SA TECHNICAL Memorant

NASA TA XIXO

(PAGES)

(PAGES)

(INASA CR OR TMX OR AD NUMBER)

(CATEGORY)

PRIME MINITRACK AND BAKER-NUNN ORBITS OF SATELLITE 1959α1 (VANGUARD II)

by Hans G. Hertz **God**dard Space Flight Center **G**reenbelt, Md.

GPO PRICE \$	
CFSTI PRICE(S) \$.65
Hard copy (HC)	
Microfiche (MF)	50
# 853 July 85	

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MARCH 1966

PRIME MINITRACK AND BAKER-NUNN ORBITS OF SATELLITE 1959 $lpha_1$ (VANGUARD II)

By Hans G. Hertz

Goddard Space Flight Center Greenbelt, Md.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ABSTRACT 21100

Concurrent data necessary for making a comparison study of the accuracies of Prime Minitrack and Baker-Nunn observations of Satellite 1959 α_1 (Vanguard II) are presented in this report. In all, 244 Prime Minitrack and 187 Baker-Nunn observations are available which were made over a 26-day period while the satellite's transmitter was operating. Prime Minitrack observations were possible only during transmitter operation. Data included here are comprised of Prime Minitrack and Baker-Nunn observations made concurrently.

CONTENTS

Abstract	 	 ٠.	٠.			ii
INTRODUCTION	 	 ٠.				1
DISCUSSION OF DATA	 	 				1
CONCLUSION	 	 ٠.				2
ACKNOWLEDGMENTS	 	 				3
References	 	 				3
Appendix A—List of Symbols						41

PRIME MINITRACK AND BAKER-NUNN ORBITS OF SATELLITE 1959a, (VANGUARD II)

by
Hans G. Hertz
Goddard Space Flight Center

INTRODUCTION

Satellite 1959_{α_1} (Vanguard II) was launched 17 February 1959. The transmitter was operating for 26 days through 15 March 1959. Therefore Prime Minitrack observations could be obtained during this period. It was suggested to the author that a comparison of the accuracies of Prime Minitrack and Baker-Nunn observations of a satellite would be interesting. In the present report the data necessary for such a study are presented. The observations used are those made in the period where both types of observations were possible. There were 244 Prime Minitrack and 187 Baker-Nunn observations available which were made during this 26-day period.

DISCUSSION OF DATA

For each of the two types, twelve orbits were determined. Their epochs were at 2-day intervals from 19 February 1959 through 13 March 1959 inclusive. For each orbit, the values of the parameters S_1 , S_2 ,... S_6 , S_{18} were determined by differential corrections. Here S_1 , S_2 ,... S_6 are the values of the constant terms in the expressions for the osculating elements a, e, I, Ω , ω , M as given by Brouwer (Reference 1). The quantity S_{18} is the coefficient of the term S_{18} τ^2 , τ in units of 100 hours from the epoch, added to Brouwer's expression for the mean anomaly. In each differential correction all observations within 72 hours of the epoch have been used provided they generated residuals, $\cos \delta \Delta \alpha$ and $\Delta \delta$, not larger than 0.10.

The earth parameters used in these solutions are shown in Table 1. The parameters are the equatorial radius R of the earth and the constants k, k_2 , A_{30} , k_4 , A_{50} . The last four constants occur in the expression,

$$\begin{split} U &= \frac{\mu}{r} \left[1 + \frac{k_2}{r^2} \left(1 - 3 \sin^2 \beta \right) + \frac{A_{30}}{r^3} \left(-\frac{3}{2} \sin \beta + \frac{5}{2} \sin^3 \beta \right) \right. \\ &+ \frac{k_4}{r^4} \left(1 - 10 \sin^2 \beta + \frac{35}{3} \sin^4 \beta \right) + \frac{A_{50}}{r^5} \left(\frac{15}{8} \sin \beta - \frac{35}{4} \sin^3 \beta + \frac{63}{8} \sin^5 \beta \right) \right] \end{split}$$

used by Brouwer. The constant k is given by $\mu = k^2$.

Several iterations were made. The orbits finally adopted as those based on the Prime Minitrack observations are called briefly Prime Minitrack orbits (PM orbits) and received the numbers 603 through 614. The numbers for the Baker-Nunn orbits (BN orbits) are 631, 616 through 625, and 632. The relationship between these numbers and the epochs is shown in Table 2.

The resulting values for the parameters s_1 , s_2 , ... s_6 , s_{18} are shown in Table 3. There are twelve pairs of lines, one pair each belonging to one of the twelve epochs. The first line in each pair gives the results for the PM orbit, the second for the BN orbit. The orbit numbers given serve to identify the epochs.

Table 4 gives the probable errors for the S_i obtained. They are arranged in eight pairs of columns. The first column of each pair belongs to PM orbits, the second to BN orbits. One line corresponds to a PM and the corresponding BN orbit for the same epoch. The numbers of this PM and BN orbit are given in the first two columns of the table.

The residuals for the PM observations are shown in Table 5 and those for the BN observations in Table 6. Except for the observations near the beginning and end of the 26-day period every PM or every BN observation appears in three orbits. The PM observations have received serial numbers starting with 1. The numbers of the BN observations are those assigned by the Smithsonian Astrophysical Observatory, without the designation of the year. The observations being precision-reduced observations, all numbers begin with a '7'.

Table 7 gives information as to the accuracy of the representation of the observations by the adopted parameters. The weights given are those found in an iterative process in such a way that they are consistent with the probable errors computed from the residuals. This table shows that the rejection limit of 0.10 referred to on page 1 was too large. Better results would be achieved if it were lowered or if the rejection limit were made dependent on the distribution of errors.

By making additional runs the condition that no observations with residuals of more than 3 times the probable error be included was approximately met.

Table 8 shows the differences ΔS_i of the values of the S_i obtained for a PM orbit and the corresponding BN orbit belonging to the same epoch. The differences are given in the sense PM-BN.

The S_i are plotted versus the time in Figures 1a-g for the Prime Minitrack orbits and in Figures 2a-g for the Baker-Nunn orbits. If no drag or other non-gravitational forces were present S_1 , S_2 , S_3 would be constant, S_4 , S_5 , S_6 would be linear functions of the time, and S_{18} would be zero. The probable errors in Table 4 and Figures 1a-f, 2a-f, and the non-vanishing of S_{18} indicate that there are deviations from gravitational behavior.

CONCLUSION

Additional aspects of this problem are of interest and will be investigated if sufficient time and resources are available. For instance, the dependence of the S_i on the time could be investigated.

An examination of the ΔS_i as to significance could be made. It would also be interesting to examine the residuals of the Prime Minitrack observations with respect to the Baker-Nunn orbits and the residuals of the Baker-Nunn observations with respect to the Prime Minitrack orbits. Finally, the data provide information on the relative accuracy of the two types of observations.

ACKNOWLEDGMENTS

The computations on which the results of this report are based were carried out with a Differential Correction Program System and some additional programs. The original package was based on the satellite theory by H.G.L. Krause (Reference 2) and was programmed by Miss Elise R. Fisher of the Theoretical Division. Gratitude is also expressed to Mr. Cahill of the same division. The IBM Corporation under Dr. K. Deahl was utilized to substitute Brouwer's theory. Additional work was carried out under the supervision of Mr. A. Shapiro of GSFC. I thank Messrs. H. Bremer and R. Bryant of the Theoretical Division, Messers. R. Danek and J. Weld of the Data Systems Division, and others for help and advice received. Acknowledgement is also due the Smithsonian Astrophysical Observatory for providing the observations prior to publication.

REFERENCES

- 1. Brouwer, Dirk, "Solution of the Problem of Artificial Satellite Theory Without Drag," Astronomical Journal, Vol. 64, no. 378, 1959.
- 2. Krause, H. G. L., "Die säkularen und periodischen Störungen der Bahn eines künstlichen Erdsatelliten," *Proceedings of the 7th International Astronautical Congress*, (1956) p. 523.

Table 1

Earth Parameters Used in Solutions.

R	6.378165	megameters
k	4118.0870	degrees megameters 3/2 hour 1
k ₂	0.02201451	megameters ²
A ₃₀	0.00059678	megameters ³
k ₄	0.00111709	megameters ⁴
A ₅₀	0.00000000	megameters ⁵

Table 2

Prime Minitrack and Baker-Nunn Orbits.

Epoch 0 ^h AT	J.D.	PM Orbit	BN Orbit
1959 February 19	2436618.5	603	631
21	6620.5	604	616
23	6622.5	605	617
25	6624.5	606	618
27	6626.5	607	619
March 1	6628.5	608	620
3	6630.5	609	621
5	6632.5	610	622
7	6634.5	611	623
9	6636.5	612	624
11	6638.5	613	625
13	6640.5	614	632

Table 3. Parameters of the Prime Minitrack and Baker-Nunn Orbits.

S ₁₈	+0°,300991 +0,300444	+0.291683	+0.291654 +0.300984	+0.342934	+0,392135	+0.346715	+0,313567	+0.329278	+0.311599	+0.318442	+0.347865 +0.333624	+0.366178 +0.356728
\mathbf{s}_6	76°,79972	34.92399	353,19875	311.58485	270.16722	228.91773	187.83316	146.89236	106.08772	65.42991	24.92186	344.56841
	76°,79066	34.93060	353,19961	311.61272	270.17781	228.92077	187.82031	146.86993	106.08707	65.47480	24.93162	344.58977
\mathbf{S}_{5}	142°47921	153.01337	163.53023	174.06878	184.57046	195.08509	205.59692	216.11123	226.64131	237.17748	247.70289	258.22770
	142•48830	153.00516	163.52863	174.04075	184.56912	195.08849	205.60918	216.13230	226.63302	237.13776	247.69734	258.21165
S_4	177°,88713	170.89423	163.89978	156.90739	149,91296	142,92069	135,92960	128.93408	121.93588	114.92644	107.92496	100,92886
	177°,89304	170.89609	163.90085	156.90589	149,91135	142,91888	135,92626	128.93162	121.93894	114.93593	107.93073	100,93520
83	32°872299	32 . 873182	32 . 874733	32 . 874485	32 . 873771	32 . 873218	32 . 872239	32.872083	32.873338	32.875728	32.875879	32.876008
	32°874176	32 . 873129	32 . 872571	32 . 874596	32 . 874683	32 . 874890	32 . 875379	32.876015	32.876659	32.877521	32.879222	32.879606
\mathbf{S}_2	0.16576178	0.16577543	0.16576787	0.16574035	0.16572010	0.16569527	0.16570116	0.16568639	0.16566514	0.16565315	0.16567097	0.16567475
	0.16584522	0.16577952	0.16577466	0.16576405	0.16573206	0.16573413	0.16572163	0.16571999	0.16575409	0.16572557	0.16575377	0.16576193
S ₁	8,3221388	8,3220465	8,3219558	8.3218575	8,3217416	8,3216274	8.3215251	8.3214260	8,3213280	8.3212291	8.3211282	8,3210186
Megameters	8,3221335	8,3220482	8,3219551	8.3218515	8,3217394	8,3216305	8.3215263	8.3214295	8,3213248	8.3212210	8.3211260	8,3210180
oit	603	604	605	606	607	608	609	610	611	612	613	614
	631	616	617	618	619	620	621	622	623	624	625	632
Orbit	PM	PM	PM	PM	PM	PM	PM	PM	PM	PM	PM	PM
	BN	BN	BN	BN	BN	BN	BN	BN	BN	BN	BN	BN

Table 4

Probable Errors of the Parameters of the Prime Minitrack and Baker-Nunn Orbits.

	91	27677 1156	456	1962	3220	1940	202	5687	9095	4643	2321	2313
	$\mathbf{s}_{18} \cdot 10$	10939 3820	2622	4632	3538	3272	3796	4338	3116	1945	2285	2190
	105	714 108	26	315	251	276	366	711	522	707	245	313
	. 9g	669 282	276	260	227	293	203	240	334	190	189	139
	10^{5}	576 123	113	234	200	230	322	619	561	707	226	270
J c	. S2 ·	779 367	344	326	311	312	584	314	408	332	341	291
le Error	10^{5}	25	81	88	49	70	66	170	161	202	64	59
Probat	. \$4	322 195	152	123	192	172	197	180	270	233	237	509
	106	33 152	194	219	142	127	163	191	131	309	124	207
	. _S 3	1911 787	625	467	886	758	788	757	1094	713	545	583
	108	3900 167	130	382	312	354	441	1210	1531	711	217	309
	. S2	839 564	551	717	601	785	245	634	567	614	756	589
	107	83	-		ı vr	· ~	, ~	1	- [1 4	r en	5
	s_1 .	19	t.	· rc	, v	٠ 4	·ur	, vc	t r	·ur	1 4	. w
BN	rbit	631	617	618	619	620	621	622	623	424	625	632
PM	Or	603		606	600	809	000	50.4	219	613	613	614

ß	
Ф	
75	
ল	
Η	

		614																																				
		613																																				
		612																																				
		611																																				
	vations.	610																																				
	x Obser	609	it 0,0001)																																			
Table 5	Residuals of Prime Minitrack Observations.	809	cos 8 ∆a (unit 0°0001)																																			
Та	Prime M	209	J																																			
	uals of	909																																	456	167	596	357
	Resid	909																				604	122	293	589	242 178	132	152	241	38	58	117	104	84	726 +	430 +	- 53	362 91
																						+	ı	+ 1	+	+ +	+	. +	+	1 4	+ +	+	+ 1	' '	+	+ 1	+	+ I
		6 04					207	91	341	125	526	964	314	427	509	486	21	7 :	132	718	9 ;	384	135	240	519	210	117	352	169	2 6	90	101	200	104	701	405	0	83
							ı		+ 1	+	٠+	+	ű	+	ı	٠ +	+	+ +	+ +		+ •	+ +		+ 1	+	+ +	+	ı +	+	١ ٠	+ +	+	+ 1	٠,	+	+ 1		+ 1
		603		323	546	8 9	5 60	79	264 400	305	629	0501	141	616	310	631	73	221	213	1623	188	603	15	441 266	681	412	316	197	311	22	64	273	211	32				
				+ +	+	+ 1	1	+	+ 1		+	+	ı î	+		۱ +	+	+ +	+ +	. ;	+ -	+ +	+	+ 1	+	+ 1		. +		1 4				•				
		Orbit	Obs. /	1 2	ım	4 4	ه ۱	7	60 0	10	12	13	4 5	16	17	2 61	20	21	23	5 72	25	27	28	30	31	332	34	3,5	37	80 00	, o4	4.1	24	4	45	9 4 6	6 0	4 R 0 O

```
613
612
611
610
 Δδ (unit 0:0001)
609
809
607
909
                         + 1436
- 1736
- 1593
+ 147
- 701
- 101
605
                409
     603
```

```
614
613
612
611
610
  cos 5 ∆a (unit 0.0001)
609
809
                                3111
855
2166
2166
1513
1513
1513
65
65
707
225
63
63
607
                  909
    609
    512
1944
1160
3855
3855
733
6687
102
102
627
627
627
1021
603
```

```
268
965
1175
1175
1175
234
234
234
1177
1177
1177
1177
209
             276
180
197
197
202
202
1550
435
575
575
575
575
575
575
117
117
1011
603
```

```
608
358
          662
348
186
909
 + + +
405
```

```
614
613
                   939
610
          609
809
607
  909
609
904
603
```

```
14
64
44
14
338
37
614
                                                                                                                                                                                                                                                                                                                                                                                            425
2000
2000
300
300
1118
1136
759
67
67
882
882
1936
1956
1967
613
                                                                                                                                                                                                                612
 611
                                    610
                                     cos δ Δα (unit 0°0001)
609
                                    86
63
863
175
175
125
125
127
128
1090
800
664
910
809
209
 909
 605
 909
 603
  Orbit

1551

1551

1552

1553

1554

1554

1554

1554

1557

1557

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657

1657
```

```
614
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         335
423
265
1113
122
84
613
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            612
                                                                                                                                                                                                                                                                      611
                                              610
                                              8301
1023300
1023300
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
103360
10
                                            609
                   (unit 0,0001)
809
                      δΔ
607
909
605
909
603
```

```
132
67
50
451
1390
174
95
600
137
96
611
610
 (unit 0,0001)
609
 cos § ∆a
809
209
909
909
909
603
```

```
24444

244444

244444

244444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444

24444
                                                         1 + 1 1 1 + 1 1 + 1 + +
611
610
609
                              ∆8 (unit 0,0001)
809
209
 909
 605
 604
  603
```

	632																																								
	629																																								
	624																																								
ons.	623																																								
Baker-Nunn Observations	622																																								
Nunn Ok	621	(unit 0:0001)																																							
Baker-	620	cosò ∆a (uni																														183 140	150	131	129	, 70 65 65	41	51	123	_	53
ls of	619	õ																							0.5	75	[3	5.2	/ + c	76	60								181 -		
Residuals	9																																								
Res	618																	ď	5.7 4.6	27	22	o. r	28	16	308	786 310	316	57	m a	102	356	25 8	0.4	55	000	- 26	14	21] 4]] 4 4	3.5	22
е 6.																																							1 1		
Table	617							10	r+4	r	† ~	n 1	11	c c (527	123	35	23	ر ا	o ∞	16	010	× 0	7	2.1	er e	56	Ś	126	137	544										
[1	+	+	+ 1	1	+	t	- 1	+	+	+	1 +	- 1	+	1 -	+ 1	ł	ı	1 1	1	+	1 1	ı	ı										
	616		29	18	c	19	2 4) 	J.	ω、	ם ע	œ	7	16	522	144	45	34	٠ ١٢	11	18	σ (200	9																	
			+ +	+	+	i .	1 1	1	+	+	+ 1	ı	+	ŧ	1 1	+	+	+	1 4	۱ ۱	+	1	+ 1	1																	
	631		23	19	7	4 4	c ^	13	25	20	۳ د	10	4	29	ر ک 15	c	29	86																							
			+ +	+	+	1 4	+ I	+	+	+	+ 1	į	+	1		+	ı	ı																							
	Orbit	Obs.	71338	71132	73993	70992	70896	70100	70101	70102	70103	70329	70340	70961	70015	70813	73757	70756	70791	70793	70394	70022	70024	71599	70493	70494	7.492	70064	70065	70072	71342	70576	71362	70480	73484	7.1363	70750	70751	70083	71519	71405

```
632
679
623
642
621
∧δ (unit 0,0001)
619
           618
        617
   616
 631
```

632		
625		
624		
623		
622	7 7 8 8 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	64 130 101
01)	++++	+ + +
621 (unit 0°0001)	7 1 2 4 1 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	128 99
د	+++++++++++++++++++++++++++++++++++++++	
620 cosδ Δα	20 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0	234 234 205
ō	1 + + + + + + + + + + +	+ + +
619	かぬか くらのりこうか つとこと くとこら ヤヤマ ほのか かりゅうこうか つとって とくしょ こく とく といい こう こうしょ ちょう ちょう いん とく といい こうしょ ちょう しょう こうしょう しょうしょう しょうしゅう しょうしょう しょうしゅう しょうしょう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしょう しょうしゅう しょうしょう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしょう しょうしょう しょう しょうしゅう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ	
	1 ! ! ! + + ! ! ! ! ! ! + + + + + + + +	
618	78 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	
	+++++1111	
617		
616		
631		
Orbit Obs.	71272 70466 70466 70986 71159 71159 71156 70336 70336 70346 70346 71247 71247 71246 71246 71247 71246 71246 71246 71246 71246 71247 71247 71331 71331 71331 71331 71314 71314 71314 71314 71313	71516 70113 70964

```
52
632
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 624
  623
622
                                                                              52
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
118 64
                                        (unit 0,0001)
621
                                          cos δ Δα
  619
  617
631
  Orbit

Obs. / October

10905

70905

70905

70115

70115

701008

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015

701015
```

```
14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            113
231
104
104
27
27
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                               624
                                                                                                                                                                                                                                          623
                                   622
                 0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001)
0.0001
621
629
                                             1++111+++++111++
   619
   617
     631
     Orbit

Obs.

Obs.

7005

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017

7017
```

```
632
 625
             11+1+++1111111+++1111++
            70
81
228
637
95
48
 624
             1 1 1 1 + + +
623
622
      cos à ∆a (unit 0,0001)
621
629
619
618
617
919
631
Orbit
Obs.

70146
70146
70146
70146
70151
70977
70977
70977
70977
71040
71040
71040
71040
71040
71040
71040
71040
71040
71040
71040
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
71060
```

```
632
625
                                                                     624
 623
 622
620 621
∆8 (unit 0;0001)
   619
     618
     617
     631
          Orbit
Obs. /
Orbit
```

Table 7. Accuracy of Representation of Observations

							Orbit					
	603	604	605	606	607	608	609	610	611	612	613	614
	())		!		Probai	ble Error o	Probable Error of Observation of Weight 1	of Weight 1)) 1	100
	0.0100	0.0103 0.0013	0.0104	0.0099	0.0108	0.0124	0.0115	0.0116 0.0041	0.0111 0.0022	0.0110	0.0128 0.0016	0.0104 0.0022
	1.45 0.06	1.44	1.18 1.80	0.57	1.51 0.55	Weig 1•29 0•23	Weight in R.A. 1.50	1.33 0.12	1.64 0.03	1.59 0.20	1.38 0.31	1.63 0.19
	0.55 1.94	0.56	0.82 0.20	1.43	0.49 1.45	Weig 0.71 1.77	Weight in Decl. 1 0.50 7 1.68	0.67 1.88	0.36	0•41 1•80	0.62 1.69	0.37
	0.0083	0.0086 0.0010	0.0095	0.0130	Prob: 0.0088 0.0044	able Error 0.0109 0.0073	Probable Error of Observation in R.A 88 0.0109 0.0094 0.44 0.0073 0.0080 0.0	in R.A. 0.0101 0.0118	0.0087	0.0087	0.0109	0.0081
	0.0135	0.0137 0.0022	0.0115 0.0021	0.0083	Probi 0.0154 0.0027	Probable Error 54 0.0147 27 0.0026	of Observation in Decl. 0.0163 0.0 0.0035 0.0	in Decl. 0.0142 0.0030	0.0185 0.0016	0.0172 0.0016	0.0163	0.0170 0.0017
					Table 8.	Differences	Differences of Parameters	ø				
	D. C.	${}^{\Diamond}\mathbf{S_1}$		ΔS ₂	${\vartriangle} \mathbf{S_3}$		PM-BN $\triangle S_4$	${}^{\Diamond}\mathbf{S}_{5}$	V	$\delta \mathbf{S}_{6}$	$^{\wedge S_{18}}$	
_	rm Orbit	ter	ŵ	1						,) i	
	603	+0.0000053	~ ^	-0.00008344	- 000018	877 -	0.00591	- 0,00090,	+ - 6	0.00906	+0.000547	7
		00000000+		00000679	+ 0.002162		0.00107	0.001	1	0.00086	-0.00933	0
		900000*0+		00002371				0.028	ı	•	-0.01373	-
		+0•00000+ 6000000		00001196 00003886	00000	+ 7160 4 229 +	0.00161	+ 00•00 + 4 00	1 1	0.01039	+0.008351	٠
		10000000		000000000000000000000000000000000000000				- 0.0122	+	.012	-0.01560	. 0
		-0.00003		09880000			0	0.021	+	0224	+0.02683	2
		+0.00000+		20008895	0		0	0.008	+	0.00065	-0.070232	7
		\$0000C*O+		00007242	o (0.00949	0.039	7	.0448	+0 • 04 / 73	~ ~
		+0•000000+0+		00008280	0	003598	00	o o	1	.0213	+0.00945	. 0
		• • • • • • • • • • • • • • • • • • • •										

9 Z

00 € X 9 W

Ø Ø

Ø Ø

Ø Ø

Figure 1a through $1g-S_i$ versus time for Prime Minitrack Orbits.

Figure 1a—Values of S₁ (megameters)

Figure 1b-Values of S₂

Figure 1c-Values of S₃ (degrees)

Figure 1d—Values of S₄ (degrees)

Figure 1e—Values of S₅ (degrees)

Figure 1f-Values of S₆ (degrees)

Figure 1g-Values of S₁₈ (degrees)

Figure 2a through $2g-S_i$ versus time for Baker-Nunn Orbits.

Figure 2a—Values of S₁ (megameters)

Figure 2b-Values of S₂

Figure 2c-Values of S₃ (degrees)

Figure 2d—Values of S₄ (degrees)

Figure 2e—Values of S₅ (degrees)

Figure 2f—Values of S₆ (degrees)

Figure 2g-Values of S_{18} (degrees)

Appendix A

List of Symbols

Symbol	Meaning
A ₃₀	Constant for earth's potential (megameters ³)
A ₅₀	Constant for earth's potential (megameters ⁵)
I	Inclination of orbital plane to equator (degrees)
M	Mean anomaly
R	Earth equatorial radius (megameters)
a	Semimajor axis (megameters)
e	Eccentricity (non-dimensional)
k	Gravitational constant (degrees megameters 3/2 hour -1)
$\mathbf{k_2}$	Constant for earth's potential (megameters ²)
k ₄	Constant for earth's potential (megameters 4)
Δδ	Residual in declination
Ω	Longitude of ascending node
α	Right ascension
β	Declination of point for which potential is considered
δ	Declination
μ	k ² (degrees ² megameters ³ hours ⁻²)
au	Time in units of one-hundred hours
ω .	Argument of perigee
cos δ Δα	Residual in right ascension