Contents

- Lecture 5
 - Analyticity
 - Power Series
 - Power series -Radius of convergence
 - Derivative of power series

A function f is said to be analytic at z if there exists an open neighbourhood U around z such that f is differentiable at every point of U.

Eg: $|z|^2$ is differentiable at 0 but not analytic at 0. z^2 is analytic at 0 since it is differentiable everywhere. More examples???

Power Series

A series of the form $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ is called a power series at z_0 . Here $a_n \in \mathbb{C}$ and z is an indeterminate.

Eg: $\sum_{n=0}^{\infty} z^n$.

$$k^{th}$$
 partial sum = $s_k = \sum_{n=0}^{k} z^n = \frac{1 - z^{k+1}}{1 - z}$

$$\lim_{k\to\infty} s_k = \frac{1}{1-z} - \lim_{k\to\infty} \frac{z^{k+1}}{1-z}$$

 $\{s_k\}$ converges to $\frac{1}{1-z}$ for |z|<1 and diverges otherwise. (At |z|=1, we know that the *n*-th term of the series does not converge to 0 hence it diverges.)

Alternately, lets consider the root test for determining the convergence of $\sum_{n=0}^{\infty} z^n$. $\lim_{n\to\infty} |z| = |z|$

By Root test, we conclude that $\sum_{n=0}^{\infty} z^n$ converges when |z| < 1 and diverges if |z| > 1. At |z| = 1, we know that the *n*-th term of the series does not converge to 0 hence it diverges.

The number 1 in the above example is called the radius of convergence of $\sum_{n=0}^{\infty} z^n$

Radius of convergence of a series

Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series around z_0 . The radius of convergence is defined as

$$\sup\{|z-z_0|: \sum_{n=0}^{\infty} a_n(z-z_0)^n \text{ converges.}\}$$

Let
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$.
Then $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges $\forall z \ni |z - z_0| < |z_1 - z_0|$.

Radius of convergence (Equivalent definition)

Let $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ be a power series around z_0 . The radius of convergence is defined as $R \geq 0$ such that $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ converges for all $|z-z_0| < R$ and diverges for all $|z-z_0| > R$.

Radius of convergence of a series

Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series around z_0 . The radius of convergence is defined as

$$\sup\{|z-z_0|: \sum_{n=0}^{\infty} a_n(z-z_0)^n \text{ converges.}\}$$

Let
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$.
 Then $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges $\forall z \ni |z - z_0| < |z_1 - z_0|$.

Radius of convergence (Equivalent definition)

Let $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ be a power series around z_0 . The radius of convergence is defined as $R \ge 0$ such that $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ converges for all $|z-z_0| < R$ and diverges for all $|z-z_0| > R$.

Let
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$.
 Then $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges $\forall z \ni |z - z_0| < |z_1 - z_0|$.

Let $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ converges for some $z_1 \in \mathbb{C}$. Then $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges $\forall z \ni |z - z_0| < |z_1 - z_0|$.

Let
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$. Then $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges $\forall z \ni |z - z_0| < |z_1 - z_0|$.

Proof: Let
$$Z \ni |Z - Z_0| < |Z_1 - Z_0| \Rightarrow \frac{|Z - Z_0|}{|Z_1 - Z_0|} < 1$$

Let
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$. Then $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges $\forall z \ni |z-z_0| < |z_1-z_0|$.

Proof: Let $z \ni |z-z_0| < |z_1-z_0| \Rightarrow \frac{|z-z_0|}{|z_1-z_0|} < 1$
Let $x \ni |z-z_0| < x < 1$

$$|a_n(z-z_0)^n| = |a_n||z-z_0|^n = |a_n||z-z_0|^n \cdot |z_1-z_0|^n$$

Let
$$\sum_{n=0}^{\infty} a_n(z_1-z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$. Then $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ converges $\forall z \ni |z-z_0| < |z_1-z_0|$.

Proof: Let $z \ni |z-z_0| < |z_1-z_0| \Rightarrow \frac{|z-z_0|}{|z_1-z_0|} < 1$

Let $x \ni |z-z_0| < |z_1-z_0| \Rightarrow |z-z_0| < 1$

Let $z \ni |z-z_0| < |z_1-z_0| \Rightarrow |z-z_0| < 1$

$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n \text{ converges } \Rightarrow \left\{ a_n (z_1 - z_0)^n \right\} \text{ is a null sequence}$$

$$\Rightarrow \text{ given } \varepsilon > 0 \text{ } \Rightarrow \left| a_n (z_1 - z_0)^n \right| < \varepsilon + n > N$$

Let
$$\sum_{n=0}^{\infty} a_n(z_1-z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$. Then $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ converges $\forall z \ni |z-z_0| < |z_1-z_0|$.

Proof: Let $z \ni |z-z_0| < |z_1-z_0| \Rightarrow \frac{|z-z_0|}{|z_1-z_0|} < 1$

Let $x \ni \frac{|z-z_0|}{|z_1-z_0|} < x < 1$
 $|a_n(z-z_0)^n| = |a_n||z-z_0|^n = |a_n||z-z_0|^n \cdot |z_1-z_0|^n$
 $\sum_{n=0}^{\infty} a_n(z_1-z_0)^n$ converges $\Rightarrow \{a_n(z_1-z_0)^n\}$ is a null sequence $\Rightarrow a_n(z_1-z_0)^n < a_n$

Let
$$\sum_{n=0}^{\infty} a_n(z_1-z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$. Then $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ converges $\forall z \ni |z-z_0| < |z_1-z_0|$.

$$\frac{|z-z_0|}{|z_1-z_0|} \le |z-z_0| < |z_1-z_0| \Rightarrow \frac{|z-z_0|}{|z_1-z_0|} < 1$$
Let $x = \frac{|z-z_0|}{|z_1-z_0|} < x < 1$

$$|a_n(z-z_0)^n| = |a_n||z-z_0|^n = |a_n||z-z_0|^n |z_1-z_0|^n |z_1-z_0|^n$$

Let
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 converges for some $z_1 \in \mathbb{C}$. Then $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges $\forall z \ni |z - z_0| < |z_1 - z_0|$.

$$\left| \frac{1}{2} \right| = \left| \frac{1}$$

$$|a_n(z-z_0)^n| = |a_n||z-z_0|^n = |a_n||z-z_0|^n |z_0|^n |z_0|^n$$

By Comparison test,
$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 converges absolutely

Radius of convergence of a series

Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series around z_0 . The radius of convergence is defined as

$$\sup\{|z-z_0|: \sum_{n=0}^{\infty} a_n (z-z_0)^n \text{ converges.}\}$$

$$\sum a_n r^n \text{ converges.} \Rightarrow \mathbb{R} \gg r$$

$$\mathbb{R} \text{ is unique.}$$

Radius of convergence (Equivalent definition)

Let $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ be a power series around z_0 . The radius of convergence is defined as $R \ge 0$ such that $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ converges for all $|z-z_0| < R$ and diverges for all $|z-z_0| > R$.

Radius of convergence of $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ is R if and only if radius of convergence of $\sum_{n=0}^{\infty} a_n w^n$ is R.

Radius of convergence of $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is R if and only if radius of convergence of $\sum_{n=0}^{\infty} a_n w^n$ is R.

Radius of convergence of $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ is R if and only if radius of convergence of $\sum_{n=0}^{\infty} a_n w^n$ is R.

$$\left(\begin{array}{c}
\omega & R \\
\bullet & \sum_{n=0}^{\infty} a_n \omega^n = g(\omega)
\end{array}\right)$$

Radius of convergence of $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is R if and only if radius of convergence of $\sum_{n=0}^{\infty} a_n w^n$ is R.

Set
$$\omega := z - z \circ$$

 $\sum a_n(z - z \circ)^n cys \text{ for } |z - z \circ| < R$
 $\Rightarrow \sum a_n \omega^n cys \text{ for } |\omega| < R$

Set
$$\omega := z - z_0$$

 $\sum a_n(z-z_0)^n cgs$ for $|z-z_0| < R$
 $\Rightarrow \sum a_n \omega^n cgs$ for $|\omega| < R$
Set $z := \omega + z_0$

Eg:
$$\sum_{n=0}^{\infty} z^n cgs \forall |z| < 1$$

$$\sum_{n=0}^{\infty} (z-1)^n cgs \forall |z-1| < 1$$

Eg:
$$\sum_{n=0}^{\infty} z^{n} cgs + |z| < 1$$

$$\sum_{n=0}^{\infty} (z-1)^{n} cgs + |z-1| < 1$$

$$\sum_{n=0}^{\infty} (z-1)^{n} cgs + |z-1| < 1$$

Eg:
$$\sum_{n=0}^{\infty} z^{n} cgs \forall |z| < 1$$
 $\sum_{n=0}^{\infty} (z-1)^{n} cgs \forall |z-1| < 1$
 $\sum_{n=0}^{\infty} (z-1)^{n} cgs \forall |z-1| < 1$
 $\sum_{n=0}^{\infty} (z-1)^{n} cgs \forall |z-1| < 1$

Ratio Test

$$l = \prod_{n \to \infty} \frac{|a_{nn}|}{|a_n|}$$

For a series $\sum_{n=0}^{k} a_n z^n$. The sequence of ratios $|a_{n+1}||z|/|a_n|$ has a limit I|z|. Then

- i $\sum_{n=0}^{k} a_n z^n$ converges absolutely if I|z| < 1;
- ii $\sum_{n=0}^{k} a_n z^n$ diverges if I|z| > 1;
- iii if I|z|=1 then the series may or may not converge.

So, by definition of the radius of convergence 1/I is the radius of convergence of the series.

Radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$ is

$$1/\lim_{n\to\infty}|a_{n+1}|/|a_n|$$

with the convention that $1/\infty = 0$ and $1/0 = \infty$.

Root Test: For a series $\sum_{n=0}^{k} a_n z^n$ let the lim $\sup \sqrt[n]{|a_n|}|z|$ be I|z|. Then

- i $\sum_{n=0}^{k} a_n z^n$ converges absolutely if I|z| < 1;
- ii $\sum_{n=0}^{k} a_n z^n$ diverges if I|z| > 1;
- iii if I|z|=1 then the series may or may not converge.

So, by definition of the radius of convergence 1/I is the radius of convergence of the series.

Radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$ is

$$1/\lim_{n\to\infty} \sqrt[n]{|a_n|}$$

with the convention that $1/\infty = 0$ and $1/0 = \infty$.

If $\sum_{n=0}^{\infty} a_n z^n$ converges in a disc of radius R then so does the derived series $\sum_{n=0}^{\infty} n a_n z^{n-1}$.

Theorem: Let $f(z) := \sum_{n=0}^{\infty} a_n z^n$ in the disc of convergence $B_R(0)$. Then f(z) is analytic in $B_R(0)$. Its derivative is given by $\sum_{n=0}^{\infty} n a_n z^{n-1}$.

Power series are analytic in their disc of convergence.

Pf of theorem:
Consider
$$f(z) - f(\omega) - g(\omega)$$
.

For NeIN,
$$\sum_{n=0}^{\infty} A_n z^n = \sum_{n=0}^{\infty} A_n z^n + \sum_{n=0}^{\infty} A_n z^n$$

 $S_N(z)$ $E_N(z)$

S_N(Z) is a polynomial whose derivative is

S_N(Z) =
$$\sum_{n=0}^{N} na_n z^{n-1} = N$$
-th partial sun

of $\sum_{n=0}^{\infty} na_n z^{n-1}$

$$\frac{f(z)-f(\omega)-g(\omega)}{z-\omega}=\sum_{n=0}^{\infty}a_nz^n-\sum_{n=0}^{\infty}u^n-g(\omega)$$

$$= \frac{S_N(z) + E_N(z) - \left(S_N(\omega) - E_N(\omega)\right)}{z - \omega} - g(\omega)$$

$$= \frac{S_{N}(z) - S_{N}(\omega)}{z - \omega} + \frac{E_{N}(z) - E_{N}(\omega)}{z - \omega} - \frac{S_{N}'(\omega)}{z - \omega}$$

$$\frac{1}{z-\omega} = \frac{1}{z-\omega} = \frac{1}{z-\omega}$$

$$\left|\frac{S_{N}(z)-S_{N}(\omega)}{Z-\omega}-S_{N}(\omega)\right|+\left|S_{N}(\omega)-g(\omega)\right|$$

$$\frac{1}{2-\omega} \left| \frac{f(z) - f(\omega)}{z - \omega} - g(\omega) \right| \le$$

$$\frac{\left|S_{N}(z)-S_{N}(\omega)-S_{N}(\omega)\right|+\left|S_{N}'(\omega)-g(\omega)\right|}{z-\omega}$$

$$\int_{\mathbb{R}^{2}} S_{N}(z) - S_{N}(\omega) = S_{N}(\omega)$$

$$\frac{1}{z} = \frac{1}{z} \left[\frac{1}{z} - \frac{1}{z} - \frac{1}{\omega} \right] = \frac{1}{z} \left[\frac{1}{z} - \frac{1}{z} - \frac{1}{\omega} \right] = \frac{1}{z} \left[\frac{1}{z} - \frac{1}{z} - \frac{1}{\omega} \right] = \frac{1}{z} \left[\frac{1}{z} - \frac{1}{\omega} \right] = \frac{1}{z} \left[\frac{1}{z} - \frac{1}{\omega} \right] = \frac{1}{z} \left[\frac{1}{z} - \frac{1}{z} - \frac$$

$$\left|\frac{S_{N}(z)-S_{N}(\omega)}{z-\omega}-S_{N}'(\omega)\right|+\left|S_{N}'(\omega)-g(\omega)\right|$$

$$\mathcal{L} = S_{N}(z) - S_{N}(\omega) = S_{N}(\omega)$$

$$\frac{|f(z)-f(\omega)|}{|z-\omega|} - g(\omega)| \le \frac{|f(z)-f(\omega)|}{|z-\omega|} + \frac{|f(z)-f(\omega)|}{|z-\omega$$

Choose
$$\delta_{2} \ni |\omega| + \delta_{2} < r$$

then for $z \in B_{\omega}(\delta)$

$$|Z| \leq |Z - \omega| + |\omega| < r$$

$$\sum_{n=N+1}^{\infty} |a_{n}| (|Z|^{n-1} + \cdots + |\omega|^{n-1}) \leq \sum_{n=N+1}^{\infty} |a_{n}| \cdot 1 \cdot r^{n-4}$$

Since $r < R$, $s \geq n \cdot a_{n} \cdot Z^{n-1}$ converges $\forall |Z| < R$

we get a $N_{2} >> 0 \ni \sum_{n=N_{1}+2} n \mid a_{n} \mid r^{n-1} < \epsilon \mid_{3}$

$$\sum_{n=N_{1}+2}^{\infty} |a_{n}| \cdot |a_{n} \mid_{3} r^{n-1} < \epsilon \mid_{3}$$

Choose $N \geq \{N_{1}, N_{2}\}$

Her,

Term $1 \mid + |Term 2| + |Term 3| < \epsilon$.