МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №3 по курсу «Методы машинного обучения»

Тема: «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование»

ИСПОЛНИТЕЛЬ:	Чертилин А.А. _{ФИО}
группа ИУ5-22М	подпись
	""2019 г.
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю.Е. _{ФИО}
	подпись
	""2019 г.

Москва - 2018

1. Цель лабораторной работы:

изучение способов предварительной обработки данных для дальнейшего формирования моделей.

2. Задание:

Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи: обработку пропусков в данных; кодирование категориальных признаков; масштабирование данных.

3. Реализация

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   sns.set(style="ticks")

companies = pd.read_csv('Data/lab_3/acquisitions.csv', sep=',')
   companies.head(10)
```

22.03.2019, 19:46 Lab_3

Out[1]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company		
0	ACQ99	November	11.0	2015	bebop	С	
1	ACQ98	November	11.0	2015	Fly Labs		
2	ACQ97	December	8.0	2015	Clearleap		
3	ACQ96	December	18.0	2015	Metanautix		
4	ACQ95	December	21.0	2015	Talko, Inc.	cor	
5	ACQ94	January	7.0	2016	Emotient		
6	ACQ93	January	15.0	2016	Iris Analytics	fra	
7	ACQ92	January	19.0	2016	Teacher Gaming LLC		
8	ACQ915	July	30.0	1987	Forethought, Inc.		
9	ACQ914	March	2.0	1988	Network Innovations		
companies.shape							
(916, 10)							
CO	mpanies.dty	pes					

In [2]:

Out[2]:

In [3]: com

Out[3]:	AcquisitionID AcquisitionMonth	object object
	AcquisitionMonthDate	float64
	-	110004
	AcquisitionYear	int64
	Company	object
	Business	object
	Country	object
	Value (USD)	float64
	Derived products	object
	ParentCompany	object
	dtype: object	

```
In [4]: # Проверка на пустые значения
        companies.isnull().sum()
        # for column in companies.columns:
        #
              buf null = companies[companies[column].isnull()].shape[0]
              print ('{}-{}'.format(column, buf null))
        # acquisition - приобретение, овладение
        # derived products - производные продукты
Out[4]: AcquisitionID
                                   0
        AcquisitionMonth
                                  6
        AcquisitionMonthDate
                                 33
        AcquisitionYear
                                  0
        Company
                                  0
        Business
                                  0
                                 46
        Country
        Value (USD)
                                671
        Derived products
                                515
        ParentCompany
                                  0
        dtype: int64
In [5]: | #Вывод: по полям AcquisitionMont, AcquisitionMonthDate, Country-46
        - пропуски данных небольшие,
        # Это не сильно повлияет на анализ
        # По полям Value (USD) и Derived products пропуски более 50% от dat
        aset, СИЛЬНОЕ ВЛИЯНИЕ
        total count = companies.shape[0]
        print('Bcero ctpok: {}'.format(total_count))
```

Всего строк: 916

3.1. Обработка пропусков в данных

```
In [6]: #1. Обработка пропусков в данных #1.1. Простые стратегии – удаление или заполнение нулями # Удаление колонок, содержащих пустые значения data_new_1 = companies.dropna(axis=1, how='any') (companies.shape, data_new_1.shape)

Out[6]: ((916, 10), (916, 5))
```

In [7]: data_new_1.head(5)

Out[7]:

	AcquisitionID	AcquisitionYear	Company	Business	ParentCompany
0	ACQ99	2015	bebop	Cloud software	Google
1	ACQ98	2015	Fly Labs	Video editing	Google
2	ACQ97	2015	Clearleap	Cloud-based video management	IBM
3	ACQ96	2015	Metanautix	Big Data Analytics	Microsoft
4	ACQ95	2015	Talko, Inc.	Mobile communications	Microsoft

In [8]: data_new_1.shape

Out[8]: (916, 5)

In [9]: # Удаление строк, содержащих пустые значения
data_new_2 = companies.dropna(axis=0, how='any')
 (companies.shape, data_new_2.shape)

Out[9]: ((916, 10), (114, 10))

In [10]: data_new_2.head(5)

Out[10]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	Вι
0	ACQ99	November	11.0	2015	bebop	s
38	ACQ889	February	7.0	1997	NeXT	U ha s r
47	ACQ880	October	8.0	1997	Four11	Web
55	ACQ873	June	8.0	1998	Viaweb	app
56	ACQ872	July	17.0	1998	Webcal	Cale s

In [11]: data_new_2.shape

Out[11]: (114, 10)

```
In [12]: # Заполнение всех пропущенных значений нулями
         # В данном случае это некорректно, так как нулями заполняются в том
         числе категориальные колонки
         data new 3 = companies.fillna(0)
         data_new_3.isnull().sum()
Out[12]: AcquisitionID
         AcquisitionMonth
                                 0
         AcquisitionMonthDate
                                 0
         AcquisitionYear
                                 0
         Company
                                 n
         Business
         Country
         Value (USD)
                                 0
         Derived products
                                 0
         ParentCompany
                                 0
         dtype: int64
In [13]: #1.2. "Внедрение значений" – импьютация (imputation)
         #1.2.1. Обработка пропусков в числовых данных
         # Импьютация – процесс замены пропущенных, некорректных или несосто
         ятельных значений другими значениями
         # Выберем числовые колонки с пропущенными значениями
         # Цикл по колонкам датасета
         # Выберем числовые колонки с пропущенными значениями
         # Цикл по колонкам датасета
         num cols = []
         for col in companies.columns:
             # Количество пустых значений
             temp null count = companies[companies[col].isnull()].shape[0]
             dt = str(companies[col].dtype)
             total count = companies.shape[0]
             if temp_null_count>0 and (dt=='float64' or dt=='int64'):
                 num_cols.append(col)
                 temp_perc = round((temp_null_count / total_count) * 100.0,
         2)
                 print('Колонка {}. Тип данных {}. Количество пустых значени
         N {}, {}%.'.format(col, dt, temp null count, temp perc))
         Колонка AcquisitionMonthDate. Тип данных float64. Количество пусты
```

Колонка AcquisitionMonthDate. Тип данных float64. Количество пусты х значений 33, 3.6%.

Koлoнкa Value (USD). Тип данных float64. Количество пустых значени й 671, 73.25%.

```
In [14]: # Фильтр по колонкам с пропущенными значениями data_num = companies[num_cols] data_num
```

Out[14]:

	AcquisitionMonthDate	Value (USD)
0	11.0	3.800000e+08

1	11.0	NaN
2	8.0	NaN
3	18.0	NaN
4	21.0	NaN
5	7.0	NaN
6	15.0	NaN
7	19.0	NaN
8	30.0	1.400000e+07
9	2.0	NaN
10	7.0	NaN
11	27.0	NaN
12	11.0	NaN
13	3.0	NaN
14	21.0	NaN
15	31.0	NaN
16	29.0	NaN
17	28.0	NaN
18	27.0	NaN
19	1.0	NaN
20	15.0	NaN
21	23.0	NaN
22	10.0	NaN
23	17.0	NaN
24	6.0	NaN
25	28.0	NaN
26	16.0	NaN
27	12.0	NaN
28	16.0	1.330000e+08
29	6.0	NaN
886	23.0	NaN
887	31.0	1.600000e+08
888	3.0	NaN
889	6.0	1.000000e+09

890	NaN	NaN
891	5.0	NaN
892	NaN	NaN
893	NaN	NaN
894	3.0	NaN
895	10.0	NaN
896	11.0	NaN
897	21.0	NaN
898	28.0	NaN
899	28.0	NaN
900	30.0	NaN
901	2.0	NaN
902	9.0	NaN
903	3.0	NaN
904	17.0	NaN
905	21.0	NaN
906	21.0	NaN
907	28.0	NaN
908	NaN	NaN
909	3.0	NaN
910	5.0	NaN
911	6.0	1.309000e+09
912	9.0	NaN
913	11.0	NaN
914	18.0	NaN
915	4.0	7.500000e+09

916 rows × 2 columns

```
In [15]: # Гистограмма по признакам

for col in data_num:

    plt.hist(companies[col], 50)

    plt.xlabel(col)

    plt.show()
```

/anaconda3/lib/python3.7/site-packages/numpy/lib/histograms.py:754

: RuntimeWarning: invalid value encountered in greater_equal keep = (tmp_a >= first_edge)

/anaconda3/lib/python3.7/site-packages/numpy/lib/histograms.py:755

: RuntimeWarning: invalid value encountered in less_equal
keep &= (tmp_a <= last_edge)</pre>

In [16]: # Фильтр по пустым значениям поля AcquisitionMonthDate companies[companies['AcquisitionMonthDate'].isnull()]

Out[16]:

AcquisitionID AcquisitionMonth AcquisitionMonthDate AcquisitionYear Company

45	ACQ882	September	NaN	1997	Net Controls
61	ACQ868	December	NaN	1998	Hyperparallel
99	ACQ833	NaN	NaN	2000	SoundJam MP[note 2]
100	ACQ832	NaN	NaN	2001	Bluefish Labs
144	ACQ793	February	NaN	2003	Pyra Labs
149	ACQ789	April	NaN	2003	Applied Semantics
150	ACQ788	April	NaN	2003	Neotonic Software
161	ACQ778	October	NaN	2003	Genius Labs
162	ACQ777	October	NaN	2003	Sprinks
166	ACQ773	January	NaN	2004	3721 Internet Assistant
182	ACQ759	September	NaN	2004	ZipDash
184	ACQ757	October	NaN	2004	Where2
198	ACQ744	March	NaN	2005	Schemasoft
205	ACQ738	April	NaN	2005	FingerWorks
218	ACQ726	July	NaN	2005	Reqwireless
233	ACQ712	November	NaN	2005	Skia Inc.
301	ACQ651	December	NaN	2006	Wretch
474	ACQ496	August	NaN	2010	Zetawire
571	ACQ408	NaN	NaN	2012	WIMM Labs
629	ACQ356	NaN	NaN	2013	OttoCat
630	ACQ355	NaN	NaN	2013	Novauris Technologies

641	ACQ345	March	NaN	2013	osmeta
713	ACQ280	December	NaN	2013	Acunu
733	ACQ262	NaN	NaN	2014	Dryft
840	ACQ166	January	NaN	2015	Camel Audio
858	ACQ15	October	NaN	2017	PowerbyProxi
862	ACQ146	April	NaN	2015	Coherent Navigation
869	ACQ14	October	NaN	2017	init.ai
872	ACQ137	May	NaN	2015	Metaio
890	ACQ120	September	NaN	2015	Perceptio
892	ACQ119	September	NaN	2015	VocalIQ
893	ACQ118	September	NaN	2015	Mapsense
908	ACQ104	November	NaN	2015	Faceshift

```
In [17]: # Запоминаем индексы строк с пустыми значениями
flt_index = companies[companies['AcquisitionMonthDate'].isnull()].i
ndex
flt_index
```

```
In [18]: # Проверяем что выводятся нужные строки companies.index.isin(flt_index)]
```

Out[18]:

AcquisitionID AcquisitionMonth AcquisitionMonthDate AcquisitionYear Company

45	ACQ882	September	NaN	1997	Net Controls
61	ACQ868	December	NaN	1998	Hyperparallel
99	ACQ833	NaN	NaN	2000	SoundJam MP[note 2]
100	ACQ832	NaN	NaN	2001	Bluefish Labs
144	ACQ793	February	NaN	2003	Pyra Labs
149	ACQ789	April	NaN	2003	Applied Semantics
150	ACQ788	April	NaN	2003	Neotonic Software
161	ACQ778	October	NaN	2003	Genius Labs
162	ACQ777	October	NaN	2003	Sprinks
166	ACQ773	January	NaN	2004	3721 Internet Assistant
182	ACQ759	September	NaN	2004	ZipDash
184	ACQ757	October	NaN	2004	Where2
198	ACQ744	March	NaN	2005	Schemasoft
205	ACQ738	April	NaN	2005	FingerWorks
218	ACQ726	July	NaN	2005	Reqwireless
233	ACQ712	November	NaN	2005	Skia Inc.
301	ACQ651	December	NaN	2006	Wretch
474	ACQ496	August	NaN	2010	Zetawire
571	ACQ408	NaN	NaN	2012	WIMM Labs
629	ACQ356	NaN	NaN	2013	OttoCat
630	ACQ355	NaN	NaN	2013	Novauris Technologies

641	ACQ345	March	NaN	2013	osmeta
713	ACQ280	December	NaN	2013	Acunu
733	ACQ262	NaN	NaN	2014	Dryft
840	ACQ166	January	NaN	2015	Camel Audio
858	ACQ15	October	NaN	2017	PowerbyProxi
862	ACQ146	April	NaN	2015	Coherent Navigation
869	ACQ14	October	NaN	2017	init.ai
872	ACQ137	May	NaN	2015	Metaio
890	ACQ120	September	NaN	2015	Perceptio
892	ACQ119	September	NaN	2015	VocalIQ
893	ACQ118	September	NaN	2015	Mapsense
908	ACQ104	November	NaN	2015	Faceshift

In [19]: # фильтр по колонке data_num[data_num.index.isin(flt_index)]['AcquisitionMonthDate']

```
Out[19]: 45
                NaN
                NaN
          61
          99
                NaN
          100
                NaN
          144
                NaN
          149
                NaN
          150
                NaN
          161
                NaN
                NaN
          162
          166
                NaN
          182
                NaN
                NaN
          184
          198
                NaN
          205
                NaN
          218
                NaN
          233
                NaN
          301
                NaN
          474
                NaN
          571
                NaN
          629
                NaN
          630
                NaN
          641
                NaN
          713
                NaN
          733
                NaN
                NaN
          840
                NaN
          858
          862
                NaN
                NaN
          869
          872
                NaN
          890
                NaN
          892
                NaN
          893
                NaN
          908
                NaN
          Name: AcquisitionMonthDate, dtype: float64
```

In [20]: #Будем использовать встроенные средства импьютации библиотеки sciki t-learn - https://scikit-learn.org/stable/modules/impute.html#imput e data_num_AcquisitionMonthDate = data_num[['AcquisitionMonthDate']]

data_num_AcquisitionMonthDate = data_num[['AcquisitionMonthDate']]
data_num_AcquisitionMonthDate.head()

Out[20]:

	AcquisitionMonthDate					
0	11.0					
1	11.0					
2	8.0					
3	18.0					
4	21.0					

```
In [21]: from sklearn.impute import SimpleImputer
          from sklearn.impute import MissingIndicator
In [22]: # Фильтр для проверки заполнения пустых значений
          indicator = MissingIndicator()
          mask missing values only = indicator.fit transform(data num Acquisi
          tionMonthDate)
          mask_missing_values_only
Out[22]: array([[False],
                 [False],
                 [False],
```

[False], [True], [False], [True], [False], [False],

[False], [True], [True], [False], [True], [False], [False], [False], [False], [True],

[True],

[False], [True], [True], [False], [False], [False], [True], [False], [True], [False], [True], [False], [True], [False], [False], [False], [False],

[False], [True], [False], [True], [False], [True], [False], [False],

[False], [True], [False], [False], [False], [False], [False], [False], [False],

[False], [False],

[False], [False],

[False], [False],

[False], [False], [False], [False], [False], [True], [False], [False],

[False], [True], [False], [False],

[False], [False],

[False], [True], [True], [False], [True], [False], [False],

[False], [True], [False], [False],

[True],

[False], [False],

[False], [False],

[True], [False], [True], [False], [False], [False], [True], [False], [False], [False], [False], [False], [False], [True], [False], [False], [True], [False], [True], [False], [True],

```
[True],
                 [False],
                 [True],
                 [False],
                [False],
                 [False],
                 [False],
                 [False],
                 [False],
                 [False]])
In [23]: #С помощью класса SimpleImputer можно проводить импьютацию различны
         ми показателями центра распределения
         strategies=['mean', 'median', 'most frequent']
In [24]: def test_num_impute(strategy_param):
             imp num = SimpleImputer(strategy=strategy param)
             data num imp = imp num.fit transform(data num AcquisitionMonthD
         ate)
             return data_num_imp[mask_missing_values_only]
In [25]: | strategies[0], test_num_impute(strategies[0])
Out[25]: ('mean',
          array([14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.702
         15176,
                 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.702
         15176,
                 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.702
         15176,
                 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.702
         15176,
                 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.702
         15176,
                 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.702
         15176,
                 14.70215176, 14.70215176, 14.70215176]))
```

```
In [26]: strategies[1], test_num_impute(strategies[1])
Out[26]: ('median',
        , 14.,
              , 14.,
              14., 14., 14., 14., 14., 14., 14.]))
In [27]: | strategies[2], test_num_impute(strategies[2])
Out[27]: ('most_frequent',
        , 1., 1.,
              , 1.]))
In [28]: # Более сложная функция, которая позволяет задавать колонку и вид и
       мпьютации
       def test_num_impute_col(dataset, column, strategy_param):
           temp_data = dataset[[column]]
           indicator = MissingIndicator()
           mask_missing_values_only = indicator.fit_transform(temp_data)
           imp num = SimpleImputer(strategy=strategy param)
           data num imp = imp num.fit transform(temp data)
           filled data = data num imp[mask missing_values_only]
           return column, strategy_param, filled_data.size, filled_data[0]
        , filled data[filled data.size-1]
In [29]: companies[['Value (USD)']].describe()
Out[29]:
             Value (USD)
        count 2.450000e+02
        mean 7.584170e+08
         std 2.453624e+09
         min 2.000000e+05
        25% 3.000000e+07
        50% 1.020000e+08
         75% 4.500000e+08
         max 2.620000e+10
```

```
In [30]: test_num_impute_col(companies, 'Value (USD)', strategies[0])
Out[30]: ('Value (USD)', 'mean', 671, 758416979.5918367, 758416979.5918367)
In [31]: test_num_impute_col(companies, 'Value (USD)', strategies[1])
Out[31]: ('Value (USD)', 'median', 671, 1020000000.0, 102000000.0)
In [32]: test_num_impute_col(companies, 'Value (USD)', strategies[2])
Out[32]: ('Value (USD)', 'most_frequent', 671, 100000000.0, 100000000.0)
```

3.2. Обработка категориальных данных

```
In [33]: #1.2.2. Обработка пропусков в категориальных данных
         cars = pd.read csv('Data/lab 3/Car sales.csv', sep=',')
In [34]: cars.isnull().sum()
Out[34]: Manufacturer
                                 0
         Model
                                 0
         Sales in thousands
                                 0
         4-year resale value
         Vehicle type
                                 0
         Price in thousands
                                 0
                                 0
         Engine size
                                 0
         Horsepower
                                 0
         Wheelbase
         Width
                                 0
         Length
                                 0
         Curb weight
                                 0
         Fuel capacity
                                 0
         Fuel efficiency
         Latest Launch
         dtype: int64
```

Вывод: пропусков в данных нет, значит, они хорошо подходят для построения модели

```
In [35]: companies2 = pd.read_csv('Data/lab_3/acquisitions.csv', sep=',')
companies2.head(5)
#companies2.shape
```

Out[35]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	
0	ACQ99	November	11.0	2015	bebop	Clo
1	ACQ98	November	11.0	2015	Fly Labs	V
2	ACQ97	December	8.0	2015	Clearleap	C m
3	ACQ96	December	18.0	2015	Metanautix	
4	ACQ95	December	21.0	2015	Talko, Inc.	comr

```
In [36]: # ВОЗЬМЕМ СТАРЫЙ ДАТАСЕТ companies
# ВЫБЕРЕМ КАТЕГОРИАЛЬНЫЕ КОЛОНКИ C ПРОПУЩЕННЫМИ ЗНАЧЕНИЯМИ
# ЦИКЛ ПО КОЛОНКАМ ДАТАСЕТА
cat_cols = []
for col in companies2.columns:
# КОЛИЧЕСТВО ПУСТЫХ ЗНАЧЕНИЙ
temp_null_count = companies2[companies2[col].isnull()].shape[0]
dt = str(companies2[col].dtype)
total_count = companies2.shape[0]
if temp_null_count>0 and (dt=='object'):
    cat_cols.append(col)
    temp_perc = round((temp_null_count / total_count) * 100.0,

2)
    print('КОЛОНКА {}. ТИП ДАННЫХ {}. КОЛИЧЕСТВО ПУСТЫХ ЗНАЧЕНИ
Й {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка AcquisitionMonth. Тип данных object. Количество пустых зна чений 6, 0.66%.

Колонка Country. Тип данных object. Количество пустых значений 46, 5.02%.

Колонка Derived products. Тип данных object. Количество пустых зна чений 515, 56.22%.

```
In [37]: # Класс SimpleImputer можно использовать для категориальных признак
         ОВ СО СТРАТЕГИЯМИ "most frequent" ИЛИ "constant".
         cat temp data = companies2[['Country']]
         cat temp data.head(2)
Out[37]:
            Country
               USA
          0
               USA
          1
In [38]: cat_temp_data['Country']. unique()
Out[38]: array(['USA', 'GER', 'FIN', 'CAN', 'UK', 'SWE', 'ISR', 'TWN', 'AUS
                 'SGP', 'NOR', 'DEN', 'ROU', 'CHN', 'EU', 'IND', 'BLR', 'FRA
                 'BRA', 'ITA', 'SWI', 'SUI', 'CHE', 'NED', 'ESP', 'THA', 'BE
                 'POR', nan, 'KOR', 'HKG', 'JOR', 'MYS', 'IRL', 'IDN', 'GRE'
           'LUX',
                 'UKR', 'AUT', 'JPN', 'NZL'], dtype=object)
In [39]: cat_temp_data[cat_temp_data['Country'].isnull()].shape
Out[39]: (46, 1)
In [40]: # Импьютация наиболее частыми значениями
         imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent
         data imp2 = imp2.fit transform(cat temp data)
         data imp2
Out[40]: array([['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['GER'],
                 ['FIN'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['CAN'],
                 ['USA'],
                 ['CAN'],
                 ['USA'],
```

['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['GER'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['GER'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'],

['USA'], ['USA'], ['USA'], ['SWE'], ['CAN'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['GER'], ['USA'], ['USA'], ['GER'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['TWN'], ['USA'], ['USA'], ['USA'], ['AUS'], ['CAN'], ['USA'], ['USA'], ['CAN'], ['USA'], ['CAN'], ['USA'], ['ISR'], ['USA'], ['USA'],

['SGP'],

['USA'], ['USA'], ['NOR'], ['GER'], ['DEN'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['AUS'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['ROU'], ['USA'], ['USA'], ['AUS'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CHN'], ['EU'], ['USA'], ['IND'], ['BLR'], ['FRA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'],

['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['AUS'], ['EU'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['DEN'], ['USA'], ['USA'], ['FRA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['BRA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CHN'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['CAN'], ['BRA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['ITA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'],

['UK'], ['USA'], ['USA'], ['SWI'], ['UK'], ['IND'], ['USA'], ['AUS'], ['USA'], ['USA'], ['USA'], ['GER'], ['GER'], ['USA'], ['USA'], ['ISR'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['FRA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['AUS'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['SUI'], ['USA'], ['USA'], ['ISR'], ['FRA'], ['USA'], ['GER'],

['BRA'],

['ISR'], ['USA'], ['USA'], ['AUS'], ['USA'], ['EU'], ['TWN'], ['AUS'], ['USA'], ['CHE'], ['USA'], ['NED'], ['USA'], ['USA'], ['USA'], ['USA'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['SWE'], ['SWI'], ['USA'], ['USA'], ['FRA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ESP'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'],

['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['FIN'], ['USA'], ['THA'], ['DEN'], ['FRA'], ['USA'], ['CAN'], ['UK'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['ISR'], ['USA'], ['USA'], ['USA'], ['CAN'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['NOR'], ['USA'], ['USA'], ['USA'], ['BEL'], ['USA'], ['USA'],

['POR'],

['USA'], ['USA'], ['USA'], ['FRA'], ['USA'], ['USA'], ['KOR'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['HKG'], ['ISR'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['JOR'], ['USA'], ['USA'], ['SGP'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['IND'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['MYS'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'],

['UK'], ['USA'], ['IRL'], ['USA'], ['ISR'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['IDN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['IND'], ['USA'], ['USA'], ['CAN'], ['USA'], ['ISR'], ['UK'], ['USA'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['GRE'], ['ISR'], ['USA'],

['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['AUS'], ['USA'], ['USA'], ['GER'], ['USA'], ['USA'], ['UK'], ['USA'], ['IRL'], ['ISR'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['LUX'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['NED'], ['USA'], ['USA'], ['FIN'], ['USA'], ['USA'], ['USA'], ['USA'], ['SWE'], ['USA'], ['USA'], ['USA'], ['UK'], ['CAN'], ['USA'], ['USA'], ['USA'],

['GER'],

['USA'], ['USA'], ['USA'], ['CAN'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['IRL'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['CAN'], ['USA'], ['ITA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['FRA'],

['SWE'],

['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ESP'], ['USA'], ['UK'], ['USA'], ['USA'], ['UKR'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['AUS'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['CAN'], ['USA'], ['USA'], ['SWI'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'],

['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['UK'], ['CHN'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['USA'], ['FIN'], ['USA'], ['SWE'], ['USA'], ['FIN'], ['USA'], ['USA'], ['UK'], ['USA'], ['IRL'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['AUT'], ['ISR'], ['FRA'], ['USA'],

['USA'], ['ISR'], ['USA'], ['USA'], ['JPN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['GER'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CHE'], ['USA'], ['ISR'], ['USA'], ['USA'], ['IND'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['GER'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['UK'], ['UK'], ['FRA'],

['USA'], ['USA'], ['USA'], ['FIN'], ['FRA'], ['IND'], ['NZL'], ['UK'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['FRA'], ['USA'], ['ISR'], ['USA'], ['USA'], ['FIN'], ['USA'], ['BLR'], ['USA'], ['ITA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['TWN'], ['USA'],

['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['IND'], ['NED'], ['USA'], ['CAN'], ['USA'], ['UK'], ['USA'], ['USA'], ['SWE'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['GER'], ['GER'], ['USA'], ['UK'], ['USA'], ['USA'], ['ISR'], ['IND'], ['UK'], ['USA'], ['FRA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['NZL'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['ISR'], ['USA'],

```
['IRL'],
['USA'],
['GER'],
['USA'],
['UK'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['AUS'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['IRL'],
['USA'],
['USA'],
['POR'],
['USA'],
['USA'],
['USA'],
['SWI'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA']], dtype=object)
```

```
In [41]: # Пустые значения отсутствуют
         np.unique(data imp2)
Out[41]: array(['AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN', 'CHE', 'CHN', 'DE
         Ν',
                 'ESP', 'EU', 'FIN', 'FRA', 'GER', 'GRE', 'HKG', 'IDN', 'IND
                 'IRL', 'ISR', 'ITA', 'JOR', 'JPN', 'KOR', 'LUX', 'MYS', 'NE
         D',
                 'NOR', 'NZL', 'POR', 'ROU', 'SGP', 'SUI', 'SWE', 'SWI', 'TH
         Α',
                 'TWN', 'UK', 'UKR', 'USA'], dtype=object)
In [42]: # Импьютация константой
         imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fi
         11 value='!!!')
         data imp3 = imp3.fit transform(cat temp data)
         data imp3
Out[42]: array([['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['GER'],
                 ['FIN'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['CAN'],
                 ['USA'],
                 ['CAN'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['UK'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['GER'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
```

['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['GER'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['SWE'], ['CAN'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'],

['USA'], ['GER'], ['USA'], ['USA'], ['GER'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['TWN'], ['USA'], ['USA'], ['USA'], ['AUS'], ['CAN'], ['USA'], ['USA'], ['CAN'], ['USA'], ['CAN'], ['USA'], ['ISR'], ['USA'], ['SGP'], ['USA'], ['USA'], ['NOR'], ['GER'], ['DEN'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'],

['CAN'],

['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['AUS'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['ROU'], ['USA'], ['USA'], ['AUS'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CHN'], ['EU'], ['USA'], ['IND'], ['BLR'], ['FRA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['AUS'], ['EU'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['DEN'], ['USA'], ['USA'], ['FRA'],

['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['BRA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CHN'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['CAN'], ['BRA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['ITA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['SWI'], ['UK'], ['IND'], ['USA'], ['AUS'], ['USA'], ['USA'], ['USA'], ['GER'], ['GER'], ['USA'], ['USA'], ['ISR'], ['UK'],

['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['FRA'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['AUS'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['SUI'], ['USA'], ['USA'], ['ISR'], ['FRA'], ['USA'], ['GER'], ['BRA'], ['ISR'], ['USA'], ['USA'], ['AUS'], ['USA'], ['EU'], ['TWN'], ['AUS'],

['CHE'], ['USA'], ['NED'], ['USA'], ['USA'], ['USA'], ['USA'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['SWE'], ['SWI'], ['USA'], ['USA'], ['FRA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ESP'], ['USA'], ['CAN'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['FIN'], ['USA'], ['THA'], ['DEN'],

['FRA'],

['USA'], ['CAN'], ['UK'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['ISR'], ['USA'], ['USA'], ['USA'], ['CAN'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['NOR'], ['USA'], ['USA'], ['USA'], ['BEL'], ['USA'], ['USA'], ['POR'], ['USA'], ['USA'], ['!!!'], ['FRA'], ['USA'], ['USA'], ['KOR'], ['USA'], ['USA'], ['USA'], ['!!!'], ['USA'], ['HKG'], ['ISR'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'],

['USA'], ['USA'], ['USA'], ['USA'], ['JOR'], ['USA'], ['USA'], ['SGP'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['IND'], ['USA'], ['USA'], ['CAN'], ['USA'], ['!!!'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['MYS'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['UK'], ['USA'], ['IRL'], ['!!!'], ['ISR'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['USA'], ['USA'], ['USA'], ['IDN'], ['USA'], ['USA'],

['!!!'],

['USA'], ['USA'], ['USA'], ['!!!'], ['USA'], ['CAN'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['IND'], ['USA'], ['USA'], ['CAN'], ['USA'], ['ISR'], ['UK'], ['USA'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['GRE'], ['ISR'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['UK'], ['!!!'], ['USA'], ['AUS'], ['USA'], ['USA'], ['GER'], ['USA'], ['USA'], ['UK'], ['USA'], ['IRL'], ['ISR'], ['USA'], ['USA'],

['CAN'],

```
['USA'],
['USA'],
['USA'],
['USA'],
['LUX'],
['!!!'],
['USA'],
['!!!'],
['!!!!'],
['CAN'],
['USA'],
['USA'],
['USA'],
['NED'],
['USA'],
['!!!'],
['FIN'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['USA'],
['!!!'],
['USA'],
['UK'],
['CAN'],
['USA'],
['USA'],
['USA'],
['GER'],
['!!!'],
['USA'],
['USA'],
['CAN'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['USA'],
['IRL'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
```

['!!!'],

['!!!'], ['ISR'], ['USA'], ['USA'], ['!!!'], ['USA'], ['SWE'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['!!!'], ['USA'], ['USA'], ['USA'], ['!!!'], ['UK'], ['CAN'], ['USA'], ['ITA'], ['USA'], ['!!!'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['FRA'], ['SWE'], ['CAN'], ['USA'], ['USA'], ['!!!'], ['USA'], ['USA'], ['USA'], ['ESP'], ['USA'], ['UK'], ['USA'], ['USA'], ['UKR'], ['USA'], ['!!!'], ['USA'], ['!!!'], ['USA'], ['USA'], ['AUS'], ['USA'], ['USA'], ['CAN'],

['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['!!!'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['USA'], ['SWI'], ['USA'], ['USA'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['USA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['USA'], ['USA'], ['USA'], ['CAN'], ['USA'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['UK'], ['CHN'], ['USA'], ['USA'],

['CAN'],

```
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['ISR'],
['USA'],
['USA'],
['FIN'],
['USA'],
['SWE'],
['!!!'],
['FIN'],
['!!!'],
['USA'],
['UK'],
['USA'],
['IRL'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['AUT'],
['ISR'],
['FRA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['JPN'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CHE'],
```

['ISR'], ['USA'], ['USA'], ['IND'], ['USA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['UK'], ['USA'], ['GER'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['USA'], ['UK'], ['UK'], ['FRA'], ['!!!'], ['USA'], ['USA'], ['!!!'], ['FIN'], ['FRA'], ['IND'], ['NZL'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['!!!'], ['USA'], ['USA'], ['USA'], ['USA'], ['CAN'], ['!!!'],

```
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FRA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['FIN'],
['!!!'],
['BLR'],
['USA'],
['ITA'],
['CAN'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['TWN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IND'],
['NED'],
['USA'],
['CAN'],
['USA'],
['UK'],
['USA'],
['!!!'],
['SWE'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['GER'],
['GER'],
['USA'],
['UK'],
['USA'],
['USA'],
```

['ISR'],

['IND'], ['UK'], ['USA'], ['FRA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['ISR'], ['USA'], ['USA'], ['USA'], ['!!!'], ['USA'], ['NZL'], ['USA'], ['USA'], ['USA'], ['USA'], ['!!!'], ['USA'], ['USA'], ['CAN'], ['ISR'], ['USA'], ['USA'], ['IRL'], ['!!!'], ['GER'], ['USA'], ['UK'], ['USA'], ['GER'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['ISR'], ['ISR'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['USA'], ['AUS'], ['UK'], ['USA'], ['USA'], ['USA'], ['USA'],

```
['CAN'],
                 ['USA'],
                 ['USA'],
                 ['IRL'],
                 ['USA'],
                 ['USA'],
                 ['POR'],
                 ['USA'],
                 ['!!!'],
                 ['USA'],
                 ['SWI'],
                 ['USA'],
                 ['USA'],
                 ['USA'],
                 ['ISR'],
                 ['USA'],
                 ['USA'],
                 ['USA']], dtype=object)
In [43]: np.unique(data_imp3)
Out[43]: array(['!!!', 'AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN', 'CHE', 'CH
         Ν',
                 'DEN', 'ESP', 'EU', 'FIN', 'FRA', 'GER', 'GRE', 'HKG', 'IDN
                 'IND', 'IRL', 'ISR', 'ITA', 'JOR', 'JPN', 'KOR', 'LUX', 'MY
         s',
                 'NED', 'NOR', 'NZL', 'POR', 'ROU', 'SGP', 'SUI', 'SWE', 'SW
         I',
                 'THA', 'TWN', 'UK', 'UKR', 'USA'], dtype=object)
In [44]: data imp3[data imp3=='!!!'].size
Out[44]: 46
In [45]: #2. Преобразование категориальных признаков
         cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
         cat_enc
Out[45]:
               с1
            0 USA
            1 USA
            2 USA
            3 USA
            4 USA
            5 USA
            6 GER
```

- 7 FIN
- 8 USA
- 9 USA
- USA
- USA
- USA
- USA
- USA
- CAN
- USA
- CAN
- USA
- USA
- USA
- USA
- UK
- USA
- USA
- USA
- USA
- USA
- USA
- GER
- ...
- USA
- USA
- USA
- USA
- USA
- AUS
- UK
- USA
- USA
- USA

```
896 USA
897 USA
898 CAN
899 USA
900 USA
901
    IRL
902 USA
903 USA
904 POR
905 USA
906 USA
907 USA
908 SWI
909 USA
910 USA
911 USA
912
    ISR
```

916 rows × 1 columns

913 USA

914 USA915 USA

```
In [48]: cat_enc['c1'].unique()
Out[48]: array(['USA', 'GER', 'FIN', 'CAN', 'UK', 'SWE', 'ISR', 'TWN', 'AUS
                'SGP', 'NOR', 'DEN', 'ROU', 'CHN', 'EU', 'IND', 'BLR', 'FRA
                'BRA', 'ITA', 'SWI', 'SUI', 'CHE', 'NED', 'ESP', 'THA', 'BE
         L',
                'POR', 'KOR', 'HKG', 'JOR', 'MYS', 'IRL', 'IDN', 'GRE', 'LU
         Х',
                'UKR', 'AUT', 'JPN', 'NZL'], dtype=object)
In [49]: np.unique(cat enc le)
Out[49]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
         15, 16,
                17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
         32, 33,
                34, 35, 36, 37, 38, 39])
In [50]: le.inverse_transform([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
         , 12, 13, 14, 15, 16,
                17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
         32, 33,
                34, 35, 36, 37, 38, 391)
Out[50]: array(['AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN', 'CHE', 'CHN', 'DE
         Ν',
                'ESP', 'EU', 'FIN', 'FRA', 'GER', 'GRE', 'HKG', 'IDN', 'IND
                'IRL', 'ISR', 'ITA', 'JOR', 'JPN', 'KOR', 'LUX', 'MYS', 'NE
         D',
                'NOR', 'NZL', 'POR', 'ROU', 'SGP', 'SUI', 'SWE', 'SWI', 'TH
         Α',
                'TWN', 'UK', 'UKR', 'USA'], dtype=object)
In [51]: # МОЖНО ВЫВЕСТИ ЧАСТЬ ЗНАЧЕНИЙ
         le.inverse_transform([0, 1, 2, 3, 4, 5])
Out[51]: array(['AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN'], dtype=object)
In [52]: # 2.2. Кодирование категорий наборами бинарных значений - one-hot e
         ncoding
         ohe = OneHotEncoder()
         cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
         cat enc.shape
Out[52]: (916, 1)
```

```
., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 1.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 0., 1.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 1.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 1.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 0., 1.
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 0., 1.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 0., 0.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 0., 0.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 0., 1.],
    ., 0.,
     ., 0.,
     0., 0., 0., 0., 0., 0., 1.]])
```

In [56]: cat_enc.head(10)

Out[56]:

с1

- 0 USA
- 1 USA
- 2 USA
- 3 USA
- 4 USA
- 5 USA
- 6 GER
- **7** FIN
- 8 USA
- 9 USA

In [57]: # 2.3. Pandas get_dummies - быстрый вариант one-hot кодирования pd.get_dummies(cat_enc).head(10)

единицы проставляются там, где совпадение значения

Out[57]:

	c1_AUS	c1_AUT	c1_BEL	c1_BLR	c1_BRA	c1_CAN	c1_CHE	c1_CHN	c1_DEN	c1_E
0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	0	
9	0	0	0	0	0	0	0	0	0	

10 rows × 40 columns

In [58]: pd.get_dummies(cat_temp_data, dummy_na=True).head()

Out[58]:

	Country_AUS	Country_AUT	Country_BEL	Country_BLR	Country_BRA	Country_CAN C)
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	

5 rows × 41 columns

```
In [59]: # попробуем для другого датасета
cat_temp_data2 = companies2[['ParentCompany']]
```

In [60]: pd.get_dummies(cat_temp_data2, dummy_na=True).head(8)

Out[60]:

	ParentCompany_Apple	ParentCompany_Facebook	ParentCompany_Google	ParentCompa
0	0	0	1	
1	0	0	1	
2	0	0	0	
3	0	0	0	
4	0	0	0	
5	1	0	0	
6	0	0	0	
7	0	0	0	

3.3. Масштабирование данных

In [61]:

Термины "масштабирование" и "нормализация" часто используются ка к синонимы. Масштабирование предполагает изменение диапазона измере ния величины, а нормализация – изменение распределения этой величины.

 $\begin{tabular}{ll} \textbf{from sklearn.preprocessing import} & \texttt{MinMaxScaler, StandardScaler, Normalizer} \\ \end{tabular}$

3.1. МіпМах масштабирование

```
In [62]: #ВОЗЬМЕМ ДАТАСЕТ car_sales cars.head() cars.shape
```

Out[62]: (157, 15)

```
In [63]: sc2 = StandardScaler()
  #cars.dtypes
  sc2_data = sc2.fit_transform(cars[['Sales in thousands']])
  plt.hist(cars['Sales in thousands'], 50)
  plt.show()
```



```
In [65]: #3.2. Масштабирование данных на основе z-оценки - StandardScaler sc2 = StandardScaler() sc2_data = sc2.fit_transform(cars[['Sales in thousands']]) plt.hist(sc2_data, 50) plt.show() # Масштабирование на основе z-оценки похоже на масштабирование MinM ax
```



```
In [66]: # 3.3. Нормализация данных
sc3 = Normalizer()
sc3_data = sc3.fit_transform(cars[['Sales in thousands']])
plt.hist(sc3_data, 50)
plt.show()
```


In []: