Cours 6

Calcul propositionnel: déduction par coupure

Système de déduction

Un système formel est constitué

- ▶ d'une syntaxe
 - ▶ un alphabet A
 - une procédé de formation des formules : $\mathfrak{F} \subseteq A^*$
- d'une sémantique :

$$\Sigma \models F$$

- d'un système de déduction
 - un ensemble d'axiomes
 - un ensemble fini de règles de déduction

$$\Sigma \vdash F$$

Vocabulaire : le système de déduction

- est dit *correct* si $\Sigma \vdash F$ implique $\Sigma \models F$,
- est dit *complet* si $\Sigma \models F$ implique $\Sigma \vdash F$.

La déduction par coupure

On se limite à un sous ensemble des formules : les clauses.

Définition

Une clause est une disjonction de littéraux.

Il s'agit d'un sous ensemble suffisamment représentatif :

Théorème

Toute formule est sémantiquement équivalente à une conjonction de clauses.

Exemple

$$\triangleright p \lor \neg q \lor r$$

Vocabulaire et notations

Nous noterons les clauses sous la forme d'un ensemble de littéraux en distinguant les variables *négatives* (apparaissant avec une négation) des variables *positives* (apparaissant sans négation).

$$C = (\Gamma, \Delta)$$

 Γ : variables propositionnelles négatives

 Δ : variables propositionnelles positives

Exemples

- ▶ $p \lor \neg q \lor r$ sera noté $(\{q\}, \{p, r\})$.
- ▶ $p \lor \neg q \lor \neg q \lor p$ sera noté $(\{q\}, \{p\})$.

Vocabulaire et notations

$$C = (\Gamma, \Delta)$$

Cas particuliers:

- ▶ $\Delta = \emptyset$: clause négative
- ightharpoonup Γ = \emptyset : clause positive
- ▶ $\Delta = \Gamma = \emptyset$: clause vide, notée □

Remarque : une clause $(\{a_1, \ldots, a_n\}, \{b_1, \ldots, b_m\})$ est équivalente à

$$(a_1 \wedge \cdots \wedge a_n) \Rightarrow (b_1 \vee \cdots \vee b_m)$$

Règle de coupure

Définition

Soit $C_1 = (\Gamma_1, \Delta_1)$ et $C_2 = (\Gamma_2, \Delta_2)$, et $p \in \Delta_1 \cap \Gamma_2$. $C = (\Gamma, \Delta)$ se déduit par coupure sur p si

$$\Gamma = \Gamma_1 \cup (\Gamma_2 \setminus \{p\}) \text{ et } \Delta = \Delta_2 \cup (\Delta_1 \setminus \{p\})$$

On note:

$$C_1$$
 C_2

Preuve par coupure

Définition (Preuve par coupure)

Soit S un ensemble de clauses. L'ensemble des clauses C prouvables par coupure à partir de S (noté $S \vdash C$) est définie inductivement par

▶ pour toute clause *C*

si
$$C$$
 ∈ S alors S \vdash C

▶ pour toutes clauses C_1 , C_2 et C

si
$$S \vdash C_1$$
, $S \vdash C_2$ et $\frac{C_1 \quad C_2}{C}$ alors $S \vdash C$

Réfutation par coupure de $S: S \vdash \Box$

Exemple

□ est prouvable par coupure à partir de

$$S = \{p \vee \neg q, \, \neg p \vee \neg r, \, q \vee p, \, \neg p \vee q \vee r, \, \neg p \vee \neg q \vee r\}$$

d'après l'arbre de preuve suivant

	$\neg p \lor \neg r \neg p \lor q \lor r$				
		$\neg p \lor q$	$q \vee p$	$\neg p \lor q \lor r \neg p \lor \neg q \lor$	r
$p \vee \neg q$		q		$\neg p \lor r$	$\neg p \lor \neg r$
	p				p
					_

Correction

Lemme

$$Si \stackrel{C_1}{----} C_2 = alors \{C_1, C_2\} \models C.$$

Théorème

 $Si S \vdash C$, alors $S \models C$.

Corollaire

 $Si S \vdash \Box alors S n'est pas satisfiable.$

Complétude

Lemme

Soit S un ensemble de clauses non satisfiables qui ne contient pas \square . Alors il existe p, C_1 et C_2 tels que $p \in \Gamma_1 \cap \Delta_2$.

Définition (Résolvant)

Avec les notations précédentes et S_p le sous-ensemble des clauses de S contenant p, on appelle *résolvant* de S_p (noté $Res(S_p)$) l'ensemble des clauses obtenues à partir de deux clauses de S_p par coupure sur p.

Remarque : Si S est non satisfiable et ne contient pas \square , alors il existe p tel que $Res(S_v) \neq \emptyset$.

Complétude

Lemme

S satisfiable ssi $(S \setminus S_p) \cup Res(S_p)$ satisfiable.

Lemme

Si S est fini et S \models *C, alors S* \vdash *C.*

Théorème

 $Si S \models C$, alors $S \vdash C$.