1 I

Определение (Задача линейного программирования). Задачей ЛП называется задача поиска максимума или минимума линейной функции на множестве, которое описывается линейными ограничениями (равенствами и/или неравенствами)

Определение (Общая задача ЛП).
$$\begin{cases} f(x) = c_0 + \sum_{j=1}^n c_j x_j \to \max(\min) \\ \sum_{j=1}^n a_{ij} x_j \# b_i, \ i=1,\dots,m \\ x_j \geq 0, j \in J \subseteq \{1,\dots,n\} \end{cases}, \ \text{где } x = (x_1,\dots,x_n) \in \mathbb{R}^n \text{ - вектор}$$

переменных

Матричная запись:

$$\begin{cases} f(x) = (c, x) \to \max(\min) \\ Ax \# b \\ x_j \ge 0, j \in J \subseteq \{1, \dots, n\} \end{cases}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Определение (Допустимое решение задачи ЛП). вектор $x \in \mathbb{R}^n$, удовлетворяющий ограничениям задачи, называется допустимым решением задачи ЛП

Определение (Оптимальное решение задачи ЛП). Допустимое решение $x^* \in D$ задачи ЛП называется оптимальным решением, если $f(x) \leq f(x^*) \, \forall x \in D$ в случае задачи максимизации и $f(x) \geq f(x^*) \, \forall x \in D$ в случае задачи минимизации

Определение (Разрешимая задача ЛП). Задача ЛП называется разрешимой, если она имеет оптимальное решение.

Определение (Неразрешимая задача ЛП). Задача ЛП называется разрешимой, если она не имеет оптимального решения.

Определение (Каноническая задача ЛП).
$$\begin{cases} f(x) = c_0 + \sum_{j=1}^n c_j x_j \to \max \\ \sum_{j=1}^n a_{ij} x_j = b_i, \ i=1,\dots,m \\ x_j \geq 0, j=1,\dots,n \end{cases}$$

Определение (Стандартная (симметричная) форма).
$$\begin{cases} f(x) = c_0 + \sum_{j=1}^n c_j x_j \to \max(\min) \\ \sum_{j=1}^n a_{ij} x_j \le b_i, \ i = 1, \dots, m \\ x_j \ge 0, j = 1, \dots, n \end{cases}$$

Определение (Эквивалентные ЗЛП (ЗМП)). Две задачи ЛП P_1, P_2 называются эквивалентными, если любому допустимому решению задачи P_1 соответствует некоторое допустимое решение задачи P_2 и наоборот, причем оптимальному решению одной задачи соответствует оптимальное решение другой задачи.

Теорема 1.1 (Первая теорема эквивалентности). Для любой ЗЛП существует эквивалентная ей каноническая ЗЛП.

Теорема 1.2 (Вторая теорема эквивалентности). Для любой ЗЛП существует эквивалентная ей симметрическая ЗЛП.

Определение (Система с базисом). СЛАУ - СЛАУ с базисом, если в каждом уравнении имеется переменная с коэффициентом +1, отсутствующая в других уравнениях. Такие переменные будем называть базисными, остальные не базисными

Определение (ПЗЛП). КЗЛП называется приведенной, если

- 1. СЛАУ Ax = B является системой с базисом
- 2. Целевая функция выражена через небазисные переменные

Определение (Базисное решение). Пусть \overline{x} - решение Ax = B. Тогда вектор \overline{x} называется базисным решением СЛАУ, если система вектор-столбцов матрицы A, соответствующая ненулевым компонентам вектора \overline{x} , ЛНЗ

3амечание. Если система однородная, то $x=\overline{0}$ - базисное решение

Определение (Базисное решение КЗЛП). Неотрицательное базисное решение СЛУ называется базисным решением канонической задачи ЛП

Определение (Прямо допустимая симплексная таблица). СТ называется прямо допустимой, если $a_{i0} \geq 0, i = 1, \ldots, m$ (bшки)

Определение (Двойственно допустимая симплексная таблица). СТ называется двойственно допустимой, если $a_{0i} \geq 0, i = 1, \ldots, n+m$ (сшки)

Определение (Проверка на оптимальность в симплекс-методе). Если $a_{0j} \ge 0$ для любого $j = 1, \dots, n+m$, то конец - базисное решение x, соответствующее симплексной таблице, оптимально.

Определение (Проверка на неразрешимость в симплекс-методе). Если существует столбец с номером $q \in \{1, ..., n+m\}$ такой, что $a_{0q} < 0$, и $a_{iq} < 0, i = 1, ..., m$, то конец - задача ЛП неразрешима

Определение (Выбор ведущего столбца в симплекс-методе). Столбец с номером $q \in \{1,...,n+m\}$ выбирается ведущим, если $a_{0q} < 0$. Если таких столбцов несколько, то выбирается любой из них.

Определение (Выбор ведущей строки в симплекс-методе). Строка с номером $p \in \{1, ..., m\}$ выбирается ведущей, в соответствии с минимальным ключевым отношением

$$\frac{a_{p0}}{a_{pq}} = \min_{a_{iq} > 0} \frac{a_{i0}}{a_{iq}}$$

Определение (Правило прямоугольника).

$$a'_{ij} = a_{ij} - \frac{a_{iq}}{a_{pq}} a_{pj}, i = 0, \dots, m, i \neq p, j = 0, \dots, n + m$$

(в полной симплексной таблице)

Определение (Вспомогательная задача ЛП (в методе искусственного базиса)).

$$h(x,t) = -\sum_{i=1}^{m} t_i \to \max$$

$$a_{11}x_1 + \dots + a_{1n}x_n + t_1 = b_1$$

$$a_{21}x_1 + \dots + a_{2n}x_n + t_2 = b_2$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n + t_m = b_m$$

$$x_j \ge 0, j = 1, \dots, n, t_i \ge 0, i = 1, \dots, m$$

Теорема 1.3 (Критерий разрешимости). Если целевая функция задачи ЛП ограничена сверху (снизу) на непустой множестве допустимых решений, то задача максимизации (минимизации) имеет оптимальное решение

Определение (Двойственная задача). Для ЗЛП І двойственной задачей ІІ является ЗЛП вида:

$$f(x) = \sum_{j=1}^{n} c_j x_j \to \max \leftrightarrow g(y) = \sum_{i=1}^{m} b_i y_i \to \min,$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, i = 1, \dots, l \leftrightarrow y_i \ge 0, i = 1 \dots l,$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, i = l+1, \dots m \leftrightarrow y_i \in \mathbb{R}, i = l+1, \dots, m,$$

$$x_j \ge 0, i = 1, \dots p \leftrightarrow \sum_{i=1}^{m} a_{ij} y_i \le c_j, j = 1, \dots, p$$

$$x_j \in \mathbb{R}, j = p+1, \dots n \leftrightarrow \sum_{i=1}^{m} a_{ij} y_i \le c_j, j = p+1, \dots, n$$

Задачу І называют прямой, а ІІ - двойственной. Стрелки соответствуют сопряженным ограничениям

Теорема 1.4 (Первая теорема двойственности). Если одна из пары двойственных задач разрешима, то разрешима и другая, причем оптимальное значение целевых функций совпадает, т.е $f(x^*) = g(y^*)$, где x^*, y^* - оптимальные решения задач I, II соответственно

Теорема 1.5 (Первый критерий оптимальности). Вектор $x^* \in D_I$ является оптимальным решением задачи $I \Leftrightarrow \exists y^* \in D_{II} \ m. \ u \ g(y^*) = f(x^*)$

Определение (Условия дополняющей нежесткости). Будем говорить, что $x \in D_I, y \in D_{II}$ удовлетворяют УДН, если при подстановке в любую пару сопряженных неравенств хотя бы одно из них обращается в равенство. Это означает, что следующие характеристические произведения обращаются в 0:

$$(\sum_{j=1}^{n} a_{ij}x_j - b_i)y_i = 0, i = 1, \dots m$$

$$x_i(\sum_{i=1}^m a_{ij}y_i - c_j) = 0, j = 1, \dots n$$

Теорема 1.6 (Вторая теорема двойственности). $x^* \in D_I, y^* \in D_{II}$. оптимальны в задачах I, II тогда и только тогда, когда они удовлетворяют УДН.

Теорема 1.7 (Второй критерий оптимальности (следствие)). $x^* \in D_I$ является оптимальным решением $I \Leftrightarrow \exists y^* \in D_{II}$ т.ч. x^* и y^* удовлетворяют УДН

Определение (Малое (допустимое) изменение). Малое (допустимое) изменение ресурса P1 - такое изменение $\Delta b_1 = b_1' - b_1$ для кот в задаче I' существует оптимальное решение той же структуры, что и оптимальное решение исходной задачи I

Определение (3-я теорема двойственности). При допустимом изменении i-того ресурса приращение целевой функции прямо пропорционально изменению ресурса с коэффициентом пропорциональности, равным y_i^*

$$\Delta_i F = \Delta b_i y_i^*, \Delta_i F = F(b_1, \dots, b_{i-1}, b_i + \Delta b_i, \dots, b_m) - F(b_1, \dots, b_{i-1}, b_i, \dots, b_m)$$

2 II

Определение (Выпуклое множество). Множество называется выпуклым, если вместе с двумя его точками оно содержит отрезок, их соединяющий, или

$$\forall x^1, x^2 \in D \quad \forall \lambda \in (0,1) \quad x^* = (1-\lambda)x^1 + \lambda x^2 \in D$$

Определение (Выпуклая функция). Функция $f: D \to R$ (D - выпкуло) называется выпуклой, если

$$\forall x^1, x^2 \in D, \forall \lambda \in (0, 1) \quad f((1 - \lambda)x^1 + \lambda x^2) < (1 - \lambda)f(x^1) + \lambda f(x^2)$$

Определение (Задача ВП). :

$$f(x) \to \min$$

$$\phi_i(x) \le 0, i = 1, \dots, m$$

$$x \in G$$

Здесь ϕ_i, f - выпуклые в G функции, G - выпуклое замкнутое множество ($\mathbb{R}^n, \mathbb{R}^n_+$)

Определение (Условие Слейтера). (УС)

$$\exists \overline{x} \in G, \phi_i(\overline{x}) < 0.$$

$$D = \{x \in G | \phi_i \leq 0, i = 1, \dots, m\}$$
 – множество допустимых решений задачи ВП.

УС гарантирует существование внутренних точек множества D.

Теорема 2.1 (О градиенте и производной по направлению). Если f(x) дифференцируема в точке x^0 , то предел

$$\lim_{\lambda \to 0+0} \frac{f(x^0 + \lambda z) - f(x^0)}{\lambda},$$

существует и равен

$$f_z'(x^0) = (\nabla f(x^0), z)$$

Пусть задана точка $x_0 \in D$. $I_0 = \{i \mid \phi_i(x^0) = 0\}$ - множество индексов активных ограничений

Определение (Возможное направление). Направление z называется возможным (допустимым) в x^0 , если ($\nabla \phi_i(x^0), z$) $< 0 \quad \forall i \in I_0$

Определение (Прогрессивное направление). Направление z называется прогрессивным в точке x^0 , если

$$\begin{cases} (\nabla \phi_i(x^0), z) < 0 & \forall i \in I_0 \\ (\nabla f(x^0), z) < 0 \end{cases}$$

Теорема 2.2 (Критерий оптимальности ЗВП). $x^* \in D$ - оптимальное решение задачи ВП \Leftrightarrow в точке x^* нет прогрессивного направления, т.е не существует $z \in R^n$:

$$\begin{cases} (\nabla \phi_i(x^0), z) < 0 & \forall i \in I_0 \\ (\nabla f(x^0), z) < 0 \end{cases}$$

Определение (Каноническая ЗВП). Канонической задачей ВП называется задача ВП с линейной целевой функцией, т.е $f(x) = (c, x) \to \min$

Теорема 2.3 (Теорема Куна-Таккера о седловой точке). $x^* \in G$ - оптимальное решение задачи выпуклого программирования тогда и только тогда, когда существует $y^* \geq 0$, такое что (x^*, y^*) является седловой точкой функции Лагранжа

Дифференциальная форма 1

Рассмотрим задачу ВП (I)

$$f(x) \rightarrow \min$$

$$\phi_i(x) \leq 0, i = 1, ..., m$$

$$x_j \geq 0, j = 1, ..., n$$

$$G = \{x \in R^n, x_j \geq 0, j = 1, ..., n\}$$

 f, ϕ_i - непрерывно дифференцируемые на G

Выполнено УС

$$L(x,y) = f(x) + \sum_{i=1}^{m} y_i \phi_i(x), y_i \ge 0, i = 1, \dots, m$$

Обозначим

$$\nabla_x L_x(x^*, y^*) = \left(\frac{\partial L}{\partial x_1}, \dots, \frac{\partial L}{\partial x_n}\right)|_{(x^*, y^*)}$$

$$\nabla_x L_y(x^*, y^*) = \left(\frac{\partial L}{\partial y_1}, \dots, \frac{\partial L}{\partial y_n}\right)|_{(x^*, y^*)} = (\phi_1(x^*), \dots, \phi_m(x^*))$$

Теорема 2.4 (Куна-Таккера в дифференциальной форме 1). Точка $x^* \ge 0$ является оптимальным решением задачи (I) тогда и только тогда, когда существует $y^* > 0$ такой, что выполняются следующие условия:

1.
$$\nabla_x L(x^*, y^*) \ge 0$$
, m.e. $\frac{\partial L(x, y^*)}{\partial x_j}|_{x=x^*} \ge 0, \forall j = 1, \dots, n$

2.
$$(x^*, \nabla_x L(x^*, y^*)) = 0$$
 m.e $\sum_{i=1}^n x_j^* \frac{\partial L(x, y^*)}{\partial x_i}|_{x^*} = 0$

3.
$$\nabla_{u}L(x^{*}, y^{*}) < 0$$
, m.e $\phi_{i}(x^{*}) < 0$, $i = 1, ..., m$

4.
$$(y^*, \nabla_y L(x^*, y^*)) = 0$$
, $m.e \sum_{i=1}^m y_i^* \phi_i(x^*) = 0$

Дифференциальная форма 2

Рассмотрим задачу ВП (II)

$$f(x) \to \min$$

$$\phi_i(x) \le 0, i = 1, ..., m$$

$$x \in \mathbb{R}^n$$

$$G = \mathbb{R}^n$$

 f, ϕ_i - непрерывно дифференцируемые на G

Теорема 2.5 (Куна-Таккера в дифференциальной форме 2). Точка $x^* \in R^n$ является оптимальной точкой задачи (II) тогда и только тогда, когда существует $y^* \ge 0$ такое, что выполняются условия

1.
$$\nabla_x L(x^*, y^*) = 0$$
, m.e. $\frac{\partial L(x, y^*)}{\partial x_j}|_{x=x^*} = 0, \forall j = 1, \dots, n$

2.
$$\nabla_y L(x^*, y^*) \leq 0$$
, $m.e \ \phi_i(x^*) \leq 0$, $i = 1, ..., m$

3.
$$(y^*, \nabla_y L(x^*, y^*)) = 0$$
, $m.e \sum_{i=1}^m y_i^* \phi_i(x^*) = 0$, unu $\forall i : y_i^* \phi_i(x^*) = 0$

Определение (Задача ЦЛП).

$$f(x) = \sum_{j=1}^{n} c_j x_j \to \max$$
 (1)

$$\sum_{i=1}^{n} a_{ij} x_j \# b_i, i = 1, \dots, m$$
(2)

$$x_j \ge 0, j = 1, \dots, n \tag{3}$$

$$x_j \in \mathbb{Z}, j = 1, \dots, n \tag{4}$$

 $c_j, b_i, a_{ij} \in \mathbb{Z}$ или \mathbb{Q}

Определение (Правильное отсечение). Доп. линейное ограничение - правильное отсечение, если

- 1. оно отсекает часть области D, содержащее нецелочисленное оптимальное решение x^0 текущей задачи $\Pi\Pi$.
- 2. В отсекаемой части области не должно быть ни одного допустимого решения задачи ЦЛП (ограничение сохраняет все допустимые целочисленные решения)

Определение (Отсечение Гомори). Имеем оптимальную с-таблицу $a_{ij,i=0,...,m,j=0,...,n}$ Рассмотрим $a_{l0} \notin \mathbb{Z}$. 1 выбираем с наибольшей дробной частью по правилу "первая сверху" $(l \in \{0,...,n\})$ Отсечение Гомори - дополнительное линейное ограничение

$$\sum_{j \in Nb} \{a_{lj}\} x_j \ge \{a_{l0}\}$$

, где Nb - множество индексов небазисных переменных, $\{x\}$ - дробная часть х