Лекция 2. Необходимые сведения из теории вероятностей (продолжение).

В этой лекции мы докажем сформулированную в предыдущей лекции лемму Дуба-Дынкина и напомним основные понятия и теоремы теории вероятностей, необходимые нам в дальнейшем. **Лемма 2.1.** (лемма Дуба-Дынкина). Пусть $X = (X_1, ..., X_n)^* : \Omega \to R^n$. Тогда Y является $\sigma(X)$ – измеримой (где $\sigma(X) = \sigma(X_1, ..., X_n)$) тогда и только тогда, когда $Y = h \circ X \equiv h(X)$ для некоторой измеримой по Борелю (или, кратко, борелевской) функции $h: R^n \to R$.

Обозначения: Совокупность борелевских множеств в R^n будем обозначать $\mathcal{B}(R^n)$. Будем говорить, что «B борелевское», имея ввиду, что $B \in \mathcal{B}(R^n)$. Мы также будем называть функции борелевскими, если они измеримы по Борелю. Мы докажем лемму для случая n=1, доказательство в случае n>1 почти идентично. Начнём со вспомогательного утверждения, представляющего самостоятельный интерес.

Лемма 2.2. $\sigma(X) = \{X^{-1}(B): B \in \mathcal{B}(R)\}.$ Доказательство. Положим

$$\mathcal{C}_1 = \{X^{-1}(B) | B \in \mathcal{B}(R)\}.$$

Тогда \mathcal{C}_1 является σ - алгеброй в Ω (свойства i)-iii) определения σ - алгебры легко проверяются). Поскольку $\{\omega \in \Omega : X(\omega) \leq \alpha\} = X^{-1} \big((-\infty, a] \big) \in \mathcal{C}_1 \Rightarrow \sigma(X) \subseteq \mathcal{C}_1$. Положим

$$\mathcal{C}_2 = \{ B \subseteq R \colon X^{-1}(B) \in \sigma(X) \}.$$

Тогда C_2 является **\sigma-** алгеброй в R. Но $(-\infty, a] \in C_2$ для всех $a \in R$ (это следует из определения $\sigma(X)$).

Поэтому $\mathcal{B}(R) \subset \mathcal{C}_2$. Иначе говоря, если $B \in \mathcal{B}(R)$, то $X^{-1}(B) \in \sigma(X)$, и поэтому $\mathcal{C}_1 \subset \sigma(X)$. Следовательно, $\sigma(X) = \mathcal{C}_1$.

Пример. Пусть X = I(A), где A – собственное подмножество Ω (то есть $A \neq \Omega$). Тогда $\sigma(X) =$ $\{A, \Omega \setminus A, \emptyset, \Omega\}$. В этом случае с.в. Y является $\sigma(X)$ измеримой тогда и только тогда, когда она постоянна на A и $\Omega \setminus A$. В самом деле, предположим, что Y принимает два разных значения a < b на A. Пусть $c = \frac{1}{2}(a + b)$. Пусть $\omega_1 \in A$ и $Y(\omega_1) = a$, $\omega_2 \in A$ и $Y(\omega_2) = b$. Тогда множество $A \cap \{\omega \in \Omega: Y(\omega) \le c\}$ не пусто, так как оно содержит ω_1 , и не совпадает со всем A, так как оно не содержит ω_2 . Поэтому $A \cap \{\omega \in \Omega: Y(\omega) \leq c\} \notin \sigma(X)$. Следовательно, и множество $\{\omega \in \Omega: Y(\omega) \leq c\} \notin \sigma(X)$ (если бы это множество принадлежало $\sigma(X)$, то и его пересечение с A принадлежало бы $\sigma(X)$). Поэтому Y не является $\sigma(X)$ - измеримой. Полученное противоречие показывает, что Y должна быть постоянной на A. Аналогичное рассуждение показывает, что У принимает одно и то же значение на $\Omega \setminus A$. Доказательство Леммы 2.1. Рассмотрим ряд случаев в порядке возрастания их общности.

і) Пусть сначала $Y = I(A), A \in \sigma(X)$. По Лемме 2.2 найдется $B \in \mathcal{B}(R)$ такое, что $A = \{\omega \in \Omega : X(\omega) \in B \}$. Определим $h_A : R \to R$, где

$$h_A(x) = \begin{cases} 1, & \text{если } x \in B \\ 0, & \text{если } x \notin B. \end{cases}$$

Очевидно, $h_A(X(\omega)) = Y(\omega)$ для всех $\omega \in \Omega$.

іі) Пусть теперь $Y \ge 0$ и Y - простая $\sigma(X)$ - измеримая случайная величина, т.е. $Y = \sum_{i=1}^n c_i I(A_i)$, где $c_i \ge 0$, $A_i \in \sigma(X)$, непересекаются и в объединении дают всё

- Ω. Без ограничения общности можем считать все c_i различными (почему?). По Лемме 2.2 $A_i = \{ω \in Ω: X(ω) \in B_i, B_i \in \mathcal{B}(R)\}$. Положим $h(x) = \sum_{i=1}^n c_i h_{A_i}(x)$, где $h_{A_i}(x)$ строятся как в п. і). Тогда Y(ω) = h(X(ω)).
- ііі) Y произвольная неотрицательная $\sigma(X)$ измеримая случайная величина. Как было показано в Лекции 1, существует последовательность $Y_n \uparrow Y$, где Y_n простые с.в. вида, рассмотренного в іі), и $\sigma(X)$ измеримые. По доказанному в іі) $Y_n(\omega) = h_n(X(\omega))$, где h_n ступенчатые борелевские функции. Также $h_{n+1}(X(\omega)) \geq h_n(X(\omega))$, поскольу Y_n возрастающая последовательность. Пусть

$$B_1 = \{x \in R: \lim_{n \to \infty} h_n(x) \text{ существует}\}.$$

Задача 3. Доказать, что $B_1 \in \mathcal{B}(R)$. Доказательство провести в три этапа. Доказать, что

- 1. $\overline{\lim}_{n\to\infty} h_n(x)$ измерим
- 2. $\lim_{n\to\infty} h_n(x)$ измерим
- 3. Использовать то, что

$$B_1 = \{x \in R : \overline{\lim_{n \to \infty}} h_n(x) = \underline{\lim_{n \to \infty}} h_n(x)\}.$$

Из возрастания последовательности $\{h_n(x)\}$ следует, что (измеримый, в силу Леммы 2.2) образ B всего пространства Ω при отображении $X(\omega)$ содержится в множестве B_1 :

$$B := \{X(\omega) : \omega \in \Omega\} \subset B_1, B \in \mathcal{B}(R).$$

Положим

$$h(x) = \begin{cases} \lim_{n \to \infty} h_n(x), & x \in B_1 \\ 0, & x \in B_1^c \end{cases}$$

Тогда h - борелевская функция (как предел последовательности измеримых функций $h_n(x)$ на измеримом множестве $B_1 \subset R$) и $h(X(\omega)) = Y(\omega)$.

- (iv) $Y \leq 0$ произвольная неположительная $\sigma(X)$ измеримая случайная величина. Этот случай сводится к предыдущему рассмотрением -Y.
- (v) Y произвольная $\sigma(X)$ измеримая случайная величина. Представим $Y = Y_1 + Y_2$, где, используя (iii) и (iv), получим

$$Y_1 = Y \cdot I[Y \geq 0] = h_1 \circ X$$
, h_1 борелевская,

$$Y_2 = Y \cdot I[Y < 0] = h_2 \circ X$$
, h_2 борелевская.

Положим $h = h_1 \cdot I(B_1) + h_2 \cdot I(B_2)$, где

$$B_1 = X(\omega: Y \ge 0), B_2 = X(\omega: Y < 0), B_1 \cap B_2 = \emptyset,$$

 $B_1, B_2 \in \mathcal{B}(R)$. Тогда $Y(\omega) = h(X(\omega)), h$ - борелевская функция.

Обратное утверждение:

Случайная величина $Y(\omega) = h(X(\omega))$, где h - борелевская функция, является $\sigma(X)$ – измеримой.

Доказательство простое. В самом деле, по Лемме 2.2 $\{\omega \in \Omega : h(X(\omega)) \le \alpha\} = \{\omega \in \Omega : X(\omega) \in B\} \in \sigma(X),$ поскольку $B := \{x \in R : h(x) \le \alpha\}$ - борелевское множество в R.

Краткий обзор основных понятий и теорем теории вероятостей.

Приведённый ниже обзор не претендует на полноту. Выбор материала обусловлен потребностями данного курса.

Математическое ожидание и дисперсия с.в.

Для каждой неотрицательной с.в. X можно определить математическое ожидание или среднее значение E(X). Это либо неотрицательное число, либо $+\infty$. Если X – вещественная случайная величина, принимающая значения произвольного знака, то E(X) конечно, если $E|X|<\infty$, при этом E(X) может принимать значения любого знака. В случае, когда $E|X|<\infty$ говорят, что X абсолютно интегрируема или что X принадлежит пространству L^1 . Математическое ожидание — это линейный оператор, определённый на векторном пространстве интегрируемых функций (функций из L^1) со значениями в R. Математическое ожидание случайного вектора определяется покомпонентно, т.е. это вектор, компоненты которого равны математическим ожиданиям компонент. При исследовании вопросов, связанных со сходимостью случайных величин, часто используют следующие результаты:

Теорема Лебега о мажорируемой сходимости:

 Π усть (X_n) – последовательность интегрируемых с.в. таких, что:

- 1) $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ для всех $\omega \in \Omega$.
- 2) существует интегрируемая вещественнозначная случайная величина. Z такая, что $|X_n(\omega)| \leq Z(\omega)$. Тогда
 - і) Х является случайной величиной.
 - ii) $\lim_{n\to\infty} EX_n(\omega) = EX(\omega)$.

Теорема Леви о монотонной сходимости:

Пусть последовательность измеримых функций является почти наверное неубывающей, то есть

$$f_1(\omega) \le f_2(\omega) \le \dots \le f_n(\omega) \le \dots$$

почти наверное. Предположим, что интегралы ограничены:

$$\int_{\Omega} f_n(\omega) d\mu \le K, \ n = 1,2 \dots$$

Тогда почти наверное существует конечный предел

$$f(\omega) = \lim_{n \to \infty} f_n(\omega),$$

функция f интегрируема, и

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$$

Лемма Фату:

Eсли $f_n(\omega)$ последовательность неотрицательных измеримых функций, то

$$\int_{\Omega} \lim_{n\to\infty} \inf f_n(\omega) d\mu \leq \lim_{n\to\infty} \inf \int_{\Omega} f_n(\omega) d\mu \leq \infty.$$

Про с.в. X говорят, что она *интегрируема* с квадратом или, что она принадлежит пространству L^2 , если $EX^2 < \infty$. В этом случае определена дисперсия с.в. X: $VarX = E(|X - EX|^2)$. Из этого определения следует, что: $VarX = EX^2 - (EX)^2$.

Следующие два вероятностных неравенства и лемма широко используются:

Лемма Бореля - Кантелли:

Eсли A_1 , ..., A_n , ... последовательность событий таких, что

$$\sum_{k=0}^{\infty} P(A_k) < \infty,$$

то P - почти наверное каждая точка Ω принадлежит только конечному числу событий A_k .

Eсли все события A_1, \dots, A_n, \dots совместно независимы и

$$\sum_{k=0}^{\infty} P(A_k) = \infty,$$

то P - почти наверное каждая точка Ω принадлежит бесконечному числу событий A_k .

Неравенство Маркова.

Если X – интегрируемая с.в. и $\lambda > 0$, то $P(|X| > \lambda) \leq \frac{E|X|}{\lambda}$.

Неравенство Чебышева.

Eсли X — интегрируемая c квадратом c.в. u $\lambda > 0$, то $P(|X - EX| > \lambda) \le \frac{VarX}{\lambda^2}$.

Формула перехода, плотность.

Говорят, что m — мерная случайная величина X имеет плотность f_X , если существует функция f_X : $R^m \to [0, \infty)$ такая, что для каждого борелевского множества $B \in R^m$ имеет место равенство

$$P(X \in B) = \int_{B} f_{X}(x_{1}, x_{2}, ..., x_{m}) dx_{1} ... dx_{m}.$$

Эквивалентное определение (для m=1 эта эквивалентность доказана в Предложении 1.1): для любой ограниченной непрерывной функции $\varphi \colon R^m \to R$

$$E(\varphi(X)) = \int \varphi(x) f_X(x) dx, \quad x \in \mathbb{R}^m$$
 (1)

Формула (1) - это и есть формула перехода. Она позволяет переходить от исходного пространства элементарных событий Ω к пространству значений X, в данном случае это пространство R^m , и вычислять математическое ожидание не в исходном пространстве, а в пространстве R^m , используя плотность распределения $f_X(x)$. Если случайная величина X дискретна,

то есть принимает значения в конечном или счётном множестве $D \subset R$, то формула перехода имеет следующий вид

$$E(\varphi(X)) = \sum_{e \in D} \varphi(e) P(X = e).$$

Из того, что вектор $X = (X_1, ..., X_m)$ имеет плотность, следует, что каждая компонента X_i этого вектора также имеет плотность $f_i(x_i)$, называемую i — ой *маргинальной плотностью*. Эта плотность вычисляется по следующей формуле:

$$f_i(x_i) = \int \dots \int f_X(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_m) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_m.$$

Производящие функции, характеристические функции.

Пусть X – с.в., принимающая значения в подмножестве E множества целых неотрицательных чисел $\mathbb{N}, X \colon \Omega \to E \subset \mathbb{N}$. Производящей функцией (п.ф.) $\Phi_X(t)$ с.в. X называется сумма ряда, определённого для $0 \le t \le 1$ формулой

$$\Phi_X(t) = \sum_{k \ge 0} P(X = k) \cdot t^k.$$

С помощью п.ф. можно вычислять моменты с.в. X (напомним, что k - ый момент с.в. X равен, по определению, EX^k) . В частности,

$$EX = \lim_{t \to 1_{-}} \Phi'_{X}(t), \ E[X(X-1)] = \lim_{t \to 1_{-}} \Phi''_{X}(t).$$

Пусть теперь X — с.в., принимающая вещественные значения, $X: \Omega \to R$. Характеристической функцией $\Psi_X(t)$ с.в. X называется следующая (вообще говоря, комплекснозначная) функция

$$\Psi_{X}(t) = E(e^{itX})$$

(здесь $i=\sqrt{-1}$, «мнимая единица»). В случае, когда X имеет плотность распределения f_X , х.ф. является преобразованием Фурье этой плотности, то есть

$$\Psi_X(t) = \int e^{itX} \cdot f_X(x) dx.$$

Характеристическая функция с.в. X полностью определяет закон распределения этой с.в., точнее: $\partial se\ c.\ s.$ имеют том же самый закон распределения тогда и только тогда, когда их $x.\phi$. совпадают.

Независимость.

Про последовательность с.в. (X_n) говорят, что это **последовательность независимых случайных величин** (н.с.в.), если для любого n и для любой системы интервалов I_1, \ldots, I_n

$$P(X_1 \in I_1, ..., X_n \in I_n) = \mathbf{P}(X_1 \in I_1) \times ... \times \mathbf{P}(X_n \in I_n).$$
 (2)

Аналогично определяется последовательность независимых *случайных векторов*, в этом случае $I_1, ..., I_n$ - произвольная система параллелепипедов в R^m . Заметим, что если в этом заменить интервалы $I_1, ..., I_n$ произвольными определении множествами A_1, \dots, A_n , то борелевскими полученное определение будет эквивалентно исходному. В одну сторону это очевидно (интервалы – частный случай борелевских множеств), но и в другую сторону это нетрудно доказать, произвольное аппроксимируя борелевское множество объединениями интервалов. Подчеркнём, что в определении независимости соотношение (2) должно выполняться для любого n. Кроме того, из (2) следует, что для любого подмножества $(i_1, ..., i_k)$ множества индексов (1, 2, ..., n)

$$P(X_{i_1} \in I_{i_1}, ..., X_{i_k} \in I_{i_k}) = P(X_{i_1} \in I_{i_1}) \times ... \times P(X_{i_k} \in I_{i_k}).$$

Для с.в. $\{X_i\}$, $i=1,\ldots,m$, имеющих плотности, можно сформулировать следующее утверждение:

Пусть случайный вектор $X = (X_1, ..., X_m)$ имеет плотность распределения. Тогда эта плотность равна произведению маргинальных плотностей (плотностей X_i) тогда и только тогда, когда $X_1, ..., X_m$ независимы.

Напомним также следующие хорошо известные предложения, связанные с понятием независимости:

- 1. Если $X_1, ..., X_n$ независимы и интегрируемы, то $E(X_1 \cdot ... \cdot X_n) = EX_1 \cdot ... \cdot EX_n$.
- 2. Если $X_1, ..., X_n$ независимы и интегрируемы с квадратом (то есть $EX_i^2 < \infty, i = 1, ..., n$), то $Var(X_1 + \cdots + X_n) = Var(X_1) + \cdots + Var(X_n)$.
- 3. $X_1, ..., X_n$ независимы тогда и только тогда, когда для любых вещественных чисел $t_1, ... t_n$

$$E\exp\{i(t_1X_1 + \dots + t_nX_n)\} = E\exp(it_1X_1) \cdot \dots \cdot E\exp(it_nX_n).$$

Сходимость случайных величин.

Говорят, что последовательность с.в. X_1, \dots, X_n сходится **почти наверное** (n.н.) к случайной величине X, если P - почти наверное на Ω

$$\lim_{n\to\infty} X_n(\omega) = X(\omega).$$

Эта последовательность сходится *по распределению* (говорят также *слабо сходится*), если для любой *непрерывной ограниченной* функции $\varphi: R \to R$ имеет место сходимость

$$E\varphi(X_n(\omega)) = E\varphi(X(\omega)).$$

Существует два других эквивалентных определения сходимости по распределению (слабой сходимости). Первое формулируется в терминах функций распределения: Последовательность с.в. $\{X_i\}$, i=1,2,... сходится по распределению к с.в. X, если для любой точки непрерывности $t\in R$ функции распределения $F_X(t)=P(X\leq t)$ имеет место сходимость $\lim_{n\to\infty}F_{X_i}(t)=F_X(t)$.

Второе определение формулируется в терминах характеристических функций:

Последовательность с.в. $\{X_i\}$, i=1,2,... сходится по распределению к с.в. X, если для любой точки $t \in R$ последовательность $x.\phi$. $\Phi_{X_i}(t)$ сходится к $x.\phi$. $\Phi_{X}(t)$ при $i \to \infty$.

Сведём различные виды сходимости в таблицу и укажем взаимосвязь между ними.

1. Почти наверное (почти всюду):

$$P\left(\left\{\omega\colon \lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

2. По вероятности:

$$\forall \varepsilon > 0 \quad P(\{\omega : |X_n(\omega) - X(\omega)| > \varepsilon\}) \to 0, n \to \infty.$$

3. В среднем порядка r > 0:

$$E|X_n(\omega)-X(\omega)|^r\to 0, n\to\infty.$$

4. По распределению:

$$F_{X_n}(x) \to F_X(x), n \to \infty$$

в точках непрерывности F(x).

5. Слабая сходимость: для любой *непрерывной ограниченной* функции $\varphi: R \to R$

$$E\varphi(X_n)\to E\varphi(X), n\to\infty.$$

Взаимосвязи между различными типами сходимости:

$$1 \Rightarrow 2$$

$$3 \Rightarrow 2$$

$$2 \Rightarrow (5 \Leftrightarrow 4)$$
.

Классические примеры законов распределения.

Распределение Бернулли с параметром р.

Это закон распределения с.в., принимающей два значения: 0 и 1. Распределение полностью определяется одним параметром p = P(X = 1). Стандартная модель, в которой возникает распределение Бернулли, это бросание монеты («орёл» или «решка»). Положим X = 1, если выпала «решка» и X = 0, если выпал «орёл». Для симметричной монеты p = 1/2, для несимметричной монеты $p \neq 1/2$. В этом случае E(X) = p, Var(X) = p(1-p). Заметим также, что в этом случае пространство элементарных исходов Ω состоит из двух «точек» $\{O\}$ — «орёл» и $\{P\}$ — «решка», $P(\{O\}) = P(X = 0) = 1 - p$, $P(\{P\}) = P(\{X = 1\}) = p$.

Биномиальное распределение с параметрами (n, p).

Это закон распределения с.в., принимающей значения во множестве $\{0,1,...,n\}$ с вероятностями

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}$$
(3)

Стандартная модель биномиального распределения - это n независимых бросаний монеты с одинаковой вероятностью p выпадения «решки» при каждом бросании, а X - общее число выпадений «решки» («успехов») в n бросаниях. Очевидно, что X принимает значения от 0 до n и вероятность того, что X = k даётся формулой (3) (докажите). Заметим, что пространство элементарных событий Ω в этом случае состоит их 2^n «слов» длины n вида $\{O,P,P,O,P,O,O...,P\}$, O - «орёл», P - «решка», и вероятность «точки» $\{O,P,P,O,P,O,O...,P\}$, в которой ровно k букв P, стоящих на фиксированных местах, даётся формулой $p^k(1-p)^{n-k}$.

Геометрическое распределение с параметром α , $0 \le \alpha < 1$.

Это закон распределения с.в. X, принимающей значения в множестве $N=\{0,1,...\}$ с вероятностями $P(X=k)=(1-\alpha)\alpha^k$. В этом случае $EX=\frac{\alpha}{1-\alpha}$, $Var X=\alpha/(1-\alpha)^2$.

Распределение Пуассона с параметром $\lambda > 0$.

Это закон распределения с.в. X, принимающей значения в множестве $N = \{0,1,2,...\}$ с вероятностями $P(X = k) = e^{-\lambda} \lambda^k / k!$. В этом случае $EX = \lambda, VarX = \lambda$. Если $np_n \to \lambda$, то последовательность биномиальных распределений с параметрами (n, p_n) слабо сходится при $n \to \infty$ к распределению Пуассона с параметром λ .

Равномерное распределение на отрезке [a,b].

Это закон распределения с.в. X со значениями на отрезке [a,b], имеющей плотность распределения $f(x) = 1_{[a,b]}(x)/(b-a)$. В этом случае EX = (a+b)/2, $VarX = (b-a)^2/12$.

Экспоненциальное распределение с параметром 0.

Это закон распределения с.в. X со значениями в $[0, \infty)$ и имеющей плотность $f(x) = \theta e^{-\theta x} 1_{[0,\infty)}(x)$. В этом случае $EX = 1/\theta$, $VarX = 1/\theta^2$.

Нормальное распределение $N(\mu, \sigma^2)$.

Это закон распределения с.в. X со значениями в R, имеющей плотность $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. В случае нормального распределения $EX = \mu, VarX = \sigma^2$. Нормальное распределение с параметрами $\mu = 0, \sigma = 1$ называется *стандартным* нормальным распределением. Случайная величина X имеет стандартное нормальное распределение тогда и только тогда, когда $\sigma X + \mu$ имеет распределение $N(\mu, \sigma^2)$.

Усиленный закон больших чисел (у.з.б.ч.):

Если (X_n) последовательность независимых, одинаково распределённых, интегрируемых с.в., то средние арифметические $\frac{X_1+\dots+X_n}{n}$ сходятся P- **почти наверное** к константе EX_1 .

Центральная предельная теорема:

Если (X_n) последовательность независимых одинаково распределённых, интегрируемых с квадратом с.в., то последовательность нормированных сумм

$$\sqrt{\frac{n}{\sigma^2}} \cdot \left[\frac{X_1 + \dots + X_n}{n} - EX_1 \right]$$

где $\sigma^2 = Var X_1$, сходится по распределению к стандартному нормальному закону.

Простое случайное блуждание на Z.

Простое случайное блуждание является математическим описанием одномерного движения частицы. Рассмотрим одномерную целочисленную решётку $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$. Предположим, что в момент времени n=0 частица находится в положении $S_0 = 0$. Затем производится бросание симметричной монеты, и, в зависимости от результата бросания, частица перемещается на один шаг вправо или влево. Так как монета симметрична, вероятности каждого перемещения равны $\frac{1}{2}$. Пусть S_1 обозначает полученное таким образом положение частицы в момент 1. Затем повторяют процесс, то есть снова бросают монету, чтобы определить положение частицы в момент 2, и.т.д. Предполагается, что каждое бросание монеты не зависит от результатов всех предыдущих бросаний. Результатом таких экспериментов является случайный процесс $S = \{S_n\}_{n \ge 0}$. Очевидно, имеет место представление $S_n = X_1 + X_2 + \cdots + X_n$, где $\{X_i\}_{i\geq 1}$ – последовательность независимых одинаково

распределённых с.в., $P(X_1 = +1) = P(X_1 = -1) = \frac{1}{2}$.

Следующие факты о простом случайном блуждании хорошо известны:

- 1. $ES_n = 0$, $VarS_n = n$, $ES_n^4 = 3n^2 2n$.
- 2. Усиленный закон больших чисел Колмогорова:

$$P\left\{\lim_{n\to\infty}\frac{S_n}{n}=0\right\}=1$$

3. Центральная предельная теорема:

$$\lim_{n\to\infty} P\left(\frac{S_n}{\sqrt{n}} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-y^2/2} dy.$$