Examenul național de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
 Timpul de lucru efectiv este de trei ore.

A. MECANICĂ

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Conform principiului actiunii si reactiunii rezultă că:
- **a.** este valabilă relația $\vec{F}_a = \vec{F}_r$, unde \vec{F}_a este acțiunea, iar \vec{F}_r este reacțiunea
- b. acțiunea și reacțiunea au puncte de aplicație situate pe corpuri diferite
- c. actiunea si reactiunea conduc întotdeauna la depărtarea corpurilor, deoarece au sensuri opuse
- d. sistemul este întotdeauna în echilibru, deoarece acțiunea și reacțiunea sunt egale

(3p)

2. În graficul alăturat este reprezentat modulul unei forțe care acționează pe directia si în sensul deplasării corpului în functie de distanta parcursă. Aria hasurată are semnificatia fizică de:

- a. distantă
- **b.** putere
- c. lucru mecanic
- d. viteză
- 3. În expresiile de mai jos, semnificatia simbolurilor este următoarea: d distantă, P putere, m masă si t –
- timp. Expresia care poate reprezenta o accelerație este:
- **a.** $\frac{P \cdot t}{d \cdot m}$
- **b.** $\frac{P \cdot m}{d \cdot t}$

- **4.** Un fir elastic are constanta elastică $k = 60 \, \text{N/m}$. Se taie din fir o bucată a cărei lungime este egală cu două treimi din lungimea totală a firului nedeformat. Constanta elastică a acestei părti din fir are valoarea:
- a. 20N/m
- **b.** 40 N/m
- **c.** 90N/m
- **d.** 180N/m
- (3p)

(3p)

- 5. Randamentul unui plan înclinat este egal cu 80%. Cunoscând valoarea coeficientului de frecare la alunecare $\mu = 0.25$, măsura unghiului format de plan cu suprafața orizontală este:
- **a.** 60°
- **b.** 45°
- c. 30°
- **d.** 15°
- (3p)

Testul 9

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp paralelipipedic având masa m = 0.4 kg se poate deplasa pe suprafața unui perete vertical sub actiunea unei forte \vec{F} care formează unghiul $\alpha = 45^{\circ}$ cu orizontala, ca în figura alăturată. Coeficientul de frecare la alunecare între corp și perete este $\mu = 0,2$.

- **b.** Calculați accelerația corpului dacă modulul forței \vec{F} are valoarea $F_1 = 10 \text{ N}$.
- **c.** Determinați distanța parcursă de corp sub acțiunea forței având modulul $F_1 = 10 \text{ N}$ în intervalul de timp $\Delta t = 1$ s de la pornirea din repaus.
- **d.** Calculati modulul forței \vec{F} sub acțiunea cărei corpul coboară uniform pe suprafața peretelui.

III. Rezolvați următoarea problemă:

(15 puncte)

Un sac este ridicat de-a lungul unui plan înclinat cu unghiul $\alpha = 37^{\circ}$ fată de orizontală ($\sin \alpha = 0.6$). Miscarea are loc cu viteza constantă v = 20 cm/s, un interval de timp $\Delta t = 30$ s. Coeficientul de frecare la alunecare este $\mu = 0.40$. Sacul este tractat prin intermediul unui cablu elastic de masă neglijabilă, paralel cu planul înclinat, ca în figura alăturată. Constanta elastică a cablului este k = 9.2 kN/m, iar forta de tractiune are valoarea F = 460 N. Calculati:

- a. alungirea cablului elastic în timpul ridicării sacului în condițiile descrise;
- **b.** puterea necesară pentru ridicarea sacului în condițiile descrise;
- **c.** lucrul mecanic efectuat de greutate în timpul Δt ;
- **d.** lucrul mecanic efectuat de forța de frecare în timpul Δt .

Examenul național de bacalaureat 2021 Proba E. d)

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.

Timpul de lucru éfectiv este de trei ore. B. ELEMENTE DE TERMODINAMICĂ

Testul 9

Se consideră: numărul lui Avogadro $N_A = 6,02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8,31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Într-o destindere adiabatică a unei cantităti constante de gaz ideal:
- a. gazul schimbă căldură cu mediul exterior
- b. gazul schimbă lucru mecanic cu mediul exterior
- c. energia internă a gazului crește
- d. energia internă a gazului rămâne constantă

(3p)

2. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a

mărimii fizice exprimate prin raportul $\frac{L}{R \cdot \Delta T}$:

- a. $\frac{J}{ka}$
- **b.** $\frac{\text{mol}}{K}$
- c. mol
- **d.** kg

(3p)

3. Un mol de gaz ideal aflat la temperatura $t_1 = 27$ °C este comprimat izobar până ce volumul său scade cu 20%. Lucrul mecanic schimbat de gaz cu mediul exterior în această transformare are valoarea:

- **a.** 1994 J
- **b.** 498,6 J
- **c.** -498,6 J
- **d.** –259,8 J

(3p)

4. Într-un cilindru cu piston are loc destinderea unui gaz ideal, astfel încât raportul dintre volumul inițial și volumul final este $\frac{V_i}{V_f} = 0.3$, iar raportul dintre presiunea finală și cea inițială $\frac{p_i}{p_i} = \frac{3}{4}$. Dacă temperatura

inițială este $t_i = 27^{\circ}\text{C}$, atunci temperatura finală are valoarea:

- **a.** 350 K
- **b.** 500K
- **c.** 600K
- **d**.750K

(3p)

5. O cantitate de gaz ideal este comprimată izoterm. Relația corectă pentru acest proces este:

- **a.** L > 0
- **b.** Q < 0
- **c.** $\Delta U > 0$
- **d.** Q = 0

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Doi cilindri metalici au volumele $V_1=3\,\mathrm{dm}^3$ și $V_2=5\,\mathrm{dm}^3$. În primul cilindru se află argon ($\mu_{\mathrm{Ar}}=40\,\mathrm{kg/kmol}$) la presiunea $p_1=0,4\,\mathrm{MPa}$ și temperatura $t_1=27\,^{\circ}\mathrm{C}$. În cel de-al doilea cilindru se află neon ($\mu_{\mathrm{Ne}}=20\,\mathrm{kg/kmol}$) la presiunea $p_2=0,6\,\mathrm{MPa}$ și temperatura $t_2=127\,^{\circ}\mathrm{C}$. Cei doi cilindri sunt legați printr-un tub de volum neglijabil, prevăzut cu un robinet de trecere, inițial închis. Întregul sistem este izolat adiabatic. Știind că ambele gaze sunt monoatomice, determinați:

- a. numărul de atomi de argon din primul cilindru;
- b. densitatea neonului din cel de-al doilea cilindru;
- c. temperatura finală, după stabilirea echilibrului termic, dacă robinetul se deschide;
- d. presiunea finală din cei doi cilindri după stabilirea echilibrului termic, în condițiile punctului anterior.

III. Rezolvati următoarea problemă:

(15 puncte)

Un mol de gaz ideal monoatomic $(C_V = 1,5R)$ parcurge transformarea 12341 reprezentată în coordonate p-T în figura alăturată. Se cunoaște temperatura gazului în starea 1, $t_1 = 100$ °C, $p_2 = 2p_1$, iar $\ln 2 = 0,7$.

- **a.** Reprezentați ciclul 12341 în coordonate p-V.
- **b.** Determinați randamentul ciclului Carnot care ar funcționa între temperaturile extreme ale ciclului 12341.
- **c.** Determinați lucrul mecanic total schimbat de gaz cu mediul exterior în ciclul 12341.
- **d.** Determinați randamentul motorului termic care ar funcționa după transformarea ciclică descrisă.

Examenul național de bacalaureat 2021 Proba E, d)

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
 Timpul de lucru efectiv este de trei ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Testul 9

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, mărimea fizică a cărei unitate de măsură în S.I. poate fi exprimată prin raportul $\frac{J}{V}$ este:
- a. puterea electrică
- b. sarcina electrică
- c. rezistenta electrică
- d. intensitatea curentului

(3p)

- 2. Energia electrică disipată într-un conductor metalic liniar, de lungime ℓ , secțiune circulară de diametru d, realizat dintr-un material cu rezistivitatea ρ , parcurs de un curent electric I într-un interval de timp Δt este este exprimată prin relația:
- **a.** $W = 2I^2 \frac{\rho \ell^2}{\pi d^2} \Delta t$
- **b.** $W = 4l^2 \frac{\rho \ell^2}{\pi d^2} \Delta t$ **c.** $W = 4l^2 \frac{\rho \ell}{\pi d^2} \Delta t$ **d.** $W = 4l^2 \frac{\rho \ell}{\pi d} \Delta t$
- (3p)
- 3. O baterie este formată prin legarea serie a șapte generatoare identice, având fiecare t.e.m. E și rezistența electrică interioară $r = 0.5 \Omega$. Bateria se conectează la bornele unui reostat. Valoarea rezistenței electrice R a reostatului pentru care randamentul de transfer a energiei electrice de la baterie la acesta este de 30%, este egală cu:
- **a.** $R = 0.21 \Omega$
- **b.** $R = 0.5 \Omega$
- c. $R = 1.5 \Omega$
- **d.** $R = 5.0\Omega$ (3p)
- 4. Dependența de timp a intensității curentului electric printr-un conductor este dată de relația $I = 2 + 4t \, (\text{mA})$. Sarcina electrică ce străbate conductorul în primele trei secunde este egală cu:
- **a.** q = 24 mC
- **b.** q = 48 mC
- **c.** q = 24 C
- **d.** q = 48 C(3p)
- 5. La bornele unei baterii cu tensiunea electromotoare E și rezistența electrică interioară r se conectează un consumator având rezistența electrică R astfel încât consumatorul este parcurs de curent electric având intensitatea /. Bateria transferă consumatorului puterea maximă dacă:
- **a.** $I = \frac{E}{r}$
- **c.** $R = \frac{r}{2}$
- **d.** $I = \frac{E}{2r}$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Rezistorii sunt identici, având rezistența electrică $R = 15\Omega$, iar ampermetrul este considerat ideal $(R_A \cong 0\Omega)$. Valoarea

tensiunii electromotoare a generatorului este $E = 26 \,\mathrm{V}$, iar rezistența interioară $r = 1\Omega$. Determinati:

- b. valoarea intensitătii curentului electric indicată de ampermetru atunci când comutatorul k este deschis;
- c. valoarea tensiunii electrice la bornele generatorului dacă se închide comutatorul k;
- d. valoarea intensității curentului electric ce străbate generatorul dacă se deconectează ampermetrul, iar în locul lui se conectează un consumator cu rezistența electrică $R_1 = 3 \Omega$, iar comutatorul k este închis.

III. Rezolvati următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Bateria are t.e.m $E=12 \, \text{V}$ și rezistența interioară $r=1\,\Omega$. Rezistențele electrice ale celor doi rezistori sunt: $R_1=6\,\Omega$ și $R_2=3\,\Omega$.

- **a.** Determinați indicația unui ampermetru ideal $(R_A = 0 \Omega)$ conectat între punctele A și B ale circuitului.
- b. Se deconectează ampermetrul, iar în locul lui se conectează un consumator. Calculați valoarea rezistenței electrice R_3 a consumatorului astfel încât randamentul de transfer a puterii electrice de la baterie la circuitul exterior să fie de 50%.

- ${f c.}$ Se deconectează consumatorul cu $R_3\,$ și se conectează între punctele A și B un voltmetru ideal $(R_{V} \rightarrow \infty)$. Calculați valoarea tensiunii indicate de voltmetru.
- d. Calculați energia consumată de rezistorul R₁, în condițiile punctului anterior, într-un interval de timp $\Delta t = 1,5 \text{ h}$.

Examenul national de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

D. OPTICĂ Testul 9

Se consideră viteza luminii în vid $c = 3.10^8$ m/s.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Prin studiul experimental al efectului fotoelectric extern s-a constatat că intensitatea curentului fotoelectric de saturatie este:
- a. direct proportională cu frecventa radiatiilor incidente când fluxul lor este constant
- b. direct proportională cu fluxul radiatiilor incidente când frecventa lor este constantă
- c. invers proportională cu frecventa radiatiilor incidente când fluxul lor este constant
- d. invers proportională cu fluxul radiatiilor incidente când frecventa lor este constantă (3p)
- 2. Unitatea de măsură în S.I. pentru convergenta unei lentile este:
- $c. s^{-1}$ **d.** m^{-1} (3p)
- 3. O rază de lumină venind din aer $(n_{aer} = 1)$ trece în sticlă. Suprafața de separare aer-sticlă este plană. Unghiul dintre raza reflectată si suprafata de separare este de 45°. Unghiul de refractie este de 30°. Valoarea indicelui de refractie al sticlei este de aproximativ:
- **a.** 1,33 **b.** 1.41 **d.** 2,50 (3p)
- 4. Graficul din figura alăturată reprezintă dependenta coordonatei x₂ a imaginii formate de o lentilă pentru un obiect real, de coordonata x1 a obiectului. Punctul A indică valorile celor două $x_{2}(m)$ coordonate pentru o anumită poziție a obiectului. Convergenta lentilei si mărirea liniară transversală corespunzătoare acestei poziții au valorile:
- **a.** $C = 2 \text{ m}^{-1}; \beta = -2$
- **b.** $C = 1 \,\mathrm{m}^{-1}$; $\beta = -1$
- **c.** $C = -1 \,\mathrm{m}^{-1}$; $\beta = 1$
- **d.** $C = -2m^{-1}$: $\beta = 2$
- $0 \chi(m)$ (3p) 5. Distanta focală echivalentă a unui sistem optic centrat format din trei lentile subtiri identice alipite este
- $f = 40 \,\mathrm{cm}$. Sistemul optic format prin alipirea a două dintre cele trei lentile are distanta focală echivalentă de: a. 60 cm **b.** 50 cm c. 30 cm d. 20cm (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

2

Un elev foloseste o lentilă convergentă subtire pentru a proiecta imaginea unei ferestre pe un perete paralel, aflat pe partea opusă a camerei. Elevul constată că pe perete se formează imaginea clară a ferestrei dacă tine lentila paralel cu peretele la distanța d = 6,0 cm față de perete. Distanța dintre fereastră și lentilă este în acest caz D = 4.0 m. Înălţimea ferestrei este H = 1.0 m.

- a. Determinati distanta focală a lentilei.
- **b.** Calculati înăltimea imaginii clare a ferestrei, obtinute cu ajutorul lentilei.
- c. Realizati un desen în care să evidentiati constructia imaginii prin lentilă, pentru un object real situat în fata lentilei la o distantă egală cu dublul distantei focale si asezat perpendicular pe axa optică principală.
- d. Lentila este asezată pe un banc optic împreună cu o a doua lentilă identică, formând un sistem optic centrat. Se constată că un fascicul paralel de lumină rămâne tot paralel si după trecerea prin sistemul optic. Calculați distanța dintre cele două lentile.

III. Rezolvați următoarea problemă:

Sursa de lumină coerentă a unui dispozitiv Young emite radiatii monocromatice cu lungimea de undă $\lambda = 600$ nm. Sursa se află pe axa de simetrie a dispozitivului, la distanta d = 15cm de paravanul cu două

fante, iar distanta dintre paravan si ecran este D=1.5 m. Se măsoară pe ecran distanta a dintre maximele de interferentă de ordinul 1, găsindu-se $a = 0.90 \,\mathrm{mm}$.

- a. Determinați distanța dintre fantele dispozitivului.
- b. Calculați defazajul dintre undele care, prin suprapunere, formează al treilea minim de interferență situat deasupra axei de simetrie a dispozitivului.
- **c.** Se mărește cu b = 0.5 m distanța dintre ecran și paravanul cu două fante. Determinați noua valoare a interfranjei obținute în această situație.
- **d.** Se deplasează sursa S pe distanța $h=1,5\,\mathrm{mm}$ față de axa de simetrie a

dispozitivului, paralel cu paravanul, ca în figura alăturată. Distanta dintre ecranul E si paravan rămânând cea specificată la punctul **c**, determinați distanța pe care se deplasează maximul central.

