Buildings and GHG Prediction @ Seattle

by Dave Lam Oct 2022

Content

- Executive summary and Introduction
- Methodology
- Dataset
- Data Cleaning
- Data Mining
- Data Visualization and pivot table analysis
- Prediction by Polynomial Regression

Executive Summary and Introduction

Summary

According to Seattle Office of Sustainability & Environment, buildings in Seattle are one of the largest and fastest growing sources of climate pollution, more than a third of the city's Green-house Gas (GHG) emissions is from the buildings through energy used*. These emissions pollute the environment and change the climate.

Therefore, in this report, we try to find out buildings in Seattle that they need to be improved in energy use more effective, so as to reduce green-house emission.

*Source from: Seattle's Buildings and Energy

Introduction

This report is to analyze the dataset (2015 Building Energy Benchmarking) from the city providing to the public. From the dataset, we hope to find out:

- 1) buildings in Seattle that are over the benchmarking in energy use
- 2) building types in geographical distribution in relation to green-house gas emission
- 3) prediction of green-house gas emission from a building in respect to its features, such as property type, gross floor area (GFA), energy (electricity, natural gas and steam) use, location, building age etc.

Methodology

In this report, we use Python programming to conduct data analysis, which includes data cleaning, mining and visualization. Also, information* from the Seattle city government provided to the public and technical reference of EnergyStar are adopted.

*Source:

Seattle's Buildings and Energy

Energy Star's Technical Reference

Dataset

The dataset* is "2015 Building Energy Benchmarking" from the Seattle Open Data that the data includes 3340 entries and 47 columns*.

*Source:

<u>Dataset</u> <u>Data's interpretation</u>

	ss 'pandas.core.frame.Dataframe'> eIndex: 3340 entries, 0 to 3339		
Data	columns (total 47 columns):		
#	Column	Non-Null Count	Dtype

0	OSEBuildingID	3340 non-null	int64
1	Datayean	3340 non-null	int64
2	BuildingType	3340 non-null	object
3	PrimaryPropertyType	3340 non-null	object
4	PropertyName	3340 non-null	object
5	TaxParcelIdentificationNumber	3338 non-null	object
6	Location	3340 non-null	object
2	CouncilDistrictCode	3340 non-null	Int64
8	Neighborhood	3340 non-null	object
9	YearBuilt	3340 non-null	int64
10	NumberofBuildings	3340 non-null	int64
11	Numberoffloors	3332 non-null	float64
12	PropertyGFATotal	3340 non-null	Int64
13	PropertyGFAParking	3340 non-null	int64
14	PropertyGFABuilding(s)	3340 non-null	int64
15	ListOfAllPropertyUseTypes	3213 non-null	object
16	LangestPropertyUseType	3204 non-null	object
17	LargestPropertyUseTypeGFA	3204 non-null	float64
18	SecondLargestPropertyUseType	1559 non-null	object
19	SecondLargestPropertyUseTypeGFA	1559 non-null	float64
20	ThirdLargestPropertyUseType	560 non-null	object
21	ThirdLargestPropertyUseTypeGFA	560 non-null	float64
22	YearsENERGYSTARCertified	110 non-null	object
23	ENERGYSTARScore	2560 non-null	floats4
24	SiteEUI(kBtu/sf)	3330 non-null	float64
25	SiteEUIMN(kBtu/sf)	3330 non-null	float64
	SourceEUI(kBtu/sf)	3330 non-null	float64
	SourceEUIWN(kBtu/sf)	3330 non-null	float64
		3330 non-null	float64
100.00	SiteEnergyUse(kBtu)	3330 non-null	float64
200	SiteEnergyUseWN(kBtu) SteamUse(kBtu)	3330 non-null	float64
31		3330 non-null	floated
31	Electricity(kWh)	3330 non-nu11	1109190
32	Electricity(kBtu)	3330 non-null	float64
33	NaturalGas(therms)	3330 non-null	float64
34	NaturalGas(kBtu)	3330 non-null	float64
35	OtherFuelUse(kBtu)	3330 non-null	float64
36	GHGEmissions(MetricTonsCO2e)	3330 non-null	float64
37	GHGEmissionsIntensity(kgCO2e/ft2)	3338 non-null	float64
38	0efaultData	3339 non-null	object
39	Comment	13 non-null	object
48	ComplianceStatus	3340 non-null	object
41	Outlier	84 non-null	object
42	2010 Census Tracts	224 non-null	float64
43	Seattle Police Department Micro Community Policing Plan Areas		float64
44	City Council Districts	213 non-null	float64
45	SPD Beats	3338 non-mull	float64
46	Zip Codes	3340 mon-null	int64

Data Cleaning

The following are how to modify data columns on behalf of analysis:

- 1. separate the items nested in the "Location" column
- rename the columns to make them coherent
 i.e. GHGemissions(MetricTonsCO2e) and
 GHGEmissionsIntensity(kgCO2e/ft2) have the same value in
 amount but the different interpretation in unit, so keep one and
 rename to TotalGHGEmissions
- 3. check any null and redundant data in the dataset
- 4. eliminate any data unnecessary and duplicated to the analysis i.e. OSEBuildingID, DataYear, CouncilDistrictCode, 2010 Census Tracts, Seattle Police Department Micro Community Policing Plan Areas, City Council Districts, SPD Beats, and Zip Codes
- quantify category to numeric feature

 i.e. ListOfAllPropertyUseTypes, LargestPropertyUseType,

 SecondLargestPropertyUseType,

 and ThirdLargestPropertyUseTypeGFA to make change and rename as TotalUseTypeNumber

- 6. combine related columns into one, such as:
- a) LargestPropertyUseTypeGFA,
 SecondLargestPropertyUseTypeGFA, and
 ThirdLargestPropertyUseTypeGFA are the breakdown of
 PropertyGFATotal
 b) SiteFUI/kBtu/sf) SiteFUI/kBtu/sf) SourceFUI/kBtu/sf) SourceFUI/kBtu/sf)
- b) SiteEUI(kBtu/sf), SiteEUIWN(kBtu/sf), SourceEUI(kBtu/sf), SourceEUIWN(kBtu/sf),

SiteEnergyUseWN(kBtu), SteamUse(kBtu), Electricity(kWh), Electricity(kBtu), NaturalGas(therms),

NaturalGas(kBtu), OtherFuelUse(kBtu) are the components of SiteEnergyUse(kBtu)

- 7. re-rate the data, such as
- a) change the data of PropertyGFAParking and PropertyGFABuilding into ratio
- b) Latitude and Longitude data are modified to Haversine_distance

Data Mining

The following are the wayfinding to data mining:

- 1. Correlation among the data columns
 - a) Using Pearson Correlation
 - b) Under the threshold of 0.7 to confine the correlation result
- c) Verification of multicollinearity with the VIF (Variance Inflation Factor)
- 2. Distribution of GHG Emission and Energy Use and the relationship between them
- 3. Relationship between haversine distance and GHG Emission in relation to Energy Use
- 4. Relationship between Building Type and GHG Emission in relation to Energy Use
- 5. Relationship between Building Age and GHG Emission in relation to Energy Use
- 6. Number of buildings by the Year in which
 - a) property was constructed or underwent a complete renovation year of construction
 - b) age of a property

- 7. Clarify category and numerical features from column data
- 8. Number of buildings by Primary Property Type
- 9. Pivot tables
- Location of the number of buildings
 a) using Folium Map

Heatmap of correlation

	level_0	level_1	corr_coeff
12	PropertyGFATotal	GFAPerBuilding	0.955969
10	SiteEnergyUse(kBtu)	Electricity(kBtu)	0.941414
8	TotalGHGEmissions	SiteEnergyUse(kBtu)	0.892636
6	TotalGHGEmissions	SteamUse(kBtu)	0.756680
4	Electricity(kBtu)	PropertyGFATotal	0.700599
2	GFABuildingRate	GFAParkingRate	-1.000000
0	BuildingAge	YearBuilt	-1.000000
0	BuildingAge	YearBuilt	-1.0000

-0.75

-0.50

-0.25

-0.00

--0.25

--0.50

--0.75

VIF	feature	
1.349081e+01	PropertyGFATotal	0
3.464307e+14	GFAParkingRate	1
3.002400e+15	GFABuildingRate	2
4.810910e+03	SiteEnergyUse(kBtu)	3
1.736158e+03	Electricity(kBtu)	4
6.403370e+01	SteamUse(kBtu)	5
2.595735e+13	YearBuilt	6
2.065871e+13	BuildingAge	7
1.505526e+03	TotalGHGEmissions	8
1.239428e+01	GFAPerBuilding	9

Analysis:

- a) Using Pearson Correlation and limiting the result in the threshold of 0.7
- b) Verification of multicollinearity with the VIF (Variance Inflation Factor)

We can see a close relationship between features (GFA building, GFA parking, building age, year of built, energy, and GHG) as seen from the table and graph.

Next, we will find out what features will have impact on GHG.

Breakdown of energy consumption data vs GHG emissions

Analysis:

Using Kolmogorov-Smirnov, the p-value is 0. We therefore have significant evidence to reject the null hypothesis that the variable follows a normal distribution. The null hypothesis is that the two dataset values are from the same continuous distribution. In this case, GHG Emission and Energy Use are correlated.

Distribution of GHG emissions data according to geographical coordinates

Distribution of Energy consumption data according to geographical coordinates

Analysis:

The data, Latitude and Longitude of the buildings have been changed to Haversine distance*. As seen from the graphs, there is no strong evidence to show the relationship between distance and Energy Use, and distance and GHG Emission. Therefore, we would say distance has no significant impact on GHG emission.

*Haversine distance is the distance between the coordinate points of building and the center of Seattle.

Number of Buildings by their Age

Analysis:

The number of buildings by the Year in which

- a) a property was constructed or underwent a complete renovation year of construction
- b) building age

We can see the number of buildings from year 1945 to 2000 increasing gradually and the number starts decreasing after year 2000.

Analysis:

- a) Similar patterns between GHG Emission by Building Age and Energy Use by Building Age
- b) The buildings in the age group (60 to 80) have higher GHG emission and Energy use

We can see from the graphs:

- 1) GHG Emission and Energy Use have similar patterns, so they are closely related.
- 2) Building age is not correlated with GHG Emission and Energy Use.

Energy consumption by total floor area and by type of building

BuildingType	PrimaryPropertyType	Propertyliane	Neighborhood	VeerBuit
Non-Renader Ball	Hospital	SEATTLE CHLORENS HOSPITA (MAN CAMPUS)	NORTHEAST	1963
No Residental	Hospital	HARBOWNEW MEGICAL CENTER	EAST	2000
Nor-Resolve Nati	Other	THE WESTING	DOWNTOWN	1001
Northenderdal	Hospital	SIVEDIBA ACSINTAL AMERICAL CENTER FAVO 760 Campus	EAST	1964
Campus	Other	AMDEN INC. MASTER CAMPUS	MAGNOLIA/ QUEEN,ANNE	200

Property@FATetal	LargestPropertyUseType	YearsERERGYSTARCentRed	ENERGYSTARScore	SiteEnergyUse(k8tu)	SteomUne(kStu)	Electricity(kBsu)	NaturalGas(kBtu)	TotalGHGEmissions
879000	Hospital (General Medical & Surpical)	Note	13.0	281101024.0	**	1140148138-0	7364404383	9040 70
1168601	Hospital (General Medical & Surgical)	Note	30.0	296812640.0	199701730 0	170091586.0	2220404.0	12790 94
425405	Data Center	Nuk	71.0	294967108.0	44	384728523 0	160000	1992 M
1765670	Hospital (Seneral Medical & Surgical)	Net	89.0	299695539 0	127966744.0	140448137.0	98372000.0	
808620	Other	Years	Traffi	157009490.0	6.0	76740000.0	90907644.0	4629.80

Analysis:

From the scatter plot and the tables below, the top 5 buildings that consume energy the most are:

- 1) Harborview Medical Center
- 2) Swedish Hospital Medical Center (First Hill Campus)
- 3) The Westin Building (tele-com hub with data facility)
- 4) Seattle Children's Hospital (Main Campus)
- 5) Amgen Inc. Master Campus

Visualization with Pivot Table

	Energy	_per_GFA	TotalGHGEmissions
	count	mean	sum
PrimaryPropertyType			
Laboratory	1	247.374774	612.84
Supermarket/Grocery Store	36	235.737882	8191.87
Hospital	10	192.789527	46847.63
Restaurant	11	173 093623	2045.79
Other	258	96.191478	62891.93
Refrigerated Warehouse	13	85.747008	417.72
Senior Care Community	43	76.810149	11574.93
Medical Office	43	76.471661	11463.42
Hotel	71	74.683687	28609.63
Mixed Use Property	126	71.100746	17738.28
College/University	22	62.492728	9792.48
Retail Store	96	61.679761	8138.87
Residence Hall/Dormitory	15	56.249209	1053.47
Small- and Mid-Sized Office	284	53.386318	11170.61
Large Office	161	49.817900	32170.40
High-Rise Multifamily	100	44.258458	21618.73
K-12 School	130	43.283830	11778.43
SPS-District K-12	4	35.458078	403.07
Distribution Center	53	33.902057	2649.22
Worship Facility	72	33.182882	2970.88
Non-Refrigerated Warehouse	187	32 902669	7447.79
Mid-Rise Multifamily	522	32 396518	29753.75
Low-Rise Multifamily	962	31.030194	22963.69
Self-Storage Facility	28	18.802829	627.71

Energy Star

Technical Reference

U.S. National Median Reference Values for All Portfolio Manager Property Types

Broad Category	Primary Function	Further Breakdown (where needed)	Source EUI (kBtu/ft²)	Site EUI (kBtu/ft²)	Reference Data Source - Peer Group Comparison		
Banking/Financial	Bask Branck*		209.9	88.3	CBECS - Bank/Financial		
Services	Financial Office*		116.4	52.9	CBECS - Office & Bank/Financia		
	Adult Education		110.4	52.4	CBECS - Education		
	College/Liniversity		180.6	84.3	CBECS - College/University		
Education	K-12 School*		104.4	48.5	CBECS - Elementary/Middle & High School		
	Pre-school/Daycare		131.5	131.5 S4.8 CBECS			
	Vocational School		110.4	52.4	CRECS - Education		
	Other - Education		31924	52.4	CBEUS - Education		
	Convention Center		109.6	56 t	CBECS - Societ/Meeting		
	Movie Theatur		112.0		CBECS - Public Assembly		
	Museum			56.2			
	Performing Arts						
		Boxling Alley					
Entertainment/Public Assertibly		Fitness Center/Health Club/Gym					
	Recreation	los/Gurling Rink	117.0	***	AREAS BANKS		
	Hetreation	Rofer Rink	112.0	50.8	CBECS - Recreation		
		Swimming Pool					
		Other - Recreation					
	Social/Meeting Hall	To the second	109.6	56.1	CBECS - Social Meeting		

Recommendation:

The reference table is designed to help comparing property's energy use with the national median (or mid□point) energy use of similar properties.

Therefore, it helps to see any building type (or specific building) is/are over the reference benchmarks.

* Energy Star's Technical Reference

Data Comparison

Technical Reference

U.S. National Median Reference Values for All Portfolio Manager Property Types

Broad Category	Primary Function	Further Breakdown (where needed)	Source EUI (kBtu/ft²)	Site EUI (kBtu/ft²)	Reference Data Source - Peer Group Comparison	
Banking/Financial	Bank Branch *		209.9	88.3	CBECS - Bank/Financial	
Servces	Financial Office*		116.4	52.9	CBECS - Office & Bank/Francial	
	Adult Education		110.4	52.4	CBECS - Education	
	College/Liniversity		180.6	843	CBECS - College/University	
Education	K-12 School*		104,4	48.5	CBECS - Elementary/Middle & High School	
	Pre-ochool/Daycare		131.5	84.8	CBECS - Preschool	
	Vocational School		110.4	52.6	CBECS - Education	
	Other - Education		1304	:340.9	COICUS - ESSIGNION	
	Convention Center		109.6	56.1	CBECS - Social Meeting	
	Movie Theater					
	Museum		112.0	56.2	CBECS - Public Assembly	
	Performing Arts	Net to the second				
		Bowling Alley				
Entertainment/Public Assembly		Fitness Center/Health Club/Gym				
	Recrustion	Ice/Curling Rink	112.0	50.8	CSECS - Recreation	
	ABARROS	Roller Rink	190	30.0	Cocco - Hitching	
		Swimming Pool				
		Other - Recreation				
	Social Meeting Hall	10	109.6	58.1	CBECS - Social Meeting	

	Energy	_per_GFA	TotalGHGEmissions
	count	mean	sum
PrimaryPropertyType			
Laboratory	1	247.374774	612.84
Supermarket/Grocery Store	36	235.737882	8191.87
Hospital	10	192.789527	46847.63
Restaurant	11	173.093623	2045.79
Other	258	96.191478	62891.93
Refrigerated Warehouse	13	85.747008	417.72
Senior Care Community	43	76.810149	11574.93
Medical Office	43	76.471661	11463.42
Hotel	71	74.683687	28609 63
Mixed Use Property	126	71.100746	17738.28
College/University	22	62.492728	9792.48
Retail Store	96	61.679761	8138.87
Residence Hall/Dormitory	15	56.249209	1053.47
Small- and Mid-Sized Office	284	53.386318	11170.61
Large Office	161	49.817900	32170 40
High-Rise Multifamily	100	44.258458	21618.73
K-12 School	130	43.283830	11778.43
SPS-District K-12	4	35.458078	403.07
Distribution Center	53	33.902057	2649.22
Worship Facility	72	33.182882	2970.88
Non-Refrigerated Warehouse	187	32.902669	7447.79
Mid-Rise Multifamily	522	32.396518	29753.75
Low-Rise Multifamily	962	31.030194	22963 69
Self-Storage Facility	28	18.802829	627.71

Analysis:

Comparing the data
(Energy_per_GFA) shown on the table
beside with the benchmarking data
(Site EUI (kBtu/ft2) shown the
EnergyStar's reference table, we can
see the following building types in
Seattle are over the benchmarks.

- 1) Laboratory
- 2) Supermarket/ Grocery Store
- 3) Refrigerated Warehouse
- 4) Medical Office
- 5) Hotel
- 6) Mix Use Property
- 7) Retail Store
- 8) Small- and Mid-Sized Office
- 9) Distribution Center
- 10) Worship Facility
- 11) Non-Refrigerated Warehouse

^{*&#}x27;Other' in the Primary Property Type is not included in this comparison.

Pivot Table

PrimaryPropertyType	College/University	Distribution Center	High-Rise Multifamil	ly Ho	espital H	lotel	K-12 School	Laboratory	Large Office	Low-Rise Multifamily	Medical Office	Mid-Rise Multifamil	Day 1024		Non- Refrigerated Warehouse	Other	Refrigerated Warehouse	Residence Hall/Dormitory	Restaurant	Retail Store	SPS- District K-12	Self- t Storage Facility	Senior Care Communit	and Mid- Sized Office	Supermarket/Grocery Store	Worship Facility	Total
Neighborhood																											
DOWNTOWN	- 4) 5	16	0	38	2	- 0	102	36	4	9	k3	34	6	47	.0	2	7	20) 3	1/4	4 88	0	2	548
EAST	7) 3	10	3	5	14	0	0	164	15	11	16	15	4	22	0	2	0	5		1	16	1 17	3		3 433
MAGNOLIA / QUEEN ANNE	3	3	1	3	0	6	10	0	15	161		9	90	12	9	33	0	2	0	э		5	(i) (ii)	3 38	14	7	7 408
GREATER DUWAMISH	31	42	2	1	0	2	10	0	9	22	0	9	2	13	129	52	13		0	16		5		40	. 4	i 2	364
NORTHEAST)	3	2	6	13	0	3	92	. 8	4	12	8	2	17	0		0	13		5		1 6	5	5 17	7 252
LAKE UNION	1	2	1	2		9	5	1	30	56	1	4	11	19	9	11	0	1	2	6		0		1 42	1	1	243
NORTHWEST	1		1	3	1	4	14	0	0	111	3	1	17	3	6	17	0	0	0	9	1	1 1		5 11	4	10	222
NORTH	0)	0	0	Ω	8	0	1	95	4	1	19	4	2	17	0	0	0	8		2		10	3	. 3	186
SOUTHWEST	0)	0	1	0	9	- 0	- 0	74	1	4	10	6	2	7	0	0	- 5	0	() 1		2 1	5		158
CENTRAL	3		1	2	1	0	14	.0	0	50	3	2	90	3	2	10	0	. 0	0	2		1		5 9	1	1 2	128
BALLARD	0	1		0	1	1	9	0	- 0	33	.0	2	25	6	9	9	0	0	1	5) 2		1 13	. 4	6	126
SOUTHEAST	0		1	0	0	0	13	.0	0	37	2		9	3	2	7	0	0	0	3			50	4 4	2		95
DELRIDGE	. 1	5		0	0	0	9	0	1	31	1		8	0	5	9	0		.0	6		1 1		5		, ,	2 85

<u>Analysis:</u> Pivot table (Neigborhood by PrimaryPropertyType)

The table figure refers the previous stacked bar chart (visualization _7), we can see the which types of primary property types in which area is the most:

- 1) office, high-rise multifamily, hotel, restaurants, and retail store in Downtown
- 2) non-refrigerated warehouse and distribution center in Greater Duwamish
- 3) Mid-rise and Low-rise multifamily in East.

Pivot Table

Neighborhood	PrimaryPropertyType	Propagnyllana	Energy_per_GFA	Electricity(kBtu)	Natura/Gas(kBtu)	PropertyGFATotal	SiteEnergyUse(kBtu)
SOUTHWEST	Restaurant		445.392097	3378201	5707048	20398	9085108
	Supermarket/Grocery Store		383.308376	6088718	6116456	31841	12204922
		WEST SEATTLE THRIFTWAY	259.836913	5549794	3208500	33706	8758063
	Other	NW ART AND FRAME/HUSKY ICE CREAM	228.302660	2657078	2406785	22180	5063753
	Supermarket/Grocery Store		218.858414	5646757	2640334	37864	8296856
NORTHWEST	Other	NORTHWEST HOSPITAL & MEDICAL CENTER (NEW PROFESSIONAL BLDG)	544,945740	20697280	8499046	53575	29196488
		AURORA CHRYSLER PLYMOUTH	290,914760	2213351	4080100	21633	6293359
	Supermarket/Grocery Store	SAFEWAY STORE # 1845 (FORMERLY 3389)	289.398071	7850393	6074900	48117	13924967
	Hospital	NORTHWEST HOSPITAL & MEDICAL CENTER	226.591427	42421724	51758703	415632	94178648
	Supermarket/Grocery Store	QUALITY FOOD CENTER (QFC) (OLD ART'S SHOPPING CENT	218.801314	8216324	5104640	60880	13320624
LAKE UNION	Mixed Use Property	CHANDLERS COVE	400,469875	5703982	8168130	34639	13871876
		FISHER PLAZA - WEST BUILDING	397,414630	84837545	146727	213834	84980760
	Supermarket/Grocery Store	QFC	333,862052	5689951	3928182	28808	9617898
	Other	ZYMOGENETICS-DENDREON	322.062390	17857273	19420391	115748	37276920
		FHCRC - Weintraub/Hutchinson/Thomas Bldgs Campus	254.206897	69147767	67096519	535947	136241424
SOUTHEAST	Other	RAINIER BEACH COMMUNITY CENTER	291.522250	4261219	9823563	48314	14084606
	Retail Store	EMPIRE CENTER	279.585804	5323739	5268029	37883	10591549
	Supermarket/Grocery Store	SAFEWAY 1965	220.151737	8499577	4941700	61053	13440924
	Other	RAINIER SQUARE PLAZA	206.296907	12415487	8654752	102133	21069722
	Supermarket/Grocery Store	SAARS MARKET (2012)	160.881290	8924747	3926985	67450	10851443

<u>Analysis:</u>

Pivot Table (Neigborhood, PrimaryPropertyType, PropertyName and EnergyperGFA by Electricity, NaturalGas, SiteEnergyUse and PropertyGFATotal)

We can see in Southwest, Saltys restaurant is the building in the most energy use per sqft in 2015 that also show how much the energy use in electricity, natural gas and the total energy the building used. Similarly, we can find out buildings that consume the most energy per sqft from different Neighborhood areas.

Next, we can use the EnergyStar's technical reference to find out which buildings are over the benchmarks.

Pivot Table

	PropertyGFATotal	SiteEn	ergyUse(kBtu)	TotalGHGEmissions		
	sum	count	mean	std	sum	sum
Neighborhood						
DOWNTOWN	96586290	548	9.618702e+06	1.785421e+07	5271048848	98851.15
EAST	35894548	433	5.590880e+06	2.213001e+07	2420850997	75946.83
LAKE UNION	26413616	243	6.691377e+06	1.361614e+07	1626004537	30696.10
MAGNOLIA / QUEEN ANNE	27278671	408	3.242276e+06	9.249954e+06	1322848581	29954.14
GREATER DUWAMISH	27215078	364	3.617007e+06	8.212074e+06	1316590677	23340.07
NORTHEAST	16590028	252	3.878890e+06	1.631367e+07	977480236	23981.97
NORTHWEST	14579321	222	3.441376e+06	7.590375e+06	763985373	17735.05
NORTH	13715761	186	2.778517e+06	3.408668e+06	516804179	9483.70
CENTRAL	8427178	128	3.742174e+06	1.236513e+07	478998216	11903.69
BALLARD	8716058	126	3.397067e+06	6.460336e+06	428030424	9821.59
SOUTHWEST	7841011	158	2.188764e+06	4.240994e+06	345824747	8182.37
SOUTHEAST	6682588	95	3.348249e+06	4.016567e+06	318083652	7454.78
DELRIDGE	6467837	85	3.226518e+06	4.647933e+06	274254017	5581.70

Analysis:

Pivot Table (Neighborhood by GFA Total, Energy Use and GHG Emission)

We can see:

- 1) The area where energy is used the most is Downtown that also generate GHG emission the most.
- 2) As comparing the area North with Central, the energy used in North is more than Central but the GHG emission in North is less than Central, we may conclude that buildings in energy use is more effective in North than Central.

Distribution of the number of Buildings in location

Model Development

In this section, we will develop models to attempt prediction in Green House Gas (GHG) emission from a building with its features' relationship, so as to get any significant insight from the features affecting the GHG emission.

Previously, we conducted analysis on some data features and found out 'Energy Use' has a closed relation with GHG emission.

However, this is not the end. We have to testify other features and optimize them to get a better hypothesis. Ordinary Least Squared (OLS) Regression will be used for that in the next stage.

The features, or what we call the independent variables, will be applied for the model training and testing, are:

NumberofBuildings, NumberofFloors, PropertyGFATotal, SiteEnergyUse(kBtu), harversine_distance, BuildingAge, TotalUseTypeNumber

Finally, we will use Polynomial Regression to predict a building the amount of GHG emission under the independent variable(s).

Regression

Process:

- 1) Import modules
- 2) Split data to train and test variables

Independent variables:

NumberofBuildings, NumberofFloors, PropertyGFATotal, SiteEnergyUse(kBtu), harversine_distance, BuildingAge, TotalUseTypeNumber

Dependent variable (the prediction/ target variable):

TotalGHGEmissions

- 3) Ordinary Least Squares (OLS) Regression
- 4) Polynomial Regression
- 5) Prediction of the dependent variable

Ordinary Least Squares (OLS) Regression

We develop OLS to describe the relationship between independent quantitative variables and a dependent variable.

OLS Regression Re	sults									
Dep. Variable	talGHGEmissions			R-squared:				0.805		
Model:		OLS		Adj. R-squared:				0.804		
Method:		Least Squa		ares	F-statistic:			1523.		
Date	e: Fr		Fri, 21 Oct 2		Prob	(F-statistic):			0.00	
Time	5	13.15		5:45	Log-Likelih		nood:	-1	7023.	
No. Observations:		2598		2598	AIC:		3.40	Be+04		
Df Residuals:		2590		BIC:		3.41	1e+04			
Df Model				7						
Covariance Type	:		nonro	bust						
			coef	sto	derr		P>	ti	[0.025	0.975
co	nst	47	.8731	12	762	3.751	0.00	0 2	22.849	72.897
NumberofBuildi	ngs	-(2182	4	176	-0.052	0.95	8	-8.407	7.970
NumberofFlo	ors	-8	.0758	0	.877	-10.349	0.00	0 -	10.795	-7.356
PropertyGFAT	otal	-9.09	1e-05	3.96	e-05	-2.294	0.02	2	-0.000	-1.32e-05
SiteEnergyUse(ki	Btu)	2.64	7e-05	3.23	e-07	82.057	0.00	0 2.5	58e-05	2.71e-05
harversine_dista	nce	- 2	3.1106	1	602	-1.942	0.05	2	-6.252	0.031
Building	Age	0	.0790	0	110	0.719	0.47	2	-0.136	0.294
TotalUseTypeNum	ber	-8	4935	3	233	-2.627	0.00	9 -	14.834	-2.153
Omnibus:	3999	088	Dur	bin-W	atson		2.0	05		
Prob(Omnibus):	0	.000 Jarqu		e-Bera (JB)		18187490.84		48		
Skew:	ew: -8.5		540 Pro		ob(JB):		0	00		
Kurtosis:	s: 412.53		39 Con		nd. No	d. No. 5.72e+07				

Analysis:

- 1) t-statistic (t>1.96 or t<-1.96) and P-value <0.05, independent variable is acceptable. In this case, NumberofFloors, PropertyGFATotal, SiteEnergyUse(kBtu), and TotalUseTypeNumber are acceptable.
- 2) R-squared is that % variation in dependent variable is explained due to independent variables. In this case, ~80% variation in GHG emission is explained due to the 7 independent variables

Regression Plots

Now we plot regression and residuals to see any insight from the independent variables. The following are just for reference and may be accessed to the link from appendix for details.

Variance Inflation Factor (VIF)

Now we use VIF for verification of multicollinearity of independent variables, in order to see the degree of variables related to each other. The result of VIF may affect the combination of the independent variables to the end result of dependent variable. For instance, there are 4 variables, A, B, C, and D. A, B, C are independent variables and D is the dependent variable. A, B, C have different degrees of impact on D in different combination, such as ABC, AB, BC, and AC, they will come up different amounts to D.

```
from statsmodels.stats.outliers_influence import variance_inflation_factor as vif

for i in range(len(X_train_cont_features.columns)):
    v=vif(np.matrix(X_train_cont_features),i)
    print("Variance inflation factor for {}: {}".format(X_train_cont_features.columns[i],round(v,2)))

Variance inflation factor for NumberofBuildings: 2.57
Variance inflation factor for NumberofFloors: 2.86
Variance inflation factor for PropertyGFATotal: 4.05
Variance inflation factor for SiteEnergyUse(kBtu): 2.02
Variance inflation factor for harversine_distance: 1.95
Variance inflation factor for BuildingAge: 2.21
Variance inflation factor for TotalUseTypeNumber: 2.93
```

Analysis:

VIF > 5 but less than 10 is a concern for the collinearity. If VIF > 10, it indicates a serious collinearity. In this case, it does not constitute a serious problem in collinearity.

Polynomial Regression

Independent variables:

- 1) Considering t-statistic (t>1.96 or t<-1.96) and P-value <0.05, independent variable is acceptable.
- 2) According to the OLS Regression table, the independent variables (NumberofFloors, PropertyGFATotal, SiteEnergyUse(kBtu), and TotalUseTypeNumber) are acceptable. However, as having a close look of relationship between NumberofFloors and PropertyGFATotal from the Pearson Correlation (see the table below), we eventually select PropertyGFATotal, SiteEnergyUse(kBtu), TotalUseTypeNumber for the independent variables to the polynomial regression.

*Remark: the more floors a building has, the more GFA it will be.

	NumberofBuildings	NumberofFloors	PropertyGFATotal	SiteEnergyUse(kBtu)	harversine_distance	BuildingAge	TotalUseTypeNumber
NumberofBuildings	1.000000	-0.021250	0.304719	0.220195	0.002467	0.001390	0.004999
NumberofFloors	-0.021250	1.000000	0.626292	0.353350	-0.289970	-0.147264	0.172223
PropertyGFATotal	0.304719	0.626292	1.000000	0.659682	-0.162515	-0.166209	0.203721
SiteEnergyUse(kBtu)	0.220195	0.353350	0.659682	1.000000	-0.123735	-0.076039	0.131037
harversine_distance	0.002467	-0.289970	-0.162515	-0.123735	1.000000	-0.268698	-0.127791
BuildingAge	0.001390	-0.147264	-0.166209	-0.076039	-0.268698	1.000000	-0.089680
TotalUse TypeNumber	0.004999	0.172223	0.203721	0.131037	-0.127791	-0.089680	1.000000

Polynomial Regression

Polynomial Degree:

Based on mean squared error (MSE), the number of degrees for the polynomial regression is 2 that will be better. As seen from the chart below, the lower MSE the better is.

```
df=data filter
X, y = df[['PropertyGFATotal', 'SiteEnergyUse(kBtu)', 'TotalUseTypeNumber']], df['TotalGHGEmissions']
# Check accuracy for each degree, the Lower the error the better!
number degrees = [1,2,3,4,5,6,7]
plt mean squared error = []
for degree in number degrees:
   poly model = PolynomialFeatures(degree=degree)
   poly x values = poly model.fit transform(X)
   poly model.fit(poly x values, y)
   regression model = LinearRegression()
   regression model.fit(poly x values, y)
   y pred = regression model.predict(poly x values)
   plt mean squared error.append(mean squared error(y, y pred, squared=False))
plt.scatter(number degrees,plt mean squared error, color="green")
plt.plot(number degrees,plt mean squared error, color="red")
plt.ylabel("mean squared error", size=12)
plt.xlabel("no. of degree", size=12)
```


Polynomial Regression

Comparing Linear Regression with Polynomial Regression by Root Mean Squared Error (RMSE):

In this case, the polynomial regression model performs twice better than the linear regression model:

Linear Regression's RMSE ~ 245.09 Polynomial Regression's RMSE ~ 116.51

Therefore, using Polynomial Regression with degree 2 is better than Linear Regression for the prediction.

Model coefficients of Linear Regression and Polynomial Regression:

```
#Polynomial degree = 2
df=data filter
x, y = df[['PropertyGFATotal', 'SiteEnergyUse(kBtu)', 'TotalUseTypeNumber']], df['TotalGHGEmissions']
poly = PolynomialFeatures(degree=2, include bias=False)
poly features = poly.fit transform(X)
X train, X test, y train, y test = train test split(poly features, y, test size=0.3, random state=42)
poly reg model = LinearRegression()
poly reg model.fit(X train, y train)
LinearRegression()
poly reg y predicted = poly reg model.predict(X test)
from sklearn.metrics import mean squared error
poly reg rmse = np.sqrt(mean_squared_error(y test, poly reg y predicted))
poly_reg rmse
116.51215038292571
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
lin reg model = LinearRegression()
lin reg model.fit(X train, y train)
lin reg y predicted = lin reg model.predict(X test)
lin reg rmse = np.sqrt(mean squared error(y test, lin reg y predicted))
lin reg rmse
245.09549330622679
```

print("Linear Regression Model coefficient:", lin reg model.coef , "intercept", lin reg model.intercept)

Polynomial Regression Model coefficient: [-2.87556122e-04 2.81125054e-05 1.69706264e-01 -1.66218359e-09

print("Polynomial Regression Model coefficient:", poly reg model.coef)

3.82108280e-11 1.00706026e-04 -9.79253337e-14 -2.70958952e-06

1.17095568e+00]

Linear Regression Model coefficient: [-1.70766573e-04 2.31709123e-05 -9.07080011e+00] intercept 21.545878255421712

Prediction of GHG emission

Prediction of GHG emission from the building with these values:

```
GFA = input("Enter PropertyGFATotal value: ")
EU = input("Enter SiteEnergyUse(kBtu) value: ")
TN = input("Enter TotalUseTypeNumber value: ")
Enter PropertyGFATotal value: 378525
Enter SiteEnergyUse(kBtu) value: 25476332
Enter TotalUseTypeNumber value: 3
poly reg model.predict(poly.fit transform([[GFA,EU,TN]]))
C:\Users\dlaminus\anaconda3\lib\site-packages\sklearn\base.py:
decimal numbers if dtype='numeric'. This behavior is deprecate
onvert your data to numeric values explicitly instead.
  X = check array(X, **check params)
array([591.80402319])
```

Let's say,

the building GFA total amount is 378,525 sqft, the total energy use is 25,476,332 kBtu, the number of building types in the building is 3;

Therefore, the prediction amount of the GHG emission from the building is ~591.80 (MetricTonsCO2e).

Prediction of GHG emission from the building

Conclusion:

There is no perfect prediction, it is just for reference. Based upon the dataset, we came up the 3 independent variables have higher degree of impact on GHG emission. There are many more we can dig out if data available, such as the weather, the habit people have in using energy, the number of people occupied in the building, the number of devices and appliances with EnergyStar, and green design features in the building. Those are the factors that can affect these 3 independent variables. However, that does not mean the more would be better, we have to consider whether they are acceptable under criteria, and the more variables we have, the more complicated the regression will be.

Appendix

For detail of the python programming about this report, please access to the link below:

Report (Jupyter Notebook Viewer)

End