TU/E, 2MBA70

Solutions to problems for Measure and Probability Theory

Pim van der Hoorn and Oliver Tse Version 0.1 August 29 2024

Chapter 2: Measurable spaces (sigma-algebras and measures)

Problem 2.6

First note that if $\mu(A \cap B) = \infty$ then by property 2 we have that also $\mu(A)$, $\mu(B)$ and $\mu(A \cup B) = \infty$ and hence the result holds trivially. So assume now that $\mu(A \cap B) < \infty$. Since

$$A \cup B = (A \setminus (A \cap B)) \cup (B \setminus (A \cap B)) \cup (A \cap B),$$

it follows from property 1 that

$$\mu(A \cup B) = \mu(A \setminus (A \cap B)) + \mu(A \cap B) + \mu(B \setminus (A \cap B)).$$

Adding $\mu(A \cap B) < \infty$ to both side we get

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A \setminus (A \cap B)) + \mu(A \cap B) + \mu(B \setminus (A \cap B)) + \mu(A \cap B)$$
$$= \mu(A) + \mu(B),$$

where the last line follows from applying property 3 twice.

Problem 2.7

The idea is to construct a family of disjoint sets $(E_i)_{i\in\mathbb{N}}$ with the following properties:

- 1. $E_i \subset A_i$, and
- 2. $\bigcup_{i\in\mathbb{N}} E_i = \bigcup_{i\in\mathbb{N}} A_i$.

If such a sequence exists then we have

$$\begin{split} \mu(\bigcup_{i\in\mathbb{N}}A_i) &= \mu(\bigcup_{i\in\mathbb{N}}E_i) & \text{by 2} \\ &= \sum_{i=1}^\infty \mu(A_i) & \text{because } E_i \text{ are disjoint and } \mu \text{ is } \sigma\text{-additive} \\ &\leq \sum_{i=1}^\infty \mu(A_i) & \text{by 1 and monotone property of } \mu. \end{split}$$

So we are left to construct the required family of sets $(E_i)_{i\in\mathbb{N}}$. The following set will do:

$$E_1 = A_1 \quad E_i = A_i \setminus \bigcup_{k < i}^i A_k \text{ for all } i > 1.$$

Note that by definition the set E_i are pair-wise disjoint and property 1 holds. Finally, property 2 holds since $\bigcup_{i=1}^k E_i = \bigcup_{i=1}^k A_i$ holds for all $k \ge 1$.

Problem 2.9 (23 points) Let \mathcal{O} denote the open sets in \mathbb{R} .

1. (2 points) Note that the interval (a, b) is open for any $a < b \in \mathbb{R}$. Hence $\mathcal{A}_1 \subset \mathcal{A}_1' \subset \mathcal{O}$ and thus by Lemma 2.1.5 we have that $\sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}_1') \subset \sigma(\mathcal{O}) = \mathcal{B}_{\mathbb{R}}$.

- 2. (2 points) The inclusion \supset is trivial. So assume that $x \in O$. Then by definition there exist an r > 0 such that the ball $B_x(r) \subset O$. But $B_x(r) = (x r, x + r) \in \mathcal{A}_1$ so $x \in \bigcup_{I \in \mathcal{A}, I \subset O} I$.
- 3. (3 points) Take $O \in \mathcal{O}$. If we can show that $O \in \sigma(\mathcal{A})$ then $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{O}) \subset \sigma(\mathcal{A})$. The result then follows from 1.

From 2 it follows that O is a union over a subset collection of interval (a,b) where $a,b\in\mathbb{Q}$. Since \mathbb{Q} is countable, the collection $\{(a,b):a< b\in\mathbb{Q}\}$ is also countable and hence $O=\bigcup_{I\in\mathcal{A},I\subset O}I\in\sigma(\mathcal{A})$, from which it follows that $\mathcal{B}_{\mathbb{R}}\subset\sigma(\mathcal{A})$.

- 4. (1 point) This follows immediately from 1 and 3 since these imply that $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}'_1) \subset \mathcal{B}_{\mathbb{R}}$.
- 5. (3 points) The inclusion \subset is trivial, since $(a,b] \subset (a+b+1/j)$ for any $j \in \mathbb{N}$. For the other inclusion we argue by contradiction. Suppose that $x \in \bigcap_{j \in \mathbb{N}} (a,b+1/j)$ but $x \notin (a,b]$. Then x>b and hence there exists a $j \in \mathbb{N}$ such that (b-x)>1/j. But this implies that $x \notin (a,b+1/j)$ which is a contradiction. So we conclude that $(a,b] \supset \bigcap_{j \in \mathbb{N}} (a,b+1/j)$.
- 6. (3 points) This time the inclusion \supset is trivial since $(a,b-1/j]\subset (a,b)$ for every $j\in\mathbb{N}$. For the other inclusion suppose that $x\in (a,b)$. Then there exists a r>0 such that the interval $(x-r,x+r)\subset (a,b)$. In particular, this implies that b-(x+r)>0. Now take any $j\in\mathbb{N}$ such that j>1/(b-(x+r)). Then b-x>r+1/j which implies that $(x-r,x+r)\subset (x-r,b-1/j]$ and hence $x\in\bigcup_{j\in\mathbb{N}}(a,b-1/j]$.
- 7. (4 points) It is clear that $\mathcal{A}_2 \subset \mathcal{A}_2'$. By 5 it follows that any interval (a,b] can be obtained as a countable intersection of intervals of the form (a,b+1/j). By 4 $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{A}_1')$ which by Lemma 2.1.2 contains $\bigcap_{j\in\mathbb{N}}(a,b+1/j)=(a,b]$. So we conclude that any interval $(a,b]\in\mathcal{B}_{\mathbb{R}}$ from which it now follows that

$$\sigma(\mathcal{A}_2) \subset \sigma(\mathcal{A}_2') \subset \sigma(\mathcal{A}_1') = \mathcal{B}_{\mathbb{R}}.$$

For the other inclusion we consider a set (a,b) with $a,b\in\mathbb{Q}$. Then by 6 we have that $(a,b)=\bigcup_{j\in\mathbb{N}}(a,b-1/j]$ where the later is a countable union of sets (c,d] with $c,d\in\mathbb{Q}$ which must be in $\sigma(\mathcal{A}_2)$ by definition of a σ -algebra. Hence, any interval $(a,b)\in\sigma(\mathcal{A}_2)$ and we thus conclude, using 3, that

$$\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}_2) \subset \sigma(\mathcal{A}_2') \subset \sigma(\mathcal{A}_1') = \mathcal{B}_{\mathbb{R}},$$

which implies the result.

8. (2 points) Step 1 is to show that any interval [a,b) can be obtained as a countable intersection of intervals (a-1/j,b). From this we can conclude that any set [a,b) must be in $\mathcal{B}_{\mathbb{R}}$ proving inclusions \subset .

For the other inclusions we have to show that any interval (a,b) can be obtained as a countable union of intervals [a+1/j,b), which implies that (a,b) must be in the σ -algebra generated by [a,b).

9. (3 points) The main tool is to show that each of the intervals $(-\infty, a], (-\infty, a), (a, \infty)$ and $[a, \infty)$ can be obtained by taking any allowed set operation for σ -algebras, i.e. countable unions/intersections and finite complements. This will help use prove the \subset inclusions. Then we show that any set of the form (a, b), [a, b) or (a, b] can also be obtained through countable unions/intersections and finite complements of intervals of the forms $(-\infty, a], (-\infty, a), (a, \infty)$ and $[a, \infty)$. These will then yield the \supset inclusions and finish the proof.

Chapter 3: Measurable functions and stochastic objects

Problem 3.2 " \subset " By definition, the product σ -algebra $\mathcal{F}_1 \otimes \mathcal{F}_2$ is defined as the σ -algebra generated by the collection

$$\mathcal{A} := \Big\{ A \times B \subset \Omega_1 \times \Omega_2 : A \in \mathcal{F}_1, B \in \mathcal{F}_2 \Big\}.$$

Since $A \times B = (A \times \Omega_2) \cap (\Omega_1 \times B)$, we have that

$$A \times B = \pi_1^{-1}(A) \cap \pi_2^{-1}(B) \in \sigma(\pi_1, \pi_2).$$

"⊃" Let $C \in \{\pi_i^{-1}(A) : i = 1, 2, A \in \mathcal{F}_1\}$. Then there exist sets $A \in \mathcal{F}_1$ or $B \in \mathcal{F}_2$ such that $C = \pi_1^{-1}(A) = A \times \Omega_2$ or $C = \pi_2^{-1}(B) = \Omega_1 \times B$. Either way, since $\Omega_1 \in \mathcal{F}_1$ and $\Omega_2 \in \mathcal{F}_2$, we have that $C \in \mathcal{A}$.

Problem 3.3 It is clear that $f_{\#}\mu(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$. Suppose a sequence of mutually disjoint sets $B_i \in \mathcal{G}, i \in \mathbb{N}$, is given. Then,

$$f_{\#}\mu\left(\bigcup_{i=1}^{\infty}B_{i}\right) = \mu\left(f^{-1}\left(\bigcup_{i=1}^{\infty}B_{i}\right)\right) = \mu\left(\bigcup_{i=1}^{\infty}f^{-1}(B_{i})\right) = \sum_{i=1}^{\infty}f_{\#}\mu(B_{i}).$$

Problem 3.5

- (a) Some meaningful explanation would suffice.
- (b) By Proposition 2.1.8 and Problem 2.9, we know that $\mathcal{B}_{\mathbb{R}}$ is generated by intervals of the form $(-\infty, a]$ with $a \in \mathbb{Q}$. As a consequence, $\mathcal{B}_{\mathbb{R}}$ is also generated by intervals of the form $(a, +\infty)$ with $a \in \mathbb{Q}$. Therefore, by Lemma 3.1.4, it suffices to show that the set

$$\{\omega \in \Omega : f(\omega) + g(\omega) \in (a, +\infty)\}$$

is measurable for every $a \in \mathbb{Q}$. For brevity, we write $\{f + g > a\}$. The trick is to express this set as a countable union of sets of which we already know are measurable.

In fact, we will show that

$$\{f+g>a\}=\bigcup_{t\in\mathbb{Q}}\Big(\{f>t\}\cap\{g>a-t\}\Big).$$

We first show the inclusion ' \subset '. If $\omega \in \Omega$ is such that

$$f(\omega) + g(\omega) > a$$
,

then

$$f(\omega) > a - g(\omega),$$

so there exists some $t \in \mathbb{Q}$ such that

$$f(\omega) > t > a - g(\omega),$$

and thus $f(\omega) > t$ and $g(\omega) > a - t$. So in that case

$$\omega \in \bigcup_{t \in \mathbb{O}} \Big(\{f > t\} \cap \{g > a - t\} \Big).$$

Now we will show the inclusion ' \supset '. Let $\omega \in \Omega$ be such that $f(\omega) > t$ and $g(\omega) > a - t$. Then, by adding the inequalities, we know that $f(\omega) + g(\omega) > a$.

(c) The constant function $f(\omega) = a$ is measurable since

$$f^{-1}(B) = f^{-1}(B \cap \{a\}) \cup f^{-1}(B \setminus \{a\}) = \Omega \cup \emptyset = \Omega \in \mathcal{F} \qquad \forall B \in \mathcal{B}_{\mathbb{R}}.$$

- (d) Similar to the proof of Point (2) of Proposition 3.2.12.
- (e) Let $g(\omega) \neq 0$ for all $\omega \in \Omega$. Then, since g is measurable, we have that

$$\begin{aligned} \{1/g > a\} &= \{g < 1/a, \ g > 0\} \cup \{g > 1/a, \ g < 0\} \\ &= \Big(\{g < 1/a\} \cap \{g > 0\}\Big) \cup \Big(\{g > 1/a\} \cap \{g < 0\}\Big) \in \mathcal{F}, \end{aligned}$$

thus implying that 1/g is measurable.

(f) Point (e) and Point (4) of Proposition 3.2.12 yields Point (5) of Proposition 3.2.12.

Problem 3.6 From (3.6), we have for any $a \in \mathbb{R}$,

$$\left\{\sup_{n\geq 1} f_n > a\right\} = \bigcup_{n\geq 1} \left\{f_n > a\right\} \in \mathcal{F},$$

Since \mathcal{F} is a σ -algebra and f_n is measurable for all $n \geq 1$, i.e., $\{f_n > a\} \in \mathcal{F}$ for all $n \geq 1$.

Chapter 4: The Lebesgue Integral

Chapter 5: Convergence of integrals and functions