MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ÉCOLE À LA MAISON

CÔTE D'IVOIRE – ÉCOLE NUMÉRIQUE

Durée: 10 heures Code:

Compétence 1

Traiter une situation relative aux calculs algébriques et aux fonctions

Thème1 : Calculs algébriques

LEÇON 2 : ENSEMBLE DES NOMBRES REELS

A. SITUATION D'APPRENTISSAGE

Les professeurs de SVT d'un lycée ont semé, à titre expérimental, du maïs dans un bac déposé au laboratoire. Quatre de ces professeurs ont relevé la longueur x qui sépare la hauteur atteinte par un même pied de maïs un lundi de celle atteinte le lundi suivant. Ils ont marqué les résultats sur une feuille affichée au laboratoire.

- Professeur $A: x \in [16;18]$
- Professeur $B: x \in \{16,5; 17,5\}$
- Professeur $C: |x-17| \le 0.5$
- Professeur *D*: *x* est élément de l'intervalle fermé de centre 17 et de rayon 0,5.

L'un des élèves d'une classe de 2^{nde} C, venu dans ce laboratoire, a vu les relevés des quatre professeurs. Il affirme que ces professeurs ont employé des langages différents pour exprimer la même chose.

Les autres élèves, surpris par cette affirmation, cherchent à la vérifier en s'informant sur l'ensemble des nombres réels.

В. **CONTENU DE LA LECON**

NOMBRES RATIONNELS ET IRRATIONNELS

1. Nombres rationnels

Définition

Un nombre rationnel est un nombre qui peut s'écrire sous la forme de $\frac{a}{b}$ ($a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$)

Exemple: 5; -3; 10,32; -4,7 et $\frac{-5}{3}$ sont des nombres rationnels

2. Nombres irrationnels

a) Définition

Un nombre est irrationnel lorsqu'il n'est pas rationnel

Exemples

$$\sqrt{2}$$
 ; $\sqrt{3}$; π ; $\sqrt{\frac{7}{6}}$; $\sqrt{\pi-1}$.

b- Raisonnement par l'absurde

Exemple:

Démontrons que $\sqrt{2}$ est un nombre irrationnel.

En effet supposons que $\sqrt{2}$ est un nombre rationnel. Cela signifie qu'on peut trouver deux entiers naturels non nuls a et b tels que $\frac{a}{b} = \sqrt{2}$ et $\frac{a}{b}$ est irréductible. On a: $\frac{a}{b} = \sqrt{2} \Leftrightarrow a^2 = 2b^2$

On a:
$$\frac{a}{b} = \sqrt{2} \Leftrightarrow a^2 = 2b^2$$

Alors a^2 et $2b^2$ ont le même chiffre des unités.

Les tableaux ci-dessous donnent le chiffre des unités de a^2 et de $2b^2$ en fonction du chiffre des unités des nombres de a et b.

	Chiffre des unités									
а	0	1	2	3	4	5	6	7	8	9
a^2	0	1	4	9	6	5	6	9	4	1

	Chiffre des unités									
b	0	1	2	3	4	5	6	7	8	9
b^2	0	1	4	9	6	5	6	9	4	1
2 <i>b</i> ²	0	2	8	8	2	0	2	8	8	2

 $a^2 = 2 b^2$ est vrai lorsque a et b se terminent par 0 ou lorsque a se termine par 0 et b par 5.

Dans les deux cas a et b seraient divisibles par 5 et $\frac{a}{b}$ ne serait pas irréductible.

Ce qui est contradictoire puisqu'on a supposé $\frac{a}{b}$ irréductible.

Par suite $\sqrt{2}$ n'est pas un nombre rationnel, c'est un nombre irrationnel.

Principe du raisonnement par l'absurde

Lorsqu'on veut démontrer par l'absurde une proposition (P), on suppose que :

- la proposition contraire (non (P)) est vraie et on aboutit à une contradiction.
- On conclut alors que la proposition (P) est vraie.

Exemple.

Démontrons par l'absurde que $\sqrt{2} - 1$ est un nombre irrationnel.

Supposons que $\sqrt{2} - 1$ est rationnel.

Cela signifie qu'on peut trouver deux entiers non nuls a et b tels que $\frac{a}{b} = \sqrt{2} - 1$.

On a:
$$\frac{a}{b} = \sqrt{2} - 1 \Leftrightarrow \sqrt{2} = \frac{a}{b} + 1 = \frac{a+b}{b}$$
.

a et b étant des nombres entiers, $\frac{a+b}{b}$ est un nombre rationnel. Ce qui est contradictoire car $\sqrt{2}$ est un nombre irrationnel.

Par suite $\sqrt{2} - 1$ est irrationnel.

3. Ensemble des nombres réels

Définition

L'ensemble formé des nombres rationnels et des nombres irrationnels est appelé l'ensemble des nombres réels.

Notation

L'ensemble des nombres réels est noté R.

Exemple

 $\sqrt{2}$, π , -5; $\frac{1}{3}$; 0,1; $-\frac{7}{5}$ sont des nombres réels.

Remarques :

- $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$
- « l'intervalle $[a; \rightarrow [$ sera dorénavant noté $[a; +\infty [$ ».
- « l'intervalle] \leftarrow ; a] sera dorénavant noté] $-\infty$; a] ».
- \mathbb{R} est aussi noté $]-\infty; +\infty[$.

II. Comparaison des nombres réels

1. Inégalités dans R

Point méthode

Pour comparer deux nombres réels, on peut :

- Étudier le signe de leur différence ;
- Les comparer à un nombre intermédiaire ;
- S'ils sont strictement positifs, comparer leurs carrés ou leurs racines carrées ;
- Comparer leurs inverses s'ils sont de même signe.

Exemple

Comparons les nombres $-\frac{3}{5}$ et $-\frac{5}{7}$.

On a:
$$\left(-\frac{3}{5}\right) - \left(-\frac{5}{7}\right) = -\frac{3}{5} + \frac{5}{7} = \frac{4}{35}$$
, or $\frac{4}{35} > 0$,

donc:
$$\left(-\frac{3}{5}\right) - \left(-\frac{5}{7}\right) > 0$$
; $d'où: -\frac{3}{5} > -\frac{5}{7}$.

2. Ordre et opérations dans \mathbb{R}

Propriétés

a, b, c et d des nombres réels, on a :

- Si $a \le b$, alors $a + c \le b + c$.
- Si $a \le b$ et $c \le d$, alors $a + c \le b + d$.
- Si $a \le b$ et c > 0, alors $ac \le bc$.
- Si $a \le b$ et c < 0, alors $ac \ge bc$.
- Si a, b, c et d sont des nombres réels positifs tels que : $a \le b$ et $c \le d$, alors $ac \le bd$.
- Pour tous nombres réels a et b positifs : $a \le b \iff a^2 \le b^2$.

$$a \le b \Leftrightarrow \sqrt{a} \le \sqrt{b}$$
.

• Pour tous nombres réels a et b strictement positifs : $a \le b \Leftrightarrow \frac{1}{a} \ge \frac{1}{b}$.

Remarque

Il n'existe pas de règles pour « soustraire » ou « diviser » membre à membre deux inégalités.

Exercice de fixation

Dans chacun des cas, compare les nombres donnés :

a)
$$\frac{1}{13}$$
 et $\frac{1}{5\sqrt{7}}$; b) $3 - 2\sqrt{7}$ et $3 - 3\sqrt{3}$.

Solution

a) Comparons
$$\frac{1}{13}$$
 et $\frac{1}{5\sqrt{7}}$.

 $\frac{1}{13}$ et $\frac{1}{5\sqrt{7}}$ sont des nombres réels positifs. Comparons leurs carrés.

On a:
$$\begin{cases} 13^2 = 169 \\ (5\sqrt{7})^2 = 175 \end{cases}$$
, 169 < 175, $d'où$: 13 < $5\sqrt{7}$

Par suite :
$$\frac{1}{13} > \frac{1}{5\sqrt{7}}$$

b) Comparons $3 - 2\sqrt{7} \ et \ 3 - 3\sqrt{3}$

Comparons d'abord les nombres réels positifs $2\sqrt{7}$ et $3\sqrt{3}$.

On a:
$$\begin{cases} (2\sqrt{7})^2 = 28\\ (3\sqrt{3})^2 = 27 \end{cases}$$
, d'où: 28 > 27, par suite: $2\sqrt{7} > 3\sqrt{3}$

Ensuite, on a:

$$-2\sqrt{7} < -3\sqrt{3} \Rightarrow 3 - 2\sqrt{7} < 3 - 3\sqrt{3}$$
.

III. MINORANTS- MAJORANTS

Définition

Soit E un sous-ensemble non vide de \mathbb{R} .

- On dit qu'un nombre réel *M* est un majorant de *E* lorsque *M* est supérieur ou égal à tout élément de *E*. Un ensemble qui admet un majorant est dit majoré.
 M est un majorant de *E* signifie que : ∀x ∈ E, x ≤ M.
- On dit qu'un nombre réel m est un minorant de E lorsque m est inférieur ou égal à tout élément de E. Un ensemble qui admet un minorant est dit minoré.
 m est un minorant de E signifie que : ∀x ∈ E, x ≥ m.

Remarques

- Un ensemble est dit **borné** s'il est à la fois minoré et majoré.
- \triangleright \mathbb{Z} , \mathbb{Q} et \mathbb{R} ne sont ni majorés ni minorés.
- \triangleright N est minoré par $0, -1, -\pi$, mais n'est pas majoré.

Exemples

- L'intervalle] ∞; 3[est majoré par 3 mais n'est pas minoré.
- Soit $A = \{-4; -2; -1; 0; 5; 8\}$.

L'ensemble des minorants de A est constitué de tous les réels inférieurs ou égaux à -4. Exemples de minorants de A:-7;-4,1;-5,03.

L'ensemble des majorants de A est constitué de tous les réels supérieurs ou égaux à 8. Exemples de majorants de A : 8;8,5;20

IV. MAXIMUM-MINIMUM

Définition

Soit E un sous-ensemble non vide de \mathbb{R} .

- Lorsqu'il existe, le plus grand élément de *E* est appelé **le maximum** de *E*.
- Lorsqu'il existe, le plus petit élément de *E* est appelé **le minimum** de *E*.

Exemples

- Le minimum et le maximum de [0; 1] sont respectivement 0 et 1.
- L'intervalle]-1; 6[n'admet ni maximum ni minimum.

Remarques

- \triangleright Toute partie finie de \mathbb{R} admet un maximum et un minimum.
- > 0 est le minimum de N.
- \triangleright Le maximum de E, s'il existe est le plus petit des majorants de E.
- \triangleright Le minimum de E, s'il existe est le plus grand des minorants de E.

V. VALEUR ABSOLUE

1. Définition

On appelle valeur absolue d'un nombre réel la distance à zéro de ce nombre.

Pour tout nombre réel a, la valeur absolue de a se note |a|.

Remarque :
$$|a| = a$$
 si $a \ge 0$ et $|a| = -a$ si $a \le 0$

Exemples

- |-69| = 69 car -69 < 0
- |4| = 4 car 4 > 0
- $|\sqrt{3}-2|=2-\sqrt{3} \text{ car } \sqrt{3}-2<0$

2. Propriétés

Soit x et y deux nombres réels et r un nombre réel strictement positif. On a :

- 1) $|x| \ge 0$
- 2) $|x| = 0 \iff x = 0$
- 3) |-x| = |x|
- 4) $|x| = |y| \iff x = y \text{ ou } x = -y$
- 5) $\sqrt{x^2} = |x|$
- 6) $|xy| = |x| \times |y|$
- 7) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|} \text{ si } y \neq 0$
- 8) $|x + y| \le |x| + |y|$ (inégalité triangulaire).
- 9) $|x| \le r \iff -r \le x \le r$

Exercice de fixation

Soit x et y deux nombres réels.

Réponds par Vrai (V) ou par Faux (F) à chacune des affirmations dans le tableau ci-dessous:

No	Affirmations	Dánancac
IN	Amrinations	Keponses

1	x+y = x + y	
2	$si x \neq 0; \left \frac{-2}{x} \right = \frac{2}{x}$	
3	$ x \le 3 \Leftrightarrow x \in [-3;3]$	
4	$ x = 2 \Leftrightarrow x = 2$	
5	$\left y^2\right = y^2$	
6	xy = x y	
7	$si y \neq 0; \left \frac{x}{y} \right = \frac{ x }{ y }$	

Solution:

3. Distance de deux nombres réels

Définition

Soit x et y deux nombres réels. Le nombre réel |x - y| est appelé **distance** de x et y. On la note : d(x; y).

Remarque

Soit (D) une droite munie d'un repère (O, I). Pour tous points M et N de (D) d'abscisses respectives x et y, on a MN = |x - y|.

Exemple

On donne la droite graduée ci-dessous.

- CD = |-5 (-3)| = 2
- DE=|-3-2|=5
- OE=|0-2|=2

4. Résolution algébrique d'une équation du type: $|x - a| = r \ (r > 0)$

Propriété

Soit a un nombre réel et r un nombre réel strictement positif.

L'équation : $x \in \mathbb{R}$, |x - a| = r, a pour ensemble de solution $\{a - r; a + r\}$

Exercice de fixation

Réponds par Vrai (V) ou par Faux (F) à chacune des affirmations dans le tableau ci-dessous:

N°	Affirmations	Réponses
1	$ x + 1 = 2 \Leftrightarrow x = 1 \text{ ou } x = 3$	
2	$ x-1 =3 \Leftrightarrow x=1+3 \text{ ou } x=-1+3$	
3	$ x-2 =1 \Leftrightarrow x=2+1 \text{ ou } x=2-1$	

Solution:

5. Résolution graphique d'une équation du type :
$$|x - a| = r \quad (r > 0)$$

Propriété

Soit A et M les points d'abscisses respectives a et x sur une droite graduée.

On a: $|x - a| = r \iff AM = r$.

Remarque:

Il s'agit ici de trouver les abscisses des points M de la droite graduée tels que : AM = r.

Les nombres cherchés sont : a - r et a + r

Exercice de fixation

Résous graphiquement dans \mathbb{R} , l'équation. |x + 2| = 5

Solution:

Résoudre graphiquement l'équation |x + 2| = 5 revient à trouver les abscisses des points M de la droite graduée tels que : AM = 5.

D'après le graphique ci-dessus les nombres cherchés sont -7 et 3. D'où $S_{\square} = \{-7; 3\}$.

6. Résolution algébrique d'une inéquation du type : $|x - a| \le r \quad (r > 0)$

Propriété

Soit *a* un nombre réel et *r* un nombre réel strictement positif.

L'inéquation : $x \in \mathbb{R}$, $|x - a| \le r \Leftrightarrow a - r \le x \le a + r$.

Exercice de fixation

Résous dans \mathbb{R} l'inéquation : $|x-2| \le 3$

Solution:

Cette inéquation est de la forme $|x - a| \le r$ avec r = 3 et a = 2.

Donc l'ensemble des solutions **est :** $S_{\mathbb{R}} = [2-3;2+3]$ soit $S_{\mathbb{R}} = [-1;5]$

7. Résolution graphique d'une inéquation du type : $|x - a| \le r$ (r > 0)

Propriété

Soit A et M les points d'abscisses respectives a et x sur une droite graduée.

On a: $|x - a| \le r \iff AM \le r$.

+

Remarque:

Il s'agit ici de trouver les abscisses des points M de la droite graduée tels que : $AM \le r$ Donc l'ensemble des solutions de cette inéquation est $S_{\mathbb{R}} = [a - r; a + r]$.

Exercice de fixation

Résous graphiquement dans \mathbb{R} l'inéquation : $|x-3| \le 2$.

Solution : $|x-3| \le 2$.

Résous graphiquement l'inéquation: $|x-3| \le 2$ revient donc à trouver les abscisses des points M de la droite graduée tels que : $AM \le 2$.

D'après le graphique ci-dessus les nombres cherchés sont ceux qui appartiennent à l'intervalle [1;5] . D'où $S_{\square}=[1;5]$

VI. CALCULS APPROCHES

1. Valeur approchée Définition

Soient x et y deux nombres réels et \mathcal{E} un nombre réel strictement positif. y est une valeur approchée de x à \mathcal{E} près signifie que $|x-y| \le \mathcal{E}$. \mathcal{E} est appelé incertitude de cette valeur approchée.

Exemple

Soit l'inégalité : $|x - 2,512| \le 0,005$.

2,512 est une valeur approchée de x à 0,005-près.

Remarques:

Soit x un nombre réel et m un nombre entier naturel.

Les approximations décimales d'ordre m par défaut et par excès de x sont des valeurs approchées de x à 10^{-m} près.

Exemple:

On a: $2,166 < \frac{13}{6} < 2,167$

-L'approximation décimale d'ordre 3 par défaut de $\frac{13}{6}$ est 2,166.

-L'approximation décimale d'ordre 3 par excès de $\frac{13}{6}$ est 2,167.

Donc 2,166 et 2,167 sont des valeurs approchées de $\frac{13}{6}$ à 10^{-3} près.

L'arrondi d'ordre 3 de $\frac{13}{6}$ est 2,167

C. SITUATION COMPLEXE

Deux élèves, ALI et YAO habitent au bord d'une rue rectiligne à 400 m l'un de l'autre. Les parents de YAO lui demandent de ne pas s'éloigner de plus de 300 m de la maison. Ceux de ALI lui demandent de ne pas s'éloigner de plus de 200 m de la maison. Ils souhaitent déterminer la portion du bord de la rue où ils peuvent se rencontrer pour échanger sur des exercices de classe sans désobéir à leurs parents. Soucieux, ils demandent ta contribution. En utilisant tes connaissances en mathématiques, détermine la portion du bord de la rue où les deux élèves peuvent se retrouver sans désobéir à leurs parents.

Solution:

Pour résoudre ce problème, je vais utiliser la leçon sur les nombres réels notamment les calculs de distance et la résolution des inéquations avec valeur absolue.

On appelle A le point représentant la maison de ALI et Y celui représentant la maison de YAO. L'abscisse de A est 0, celle de Y est 400 et un point M de la droite (AY), point de rencontre des deux élèves a pour abscisse x.

On a : $x \in [0; 400]$ (1)

En M on a : $|x| \le 200 \ et \ |x - 400| \le 300 \ ce \ qui \ donne \ x \in [100; 200]$ (2)

De (1) et (2) on peut dire que la rencontre de ALI et YAO a lieu entre 100m et 200m de la maison de ALI.

Ou bien

On appelle A le point représentant la maison de ALI et Y celui représentant la maison de YAO. L'abscisse de A est 400, celle de Y est 0 et un point M de la droite (AY), point de rencontre des deux élèves a pour abscisse x.

On a : $x \in [0; 400]$ (1)

En M on a : $|x| \le 300 \ et \ |x - 400| \le 200 \ ce \ qui \ donne \ x \in [200; 300]$ (2)

De (1) et (2) on peut dire que la rencontre de ALI et YAO a lieu entre 200m et 300m de la maison de YAO.

D. <u>EXERCICES</u>

1- Exercices d'application

Exercice 1

Soit E un sous ensemble non vide de \mathbb{R} .

Réordonne les morceaux de phrases suivants pour obtenir une définition correcte dans chacun des cas suivants :

1-est un minorant de E -- à tous les éléments de E -- un nombre réel m -- signifie que m est inférieur ou égal.

2-signifie que M est supérieur ou égal -- un nombre réel M -- à tous les éléments de E -- est un majorant de E .

Solution:

1-Un nombre réel m est un minorant de E signifie que m est inférieur ou égal à tous les éléments de E.

2-Un nombre réel M est un majorant de E Signifie que M est supérieur ou égal à tous les éléments de E .

Exercice 2

Réponds par Vrai (V) ou par Faux (F) à chacune des affirmations dans le tableau ci-dessous:

N°	Affirmations	Réponses
1	La valeur absolue d'un nombre réel est le réel lui-même s'il est positif.	
2	La valeur absolue d'un nombre réel est l'inverse de ce nombre réel s'il est non nul.	
3	La valeur absolue d'un nombre réel est la racine carrée de ce nombre réel s'il est positif.	
4	La valeur absolue d'un nombre réel est la racine carrée de l'opposé de ce nombre réel s'il est négatif.	
5	La valeur absolue d'un nombre réel est la distance à zéro de ce nombre réel.	
6	La valeur absolue d'un nombre réel est l'opposé de ce nombre réel s'il est négatif.	

Solution:

1-V; 2-F; 3-F; 4-F; 5-V; 6-V

Exercice 3

Complète le tableau ci-dessous en donnant la valeur de la distance de $x \ a$ y.

х	y	distance de x à y : $d(x; y)$
9	12	
-5	-7	
-16	23	
14	-11	

Solution:

x	y	distance de $x \ge y : d(x; y)$
9	12	d(x; y) = 9-12 = -3 = 3
-5	-7	d(x;y) = -5 - (-7) = -5 + 7 = 2 = 2
-16	23	d(x; y) = -16-23 = -39 = 39
14	-11	d(x; y) = 14 - (-11) = 14 + 11 = 25 = 25

Exercice 4

Soit l'intervalle B =]-2;7]

- 1-Trouve trois minorants et trois majorants de B.
- 2-Trouve si possible le maximum de B.
- 3-Justifie que B n'admet pas de minimum.
- 4-Ecris l'ensemble de tous les majorants de B.
- 5-Ecris l'ensemble de tous les minorants de B.

Solution:

On a B =]-2;7]:

- 1 -Trois minorants de B: -2; -8; -15
 - -Trois majorants de B: 7;13;24
- 2- Le maximum de B est 7.
- 3-B n'admet pas de minimum car -2 est le plus grand des minorants et -2 ∉]-2;7].
- 4 -L'ensemble de tous les majorants de B est $[7; +\infty]$
- 5 L'ensemble de tous les minorants de B est $]-\infty;-2]$.

Exercice 5

Résous dans R l'inéquation :

$$(I): |x+2| \le 3.$$

Solution:

$$|x+2| \le 3$$
 équivaut à $-3 \le x+2 \le 3$
$$equivaut à \quad -5 \le x \le 1 \quad donc \quad S_{\mathbb{R}} = [-5\,;1]$$

2- Exercices de renforcement

Exercice 6

Sachant que $\sqrt{5}$ est un nombre irrationnel, démontre par l'absurde que $A = \sqrt{5} - 2$ est irrationnel.

Solution:

On suppose que A est rationnel et on a : $A = \sqrt{5} - 2$ donc $A + 2 = \sqrt{5}$.

2 est rationnel et A aussi l'est, donc A + 2 est rationnel et par conséquent $\sqrt{5}$ serait un rationnel ce qui est en contradiction avec l'hypothèse de départ.

En conclusion $A = \sqrt{5} - 2$ est irrationnel.

Exercice 7

Soient a et b deux nombres réels strictement positifs.

Compare A et B en étudiant le signe de A-B dans chacun des cas suivants :

1)
$$A = ab + 1$$
 et $B = (a+1)(b+1)$

2)
$$A = \frac{a}{b} + \frac{b}{a}$$
 et $B = 2$

3)
$$A = \frac{1}{a} + \frac{1}{b}$$
 et $B = \frac{1}{a+b}$

Solution:

- 1) A B = -a b qui est négatif car a et b sont des réels positifs donc $A \le B$
- 2) $A B = \frac{(a-b)^2}{ab}$ qui est positif car a et b sont des réels positifs donc $A \ge B$ 3) $A B = \frac{a^2 + b^2 + ab}{ab}$ qui est strictement positif car a > 0 et b > 0 donc A > B

Exercice 8

Soit $A = \left\{ \frac{1}{n}; n \in \mathbb{D}^* \right\}$ (ensemble des inverses des entiers naturels non nuls).

- 1) Trouve trois éléments de A.
- 2) a- Justifie que 1 est un majorant de A.b- Déduis en que 1 est le maximum de A.
- 3) Démontre par l'absurde que A n'admet pas de minimum.

Solution:

- 1) 1; $\frac{1}{2}$ et $\frac{1}{3}$ sont des éléments de A
- 2) a) Pour tout élément x de A, on a : $x = \frac{1}{n}$ avec $n \in \mathbb{N}^*$. $n \in \mathbb{N}^*$ signifie que $n \ge 1$ d'où $\frac{1}{n} \le 1$. Donc $x \le 1$. Par conséquent 1 est un majorant de A.
 - b) 1 est élément de A et majorant de A, donc 1 est le maximum de A.
- 3) On suppose que A admet un minimum m alors il existe $p \in \mathbb{N}^*$ tel que $m = \frac{1}{p}$. $0 < m \le 1$ donc $0 < \frac{m}{2} \le \frac{1}{2}$.

 $0 < m \le 1 \text{ donc } 0 < \frac{m}{2} \le \frac{1}{2}.$ Or $\frac{m}{2} = \frac{1}{2p}$ avec $2p\epsilon \ \mathbb{N}^*$ d'où $\frac{m}{2}$ est aussi élément de A et plus petit que le minimum .

Dans ce cas m ne serait pas le minimum de A d'où la contradiction. Donc A n'admet pas de minimum.

3- Exercice d'approfondissement

Exercice 9

On donne : $2,15 \le x \le 2,18$.

Détermine une valeur approchée de x, en précisant son incertitude.

Solution:

Soit y, une valeur approchée de x à ε -près ; on a : $|x-y| \le \varepsilon$ ce qui donne les inéquations : $-\varepsilon \le x - y \le \varepsilon$, soit $y - \varepsilon \le x \le y + \varepsilon$ or 2,15 $\le x \le 2,18$.

On obtient le système d'inéquations : $\begin{cases} y - \varepsilon = 2,15 \\ y + \varepsilon = 2,18 \end{cases}$ on déduit que y = 2,165.

Donc 2,165 est une valeur approchée de x à ε -près. Déterminons alors ε .

De
$$\begin{cases} y - \varepsilon = 2,15 \\ y + \varepsilon = 2,18 \end{cases}$$
 on obtient $2 \varepsilon = 0,03$ d'où $\varepsilon = 0,015$

Donc 2,165 est une valeur approchée de x à 0,015-près