

Assignment

About The Dataset(Sales Dataset)

Here are the definitions for a few of the columns:

- File_Type: The value "Active" means that the particular product needs investigation
- SoldFlag: The value 1 = sale, 0 = no sale in past six months
- SKU_number: This is the unique identifier for each product.
- Order: Just a sequential counter. Can be ignored.
- SoldFlag: 1 = sold in past 6 mos. 0 = Not sold
- MarketingType: Two categories of how we market the product.
- New_Release_Flag: Any product that has had a future release (i.e., Release Number > 1)

Import the Required Libraries

In [1]:

```
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
```

Question - 1.Read the Sales dataset and display the top five rows

In [2]:

```
df=pd.read_csv('Sales_data.csv')
df.head()
```

Out[2]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber	New_F
0	2	Historical	1737127	0.0	0.0	D	15	_
1	3	Historical	3255963	0.0	0.0	D	7	
2	4	Historical	612701	0.0	0.0	D	0	
3	6	Historical	115883	1.0	1.0	D	4	
4	7	Historical	863939	1.0	1.0	D	2	
4								•

Question - 2. Display the central tendency, Dispersion, and Shape of Dataset

In [3]:

```
# 'df.describe()' gives us a quick statistical summary of the dataset
df.describe()
```

Out[3]:

	Order	SKU_number	SoldFlag	SoldCount	ReleaseNumber	New_Release
count	198917.000000	1.989170e+05	75996.000000	75996.000000	198917.000000	198917.00
mean	106483.543242	8.613626e+05	0.171009	0.322306	3.412202	0.64
std	60136.716784	8.699794e+05	0.376519	1.168615	3.864243	0.47
min	2.000000	5.000100e+04	0.000000	0.000000	0.000000	0.00
25%	55665.000000	2.172520e+05	0.000000	0.000000	1.000000	0.00
50%	108569.000000	6.122080e+05	0.000000	0.000000	2.000000	1.00
75%	158298.000000	9.047510e+05	0.000000	0.000000	5.000000	1.00
max	208027.000000	3.960788e+06	1.000000	73.000000	99.000000	1.00
4						•

In [4]:

```
# Measures of central tendency are -
# Mean
# Median
# Mode
```

```
In [5]:
```

```
# Mean of the Dataset
numcol=df[['PriceReg','ReleaseYear','ItemCount','LowUserPrice','LowNetPrice']]
numcol.mean()
```

Out[5]:

 PriceReg
 90.895243

 ReleaseYear
 2006.016414

 ItemCount
 41.426283

 LowUserPrice
 30.982487

 LowNetPrice
 46.832053

dtype: float64

In [6]:

```
# Median of the Dataset
numcol.median()
```

Out[6]:

PriceReg 69.95
ReleaseYear 2007.00
ItemCount 32.00
LowUserPrice 16.08
LowNetPrice 33.98

dtype: float64

In [7]:

```
# Mode of the Dataset
numcol.mode()
```

Out[7]:

	PriceReg	ReleaseYear	ItemCount	LowUserPrice	LowNetPrice
0	49.95	2010	21	4.0	0.0

In [8]:

```
# Dispersion measures
# Standard deviation
# Variance
```

In [9]:

```
# Standard deviation
numcol.std()
```

Out[9]:

 PriceReg
 86.736367

 ReleaseYear
 9.158331

 ItemCount
 37.541215

 LowUserPrice
 69.066155

 LowNetPrice
 128.513236

dtype: float64

```
In [10]:
# Variance
numcol.var()
Out[10]:
PriceReg
                7523.197307
ReleaseYear
                  83.875030
ItemCount
               1409.342820
               4770.133814
LowUserPrice
LowNetPrice
                16515.651882
dtype: float64
In [11]:
# Shape of the Dataset
df.shape
Out[11]:
(198917, 14)
```

1. Missing Value Analysis

Question - 3. Our dataset any missing values? If Yes then how many and which feature has a missing value

```
In [12]:
```

```
df.isnull().sum()
Out[12]:
Order
                           0
File_Type
                           0
SKU_number
                           0
                     122921
SoldFlag
SoldCount
                     122921
MarketingType
                          0
ReleaseNumber
                          0
New_Release_Flag
                          0
StrengthFactor
                          0
PriceReg
                          0
ReleaseYear
                          0
                          0
ItemCount
LowUserPrice
                          0
                          0
LowNetPrice
dtype: int64
In [13]:
```

we can see that "SoldFlag" and "SoldCount" columns both have 122921 missing or null value

Question - 4. Find a list of all the columns which have more than 50% of their values missing

In [14]:

df.isnull().sum()/len(df)*100

Out[14]:

Order 0.000000 File_Type 0.000000 SKU_number 0.000000 SoldFlag 61.795121 SoldCount 61.795121 0.000000 MarketingType ReleaseNumber 0.000000 New_Release_Flag 0.000000 StrengthFactor 0.000000 PriceReg 0.000000 ReleaseYear 0.000000 ItemCount 0.000000 LowUserPrice 0.000000 0.000000 LowNetPrice

dtype: float64

In [15]:

we can see that "SoldFlag" and "SoldCount" columns both have 61.79% missing or null value # which implies that these two columns have more than 50% values missing

Question - 5. View the missing values within the data.

Hint: Heatmap

In [16]:

sns.heatmap(df.isnull());

2. Dealing with missing values.

Question - 6. Remove all records if no more than 2 observations have been recorded.

In [17]:

```
df.dropna(thresh=2)
df.shape
```

Out[17]:

(198917, 14)

Question - 7. Discard unnecessary columns of data.

In [18]:

df.drop(['SoldCount'],axis=1)

Out[18]:

	Order	File_Type	SKU_number	SoldFlag	MarketingType	ReleaseNumber	New_Releas				
0	2	Historical	1737127	0.0	D	15					
1	3	Historical	3255963	0.0	D	7					
2	4	Historical	612701	0.0	D	0					
3	6	Historical	115883	1.0	D	4					
4	7	Historical	863939	1.0	D	2					
198912	208023	Active	109683	NaN	D	7					
198913	208024	Active	416462	NaN	D	8					
198914	208025	Active	658242	NaN	S	2					
198915	208026	Active	2538340	NaN	S	2					
198916	208027	Active	416662	NaN	D	15					
108017	108017 rows x 13 columns										

198917 rows × 13 columns

Question - 8.Is there any feature in the dataset that could be exempted from dealing with outliers?

In [19]:

sns.boxplot(data=df,x='Order');

Question - 9.How do I check the outliers for the feature showing the low net price?

In [20]:

```
plt.figure(figsize=(20,8))
sns.boxplot(data=df, x='LowNetPrice');
```


Question - 10. Find out optimal value of K and minimize the outliers.?

In [21]:

```
df['lnp_value']=np.log(df['LowNetPrice'])
Q1=df['lnp_value'].quantile(0.25)
Q3=df['lnp_value'].quantile(0.75)
IQR=Q3-Q1
LL=Q1-3*IQR
UL=Q3+3*IQR
df=df[(df['lnp_value']<UL)&(df['lnp_value']>LL)]
df.head()
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arraylike.py:397: Run
timeWarning: divide by zero encountered in log
 result = getattr(ufunc, method)(*inputs, **kwargs)

Out[21]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber	New_F
0	2	Historical	1737127	0.0	0.0	D	15	
1	3	Historical	3255963	0.0	0.0	D	7	
2	4	Historical	612701	0.0	0.0	D	0	
3	6	Historical	115883	1.0	1.0	D	4	
4	7	Historical	863939	1.0	1.0	D	2	
4								•

Question - 11.Suggest a method for finding outliers for the feature representing the number of sku number.?

In [22]:

```
plt.figure(figsize=(15,6))
sns.boxplot(data=df, x='SKU_number');
```


Question - 12. Which method allows you to retrieve the corresponding record within the data.?

We can use loc[] or iloc[] method to retrieve the corresponding record within the data.

Question - 13.Calculate the standard score of Release Number?

In [24]:

```
from scipy.stats import zscore
df1=df
df1['zscore']= zscore(df1['ReleaseNumber'])
df1.sample(20)
```

Out[24]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber
118864	127975	Active	1483793	NaN	NaN	S	0
51191	57159	Historical	738458	0.0	0.0	S	2
32035	32745	Historical	211742	1.0	1.0	D	1
126748	135859	Active	630705	NaN	NaN	S	0
185731	194842	Active	661767	NaN	NaN	S	2
874	882	Historical	55123	0.0	0.0	D	5
88133	97244	Active	203347	NaN	NaN	D	1
197816	206927	Active	106656	NaN	NaN	S	5
20291	20762	Historical	165830	0.0	0.0	D	2
74716	83667	Historical	861806	0.0	0.0	S	2
155142	164253	Active	533364	NaN	NaN	D	3
196446	205557	Active	176723	NaN	NaN	S	1
146226	155337	Active	3065288	NaN	NaN	D	0
11477	11802	Historica l	405431	1.0	1.0	D	4
73187	81885	Historical	641577	0.0	0.0	S	2
197586	206697	Active	714268	NaN	NaN	D	1
44726	50583	Historical	539863	0.0	0.0	S	3
6534	6769	Historical	57125	1.0	1.0	D	4
173180	182291	Active	287583	NaN	NaN	D	8
116271	125382	Active	3598385	NaN	NaN	S	0
4							>

Question - 14.In marketing type which items are more sellable.

NOTE:- Show the output in visualization

In [25]:

In [26]:

Items with marketing type S are more sellable

Question - 15. Find out bias of soldflag based on release number?

NOTE:- Box Plot.

In [27]:

```
plt.figure(figsize=(20,5))
sns.boxplot(data=df1, x='SoldFlag',y='ReleaseNumber');
```


Question - 16.Find out missing values and fill with zero?

In [28]:

df1.fillna(0)

Out[28]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber
0	2	Historical	1737127	0.0	0.0	D	15
1	3	Historical	3255963	0.0	0.0	D	7
2	4	Historical	612701	0.0	0.0	D	0
3	6	Historical	115883	1.0	1.0	D	4
4	7	Historical	863939	1.0	1.0	D	2
198912	208023	Active	109683	0.0	0.0	D	7
198913	208024	Active	416462	0.0	0.0	D	8
198914	208025	Active	658242	0.0	0.0	S	2
198915	208026	Active	2538340	0.0	0.0	S	2
198916	208027	Active	416662	0.0	0.0	D	15

192075 rows × 16 columns

→

Question - 17. How many value are active and historical in File_Type column?

NOTE:- Explain in brief from graph.

In [29]:

df1['File_Type'].value_counts()

Out[29]:

Active 118369 Historical 73706

Name: File_Type, dtype: int64

In [30]:

df1['File_Type'].value_counts().plot(kind='bar')

Out[30]:

<AxesSubplot:>

Question - 18. How many features are positive and negatively correlated?

NOTE:- Explain with values and plot the corrleation values.

In [31]:

```
plt.figure(figsize=(11,7))
sns.heatmap(df1.corr(),annot=True);
```


Question - 19. Show the corrleation between 0 and 1.

In [32]:

df1.corr()

Out[32]:

	Order	SKU_number	SoldFlag	SoldCount	ReleaseNumber	New_Releas
Order	1.000000	0.045165	-0.174267	-0.122051	-0.051544	-0.(
SKU_number	0.045165	1.000000	- 0.109641	-0.075020	- 0.216194	-0.:
SoldFlag	-0.174267	-0.109641	1.000000	0.618850	0.077915	0.0
SoldCount	-0.122051	-0.075020	0.618850	1.000000	0.059219	-0.0
ReleaseNumber	-0.051544	-0.216194	0.077915	0.059219	1.000000	0.!
New_Release_Flag	-0.049335	-0.305282	0.009287	-0.001353	0.559952	1.0
StrengthFactor	-0.150731	0.161495	-0.147906	-0.113258	-0.067220	-0.0
PriceReg	-0.055001	-0.160160	0.084345	0.057843	0.176652	0.
ReleaseYear	0.037367	-0.110654	0.073253	0.071450	0.114793	0.0
ItemCount	0.022130	-0.265231	0.239829	0.231955	0.173502	0.
LowUserPrice	-0.298476	-0.062532	0.058557	0.044041	0.085305	0.0
LowNetPrice	-0.042142	0.064750	-0.025548	-0.024083	0.042935	0.0
Inp_value	-0.030624	0.071828	-0.016091	-0.016556	0.046496	0.0
zscore	-0.051544	-0.216194	0.077915	0.059219	1.000000	0.4

Question - 20. Summaries the data with categorical variable.

In [33]:

```
# df1.describe(include='all')
df1.describe(include='object')
```

Out[33]:

	File_Type	MarketingType
count	192075	192075
unique	2	2
top	Active	S
freq	118369	96709

Question - 21. Calculate the mean and median of SKU_number.

```
In [34]:
```

```
# Mean
print('The mean of SKU_number is',df1['SKU_number'].mean())
```

The mean of SKU_number is 866877.1238474554

In [35]:

```
# Median
print('The median of SKU_number is',df1['SKU_number'].median())
```

The median of SKU number is 612199.0

Question - 22. Calculate the mean and median of PriceCount.

```
In [36]:
```

```
# Mean
print('The mean of PriceReg is',df1['PriceReg'].mean())
```

The mean of PriceReg is 91.59467676677717

In [37]:

```
# Median
print('The median of PriceReg is',df1['PriceReg'].median())
```

The median of PriceReg is 69.95

Question - 23.Convert the File_Type columns to numerical.

In [38]:

```
from sklearn.preprocessing import LabelEncoder
LE=LabelEncoder()
```

In [39]:

```
df1['FileType_LE']=LE.fit_transform(df1['File_Type'])
df1.head()
```

Out[39]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber	New_F
0	2	Historical	1737127	0.0	0.0	D	15	
1	3	Historical	3255963	0.0	0.0	D	7	
2	4	Historical	612701	0.0	0.0	D	0	
3	6	Historical	115883	1.0	1.0	D	4	
4	7	Historical	863939	1.0	1.0	D	2	
4								•

```
In [40]:
df1['File_Type'].unique()

Out[40]:
array(['Historical', 'Active'], dtype=object)

In [41]:
df1['FileType_LE'].unique()
Out[41]:
array([1, 0])
```

Question - 24. Handle the remaining categorical data.

```
In [42]:
```

```
df1['MarketingType_LE']=LE.fit_transform(df1['MarketingType'])
df1.head()
```

Out[42]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber	New_F
0	2	Historical	1737127	0.0	0.0	D	15	
1	3	Historical	3255963	0.0	0.0	D	7	
2	4	Historical	612701	0.0	0.0	D	0	
3	6	Historical	115883	1.0	1.0	D	4	
4	7	Historical	863939	1.0	1.0	D	2	
4								•

Question - 25. Normalize the data.

```
In [43]:
```

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
df1['StrengthFactor']=ss.fit_transform(df1['StrengthFactor'].array.reshape(-1,1))
df1['SKU_number']=ss.fit_transform(df1['SKU_number'].array.reshape(-1,1))
```

In [44]:

df1.head()

Out[44]:

	Order	File_Type	SKU_number	SoldFlag	SoldCount	MarketingType	ReleaseNumber	New_F
0	2	Historical	0.994743	0.0	0.0	D	15	
1	3	Historical	2.730855	0.0	0.0	D	7	
2	4	Historical	-0.290537	0.0	0.0	D	0	
3	6	Historical	-0.858427	1.0	1.0	D	4	
4	7	Historical	-0.003358	1.0	1.0	D	2	

,

In []: