Masking Floating-Point Number Multiplication and Addition of Falcon

Keng-Yu Chen

Advisor: Jiun-Peng Chen, Ho-Lin Chen

December 29th, 2023

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 1/62

Table of Contents

- Introduction
- Preliminaries
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
- Conclusion

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 20232 / 62

Introduction

- To defend the potential threat from large-scale quantum computers, the US National Institute of Standards and Technology (NIST) initiated standardization process for post-quantum cryptography in 2016.
- In 2022, four selected algorithms CRYSTALS-Kyber, CRYSTALS-Dilithium, FALCON, and SPHINCS+ were expected to be part of NIST's post-quantum cryptographic standards.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 4/62

Introduction

Theoretical Security - Hardness of Mathematical Problems

In theory, these algorithms can base their security on problems that are considered still hard given the advantage of quantum computing.

- CRYSTALS-Kyber: Module Learning With Errors (MLWE)
- CRYSTALS-Dilithium: Module Short Integer Solution (MSIS)
- § FALCON: NTRU Problem and SIS on NTRU lattices
- SPHINCS+: Security of the used hash function families

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 5 / 62

Real-World Security - Side-Channel Attacks

In practice, the implementations of these algorithms can suffer side-channel attacks. Fortunately, there are countermeasures for them.

• CRYSTALS-Kyber: [Bos+21; Fri+22; Hei+22]

CRYSTALS-Dilithium: [Mig+19]

Solution FALCON: [How+20; Gue+22; Zha+23]

SPHINCS+: [Ber+10; Bel+13]

Unfortunately, there are attacks on FALCON that have not been addressed.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 6 / 62

Introduction

Attacks on FALCON

Figure: A graphical overview of FALCON.Sign.

	Attack	Countermeasure
Pre-image Vector Computation	[KA21; Gue+22]	None
Gaussian Sampler over Lattices	[Gue+22; Zha+23]	[Gue+22; Zha+23]

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 7 / 62

Our Contributions

In this paper, we present the following contributions:

- We propose the first masking scheme on the floating-point number multiplication and addition in the pre-image vector computation of FALCON as a countermeasure.
- We verify the high-order security of our design in the probing model.
- To test the practical leakage of our work, we conduct the Test Vector Leakage Assessment (TVLA) [GJR+11] experiments.
- We also test the performance by comparing with the reference implementation of FALCON [Pre+20].

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 8 / 62

Introduction

Notation

Throughout the presentation, we assume

- For a variable x, the jth bit of x is written as $x^{(j)}$.
- The *i*th bit to *j*th bit $(j \ge i)$ of x is represented by $x^{[j:i]}$.
- A sequence of *n* variables (x_1, x_2, \dots, x_n) (e.g. shares of variable *x*) is written as $(x_i)_{1 \le i \le n}$, or simply (x_i) .
- ullet For a proposition P, $[\![P]\!]=1$ if and only if P is true and 0 if otherwise.

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 20239/62

Introduction to FALCON

- A NIST-standardized digital signature
- Use the Gentry-Peikert-Vaikuntanathan (GPV) framework [GPV08] with NTRU lattices

KeyGen

Public Key: $\mathbf{A} \in \mathbb{Z}_q^{N \times M}$ Secret Key: Short $\mathbf{B} \in \mathbb{Z}_q^{M \times M}$

 $\mathbf{B}\mathbf{A}^T = \mathbf{0} \bmod q$

Sign(m)

A short **s** s.t.

hort \mathbf{s} s.t. $\mathbf{s}\mathbf{A}^T = H(\mathbf{m}) \bmod q$

 $H: \{0,1\}^* \to \{0,1\}^N$

Verify(m, s)

Check

9 s is short

Masking Falcon's FPU

December 29th, 2023

12 / 62

Preliminaries

Introduction to FALCON

To find such a short s, one can first

- Compute H(m)
- Find a solution **c** (not short) where $cA^T = H(m) \mod q$
- ullet Compute the pre-image vector $\mathbf{t} \leftarrow \mathbf{c} \mathbf{B}^{-1}$
- Apply the nearest plane algorithm to find an integer vector \mathbf{z} such that $(\mathbf{t} \mathbf{z})\mathbf{B}$ is short.
- $\mathbf{s} \leftarrow (\mathbf{t} \mathbf{z})\mathbf{B}$. Note that $\mathbf{s}\mathbf{A}^T = H(\mathbf{m}) \bmod q$

Masking Falcon's FPU December 29th, 2023 13 / 62

Introduction to FALCON

In Falcon,

• Short secret polynomials $f, g, F, G \in \mathbb{Z}[x]/(x^N+1)$ where

$$fG - gF = q$$
 $\mathbf{B} = \begin{bmatrix} g & -f \\ \hline G & -F \end{bmatrix}$

FALCON

- ullet Public polynomial $h=gf^{-1} mod q$ and $oldsymbol{\mathsf{A}}^{\mathcal{T}}=\left| \frac{1}{h} \right|$
- $\mathbf{c} = [c \mid 0]$, where $c = H(r \parallel m)$ for the message m and a random salt r.

Moreover, FALCON applies the fast Fourier nearest plane algorithm [DP16] to speed up the signing process.

> Masking Falcon's FPU December 29th, 2023 14 / 62

> > **Preliminaries**

FALCON

Introduction to FALCON

Sign (Simplified)

Input: Message m, secret key sk, bound $|\beta^2|$

Output: Signature sig

- 1: Sample salt $r \leftarrow \{0,1\}^{320}$ uniformly
- 2: $c \leftarrow H(r||m)$
- 3: Compute the pre-image vector $\mathbf{t} \leftarrow [c \mid 0] \cdot \mathbf{B}^{-1}$
- 4: repeat
- 5: z = ffSampling(t, sk)
- 6: $\mathbf{s} = \begin{bmatrix} s_1 \mid s_2 \end{bmatrix} = (\mathbf{t} \mathbf{z})\mathbf{B}$ 7: $\mathbf{until} \|\mathbf{s}\|^2 \le \lfloor \beta^2 \rfloor$
- 8: $sig \leftarrow (r, s_2)$

Verify (Simplified)

Input: Message m, signature sig

Input: Bound $|\beta^2|$

Output: Accept or Reject

- 1: $c \leftarrow H(r||m)$
- 2: $s_1 \leftarrow c s_2 h \mod q$
- 3: if $\|(s_1, s_2)\|^2 \leq \lfloor \beta^2 \rfloor$ then
- 5: **else**
- Reject 6:

Masking Falcon's FPU December 29th, 2023 15 / 62

Fast-Fourier Transform

The pre-image vector computation includes polynomial multiplications

$$\mathbf{t} = \left[c \mid 0 \right] \cdot \mathbf{B}^{-1} = \frac{1}{q} \left[c \cdot -F \mid c \cdot f \right]$$

To speed up and apply the fast Fourier nearest plane algorithm, the pre-image vector computation is performed in the Fourier domain:

$$\frac{1}{q} \left[| \mathsf{FFT}(c) \odot \mathsf{FFT}(-F) | | \mathsf{FFT}(c) \odot \mathsf{FFT}(f) \right]$$

Therefore, the pre-image vector computation is essentially coefficient-wise complex number multiplications.

Masking Falcon's FPU December 29th, 2023 17 / 62

Preliminaries

Floating-Point Number Arithmetic

Floating-Point Number

A complex number is represented by two 64-bit floating-point numbers (FPNs). An FPN is composed of sign bit s, exponent e, and mantissa \tilde{m}

Figure: A 64-bit Floating-Point Number

The value is
$$(-1)^s \cdot 2^{e-1023} \cdot \underbrace{(1+\tilde{m}\cdot 2^{-52})}_{\times 2^{52}=m}$$

For convenience, we may use (s, e, m) to represent an FPN.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 18 / 62

Floating-Point Number Arithmetic

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- **4** Right-shifting the mantissa to $[2^{54}, 2^{55})$
- Combining the results and rounding (FPR)

FPN addition (FprAdd) is proceeded by

- Making the first operand \geq the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction
- 4 Normalizing the sum to $[2^{54}, 2^{55})$
- Ombining the results and rounding (FPR)

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 19 / 62

Preliminaries

Floating-Point Number Arithmetic

Sticky Bit

In floating-point arithmetic, when shifted right, the mantissa maintains a sticky bit

$$100100100 \gg 4 \rightarrow 1001 \underbrace{1}_{\mathsf{Sticky}}$$

It indicates whether there exists any 1 after the least significant bit. In the above example,

sticky bit =
$$0 \lor [(0100) \neq 0] = [(00100) \neq 0]$$

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 20 / 62

Power Analysis Attacks

- Power consumption during the execution of programs depends on intermediate values.
- Power analysis attacks, the side-channel attacks on the pre-image vector computation, leverage this fact to find the secret key.

Figure: An Example of a Power Trace

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 22 / 62

Preliminaries

Power Analysis and Masking

Masking

Masking defends such threats by secret-sharing the sensitive variables.

• Boolean Masking: A variable x is split into n shares (x_i) such that

$$x = \bigoplus_{i=1}^{n} x_i$$

• Arithmetic Masking: A variable x is split into n shares (x_i) (when stored in a k-bit register) such that

$$x = \sum_{i=1}^{n} x_i \pmod{2^k}$$

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 23 / 62

Masking

- In each run, all x_i 's are randomized so that any n-1 shares of them are independently and uniformly distributed.
- All operations need to be operated via shares.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 24 / 62

Masked Floating-Point Number Multiplication and Addition

Overview of Our Approach

Overview of Our Approach

We now show how we mask FPR, FprMul, and FprAdd.

An intuitive approach to mask any algorithm:

- For operations like \land, \oplus : Boolean masking
- For operations like $+, \times$: arithmetic masking

and use the following gadgets if necessary:

- A2B: $(x_i)_{1 \le i \le n} \mapsto (y_i)_{1 \le i \le n}$ such that $\sum_{i=1}^n x_i = \bigoplus_{i=1}^n y_i$
- B2A: $(y_i)_{1 \le i \le n} \mapsto (x_i)_{1 \le i \le n}$ such that $\bigoplus_{i=1}^n y_i = \sum_{i=1}^n x_i$

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 27 / 62

Overview of Our Approach

However, some operations in floating-point number arithmetic cannot be easily implemented in this way:

- Checking whether a secret value is nonzero
 - Given (x_i) , checking whether $\bigoplus_{i=1}^n x_i \neq 0$ or $\sum_{i=1}^n x_i \neq 0$
- Right-shifting a secret value by another secret value
 - Given (x_i) and (c_i) , right-shifting (x_i) by (c_i)
- \bullet Normalizing a secret value to $[2^{63}, 2^{64})$
 - Given (x_i) , left-shifting (x_i) until its 64th bit is set

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 28 / 62

Masked Floating-Point Number Multiplication and Addition

Overview of Our Approach

Overview of Our Approach

We design novel gadgets for these three operations, including:

- SecNonzero (Algorithm 4): securely checking whether a secret value is nonzero.
- SecFprUrsh (Algorithm 5): securely right-shifting a secret value by another secret value
- SecFprNorm64 (Algorithm 6): securely normalizing a secret value to $[2^{63}, 2^{64})$

In addition, we make several improvements to reduce the cost.

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 29 / 62

Gadgets Used in Our Work

Algorithm	Description	Reference
SecAnd	AND of Boolean shares	[ISW03; Bar+16]
SecMult	Multiplication of arithmetic shares	[ISW03; Bar+16]
SecAdd	Addition of Boolean shares	[Cor+15; Bar+18]
A2B	Arithmetic to Boolean conversion	[Sch+19]
B2A	Boolean to arithmetic conversion	[BCZ18]
B2A _{Bit}	One-bit B2A conversion	[Sch+19]
${\sf RefreshMasks}$	t-NI refresh of masks	[Bar+16; BCZ18]
Refresh	t-SNI refresh of masks	$[Bar{+}16]$

Table: List of used gadgets in our work

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 202330 / 62

Masked Floating-Point Number Multiplication and Addition

SecNonzero

SecNonzero

We need a gadget that, given shares (x_i) , can derive one-bit shares (b_i) such that

$$\left[\left(\bigcup_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i} \quad \text{or} \quad \left[\left(\sum_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i}$$

For Boolean shares, our method is by considering OR-ing all the bits.

$$x = 0 \Longleftrightarrow x^{(k)} \lor x^{(k-1)} \lor \cdots \lor x^{(1)} = 0$$

Now we turn to a gadget for secure OR operations.

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 32 / 62

SecOr: OR of Boolean Shares

SecOr

Input: Boolean shares $(x_i)_{1 \le i \le n}$ for value x

Input: Boolean shares $(y_i)_{1 \le i \le n}$ for value y

Output: Boolean shares $(z_i)_{1 \le i \le n}$ for value $z = x \lor y$

1: $(t_i)_{1 \leq i \leq n} \leftarrow (\neg x_1, x_2, \cdots, x_n)$

2: $(s_i)_{1 \leq i \leq n} \leftarrow (\neg y_1, y_2, \cdots, y_n)$

3: $(z_i) \leftarrow \mathsf{SecAnd}((s_i), (t_i))$

4: $z_1 \leftarrow \neg z_1$

5: **return** (z_i)

It applies De Morgan's law and calls the AND algorithm SecAnd of shares as a subroutine.

$$x \lor y = \neg [(\neg x) \land (\neg y)]$$

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 33 / 62

Masked Floating-Point Number Multiplication and Addition

SecNonzer

SecNonzero

For arithmetic shares, instead of applying an *n*-shared A2B, we consider that

$$\sum_{i=1}^{n} x_{i} = 0 \iff \sum_{i=1}^{\frac{n}{2}} x_{i} = \sum_{i=\frac{n}{2}+1}^{n} (-x_{i}) \iff \sum_{i=1}^{\frac{n}{2}} x_{i} \oplus \sum_{i=\frac{n}{2}+1}^{n} (-x_{i}) = 0$$

So we apply two n/2-shared A2Bs to the first n/2 shares and negative of the second n/2 shares and use the same idea.

In this way, we replace one n-shared A2B with two n/2-shared A2Bs, which is usually more efficient.

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 34 / 62

SecNonzero

SecNonzero

Input: Shares $(x_i)_{1 \le i \le n}$ for value x, bitsize

Output: One-bit Boolean shares $(b_i)_{1 \le i \le n}$ where $\bigoplus_i b_i = 0 \Leftrightarrow x = 0$

- 1: **if** input (x_i) are arithmetic shares **then**
- 2: $(t_i)_{1 \leq i \leq \frac{n}{2}} \leftarrow \mathsf{A2B}((x_i)_{1 \leq i \leq \frac{n}{2}})$
- 3: $(t_i)_{\frac{n}{2}+1 < i < n} \leftarrow A2B((-x_i)_{\frac{n}{2}+1 < i < n})$
- 4: else
- 5: $(t_i)_{1 \leq i \leq n} \leftarrow (x_i)_{1 \leq i < n}$
- 6: len \leftarrow bitsize/2
- 7: **while** len ≥ 1 **do**
- 8: $(I_i) \leftarrow \text{Refresh}((t_i^{[2\text{len:len}]}), \text{len})$
- 9: $(r_i) \leftarrow (t_i^{[\text{len}:1]})$
- 10: $(t_i) \leftarrow SecOr((l_i), (r_i))$
- 11: $len \leftarrow len \gg 1$
- 12: **return** $(t_i^{(1)})$

Keng-Yu Chen

Masking Falcon's FPU

December 29th, 2023

35 / 62

Masked Floating-Point Number Multiplication and Addition

SecFprUrsh

SecFprUrsh

Given 64-bit shares (x_i) and 6-bit (c_i) , we need to derive shares (z_i) such that

$$\bigoplus_{i=1}^n z_i = \left(\left(\bigoplus_{i=1}^n x_i \right) \gg \left(\sum_{i=1}^n c_i \bmod 2^6 \right) \right) \vee \left[\left(\bigoplus_{i=1}^n x_i^{[c:1]} \neq 0 \right) \right]$$

We observe that

- Right-shifting and right-rotating by a value c only differ by the most c significant bits.
- Both shifting and rotating can be operated share-wise.
- Right-rotating x by a value c is equal to right-rotating x by a value $c \mod 64$.

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 37 / 62

SecFprUrsh

Hence, our idea is to right-rotate all (x_i) by c_1, c_2, \cdots, c_n sequentially.

Some high bits are redundant, so we use an index $m = (1 \ll 63)$ to indicate the first meaningful bit of the result. To clear the redundant high bits, consider

$$m':=m\gg c=(\underbrace{0,\cdots,0}_{c \text{ bits}},1,0,\cdots,0)$$

$$m'' := m' \oplus (m' \gg 1) \oplus \cdots \oplus (m' \gg 63) = (\underbrace{0, \cdots, 0}_{c \text{ bits}}, 1, 1, \cdots, 1)$$

By an AND operation with m'', we can clear useless bits. Moreover, these redundant bits actually form the sticky bit.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 38 / 62

Masked Floating-Point Number Multiplication and Addition

SecFprUrsl

SecFprUrsh

SecFprUrsh

Input: 64-bit Boolean shares $(x_i)_{1 \le i \le n}$

Input: 6-bit arithmetic shares $(c_i)_{1 \le i \le n}$

Output: Boolean shares $(z_i)_{1 \le i \le n}$ for value $z = x \gg c$ with the sticky bit preserved

1:
$$(m_i)_{1 \leq i \leq n} \leftarrow ((1 \ll 63), 0, \cdots, 0)$$

2: **for** j = 1 to n **do**

3: Right-rotate (x_i) by c_i

4: $(x_i) \leftarrow \mathsf{RefreshMasks}((x_i))$

5: Right-rotate (m_i) by c_j

6: $(m_i) \leftarrow \text{RefreshMasks}((m_i))$

7: len \leftarrow 1

8: **while** len ≤ 32 **do**

9: $(m_i) \leftarrow (m_i \oplus (m_i \gg \text{len}))$

10: len \leftarrow len \ll 1

11: $(y_i) \leftarrow \mathsf{SecAnd}((x_i), (m_i))$

12: $(z_i) \leftarrow (y_i \oplus x_i \oplus y_i^{(1)})$

13: $(b_i) \leftarrow \text{SecNonzero}((z_i))$

14: $(z_i) \leftarrow (y_i^{[64:2]} \vee b_i)$

15: return (z_i)

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 39 / 62

SecFprNorm64

Given 64-bit shares (x_i) and 16-bit shares (e_i) , we need to derive new (x_i') and (e_i') such that if c is the smallest integer such that $((\bigoplus_{i=1}^n x_i) \ll c) \in [2^{63}, 2^{64})$

then
$$(\bigoplus_{i=1}^n x_i') = ((\bigoplus_{i=1}^n x_i) \ll c)$$
 and $\sum_{i=1}^n e_i' = (\sum_{i=1}^n e_i) - c$

We can repeatedly check whether $(x_i^{(64)}) = 0$, conditionally shift by 1 bit, and then decrease (e_i) by $[(x_i^{(64)}) = 0]$.

To improve efficiency, we consider sequentially checking $x^{[64:64-2^j]}=0$ for $j=5,4,\cdots,0$. In addition, we first decrease (e_i) by 63 and later add $[(x_i^{[64:64-2^j]}) \neq 0] \cdot 2^j$ to it.

> Masking Falcon's FPU December 29th, 2023 41 / 62

Masked Floating-Point Number Multiplication and Addition

SecFprNorm64

SecFprNorm64

Input: 64-bit Boolean shares $(x_i)_{1 \le i \le n}$

Input: 16-bit arithmetic shares $(e_i)_{1 \le i \le n}$ **Output:** Normalized $(x_i)_{1 \le i \le n}$ in $[2^{63}, 2^{64})$ and $(e_i)_{1 \le i \le n}$ with shift added

- 1: $e_1 \leftarrow e_1 63$
- 2: **for** j = 5 to 0 **do**
- $(t_i) \leftarrow (x_i \oplus (x_i \ll 2^j))$
- $(n_i) \leftarrow (x_i \gg (64 2^j))$ 4:
- $(b_i) \leftarrow \mathsf{SecNonzero}((n_i))$
- $(b_i') \leftarrow (-b_i)$
- $(t_i) \leftarrow \mathsf{SecAnd}((t_i), (\neg b_1', b_2', \cdots, b_n'))$ 7:
- $(x_i) \leftarrow (x_i \oplus t_i)$ 8:
- 9: $(b_i) \leftarrow \mathsf{B2A}_{\mathsf{Bit}}((b_i))$
- $(e_i) \leftarrow (e_i + (b_i \ll j))$ 10:
- 11: **return** $(x_i), (e_i)$

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 42 / 62

Wrapping-up

Utilizing these new gadgets SecNonzero, SecFprUrsh, and SecFprNorm64, we design the following algorithms:

- SecFPR: Secure FPR by masking.
- SecFprMul: Secure FprMul by masking.
- SecFprAdd: Secure FprAdd by masking.

We leave the details of the implementations and several tricks for improvements in Appendix.

Keng-Yu Chen	Masking Falcon's FPU	December 29th, 2023	43 / 62

Evaluation and Implementation

Security

Probing Model

To theoretically evaluate the security of our design, we consider the probing model [ISW03].

- The *t*-probing model assumes that an adversary is able to peek any *t* intermediate values in the algorithm.
- To be secure in *t*-probing model, $n \ge t + 1$, and any share cannot be combined with each other.
- It is complicated to prove *t*-probing security for a large composition of small gadgets. The concept of non-interference is convenient in this case.

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 46 / 62

Non-Interference Security

t-Non-Interference (t-NI) Security (from [Bar+16])

A gadget is t-Non-Interference (t-NI) secure if every set of t intermediate values can be simulated by no more than t shares of each of its inputs.

t-Strong Non-Interference (t-SNI) Security (from [Bar+16])

A gadget is t-Strong-Non-Interference (t-SNI) secure if for every set of t_I internal intermediate values and t_O of its output shares with $t_I + t_O \le t$, they can be simulated by no more than t_I shares of each of its inputs.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 47 / 62

Evaluation and Implementation

Security

Non-Interference Security

For t = n - 1, if a gadget is t-NI or t-SNI secure, and if any n - 1 input shares are uniformly and independently distributed, then it is t-probing secure.

Moreover,

- *t*-SNI is stronger than *t*-NI by definition.
- A composition of t-NI gadgets may not be t-NI, so we insert t-SNI gadgets to make it t-NI or t-SNI.

All the gadgets/algorithms in our paper are proven either t-NI or t-SNI secure.

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 202348 / 62

Gadgets/Algorithms in Our Work

Algorithm	Security	Algorithm	Security
SecAnd	t-SNI	SecOr	t-SNI
SecMult	t-SNI	SecNonzero	t-SNI
SecAdd	t-NI	SecFprUrsh	t-SNI
A2B	t-SNI	SecFprNorm64	t-NI
B2A	t-SNI	SecFPR	t-SNI
B2A _{Bit}	t-SNI	SecFprMul	t-SNI
RefreshMasks	t-NI	SecFprAdd	t-SNI
Refresh	t-SNI		

Table: List of gadgets/algorithms in our work with n = t + 1 shares

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 49 / 62

Evaluation and Implementation

Security

Test Vector Leakage Assessment (TVLA)

Probing model validates the security theoretically.

In practice, the Test Vector Leakage Assessment (TVLA) methodology [GJR+11] can be applied.

A tester records two sets of traces where

- Set 1: fixed input
- Set 2: random input

The Welch's *t*-test is then applied on the two sets.

By convention, we consider the leakage is significant if the *t*-value exceeds ± 4.5 .

For traces with a large number of points, we refer to [Din+17] alter this threshold to avoid false positives.

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 202350/62

Experiment Setup

We implement our algorithms in the following setting:

- Plain-C code
- Compiled by arm-none-eabi-gcc 10.3.1
- Using ChipWhisperer with target board STM32F303 with an ARM Cortex-M4 MCU
- We compare the result with the reference implementation of the NIST Round-3 Submission of FALCON [Pre+20].

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 202351/62

Evaluation and Implementation

Security

TVLA

The TVLA results of floating-point number multiplication (FprMul, SecFprMul).

Figure: 1,000 traces, unmasked FprMul

Figure: 10,000 traces, 2-shared SecFprMul

Figure: 100,000 traces, 3-shared SecFprMul

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 52 / 62

TVLA

The TVLA results of floating-point number addition (FprAdd, SecFprAdd).

Figure: 1,000 traces, unmasked FprAdd

Figure: 10,000 traces, 2-shared SecFprAdd

Figure: 100,000 traces, 3-shared SecFprAdd

Keng-Yu Chen	Masking Falcon's FPU	December 29th, 2023	53 / 62
--------------	----------------------	---------------------	---------

Evaluation and Implementation

Performanc

Performance Evaluation on ARM Cortex-M4

Algorithm		Cycles		
		Unmasked	2 Shares	3 Shares
	Total	308	7134 (23×)	36388 (118×)
	128-bit A2B	_	1619	19253
C E M l	64-bit SecNonzero	_	389	1350
SecFprMul	Two 16-bit SecNonzero	_	662	2012
	SecFPR	_	3362	10813
	#randombytes	_	333	2005
	Total	487	17154 (35×)	48291 (99×)
	Three 64-bit SecAdd	_	6990	16956
	Two 16-bit B2A	_	88	332
C	16-bit A2B	_	146	2267
SecFprAdd	SecFprUrsh	_	1112	3214
	SecFprNorm64	-	2846	7270
	SecFPR	_	3362	10813
	#randombytes	-	849	2691

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 202355 / 62

Performance Evaluation on General Purpose CPU

We also test the time for signing one message on Intel-Core i9-12900 KF.

Security Level	Unmasked	2 Shares	3 Shares
Falcon-512	246.56	1905.55 (7.7×)	6137.25 (24.9×)
Falcon-1024	501.62	3819.76 (7.6×)	12287.29 (24.5×)

Table: Time (in microseconds) for signing a message on Intel-Core i9-12900KF CPU.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 56 / 62

Conclusion

Conclusion

In this paper,

- We present the first masking algorithm for floating-point number multiplication and addition to protect the pre-image vector computation.
- We design novel gadgets SecNonzero, SecFprUrsh, and SecFprNorm64 to mask the algorithms.
- All our masked algorithms are proven t-NI or t-SNI secure they are t-probing secure.
- The TVLA result shows no leakage in the 2-shared version in 10,000 traces, and no leakage in the 3-shared version in 100,000 traces.
- Our countermeasure when compared to the unmasked reference implementation is much slower. Improved SecAdd and A2B can reduce the cost.

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 58 / 62

Reference I

- [ISW03] Yuval Ishai, Amit Sahai, and David Wagner. "Private Circuits: Securing Hardware against Probing Attacks". In: *CRYPTO 2003*. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, Heidelberg, Aug. 2003, pp. 463–481. DOI: 10.1007/978-3-540-45146-4_27.
- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: 40th ACM STOC. Ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 197–206. DOI: 10.1145/1374376.1374407.
- [Ber+10] Guido Bertoni et al. "Building power analysis resistant implementations of Keccak". In: Second SHA-3 candidate conference. Vol. 142. Citeseer. 2010.
- [GJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. "A testing methodology for side-channel resistance validation". In: NIST non-invasive attack testing workshop. Vol. 7, 2011, pp. 115–136.
- [Bel+13] Sonia Belaïd et al. "Differential power analysis of HMAC SHA-2 in the Hamming weight model". In: 2013 International Conference on Security and Cryptography (SECRYPT). 2013, pp. 1–12.
- [Cor+15] Jean-Sébastien Coron et al. "Conversion from Arithmetic to Boolean Masking with Logarithmic Complexity". In: FSE 2015. Ed. by Gregor Leander. Vol. 9054. LNCS. Springer, Heidelberg, Mar. 2015, pp. 130–149. DOI: 10.1007/978-3-662-48116-5_7.
- [Bar+16] Gilles Barthe et al. "Strong Non-Interference and Type-Directed Higher-Order Masking". In: ACM CCS 2016. Ed. by Edgar R. Weippl et al. ACM Press, Oct. 2016, pp. 116–129. DOI: 10.1145/2976749.2978427.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 59 / 62

Reference

Reference II

- [DP16] Léo Ducas and Thomas Prest. "Fast fourier orthogonalization". In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation. 2016, pp. 191–198.
- [Din+17] A. Adam Ding et al. "Towards Sound and Optimal Leakage Detection Procedure". In: Smart Card Research and Advanced Applications 16th International Conference, CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers. Ed. by Thomas Eisenbarth and Yannick Teglia. Vol. 10728. Lecture Notes in Computer Science. Springer, 2017, pp. 105-122. DOI: 10.1007/978-3-319-75208-2_7. URL: https://doi.org/10.1007/978-3-319-75208-2\500.5C_7.
- [Bar+18] Gilles Barthe et al. "Masking the GLP Lattice-Based Signature Scheme at Any Order". In: EUROCRYPT 2018, Part II. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821. LNCS. Springer, Heidelberg, Apr. 2018, pp. 354–384. DOI: 10.1007/978-3-319-78375-8_12.
- [BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. "Improved High-Order Conversion From Boolean to Arithmetic Masking". In: IACR TCHES 2018.2 (2018). https://tches.iacr.org/index.php/TCHES/article/view/873, pp. 22-45. ISSN: 2569-2925. DOI: 10.13154/tches.v2018.i2.22-45.
- [Mig+19] Vincent Migliore et al. "Masking Dilithium Efficient Implementation and Side-Channel Evaluation". In: ACNS 19. Ed. by Robert H. Deng et al. Vol. 11464. LNCS. Springer, Heidelberg, June 2019, pp. 344–362. DOI: 10.1007/978-3-030-21568-2_17.

 Keng-Yu Chen
 Masking Falcon's FPU
 December 29th, 2023
 60 / 62

Reference III

- [Sch+19] Tobias Schneider et al. "Efficiently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based Crypto". In: *PKC 2019, Part II.* Ed. by Dongdai Lin and Kazue Sako. Vol. 11443. LNCS. Springer, Heidelberg, Apr. 2019, pp. 534–564. DOI: 10.1007/978-3-030-17259-6_18.
- [How+20] James Howe et al. "Isochronous Gaussian Sampling: From Inception to Implementation". In: Post-Quantum Cryptography 11th International Conference, PQCrypto 2020. Ed. by Jintai Ding and Jean-Pierre Tillich. Springer, Heidelberg, 2020, pp. 53–71. DOI: 10.1007/978-3-030-44223-1_5.
- [Pre+20] Thomas Prest et al. FALCON. Tech. rep. available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions. National Institute of Standards and Technology, 2020.
- [Bos+21] Joppe W. Bos et al. "Masking Kyber: First- and Higher-Order Implementations". In: IACR TCHES 2021.4 (2021). https://tches.iacr.org/index.php/TCHES/article/view/9064, pp. 173-214. ISSN: 2569-2925. DOI: 10.46586/tches.v2021.i4.173-214.
- [KA21] Emre Karabulut and Aydin Aysu. "FALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks". In: 2021 58th ACM/IEEE Design Automation Conference (DAC). 2021, pp. 691–696. DOI: 10.1109/DAC18074.2021.9586131.
- [Fri+22] Tim Fritzmann et al. "Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography". In: IACR TCHES 2022.1 (2022), pp. 414–460. DOI: 10.46586/tches.v2022.i1.414–460.

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 61/62

Reference

Reference IV

- [Gue+22] Morgane Guerreau et al. "The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon". In: IACR TCHES 2022.3 (2022), pp. 141–164. DOI: 10.46586/tches.v2022.i3.141–164.
- [Hei+22] Daniel Heinz et al. First-Order Masked Kyber on ARM Cortex-M4. Cryptology ePrint Archive, Report 2022/058. https://eprint.iacr.org/2022/058. 2022.
- [Zha+23] Shiduo Zhang et al. "Improved Power Analysis Attacks on Falcon". In: EUROCRYPT 2023, Part IV. Ed. by Carmit Hazay and Martijn Stam. Vol. 14007. LNCS. Springer, Heidelberg, Apr. 2023, pp. 565–595. DOI: 10.1007/978-3-031-30634-1_19.
- [Inc] NewAE Technology Inc. ChipWhisperer-Pro (Complete Level 3 Starter Kit).

 https://store.newae.com/chipwhisperer-pro-complete-level-3-starter-kit/.

 https://store.newae.com/chipwhisperer-pro-complete-level-3-starter-kit/.

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 202362/62

Floating-Point Number Packing and Rounding

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z

Output: FPN x packed by s, e, z

1:
$$e \leftarrow e + 1076$$

2:
$$b \leftarrow [e < 0]$$

3:
$$z \leftarrow z \land (b-1)$$

4:
$$b \leftarrow [z \neq 0]$$

5:
$$e \leftarrow e \land (-b)$$

6:
$$x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$$

7:
$$f \leftarrow 0XC8 \gg z^{[3:1]}$$

8:
$$x \leftarrow x + f^{(1)}$$
 {increment if $z^{[3:1]}$ is 011,110 or 111}

Masking Falcon's FPU December 29th, 2023 64 / 62

Appendix - Algorithms of Floating-Point Number Arithmetic

Floating-Point Number Multiplication

FprMul

Input: FPN x = (sx, ex, mx)

Input: FPN y = (sy, ey, my)

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ey - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5:
$$z \leftarrow z^{[106:51]} \vee b^{2}$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7: $w \leftarrow z^{(106)}$

7.
$$W \leftarrow 7^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12:
$$z \leftarrow z \land (-b)$$

13: **return**
$$FPR(s, e, z)$$

Masking Falcon's FPU December 29th, 2023 65 / 62 Keng-Yu Chen

Floating-Point Number Addition

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - y^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract
$$(sx, ex, mx)$$
 and (sy, ey, my) from x, y , respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ey$$

9: *b* ←
$$[c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \llbracket my^{[c:1]} \neq 0 \rrbracket$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

15:
$$z \leftarrow (z \gg 9) \lor [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

Masking Falcon's FPU December 29th, 2023 66 / 62

Appendix – Details of Our Design

SecFPR: Secure FPR

SecFPR: Secure FPR

SecFPR

Input: 1-bit Boolean shares $(s_i)_{1 \le i \le n}$

Input: 16-bit arithmetic shares $(e_i)_{1 \le i \le n}$

Input: 55-bit Boolean shares $(z_i)_{1 \le i \le n}$

Output: Boolean shares $(x_i)_{1 \le i \le n}$

1:
$$e_1 \leftarrow e_1 + 1076$$

2:
$$(e_i) \leftarrow \mathsf{A2B}((e_i))$$

3:
$$(b_i) \leftarrow (-e_i^{(16)})$$

4:
$$(z_i) \leftarrow \operatorname{SecAnd}((z_i), (\neg b_1, b_2, \cdots, b_n))$$

5:
$$(e_i) \leftarrow \operatorname{SecAnd}((e_i), (-z_i^{(55)}))$$

6:
$$(e_i) \leftarrow \mathsf{SecAdd}((e_i), (z_i^{(55)}))$$

7:
$$(e_i) \leftarrow \mathsf{Refresh}((e_i))$$

8:
$$(s_i) \leftarrow \text{Refresh}((s_i))$$

9:
$$(x_i) \leftarrow ((s_i^{(1)} \ll 63) \lor (e_i^{[11:1]} \ll 52) \lor (z_i^{[54:3]})$$

52)
$$\vee (z_i^{[54:3]})$$

10:
$$(f_i) \leftarrow \text{SecOr}(\text{Refresh}(z_i^{(1)}), (z_i^{(3)}))$$

11:
$$(f_i) \leftarrow \operatorname{SecAnd}((f_i), (z_i^{(2)}))$$

12:
$$(x_i) \leftarrow \operatorname{SecAdd}((x_i), (f_i))$$

13: return
$$(x_i)$$

Masking Falcon's FPU December 29th, 2023 69 / 62 Keng-Yu Chen

SecFprMul: Secure FprMul

SecFprMul

```
Input: Shares (sx_i)_{1 \le i \le n}, (ex_i)_{1 \le i \le n}, (mx_i)_{1 \le i \le n}

Input: Shares (sy_i)_{1 \le i \le n}, (ey_i)_{1 \le i \le n}, (my_i)_{1 \le i \le n}

Output: Boolean shares for the FPN product.

1: (s_i) \leftarrow (sx_i \oplus sy_i)

2: (e_i) \leftarrow (ex_1 + ey_1 - 2100, ex_2 + ey_2, \cdots)

3: (p_i) \leftarrow \text{SecMult}((mx_i), (my_i))

4: (p_i) \leftarrow \text{A2B}((p_i))

5: (b_i) \leftarrow \text{SecNonzero}((p_i^{[51:1]}))

6: (z_i) \leftarrow (p_i^{[105:51]})

7: (z_i') \leftarrow (p_i^{[105:51]} \oplus p_i^{[106:52]})
```

```
8: (w_i) \leftarrow (p_i^{(106)})

9: (z_i') \leftarrow \text{SecAnd}((z_i'), \text{Refresh}((-w_i)))

10: (z_i) \leftarrow (z_i' \oplus z_i)

11: (z_i) \leftarrow \text{SecOr}((z_i), (b_i))

12: (w_i) \leftarrow \text{B2A}_{\text{Bit}}((w_i))

13: (e_i) \leftarrow (e_i + w_i)

14: (bx_i) \leftarrow \text{SecNonzero}((ex_i))

15: (by_i) \leftarrow \text{SecNonzero}((ey_i))

16: (d_i) \leftarrow \text{SecAnd}((bx_i), (by_i))

17: (z_i) \leftarrow \text{SecAnd}((z_i), (-d_i^{(1)}))

18: return SecFPR((s_i), (e_i), (z_i))
```

Keng-Yu ChenMasking Falcon's FPUDecember 29th, 202371/62

Appendix – Details of Our Design

SecFprAdd: Secure FprAdd

SecFprAdd: Secure FprAdd

SecFprAdd

```
Input: Boolean shares (x_i)_{1 \le i \le n}
                                                                                                14: (c_i) \leftarrow (ex_i - ey_i)
Input: Boolean shares (y_i)_{1 \le i \le n}
                                                                                                15: (c'_i) \leftarrow A2B((c_1 - 60, c_2, \cdots, c_n))
Output: Boolean shares for the FPN sum
                                                                                                16: (my_i) \leftarrow \mathsf{SecAnd}((my_i), (-(c_i'^{(10)})))
 1: (xm_i) \leftarrow (x_i^{[63:1]})
2: (ym_i) \leftarrow (\neg y_1^{[63:1]}, y_2^{[63:1]}, \cdots, y_n^{[63:1]})
                                                                                                17: (my_i) \leftarrow SecFprUrsh((my_i), (c_i^{[6:1]}))
                                                                                                18: (my_i') \leftarrow (\neg my_1, my_2, \cdots, my_n)
 3: (d_i) \leftarrow \operatorname{SecAdd}((xm_i), (ym_i))
                                                                                                19: (my_i') \leftarrow \text{SecAdd}((my_i'), (1, 0, \dots, 0))
 4: (b_i) \leftarrow \text{SecNonzero}(\neg d_1, d_2, \cdots, d_n)
                                                                                                20: (s_i) \leftarrow (-(sx_i \oplus sy_i))
 5: (b_i') \leftarrow \text{SecNonzero}(\neg(d_1 \oplus (1 \ll 63)), d_2, \cdots, d_n)
                                                                                                21: (my_i) \leftarrow \text{Refresh}((my_i))
 6: (cs_i) \leftarrow \operatorname{SecAnd}((\neg b_1, b_2, \cdots, b_n), (x_i^{(64)}))
                                                                                                22: (my_i') \leftarrow \operatorname{SecAnd}((my_i \oplus my_i'), (s_i))
                                                                                                23: (my_i) \leftarrow (my_i \oplus my'_i)
 7: (cs_i) \leftarrow SecOr((cs_i), (d_i^{(64)} \oplus b_i \oplus b_i'))
                                                                                                24: (z_i) \leftarrow \text{SecAdd}((mx_i), (my_i))
 8: (m_i) \leftarrow \operatorname{SecAnd}((x_i \oplus y_i), (-cs_i))
                                                                                                25: (z_i), (ex_i) \leftarrow \text{SecFprNorm64}((z_i), (ex_i))
 9: (x_i) \leftarrow (x_i \oplus m_i), (y_i) \leftarrow (y_i \oplus m_i)
                                                                                                26: (b_i) \leftarrow SecNonzero((z_i^{[10:1]}))
10: Extract (sx_i), (ex_i), (mx_i) and (sy_i), (ey_i), (my_i) from
                                                                                                27: (z_i) \leftarrow (z_i \gg 9)
      (x_i) and (y_i), respectively.
                                                                                                28: (z_i^{(1)}) \leftarrow (b_i)
11: (mx_i) \leftarrow (mx_i \ll 3), (my_i) \leftarrow (my_i \ll 3)
                                                                                                29: ex_1 \leftarrow ex_1 + 9
12: (ex_i) \leftarrow B2A((ex_i)), (ey_i) \leftarrow B2A((ey_i))
                                                                                                30: return SecFPR(Refresh((sx_i)), (ex_i), (z_i))
13: ex_1 \leftarrow ex_1 - 1078, ey_1 \leftarrow ey_1 - 1078.
```

Keng-Yu Chen Masking Falcon's FPU December 29th, 2023 73 / 62