Context-Free Languages

Context-Free Languages

 $\{a^nb^n\}$

 $\{ww^R\}$

Regular Languages

Context-Free Languages

Context-Free Grammars

Example

A context-free grammar
$$G\colon S\to aSb$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

A context-free grammar
$$G\colon S\to aSb$$
 $S\to \lambda$

Another derivation:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

$$S \to aSb$$
$$S \to \lambda$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Example

A context-free grammar
$$G\colon S\to aSa$$

$$S\to bSb$$

A derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

 $S \rightarrow \lambda$

A context-free grammar
$$G\colon S\to aSa$$

$$S\to bSb$$

$$S\to \lambda$$

Another derivation:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$

$$S \to aSa$$
$$S \to bSb$$
$$S \to \lambda$$

$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

Example

A context-free grammar
$$G: S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

A context-free grammar
$$G: S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$

$$S \to aSb$$

$$S \to SS$$

$$S \to \lambda$$

$$L(G) = \{w : n_a(w) = n_b(w),$$

and $n_a(v) \ge n_b(v)$
in any prefix $v\}$

Definition: Context-Free Grammars

$$A \rightarrow x$$

X is string of variables and terminals

Definition: Context-Free Languages

A language L is context-free

if and only if

there is a grammar G with L = L(G)

Derivation Order

1.
$$S \rightarrow AB$$

2.
$$A \rightarrow aaA$$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

5.
$$B \rightarrow \lambda$$

Leftmost derivation:

Rightmost derivation:

$$1 \quad 4 \quad 5 \quad 2 \quad 3$$

 $S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$

$$S \rightarrow aAB$$

$$A \rightarrow bBb$$

$$B \to A \mid \lambda$$

Leftmost derivation:

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$$

 $\Rightarrow abbbbB \Rightarrow abbbb$

Rightmost derivation:

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$$

 $\Rightarrow abbBbb \Rightarrow abbbb$

Derivation Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$S \Rightarrow AB \Rightarrow aaAB$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \rightarrow Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$

$$B \rightarrow Bb \mid \lambda$$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

Partial Derivation Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB$$

Partial derivation tree

$S \Rightarrow AB \Rightarrow aaAB$

$$S \Rightarrow AB \Rightarrow aaAB$$
 sentential form

Sometimes, derivation order doesn't matter

Leftmost:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

 $a + a * a$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

 $a + a * a$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$
leftmost derivation
$$E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two derivation trees

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Definition:

A context-free grammar G is ambiguous

if some string $w \in L(G)$ has:

two or more derivation trees

In other words:

A context-free grammar G is ambiguous

if some string $w \in L(G)$ has:

two or more leftmost derivations (or rightmost)

Why do we care about ambiguity?

2 + 2 * 2

$$2 + 2 * 2 = 6$$

$$2 + 2 * 2 = 8$$

Correct result: 2+2*2=6

Ambiguity is bad for programming languages

· We want to remove ambiguity

We fix the ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

New non-ambiguous grammar:
$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \rightarrow E + T$$
 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow (E)$
 $F \rightarrow a$

Unique derivation tree

The grammar $G: E \to E + T$

$$E \to E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

Inherent Ambiguity

Some context free languages have only ambiguous grammars

Example:
$$L = \{a^nb^nc^m\} \cup \{a^nb^mc^m\}$$

$$S \to S_1 \mid S_2 \qquad S_1 \to S_1c \mid A \qquad S_2 \to aS_2 \mid B$$

$$A \to aAb \mid \lambda \qquad B \to bBc \mid \lambda$$

The string $a^n b^n c^n$

has two derivation trees

It does not, of course, follow from this that L is inherently ambiguous as there might exist some other unambiguous grammars for it. But in some way L1 and L2 have conflicting requirements. A rigorous argument, though, is quite technical. One proof can be found in Harrison 1978.

Linz, 6th, page 149