Introduction to the Theory of Sets

Mathematics 135 Spring 2017

Professor Thomas Scanlon Scribe: Sinho Chewi

Contents

1	January 18 1.1 Axiom of Extensionality	4
2	January 20 2.1 Signatures 2.2 Interpretations 2.3 Terms	6 6 7
3	January 23 3.1 Example Proof 3.2 Formulae	8 8 8
4	4.1 Bound & Free Variables	10 10 11 11
5	5.1 Empty Set Axiom	12 12 13
6	6.1 Union Axiom	14 14 15 15
7	7.1 Subset Axiom Example	16 16 16 17
8	8.1 Ordered Pairs	18 18 19
9	9.1 Relations	20 20 21
10	10.1 Functions 10.1.1 Function Restriction 10.1.2 Composition	23

CONTENTS 2

11	February 10 11.1 Axiom of Choice	
12	February 13 12.1 Power Set Cardinality	28 28 29
13	February 15 13.1 Equivalence Relations and Partitions	31 31
14	February 17 14.1 Review Lecture	34 34 34 34
15	February 24 15.1 Natural Numbers 15.1.1 Inductive Sets 15.1.2 Transitive Sets	36 36 36 38
16	February 27 16.1 Transitive Sets 16.2 Recursion	39 39 40
17	March 1 17.1 Recursion Theorem	42
18	March 3 18.1 Recursion Theorem	44 44 45
19	March 6 19.1 Characterization of Peano Systems	46 46 47
20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
21	March 10 21.1 Ordering of the Natural Numbers	51 51 52
22	March 13 22.1 Ordering on the Natural Numbers	53 53
23	March 15 23.1 Cardinality & the Axiom of Choice	55 55
24	March 17 24.1 Liouville Number	57 57 58

CONTENTS 3

25	March 20 25.1 Finite Sets	59 60
26	March 22 26.1 Cardinal Arithmetic	62
27	March 24 27.1 Larger Cardinals	65 66
28	April 3 28.1 Schröder-Bernstein Theorem	68
29	April 5 29.1 Review 29.1.1 Defining Cardinals 29.1.2 Peano Systems 29.1.3 Recursion 29.1.4 Cardinality	70 70 70 71 71 71
30	April 10 30.1 Zorn's Lemma	72 72 73
31	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74 74 75
32	April 14 32.1 Idempotent Cardinals	76
33	April 17 33.1 Well-Ordered Sets	78 78 79 79
34	April 19 34.1 Axiom of Replacement	80 80 80
35	April 21 35.1 Applications of Transfinite Recursion	82 82
36	April 24 36.1 The Class of Ordinals	85 85 87
37	April 26 37.1 Ordering on Ordinals	88 88
38	April 28 38.1 Proof of Zorn's Lemma	91 91 92

January 18

1.1 Axiom of Extensionality

Here are examples of sets.

Example 1.1. \mathbb{R} : the set of real numbers.

Example 1.2. $F = \{x : x \text{ is one of my favorite things}\}.$

We will require all of the elements of our sets to be sets. (Alternative: start with a collection U of basic things, "ur elements".)

A = B means $A \subseteq B$ and $B \subseteq A$, which means $\forall x \ [x \in A \implies x \in B]$ and $\forall z \ [z \in B \implies z \in A]$.

Remark: $A = B \implies \forall x \ [x \in A \iff x \in B]$ is a validity of first-order logic. The reverse implication is called extensionality and needs to be taken as an axiom.

Take $V = \{A, B\}$, with $A \notin^V A$, $B \notin^V B$, $A \notin^V B$, and $B \notin^V A$. Then, V entails $A \neq B$ and $\forall x [x \in A \iff x \in B]$. Here, extensionality does not hold.

Let $A = \{n : n > 2, \exists \text{ integers } x, y, z > 0, x^n + y^n = z^n\}$ and $B \neq \emptyset$. Let $C = \emptyset$ and $D = \emptyset$. Saying that A = B and C = D uses the axiom of extensionality.

Axiom of Extensionality: $A = B \iff \forall x \ [x \in A \iff x \in B].$

Collection: Given any "property" (a first-order formula $\varphi(x)$), $\Phi = \{x \mid \varphi \text{ is true of } x\}$, i.e.

 $x \in \Phi \iff \varphi \text{ is true of } x.$

Proposition 1.3. Given φ , there exists at most one set Φ such that $x \in \Phi \iff \varphi$ is true of x.

Proof. Suppose Ψ is a set and $x \in \Psi$ iff φ is true of x.

$$x \in \Psi \iff \varphi \text{ is true of } x \iff x \in \Phi$$

By extensionality, $\Psi = \Phi$.

If $\varphi := x \neq x$, then $\emptyset = \Phi = \{x \mid x \neq x\}$.

Let $R = \{x \mid x \notin x\}.$

Proposition 1.4. $R \in R \iff R \notin R$.

January 20

2.1 Signatures

Definition 2.1. A signature σ consists of sets C_{σ} (constant symbols), \mathcal{R}_{σ} (relation symbols), \mathcal{F}_{σ} (function symbols), and functions

arity:
$$\mathcal{F}_{\sigma} \to \mathbb{Z}_{+}$$
, arity: $\mathcal{R}_{\sigma} \to \mathbb{Z}_{+}$.

Example 2.2. The empty signature has $C_{\sigma} = \mathcal{R}_{\sigma} = \mathcal{F}_{\sigma} = \emptyset$.

Example 2.3. The signature for set theory has $C_{\sigma} = \emptyset = \mathcal{F}_{\sigma}$, $\mathcal{R}_{\sigma} = \{\in\}$, arity $(\in) = 2$.

Example 2.4. The signature of ordered rings is $C_{\sigma} = \{0, 1\}$, $\mathcal{F}_{\sigma} = \{+, \cdot, -\}$, $\mathcal{R}_{\sigma} = \{\leq\}$. We have

$$arity(+) = 2,$$

$$arity(\cdot) = 2,$$

$$arity(-) = 1,$$

$$arity(<) = 2.$$

Example 2.5. $C_{\sigma} = \{\text{Sven}\}, \ \mathcal{F}_{\sigma} = \{\text{Matthew}\}, \ \mathcal{R}_{\sigma} = \{\text{Spencer}\}, \ \text{arity}(\text{Matthew}) = 50000000000, \ \text{arity}(\text{Spencer}) = 1.$

2.2 Interpretations

Definition 2.6. Given a signature σ , a σ -structure $\mathfrak A$ consists of:

- a set A, the universe of \mathfrak{A} (we require $A \neq \emptyset$),
- for each $c \in \mathcal{C}_{\sigma}$, $c^{\mathfrak{A}} \in A$,
- for each $f \in \mathcal{F}_{\sigma}$, arity(f) = n, $f^{\mathfrak{A}} : A^n \to A$,
- for each $R \in \mathcal{R}_{\sigma}$, arity(R) = n, $R^{\mathfrak{A}} \subseteq A^n$.

By way of notation: if $\operatorname{arity}(R)=2$, we often write $a\ R\ b$ for $(a,b)\in R^a$; for a binary operation, i.e. $\operatorname{arity}(f)=2,\ a\ f\ b:=f^a(a,b).$

Notation: $(\mathbb{R}, +^{\mathbb{R}}, \cdot^{\mathbb{R}}, -^{\mathbb{R}}, \leq^{\mathbb{R}})$ is a σ -structure for the signature of ordered rings. $\mathbb{T} = (\mathbb{R}, \wedge, +, x \mapsto 0, \leq)$, where \wedge is min:

$$\begin{split} +^{\mathbb{T}}(x,y) &:= \min\{x,y\}, \\ \cdot^{\mathbb{T}}(x,y) &:= x +^{\mathbb{R}} y. \end{split}$$

2.3 Terms

Definition 2.7. Given a signature σ and a set \mathcal{V} of variables, we define the set of σ -terms $\mathcal{T}(\sigma, \mathcal{V})$ with variables in \mathcal{V} by recursion.

- If $c \in \mathcal{C}_{\sigma}$, then c is a term.
- If $x \in \mathcal{V}$, then x is a term.
- If $f \in \mathcal{F}_{\sigma}$, arity $(f) = n, t_1, \dots, t_n \in \mathcal{T}(\sigma, \mathcal{V})$, then $f(t_1, \dots, t_n) \in \mathcal{V}$.

If \mathfrak{A} is a σ -structure, $t \in \mathcal{T}(\sigma, \mathcal{V})$, and $\iota : \mathcal{V} \to A$ is an assignment of the variables, then $t^{(\mathfrak{A},\iota)} \in A$.

- If $t = c \in \mathcal{C}_{\sigma}$, $t^{(\mathfrak{A},\iota)} = c^{(\mathfrak{A},\iota)} := c^{\mathfrak{A}}$.
- If $t = x \in \mathcal{V}$, $t^{(\mathfrak{A},\iota)} := \iota(x)$.
- If $t = f(t_1, \dots, t_n), t^{(\mathfrak{A}, \iota)} := f^{\mathfrak{A}}(t_1^{(\mathfrak{A}, \iota)}, \dots, t_n^{(\mathfrak{A}, \iota)}).$

January 23

3.1 Example Proof

Problem: $B \subseteq C \to \mathcal{P}(B) \subseteq \mathcal{P}(C)$.

Proof. By definition of \subseteq , we must show that if $x \in \mathcal{P}(B)$, then $x \in \mathcal{P}(C)$.

If $x \in \mathcal{P}(B)$, then by the definition of $\mathcal{P}(B)$, $x \subseteq B$, i.e.

$$(\forall y) \ y \in x \to y \in B. \tag{3.1}$$

By hypothesis, $B \subseteq C$, i.e.

$$(\forall y) \ y \in B \to y \in C. \tag{3.2}$$

Combining (3.1) and (3.2),

$$(\forall y) \ y \in x \to y \in C, \tag{3.3}$$

and by definition, $x \subseteq C$. By the definition of $\mathcal{P}(C)$, $x \in \mathcal{P}(C)$. Therefore, $\mathcal{P}(B) \subseteq \mathcal{P}(C)$.

3.2 Formulae

Definition 3.1. Given a signature σ and a set of variables \mathcal{V} (usually: $\mathcal{V} := \{x_n : n \in \mathbb{N}\}$; in this case, we drop \mathcal{V} from the notation), we define the set of σ -formulae with variables from \mathcal{V} , $\mathcal{L}(\sigma, \mathcal{V})$, or just $\mathcal{L}(\sigma)$ if \mathcal{V} is understood, also called the (first-order) language associated to σ and \mathcal{V} , by recursion:

- Given terms $s, t \in \mathcal{T}(\sigma, \mathcal{V})$, the expression (s = t) is an atomic formula.
- If $R \in \mathcal{R}_{\sigma}$ and arity(R) = n, and $t_1, \ldots, t_n \in \mathcal{T}(\sigma, \mathcal{V})$, then the expression $R(t_1, \ldots, t_n) \in \mathcal{L}(\sigma, \mathcal{V})$ (atomic).
- If $\varphi, \psi \in \mathcal{L}(\sigma, \mathcal{V})$, then so are:

$$\begin{array}{ccc}
\neg \varphi & \text{"not } \varphi" \\
(\varphi \& \psi) & \text{"}\varphi \text{ and } \psi" \text{ (sometimes } (\varphi \land \psi)) \\
(\varphi \lor \psi) & \text{"}\varphi \text{ or } \psi" \\
(\varphi \to \psi) \text{ (or } \Longrightarrow) & \text{"}\varphi \text{ implies } \psi"
\end{array}$$

• If $\varphi \in \mathcal{L}(\sigma, \mathcal{V})$ and $x \in \mathcal{V}$, then

$$(\exists x) \ \varphi \in \mathcal{L}(\sigma, \mathcal{V}),$$

$$(\forall x) \ \varphi \in \mathcal{L}(\sigma, \mathcal{V}).$$

Example 3.2. In the signature of ordered rings, $C_{\sigma} = \{0,1\}$, $\mathcal{F}_{\sigma} = \{+,\cdot,-\}$, $\mathcal{R}_{\sigma} = \{\leq\}$, with arity(+) = arity(·) = 2, arity(-) = 1, arity(\leq) = 2, $\mathcal{V} = \{x,y,z\}$, +(x,0) = ·(y,+(0,z)) is an atomic formula.

 $\leq (+(x,z),y)$ is a formula. Typically we write $(x+z) \leq y$.

Interlude on expansions and reducts: If $\sigma \subseteq \tau$ are signatures (example: $\mathcal{C}_{\sigma} = \{0\}$, $\mathcal{F}_{\sigma} = \{+, -\}$, $\mathcal{R}_{\sigma} = \varnothing$, arity(+) = 2, arity(-) = 1, $\mathcal{C}_{\tau} = \{0, 1\}$, $\mathcal{F}_{\tau} = \{+, \cdot, -\}$, $\mathcal{R}_{\tau} = \varnothing$, arity(·) = 2, and \mathfrak{A} is a τ -structure, then $\mathfrak{A} \upharpoonright \sigma$ (" \mathfrak{A} restricted to σ ") is the σ -structure with the same universe and for $S \in \mathcal{C}_{\sigma} \cup \mathcal{F}_{\sigma} \cup \mathcal{R}_{\sigma}$, $S^{(\mathfrak{A} \upharpoonright \sigma)} := S^{\mathfrak{A}}$. $\mathfrak{A} \upharpoonright \sigma$ is also called the reduct of \mathfrak{A} to σ , or simply "a reduct". We call \mathfrak{A} an expansion of $\mathfrak{A} \upharpoonright \sigma$ to τ .

If σ is any signature and \mathfrak{A} is a σ -structure of $B \subseteq A$, then σ_B is the signature with

$$C_{\sigma_B} := C_{\sigma} \cup B,$$

$$F_{\sigma_B} := F_{\sigma},$$

$$R_{\sigma_B} := R_{\sigma}.$$

 \mathfrak{A}_B is the σ_B expansion of \mathfrak{A} defined by $b^{\mathfrak{A}_B} := b$. The universe of \mathfrak{A} is A (sometimes written $|\mathfrak{A}|$).

Example 3.3. Take σ : $C_{\sigma} = \mathcal{R}_{\sigma} = \mathcal{F}_{\sigma} = \emptyset$. \mathbb{Q} is an example of a σ -structure. Take $B := \{2/3\}$. Then $\mathbb{Q}_{\{2/3\}}$ is the underlying universe \mathbb{Q} with $(2/3)^{\mathbb{Q}_{\{2,3\}}} = 2/3$.

Example 3.4. Let $\mathcal{V} = \{x, y\}$, $\mathcal{F}_{\sigma} = \{+\}$, $\mathcal{R}_{\sigma} = \{\leq\}$, $\mathcal{C}_{\sigma} = \{0\}$, arity $(+) = \text{arity}(\leq) = 2$. Consider the formula (x = y). The truth value depends on whether the variables are bound or not.

Consider

$$\varphi : (\exists x) \ (+(x,y) \le y) \land (\forall y) \ \neg (x \le y).$$

Both variables are both free and bound.

January 25

4.1 Bound & Free Variables

Let $\mathcal{V} = \{x, y\}$, and consider

$$((\exists x)(x = y) \& ((y = y) \lor \neg (x = y))).$$

The first x is bound and the second x is free. The first y is free, and the other y variables are bound.

- In an atomic formula, each instance of a variable is **free**.
- In a boolean combination, "each instance of a variable which was free (respectively, bound) in a constituent formula is free (respectively, bound)", i.e.: if $\varphi \in \mathcal{L}(\sigma, \mathcal{V})$,

$$\varphi = s_0 s_1 s_2 \cdots s_n,$$

and $\psi = \neg \varphi$,

$$\psi = \neg s_0 s_1 \cdots s_n,$$

and $s_j \in \mathcal{V}$, and $x = s_j \in \mathcal{V}$ was free in φ , then the (j+1)st position of $\psi = \neg \varphi$ is x and is a free instance of x. If $\theta \in \mathcal{L}(\sigma, \mathcal{V})$ and $\psi = (\varphi \vee \theta)$, write $\theta = r_0 r_1 \cdots r_m$,

$$\psi = (s_0 \cdots s_n \vee r_0 \cdots r_m),$$

if $r_j = y \in \mathcal{V}$ is bound in θ , then the (n+2+j)th symbol in ψ is y and is bound.

• If $\varphi \in \mathcal{L}(\sigma, \mathcal{V})$ and $x \in \mathcal{V}$, and $\psi = (\exists x) \varphi$, then every instance of x is bound in ψ , and if $y \in \mathcal{V}$ and $y \neq x$, then each instance of y in ψ is free (respectively bound) if the corresponding instance of y in φ is free (respectively bound). Likewise for $(\forall x) \varphi$.

In (x = y), both variables are free.

In (y = y), both instances of y are free.

In $\neg(x=y)$, both variables are free.

In $(\exists x)(x=y)$, x is bound and y is free.

In $(\forall y)((y=y) \lor \neg(x \neq y))$, the x is free and each y is bound.

In the whole statement

$$((\exists x)(x = y) \& ((y = y) \lor \neg (x = y))),$$

each variable is free or bound as described above.

4.2 Sentences

Definition 4.1. $\varphi \in \mathcal{L}(\sigma, \mathcal{V})$ is a **sentence** if φ has no free variables. Let σ be a signature and \mathfrak{A} a σ -structure.

- For an atomic sentence φ , (s=t), where s and t are termathfrak, we say $\mathfrak{A} \models \varphi$ (" φ is true in \mathfrak{A} " or " \mathfrak{A} satisfies φ " or " \mathfrak{A} models φ ") iff $s^a = t^a$. If $\varphi = R(t_1, \ldots, t_n)$, $R \in \mathcal{R}_{\sigma}$, $t_1, \ldots, t_n \in \mathcal{T}(\sigma, \varnothing)$, arity (R) = n, $\mathfrak{A} \models R(t_1, \ldots, t_n)$ iff $(t_1^a, \ldots, t_n^a) \in \mathcal{R}^{\mathfrak{A}} \subseteq A^n$. If $\varphi = \neg \psi$, then $\mathfrak{A} \models \neg \psi$ iff $\mathfrak{A} \models \psi$ is false. $\mathfrak{A} \models (\varphi \lor \psi)$ iff $\mathfrak{A} \models \varphi$ or $\mathfrak{A} \models \psi$. $\mathfrak{A} \models (\varphi \to \psi)$ iff if $\mathfrak{A} \models \varphi$, then $\mathfrak{A} \models \psi$, i.e. either $\mathfrak{A} \not\models \varphi$ or $\mathfrak{A} \models \psi$.
- If $x \in \mathcal{V}$, $\varphi \in \mathcal{L}(\sigma, \mathcal{V})$, $(\exists x) \varphi$ is a sentence, $\mathfrak{A} \models (\exists x) \varphi$ iff there is some assignment of an element a to x making φ true, iff there is some $a \in A$ such that $\mathfrak{A}_{\{a\}} \models \tilde{\varphi}$, where $\tilde{\varphi}$ is the formula in $\mathcal{L}(\sigma_{\{a\}}, \mathcal{V})$ obtained by replacing each *free* instance of x by a.

4.3 Set Theory

The signature of set theory has

$$\mathcal{C}_{\sigma} = \emptyset,$$
 $\mathcal{F}_{\sigma} = \emptyset,$
 $\mathcal{R}_{\sigma} = \{\in\},$
 $\operatorname{arity}(\in) = 2.$

Extensionality Axiom:

$$\varphi = (\forall A)(\forall B)((A = B) \leftrightarrow (\forall x)(x \in A \leftrightarrow x \in B))$$

Last week: we found \mathfrak{A} , a σ -structure, such that $\mathfrak{A} \not\models \varphi$, e.g. $A = \{1,2\}, \in^{\mathfrak{A}} = \emptyset, \mathfrak{A} \models \neg \varphi$. $\mathfrak{A} \models \varphi$ iff for every choice of $a, b \in A$,

$$\mathfrak{A} \models a = b \leftrightarrow \forall x \ (x \in a \leftrightarrow x \in B).$$

Consider a = 1 and b = 2. $\mathfrak{A} \not\models a = b$. Hence,

$$\mathfrak{A} \models (\forall x)(x \in a \leftrightarrow x \in b).$$

January 27

5.1 Empty Set Axiom

ZF (Zermelo-Frenkel Set Theory) is a certain set of sentences in $\mathcal{L}(\in)$.

The theory we will develop is often called ZFC, which is Zermelo-Frenkel set theory with choice.

So far, we have the Extensionality Axiom:

$$(\forall A)(\forall B)[A = B \leftrightarrow (\forall x)(x \in A \leftrightarrow x \in B)]$$

The Empty Set Axiom says

$$(\exists A)(\forall x) \neg (x \in A).$$

We would like to define $x \notin y$ to be $\neg(x \in y)$. To do this formally, the signature of set theory, $\sigma_{\text{Set Theory}}$ has

$$\begin{split} & \mathcal{C}_{\sigma_{\text{Set Theory}}} = \varnothing, \\ & \mathcal{F}_{\sigma_{\text{Set Theory}}} = \varnothing, \\ & \mathcal{R}_{\sigma_{\text{Set Theory}}} = \{ \in \}, \qquad \text{with arity} = 2. \end{split}$$

We extend to σ' , with

$$\mathcal{C}_{\sigma'} = \varnothing,$$
 $\mathcal{F}_{\sigma'} = \varnothing,$
 $\mathcal{R}_{\sigma'} = \{ \in, \notin \}, \quad \operatorname{arity}(\in) = 2 = \operatorname{arity}(\notin).$

Then, $\sigma' \supseteq \sigma_{\text{Set Theory}}$. If $\mathcal{V} = (V, \in^V)$ is a $\sigma_{\text{Set Theory}}$ -structure, we can expand \mathcal{V} to a σ' -structure \mathcal{V}' in exactly one way so that

$$\mathcal{V}' \models (\forall x)(\forall y)(x \notin y \leftrightarrow \neg (x \in y)).$$

 \mathcal{V}' is a definitional expansion of \mathcal{V} .

 Δ will contain all of the definitions.

$$(\forall x)(\forall y)(x \notin y \leftrightarrow \neg(x \in y)) \in \Delta$$

Then, the Empty Set Axiom can be written as

$$(\exists A)(\forall x) \ x \notin A.$$

Expand to $\sigma'' \supseteq \sigma'$, with

$$C_{\sigma''} = \{\emptyset\},$$

$$F_{\sigma''} = \emptyset,$$

$$R_{\sigma''} = \{\in, \notin\}.$$

We include in Δ

$$(\forall x)[x = \varnothing \leftrightarrow (\forall y)(y \notin x)].$$

Proposition 5.1. If $(V, \in^V) \models ZF$, then there is a unique extension V' to $\mathcal{L}(\sigma'')$ such that $V' \models \Delta$.

Proof. We define

$$\begin{split} \not \in^{\mathcal{V}'} &:= V^2 \setminus \in^{\mathcal{V}} \\ &= \{(a,b) : a,b \in V\} \setminus \in^{\mathcal{V}} \\ &= \{(a,b) : a,b \in V \& (a,b) \notin \in^{\mathcal{V}}\}. \end{split}$$

 $\mathcal{V} \models \mathrm{ZF}$, so $\mathcal{V} \models (\exists A)(\forall x) \ x \notin A$. Let $a \in V$ such that $(\mathcal{V}, a) \models \forall x \ x \notin a$. Set $\varnothing^{\mathcal{V}'} := a$. Then $\mathcal{V}' \models \mathrm{ZF} \cup \Delta$.

Why is this the only such expansion? Suppose $\mathcal{V}'' = (V, \in^{\mathcal{V}}, \notin'', \varnothing'')$ and $\mathcal{V}'' \models \mathrm{ZF} \cup \Delta$. Since $\mathcal{V}'' \models \Delta$, $(c,d) \in \mathcal{V}''$ has

$$(c,d) \in \not\in'' \iff (c,d) \not\in \in^{\mathcal{V}}$$

 $\iff (c,d) \in \not\in^{\mathcal{V}'}.$

 $\mathcal{V}'' \models (\forall x) \ x \notin \varnothing$, i.e. for every $c \in V$, $(\mathcal{V}'', c) \models c \notin \varnothing$, i.e. for every $c \in V$, $(c, \varnothing^{\mathcal{V}''}) \in \notin^{\mathcal{V}''}$, i.e. for every $c \in V$, $(c, \varnothing^{\mathcal{V}''}) \in (\neg x) = ($

5.2 Pair Set Axiom

Pair Set Axiom:

$$(\forall x)(\forall y)(\exists z)(\forall w)[w \in z \leftrightarrow (w = x \lor w = y)]$$

Extensionality and the Pair Set Axiom imply that z is unique.

We expand the signature further:

$$\Delta: (\forall x)(\forall y)(\forall z)[z = \{x, y\} \leftrightarrow \forall w \ (w \in z \leftrightarrow (w = x \lor w = y))]$$

Also,

$$(\forall x)(\forall z)(z = \{x\} \leftrightarrow z = \{x, x\}).$$

We can now construct \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$, $\{\{\{\emptyset\}\}\}\}$,

January 30

6.1 Union Axiom

Axioms we have so far:

- Extensionality
- Empty Set
- Pair Set

The next axiom (temporary) is the **Union Axiom**: " $\forall x \ \forall y \ x \cup y$ is a set". Formally,

$$(\forall x)(\forall y)(\exists z)(\forall t)[t \in z \leftrightarrow (t \in x \lor t \in y)].$$

We include in our definitions:

$$\Delta \ni \forall x \ \forall y \ \forall z \ [z = x \cup y \leftrightarrow (\forall t)(t \in z \leftrightarrow (t \in x \lor t \in y))]$$

Proposition 6.1. For each $n \in \mathbb{Z}_+$,

$$\forall x_1 \cdots \forall x_n \exists z \ \forall t \ [t \in z \leftrightarrow (t = x_1 \lor t = x_2 \lor \cdots \lor t = x_n)].$$

We define

$$z = \{x_1, \dots, x_n\} \leftrightarrow (\forall t)[t \in z \leftrightarrow (t = x_1 \lor \dots \lor t = x_n)].$$

Proof. By induction on n.

n=1: For all x_i , by the Pair Set Axiom, $\exists ! z \ \forall t \ [t \in z \leftrightarrow t=x]$, i.e. $z=\{x_1\}$.

n+1: By the IH, $\forall x_1 \ \forall x_2 \ \cdots \ \forall x_n \ \exists z \ \forall t \ [t \in z \leftrightarrow \bigvee_{i=1}^n t = x_i]$. $z = \{x_1, \ldots, x_n\}$ is a set. By case 1, $\{x_{n+1}\}$ is set. By the Union Axiom, $w := \{x_1, \ldots, x_n\} \cup \{x_{n+1}\}$ is a set.

$$(\forall t) \ t \in w \leftrightarrow t \in \{x_1, \dots, x_n\} \lor t \in \{x_{n+1}\}$$

$$\leftrightarrow \bigvee_{i=1}^n t = x_i \lor t = x_{n+1}$$

$$\leftrightarrow \bigvee_{i=1}^{n+1} t = x_i$$

6.2 Power Set Axiom

We introduce the subset symbol:

$$\forall x \ \forall y \ (x \subseteq y \leftrightarrow (\forall t)(t \in x \to t \in y)) \in \Delta$$

Power Set Axiom: $(\forall x)(\exists y)(\forall t)[t \in y \leftrightarrow t \subseteq x]$.

$$\forall x \ \forall y \ [y = \mathcal{P}(x) \leftrightarrow (\forall t)[t \in y \leftrightarrow t \subseteq x]] \in \Delta$$

Remark: The Power Set Axiom does not follow from the other axioms.

6.3 Subset Axiom

Given $\varphi \in \mathcal{L}(\in)$ with free variables amongst t, x_1, \ldots, x_n not containing A or B, the **Subset Axiom** for φ says:

$$(\forall A)(\forall x_1)\cdots(\forall x_n)(\exists B)(\forall t)[t \in B \leftrightarrow \varphi \& t \in A]$$

We write the set as $B = \{t \in A : \varphi(t, x_1, \dots, x_n)\}.$

February 1

7.1 Subset Axiom Example

Subset Axiom (Scheme), also called (Restricted) Comprehension: For each φ with free variables amongst t, x_1, \ldots, x_n (such that the variables A and B do not appear) we have the axiom

$$(\forall A)(\forall x_1)\cdots(\forall x_n)(\exists B)(\forall t)[t\in B\leftrightarrow (t\in A\ \&\ \varphi)].$$

We write:

$$B = \{t \in A : \varphi(t, x_1, \dots, t_n)\} \leftrightarrow (\forall t)(t \in B \leftrightarrow (t \in A \& \varphi(t, x_1, \dots, x_n))) \in \Delta.$$

Proposition 7.1. If X and Y are sets, then $X \cap Y$ is also a set.

Proof. Consider the formula

$$\theta: (t \in x_3 \leftrightarrow (t \in x_1 \& t \in x_2)).$$

 $(\forall t) \ \theta(X/x_1, Y/x_2, Z/x_3)$ is true iff $Z = X \cap Y$. Take

$$\varphi := t \in x_1.$$

Apply the Subset Axiom for φ for A = X, $x_1 = Y$. We have

$$(\forall A)(\forall x_1)(\exists B)(\forall t)[t \in B \leftrightarrow (t \in A \& \varphi)],$$

which is

$$(\forall A)(\forall x_1)(\exists B)(\forall t)[t \in B \leftrightarrow (t \in A \& t \in x_1)].$$

Substitute X for A and Y for x_1 , so

$$(\exists B)(\forall t)[t \in B \leftrightarrow (t \in X \& t \in Y)],$$

i.e. $X \cap Y$ exists.

7.2 Union Axiom

Given sets X_0, X_1, X_2, \ldots , we would like to form the union

$$\bigcup_{i=0}^{\infty} X_i = \{t : \exists i \in \mathbb{N} \ t \in X_i\}.$$

There are many problems with this approach. Instead, we will write

$$(\forall y)(\forall x) \ y = \bigcup x \leftrightarrow (\forall t)[t \in y \leftrightarrow (\exists z)[t \in z \& z \in x]]$$

Then, if $x = \{X_i : i \in \mathbb{N}\}$, we have " $\bigcup x = \bigcup_{i=0}^{\infty} X_i$ ".

Union Axiom:

$$(\forall x)(\exists y)(\forall t)[t \in y \leftrightarrow (\exists z)[z \in x \& t \in z]].$$

Proposition 7.2. The provisional Union Axiom follows from the Pair Set Axiom and the Union Axiom.

Proof. Given sets a, b, by the Pair Set Axiom, $x := \{a, b\}$ is a set. By the Union Axiom,

$$y := \bigcup x = \bigcup \{a, b\}$$

is a set. For any t,

$$\begin{split} t \in y &\leftrightarrow t \in \bigcup x \\ &\leftrightarrow t \in \bigcup \{a,b\} \\ &\leftrightarrow (\exists z)[t \in z \ \& \ z \in \{a,b\}] \\ &\leftrightarrow (\exists z)[t \in z \ \& \ (z=a \lor z=b)] \\ &\leftrightarrow (\exists z)[(t \in z \ \& \ z=a) \lor (t=z \ \& \ z=b)] \\ &\leftrightarrow (t \in a \lor t \in b) \\ &\leftrightarrow t \in a \cup b. \end{split}$$

7.3 Ordered Pairs

Write \mathbb{V} for the class of all sets. $\mathbb{V} = \{t : t = t\}$ is not a set. Apply the Subset Axiom to $A = \mathbb{V}$, $\varphi : \neg(t \in t)$, and $R = \{t \in \mathbb{V} : \neg(t \in t)\}$ would be a set, and $R = \{t : t \notin t\}$. Then $R \in R \leftrightarrow R \notin R$, which is a contradiction.

We want to define an operation $\langle \cdot, \cdot \rangle : \mathbb{V}^2 \to \mathbb{V}$ which maps $a, b \mapsto \langle a, b \rangle$. Then, we want $\pi_1 : \mathbb{V} \to \mathbb{V}$ with $\pi_1(\langle a, b \rangle) = a$ and $\pi_2 : \mathbb{V} \to \mathbb{V}$ with $\pi_2(\langle a, b \rangle) = b$.

We will take $\langle a, b \rangle = \{\{a\}, \{a, b\}\}.$

February 3

8.1 Ordered Pairs

Definition 8.1. For sets x, y, the **ordered pair** $\langle x,y\rangle := \{\{x\}, \{x,y\}\}$. That is,

$$\forall x \ \forall y \ \forall z \ [z = \langle x, y \rangle \leftrightarrow z = \{\{x\}, \{x, y\}\}\}] \in \Delta.$$

Proposition 8.2. For sets a, b, c, d,

$$\langle a, b \rangle = \langle c, d \rangle \iff a = c \& b = d.$$

Proof. \iff : Obvious.

 \implies : Suppose $\langle a,b\rangle=\langle c,d\rangle$, i.e. $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$. Since $\{a\}\in\langle a,b\rangle=\langle c,d\rangle$, then $\{a\}\in\langle c,d\rangle=\{\{c\},\{c,d\}\}\}$, so $\{a\}=\{c\}$ (a=c) or $\{a\}=\{c,d\}$. In the second case, a is the unique member of $\{a\}$, and $c\in\{c,d\}=\{a\}$ which implies that c=a. Either way, a=c.

By the first case, $\{c,b\} = \{a,b\} \in \langle a,b\rangle = \langle c,d\rangle = \{\{c\},\{c,d\}\}\}$. Therefore, we have $\{c,b\} = \{c\}$ or $\{c,b\} = \{c,d\}$. In the first case, b=c. $\{b,d\} = \{c,d\} \in \langle a,b\rangle = \{\{a\},\{a,b\}\}\}$, so $\{b,d\} = \{a\}$ or $\{b,d\} = \{a,b\}$. If $\{b,d\} = \{a\}$, then c=a=b=d. If $\{b,d\} = \{a,b\}$, then d=a=c=b, or d=b. Otherwise, if $\{c,b\} = \{c,d\}$, then b=d or b=c. If b=c, then b=c, which implies that b=c=b.

Try: $\langle a, b \rangle^* := \{a, \{b\}\}.$

Try "**Proposition**": $\langle a,b\rangle^* = \langle c,d\rangle^* \to a = c \& b = d$. Can we distinguish $\langle a,b\rangle^*$ and $\langle \{b\},a\rangle^*$? If $\{a,\{b\}\} = \{\{b\},\{a\}\}\}$ so $a = \{a\}$. This does not provide a contradiction unless we introduce another axiom. Also, $\langle \{a\},b\rangle^* = \langle \{b\},a\rangle^*$ but the coordinates are not necessarily equal.

Want: $\langle x_1, x_2, x_3 \rangle^* = ?$ We could try $\{\{x_1\}, \{x_1, x_2\}, \{x_1, x_2, x_3\}\}$, but we would have $\langle a, a, b \rangle^* = \langle a, b, a \rangle^*$. We could also try

$$\langle x_1, x_2, x_3 \rangle^{**} := \{\underbrace{\{\{\{x_1\}, \{x_1, x_2\}\}\}, \underbrace{\{\{\{x_1\}, \{x_1, x_2\}\}, x_3\}}\}}_{\{\langle x_1, x_2 \rangle, x_2 \}} = \langle \langle x_1, x_2 \rangle, x_3 \rangle.$$

This works.

Definition 8.3.

$$\langle x_1, \dots, x_n \rangle = y \leftrightarrow \begin{cases} y = \{x_1\}, & \text{if } n = 1, \\ y = \{\{x_1\}, \{x_1, x_2\}\}, & \text{if } n = 2, \\ y = \langle \langle x_1, \dots, x_{n-1} \rangle, x_n \rangle, & \text{if } n > 2. \end{cases}$$

8.2 Cartesian Product

Definition 8.4. If A and B are sets, $A \times B$ is the set of ordered pairs

$$\{\langle a,b\rangle:a\in A\ \&\ b\in B\}.$$

Proposition 8.5. For any sets A, B, there exists a set C such that

$$(\forall t)[t \in C \leftrightarrow (\exists a)(\exists b)(t = \langle a, b \rangle \& a \in A \& b \in B)],$$

i.e. $C = A \times B$ exists.

Proof.

$$A \times B = \{ t \in \mathcal{P}(\mathcal{P}(A \cup B)) : (\exists a)(\exists b)[t \in \langle a, b \rangle \& a \in A \& b \in B] \}$$

Why? We need only check that if $t \in A \times B$, then $t \in \mathcal{P}(\mathcal{P}(A \cup B))$. So,

$$(\exists a)(\exists b) \ a \in A \& b \in B \& t = \langle a, b \rangle = \{\{a\}, \{a, b\}\}.$$

 $a \in A$, so $\{a\} \subseteq A$, so $\{a\} \in \mathcal{P}(A) \subseteq \mathcal{P}(A \cup B)$. Also, $a \in A$ and $b \in B$, so $a, b \in A \cup B$, so $\{a,b\} \in \mathcal{P}(A \cup B)$, so $\{\{a\},\{a,b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B))$.

February 6

9.1 Relations

Definition 9.1. A relation R is a set of ordered pairs.

$$(\forall R)[\mathsf{Relation}(R) \leftrightarrow (\forall t)[t \in R \rightarrow (\exists x)(\exists y)(t = \langle x, y \rangle)]]$$

We write x R y for $\langle x, y \rangle \in R$.

Definition 9.2.

$$C = \operatorname{dom}(R) \leftrightarrow (\forall t)[t \in C \leftrightarrow (\exists y)(\langle x, y \rangle \in R)]$$

Remark: If R is any set, then dom(R) makes sense as a set. (We apply the Subset Axiom to the formula

$$\varphi := (\exists y)[\langle t, y \rangle \in x_1]$$

to $x_1 = R$.) We want A = "projection of R to the first coordinate". Let's take $A = \bigcup \bigcup R$. By the Union Axiom, A is a set. If t satisfies $\varphi(R/x_1)$, then $\exists y$ such that

$$\{\{t\},\{t,y\}\} = \langle t,y\rangle \in R.$$

Then, $\{t\}, \{t,y\} \in \bigcup R$, so $t,y \in \bigcup \bigcup R$, so $dom(R) \subseteq \bigcup \bigcup R$.

Definition 9.3.

$$C = \operatorname{ran}(R) \leftrightarrow (\forall t)[t \in C \leftrightarrow (\exists x)(\langle x, t \rangle \in R)]$$

Remark: For any R, ran(R) is a set.

Definition 9.4. The field of R is

$$\mathrm{fld}(R) := \mathrm{dom}(R) \cup \mathrm{ran}(R).$$

Proposition 9.5. For a set R, the following are equivalent:

- 1. Relation(R).
- 2. $R \subseteq dom(R) \times ran(R)$.

3. $(\exists A)(\exists B) R \subseteq A \times B$.

Proof. $1 \to 2$: Let $t \in R$. As R is a relation,

$$(\exists x)(\exists y) \ t = \langle x, y \rangle.$$

Let x, y witness this existential condition. By the definition of $dom(R), x \in dom(R)$ and by the definition of $ran(R), y \in ran(R)$. By the definition of the Cartesian product,

$$t = \langle x, y \rangle \in \text{dom}(R) \times \text{ran}(R).$$

By the definition of \subseteq ,

$$R \subseteq dom(R) \times ran(R)$$
.

 $2 \rightarrow 3$: Let A := dom(R), B := ran(R).

 $3 \to 1$: If $t \in R$, then as $R \subseteq A \times B$, $t \in A \times B$. So, $(\exists a \in A)(\exists b \in B)(t = \langle a, b \rangle)$, so t is an ordered pair. By definition, Relation(R).

Example 9.6. \varnothing is a relation.

Example 9.7. $R = \{ \langle \emptyset, \emptyset \rangle \}$ is a relation.

$$dom(R) = \{\emptyset\},\$$

$$ran(R) = \{\emptyset\},\$$

$$fld(R) = {\emptyset}.$$

Example 9.8. $N := \{\emptyset\}$. N is not a relation.

Proof. Consider $t = \emptyset \in N$. \emptyset is not an ordered pair as if $\emptyset = \langle x, y \rangle$ for some x, y. Then,

$$\emptyset = \{\{x\}, \{x, y\}\},\$$

which would give $\{x\} \in \emptyset$, but $(\forall t)$ $t \notin \emptyset$. Therefore, \emptyset is not an ordered pair and N is not a relation.

9.2 Functions

Definition 9.9. f is a function if f is a relation and

$$(\forall x)(\forall y)(\forall z)[(\langle x,y\rangle\in f\ \&\ \langle x,z\rangle\in f)\to y=z].$$

Then,

$$\mathsf{Function}(f) \leftrightarrow [\mathsf{Relation}(f) \ \& \ (\forall x)(\forall y)(\forall z)[(\langle x,y\rangle \in f \ \& \ \langle x,z\rangle \in f) \rightarrow y = z]].$$

Definition 9.10. For sets f, A, and B,

$$f: A \to B \iff \mathsf{Function}(f) \& \mathsf{dom}(f) = A \& \mathsf{ran}(f) \subseteq B.$$

Definition 9.11. Given $f: A \to B$,

- f is one-to-one (injective) if $(\forall x)(\forall y)(\forall z)[(\langle y,x\rangle \in f \& \langle z,x\rangle \in f) \to y=z],$
- f is **onto** (surjective) B if ran(f) = B,
- f is one-to-one and onto (bijective) if f is one-to-one and f is onto.

Example 9.12. For any set A,

$$I_A:A\to A,$$

defined by

$$(\forall t)[t \in I_A \leftrightarrow (\exists a)[t = \langle a, a \rangle \& a \in A]]$$

is one-to-one and onto.

Example 9.13. Let $A = \emptyset$, $f: A \to \emptyset$. Such a function does not exist!

Proposition 9.14. If $f: A \to \emptyset$ is a function, then $A = \emptyset$.

Proof. If $A \neq \emptyset$, then $\exists x \in A = \text{dom}(f)$. So, $\exists y \ \langle x, y \rangle \in f$, so $\exists y \in \text{ran}(f) \subseteq \emptyset$, which is a contradiction.

February 8

10.1 Functions

Definition 10.1.

$$f(x) = y \iff \mathsf{Function}(f) \& \langle x, y \rangle \in f.$$

Remark: This expression "f(x) = y" is technically the interpretation of a ternary relation symbol.

10.1.1 Function Restriction

Last time, we introduced the notation $f: A \to B$.

Definition 10.2. For sets f, A,

$$f \upharpoonright A := f \cap (A \times \operatorname{ran}(f)).$$

Proposition 10.3. Given f, A,

- 1. $dom(f \upharpoonright A) = dom(f) \cap A$.
- 2. If f is a function, then $f \upharpoonright A$ is a function.

Proof. 1. If $x \in \text{dom}(f \upharpoonright A)$, then $\exists y \ \langle x, y \rangle \in f \upharpoonright A$, i.e. we have $\langle x, y \rangle \in f$ (so $x \in \text{dom}(f)$) and $\langle x, y \rangle \in A \times \text{ran}(f)$, so $x \in A$, which implies that $x \in \text{dom}(f) \cap A$, i.e. $\text{dom}(f \upharpoonright A) \subseteq (\text{dom}\, f) \cap A$. If $x \in (\text{dom}\, f) \cap A$, then $\exists y \in \text{ran}(f) \ \langle x, y \rangle \in f$. $x \in A$ implies $\langle x, y \rangle \in A \times \text{ran}(f)$, so we have shown $\text{dom}(f \upharpoonright A) \supseteq (\text{dom}\, f) \cap A$.

2. f is a function. Take x, y, z such that $\langle x, y \rangle \in f \upharpoonright A = f \cap (A \times \operatorname{ran} f) \subseteq f$ and $\langle x, z \rangle \in f \upharpoonright A \subseteq f$. f is a function, so y = z.

10.1.2 Composition

Suppose S, R are functions. We want

$$R \circ S = \{ \langle x, R(S(x)) \rangle : x \in \text{dom } S \}.$$

Definition 10.4. Given R, S,

$$R \circ S := \{ t \in \text{dom}(S) \times \text{ran}(R) : (\exists x)(\exists y)(\exists z)[t = \langle x, z \rangle \& \langle x, y \rangle \in S \& \langle y, z \rangle \in R] \}.$$

Recall. For any set X,

$$\mathrm{dom}(X) = \left\{ x \in \bigcup \bigcup X : (\exists y) (\langle x,y \rangle \in X) \right\}.$$

Proposition 10.5. If R, S are functions, then $R \circ S$ is a function.

Proof. Suppose x, u, v are sets such that $\langle x, u \rangle \in R \circ S$ and $\langle x, v \rangle \in R \circ S$. By the definition of $R \circ S$,

$$(\exists y)\langle x, y \rangle \in S \& \langle y, u \rangle \in R,$$

$$(\exists z)\langle x, z \rangle \in S \& \langle z, v \rangle \in R.$$

Then, y = z and u = v.

 $\operatorname{dom}(R \circ S) = \{x \in \operatorname{dom} S : (\exists y)[y \in \operatorname{dom} R \& \langle x, y \rangle \in S]\}.$

Corollary 10.6. If $S: A \to B$ and $R: B \to C$, then $R \circ S: A \to C$.

10.1.3 Inverse

Definition 10.7. Given R,

$$R^{-1} := \{ t \in \operatorname{ran}(R) \times \operatorname{dom}(R) : (\exists x)(\exists y) \ t = \langle y, x \rangle \ \& \ \langle x, y \rangle \in R \}.$$

What is $R \circ R^{-1}$? What is $R^{-1} \circ R$?

Proposition 10.8. If R is a function, i.e. $R: A \to B$, is onto, then $R \circ R^{-1} = I_B$.

Proof. Let $x \in B = \operatorname{ran} R$. Then, $(\exists y) \langle y, x \rangle \in R$, so $\langle x, y \rangle \in R^{-1}$. Therefore, $\langle x, x \rangle \in R \circ R^{-1}$ and $I_{\operatorname{ran}(R)} \subseteq R \circ R^{-1}$.

For the other direction, we use the fact that R is a function. Suppose $\langle x,z\rangle \in R \circ R^{-1}$. So,

$$\exists y \ \langle x, y \rangle \in R^{-1} \ \& \ \langle y, z \rangle \in R.$$

Then, $\langle y, x \rangle \in R$. Hence, x = z.

Definition 10.9.

$$z = x \setminus y = \{t \in x : t \notin y\}.$$

Proposition 10.10. The following are equivalent for $f: A \to B$ (with $A \neq \emptyset$).

- 1. f is one-to-one.
- 2. f^{-1} is a function.

3.
$$(\exists g) g : B \to A \text{ and } g \circ f = I_A$$
.

We could also add:

$$(2.5)$$
 $f^{-1} \circ f = I_A$.

Proof. 1 \Longrightarrow 2: Take x, y, z, sets. Suppose $\langle x, y \rangle \in f^{-1}$ (so $\langle y, x \rangle \in f$) and $\langle x, z \rangle \in f^{-1}$ (so $\langle z, x \rangle \in f$). Then, y = z.

2 \Longrightarrow 3: Let $a \in A$. Let $g := f^{-1} \cup (B \setminus \operatorname{ran}(f)) \times \{a\}$. f^{-1} is a function by 2. Suppose $\langle x, y \rangle \in g$, $\langle x, z \rangle \in g$. Either $x \in \operatorname{ran}(f)$ or $x \notin \operatorname{ran}(f)$. In the first case, $\langle x, y \rangle \in f^{-1}$ & $\langle x, z \rangle \in f^{-1}$, so y = z. In the second case, $\langle x, y \rangle = \langle x, a \rangle$ and $\langle x, z \rangle = \langle x, a \rangle$, so y = z. Take $x \in A$.

$$(g \circ f)(x) = g(f(x)) = f^{-1}(f(x))$$

= x

 $3 \implies 1$: Suppose $\langle y, x \rangle \in f$, $\langle z, x \rangle \in f$.

$$y = g(f(y)) = g(x) = g(f(z)) = (g \circ f)(z) = z,$$

so f is one-to-one.

Question. If $f:A\to B$ is a function, under what condition is f onto?

February 10

11.1 Axiom of Choice

Proposition 11.1. $f: A \to B$ is onto if $\exists g: B \to A$ $f \circ g = I_B$.

Proof. Let $b \in B$. Then

$$b = I_B(b)$$

$$= (f \circ g)(b)$$

$$= f(g(b)).$$

Thus, $b \in ran(f)$, so f is onto.

Proposition 11.2. If $f: A \to B$ is onto, then $\exists g: B \to A$ $f \circ g = I_B$.

Proof. We know that $f \circ f^{-1} = I_B$.

We want $g: B \to A$ such that for each $b \in B$, f(g(b)) = b. We want to define g(b) to be some a with f(a) = b. Just do that! Set g(b) to be some choice of a with f(a) = b.

If we have a statement $(\exists a)(a \in A)$, then we can find a witness. However, from the statement $(\forall b)(\exists a) \varphi$, if B is infinite, then we cannot form the association $b \mapsto a$ without the Axiom of Choice.

Axiom of Choice [I, Official]:

$$(\forall R)[\mathsf{Relation}(R) \to (\exists g)(g \subseteq R \& \mathsf{Function}(g) \& \mathsf{dom}(g) = \mathsf{dom}(R))].$$

Proof (Continued). To finish the proof, apply the Axiom of Choice to $R = f^{-1}$ to get $g \subseteq R = f^{-1}$, a function with $dom(g) = dom(R) = dom(f^{-1})$. Let $b \in B$. Then, $\langle b, g(b) \rangle \in g \subseteq R = f^{-1}$, i.e. $\langle g(b), f(g(b)) \rangle = \langle g(b), b \rangle \in f$. Therefore, $b = f(g(b)) = (f \circ g)(b)$, so g is a right inverse of f. \square

AC 0:

$$(\forall f)(\forall A)(\forall B)[f:A \to B \& \operatorname{ran} f = B \leftrightarrow (\exists g)[g:B \to A \& f \circ g = I_B]].$$

Proposition 11.3. Relative to the other axioms of set theory, $AC I \leftrightarrow AC 0$.

Proof. \iff : We just did this part.

 \Longrightarrow : Given a relation R, we need to find $g\subseteq R$, a function, with $\mathrm{dom}(g)=\mathrm{dom}(R)$. Let $B=\mathrm{dom}(R)$ and

$$f: R \to \text{dom}(R) = B,$$

 $\langle x, y \rangle \mapsto x,$

that is,

$$f = \{ t \in R \times \operatorname{dom} R : \exists x \ \exists y \ t = \langle \langle x, y \rangle, x \rangle \ \& \ \langle x, y \rangle \in R \}.$$

Then, $f: R \to \operatorname{dom} R$ and f is $\operatorname{onto} \operatorname{dom}(R)$. (Why? Take $x \in \operatorname{dom}(R)$. By definition, $\exists y \ \langle x, y \rangle \in R$. Then, $x = f(\langle x, y \rangle)$.) Apply AC 0 to obtain $g: \operatorname{dom}(R) \to R$ such that $f \circ g = I_{\operatorname{dom}(R)}$. Define $\tilde{g} := \{\langle x, y \rangle : \langle x, y \rangle = g(x)\}$. $\tilde{g} \subseteq R$, \tilde{g} is a function, and $\operatorname{dom}(\tilde{g}) = \operatorname{dom}(R)$.

11.2 Cardinality

Proposition 11.4. Consider $f: A \to B$ and $g: B \to C$.

- 1. If f and g are one-to-one, then $g \circ f$ is one-to-one.
- 2. If f and g are onto, then $g \circ f : A \to C$ is onto.

Proof. 1. Exercise.

2. Let $c \in C$. By hypothesis, $\exists b \in B \ g(b) = c$. f is onto B, so $\exists a \in A \ f(a) = g(b)$.

$$(g \circ f)(a) = g(f(a))$$

$$= g(b)$$

$$= c$$

Corollary 11.5. If $f: A \to B$, $g: B \to C$ are bijective, then so is $g \circ f: A \to C$.

Definition 11.6. $A \approx B$ ("A and B have the same cardinality") iff

 $(\exists f)[f:A\to B \text{ is one-to-one and onto}].$

February 13

12.1 Power Set Cardinality

Recall: $A \approx B$ means $(\exists f)(f : A \rightarrow B \text{ a bijection}).$

- $A \approx A$ (take $f = I_A$).
- $A \approx B \to B \approx A$ (if $f: A \to B$ is a bijection, then f^{-1} is a function, $dom(f^{-1}) = ran(f) = B$, $ran(f^{-1}) = dom(f) = A$, $f \circ f^{-1} = I_B$, and $f^{-1} \circ f = I_A$).
- $(A \approx B \& B \approx C) \rightarrow A \approx C$ (if $f: A \rightarrow B$ is bijective and $g: B \rightarrow C$ is bijective, $g \circ f: A \rightarrow C$ is also bijective).

Definition 12.1. For X, Y sets,

$$^{Y}X := \{ f \in \mathcal{P}(Y \times X) : f : Y \to X \}.$$

Example 12.2. Take $X = \{0, 1\}, Y = \{0, 1, 2\}$. Then

$${}^{Y}X = \{f: f: Y \rightarrow X\}$$

is the set of "triples" of 0s and 1s. There are 8 elements in ${}^{Y}X$.

If we take " X^Y " to be X^Y , the set of "pairs" of elements of $\{0,1,2\}$, there are 9 such elements.

We will define

$$\begin{split} 0 &:= \varnothing, \\ 1 &:= \{\varnothing\} = \{0\}, \\ 2 &:= \{\varnothing, \{\varnothing\}\} = \{0, 1\}, \\ 3 &:= \{0, 1, 2\} = \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}, \\ \vdots \end{split}$$

Definition 12.3. Given R and Y,

$$R[Y] := \{x \in \operatorname{ran} R : (\exists y)(y \in X \& \langle y, x \rangle \in R)\}.$$

Often, if $R = f^{-1}$, we write $f^{-1}Y$ for R[Y].

Proposition 12.4.

$$(\forall X) \ \mathcal{P}(X) \approx {}^{X}2.$$

Proof. Define $\chi: \mathcal{P}(X) \to {}^X 2$ by

$$X\subseteq Y\mapsto \left[x\mapsto \begin{cases} 1, & \text{if } x\in Y\\ 0, & \text{if } x\in X\setminus Y \end{cases}\right],$$

i.e. $\chi = \{\langle Y, f \rangle \in \mathcal{P}(X) \times^X 2 : f = (Y \times \{1\}) \cup (X \setminus Y) \times \{0\}\}.$ [Recall: $X \setminus Y := \{t \in X : t \notin Y\}.$] Define

$$Z: {}^{X}2 \to \mathcal{P}(X),$$

$$f \mapsto f^{-1}\{1\} := \{x \in X : f(x) = 1\}.$$

Then,

$$Z \circ \chi = I_{\mathcal{P}(X)},$$

$$\chi \circ Z = I_{x_2},$$

so χ is one-to-one and onto.

Preview:

$$\mathbb{R} \approx \{ t \in \mathbb{C} : t \text{ is irrational} \} = \mathbb{C} \setminus \mathbb{Q}$$
$$\approx \{ t \in \mathbb{C} : t \text{ is transcendental} \}$$

12.2 Equivalence Relations & Partial Orders

Definition 12.5. E is an equivalence relation on A:

$$\begin{split} \mathsf{EqRel}(E,A) &\leftrightarrow (\mathsf{Relation}(E) \\ &\& \, \mathrm{fld}(E) = A \\ &\& \, (\forall a)[a \in A \to \langle a,a \rangle \in E] \end{split}$$

(E is reflexive on A, or $E \supseteq I_A$, where A = fld(E))

&
$$(\forall a)(\forall b)[\langle a,b\rangle\in E\to \langle b,a\rangle\in E]$$

 $(E \text{ is symmetric}, E^{-1} \subseteq E)$

&
$$(\forall a)(\forall b)(\forall c)[(\langle a,b\rangle \in E \& \langle b,c\rangle \in E) \rightarrow \langle a,c\rangle \in E])$$

(E is a transitive relation, $E \circ E \subseteq E$)

Definition 12.6. R is a (non-strict) partial order if R is reflexive and transitive.

Example 12.7. If X is any set,

$$\{\langle A, B \rangle \in \mathcal{P}(X) \times \mathcal{P}(X) : A \subseteq B\}$$

is a partial order.

Definition 12.8. If E is an equivalence relation on A and $a \in A$, then $[a]_E := \{b \in A : a \to b\}$ is the E-equivalence class of a.

Proposition 12.9. If E is an equivalence relation on A and $a, b \in A$, then either $[a]_E \cap [b]_E = \emptyset$ or $[a]_E = [b]_E$.

Proof. Suppose $[a]_E \cap [b]_E \neq \emptyset$. Let $c \in [a]_E \cap [b]_E$, i.e. a E c & b E c. By reflexivity, c E b, and by transitivity, a E b. If $x \in [b]_E$, i.e. b E x, by transitivity a E x, i.e. $x \in [a]_E$, so $[b]_E \subseteq [a]_E$. Reversing roles, $[a]_E \subseteq [b]_E$, which implies $[a]_E = [b]_E$.

February 15

13.1 Equivalence Relations and Partitions

Proposition: If E is an equivalence relation on X and $a, b \in X$, then $[a]_E = [b]_E$ or $[a]_E \cap [b]_E = \emptyset$.

Definition 13.1. If E is an equivalence relation on X,

$$X/E := \{ t \in \mathcal{P}(X) : (\exists a) [a \in X \& t = [a]_E] \}.$$

Also, we define

$$\pi_E: X \to X/E,$$
 $a \mapsto [a]_E.$

Proposition 13.2. If E is an equivalence relation on X, then X/E is a set of disjoint sets.

Proposition 13.3. If E is an equivalence relation on X, then

$$X=\bigcup X/E.$$

Proof. If $x \in \bigcup X/E$, then $\exists a \in X \ x \in [a]_E = \{t \in X : a \ E \ t\} \subseteq X$, so $x \in X$. Therefore, $X/E \subseteq X$.

For the other inclusion: if $x \in X$, then $x \in [x]_E$. Therefore, $x \in \bigcup X/E$, and $X/E \subseteq X$.

Hence, $X = \bigcup X/E$.

Definition 13.4. Π is a partition of X if and only if

- 1. $X = \bigcup \Pi$,
- 2. $\forall \pi, \rho \in \Pi \ \pi = \rho \text{ or } \pi \cap \rho = \emptyset$,
- 3. $\emptyset \notin \Pi$.

Proposition 13.5. If E is an equivalence relation on X, then X/E is a partition of X.

Proof. 1. 13.3.

- 2. 13.2.
- 3. If $\pi \in X/E$, then $(\exists a)(a \in X \& \pi = [a]_E)$ and $a \in [a]_E$ because a E a. Hence, $\pi \neq \emptyset$.

Proposition 13.6. If Π is a partition of X, then there exist E, an equivalence relation on X, such that $\Pi = X/E$.

Proof. Let

$$E:=\{t\in X\times X: (\exists a)(\exists b)(\exists \pi)[t=\langle a,b\rangle\ \&\ \pi\in\Pi\ \&\ a\in\pi\ \&\ b\in\pi]\}.$$

E is a relation with $fld(E) \subseteq X$.

- Let $a \in X = \bigcup \Pi$. This implies that $\exists \pi \in \Pi \ a \in \pi$. By the definition of $E, \langle a, a \rangle \in E$. Therefore, E is reflexive with dom(E) = ran(E) = X.
- Suppose $\langle a,b\rangle \in E$. Then, by the definition of E,

$$(\exists \pi)[a \in \pi \& b \in \pi \& \pi \in \Pi].$$

Then,

$$(\exists \pi)[b \in \pi \& a \in \pi \& \pi \in \Pi],$$

so $\langle b.a \rangle \in E$.

• Suppose $\langle a, b \rangle \in E$ and $\langle b, c \rangle \in E$. Then,

$$(\exists \pi)(\exists \rho)[(a \in \pi \& b \in \pi \& \pi \in \Pi) \& (b \in \rho \& c \in \rho \& \rho \in \Pi)].$$

 $b \in \pi \cap \rho$, so $\pi = \rho$. $a \in \pi = \rho$ and $c \in \rho$, so $a \to c$.

Therefore, E is an equivalence relation.

Suppose $t \in X/E$. $t = [a]_E$ for some $a \in X$. Let $\pi \in \Pi$ such that $a \in \pi$. If $b \in \pi$, then $a, b \in \pi$, which implies that $a \to b$, so $b \in [a]_E = t$. Therefore, $\pi \subseteq [a]_E$. If $c \in [a]_E$, i.e. $a \to c$, then

$$(\exists \rho)[\rho \in \Pi \& a \in \rho \& c \in \rho].$$

Then, $a \in \rho \cap \pi$ implies $\pi = \rho$, so $c \in \pi$. We have shown $t = [a]_E \subseteq \pi$, so $t = \pi$, and $X/E \subseteq \Pi$.

If $\pi \in \Pi$, Π is a partition, so $\pi \neq \emptyset$. Therefore, $(\exists a) \ a \in \pi \subseteq X$.

Claim: $\pi = [a]_E$.

Therefore,
$$\Pi = X/E$$
.

Proposition 13.7. *If* $f: X \to Y$ *is given, then*

$$E_f := \{ t \in X \times X : (\exists x)(\exists y) [x \in X \& y \in X \& f(x) = f(y) \& t = \langle x, y \rangle] \},$$

the fiber equivalence relation, is an equivalence relation on X.

Proposition 13.8. If E is an equivalence relation on X, then $\exists f: X \to Y$ such that $E = E_f$.

Proof. Let $f := \pi_E : X \to X/E$.

$$\pi_E(a) = [a]_E.$$

If $\langle a,b\rangle \in E_f$, then $[a]_E = [b]_E$, which implies that $a \to b$. Therefore, $E_f \subseteq E$. If $\langle a,b\rangle \in E$, i.e. $a \to b$, then $f(a) = [a]_E = [b]_E = f(b)$. $a \to b$, so $E = E_f$.

Theorem 13.9. If E is an equivalence relation on X and $f: X \to Y$ is a function which respects E, i.e. $x \to Y \implies f(x) = f(y)$, then $\exists ! \bar{f} : X/E \to Y$ such that $f = \bar{f} \circ \pi_E$.

$$X \xrightarrow{f} Y$$

$$\downarrow^{\pi_E} \exists ! \bar{f}$$

$$X/E$$

Proof. Let $\bar{f}: \{t \in (X/E) \times Y: (\exists x) \ t = \langle [x]_E, f(x) \rangle \}$. $\bar{f} \subseteq (X/E) \times Y$. If $\langle a, b \rangle \in \bar{f}$ and $\langle a, c \rangle \in \bar{f}$, then $\exists x \in X \ \langle a, b \rangle = \langle [x]_E, f(x) \rangle$ and $\exists y \ \langle a, c \rangle = \langle [y]_E, f(y) \rangle$. Then, $[x]_E = [y]_E$ implies that f(x) = f(y).

 $\operatorname{dom}(\bar{f}) \subseteq X/E$. If $a \in X/E$, let $x \in X$ such that $a = [x]_E$. Then, $\langle a, f(x) \rangle \in \bar{f}$, so $a \in \operatorname{dom}(\bar{f})$.

If $x \in X$,

$$(\bar{f}\circ\pi_E)(x)=\bar{f}([x]_E)$$

(because $\langle [x]_E, f(x) \rangle \in \bar{f}$)

$$=f(x).$$

February 17

14.1 Review Lecture

14.1.1 Definitions

As an example, here is the formal definition of the union:

$$(\forall y)(\forall x) \left[y = \bigcup X \leftrightarrow (\forall t)[t \in y \leftrightarrow (\exists z)[z \in x \& t \in z]] \right]$$

As another example, Π is a partition of A iff

- $(\forall x)(x \in A \to \exists! \pi \in \Pi \ x \in \pi),$
- $(\forall \pi)[\pi \in \Pi \leftrightarrow \pi \subseteq A],$
- $(\forall \pi)[\pi \in \Pi \to \pi \neq \varnothing].$

We could break up the uniqueness condition into the two statements

$$(\forall x)[x \in A \to (\exists \pi)[x \in \pi \& \pi \in \Pi]]$$

and

$$(\forall \pi)(\forall \rho)[\pi \in \Pi \& \rho \in \Pi \to (\pi = \rho \lor \pi \cap \rho = \varnothing)].$$

The first of these could equivalently be written as $A = \bigcup \Pi$. If we are not allowed to use the empty set symbol, we could write

$$(\forall x)[x=\varnothing\leftrightarrow(\forall t)[t\in x\leftrightarrow\neg(t=t)]]$$

or

$$(\forall x)(x = \varnothing \leftrightarrow (\forall t)[\neg(t \in x)]).$$

We must also define the subset and intersection:

- $(\forall x)(\forall y)[x \subseteq y \leftrightarrow \forall t \ (t \in x \to t \in y)],$
- $(\forall x)(\forall y)(\forall z)[z = x \cap y \leftrightarrow (\forall t)[t \in z \leftrightarrow (t \in x \& t \in y)]].$

(We could have formally added a symbol $\mathsf{IsPartitionOf}(X, A)$.)

Additionally, $(\exists a \in A) \cdots$ means $(\exists a)[a \in A \& \cdots]$.

14.1.2 Axiom of Choice

Proposition 14.1.

$$AC\:I \leftrightarrow (\forall \Pi) \left[\Pi\:\:a\:\:partition \rightarrow (\exists y) \left[y \subseteq \bigcup \Pi\:\&\: (\forall \pi)[\pi \in \Pi \rightarrow (\exists x)(\pi \cap y = \{x\})]\right]\right].$$

Proof. AC I:

$$(\forall R)[\mathsf{Relation}(R) \to (\exists f)[\mathsf{Function}(f) \& f \subseteq R \& \mathrm{dom}\, f = \mathrm{dom}\, R]].$$

 \implies : Let $A = \bigcup \Pi$. Let $R \subseteq \Pi \times A$ be defined by

$$R = \{ \langle \pi, a \rangle \in \Pi \times A : a \in \pi \}.$$

Claim: dom $R = \Pi$.

- Clearly dom $R \subseteq \Pi$.
- If $\pi \in \Pi$, then $\pi \neq \emptyset$ and $\pi \subseteq A$, so $(\exists a)[a \in A \& a \in \pi]$, so $(\pi, a) \in R$.

Therefore, dom $R = \Pi$.

By AC I, $\exists f: \Pi \to A$ such that $f \subseteq R$. Set $y := \operatorname{ran} f \subseteq A$. Let $\pi \in \Pi$. Then, $\langle \pi, f(\pi) \rangle \in R$, so

$$y = \operatorname{ran} f \ni f(\pi) \in \pi.$$

This gives $f(\pi) \in \pi \cap y$. If $t \in \pi \cap y$, then $(\exists x)[x \in \Pi = \text{dom } f \ t = f(x)]$. Then $\langle x, f(x) \rangle \in R$, so $x \in \Pi$ and $f(x) \in x$, and $f(x) \in \pi$. Hence, $f(x) \in x \cap \pi$, so $x = \pi$, so $t = f(x) = f(\pi)$. Therefore, $y \cap \pi = \{f(\pi)\}$.

 \Leftarrow : Given a relation R, we need to find $f \subseteq R$, a function with dom f = dom R. Let π be the partition of R associated to the equivalence relation,

$$\langle a,b \rangle \sim \langle c,d \rangle \iff a=c.$$

By the assertion on partitions, $\exists y \subseteq R$ such that $\forall \pi \in \Pi \ \exists x \ y \cap \pi = \{x\}.$

Claim: y is a function and dom y = dom R.

Proof: $y \subseteq R$ implies that y is also a relation. Suppose $\langle a,b \rangle \in y$ and $\langle a,c \rangle \in y$. Then, $\langle a,b \rangle \sim \langle a,c \rangle$, hence $\exists \pi \in \Pi \ \langle a,b \rangle \in \pi \ \& \ \langle a,c \rangle \in \pi$. Since $\langle a,b \rangle \in \pi \cap y$ and $\langle a,c \rangle \in \pi \in y$, and $\pi \cap y$ is a singleton, $\langle a,b \rangle = \langle a,c \rangle$, which implies that b=c. If $a \in \text{dom } R$, $\exists b \ \langle a,b \rangle \in R$. Let $\pi \in \Pi$ such that $\langle a,b \rangle \in \pi$. Then, $\langle a,y(a) \rangle \in y \cap \pi$. Therefore, $a \in \text{dom } y$. Hence, dom y = dom R.

February 24

15.1 Natural Numbers

Definition 15.1. $0 := \emptyset$.

The successor of x is $x^+ := x \cup \{x\}$.

From the definition,

$$\begin{aligned} 1 &:= 0^+ = \varnothing \cup \{\varnothing\} \\ &= \{\varnothing\}, \\ 2 &:= 1^+ \\ &= \{\varnothing\} \cup \{\{\varnothing\}\} \\ &= \{\varnothing, \{\varnothing\}\} \\ &= \{0, 1\}, \\ 3 &:= 2^+ = \{0, 1, 2\}. \end{aligned}$$

"**Definition**": The set of natural numbers is $\omega := \{0, 1, 2, 3, \dots\}$. We would like to say

 $(\forall t)[t \in \omega \leftrightarrow \text{formula of set theory}],$

but we need another approach.

15.1.1 Inductive Sets

Definition 15.2. A set I is **inductive** iff

$$0 \in I \& (\forall x)(x \in I \to x^+ \in I).$$

Question: Is it possible for $x = x^+$?

Definition 15.3. t is a **natural number** if for every inductive set I, $t \in I$. In other words, t is a natural number iff

$$(\forall I)[I \text{ inductive} \rightarrow t \in I].$$

We could have written the "intersection of inductive sets",

$$t\in\bigcap X\iff (\forall Y)(Y\in X\to t\in Y),$$

but the problem is that if $X = \emptyset$, then $(\forall t)$ $t \in \bigcap X$, which is not a set.

 $\{1\}$ is not a natural number. How do we prove this? $\{1\} \notin \{\emptyset, \{\emptyset\}\}$, but $\{\emptyset, \{\emptyset\}\}$ is not inductive. On the other hand, $\{1\} \notin \omega$, but we don't know that ω exists.

Axiom of Infinity:

 $(\exists I)(I \text{ is inductive}).$

Proposition 15.4.

 $(\exists \omega) \ t \in \omega \leftrightarrow t \ is \ a \ natural \ number.$

Proof. Let I be an inductive set. Let $\omega := \{t \in I : (\forall J)[J \text{ inductive } \to t \in J]\}$. This is a set by the Subset Axiom.

If t is a natural number, then $t \in I$ and

$$(\forall J)[J \text{ inductive} \rightarrow t \in J],$$

so $t \in \omega$. Conversely, if $t \in \omega$, then t is a natural number.

Proposition 15.5. ω is inductive.

Proof. For any inductive $J, 0 \in J$. Therefore, $0 \in \omega$. If $x \in \omega$, then

$$(\forall J) \ J \ \text{inductive} \to x \in J \to x^+ \in J,$$

so $x^+ \in \omega$.

Proposition 15.6. If A is an inductive set, then $A \supseteq \omega$.

Proof. If A is inductive, then

$$(\forall t)(\underbrace{t \text{ is a natural number}}_{t \in \omega} \rightarrow t \in A),$$

so $\omega \subseteq A$.

Proposition 15.7. If $A \subseteq \omega$ and $0 \in A$ and $(\forall n)(n \in A \to n^+ \in A)$, then $A = \omega$.

Proof. A is inductive, so by 15.6, $\omega \subseteq A$. Since $A \subseteq \omega$, we have $A = \omega$.

Are there other inductive sets? Consider:

$$\omega = \{0, 1, 2, 3, \dots\},\$$

$$\omega^{+} = \{0, 1, 2, 3, \dots, \omega\},\$$

$$\omega^{++} = \{0, 1, 2, 3, \dots, \omega, \omega^{+}\},\$$

$$\vdots$$

$$\omega^{\stackrel{n \text{ times}}{+\cdots+}} = \{0, 1, 2, 3, \dots, \omega, \omega^{+}, \dots, \omega^{\stackrel{n-1 \text{ times}}{+\cdots+}}\},$$

$$\vdots$$

$$\omega \cdot 2 = \{0, 1, 2, \dots, \omega, \omega^{+}, \omega^{++}, \dots\}.$$

 $\omega \cdot 2$ is inductive, but we need another axiom to show that it exists.

15.1.2 Transitive Sets

Plan: We will order ω by saying

$$\begin{array}{ccc} n < m & \Longleftrightarrow & n \in m \\ & \Longleftrightarrow & n \subsetneq m. \end{array}$$

Definition 15.8. x is a **transitive set** if $(\forall y)(\forall z)[z \in y \& y \in x \to z \in x]$.

Proposition 15.9.

$$(\forall k)[k \in \omega \to k \text{ is transitive}].$$

February 27

16.1 Transitive Sets

We would like to define ω as $\{0,1,2,3,\dots\}$, but this never correctly defines a set. This is a result from first-order logic.

Definition: x is a **transitive set** if and only if $(\forall y)(\forall z)[(z \in y \& y \in x) \to z \in x]$.

Proposition 16.1. The following are equivalent.

- 1. x is transitive.
- 2. $\bigcup x \subseteq x$.
- 3. $x \subseteq \mathcal{P}x$.

Proof. 1 \Longrightarrow 3: Let $y \in x$. Then, by transitivity of x,

$$(\forall z)[z \in y \to z \in x],$$

so $y \subseteq x$, which says $y \in \mathcal{P}(x)$. Therefore, $x \subseteq \mathcal{P}(x)$.

 $3 \implies 2$: Let $z \in \bigcup x$, i.e. $(\exists y)(y \in x \subseteq \mathcal{P}x \& z \in y)$. Then, $y \subseteq x$, so $z \in y \to z \in x$, which implies $\bigcup x \subseteq x$.

 $2 \implies 1$. Let $y \in x$ and $z \in y$. Then, by $2, z \in \bigcup x \subseteq x$, so $z \in x$. Therefore, x is transitive. \square

Lemma 16.2. If x is transitive, then so is x^+ .

Proof.

$$\bigcup (x^+) = \bigcup (x \cup \{x\})$$

$$= \bigcup x \cup \bigcup \{x\}$$

$$= \bigcup x \cup x$$

$$\subseteq x \cup x = x \subseteq x \cup \{x\} = x^+.$$

Lemma 16.3. If $k \in \omega$, then $k^+ \in \omega$.

Proof. If $k \in \omega$, then for every inductive set $I, k \in I$, which is inductive, so $k^+ \in I$, so $k^+ \in \omega$.

Proposition 16.4.

$$(\forall k)[k \in \omega \to k \text{ is transitive}]$$

Proof. Let $A := \{k \in \omega : k \text{ is transitive}\}.$

Goal: To show $A = \omega$, it suffices to show that A is inductive.

 $0 = \emptyset$ is transitive as

$$\bigcup \varnothing = \varnothing \subseteq \varnothing.$$

By 16.2, if $k \in A$, then k^+ is transitive, so $k^+ \in A$. Hence, A is inductive, which gives

$$\omega \subseteq A \subseteq \omega$$
,

so $A = \omega$. Therefore, $(\forall k) \ k \in \omega \to k$ is transitive.

Proposition 16.5. ω is transitive.

Proof. Let

$$A := \{ k \in \omega : k \subseteq \omega \}.$$

We will show A is inductive.

$$0 = \varnothing \subseteq \omega$$
,

so $0 \in A$. Suppose $k \in A$. Then,

$$k^{+} = \underbrace{k}_{\subseteq \omega} \cup \underbrace{\{k\}}_{\subseteq \omega} \subseteq \omega,$$

so A is inductive, which implies $A = \omega$.

Therefore, $(\forall k)[k \in \omega \to k \subseteq \omega]$, so $\omega \subseteq \mathcal{P}(\omega)$, so ω is transitive.

Corollary 16.6.

$$(\forall k)(k \in \omega \to k \text{ is a set of transitive sets}).$$

 ω is a set of transitive sets.

16.2 Recursion

Theorem 16.7 (Construction by Recursion). Given a function $g: A \to A$ and $a \in A$, there is a unique function $f: \omega \to A$ such that f(0) = a and $(\forall n)(n \in \omega \to f(n^+) = g(f(n)))$.

"Morally":

$$n \mapsto \overbrace{g \circ \cdots \circ g}^{n \text{ times}}(a) = f(n).$$

Proof. First, we show that if f_1 and f_2 are two functions with $f_1: \omega \to A$, $f_2: \omega \to A$, such that $f_1(0) = a = f_2(0)$, and for all $n \in \omega$, $f_1(n^+) = g(f_1(n))$ and $f_2(n^+) = g(f_2(n))$, then $f_1 = f_2$. Since $dom(f_1) = \omega = dom(f_2)$, it suffices to show that

$$G := \{ n \in \omega : f_1(n) = f_2(n) \}$$

= ω .

Since $f_1(0) = a = f_2(0), 0 \in G$. Suppose $n \in G$.

$$f_1(n^+) = g(f_1(n))$$

= $g(f_2(n))$
= $f_2(n^+)$,

so $n^+ \in G$. So, G is inductive, and we have $(\forall n \in \omega) f_1(n) = f_2(n)$, so $f_1 = f_2$.

We know that:

$$f(0) = a,$$

 $f(1) = g(a),$
 $f(2) = g(g(a)),$
 $f(3) = g(g(g(a))).$

Let

$$\mathcal{F} := \{ h \in \mathcal{P}(\omega \times A) : \\ h \text{ is a function,} \\ \operatorname{dom}(h) \subseteq \omega, \\ \operatorname{ran}(h) \subseteq A, \\ 0 \in \operatorname{dom} h, \\ h(0) = a, \\ \text{if } n \in \omega \ \& \ n^+ \in \operatorname{dom}(h), \text{ then } n \in \operatorname{dom}(h) \ \& \ h(n^+) = g(h(n)) \}$$

Plan:

- 1. We'll show that if $h_1, h_2 \in \mathcal{F}$ and $n \in \text{dom}(h_1) \cap \text{dom}(h_2)$, then $h_1(n) = h_2(n)$.
- 2. If $h \in \mathcal{F}$ and $n \in \text{dom}(h)$, then $\exists \tilde{h} \in \mathcal{F}$ with $n^+ \in \text{dom } \tilde{h}$.
- 3. $\forall n \in \omega \ \exists h \in \mathcal{F} \ n \in \text{dom } h$.
- 4. Set $f := \bigcup \mathcal{F}$. This f solves the problem.

March 1

Lecturer: Professor Slaman

17.1 Recursion Theorem

Theorem 17.1. Let A be a set, $a \in A$, $F : A \to A$. There is a unique $h : \omega \to A$ such that h(0) = a and for all $n \in \omega$, $h(n^+) = F(h(n))$.

 $Use: (\mathbb{N}, successor, 0)$ is a **Peano system**:

- 1. 0 is not in the range of the successor function.
- 2. The successor function is injective.
- 3. Any subset of N containing 0 and closed under the successor function is equal to N.

Proof. Define: A function v with domain contained in \mathbb{N} , range contained in A is acceptable iff:

- 1. if $0 \in dom(v)$, then v(0) = a,
- 2. if $n^+ \in dom(v)$, then $n \in dom(v)$ and $v(n^+) = F(v(n))$.

For example, \emptyset and $\{\langle 0, a \rangle\}$ are both acceptable.

Let

$$\begin{split} \mathcal{H} &= \{v: v \text{ is acceptable}\}, \\ h &= \bigcup \mathcal{H} \\ &= \{\langle x, y \rangle : \text{there is an acceptable } v \in \mathcal{H}, v(x) = y\}. \end{split}$$

Need:

- \bullet h is single-valued.
- $dom(h) = \mathbb{N}$.
- h satisfies the recursion conditions.

Claim 1: h is a function, i.e. h is single-valued on its domain.

Consider $V = \{n : \text{there is at most one } y \text{ such that } \langle n, y \rangle \in h\}$. To show that $V = \mathbb{N}$,

- (a) 0: Observe that $\{\langle 0, a \rangle\} \in \mathcal{H}$, so $\langle 0, a \rangle \in h$. For all y, if $\langle 0, y \rangle \in h$, then there is a $v \in \mathcal{H}$ such that v(0) = y, but $v \in \mathcal{H}$ & $v(0) = y \to y = a$, so y = a.
- (b) Next: Suppose that $n \in V$. We need to show: $n^+ \in V$. If $n^+ \notin \text{dom}(h)$, then we are done, so assume $n^+ \in \text{dom}(h)$. This happens by some $v \in \mathcal{H}$, such that $n^+ \in \text{dom}(v)$. We have $v(n^+) = y$, so $n \in \text{dom}(v)$, $v(n^+) = F(v(n))$. If also $\langle n^+, z \rangle \in h$, there would be a $u \in \mathcal{H}$ with $u(n^+) = z$, $n \in \text{dom}(h)$, $u(n^+) = F(u(n))$. Using the assumption that $n \in V$: since $n \in V$, u(n) = v(n). But then, $y = v(n^+) = F(v(n)) = F(u(n)) = u(n^+) = z$, i.e. $n^+ \in V$.

March 3

Lecturer: Professor Slaman

18.1 Recursion Theorem

Peano System: $(\mathbb{N}, S, 0)$

- 1. $0 \notin \operatorname{ran}(S)$.
- 2. S is injective.
- 3. For any subset $A \subseteq \mathbb{N}$, if $0 \in A$ and for all $a \in A$, $S(a) \in A$, then $A = \mathbb{N}$.

Theorem (Recursion Theorem): For A a set, $F: A \to A$, and $a \in A$, there is a unique $h, h: \mathbb{N} \to A$, which satisfies

$$h(0) = a,$$

$$h(n^+) = F(h(n)).$$

Recall. v is acceptable if $dom(v) \subseteq \mathbb{N}$ and:

- 1. If $0 \in dom(v)$, then v(0) = a.
- 2. If $n^+ \in dom(v)$, then $n \in dom(v)$ and $v(n^+) = f(v(n))$.

$$\mathcal{H} = \{v : v \text{ is acceptable}\},\$$
 $h = \bigcup \mathcal{H}.$

Showed: h is a function, i.e. h is single-valued.

Proof, Continued. Fact 2: h is acceptable.

Check:

- 1. Suppose $0 \in \text{dom}(h)$. Then $\exists v \text{ acceptable}, 0 \in \text{dom}(v), \text{ and } 1 \text{ for } v \text{ implies } v(0) = a.$ So, h(0) = a.
- 2. Similar argument: use 2 for the v that puts n^+ in dom(h).

Fact 3: $dom(h) = \mathbb{N}$.

Proof by induction on dom(h).

Check: $0 \in \text{dom}(h)$. $\{\langle 0, a \rangle\}$ is acceptable, so h(0) = a. Suppose that $n \in \text{dom}(h)$. To show:

 $n^+ \in \text{dom}(h)$. Let v be acceptable and $n \in \text{dom}(v)$. If $n^+ \in \text{dom}(v)$, we are done. Otherwise, let $v^* = \{\langle n^+, F(v(n)) \rangle\} \cup v$. To show that v^* is acceptable:

- 1. Suppose that $0 \in \text{dom}(v^*)$. 0 is not in the range of successor: $0 \neq n^+$. Then, $0 \in \text{dom}(v)$, so v(0) = a by acceptability of v, so $v^*(0) = a$.
- 2. Suppose $m^+ \in \text{dom}(v^*)$.

Case 1: $m^+ \in \text{dom}(v)$. Then, $m^+ \neq n^+$ and $v(m^+) = F(v(m))$ and $m \in \text{dom}(v)$. Since v^* extends $v, v^* = v$ on m, m^+ , so

$$v^*(m^+) = F(v^*(m)).$$

Case 2: $m^+ \notin \text{dom}(v)$, hence $m^+ = n^+$ is a new point in $\text{dom}(v^*) \setminus \text{dom}(v)$. Since the successor is injective, m = n and

$$v^*(m^+) = v^*(n^+) = F(v(n))$$

= $F(v^*(n))$
= $F(v^*(m))$.

So, there is an acceptable v^* with $n^+ \in \text{dom}(v^*)$, which implies that $n^+ \in \text{dom}(h)$. By induction 3, $\text{dom}(h) = \mathbb{N}$.

The facts together imply the Recursion Theorem.

18.2 Characterization of Peano Systems

Theorem 18.1. Suppose (N, S, e) is a Peano system. Then, $(\mathbb{N}, \text{successor}, 0)$ (or any other Peano system) and (\mathbb{N}, S, e) are isomorphic. $\exists \pi : \mathbb{N} \to N$ such that π is a bijection and $\pi(0) = e$, and for all $x, \pi(x^+) = S(\pi(x))$.

March 6

Lecturer: Professor Slaman

19.1 Characterization of Peano Systems

Theorem: Suppose that (N, S, e) is a Peano system. Then, $(\mathbb{N}, \text{successor}, 0)$ is isomorphic to (N, S, e).

Proof. Define $h: \mathbb{N} \to N$ to be the unique function satisfying

$$h(0) = e,$$

$$h(n^+) = S(h(n)).$$

Show:

- 1. h is surjective, i.e. $\operatorname{ran}(h) = N$. Induction: show $e \in \operatorname{ran}(h)$ and if $x \in \operatorname{ran}(h)$, then $S(x) \in \operatorname{ran}(h)$. h(0) = e. Suppose $x \in \operatorname{ran}(h)$, i.e. x = h(n). By definition, $h(n^+) = S(h(n)) = S(x)$. Hence, $\operatorname{ran}(h) = N$ by 3, since N is a Peano system.
- 2. h is injective, i.e. for all $x_1, x_2 \in \mathbb{N}$, $h(x_1) = h(x_2) \to x_1 = x_2$. Let

$$I = \{x : h^{-1}(h(x)) = \{x\}\}\$$

= $\{x : h(x') = h(x) \leftrightarrow x' = x\}$ = domain on which h is injective.

To show: $0 \in I \& (x \in I \to x^+ \in I)$.

 $0 \in I$: By definition, h(0) = e. If h(x) = e and $x \neq 0$, then let $x = n^+$ (since $x \neq 0$), and then $h(x) = h(n^+) = S(h(n))$ and e is not in the range of S, so $h(x) \neq e$.

Suppose $n \in I$:

$$h(n^+) = S(h(n)).$$

If $h(m) = h(n^+) = S(h(n))$, then $m \neq 0$ since $e \notin ran(S)$. Suppose that $m = k^+$.

$$h(m) = h(k^+) = S(h(k)),$$

i.e. S(h(n)) = S(h(k)). By 2 of the Peano system axioms, S is injective, so h(n) = h(k). Since $n \in I$, k = n and $m = k^+ = n^+$, so $n^+ \in I$.

So, h is a bijection, as required.

19.2 Arithmetic

We can define addition a + b by

$$a + 0 = a,$$

 $a + (b^+) = (a + b)^+.$

Then, $a < b \iff \exists t \ (t \neq 0 \& a + t = b).$

How should we define a finite set? We could say F finite iff $\exists (N,S,e) \exists A \subseteq N$ such that if $m \in A$, then m=0 or $m=n^+$ and $n \in A$, and $A \neq N$, and A is bijective with F.

March 8

Lecturer: Professor Slaman

20.1 Arithmetic on a Peano System (N, S, e)

Addition is a binary function $N \times N \to N$ (subset of $(N \times N) \times N$):

$$\underbrace{n+m}_{\text{arguments}} = \underbrace{k}^{\text{value}}.$$

Definition 20.1. For $n \in N$, define $A_m : N \to N$ by:

$$A_m(0) = m,$$
 $\underbrace{A_m(S(n))}_{m+S(n)} = \underbrace{S(A_m(n))}_{S(m+n)}.$ (20.1)

Define $m + n = A_m(n)$.

 $m+n=k \iff \exists f: N \to N \text{ } f \text{ satisfies (20.1) and } f(n)=k.$

Proposition 20.2. 1. + is associative, i.e. for all m, n, k,

$$(m+n) + k = m + (n+k).$$

2. Addition is commutative: m + n = n + m.

Proof. 1. Prove it by induction on k (for all m, n simultaneously).

Case 1: k = 0. We have to show (m + n) + 0 = m + (n + 0) (for all m, n).

$$(m+n) + 0 = A_{m+n}(0)$$

$$= m+n$$

$$= m + \overbrace{A_n(0)}^n$$

$$= m + (n+0).$$

Case 2 (Inductive Case): Assume that the statement holds for k, show that the statement holds

for S(k).

$$\begin{split} (m+n) + S(k) &= S((m+n)+k) \\ &= S(m+(n+k)) \qquad \text{induction assumption} \\ &= m + S(n+k) \\ &= m + (n+S(k)). \end{split}$$

2. Proof by induction on n.

Initial Case: Show that

$$\underbrace{m+0}_{m} = 0 + m.$$

The definition of addition is k+0=k, k+S(m)=S(k+n). To show 0+m=m, we use induction on m.

$$\begin{aligned} 0+0&=0,\\ 0+S(n)&=S(0+n)\\ &=S(n) \end{aligned} \qquad \text{definition of } +$$

Inductive Case: Assume m + n = n + m for all m. Show that m + S(n) = S(n) + m for all m.

$$m + S(n) = S(m + n)$$

= $S(n + m)$ by induction
= $n + S(m)$

To show: n + S(m) = S(n) + m for all n, m. Show it by induction on m. If m = 0:

$$S(n) + 0 = S(n)$$

$$= S(n+0)$$

$$= n + S(0).$$

Given that n + S(p) = S(n) + p, show that n + S(S(p)) = S(n) + S(p).

$$n + S(S(p)) = S(n + S(p))$$
 definition of +
= $S(S(n) + p)$ induction
= $S(n) + S(p)$ definition of +

Hence, m + S(n) = S(n) + m as required. Then, addition commutes.

20.1.1 Multiplication

Similarly, we could define multiplication

$$m \cdot n = B_m(n) \qquad \begin{cases} B_m(0) &= 0\\ B_m(S(n)) &= B_m(n) + m \end{cases}$$

and show:

$$(m \cdot n) \cdot k = m \cdot (n \cdot k)$$
 associativity $(m \cdot n) = (n \cdot m)$ commutativity $m \cdot (n + k) = m \cdot n + m \cdot k$ distributivity

It's worth checking your ability by doing at least one yourself.

20.2 The Special Rule of ω

Recall: $(\omega, +, \varnothing)$, where ω is the collection of x such that x belongs to any inductive set.

$$A \text{ is inductive } \iff \varnothing \in A \ \& \ n \in A \to \underbrace{n \cup \{n\}}_{n^+} \in A.$$

- 1. $(\omega, +, \varnothing)$ is a Peano system.
- 2. Elements of ω are transitive.
- 3. ω is inductive.

March 10

Lecturer: Professor Slaman

21.1 Ordering of the Natural Numbers

 ω is a stand-in for the natural numbers.

Today: ω is linearly ordered by \in . The proof is "fiddly".

Lemma 21.1. (a) For all natural numbers n, m,

 $m \in n \leftrightarrow m^+ \in n^+$.

(b) If $n \in \omega$, $n \notin n$.

Proof. (a) \Longrightarrow : By induction. Let $S = \{n : \text{for all } m, m \in n \to m^+ \in n^+\}$.

Initial Case: $\emptyset \in S$ (vacuously).

Successor Case: Suppose $n \in S$. To show: $n^+ \in S$, i.e. show that for all m, if $m \in n^+$, then $m^+ \in (n^+)^+$. Let $m \in n^+ = n \cup \{n\}$. Case 1: m = n. Then, $m^+ = n^+ \in \{n^+\} \cup n^+$. Otherwise, $m \in n$. Since $n \in S$, $m^+ \in n^+ \subseteq (n^+)^+$, so $m^+ \in (n^+)^+$.

So, $S = \omega$ as required.

 \Leftarrow : Suppose that $m^+ \in n^+$. To show: $m \in n$.

$$m^+ = m \cup \{m\}, \qquad n^+ = n \cup \{n\}.$$

Case 1: $m^+ = n$. Then, $m \in n$ since $m \in m^+$.

Case 2: $m^+ \in n$. Then, $m \in n$ by transitivity of n.

 $m \in m^+ \in n$.

(b) Show $n \in \omega \to n \notin n$. Let $T = \{n : n \in \omega \& n \notin n\}$. Induction: $T = \omega$.

Initial Case: $\varnothing \in T$ since $\varnothing \notin \varnothing$.

Successor Case: Assume $n \in T$. Then, $n^+ = n \cup \{n\}$. If $n^+ \in n^+$, then either: $n^+ = n$ and $n \in n^+ = n$, or $n^+ \in n$, and by transitivity, $n \in n$. This is impossible since $n \in T$.

Proposition 21.2 (Trichotomy). For all $m, n \in \omega$, exactly one of $m \in n$, m = n, or $n \in m$ holds.

Proof. First, show that the cases are mutually exclusive. If m = n, then neither $m \in n$ nor $n \in m$ by (b). If $m \in n$, if $n \in m$, we would have $m \in n \in m$, and by transitivity, $m \in m$, which is a contradiction. Then, $n \notin m$.

Consider

$$T = \{n : \forall m \in \omega \ (m \in n \text{ or } m = n \text{ or } n \in m)\}\$$

and show by induction that $T = \omega$.

Initial: To show $\varnothing \in T$, we need $\forall m \in \omega \ (m = \varnothing \text{ or } \varnothing \in m)$. Proof by induction on m.

Successor Step: Assume $n \in T$. Need to show $n^+ \in T$, i.e. $\forall m \in \omega \ (m \in n^+ \text{ or } m = n^+ \text{ or } n^+ \in m)$. Let $m \in \omega$. Since $n \in T$, either $m \in n$, m = n, or $n \in m$. If $m \in n$, then $m \in n^+ = n \cup \{n\}$. Otherwise, $n \in m$. By 21.1, $n^+ \in m^+ = m \cup \{m\}$. Possibilities: (1) $n^+ = m$. (2) $n^+ \in m$. QED.

Observations. For all $m, n \in \omega$,

- $m \in n$ iff $m \subseteq n$. (\iff uses Trichotomy, 21.2.)
- $m \in n$ iff $m \subseteq n$.

21.2 Well-Ordering

Well-Ordering Property of ω . For any non-empty $A \subseteq \omega$, there is $a \in A$ such that for all $n \in A$, $a \subseteq n$. (Any non-empty subset of ω has a least element.)

Well-ordering is a linear ordering for which every non-empty subset has a least element.

Observation. Given the WO property, we can conclude that there is no $f: \omega \to \omega$ such that for all n, $f(n^+) < f(n)$.

Question: Is "L is a WO" equivalent to "there is no $f: \omega \to L$ such that $\forall n \ (f(n^+) < f(n))$ "?

March 13

Lecturer: Professor Slaman

22.1 Ordering on the Natural Numbers

Last Time: Trichotomy Theorem. For all $m, n \in \omega$, exactly one of the following holds: $m \in n$, m = n, $n \in m$.

Application.

Theorem 22.1. For all m, n, p,

$$m \in n \leftrightarrow m + p \in n + p$$
.

Proof. \Longrightarrow : Assume $m \in n$. To show: $m + p \in n + p$. By induction on p.

Initial Case: p = 0. We need

$$\underbrace{m+0}_m\in\underbrace{n+0}_n.$$

Successor Case: Assume $m + k \in n + k$. Need to show: $m + (k^+) \in n + (k^+)$.

$$m + (k^+) = (m+k)^+;$$
 $n + (k^+) = (n+k)^+.$

Last time: $a \in b \leftrightarrow a^+ \in b^+$. Then,

$$(m+k)^+ \in (n+k)^+$$

 $m+k^+ \in n+k^+$.

 \iff : Assume $m+p\in n+p$. To show: $m\in n$. Use trichotomy: could we have n=m? This would give $n+p\in n+p$, which is impossible. Could we have $n\in m$? Then, $n+p\in m+p$ (by \implies), so $n+p\in m+p\in n+p$ and \in is transitive on elements of ω , so $n+p\in n+p$ is impossible. Thus, the only remaining possibility, $m\in n$, must hold.

22.2 Comments about Induction

Theorem 22.2 (Well-Ordering Property for ω). For any $A \subseteq \omega$, if $A \neq \emptyset$, then there is an $a \in A$ such that for all $n \in A$, $a \subseteq n$ (i.e. $\forall n \in \omega$ ($a > n \to n \notin A$)). a is the least element of A.

Proof. Let $M = \{x : x \in \omega \& \forall y \leq x \ y \notin A\}$. Assume A is a counterexample to W-O for ω . Show M satisfies the inductive hypothesis.

 $\varnothing \in M$ follows from the fact that \varnothing is the least element of ω .

Suppose $k \in M$. Then, consider k^+ . We know $\forall y \leq k \ y \notin A$, so $\forall y < k^+ \ y \notin A$.

$$n < k^+ \iff n \in \underbrace{k \cup \{k\}}_{k^+}$$

$$\iff n = k \text{ or } n \in k$$

$$\iff n = k \text{ or } n < k.$$

Then, $\forall y \ (y \in A \to y \ge k^+)$. If $k^+ \in A$, then $k^+ = a$ shows that A is not a counterexample to the claim, so $k^+ \notin A$.

Corollary 22.3. There is no $f: \omega \to \omega$ such that for all $n, f(n) > f(n^+)$.

Proof. Consider the range of f. It would have to have a least element a. Then, $\exists n \ (f(n) = a)$ and then $a = f(n) > f(n^+)$, which is a contradiction.

Challenge: Suppose that we are given < on a set L and there is a non-empty subset of L with no < least element. Does there exist a $f: \omega \to L$ as in 22.3, i.e. $\forall n \ (f(n) > f(n^+))$?

Try to define it by recursion. For f(1), pick some value < f(0). Pick some f(2) < f(1). In order to run the recursion, we would need a function "pick" such that dom(pick) = $\{x : x \neq \emptyset, x \subseteq A\}$ and for all $x \in \text{dom(pick)}$, pick $(x) \in x$. This is an instance of the Axiom of Choice.

Recall. We were experimenting with ways to identify finite sets.

$$F ext{ is finite } \iff \exists n \ (n \in \omega \& \exists \text{ bijection } g : n \to F).$$
 (22.1)

g is one-to-one and onto.

$$F$$
 is finite \iff every injection $F \to F$ is also a surjection. (22.2)

AC: For every set A, there is a function $g: A \to \bigcup A$ such that for all $a \in A$, $a \neq \emptyset \to g(a) \in a$.

March 15

Lecturer: Professor Slaman

23.1 Cardinality & the Axiom of Choice

Definition 23.1. A set A is equinumerous to another set B iff there is a bijection between A and B.

Example 23.2. \mathbb{N} and $\{2n : n \in \mathbb{N}\}$ are equinumerous: $n \mapsto 2n$ is a bijection between the two sets.

Example 23.3. ω and $\omega \times \omega$ are equinumerous. We will give two different proofs.

- I. (i) Define $f_1: \omega \xrightarrow{\text{onto}} \omega \times \omega$. $f_1: k \mapsto (n_1, n_2)$ if k's prime factorization has $2^{n_1} \cdot 3^{n_2} \cdots$ or (0, 0) if k = 0.
 - (ii) Make our map injective. Define $f_2:\omega \xrightarrow{\text{one-to-one}} \omega \times \omega$ by recursion.

$$f_2(0) = f_1(0),$$

 $f_2(n+1) = f_1(x),$ where x is the least number such that $f_1(x) \notin \{f_2(0), \dots, f_2(n)\}.$

 f_2 is injective. Let $M = \{x : \exists x_1 < x \ f_2(x_1) = f_2(x)\}$. If f_2 is not injective, then M has a least element. Suppose m is the least element of M. Then, $\exists x_1 < m$ such that $f_2(x_1) = f_2(m)$, so $f_2(m) \in \{f_2(0), \ldots, f_2(m-1)\}$ contradicts the fact that f_2 satisfies the recursion property.

II. View the elements of $\omega \times \omega$ as lattice points on a two-dimensional grid. An injection from ω is given by walking along the diagonal lines of the lattice.

Example 23.4. ω and \mathbb{Q} are equinumerous. We have a map

$$(p,q) \mapsto \begin{cases} \frac{p}{q}, & q \neq 0, \\ 1, & q = 1, \end{cases}$$

which is a map $\omega \xrightarrow{\text{onto}} \mathbb{Q} \geq 0$. We can change the map to

$$(p,q) \mapsto \begin{cases} \frac{p}{q}, & \text{if } p,q \neq 0 \text{ are relatively prime or } p = 0, \\ -\frac{p}{q}, & \text{if } p,q \neq 0 \text{ are not relatively prime,} \\ 0, & \text{if } p = 0, \\ 1, & \text{otherwise,} \end{cases}$$

which gives a map $\omega \xrightarrow{\text{one-to-one}} \omega^2 \xrightarrow{\text{onto}} \mathbb{Q}$. We can convert the map as earlier into a bijection.

Example 23.5. ω and the set of polynomials in one variable with integer coefficients are equinumerous.

First, consider $\omega^* = \bigcup_{k>1} \omega^k$, the k-fold Cartesian product.

$$\omega \xrightarrow{\text{onto}} \omega^*$$
,

 $k \mapsto (n_1, \dots, n_i),$ where the prime factorization of k is $2^{n_1} \cdot 3^{n_2} \cdots p_i^{n_i}$,

 p_{i+1} is the largest prime that divides k,

$$1 \mapsto (1),$$

$$0 \mapsto (0)$$
.

For any $(n_1, ..., n_i)$, let $k = 2^{n_1} \cdots p_i^{n_i} p_{i+1}$. Then, $k \mapsto (n_1, ..., n_i)$.

Second, we need $\omega \xrightarrow{\text{onto}} \mathbb{Z}^* = \bigcup_k \mathbb{Z}^k$. Consider $\omega \xrightarrow{\text{onto}} \mathbb{Z}$ by

$$n \mapsto \begin{cases} 0, & \text{if } n = 0, \\ k, & \text{if } n = 2k \neq 0, \\ -k, & \text{if } n = 2k + 1 \neq 0. \end{cases}$$

This yields $\omega \xrightarrow{\text{onto}} \mathbb{Z}^*$ by $k \mapsto (n_1, \dots, n_i) \mapsto (g(n_1), \dots, g(n_i))$.

Define $\mathbb{Z}^* \to \text{set of } \mathbb{Z}$ polynomials by $(a_1, a_2, \dots, a_k) \mapsto a_1 + a_2x + a_3x^2 + \dots + a_kx^{k-1}$. This yields $\omega \xrightarrow{\text{onto}} \mathbb{Z}$ -polynomials. Make the map injective by discarding repeated values.

Example 23.6. Finally, we have a map $\omega \xrightarrow{\text{one-to-one}} \{ \xi \in \mathbb{R} : \xi \text{ is algebraic} \}.$

March 17

Lecturer: Professor Slaman

24.1 Liouville Number

Last Time: We showed that a variety of sets are countable.

In particular, $\{\xi : \xi \in \mathbb{R} \text{ and } \xi \text{ is algebraic}\}\$ is countable.

Q: Is every element of \mathbb{R} algebraic?

Liouville 1855: There is a transcendental number.

Lemma 24.1. Suppose a is algebraic and not in \mathbb{Q} . Then, there is a

1. $k \in \mathbb{N}, k \geq 1$, and

2. D > 0.

such that for all p/q,

$$\left| a - \frac{p}{q} \right| > D \cdot \frac{1}{q^k}.$$

Proof. Fix an $f \in \mathbb{Z}[x]$ of degree ≥ 1 , f(a) = 0, which is of minimal degree with respect to having a as a root. Choose an interval $I \ni a$ such that a is the only solution to f(x) = 0 in I. Let M be the maximum of |f'(x)| for $x \in I$. Let p/q be given with $p/q \in I$. Invoke the Mean Value Theorem.

$$\exists x \in I \quad f'(x) = \frac{f(a) - f(p/q)}{a - p/q}, \qquad q > 0.$$

Hence,

$$\begin{split} \left|a - \frac{p}{q}\right| &= \frac{|f(a) - f(p/q)|}{|f'(x)|}, \\ \left|a - \frac{p}{q}\right| &\geq \frac{1}{M} \cdot \left|\frac{1}{q^k}\right|, \qquad q > 0, \end{split}$$

where k is the degree of f.

The Liouville Number

$$\alpha = \sum_{n=1}^{\infty} \frac{1}{10^{n!}}.$$

yields $\forall k \; \exists p/q \; |\alpha - p/q| < 1/q^k$, where q will be a power of 10. Also, the decimal expansion does not repeat, so it is not in \mathbb{Q} either.

24.2 Cantor's Diagonalization

Theorem 24.2 (Cantor 1873). \mathbb{R} is not countable.

Proof. Suppose not. Then, consider the counting of \mathbb{R} $n \mapsto a_n$. Fix the decimal expansion of a_i so that we don't use any such with all but finitely many 9s. Define

$$\alpha = \sum_{i=0}^{\infty} \frac{d_i}{10^i},$$

where we set

$$d_i = \begin{cases} 1, & \text{if the } i \text{th place digit in } a_i \neq 1, \\ 2, & \text{otherwise.} \end{cases}$$

Then, $\alpha \neq a_i$ for all *i*. Reason: α has a unique decimal expansion and it is different from any of the expansions for $\{a_i : i \in \mathbb{N}\}$.

Exercise: Suppose that $\{A_i : i \in \mathbb{N}\}$ is a collection of subsets of \mathbb{R} such that for all i, A_i is not equinumerous with \mathbb{R} . Show: $\bigcup_i A_i \neq \mathbb{R}$.

Question: Is every $A \subseteq \mathbb{R}$ either equinumerous or countable? (Not decided by the usual axioms of set theory.)

Exercise: $\mathbb{R} \setminus \mathbb{Q}$ is equinumerous with \mathbb{R} .

March 20

25.1 Finite Sets

Definition 25.1. A set X is **finite** if $\exists n \in \omega \ X \approx n \ [X \text{ has the same cardinality as } n]$.

Provisionally: card(X) = n.

Theorem 25.2. If X is finite and $f: X \to X$ is one-to-one, then f is into.

Remark: $(\exists X) \ f: X \to X$ is one-to-one but not onto, e.g. $X = \omega, \ f: \omega \to \omega$ given by $n \mapsto 2n$.

Definition 25.3. X is **Dedekind-finite** if whenever $f: X \to X$ is one-to-one, f must be onto.

Proposition 25.4. $(\forall n \in \omega)$ If $f: n \to n$ is one-to-one, then f is onto.

Proof. By induction on n.

n=0: The only function with domain $0=\varnothing$ is \varnothing , and $\varnothing:\varnothing\to\varnothing$ is a bijection.

Suppose that the proposition is true of n. Consider $f: n^+ \to n^+$.

Case 1: $f[n] \subseteq n$. Define g := f, $h := I_{n^+}$.

Case 2: $f[n] \nsubseteq n$. Then, $\exists ! a \in n \ f(a) = n$. Define $g: n^+ \to n^+$ by

$$m \mapsto \begin{cases} f(n), & \text{if } m = a, \\ n, & \text{if } m = n, \\ f(m), & \text{otherwise.} \end{cases}$$

So, $g=(f\upharpoonright n\setminus\{a\})\cup\{\langle a,f(n)\rangle\}\cup\{\langle n,n\rangle\}.$ Then, define $h:n^+\to n^+$ by

$$m \mapsto \begin{cases} n, & \text{if } m = a, \\ a, & \text{if } m = n, \\ m, & \text{otherwise.} \end{cases}$$

Hence, $f = g \circ h$, since:

$$a \xrightarrow{h} n \xrightarrow{g} n$$

$$n \xrightarrow{h} a \xrightarrow{g} f(n)$$

g is one-to-one and $g \upharpoonright n : n \to n$ because g is one-to-one and g(n) = n. $g \upharpoonright n$ is one-to-one. By the IH, $g \upharpoonright n$ is onto. g(n) = n, so $n^+ = \operatorname{ran}(g)$. Therefore, g is onto. $h: n^+ \to n^+$ is bijective, so $f = g \circ h$ is onto.

Proof of 25.2. Let X be finite and $f: X \to X$ be one-to-one. Since X is finite, $\exists n \in \omega \ \exists g: X \to n$ which is one-to-one and onto. $g \circ f \circ g^{-1}: n \to n$ is one-to-one. By 25.4, $g \circ f \circ g^{-1}$ is onto. Hence, $f = g^{-1} \circ (g \circ f \circ g^{-1}) \circ g$ is onto.

Corollary 25.5 (Pigeon Hole Principle). If X is finite and $f: X \to X$ is not onto,

$$\exists a, b \in X \ a \neq b \ f(a) = f(b).$$

Corollary 25.6. If X is finite, then $\exists! n \in \omega X \approx n$.

Proof. X is finite implies $\exists n \in \omega \ X \approx n$. Suppose $m \in \omega \& X \approx m$. If $m \neq n$, then WLOG by the trichotomy, we may assume $m \in n$, so $m \subsetneq n$. However, $X \approx m$ via h and $X \approx n$ via g, so $h \circ g^{-1} : n \xrightarrow{\approx} m \subsetneq n$. Therefore, $h \circ g^{-1} : n \to n$ would be one-to-one but not onto.

Theorem 25.7. If X is finite and $Y \subseteq X$, then Y is also finite.

Proposition 25.8. $(\forall n \in \omega)$ If $Y \subseteq n$, then Y is finite.

Proof. By induction on n.

$$n = 0$$
: $Y \subseteq 0 \implies Y = \emptyset \approx 0$.

 $n^+\colon n^+=n\cup\{n\}$, so we can write $Y=(Y\cap n)\cup(Y\cap\{n\})$. $Y\cap n\subseteq n$, so by induction, we know that $\exists m\in\omega\ \exists f:(Y\cap n)\to m$ which is a bijection. Case 1: $Y\cap\{n\}=\varnothing$. Here, $Y=Y\cap n$ and $Y\cap n$ is finite. Case 2: $Y\cap\{n\}=\varnothing$, so $Y\cap\{n\}=\{n\}$. Define $h:=f\cup\{\langle n,m\rangle\}$ (functions with disjoint domains), so h is a function. The ranges are disjoint and each is one-to-one, so h is a one-to-one function.

$$ran(h) = ran(f) \cup ran(\{\langle n, m \rangle\}) = m \cup \{m\} = m^+.$$

Therefore, $Y \approx m^+$ is finite.

25.7 follows from 25.8 by conjugating with a bijection $X \approx n$.

25.2 Cardinality Arithmetic

Suppose

$$\kappa := \operatorname{card}(K),$$

$$\lambda := \operatorname{card}(L).$$

We will define

$$\begin{split} \kappa \cdot \lambda &:= \operatorname{card}(K \times L), \\ \kappa + \lambda &:= \operatorname{card}(K \mathbin{\dot{\cup}} L), \\ \kappa^{\lambda} &:= \operatorname{card}(^L K). \end{split}$$

The disjoint union is $K \times \{0\} \cup L \times \{1\}$.

March 22

26.1 Cardinal Arithmetic

Let

$$\kappa = \operatorname{card}(K),$$

$$\lambda = \operatorname{card}(L).$$

We define the operation

$$\kappa + \lambda := \operatorname{card}(K \coprod L),$$

where

$$K \coprod L := (K \times \{0\}) \cup (L \times \{1\}).$$

Also, $K \approx K \times \{0\}$ by taking the map $k \mapsto \langle k, 0 \rangle$. Likewise, $L \approx L \times \{1\}$.

Aside. Suppose we have an indexed set $(\kappa_i)_{i\in I}$. Later, we will discuss

$$\sum_{i \in I} \kappa_i := \operatorname{card} \left(\bigcup_{i \in I} \kappa_i \times \{i\} \right).$$

As an example,

$$1+1=\operatorname{card}(\overbrace{1}^{\{0\}}\times\{0\}\cup\overbrace{1}^{\{0\}}\times\{1\})=\operatorname{card}(\underbrace{\{\langle 0,0\rangle,\langle 0,1\rangle\}}_{\approx\{0,1\}})=2.$$

We also define

$$\kappa \cdot \lambda = \operatorname{card}(K \times L).$$

For example, you can check that

$$5 \cdot 7 = 35.$$

Similarly,

$$\kappa^{\lambda} := \operatorname{card}({}^{L}K).$$

For example,

$$0^0 := \operatorname{card}(^\varnothing\varnothing) = \operatorname{card}(\{\varnothing\}) = 1.$$

Previously, for $n, m \in \omega$, we defined

$$n +^{\omega} 0 := n,$$

$$n +^{\omega} m^{+} := (n +^{\omega} m)^{+},$$

$$n \cdot^{\omega} 0 := 0,$$

$$n \cdot^{\omega} m^{+} := n \cdot^{\omega} m +^{\omega} n,$$

$$n^{0} := 1,$$

$$n^{m^{+}} = n^{m} \cdot^{\omega} n.$$

Fact. If $K \approx K'$, $L \approx L'$, and then $K \coprod L \approx K' \coprod L'$, $K \times L \approx K' \times L'$, and $L \times K' \times L'$.

Theorem 26.1. $\forall n, m \in \omega$,

$$n +^{\omega} m = n + m,$$
 $n \cdot^{\omega} m = n \cdot m,$
 $n \cdot^{\omega} m = n \cdot m,$
 $n \cdot^{\omega} = n \cdot m$
 $n \cdot^{\omega} = n \cdot m$
 $n \cdot^{\omega} = n \cdot m$
 $n \cdot m =$

Proof (for addition). Fix $n \in \omega$. We argue by induction on m.

$$n + 0 \approx n \times \{0\} \cup 0 \times \{1\}$$

$$= n \times \{0\}$$

$$\approx n$$

$$= n +^{\omega} 0.$$

$$n + m^{+} \approx (n \times \{0\}) \cup (m^{+} \times \{1\})$$

$$= (n \times \{0\}) \cup ((m \cup \{m\}) \times \{1\})$$

$$= (n \times \{0\}) \cup (m \times \{1\} \cup \{m\} \times \{1\})$$

$$= (n \times \{0\} \cup m \times \{1\}) \cup \{m\} \times \{1\}$$

$$\approx (n +^{\omega} m) \cup \{\langle m, 1 \rangle\}$$

(by the IH, and $\langle m, 1 \rangle \notin n +^{\omega} m$)

$$\approx (n +^{\omega} m) \cup \{n +^{\omega} m\}$$
$$= (n +^{\omega} m)^{+}$$
$$= n +^{\omega} m^{+}.$$

Definition 26.2.

$$\aleph_0 := \omega$$
.

Definition 26.3. If $X \approx \omega$,

$$card(X) = \aleph_0.$$

$$\aleph_0 + 1 = \aleph_0,$$

$$(\omega \times \{1\}) \cup (1 \times \{1\}) \approx \omega.$$

To see this, define the map

$$f: (\omega \times \{0\}) \cup \{0\} \times \{1\} \to \omega,$$
$$\langle 0, 1 \rangle \mapsto 0,$$
$$\langle n, 0 \rangle \mapsto n^+.$$

$$\aleph_0 + \aleph_0 = \aleph_0,$$

$$(\omega \times \{0\}) \cup (\omega \times \{1\}) \approx \omega.$$

Take the map

$$\langle n, 0 \rangle \mapsto 2n,$$

 $\langle n, 1 \rangle \mapsto 2n + 1.$

In general, we have

$$\begin{split} \kappa \cdot \lambda &= \lambda \cdot \kappa, \\ \kappa + \lambda &= \lambda + \kappa, \\ \kappa \cdot (\lambda + \mu) &= \kappa \cdot \lambda + \kappa \cdot \mu, \\ (\kappa^{\lambda})^{\mu} &= \kappa^{\lambda \cdot \mu}. \end{split}$$

We want to prove

$$^{M}(^{L}K) \approx {}^{L \times M}K.$$

Consider $f: {}^{L \times M}K$. We will map

$$f: L \times M \to K \mapsto \underbrace{\lfloor m}_{\in M} \mapsto \underbrace{\lfloor \ell}_{\in L} \mapsto f(\langle l, m \rangle)]].$$

In other words, $f(m)(\ell) = f(\langle l, m \rangle)$.

Think about the following:

$$\aleph_0^{\aleph_0} \neq \aleph_0$$
.

March 24

27.1 Larger Cardinals

Last time, we considered $\aleph_0^{\aleph_0}$.

Theorem 27.1. If K is any set with $K \neq \emptyset$ and $K \not\approx 1$, and L is any set, then $L \not\approx {}^LK$.

Observation. If we let $a, b \in K$, $a \neq b$, then $\exists \iota : L \to {}^L K$ which is one-to-one.

$$x \in L \mapsto \left[y \mapsto \begin{cases} a, & \text{if } y = x \\ b, & \text{if } y \neq x \end{cases} \right].$$

Proof. We show that for any function $f: L \to {}^LK$, f is not onto. We need to find $g: L \to K$ such that $g \notin \operatorname{ran}(f)$. Let $a, b \in K$ with $a \neq b$. Define $g: L \to K$, i.e. $g \in {}^LK$, by

$$x \mapsto \begin{cases} b, & \text{if } f(x)(x) = a, \\ a, & \text{otherwise.} \end{cases}$$

Claim. $g \notin \operatorname{ran}(f)$.

If $g \in ran(f)$, then $\exists x \in L$ such that g = f(x).

$$g(x) = f(x)(x)$$
.

If f(x)(x) = a, then $g(x) = b \neq a = f(x)(x)$. So, $f(x)(x) \neq a$. Then, $g(x) = a \neq f(x)(x)$. This is a contradiction.

Corollary 27.2. For cardinals κ , λ , if $\kappa \neq 0$ and $\kappa \neq 1$, then $\lambda \neq \kappa^{\lambda}$.

Corollary 27.3.

$$\begin{split} \aleph_0^{\aleph_0} &\neq \aleph_0, \\ \beth_1 &= 2^{\aleph_0} \neq \aleph_0, \\ 2^{\kappa} &\neq \kappa. \end{split}$$

Now, we define

$$\beth_0 := \aleph_0 = \omega,$$

$$\beth_{n^+} := 2^{\beth_n}.$$

Question: If $A \subseteq {}^{\omega}\omega$ and A is infinite, must we have $A \approx \omega$ or $A \approx {}^{\omega}\omega$? Note that

$$\omega \omega \approx \mathbb{R}$$

Question: For a set X, define $\operatorname{Sym}(X) := \{f : f : X \to X \text{ is one-to-one and onto}\}$. For $\kappa = \operatorname{card}(K)$, define $\kappa! = \operatorname{card}(\operatorname{Sym}(K))$. Is $\aleph_0! = 2^{\aleph_0}$?

27.2 Ordering of Cardinals

Definition 27.4. $X \leq Y$: "X has cardinality less than or requal to that of Y", if $\exists f: X \to Y$ which is one-to-one. ($\iff \exists Z \subseteq Y \text{ such that } X \approx Z$).

If $\kappa = \operatorname{card}(K)$, $\lambda = \operatorname{card}(L)$, then

$$\kappa < \lambda \iff K \prec L.$$

Write $X \prec Y$ if $X \leq Y$ and $X \not\approx Y$.

$$\kappa < \lambda \iff K \prec L.$$

Example 27.5. For $n, m \in \omega$,

$$n \le m \iff n \in m \text{ or } n = m$$

 $\iff n \subseteq m.$

Example 27.6. For $n \in \omega$, $n < \aleph_0$.

Example 27.7. For any κ , $2^{\kappa} > \kappa$.

Properties we would like our ordering on cardinals to have:

- 1. $X \leq X$. [Use $f = I_X$.]
- 2. $(X \leq Y \& Y \leq Z) \to X \leq Z$. [Composition of one-to-one functions is one-to-one.]
- 3. $(X \leq Y \& Y \leq Z) \rightarrow Y \approx Z$.
- 4. $(\forall X)(\forall Y) \ X \leq Y \lor Y \leq X$. [CC: Cardinal Comparability]

To prove ${}^{\omega}\omega\approx\mathbb{R}$, the easiest way is to use 3. Similarly, one can prove $(0,1)\approx[0,1]$ with the injection

$$x \mapsto \frac{1}{4} + \frac{1}{2}x$$

(the injection in the other direction is the identity).

Theorem 27.8. If $X \leq Y$ and $Y \leq X$, then $X \approx Y$.

Proof. Given $f: X \to Y$, one-to-one, and $g: Y \to X$, one-to-one, we construct $h: Y \to X$, one-to-one and onto. Define

$$C(0) := Y \setminus \operatorname{ran}(f),$$

$$C(n^+) := (f \circ g) \llbracket C(n) \rrbracket.$$

Formally, let $Z = \mathcal{P}(Y)$ and $a = Y \setminus \operatorname{ran}(f) \in a$. Then, $\Phi : Z \to Z$ maps $U \subseteq Y \mapsto (f \circ g)\llbracket U \rrbracket$.

April 3

28.1 Schröder-Bernstein Theorem

Theorem: If $X \leq Y$ and $Y \leq X$, then $X \approx Y$.

Proof. If $f: X \hookrightarrow Y$ is one-to-one and $g: Y \hookrightarrow X$, define $C: \omega \to \mathcal{P}(Y)$ by

$$C(0) := Y \setminus \operatorname{ran}(f),$$

$$C(n^+) := (f \circ g) \llbracket C(n) \rrbracket.$$

The function to which we apply the Recursion Theorem is $Z \mapsto (f \circ g)[\![Z]\!]$. Define $h: Y \to X$ by

$$y \mapsto \begin{cases} g(y), & \text{if } y \in \bigcup \operatorname{ran}(C), \\ f^{-1}(y), & \text{if } y \in Y \setminus \bigcup \operatorname{ran}(C). \end{cases}$$

Note that $ran(C) = \{C(n) : n \in \omega\}$, so $\bigcup ran(C) = \{y \in Y : \exists n \in \omega \ y \in C(n)\}$.

Claim 1: h is a well-defined function with dom(h) = Y.

Proof of Claim: $\bigcup \operatorname{ran}(C) \supseteq C(0) = Y \setminus \operatorname{ran}(f)$, so $Y \setminus \bigcup \operatorname{ran}(f) \subseteq Y \setminus (Y \setminus \operatorname{ran}(f)) = \operatorname{ran}(f)$. So, $Y \setminus \bigcup \operatorname{ran}(C) \subseteq \operatorname{dom}(f^{-1})$. As f is one-to-one, f^{-1} is a function. So, $f^{-1} \upharpoonright (Y \setminus \bigcup \operatorname{ran}(C))$ is a function and so is $g \upharpoonright \bigcup \operatorname{ran}(C)$, and therefore $h = g \upharpoonright \bigcup \operatorname{ran}(C) \cup f^{-1} \upharpoonright (Y \setminus \bigcup \operatorname{ran}(C))$ is a function with $\operatorname{dom}(h) = \bigcup \operatorname{ran}(C) \cup (Y \setminus \bigcup \operatorname{ran}(C)) = Y$.

Claim 2: h is one-to-one.

Proof: Let $y, z \in Y$. Suppose h(y) = h(z). Because g is one-to-one and f^{-1} is one-to-one, we may assume $y \in ||\operatorname{Jran}(C)||$ and $z \in Y \setminus ||\operatorname{Jran}(C)||$. Then, $\exists n \ y \in C(n)$, and

$$g(y) = h(y) = h(z) = f^{-1}(z).$$

We know that $\forall m \ z \notin C(m)$. Then,

$$(f \circ g)(y) = f(g(y)) = f(f^{-1}(z)) = z,$$

but $(f \circ g)(y) \in C(n^+)$, which is a contradiction. The case of $y \in \bigcup \operatorname{ran}(C)$, $z \notin \bigcup \operatorname{ran}(C)$, h(y) = h(z) is impossible.

LECTURE 28. APRIL 3 69

Claim 3: h is onto.

Let $x \in X$. Consider $f(x) \in Y$.

Case A: $f(x) \notin \bigcup \operatorname{ran}(C)$. Then, $h(f(x)) = f^{-1}(f(x)) = x$, so $x \in \operatorname{ran}(h)$.

Case $B: f(x) \in \bigcup \operatorname{ran}(C)$. Then, $\exists n \ f(x) \in C(n)$. We know that $f(x) \in \operatorname{ran}(f)$, which is disjoint from $Y \setminus \operatorname{ran}(f) = C(0)$, so $n \neq 0$. So, $\exists m \ n = m^+$, i.e. $f(x) = C(m^+) = (f \circ g)[\![C(m)]\!]$, i.e. $\exists y \in C(m) \ f(x) = (f \circ g)(y) = f(g(y))$. f is one-to-one, so x = g(y) = h(y), as $y \in C(m) \subseteq \bigcup \operatorname{ran}(C)$. So, $x \in \operatorname{ran}(h)$.

Corollary 28.1. $(0,1) \approx [0,1]$. $(\aleph_0 + 1 = \aleph_0, or \aleph_0 + 2 = \aleph_0.)$

 $(\{f:f:(0,1)\to[0,1]\text{ is a bijection}\}\approx\mathcal{P}(\mathcal{P}(\omega))\approx\mathcal{P}(\mathbb{R}), \text{ which has cardinality } \beth_2.)$

Corollary 28.2.

$$\aleph_0 2^{\aleph_0} = 2^{\aleph_0}$$
.

Proof. We give a map $\omega \times \mathbb{R} \approx \omega \times (0,1) \hookrightarrow \mathbb{R}$ given by $\langle n, x \rangle \mapsto n + x$.

We have a map $\mathbb{R} \hookrightarrow \omega \times \mathbb{R}$ given by $r \mapsto \langle 0, r \rangle$.

Alternatively,

$$\begin{split} 2^{\aleph_0} &= 1 \cdot 2^{\aleph_0} \\ &\leq \aleph_0 \cdot 2^{\aleph_0} \\ &\leq 2^{\aleph_0} \cdot 2^{\aleph_0} \\ &= 2^{\aleph_0 + \aleph_0} \\ &= 2^{\aleph_0}. \end{split}$$

Fact:

$$\bigcup \operatorname{ran}(C) \approx \begin{cases} \varnothing \\ \omega \\ Y \setminus \operatorname{ran}(f) \end{cases}$$

April 5

29.1 Review

- 1. If A is infinite, must there exist $B, C \subseteq A, B \approx C \approx A, B \cap C = \emptyset, A = B \cup C$?
- 2. For $\kappa \geq \aleph_0$, is it true that $\kappa! > 2^{\kappa}$?
- 3. Given A with |A| > 1, does there exist $\sigma: A \to A$ such that $\forall x \ \sigma(x) \neq x$?

Topics:

- natural numbers
 - induction
 - recursion
 - ordering on ω
 - arithmetic of ω
- cardinality
 - finite sets
 - some cardinal arithmetic
 - $\aleph_0, \beth_1, \ldots$
 - Schröder-Bernstein

State the Axiom of Infinity with the language $\mathcal{L}(\in,\varnothing,(\cdot)^+)$.

Axiom of Infinity:

$$(\exists A)[(\forall x)[x \in A \to x^+ \in A] \& \varnothing \in A].$$

29.1.1 Defining Cardinals

$$\aleph_0 := \omega,$$

where

$$(\forall x)[x \in \omega \leftrightarrow (\forall I)[I \text{ inductive} \rightarrow x \in I]]$$

and

$$I$$
 is inductive $\iff \emptyset \in I \& (\forall a)[a \in I \to a^+ \in I].$

LECTURE 29. APRIL 5

Fix I, inductive.

$$\omega = \{ n \in I : (\forall J)[J \text{ inductive} \to n \in J] \}.$$

71

Also,

$$\beth_0 := \aleph_0,$$

$$\beth_{n^+} := 2^{\beth_n}.$$

29.1.2 Peano Systems

A Peano system is (N, e, S), such that $e \in N$, $S : N \to N$ is one-to-one and $e \notin \text{ran}(S)$, S has no cycles, and $(X \subseteq N \& e \in X \& [x \in X \to Sx \in X]) \implies X = N$.

29.1.3 Recursion

Given $g: A \to A$, $a \in A$, $\exists ! f: \omega \to A$ such that f(0) = a and $(\forall n)(f(n^+) = g(f(n)))$. Morally, $f(n) = g \circ \cdots \circ g(a)$.

29.1.4 Cardinality

$$X \approx Y \iff \exists f: X \to Y \text{ bijection} \\ X \preceq Y \iff \exists f: X \hookrightarrow Y \text{ one-to-one}$$

We discussed $\kappa + \lambda$, $\kappa \cdot \lambda$, κ^{λ} , $\kappa!$. $\kappa \leq \lambda \& \lambda \leq \kappa \implies \kappa = \lambda$. Use basic properties such as $\aleph_0 + \aleph_0 = \aleph_0$ and $\kappa^{\lambda + \mu} = \kappa^{\lambda} + \kappa^{\mu}$. For the cardinals we have defined, $\kappa = \operatorname{card}(\kappa)$ by definition.

April 10

30.1 Zorn's Lemma

Cardinal Comparability:

$$(\forall X)(\forall Y)[X \leq Y \text{ or } Y \leq X].$$

Lemma 30.1 (Zorn's Lemma).

$$(\forall \mathcal{A}) \left[(\forall \mathcal{C}) \left[\mathcal{C} \subseteq \mathcal{A} \ a \ chain \implies \bigcup \mathcal{C} \in \mathcal{A} \right] \& \ \mathcal{A} \neq \varnothing \implies (\exists m) [m \in \mathcal{A} \ maximal] \right].$$

Definition 30.2. C is a chain if

$$(\forall x)(\forall y)[(x \in \mathcal{C} \& y \in \mathcal{C}) \to (x \subseteq y \lor y \subseteq x)].$$

Observation: There are sets A which are not chains, e.g. $A = \mathcal{P}(\omega)$, $x = \{1\}$, $y = \{2\}$.

Definition 30.3. $m \in A$ is maximal (in A) if $(\forall a \in A)[m \subseteq a \to m = a]$.

For example, let $A = \{\emptyset, \{1\}, \{2\}\}$. Then, $\emptyset \subseteq \{1\}$ and $\emptyset \subseteq \{2\}$, so there are two maximal elements.

Observation: If \mathcal{B} is any set, $\bigcup \mathcal{B}$ is an upper bound for B, i.e. $\forall b \in \mathcal{B}$, $b \subseteq \bigcup \mathcal{B}$, and $\bigcup \mathcal{B}$ is the least upper bound. If c satisfies $(\forall b \in \mathcal{B})$ $b \subseteq c$, then $\bigcup \mathcal{B} \subseteq c$.

Theorem 30.4.

$$ZL \implies AC1.$$

Proof. Given R a relation, we must find $f \subseteq R$ a function with dom(f) = dom(R). Let

$$\mathcal{A} := \{ f \in \mathcal{P}(R) : f \text{ is a function} \}.$$

We check that if $\mathcal{C} \subseteq \mathcal{A}$ is a chain, then $\bigcup \mathcal{C} \in \mathcal{A}$. By 30.5, $\bigcup \mathcal{C}$ is a function and $\bigcup \mathcal{C} \subseteq R$ $[\forall f \in \mathcal{C} \subseteq \mathcal{A} \ f \in \mathcal{A}, \text{ so } f \subseteq R]$, so $\bigcup \mathcal{C} \in \mathcal{A}$. ZL 30.1 implies $\exists f \in \mathcal{A} \text{ maximal. } f \subseteq R, f \text{ is a function, and if } g \subseteq R \text{ is a function with } f \subseteq g, \text{ then } f = g.$

 $dom(f) \subseteq dom(R)$. Let $x \in dom(R)$ and suppose $x \notin dom(f)$. $\exists y \ \langle x, y \rangle \in R$. Pick some witness. Set $g := f \cup \{\langle x, y \rangle\}$, which is the union of two functions with disjoint domains. Hence, g is a function.

 $f \subseteq g \subseteq R$. This would contradict the maximality of f, so dom(f) = dom(R).

Lemma 30.5. If C is a chain of functions, then $\bigcup C$ is a function and

$$\operatorname{dom} \bigcup \mathcal{C} = \bigcup \{\operatorname{dom}(f) : f \in \mathcal{C}\},$$
$$\operatorname{ran} \bigcup \mathcal{C} = \bigcup \{\operatorname{ran}(f) : f \in \mathcal{C}\}.$$

Proof. If $t \in \bigcup \mathcal{C}$, then $\exists f \in \mathcal{C} \ t \in f$. f is a function, hence a relation, so t is an ordered pair. So, $\bigcup \mathcal{C}$ is a relation. If $\langle x, y \rangle \in \bigcup \mathcal{C}$, $\langle x, z \rangle \in \mathcal{C}$, then $\exists f, g \in \mathcal{C}$ such that $\langle x, y \rangle \in f$, $\langle x, z \rangle \in g$. \mathcal{C} is a chain, so $f \subseteq g$ or $g \subseteq f$. WLOG take $f \subseteq g$. So, $\langle x, y \rangle \in g \& \langle x, z \rangle \in g$, and g is a function, which implies that g = z. Therefore, $\bigcup \mathcal{C}$ is a function.

If $x \in \text{dom} \bigcup \mathcal{C}$, then $\exists y \ \langle x, y \rangle \in \bigcup \mathcal{C}$, so $\exists f \in \mathcal{C} \ \langle x, y \rangle \in f$. Then, $x \in \text{dom} f \subseteq \bigcup \{\text{dom}(g) : g \in \mathcal{C}\}$ and likewise for ran $\bigcup \mathcal{C}$.

30.2 Cardinal Comparability

Theorem 30.6.

$$ZL \implies CC.$$

Proof. We are given X and Y. Let $\mathcal{A} := \{ f \in \mathcal{P}(X \times Y) : f \text{ is a one-to-one function} \}$. Let $\mathcal{C} \subseteq \mathcal{A}$ be a chain. By 30.5, $\bigcup \mathcal{C}$ is a function, $\operatorname{dom}(\bigcup \mathcal{C}) \subseteq X$, $\operatorname{ran}(\bigcup \mathcal{C}) \subseteq Y$, and $\bigcup \mathcal{C}$ is one-to-one. If $\langle x, z \rangle \in \bigcup \mathcal{C}$, $\langle y, z \rangle \in \bigcup \mathcal{C}$, then $\exists f, g \in \mathcal{C} \ \langle x, z \rangle \in f \& \langle y, z \rangle \in g$. As \mathcal{C} is a chain, WLOG $f \subseteq g$, so $\langle x, z \rangle \in g \& \langle y, z \rangle \in g$, so x = y as g is one-to-one. Therefore, $\bigcup \mathcal{C} \in \mathcal{A}$. By ZL 30.1, $\exists f \in \mathcal{A}$ maximal.

Claim: dom f = X or ran f = Y.

Proof of Claim: If not, $\exists x \in X \setminus \text{dom } f$, $\exists y \in Y \setminus \text{ran } f$. Set $g := f \cup \{\langle x, y \rangle\}$. g is a function and so is $g^{-1} = f^{-1} \cup \{\langle y, x \rangle\}$. $X \times Y \supseteq g \supseteq f$, which violates the maximality of f.

If dom
$$f = X$$
, then $X \leq Y$. If ran $f = Y$, then $Y \leq X$ (witnessed by f^{-1}).

Corollary 30.7.

$$(ZL \Longrightarrow) CC \Longrightarrow (\forall X)(X infinite \iff \omega \prec X).$$

Proof. Suppose X is infinite. By CC, $\omega \leq X$ or $X \leq \omega$. If $X \leq \omega$, $\exists A \subseteq \omega$ and $g: X \to A$ one-to-one and onto. If A is finite, we have $n \approx \omega$.

April 12

31.1 Subsets of ω Are Countable

Theorem 31.1. If $A \subseteq \omega$, then either A is finite or $A \approx \omega$.

Proof. WLOG A is infinite. Define $F : \mathcal{P}(\omega) \setminus \{\emptyset\} \to \omega$ by the rule $B \mapsto$ the least element of B. F is a choice function for ω and we do not need AC to prove its existence! (Given a set X, a **choice function** for X is a function $g : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ such that $\forall a \in \text{dom}(g) \ g(a) \in a$.) Set $G : \mathcal{P}(\omega) \setminus \{\emptyset\} \to \mathcal{P}(\omega)$ which maps $C \mapsto C \setminus \{F(C)\}$.

Fact: If C is infinite, then so is G(C). $(C = G(C) \cup \{F(C)\})$. If G(C) were finite, so would be C.)

Define $h: \omega \to \mathcal{P}(\omega)$ by

$$h(0) := A,$$

$$\forall n \quad h(n^+) := G(h(n)).$$

Note that $G \upharpoonright \mathcal{P}^{(\infty)}(\omega) : \mathcal{P}^{(\omega)}(\omega) \circlearrowleft$, where $\mathcal{P}^{(\infty)}(\omega) := \{C \subseteq \omega : C \text{ infinite}\}$. Define $f : \omega \to A$ by f(n) := F(h(n)).

Claim 1: $\forall n \ h(n) \subseteq A$.

By induction on n: For n = 0, $h(0) = A \subseteq A$. For n^+ :

$$h(n^+) = G(h(n))$$

$$= h(n) \setminus \{F(h(n))\}$$

$$\subset A$$

Claim 2: $n < m \implies f(n) \neq f(m)$.

Proof: By induction on m. Really, write $m = n + k^+$ and proceed by induction on k. We will show that $f(n) \notin h(m)$. h = 0:

$$h(n+0^{+}) = h(n^{+})$$

$$= h(n) \setminus \{F(h(n))\}$$

$$= h(n) \setminus \{f(n)\}$$

$$f(n) \notin h(n^{+}) = h(n+0^{+}) = h(m).$$

$$h(n) \supseteq h(n^+)$$
, so $h(n) \supseteq h(n+k^+)$.

$$h(n+k^{++}) = h(n+k^+) \setminus \{F(h(n+k^+))\}$$
$$\subsetneq h(n+k^+) \subsetneq h(n),$$
$$f(n) \notin h(n^+) \supseteq h(n+k^{++}).$$

So, $\forall m > n \ f(n) \notin h(m)$, and $f(m) = F(h(m)) \in h(m)$. Therefore, $f(n) \neq f(m)$, so $f: \omega \hookrightarrow A$ is one-to-one. Therefore, $\omega \preceq A \& A \preceq \omega \implies \omega \approx A$.

31.2 Idempotent Cardinals

Lemma 31.2. Let $\lambda \geq \aleph_0$ and $1 \leq \mu \leq \lambda$.

- 1. If $\lambda^2 = \lambda$, then $\lambda \mu = \lambda$.
- 2. If $\lambda \geq \aleph_0$ and $\nu \leq \lambda$ and $\lambda^2 = \lambda$, then $\lambda + \nu = \lambda$.

Proof. 1.

$$\lambda \le \lambda \cdot 1 \le \lambda \cdot \mu \le \lambda \cdot \lambda = \lambda^2 = \lambda.$$

2.

$$\lambda \le \lambda + \nu \le \lambda + \lambda = \lambda \cdot 2 = \lambda.$$

Theorem 31.3. ($ZL \implies$) If K is infinite, $K \times K \approx K$.

Proof. Let $A = \{ f \in \mathcal{P}(K \times (K \times K)) : \exists B \subseteq K \ f : B \to (B \times B) \text{ is a bijection} \}.$

Note: $\emptyset \in \mathcal{A}$. If $x \in K$, $\{\langle x, \langle x, x \rangle \rangle\} \in \mathcal{A}$. ZL 30.1 implies $\omega \leq K$, so $\exists A \subseteq K$, $A \approx \omega$, $A \approx A \times A$. Moreover, for any $x \in K$, $\exists A' \subseteq K$ $x \in A'$ & $A' \approx \omega$. $(A' = A \cup \{x\}.)$

April 14

32.1 Idempotent Cardinals

Theorem: (ZL) If K is infinite, then $K \approx K \times K$.

Proof.

$$\mathcal{A} := \{ f \in \mathcal{P}(K \times (K \times K)) : \exists A \subseteq K \ f : A \to A \times A \ \text{a bijection} \}.$$

Let $\mathcal{C} \subseteq \mathcal{A}$ be a chain. $\bigcup \mathcal{C} \in \mathcal{A}$. (Lemma: If \mathcal{C} is a chain of (one-to-one) functions, then $\bigcup \mathcal{C}$ is a (one-to-one) function.) Let

$$A := \operatorname{dom}\left(\bigcup \mathcal{C}\right)$$
$$= \bigcup_{f \in \mathcal{C}} \operatorname{dom}(f)$$
$$\subseteq K.$$

Let $t \in \text{ran}(\bigcup \mathcal{C})$. So, $\exists x \ \langle x, t \rangle \in \bigcup \mathcal{C}$, which implies $\exists f \in \mathcal{C} \ \langle x, t \rangle \in f$. Since

$$f: dom(f) \to dom(f) \times dom(f)$$
,

 $t \in \text{dom}(f) \times \text{dom}(f)$, so $A = \text{dom}(\bigcup \mathcal{C}) \supseteq \text{dom}(f)$, so $t \in A \times A$.

Let $s \in A \times A$. Write $s = \langle a, b \rangle$, $a, b \in A$. Since $A = \operatorname{dom}(\bigcup \mathcal{C}) = \bigcup_{f \in \mathcal{C}} \operatorname{dom}(f)$, then we see that $\exists f, g \in \mathcal{C}$ such that $a \in \operatorname{dom}(f), b \in \operatorname{dom}(g)$. \mathcal{C} is a chain, so $f \subseteq g$ or $g \subseteq f$. WLOG $f \subseteq g$, $a, b \in \operatorname{dom}(g)$. $g : \operatorname{dom}(g) \to \operatorname{dom}(g) \times \operatorname{dom}(g)$ is onto, so $\exists x \in \operatorname{dom}(g) \subseteq \operatorname{dom}(\bigcup \mathcal{C})$ such that $g(x) = \langle a, b \rangle = \bigcup \mathcal{C}(x)$. Hence, $\bigcup \mathcal{C} \in \mathcal{A}$.

By ZL, $\exists f \in \mathcal{A}$ maximal. Let A := dom(f), $\alpha = \text{card}(A)$, $\kappa = \text{card}(K)$. If $\alpha = \kappa$, then we are done since $f : A \to A \times A$ is a bijection, so $\alpha^2 = \alpha$.

If $\alpha \neq \kappa$, then $\alpha < \kappa$, so $(K \setminus A) \succeq A$. To see this, note that $K = (K \setminus A) \cup A$, so $\kappa = \operatorname{card}(K \setminus A) + \alpha$. By CC, either $K \setminus A \succeq A$ or $A \succeq K \setminus A$. If $A \succ K \setminus A$, then

$$\kappa = \operatorname{card}(K)$$

$$= \operatorname{card}(K \setminus A) + \alpha$$

$$\leq \alpha + \alpha$$

$$= 2 \cdot \alpha$$

$$\leq \alpha \cdot \alpha$$

$$= \alpha.$$

(Remark: We noted before on Wednesday that necessarily A is infinite.)

Let $B \subseteq K \setminus A$ with $card(B) = \alpha$. Note that

$$A \times A \approx A$$
,
 $A \times B \approx A$,
 $B \times A \approx A$,
 $B \times B \approx A$.

Observe that $\operatorname{card}((A \times B) \dot{\cup} (B \times A) \dot{\cup} (B \times B)) = 3 \cdot \operatorname{card}(A \times B) = 3 \cdot \alpha^2 = 3\alpha = \alpha = \operatorname{card}(B)$. So, $\exists g : B \to [(A \times B) \cup (B \times A) \cup (B \times B)]$ a bijection. Let $h := f \cup g$, $h : (A \cup B) \to (A \cup B) \times (A \cup B)$ is a bijection. Then, $A \ni h \supsetneq f$, which contradicts maximality of A. Therefore, $\alpha = \kappa$, and we know $\alpha^2 = \alpha$, so $\kappa^2 = \kappa$.

Corollary 32.1. If κ is infinite, λ is any cardinal, then

$$\kappa + \lambda = \max(\kappa, \lambda).$$

If $\lambda \neq 0$, then

$$\kappa \cdot \lambda = \max(\kappa, \lambda).$$

We know that $\kappa < 2^{\kappa}$. If $2 \le \kappa$, then $\kappa! > \kappa$.

April 17

33.1 Well-Ordered Sets

Definition 33.1. A well-ordering is a relation \leq with fld(\leq) = X such that

- 1. \leq is a transitive relation,
- 2. $(\forall x)[x \in X \to \langle x, x \rangle \in \leq],$
- $3. \ (\forall x)(\forall y) [((x \in X \ \& \ y \in X) \ \& \ (x \leq y \ \& \ y \leq x)) \to x = y],$
- 4. $(\forall x)(\forall y)[(x \in X \& y \in X) \rightarrow (x \le y \lor y \le x)],$
- 5. $(\forall Y)[(Y \subseteq X \& Y \neq \varnothing) \rightarrow (\exists y)[y \in Y \& (\forall z)(z \in Y \rightarrow y \leq z)]].$

Example 33.2. For $X = \omega$, $\leq = \subseteq = \subseteq$ is a well-ordering.

Example 33.3. $X = \mathbb{R}$, where \leq is the usual order, is a totally ordered set, but it is not well-ordered. $Y = (-\infty, 0)$ has no least element! Also, $Z := \{x \in \mathbb{Q} : x > 0\}$ has no least element.

Question: For which sets Y does there exist some relation \leq with fld(\leq) = X such that \leq is a well-ordering?

Answer: Every set admits a well-ordering.

Example 33.4. If X is finite and \leq is a total order on X, then \leq is a well-ordering.

Example 33.5. Let $X = \omega$ with

$$\leq := \left\{ \langle a, b \rangle \in \omega \times \omega : \begin{cases} a, b \text{ are both even } \& \ a \leq b \text{ or} \\ a, b \text{ are both odd } \& \ a \leq b \text{ or} \\ a \text{ is even } \& \ b \text{ is odd} \end{cases} \right\}.$$

Let $Y \subseteq X = \omega$, $Y \neq \emptyset$. If $Y \cap 2 \cdot \omega \neq \emptyset$, then let $y \in Y \cap 2 \cdot \omega$ be the least element relative to \leq . Otherwise, $\emptyset \neq Y \subseteq 1+2 \cdot \omega$. Let y be the \leq -least element of Y. If $z \in Y$ and z is even, then y is even and $y \leq z$, so $y \leq' z$. If z is odd and y is even, then $y \leq' z$. If y is odd, then y is the \leq -least element of Y, so $y \leq' z$.

(Remark: If $y, z \in Y$ are least elements of $Y, (Y, \leq)$ is linearly ordered, so y = z.)

Example 33.6. If $X = \omega \times \omega$, we can take \leq to be the lexicographic order. Then, one has

$$\langle 0, 0 \rangle, \langle 0, 1 \rangle, \dots, \langle 1, 0 \rangle, \dots, \langle 2, 0 \rangle, \dots$$

Similarly, one can take $(0,0,0),\ldots,(1,0,0),\ldots$

33.2 Ordinals & Cardinals

Definition 33.7. A transitive set α is an **ordinal** if $\underline{\in}_{\alpha} := \{ \langle \beta, \gamma \rangle \in \alpha \times \alpha : \beta \subseteq \gamma \}$ is a well-ordering.

Example 33.8. 5 is an ordinal.

Example 33.9. ω is an ordinal.

Example 33.10. $\omega^+ = \omega \cup \{\omega\}$ is an ordinal.

$$0, 1, 2, \ldots, \omega$$
.

Definition 33.11. κ is a **cardinal** if κ is an ordinal and $\forall \alpha \in \kappa \ \alpha \prec \kappa$.

33.3 Transfinite Recursion

Definition 33.12. A class function $\mathbb{G}: \mathbb{V} \to \mathbb{V}$ is a formula $\gamma(x,y)$ of set theory (possibly with parameters) such that $\forall x \exists ! y \ \gamma(x,y)$.

$$\mathbb{G}(x) = y \iff \gamma(x, y).$$

Theorem 33.13. Given a class function \mathbb{G} and a well-ordered set (X, \leq) , there exists a unique function f with dom(f) = X such that $\forall x \in X$ $f(x) = \mathbb{G}(f \upharpoonright \{y \in X : y < x\})$.

April 19

34.1 Axiom of Replacement

Axiom (Schema) of Replacement: Given a formula $\varphi(x, y, t_1, ..., t_n)$ of set theory with free variables amongst $\{x, y, t_1, ..., t_n\}$, we have

```
Replacement<sub>\varphi</sub>: (\forall t_1) \cdots (\forall t_n)(\forall A)[(\forall x)(\forall y)(\forall z)((x \in A \& \varphi(x, y, t_1, \dots, t_n) \& \varphi(x, z, t_1, \dots, t_n) \to y = z)
 \rightarrow (\exists B)(\forall u)(u \in B \leftrightarrow (\exists a)(a \in A \& \varphi(a, u, t_1, \dots, t_n))))].
```

Informal: φ defines a "class relation". Let $\mathbb{F} := \{ \langle x, y \rangle : \varphi(x, y) \}$. Replacement says that if $\mathbb{F} \upharpoonright A$ is a class function, then $\mathbb{F} \upharpoonright A$ is actually a function.

34.2 Transfinite Recursion

Theorem (Transfinite Recursion): Given a formula $\gamma(x,y)$ such that $\forall x \exists ! y \ \gamma(x,y)$ (i.e. γ is a "class function", $\mathbb{G}(x) = y \iff \gamma(x,y)$) and a well-ordered set (X, \leq) , then $\exists ! F : X \to Y$ with the property $\forall x \in X \ F(x) = \mathbb{G}(F \upharpoonright \operatorname{seg}(x))$, where $\operatorname{seg}(x) = \{t \in X : t < x\}$.

Proof. Let \mathcal{F} be the set of f such that

- f is a function,
- dom $f \subseteq X$,
- dom f is an initial segment of X (i.e. if $x \in \text{dom } f$ and y < x, then $y \in \text{dom } f$),
- $(\forall x \in \text{dom } f) \ f(x) = \mathbb{G}(f \upharpoonright \text{seg}(x)), \text{ or } \gamma(f \upharpoonright \text{seg}(x), f(x)).$

Let

 $\varphi(x,y) := x \in X \& y \text{ is a function } \& \operatorname{dom}(y) = \operatorname{seg}(x) \cup \{x\} \& (\forall t \in \operatorname{dom} y) \ y(t) = \mathbb{G}(y \upharpoonright \operatorname{seg}(t)).$

Claim 1: $\forall x \in X \exists ! y \varphi(x, y)$.

Proof of Claim: First, we show $\forall x \ \forall y \ \forall z \ (\varphi(x,y) \& \varphi(x,z) \to y = z)$. If this were false, then

$$\{x \in X : \exists y \; \exists z \; y \neq z \; \& \; \varphi(x,y) \; \& \; \varphi(x,z)\} \neq \varnothing.$$

So, $\exists x \in X$, least, with $\exists y \exists z \varphi(x,y) \& \varphi(x,z) \& y \neq z$. Fix y, z witnessing this. Then,

$$dom(y) = dom(z) = seg(x) \cup \{x\},\$$

so

$$y(x) = \mathbb{G}(y \upharpoonright \operatorname{seg}(x)),$$

 $z(x) = \mathbb{G}(z \upharpoonright \operatorname{seg}(x)).$

Take t < x. Then $\varphi(t, y \upharpoonright \operatorname{seg}(t) \cup \{t\}) \& \varphi(t, z \upharpoonright \operatorname{seg}(t) \cup \{t\})$. So, $\mathbb{G}(y \upharpoonright \operatorname{seg}(x)) = \mathbb{G}(z \upharpoonright \operatorname{seg}(x))$, and therefore y = z, which is a contradiction.

By Replacement, $\exists B \ \forall u \ u \in B \leftrightarrow \exists x \in X \ \varphi(x, u)$. So, \mathcal{F} is B.

Claim 2: \mathcal{F} is a chain. Take $f, g \in \mathcal{F}$.

Sub-Claim 1: dom $f \subseteq \text{dom } g$ or dom $g \subseteq \text{dom } f$.

Proof of Sub-Claim 2: If not, take x, least, such that

$$x \in \operatorname{dom} f \triangle \operatorname{dom} g = (\operatorname{dom} f \setminus \operatorname{dom} g) \cup (\operatorname{dom} g \setminus \operatorname{dom} f).$$

WLOG, $x \in \text{dom } f \setminus \text{dom } g$. Then $\forall y < x \ y \in \text{dom } f \cap \text{dom } g$. Suppose $z \in \text{dom } g$. dom g is an initial segment of X, so either x < z or z < x. If x < z, then $x \in \text{dom } g$ which is a contradiction. So, z < x, and dom $g \subseteq \text{dom } f$.

Sub-Claim 2: If $x \in \text{dom } f \cap \text{dom } g$, f(x) = g(x). If not, there would be a least x with $f(x) \neq g(x)$. Then, $f \upharpoonright \text{seg}(x) = g \upharpoonright \text{seg}(x)$. So, $f(x) = \mathbb{G}(f \upharpoonright \text{seg}(x)) = \mathbb{G}(g \upharpoonright \text{seg}(x)) = g(x)$.

Sub-Claim 3: $\forall x \in X \ \exists f \in \mathcal{F} \ x \in \text{dom } f$.

Proof of Sub-Claim 3: If not, there would be a least counterexample x. Let $h := \bigcup \mathcal{F}$. h is a function dom g is an initial segment of X. h satisfies the recursion condition. If $t \in \text{dom } h$, then $\exists f \in \mathcal{F} \ t \in \text{dom } f$. Then, $h(t) = f(t) = \mathbb{G}(f \upharpoonright \text{seg}(t)) = \mathbb{G}(h \upharpoonright \text{seg}(t))$. So, dom h = seg(x). Set $H := h \cup \{\langle x, \mathbb{G}(h) \rangle\}$ and $H \in \mathcal{F}$, so x is not a counterexample.

Therefore, $h: X \to \operatorname{ran} h$ solves the problem.

April 21

35.1 Applications of Transfinite Recursion

Definition 35.1. If (Z, \leq) is a totally ordered set, $I \leq Z$ is an **initial segment** if

$$\forall i \in I \ \forall z \in Z \ (z < i \rightarrow z \in I).$$

Theorem 35.2. Given a set X with a choice function $F : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ (i.e. $\forall A \in \mathcal{P}(X) \ F(A) \in A$) and a well-ordered set (Y, \leq) , there exists an initial segment $Y' \subseteq Y$ and a function $g : Y' \to X$ which is one-to-one such that either Y' = Y or g is onto.

Proof. Fix \star a set which is *not* an element of X.

$$\gamma(x,y) := (X \setminus \operatorname{ran}(x) = \emptyset \& y = \star) \lor (X \setminus \operatorname{ran}(x) \neq \emptyset \& y = F(X \setminus \operatorname{ran}(x))).$$

The corresponding class function is

$$\mathbb{G}(f) = \begin{cases} \star & \text{if } X \subseteq \operatorname{ran} f, \\ F(X \setminus \operatorname{ran}(f)) & \text{if } X \setminus \operatorname{ran}(f) \neq \varnothing. \end{cases}$$

By transfinite recursion, there exists a function h with dom(h) = Y such that

$$\forall y \in Y \ h(y) = \mathbb{G}(h \upharpoonright \operatorname{seg}(y))$$

Let $Y' := \{ y \in Y : h(y) \in X \}$ and let $g := h \upharpoonright Y'$.

Claim 1: Y' is an initial segment.

Proof: Let $y \in Y'$ and $z \in Y$ with z < y. Then, $h(y) \in X$, i.e. $h(y) \neq \star$, i.e.

$$h(y) = F(X \setminus \operatorname{ran}(h \upharpoonright \operatorname{seg}(y))),$$

so

$$X \supseteq \operatorname{ran}(h) \upharpoonright \operatorname{seg}(y). \tag{35.1}$$

 $seg(z) \subseteq seg(y)$, which implies

$$\operatorname{ran}(h \upharpoonright \operatorname{seg}(z)) \subseteq \operatorname{ran}(h \upharpoonright \operatorname{seg}(y)). \tag{35.2}$$

(35.1) and (35.2) imply $X \setminus \operatorname{ran}(h \upharpoonright \operatorname{seg}(z)) \neq \emptyset$, so $h(z) = F(X \setminus \operatorname{ran}(h \upharpoonright \operatorname{seg}(z))) \in X$, so $z \in Y'$.

Claim 2: q is one-to-one.

Proof: Suppose $y, z \in Y'$ and $y \neq z$. WLOG y < z.

$$g(z) = h(z) = \mathbb{G}(h \upharpoonright \operatorname{seg}(z))$$
$$= F(X \setminus \operatorname{ran}(h \upharpoonright \operatorname{seg}(z))).$$

 $y < z \to y \in \text{seg}(z)$, so

$$g(z) = F(X \setminus \operatorname{ran}(h \upharpoonright \operatorname{seg}(z))) \neq g(y) = h(y) \in \operatorname{ran}(h \upharpoonright \operatorname{seg}(z)).$$

Claim 3: Either g is onto or Y' = Y.

Proof: If $Y' \neq Y$, then $\exists y \in Y$ such that $h(y) = \star$, so $X \setminus \operatorname{ran}(h \upharpoonright \operatorname{seg}(y)) = \emptyset$. Therefore,

$$X\subseteq \operatorname{ran}(h\upharpoonright \operatorname{seg}(y)) \implies X\subseteq \operatorname{ran}(g).$$

Definition 35.3. If (X, R) and (Y, S) are pairs of a set X, a set Y, $R \subseteq X \times X$, and $S \subseteq Y \times Y$, a **homomorphism** $f: (X, R) \to (Y, S)$ is a function $f: X \to Y$ such that $\forall a, b \in X \ a \ R \ b \to f(a) \ S \ f(b)$. f is an **isomorphism** if f^{-1} is also a homomorphism.

Theorem 35.4. For any well-ordered set (X, \leq) , there is an ordinal α and an isomorphism

$$E: (X, \leq) \to (\alpha, \leq_{\alpha}).$$

$$\langle \beta, \gamma \rangle \in \underline{\in}_{\alpha} \iff (\beta \in \gamma \vee \beta = \gamma) \& \beta, \gamma \in \alpha.$$

Proof. Let $\gamma(x,y) := y = \operatorname{ran}(x)$. Alternatively, $\mathbb{G}(x) = \operatorname{ran}(x)$. By transfinite recursion, there exists a unique function $E: X \to \alpha$, $\alpha = \operatorname{ran}(X)$, such that $\forall x \in X \ E(x) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(x))$.

Note: E is onto α by the definition of α .

Claim 1: If $y < z, y, z \in X$, then $E(y) \in E(z)$. $(E(z) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(z)), y \in \operatorname{seg}(z)$, so we can conclude $E(y) \in \operatorname{ran}(E \upharpoonright \operatorname{seg}(z)) = E(z)$.)

Claim 2: $\forall x \in X \ E(x) \notin E(x)$.

Proof: If this were false, there would be a least $x \in X$ with $E(x) \in E(x) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(x))$, so

$$\exists y < x \ E(y) \in \operatorname{ran}(E \upharpoonright \operatorname{seg}(x)) = E(x) = E(y),$$

i.e. $E(y) \in E(y)$, which contradicts the minimality of x.

Claim 3: $\forall x \in X, E(x)$ is transitive.

Proof: Suppose $t \in E(x)$ and $s \in t$. Then, $t \in E(x) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(x))$, so

$$\exists y < x \ t = E(y) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(y)).$$

so $\exists z < y \text{ such that } s = E(z) \in E(x)$.

Claim 4: If x < y, then $E(y) \notin E(x)$.

April 24

36.1 The Class of Ordinals

Definition 36.1.

 $\alpha \in \mathbb{ON} \iff \alpha \text{ is an ordinal.}$

Proposition 36.2. \mathbb{ON} is a transitive class, i.e. if $\alpha \in \mathbb{ON}$ and $\beta \in \alpha$, then $\beta \in \mathbb{ON}$.

Recall that

$$\underline{\in}_{\alpha} := \{t \in \alpha \times \alpha : \exists \beta, \gamma \in \alpha \ \beta \in \gamma \ \text{or} \ \beta = \gamma \ \& \ t = \langle \beta, \gamma \rangle \}.$$

Lemma 36.3. If $\alpha \in \mathbb{ON}$, then the ε -image function E, i.e. the function satisfying

$$\forall x \in \alpha \ E(x) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(x)),$$

for $(\alpha, \underline{\in}_{\alpha})$ is I_{α} .

Proof. If not, then the set $\{\beta \in \alpha : E(\beta) \neq \beta\}$ is non-empty and hence has a least element β .

$$E(\beta) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(\beta))$$
$$= \operatorname{ran}(E \upharpoonright \{\gamma \in \alpha : \gamma \in \beta\})$$
$$= \operatorname{ran}(E \upharpoonright \beta)$$

(since α is transitive)

$$=\operatorname{ran}(I_{\beta})=\beta.$$

Consider $(X, \leq) = (\mathbb{N}, \leq')$, where the ordering is

$$0 < 2 < 4 < 6 < 8 < \dots < 1 < 3 < 5 < 7 < \dots$$

We have

$$E(0) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(0))$$

$$= \operatorname{ran}(\varnothing)$$

$$= \varnothing.$$

$$E(2) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(2))$$

$$= \operatorname{ran}(E \upharpoonright \{0\})$$

$$= \{E(0)\} = \{\varnothing\} = 1.$$

$$E(4) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(4))$$

$$= \operatorname{ran}(E \upharpoonright \{0, 2\})$$

$$= \{E(0), E(2)\}$$

$$= \{0, 1\} = 2.$$

$$E(2n) = n.$$

$$E(1) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(1))$$

$$= \operatorname{ran}(E \upharpoonright \{2n : n \in \omega\})$$

$$= \{E(2n) : n \in \omega\}$$

$$= \{n : n \in \omega\}$$

$$= \omega.$$

$$E(3) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(3))$$

$$= \operatorname{ran}(E \upharpoonright \operatorname{seg}(1) \cup E \upharpoonright \{1\})$$

$$= \omega \cup \{E(1)\}$$

$$= \omega \cup \{\omega\}$$

$$= \omega^{+}.$$

$$E(5) = \omega^{++} = \omega + 2.$$

$$E(2n+1) = \omega + n$$

$$= \omega^{+} \cdot \cdot \cdot + \dots$$

$$E[X] = \omega + \omega = \omega \cdot 2.$$

Theorem 36.4. For α a set, the following are equivalent:

1. $\alpha \in \mathbb{ON}$.

2. $\exists (X, \leq), well-ordered, such that \alpha = E[X].$

3. $\exists (Y, \leq), well-ordered, and y \in Y, \alpha = E(y).$

Proof. $1 \implies 2$: Sri-obvious. This is a corollary of 36.3.

$$\alpha = I_{\alpha}[\![\alpha]\!] = E[\![\alpha]\!].$$

2 \Longrightarrow 3: We have $\alpha = E[X]$. Pick $\star \notin X$. Set $Y := X \cup \{\star\}$. Define $\star > X$.

$$E(\star) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(\star))$$
$$= \operatorname{ran}(E \upharpoonright X)$$
$$= \alpha.$$

 $3 \implies 1$:

$$\begin{aligned} \alpha &= E(y) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(y)) \\ &= \varepsilon\text{-image of } (\operatorname{seg}(y), \leq \upharpoonright \operatorname{seg}(y)), \end{aligned}$$

and hence $\alpha \in \mathbb{ON}$.

Proposition 36.5.

$$\alpha \in \mathbb{ON} \implies \alpha \notin \alpha.$$

Proof. By 3 in 36.4, $\alpha = E(y)$ for some $y \in Y$, (Y, \leq) well-ordered. We showed $E(y) \notin E(y)$.

Proof of 36.2. Realize $\alpha = E[X]$, (X, \leq) well-ordered. $\beta \in \alpha \implies \exists x \in X \ \beta = E(x)$. By 3, $\beta \in \mathbb{ON}$.

Proposition 36.6.

$$\alpha, \beta \in \mathbb{ON} \implies \alpha \subseteq \beta \text{ or } \beta \subseteq \alpha.$$

Proof. If not, there exists a least $\gamma \in \alpha \setminus \beta$ and a least $\delta \in \beta \setminus \alpha$. $\forall \rho \in \gamma \implies \rho \in \alpha$ (because α is transitive) and $\rho \in \beta$ (because γ is the least element in α with $\gamma \notin \beta$). So, $\gamma \subseteq \alpha \cap \beta$. Likewise, $\delta \subseteq \alpha \cap \beta$.

Claim: If $\nu \in \gamma$, then $\nu \in \delta$.

Proof of Claim: $(\beta, \subseteq_{\beta})$ is totally ordered so if the Claim fails, then $\delta \subseteq \nu \in \gamma \in \alpha$. By transitivity, $\delta \in \alpha$, which is a contradiction.

 $\gamma \subseteq \delta$ and dually, $\delta \subseteq \gamma$, which implies $\delta = \gamma$. This is a contradiction.

36.2 Ordinal Arithmetic

Ordinal arithmetic is defined as follows:

$$\alpha + 0 := \alpha,$$

$$\alpha + \beta := (\alpha + \beta)^+,$$

$$\alpha + \lambda := \bigcup_{\beta \in \lambda} (\alpha + \beta),$$

for λ a limit. Note that

$$\omega + 1 = \omega^+ \neq \omega$$
,

but

$$1 + \omega = \bigcup_{n \in \omega} (1 + n) = \omega.$$

April 26

37.1 Ordering on Ordinals

Proposition 37.1. *If* $\alpha, \beta \in \mathbb{ON}$, then $\alpha \in \beta$ or $\alpha = \beta$ or $\beta \in \alpha$.

Lemma 37.2. For $\alpha, \beta \in \mathbb{ON}$,

$$\alpha \in \beta \leftrightarrow \alpha \subsetneq \beta.$$

Proof. $\implies \alpha \in \beta$, then because β is transitive, $\alpha \subseteq \beta$. We know $\beta \notin \beta$, then because $\alpha \in \beta \& \alpha \subseteq \beta$, so $\alpha \subseteq \beta$.

[Recall: We showed if (X, \leq) is well-ordered and $E: X \to \gamma$ is the ε -image function, i.e.

$$\forall x \in X \quad E(x) = \operatorname{ran}(E \upharpoonright \operatorname{seg}(x)),$$

then $\forall x \in X \ E(x) \notin E(x)$. $\alpha \in \mathbb{ON} \iff \exists (X, \leq), \text{ well-ordered, and } y \in X \text{ such that } \alpha = E(y).$

 \iff Suppose $\alpha \subseteq \beta$.

$$I_{\beta} = E_{\beta} := \varepsilon$$
-image function on β ,
 $I_{\alpha} = E_{\alpha} := \varepsilon$ -image function on α .

So,

$$\alpha = \operatorname{ran}(E_{\alpha})$$

$$= \operatorname{ran}(E_{\beta} \upharpoonright \alpha)$$

$$= E_{\beta}(\alpha)$$

$$\in \operatorname{ran}(E_{\beta}) = \beta.$$

since $E_{\alpha} = I_{\alpha} = I_{\beta} \upharpoonright \alpha = E_{\beta} \upharpoonright \alpha$. So, $\alpha \in \beta$.

Now, we have

$$\alpha < \beta \iff \alpha \in \beta \iff \alpha \subseteq \beta.$$

Proposition 37.3. Let $\alpha, \beta, \gamma \in \mathbb{ON}$.

- $\alpha \notin \alpha$.
- $(\alpha \in \beta \& \beta \in \gamma) \to \alpha \in \gamma$.
- $\alpha \in \beta \vee \beta \in \alpha \vee \alpha = \beta$.

Proposition 37.4. If X is a non-empty set of ordinals, then $\exists \alpha \in X \text{ least.}$

Proof. Let $\alpha \in X$. If $\alpha \cap X = \emptyset$, then α is the least element of X. Otherwise, $X \cap \alpha \subseteq \alpha$ is non-empty. Let $\beta \in X \cap \alpha$ be least. Then $\forall \gamma \in X$, either $\gamma \in X \cap \alpha$ (so $\beta \subseteq \gamma$) or $\gamma \notin \alpha$ so $\alpha \subseteq \gamma$ which implies $\beta \in \gamma$.

Proposition 37.5. If X is a transitive set of ordinals, then $X \in \mathbb{ON}$.

Proof. The restriction of the \in relation of \mathbb{ON} to X gives a total well-ordering of X. By hypothesis, X is transitive, so $X \in \mathbb{ON}$.

Corollary 37.6. If X is a set of ordinals, then $\bigcup X \in \mathbb{ON}$.

Proof. X is a set of transitive sets, so $\bigcup X$ is transitive.

$$\beta \in \alpha \in X \to \beta \in \mathbb{ON},$$

so therefore $\bigcup X \subseteq \mathbb{ON}$. Hence, $\bigcup X \in \mathbb{ON}$.

 $\bigcup X$ is the least upper bound of X.

The following does not use AC.

Theorem 37.7.

$$\forall X \quad \exists \alpha \in \mathbb{ON} \quad \alpha \not\preceq X.$$

Proof. Let $Y := \{R \in \mathcal{P}(X \times X) : R \text{ is a well-ordering of } \mathrm{fld}(R)\}$. Let $\alpha := \{E(R) : R \in Y\} \subseteq \mathbb{ON}$. α is transitive: if $u \in \alpha$, then $\exists R \in Y \ u = E(R)$ and if $t \in u$, $\exists x \in \mathrm{fld}(R) \ t = E(x) = \mathrm{ran}(E \upharpoonright \mathrm{seg}(x))$. Then, $R \cap (\mathrm{seg}(x) \times \mathrm{seg}(x)) \in Y$, so $t \in \alpha$. Therefore, $\alpha \in \mathbb{ON}$.

If $\alpha \leq X$, then $\exists f : \alpha \hookrightarrow X$, one-to-one. Set $R := \{\langle f(\beta), f(\gamma) \rangle : \beta \in \gamma \in \alpha \}$. Then,

$$f: (\alpha, \underline{\in}_{\alpha}) \xrightarrow{\sim} (\mathrm{fld}(R), R)$$

is an isomorphism of structures, so $R \in Y$. Then, $\alpha = E(R) \in \alpha$, because R and $\underline{\in}_{\alpha}$ are isomorphic well-orderings. But, $\alpha \notin \alpha$, so this is a contradiction.

Theorem 37.8. $AC \implies \text{the well-ordering principle (WOP): } \forall X \exists \leq (X, \leq) \text{ is well-ordered.}$

Proof. Let $\alpha \in \mathbb{ON}$ such that $\alpha \not\preceq X$. By AC, $\exists F : \mathcal{P}(X) \setminus \{\varnothing\} \to X$ a choice function, i.e.

$$\forall A \subseteq X \ A \neq \emptyset, F(A) \in A.$$

Let $\star \notin X$ and define $g: \alpha \to X \cup \{\star\}$ by transfinite recursion:

$$g(\beta) := \begin{cases} \star & \text{if } X \subseteq \operatorname{ran}(g \upharpoonright \beta) \\ F(X \setminus \operatorname{ran}(g \upharpoonright \beta)) & \text{otherwise} \end{cases}$$

Either: $\exists Y' \subseteq \alpha$ such that $g \upharpoonright Y' : Y' \to X$ is onto or g is one-to-one and $g : \alpha \hookrightarrow X$. Since $\alpha \not\preceq X$, the latter cannot happen.

April 28

38.1 Proof of Zorn's Lemma

Theorem 38.1.

$$WO \implies ZL$$
,

that is, the Well-Ordering Principle implies Zorn's Lemma.

Proof. Given \mathcal{A} a set such that $\forall \mathcal{C} \subseteq \mathcal{A}$, a chain, $\bigcup \mathcal{C} \in \mathcal{A}$. We must find $M \in \mathcal{A}$ maximal.

By WO, $\exists \leq$, a well-ordering of \mathcal{A} . Define a function $\chi : \mathcal{A} \to \{0,1\} = 2$ by transfinite recursion:

$$\chi(a) = \begin{cases} 1 & \text{if } \forall b < a \ (\chi(b) = 1 \to b \subseteq a) \\ 0 & \text{otherwise} \end{cases}$$

If c is the least element of $A \setminus \text{dom } f$, then

 $\gamma(f,y) \iff y=1 \ \& \ (\forall b \in \mathrm{dom} \ f) \ [f(b)=1 \to b \subseteq c] \ \mathrm{or} \ y=0 \ \& \ \neg (\forall b \in \mathrm{dom} \ f) \ [f(b)=1 \to b \subseteq c].$

Let $C = \{a \in \mathcal{A} : \chi(a) = 1\}.$

Claim 1: C is a chain.

Let $a, b \in \mathcal{C}$. WLOG a > b. Then, $\chi(a) = 1 \implies \forall c < a \ (\chi(c) = 1 \rightarrow c \subseteq a)$. In particular, $\chi(b) = 1 \& b < a$, so $b \subseteq a$.

By hypothesis, $\bigcup \mathcal{C} =: c \in \mathcal{A}$.

Claim 2: c is maximal.

 $\chi(c) = 1$ since if $\chi(b) = 1$ and b < c, then $b \in \mathcal{C}$, so $b \subseteq \mathcal{C} = c$. Therefore, $c \in \mathcal{C}$. Suppose $b \in \mathcal{A}$, $c \subseteq b$. $\chi(b) = 1$ since $\forall a \ \chi(a) = 1 \rightarrow a \subseteq c \subseteq b$, so in particular, if $a < b \& \chi(a) = 1$, then $a \subseteq b$. So, $b \in \mathcal{C}$, which implies $b \subseteq c$, so b = c. So, $c \in \mathcal{C}$ is maximal.

Corollary 38.2. All of our forms of AC are equivalent relative to ZF.

• ACO: Onto functions have right inverses.

- AC1: R a relation $\implies \exists f \subseteq R \text{ a function, dom } f = \text{dom } R.$
- AC2: The Cartesian product of non-empty sets is non-empty.
- AC3: $\forall A \exists F : \mathcal{P}(A) \setminus \{\emptyset\} \to A \ \forall a \ F(a) \subseteq a$.
- ZL (with respect to \subseteq).
- ZL' (arbitrary partial order).
- $CC: \forall X \ \forall Y \ X \leq Y \lor Y \leq X$.
- $WO: \forall X \exists \leq (X, \leq) \text{ is well-ordered.}$

Reminder: $CC \to WO$: $\exists \alpha \in \mathbb{ON} \ \alpha \not\preceq X$. By $CC, X \preceq \alpha$.

38.2 Axiom of Regularity

Axiom of Regularity:

$$\forall x \ [x \neq \varnothing \to (\exists m)[m \in x \& m \cap x = \varnothing]].$$

Proposition 38.3.

$$\forall x \quad x \notin x.$$

Define

$$V_0 := \varnothing$$

$$V_{\alpha^+} := V_{\alpha} \cup \mathcal{P}(V_{\alpha})$$

$$V_{\lambda} := \bigcup_{\beta < \lambda} V_{\beta},$$

for λ a limit. Then, rank(x) is the least α such that $x \subseteq V_{\alpha}$ $(\infty$ if $\forall \alpha \ x \not\subseteq V_{\alpha})$.

- $x \in y \iff \operatorname{rank}(x) \in \operatorname{rank}(y)$.
- $\alpha \in \mathbb{ON} \to \text{rank}(\alpha) = \alpha$.
- \Longrightarrow If x is ranked, then $x \notin x$.

Proposition 38.4.

Axiom of Regularity $\iff \forall x \text{ rank}(x) \in \mathbb{ON}.$

Proof. \iff : Given $x \neq \emptyset$, let $m \in x$ have minimal rank.

 \implies : Uses transitive closures.