

Introducción a la Física (2014)

Unidad: 01

• Clase: 03

Fecha: 20140520M

Contenido: Herramientas Matemáticas

Web: http://halley.uis.edu.co/fisica_para_todos/

Archivo: 20140520M-HA-herramientas_matematicas_1.pdf

En el episodio anterior

En el episodio anterior

Magnitud escalar (Temperatura)

Magnitud vectorial (Velocidad del viento)

- Magnitudes
 - Escalares → Unidimensional
 - Vectoriales → vectores
 - Unidades
 - Sistema de unidades

- Magnitudes
 - Escalares → Unidimensional
 - Vectoriales → vectores
 - Unidades
 - Sistema de unidades
- Medir es interacturar
- Unidades
 - Sistema Internacional (SI)
 - Unidades básicas → 7
 - Derivadas → leyes físicas
 - Compuestas → combinación de básicas y/o derivadas

- Magnitudes
 - Escalares → Unidimensional
 - Vectoriales → vectores
 - Unidades
 - Sistema de unidades
- Medir es interacturar
- Unidades
 - Sistema Internacional (SI)
 - Unidades básicas → 7
 - Derivadas → leyes físicas
 - Compuestas → combinación de básicas y/o derivadas

- Vectores
 - Módulo (o magnitud o norma)
 - Dirección

Sentido

Rapidez y velocidad

- Vector velocidad
 - Módulo = rapidez
 - Dirección
 - Sentido

Par Ordenado: $(x,y) \rightarrow 2$ -tupla: (x,y)

Par Ordenado: $(x,y) \rightarrow 2$ -tupla: (x,y)

Par Ordenado: $(x,y) \rightarrow 2$ -tupla: (x,y)

3-tupla: (x,y,z)

En general: n-tupla $\rightarrow (x_1, x_2, x_3, ..., x_n) \in \mathbb{R}^n \operatorname{con} x_i \in \mathbb{R}$

R² y R³ son ejemplos de espacios vectoriales

- Una de las grandes herramientas de la ciencia es la generalización (pero con criterio)
- A partir de los desarrollos con vectores se definen los espacios vectoriales
- Un espacio vectorial es
 - Un conjunto de elementos → "vectores"
 - Una operación interna → "suma"
 - Una operación externa → "multiplicación por un escalar"
- Que deben cumplir ciertas propiedades

Espacio vectorial (versión corta)

- Sea V un espacio vectorial, entonces V posee:
 - Un conjunto de elementos \rightarrow "vectores de V": \vec{v} , \vec{u} , \vec{i} ,...
 - Notaciones habituales: $\mathbf{v} \circ \overrightarrow{\mathbf{v}} \circ \overline{\mathbf{v}}$
 - Una operación interna → "suma": +
 - Interna \rightarrow $(\vec{v} + \vec{u}) = \vec{z}$ es un vector que pertenece a \vec{V}
 - Una operación externa → "producto por un escalar"
 - Externa → La operación se realiza entre un elemento del espacio y un elemento de un cuerpo externo (por ejemplo, los números reales). El resultado es un vector de V:

Sea $a \in \mathbb{R}$ y $\vec{v} \in V \rightarrow (a\vec{v})$ es un vector que pertenece a V

Importane: no confundir con el producto escalar (punto o interno)

R² y R³ son ejemplos de espacios vectoriales

- R³ es un espacio vectorial
- A cada punto del espacio R³
 le asignamos un vector
 - Desde el orígen hasta el punto
- Y En física, a ese vector se lo llama vector posición
 - Un vector de R³ tiene 3
 componentes: las

coordenadas de la 3-tupla

Operación suma

Sean
$$\vec{u} \in \mathbb{R}^3$$
 y $\vec{v} \in \mathbb{R}^3$
 $\vec{u} = (u_1, u_2, u_3)$ y $\vec{v} = (v_1, v_2, v_3)$
 $\vec{w} = \vec{u} + \vec{v}$
 $\vec{w} \in \mathbb{R}^3 \rightarrow \vec{w} = (w_1, w_2, w_3)$
 $\vec{w} = ((u_1 + v_1), (u_2 + v_2), (u_3 + v_3))$

Operación suma

Trabajemos

- La guía 00 (guía auxiliar pre-cálculo) ya está en el blog
 - Práctica, no se entrega
- Ejercicios propuestos en clase
 - Disponibles en las clases desde el Jueves 8 y Jueves 15.
 - Entrega: Hasta el Jueves 22/Mayo a las 5:59 pm (Durante la clase o en Of. G. Halley)