

CHƯƠNG TRÌNH DỊCH

Chương 4. Phân tích cú pháp Thuật toán Top-Down

TS. Phạm Văn Cảnh Khoa Công nghệ thông tin

Email: canh.phamvan@phenikaa-uni.edu.vn

Nội dung

- 1. Ý tưởng & thuật toán
- 2. Cài đặt top-down đơn giản
- 3. Đánh giá về top-down
- 4. Bài tập

1. Ý tưởng và thuật toán

☐ Cho văn phạm G với các luật sinh:

$$S \rightarrow E + S \mid E E \rightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid (S)$$

- \square Xâu vào: W = (1 + 2 + (3 + 4)) + 5
- ☐ Suy dẫn trái từ S thành W như sau:

$$S \Rightarrow E + S \Rightarrow (S) + S \Rightarrow (E + S) + S \Rightarrow (1 + S) + S$$

$$\Rightarrow$$
 (1 + E + S) + S \Rightarrow (1 + 2 + S) + S

$$\Rightarrow$$
 (1 + 2 + E) + S \Rightarrow (1 + 2 + (S)) + S

$$\Rightarrow$$
 (1 + 2 + (E + S)) + S \Rightarrow (1 + 2 + (3 + S)) + S

$$\Rightarrow$$
 (1 + 2 + (3 + E)) + S \Rightarrow (1 + 2 + (3 + 4)) + S

$$\Rightarrow$$
 (1 + 2 + (3 + 4)) + $E \Rightarrow$ (1 + 2 + (3 + 4)) + 5

1. Ý tưởng và thuật toán

- \square Xét quá trình suy dẫn $S \Rightarrow W_1 \Rightarrow W_2 \Rightarrow \cdots \Rightarrow W$
- $\square W_i$ luôn chứa ít nhất một non-terminal
- \square Xét X là non-terminal trái nhất của W_i :
 - OW không chứa non-terminal nên X sẽ phải "biến mất".
 - OCách làm "biến mất" X chỉ có thể do sử dụng luật văn phạm mà vế trái là X.
- \square Nhận xét: trước sau gì X cũng sẽ "biến mất" bởi một luật văn phạm có dạng $X \to \alpha$
 - Top-down sử dụng năng lực tính toán của máy tính để thử các khả năng có thể (phương pháp thử-sai-quay-lui).

1. Ý tưởng và thuật toán

- \square Dò tìm quá trình suy dẫn $S \Rightarrow W1 \Rightarrow \cdots \Rightarrow W$:
 - o Với *W_i*, tìm non-terminal X
 - \circ Tìm luật dạng $X \to \alpha$, áp dụng để suy diễn $W_i \Rightarrow W_{i+1}$
 - \circ Dừng nếu $W_{i+1} = W$ (tìm được phương án suy dẫn)
 - \circ Thử với W_{i+1} hoặc quay lui nếu đã xét hết phương án
- ☐Đặc điểm của Top-down:
 - \circ Nếu W_i có chứa nhiều non-terminal thì chỉ cần thử với non-terminal trái nhất
 - \circ Trong số nhiều suy dẫn dạng $S \Rightarrow^* W$, thuật toán sẽ tìm suy dẫn trái

- \square Bước 1: A = S
- ☐ Bước 2: Với một chuỗi A đạt được trong quá trình suy dẫn:
 - Nếu A = W:
 - Kết luận: quá trình tìm kiếm thành công
 - Lưu lại quá trình biến đổi từ đầu để được A
 - Kết thúc ngay lập tức quá trình tìm kiếm
 - O Nếu A ≠ W: tìm kí hiệu trung gian trái nhất X
 - O Không tìm được X thì dừng, quay lui lại hàm gọi
 - O Duyệt tất cả các luật sinh dạng X → α
 - Áp dụng luật đó trên A (ở vị trí X), ta được A'
 - Thử bước 2 với chuỗi A = A'

- \square Ví dụ: Phân tích W = aacbc với tập luật $S \rightarrow aSbS \mid aS \mid c$
 - \circ Xét A = aSbS
 - O Tìm được kí hiệu S thứ 2 trong A là non-terminal
 - \circ Thử áp dụng luật $S \rightarrow aSbS$ được A' = aaSbSbS

- \square Xét A = aaSbSbS
 - Tìm được kí hiệu S thứ 3 trong A là non-terminal
 - O Thử áp dụng luật S → aSbS được A' = aaaSbSbSbSbS
 - O Thử áp dụng luật S → aS được A' = aaaSbSbS
 - O Thử áp dụng luật S → c được A' = aacbSbS

- \square Quá trình thử sai kết luận rằng A = aSbS không thể áp dụng luật $S \rightarrow aSbS$
 - O Quay lui về đến tình huống ban đầu ở hình (a)
 - Thử phương án tiếp theo $S \rightarrow aS$, được A' = aaSbS

- Quá trình thử sai tiếp tục và cuối cùng dừng ở phương án được thể hiện ở hình (g)
- ☐ Khi nhận được chuỗi A = W = aacbc, ngay lập tức thuật toán dừng và trả về quá trình áp dụng luật

Cài đặt thuật toán Top-Down: Cấu trúc 1 luật UNIVERSITY

```
// Lớp chứa luật văn phạm, dạng left -> right
class Rule {
  public string left, right;
 public Rule(string 1, string r) {
    left = 1; right = r;
  // chuyển đổi luật về dạng string (để in cho dễ nhìn)
  public string ToFineString() {
    string s = left + " -->";
    for (int i = 0; i < right.Length; i++)</pre>
      s += " " + right[i];
    return s;
```

Các hàm hỗ trợ


```
class PTTD {
  public List<Rule> rules = new List<Rule>(); // booting luant
                                                // các bước suy diễn
  public List<Step> steps;
                                                 // chuỗi W đích
  string w = null;
  // thêm luật left --> right vào tập luật
  public void AddRule(string left, string right) {
    rules.Add(new Rule(left, right));
  public void PrintAllRules() {
    Console.WriteLine("<bo luat van pham>");
    foreach (Rule r in rules)
      Console.WriteLine(" " + r.ToFineString());
```

Các hàm hỗ trợ


```
public void PrintSteps() {
 Console.WriteLine("Doan nhan thanh cong sau...
  string w = "S";
 foreach (Step s in steps) {
   string w0 = DoStep(w, s);
   Console.WriteLine(" {0} => {1} (vi tri...
   W = W0;
string DoStep(string w, Step s) {
  string w1 = w.Substring(0, s.position);
  string w2 = w.Substring(s.position + 1);
  return w1 + rules[s.ruleNumber].right + w2;
```

Các hàm chính


```
public bool Process(string x) {
  steps = new List<Step>();
 W = X;
  return Try("S");
// tìm vị trí non-terminal trái nhất trong s
// trả về -1 nếu không tìm được
public int FindNonterminal(string s) {
  for (int i = 0; i < s.Length; i++) {</pre>
    if (i >= w.Length) return i;
    if (s[i] != w[i]) return i;
  return -1;
```

Các hàm chính


```
// hàm thử-sai-quay-lui với chuỗi s
public bool Try(string s) {
  if (s == w) return true;
  int n = FindNonterminal(s);
  if (n != -1)
    for (int i = 0; i < rules.Count; i++)</pre>
      if (rules[i].left[0] == s[n]) {
        Step st = new Step(i, n);
        steps.Add(st);
        if (Try(DoStep(s, st))) return true;
        steps.RemoveAt(steps.Count - 1);
  return false;
```

Các hàm chính


```
class Program {
  public static void Main() {
   PTTD parser = new PTTD();
    // nạp thử bộ luật
    parser.AddRule("S", "B");
    parser.AddRule("B", "R");
    parser.AddRule("B", "(B)");
    parser.AddRule("R", "E=E");
    parser.PrintAllRules();
    if (parser.Process("(x=(x+y))"))
      parser.PrintSteps();
```

3. Đánh giá thuật toán Top-down

- Thuật toán đơn giản, sử dụng sức mạnh của máy tính để tìm kiếm lời giải ☐ Thuật toán dạng thử-sai-quay-lui, không cắt nhánh, độ phức tạp tính toán là hàm mũ (~ chậm) Thuật toán không vạn năng, không làm việc được với các văn phạm có đệ quy trái Lý do: vì không có cắt nhánh phù hợp, dẫn đến việc đi mãi theo chiều sâu mà không quay lui
- Có thể sửa đổi thuật toán như thế nào để làm việc được với văn phạm có đệ quy trái?

3. Đánh giá thuật toán Top-down

- ☐Tăng tính vạn năng của thuật toán:
 - Xử lý tình huống đệ quy trái bằng ràng buộc phù hợp
 - O Biến đổi văn phạm trước khi bắt đầu thử-sai-quay-lui
- ☐Tăng tốc độ tính toán:
 - Tập trung vào việc cài đặt cắt nhánh (nhiều ý tưởng)
 - Cắt nhánh khi trong A có terminal không có trong w
 - Cắt nhánh khi số terminal trong A nhiều hơn trong w
 - Tính trước các bước không có "cơ hội về đích" để loại bỏ bớt những tình huống thử-sai không cần thiết
 - Sử dụng lại những kết quả đã duyệt cũ

4. Bài tập

1. Chỉ ra quá trình thực hiện phân tích top-down của chuỗi **raid** thuộc văn phạm G có tập luật:

```
S \rightarrow r X d | r Z d

X \rightarrow o a | e a

Z \rightarrow a i
```

2. Chỉ ra quá trình thực hiện phân tích top-down của chuỗi ((x+y)=(y+x)) thuộc văn phạm G có tập luật:

```
S \rightarrow B

B \rightarrow R \mid (B)

R \rightarrow E = E

E \rightarrow x \mid y \mid (E + E)
```

4. Bài tập

3. Có thể áp dụng thuật toán phân tích top-down cho chuỗi (a+a)*a thuộc văn phạm G dưới đây hay không? Chỉ ra quá trình thực hiện nếu có thể

```
E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow (E) \mid a
```

4. Tương tự câu trên, chỉ ra quá trình phân tích topdown của chuỗi true and not false với tập luật:

```
E \rightarrow E and T \mid T

T \rightarrow T or F \mid F

F \rightarrow not F \mid (E) \mid true \mid false
```

4. Bài tập

5. Chỉ ra quá trình thực hiện phân tích top-down của chuỗi abbcbd thuộc văn phạm G có tập luật:

$$S \rightarrow a A \mid b A$$

 $A \rightarrow c A \mid b A \mid d$

6. Chỉ ra quá trình thực hiện phân tích top-down của chuỗi aaab thuộc văn phạm G có tập luật:

$$S \rightarrow A B$$

 $A \rightarrow a A \mid \epsilon$
 $B \rightarrow b \mid b B$