9-7. Show, for the vacuum state, the expectation value of $\bar{a}_{1,\mathbf{k}}^*\bar{a}_{1,\mathbf{q}}$ is $(\hbar/2kc)\delta_{\mathbf{k},\mathbf{q}}$ and that of $\bar{a}_{1,\mathbf{k}}\bar{a}_{1,\mathbf{q}}$ is $(\hbar/2kc)\delta_{-\mathbf{k},\mathbf{q}}$.

We will use the following table of integrals.

$$\int_{-\infty}^{\infty} \exp(-ax^2 + b) \, dx = \sqrt{\frac{\pi}{a}} \exp(b) \tag{1}$$

$$\int_{-\infty}^{\infty} x \exp(-ax^2 + b) \, dx = 0 \tag{2}$$

$$\int_{-\infty}^{\infty} x^2 \exp(-ax^2 + b) dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}} \exp(b)$$
 (3)

For simplicity of notation, let

$$A = \bar{a}_{1,\mathbf{k}}^c$$
 $B = \bar{a}_{1,\mathbf{k}}^s$ $C = \bar{a}_{1,\mathbf{q}}^c$ $D = \bar{a}_{1,\mathbf{q}}^s$

From problem 9-6 we have

$$\bar{a}_{1,\mathbf{k}} = \frac{1}{\sqrt{2}}(A - iB)$$

$$\bar{a}_{1,\mathbf{q}} = \frac{1}{\sqrt{2}}(C - iD)$$
(4)

Adapted from equation (8.84).

$$\langle \Phi_0 | f | \Phi_0 \rangle = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi_0^* f \Phi_0 \, dA \, dB \, dC \, dD$$

Adapted from problem 9-6 with q as a mode number (not electric charge). Note that we *could* include other modes in addition to k and q. However, there is no need because the integrals over unused modes get cancelled by the normalization constant.

$$\Phi_0 = \exp\left(-\frac{kc}{4\hbar}A^2 - \frac{kc}{4\hbar}B^2 - \frac{qc}{4\hbar}C^2 - \frac{qc}{4\hbar}D^2\right)$$

It follows that

$$\Phi_0^* \Phi_0 = \exp\left(-\frac{kc}{2\hbar}A^2 - \frac{kc}{2\hbar}B^2 - \frac{qc}{2\hbar}C^2 - \frac{qc}{2\hbar}D^2\right)$$

Compute the normalization constant K.

$$K = \langle \Phi_0 | 1 | \Phi_0 \rangle = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi_0^* \Phi_0 \, dA \, dB \, dC \, dD$$

By integral (1) for each factor in the measure (see problem 8-5)

$$K = \left(\frac{2\pi\hbar}{kc}\right)^{1/2} \left(\frac{2\pi\hbar}{kc}\right)^{1/2} \left(\frac{2\pi\hbar}{qc}\right)^{1/2} \left(\frac{2\pi\hbar}{qc}\right)^{1/2}$$

Compute the expectation of $\bar{a}_{1,\mathbf{k}}^*\bar{a}_{1,\mathbf{k}}$. From (4) we have

$$\bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{k}} = \frac{A^2 + B^2}{2}$$

Hence

$$\langle \Phi_0 | \bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{k}} | \Phi_0 \rangle = \frac{1}{K} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi_0^* \Phi_0 \frac{A^2 + B^2}{2} dA dB dC dD$$

Rewrite as

$$\langle \Phi_0 | \bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{k}} | \Phi_0 \rangle = \frac{1}{2K} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi_0^* \Phi_0 A^2 dA dB dC dD$$
$$+ \frac{1}{2K} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi_0^* \Phi_0 B^2 dA dB dC dD$$

By integrals (1) and (3) we have

$$\langle \Phi_0 | \bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{k}} | \Phi_0 \rangle = \frac{1}{K} \frac{\hbar}{kc} \left(\frac{2\pi\hbar}{kc} \right)^{1/2} \left(\frac{2\pi\hbar}{kc} \right)^{1/2} \left(\frac{2\pi\hbar}{qc} \right)^{1/2} \left(\frac{2\pi\hbar}{qc} \right)^{1/2}$$

Hence

$$\langle \Phi_0 | \bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{k}} | \Phi_0 \rangle = \frac{\hbar}{kc} \tag{5}$$

Compute the expectation of $\bar{a}_{1,\mathbf{k}}^*\bar{a}_{1,\mathbf{q}}$.

$$\bar{a}_{1,\mathbf{k}}^*\bar{a}_{1,\mathbf{q}} = \frac{AC + BD - iAD + iBC}{2}$$

Hence

$$\langle \Phi_0 | \bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{q}} | \Phi_0 \rangle = \frac{1}{K} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi_0^* \Phi_0 \frac{AC + BD - iAD + iBC}{2} dA dB dC dD$$

By integral (2) all terms are zero, hence

$$\langle \Phi_0 | \bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{q}} | \Phi_0 \rangle = 0 \tag{6}$$

Combine (5) and (6) to obtain

$$\langle \Phi_0 | \bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{q}} | \Phi_0 \rangle = \frac{\hbar}{kc} \delta_{\mathbf{k},\mathbf{q}}$$

Note that by equation (8.77)

$$\bar{a}_{1,\mathbf{k}}^* = \bar{a}_{1,-\mathbf{k}}$$

Hence

$$\langle \Phi_0 | \bar{a}_{1,-\mathbf{k}} \bar{a}_{1,\mathbf{q}} | \Phi_0 \rangle = \frac{\hbar}{kc} \delta_{\mathbf{k},\mathbf{q}}$$

(9-7 cont'd) Develop a formula for the expectation of $(\bar{a}_{1,\mathbf{k}}^*\bar{a}_{1,\mathbf{k}})^r$ for integral r and explain thereby how the expectation of such quantities as $(\bar{a}_{1,\mathbf{k}}^*\bar{a}_{1,\mathbf{k}})^r(\bar{a}_{1,\mathbf{q}}^*\bar{a}_{1,\mathbf{q}})^s$ can be got for $\mathbf{q} \neq \mathbf{k}$.

By the binomial theorem

$$\left(\frac{A^2 + B^2}{2}\right)^r = \frac{1}{2^r} \sum_{j=0}^r \binom{r}{j} A^{2j} B^{2(r-j)} \tag{7}$$

To compute the expectation of (7) we need the following integral.

$$\int_{-\infty}^{\infty} x^{2n} \exp(-ax^2 + b) = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n a^n} \sqrt{\frac{\pi}{a}} \exp(b)$$
$$= (2n-1)!! \frac{1}{2^n a^n} \sqrt{\frac{\pi}{a}} \exp(b)$$
(8)

Given (8), define the following function F. (The $\sqrt{\pi/a}$ factor is left out because it gets cancelled by the normalization constant K.)

$$F(n) = (2n - 1)!! \left(\frac{\hbar}{kc}\right)^n$$

Note that

$$F(j)F(r-j) = (2j-1)!! (2r-2j-1)!! \left(\frac{\hbar}{kc}\right)^j \left(\frac{\hbar}{kc}\right)^{r-j}$$

It turns out that

$$\frac{1}{2^r} \sum_{j=0}^r \binom{r}{j} (2j-1)!! (2r-2j-1)!! = r!$$

Hence

$$\langle \Phi_0^* | (\bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{k}})^r | \Phi_0 \rangle = r! \left(\frac{\hbar}{kc} \right)^r$$

Regarding the $\mathbf{q} \neq \mathbf{k}$ part of the problem, we have

$$\left(\frac{A^2 + B^2}{2}\right)^r \left(\frac{C^2 + D^2}{2}\right)^s = \left(\frac{1}{2^r} \sum_{j=0}^r \binom{r}{j} A^{2j} B^{2(r-j)}\right) \left(\frac{1}{2^s} \sum_{k=0}^s \binom{s}{k} C^{2k} D^{2(r-k)}\right)$$

Hence

$$\langle \Phi_0^* | (\bar{a}_{1,\mathbf{k}}^* \bar{a}_{1,\mathbf{k}})^r (\bar{a}_{1,\mathbf{q}}^* \bar{a}_{1,\mathbf{q}})^s | \Phi_0 \rangle = r! \left(\frac{\hbar}{kc}\right)^r s! \left(\frac{\hbar}{qc}\right)^s$$

(9-7 cont'd) Show that the expectation of $(\bar{a}_{1,\mathbf{k}})^2$ or $(\bar{a}_{1,\mathbf{k}}^*)^2$ vanishes.

We have

$$(\bar{a}_{1,\mathbf{k}})^2 = \frac{A^2 - B^2}{2} - iAB$$
 $(\bar{a}_{1,\mathbf{k}}^*)^2 = \frac{A^2 - B^2}{2} + iAB$

The integrals of A^2 and $-B^2$ cancel each other. The integral of AB vanishes by integral (2).

(9-7 cont'd) Show that the expectation of the product of any odd number of \bar{a} 's is zero and that you can compute the expectation value of any product of \bar{a} 's or \bar{a}^* 's for the vacuum state.

Isn't the expectation of any number of \bar{a} 's zero? It is shown above that the expectation of $(\bar{a}_{1,\mathbf{k}})^2$ vanishes.

FIXME: The result \hbar/kc is wrong by a factor of 2 everywhere it appears. Should be $\hbar/2kc$ according to the problem statement.