Отчет по лабораторной работе

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА P-N ПЕРЕХОДОВ

Работу выполнили студенты

Поляков Андрей, Козлов Александр

1. ОБРАБОТКА ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК

По вольт-амперной характеристике (BAX) полупроводникового диода требовалось определить величины сопротивления толщи полупроводника и контактов R_s и контактной разности потенциалов φ_k для температур $T=300\,\mathrm{k}$ и $T=77\,\mathrm{k}$.

Теоретическая формула для ВАХ имеет вид

$$I = I_s \left(\exp\left(\frac{q(U - IR_s)}{kT}\right) - 1 \right). \tag{1}$$

Удобно переписать ВАХ в виде

$$I = \frac{U}{R_s} - \frac{kT}{qR_s} \ln\left(\frac{I}{I_s} + 1\right). \tag{2}$$

При $U/R_s\gg I$ ВАХ выходит на линейную зависимость, то есть зависимостью второго члена правой части верхного выражения от тока можно пренебречь. На рис.1 жирным отмечены участки примерно линейной зависимости. Из линейной

Рис. 1: Семейства вольт-амперных характеристик при различных температурах для образцов двух типов.

аппроксимации ВАХ мы находим некоторую прямую I(U)=aU+b, отсюда получаем для сопротивления толщи полупроводника $R_s=1/a$ и $\Delta R_s=\Delta a/a^2$, а для контактной разности потенциалов $\varphi_k=-b/a$ (определяется как точка

пересечения с осью абсцисс) и $\Delta \varphi_k = (a\Delta b + b\Delta a)/a^2$. Результаты расчётов представлены на таблице 1.

Образец	Т, к	R_s , Om	ΔR_s , Om	φ_k, \mathbf{B}	$\Delta \varphi_k$, B
В	300	1.7379	0.0115	0.6978	0.0003
	77	0.7585	0.0057	1.0389	0.0002
G	300	3.4454	0.0090	0.6740	0.0003
	77	1.1730	0.0036	1.0338	0.0001

Таблица 1: Результаты расчёта сопротивления толщи полупроводника и запирающего напряжения.

2. ОБРАБОТКА ВОЛЬТ-ФАРАДНЫХ ХАРАКТЕРИСТИК

Требовалось обработать результаты измерений вольт-фарадных характеристик диода при обратном смещении C(U), построив зависимости $(S/C)^2$ от U, где S — площадь p-n перехода (круг диаметром 0.8 мм). Определить величины приведённой концентрации примесей в p-n переходе N^* , полной толщины истощённого слоя p-n перехода l и контактной разности потенциала φ_k .

2.1. МАСШТАБИРОВАНИЕ ЕДИНИЦ ИЗМЕРЕНИЯ ЁМКОСТИ

В эксперименте ёмкость мерилась в неких условных единицах. Чтобы понять, какие это единицы, была подключена ёмкость 39 пФ. Кроме того, такое измерение позволило определить настоящий нуль измеряемой ёмкости.

Чтобы получить из ёмкости C_{wrong} в непонятных единицах ёмкость C_{pF} в пФ надо:

$$C_{\rm pF} = \frac{(C_{\rm wrong} - C_0)}{A} \times 39 \,,$$

где величина C_0 соответствует ложному нулю в условных единицах, а A определяется как величина ёмкости 39 пФ, измеренная в условных единицах (с уже вычтенной C_0).

2.2. ЗАВИСИМОСТЬ (S/C) ² ОТ U

Теория даёт зависимость

$$C = S\sqrt{\frac{\varepsilon\varepsilon_0 q}{2} \frac{N^*}{\varphi_k - U}},\tag{3}$$

откуда находим

$$\left(\frac{S}{C}\right)^2 = \frac{2}{\varepsilon \varepsilon_0 q N^*} (\varphi_k - U). \tag{4}$$

Экспериментально измеренная зависимость $(S/C)^2$ ОТ U представлена на рисунке 2.

Такая линейная зависимость справедлива лишь при малых напряжениях, поэтому линейной регрессии подвергались лишь первые 100 точек каждого из

Рис. 2: Семейства зависимостей $(S/C)^2$ ОТ U при различных температурах для образцов двух типов.

наборов данных. То есть находились параметры a и b для линейной функции aU+b. Через эти параметры регрессии искомые физические параметры выражаются следующим образом:

$$N^* = \frac{2}{\epsilon \epsilon_0 e a}, \quad \Delta N^* = \frac{2\Delta a}{\epsilon \epsilon_0 e a^2};$$

$$\varphi_k = \frac{b}{a}, \quad \Delta \varphi_k = \frac{b\Delta a + a\Delta b}{a^2};$$

$$l_0 = \epsilon \epsilon_0 \sqrt{b}, \quad \Delta l_0 = \frac{b\epsilon \epsilon_0}{2\sqrt{b}}.$$
(5)

Результаты расчётов приведены в таблице 2.

Образец	T, °C	$N^*, imes 10^{21}~{ m m}^{-3}$	φ_k , B	$\Delta \varphi_k$, B	l_0 , MKM	Δl_0 , мкм
В	300	1.40	0.581	0.005	0.741	0.003
	77	1.38	1.200	0.007	1.07	0.002
G	300	1.41	0.724	0.006	0.825	0.003
	77	1.42	1.150	0.003	1.03	0.001

Таблица 2: Результаты расчёта приведённой концентрации примесей в p-n переходе N^* , полной толщины истощённого слоя p-n перехода l и контактной разности потенциала φ_k .