

SCIENCE

Department of Kinesiology

Feedback: Scheduling techniques KINESIOL 1E03 - Motor control and learning

Laura St. Germain Fall 2022 Week 8 Lecture 16

Review from last lecture

Adapted from Magill and Anderson 2017 3 / 29

Augmented feedback: Similarities and differences

Knowledge of results	Knowledge of performance
Similarities	
Verbal (or verbalizable)	Verbal (or verbalizable)
Augmented	Augmented
Provided after movement (usually)	Provided after movement (usually)
Differences	
Information about goal outcome	Information about movement pattern
Often redundant with intrinsic feedback	Usually distinct from intrinsic feedback
Usually provided as a score	Usually kinematic information
Often used in laboratory research	Often provided in everyday activities

Paradoxical properties of augmented feedback

Augmented feedback can be essential for motor learning

BUT...

 Augmented feedback may not be essential for motor learning Augmented feedback can enhance motor learning

BUT...

Augmented feedback can hinder motor learning

The roles of augmented feedback in motor learning

Informational role

- Guide the learner to an appropriate movement solution
- Facilitate achievement the action goal of the skill
- Emphasized in the Guidance hypothesis¹
 - Feedback is both a performance and learning variable

Motivational role

- **Encourage** the learner to continue striving toward a goal through continued practice
- Secondary or a by-product of informational role
- Emphasized in the "OPTIMAL" theory²
 - Practice context can put learners into a virtuous or a vicious cycle

Any questions?

Strength

Game Performance

Balance/Agility

Practice

Augmented feedback

Health

Learning objectives

- 1. Identify and describe scheduling techniques based on the **content** of the feedback.
- 2. Identify and describe scheduling techniques based on the **frequency** of the feedback.
- 3. Identify and describe scheduling techniques that encourage specific cognitive processes.

Take-home message:

(Augmented) feedback plays a vital role in motor learning, but the effectiveness of a scheduling technique will depend on the task, individual, and environment.

Things to keep in mind when providing feedback

- 1. What type of feedback should I provide?
- 2. How much feedback should I give?
- 3. What cognitive processes should be encouraged?

Things to keep in mind when providing feedback

- 1. What type of feedback should I provide?
- 2. How much feedback should I give?
- 3. What cognitive processes should be encouraged?

What type of feedback should I provide?

- Prescriptive versus descriptive feedback
- Relatively "good" versus relatively "poor" trials

Prescriptive versus descriptive feedback

Prescriptive feedback

Example: "You need to rotate your shoulders more to extend your follow through"

Function: Point out a **specific alteration** or **correction** for the action

Application: Most useful for **inexperienced** learners

Prescriptive versus descriptive feedback

Descriptive feedback

Example: "You released your wrists too soon"

Function: Direct the learner's attention to a **specific aspect** that needs **correction** by **stating the error** made

Application: Most useful for **experienced** learners

Relatively "good" versus relatively "poor" trials

Task: Underhand bean bag toss to a floor target while blindfolded

Groups:

- KR good feedback reflected their 3 best trials in a 6 trial block
- KR poor feedback reflected their 3 worst trials in a 6 trial block

But awareness of feedback type is more important than whether it reflects good or poor trials

Task: Targeted force production task

Groups:

- KR good+Unaware
- KR poor+Unaware
- KR good+Aware
- KR poor+Aware

Aware groups: Explicitly told their feedback reflected their 3 best or worst trials out of the 6

Things to keep in mind when providing feedback

- 1. What type of feedback should I provide?
- 2. How much feedback should I give?
- 3. What cognitive processes should be encouraged?

How much feedback should I give?

- Higher versus lower frequencies
 - Fading techniques
 - Summary techniques

Giving too much feedback can reduce retention

Task: Waveform matching task

Groups:

- 100% feedback or after every trial
- 50% feedback through a tapered or faded schedule (high amount early but low amount late)

Giving too much feedback can reduce retention

Task: Waveform matching task

Groups:

- 100% feedback or after every trial
- 50% feedback through a tapered or faded schedule (high amount early but low amount late)

But need to consider the who you are working with

Task: Reaching task with a 65% movement time goal of personal maximum speed

Population: Healthy older adults and Parkinson's disease patients

Feedback:

- 100% feedback or after every trial
- 20% feedback or

But need to consider the who you are working with

Task: Reaching task with a 65% movement time goal of personal maximum speed

Population: Healthy older adults and Parkinson's disease patients

Feedback:

- 100% feedback or after every trial
- 20% feedback or

Providing feedback with a summary display can prevent becoming dependent on feedback

Task: Waveform matching

Groups:

- Summary 1
- Summary 5
- Summary 10
- Summary 15

Protocol: Feedback is given for all trials in the summary length

Your feedback

Trial 1: 100 ms

Trial 2: -88 ms

Trial 3: -45 ms

Trial 4: -100 ms

Trial 5: -21 ms

Providing feedback with a summary display can prevent becoming dependent on feedback

Task: Waveform matching

Groups:

- Summary 1
- Summary 5
- Summary 10
- Summary 15

Protocol: Feedback is given for all trials in the summary length

Things to keep in mind when providing feedback

- 1. What type of feedback should I provide?
- 2. How much feedback should I give?
- 3. What cognitive processes should be encouraged?

What cognitive processes should be encouraged?

Error estimation

Error estimation during practice with different relative feedback frequencies

Task: Strike a padded with a exact amount of force (19.5 N)

Feedback: 100% or 20%

of trials

Error estimation: 100% or 20% of trials

This resulted in **four** experimental groups

Learning objectives

- 1. Identify and describe scheduling techniques based on the **content** of the feedback.
- 2. Identify and describe scheduling techniques based on the **frequency** of the feedback.
- 3. Identify and describe scheduling techniques that encourage specific cognitive processes.

Take-home message:

(Augmented) feedback plays a vital role in motor learning, but the effectiveness of a scheduling technique will depend on the task, individual, and environment.

What questions do you have?

- @_LauraStGermain
- @LauraStGermain
 - www.cartermaclab.org