

R como un SIG

Extracción de datos climáticos de WorldClim

WorldClim - Global Climate Data

Free climate data for ecological modeling and GIS

Ms ayuda didáctica en preparación para Ecología Austral

У	х	Abundancia	*
-39.82	-71.63	98	
-39.84	-71.49	95	

WorldClim - Global Climate Data

Free climate data for ecological modeling and GIS

- ✓ Elaborar un objeto espacial desde una lista de coordenadas
- ✓ Realizar mapas
- ✓ Realizar operaciones básicas con objetos espaciales
- √ Exportar objetos espaciales
- ✓ Extraer datos de WorldClim

-37		
-38		150
-39		- 100 - 50
-40		- 0
4 _	and the second s	<u> </u>
-42		

-72

Sitios de muestreo y temperatura anual

A A I SEE I I MEET								
	x	y	bio1_43	bio2_43	bio3_43	bio4_43	bio5	
1	-71.62878	-39.82750	82	124	54	3800		
2	-71.49344	-39.84758	82	125	54	3928		
3	-71.65707	-40.12898	96	120	52	3912		
4	-71.52893	-40.16192	96	121	52	4041		
5	-71.39096	-40.12257	82	123	52	4074		
6	-71.46229	-40.63123	87	117	51	4157		
7	-71 5050/	-40 E224E	8.5	116	51	4000		

¿Por qué usar R como un SIG?

- Permite trabajar con grandes bases de datos
- Reproducible y automatizable: comandos en "script" (rutina)
- Comunidad de ayuda en línea
- R es de código abierto y funciona en cualquier SO
- R es primordialmente un lenguaje de programación para análisis de datos por lo que un sin fin de técnicas estadísticas que no se encuentran en plataformas SIG están presentes en paquetes de R
- En R podremos realizar TODO el proceso. Desde descargar bases climáticas de internet, hasta elaborar mapas y realizar los análisis estadísticos

¿Qué ocurre con la visualización?

Las capacidades de visualización de datos espaciales en R, en general, son estáticas. Si se desea explorar un mapa de manera dinámica (e.g. Zoom o seleccionar partes de un mapa) se deben de utilizar funciones específicas.

En algunos casos es una opción usar R en conjunto con QGIS para la parte exploratoria de visualización.

Objetos espaciales en R

Modelo vectorial -> clase "spatial"

¿Dónde está? ¿Qué contiene?

Subclase "SpatialPoints"

Subclase "SpatialLines"

Subclase "SpatialPolygons"

Fuente de la imagen: Colin Williams (NEON)

Información espacial del objeto

- Tipo de objeto: la clase
- Coordinate Reference System (CRS): el sistema de coordenadas o proyección en el plano (o NA)
- Extent: la extensión espacial del objeto

POINTS EXTENT LINES EXTENT POLYGONS EXTENT

0,8

8,8

0,8

8,8

0,8

x,y

x,y

x,y

x,y

0,0

8,0

0,0

8,0

bbox

summary()
plot()

Tabla de atributos

Objetos espaciales con marco de datos "dataframe" asociado

Subclase "SpatialPointsDataFrame"

coords@data
head()
View(coords@data)

Subclase "SpatialLineDataFrame"

Subclase "SpatialPolygonDataFrame"

summary()
plot()

Librerías para modelos vectoriales del script

library(sp) Crea objetos espaciales "coordinates" y "SpatialPointsDataFrame" library(rgdal) Interfase CRS library(maptools) Para importar shapes con readShapeSpatial y exportar shapes con writePolyShape library(rgeos) select

Otra, no incluida en el script

Objetos espaciales en R

Modelo raster -> clase "RasterLayer"

Representa una serie de pixeles de misma forma y tamaño que cubren una superficie continua

WorldClim - Global Climate Data Free climate data for ecological modeling and GIS

library("raster")

Raster over the same extent, at 4 different resolutions

Información sumaria escribiendo el nombre plot()

WorldClim Version2

http://worldclim.org/version2

WorldClim version 2 has average monthly climate data for minimum, mean, and maximum temperature and for precipitation for 1970-2000.

You can download the variables for different spatial resolutions, from 30 seconds (\sim 1 km²) to 10 minutes (\sim 340 km²). Each download is a "zip" file containing 12 GeoTiff (.tif) files, one for each month of the year (January is 1; December is 12).

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
minimum temperature (°C)	tmin 10m	tmin 5m	tmin 2.5m	tmin 30s
maximum temperature (°C)	tmax 10m	tmax 5m	tmax 2.5m	tmax 30s
average temperature (°C)	tavg 10m	tavg 5m	tavg 2.5m	tavg 30s
precipitation (mm)	prec 10m	prec 5m	prec 2.5m	prec 30s
solar radiation (kJ m ⁻² day ⁻¹)	srad 10m	srad 5m	srad 2.5m	srad 30s
wind speed (m s ⁻¹)	wind 10m	wind 5m	wind 2.5m	wind 30s
water vapor pressure (kPa)	vapr 10m	vapr 5m	vapr 2.5m	vapr 30s

Below you can download the standard (19) WorldClim Bioclimatic variables for WorldClim version 2. They are the average for the years 1970-2000. Each download is a "zip" file containing 19 GeoTiff (.tif) files, one for each month of the variables.

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
Bioclimatic variables	bio 10m	bio 5m	bio 2.5m	bio 30s

Citation:

66 Fick, S.E. and R.J. Hijmans, 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. ***

This is release 1, June 2016. You are not allowed to redistribute these data.

Support was provided by Feed the Future to the Geospatial and Farming Systems Consortium of the Sustainable Intensification Innovation Lab.

- BIO1 = Annual Mean Temperature
- BIO2 = Mean Diurnal Range (Mean of monthly (max temp min temp))
- BIO3 = Isothermality (BIO2/BIO7) (* 100)
- BIO4 = Temperature Seasonality (standard deviation *100)
- BIO5 = Max Temperature of Warmest Month
- BIO6 = Min Temperature of Coldest Month
- BIO7 = Temperature Annual Range (BIO5-BIO6)
- BIO8 = Mean Temperature of Wettest Quarter
- BIO9 = Mean Temperature of Driest Quarter
- BIO10 = Mean Temperature of Warmest Quarter
- BIO11 = Mean Temperature of Coldest Quarter
- BIO12 = Annual Precipitation
- BIO13 = Precipitation of Wettest Month
- BIO14 = Precipitation of Driest Month
- BIO15 = Precipitation Seasonality (Coefficient of Variation)
- BIO16 = Precipitation of Wettest Quarter
- BIO17 = Precipitation of Driest Quarter
- BIO18 = Precipitation of Warmest Quarter
- BIO19 = Precipitation of Coldest Quarter

Metadatos

https://www.worldclim.org/methods1

Para cualquier base de datos

- Anotar la versión de la base de datos y la fecha de reléase y de descarga
- El sistema de coordenadas o proyección que usa
- Descargar cualquier información de metadatos que esté presente y los artículos de respaldo.

Fick, S.E. and R.J. Hijmans, 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology

Hijmans, R. J. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978 International Journal of Climatology

O Crear un objeto espacial de puntos con mis coordenadas

Cargar los datos y verlos
<pre>datos=read.table("Abund.txt",header=T)</pre>
View(datos)

y x Abundancia
-39.82-71.63 98
-39.84-71.49 210

Guardar las coordenadas en un marco de datos llamado "coords" coords=read.table("Abund.txt", header=T)

Convertir las coordenadas a un objeto espacial con la función "coordinates" coordinates (coords) = ~x + y

Ver las propiedades del objeto espacial summary(coords)

Especificar la proyección del objeto espacial proj4string(coords)=CRS("+proj=longlat +datum=WGS84")

Agregar datos manualmente, agregar un vector "columna" al dataframe coords@data\$Ambiente=c("bosque", "bosque".....)

Ver la tabla de atributos del objeto espacial coords@data

Object of class
Spatial PointsDataFrame
Coordinates: min max x
-71.88668 -70.36668 y
-41.45854 -39.78205 Is
projected: NA
proj 4string: [NA]
Number of points: 50
Data attributes:
Abundancia Min.: 9 1st
Qu.: 101 Median: 440
Mean: 2179 3rd Qu.:
1268 Max.: 21933

Abundancia	Ambiente
98	bosque
210	bosque

• Graficar para verificar la posición de los puntos

Script

```
colors()
plot(coords)
                                          tamaño
plot(coords, pch=20, col="red", cex=4, main="Mis sitios")
plot(coords[ coords@data$Ambiente=="bosque", ], col = "turquoise", add = TRUE)
data(wrld_simpl)
plot(wrld simpl)
summary(wrld_simpl)
plot(wrld_simpl[ wrld_simpl@data$NAME=="Argentina", ])
                                                                      pch
plot(Abund, pch=18, col="red", main="Mis sitios", add=TRUE)
                           Mis sitios
                                                              14 💟
                                                           10 🕕 16 🌰 22 📒 0 🚺
                                                           11 💢 17 📥 23 🔷 0 🚺
```

Script

Obtener datos de WorldClim y visualizarlos

```
datos_bioG<-raster::getData("worldclim", var = "bio", res = 10)
plot(datos_bioG$bio1, main="Annual Mean Temperature")
340 km²</pre>
```

```
BIO1 = Annual Mean Temperature
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 = Isothermality (BIO2/BIO7) (* 100)
BIO4 = Temperature Seasonality (standard deviation *100)
BIO5 = Max Temperature of Warmest Month
BIO6 = Min Temperature of Coldest Month
BIO7 = Temperature Annual Range (BIO5-BIO6)
BIO8 = Mean Temperature of Wettest Quarter
BIO9 = Mean Temperature of Driest Quarter
BIO10 = Mean Temperature of Warmest Quarter
BIO11 = Mean Temperature of Coldest Quarter
BIO12 = Annual Precipitation
BIO13 = Precipitation of Wettest Month
BIO14 = Precipitation of Driest Month
```


class: RasterStack

BIO17 = Precipitation of Driest Quarter BIO18 = Precipitation of Warmest Quarter

BIO16 = Precipitation of Wettest Quarter

BIO₁₅ = Precipitation Seasonality (Coefficient of Variation)

BIO19 = Precipitation of Coldest Quarter

Las resoluciones son 0.5, 2.5, 5, y 10 (minutos de grado)

datos_bio<-raster::getData("worldclim", var = "bio", res = 0.5,
lon=-71.15579, lat=-40.62685)</pre>

WORLDCLIM

The 30 arc-seconds resolution WorldClim data can be downloaded by 30 x 30 degrees. tiles Click on the tile you want and then select a variable and file <u>format</u>.

Click on a tile

```
Argentina0 <- getData('GADM' , country="ARG", level=0)
Argentina1 <- getData('GADM' , country="ARG", level=1)</pre>
```

Argentina_alt=getData('alt', country='ARGENTINA', mask=TRUE)

• Extraer los valores de las variables de WorldClim para mis coordenadas

```
valores <- extract(datos_bio, coords)</pre>
```

df <- cbind.data.frame(coordinates(coords),valores, abundancia=coords@data\$Abundancia)</pre>

1	4-7-16-1-1-16-1									,			
	x	y	bio1_43	bio2_43	bio3_43	bio4_43	bio5_43	bio6_43	bio7_43	bio8_43	bio9_43	bio10_43	bio11_43
1	-71.62878	-39.82750	82	124	54	3800	220	-6	226	34	131	131	34
2	-71.49344	-39.84758	82	125	54	3928	222	-8	230	39	133	133	33
3	-71.65707	-40.12898	96	120	52	3912	232	4	228	47	147	147	47
4	-71.52893	-40.16192	96	121	52	4041	233	1	232	45	149	149	45
5	-71.39096	-40.12257	82	123	52	4074	221	-12	233	31	135	135	31
6	-71.46229	-40.63123	87	117	51	4157	221	-8	229	35	142	142	35
7	-71 50504	-40 62246	83	116	51	4000	216	-11	227	37	135	135	22

Exportar como txt y como shape

write.table(df, "df.txt", row.names = FALSE)
AbundF=SpatialPointsDataFrame(coords,df)
writePolyShape(AbundF, "Abund bio")

• Extensión del estudio es grande y la resolución de WorldClim es la de 30 arcsegundos

```
Descargar desde la web de WorldClim y cargar a R
t <- raster(paste(getwd(), "/bio/bio_1", sep = ""))</pre>
```

Estructura del objeto

str(coords)


```
Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
                 :'data.frame': 50 obs. of 2 variables:
  ..@ data
  .. ..$ Abundancia: int [1:50] 98 210 95 99 183 81 112 23 9 124 ...
  ....$ Ambiente : chr [1:50] "bosque" "bosque" "bosque" "bosque" ...
  ..@ coords.nrs : int [1:2] 2 1
                : num [1:50, 1:2] -71.6 -71.5 -71.7 -71.5 -71.4 ...
  ..@ coords
  ....- attr(*, "dimnames")=List of 2
  .. .. ..$ : chr [1:50] "1" "2" "3" "4" ...
  .. .. ..$ : chr [1:2] "x" "y"
             : num [1:2, 1:2] -71.9 -41.5 -70.4 -39.8
  ... - attr(*, "dimnames")=List of 2
  .. .. ..$ : chr [1:2] "x" "y"
  .. .. ..$ : chr [1:2] "min" "max"
  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
  .....@ projargs: chr "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
```