Lecture 03: BI Basic - Statistics

TABLE OF CONTENTS

- Population & Sample
- Types of data
- Levels of measurements
- One/Two variables
- Central techniques
- Variability techniques

Population vs sample

- Population: Collection of all items of interest, denoted N
- Sample: A subset of population, denoted n

Choosing a sample

- A sample must be both random and representative for an insight to be precise
- Randomness: random sample is collected when each member of the sample is chosen from the population strictly by chance.
- Representativeness: A representative sample is a subset of the population that accurately reflects the members of the entire population.
- Example: Doing a survey on students of FPT university by going to the canteen and ask students in the canteen. Is it random or representative?

Types of data

- Before we can start analyzing we have to get acquainted with the types of variables
- Different types of variables require different types of statistical and visualization approaches.
- Therefore to be able to classify the data you are working

Types of data

Categorical data:

- Types of cars
- Yes/No answers

Numerical data:

- Discrete: countable. For example: number of children, grades of assignments
- Continuous: infinite, impossible to count. For example: weight / height of a person.

Level of measurements

- Qualitative data: nominal or ordinal
 - Nominal data: unordered categories. For example: type of cars, colors of hair
 - Ordinal data: can be ordered. For example: categories of chili, satisfaction of customer

Level of measurements

- Quantitative data: interval and ratio both are numbers but ratio has "true" zero
 - Interval data: data is like ordinal except we can say the intervals between each value are equally split. Example Celsius temperature
 - Ratio: \$ temper

erval t

ro. Example: Kevin

Graphical representation

 The way data should be represented in a graph or chart depends on the level of measurement

Pie Chart Nominal

Bar Chart Nominal, Ordinal, Interval, Ratio

Histogram
Interval, Ratio

Line chart Interval, Ratio

One variable techniques

- Frequency distribution table
- Bar charts

	Frequency
Audi	124
BMW	98
Mercedes	113
Total	335

Type of car: variable

Audi, BMW, ..: value of variable

One variable techniques

- Pie charts
- Pareto charts

Ordered	Frequency	Relative frequency	Cumulative frequency
Audi	124	37%	37%
Mercedes	113	29%	66%
BMW	98	34%	100%

One variable techniques

- Frequency distribution table (may need to set interval)
- Histogram

Interval start	Interval end	Frequency	Relative frequency
1	21	2	0.10
21	41	4	0.20
41	61	3	0.15
61	81	6	0.30
81	101	5	0.25

Two variables techniques

Cross tables and side-by-side bar charts

Type of investment \ Investor	Investor A	Investor B	Investor C	Total
Stocks	96	185	39	320
Bonds	181	3	29	213
Real Estate	88	152	142	382
Total	365	340	210	915

Two variables techniques

Cross tables and side-by-side bar charts

Two variables techniques

Scatter plot

Student ID	Reading	Writing
1	273	216
2	292	282
3	219	250
4	241	217
5	284	266
6	247	294
7	237	215
8	286	203
9	237	286
10	266	263
11	311	270
12	324	211
13	330	243
14	331	275
15	336	367
16	344	378

Position New York City

Mean: the most popular techniques for central tendency

$$mean = \frac{sum of data}{\# of data points}$$

- Median: The median is the middle point is a dataset.
- Mode: is the most commonly occurring data point in a dataset.

	1	\$ 1.00	\$ 1.00
	2	\$ 2.00	\$ 2.00
	3	\$ 3.00	\$ 3.00
	4	\$ 3.00	\$ 4.00
i	5	\$ 5.00	\$ 5.00
-	6	\$ 6.00	\$ 6.00
	7	\$ 7.00	\$ 7.00
	8	\$ 8.00	\$ 8.00
	9	\$ 9.00	\$ 9.00
	10	\$ 11.00	\$ 10.00
	11	\$ 66.00	

Los Angeles

	new	TORK CITY	LO	s Angeles
Mean	\$	11.00	\$	5.50
Median	\$	6.00	\$	5.50
Mode	\$	3.00		-

Marry Vauls Clare I am Am

Mean (NY) is too high? Why? Even Median (NY) is still expensive, it it true? What is the most common price?

Skewness: indicate whether data is concentrated on one side

	Interval	Frequency	
ĺ	0 to 1	4	
	1 to 2	6	
	2 to 3	4	
	3 to 4	2	
	4 to 5	2	
	5 to 6	0	
	6 to 7	1	
	Mean	Median	Mode

2.00

2.79

Zero skewness: mean = median: the distribution is

Interval	Frequency
0 to 1	2
1 to 2	2
2 to 3	3
3 to 4	5
4 to 5	3
5 to 6	2
6 to 7	2

Mean	Median	Mode
4.00	4.00	4.00

Negative skewness: mean < median: outliers are on the

Interval	Frequency
0 to 1	1
1 to 2	1
2 to 3	2
3 to 4	3
4 to 5	4
5 to 6	6
6 to 7	3

Mean	Median	Mode
4.90	5.00	6.00

Variability techniques

 Variance: measures the dispersion of a set of data points around their mean value population variance

Why square: make sure distance is positive and amplify the differences

Variability techniques

 Standard deviation: more meaningful than variance, easy to observe

NY Dollars		Pesos			$\sqrt{\sum_{i} \left(-\frac{1}{2} \right)^2}$
\$	1.00	MXN	18.81	$\sum_{n} (x - \mu)^2$	s = 1/2(x-x)
\$	2.00	MXN	37.62	$\sigma = \sqrt{\frac{N}{N}}$	$s-\sqrt{\frac{n-1}{n-1}}$
\$	3.00	MXN	56.43	V	, ,, ,
\$	3.00	MXN	56.43	Deputation formula	Sample
\$	5.00	MXN	94.05	Population formula	Sample
\$	6.00	MXN	112.86		formula Dollars Pesos
\$	7.00	MXN	131.67	Mean	\$ 5.50 MXN 103.46
\$	8.00	MXN	150.48		
\$	9.00	MXN	169.29	Sample variance	\$ ² 10.72 MXN ² 3793.69
\$	11.00	MXN	206.91	Sample standard deviation	\$ 3.27 MXN 61.59

Variability techniques

 The coefficient of variation (CV) measures the dispersion of data points in a data series around the mean: no unit, sometimes using %

NY Dollars			Pesos	σ	O) /	S		
\$	1.00	MXN	18.81	CV = -	CV =	= -		
\$	2.00	MXN	37.62	μ		x		
\$	3.00	MXN	56.43	•				
\$	3.00	MXN	56.43	Population formula	Sample	Э		
\$	5.00	MXN	94.05			ollars		Pesos
\$	6.00	MXN	112.86	Mean	\$	5.50	MXN	103.46
\$	7.00	MXN	131.67					
\$	8.00	MXN	150.48	Sample variance	\$ ²	10.72	MXN ²	3793.69
\$	9.00	MXN	169.29	Sample standard deviation	\$	3.27	MXN	61.59
\$	11.00	MXN	206.91	Sample coefficient of variation		0.60		0.60