Теория вероятностей и математическая статистика Лектор А.А. Лобузов

Семестр 6

Лекция 11

Проверка статистических гипотез о равенстве математических ожиданий

Рассматриваются нормально распределенные случайные величины ξ_1 и ξ_2 : $\xi_i \sim N(a_i, \sigma_i^2)$, $\mathbf{M} \boldsymbol{\xi}_i = a_i$, $\mathbf{D} \boldsymbol{\xi}_i = \sigma_i^2$. По случайным выборкам $\mathbf{X} = (X_1^-, X_2^-, ..., X_N^-)$ и $\mathbf{Y} = (Y_1^-, Y_2^-, ..., Y_M^-)$ из распределений с.в. $\boldsymbol{\xi}_1^-$ и $\boldsymbol{\xi}_2^-$ соответственно нужно проверить гипотезу $\mathbf{H}_0^- = \{\mathbf{M} \boldsymbol{\xi}_1 = \mathbf{M} \boldsymbol{\xi}_2^-\}$ при конкурирующих гипотезах $\mathbf{H}_1^- = \{\mathbf{M} \boldsymbol{\xi}_1 \neq \mathbf{M} \boldsymbol{\xi}_2^-\}$, $\mathbf{H}_1^+ = \{\mathbf{M} \boldsymbol{\xi}_1 > \mathbf{M} \boldsymbol{\xi}_2^-\}$, $\mathbf{H}_1^- = \{\mathbf{M} \boldsymbol{\xi}_1 < \mathbf{M} \boldsymbol{\xi}_2^-\}$.

Рассмотрим проверку при разных предположениях.

І. Если дисперсии известны и равны $\sigma_1^2 = \sigma_2^2 = \sigma^2$ рассматривается статистика

$$T_{N,M}(\mathbf{X}, \mathbf{Y}) = \frac{\overline{\mathbf{X}} - \overline{\mathbf{Y}}}{\sigma \sqrt{N^{-1} + M^{-1}}}$$

При указанных предположениях выборочные средние

$$\overline{\mathbf{X}} = \frac{1}{N} \sum_{i=1}^{N} X_i$$
 и $\overline{\mathbf{Y}} = \frac{1}{M} \sum_{i=1}^{M} Y_i$ имеют нормальные распределения $N(a_1, \frac{\sigma^2}{N})$ и

$$N(a_2, \frac{\sigma^2}{M})$$
 соответственно, так как $\mathbf{D}\overline{\mathbf{X}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{D} X_i = \frac{1}{N^2} N \sigma^2 = \frac{\sigma^2}{N}$.

Статистика $T_{N,M}(\mathbf{X},\mathbf{Y})$, являясь линейной комбинацией нормально распределенных случайных величин, тоже будет иметь нормальное

распределение, и при выполнении гипотезы $\mathbf{H}_0 = \{a_1 = a_2\}$ имеем $T_{N,M}(\mathbf{X},\mathbf{Y}) \sim N(0,1).$

Поэтому получаем следующую схему проверки гипотезы \mathbf{H}_0 при альтернативной гипотезе \mathbf{H}_1 по выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$, полученных при наблюдениях случайных величин ξ_1 и ξ_2 соответственно, при уровне значимости α :

- 1. По числовым выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$ находим выборочные средние $\overline{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N x_i$ и $\overline{\mathbf{y}} = \frac{1}{M} \sum_{i=1}^M y_i$.
 - 2. Вычисляем значение статистики

$$T_{N,M} = \frac{\overline{\mathbf{x}} - \overline{\mathbf{y}}}{\sigma \sqrt{\frac{1}{N} + \frac{1}{M}}} .$$

3. По заданному значению уровня значимости α берем $u_{1-\frac{\alpha}{2}}$ квантиль уровня $(1-\frac{\alpha}{2})$ стандартного нормального распределения N(0,1) и делаем вывод о справедливости гипотезы: если $|T_{N,M}| \leq u_{1-\frac{\alpha}{2}}$, то при уровне значимости α принимается гипотеза \mathbf{H}_0 ; если $|T_{N,M}| > u_{1-\frac{\alpha}{2}}$, то при уровне значимости α принимается альтернативная гипотеза \mathbf{H}_1 .

В схеме проверки гипотезы \mathbf{H}_0 при конкурирующих гипотезах $\mathbf{H}_1^+ = \{\mathbf{M}\xi_1 > \mathbf{M}\xi_2\}$ и $\mathbf{H}_1^- = \{\mathbf{M}\xi_1 < \mathbf{M}\xi_2\}$ отличается лишь пункт 3.

При проверке гипотезы \mathbf{H}_0 при конкурирующей гипотезе $\mathbf{H}_1^+ = \{\mathbf{M}\xi_1 > \mathbf{M}\xi_2\}$ по заданному значению уровня значимости α берем $u_{1-\alpha}$ квантиль уровня $(1-\alpha)$ стандартного нормального распределения N(0,1) и делаем вывод о справедливости гипотезы: если $T_{N,M} \leq u_{1-\alpha}$, то при уровне значимости α принимается гипотеза \mathbf{H}_0 ; если $T_{N,M} > u_{1-\alpha}$, то при уровне значимости α принимается гипотеза \mathbf{H}_1^+ .

При проверке гипотезы \mathbf{H}_0 при конкурирующей гипотезе $\mathbf{H}_1^- = \{\mathbf{M}\xi_1 {<} \mathbf{M}\xi_2\}$ по заданному значению уровня значимости α берем u_{α} квантиль уровня α стандартного нормального распределения N(0,1) и делаем вывод о справедливости гипотезы: если $T_{N,M} \geq u_{\alpha}$, то при уровне значимости α принимается гипотеза \mathbf{H}_0 ; если $T_{N,M} < u_{\alpha}$, то при уровне значимости α принимается гипотеза \mathbf{H}_1^- .

II. Если дисперсии известны, но не равны $\sigma_1^2 \neq \sigma_2^2$ рассматривается статистика $T_{N,M}(\mathbf{X},\mathbf{Y}) = \frac{\overline{\mathbf{X}} - \overline{\mathbf{Y}}}{\sqrt{\frac{\sigma_1^2}{N} + \frac{\sigma_2^2}{M}}}$, которая при выполнении гипотезы

 $\mathbf{H}_{_{0}}$ ={ $a_{_{1}}$ = $a_{_{2}}$ } тоже имеет стандартное нормальное распределение N(0,1) и схемы проверки гипотезы $\mathbf{H}_{_{0}}$ будут как в \mathbf{I} .

III. Если дисперсии неизвестны, но предполагается, что они равны, рассматривается статистика

$$T_{N,M}(\mathbf{X},\mathbf{Y}) = \frac{\overline{\mathbf{X}} - \overline{\mathbf{Y}}}{\sqrt{S_1^2(N-1) + S_2^2(M-1)}} \sqrt{\frac{MN(N+M-2)}{N+M}} \,,$$
 которая при

выполнении гипотезы $\mathbf{H}_0 = \{a_1 = a_2\}$ имеет распределение Стьюдента с числом степеней свободы N+M-2 .

Получаем следующую схему проверки гипотезы $\mathbf{H}_0 = \{a_1 = a_2\}$ при альтернативной гипотезе $\mathbf{H}_1 = \{a_1 \neq a_2\}$ по выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$, полученных при наблюдениях случайных величин ξ_1 и ξ_2 соответственно, при уровне значимости α :

1. По числовым выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$ находим

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} x_i , \ \overline{\mathbf{y}} = \frac{1}{M} \sum_{i=1}^{M} y_i , \ S_1^2(N-1) = \sum_{i=1}^{N} (x_i - \overline{\mathbf{x}})^2 , \ S_2^2(M-1) = \sum_{i=1}^{M} (y_i - \overline{\mathbf{y}})^2 .$$

2. Вычисляем значение статистики

$$T_{N,M} = \frac{\overline{\mathbf{x}} - \overline{\mathbf{y}}}{\sqrt{S_1^2(N-1) + S_2^2(M-1)}} \sqrt{\frac{MN(N+M-2)}{N+M}}$$
.

3. По заданному значению уровня значимости α берем $t_{1-\frac{\alpha}{2}}(N+M-2)$ квантиль уровня $(1-\frac{\alpha}{2})$ распределения Стьюдента с числом степеней свободы N+M-2 и делаем вывод о справедливости гипотезы: если $|T_{N,M}| \leq t_{1-\frac{\alpha}{2}}(N+M-2)$, то при уровне значимости α принимается гипотеза \mathbf{H}_0 ; если $|T_{N,M}| > t_{1-\frac{\alpha}{2}}(N+M-2)$, то при уровне значимости α принимается альтернативная гипотеза \mathbf{H}_1 .

В схеме проверки гипотезы $\mathbf{H}_0 = \{a_1 = a_2\}$ при конкурирующих гипотезах $\mathbf{H}_1^+ = \{a_1 > a_2\}$ и $\mathbf{H}_1^- = \{a_1 < a_2\}$ отличается лишь пункт 3.

При проверке гипотезы $\mathbf{H}_0 = \{a_1 = a_2\}$ при конкурирующей гипотезе $\mathbf{H}_1^+ = \{a_1 > a_2\}$ по заданному значению уровня значимости α берем $t_{1-\alpha}(N+M-2)$ квантиль уровня $(1-\alpha)$ распределения Стьюдента с числом степеней свободы N+M-2 и делаем вывод о справедливости гипотезы: если $T_{N,M} \leq t_{1-\alpha}(N+M-2)$, то при уровне значимости α принимается гипотеза \mathbf{H}_0 ; если $T_{N,M} > t_{1-\alpha}(N+M-2)$, то при уровне значимости α принимается гипотеза \mathbf{H}_1^+ .

При проверке гипотезы $\mathbf{H}_0 = \{a_1 = a_2\}$ при конкурирующей гипотезе $\mathbf{H}_1^- = \{a_1 < a_2\}$ по заданному значению уровня значимости α берем $t_\alpha(N+M-2)$ квантиль уровня α распределения Стьюдента с числом степеней свободы N+M-2 и делаем вывод о справедливости гипотезы: если $T_{N,M} \ge t_\alpha(N+M-2)$, то при уровне значимости α принимается гипотеза \mathbf{H}_0 ; если $T_{N,M} < t_\alpha(N+M-2)$, то при уровне значимости α принимается гипотеза \mathbf{H}_0 ; если $T_{N,M} < t_\alpha(N+M-2)$, то при уровне значимости α принимается гипотеза \mathbf{H}_0^- .