STAT 610: Discussion 10

1 Summary

- Union-Intersection and Intersection Tests (UIT/IUT):
 - UIT: Suppose we want to test $H_0: \theta \in \cap_{\gamma \in \Gamma} \Theta_{\gamma}$ v.s. $H_1: \theta \in \cup_{\gamma \in \Gamma} \Theta_{\gamma}^c$. Suppose R_{γ} is the rejection region of test $H_0: \theta \in \Theta_{\gamma}$ v.s. $H_1: \theta \in \Theta_{\gamma}^c$. Then, UIT is $R = \cup_{\gamma \in \Gamma} R_{\gamma}$. If R_{γ} is of the form $\{x: T_{\gamma}(x) > c\}$, then

$$R = \cup_{\gamma \in \Gamma} \{x : T_{\gamma}(x) > c\} = \{x : \sup_{\gamma \in \Gamma} T_{\gamma}(x) > c\}.$$

- IUT: Suppose we want to test $H_0: \theta \in \bigcup_{\gamma \in \Gamma} \Theta_{\gamma}$ v.s. $H_1: \theta \in \bigcap_{\gamma \in \Gamma} \Theta_{\gamma}^c$. If each $H_{0\gamma}$ has the rejection region $R_{\gamma} = \{x: T_{\gamma}(x) > c\}$, then IUT has the rejection region

$$R = \bigcap_{\gamma \in \Gamma} \{x : T_{\gamma}(x) > c\} = \{x : \inf_{\gamma \in \Gamma} T_{\gamma}(x) > c\}.$$

- Level of UIT: If R_{γ} has level α_{γ} , then the overall level of UIT is at most $\sum_{\gamma \in \Gamma} \alpha_{\gamma}$.
- Level of IUT: If R_{γ} has level α_{γ} , then the overall level of IUT is at most $\min_{\gamma \in \Gamma} \alpha_{\gamma}$.
- Relationship between LRT and UIT: Refer to *Theorem 8.3.21* in the textbook.
- Confidence Interval:
 - The coverage probability is defined as $\mathbb{P}_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$ for an interval $[L(\mathbf{X}), U(\mathbf{X})]$.
 - The confidence coefficient is defined as $\inf \mathbb{P}_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$, which is the infimum of the coverage probability.
- Pivotal quantities: A random variable $Q(\mathbf{X}, \theta) = Q(X_1, \dots, X_n, \theta)$ is a pivotal quantity if the distribution of $Q(\mathbf{X}, \theta)$ is independent of all parameters. That is, if $\mathbf{X} \sim F(\mathbf{x} \mid \theta)$, then $Q(\mathbf{x}, \theta)$ has the same distribution for all values of θ .
 - e.g. If $X_i \stackrel{i.i.d}{\sim} \operatorname{Exp}(\theta)$, then $T = \sum_{i=1}^n X_i \sim \operatorname{Gamma}(n, \theta)$. Hence $Q(T, \theta) = 2T/\theta \sim \chi_{2n}^2$ is a pivotal quantity.
 - After figuring out a, b such that $\mathbb{P}(a \leq Q(\mathbf{X}, \theta) \leq a) \geq 1 \alpha$, then $C(\mathbf{x}) = \{\theta : a \leq Q(\mathbf{x}, \theta) \leq b\}$ is a 1α confidence set for θ .
 - If $Q(\mathbf{x}, \theta)$ is a monotone function of θ , then $C(\mathbf{x})$ will be an interval.
- Pivoting a cdf: Let T be a statistic with cdf $F_T(t \mid \theta)$. Let $\alpha_1 + \alpha_2 = \alpha$ be constants.
 - If $F_T(t \mid \theta)$ is a decreasing function of θ for each t, define $\theta_L(t)$ and $\theta_U(t)$ by

$$F_T(t \mid \theta_U(t)) = \alpha_1, \qquad F_T(t \mid \theta_L(t)) = 1 - \alpha_2.$$

- If $F_T(t \mid \theta)$ is a increasing function of θ for each t, define $\theta_L(t)$ and $\theta_U(t)$ by

$$F_T(t \mid \theta_U(t)) = 1 - \alpha_2, \qquad F_T(t \mid \theta_L(t)) = \alpha_1.$$

Then $[\theta_L(T), \theta_U(T)]$ is a $1 - \alpha$ confidence interval for θ .

2 Questions

- 1. Consider testing $H_0: \theta \in \bigcup_{j=1}^k \Theta_j$. For each $j=1,\ldots,k$, let $p_j(\mathbf{x})$ denote a valid p-value for testing $H_{0j}: \theta \in \Theta_j$. Let $p(\mathbf{x}) = \max_{1 \leq j \leq k} p_j(\mathbf{x})$.
 - (a) Show that $p(\mathbf{X})$ is a valid p-value for testing H_0 .
 - (b) Show that the α level test defined by $p(\mathbf{X})$ is the same as an α level IUT defined in terms of individual tests based on the $p_j(\mathbf{x})$ s.

- 2. Find a 1α confidence interval for θ using pivots, given X with pdf
 - (a) $f(x \mid \theta) = 1, \ \theta \frac{1}{2} < x < \theta + \frac{1}{2}.$
 - (b) $f(x \mid \theta) = 2x/\theta^2, \ 0 < x < \theta.$

3. Let X_1, \ldots, X_n be i.i.d uniform $(0, \theta)$. Let Y be the largest order statistic. Prove that Y/θ is a pivotal quantity and show that $[y, y \cdot \alpha^{-1/n}]$ is the shortest $1 - \alpha$ pivotal interval.

4. If X_1, \ldots, X_n are i.i.d from a location pdf $f(x-\theta)$. Show that the confidence set

$$C(x_1,...,x_n) = \{\theta : \bar{x} - k_1 \le \theta \le \bar{x} + k_2\},\$$

where k_1 , k_2 are constants, has constant coverage probability.

- 5. Let X_1, \ldots, X_n be a random variable with pdf $f_X(x) = \theta a^{\theta} x^{-(\theta+1)} I_{(a,\infty)}(x)$, where $\theta > 0$ and a > 0.
 - (a) When θ is known, derive a confidence interval for a with confidence coefficient 1α by pivoting the cdf of the smallest order statistic $X_{(1)}$.
 - (b) When both a and θ are unknown and $n \geq 2$, derive a confidence interval for θ with confidence coefficient 1α by pivoting the cdf of $T = \prod_{i=1}^{n} (X_i/X_{(1)})$.

 Hint: You can use the fact that $2\theta \log T \sim \chi^2_{2(n-1)}$ and then write the cdf of T in terms of the cdf of $\chi^2_{2(n-1)}$.
 - (c) When both a and θ are unknown, construct a confidence set for (a, θ) with confidence coefficient 1α using a pivotal quantity.

Hint: Notice that $X_{(1)}/a$ is free of a, and $X_{(1)}^{\theta}$ is free of θ .