- · Find exem = next Monday, 4:30-6:20pm 3 · do a review on friday. See Carves For guiding documents.
- · Closed notes, egn skeet · HW & due Friday provided (on Carves now)

- . Find Report for leb due Weds 12/15 @ Noon.
- · Last time: Flyback converter (isolated converters)
- · Today: Chb, voltage source inverters

 t dc-ac converters
 - Differential Connections
 - * Enables generation of ac waveforms.

Even : f v, d V_2 are \oplus , the diff v_i - v_2 can be manipulated to produce an accounter.

- 2 differential Bucks

to get ac waveform, pick duty

 $D(t) = \frac{1 + m \sin(\omega t)}{2}$ (2) $0 \le m \le 1$

(2) -> (1) to get

V = Vg on sin (wt)

· Modify out to get "practical" realization

Step # 1: Move Filter caps across load

step #2: Lump L, & L2 together

(gives an ac waveform @ V

Les called a "single-phase" inventer

* key idea :

[V] -> preserves "step-down / buck" be havior.

- 3 phase ac . Start W/ 8 bucks

For bolanced 30 ac, pick duties

$$D_{q} = \frac{1 + m \sin(\omega t)}{2} \qquad \longrightarrow V_{1} = V_{2} D_{q} = \frac{V_{2}}{2} \left(1 + m \sin(\omega t)\right)$$

$$D_{b} = \frac{1 + m \sin(\omega t - \frac{2\pi}{3})}{2} \qquad \longrightarrow V_{2} = V_{3} = V_{4} = \frac{1 + m \sin(\omega t + \frac{2\pi}{3})}{2}$$

$$D_{c} = \frac{1 + m \sin(\omega t + \frac{2\pi}{3})}{2} \qquad \longrightarrow V_{3} = V_{3} = V_{4} = - - \frac{\omega t + 2\pi/3}{3}$$

· Look @ KUL for each phase loop

KVL for A gives
$$V_1 - V_{an} = V_n$$

"B $V_2 - V_{an} = V_n$

"\langle \frac{\sqrt{3} - V_{cn}}{2} = V_n

\[
\frac{\sqrt{3} - V_{cn}}{2} = V_n
\]

\[
\frac{\s

$$= v_n = \frac{1}{3} \left(v_1 + V_2 + V_3 \right) = \text{avg of 3 buck voltages}$$

$$= \frac{V_3}{2}$$