(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-331799 (P2001-331799A)

(43)公開日 平成13年11月30日(2001.11.30)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコ	-ド(参考)
G06T	7/00	300	G06T	7/00	300	E 5	B 0 4 3
	-	5 1 0			510	B 5	B047
	1/00	3 4 0		1/00	340	A 5	B057
	•	400			400	H 5	L096
	7/60	150	7/60		150C		
	.,		審查請求	未請求	請求項の数28	OL	(全 16 頁)
(21)出願番号		特願2000-347043(P2000-347043)	(71)出願人	0000030			
(22)出顧日		平成12年11月14日(2000.11.14)	東京都港区芝浦一丁目1番1号 (72)発明者 岡崎 彰夫				
(31)優先権主張番号		特顧2000-74489(P2000-74489)	神奈川県川崎市幸区柳町70番地 株式会社				
(32)優先日		平成12年3月16日(2000.3.16)	東芝柳町事業所内				
(33)優先權主張国		日本(JP)	(72)発明者 佐藤 俊雄				
			神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町事業所内				
			(74)代理人	(74)代理人 100058479			
•			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		鈴江 武彦	分 6名	4)
							昌欽百に縛く

最終頁に続く

(54) 【発明の名称】 画像処理装置および画像処理方法

(57) 【要約】

【課題】登録・照合の際のユーザ負担を軽減し、照合性 能を大幅に向上させ、複雑な計算と処理コストの増加を 抑えた画像処理装置および画像処理方法を提供する。

【解決手段】本発明の画像処理装置は、被写体像を異なる方向から同時に撮像する複数のカメラ1-1, 1-2, …, 1-Nと、上記同時に撮像された複数の被写体像においてそれぞれ特徴点を抽出し、この抽出された各特徴点に基づいて特徴領域を設定し、この設定された特徴領域を複数の領域に分割し、この分割された各領域において明るさの平均値を算出し、この算出された平均値に基づいて特徴パターンを算出する処理プロセッサ4とを有するものである。

【特許請求の範囲】

【請求項1】 被写体像を異なる方向から撮像する複数の撮像手段と、

この複数の撮像手段により撮像された被写体像において 特徴点を抽出し、この抽出された特徴点に基づいて特徴 領域を設定し、この設定された特徴領域を複数の領域に 分割し、この分割された各領域において所定情報を算出 し、この算出された所定情報に基づいて特徴パターンを 算出する正規化手段と、

を具備したことを特徴とする画像処理装置。

【請求項2】 被写体像を異なる方向から撮像する複数 の撮像手段と、

この複数の撮像手段により撮像された被写体像において 特徴点を抽出し、この抽出された特徴点に基づいて特徴 領域を設定し、この設定された特徴領域を複数の領域に 分割し、この分割された各領域において明るさの平均値 を算出し、この算出された平均値に基づいて特徴パター ンを算出する正規化手段と、

この正規化手段により算出された特徴パターンを所定の 被写体に係るものとして登録する登録手段と、

前記正規化手段により算出された特徴パターンを前記登録手段に登録された特徴パターンと比較して被写体像に係る被写体を特定する照合手段と、

を具備したことを特徴とする画像処理装置。

【請求項3】 前記複数の撮像手段は、縦方向に一列に 配置されており、

前記正規化手段は、被写体像における左右瞳部分の中心 点および左右鼻孔の中心点の特徴点群、左右瞳部分の中 心点のみの特徴点群のいずれかを用いて特徴パターンを 算出する、

ことを特徴とする請求項1または請求項2記載の画像処理装置。

【請求項4】 前記複数の撮像手段は、横方向に一列に 配置されており、

前記正規化手段は、被写体像における左右瞳部分の中心 点および左右鼻孔の中心点の特徴点群、左右瞳部分の中 心点および左鼻孔の中心点の特徴点群、左右瞳部分の中 心点および右鼻孔の中心点の特徴点群のいずれかを用い て特徴パターンを算出する、

ことを特徴とする請求項1または請求項2記載の画像処理装置。

【請求項5】 前記複数の撮像手段は、面的に配置されており、

前記正規化手段は、被写体像における左右瞳部分の中心 点および左右鼻孔の中心点の特徴点群、左右瞳部分の中 心点および左鼻孔の中心点の特徴点群、左右瞳部分の中 心点および右鼻孔の中心点の特徴点群、左右瞳部分の中 心点のみの特徴点群のいずれかを用いて特徴パターンを 算出する、

ことを特徴とする請求項1または請求項2記載の画像処 50

2

理装置。

【請求項6】 前記正規化手段は、前記複数の撮像手段で撮像された被写体像のそれぞれについて次元の異なる特徴ベクトルを抽出し、この抽出された次元の異なる特徴ベクトルを順次配列することで多次元の特徴パターンとして統合する、

ことを特徴とする請求項1または請求項2記載の画像処 理装置。

【請求項7】 前記正規化手段は、前記複数の撮像手段で撮像された被写体像を一定の時間間隔で取込み、同時間の被写体像について特徴パターンを算出し、時間の異なる特徴パターンを順次配列することで時系列の特徴パターンとして統合する、

ことを特徴とする請求項1または請求項2記載の画像処理装置。

【請求項8】 被写体像を異なる位置から撮像し、それ ぞれ撮像位置の異なる複数の被写体像を入力する画像入 力手段と、

この画像入力手段により入力された複数の被写体像から 被写体の特徴を表わす特徴パターンをそれぞれ抽出する 特徴抽出手段と、

この特徴抽出手段により抽出された複数の特徴パターン をあらかじめ登録された基準の特徴パターンとそれぞれ 照合する照合手段と、

この照合手段による照合の結果、前記特徴抽出手段により抽出された複数の特徴パターンのうち少なくとも1つ以上の特徴パターンがあらかじめ登録された基準の特徴パターンとの照合に成功したとき、当該被写体像に係る被写体は本人であると判定する判定手段と、

30 を具備したことを特徴とする画像処理装置。

【請求項9】 前記画像入力手段は、あらかじめ定められた複数の位置にそれぞれ設置され、被写体像を複数の異なる位置から撮像する複数の撮像手段を有し、これら複数の撮像手段によってそれぞれ撮像位置の異なる複数の被写体像を入力する、

ことを特徴とする請求項8記載の画像処理装置。

【請求項10】 前記特徴抽出手段は、

入力された被写体像から被写体の特徴点を検出する特徴 点検出手段と、

0 この特徴点検出手段により検出された特徴点に基づき特 徴領域を設定する特徴領域設定手段と、

この特徴領域設定手段により設定された特徴領域を複数の領域に分割する領域分割手段と、

この領域分割手段により分割された各領域において明る さの平均値を求め、この求めた明るさの平均値に基づき 被写体の特徴を表わす特徴パターンを抽出する特徴パタ ーン抽出手段と、

からなることを特徴とする請求項8記載の画像処理装置。

【請求項11】 被写体像を異なる位置から撮像し、そ

れぞれ撮像位置の異なる複数の被写体像を入力する画像 入力手段と、

特徴パターンの登録時、前記画像入力手段により入力される複数の被写体像のうち、どの撮像位置の被写体像を 用いるかを決定する入力画像決定手段と、

この入力画像決定手段により決定された被写体像から被写体の特徴を表わす特徴パターンを抽出する第1の特徴 抽出手段と、

この第1の特徴抽出手段により抽出された特徴パターン を当該被写体に係る基準の特徴パターンとして、対応す ¹⁰ る被写体像の撮像位置を示す位置情報と対応させて登録 する登録手段と、

特徴パターンの照合時、前記画像入力手段により入力される複数の被写体像のうち、当該被写体の前記登録手段に登録されている特徴パターンとともに登録されている位置情報に対応する撮像位置の被写体像を選択する照合画像選択手段と、

この照合画像選択手段により選択された被写体像から被写体の特徴を表わす特徴パターンを抽出する第2の特徴抽出手段と、

この第2の特徴抽出手段により抽出された特徴パターンを、前記登録手段に登録されている当該被写体の特徴パターンと照合することにより、当該被写体像に係る被写体を特定する照合手段と、

を具備したことを特徴とする画像処理装置。

【請求項12】 前記画像入力手段は、少なくとも1つの撮像手段をあかじめ定められた複数の位置に移動させて、それらの各位置で被写体像を撮像することにより、それぞれ撮像位置の異なる複数の被写体像を入力する、ことを特徴とする請求項8または請求項11記載の画像 30 処理装置。

【請求項13】 あらかじめ定められた複数の位置にそれぞれ設置され、被写体像を複数の異なる位置から撮像する複数の撮像手段と、

特徴パターンの登録時、前記複数の撮像手段のうち、ど の位置の撮像手段を用いるかを決定する決定手段と、

この決定手段により決定された撮像手段から得られる被 写体像から被写体の特徴を表わす特徴パターンを抽出す る第1の特徴抽出手段と、

この第1の特徴抽出手段により抽出された特徴パターンを当該被写体に係る基準の特徴パターンとして、前記決定手段により決定された撮像手段の位置を示す位置情報と対応させて登録する登録手段と、

特徴パターンの照合時、前記複数の撮像手段のうち、当 該被写体の前記登録手段に登録されている特徴パターン とともに登録されている位置情報に対応する位置の撮像 手段を選択する選択手段と、

この選択手段により選択された撮像手段から得られる被 写体像から被写体の特徴を表わす特徴パターンを抽出す る第2の特徴抽出手段と、 4

この第2の特徴抽出手段により抽出された特徴パターンを、前記登録手段に登録されている当該被写体の特徴パターンと照合することにより、当該被写体像に係る被写体を特定する照合手段と、

を具備したことを特徴とする画像処理装置。

【請求項14】 前記第1、第2の特徴抽出手段は、 入力された被写体像から被写体の特徴点を検出する特徴 点検出手段と、

この特徴点検出手段により検出された特徴点に基づき特徴領域を設定する特徴領域設定手段と、

この特徴領域設定手段により設定された特徴領域を複数の領域に分割する領域分割手段と、

この領域分割手段により分割された各領域において明る さの平均値を求め、この求めた明るさの平均値に基づき 被写体の特徴を表わす特徴パターンを抽出する特徴パタ ーン抽出手段と、

からなることを特徴とする請求項11または請求項13 記載の画像処理装置。

【請求項15】 被写体像を異なる方向から撮像する第 1のステップと、

この第1のステップで撮像された被写体像において特徴 点を抽出し、この抽出された特徴点に基づいて特徴領域 を設定し、この設定された特徴領域を複数の領域に分割 し、この分割された各領域において所定情報を算出し、 この算出された所定情報に基づいて特徴パターンを算出 する第2のステップと、

を具備したことを特徴とする画像処理方法。

【請求項16】 被写体像を異なる方向から撮像する第 1のステップと、

この第1のステップで撮像された被写体像において特徴点を抽出し、この抽出された特徴点に基づいて特徴領域を設定し、この設定された特徴領域を複数の領域に分割し、この分割された各領域において明るさの平均値を算出し、この算出された平均値に基づいて特徴パターンを算出する第2のステップと、

この第2のステップで算出された特徴パターンを所定の被写体に係るものとして登録する第3のステップと、

前記第2のステップで算出された特徴パターンを前記第 3のステップにより登録された特徴パターンと比較して 被写体像に係る被写体を特定する第4のステップと、

を具備したことを特徴とする画像処理方法。

【請求項17】 前記第1のステップでは、縦方向に一列の異なる方向から被写体像を撮像し、

前記第2のステップでは、被写体像における左右瞳部分の中心点および左右鼻孔の中心点の特徴点群、左右瞳部分の中心点のみの特徴点群のいずれかを用いて特徴パターンを算出する、

ことを特徴とする請求項15または請求項16記載の画 像処理方法。

0 【請求項18】 前記第1のステップでは、横方向に一

列の異なる方向から被写体像を撮像し、

前記第2のステップでは、被写体像における左右瞳部分の中心点および左右鼻孔の中心点の特徴点群、左右瞳部分の中心点および左鼻孔の中心点の特徴点群、左右瞳部分の中心点および右鼻孔の中心点の特徴点群のいずれかを用いて特徴パターンを算出する、

ことを特徴とする請求項15または請求項16記載の画 像処理方法。

【請求項19】 前記第1のステップでは、面的に異なる方向から被写体像を同時に撮像し、

前記第2のステップでは、被写体像における左右瞳部分の中心点および左右鼻孔の中心点の特徴点群、左右瞳部分の中心点および左鼻孔の中心点の特徴点群、左右瞳部分の中心点および右鼻孔の中心点の特徴点群、左右瞳部分の中心点のみの特徴点群のいずれかを用いて特徴パターンを算出する、

ことを特徴とする請求項15または請求項16記載の画 像処理方法。

【請求項20】 前記第2のステップでは、前記第1のステップで撮像した被写体像のそれぞれについて次元の異なる特徴ベクトルを抽出し、この抽出された次元の異なる特徴ベクトルを順次配列することで多次元の特徴パターンとして統合する、

ことを特徴とする請求項15または請求項16記載の画 像処理方法。

【請求項21】 前記第2のステップでは、前記第1のステップで撮像した被写体像を一定の時間間隔で取込み、同時間の被写体像について特徴パターンを算出し、時間の異なる特徴パターンを順次配列することで時系列の特徴パターンとして統合する、

ことを特徴とする請求項15または請求項16記載の画 像処理方法。

【請求項22】 被写体像を異なる位置から撮像し、それぞれ撮像位置の異なる複数の被写体像を入力する第1のステップと、

この第1のステップにより入力された複数の被写体像から被写体の特徴を表わす特徴パターンをそれぞれ抽出する第2のステップと、

この第2のステップにより抽出された複数の特徴パターンをあらかじめ登録された基準の特徴パターンとそれぞ 40 れ照合する第3のステップと、

この第3のステップによる照合の結果、前記第2のステップにより抽出された複数の特徴パターンのうち少なくとも1つ以上の特徴パターンがあらかじめ登録された基準の特徴パターンとの照合に成功したとき、当該被写体像に係る被写体は本人であると判定する第4のステップ

を具備したことを特徴とする画像処理方法。

【請求項23】 前記第1のステップは、あらかじめ定められた複数の位置にそれぞれ設置され、被写体像を複 50

6

数の異なる位置から撮像する複数の撮像手段を用い、これら複数の撮像手段によってそれぞれ撮像位置の異なる複数の被写体像を入力する、

ことを特徴とする請求項22記載の画像処理方法。

【請求項24】 前記第2のステップは、

入力された被写体像から被写体の特徴点を検出するステップと、

この検出された特徴点に基づき特徴領域を設定するステップと、

10 この設定された特徴領域を複数の領域に分割するステップと、

この分割された各領域において明るさの平均値を求め、 この求めた明るさの平均値に基づき被写体の特徴を表わ す特徴パターンを抽出するステップと、

からなることを特徴とする請求項22記載の画像処理方法。

【請求項25】 被写体像を異なる位置から撮像し、それぞれ撮像位置の異なる複数の被写体像を入力する第1のステップと、

特徴パターンの登録時、前記第1のステップにより入力 される複数の被写体像のうち、どの撮像位置の被写体像 を用いるかを決定する第2のステップと、

この第2のステップにより決定された被写体像から被写体の特徴を表わす特徴パターンを抽出する第3のステップと、

この第3のステップにより抽出された特徴パターンを当該被写体に係る基準の特徴パターンとして、対応する被写体像の撮像位置を示す位置情報と対応させて登録する第4のステップと、

30 特徴パターンの照合時、前記第1のステップにより入力 される複数の被写体像のうち、当該被写体の前記第4の ステップで登録された特徴パターンとともに登録されて いる位置情報に対応する撮像位置の被写体像を選択する 第5のステップと、

この第5のステップにより選択された被写体像から被写体の特徴を表わす特徴パターンを抽出する第6のステップと、

この第6のステップにより抽出された特徴パターンを、 前記第4のステップで登録された当該被写体の特徴パタ ーンと照合することにより、当該被写体像に係る被写体 を特定する第7のステップと、

を具備したことを特徴とする画像処理方法。

【請求項26】 前記第1のステップは、少なくとも1 つの撮像手段をあかじめ定められた複数の位置に移動させて、それらの各位置で被写体像を撮像することにより、それぞれ撮像位置の異なる複数の被写体像を入力する

ことを特徴とする請求項22または請求項25記載の画 像処理方法。

○ 【請求項27】 あらかじめ定められた複数の位置にそ

れぞれ設置され、被写体像を複数の異なる位置から撮像 する複数の撮像手段を用い、これら複数の撮像手段によ ってそれぞれ撮像位置の異なる複数の被写体像を入力す る第1のステップと、

特徴パターンの登録時、前記複数の撮像手段のうち、ど の位置の撮像手段を用いるかを決定する第2のステップ と、

この第2のステップにより決定された撮像手段から得られる被写体像から被写体の特徴を表わす特徴パターンを抽出する第3のステップと、

この第3のステップにより抽出された特徴パターンを当該被写体に係る基準の特徴パターンとして、前記第2のステップにより決定された撮像手段の位置を示す位置情報と対応させて登録する第4のステップと、

特徴パターンの照合時、前記複数の撮像手段のうち、当該被写体の前記第4のステップで登録された特徴パターンとともに登録されている位置情報に対応する位置の撮像手段を選択する第5のステップと、

この第5のステップにより選択された撮像手段から得られる被写体像から被写体の特徴を表わす特徴パターンを 20 抽出する第6のステップと、

この第6のステップにより抽出された特徴パターンを、前記第4のステップで登録された当該被写体の特徴パターンと照合することにより、当該被写体像に係る被写体を特定する第7のステップと、

を具備したことを特徴とする画像処理方法。

【請求項28】 前記第3、第6のステップは、

入力された被写体像から被写体の特徴点を検出するステップと、

この検出された特徴点に基づき特徴領域を設定するステ ップと、

この設定された特徴領域を複数の領域に分割するステップと、

この分割された各領域において明るさの平均値を求め、 この求めた明るさの平均値に基づき被写体の特徴を表わ す特徴パターンを抽出するステップと、

からなることを特徴とする請求項25または請求項27 記載の画像処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、たとえば、重要施設の入退出管理やコンピュータ/端末装置のアクセス管理などにおいて使用されるもので、特に顔画像といった生体情報 (バイオメトリクス) に基づいて本人であることを認証する個人認証装置として好適な画像処理装置および画像処理方法に関する。

[0002]

【従来の技術】近年、ヒューマンインターフェース、セキュリティなどへの応用の観点から、顔画像などの生体情報 (バイオメトリクス) に基づく本人認証技術が重要 50

8

視されており、種々の技術が開発されている。

【0003】かかるバイオメトリクスとしては、指紋、 手形、声紋、サイン、網膜、虹彩などが実用化されてい る。これらは、方式的には、装置に直に触れる「接触 形」と触れる必要のない「非接触形」とに分類すること ができる。

【0004】すなわち、上記バイオメトリクスの例のうち、指紋、手形、サインは「接触形」に属するものである。ただし、サインは本人が署名するという行動を起こさなければならないという点で、指紋などとは多少性質が異なっている。

【0005】これに対して、本人が意識する必要があるという点では、同様なバイオメトリクスが声紋(音声)照合であるが、これは「非接触形」に属する。また、カメラから対象部位の画像を取込んで処理するという点で、網膜や虹彩は「非接触形」に属すると言えるが、網膜は眼球の奥に位置し、眼をレンズにほとんど接触させる必要があるため、その性質は接触形に近いものである。

【0006】なお、上記虹彩は、眼球の表面に現れているため、離れた位置からのカメラで入力可能であるが、 微細パターンであるため、離せる距離にはおのずと限界がある。

【0007】一方、非接触形のバイオメトリクスである 顔画像の照合が最近では注目されており、これを利用し た種々の技術が開発されている。顔パターンは、上述し た虹彩パターンよりもスケールが大きい点が特徴となっ ている。

【0008】かかる顔画像の照合を採用した個人認証装置は、一般的には、1台の監視カメラを適当な位置に設置し、正面または正面に近い顔画像を取込んで、あらかじめ同様な条件で登録した顔画像データとパターン照合を行なうものであった。

【0009】また、たとえば、やや下方にカメラを設置し、下から見上げた顔画像を取込んで、登録および照合を行なうものも提案されている。

【0010】すなわち、たとえば、特開平11-196398号公報では、各ビデオカメラが所定角度をもって配置され、正面から撮影された顔は正面テンプレートメモリに、左側面から撮影された顔は側面テンプレートメモリにそれぞれ記憶されており、上記ビデオカメラから出力された画像と上記メモリに記憶されたデータの相関をとって、人の顔の動きを決定する画像処理装置に関する技術が開示されている(以下、これを先行文献1とする)。

【0011】さらに、「形状抽出とパターン照合の組合せによる顔特徴点抽出」(信学論(D-II). Vol.j-80-D-II No.8 1997年8月 ;福井、山口著)では、顔認識に向けて動画像中から瞳、鼻孔、口端などの顔特徴点を高速かつ高精度に抽出する方法が提案されている

(以下、これを先行文献2とする)。

【0012】また、「動画像を用いた顔認識システム」 (信学技報 PRMU97-50,1997年6月;山口、福井、 前田著)では、単一の画像だけで認識するのではなく、 動画像(時系列画像)を用いた顔の個人識別の方法が提 案されている(以下、これを先行文献3とする)。

[0013]

【発明が解決しようとする課題】しかしながら、上記先行文献1の技術は、複数のカメラを用いているものの、それぞれの画像を独立に扱い、機能も顔の向きの検知の 10 みに限られている。

【0014】また、上記先行文献2,3の技術では、人物の顔貌は、本来、3次元的な形状情報を有するものなので、1方向からのみ捕らえた2次元的な顔画像情報のみでは個人の識別能力において限界があり、本質的な照合性能が指紋、網膜、虹彩等と比較して、それほど高くならないといった欠点がある。

【0015】そこで、本発明は、登録、照合の際のユーザ負担を軽減し、照合性能を大幅に向上させ、単一方向からのパターン照合処理アルゴリズムを大幅に変更させることなく、複雑な計算と処理コストの増加を抑えた画像処理装置および画像処理方法を提供することを目的とする。

[0016]

【課題を解決するための手段】本発明の画像処理装置は、被写体像を異なる方向から撮像する複数の撮像手段と、この複数の撮像手段により撮像された被写体像において特徴点を抽出し、この抽出された特徴点に基づいて特徴領域を設定し、この設定された特徴領域を複数の領域に分割し、この分割された各領域において所定情報を算出し、この算出された所定情報に基づいて特徴パターンを算出する正規化手段とを具備している。

【0017】また、本発明の画像処理装置は、被写体像を異なる方向から撮像する複数の撮像手段と、この複数の撮像手段により撮像された被写体像において特徴点を抽出し、この抽出された特徴点に基づいて特徴領域を設定し、この設定された特徴領域を複数の領域に分割し、この分割された各領域において明るさの平均値を算出し、この算出された平均値に基づいて特徴パターンを算出する正規化手段と、この正規化手段により算出された特徴パターンを所定の被写体に係るものとして登録する登録手段と、前記正規化手段により算出された特徴パターンを前記登録手段に登録された特徴パターンと比較して被写体像に係る被写体を特定する照合手段とを具備している。

10

と、この特徴抽出手段により抽出された複数の特徴パターンをあらかじめ登録された基準の特徴パターンとそれぞれ照合する照合手段と、この照合手段による照合の結果、前記特徴抽出手段により抽出された複数の特徴パターンのうち少なくとも1つ以上の特徴パターンがあらかじめ登録された基準の特徴パターンとの照合に成功したとき、当該被写体像に係る被写体は本人であると判定する判定手段とを具備している。

【0019】また、本発明の画像処理装置は、被写体像 を異なる位置から撮像し、それぞれ撮像位置の異なる複 数の被写体像を入力する画像入力手段と、特徴パターン の登録時、前記画像入力手段により入力される複数の被 写体像のうち、どの撮像位置の被写体像を用いるかを決 定する入力画像決定手段と、この入力画像決定手段によ り決定された被写体像から被写体の特徴を表わす特徴パ ターンを抽出する第1の特徴抽出手段と、この第1の特 徴抽出手段により抽出された特徴パターンを当該被写体 に係る基準の特徴パターンとして、対応する被写体像の 撮像位置を示す位置情報と対応させて登録する登録手段 と、特徴パターンの照合時、前記画像入力手段により入 力される複数の被写体像のうち、当該被写体の前記登録 手段に登録されている特徴パターンとともに登録されて いる位置情報に対応する撮像位置の被写体像を選択する 照合画像選択手段と、この照合画像選択手段により選択 された被写体像から被写体の特徴を表わす特徴パターン を抽出する第2の特徴抽出手段と、この第2の特徴抽出 手段により抽出された特徴パターンを、前記登録手段に 登録されている当該被写体の特徴パターンと照合するこ とにより、当該被写体像に係る被写体を特定する照合手 段とを具備している。

【0020】また、本発明の画像処理方法は、被写体像を異なる方向から撮像する第1のステップと、この第1のステップで撮像された被写体像において特徴点を抽出し、この抽出された特徴点に基づいて特徴領域を設定し、この設定された特徴領域を複数の領域に分割し、この分割された各領域において所定情報を算出し、この算出された所定情報に基づいて特徴パターンを算出する第2のステップとを具備している。

【0021】また、本発明の画像処理方法は、被写体像を異なる方向から撮像する第1のステップと、この第1のステップで撮像された被写体像において特徴点を抽出し、この抽出された特徴領域を複数の領域に分割し、この設定された特徴領域を複数の領域に分割し、この分割された各領域において明るさの平均値を算出し、この算出された平均値に基づいて特徴パターンを算出された特徴パターンを所定の被写体に係るものとして登録する第3のステップと、前記第2のステップで算出された特徴パターンを前記第3のステップにより登録された特徴パターンと比較して被写体像に係る被写体を特定する第

4のステップとを具備している。

【0022】また、本発明の画像処理方法は、被写体像を異なる位置から撮像し、それぞれ撮像位置の異なる複数の被写体像を入力する第1のステップと、この第1のステップにより入力された複数の被写体像から被写体の特徴を表わす特徴パターンをそれぞれ抽出する第2のステップと、この第2のステップにより抽出された複数の特徴パターンをあらかじめ登録された基準の特徴パターンとそれぞれ照合する第3のステップと、この第3のステップによる照合の結果、前記第2のステップにより抽出された複数の特徴パターンのうち少なくとも1つ以上の特徴パターンがあらかじめ登録された基準の特徴パターンとの照合に成功したとき、当該被写体像に係る被写体は本人であると判定する第4のステップとを具備している。

【0023】さらに、本発明の画像処理方法は、被写体 像を異なる位置から撮像し、それぞれ撮像位置の異なる 複数の被写体像を入力する第1のステップと、特徴パタ ーンの登録時、前記第1のステップにより入力される複 数の被写体像のうち、どの撮像位置の被写体像を用いる かを決定する第2のステップと、この第2のステップに より決定された被写体像から被写体の特徴を表わす特徴 パターンを抽出する第3のステップと、この第3のステ ップにより抽出された特徴パターンを当該被写体に係る 基準の特徴パターンとして、対応する被写体像の撮像位 置を示す位置情報と対応させて登録する第4のステップ と、特徴パターンの照合時、前記第1のステップにより 入力される複数の被写体像のうち、当該被写体の前記第 4 のステップで登録された特徴パターンとともに登録さ れている位置情報に対応する撮像位置の被写体像を選択 する第5のステップと、この第5のステップにより選択 された被写体像から被写体の特徴を表わす特徴パターン を抽出する第6のステップと、この第6のステップによ り抽出された特徴パターンを、前記第4のステップで登 録された当該被写体の特徴パターンと照合することによ り、当該被写体像に係る被写体を特定する第7のステッ プとを具備している。

[0024]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して説明する。

【 O O 2 5】まず、本発明の第 1 の実施の形態について 説明する。

【0026】図1は、第1の実施の形態に係る画像処理 装置の構成を示すものである。図1において、被写体像 を撮像する撮像手段としての複数のビデオカメラ(以後、単にカメラと称す)1-1,1-2,…,1-Nが 所定間隔あけて縦一列に配設されている。本実施の形態では、モノクロの撮影が可能なビデオカメラを採用している。各カメラ1-1,1-2,…,1-Nの出力は、それぞれキャプチャボード2-1,2-2,…,2-N

12

の入力に接続されている。

【0027】すなわち、カメラ1-1からのビデオ信号 (アナログデータ) 1は、A/D変換回路2-1aによりデジタルデータに変換された後、画像メモリ2-1bに一旦格納される。ここでは、説明の簡略化のために、図示を省略しているが、キャプチャボード2-2,…,2-N内にも、同様にA/D変換回路、画像メモリが配置されており、ビデオ信号2~Nについても、キャプチャボード2-2,…,2-N内において同様の処理がなされる。

【0028】なお、カメラ1-1, 1-2, …, 1-NがUSB(ユニバーサル・シリアル・バス)インタフェースを備えている場合には、A/D変換回路2-1aは不要となり、USBインタフェースを別途設けることになる。

【0029】キャプチャボード2-1,2-2,…,2-Nと、処理プロセッサ4、ワークメモリ5、表示ボード6、辞書7は、システムバス3を介して通信自在に接続されている。さらに、表示ボード6には、ディスプレイ8が接続されている。辞書7は、複数の辞書データ(基準の特徴パターン)が登録(記憶)される登録手段である。

【0030】処理プロセッサ4は、各カメラ1-1, 1-2, …, 1-Nに対して、同期を取るための制御信号を送信し、各カメラ1-1, 1-2, …, 1-Nから送られる顔画像に係るデジタルデータを取込み、当該データに対して、ワークメモリ5や辞書7を用いながら、後述するような顔画像の登録、照合処理を行なう。

【0031】なお、各カメラ1-1, 1-2, …, 1-Nで撮像された画像に対する専用処理プロセッサを並列に設ければ、処理の高速化を図ることもできる。

【0032】図2は、カメラ1-1, 1-2, …, 1-Nの配置例をより詳細に示したものであり、図3は各カメラ1-1, 1-2, …, 1-Nで撮像される顔画像の一例を示すものである。

【0033】この例では、3つのカメラ1-1,1-2,1-3が適当な間隔をもって縦一列に配設されていて、これらカメラ1-1,1-2,1-3の前方に被写体(顔) Fが位置するようになっている。これにより、40 カメラ1-1は上斜めより見た顔画像(図3(a)参照)を撮像して取込み、カメラ1-2は正面から見た顔画像(図3(b)参照)を撮像して取込み、カメラ1-3は下斜めより見た顔画像(図3(c)参照)を撮像して取り込む。

【0034】なお、カメラ1-1, 1-2, 1-3は別々の入力装置として示しているが、カメラ1-1, 1-2, 1-3を1つの筐体内に納め、ユーザからは1つの入力装置として見えるように構成してもよい。

いる。各カメラ1-1,1-2,…,1-Nの出力は、 【0035】以下、図<math>4に示すフローチャートを参照しそれぞれキャプチャボード2-1,2-2,…,2-N 50 て、第1の実施の形態に係る画像処理装置の処理プロセ

ッサ4による顔画像の登録、照合処理を詳細に説明する。なお、図4のフローチャートは、カメラ1-1, 1-2, 1-3の各顔画像に対して個々にそれぞれ行なう処理を示している。

【0036】まず、処理プロセッサ4は、入力画像全体から顔画像領域を探索する(S1)。次に、略円形領域とみなせる瞳領域と鼻孔領域を検出し、その領域の中心位置を顔画像の特徴点とする(S2)。なお、このステップS1, S2の処理では、たとえば、前記先行文献2で述べられている従来方法を採用することができる。特徴点の検出結果は、図5(a)(b)(c)に示される通りであり、同図において「×」印で示しているのが検出された特徴点である。なお、図5(a)はカメラ1ー1からの顔画像に対応し、図5(b)はカメラ1ー2からの顔画像に対応し、図5(c)はカメラ1ー3からの顔画像に対応している。

【0037】次に、特徴領域の切出し(S3)、領域の分割(S4)からなる正規化処理を行なう。このステップS3,S4の正規化処理は、本実施の形態における顔画像の登録、照合処理の中核をなす重要な部分である。以下、図6および図7を参照して正規化処理について詳述する。

【0038】図6および図7に示されるように、正規化処理は、特徴点が2点得られる場合と4点得られる場合とで処理過程が異なる。なお、得られた特徴点の数が、これ以外の場合には、正規化処理は行なわないものとする。

【0039】特徴領域は、複数の特徴点によって定められる四角形をあらかじめカメラごとに定められた倍率で拡大した四角形として定義する。すなわち、たとえば、図6(a)に示されるように、特徴点が2点得られた場合には、図6(b)に示されるように、線分f1, f2に一定幅を持たせた四角形を更に所定の倍率で拡大した四角形領域(p1, p2, p3, p4)を特徴領域と定義する。なお、この例では、図6(c)に示されるように、この得られた特徴領域を更に 10×5 の小四角形領域に分割する。

【0040】一方、たとえば、図7(a)に示されるように、特徴点が4点得られた場合には、図7(b)に示されるように、線分f1, f2, f3, f4に一定幅を持たせた四角形を更に所定の倍率で拡大した四角形領域(q1, q2, q3, q4)を特徴領域と定義する。なお、この例では、図6(c)に示されるように、この得られた特徴領域を更に 15×15 の小四角形領域に分割する。

【0041】ここでは、特徴領域を四角形としたが、2 個または4個の特徴点から一意に計算できる領域であれば、これに限定されるものではない。また、領域分割について四角形の各辺を等分したが、特徴の強さを考慮して、分割小領域の大きさ、すなわち、面積を可変として50 14

もよい。また、等分数も上記値に限定されるものではない。カメラごとに正規化処理のパラメータを最適に設定できる点が、本実施の形態の画像処理装置の処理における特徴点である。

【0042】再び図4の説明に戻る。次に、登録、照合のための特徴パターンを計算(抽出)する(S5)。ここでは、先にステップS4で分割された各部分領域ごとに明るさの平均値を求め、それを図8に示されるような順序(ラスタスキャン順)で並べた以下に示すようなベクトル形式の顔特徴パターンデータ(以下、単に特徴ベクトルと称する)で表現する。

【0043】(v11, v12, …, vnm-1, vnm) このステップS5の処理の変形例として、平均値計算を行なう前に、あらかじめ特徴領域の各画素に対して濃度補正を行ない、濃度レンジの正規化を行なってもよい。あるいは、微分処理などの特徴強調フィルタ処理を行なってもよい。また、平均値以外に最頻値(モード値)などの他の特徴量を用いてもよいことは勿論である。

【0044】次に、登録/照合の判断を行ない(S 6)、登録の場合には、複数の特徴パターンを蓄積した 後(S7,S8)、前記先行文献2の手法(部分空間 法)を用いて辞書データを生成し(S9)、辞書7に個 人の属性情報と共に辞書データを登録する手続き(S1 0)を行ない、登録を完了することになる。

【0045】これに対して、照合の場合は、前記先行文献2の手法(部分空間法)を採用した照合計算の処理(S11)を行ない、その後、照合度出力の処理(S12)を行なう。

【0046】以上説明したように、第1の実施の形態では、1枚の入力顔画像(静止画)を処理対象としたが、入力条件の変動を考慮して、一定時間間隔で複数の連続した顔画像(動画像)を取込んで、図1のキャプチャボード2-1の画像メモリ2-1bにバッファリングしてもよいことは勿論である。動画像(時系列画像)を入力として照合計算を行なう方法は、前記先行文献3に詳しく記載されている(相互部分空間法)。

【0047】なお、動画像を処理対象とする場合の処理の流れとしては、ステップS1からS4までは図4のフローチャートと同じでよく、ステップS9,S10においてのみ変更を加えればよく、登録の際と同様に所定数の特徴パターンの蓄積を行なった後、それら複数の特徴ベクトルから主成分分析などの統計的処理を行なってパターンの照合処理を行なう。

【0048】上述した第1の実施の形態の特徴点は、カメラ1-1, 1-2, 1-3からの各顔画像の処理を統合制御する点にある。総括すると、処理プロセッサ4は以下の制御を行なっている。

【0049】すなわち、第1に、カメラ1-1とカメラ 1-2からは、眼の中心位置が2個(左右)特徴点として検出され、カメラ1-3からは更に鼻孔の中心点が2 個(左右)が加わり、合計4個の特徴点が検出されるものとする。

【0050】もし、この前提が満たされず、どれかのカメラ画像からの検出が失敗した場合には、この時点の処理は失敗とみなして処理を直ちに中断し、リトライもしくはユーザに対し失敗のメッセージを表示する。

【0051】第2に、登録の際には、全てのカメラ1ー 1,1-2,1-3からの顔画像に対応する特徴ベクト ルを一組の本人データとしてまとめて登録する。

【0052】第3に、全てのカメラ1-1, 1-2, 1-3から取込まれた顔画像に対して本人の登録データとの照合度が出力されたものとし、それをM1, M2, M3とした場合に、

M1>=K1、かつ、M2>=K2、かつ、M3>=K 3

の条件を満たすときのみ「本人である」と判定する。ここで、K1, K2, K3はあらかじめ設定された閾値とする。

【0053】入力された顔画像が誰の顔なのかを検索する場合には、上記条件を満たす者のうち(満たす者が存在しない場合は「該当者なし」と判定する)、照合度の平均値、すなわち、

(M1+M2+M3) / 3

が最大の者を該当者と最終判定する。

【0054】次に、本発明の第2の実施の形態について 説明する。

【0055】第2の実施の形態に係る画像処理装置の基本構成は、図1(第1の実施の形態)とほぼ同様であるが、カメラ1-1, 1-2, 1-3が横方向に一列に配設されている点が相違している。

【0056】このカメラ1-1、1-2、1-3の配置は、図9に示される通りである。すなわち、図9に示されるように、カメラ1-1、1-2, 1-3は、適当な間隔で、やや下から斜め上に向かって横一列に並べられている。これにより、カメラ1-1は左側面顔画像を撮像し、カメラ1-2はやや下から見た正面顔画像を撮像し、カメラ1-3は右側面顔画像を撮像し、それぞれ取込む役割を担う。

【0057】各カメラ1-1, 1-2, 1-3から入力された顔画像、および、それに対する特徴点抽出の例は、図10(a)(b)(c)に示される通りであり、同図において「 \times 」印で示しているのが検出された特徴点である。なお、図10(a)はカメラ1-1に対応し、図10(b)はカメラ1-2に対応し、図10(c)はカメラ1-3に対応している。

【0058】また、処理プロセッサ4が行なう処理も、 第1の実施の形態において特徴点が2点得られたときの 処理を、詳細は後述するような特徴点が3点得られたと きの処理に置換すること以外は同様である。

【0059】以下、図11および図12を参照して、特 50 本構成は、図1(第1の実施の形態)とほぼ同様であ

16

徴点が3点得られた場合の正規化処理について一例をあげて説明する。

【0060】すなわち、図11(a)に示されるように、右側面顔画像において、特徴点が3点得られた場合、図11(b)に示されるように、三角形(f1,f2,f3)に基づいて四角形領域(p1,p2,p3,p4)を特徴領域と定義する。この例では、図11(c)に示されるように、この特徴領域を更に 10×15 の小四角形領域に分割する。

【0061】同様に、図12(a)に示されるように、左側面顔画像において、特徴点が3点得られた場合、図12(b)に示されるように、三角形(f1,f2,f3)に基づいて四角形領域(q1,q2,q3,q4)を特徴領域と定義する。この例では、図12(c)に示されるように、この特徴領域を更に 10×15 の小四角形領域に分割する。

【0062】3点の特徴点より4角形としての領域を求めるには、線分f1.f2.f3に対しf3から平行線を引き、f3から両側に一定幅の2点を取ることにより得られる4角形を、ある倍率で拡大すればよい。このとき、倍率はカメラごとにあらかじめ設定されている。ただし、この方法に限定されるものではなく、一意に決定できるようにあらかじめ定義しておけばよいことになる

【0063】次に、本発明の第3の実施の形態について説明する。

【0064】第3の実施の形態に係る画像処理装置の基本構成は、図1(第1の実施の形態)とほぼ同様であるが、たとえば、9つのカメラ1-1, 1-2, …, 1-9が多面的に配設されている点が相違している。

【0065】このカメラ1-1, 1-2, …, 1-9の配置は、図13に示される通りである。すなわち、図13に示されるように、カメラ1-1がやや上から見た左側面顔画像を、カメラ1-2がやや上から見た正面顔画像を、カメラ1-3がやや上から見た右側面顔画像を、それぞれ取込む役割を担う。また、カメラ1-4が左側面顔画像を、カメラ1-5が正面顔画像を、カメラ1-6が右側面顔画像を、それぞれ取込む役割を担う。さらに、カメラ1-7がやや下から見た左側面顔画像を、カメラ1-9がやや下から見た正面顔画像を、カメラ1-9がやや下から見た正面顔画像を、カメラ1-9がやや下から見た右側面顔画像を、それぞれ取込む役割を担う。

【0066】なお、第3の実施の形態に係る処理プロセッサ4が行なう処理については、前述した第1の実施の形態と第3の実施の形態による処理を組合わせることで実現される。

【0067】次に、本発明の第4の実施の形態について 説明する。

【0068】第4の実施の形態に係る画像処理装置の基本機成け、図1 (第1の実施の形態) とほぼ同様であ

る。また、カメラの配設についても、上述した第1乃至 第3の実施の形態のいずれかと同様である。

【0069】第4の実施の形態に係る処理プロセッサ4が行なう処理は、前記第1乃至第3の実施の形態で説明した処理に、特徴ベクトル抽出処理を追加変更すればよい。すなわち、複数の顔画像から抽出された特徴ベクトルの統合処理を追加することになる。

【0070】具体的には、複数のカメラ1-1, 1-2, …, 1-nが配置されている場合において、各カメラ1-1, 1-2, …, 1-nの出力から以下のような ¹⁰ 特徴ベクトルが算出されるとき、

カメラ1-1:(v 11, …, v 1L1)(L1次元) カメラ1-2:(v 21, …, v 2L2)(L2次元)

カメラ1-n: (vn1, …, vnLn) (Ln次元) これらを順番に連結して、

(v11, ..., v1L1, v21, ..., v2L2, ..., vn1, ..., vnL n)

(L1+L2+…+Ln) 次元

という特徴ベクトルの統合を行なうものである。

【0071】このような特徴ベクトルの統合を行なうことにより、複数のカメラを用いているにも関わらず、たとえば、前記先行文献2に示されている単一カメラの場合と同様な登録と照合の処理(部分空間法)が可能となる。

【0072】次に、本発明の第5の実施の形態について 説明する。

【0073】第5の実施の形態に係る画像処理装置の基本構成は、図1(第1の実施の形態)とほぼ同様である。また、カメラの配設についても、前述した第1乃至 30 第3の実施の形態のいずれかと同様である。

【0074】第5の実施の形態に係る処理プロセッサ4が行なう処理は、前記第1乃至第3の実施の形態で説明した処理に、特徴ベクトル抽出処理を追加変更すればよい。ここでは、入力顔画像は一定時間ごとに時系列的に取込むものとし、照合精度を上げるために更に追加する処理は、後述するような特徴ベクトルの時系列上での統合処理である。

【0075】具体的には、時刻1,2,…,sにおける特徴ベクトル(ここでは、前記第4の実施の形態による方法で、複数のカメラからの特徴パターンの統合が既になされているとし、その合計次元数をLとする)が算出されるとき、

時刻1: (v11,…,v1L)

時刻 2 : (v 21, ···, v 2L)

時刻 s : (vsl, …, vsl)

これらの入力特徴ベクトルを時系列上で統合し、

【数1】

 $(\overline{v1}, \overline{v2}, \cdots, \overline{vL})$

ここで、

$$\overline{vi} = \frac{1}{s} \sum_{t=1}^{s} vt \cdot i$$

という動画像を用いる場合の平均特徴ベクトルを得るも のである。

【0076】このような時系列上での統合を行なうことにより、時系列パターンを用いているにも関わらず、単一カメラの場合と同様に、たとえば、前記先行文献2の方法を適用することが可能となる。

【0077】以上説明したように、第1~第5の実施の形態によれば、カメラをある条件を満たす範囲で複数個設置し、同一人物の顔画像を同時に取込んで、瞳および鼻孔の合計4個の特徴点位置情報に基づいて補正処理を行なうことにより、ユーザの負担を従来と同様に少ないまま、照合精度を向上させることができる。

【0078】また、複数の顔画像から抽出される特徴パ20 ターンを1つに統合させて、従来と同様なパターン照合 処理を行なわせることにより、計算の複雑さと処理コストの増加をできるだけ抑えることが可能である。

【0079】次に、本発明の第6の実施の形態について説明する。

【0080】第6の実施の形態に係る画像処理装置の基本構成は、図1(第1の実施の形態)とほぼ同様であるが、カメラ1-1, 1-2, …, 1-Nの配設および使用方法と、それに伴う統合処理が若干相違している。

【0081】図14に、たとえば、2つのカメラ1-1,1-2を縦方向に配設した場合の例を示す。すなわち、図14に示されるように、カメラ1-1,1-2は、適当な間隔で、やや下から斜め上に向かって縦一列に配設されていて、これらカメラ1-1,1-2の前方に被写体Fが位置するようになっている。これにより、カメラ1-1,1-2は、やや下から見た正面顔画像を撮像する。なお、図14において、9-1はカメラ1-1の上方に配設された照明灯、9-2はカメラ1-2の下方に配設された照明灯である。

【0082】図14の例では、カメラ1-1は、成人の 平均的な身長を想定した位置に設置され、カメラ1-2 は、平均的身長以下の成人や子供の身長を想定した位置 に設置されている。なお、非常に身長の高い人でカメラ の視野から外れる場合があったとしても、かがみこむことにより顔画像の入力が可能である。また、幼児は対象 外としてもよいし、踏み台などを使用したり保護者が抱き上げることにより、顔画像の入力を行なってもよい。

【0083】第6の実施の形態に係る処理プロセッサ4 が行なう統合処理は、以下のように行なわれる。すなわ ち、前記第1の実施の形態では、複数のカメラのうち、 50 どれかのカメラからの顔画像による特徴点の検出が失敗 最も顔画像の中心部にある顔画像が得られるカメラを自 動的に決定してもよい。この例では、どのカメラを用い るかという情報(カメラの位置情報としてのカメラ番 号) も個人情報となり、セキュリティレベルをより高く できる。

20

【0091】次に、照合の際は、登録されたカメラ番号 に対応するカメラからの顔画像のみに対して照合処理を 行なう。具体的には、たとえば、図16に示すように、 照合者が自身の I Dコードをキーボードあるいはカード 10 などにより入力することにより、そのIDコードに対応 した登録されているカメラ番号および特徴パターンを辞 書7から検索する。

【0092】そして、辞書7から検索したカメラ番号に 対応するカメラを選択し、この選択したカメラにより入 力された顔画像に対し前述したような画像処理を行なっ て特徴パターンを抽出し、この抽出した特徴パターンを 辞書7から検索した特徴パターンと照合して、照合者が 本人かどうかの判定を行なう。

【0093】なお、上記第7の実施の形態では、カメラ の数を2としたが、3つ以上用いることも可能であり、 さらに、1つのカメラのみを選択したが、3つ以上のカ メラを用いる場合には、2つ以上のカメラを選択しても よい。

【0094】次に、本発明の第8の実施の形態について 説明する。

【0095】前述した第1~第7の実施の形態では、カ メラを必要個数だけあらかじめ設置したが、第8の実施 の形態では、カメラ移動機構を設けることにより、1つ のカメラをあらかじめ決められた位置に移動させて同様 の処理を行なうようにしたものである。この場合、画像 の取込み時間は多少増えるが、カメラ数は1個ですみ、 設置が簡単となる。以下、具体例について説明する。

【0096】図17に、たとえば、1つのカメラ1を配 設した場合の例を示す。すなわち、図17に示されるよ うに、カメラ1は、垂直状態に設置された案内レール1 0に上下方向に摺動自在に固定されていて、図示しない カメラ移動機構により、第1ポジションP1 (図14の カメラ1-1の位置に対応)、あるいは、第2ポジショ ンP2 (図14のカメラ1-2の位置に対応) に移動さ れるようになっている。カメラ1は、やや下から斜め上 に向かって設置されている。

【0097】第8の実施の形態に係る画像処理装置の基 本構成は、図1 (第1の実施の形態) とほぼ同様である が、図18に示すように、カメラおよびキャプチャボー ドが1個になった点と、カメラ1を移動させるカメラ移 動機構11を制御するカメラ位置制御部12、カメラ位 置制御部12をシステムバス3に接続する通信ボード1 3が追加された点が相違している。

【0098】第8の実施の形態に係る処理プロセッサ4

した場合には、その時点の処理は失敗とみなし、処理を 直ちに中断し、リトライもしくはユーザに対し失敗のメ ッセージを表示するようにしたが、第6の実施の形態で は、特徴点の検出が成功した顔画像に対しては照合まで 行ない、どれかが照合に成功した場合には、「本人であ る」と判定する。

【0084】すなわち、カメラ1-1, 1-2から取込 まれた顔画像に対して本人の登録データ(辞書データ) との照合度が出力されたとし、それをM1, M2とした 場合に、

M1>=K1、または、M2>=K2の条件を満たすときに「本人である」と判定する。ここ で、K1, K2はあらかじめ設定された閾値とする。

【0085】このように処理を行なうことにより、身長 の個人差に対応して柔軟な照合が可能となる。

【0086】なお、上記第6の実施の形態では、カメラ の数を2としたが、3つ以上用いることも可能であり、 さらに、どれか1つではなく、あらかじめ定められた個 数以上の顔画像の照合に成功したときのみ「本人であ る」と判定するようにしてもよい。すなわち、カメラ1 -1, 1-2, …, 1-Nから取込まれた顔画像に対し て本人の登録データ(辞書データ)との照合度が出力さ れたとし、それをM1, M2, …, Mnとした場合に、 Mi>=Ki (i=1, 2, …, n) である個数をRと すると、

R>=T (Tは2以上)

の条件を満たすときに「本人である」と判定する。ここ で、Ki、Tはあらかじめ設定された閾値とする。

【0087】次に、本発明の第7の実施の形態について 説明する。

【0088】第7の実施の形態は、上述した第6の実施 の形態において、登録、照合の際にどのカメラからの顔 画像を用いるかを決定するようにしたものである。すな わち、まず、登録の際に、どのカメラからの顔画像を用 いるかを決定し、そのカメラ番号とともに顔画像の登録 を行なう。具体的には、たとえば、図15に示すよう に、登録者が自身の体格や身長により、カメラ1-1, 1-2のうちどちらのカメラを用いるかを決定し、その カメラを選択する。また、登録者は自身の識別情報とし てのIDコードをキーボードあるいはカードなどにより 入力する。

【0089】そして、選択したカメラにより入力された 顔画像に対し前述したような画像処理を行なって特徴パ ターンを抽出し、この抽出した特徴パターンを、先に入 力された当該登録者のIDコードおよび選択したカメラ の位置情報(すなわち、被写体像の撮像位置を示す位置 情報)としてのカメラ番号とともに辞書7に登録する。

【0090】なお、どのカメラを用いるかは、上記した ように登録者自身が決定してもよいが、2つの瞳と2つ の鼻孔に対応する特徴点が抽出され、かつ、その位置が 50 が行なう処理は、基本的には図4 (第1の実施の形態)

も可能である。

とほぼ同様であるか、ステップS11の照合計算処理が 異なっている。以下、図19に示すフローチャートを参 照してステップS11の照合計算処理を詳細に説明す る。

【0099】1:1の照合を行なうか、1:Nの照合を 行なうかによって動作が異なる(S21)。ここに、 1:1の照合とは、照合者が自身のIDコードを入力し て照合対象の登録データを指定した場合の照合処理であ り、1:Nの照合とは、照合者がIDコードを入力せ ず、全ての登録データを照合対象とした場合の照合処理 である。

【0100】まず、1:1の照合を行なう場合は、照合 者が先に入力したIDコードを読込む(S22)。次 に、この読込んだIDコードに対応した登録データ(部 分空間)を辞書7から読込む(S23)。次に、部分空 間法などにより照合を行なうため、各登録データの部分 空間と、入力部分空間との照合度を計算する(S2 4)。次に、その照合度をあらかじめ設定されている閾

値と比較し(S25, S26)、1:1照合結果を出力 する(S27)。

【O101】次に、1:Nの照合を行なう場合は、照合 対象となる登録データを全て辞書7から読込む(S2 8)。そして、それぞれの登録データとの照合度を計算 する (S 2 9)。 次に、計算された照合度の中から最大 のものを選択し(S30)、それを1:N照合結果とし て出力する(S32)。

【0102】この場合、図19の破線で囲んだステップ S31のように、最大照合度を閾値判定することによっ て、照合結果が正しいかどうかを検証することもできる (S33)。たとえば、照合度があまりに低い場合に は、どの照合対象でもないと判断することもできる。

【0103】なお、1:Nの照合は、前述したように、 照合者がIDコードを入力せず、全ての登録データを照 合対象とした場合の照合処理であり、これは前述した第 1~第6の実施の形態における照合処理が相当する。

【0104】また、上記第8の実施の形態では、カメラ の数を1としたが、2つ以上用いることも可能であり、 さらに、1つのカメラのみを移動したが、2つ以上のカ メラを用いる場合には、2つ以上のカメラを移動しても よい。

【0105】以上、本発明の実施の形態について説明し たが、本発明はこれに限定されることなく、その主旨を 逸脱しない範囲で種々の変更が可能である。

【0106】たとえば、前記実施の形態を適宜組合わせ て実施することが可能である。

【0107】また、前記実施の形態では、通常の可視領 域波長のカメラを用いた場合について説明したが、赤外 領域の赤外線カメラを用いてもよいし、距離情報(奥行 き情報)が得られるレンジファインダを使ってもよい。 あるいは、異なる種類の画像入力装置を混在させること 50 画像入力手段)、2, $2-1\sim2-N$ …キャプチャボー

[0108]

【発明の効果】以上詳述したように本発明によれば、登 録、照合の際のユーザ負担を軽減し、照合性能を大幅に 向上させ、単一方向からのパターン照合処理アルゴリズ ムを大幅に変更させることなく、複雑な計算と処理コス トの増加を抑えた画像処理装置および画像処理方法を提 供できる。

【図面の簡単な説明】

【図1】第1の実施の形態に係る画像処理装置の構成を 概略的に示すブロック図。

【図2】第1の実施の形態におけるカメラの配置例を示 す図。

【図3】第1の実施の形態において各カメラで取込まれ る顔画像の一例を示す図。

【図4】第1の実施の形態に係る処理プロセッサによる 顔画像の登録、照合処理を説明するフローチャート。

【図5】第1の実施の形態における特徴点の抽出結果の 一例を示す図。

【図6】第1の実施の形態における正規化処理について 説明するための図。

【図7】第1の実施の形態における正規化処理について 説明するための図。

【図8】第1の実施の形態におけるベクトル形式の特徴 パターンを算出する手法を説明するための図。

【図9】第2の実施の形態に係る画像処理装置における カメラの配置例を示す図。

【図10】第2の実施の形態における顔画像および特徴 点抽出の一例を示す図。

【図11】第2の実施の形態における特徴点が3点得ら れた場合の正規化処理について説明するための図。

【図12】第2の実施の形態における特徴点が3点得ら れた場合の正規化処理について説明するための図。

【図13】第3の実施の形態に係る画像処理装置におけ るカメラの配置例を示す図。

【図14】第6の実施の形態に係る画像処理装置におけ るカメラの配置例を示す図。

【図15】第7の実施の形態に係る登録処理を説明する ための図。

【図16】第7の実施の形態に係る照合処理を説明する ための図。

【図17】第8の実施の形態に係る画像処理装置におけ るカメラの配置例を示す図。

【図18】第8の実施の形態に係る画像処理装置の構成 を概略的に示すブロック図。

【図19】第8の実施の形態に係る処理プロセッサによ る照合計算処理を説明するフローチャート。

【符号の説明】

F…被写体、1, 1-1~1-N…カメラ(撮像手段、

22

ド、3…システムバス、4…処理プロセッサ、5…ワー クメモリ、6…表示ボード、7…辞書(登録手段)、8 …ディスプレイ、9-1, 9-2…照明灯(照明手

*段)、10…案内レール、11…カメラ移動機構、12 …カメラ位置制御部、13…通信ボード。

【図1】

【図8】

(13)

【図2】

【図3】

【図5】

【図13】

[図18]

【図19】

フロントページの続き

Fターム(参考) 5B043 BA04 CA02 DA05 EA02 EA06

FA07 GA02

5B047 AA07 AA23 BB06 CB23

5B057 BA02 CA08 CA12 CA16 CB08

CB12 CB16 CC03 CE09 DA07

DB02 DB09 DC03 DC30 DC34

DC39

5L096 BA08 BA18 CA02 CA05 EA12

EA35 FA08 FA62 JA03 JA11

KA15