Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 07.12.2011

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
	Aufgabe	1	2	3	4	\sum	
	erreichbare Punkte	11	9	13	7	40	
	erreichte Punkte						
	1						
${\bf Bitte}\;$							
~-			_				
tragen Sie	e Name, Vorname und	Matrik	elnumr	ner auf	dem I	eckblat)	et ein,
rechnen S	ie die Aufgaben auf se	eparater	n Blätte	ern, ni e	cht auf	dem A	ngabeblatt,
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	lie Mat	rikelnu	mmer a	ın,
h a min dan	. Cia Ilana Anterrantan a	afiib.ul	lich un	J			
begrunger	n Sie Ihre Antworten a	ausiunri	ncn und	a			
	ie hier an, an welchen Intreten können:	n der fo	olgende	n Term	nine Sie	nicht	zur mündlicher
_	13.12.2011 □ Mi., 14	1.12.201	1 🗆]	Fr., 16.	12.2011	. D	i., 20.12.2011

1. Abbildung 1 zeigt die Beschaltung eines Operationsverstärkers. Der Operationsverstärker sei ideal (unendliche Verstärkung, keine Input-Bias Ströme, keine Offset Spannungen). Der Eingang des Systems ist die Spannung u_e , der Ausgang die Spannung u_a . Die Beschränkung der Eingangsspannung auf $u_e > -U_0$ gewährleistet den Betrieb der Diode D in Durchlassrichtung. Der Diodenstrom kann hier in guter Näherung durch

$$I_D = I_S e^{\frac{U_D}{mU_T}}$$

mit dem Sättigungssperrstrom I_S , der Temperaturspannung U_T und einem Korrekturfaktor m beschrieben werden.

Abbildung 1: Operationsverstärkerschaltung.

a) Wählen Sie für die in Abbildung 1 dargestellte Schaltung geeignete Zustands- $5 \,\mathrm{P.}|$ größen $\mathbf x$ und bestimmen Sie das zugehörige mathematische Modell der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$$
$$y = g(\mathbf{x}, u).$$

b) Bestimmen Sie alle Ruhelagen des Systems. Linearisieren Sie das System um 4P. eine allgemeine Ruhelage und schreiben Sie es in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x}$$

an.

c) Überprüfen Sie mit Hilfe des PBH-Eigenvektortests, ob das folgende lineare, 2 P. | zeitinvariante System der Form

$$\dot{\mathbf{x}} = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mathbf{x} + \begin{bmatrix} d \\ -c \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}$$

vollständig beobachtbar ist.

- 2. Bearbeiten Sie folgende Teilaufgaben und begründen Sie Ihre Aussagen ausführlich. Hinweis: Alle Teilaufgaben (a,b,c) können unabhängig voneinander gelöst werden.
 - a) Zeigen Sie, dass die Eigenschaft der vollständigen Erreichbarkeit eines linearen $2\,\mathrm{P.l}$ zeitinvarianten Systems invariant gegenüber regulären Zustandstransformationen der Form $\mathbf{x} = \mathbf{V}\mathbf{z}$ ist.
 - b) Geben Sie für ein Verzögerungsglied 2-ter Ordnung der Form 3 P.|

$$G(s) = \frac{V}{1 + 2\xi(sT) + (sT)^2}$$

die Resonanzfrequenz (Betrag der Übertragungsfunktion nimmt Maximum an) in Abhängigkeit der Zeitkonstanten T und des Dämpfungsgrades $0 \le \xi < 1$ an.

c) Betrachten Sie die folgenden Übertragungsfunktionen und die Ortskurven aus 4P. Abbildung 2. Ordnen Sie den Ortskurven die jeweils passende Übertragungsfunktion zu. Geben Sie kurze Begründungen für Ihre Zuordnungen an.

1)
$$G_1(s) = \frac{0.002}{\left(s + \frac{1}{10}\right)^2 \left(s + \frac{1}{5}\right)}$$

$$2) G_2(s) = \frac{s}{1 + s \, 10}$$

1)
$$G_1(s) = \frac{0.002}{\left(s + \frac{1}{10}\right)^2 \left(s + \frac{1}{5}\right)}$$
 2) $G_2(s) = \frac{s}{1 + s \cdot 10}$
3) $G_3(s) = \frac{0.02}{s\left(s + \frac{1}{10}\right)\left(s + \frac{1}{5}\right)}$ 4) $G_4(s) = \frac{0.02}{\left(s + \frac{1}{10}\right)\left(s + \frac{1}{5}\right)}$

4)
$$G_4(s) = \frac{0.02}{\left(s + \frac{1}{10}\right)\left(s + \frac{1}{5}\right)}$$

Abbildung 2: Ortskurven zu Aufgabe 2.c).

- 3. Bearbeiten Sie die nachfolgenden Aufgabenstellungen.
 - a) Was besagt das Separationsprinzip? 1 P.
 - b) Zeigen Sie dessen Gültigkeit. Gehen Sie dabei von einem linearen, zeitinvarianten und zeitdiskreten System der Form 3 P.|

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Gamma} \mathbf{u}_k \ \mathbf{y}_k = \mathbf{C} \mathbf{x}_k$$

aus.

c) Geben Sie die Übertragungsfunktion G(s) sowie eine mögliche Zustandsraumdarstellung für das folgende System an. Nehmen Sie dabei an, dass alle Anfangswerte gleich Null sind. 2 P.

$$y - 9u = \frac{1}{5} \left\{ \frac{d}{dt} (y - 2u) + \int \left[(16y - 29u) + \int (38u - 24y) dt \right] dt \right\}$$

d) Berechnen Sie die z-Übertragungsfunktion mit einer allgemeinen Abtastzeit $T_{\rm a}$. 3 P.

$$G(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \frac{2s^2 + 10s + 8}{s^3 + 7s^2 + 10s}$$

- e) Überprüfen Sie die folgenden Systeme auf Linearität und Zeitinvarianz. 2 P.
 - i. $8\dot{y} + 0.25 \int ty dt = 3\dot{u}$
 - ii. $12\ddot{y} \dot{y}\sin(u) = 0$
 - iii. $y \frac{1}{\tanh(a)} = u$, a = const.iv. $\dot{x} = ax + u + d$, d = const.
- f) Geben sie die Gesamtübertragungsfunktion des Systems aus Abbildung 3 an.

Abbildung 3: Blockschaltbild.

- 4. Bearbeiten Sie die folgenden Teilaufgaben.
 - a) Gegeben ist das System der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$

$$y = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$$

$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 0 & 0 & 5 \end{bmatrix}.$$

- i. Berechnen Sie die Jordansche Normalform des Systems.

ii. Berechnen Sie die Transitionsmatrix Φ .

2 P.2 P.

b) Entwerfen Sie für das System

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Gamma} u_k$$

$$y_k = \mathbf{c}^{\mathrm{T}} \mathbf{x}_k$$

$$\mathbf{\Phi} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & \frac{1}{2} \\ 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{\Gamma} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & 7 & 5 \end{bmatrix}$$

einen Dead-Beat Regler der Form $u_k = \mathbf{k}^T \mathbf{x}_k$.

3 P.|