Note - eq 3.47 One line isn't so clear, but

$$(VD^{2}V^{T} + \lambda I)(VD^{2}V^{T} + \lambda I)^{-1} = I$$

$$\Rightarrow (VD^{2}V^{T} + \lambda I)(VD^{2}V^{T} + \lambda I)^{-1}V = V$$

$$\Rightarrow (D^{2}V^{T} + \lambda V^{T})(VD^{2}V^{T} + \lambda I)^{-1}V = I$$

$$\Rightarrow (D^{2} + \lambda I)V^{T}(VD^{2}V^{T} + \lambda I)^{-1}V = I$$

and so

$$V^{T}(VD^{2}V^{T} + \lambda I)^{-1}V = (D^{2} + \lambda I)^{-1}.$$

3.1 Recall the method of using repeated simple linear regression to do multiple lienar regression: We form an orthogonal spanning set z_1,\ldots,z_p of the column space in such a way that z_1,\ldots,z_k spans the span of the first k columns of X. We finally regress y onto z_p to obtain $\hat{\beta}_p$. But we can do more: If $\gamma_j = \langle y, z_j \rangle$, then $\hat{y} = \sum_j \frac{\gamma_j}{\|z_j\|^2} z_j$ is the orthogonal projection onto the column space of X in the full rank case. What's more, $\sum_{j < p} \frac{\gamma_j}{\|z_j\|^2} z_j$ is the result of using only the first p-1 features. Let $r_p = y - \hat{y}$. Recall that $\hat{\beta}_p = \frac{\gamma_p}{\|z_p\|^2}$, and so

$$RSS_0 = \left\| y - \sum_{j < p} \frac{\gamma_j}{\|z_j\|^2} z_j \right\|^2$$
$$= \left\| r_p + \hat{\beta}_p z_p \right\|^2$$
$$= \|r_p\|^2 + \hat{\beta}_p^2 \|z_p\|^2$$
$$RSS_1 = \|y - \hat{y}\|^2$$
$$= \|r_p\|^2$$

So we can express the formula for the F-score

$$F = \frac{\text{RSS}_0 - \text{RSS}_1}{\text{RSS}_1/(N - p - 1)}$$
$$= \frac{\hat{\beta}_p^2 ||z_p||^2}{\hat{\sigma}^2}$$

Now, write $X=Z\Gamma$, where Z's columns are the z_i 's and Γ is upper triangular with diagonal entries 1. Then $(X^TX)^{-1}=(\Gamma^TZ^TZ\Gamma)^{-1}=(\Gamma^TD\Gamma)^{-1}$. Here, D is diagonal on $(\|z_1\|^2,\ldots,\|z_p\|^2)$. Since we assume that X^TX is invertible, both Γ and D are, so $(\Gamma^TD\Gamma)^{-1}=\Gamma^{-1}D^{-1}\Gamma^{-T}$. Now, we can compute the

lower-right entry

$$\begin{split} (\Gamma^{-1}D^{-1}\Gamma^{-T})_{pp} &= \sum_{ij} (\Gamma^{-1})_{ip} D_{ij}^{-1} (\Gamma^{-T})_{jp} \\ &= \sum_{i} \frac{1}{\|z_{i}\|^{2}} (\Gamma^{-1})_{ip} (\Gamma^{-T})_{ip} \\ &= \frac{1}{\|z_{p}\|^{2}} (\Gamma_{pp}^{-1})^{2} \\ &= \frac{1}{\|z_{p}\|^{2}} \end{split}$$

and so we finally find that the F-score can be written as

$$\frac{\hat{\beta}_p^2}{\hat{\sigma}^2 d_p}$$

where d_p is the pth diagonal entry of $(X^TX)^{-1}$. By relabelling the features, we find that this also works for any of the features, and so the F-score is the square of the Z-score.

3.3.a The variance of $c^T y$ is

$$\operatorname{Var}\left(\sum_{i} c_{i} y_{i}\right)$$

$$= \sum_{ij} c_{i} c_{j} \operatorname{Cov}(y_{i}, y_{j})$$

$$= \sum_{i} c_{i}^{2} \sigma^{2}$$

$$= \sigma^{2} \|c\|^{2}$$

while the fact that the estimator is unbiased is expressed exactly by the equation $(X^Tc)^T\beta = \alpha^T\beta$. Now, I'm going to make a small assumption. We know that the estimator is not supposed to depend on β , which is unobservable, and I'm going to interpret this mathematically by taking $(X^Tc)^T\beta = \alpha^T\beta$ to hold for all β . (This is certainly true of the OLS estimator, and it seems that an estimator that did not satisfy this property would be rather useless.)

Write $c = kX(X^TX)^{-1}\alpha + v$ for some constant k and some v orthogonal to $X(X^TX)^{-1}\alpha$, we find $X^Tc = k\alpha + X^Tv$ and taking $\beta = (X^TX)^{-1}\alpha$ gives

$$\beta^{T}(X^{T}c) = ((X^{T}X)^{-1}\alpha)^{T}(k\alpha + X^{T}v)$$

$$= k\alpha^{T}(X^{T}X)^{-1}\alpha + \alpha^{T}(X^{T}X)^{-1}X^{T}v$$

$$= k\alpha^{T}(X^{T}X)^{-1}\alpha$$

on one hand, and on the other we know that

$$\beta^{T}(X^{T}c) = \beta^{T}\alpha$$
$$= \alpha^{T}(X^{T}X)^{-1}\alpha$$

and so k = 1. This means that

$$\sigma^2 \|c\|^2 = \sigma^2 \|X(X^T X)^{-1} \alpha\|^2 + \sigma^2 \|v\|^2 \ge \sigma^2 \alpha^T (X^T X)^{-1} \alpha,$$

which is the variance of the OLS estimator for $\alpha^T \beta$.