6.3 1) Soit
$$s_n = \sum_{k=1}^n \frac{1}{2k}$$
 la somme partielle des n premiers termes.

On constate que
$$s_n = \sum_{k=1}^{n} \frac{1}{2k} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k}$$
.

En d'autres termes, la série de terme $\frac{1}{2\,k}$ vaut la moitié de la série harmonique. Puisque celle-ci diverge, il en va de même pour la série $\sum_{k=1}^{+\infty} \frac{1}{2\,k}$.

2) Pour tout
$$k \ge 1$$
, on a $\frac{1}{k} \le \frac{1}{1} = 1$.

Donc $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k} \left(\frac{2}{5}\right)^k \le \lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{2}{5}\right)^k = \frac{2}{5} \cdot \frac{1}{1 - \frac{2}{5}} = \frac{2}{5} \cdot \frac{5}{3} = \frac{2}{3}$

Puisque la série de terme $\frac{1}{k} \left(\frac{2}{5}\right)^k$ est majorée par la série géométrique de raison $r = \frac{2}{5} \in]-1; 1[$, elle converge.

3) Pour tout
$$k \in \mathbb{N}$$
, on a $\frac{1}{\sqrt{k(k+1)}} > \frac{1}{\sqrt{(k+1)(k+1)}} = \frac{1}{k+1}$.

Ainsi $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k(k+1)}} > \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k+1} = \lim_{n \to +\infty} \sum_{k=2}^{n+1} \frac{1}{k} = +\infty$

C'est pourquoi la série de terme $\frac{1}{\sqrt{k(k+1)}}$ diverge.

4) Pour tout
$$k \in \mathbb{N}$$
, on a $\frac{k+2}{k(k+1)} > \frac{k+1}{k(k+1)} = \frac{1}{k}$.

Puisque la série harmonique diverge, la série de terme $\frac{k+2}{k(k+1)}$ diverge également.

5) Pour tout
$$k \in \mathbb{N}$$
, on a $\frac{1}{k^2+1} < \frac{1}{k^2}$.

Vu que la série de terme $\frac{1}{k^2}$ converge, la série de terme $\frac{1}{k^2+1}$ converge aussi.

6) Pour tout
$$k \in \mathbb{N}$$
, on a $\frac{1}{10 k + 1} > \frac{1}{10 k + 10} = \frac{1}{10} \cdot \frac{1}{k + 1}$.

Donc $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{10 k + 1} > \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{10} \cdot \frac{1}{k + 1} = \lim_{n \to +\infty} \frac{1}{10} \sum_{k=1}^{n} \frac{1}{k + 1}$

$$= \frac{1}{10} \lim_{n \to +\infty} \sum_{k=2}^{n+1} \frac{1}{k} = \frac{1}{10} \cdot (+\infty) = +\infty$$

En d'autres termes, la série de terme $\frac{1}{10 k + 1}$ diverge.