- 1. Determine if the following statement is True or False. If the statement is false, provide a counterexample or provide a justification.
 - (a) I F and G are antiderivatives of f, then F = G.

Solution: False. It can be F = G + c.

(b) The antiderivative of $\sec^2(3x)$ is $\frac{1}{3}\tan(3x)$.

Solution: True. Use change of variable or find derivative of $\frac{1}{3}\tan(3x)$.

(c) The inde

nite integral of a function f is the collection of all antiderivatives of f.

Solution: True.

(d) We know how to find the antiderivative of e^{x^2} , and it is e^{x^2} .

Solution: False. $\frac{d}{dx}e^{x^2} = 2xe^{x^2}$.

(e) F and G are antiderivatives of f and g, then antiderivative of FG is fg.

Solution: False. Because of the product rule.

2. Evaluate the following inde

nite integrals.

(a) $\int (\sqrt[3]{x} - \frac{1}{x})^3 dx$.

Solution. $\int (\sqrt[3]{x} - \frac{1}{x})^3 dx = \int (x - \frac{3}{\sqrt[3]{x^2}} + \frac{3}{\sqrt[3]{x^5}} - \frac{1}{x^3}) dx = \frac{x^2}{2} - 9x^{1/3} - \frac{9x^{-2/3}}{2} + \frac{x^{-2}}{2}.$

(b) $\int (3^{-x} + e^{-5x}) dx$.

Solution. $\int (3^{-x} + e^{-5x}) dx = -\frac{3^{-x}}{\log(3)} - \frac{e^{-5x}}{5}$.

(c) $\int \frac{e^{\sqrt{2}+x^{\sqrt{2}}}}{\sqrt{x}}$.

Solution. $\int \frac{e^{\sqrt{2}+x^{\sqrt{2}}}}{\sqrt{x}} dx = \frac{-e^{\sqrt{2}}\sqrt{x}}{2} + \frac{x^{\sqrt{2}+\frac{1}{2}}}{\sqrt{2}+\frac{1}{2}}$.

3. (Optional): Evaluate $\int \sqrt{\tan(x)} dx$.

Solution: Let $\tan^2(u) = \tan(x)$. Then $2(\tan^2(u) + 1)\tan(u)du = (\tan^2(x) + 1)dx$. So

$$\int \tan(u) \frac{2(\tan^2(u) + 1)\tan(u)du}{\tan^4(u) + 1}$$

Then use partial fraction.