

Jeppe Brage Christensen :: Metrology Section :: Paul Scherrer Institute jeppe.christensen@psi.ch

Calculations of recombination in ion beams

EPTN WP2 Aarhus, April 2022

Introduction

Where do we stand?

- The use of Monte Carlo particle transport codes
- Recombination in single ion tracks (initial recombination)
 - solved analytically by G. Jaffé in 1913
 - limited prediction capabilities
 - not generalised to multiple tracks

Bulk recombination simulations

Open-source project IonTracks

- Extends the Jaffé theory with amorphous track structure theory
- Includes track interactions (*initial* + *general* recombination) ⇒ beam simulations

Introduction

Where do we stand?

- The use of Monte Carlo particle transport codes
- Recombination in single ion tracks (initial recombination)
 - solved analytically by G. Jaffé in 1913
 - limited prediction capabilities
 - not generalised to multiple tracks

Bulk recombination simulations

Open-source project IonTracks

- Extends the Jaffé theory with amorphous track structure theory
- Includes track interactions (*initial* + *general* recombination) ⇒ beam simulations

Calculations of ion recombination

Semi-empirical approaches

- Three-voltage linear method [1]
- or separation of components [2–4]

$$k_{\rm s} \approx 1 + \underbrace{\frac{c_1}{V}}_{\rm initial} + \underbrace{\frac{c_2}{V^2} I_V}_{\rm general}$$

- 1 Rossomme S et al (2019) PMB **65** 045015
- 2 De Almeida and Niatel (1986) BIPM 86(12)
- 3 Palmans H et al (2012) PMB 51 903-917
- 4 Rossomme S et al (2016) Med Phys **43**(7) 4198

Calculations of ion recombination

Semi-empirical approaches

- Three-voltage linear method [1]
- or separation of components [2–4]

$$k_s \approx 1 + \underbrace{\frac{c_1}{V}}_{\text{initial}} + \underbrace{\frac{c_2}{V^2} I_V}_{\text{general}}$$

- 1 Rossomme S et al (2019) PMB **65** 045015
- 2 De Almeida and Niatel (1986) BIPM **86**(12)
- 3 Palmans H et al (2012) PMB 51 903-917
- 4 Rossomme S et al (2016) Med Phys **43**(7) 4198

Theoretical approach

(1) Bulk movement and recombination of charge carrier density n_{\pm} in an electric field:

$$\frac{\partial n_{\pm}}{\partial t} = \underbrace{D_{\pm} \nabla^{2} n_{\pm}}_{\text{diffusion term}} \mp \underbrace{\mu_{\pm} \vec{E} \cdot \vec{\nabla} n_{\pm}}_{\text{recombinatio}} - \underbrace{\alpha n_{+} n_{-}}_{\text{recombinatio}}$$

(2) Uniform charge carrier distribution (e^-/γ) :

Calculations of ion recombination

Semi-empirical approaches

- Three-voltage linear method [1]
- or separation of components [2–4]

$$k_s \approx 1 + \underbrace{\frac{c_1}{V}}_{\text{initial}} + \underbrace{\frac{c_2}{V^2} I_V}_{\text{general}}$$

- 1 Rossomme S et al (2019) PMB **65** 045015
- 2 De Almeida and Niatel (1986) BIPM 86(12)
- 3 Palmans H et al (2012) PMB 51 903-917
- 4 Rossomme S et al (2016) Med Phys **43**(7) 4198

Theoretical approach

(1) Bulk movement and recombination of charge carrier density n_{\pm} in an electric field:

$$\frac{\partial n_{\pm}}{\partial t} = \underbrace{D_{\pm} \nabla^{2} n_{\pm}}_{\text{diffusion term}} \mp \underbrace{\mu_{\pm} \vec{E} \cdot \vec{\nabla} n_{\pm}}_{\text{recombination}} - \underbrace{\alpha n_{+} n_{-}}_{\text{recombination}}$$

(2) Amorphous track structure models:

Recombination cross section

Monte Carlo simulations with particle transport codes?

Limited by the recombination cross sections and bulk behaviour

Bulk movements

$$\frac{\partial n_{\pm}}{\partial t} = \underbrace{D_{\pm} \nabla^2 n_{\pm}}_{\text{diffusion term}} \mp \underbrace{\mu_{\pm} \vec{E} \cdot \vec{\nabla} n_{\pm}}_{\text{recombination}} - \underbrace{\alpha n_{+} n_{-}}_{\text{recombination}}$$

[1] Peterson JR (1970) Phys Rev 1(1) 158

Recombination cross section

Monte Carlo simulations with particle transport codes?

Limited by the recombination cross sections and bulk behaviour

Bulk movements

$$\frac{\partial n_{\pm}}{\partial t} = \underbrace{D_{\pm} \nabla^{2} n_{\pm}}_{\text{diffusion term}} \mp \underbrace{\mu_{\pm} \vec{E} \cdot \vec{\nabla} n_{\pm}}_{\text{recombination}} - \underbrace{\alpha n_{+} n_{-}}_{\text{recombination}}$$

with recombination rate coefficient

$$\alpha \equiv \sigma_r v_r \approx 10^{-7} \text{cm}^3 \, \text{s}^{-1}$$

The Gaussian radial distribution

$$n_{\text{Gauss}}(r) = \frac{\text{LET}}{W} \frac{1}{\pi b^2} \exp\left(-\frac{r^2}{b^2}\right)$$

$$10 \text{ MeV u}^{-1} \text{ carbon}$$

Recombination in a single track (Jaffé theory)

The Gaussian radial distribution

$$n_{\text{Gauss}}(r) = \frac{\text{LET}}{W} \frac{1}{\pi b^2} \exp\left(-\frac{r^2}{b^2}\right)$$

Given the initial condition:

Solve:

$$\frac{\partial n_{\pm}}{\partial t} = \underbrace{D_{\pm} \nabla^2 n_{\pm}}_{\text{diffusion term}} \mp \underbrace{\mu_{\pm} \vec{E} \cdot \vec{\nabla} n_{\pm}}_{\text{recombination}} - \underbrace{\alpha n_{+} n_{-}}_{\text{recombination}}$$

Recombination in a single track (Jaffé theory)

Jaffé theory (1913, 1929)

Collection efficiency:

$$f = y_1 \frac{\mu E b^2}{2Dd} \exp(-y_1) [E_i(y_2) - E_i(y_1)],$$
 $y_1 = \frac{8\pi W}{\alpha \text{ LET}}, \quad y_2 = y_1 + \ln \frac{4D\frac{d}{2\mu E} + b^2}{b^2}$

Problems

- Limited predictions (*a priori* knowledge of *b*)
- the Gaussian distribution is an approximation
- Only for a single track, no inter-track interactions

Initial recombination in carbon ions [2]:

Validation:

- [1] Kanai T et al (1998) PMB 43(12) 3549
- [2] Rossomme S et al (2016) Med Phys 43(7) 4198

Scholz-Kraft radial dose distribution (RDD)

$$D_{\rm SK}(r) = \begin{cases} \frac{C}{r_{\rm c}^2}, & r < r_{\rm c} \\ \frac{C}{r^2}, & r_{\rm c} \le r \le r_{\rm max} \\ 0, & r_{\rm max} < r \end{cases} \qquad \begin{array}{c} \overbrace{\text{E}} \\ 0 \end{array} \qquad \begin{array}{c} 10^{14} - 10^{14} \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0$$

$$r_{\text{max}}(E) = 4 \cdot 10^{-5} E^{1.5}, \quad r_{\text{c}} = 10 \,\text{nm}$$

$$\int_0^{2\pi} \int_0^{\infty} D(r) r \, \mathrm{d}r \, \mathrm{d}\theta = \frac{\mathrm{LET}}{\rho}$$

Recombination in a single ion track

The case of an ion track in a parallel-plate chamber

- ✓ Solved analytically assuming a Gaussian distribution (Jaffé theory)
- X No (analytical) solution for *real* track structure models
- X No generalisation to multiple track interactions

Recombination in multiple tracks (e.g. continuous beam)

- Solve the equations numerically
 - For different amorphous track structure models
- Generalise the solution for N tracks
 - for continuous beams
 - or pulsed beams

Recombination in a single ion track

The case of an ion track in a parallel-plate chamber

- ✓ Solved analytically assuming a Gaussian distribution (Jaffé theory)
- X No (analytical) solution for real track structure models
- X No generalisation to multiple track interactions

Recombination in multiple tracks (e.g. continuous beam)

- Solve the equations numerically
 - For different amorphous track structure models
- Generalise the solution for *N* tracks
 - for continuous beams
 - or pulsed beams

Numerical solutions (IonTracks project)

Solve:

$$\frac{\partial n_{\pm}}{\partial t} = D_{\pm} \nabla^2 n_{\pm} \mp \mu_{\pm} \vec{E} \cdot \vec{\nabla} n_{\pm} - \alpha n_{+} n_{-}$$

Defined on the grid:

Electrode

Electrode

The software project IonTracks [1]

- Completely open source (python)
- Calculate ion recombination numerically
- Extends the Jaffé theory to multiple tracks

github.com/jbrage/IonTracks:

[1] Christensen JB, Heikki T, Bassler N (2016) *Med Phys* 43(10) 5484

Numerical solutions (IonTracks project)

Solve:

$$\frac{\partial n_{\pm}}{\partial t} = D_{\pm} \nabla^2 n_{\pm} \mp \mu_{\pm} \vec{E} \cdot \vec{\nabla} n_{\pm} - \alpha n_{+} n_{-}$$

Defined on the grid:

Electrode

Electrode

The software project IonTracks [1]

- Completely open source (python)
- Calculate ion recombination numerically
- Extends the Jaffé theory to multiple tracks

github.com/jbrage/IonTracks:

[1] Christensen JB, Heikki T, Bassler N (2016) *Med Phys* **43**(10) 5484

Radial dose distributions (RDDs)

The Gaussian track structure model

- Appears to be a good approximation
- Predicts the same k_s for two different ions (z) with same LET (\Rightarrow wrong)

IonTracks simulation of a continuous beam

Input parameters

- Dose-rate D
- \bullet electrode gap d, voltage V
- particle type (¹H, ⁴He, ...) and energy *E*

Track sampling

- Beam along \hat{z}
- Fluence-rate $\dot{\Phi} = \dot{D}/S_{air}(E)$
- Track-rate $\dot{N} = \pi r_{\text{simulation}}^2 \dot{\Phi}$

Example: Low dose-rate carbon beam

Courtesy: Marina Orts Sanz, UCLouvain, Institute for Experimental and Clinical Research, Belgium

Conditions

- Wide chambers, narrow beam:
 - Beam sigma $\sigma = (3.3 \pm 0.3) \, \mathrm{cm}$
 - Electrode width $\gg \sigma$
- $k_s \propto \frac{\text{Ionization chamber signal}}{\text{Faraday cup signal}}$

Conditions

- Wide chambers, narrow beam:
 - Beam sigma $\sigma = (3.3 \pm 0.3)$ cm
 - Electrode width $\gg \sigma$
- $k_s \propto \frac{\text{Ionization chamber signal}}{\text{Faraday cup signal}}$

Conditions

- Wide chambers, narrow beam:
 - Beam sigma $\sigma = (3.3 \pm 0.3)$ cm
 - Electrode width $\gg \sigma$
- $k_s \propto \frac{\text{Ionization chamber signal}}{\text{Faraday cup signal}}$

$$k_{s,\text{total}} = \frac{1}{\int \dot{D}(r) dr} \int k_s(r) \dot{D}(r) dr$$

Irradiations

- Relative to a Faraday cup
- 250 MeV protons
- $d \simeq (5, 10) \, \text{mm}$
- 2000 V

Measurements at CPT (PSI): Robert Schäfer, Michele Togno, Sairos Safai

Irradiations

- Relative to a Faraday cup
- 250 MeV protons
- $d \simeq (5, 10) \, \text{mm}$
- 2000 V

Measurements at CPT (PSI): Robert Schäfer, Michele Togno, Sairos Safai

Irradiations

- Relative to a Faraday cup
- 250 MeV protons
- $d \simeq (5, 10) \, \text{mm}$
- 2000 V

Measurements at CPT (PSI): Robert Schäfer, Michele Togno, Sairos Safai

Recombination in single ions

- Jaffé theory
 - Gaussian radial dose distribution (RDD)
- Generalised with IonTracks
 - any RDD

Recombination between multiple ions (beams)

- semi-empirical models
 - three-voltage method
 - separation of initial-general recombination
- IonTracks for
 - not only mono-energetic fields! (sample tracks from a spectrum)
 - mixed particle fields
 - free-electron components
 - ...

Data and code availability

- check out github.com/jbrage/IonTracks
- source code, data, scripts, this slideshow, ...

Data and code availability

- check out github.com/jbrage/IonTracks
- source code, data, scripts, this slideshow, ...

Validations

- protons $(1 10^3)$ Gy/s
- carbon ions (low dose-rate)

Summary II

Data and code availability

- check out github.com/jbrage/IonTracks
- source code, data, scripts, this slideshow, ...

Validations

- protons $(1-10^3)$ Gy/s
- carbon ions (low dose-rate)

Next steps

- (More) user friendly interface!
- Benchmarking for heavier ions

A special thanks to

DCPT, DK

... Niels Bassler, Anne Vestergaard, Liliana Stolarczyk

UCLouvain, BE

... Marina Orts Sanz, Séverine Rossomme

PSI, CH

... Robert Schäfer, Michele Togno, Sairos Safai

Institute of Nuclear Physics, Kraków, PL

... Krzysztof Retkiewicz, Leszek Grzanka

... and many others!

The Gaussian radial charge carrier distribution

The Jaffé theory works, but

- radius *b* should vary with *E*
- not a real amorphous track structure model
- e.g. ¹²C and ¹⁶O with same LET ⇒ same k_s

$$n_{\text{Gauss}}(r) = \frac{\text{LET}}{W} \frac{1}{\pi b^2} \exp\left(-\frac{r^2}{b^2}\right)$$

- [1] Rossomme S et al (2017) PMB **62** 5365
- [2] Kanai T et al (1998) PMB 43(12) 3549