D17 – O que são os dados georreferenciados? - Aula 5

Agenda

- Sistema de Referência de Coordenadas SRC
- Projeções Cartográficas
- Georreferenciamento
- Transformações de SRC

Sistema de Referência de Coordenadas - SRC

Como as coordenadas são interpretadas no espaço (terra).

- Geográficas (unidade graus):
 - (1) Latitude:
 - Origem: Linha do Equador "Paralelo"
 - Sul ou Norte
 - **(2)** Longitude :
 - Origem: Meridiano de Greenwich
 - Oeste (W) ou Leste (E)
- Projetadas (unidade planas):
 - X e Y: Positiva (+) ou Negativa (-)

Geográficas (Lat/Long): Positivo e Negativo?

Projetadas: Onde é a origem ?

Sistema de Referência de Coordenadas – SRC (Continuação)

- Elementos do SRC
 - Geoide
 - Representa a superfície equipotencial do campo gravitacional da Terra
 - Cálculo: Referência para altitudes ortométricas (altitude "real")
 - Elipsoide:
 - Aproximação matemática da forma da Terra (simplificada)
 - Parâmetros:
 - Semieixo maior (a): Raio equatorial (Centro da Terra ao Equador)
 - Semieixo menor (b): Raio polar (Centro da Terra aos polos)
 - Achatamento (f): (a b) / a
 - Exemplo:
 - GRS80 (usado no SIRGAS 2000): a = 6.378.137m e f = 1 / 298.257222101
 - Datum Geodésico
 - Orientação do Elipsoide: Conecta o elipsoide a uma posição na terra.

Sistema de Referência de Coordenadas – SRC (Continuação)

Projeções Cartográficas

- Como transformar a Terra em um *Mapa* (2D)
- Distorções específicas (área, forma, distância, direção)
 - Cada projeção procura preservar alguma medida
 - Para o mesmo objeto no terreno, vai possuir diferentes propriedades para cada tipo de projeção.
- Projeções:
 - Projeções que preservam a ÁREA (Equivalentes ou Equivalentes em Área)
 - Exemplo: Albers Equal Area, Mollweide, Sinusoidal
 - Projeções que preservam a FORMA (Conformes)
 - Exemplo: Mercator, Lambert Conformal Conic
 - Projeções que preservam a DISTÂNCIA (Equidistantes)
 - Exemplo: Azimuthal Equidistant, Equirectangular
 - Projeções que preservam a DIREÇÃO (Azimutais ou Direcionais)
 - Exemplo: Azimuthal Equidistant, Gnomonic, Stereographic
- A origem das coordenadas (0,0) VARIAM para cada projeção

Projeções Cartográficas (Continuação)

- Qual é a unidade de uma coordenada num mapa projetado?
- Se usarmos o valor de uma coordenada num mapa com uma projeção "A" e colocarmos num mapa com outra projeção "B", a mesma coordenada, o ponto aparecerá no mesmo local?

Projeções Cartográficas (Continuação)

Obs.: J a N são faixas Latitude (total de 20 zonas) com ~8°

Projeção UTM(Universal Transversa de Mercator)

- 60 fusos (zonas) de 6° de amplitude (longitudinal).
 - Inicia em UM (origem de -180º/180º W)
 - Cada fuso tem o seu MC (Meridiano Central)
- Unidade em *Metros*
- Origem:
 - Y: Linha do Equador
 - Ao Sul: Falso Norte de 10.000.000m
 - X: Meridiano Central
 - Falso Leste: 500.000 m
- Projeção UTM no Brasil:
 - Fusos: 18S a 25S
 - Meridianos Centrais (W/Oeste): 75º a 33º

Fonte:

https://metrica.zendesk.com/hc/pt-br/articles/360022760632--Con-Fusos-e-meridianos

Georreferenciamento

- São as informações que definem o SRC das coordenadas e um SIG.
- Formatos de definição de SRC:
 - WKT (Well-Known Text): Padronizado pela OGC (Open Geospatial Consortium)
 - PROJ (biblioteca PROJ4)
 - EPSG: European Petroleum Survey Group

```
PROJCS["SIRGAS 2000 / UTM zone 23S",

GEOGCS["SIRGAS 2000",

DATUM["Sistema de Referencia Geocentrico para las Americas 2000",

SPHEROID["GRS 1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433]],

PROJECTION["Transverse_Mercator"],

PARAMETER["latitude_of_origin",0],

PARAMETER["central_meridian",-45],

PARAMETER["scale_factor",0.9996],

PARAMETER["false_easting",500000],

PARAMETER["false_northing",10000000],

UNIT["metre",1]]
```

+proj=utm +zone=23 +south +datum=SIRGAS2000 +units=m +no_defs

EPSG: 31983 → SIRGAS 2000 / UTM zone 23S

Qual unidade (Km, m, graus,)?

- -5294181 -1815840
- -16.0841 -47.4017
- 226160 8217767

Posso ter UM VALOR de coordenada em locais diferentes?

Georreferenciamento (Continuação)

- Onde são armazenadas as informações sobre SRC:
 - Numa imagem (Geotif)?
 - Arquivo Vetorial (Shapefile, Geojson, ...) ?
 - No GeoPandas ?
 - No campo Geométrico de um Banco de dados (PostGIS, Geopackage)?

Transformações de SRC

- São procedimentos matemáticos usados para converter coordenadas geográficas ou projetadas de um SRC para outro.
- Tipos:
 - Transformação geodésica (diferentes Datums):
 Translação (X,Y,Z), Rotação e Escala
 - Reprojeção: Diferentes projeção cartográfica
 Ex.: Coordenadas Geográficas para Projetada
 - Combinada: Envolve Datum e Reprojeção

Transformações de SRC (Continuação)

- Os SRC são usado onde?
 - Camadas (Layers) Vetoriais.
 - Camadas de Raster (Imagem).
 - Mapa
- Dois exemplos para usar as transformações de SRC ?
- Podemos fazer uma transformação de SRC numa camada "sem definição" de SRC ?
 Ex.: Arquivo CSV, com os campos, Long/X e Lat/Y.

Transformações de SRC (Continuação)

Geográfica

Projetada