import pandas as pd

import numpy as np

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Admission%20Ch

df.info()

C < class 'pandas.core.frame.DataFrame'>
 RangeIndex: 400 entries, 0 to 399
 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No	400 non-null	int64
1	GRE Score	400 non-null	int64
2	TOEFL Score	400 non-null	int64
3	University Rating	400 non-null	int64
4	SOP	400 non-null	float64
5	LOR	400 non-null	float64
6	CGPA	400 non-null	float64
7	Research	400 non-null	int64
8	Chance of Admit	400 non-null	float64

dtypes: float64(4), int64(5)

memory usage: 28.2 KB

df.head()

	Serial No	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

df.describe()

```
TOEFL University
             Serial No
                        GRE Score
                                                                SOP
                                                                            LOR
                                                                                      CG
                                       Score
                                                  Rating
      count 400.000000 400.000000 400.000000
                                             400.000000 400.000000 400.000000 400.0000
y = df['Chance of Admit']
       std
             115.614301
                         11.473646
                                     6.069514
                                                 1.143728
                                                            1.006869
                                                                       0.898478
                                                                                  0.5963
df.columns
     Index(['Serial No', 'GRE Score', 'TOEFL Score', 'University Rating', 'SOP',
            'LOR ', 'CGPA', 'Research', 'Chance of Admit '],
           dtype='object')
           300 250000 325 000000 112 000000
                                                4 000000
                                                            4 000000
                                                                       4 000000
                                                                                  9 0625
X = df[['GRE Score', 'TOEFL Score', 'University Rating', ' SOP',
       'LOR ', 'CGPA', 'Research'll
from sklearn.model selection import train test split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state = 25
X train.shape, X test.shape, y train.shape, y test.shape
     ((280, 7), (120, 7), (280,), (120,))
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train= sc.fit_transform(X_train)
X test = sc.fit transform(X test)
X_train= pd.DataFrame(X_train)
X test = pd.DataFrame(X test)
X_train
```

	0	1	2	3	4	5	6
0	0.147424	-0.462792	-0.118512	-0.429673	0.047705	0.086351	0.866025
1	0.319060	0.359427	-0.118512	0.073710	1.717371	0.383422	0.866025
2	-0.453305	-0.133904	-0.118512	-0.429673	-1.621962	-1.184452	0.866025
3	-0.624942	-0.133904	-0.118512	0.073710	0.047705	0.086351	-1.154701
4	0.319060	0.194983	-0.118512	-0.429673	-0.508851	-0.128200	0.866025
275	0.319060	0.523871	1.675190	1.583859	1.717371	1.373658	0.866025

X_test

	0	1	2	3	4	5	6
0	-0.155745	0.090237	-0.821428	-0.812236	0.623938	0.008505	-0.983470
1	0.393943	-0.417347	0.013923	0.157598	1.182688	-0.378613	1.016808
2	0.119099	-0.248152	0.013923	0.157598	-0.493563	0.008505	-0.983470
3	-0.430589	-1.263321	-1.656778	-0.812236	-0.493563	-0.220246	1.016808
4	-1.529965	-1.094126	-0.821428	-0.327319	0.065188	-1.188040	-0.983470
115	0.577173	0.428627	1.684623	1.127431	0.065188	0.430815	-0.983470
116	0.210714	-1.094126	-0.821428	-0.812236	0.065188	-0.026688	1.016808
117	-0.980277	-0.078958	-0.821428	-0.327319	-0.493563	-0.695345	-0.983470
118	1.126861	0.597821	0.849273	1.612348	0.623938	1.029087	1.016808
119	-0.064130	-0.078958	0.013923	1.127431	0.065188	-0.237843	-0.983470

120 rows × 7 columns

X_test

```
1
                                                3
                                                                               6
          -0.155745
                     0.090237 -0.821428
       0
                                         -0.812236
                                                    0.623938
                                                              0.008505 -0.983470
       1
           0.393943 -0.417347
                               0.013923
                                          0.157598
                                                    1.182688 -0.378613
                                                                        1.016808
       2
           0.119099 -0.248152
                               0.013923
                                          0.157598 -0.493563
                                                              0.008505
                                                                       -0.983470
       3
          -0.430589 -1.263321 -1.656778 -0.812236 -0.493563 -0.220246
                                                                        1.016808
from sklearn.linear model import LinearRegression
lr = LinearRegression()
           0.210714 -1.094126 -0.821428 -0.812236 0.065188 -0.026688
                                                                        1.016808
lr.fit(X_train,y_train)
     LinearRegression()
      440 0 06/120 0 070050
                              U U13U33
                                                                        0 002/70
lr.intercept_
     0.733785714285714
lr.coef_
     array([ 0.02377773, 0.01746937, 0.00632086, -0.00378001, 0.01772667,
             0.06855606, 0.01020204])
df.columns
     Index(['Serial No', 'GRE Score', 'TOEFL Score', 'University Rating', ' SOP',
            'LOR ', 'CGPA', 'Research', 'Chance of Admit '],
           dtype='object')
```

Regression_Equation

Chance Of admission = 0.7337857142857143+0.02377773(GRE score)+ 0.01746937(TOEFL score) +0.00632086(University Rating) -0.00378001(SOP)+ 0.01772667(LOR)+ 0.06855606(CGPA) + 0.01020204(Research)*

```
[ ] Ļ3 cells hidden
```

Stats Model

```
[ ] Ļ2 cells hidden
```

 Py 	/ca	ret
------------------------	-----	-----

▶ R Language

[] L, 6 cells hidden

