## LES FONDAMENTAUX EN TELECOMMUNICATIONS Corrigé - Série de TD N° 1



## Corrigé de l'exercice 1 :

Un signal  $u_p(t)$  sinusoïdal de fréquence  $f_p = 1$  MHz, d'amplitude  $U_p = 1$ V est modulé en fréquence. Le signal modulant est une onde en cosinus d'amplitude  $U_m = 2,5$  V et de fréquence  $f_m = 500$  Hz. L'excursion de fréquence est 5,5 kHz.

## 1. Expression mathématique du signal modulé u<sub>FM</sub>(t):

## Signal porteur:

$$u_p(t) = U_p \sin(2\pi \cdot f_p \cdot t)$$
  
=  $\sin(2\pi \cdot 10^6 \cdot t)$ 

## Signal modulant (informatif):

$$u_m(t) = U_m \cos (2\pi \cdot f_m \cdot t)$$
  
= 2.5 cos (2\pi \cdot 500. t)

## Signal modulé FM:

$$\begin{aligned} \mathbf{u}_{\text{FM}}(t) &= \sin{(2\pi . 10^6. \, t + 2\pi . \, k_f \int_0^T u_x(x) dx)} \\ &= \sin{(2\pi . 10^6. \, t + 2\pi . \, k_f \int_0^T 2,5 \cos(2\pi . \, 500 . \, x) dx)} \\ &= \sin{(2\pi . 10^6. \, t + \frac{2\pi . k_f . 2,5}{2\pi . \, 500}} \left[ \sin(2\pi . \, 500 . \, x) \right]_0^t) \\ &= \sin{(2\pi . 10^6. \, t + \frac{2,5 . \, k_f}{500}} \sin(2\pi . \, 500 . \, t))} \\ &= \sin{(2\pi . 10^6. \, t + \frac{\Delta_f}{500}} \sin(1000 \, \pi . \, t))} \text{ avec} : \Delta_f = U_m . \, k_f = 2,5 . \, k_f = 5,5 \, KHz \\ &= \sin{(2\pi . 10^6. \, t + \frac{5,5 . 10^3}{500}} \sin(1000 \, \pi . \, t))} \end{aligned}$$

Donc:  $\mathbf{u}_{FM}(t) = \sin(2\pi \cdot 10^6 \cdot t + 11 \sin(1000 \pi \cdot t))$ 

2. Détermination de l'indice de modulation et de la sensibilité du modulateur :

Indice de modulation:

$$\beta = \frac{\Delta_f}{f_m} = \frac{U_m \cdot k_f}{f_m} = \frac{5.5 \cdot 10^3}{500} = 11$$

Sensibilité du modulateur :

$$k_f = \frac{\Delta_f}{U_m} = \frac{5.5 \cdot 10^3}{2.5} = 2200 \frac{Hz}{V} = 2.2 \text{ KHz/V}$$

## Corrigé de l'exercice 2 :

Soit le signal modulé en amplitude suivant  $u_{AM}(t) = 5 \cos(10^6 t) + 3.5 \cos(10^3 t) \cos(10^6 t)$ .

1. Expression mathématique usuelle du signal modulé  $u_{AM}(t)$ :

Signal modulé AM:

$$u_{AM}(t) = A \cdot [1 + m \cdot \cos(2\pi \cdot f_m \cdot t)] \cdot \cos(2\pi \cdot f_p \cdot t) (1)$$

On a: 
$$u_{AM}(t) = 5 \cos(10^6 t) + 3.5 \cos(10^3 t) \cos(10^6 t)$$

= 
$$5 \cos (10^6 t) \left[ 1 + \frac{3.5}{5} \cdot \cos(10^3 t) \right]$$

Donc: 
$$\mathbf{u}_{AM}(t) = 5\left[1 + \frac{3.5}{5} \cdot \cos(10^3 t)\right] \cos(10^6 t)$$
 (2)

2. Par analogie entre les équations (1) et (2) précédentes, on déduit la fréquence porteuse, la fréquence modulante et le taux de modulation :

Fréquence porteuse :

$$f_p = \frac{10^6}{2\pi} \, Hz$$

Fréquence modulante :

$$f_m = \frac{10^3}{2\pi} \, Hz$$

Taux de modulation :

$$m=\frac{3,5}{5}=0,7$$

## Corrigé de l'exercice 3 :

Une porteuse de fréquence  $f_p = 100$  MHz est modulée en fréquence par un signal sinusoïdal d'amplitude  $U_m = 20$  V et de fréquence  $f_m = 100$  kHz. La sensibilité fréquentielle du modulateur est  $k_f = 25$  KHz/V.

## 1. <u>Méthode 1</u>: Estimation de la bande passante du signal FM en utilisant la règle de Carson :

Rappel de la règle de Carson :  $B \approx 2(\Delta f + f_m) = 2(\beta + 1)f_m$ 

avec: 
$$\beta = \frac{\Delta_f}{f_m} = \frac{U_m \cdot k_f}{f_m}, \ \Delta_f = U_m \cdot k_f$$

## Application numérique :

$$\beta = \frac{\Delta_f}{f_m} = \frac{500 \text{KHz}}{100 \text{ KHz}} = 5$$
 et  $\Delta_f = U_m \cdot k_f = 20 \text{ V} \cdot 25 \text{ KHz/V} = 500 \text{KHz}$ 

On obtient alors comme estimation de la bande passante du signal FM en utilisant la règle de Carson :

$$B_1 = 2(\Delta f + f_m) = 2(\beta + 1)f_m = 2.(5 + 1).100 \text{ KHz}$$

Ce qui donne :  $B_1 = 1200 KHz$ 

# 2. <u>Méthode 2</u>: Estimation de la bande passante du signal FM avec les harmoniques significatives

On ne considère que les composantes latérales du spectre dont l'amplitude atteint au moins 1% de celle de la porteuse non-modulée  $U_p$ .

D'après les calculs de la question  $1: \beta = 5$ Cette colonne contient donc les fonctions de Bessel de  $J_k(5)$  allant de  $J_0 = -0.1776$  à  $J_{15} = 0.0000$ 

D'autre part, on ne considère ici que les composantes latérales du spectre dont l'amplitude atteint au moins 1% de celle de la porteuse non-modulée  $U_p$ :

1% . 
$$U_p = \frac{1 \cdot U_p}{100} = 0.01 \cdot U_p \rightarrow (J_k(5) \ge 0.01)$$

Cela veut dire que les raies du spectre qui auront des Amplitudes  $J_k$ .  $U_p$  inférieures à 0,01.  $U_p$  seront négligées.

On déduit par conséquent de cette table (Figure 1) : k = 8

| k            | β=5     | β=10    | $\beta=2.5$ |
|--------------|---------|---------|-------------|
| 0            | -0.1776 | -0.2459 | -0.0484     |
| 1            | -0.3276 | 0.0435  | 0.4971      |
| 2            | 0.0466  | 0.2546  | 0.4461      |
| 3            | 0.3648  | 0.0584  | 0.2166      |
| 4            | 0.3912  | -0.2196 | 0.0738      |
| 5            | 0.2611  | -0.2341 | 0.0195      |
| 6            | 0.1310  | -0.0145 | 0.0042      |
| 7            | 0.0534  | 0.2167  | 0.0008      |
| <b> </b> (8) | 0.0184  | 0.3179  | 0.0001      |
| 9            | 0.0055  | 0.2919  | 0.0000      |
| 10           | 0.0015  | 0.2075  | 0.0000      |
| 11           | 0.0004  | 0.1231  | 0.0000      |
| 12           | 0.0001  | 0.0634  | 0.0000      |
| 13           | 0.0000  | 0.0290  | 0.0000      |
| 14           | 0.0000  | 0.0120  | 0.0000      |
| 15           | 0.0000  | 0.0045  | 0.0000      |

Figure 1 : Tables mathématiques des fonctions de Bessel  $J_k(\beta)$ 

En se basant sur la figure 2 suivante, on estime la bande passante du signal FM comme suivant :



Figure 2 : Exemple de spectre d'un signal FM de bande estimée B pour  $\beta = 1$ 

$$B_2 = (f_p + k . f_m) - (f_p - k . f_m) = 2 . k . f_m = 2 . 8 . 100 \text{ KHz}$$
  
$$B_2 = 1600 \text{ KHz}.$$

## 3. Si on double l'amplitude du signal modulant, on obtient les résultats suivants :

$$U'_m = 2 . U_m$$
,  $\beta' = \frac{\Delta'_f}{f_m} = \frac{U'_m . k_f}{f_m} = \frac{2 . U_m . k_f}{f_m} = 2 . \beta$   
Donc  $\beta' = 2 . \beta = 2 . 5 = 10$  avec  $J_k(10) \ge 0.01$ 

→ On déduit alors d'après la table de la figure 3 : k' = 14

## Par conséquent :

## Méthode 1:

$$B_1' = 2(\Delta_f' + f_m) = 2(\beta' + 1)f_m = 2.(10 + 1).100 \text{ KHz}$$

$$B_1'=2200~KHz$$

## Méthode 2 :

$$B_2' = 2 \cdot k' \cdot f_m = 2 \cdot 14 \cdot 100 \ KHz$$

$$B_2'=2800~KHz.$$



Figure 3 : Tables mathématiques des fonctions de Bessel  $J_k(\beta)$ 

## 4. Si on double la fréquence du signal modulant, on obtient les résultats suivants :

 $f_m^{\prime\prime}=2~.f_m~,~~\Delta_f^{\prime\prime}=~\Delta_f=~U_m~.~k_f~~{\rm car}$  l'amplitude n'a pas changée.

$$\beta'' = \frac{\Delta_f''}{f_m''} = \frac{\Delta_f}{f_m''} = \frac{U_m \cdot k_f}{2 \cdot f_m} = \frac{\beta}{2}$$

Donc 
$$\beta'' = \frac{\beta}{2} = \frac{5}{2} = 2.5$$
 avec  $I_k(2.5) \ge 0.01$ 

→ On déduit alors d'après la table de la figure 4 : k'' = 5 ←

## Par conséquent :

## *Méthode 1 :*

$$B_1^{\prime\prime} = 2 (\beta^{\prime\prime} + 1) f_m^{\prime\prime} = 4 (\beta^{\prime\prime} + 1) f_m = 4. (2.5 + 1). 100 \ KHz$$

$$B_1'' = 1400 \, KHz$$

## Méthode 2 :

$$B_2^{\prime\prime} = 2 \cdot k^{\prime\prime} \cdot f_m^{\prime\prime} = 4 \cdot k^{\prime\prime} \cdot f_m = 2 \cdot 5 \cdot 100 \; KHz$$

 $B_2^{\prime\prime}=2000~KHz.$ 

| k   | $\beta=5$ | $\beta=10$ | $\beta = 2.5$ |
|-----|-----------|------------|---------------|
| 0   | -0.1776   | -0.2459    | -0.0484       |
| 1   | -0.3276   | 0.0435     | 0.4971        |
| 2   | 0.0466    | 0.2546     | 0.4461        |
| 3   | 0.3648    | 0.0584     | 0.2166        |
| 4   | 0.3912    | -0.2196    | 0.0738        |
| (5) | 0.2611    | -0.2341    | 0.0195        |
| 6   | 0.1310    | -0.0145    | 0.0042        |
| 7   | 0.0534    | 0.2167     | 0.0008        |
| 8   | 0.0184    | 0.3179     | 0.0001        |
| 9   | 0.0055    | 0.2919     | 0.0000        |
| 10  | 0.0015    | 0.2075     | 0.0000        |
| 11  | 0.0004    | 0.1231     | 0.0000        |
| 12  | 0.0001    | 0.0634     | 0.0000        |
| 13  | 0.0000    | 0.0290     | 0.0000        |
| 14  | 0.0000    | 0.0120     | 0.0000        |
| 15  | 0.0000    | 0.0045     | 0.0000        |

Figure 4 : Tables mathématiques des fonctions de Bessel  $J_k(\beta)$ 

## N.B.: Largeur de bande effective

Un signal modulé en fréquence  $u_{FM}(t)$  est constitué théoriquement d'un nombre infini de composantes (raies) spectrales lorsque le signal modulant ou le message à transmettre est une pure sinusoïde :  $u_m(t) = U_m \cos{(2\pi \cdot f_m \cdot t)}$ .

Cependant en pratique, l'énergie du signal modulé se trouve autour de la fréquence porteuse  $f_p$  et devient négligeable au fur et à mesure qu'on s'éloigne de celle-ci (voir figure 3).

La règle de Carson est une méthode empirique et approximative qui permet d'estimer la bande passante effective d'un signal modulé en fréquence  $u_{FM}(t)$ :

$$B \approx 2(\Delta f + f_m) = 2(\beta + 1)f_m$$
 avec :  $\beta = \frac{\Delta_f}{f_m} = \frac{U_m \cdot k_f}{f_m}$ ,  $\Delta_f = U_m \cdot k_f$ 

On peut aussi estimer la bande passante effective d'un signal modulé FM à l'aide du nombre des harmoniques significatives k pour lequel  $|J_k(\beta)| \ge 0.01$ :  $B \approx 2 \cdot k \cdot f_m$ 

## Corrigé de l'exercice 4:

Un analyseur de spectre permet d'obtenir la représentation d'un spectre sur un écran. Le spectre d'un signal AM, branché à un analyseur de spectre, est représenté ci-contre :



Figure 5 : Représentation du spectre d'un signal AM

1. D'après la figure 5, la fréquence de la porteuse correspond à la raie centrale du spectre en question d'amplitude A :

$$f_p = 650 \, KHz$$

2. La fréquence de l'onde modulante peut être déduite de l'une des fréquences des raies latérales de ce spectre d'amplitude  $\frac{A.m}{2}$ :

$$f_p + f_m = 660 \text{ KHz} \rightarrow f_m = 660 \text{ KHz} - f_p = 660 \text{ KHz} - 650 \text{ KHz}$$

Donc:  $f_m = 10 \text{ KHz}$ 

3. La bande de fréquence occupée par le signal AM se calcule comme suit :

$$B = (f_p + f_m) - (f_p - f_m) = 2.f_m = 2.10 \text{ KHz}$$
  
 $B = 20 \text{ KHz}.$ 

4. D'après la représentation de la figure 5 ci-dessus, le taux de modulation peut se déduire à partir des amplitudes des raies de ce spectre :

$$\begin{cases} A = 40 \\ \frac{A.m}{2} = 12 \end{cases}$$

$$m = \frac{2.12}{A} = \frac{24}{40}$$
  $d'où: m = 0, 6$