IIT Jodhpur

Biological Vision and Applications Module 03-08: Taxonomy Learning

Hiranmay Ghosh

Taxonomy

Organizing concepts in a hierarchy

• Learned top-down, or bottom-up?

Taxonomy Learning

The cognitive science viewpoint

• Psychologists suggest that it is learned top-down with experience

Taxonomy is a tradeoff

... between complexity of hypothesis and it's goodness of fit (with data)

- Complexity of hypothesis
 - Human mind accepts the simplest theory
 - A hypothesis with one class is simplest
 - ► ... more classes → more complexity
- "Goodness of fit"
 - Probability of data being explained by the hypothesis
 - Tighter the enclosed area, better is the goodness of fit

Example

Hypothesis 1

Simple (1 class)
Poor goodness of fit (large bounding box)

Feature space

Hypothesis 2

Complex (3 classes)
Better goodness of fit (small bounding boxes)

Feature space

Which one is accepted?

Bayesian approach for hypothesis selection

- Posterior probability of a hypothesis: $P(h_i \mid d) = k_1.P(h_i).P(d \mid h_i)$

 - ightharpoonup We can ignore k_1 (for comparisons)
- Prior for hypothesis: $P(h_i) = f(c_i)$
 - $ightharpoonup c_i$: number of classes in hypothesis h_i (complexity)
 - $ightharpoonup f(c_i)$: a exponentially decreasing function on c_i
 - $P(h_i) = k_2^{-c_i}$

Bayesian approach for hypothesis selection

... contd.

- "Goodness of fit": $P(d \mid h_i) = \left(\frac{k_3}{A}\right)^n$
 - Inverse of probability of the data to fit in the designated area (in feature space)
 - n: Total number of data points
 - A: Total area for all the category spaces
 - \triangleright k_3 : A constant (scaling factor for A)
- Posterior: $P(h \mid d) = k_1.k_2^{-c_i}.\left(\frac{k_3}{A}\right)^n$
- Generally ...
 - Simpler hypothesis dominates with sparse data
 - When we have seen less number of instances, we tend to believe that they are all in the same group
 - Goodness of fit dominates with dense data
 - ▶ When we have seen more instances, we tend to classify them in subgroups

No quiz for module 03-08

End of Module 03-08