

Introdução à Engenharia Química e Bioquímica

Aula 9 Balanços Energéticos MIEQB ano lectivo de 2020/2021

Sumário da aula

Balanços energéticos a sistemas reactivos

> Exercícios

Numa caldeira industrial metano é completamente queimado com um excesso de $\rm O_2$ (excesso de 25%). O calor assim libertado é aproveitado para a produção de vapor de água

Os gases de combustão, que saem do forno a 300°C, são alimentados a um permutador de calor para aquecer o ar alimentado ao forno da caldeira. Sabendo que o caudal de alimentação de metano ao processo é de 45 Kmol.h⁻¹ calcule:

- a) a temperatura do ar alimentado ao forno.
- b) a quantidade de vapor produzido por hora.

Ar, T = ?

Despreze as perdas de calor no sistema; Composição molar do ar = 79% N2 + 21% O2

<u>Dados</u>:

$$C_p CH_4 (g) = 10 \text{ cal.mol}^{-1}.K^{-1}$$
 $C_p H_2 O (I) = 18 \text{ cal.mol}^{-1}.K^{-1}$

$$C_p O_2 (g) = 7.3 \text{ cal.mol}^{-1}.K^{-1}$$
 $C_p N_2 (g) = 7.04 \text{ cal.mol}^{-1}.K^{-1}$

$$C_p CO_2 (g) = 10.1 cal.mol^{-1}.K^{-1}$$
 $C_p H_2O (g) = 9.72 cal.mol^{-1}.K^{-1}$

 $\Delta \hat{H}_{\text{vap.}}$ (H₂O) a 1 atm; temp. de ebulição normal = 9.72 Kcal.mol⁻¹

$$\Delta \hat{H}_{f}^{2}$$
 (CH₄) gasoso = -17.89 kcal.mol⁻¹ $\Delta \hat{H}_{f}^{2}$ (CO₂) gasoso = -94.05 kcal.mol⁻¹

$$\Delta \hat{H}_f^{\circ}$$
 (H₂O) gasoso = -57.8 kcal.mol⁻¹

% Conversão CH₄ = 100%

% Excesso $O_2 = 25\%$

Kmol	1	2	3	4	5	6	7
CH4	45	-	-	-	-	-	-
O2	-				-	-	
N2	-				-	-	
H2O	-			-			-
CO2	-			-	-	-	-
Total	45						

Kmol	1	2	3	4	5	6	7
CH4	45	-	-	-	-	-	-
02	-	22.5	22.5	112.5	-	-	112.5
N2	-	423.2	423.2	423.2	-	-	423.2
H2O	-	90	90	-	X	X	-
CO2	-	45	45	-	-	-	-
Total	45	580.7	580.7	536			536

5.24.a) a temperatura do ar alimentado ao forno

P=1 atm T=25°C Estado gasoso

BE ao Permutador:

$$\Delta H_2 + \Delta H_7 = \Delta H_3 + \Delta H_4$$

SCIENCE & TECHNOLOGY

5.24.a) a temperatura do ar alimentado ao forno

P=1 atm T=25°C Estado gasoso

kmol	1	2	3	4	5	6	7
CH4	45	-	-	-	-	-	-
02	-	22.5	22.5	112.5	-	-	112.5
N2	-	423.2	423.2	423.2	-	-	423.2
H2O	-	90	90	-	Χ	Χ	-
CO2	-	45	45	-	-	-	-
Total	45	580.7	580.7	536			536

$$\Delta H_2 + \Delta H_7 = \Delta H_3 + \Delta H_4$$

$$\Delta H_{\tau} = 0 cal$$

$$\Delta H_2 = \int_{25}^{300} (22.5 * Cp_{o2} + 423.2 * Cp_{N2} + 90 * Cp_{H20} + 45 * Cp_{C02}) dT$$
$$= 1.23 \times 10^6 Kcal$$

$$\Delta H_3 = \int_{25}^{150} (22.5 * Cp_{o2} + 423.2 * Cp_{N2} + 90 * Cp_{H20} + 45 * Cp_{C02}) dT$$
$$= 5.6 \times 10^5 Kcal$$

5.24.a) a temperatura do ar alimentado ao forno

$$\Delta H_2 + \Delta H_7 = \Delta H_3 + \Delta H_4$$

$$\Delta H_4 = \Delta H_2 + \Delta H_7 - \Delta H_3$$

$$\Delta H_4 = 1.23 \times 10^6 + 0 - 5.6 \times 10^5$$

$$\Delta H_{4} = 6.7 \times 10^{5} Kcal$$

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

5.24.a) a temperatura do ar alimentado ao forno

$$\Delta H_2 + \Delta H_7 = \Delta H_3 + \Delta H_4$$

$$\Delta H_4 = 6.7 \times 10^5 Kcal$$

$$\Delta H_4 = \int_{25}^{T_4} (112.5 * Cp_{o2} + 423.2 * Cp_{N2}) dT = 6.7 \times 10^5$$

$$T_4 = 201.3 \ ^{\circ}C$$

5.24.b) a quantidade de vapor produzido por hora

BE ao forno:

$$\Delta H_1 + \Delta H_4 + \Delta H_5 = \Delta H_2 + \Delta H_6 + \Delta H_{reaccao}$$

$$\Delta H_1 = \int_{25}^{10} (45 * Cp_{CH4}) dT = -6.75 \times 10^3 K cal$$

$$\Delta H_4 = 6.7 \times 10^5 \, Kcal \qquad \Delta H_2 = 1.23 \times 10^6 \, Kcal$$

SCIENCE & TECHNOLOGY

5.24.b) a quantidade de vapor produzido por hora

$$\Delta \hat{H}_{R} = \Delta \hat{H}_{f}^{2} (CO_{2}) + 2 \times \Delta \hat{H}_{f}^{2} (H_{2}O) - \Delta \hat{H}_{f}^{2} (CH_{4})$$

$$\Delta \hat{H}_R = (-94.05) + 2 \times (-57.8) - (-17.89) = -191.76 \text{ Kcal/mol}$$

$$\Delta H_{R}^{\circ} = -191.76 \times 10^{3} \, Kcal \, / \, Kmol \times 45 \, Kmol$$

$$\Delta H_{R}^{\circ} = -8.63 \times 10^{6} Kcal$$

5.24.b) a quantidade de vapor produzido por hora

BE ao forno:

$$\Delta H_1 + \Delta H_4 + \Delta H_5 = \Delta H_2 + \Delta H_6 + \Delta H_{reaccao}$$

5.24.b) a quantidade de vapor produzido por hora

$$\left[\Delta H_{6} - \Delta H_{5}\right] = \Delta H_{1} + \Delta H_{4} - \Delta H_{2} - \Delta H_{R}$$

$$\Delta H_6 - \Delta H_5 = -6.75 \times 10^3 + 6.7 \times 10^5 - 1.23 \times 10^6 - (-8.63 \times 10^6)$$

$$\Delta H_6 - \Delta H_5 = 8.06 \times 10^6 Kcal$$

SCIENCE & TECHNOLOGY

5.24.b) a quantidade de vapor produzido por hora

$$\Delta H_{6} - \Delta H_{5} = \left[\int_{25}^{100} Cp_{H2O_{liquido}} dT + \Delta \hat{H}_{vap}^{100} + \int_{100}^{250} Cp_{H2O_{gasoso}} dT \right] \times n_{5}$$

$$\Delta H_6 - \Delta H_5 = (18 \times 75 + 9.72 \times 10^3 + 9.72 \times 150) \times n_5$$
 $n_5 = n_6 !$

$$1.25 \times 10^4 \times n_5 = 8.06 \times 10^6$$

$$n_5 = 643.6 \text{ kmol}$$