Homework 8 for **MATH 497A**, Introduction to Ramsey Theory

Due: Monday October 31

Problem 1

Upper bounds on Van der Waerden numbers

Suppose that $k \ge 2$, $n \ge 3$. Let S be the collection of set $S \subseteq [1, n]$ such that S does not contain a k-AP Put

$$v_k(n) = \max\{|S| : S \in \mathcal{S}\}.$$

For fixed $k \ge 3$, $r \ge 2$, show that if M_k is a number such that for some m, $v_k(m) \le M_k \le (m-1)/r$, then

$$W(k,r) \le r \cdot M_k + 1.$$

Problem 2

Lower bounds on $v_k(n)$

Suppose $n, k \ge 3$. Let r(n) be the minimum number of colors required to color [1, n] so that no monochromatic k-AP exists. Show that

$$v_k(n) \ge \left\lceil \frac{n}{r(n)} \right\rceil.$$

Problem 3

Lower bounds via the probabilistic method

Show, using the probabilistic method, that for large enough *k*,

$$W(k,2) > 2^{k/2}$$
.

Problem 4

Primitive recursive functions

Show that the following functions are primitive recursive:

(a)
$$f(x,y) = x \cdot y$$
 (b) $g(x,y) = x^y$ (c) $h(x) = x!$

(Give formal derivations, i.e. take the basic functions and other functions that have been shown to be primitive recursive, and use the closure properties – substitution and recursion – to obtain definitions of f, g, h. You can use that r(x, y) = x + y is primitive recursive, as argued in class.)