

Large-scale Traffic Prediction using 3DResNet and Sparse-UNet

Authors: Bo Wang, Reza Mohajerpoor, Chen Cai, Inhi Kim, Hai Vu

Presenter: Bo Wang

Outline

- 1. Background
- 2. Methodology
- 3. Conclusion

Background

Background

Methodology - Data Loader

Select days from Monday to Sunday

```
▼
```

Select all cities

```
"MOSCOW2019": 1,
"MOSCOW2020": 1,
"ANTWERP2020": 1,
"ANTWERP2019": 1,
"BERLIN2019": 2,
"CHICAGO2019": 2,
"MELBOURNE2019": 3,
"BARCELONA2019": 1,
"BANGKOK2020": 1,
"BANGKOK2019": 2,
"ISTANBUL2019": 2,
```

```
def get_train_file(df, config):
    diff_dofw = None
    while diff_dofw != 7:
        df_temp = pd.concat([df[df.yeartype == k].sample(n=config[k])for k in df.yeartype.unique()])
        diff_dofw = len(df_temp.dayofweek.unique())
    files_train = [Path(f) for f in df_temp.file.values]
    random.shuffle(files_train)
    return files_train
```

```
[PosixPath('/home/bwan131/scratch/nips/data/raw/BANGKOK/training/2020-03-23 BANGKOK 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/MELBOURNE/training/2019-06-23 MELBOURNE 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/ANTWERP/training/2019-03-13_ANTWERP_8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/BERLIN/training/2019-02-17 BERLIN 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/MOSCOW/training/2019-03-02_MOSCOW_8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/BANGKOK/training/2020-05-15 BANGKOK 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/ANTWERP/training/2020-01-09 ANTWERP 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/MOSCOW/training/2020-06-01_MOSCOW_8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/MELBOURNE/training/2019-03-13 MELBOURNE 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/BARCELONA/training/2019-01-03_BARCELONA_8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/BANGKOK/training/2019-06-21 BANGKOK 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/ISTANBUL/training/2019-01-12_ISTANBUL_8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/BERLIN/training/2019-05-21 BERLIN 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/MELBOURNE/training/2019-05-28 MELBOURNE 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/BANGKOK/training/2019-01-02 BANGKOK 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/ISTANBUL/training/2019-04-10 ISTANBUL 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/CHICAGO/training/2019-01-18 CHICAGO 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/CHICAGO/training/2019-01-03 CHICAGO 8ch.h5'),
PosixPath('/home/bwan131/scratch/nips/data/raw/BARCELONA/training/2020-02-11_BARCELONA_8ch.h5')]
```

Methodology - Data Loader

File 1 0, **1**, 2, 3, 4

File 2 5, 6, **7**, 8, 9

File 3 10, 11, 12, **13**, 14

Dataloader(dataset, batch_size=3, shuffle=True)

Shuffle all index first Get batch index -> (1, 7, 13)

If the indies are coming from multiple files, it will need multiple IO operations.

From 1.89 batches/s

Up to 60 batches/s

30X faster

File 1 12, 13, 11, 14, 15

File 2 2, 3, 1, 4, 0

File 3 9, 6, 5, 7, 10, 8

Custom Sampler + File Cache

Methodology – 3DResNets

3DResNets

MSE 50.219 (5th place) on the Core Challenge

Methodology - Sparse-UNet

Motivation

Methodology - Sparse-UNet

Sparse Convolution

Regular Convolution

Sparse Convolution

Source:

https://github.com/facebookresearch/SparseConvNet

https://github.com/NVIDIA/MinkowskiEngine

Sparse-UNet

Methodology - Sparse-UNet

Speed Comparison

Table 1. Different training times using Conv3D and sparse convolution (batch size = 2 with one P100 GPU). City names from left to right: Antwerp, Bangkok, Barcelona, Berlin, Chicago, Istanbul, Melbourne, Moscow.

City	ANT	BAN	BAR	BER	CHI	IST	MEL	MOS
Non-zero Rate (per batch)	0.0079	0.0072	0.0023	0.0303	0.0085	0.0481	0.0039	0.0758
Conv3D-UNet (batches/s)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Sparse-UNet (batches/s)	7.76	6.82	8.30	5.56	7.87	3.53	8.45	2.18

MSE 61.59 for Extended Challenge

Performance Bottleneck

Conclusion

We have proposed two new approaches, **3DResNet** (more accurate than 2D Convolution) and **Sparse-UNet** (much faster in modelling), for the challenges in traffic4cast 2021.

In the future:

- (1) Study further on sparse convolution in regression problems
- (2) Combine different feature learning approaches together
- (3) Consider the transport domain knowledge in designing neural networks
- (4) Improve the spatial accuracy in local area.

Thank you!

Large-scale Traffic Prediction using 3DResNet and Sparse-UNet

Authors: Bo Wang, Reza Mohajerpoor, Chen Cai, Inhi Kim, Hai Vu

Presenter: Bo Wang

Paper: https://arxiv.org/abs/2111.05990

Code: https://github.com/resuly/Traffic4Cast-2021