ECE 65: Components & Circuits Lab

Lecture 11

BJT circuits

Reference notes: sections 3.2

Sedra & Smith (7th Ed): sections 6.1-6.3

Saharnaz Baghdadchi

Course map

3. Bipolar Junction Transistor (BJT)

PNP Transistor Example:

In this circuit, find the transistor parameters (Si BJT with β = 100).

Assume the BJT is in (ut-off,
$$i_B=0$$
, $V_{EB} < V_{O_0}=0.7$)

EB KVL:
$$4 = V_{EB} + 40k \times 0 \longrightarrow V_{EB} = 4V > 0.7 \longrightarrow BJT is$$
not in Cut-off

BJT is
$$\delta N$$
, $\frac{i_{\beta} > 0}{m}$, $V_{EB} = V_{D_0} = 0.7 V$

EB KVL, 4 = 40 K x i 3 + 0.7 -> i B = 82.5 MA)0 Assuming active mode:

$$i_c = 100 \times 82.8 \text{ MA} = 8.25 \text{ mH}$$
 $= \frac{1}{2} \times 8.25 \times 10^{-3} \longrightarrow 8.$

Assumption was correct, BJT is in active mode.

Note:

In the BJT and MOSFET circuits, to differentiate the applied node voltages from the measured node voltages:

We will show the measured node voltages in **blue color** and the applied DC or AS voltage sources to different nodes in **black color**.

Lecture 11 reading quiz

Find the transistor parameters in this BJT circuit. (β = 100, V_{D0} = 0.7V).

Clicker question 1:

The transistor in the following circuit has $\beta = 100$. Find the value for V_{EC} . (assume $V_{D0} = 0.7V$, $V_{sat} = 0.2 V$).

A.
$$V_{EC} \approx 10.5 V$$

B.
$$V_{EC} = 0 V$$

C.
$$V_{EC} \approx 6.1 V$$

D.
$$V_{EC} = 0.2 V$$

Cut-off:

$$i_B = 0, \quad i_C = 0$$

$$v_{\rm EB} < V_{D0}$$

Active:

$$egin{align} v_{\epsilon_B} &= V_{D0}, & i_B \geq 0 \ i_C &= eta \, i_B, & v_{\epsilon_C} \geq V_{D0} \ \end{array}$$

Saturation:

$$egin{array}{ll} v_{ ext{ES}} &= V_{D0}, & i_{B} \geq 0 \ v_{ ext{EC}} &= V_{sat}, & i_{C} < eta \, i_{B} \end{array}$$

Hints:

- Write the EB KVL and test if the BJT is in cut-off.
- If the BJT is ON, you can either assume active mode of operation or saturation mode of operation.
- If you assume active mode, you can use the relationship between I_C and I_B, the EC KVL, and the KCL relating the BJT currents to find V_{EC}, compare it with V_D0, and confirm or reject your assumption. You can replace the DC sources (10 V and -10 V with the symbol of a DC voltage source and explicitly draw the grounds.
- If you assume saturation mode, you can use V_{EC}=V_{sat} and the EC KVL to find I_C. Compare I_C with I_B and confirm or reject your assumption.

Discussion question 1:

In this BJT circuit find V_1 and I_1 . Assume $\beta=100,\ V_{D0}=0.7V,$ $V_{sat}=0.2\,V.$

Cut-off: Active: Saturation: $i_B = 0, \quad i_C = 0 \qquad v_{\mathcal{E}\mathcal{B}} = V_{D0}, \quad i_B \geq 0 \qquad v_{\mathcal{E}\mathcal{B}} = V_{D0}, \quad i_B \geq 0 \\ v_{\mathcal{E}\mathcal{B}} < V_{D0} \qquad i_C = \beta \, i_B, \quad v_{\mathcal{E}\mathcal{C}} \geq V_{D0} \qquad v_{\mathcal{E}\mathcal{C}} = V_{sat}, \quad i_C < \beta \, i_B$

Hints:

- Find the collector current and use it to determine if the BJT is ON or in Cut-off.
- If it is ON, you can assume active mode of operation, and find I_B and I_E. You will need to verify this assumption by finding V_{EC}.
- Using I_B, you can find V_B and using V_{BE}, you can find V_E. If the PNP BJT is ON, V_{EB}=0.7 V.
- Note that the voltage drop across the current source will be non-zero.

Discussion question 2:

Consider the operation of the below circuit for V_B at -1 V and 1V. Assume $V_{D0} = 0.7V$ and $\beta = 100$. What are the values of V_E and V_C ?

Cut-off:	Active:	Saturation:
$i_B = 0, i_C = 0$ $v_{BE} < V_{D0}$	$v_{BE} = V_{D0}, i_{B} \ge 0$ $i_{C} = \beta i_{B}, v_{CE} \ge V_{D0}$	$v_{BE} = V_{D0}, i_{B} \ge 0$ $v_{CE} = V_{sat}, i_{C} < \beta i_{B}$