

FABADA implementation into Mantid

Diego Monserrat López

Group of Characterization of Materials

Contents

- Bayesian vs. Frequentist Analysis
- > FABADA algorithm
- Model selection
 - Example with synthetic data
- How to use FABADA with Mantid
 - Example with ISIS data

Frequentist analysis

Assumptions

- There only exists one χ^2 minimum (global and local)
- χ^2 has Quadratic dependence on each parameter
- Errors calculations usually disregard correlations

Results

- $P \pm \delta P$
- χ^2 minimum
- Limited model selection

Bayesian analysis

Why?

- Do not involve any assumption
- Do not get stuck in local minima of χ^2 hypersurface (for complex models)
- Improves parameter estimation
- Gets parameters correlation explicity
- Improves model selection

How?

• Let's see...

Fitting in the χ^2 landscape

Cost function:

$$\chi^2 = \sum_{k=1}^n \frac{(H_k \{P_i\} - D_k)^2}{\sigma_k^2}$$

From Bayes Theorem:

$$P(D_k | H_k) \propto \exp\left(-\frac{\chi^2}{2}\right)$$

Markov Chain Monte Carlo (MCMC)

Parameter generation
$$P_i^{\text{new}} = P_i^{\text{old}} + (\text{RND} - 0.5) \cdot 2\Delta P_i^{\text{max}}$$

Parameter acceptance <

$$\chi^2_{new} < \chi^2_{old}$$

$$\chi^2_{new} > \chi^2_{old}$$

$$\chi^2_{new} < \chi^2_{old} \qquad \text{New parameter value accepted}$$

$$\chi^2_{new} > \chi^2_{old} \qquad \frac{P(H(P_i^{\text{new}}) \, | \, D_k)}{P(H(P_i^{\text{old}}) \, | \, D_k)} = \exp\left(-\frac{\chi^2_{\text{new}} - \chi^2_{\text{old}}}{2}\right)$$

Adjusting step size ΔP_i^{\max} :

$$\Delta P_i^{max,new} = \Delta P_i^{max,old} \cdot \frac{R_i}{R_{i,desired}}$$

where Ri = acceptance rate

Parameter estimation

Parameters are obtained as PDF's not as P±ôP

Parameter correlations

Correlation between parameters are automatically had into account

FABADA features

- Chain length
- Saving Rate
- Convergence Criteria (1%)

$$\frac{\chi_{old}^2 - \chi_{new}^2}{\chi_{old}^2}$$

> Acceptance Rate = 2/3

- Chains
- Converged Chains
- Probability density Functions (PDF)
- Cost Function Values
- Parameters values and errors

Chains

Converged chains

Probability density Functions (PDF)

Parameter PDF

$$\chi^2$$
 PDF

Cost Function Values

Parameters values and errors

Correlations with FABADA

Model selection

Usual methods:

- "Guide to the eye" method
- \triangleright Minimum χ^2 value
- ightharpoonup The reduced χ^2 method:

$$\chi_{red}^2 = \frac{\chi^2}{n - m}$$

n = number of pointsm= number of parameters

This only Works if:

- ✓ There is no correlation between parameters
- ✓ The PDF in all parameters is Gaussian
- ✓ The minimum is not multimodal

Bayesian method

Directly compares the PDF related to $\,\chi^2\,$

An increasing number of parameters broadens the $\,\chi^2\,$ PDF

$$P(\chi^2) \propto (\chi^2)^{\frac{N}{2}-1} \cdot e^{\frac{-\chi^2}{2}}$$

Ref. Sivia D.S. Data Analysis

$$R\otimes (L_1+L_2+L_3)$$

$$L = \frac{A}{\pi} \left(\frac{\frac{FWHM}{2}}{\left(x - x_0\right)^2 + \left(\frac{FWHM}{2}\right)^2} \right)$$

$$R = e^{\left(-\frac{4\ln(2)\cdot x^2}{0.01}\right)}$$

Gaussian-distributed relative error of 6% added after convolution

Peak	A	FWHM	x_0
L_1	1	0.04	0
L_2	1	0.4	0
L_3	1	2	0

Classical model selection results

INSUFFICIENT!!!

How to use FABADA with Mantid

