Early Astronomy

- Used to mark seasons and special times of years
- Examples of old caldendars
 - o Stonehenge
 - Pyramid
 - Mayans, Incas
 - Medicine Wheels
 - Sundials

Crescent Moon

- Used to predict rainfall in central Nigeria
- B/c variation in relative positions of Sun and Moon along ecliptic throughout the year
 - Tells you the season

Ancient Greek Astronomy

- Astronomers:
 - Pythagoras
 - Aristotle
 - Aristarchus of Samos
 - Eratosthenes
 - Hipparchus
 - Ptolemy
- Important Discoveries
 - Philolaus non-geocentric cosmology
 - Earth moves around a "central fire" and "counter Earth" on opposite side of the fire
 - Pythagoras stated that the "heavenly bodies" are spherical
 - Aristotle prompted:
 - How can the Earth move? Geocentric Universe (Based around Earth)
 - Moon has phases + elipses
 - Sun is more distant than Moon
 - Earth is Spherical
 - Aristarchus of Samos measured
 - Relative distances of Moon + Sun, found Sun was 18-20 times further away than Moon
 - Relative sizes of Earth, Moon and Sun from lunar ellipse data
 - Moon diameter is ⅓ of Earth's, Sun's is 7x.
 - Method for measuring distances
 - Determine length of time from third to first quarter, then use equation

$$\frac{1}{2} \left(\frac{\textit{length of time}}{\textit{length of a month}} \right) \times 360 = \theta$$

$$\frac{\textit{Earth to Moon distance}}{\textit{Earth to Sun distance}} = \cos \theta$$

Hipparchus

- Invented trig stars
- First to measure position + brightness of 850 stars
- Invented celestial coordinate system, magnitude system, and discovered precession
- Estimated Moon size + distance
- Measured length of a year
- Explained eclipses
- "Invented" epicycles to explain retrograde motion

Retrograde Motion

Tracking planetary positions showed that some planets (Mars esp.) didn't follow simple paths across sky

Superior planets make a loop in sky once a year

Part of path when a planet is moving "backwards" is called retrograde motion3

Normally planets appear to move from E to W, but superior planets at times reverse direction

- Easily explained in a Sun-centred Solar system
 - Planets more distant from Sun orbit more slowly

Ptolemy

o Believed circles were perfect, lead to Epicyclic Theory of Solar System

- o Required Epicycles on epicycles, complicated
- Used parallax to measure distance to Moon
 - Measure the angle to the centre of the moon from two positions on Earth at the same time
 - Moon is overhead at one position, at an angle at the other
 - Triangle formed with Earth and moon centre and 2nd position gives all angles (including a second angle beta), and we know the length of one side of the triangle is the radius of Earth
 - We can then get distance to Moon

Planetary Positions and Motions

- Superior planet is one that is farther from the Sun the Earth
- Inferior planet is one that is closer to the Sun than Earth
- Elongation angle of planet wrt Sun
- Conjunction is the point where planet is at an elongation of 0 degrees
 - The planet is behind (superior conjunction), or in front of (inferior conjunction) the Sun
- Opposition is the point at which planet's elongation is 180 degrees
 - Opposite part of sky from Sun
- Quadrature is the point at which elongation (Superior planet only) is 90 degrees
 - Longest elongation of an inferior planet is the "greatest eastern" or greatest western" elongation

Motions of a Superior Planet

European Developments in Astronomy

Nicolaus Copernicus

- Heliocentric model
 - Planets closer to Sun than Earth revolve faster than Earth
 - Earth rotates on own axis
 - All planet orbits are circular
 - Sidereal vs synodic periods
 - Relative distances of planets

Sidereal vs Synodic

- Synodic = S, Sidereal = P
- In S years, Earth goes around Sun S times
 - Another planet will take P years
 - o In S years, it'll make S/P trips around the Sun

For a superior planet:

$$S = 1 + \left(\frac{S}{P}\right)$$

For an inferior planet:

$$S + 1 = \left(\frac{S}{P}\right)$$

Bode's Law

$$a = 0.4 + 0.3 \times 2^{n-2}$$

- Roughly mapped the average size of planet's orbit, was a gap between Mars and Jupiter
 - Found out to be a Dwarf planet there

Tycho Brahe

- Measured parallax of comet, showed it was farther from Earth than Moon
- Studied Supernovas

Johannes Kepler

- Kepler's Laws
 - Orbits are elliptical

Equal areas swept out in equal times

- Period squared is proportional to distance cubed
 - $P^2 = a^3 a$ is the orbital semimajor axis

Properties of an Ellipse

- Semimajor axis is avg distance of a body from orbit's focus
- Orbit's focus is at the location of the centre of mass of the system
- e = c / a, e = eccentricity, c = distance from centre to focus, a = semimajor axis

Galileo Galilei

- Used a telescope to study astronomy
- Discovered:
 - Phases of Venus
 - Mountains on Moon
 - Sunspots
 - Moons of Jupiter
 - Milky Way made of stars
- Moons of Jupiter
 - His notebook showed four "stars" near Jupiter, actually moons
 - Occupied different positions at different times repeatedly
 - Showed that objects could orbit a moving body

Isaac Newton

- Discovered:
 - Laws of Motion (F = ma)
 - Laws of Gravity
 - Optics
 - o Calculus

Universal Law of Gravity

• Forces acting between bodies due to gravity are described by:

$$F = \frac{Gm_1m_2}{r^2}$$

(r is distance between mass' centres)

Albert Einstein

Discovered:

0

- Energy is stored in matter
 - mass-energy is what would be released if an amount of mass, m were converted to energy. (E = mc^2)

Theories of Relativity

- Special Relativity
 - Spd of light is independent of the motion of observer
- General Relativity

- Theory of gravity
 - Curved spacetime
 - There is no "gravitational field"
 - Mass curves spacetime and objects move along it

Temperature vs Heat

- Temperature is the AVERAGE kinetic energy
- Heat (thermal energy) is the TOTAL kinetic energy