9.B. BIG OMEGA NOTATION

The lower bound of an algorithm is given by the big-omega (Ω) notation.

DEFINITION: A function f(n) is said to be in $\Omega(g(n))$, denoted $f(n) \in \Omega(g(n))$, if f(n) is bounded below by some positive constant multiple of g(n) for all large n, i. e., if there exist some positive constant c and some nonnegative integer n_0 such that:

$$f(n) \ge c \times g(n)$$
 for all $n \ge n_0$

ON THE ABOVE DIAGRAM 'STARTING FROM n_0 AND BEYOND ONLY MATTERS', BUT THE PORTION LESSER THAN AND WITHOUT THE STARTING POINT OF n_0 DOESN'T MATTER.

ILLUSTRATION OF THE DEFINITION

- Let f and g be two functions that map a set of natural numbers to a set of positive real numbers , that is $f \colon \mathbb{N} \to \mathbb{R}_{\geq 0}$.
- Let $\Omega(g)$ be the set of all those functions that have a similar rate of growth.
- The relation $f(n) = \Omega(g(n))$ holds good if there exist two positive constants c and n_0 such that $f(n) \ge c \times g(n)$.
- Thus, the function f(n) is said to be in $\Omega(g(n))$, which can be represented as $f(n) \in \Omega(g(n))$.
- This notation implies that f(n) grows at a faster rate than a constant time g(n) for a sufficiently large n.

The "omega notation" is used when the lower bound of a polynomial is to be found.

THE NEED OF BIG OMEGA (Ω) NOTATION:

- The notation is helpful in finding out the minimum amount of resources, an algorithm requires, in order to run.
- Finding out the minimum amount of resources is important as this time complexity can help us to schedule the task accordingly.
- It is also helpful to compare the best suited algorithm amongst the set of algorithms, if more than one algorithm can accomplish a given task.

Hence:

 $f(n) = \Omega(g(n))$, if $f(n) \ge c \times g(n)$, $n \ge n_0$, where c and n_0 are constants.

i.e.

$$\Omegaig(g(n)ig)=\{f(n): there\ exists\ positive\ constants\ c\ and\ n_0$$
 such that $0\leq c imes g(n)\leq f(n)$ for all $n\geq n_0\}$

And if we see the rate of growth of f(n) and g(n), if $f(n) = 5n^2 + 2n + 5$ and $g(n) = 4n^2$, then:

Comparison of f(n) and g(n)

N	$5n^2 + 2n + 5$	$4n^2$
1	12	4
2	29	16
3	56	36
4	93	64
5	140	100
6	197	144

- g(n) is an asymptotic tight lower bound for f(n).
- Hence the Big-Omega notation gives the tighter lower bound for the given algorithm.
- Our objective is to give the largest rate of growth g(n) which is less than or equal to the given algorithm's rate of growth f(n).
