Noether's Theorem for Functionals Depending on Higher-Order Derivatives

Vanessa E. McHale

August 30, 2016

Abstract

Presents proofs of some theorems involved in the calculus of variations with fields depending on higher order derivatives. We follow Gelfand and Fomin very closely.

1 The Euler-Lagrange Equations in general

Suppose we have a functional of the form $J[u] = \int F(x_i; u_j; \frac{\partial u_j}{\partial x_i}; \frac{\partial^2 u_j}{\partial x_j x_k}; \cdots) dx_1 \cdots dx_n$. We wish to find a sufficient condition that it is stationary.

2 Calculation of $\delta u_{x_i x_i}$

We get that

$$(\bar{\delta u})_{x_i x_j} + \sum_{i,k=1}^n u_{x_i x_j x_k} \delta x_k$$

3 General Expression for the variation of a functional

4 Conserved flows

Let us suppose we are given a functional J[u] which is invariant under a transformation of the form

$$\begin{split} x_i^* &= \Phi_i(x,u,\partial_i u,\partial_i \partial_j u;\epsilon) \ x_i + \epsilon \phi_i(x,u,\partial_i u) \\ u_j^* &= \Psi_i(x,u,\partial_i u,\partial_i \partial_j u;\epsilon) \ x_i + \epsilon \psi_j(x,u,\partial_i u) \end{split}$$
 that is, $\int F^*(u*) dx^* = \int F(u) dc$.
Then

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} M = 0$$

whenever u_j are chosen to be extremal.