Exercício 02

Renan Salles de Freitas CPE 723 - Otimização Natural

15 de março de 2018

Exercício 1.a. Temos que a distribuição de probabilidade de X(1) é:

$$\mathbf{p}_1 = M\mathbf{p}_0$$

E ainda:

$$\mathbf{p}_2 = M\mathbf{p}_1 = M^2\mathbf{p}_0$$
$$\mathbf{p}_n = M^n\mathbf{p}_0$$

Portanto:

$$\mathbf{p}_3 = M^3 \mathbf{p}_0$$

$$\mathbf{p}_3 = \begin{bmatrix} 0.3328 \\ 0.3344 \\ 0.3328 \end{bmatrix}$$

Exercício 1.b. Supondo que estamos no estado X(t), construímos uma lista com os possíveis próximos estados, considerando a distribuição de probabilidade, conforme a matriz de transição de estados M: $X(t+1) = [X(t) \ 0 \ 1 \ 2]$. Sorteamos um índice de zero a quatro com o MatLab e atualizamos X(t+1). Observe que, dessa forma, a transsição para o estado o estado atual sempre possui probabilidade 0.5 e os outros estados possuem probabilidade 0.25.

$$X(0) = 1$$
 (1)
 $list = \begin{bmatrix} 0 & 1 & 2 & 1 \end{bmatrix}$
 $r = randi(4) = 3$
 $X(1) = list(r) = 2$

$$X(1) = 2$$
 (2)
 $list = \begin{bmatrix} 0 & 1 & 2 & 2 \end{bmatrix}$
 $r = randi(4) = 3$
 $X(2) = list(r) = 2$

$$X(2) = 2$$
 (3)
 $list = \begin{bmatrix} 0 & 1 & 2 & 2 \end{bmatrix}$
 $r = randi(4) = 4$
 $X(3) = list(r) = 2$

Exercício 1.c. Código MatLab abaixo:

```
clear all
  clc
2
3
  init = [0 1 2];
  n = 100;
  x = zeros(n,4);
  for i = 1:n
7
       x(i,1) = init(randi(3));
8
9
       for j = 2:4
           list = [0 \ 1 \ 2 \ x(i,j-1)];
10
            r = randi(4);
11
           x(i,j) = list(r);
12
       end
13
  end
14
```

X(0)	X(1)	X(2)	X(3)
2	2	2	1
$\frac{2}{2}$	2	0	0
2	0	0	2
2	0	2	0
1	1	1	1
1	1	2	0
2	2	2	2
0	1	0	0
0	0	1	1
1	2	2	
1	0	0	$\frac{2}{0}$
2	1	1	1
2	2	1	2
1	0	2	0
1	0	2	0
2	0	0	2
0	2	0	0
1	0	0	1
1	1	1	1
1	1	1	
0	0	1	$\frac{2}{2}$

X(0)	X(1)	X(2)	X(3)
2	0	0	2
0	0	0	2 1 2 2
1	1	2	2
0	1	0	2
0	2	2	2
2	1	0	0
1	1	1	2
2	0	1	0
2	2	1	1
2	2	2	0
0	0	0	2
2	2	1	0
0	0	0	1
1	0	2	0
1	2	1	$\frac{2}{0}$
1	1	1	
1	0	2	2
0	1	1	1
1	2	2	1
2 1	0	2 1	0
	0		1
2	0	2 1	2 1
1	0		1
2	0	0	1
2 1	2	0	2 1
	2	0	1
2	1	0	0
1	0	0	1
0	0	0	2
0	1	1	0
2	$\frac{2}{2}$	1	$\frac{2}{0}$
$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	0
$\frac{2}{2}$	∠ 1	0	0
∠ 1	1	1	1
1	2 0	2	1 1
∠ 1	1	2 2 2 0	1
2	2	2	2
2	1	0	0
2 1 2 2 2	1 2		0 2 1
2	1	$\frac{2}{0}$	ے 1
$\frac{2}{0}$			9
$\frac{0}{2}$	2 2 2	$\frac{2}{0}$	2 1 0
$\frac{2}{2}$	2	0	U
∠ .	∠ .	U	U

X(0)	X(1)	X(2)	X(3)
1	1		0
0	1	2 1	1
1	1	1	1
0	0	0	1
0	0	0	0
0	2	2	2
2 2 1 0	2 1 2	2 1 2 2 0	2 1 2 2 2
2	2	2	2
1	0	2	2
0	0	0	2
2	2	2	2 1 1
2 1	0	2 1 2	1
1	1	2	1
1	0	0	0
1	1	1	2
0	1	1	0
0	0	1	1
1	1	2	$\frac{1}{2}$
0	0	0	0
1	1	0	0
1	2	1	1
0	0	1	2
0	2	2	2 1
1	2 0 2 1 2	2 1 0	0
0	2	0	0
1	0	2	2
1	1	2 2 0 0	2 0
1	0	0	0
2	0	0	0
1	2	1	2
1	2	2	2
0	0	0	2 1
2	0	1	
2	1	1	1
1	0	0	0

Exercício 1.d. Os hisstogramas estão representados abaixo:

O código MatLab para calcualr as proobabilidades está abaixo:

```
M = [0.5 \ 0.25 \ 0.25;
        0.25 0.5 0.25;
2
        0.25 0.25 0.5];
3
  p0 = [sum(x(:,1)==0)/100 sum(x(:,1)==1)/100 sum(x(:,1)==2)/100];
  p1 = [sum(x(:,2)==0)/100 sum(x(:,2)==1)/100 sum(x(:,2)==2)/100];
  p2 = [sum(x(:,3)==0)/100 sum(x(:,3)==1)/100 sum(x(:,3)==2)/100];
  p3 = [sum(x(:,4)==0)/100 sum(x(:,4)==1)/100 sum(x(:,4)==2)/100];
  p0g = [1/3 1/3 1/3]';
10
  p1g = M*p0g;
11
  p2g = M*p1g;
12
13
  p3g = M*p2g;
```

Sabemos que o estado inicial é equiprovável para os três estados :

$$\mathbf{p}_0 = \begin{bmatrix} 0.3333 & 0.3333 & 0.3333 \end{bmatrix}$$

E ainda:

$$\mathbf{p}_1 = M\mathbf{p}_0 = \begin{bmatrix} 0.3333 & 0.3333 & 0.3333 \end{bmatrix}$$

 $\mathbf{p}_n = M^n\mathbf{p}_0 = \mathbf{p}_0 = \begin{bmatrix} 0.3333 & 0.3333 & 0.3333 \end{bmatrix}$

Calculamos as probabilidades pela frequência do histograma e obtemos:

$$\mathbf{p}_0 = [0.25 \quad 0.38 \quad 0.37] \mathbf{p}_1 \quad = [0.39 \quad 0.30 \quad 0.31] \mathbf{p}_2 = [0.35 \quad 0.32 \quad 0.33] \mathbf{p}_3 \quad = [0.34 \quad 0.32 \quad 0.34]$$

Vale observar que, conforme aumentamos o número de iterações, o estado se aproxima para o estado estacionário $\mathbf{p}_n = \begin{bmatrix} 0.333 & 0.333 \end{bmatrix}$, autovetor da matriz M.

Exercício 4.

Exercício 5.