Tích phân đường loại 2

TS. Huỳnh Thị Hồng Diễm

Bộ Môn T<mark>oán</mark> Trường Đại học Bách Khoa TPHCM

TPHCM, Tháng 5 năm 2020.

- 1. Định nghĩa tích phân đường 2
- 2. Cách tính tích phần đường 2

TÀI LIỆU SƯU TẬP

B Ø I H C M U T - C N C P

- 1. Định nghĩa tích phân đường 2
- 2. Cách tính tích phân đường 2
- 3. Định lý Green

TÀI LIỆU SƯU TẬP

B Ø I H C M U T - C N C P

- 1. Định nghĩa tích phân đường 2
- 2. Cách tính tích phân đường 2
- 3. Định lý Green

TÀI LIỆU SƯU TẬP

B Ø I H C M U T - C N C P

Trong mặt phẳng Oxy cho hàm vector $\overrightarrow{F} = (P(x, y), Q(x, y))$ xác định trên cung BC

BỞI HCMUT-CNCP

Trong mặt phẳng Oxy cho hàm vector $\overrightarrow{F} = (P(x, y), Q(x, y))$ xác định trên cung BC

+ Chia cung BC thành n cung nhỏ không dẫm lên nhau bởi các điểm $B = B_0, B_1, \ldots, B_n = C$.

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Trong mặt phẳng Oxy cho hàm vector $\overrightarrow{F} = (P(x,y),Q(x,y))$ xác định trên cung BC + Chia cung BC thành n cung nhỏ không dẫm lên nhau bởi các điểm $B = B_0, B_1, \ldots, B_n = C$. $\overrightarrow{B_k B_{k+1}} = (\Delta x_k, \Delta y_k) = \Delta x_k \overrightarrow{i} + \Delta y_k \overrightarrow{j}$

$$x_{k+1}' = (\Delta x_k, \Delta y_k) = \Delta x_k \vec{i} + \Delta y_k \vec{j}$$

TÀI LIÊU SƯU TẬP

BổI HCMUT-CNCP

Trong mặt phẳng Oxy cho hàm vector $\overrightarrow{F} = (P(x,y),Q(x,y))$ xác định trên cung BC + Chia cung BC thành n cung nhỏ không dẫm lên nhau bởi các điểm $B = B_0, B_1, \ldots, B_n = C$. $\overrightarrow{B_k B_{k+1}} = (\Delta x_k, \Delta y_k) = \Delta x_k \overrightarrow{i} + \Delta y_k \overrightarrow{j}$

+ Lấy điểm $M(x_k, y_k)$ trên cung $B_k B_{k+1}$ và lập thành tổng tích

phân.

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

Trong mặt phẳng Oxy cho hàm vector $\vec{F} = (P(x, y), Q(x, y))$ xác định trên cung BC

+ Chia cung BC thành n cung nhỏ không dẫm lên nhau bởi các điểm $B = B_0, B_1, \ldots, B_n = C$.

$$\frac{\overrightarrow{\text{diểm }}B = B_0, B_1, \dots, B_n = C.}{B_k B_{k+1}} = (\Delta x_k, \Delta y_k) = \Delta x_k \vec{i} + \Delta y_k \vec{j}$$

+ Lấy điểm $M(x_k,y_k)$ trên cung B_kB_{k+1} và lập thành tổng tích

phân.
$$S_n = \sum_{k=1}^n [P(x_k, y_k) \Delta x_k + Q(x_k, y_k) \Delta y_k].$$

+ Nếu $\lim_{n\to\infty} S_n$ tồn tại hữu hạn thì giới hạn đó là tích phân đường loại 2 của hàm P(x,y), Q(x,y) dọc theo cung BC.

Trong mặt phẳng Oxy cho hàm vector $\vec{F} = (P(x, y), Q(x, y))$ xác định trên cung BC

+ Chia cung BC thành n cung nhỏ không dẫm lên nhau bởi các điểm $B = B_0, B_1, \ldots, B_n = C$.

$$\frac{\overrightarrow{\text{diểm }}B = B_0, B_1, \dots, B_n = C.}{B_k B_{k+1}} = (\Delta x_k, \Delta y_k) = \Delta x_k \vec{i} + \Delta y_k \vec{j}$$

+ Lấy điểm $M(x_k,y_k)$ trên cung B_kB_{k+1} và lập thành tổng tích

phân.
$$S_n = \sum_{k=1}^n [P(x_k,y_k)\Delta x_k + Q(x_k,y_k)\Delta y_k].$$

+ Nếu $\lim_{n\to\infty} S_n$ tồn tại hữu hạn thì giới hạn đó là tích phân đường loại 2 của hàm P(x,y), Q(x,y) dọc theo cung BC.

Kí hiệu là:
$$\int_{BC} P(x,y)dx + Q(x,y)dy$$
BACHKHOACNCP.COM

$$x = x(t), y = y(t)$$

t=a ứng với điểm đầu của $\stackrel{\frown}{AB}$, t=b ứng với điểm cuối của cung

AB. Khi đó,

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

$$x = x(t), y = y(t)$$

AB. Khi đó,

t=a ứng với điểm đầu của $\stackrel{\frown}{AB}$, t=b ứng với điểm cuối của cung

$$\int_{AB} P dx + Q dy = \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)] dt$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

$$x = x(t), y = y(t)$$

t=a ứng với điểm đầu của $\stackrel{\frown}{AB}$, t=b ứng với điểm cuối của cung $\stackrel{\frown}{AB}$. Khi đó,

$$\int_{AB} Pdx + Qdy = \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)]dt$$

2.2 Trường hợp cung AB có phương trình y = y(x), với x = a là hoành độ điểm đầu, x = b là hoành độ điểm cuối, khi đó

BŐI HCMUT-CNCP

$$x = x(t), y = y(t)$$

t = a ứng với điểm đầu của $\stackrel{\frown}{AB}$, t = b ứng với điểm cuối của cung $\stackrel{\frown}{AB}$. Khi đó,

$$\int_{AB} P dx + Q dy = \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)]dt$$

2.2 Trường hợp cung AB có phương trình y=y(x), với x=a là hoành độ điểm đầu, x=b là hoành độ điểm cuối, khi đó

$$\int_{AB} Pdx + Qdy = \int_{BACHKHOACNCP.COM} E dy = \int_{AB} [p(x, y(x)) + Q(x, y(x))y'(x)]dx$$

$$x = x(t), y = y(t)$$

t = a ứng với điểm đầu của $\stackrel{\frown}{AB}$, t = b ứng với điểm cuối của cung $\stackrel{\frown}{AB}$. Khi đó,

$$\int_{AB} P dx + Q dy = \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)]dt$$

2.2 Trường hợp cung AB có phương trình y=y(x), với x=a là hoành độ điểm đầu, x=b là hoành độ điểm cuối, khi đó

$$\int_{AB} Pdx + Qdy = \int_{BACHKHOACNCP.COM} E dy = \int_{AB} [p(x, y(x)) + Q(x, y(x))y'(x)]dx$$

$$\int_{AB} Pdx + Qdy = \int_{a}^{b} [p(x(y), y)x'(y) + Q(x(y), y)]dy$$

TÀI LIỆU SƯU TẬP

B Ø I H C M U T - C N C P

$$\int_{AB} Pdx + Qdy = \int_{a}^{b} [p(x(y), y)x'(y) + Q(x(y), y)]dy$$

2.4 Tích phân đường loại 2 trong không gian

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

$$\int_{AB} Pdx + Qdy = \int_{a}^{b} [p(x(y), y)x'(y) + Q(x(y), y)]dy$$

2.4 Tích phân đường loại 2 trong không gian

Cho cung trơn AB có phương trình tham số trong không gian với x = x(t), y = y(t), z = z(t). Điểm đầu A ứng với t = a, điểm cuối B

ứng với t = b. TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

$$\int_{AB} Pdx + Qdy = \int_{a}^{b} [p(x(y), y)x'(y) + Q(x(y), y)]dy$$

2.4 Tích phân đường loại 2 trong không gian

Cho cung tron AB có phương trình tham số trong không gian với x=x(t),y=y(t),z=z(t). Điểm đầu A ứng với t=a, điểm cuối B ứng với t=b. $I=\int\limits_{AB}Pdx+Qdy+Rdz$

BŐI HCMUT-CNCP

$$\int_{AB} Pdx + Qdy = \int_{a}^{b} [p(x(y), y)x'(y) + Q(x(y), y)]dy$$

2.4 Tích phân đường loại 2 trong không gian

Cho cung tron AB có phương trình tham số trong không gian với x=x(t),y=y(t),z=z(t). Điểm đầu A ứng với t=a, điểm cuối B ứng với t=b. $I=\int\limits_{AB}Pdx+Qdy+Rdz$

$$= \int [P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) +$$

 $R(x(t), y(t), z(t))z'(t)]dt^{\text{BACHKHOACNCP.COM}}$

Ví dụ 1: Tính $I = \int 2xydx - x^2dy$, C là đoạn nối từ

O(0,0) đến A(2,1) theo các đường cong sau.

- a) Đoạn thẳng *OA*
- b) Parabol $x = 2y^2$. LIỆU SƯU TẬP

BŐI HCMUT-CNCP

Giải.

DAGUELLO AGNOD GON

Giải.a) Đoạn thẳng $OA: y = \frac{x}{2}, x: 0 \rightarrow 2$

BỞI HCMUT-CNCP

Giải.a) Đoạn thẳng $OA: y = \frac{x}{2}, x: 0 \rightarrow 2$

b) Parabol $x = 2y^2$, $y : 0 \rightarrow 1$

$$I = \int_{0}^{1} [2.2y_{0}^{2} y_{1} 4y_{0} + (2y_{0}^{2})^{2}] dy = \int_{0}^{1} 12y^{4} dy = \frac{12}{5}$$

Chú ý:

BỞI HCMUT-CNCP

Chú ý:

Những bài tham số hóa theo góc, ngược chiều kim đồng hồ là tham số tăng dần, cùng chiều kim đồng hồ là tham số giảm dần.

TÀI LIỆU SƯU TẬP

Ví dụ 2: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn

 $x^2 + y^2 = 4$ theo chiều ngược chiều KDH.

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Ví dụ 2: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn

$$x^2 + y^2 = 4$$
 theo chiều ngược chiều KDH.

Giải.

$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$$

TÀI LIÊU SƯU TẬP

BỞI HCMUT-CNCP

Ví dụ 2: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn

$$x^2 + y^2 = 4$$
 theo chiều ngược chiều KDH.

Giải.
$$x = 2 \cos t$$

$$x = 2\cos t$$
$$y = 2\sin t$$

TÀI LIÊU SƯU TẬP

BỞI HCMUT-CNCP

Ví dụ 2: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn

 $x^2 + y^2 = 4$ theo chiều ngược chiều KĐH.

Giải.

$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$$

 $t:0\to 2\pi$

$$I = \int_{0}^{2\pi} [2\cos t \cdot 2\sin t \cdot (-2\sin t) + 2 \cdot (2\cos t)^{2} \cdot 2\sin t \cdot 2\cos t]dt$$

BACHKHOACNCP.COM

TPHCM, Tháng 5 năm 2020.

Ví dụ 2: Tính
$$I = \int xydx + 2x^2ydy$$
, với C là đường tròn

 $x^2 + y^2 = 4$ theo chiều ngược chiều KDH.

Giải. $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$

$$y=2\sin x$$

 $I = \int_{0}^{2\pi} [2\cos t \cdot 2\sin t \cdot (-2\sin t) + 2 \cdot (2\cos t)^{2} \cdot 2\sin t \cdot 2\cos t] dt$

$$I = \int_{0}^{2\pi} (-8\sin^2 t \cdot \cos t + 32 \cdot \cos^3 t \cdot \sin t) dt$$

 $t:0\rightarrow 2\pi$

Dinh nghĩa:

Định nghĩa:

Nếu C là đường cong kín (chu tuyến) là biên của miền $D \subset \mathbb{R}^2$ chiều dương của C là chiều mà khi người đi dọc trên biên, miền D nằm bên tay trái. Tích phân đường loại 2 trên đường cong kín được kí hiệu:

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Dinh nghĩa:

Nếu C là đường cong kín (chu tuyến) là biên của miền $D \subset \mathbb{R}^2$ chiều dương của C là chiều mà khi người đi dọc trên biên, miền D nằm bên tay trái. Tích phân đường loại 2 trên đường cong kín được kí hiệu: $\oint Pdx + Qdy$

3. Định lý Green

Cho miền D đóng và giới nội trong mặt phẳng Oxy với biên C trơn từng khúc. Nếu các hàm P(x,y), Q(x,y) liên tục cùng với các đạo hàm riêng của chúng trong miền D thì ta có.

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

3. Định lý Green

Cho miền D đóng và giới nội trong mặt phẳng Oxy với biên C trơn từng khúc. Nếu các hàm P(x,y), Q(x,y) liên tục cùng với các đạo hàm riêng của chúng trong miền D thì ta có.

$$\oint_C Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$$

Tích phân đường vế trái được lấy theo chiều dương.

3. Định lý Green

Cho miền D đóng và giới nội trong mặt phẳng Oxy với biên C trơn từng khúc. Nếu các hàm P(x,y), Q(x,y) liên tục cùng với các đạo hàm riêng của chúng trong miền D thì ta có.

$$\oint_C Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$$

Tích phân đường vế trái được lấy theo chiều dương.

Chú ý: C có thể bao gồm nhiều chu tuyến giới hạn miền D

Ví dụ 3: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn $x^2 + y^2 = 4$ theo chiều ngược chiều KDH.

Giải.

$$\begin{cases} P(x,y) = xy \Rightarrow P'_y = x \\ Q(x,y) = 2x^2y \Rightarrow Q'_x = 4xy \text{ UTAP} \end{cases}$$

Ví dụ 3: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn $x^2 + y^2 = 4$ theo chiều ngược chiều KDH. **Giải.**

$$\begin{cases} P(x,y) = xy \Rightarrow P'_{y} = x \\ Q(x,y) = 2x^{2}y \Rightarrow Q'_{x} = 4xy \text{ UUTAP} \end{cases}$$

Ví dụ 3: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn

 $x^2 + y^2 = 4$ theo chiều ngược chiều KDH.

Giải.

$$\begin{cases} P(x,y) = xy \Rightarrow P'_{y} = x \\ Q(x,y) = 2x^{2}y \Rightarrow Q'_{x} = 4xy \quad \text{TAP} \end{cases}$$

$$I \stackrel{Green}{=} + \iint [4xy - x] dxdy, \text{ với } D: x^{2} + y^{2} \leq 4$$

4□ ▶ 4□ ▶ 4 □ ▶ 4 □ ▶ 9 Q P

Ví dụ 3: Tính
$$I = \int_C xydx + 2x^2ydy$$
, với C là đường tròn

 $x^2 + y^2 = 4$ theo chiều ngược chiều KDH.

Giải.

$$\begin{cases} P(x,y) = xy \Rightarrow P'_{y} = x \\ Q(x,y) = 2x^{2}y \Rightarrow Q'_{x} = 4xy \quad \text{TAP} \end{cases}$$

$$I \stackrel{Green}{=} + \iint [4xy - x] dxdy, \text{ voi } D : x^{2} + y^{2} \le 4$$

I = 0 BACHKHOACNCP.COM

Ví dụ 4: Tính
$$I = \int_C (x-y^3) dx + (x^3+y^3) dy$$
, với C là biên của miền D giới hạn bởi $0 \le x^2 + y^2 \le 1, x \ge 0, y \ge 0$. Tích phân

đường lấy theo chiều dương.

$$\begin{cases} P(x,y) = x - y^3 \Rightarrow P'_y = -3y^2 \\ Q(x,y) = x^3 + y^3 \Rightarrow Q'_x = 3x^2 \text{ U TAP} \end{cases}$$

Ví dụ 4: Tính
$$I = \int_C (x-y^3)dx + (x^3+y^3)dy$$
, với C là biên của miền D giới hạn bởi $0 \le x^2+y^2 \le 1, x \ge 0, y \ge 0$. Tích phân

đường lấy theo chiều dương.

Giải.

$$\begin{cases} P(x,y) = x - y^3 \Rightarrow P'_y = -3y^2 \\ Q(x,y) = x^3 + y^3 \Rightarrow Q'_x = 3x^2 \end{cases}$$

Ví dụ 4: Tính
$$I = \int_{C} (x - y^3) dx + (x^3 + y^3) dy$$
, với *C* là biên của

miền D giới hạn bởi $0 \le x^2 + y^2 \le 1, x \ge 0, y \ge 0$. Tích phân

đường lấy theo chiều dương.

Giải.

$$\begin{cases} P(x,y) = x - y^3 \Rightarrow P'_y = -3y^2 \\ Q(x,y) = x^3 + y^3 \Rightarrow Q'_x = 3x^2 \end{cases}$$

$$I \stackrel{Green}{=} + \iint [3x^2 + 3y^2] \frac{dxdy}{dxdy} = \int_{\text{NCP.COM}} d\varphi \int_{\text{NCP.COM}} 3r^2 \cdot r dr = \frac{3\pi}{8}$$

Ví dụ 5: Tính $I = \int_C y^3 dx + x^2 y dy$, với C là biên của miền D giới hạn bởi $1 \le x^2 + y^2 \le 4$. Tích phân đường lấy theo chiều

dương.

Giải.
$$\begin{cases} P(x,y) = y^3 \Rightarrow P'_y = 3y^2 \\ Q(x,y) = x^2y \Rightarrow Q'_x = 2xy \end{cases}$$

Ví dụ 5: Tính $I = \int_C y^3 dx + x^2 y dy$, với C là biên của miền D giới hạn bởi $1 \le x^2 + y^2 \le 4$. Tích phân đường lấy theo chiều

dương.

Giải.
$$\begin{cases} P(x,y) = y^3 \Rightarrow P'_y = 3y^2 \\ Q(x,y) = x^2y \Rightarrow Q'_x = 2xy \end{cases}$$

Ví dụ 5: Tính $I = \int_C y^3 dx + x^2 y dy$, với C là biên của miền D giới hạn bởi $1 \le x^2 + y^2 \le 4$. Tích phân đường lấy theo chiều

dương.

Giải.
$$\begin{cases} P(x,y) = y^3 \Rightarrow P'_y = 3y^2 \\ Q(x,y) = x^2y \Rightarrow Q'_x = 2xy \\ 2\pi & 2 \end{cases}$$

$$I \stackrel{Green}{=} + \iint\limits_{D} [2xy - y^2] \frac{dxdy}{dxdy} = \int\limits_{BACHKH} \int\limits_{Q} \int\limits_{C1CP,COM}^{CNCP} \frac{1}{2} e^{-45\pi}$$

Ví dụ 6: Tính
$$I = \int_C \frac{xdy - ydx}{x^2 + y^2}$$

- a) Với C đường tròn $(x-2)^2 + (y-1)^2 = 1$ theo chiều ngược chiều KĐH.
- b) Vơi C là đường tròn $x^2 + y^2 = 1$ theo chiều ngược chiều KDH.

Giái. a)
$$P(x,y) = \frac{-y}{x^2 + y^2} \Rightarrow P'_y = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

 $Q(x,y) = \frac{x}{x^2 + y^2} \Rightarrow Q'_x = \frac{y^2 - x^2}{(x^2 + y^2)^2}$

$$Q(x,y) = \frac{x}{x^2 + y^2} \Rightarrow Q'_x = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

Ví dụ 6: Tính
$$I = \int_C \frac{xdy - ydx}{x^2 + y^2}$$

- a) Với C đường tròn $(x-2)^2 + (y-1)^2 = 1$ theo chiều ngược chiều KĐH.
- b) Vơi C là đường tròn $x^2 + y^2 = 1$ theo chiều ngược chiều KDH.

Giái. a)
$$P(x,y) = \frac{-y}{x^2 + y^2} \Rightarrow P'_y = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

 $Q(x,y) = \frac{x}{x^2 + y^2} \Rightarrow Q'_x = \frac{y^2 - x^2}{(x^2 + y^2)^2}$

$$Q(x,y) = \frac{x}{x^2 + y^2} \Rightarrow Q'_x = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

Ví dụ 6: Tính
$$I = \int_{C} \frac{xdy - ydx}{x^2 + y^2}$$

- a) Với C đường tròn $(x-2)^2 + (y-1)^2 = 1$ theo chiều ngược chiều KĐH.
- b) Vơi C là đường tròn $x^2 + y^2 = 1$ theo chiều ngược chiều KĐH.

Giái. a)
$$P(x,y) = \frac{-y}{x^2 + y^2} \Rightarrow P'_y = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

 $Q(x,y) = \frac{x}{x^2 + y^2} \Rightarrow Q'_x = \frac{y^2 - x^2}{(x^2 + y^2)^2}$

$$Q(x,y) = \frac{x}{x^2 + y^2} \Rightarrow Q'_x = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\iint_{D} (Q'_{x} + P'_{y}) dxdy \iint_{D} 0 dxdy = 0$$

Giải. b) (C) là đường tròn
$$x^2+y^2=1$$
 theo chiều ngược chiều KĐH $\begin{cases} x=\cos t \\ y=\sin t \end{cases}$ $t:0\to 2\pi$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Giải. b) (C) là đường tròn
$$x^2 + y^2 = 1$$
 theo chiều ngược chiều KĐH $\begin{cases} x = \cos t \\ y = \sin t \end{cases}$ $t: 0 \to 2\pi$
$$I = \int_0^{2\pi} \frac{(-\sin t)(-\sin t) + \cos t \cdot \cos t}{1} dt = \int_0^{2\pi} 1 dt = 2\pi$$

BACHKHOACNCP.COM

Giải. Công của lực \vec{F} được tính theo công thức

BổI HCMUT-CNCP

Giải. Công của lực \vec{F} được tính theo công thức

$$I = \int_C x dx + (x^3 + 3xy^2) dy.$$

TÀI LIÊU SƯU TÂP

BổI HCMUT-CNCP

Giải. Công của lực \vec{F} được tính theo công thức

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Giải. Công của lực \overrightarrow{F} được tính theo công thức

$$I = \int_{C} x dx + (x^{3} + 3xy^{2}) dy.$$

$$I \stackrel{Green}{=} - \iint_{D} (3x^{2} + 3y^{2}) dx dy \text{ v\'oi } D: x^{2} + y^{2} \le 4, y \le 0$$

Giải. Công của lực \vec{F} được tính theo công thức

$$I = \int_{C} x dx + (x^3 + 3xy^2) dy.$$

$$I \stackrel{Green}{=} - \iint_{D} (3x^2 + 3y^2) dx dy \text{ v\'oi } D: x^2 + y^2 \le 4, y \le 0$$

$$I = - \int_{D} \int_{D} 3r^2 . r dr d\varphi = -12\pi$$
BACHKHOACNCP.COM