

Stochastic processes in the real

Course > Week 6 > world

> Problem (3-4)

Problem (3-4)

Problem 3

0.0/1.0 point (graded)

In the video, we introduced a Stochastic dealer model in which two agents, 1 and 2 are trading stock with each other. We described this as a Stochastic system, in which the mid-price of each dealer p_i (t) (i=1,2) is evolving in time following a one-dimensional random walk. The moment when the absolute value of the price difference D (t) = p_1 (t) - p_2 (t) is larger than some given value $|D(t)| \ge L$ (which we called the spread L), we assumed a transaction takes place, in which dealer 1 buys or sells from dealer 2. The price of this transaction defines the market-price P, and it is given by the average price A (t) = $\frac{1}{2}$ (p_1 (t) + p_2 (t)).

We showed how this dealer model, which consists of two 1D random walks, could be recast as a 2D random walk (in $D\left(t\right)$ vs $A\left(t\right)$ space) with absorbing boundary conditions (to describe the transaction criterion that determines when the random walk ends and a transaction takes place). We performed three sample simulations for a single trade, using a spread L=0.01 and obtained the following random walks.

Taking into account the fact that the initial condition was $p_1\left(0\right)=p_2\left(0\right)=p_0=100.25$, who was the buyer in each of the three random walks shown here, and at what price did he or she buy?

(Walk 0) Dealer 1 buys at $P \simeq 0.01$, (Walk 1) Dealer 1 buys at $P \simeq 0.01$, and (Walk 2) Dealer 2 buys at $P \simeq 0.01$ (Walk 0) Dealer 1 buys at $P \simeq 0.003$, (Walk 1) Dealer 1 buys at $P \simeq 0.003$, and (Walk 2) Dealer 2 buys at $P \simeq 0.003$ (Walk 0) Dealer 1 buys at $P \simeq 100.247$, (Walk 1) Dealer 1 buys at $P \simeq 100.253$, and (Walk 2) Dealer 2 buys at $P \simeq 100.253$ (Walk 0) Dealer 1 buys at $P \simeq 100.253$, (Walk 1) Dealer 1 buys at $P \simeq 100.247$, and (Walk 2) Dealer 2 buys at $P \simeq 100.247$ (Walk 0) Dealer 2 buys at $P \simeq 0.01$, (Walk 1) Dealer 2 buys at $P \simeq 0.01$, and (Walk 2) Dealer 1 buys at $P \simeq 0.01$ (Walk 0) Dealer 2 buys at $P \simeq 0.003$, (Walk 1) Dealer 2 buys at $P \simeq 0.003$, and (Walk 2) Dealer 1 buys at $P \simeq 0.003$ (Walk 0) Dealer 2 buys at $P \simeq 100.247$, (Walk 1) Dealer 2 buys at $P \simeq 100.253$, and (Walk 2) Dealer 1 buys at $P \simeq 100.253$ (Walk 0) Dealer 2 buys at $P \simeq 100.253$, (Walk 1) Dealer 2 buys at $P \simeq 100.247$, and (Walk 2) Dealer 1 buys at $P \simeq 100.247$ You have used 0 of 2 attempts Submit

Problem 4

0.0/1.0 point (graded)

Using the simple stochastic dealer model, we obtained the time series data for the stock price P_n (where n is the tick time, which increases by one at each transaction), by simulating over many transactions (random walks). Using this time series data, we computed the logarithmic return G_{τ} and saw that its distribution followed an exponential decay (at least for $\tau=1$). To see how this distribution depends on τ , use the code example and data (model1.txt)

introduced in the video to calculate the probability distribution function of the absolute normalized price return $|G_{\tau}|$ for $\tau=1$ and $\tau=16$. Use a semi-log plot to visualize the distributions. As a guide to the eye, you should also plot the exponential and Gaussian distributions. Which of the following graphs is the closest to what you obtained (When generating the histogram, use n=20 bins for comparison)?

G22 G23 G24 Submit You have used 0 of 2 attempts	G21	
G24	G22	
	G23	
Submit You have used 0 of 2 attempts	G24	
	Submit	You have used 0 of 2 attempts

© All Rights Reserved