Lake routing based on dynamical programming

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

Customer profile

[©] Jacques Ambühl. Zürich, Switzerland

Thanks to the arborescent structure, the $T_{[i-1,j^*]}$ are (recursively) known ($T_{[Start]}$ provided)

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

Sailing durations D from nodes [i-1, j*] to node [i,j] depend on **wind conditions** on each segment

 $^{@ \} Jacques\ Amb\"{u}hl.\ Z\"{u}rich,\ Switzerland \\$

Sailing durations D from nodes [i-1, j*] to node [i,j] depend on **wind conditions** on each segment

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

Circularity: Fixed Point Problem

- Duration D from node [i-1, j*] to arrival node [i,j]: depends on the wind W[i,j] blowing at that node at arrival time $T[i-1, j^*] + D\{[i-1, j^*], [i, j]\}$
- Valuation of wind W[i, j] at node [i, j]:
 depends on duration D {[i-1, j*], [i, j]}
- Formally:

$$W[i,j] = \varphi(T[i-1,j^*] + D\{[i-1,j^*],[i,j]\}_{(W[i,j])})$$

• Fixed Point Problem $x = \varphi(x)$ (Brower, Lefschetz and all ...)

Circularity: iterative solution

$$Tb_{_0} = Ta + D[Wa, Wb_{(Ta)}] \rightarrow$$

$$Tb_{_1} = Ta + D[Wa, Wb_{(Tb_{_0})}] \rightarrow$$

$$Tb_{_2} = Ta + D[Wa, Wb_{(Tb_{_1})}] \rightarrow$$
...
$$Tb_{_i} = Ta + D[Wa, Wb_{(Tb_{_i-1})}] \rightarrow$$
...

Implemented: i = 0, ..., 4

Convergence: fixed points theory

[©] Jacques Ambühl. Zürich, Switzerland

Circularity: implementation after temporal recursion

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

[©] Jacques Ambühl. Zürich, Switzerland

Synthesis

2. Following the best sequence backward from the objective, as provided by the tree

Classical technique in (financial) options trading Alinghi, America Cup (EPFL, Prof. Dalang)

[©] Jacques Ambühl. Zürich, Switzerland

Synthesis

Optimization of weather dependent sequential processes Renewable Energies!

[©] Jacques Ambühl. Zürich, Switzerland

Jacques Ambuni. Zurich, Switzerland

 $@ \ Jacques\ Amb\"{u}hl.\ Z\"{u}rich,\ Switzerland \\$