PREVIOUS:

Ni₁(cr)

CURRENT: December 1976

 $S^{(298.15 \text{ K})} = 29.870 \pm 0.21 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

The low temperature heat capacity values are based primarily on the studies by Keesom and Clark¹ and Busey and Giaque.² The adopted values are actually those suggested by Busey and Giauque² with slight changes above 280 K so as to smoothly join the high temperature heat Heat Capacity and Entropy capacity data.

The adoped value for the Curie point, Te = 631 K, is from the study of Connelly et al., using an AC calorimetric method to measure relative

heat capacity values, and Vollmer et al.* using a high temperature adiabatic calonimeter.

Above 700 K, the adopted heat capacity values are those reported by Vollmer et al.* Below the Curie point, the above studies and that of Bronson and Wilson (203–383 K)¹⁰ are used to construct a curve which joins smoothly with the low temperature values. The adopted table is identical (purposely) to that suggested by Mah and Pankatz.11

Fusion Data

Refer to the liquid table for details.

Sublimation Data

The enthalpy of sublimation, $\Delta_{nb}H^{*}(298.15 \text{ K})$, is calculated as the difference between $\Delta_{l}H^{*}(298.15 \text{ K})$ for Ni(g) and Ni(cr).

Enthalpy of Formation Zero by definition.

far = 1728 ± 4K .=631 ± 1 K

Nickel (Ni)

CURRENT: December 1976

_
_
=
~

A _r = 58.69 Nickel (NI)
רוסתום
Nickel (NI)

$S^{\circ}(298.15 \text{ K}) = [41.487 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}]$ $T_{\text{tot}} = 1728 \pm 4 \text{ K}$	
Enthalpy of Formation The ambient of formation of NiO is calculated from that of the cristal by addin	v addin

ng App. H" and the difference in enthalpy, H"(1 The enthalpy of formation of Ni(I) is calc H*(298.15 K), between the crystal and liquid. Enthalpy of

Vollmer et al., using an adiabatic high temperature calorimeter with an inert gas atmosphere, measured the heat capcity of nickel it liquid region (1728–1822 K) and reported C₂(I) = 9.32 kcal·mol⁻¹. Other studies yielding liquid phase heat capacity values are kcal·mol⁻¹ by Wüst et al., ² 9.2 kcal·mol⁻¹ by Umino, ² 10.3 kcal·mol⁻¹ by Geoffray et al., ² and 2.58 kcal·mol⁻¹ by Margrave. ² This I value⁵ is undoubtedly a misprint. Heat Capacity and Entropy

We adopt a constant value, C_p(1) = 9.3 kcal·mol⁻¹ based on the heat capacity measurements of Vollmer et al. 1 The enthalpy stud Geoffray et al. 4 (1393-2192 K) leads to a reported heat capacity whilch is roughly 10% higher than our adopted value. The adopted v is identical to that chosen by Mah and Pankratz.6

The entropy at 298.15 K is calculated in a manner analogous to that used for the enthalpy of formation.

Fusion Data

The adopted melting point, T_{iss} = 1728 ± 4 K (based on IPTS-68), is selected from the studies of Vollmer et al. (1727 K), Geoffray et 1728 K), Oriani and Jones (1727 K),7 and Kubachewski (1730 K).

The adopted enthalpy of melting, $\Delta_{ha}H^{\circ} = 4.10 \pm 0.1$ kcal·mol⁻¹, is based on the calorimetric studies by Vollmer *et al.* (4.039 \pm 6 kcal·mol⁻¹) and Geoffray *et al.* (4.176 \pm 054 kcal·mol⁻¹). Other reported results are 3.31 kcal·mol⁻¹ by Wust *et al.*, 4.21 kcal·mol Umino, 3.32 kcal·mol⁻¹ by Margrave, and 4.4 kcal·mol⁻¹ by Lebedev *et al.*, 9

References

A. Vollmer, R. Kohlhaas, and M. Braun, Z. Naturforsch 21a, 181 (1966).

P. Wüst, A. Meuthen, and R. Durret, Forsch Gebiete. Ingenieurw. VDI 204 (1918).

S. Umino, Science Repts. Tobcku Imp. Univ. 15, 597 (1926).

H. Geoffray, A. Ferrier, and M. Olette, Compt. Rend. 256, 139 (1963).

J. L. Margrave, ORO-2907-92 (1972).

A. D. Mah and L. B. Pankratz, U. S. Bur. Mines Bull. 668, 125 pp. (1976).

R. A. Oriani and T. S. Jones, Rev. Sci. Inst. 25, 248 (1954).

O. Kubaschewski, Z. Elektrochem. 54, 275 (1950).

S. V. Lebedev, A. I. Savvatimskii, and Yu. B. Smirnov, High Temp. 9, 578 (1971).

$\Delta_t H^{\circ}(298.15 \text{ K}) = [17.479] \text{ kJ·mol}^{-1}$	Enthalpy R	eference Te	mperature =	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $1 \cdot \text{K}^{-1} \text{mol}^{-1}$, ,	Standard Stat	Standard State Pressure = p = 0.1 MPa k1·mol ⁻¹	- 0.1 MPa
10.11 - 0.4 - 0.1 - 10.10	τÆ	ະ	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_t H^{\bullet}$	Δ _G •	log Kr
the difference in enthalpy, H°(1728-	°888							
	298.15	26.133	41.487	41.487	oʻ	17.479	14.016	-2.456
	300	26.150	41.648	41.487	0.048	17.480	13.994	-2.437
isured the heat capcity of nickel in the	38	26.568	45.711	41.807	1.366	17.464	13.414	-2.002
phase heat capacity values are: 7.86	400	26.987	49.286	42.523	2.705	17.408	12.839	-1.677
s kcal·mol-1 by Margrave.7 This latter	3 8	27.405	52.489 55.398	43.455 44.506	2.45 3.45 3.45	17.182	277 11.719	-124
Vollmer et al. The enthalpy study of	98	28.660	60.544	46.761	8.270	16.728	99.68	-0.928
our adopted value. The adopted value	88	30.334	610.69	51.307	14.169	16.218	8.760	-0.572
•	88	31.171	72.640	55.478 55.564	20.404	16.133 16.133	6.907	-0.455
nation.	0011	32.844	79.057	57.561	23.646	16.119	5.986	-0.284
	1200	33.681	81.951	59.474	26.972 30.382	16.115 16.116	5.065 4.14	-0.220 -0.166
ollmer et al. (1727 K), Geoffray et al.	1300,000		84.680 84.680	61,309	30.382	GLASS <	S <> LIQUID TRANSTTION	
dies by Vollmer <i>et al.</i> (4.039 \pm 0.060	1400		87.564 90.248	63.083 64.805	34.273	16.511	3.207	-0.120
by wust et at., 4.21 Kcai inoi by	1600	38.911	92.759	66.475 68.091	42.056	17.029	1,267 0,278	-0.041
	1728.000	_	95.754	68.534	47.036	CRYSTAL	AL <> LIQUID	QI
	1800		97.343	69.655	49.838	ď	o' c	ರ
	<u>88</u>	38.911 38.911	8.5 4.5 54.5 54.5 54.5 54.5 54.5 54.5 54	72.632	53.729 57.620	ಶ ರ	် ဝံ	ಶರ
	2100	38.911	103,341	74,050	61.511	o c	ರೆರ	o o
	38	38.911	106.881	76.753	69.294	ံဝံ	öö	ö
	2400 2500	38.911 38.911	108.537	78.043 79.295	73.185 77.076	o o	ರ ರ	ರರ
	2600	38.911	11.651	80510	80.967	o' c	o' c	o' c
	388	38.911	114,535	82.839	88.749	öö	ici	ဝ
	280	38.911	115.900	83.955 85.042	92640 86531	ರ ರ	် ဝံ	್ ರ
	3100	38.911	118.495	86.101	100.423	oʻ	ď	ó
	3156.584	1 38.911	119.199	86.688	102.624	FU(- FUGACITY - 1 bar	t
	3200	38.911	119.731	87.133 88.139	104.314	-376.835 -375.182	5.189 17.101	-0.085
	88	38.911	122.090	89.120 90.078	112.096	-373.527	28.84 40.73	-0.445 -0.609
	3600	38.911	124314	91.014	119.878	-370,219	52.544	-0.762

Nickel (NI)

Ni₁(cr,l)

_
Ü
=
_

Enthalpy Reference		Temperature =	- 7, - 298.15 K		Standard St	Standard State Pressure = p*	0.1 MPa
ТÆ	 ប)- s	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	- Κποι Δ.Η.•	Þ¢.	log Kr
9 8	0.	0.	INFINITE	-4.786	Ö	oʻ (ö
8	22.468	20,200	32.143	-2389	ာ်ဝ	jo	öö
057	24.397	25.432	30.290	-1.215	oʻ	oʻ	ರ
298.15	15.567	29.870	29.870	ď	o'	oʻ	ď
88	20.024	30.031	29.871	0.048	o' c	o c	o' c
400	28.493	37.863	30.922	2776	်ငံ	်ဝဲ	.
\$ £	31.045	41.281	31.886	4.228	o c	00	00
8 8	34851	50.440	35.404	2.74	j c	ော်ဇ	3 6
200	30 8 33	50.00	36.184	770.6	. (. c	
631.000	39.832	\$2.263 \$2.263	36.187	10.12	7 - -	LAMBDA MAXIMUM TRANSITION	MUM
88	30.794	55.575	37.941	12.344	ó	ó	ő
28	31.589	59,697	40.408	15.431	o' c	oʻ c	ರಂ
0001	32.217	66.742	44.992	21.750	ó	ာ်ဝံ	ಶರ
82	32.928	69.845	47.112	25.007	ö	Ö	ö
300	34518	75.471	51.051	31,746	ರ ೦	o' c	o' c
85	35.397	78.061	52.888	35.241	o o		်င် (
851	27.770	80.334 80.034	24.049	38.827	၁ ရ	oʻ oʻ	o' (
28	38.284	85.199	57.972	45.206	ಶರ	ರ ರ	ರ ರ
1728.000	38.535	85.827	58.419	47.361	CRYSTAI	LAL <> LIQUID	<u>g</u>
1800	28.011	4 25	50.0419	94516		TRANSTITION	
200	38.911	99.446	61.968	71,208		ာ်ဝ	ರ ರ
2000	38.911	101.442	63.893	75.099	ö	oʻ	o
22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	38.911 38.911	103,341	65.726 61.477	78.991	oʻ c	o' c	ರಂ
2300	38.911	106.881	69.153	86.773	ö	်ငံ	ಕರ
2500	38.911	110.125	25.75 23.333	90.664 94.555	o	o' c	oʻ c
2600	38.911	111.651	73.787	98.446	်ဝံ	ó	Ö
2200	38.911	113.120	75.217	102.337	o'	6	ď
2900	38.911	115.900	77.928	110.120	် င	ď	
3000	38.911	117.219	79.216	114,011	ö	ó	6
3100	38.911	118.495	80.462	117.902	o	ó	ď
3156.584	38.911	119.199	81.151	1	FU	FUGACTIY - 1 bar	
3200	38.911	119.731	81.670	121.793	-376.835	5.189	-0.085
3400	38.911	122.090	83.979		-373.182	28.964	-02/1
3200	38.911	123.218	82.084		-371.873	40.778	-0.609
3600	38.911	124,314	86,159	137.357	-370219	52.544	-0.762
REVIOUS:						CURRENT: I	CURRENT: December 1976

Nickel (NI)

CRYSTAL-LIQUID

Ar = 58.69 Nickel (NI)

Refer to the individual tables for details.

Nickel (NI)

CURRENT: December 1976 (1 bar)

٤
_
ē
×
ပ
=

December 1976 (1 atm)

PREVIOUS:

Nickel (NI)	IDEAL GAS		A, = 58.69 Nickel (NI)	Nickel (Ni	_						Ni ₁ (g)	=
IP(Ni, g) = $61579 \pm 10 \text{ cm}^{-1}$ $S'(298.15 \text{ K}) = 182.190 \pm 0.08 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$			$\Delta_t H^0(0 \text{ K}) = 428.1 \pm 8.4 \text{ kJ-mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = 430.1 \pm 8.4 \text{ kJ-mol}^{-1}$	Enthalpy R T/K	eference Te	emperature	Enthalpy Reference Temperature = T_r = 298.15 K $TK C_r^* S^* - [G^* - H^*(T_r)]T$	S H*-H*(T,)	Standard State Pressure Ld.mol ⁻¹ Δ _i H* Δ _i G*	Pressure = p	= p* = 0.1 MPa log K,	Г.
	Electronic Levels and Quantum We State	m Weights		000 2000	0. 23.510 23.3%	0. 156.498 172.882	INFINITE 203.000 184.321	-6.825 -4.650 -2.288	428.076 429.743 430.216	428.076 414.839 399.680	INFINITE -216.690 -104.386	
		6		298.15	23.275		182.574 182.190	-1.122 0.	430.208	392.044 384.701	-81.913 -67.398	_
	³ D ₃ 204.786	r v		930	23.367	182.334	182.190	0.043	430.110	384.419	-66933	
	F, 1332.153	۰ ۲		333	23.839	189.119	183.112	7563	429.742 429.742	369.239	-48.218	
		mu		8	24.374	194.500	184.870	4.815	429.187	354.174	-37,000	
	F ₂ 2216.519	n		888	24.734	202.808	186.858 188.870	9.756	428.366	339.243	-29.534 -24.212	
Enthalpy of Formation The enthalpy of formation for Ni(g) is obtained by an analysis of the vapor pressure	led by an analysis of the vapor or	ressure data of	data of Morris et al. In this study a pas-transmort	888	24.981 24.942 24.841	206.141 209.082 211.705	190.825 192.693 194.466	12.253	426.937 426.305 475.605	309.782 295.174 280.641	-20 <i>227</i> -17.131 -14.659	
method was used to measure vapor pressures (16 points) over liquid nickel in the range 1	points) over liquid nickel in the ra	inge 1816–189.	816–1895 K. For this vaporization process, we obtain	88	24.701	214.066	196.142	19.716	424.825	266.182	-12640	
Δ ₁₁ , (230.13 k) = 95.33 ± 1.23 καθιποί (200 μα) μα 96.34 ± 0.12 carποί (3το μα), 1.0ε chiτορy difference (2το μαν–5το μαν) is only -0.04 ± 0.7 cal·K ⁻¹ -mol ⁻¹ which suggests good consistency between our adopted functions and the vapor pressure data. Using the 3rd	s good consistency between our ad	lopted function	ne entropy afference (2nd law-3rd law) is and the vapor pressure data. Using the 3rd	88	24.364 24.187	218.166	199.225 200.643	24.624 27.051	422.993 421.925	23.289 23.289	-9.542 -8.330	
law Δ_{cool}^{μ} (1981.) K) and Δ_{cl}^{μ} (Ni, 1. 298.1.) K),* we calculate and adopt Δ_{ll}^{μ} (Ni, g. 298.1.5 K) = 102.8 kcal-mol ⁻¹ . [This is the same value chosen by Hulteren et al. * and Mah and Pankratz. * Thus we maintain closer similarity with the most recent rabulations 1), we calculate and adopt $\Delta_p H^{\circ}(N)$	ii, g, 298.15 K) ilarity with the	 102.8 kcal·mol⁻¹. [This is the same value most recent tabulations 1 	000	24.012	221.628	201.987	31.854	420.750	209.109	-7.282	-
Using mass spectometric intensity data. Farber and Srivastava dobtained a 2nd law enthalpy of sublimation of 99.4 kcal mol-1 at an average	r and Srivastava obtained a 2nd la	tw enthalpy of s	ublimation of 99.4 kcal·mol ⁻¹ at an average	<u>8</u>	23.524	224.612	204,477	36.590	418.059	181.057	-5563	
temperature of 1653 K and a 2nd law enthalpy of vaporization of 92.2 kcal·mol ⁻¹ at an average temperature of 1863 K. Using auxiliary data, we calculate A4f*(Ni. 1, 298.15 K) = 102.1 kcal·mol ⁻¹ and 99 8 kcal·mol ⁻¹ respectively. Rutner and Hanry messure over	f vaporization of 92.2 kcal·mol ⁻¹ ; -mol ⁻¹ and 99.8 kcal·mol ⁻¹ respec	at an average te	mperature of 1863 K. Using auxiliary data, ² and Haury ⁶ measured vance pressures over	2002	23.245	227.229	206.737	38.935	397.842	155.054	-4263	
Ni (28 points in the range 1277–1658 K), using the Langmuir coulty. Their results yield a 2nd law value of 107.0 ± 5.8 kcal-mol ⁻¹ and	the Langmuir technique. Their re-	sults yield a 2n	d law value of 107.0 ± 5.8 kcal·mol ⁻¹ and	2200	23.121	229.556	208.802	43.584	394.709	129.656	-3225	
a 5th Jaw value of 103.7 ± 4.0 kcar-mol . The drift is -2.3 ± 3.9 car-k . Thou is a didition kunter and Haury determined the best values of the heat of sublimation and vaporization and the parameters in a vapor pressure equation by statistically weighting nine sets of data.	d the parameters in a vapor press	sure equation t	itner and Haury' determined the best values by statistically weighting nine sets of data.	7300 7400	22.903	231.650	210.699	48.186	391.528 389.923	104.560 92.117	-2375	
Although the results of this statistical treatment lead to enthalpies of formation for Nig. Occussion with the adopted value, the results are	lead to enthalpies of formation for	for Ni(g) consists	tent with the adopted value, the results are	2002	22.651	234 441	212.452	55.017	388.308	67.431	-1,600	
Heat Capacity and Entrony	or pressure studies are discussed t	oy nullgren er	di.	8008	2222	235.295	214.883	59.279 59.534 59.534	385.057 383.421	55.183 42.9%	-0.802	
The electronic energy levels and quantum weights used in the calculation are from Moore? and Roth. Not all levels are listed above. The	ights used in the calculation are fn	rom Moore' an	I Roth. Not all levels are listed above. The	300	22.441	237.667	216.323	64.031	380.135	18.794	-0327	
tabulated entropy values agree within 0.001 cal-K ⁻¹ -mol ⁻¹ with the recent tabulation by Hultgren et al. 4 and Mah and Pankratz. There are	·K ⁻¹ ·mol ⁻¹ with the recent tabular	tion by Hultgre	in et al. 4 and Mah and Pankratz. 5 There are	3156.584	22.410	238.402	217.023	67.541	378,487 FIIGA	7 6.776 FIIGACITY = 1 bar	-0.114	
produce are small large to occur observed already classified. It is not expected use a (250.13 s.) would be already diese states, but that in the range 3000-6000 K, an error of 0.2-0.3 cal·K -1-mol -1 might result. In our present tabulation, the levels above 20000 cm ⁻¹	!-0.3 cal·K ⁻¹ ·mol ⁻¹ might result.	. In our presen	t abulation, the levels above 20000 cm ⁻¹	3200	22.388	239.113	217.703	68.513		. oʻ		
contribute 0.0005 cal-K-1-mol-1 at 3000 K and	0.15 cal·K ⁻¹ ·mol ⁻¹ at 6000 K to	the entropy.		3860	227 238 238 238 238	240.469 241.118	219.002 219.002 219.625	72.988 75.225	ತರರ	ರ ರ ರ		
References 1. P. Morris, G. R. Zellars, S. L. Payne, and R. L. Kipp, U. S. Bur. Mines R 15364.	. L. Kipp, U. S. Bur. Mines R 15	364, 10 pp. (1957).	57).	3600	22.33	242.361	220,231	77.462	ರಂದ	ರರ	ರೆರ	
² JANAF Thermochemical Tables: Ni(I) and Ni(cr), 12–31–76. ³ M Farber and R. D. Srivastava in Analytical Calorimetry, V.	(ct), 12–31–76.	The sud I E	Johnson Plenum Prese 1074 nm 731-741	988	22.456	243.54	221.956 221.956 277.503	84.185 84.185	ာ်ငံင	ರರಂ	ಶರಣ	
4. Hultgren et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals Park, Ohio,	rmodynamic Properties of the Ele	ements, "Amer	ican Society for Metals, Metals Park, Ohio,	4200	22.551	244.667	223.036	88.685	်ဝင်	် ဝင်	್ ರ	
54 D. Mah and L. B. Pankratz, U. S. Bur. Mine	les Bull. 668, 125 pp. (1976).	70017 01 01 11		84 88 88 88	22.681 22.761	245.744 246.266 246.770	224.068 224.566 226.064	93.208 95.480 97.760	000	ÖÖÖ	ರರಂ	
C. E. Moore, U.S. Nat. Bur. Stand., NSRDS-NBS 23, Volume II, 1970. [Reprint of NBS Circular 467, Volume II, 1952]	VBS 23, Volume II, 1970. [Reprin	at of NBS Circ	olar 467, Volume II, 1952].	946	22.949	241.282	225.532	100.050	ദ്ദ്ദ	joc	i de	
C. Roth, J. Research, Natl. Bur. Std. 74A, 715 (1970).	(1970).			888	23.178 23.309 23.451	248.743 248.743	226.459 226.909	106.986	ಕರರ	ddd	ಕರರ	
				2100	23.604	249.681	227.783	111.67	်ဝံ	; c	i ဝ	
				2300 2300 2400	23.769 23.947 24.136	250.141 250.595 250.595	228.209 228.627 229.038	114.045 116.431 118.835	ರರಂ	ರ ರ ರ	ರ ರ ರ	
				2200	24.339	251.489	229.442	121.258	:o	6	0	
				860 800 800 800 800 800 800 800 800 800	25.28	25238 25238 25238 25238 25328	230,231 230,617 230,996	126.170 128.660 131.176	ಶರ್ಧ	ರರದ ರ	ಶರಶರ	
				0000	05.55	253.657	231.370	133.718	0.	: ن ت غ	0.	

CURRENT: June 1984 (1 bar)

M_r = 58.68945 Nickel, lon (Ni⁺)

IDEAL GAS

 $P(Ni^*, g) = 146541.56 \pm 0.02 \text{ cm}^{-1}$

Nickel, Ion (NI')

 $\Delta_e H^{\circ}(0 \text{ K}) = 1164.98 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$

Δ_tH°(298.15 K) = [1179.003] kJ·mol⁻¹

Electronic Level and Quantum Weights £, ca. 0.00 , , , , State

 $S'(298.15 \text{ K}) = 199.72 \pm 0.04 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

from Corliss and Sugar.² The ionization limit is converted from cm⁻¹ to kJ·mol⁻¹ using the factor, 1 cm⁻¹ = 0.01196286 kJ·mol⁻¹, which is derived from the 1973 CODATA fundamental constants.³ Rosenstock et al.⁴ and Levin and Lias⁵ have summarized additional ionization and $\Delta_t H^{\circ}(Ni^{\circ}, g, 0 \text{ K})$ is calculated from $\Delta_t H^{\circ}(Ni, g, 0 \text{ K})^{1}$ using the spectroscopic value of IP(Ni) = 61600 \pm 10 cm⁻¹ (736.90 \pm 0.12 kJ·mol⁻¹) Enthalpy of Formation appearance potential data.

 $\Delta H^2(N^1, g, 298.15 \text{ K})$ is calculated from $\Delta H^2(Ni, g, 0 \text{ K})$ by using P(Ni) with JANAF¹ entralpies, $H^2(0 \text{ K}) - H^2(298.15 \text{ K})$ for Ni(g), $H^2(0, g, g, g) = 100 \text{ M}$ for $H^2(0, g, g) = 100 \text{ M}$ for $H^2(0, g) = 100 \text{ M}$ fore convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

The information on electronic energy levels and quantum weights, given by Corliss and Sugar,² is incomplete because many theoretically predicted levels have not been observed. Although we have listed only the ground state for Ni'(g), all levels listed by Corliss and Sugar² as well as estimated levels, are used in the calculation. The observed levels are too numerous to list completely. The calculations indicate that for Ni'(g), the thermodynamic functions are dependent of the estimated missing levels (for n > 3) and the cut-off procedure, the Gibbs energy function shows variations of ~20% at 1000 K. The reported uncertainty in $S^*(298.15 \text{ K})$ is due to uncertainties in the relative ionic mass, and the fundamental constants Extension of these calculations above 6000 K may require consideration of the higher excited states (n > 5), and use of different fill and cut-off procedures.

References

JANAF Thermochemical Tables Ni(g), 12-31-76; e-(ref), 3-31-82.

Corliss and J. Sugar, J. Phys. Chem. Ref. Data 10, 197 (1981).
R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

M. Rosenstock, K. Draxi et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 D. Levin and S. G. Lias, U.S. Nat. Bur. Stand., NSRDS-NBS-71, 634 pp. (1982).
 R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

Standard State Pressure = p = 0.1 MPa -17.557 -16.216 -14.990 -13.867 -12.833 -11.879 -10.395 -9.409 -8.696 -195.314 -165.918 -143.786 -126.531 -112.706 -91.942 -77.094 -65.947 -57.268 -44.629 -39.883 -35.865 -32.419 -29.431 -26.815 -24.506 -22.474 -20.663 -19.033 -8.028 -7.486 -7.084 -6.704 -6.345 -5.684 -5.378 -5.087 -4.810 -4546 -4294 -4.053 -3.823 -2.451 -2.284 -2.123 -1.671 -1.531 -1.395 -1.264 -6.006 -3.188 -3.188 -2.993 -2.625 -1.967 -1.817 log K, 1122.106 1121.752 1111.737 1101.076 1090.058 1056.100 1033.143 1010.009 986.729 963.329 939.832 916.253 892.607 868.905 845.158 821.375 797.565 774.450 751.598 728.732 705.852 682.959 660.054 637.137 614.209 591.271 568.321 545.362 522.394 499.416 476.429 458.622 447.531 436.381 425.175 413.914 402.599 391.233 356.836 333,670 322,020 310,328 275.005 263.152 251.262 298,594 Š 198.778 1199.630 1200.395 1202.139 1202.523 1185.655 1185.926 1186.197 1193.335 1194.485 1195.709 1196.823 1197.843 1201.070 1186 467 1186.737 1187.206 1187.275 1164,976 187.814 1188.083 1188.352 1188.621 1188.890 812.593 812.593 814.515 816.439 818.363 820.286 824.127 826.044 827.957 841.165 843.015 844.852 846.675 848.483 850.276 852.052 Limol- $H^{\bullet}-H^{\bullet}(T_{\bullet})$ 5.815 9.739 12.339 14.225 17.080 19.474 19.474 21.706 23.870 28.115 30.218 32.314 34.406 36.495 38.582 40.668 42.752 44.836 46.919 49.002 51.084 53.166 55.248 57.329 59.411 61.493 63.574 63.556 67.737 69.819 71.900 71.900 71.900 71.900 71.900 80.227 82.309 84.391 86.473 88.555 90.637 92.719 94.801 96.883 11.461 113.543 115.626 117.709 Enthalpy Reference Temperature = T, = 298.15 K $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{i})]T$ 215.183 219.525 223.195 226.354 229.121 231.578 233.785 235.788 237.619 242.325 243.688 244.968 246.175 247.316 252246 253.107 253.934 254.730 255.24 255.54 255.54 256.930 256.930 256.195 260.195 261.362 261.362 201.149 203.945 207.020 209.973 248.399 249.429 250.410 251.348 262.472 263.004 263.004 264.030 264.524 265.479 265.941 266.393 240.869 K-'mol-' 0. 151.833 167.752 180.587 285.080 285.570 286.049 286.517 262.195 199.724 243.650 268.566 271.619 272.544 273.430 274.280 75.097 275.882 276.639 277.370 278.075 278.758 280.059 280.681 281.284 283.537 283.537 284.064 284.578 287.422 287.861 288.290 288.711 290.314 291.071 291.440 291.802 292.158 292.508 270.650 281.871 286.974 289.123 20.816 20.816 20.815 20.815 20.816 20.816 20.816 20.817 20.817 121.588 21.442 21.206 21.072 20.991 20.904 20.879 20.862 20.849 20.840 20.833 20.828 20.821 20.819 20.818 20.817 20.818 20.819 20.819 20.820 20.820 20.822 20 20.824 20.821 20.827 ţ 4550 ¥

CURRENT: June 1984 (1 bar)

-2506 -2551 -2554 -2674 -2717 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756

244.700 253.926 263.197 272.513 281.873 291.276 300.723 310.213 319.746 329.322

105.178 107.286 109.394 111.500 113.606 115.710 117.814 119.917 122.019

217.025 217.425 217.425 218.204 218.583 218.955 219.321 219.681 220.034

237.648 238.057 238.459 238.852 239.239 240.356 241.068

21,090 21,079 21,059 21,050 21,050 21,033 21,033 21,033 21,018

PREVIOUS:

Nickel, Ion (NI ⁻)	IDEAL GAS	M,= 58.69055 Nickel, Ion (NI ⁻)	Nickel, lo	(NI)						NI ₇ (g)	_
EA(Ni, g) = $1.156 \pm 0.010 \text{ eV}$ $S^{2}(298.15 \text{ K}) = 174.577 \pm 0.005 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$		$\Delta_t H^{\circ}(0 \text{ K}) = 316.5 \pm 1 \text{ kJ·mol}^{-1}$ $A.H^{\circ}(0 \text{ K}) = 1311.7641 \text{ kJ·mol}^{-1}$	Enthalpy R	eference Te	emperature	Enthalpy Reference Temperature = Tr = 298.15 K		Standard State Pressure = p^* = 0.1 MPa * Lumber	e Pressure = p	- 0.1 MPa	_
		INITED [FOLLIS] = (N. CLOCZ) 147	<i>T.</i> K	ប	S -{G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	 •H'\ \	₽'C•	log K.	
	Electonic Level and Quantum Weight State \$\epsilon\text{cm}^{-1} & \epsilon\text{St}		200 ° 200 °	0. 20.786 20.802 20.870	0. 151.833 166.242 170.890	INFINITE 193.117 176.490	-6.207 -4.128 -2.050	316.540			
			298.15	21.017	174.577	174577	0	311.764	274.874	-48.157	
	.D ₃₂ 1470 4		93.00 400.00	21.025 21.265 21.564	174.707 177.965 180.824	174.578 174.834 175.408	0.039 1.096 2.166	311.716 310.401 309.037	274.646 268.570 262.687	-47.820 -40.082 -34.303	
Enthalpy of Formation	•		2 8	21.886	183,382	176.154 176.995	3.253 4.355	307.632	256.977	-29.829 -26.266	
Δητ (N ₁ , g, UK) is calculated from Δητ (N ₁ , g, UK) ¹ using the adopted electron affinity of EA (N ₁) = 1.156 ± 0.010 eV (111.546 ± 0.965 kJ·mol ⁻¹). This value, recommended by Hotop and Lineberger, is based on a laser photoetachment electron spectrometry study. ³	J.K.)* using the adopted electron affinity of EA d Lineberger, ² is based on a laser photodetac	$(Ni) = 1.156 \pm 0.010 \text{ eV} (111.546 \pm 0.965)$ hment electron spectrometry study. ³	88	23.099	189.802	178.797 180.627	6.603 8.896	303.071	240.763 230.634	-20.960 -17.210	
Additional information on Ni ⁻ (g) may be obtained in the critical discussions of Hotop and Lineberger, ²⁻⁴ Rosenstock <i>et al.</i> ³ and Massey. ⁶ $\Delta H^0(Ni$, g, 298.15 K) is obtained from $\Delta H^0(Ni$, g, 0 K) by using EA(Ni) with JANAF¹ enthalpies, $H^0(0 K) - H^0(298.15 K)$, for Ni ⁻ (g),	ed in the critical discussions of Hotop and Lin g, 0 K) by using EA(Ni) with JANAF entl	teberger, 4 Rosenstock et al. 3 and Massey. halpies, H°(0 K)-H°(298.15 K), for Ni ⁻ (g),	<u> </u>	23.367 23.367 23.348	196.436 199.185 201.646	182.414 184.127 185.758	13.552	294.245 294.245 291.313	20.52	-14.425 -12.279 -10.580	
Ni(g), and e ⁻ (ref). $\Delta_H^o(Ni^- \to Ni + e^-, 298.15 K)$. to threshold effects discussed by Rosenstock et al.	differs from a room-temperature threshold en	ergy due to inclusion of these enthalpies and	1100	23.274	203.869	187.305	18.219	288.309	193,809	-9.203	
convention that excludes the enthalpy of the electron.	on.		8 <u>8</u> 88	12.22 13.04 13.04 13.04 13.04	207.738 209.441 211.017	190.160 191.477 192.728	22.852 25.149 27.433	282.045 278.769 278.759	17.160 19.214 169.214	-7.118 -6.313 -5.624	
Heat Capacity and Entropy The ground state configuration for Ni ⁻ (g) is given by Hotop and Lineberger ²⁻⁴ and	ren by Hotop and Lineberger ² * and Rosens	Rosenstock et al. ³ and Masey. ⁶ The fine structure	992	22.526	212,483	193.918 195.050	29.705	271.902	154.027	-5.028	
separation has been measured experimentally be laser photodetachment electron spectrometry and is that recommended by Hotop and Lineberger.?	laser photodetachment electron spectrometry	and is that recommended by Hotop and	8888 8888 8888	2230 2200 200 200 200 200 200 200 200 20	215.136 216.345 217.487	196.131 197.163 198.151	34.210 36.446 38.671	247.439 243.705 239.961	140.441 134.599 128.953	-4.076 -3.700 -3.368	
References			2200	22.030	218.568	199.098	40.887	236.207	123.495	-3.072	
 JANAF Thermochemical Tables: Ni(g), 12-31-76; e (*g), 3-31-82. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, J. Phys. Chem. Ref. Data 14, 731 (1985). 	6; e (~g), 3-31-82. tef. Data, J. Phys. Chem. Ref. Data 14, 731	(1985).	25.55 25.55 26.55	21.881 21.881 21.815	221.505 221.505 222.397	200.880 201.720 202.529	47.293 49.670	228.674 224.896 221.111	108.168 108.168 70.379	-235 -235 -216	
'R. R. Corderman, P. C. Engleking and W. C. Lineberger, J. Chem. Phys. 70, 4474 (1979). 'H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).	eberger, J. Chem. Phys. 70, 4474 (1979). Ref. Data 4, 539 (1975).		2600 2700	21.755	223.251 224.071	203,310	51.848 54.021	217.320	98.744 94.256	-1.984	
⁵ H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977). ⁶ H. S. W. Massey, "Negative Ions", 3rd., Cambridge University Press, Cambridge, 741 pp. (1976).	. Ref. Data 6, Supp. 1, 783 pp. (1977). dge University Press, Cambridge, 741 pp. (1	976).	3000 3000 3000	21.648 21.600 21.556	224.860 225.618 226.350	204.792 205.497 206.180	56.188 58.350 60.508	209.720 205.913 202.101	89.908 85.696 81.616	-1.677 -1.544 -1.421	
			3100 3200	21.516	227.056 227.739	206.843 207.485	62.662 64.811	198.285	77.662 79.021	-1309	
			3500 3500	21,443 21,411 21,380	228.39 229.039 229.659	208.109 208.715 209.305	66.958 69.100 71.240	-184.541 -186.714 -188.889	87.223 95.491 103.823	-1.381 -1.467 -1.549	
			3600	21.352	230,261	209.878 210.437	73.376	-191.069 -193.252	112,217	-1.628	
			8864 4900 4900 4900	2 2 2 3 2 2 2 3 2 2 2 3	231.414 231.967 232.505	210.982 211.513 212.031	25.642 07.70 781.897	-195.440 -197.633 -199.833	129.185 137.756 146.384	-1.776 -1.845 -1.912	
			4100	21.237	233.030	212.537	84.022	-202.039	155,067	-1.976	
			24 4 4 00 00 4 00 00 00	21.183	25.52 25.52	213.513 213.986 214.447	88.265 90.385 502	-208.707 -208.707	181,434	-2.154	
			4600 4700	21.152	235.468	214.899	94.618	-213.201	199.268	-2263	
			\$ 4 \$00 \$00 \$00	21.12 21.113 21.101	236,368 236,804 237,230	215.775 216.200 216.616	98.846 100.958 103.068	-217.742 -220.033 -222.339	217.299 226.386 235.520	-2365 -2413 -2460	

Nisi(cr)

CURRENT: December 1976

 $\Delta_H^{\circ}(0 \text{ K}) = -87.13 \pm 6.3 \text{ kJ}$ $\Delta_0 H^{\circ}(298.15 \text{ K}) = -87.86 \pm 6.3 \text{ kJ}$ $\Delta_{000} H^{\circ} = 6.443 \pm 0.4 \text{ kJ}$ $\Delta_{000} H^{\circ} = 30.125 \pm 2.9 \text{ kJ}$ $S^{\circ}(298.15 \text{ K}) = 52.992 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Ttu = 1249 ± 3 K $T_{\rm th} = 652 \pm 3 \, \rm K$

CRYSTAL (RHOMBOHEDRAL-HEXAGONAL)

range by calorimetric methods. These authors found $\Delta_i H^0$ (298.15 K) = -20.3 \pm 0.6 kcal-mol⁻¹ for stoichiometric NiS with an illtrend toward more exothermic values at higher sulfur content. DeRanter and Breckpot3 obtained a value of 20.08 kcal mol-1 for amo Niss from an enthalpometric titration. We calculate $\Delta H^0(298.15 \, \text{K}) = -21.3 \, \text{kcal·mol}^{-1}$ for the same material based on a 3rd law as equilibria we calculate 2nd and 3rd law values of $\Delta H^{*}(298.15 \text{ K})$ for NiS(cr) to be 20.5 ± 0.7 kcal·mol⁻¹ and -22.6 ± 3.6 kcal·mol⁻¹ respectively. The stoichiometry of NIS varies from at least NIS as to NIS Los and Arrya et al. 2 investigated A.H. (298.15 K) in the comp Rosenqvist studied the sulfur vapor pressure above solid nickel sulfides using the NyHs,S equilibrium. Combining his data for **Enthalpy of Formation**

In view of the rather large uncertainties and variations due to stoichiometry we choose to adopt the average of the five values $\Delta_d H^0(298.15 \, \text{K}) = -21.0 \pm 1.5 \, \text{kcal·mol}^{-1}$. This value is somewhat less negative than values of $-22.1 \, \text{and} -22.5 \, \text{kcal·mol}^{-1} \, \text{adopted} 1$ and Pankrantz* and Mills,5 respectively of DeRanter and Breckpot's emf data.

Heat Capacity and Entropy

measured by Conard et al., via drop calorimetry. We have joined these values smoothly with the low temperature C, measurements of and Kelley to derive the C, values from 298 652 K. Values of C, above the transition are also taken from our analysis of Conard's The low temperature heat capacity data (52-296 K) are taken from Weller and Kelley. High temperature enthalpies of NiS_{LA} enthalpy data, disregarding the points above 1000 K to avoid problems due to incongruent melting. Values above 1000 K are extrap

range of homogeneity but the α phase shows a broad limit extending to approximately NIS₁₁₀. The α phase is normally designated α to emphasize this feature. However, the sulfur-poor limit of this phase has the stoichiometric composition to at least 873 K; at 1070 deviation from stoichiometry is less than 0.05 weight % nickel. Above 1079 K the deviation of the sulfur-poor limit from stoichiometry is less than 0.05 weight % nickel. Above 1079 K the deviation of the sulfur-poor limit from stoichiometry is reasoned an anternal of stoichiometry NIS will exist as an equilibrium mixture of liquid NI₂S₂ and solid α Ni₁₋₂S. Thu Both the low (B) and high (a) temperature polymorphs of NiS dissolve excess sulfur to form solid solutions. The B phase shows a melts incongruently.

Transition Data

diagram of Kullerud and Yund. The temperature of this transition is very dependent on the exact stoicthiomery of the material. The tran enthalpy has been measured via a DTA technique by Conard et al.? and we adopt their value of 1.54 \pm 0.1 kcal-mol⁻¹. This is considing than an older value of 0.63 kcal-mol⁻¹ measured by Biltz et al. 35 but should be much more accuuccircleate due to the calib We adopt 652 ± 3 K as the transition temperature of stoichiometric NiS from rhombokedral (β) to hexagonal (α) form base on the technique used. Mah and Pankrantz* estimated 0.7 kcal·moi-1. This transition enthalpy cannot be measured by drop calorimetry since form does not revert to the \(\beta \) form on cooling

As stated above, stoichiometric NiS will begin to form a liquid at 1079 K. The conversion to stoichiometric liquid NiS is completed to the latter as the melting point of NiS with an uncertainty estimated to be ±3 K. The adopted heat of melting H° = 7.20 ± 0.7 kcal·mol⁻¹, is from our analysis of the high temperature enthalpy data of Conard et al.⁷ This value compares favorably estimated values of 7.4 and 7.0 kcal·mol⁻¹ due to Nagamori and Ingraham¹⁰ and Mah and Pankrantz.⁴

References

T. Rosenqvist, J. Iron Steel Inst. (London), 176, 37 (1954).

S. M. Ariya, M. P. Morozova, L. A. Pavlinova, and V. L. Ponomareva, Russ. J. Phys. Chem. 45, 1355 (1971).

C. DeRanier and R. Breckpot, Bull. Soc. Chim. Belg. 78, 503 (1969).

A. D. Mah and L. B. Pamkrantz, U. S. Bur. Mines Bull. 668, 125 pp. (1976).

K. C. Mills, "Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides," Butterworths, London, (1974).

W. W. Weller and K. K. Keiley, U. S. Bur. Mines RI 6511, 7 pp. (1964).

B. R. Conard, R. Sridhar and J. S. Warner, paper presented at the 106th AIME meeting, (March 1977).

G. Kullerud and R. A. Yund, J. Petrol. 3, 126 (1962).

W. Billz, F. Weikke, P. Ehrlich, and K. Meisel, Z. Anorg. Chem. 228, 275 (1936).

¹⁰M. Nagamori and T. R. Ingraham, Met. Trans. 1, 1821 (1970)

J-mol-i	Enthalpy R.	eference Te	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure = p^* = 0.1 MPa	e Pressure = 1	. = 0.1 MPa	
J-mol_			-			Kimol-1	· 		
J-mol-1	7.K	ប	S• -{G	$-[G^{\bullet}-H^{\circ}(T_{r})]T$	$H^{\bullet}-H^{\bullet}(T_t)$	$\Delta_i H^{\bullet}$	•0⁴	log K _r	
o I	0 <u>8 8</u> 0	0. 23.187 40.626	0. 12.857 35.370	INFINITE 89.876 57.135	-8.465 -7.702 -4.353	-87.131 -87.566 -87.748	-87.131 -86.854 -86.055	1NFINITE 45.368 22.475	
several	298.15	47.112	52.992	52.992	0	-87.864	-85.200	14927	
l·mol-1	300	47.196	53.284	52.993	0.087	-87.867	-85.184	14.832	
position	\$ \$	53.053 53.053	78.880	54.886 58.563	4.978 10.158	-90301	-84.172 -82.453	10.992 8.614	
omposis -	909		88.757	62.792	15.579	-93.458	-80.402	7.000	
analysis	652,000		93,399 103,281	65.050 65.050	18.483	BETA	A <> ALPHA TRANSITION	\ 	
above	55	54.518	107.105	67.804		-88.196	-78.598	5.865	
by Mah	88	80708	121.491	78.176		-142.408	-74,603	4330	
	8	65.803	7967771	82833		-141.290	-67.127	3,506	
	1200	68.743	139.980	91.375	58.326	-138.456	-39.113	2287	
	1249.000	70.137	142.759	93.337	1	ALPHA	> רולתום	1	
Meller	1,00	71.588	145.595	95.332		-136.751	-45.456	1.826	
s et al.	1500	77.278	156.237	102.751		-132.797	-31.691	9	
polated.	092	80.124 82.969	161.315	106.253	88.099	-130.554	-25.023	0.817	
						!		3	
limited									
STINE									
or me									
us, NiŠ									
e nhace									
ansition									
derably									
c the a									
1									
picie ai ng, A _{fus}									
oly with									

Nickel Sulfide (NIS)

PREVIOUS:

Nickel Sulfide (NiS)

CURRENT: December 1976

-	=
Š	4
	ď
-	
_	
	_
6	7
×	_
2	Z
•	-
•	Ü
7	Š
E	=
÷	
	ž
U	0
Niekol Culfide (Nic)	=
٩	۷
ڊ	Ę
	ະ
2	2
_	_

₽

Ni,S₁(I)

M_r = 90.75 Nickel Sulfide (NiS)

 $S^{(298.15 \text{ K})} = [72.441] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Fins = 1249 ± 3 K

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-62.474] \text{ kJ·mol}$ $\Delta_{test} H^{\circ} = 30.125 \pm 2.9 \text{ kJ·mol}$ $\Delta_H^{\alpha}(1, 298.15 \text{ K})$ is calculated from that of NiS(cr) by adding $\Delta_{\text{tw}}H^{\alpha}$ and the difference in enthalpy, H7(1249 K)-H7(298.15 K), betwee the crystal and liquid. Our 2nd and 3rd law analyses of Nagamori and Ingraham's sulfur vapor pressure data yiel $\Delta_H^{\alpha}(298.15 \text{ K}) = 14.4 \pm 0.4$ and 16.7 ± 0.4 kcal·mol⁻¹, respectively. These values agree with the adopted value within the estimate uncertainty. Meyer et al.? and Rosenqvists conducted similar vapor pressure studies at higher and lower temperatures, respectively. Be studies qualitatively show good agreement with Nagamori at overlapping temperatures. However, Meyer's data are presented graphically on and Rosenqvist's data cover only compositions near NisSxI) and is not of high enough quality to extrapolate to the proper compositie **Enthalpy of Formation**

Heat Capacity and Entropy

al. This value has a farrly high uncertainty because of the limited temperature range of the data (35 K). It is in reasonable agreement with the estimated C_p = 17 cal K⁻¹ mol⁻¹ of Mah and Pankrantz. The heat capacity below the glass transition is that of the crystal. S'(1, 298.15). The heat capacity of liquid NiS above an assumed glass transition at 860 K is taken from our analysis of the enthalpy data of Conard is calculated in a manner similar to that used for the enthalpy of formation.

Fusion Data

Refer to the crystal table for details.

Decomposition Data

The Gibbs energy data indicates that NiS(I) will decompose to the elements, Ni(I) + 1/2 $S_1(g)$, at a temperature of 2350 \pm 200 K and fugacity of 1 atm. In view of the uncertainty in the Gibbs free energy data, computation of the exact zero point does not seem justified. Sin the Gibbs energy data for NiS(I) and NiS(g)⁸ intersect at 2990 \pm 220 K, it seems clear that decomposition will occur rather than boilin

References

M. Nagamori and T. R. Ingraham, Met. Trans. 1, 1821 (1970).

⁴G. A. Meyer, J. S. Warner, Y. K. Rao, and H. H. Kellogg, Met. Trans. 6B, 229 (1975).
⁴F. Rosengvist, J. Iron Steel Inst. (London) 176, 37 (1954).
⁴B. R. Conard, R. Sridhar and J. S. Warner, paper presented at the 106th AIME meeting, (March 1977).
⁵A. D. Mah and L. B. Pankrantz, U. S. Bur. Mines Bull. 668, 125 pp. (1976).

JANAF Thermochemical Tables: NiS(g), 12-31-76.

1-1-0	Enthainy Re	Torrence T	Punperature	Futhaliny Reference Temperature = T. = 298 15 K		Standard Sta	Clandard State Pressure	ATM TO -
	3		J·K ⁻¹ mol ⁻¹			LI-lom-L		
	7/K	ະ	ر ک	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	Δ_{rH}^{\bullet}	Φ_iG	log Kr
cen	° <u>8</u> 8							
ated	298.15	47.112	72.441	72,441	Ó	-62.474	-63.609	11.494
Soch	88	50.501	86.780	72,442	0.087	-62.477	-65.629	11.427
į	800	53.053	98.329	78.012	10.158	-66.627	-66.788	6977
	600 652.000 652.000	55.312 56.372 53.152	108.206 112.847 122.729	82.240 84.498 84.498	15.579	-68.069 BET/	.06966.681 BETA <> ALPHA TRANSITION	A
d et	002 8008	54.518	126.553	87.252 92.638	33.105	-62.807	-66.823	4.986
5 K)	860.000	59.070 76.776	138.228	95.673 95.673	36.598	S	v∑	-
	0001	76.776 76.776	141.719	97.642	39.669 47.346	-116.333	-66.733 -61.363	3 873
	1200	76.776 76.776	157.125	107.103	55.024	-111.151	-56.254	2.671
	1249 000	76.776	166.878	113,665	66.464	ALPHA	v	
nd a	084 8	76.776 76.776 27.76	169.951	115.813	70.379 78.057	-106,325	-46.692 -42.191	1.876
ince.	99	76.776	185.893	127.510	93.412	-101.902	-33.645	807
 	925	76.776	190.547	131.083	060.101	-97.916	-29.567	0.908
	000	76.776 76.776	199.087	137,800	116.445	-111.450	-20.024	1550
	2100	76.776	206.771	144.009	131,800	-107.890	-10.582	0.263
	382	76.776	213.755	149.77	139.478	- 104.372	-5.9%	0.142
	2400 2500	76.776 76.776	217.023	152.509	154.833	-102.626	2.959	-0.064
	2600	76.776	223.168	157.711	170.189	-99.158	11.617	-0.233
	2800	76.776	228.858	162.593	185.544	-95.714	20,009	-0.37
	3000	76.776 76.776	231.552	164.924 167.189	193.222 200.899	-94.001	24.111 28.155	-0.434
	3100	76.776	236.673	169,390	208.577	-90.590	32.142	-0.542
	3200	76.776	239.110	171531	216.254	-465.726 -467.770	41.262	-0.674
	3400	76.776	243.765	175.644	231.610	-459.034	72.744	-1.118
	3		8.58	44.00°C	010167	452,754	# //	ĺ
	weevillie.							

t	
•	i
	٠
u	
	٠
⋍	
2	
_	

<u>ن</u>
e (NIS
Sulfid
=

M _r = 90.75	Nickel Sulfide (NIS)	ifide (N	(S)					NI,S,(cr,I)
	Enthalpy R	eference To	mperature I.K -1mol-1	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure		= p* = 0.1 MPa
	7/K	ប	S -[G	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_t)$	1	4.G•	log Kr
	880	0. 23.187 40.626	0. 12.857 35.370	INFINITE 89.876 57.135	-8.465 -7.702 -4.353	-87.131 -87.566 -87.748	-87.131 -86.854 -86.055	1NFINITE 45.368 22.475
	298.15	47.112	52.992	52.992	ö	-87.864	-85.200	14.927
	88	20.50	53.284	52.993 54.886	0.087 4.978	-87.867 90.301	-85.184 -84.172	14.832
	8 8	53.053	78.880	58.563	10.158	-92.016	-82.453	8.614
	652,000	56.372	93.399	65.050	18.483	₽	A <> ALPHA	
	88	54.518	107.105	67.804	27.511		-78.598	
	888	60.208	121.491	78.176	38.983 45.146	-142.408	-74.603	633
	1200	65.898 68 743	134.125	87.221 91.375	\$1.594 \$8.326	-139.971 -138.456	-59.773	2.838
	1249.000	70.137	142.759	93.337	61.728	Ŧ	A <> LIQUID TRANSITION	H
	1300 1400 1500 1500	76.776 76.776 76.776	169.951 175.641 180.938	96.283 101.751 106.855	95.769 103.447	-106.325 -104.061 -101.907	-46.692 -42.191 -37.848	1.876
	1600	76.776	185.893	111.642	118.802	-99.852	-33,645	8601
	866	76.776 76.776	194.936	120.404	134.157	-113.247 -111.450	-24.884	0.722
	2100	76.776	205.02	131.919	157.190	-107.890	- 15.239	0.399
	888	76.776 76.776	213.756	135.403	172.545	-106.126	-5.99	0.142
	2400 2500	76.776 76.776	217.023 220.157	141.930	180.223	-102.626	2.959 7.322	-0.064
	2800	76.776	223.168	147.946	195.578	-99.158	11.617	-0233
	3800	76.776	228.858	153.525	210.933	-97.433 -95.714 -94.001	20,008	0.373
	3000	76.776	234.155	158.726	226.289	-92.294	28.155	-0.490
	3200 3300 3300	55.75 57.75 57.76 57.76	236 673	161.200 163.597 165.991	233.966 241.644 243.37	-465.726 -463.726 -463.339	32.142 41.262 57.054	-0.674
	3400	76.776	243.765	168.17	256.999	-459.034	72.744	-1.118
								•
								•

	PREVIOUS						CIBBENT. I	CHDPENT: December 1076
	I NEW LOUGH						CUKKENI.	December 1970

CRYSTAL(B-a)-LIQUID

0 to 652 K crystal, rhombohedral (β) 652 to 1249 K crystal, hexagonal (α) above 1249 K liquid

Refer to the individual tables for details.

Nickel Suifide (NIS)

CURRENT: December 1976 (1 bar)

=
Ni,S ₁ (g
Z
(3)
de (NiS
Pilin
el Si
Š
75 1
M, = 90.75 Nickel Sulfide
W.
S
DEAL GAS
EAL
₫
(C)
Nickel Sulfide (NIS)
fide
Sul
ckel
ź

	Δ_H (298.15 K) = 357.42 ± 16.7 kJ·mol ⁻¹	$3.15 \text{ K} = [252.282 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$
5	$\Delta_t H^{\circ}(0 \text{ K}) = 357.40 \pm 16.7 \text{ kJ·mol}^{-1}$ Entl	

Enthalpy Re		7.K	0	85	ន្តន	298.15	300	350	400	450	8	99	82	908	06	0001
$\Delta_i H^{\circ}(0 \text{ K}) = 357.40 \pm 16.7 \text{ kJ} \cdot \text{mol}^{-1}$	$\Delta_t H^{\circ}(298.15 \text{ K}) = 357.42 \pm 16.7 \text{ kJ} \cdot \text{mol}^{-1}$															re = [2.07] A
			1	cirgin										-		1
			M. Section 11	מות לתשווותווו אנ	ō	6	Ε	[5]	<u> </u>	2 8	<u>.</u>	Ξ		" " " " " " " " " " " " " " " " " " "	1000	a. = [0.0011] cm
			Electronic I and Organic Mineter	e. cm ⁻¹	*	<u> </u>	[1360.7]	[2269.6]	116661.61	10011	[109//.6]	[17230.7]		4 4 3	neve .	1 8
•	8.4] J·K ⁻¹ ·mol ⁻¹		I II	3	1									= \$44 cm ⁻¹	1 10:00	be = [0.191] cm.

Enthalpy of Formation

NiS(g) + Mn(g) = MnS(g) + Ni(g). Since they report no data, we adopt their value of $D_0^a = 81.5 \pm 3.5$ kcal·mol⁻¹ based on their 3rd la analysis of this equilibrium. With auxiliary JANAF data² this yields Δ_0^H ? (298.15 K) = 85.4 ± 4.0 kcal·mol⁻¹. Trevedi³ studied the absorptic spectrum of NiS and determined $D_0^a = 101.6$ kcal·mol⁻¹ from the onset of continuous absorption due to photodissociation. This value is like to be too high in view of the experimental difficulties in determining the exact position of the onset of continuous absorption. Complication arise because of background emission from the furnace. A Birge-Sponer extrapolation of the vibrational data to determine Do is 1 meaningful since DeVore and Franzen⁴ used the reverse procedure to arrive at the reported value of $\omega_x x_c$. and = 5 modified Knudsen et al. 1 used

Heat Capacity and Entropy

assigned to 5°(298.15 K) is based mainly on the uncertainties in this approximation since the presence of the sulfide ion will undoubted the Ni² ion² following the procedure of Brewer and Rosenblatt⁶ for the transition metal oxides. As stated by Brewer and Robenblatt, 6 to procedure usually overestimates the contribution of electronic states. Nevertheless, it appears to be the best method available. The uncertain thermodynamic properties. The vibrational constants are taken from a study of the matrix isolation spectrum by DeVore and Franzen. 4 T rotational constants are estimated based on an oxide-sulfide correlation due to Barrow and Cousins, r(NiS) = 0.237 + 1.116 r(NiO). T value r(NiO) = 1.64 Å is taken from Brewer and Chandraskharaiah.* The value of $lpha_{\epsilon}$ is estimated assuming a Morse potential function usi No experimental information is available on the electronic structure of NiS. The electronic states are estimated to be identical to those alter the electronic structure of the nickel ion. Levels above 50,000 cm⁻¹ are not included since they have a negligible effect on i the expression given by Herzberg.

References

1. Drowart, A. Pattoret, and S. Smoes, Proc. Brit. Ceram. Soc. 8, 67 (1967).

2. AnnAF Thermochemical Tables: Ni(g, cr), 12–31–76; S(cr), 12–31–65; S(g), 6–30–71.

3. Trevedi, Proc. Acad. Sci. United Provinces Agra Oudh, India 5, 34 (1935).

4. T. C. DeVore and H. F. Franzen, High Temp. Sci. 7, 220 (1975).

3. C. E. Moore, U. S. Nat. Bur. Stand. Circ. 467, Vol. 2, (1952).

Brewer and G. M. Rosenblatt, in "Advances in High Temperature Chemistry," L. Eyring, ed., Vol. 2, Academic Press, New York, (1997)
 P. F. Barrow and C. Cousins, in "Advances in High Temperature Chemistry," L. Eyring, ed., Vol. 4, Academic Press, New York, (1971)
 Brewer and S. Chandraskharaiah, UCRL-8713 revised, (June 1960).
 Herzberg, "Spectra of Diatomic Molecules," Second Edition, Van Nostrand, New York, p. 108, (1950).

Herzberg, "Spectra of Diatomic Molecules," Second Edition, Van Nostrand, New York, p. 108, (1950)

Ţ, Ţ	Enthalpy R	eference Te	mperature	Enthalpy Reference Temperature = T, = 298.15 K	k	Standard State Pressure = p = 0.1 MPa	e Pressure =	p = 0.1 MPa
	7.1	ı,	S - [G	-H'(T,)]/T	H*-H*(T,)	Δ'.Η.*	Δ,G•	log Kr
	200 o	0. 29.323 31.871 33.262	0. 218.044 239.056 246.320	INFINITE 281.104 255.355 252.843	-9218 -6306 -3260 -1.631	357.398 359.113 358.628 358.063	357.398 339.306 319.584 309.886	INFINITE -177.235 -83.467 -64.747
	298.15	34.452		252,282	0	357.419	300.664	-52.675
	320	34.495	252.496	252.283 252.707	0.064	357.392 356.646	300.312 290.857	-52.289 -43.408
	\$ 8	38.297	267.081	254.915 256.334	5.475 7.370	352.101 350.478	272.680	-31.652 -31.652 -27.574
	98	39.598	278.177	259.397	11.268	347.513	246.918	-21,496
	28 8 8 8 8 8 8	41.118	289.808	268.571	19.361	342.639	214.174	-13.984
	8 2 2	41.658	303.021	274.100	31.813	285.530	179.943	-8.545
E	925	41.507 41.507	309.971	279.099 281.416	40.133 47.77	283.321 283.321	10.390	-7.417 -6.466 -5.655
law.	1800	41234	315.892	283.620	48.408	280.664	142.287	-4.955
e ion	1200	41.087	318.549	285.721 287.726	52.524 56.625	279.153 277.512	133.111	-4346
Sign	888	6.80 679 679	325.574	291.476	64.787	258.592	115 770	-3.360
	2100	40 456	329.634	294,920	72.900	253.102	92.397	-2.298
	2300	40.362	331.514	296.541 298.101	76.940 80.972	251.229	84 789	-2.013 -1.755
Jo a	2400 2500	40.206 40.144	335.019 336.659	299 604 301.053	84.996 89 014	247.430	69.825 62.464	-1.520
this	2600 2700	40.092	338.232	302.453 303.807	93.026 97.032	243.572 241.626	55 181 47.972	-1.109
g g	2800	39.990 39.990 70.97	27.7 27.60 2	305.116	105.036	239.670 237.706	40.835 33.768 75.77	-0.762 -0.608
E S	3100	39.963	345.270	308.809	113.031	233.756	19.837	-0.334
ii je	3300	39.961 39.964	347.769	309.968	121.027	-145.061	18.156 23.262	0.28
î	3800	39.974 39.990	350.121	312.191	125.020	-145.731 -146.070	33.504	-0.436
	3600 3700	40.011	351.248 352.344	314.298	133.018	-146.411 -146.756	38.639 43.784	-0.561
	3800 3800 4900 4900	40.106 40.138	353.412 354.453 355.469	316.300 317.265 318.208	141.025 145.034 149.046	- 147.105 - 147.457 - 147.815	48.938 54.102 59.275	-0.673 -0.725 -0.774
	4100	40.178	356.461	319.129	153.061	-148.178 -148.547	64 457 69.647	-0.821
69	44 4 450 651	40.269 40.318	358.376 359.303	320.910 321.772 321.616	161.106	-148.923 -149.308 -149.701	74.847 80.055 777	0.909
7).	946	40 422	361.097	323.443	173.209	-150.104	90.498	-1.028
•	\$ 8 8	40.532	362.820	325.048	181.304	-150.944	100.977	660:1
	2005	40.647	364.47	326.592	189.422	-151.838	111.492	-1.165
	200 200 200	40.706 40.765	365.282 366.073	327.343 328.080	193.490 197.563	-152.307 -152.793	116.763	-1.196
	25 50 20 50 20 50	20.874 20.886 20.946	366.850 367.614 368.365	328.804 329.516 330.216	201.643 205.728 209.820	-153.298 -153.822 -154.366	127.334 132.634 137.943	-1.283 -1.283 -1.310
	\$600	41.007	369 103	330,904	213.918	-154.933	143.263	-1,336
	2800	41.128	370.544 371.248	332.246 332.901	222.131	-156.139 -156.781	153.934	-1.386
	0009	41.249	371.941	333,546	230.369	-157.451	164.648	-1.433

PREVIOUS: December 1976 (1 atm)

Standard State Pressure = p^* = 0.1 MPa

KJ-mol-

Enthalpy Reference Temperature = T, = 29&15 K

 $H^{\bullet}-H^{\bullet}G$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\epsilon})]T$

Ş.

21.867 21.725 21.725 29.30 8.144 6.787 5.597 4.129 2.936 1.948 1.118 0.412 0.412 0.412

-114.057 -109.134 -103.951 -96.438 -79.055

-142.439 -144.663 -146.172 -253.607 -252.093

-124.772 -122.358 -118.542

-131379

--> anon --->

- CRYSTAL

-27.829 -11.047 5.595 22.101 38.474 55.432

-246.921 -245.007 -243.006 -240.921 -238.758 -253.667

187.642 194.493 201.014 207.248 213.229 218.988

91.001

91.416 93.491 95.567 97.642 99.717

-61.829 -44.755

-250.470

0. 0.131 1.7301 14.678 30.056 38.057 46.264 46.264 46.264 47.133 79.346 81.171 90.416 99.869 99.869

71.965 71.966 71.196 71.196 71.196 80.112 80.112 92.363 100.224 100.224 115.179 120.228 125.203 125.203 125.203 125.203 127.94 141.996 141.296 141.296 141.296

72.402 93.015 109.469 123.232 135.301 145.981 164.510 164.510 180.409 180.409

70.626 70.664 72.739 74.814 76.889 78.965 81.040 83.115 83.115 85.190 87.266 89.341

CRYSTAL

Nickel Sulfide (NiS2)

CURRENT March 1977

Thes = 1280 ± S*(298.15 K)

Enthalpy of

Our analysis

= [71.96 5 K	= [71.965 ± 8.4] J·K ⁻¹ ·mol ⁻¹ : 5 K	¹-mol⁻¹			Δ _t H°(298.	$\Delta_t H^0(298.15 \text{ K}) = -131.38 \pm 16.7 \text{ kJ-mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = -131.38 \pm 16.7 \text{ kJ-mol}^{-1}$ $\Delta_t \text{cu}_t H^0 = [65.689 \pm 8.4] \text{ kJ-mol}^{-1}$
f Formation is of equilibri	ilibrium data	involving NiS	Formation is of equilibrium data involving NiS ₂ is summarized below.	d below.		
Source	Source Reaction*	T/K	Data Points	Δ _t H°(298.15 K), kcal·mol ⁻¹ 2nd law 3rd la	kcal·mol ⁻¹ 3rd law	Drift cal·K ⁻¹ ·mol ⁻¹
	<	298.15	-	calorimetric	-35.1	
•	æ	923-1033	S	-46.3 ± 0.4	-47.1 ± 0.1 -0.8 ± 0.4	-0.8 ± 0.4
_	8	673-873	equation	-49.2	-48.7	0.7
_	ပ	500-723		13.9	-5.1 ± 9.9	-31.4
_	ပ	673-873	20	-2.9 ± 0.2	-7.5 ± 2.4	-14.1 ± 0.3
	∢	298.15	I emf[$em[\Delta G'(298.15 \text{ K}) = -24.3)] -25.9$	4.3)] -25.9	
		A) Ni(cr) + B) 2 Ni ₁₋₂ S(C) Ni ₁₋₂ S(cr	A) $Ni(cr) + 2 S(cr) = NiS_A(cr)$ B) $2 Ni_{1-x}S(cr) + S_A(g) = 2 NiS_A(cr)$ C) $Ni_{1-x}S(cr) + H_2S(g) = NiS_A(cr) +$	*A) Ni(cr) + 2 S(cr) = NiS _A (cr) B) 2 Ni _{1-S} S(cr) + S _A (g) = 2 NiS _A (cr) C) Ni _{1-X} S(cr) + H _S (g) = NiS _A (cr) + H _A (g)		

ccal-mol-' to yield the adopted value of -31.4 kcal-mol-'. An uncertainty of ±4 kcal-mol-' is assigned due mainly to the variation in in a recent critical evaluation. It also compares favorably with a value of -31.3 kcal-mol-1 calculated assuming the same contribution per mention that a coating of NiSz(cr) often forms on Ni-zS(cr) and it seems possible that this may lead to a slow establishment of equilibrium in this system. DeRanter and Breckpot⁸ state that their results may be biased stoichiometry of one of the reactants, Nix, S. The adopted value compares favorably with a value of -32.0 kcal·mol-1 obtained by Mills? The studies due to Delafosse and Barret* and Rosenqvists show poor agreement between 2nd and 3rd law values of A,H* as well as a large 3rd law drift and are not considered further. Kullernd and Yund mention that a coating of NISAcr) often forms on Ni. -S/cr) and it seems for NiS₂(cr) since it is a semiconductor and this may interfere in emf measurements. Consequently their results are not considered further. respectively, when combined with auxiliary JANAF data. These values are averaged with the calonmetric value due to Ariyal of -35.1 3rd law results of Biltz et al. 2 and Leegaard and Rosenquist 1 yield values of $\Delta_1H^0(298.15 \, \text{K}) = -29.1 \pm 1.6$ and -29.8 ± 1.7 kcal-mol gram-atom as in NiS and Ni,S2.

Heat Capacity and Entropy

heat capacity is estimated via the following procedure. The value at 298.15 K is estimated assuming the same contribution per gram-atom as in NIS and Ni₃S₂ yielding C₇(298.15 K) = 16.88 cal·K⁻¹·mol⁻¹. The temperature dependence is estimated using method A of Kubaschewski et al.¹¹ This yields C₇ = 15.401 + 4.960 × 10⁻³ T. The only heat capacity measurements on NiS2 are those of Winterberger and Bonnerot¹⁰ at low temperature (5-10 K). Consequently the

cal K⁻¹-mol⁻¹, respectively, but as mentioned above, these studies do not appear to be reliable since equilibrium may not have been established. A value of 19.10 cal K⁻¹-mol⁻¹ is obtained assuming the same contribution per gram-atom as in NiS and Ni₃S. ⁸ This is somewhat higher than the adopted value but this may be reasonable since the crystal symmetry of NiS, is higher (cubic) than that of NiS and Ni₃S, and Ni₃S. S(298.15 K) = 16.89 and 17.60 cal·K-1-mol-1, respectively. We adopt the average of these values, 17.2 cal·K-1-mol-1, with an uncertainty estimated to be ±2 cal K-1-mol-1. Similar analyses of studies of Delafosse and Barret and Rosenqvist give values of 13.10 and 29.96 2nd law analyses of equilibrium data of Leegaard and Rosenqvist and Biltz et al.2 combined with auxiliary JANAF data* vield (hexagonal).'

Fusion Data

The melting point of NiSAct) is taken from the phase study by Kullerud and Yund.7 The enthalpy of melting of NiSA is unknown and is estimated as follows. Lewis and Randall¹² point out that the sum of the entropy of transition(s) plus the entropy of fusion is approximately constant, on a gram-atom basis, for compounds of similar structure. Using NiS and Ni,S2 as base compounds, we calculate the above sums to be 4.06 and 4.13 cal·K⁻¹ g-atom⁻¹, respectively. Since NiS₂ has no known transition, we use the average value of 4.10 cal·K⁻¹·g-atom⁻¹ to calculate $\Delta_{lm}S^{o}(NiS_{2}) = 12.3$ cal·K⁻¹·mol⁻¹ which yields $\Delta_{lm}H^{o} = 15.7$ kcal·mol⁻¹ with an estimated uncertainty of ±2.0 kcal·mol⁻¹.

References

M. Ariya, M. P. Morozova, L. A. Pavlinova and V. L. Ponornareva, Russ. J. Phys. Chem. 45, 1355 (1971).
 W. Biltz, A. Voigt, and K. Meisel, Z. Anorg. Chem. 228, 275 (1936).
 T. Leegaard and T. Rosenqvist, Z. anorg. allg. Chem. 328, 294 (1964).
 Delafosse and P. Barret, Compt. Rendu 252, 888 (1961).
 T. Rosenqvist, J. Iron Steel Inst. (London) 176, 37 (1954).

⁶G. DeRanter and R. Breckpot, Bull. Soc. Chim. Belg. 78, 503 (1969)

Continued on page 1715

Nickel Sulfide (NIS2)

PREVIOUS:

J. Phys. Chem. Ref. Data, Monograph 9

CURRENT: March 1977

PREVIOUS:

$M_r = 122.81$ Nickel Sulfide (NiS ₂)	
רוסחום	
Nickel Sulfide (NiS ₂)	

Ni,S2(I)

Standard State Pressure = p° = 0.1 MPa

Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$

log Kr

 Φ_{G}

 $\Delta_{i}H$

 $H^{\bullet}-H^{\bullet}(T_{t})$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

ڻ

ΣX

 $\Delta_{fra}H^{o} = [65.689 \pm 8.4] \text{ kJ·mol}^{-1}$

Enthalpy of Formation

Ttus = 1280 ± 5 K

There are no experimental studies of the enthalpy of formation of $NiS_2(1)$. Therefore, $\Delta_1H^2(NiS_2, 1, 298.15 K)$ is calculated from that of $NiS_2(cr)^1$ by adding $\Delta_{lus}H^o$ and the difference in enthalpy, $H^o(1280 \text{ K})-H^o(298.15 \text{ K})$, between the crystal and liquid.

The heat capacity is assumed to remain constant at 21.75 cal·K⁻¹·mol⁻¹ (the value of NiS₃(cr) at the melting point) above an assumed glass transition point of 960 K. Below that temperature the crystal heat capacity1 is assumed to be valid. Heat Capacity and Entropy

S'(1, 298.15 K) is calculated in a manner similar to that used for the enthalpy of formation.

Fusion Data

Refer to the crystal table for details.

Decomposition Data

Yund² which indicates the presence of a liquid of variable composition in the Ni S system from a stoichiometry less than Ni₃S₁ to just above NiS₂ at temperatures slightly above the melting point. However, the authors point that this diagram does not refer to a constant pressure system and give a short discussion of the loss of sulfur to the vapor from NiS₂(cr). From the sealed tube experiments of Kullerud and Yund² NiS(I) + 1/2 S₁(g) at all temperatures above the normal melting point. This appears to be at variance with the phase diagram of Kullerud and Under standard conditions (1 atm. pressure) the use of auxiliary JANAF datal indicates that NiS₄(I) will decompose spontaneously it does appear that NiS2(I) will be stable under its own vapor pressure in a sealed tube.

-64.712 3.380 -52.582 2.497 -40.639 1.769 L<--> LQUID ---

-184.934

-187.034

0. 0131 14.678 22.264 38.055 38.055 46.264 46.264 46.264 46.269 51.289 51.289 51.289 51.289 51.289 51.289 51.289 51.289 73.129 74.129 7

122.428 135.225 135.225 142.825 142.825 148.877 158.086 160.298 160.298 170.877 173.89

70.626
70.664
71.739
71.739
71.739
71.739
76.889
81.040
81.040
91.002
91.002
91.002
91.002
91.002
91.002
91.002

-- CRYSTAL

-181.052 -179.283 -177.635 -176.111 -174.715 -190.600

223.900 231.818 237.691 239.102 245.846 252.124 257.998 263.515 268.716

S <--> LIQUI TRANSITION

GLASS

0.160 0.642 0.199 -0.186 -0.523

-28.838 -17.218 -5.700 5.712 17.032 28.989

13.148 13.076 10.151 8.249 6.923 5.943 5.192 4.471

-75.048 -75.101 -77.733 -78.963 -79.524 -79.547 -79.511

-66.569 -71.321 -74.767 -77.629 -79.853 -81.362

122.864 143.477 159.931 173.754 185.763 196.108 206.108 201.511 211.511

References JANAF Thermochemical Tables: NiS ₂ (cr), 3-31-77; NiS(l), 12-31-76; S ₂ (g), 12-31-65. ² G. Kullerud and R. A. Yund, J. Petrology 3, 126 (1962).

Ni₁S₂(cr,I)

=
•
-
U
_
2

댠
ច
\sim
S
z

-	
Ĩ.	•
ર્જિ	;
<u>(S</u>	•
NIS)	•
(NIS)	•
(NIS)	•
le (NIS ₂)	•
de (NIS ₂)	•
lide (NiS ₂)	•
lfide (NIS ₂)	
ulfide (NiS ₂)	•
Sulfide (NIS ₂)	•
Sulfide (NIS ₂)	•
Sulfide (NIS ₂)	•
el Sulfide (NIS.)	
(el Sulfide (NiS ₂)	
:kel Sulfide (NIS,)	•
ickel Sulfide (NiS.)	
lickel Sulfide (NiS,)	
Nickel Sulfide (NiS.)	,

•	log K _r		21.867	21.72	12.384	8.144	6.787	4.129	2.936 1.948			0.6 2.62 2.83	-0.186	-0841
	•9⁴⊽		-124.813	-124.772	-118.542	-114057	-103.951	-79.438	-61.829	∵. •	-28.858	-17218	5.712	28.989
14-mol-1	Δ,Η.		-131.378	-131.379	-139.577	-142.439	-146.172	-252.093	-250.470 -248.744	1		-179.283	-176.111	-190,600
	$H^{\bullet}-H^{\bullet}(T_i)$		ó	0.131	14.678	22.264 30.056	38,057	54.680 54.680	63,302	79.346	147,039	156.140	174340	192.540
	-[G*-1"(T,)]/T		71.965	71.966	80.112	86.186 92.363	98.410	109.830	115.179	124.238	125.995	134,318	149,035	161.749
J.K.'mol.'	s[C.		71.965	72.402 93.015	109.469	135,301	145.981	164.510	172,727	186.228	239.102	245.846	257.998	268.716
	೮		70.626	70.664	74.814	78.965	81.040	85.150 85.190	87.266 89.341	91.001	91.002	91.002	91.002	91.002
	7.K	0 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	298.15	8 8	8	88	8	88	1780 1780 1780	1280.000	1300	64 5 60 5 60 5 60 5 60 5 60 5 60 5 60 5 60	98	1800

 $M_t = 122.81$ Nickel Sulfide (NiS₂)

Refer to the individual tables for details.

Ž.
Ę.
Ĕ
ช
ē

NI₃S₂(cr)

CURRENT: December 1976

 $\Delta_{\rm e}H^{\circ}(298.15~{\rm K}) = -216.31~\pm 5.0~{\rm kJ \cdot m}$ $\Delta_{\rm to}H^{\circ} = 56.233~\pm 0.4~{\rm kJ \cdot m}$ $\Delta_{\rm to}H^{\circ} = 19.748~\pm 0.4~{\rm kJ \cdot m}$ $S^{(298.15 \text{ K})} = 133.887 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ fes = 1062 ± 3 K " = 829 ± 3 K

CRYSTAL (I-II)

Nickel Sulfide (Ni₃S₂)

Enthalpy of Formation

kcal·mol⁻¹, respectively. We adopt the average of the values, $\Delta_1 H^0(298.15 \, \text{K}) = -51.7 \pm 1.7 \, \text{kcal·mol}^{-1}$. Anya et al. and Vanyukov Kiseleva' reported calorimetric values of -48.3 ± 0.9 and -43.3 kcal·mol⁻¹, respectively. Vanuykov's value is undoubtedly incorrect s Mills' determined that values for Fes and MnS from the same study are approximately 25% too low. A 3rd law analysis of the emf v Three sets of authors studied the phase equilibrium between Ni,S₂(cr) and Ni(cr) by use of the H₂(g/H₃S(g) method.¹²² Our 3rd analyses of the data due to Rosenqvist,¹ Sudo² and Line and Laffitte² yield Δ_1H^0 (298.15 K = -51.6 ± 1.0, -50.1 ± 1.6, and -53.4 ± 1.0, -63.1 ± 1.0 reported by DeRanter and Breckpot² yields $\Delta_t H^o(298.15 \, K) = -38.7 \, kcal·mol^{-1}$. This value, however, refers to an amorphous materia least part of the variation in values of the enthalpy of formation apparently is a result of the very wide range of stoichionerry for the temperature phase of Ni₅S₂. ¹⁹

Heat Capacity and Entropy

The low temperature hear capacities (52-296 K) are from Weller and Kelley. ¹⁰ The high hear capacities are from our analysis of the temperature enthalpy (298 15-1050 K) data of Conard et al. ¹¹ since we have for the high and low temperature heat capacities to join smoothly at 298.15 K. Data above 1050 K are extrapolated assuming a constant capacity for the high temperature phase of Ni,S2. The thermodynamic functions show good agreement with those reported

The entropy at 298.15 is calculated based on an extrapolation of S'(51 K) = 2.06 cal·K-1·mol-1 by Weller and Kelley.10

indicates that upon heating stoichiometric Ni,S₂, a two phase region [Ni,S₄(l) + Ni₂ = ₁S₄(r)] will be encountered within a few degrees of formation of stoichiometric liquid Ni₃S₄. A phase transition is observed at 829 K for Ni,S., Below the transition, Kullerud and Yund reported the material to be stoichiom within the limits of ±0.3 weight percent while Rau³ reported the homogenetty range to extend over a smaller range and to the sulfur rich only. Above the phase transition, a wide range of homogeneity exists for Ni3. 2, from approximately Ni2.52 to Ni3.52. 149 The phase diag

We adopt a value of 829 ± 3 K for the phase transition from Ni_{3.5}, to Ni_{3.5}, based on the detailed study by Kullerud and Yund.⁸ 7 value is in fair agreement with values of 838 and 828 ± 5 reported by Rau⁸ and Rosenqvist, ¹ respectively. The adopted heat of transitio from our analysis of the high temperature enthalpy data of Conard et al. ¹¹ Mah and Pankrantz¹² reported the transition at 840 K v $\Delta_i H^{\circ} = 13.38 \text{ kcal·mol}^{-1}$ in excellent agreement with the adopted $\Delta_{tr} H^{\circ}$.

yielded identical results. In view of the two phase region in the phase diagram, we adopt the latter temperature as the melting point with estimated uncertainty of ±3 K. The adopted heat of melting is from our analysis of Conard's et al. high temperature enthalpy data¹¹ an most agreement with a value of 4.70 kcal·mol⁻¹ reported by Mah and Pankrantz.¹² Kullerud and Yung* reported that stoichiometric Ni,S2 begins to melt at 1055 K with melting completed at 1062 K. The cooling cu

T. Rosenqvist, J. Iron Steel Inst. (London), 176, 37 (1954).

 ²K. Sudo, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 4, 182 (1952).
 ³G. Line and M. Laffitte, Compt. Rend. 256, 3306 (1963).
 ⁴S. M. Ariya, M. P. Morozova, L. A. Pavlinova, and V. L. Ponomareva, Russ. J. Phys. Chem. 45, 1355 (1971).
 ⁵V. A. Vanyukov and M. A. Kiseleva, Yubeleinyi Shornik Trudov Kafedry i Lab. Tyazhelykh Metallov Moskov. Inst. Tsvetnykh Metal Zolota, 304 (1939); Chem. Abstr. 36, 1234 (1942).

⁶K. C. Mills, "Thermodynamic Data for Inorganic Sulphides, Selenides, and Ternuides," Buterworths, London, (1974).
⁷C. DeRanter and R. Breckpot, Bull. Soc. Chim. Belg. 78, 503 (1969).
⁸G. Kulliernd and R. A. Yund, J. Petrol. 3, 126 (1962).
⁸H. Raul. I. Phys. Chem. Solids 37, 929 (1976).
⁹W. W. Weller and K. K. Kelley, U. S. Bur. Mines RI 6511, 7 pp. (1964).
¹⁸B. R. Conard, R. Sridhar and J. S. Warner, paper presented at the 106th AIME meeting, (March 1977).
¹⁸A. D. Mah and L. B. Pankrantz, U. S. Bur. Mines Bull. 668, 125 pp. (1976).

mol ⁻¹	Enthalpy R	eference To	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ 1.8^{-1}mod^{-1}		Standard Sta	Standard State Pressure = p* = 0.1 MPa	o - 0.1 MPa
lou.	τÆ	ಬ	S° -[G	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_{i})$	1	Δ_{iG}	log K.
Jou	300°	0. 58.116 101.489	0. 33.666 89.917	INFINITE 225.939 144.221	-21.156 -19.227 -10.861	-214.288 -215.261 -215.847	-214.288 -213.887 -212.256	INFINITE 111.723 55.436
d law	298.15	117.738		133.887	ó	-216.313	-210,399	36.861
+ 1.8 v and	§ \$ \$	117.947 127.110 133.972	134.616 169.857 198.975	133.889 138.632 147.871	0.218 12.490 25.552	-216.323 -221.430 -225.126	-210,362 -208,103 -204,371	36.627 27.175
sınce	86	139.913	223.932 245.918	158.516	39.249 53.519	-228.432	-199.906 -194.922	17.403
al. At high	829.000	829.000 152.190	265.685	180.275 183.357	68.328 72.720	ļ	-189.725 >11	12.388
	006	188.615 188.615 188.615	338.910 354.410 374.282	183.357 196.248 213.076	128.953 142.345 161.206	-279.582	TRANSITION - 187213 - 177251	10.866
high	1062 000		385.628	222.821	172.901	11	v	i
orced t heat	888	188.615	392.259	228.561 242.896	198.929	-268.653	-167.837	7.970 6.917
h and	1500	188.615 188.615	437.746	268.708 280.416	236.652	-254.188 -254.188 -249.949	-150.376 -142.213 -134.365	5.042 5.306 4.679
	1600	188.615	462.932	291.447	274.375	-246.023	-126.789	4 139
netric n side igram of the								
This ion is with								
curve ith an								
sı pu								
allov								

Nickel Sulfide (Ni₃S₂)

LIQUID

Nickel Sulfide (Ni₃S₂)

 $\Delta_r H^{\circ}(298.15 \text{ K}) = [-143.926] \text{ kJ} \cdot \text{mol}^{-1}$

 $\Delta_{lm}H^{\circ} = 19.748 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$

M_r = 240.19 Nickel Sulfide (Ni₃S₂)

 $NI_3S_2(I)$

S°(298.15 K) = [215.930] J·K⁻¹·mol⁻¹ Fins = 1062 ± 3 K

Enthalpy of Formation

than at 800 or 1000 K. We conclude that Rosenqvist's data are not of sufficient precision for the small number of points at each temperature Δ_tH°(1, 298.15 K) is derived from that of Ni₂S_t(cr) by adding Δ_{tus}H° and the difference in enthalpy, H°(1062 K)-H°(298.15 K), between crystal and liquid. Our 2nd and 3rd law analyses of Nagamori and Ingraham's equilibrium data' yield $\Delta_t H^o(298.15 \, \mathrm{K}) = -33.7 \pm 6$ but not exactly at, the Ni,5, stoichiometry. Our extrapolation of his data to the proper stoichiometry leads to a higher value of K_p^* at 900 K and -33.9 ± 0.3 kcal-mol⁻¹, respectively, in good agreement with the adopted value. Meyer *et al.*² and Rosenqvist³ conducted similar studies at higher and lower temperatures, respectively. Both studies qualitatively show good agreement with Nagamori and Ingraham at overlapping temperatures, but Meyer's data are only presented graphically so a re analysis is not feasible. Rosenqvist's study included compositions near (3 or 4) to yield meaningful results when extrapolated.

Heat Capacity and Entropy

The entitalpy of Ni,5-4() from the melting point to 1250 K was measured by Conard et al. Our analysis of these data yields the adopted constant heat capacity of 45.84 cal·K⁻¹·mol⁻¹· Above 1250 K the heat capacity is assumed to remain constant. This value is in good agreement with a value of 45.20 cal·K⁻¹·mol⁻¹ reported by Mah and Pankrantz.

S'(1, 298.15 K) is calculated in a manner similar to that used for the enthalpy of formation.

Fusion Data

Refer to the crystal table for details.

Decomposition Data

There is no evidence for the existence of Ni₃S₂(g). In the absence of such information we can only point out that Ni₅S₂(l) will decompose to the gaseous elements at 3240 \pm 15 K according to the Gibbs energy of formation in this table. This seems to yield an excessively long liquid range for Ni₃S₂.

References

¹M. Nagamori and T. R. Ingraham, Mct. Trans. 1, 1821 (1970).

²A. A. Meyer, J. S. Warner, Y. K. Rao, and N. H. Kellogg, Mct. Trans. 6B, 229 (1975).

³T. Rosenqvist, J. Iron Steel Inst. (London) 176, 37 (1954).

⁴B. R. Conard, R. Sridhar, and J. S. Warner, paper presented at the 106th AIME meeting, (March 1977).

⁵A. D. Mah and L. B. Pankrantz, U. S. Bur. Mines Bull. 668, 125 pp. (1976).

Emhalpy Re	ference Te	mperature -	Enthalpy Reference Temperature = T_t = 298.15 K 1.K ⁻¹ mol ⁻¹		Standard Staf	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ t I-mol ⁻¹	- 0.1 MPa
тЖ	೮	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{*})$	Δ.Η.	ΦG	log K,
989							
298.15	117.738	215.930	215.930	o	-143.926	-162,473	28.465
300	117.947	216.659	215.932	0.218	-143.937	-162.588	28.309
38	133.972	281.018	220.6/5 229.914	25.552	-152,739	-173.006	18.074
98	139.913	305.975	240.560 251.505	39.249 53.520	-156.045 -158.436	-176.745 -179.966	15.387
88	148.549	340.051 340.051	258.024	62.341	₹`		
	191.795	349.889	262.373	70.012		-183.018	11.950
88	191.795	372.479	284.315	89.192 108.371	-250.348	-184242	9.199
1062.000	191.795	404,224	290.982	120.263	>11	- 1	
0011	191.795	410.966	295.011	127.551	-248.784	-168.546	8.008 4.005
30021	267.191	47,002	315.383	165.910	-238,220	-154.880	6223
95	191.795	457.220	325.013	185.089	-233.365	-148.654	5546
1600	191.795	482.830	343.175	223.448	-224.564	-137.168	4.478
1700	191.795	494.458	351.736	242.628	-220.648	-131.827	4.051
086	191.795	505.421	359.972 367.903	261.807	-268.516	-124.563	3.615
2000	191.795	525.628	375.545	300.166	-261.486	-108.946	2845
2100	191.795	534.986	382.917	319.345	-258.004	-101.404 -94 ms	252
2300	191.795	552.434	396.910	357.704	-251.101	-86.809	1.972
250 250 250 250	191.795	560.596 568.426	403.562	376.884	-247.677 -244.268	-79.740	.735 1521
2600	191.795	575.948	416,240	415.243	-240.874	-66.021	1.326
2700	191.795	583.187	422.290	434.422	-237.491	-59,360	1.148
2808	191.795	590.162 596.892	433.864	423.602	-230.762	- 52825	0.836
3000	191 795	603.394	439.407	491.961	-227.413	-40.109	0.698
3100		609.683	444.799	511.140	-224.074	-33.921	0.572
3300	191.795	621.674	455.159	549.499	-1342.966	29.440	-0.466
3500	191.795	627.400	465.000	568.678 587.858	-1334.689	70,904	-1.673
3600	191.795	638.362	469.741	607.037	-1318.162	153.109	-1111
300	191.795	643.617	478.891	626.217 645.396	-1309.915	193.864	-2737
					! !		

PREVIOUS:

CURRENT: December 1976

S ₂)	
ulfide (Ni ₃	
Nickel S	

$M_r = 240.19$ Nickel Sulfide (Ni ₃ S ₂)	Nickel Su	lfide (Ni	3S ₂)					Ni ₃ S ₂ (cr,l)
	Enthalpy R	eference Te	mperature I·K-'mol'	Enthalpy Reference Temperature = T_1 = 298.15 K 1·K ⁻¹ mol ⁻¹	7	Standard State Pressure		p*= 0.1 MPa
	τÆ	ະ	S - [G	-[G*-H*(T,)]/T	H*-H*(T,)	_	₽¢Ç•	log Kr
	°88	0. 58.116 101.489	0. 33.666 89.917	INFINITE 225.939 144.221	-21.156 -19.227 -10.861	-214.288 -215.261 -215.847	-214.288 -213.887 -212.256	INFINITE 111.723 55.436
	298.15	117.738		133,887	o'	-216.313	-210.399	36.861
	888	117.947 127 110 133.972	134.616 169.857 198.975	133.889 138.632 147.871	0.218 12.490 25.552	-216323 -221.430 -225.126	-210.362 -208.103 -204.371	36.627 27.175 21.350
	88	139.913	223.932	158.516	39.249 53.519	-228.432 -230.824	-199.906 -194.922	17.403
	829.000		271.078	183.357	72,720		189.72 1 <> 1	8671
_	88		354.410 374.282	196.248 213.076	142.345	-279.582 -274.001	- 187.213 - 177.251	10.866
	1062.000		385.628	222.821	172,901		<> LIQUID TRANSITION	-
	1200		410.966	229.205	199.937		-168.546 -161.493	
	2.00 2.00 2.00 2.00 2.00	191.795 191.795 195.795	443.006 457.220 470.452	259.702 273.309 286.016	28.28 25.28 25.45 25.55 25.55	-238,222 -233,365 -278,808	-154.880 -148.654 -147.764	6223 5546 491
	002	191.795	482.830	297.934	295.834	-224.564	-137.168	4.478
	006	191.795	505.421	319.758	334.193	-268.516 -264.989	-124.563	3.015
	2500	267.191	534.986	348.447	391.732	-251.486	-108.946	2 22
	7,72 7,72 7,72 7,72 7,72 7,72 7,72 7,72	191.795	552.434 560.5%	365.438 373.401	430.091 449.270	-251.101 -247.677	-86.809 -79.740	<u> </u>
_	2500	191.795	568.426	381.046	468.450	-244.268	-72.812	1.521
	7,700 7,000	191.795 191.795	583.187 590.162	395.480 402.309	506.809 525.988	-237.491 -234.121	-59.360 -59.360 -52.825	1.148 0.983
	3000	191.795	596.892	408.903	545.167	-230.762	-46.409	0.836
	3200	191.795	609.683	421.449	583.526 602.706	-224.074 -1351.248	-33.921	0.572
	3330	191.795 191.795	621.674	433.224	621.885	-1342.966 -1334.689	29.440	-0.466
	360	191.795	638.362	449.634	679.424	-13/0.421	153.109	-1.0/3
	3700 3800	191.795 191.795	643.617	454.806	698.603	-1309.915 -1301.683	193.864	-2.737
	910010							,
	PKEVIOUS:						CUKKENI	CUKKENI: December 1970

CRYSTAL(I-II)-LIQUID

Refer to the individual tables for details.

Nickel Sulfide (Ni₃S₂)

J. Phys. Chem. Ref. Data, Monograph 9

Ni₃S₄(cr)

M_r=304.31 Nickel Sulfide (Ni₃S₄)

CURRENT: March 1977

Nickel Sulfide (Ni₃S₄)

CRYSTAL

 $S^{(298.15 \text{ K})} = 186.48 \pm 16.7 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Δ_tH°(0 K) = Unknown $\Delta_H^{\circ}(298.15 \text{ K}) = -301.11 \pm 25.1 \text{ kJ·mol}^{-}$

data yields Δ_H (298.15 K) = -71.0 kcal·mol⁻¹. A value of -72.9 kcal·mol⁻¹ can be estimated assuming the same contribution per gram atom in NiS and Ni₃S₂. The adopted value, Δ_tH°(298.15 K) = -72.0 ± 6.0 kcal·mol⁻¹, lies approximately midway between the above values and is chosen so that A.G (629 K) = 0 for reaction Ni₃S_s(cr) = 2 NiS(cr) + NiS_s(cr). This temperature represents the decomposition point of The only measured value of $\Delta H^{*}(298.15 \, \mathrm{K})$ for Ni₃S₄ is based on the emf data of DeRanter and Breckpot. Our 3rd law analysis of their Enthalpy of Formation Ni,S.(cr).3.4

Heat Capacity and Entropy

assuming a contribution of 7.25 cal·K⁻¹g-atom⁻¹ and the heat capacity is assumed to be linear between these two points. This leads to $C_p^*(cal\cdot K^{-1}mol^{-1}) = 29.153 \pm 0.03434 T$. he same contribution per gram atom as in NiS and NiSS, 2 yielding a value of 39.39 cal·K-1 mol-1. The value at the melting point is estimated Since there are no measured values for the heat capacity of Ni,S, it is estimated as follows. The value of C, (298.15 K) is estimated assuming

The value of S'(298.15 K) is estimated assuming the same contribution per gram atom as in NiS and Ni,52.2 This estimate is subject to a rather large uncertainty since Nis.S., has a spinel structure. Navrotsky and Kleppa' showed that the entropies of oxide spinels vary by ±3.7 21-K-1-mol-1 depending on the distribution of cations among the available octahedral and tetrahedral sites.

Decomposition Data

The decomposition temperature of Ni₂S₄ is 629 ± 3 K.³⁴ It decomposes according to Ni₂S₄(cr) = 2 Ni₁₊₃(cr) + Ni₅(cr). As mentioned above, $\Delta_4 H^9(298.15 \, \text{K})$ for Ni₂S₄(cr) was chosen so that $\Delta_4 G^9(629 \, \text{K})$ for this reaction is zero. The value of $\Delta_4 H^9(629 \, \text{K})$ for this reaction, as calculated using auxiliary JANAF data, is 2.2 kcal·mol⁻¹. Kullerud and Yund* calculate $\Delta_4 H^9(629 \, \text{K}) = +7.0 \, \text{kcal·mol}^{-1}$ for this reaction based on the volume change as calculated from cell dimensions for the three compounds.

occur as a stable species even though stable M₂S₃ species have been observed for Ct, Fe, and Co.* Estimates of A_H"(298.15 K) for Ni₂S₃ range from +225 to +484 kcal·mol⁻¹.* Although Moody and Thomas* acknowledge large uncertainties in their calculations, they are unlikely The known crystal species in the Ni-S system include NiS, Ni,S., Ni,S., NiS., and Ni,S., The first four species occur naturally as minerals and we have prepared JANAF Thermochemical Tables for these species. The species Ni,S., (sometimes reported as Ni,S., or Ni,S.) does not occur as a mineral and we have not prepared a table since there is a lack of thermochemical data. It is interesting to note that Ni₂S₃ does not to be in error to the extent necessary to predict stability for Ni2S3(cr).

References

'C. DeRanter and R. Breckpot, Bull. Soc. Chim. Belg. 78, 503 (1969).

²JANAF Thermochemical Tables: NiS(cr), NiS₂(cr), 12-31-76; NiS₂(cr), 3-31-77.

³ Kullerud and R. A. Yund, J. Petrology 3, 126 (1962).

4G. Kullernd and R. A. Yund, Carnegie Inst. Washington, Publ. Geophys. Lab #1363, 176 (1961).
5O. Kubaschewski, E. L. Evans, and C. B. Akock, "Metallurgical Thermochemistry," 4th ed., Pergamon, New York, p. 205, (1967). ⁶1. D. H. Donnay and M. Ondik, Crystal Data Determinative Tables, 3rd ed., U. S. Nat. Bur. Stand., (1973).

⁷A. Navrotsky and O. J. Kleppa, J. Inorg. Nucl. Chem. 29, 2701 (1967).

⁶ R. P. Elliott, Constitution of Binary Alloys, First Supplement, McGraw Hill, New York, (1965).
⁷G. J. Moody and J. D. R. Thomas, J. Chem. Soc. 1417 (1964).

Standard State Pressure = p^{-} = 0.1 MPs 51.116 50.791 37.628 29.452 23.906 19.905 16.902 14.326 11.266 8.807 log Kr -291.709 -288.149 -281.917 -274.604 -266.754 -258.855 -246.842 -185.466 P.G - 301.115 - 310.469 - 316.421 - 320.495 - 320.495 - 321.447 - 531.454 - 531.454 -512.576 K-mol-ΔΉ $H^{\bullet}-H^{\bullet}(T_{\epsilon})$ 0. 0.305 17.531 36.193 56.292 77.828 100.800 11.52.509 11.51.054 Enthalpy Reference Temperature = T, = 298.15 K S -[G-H'(T,)]T 193.130 206.155 221.326 237.133 252.969 268.581 283.865 298.787 L·K-1mol-1 186.481 187.501 236.957 278.542 315.147 348.315 378.969 407.702 434.919 460.911 164.808 179.439 222.539 236.906 251.270 265.638 280.002 208.171 ť 7,K

Continued from page 1708

⁷G. Kullerud and R. A. Yund, J. Petrology 3, 126 (1962).

⁸JANAF Thermochemical Tables: S₂(g), 12-31-65; H₂S(g), 12-31-65; NiS(cr), 12-31-76; Ni₂S(cr), 12-31-76.

⁸K. C. Mills, "Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides," Butterworths, London, (1974).

⁸M. Winterberger and J. Bonnerot, Colloq, Int. Centre Natl. Rech. Sci. ≠157, 369 (1967).

¹⁰M. Winterberger and J. Bonnerot, Colloq, Int. Centre Natl. Rech. Sci. ≠157, 369 (1967).

¹⁰C. Kubsschewski, E. L. Evans and C. B. Alcock, "Metallungical Thermochemistry," Pergamon, Oxford, (1967).

¹⁶G. N. Lewis and M. Randall as revised by K. S. Pitzer and L. Brewert, "Thermodynamics," second edition, McGraw-Hill, New York, 519, (1961).