

Connect to USB Type-C™ with STM32 MCUs

Presentation agenda

USB-C and Power Delivery Technology overview

ST offers two solutions to help developers find the best solution for their applications:

- STM32 UCPD controllers and development ecosystem
- X-CUBE-USB-PD expansion software pack for any STM32

Why use USB-C™ and Power Delivery technology?

USB Type-C™ connectors enhance the user experience

- It's a 24-pin miniature and reversible connector. USB-C plug is the same on both sides
- Some pins can be repurposed to support proprietary protocols (Alternate Modes)
- Able to transmit 15W of power natively without USB PD protocol

To exchange more data faster with various protocols

- 2 separate USB data paths are available simultaneously: USB 2.0 + USB 3.1 (up to 10 Gbit/s)
- Display Port, HDMI, MHL, Thunderbolt are supported to carry video/audio signals
- Conventional I²C/SPI/UART/Ethernet interfaces can be "bridge" to USB-C

To get more power with a comprehensive and robust protocol

- **USB Power Delivery** protocol enables power negotiation (up to 100 W)
- Able to discover power capabilities and needs between two USB-C™ connected devices
- Enables advanced voltage and current negotiation to support fast charging
- USB PD is used to activate Alternate Modes or to carry Authentication messages

To protect your application and extend its functionalities

- Identify genuine chargers or accessories using USB PD authentication messages
- USB PD Alternate Modes and Vendor Defined Messages enable product differentiation.
- Secure firmware upgrade capability

USB Type-C[™] pinout functions

Purpose of CC1/CC2 wires (Configuration & Communication channels)

Type-C connector interface:

- Attach/detach and role management (SNK, SRC,and DRP) between two devices
- Discover and configure VBUS and VCONN
- Resolve twist and cable orientation to establish USB data bus routing

Power Delivery protocol management:

- Discover power capabilities of distant ports
- Negotiate power contracts up 100 W
- Swap power direction
- Swap USB data role
- Handle Alternate Modes (AM)
- Authenticate a device or a charger

USB Power Delivery is a protocol!

To enhance user experience safely through innovation

To get more power in a robust and safe way!

- Enables advanced and higher voltage and current negotiation (up to 100 W)
- Source and Sink establish power contracts that match their power capabilities and needs (ex: technology of battery used, power budget allocation, number of ports, etc.)
- Supply voltage (V_{bus}) is fixed (5V, 9V, 15V, or 20V) or configurable (Programming Power Supply)
- Dual Role Power devices can swap power direction (ex: using a tablet to charge a notebook!)

To extend devices functionalities and create an unique differentiation!

 Use of USB PD Structured Vendor Defined Messages (VDMs) to extend functionalities (video output, authentication, etc.)

Mode of operation		Nominal voltage	Maximum current	Maximum power	
USB PD		Configurable	5 A	100 W	
USB Type	-C Current @ 3.0 A	5 V	3.0 A	15 W	
USB Type-C Current @ 1.5 A		5 V	1.5 A	7.5 W	
USB BC 1	.2	5 V	Up to 1.5 A	7.5 W	
Default USB Power	USB 3.2	5 V	900 mA (x1) 1,500 mA (x2)	4.5 W 7.5 W	
	USB 2.0	5 V	500 mA	2.5 W	

Sink / device AM AC power adapter or power hub Source only Chromebook / Notebook / MacBook / Laptop / DRP / Host USB hub / Docking Mouse PROV/HUB Sink / UFP USB2.0 USB2.0 SSD / Pen Drive USB-C Sink / device USB2.0 USB2.0 High-end smartphone DRP/HOST Low-end smartphone Sink / device USB2.0 USB2.0 Power Bank DRP or 1 SRC / 1 SNK

TV/Monitor

Many combinations

Terminology

Power roles

- Source/Provider: Provide Power
- Sink/Consumer: Consume power
- DRP: **Dual Role** Power (can be either Sink or Source)

Data roles

- DFP: Downstream Facing Port (usually a Host / HUB ports)
- UFP: Upstream Facing Port (usually a device)
- DRD: Dual-Role Data typical of "on-the-go" ports

Power role and Data role can swap!

Roles can be dynamically swapped using USB PD

- Alternate Mode capabilities enabled via USB PD
- Authentication
- Fast charging using PPS

Two solutions using STM32

Flexible solutions for existing or new designs

By using the **UCPD**^(*) interface available in **STM32G0**, **STM32G4** and **STM32L5** Microcontrollers.

(*) UCPD = **U**SB-Type-**C** and **P**ower **D**elivery interface A Companion Type-C Port Protection device (TCPP01-M12) is available to protect the USB-C connector.

By using **any STM32** as Type-C Port Manager (TCPM) running our **X-CUBE-USB-PD** software pack to control 3rd party Type-C Port Controller (TCPC) or STUSB1602.

Partitioning

1

Solution STM32 with built-in **USB PD interface (UCPD)**

STM32

SW: USB PD Middleware in STM32Cube

Device Policy Manager

Policy Engine

Protocol Layer

HW: UCPD Hardware

- GoodCRC / retry
- **Physical Layer**
- Type-C Logic
- Dead Battery

TCPP

- **Dead Battery**
- **ESD** protection
- 22V CC lines protection
- V_{bus} gate Driver

STM32L5

STM32G0

STM32G4

Solution X-CUBE-USB-PD Software Packrunning on any STM32

X-CUBE-USB-PD

- **Device Policy Manager**
- Policy Engine
- **Protocol Layer**

TCPC

- GoodCRC / retry
- Physical Layer
- Type-C Logic
- **Dead Battery**
- Protection
- V_{bus} gate driver

STM32 with built-in USB PD interface (UCPD)

Direct connection to USB Type-C

This new **UCPD** interface manages Type-C[™] connector Configuration & Communication channels (the CC lines) for:

- 1. Type-C™ Control
- 2. USB PD communication

UCPD built-in features

Type-C control

- + Built-in Rp/Rd resistors
- + CC logic control (CC PHY)
- + CC lines voltage monitoring
- Dead battery resistors
- Fast Role Swap signaling

- ✓ Attach/detach and role management (SNK, SRC, and DRP)
- ✓ Resolve cable orientation and twist connections
 to establish USB 2.0 /USB 3.x data bus routing
- ✓ Discover and configure VBUS or VCONN

USB PD communication

- + PD transceiver PHY
- + Digital BMC
- + CRC encoding/decoding

- ✓ Power contract negotiation (up to 100 W)
- ✓ Power or USB data Role swap
- Alternate mode through Vendor Define Messages
- ✓ PPS, Firmware upgrade, and Authentication messages

UCPD is compliant with USB PD r3.0 specification

Optimized SW/HW architecture

More on: www.st.com/STM32G0

STM32G0 MCUs Efficient, robust, simple

New series of STM32 MCUs kick-starts advanced innovations for smaller, more capable, and power-efficient smart objects

- Cortex®-M0+ STM32 platform
- Up to 2 built-in UCPD interfaces
- 128 Kbytes of Flash 36 Kbytes of SRAM
- Versatile analog and digital peripherals
- Security features
- 28, 32, 48, and 64-pin packages available

STM32G081 block diagram

(*): USB-IF TID 227

More on: www.st.com/STM32G4

STM32G4 MCUs Mixed-signal

Ideal for applications requiring MCU with advanced and rich analog peripherals

- Cortex®-M4 STM32 platform
- Up to 512 Kbytes of Flash memory
- 32 Kbytes of SRAM
- 1 UCPD interface
- 1 USB2.0 FS data Interface
- Advanced and rich analog peripherals
- 28, 32, 48, and 64-pin packages available

STM32G431 block diagram

More on: www.st.com/STM32L5

STM32L5 MCUs ULP excellence with more security

First STM32 MCU based on Arm® Cortex®-M33 and TrustZone®

- A full set of security features
- Extended battery lifetime
- High integration & innovation
- 1 UCPD interface
- 1 USB2.0 FS Interface

 ART Accelerator™ USART, SPI, I²C Octo-SPI 	Product line	FLASH (KB)	RAM (KB)	Memory I/F	2 x Op- Amp	2 x Comp	4ch / 2x Sigma Delta Interface	12- bit ADC 5 Msps 16 bit HW oversam - pling	USB2.0 Device XTAL-less USB Type-C and Power Delivery	CAN-FD	AES, PKA, OTFDEC 128/256-bi
 16 and 32-bit timers SAI + audio PLL SHA, TRNG 2x 12-bit DAC Temperature sensor 	STM32L552 USB Device & CAN-FD	512 to 256	256	SDIO FSMC Octo SPI	•	•	•	2	•	•	
 Low voltage 1.71V to 3.6V Vbat Mode Unique ID Capacitive Touch sensing 	STM32L562 USB Device & CAN-FD & AES	512	256	SDIO FSMC Octo SPI	•	•	•	2	8•11	•	 €

Typical block diagram Example: multi-port docking station

- Port 1 negotiates power contracts with external USB-C power adapter.
- Port 2 supplies plugged accessory and handle HDMI signals request when TV detected, or USB devices inserted into legacy USB connectors.

Type-c port protection IC TCPP01-M12

Protects USB Type-C applications against ESD and overvoltage on V_{BUS} and CC lines

- ±8kV ESD protection on V_{BUS} and CC lines
- Overvoltage protection on V_{BUS} line
- 24V OVP against CC lines short-to-V_{BUS}
- Integrated V_{BUS} gate driver of external NMOS
- Integrated Dead Battery resistors
- Zero power consumption when no cable attached
- 12-pin QFN package (3 x 3 mm, pitch 0.5 mm)

Typical sink application example

Typical sink application example

When SOURCE is plugged voltage change appears on one CC line

Typical sink application example

Complete USB-C ecosystem for short time-to-market

STM32G071B-DISCO

B-G474E-DPOW1 • 1 port Sink + USB data

USB-C analyzer (Sink)

STM32**G0**

STM32G081B-EVAL

- 1 Port DRP (45W)
- 1 port Sink (AM)

STM32**G4**

STM32G474E-EVAL 1 Port DRP (15W) + USB data

STM32**L5**

STM32L552E-EVAL 1 Port Sink + USB data

STM32CubeMonitor-UCPD

STM32CubeMonitor

UCPD configuration

Debug tool

NUCLEO-L552ZE-Q 1 Port Sink + USB data

USB-C sniffer

STM32G071B-DISCO

 Discover and display USB-C[™] power and feature capabilities of any host.

 Analyze and sniff USB PD data packets and display V_{BUS} voltage and I_{BUS} current values

Debug, configure and inject USB PD3.0 packets using STM32CubeMonitor UCPD.

Analog Timers Connectivity 12C1 12C2 17TH 12C2 17TH 15P1 15P1 15P2 10SART1 USART2 USART4 Device selection and peripherals configuration (port 1 or 2 and role of each port: SNK, SRC, DRP)

USB-PD middleware parameters settings

Visit STM32Cube Ecosystem webpage

Easy configuration

STM32CubeMX

Code generation

Easy debug with stm32cubemonucpd

PC Software GUI to display and configure parameters of USB PD Middleware

USB-C authentication ready

Verify that the device is genuine & embeds the expected profile

- Security messages carry via USB PD3.0
- Compliant solution with timing constraints

- Flexible authentication library.
- Initiator and Responder mode supported

 Secret keys storage in securable memory area or external secure-micro (ST-SAFE)

Certified software pack eases migration to USB-PD 3.0 Power Delivery

X-CUBE-USB-PD software pack

Enables any STM32 to handle USB-C and Power Delivery

TCPM stands for Type-C Port Manager TCPC stands for Type-C Port Controller

- X-CUBE-USB-PD complies with:
 - USB-C 1.3 and USB PD 3.0 specifications
 - Type-C Port Controller Interface specification (TCPCi)
- Hardware architecture supported
 - Any STM32 as TCPM with standardized TCPC from 3rd parties (Our stack has been tested with ON Semiconductor® FUSB307B, a USB-PD 3.0 v1.1-certified TCPC)
 - Or STM32F0 with STUSB1602 Type-C interface
- Single- or multi-port supported (Sink, Source, and Dual Role Power)
- Optional features such as Programming Power Supply (PPS),
 Authentication messages and Fast Role Swap (FRS) are supported

Benefits of TCPM / TCPC split

Optimized HW/SW partitioning for single- or multi-port

- The STM32 provides a high customization and flexibility to manage power policy, application layers, and to support evolution of the standard faster.
- TCPCI interface provides a low pin count interconnect using Fast-Mode Plus I²C (1 MHz) bus, plus one alert line, and a comprehensive set of TCPC registers making stack porting across STM32 platform easier.
- TCPC provides the "Power Path" and integrate components with fast latency requirements as well as USB-C/PD PHY, V_{conn}, dead battery and protection.

Features and memory footprint

Compliant with USB Type-C™ 1.3 and USB PD 3.0 specifications

- X-CUBE-USB-PD Expansion Software package includes:
 - USB PD "core" library for Cortex™-M0/M4 based devices (STM32F0/F4/L4/F3)
 - Open-source drivers to support TCPC devices and STUSB1602
 - Firmware examples (Provider, Consumer, Dual Role Power) for MDK-Arm[®],
 IAR-EWARM and SW4STM32 IDEs
- Key features :
 - Device Policy Manager, Policy Engine and Protocol Layer
 - Cable detection and orientation
 - Supports Vendor-Defined Messages (Alternate Modes)
 - Billboard driver
 - SOP' and SOP" for communication with cables

Typical TCPM Memory Footprint (no VDM, no Vconn)	Source or Sink only	Dual Role Power
1 port (w/o RTOS)	32 Kbytes in Flash 3.6 Kbytes in RAM	40 Kbytes in Flash 3.6 Kbytes in RAM
2 port (w/RTOS)	32 Kbytes in Flash 7.8 Kbytes in RAM	43 Kbytes in Flash 8.1 Kbytes in RAM

ON-FUSB3-STM32 STM32F072 type-c port manager evaluation board

TCPM/TCPC evaluation board

STM32**F0**

Main features

- 1 USB Type-C port
- Sink, Source, and DRP capability
- STM32F072CBT6, 32-bit Arm® Cortex®-M0 MCU as TCPM
- ON Semiconductor® FUSB307B Type-C port controller
- On-board power management and dedicated power connector to interface with an external power supply
- <u>Link</u> to order one kit (149\$ range)

Documentation

- Getting started video with USB type-C and STM32G0 ecosystem: [YouTube]
- STM32G0 Entry-level Arm® Cortex®-M0+ MCUs webpage: link
- STM32G0 Discovery kit for USB Type-C[™] and Power Delivery (STM32G071B-DISCO)
 Databrief: [PDF]
- STM32CubeMonUCPD Monitoring and configuration software tool for STM32 USB-C and Power Delivery 3.0 applications webpage: <u>link</u>
- STM32G0 Online Training: <u>link</u> and a specific training on STM32G0 UCPD interface <u>here</u>
- Application note AN5225: USB Type-C™ Power Delivery using STM32xx Series MCUs and STM32xxx Series MPUs: [PDF]
- USB Power Delivery on STM32 expansion software for STM32Cube (X-CUBE-USB-PD) webpage: link
- Single-chip USB type-C port protection IC (TCPP01-M12) webpage: link

Releasing your creativity

/STM32

@ST_World

community.st.com

www.st.com/STM32

Thank you

