Homework Suggested Problems

```
sec 0.1 : {4b,5k,6b,7c}
sec 0.2 : {29}
sec 2.1 : {3c,6a,11,14b}
sec 2.2 : {5b,8c,12b}
sec 3.1 : {11 correction:floor(x) + n = floor(x+n) and n is an integer,31a}
sec 3.2 : {20a,23b,23c,24c}
sec 3.3 : {6,22b}
```

Problems from the Notes

Problem 1. Use a truth table to show that $(P \to Q) \land (Q \to R) \to (P \to R)$.

Problem 2. Prove that if x is odd then x^2 is odd.

Problem 3. Let x be an integer. Prove that $x^2 - 3x + 9$ is odd.

Problem 4. Prove that if x^2 is even then x is even.

Problem 5. Prove that no odd integer can be expressed as the sum of three even integers.

Problem 6. Disprove the following statement. For all positive integers x, if $\frac{x(x+1)}{2}$ is odd then $\frac{(x+1)(x+2)}{2}$ is odd.

Problem 7. Is the statement "Let x be a real number." a mathematical statement?

Problem 8. Write out the elements of the following sets.

1.
$$\{x|x^2 + 2x - 3 = 0\}$$

2. $\{\{\}, 1, \{1, 2, 3\}\}$

Problem 9 (The Division Algorithm). Let $a, b \in \mathbb{Z}, b \neq 0$. Then there exist unique integers q and r, with $0 \leq r < |b|$ such that a = qb + r.

Problem 10. Which of the common sets are supersets of \mathbb{I} ? Which of the common sets are subsets of \mathbb{I} ?

Problem 11. Write the power set for the set $\{\{1,2\},3,\{\}\}$.

Problem 12. How many elements are in the power set of a set containing exactly three elements?

Problem 13. Let A, B, and C be sets such that $A \in B$. Prove that if $B \subseteq C$ then $A \in C$.

Problem 14. *Let* $A = \{a, b, c\}$ *and* $B = \{A, b, 3\}$. *Find* $A \cup B$ *and* $A \cap B$.

Problem 15. Make a Venn diagram for the sets $A = \{1, 2, 3\}$, $B = \{1, 4, 5\}$, and $C = \{2, 5, 7\}$.

Problem 16. Prove that for any set A and B, $(A \cap B)^c = A^c \cup B^c$.

Problem 17. Suppose a, b, and c are integers such that $c \mid a$ and $c \mid b$. Show that $c \mid (ax + yb)$ for any integers x and y.

Problem 18. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Give an example of a relation from A to B containing exactly three elements such that the relation is not a function from A to B.

Problem 19. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Then $f\{(a, y), (b, z), (c, y), (d, z)\}$ is a function from A to B. Determine dom f and rng f.

Problem 20. Show that the function $\{(x_1, x_2) | x_1, x_2 \in \mathbb{Z}, x_1^2 = x_2\}$ is one-to-one.

Problem 21. Using the definition of function composition, verify that $g \circ f$ is a function from A to C.

Problem 22. Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$ and $C = \{r, s, t, u, v\}$ and define the functions $f: A \rightarrow B$ and $g: B \rightarrow C$ by

$$f = \{(1,b), (2,d), (3,a), (4,a)\}\$$
and $g = \{(a,u), (b,r), (c,r), (d,s)\}.$

Determine $g \circ f$ and $(g \circ f)(1)$.

Problem 23. Suppose f is a one-to-one and onto function from $\mathbb{N} \to \mathbb{Z}$. Prove that the function g from $\mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{Z}$ defined by $g:(m,n) \mapsto (m,f(n))$ is one-to-one and onto.