Neural self-supervised audio representation for SpeechLLM

Benchmarking neural audio codecs for Polish language

Who I am

Paweł Cyrta

Research Scientist
Speech & Music Technology stenograf.io

Ph.d candidate at Cyfronet AGH

prev @SamsungPolska R&D, @IRCAM, @Rev.ai, @BabbleLabs, @Tooploox, prev also at F.Chopin Warsaw Music University weekend lecturer at Warsaw University of Technology, postgraduate studies Deep learning in digital media

#ASR, #TTS, #AI #ML 👂 🎮 🖁 😭 💬 👡 🔰 📊 📺 📻

Pytania badawcze

W ramach badań chcę odpowiedzieć na pytania:

- Czy dostępne neuralne kodeki mowy dobrze reprezentują jęz. Polski
- Czy neuralne kodeki mowy są dopasowane do istniejących modeli LLM dla jęz. Polskiego np. Bielika

Two main research questions:

- Do available neural speech codecs effectively represent the Polish language?
- Are neural speech codecs well-suited for integration with existing Polish LLMs such as Bielik?

Text LLMs performs next-token-prediction.

What about in speech processing?

Similar to text LM, there are also some models trained on speech tokens

Discrete speech tokens

What are these tokens?

What do speech LM look like?

How to do speech LM for Polish lang.?

What are these speech tokens?

Speech LM trained on speech tokens

Discrete speech tokens:

- pseudo text
- semantic tokens

Speech representation

pre-trained SSL representation models

e.g. HuBERT, w2v-BERT, WavLM

Speech LM performs next-token prediction on the speech tokens autoregressively

The speech tokens can be synthesized back to waveform

neural audio codec - as self-supervisedly learned representation

Here, are list of representation to evaluate

self-supervisedly learned representation

wav2vec2.0, HuBERT, WavLM, w2v-bert-2.0

neural audio codecs:

EnCodec, DAC, SoundStream,

neural speech codecs for speechLLM

SpeechTokenizer, WavTokenizer, XCodec, FunCodec, Mimi

Dataset:

Bigos-v2 test set https://huggingface.co/datasets/amu-cai/pl-asr-bigos-v2

Neural Speech Representation Comparison

Ground Truth (GT) vs. Reconstructed (REC) \cdot \uparrow higher is better \cdot \downarrow lower is better

Codec	Category	PESQ ↑	Spk-Sim ↑	$\mathbf{WER}\downarrow$	$\mathbf{CER}\downarrow$	STOI ↑	Params	Bitrate
wav2vec 2.0	SSL Model	-/-	0.850 / -	0.155/0.245	<u>0.09 / 0.158</u>	-/-	95M	-
HuBERT	SSL Model	-/-	o.875 / -	0.155 / 0.238	<u>0.09 / 0.152</u>	-/-	95M	-
WavLM	SSL Model	-/-	0.892 / -	0.155 / 0.225	0.09 / 0.145	-/-	95M	-
w2v-BERT 2.0	SSL Model	-/-	0.865 / -	0.155 / 0.242	0.09 / 0.155	-/-	600M	2
DAC	Neural Codec	3.69 / 2.66	<u>0.965/-</u>	0.155 / 0.202	0.09 / 0.125	<u>0.94 / 0.86</u>	73M	8 kbps
EnCodec	Neural Codec	3.21 / 2.27	0.919 / -	<u>0.155 / 0.198</u>	0.09 / 0.114	0.93 / 0.85	16M	6 kbps
SoundStream	Neural Codec	3.15 / 2.18	0.908 / -	0.155 / 0.215	0.09 / 0.128	0.92 / 0.83	зоМ	6 kbps
Mimi	Neural Codec	2.77 / -	0.928 / -	<u>0.155 / 0.287</u>	<u>0.09 / 0.173</u>	o.88 / -	95M	12.5 kbps
SpeechTokenizer	Neural Codec	2.97 / -	0.924 / -	<u>0.155 / 0.216</u>	0.09 / 0.120	0.89 / -	35M	1 kbps
WavTokenizer	Neural Codec	2.17 / 1.14	0.743 / -	<u>0.155 / 0.494</u>	<u>0.09 / 0.325</u>	0.83 / 0.49	48M	0.7 kbps
XCodec	Neural Codec	3.23 / 1.85	0.942 / -	<u>0.155 / 0.185</u>	0.09 / 0.106	0.91 / 0.76	52M	5 kbps
FunCodec	Neural Codec	3.08 / 2.05	0.915 / -	0.155 / 0.225	<u>0.09 / 0.135</u>	0.90 / 0.82	45M	4 kbps
SemantiCodec	Semantic Codec	2.64 / 1.32	0.907 / -	0.155 / 0.318	0.09 / 0.195	0.86 / 0.60	120M	0.5 kbps

Note: Values shown as GT/REC format. Best values highlighted with **bold underline**.

Metrics:

PESQ: Perceptual Evaluation of Speech Quality (1-5 scale)

Spk-Sim: Speaker Similarity (cosine similarity, o-1)

WER/CER: Word/Character Error Rate from ASR

STOI: Short-Time Objective Intelligibility (0-1)

Use speech codec as input. then fine-tune the adapter

Speech tokens

Cześć, chcesz o tym pogadać?

SpeechLLM Perplexity on BIGOS Dataset

Evaluated on Bielik-based SpeechLLM after pretraining

Codec	Category	$\mathbf{PPL}\downarrow$	Params	Bitrate
wav2vec 2.0	SSL Model	156 / 128	95M	2
uBERT SSL Model		142 / 115	95M	-
JavLM SSL Model		138 / 109	95M	-
w2v-BERT 2.0	SSL Model	145 / 118	600M	-
DAC	Neural Codec	247 / 194	73M	8 kbps
EnCodec	Neural Codec	76 / 141	16M	6 kbps
SoundStream	Neural Codec	85 / 152	зоМ	6 kbps
Mimi	Neural Codec	127 / -	95M	12.5 kbps
SpeechTokenizer	Neural Codec	14 / -	35M	ı kbps
WavTokenizer	Neural Codec	105 / 38	48M	0.7 kbps
XCodec	Neural Codec	30 / 48	52M	5 kbps
FunCodec	Neural Codec	<u>12 / 18</u>	45M	4 kbps
SemantiCodec	Semantic Codec	8 / 16	120M	0.5 kbps

Note: Values shown as before/after format (initial/fine-tuned). Best value highlighted with **bold underline**.

PPL: Perplexity metric measuring prediction uncertainty (lower is better). Evaluated after pretraining on Polish conversational data.

Pytania? questions?

Contact me: pawel@cyrta.com