One Class SVMを用いた 異常値検知

Anomaly detection using One Class SVM

概要

- 教師なし学習により、データのパターンを学習させ、パターンから外れたデータを異常値として検出する
- ► 検出方法は、One Class SVMを利用する。

- 前回マハラノビス距離で行ったことを再度One Class SVMで行う。
- →https://www.slideshare.net/YutoMori2/ss-88160534

One Class SVM とは

- SVM (サポートベクトルマシン) の中の一種。
- SVMは教師あり学習であるのに対して、OneClassSVMは教師なし学習である。
- One Class SVMは異常値検知によく用いられる。

実験環境

Python 3.6.0
 numpy, pandas, mmatplotlib, sklearn, time, plotly

実際のデータ(全てが正常値)
MachineA.csv → 22670個 × 3 (x軸, y軸, z軸)
MachineB.csv → 18700個 × 3 (x軸, y軸, z軸)

MachineBのデータに異常値を追加する

マハラノビス距離が1.5794である異常値(-0.39, -0.73, 2.235)を追加する。

Class sklearn.svm.OneClassSVM

One class SVMを適応するのは2行

clf = svm.OneClassSVM() clf.fit(データ)

課題はパラメータの調整(チューニング)

パラメータについて

■ デフォルトのパラメータ

OneClassSVM(cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, random_state=None, shrinking=True, tol=0.001, verbose=False)

- 今回重要なのは"gamma"と"nu".
- gamma = 'auto' = 1 / n_features = 0.5

つまり、3変数でも出来るのでは....

パラメータについて

nu

異常データの割合....? (0~1)

gamma

RBFカーネルのパラメータ...?

→値が大きいほど境界が複雑になる…?

正直あまりわかっていないので実際に数値を変えて検証する

2変数分析

(XYの関係, XZの関係, YZの関係)

2変数分析の説明

それぞれに対してSVMを用いる clf.fit(dataXY) y_pred = clf.predict(dataXY) dataXY = np. vstack([dataX, dataY]). T clf.fit(dataXZ) dataXZ = np. vstack([dataX, dataZ]).T y_pred = clf.predict(dataXZ) dataYZ = np. vstack([dataY, dataZ]). Tclf.fit(dataYZ) y_pred = clf.predict(dataYZ)

グラフの説明

- outliers → 異常値
- スライド5で追加したダミー の異常値

(-0.39, -0.73, 2.235)

グレーの等高線は異常度示している(黒になるほど異常値であると予測させる)

デフォルト (nu=0.5, gamma=0.5)

デフォルト (nu=0.5, gamma=0.5)

デフォルト (nu=0.5, gamma=0.5)

パラメータ調整

$$nu = 0.5 \rightarrow nu = 0.1$$

nu=0.1, gamma=0.5

XYの関係

MachineB

実行時間 =37.2s

nu=0.1, gamma=0.5

nu=0.1, gamma=0.5

この作業を繰り返す....

パラメータ nu について

gamma = 0.5を固定 XYの関係

0.001~0.0001の間に異常値を正常値と判断し、異常度等高線が大きく変化する

パラメータ nu について

○入力データ

MachineB_dummy.csv

正常值: 18700, 異常值: 1, 計: 18701

●nu = 0.001のOne Class SVMを適応したグラフ(1) 正常値: 18682, 異常値: 19, 計: 18701

18701 * 0.001 = 18.7 ≒ 19

●nu = 0.002のOne Class SVMを適応したグラフ(2) 正常値: 18664, 異常値: 37, 計: 18701

18704 * 0.002 = 37.4 = 37

(2) nu = 0.002

パラメータ nu のまとめ

- パラメータ nu は入力データの異常値の割合であることが明らかである。
- 異常値の割合が0.0001のような小さい値をとると極度に異常であるデータを正常値と判断してしまう可能性がある。
- nuが小さくなればなるほど、異常度等高線が適切なものになる。

パラメータ gamma について

nu = 0.001を固定 YZの関係

gamma値の大小で汎化能力が変化する (汎化能力: 規則性の当てはまり)

パラメータ gamma について

nu = 0.001を固定 YZの関係

gamma値を上げすぎると過学習状態に...

汎化能力と過学習

最適な学習モデルは、「過学習が起こらず、汎化性能に優れたもの」

3変数分析

(XYZの関係)

3変数分析の説明

python dataXYZ = np. vstack([dataX, dataY, dataZ]). T clf. fit (dataXYZ) y_pred = clf.predict(dataXYZ)

print

```
dataXYZ

[[ 0.068 0.228 1.484]

[-0.18 0.816 1.344]

[-0.108 0.392 0.932]

...,

[-0.132 0.692 1.572]

[-0.168 0.564 1.076]

[-0.39 -0.73 2.235]]
```

```
y_pred
[1 1 1 ..., 1 1 -1]
```

1: 正常値 -1: 異常値

plotlyによる描写

パラメータ: Nu = 0.001, gamma = 1

URL : https://www.youtube.com/watch?v=Tu3wEj0Inc0

matplotlibによる描写

3変数で分析したものを2変数に変換したもの

3変数分析の問題点

- 異常度等高線を描写できない。
- グラフを見ても適切なパラメータに設定することができない。

nu = 0.001, gamma = 1.0

nu = 0.001, gamma = 2.0

分類器の性能評価(分割表)

予測

実際

分割表	正常値(inliers)	異常値(outliers)	
正常値(inliers)	True Positive(TP)	False Negative(FN)	
異常値(outliers)	False Positive(FP)	True Negative(TN)	

分類器の性能評価(Weighted F-measure)

- 重み付きF値(Weighted F-measure) とは
 - ラベル間のデータ数が大きく異なる場合によく使われる指標
 - 今回は偽陽性(本当は異常値であるのに検査結果で正常と出ること)を低く 抑えたいので, 適合率に重さを付ける(1 < β)
- $適合率(Precision) = \frac{True\ Positive}{True\ Positive + false\ Positive}$
- $= \overline{\text{True Positive}}$ $= \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}$
- 重み付きF値(Weighted F-measure) = $\frac{(1+\beta^2) \cdot Precision \cdot Recall}{\beta^2 \cdot Precision + Recall}$

偽陽性率と真陽性率

- False Positive Rate(偽陽性率) = $\frac{False\ Positive}{False\ Positive + True\ Negative}$
 - 異常値であるものを間違って正常と予測した割合
- True Positive Rate(真陽性率) = $\frac{True\ Positive}{True\ Positive + False\ Negative}$
 - ▶ 正常値であるものを正しく正常と予測した割合

3変数分析のダミーを設定(Y軸, Z軸のみ)

▶ 右図に該当しない候補

(x, y, z)

= (?, -0.75, 1.9), (?, 0.00, 2.0), (?, 0.65, 2.1), (?, 1.7, 1.00), (?, 1.88, 0.65), (?, 0.75, 0.2), (?, -1.2, 0.25), (?, -0.50, -1.2),

実際のデータのみ

3変数分析のダミーを設定(X軸, y軸, Z軸)

■ 右図に該当しないように設定

実際のデータのみ

■環境

- データの数: 18716, nu = 0.00085 → 約16個選ばれる
- ▶ 今回入れた異常値は16個

gamma	0.00001	0.00005	0.0001	0.001	0.01	0.1
True Positive	3690	18699	18698	18698	18699	18699
False Negative	15010	1	2	2	1	1
False Positive	0	4	1	2	1	2
True Negative	16	12	15	14	15	14
False Positive Rate(%)	0	25	6.25	12.5	6.25	12.5
True Positive Rate(%)	19.7326	99.973	99.989	99.9893	99.994	99.99465

gamma	0.33(auto)	0.5	1.0	2.0	3.5	5.0
True Positive	18699	18700	18697	18693	18689	18683
False Negative	1	0	3	7	11	17
False Positive	1	2	2	6	9	6
True Negative	15	14	14	10	7	10
False Positive Rate(%)	6.25	12.5	12.5	37.5	56.25	37.5
True Positive Rate(%)	99.99465	100.0	99.9839	99.9626	99.9412	99.9091

- 0.01 < gamma < 0.5 が適切なパラメータ</p>
 - 右図が全ての異常値を正しく判断したgamma値(0.37)

gamma	0.37
True Positive	18700
False Negative	0
False Positive	0
True Negative	16
False Positive Rate(%)	0.0
True Positive Rate(%)	100.0

URL : https://www.youtube.com/watch?v=6oACtaVSZ2A

まとめ

- One Class SVM で教師なし学習を行った。
- ▶ 2変数分析と3変数分析に分けて機械学習を行った。
 - 2変数分析ではパラメータの特徴を理解し、3変数分析ではより正確な異常値検知を行うことができた。
- 性能評価を行い、適切なパラメータを見つけた。