

Optimierung und Dokumentation der Entwicklungs-, Test- und Release- Prozesse eines Kleinunternehmens

PROJEKTARBEIT

für die Prüfung zum Bachelor of Science

des Studiengangs Angewandte Informatik

an der Dualen Hochschule Baden-Württemberg Karlsruhe

von

Mael Dossoh

Agabedatum 16.09.2024

Matrikelnummer: 3167941 Kurs: 22B5

Ausbildungsfirma: ProSystems GmbH, Sinsheim

Betreuer im Unternehmen: M.Sc. Benno Schweikert
Gutachter der Studienakademie Prof. Dr. Marcus Strand

Erklärung

"(gemäß §5(3) der "Studien- und Prüfungsordnung DHBW Technik" vom 29. 9. 2017) Ich versichere hiermit, dass ich meine Projektarbeit mit dem Thema: "Optimierung und Dokumentation der Entwicklungs-, Test- und Release-Prozesse eines Kleinunternehmens", selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Sinsheim, 16.09.2024	
Ort,Datum	Unterschrift

Sperrvermerk

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Auszügen Personen außerhalb des Prüfungsprozesses und des Evaluationsverfahrens zugänglich gemacht werden, sofern keine anders lautende Genehmigung der Ausbildungsstätte vorliegt.

Inhaltsverzeichnis

Inhaltsverzeichnis	ا
Abbildungsverzeichnis	
Tabellenverzeichnis	III
Listingverzeichnis	IV
Abkürzungsverzeichnis	V
1. Einleitung	1
2. Grundlagen und Begriffsdefinitionen	4
2.1. Die Internationale Organisation für Normung	
2.2. Qualitätsmanagement und Qualitätsmanagementsystem	
2.3. Der Prozessansatz	
2.3.1. Methoden zur Identifikation von Schwachstellen	11
2.4. Software Qualität	11
2.5. Entwicklungs-, Test- und Release-Prozesse	11
2.6. Kleine und mittlere Unternehmen	11
2.6.1. Erhebung und Dokumentation	11
3. Analyse der bestehenden Entwicklungs-, Test- und Release-Prozesse	12
3.1. Mitarbeiterumfrage	12
3.1.1. Durchführung	12
3.1.2. Ergebnisse und Auswertung	
3.2. Erhebung und Beschreibung der aktuellen Prozesse	
3.2.1. Analyse der SVN und GIT Versionskontrollsysteme	
4. Vorschläge zur Prozessoptimierung	
4.1. Identifikation und Priorisierung von Verbesserungspotenzialen	13
4.2. Anpassung der Vorschläge auf die Bedürfnisse kleiner und mittlerer	
Unternehmen	
4.3. Kosten-Nutzen-Analyse der vorgeschlagenen Maßnahmen	
5. Schlussfolgerung und Ausblick	14
5.1. Zusammenfassung der wichtigsten Erkenntnisse	
5.2. Ausblick auf zukünftige Aufgaben und Herausforderungen	
5.3. Lists	
5.4. Figures and Tables	
5.4.1. Figures	
5.4.2. Tables	
5.5. Code Shippers	15

Abbildungsverzeichnis

Abbildung 1: 7 Prinzipien des Qualitätsmanagements [fre24]	6
Abbildung 2: Der Plan-Do-Check-Act Zyklus [Joh23]	9
Abbildung 3: Image Example	14
Abbildung 4: Image Example	15

Tabellenverzeichnis

Tabelle 1: Table Example	18
--------------------------	----

	4 .					-			•	
10	+.			\sim 1	~	\sim 1		h	10	۰
is	LI	u	v	CI		CI	L		 12	3
		 IJ	-	•	_	•	_		 	_

Listing 1: Codeblock Example	
------------------------------	--

Abkürzungsverzeichnis

API Application Programming Interface

DE Deutschland

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

JP Japan

KMU Kleine und mittlere Unternehmen

MP3 MPEG-1 Audio Layer III

NL Niederlande

PA Process Approach

PDCA Plan-Do-Check-Act

QM Qualitätsmanagement

QMS Qualitätsmanagementsystem

RBT Risk-Based Thinking

REST Representational State Transfer

URL Uniform Resource Locator

1. Einleitung

Das Qualitätsmanagement (QM) hat sich als eine fundamentale Disziplin etabliert, deren Ziel es ist, die Qualität von Produkten und Dienstleistungen kontinuierlich zu gewährleisten und zu optimieren. Die historische Entwicklung von QM verdeutlicht, dass ein signifikanter Wandel von der handwerklichen Einzelanfertigung bis zur heutigen Massenproduktion und Dienstleistungsorientierung stattgefunden hat [DIN15]. In seiner Doktorarbeit "Handwerk in der postindustriellen Gesellschaft…Leipzig" beschreibt Tobias Werner, dass in der Zeit vor dem 20. Jahrhundert die Sicherung der Qualität handwerklicher Produkte in erster Linie durch den jeweiligen Meister erfolgte, der die Verantwortung für die Endqualität der hergestellten Waren trug. Diese Vorgehensweise wurde mit der industriellen Revolution und der damit einhergehenden Massenproduktion jedoch zunehmend als unzureichend erachtet, sodass erste Ansätze zur systematischeren Qualitätskontrolle entwickelt wurden [Tob14].

Die Automobilindustrie kann als Vorreiterin bei der Einführung von Qualitätsmanagementsystemen (QMS) bezeichnet werden. Die Motivation hierfür resultiert aus dem Bestreben, sowohl die Produktqualität als auch die Sicherheit zu erhöhen. Die Normenreihe "ISO 9000", etabliert von der International Organization for Standardization (ISO) in den 1980er Jahren, markierte einen Wendepunkt, indem sie weltweit anerkannte Standards für QMS setzte [DIN05]. Die Konzepte des "Process Approach (PA)", des "Plan-Do-Check-Act cycle (PDCA)" sowie des "Risk-Based Thinking (RBT)" haben in diesem Kontext maßgeblich zur Entwicklung beigetragen und genießen bis heute weltweit Anerkennung. Diese Prinzipien bilden unter anderem die Grundlage für nationale Gesetzgebungen sowie Unternehmensstandards und werden unter anderem eingesetzt, um die Effizienz zu steigern, die Kundenzufriedenheit zu erhöhen, die Wettbewerbsfähigkeit zu verbessern und die Einhaltung gesetzlicher Anforderungen sicherzustellen [DIN15].

Die Implementierung eines formalen QMS stellt für kleine und mittlere Unternehmen KMU eine signifikante Herausforderung dar. Der Mangel an notwendigen finanziellen Mitteln und verantwortlichen Personen führt dazu, dass ein wirksames QMS in diesen Unternehmensformen oft nicht etabliert werden kann. Infolgedessen kann es in diesen Unternehmen an einer etablierten Qualitätskultur sowie an dem notwendigen Engagement für das QM fehlen. In diesem Kontext ist auf den "QM-Leitfaden für kleine und mittlere Unternehmen" des Bayerischen Staatsministeriums für Wirtschaft und Medien, Energie und Technologie zu verweisen, in dem betont wird, dass:

"Mit der Einführung eines QMS können KMU u.a. die Transparenz betrieblicher Abläufe erhöht, die Fehlerquoten und somit die Kosten reduziert, höhere Kundenzufriedenheit erzielt, der Marktzugang verbessert und potenzielle Risiken aufgrund von Nichtkonformitäten gesenkt werden."[Rol15]

Die Implementierung eines QMS eröffnet KMU demnach die Möglichkeit, ihre internen Prozesse klar zu definieren, potenzielle Fehlerquellen und die damit verbundenen Kosten zu reduzieren. Dies ist insbesondere für KMU von Interesse, da sie mit begrenzten Ressourcen arbeiten und eine effiziente Nutzung dieser ihre Wettbewerbsfähigkeit erhöht. Ein verbessertes QM führt zudem zu höherer Kundenzufriedenheit und erleichtert den Marktzugang, da konsistente und zuverlässige Produkte und Dienstleistungen das Vertrauen der Kunden stärken [Rol15].

Die vorliegende Arbeit verfolgt das Ziel, bestehende Unternehmensprozesse mit anerkannten Normen und Standards zu vergleichen, um mögliche Optimierungspotenziale
zu identifizieren. Im Rahmen der vorliegenden Arbeit erfolgt eine Analyse und Dokumentation der bestehenden Prozesse des KMU Die Firma ProSystems GmbH entwickelt Softwarelösungen für die Systemintegration in der Gebäudeautomation. Als zertifizierter Entwickler für das Niagara 4 Framework entwickelt das Unternehmen Software, bietet Dienstleistungen und Lösungen an, die die Funktionalität des Frameworks
in diversen Aspekten erweitern [Pro22]. Im Rahmen der Analyse sind insbesondere die
Entwicklungs-, Test- und Release-Prozesse von Relevanz, da diese einen entscheidenden Einfluss auf die Gesamteffizienz des Unternehmens ausüben. Eine detaillierte
Untersuchung dieser Prozesse erlaubt die Identifikation von Stärken und Schwächen

sowie die Ableitung von Optimierungspotenzialen. Dies ist von besonderer Bedeutung da optimale Prozesse eine maßgebliche Verbesserung der Qualität von Softwareprodukten bewirken [DIN15].

Im Folgenden wird das geplante Vorgehen der vorliegenden Arbeit dargelegt und eine Übersicht über die behandelten Themen und Kapitel gegeben: Das nachfolgende Kapitel "Grundlagen und Begriffsdefinitionen" dient der Einführung in die für das Verständnis dieser Arbeit grundlegenden Konzepte. Im Anschluss erfolgt eine Analyse der bestehenden Entwicklungs-, Test- und Release-Prozesse im Kapitel "Analyse der bestehenden Entwicklungs-, Test- und Release-Prozesse". Zu Beginn des Prozesses erfolgt eine Befragung der Mitarbeitenden, um deren Meinungen und Erfahrungen mit den bestehenden Prozessen zu erfassen. Daraufhin erfolgt eine Auswertung der Befragung sowie eine formale Erfassung und Darstellung der Entwicklungsprozesse. Das nachfolgende Kapitel, "Vorschläge zur Prozessoptimierung", basiert auf den Resultaten der durchgeführten Mitarbeiterbefragung, der formalen Analyse sowie auf etablierten Normen und Industriestandards. Im Rahmen dessen erfolgt eine Identifikation und Priorisierung von Verbesserungspotenzialen. Die abgeleiteten Maßnahmen werden daraufhin an die spezifischen Bedürfnisse von ProSystems adaptiert. Das finale Kapitel "Fazit und Ausblick" dient der Zusammenfassung der essenziellen Ergebnisse der Projektarbeit. Darüber hinaus wird ein Ausblick auf potenzielle zukünftige Aufgaben und Herausforderungen gegeben, die sich aus den vorgeschlagenen Optimierungen ergeben können.

2. Grundlagen und Begriffsdefinitionen

Das vorliegende Kapitel dient der Erläuterung von Konzepten und Begriffen, die für das Verständnis dieser Arbeit erforderlich sind. Der Fokus liegt dabei auf dem QM, dem daraus entspringedem QMS, Software-Qualitätsanforderungen sowie den spezifischen Anforderungen und Herausforderungen von KMU. Dabei erfolgt eine primäre Orientierung an den Definitionen der ISO in den Normen "ISO 9000 "[DIN05], "ISO 9001"[DIN15] sowie "ISO 25000"[ISO05].

2.1. Die Internationale Organisation für Normung

Die ISO wurde 1947 in Genf, Schweiz, gegründet und ist eine internationale Vereinigung nationaler Normungsorganisationen mit derzeit 172 Mitgliedsländern. Insgesamt wird die Organisation von 839 technischen Komitees und Unterkomitees unterstützt und hat bis heute 25.488 internationale Normen herausgegeben (Stand Juli 2024) [I-SO24]. ISO-Standards sind Formeln, welche die optimale Vorgehensweise für eine Tätigkeit definieren. Sie werden von internationalen Experten festgelegt und umfassen die Bereiche der Produktfertigung, des Prozessmanagements, der Erbringung von Dienstleistungen sowie der Materialwirtschaft [ISO24].

Typische Beispiele für von der ISO erarbeitete Standards sind:

- Der MP3-Standard für Audiodateien und Standards für Telefonkarten. Sie spielen eine wichtige Rolle in der Software- und Telekommunikationsindustrie, indem sie die Kompatibilität und Interoperabilität zwischen verschiedenen Systemen und Anwendungen gewährleisten [ISO24].
- Ländercodes wie "DE" für Deutschland, "NL" für die Niederlande und "JP" für Japan.
 Diese Codes sind in vielen internationalen Anwendungen und Datenbanken unverzichtbar, da sie eine einheitliche Identifizierung und Verwaltung von Länderinformationen ermöglichen [ISO24].

Diese Beispiele zeigen, dass die ISO durch ihre Normungsarbeit einen bedeutenden Einfluss auf viele Bereiche ausübt, insbesondere auf die Softwareindustrie, indem sie Normen festlegt, die sowohl technische als auch organisatorische Aspekte abdecken.

2.2. Qualitätsmanagement und Qualitätsmanagementsystem

Eine Diskussion der spezifischen Anforderungen und Herausforderungen eines QMS erfordert eine grundlegende Begriffsklärung. Dabei sind insbesondere die Definitionen der Begriffe "Qualität" und "Management" der ISO von zentraler Bedeutung, da sie internationale Referenzstandards darstellen.

Gemäß ISO 9000:2015 wird Qualität definiert als:

"Der Grad, in dem ein Satz inhärenter Merkmale Anforderungen erfüllt." [DIN05]

Unter "Inhärenten Merkmalen" werden diejenigen Merkmale eines Produkts, einer Dienstleistung oder eines Prozesses verstanden, die diesem innewohnen. Demgegenüber stehen die "Anforderungen", welche Bedürfnisse oder Erwartungen widerspiegeln, die in der Regel festgelegt, vorausgesetzt oder verpflichtend sind. Die vorliegende Definition verdeutlicht, dass der Begriff der Qualität nicht als absolut, sondern als relativ zu den jeweils spezifischen Anforderungen zu betrachten ist. In diesem Kontext können die Anforderungen sowohl die Bedürfnisse und Erwartungen der Kundinnen und Kunden als auch gesetzliche und regulatorische Vorgaben sowie weitere, festgelegte Anforderungen umfassen. Die Erfüllung dieser Anforderungen ist von entscheidender Bedeutung für die Zufriedenheit der Kundinnen und Kunden sowie für den Erfolg eines Unternehmens. [DIN05]

Gemäß ISO 9000:2015 wird "Management" definiert als:

"Koordinierte Tätigkeiten zum Leiten und Steuern einer Organisation." [DIN05]

Die angeführte Definition verdeutlicht, dass Management die Aktivitäten umfasst, die notwendig sind, um die Ziele einer Organisation zu erreichen. Dies umfasst die Planung, Organisation, Leitung, Koordination und Kontrolle aller Aktivitäten und Ressourcen. Diese Definition ist wesentlich für das Verständnis von QM, da sie die Notwendigkeit einer systematischen und methodischen Herangehensweise betont, die notwendig ist, um eine Organisation effektiv und effizient zu führen und zu steuern. [DIN05]

Die zuvor dargelegten Definitionen bilden in ihrer Kombination die Grundlage für QM. Dieses befasst sich mit der Sicherstellung, dass sämtliche Tätigkeiten innerhalb einer Organisation so geplant und durchgeführt werden, dass sie die festgelegten Anforderungen erfüllen [DIN05]. Ein effektives QM bedingt eine fortwährende Überwachung und Evaluierung der Prozesse und Produkte, um die Einhaltung der definierten Standards sicherzustellen. Dazu zählen regelmäßige Audits sowie Schulungen der Mitarbeitenden, um sicherzustellen, dass alle Organisationsebenen die Qualitätsziele verstehen und darauf hinarbeiten [DIN15].

Die in Abbildung 1 dargestellten Konzepte bilden gemäß ISO 9000 das Fundament des QM [DIN05]:

Abbildung 1 – 7 Prinzipien des Qualitätsmanagements [fre24]

Optimierung und Dokumentation der Entwicklungs-, Test- und Release-Prozesse eines Kleinunternehmens

- Kundenorientierung: Die Bedürfnisse und Erwartungen der Kunden stellen den Mittelpunkt dar und determinieren die Qualitätsstandards.
- 2. Führung: Führungskräfte müssen eine klare Vision und Richtung vorgeben, um die Qualitätsziele zu erreichen.
- 3. Einbeziehung von Personen: Alle Mitarbeitenden sollen einbezogen und motiviert werden, zur Erreichung der Qualitätsziele beizutragen.
- 4. Prozessorientierter Ansatz: Die Aktivitäten und Ressourcen einer Organisation werden als zusammenhängende Prozesse verstanden, die systematisch verwaltet werden.
- 5. Verbesserung: Die Organisation verpflichtet sich zu einem fortlaufenden Verbesserungsprozess in allen Bereichen.
- 6. Faktengestützte Entscheidungsfindung: Die Grundlage für Entscheidungen bildet die Auswertung von Daten und Fakten.
- 7. Beziehungsmanagement: Die Beziehungen zu Lieferanten werden so gestaltet, dass beide Seiten Vorteile daraus ziehen.

Es kann festgehalten werden, dass der Begriff "QM" eine systematische Vorgehensweise bezeichnet, deren Ziel die Optimierung der Qualität von Produkten und Dienstleistungen ist. Dies erfolgt durch eine kontinuierliche Evaluierung und gegebenenfalls Modifikation der internen Prozesse einer Organisation. ISO 9000 definiert grundlegende Begriffe und Definitionen, die in ISO 9001 verwendet werden. Dies gewährleistet, dass alle Anwender über ein einheitliches Verständnis der verwendeten Begriffe und Konzepte verfügen.

Ein Bestandteil des QM ist die Implementierung eines QMS. Ein QMS, wie es in der ISO 9001 definiert ist, stellt ein formales System dar, welches die Organisationsstruktur, Verantwortlichkeiten, Verfahren, Prozesse und Ressourcen umfasst. Die Umsetzung der genannten Aspekte ist erforderlich, um die Qualitätsziele zu erreichen und die Kundenzufriedenheit zu steigern. [DIN15]

QMS laut ISO befolgen die Struktur des Plan-Do-Check-Act (PDCA) -Zyklus, auch Shewhart- oder Deming-Zyklus gennant. Der Physicist und Statistiker Walter A. Shewhart entwickelte diesen Zyklus im Jahre 1939 für die Qualitätskontrolle in der Produktion. Damals hatte der Zyklus nur 3 Phasen (Specification → Production → Inspection):

"These three steps must go in a circle instead of in a straight line … In this sense, specification, production and inspection correspond respectively to making a hypothesis, carrying out an experiment, and testing the hypothesis. The three steps constitute a dynamic scientific process of acquiring knowledge" [MN09]

Der ursprüngliche Zyklus, wie in dem Zitat beschrieben, wurde in den 1950er Jahren von W. Edwards Deming verändert und erweitert. Deming führte die Phase "Plan" ein, um das systematische Vorgehen bei der Problemlösung zu betonen. Dies erfolgte vor dem Hintergrund der Notwendigkeit, Qualität und Effizienz in der Massenproduktion zu verbessern. Die Erweiterung zu einem vierphasigen Zyklus, bekannt als PDCA-Zyklus (Plan, Do, Check, Act), zielte darauf ab, kontinuierliche Verbesserungen in Prozessen zu ermöglichen und die Qualitätssicherung zu stärken. [MN09]

Abbildung 2 – Der Plan-Do-Check-Act Zyklus [Joh23]

Der PDCA-Zyklus umfasst die folgenden vier Phasen, die in einem kontinuierlichen Kreislauf durchlaufen werden:

- Plan: In dieser Phase werden Ziele festgelegt und die notwendigen Schritte zur Erreichung dieser Ziele geplant. Dies beinhaltet die Analyse von Daten und die Entwicklung von Hypothesen, ähnlich dem wissenschaftlichen Ansatz des Hypothesentestens.
- Do: Die geplanten Schritte werden umgesetzt. Dies entspricht der Durchführung eines Experiments im wissenschaftlichen Sinne, wobei die Umsetzung unter kontrollierten Bedingungen erfolgt.
- 3. Check: In dieser Phase werden die Ergebnisse der Umsetzung überprüft und mit den festgelegten Zielen verglichen. Dies entspricht dem Testen der Hypothese und der Analyse der Daten, um Abweichungen zu identifizieren.
- 4. Act: Basierend auf den Ergebnissen der Überprüfung werden notwendige Anpassungen vorgenommen und Verbesserungen implementiert. Diese Phase schließt den Zyklus ab und bereitet den Weg für eine erneute Durchlaufphase.

Optimierung und Dokumentation der Entwicklungs-, Test- und Release-Prozesse eines Kleinunternehmens

Durch diese systematische und iterative Vorgehensweise ermöglicht der PDCA-Zyklus eine fortlaufende Verbesserung von Prozessen und die kontinuierliche Anpassung an veränderte Bedingungen und Anforderungen. Die Einführung dieses Zyklus durch Deming hatte weitreichende Auswirkungen auf das Qualitätsmanagement und trug maßgeblich zur Entwicklung moderner Managementpraktiken bei.

- Plan: Festlegung der Qualitätsziele und der notwendigen Prozesse zur Erreichung dieser Ziele.
- Do: Umsetzung der geplanten Prozesse.
- Check: Überwachung und Bewertung der Prozesse und Ergebnisse im Hinblick auf die definierten Qualitätsziele.
- Act: Durchführung von Maßnahmen zur Verbesserung der Prozesse und Ergebnisse.

2.3. Der Prozessansatz

- "Process Approach (PA)",
- "Plan-Do-Check-Act (PDCA) cycle"
- Wie wird qualität gemessen? Key performance indicators

2.3.1. Methoden zur Identifikation von Schwachstellen

Capability Maturity Model Integration

2.4. Software Qualität

2.5. Entwicklungs-, Test- und Release-Prozesse

CICD CYCLE SCHAUBILD

2.6. Kleine und mittlere Unternehmen

2.6.1. Erhebung und Dokumentation

Dokumentationspflicht gegenüber Auftraggebern

3. Analyse der bestehenden Entwicklungs-, Test- und Release-Prozesse

3.1. Mitarbeiterumfrage

- · Was, warum? Als Anhang hinzufügen.
- Wie kommen sie mit der priorisierung von Aufgaben zurecht
- Wie kommen sie mit der definition von aufgaen zurecht?

3.1.1. Durchführung

• Wie? Mit Befolgung welcher Normen und Konzepte?

3.1.2. Ergebnisse und Auswertung

Auswertung durch Tools, qualitativ und Quantitativ

3.2. Erhebung und Beschreibung der aktuellen Prozesse

Darstellung der aktuellen Prozesse mir Diagrammen (Flussdiagramme, BPMN)

3.2.1. Analyse der SVN und GIT Versionskontrollsysteme

- Einige Repos durchgehen: Trunk based (SVN), Feature Branche based (GIT)
- Analyse der Bestehenden Einarbeitungsprozesse, Dokumentation und Schulungsmaterialien
- Analyse der Effizienz und Effektivität der bestehenden Prozesse

4. Vorschläge zur Prozessoptimierung

Basierend auf den Ergebnissen der Mitarbeiterumfrage, der Analyse, sowie den Industriestandards

- 4.1. Identifikation und Priorisierung von Verbesserungspotenzialen
- 4.2. Anpassung der Vorschläge auf die Bedürfnisse kleiner und mittlerer Unternehmen
- 4.3. Kosten-Nutzen-Analyse der vorgeschlagenen Maßnahmen

5. Schlussfolgerung und Ausblick

5.1. Zusammenfassung der wichtigsten Erkenntnisse

5.2. Ausblick auf zukünftige Aufgaben und Herausforderungen

5.3. Lists

Create bullet lists or numbered lists.

- These bullet
- · points
- · are colored
- 1. It also
- 2. works with
- 3. numbered lists!

5.4. Figures and Tables

Create figures or tables like this:

5.4.1. Figures

Abbildung 4 – Image Example

5.4.2. Tables

Names	Area	Parameters
cylinder.svg	$\pi h \frac{D^2 - d^2}{4}$	h: height D : outer radius d : inner radius
tetrahedron.svg	$\frac{\sqrt{2}}{12}a^3$	a: edge length

Tabelle 1 – Table Example

5.5. Code Snippets

Insert code snippets like this:

```
#show "ArtosFlow": name => box[
#box(image(
    "logo.svg",
    height: 0.7em,
))
#name

This report is embedded in the
ArtosFlow project. ArtosFlow is a
project of the Artos Institute.
```

Listing 1 – Codeblock Example

Literaturverzeichnis

- [DIN05] DIN-Normenausschuss Qualitätsmanagement, Statistik und Zertifizierungsgrundlagen: Qualitätsmanagementsysteme Grundlagen und Begriffe (ISO 9000:2015);.. In: : DIN Deutsches Institut für Normung e. V., 2005
- [DIN15] DIN-Normenausschuss Qualitätsmanagement, Statistik und Zertifizierungsgrundlagen: Qualitätsmanagementsysteme Anforderungen (ISO 9001:2015);.. In: : DIN Deutsches Institut für Normung e. V., 2015
- [ISO05] ISO/IEC JTC 1/SC 07 Software and systems engineering: Systems and software engineering Systems and software Quality Requirements and Evaluation;.. In: : ISO/IEC JTC 1/SC 07 Software, systems engineering erstellt, 2005
- [ISO24] ISO: About ISO. URL https://www.iso.org/about
- [ISO24] ISO: Definition of Standards. URL https://www.iso.org/standards.html
- [ISO24] ISO: Popular Standards. URL https://www.iso.org/popular-standards.html
- [Joh23] Johannes Vietze: *Kontinuierliche Qualitätsverbesserung durch Standardisie-rung.* URL https://creativecommons.org/licenses/by-sa/3.0/%20,%20https://upload.wikimedia.org/wikipedia/commons/a/a8/PDCA_Process.png
- [MN09] Moen, Ronald; Norman, Clifford: The History of the PDCA Cycle.. In: : Asian Network for Quality, 2009
- [Pro22] ProSystems GmbH: *Unsere Erfahrung, Systemberatung für Softwareentwick-lung.* URL https://www.prosystems.de/leistungen-1.html
- [Rol15] Roland, Weigert und Hubert Aiwanger: Qualitätsmanagement für kleine und mittlere Unternehmen: Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie, 2015
- [Tob14] Tobias, Werner: Handwerk in der postindustriellen Gesellschaft: Handlung und Struktur in einem handwerklich orientierten Traditionsgewerbe am Bei-

spiel von Druckerwerkstätten in der ehemaligen "Buchstadt" Leipzig, Leipzig: Leibniz-Institut für Länderkunde e.V., 2014

[fre24] freepik.com: The 7 principles of quality management of Customer focus Leadership Engagement of people Process. URL https://www.freepik.com/premium-vector/7-principles-quality-management-customer-focus-leadership-engagement-people-process 159048124.htm