

Instituto Politécnico do Cávado e do Ave Escola Superior de Tecnologia

Licenciatura em Engenharia de Sistemas Informáticos

Trabalho Prático 1

Fábio Alexandre Gomes Fernandes – a22996

Barcelos, fevereiro de 2025

Instituto Politécnico do Cávado e do Ave Escola Superior de Tecnologia

Licenciatura

em

Engenharia de Sistemas Informáticos

Trabalho Prático 1

Fábio Alexandre Gomes Fernandes – a22996

Unidade Curricular: Integração de Sistemas

de Informação

Docente: Óscar Rafael da Silva Ferreira

Ribeiro

Ficha de Identificação

Elaborado por Fábio Alexandre Gomes Fernandes

Número Mecanográfico a22996

Unidade Curricular Integração de Sistemas de Informação - ISI

Curso Licenciatura em Engenharia de Sistemas Informáticos

Instituição Escola Superior de Tecnologia do Instituto Politécnico do Cávado

e do Ave

Professor Docente Professor Óscar Rafael da Silva Ferreira Ribeiro

Contato <u>oribeiro@ipca.pt</u>

Data Início 26 de setembro de 2025

Data de Conclusão 19 de outubro de 2025

Resumo

O presente trabalho foi desenvolvido no âmbito da unidade curricular de Integração de Sistemas de Informação (ISI), com o objetivo de aplicar de forma prática os conceitos de ETL (*Extract*, *Transform*, *Load*), recorrendo à ferramenta Pentaho Data Integration (PDI). O tema abordado, "Estatística de Streaming (Netflix)", permitiu explorar a integração e análise de dados relacionados com utilizadores e atividades de visualização de uma plataforma de *streaming*.

O projeto consistiu na criação de um *pipeline* ETL completo, englobando as fases de extração, transformação e carregamento de dados provenientes de dois conjuntos distintos: um relativo a utilizadores (com informações pessoais, tipo de subscrição e preferências) e outro referente à atividade de *streaming* (com dados de visualização, dispositivo e país).

Ao longo do desenvolvimento, procurou-se implementar todos os critérios de maisvalia estabelecidos no enunciado. Entre eles, destacam-se a utilização de expressões regulares (Regex) para normalização de campos, processos de limpeza e validação de dados, operações de junção e agregação, exportação de resultados em múltiplos formatos (CSV e JSON) e a criação de um *job* automatizado com *logs* e notificações por e-mail, assegurando o controlo e a rastreabilidade da execução.

O resultado evidencia a transformação de dados brutos e inconsistentes em informação estruturada e útil, demonstrando a capacidade de aplicar metodologias de integração de dados.

Índice

Fic	ha de Iden	tific	ação	1
Índ	ice			3
Índ	ice de Fig	uras		4
1.	Introduçã	ão		5
	1.1	Co	ontextualização	5
	1.2	Pre	etensões e Objetivos	5
	1.3	Es	trutura de Organização	6
2.	Análise o	do Pı	roblema	7
	2.1	De	escrição do Problema	7
	2.2	Fo	ntes de Dados (Datasets)	8
	2.3	Te	cnologias utilizadas	9
3.	Análise e	e Des	senvolvimento de Software	10
	3.1	Tra	ansformação (.ktr)	10
	3.1	.1	Extração das Fontes de Dados	11
	3.1	.2	Fluxo de Utilizadores	12
	3.1	.3	Fluxo de Atividades	13
	3.1	.4	Junção e Enriquecimento (Join)	15
3.1.5		.5	Agregação e Saídas (Load)	15
	3.2	Joi	<i>b</i> (.kjb)	18
	3.3	Re	sultados	20
4.	Vídeo de	den	nonstração	21
5.	Conclusã	ĭo	·	22
6	Referênc	120		23

Índice de Figuras

Figura 1: Transformação "streaming_netflix.ktr"	11
Figura 2: Extração das fontes de dados CSV	11
Figura 3: Fluxo de Utilizadores	12
Figura 4: Fluxo de Atividades - Converter os Tempos	13
Figura 5: Fluxo de Atividades - Separar Country	14
Figura 6: Junção e Enriquecimento (<i>Join</i>)	15
Figura 7: Agregação e Saídas (<i>Load</i>) - Saída detalhada	16
Figura 8: Agregação e Saídas (<i>Load</i>) - Saída agregada	17
Figura 9: <i>Job</i> (.kjb)	18
Figura 10: Verificação de ficheiros de entrada	19
Figura 11: Configuração do step "Mail Sucesso"	20
Figura 12: Dataset detalhado - "streaming_users_netflix.csv"	20
Figura 13: Relatório agregado: "relatório_por_subscricao.csv"	21
Figura 14: OR Code do vídeo de demonstração	21

1. Introdução

1.1 Contextualização

No âmbito da unidade curricular Integração de Sistemas de Informação (ISI), foi-nos proposto o desenvolvimento de um trabalho prático individual com o objetivo de aplicar os conceitos teóricos abordados na unidade, nomeadamente no que respeita aos processos de ETL (*Extract*, *Transform*, *Load*) e à integração de dados provenientes de diferentes fontes.

O trabalho é orientado pelo docente Dr. Óscar Rafael da Silva Ferreira Ribeiro e visa demonstrar a capacidade de planear, implementar e documentar um projeto completo de integração de dados, recorrendo a ferramentas adequadas ao contexto da unidade curricular.

1.2 Pretensões e Objetivos

O presente trabalho tem como principal pretensão demonstrar a aplicação prática de processos ETL (*Extract*, *Transform*, *Load*) através da análise e integração de dados relacionados com a plataforma de *streaming* Netflix.

Pretende-se extrair, limpar, transformar e combinar dados de diferentes origens, nomeadamente informação de utilizadores e de atividade de visualização. De modo a produzir um conjunto de dados unificado e fiável, capaz de suportar análises estatísticas e a geração de relatórios automatizados.

Os objetivos específicos incluem:

- Explorar e aplicar técnicas de limpeza, normalização e enriquecimento de dados;
- Implementar operações de junção (stream lookups), agrupamento e agregação para extração de métricas relevantes;
- Demonstrar o uso de expressões regulares, conversões de tipos e operações de validação;
- Realizar a exportação dos resultados em diferentes formatos (CSV e JSON);
- Implementar um *Job* de controlo e monitorização, incluindo *logs* de execução e notificações por e-mail;

1.3 Estrutura de Organização

Este relatório foi elaborado com o objetivo de apresentar, de forma clara e sequencial, o desenvolvimento do trabalho prático realizado no âmbito da unidade curricular Integração de Sistemas de Informação (ISI), cujo tema é "Estatística de Streaming (Netflix)". A estrutura do documento encontra-se organizada da seguinte forma:

- Capa e Ficha Técnica, contendo a identificação do aluno, unidade curricular, docente e instituição;
- Resumo, apresentando de forma sintética os objetivos, metodologia e resultados alcançados;
- Índices, com o Índice Geral, Índice de Figuras e Tabelas, e Lista de Siglas e Acrónimos;
- Introdução, onde é apresentado o enquadramento do trabalho, os objetivos propostos e a estrutura geral do relatório;
- Introdução ao Problema Abordado, com a descrição do tema "Estatística de Streaming", a sua relevância e o contexto em que o problema foi explorado;
- Tecnologias utilizadas, onde se descrevem as ferramentas de desenvolvimento aplicadas;
- Análise e Desenvolvimento, que detalha a implementação do processo ETL, incluindo a explicação das Transformações, dos Jobs de controlo e automação, e dos processos de exportação de dados;
- Demonstração, onde é apresentado o vídeo que ilustra o funcionamento completo do sistema e a execução dos processos desenvolvidos;
- Conclusão, que reflete sobre os resultados obtidos, as competências adquiridas e as possíveis melhorias futuras;
- Referências Bibliográficas, reunindo as fontes e recursos consultados durante o desenvolvimento do projeto.

2. Análise do Problema

2.1 Descrição do Problema

O presente trabalho tem como principal foco o desenvolvimento de um processo de integração, transformação e análise de dados (ETL) aplicado a um contexto de plataformas de *streaming* digital, tomando como caso de estudo o serviço Netflix.

O problema identificado centra-se na necessidade de recolher, limpar, normalizar e relacionar grandes volumes de dados provenientes de diferentes fontes, de forma a permitir a obtenção de informação estruturada, coerente e analiticamente útil.

Na realidade das plataformas de *streaming*, os dados recolhidos diariamente, como o tempo de visualização, o tipo de dispositivo utilizado, o país de origem do utilizador, o género de conteúdos preferido ou o tipo de subscrição, são fundamentais para a tomada de decisões estratégicas. Contudo, esses dados encontram-se frequentemente dispersos, redundantes ou em formatos heterogéneos, dificultando a análise direta.

Neste contexto, o trabalho propõe-se a simular e resolver esse problema através da criação de um *pipeline* ETL completo, que integra dois conjuntos de dados:

- Um dataset de utilizadores da Netflix, com informações demográficas, tipo de subscrição e preferências de visualização;
- Um dataset de atividades de streaming, contendo o histórico de visualizações, dispositivos utilizados e localização geográfica.

O desafio consiste, portanto, em construir um processo automatizado que leia ambos os *datasets*, realize operações de limpeza, transformação e junção, e produza um conjunto final de dados enriquecidos e prontos para análise.

2.2 Fontes de Dados (*Datasets*)

O processo de ETL desenvolvido opera sobre dois *datasets* de origem distintos, que simulam fontes de dados heterogéneas com diferentes desafios de qualidade e estrutura.

• Dataset 1: "netflix activity.csv"

- O Descrição: Este ficheiro contém os registos detalhados da atividade de visualização na plataforma. Cada linha representa um evento de visualização único, contendo informação sobre o que foi visto, quando e como.
- Campos: Profile Name, Start Time, Duration, Attributes, Title, Supplemental Video Type, Device Type, Bookmark, Latest Bookmark, Country.
- **Desafios:** Os principais desafios deste *dataset* são de natureza estrutural e de formato. Os dados, embora consistentes, não estão prontos para análise. Os problemas incluem nomes de colunas com espaços, dados de tempo em formato de texto (HH:MM:SS) e informação de país agregada (PT (Portugal)) que necessita de ser extraída e separada.

• Dataset 2: "netflix users.csv"

- O Descrição: Este ficheiro contém os dados demográficos e de subscrição dos utilizadores da plataforma. Para o propósito deste trabalho, foi concebido com múltiplos erros para simular um cenário real de "dados sujos" que necessitam de um processo de limpeza, validação e correção. Serviu também de base para a criação de uma fonte de dados em formato JSON, para demonstrar a importação de múltiplos formatos.
- Campos: User_ID, Profile_Name, Real_Name, Age, Country,
 Subscription_Type, Watch_Time_Hours, Favorite_Genre, Last_Login.

O Desafios: Ao contrário do primeiro dataset, os desafios aqui são de qualidade e integridade dos dados, simulando erros de inserção manual. Os problemas incluem valores inválidos, erros de escrita em campos categóricos (ex: Prremium, Satndar, sabic), dados em falta e formato inconsistente.

2.3 Tecnologias utilizadas

Para o desenvolvimento deste projeto, foram selecionadas as seguintes tecnologias e ferramentas, com o objetivo de construir uma solução de ETL robusta, visual e alinhada com as práticas do mercado de integração de dados.

- Pentaho Data Integration (PDI) 10.2: Foi a ferramenta principal de ETL (Extract, Transform, Load) utilizada para desenhar, executar e orquestrar todo o processo. A sua natureza visual, baseada em fluxos de dados, permitiu a rápida prototipagem, depuração e implementação de regras complexas de limpeza, transformação e validação de dados. A distinção entre Transformações (para a manipulação de dados) e Jobs (para a orquestração e controlo de fluxo) foi fundamental para a arquitetura da solução.
- Git: O sistema de controlo de versões distribuído foi utilizado para gerir o histórico de todo o material produzido, incluindo os ficheiros de projeto do Pentaho (.ktr, .kjb), os datasets e a própria documentação. A sua utilização garantiu a integridade e o rastreamento de todas as alterações efetuadas ao longo do desenvolvimento. O repositório completo pode ser acedido em: https://github.com/fabiofernandes6/TP01-de-ISI.git
- GitHub: A plataforma de alojamento baseada na web foi usada para hospedar
 o repositório Git do projeto. Serviu como um ponto central para a partilha,
 documentação e versionamento do código-fonte da solução, cumprindo os
 requisitos de entrega e boas práticas de desenvolvimento de software.

Formatos de Dados (CSV e JSON): Parte integral da estratégia tecnológica
foi a capacidade de lidar com múltiplos formatos de representação de dados. O
processo demonstrou a importação de dados de ficheiros CSV, e a exportação
dos resultados para CSV e JSON, evidenciando a flexibilidade da solução para
se integrar com diferentes sistemas.

3. Análise e Desenvolvimento de Software

A resolução do problema descrito no capítulo anterior foi implementada através de um processo de ETL, utilizando a ferramenta *Pentaho Data Integration*, também conhecida como *Spoon*. A estratégia de desenvolvimento seguiu uma abordagem modular, separando as responsabilidades em duas componentes distintas e complementares:

- Uma Transformação (.ktr), que constitui o núcleo do processo, onde toda a lógica de extração, limpeza, validação, enriquecimento e carregamento dos dados é executada.
- Um Job (.kjb), que atua como o orquestrador do processo, responsável por gerir o fluxo de execução, tratar erros, garantir pré-condições e controlar as notificações.

As secções seguintes detalham a implementação técnica de cada uma destas componentes, desde o fluxo de dados na transformação até à lógica de controlo no Job.

3.1 Transformação (.ktr)

A transformação "streaming_netflix.ktr" é o coração do processo de ETL. Foi desenhada para extrair os dados das fontes heterogéneas, aplicar um pipeline de limpeza e validação robusto, enriquecer os dados através da sua fusão, e finalmente, carregar os resultados em múltiplos formatos. A sua implementação é detalhada nas secções seguintes.

Figura 1: Transformação "streaming netflix.ktr"

3.1.1 Extração das Fontes de Dados

O processo inicia-se com a extração de dados de duas fontes distintas, que correm em fluxos paralelos:

- Fluxo de Atividades: Utiliza o step "CSV file input" para ler os dados de atividade do ficheiro "netflix activity.csv".
- Fluxo de Utilizadores: Utiliza o *step "CSV file input"* para ler os dados demográficos e de subscrição do ficheiro "*netflix_users.csv*", que contém múltiplos erros de qualidade de dados.

Figura 2: Extração das fontes de dados CSV

3.1.2 Fluxo de Utilizadores

Este fluxo é focado na confirmação, limpeza e correção intensiva dos dados de utilizadores, aplicando uma sequência de passos para garantir a máxima qualidade dos dados antes do *join*. O processamento contou com os seguintes passos:

- Confirmar Estrutura Users: Utiliza um step "Select Values". Este passo serve para confirmar os campos do ficheiro original que contém os dados dos utilizadores;
- 2. Corrigir as Subscrições: Utiliza um step "Value Mapper". Este passo serve para corrigir os erros de escrita específicos no campo "Subscription_Type" (ex: "Prremium" = "Premium");
- **3.** Remover a Coluna Antiga: Utiliza um *step* "Select Values". Este passo serve para remover o antigo campo "Subscription_Type" pelo novo "Subscription Type Corrected" onde contém a correção dos erros de escrita.

Figura 3: Fluxo de Utilizadores

3.1.3 Fluxo de Atividades

Este fluxo é responsável pela limpeza, normalização e preparação dos dados de atividades de visualização, garantindo que todos os campos estejam prontos para integração com o fluxo de utilizadores. O processamento foi realizado através dos seguintes passos:

- Confirmar Estrutura Streaming: Utiliza um step "Select Values". Este passo serve para confirmar a estrutura e os campos do ficheiro original que contém os dados de atividades de visualização;
- 2. Normalizar os Tipos de Dispositivos: Utiliza um step "Value Mapper". Serve para normalizar os valores do campo "Device_Type", convertendo identificadores numéricos em categorias textuais mais legíveis (ex.: "Device Type 1" = "Computer");
- **3.** Converter os Tempos: Utiliza um *step* "Modified JavaScript Value". Este passo converte o tempo da duração da atividade (campo "Duration") do formato "hh:mm:ss" para o total de horas decimais, criando um novo campo convertido.

Figura 4: Fluxo de Atividades - Converter os Tempos

4. Separar Country: Utiliza um *step "Regex Evaluation"*. Este passo aplica uma expressão regular ao campo "*Country*" para separar o código do país e o nome do país em dois novos campos distintos ("*Country Code*" e "*Country Name*").

Figura 5: Fluxo de Atividades - Separar Country

5. Remover as Colunas Antigas: Utiliza um *step "Select Values"*. Serve para eliminar os campos desnecessários antigos e temporários (como "*Device_Type*" original ou tempos não convertidos), mantendo apenas os campos normalizados e preparados para a integração com os dados de utilizadores.

3.1.4 Junção e Enriquecimento (Join)

Esta fase representa o ponto de convergência entre os fluxos de Atividades e Utilizadores, onde os dados previamente tratados são integrados num único dataset consolidado.

1. Juntar Dados Utilizadores: Utiliza um *step* "Stream Lookup".O fluxo principal, proveniente das atividades, é enriquecido com as informações já limpas e normalizadas do fluxo de utilizadores. O step "Stream Lookup" utiliza o campo "Profile_Name" como chave de junção, garantindo a correspondência entre o perfil de cada atividade e os respetivos dados do utilizador (como nome real, idade, país, tipo de subscrição, género favorito, horas já assistidas e o último login).

O resultado é um *dataset* completo e coeso, combinando dados comportamentais (atividades) e dados demográficos (utilizadores), pronto para análise e exportação.

Figura 6: Junção e Enriquecimento (Join)

3.1.5 Agregação e Saídas (Load)

Após a junção dos dados dos utilizadores com as atividades, o fluxo é dividido em dois ramos distintos para gerar tanto os dados detalhados como os relatórios agregados.

• Ramo Principal - Saída Detalhada:

1. O fluxo proveniente do "Stream Lookup" é encaminhado para o step "Renomear e Reordenar", que organiza e uniformiza os nomes das colunas resultantes do processo de junção.

- **2.** De seguida, o *step* "Confirmar Meta-Data" garante a consistência e o tipo de dados de cada campo antes da exportação.
- **3.** Por fim, o "*Output* CSV (Tudo)" grava o *dataset* completo e enriquecido num ficheiro CSV, contendo todas as atividades já associadas às informações dos respetivos utilizadores.

Figura 7: Agregação e Saídas (Load) - Saída detalhada

Ramo Secundário – Saída Agregada:

- A partir da estrutura consolidada, o fluxo é desviado para um step "Ordenar por Subscrição", "Sort rows", que organiza os registos por tipo de plano.
- **2.** Em seguida, o *step* "Calcular Médias/Total por Subscrição", "*Group by*", aplica operações de agregação, calculando o total de horas, a média de horas visualizadas e o número de utilizadores por tipo de subscrição.
- **3.** Os resultados deste agrupamento são depois exportados em diferentes formatos, CSV e JSON, para facilitar a integração com outros sistemas e demonstrar a versatilidade da solução implementada.

Figura 8: Agregação e Saídas (Load) - Saída agregada

3.2 *Job* (.kjb)

O job "project_netflix.kjb", ilustrado na figura 9, foi desenvolvido para automatizar e monitorizar todo o processo ETL, garantindo o controlo total sobre a execução da transformação principal (*streaming_netflix.*ktr), a verificação prévia dos ficheiros de entrada e a notificação automática por email consoante o resultado.

Figura 9: Job (.kjb)

O fluxo do job segue a seguinte lógica:

- Start: Inicia o processo e direciona a execução para os passos de verificação.
- Verificar Ficheiros: São utilizados dois steps "File Exists", um para confirmar a presença do ficheiro de atividades (netflix_activity.csv) e outro para o de utilizadores (netflix_users.csv), como é reparado na figura 10.
 - Se ambos os ficheiros existirem, o fluxo segue para a transformação principal.
 - Caso algum ficheiro esteja em falta, é ativado o ramo de erro, que gera um log (*step* "Write to log", "Log ERRO") específico e envia uma notificação por email (*step* "Mail", "Mail Erro").

Figura 10: Verificação de ficheiros de entrada

 Executar Transformação: Este passo executa a transformação principal (streaming_netflix.ktr), responsável pelo tratamento, normalização, junção e exportação dos dados.

Gestão de Sucesso e Insucesso:

- "Log Sucesso" "Ficheiro do Resultado" "Mail Sucesso":
 Caso a execução da transformação decorra sem erros, é criado um log de sucesso ("Write to log")e enviados, por email ("Mail"), os ficheiros de saída (dataset enriquecido e relatórios de subscrição).
- "Log Insucesso" "Mail Insucesso": Se a transformação falhar, é criado um log de insucesso ("Write to log") e enviado um por email ("Mail") com os detalhes do erro.

Este job assegura:

- Validação prévia dos ficheiros antes da execução da transformação;
- Monitorização e registo detalhado de logs;
- Notificações automáticas via *email*, diferenciando sucesso, insucesso e erro de ficheiros;
- Envio automático dos relatórios e *datasets* gerados.

Figura 11: Configuração do step "Mail Sucesso"

3.3 Resultados

A execução completa da transformação e do job resultou na geração de dois tipos principais de outputs:

• *Dataset* detalhado: "streaming_users_netflix.csv", que reúne e enriquece as atividades de visualização com as informações dos utilizadores;

Figura 12: Dataset detalhado - "streaming_users_netflix.csv"

 Relatório agregado: "relatório_por_subscrição" (exportado em CSV e JSON), que apresenta a média de horas vistas, o total de horas e o número de utilizadores por tipo de subscrição.

\angle	Α	В	С	D
1	Subscription_Type	AVG_Hours_Plan	Total_Hours_Plan	Num_Users_Plan
2	Basic	0.26	1946.73	3
3	Premium	0.22	335.76	4
4	Standard	0.18	197.42	2
_				

Figura 13: Relatório agregado: "relatório_por_subscricao.csv"

Ambos os ficheiros foram validados com sucesso e demonstram a correta execução do processo ETL, desde a limpeza e junção dos dados até à exportação final.

4. Vídeo de demonstração

A demonstração completa do projeto, desde a execução do *Job* no Pentaho até à visualização dos ficheiros de saída e das notificações por *email*, pode ser acedida através do seguinte QR Code.

Figura 14: QR Code do vídeo de demonstração

5. Conclusão

O desenvolvimento deste trabalho permitiu aplicar, de forma prática, os princípios fundamentais da integração de sistemas de informação, consolidando os conhecimentos adquiridos sobre processos ETL, manipulação de dados e orquestração de fluxos automatizados.

Através da ferramenta Pentaho Data Integration (PDI), foi possível construir uma solução completa, composta por transformações e um job de controlo, que demonstra todo o ciclo de integração, desde a leitura dos dados brutos até à geração e exportação de resultados consolidados.

Ao longo do projeto, foi dada especial atenção à implementação dos critérios de maisvalia definidos no enunciado. Foram exploradas expressões regulares (Regex) para normalização de campos, operações de limpeza e correção de dados, *joins* e agrupamentos para consolidação da informação, e a serialização em múltiplos formatos (CSV e JSON). Além disso, foi implementado um sistema de monitorização e controlo, com geração automática de *logs* e envio de notificações por *e-mail*, garantindo rastreabilidade e automatização do processo.

Estes aspetos permitiram demonstrar não apenas a capacidade de desenvolver um processo ETL funcional e eficiente, mas também de integrar diversos mecanismos complementares que aumentam a qualidade, robustez e valor analítico da solução.

Como trabalhos futuros, destaca-se a possibilidade de armazenar os dados tratados numa base de dados relacional, desenvolver *dashboards* interativos (em Power BI ou Apache Superset) e integrar dados provenientes de APIs externas, de forma a enriquecer a análise e expandir a utilidade do sistema.

Em suma, o projeto atingiu plenamente os objetivos propostos, evidenciando a aplicação prática dos conceitos de integração de sistemas e a tentativa de implementação de todos os critérios de mais-valia sugeridos, culminando num processo ETL completo, automatizado e alinhado com as boas práticas da área

6. Referências

GitHub Docs. (n.d.). Retrieved October 19, 2025, from https://docs.github.com/pt

JavaScript Guide - JavaScript | MDN. (n.d.). Retrieved October 19, 2025, from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

JSON. (n.d.). Retrieved October 19, 2025, from https://www.json.org/json-en.html

.NET Regular Expressions - .NET | Microsoft Learn. (n.d.). Retrieved October 19, 2025, from https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions

Netflix Users Database. (n.d.). Retrieved October 19, 2025, from https://www.kaggle.com/datasets/smayanj/netflix-users-database?utm_source=chatgpt.com

Netflix Watch Log. (n.d.). Retrieved October 19, 2025, from https://www.kaggle.com/datasets/arjunajn/netflix-watch-log?utm_source=chatgpt.com