北京航空航天大学

2021-2022 学年 第1 学期 期末

《计算机组成》考 试 A 卷

班	级	学号	
姓	名	成 绩	

登分表:

题号 (分值)	得 分	阅卷签名
一 (20分)		
二 (20分)		
三 (15分)		
四(10分)		
五 (10分)		
六 (10分)		
七 (15分)		
总 分		

注意事项: 1、请在封面、每页试卷和答卷上都写上学号和姓名;

- 2、试卷不要拆卸,以免散落丢失;
- 3、可在试卷背面答题。

2022年1月12日

一、沈	选择题(共 1 0	题,每题2	分,共 20 分)
1、将	二进制数 111	10102转换为	十六进制数,结果是()
A	. 122 ₁₆	$B \sqrt{7A_{16}}$	C, 172 ₁₆ D, 74 ₁₆
2、下	列模块中可り	以用于寻址的 :	逻辑部件是()
A	. 触发器	B. 移位寄存	字器 C. 译码器 D. 编码器
3、以	下指令或者寄	F存器与函数	调用过程无关的是()
P	<mark>l,</mark> \$ra	B、\$at	C, jal D, jr
4、在	MIPS 指令集	中可以用来等	实现跳转到 4GB 空间内任意地址的指令是 ()。
A	, beq	В、ј	C. jal D. jr
5、下	列代码起始地	丛址是 0x000)60720,\$s2 初值为 1,\$s3 初值为-1,第 2 行的分支
指	f令 blez 执行	厅完后 PC 的	值为()。
	Loop : s	sub \$s1,	\$s2, \$s3
		blez \$s1,	Loop
A	A. 0x000607	720	B, 0x00060724
C	C. 0x000607	728	D, 0x0006072C
6、关	于单周期 CPU	J 与多周期 C	CPU 的分析中,以下描述错误的是()。
A	A、单周期 CP	U 性能与效率	室较低,主要是因为采用单一周期执行所有指令,而不同
指令的	的执行时间可能	能差异较大,	最终使得单周期 CPU 整体性能较差。
Е	3、多周期 CPI	U 可以针对不	下同指令,将执行过程划分为不同的阶段,不同指令可能
需要的	的阶段数目不	同,因此多周	周期 CPU 对指令执行的管理更加精细。
C	、与单周期(CPU 相比,氢	多周期 CPU 对不同执行阶段的管理更加精细,因此多周
期 CP	U 的执行性能	6一定会比单	周期 CPU 更高。
Ι)、多周期 CPI	U的时钟频率	区决定于最慢的执行阶段,占用周期数较多的指令(例如
lw)?	生一段程序中的	出现的频次起	成高,则整个程序的执行性能越低。
7、用	4K×4 位的 S	RAM 芯片扩	展为 8K×8 位的存储器,地址线需要增加的位数以及所
需的月	†数分别为 ()	
A	、1位和2片		B、1 位和 4 片
C	、2位和4片		D、2 位和 2 片

- 8、在对处理器的高速缓存的性能分析中,以下阐述错误的是()
- A、如果某程序在运行过程中对内存的访问具备明显的局部性特征,尽可能地将频繁访问的数据存放于缓存中,则可有效地提升程序执行的性能。
- B、高速缓存与内存的映射关系中,对于组相联策略,通过提高相联的度数,可以 一定程度地降低组内的数据冲突,但其硬件实现的代价则会增加。
- C、通过不断增加缓存容量,可以持续提升数据访问的性能和效率,因此 CPU 中的缓存容量越大,其运行性能一定越高。
- D、对于两级缓存(L1和L2)的情况下,L1级缓存的访问速度一般较高,容量较低,而L2级缓存则访问速度一般较慢,容量更大。
- 9、在虚存系统访存过程中,虚拟地址通过访问 TLB 后转换为物理地址,然后再访问 Cache,以下阐述错误的是()。
 - A、如果 TLB 访问缺失,则页面访问也有可能发生缺失。
 - B、如果 TLB 访问缺失,但 Cache 访问则有可能命中。
 - C、如果页面访问命中,但 Cache 访问可能会缺失。
 - D、如果 TLB 访问命中,则 Cache 访问必然命中。
- 10、以下关于系统异常和中断的阐述中,错误的一项是()
 - A、外设(鼠标或键盘等)向系统请求输入数据属于中断行为。
 - B、异常是由于 CPU 执行指令过程中出现的不期望出现的事件。
 - C、程序员可以通过直接修改协处理器(CPO)的寄存器来实现异常和中断的处理。
 - D、异常发生之后, CPU 一般会停止执行当前指令, 而转入异常处理程序。

二、数字逻辑分析(共20分)

1、将下列逻辑函数表达式化简。(5分)

$$F = \bar{A}\bar{B} + \bar{A}B\bar{C} + \overline{(A+\bar{C})}$$

A

2、请使用下列器件,实现如下真值表所表示的函数。请给出器件管脚接入的信号,做出相应分析,并在图中添加适当的连线。(5分)

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

(1) 一个8选1多路选择器。(3分)

注: 在 $\overline{EN} = 0$ 时,根据地址 $A_2 A_1 A_0$,从 8 路数据 $D_0 \sim D_7$ 中选出一路输出至 Y, 其功能表如下所示:

功能表 $(\overline{EN} = 0)$

	7411B PC (211 G)				
A_2	A_1	A_0	Y		
0	0	0	D_0		
0	0	1	D_1		
0	1	0	D_2		
0	1	1	D_3		
1	0	0	D ₄		
1	0	1	D_5		
1	1	0	D_6		
1	1	1	\mathbf{D}_7		

(2) 一个 4 选 1 多路选择器和一个非门。(2 分)

注: 在 $\overline{EN}=0$ 时,根据地址 A_1A_0 ,从 4 路数据 $D_0\sim D_3$ 中选出一路输出至 Y。 其功能表如下所示:

A

功能表	(TNI	- 0
切肥化	CIV	$= \mathbf{U}$

A_1	A_0	Y
0	0	D_0
0	1	\mathbf{D}_1
1	0	D_2
1	1	D_3

3、下图是一个有限状态机的状态转移图,该状态机共有 5 个状态(S0, S1, S2, S3, S4),输入是 0、1 二进制序列串。请回答下列问题。(10 分)

- (1)该状态机是 Moore 型状态机还是 Mealy 型状态机? (1 分)
- (2) 请描述该状态机的功能。(1分)
- (3) 假设状态 S0、S1、S2、S3、S4 分别编码为 000、001、010、100、101, 根据本题的有限状态机写出状态转换表(包括输出)。(4分)
- (4)根据状态转换表,请写出次态和输出的逻辑表达式并化简。(当前状态、输入、次态、输出的编码分别用 $S_2S_1S_0$ 、A、 $S_2^{'}S_1^{'}S_0^{'}$ 、Q表示)(4 分)

三、指令系统与 MIPS 汇编(共15分)

1、假如某指令系统的指令长度固定为 16 位,指定 1 个操作数需要 6 位,该指令系统可支持零操作数、单操作数和双操作数的指令,请问该指令系统有几种操作码长度?分别为多少位?该指令系统最多可以支持多少条单操作数的指令? (5 分)

2、在 32 位的 MIPS 指令系统中,假设一条指令的低 16 位为十进制数 512,如果该指令是一条 I 类型的指令,请问该指令除去寄存器操作数之外的操作数可能的位置有哪些?如果该指令是一条 R 类型的算术运算类指令,会有什么问题? (4 分)

3、用 MIPS 汇编语言写一个函数 FIB(N, & array)向内存中的一个数组(array)存入斐波 那契数列(F[n]=F[n-1]+F[n-2], n>=2, F[0]=1, F[1]=1)的前 N 个元素,N 和 array 的地址 分别通过\$a0 和\$a1 传递进来。请根据注释在横线上补全 MIPS 汇编代码。 (6 分)

斐波那契数列前两个元素 F[0]=F[1]=1 \$t0, 1 fib: li \$t0, 0(\$a1) # 把 F[0]=1 存入 array SW \$t0, 4(\$a1) # 把 F[1]=1 存入 array addi \$a0, \$a0, -2 # 更新元素个数 N loop: \$t0, ____(\$a1) # 从 array 中读取 F[n-2] lw \$t1, ____(\$a1) # 从 array 中读取 F[n-1] lw , \$t0, \$t1 # 计算 F[n] add \$t0, (\$a1) # 将 F[n] 存入 array SW addi \$a1, \$a1, ____ # 更新 F[n-2] 地址 addi \$a0, \$a0, ____ # 更新元素个数 N bgtz \$a0, loop # N≠0 继续执行 # N=0 返回 jr \$ra

四、主存储器(共10分)

- 1、由 1M×8 的 DRAM 存储芯片构建按字节编址的 8MB 容量存储器。(6 分)
- (1)上述 DRAM 存储芯片采用二维地址结构且行地址线与列地址线数量相等,该芯片存储位元阵列分别有多少行和多少列?
- (2) 构建该存储器需要多少 DRAM 芯片?存储器地址线有多少根?哪几位地址用于产生片选信号?存储最高段地址的那块芯片对应的地址范围是多少(请用十六进制表示为如 x...xH~x...xH 的形式)

- 2、某计算机的主存储器由 64K×1 的 DRAM 芯片构成,该芯片的存储位元阵列组织行地址线和列地址线数量相等,每行每 4ms 必须至少刷新一次,假定系统严格按照此要求采用分布式(异步)刷新方式周期性刷新该存储器。(4 分)
 - (1) 连续刷新两行的平均时间间隔是多少?
 - (2) 所需的刷新地址计数器是多少位?

五、高速缓存(共10分)

某台计算机的主存按字节编址,容量为 2^{16} 字节。该计算机使用一个 32 行的直接映射 Cache,块(block)的大小为 8 字节。

- 1、请给出主存地址的划分(各字段名称及其位数)。(3分)
- 2、如下 4 个主存地址的内容将分别存入 Cache 的哪几行? (2 分)
 - a) 0001 0001 0001 1011
- b) 1100 0011 0011 0100
- c) 1101 0000 0001 1101
- d) 1010 1010 1010 1010
- 3、假设主存地址为 0001 1010 0001 1010 的字节内容存入 Cache,请问跟该字节一起存入同一个 Cache 行的所有字节的地址范围是多少?(请用十六进制表示为如 xxxxH~xxxxH 的形式)(3 分)
- 4、如果该 Cache 每行有 1 个有效位和 1 个脏位,请计算 Cache 的实际容量。(2 分)

六、虚拟存储和分层存储系统(共10分)

1、某处理器正在执行的进程的页表如图所示,其中实页号为十进制数。一页的大小为 1024字节,虚拟存储和物理存储都按字节编址。请给出以下3个十进制表示的虚拟地址 所对应的物理地址(请以十进制表示),并回答对应的页是否在主存中。(6分)

a) 1052	b) 2221	c) 5499		
	有效位	访问位	修改位	实页号
页表首行 ◆──▶	1	1	0	4
	1	1	1	7
	0	0	0	
	1	0	0	2
	0	0	0	
	1	0	1	0

2、某计算机由一个 Cache、主存和用于虚拟存储器的磁盘构成三级存储系统。如果一个字在 Cache 中,存取时间为 20ns;如果字在主存而不在 Cache 中,则首先用 60ns 将字从主存调入 Cache,再从 Cache 存取;如果字不在主存中,则需要 12ms 从磁盘中获取,再用 60ns 将其装入 Cache,并继续进行存取。如果 Cache 的命中率为 0.9,主存的命中率为 0.6。请计算存取一个字的平均时间是多少 ns?(4 分)

七、MIPS CPU 题(本题共 15 分)

对于如图所示的 5 级流水线 CPU, 执行如下指令片段,请分析并回答如下问题。 注意:该流水线仅支持 W 级向 E 级的转发(寄存器堆无内部转发)。

L1: addi \$s1, \$s2, 5

L2: sub \$t0, \$t1, \$t2

L3: lw \$t3, 15(\$s1)

L4: sw \$t5, 72(\$t0)

L5: or \$t2, \$s4, \$s5

(1)请指出上述指令片段中所有存在数据相关(读写相关或写读相关)的寄存器以及相应指令序列。(6分)

【答案书写形式要求】以 \$s0 为例,书写形式为: \$s0, {L1, L2}。

(答案不包含上述示例)

(2) 针对上述指令片段,是否存在寄存器数据冲突的现象?

如果存在冲突,请指出存在寄存器数据冲突的指令以及相应的寄存器;针对图中给出的流水线结构,在不增加其他转发旁路的情况下,是否可以解决上述数据冲突?如果能够解决上述数据冲突,请分析具体执行过程。如果不能解决,请说明理由,并分析若采用暂停的方式使上述程序能够正确执行,至少需要几个周期的暂停?

如果不存在冲突,请分析其具体原因或者执行过程,并且给出完整执行该指令片段所需的最少周期数。

注意:建议采用流水线时空图进行分析。(9分)

【答案书写形式要求】以 \$s0 为例,书写形式为: \$s0, {L1, L2}。

(答案不包含上述示例)