ME210 - Probabilidade I - 2S 2017

Docente: Marina Vachkovskaia

Soluções para problemas selecionados do livro

Probabilidade: Um curso moderno com aplicações 8.ed. de Sheldon Ross

Plínio Santini Dester (p103806@dac.unicamp.br)

5 de novembro de 2017

Em caso de dúvidas, sugestões ou correções (inclusive erros de digitação), não hesite em mandar um e-mail.

6 Problemas

- 6.1. Dois dados honestos são rolados. Determine a função de probabilidade conjunta de X e Y quando
 - (a) X é o maior valor obtido em um dado e Y é a soma dos valores;
 - (b) X é o valor no primeiro dado e Y é o maior dos dois valores;
 - (c) X é o menor e Y é o maior valor obtido com os dados.

Solução:													
(a)													
	$X \setminus Y$	2	3	4	5	6	7	8	9	10	11	12	
	1	1/36	0	0	0	0	0	0	0	0	0	0	1/36
	2	0	2/36	1/36	0	0	0	0	0	0	0	0	3/36
	3	0	0	2/36	2/36	1/36	0	0	0	0	0	0	5/36
	4	0	0	0	2/36	2/36	2/36	1/36	0	0	0	0	7/36
	5	0	0	0	0	2/36	2/36	2/36	2/36	1/36	0	0	9/36
	6	0	0	0	0	0	2/36	2/36	2/36	2/36	2/36	1/36	11/36
		1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36	

(b) 3 5 6 1/36 1/36 1/36 1/361/366/36 1/362 2/361/361/361/366/363 0 3/361/361/361/360 6/364 4/361/361/360 0 6/365 0 0 0 0 5/361/366/366 0 0 0 0 6/366/365/36 3/36 7/46 9/36 11/36(c) 6 2/36 2/36 2/36 2/36 2/3611/36 2 1/362/362/362/360 2/369/363 0 0 1/362/362/362/367/364 2/362/360 0 0 1/365/365 0 0 0 1/362/363/360 0 1/361/365/36 1/36 3/36 7/46 9/36 11/36

- 6.2. Suponha que 3 bolas sejam sorteadas sem reposição de uma urna consistindo em 5 bolas brancas e 8 bolas vermelhas. Considere $X_i=1$ caso a i-ésima bola selecionada seja branca e $X_i=0$ caso contrário. Dê a função de probabilidade conjunta de
 - (a) $X_1, X_2;$
 - (b) X_1, X_2, X_3 .

Solução: Seja, $p(i, j, k) \triangleq P(X_1 = i, X_2 = j, X_3 = k)$, então (a)

$$p(0,0) = \frac{8}{13} \frac{7}{12}, p(1,0) = \frac{5}{13} \frac{8}{12},$$

$$p(0,1) = \frac{8}{13} \frac{5}{12}, p(1,1) = \frac{5}{13} \frac{4}{12}.$$

(b)
$$p(0,0,0) = \frac{8}{13} \frac{7}{12} \frac{6}{11}, \qquad p(0,0,1) = \frac{8}{13} \frac{7}{12} \frac{5}{11},$$

$$p(0,1,0) = \frac{8}{13} \frac{5}{12} \frac{7}{11}, \qquad p(0,1,1) = \frac{8}{13} \frac{5}{12} \frac{4}{11},$$

$$p(1,0,0) = \frac{5}{13} \frac{8}{12} \frac{7}{11}, \qquad p(1,0,1) = \frac{5}{13} \frac{8}{12} \frac{4}{11},$$

$$p(1,1,0) = \frac{5}{13} \frac{4}{12} \frac{8}{11}, \qquad p(1,1,1) = \frac{5}{13} \frac{4}{12} \frac{3}{11}.$$

- 6.3. No Problema 6.2, suponha que as bolas brancas sejam numeradas e considere $Y_i=1$ se a *i*-ésima bola branca for selecionada, e 0 caso contrário. Determine a função de probabilidade conjunta de
 - (a) $Y_1, Y_2;$
 - (b) Y_1, Y_2, Y_3 .

Solução: Seja,
$$p(i,j,k) \triangleq P(Y_1 = i, Y_2 = j, Y_3 = k)$$
, então (a)
$$p(0,0) = \frac{11}{13} \frac{10}{12} \frac{9}{11}, \qquad p(1,0) = 3 \frac{1}{13} \frac{11}{12} \frac{10}{11}, \\ p(0,1) = 3 \frac{1}{13} \frac{11}{12} \frac{10}{11}, \qquad p(1,1) = 3 \frac{2}{13} \frac{1}{12} \frac{11}{11}.$$
 (b)
$$p(0,0,0) = \frac{10}{13} \frac{9}{12} \frac{8}{11}, \qquad p(0,0,1) = 3 \frac{10}{13} \frac{9}{12} \frac{1}{11}, \\ p(0,1,0) = 3 \frac{10}{13} \frac{9}{12} \frac{1}{11}, \qquad p(0,1,1) = 3 \frac{10}{13} \frac{2}{12} \frac{1}{11}, \\ p(1,0,0) = 3 \frac{10}{13} \frac{9}{12} \frac{1}{11}, \qquad p(1,0,1) = 3 \frac{10}{13} \frac{2}{12} \frac{1}{11}, \\ p(1,1,0) = 3 \frac{10}{13} \frac{2}{12} \frac{1}{11}, \qquad p(1,1,1) = \frac{3}{13} \frac{2}{12} \frac{1}{11}.$$

6.4. Repita o Problema 6.2 quando a bola selecionada é recolocada na urna antes da próxima seleção.

Solução: Seja,
$$p(i, j, k) \triangleq P(X_1 = i, X_2 = j, X_3 = k)$$
, então (a)

$$p(0,0) = \frac{8}{13} \frac{8}{13},$$

$$p(1,0) = \frac{5}{13} \frac{8}{13},$$

$$p(0,1) = \frac{8}{13} \frac{5}{13},$$

$$p(1,1) = \frac{5}{13} \frac{5}{13}.$$

$$p(0,0,0) = \frac{8}{13} \frac{8}{13} \frac{8}{13},$$

$$p(0,1,0) = \frac{8}{13} \frac{5}{13} \frac{8}{13},$$

$$p(0,1,0) = \frac{8}{13} \frac{5}{13} \frac{8}{13},$$

$$p(1,0,0) = \frac{5}{13} \frac{8}{13} \frac{8}{13},$$

$$p(1,0,1) = \frac{5}{13} \frac{8}{13} \frac{5}{13},$$

$$p(1,1,1) = \frac{5}{13} \frac{5}{13} \frac{5}{13}.$$

6.5. Repita o Problema 6.3 (a) quando a bola selecionada é recolocada na urna antes da próxima seleção

Solução: Seja,
$$p(i,j) \triangleq P(Y_1 = i, Y_2 = j)$$
, então
$$p(0,0) = \frac{11^3}{13^3}, \qquad p(1,0) = \frac{12^3 - 11^3}{13^3},$$

$$p(0,1) = \frac{12^3 - 11^3}{13^3}, \qquad p(1,1) = 1 - \frac{2(12^3 - 11^3) + 11^3}{13^3}.$$

6.6. Sabe-se que um cesto com 5 transistores contém 2 com defeito. Os transistores devem ser testados, um de cada vez, até que os defeituosos sejam identificados. Suponha que N_1 represente o número de testes feitos até que o primeiro transistor defeituoso seja identificado e N_2 o número de testes adicionais feitos até que o segundo transistor defeituoso seja identificado. Determine a função de probabilidade conjunta de N_1 e N_2

Solução: O número de formas de retirar transistores queimados é dado por $\binom{5}{2} = 10$ e cada combinação é equiprovável. Assim,

$N_1 \setminus N_2$	1	2	3	4	
1	1/10	1/10	1/10	1/10	4/10
2	1/10	1/10	1/10	0	3/10
3	1/10	1/10	0	1/10 0 0	2/10
4	1/10	0	0	_	1/10
	4/10	3/10	2/10	1/10	

6.7. Considere uma sequência de tentativas de Bernoulli independentes, cada uma com probabilidade de sucesso p. Sejam X_1 o número de fracassos precedendo o primeiro sucesso e X_2 o número de fracassos entre os dois primeiros sucessos. Determine a função de probabilidade conjunta de X_1 e X_2 .

Solução: Sabemos que $P(X_1 = i) = (1 - p)^i p$, $i \in \mathbb{Z}_+$ e $P(X_2 = j) = (1 - p)^j p$, $j \in \mathbb{Z}_+$. Como X_1 e X_2 são independentes, então

$$P(X_1 = i, X_2 = j) = P(X_1 = i)P(X_2 = j) = (1 - p)^{i+j}p^2, \quad i, j \in \mathbb{Z}_+.$$

6.11. O proprietário de uma loja de televisores imagina que 45% dos clientes que entram em sua loja comprarão um televisor comum, 15% comprarão um televisor de plasma e 40% estarão apenas dando uma olhada. Se 5 clientes entrarem nesta loja em um dia, qual é a probabilidade de que ele venda exatamente 2 televisores comuns e 1 de plasma naquele mesmo dia?

Solução: Esse problema é bem representado por uma distribuição multinomial. X_1 é o número de pessoas que não compraram nada, X_2 compraram televisor comum e X_3 compraram plasma. Queremos saber

$$P(X_1 = 2, X_2 = 2, X_3 = 1) = {5 \choose 2, 2, 1} 0.4^2 0.45^2 0.15 \approx 0.146.$$

- 6.35. No Problema 4, calcule a função de probabilidade condicional de X_1 dado que
 - (a) $X_2 = 1$;
 - (b) $X_2 = 0$;

Solução:

(a)

$$P(X_1 = 0 \mid X_2 = 1) = \frac{P(X_1 = 0, X_2 = 1)}{P(X_1 = 0, X_2 = 1) + P(X_1 = 1, X_2 = 1)}$$
$$= \frac{\frac{8}{13} \frac{5}{13}}{\frac{8}{13} \frac{5}{13} + \frac{5}{13} \frac{5}{13}} = \frac{8}{13}.$$
$$P(X_1 = 1 \mid X_2 = 1) = \frac{5}{13}.$$

(b)

$$P(X_1 = 0 \mid X_2 = 0) = \frac{P(X_1 = 0, X_2 = 0)}{P(X_1 = 0, X_2 = 0) + P(X_1 = 1, X_2 = 0)}$$
$$= \frac{\frac{8}{13} \frac{8}{13}}{\frac{8}{13} \frac{8}{13} + \frac{5}{13} \frac{8}{13}} = \frac{8}{13}.$$
$$P(X_1 = 1 \mid X_2 = 0) = \frac{5}{13}.$$

Observação: Esses resultados eram de se esperar, pois no Problema 4 as retiradas são independentes (com reposição).

- 6.36. No Problema 3, calcule a função de probabilidade condicional de Y_1 dado que
 - (a) $Y_2 = 1$;
 - (b) $Y_2 = 0$;

Solução:

(a)

$$\begin{split} P(Y_1 = 0 \mid Y_2 = 1) &= \frac{P(Y_1 = 0, Y_2 = 1)}{P(Y_1 = 0, Y_2 = 1) + P(Y_1 = 1, Y_2 = 1)} \\ &= \frac{3\frac{11 \cdot 10}{13 \cdot 12 \cdot 11}}{3\frac{11 \cdot 10}{13 \cdot 12 \cdot 11} + 3\frac{11 \cdot 2}{13 \cdot 12 \cdot 11}} = \frac{5}{6}. \\ P(Y_1 = 1 \mid Y_2 = 1) &= \frac{1}{6}. \end{split}$$

(b)
$$P(Y_1 = 0 \mid Y_2 = 0) = \frac{P(Y_1 = 0, Y_2 = 0)}{P(Y_1 = 0, Y_2 = 0) + P(Y_1 = 1, Y_2 = 0)}$$

$$= \frac{\frac{11 \cdot 10 \cdot 9}{13 \cdot 12 \cdot 11}}{\frac{11 \cdot 10 \cdot 9}{13 \cdot 12 \cdot 11} + 3 \frac{11 \cdot 10}{13 \cdot 12 \cdot 11}} = \frac{3}{4}.$$

$$P(Y_1 = 1 \mid Y_2 = 0) = \frac{1}{4}.$$

- 6.37. No Problema 5, calcule a função de probabilidade condicional de Y_1 dado que
 - (a) $Y_2 = 1$;
 - (b) $Y_2 = 0$;

(a)

$$P(Y_1 = 0 \mid Y_2 = 1) = \frac{P(Y_1 = 0, Y_2 = 1)}{P(Y_1 = 0, Y_2 = 1) + P(Y_1 = 1, Y_2 = 1)}$$

$$= \frac{\frac{12^3 - 11^3}{13^3}}{\frac{12^3 - 11^3}{13^3} + \frac{13^3 - 2(12^3 - 11^3) - 11^3}{13^3}} = \frac{397}{469}.$$

$$P(Y_1 = 1 \mid Y_2 = 1) = \frac{72}{469}.$$

(b)

$$P(Y_1 = 0 \mid Y_2 = 0) = \frac{P(Y_1 = 0, Y_2 = 0)}{P(Y_1 = 0, Y_2 = 0) + P(Y_1 = 1, Y_2 = 0)}$$

$$= \frac{\frac{11^3}{13^3}}{\frac{11^3}{13^3} + \frac{12^3 - 11^3}{13^3}} = \frac{1331}{1728}.$$

$$P(Y_1 = 1 \mid Y_2 = 0) = \frac{397}{1728}.$$

- 6.38. Escolha aleatoriamente um número X a partir do conjunto de números $\{1,2,3,4,5\}$. Escolha agora, do subconjunto formado por números que não são maiores que X, isto é, de $\{1,\ldots,X\}$, um novo número de forma aleatória. Chame de Y este segundo número
 - (a) Determine a função de probabilidade conjunta de X e Y;
 - (b) Determine a função de probabilidade condicional de X dado Y=i. Faça-o para i=1,2,3,4,5;

(c) X e Y são independentes? Por quê?

Solução:

(a) Sabemos que $P(Y = i \mid X = j) = 1/j$, se $i \in \{1, ..., j\}$. Dessa forma, se $i \in \{1, ..., j\}, j \in \{1, ..., 5\}$,

$$P(X = j, Y = i) = P(Y = i \mid X = j)P(X = j) = \frac{1}{5j}.$$

(b) Se $i \in \{1, ..., j\}, j \in \{1, ..., 5\}$, então

$$P(X=j \mid Y=i) = \frac{P(X=j,Y=i)}{\sum_{k=1}^{5} P(X=k,Y=i)} = \frac{1/5j}{\sum_{k=i}^{5} 1/5k} = \frac{1}{\sum_{k=i}^{5} j/k}.$$

- (c) X e Y não são independentes. Um contra-exemplo é P(X=5,Y=5)=1/25, P(X=5)=1/5, P(Y=5)=1/25. Logo, $P(X=5,Y=5)\neq P(X=5)P(Y=5).$
- 6.39. Dois dados são rolados. Suponha que X e Y representem, respectivamente, o maior e o menor valor obtido. Calcule a função de probabilidade condicional de Y dado que X=i, para i=1,2,...,6. São X e Y independentes? Por quê?

Solução: Do Problema 6.1 (c), podemos verificar que a seguinte fórmula é válida (note que é necessário inverter X com Y para comparar com o problema). Sejam $i, j \in \{1, 2, \dots, 6\}$,

$$P(Y = j \mid X = i) = \frac{P(X = i, Y = j)}{P(X = i)} = \begin{cases} 0, & i < j \\ \frac{1}{2i-1}, & i = j \\ \frac{2}{2i-1}, & i > j \end{cases}$$

6.40. A função de probabilidade conjunta de X e Y é dada por

$$p(1,1) = \frac{1}{8}$$
 $p(1,2) = \frac{1}{4}$ $p(2,1) = \frac{1}{8}$ $p(2,2) = \frac{1}{2}$

- (a) Calcule a função de probabilidade condicional de X dado que Y = i, i = 1, 2.
- (b) $X \in Y$ são independentes?

(c) Calcule $P(XY \le 3), P(X + Y > 2), P(X/Y > 1)$.

Solução:

(a) Sabemos que se $i, j \in \{1, 2\}$

$$P(X = j \mid Y = i) = \frac{P(X = j, Y = i)}{P(Y = i)} = \frac{p(j, i)}{p(1, i) + p(2, i)}.$$

Dessa forma,

$$P(X = 1 \mid Y = 1) = \frac{1}{2},$$
 $P(X = 1 \mid Y = 2) = \frac{1}{3},$ $P(X = 2 \mid Y = 1) = \frac{1}{2},$ $P(X = 2 \mid Y = 2) = \frac{2}{3}.$

- (b) X e Y não são independentes. Tome por exemplo, $P(X=1,Y=1) \neq P(X=1)P(Y=1)$.
- (c) Note que

$$P(XY \le 3) = 1 - P(XY > 3) = 1 - p(2, 2) = \frac{1}{2};$$

$$P(X + Y > 2) = 1 - P(X + Y \le 2) = 1 - p(1, 1) = \frac{7}{8};$$

$$P(X/Y > 1) = P(X > Y) = p(2, 1) = \frac{1}{8}.$$