

학습목차

- 01 분류의 개념
- 02 베이즈 분류기
- 03 K-최근접이웃 분류기

1 분류의 개념

데이터 분류

- 입력 데이터를 이미 정의된 몇 개의 클래스로 구분하는 문제
 - □ 예: 숫자인식, 얼굴인식 등

0	۵	0	Ö	0
1	1	1	1	[]
2	J	2_	2	2.
3	3	3	3	3
4	4	4	4	4
5	5	5	5	5
9	6	6	6	6
7	7	7	7	フ
123456780	-204 504 504 504	7234555769	0 1 2 3 4 5 6 K 78 a	0123456789
9	9	9	9	9

[MNIST database]

[FERET database]

□ 베이즈 분류기, K-최근접이웃 분류기, 결정 트리, 랜덤 포레스트, SVM, 신경망(MLP, CNN, LSTM 등)

데이터 분류

○ 분류기의 입·출력 관계

○ 학습 결과 → 결정경계와 결정함수

데이터 분류

- \bigcirc 결정경계 $g(x; \theta)$ 를 얻는 두 가지 접근법
 - □ 확률 기반 방법
 - $\checkmark P(C_k|x)$ 를 추정하여 분류
 - ✓ 베이즈 분류기
 - □ 데이터 기반 방법
 - ✓ 데이터 간의 관계를 바탕으로 분류
 - ✓ K-최근접이웃 분류기

2 베이즈 분류기

확률분포에 기반한 분류의 개념

 $\bigcirc x_{new} \rightarrow P(C_k|x_{new}) \rightarrow x_{new} \in C_i$

베이즈 정리를 이용한 결정경계

○ 이진 분류 문제 $\rightarrow x \in C_1$? or $x \in C_2$?

x가 각 클래스에 속할 확률 $P(C_1|x)$, $P(C_2|x)$ 중 확률값이 큰 클래스로 할당

베이즈 정리를 이용한 결정경계

결정경계

$$g(\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x})} - \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x})} = 0$$

분모 제거하고 각 항을 $p(x|C_2)p(C_1)$ 로 나눈다.

$$g_{LRT}(\mathbf{x}) = \frac{p(\mathbf{x}|C_1)}{p(\mathbf{x}|C_2)} - \frac{p(C_2)}{p(C_1)} = 0$$

결정규칙

$$g_{LRT}(\mathbf{x}) = p(\mathbf{x} | C_1)p(C_1) - p(\mathbf{x} | C_2)p(C_2) > 0 \rightarrow \mathbf{x} \in C_1$$

$$g_{LRT}(\mathbf{x}) = p(\mathbf{x} | C_1)p(C_1) - p(\mathbf{x} | C_2)p(C_2) < 0 \rightarrow \mathbf{x} \in C_2$$

$$y(\mathbf{x}) = \begin{cases} 1 & \text{if } g_{LRT}(\mathbf{x}) > 0 \\ -1 & \text{otherwise} \end{cases}$$

베이즈 분류기의 결정경계

$$g_{LRT}(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_1)}{p(\boldsymbol{x}|C_2)} - \frac{p(C_2)}{p(C_1)} = 0$$

우도비 likelihood ratio

(각 클래스에서 <math>x가 관찰될 확률밀도의 비율)

전체 데이터 집합에서 각 클래스가 차지하는 비율

우도비 분류

베이즈 분류기 Bayes classifier

베이즈 정리로부터 유도된 결정경계를 이용한 분류

베이즈 분류기: 이진 클래스, $p(C_1) = p(C_2)$ 인 경우

$$y(x) = \begin{cases} 1 & \text{if } p(x|C_1) > p(x|C_2) \to x \in C_1 \\ -1 & \text{otherwise} \end{cases} \to x \in C_2$$

$$g_{LRT}(x) = p(x|C_1)p(C_1) - p(x|C_2)p(C_2) > 0 \to x \in C_1$$

$$g_{LRT}(x) = p(x|C_1)p(C_1) - p(x|C_2)p(C_2) < 0 \to x \in C_2$$

1차원 데이터에 대한 베이즈 분류기의 결정경계

베이즈 분류기: 이진 클래스, $p(C_1) \neq p(C_2)$ 인 경우

결정경계
$$\longrightarrow p(\mathbf{x}|C_1)p(C_1) = p(\mathbf{x}|C_2)p(C_2)$$

베이즈 분류기: 다중 클래스 문제

○ 3개 클래스 분류기

각 클래스 C_i 에 대한 판별함수 $\longrightarrow g_i(\mathbf{x}) = p(\mathbf{x}|C_i)p(C_i)$ 클래스 레이블 $y(\mathbf{x})$ 의 결정규칙 $\longrightarrow y(\mathbf{x}) = \operatorname{argmax}_i\{g_i(\mathbf{x})\}$

베이즈 분류기: 처리과정

- 분류 절차
 - □ 학습 데이터 수집
 - \Box 학습 데이터로부터 클래스별 분포함수 추정 $p(x|C_k)$
 - \square 테스트 데이터 x_{new} 입력

 - $\Box g_k(x_{new})$ 가 가장 큰 클래스 k로 할당

베이즈 분류기의 구현

가우시안 확률분포를 가정한 베이즈 분류기

가우시안 분포의 확률밀도함수

$$p(\boldsymbol{x}|C_i) = G(\boldsymbol{x}; \boldsymbol{\mu}_i, \ \boldsymbol{\Sigma}_i) = \frac{1}{\sqrt{(2\pi)^n} \sqrt{|\boldsymbol{\Sigma}_i|}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i)\right]$$

다중 클래스 분류를 위한 판별함수 (선험확률 $p(C_i)$ 가 모두 동일하다고 가정)

$$g_{i}(\mathbf{x}) = p(\mathbf{x}|C_{i})p(C_{i}) \longrightarrow \ell_{i}(\mathbf{x}) = \ln g_{i}(\mathbf{x}) = \ln p(\mathbf{x}|C_{i})$$
$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T}\boldsymbol{\Sigma}_{i}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) - \frac{1}{2}\ln |\boldsymbol{\Sigma}_{i}| + const$$

결정규칙
$$y(\mathbf{x}) = \operatorname{argmax}_i\{l_i(\mathbf{x})\}$$

$$= \operatorname{argmin}_i\{(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \ln |\boldsymbol{\Sigma}_i|\}$$

베이즈 분류기의 구현

- 공분산행렬의 형태에 따른 판별함수
 - \square 클래스 공통 단위 공분산행렬 $\Sigma_i = \sigma^2 \mathbf{I} \ (i=1,\ \cdots,\ M)$
 - ✓ 모든 클래스의 공분산이 동일하게 단위행렬의 상수배인 행렬을 가지는 경우
 - \square 클래스 공통 공분산행렬 $oldsymbol{\Sigma}_i = oldsymbol{\Sigma}$
 - ✓ 모든 클래스가 동일한 공분산을 갖지만그 형태가 일반적인 행렬이 되는 경우
 - \square 일반적인 공분산 행렬 $oldsymbol{\Sigma}_i
 eq oldsymbol{\Sigma}_j$
 - ✓ 각 클래스의 공분산이 서로 다른 일반적인 형태를 가지는 경우

판별함수 형태: 클래스 공통 단위 공분산 행렬

$$\ell_{i}(\mathbf{x}) = \ln g_{i}(\mathbf{x}) = \ln p(\mathbf{x}|C_{i})$$

$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \boldsymbol{\Sigma}_{i}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) - \frac{1}{2}\ln |\boldsymbol{\Sigma}_{i}| + const$$

$$\boldsymbol{\Sigma}_{i} = \sigma^{2} \mathbf{I} \ (i = 1, \ \cdots, \ M)$$

판별함수
$$\ell_i(\mathbf{x}) = -\frac{1}{2\sigma^2}(\mathbf{x} - \boldsymbol{\mu}_i)^T(\mathbf{x} - \boldsymbol{\mu}_i) - n \ln \sigma + const$$

$$n$$
과 σ 는 공통

결정규칙
$$y(\mathbf{x}) = \operatorname{argmin}_i \{ (\mathbf{x} - \boldsymbol{\mu}_i)^T (\mathbf{x} - \boldsymbol{\mu}_i) \}$$

"최소거리 분류기"

minimum distance classifier

판별함수 형태: 클래스 공통 단위 공분산 행렬

판별함수 형태: 클래스 공통 공분산 행렬

$${oldsymbol \Sigma}_i = {oldsymbol \Sigma}$$
 (타원형 형태의 데이터 분포)

판별함수
$$\ell_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)$$

결정규칙
$$y(\mathbf{x}) = \operatorname{argmin}_i \{ (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) \}$$

"마할라노비스 거리"

Mahalanobis distance

공분산 arSigma가 대각행렬이면

"정규화된 유클리디안 거리"

normalized Euclidean distance

요소별로 표준편차 값으로 나누어 준 후 유클리디안 거리를 계산

판별함수 형태: 클래스 공통 공분산 행렬

판별함수 형태: 일반적인 공분산 행렬

 Σ_i $eq \Sigma_j$ (서로 다른 타원형 분포)

결정규칙
$$y(\mathbf{x}) = \operatorname{argmin}_i \left\{ (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \ln \left| \boldsymbol{\Sigma}_i \right| \right\}$$

베이즈 분류기: 가우시안 모델의 경우

- \bigcirc 데이터 x에 대한 클래스별 밀도함수

 - □ 각 클래스의 평균과 공분산행렬을 각각 추정해야 함
- 간소화 방법
 - \square 공분산행렬 Σ_k 가 모두 단위행렬이라고 가정
 - $\checkmark x$ 와 평균 μ_k 와의 거리를 비교하여 가까운 쪽의 클래스로 할당
 - \square 공분산행렬 Σ_k 가 모두 동일하다고 가정 \rightarrow 하나의 Σ 만 추정
 - ✓ 평균과의 거리 계산에 활용 → 마할라노비스 거리
 - □ 일반적으로 공분산행렬이 동일하다고 볼 수 없으나, 계산이 간단하여 널리 사용

3 K-최근접이웃 분류기

K-최근접이웃 분류기 (K=1인 경우)

○ "최근접이웃 분류기"

$$y(\mathbf{x}) = \operatorname{argmin}\{r_1, r_2\} = 1$$

클래스와 상관없이 모든 데이터 중에서 가장 작은 거리값을 갖는 데이터의 클래스로 할당

$$\mathbf{x}_{min} = \operatorname{argmin}_{\mathbf{x}_{i} \in X} \{ d(\mathbf{x}, \mathbf{x}_{i}) \}$$
$$y(\mathbf{x}) = y(\mathbf{x}_{min})$$

"최근접이웃 분류기"

nearest neighbor classifier

최근접이웃 분류기

- 수행 단계
 - **1.** 주어진 데이터 x와 모든 학습 데이터 $\{x_1, x_2, \dots, x_N\}$ 과의 거리를 계산한다.
 - 2. 거리가 가장 가까운 데이터를 찾아 x_{min} 으로 둔다.

$$\mathbf{x}_{min} = \operatorname{argmin}_{\mathbf{x}_i \in X} \{ d(\mathbf{x}, \mathbf{x}_i) \}$$

 $3. x_{min}$ 이 속하는 클래스에 할당한다.

즉, $y(x_{min})$ 과 같은 값을 가지도록 y(x)를 결정한다.

최근접이웃 분류기의 문제점

○ 과다적합

K-최근접이웃 분류기

○ K=5인 경우

$$y(\mathbf{x}) = \operatorname{argmax}\{K_1(\mathbf{x}), K_2(\mathbf{x})\} \mapsto C_2$$

K-최근접이웃 분류기

- 수행 단계
 - **1.** 주어진 데이터 x와 모든 학습 데이터 $\{x_1, x_2, \dots, x_N\}$ 과의 거리를 계산한다.
 - 2. 거리가 가장 가까운 것부터 순서대로 K개의 데이터를 찾아 후보 집합 $N(x) = \{x^1, x^2, \dots, x^K\}$ 를 만든다.
 - 3. 후보 집합의 각 원소가 어떤 클래스에 속하는지 그 레이블값 $y(x^1), y(x^2), \cdots, y(x^K)$ 을 찾는다.
 - 4. 찾아진 레이블값 중 가장 많은 빈도수를 차지하는 클래스를 찾아 x를 그 클래스에 할당한다.

K-최근접이웃 분류기 vs 가우시안 베이즈 분류기

○ 데이터 분포가 복잡한 비선형 구조를 가지는 경우

K-최근접이웃 분류기 vs 가우시안 베이즈 분류기

- 가우시안 베이즈 분류기
 - □ 각 클래스에 대한 확률분포함수를 미리 가정하고 추정
 - □ 학습 데이터를 통해 평균과 표준편차만 계산하여 활용
 - ✓ 분류 과정에서 학습 데이터가 불필요
- K-최근접이웃 분류기
 - □ 확률분포모델을 미리 가정하지 않고 데이터 집합을 이용하여 추정
 - □ 새 데이터가 주어질 때마다 학습 데이터 전체와의 거리 계산이 필요
 - ✓ 항상 학습 데이터를 저장 → 비용(계산량, 메모리) 증가

K-NN 분류기의 설계 고려사항

- 적절한 K값의 결정
 - □ K = 1 → 바로 이웃한 데이터에만 의존하여 클래스가 결정
 → 노이즈에 민감, 과다적합 발생
 - □ $K \gg 1 \rightarrow$ 주어진 데이터 주변 영역이 아닌 전체 데이터 영역에서 각 클래스가 차지하는 비율(선험확률)에 의존
 - □ 주어진 데이터의 분포 특성에 의존
 - ✓ 주어진 데이터에 대한 분류를 통해 가장 좋은 성능을 주는 값을 선택

K-NN 분류기의 설계 고려사항

○ K값에 따른 결정경계의 변화

K-NN 분류기의 설계 고려사항

○ 거리 함수? → 주어진 데이터와 학습 데이터 간의 거리 계산

2차 노름 (유클리디안 거리)	$d_E(\mathbf{x}, \ \mathbf{y}) = \ \mathbf{x} - \mathbf{y}\ _2 = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$
1차 노름	$d_1(\mathbf{x}, \mathbf{y}) = \ \mathbf{x} - \mathbf{y}\ _1 = \sum_{i=1}^n x_i - y_i $
<i>p</i> 차 노름	$d_p(\mathbf{x}, \mathbf{y}) = \sqrt[p]{\sum_{i=1}^n (x_i - y_i)^p}$
내적	$d_{IN}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$
코사인 거리	$d_{\cos}(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x} \cdot \mathbf{y}}{\ \mathbf{x}\ \ \mathbf{y}\ }$
정규화된 유클리디안 거리	$d_{NE}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} \frac{(x_i - y_i)^2}{\sigma_i^2}}$ $(\sigma_i^2$ 는 데이터의 분산)
마할라노비스 거리	$d_M(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y})}$ ($\mathbf{\Sigma}$ 는 데이터의 공분산행렬)

그밖의 분류기들

- 로지스틱 회귀
 - □ 회귀 기법을 분류 문제로 확장
- 결정 트리
 - □ 속성들의 정보를 순차적으로 적용하여 분류 → 판단 결과에 대한 설명력이 우수
- 서포트벡터머신(SVM)
 - □ 결정경계의 마진을 최대화하는 목적함수 사용 → 일반화 성능 우수
- 신경망(딥러닝 모델)
 - □ 복잡한 결정경계를 신경망 모델로 정의하여 학습
 - □ 특징추출 단계까지 한 번에 학습

다음시간안내

제3강

지도학습: 회귀

