

Машинное обучение DS-поток

Лекция 9

Работа с признаками

Работа с признаками

Числовые признаки

Дата/время и координаты
Порядковые и категориальные признаки
Масштабирование
Отбор признаков

Ранг

Идея: заменить значения $X_1,...,X_n$ на ранги $R_1,...,R_n$, где ранг R_i — порядковый номер X_i в упорядоченном наборе.

Xi	7.3	2.2	0.3	6.2	1.6	6.2	9.6
R_i	6	3	1	4.5	2	4.5	7

Для нового объекта x

- ▶ ранг ближайшего объекта из train.
- средний ранг по ближайшим объектам из выборки.
- взвешенный средний ранг по ближайшим объектам из выборки.

Смысл:

Подвигаем выборсы к остальным объектам,

 \Rightarrow они перестают вносить большой вклад в модель.

Применение:

Иногда хорошо работает для KNN, лин. моделей, нейросетей, особенно есть нет времени разбираться с выбросами.

Ô

Трансформации

Логарифмическая

$$\widetilde{x} = \ln(x)$$

Возведение в степень

$$\widetilde{x} = \sqrt{x+1}$$

Пребразование Бокса-Кокса

$$\widetilde{x} = \begin{cases} \frac{x^{\lambda} - 1}{\lambda}, & \lambda \neq 0 \\ \ln(x), & \lambda = 0 \end{cases}$$

Смысл: Объекты с бОльшими значениями признаков становятся ближе к остальным объектам. Особенно хорошо работают для нейростей.

Замечание: при отрицательных значениях нужно произвести сдвиг.

Применение логарифмирования

Мультипликативные признаки

После логарифмирования такой признак станет аддитивным.

Рассмотрим лин. регрессию с одним признаком: $\widehat{y}(x) = heta x + heta_0$

ightharpoonup Пусть x показывает *во сколько раз* увеличились цены.

$$\Rightarrow$$
 x — мультипликативный признак.

Тогда
$$\hat{y_1} = \theta x_1 + \theta_0$$
 $\hat{y_2} = \theta x_2 + \theta_0$ $\Rightarrow \hat{y_1} - \hat{y_2} = \theta (x_1 - x_2)$

Но рассматривать $x_1 - x_2$ нелогично, лучше x_1/x_2 .

ightharpoonup Пусть x показывает *на сколько* увеличились цены.

$$\Rightarrow$$
 x — аддитивный признак.

Здесь рассматривать $x_1 - x_2$ вполне логично.

Применение логарифмирования

Искаженное распределение

Преобразует искаженное распределение ближе к нормальному.

Генерация признаков

Рассмотрим значения признака

Цена	0.99	2.49	1	9.99
------	------	------	---	------

Разделим на целую и вещественную часть.

Целая часть	0	2	1	9
Дробная часть	0.99	0.49	0	0.99

Такие преобразования очень часто делают для цены, так как это отражает восприятние цены человеком.

Ô

Генерация признаков

Имеем:

Квадратная площадь: $55m^2$

Цена: 107000 \$

Получаем:

Цена за 1 m^2 : 10700 \$ / 55 m^2

Имеем:

Расстояние по вертикали: 3 м

Расстояние по горизонтали: 2 м

Получаем:

Полное расстояние: 3.60 м

Такие признаки помогут многим моделям, т.к. модели плохо умеют умножать/делить фичи друг на друга.

Квантование (Binning)

Разбиение множества значений признака на интервалы (бины) и замена признака на категориальную переменную.

► Fixed-Width Binning Выбор точек разбиения вручную или равномерно

Adaptive Binning Выбор точек разбиения в зависимости от выборки.

Работа с признаками

Числовые признаки

Дата/время и координаты

Порядковые и категориальные признаки

Масштабирование

Отбор признаков

Дата и время

Дата/timestamp в чистом виде не достаточно информативны. Полезно добавить дополнительные признаки.

- Характеристики даты
 Год, сезон, день месяца, день недели, час, минуты, секунды, праздничный ли день и какой праздник.
- Время с момента некоторого события
 Кол-во дней с прошлых выходных.
 Кол-во дней с последней покупки.
 Кол-во дней от фиксированной даты X.
- ▶ Синус от времени с периодом кратным длине сезона/дня.

Замечание:

Такие признаки как день недели являются категориальными!

Координаты

Местоположение обычно характеризуется широтой и долготой. В чистом виде они недостаточно информативны. Рассмотрим разные случаи.

Есть дополнительные данные

Можно добавить расстояния до ближайшего магазина, больницы, школы и прочего.

Координаты

Дополнительных данных нет

Придумаем местоположения сами по имеющимся данным.

Пример для анализа цен на квартиры.

- Разделим карту на квадраты.
 В каждом квадрате найдем самую дорогую квартиру.
 Для объектов в квадрате добавим расстояние до этой квартиры.
- Организуем имеющиеся точки в кластеры.
 Найдем центры кластеров.
 Будем использовать их как важные местоположения.
- ▶ Найдем район с старыми строениями. Посчитаем расстояние до него.

Координаты

Агрегирующие статистики

Посчитаем статистики по объектам, находящимся рядом. *Примеры: кол-во квартир, средняя цена квартиры.*

Поворот координат

Повернем координаты и возьмем это как новые признаки. Можно сделать несколько разных поворотов.

Полезно для tree-based методов.

Работа с признаками

Числовые признаки Дата/время и координаты

Порядковые и категориальные признаки

Масштабирование

Отбор признаков

Порядковые признаки

Для таких признаков значения сравнимы между собой, но *расстояния между ними не определены*.

Примеры:

- Класс билетаА, В, С
- Образование
 школа, бакалавриат, магистратура, аспирантура
- Оценка1, 2, 3, ..., 9, 10

Обработка: Label encoding

Каждому состоянию сопоставляем число.

Порядок состояний должен сохраниться.

Категориальные признаки

Значения категориальных признаков не сравнимы друг с другом.

Категория — одно значение данного признака.

Примеры:

- ▶ Город
 Москва, Краснодар, Калининград, Якутск, Анадырь
- ▶ Пол
 мужской, женский

Как работать с категориальными признаками?

Label encoding

Каждому состоянию сопоставляем число.

sklearn.preprocessing.LabelEncoder — алфавитный порядок.

pandas.factorize — в порядке встречаемости значения.

Минусы:

Линейные модели плохо работают с такими признаками. Деревья могут работать, но потребуется глубокое дерево.

► Count encoding и Frequency encoding

Заменяем категорию на ее кол-во/частоту в обучении.

Замечание:

Если частоты у категорий похожи, то они будут неразличимы. Поэтому можно использовать ранги частот.

Как работать с категориальными признаками?

One-hot encoding

Создается K-1 новых бинарных признаков, где K — кол-во категорий.

Замечание 1:

Если есть пара вещественных, очень значимых признаков, то деревьям и KNN будет трудно обращать на них внимание из-за большого кол-ва новых one-hot признаков.

Замечание 2:

Если у кат. фичи много уникальных значений, то добавим много новых признаков, в которых, возможно, только пара ненулевых элементов.

Тогда обычно хранят только ненулевые элементы — sparse matrix.

Как работать с категориальными признаками?

Binary encoding

Применяется Label encoding.

Полученные номера переводятся в *двоичную систему* счисления и двоичные числа разбиваются на столбцы.

Минусы: Полученные признаки могут коррелировать.

Mean encoding (Target encoding)

Заменяем категорию на *ср. значение* или другую статистику таргета у объектов, имеющих данную категорию.

Является очень мощным методом работы с кат. признаками. Разберем подробнее.

Mean Encoding: какие статистики выбирать?

Бинарная классификация

- Частота класса 1
- Логиты
- ▶ Кол-во объектов класса 1
- Разница кол-ва объектов между классами

Многоклассовая классификация

Для кат. признака введем K признаков, где K — число классов.

k-ый признак строится по таргету вида $I\{Y_i = k\}$.

Регрессия

- Среднее
- Дисперсия
- Квантили
- Максимум
- Распределение по бинам

Mean Encoding: пример

Label encoding

Mean encoding

id job	job_label target		id job	job_mean target	
1 Doctor	1	1	1 Doctor	0,50	1
2 Doctor	1	0	2 Doctor	0,50	C
3 Doctor	1	1	3 Doctor	0,50	1
4 Doctor	1	0	4 Doctor	0,50	C
5 Teacher	2	1	5 Teacher	1	1
6 Teacher	2	1	6 Teacher	1	1
7 Engineer	3	0	7 Engineer	0,50	O
8 Engineer	3	1	8 Engineer	0,50	1
9 Waiter	4	1	9 Waiter	1	1
10 Driver	5	0	10 Driver	0	C

- ▶ job категориальный признак
- ▶ target целевой признак
- ▶ job_label преобразование с помощью Label encoding
- ▶ job_mean преобразование с помощью Mean encoding

Mean Encoding: почему он работает

Рассмотрим случай бинарной классификации.

Посмотрим на гистограммы признака для класса 0 и класса 1.

В случае Label encoding получаем равномерное распределение.

В случае Mean encoding классы выглядят более разделимыми.

Mean Encoding

Модели на основе решающих деревьев

Деревьям трудно работать с кат. признаками с большим кол-вом уникальных значений: нужна большая глубина.

Mean encoding решает эту проблему: меньшая ошибка при меньшей глубине.

Проблемы

- Статистики по обучающей выборке, не всегда верны для теста.
 Например, если количество объектов в категории мало, то оценка статистики будет очень шумной.
- ▶ При подсчете статистики используем таргет \Rightarrow при обучении на объекте x_i у модели есть информация о Y_i .

Эти проблемы вызывают переобучение модели.

Регуляризация

I. CV loop

- 1. Разбиваем данные на k фолдов.
- 2. Для получения статистики для k-ого фолда используем таргеты всех фолдов, кроме k-ого. Для подсчета статистики для теста используется весь train.

Вывод: для объекта x_i не используем его таргет y_i в статистике.

Регуляризация

В некоторых случаях все равно может произойти переобучение.

Пример.

- Рассмотрим категорию.
- Применим Leave-One-Outслучай k = n
- По новому признаку можно однозначно восстановить таргет.

	feature	feature_mean	target
0	Moscow	0.50	0
1	Moscow	0.25	1
2	Moscow	0.25	1
3	Moscow	0.50	0
4	Moscow	0.50	0

Однако для теста значение статистики для всех объектов этой категории = 0.4, т.е. восстановить ответ уже нельзя.

Вывод: произошла утечка таргета.

Ô

Регуляризация

II. Сглаживание

Заменим значение кат. признака на

$$S_c = \frac{n_c \overline{y}_c + \alpha \overline{y}}{n_c + \alpha},$$

где \overline{y}_c — среднее значение таргета в категории c в обучении. n_c — количество объектов категории c в обучающей выборке.

Свойства:

 $lpha=0\Rightarrow$ нет регуляризации. $lpha o\infty\Rightarrow$ статистика стремится к глобальному среднему.

III. Expanding mean

Зафиксируем некоторый порядок объектов в трейне.

Для подсчета статистики для x_i используем только $y_1,...,y_{i-1}.$

Плюсы:

- Самое маленькая утечка таргета среди всех методов.
- Нет гиперпараметров.

Используется в CatBoost для обработки кат. признаков.

Работа с признаками

Числовые признаки

Дата/время и координаты

Порядковые и категориальные признаки

Масштабирование

Отбор признаков

Масштабирование

Масштабирование — приведение признаков к единому масштабу.

Важно для

- линейных моделей с регуляризацией
- метрических моделей
- градиентного спуска (как следствие для нейросетей)

Не важно для решающих деревьев.

Почему?

- Регуляризация имеет тенденцию штрафовать параметры при признаках меньшего масштаба.
- Начинают учитываться только крупномасштабные признаки.

Ô

Масштабирование

Пример 1

$$\mathcal{L}(x_1, x_2) = x_1^2 + x_2^2 \to \min_{x_1, x_2}$$
$$-\frac{\partial \mathcal{L}}{\partial x}(1, 1) = (-2, -2)$$

Вектор антиградиента проходит через точку минимума.

Пример 2

$$\mathcal{L}(x_1, x_2) = x_1^2 + 100x_2^2 \to \min_{x_1, x_2}$$

 $-\frac{\partial \mathcal{L}}{\partial x}(1, 1) = (-2, -2)$

Вектор антиградиента направлен практически вниз и проходит мимо точки минимума.

Как классифицируется "?" методом ближайшего соседа?

Однако поменялся только масштаб!

Масштабирование

Стандартизация

$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_{ij} \qquad \sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_{ij} - \mu_j)^2} \qquad \widetilde{x}_{ij} = \frac{x_{ij} - \mu_j}{\sigma_j}$$

Чаще применяется для линейных моделей и нейросетей

Min-max нормализация

Масштабируем на отрезок [0,1]:

$$m_j = \min(x_{1j},...,x_{nj})$$
 $M_j = \max(x_{1j},...,x_{nj})$ $\widetilde{x}_{ij} = \frac{x_{ij} - m_j}{M_j - m_j}$

Чаще применяется для метрических моделей

Масштабирование

Нормализация средним

$$m_j = \min(x_{1j}, ..., x_{nj})$$

$$M_j = \max(x_{1j}, ..., x_{nj})$$

$$\mu_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$$

$$\widetilde{x}_{ij} = \frac{x_{ij} - \mu_j}{M_j - m_j}$$

Нормализация

$$\widetilde{x}_i = \frac{x_i}{\|x_i\|^2}$$

Замечание:

Масштабируем и тест, и трейн одинаково.

Все статистики подбираем по трейну!

Работа с признаками

Числовые признаки
Дата/время и координаты
Порядковые и категориальные признаки
Масштабирование
Отбор признаков

Зачем отбирать признаки?

Ситуация 1

- Добавим к нашим признакам
 100 шумовых признаков
- С большой вероятностью хотя бы один немного коррелирует с таргетом на обуч. выборке.
- Модель может решить, что он важный, и использовать его.
- На других данных такой корреляции уже не будет.
 Качество будет страдать.

Ситуация 2

- ▶ Имеется 1000 признаков.
- Обучаем решающее дерево.
- Чтобы учесть каждый признак хотя бы по одному разу, нужно дерево глубины ≥ 10 . У такого дерева более 1000 листьев.
- В каждый лист должно попасть достаточное число объектов, иначе — риск переобучения.

Замечание.

Если хочется учесть каждый признак больше, чем один раз, то дерево должно быть еще глубже.

Зачем отбирать признаки?

Ускорение модели

- Чем больше признаков, тем сложнее модель.
- Чем сложнее модель, тем дольше она вычисляет прогнозы и обучается.
- В некоторых задачах могут быть жесткие ограничения на скорость работы и обучения.
 Например, в онлайн-моделях.

Одномерный отбор признаков

Принцип

- Измеряем связь (информативность) каждого признака с целевой переменной отдельно.
- Отбираем лучшие по информативности.

Как оценить информативность?

- 1. Важность признаков
- 2. Корреляции
- 3. Качество моделей, обученных по каждому из признаков отдельно

Важность признаков в общем случае

Permutation feature importance

- 1. Обучим модель и измерим метрику на валидации.
- Для одного выбранного признака перемешаем все его значения в датасете, на котором до этого измерили метрику.
- 3. Измерим метрику на видоизмененном датасете.
- 4. Определим важность данного признака как разницу между исходным и новым значением метрики.
- Сделаем пункты 2-4 для всех признаков.

Плюсы:

- Подходит для любых моделей.
- Требует одного обучения модели.
- Использует тестовое множество и является более надежным, чем MDI для деревьев.

Минусы:

- Более вычислительно затратно, чем MDI для деревьев.
- ▶ Переоценивает важность для скоррелированных признаков. (Strobl et al (2008))

Важность признаков в общем случае

Drop Column feature importance

Сравним 2 модели:

- ▶ Модель, обученная на датасете со всеми признаками
- Модель, обученная на данных без одного признака.

Важность этого признака — разница метрик на тесте/валидации для этих моделей.

Плюсы:

- Самая точная важность признаков.
- Подходит для любых моделей.

Минусы:

Вычислительно сложно.
 Требует обучения большого количества разных моделей.

Одномерный отбор признаков

Проблема: сложные закономерности

По двум признакам можно идеально разделить классы.

По x_1 данные можно как-то разделить $\Rightarrow x_1$ — информативный.

По x_2 данные нельзя разделить $\Rightarrow x_2$ будет неинформативным.

 \Rightarrow Останется только признак x_1 , сильно теряем в качестве.

Одномерный отбор признаков

Проблема: сложные закономерности

По двум признакам можно идеально разделить классы.

При одномерном отборе и x_1 , и x_2 будут неинформативными.

Перебор признаков

Принцип

- ▶ Каким-то методом перебираем комбинации признаков
- Для каждой комбинации обучаем модель
- Выбираем комбинацию, дающую лучшую модель

Полный перебор

Пробуем все подмножества признаков и выбираем лучшее.

Свойства:

- Находит точное решение.
- ▶ Перебирает 2^d вариантов.
 - \Rightarrow Подходит только для малого числа признаков.

Жадное добавление

Пусть F_t — множество информативных признаков на итерации t.

Принцип:

- 1. Сначала F_0 пустое
- 2. Находим признак x_j , при добавлении которого к F_{t-1} получим наименьшую ошибку модели
- 3. Повторяем до тех пор, пока ошибка уменьшается

Плюсы:

Работает достаточно быстро — требует d итераций. На каждой итерации t происходит обучение (d-t) моделей. \Rightarrow обучается всего $\frac{d(d-1)}{2}$ моделей.

Минусы:

ightharpoonup Слишком жадно. После добавления признака в F_t он там навсегда останется. Нет возможности убрать признак после добавления.

Add-Del

- Жадное добавление.
 Добавляем по одному признаку пока ошибка уменьшается.
- Жадное удаление.
 Удаляем по одному признаку пока ошибка уменьшается.
- Повторяем стадии добавления и удаления, пока ошибка уменьшается.

Может исправлять ошибки, сделанные в процессе перебора ранее.

Отбор на основе моделей

Линейные модели

$$y(x) = \sum_{j=1}^d \theta_j x_j$$

- Если признаки отмасштабированы: Веса можно использовать как показатели информативности. Чем больше $|\theta_j|$, тем больший вклад вносит признак x_j .
- ▶ Если признаки не отмасштабированы:
 Веса нельзя использовать как показатели информативности.

Для повышения числа нулевых весов — L_1 -регуляризация

