Zvonimir Pavlić Tomislav Lugarić Goran Narančić

Fakultet elektrotehnike i računarstva Zavod za elekroniku, mikroelektroniku, računalne i inteligentne sustave

Strojno učenje

Podržano učenje

Sadržaj predavanja

- podržano učenje uvodna razmatranja
- Q učenje
- proširenja osnovnih koncepata
- primjeri

Podržano učenje uvodna razmatranja

Zvonimir Pavlić

Podržano učenje - uvod

- nenadzirano učenje ograničeno područje primjene
- nadzirano učenje potreba učitelja
- podržano učenje (engl. reinforcement learning) –
 procjenitelj (engl.critic) ne govori unaprijed što raditi,
 nego daje odgovarajuće "nagrade" ili "kazne" na kraju
 niza akcija

Podržano učenje – uvod (2)

Problem priznanja zasluge (engl credit assignment)

Priznanje zasluga

- problem priznanja zasluge (engl. credit assignment)
 - kako odrediti koje su akcije odgovorne za konačan ishod
 - istovjetan problem kao u neuronskim mrežama

 Minsky i Papert – zaustavili istraživanje neuronskih mreža na dvadesetak godina

Specifičnosti podržanog učenja

- odgođene nagrade
 - priznanje zasluga
- istraživanje
 - agent utječe na izbor primjera za učenje:
 - istraživanje nepoznatih stanja u potrazi za informacijama
 - iskorištavanje poznatih stanja
- cjeloživotno učenje (engl. life-long learning)
 - učenje različitih zadataka u istom okolišu
- djelomično vidljiva stanja
 - očitanja senzora nedovoljna za cjelovitu sliku

Specifičnosti podržanog učenja – odgođena nagrada

Specifičnosti podržanog učenja - istraživanje

Specifičnosti podržanog učenja – cjeloživotno učenje

THE BOX			100
		THEBOX	
	THEBOX		

Formalna definicija problema učenja – pojmovi (1)

- skup stanja (engl. state) $s \in S$
- skup akcija (engl. action) $a \in A$
- strategija (engl. policy) $\pi: S \to A$
- dobrota stanja s (engl. value) V(s)
- dobrota akcije a u stanju s (engl. quality) Q(s,a)
- nagrada (engl. reward) r(s) ili r(s,a)
- koeficijent umanjenja nagrade γ
- dobrota strategije odlučivanja, počevši iz stanja s

$$V^{\pi}(s) = \sum_{i=0}^{\infty} \gamma^{i} r_{t+i}$$

Formalna definicija problema učenja – pojmovi (2)

optimalna strategija (* - znak za optimalno):

$$\pi^* = \arg\max_{\pi} V^{\pi}(s), (\forall s)$$

- često se koristi dobrota najbolje strategije: $V^{\pi^*}(s)$
- Markovljev proces odlučivanja (MDP)

prijelazi: $s' = \delta(s, a)$

nagrade: r(s,a)

funkcije δ i r ovise samo o trenutnom stanju s i akciji a

Model vs iterativno upoznavanje

- učenje s unaprijed poznatim modelom svijeta
 - odgođena nagrada
 - rješenje dinamičko programiranje
 - izuzetno rijetki slučajevi
- učenje s iterativnim upoznavanjem svijeta (engl. temporal difference)
 - svijet nije u potpunosti unaprijed poznat
 - kompromis između istraživanja i ponovnog iskorištenja već poznatih stanja
 - pokriva većinu problema

Načini učenja strategije

- iteracija po vrijednostima (engl. value iteration)
 - uči se određivanjem dobrote stanja
- iteracija po strategijama (engl. policy iteration)
 - uči se izravnim određivanjem strategija biranja akcija
 - Veća složenost jednog koraka nego kod iteracije vrijednosti, ali manji broj koraka
- najprikladnijim izborom pokazalo se određivanje dobrote para (stanje, akcija), pomoću funkcije Q(s,a)

Načini učenja – V*(s)

$$V^*(s), \ \gamma = 0.9$$

$$V(s) = \max r(s, a) + \gamma V^*(\delta(s, a))$$

Načini učenja – V*(s)

$$V^*(s), \ \gamma = 0.9$$

$$V(s) = \max r(s, a) + \gamma V^*(\delta(s, a))$$

Načini učenja – Q(s,a)

$$Q(s,a), \gamma=0.9$$

$$Q(s,a) = r(s,a) + \gamma \max_{a} Q(\delta(s,a),a')$$

Primjer optimalne strategije

- početno stanje: s₄
- ima više optimalnih strategija (nisu prikazane sve)

Q učenje

Tomislav Lugarić

Definicija Q učenja

- metoda podržanog učenja
- učenje vrijednosti stanja i akcija Q funkcija
- odrediti vrijednost akcije bez poznavanja kompletnog modela svijeta

Automat sa K poluga (K-armed bandit)

- hipotetski automat nalik na one u kockarnici
- svaka poluga donosi određeni dobitak
- strategija izbora poluge
- pojednostavljeni problem Q učenja

Q funkcija

- potreba za učenjem optimalne strategije
- agent želi odabrati akciju koja maksimizira nagradu koju dobiva

$$\pi^*(s) = \arg\max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

- potrebno poznavati funkciju r(s,a) i sve prijelaze
- uvodi se Q vrijednost

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

potrebno naučiti Q

Učenje Q funkcije

Za učenje potrebna rekurzivna definicija

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

$$V^*(s) = \max_a Q(s, a')$$

$$Q(s,a) = r(s,a) + \gamma \max_{a} Q(\delta(s,a),a')$$

Aproksimacija Q funkcije

- funkcija Q nepoznata učenje aproksimacijom
 - ^ oznaka aproksimacije

$$\hat{Q}(s,a) \leftarrow r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')$$

dodatna mogućnost – stopa učenja

$$\hat{Q}(s,a) \leftarrow \eta(r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')) + (1-\eta)\hat{Q}(s,a)$$

$$0 < \eta \le 1$$

Q algoritam

- za svako stanje postavi vrijednost Q(s,a) na nulu
- postavi se u neko stanje s
- ponavljaj beskonačno:
 - odaberi i izvrši akciju a
 - primi nagradu r
 - osvježi zapis Q(s,a) prema formuli:

$$Q(s,a) \longleftarrow r(s,a) + \gamma \max_{a'} Q(s',a')$$

uzmi stanje s' kao novo stanje s

Q algoritam – stopa učenja

- za svako stanje postavi vrijednost Q(s,a) na nulu
- postavi se u neko stanje s
- ponavljaj beskonačno:
 - odaberi i izvrši akciju a
 - primi nagradu r
 - osvježi zapis Q(s,a) prema formuli:

$$Q(s,a) \longleftarrow \eta(r(s,a) + \gamma \max_{a'} Q(s',a')) + (1-\eta)Q(s,a)$$

- uzmi stanje s' kao novo stanje s
 - $\eta = \eta * k$, 0 < k < 1

Konvergencija Q učenja

- algoritam konvergira samo pod određenim uvjetima
 - 1) sustav je deterministički Markovljev proces odlučivanja
 - 2) nagrade su ograničene
 - 3) svaki par stanje-akcija se izvede beskonačno često

Dokaz – Mitchell str. 381, teorem 13.1

Način osvježavanja Q vrijednosti

- osvježavanje samo jednog koraka
 - sporije, osvježava se Q samo za jedan korak
- učenje unatrag
 - agent pamti kuda je prošao i osvježava sve Q vrijednosti po putu
- epizoda

Strategija istraživanja

- rizik od prevelike preferencije već nađenih puteva
- probabilistički pristup izboru akcije
- npr:

$$P(a_i \mid s) = \frac{k^{Q(s,a_i)}}{\sum_{j} k^{Q(s,a_j)}}$$

- ili: ε određuje vjerojatnost da se akcija odabire nasumce
- ε može se mijenjati (npr. smanjivati) tokom izvođenja

$$0 < \varepsilon < 1$$

Vidjeti priloženo datoteku s animacijama

Primjer Q učenja

- Skup akcija: ←,↑,→,↓
- $\gamma = 0.9$

$$Q(s,a) \leftarrow r(s,a) + \gamma \max_{a'} Q(s',a')$$

$$Q(s,a) \longleftarrow \eta(r(s,a) + \gamma \max_{a'} Q(s',a')) + (1-\eta)Q(s,a)$$

- Osvježenje jednog koraka
- Učenje unatrag

Q(A1, ↓)	6 9
Q(A1, →)	Ø 3
Q(A2, ↑)	06
Q(A2, →)	81
Q(B1, ←)	6 6
Q(B1, ↓)	9 1
Q(B1, →)	zabranjeno
Q(B2, ←)	0
Q(B2, ↑)	Ø 3
Q(B2, →)	90 * γ =
	,
Q(C1, ↓)	90
	'
Q(C1, ↓)	90

Vidjeti priloženo datoteku s animacijama

Korist od istraživanja

- Primjer iz realnog svijeta:
- problem: idemo na more
- r = sreća zbog obiđenih lokaliteta i pojedene hrane

Nedeterminističke nagrade i akcije

- u stvarnom svijetu: neprecizni senzori, igre s bacanjem kocke...
- funkcija V očekivanje umjesto točnog broja

$$V^{\pi}(s_t) = E\left[\sum_{t=0}^{\infty} \gamma^i r_{t+1}\right]$$

$$Q(s,a) = r(s,a) + \gamma \max_{a} Q(\delta(s,a),a')$$

$$Q(s,a) = E[r(s,a)] + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

Proširenja osnovnih koncepata

Goran Narančić

Djelomično vidljiva stanja (1)

- pretpostavke dosad:
 - agent vidi stvarno stanje svijeta
 - nedeterministički jedino ishod akcije a priori
- agentova opažanja nisu nužno jednaka pravom stanju:
 - uvodi se vjerojatnost stanja p(s_i | o_i)
 - označava vjerojatnost da za opažanje o_i svijet se nalazi u stanju s_i
- uvodimo novi pojam: MDP s djelomično vidljivim stanjima

Djelomično vidljiva stanja (2)

- sljedeće stanje u svijetu ovisi o stvarnom trenutnom stanju i agentovoj akciji
- dva stanja svijeta mogu rezultirati u jednakom opažanju od strane agenta
- Markovljevo svojstvo ne vrijedi za opažanja sljedeće opažanje stanja ne ovisi isključivo o trenutnom opažanju i akciji
- potrebno uzeti u obzir putanju agenta (akcije i opažanja)
- dodatne akcije agenta služe samo za skupljanje opažanja

Djelomično vidljiva stanja (3)

- uvođenje internog stanja agenta: **stanje vjerovanja** b_t (engl. *belief state*)
- predstavlja agentovu procjenu trenutnog stanja
- agent koristi procjenitelj stanja (engl. state estimator) da osvježi stanje vjerovanja b_{t+1} na temelju:
 - trenutnog vjerovanja b_t
 - zadnje akcije a_t
 - trenutnog opažanja o_{t+1}
- strategija odlučivanja π i svi algoritmi se koriste stanjem vjerovanja b_t umjesto stvarnog stanja s_t

Tragovi prihvatljivosti

- engl. eligibility traces
- služe za određivanje starosti pojedine Q vrijednosti
- koriste se za smanjivanje utjecaja starih vrijednosti

- zvjezdice na
 x-osi: agent je
 izveo akciju a_x
 u stanju s_x
- Alpaydin 2004, str. 386, slika 16.7

Iterativno upoznavanje svijeta

- algoritam Q učenja je dio skupine algoritama učenja iterativnim upoznavanjem svijeta (engl. temporal difference)
- ideja: smanjivati razliku između agentovih aproksimacija koje se izvedu u različitim trenucima
- dosad se gledalo jedan korak unaprijed zašto ne gledati dva, tri ili više koraka unaprijed?

•
$$Q^{(n)}(s_t, a_t) = r_t + \gamma r_{t+1} + ... + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max Q(s_{t+n}, a)$$

TD(λ) algoritmi

- Sutton (1988) uvodi generalnu metodu TD(λ)
- konstanta λ (0 $\leq \lambda$ < 1) se koristi za spajanje procjena $Q^{(n)}(s_t, a_t)$ za različite udaljenosti (različite n)
- Tesauro (1995) koristi jedan TD(λ) algoritam za izgradnju programa TD-Gammon za igranje igre Backgammon
- TD-Gammon igra na razini vrhunskog eksperta
- učenje algoritma: 1,5 miljuna odigranih partija protiv samog sebe

Generalizacija (1)

- svi algoritmi i pristupi dosad su se temeljili na izgradnji tablica koje sadrže vrijednost Q(s, a)
- nauče se samo parovi stanja i akcija koji su isprobani tijekom učenja
- Q vrijednosti za parove (s, a) koji nisu bili isprobani su ostali nepromijeni (0 ili nasumični broj, ovisi o inicijalnoj postavci)
- dobro učenje primjera ali vrlo loša generalizacija!
- potpuno neprikladno za primjenu u aplikacijama za korištenje u stvarnom svijetu

Generalizacija (2)

- moguća rješenje: proći kroz sve moguće parove (s, a)
 - obični "štreberski" algoritam
 - nepraktično za svjetove s velikim brojem stanja i akcija
 - nemoguće za kontinuirane svjetove
 - beskorisno za uvođenje u nove situacije
- metode gradijentnog spusta
 - linearne teoretski zanimljive, dobri praktični rezultati
 - nelinearne npr. neuronske mreže

Generalizacija (3)

- neuronske mreže korištene umjesto tablica za određivanje Q(s, a) vrijednosti
- učenje algoritmom širenja pogreške unazad (engl. backpropagation)
- problem: učenje vrijednosti za jedan par može poremetiti izlaz za neki drugi par
- TD-Gammon koristi neuronske mreže

Primjeri korištenja UNN (1)

- neuronska mreža prima stanje s i akciju a, a njen izlaz je vrijednost Q(s, a)
- napomena: oblik mreža je samo primjer

Primjeri korištenja UNN (2)

- po jedna mreža za svaku akciju; mreža prima stanje s kao ulaz i vraća Q(s, a)
- nešto uspješnija alternativa od prethodne

Primjeri korištenja UNN (3)

mreža prima samo stanje s, a izlazi su joj vrijednosti Q(s,
 a) - uvijek vraća izlaze za svaku moguću akciju a

Primjeri

1. zadatak

Izračunati V(s) i Q(s, a) za zadani svijet. Primijeniti algoritam učenja s modelom. $\gamma = 0.9$

2. zadatak

Robot je pušten u isti svijet kao u prethodnom zadatku iz stanja s_1 . Kretao se redom stanjima: $s_1 -> s_2 -> s_3 -> s_6 -> s_5$. Provedi dvije iteracije učenja nad zadanom epizodom:

- a) učenje unaprijed (osvježavanje zadnjeg stanja)
- b) učenjem unazad

$$y = 0.9$$

3. zadatak

Planiramo robota pustiti u jednostavan svijet s dva moguća apsorpcijska (ciljna) stanja G_1 i G_2 . Zadana nam je nagrada za prijelaz u stanje G_1 r(G_1 , a) = 100, te γ = 0,9. Koliko minimalno mora biti r(G_2 , a) da bi robot mogao naučiti da zaobiđe G_1 i ode u G_2 ?

Start		G1	G2

Diskusijski primjer: odabir optimalne strategije

Imamo jednostavan svijet s zadanim vrijednostima Q(s,a). Koja je optimalna strategija? Postoje li druge optimalne strategije? $\gamma = 0.9$ a) $Q(s_2, \downarrow) = 50$; b) a) $Q(s_2, \downarrow) = 40$

Literatura

- obvezatna literarura:
 - T. M. Mitchell, Machine learning, 1997.; poglavlje
 13: Reinforcement learning
 - E. Alpaydin Introduction to machine learning,
 2004.; poglavlje 16: Reinforcement leaning
- ostala korištena literatura:
 - Sutton & Barto Reinforcement learning, an introduction
 - T. Hrkać IMAS, predavanja, Fer 2009.