Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style

Graham Taylor and Geoffrey Hinton University of Toronto, Canada

Conditional Restricted Boltzmann Machines

- Start with an RBM (binarybinary or real-binary)
- Add two types of directed connections
- Does not change inference and learning
- Autoregressive weights model short-term, linear structure

Distributed

 Capable of representing data that is a product of multiple underlying influences

Undirected

 Using an RBM makes exact inference easy

Composable

Train greedily, layer-by-layer

Modeling multiple styles of motion

Learning style

Higher-order interactions

Two equivalent views of Gated Conditional RBMs (Memisevic and Hinton, 2007)

Factoring

- Exponential # of AR models at cubic cost
- Regularities suggest structure can be captured with < cubic # of parameters
- Introduce deterministic "factors":O(N³) to O(N²)

Factored Conditional RBMs

- Let style change interactions rather than effective biases
- Deterministic features are linearly related to style
- Can blend and transition among motion styles

(e.g. data at time t-1:t-N)

CD(K) weight updates

Weight updates have the form:

$$\Delta X_{qr} \propto \sum_{t} \left(\left\langle \alpha_{q,t} \beta_{r,t} \gamma_{r,t} \right\rangle_{0} - \left\langle \alpha_{q,t} \beta_{r,t} \gamma_{r,t} \right\rangle_{K} \right)$$

Unit connected to factor r by weight X_{qr}

Total input arriving at factor r via each of the two other units involved in the three-way relationship

Results: synthesis

Results: prediction

Conclusions

- CRBMs: distributed representations, exact inference and efficient approximate learning
 - Can be composed into conditional DBNs
- FCRBMs: naturally integrate context, multiplicative interactions with quadratic number of parameters
 - Future work: unsupervised style discovery, deep models

Parameter sharing

Fully parameterized (no sharing)

Full sharing

Related work

Concatenation

Transforming existing motion

Interpolation/ Blending Physics-based methods

Generative models-

Our method is based on a "pure" learning approach. It is able to generalize well while avoiding the complexity of explicitly imposing physics-based constraints.

Conditional deep belief networks

- CRBM defines $p(v^0,h^0)$ implicitly $p(h^0),p(v^0|h^0)$
- Consider "trading in" p(h⁰)
 for a better model
- Subject to conditions (which we violate) – guaranteed to never decrease a variational lower bound on log prob

Modeling human motion

- Capture the movement of a subject as a time series of 3D cartesian coordinates
- High-dimensional (60-100), nonlinear, long-range deps
- Large repositories available

Introduction

 The Conditional Restricted Boltzmann Machine (Taylor et al. 2007)

Naturally incorporate contextual information (specifically style) into the CRBM while preserving its most important computational properties.

Joint distribution

$$p(\mathbf{v}_{t}, \mathbf{h}_{t} | \mathbf{v}_{t}, \theta)$$

$$= \frac{\exp(-E(\mathbf{v}_{t}, \mathbf{h}_{t} | \mathbf{v}_{t}, \mathbf{y}_{t}, \theta))}{Z(\theta)}$$

Contrastive divergence learning (CRBM)

When updating visible and hidden units, we implement directed connections by treating data from previous time steps as a dynamically changing bias.

Inference and learning do not change.

Energy function

$$E(\mathbf{v}_{t}, \mathbf{h}_{t} | \mathbf{v}_{

$$- \sum_{j} \hat{b}_{j,t} h_{j,t} - \sum_{f} \sum_{ijl} W_{if}^{v} W_{if}^{h} W_{if}^{z} \mathbf{v}_{i,t} h_{j,t} \mathbf{z}_{l,t}$$

$$\mathbf{z}_{l,t} = \sum_{p} R_{pl} \mathbf{y}_{p,t}$$

$$\hat{a}_{i,t} = a_{i} + \sum_{m} A_{im}^{v} \sum_{k} A_{km}^{v < t} \mathbf{v}_{k, < t} \sum_{l} A_{lm}^{z} \mathbf{z}_{l,t}$$

$$\hat{b}_{j,t} = b_{j} + \sum_{l} B_{jn}^{h} \sum_{k} B_{kn}^{v < t} \mathbf{v}_{k, < t} \sum_{l} B_{ln}^{z} \mathbf{z}_{l,t}$$$$

