5 апреля 2021 г.

МОЛЕКУЛЯРНАЯ ДИНАМИКА

Задание 2

Стрижак Даниил

Содержание

1	Аннотация	2
2	Радиальная функция распределения	2
3	Автокоррелятор скорости	2
4	Коэффициент самодиффузии	3
5	Сравнение с невязками	4
6	Влияние термостата	4
7	$\log_{10} D = 0.05 + 0.07 \cdot P - \frac{1.04 + 0.1 \cdot P}{T}$	5
8	Заключение	5

1 Аннотация

Данная работа сделана с помощью lammps. Из-за того, что на то, чтобы разобраться с симулятором, потребовалось много времени, графики будут не лучшего качества. В каждом пункте (кроме 5) расссчет производится с шагом t=0.005 в количестве 10000 шагов.

2 Радиальная функция распределения

Для 2 параметров плотности и температуры входного файла построим радиальные функции расперделения.

В сравнении с экспериментальной работой Yarnell et al. можно сделать вывод, что данные сходятся. Для жидкостной зависимости все экстремальные характеристики совпадают. В обоих случаях RDF стремится к 1 при больших r.

3 Автокоррелятор скорости

Аналогично предыдущему пункту построим автокорреляционные функции для жидкости и газа при тех же начальных параметрах, видно, что характер автокорреляционной функции проявляется, однако качество оставляет желать лучшего.

4 Коэффициент самодиффузии

Рассчитаем коэффициент самодиффузии через формулы Эйнштейна-Смолуховского и Грина-Кубо для $T=1.0,\,1.5,\,2.0$ и плотности 0.7.

Метод Эйнштейна-Смолуховского

$$D = \frac{1}{6} \frac{\langle \mathbf{r}^2 \rangle}{t}$$

•
$$T = 1.0$$

•
$$T = 1.5$$

•
$$T = 2.0$$

Метод Грина-Кубо

$$D = \frac{1}{3} \int_0^\infty \langle \mathbf{v}_i(t) \cdot \mathbf{v}_i(0) \rangle dt = \frac{1}{3} S$$

•
$$T = 1.0$$

•
$$T = 1.5$$

•
$$T = 2.0$$

Сведем полученные результаты в таблицу. Можно сделать вывод, что значения коэффициентов диффузии отличаются, но не более чем на 10%. Значения, полученные методом Грина-Кубо получились немного заниженными.

Т	Reference	E-S	G-K
1.0	0.105	0.095	0.93
1.5	0.156	0.149	0.141
2.0	0.202	0.198	0.192

5 Сравнение с невязками

Рассчитаем невязки для двух разных времен рассчета t=0.005 и t=0.05 и отнормируем на линейный участок. Можно сделать вывод, что значения совпадают с референсной статьей.

$$\langle (R'' - R')^2 \rangle = 12Dt$$
$$D = 1.023$$

6 Влияние термостата

Добавим условие термостата в lammps: "fix ID group-ID nvt keyword_value Tstart Tstop Tdamp". Проверим коэффициенты диффузии с такой поправкой.

Из полученных результатов можно сделать вывод, что значения коэффициентов диффузии слабо отличаются от тех, что были получены ранее. ($D_{1.0} = 0.098 \quad D_{2.0} = 0.193$)

7
$$\log_{10} D = 0.05 + 0.07 \cdot P - \frac{1.04 + 0.1 \cdot P}{T}$$

Проверим формулу $\log_{10} D = 0.05 + 0.07 \cdot P - \frac{1.04 + 0.1 \cdot P}{T}$. Для удобстава, обозначим величину справа от знака равно за f(T, P).

T	ρ	P	D	$\log_{10} D$	f(T,P)	$\Delta\%$
0.8	0.50	0.352	0.143	-0.844	-1.269	38.6%
0.8	0.60	0.672	0.122	-0.869	-1.289	27.5%
0.8	0.70	1.226	0.087	-1.117	-1.317	15.4%
0.8	0.80	3.521	0.048	-1.319	-1.444	8.6%
0.8	0.85	3.856	0.035	-1.455	-1.462	1.6%

Формула частично верна, что неудивительно, ведь возможность того, чтобы равенство соблюдалось, достигается только при значениях $D \ll 0.1$, иначе, по данной формуле, давление при температуре, равной 0.8, должно быть отрицательным, что нефизично.

Допустимые значения коэффициента D

8 Заключение

Код нужно переписать так, чтобы с ним было удобно работать и разбираться стороннему пользователю, однако все поставленные задачи выполнить удалось; полученные данные и зависимости схожи теоретическим, а так же полученным в других работах. Github – https://github.com/Striz-lab/modelling/.