VEHICLE DETECTION USING MACHINE LEARNING

VEHICLE – NON VEHICLE CLASSIFIER

REYON J.A.D.S EN20401726

Input

ATV front vision

RGB camera

Split video into image frames

Feature extraction

Output

Number of vehicles Vehicle speed Moving direction

Add bounding boxes

Machine learning model

DATA SET

Vehicle images (5600)

No - Vehicle images (5850)

CLEAN AND ORGANIZE DATA

					NO ROBERT	ROTO TO TO TO S			
1	old name	new nar	extension	11	ren	space	"old name"	"new name"	Syntax
2	1.png	1	.png	11	ren		"1.png"	"1.png"	ren "1.png" "1.png"
3	10.png	2	.png	II	ren		"10.png"	"2.png"	ren "10.png" "2.png"
4	100.png	3	.png	11	ren		"100.png"	"3.png"	ren "100.png" "3.png"
5	1000.png	4	.png	11	ren		"1000.png"	"4.png"	ren "1000.png" "4.png"
6	1001.png	5	.png	11	ren		"1001.png"	"5.png"	ren "1001.png" "5.png"
7	1002.png	6	.png	11	ren		"1002.png"	"6.png"	ren "1002.png" "6.png"
8	1003.png	7	.png	11	ren		"1003.png"	"7.png"	ren "1003.png" "7.png"
9	1004.png	8	.png	11	ren		"1004.png"	"8.png"	ren "1004.png" "8.png"
10	1005.png	9	.png	11	ren		"1005.png"	"9.png"	ren "1005.png" "9.png"
11	1006.png	10	.png	11	ren		"1006.png"	"10.png"	ren "1006.png" "10.png"
12	1007.png	11	.png	11	ren		"1007.png"	"11.png"	ren "1007.png" "11.png"
13	1008.png	12	.png	11	ren		"1008.png"	"12.png"	ren "1008.png" "12.png"
14	1009.png	13	.png	11	ren		"1009.png"	"13.png"	ren "1009.png" "13.png"
15	101.png	14	.png	11	ren		"101.png"	"14.png"	ren "101.png" "14.png"
16	1010.png	15	.png	II	ren		"1010.png"	"15.png"	ren "1010.png" "15.png"
17	1011.png	16	.png	11	ren		"1011.png"	"16.png"	ren "1011.png" "16.png"
18	1012.png	17	.png	II	ren		"1012.png"	"17.png"	ren "1012.png" "17.png"
19	1013.png	18	.png	11	ren		"1013.png"	"18.png"	ren "1013.png" "18.png"
20	1014.png	19	.png	II	ren		"1014.png"	"19.png"	ren "1014.png" "19.png"
21	1015.png	20	.png	11	ren		"1015.png"	"20.png"	ren "1015.png" "20.png"
22	1016.png	21	.png	11	ren		"1016.png"	"21.png"	ren "1016.png" "21.png"
23	1017.png	22	.png	11	ren		"1017.png"	"22.png"	ren "1017.png" "22.png"
24	1018.png	23	.png	11	ren		"1018.png"	"23.png"	ren "1018.png" "23.png"
25	1019.png	24	.png	11	ren		"1019.png"	"24.png"	ren "1019.png" "24.png"
26	102.png	25	.png	11	ren		"102.png"	"25.png"	ren "102.png" "25.png"
27	1020.png	26	.png	II	ren		"1020.png"	"26.png"	ren "1020.png" "26.png"
28	1021.png	27	.png	11	ren		"1021.png"	"27.png"	ren "1021.png" "27.png"

- 1-1000 -> Non vehicle mages
- 1001-2000 -> Vehicle images

FEATURE EXTRACTION

Local Binary pattern

```
lbpB1 = extractLBPFeatures(y,'Upright',false); %local binary pattern feature extraction
lb1=sum(lbpB1);% get the summation
```

- Grey Level Co-occurrence matrices
 - Contrast
 - Homogeneity
 - Energy
 - Correlation

```
glcm=graycomatrix(y,'Offset',[2,0;0,2]); %Gray-Level Co-Occurrence Matrix
st1=graycoprops(glcm,{'contrast','homogeneity'});
st2=graycoprops(glcm,{'correlation','energy'});

f1=st1.Contrast;
f2=st1.Homogeneity;
f3=st2.Correlation;
f4=st2.Energy;
```

Edges

```
w=edge(y,'canny',0.2);
sum_value=0;
[r c]=size(w);
for a=1:r
    for j=1:c
        sum_value=sum_value+w(a,j);
    end
end
ls=sum_value/(r*c);
```

FEATURE EXTRACTION

	Α	В	С	D	Е	F	G	Н	I	J	K	
1	LBP	Contrast	Contrast	Homogen	Homogen	Correlaion	Correlaion	Energy	Energy	Edge	Class	
2	2.219281	0.147681	0.180444	0.950248	0.94756	0.768843	0.7111	0.751961	0.749208	0.037354	0	
3	3.055713	0.488659	0.46623	0.796182	0.805423	0.461415	0.476598	0.20226	0.210425	0.202393	0	
4	2.812963	0.447833	0.452873	0.815629	0.829225	0.703751	0.697625	0.240009	0.250835	0.213135	0	
5	2.823334	0.352823	0.297379	0.87416	0.913029	0.755833	0.793567	0.387333	0.4115	0.067383	0	
6	2.815849	0.295111	0.231351	0.87962	0.920208	0.749144	0.795965	0.340535	0.37721	0.074463	0	
7	2.513921	0.521925	0.243448	0.856876	0.911143	0.717852	0.865215	0.213117	0.258232	0.098633	0	
8	2.590623	0.515121	0.234627	0.860152	0.915554	0.717894	0.868195	0.219477	0.268605	0.087646	0	
9	2.846844	0.16381	0.225302	0.942456	0.948059	0.751418	0.642115	0.728257	0.742801	0.022949	0	
10	2.880917	0.163558	0.170111	0.936996	0.950491	0.732467	0.707522	0.61573	0.628631	0.022217	0	
11	2.731257	0.40877	0.171623	0.899257	0.939726	0.73541	0.889019	0.320166	0.3493	0.057373	0	
12	2.769493	0.402218	0.174899	0.900181	0.938424	0.707226	0.873099	0.366751	0.393768	0.056396	0	
13	2.831221	0.041835	0.090222	0.986475	0.982913	0.872235	0.709442	0.932286	0.929858	0.006592	0	
14	2.907834	0.03629	0.054688	0.985551	0.984984	0.820775	0.714259	0.920407	0.916562	0.003174	0	
15	2.798544	1.40877	0.404738	0.786307	0.869173	0.660974	0.901023	0.174214	0.201724	0.065186	0	
16	2.791121	0.265373	0.146169	0.941049	0.952453	0.733653	0.852689	0.612818	0.61491	0.030029	0	
17	2.785692	0.241179	0.136089	0.946615	0.956149	0.734741	0.850046	0.67218	0.672109	0.025391	0	
18	2.817261	0.000504	0.000756	0.999748	0.999622	0.577205	7.3E-15	0.998489	0.998489	0.141357	0	
19	2.924291	0.000504	0.000504	0.999748	0.999748	65535	65535	0.998992	0.998992	0.196777	0	
20	2.767761	0.1187	0.068548	0.974462	0.979503	0.753848	0.860388	0.869836	0.87045	0.01123	0	
21	2.777608	0.084173	0.051411	0.980406	0.983703	0.76078	0.858037	0.906903	0.907397	0.006836	0	
22	2.658864	0.189768	0.084677	0.964226	0.978259	0.861587	0.938246	0.607703	0.628077	0.034912	0	
23	2.582178	0.488155	0.097026	0.902986	0.957678	0.524588	0.920085	0.353706	0.413851	0.013184	0	
24	2.716504	0.142389	0.047127	0.948631	0.976436	0.937802	0.978791	0.394684	0.424029	0.015869	0	
25	2.693951	0.155998	0.060484	0.93981	0.969758	0.934628	0.973911	0.383154	0.406609	0.019531	0	
26	2.572208	0.180192	0.12752	0.948253	0.958501	0.94623	0.958677	0.656325	0.652089	0.023926	0	
27	2.675743	0.197833	0.087198	0.920909	0.956401	0.920373	0.964182	0.328025	0.347342	0.047119	0	
28	2.658997	0.207409	0.10131	0.914441	0.949681	0.909364	0.955127	0.332028	0.350891	0.05542	0	
00	<u> </u>	Sheet1	(+)								_	

```
if i<=1000
     CL = 0;
end

if i>1000
     CL = 1;
end

Fr=horzcat([lb1,f1,f2,f3,f4,ls,CL]);

df=[df;Fr];
ex=xlswrite('feature.xlsx',df)
```


ANALYZE FEATURES

ANALYZE FEATURES AND SELECT A MODEL

IMPORT AND SPLIT DATA INTO TRAINING AND VALIDATION


```
%% Prepare the dataset

x = feature(:, 1:10);
y = feature(:,11);

rand = randperm(2000);

xtr = x(rand(1:1600), :);
ytr = y(rand(1:1600), :);

xt = x(rand(1601:end), :);
yt = y(rand(1601:end), :);
```

Data

Training 80%

Validation 20%

TRAINING THE MODEL


```
%% Training the model
model = fitcsvm(xtr, ytr, 'KernelFunction', 'rbf', ...
'OptimizeHyperparameters', 'auto', ...
'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName', ...
'expected-improvement-plus', 'ShowPlots', true));
```

TESTING THE ACCURACY OF THE MODEL WITH DIFFERENT KERNEL FUNCTIONS

```
%% Test accuracy of the model
result = predict(model, xt);
accuracy = sum(result == yt)/length(yt)*100;
sp = sprintf("Test Accuracy = %.2f", accuracy);
disp(sp);
```

Estimated objective function value = 0.043332
Estimated function evaluation time = 23.1651

Test Accuracy = 96.00

fx >>

Linear — **96**%

Estimated objective function value = 0.023349
Estimated function evaluation time = 0.23624

Test Accuracy = 97.00 | fx >>

Gaussian – 97%

Estimated objective function value = 0.031029 Estimated function evaluation time = 0.27086

Test Accuracy = 97.75

rbf - Radial Basis Function - 97.75%

TEST THE MODEL USING NEW DATA

```
%% Test
cd ..
[f,p]=uigetfile('*.*');
   test=imread(strcat(p,f));
  %%%%%%texture features test image%%%%%%%%
  B = imresize(test, [64 64]);
  y=rgb2gray(B);
  lbpB1 = extractLBPFeatures(y,'Upright',false);
  lb1=sum(lbpB1);
  glcm=graycomatrix(y,'Offset',[2,0;0,2]); %Gray-Level Co-Occurrence Matrix
  st1=graycoprops(glcm, {'contrast', 'homogeneity'});
  st2=graycoprops(glcm, {'correlation', 'energy'});
   f1=st1.Contrast;
  f2=st1.Homogeneity;
   f3=st2.Correlation;
   f4=st2.Energy;
  w=edge(y,'canny',0.2);
   sum value=0;
  [r c]=size(w);
  for a=1:r
       for j=1:c
          sum value=sum value+w(a,j);
   ls=sum value/(r*c);
   Testftr=horzcat([lb1,f1,f2,f3,f4,ls]);
   TestSet=Testftr;
   result2 = predict(model, TestSet);
  if result2 == 1
      msqbox('Vehicle')
   elseif result2 == 0
      msqbox('no Vehicle')
      msqbox('None')
```


