[EVOP] Visual Data Analysis - Design

Prof Jan Aerts
Visual Data Analysis lab, ESAT/STADIUS
Faculty of Engineering
KU Leuven

@jandot - jan.aerts@kuleuven.be - http://vda-lab.be

(several parts as described by Francis Rowland, EBI)

The design process

The user

Find the why

- what they want != what the need => need to find underlying goals
- e.g. let them imagine what they could do if some technologies were available that are (still) science-fiction (e.g. nanobots in blood; Gaviscon commercial http://m.youtube.com/watch?v=_skKmcLdyVQ) => helps to identify underlying assumptions
- additional methods, e.g. card sorting
- if possible: tape the discussion (w/ agreement)
- ask "why?" 3 times

1	is in	Nanobot Specification Sheet (version 2253) Requested by: Jan Nanobot name: JAN - 00 I
1		type: sensor (measure/monitor/detect) execute nation to be gathered (general description; 1 sentence):
	viaus	entered well
	1	continuous; polling frequency: triggered; what trigger? vicus entreed once
		red: At birth ad hoc: when:
1	- 3D f	nosition well
	which	

No. No	nobot Specific	cation Sheet (ver	
OV:	Requestes	the Tax	sion 2253)
69.	Nanobos	me Jan	
Name V	Tanobot Na	me: JAW -	002
Nanobot type: Xs	ensor (measure/	monitor/detect)	
О.	record		
ype of information to b	e gathered (gene	val description: 1	enet
Expression (actual	1. 0 1		acrivence);
- spresson	recel of	153	
- lade	el chi.	, ,	1
e	cyres	of prote	an)
Sensor type: Con	tinuous: polling	frequency: 5	nin
trig	gered; what trig	ger?	
one			
To be administered:	1		
Z. Danstered: N			
	ad hoc; whe	inc	
Shatah			
Sketch of dummy da	ta format:		
timestamo	tissue	ermeni	n level
timestamp 2231120932	0	5,372,0	· wee
عدامات	tuck	53729	23
P71-> 11. D	Lenot		
253/1120932	weeke!	7 193	
25/11/20932	:	2,793,	229

Statement of goals

- Based on this discussion, state the specific goals of the user (= task abstraction as described by T. Munzner), e.g.
 - "Show the relationship between A, B and C across X and Y from m to n".
 - "Identify instances of A that have a value larger than x".

•

Proto-persona

 Based on this task analysis, create one or (probably) more porto-personae, describing their name, behaviours and characteristics, needs or pain points, and what would help them. Who would be the actual users, and why do the need it?

Yun, clinical researcher

Behaviour and characteristics

Yun spends about half of her time in the lab but uses bioinformatics tools and software to analyse and process disease-related data. Often stays late (experiments!)

Needs & pain points

Often doesn't have time to remember how to use certain software
Feels overwhelmed by latest huge datasets
Finds some visualisations overly-complex

Would be served by...

Summary reports of data with highlights
Focus on certain genes by default Add and mix data, perhaps in layers

http://www.anthonycreyes.com/persona-to-prototype-product-hunt/

[Activity] Proto-persona & problem statements (in group)

dataset = flight data

```
from_airport,from_city,from_country,from_long,from_lat,to_airport,to_city,to_country,to_long,to_lat,airline,airline_country,dist ance
Balandino,Chelyabinsk,Russia,61.838,55.509,Domododevo,Moscow,Russia,38.51,55.681,Aerocondor,Portugal,1458
Balandino,Chelyabinsk,Russia,61.838,55.509,Kazan,Kazan,Russia,49.464,56.01,Aerocondor,Portugal,775
Balandino,Chelyabinsk,Russia,61.838,55.509,Tolmachevo,Novosibirsk,Russia,83.084,55.021,Aerocondor,Portugal,1341
```

- describe 3 proto-personae
- think of at least 4 goals, and write down goal statements

The design

problem: initial design space that you know is small => how to expand?

Generating ideas - exploring design space

- = "ideation"
- use pen & paper!
- approaches:
 - expand your visual library
 - anti-solutions
 - five-design sheets
 - •

Pen & paper

"Get the big things right during low-fidelity, and the little things will follow in future iterations" (Marc Rettig)

=> biggest benefit of sketching with pen: **sketches are cheap**. (meaning: they are easy and quick to make, so that you won't cling to them and feel uncomfortable when you discard them)

Intermezzo - "But I can't draw..."

How to draw an Owl.

"A fun and creative guide for beginners"

Fig 1. Draw two circles

Fig 2. Draw the rest of the damn Owl

[Activity]

- Take a line for a walk
- Draw 8 objects & concepts (10 sec each)

Diverge - emerge - converge

"The best way to have a good idea is to have many" (Linus Pauling)

- Don't arrive with just one idea => if someone critiques that idea, it feels like they critique
 you
- Arrive with many ideas and don't commit yourself to any of them => you can have open discussions

Anti-solution

Sketch a collection of designs that are particularly bad at supporting the goals of the (proto-)users (e.g. using "bad" selection of encoding; see Mackinlay)

=> helps to identify what does not work => adds limits to your design space

5-design sheet methodology

Read the paper! (http://fds.design)

5dS: sheet 1 - ideation

only part that may be >1 sheet

approaches:

- relax: "slow hunch" good ideas take time
- re-work existing visuals
- <u>provoke</u>: think of impossible solutions

reverse/flip/invert an idea (e.g. biofabric: nodes as links, links as nodes)

- iterate & refine: evaluate and revisit assumptions
- collaborate: work with different people
- transferency: look at other fields for inspiration (e.g. biomimicry)
- research: discover every idea and solution so far
- metaphors: use analogies
- **make mistakes**: good ideas come from serendipity (e.g. sticky note and penicillin)

5dS: sheet 1 - ideation

- parts of the sheet:
- 1. **ideate** sketch as many ideas as possible (half-baked, throw a wide net => don't critique)
- 2. **filter** remove duplicate and irrelevant ideas by annotating the existing ideas
- 3. categorize can these ideas be clustered in some way?
- 4. **combine & refine** which visualisations can complement each other?
- 5. question reflect on what has been created

[Activity] 8+8 sketch (individually)

- Fold A3 paper 3 times in half => 8 sections
- Assign goal statements to students:
 - Generate 8 different designs as creative and diverse as possible;
 meaningfully distinct, not just cosmetically (max 20 min total)
 - Choose 2 or 3
 - Generate 8 detailed versions or variations (max 20 min total)
 - Present

[Activity] Create 5dS sheet 1

- individually; assign statements a-b-c-d-a-b-c-d
- use what you already did in 8+8 exercise
- max 15 min

5dS: sheets 2-4

4. **focus/parti** - explain the central idea; e.g. zoomed into a single component, or a flow diagram

5. **discussion** - advantages and disadvantages

ALRARLIL

ALLARAIL

A 2 3 4 ...

A R

C I "PATH" OF SEQUENCE LIST OF LETTERS

YOUR NAME

SHEET #

[Activity] Create 5dS sheets 2-4

• max 20 min

5dS: sheet 5

similar to sheets 2-4:

- 1. meta-information
- 2. layout
- 3. operations
- 4. focus/parti
- 5. details algorithms, design patterns, data structures

[Activity] Create 5dS sheet 5

Have interaction? => draw a storyboard

- sketch sequences of interactions
- think about each step and about the transitions
- number each "slide" => refer to detail slides

Critique

• critique != criticism

• method: 2+2

- what are 2 things to definitely keep
- what are 2 things that should be changed