

Prediction of Loan Status at PT. ABC using Machine Learning Algorithms

NAME : SHINTA AMALIA

BATCH: RMT-034

PROBLEM STATEMENT

I used to create a model to study patterns in predicting whether a loan application is approved or not. The model will also be saved so that it can be used to predict new data.

THE DATA

Column	Description		
Loan_ID	A unique Ioan ID		
Gender	Either male or female		
Married	Married(yes) or Not Married(No)		
Dependents	Number of persons depending on the client		
Education	Applicant Education(Graduate or Not Graduate)		
Self_Employed	Self-employed (Yes/No)		
ApplicantIncome	Applicant income		
CoapplicantIncome	Co-applicant income		
LoanAmount	Loan amount in thousands		
Loan_Amount_Term	Terms of the loan in months		
Credit_History	Credit history meets guidelines		
Property_Area	Applicants are living either Urban, Semi-Urban or Rural		
Loan_Status	Loan approved (Approved "1" or Not Approved "0")		

MODELING FLOWCHART

EXPLORATORY DATA ANALYSIS (EDA)

A. Target Variabel (Loan_Status)

Loan_Status	Count
1	219
0	89

Based on the calculations and pie chart, it was found that the Loan_Status "1" or approved is more prevalent at 71.10% compared to "0" or not approved at 28.90%. The detailed numbers are 219 for 1 and 89 for 0.

B. Gender

Loans are applied for more by males compared to females.

C. Property Area

Loans are most frequently applied for in the Semi Urban area followed by Urban and Rural areas.

D. Education

Loans are mostly applied for by applicants with a Graduate.

E. Applicant Income

Maximum: 9703 Thousand US Dollar Minimum: 150 Thousand US Dollar Average: 3599.13 Thousand US Dollar

Loan_Status	Max	Min	Avg
1	9703	645	3630.70
0	7660	150	3521.43

F. Loan Amount

Maximum: 150.0 Thousand US Dollar Minimum: 9.0 Thousand US Dollar Average: 104.62 Thousand US Dollar

Loan_Status	Max	Min	Avg
1	150	17	105.62
0	150	9	102.18

. .

G. Loan Amount Term

Maximum: 480.0 Months

Minimum: 36.0 Months

Average: 341 Months

Loan_Status	Max	Min	Avg
1	480	60	341
0	480	36	342

RESULT AND DISCUSSION

In the evaluation model, the resulting evaluation matrix is Accuracy Score, Precision Score, Recall Score, and F1 Score. However, due to the case study regarding the prediction of 'Loan_Status' whether it is approved or not, the **Precission Score** is the main evaluation matrix.

	Precision	KNN	SVM	Decision Tree	Random Forest	XGBoost
Without Hyperparameter Tuning	Train	0.83735	0.83529	1.00000	1.00000	1.00000
	Test	0.72222	0.80000	0.73913	0.81250	0.80000
	Mean (Cross Validation)	0.78186	0.83559	0.86298	0.85297	0.85518
	Std (Cross Validation)	0.04174	0.01928	0.03306	0.02888	0.03123
With Hyperparameter Tuning	Train	0.80814	0.83529	0.94483	0.90446	1.00000
	Test	0.76471	0.80000	0.76744	0.79167	0.80435
	Mean (Cross Validation)	0.80135	0.83559	0.87125	0.84598	0.85982
	Std (Cross Validation)	0.03064	0.01928	0.02862	0.01998	0.02544

Based on the comparison results, I chose **SVM** as the best model because the model is classified as good fit with the STD results at the lowest precision score among other models.

CONFUSSION MATRIX OF SVM MODEL

4

BUSINESS INSIGHT

- The tested SVM model can be immediately implemented into the company's loan approval system to support the decision-making process.
- The company needs to offer a variety of loan products with flexible amounts and terms to meet the diverse needs of customers.
- In addition to income, the company needs to consider other factors such as job stability, credit history, and the amount of assets in the credit assessment process.

CONCLUSION

To achieve optimal prediction results for loan status, whether approved or not, the SVM model is the best model to use. This is reflected in the precision score produced, which is 83% on the training set and 81% on the test set, with a difference of 3% < 5%, indicating that the resulting model is classified as a good fit. Thus, the tested SVM model can be immediately implemented into the company's loan approval system to support decision-making.

THANK YOU