Ellipsoïde de John-Loewner

Leçons

- 150 (ex) Exemples d'actions de groupes sur les espaces de matrices (ici la congruence)
- 158 (dev) Matrices symétriques réelles, matrices hermitiennes
- 160 (ex) Endomorphismes remarquables d'un espace euclidien
- 171 (dev) Formes quadratiques réelles
- 181 (dev) Barycentres dans un espace affine réel de dimension finie, convexité. Applications.
- 203 (ex) Utilisation de la notion de compacité
- 219 (ex) Extremums : existence, caractérisation, recherche

Sources possibles [FGN14, Algèbre 3, 3.31, 3.38]

Avertissement Développement long. On doit donc admettre par exemple la proposition 2 qui serait immédiate avec le formalisme de l'algèbre extérieure.

Pré-requis Un théorème de réduction simultanée de deux formes quadratiques, par exemple dans le Ramis-et-Deschamps [RDO88, Algèbre 2, 1.3.4].

Théorème 1. Soit E un espace euclidien. Soit K une partie relativement compacte de E dont 0 est un point intérieur. Il existe un unique ellipsoïde plein de volume minimal contenant K.

On désigne par μ la mesure de Lebesgue sur E normalisée pour correspondre à la forme volume de la structure euclidienne.

(a) Volume des ellipsoïdes Soit $q:E\to\mathbb{R}$ une forme quadratique définie positive ; on lui attache un unique ellipsoïde

$$\mathcal{E}_{q} = \{x \in E \mid q(x) \leqslant 1\}$$

Il s'agit d'une partie mesurable de E; on note $V_q=\int_E \mathbf{1}_{\mathcal{E}_q} \mathrm{d}\mu$ son volume. $q\leftrightarrow \mathcal{E}_q$ déinit une bijection entre l'espace $Q^{++}\left(E\right)$ des formes quadratiques définies positives sur E et l'ensemble des ellipsoïdes. Pour tout $q\in Q\left(E\right)$, on note $D\left(q\right)$ le déterminant d'une matrice de q dans une base orthonormée de E.

Proposition 2. Si q_0 est la forme euclidienne standard de E, alors ¹

$$V_q = \frac{1}{\sqrt{D\left(q\right)}} V_{q_0}. \tag{1}$$

Démonstration. D'après le théorème spectral il existe \mathcal{B} une base orthonormée de E telle que si $(x_1, \ldots x_n)$ sont les formes coordonnées de \mathcal{B} , on peut écrire $q = \sum_{i=1}^{n} a_i x_i^2$ avec les $a_i > 0$, et $D(q) = a_1 \cdots a_n$. Puisque \mathcal{B} est orthonormée,

$$V_q = \int_{\mathbb{R}^n} \mathbf{1}_{[0,1]} \left(a_1 x_1^2 + \cdots + a_n x_n^2
ight) \mathrm{d}x_1 \cdots \mathrm{d}x_n.$$

Faisant le changement de variables $y_i = \sqrt{a_i}x_i$, de jacobien $\mathcal{J} \equiv \prod_i \sqrt{a_i}$, on trouve

$$V_q = rac{1}{\sqrt{a_1\cdots a_n}}\int_{\mathbb{R}^n} \mathbf{1}_{[0,1]} \left(y_1^2 + \cdot + y_n^2
ight) \mathrm{d}x_1 \cdots \mathrm{d}x_n = rac{1}{\sqrt{D\left(q
ight)}} V_{q_0}. \hspace{1cm} \Box$$

(b) Existence : Compacité On norme $Q\left(E\right)$ par $N\left(q\right)=\sup_{q_{0}\left(x\right)=1}|q\left(x\right)|.$ Puis on pose

$$\mathcal{A} = \left\{ q \in Q^{+}\left(E\right) \mid K \subset \mathcal{E}_{q} \right\} = \left\{ q \in Q^{+}\left(E\right) \mid \forall x \in K, q\left(x\right) \leqslant 1 \right\}.$$

 \mathcal{A} est borné 0 est intérieur à K, il existe donc $\epsilon > 0$ tel que $B(0, \epsilon) \subset K$. Ainsi, $q \in \mathcal{A} \implies N(q) \leq 1/\epsilon$.

 ${\cal A}$ est convexe, fermé dans $Q\left(E\right)$ Puisque 0 est intérieur, on a $q\geqslant 0$ sur $K\Longrightarrow q\in Q^{+}\left(E\right)$ de sorte que

$$\mathcal{A} = \left\{ q \in Q^+\left(E\right) \mid \forall x \in K, q\left(x\right) \in [0, 1] \right\}$$

Il s'ensuit que \mathcal{A} est convexe et fermé (en tant qu'intersection de convexes fermés).

 \mathcal{A} est non vide Puisque K est relativement compacte, elle est bornée dans E. Donc $tq_0 \in \mathcal{A}$, pour t assez petit.

Conclusion Etant donnés Q(E) est un espace vectoriel normé de dimension finie, et \mathcal{A} une partie fermée et bornée, \mathcal{A} est compacte, non vide, et la fonction $D: \mathcal{A} \to \mathbb{R}$ atteint sa borne supérieure sur \mathcal{A} en un certain \tilde{q} . $\mathcal{E}_{\tilde{q}}$ est alors un ellipsoïde de volume minimal, contenant K.

^{1.} On ne précise pas V_{q_0} , ce n'est pas utile. Voir cependant la remarque 6.

(c) Unicité: Convexité

Lemme 3. Soient q et q' dans $Q^{++}(E)$. Alors pour tout $\lambda \in [0,1]$ on a

$$D\left(\left(1-\lambda\right)q+\lambda q'\right)\geqslant D\left(q\right)^{1-\lambda}D\left(q'\right)^{\lambda}\tag{2}$$

Avec égalité ssi q = q'.

 $D\acute{e}monstration$. D'après le théorème de réduction simultanée, il existe une base \mathcal{B}_2 de E qui est orthonormée pour E et orthogonale pour q'; autrement dit q a pour matrice I_n et q', $D = \operatorname{diag}(d_1, \ldots d_n)$ avec les $d_i > 0$. Puisque l'inégalité 2 à montrer est homogène, on peut se contenter de calculer les déterminants dans la base \mathcal{B} (bien qu'elle ne soit pas forcément orthonormée) soit à montrer :

$$\det ((1 - \lambda) I_n + \lambda D) \geqslant (\det D)^{\lambda}.$$

Quitte à prendre les logarithme, on se ramène à montrer

$$\sum_{i=1}^n \ln \left((1-\lambda) + \lambda d_i
ight) \geqslant \lambda \ln d_i.$$

Il s'agit simplement de l'inégalité de concavité pour le log entre 1 et d_i . Le cas d'égalité est celui de $d_i=1$ pour tout i, c'est-à-dire q=q'.

Si maintenant $q \neq q'$ dans \mathcal{A} sont telles que $D(q) = D(q') = \max_{q \in \mathcal{A} \cap Q^{++}(E)} D$, alors posons q'' = (q + q')/2. Comme \mathcal{A} est convexe, q'' est dans \mathcal{A} et d'après le cas d'inégalité strete de 2,

$$D(q'') > D(q)$$
,

ce qui serait absurde.

(d) Une application : forme quadratique invariante Le résultat précédent joue un rôle fondamental, par exemple dans la théorie des représentations des groupes topologiques compacts (il assure la semi-simplicité) :

Théorème 4. Soit E un espace vectoriel réel de dimension finie, G un sous-groupe compact de $\mathbf{GL}(E)$. Il existe une forme quadratique q définie positive sur E telle que

$$G\subset O\left(q\right)$$
 .

Démonstration. Donnons une preuve dans le langage des actions de groupes 2 . Soit \mathcal{R} l'ensemble des parties de E relativement compactes contenant 0 dans leur intérieur. On dispose d'une action naturelle de G sur E; celle-ci induit deux

^{2.} Autre exemple de ce précepte : $SL(2,\mathbb{Z})$ agit à droite sur les formes quadratiques binaires entières de discriminant < 0, et à gauche sur \mathbb{H} ; action qui se restreint pour les imaginaires quadratiques, à l'action équivariante sur les racines de la forme deshomogénéisée.

actions de G (à gauche et à droite, respectivement) sur $\mathcal{P}(E)$ et $\mathcal{F}(E,\mathbb{R})$, puis par restriction :

$$G \curvearrowright \mathcal{R}$$
 $g.K = g(K)$ $Q(E) \backsim G$ $(q.g)(x) = q(g(x))$

On peut transformer la seconde action en une action à gauche en posant $g.q(x)=q(g^{-1}(x))$. On dispose alors d'un morphisme de G-ensembles $\mathcal{R}\to Q(E)$ qui est la propriété de John-Loewner. On cherche un point stable de la 2e action, pour ceci on en cherche un dans le G-ensemble \mathcal{R} . C'est ce qui conduit à considérer

$$K_0 = G.B = \{g(x) \mid g \in G, x \in B\}.$$

K est compacte en tant qu'image continue du compact $G \times B$. De plus, 0 est intérieur : on se donne $g \in G$ quelconque, g.B contient une boule ouverte centrée en 0. Ainsi $K_0 \in \mathcal{R}$ et c'est un point fixe pour la première action : donc si q est la forme quadratique de l'ellipsoïde \mathcal{E}_q , q est G-invariante.

Remarque 5. On se demande à quoi ressemble cet ellipsoïde, par exemple, si K est un carré ou un triangle équilatéral plein dans \mathbb{R}^2 , symétrique par rapport à 0. Si \mathcal{E}_q est l'ellipsoïde de John-Loewner dans ce cas, par unicité, le groupe des isométries de \mathbb{R}^2 laissant stable \mathcal{E}_q contient le groupe des isométries de K, qui est plus grand que le groupe des isométries générique d'une conique : \mathcal{E}_q est un disque dont la frontière passe par les sommets.

Remarque 6 (Au sujet de V_{q_0}). Bien que cela ne soit pas essentiel pour ce qui précède, le « vrai » volume d'une boule euclidienne par rapport à la mesure de Lebesgue standard $\lambda^{\otimes n}$ est

$$V_n = \frac{2\pi^{n/2}}{n\Gamma(n/2)} \tag{3}$$

Pour démontrer (3) le manière classique est de calculer de deux manières différentes l'intégrale

$$I_n = \int_{\mathbb{R}^n} e^{-x_1^2 - \cdots - x_n^2} dx_1 \cdots dx_n$$
 :

à l'aide du théorème de Fubini-Tonelli d'une part, à l'aide du changement de variables $r^2=x_1^2+\cdots+x_n^2$ d'autre part. En particulier,

$$\frac{V_{n+2}}{V_n} = \frac{n\pi}{n+2} \frac{\Gamma\left(n/2\right)}{\Gamma\left(n/2+1\right)} = \frac{2\pi}{n+2}$$

d'après l'équation fonctionnelle de la fonction Γ . Ceci implique que V_n est maximal pour n=5 ou 6 (en fait n=5) et décroît ensuite; par ailleurs

$$\lim_{n\to+\infty}V_n=0.$$

En particulier, l'ellipsoïde de John-Loewner du cube $[-1/2, 1/2]^n$ dans \mathbf{R}^n voit son diamètre tendre vers... l'infini (!) quand n grandit.

Remarque au sujet de l'orthogonalisation simultanée de deux formes bilinéaires symétriques (ou quadratiques) Le théorème principal est le suivant

Théorème 7. Soit (E,φ) un espace quadratique (ceci suppose φ non dégénérée) de dimension finie et ψ une forme bilinéaire symétrique. On note d_{φ} (resp. d_{ψ}) l'application $E \to E^{\star}$ associée à φ (resp. à ψ). Alors il existe une base de E orthogonale pour φ et ψ si et seulement si $u = d_{\varphi}^{-1} d_{\psi}$ est diagonalisable.

Remarque 8. d_{φ} est inversible (φ est non dégénérée) mais ce n'est pas le cas de d_{ψ} a priori. Noter aussi que u est autoadjoint pour φ .

En corollaire, il découle du théorème spectral et du précédent théorème que si E un espace vectoriel réel, φ et ψ bilinéaires sur E avec φ est définie positive, alors il existe une base orthonormale pour φ , orthogonale pour ψ . On retrouve aussi que si k est quadratiquement clos et u diagonalisable, il existe une base à la fois orthonormale pour φ et orthogonale pour ψ .

Références

- [FGN14] Serge Francinou, Hervé Gianella, and Serge Nicolas. Exercices de mathématiques des oraux de l'École polytechnique et des Écoles normales supérieures. Enseignement des mathématiques. Cassini, 2008-2014.
- [RDO88] E. Ramis, C. Deschamps, and J. Odoux. Algèbre. Cours de mathématiques spéciales: classes préparatoires et enseignement supérieur. Masson, 1988.