Maurice **Chossat** Yannick **Privat**

AIDE-MÉMOIRE

Mathématiques de l'ingénieur

4e édition

DUNOD

Illustration de couverture : © belchonoksun – 123rf.com

DANGER

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

© Dunod, 2001, 2010, 2012, 2017 11 rue Paul Bert, 92240 Malakoff www.dunod.com 978-2-10-076223-1

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

© Dunod. Toute reproduction non autorisée est un délit

Table des matières

Partie A : Algèbre et géométrie		
1. Ar	thmétique, algèbre et trigonométrie	3
1.1	Symboles usuels de l'algèbre	3
1.2	Structures algébriques	4
1.3	Calculs dans l'ensemble des nombres réels	6
1.4	Numération binaire	10
1.5	Algèbre de la logique ou algèbre de Boole	13
1.6	Analyse combinatoire	15
1.7	Équations algébriques	18
1.8	Déterminants, systèmes linéaires et matrices	24
1.9	Fonctions usuelles simples	40
1.1	0 Croissance et limites	46
1.1	1 Nombres complexes ou imaginaires	49
1.1	2 Trigonométrie	50
1.1	3 Séries	61
2. Ca	cul vectoriel et calcul tensoriel	77
2.1	Calcul vectoriel	77
2.2	Vecteurs glissants. Moments	81
2.3	Analyse vectorielle	84
2.4	Calcul tensoriel	90
3. Gé	ométrie	97
3.1	Birapport, critère de cocyclicité	97
3.2		98
3.3	_	106

ide-mémoire de Mathématiques de l'ingénieur

3.4 Propriétés m	étriques des courbes planes	117
3.5 Courbes en d	coordonnées polaires $r = f(\theta)$	119
3.6 Problèmes re	elatifs au cercle	121
3.7 Coniques		124
3.8 Géométrie da	ans l'espace	138
Partie B : Analyse	e et probabilités	163
4. Éléments d'ana	alyse	165
4.1 Dérivées et d	différentielles	165
4.2 Intégrales		174
4.3 Équations di	fférentielles	213
4.4 Équations in	tégrales	225
		228
4.5 Calcul des va	ariations	220
4.5 Calcul des va 5. Analyse numér		231
5. Analyse numéi		
5. Analyse numér 5.1 Dérivation n	rique	231
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro	rique umérique, différences finies	231 231
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro 5.3 Polynômes d	rique umérique, différences finies ché des intégrales définies	231 231 234
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro 5.3 Polynômes d 5.4 Résolution n	rique umérique, différences finies ché des intégrales définies l'interpolation de Lagrange umérique d'équations non linéaires umériques de résolution des équations	231 231 234 238 239
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro 5.3 Polynômes d 5.4 Résolution n 5.5 Méthodes nu différentielle	rique umérique, différences finies ché des intégrales définies l'interpolation de Lagrange umérique d'équations non linéaires umériques de résolution des équations	231 231 234 238
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro 5.3 Polynômes d 5.4 Résolution n 5.5 Méthodes nu différentielle 5.6 Optimisation	rique umérique, différences finies ché des intégrales définies l'interpolation de Lagrange umérique d'équations non linéaires umériques de résolution des équations	231 231 234 238 239 246
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro 5.3 Polynômes d 5.4 Résolution n 5.5 Méthodes nu différentielle 5.6 Optimisation 5.7 Calcul numé	rique umérique, différences finies ché des intégrales définies l'interpolation de Lagrange umérique d'équations non linéaires umériques de résolution des équations is in dans R ⁿ rique de valeurs propres et de vecteurs	231 231 234 238 239 246 249
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro 5.3 Polynômes d 5.4 Résolution n 5.5 Méthodes nu différentielle 5.6 Optimisation 5.7 Calcul numé propres	rique umérique, différences finies ché des intégrales définies l'interpolation de Lagrange umérique d'équations non linéaires umériques de résolution des équations is in dans R ⁿ rique de valeurs propres et de vecteurs	231 231 234 238 239 246 249
5. Analyse numér 5.1 Dérivation no 5.2 Calcul appro 5.3 Polynômes d 5.4 Résolution no 5.5 Méthodes nu différentielle 5.6 Optimisation 5.7 Calcul numé propres 6. Fonctions dive 6.1 Intégrales de	rique umérique, différences finies ché des intégrales définies l'interpolation de Lagrange umérique d'équations non linéaires umériques de résolution des équations is in dans R ⁿ rique de valeurs propres et de vecteurs	231 234 238 239 246 249 262

	6.4	Fonctions eulériennes	270
	6.5	Fonction hypergéométrique	274
	6.6	Fonctions de Bessel	275
	6.7	Série et polynômes de Legendre	283
	6.8	Fonction de Weber-Hermite	285
	6.9	Polynômes de Tchebycheff	288
		Polynômes de Laguerre	291
7	Δlαè	ebre des transformations	293
٠.	_		
	7.1	Transformation de Laplace	293
	7.2	Transformation de Fourier	313
	7.3	Transformation de Mellin	315
8.	Prok	pabilités et statistiques	319
	8.1	Probabilités -	319
	• • •	Éléments de statistiques	341
	8.3	Simulation de variables	341
	0.5	aléatoires réelles et méthode de Monte-Carlo	353
In	dex		356

Algebre et géométrie

© Dunod. Toute reproduction non autorisée est un délit

Arithmétique, algèbre et trigonométrie

1.1 Symboles usuels de l'algèbre

Symboles Symboles dits quantificateurs

 \forall signifie « quel que soit »; par exemple $\forall a \in E$, quel que soit a appartenant à E.

 \exists signifie « il existe » ; par exemple $\exists a \in E$, il existe a appartenant à E, tel que

 $a \in E$ a est un élément de l'ensemble E.

 $a \notin E$ a n'appartient pas à E.

 $\begin{cases} E \supset F \\ F \subset E \end{cases}$ Symbole de l'*inclusion* signifiant que F est un sousensemble de E, c'est-à-dire contenu dans E et pouvant être E lui-même

Ø Ensemble *vide*.

Τ.

 $E \cap F$ Intersection de E et de F; ensemble des éléments communs à E et à E.

 $E \cup F$ Réunion de E de F; ensemble des éléments appartenant soit à E, soit à F, soit à leur intersection.

 \mathbf{C}_A Complémentaire de A sous-ensemble de E; on a $A \cap \mathbf{C}_A = \emptyset$.

 $a \top b = c$ Relation exprimant que c est le résultat de l'opération interne effectuée sur a et b éléments de E. On trouve aussi :

 $a \perp b$; a * b; a + b; $a \cdot b$

 $a \top e = e \top a = a$ e est l'élément *neutre* de l'opération \top . $a \top a' = e$ a et a' sont des éléments *symétriques* dans l'opération

aRb a et b satisfont à une relation binaire désignée par R. $y \rightarrow f(x)$ x élément de E s'applique sur y, élément de E. L'application est bijective. $f \circ g$ application composée signifiant $y \rightarrow f[g(x)]$; ne pas confondre avec $g \circ f$ signifiant $y \rightarrow g[f(x)]$. $a \mod n$ signifie a + Kn, quel que soit K entier relatif. $a \mid a \mid$ valeur absolue ou module de a.

1.2 Structures algébriques

A) Groupe

Groupe

Ensemble G non vide possédant une loi de composition interne satisfaisant aux axiomes suivants :

 $1^{\circ} \forall a, b, c \in G : (a \top b) \top c = a \top (b \top c)$ (associativité), $2^{\circ} \exists e \in G, \forall a : a \top e = e \top a = a$ (e, élément neutre), $3^{\circ} \forall a \in G, \exists a' : a' \top a = a \top a' = e$ (a', symétrique).

▶ Groupe *abélien* : $\forall a, b \in G$: $a \top b = b \top a$ (commutativité).

Propriétés

- ▶ $\forall a, b, c \in G, a \top c = b \top c \Rightarrow a = b, c \top a = c \top b \Rightarrow a = b$ (tout élément est régulier);
- ▶ $\forall a, b \in G, \exists x \in G \text{ tel que}$ a $\top x = b : x = d' \top b$ et $x \top a = b : x = b \top d'.$
- ▶ Sous-groupe : $G' \subset G$ est un sous-groupe de G si $\forall a, b \in G'$: $a \cap b' \in G'$ (b' symétrique de b dans G).

B) Anneau

Anneau

Ensemble A muni de deux lois de composition interne satisfaisant aux axiomes suivants :

I. A est un groupe abélien pour la première loi (addition) :

$$1^{\circ} \forall a, b, c \in A : (a + b) + c = a + (b + c) :$$

$$2^{\circ} \exists 0 \in A, \forall a : a + 0 = 0 + a = a;$$

$$3^{\circ} \forall a \in A, \exists (-a) : a + (-a) = (-a) + a = 0$$
;

$$4^{\circ} \ \forall a, b \in A : a + b = b + a.$$

II. $\forall a, b, c \in A : (ab) \ c = a(bc)$ (associativité de la multiplication).

III.
$$\forall a, b, c \in A : a(b+c) = ab + ac, (a+b) c = ac + bc$$
 (distributivité).

- Anneau unitaire : $\exists e \in A, \forall a : ea = ae = e$ (e, élément neutre pour la deuxième loi, appelé unité).
- ▶ Anneau intègre : $\forall a \neq 0$, $\forall b \neq 0 \Rightarrow ab \neq 0$ (pas de diviseurs de zéro).

Propriétés

$$\forall a, b : (-a) \ b = a(-b) = (-ab), \ \forall a : a \cdot 0 = 0 \cdot a = 0.$$

C) Corps

Corps

Ensemble K muni de deux lois de composition interne satisfaisant aux axiomes suivants :

I. K est un groupe abélien pour la première loi (addition).

$$1^{\circ} \forall a, b, c \in K : (a + b) + c = a + (b + c),$$

$$2^{\circ} \exists 0 \in K, \forall a : a + 0 = 0 + a = a.$$

$$3^{\circ} \forall a \in K, \exists (-a) : a + (-a) = (-a) + a = 0,$$

$$4^{\circ} \forall a, b \in K : a + b = b + a.$$

II. K (privé de 0) est un groupe pour la deuxième loi (multiplication).

1°
$$\forall a, b, c \in K$$
: $(ab) c = a(bc)$,

$$2^{\circ} \exists e \in K, \forall a : ea = ae = a,$$

$$3^{\circ} \forall a \neq 0, \exists a^{-1} : aa^{-1} = a^{-1} \ a = e,$$

III.
$$\forall a, b, c \in K : a(b + c) = ab + ac, (a + b) c = ac + bc.$$

Corps commutatif (ou droit): la deuxième loi est commutative.

1.3 Calculs dans l'ensemble des nombres réels

1.3.1 Exposants et radicaux

Exposants: p, q entiers positifs, négatifs ou nuls, a et b réels différents de 0

$$a^{\circ} = 1,$$
 $a^{-p} = \frac{1}{a^{p}},$ $a^{p} a^{q} = a^{p+q},$ $(a^{p})^{q} = a^{pq},$ $(ab)^{p} = a^{p}b^{p},$ $\left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}}.$

Radicaux: n, q entier positifs, p entier relatif, a et b réels

$$\sqrt[q]{a} = b \Leftrightarrow a = b^q, \qquad \sqrt[nq]{a} = \sqrt[n]{\sqrt[q]{a}}$$

$$\sqrt[nq]{a^{np}} = \sqrt[q]{a^p} = a^{\frac{p}{q}} = a^m.$$

m, m' rationnels, a et b réels positifs

$$a^{m} a^{m'} = a^{m+m'}, \quad (a^{m})^{m'} = a^{mm'}, \quad a^{-m} = \frac{1}{a^{m}},$$

$$(ab)^{m} = a^{m} b^{m}, \quad \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}.$$

1.3.2 Identités usuelles

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$ab = \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$(a_1 + a_2 + \dots + a_n)^2 = \sum_{1 \le i \le n} a_i^2 + 2 \sum_{1 \le i < j \le n} a_i a_j$$

$$(a_1 + a_2 + \dots + a_n)^3 = \sum_{1 \le i \le n}^{1 \le i \le n} a_i^3 + 3 \sum_{1 \le i < j \le n}^{1 \le i < j \le n} a_i^2 a_j + 6 \sum_{1 \le i < j < k \le n} a_i a_j a_k$$

$$(a_1 + a_2 + \ldots + a_n)^p = \sum_{k_1, k_2, \ldots, k_n} \frac{p!}{k_1! \ldots k_n!} a_1^{k_1} \ldots a_n^{k_n},$$

où la sommation est étendue à tout ensemble d'entiers k_1 , ..., k_n positifs ou nuls tels que $k_1 + ... + k_n = p$.

Formule des anneaux :

$$x^{n} - a^{n} = (x - a)(x^{n-1} + ax^{n-2} + \dots + a^{p}x^{n-p-1} + \dots + a^{n-1}).$$

Identité de Lagrange :

$$(a^{2} + b^{2} + c^{2}) (a'^{2} + b'^{2} + c'^{2}) - (aa' + bb' + cc')^{2}$$

$$= (bc' - cb')^{2} + (ca' - ac')^{2} + (ab' - ba')^{2}.$$

Théorème de Bezout. – Si 2 polynômes A et B sont premiers entre eux, il existe un polynôme u de degré < à celui de B et un polynôme v de degré < A tels que l'on ait Au + Bv = 1.

1.3.3 Sommations usuelles

Somme des premiers termes d'une suite arithmétique :

a = premier terme, r = raison, n = nombre de termes.

Somme des *n* premiers termes
$$S = a + (a + r) + ... + (a + (n - 1)r)$$
$$= \frac{[2a + (n - 1)r]n}{2}.$$

Somme des premiers termes d'une suite géométrique :

$$q = raison$$
, $a = premier terme$

Somme des *n* premiers termes
$$S = a + aq + ... + aq^{n-1}$$
$$= a \frac{q^n - 1}{q - 1}.$$

Limite de *S* quand q < 1 et $n \to \infty$:

$$S = \frac{a}{1 - q}.$$

Produit des *n* premiers termes :

$$P = \sqrt{(al)^n} = (al)^{\frac{n}{2}}.$$

Sommations sur nombres entiers

▶ Somme des *n* premiers nombres entiers :

$$S_1 = 1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

▶ Somme des carrés des *n* premiers nombres entiers :

$$S_2 = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

▶ Somme des cubes des *n* premiers nombres entiers :

$$S_3 = 1^3 + 2^3 + 3^3 + \dots + (n-1)^3 + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2 = (S_1)^2.$$

▶ Somme des quatrièmes puissances des *n* premiers nombres entiers :

$$S_4 = 1^4 + 2^4 + 3^4 + \dots + (n-1)^4 + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

Somme des nombres impairs :

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2$$
.

Somme des nombres pairs :

$$2 + 4 + 6 + \dots + 2n = 2 S_1 = n(n + 1).$$

Somme des carrés des nombres impairs :

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}.$$

Somme des carrés des nombres pairs :

$$2^2 + 4^2 + \dots + (2n)^2 = \frac{2n(n+1)(2n+1)}{3}$$

Somme des cubes des nombres impairs :

$$1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 - 1).$$

► Somme des cubes des nombres pairs :

$$2^3 + 4^3 + 6^3 + \dots + (2 n)^3 = 2 n^2 (n+1)^2$$
.

Sommes tirées de la relation :
$$1 + x + x^2 + \dots + x^n = \frac{x^n + 1}{x - 1}$$
 (progression géométrique).

Dérivons:

1 + 2x + 3x² + ... + nxⁿ⁻¹ =
$$\frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}$$
, $x \ne 1$.

Faisons $x = \frac{1}{2}$ puis divisons l'égalité obtenue par 2 :

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2\left(1 - \frac{n+2}{2^{n+1}}\right) = 2 - \frac{n+2}{2^n}$$

En dérivant encore une fois, on a :

$$2 + 2.3 x + 3.4 x^{2} + \dots + n(n-1) x^{n-2} = \frac{d}{dx} \frac{nx^{n+1} - (n+1)x^{n} + 1}{(x-1)^{2}}$$
$$= \frac{n(n-1)x^{n+1} - 2x^{n}(x^{2} - 1) + n(n+1)x^{n-1} - 2}{(x-1)^{3}}.$$

En faisant $x = \frac{1}{2}$ et en multipliant par $\frac{1}{2^2}$, on a :

$$\frac{2}{2^2} + \frac{2.3}{2^3} + \frac{3.4}{2^4} + \dots + \frac{n(n-1)^2}{2^n} = 2^2 - \frac{n^2 + 3n - 4}{2^n}.$$

Sommations de la forme $S = \sum n(n-1)$.

$$S_{12} = 1.2 + 2.3 + 3.4 + \dots + n(n-1) = \frac{(n+1)n(n-1)}{3}$$

$$S_{123} = 1.2.3 + 2.3.4 + \dots + (n-2)(n-1) n = \frac{(n+1)n(n-1)(n-2)}{4}$$

 $S_{12...k} = \frac{(n+1)n(n-1)\cdots(n-k+1)}{k+1}$

Sommations de la forme
$$S = \sum \frac{1}{n(n-1)}$$

$$S_1 = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n-1)} = \sum \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n} \cdot S_2 = \frac{1}{1.3} + \frac{1}{3.5} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{1}{2} \left(1 - \frac{1}{2n+3}\right) ,$$

$$S_3 = \frac{1}{1.2.3} + \frac{1}{2.3.4} + \dots + \frac{1}{(n-2)(n-1)n} = \frac{1}{2} \frac{n^2 - n - 2}{2n^2 - 2n} = \frac{1}{4} - \frac{1}{2n(n-1)}$$

1.4 Numération binaire

En numération binaire il n'y a que 2 signes (que l'on désigne généralement par 0 et 1). Tout nombre, en numération binaire, s'exprime par une suite de termes formés de 0 et de 1 qui, multipliés par les puissances de 2 successives, donnent la représentation décimale du nombre.

Exemple 23 = 16 + 4 + 2 + 1 $= 2^{4} \times 1 + 2^{3} \times 0 + 2^{2} \times 1 + 2^{1} \times 1 + 2^{0} \times 1 = 10111.$

Pour transformer en binaire un nombre exprimé en décimal, il faut commencer par diviser ce nombre par la plus haute puissance de 2 y contenue, diviser le reste par la plus haute puissance de 2 contenue dans ce reste, etc.

Puissance	de 2	Exemple
$2^{11} = 2^{12} = 2^{13} = 2^{13}$	1 2 4 8 16 32 64 128 256 512 1 024 2 048 4 096 8 192	Transformer 365 en numération binaire. La plus haute puissance de 2 contenue : dans 365 est 256 = 2^8 , reste 109 ; dans 109 est 64 = 2^6 , reste 45 ; dans 45 est 32 = 2^5 , reste 13 ; dans 13 est 8 = 2^3 , reste 5 ; dans 5 est 4 = 2^2 , reste 1 ; dans 1 est 1 = 2^0 , reste 0 ; $365 = 2^8 \times 1 + 2^7 \times 0 + 2^6 \times 1 + 2^5 \times 1 + 2^4 \times 0 + 2^3 \times 1 + 2^2 \times 1 + 2^1 \times 0 + 2^0 \times 1$ = 1 0 1 1 0 1 1 0 1.
Etc.		

Inversement pour transformer un nombre du binaire en décimal, il faut additionner les puissances de 2 matérialisées par le rang du symbole 1.

Exemple

Transformer 1 0 1 0 1 0 0 = $2^2 + 2^4 + 2^6 = 4 + 16 + 64 = 84$.

Le nombre de signes N utilisé en numération binaire est pour exprimer un même nombre de n chiffres en décimal.

$$N = \frac{n}{\log_{10} 2} = \frac{n}{0.301 \ 03}.$$

Ainsi, un nombre de 9 chiffres en décimal exigera 30 signes en binaire.

Opérations en numération binaire

Table d'addition : $\begin{array}{c|c}
0 & 1 \\
\hline
0 & 0 & 1 \\
\hline
1 & 1 & 0
\end{array}$

avec report de 1 à la colonne suivante pour l'addition 1 + 1 = 10.

Addition de 2 nombres

Se fait comme en décimal, en additionnant les chiffres de même rang en commençant par la droite. Quand on a 2 fois 1 le résultat est 0 et on reporte 1 à la colonne suivante.

Exemple

Additionner 27 = 1 1 0 1 1 et 13 = 1 1 0 1. 1 1 0 1 1 $\frac{1 1 0 1}{1 0 1 0 0} = 32 + 8 = 40.$

Addition de plusieurs nombres. – Il faut procéder par récurrence, additionner les 2 premiers, ajouter le troisième à la somme obtenue, etc.

Soustraction — Méthode par complémentation

Dans le chiffre à soustraire on remplace les 1 par 0 et vice versa ; on additionne avec le premier nombre ; on supprime le premier 1 sur la gauche et on ajoute 1 au résultat obtenu.

Exemple

$$83 - 42 = 41.$$

$$83 = 1010011$$

$$42 = 101010; complément 010101.$$
Opération:
$$1010011$$

$$010101$$

$$1101000$$

$$1$$

$$101001 = 32 + 8 + 1 = 41.$$

Multiplication — Table de multiplication

Multiplicande
$$\begin{array}{c|c}
Multiplicande \\
\hline
0 & 1 \\
\hline
0 & 0 & 0
\end{array}$$
Multiplicateur \rightarrow 1 | 0 | 1
$$= 1. \text{ Tous les autres cas } c$$

autrement dit : $1 \times 1 = 1$. Tous les autres cas donnent 0. La multiplication s'opère comme en décimal. Tous les produits partiels sont 0 ou le multiplicande.

Additionner les produits partiels successivement.

Exemple

$19 \times 13 = 247$.	
17 / 10 21/.	1 0 0 1 1
	1 1 0 1
	10011
	0 0 0 0 0
	10011
3 premières lignes	1011111
quatrième ligne	1 0 0 1 1
1	$\overline{11110111} = 247.$

Remarque

Le nombre de chiffres du produit est au plus la somme des nombres des chiffres du multiplicande et du multiplicateur (ici 5+4=9). Règle générale quelle que soit la base de numération.

1.5 Algèbre de la logique ou algèbre de Boole

L'algèbre de Boole opère sur 2 éléments seulement que l'on représente habituellement par 0 et 1. Cette notation indique seulement 2 états ou 2 positions qui s'excluent mutuellement (par exemple l'état ouvert ou fermé d'un contact électrique, comme nous le verrons plus loin).

Une variable de l'algèbre de Boole est un symbole qui peut prendre arbitrairement l'une ou l'autre des 2 valeurs 0 et 1. En permutant ces valeurs, on obtient des relations correspondant par dualité avec les relations initiales.

L'algèbre de Boole comporte 3 opérations de base :

y^{x}	0	1
0	0	1
1	1	1

1° *La somme logique* (symbole \vee) dont la table est celle cicontre : ce qui veut dire que $x \vee y$ vaut 1 si l'une au moins des variables vaut 1 ou encore si l'une *ou* l'autre vaut 1. Si les 2 variables valent $0, x \vee y = 0$.

Quel que soit x, $x \lor x = x$ (idempotence).

2° Produit logique (symbole.) dont la table est celle cicontre:

ce qui veut dire que x.y vaut 1 si et seulement si les 2 variables valent 1 (ou encore si l'une et l'autre valent 1).

1 1

Si l'une des 2 variables vaut 0, x, y = 0.

Ouel que soit x, $x \cdot x = x$ (idempotence).

On désigne encore quelquefois ces 2 opérations par l'opération ou (somme) et l'opération et (produit).

3° Négation ou complémentation. – Opération à 1 seule variable (symbole x' ou quelquefois x, x barre) qui consiste en ce que le résultat vaut 1 si la variable initiale vaut 0 et inversement

On vérifie que ces opérations possèdent les propriétés suivantes :

Commutativité :

$$x \lor y = y \lor x$$
,

$$x \cdot y = y \cdot x$$
.

Associativité:
$$x \lor (y \lor z) = (x \lor y) \lor z$$
, $a.(b.c) = (a.b).c$.

$$a.(b.c) = (a.b).c$$

Ce qui permet de supprimer les parenthèses. Distributivité d'une opération par rapport à l'autre :

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z,$$

$$x \lor (y \cdot z) = (x \lor y) \cdot (x \lor z).$$

Propriétés de la négation :

$$x \lor x' = 1$$
, $x \cdot x' = 0$
 $(x \lor y)' = x' \cdot y'$, $(x \cdot y)' = x' \lor y'$.

Fonctions de variables booléennes x, y, z, ...

C'est une quantité binaire (c'est-à-dire qui ne prend que les valeurs 0 et 1) dont la valeur (0 ou 1) est connue quand on connaît les valeurs de x, y, z.

Développement normal disjonctif :

Quelle que soit la fonction, on a :

$$f(x, y, z, ...) = [f(1, y, z, ...) \cdot x \lor f(0, y, z, ...) \cdot x'].$$

L'expression du premier membre comprend des termes comportant un variable de moins. On peut donc développer n'importe quelle fonction de n variables en une expression comportant 2^n termes.

Développement normal conjonctif : dérivé du précédent par dualité.
 Identité de base :

$$f(x, y, z, ...) = [f(1, y, z) \lor x'] \cdot [f(0, y, z) \lor x].$$

Comporte également 2^n termes.

Nombre de fonctions possibles de n variables = 2^{2^n} .

1.6 Analyse combinatoire

Permutations

Nombre de groupes différents que l'on peut faire avec m objets en tenant compte de l'ordre des objets.

1° Permutations sans répétition (c'est-à-dire qu'il y a m objets différents et que, par conséquent, chaque objet figure une seule fois dans chaque groupe) : $P_m = m$!

2° *Permutations avec répétitions* : plusieurs objets semblables peuvent figurer dans chaque groupe ; nombre de permutations de m objets dont α , β , γ , semblables, tels que $\alpha + \beta + \gamma + \cdots = m$

$$\alpha$$
, β, γ, ... semblables, tels que $\alpha + \beta + \gamma + \cdots = m$

$$R_m^{\alpha, \beta, \gamma \dots} = \frac{P_m}{P_{\alpha} P_{\beta} P_{\gamma} \dots} = \frac{m!}{\alpha! \beta! \gamma! \dots}$$

Exemple

$$m = 4$$
, $\alpha = 2$, $\beta = 2$; $R_4^{2,2} = \frac{4!}{2!2!} = 6$.
 $a \ a \ b \ b \ a \ b \ a \ b$
 $a \ b \ b \ a \ a \ b$
 $a \ b \ b \ a \ a \ b$
 $a \ b \ b \ a \ a \ b$

Arrangements de m objets p à p = nombre de groupes de p objets différents que l'on peut former avec m objets différents en tenant compte de l'ordre :

$$A_m^p = m(m-1)...(m-p+1) = \frac{m!}{(m-p)!}$$

(Si $p = m$, on a $A_m^m = P_m = m!$).

Combinaisons de m objets p à p

Nombre de groupes de p objets différents qu'on peut former avec m objets sans tenir compte de l'ordre.

1° Combinaisons sans répétition :
$$C_m^p = \frac{A_m^p}{P_p} = \frac{m!}{p!(m-p)!}$$

2° Combinaisons avec répétitions :

$$K_m^p = \frac{m(m+1)...(m+p-1)}{p!} = C_{m+p-1}^p$$
, que l'on peut encore mettre sous la forme

$$K_m^p = \frac{(p+1)(p+2)...(p+m-1)}{(m-1)!}$$
.

Répétition signifie ici que l'on peut faire entrer dans le même groupe plusieurs fois le même objet (ou la même lettre) sans cependant que le total des objets différents dépasse m.

Exemple

$$C_4^3 = 4: K_4^3 = \frac{4.5.6}{3!} = 20.$$

Dunod. Toute reproduction non autorisée est un délit

1.6.1 Propriétés des combinaisons

Sans répétition: $C_m^p = C_m^{m-p}$,

$$C_m^p = C_{m-1}^p + C_{m-1}^{p-1}$$
 (triangle de Pascal),

$$C_m^p = C_{m-1}^{p-1} + C_{m-2}^{p-1} + \dots + C_p^{p-1} + C_{p-1}^{p-1}$$

• Avec répétitions : $K_m^p = K_{m-1}^p + K_m^{p-1} = C_{m+p-1}^p$,

$$K_m^p = K_1^{p-1} + K_2^{p-1} + \dots + K_{m-1}^{p-1} + K_m^{p-1}.$$

1.6.2 Formule du binôme et formules dérivées

 $(x+a)(x+b)...(x+l) = x^m + S_1 x^{m-1} + S_2 x^{m-2} + \dots + S_p x^{m-p} + \dots + S_m$ avec:

$$S_1 = a + b + c + \dots + l,$$

$$S_2 = ab + ac + \dots + bc + bd + \dots + cd + \dots$$

$$S_3 = abc + abd + acd + bcd + \dots.$$

Remarque

Formule du binôme de Newton

$$(x+a)^m = x^m + C_m^1 a x^{m-1} + C_m^2 a^2 x^{m-2} + \dots + C_m^{m-1} a^{m-1} x + a^m$$

avec a = b = c = ... = l

Le nombre des termes est (m + 1).

Remarque

Si
$$x = a = 1$$
, $1 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$.
Si $x = -a = 1$, $1 + C_n^2 + C_n^4 + \dots = C_n^1 + C_n^3 + C_n^5 + \dots = 2^{n-1}$.

1.6.3 Triangle de pascal

Équations algébriques

Fonctions symétriques des racines 1.7.1

$$f(x) \equiv a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0,$$

 σ_p représente la somme des produits p à p des racines, S_p la somme des puissances p de celles-ci.

$$\sigma_{1} = -\frac{a_{1}}{a_{0}}, = \sigma_{2} = \frac{a_{2}}{a_{0}}, \dots, \sigma_{p} = (-1)^{p} \frac{a_{p}}{a_{0}}, \dots, \sigma_{n} = (-1)^{n} \frac{a_{n}}{a_{0}}.$$

$$\begin{pmatrix} a_{0} S_{1} + a_{1} = 0 \\ a_{0} S_{2} + a_{1} S_{1} + 2a_{2} = 0 \\ \dots & \dots & \dots \\ a_{0} S_{p} + a_{1} S_{p-1} + \dots + a_{p-1} S_{1} + pa_{p} = 0 \quad (0
The calcul design sommes $S_{p}(p < 0)$, prendre l'équation aux inverse.$$

Pour le calcul des sommes S_p (p < 0), prendre l'équation aux inverses. $y = \frac{1}{x} \Longrightarrow a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0 = 0,$

$$y = \frac{1}{y} \implies a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0 = 0$$

$$\begin{split} \sum_{i,j} x_i^{\alpha} x_j^{\beta} &= S_{\alpha} S_{\beta} - S_{\alpha+\beta}, \qquad \alpha \neq \beta, \\ \sum_{i,j} x_i^{\alpha} x_j^{\beta} &= \frac{1}{2} (S_{\alpha}^2 - S_{2\alpha}), \\ \sum_{i,j} x_i^{\alpha} x_j^{\beta} x_k^{\gamma} &= (\sum_{i} x_i^{\alpha} x_j^{\beta}) S_{\gamma} - \sum_{i} x_i^{\alpha+\gamma} x_j^{\beta} - \sum_{i} x_i^{\alpha} x_j^{\beta+\gamma} & (\alpha, \beta, \gamma \text{ différents}). \end{split}$$

1.7.2 Équations réciproques

Soit f une fonction telle que $f(1) \neq 0$, $f(-1) \neq 0$ et:

$$\begin{split} f(x) &\equiv a_0 \, x^{2p} + \dots + a_q x^{2p-q} + \dots + a_p \, x^p + \dots + a_q \, x^q + \dots + a_0 \\ &\equiv x^p \bigg[a_0 \bigg(x^p + \frac{1}{x^p} \bigg) + \dots + a_q \bigg(x^{p-q} + \frac{1}{x^{p-q}} \bigg) + \dots + a_p \bigg] \end{split}$$

se transforme par
$$y = x + \frac{1}{x}$$
,
 $x^2 + \frac{1}{x^2} = S_2 = y^2 - 2$, ..., $x^p + \frac{1}{x^p} = S_p = yS_{p-1} - S_{p-2}$.

1.7.3 Équations du premier degré

Voir section 1.8.3, p. 37.

1.7.4 Équations du deuxième degré

 $ax^2 + bx + c = 0$, avec a, b et c, trois réels.

 $1^{\circ} \Delta = b^2 - 4 \ ac > 0 : 2 \text{ racines réelles}$

$$\begin{cases} x' \\ x'' \end{cases} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

2° Si $\Delta = b^2 - 4$ ac = 0, 1 racine double : $x = -\frac{b}{2a}$;

3° Si $\Delta = b^2 - 4$ ac < 0, 2 racines imaginaires :

$$\begin{cases} x' \\ x'' \end{cases} = \frac{-b \pm i\sqrt{4ac - b^2}}{2a}.$$

Relations entre coefficients et racines

$$y = \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right] = a(x - x')(x - x'').$$

- Somme des racines : $S = x' + x'' = -\frac{b}{a}$
- Produit des racines : $P = x' x'' = \frac{c}{a}$

DÉTERMINATION DE 2 NOMBRES x ET y, dont on connaît la somme S et le produit P, ou la différence D et le produit P.

Avec x + y = S, x et y sont racines de :

$$X^2 - SX + P = 0.$$

Avec x - y = D, x et (-y) sont racines de :

$$X^2 - DX - P = 0.$$

CONSTRUCTION GÉOMÉTRIQUE:

Connaissant S et P.

$$x' = AB, x'' = AC$$

Connaissant D et P.

$$x' = AB, x'' = AC$$

On en déduit les 2 théorèmes :

- *a*) Le produit de 2 nombres réels variables, dont la somme est constante, est maximal lorsque ces 2 nombres sont égaux.
- b) La somme de 2 nombres positifs, dont le produit est constant, est minimale lorsque ces 2 nombres sont égaux.

Étude du trinôme du deuxième degré

$$y = ax^2 + bx + c.$$

Signe du trinôme :

$$b^2 - 4 ac < 0$$
, y toujours du signe de a;

$$b^2 - 4 ac = 0$$
, y du signe de a, sauf pour $x = -\frac{b}{2a}$ pour lequel $y = 0$;

$$b^2 - 4$$
 ac > 0, y du signe de a à l'extérieur des racines et du signe contraire à l'intérieur.

1.7.5 Équations du troisième degré

(1)
$$x^3 + ax^2 + bx + c = 0, \text{ avec } a, b \text{ et } c, \text{ trois réels.}$$

RÉSOLUTION ALGÉBRIQUE. – En posant $x = y - \frac{a}{3}$, on obtient :

(2)
$$y^3 + py + q = 0$$
, avec $p = b - \frac{a^2}{3}$ et $q = \frac{2a^3}{27} - \frac{ab}{3} + c$.

Formons
$$R = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^2$$
 ou $4p^3 + 27q^2$.

Les racines de (2) sont :

$$x_1 = u + v$$
, $x_2 = u\alpha_1 + v\alpha_2$, $x_3 = u\alpha_2 + v\alpha_1$,

u et v étant les expressions

$$u = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{2}\right)^3}}, \quad v = \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{2}\right)^3}}.$$

 α_1 et α_2 étant les racines cubiques de l'unité :

$$\alpha_1 = \frac{-1 + i\sqrt{3}}{2}$$
 et $\alpha_2 = \frac{-1 + -i\sqrt{3}}{2}$.

Si R > 0, une seule racine réelle :

$$y = \sqrt[3]{-\frac{q}{2} + \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3}} + \sqrt[3]{-\frac{q}{2} - \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3}}$$
 (formule de Cardan)

Si R = 0, 1 racine double = $-\frac{3q}{2p}$ et une simple = $\frac{3q}{p}$.

Si R < 0, 3 racines réelles qui, quoique réelles, se présentent sous forme imaginaire (somme de 2 imaginaires conjugués) (voir résolution trigonométrique).

RÉSOLUTION TRIGONOMÉTRIQUE. – Par la transformation $x = y - \frac{a}{3}$, on amène l'équation à la forme $y^3 + 3py + 2q = 0$.

1^{er} cas : p > 0. Posons sh $φ = \frac{q}{p\sqrt{p}}$. Les 3 racines sont alors :

$$\begin{cases} y_1 = -2\sqrt{p} \text{ sh } \frac{\varphi}{3}, \\ y_2 = \sqrt{p} \text{ sh } \frac{\varphi}{3} + i\sqrt{3p} \text{ ch } \frac{\varphi}{3}, \\ y_3 = \sqrt{p} \text{ sh } \frac{\varphi}{3} - i\sqrt{3p} \text{ ch } \frac{\varphi}{3}. \end{cases}$$

 2^{e} cas : p < 0.

$$\alpha$$
) $p^{3} + q^{2} > 0$. On pose

$$ch \ \phi = \frac{q}{-p\sqrt{-p}}.$$

On a

$$\begin{cases} y_1 = -2\sqrt{-p} \operatorname{ch} \frac{\varphi}{3}, \\ y_2 = \sqrt{-p} \operatorname{ch} \frac{\varphi}{3} + i\sqrt{-3p} \operatorname{sh} \frac{\varphi}{3}, \\ y_3 = \sqrt{-p} \operatorname{ch} \frac{\varphi}{3} - i\sqrt{-3p} \operatorname{sh} \frac{\varphi}{3}. \end{cases}$$

β)
$$p^3 + q^2 < 0$$
. On pose

$$\cos \varphi = \frac{q}{-p\sqrt{-p}}$$

On a

$$\begin{cases} y_1 = -2\sqrt{-p}\cos\frac{\varphi}{3}, \\ y_2 = 2\sqrt{-p}\cos\left(\frac{\pi - \varphi}{3}\right), \\ y_3 = 2\sqrt{-p}\cos\left(\frac{\pi + \varphi}{3}\right). \end{cases}$$

1.7.6 Équation du quatrième degré

$$x^4 + ax^3 + bx^2 + cx + d = 0$$
, avec a, b, c et d réels

On calcule les solutions de l'équation du troisième degré $y^3 + ry^2 + sy + t = 0$, dont les coefficients sont r = -b, s = ac - 4d, $t = d(4b - a^2) - c^2$. Soit y la plus grande racine réelle de l'équation en y.

On calcule

$$p = \frac{a}{2} + \sqrt{\left(\frac{a}{2}\right)^2 - b + y}, \quad q = \frac{y}{2} + \varepsilon \sqrt{\left(\frac{y}{2}\right)^2 - d};$$

$$p_1 = \frac{a}{2} - \sqrt{\left(\frac{a}{2}\right)^2 - b + y}, \quad q_1 = \frac{y}{2} - \varepsilon \sqrt{\left(\frac{y}{2}\right)^2 - d};$$

$$ay$$

avec

$$\varepsilon = +1$$
 si $\frac{dy}{2} - c > 0$;
 $\varepsilon = -1$ si $\frac{dy}{2} - c < 0$.

Les racines de l'équation du quatrième degré sont racines des 2 trinômes

$$\begin{cases} x^2 + px + q = 0, \\ x^2 + p_1 x + q_1 = 0. \end{cases}$$

Voir section 1.7.4.

1.8 **Déterminants, systèmes linéaires et matrices**

1.8.1 Matrices

Matrice

Une matrice est un tableau de nombres. Une matrice à n lignes et p colonnes est appelée matrice $n \times p$ ou matrice de taille $n \times p$. Si n = p, on parle de matrice carrée.

Remarque

L'exemple le plus courant de matrice est le tableau de coefficients d'un système linéaire de m équations linéaires à n inconnues.

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mm}x_n = b_m \end{cases}$$

avec $m \neq n$ ou m = n.

Si m = n, on a une matrice carrée.

Si on écrit les coefficients sous la forme :

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \text{ et les vecteurs } X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ et } B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{bmatrix}$$

on a AX = B, équation matricielle.