

# Lecture 7 Integer Programming

## **Algorithm**

张子臻,中山大学计算机学院

zhangzizhen@gmail.com

## **Outline**

- Integer Programming
- Big-M Transformation
- Solution to LP & IP
- Branch and Bound

# **Integer Programming**

Pure Integer Programming Problem (IP, 全整数规划)

```
Maximize z = 3x_1 + 2x_2
Subject to x_1 + x_2 \le 6
x_1, x_2 \ge 0, x_1, x_2 integer
```

Mixed Integer Linear Programming Problem (MILP, 混合整数规划)

```
Maximize z = 3x_1 + 2x_2
Subject to x_1 + x_2 \le 6
x_1, x_2 \ge 0, x_1 integer
```

Binary Integer Programming Problem (0-1规划)

Maximize 
$$z = x_1 - x_2$$
  
Subject to  $x_1 + 2x_2 \le 2$   
 $2x_1 - x_2 \le 1$   
 $x_1, x_2 = 0$  or 1

# **Coloring a Map**

Use the minimum colors

```
enum Countries = { Belgium, Denmark, France,
                   Germany, Netherlands, Luxembourg };
var{int} color[Countries] in 0..3;
minimize
 max(c in Countries) color[c]
subject to {
 color[Belgium] # color[France];
 color[Belgium] # color[Germany];
 color[Belgium] ≠ color[Netherlands];
 color[Belgium] ≠ color[Luxembourg];
 color[Denmark] # color[Germany];
 color[France] # color[Germany];
 color[France] # color[Luxembourg];
 color[Germany] \neq color[Netherlands];
 color[Germany] ≠ color[Luxembourg];
```



# **Big-M Transformation of Inequality Constraints**

- A constraint  $x \neq y$  is not a linear constraint.
- Re-express it as

$$x \neq y \leftrightarrow x \leq y - 1 \lor x \geq y + 1$$

- The disjunction ("v") is not allowed in an MIP model.
- Introduce a 0/1 variable b and a large number M.

$$\begin{cases} x \le y - 1 + bM \\ x \ge y + 1 - (1 - b)M \\ b \in \{0,1\} \end{cases}$$

• This is the big-M rewriting of  $x \neq y$ .

# **Big-M Transformation of Inequality Constraints**

$$\begin{cases} x \le y - 1 + bM \\ x \ge y + 1 - (1 - b)M \\ b \in \{0,1\} \end{cases}$$

- The intuition is as follows.
  - When b = 1
    - Constraint  $x \le y 1 + bM$  is trivially satisfied.
    - The second constraint then becomes  $x \ge y + 1$ .
  - When b = 0
    - Constraint  $x \ge y + 1 (1 b)M$  is trivially satisfied.
    - The first constraint then becomes  $x \le y 1$ .

# **Big-M Transformation**

Absolute constraint:

$$|f(x)| \ge a \iff f(x) \ge a \text{ or } f(x) \le -a$$

- Introduce a binary variable y and a big number M
  - 1.  $-f(x) + a \le M(1-y)$
  - $2. f(x) + a \le My$
- N choose k condition:

$$f_i(x) \le 0, i = 1, ..., n$$

- Introduce n binary variables  $y_i$  and a big number M
  - 1.  $f_i(x) \leq M(1 y_i)$
  - $2. \ y_1 + \dots + y_i = k$

# **Big-M Transformation: Multiplication**

- Multiplication
  - $y = x_1 \cdot x_2, x_1, x_2 \in \{0,1\}$

$$\begin{cases} y \le x_1 \\ y \le x_2 \\ y \ge x_1 + x_2 - 1 \\ y \in \{0, 1\} \end{cases}$$

- $y = x_1 \cdot x_2, x_1 \in \{0,1\}, l \le x_2 \le u$
- $\begin{cases} y \le x_2 \\ y \ge x_2 u(1 x_1) \\ lx_1 \le y \le ux_1 \end{cases}$

# **Big-M Transformation: Min-Max**

- $\min\{\max_i x_i\}$ 
  - $\bullet$  min z
  - $z \ge x_i$ ,  $\forall i$
- $\min\{\min_{i} x_i\}$ 
  - $\bullet$  min z
  - $\begin{cases} z \ge x_i M(1 y_i), \ \forall i \\ \sum_i y_i = 1 \\ y_i \in \{0, 1\} \end{cases}$

# **Big-M Transformation: If-Then**

- If  $Ax b \le 0$  then  $Cx d \le 0$
- Introduce a binary variable  $\delta \in \{0,1\}$ , a big number M, and a tiny number  $\epsilon > 0$

1. 
$$Ax - b \ge -\delta M + \epsilon$$

$$2. Cx - d \le (1 - \delta)M$$

- Explanation:
  - When  $\delta = 1$ 
    - $Ax b \ge -M$ , trivial
    - $Cx d \leq 0$
  - When  $\delta = 0$ 
    - $Ax b \ge \epsilon > 0$

June 14, 2024

•  $Cx - d \leq M$ , trivial

# **Big-M Transformation: If-Then-Else**

- If  $Ax b \le 0$  then  $C_1x d_1 \le 0$  else  $C_2x d_2 \le 0$
- Introduce a binary variable  $\delta \in \{0,1\}$ , a big number M, and a tiny number  $\epsilon > 0$

1. 
$$Ax - b \le (1 - \delta)M$$

2. 
$$Ax - b \ge -\delta M + \epsilon$$

3. 
$$C_1 x - d_1 \le (1 - \delta)M$$

4. 
$$C_2x - d_2 \leq \delta M$$

- Explanation:
  - When  $\delta = 1$ 
    - $Ax b \le 0$  and  $C_1x d_1 \le 0$
    - Constraints (2) and (4) are trivially satisfied
  - When  $\delta = 0$

June 14, 2024

- $Ax b \ge \epsilon$  and  $C_2x d_2 \le 0$
- Constraints (1) and (3) are trivially satisfied

#### **LP Relaxation**

- Definition: The LP obtained by omitting all integer or 0-1 constraints on variables is called LP relaxation (松弛) of IP.
- The feasible region for any IP must be contained in the feasible region for the corresponding LP relaxation.

Maximize  $4x_1+9x_2+6x_3$ Subject to  $5x_1+8x_2+6x_3 \le 12$  $x_1,x_2,x_3$  are binary variables.

- For the LP relaxation  $(0 \le x_i \le 1)$ , we have
  - $x_1=0$ ,  $x_2=1$ ,  $x_3=2/3$ , and  $Z_{LP}=13$
- We can claim that the optimal solution to the IP cannot be more than 13.
  - Actually Z<sub>IP</sub>=10

## **Optimal Solution to IP and LP**

Max z = 
$$21x_1 + 11x_2$$
  
Subject to  $7x_1 + 4x_2 \le 13$   
 $x_1, x_2 \ge 0$ ,  $x_1, x_2$  integer

Feasible region is:

$$\{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1)\}$$

Optimal solution to the LP relaxation is:

$$(x_1, x_2) = (13/7, 0).$$

Optimal IP solution is?

June 14, 2024



# **Difficulty of MILP**

- Solving general integer MILPs can be much more difficult than solving LPs.
- There is no known polynomial-time algorithm for solving general MILPs.
- One reason why convex problems are "easy" to solve is because convexity makes it easy to find improving feasible directions.
- The feasible region of an MILP is non-convex and this makes it difficult to find feasible directions.
- Although the feasible set is non-convex, there is a convex set over which we can optimize in order to get a solution.
- The challenge is that we do not know how to describe that set.
- Even if we knew the description, it would in general be too large to write down explicitly.

# The Geometry of MILP

Let us consider an integer optimization problem:

$$\max c^{\top} x$$
s.t. 
$$Ax \le b$$

$$x \in \mathbb{Z}_{+}^{n}$$

The feasible region is the integer points inside a polyhedron.



# **LP Rounding Algorithm**

- 1. Reduce the problem to an integer program.
- 2. Relax the integrality constraint, that is, allow variables to take on non-integral values.
- 3. Solve the resulting linear program to obtain a fractional optimal solution.
- 4. "Round" the fractional solution to obtain an integral feasible solution.



The relationship between the optimal LP and ILP values for minimization problems.

# **Rounding the Solution**

 Rounding the solution of the corresponding LP to nearby integers usually does not work.

Max 
$$1.00x_1 + 0.64x_2$$
  
s.t.  $50x_1 + 31x_2 \le 250$   
 $3x_1 - 2x_2 \ge -4$   
 $x_1, x_2 \ge 0$  and integer



- If we solve this model as a linear programming model, the optimal solution is x=(376/193, 950/193) with objective 5.1.
- The LP rounding gives x=(2,4) with objective 4.56.
- The optimal solution is x=(5,0) with objective 5.

#### **Worse Situation**

- For Binary Integer Programming model, the situation is often even worse.
- The linear programming solution may be  $(x_1, ..., x_n) = (0.5, ..., 0.5)$ .
- It is typically very difficult just to answer the question whether there exists a feasible 0-1 solution.

#### **Observation**

• Elementary but important observation:

If you solve the LP relaxation of a pure IP and obtain a solution in which all variables are integers, then the optimal solution to the LP relaxation is also the optimal solution to the IP.

Example:

max 
$$z = 3x_1 + 2x_2$$
  
s.t.  $2x_1 + x_2 \le 6$   
 $x_1, x_2 \ge 0$ ;  $x_1, x_2$  integer

The optimal solution to the LP relaxation is:

$$x_1=0$$
,  $x_2=6$ ,  $z=12$ .



#### **Branch and Bound: Branch**

- For an IP, we can gradually decompose it into a series of smaller IP problems.
- Example: For minimization problem, if x<sub>1</sub> is a binary variable, then we may have two small problems, IP<sub>1</sub> and IP<sub>2</sub>.
  - In IP<sub>1</sub>, fix  $x_1$ =0. Suppose  $Z_{IP1}$  is the optimal solution.
  - In IP<sub>2</sub>, fix  $x_1$ =1. Suppose  $Z_{IP2}$  is the optimal solution.
  - Then,  $Z_{IP}=min(Z_{IP1}, Z_{IP2})$
- If x<sub>2</sub> is an integer variable, then branch <=floor(x<sub>2</sub>) and >=ceil(x<sub>2</sub>).

#### **Branch and Bound: Bound**

- Suppose we have solved IP1 and got  $Z_{IP1}$ . (minimization problem)
- Consider IP2:
  - For the LP relaxation of IP2, Z<sub>IP2</sub> can be obtained.
  - If  $Z_{IP2} \ge Z_{IP1}$ , we do not need to solve IP2.
  - Reason:  $Z_{IP2} \ge Z_{LP2} \ge Z_{IP1}$ , so  $Z_{IP2}$  cannot be the optimal solution to the original IP.
- This is called BOUND
  - For each smaller IP, we can solve its LP relaxation and see if we can fathom (finish, prune) it directly, meaning that we will no longer need to solve it.

# **General Approach of B&B**

- Suppose we have a feasible solution of the minimization IP at hand, the objective function value is z<sub>B</sub>.
  - $z_B$  is an upper bound of the problem.
- Considering the LP relaxation of a small IP:
  - Case 1: The LP relaxation has no feasible solution.
    - The IP has no feasible solution either.
  - Case 2: In the LP relaxation, Z<sub>LP</sub> ≥ Z<sub>B</sub>
    - The IP cannot have a better solution than  $Z_B$ , thus can be fathomed.
  - Case 3: In the LP relaxation, an integer optimal solution is found, and  $Z_{LP} < Z_B$ .
    - This small IP is solved, and update  $Z_B = Z_{LP}$ .
  - Case 4: In the LP relaxation, an optimal solution is found with  $Z_{LP} > Z_B$ , but not integer value.
    - Decompose the IP into more smaller IP problems more branches.

### **Combinatorial Relaxation**

- We can also relax several constraints of the problem.
- Whenever the relaxed problem is a combinatorial optimization problem, we speak of a combinatorial relaxation.
- In many cases, the relaxation is an easy problem that can be solved rapidly.

## TSP Model

Decision variables: 
$$x_{ij} = \begin{cases} 1 & \text{if edge } (i,j) \in E \text{ is in tour} \\ 0 & \text{otherwise.} \end{cases}$$

IP model:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}.$$

$$\sum_{j:j\neq i} x_{ij} = 1 \text{ for } i = 1, \dots, n.$$

$$\sum_{i:i\neq j} x_{ij} = 1 \text{ for } j = 1, \dots, n.$$

$$\sum_{i:i\neq j} \sum_{j\in S} x_{ij} \leq |S| - 1 \text{ for } S \subset N, 2 \leq |S| \leq n - 1.$$

$$x_{ij} \in \{0, 1\} \text{ for } i = 1, \dots, n, j = 1, \dots, n, i \neq j.$$



Sub-tour elimination constraints:

$$\sum_{i,j\in S,\,i
eq j} x_{ij} \leq |S|-1, \quad orall S\subset V, S
eq \emptyset$$

These constraints require that for each proper (nonempty) subset S of the set of cities V, the number of edges between the nodes of S must be at most |S|-1.

# **Assignment Problem Bound for TSP**

- We might be able to find the answer of TSP by solving an assignment problem having a cost matrix whose ij-th element is  $d_{ij}$  if sub-tour elimination constraints are removed.
- For instance, suppose we solved this assignment problem and obtained the solution  $x_{12}=x_{24}=x_{45}=x_{53}=x_{31}=1$ .
- This solution can be written as  $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 1$ .
- If the solution to the preceding assignment problem yields a tour, then it is the optimal solution to the traveling salesman problem. (Why?)

#### Distance between Cities in Traveling Salesperson Problem

| Day                | Gary | Fort<br>Wayne | Evansville | Terre<br>Haute | South<br>Bend |
|--------------------|------|---------------|------------|----------------|---------------|
| City 1 Gary        | 0    | 132           | 217        | 164            | 58            |
| City 2 Fort Wayne  | 132  | 0             | 290        | 201            | 79            |
| City 3 Evansville  | 217  | 290           | 290        | 113            | 303           |
| City 4 Terre Haute | 164  | 201           | 113        | 0              | 196           |
| City 5 South Bend  | 58   | 79            | 303        | 196            | 0             |

# **Assignment Problem Bound for TSP**

- However, the optimal solution to the assignment problem might be  $x_{15}=x_{21}=x_{52}=x_{34}=x_{43}=1$ .
- If we could exclude all feasible solutions that contain subtours and then solve the assignment problem, we would obtain the optimal solution to the traveling salesman problem.



- The subproblems reduce to assignment problems.
- We first solve the assignment problem in the following table (referred to as subproblem 1).
  - The optimal solution is  $x_{15}=x_{21}=x_{34}=x_{43}=x_{52}=1$ , z=495.
  - This solution contains two subtours (1-5-2-1 and 3-4-3) and cannot be the optimal solution to TSP.

Cost Matrix for Subproblem 1

| City 1 | City 2                 | City 3                               | City 4                                                                                      | City 5                                                                                                                    |
|--------|------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| M      | 132                    | 217                                  | 164                                                                                         | 58                                                                                                                        |
| 132    | M                      | 290                                  | 201                                                                                         | 79                                                                                                                        |
| 217    | 290                    | M                                    | 113                                                                                         | 303                                                                                                                       |
| 164    | 201                    | 113                                  | M                                                                                           | 196                                                                                                                       |
| 58     | 79                     | 303                                  | 196                                                                                         | M                                                                                                                         |
|        | M<br>132<br>217<br>164 | M 132<br>132 M<br>217 290<br>164 201 | M     132     217       132     M     290       217     290     M       164     201     113 | M     132     217     164       132     M     290     201       217     290     M     113       164     201     113     M |

Subproblem 1
$$z = 495$$

$$x_{15} = x_{21} = x_{34}$$

$$= x_{43} = x_{52} = 1$$

- We branch on subproblem 1 in a way that will prevent one of subproblem 1's subtours from recurring in solutions to subsequent subproblems.
- We choose to exclude the subtour  $3 \rightarrow 4 \rightarrow 3$ .
- Observe that the optimal solution to TSP must have either  $x_{34}=0$  or  $x_{43}=0$ .
- Thus, we can branch on subproblem 1 by adding the following two subproblems:
  - **Subproblem 2**: Subproblem 1 +  $(x_{34} = 0, \text{ or } c_{34} = M)$ .
  - **Subproblem 3**: Subproblem 1 +  $(x_{43}=0, \text{ or } c_{43}=M)$ .

 We arbitrarily choose subproblem 2 to solve, applying the Hungarian method to the cost matrix:

Cost Matrix for Subproblem 2

|        | City 1 | City 2 | City 3 | City 4 | City 5 |
|--------|--------|--------|--------|--------|--------|
| City 1 | M      | 132    | 217    | 164    | 58     |
| City 2 | 132    | M      | 290    | 201    | 79     |
| City 3 | 217    | 290    | M      | M      | 303    |
| City 4 | 164    | 201    | 113    | M      | 196    |
| City 5 | 58     | 79     | 303    | 196    | M      |

- The optimal solution to subproblem 2 is z = 652,  $x_{14} = x_{25} = x_{31} = x_{43} = x_{52} = 1$ .
- This solution includes the subtours
   1→4→3→1 and 2→5→2, so this cannot be the optimal solution to TSP.



- We branch on subproblem 2 to exclude  $2 \rightarrow 5 \rightarrow 2$  by
  - **Subproblem 4**: Subproblem 2 +  $(x_{25} = 0, \text{ or } c_{25} = M)$ .
  - **Subproblem 5**: Subproblem 2 +  $(x_{52} = 0, \text{ or } c_{52} = M)$ .
  - We solve subproblems 4 & 5.

#### Cost Matrix for Subproblem 4

|        | City 1 | City 2 | City 3 | City 4 | City 5 |
|--------|--------|--------|--------|--------|--------|
| City 1 | M      | 132    | 217    | 164    | 58     |
| City 2 | 132    | M      | 290    | 201    | M      |
| City 3 | 217    | 290    | M      | M      | 303    |
| City 4 | 164    | 201    | 113    | M      | 196    |
| City 5 | 58     | 79     | 303    | 196    | M      |

#### Cost Matrix for Subproblem 5

|        | City 1 | City 2 | City 3 | City 4 | City 5 |
|--------|--------|--------|--------|--------|--------|
| City 1 | M      | 132    | 217    | 164    | 58     |
| City 2 | 132    | M      | 290    | 201    | 79     |
| City 3 | 217    | 290    | M      | M      | 303    |
| City 4 | 164    | 201    | 113    | M      | 196    |
| City 5 | 58     | M      | 303    | 196    | M      |

- Solving subproblem 4 yields a candidate solution.
- Subproblem 5 cannot update the best solution.



- Only subproblem 3 remains.
- We find the optimal solution to the assignment problem in the following table:

$$X_{13} = X_{25} = X_{34} = X_{41} = X_{52} = 1$$
,  $z = 652$ .

#### Cost Matrix for Subproblem 3

|        | City 1 | City 2 | City 3 | City 4 | City 5 |
|--------|--------|--------|--------|--------|--------|
| City 1 | M      | 132    | 217    | 164    | 58     |
| City 2 | 132    | M      | 290    | 201    | 79     |
| City 3 | 217    | 290    | M      | 113    | 303    |
| City 4 | 164    | 201    | M      | M      | 196    |
| City 5 | 58     | 79     | 303    | 196    | M      |



- We branch on subproblem 3 to exclude the subtour.
- Any feasible solution to the traveling salesman problem that emanates from subproblem 3 must have either x<sub>25</sub>=0 or x<sub>52</sub>=0.
  - Subproblem 6:

Subproblem 3 +  $(x_{25} = 0, \text{ or } c_{25} = M)$ .

Subproblem 7:

Subproblem 3 +  $(x_{52} = 0, \text{ or } c_{52} = M)$ .



#### 1-Tree Bound

$$z = \min \sum_{e \in E} c_e x_e$$

$$\sum_{e \in \delta(i)} x_e = 2 \text{ for all } i \in V$$

$$\sum_{e \in E(S)} x_e \le |S| - 1 \text{ for all } 2 \le |S| \le |V| - 1$$

$$x \in B^{|E|}.$$

 We dualize all the degree constraints on the nodes, but leave the degree constraint on node 1, and the constraint that the total number of edges in n.

$$z(u) = \min \sum_{e \in E} (c_e - u_i - u_j) x_e + 2 \sum_{i \in V} u_i$$

$$\sum_{e \in \delta(1)} x_e = 2$$

$$(IP(u)) \qquad \sum_{e \in E(S)} x_e \le |S| - 1 \text{ for } 2 \le |S| \le |V| - 1, \ 1 \notin S$$

$$\sum_{e \in E} x_e = n$$

$$x \in B^{|E|}.$$

IP(u) is precisely a 1-tree.

#### 1-Tree

• Definition: for a given vertex, say vertex 1, a 1-Tree is a tree of {2,3,...,n} plus 2 distinct edges connected to vertex 1.

Example of 1-Tree



35 /

# **Minimum Weight 1-Tree**

- Definition: Min cost 1-tree of all possible 1-Trees.
- To find minimum weight 1-Tree, first find minimum spanning tree of {2,3,...,n} vertices, and add two lowest cost edges incident to vertex 1.
- Any TSP tour is 1-Tree tour (with arbitrary starting node 1) in which each vertex has a degree of 2.
- If minimum weight 1-Tree is a tour, it is the optimal TSP tour.
- Thus, the minimum 1-Tree provides a lower bound on the length of the optimal TSP tour.



# **Branching on 1-Tree**

- Observe that in the case 1-tree is not a tour, at least one vertex has degree 3 or more.
- So choose a vertex v with degree 3 or more.
- For each edge  $(u_i, v)$ , generate a subproblem where  $(u_i, v)$  is excluded from the set of edges.

# **Branching on 1-Tree**



|   | A  | В  | C  | D  | Е  | F  | G  | H  |
|---|----|----|----|----|----|----|----|----|
| A | 0  | 11 | 24 | 25 | 30 | 29 | 15 | 15 |
| В | 11 | 0  | 13 | 20 | 32 | 37 | 17 | 17 |
| С | 24 | 13 | 0  | 16 | 30 | 39 | 29 | 22 |
| D | 25 | 20 | 16 | 0  | 15 | 23 | 18 | 12 |
| E | 30 | 32 | 30 | 15 | 0  | 9  | 23 | 15 |
| F | 29 | 37 | 39 | 23 | 9  | 0  | 14 | 21 |
| G | 15 | 17 | 29 | 18 | 23 | 14 | 0  | 7  |
| Н | 15 | 17 | 22 | 12 | 15 | 21 | 7  | 0  |



#### Homework

- Use Gurobi, Cplex or SCIP to solve the TSP instances.
- http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
- Formulate the Traveling Salesman Problem.
  - Example: TSP with Miller-Tucker-Zemlin (MTZ) model
- Show the meanings of the objective and constraints.
- Use some IP solver to solve the model on the given dataset.
  - burma14, bayg29, bays29, ulysses16, ulysses22, gr17, gr21, gr24, fri26 (node<30).</li>
  - Try larger instances (node>=30).
- Write or print out your report (model, explanations, codes, results, etc.).
- Bring your report to the class on Jun 28, 2024.

# Thank you!

