Organização de Computadores Digitais I

- 1ª. Questão: Implemente um programa em linguagem montadora com as instruções da Tabela I que realize o algoritmo de um calendário digital.
 - a) Deve ter dia, mês e ano.
 - b) Deve imprimir na Tela na linha 5: D: xx M: xx A: xx
 - c) O calendário deve começar em D: 01 M: 01 A: 01 e seguir marcando o tempo até que o processador seja desligado.
 - d) Considere a utilização de uma rotina outascii (em anexo) que trabalha com R0 e R1 sem alterá-los e imprime os dois dígitos menos significativos de R1 em decimal da seguinte maneira:

OUTPUT R0 R1(digito 1) OUTPUT R0+1 R1(digito 2)

Tabela I – Instruções do processador

LOAD Rx #Nr	LOAD Rx END	LOAD Rx Ry	MOV Rx Ry
CMP	STORE END Rx	STORE Ry Rx	ADD Rz Rx Ry
SUB Rz Rx Ry	MUL Rz Rx Ry	DIV Rz Rx Ry	AND Rz Rx Ry
OR Rz Rx Ry	XOR Rz Rx Ry	NOT Rz Rx	NOP
JMP END	CALL END	RTS	
PUSH Rx	POP Rx	CLRC	SETC
INC Rx	DEC Rx	INPUT Rx	OUTPUT Rx Ry
SHIFT Rx	ROTATE Rx		

- 2^a. Questão: Monte as seguintes 7 linhas de programa. (3bit registrador)
 - a) Considere que cada instrução é representada por 6 bits: cmp = 01; jmp = 02; load = 03; input = 04, add = 05, call = 06, and = 07, halt = 08, output = 09.
 - b) Considere que a condição tem 4 bits: **eg** (equal or greater) = 07.
 - c) Considere que o programa começa na linha 0008 da memória (16 bits).

add r4 r2 r3 cmp r4 r5 ceg grande jmp digito1

grande: load r5 #37 digito1: output r0 r1 r4

halt

```
; Imprime os dois dígitos menos
; significativos de r2 em HEX
; Trabalha com r0 r1 r2 sem altera-los
; OUTPUT R0 R1 R2(0)
; OUTPUT R0+1 R1 R2(1)
outascii:
              push r0
              push r1
              push r2
              push r3
              push r4
              push r5
              push fr
              ; Digito r2(0) --> HEX
              load r3 #000F
              and r4 r2 r3
              load r5 #000A
              cmp r4 r5
              jeg grande
              load r5 #0030 ; r2 = (0-9)
              bra digito1
grande:
              load r5 \#0037; r2 = (A-F)
digito1:
              add r4 r4 r5
              output r0 r1 r4
              ; Digito r2(1) --> HEX
              sr0 r2
              sr0 r2
              sr0 r2
              sr0 r2
                                                                Tabela ASCII
              load r3 #000F
                                                              Dec
                                                                     Hex
                                                                             Char
                                                              48
                                                                      30
              and r4 r2 r3
                                                                             0
              load r5 #000A
                                                              49
                                                                      31
                                                                             1
                                                              50
                                                                             2
              cmp r4 r5
                                                                     32
                                                              51
                                                                             3
                                                                      33
              jeg grande2
              load r5 #0030 ; r2 = (0-9)
                                                              52
                                                                      34
                                                                             4
                                                              53
                                                                      35
                                                                             5
              bra digito2
              load r5 #0037; r2 = (A-F)
                                                              54
grande2:
                                                                      36
                                                                             6
digito2:
              add r4 r4 r5
                                                              55
                                                                             7
                                                                     37
                                                              56
                                                                     38
                                                                             8
              inc r0
              output r0 r1 r4
                                                              57
                                                                     39
                                                                             9
              pop fr
              pop r5
                                                              65
                                                                     41
                                                                             A
                                                                     42
              pop r4
                                                              66
                                                                             В
                                                                             \mathbf{C}
                                                              67
                                                                     43
              pop r3
                                                              68
                                                                     44
                                                                             D
              pop r2
                                                                             E
              pop r1
                                                              69
                                                                     45
                                                              70
                                                                             F
                                                                     46
              pop r0
              rts
```

3^a. Questão: Explique o algoritmo abaixo

4ª. Questão: Desenhe um processador de 8 bits, contendo 4 registradores de 8 bits, ULA de 8 bits e memória de 64K palavras de 8 bits, com o mínimo de estruturas necessárias para executar só e somente só as instruções da Tabela abaixo. Considerando um conjunto de 14 instruções, mostre como será a representação de cada instrução na memória. Desenhe o circuito deste processador para as 4 instruções da tabela. Mostre os sinais que a Máquina de Controle deve enviar para os dispositivos para executar as instruções da Tabela nos ciclos de Busca, Decodificação e Execução (adicione mais ciclos se achar necessário).

Instrução	Ação
LOAD Rx Ry	$Rx \leftarrow MEM[Ry]$
PUSH Rx	Rx → PILHA
STORE END Rx	MEM[END] ← Rx
CALLC END	Goto END Se Carry = 1

5ª. Questão: Desenhe um processador de 32 bits, contendo 4 registradores de 32 bits, ULA de 32 bits e memória de 64K palavras de 32 bits, com o mínimo de estruturas necessárias para executar só e somente só a instrução CALL END.