2019國泰大數據競賽

透過機器學習最小化公司成本

研究動機

研究動機

目的

- > 挖掘出保險需求較高的客戶
- ▶ 區分目標顧客群
- > 考慮成本下,提供精準的銷售名單

問題

- ▶ 資料不齊全
- ▶ 購買族群相對稀少

資料處理與探索

資料處理與探索 - 補值介紹

Generalized Low Rank Model (GLRM)

- ▶ 未記錄值的推測方式,可應用於推薦系統
- ➤ 利用validation data製造遺失值,並進行驗證

Forward Predict

- ➤ 針對GLRM補值結果較差類別變數,ACC<0.8
- ▶ 抽樣1000組類別變數的排列組合,選取最優者當作補值方式

資料處理與探索 - 補值結果

連續型變數

類別型變數

資料處理與探索 - 模型選擇

XGBoost 補值比較

補值方法	預測結果
不補值	0.84407
GLRM	0.84338
GLRM + forward predict (only test)	0.85195

模型ROC curve 比較圖

模型選擇與驗證

模型選擇與驗證 - 重要指標

影響「客戶是否會購買」的重要因素

近三年是否有與 A 通路接觸

模型選擇與驗證 - 評估重要變數和購買的關係

Logistic regression係數長條圖

- ▶ 重要變數與「客戶是否會購買」的影響力
- > 同一類別各情況影響購買程度高低

模型選擇與驗證

變數	變數的類別影響「客戶購買」的大小排序
年龄	中高>中>低>高
婚姻狀況	2>1>0
九大客群	E>C>B>A>H>G
客戶職業類別對核保風險程度	0>6>5>4>3>1>2

變數	變數的類別影響「客戶購買」的大小排序	
往來關係等級	5>1>2>4>3	
近一年業務員管理工具拜訪次數		
是否申辦 B 服務		
是否申辦 H 服務	Y>N	
近三年是否有透過 A 通路投保新契約		
近三年是否有與A通路接觸		

商業應用

商業應用-效益說明

Net Income(平均拜訪每個客戶的**淨利**) = $\frac{TN \times B_{TN} - FP \times C_{FP} - FN \times C_{FN}}{N}$

Cost matrix

Benefit Matrix

真實\預測	Y=0	Y=1
Y=0	C_{TP} =0	誤判購買客戶數 <i>C_{FP}=</i> 1
Y=1	流失客戶數 <i>C_{FN}=</i> 1	C_{TN} =0

真實\預測	Y=0	Y=1
Y=0	B_{TP} =0	B_{FP} =0
Y=1	$B_{FN}=0$	$B_{TN}=1$

Y=0:不買

B: Benefit

Y=1: 買 C: Cost

TP、TN、FP、FN:預測數目

商業應用-模型比較

	Logistic Regression	Random Forest	Neural Network	XGBoost
AUC	0.7922	0.8041	0.7927	0.85195
Net Income	-0.29726	-0.29136	-0.2906	-0.2392

準確度高

無法反映真實的獲利方式

考量真實情況,降低總成本

商業應用-效益考量

- ▶ 分類正確 → 降低成本
- ▶ 對於流失的客戶有較高的損失

模型優化目標

Cost Sensitive loss =
$$\frac{1}{N} \sum C_{FN} \times FN + C_{FP} \times FP$$

真實\預測	不買 Y=0	買 Y=1	
不買 Y=0	C_{TP} =0	C_{FP} =1	$C_{FN} = 500$
買 Y=1	$C_{FN}=1$	C_{TN} =0	

商業應用-結果比較

考慮成本的預測結果

AUC	0.85195
Net Income	-0.2392

AUC	0.824
Net Income	6.14

結論

模型分析結果考量保險公司實際的成本, 能發揮最大效益

針對重點族群搭配合適的銷售手法, 即可針對潛在客戶做深入推廣

