

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2023

CLASA a XI-a – soluții

Problema 1. Determinați funcțiile continue $f : \mathbb{R} \to \mathbb{R}$ pentru care f(1) = e și $f(x+y) = e^{3xy} \cdot f(x) \cdot f(y)$, pentru orice $x, y \in \mathbb{R}$.

Gazeta Matematică

Soluție. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție care satisface condițiile din enunț. Dacă există $a \in \mathbb{R}$ astfel încât $f(a) = 0$ atunci $f(x) = f(a + (x - a)) = e^{3a(x - a)}f(a)f(x - a) = 0$, $\forall x \in \mathbb{R}$. Contradicție.
Apoi $f(x) = e^{3x^2/4} f^2(x/2) \ge 0$, $\forall x \in \mathbb{R}$. Rezultă $f(x) > 0$, $\forall x \in \mathbb{R}$
de unde $\ln f(x+y) - \frac{3(x+y)^2}{2} = \left[\ln f(x) - \frac{3x^2}{2}\right] + \left[\ln f(y) - \frac{3y^2}{2}\right], \ \forall x, y \in \mathbb{R}2p$
Definim funcția $g: \mathbb{R} \to \mathbb{R}, \ g(x) = \ln f(x) - \frac{3x^2}{2}$. Din relația anterioară rezultă că funcția g
satisface ecuația funcțională Cauchy $g(x+y) = g(x) + g(y), \ \forall x, y \in \mathbb{R}$ 1p
Cum f este continuă, g este continuă. Rezultă $g(x) = g(1)x = \left(\ln f(1) - \frac{3}{2}\right)x = -\frac{x}{2}, \ \forall x \in \mathbb{R}$
$2\mathbf{p}$
Atunci $\ln f(x) - \frac{3x^2}{2} = -\frac{x}{2}$, $\forall x \in \mathbb{R}$, de unde obţinem $f(x) = e^{\frac{x(3x-1)}{2}}$, $\forall x \in \mathbb{R}$. Reciproc, aceasta funcţie satisface condiţiile din enunţ
aceasta funcție satisface condițiile din enunț
$Soluție \ alternativă.$ Fie $f:\mathbb{R} o \mathbb{R}$ o funcție care satisface condițiile din enunț. Atunci
$f(1) = f(1)f(0)$, de unde $f(0) = 1 \dots 1$
Pentru orice $n \in \mathbb{N}$, avem $f(n) = e^{\frac{n(3n-1)}{2}}$ (demonstraţie prin inducţie)
Deducem $f(n) = e^{-\frac{\pi}{2}}$, $\forall n \in \mathbb{Z}$
Pentru orice $x \in \mathbb{R}$ și orice $n \in \mathbb{N}$, avem $f(nx) = e^{\frac{3n(n-1)x^2}{2}} f^n(x)$ (demonstrație prin inducție
1 × C N C M C M
Gupa $n \in \mathbb{N}$, pentru $x \in \mathbb{R}$, arbitrar)
Cum $f(x) = e^{3x^2/4} f^2(x/2) \ge 0$, $\forall x \in \mathbb{R}$, obtinem

$$f(r) = f\left(\frac{m}{n}\right) = e^{\frac{1}{n}\left(\frac{m(3m-1)}{2} - \frac{3m^2(n-1)}{2n}\right)} = e^{\frac{r(3r-1)}{2}}$$

Fie $x \in \mathbb{R} \setminus \mathbb{Q}$. Există un şir $(r_n)_{n \in \mathbb{N}}$ de numere raționale cu $\lim_{n \to \infty} r_n = x$. Din continuitatea funcției f, rezultă $f(x) = \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} e^{\frac{r_n(3r_n - 1)}{2}} = e^{\frac{x(3x - 1)}{2}}$.

Prin urmare, dacă funcția f satisface ipoteza, atunci $f(x) = e^{\frac{x(3x-1)}{2}}, \ \forall x \in \mathbb{R}$. Reciproc, aceasta funcție satisface condițiile din enunț...... 1p

Problema 2. Fie matricele inversabile $A, B \in \mathcal{M}_n(\mathbb{R})$, astfel ca matricea $A + B^{-1}$ să fie inversabilă, cu $(A + B^{-1})^{-1} = A^{-1} + B$. Arătaţi că $\det(AB) = 1$. Rămâne adevărată concluzia în $\mathcal{M}_2(\mathbb{C})$?

Problema 3. Fie $a, b \in \mathbb{R}$, cu a < b. Presupunem că $f : [a, b] \to [a, b]$ este o funcție continuă, cu proprietatea că există $c, d \in (a, b)$ astfel încât f(c) = a și f(d) = b. Arătați că funcția $f \circ f : [a, b] \to [a, b]$ are cel puțin trei puncte fixe. $(x_0 \in D$ se numește punct fix al funcției $\varphi : D \to D$ dacă $\varphi(x_0) = x_0$.)

1) a < c < d < b.

2) a < d < c < b.

Problema 4. Fie matricele $A, B \in \mathcal{M}_3(\mathbb{C})$, cu proprietatea că $A^2 = B^2 = O_3$. Demonstrați că AB = BA implică $AB = O_3$. Arătați că implicația reciprocă este falsă.

Solutie. Presupunem AB = BA.

Atunci $(A+B)^2=2AB$. Rezultă $(A+B)^3=2AB(A+B)=2A^2B+2AB^2=O_3$**2p** Apoi, $(A+B)(A-B)=A^2-B^2=O_3$. Din inegalitatea lui Sylvester pentru ranguri, obținem rang $(A+B)+\operatorname{rang}(A-B)\leq 3$. Astfel, rang $(A+B)\leq 1$ sau rang $(A-B)\leq 1$**1p** Presupunem rang $(A+B)\leq 1$.

Dacă rang $(A+B)=1$, atunci există două matrice nenule, $C\in\mathcal{M}_{3,1}(\mathbb{C})$ și $D\in\mathcal{M}_{3,1}(\mathbb{C})$	$l_{1,3}(\mathbb{C})$, astfel
încât $A+B=CD$. Rezultă $(A+B)^2=(CD)(CD)=C(DC)D=\operatorname{Tr}(A+B)(A+D)$	B). Obţinem
$O_3 = (A+B)^3 = \operatorname{Tr}(A+B)(A+B)^2$. Dacă $\operatorname{Tr}(A+B) \neq 0$ atunci $(A+B)^2 = 0$	O_3 , iar dacă
$\operatorname{Tr}(A+B)=0$ atunci din $(A+B)^2=\operatorname{Tr}(A+B)(A+B)$ obţinem de asemenea $(A+B)^2=\operatorname{Tr}(A+B)$	$(A+B)^2 = O_3$
Rezultă $AB = O_3$	1 p
Cazul rang $(A-B) \leq 1$ se tratează analog, pe baza relațiilor $(A-B)^2 = -2AB$ și $(A-B)^2 = -2AB$	$(A - B)^3 = O_3$
Contraexemplu pentru implicația reciprocă. Fie $A=\left(\begin{array}{ccc} 0&0&0\\0&0&1\\0&0&0\end{array}\right)$ și $B=\left(\begin{array}{cccc} 0&0&0\\0&0&0\end{array}\right)$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Avem $A^2 = B^2 = AB = O_3$, dar $AB \neq BA$	0 0 0 /
A VEHI $A = D = AD = U2$. THE $AD \neq DA$	10