

Aggregate Demand II: Applying the *IS-LM* Model

Presentation Slides

Macroeconomics

N. Gregory Mankiw

Context

- Chapter 10 introduced the model of aggregate demand and supply.
- Chapter 11 developed the IS-LM model, the basis of the aggregate demand curve.

IN THIS CHAPTER, YOU WILL LEARN:

- how to use the IS-LM model to analyze the effects of shocks, fiscal policy, and monetary policy
- how to derive the aggregate demand curve from the IS-LM model
- several theories about what caused the Great Depression

12.1 Explaining Fluctuations with the IS–LM Model

Equilibrium in the IS-LM model

The *IS* curve represents equilibrium in the <u>goods</u> market.

$$Y = C(Y - \overline{T}) + I(r) + \overline{G}$$

The *LM* curve represents money market equilibrium.

$$\overline{M}/\overline{P}=L(r,Y)$$

The intersection determines the <u>unique combination</u> of **Y** and **r** that satisfies <u>equilibrium in both markets</u>.

Policy analysis with the IS-LM model

$$Y = C(Y - \overline{T}) + I(r) + \overline{G}$$

$$\overline{M}/\overline{P} = L(r,Y)$$

We can use the *IS-LM* model to analyze the effects of

- fiscal policy: G and/or T
- monetary policy: M

An increase in government purchases

1. IS curve shifts right

by
$$\frac{1}{1-MPC} \Delta G$$
 causing output & income to rise.

- 2. This raises money demand, causing the interest rate to rise...
- 3. ...which reduces investment, so the final increase in **Y**

is smaller than
$$\frac{1}{1-MPC} \Delta G$$

A tax cut

Consumers save (1-MPC) of the tax cut, so the initial boost in spending is smaller for ΔT than for an equal ΔG ... and the *IS* curve shifts by

2. ...so the effects on r and Y are smaller for ΔT than for an equal ΔG .

Monetary policy: An increase in M

- 1. $\triangle M > 0$ shifts the LM curve down (or to the right)
- 2. ...causing the interest rate to fall
- 3. ...which increases investment, causing output & income to rise.

Monetary transmission mechanism: effect of increased M on Y

Interaction between monetary & fiscal policy

IS: Y=C(Y-T)+I(r)+G

- Model:
 - Monetary & fiscal policy variables (M, G, and T) are exogenous.
- Real world:
 - Monetary policymakers may adjust M in response to changes in fiscal policy, or vice versa.
 - Such interactions may alter the impact of the original policy change.

The Fed's response to $\triangle G > 0$

- Suppose Congress increases G.
- Possible Fed responses:
 - 1. hold **M** constant
 - 2. hold *r* constant
 - 3. hold Y constant
- In each case, the effects of the ∆G are different...

Response 1: Hold M constant

If Congress raises *G*, the *IS* curve shifts right.

If Fed holds **M** constant, then *LM* curve doesn't shift.

Results:

$$\Delta \mathbf{Y} = \mathbf{Y}_2 - \mathbf{Y}_1$$

$$\Delta r = r_2 - r_1$$

Response 2: Hold r constant

If Congress raises *G*, the *IS* curve shifts right.

To keep *r* constant,
Fed increases *M*to shift *LM* curve right.

Results:

$$\Delta \mathbf{Y} = \mathbf{Y}_3 - \mathbf{Y}_1$$

$$\Delta r = 0$$

Response 3: Hold *Y* **constant**

If Congress raises *G*, the *IS* curve shifts right.

To keep **Y** constant, Fed reduces **M** to shift **LM** curve left.

Results:

$$\Delta Y = 0$$

$$\Delta r = r_3 - r_1$$

Shocks in the IS-LM model

IS shocks: exogenous changes in the demand for goods & services.

Examples:

- stock market boom or crash
 - → change in households' wealth
 - $\rightarrow \Delta C$
- change in business or consumer confidence or expectations
 - $\rightarrow \Delta I$ and/or ΔC

Shocks in the IS-LM model

LM shocks: exogenous changes in the demand for money.

Examples:

- A wave of credit card fraud increases demand for money.
- More ATMs or the Internet reduce money demand.

NOW YOU TRY

Analyze shocks with the IS-LM model

Use the IS-LM model to analyze the effects of

- a housing market crash that reduces consumers' wealth
- 2. consumers using cash in transactions more frequently in response to an increase in identity theft

For each shock,

- a. use the *IS-LM* diagram to determine the effects on **Y** and **r**.
- **b.** figure out what happens to **C**, **I**, and the unemployment rate.

ANSWERS, PART 1 Housing market crash

IS shifts left, causingr and Y to fall.

C falls due to lower wealth and lower income,

I rises because*r* is lower

u rises becauseY is lower(Okun's law)

ANSWERS, PART 2 Increase in money demand

LM shifts left, causingr to rise and Y to fall.

- **C** falls due to lower income,
- I falls becauser is higher
- u rises becauseY is lower(Okun's law)

- During 2001:
 - 2.1 million jobs lost, unemployment rose from 3.9% to 5.8%.
 - GDP growth slowed to 0.8% (compared to 3.9% average annual growth during 1994–2000).

Causes: 1) Stock market decline → ↓*C*

Causes: 2) 9/11

- increased uncertainty
- fall in consumer & business confidence
- result: lower spending, IS curve shifted left

Causes: 3) Corporate accounting scandals

- Enron, WorldCom, etc.
- reduced stock prices, discouraged investment

Fiscal policy response: shifted IS curve right

- tax cuts in 2001 and 2003
- spending increases
 - airline industry bailout
 - NYC reconstruction
 - Afghanistan war

Monetary policy response: shifted LM curve right

What is the Fed's policy instrument?

- The news media commonly report the Fed's policy changes as interest rate changes, as if the Fed has direct control over market interest rates.
- In fact, the Fed targets the <u>federal funds rate</u>—the interest rate banks charge one another on overnight loans.
- The Fed changes the money supply and shifts the LM curve to achieve its target.
- Other short-term rates typically move with the federal funds rate.

What is the Fed's policy instrument?

Why does the Fed target interest rates instead of the money supply?

- 1) They are <u>easier to measure</u> than the money supply.
- 2) The Fed might believe that <u>LM shocks are</u> more prevalent than <u>IS shocks</u>. If so, then targeting the interest rate stabilizes income better than targeting the money supply. (See problem 8 of this chapter)

- 8. The Fed is considering two alternative monetary policies:
- A. holding the money supply constant and letting the interest rate adjust, or
- **B.** adjusting the money supply to hold the interest rate constant.

In the *IS*–*LM* model, which policy will better stabilize output under the following conditions?

- (1). All shocks to the economy arise from exogenous changes in the demand for goods and services.
- (2). All shocks to the economy arise from exogenous changes in the demand for money.

(1). All shocks to the economy arise from exogenous changes in the demand for goods and services.

(2). All shocks to the economy arise from exogenous changes in the demand for money.

12.2 IS-LM as a Theory of Aggregate Demand

IS-LM and aggregate demand

- So far, we've been using the IS-LM model to analyze the short run, when the price level is assumed fixed.
- However, a change in P would shift LM and therefore affect Y.
- The aggregate demand curve (introduced in Chap. 10) captures this relationship between **P** and **Y**.

Deriving the AD curve

Monetary policy and the AD curve

The Fed can increase aggregate demand:

 $\uparrow M \rightarrow LM$ shifts right

$$\rightarrow \downarrow r$$

$$\rightarrow \uparrow I$$

→ ↑Y at each value of P

Fiscal policy and the AD curve

Expansionary fiscal policy (↑**G** and/or ↓**T**) increases agg. demand:

$$\downarrow T \rightarrow \uparrow C$$

- → IS shifts right
- → ↑Y at each value of P

IS-LM and AD-AS in the short run & long run

<u>Recall from Chapter 10</u>: The force that moves the economy from the short run to the long run is the gradual adjustment of prices.

In the short-run equilibrium, if	then over time, the price level will
Y > \overline{Y}	rise
$Y < \overline{Y}$	fall
$Y = \overline{Y}$	remain constant

A negative *IS* shock shifts *IS* and *AD* left, causing **Y** to fall.

In the new short-run equilibrium, $Y < \overline{Y}$

In the new short-run equilibrium, $Y < \overline{Y}$

Over time, **P** gradually falls, causing:

- SRAS to move down
- M/P to increase,
 which causes LM
 to move down

Over time, **P** gradually falls, causing:

- SRAS to move down
- M/P to increase, which causes LM to move down

This process continues until economy reaches a long-run equilibrium with $\mathbf{Y} = \overline{\mathbf{Y}}$

NOW YOU TRY

Analyze SR & LR effects of ΔM

- a. Draw the *IS-LM* and *AD-AS* diagrams as shown here.
- b. Suppose Fed increases *M*. Show the short-run effects on your graphs.
- c. Show what happens in the transition from the short run to the long run.
- d. How do the new long-run equilibrium values of the endogenous variables compare to their initial values?

ANSWERS, PART 1 Short-run effects of ΔM

LM and AD shift right.

r falls, Y rises above \overline{Y}

ANSWERS, PART 2 Transition from short run to long run

Over time,

- P rises
- SRAS moves upward
- M/P falls
- LM moves leftward

New long-run eq'm

- P higher
- all real variables back at their initial values

Money is neutral in the long run.

12.3 The Great Depression

The Great Depression

THE SPENDING HYPOTHESIS: Shocks to the *IS* curve

- Asserts the Depression was largely due to an exogenous fall in the demand for goods & services—a leftward shift of the IS curve.
- Evidence:

output and interest rates both fell, which is what a leftward IS shift would cause.

THE SPENDING HYPOTHESIS: Reasons for the *IS* shift

- Stock market crash reduced consumption
 - Oct 1929—Dec 1929: S&P 500 fell 17%
 - Oct 1929—Dec 1933: S&P 500 fell 71%
- Drop in investment
 - Correction after overbuilding in the 1920s.
 - Widespread bank failures made it harder to obtain financing for investment.
- Contractionary fiscal policy
 - Politicians raised tax rates and cut spending to combat increasing deficits.

THE MONEY HYPOTHESIS:

A shock to the LM curve

- Asserts that the Depression was largely due to huge fall in the money supply.
- Evidence:*M*1 fell 25% during 1929–33.
- But, two problems with this hypothesis:
 - P fell even more, so M/P actually rose slightly during 1929–31.
 - nominal interest rates fell, which is the opposite of what a leftward LM shift would cause.

- Asserts that the severity of the Depression was due to a huge deflation:
 - **P** fell 25% during 1929–33.
- This deflation was probably caused by the fall in M, so perhaps money played an important role after all.
- In what ways does a deflation affect the economy?

- The stabilizing effects of deflation:
- $\downarrow P \rightarrow \uparrow (M/P) \rightarrow LM$ shifts right $\rightarrow \uparrow Y$
- Pigou effect:

```
\downarrow P
 → 
\uparrow (M/P)

→ consumers' wealth 
\uparrow

→ 
\uparrow C
→ 
\uparrow S
 shifts right
→ 
\uparrow Y
```

The destabilizing effects of <u>expected</u> deflation:

```
\downarrow E\pi
```

- $\rightarrow r \uparrow$ for each value of i
- \rightarrow $\boldsymbol{I} \downarrow$ because $\boldsymbol{I} = \boldsymbol{I}(\boldsymbol{r})$
- → planned expenditure & agg. demand ↓
- → income & output ↓

- The destabilizing effects of <u>unexpected</u> deflation: debt-deflation theory
- **▶** *P* (if unexpected)
 - → transfers purchasing power from borrowers to lenders
 - → borrowers spend less, lenders spend more
 - → if borrowers' propensity to spend is larger than lenders', then aggregate spending falls, the IS curve shifts left, and Y falls

Why another Depression is unlikely

- Policymakers (or their advisers) now know much more about macroeconomics:
 - The Fed knows better than to let M fall so much, especially during a contraction.
 - Fiscal policymakers know better than to raise taxes or cut spending during a contraction.
- Federal deposit insurance makes widespread bank failures very unlikely.
- Automatic stabilizers make fiscal policy expansionary during an economic downturn.

CASE STUDY The 2008–09 financial crisis & recession

- 2009: Real GDP fell, u-rate approached 10%
- Important factors in the crisis:
 - early 2000s Federal Reserve interest rate policy
 - subprime mortgage crisis
 - bursting of house price bubble, rising foreclosure rates
 - falling stock prices
 - failing financial institutions
 - declining consumer confidence, drop in spending on consumer durables and investment goods

Interest rates and house prices

Change in U.S. house price index and rate of new foreclosures, 1999–2009

House price change and new foreclosures, 2006:Q3-2009:Q1

U.S. bank failures by year, 2000-2011

CASE STUDY: (Ch 4) Quantitative Easing

Consumer sentiment and growth in consumer durables and investment spending

Real GDP growth and unemployment

Liquidity Trap (Zero Lower Bound)

- Expansionary monetary policy works by reducing interest rates and stimulating investment spending.
- But if interest rates have already fallen almost to zero, then perhaps monetary policy is no longer effective.
- Nominal interest rates cannot fall below zero. Aggregate demand, production, and employment may be "trapped" at low levels.
- The liquidity trap is sometimes called the problem of the zero lower bound.

Unconventional monetary policy

- Despite the zero lower bound, a central bank could try to lower longer-term interest rates.
- ---Forward guidance: announcing future monetary actions.
- ---Quantitative easing: conducting expansionary open-market operations in a larger variety of financial instruments than it normally does.
- Despite the zero lower bound, a central bank could cause the currency to lose value in the market for foreign-currency exchange.

A higher target for the inflation?

- Under zero inflation, the real interest rate, like the nominal interest, can never fall below zero.
- But if the normal rate of inflation is, say, 4 percent, then the central bank can easily push the real interest rate to negative 4 percent by lowering the nominal interest rate toward zero.
- A higher target for the inflation rate means a higher nominal interest rate in normal times (recall the Fisher effect), which in turn gives the central bank more room to cut interest rates when the economy experiences recessionary shocks.

CHAPTER SUMMARY

- 1. IS-LM model
 - a theory of aggregate demand
 - exogenous: M, G, T,
 P exogenous in short run, Y in long run
 - endogenous: *r*,
 Y endogenous in short run, *P* in long run
 - IS curve: goods market equilibrium
 - LM curve: money market equilibrium

CHAPTER SUMMARY

2. AD curve

- shows relation between P and the IS-LM model's equilibrium Y.
- negative slope because $\uparrow P \rightarrow \downarrow (M/P) \rightarrow \uparrow r \rightarrow \downarrow I \rightarrow \downarrow Y$
- expansionary fiscal policy shifts IS curve right,
 raises income, and shifts AD curve right.
- expansionary monetary policy shifts LM curve right,
 raises income, and shifts AD curve right.
- IS or LM shocks shift the AD curve.

The Big Picture

