

PRÉSENTATION DES MÉTRIQUES 'MAP' ET 'NDCG'

G8 Innovation | 10/01/2020

VUE D'ENSEMBLE

Evaluer un SIR

Mesures d'évaluations

MAP

NDCG

Comment évaluer un système de recherches d'informations?

- * Que faut-il?
- Un corpus de documents tests à interroger
- Des requêtes de test (minimum 25)
- Jugements de pertinences (correspond aux documents qu'aurait dû retourner le système, pas ceux qu'il a en réalité retournés)

MESURES D'EVALUATIONS

Deux notions essentielles:

Proportion de documents pertinents sélectionnées

$$(R = PS / P)$$

PRECISION:

Proportion de documents sélectionnés pertinents

$$(P = PS / S)$$

P = Nombre de documents Pertinents

S = Nombre de documents Sélectionnés

PS = Nombre de documents Sélectionnées et qui sont Pertinents

MAP

MESURES AGREGEES

• <u>Pour une requête</u>: Average Precision (moyenne des précisions calculées pour chaque point de rappel pour une requête).

$$AP(q) = \frac{1}{R_q} \sum_{r} I(r) * Prec_q(r)$$

Avec: - r le rang du document

- Rq le nombre total de documents pertinents pour la requête q
- I(r) vaut 1 si le document est pertinent 0 sinon
- Prec la précision (voir diapo précédente).

• Pour plusieurs requêtes : Mean Average Precision

$$MAP = \frac{1}{|Q|} \sum_{q \in Q} AP(q)$$

Avec : - Q l'ensemble des requêtes

- AP(q) = Average Precision pour une requête

EXEMPLE - MAP

```
[14] # Résultats du système d'informations
    res = {
        'q1': {
            'd1': 1.0,
            'd2': -0.1,
            'd3': 1.5,
        },
        'q2': {
            'd1': 1.5,
            'd2': 0.2,
            'd3': 0.5,
    # Documents "réellement" pertinents
    qrels = {
         'q1': {
            'd2': 1
        },
         'q2': {
            'd2': 1,
            'd3': 1,
        },
    # Evaluation -> métrique 'MAP'
    print("Par requête :\n", pt.Utils.evaluate(res, grels, metrics = ['map'], perquery=True),
           "\nMoyenne :\n", pt.Utils.evaluate(res, qrels, metrics = ['map']))
    # Evalutation -> métrique 'NDCG'
    print("\nPar requête :\n", pt.Utils.evaluate(res, qrels, metrics = ['ndcg'], perquery=True),
           "\nMoyenne :\n", pt.Utils.evaluate(res, qrels, metrics = ['ndcg']))
    Par requête :
     {'q1': {'map': 0.33333333333333333}}, 'q2': {'map': 0.5833333333333333}}
     Par requête :
     {'q1': {'ndcg': 0.5}, 'q2': {'ndcg': 0.6934264036172708}}
     {'ndcg': 0.5967132018086354}
```

- Ensemble de documents : $D = \{D1, D2, D3\}$
- Ensemble des requêtes : $Q = \{Q1, \overline{Q2}\}$
- Résultats du système de recherche d'information :

Q1	Q2
D3 (1.5)	D1 (1.5)
D1 (1.0)	D3 (0,5)
D2 (-0,1)	D2 (0,2)

Jugements de pertinences :

Q1	Q2
D1 – NP (0)	D1 – NP (0)
D2 – P (1)	D2 - P(1)
D3 – NP (0)	D3 – P (1)

Résumé:

RANG	DOC	PERTINENCE	PRESICION	DOC	PERTINEN	PRESICION
DOC			(P)		CE	(P)
		Q1			Q2	
1	D3	NP	0/1=0	D1	NP	0/1=0
2	D1	NP	0/2=0	D3	Р	1/2=0,5
3	D2	Р	1/3=0.33	D2	Р	2/3=0.67

• AP(Q1) =
$$\frac{1}{1} \left(1 * \frac{1}{3} \right) = 0.33$$

• AP(Q2) = $\frac{1}{2} \left(1 * \frac{1}{2} + 1 * \frac{2}{3} \right) = 0.5833$ MAP = $\frac{1}{2} (0.33 * 0.5833) = 0.4583$

$$MAP = \frac{1}{2}(0.33 * 0.5833) = 0.4583$$

NDCG

MESURES ADAPTEES À UNE MESURE GRADUELLE DE LA PERTINENCE

- Pertinence graduelle : Très Pertinent (2), Pertinent (1), Non Pertinent (0) => Labels
- Discounted Cumulative Gain (DCG):

$$DCG(Q) = \sum_{r=1}^{N} P_u(r) * Utilité(r)$$

 $\overline{\text{Avec}}$: - Utilité(r) = 2 pertinence -1

- Pertinence : pertinence graduelle
- $P_u(r)$: probabilité que l'utilisateur visite le document à la position $r = \frac{1}{log_2(r+1)}$
- Normalized Discounted Cumulative Gain (DCG):

$$NDCG(Q) = \frac{DCG(Q)}{OptDCG}$$

Avec: - OptDCG: valeur DCG optimale

EXEMPLE

Résultats:

Q1	Q2
D3 (1.5)	D1 (1.5)
D1 (1.0)	D3 (0,5)
D2 (-0,1)	D2 (0,2)

Jugements de pertinence :

Q1	Q2
D1 – NP (0)	D1 – NP (0)
D2 – P (1)	D2 – P (1)
D3 – NP (0)	D3 – P (1)

DCG:

RANG DOC	Q1					Q2			
	Doc	Perti r	Utilité(r)	Utilité(r)*Pu(r)	Doc	Perti r	Utilité(r)	Utilité(r)*Pu(r)	
1	D3	0 (NP)	0	0/log2(2)=0	D1	0 (NP)	1	0/log2(2)=0	
2	D1	0 (NP)	0	$0/\log 2(3) = 0$	D3	1 (P)	1	1/log2(3)=0.63	
3	D2	1 (P)	1	1/log2(4)=0,5	D2	1 (P)	1	1/log2(4)=0.5	

$$DCG(Q1) = 1 * log 2(4) = 0,5$$

 $DCG(Q2) = 1 * log 2(3) + 1 * log 2(4) = 1,13$

Par requête :

{'q1': {'ndcg': 0.5}, 'q2': {'ndcg': 0.6934264036172708}}

{'ndcg': 0.5967132018086354}

NDCG(Q1) =
$$\frac{0.5}{1}$$
 = 0.5
NDCG(Q2) = $\frac{1.13}{1.63}$ = 0.693

OptDCG:

RANG DOC		(Q1			Q2			
	Doc	Perti r	Utilité(r)	Utilité(r)*Pu(r)	Doc	Perti r	Utilité(r)	Utilité(r)*Pu(r)	
1	D2	1 (P)	1	1/log2(2)=1	D2	1 (P)	1	1/log2(2)=1	
2	D1	0 (NP)	0	$0/\log 2(3) = 0$	D3	1 (P)	1	1/log2(3)=0.63	
3	D3	0 (NP)	0	0/log2(4)=0	D1	0 (NP)	0	0/log2(4)=0	

OptDCG(Q1) =
$$1 * log2(2) = 1$$

OptDCG(Q2) = $1 * log2(2) + 1 * log2(3) = 1,63$

NDCG À VALEUR SEUIL...