Exercice 1. /5

Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = e^{-x} + x^2 - 4$ .

- 1. Étudier la convexité de f sur  $\mathbb{R}$ .
- 2. Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.
- 3. Démontrer que pour tout réel  $x : e^{-x} + x^2 4 \ge -x 3$ .

Exercice 2. /9

La loi de refroidissement de Newton stipule que le taux d'évolution de la température d'un corps est proportionnel à la différence entre la température de ce corps et celle du milieu environnant.

Une tasse de café est servie à une température initiale de 80 °C dans un milieu dont la température, exprimée en degré Celsius, supposée constante, est notée M.

Pour tout réel t positif ou nul, on note  $\theta(t)$  la température du café à l'instant t, avec  $\theta(t)$  exprimé en degré Celsius et t en minute. On a ainsi  $\theta(0) = 80$ .

On suppose que  $\theta$  est une fonction dérivable sur l'intervalle  $[0 ; +\infty[$  et que, pour tout réel t de cet intervalle, la loi de Newton se modélise par l'égalité :

$$\theta'(t) = -0, 2(\theta(t) - M).$$

On choisit M=0. On cherche alors une fonction  $\theta$  dérivable sur l'intervalle  $[0; +\infty[$  vérifiant  $\theta(0)=80$  et, pour tout réel t de cet intervalle :  $\theta'(t)=-0, 2\theta(t)$ .

- 1. Si  $\theta$  est une telle fonction, on pose pour tout t de l'intervalle  $[0; +\infty[, f(t) = \theta(t)e^{0.2t}]$ .
  - (a) Montrer que la fonction f est dérivable sur  $[0 ; +\infty[$  et que, pour tout réel t de cet intervalle, f'(t) = 0.
  - (b) Calculer f(0).
  - (c) En déduire, pour tout t de l'intervalle  $[0; +\infty[$ , une expression de f(t), puis en déduire que pour tout réel t positif,  $\theta(t) = 80e^{-0.2t}$ .
- 2. (a) Calculer la limite de  $\theta$  en  $+\infty$ .
  - (b) Démontrer que la fonction  $\theta$  est strictement décroissante sur  $[0; +\infty[$ .
  - (c) Votre professeur de Mathématiques préféré (LOL) aime boire son café à 40 °C. Montrer qu'il existe un unique réel  $t_0$  dans  $[0; +\infty[$  tel que  $\theta(t_0) = 40$  puis donner la valeur de  $t_0$  arrondie à la seconde.

Soit la fonction f définie sur  $[0; +\infty[$  par  $f(x) = e^x + e^{-x} - 4x - 2.$ On admet que l'équation f(x) = 0 admet une solution unique  $\alpha$  dans [2; 3].

1. On considère l'algorithme suivant où les variables a, b et m sont des nombres réels :

Tant que 
$$b-a>0,1$$
 faire : 
$$m\leftarrow\frac{a+b}{2}$$
 Si  $e^m+e^{-m}-4m-2>0$ , alors : 
$$b\leftarrow m$$
 Sinon : 
$$a\leftarrow m$$
 Fin Si Fin Tant que

(a) Avant l'exécution de cet algorithme, les variables a et b contiennent respectivement les valeurs 2 et 3.

Que contiennent-elles à la fin de l'exécution de l'algorithme?

On justifiera la réponse en complétant le tableau ci-contre avec les différentes valeurs prises par les variables, à chaque étape de l'algorithme.

|                | m | Condition $f(m) > 0$ | a | b | Condition $b-a > 10^{-1}$ |
|----------------|---|----------------------|---|---|---------------------------|
| Initialisation |   |                      | 2 | 3 | Vraie                     |
| Étape 1        |   |                      |   |   |                           |
| Étape 2        |   |                      |   |   |                           |
| Étape 3        |   |                      |   |   |                           |
| Étape 4        |   |                      |   |   |                           |

- (b) Comment peut-on utiliser les valeurs obtenues en fin d'algorithme à la question précédente?
- 2. Dans cette question, toute trace de recherche sera prose en considération.

La *Gateway Arch*, édifiée dans la ville de Saint-Louis aux États-Unis, a l'allure ci-contre.

Son profil peut être approché par un arc de chaînette renversé dont la largeur est égale à la hauteur.



La largeur de cet arc, exprimée en mètre, est égale au double de la solution strictement positive de l'équation :

$$(E')$$
:  $e^{\frac{t}{39}} + e^{-\frac{t}{39}} - 4\frac{t}{39} - 2 = 0.$ 

Donner un encadrement de la hauteur de la Gateway Arch.