Exhibit 8: U.S. Patent No. 9,179,147

Claims Identification 10[pre] A video encoder To the extent the preamble is limiting, Acer-branded devices implement a video encoder for encoding a video by obtaining an optimal sequence of quantized coefficients for a block of transform residuals from the video. for encoding a video by obtaining an optimal sequence of quantized coefficients for a block of transform residuals from PREDATOR HELIOS the video, the video encoder comprising: **NEO 16** THE FUTURE AWAITS Watch Video Unleash the future of gaming with the Predator Helios Neo 16. Dive into a neon-lit world with cutting-edge specs, AI-powered graphics, NVIDIA DLSS 3.5, and unique mysteries waiting to be unlocked. Source: https://www.acer.com/us-en/predator/laptops/helios/helios-neo-16#filterHeader

ms	Identification	
	Processor	
	Processor Manufacturer	Intel®
	Processor Type	Core™ i7
	Processor Model	i7-14650HX
	Processor Core	Hexadeca-core (16 Core™)
	Processor Generation	14th Gen
	Display & Graphics	
	Graphics Controller Manufacturer	NVIDIA®
	Graphics Controller Model	GeForce RTX™ 4060
	Graphics Memory Capacity	8 GB
	Graphics Memory Technology	GDDR6
	Graphics Memory Accessibility	Dedicated
	GPU Boost Clock	Up to 2350 MHz
	Maximum Graphics Power	Up to 140 W
	Screen Size	16"
	Display Screen Type	LCD
	Display Screen Technology	ComfyView (Matte) In-plane Switching (IPS) Technology
	Touchscreen	No
	Screen Resolution	1920 x 1200
	Standard Refresh Rate	165 Hz
	Display Features	100% sRGB Color Gamut
	Aspect Ratio	16:10
	Memory	
	Total Installed System Memory	16 GB
	System Memory Technology	DDR5 SDRAM
	Memory Card Reader	Yes
	Memory Card Supported	microSD
	Source: https://www.acer.co	om/us-en/predator/laptops/helios/helios-neo-16/pdp/NH.QQXAA.001

Claims	Identification		
		orative Team on Video Coding (JCT-VC)	
	of ITU-T SG	16 WP3 and ISO/IEC JTC1/SC29/WG11	Document: JCTVC-Software Manual
	Title:	HM Software Manual	
	Status:	Software AHG working document	
	Purpose:	Information	
	Author(s):	Frank Bossen	frank@bossentech.com
		David Flynn	dflynn@blackberry.com
		Karl Sharman	karl.sharman@eu.sony.com
	6	Karsten Sühring	karsten.suehring@hhi.fraunhofer.de
	Source:	AHG chairs	
		nt is a user manual describing usage of reference 8 of the software.	e software for the HEVC project. It applies
	1 General	Information	2
	2 Installati	on and compilation	2
	3 Using the		3
		P structure table	
		oder parameters	
		oder SEI parameters	
	3.4 Har	dcoded encoder parameters	
	Source: HEVC E	ncoder Manual (https://github.com/listenlink/	/HM/blob/master/doc/software-manual.pdf), 1

the QP is switched once during encoding. CbQpOffset (-cbqpofs) OGlobal offset to apply to the luma QP to derive the QP of Cb and Consequence of the consequence of the values of cb_qp_offset cr_qp_offset, that are transmitted in the PPS. Valid values are in the ransplant [-12, 12]. MaxCuDQPDepth (-dqd) OBefines maximum depth of a minimum CuDQP for sub-LCU-level of QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity.	Option Default Description QP (-q) 30.0 Specifies the base value of the quantization parameter. If it is non-integer the QP is switched once during encoding. CbQpOffset (-cbqpofs) OGlobal offset to apply to the luma QP to derive the QP of Cb and Cr respectively. These options correspond to the values of cb_qp_offset are cr_qp_offset, that are transmitted in the PPS. Valid values are in the rans [-12, 12]. MaxCuDQPDepth (-dqd) OBefines maximum depth of a minimum CuDQP for sub-LCU-level del QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity. RDOQ true Enables or disables rate-distortion-optimized quantization for transform TUs. RDOQTS true Enables or disables rate-distortion-optimized quantization for transform skipped TUs. SelectiveRDOQ false Enables or disables selective rate-distortion-optimized quantization. A sir ple quantization is use to pre-analyze, whether to bypass the RDOQ proces	Identification		
QP (-q) 30.0 Specifies the base value of the quantization parameter. If it is non-interest the QP is switched once during encoding. CbQpOffset (-cbqpofs) 0 Global offset to apply to the luma QP to derive the QP of Cb and Consequence of the composition of the values of cb_qp_offset cr_qp_offset (-crqpofs) 0 spectively. These options correspond to the values of cb_qp_offset cr_qp_offset, that are transmitted in the PPS. Valid values are in the rate [-12, 12]. MaxCuDQPDepth (-dqd) 0 Defines maximum depth of a minimum CuDQP for sub-LCU-level of QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity. RDOQ true Enables or disables rate-distortion-optimized quantization for transform	QP (-q) 30.0 Specifies the base value of the quantization parameter. If it is non-integrated the QP is switched once during encoding. CbQpOffset (-cbqpofs) 0 Global offset to apply to the luma QP to derive the QP of Cb and Cr responsible to the values of cb_qp_offset and cr_qp_offset (-crqpofs) 0 spectively. These options correspond to the values of cb_qp_offset and cr_qp_offset, that are transmitted in the PPS. Valid values are in the range [-12, 12]. MaxCuDQPDepth (-dqd) 0 Defines maximum depth of a minimum CuDQP for sub-LCU-level del QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity. RDOQ true Enables or disables rate-distortion-optimized quantization for transform TUs. Enables or disables rate-distortion-optimized quantization for transform skipped TUs. SelectiveRDOQ false Enables or disables selective rate-distortion-optimized quantization. A single quantization is use to pre-analyze, whether to bypass the RDOQ proces or not. If all the coefficients are quantized to 0, the RDOQ process is be an or disable to the pre-analyze of the RDOQ process is be an or disable to the quantization of the properties of the properties of the quantization o	Table 9: Quantization parameters		
the QP is switched once during encoding. CbQpOffset (-cbqpofs) 0 Global offset to apply to the luma QP to derive the QP of Cb and Cc spectively. These options correspond to the values of cb_qp_offset cr_qp_offset, that are transmitted in the PPS. Valid values are in the ra [-12, 12]. MaxCuDQPDepth (-dqd) 0 Defines maximum depth of a minimum CuDQP for sub-LCU-level of QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity. RDOQ true Enables or disables rate-distortion-optimized quantization for transform	the QP is switched once during encoding. CbQpOffset (-cbqpofs) OGlobal offset to apply to the luma QP to derive the QP of Cb and Cr r spectively. These options correspond to the values of cb_qp_offset are cr_qp_offset, that are transmitted in the PPS. Valid values are in the range [-12, 12]. MaxCuDQPDepth (-dqd) ODefines maximum depth of a minimum CuDQP for sub-LCU-level del QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity. RDOQ true Enables or disables rate-distortion-optimized quantization for transform TUs. RDOQTS true Enables or disables rate-distortion-optimized quantization for transform skipped TUs. SelectiveRDOQ false Enables or disables selective rate-distortion-optimized quantization. A single quantization is use to pre-analyze, whether to bypass the RDOQ process or not. If all the coefficients are quantized to 0, the RDOQ process is be	Option	Default	Description
CrQpOffset (-crqpofs) 0 spectively. These options correspond to the values of cb_qp_offset cr_qp_offset, that are transmitted in the PPS. Valid values are in the ra [-12, 12]. MaxCuDQPDepth (-dqd) 0 Defines maximum depth of a minimum CuDQP for sub-LCU-level of QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity. RDOQ true Enables or disables rate-distortion-optimized quantization for transform	CrQpOffset (-crqpofs) 0 spectively. These options correspond to the values of cb_qp_offset are cr_qp_offset, that are transmitted in the PPS. Valid values are in the range [-12, 12]. MaxCuDQPDepth (-dqd) 0 Defines maximum depth of a minimum CuDQP for sub-LCU-level del QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity. RDOQ true Enables or disables rate-distortion-optimized quantization for transform TUs. RDOQTS true Enables or disables rate-distortion-optimized quantization for transform skipped TUs. SelectiveRDOQ false Enables or disables selective rate-distortion-optimized quantization. A single quantization is use to pre-analyze, whether to bypass the RDOQ process or not. If all the coefficients are quantized to 0, the RDOQ process is be	QP (-q)	30.0	Specifies the base value of the quantization parameter. If it is non-integer, the QP is switched once during encoding.
QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularit RDOQ true Enables or disables rate-distortion-optimized quantization for transform	RDOQ true Enables or disables rate-distortion-optimized quantization for transforms TUs. RDOQTS true Enables or disables rate-distortion-optimized quantization for transforms skipped TUs. SelectiveRDOQ false Enables or disables rate-distortion-optimized quantization for transforms skipped TUs. Enables or disables selective rate-distortion-optimized quantization. A single quantization is use to pre-analyze, whether to bypass the RDOQ processor or not. If all the coefficients are quantized to 0, the RDOQ process is by			Global offset to apply to the luma QP to derive the QP of Cb and Cr respectively. These options correspond to the values of cb_qp_offset and cr_qp_offset, that are transmitted in the PPS. Valid values are in the range [-12, 12].
	RDOQTS true Enables or disables rate-distortion-optimized quantization for transform skipped TUs. SelectiveRDOQ false Enables or disables selective rate-distortion-optimized quantization. A simple quantization is use to pre-analyze, whether to bypass the RDOQ processor not. If all the coefficients are quantized to 0, the RDOQ process is be	MaxCuDQPDepth (-dqd)	0	Defines maximum depth of a minimum CuDQP for sub-LCU-level delta QP. MaxCuDQPDepth shall be greater than or equal to SliceGranularity.
	skipped TUs. SelectiveRDOQ false Enables or disables selective rate-distortion-optimized quantization. A sir ple quantization is use to pre-analyze, whether to bypass the RDOQ proce or not. If all the coefficients are quantized to 0, the RDOQ process is b	RDOQ	true	Enables or disables rate-distortion-optimized quantization for transformed TUs.
	ple quantization is use to pre-analyze, whether to bypass the RDOQ proce or not. If all the coefficients are quantized to 0, the RDOQ process is b	RDOQTS	true	Enables or disables rate-distortion-optimized quantization for transform- skipped TUs.
ple quantization is use to pre-analyze, whether to bypass the RDOQ pro or not. If all the coefficients are quantized to 0, the RDOQ process is		SelectiveRDOQ	false	Enables or disables selective rate-distortion-optimized quantization. A simple quantization is use to pre-analyze, whether to bypass the RDOQ process or not. If all the coefficients are quantized to 0, the RDOQ process is bypassed. Otherwise, the RDOQ process is performed as usual.
A. Quantization of transform coefficients In this stage the encoder performs calculation for each of		transform coefficients separa calculates the value Level transform coefficient by using dead zone. In the next standitional magnitudes of the Level-1 and 0. For every magnitudes, the encoder calculate coefficient with the selected with the lowest RD cost.	by quantizing the mag ng the uniform quantize tep, the encoder consi e analyzed quantized co of the mentioned coulates the RD cost of encoula	nitude of r without ders two pefficient: poding the

Claims	Identification
	Source: Rate-distortion optimized quantization in HEVC: Performance Limitations
	(https://www.researchgate.net/publication/279183792_Rate-
	distortion optimized quantization in HEVC Performance limitations), 3.
	distortion_optimized_quantization_in_file ve_i errormance_initiations), 5.
10[a] a processor;	Acer-branded devices implement a video encoder comprising a processor.
	Processor
	Processor Manufacturer Intel®
	Processor Type Core™ i7
	Processor Model i7-14650HX
	Processor Core Hexadeca-core (16 Core™)
	Processor Generation 14th Gen
	Display & Graphics
	Graphics Controller NVIDIA® Manufacturer
	Graphics Controller Model GeForce RTX™ 4060
	Graphics Memory Capacity 8 GB
	Graphics Memory Technology GDDR6
	Graphics Memory Accessibility Dedicated
	GPU Boost Clock Up to 2350 MHz
	Maximum Graphics Power Up to 140 W
	Screen Size 16"
	Display Screen Type LCD
	Display Screen Technology ComfyView (Matte) In-plane Switching (IPS) Technology
	Touchscreen No
	Screen Resolution 1920 x 1200
	Standard Refresh Rate 165 Hz
	Display Features 100% sRGB Color Gamut
	Aspect Ratio 16:10
	Memory
	Total Installed System Memory 16 GB
	System Memory Technology DDR5 SDRAM
	Memory Card Reader Yes
	Memory Card Supported microSD
	Source: https://www.acer.com/us-en/predator/laptops/helios/helios-neo-16/pdp/NH.QQXAA.001

Claims	Identification
	Source: Rate-distortion optimized quantization in HEVC: Performance Limitations, 3.
	A. Quantization of transform coefficients In this stage the encoder performs calculation for each of transform coefficients separately. In the first step, the encoder calculates the value Level by quantizing the magnitude of transform coefficient by using the uniform quantizer without dead zone. In the next step, the encoder considers two additional magnitudes of the analyzed quantized coefficient: Level-1 and 0. For every of the mentioned coefficient magnitudes, the encoder calculates the RD cost of encoding the coefficient with the selected magnitude and chooses the one with the lowest RD cost. Source: Rate-distortion optimized quantization in HEVC: Performance Limitations, 3.
10[e] calculate, for the obtained sequence, a rate-distortion cost based on a distortion cost and on a rate cost based on a context-adaptive entropy encoder, wherein the context-adaptive entropy encoder encodes each quantized coefficient by selecting at least one context from a plurality of contexts by determining an index for a set of contexts based, at least in part, on a previous quantized coefficient in	Acer-branded devices implement a video encoder that comprises a video encoding application executable by the processor and which, when executed, configures the processor to calculate, for the obtained sequence, a rate-distortion cost based on a distortion cost and on a rate cost based on a context-adaptive entropy encoder, wherein the context-adaptive entropy encoder encodes each quantized coefficient by selecting at least one context from a plurality of contexts by determining an index for a set of contexts based, at least in part, on a previous quantized coefficient in the sequence of quantized coefficients.

Claims	Identification
the sequence of quantized coefficients; and	V. THE SIMPLIFIED RDOQ IN HEVC REFERENCE SOFTWARE
	In the RDOQ implemented HEVC test model (HM16) [20] the encoder uses only estimated values of introduced distortion (represented by square quantization error) and a number of bits required to encode selected transform coefficient, coefficient group or transform unit.
	For example, for every of the examined coefficient magnitude the encoder calculates the cost $RD_cost(L, c)$ of encoding the coefficient c with the magnitude L according to (2) and chooses the case with the lowest RD cost.
	$RD_cost(L, c) = est_D(L, c) + \lambda \cdot est_B(L, c),$ (2)
	where: c – transform coefficient identifier, L – value of quantized transform coefficient c , $RD_cost(L, c)$ – cost of quantization coefficient c to value L , $est_D(L, c)$ – square quantization error, $est_B(L, c)$ – estimated number of bits needed do encode coefficient c quantized to value L , λ – Lagrange multiplier.
	The detailed description of RDOQ implementation in HEVC can be found in [21].
	Source: Rate-distortion optimized quantization in HEVC: Performance Limitations, 4.

Claims	Identification
Ciamis	4 Abbreviations and acronyms For the purposes of this Recommendation International Standard, the following abbreviations and acronyms apply: ATSC Advanced Television Systems Committee B Bi-predictive BLA Broken Link Access BPB Bitstream Partition Buffer CABAC Context-based Adaptive Binary Arithmetic Coding
	HEVC Specification (H.265), 14.
	9.3 CABAC parsing process for slice segment data
	9.3.1 General
	This process is invoked when parsing syntax elements with descriptor ae(v) in clauses 7.3.8.1 through 7.3.8.12.
	Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.
	Output of this process is the value of the syntax element.
	The initialization process as specified in clause 9.3.2 is invoked when starting the parsing of one or more of the following:
	 the slice segment data syntax specified in clause 7.3.8.1,
	the CTU syntax specified in clause 7.3.8.2 and the CTU is the first CTU in a tile,
	the CTU syntax specified in clause 7.3.8.2, entropy_coding_sync_enabled_flag is equal to 1 and the associated luma CTB is the first luma CTB in a CTU row of a tile.
	The parsing of syntax elements proceeds as follows:
	When cabac_bypass_alignment_enabled_flag is equal to 1, the request for a value of a syntax element is for either the syntax elements coeff_abs_level_remaining[] or coeff_sign_flag[] and escapeDataPresent is equal to 1, the alignment process prior to aligned bypass decoding as specified in clause 9.3.4.3.6 is invoked.
	Source: HEVC Specification (H.265), 203.

Claims	Identification
Claims	Assignment By decomposing each non-binary syntax element value into a sequence of bins, further processing of each bin value in CABAC depends on the associated coding-mode decision, which can be either chosen as the regular or the bypass mode (as described in Sect. 2.3). The latter is chosen for bins, which are assumed to be uniformly distributed and for which, consequently, the whole regular binary arithmetic encoding (and decoding) process is simply bypassed. In the regular coding mode, each bin value is encoded by using the regular binary arithmetic coding engine, where the associated probability model is either determined by a fixed choice, based on the
	type of syntax element and the bin position or bin index (binIdx) in the binarized representation of the syntax element, or adaptively chosen from two or more probability models depending on the related side information (e.g. spatial neighbors as illustrated in Fig. 1, component, depth or size of CU/PU/TU, or position within TU). Selection of the probability model is referred to as context modeling. As an important design decision, the latter case is generally applied to the most frequently observed bins only, whereas the other, usually less frequently observed bins, will be treated using a joint, typically zero-order probability model. In this way, CABAC enables selective adaptive probability modeling on a sub-symbol level, and hence,
10[f] change a value of one of said quantized coefficients of the obtained sequence to produce a new sequence of quantized coefficients, so that a resulting rate-distortion cost for the new sequence of quantized coefficients is smaller than a rate-distortion cost for the obtained sequence.	Source: Entropy Coding in HEVC, 6. Acer-branded devices implement a video encoder that comprises a video encoding application executable by the processor and which, when executed, configures the processor to change a value of one of said quantized coefficients of the obtained sequence to produce a new sequence of quantized coefficients, so that a resulting rate-distortion cost for the new sequence of quantized coefficients is smaller than a rate-distortion cost for the obtained sequence.

Claims	Identification
	IV. THE RDOQ IN HEVC The RDOQ has been included in the HEVC reference software (HM) and intensively used during HEVC development and performance. This section describes the RDOQ algorithm adapted to HEVC.
	A. Quantization of transform coefficients In this stage the encoder performs calculation for each of transform coefficients separately. In the first step, the encoder calculates the value Level by quantizing the magnitude of transform coefficient by using the uniform quantizer without dead zone. In the next step, the encoder considers two additional magnitudes of the analyzed quantized coefficient: Level-1 and 0. For every of the mentioned coefficient magnitudes, the encoder calculates the RD cost of encoding the coefficient with the selected magnitude and chooses the one with the lowest RD cost. Source: Rate-distortion optimized quantization in HEVC: Performance Limitations, 3. Acer-branded devices perform rate-distortion optimization. For example, the following depicts video frames with Psycho Visual tuning disabled (on the left) and Psycho Visual tuning enabled to enable rate-distortion optimization (on the right).

