Correction de l'EXAMEN de LIGNE

QUESTIONS DE COURS (compléter ce document qui à rendre avec votre copie) 2.5pts

1. 1pt

 $Zc=32\Omega$

L=75mm

2. **0.5pt**

Inductances, Condensateur, Transformateur, Tronçons de ligne

3. 1pt

 $Vr(x)=Vr(0)exp(-j2\pi x/\lambda)$ ou $exp(-j2\pi fx/vp)$ $Ir(x)=Ir(0)exp(-j2\pi x/\lambda)$ ou $exp(-j2\pi fx/vp)$

4.
$$\Gamma_e = 0.55 - 0.23 \times i$$
 0.5pt

EXERCICE 1: Lecture et utilisation d'une Abaque de Smith (5 points)

1) Voir Abaque de Smith en ANNEXE 1. 1pt

2)

- a) $\Gamma_R = -0.3 + i \times 0.22 = \text{module} = 0.37 \text{ et phase} = 144^{\circ}$ 1pt
- b) ROS=2.17 **0.5pt**
- c) $y_R=1.6-i\times0.8 => Y_R=0.032-i\times0.016$ Siemens **0.5pt**

On connecte à Z_R une ligne à air $(\epsilon_r=1)$, sans pertes, d'impédance caractéristique $Z_c=50\Omega$, et de longueur L=4 cm.

3) $\lambda = 30 \text{cm} = \sum L/\lambda = 0.13$

Voir Abaque de Smith en ANNEXE 1 1pt

 $z_{\text{equiv}} = 1.35 + i \times 0.85 = Z_R = 67.8 + i \times 42.5 \Omega$ 1pt

EXERCICE 2: Adaptation (7 points)

- 1) Voir Abaque de Smith en ANNEXE 2. 1pt
- 2) NON, car ZR n'est pas purement réel mais comporte une partie imaginaire. 1pt

EXAMEN de Lignes David DUBUC, Frédéric MOUTIER

24 octobre 2013 2^{ième} année Electronique

3) l/ λ =0.05 or λ =40cm (attention de prendre en compte que ϵ_r =2.25 pour le calcule de λ)

$$=> z_1 = 0.2 => Z_1 = 10 \Omega$$
 1pt

4)

- a) On fait tendre $x/\lambda \rightarrow \frac{1}{4}$ donc la tangente tend vers l'infini d'ou : $Z_e = Z_c^2/Z_1$. (Voir le cours de Mr Dubuc).
- b) $Z'_{c}=22.4 \Omega$ 1pt

L= $\lambda/4$ =10cm (attention de prendre en compte que ϵ_r =2.25 pour le calcule de λ)

1nt

ANNEXE 1

ANNEXE 2

EXATT du 4/11/2009

HAME	EXEKCICE Z	DWG. NO. A
SMITH CHART FORM 82-BSPR 19-661	KAY ELECTRIC COMPANY, PINE BROOK, N.J. 0 1966. PRINTED IN U.S.A.	DATE

IMPEDANCE OR ADMITTANCE COORDINATES

EXAMEN de Lignes David DUBUC, Frédéric MOUTIER 24 octobre 2013 2^{ième} année Electronique