Lista 7, Geometria Riemanniana

Diego N. Guajardo

23 de abril de 2021

Sempre M é uma variedade Riemanniana, pode sempre assumir conexa se for necessario e ∇ indica a conexão de Levi Civita. Alguns exercicios são do Lee, do Do Carmo e do Petersen e de um trabalho de Wolfgang Meyer

1. Seja $r \in C^{\infty}(M)$ tal que $\partial_r := \operatorname{grad}(r)$ tem norma 1. Seja $S(X) = \nabla_X \partial_r$ (a segunda forma fundamental das hipersuperficies de nível), mostrar que S satisfaz a seguinte equação de Riccati:

$$\nabla_{\partial_n} S + S^2 = -R_{\partial_n}$$

Mostrar que $r(x) = r_p(x) = d(p, x)$ satisfaz as hipótese do exercicio.

Comentário: em geral se $A \subseteq M$, então $r(x) = \operatorname{dist}_A(x)$ satisfaz as hipóteses em algum aberto $U = U_A \subseteq M$ para quase qualquer A.

- 2. Mostre que se M satisfaz alguma das seguintes propriedades, então M é completa
 - (a) M é homogénea
 - (b) M é 2-homogénea
 - (c) $\pi: M \to \overline{M}$ um mapa de recobrimento com \overline{M} completa
 - (d) \exp_p esta definida na bola $B_\varepsilon(0_p)$ para ε fixo para todo $p\in M$
- 3. Mostrar que as seguintes variedades são completas
 - (a) G grupo de Lie com métrica bi-invariante
 - (b) $\mathbb{H}^n(R)$
- 4. Suponha que M é completa e X um campo Killing. Mostrar que X é completo.
- 5. Suponha que M é completo e N uma subvariedade imersa. Mostrar que se N é fechado então N é completa. Mostrar com um contraexemplo que a recíproca não é verdadeira.
- 6. Suponha M completa. Dada uma subvariedade P de M, dizemos que $p \in M$ é um ponto focal de P, se é um ponto crítico de $E: T^{\perp}N \to M$, $E(v_p) = \exp_p(v_p)$. Mostrar que se M tem curvatura não positiva e P totalmente geodésica, então P não possui pontos focais.
- 7. Considere G um grupo de Lie con uma métrica bi-invariante. Seja γ uma geodésica com $\gamma(0) = e$, a identidade do grupo e $\gamma'(0) = X \in \mathfrak{g}$. Calcular os campos de jacobi ao longo de γ .

Dica: O operador $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}$, $\operatorname{ad}_X(Y) = [X,Y]$ é antisimetrico. Utilize a decomposição espectral para operadores antisimetricos e estude os campos de Jacobi quando as condições iniciais são os autovetores de ad_X .

8. Dado $k \in \mathbb{R}$, suponha que $g, G \in C^{\infty}(\mathbb{R})$ tais que:

$$g' \le -k - g^2$$

$$G' \ge -k - G^2$$

1

Mostrar que:

- (a) Se $g(r_0) \geq G(r_0)$, então $g(r) \geq G(r)$ para $r \leq r_0$
- (b) Se $g(r_0) \leq G(r_0)$, então $g(r) \leq G(r)$ para $r \geq r_0$

9. Sejam $\operatorname{sn}_k,\operatorname{cs}_k$ soluções da equação:

$$f'' + kf = 0$$

com condições iniciais $\operatorname{sn}_k(0)=0,\operatorname{sn}_k'(0)=1$ e $\operatorname{cs}_k(0)=1,\operatorname{cs}_k'(0)=0$. Defina também $\operatorname{ct}_k=\operatorname{cs}_k/\operatorname{sn}_k$ para t tal que $\operatorname{sn}_k(t)\neq 0$.

(a) Considere $g:(0,a)\to\mathbb{R}$ (com $a<\frac{\pi}{\sqrt{k}}$ se k>0) com

$$g' \le -k - g^2$$

$$\lim_{t \to 0} g(t) = +\infty$$

Mostrar que $g(r) \leq \operatorname{ct}_k(r)$.

(b) Se M é uma variedade riemanniana tal que $K(\pi) \ge k$ para todo plano π , considere uma geodésica $\gamma(r)$ unitária e um vetor paralelo unitário ortonormal Y(r), mostrar que:

$$\langle AY, Y \rangle' \le -k - \langle AY, Y \rangle^2$$

onde A=A(r) é o operador de forma da esfera $\mathbb{S}_p(r)=\{x:d(x,p)=r\}$. Conclua que $A_{\gamma(r)}\leq \operatorname{ct}_k(r)\operatorname{Id}$.

Dica: Suponha por absurdo em r_0 , temos $g(r_0) > \operatorname{ct}_k(r_0)$, defina: $G(r) = \operatorname{ct}_k(r-\varepsilon)$