AQA

Pure Mathematics, Statistics and Mechanics 1

分类真题

2018-2022 册

A Level Clouds 出品

	目录	
	Chapter 1 Coordinate Geometry and Circles	1
2/8	Chapter 2 Trigonometry	17
	Chapter 3 Trigonometric Functions and Equations	24
Y	Chapter 4 Exponentials and Logarithms	55
	Chapter 5 Probability	72
	Chapter 6 Discrete Random Variables	87
	Chapter 7 Bernoulli and Binomial Distributions	102
	Chapter 8 Displacement, Speed, Velocity and Acceleration	n 116
	Chapter 9 Motion in a Straight Line	122
	Chapter 10 Forces and Newton's Laws	136
	Chapter 11 Momentum and Impulse	148

Q1: 2018/June/PSM1

2		The circle C has centre P and equation $x^2 - 22x + y^2 - 16y + 135 = 0$	
2	(a) (i)	Write the equation of C in the form	
		$(x-a)^2 + (y-b)^2 = k$	[2 marks]
		Answer	
2	(a) (ii)) State the radius of ${\cal C}$ and the coordinates of its centre.	[2 marks]
		Radius	
		Centre	

	2 (b)	A chord of C has length 6		
		Find the perpendicular distance from the centre P to this chord.		
		Give your answer in the form \sqrt{a} where a is an integer. [3 marks]		
		.0. 25		
76				
0		29.6		
X				
		70,78,		
		Answer		
	2 (c)	A circle C' with centre at the origin has the same radius as the circle C .		
		Describe fully the transformation that maps C onto C' . [2 marks]		
\wedge				

Q2: 2019/Jan/PSM1

6 The diagram shows the circle C_1 and triangle PQR.

The points P, Q and R lie on C_1 , where P has coordinates (1, 5) and R has coordinates (5, -3).

The lengths $PQ = 5\sqrt{2}$, $PR = 4\sqrt{5}$, and $QR = \sqrt{30}$

6 (a) Show that PR is a diameter of C_1

[3 marks]		
	(0)	
		, 0, 0
_\0		
3, (6)		
, 0		

6 (b)	Find an equation of the tangent to C_1 at P .
	[3 marks]
	39 . 6
	Answer
6 (c)	A second circle, C_2 has equation $(x-9)^2 + (y-9)^2 = 5$
	The circles C, and C, do not intersect
	The circles C_1 and C_2 do not intersect.
	The point S lies on C_1 and the point T lies on C_2
	Find the shortest possible length of the line segment <i>ST</i> , giving your answer in the form
	$a + b\sqrt{c}$, where a , b and c are integers.
	[5 marks]
	Answer
	7 110 110 110 110 110 110 110 110 110 11