Correction de l'exercice 1

- 2. Exprimons à l'aide des quantificateurs et des connecteurs logiques les assertions suivantes
 - $* \exists! n \in \mathbb{N}, \forall m \in \mathbb{N}, n \leq m$
 - * $\forall n \in \mathbb{N}, \exists ! m \in \mathbb{Z}, n + m = 10$
 - * $\exists x \in \mathbb{R}, x > x^2$
 - * $\forall x \in \mathbb{R}, \, \exists n \in \mathbb{N}, \, x < n$
 - * $\forall x \in \mathbb{Q}, x^2 3 \neq 0$

Correction de l'exercice 2

$$-(P_1): \sqrt{4}=2 \text{ et } \sqrt{3}+\sqrt{7}>\sqrt{10}$$

Valeur de vérité :

On a:

- " $\sqrt{4} = 2$ " est vraie
- " $\sqrt{3}+\sqrt{7}>\sqrt{10}$ " est vraie car : $(\sqrt{3}+\sqrt{7})^2=3+2\sqrt{21}+7=10+2\sqrt{21}$ et $(\sqrt{10})^2=10$ donc $(\sqrt{3}+\sqrt{7})^2>(\sqrt{10})^2$

Comme les deux membres sont positifs, on a bien $\sqrt{3}+\sqrt{7}>\sqrt{10}$

Comme les deux propositions sont vraies, la conjonction est vraie. Donc P_1 est vraie.

Négation : $\overline{P_1}$: " $\sqrt{4} \neq 2$ ou $\sqrt{3} + \sqrt{7} \leq \sqrt{10}$ "

 $- \ (P_2): 23$ est un nombre premier **ou** $\pi \in \mathbb{Q}$

<u>Valeur de vérité :</u>

On a:

- "23 est un nombre premier" est vraie
- " $\pi \in \mathbb{Q}$ " est fausse

Comme l'une des deux propositions est vraie, la disjonction est vraie. Donc P_2 est vraie.

<u>Négation</u>: $\overline{P_2}$: "23 n'est pas un nombre premier et $\pi \notin \mathbb{O}$ "

 $-(P_3): \forall x \in \mathbb{R}: x^2 - x + 1 = 0$

Valeur de vérité :

Par exemple, pour x=0, on a $0^2-0+1=1\neq 0$

La proposition n'est pas vérifiée pour tout $x \in \mathbb{R}$. Donc P_3 est fausse.

Négation : $\overline{P_3}$: " $\exists x \in \mathbb{R} : x^2 - x + 1 \neq 0$ "

 $-(P_4): \exists n \in \mathbb{N}: \sqrt{n} \in \mathbb{N}$

Valeur de vérité :

Pour n=4, on a $\sqrt{4}=2\in\mathbb{N}$ Donc P_4 est vraie.

Négation : $\overline{P_4}$: " $\forall n \in \mathbb{N} : \sqrt{n} \notin \mathbb{N}$ "

 $- (P_5): \exists! x \in \mathbb{R}: x^2 = 1$

Valeur de vérité :

On a : L'équation $x^2=1$ a deux solutions réelles : x=1 et x=-1

La proposition n'est pas vérifiée. Donc P_5 est fausse.

 $-(P_7): \forall x \in \mathbb{R}: 1 \le x \le 2020$

Valeur de vérité :

Pour x=0, on a 0<1

Alors $1 \le 0 \le 2020$ est faux. Donc P_7 est fausse.

Négation : $\overline{P_7}$: " $\exists x \in \mathbb{R} : x < 1 \text{ ou } x > 2020$ "

 $-(P_{11}): (\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) x = 2y$

Valeur de vérité :

Pour x=1, il n'existe aucun $y\in\mathbb{N}$ tel que 1=2y

La proposition n'est pas vérifiée pour tout $x \in \mathbb{N}$. Donc P_{11} est fausse.

Négation : $\overline{P_{11}}$: " $\exists x \in \mathbb{N}, \forall y \in \mathbb{N} : x \neq 2y$ "

 $- (P_{16}) : \forall (x, y, z) \in \mathbb{R}^3 : \frac{x+y}{2} = \frac{y-10}{3} = \frac{z+1}{2}$

Valeur de vérité :

Pour x = 0, y = 0 et z = 0:

Fold
$$x = 0, y = 0$$

 $\frac{0+0}{2} = \frac{0}{2} = 0,$
 $\frac{0-10}{3} = \frac{-10}{3},$
 $\frac{0+1}{2} = \frac{1}{2}$

Donc $0 \neq \frac{-10}{3} \neq \frac{1}{2}$. Donc P_{16} est fausse.

Négation:

 $\overline{P_{16}}: \text{``}\exists (x,y,z) \in \mathbb{R}^3: \frac{x+y}{2} \neq \frac{y-10}{3} \text{ ou } \frac{y-10}{3} \neq \frac{z+1}{2}\text{''}$

 $-(P_{17}): \forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x - y + 3 = 0$

Valeur de vérité :

Pour tout $x \in \mathbb{R}$, on peut prendre y = x + 3

Alors x - (x+3) + 3 = x - x - 3 + 3 = 0

Donc pour chaque x, il existe bien un y qui vérifie l'équation. Donc P_{17} est vraie.

 $- (P_{18}) : \forall a \in \mathbb{N}, \exists b \in \mathbb{Z} : 2a - b \in \mathbb{N}$

Valeur de vérité :

Pour tout $a \in \mathbb{N}$, on peut choisir $b = a \in \mathbb{Z}$

Alors $2a - a = a \in \mathbb{N}$

Donc pour chaque a, il existe bien un b qui vérifie la condition. Donc P_{18} est vraie.

Négation : $\overline{P_{18}}$: " $\exists a \in \mathbb{N}, \forall b \in \mathbb{Z} : 2a - b \notin \mathbb{N}$ "

 $- (P_{19}) : \exists x \in \mathbb{R}, \forall y \in \mathbb{R} : x < y$

Valeur de vérité:

Supposons qu'un tel x existe. Alors pour $y=x-1 \in \mathbb{R}$, on aurait x < x-1

Ce qui implique 0 < -1, ce qui est impossible

Donc P_{19} est fausse.

Négation : $\overline{P_{19}}$: " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x \geq y$ "

Correction de l'exercice 3

- $a \times b = 0 \iff a = 0$ ou b = 0
- $|a| + |b| = 0 \iff a = 0 \text{ et } b = 0$
- $|a| = |b| \iff a = b \text{ ou } a = -b$
- $a^2 > 9 \iff a < -3 \text{ ou } a > 3$

Correction de l'exercice 4

1. Trouver le lien entre les propositions du tableau. L'indiquer par un symbole logique dans la colonne du milieu. (symboles logique : \Rightarrow ; \Leftarrow ou \Leftrightarrow)

x = 2	\Rightarrow	$x^2 = 4$
xy > 0	(=	x > 0 et $y > 0$
$\frac{1}{x} > 0$	\Leftrightarrow	x > 0
$\frac{1}{x} < \frac{1}{2}$	(=	x > 2
C'est le 1er janvier	\Rightarrow	Le lycée est fermé
x = y (x et y sont des réels)	\Rightarrow	x = y
$ x-3 \le 5$	\Leftrightarrow	$x \in [-2; 8]$

- 2. Donner la négation de chacune des propositions suivantes sans déterminer la valeur de vérité :
 - On a: $P: (\forall n \in \mathbb{N}) : x \neq 1 \implies x > 1$

Donc: \overline{P} : $\exists n \in \mathbb{N} : x \neq 1$ et $x \leq 1$

• On a: Q: $(\forall x \in \mathbb{N})(\exists \alpha > 0): |x| < \alpha \implies \left|\frac{x-1}{x+1} - 1\right| < \alpha$

• On a: $R: \forall z \in \mathbb{R}, (z=0 \Leftrightarrow z=0)$

Donc : \overline{R} : $\exists z \in]-\infty, +\infty[, (z=0 \text{ et } z \neq 0) \text{ ou } (z \neq 0 \text{ et } z=0)$

• On a: $S: \forall x \in \mathbb{R}^*, (x^2 + 2x = -1 \Leftrightarrow x = -1)$

Donc : \overline{S} : $\exists x \in \mathbb{R}^*, \ (x^2+2x=-1 \text{ et } x \neq -1) \text{ ou } (x^2+2x\neq -1 \text{ et } x=-1)$

Correction de l'exercice 5

1. $P \iff \overline{\overline{P}}$

On a le tableau de vérité :

P	\overline{P}	$\overline{\overline{P}}$	$P \iff \overline{\overline{P}}$
V	F	V	V
F	V	F	V

La dernière colonne est toujours **V**, donc c'est une loi logique.

2.
$$P \Rightarrow Q \iff \overline{Q} \Rightarrow \overline{P}$$

On a le tableau de vérité :

P	Q	$P \Rightarrow Q$	\overline{Q}	\overline{P}	$\overline{Q} \Rightarrow \overline{P}$	$P \Rightarrow Q \iff \overline{Q} \Rightarrow \overline{P}$
V	V	V	F	F	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

La dernière colonne est toujours **V**, donc c'est une loi logique.

3.
$$\overline{(P \Rightarrow Q)} \iff (P \text{ et } \overline{Q})$$

On a le tableau de vérité :

P	Q	$P \Rightarrow Q$	$\overline{(P \Rightarrow Q)}$	\overline{Q}	$P \wedge \overline{Q}$	$\overline{(P \Rightarrow Q)} \iff$
						$(P \wedge \overline{Q})$
V	V	V	F	F	F	V
V	F	F	V	V	V	V
F	V	V	F	F	F	V
F	F	V	F	V	F	V

La dernière colonne est toujours V, donc c'est une loi logique.