INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

LEIC, LEETC Arquitetura de Computadores

1º Teste (19/jan/2018)

Duração do Teste: 2 horas e 30 minutos

[1] Considere um processador, de ciclo único, com o diagrama de blocos apresentado na figura.

O processador suporta a execução do seguinte conjunto de instruções, em que a constante consta representa um número natural e a constante offset representa um número relativo:

N.º	Instrução	Codificação										Descrição
		b ₉	b ₈	b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	\mathbf{b}_0	
1	ldi rx,#const4	0	1	0	C3	C ₂	C1	C ₀	rx2	rx ₁	rx ₀	rx = const ₄
2	ld rx,[ry,rx]	A definir									rx = M[ry+rx]	
3	st rx,[ry]	0	1	1	0	ry2	ry1	ryo	rx2	rx1	rx ₀	M[ry] = rx
4	add rx,ry	0	0	0	0	ry2	ry ₁	ryo	rx2	rx1	rx ₀	rx = rx + ry
5	sub rx,ry	0	0	1	0	ry2	ry1	ryo	rx2	rx1	rx ₀	rx = rx - ry
6	jnz offset	A definir										(Z == 0) ? PC = PC + offset : PC = PC + 1
7	jmp rx	A definir									PC = PC + rx	

- a) Codifique as instruções ld, jnz e jmp utilizando uma codificação linear a 3 bits. Explicite os bits do código de instrução que correspondem aos sinais AA, BA, DA, OP_ALU e OPCODE. [2 val.]
- b) Considere que o PC = 0x80. Indique a gama de endereços possíveis de alcançar com a instrução JNZ. [0,5 val.]
- c) Considerando que o módulo Descodificador Instruções é implementado usando exclusivamente uma ROM, indique a programação da mesma. [1,5 val.]
- d) Indique a dimensão em bits da memória de código e da ROM do módulo Descodificador Instruções, apresentando os cálculos realizados. [0,5 val.]
- e) Proponha, justificando, um diagrama lógico para o módulo signExt. [0,5 val.]

[2] Considere o sistema computacional baseado no PDS16 representado na figura.

- a) Quais os endereços base e dimensões que os módulos ROM, RAM e portos de entradas e saída ocupam no espaço de endereçamento? [1,5 val.]
- b) Desenhe o esquema de um módulo de RAM adicional com 8Kbyte de dimensão e ocupando a gama de endereços 0x2000-0x3FFF, usando módulos RAM de 4Kx8. [2 val.]
- c) Qual o número mínimo de acessos à memória, do tipo escrita, necessários para preencher a memória com o valor zero na gama de endereços 0x2020-0x207F? Justifique. [0,5 val.]
- d) Escreva um troço de programa que coloque o valor 0x53 no porto de saída. [1 val.]

[3] Considerando as convenções definidas para a passagem de parâmetros, retorno de valores e preservação de registos e que os tipos uint8 e uint16 representam inteiros sem sinal a 8 bits e a 16 bits, respetivamente, considere as definições seguintes:

Com vista ao alojamento de variáveis, assuma que a secção ".data" está localizada na gama de memória com endereçamento direto.

- a) Escreva a definição do array pwr2_data. Traduza para assembly do PDS16 a função power2 e defina as respetivas variáveis, se necessário [2,5 val.]
- b) Traduza para assembly do PDS16 a função count_ones e defina as respetivas variáveis, se necessário. [2,5 val.]

- [4] Tendo como base o sistema SDP16, pretende-se implementar o sistema de controlo de semáforo de uma passagem de nível de via-férrea de sentido único, conforme ilustra a figura, com a seguinte especificação:
- O semáforo deve estar verde, até que o sensor S1 seja ativado, indicando o início do comboio. Neste momento, acende o semáforo vermelho e apaga o verde.
- O semáforo deve manter-se vermelho até que o sensor S2 seja desativado, indicando o fim do comboio. Neste momento, o semáforo vermelho apaga e acende o verde, voltando o sistema ao estado inicial.
 - a) Desenhe um fluxograma da máquina de estados do sistema. [1 val.]
 - b) Programe em assembly do PDS16 o sistema de controlo enunciado. [4 val.]

