SI231 - Matrix Computations, Fall 2020-21

Homework Set #1

Name: Sujinning Major: Master in IE

Student No.: 2020232125 E-mail: sujn@shanghaitech.edu.cn

I. ORTHOGONALITY

Problem1

1) Solution:

Firstly for any vector $x \in \mathcal{N}(A)$, we have Ax = 0, which means for every row in A, the dot product of the row and x is 0. Obviously, vectors $x \in \mathcal{N}(A)$ and linear combinations of vectors in $\mathcal{R}(A^T)$ are orthogonal From the hint $dim(\mathcal{N}(A)) + dim(\mathcal{R}(A^T)) = n$

We have the union of their basis are still linear independent and they can span a $\mathbb R$ space

Then $\mathbb{R} = \mathcal{N}(A) \oplus \mathcal{R}(A^T)$ is proved

2) Solution:

let rank(A)=p, rank(B)=q, then we have a set of basis $[\alpha_1,...\alpha_p,\beta_{p+1},\beta_{p+2}...\beta_{p+q}]$ Then we have A+B is the linear combination of the basis from the set $\operatorname{Resultly} rank(A+B)=dim(A+B)\leq p+q=rank(A)+rank(B)$

proved 3) **Solution:**

- a) We know AB can be regarded as the linear combination of matrix A 's columns. So $rank(AB) \le rank(A)$ the same, AB can also be regarded as the linear combination of matrix B 's rows. So $rank(AB) \le rank(B^T) = rank(B)$
- b) We know AB can be regarded as the linear combination of matrix A 's columns. So $rank(AB) \le rank(A)$ and AB can also be regarded as the linear combination of matrix B 's rows.

Assume A has no full-column rank,then we know the linear combination of A 's column should have a dimension lower than n, which means rank(AB) can not be n. The same, if B has no full-row rank, rank(AB) can not have rank n. Therefore,only when A has full-column rank and B has full-row rank can we have rank(AB) = n

4) Solution:

 $\mathcal{R}(A|B)$ can be written as the linear combination of columns of matrix A and B, which means vector x in $\mathcal{R}(A|B)$ can be written as the linear combination of $[\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \ldots, \beta_p]$. Similarly, vectors a in A can be writen as the linear combination $[\alpha_1, \ldots, \alpha_n]$ and vectors b in B can be writen as the linear combination $[\beta_1, \ldots, \beta_p]$, which means x can be writen as the linear combination of a and b. Then x are in $\mathcal{R}(A) + \mathcal{R}(B)$, which means $\mathcal{R}(A|B) \subseteq (\mathcal{R}(A) + \mathcal{R}(B))$

Obversiouly, vectors in $\mathcal{R}(A)$ and $\mathcal{R}(B)$ can be writen as the linear combination of $[\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \ldots, \beta_p]$,

1

which means
$$(\mathcal{R}(A) + \mathcal{R}(B)) \subseteq \mathcal{R}(A|B)$$

Finally, from $\mathcal{R}(A|B) \subseteq (\mathcal{R}(A) + \mathcal{R}(B))$ and $(\mathcal{R}(A) + \mathcal{R}(B)) \subseteq \mathcal{R}(A|B)$, $\mathcal{R}(A|B) = \mathcal{R}(A) + \mathcal{R}(B)$ is proved

5) Solution:

We have
$$dim(\mathcal{R}(A) + \mathcal{R}(B)) = dim(\mathcal{R}(A)) + dim(\mathcal{R}(B)) - dim(\mathcal{R}(A) \cap \mathcal{R}(B))$$

From (4), we have $dim(\mathcal{R}(A) + \mathcal{R}(B)) = dim(\mathcal{R}(A|B))$
Then, $rank(A|B) = dim(\mathcal{R}(A|B)) = dim(\mathcal{R}(A)) + dim(\mathcal{R}(B)) - dim(\mathcal{R}(A) \cap \mathcal{R}(B))$
 $= rank(A) + rank(B) - dim(\mathcal{R}(A) \cap \mathcal{R}(B))$

II. UNDERSTAND SPAN, SUBSPACE

Problem1

- 1) Solution:
 - a) For $span(\mathcal{S})\subseteq\mathcal{M}$ for vector x in $span(\mathcal{S})$, it can be writen as the linear combination of $[v_1...v_n]$. Consider $\mathcal{M}=\cap_{s\subseteq\mathcal{V}}\mathcal{V}$, we have $S\subseteq\mathcal{M}$. Resultly, all the vectors in $span(\mathcal{S})$ can be writen as the linear combination of $[v_1...v_n]$, which are in S, belonging to \mathcal{M}
 - b) For $\mathcal{M} \subseteq span(\mathcal{S})$ Obviously, $span(\mathcal{S})$ is one of the subspace that contain vectors set \mathcal{S} , so $span(\mathcal{S})$ is a special \mathcal{V} . It is proved that $\mathcal{M} \subseteq span(\mathcal{S})$ because $\mathcal{M} = \cap_{s \subseteq \mathcal{V}} \mathcal{V}$

III. BASIS, DIMENSION AND PROJECTION

problem1

1) Solution:

The dimension is n+1

2) Solution:

The dimension is $\frac{n(n+1)}{2}$

problem2

- 1) Solution:
 - a) Assume $R=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, From $RR^T=I$ and $\det(R)=1$ we have: $a^2+b^2=1$ ac-bd=0 $c^2+d^2=1$

$$ad - bc = 1$$

After solve the equation we have

$$R = \begin{bmatrix} sin(\theta) & cos(\theta) \\ -cos(\theta) & sin(\theta) \end{bmatrix}, \theta \in [0, 2\pi)$$

b)
$$\mathbf{R}x = \begin{bmatrix} cos(\frac{5\pi}{6}) \\ sin(\frac{5\pi}{6}) \end{bmatrix}$$

2) Solution

$$QHx = (I - uu^T)(I - 2uu^T)x$$
$$= (I - 3uu^T + 2u(u^Tu)^Tu)x$$
$$= (I - uu^T)x = Qx$$

Then

$$||Hx - QHx||_2 = ||(I - Q)Hx||_2$$

$$= ||uu^T (I - 2uu)^T x||_2$$

$$= ||uu^T x||_2$$

$$= ||I - Qx||_2$$

$$= ||x - Qx||_2$$

Resultly, Hx is a reflection of x with respect to \mathcal{H}_u

IV. DIRECT SUM

Problem1

Solution

Assume that \mathcal{V} is a n-dimension space, then \mathcal{B} can be written as $[v_1, v_2, ..., v_n]$ in which vectors are linear independent.subsets \mathcal{B}_1 and \mathcal{B}_2 can be writen as $\mathcal{B}_1 = [v_1, ..., v_p]$ and $\mathcal{B}_2 = [v_{p+1}, ..., v_n]$. Then we know vectors in $span(\mathcal{B}_1)$ are linear combinations of vectors in \mathcal{B}_1 , while vectors in $span(\mathcal{B}_1)$ can not be written by linear combination of vectors in \mathcal{B}_2 . So $span(\mathcal{B}_1) \cap span(\mathcal{B}_2) = \emptyset$ Besides, dimension of \mathcal{B}_1 should be p and dimension of \mathcal{B}_2 should be p which are the same as $span(\mathcal{B}_1)$ and $span(\mathcal{B}_2)$. So $dim(span(\mathcal{B}_1)) + dim(span(\mathcal{B}_2)) = n$ and $span(\mathcal{B}_1) \cap span(\mathcal{B}_2) = \emptyset$, which prove $\mathcal{V} = span(\mathcal{B}_1) \oplus span(\mathcal{B}_2)$

Problem2

Solution

we have d-dimension subspace \mathcal{S} Assume $v = [v_1,v_n]$ is a set of basis of \mathcal{V} . Then there must be d vectors in the set and we can span the d vectors to construct \mathcal{S} . Assume $[v_1,v_d]$ is the a set of basis for \mathcal{S} , then the rest vectors in $v = [v_1,v_n]$ are $v_{rest} = [v_{d+1},v_n]$ Then from Problem1 we have $\mathcal{S} \cap span(v_{rest}) = \emptyset$ and $dim(\mathcal{S}) + dim(span(v_{rest})) = n$ Finally we have $\mathcal{V} = \mathcal{S} \oplus span(v_{rest})$, which means $\mathcal{V} = \mathcal{S} \oplus \mathcal{T}$ is proved

V. UNDERSTANDING THE MATRIX NORM

Problem1

1) Solution

The result of Ax is the linear combinaton of column vectors $[\alpha_1,.....\alpha_n]$ in A, if we add a 1-norm to the result, $||Ax||_1 = ||x_1a_1 + + x_na_n||_1 \le \max(||a_1||_1,...,||a_n||_1)$, equality holds when $||a_i||_1 = \max(||a_1||_1,...,||a_n||_1)$ and $x_i = 1$ so $\max_{||x||_1 = 1} ||Ax||_1 = \max(||a_1||_1,...,||a_n||_1) = \max_j \sum_i^m |a_{ij}|$

2) Solution

like (1), if we add a $\infty - norm$ to the result

$$||Ax||_{\infty}$$

= $||x_1a_1 + \dots + x_na_n||$
= $||||a_1||_1 + \dots + ||a_n||_1||_{\infty}$
= $\max_{1 \le i < m} \sum_{i=1}^n |a_i j|$

Equality holds when we firstly choose the a largest absolute sum row and secondly for every element in row vector a_{kj} , j=1,...,n, $x_ja_{kj}=|a_{kj}|$

$$||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty}$$
$$= \max_{i} \sum_{j=1}^{m} |a_{ij}|$$

VI. UNDERSTANDING THE HOLDER INEQUALITY

problem1

so

1) Solution

 $f^{'}(t) = \lambda - \lambda t^{\lambda - 1}, 0 < \lambda < 1. \quad \text{ when } 0 < t < 1, f^{'}(t) < 0 \text{ and when } t > 1, f^{'}(t) > 0 \quad \text{So } f_{min}(t) = f(0) = 0$

Let $t=\frac{\alpha}{\beta}$, then $f(\frac{\alpha}{\beta})=(1-\lambda)+\lambda(\frac{\alpha}{\beta})-(\frac{\alpha}{\beta})^{\lambda}\geq 0$, when we mutiple β on both side , we get: $(1-\lambda)\beta+\lambda\alpha-\alpha^{\lambda}\beta^{1-\lambda}\geq 0\Rightarrow \alpha^{\lambda}\beta^{\lambda}\leq \lambda\alpha+(1-\lambda)\beta$

2) Solution

Let $\alpha=|\hat{x_i}|^p$, $\beta=|\hat{y_i}|^q,$ $\lambda=\frac{1}{p},$ then we have:

$$|\hat{x}_i \hat{y}_i| \le \frac{1}{p} |\hat{x}_i|^p + \frac{1}{q} |\hat{y}_i|^q$$

So

$$\sum_{i=1}^{n} |\hat{x}_i \hat{y}_i| \le \sum_{i=1}^{n} \frac{1}{p} |\hat{x}_i|^p + \sum_{i=1}^{n} \frac{1}{q} |\hat{y}_i|^q = \frac{1}{p} + \frac{1}{q} = 1$$

3) Solution

$$\sum_{i=1}^n |\hat{x_i}\hat{y_i}| \leq 1 \Rightarrow \sum_{i=1}^n |\hat{x_i}\hat{y_i}| \leq ||x||_p ||y||_q \Rightarrow |x^Ty| \leq ||x||_p ||y||_q$$
 proved