

F16.1B

FIG, 3

FIG. 4

ſ	L_1	L_2	L_3	L_4 $\bar{\ }$
P_1	1	1	1	0
$igl[P_2 igr $	1	0	0	1

Flow matrix 1

ı	<u> </u>	L_1	L_2	L_3	L_4]
١	P_1	1	1	1	0
I	$egin{array}{c} P_2 \ P_3 \end{array}$	1	0	0	1
Į	P_3	0	1	1	1

Flow matrix2

Equations with Flow matrix
$$1$$
 $x_1 + x_2 + x_3 = y_1$ $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

$$x_1 + x_2 + x_3 = y_1$$

 $x_1 + x_4 = y_2$
 $x_2 + x_3 + x_4 = y_3$

Equations with Flow matrix 2

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_3 \end{bmatrix}$$

F16.6

// add each link as a pipe by itself // add the path formed by the links in S; as a pipe each S_i , $0 < i \le k$ contains links in L with the i^{th} distinct column vector in M Generate_Pipes(G = (D, L):Network Topology Graph, E: Set of Leaves) // Group links with the same column vector into disjoint sets // Ensure that links in each element of S form a path in G Let k be the number of distinct column vectors in Mif links in S_i are consecutive and form a path Let M be the complete flow matrix for G and P then merge S_i into path $p, I \leftarrow I \cup \{p\}$ Form a set $S = \{S_0, S_1, ..., S_k\}$ where: : Set of pipes in G wrt E Compute P for G wrt E else $I \leftarrow I \cup S_i$ for i=1 to |S|0 + 1

<u> </u>	$\lfloor L_1$	L_2	L_3]
e_1-e_2	1	1	0
$e_1 - e_3$	1	1	2
$\lfloor e_2 - e_3 \rfloor$	0	0	0

F16.8

FIG. 9

Flow matrix 1

$$\left[\begin{array}{ccc}1&1&0\\1&0&1\end{array}\right]$$

Flow matrix 2

$$\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{bmatrix}$$

FIG. 11

FIG. 12

		L_1	L_2	L_3	L_4 -
	$\overline{L_1.L_4}$	1	0	0	1
Į	$L_4.L_2$	0	1	0	1
	$L_2.L_3$	0	1	1	0
	$L_3.L_1$	1	0	1	0

$$\{L_1.L_4,L_4.L_2,L_2.L_3,L_3.L_1\}$$

		L_1	L_2	L_3	L_{4} .
ı	$\overline{L_1.L_2}$		1	0	0
	$L_1.L_3$	1	0	1	0
1	$L_1.L_4$	1	0	0	1
•	$L_2.L_3$	0	1	.1	0

 $\{L_1, L_2, L_3, L_4\}$

Select_Matrix($G' = (D', I)$:Reduced Network Topology Graph, E : Set of Leaves)	et of Leaves)
W : Set of worms in G' wrt $E,W\leftarrow\emptyset$	
R : Set of paths, $R \leftarrow \emptyset$	
Compute P' for G' wrt E	
$open \leftarrow P'$	
while open $\neq \emptyset$	
select p from open	
for each pipe c_i on $p = c_1.c_2c_{length}(p)$	
if $\exists S \subset open$ such that S makes c_i estimable	← B1
Compute S' which has the original value of each path in S	
$R \leftarrow R \cup S'$	
$W \leftarrow W \cup \{c_i\}$	
update open and W such that $\forall p' \in open$	
p' does not contain any estimable path in W	// c. is removed from paths in open
else	
$c_{i+1} \leftarrow c_i \cdot c_{i+1}$	
$open \leftarrow open \setminus \{p\}$	
return W, R	

Compute_EstPaths($G' = (D', I)$:Reduced Network Topology Graph, E : Set of Leaves, P'_{i_i} : End-to-end paths at time t_i	ph, E : Set of Leaves, P'_{t_i} : End-to-end paths at time t_i)
M : A Minimal set of estimable paths for G' wrt E . $M \leftarrow \emptyset$	
$open \leftarrow P'_i$	
while $open \neq \emptyset$	
while open not converged	
select p from open	
for each pipe c_i on $p = c_1.c_2c_{length(p)}$	
if $\exists S \subset open$ such that S makes c_i estimable	
$M \leftarrow M \cup \{c_i\}$	
update open and M such that $\forall p' \in open$	
p' does not contain any estimable path in M and	// c; is removed from paths in open
$ open \leftarrow open \setminus \{p\} $	•
else	
abort processing of p	
if $open \neq \emptyset$	
select shortest p in open	
$open \leftarrow open \setminus \{p\}$	
$M \leftarrow M \cup \{p\}$	
return M	

F16,16