Formal Specification of Constant Product $(x \times y = k)$ Market Maker Model and Implementation

Yi Zhang, Xiaohong Chen, and Daejun Park Runtime Verification, Inc.

October 20, 2018

Abstract

We formalize the constant product market maker model (aka, $x \times y = k$ model) [2], and formally analyze the integer rounding errors of the implementation in the Uniswap smart contract [1].

1 State Transition System Model

We formalize the market maker model as a state transition system, where the state represents the current asset of the exchange, and the transition represents how each function updates the state.

We define the exchange state as a tuple (e, t, l), where e is the amount of ether (in wei), t is the number of (exchange) tokens, and l is the amount of total liquidity (i.e., the total supply of UNI tokens).

2 Updating Liquidity

We formalize two functions addLiquidity and removeLiquidity that mints and burns the liquidity, respectively. We first formalize their mathematical definition, addLiquidity_{spec} and removeLiquidity_{spec}, that uses the real arithmetic. Then, we formalize their implementation, addLiquidity_{code} and removeLiquidity_{code}, that uses the fixed-point arithmetic (i.e., an approximate real arithmetic), and analyze the approximation errors due to the fixed-point rounding.

2.1 Minting Liquidity

An investor can mint liquidity by depositing both ether and token.

2.1.1 addLiquidity_{spec}

We formulate the mathematical definition of minting liquidity.

Definition 1. addLiquidity_{spec} takes as input $\Delta e > 0$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\textit{addLiquidity}_{\textit{spec}}(\Delta e)} (e',t',l')$$

where

$$e' = (1 + \alpha)e$$
$$t' = (1 + \alpha)t$$
$$l' = (1 + \alpha)l$$

and
$$\alpha = \frac{\Delta e}{e}$$
.

Here, an investor deposits both Δe ether (wei) and $\Delta t = t' - t$ tokens, and mints $\Delta l = l' - l$ liquidity. The invariant is that the ratio of e:t:l is preserved, and $k = e \times t$ increases, as formulated in the following theorem.

Theorem 1. Let $(e,t,l) \xrightarrow{addLiquidity_{spec}(\Delta e)} (e',t',l')$. Let $k = e \times t$ and $k' = e' \times t'$. Then, we have the following:

1.
$$e:t:l=e':t':l'$$

2.
$$k < k'$$

$$3. \ \frac{k'}{k} = \left(\frac{l'}{l}\right)^2$$

2.1.2 addLiquidity_{code}

In the implementation using the integer arithmetic, we have to approximate t' and l' that are not an integer. We formulate the approximation.

Definition 2. addLiquidity_{code} takes as input an integer $\Delta e > 0 \in \mathbb{Z}$ and updates the state as follows:

$$(e, t, l) \in \mathbb{Z}^3 \xrightarrow{\text{addLiquidity}_{code}(\Delta e)} (e'', t'', l'') \in \mathbb{Z}^3$$

$$e'' = e + \Delta e = (1 + \alpha)e$$

$$t'' = t + \left\lfloor \frac{\Delta e \times t}{e} \right\rfloor + 1 = \lfloor (1 + \alpha)t \rfloor + 1$$

$$l'' = l + \left\lfloor \frac{\Delta e \times l}{e} \right\rfloor = \lfloor (1 + \alpha)l \rfloor$$

and
$$\alpha = \frac{\Delta e}{e}$$
.

Theorem 2. Let (e,t,l) $\xrightarrow{addLiquidity_{spec}(\Delta e)}$ (e',t',l'). Let (e,t,l) $\xrightarrow{addLiquidity_{code}(\Delta e)}$ (e'',t'',l''). Let $k=e\times t$, $k'=e'\times t'$, and $k''=e''\times t''$. Then, we have:

$$e'' = e'$$

$$t'' = \lfloor t' \rfloor + 1$$

$$l'' = |l'|$$

and

1.
$$e < e' = e''$$

2.
$$t < t' < t'' < t' + 1$$

3.
$$l' - 1 < l'' \le l'$$

4.
$$k < k' < k''$$

$$5. \left(\frac{l''}{l}\right)^2 < \frac{k''}{k}$$

That is, t' is approximated to a larger value t'' but no larger than 1 (0 < $t'' - t' \le 1$), while l' is approximated to a smaller value l'' but no smaller than 1 (-1 < $l'' - l' \le 0$). This approximation scheme implies that k' is approximated to a strictly larger value k'', which is desired. This means that an investor may deposit more (up to 1) tokens than needed, but may mint less (up to -1) liquidity than the mathematical value.

2.2 Burning Liquidity

An investor can withdraw their deposit of ether and token by burning their share of liquidity.

2.2.1 removeLiquidity_{spec}

We formulate the mathematical definition of burning liquidity, being dual to minting liquidity.

Definition 3. removeLiquidity_{spec} takes as input $0 < \Delta l < l$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\textit{removeLiquidity}_{\textit{spec}}(\Delta l)} (e',t',l')$$

$$e' = (1 - \alpha)e$$

$$t' = (1 - \alpha)t$$

$$l' = (1 - \alpha)l$$

 $^{^1{\}rm The}$ second column represents the computation model using the integer division with truncation. That is, for example, t'' is computed by t + ((de * t) / e) + 1 where de is Δe and / is the integer division with truncation.

and
$$\alpha = \frac{\Delta l}{l}$$
.

Here, an investor burns Δl liquidity, and withdraws $\Delta e = e - e'$ ether (wei) and $\Delta t = t - t'$ tokens. The invariant is dual to that of minting liquidity.

Theorem 3. Let (e,t,l) $\xrightarrow{removeLiquidity_{spec}(\Delta l)}$ (e',t',l'). Let $k=e\times t$ and $k'=e'\times t'$. Then, we have the following:

1.
$$e:t:l=e':t':l'$$

2.
$$k' < k$$

$$3. \ \frac{k'}{k} = \left(\frac{l'}{l}\right)^2$$

The duality of $addLiquidity_{spec}$ and $removeLiquidity_{spec}$ is formulated in the following theorem.

Theorem 4. If addLiquidity_{spec} is subsequently followed by removeLiquidity_{spec} as follows:

$$(e_0,t_0,l_0) \xrightarrow{\textit{addLiquidity}_{\textit{spec}}(\Delta e)} (e_1,t_1,l_1) \xrightarrow{\textit{removeLiquidity}_{\textit{spec}}(\Delta l)} (e_2,t_2,l_2)$$

and $\Delta l = l_1 - l_0$, then we have:

1.
$$e_0 = e_2$$

2.
$$t_0 = t_2$$

3.
$$l_0 = l_2$$

$\mathbf{2.2.2}\quad \texttt{removeLiquidity}_{\texttt{code}}$

In the implementation using the integer arithmetic, we have to approximate e' and t' that are not an integer. We formulate the approximation.

Definition 4. removeLiquidity_{code} takes as input an integer $0 < \Delta l < l$ and updates the state as follows:

$$(e, t, l) \in \mathbb{Z}^3 \xrightarrow{removeLiquidity_{code}(\Delta l)} (e'', t'', l'') \in \mathbb{Z}^3$$

$$e'' = e - \left\lfloor \frac{\Delta l \times e}{l} \right\rfloor = \lceil (l - \alpha)e \rceil$$

$$t'' = t - \left| \frac{\Delta l \times t}{l} \right| = \lceil (1 - \alpha)t \rceil$$

$$l'' = l - \Delta l \qquad = (1 - \alpha)l$$

and
$$\alpha = \frac{\Delta l}{l}$$
.

Theorem 5. Let (e,t,l) $\xrightarrow{removeLiquidity_{spec}(\Delta l)}$ (e',t',l'). Let (e,t,l) $\xrightarrow{removeLiquidity_{code}(\Delta l)}$ (e'',t'',l''). Let $k=e\times k$, $k'=e'\times k'$, and $k''=e''\times t''$. Then, we have:

$$e'' = \lceil e' \rceil$$
$$t'' = \lceil t' \rceil$$
$$l'' = l'$$

and

1.
$$e' \le e'' \le e$$

$$2. \ t' \leq t'' \leq t$$

3.
$$l'' = l' < l$$

4.
$$k' \leq k'' \leq k$$

$$5. \left(\frac{l''}{l}\right)^2 \le \frac{k''}{k}$$

That is, e' and t' are simply approximated to their ceiling $e'' = \lceil e' \rceil$ and $t'' = \lceil t' \rceil$, which satisfies the desired property $k'' \leq k$. In other words, an investor may withdraw less amounts of deposit $(e - \lceil e' \rceil)$ and $t - \lceil t' \rceil$ than the mathematical values (e - e') and (e - e') and (e - e').

One of the desirable properties is that an investor cannot make a "free" money by exploiting the integer rounding errors, which is formulated below.

Theorem 6. If addLiquidity_{code} is subsequently followed by removeLiquidity_{code} as follows:

$$(e_0,t_0,l_0) \xrightarrow{\mathit{addLiquidity}_{\mathit{code}}(\Delta e)} (e_1,t_1,l_1) \xrightarrow{\mathit{removeLiquidity}_{\mathit{code}}(\Delta l)} (e_2,t_2,l_2)$$

and $\Delta l = l_1 - l_0$, then we have:

1.
$$e_0 < e_2$$

2.
$$t_0 < t_2$$

3.
$$l_0 = l_2$$

2.3 getInputPrice

In this section, we present a formal specification of getInputPrice. Suppose there are two kinds of tokens in the pool: A and B. $t_A(>0)$ (or $t_B(>0)$) represents the total amount of token A (or token B) in the pool.

2.3.1 getInputPrice_{spec}

getInputPrice_{spec} takes $\Delta t_A(>0)$, t_A and t_B as input and returns the amount of token B that Δt_A can exchange for.

$$t_A' = (1+\alpha)t_A$$

$$t_B' = \frac{1}{1+\alpha\beta}t_B$$

$$\texttt{getInputPrice}_{\texttt{spec}}(\Delta t_A, t_A, t_B) = t_B - t_B' = \frac{\alpha\beta}{1+\alpha\beta}t_B$$

and
$$\alpha = \frac{\Delta t_A}{t_A}$$
 and $\beta = \frac{997}{1000}$.

Theorem 7. Let $k = t_A * t_B$ and $k' = t'_A * t'_B$, and we have the following property:

- 1. $t_A < t'_A$
- 2. $t'_B < t_B$
- 3. k < k'

2.3.2 getInputPricecode

getInputPrice_{code} takes integers $\Delta t_A(>0)$, t_A and t_B as input and returns the maximum integer amount of token B that Δt_A can exchange for.

$$t_A'' = t_A + \Delta t_A$$

$$\texttt{getInputPrice}_{\texttt{spec}}(\Delta t_A, t_A, t_B) = \lfloor t_B - t_B' \rfloor = \left\lfloor \frac{997 * \Delta t_A * t_B}{1000 * t_A + 997 * \Delta t_A} \right\rfloor$$

$$t_B'' = t_B - \texttt{getInputPrice}_{\texttt{spec}}(\Delta t_A, t_A, t_B) = \lceil t' \rceil$$

Theorem 8. Let $k'' = t''_A * t''_B$, and we have the following property:

- 1. $t_A < t'_A = t''_A$
- 2. $t'_B \le t''_B \le t_B$
- 3. $k < k' \le k''$

2.4 getOutputPrice

In this section, we present a formal specification of getOutputPrice. Suppose there are two kinds of tokens: A and B in the pool. t_A (or t_B) represents the total amount of token A (or token B) in the pool.

2.4.1 getOutputPrice_{spec}

getOutputPrice_{spec} takes $\Delta t_B (0 < \Delta t_B < t_B)$, t_A and t_B as input and returns the number of token A that can exchange for Δt_B .

$$t_B' = t_B - \Delta t_B$$

$$\texttt{getOutputPrice}_{\texttt{spec}}(\Delta t_B, t_A, t_B) = \left(\frac{t_A * t_B}{t_B - \Delta t_B} - t_A\right) * \frac{1000}{997}$$

$$t_A' = t_A + \texttt{getOutputPrice}_{\texttt{spec}}(\Delta t_B, t_A, t_B)$$

Theorem 9. Let $k = t_A * t_B$ and $k' = t'_A * t'_B$, and we have the following property:

- 1. $t_A < t'_A$
- 2. $t'_B < t_B$
- 3. k < k'

2.4.2 getOutputPricecode

getOutputPrice_{code} takes integers $\Delta t_B (0 < \Delta t_B < t_B)$, t_A , and t_B as input and returns the **minimal integer** number of token A that can exchange for Δt_B .

$$t_B'' = t_B - \Delta t_B$$

$$\texttt{getOutputPrice}_{\texttt{code}}(\Delta t_B, t_A, t_B) = \left\lfloor \frac{1000 * t_A * \Delta t_B}{997 * (t_B - \Delta t_B)} \right\rfloor + 1$$

$$t_A'' = t_A + \texttt{getOutputPrice}_{\texttt{code}}(\Delta t_B, t_A, t_B)$$

Theorem 10. Let $k'' = t''_A * t''_B$, and we have the following property:

- 1. $t_A < t'_A < t''_A$
- 2. $t_B'' < t_B$
- 3. k < k''

Theorem 11. We have the following property between getInputPrice and getOutputPrice:

- 1. $\Delta t_B \leq getInputPrice_{code}(getOutputPrice_{code}(\Delta t_B, t_A, t_B), t_A, t_B)$
- 2. $getOutputPrice_{code}(getInputPrice_{code}(\Delta t_A, t_A, t_B), t_A, t_B) \leq \Delta t_A$

2.5 ethToToken

In this section, we present a formal specification of ethToToken (including swap and transfer).

2.5.1 ethToToken_{spec}

ethToToken_{spec} takes an input $\Delta e(\Delta e > 0)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{ethToToken_{spec}}(\Delta e)} (e',t',l)$$

where

$$\begin{split} e' &= e + \Delta e \\ t' &= t - \mathtt{getInputPrice}_{\mathtt{spec}}(\Delta e, e, t) \end{split}$$

2.5.2 ethToTokencode

eth To
Token_code takes an integer input $\Delta e(\Delta e>0)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{ethToToken_{code}}(\Delta e)} (e'',t'',l)$$

where

$$e'' = e + \Delta e$$

 $t'' = t - \text{getInputPrice}_{\text{code}}(\Delta e, e, t) = \lceil t' \rceil$

2.6 ethToTokenExact

In this section, we present a formal specification of ethToTokenExact (including swap and transfer).

2.6.1 ethToTokenExact_{spec}

eth To
Token Exact_spec takes an input $\Delta t (0 < \Delta t < t)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{ethToTokenExact}_{\mathtt{spec}}(\Delta t)} (e',t',l)$$

where

$$t' = t - \Delta t$$

$$e' = e + \texttt{getOutputPrice}_{\texttt{spec}}(\Delta t, e, t)$$

2.6.2 ethToTokenExact_{code}

ethToTokenExact_{code} takes an integer input $\Delta t (0 < \Delta t < t)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{ethToTokenExact}_{\mathtt{code}}(\Delta t)} (e'',t'',l)$$

$$\begin{split} t'' &= t - \Delta t \\ e'' &= e + \mathtt{getOutputPrice}_{\mathtt{code}}(\Delta t, e, t) \end{split}$$

2.7 tokenToEth

In this section, we present a formal specification of tokenToEth (including swap and transfer).

2.7.1 tokenToEth_{spec}

tokenToEth_{spec} takes an input $\Delta t(\Delta t > 0)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{tokenToEth_{spec}}(\Delta t)} (e',t',l)$$

where

$$\begin{split} t' &= t + \Delta t \\ e' &= e - \mathtt{getInputPrice}_{\mathtt{spec}}(\Delta t, t, e) \end{split}$$

2.7.2 tokenToEth_{code}

token To
Eth_{code} takes an integer input $\Delta t (\Delta t > 0)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{tokenToEth_{code}}(\Delta e)} (e'',t'',l)$$

where

$$t'' = t + \Delta t$$

$$e'' = e - \mathtt{getInputPrice}_{\mathtt{code}}(\Delta t, t, e) = \lceil e' \rceil$$

2.8 tokenToEthExact

In this section, we present a formal specification of tokenToEthExact (including swap and transfer).

2.8.1 tokenToEthExact_{spec}

tokenToEthExact_{spec} takes an input $\Delta e (0 < \Delta e < e)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{tokenToEthExact}_{\mathtt{spec}}(\Delta e)} (e',t',l)$$

$$\begin{aligned} e' &= e - \Delta e \\ t' &= t + \mathtt{getOutputPrice}_{\mathtt{spec}}(\Delta e, t, e) \end{aligned}$$

2.8.2 tokenToEthExact_{code}

token ToEthExact_{code} takes an **integer** input $\Delta e (0 < \Delta e < e)$ and updates the state as follows:

$$(e,t,l) \xrightarrow{\mathtt{tokenToEthExact}_{\mathtt{code}}(\Delta e)} (e^{\prime\prime},t^{\prime\prime},l)$$

where

$$\begin{split} e'' &= e - \Delta e \\ t'' &= t + \mathtt{getOutputPrice}_{\mathtt{code}}(\Delta e, t, e) \end{split}$$

2.9 tokenToToken

In this section, we present a formal specification of tokenToToken (including swap and transfer). Suppose there are two exchange contracts A and B, whose states are (e_A, t_A, l_A) and (e_B, t_B, l_B) respectively.

2.9.1 tokenToToken_{spec}

tokenToToken_{spec} takes an input $\Delta t_A(>0)$ and updates the states as follows:

$$\{(e_A, t_A, l_A), (e_B, t_B, l_B)\} \xrightarrow{\mathtt{tokenToToken_{spec}}(\Delta t_A)} \{(e_A', t_A', l_A), (e_B', t_B', l_B)\}$$

where

$$\begin{split} t_A' &= t_A + \Delta t_A \\ \Delta e_{A_{spec}} &= \texttt{getInputPrice}_{\texttt{spec}}(\Delta t_A, t_A, e_A) \\ e_A' &= e - \Delta e_{A_{spec}} \\ e_B' &= e_B + \Delta e_{A_{spec}} \\ \Delta t_{B_{spec}} &= \texttt{getInputPrice}_{\texttt{spec}}(\Delta e_{A_{spec}}, e_B, t_B) \\ t_B' &= t_B - \Delta t_{B_{spec}} \end{split}$$

2.9.2 tokenToToken_{code}

tokenToToken_{code} takes an **integer** input $\Delta t_A(>0)$ and updates the states as follows:

$$\{(e_A,t_A,l_A),(e_B,t_B,l_B)\} \xrightarrow{\mathtt{tokenToToken_{code}}(\Delta t_A)} \{(e_A'',t_A'',l_A),(e_B'',t_B'',l_B)\}$$

$$\begin{split} t_A'' &= t_A + \Delta t_A \\ \Delta e_{A_{code}} &= \texttt{getInputPrice}_{\texttt{code}}(\Delta t_A, t_A, e_A) \\ e_A'' &= e - \Delta e_{A_{code}} \\ e_B'' &= e_B + \Delta e_{A_{code}} \\ \Delta t_{B_{code}} &= \texttt{getInputPrice}_{\texttt{code}}(\Delta e_{A_{code}}, e_B, t_B) \\ t_B'' &= t_B - \Delta t_{B_{code}} \end{split}$$

2.10 tokenToTokenExact

In this section, we present a formal specification of tokenToTokenExact (including swap and transfer). Suppose there are two exchange contracts A and B, whose states are (e_A, t_A, l_A) and (e_B, t_B, l_B) respectively.

2.10.1 tokenToTokenExact_{spec}

tokenToTokenExact_{spec} takes an input $\Delta t_B (0 < \Delta t_B < t_B)$ and updates the states as follows:

$$\{(e_A, t_A, l_A), (e_B, t_B, l_B)\} \xrightarrow{\texttt{tokenToTokenExact}_{\texttt{spec}}(\Delta t_B)} \{(e_A', t_A', l_A), (e_B', t_B', l_B)\}$$

where

$$\begin{split} t_B' &= t_B - \Delta t_B \\ \Delta e_{B_{spec}} &= \texttt{getOutputPrice}_{\texttt{spec}}(\Delta t_B, e_B, t_B) \\ e_B' &= e_B + \Delta e_{B_{spec}} \\ e_A' &= e_A - \Delta e_{B_{spec}} \\ \Delta t_{A_{spec}} &= \texttt{getOutputPrice}_{\texttt{spec}}(\Delta e_{B_{spec}}, t_A, e_A) \\ t_A' &= t_A + \Delta t_{A_{spec}} \end{split}$$

2.10.2 tokenToTokenExact_{code}

tokenToTokenExact_{code} takes an **integer** input $\Delta t_B (0 < \Delta t_B < t_B)$ and updates the states as follows:

$$\{(e_A, t_A, l_A), (e_B, t_B, l_B)\} \xrightarrow{\texttt{tokenToTokenExact}_{\texttt{code}}(\Delta t_B)} \{(e_A'', t_A'', l_A), (e_B'', t_B'', l_B)\}$$

where

$$\begin{split} t_B'' &= t_B - \Delta t_B \\ \Delta e_{B_{code}} &= \mathtt{getOutputPrice}_{\mathtt{code}}(\Delta t_B, e_B, t_B) \\ e_B'' &= e_B + \Delta e_{B_{code}} \\ e_A'' &= e_A - \Delta e_{B_{code}} \\ \Delta t_{A_{code}} &= \mathtt{getOutputPrice}_{\mathtt{code}}(\Delta e_{B_{code}}, t_A, e_A) \\ t_A'' &= t_A + \Delta t_{A_{code}} \end{split}$$

References

- [1] Hayden Adams. Uniswap. https://github.com/Uniswap/contracts-vyper.
- [2] Vitalik Buterin. The x*y=k market maker model. https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers.