Package 'quickNmix'

October 13, 2022

```
Title Asymptotic N-Mixture Model Fitting
```

Version 1.1.1

Date 2022-02-28

Maintainer Matthew RP Parker <mrparker909@gmail.com>

Description For fitting N-mixture models using either FFT or asymptotic approaches. FFT N-mixture models extend the work of Cowen et al. (2017) <doi:10.1111/biom.12701>. Asymptotic N-mixture models extend the work of Dail and Madsen (2011) <doi:10.1111/j.1541-0420.2010.01465.x>, to consider asymptotic solutions to the open population N-mixture models. The FFT models are derived and described in ``Parker, M.R.P., Elliott, L., Cowen, L.L.E. (2022). Computational efficiency and precision for replicated-count and batch-marked hidden population models [Manuscript in preparation]. Department of Statistics and Actuarial Sciences, Simon Fraser University." The asymptotic models are derived and described in: ``Parker, M.R.P., Elliott, L., Cowen, L.L.E., Cao, J. (2022). Fast asymptotic solutions for N-mixtures on large populations [Manuscript in preparation]. Department of Statistics and Actuarial Sciences, Si-

License MIT + file LICENSE

mon Fraser University.".

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown

Depends R (>= 2.10)

Imports foreach, parallel, optimParallel, doParallel,

NeedsCompilation no

Author Matthew RP Parker [aut, cre] (https://orcid.org/0000-0003-2187-7314), Lloyd Elliott [aut] (https://orcid.org/0000-0002-0853-1450), Jiguo Cao [aut] (https://orcid.org/0000-0001-7417-6330)

Repository CRAN

Date/Publication 2022-03-21 08:00:05 UTC

2 anmu

R topics documented:

anmu		Ancient Murrelet Chick Counts	
Index			17
	pcountopeneri .		14
	•		
	•		
	-		
	fitNmix		4
	eagles		3
	Ax_{log}		3
	anmu		2

Description

Parker et al. (2020) include a data set collected by the Laskeek Bay Conservation Society on yearly Ancient Murrelet chick counts from the year 1990 to 2006. The data is collected for six sampling sites on East Limestone Island.

Usage

anmu

Format

A matrix with 6 rows and 17 columns. Each row represents a sampling location, and each column represents a sampling occasion:

Source

Parker et al. (2020) doi: 10.1007/s10651020004553

References

Parker, M.R.P., Pattison, V. & Cowen, L.L.E. Estimating population abundance using counts from an auxiliary population. Environ Ecol Stat 27, 509–526 (2020). doi: 10.1007/s10651020004553

Ax_log

Ax_log

 $FUNCTION_TITLE$

Description

FUNCTION_DESCRIPTION

Usage

```
Ax_log(logA, logx)
```

Arguments

logA PARAM_DESCRIPTION logx PARAM_DESCRIPTION

Details

DETAILS

Value

OUTPUT_DESCRIPTION

Examples

```
## Not run:
if(interactive()){
  #EXAMPLE1
  }
## End(Not run)
```

eagles

Golden Eagle Counts Data

Description

Golden Eagle counts for the years 1993 to 2020, collected by the Rocky Mountain Eagle Research Foundation (RMERF). Counts are made during the spring from April 1st until March 22nd each year. Data is available from Eaglewatch.ca.

Usage

eagles

4 fitNmix

Format

A data frame with 28 rows and 11 columns. Each row represents a spring observation period, and each column represents a variable:

Year observation year

Hours hours spent collecting observations

Eagles number of Golden Eagles observed

TotPrec total precipitation measured in mm

UniqueObservers number of principle observers who performed observations

PeterSherrington_Year indicator variable which is 1 for years in which Peter Sherrington was the most prevalent principle observer

observerPC1 top 5 principal component scores calculated from the top twelve most prevalent principal observers

observerPC2 top 5 principal component scores calculated from the top twelve most prevalent principal observers

observerPC3 top 5 principal component scores calculated from the top twelve most prevalent principal observers

observerPC4 top 5 principal component scores calculated from the top twelve most prevalent principal observers

observerPC5 top 5 principal component scores calculated from the top twelve most prevalent principal observers

Source

RMERF (2020) EagleWatch.ca

References

Rocky Mountain Eagle Research Foundation (RMERF). EagleWatch.ca. (2020).

fitNmix

Fit Asymptotic N-mixture Model

Description

Fit an open population N-mixture model using the asymptotic approximation. The four parameters are mean initial site abundance lambda, mean recruitments gamma, survival probability omega, and probability of detection pdet. Parameters can be made to vary over sites and over times by including parameter covariates. Note that this function is essentially a wrapper for optim acting on the nll function.

fitNmix 5

Usage

```
fitNmix(
  nit,
 K = NULL,
 starts = NULL,
 1_s_c = NULL,
 g_s_c = NULL,
 g_t_c = NULL,
 o_s_c = NULL,
 o_t_c = NULL,
 p_s_c = NULL,
  p_t_c = NULL,
  SMALL_a_CORRECTION = FALSE,
 VERBOSE = FALSE,
 outfile = NULL,
 method = "BFGS",
)
```

Arguments

outfile

nit	Matrix of counts data. Rows represent sites, columns represent sampling occasions. Note that if the data is a vector, then it will be converted to a matrix with a single row.	
K	Upper bound on summations in the likelihood function. K should be chosen large enough that the negative log likelihood function is stable (unchanging as K increases). If K=NULL, K=5*max(nit) will be used as default. Default: NULL	
starts	Either NULL for default starting values, or a vector of parameter values: c(log(lambda), log(gamma), logit(omega), logit(pdet)). Note that the parameter vector will need to be longer by one for each parameter coefficient if covariate values are supplied. The order of coefficients is: c(lambda, l_s_c, gamma, g_s_c, g_t_c, omega, o_s_c, o_t_c, pdet, p_s_c, p_t_c)	
1_s_c	List of lambda site covariates, Default: NULL	
g_s_c	List of gamma site covariates, Default: NULL	
g_t_c	List of gamma time covariates, Default: NULL	
0_S_C	List of omega site covariates, Default: NULL	
o_t_c	List of omega time covariates, Default: NULL	
p_s_c	List of pdet site covariates, Default: NULL	
p_t_c	List of pdet time covariates, Default: NULL	
SMALL_a_CORRECTION		
	If TRUE will apply the small a correction when calculating the transition probability matrix, Default: FALSE	
VERBOSE	If TRUE, will print additional information during model fitting, Default: FALSE	

Location of csv file to write/append parameter values, can be used to checkpoint

long running model fits. Default: NULL

6 fitNmixPara

```
method Optimization method, passed to optim function, options include: "BFGS", "Nelder-Mead", "CG". Default: "BFGS"

... Additional arguments passed to the optimization function optim. For example: control = list(trace=1, REPORT=1, reltol=1e-10)
```

Value

Returns the fitted model object.

Examples

```
if (interactive()) {    nit = matrix(c(1,1,0,1,1), nrow=1) # observations for 1 site, 5 sampling occassions model1 = fitNmix(nit, K=2) # fit the model with population upper bound K=2 }
```

fitNmixPara

Fit Asymptotic N-mixture Model Using optimParallel

Description

Fit an open population N-mixture model using the asymptotic approximation. The four parameters are mean initial site abundance lambda, mean recruitments gamma, survival probability omega, and probability of detection pdet. Parameters can be made to vary over sites and over times by including parameter covariates. Note that this function is essentially a wrapper for optim acting on the nll function.

Usage

```
fitNmixPara(
  cluster,
 nit,
 K = NULL
  starts = NULL,
 1_s_c = NULL
  g_s_c = NULL
 g_t_c = NULL
  o_s_c = NULL,
 o_t_c = NULL
  p_s_c = NULL,
  p_t_c = NULL,
  SMALL_a_CORRECTION = FALSE,
 VERBOSE = FALSE,
  outfile = NULL,
 LowerBounds = NULL,
)
```

fitNmixPara 7

Arguments

cluster	cluster object created using makeCluster, for example: cl <- makeCluster(parallel::detectCores()
nit	Matrix of counts data. Rows represent sites, columns represent sampling occasions. Note that if the data is a vector, then it will be converted to a matrix with a single row.
K	Upper bound on summations in the likelihood function. K should be chosen large enough that the negative log likelihood function is stable (unchanging as K increases). If K=NULL, K=5*max(nit) will be used as default. Default: NULL
starts	Either NULL for default starting values, or a vector of parameter values: c(log(lambda), log(gamma), logit(omega), logit(pdet)). Note that the parameter vector will need to be longer by one for each parameter coefficient if covariate values are supplied. The order of coefficients is: c(lambda, l_s_c, gamma, g_s_c, g_t_c, omega, o_s_c, o_t_c, pdet, p_s_c, p_t_c)
l_s_c	List of lambda site covariates, Default: NULL
g_s_c	List of gamma site covariates, Default: NULL
g_t_c	List of gamma time covariates, Default: NULL
0_S_C	List of omega site covariates, Default: NULL
o_t_c	List of omega time covariates, Default: NULL
p_s_c	List of pdet site covariates, Default: NULL
p_t_c	List of pdet time covariates, Default: NULL
SMALL_a_CORREC	
	If TRUE will apply the small a correction when calculating the transition probability matrix, Default: FALSE
VERBOSE	If TRUE, will print additional information during model fitting, Default: FALSE
outfile	Location of csv file to write/append parameter values, can be used to checkpoint long running model fits. Default: NULL
LowerBounds	Lower bounds to be passed to optimParallel (if NULL, default values will be used), you may need to set this manually if you receive errors such as: "L-BFGS-B needs finite values of 'fn'".
• • •	Additional arguments passed to the optimization function optimParallel.

Value

Returns the fitted model object.

Examples

```
if (interactive()) {
  cl <- makeCluster(parallel::detectCores()-1) # number of clusters should be 2*p+1 for optimal gains
  nit = matrix(c(1,1,0,1,1,2,2), nrow=1) # observations for 1 site, 7 sampling occassions
  model1 = fitNmixPara(cl, nit, K=100) # fit the model with population upper bound K=100
  parallel::stopCluster(cl)
}</pre>
```

8 logSumExp

 ${\tt logSubtractExp}$

 $FUNCTION_TITLE$

```
Description
```

FUNCTION_DESCRIPTION

Usage

logSubtractExp(x)

Arguments

Χ

PARAM_DESCRIPTION

Details

DETAILS

Value

OUTPUT_DESCRIPTION

Examples

```
## Not run:
if(interactive()){
  #EXAMPLE1
  }
## End(Not run)
```

 $\log \mathsf{SumExp}$

FUNCTION_TITLE

Description

FUNCTION_DESCRIPTION

Usage

logSumExp(x)

Arguments

Х

PARAM_DESCRIPTION

log_tp_MAT_lse

Details

DETAILS

Value

OUTPUT_DESCRIPTION

Examples

```
## Not run:
if(interactive()){
  #EXAMPLE1
  }
## End(Not run)
```

log_tp_MAT_lse

FUNCTION_TITLE

Description

FUNCTION_DESCRIPTION

Usage

```
log_tp_MAT_lse(M, omeg, gamm, corrections)
```

Arguments

M PARAM_DESCRIPTION
omeg PARAM_DESCRIPTION
gamm PARAM_DESCRIPTION
corrections PARAM_DESCRIPTION

Details

DETAILS

Value

OUTPUT_DESCRIPTION

See Also

foreach

10 nll

Examples

```
## Not run:
if(interactive()){
    #EXAMPLE1
    }
## End(Not run)
```

nll

Negative Log Likelihood

Description

Computes the negative log likelihood function for the open population asymptotic N-mixtures model.

Usage

```
nll(
  par,
  nit,
  K,
  l_s_c = NULL,
  g_s_c = NULL,
  g_t_c = NULL,
  o_s_c = NULL,
  o_t_c = NULL,
  p_s_c = NULL,
  p_t_c = NULL,
  SMALL_a_CORRECTION = FALSE,
  VERBOSE = FALSE,
  outfile = NULL
)
```

Arguments

par	Vector of parameter values: c(log(lambda), log(gamma), logit(omega), logit(pdet)). Note that the parameter vector will need to be longer if covariate values are supplied.
nit	Matrix of counts data. Rows represent sites, columns represent sampling occasions. Note that if the data is a vector, then it will be converted to a matrix with a single row.
K	Upper bound on summations in the likelihood function. K should be chosen large enough that the negative log likelihood function is stable (unchanging as K increases).
l s c	List of lambda site covariates. Default: NULL

Pab 11

g_	.S_C	List of gamma site covariates, Default: NULL
g_	t_c	List of gamma time covariates, Default: NULL
0_	s_c	List of omega site covariates, Default: NULL
0_	t_c	List of omega time covariates, Default: NULL
p_	_s_c	List of pdet site covariates, Default: NULL
p_	t_c	List of pdet time covariates, Default: NULL
SMALL_a_CORRECTION		
		If TRUE will apply the small a correction when calculating the transition probability matrix, Default: FALSE
٧E	RBOSE	If TRUE, will print additional information, Default: FALSE
ou	ıtfile	Location of csv file to write/append parameter values, Default: NULL

Details

DETAILS

Value

Returns the negative log likelihood function evaluated at par.

Examples

```
if (interactive()) { nit = matrix(c(1,1,0,1,1), nrow=1) # observations for 1 site, 5 sampling occassions par = c(1,1,1,0) # parameter values at which to calculate the negative log likelihood (nll) nll(par, nit, K=10) # nll with K=10 nll(par, nit, K=10, SMALL_a_CORRECTION=TRUE) # nll with small a correction }
```

Pab

 $FUNCTION_TITLE$

Description

FUNCTION_DESCRIPTION

Usage

```
Pab(a, b, omega, gamma)
```

Arguments

а	PARAM_DESCRIPTION
b	PARAM_DESCRIPTION
omega	PARAM_DESCRIPTION
gamma	PARAM DESCRIPTION

Pab_asymptotic

Details

DETAILS

Value

OUTPUT_DESCRIPTION

Examples

```
## Not run:
if(interactive()){
  #EXAMPLE1
  }
## End(Not run)
```

Pab_asymptotic

 $FUNCTION_TITLE$

Description

FUNCTION_DESCRIPTION

Usage

```
Pab_asymptotic(a, b, omega, gamma, corrections = FALSE)
```

Arguments

a PARAM_DESCRIPTION
b PARAM_DESCRIPTION
omega PARAM_DESCRIPTION
gamma PARAM_DESCRIPTION

corrections PARAM_DESCRIPTION, Default: FALSE

Details

DETAILS

Value

OUTPUT_DESCRIPTION

Pab_gamma 13

Examples

```
## Not run:
if(interactive()){
  #EXAMPLE1
  }
## End(Not run)
```

Pab_gamma

 $FUNCTION_TITLE$

Description

FUNCTION_DESCRIPTION

Usage

```
Pab_gamma(a, b, gamma)
```

Arguments

a PARAM_DESCRIPTION
b PARAM_DESCRIPTION
gamma PARAM_DESCRIPTION

Details

DETAILS

Value

OUTPUT_DESCRIPTION

Examples

```
## Not run:
if(interactive()){
  #EXAMPLE1
  }
## End(Not run)
```

pCountOpenFFT

Pab_omega

 $FUNCTION_TITLE$

Description

FUNCTION_DESCRIPTION

Usage

```
Pab_omega(a, b, omega)
```

Arguments

a PARAM_DESCRIPTION
b PARAM_DESCRIPTION
omega PARAM_DESCRIPTION

Details

DETAILS

Value

OUTPUT_DESCRIPTION

Examples

```
## Not run:
if(interactive()){
  #EXAMPLE1
  }
## End(Not run)
```

pCountOpenFFT

Fit FFT N-mixture Model

Description

Fit an open population N-mixture model using the FFT method of computing the Transition Probability matrix. The four parameters are mean initial site abundance lambda, mean recruitments gamma, survival probability omega, and probability of detection pdet. Parameters can be made to vary over sites and over times by including parameter covariates. Note that this function is essentially a wrapper for optim acting on the nll_FFT function.

pCountOpenFFT 15

Usage

```
pCountOpenFFT(
   nit,
   K = NULL,
   starts = NULL,
   l_s_c = NULL,
   g_s_c = NULL,
   g_t_c = NULL,
   o_s_c = NULL,
   o_t_c = NULL,
   p_s_c = NULL,
   p_t_c = NULL,
   verBose = False,
   outfile = NULL,
   method = "BFGS",
   ...
)
```

Arguments

nit	Matrix of counts data. Rows represent sites, columns represent sampling occasions. Note that if the data is a vector, then it will be converted to a matrix with a single row.
К	Upper bound on summations in the likelihood function. K should be chosen large enough that the negative log likelihood function is stable (unchanging as K increases). If K=NULL, K=5*max(nit) will be used as default. Default: NULL
starts	Either NULL for default starting values, or a vector of parameter values: c(log(lambda), log(gamma), logit(omega), logit(pdet)). Note that the parameter vector will need to be longer by one for each parameter coefficient if covariate values are supplied. The order of coefficients is: c(lambda, l_s_c, gamma, g_s_c, g_t_c, omega, o_s_c, o_t_c, pdet, p_s_c, p_t_c)
1_s_c	List of lambda site covariates, Default: NULL
g_s_c	List of gamma site covariates, Default: NULL
g_t_c	List of gamma time covariates, Default: NULL
o_s_c	List of omega site covariates, Default: NULL
o_t_c	List of omega time covariates, Default: NULL
p_s_c	List of pdet site covariates, Default: NULL
p_t_c	List of pdet time covariates, Default: NULL
VERBOSE	If TRUE, will print additional information during model fitting, Default: FALSE
outfile	Location of csv file to write/append parameter values, can be used to checkpoint long running model fits. Default: NULL (no csv file created).
method	Optimization method, passed to optim function, options include: "BFGS", "Nelder-Mead", "CG". Default: "BFGS"
• • •	Additional arguments passed to the optimization function optim. For example: control = list(trace=1, REPORT=1, reltol=1e-10)

pCountOpenFFT

Value

Returns the fitted model object.

Examples

Index

```
\ast datasets
     anmu, 2
     eagles, 3
\mathsf{anmu}, \textcolor{red}{2}
Ax_log, 3
eagles, 3
fitNmix, 4
fitNmixPara,6
foreach, 9
log_tp_MAT_lse, 9
logSubtractExp, 8
logSumExp, 8
n11, 10
Pab, 11
Pab\_asymptotic, 12
Pab_gamma, 13
Pab_omega, 14
pCountOpenFFT, 14
```