Peter Smith, Introduction to Formal Logic (CUP, 2nd edition)

Exercises 13: Expressive adequacy and DNF

- (a) We could introduce a new *four*-place connective ' \sqsubseteq ', where $\sqsubseteq(\alpha, \beta, \gamma, \delta)$ is true when exactly two of $\alpha, \beta, \gamma, \delta$ are true, and is false otherwise. Show that doing this would be redundant because we can already define the new connective using the standard three connectives.
- (b) More on expressive adequacy:
 - (1) Compare the truth tables for the down-arrow '↓' and '∨': one is formed from the other by swapping 'T's and 'F's in the last column. Define an up-arrow connective '↑' (also symbolized '|', and then known as the 'Sheffer stroke') whose table stands in the same relation to the table for '∧'. Show that, like the down-arrow, this up-arrow connective ('NAND') taken just by itself is expressively adequate.
 - (2) Show that the up-arrow and down-arrow connectives are the only *binary* connectives that, taken by themselves, are expressively adequate.
 - (3) Define a ternary connective which, taken by itself, is expressively adequate. You are supposed to spot that the answer is trivial, given what you already know. Just define e.g. ψ (α, β, γ) so that on any line of its truth-table it's value depends on just α, β and equals ($\alpha \downarrow \beta$) (so the third input is an idle wheel). Then ψ (α, β, β) will do as well as ($\alpha \downarrow \beta$) to define any truth function!
 - (4) Are ' \oplus ' and ' \neg ' taken together expressively adequate? What about '\$' and ' \neg '? The tables for \oplus and \$ are

		α	β	γ	$\$(\alpha,\beta,\gamma)$
		$\overline{\mathrm{T}}$	Τ	Τ	F
α β	$(\alpha \oplus \beta)$	${ m T}$	Τ	\mathbf{F}	Т
T T	F	${ m T}$	F	\mathbf{T}	F
T F	Γ	${ m T}$	\mathbf{F}	\mathbf{F}	T
$\mathbf{F} \mathbf{T}$	Γ	\mathbf{F}	Τ	${\bf T}$	F
F F	F	\mathbf{F}	Τ	\mathbf{F}	F
	'	\mathbf{F}	\mathbf{F}	${\rm T}$	T
		\mathbf{F}	F	\mathbf{F}	F

- (c*) Assume that we are working in some PL language. Then:
 - (1) Show that pairs of wffs of the forms $(\alpha \wedge (\beta \vee \gamma))$ and $((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$ have the same truth table.
 - (2) Show that pairs of wffs of the forms $((\alpha \land \beta) \land \gamma)$ and $(\alpha \land (\beta \land \gamma))$ have the same truth table. Generalize to show that any way you bracket an unmixed conjunction $\alpha \land \beta \land \gamma \land \ldots \land \lambda$ to give a properly bracketed wff expresses the same truth function. Check the comparable results for disjunctions.
 - (3) Show that pairs of wffs of the forms $\neg(\alpha \land \beta)$ and $(\neg \alpha \lor \neg \beta)$ also have the same truth tables. Generalize to show that a negated unmixed conjunction $\neg(\alpha \land \beta \land \ldots \land \lambda)$ has the same truth table as $(\neg \alpha \lor \neg \beta \lor \ldots \neg \lambda)$, however we insert brackets to get wffs. What are the comparable results for negated disjunctions?
 - (4) Say that an atom or the negation of an atom is a *basic* wff. A wff is in *disjunctive normal* form if it is, ignoring bracketing, of the form $\alpha \vee \beta \vee \ldots \vee \lambda$ for one or more disjuncts, where each disjunct is a conjunction of one or more basic wffs. Show that any wff has the same truth table as a wff in disjunctive normal form.
 - (5) Define an analogous notion of being in *conjunctive normal form*. Show that any wff α has the same truth table as a wff in conjunctive normal form. (Hint: consider a wff in disjunctive normal form which is equivalent to $\neg \alpha$ and take negations.)