) Si $A \subset B$ alors $P(A) \leq P(B)$
- f) $\forall A, B \in \mathcal{T}$, $P(A) \leq P(A \cup B)$ et $P(A \cap B) \leq P(A)$

Démonstration en annexe.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rannels

Probabilités

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité

Indépendance

Annexe

Événement presque certain

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilités

Probabilité

Indépendanc

Anneve

Événement presque certain

Un événement de probabilité égale à 1 est appelé événement presque certain.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

rian

Rappels

Probabilités

Probabilité

Indépendanc

Anneve

Événement presque certain

Un événement de probabilité égale à 1 est appelé événement presque certain.

Événement presque impossible

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Kappeis

Probabilités

Probabilité conditionnelle

Indépend

Anneve

Événement presque certain

Un événement de probabilité égale à 1 est appelé événement presque certain.

Événement presque impossible

Un événement de probabilité nulle est appelé événement presque impossible.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

гіан

Rappels

Probabilités

Probabilité

Indépendance

Λ

Événement presque certain

Un événement de probabilité égale à 1 est appelé événement presque certain.

Événement presque impossible

Un événement de probabilité nulle est appelé événement presque impossible.

Exemples

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

.

Δ....

Événement presque certain

Un événement de probabilité égale à 1 est appelé événement presque certain.

Événement presque impossible

Un événement de probabilité nulle est appelé événement presque impossible.

Exemples

 $\boldsymbol{\Omega}$ est un événement presque certain.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

I Iaii

Rappels

Probabilités

Probabilité

Indánandan

Anney

Événement presque certain

Un événement de probabilité égale à 1 est appelé événement presque certain.

Événement presque impossible

Un événement de probabilité nulle est appelé événement presque impossible.

Exemples

 $\boldsymbol{\Omega}$ est un événement presque certain.

Ø est un événement presque impossible.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilités

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

1 TODADIIIC

conditionne

Indépendance

Annexe

Probabilité sur un ensemble fini

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendan

Anneve

Probabilité sur un ensemble fini

Si Ω est fini, la tribu \mathcal{T} est en général $\mathcal{P}(\Omega)$ et toute probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement définie par $P(\{\omega\})$, $\omega \in \Omega$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Probabilité sur un ensemble fini

Si Ω est fini, la tribu \mathcal{T} est en général $\mathcal{P}(\Omega)$ et toute probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement définie par $P(\{\omega\})$, $\omega \in \Omega$.

Notation

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

i idii

Rappels

Probabilités

Probabilité conditionnelle

Indépen

۸

Probabilité sur un ensemble fini

Si Ω est fini, la tribu \mathcal{T} est en général $\mathcal{P}(\Omega)$ et toute probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement définie par $P(\{\omega\})$, $\omega \in \Omega$.

Notation

$$P(\{\omega\}) = P(\omega)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

таррсіз

Probabilités

Probabilité

Indépen

Anneye

Probabilité sur un ensemble fini

Si Ω est fini, la tribu $\mathcal T$ est en général $\mathcal P(\Omega)$ et toute probabilité sur $(\Omega,\mathcal P(\Omega))$ est entièrement définie par $P(\{\omega\})$, $\omega\in\Omega$.

Notation

$$P(\{\omega\}) = P(\omega)$$

On a alors:

$$\forall A \in \mathcal{P}(\Omega) \ P(A) = \sum_{\omega \in A} P(\omega)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilités

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité

conditionnelle

Anneve

Équiprobabilité - probabilité uniforme

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendan

Anneve

Équiprobabilité - probabilité uniforme

Si Ω est fini et toutes les épreuves équiprobales (chaque événement élémentaire a la même probabilité)

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendan

Anneve

Équiprobabilité - probabilité uniforme

Si Ω est fini et toutes les épreuves équiprobales (chaque événement élémentaire a la même probabilité) alors

$$\forall A \in \mathcal{P}(\Omega) \ P(A) = \frac{|A|}{|\Omega|} = \frac{\text{nombre de cas favorables à la réalisation de A}}{\text{nombre de cas possibles}}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

гіан

Kappeis

Probabilités

Probabilité conditionnelle

Indépenda

Annovo

Équiprobabilité - probabilité uniforme

Si Ω est fini et toutes les épreuves équiprobales (chaque événement élémentaire a la même probabilité) alors

$$\forall A \in \mathcal{P}(\Omega) \ P(A) = \frac{|A|}{|\Omega|} = \frac{\text{nombre de cas favorables à la réalisation de A}}{\text{nombre de cas possibles}}$$

Définition

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

.

.

Équiprobabilité - probabilité uniforme

Si Ω est fini et toutes les épreuves équiprobales (chaque événement élémentaire a la même probabilité) alors

$$\forall A \in \mathcal{P}(\Omega) \ P(A) = \frac{|A|}{|\Omega|} = \frac{\text{nombre de cas favorables à la réalisation de A}}{\text{nombre de cas possibles}}$$

Définition

La probabilité P définie sur $\mathcal{P}(\Omega)$ par $P(\omega)=\frac{1}{|\Omega|}$ est appelée probabilité uniforme.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilités

Probabilité

ndépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rannel

Probabilités

1 TODADIIIC

conditionne

independance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Anneve

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

гіан

парроз

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

rian

Kappeis

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

$$P(P) = P(F) = \frac{1}{2}$$
 (équiprobabilité)

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

Kappeis

Probabilités

Probabilité conditionnelle

Indépenda

Λ -- -- -- --

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P,F\}$$

$$P(P) = P(F) = \frac{1}{2}$$
 (équiprobabilité)

Exemple 2

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

rian

Rappels

Probabilités

Probabilité conditionnelle

independanc

Annex

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

$$P(P) = P(F) = \frac{1}{2}$$
 (équiprobabilité)

Exemple 2

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Annex

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

$$P(P) = P(F) = \frac{1}{2}$$
 (équiprobabilité)

Exemple 2

$$\Omega = \{1, 2, 3, 4, 5, 6\}^n$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ГІЛІІ

Rappels

Probabilités

Probabilité conditionnelle

.

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

$$P(P) = P(F) = \frac{1}{2}$$
 (équiprobabilité)

Exemple 2

$$\Omega = \{1, 2, 3, 4, 5, 6\}^n$$

$$\forall \omega = (u_1, u_2, \cdots, u_n) \in \Omega,$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ГІАП

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Annex

Exemple 1

Expérience aléatoire : relever Pile ou Face sur la face supérieure d'une pièce lancée en l'air.

$$\Omega = \{P, F\}$$

$$P(P) = P(F) = \frac{1}{2}$$
 (équiprobabilité)

Exemple 2

$$\Omega = \{1, 2, 3, 4, 5, 6\}^n$$

$$\forall \omega = (u_1, u_2, \cdots, u_n) \in \Omega, P(\omega) = \frac{1}{6^n}$$
 (équiprobabilité)

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rannels

Probabilités

Probabilité

conditionne

macpenaune

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

Probabilité

Annexe

Probabilité sur un ensemble infini dénombrable

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

Plan

Rappel

Probabilités

Probabilité

Indépendan

Anneve

Probabilité sur un ensemble infini dénombrable

Si Ω est infini dénombrable, la tribu \mathcal{T} est en général $\mathcal{P}(\Omega)$ et toute probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement définie par $P(\{\omega\}), \ \omega \in \Omega$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel:

Probabilités

Probabilité conditionnelle

Indépendan

Anneye

Probabilité sur un ensemble infini dénombrable

Si Ω est infini dénombrable, la tribu \mathcal{T} est en général $\mathcal{P}(\Omega)$ et toute probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement définie par $P(\{\omega\})$, $\omega \in \Omega$.

Notation

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

ixappeis

Probabilités

Probabilité conditionnelle

Indépenda

Anney

Probabilité sur un ensemble infini dénombrable

Si Ω est infini dénombrable, la tribu \mathcal{T} est en général $\mathcal{P}(\Omega)$ et toute probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement définie par $P(\{\omega\})$, $\omega \in \Omega$.

Notation

$$P(\{\omega\}) = P(\omega)$$

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

ı ıaıı

Rappels

Probabilités

Probabilité

Indépen

Anneye

Probabilité sur un ensemble infini dénombrable

Si Ω est infini dénombrable, la tribu \mathcal{T} est en général $\mathcal{P}(\Omega)$ et toute probabilité sur $(\Omega, \mathcal{P}(\Omega))$ est entièrement définie par $P(\{\omega\})$, $\omega \in \Omega$.

Notation

$$P(\{\omega\}) = P(\omega)$$

On a alors :

$$\forall A \in \mathcal{P}(\Omega) \ P(A) = \sum_{\omega \in A} P(\omega)$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rannels

Probabilités

Probabilité

ndépendanc

Annexe

R3.08 Probabilités

Probabilités

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité

Indépendanc

۸ -- -- -- -

Exemple

Expérience aléatoire : on lance une pièce parfaite jusqu'à obtenir *Pile* et on note le numéro du lancer correspondant.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendan

Λ -- -- -- --

Exemple

Expérience aléatoire : on lance une pièce parfaite jusqu'à obtenir *Pile* et on note le numéro du lancer correspondant.

On note A_i = "Obtenir Pile au i-ème lancer" ($i \ge 1$).

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Exemple

Expérience aléatoire : on lance une pièce parfaite jusqu'à obtenir *Pile* et on note le numéro du lancer correspondant.

On note A_i = "Obtenir Pile au i-ème lancer" ($i \ge 1$).

$$\forall i \geq 1, \ P(A_i) = \frac{1}{2^{i-1}} \cdot \frac{1}{2} = \frac{1}{2^i}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Annexe

Exemple

Expérience aléatoire : on lance une pièce parfaite jusqu'à obtenir *Pile* et on note le numéro du lancer correspondant.

On note $A_i=$ "Obtenir Pile au i-ème lancer" $(i\geq 1)$.

$$\forall i \geq 1, \ P(A_i) = \frac{1}{2^{i-1}} \cdot \frac{1}{2} = \frac{1}{2^i}$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \frac{1}{2^{i}} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} = \frac{1}{2} \cdot \frac{1 - 1/2^{n}}{1 - 1/2} = 1 - \frac{1}{2^{n}}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

1 1011

...

Probabilités

Probabilité conditionnelle

Indépend

Anneve

Exemple

Expérience aléatoire : on lance une pièce parfaite jusqu'à obtenir *Pile* et on note le numéro du lancer correspondant.

On note $A_i =$ "Obtenir Pile au i-ème lancer" ($i \ge 1$).

$$\forall i \geq 1, \ P(A_i) = \frac{1}{2^{i-1}} \cdot \frac{1}{2} = \frac{1}{2^i}$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \frac{1}{2^{i}} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} = \frac{1}{2} \cdot \frac{1 - 1/2^{n}}{1 - 1/2} = 1 - \frac{1}{2^{n}}$$

On obtient alors
$$\sum_{i=1}^{n} \frac{1}{2^i} = \frac{1}{2} \times \frac{1 - 1/2^n}{1 - 1/2} = 1 - \frac{1}{2^n} \to 1$$
 lorsque $n \to \infty$.

R3.08 Probabilités

Probabilités

Exemple

Expérience aléatoire : on lance une pièce parfaite jusqu'à obtenir Pile et on note le numéro du lancer correspondant.

On note A_i = "Obtenir Pile au i-ème lancer" ($i \ge 1$).

$$\forall i \geq 1, \ P(A_i) = \frac{1}{2^{i-1}} \cdot \frac{1}{2} = \frac{1}{2^i}$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \frac{1}{2^{i}} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} = \frac{1}{2} \cdot \frac{1 - 1/2^{n}}{1 - 1/2} = 1 - \frac{1}{2^{n}}$$

On obtient alors $\sum_{i=1}^{n} \frac{1}{2^i} = \frac{1}{2} \times \frac{1 - 1/2^n}{1 - 1/2} = 1 - \frac{1}{2^n} \to 1$ lorsque $n \to \infty$.

On a donc
$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{+\infty} \frac{1}{2^i} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = 1.$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

i iaii

ivappeis

Probabilités

Probabilité conditionnelle

independa

Annexe

Exemple

Expérience aléatoire : on lance une pièce parfaite jusqu'à obtenir *Pile* et on note le numéro du lancer correspondant.

On note $A_i=$ "Obtenir Pile au i-ème lancer" $(i\geq 1)$.

$$\forall i \geq 1, \ P(A_i) = \frac{1}{2^{i-1}} \cdot \frac{1}{2} = \frac{1}{2^i}$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \frac{1}{2^{i}} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} = \frac{1}{2} \cdot \frac{1 - 1/2^{n}}{1 - 1/2} = 1 - \frac{1}{2^{n}}$$

On obtient alors $\sum_{i=1}^{n} \frac{1}{2^i} = \frac{1}{2} \times \frac{1-1/2^n}{1-1/2} = 1 - \frac{1}{2^n} \to 1$ lorsque $n \to \infty$.

On a donc
$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{+\infty} \frac{1}{2^i} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = 1.$$

Remarque : $P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=1-1=0$ (événement presque impossible).

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

llan

Rappels

Probabilités

Probabilité

ndépendanc

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

Anneye

Probabilité sur un ensemble infini non dénombrable

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité

Indépendanc

Anneve

Probabilité sur un ensemble infini non dénombrable

Si Ω est un intervalle, la tribu \mathcal{T} est en général $\mathcal{B}(\mathbb{R})$.

R3.08 Probabilités

Probabilités

Probabilité sur un ensemble infini non dénombrable

Si Ω est un intervalle, la tribu \mathcal{T} est en général $\mathcal{B}(\mathbb{R})$. La probabilité uniforme sur $\Omega = [a, b]$ est définie par

$$\forall [\alpha, \beta] \subset [a, b] \ P([\alpha, \beta]) = \frac{\beta - \alpha}{b - a}$$

R3.08 Probabilités

Probabilités

Probabilité sur un ensemble infini non dénombrable

Si Ω est un intervalle, la tribu \mathcal{T} est en général $\mathcal{B}(\mathbb{R})$. La probabilité uniforme sur $\Omega = [a, b]$ est définie par

$$\forall [\alpha, \beta] \subset [a, b] \ P([\alpha, \beta]) = \frac{\beta - \alpha}{b - a}$$

Remarques

R3.08 Probabilités

Probabilités

Probabilité sur un ensemble infini non dénombrable

Si Ω est un intervalle, la tribu \mathcal{T} est en général $\mathcal{B}(\mathbb{R})$. La probabilité uniforme sur $\Omega = [a, b]$ est définie par

$$\forall [\alpha, \beta] \subset [a, b] \ P([\alpha, \beta]) = \frac{\beta - \alpha}{b - a}$$

Remarques

a) L'expérience aléatoire associée est le choix au hasard d'un réel sur [a, b].

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-

i iaii

Probabilités

_

conditionnelle

.

Probabilité sur un ensemble infini non dénombrable

Si Ω est un intervalle, la tribu \mathcal{T} est en général $\mathcal{B}(\mathbb{R})$. La probabilité uniforme sur $\Omega = [a,b]$ est définie par

$$\forall [\alpha, \beta] \subset [a, b] \ P([\alpha, \beta]) = \frac{\beta - \alpha}{b - a}$$

Remarques

- a) L'expérience aléatoire associée est le choix au hasard d'un réel sur [a,b].
- **b)** $\forall \alpha \in [a,b] \ P(\alpha) = P([\alpha,\alpha]) = \frac{\alpha \alpha}{b-a} = 0.$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

1 1011

Probabilités

Probabilites

Probabilité conditionnelle

Indépendanc

Probabilité sur un ensemble infini non dénombrable

Si Ω est un intervalle, la tribu \mathcal{T} est en général $\mathcal{B}(\mathbb{R})$. La probabilité uniforme sur $\Omega = [a,b]$ est définie par

$$\forall [\alpha, \beta] \subset [a, b] \ P([\alpha, \beta]) = \frac{\beta - \alpha}{b - a}$$

Remarques

- a) L'expérience aléatoire associée est le choix au hasard d'un réel sur [a,b].
- **b)** $\forall \alpha \in [a,b] \ P(\alpha) = P([\alpha,\alpha]) = \frac{\alpha \alpha}{b-a} = 0.$

Conséquence

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

.

Probabilités

Probabilité conditionnelle

Indépendanc

Probabilité sur un ensemble infini non dénombrable

Si Ω est un intervalle, la tribu \mathcal{T} est en général $\mathcal{B}(\mathbb{R})$. La probabilité uniforme sur $\Omega = [a, b]$ est définie par

$$\forall [\alpha, \beta] \subset [a, b] \ P([\alpha, \beta]) = \frac{\beta - \alpha}{b - a}$$

Remarques

- a) L'expérience aléatoire associée est le choix au hasard d'un réel sur [a, b].
- **b)** $\forall \alpha \in [a, b] \ P(\alpha) = P([\alpha, \alpha]) = \frac{\alpha \alpha}{b a} = 0.$

Conséquence

$$P(]\alpha, \beta]) = P(]\alpha, \beta[) = P([\alpha, \beta[) = P([\alpha, \beta]))$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

ndépendanc

Annexe

R3.08 Probabilités

Informatiqu IUT de Saint-Dié-de Vosges

Plan

Rappe

Probabilités

Dunkakilisi

Indépendanc

Annexe

R3.08 Probabilités

Probabilités

Exemple

Expérience aléatoire : choix au hasard d'un réel sur [0, 1].

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

Indépendance

Anneve

Exemple

Expérience aléatoire : choix au hasard d'un réel sur [0,1].

$$P\left(\left[0,\frac{1}{2}\right]\right) = \frac{1/2 - 0}{1 - 0} = \frac{1}{2}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité

. ..

Annexe

Exemple

Expérience aléatoire : choix au hasard d'un réel sur [0,1].

$$P\left(\left[0,\frac{1}{2}\right]\right) = \frac{1/2 - 0}{1 - 0} = \frac{1}{2}$$

$$P\left(\frac{1}{2}\right) = \frac{1/2 - 1/2}{1 - 0} = 0$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité

Indépend

Anneve

Exemple

Expérience aléatoire : choix au hasard d'un réel sur [0,1].

$$P\left(\left[0,\frac{1}{2}\right]\right) = \frac{1/2 - 0}{1 - 0} = \frac{1}{2}$$

$$P\left(\frac{1}{2}\right) = \frac{1/2 - 1/2}{1 - 0} = 0$$
 (événement presque impossible).

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Dankakiliata

Probabilité

conditionnelle

Anneve

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

Probabilité

conditionnelle

Anneve

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité

conditionnelle

Λ -----

Définition

Soit $(\Omega, \ \mathcal{T}, \ P)$ un espace probabilisé et A un événement tel que $P(A) \neq 0$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité conditionnelle de B sachant A.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Pian

Rappel

Probabilités

Probabilité conditionnelle

Indépendanc

Anneve

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité conditionnelle de B sachant A.

Propriété

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Писрепца

Anneye

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité conditionnelle de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) .

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilites

Probabilité conditionnelle

писрепцап

Anney

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité conditionnelle de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) . Démonstration en annexe

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépendanc

Annex

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité conditionnelle de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) . Démonstration en annexe

Autre notation

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Pian

Rappels

riobabilites

Probabilité conditionnelle

independano

Annex

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité conditionnelle de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) . Démonstration en annexe

Autre notation

$$P(B/A) = P_A(B)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

.

Rappels

Probabilités

Probabilité conditionnelle

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilité:

Probabilité

conditionnelle

Anneve

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

I Iaii

таррсіз

Probabilité:

Probabilité conditionnelle

Indépendance

Anneve

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

R3.08 Probabilités

Probabilité conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

гіан

Rappel

Probabilité:

Probabilité conditionnelle

Indépendanc

Anneve

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Pian

...

Probabilites

Probabilité conditionnelle

Indépendanc

Anneve

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

Kappeis

Probabilite

Probabilité conditionnelle

independanc

Annexe

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

$$\frac{\text{défectueux"}}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

гіан

Rappels

Probabilité:

Probabilité conditionnelle

Indépendan

Annexe

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

defectueux".
$$P(M) = \frac{300}{500} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$$

$$P(D/M) =$$

R3.08 Probabilités

Probabilité conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

On pose
$$M = 7$$
 toget est rabique par M , $M = 7$ toget est rabique par M toget est rabique par M , $M = 7$ toget est rabique par M toget est

$$P(D/M) = \frac{5}{100}$$

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'objets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

$$\frac{\text{defectueux}^{"}}{P(M)} = \frac{300}{500} = 0, 6 ; P(m) = P\left(\overline{M}\right) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} . P(D/m) = \frac{5}{100} = 0$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) =$

R3.08 Probabilités

Probabilité conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

$$\frac{\text{defectueux}^{"}}{P(M) = \frac{300}{500}} = 0, 6 : P(m) = P\left(\overline{M}\right) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} \cdot P(D/m) = \frac{7}{100}$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

R3.08 Probabilités

Probabilité conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

On pose M = "l'objet est fabriqué par M"; m = "l'objet est fabriqué par m" et D = "l'objet est

$$\frac{\text{defectueux}^{"}}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P\left(\overline{M}\right) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} . P(D/m) = \frac{7}{100}$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

P(D)

R3.08 Probabilités

Probabilité conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

$$\frac{\text{defectueux"}}{P(M) = \frac{300}{500}} = 0, 6 : P(m) = P\left(\overline{M}\right) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} , P(D/m) = \frac{7}{100}$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega)$$

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

On pose
$$M = 7$$
 toget est habitude part $M = 7$ toget M

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P(D \cap (M \cup \overline{M}))$$

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

On pose M = "l'objet est fabriqué par M"; m = "l'objet est fabriqué par m" et D = "l'objet est

 $\frac{d\acute{e}ectueux''}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$ $P(D/M) = \frac{5}{100} , P(D/m) = \frac{7}{100}$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right)$$

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un obiet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

$$\frac{\text{defectueux}^{"}}{P(M) = \frac{300}{500}} = 0, 6 : P(m) = P\left(\overline{M}\right) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} \cdot P(D/m) = \frac{7}{100}$$

$$P(D/M) = \frac{3}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right) = P(D \cap M) + P(D \cap \overline{M})$$

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un objet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}$.

 $|\Omega| = 500$

Off pose
$$M = 7$$
 toget est rainque par $M = 7$ toget est rainque

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right) = P(D \cap M) + P(D \cap \overline{M})$$

$$P(D) = P(D/M).P(M) + P\left(D/\overline{M}\right).P\left(\overline{M}\right)$$

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un obiet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}$.

 $|\Omega| = 500$

$$\frac{defectueux''}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} , P(D/M) = \frac{7}{100}$$

$$P(D/M) = \frac{3}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right) = P(D \cap M) + P(D \cap \overline{M})$$

$$P(D) = P(D/M).P(M) + P(D/\overline{M}).P(\overline{M}) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100}$$

R3.08 Probabilités

Probabilité conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un obiet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}$.

 $|\Omega| = 500$

$$\frac{defectueux''}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} , P(D/M) = \frac{7}{100}$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right) = P(D \cap M) + P(D \cap \overline{M})$$

$$P(D) = P(D/M).P(M) + P\left(D/\overline{M}\right).P\left(\overline{M}\right) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100} = 0, 03 + 0, 028 = 0, 058.$$

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un obiet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

On pose M = "l'objet est fabriqué par M"; m = "l'objet est fabriqué par m" et D = "l'objet est

$$\frac{defectueux''}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} , P(D/M) = \frac{7}{100}$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right) = P(D \cap M) + P(D \cap \overline{M})$$

$$P(D) = P(D/M).P(M) + P\left(D/\overline{M}\right).P\left(\overline{M}\right) = 0, 6. \frac{5}{100} + 0, 4. \frac{7}{100} = 0, 03 + 0, 028 = 0, 058.$$

On s'intéresse à la probabilité qu'une pièce défectueuse ait été fabriquée par la machine M.

R3.08 Probabilités

Probabilité

conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un obiet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

On pose M = "l'objet est fabriqué par M"; m = "l'objet est fabriqué par m" et D = "l'objet est

$$\frac{defectueux''}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} , P(D/M) = \frac{7}{100}$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right) = P(D \cap M) + P(D \cap \overline{M})$$

$$P(D) = P(D/M) \cdot P(M) + P\left(D/\overline{M}\right) \cdot P\left(\overline{M}\right) = 0, 6 \cdot \frac{5}{100} + 0, 4 \cdot \frac{7}{100} = 0, 03 + 0, 028 = 0, 058.$$

On s'intéresse à la probabilité qu'une pièce défectueuse ait été fabriquée par la machine M.

$$P(M/D) = \frac{P(M \cap D)}{P(D)}$$

R3.08 Probabilités

Probabilité conditionnelle

Exemple

Dans une usine, une machine M fabrique 300 objets A et une machine m fabrique 200 objets B chaque jour. La machine M sort 5 % d'obiets défectueux et la machine m en sort 7 %.

On tire au hasard un obiet de la fabrication journalière des deux machines.

 Ω est l'ensemble des objets fabriqués : $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{500}\}.$

 $|\Omega| = 500$

On pose M = "l'objet est fabriqué par M"; m = "l'objet est fabriqué par m" et D = "l'objet est

$$\frac{defectueux''}{P(M) = \frac{300}{500}} = 0, 6 ; P(m) = P(\overline{M}) = \frac{200}{500} = 0, 4$$

$$\frac{P(D/M)}{P(D/M)} = \frac{5}{100} , P(D/M) = \frac{7}{100}$$

$$P(D/M) = \frac{5}{100}$$
, $P(D/m) = \frac{7}{100}$

$$P(D) = P(D \cap \Omega) = P\left(D \cap \left(M \cup \overline{M}\right)\right) = P\left((D \cap M) \cup \left(D \cap \overline{M}\right)\right) = P(D \cap M) + P(D \cap \overline{M})$$

$$P(D) = P(D/M) \cdot P(M) + P\left(D/\overline{M}\right) \cdot P\left(\overline{M}\right) = 0, 6 \cdot \frac{5}{100} + 0, 4 \cdot \frac{7}{100} = 0, 03 + 0, 028 = 0, 058.$$

On s'intéresse à la probabilité qu'une pièce défectueuse ait été fabriquée par la machine M.

$$P(M/D) = \frac{P(M \cap D)}{P(D)} = \frac{0.6 \cdot \frac{5}{100}}{0.058} = \frac{30}{58} = \frac{15}{29} \approx 0.517$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rannel

Design Company

Probabilité

conditionnelle

Independance

Annexe

R3.08 Probabilités

Probabilité

conditionnelle

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Indépendance

Anneve

Cas où Ω est fini et P uniforme

Dans ce cas, on a

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité

conditionnelle

Anneve

Cas où Ω est fini et P uniforme

Dans ce cas, on a

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|A|}{|\Omega|}}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Indépendance

Anneye

Cas où Ω est fini et P uniforme

Dans ce cas, on a

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|A|}{|\Omega|}} = \frac{|A \cap B|}{|A|}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

гіап

Rappels

Probabilités

Probabilité conditionnelle

Indépendand

Anneve

Cas où Ω est fini et P uniforme

Dans ce cas, on a

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|A|}{|\Omega|}} = \frac{|A \cap B|}{|A|}$$

ce qui correspond à l'intuition d'un changement d'univers des possibles :

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

гіан

Rappel:

Probabilité

conditionnelle

independan

Annexe

Cas où Ω est fini et P uniforme

Dans ce cas, on a

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|A|}{|\Omega|}} = \frac{|A \cap B|}{|A|}$$

ce qui correspond à l'intuition d'un changement d'univers des possibles : Ω est remplacé par A et $A \cap B$ est la trace de B sur A.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

карре

Probabilité

conditionnelle

Anneve

Cas où Ω est fini et P uniforme

Dans ce cas, on a

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|A|}{|\Omega|}} = \frac{|A \cap B|}{|A|}$$

ce qui correspond à l'intuition d'un changement d'univers des possibles : Ω est remplacé par A et $A \cap B$ est la $trace\ de\ B\ sur\ A$.

R3.08 Probabilités

Probabilité conditionnelle

33/49

Formule des probabilités totales

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappe

Probabilité

Probabilité conditionnelle

Independance

Annexe

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

парроз

Probabilité:

Probabilité conditionnelle

Indépendanc

Anneve

Formule des probabilités totales

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I$ $P(B_i)\neq 0$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

. . .

Probabilité:

Probabilité conditionnelle

Independanc

۸ -- -- -- -

Formule des probabilités totales

Soit $(B_i)_{i \in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i \in I$ $P(B_i) \neq 0$.

$$P(A) = \sum_{i \in I} P(B_i) P(A/B_i)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

Rappel

Probabilite

Probabilité conditionnelle

Indépendan

Anneve

Formule des probabilités totales

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I$ $P(B_i)\neq 0$.

$$P(A) = \sum_{i \in I} P(B_i) P(A/B_i)$$

Formule de Bayes

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

.

Rappels

Probabilité

conditionnelle

Anneve

Formule des probabilités totales

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I$ $P(B_i)\neq 0$.

$$P(A) = \sum_{i \in I} P(B_i) P(A/B_i)$$

Formule de Bayes

Avec les mêmes hypothèses et $P(A) \neq 0$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

.

Rappels

Probabilité

conditionnelle

...асренаан

Anneye

Formule des probabilités totales

Soit $(B_i)_{i \in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i \in I$ $P(B_i) \neq 0$.

$$P(A) = \sum_{i \in I} P(B_i) P(A/B_i)$$

Formule de Bayes

Avec les mêmes hypothèses et $P(A) \neq 0$

$$\forall i \in I \ P(B_i/A) = \frac{P(B_i) P(A/B_i)}{\sum_{i \in I} P(B_i) P(A/B_i)}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Rappel:

Probabilité

conditionnelle

.

Formule des probabilités totales

Soit $(B_i)_{i \in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i \in I$ $P(B_i) \neq 0$.

$$P(A) = \sum_{i \in I} P(B_i) P(A/B_i)$$

Formule de Bayes

Avec les mêmes hypothèses et $P(A) \neq 0$

$$\forall i \in I \ P(B_i/A) = \frac{P(B_i) P(A/B_i)}{\sum_{i \in I} P(B_i) P(A/B_i)}$$

Démonstration en annexe.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Kappeis

Probabilité

conditionnelle

Formule des probabilités totales

Soit $(B_i)_{i \in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i \in I$ $P(B_i) \neq 0$.

$$P(A) = \sum_{i \in I} P(B_i) P(A/B_i)$$

Formule de Bayes

Avec les mêmes hypothèses et $P(A) \neq 0$

$$\forall i \in I \ P(B_i/A) = \frac{P(B_i) P(A/B_i)}{\sum_{i \in I} P(B_i) P(A/B_i)}$$

Démonstration en annexe.

Thomas Bayes (1702-1761): mathématicien britannique.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

ndépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilité:

Probabilité conditionnelle

Indépendance

Anneva

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

.

Rappels

Probabilité:

Probabilité conditionnelle

Indépendanc

Anneve

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

ı ıaıı

Rappels

Probabilités

Probabilité conditionnelle

Indépendan

Anneve

Exemple

M et $m=\overline{M}$ forment une famille complète d'événements telles que $P(M)\neq 0$ et $P(m)\neq 0$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Probabilite

Probabilité conditionnelle

Indépendan

Anneve

Exemple

M et $m=\overline{M}$ forment une famille complète d'événements telles que $P(M)\neq 0$ et $P(m)\neq 0$.

$$P(D) = P(M).P(D/M) + P(m).P(D/m)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilité:

Probabilité conditionnelle

Indépendan

Anneve

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

$$P(D) = P(M).P(D/M) + P(m).P(D/m) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

independan

Anneve

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

$$P(D) = P(M).P(D/M) + P(m).P(D/m) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100}$$

$$P(D) = 0.03 + 0.028 = 0.058.$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Kappeis

Probabilités

Probabilité conditionnelle

Anneve

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

La formule des probabilités totales permet d'écrire :

$$P(D) = P(M).P(D/M) + P(m).P(D/m) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100}$$

$$P(D) = 0.03 + 0.028 = 0.058.$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

гіан

Rappels

Probabilités

Probabilité conditionnelle

independanc

Annex

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

La formule des probabilités totales permet d'écrire :

$$P(D) = P(M).P(D/M) + P(m).P(D/m) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100}$$

$$P(D) = 0.03 + 0.028 = 0.058.$$

$$P(M/D) = \frac{P(M) P(D/M)}{P(M).P(D/M) + P(m).P(D/m)}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

rian

itappeis

Probabilités

Probabilité conditionnelle

independanc

Annex

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

La formule des probabilités totales permet d'écrire :

$$P(D) = P(M).P(D/M) + P(m).P(D/m) = 0.6.\frac{5}{100} + 0.4.\frac{7}{100}$$

$$P(D) = 0.03 + 0.028 = 0.058.$$

$$P(M/D) = \frac{P(M) P(D/M)}{P(M).P(D/M) + P(m).P(D/m)} = \frac{0,6.0,05}{0,6.\frac{5}{100} + 0,4.\frac{7}{100}}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Independanc

Annex

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

La formule des probabilités totales permet d'écrire :

$$P(D) = P(M).P(D/M) + P(m).P(D/m) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100}$$

$$P(D) = 0.03 + 0.028 = 0.058.$$

$$P(M/D) = \frac{P(M)P(D/M)}{P(M).P(D/M) + P(m).P(D/m)} = \frac{0,6.0,05}{0,6.\frac{5}{100} + 0,4.\frac{7}{100}}$$

$$P(M/D) = \frac{0,030}{0,058}$$

R3.08 Probabilités

Probabilité conditionnelle

Exemple

M et $m = \overline{M}$ forment une famille complète d'événements telles que $P(M) \neq 0$ et $P(m) \neq 0$.

La formule des probabilités totales permet d'écrire :

$$P(D) = P(M).P(D/M) + P(m).P(D/m) = 0, 6.\frac{5}{100} + 0, 4.\frac{7}{100}$$

$$P(D) = 0.03 + 0.028 = 0.058.$$

$$P(M/D) = \frac{P(M)P(D/M)}{P(M).P(D/M) + P(m).P(D/m)} = \frac{0,6.0,05}{0,6.\frac{5}{100} + 0,4.\frac{7}{100}}$$

$$P(M/D) = \frac{0,030}{0.058} = \frac{15}{29} \approx 0,517$$

$$P(M/D) = \frac{0,030}{0,058} = \frac{15}{29} \approx 0,517$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilité

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Indépendance

Indépendance de deux événements

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

ixappeis

Probabilité:

Probabilité conditionnelle

Indépendance

Annexe

Indépendance de deux événements

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A et B deux événements.

R3.08 Probabilités

Indépendance

Indépendance de deux événements

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A et B deux événements.

A et B sont dits indépendants si $P(A \cap B) = P(A)P(B)$.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilité

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

DI....

Rappe

Probabilité

Indépendance

Anneve

Remarque

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

Rappel

Probabilité

Probabilité

Indépendance

Anneve

Remarque

Si $P(A) \neq 0$ alors A et B sont indépendants si et seulement si P(B/A) = P(B).

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Rappels

Probabilité

Probabilité conditionnelle

Indépendance

Anneve

Remarque

Si $P(A) \neq 0$ alors A et B sont indépendants si et seulement si P(B/A) = P(B).

Démonstration

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

Probabilites

conditionnelle

Indépendance

Anneve

Remarque

Si $P(A) \neq 0$ alors A et B sont indépendants si et seulement si P(B/A) = P(B).

Démonstration

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B).$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

D. J. L. L. D. C.

conditionnelle

Indépendance

Annex

Remarque

Si $P(A) \neq 0$ alors A et B sont indépendants si et seulement si P(B/A) = P(B).

Démonstration

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B).$$

Réciproquement si P(B/A) = P(B) alors

$$P(A \cap B) = P(A)P(B/A) = P(A)P(B)$$
.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilité

Probabilité

Indépendance

Annexe

R3.08 Probabilités

IUT de Saint-Dié-de Vosges

Plan

Rappe

Probabilité

D., L., L. 1997

Indépendance

Λ

Propriétés

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

Rappels

Probabilités

conditionnelle

Indépendance

Annexe

Propriétés

a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

rappeis

Probabilités

Probabilité

Indépendance

Annexe

Propriétés

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) Si A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

rian

Rappels

Probabilités

Indépendance

Propriétés

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) Si A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

Démonstration en annexe.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilité

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappe

Probabilité

Conditionn

Indépendance

Annexe

Indépendance d'une famille d'événements

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Rappels

Probabilités

Probabilité

Indépendance

Anneve

Indépendance d'une famille d'événements

Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_i)_{i \in I}$ une famille d'événements (I ensemble fini ou non).

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

1 1011

Probabilites

Probabilité conditionnelle

Indépendance

Anneve

Indépendance d'une famille d'événements

Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_i)_{i \in I}$ une famille d'événements (I ensemble fini ou non).

 $(A_i)_{i\in I}$ est une famille d'événements indépendants (dans leur ensemble) si pour toute suite finie $(i_i)_{1\leq i\leq n}$ de I

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Probabilités

Probabilité

Indépendance

Anneve

Indépendance d'une famille d'événements

Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_i)_{i \in I}$ une famille d'événements (I ensemble fini ou non).

 $(A_i)_{i\in I}$ est une famille d'événements indépendants (dans leur ensemble) si pour toute suite finie $(i_j)_{1\leq j\leq n}$ de I

$$P\left(\bigcap_{j=1}^{n}A_{i_{j}}\right)=\prod_{j=1}^{n}P\left(A_{i_{j}}\right)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

1 Tobabilites

conditionnelle

Indépendance

Annexe

Indépendance d'une famille d'événements

Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_i)_{i \in I}$ une famille d'événements (I ensemble fini ou non).

 $(A_i)_{i\in I}$ est une famille d'événements indépendants (dans leur ensemble) si pour toute suite finie $(i_j)_{1\leq j\leq n}$ de I

$$P\left(\bigcap_{j=1}^{n}A_{i_{j}}\right)=\prod_{j=1}^{n}P\left(A_{i_{j}}\right)$$

Remarque

R3.08 Probabilités

Indépendance

Indépendance d'une famille d'événements

Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_i)_{i \in I}$ une famille d'événements (I ensemble fini ou non).

 $(A_i)_{i \in I}$ est une famille d'événements indépendants (dans leur ensemble) si pour toute suite finie $(i_i)_{1 \le i \le n}$ de I

$$P\left(\bigcap_{j=1}^{n}A_{i_{j}}\right)=\prod_{j=1}^{n}P\left(A_{i_{j}}\right)$$

Remarque

L'indépendance deux à deux n'implique pas l'indépendance d'une famille d'événements dans leur ensemble.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilité

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilité

B 1 13057

conditionne

Indépendance

Annexe

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ГІЛІІ

Rappels

Probabilité:

Probabilité conditionne

Indépendance

Anneve

Exemple

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Kappeis

Probabilité

conditionnelle

Indépendance

Anneve

Exemple

On considère l'expérience aléatoire consistant à lancer un dé tétraédrique parfait et à noter le nombre lu sur sa face inférieure.

 $\Omega = \{1,2,3,4\}$, $\mathcal{T} = \mathcal{P}(\Omega)$, P: probabilité uniforme.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

i iaii

Probabilite

Probabilité conditionnelle

Indépendance

Annexe

Exemple

$$\Omega = \{1,2,3,4\}$$
 , $\mathcal{T} = \mathcal{P}(\Omega)$, P : probabilité uniforme.

On note
$$A_1=\{1,2\}$$
, $A_2=\{2,3\}$ et $A_3=\{1,3\}$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

i iaii

rappeis

Probabilite

Probabilité conditionnelle

Indépendance

Annexe

Exemple

$$\Omega = \{1,2,3,4\}$$
 , $\mathcal{T} = \mathcal{P}(\Omega)$, P : probabilité uniforme.

On note
$$A_1 = \{1, 2\}$$
, $A_2 = \{2, 3\}$ et $A_3 = \{1, 3\}$.

$$P(A_1) = P(A_2) = P(A_3) = \frac{1}{2}$$

R3.08 Probabilités

Indépendance

Exemple

$$\Omega = \{1, 2, 3, 4\}, \ \mathcal{T} = \mathcal{P}(\Omega), \ P$$
: probabilité uniforme.

On note
$$A_1 = \{1, 2\}, A_2 = \{2, 3\} \text{ et } A_2 = \{1, 3\}$$

On note
$$A_1 = \{1, 2\}$$
, $A_2 = \{2, 3\}$ et $A_3 = \{1, 3\}$.

$$P(A_1) = P(A_2) = P(A_3) = \frac{1}{2}$$

$$P(A_1 \cap A_2) = P(2) = \frac{1}{4} = P(A_1) P(A_2)$$

R3.08 Probabilités

Indépendance

Exemple

$$\Omega = \{1, 2, 3, 4\}, \ \mathcal{T} = \mathcal{P}(\Omega), \ P$$
: probabilité uniforme.

On note
$$A_1 = \{1, 2\}$$
, $A_2 = \{2, 3\}$ et $A_3 = \{1, 3\}$.

$$P(A_1) = P(A_2) = P(A_3) = \frac{1}{2}$$

$$P(A_1 \cap A_2) = P(2) = \frac{1}{4} = P(A_1) P(A_2)$$

 $P(A_1 \cap A_3) = P(1) = \frac{1}{4} = P(A_1) P(A_3)$

$$P(A_1 \cap A_3) = P(1) = \frac{1}{4} = P(A_1) P(A_3)$$

R3.08 Probabilités

Indépendance

Exemple

$$\Omega = \{1, 2, 3, 4\}, \ \mathcal{T} = \mathcal{P}(\Omega), \ P$$
: probabilité uniforme.

On note
$$A_1 = \{1, 2\}$$
, $A_2 = \{2, 3\}$ et $A_3 = \{1, 3\}$.

$$P(A_1) = P(A_2) = P(A_3) = \frac{1}{2}$$

$$P(A_1 \cap A_2) = P(2) = \frac{1}{4} = P(A_1) P(A_2)$$

$$P(A_1 \cap A_2) = P(1) = \frac{1}{-} = P(A_1) P(A_2)$$

$$P(A_1 \cap A_2) = P(2) = \frac{1}{4} = P(A_1) P(A_2)$$

$$P(A_1 \cap A_3) = P(1) = \frac{1}{4} = P(A_1) P(A_3)$$

$$P(A_2 \cap A_3) = P(3) = \frac{1}{4} = P(A_2) P(A_3)$$

R3.08 Probabilités

Indépendance

Exemple

$$\Omega = \{1, 2, 3, 4\}, \ \mathcal{T} = \mathcal{P}(\Omega), \ P : \text{ probabilité uniforme.}$$

On note
$$A_1 = \{1, 2\}$$
, $A_2 = \{2, 3\}$ et $A_3 = \{1, 3\}$.

On note
$$A_1 = \{1, 2\}$$
, $A_2 = \{2, 3\}$ et $A_3 = \{1, 3\}$.

$$P(A_1) = P(A_2) = P(A_3) = \frac{1}{2}$$

$$P(A_1 \cap A_2) = P(2) = \frac{1}{4} = P(A_1) P(A_2)$$

$$P(A_1 \cap A_3) = P(1) = \frac{1}{A} = P(A_1) P(A_3)$$

$$P(A_1 \cap A_2) = P(2) = \frac{1}{4} = P(A_1) P(A_2)$$

$$P(A_1 \cap A_3) = P(1) = \frac{1}{4} = P(A_1) P(A_3)$$

$$P(A_2 \cap A_3) = P(3) = \frac{1}{4} = P(A_2) P(A_3)$$

Mais
$$P(A_1 \cap A_2 \cap A_3) = P(\emptyset) = 0$$
 et $P(A_1) P(A_2) P(A_3) = \frac{1}{8}$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilité

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilitá

B 1 1795.7

conditionne

Indépendance

Annexe

Indépendance d'une famille d'expériences aléatoires

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

.

_

Probabilité:

Probabilité

Indépendance

Anneve

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec $1 \leq i \leq n$.

R3.08 Probabilités

Indépendance

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec 1 < i < n.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

· iaii

B 1 100.7

Probabilité

conditionnelle

Indépendance

Annexe

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec $1 \le i \le n$.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

.

Rappel

Probabilité

conditionnelle

Indépendance

Annexe

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec $1 \le i \le n$.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$$

 \mathcal{T} est la tribu engendrée par les parties de Ω .

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Rappels

conditionnelle Indépendance

•

Annexe

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec $1 \le i \le n$.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$$

 ${\mathcal T}$ est la tribu engendrée par les parties de $\Omega.$

$$\forall A_i \in \mathcal{T}_i, P(A_1 \times A_2 \times \cdots \times A_n) = P_1(A_1) P_2(A_2) \cdots P_n(A_n)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

i iaii

Probabilité

Probabilité

Indépendance

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec $1 \le i \le n$.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$$

 ${\mathcal T}$ est la tribu engendrée par les parties de Ω .

$$\forall A_i \in \mathcal{T}_i, \ P(A_1 \times A_2 \times \cdots \times A_n) = P_1(A_1) P_2(A_2) \cdots P_n(A_n)$$

R3.08 Probabilités

Indépendance

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec 1 < i < n.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$$

 \mathcal{T} est la tribu engendrée par les parties de Ω .

$$\forall A_i \in \mathcal{T}_i, \ P(A_1 \times A_2 \times \cdots \times A_n) = P_1(A_1) P_2(A_2) \cdots P_n(A_n)$$

$$\Omega = \Omega_1 \otimes \Omega_2 \otimes \cdots \otimes \Omega_n$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

I Iaii

Kappei

Probabilité

conditionnell

Indépendance

Annex

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec $1 \le i \le n$.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$$

 ${\mathcal T}$ est la tribu engendrée par les parties de Ω .

$$\forall A_i \in \mathcal{T}_i, \ P(A_1 \times A_2 \times \cdots \times A_n) = P_1(A_1) P_2(A_2) \cdots P_n(A_n)$$

$$\Omega = \Omega_1 \otimes \Omega_2 \otimes \cdots \otimes \Omega_n$$

$$\mathcal{T} = \mathcal{T}_1 \otimes \mathcal{T}_2 \otimes \cdots \otimes \mathcal{T}_n$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

I Iaii

Rappel:

Probabilité

conditionnel

Indépendance

Annex

Indépendance d'une famille d'expériences aléatoires

Soit une famille de n expériences aléatoires (\mathcal{E}_i) associées à un espace probabilisé $(\Omega_i, \mathcal{T}_i, P_i)$ avec $1 \le i \le n$.

On construit un espace probabilisé (Ω, \mathcal{T}, P) associé à l'expérience aléatoire définie par la suite des n expériences aléatoires (\mathcal{E}_i) réalisées de manière indépendante en posant :

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$$

 ${\mathcal T}$ est la tribu engendrée par les parties de $\Omega.$

$$\forall A_i \in \mathcal{T}_i, \ P(A_1 \times A_2 \times \cdots \times A_n) = P_1(A_1) P_2(A_2) \cdots P_n(A_n)$$

$$\Omega = \Omega_1 \otimes \Omega_2 \otimes \cdots \otimes \Omega_n$$

$$\mathcal{T} = \mathcal{T}_1 \otimes \mathcal{T}_2 \otimes \cdots \otimes \mathcal{T}_n$$

$$P = P_1 \otimes P_2 \otimes \cdots \otimes P_n.$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilitá

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilité

Indépendance

Anneve

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilité

Design Laboration

Indépendance

Anneve

Exemple

Expérience aléatoire ${\mathcal E}$:

R3.08 Probabilités

Indépendance

Exemple

Expérience aléatoire \mathcal{E} :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Probabilités

Probabilité conditionnelle

Indépendance

Anneve

Exemple

Expérience aléatoire ${\mathcal E}$:

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Probabilites

Probabilité

Indépendance

Anneve

Exemple

Expérience aléatoire ${\mathcal E}$:

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 puis un jeton dans l'urne \mathcal{U}_2 .

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

_

Probabilité

conditionnelle

Indépendance

Annexe

Exemple

Expérience aléatoire ${\mathcal E}$:

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 puis un jeton dans l'urne \mathcal{U}_2 .

On note le numéro du premier jeton puis le numéro du deuxième.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

ı ıaıı

...

Probabilites

Probabilité conditionnelle

Indépendance

Annexe

Exemple

Expérience aléatoire ${\mathcal E}$:

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

On tire au hasard un jeton dans l'urne U_1 puis un jeton dans l'urne U_2 . On note le numéro du premier jeton puis le numéro du deuxième.

Premier point de vue

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Probabilités

1 Tobabilites

conditionnelle

Indépendance

Annex

Exemple

Expérience aléatoire ${\mathcal E}$:

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2. On tire au hasard un jeton dans l'urne \mathcal{U}_1 puis un jeton dans l'urne \mathcal{U}_2 . On note le numéro du premier jeton puis le numéro du deuxième.

Premier point de vue

$$\Omega = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

B 1 100.7

Probabilites

conditionnelle

Indépendance

Annex

Exemple

Expérience aléatoire ${\mathcal E}$:

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne U_2 contient un jeton numéroté 1 et un jeton numéroté 2. On tire au hasard un jeton dans l'urne U_1 puis un jeton dans l'urne U_2 .

On note le numéro du premier jeton puis le numéro du deuxième.

Premier point de vue

$$\Omega = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\}$$

$$\mathcal{T} = \mathcal{P}(\Omega)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Desile della Co

Probabilite

. . . .

Indépendance

Annex

Exemple

Expérience aléatoire ${\mathcal E}$:

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2. On tire au hasard un jeton dans l'urne \mathcal{U}_1 puis un jeton dans l'urne \mathcal{U}_2 .

On note le numéro du premier jeton puis le numéro du deuxième.

Premier point de vue

$$\Omega = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\}$$

$$\mathcal{T} = \mathcal{P}(\Omega)$$

Équiprobabilité sur Ω :

R3.08 Probabilités

Indépendance

Exemple

Expérience aléatoire \mathcal{E} :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 puis un jeton dans l'urne \mathcal{U}_2 .

On note le numéro du premier jeton puis le numéro du deuxième.

Premier point de vue

$$\begin{split} \Omega &= \{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)\} \\ \mathcal{T} &= \mathcal{P}(\Omega) \end{split}$$

Équiprobabilité sur Ω :

$$P(1,1) = P(1,2) = P(2,1) = P(2,2) = P(3,1) = P(3,2) = \frac{1}{6}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilité

Probabilité

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel:

Probabilité

Indépendance

Anneve

R3.08 Probabilités

Indépendance

Deuxième point de vue Expérience aléatoire \mathcal{E}_1 :

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ı ıaıı

Rappel:

Probabilité:

Probabilité

Indépendance

Annexe

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

Rappel

Probabilité:

Probabilité

Indépendance

Anneve

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

1 1011

Probabilité:

conditionnell

Indépendance

Anneve

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

$$\Omega_1=\{1,2,3\}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

I Iall

Rappeis

Probabilite

Probabilité conditionnelle

Indépendance

Annexe

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

$$\Omega_1 = \{1, 2, 3\}$$

$$\mathcal{T}_1 = \mathcal{P}(\Omega_1)$$

R3.08 Probabilités

Indépendance

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

$$\Omega_1 = \{1, 2, 3\}$$
 $\mathcal{T}_1 = \mathcal{P}(\Omega_1)$

$$\mathcal{T}_1 = \mathcal{P}(\Omega_1)$$

$$P_1(1) = P_1(2) = P_1(3) = \frac{1}{3}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

1 1011

Парроп

Probabilités

Probabilité

Indépendance

Annexe

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 .

$$\Omega_1 = \{1, 2, 3\}$$
 $\mathcal{T}_1 = \mathcal{D}(\Omega_1)$

$$\mathcal{T}_1 = \mathcal{P}(\Omega_1)$$

$$P_1(1) = P_1(2) = P_1(3) = \frac{1}{3}$$

Expérience aléatoire \mathcal{E}_2 :

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

i iuii

.

Probabilites

conditionnelle Indépendance

Annexe

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 .

$$\Omega_1 = \{1, 2, 3\}$$
 $\mathcal{T}_1 = \mathcal{P}(\Omega_1)$

$$\mathcal{T}_1 = \mathcal{P}(\Omega_1)$$

$$P_1(1) = P_1(2) = P_1(3) = \frac{1}{3}$$

Expérience aléatoire \mathcal{E}_2 :

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

i iuii

D 1 1357

conditionnelle

Indépendance

Annex

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 .

$$\Omega_1 = \{1, 2, 3\}$$
 $\mathcal{T}_1 = \mathcal{P}(\Omega_1)$

$$\mathcal{T}_1 = \mathcal{P}(\Omega_1)$$

$$P_1(1) = P_1(2) = P_1(3) = \frac{1}{3}$$

Expérience aléatoire \mathcal{E}_2 :

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

...

Probabilites

conditionnelle

Indépendance

Annex

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 .

$$\Omega_1 = \{1, 2, 3\}$$

$$\mathcal{T}_1 = \mathcal{P}(\Omega_1)$$

$$P_1(1) = P_1(2) = P_1(3) = \frac{1}{3}$$

Expérience aléatoire \mathcal{E}_2 :

Une urne U_2 contient un jeton numéroté 1 et un jeton numéroté 2.

$$\Omega_2=\{1,2\}$$

R3.08 Probabilités

Indépendance

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 .

$$\Omega_1 = \{1, 2, 3\}$$
 $\mathcal{T}_1 = \mathcal{P}(\Omega_1)$

$$\mathcal{T}_1 = \mathcal{P}(\Omega_1)$$

$$P_1(1) = P_1(2) = P_1(3) = \frac{1}{3}$$

Expérience aléatoire \mathcal{E}_2 :

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

$$\Omega_2=\{1,2\}$$

$$\mathcal{T}_2 = \mathcal{P}(\Omega_2)$$

R3.08 Probabilités

Indépendance

Deuxième point de vue

Expérience aléatoire \mathcal{E}_1 :

Une urne \mathcal{U}_1 contient un jeton numéroté 1, un jeton numéroté 2 et un jeton numéroté 3.

On tire au hasard un jeton dans l'urne \mathcal{U}_1 .

$$\Omega_1 = \{1, 2, 3\}$$

 $\mathcal{T}_1 = \mathcal{P}(\Omega_1)$

$$P_1(1) = P_1(2) = P_2(2)$$

$$P_1(1) = P_1(2) = P_1(3) = \frac{1}{3}$$

Expérience aléatoire \mathcal{E}_2 :

Une urne \mathcal{U}_2 contient un jeton numéroté 1 et un jeton numéroté 2.

$$\Omega_2=\{1,2\}$$

$$\mathcal{T}_2 = \mathcal{P}(\Omega_2)$$

$$P_{2}(1) = P_{2}(2) = \frac{1}{2}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilité

Probabilité

Indépendance

Annexe

43/49

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilité

D., 1, 1,225.7

conditionne

Indépendance

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

Conditionn

Indépendance

Annexe

Deuxième point de vue

Expérience aléatoire \mathcal{E} , suite $(\mathcal{E}_1,\mathcal{E}_2)$:

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

rian

Kappeis

Probabilités

Probabilité conditionnel

Indépendance

Anneye

Deuxième point de vue

Expérience aléatoire
$$\mathcal{E}$$
, suite $(\mathcal{E}_1, \mathcal{E}_2)$:

$$\Omega = \Omega_1 \times \Omega_2 = \{1,2,3\} \times \{1,2\} = \{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)\}$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

reppers

Probabilités

Conditionnelle

Indépendance

Annexe

Deuxième point de vue

Expérience aléatoire \mathcal{E} , suite $(\mathcal{E}_1, \mathcal{E}_2)$:

$$\Omega = \Omega_1 \times \Omega_2 = \{1, 2, 3\} \times \{1, 2\} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$$

$$\mathcal{T} = \mathcal{T}(\Omega_1 \times \Omega_2) = \mathcal{P}(\Omega_1 \times \Omega_2)$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

Rappel

B 1 130.7

Probabilité conditionnelle

Indépendance

Anneve

Deuxième point de vue

Expérience aléatoire \mathcal{E} , suite $(\mathcal{E}_1, \mathcal{E}_2)$:

$$\Omega = \Omega_1 \times \Omega_2 = \{1, 2, 3\} \times \{1, 2\} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$$

$$\mathcal{T} = \mathcal{T}(\Omega_1 \times \Omega_2) = \mathcal{P}(\Omega_1 \times \Omega_2)$$

$$P = P_1 \otimes P_2$$
 définie par

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

rian

Rappel

Dunkakilisé

conditionnelle

Indépendance

Annex

Deuxième point de vue

Expérience aléatoire \mathcal{E} , suite $(\mathcal{E}_1, \mathcal{E}_2)$:

$$\Omega = \Omega_1 \times \Omega_2 = \{1,2,3\} \times \{1,2\} = \{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)\}$$

$$\mathcal{T} = \mathcal{T}(\Omega_1 \times \Omega_2) = \mathcal{P}(\Omega_1 \times \Omega_2)$$

 $P = P_1 \otimes P_2$ définie par

$$P(i,j) = P_1 \otimes P_2(i,j) = P_1(i)P_2(j) = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$$
 avec $i \in \{1,2,3\}$ et $j \in \{1,2\}$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

ГІЛІІ

...

Probabilités

conditionnelle

Indépendanc

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

lall

rappeis

Probabilités

Probabilité

ndépendance

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel:

Probabilitá

conditionne

independance

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilité:

Probabilité

Indépendance

Annexe

Propriétés : démonstration

a) On pose $A_1=\Omega$ et $A_i=\emptyset$ pour $i\geq 2.$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

гіан

Rappels

Probabilité:

Probabilité

Indépendanc

Annexe

Propriétés : démonstration

a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilités

Probabilité

Indépendanc

Annexe

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour $i \ge n+1$.

R3.08 Probabilités

Annexe

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour i > n + 1.
- c) $\Omega = A \cup \overline{A}$ et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$

R3.08 Probabilités

Annexe

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour i > 2. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour i > n + 1.
- c) $\Omega = A \cup \overline{A}$ et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$ et donc $P(A) + P(\overline{A}) = 1$

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

1 1011

rappeis

Probabilites

conditionnelle

Indépendanc

Annexe

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour $i \ge n + 1$.
- c) $\Omega = A \cup \overline{A}$ et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$
- et donc $P(A) + P(\overline{A}) = 1$
- d) $A \cup B = A \cup (\overline{A} \cap B)$ avec A et $\overline{A} \cap B$ incompatibles.

R3.08 Probabilités

Informatique
IUT de
Saint-Dié-des
Vosges

rian

Mappels

Probabilites

conditionnelle

independan

Annexe

Propriétés : démonstration

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour $i \ge n + 1$.
- c) $\Omega = A \cup \overline{A}$ et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$
- et donc $P(A) + P(\overline{A}) = 1$
- d) $A \cup B = A \cup (\overline{A} \cap B)$ avec A et $\overline{A} \cap B$ incompatibles.

On a donc $P(A \cup B) = P(A) + P(\overline{A} \cap B)$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

rian

rappeis

Probabilités

Probabilité conditionnelle

Annexe

Propriétés : démonstration

a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.

b) On pose $A_i = \emptyset$ pour i > n + 1.

c)
$$\Omega = A \cup \overline{A}$$
 et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$

et donc $P(A) + P(\overline{A}) = 1$

d) $A \cup B = A \cup (\overline{A} \cap B)$ avec A et $\overline{A} \cap B$ incompatibles.

On a donc $P(A \cup B) = P(A) + P(\overline{A} \cap B)$.

De plus, $B = (A \cap B) \cup (\overline{A} \cap B)$ avec $A \cap B$ et $\overline{A} \cap B$ incompatibles.

R3.08 Probabilités

Annexe

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour i > n + 1.
- c) $\Omega = A \cup \overline{A}$ et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$
- et donc $P(A) + P(\overline{A}) = 1$
- d) $A \cup B = A \cup (\overline{A} \cap B)$ avec A et $\overline{A} \cap B$ incompatibles.
- On a donc $P(A \cup B) = P(A) + P(\overline{A} \cap B)$.
- De plus, $B = (A \cap B) \cup (\overline{A} \cap B)$ avec $A \cap B$ et $\overline{A} \cap B$ incompatibles.
- On en déduit $P(B) = P(A \cap B) + P(\overline{A} \cap B)$ et donc

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

гіан

....

Probabilités

conditionnelle

Indépend

Annexe

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour i > n + 1.
- c) $\Omega = A \cup \overline{A}$ et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$
- et donc $P(A) + P(\overline{A}) = 1$
- d) $A \cup B = A \cup (\overline{A} \cap B)$ avec A et $\overline{A} \cap B$ incompatibles.
- On a donc $P(A \cup B) = P(A) + P(\overline{A} \cap B)$.
- De plus, $B = (A \cap B) \cup (\overline{A} \cap B)$ avec $A \cap B$ et $\overline{A} \cap B$ incompatibles.
- On en déduit $P(B) = P(A \cap B) + P(\overline{A} \cap B)$ et donc
- $P(A \cup B) = P(A) + P(\overline{A} \cap B) = P(A) + P(B) P(A \cap B).$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

гіан

Rappels

Probabilités

Probabilité conditionnelle

Indépenda

Annexe

- a) On pose $A_1 = \Omega$ et $A_i = \emptyset$ pour $i \ge 2$. On obtient alors $P(\emptyset) = 0$.
- **b)** On pose $A_i = \emptyset$ pour i > n + 1.
- c) $\Omega = A \cup \overline{A}$ et $A \cap \overline{A} = \emptyset$ donnent $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$

et donc
$$P(A) + P(\overline{A}) = 1$$

- d) $A \cup B = A \cup (\overline{A} \cap B)$ avec A et $\overline{A} \cap B$ incompatibles.
- On a donc $P(A \cup B) = P(A) + P(\overline{A} \cap B)$.
- De plus, $B = (A \cap B) \cup (\overline{A} \cap B)$ avec $A \cap B$ et $\overline{A} \cap B$ incompatibles.
- On en déduit $P(B) = P(A \cap B) + P(\overline{A} \cap B)$ et donc
- $P(A \cup B) = P(A) + P(\overline{A} \cap B) = P(A) + P(B) P(A \cap B).$
- e) Si $A \subset B$ alors
- $P(B) = P(A \cap B) + P(\overline{A} \cap B) = P(A) + P(\overline{A} \cap B) \ge P(A).$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilités

Probabilité

ndépendance

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilité

conditionne

пиерепиансе

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilité

Probabilité ...

Indépendanc

Annexe

Définition

Soit $(\Omega, \ \mathcal{T}, \ P)$ un espace probabilisé et A un événement tel que $P(A) \neq 0$.

R3.08 Probabilités

Annexe

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité de B sachant A.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Indépendanc

Annexe

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité de B sachant A.

Propriété

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel:

Probabilité:

Probabilité

Indépend

Annexe

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) .

R3.08 Probabilités

Annexe

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) . Démonstration en annexe.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappels

Probabilités

Probabilité conditionnelle

Indépend

Annexe

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) . Démonstration en annexe

Autre notation

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Indépend

Annexe

Définition

Soit (Ω, \mathcal{T}, P) un espace probabilisé et A un événement tel que $P(A) \neq 0$. Pour tout événement B, le réel noté $P(B/A) = \frac{P(A \cap B)}{P(A)}$ est appelé probabilité de B sachant A.

Propriété

L'application $B \to P(B/A)$ est une probabilité sur (Ω, \mathcal{T}) . Démonstration en annexe

Autre notation

$$P(B/A) = P_A(B)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilité

Probabilité

ndépendance

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel:

Probabilité

conditionne

independance

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilité

Probabilité

Indépendance

Annexe

Démonstration

a) $A \cap B \subset A$ donne $P(A \cap B) \leq P(A)$ et donc $\frac{P(A \cap B)}{P(A)} \leq 1$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel:

Probabilité:

Probabilité ...

Indépendan

Annexe

Démonstration

a) $A \cap B \subset A$ donne $P\left(A \cap B\right) \leq P\left(A\right)$ et donc $\frac{P\left(A \cap B\right)}{P\left(A\right)} \leq 1$.

Par ailleurs, $P(B/A) \ge 0$ et P(A) > 0 impliquent $\frac{P(A \cap B)}{P(A)} \ge 0$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilité:

Probabilité conditionnelle

Indépendan

Annexe

Démonstration

a) $A \cap B \subset A$ donne $P(A \cap B) \leq P(A)$ et donc $\frac{P(A \cap B)}{P(A)} \leq 1$.

Par ailleurs, $P(B/A) \ge 0$ et P(A) > 0 impliquent $\frac{P(A \cap B)}{P(A)} \ge 0$.

b)
$$P(\Omega/A) = \frac{P(A \cap \Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1.$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

Plan

reppers

Probabilités

Probabilité conditionnelle

Indépendan

Annexe

Démonstration

a) $A \cap B \subset A$ donne $P(A \cap B) \leq P(A)$ et donc $\frac{P(A \cap B)}{P(A)} \leq 1$.

Par ailleurs, $P(B/A) \ge 0$ et P(A) > 0 impliquent $\frac{P(A \cap B)}{P(A)} \ge 0$.

- b) $P(\Omega/A) = \frac{P(A \cap \Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1.$
- c) Pour toute suite $(B_i)_{i\geq 1}$, d'événements incompatibles :

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilité:

Probabilité conditionnelle

Indépendance

Annexe

Démonstration

a)
$$A \cap B \subset A$$
 donne $P(A \cap B) \leq P(A)$ et donc $\frac{P(A \cap B)}{P(A)} \leq 1$.

Par ailleurs, $P(B/A) \ge 0$ et P(A) > 0 impliquent $\frac{P(A \cap B)}{P(A)} \ge 0$.

b)
$$P(\Omega/A) = \frac{P(A \cap \Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1.$$

c) Pour toute suite $(B_i)_{i>1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty}B_{i}/A\right)=\frac{P\left(A\cap\left(\bigcup_{i=1}^{+\infty}B_{i}\right)\right)}{P\left(A\right)}=\frac{P\left(\bigcup_{i=1}^{+\infty}\left(A\cap B_{i}\right)\right)}{P\left(A\right)}$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

itappeis

Probabilités

Probabilité conditionnelle

Indépend

Annexe

Démonstration

a)
$$A \cap B \subset A$$
 donne $P(A \cap B) \leq P(A)$ et donc $\frac{P(A \cap B)}{P(A)} \leq 1$.

Par ailleurs, $P(B/A) \ge 0$ et P(A) > 0 impliquent $\frac{P(A \cap B)}{P(A)} \ge 0$.

b)
$$P(\Omega/A) = \frac{P(A \cap \Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1.$$

c) Pour toute suite $(B_i)_{i>1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty}B_i/A\right) = \frac{P\left(A\cap\left(\bigcup_{i=1}^{+\infty}B_i\right)\right)}{P\left(A\right)} = \frac{P\left(\bigcup_{i=1}^{+\infty}\left(A\cap B_i\right)\right)}{P\left(A\right)}$$

Or
$$\forall i \neq j \ (A \cap B_i) \cap (A \cap B_j) = A \cap B_i \cap A \cap B_j = A \cap B_i \cap B_j = A \cap \emptyset = \emptyset$$
.

R3.08 Probabilités

Annexe

Démonstration

a)
$$A \cap B \subset A$$
 donne $P(A \cap B) \leq P(A)$ et donc $\frac{P(A \cap B)}{P(A)} \leq 1$.

Par ailleurs, $P(B/A) \ge 0$ et P(A) > 0 impliquent $\frac{P(A \cap B)}{P(A)} \ge 0$.

b)
$$P(\Omega/A) = \frac{P(A \cap \Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1$$
.

c) Pour toute suite $(B_i)_{i>1}$, d'événements incompatibles :

$$P\left(\bigcup_{i=1}^{+\infty} B_i/A\right) = \frac{P\left(A \cap \left(\bigcup_{i=1}^{+\infty} B_i\right)\right)}{P\left(A\right)} = \frac{P\left(\bigcup_{i=1}^{+\infty} \left(A \cap B_i\right)\right)}{P\left(A\right)}$$

Or
$$\forall i \neq j \ (A \cap B_i) \cap (A \cap B_j) = A \cap B_i \cap A \cap B_j = A \cap B_i \cap B_j = A \cap \emptyset = \emptyset$$
. On a donc

$$\frac{P\left(\bigcup_{i=1}^{+\infty}\left(A\cap B_{i}\right)\right)}{P\left(A\right)} = \frac{\sum_{i=1}^{+\infty}P(A\cap B_{i})}{P\left(A\right)} = \sum_{i=1}^{+\infty}\frac{P(A\cap B_{i})}{P\left(A\right)} = \sum_{i=1}^{+\infty}P\left(B_{i}/A\right)$$

R3.08 Probabilités

Informatique IUT de Saint-Dié-des-Vosges

Plar

Rappels

Probabilité

Probabilité

ndépendanc

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappe

Probabilité

Flobabilite

conditionn

Indépendance

Annexe

Propriétés d'une probabilité

R3.08 Probabilités

Annexe

Propriétés d'une probabilité

a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

I Iaii

Probabilités

Probabilité conditionnelle

Indépendance

Annexe

Propriétés d'une probabilité

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) Si A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

1 1011

_

conditionnelle

independanc

Annexe

Propriétés d'une probabilité

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) $\stackrel{\cdot}{\text{Si}}$ A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ı ıaıı

.....

Probabilites

Probabilité conditionnelle

Indépend

Annexe

Propriétés d'une probabilité

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) $\stackrel{\cdot}{\text{Si}}$ A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

Démonstration

a) Si P(A) = 0 alors $P(A \cap B) \le P(A) = 0$ et P(A)P(B) = 0.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

.

Drobobilitás

Probabilité

.

Annexe

Propriétés d'une probabilité

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) $\stackrel{\cdot}{\text{Si}}$ A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

- a) Si P(A) = 0 alors $P(A \cap B) \le P(A) = 0$ et P(A)P(B) = 0.
- Si P(A) = 1 alors $1 = P(A) \le P(A \cup B)$
- et donc $1 = P(A \cup B) = P(\overline{A}) + P(B) P(A \cap B) = 1 + P(B) P(A \cap B)$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

1 1011

D., J. J. 115. C.

Probabilité

conditionnelle

Independ

Annexe

Propriétés d'une probabilité

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) $\stackrel{\cdot}{\text{Si}}$ A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

```
a) Si P(A) = 0 alors P(A \cap B) \le P(A) = 0 et P(A)P(B) = 0.
Si P(A) = 1 alors 1 = P(A) \le P(A \cup B) et donc 1 = P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1 + P(B) - P(A \cap B)
```

et donc
$$1 = P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1 + P(B) - P(A \cap B)$$

puis $P(B) - P(A \cap B) = 0$ et $P(A \cap B) = P(B)$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des Vosges

ГІЛІІ

ixappeis

Probabilités

Probabilité conditionnelle

Indépend

Annexe

Propriétés d'une probabilité

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) Si A et B sont indépendants alors $A \text{ et } \overline{B}$ (respectivement $\overline{A} \text{ et } B$, $\overline{A} \text{ et } \overline{B}$) sont indépendants.

```
a) Si P(A) = 0 alors P(A \cap B) \le P(A) = 0 et P(A)P(B) = 0.
Si P(A) = 1 alors 1 = P(A) \le P(A \cup B) et donc 1 = P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1 + P(B) - P(A \cap B)
```

et donc
$$1 = P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1 + P(B) - P(A \cap B)$$

puis
$$P(B) - P(A \cap B) = 0$$
 et $P(A \cap B) = P(B)$.
Par ailleurs, $P(A)P(B) = P(B)$, **b**)

$$P(A) P(\overline{B}) = P(A) (1 - P(B)) = P(A) - P(A) P(B) = P(A) - P(A \cap B) = P(A \cap \overline{B}).$$

R3.08 Probabilités

Annexe

Propriétés d'une probabilité

- a) Un événement presque impossible (respectivement presque certain) est indépendant de tout événement.
- b) Si A et B sont indépendants alors A et \overline{B} (respectivement \overline{A} et B, \overline{A} et B, \overline{A} et \overline{B}) sont indépendants.

```
a) Si P(A) = 0 alors P(A \cap B) < P(A) = 0 et P(A)P(B) = 0.
```

Si
$$P(A) = 1$$
 alors $1 = P(A) < P(A \cup B)$

et donc
$$1 = P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1 + P(B) - P(A \cap B)$$

puis
$$P(B) - P(A \cap B) = 0$$
 et $P(A \cap B) = P(B)$.

Par ailleurs,
$$P(A)P(B) = P(B)$$
. **b)**

$$P(A) P(\overline{B}) = P(A) (1 - P(B)) = P(A) - P(A) P(B) = P(A) - P(A \cap B) = P(A \cap \overline{B}).$$

En effet,
$$A = (A \cap B) \cup (A \cap \overline{B})$$
 avec $(A \cap B) \cap (A \cap \overline{B}) = \emptyset$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappels

Probabilitá

Probabilité

Annexe

R3.08 Probabilités

Informatique IUT de Saint-Dié-des Vosges

Plan

Rappel

Probabilité

conditionne

пиерепиано

Annexe

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Dankakilias

Deskahilla4

conditionnelle

Indépendan

Annexe

Formule des probabilités totales et formule de Bayes : démonstration

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I\ P\ (B_i)\neq 0$.

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

Probabilité conditionnelle

Indépendan

Annexe

Formule des probabilités totales et formule de Bayes : démonstration

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I\ P\ (B_i)\neq 0$.

On a

$$A = A \cap \Omega = A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$

avec $\forall i, j \in I, i \neq j$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

rian

парроз

Probabilites

Probabilité conditionnelle

Indépendan

Annexe

Formule des probabilités totales et formule de Bayes : démonstration

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I\ P\ (B_i)\neq 0$.

On a

$$A = A \cap \Omega = A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$

avec
$$\forall i, j \in I, i \neq j(A \cap B_i) \cap (A \cap B_j) = A \cap (B_i \cap B_j) = \emptyset.$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappe

Probabilité

conditionnelle

Annexe

Formule des probabilités totales et formule de Bayes : démonstration

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I$ $P(B_i)\neq 0$.

On a

$$A = A \cap \Omega = A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$

avec $\forall i, j \in I, i \neq j(A \cap B_i) \cap (A \cap B_j) = A \cap (B_i \cap B_j) = \emptyset$. On en déduit

$$P(A) = P\left(\bigcup_{i \in I} (A \cap B_i)\right) = \sum_{i \in I} P(A \cap B_i) = \sum_{i \in I} P(B_i) P(A/B_i)$$

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilité

conditionnelle

Annexe

Formule des probabilités totales et formule de Bayes : démonstration

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I\ P\ (B_i)\neq 0$.

On a

$$A = A \cap \Omega = A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$

avec $\forall i, j \in I, i \neq j(A \cap B_i) \cap (A \cap B_j) = A \cap (B_i \cap B_j) = \emptyset$. On en déduit

$$P(A) = P\left(\bigcup_{i \in I} (A \cap B_i)\right) = \sum_{i \in I} P(A \cap B_i) = \sum_{i \in I} P(B_i) P(A/B_i)$$

Formule de Bayes :

R3.08 Probabilités

Département Informatique IUT de Saint-Dié-des-Vosges

Plan

Rappel

Probabilités

conditionnelle

пиерепиат

Annexe

Formule des probabilités totales et formule de Bayes : démonstration

Soit $(B_i)_{i\in I}$ (I fini ou dénombrable) une famille complète d'événements telle que $\forall i\in I$ $P(B_i)\neq 0$.

On a

$$A = A \cap \Omega = A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$

avec $\forall i, j \in I, i \neq j(A \cap B_i) \cap (A \cap B_j) = A \cap (B_i \cap B_j) = \emptyset$. On en déduit

$$P(A) = P\left(\bigcup_{i \in I} (A \cap B_i)\right) = \sum_{i \in I} P(A \cap B_i) = \sum_{i \in I} P(B_i) P(A/B_i)$$

Formule de Bayes :

$$\forall i \in I \ P(B_i/A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(B_i) P(A/B_i)}{\sum_{i \in I} P(B_i) P(A/B_i)}$$