

GS-2018 (Mathematics)

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Written Test in MATHEMATICS - December 10, 2017

For the Ph.D. Programs at TIFR, Mumbai and CAM & ICTS, Bangalore and for the Int. Ph.D. Programs at TIFR, Mumbai and CAM, Bangalore.

Duration: Two hours (2 hours)

Name:	Ref. Code:

Please read all instructions carefully before you attempt the questions.

- 1. Please fill in details about name, reference code etc. on the answer sheet for. The Answer Sheet is machine-readable. Use only Black/Blue ball point pen to fill in the answer sheet.
- 2. Indicate your ANSWER ON THE ANSWER SHEET by blackening the appropriate circle for each question. <u>Do not mark more than one circle for any question</u>: this will be treated as a wrong answer.
- 3. There are twenty-five (25) True/False type questions in **PART A** of the question paper. **PART B** contains 15 multiple choice questions. Questions in both Parts carry +1 for a correct answer, -1 (negative marks) for a wrong answer and 0 for not answering.
- 4. We advise you to first mark the correct answers on the QUESTION PAPER and then to TRANSFER these to the ANSWER SHEET only when you are sure of your choice.
- 5. Rough work may be done on blank pages of the question paper. If needed, you may ask for extra rough sheets from an invigilator.
- 6. Use of calculators, mobile phones, laptops, tablets (or other electronic devices, including those connecting to the internet) is NOT permitted.
- Do NOT ask for clarifications from the invigilators regarding the questions. They have been instructed not to respond to any such inquiries from candidates. In case a correction/clarification is deemed necessary, the invigilators will announce it publicly.
- 8. Notation and Conventions used in this test are given on page 2 of the question paper.

Test structure

The duration of this test is two hours. It has two parts, Part A and Part B. Part A has 25 'True or False' questions. Part B has 15 multiple choice questions. Each multiple choice question comes with four options, of which exactly one is correct.

Marking scheme

In both Part A and Part B, a correct answer will get 1 point, a wrong answer or an invalid answer (such as ticking multiple boxes) will get -1 point, and not attempting a particular question will get 0 points.

NOTATION AND CONVENTIONS

- \mathbb{N} denotes the set of natural numbers $\{0, 1, 2, 3, \dots\}$, \mathbb{Z} the set of integers, \mathbb{Q} the set of rationals, \mathbb{R} the set of real numbers and \mathbb{C} the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- \mathbb{R}^n denotes the Euclidean space of dimension n. Subsets of \mathbb{R}^n are assumed to carry the induced topology and metric.
- $M_n(\mathbb{R})$ denotes the real vector space of $n \times n$ real matrices with the Euclidean metric, and I denotes the identity matrix.
- For any prime number p, \mathbb{F}_p denotes the finite field with p elements.
- All rings are associative, with a multiplicative identity.
- All logarithms are natural logarithms.

Part A

Answer whether the following statements are True or False. Mark your answer on the machine checkable answer sheet that is provided.

- 1. Let A be a countable subset of $\mathbb R$ which is well-ordered with respect to the usual ordering on $\mathbb R$ (where 'well-ordered' means that every nonempty subset has a minimum element in it). Then A has an order preserving bijection with a subset of $\mathbb N$.
- 2. $\lim_{x \to 0} \frac{\sin x}{\log(1 + \tan x)} = 1.$

F

F

- 3. For any closed subset $A \subset \mathbb{R}$, there exists a continuous function f on \mathbb{R} which vanishes exactly on A.
- 4. Let f be a nonnegative continuous function on \mathbb{R} such that $\int_0^\infty f(t)dt$ is finite. Then $\lim_{x\to\infty} f(x)=0$.
- 5. The function $f(x) = \cos(e^x)$ is not uniformly continuous on \mathbb{R} .
- 6. Let A be a 3×3 real symmetric matrix such that $A^6=I$. Then, $A^2=I$.
- 7. In the vector space $\{f \mid f : [0,1] \to \mathbb{R}\}$ of real-valued functions on the closed interval [0,1], the set $S = \{\sin(x), \cos(x), \tan(x)\}$ is linearly independent.
- 8. Let f be a twice differentiable function on \mathbb{R} such that both f and f'' are strictly positive on \mathbb{R} . Then $\lim_{x\to\infty} f(x) = \infty$.
- 9. Let G, H be finite groups. Then any subgroup of $G \times H$ is equal to $A \times B$ for some subgroups A < G and B < H.
- 10. Let g be a continuous function on [0,1] such that g(1)=0. Then the sequence of functions $f_n(x)=x^ng(x)$ converges uniformly on [0,1].
- 11. Let $A, B, C \in M_3(\mathbb{R})$ be such that A commutes with B, B commutes with C and B is not a scalar matrix. Then A commutes with C.
- 12. If $A \in M_n(\mathbb{R})$ (with $n \geq 2$) has rank 1, then the minimal polynomial of A has degree 2.
- 13. Let V be the vector space over \mathbb{R} consisting of polynomials of degree less than or equal to 3. Let $T:V\to V$ be the operator sending f(t) to f(t+1), and $D:V\to V$ the operator sending f(t) to df(t)/dt. Then T is a polynomial in D.
- 14. Let V be the subspace of the real vector space of real valued functions on \mathbb{R} , spanned by $\cos t$ and $\sin t$. Let $D:V\to V$ be the linear map sending $f(t)\in V$ to df(t)/dt. Then D has a real eigenvalue.

- 15. The set of nilpotent matrices in $M_3(\mathbb{R})$ spans $M_3(\mathbb{R})$ considered as an \mathbb{R} -vector space (a matrix A is said to be nilpotent if there exists $n \in \mathbb{N}$ such that $A^n = 0$).
- 16. Let G be a finite group with a normal subgroup H such that G/H has order 7. Then $G \cong H \times G/H$.

F

T

- 17. The multiplicative group \mathbb{F}_7^{\times} is isomorphic to a subgroup of the multiplicative group \mathbb{F}_{31}^{\times} .
- 18. Any linear transformation $A: \mathbb{R}^4 \to \mathbb{R}^4$ has a proper non-zero invariant subspace.
- 19. Let $A, B \in M_n(\mathbb{R})$ be such that A + B = AB. Then AB = BA.
- 20. Let $A \in M_n(\mathbb{R})$ be upper triangular with all diagonal entries 1 such that $A \neq I$. Then A is not diagonalizable.
- 21. A countable group can have only countably many distinct subgroups.
- 22. There exists a continuous surjection from $\mathbb{R}^3 S^2$ to $\mathbb{R}^2 \{(0,0)\}$ (here $S^2 \subset \mathbb{R}^3$ denotes the unit sphere defined by the equation $x^2 + y^2 + z^2 = 1$).
- 23. The permutation group S_{10} has an element of order 30.
- 24. Let G be a finite group and $g \in G$ an element of even order. Then we can colour the elements of G with two colours in such a way that x and gx have different colours for each $x \in G$.
- 25. Let f(x) and g(x) be uniformly continuous functions from \mathbb{R} to \mathbb{R} . Then their pointwise product f(x)g(x) is uniformly continuous.

Part B

Answer the following multiple choice questions, by appropriately marking your answer on the machine checkable answer sheet that is provided.

- 1. The set of real numbers in the open interval (0,1) which have more than one decimal expansion is
 - (a) empty.
 - (b) non-empty but finite.
 - (c) countably infinite.
 - (d) uncountable.
- 2. How many zeroes does the function $f(x) = e^x 3x^2$ have in \mathbb{R} ?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3. **v**
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, and \\ \frac{1}{n}, & \text{if } x = \frac{m}{n} \text{ with } m, n \in \mathbb{Z}, n > 0, \text{ and } \gcd(m, n) = 1. \end{cases}$$

Which of the following statements is true?

- (a) f is continuous everywhere except at 0.
- (b) f is continuous only at the irrationals.
- (c) f is continuous only at the non-zero rationals.
- (d) f is not continuous anywhere.
- 4. Suppose p is a degree 3 polynomial such that p(0) = 1, p(1) = 2, and p(2) = 5. Which of the following numbers cannot equal p(3)?
 - (a) 0
 - (b) 2
 - (c) 6
 - (d) 10. **v**

- 5. Let A be the set of all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the following two properties:
 - f has derivatives of all orders, and
 - for all $x, y \in \mathbb{R}$,

$$f(x+y) - f(y-x) = 2xf'(y).$$

Which of the following sentences is true?

- (a) Any $f \in A$ is a polynomial of degree less than or equal to 1.
- (b) Any $f \in A$ is a polynomial of degree less than or equal to 2.
- (c) There exists $f \in A$ which is not a polynomial.
- (d) There exists $f \in A$ which is a polynomial of degree 4.
- 6. Denote by \mathfrak{A} the set of all $n \times n$ complex matrices A ($n \geq 2$ a natural number) having the property that 4 is the only eigenvalue of A. Consider the following four statements.
 - $\bullet (A-4I)^n = 0,$
 - $\bullet \ A^n = 4^n I,$
 - $(A^2 5A + 4I)^n = 0$,
 - \bullet $A^n = 4nI$.

How many of the above statements are true for all $A \in \mathfrak{A}$?

- (a) 0
- (b) 1
- (c) 2
- (d) 3.
- 7. Let A be the set of all continuous functions $f:[0,1]\to [0,\infty)$ satisfying the following condition:

$$\int_{0}^{x} f(t) dt \ge f(x), \text{ for all } x \in [0, 1].$$

Then which of the following statements is true?

- (a) A has cardinality 1. \checkmark
- (b) A has cardinality 2.
- (c) A is infinite.
- (d) A is empty.

- 8. Consider the following four sets of maps $f: \mathbb{Z} \to \mathbb{Q}$:
 - (i) $\{f: \mathbb{Z} \to \mathbb{Q} \mid f \text{ is bijective and increasing}\},$
 - (ii) $\{f: \mathbb{Z} \to \mathbb{Q} \mid f \text{ is onto and increasing}\},$
 - (iii) $\{f: \mathbb{Z} \to \mathbb{Q} \mid f \text{ is bijective, and satisfies that } \forall n \leq 0, f(n) \geq 0\},$ and
 - (iv) $\{f: \mathbb{Z} \to \mathbb{Q} \mid f \text{ is onto and decreasing}\}.$

How many of these sets are empty?

- (a) 0
- (b) 1
- (c) 2
- (d) 3. **V**
- 9. What are the last 3 digits of 2^{2017} ?
 - (a) 072 **V**
 - (b) 472
 - (c) 512
 - (d) 912.
- 10. The minimal polynomial of $\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 5 \end{pmatrix}$ is
 - (a) (x-2)(x-5).
 - (b) $(x-2)^2(x-5)$.
 - (c) $(x-2)^3(x-5)$.
 - (d) none of the above.
- 11. Consider a cube C centered at the origin in \mathbb{R}^3 . The number of invertible linear transformations of \mathbb{R}^3 which map C onto itself is
 - (a) 72
 - (b) 48 🗸
 - (c) 24
 - (d) 12.

- 12. The number of rings of order 4, up to isomorphism, is:
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4. **V**
- 13. For a sequence $\{a_n\}$ of real numbers, which of the following is a negation of the statement ' $\lim_{n\to\infty}a_n=0$ '?
 - (a) There exists $\varepsilon > 0$ such that the set $\{n \in \mathbb{N} \mid |a_n| > \varepsilon\}$ is infinite.
 - (b) For any M>0, there exists $N\in\mathbb{N}$ such that $|a_n|>M$ for all $n\geq N$.
 - (c) There exists a nonzero real number a such that for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ with $|a_n a| < \varepsilon$ for all $n \ge N$.
 - (d) For any $a \in \mathbb{R}$, and every $\varepsilon > 0$, there exist infinitely many n such that $|a_n a| > \varepsilon$.
- 14. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Then which of the following statements implies that f(0) = 0?
 - (a) $\lim_{n \to \infty} \int_0^1 f(x)^n dx = 0.$
 - (b) $\lim_{n \to \infty} \int_0^1 f(x/n) \, dx = 0.$
 - (c) $\lim_{n \to \infty} \int_0^1 f(nx) \, dx = 0.$
 - (d) None of the above.
- 15. Consider the following maps from \mathbb{R}^2 to \mathbb{R}^2 :
 - (i) the map $(x, y) \mapsto (2x + 5y + 1, x + 3y)$,
 - (ii) the map $(x, y) \mapsto (x + y^2, y + x^2)$, and
 - (iii) the map given in polar coordinates as $(r, \theta) \mapsto (r, \theta + r^3)$ for $r \neq 0$, with the origin mapping to the origin.

The number of maps in the above list that preserve areas is:

- (a) 0
- (b) 1
- (c) 2 **V**
- (d) 3.