

09/578, 693
Updated Search
L/Cook 1/7/05

d his

(FILE 'HOME' ENTERED AT 11:03:00 ON 07 JAN 2005)

FILE 'BIOSIS, CAPLUS, EMBASE, MEDLINE, CANCERLIT, JAPIO' ENTERED AT
11:03:18 ON 07 JAN 2005

L1 16 S (PLASMA FABP)
L2 6 DUPLICATE REMOVE L1 (10 DUPLICATES REMOVED)
L3 0 S L2 AND LIVER?
L4 352 S (LIVER FABP)
L5 23 S L4 AND PLASMA?
L6 10 DUPLICATE REMOVE L5 (13 DUPLICATES REMOVED)

=>

d his

(FILE 'HOME' ENTERED AT 11:03:00 ON 07 JAN 2005)

FILE 'BIOSIS, CAPLUS, EMBASE, MEDLINE, CANCERLIT, JAPIO' ENTERED AT
11:03:18 ON 07 JAN 2005

L1 16 S (PLASMA FABP)
L2 6 DUPLICATE REMOVE L1 (10 DUPLICATES REMOVED)
L3 0 S L2 AND LIVER?
L4 352 S (LIVER FABP)
L5 23 S L4 AND PLASMA?
L6 10 DUPLICATE REMOVE L5 (13 DUPLICATES REMOVED)

=>

ANSWER 9 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN DUPLICATE 5

AN 1989:241079 BIOSIS
DN PREV198987122144; BA87:122144
TI DISTRIBUTION OF FATTY ACID BINDING PROTEINS IN TISSUES AND **PLASMA**
OF GALLUS-DOMESTICUS.
AU COLLINS D M [Reprint author]; HARGIS P S
CS DEP POULTRY SCI, TEX AGRIC EXPERIMENT STATION, TEX A AND M UNIV SYSTEM,
COLLEGE STATION, TEX 77843-2472, USA
SO Comparative Biochemistry and Physiology B, (1989) Vol. 92, No. 2, pp.
283-290.
CODEN: CBPBB8. ISSN: 0305-0491.
DT Article
FS BA
LA ENGLISH
ED Entered STN: 20 May 1989
Last Updated on STN: 20 May 1989
AB 1. Fatty acid binding activity associated with a 14,000-15,000 mol. wt
protein was observed in the cytosolic fraction of liver, duodenum,
myocardium, adipose pectoral and gastrocnemius muscles of chickens. 2.
Polyclonal antisera prepared against chicken liver fatty acid binding
protein exhibited affinity for only **liver FABP** and a
14,000 mol. wt fatty acid binding protein in the intestine. 3. A fatty
acid binding protein was not detected in chicken **plasma**.
CC Biochemistry studies - Proteins, peptides and amino acids 10064
Biochemistry studies - Lipids 10066
Biophysics - Molecular properties and macromolecules 10506
Metabolism - Proteins, peptides and amino acids 13012
Digestive system - Physiology and biochemistry 14004
Cardiovascular system - Physiology and biochemistry 14504
Blood - Blood and lymph studies 15002
Muscle - Physiology and biochemistry 17504
Bones, joints, fasciae, connective and adipose tissue - Physiology and
biochemistry 18004
IT Major Concepts
 Biochemistry and Molecular Biophysics; Blood and Lymphatics (Transport
 and Circulation); Cardiovascular System (Transport and Circulation);
 Digestive System (Ingestion and Assimilation); Metabolism; Muscular
 System (Movement and Support); Skeletal System (Movement and Support)
IT Miscellaneous Descriptors
 LIVER DUODENUM MYOCARDIUM MUSCLE BINDING SPECIFICITY
ORGN Classifier
 Galliformes 85536
Super Taxa
 Aves; Vertebrata; Chordata; Animalia
Taxa Notes
 Animals, Birds, Chordates, Nonhuman Vertebrates, Vertebrates

ANSWER 9 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN DUPLICATE 5

AN 1989:241079 BIOSIS
DN PREV198987122144; BA87:122144
TI DISTRIBUTION OF FATTY ACID BINDING PROTEINS IN TISSUES AND **PLASMA**
OF GALLUS-DOMESTICUS.
AU COLLINS D M [Reprint author]; HARGIS P S
CS DEP POULTRY SCI, TEX AGRIC EXPERIMENT STATION, TEX A AND M UNIV SYSTEM,
COLLEGE STATION, TEX 77843-2472, USA
SO Comparative Biochemistry and Physiology B, (1989) Vol. 92, No. 2, pp.
283-290.
CODEN: CBPBB8. ISSN: 0305-0491.
DT Article
FS BA
LA ENGLISH
ED Entered STN: 20 May 1989
Last Updated on STN: 20 May 1989
AB 1. Fatty acid binding activity associated with a 14,000-15,000 mol. wt
protein was observed in the cytosolic fraction of liver, duodenum,
myocardium, adipose pectoral and gastrocnemius muscles of chickens. 2.
Polyclonal antisera prepared against chicken liver fatty acid binding
protein exhibited affinity for only **liver FABP** and a
14,000 mol. wt fatty acid binding protein in the intestine. 3. A fatty
acid binding protein was not detected in chicken **plasma**.
CC Biochemistry studies - Proteins, peptides and amino acids 10064
Biochemistry studies - Lipids 10066
Biophysics - Molecular properties and macromolecules 10506
Metabolism - Proteins, peptides and amino acids 13012
Digestive system - Physiology and biochemistry 14004
Cardiovascular system - Physiology and biochemistry 14504
Blood - Blood and lymph studies 15002
Muscle - Physiology and biochemistry 17504
Bones, joints, fasciae, connective and adipose tissue - Physiology and
biochemistry 18004
IT Major Concepts
Biochemistry and Molecular Biophysics; Blood and Lymphatics (Transport
and Circulation); Cardiovascular System (Transport and Circulation);
Digestive System (Ingestion and Assimilation); Metabolism; Muscular
System (Movement and Support); Skeletal System (Movement and Support)
IT Miscellaneous Descriptors
LIVER DUODENUM MYOCARDIUM MUSCLE BINDING SPECIFICITY
ORGN Classifier
Galliformes 85536
Super Taxa
Aves; Vertebrata; Chordata; Animalia
Taxa Notes
Animals, Birds, Chordates, Nonhuman Vertebrates, Vertebrates

ANSWER 3 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN DUPLICATE 3

AN 1997:305166 BIOSIS
DN PREV199799612969

TI Fatty acid binding proteins reduce 15-lipoxygenase-induced oxygenation of linoleic acid and arachidonic acid.

AU Ek, Bengt A. [Reprint author]; Cistola, David P.; Hamilton, James A.; Kaduce, Terry L.; Spector, Arthur A.

CS Dep. Biochem., Univ. Iowa, College Med., Iowa City, IA 52242, USA

SO Biochimica et Biophysica Acta, (1997) Vol. 1346, No. 1, pp. 75-85.
CODEN: BBACAO. ISSN: 0006-3002.

DT Article
LA English
ED Entered STN: 26 Jul 1997
Last Updated on STN: 26 Jul 1997

AB Free fatty acids in **plasma** and cells are mainly bound to membranes and proteins such as albumin and fatty acid binding proteins (FABP), which can regulate their biological activities and metabolic transformations. We have investigated the effect of FABP and albumin on the peroxidation of linoleic acid (18:2) and arachidonic acid (20:4) by 15-lipoxygenase (15-LO). Rabbit reticulocyte 15-LO produced a rapid conversion of (1-14C)18:2 to 13-hydroxyoctadecadienoic acid (13-HODE) and (3H)20:4 to 15-hydroxyeicosatetraenoic acid (15-HETE). 13-HODE formation was reduced when intestinal FABP (1-FABP), **liver FABP** (L-FABP) or albumin was added. The relative ability of these proteins to reduce 15-LO induced formation of 13-HODE and 15-HETE was BSA > L-FABP > I-FABP. Smaller reductions in activity were observed with 20:4 as compared to 18:2. The IC-50-values of I-FABP and L-FABP, using either 18:2 (3.4 AM) or 20:4 (3.4 μM), were 4.6 ± 0.6 and 1.9 ± 0.2 AM, respectively, for reduction of 13-HODE and 6.8 ± 0.3 and 3.1 ± 0.2 μM, respectively, for reduction of 15-HETE formation. The smaller 15-HETE reduction correlated with decreased binding of 20:4 to the FABP. Titration calorimetry also showed that the I-FABP IC-50 for 18:2, 0.25 μM, was lower than for 20:4, 0.6 μM. Thus the reduction in fatty acid lipid peroxidation relates to the binding capacity of each FABP. We also demonstrated that 18:2 rapidly diffuses (flip-flops) across the phospholipid bilayer of small unilamellar vesicles (SUV) and measured partitioning of 18:2 between proteins and SUV by the pyranin fluorescence method (Kamp, F. and Hamilton, J.A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11367-11370). Addition of proteins to SUV in buffer resulted in a complete desorption of 18:2 from SUV with a relative effect of BSA > L-FABP > I-FABP. This suggests that the relative effects of these proteins on 18:2 peroxidation will not be altered by the presence of membranes. Our results indicate that FABPs protect intracellular polyunsaturated fatty acids against peroxidation and, through differential binding of 18:2 and 20:4, they may modulate the availability of these polyunsaturated fatty acids to intracellular oxidative pathways.

CC Cytology - Animal 02506
Biochemistry studies - Lipids 10066
Biophysics - Membrane phenomena 10508
Enzymes - Chemical and physical 10806
Metabolism - Lipids 13006

IT Major Concepts
Biochemistry and Molecular Biophysics; Cell Biology; Enzymology
(Biochemistry and Molecular Biophysics); Membranes (Cell Biology);
Metabolism

IT Chemicals & Biochemicals
15-LIPOXYGENASE; LINOLEIC ACID; ARACHIDONIC ACID

IT Miscellaneous Descriptors
ARACHIDONIC ACID; FATTY ACID; FATTY ACID-BINDING PROTEIN; LINOLEIC ACID; LIPID; MEMBRANES; METABOLISM; OXIDATION; OXYGENATION;
15-LIPOXYGENASE

ANSWER 3 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN DUPLICATE 3

AN 1997:305166 BIOSIS

DN PREV199799612969

TI Fatty acid binding proteins reduce 15-lipoxygenase-induced oxygenation of linoleic acid and arachidonic acid.

AU Ek, Bengt A. [Reprint author]; Cistola, David P.; Hamilton, James A.; Kaduce, Terry L.; Spector, Arthur A.

CS Dep. Biochem., Univ. Iowa, College Med., Iowa City, IA 52242, USA

SO Biochimica et Biophysica Acta, (1997) Vol. 1346, No. 1; pp. 75-85.
CODEN: BBACAO. ISSN: 0006-3002.

DT Article

LA English

ED Entered STN: 26 Jul 1997

Last Updated on STN: 26 Jul 1997

AB Free fatty acids in **plasma** and cells are mainly bound to membranes and proteins such as albumin and fatty acid binding proteins (FABP), which can regulate their biological activities and metabolic transformations. We have investigated the effect of FABP and albumin on the peroxidation of linoleic acid (18:2) and arachidonic acid (20:4) by 15-lipoxygenase (15-LO). Rabbit reticulocyte 15-LO produced a rapid conversion of (1-14C)18:2 to 13-hydroxyoctadecadienoic acid (13-HODE) and (3H)20:4 to 15-hydroxyeicosatetraenoic acid (15-HETE). 13-HODE formation was reduced when intestinal FABP (1-FABP), **liver FABP** (L-FABP) or albumin was added. The relative ability of these proteins to reduce 15-LO induced formation of 13-HODE and 15-HETE was BSA > L-FABP > I-FABP. Smaller reductions in activity were observed with 20:4 as compared to 18:2. The IC-50-values of I-FABP and L-FABP, using either 18:2 (3.4 AM) or 20:4 (3.4 mu-M), were 4.6 +/- 0.6 and 1.9 +/- 0.2 AM, respectively, for reduction of 13-HODE and 6.8 +/- 0.3 and 3.1 +/- 0.2 mu-M, respectively, for reduction of 15-HETE formation. The smaller 15-HETE reduction correlated with decreased binding of 20:4 to the FABP. Titration calorimetry also showed that the I-FABP IC-50 for 18:2, 0.25 mu-M, was lower than for 20:4, 0.6 mu-M. Thus the reduction in fatty acid lipid peroxidation relates to the binding capacity of each FABP. We also demonstrated that 18:2 rapidly diffuses (flip-flops) across the phospholipid bilayer of small unilamellar vesicles (SUV) and measured partitioning of 18:2 between proteins and SUV by the pyranin fluorescence method (Kamp, F. and Hamilton, J.A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11367-11370). Addition of proteins to SUV in buffer resulted in a complete desorption of 18:2 from SUV with a relative effect of BSA > L-FABP > I-FABP. This suggests that the relative effects of these proteins on 18:2 peroxidation will not be altered by the presence of membranes. Our results indicate that FABPs protect intracellular polyunsaturated fatty acids against peroxidation and, through differential binding of 18:2 and 20:4, they may modulate the availability of these polyunsaturated fatty acids to intracellular oxidative pathways.

CC Cytology - Animal 02506

Biochemistry studies - Lipids 10066

Biophysics - Membrane phenomena 10508

Enzymes - Chemical and physical 10806

Metabolism - Lipids 13006

IT Major Concepts

Biochemistry and Molecular Biophysics; Cell Biology; Enzymology
(Biochemistry and Molecular Biophysics); Membranes (Cell Biology);
Metabolism

IT Chemicals & Biochemicals

15-LIPOXYGENASE; LINOLEIC ACID; ARACHIDONIC ACID

IT Miscellaneous Descriptors

ARACHIDONIC ACID; FATTY ACID; FATTY ACID-BINDING PROTEIN; LINOLEIC ACID; LIPID; MEMBRANES; METABOLISM; OXIDATION; OXYGENATION;
15-LIPOXYGENASE

ORGN Classifier
Leporidae 86040
Super Taxa
Lagomorpha; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
rabbit
Taxa Notes
Animals, Chordates, Lagomorphs, Mammals, Nonhuman Vertebrates, Nonhuman
Mammals, Vertebrates
RN 82249-77-2 (15-LIPOXYGENASE)
60-33-3 (LINOLEIC ACID)
506-32-1 (ARACHIDONIC ACID)

L6 ANSWER 4 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on

ORGN Classifier
Leporidae 86040
Super Taxa
Lagomorpha; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
rabbit
Taxa Notes
Animals, Chordates, Lagomorphs, Mammals, Nonhuman Vertebrates, Nonhuman
Mammals, Vertebrates
RN 82249-77-2 (15-LIPOXYGENASE)
60-33-3 (LINOLEIC ACID)
506-32-1 (ARACHIDONIC ACID)

L6 ANSWER 4 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on

NSWER 1 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN DUPLICATE 1

AN 2003:81756 BIOSIS
DN PREV200300081756

TI **Plasma** concentration of intestinal- and liver-
FABP in neonates suffering from necrotizing enterocolitis and in
healthy preterm neonates.

AU Guthmann, Florian [Reprint Author]; Boerchers, Torsten; Wolfrum,
Christian; Wustrack, Thomas; Bartholomaeus, Sabine; Spener, Friedrich

CS Department of Neonatology, Charite Campus Mitte, D-10098, Berlin, Germany
florian.guthmann@charite.de

SO Molecular and Cellular Biochemistry, (October 2002) Vol. 239, No. 1-2, pp.
227-234. print.
ISSN: 0300-8177 (ISSN print).

DT Article
LA English
ED Entered STN: 6 Feb 2003
Last Updated on STN: 6 Feb 2003

AB Both early diagnostic and prognostic assessment of the acute abdomen in preterm infants are hampered by the lack of a sensitive and specific parameter for intestinal injury. In this prospective clinical study we wanted to estimate the value of intestinal (I-) and liver (L-) fatty acid binding protein (FABP) in diagnosing necrotizing enterocolitis (NEC). Using highly sensitive and specific sandwich ELISAs which employ recombinant human I- and L-FABP as standard proteins (limit of detection 0.1 ng/ml **plasma**), the L-FABP concentration (median 7.6 ng/ml) was determined to be about 3 fold that of I-FABP (median 2.52 ng/ml) in **plasma** of healthy preterm infants. I- and L-FABP concentrations significantly increased with birth weight (1.6 and 5.0 ng/ml per kg, respectively). At onset of symptoms, I-FABP concentration was significantly higher in infants who later developed severe NEC compared to healthy infants and those, whose illness remained confined to stage I or II. L-FABP was significantly elevated compared to the control group at onset of symptoms regardless of the further course of NEC. In conclusion, I-FABP appears to be a specific parameter for early detection of intestinal injury leading to severe NEC stage III. L-FABP, however, is a promising sensitive marker even for stage I of NEC.

CC Pathology - Diagnostic 12504
Digestive system - Physiology and biochemistry 14004
Digestive system - Pathology 14006
Blood - Blood and lymph studies 15002
Blood - Blood cell studies 15004
Pediatrics 25000
Medical and clinical microbiology - Bacteriology 36002

IT Major Concepts
Gastroenterology (Human Medicine, Medical Sciences); Infection;
Pediatrics (Human Medicine, Medical Sciences)

IT Parts, Structures, & Systems of Organisms
intestine: digestive system; **plasma**: blood and lymphatics

IT Diseases
necrotizing enterocolitis: bacterial disease, digestive system disease,
diagnosis
Enterocolitis, Necrotizing (MeSH)

IT Chemicals & Biochemicals
intestinal-fatty acid binding protein

ORGN Classifier
Hominidae 86215
Super Taxa
Primates; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
human (common): newborn, premature
Taxa Notes

NSWER 1 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN DUPLICATE 1

AN 2003:81756 BIOSIS
DN PREV200300081756

TI **Plasma concentration of intestinal- and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates.**

AU Guthmann, Florian [Reprint Author]; Boerchers, Torsten; Wolfrum, Christian; Wustrack, Thomas; Bartholomaeus, Sabine; Spener, Friedrich

CS Department of Neonatology, Charite Campus Mitte, D-10098, Berlin, Germany
florian.guthmann@charite.de

SO Molecular and Cellular Biochemistry, (October 2002) Vol. 239, No. 1-2, pp. 227-234. print.
ISSN: 0300-8177 (ISSN print).

DT Article
LA English
ED Entered STN: 6 Feb 2003
Last Updated on STN: 6 Feb 2003

AB Both early diagnostic and prognostic assessment of the acute abdomen in preterm infants are hampered by the lack of a sensitive and specific parameter for intestinal injury. In this prospective clinical study we wanted to estimate the value of intestinal (I-) and liver (L-) fatty acid binding protein (FABP) in diagnosing necrotizing enterocolitis (NEC). Using highly sensitive and specific sandwich ELISAs which employ recombinant human I- and L-FABP as standard proteins (limit of detection 0.1 ng/ml **plasma**), the L-FABP concentration (median 7.6 ng/ml) was determined to be about 3 fold that of I-FABP (median 2.52 ng/ml) in **plasma** of healthy preterm infants. I- and L-FABP concentrations significantly increased with birth weight (1.6 and 5.0 ng/ml per kg, respectively). At onset of symptoms, I-FABP concentration was significantly higher in infants who later developed severe NEC compared to healthy infants and those, whose illness remained confined to stage I or II. L-FABP was significantly elevated compared to the control group at onset of symptoms regardless of the further course of NEC. In conclusion, I-FABP appears to be a specific parameter for early detection of intestinal injury leading to severe NEC stage III. L-FABP, however, is a promising sensitive marker even for stage I of NEC.

CC Pathology - Diagnostic 12504
Digestive system - Physiology and biochemistry 14004
Digestive system - Pathology 14006
Blood - Blood and lymph studies 15002
Blood - Blood cell studies 15004
Pediatrics 25000
Medical and clinical microbiology - Bacteriology 36002

IT Major Concepts
Gastroenterology (Human Medicine, Medical Sciences); Infection;
Pediatrics (Human Medicine, Medical Sciences)

IT Parts, Structures, & Systems of Organisms
intestine: digestive system; **plasma**: blood and lymphatics

IT Diseases
necrotizing enterocolitis: bacterial disease, digestive system disease, diagnosis
Enterocolitis, Necrotizing (MeSH)

IT Chemicals & Biochemicals
intestinal-fatty acid binding protein

ORGN Classifier
Hominidae 86215
Super Taxa
Primates; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
human (common): newborn, premature
Taxa Notes

Animals, Chordates, Humans, Mammals, Primates, Vertebrates

Animals, Chordates, Humans, Mammals, Primates, Vertebrates