- 系 2,12 K-ベクトル空間 V から W への線形写像 f があり、V の基底を e_1,e_2,\ldots,e_n とする。この時、次が同値である。
 - (a) f が同型写像
 - (b) $f(e_1), f(e_2), \dots, f(e_n)$ が W の基底
- 命題 2,13 K-ベクトル空間 V から W への線形写像 f が同型ならば、逆写像 $f^{-1}:W\to V$ も線形写像であり、同型である。

......

命題の証明

V の基底を e_1, e_2, \ldots, e_n とする。f が同型なので、上の系より $f(e_1), \ldots, f(e_n)$ が W の基底である。

V の元 $v = k_1 e_1 + \cdots + k_n e_n$ は $f(v) \in W$ に対応する。

$$f(v) = f(k_1e_1 + \dots + k_ne_n) = k_1f(e_1) + \dots + k_nf(e_n)$$
 (1)

これにより任意の元 $w = k_1 f(e_1) + \cdots + k_n f(e_n) \in W$ に対し $k_1 e_1 + \cdots + k_n e_n$ を対応させる写像が存在する。

$$f^{-1}: W \to V, \quad k_1 f(e_1) + \dots + k_n f(e_n) \mapsto k_1 e_1 + \dots + k_n e_n$$
 (2)

 k_1, \ldots, k_n の内、 $k_i = 1$ としそれ以外を 0 とすれば、 $f^{-1}(f(e_i)) = e_i$ となる。 その為、次のように f^{-1} は線形写像であることがわかる。

$$f^{-1}(k_1 f(e_1) + \dots + k_n f(e_n)) = k_1 e_1 + \dots + k_n e_n$$
(3)

$$= k_1 f^{-1}(f(e_1)) + \dots + f^{-1}(f(k_n e_n))$$
 (4)

また、 f^{-1} は W の基底 $f(e_i)$ を V の基底 e_i にうつすので同型写像であることもわかる。

問 2.4-1 線形写像 $t:K[x]_2 \to K[x]_4$ を $f(x) \mapsto f((x+1)^2)$ で定める。

 $K[x]_2$ の基底 $a_1=1, a_2=x, a_3=x^2$ と、 $K[x]_4$ の基底 $b_1=1, b_2=x, b_3=x^2, b_4=x^3, b_5=x^4$ に関する t の表現行列を求めよ。

......

線形写像 t で a_1, a_2, a_3 を移すと次のようになる。

$$t(a_1) = t(1) = 1 = b_1 (5)$$

$$t(a_2) = t(x) = (x+1)^2 = x^2 + 2x + 1 = b_3 + 2b_2 + b_1$$
 (6)

$$t(a_3) = t(x^2) = ((x+1)^2)^2 = x^4 + 4x^3 + 6x^2 + 4x + 1$$
 (7)

$$=b_5 + 4b_4 + 6b_3 + 4b_2 + b_1 \tag{8}$$

これらをベクトルとして並べ、行列の積で表す。

$$(t(a_1) \quad t(a_2) \quad t(a_3)) = (b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 1 & 6 \\ 0 & 0 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$
(9)

よって、線形写像 t の表現行列は次の行列である。

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 2 & 4 \\
0 & 1 & 6 \\
0 & 0 & 4 \\
0 & 0 & 1
\end{pmatrix}$$
(10)

問 2.4-2 a_1, \ldots, a_n と b_1, \ldots, b_n をそれぞれ K^n の線形独立な元とし、これらを並べてできる n 次行列をそれぞれ A と B とする。

この時、 K^n の基底 a_1,\ldots,a_n から b_1,\ldots,b_n への変換行列は $A^{-1}B$ であることを示せ。

.....

n 次正方行列 A, B は次のような行列である。

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix}$$
 (11)

変換行列Mは次の式を満たすような行列である。

$$(b_1 \quad b_2 \quad \cdots \quad b_n) = (a_1 \quad a_2 \quad \cdots \quad a_n) M \tag{12}$$

これは B=AM ということである。 a_1,\dots,a_n は線形独立であるので A は正則である。そこで、両辺に左から A^{-1} をかけることで $A^{-1}B=M$ となる。つまり、変換行列は $A^{-1}B$ となる。

(a)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

 L_A とは次のような写像である。

$$L_A: K^3 \to K^2, \quad \boldsymbol{x} \to A\boldsymbol{x}$$
 (13)

 a_i, x を次のように置く。

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 (14)

 $x_i \in K$ に対して $Im L_A$ を考える。

$$L_A(\mathbf{x}) = A\mathbf{x} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{pmatrix} \mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 \qquad (15)$$

 $m{a}_2=2m{a}_1+2m{a}_3$ であるので、 $L_A(m{x})=(x_1+2x_2)m{a}_1+(2x_2+x_3)m{a}_3$ である。 $m{a}_1,m{a}_3$ は線形独立であるのでこれが $\mathrm{Im}L_A$ の基底となる。

$$Im L_A = \langle \boldsymbol{a}_1, \boldsymbol{a}_3 \rangle = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle \tag{16}$$

 $\operatorname{Ker} L_A$ は $L_A(x) = 0$ を満たす $x \in K^3$ 全体の集合である。

式 (15) より $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{0}$ の解空間の基底を求める。左辺を計算すると次のようになる。

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 = \begin{pmatrix} x_1 + 2x_2 \\ 2x_2 + x_3 \end{pmatrix}$$
 (17)

これは成分ごとに見ると $x_1 + 2x_2 = 0$, $2x_2 + x_3 = 0$ となるので、 $\alpha = x_2$ と置くと、 $x_1 = -2\alpha$, $x_3 = -2\alpha$ である。よって、x は次のようになる。

$$\boldsymbol{x} = \begin{pmatrix} -2\alpha \\ \alpha \\ -2\alpha \end{pmatrix} = \alpha \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix} \tag{18}$$

これにより x は 1 次元空間となり、 $\operatorname{Ker} L_A$ は次のように生成される。

$$\operatorname{Ker} L_A = \left\langle \begin{pmatrix} -2\\1\\-2 \end{pmatrix} \right\rangle \tag{19}$$

(b)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$$

A による線形写像 L_A は次のような写像である。

$$L_A: K^2 \to K^2, \quad \boldsymbol{x} \to A\boldsymbol{x}$$
 (20)

行列 A を列ベクトルに分ける。

$$\mathbf{a}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad A = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{pmatrix}$$
 (21)

 $m{a}_1, m{a}_2$ は一次独立なので A は正則行列であり、 ${
m Im} L_A$ は 2 次元、 ${
m Ker} L_A$ は 0 次元である。つまり、次のような基底で表すことが出来る。

$$\operatorname{Im} L_A = \langle \boldsymbol{a}_1, \boldsymbol{a}_2 \rangle = \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle, \quad \operatorname{Ker} L_A = \langle 0 \rangle$$
 (22)

問 3.2-3 計量ベクトル空間 V の任意の基底を $oldsymbol{v}_1,\dots,oldsymbol{v}_n$ とする。

プラム シュミット Gram-Schmidt の正規直交化法を用いて基底 e_1, \ldots, e_n を定めた時、 e_1, \ldots, e_n は互いに直交することを示せ。

$$e_1 = v_1, \quad e_j = v_j - \sum_{i=1}^{j-1} \frac{(v_j, e_i)}{\|e_i\|^2} e_i \quad (j > 1)$$
 (23)

 e_i, e_j が直交するとは $i \neq j$ の時 $(e_i, e_j) = 0$ となることである。

証明は e_1, \ldots, e_j が互いに直交するなら $(e_{j+1}, e_1) = (e_{j+1}, e_2) = \cdots = (e_{j+1}, e_j) = 0$ となることを帰納的に示す。

 e_1, e_2 は次のようなベクトルである。

$$e_1 = v_1, \ e_2 = v_2 - \frac{(v_2, e_1)}{\|e_1\|^2} e_1$$
 (24)

この2つの内積 (e_1,e_2) を求める。

$$(e_1, e_2) = (v_1, v_2 - \frac{(v_2, e_1)}{\|e_1\|^2} e_1)$$
 (25)

$$= (v_1, v_2 - \frac{(v_2, v_1)}{\|v_1\|^2} v_1)$$
 (26)

$$= (\boldsymbol{v}_1, \boldsymbol{v}_2) - \frac{(\boldsymbol{v}_2, \boldsymbol{v}_1)}{\|\boldsymbol{v}_1\|^2} (\boldsymbol{v}_1, \boldsymbol{v}_1)$$
 (27)

$$= (\boldsymbol{v}_1, \boldsymbol{v}_2) - \frac{(\boldsymbol{v}_2, \boldsymbol{v}_1)}{\|\boldsymbol{v}_1\|^2} \|\boldsymbol{v}_1\|^2$$
 (28)

$$=0 (29)$$

 $(e_1, e_2) = 0$ より e_1, e_2 は直交している。

 e_1, \dots, e_j (1 < j < n) が直交していると仮定し、これらと e_{j+1} が直交していることを確認する。

 $1 \le k \le j$ として内積 (e_{i+1}, e_k) を計算する。

$$(e_{j+1}, e_k) = \left(v_{j+1} - \sum_{i=1}^{j} \frac{(v_{j+1}, e_i)}{\|e_i\|^2} e_i, e_k\right)$$
 (30)

$$= (\mathbf{v}_{j+1}, \mathbf{e}_k) - \left(\sum_{i=1}^{j} \frac{(\mathbf{v}_{j+1}, \mathbf{e}_i)}{\|\mathbf{e}_i\|^2} \mathbf{e}_i, \mathbf{e}_k\right)$$
(31)

$$=(\boldsymbol{v}_{j+1},\boldsymbol{e}_k) - \left(\frac{(\boldsymbol{v}_{j+1},\boldsymbol{e}_k)}{\|\boldsymbol{e}_k\|^2}\boldsymbol{e}_k,\boldsymbol{e}_k\right) \quad (i \neq k \text{ O時 } (\boldsymbol{e}_i,\boldsymbol{e}_k) = 0)$$
(32)

$$= (v_{j+1}, e_k) - \frac{(v_{j+1}, e_k)}{\|e_k\|^2} (e_k, e_k)$$
(33)

$$=0 (34)$$

これにより e_1, \ldots, e_j が互いに直交していればこのベクトルと e_{j+1} は直交する。

よって、 e_1, \ldots, e_n は互いに直交する。