Assignment

Instructions

In the world of GIS we frequently have questions about whether a given point is inside, on the boundary of or outside of a given shape or area. Also, we are often interested in whether the given point is near the area (usually defined as within a given distance; visualize buffering the shape). Since this is such a common request in GIS, a lot of thought has been put into answering the question quickly.

The problem you have been given is based on common method of quickly eliminating 95% of the features from a given problem by first determining whether the feature is near or disjoint with the Minimum Bounding Rectangle (MBR) of a more complex feature. The MBR is the smallest possible rectangle that contains/encloses a complex shape. The following sketch illustrates the relationship between MBR a complex shape and a point of interest:

An MBR (AKA extent or envelope) can be represented by 2 points: the lower left corner and the upper right corner. This is often expressed as 4 numeric values: xmin, ymin xmax and ymax. If we know the point is disjoint with the MBR then no further processing or comparison between the shapes is needed.

Some systems allow for a tolerance (fuzzy distance) or even a specified distance from the object (think of this as a buffered version of the MBR --> bigger rectangle). This bigger MBR is then used for testing the relationship. For this assignment we will have 5 possible relationships:

- The point falls inside the MBR (small rectangle)
- The point falls on the boundary of the MBR
- The point falls inside the buffered MBR
- The point falls on the boundary of the buffered MBR
- The point and MBR are disjoint

Remember, the "buffered MBR" is simply a bigger rectangle.

STEP 01

Open IntelliJ

Create a new java project

Use the template

Set the project name t:

m04 SpatialRelationshipr

Ensure the project location is:

H:\var\gist\7010\wksp_dt\m04_SpatialRelationship

Set the base package to:

bcit.gist7010

STEP 02

Add an enumeration between Main (class) and main (method)

enum SpatialRelationship {INSIDE, LEFT, RIGHT, TOP, BOTTOM, INSIDE_BUFFER, LEFT_BUFFER, RIGHT_BUFFER, TOP_BUFFER, BOTTOM_BUFFER, DISJOINT};

STEP 03

Add the Scanner snippet

STEP 04 Declare several data buckets (double) for the following variables • xmin • ymin • xmax • ymax

- bufferedDistance
- xcoord
- ycoord

STEP 05 Prompt the user for the data in the following order:

xmin ymin xmax ymax buffered_distance xcoord ycoord

Set the above variables using the Scanner's nextDouble method

STEP 06 Declare more data buckets (double) and set more double variables:

- bufferedXmin = xmin bufferedDistance
- bufferedYmin = ymin bufferedDistance
- bufferedXmax = xmax + bufferedDistance
- bufferedYmax = ymax +bufferedDistance

STEP 07 Declare a data bucket for the relationship

SpatialRelationship spatialRelationship;

Assume the point and MBR are Disjoint

spatialRelationship = SpatialRelationship.DISJOINT;

STEP 08 Determining INSIDE

A point can only be inside the MBR if 4 conditions are true:

xcoord is greater than xmin

AND (&&)

xcoord is less than xmax

AND (&&)

ycoord is greater than ymin

AND (&&)

ycoord is less than ymax

If all of those conditions are true then set the spatial relationship spatialRelationship = SpatialRelationship.INSIDE;

STEP 09 Determining Left

For a point to fall on the left side of the MBR, 3 conditions have to be true xcoord is equal to **xmin**

AND (&&)

ycoord is less than or equal to ymax

AND (&&)

ycoord is greater than or equal to ymin

If all of those conditions are true then set the spatial relationship spatialRelationship = SpatialRelationship.LEFT;

However! Link the left-logic to the inside-logic using an else if (...)

STEP 10 Determining Right, Top and bottom

Repeat the previous logic for right, top and bottom.

xcoord is equal to xmax

AND (&&)

ycoord is less than or equal to ymax

AND (&&)

ycoord is greater than or equal to ymin

For top and bottom swap x-values for y-values and y-values for x-values

Each test will be an additional "else if" branch in your main multi-path selection statement.

Remember to set the spatialRelationship accordingly

STEP 11 Repeat the inside and on boundary tests for the buffered MBR How?

Repeat the previous tests using the buffered values.

A point can only be inside the buffered MBR if 4 conditions are true: xcoord is greater than buffered-xmin

AND (&&)

xcoord is less than buffered-xmax

AND (&&)

ycoord is greater than buffered-ymin

AND (&&)

ycoord is less than buffered-ymax

However! Link this logic to the bottom-logic using an else if (...)

Using the above suggestions the instructor's main selection statement had:

1 if ()

9 else if ()

Although the problem could be solved with fewer selections your program will be more readable by yourself if you follow these suggestions.

STEP 12 Report the relationship to the user.

Marking Guide

Item	Value
The tutorial works	2
The program works	5
Indentation is correct and consistent	1
Comments	2
Total	10