ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

In-situ synthesis of single-atom CoN_x clusters-decorated TiO_2 for highly efficient charge separation and CO_2 photoreduction

Peng Zeng ^{a,*,1}, Haoran Liu ^{b,1}, Huaiyang Jia ^b, Jiayi Cai ^a, Xueer Deng ^a, Tianyou Peng ^{b,*,2}

- a School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
- b College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

ARTICLE INFO

Keywords: Photocatalytic CO_2 reduction CoN_x cluster TiO_2 Single-atom photocatalyst MOF material

ABSTRACT

Solar-driven CO_2 reduction reaction (CO_2RR) to produce chemical fuels is an attractive way to alleviate the greenhouse effect and energy crisis. Herein, a novel single-atom CoN_x clusters-decorated TiO_2 (CoN_x/TiO_2) is synthesized *in situ* by calcining a composite derived from immersing a metal organic framework (Mil-125) into cobalt tetra(4-pyridyl) porphyrin ($CoPy_4$) solution. The resultant CoN_x/TiO_2 delivers an excellent CO_2RR activity with CO/CH_4 yields of $24.4/119.9~\mu\text{mol}~g^{-1}~h^{-1}$, corresponding an overall photoactivity of $1007.6~\mu\text{mol}~g^{-1}~h^{-1}$, 10.6~time higher than that of TiO_2 alone. It is found that $CoPy_4$ molecules can enter Mil-125's micropores, which helps to pyrolyze $CoPy_4$ into highly dispersed single-atom-contained CoN_x clusters and to form strong interaction with the primary nanoparticles of $TiO_2~quasi$ -nanocube-like aggregated particles derived from Mil-125. These factors of CoN_x/TiO_2 enable efficient photogenerated charge separation, strong chemical adsorption to reactants and high atom utilization, thus providing a new strategy for constructing TiO_2 -based photocatalysts with highly dispersed single-atom catalytic sites for $CO_2~\text{photoreduction}$.

1. Introduction

Converting CO_2 into chemical fuels not only can alleviate the problems of fossil resources' rapid depletion and growing CO_2 emissions, but also can help to achieve the carbon balance of the Earth [1–3]. Among which, solar-driven CO_2 reduction reaction ($\mathrm{CO}_2\mathrm{RR}$) has been recognized as a potential artificial photosynthesis technology, thus seeking efficient photocatalysts that can achieve CO_2 photoreduction has become a hot topic [4]. Among various photocatalysts developed, TiO_2 is the most studied one due to its low-cost, non-toxic, excellent physicochemical stability and UV light-driven photoactivity [5,6]. However, the photocatalytic system with single TiO_2 still faces severe photogenerated charge recombination, narrow spectral absorption and low quantum efficiency [4]. Therefore, various strategies have been adopted to improve the charge separation, spectral absorption and photoactivity of TiO_2 -based materials [7–10]. Among them, loading of cocatalyst is recognized as one of the simplest and most effective methods [4,11–13].

Although precious metals such as Pt, Pd and Au are widely used as cocatalysts due to their low activation energy and effective charge separation, the high costs limit their large-scale applications [11,12],

and thus certain transition metals such as Fe, Co, Ni and Cu have been developed as cocatalysts [4,13]. Another promising approach is to develop single-atom catalysts with evenly distributed and coordinatively unsaturated sites, which have advantages such as unique electronic structure, high atom utilization, effective adsorption/activation of reactants and strong catalytic activity [14–23]. For instance, a Cu single-atom site-containing Au-Cu alloy nanoparticles-decorated TiO_2 was prepared via a photodeposition method, which delivers a record-high CO_2RR photoactivity with a CH_4 yield up to 3578.9 μ mol g⁻¹ h⁻¹ and a CH_4 selectivity of 77.1% [23]. It proved that the synergistic function of Cu single-atoms and Au-Cu alloy nanoparticles enhance the adsorption activation of reactants and lower the overall activation energy barrier for the CH_4 production, thus contributing to an effective cocatalyst for photocatalytic CO_2RR [23].

Recently, atomically dispersed $M-N_x$ clusters in the samples have been identified as the active sites for catalyzing various reactions such as CO_2 and O_2 reductions as well as H_2S oxidation [24–28]. For instance, a hollow fiber stitched by carbon nanotube with enriched $M-N_4$ single-atom sites achieves fast kinetics, high activity and good durability on catalyzing CO_2RR [24]. Density functional theory calculations also

E-mail addresses: boriszeng@hotmail.com (P. Zeng), typeng@whu.edu.cn (T. Peng).

Corresponding authors.

¹ These authors contributed equally to this work

² ORCID: 0000-0002-2527-7634

demonstrate that the local coordination environment of single-atoms supported on conjugated $N_4\text{-macrocyclic}$ ligands (Co- N_4 -CPY) and its analogues (where one of the N atoms substituted by O (Co- N_3 O-CPY) or C (Co- N_3 C-CPY)) can disrupt the symmetry of primary Co- N_4 ligand field and induce charge redistribution of the Co center, which then influence the energy barrier of CO_2 to *COOH and the desorption process of *CO, thus resulting in different CO $_2$ RR pathways [21]. In general, it is difficult to preferentially build local electronic structures around M- N_x site and improve its catalytic activity [24,25], and therefore it is necessary to explore effective strategy to construct M- N_x photocatalysts with both optimized external architecture and internal local coordination environment to jointly improve the CO_2 RR activity.

Metal porphyrins and their analogues have clear M-N₄ coordination structures and well-defined single-atom active sites, which can be systematically tuned to achieve high activity and product selectivity. Therefore, a series of metalporphyrins and their heterometallic conjugated polymers were synthesized in our group, and it was found that the highly dispersed M-N₄ subunits can serve as single-atom catalytic sites to greatly enhance the photo(electro)catalytic CO₂RR or H₂ production performance [17–19,29–32]. By considering that the well-defined and coordinatively unsaturated M-N₄ subunits of metalloporphyrins can also act as the precursor of highly dispersed M-N_x single-atom active sites, we introduce an in-situ synthesis procedure of CoN_x clusters-modified TiO₂ (CoN_x/TiO_2) as shown in Scheme 1, whereby the cobalt *tetra*(4-pyridyl) porphyrin (CoPy₄) was synthesized via a two-step procedure according to our previous method [30-32], and the Ti-based metal organic framework (MOF) Mil-125 constructed from Ti-O clusters and terephthalic acid (H₂BDC) was prepared according to the literatures [33–35]. The Mil-125 was immersed into the CoPy₄ N,N-dimethylformamide (DMF) solution to give CoPy₄/Mil-125 composite, which was calcined to in-situ form CoNx/TiO2. During the calcination process, the CoPy4 molecules containing Co-N₄ subunits can be pyrolyzed into CoN_x clusters, which serve as the single-atom active sites of photocatalytic CO₂RR and to form strong interaction with the primary nanoparticles of TiO2 quasi-nanocube-like aggregated particles formed by the calcination of Mil-125. The effects of CoN_x clusters on the microstructure, spectral absorption, energy band structure, adsorption and activation of reactants (CO2/H2O) and photogenerated charge separation of TiO2 were systematically studied, and the enhancement mechanism of the photocatalytic CO₂RR activity of CoN_x/TiO₂ was deeply discussed.

2. Experimental

2.1. Material preparation

Mil-125 precursor was prepared according to the literatures (Scheme 1) [33–35]. Typically, 6.0 g of terephthalic acid (H₂BDC) was dissolved in 54 mL of DMF under stirring, then 12 mL of methanol and 2.4 mL of tetrabutyl titanate (lower than the stoichiometric ratio of 20 wt% to form Ti defects in the MOF) were added. After stirring for 10 min, the resulting solution was transferred into PTFE-lined autoclave (volume of 200 mL), then hydrothermally treated at 130 °C for 20 h. After that, the precipitate was separated by centrifugation, washed three times with DMF and methanol in successive, then vacuum dried at 70 °C for 6 h to give the Mil-125 precursor. The X-ray diffraction (XRD) pattern, liquid N₂ adsorption/desorption experiments and elemental analysis results prove the successful synthesis of Mil-125 containing two kinds of accessible micropores with pore sizes of 12.55 and 6.13 Å (Scheme 1, Fig. S1 and Table S1 as well as the corresponding analyses) [33–35].

CoPy₄ precursor was synthesized via a two-step procedure according to our previous method with slight modification (Scheme 1) [30-32]. Typically, 4-pyridine formaldehyde (5.60 g, 50 mmol) was dissolved in 200 mL of propionic acid (PA), then refluxed at 140 °C for 30 min. After that, a newly evaporated pyrrole (3.36 mg, 50 mmol) was mixed with 10 mL of PA to obtain a pyrrole solution, which was added dropwise to the above solution. The mixture was refluxed in N2 atmosphere at 140 °C for 8 h. After cooling, the PA was removed by vacuum distillation, and the black solid was added into 30 mL of DMF overnight. The precipitate was separated by filtration, washed with ether for three times to give crude sample, which was purified by silica gel column chromatography with dichloromethane/methanol (15:1, v/v) solvent, then recrystallized in dichloromethane/n-hexane solvent to give the tetra(4-pyridyl)porphyrin (H₂Py₄). The H₂Py₄ (100 mg, 0.16 mmol) and Co(OAc)2•4 H2O (174.4 mg, 0.70 mmol) were dispersed in 30 mL of DMF, then refluxed at 150 °C for 12 h. After that, the precipitate was separated through centrifugation, washed several times with deionized water, and vacuum dried overnight at 70 °C to give the CoPy₄. Yield 98.8 mg, 91.0%. TOF-MS (m/z): 675.5, $C_{40}H_{24}N_8Co$ $([M+H]^+ = 675.6)$.

Scheme 1. Schematic diagram of in-situ synthesis route of the CoN_x/TiO₂.

EA ($C_{40}H_{24}N_8Co$): Calcd. C 71.11, H 3.58, N 16.59; Found C 71.36, H 3.73, N 16.35. UV–vis ($\lambda_{max}(DMF)/nm$): 413, 537.

CoN₄/TiO₂ was synthesized via a two-step procedure (Scheme 1). Typically, 500 mg of Mil-125 was added into 40 mL of CoPy₄ (4.0 mg) DMF solution. After stirring for 5 h, the DMF was removed by rotary evaporation, the solid was washed three times with deionized water, and vacuum dried at 100 °C to give the CoPy₄/Mil-125 composite, which was placed in a muffle furnace for calcination at 500 °C for 4 h with a heating rate of 5 °C min⁻¹ to give the CoN_x/TiO₂. By varying CoPy₄ addition amount, a series of CoNx/TiO2 products were obtained. For comparison, CoO_x/TiO₂ was prepared as follows: 500 mg of Mil-125 was added into 40 mL of deionized water containing 0.8 mg of anhydrous CoCl2 (Co weight percentage in CoCl2/Mil-125 is equivalent to that of CoPy₄/Mil-125). After stirring for 5 h, the water was removed by rotary evaporation, the solid was washed three times with deionized water, and vacuum dried at 100 °C to give the CoCl₂/Mil-125 composite, which was placed in a muffle furnace for calcination at 500 °C for 4 h with a heating rate of 5 °C min⁻¹ to give the CoO_x/TiO_2 .

2.2. Material characterization

The X-ray diffraction (XRD) patterns of samples were acquired on a Miniflex 600 X-ray diffractometer with CuK α source ($\lambda = 0.154$ nm) operated at 40 kV, 20 mA and scanning rate of 10 ° min⁻¹. Fourier transform infrared spectroscopy (FTIR) was conducted on a Biorad FTS-165 FT-IR spectrometer using KBr pellet. Verios Field Emission Scanning Electron Microscopy (FESEM) was used to observe the morphology of samples, and High-Resolution Transmission Electron Microscopy (HRTEM) was obtained on LaB6 JEM-2100(HR) electron microscope (JEOL Ltd.) with a working voltage of 200 kV. JEOL JEM-ARM200F Aberration Correction High Angle Annular Dark Field Scanning Transmission Electron Microscope (AC-HAADF-STEM) equipped with an energy dispersive X-ray (EDX) spectrometer was used to observe the microstructures performed at 200 kV using microscope and Schottky cold field gun. Liquid N2 adsorption /desorption experiments were conducted at 77 K on a Micrometrics ASAP 2460 system. Except for Mil-125, other samples were degassed at 200 °C for 6 h before test.

Element contents in samples were analyzed using an EA3000 element analyzer, and the metal contents were determined using a JXA-8530 F Plus Field Emission Electron Probe Analyzer (EPMA) or an IRIS Intrepid II XSP Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES). UV-Vis absorption spectrum was measured on a TU-1810 spectrophotometer. UV-Vis diffuse reflectance absorption spectra (DRS) were measured on an Agilent Cary 5000 spectrophotometer equipped with an integrating sphere with BaSO₄ as a reference. Photoluminescence (PL) spectra were acquired on a Hitachi F-4600 fluorescence spectrophotometer under excitation wavelength (λ_{ex}) of 375 nm. Time resolved fluorescence decay spectra (TRFS) was obtained on an Edinburgh FES 920 femtosecond fluorescence spectrophotometer under λ_{ex} of 375 nm, emission wavelength (λ_{em}) of 460 nm. Element valence states and valence band (VB) spectra were measured on a Thermo Fisher ESCALAB 250Xi X-ray photoelectron spectrometer (XPS) equipped with a monochromatic source (AlKa) operated at 300 W and calibrated with contaminated C 1 s at 284.8 eV.

Photocurrent time curves (*i-t*) and electrochemical impedance spectroscopy (EIS) were measured in a traditional three-electrode system using 0.5 M Na₂SO₄ solution as electrolyte with Pt foil and Ag/AgCl electrode as counter electrode and reference electrode, respectively. The working electrode was prepared by dropping the Nafion solution containing the sample onto a pre-cleaned FTO glass ($1.0 \times 1.0 \text{ cm}^2$). If necessary, a 300 W Xe-lamp was used as light source to illuminate the working electrode. Before the electrochemical testing, the three-electrode system was blown with N₂ flow for 0.5 h.

Temperature programmed desorption-mass spectrometry (TPD-MS) for CO₂/H₂O on the samples were conducted on an AutoChem1 II 2920 temperature programmed chemical adsorption analyzer equipped with

a Hiden QIC-20 mass spectrometer. Typically, 0.10 g of sample was placed in a sample cell, degassed at 120 °C for 8 h in an Ar flow, and then slowly cooled to 80 °C. A 10% $\rm CO_2/Ar$ mixed gas containing water vapor was introduced to adsorb $\rm CO_2/H_2O$ fully. After 2 h, the sample was purged with an Ar flow for 30 min to remove $\rm CO_2/H_2O$ that had not been adsorbed. Each sample was heated to 800 °C in Ar at a rate of 10 °C min⁻¹, while the $\rm CO_2$ (m/z=44) and $\rm H_2O$ (m/z=18) mass signals were recorded by mass spectrometry.

Co K-edge X-ray absorption spectra (XAS) were measured via a transmission mode of BL11B beamline of Shanghai Synchrotron Radiation Facility (SSRF) with the storage ring's beam current of 220 mA in a top-up mode, the incident photons monochromatized by Si(111) doublecrystal monochromator with an energy resolution ($\Delta E/E = \sim 1.4 \times$ 10⁻⁴). The energy was calibrated using Cu foil (8979 eV), and the rejection of higher harmonics was achieved by a pair of Rh-coated mirrors at 4 mrad. The incident beam intensity (I_0) was detected with the ion chamber filled with Ar gas, and Ar gas was adopted to detect the transmitted beam intensity (I_t) . The spot size of sample was $200\times250~\mu m$ (H \times V). The raw data were analyzed by IFEFFIT software package after calibrated, averaged, pre-edge background subtracted and post-edge normalized through Athena program [36]. Fourier transformation of the k^3 -weighted extended X-ray absorption fine structure (EXAFS) oscillations ($k^3\chi(k)$) from K-space to R-space was done in a range of 3.0–10.0 Å^{-1} to obtain the radial distribution function, and the data were fitted using Artemis program [37]. In addition, wavelet transform contour plots were obtained based on Morlet wavelets ($\kappa = 10$, $\sigma = 1$) by processing k-space data with HamaFortran and SigmaPlot softwares [38].

2.3. Photocatalytic CO₂RR performance measurement

Photocatalytic CO₂RR experiments were performed in a gas-closed reactor (Pyrex glass) with a volume of 500 mL under 300 W Xe-lamp illumination. Typically, photocatalyst (10 mg) was dispersed in ethanol, and then dropped on a quartz plate in a watch glass under infrared lamp. After the ethanol was evaporated, the watch glass was placed in the reactor, then NaHCO₃ (1.65 g) was added into the bottom of reactor, which was then sealed, and completely removed the air using vacuum pump. After repeating the above degassing operation three times, 5.0 mL of H₂SO₄ solution (4.0 M) was introduced into the reactor to generate CO₂/H₂O vapor. During the illumination, 2 mL of gas was extracted using a syringe at each interval of 1.0 h, and the gas concentration was analyzed using a SP7820 gas chromatograph (TDX-01 column, Rainbow Co. Ltd.) equipped with a flame ionized detector (FID) and methanator. Moreover, a Shimadzu GC-2010 gas chromatography equipped a BID detector was used to detect the possible other reduced products such as H2, O2, C2H4, C2H6 and CH3OH in the photoreaction system, and a Bruker Ascend 400 ¹H NMR spectrophotometer was used to detect the possible reduced products such as HCOOH, CH3OH or HCHO in the acetic ether extract of the solution in the reactor bottom.

The main reduced products in the present photocatalytic CO_2RR system are only CH_4 and CO, and no other reduced product such as C_2H_4 , CH_3OH , C_2H_5OH (using GC-FID or GC-BID detector) or HCOOH, HCHO, CH_3OH (using 1H NMR spectrum) were detected. The produced amounts of CH_4/CO gases in the reactor were calibrated with a standard CH_4/CO gas mixture. Due to the different number of electrons required for the CO and CH_4 production, total consumed electron number (TCEN) was used to evaluate the overall photoactivity for CO_2RR using Eq.~(1)~[4,32].

$$TCEN = \frac{(2 \times c_{CO} + 8 \times c_{CH_4}) \times V_{rea.}}{m_{cat.} \times t_{irr.}}$$
(1)

where $c_{\rm CO}$ and $c_{\rm CH4}$ are the produced CO and CH₄ concentrations in the photoreactor, respectively. $V_{\rm rea.}$ is the reactor volume. $m_{\rm cat.}$ is the photocatalyst dosage, and $t_{\rm irr.}$ is the irradiation time.

3. Results and discussion

3.1. Crystal and microstructure analyses

The XRD patterns (Fig. 1a) indicate that the calcined product of Mil-125 is a mixed crystal phase of TiO2, mainly composed of anatase (JCPDS No. 21-1272) with a small amount of rutile (JCPDS No. 21-1276) [33]. However, the calcined product (CoN_x/TiO₂) of CoPy₄/Mil-125 composite displays a pure anatase, implying that the introduced CoPy₄ molecules can affect the pyrolysis of Mil-125, and then the crystal phase of the calcined product (TiO2). Similarly, the calcined product (CoO_x/TiO₂) of CoCl₂/Mil-125 does not show obvious rutile phase, indicating that cobalt salt also affects the pyrolysis of Mil-125 and the crystal phase of TiO₂. Moreover, CoN_x/TiO₂ and CoO_x/TiO₂ show no any characteristic diffraction peak of metal oxides other than TiO₂. When the addition amount per 500 mg of Mil-125 is increased by fivefold (CoPy₄ (20 mg) and CoCl₂ (4.0 mg)), the relative calcined products (CoN_x/TiO₂-20 and CoO_x/TiO₂-4.0) display the characteristic (311), (220), (440) and (511) diffraction peaks of Co₃O₄ (JCPDS No. 42–1467) (Fig. 1b), indicating that the excessive CoPv₄ or CoCl₂ coated on the Mil-125 particles without entering the MOF's micropores would be likely to form cobalt oxide after the calcination process.

FESEM and TEM images indicate that Mil-125 exhibits a quasinanocube-like morphology with uneven particle sizes of ca. 200-300 nm (Fig. 2a,b), which is similar to the literature [34,35], while its calcined product (TiO2) has similar quasi-nanocube-like structure with uneven particle size distribution (Fig. 2c,d). Different from the Mil-125 (Fig. S2a), the quasi-nanocube-like structure of TiO2 is stacked by ultrafine irregular primary nanoparticles (Fig. S2b), implying the Mil-125 was transformed into ultrafine TiO₂ nanoparticles, which aggregate into quasi-nanocube-like aggregated particless with particle sizes of ca. 300-600 nm. CoPy₄/Mil-125 composite still retains the original morphology of Mil-125 with smooth surface (Fig. 2e,f), and its calcined product (CoNx/TiO2) displays similar quasi-cube-like aggregated particless with a particle sizes of ca. 300-500 nm (Fig. 2g,h), and the HRTEM images (Fig. S2c,d) indicate that both CoPy₄/Mil-125 and CoN_x/TiO₂ still have smooth surface, while the CoN_x/TiO₂ is composed of stacked ultrafine primary nanoparticles like the TiO₂.

Differently, $CoCl_2/Mil-125$ composite shows a significant changed surface morphology with a large number of small nanoparticles attached on its *quasi*-nanocube surfaces (Fig. 2i,j), and its calcined product (CoO_x/TiO_2) show that the *quasi*-nanocube surfaces with diameter of *ca*. 300–500 nm were attached by aggregation of ultrafine primary nanoparticles (Fig. 2k,l), which can be confirmed by the HRTEM images of $CoCl_2/Mil-125$ and CoO_x/TiO_2 (Fig. S2e,f). It implies that during the loading of $CoCl_2$, its hydrolysates cannot (or cannot fully) enter the Mil-

125's micropores, but rather adhere a large amount on the particle surfaces, which were converted into CoO_x ultrafine nanoparticles after the calcination, and thus presenting a morphology different from TiO_2 and $\mathrm{CoN}_x/\mathrm{TiO}_2$. These results indicate that CoPy_4 molecules can enter Mil-125's micropores through the accessible pores (12.55 Å, Scheme 1), while the hydrolysates of CoCl_2 are adhered on the Mil-125 particle surfaces. This difference may affect the thermal decomposition behavior of Mil-125-based composite, and then the microstructure and composition of the calcined product.

TEM and HRTEM images of $\mathrm{CoN_x/TiO_2}$ show that the single *quasi*-nanocube has the lattice stripe spacing of \sim 0.352 nm of anatase (101) facets (Fig. 3a,b), and the high angle annular dark field scanning transmission electron microscope (AC-HADDF-STEM) image indicates some bright contrast spots of Co atoms in $\mathrm{TiO_2}$ lattice (Fig. 3c). The line scanning profiles alone the randomly selected yellow lines (Fig. 3d) shows that Line 1 contains three Co atoms and Line 2 contains two Co atoms. It should be noted that no lattice stripe spacing related to the cobalt oxides was observed in the HRTEM image of $\mathrm{CoN_x/TiO_2}$ (Fig. 3b), which may be due to the high distribution of $\mathrm{CoN_x}$ clusters in the $\mathrm{TiO_2}$ matrix

AC-HADDF-STEM image and its corresponding energy dispersive X-ray (EDX) element mappings (Fig. 3e) show uniform distributions of Ti, O, Co and N elements in the single *quasi*-nanocube of $\text{CoN}_{\text{X}}/\text{TiO}_2$, implying that CoPy_4 molecules can more effectively enter Mil-125's micropores than CoCl_2 , and then pyrolyzed to form CoN_{X} clusters during the calcination. The locally amplified AC-HAADF-STEM image and its corresponding EDX element mappings (Fig. 3f) can further demonstrate this conjecture. As seen, Ti and O elements are abundant and evenly distributed, while Co and N elements have very low contents and highly dispersity. Moreover, the overlay pattern of Co/N elements (Fig. S3) clearly shows that the main distribution areas of Co and N are very close, implying the formation of CoN_{X} clusters on the ultrafine primary nanoparticles of the TiO_2 aggregated *quasi*-nanocube with close contact after the calcination.

Elemental analysis results (Table 1) show that the CoN_x/TiO_2 contains a small amount of N elements, implying that some N elements of $CoPy_4$ are retained in the calcined product, which may modify the TiO_2 surface and serve as anchoring sites for Co atoms, and the N/Co molar ratio (3.88) is slightly lower than 4.0, further proving the formation of CoN_x clusters in CoN_x/TiO_2 . The FTIR spectrum of CoN_x/TiO_2 show no any characteristic IR bands of $CoPy_4$, demonstrating the macrocyclic structure of $CoPy_4$ molecule is completely destroyed (Fig. S4a and the corresponding analyses) [26]. Thermogravimetric analyses (TGA) results indicate that the weight losses of TiO_2 , CoN_x/TiO_2 and CoO_x/TiO_2 can be basically ignored in the range of 30–650 °C (Fig. S4b,c and the corresponding analyses), which is consistent with the EA results

Fig. 1. (a) XRD patterns of the TiO_2 , CoN_x/TiO_2 and CoO_x/TiO_2 derived from the Mil-125 and its composites. (b) Comparison of XRD patterns of the CoN_x/TiO_2 and CoO_x/TiO_2 derived from the Mil-125-based composites with different $CoPy_4$ (4.0, 20 mg) and $CoCl_2$ (0.8, 4.0 mg) addition amounts.

Fig. 2. FESEM and TEM images of the Mil-125 (a,b) and TiO₂ (c,d), CoPy₄/Mil-125 (e,f) and CoN_x/TiO₂ (g,h), CoCl₂/Mil-125 (i,j) and CoO_x/TiO₂ (k,l).

Fig. 3. (a-d) HRTEM images (a,b) and corresponding FFT pattern (inset in b), AC-HADDF-STEM image (c) and corresponding filtered images as well as line scan profiles (d) of the CoN_x/TiO₂. (e,f) AC-HADDF-STEM images and the Ti, O, Co and N mappings of the CoN_x/TiO₂ with low (e) and high (f) magnification.

(Table 1). Moreover, the X-ray photoelectron spectrosopic (XPS) results show the N/Co molar ratios of the CoN_x/TiO_2 before and after Ar^+ -beam etching at 20 nm remain basically unchanged (Fig. S4d), implying that the coordination environments of Co centers in CoN_x/TiO_2 are relatively stable and uniform.

Based on the above characterization results, it can be concluded that the $CoPy_4$ molecules can more easily enter the Mil-125's micropores than the hydrolysates of $CoCl_2$, which can influence the pyrolysis behavior of Mil-125, thereby the microstructure and particle size distribution of the product (CoN_x/TiO_2) derived from $CoPy_4/Mil-125$

Table 1 Elemental analysis results of the TiO_2 , CoN_x/TiO_2 and CoO_x/TiO_2 .

Sample	Ti (%)	O (%)	N (%)	C (%)	Co (%)	O/Ti molar ratio	N/Co molar ratio
TiO ₂	59.83	40.11	-	-	-	2.00	_
CoN _x /	58.71	40.53	0.35	-	0.38	2.07	3.88
TiO_2							
CoO_x /	58.62	40.67	-	-	0.43	2.09	-
TiO_2							

composite are significantly different from the TiO₂ and CoO_x/TiO₂ derived from the single MOF and CoCl₂/Mil-125 composite, respectively. This conjecture can be further validated by the liquid No. adsorption/desorption experiments (Fig. S5 and the corresponding analyses). Compared to the Mil-125 with Type I isotherms, high specific surface area (S_{BET}) and total pore volume (V_{Pore}) (Fig. S1b), those calcined products (TiO2, CoNx/TiO2 and CoOx/TiO2) display significant different liquid N2 adsorption/desorption behaviors with sharply decreased S_{BET} , larger average pore diameter (d_{Pore}) and smaller V_{Pore} (Fig. S5), indicating that the microporous structures of Mil-125 and its composites were collapsed after the calcination. Although the CoN_x/ TiO2 retains type IV isotherms similar to the TiO2, it presents much larger $S_{\rm BET}$ (75.8 m² g⁻¹) and $V_{\rm Pore}$ (0.20 cm³ g⁻¹) even though there is a slightly smaller d_{Pore} (8.1 nm) than the TiO₂ with S_{BET} of 30.6 m² g⁻¹, $d_{\rm Pore}$ of ~10.3 nm and $V_{\rm Pore}$ of ~0.12 cm³ g⁻¹. It indicates that CoPy₄ molecules entering the micropores of Mil-125 can stabilize its MOF structure to some extent, which leads to the significant differences in the pyrolysis behavior of Mil-125 and the microstructure of the corresponding calcined product. Nevertheless, the CoO_x/TiO_2 displays much larger $S_{\rm BET}$ (92.4 m² g⁻¹), $d_{\rm Pore}$ (~15.0 nm) and $V_{\rm Pore}$ (~0.43 cm³ g⁻¹)

than the CoN_x/TiO₂. As mentioned above, the vast majority of hydrolysates of CoCl₂ adhere on the Mil-125 particle surface (Fig. 2i,j), which then results in the formation of ultrafine nanoparticles loaded on the TiO2 aggregated particles derived from the CoCl2/Mil-125 composite (Fig. 2k,l). At the same time, the TiO_2 aggregated particles in the CoO_x / TiO2 are more uneven and contain a large number of broken nanoparticles (Fig. 2k,l) than the CoN_x/TiO₂ (Fig. 2g,h), which can be confirmed by the fact that the Barrett-Joyner-Halenda (BJH) pore size distribution curve of the CoO_x/TiO₂ is significantly different from that of the CoN_x/TiO₂ (Fig. S5b). Namely, the mesoporous structure of the CoOx/TiO2 is relatively more disordered, thus resulting in the larger $S_{\rm BET}$, wider BJH pore distribution and $V_{\rm Pore}$ than the ${\rm CoN_x/TiO_2}$. Moreover, CoPy₄ molecules entering Mil-125's micropores undergo pyrolysis to form CoN_x clusters under the localized reducing atmosphere due to the decomposition of organic linkers in Mil-125, which are uniformly dispersed on the ultrafine primary TiO2 nanoparticles through strong interaction. These factors will affect the specific surface area, pore structure, adsorption and activation of reactants on CoN_Y/TiO₂. and ultimately affecting the CO₂RR activity as confirmed below.

3.2. Valence state and local coordination environment analyses

The survey XPS spectra (Fig. S6) show that the TiO_2 , CoN_x/TiO_2 and CoO_x/TiO_2 contain Ti, O and C elements, and no N and Co element signals can be observed from the CoN_x/TiO_2 . However, obvious N and Co signals are observed from their high-resolution XPS spectra, further confirming that part of N elements of $Co-N_4$ subunits in $CoPy_4$ molecules can be retained as CoN_x clusters after the calcination. The high-resolution Ti 2p spectra (Fig. 4a) exhibit that the TiO_2 shows two binding energy (BE) peaks at 458.78 and 464.52 eV, ascribable to the $2p_{3/2}$ and $2p_{1/2}$ of Ti^{4+} species [11], respectively. The O 1 s XPS spectra

Fig. 4. High-resolution Ti 2p (a), O 1 s (b), N 1 s (c), Co 2p (d) XPS spectra of the TiO2, CoNx/TiO2 and CoOx/TiO2 before and after 15 min light illumination.

of TiO₂ (Fig. 4b) can be deconvoluted into two BE peaks at 529.95 and 531.62 eV, corresponding the O species of lattice and surface hydroxyl of TiO₂ [32], respectively. In contrast, the BE peak positions of Ti 2p and O 1 s (lattice and surface hydroxyl) of CoN_x/TiO₂ show a decreasing trend, where the BE values of Ti⁴⁺ $2p_{3/2}/2p_{1/2}$ decreased by \sim 0.05 eV compared with the TiO₂ (Fig. 4a), and the O 1 s BE values of lattice oxygen and surface hydroxyl oxygen decreased by \sim 0.05 and \sim 0.13 eV (Fig. 4b), respectively. These results indicate that the calcined residue (CoN_x) of CoPy₄ molecules are mainly loaded on the primary TiO₂ nanoparticles, thus affecting the chemical environment of its surface hydroxyl group [11], and then causing the TiO₂ obtaining electrons from the CoN_x clusters.

The high-resolution N 1 s spectra (Fig. 4c) indicate that CoPy₄ has two BE peaks at 398.48 and 399.00 eV, attributed to the pyridine N atoms outside the CoPy₄ molecule and pyrrole N atoms in porphyrin ring [32], respectively. The CoN_x/TiO₂ shows a greatly changed N 1 s XPS spectrum with only one N 1 s BE peak at 400.24 eV, which is very close to that of N 1 s in the Ni-N single-atom catalysts [27,28]. Nevertheless, the BE value is increased by \sim 1.76 and \sim 1.24 eV compared with the pyridine and pyrrole N atoms of CoPy₄ molecule, respectively. It demonstrates that the local coordination environments of CoN_r are very different from the CoPv₄ molecule because the pyridine and pyrrole N structures in CoPy₄ were destroyed after the calcination, while the Co-N₄ coordinate covalent bonds can be partially retained on primary TiO2 nanoparticles. Compared with CoPy4, the electron cloud density of N atoms was significantly reduced, indicating that the pyrolysis of CoPy₄ molecules entering the Mil-125 micropores leads to the formation of CoN_x clusters, which are close contact with the primary nanoparticles of TiO₂ generated by Mil-125.

The high-resolution Co 2p spectrum (Fig. 4d) shows that CoPy₄ has two main BE peaks at 781.32 and 796.66 eV, indicating its Co element existing mainly as $\mathrm{Co^{2+}}$ species [19]. However, the $\mathrm{CoN_x/TiO_2}$ exhibits the BE peaks of $\mathrm{Co}\ 2p_{3/2}/2p_{1/2}$ at 780.47/795.79 eV, indicating that the electron cloud density of $\mathrm{Co^{2+}}$ species in $\mathrm{CoN_x/TiO_2}$ is higher than that of $\mathrm{Co^{2+}}$ species in $\mathrm{CoPy_4}$. It indirectly reflects that $\mathrm{CoPy_4/Mil-125}$ composite could produce a reducing atmosphere during the calcination,

which allows the Co-N₄ subunits in CoPy₄ molecule to be partly retained to form CoN_x cluster without being oxidized to CoO_x. By considering that the electron cloud densities of Ti and O elements in CoN_x/TiO₂ decreased compared with TiO₂, while that of N element in CoN_x/TiO₂ increased significantly compared with CoPy₄ as mentioned above, it can be inferred that a close contact is formed between CoN_x clusters and TiO₂ primary nanoparticles *via* Ti-O-N-Co bond connection. Compared with the CoN_x/TiO₂, the BE values of Co 2*p* in the CoO_x/TiO₂ increased by ~0.45 eV (Fig. 4d), while that of Ti and lattice O in the CoO_x/TiO₂ decreased by ~0.09 and ~0.02 eV (Fig. 4a,b), respectively. These results strongly prove that the local chemical environment at Co species in the CoN_x/TiO₂ is significantly different from that in the CoO_x/TiO₂.

After 15 min UV-Vis light irradiation, the BE values of Ti 2p of TiO₂ shifts negatively by \sim 0.04 eV, while that of lattice O 1 s shifts positively by \sim 0.03 eV (Fig. 4a,b), both of them are basically negligible. However, the light illumination makes the BE values of Ti 2p and lattice O 1 s in the CoN_x/TiO₂ shifted positively by \sim 0.07 and \sim 0.18 eV, respectively. In addition, the BE values of N 1 s in the CoN_x/TiO₂ increased by \sim 0.08 eV (Fig. 4c), while the BE value of Co 2p shifted negatively by \sim 0.19 eV after the illumination (Fig. 4d). These results demonstrate that the photogenerated electrons of TiO₂ in the CoN_x/TiO₂ can be rapidly transferred to the Co sites via the coordinated N_x of CoN_x clusters, which then serve as the active sites to receive the photogenerated electrons for catalyzing CO₂RR.

The Co K-edge absorption of X-ray absorption near-edge structure (XANES) spectra were measured for further exploring the local coordination environments of the CoN_x clusters. The Co K-edge pre-edge peak position of CoN_x/TiO_2 is close to that of the $CoPy_4$ and CoO reference, but away from that of the Co foil (Fig. 5a). It indirectly confirms that the calcination of $CoPy_4/Mil-125$ composite would produce a reducing atmosphere, which allows the $Co-N_4$ subunits of $CoPy_4$ molecules to be partly retained without being oxidized to CoO_x . Besides, the slightly negative edge-position of the CoN_x/TiO_2 compared to the $CoPy_4$ implies the increased electron density of Co centers in the CoN_x clusters [19,29]. Nevertheless, the CoO_x/TiO_2 displays obvious positive edge-position compared with the CoN_x/TiO_2 and CoO, suggesting the hydrolysates

Fig. 5. (a,b) Co K-edge XANES signals (a) and the Fourier transformed radial distribution functions of k^3 -weighted $\chi(k)$ -function of EXAFS spectra (b) of the CoN_x/TiO_2 , CoO_x/TiO_2 , $CoPy_4$, CoO and Co foil. (c-f) Wavelet transform plots for CoV_2 for CoV_3 for CoV_4 (d), $CoOV_4$ (e) and CoV_5 for CoV_4 for CoV_4 for CoV_5 for CoV_4 for CoV

of $CoCl_2$ adhered on Mil-125 particles would be partly oxidized after the calcination, and thus displaying lower electron density to form CoO_x clusters.

Fourier transformed radial distribution functions (Fig. 5b) of k^3 weighted extended X-ray absorption fine structure (EXAFS) oscillations of Co K-edge (Fig. S7) indicate that the CoN_x/TiO₂ has a clear peak at ca. 1.56 Å, ascribable to the Co-N first coordination shell of the CoN_r clusters, which is similar to that of CoPv₄ molecule with a clear peaks at 1.54 Å, indicating that the CoN_x may come from the Co-N₄ subunits of CoPy₄ molecules. Besides, no Co-Co coordination peak at 2.17 Å (for Co-Co bond of the Co foil) and 2.61 Å (for Co-Co bond of the CoO) can be observed from the CoN_x/TiO₂. The wavelet transform plots of the CoN_x/ TiO₂ display that their Co-coordinated skeleton pattern (Fig. 5c) is more similar to the CoPy₄ (Fig. 5d), but far away from the CoO (Fig. 5e) and Co foil (Fig. 5f), demonstrating the CoN_x clusters have mainly Co-N bonds around the Co centers [19,29]. The EXAFS fitting results (Table S1) show that the slight decreases in the fitting Co-N bond length (R) and coordination number (N = 3.2) of the CoN_x clusters compared with the CoPv₄ correspond to the above increased electron cloud density on the Co centers of the CoN_x clusters. These results suggest that the CoN_r clusters of CoN_r/TiO₂ are single-atom active sites as confirmed by the above AC-HAADF-STEM images (Fig. 3c,d).

Based on the above spectroscopic characterization results, it can be concluded that $CoPy_4$ molecules in the $CoPy_4$ /Mil-125 composite can enter the MOF's micropores, which undergo pyrolysis to form CoN_x clusters containing single-atom sites and Co-N coordination structure under the localized reducing atmosphere due to the calcination of Mil-125. Those CoN_x clusters are uniformly dispersed on the ultrafine primary TiO_2 nanoparticles with close contact *via* Ti-O-N-Co bonds, which

are beneficial for promoting the photogenerated electrons transferring from ${\rm TiO_2}$ to ${\rm CoN_x}$. However, the hydrolysates of ${\rm CoCl_2}$ is difficult to enter the micropores of Mil-125, making it prone to generate ${\rm CoO_x}$ on the ${\rm TiO_2}$ aggregated particle surface after the calcination. These structural and physical properties of the ${\rm CoN_x/TiO_2}$ will contribute to the effective transfer and separation of photogenerated charge carriers, adsorption and activation of reactants during the photocatalytic process, thereby improving the photoactivity as confirmed below.

3.3. Photocatalytic CO₂RR performance

The control experiments showed that CH₄ and CO were the main CO₂RR products in the present photoreaction system with a 300 W Xelamp as light source, and no other reduction products were detected. In addition, no obvious reduction products were detected in the photocatalytic system without photocatalyst, CO₂ gas, or light illumination, indicating that CH₄ and CO were produced by the reduction reactions of reactants (CO₂/H₂O) on photocatalyst. In addition, isotope $^{13}\text{CO}_2$ tracing experiment (Fig. S8) determined using gas chromatographymass spectroscopy (GC-MS) demonstrated that the produced $^{13}\text{CH}_4$ and ^{13}CO gases are generated by the $^{13}\text{CO}_2$ photoreduction.

Fig. 6a depicts the photocatalytic CO₂RR activity of various samples after 1 h Xe-lamp full spectrum (UV-Vis) light irradiation. The single TiO₂ shows relatively low CO/CH₄ yields of 11.2/2.7 µmol g⁻¹ h⁻¹, corresponding an overall photoactivity (total consumed electron number, TCEN) of *ca.* 94.8 µmol g⁻¹ h⁻¹ calculated using Eq. (1). Those CoN_x/TiO₂ products derived from different CoPy₄ addition amounts per 500 mg Mil-125 exhibit much better photoactivity with different CO/CH₄ yields (Fig. 6a,b). Along with the CoPy₄ addition amount increased

Fig. 6. (a,b) CO/CH₄ yields (a) and the corresponding overall photoactivities (b) of the TiO₂, CoO_x/TiO₂, N_x/TiO₂ and various CoN_x/TiO₂ products under Xe-lamp illumination. (c) CO/CH₄ selectivity (mole percentage) in the CO₂RR systems containing TiO₂, CoO_x/TiO₂, N_x/TiO₂ and various CoN_x/TiO₂ products. (d) Time courses of the CO/CH₄ and the corresponding total photoactivities of the CoN_x/TiO₂ with an optimal component ratio.

from 2.0 mg to 4.0 mg, the corresponding products display slightly increased CO yields and more obviously increased CH₄ yields. For example, CO yield slightly increases from 17.8 (CoN_x/TiO₂-2.0) to 24.4 (CoN_x/TiO₂-4.0) µmol g⁻¹ h⁻¹, while CH₄ yield increases significantly from 75.5 (CoN_x/TiO₂-2.0) to 119.9 (CoN_x/TiO₂-4.0) µmol g⁻¹ h⁻¹. Once the addition amount is increased to 5.0 mg, the resultant product (CoN_x/TiO₂-5.0) shows decreased CO/CH₄ yields (18.8/86.8 µmol g⁻¹ h⁻¹). Namely, CoN_x/TiO₂-4.0 has the highest CO/CH₄ yields (24.4/119.9 µmol g⁻¹ h⁻¹) with a TCEN of 1007.6 µmol g⁻¹ h⁻¹, 10.6 and 4.6 times higher than that of the TiO₂ (94.8 µmol g⁻¹ h⁻¹) and CoO_x/TiO₂ (215.6 µmol g⁻¹ h⁻¹ with CO/CH₄ yields of 16.2/22.9 µmol g⁻¹ h⁻¹) (Fig. 6a,b), respectively.

Moreover, those photocatalysts display different CH₄ product selectivity [= (CH₄ yield)/(CO yield + CH₄ yield) \times 100%] (Fig. 6c). Once again, CoN_y/TiO₂-4.0 displays the highest CH₄ selectivity (83.1%) among those CoNx/TiO2 products, which is also higher than that of CoO_x/TiO_2 (58.5%) and TiO_2 (80.8%) (Fig. 6c), indicating that the CoN_x clusters in the CoN_x/TiO₂ can effectively improve the CH₄ selectivity compared to the CoO_x/TiO₂. These results imply that the CoN_x/TiO₂ derived from the CoPv₄/Mil-125 composite with a weight ratio of 4:500 would has the optimal component ratio for CO₂RR, which was named as CoN_x/TiO₂ for simplicity. By replacing the CoPv₄ with metal-free tetra (4-pyridyl)porphyrin (H₂Py₄) with the same weight ratio, the corresponding calcined product (N_x/TiO₂) exhibits much lower photoactivity with CO/CH₄ yields of $4.0/33.8 \,\mu\text{mol g}^{-1}\,\text{h}^{-1}$ (Fig. 6a), corresponding to an overall photoactivity (TCEN) of 278.8 µmol g⁻¹ h⁻¹ (Fig. 6b), 2.9 times higher than that (94.8 µmol g⁻¹ h⁻¹) of the TiO₂ alone, and slightly higher than that (215.6 μ mol g⁻¹ h⁻¹) of the CoO_x/TiO₂, suggesting that the N_x clusters derived from the pyrolysis of H_2Py_4 may be more beneficial for the adsorption and activation of reactants (CO2/

 $\rm H_2O)$ than the $\rm CoO_x$, thereby improving the photoactivity of TiO_2. The $\rm CoN_x/TiO_2$ delivers high CO/CH₄ yields (24.4/119.9 $\mu \rm mol~g^{-1}~h^{-1}$), CH₄ selectivity (83.1%) and overall photoactivity (1007.6 $\mu \rm mol~g^{-1}~h^{-1}$), which is superior to most of the recently reported inorganic-organic hybrid or single-atom photocatalysts for CO₂RR (Table S2) [20,23,32], indicating that it has the potential to actually implement solar-driven CO₂RR for hydrocarbon fuels production.

The cyclic stability of the CoN_x/TiO₂ with an optimal component ratio was further tested under Xe-lamp irradiation for each cycle of 4 h with a total of 12 h photoreaction, and the CO/CH₄ produced amounts and the corresponding total photoactivities for the four photocatalytic cycles are shown in Fig. 6d. The average CO/CH₄ yields in the first run reach $87.2/478.2 \,\mu\text{mol} \,g^{-1}$, which slightly reduced to $84.5/470.0 \,\mu\text{mol}$ g^{-1} in the second run, and remain at 85.27/476.6 and 84.41/473.0 µmol g⁻¹ after the third and fourth runs, respectively. Moreover, the average TCEN values (overall photoactivity) for the production of CO/CH₄ only slightly decreases from 1000.0 μ mol g⁻¹ h⁻¹ in the first run to 988.2 μ mol g⁻¹ h⁻¹ in the fourth run, indicating that the CoN_x/TiO₂ as photocatalyst has relatively good stability. The morphology, microstructure (Fig. S9) and XRD pattern (Fig. S10) of the recovered CoN_x/TiO₂ after the 16 h photoreaction are very similar to the original one. Moreover, the binding energy positions of those high-resolution Ti 2p, O 1 s, N 1 s and Co 2p XPS spectra of the recovered CoNx/TiO2 have not changed significantly (Fig. S11). These results demonstrate that the present CoN_x/TiO₂ has excellent durability for photocatalytic CO₂RR.

3.4. Energy band structure and photocatalytic mechanism analyses

From the solid-state UV-Vis diffuse reflectance absorption spectra (DRS, Fig. 7a), it can be found that the absorption edge of the single ${\rm TiO_2}$

Fig. 7. (a-c) DRS spectra (a), VB XPS spectra (b) and energy band structures (c) of the TiO_2 , N_x/TiO_2 , CoN_x/TiO_2 and CoO_x/TiO_2 . (d) The possible photocatalytic CO_2RR mechanism of the CoN_x/TiO_2 .

is ~396 nm, and the $\text{CoN}_x/\text{TiO}_2$ show a spectral absorption range similar to the TiO_2 . From those Tauc plots $[(\alpha h \nu)^n \sim h \nu, \, n = 1/2]$ derived from the DRS spectra, the energy gap (E_g) of the TiO_2 , N_x/TiO_2 , $\text{CoN}_x/\text{TiO}_2$ and $\text{CoO}_x/\text{TiO}_2$ can be estimated as 2.84, 2.91, 2.92 and 2.89 eV (Fig. S12), respectively. That's, those materials have very similar spectral absorption feature, and thus their different photoactivities may be likely attributed to the differences in other aspects such as photogenerated charge separation of TiO_2 , adsorption/activation of reactants $(\text{CO}_2/\text{H}_2\text{O})$ or catalytic ability for CO_2RR .

The valence band (VB) XPS spectra (Fig. 7b) show that the TiO_2 , N_x / TiO₂, CoN_x/TiO₂ and CoO_x/TiO₂ have their VB tom (E_{VB}) at 2.28, 2.32, 2.30 and 2.33 eV [11], respectively. Correspondingly, the conduction band (CB) bottom (E_{CB}) of the TiO₂, N_x/TiO₂, CoN_x/TiO₂ and CoO_x/TiO₂ can be calculated as -0.56, -0.59, -0.62 and -0.56 eV according to the equation of $E_{CB} = E_{VB} - E_g$ [9,18], respectively. Therefore, the energy band structures of those materials are summarized in Fig. 7c. As seen, the E_{CB} of TiO₂, N_x/TiO₂, CoN_x/TiO₂ and CoO_x/TiO₂ are negative to the reduction potential of CO₂/CO (-0.53 V vs. NHE) and CO₂/CH₄ (-0.24 V vs. NHE) (Fig. 7d), indicating that the those materials can achieve CO₂RR to produce CO/CH₄ in thermodynamics [4], which is consistent with the above photocatalytic results, indirectly confirming that the CoN_r and CoO_r clusters in the synthesized composites may mainly serve as cocatalysts to promote the photogenerated charge separation and transfer. However, the CoN_x/TiO₂ delivers greatly improved CO₂RR activity compared with the CoO_x/TiO₂. The possible reason is that the CoN_x clusters as cocatalyst can more effectively promote the rapid transfer/separation of photogenerated charge carriers of TiO2 and the adsorption/activation of reactants (H₂O/CO₂).

The photocurrent curves (Fig. 8a) exhibit that the CoN_x/TiO_2 has much greater photocurrent response than the TiO_2 and CoO_x/TiO_2 ,

implying that the CoN_x clusters can more effectively promote the separation of photogenerated charge than the CoO_x ones, which is basically similar to their $\mathrm{CO}_2\mathrm{RR}$ activity (Fig. 6a). The EIS spectra (Fig. 8b) show that those material's electrodes have significant different interfacial charge transfer impedance (R_{ct}) values with the interfacial charge transfer efficiency of $\mathrm{CoN}_x/\mathrm{TiO}_2 > \mathrm{CoO}_x/\mathrm{TiO}_2 > \mathrm{TiO}_2$, which is consistent with the above results on photocurrent (Fig. 8a) and total photoactivity (Fig. 6a), also indicating that the single-atom Co centers can synergize with the surrounding coordination N_x clusters to act as cocatalyst to more effectively promote the photogenerated charge transfer and separation than the CoO_x clusters, and thereby contributing to the excellent photoactivity for $\mathrm{CO}_2\mathrm{RR}$.

The steady photoluminescence (PL, Fig. 8c) and time-resolved fluorescence decay (TRFS, Fig. 8d) spectra further validate the above conjecture. After being excited by 375 nm light, the CoN_x/TiO_2 shows the lowest PL emission intensity, indicating that the CoN_x/TiO_2 has the most efficient charge transfer ability. The TRFS spectra (Fig. 8d) show that the average lifetime of photogenerated electrons in the CoN_x/TiO_2 is 2.02 ns, significantly shorter than the TiO_2 (3.10 ns) and CoO_x/TiO_2 (2.84 ns). This is because the excited state electrons of TiO_2 in the CoN_x/TiO_2 are transferred to the CoN_x clusters, reducing the fluorescence released by the excited state electrons of TiO_2 returning to the ground state, thus reducing the fluorescence lifetime. These results demonstrate that the CoN_x/TiO_2 has the least photogenerated charge recombination, the fastest charge transfer and the smallest charge transfer resistance, thereby promoting the photocatalytic CO_2RR activity.

3.5. Survey on the adsorption and activation of reactants

As mentioned above, liquid N2 adsorption/desorption experiments

Fig. 8. Photocurrent (a), EIS (b), photoluminescence (PL) (c, $\lambda_{ex} = 375$ nm) spectra and transient fluorescence spectra (TRFS) (d, $\lambda_{ex} = 375$ nm, $\lambda_{em} = 400$ nm) of the TiO₂, CoN_x/TiO₂ and CoO_x/TiO₂.

demonstrate that both TiO₂ and CoN_x/TiO₂ show type IV isotherm with H3 hysteresis loop and a wide BJH pore size distribution, but the CoN_x/TiO₂ has much larger $S_{\rm BET}$ (75.8 m² g⁻¹) and $V_{\rm Pore}$ (0.20 cm³ g⁻¹) than TiO₂ with a $S_{\rm BET}$ of 30.6 m² g⁻¹ and a $V_{\rm Pore}$ of ~0.12 cm³ g⁻¹, while the CoO_x/TiO₂ displays larger $S_{\rm BET}$ (92.4 m² g⁻¹) and $V_{\rm Pore}$ (~0.43 cm³ g⁻¹) than the CoN_x/TiO₂ (Fig. S5 and the corresponding analyses). Generally speaking, a large $S_{\rm BET}$ and $V_{\rm Pore}$ are expected to provide more adsorption and activation sites for CO₂/H₂O, thereby improving the photoactivity. Nevertheless, the above $S_{\rm BET}$ and $V_{\rm Pore}$ are not very consistent with the above CO₂RR activity (Fig. 6a), suggesting that gas adsorption and activation may be one of the main influencing factors of photoactivity in the present gas/solid phase systems. Therefore, temperature programmed desorption-mass spectrometry (TPD-MS) was used to further investigate the influence of CoN_x clusters on the adsorption and activation of reactants (CO₂/H₂O).

From the H₂O-TPD-MS profiles (Fig. 9a), it can be seen that the single TiO₂ exhibits a wide chemical desorption peak at ~225 °C, while the CoO_x/TiO₂ exhibits a chemical desorption peaks at higher temperature with peaks at ~235 and ~504 °C, indicating that CoO_x clusters can enhance the adsorption and activation of H₂O. Overall, the CoN_x/TiO₂ shows much higher desorption temperature centered at ~505 °C with a narrower temperature range than the TiO₂ and CoO_x/TiO₂. The CO₂-TPD-MS profiles (Fig. 9b) show that the single TiO₂ exhibits a weak CO₂ physical desorption peak at ~116 °C and a very wide weak CO2 chemical desorption peak in a range of 200-800 °C, while the CoO_x/TiO₂ displays a weak CO₂ physical desorption peak at ~108 °C similar to the TiO2, and a slightly strong chemical desorption peaks centered at \sim 671 °C, indicating that the CoO_x clusters can enhance the adsorption and activation of CO₂. Once again, the CoN_x/TiO₂ exhibits CO₂ chemical desorption peaks in a wide temperature range with higher desorption temperatures, indicating that the single-atom Co centers in CoN_x clusters can more effectively improve the adsorption and activation of CO2 on the CoN_x/TiO₂. Moreover, these TPD-MS results indicate that both H₂O-TPD-MS and CO₂-TPD-MS profiles of the CoN_x/TiO₂ are different from those of the CoO_x/TiO₂ and TiO₂, which reason may be attributed to two aspects: 1) The formation of hydrogen bonds between H₂O and N atoms of CoNx clusters in the CoNx/TiO2, which leads to the CoNx/TiO2 showing much higher desorption temperature than the TiO₂ and CoO_x/ TiO₂ as shown in Fig. 9a. 2) The electronic configuration and axial coordination ability of the single-atom Co centers in the CoN_x clusters possibly make the CoNx/TiO2 having stronger chemical binding ability to CO₂ as shown in Fig. 9b. That's, the CoN_r clusters containing singleatom centers can promote the adsorption and activation of H₂O and CO₂, which is one of the internal reasons why the CoNx/TiO2 displays the much higher CO2RR activity and CH4 selectivity than the TiO2 and CoO_x/TiO_2 as shown in Fig. 6a-c.

Based on the above results and discussion, it can be speculated that

the introduction of CoPy₄ molecules into the Mil-125's micropores can not only improve the specific surface area and pore volume of the $\text{CoN}_x/\text{TiO}_2$, but also its calcined residue can form CoN_x clusters containing single-atom Co sites on the primary TiO_2 nanoparticles with close contacts via Ti-O-N-Co bonds, and serve as active sites of TiO_2 to enrich the photogenerated electrons and activate the reactants ($\text{CO}_2/\text{H}_2\text{O}$) under light illumination, thus contributing to the significantly improved photocatalytic CO_2RR activity through the mechanism shown in Fig. 7d.

4. Conclusions

In summary, a novel single-atom CoNx clusters-decorated TiO2 (CoN_x/TiO₂) was synthesized in situ by calcining a composite derived from immersing Mil-125 into CoPy₄ solution. Spectroscopic and electron microscopic analysis results demonstrate that the CoPy4 molecules are easier to enter the micropores of the Mil-125 than the hydrolysates of CoCl₂, which helps to pyrolyze the CoPy₄ molecules into highly dispersed CoN_x clusters with single-atom catalytic sites and to form strong interaction with the primary nanoparticles of TiO2 quasi-nanocube-like aggregated particles derived from the Mil-125. These factors of the CoN_r/TiO₂ enable efficient photogenerated charge separation, strong chemical adsorption to reactants and high atom utilization, thereby the resultant CoNx/TiO2 delivers an excellent CO2RR activity with CO/CH₄ yields of 24.4/119.9 μmol g⁻¹ h⁻¹ and CH₄ selectivity of > 80%, corresponding an overall photoactivity of 1007.6 μ mol g⁻¹ h⁻¹, which is 10.6 and 4.7 times higher than the single TiO₂ and CoO_x/TiO₂, respectively. The present work provides a new strategy for constructing high-efficient TiO2-based photocatalysts with highly dispersed singleatom catalytic sites (CoN_r), which exhibits significantly better photocatalytic CO₂RR activity than the traditional CoO_x cocatalysts.

CRediT authorship contribution statement

Peng Zeng: Conceptualization, Methodology, Project administration, Writing - original draft. Haoran Liu: Investigation, Methodology, Validation, Visualization. Huaiyang Jia: Investigation, Data curation. Jiayi Cai: Investigation, Visualization. Xueer Deng: Investigation, Validation. Tianyou Peng: Conceptualization, Project administration, Supervision, Writing - review & editing. All authors have agreed to the signature to the author list.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Fig. 9. H₂O-TPD-MS (a) and CO₂-TPD-MS (b) profiles on the TiO₂, CoN_x/TiO₂ and CoO_x/TiO₂.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (22372123 and 21975190), the Science and Technology Planning Project of Shenzhen Municipality (CN) (JCYJ20180302153921190), the Characteristic Innovation Project of Colleges and Universities of Guangdong Province (2022KTSCX149), and the College Students' Innovative Project of Guangdong Province (S202310580074 and X202310580158), China.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.123268.

References

- D. Kim, K.K. Sakimoto, D. Hong, P. Yang, Artificial photosynthesis for sustainable fuel and chemical production, Angew. Chem. Int. Ed. 54 (2015) 3259–3266.
- [2] W.A. Thompson, S.F. Eva, M.M. Maroto-Valer, Review and analysis of CO₂ photoreduction kinetics, ACS Sustain. Chem. Eng. 8 (2020) 4677–4692.
- [3] J.J. Yuan, S.T. Chen, Y.Y. Zhang, R.J. Li, J. Zhang, T.Y. Peng, Structural regulation of coupled phthalocyanine-porphyrin covalent organic frameworks to highly active and selective electrocatalytic CO₂ reduction, Adv. Mater. 34 (2022) 2203139.
- [4] K. Li, B.S. Peng, T.Y. Peng, Recent advances in heterogeneous photocatalytic CO₂ conversion to solar fuels, ACS Catal. 6 (2016) 7485–7527.
- [5] Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO₂ photocatalysis: Concepts, mechanisms, and challenges, Adv. Mater. 31 (2019) 1901997.
- [6] F. Akira, N.R. Tata, A.T. Donald, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C. 1 (2000) 1–21.
- [7] H.W. Guo, S.P. Wan, Y.N. Wang, W.H. Ma, Q. Zhong, J. Ding, Enhanced photocatalytic $\rm CO_2$ reduction over direct Z-scheme NiTiO $_3$ /g- $\rm C_3N_4$ nanocomposite promoted by efficient interfacial charge transfer, Chem. Eng. J. 412 (2021), 128646.
- [8] Z. Jiang, X.H. Xu, Y.H. Ma, H.S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T.Y. Peng, L. Zan, H.X. Deng, Filling metal-organic framework mesopores with TiO₂ for CO₂ photoreduction, Nature 586 (2020) 549–554.
- [9] C. Chen, J.P. Jin, S.T. Chen, T.X. Wang, J.R. Xiao, T.Y. Peng, In-situ growth of ultrafine ZnO on g-C₃N₄ layer for highly active and selective CO₂ photoreduction to CH₄ under visible light, Mater. Res. Bull. 137 (2021), 111177.
- [10] P. Zhou, J.G. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26 (2014) 4920–4935.
- [11] J.R. Xiao, C. Chen, S.T. Chen, H.R. Liu, T.Y. Peng, Insight into the significantly enhanced photocatalytic CO₂ reduction performance of Pt/MnO dual cocatalysts on sea-urchin-like anatase TiO₂ microspheres, Chem. Eng. J. 425 (2021), 131627.
- [12] G.H. Li, Y.Y. Sun, Q.M. Zhang, Z. Gao, W. Sun, X.X. Zhou, Ag quantum dots modified hierarchically porous and defective TiO₂ nanoparticles for improved photocatalytic CO₂ reduction, Chem. Eng. J. 410 (2021), 128397.
- [13] Y.Z. Zhang, S. Tang, W.D. Zhang, Y.X. Yu, Noble metal-free photocatalysts consisting of graphitic carbon nitride, nickel complex, and nickel oxide nanoparticles for efficient hydrogen generation, ACS Appl. Mater. Interfaces 11 (2019) 14986–14996.
- [14] X.J. Guan, S.S. Mao, S.H. Shen, Recent progress on photocatalytic CO₂ reduction with earth-abundant single-atom reactive sites, ChemNanoMat 7 (2021) 873–880.
- [15] C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Heterogeneous single-atom photocatalysts: Fundamentals and applications, Chem. Rev. 120 (2020) 12175–12216.
- [16] X. Ge, P. Zhou, Q. Zhang, Z. Xia, S. Chen, P. Gao, Z. Zhang, L. Gu, S. Guo, Palladium single atoms on TiO₂ as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos, Angew. Chem. Int. Ed. 59 (2020) 232–236.

- [17] T.X. Wang, L.L. Guo, Z. Jiang, S.T. Chen, S.R. Xu, Y.X. Zhang, J. Zhang, R.J. Li, T. Y. Peng, Ru-pincer complex-bridged Cu-porphyrin polymer for robust (photo) electrocatalytic H₂ evolution via single-atom active sites, Adv. Funct. Mater. 31 (2021) 2107290.
- [18] J.M. Wang, L. Xu, T.X. Wang, R.J. Li, Y.X. Zhang, J. Zhang, T.Y. Peng, Porphyrin conjugated polymer grafted onto BiVO₄ nanosheets for efficient Z-scheme overall water splitting via cascade charge transfer and single-atom catalytic sites, Adv. Energy Mater. 11 (2021) 2003575.
- [19] S.T. Chen, P.T. Kong, H. Niu, H.R. Liu, X.T. Wang, J. Zhang, R.J. Li, Y.Z. Guo, T. Y. Peng, Co-porphyrin/Ru-pincer complex coupled polymer with Z-scheme molecular junctions and dual single-atom sites for visible light-responsive CO₂ reduction, Chem. Eng. J. 43 (2022), 133357.
- [20] Z.Y. Jiang, W. Sun, W.K. Miao, Z.M. Yuan, G.H. Yang, F.G. Kong, T.J. Yan, J. C. Chen, B.B. Huang, C.H. An, G.A. Ozin, Living atomically dispersed Cu ultrathin TiO₂ nanosheet CO₂ reduction photocatalyst, Adv. Sci. 6 (2019) 1900289.
- [21] H.X. Gao, K. Liu, T. Luo, Y. Chen, J.H. Hu, J.W. Fu, M. Liu, CO₂ reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment, Chin. J. Catal. 43 (2022) 832–838.
- [22] S.P. Ding, M.J. Hülsey, J. Pérez-Ramírez, N. Yan, Transforming energy with singleatom catalysts, Joule 3 (2019) 2897–2929.
- [23] Y. Yu, X. Dong, P. Chen, Q. Geng, H. Wang, J. Li, Y. Zhou, F. Dong, Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO₂ for efficient CO₂ photoreduction, ACS Nano 15 (2021) 14453–14464.
- [24] Y. Zhou, M.X. Xie, Y. Song, D.K. Yan, Z.L. Wang, S. Zhang, C. Deng, Edge-enriched Ni-N₄ atomic sites embedded enoki-mushroom-like carbon nanotubes assembling hollow fibers for CO₂ conversion and flexible Zn-air battery, Energy Storage Mater. 47 (2022) 235–248.
- [25] X. Yang, J. Cheng, X.X. Xuan, N. Liu, J.Z. Liu, Boosting defective carbon by anchoring well-defined atomically dispersed Ni–N₄ sites for electrocatalytic CO₂ reduction, ACS Sustain. Chem. Eng. 8 (2020) 10536–10543.
- [26] S. Paul, Y.L. Kao, L.M. Ni, R. Ehnert, H.G. Iris, V.D.K. Roel, R.W. Stark, J. Wolfram, U.I. Kramm, P. Bogdanoff, Influence of the Metal Center in M–N–C catalysts on the CO₂ reduction reaction on gas diffusion electrodes, ACS Catal. 11 (2021) 5850–5864.
- [27] G.C. Lei, Y.W. Tong, L.J. Shen, Y. Zheng, S.J. Liang, W. Lin, F.J. Liu, Y.N. Cao, Y. H. Xiao, L.L. Jiang, Highly poison-resistant single-atom Co-N₄ active sites with superior operational stability over 460h for H₂S catalytic oxidation, Small 17 (2021) 2104939.
- [28] L.M. Ning, S.Y. Liao, H. Li, R.Y. Tong, C.Q. Dong, M.T. Zhang, W. Gu, X. Liu, Carbon-based materials with tunable morphology confined Ni(0) and Ni-N_x active sites: Highly efficient selective hydrogenation catalysts, Carbon 154 (2019) 48–57.
- [29] J.M. Wang, L. Xu, T.X. Wang, S.T. Chen, Z. Jiang, R.J. Li, Y.X. Zhang, T.Y. Peng, Porphyrin conjugated polymer with periodic type II-like heterojunctions and single-atom catalytic sites for broadband-responsive hydrogen evolution, Adv. Funct. Mater. 31 (2021) 2009819.
- [30] Y.Y. Zhang, S.T. Chen, Y.X. Zhang, R.J. Li, B. Zhao, T.Y. Peng, Hydrogen-bond regulation of microenvironment of Ni(II)-porphyrin bifunctional electrocatalysts for efficient overall water splitting, Adv. Mater. 35 (2023) 2210727.
- [31] Y. Zheng, J.M. Wang, J. Zhang, T.Y. Peng, R.J. Li, Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H₂ production activity, Dalton Trans. 46 (2017) 8219–8228.
- [32] H.R. Liu, S.T. Chen, Y.Y. Zhang, R.J. Li, J. Zhang, T.Y. Peng, An effective Z-scheme hybrid photocatalyst based on zinc porphyrin derivative and anatase titanium dioxide microsphere for carbon dioxide reduction, Mater. Today Sustain. 19 (2022). 100164.
- [33] Y. Zhang, J. Zhao, H. Wang, B. Xiao, W. Zhang, X. Zhao, T. Lv, M. Thangamuthu, J. Zhang, Y. Guo, J. Ma, L. Lin, J. Tang, R. Huang, Q. Liu, Single-atom Cu anchored catalysts for photocatalytic renewable H₂ production with a quantum efficiency of 56%, Nat. Commun. 13 (2022) 58.
- [34] J. Jin, P. Li, D.H. Chun, B.J. Jin, K. Zhang, J.H. Park, Defect dominated hierarchical Ti-metal-organic frameworks via a linker competitive coordination strategy for toluene removal, Adv. Funct. Mater. 31 (2021) 2102511.
- [35] M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J. Am. Chem. Soc. 131 (2009) 10857–10859.
- [36] B. Ravel, M. Newville, Thena, artemis, hephaestus: Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537–541.
- [37] J.P. Zhao, Q. Peng, Z.J. Wang, W. Xu, H.Y. Xiao, Q. Wu, H.L. Sun, F. Ma, J.Y. Zhao, C.J. Sun, J.Z. Zhao, J.F. Li, Proton mediated spin state transition of cobalt heme analogs, Nat. Commun. 10 (2019) 2303.
- [38] H. Funke, A.C. Scheinost, M. Chukalina, Wavelet analysis of extended X-ray absorption fine structure data, Phys. Rev. B 71 (2005), 094110.