Chapter 2: Modules

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 2.1 Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime.

It suffices to show that

$$(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$$

where d is the greatest common divisor of m and n.

Outlines.

(1) Define $\widetilde{\varphi}$ by

 $\widetilde{\varphi}$ is well-defined and $\mathbb{Z}\text{-bilinear}.$

(2) By the universal property, $\widetilde{\varphi}$ factors through a \mathbb{Z} -linear map

$$\varphi: (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/d\mathbb{Z}$$

(such that $\varphi(x \otimes y) = \widetilde{\varphi}(x, y)$).

(3) To show that φ is isomorphic, might find the inverse map $\psi: \mathbb{Z}/d\mathbb{Z} \to (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$ of φ . Define ψ by

 ψ is well-defined and \mathbb{Z} -linear.

- (4) $\psi \circ \varphi = id$.
- (5) $\varphi \circ \psi = id$.

Proof of (1).

- (a) $\widetilde{\varphi}$ is well-defined. Say x' = x + am for some $a \in \mathbb{Z}$ and y' = y + bn for some $b \in \mathbb{Z}$. Then $x'y' xy = yam + xbn + abmn \in \mathbb{Z}/d\mathbb{Z}$. That is, $\widetilde{\varphi}$ is independent of coset representative.
- (b) $\widetilde{\varphi}$ is \mathbb{Z} -bilinear.

(i) For any
$$\lambda \in \mathbb{Z}$$
, $\widetilde{\varphi}(\lambda x, y) = \widetilde{\varphi}(x, \lambda y) = \lambda \widetilde{\varphi}(x, y)$. In fact,
$$\widetilde{\varphi}(\lambda(x+m\mathbb{Z}), y+n\mathbb{Z}) = \widetilde{\varphi}(\lambda x+m\mathbb{Z}, y+n\mathbb{Z}) = \lambda xy + d\mathbb{Z},$$

$$\widetilde{\varphi}(x+m\mathbb{Z}, \lambda(y+n\mathbb{Z})) = \widetilde{\varphi}(x+m\mathbb{Z}, \lambda y+n\mathbb{Z}) = \lambda xy + d\mathbb{Z},$$

$$\widetilde{\varphi}(x_1+m\mathbb{Z}, y+n\mathbb{Z}) = \lambda(xy+d\mathbb{Z}) = \lambda xy + d\mathbb{Z}.$$

(ii)
$$\widetilde{\varphi}(x_1 + x_2, y) = \widetilde{\varphi}(x_1, y) + \widetilde{\varphi}(x_2, y)$$
. In fact,

$$\widetilde{\varphi}((x_1 + x_2) + m\mathbb{Z}, y + n\mathbb{Z}) = (x_1 + x_2)y + d\mathbb{Z},$$

$$\widetilde{\varphi}(x_1 + m\mathbb{Z}, y + n\mathbb{Z}) + \widetilde{\varphi}(x_2 + m\mathbb{Z}, y + n\mathbb{Z}) = (x_1y + d\mathbb{Z}) + (x_2y + d\mathbb{Z})$$

$$= (x_1 + x_2)y + d\mathbb{Z}.$$

(iii) $\widetilde{\varphi}(x, y_1 + y_2) = \widetilde{\varphi}(x, y_1) + \widetilde{\varphi}(x, y_2)$. Similar to (ii).

Proof of (3).

(a) ψ is well-defined. Say z' = z + cd for some $c \in \mathbb{Z}$. Note that $d = \alpha m + \beta n$ for some $\alpha, \beta \in \mathbb{Z}$. Thus

$$\psi(z'+d\mathbb{Z}) = \psi(z+cd+d\mathbb{Z})$$

$$= \psi(z+c(\alpha m+\beta n)+d\mathbb{Z})$$

$$= (z+c(\alpha m+\beta n)+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= (z+c\beta n+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= (z+m\mathbb{Z})\otimes (1+n\mathbb{Z})+(c\beta n+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= \psi(z+d\mathbb{Z})+(1+m\mathbb{Z})\otimes (c\beta n+n\mathbb{Z})$$

$$= \psi(z+d\mathbb{Z}).$$

(b) ψ is \mathbb{Z} -linear. For any $\lambda \in \mathbb{Z}$,

$$\psi(\lambda(z+d\mathbb{Z})) = \psi(\lambda z + d\mathbb{Z}) = (\lambda z + m\mathbb{Z}) \otimes (1+n\mathbb{Z}),$$
$$\lambda \psi(z+d\mathbb{Z}) = \lambda((z+m\mathbb{Z}) \otimes (1+n\mathbb{Z})) = (\lambda z + m\mathbb{Z}) \otimes (1+n\mathbb{Z}).$$

Thus, $\psi(\lambda z) = \lambda \psi(z)$. \square

Proof of (4). For any $(x + m\mathbb{Z}) \otimes (y + n\mathbb{Z}) \in (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$,

$$\psi(\varphi((x+m\mathbb{Z})\otimes(y+n\mathbb{Z}))) = \psi(xy+d\mathbb{Z})$$
$$= (xy+m\mathbb{Z})\otimes(1+n\mathbb{Z})$$
$$= (x+m\mathbb{Z})\otimes(y+n\mathbb{Z}).$$

Proof of (5). For any $z + d\mathbb{Z} \in \mathbb{Z}/d\mathbb{Z}$,

$$\varphi(\psi(z+d\mathbb{Z}) = \varphi((z+m\mathbb{Z}) \otimes (1+n\mathbb{Z}))$$
$$= z+d\mathbb{Z}.$$