

Procesadores de Lenguajes

Cap. III Análisis Sintáctico

ANÁLISIS SINTÁCTICO (AS)

- ¿Qué es analizar sintácticamente?
 - Encontrar un árbol sintáctico
- El Análisis Sintáctico, además puede:
 - Recopilar información sobre los tokens, y almacenarla en la tabla de símbolos
 - Realizar la comprobación de tipos "type checking"
 - Generar código intermedio
 - Informar sobre errores detectados
- Tipos de Análisis
 - Descendente
 - Descendente con retroceso
 - Gramáticas LL
 - Ascendente
 - Con retroceso
 - De precedencia
 - Gramáticas LR
- Descendente

Axioma inicial -> Sentencia Parse Izquierdo

Ascendente

Sentencia -> Axioma Inicial Parse Derecho

AS. Parses Izquierdo y Derecho

- (1) E -> T
- (2) E -> T + E
- (3) T -> F
- (4) T -> F * T
- (5) F -> a
- (6) F -> b
- (7) F -> (E)
- Parse izquierdo, derivaciones Izquierdas
- Ejemplo de derivaciones cadena a * (a + b)

$$E \Rightarrow_{I} {}^{1} T \Rightarrow_{I} {}^{4} F^{*}T \Rightarrow_{I} {}^{5} a^{*}T \Rightarrow_{I} {}^{3} a^{*}F \Rightarrow_{I} {}^{7}$$

 $a *(E) \Rightarrow_{I} {}^{2} a^{*}(T+E) \Rightarrow_{I} {}^{3} a^{*}(F+E) \Rightarrow_{I} {}^{5}$

$$a*(a+E) \Rightarrow 1 \quad a*(a+T) \Rightarrow 3 \quad a*(a+F) \Rightarrow 6 \quad a*(a+b)$$

Parse izdo:
$$1 - 4 - 5 - 3 - 7 - 2 - 3 - 5 - 1 - 3 - 6$$

Parse derecho (derivaciones derecha e invertir)

$$E \Rightarrow_D {}^1 T \Rightarrow_D {}^4 F^*T \Rightarrow_D {}^3 F^*F \Rightarrow_D {}^7 F^*(E) \Rightarrow_D {}^4 F^*T \Rightarrow_D {}^3 F^*T \Rightarrow_D {}^4 F^*T$$

$$F^*(T+E) \Rightarrow {}^1F^*(T+T) \Rightarrow {}^3F^*(T+F) \Rightarrow {}^6$$

$$F^*(T+b) \Rightarrow {}^3F^*(F+b) \Rightarrow {}^5F^*(a+b) \Rightarrow {}^5a^*(a+b)$$

Parse dcho:
$$5 - 5 - 3 - 6 - 3 - 1 - 2 - 7 - 3 - 4 - 1$$

ANÁLISIS SINTÁCTICO

ANÁLISIS DESCENDENTE

Análisis Descendente con retroceso

- Prueba todas las **alternativas** empezando desde el axioma.
- Problemas con el retroceso en general:
 - Emplean mucho tiempo
 - Dependen del orden de las relgas
 - No realizan un buen diagnóstico sobre los errores
 - Difícil generación de código si se hace simultáneamente con el análisis sintáctico.

AS. Análisis Descendente con Retroceso

E -> T + E (1) | T (2) T -> F * T (3) | F (4) F -> a (5) | b (6) | (E) (7)

ASDR. Ejemplo

Analizar: (a + b) * a + b

,	> a (3) b (0) (alizai. (a i b) a i
	Forma Sentencial E	Pila	
	T + E	1	
	F*T+E	1-3	
	a*T+E	1-3-5	Retroceso
	F*T+E	1-3	
	b*T+E	1-3-6	Retroceso
	F*T+E	1-3	
	(E)*T+E	1-3-7	
	(T+E)*T+E	1-3-7-1	
	(F*T+E)*T+E	1-3-7-1-3	
	(a*T+E)*T+E	1-3-7-1-3-5	
	(F*T+E)*T+E	1-3-7-1-3	
	(b*T+E)*T+E	1-3-7-1-3-6	
	(F*T+E)*T+E	1-3-7-1-3	
	((E)*T+E)*T+E	1-3-7-1-3-7	
	(F*T+E)*T+E	1-3-7-1-3	NO hay más alternat.
	(T+E)*T+E	1-3-7-1	
	(F+E)*T+E	1-3-7-1-4	
	(a+E)*T+E	1-3-7-1-4-5	
	(a+T+E)*T+E	1-3-7-1-4-5-1	
	(a+F*T+E)*T+E	1-3-7-1-4-5-1-3	
	(a+a*T+E)*T+E	1-3-7-1-4-5-1-3-5	
	(a+F*T+E)*T+E (a+b*T+E)*T+E (a+F*T+E)*T+E	1-3-7-1-4-5-1-3 1-3-7-1-4-5-1-3-6 1-3-7-1-4-5-1-3	
	(a+(E)*T+E)*T+E	1-3-7-1-4-5-1-3-7	
	(a+F*T+E)*T+E (a+T+E)*T+E (a+b)*a+b	1-3-7-1-4-5-1-3 1-3-7-1-4-5-1 1-3-7-1-4-5-2-4-6- 4-5-2-4-6	

ASDR. Problemas en un ASD con retroceso

Recursividad por la izquierda

S -> aA (1)		bB (2)
A -> Aa (3)		ε (4)
B -> Bb (5)		ε (6)
Analizar aa		

Ciclos por la izquierda

S -> aA(1)	
A -> Bb (2)	ε (3)
B -> Aa (4)	ε (5)
Analizar aa	

Forma	Pila
Sentencial	
S	-
aA	1-3
aAaa	1-3-3

Forma	Pila		
Sentencial			
S	-		
aA	1		
aBb	1-2		
aAab	1-2-4		
aBbab	1-2-4-2		
aAabab	1-2-4-2-4		

¿Cómo solucionar estos problemas?

- 1. Eliminar ciclos por la izda.
- 2. Realizar más comprobaciones para decidir si realizar o no un retroceso.

El número de terminales en la forma sentencial debe ser menor o igual que la longitud de la cadena a reconocer.

Todavía No funcionará	Forma Sentencial	Pila
$S -> SA (1) \mid A (2)$	S	-
A -> a (3)	SA	1
Analizar aa	SAA	1-1

La longitud de la forma sentencial ha de ser menor que la longitud de la cadena a reconocer (la gramática debes ser entonces sin ε)

A. Descendente sin Retroceso. Gr. LL(1)

LL(1)

- Left: Leer la cadena de izquierda a derecha
- Left: Derivaciones izquierda
- (1): Inspeccionar un símbolo de la entrada

Ejem. Gram. LL(1)

S ->	cAd	(1)
A ->	bcB	(2)
A ->	a	(3)
B ->	b	(4)
Anali	zar d	cad

Forma	Pila
Sentencial	
S	-
cAd	1
cad	1-3

 Existen gramáticas a las que no puede hacerse este tipo de análisis

S -> cAd(1)

A -> aB (2)

A -> a (3)

B -> b (4)

Definiciones ASDSR-LL(1). Cabecera

Cabecera

$$a \in (N \cup T)^*$$
, Cabecera(a)=Cab (a)=First(a)= {a $\in T/ a \Rightarrow^* a\beta, \beta \in (N \cup T)^* } $\cup \{\varepsilon \text{ si } a \Rightarrow^* \varepsilon\}$$

- Algoritmo para calcular Cab(a)
 - 1. Si $a = \varepsilon$ entonces CAB(a)= ε
 - 2. Si $\alpha = X \in \mathbb{N} \cup \mathbb{T}$
 - 1. Si $X \in T$, Cab $(X) = \{X\}$
 - Si $X \in \mathbb{N}$, Cab $(X) = \bigcup_{i=1}^{n} Cab(a_i)$

$$X \rightarrow a_1$$
, $X \rightarrow a_2$, ..., $X \rightarrow a_n$

3. Si $a = X_1 X_2 ... X_n CAB(a) =$

Si
$$\varepsilon \notin CAB(X_1)$$
 entonces
CAB (X_1)

en caso contrario si $\varepsilon \notin CAB(X_2)$ entonces

CAB
$$(X_1) \cup CAB (X_2) - \{\varepsilon\}$$

en caso contrario si $\varepsilon \notin CAB(X_3)$ entonces

CAB
$$(X_1) \cup CAB (X_2) \cup CAB (X_3) - \{\varepsilon\}$$

.....

en caso contrario si $\varepsilon \notin CAB(X_n)$ entonces

$$\bigcup_{i=1}^{n} CAB(X_{i}) - \{\varepsilon\}$$

en caso contrario

$$\bigcup_{i=1}^{n} CAB(X_{i})$$

Definiciones ASDSR-LL(1). Siguiente

SIGUIENTE(A)=SIG(A)=FOLLOW(A) A∈N

$$\{a \in T / S \Rightarrow^+ aAa\beta \quad a,\beta \in (NUT)^*\} \cup \{\$, si S \Rightarrow^* aA\}$$

- ALGORITMO SIG (A)
- 1. Si A=S entonces $\$ \in SIG(A)$
- 2. Si \exists B -> α A β entonces \forall a \neq ϵ \in CAB(β) a \in SIG (A)
- 3. Si \exists B -> α A \acute{o} \exists B -> α A β con $\varepsilon \in CAB(\beta)$ Entonces SIG (B) \subset SIG(A)
- EJEMPLO

S -> ABC (1)
A-> aAa (2)
A -> Bd B -> b |
$$\varepsilon$$
 C -> c | ε
SIG(A) = {b, c, \$, a}

$$SIG(A) \quad \begin{array}{c} \text{(1) CAB(BC)} = \\ \text{SIG(S)} = \{\$\} \\ \text{(2) CAB (a)} = \{a\} \end{array}$$

Símbolos Directores, Gramática LL(1)

Cabecera de un conjunto de cadenas

CAB
$$\{\alpha_1, \alpha_2, ..., \alpha_n\} = \bigcup_{def}^n CAB(\alpha_i) \quad \alpha_i \in (N \cup T)^*$$

Yuxtaposición / Producto "cadena" o "conjunto cadenas"

$$\alpha \circ \{\alpha_1, \alpha_2, ..., \alpha_n\} = \{\alpha\alpha_1, \alpha\alpha_2, ..., \alpha\alpha_n\}$$

Símbolos Directores

$$SD(A->\alpha) = CAB(\alpha \circ SIG(A))$$

$$= CAB(\alpha \circ \{a_1, a_2, ..., a_n\}) = CAB(\alpha a_1, \alpha a_2, ..., \alpha a_n) =$$

$$= \bigcup_{i=1}^{n} CAB(\alpha a_i) = \begin{cases} CAB(\alpha) & \text{si } \epsilon \notin CAB(\alpha) \\ CAB(\alpha) - \{\epsilon\} \cup \{a_1, a_2, ..., a_n\} \\ SIG(A) \end{cases}$$

• Una <u>Gramática</u> es <u>LL(1)</u> sii $\forall A \in N \ \forall A \rightarrow a$, $A \rightarrow \beta$ SD(A $\rightarrow a$) \cap SD(A $\rightarrow \beta$)

Ejemplo Gramática NO LL(1)

(1)
$$S -> i E t S S'$$

$$(2) S -> a$$

$$(3) S' -> e S$$

(4) S' ->
$$\varepsilon$$

$$(5) E -> b$$

$$SD (S -> i E t S S') = \{i\}$$

$$SD(S -> a) = \{a\}$$

$$SD (S' -> eS) = \{e\}$$

$$SD (E -> b) = \{b\}$$

SD
$$(S' \rightarrow \varepsilon) = SIG(S') = SIG(S)$$
, $\$ \in SIG(S)$

Por (1): CAB(S')= $\{e, \varepsilon\}$, SIG(S) ya está.

Por (3): SIG(S') que también está.

$$=> SIG(S) = SD(S' -> \varepsilon) = \{e, \$\}$$

Por tanto: SD (S' -> eS) \cap SD (S' -> ε) = {e}

La gramática no es LL(1)

Resultados LL(1)

Resultado-1

 Si una gramática es LL(1) => No es recursiva por la izda (ni tiene ciclos por la izda)

Recursividad por la izda:

A -> A
$$\alpha \mid \beta$$

1- Si $\varepsilon \notin CAB(\beta)$ ó $\varepsilon \in CAB(\beta)$ pero CAB(β) $\neq \{\varepsilon\}$
SD (A-> A α) $\supset CAB(A \alpha) - \{\varepsilon\} \supset CAB(A) - \{\varepsilon\} \supset$
(A-> β) CAB(β)- $\{\varepsilon\}$
2- Si CAB(β) = $\{\varepsilon\}$ => A -> ε , A->A α
SD(A -> A α) $\supset CAB(A \alpha) - \{\varepsilon\} \supset$
($\varepsilon \in CAB(A)$) CAB(α)- $\{\varepsilon\}$
SD(A -> ε) = SIG (A) \supset (A->A α) CAB(α) - $\{\varepsilon\}$

Resultado-2

Si una gramática es LL(1) => No es ambigua
 Dem. Si fuera ambigua:

$$=>$$
 a \in SD (A $->$ a_1) \cap SD (A $->$ a_2)

•

Ejemplos Resultados

Recursividad

- SD (E -> E + T) = CAB (E+T) = CAB (E) = CAB(T) = CAB(T*F) U CAB (F) = CAB(F) = { (, a }
- SD (E -> T) = CAB (T) = { (, a }

Ambigüedad

$$a \in SD (E \rightarrow E+E) \cap SD (E \rightarrow E*E)$$

Análisis Descendente No Recursivo Predictivo

- Se puede aplicar a Gramáticas LL(1)
- No es recursivo (utilizar una pila)
- Se "predice" la regla a usar, según el símbolo siguiente.
 - Tabla de un Análisis Predictivo (M)
 M(A, a) = {a ∈ (N U T)* / a ∈ SD (A-> a)}
 A ∈ N, a ∈ T U {\$}
 Ejemplo
 S -> i E t S S' | a
 S' -> e S | ε
 E -> b

	а	b	е	i	t	\$
S	а			iEtS S'		
				S'		
S'			eS ε			3
			3			
E		b				

$$e \in SD (S' \rightarrow eS) \cap SD (S' \rightarrow \varepsilon)$$

 Teorema. Una gramática es LL(1) sii M tiene como mucho una cadena en cada celda.
 (Definición de Aho-Ullman de gram. LL(1))

Reconocedor LL(1). Elementos

Análisis predictivo no recursivo (Gramática LL(1))

Reconocedor LL(1). Algoritmo

Algoritmo Análisis Predictivo No Recursivo:

Ejemplo. Reconocedor LL(1). A.P.N.R.

$$E' -> +T E' (2) | \varepsilon (3)$$

$$T \rightarrow FT'$$
 (4)

$$T' -> * F T' (5) | \varepsilon (6)$$

$$F \rightarrow (E)$$
 (7) | id (8)

	id	+	*	()	\$
E	TE'			TE'		
E'		+TE′			3	3
T	FT'			FT'		
T'		8	*FT'		3	3
F	id			(E)		

SIG(E)
$$\stackrel{\$}{=}$$
 SIG(E) $\stackrel{\$}{=}$ SIG(E

$$SIG(T') \xrightarrow{4} SIG(T) = \{+, \}, \}$$

$$SIG(T') \xrightarrow{5} SIG(T') \times SIG(F) \xrightarrow{4} CAB(T') \Rightarrow * SIG(T) = \{\$, \}\}$$

$$CAB(T') \Rightarrow * SIG(T) = \{\$, \}$$

SD's

SD (E -> TE')=CAB (TE') — CAB (T)
$$\rightarrow$$
 CAB (F)={(, id}}

SD (E' -> +TE')={ \Rightarrow }

SD (E' -> \Rightarrow CAB (E') \Rightarrow CAB (E') \Rightarrow CAB (E') \Rightarrow CAB (E') \Rightarrow SD (T' -> *FT') = {*} \Rightarrow SD (F -> (E)) = {()} \Rightarrow SD (F -> id) = {id}

SD (E' -> +TE')=
$$\{\pm\}$$

CAB (ϵ)= ϵ

SD (T->FT')=CAB (FT')

CAB (F)=
$$\{(, id)\}$$
SD (T'-> ϵ)=SIG(T')= $\{+,,,\$\}$

SD (T' ->
$$\varepsilon$$
)=SIG(T')= $\{+,,,\$\}$

Ejemplo.Reconocedor aplicado a cadena

$$E' -> +T E' (2) | \varepsilon (3)$$

$$T \rightarrow F T' (4)$$

$$T' -> * F T' (5) | \varepsilon (6)$$

	id	+	*	()	\$
E	TE'			TE'		
E'		+TE'			3	3
T	FT'			FT'		
T'		3	*FT'		3	3
F	id			(E)		

PILA	CADENA	REGLA	ACCIÓN
E\$	id+id*id\$		
TE'\$	id+id*id\$	1	Sustituir(S)
FT'E'\$	id+id*id\$	4	S
idT'E'\$	id+id*id\$	8	S
T'E'\$	+id*id\$	-	Avanzar(A)
E'\$	+id*id\$	6	S
+TE'\$	+id*id\$	2	S
TE'\$	id*id\$	-	Α
FT'E'\$	id*id\$	4	S
idT'E'\$	id*id\$	8	S
T'E'\$	*id\$	-	Α
*FT'E'\$	*id\$	5	S
FT'E'\$	id\$	-	Α
idT'E'\$	id\$	8	S
T'E'\$	\$	-	Α
E'\$	\$	6	S
\$	\$	3	S
_	_	_	Α

Parse Izdo: 1-4-8-6-2-4-8-5-8-6-3

ANÁLISIS DESCENDIENTE RECURSIVO (PREDICTIVO)

```
GRAMATICA LL(1)
ana_desc_rec ( )
{
    leer_simbolo ( ) ;
    funcion_S( ) ;
    printf("OK\n") ;
}
```

```
TERMINALES

∀a ∈ T
  funcion_a ( )

{
      if simbolo = = `a'
      {
            leer_simbolo ( ) ;
      }
      else
      {
            error
      }
}
```

```
A \rightarrow X_{11} X_{12} X_{13} \dots X_{1M1}
A \rightarrow X_{21} X_{22} X_{23} \dots X_{2M2}
a_n
A \rightarrow X_{n1} X_{n2} X_{n3} \dots X_{nMn}
```

```
genérica
funcion_term ( char a)
{

    if simbolo = = a
    {
        leer_simbolo ( )
    }
    else
    {
        error
    }
}
```

```
NO TERMINALES
funcion_A ( ) {
    switch (simbolo) {
                                    SD(A \rightarrow a_1):
                          case
                                        X_{11}; X_{12}; ...; X_{1M1};
                                    SD(A \rightarrow a_2):
                          case
                                        X_{21}; X_{22}; ...; X_{2M2};
                                    SD(A \rightarrow a_n):
                          case
                                        X_{n1}; X_{n2}; ...; X_{nMn};
                          default:
                                       error();
             }
}
                                                                                                 21
```

Ejemplo. Implementación A.D. Recursivo.

```
ana_desc_rec ( )
{
    leer_simbolo ( ) ;
    funcion_E ( ) ;
    printf("OK\n") ;
}
```

```
E-> T E' (1)

E' -> +T E' (2) | \varepsilon (3)

T -> F T' (4)

T' -> * F T' (5) | \varepsilon (6)

F -> ( E ) (7) | id (8)
```

```
funcion_E'() {
       switch (simbolo) {
             case +:
                    funcion_Term('+');
                    /* leer_simbolo()*/
                    funcion_T();
                     funcion_E'();
             case ),$:
             default: error();
              SD(E'\rightarrow +TE')=\{+\}
       }
}
              SD(E' -> \varepsilon) = \{), \$\}
funcion_F'() {
      switch (simbolo) {
             case (:
                     funcion_Term('(');
```

•

Reglas Heurísticas para obtener una G.LL(1)

Eliminar Recursividad por la Izda.

$$A \rightarrow A \ a_1 \ A \rightarrow \beta_1 \ A \rightarrow A \ a_2 \ A \rightarrow \beta_2 \ \dots \ A \rightarrow A \ a_n \ A \rightarrow \beta_m$$

$$\begin{split} &\beta_{\mathbf{j}} \ a_{\mathbf{i}_{1}} \ a_{\mathbf{i}_{2}} ... \ a_{\mathbf{i}_{\mathbf{r}}} \\ &\mathbf{A} \Rightarrow &\mathbf{A} \ a_{\mathbf{i}_{\mathbf{r}}} \Rightarrow &\mathbf{A} \ a_{\mathbf{i}_{\mathbf{r}-1}} \ a_{\mathbf{i}_{\mathbf{r}}} \\ &\Rightarrow &\mathbf{A} \ a_{\mathbf{i}_{1}} ... \ a_{\mathbf{i}_{\mathbf{r}-1}} \ a_{\mathbf{i}_{\mathbf{r}}} \\ &\Rightarrow &\beta_{\mathbf{j}} \ a_{\mathbf{i}_{1}} ... \ a_{\mathbf{i}_{\mathbf{r}-1}} \ a_{\mathbf{i}_{\mathbf{r}}} \end{split}$$

EJEMPLOS

 $A \rightarrow Aala$

$$A' -> a_1 A'$$
 $A-> \beta_1 A'$
 $A' -> a_2 A'$ $A-> \beta_2 A'$
....
 $A' -> a_n A'$ $A-> \beta_m A'$
 $A' -> \varepsilon$

$$\beta_{j} a_{i_{1}} a_{i_{2}} \dots a_{i_{r}}$$

$$A \Rightarrow \beta_{j} A' \Rightarrow \beta_{j} a_{i_{1}} A'$$

$$\Rightarrow \beta_{j} a_{i_{1}} a_{i_{2}} A' \Rightarrow \dots \Rightarrow$$

$$\Rightarrow \beta_{j} a_{i_{1}} \dots a_{i_{r-1}} a_{i_{r}}$$

Reglas Heurísticas para obtener una G.LL(1)

Eliminar ciclos por la izquierda

- Gramática sin ε (puede convertirse)
- Sin ciclos de la forma (A \Rightarrow + A, si existe se puede eliminar)
- Algoritmo

```
Ordenar los no terminales A_1, A_2, ..., A_N for i=1 to N { for j=1 to i-1 { reemplazar reglas A_i -> A_j\gamma (i>j) A_i -> \delta_1 \gamma \mid \delta_2 \gamma \mid ... \mid \delta_k \gamma  donde A_j -> \delta_1 \mid \delta_2 \mid ... \mid \delta_k } Eliminar la recursividad izda si existe para A_i }
```

– No debe tener reglas- ε , por ejemplo:

S -> ASc, A->Bb |
$$\varepsilon$$
,

si S < A < B, entonces no hay que hacer nada, pero sigue habiendo ciclos: S => ASc => Sc

– No debe existir tampoco A \Rightarrow ⁺ A, por ejemplo:

si A < B, entonces aplicando el algoritmo, A->B, B->B, B'->B', sigue habiendo recursividad.

EJEMPLO

Reglas Heurísticas para obtener una G.LL(1)

- Factorización por la izquierda
 - "Modificar las A-reglas para retrasar la selección de la regla a aplicar hasta que se haya visto suficiente"

EJEMPLOS

1) <sent> -> if <expr> then <sent> else <sent> if <expr> then <sent>

<sent> -> if <expr> then <sent> <parte_else> <parte_else> -> else <sent> $\mid \varepsilon$ (sigue sin ser LL(1))

Nota. Si añadimos D -> ba, la factorización no resolvería el problema

ANÁLISIS SINTÁCTICO

ANÁLISIS ASCENDENTE

ANÁLISIS ASCENDENTE

- Análisis ascendente con retroceso
 - Construir el árbol sintáctico de abajo a arriba
 - Aplicar una regla de producción: reducción

•
$$A_k \rightarrow X_p X_{p+1} \dots X_n$$

$$X_1 \dots X_{p-1} \underbrace{X_p \dots X_n}_{A_k} \underbrace{Y_1 \dots Y_m}_{A_k}$$

Reducción

$$X_1 \dots X_{p-1} A_k \underbrace{Y_1 \dots Y_m}_{A_k}$$

 Lectura de un símbolo de la cadena de entrada: desplazamiento

Dos operaciones más: aceptar y error

 Las formas sentenciales se dividen siempre en dos

 La gramática debe ser sin ɛ para poder realizar una análisis ascendente con retroceso

ALGORITMO ASCENDENTE CON RETROCESO

```
Ensayar (a, \beta)
    for
          k=1 hasta el número de reglas
    {
           if (consecuente (regla k) ==
            alguna subcadena cola de a)
           (reducir regla k en esa subcadena a
            if ((\alpha == Axioma) && (\beta == \varepsilon))
            {
                   ACEPTAR
             else
                  Ensayar (a, \beta)
              Anular reducción
           } /* if consecuente */
       } ( * for * /
       if (\beta ! = \varepsilon)
        {
            Desplazar
            Ensayar (a, \beta)
            Anular desplazamiento
        }
    ERROR
```


Ejemplo A.S.A. con Retroceso

$$E \rightarrow E + T(1) | T(2) T \rightarrow T * F(3) | F(4) F \rightarrow (E)(5) | a(6)$$

$$\mathsf{E} \Rightarrow_\mathsf{D} ^2 \mathsf{T} \Rightarrow_\mathsf{D} ^3 \mathsf{T*F} \Rightarrow_\mathsf{D} ^6 \mathsf{T*a} \Rightarrow^4 \mathsf{F*a} \Rightarrow^6 \mathsf{a*a}$$

Parse Derecho: 6-4-6-3-2

Cadena	Pila	Acción			
a *a	-	Desp.(D)			
F *a	6	Red.(R)			
T *a	6-4	R			
E *a	6-4-2	R			
E* a	6-4-2	D			
E*a ε	6-4-2	D			
E*F ε	6-4-2-6	R			
E*T ε	6-4-2-6-4	R			
E*Ε ε	6-4-2-6-4-2	R			
E*Τ ε	6-4-2-6-4	AR			
E*F ε	6-4-2-6	AR			
E*a ε	6-4-2	AR			
E* a	6-4-2	AD			
E *a	6-4-2	AD			
T *a	6-4	AR			
T* a	6-4	D			
T*a ε	6-4	D			
T*F ε	6-4-6	R			
Τ ε	6-4-6-3	R			
Ε ε	6-4-6-3-2	R			

ANALIZADORES LR

Analizadores ascendentes sin retroceso

LR(k)

- Left: Leer la cadena de izquierda a derecha
- Right: Derivaciones derechas
- (k): Basta con analizar los k símbolos siguientes para decidir qué acción realizar

Ventajas

- Los analizadores LR pueden reconocer la inmensa mayoría de los lenguajes de programación de contexto libre.
 - LL(k) ⊂ LR(k) Si una gramática es LL(k), entonces tiene que ser LR(k)
- Localiza un error en el mismo instante que se produce.
- Existen generadores automáticos

Inconvenientes

 Es necesario tener un generador, ya que es compleja una construcción directa

Analizadores LR

- En la práctica, casi todos los lenguajes de programación pueden analizarse mediante LR(0) o LR(1)
- LR(0) no es útil ya que pocas gramáticas cumplen la restricción de este tipo de gramáticas
- Tipos de gramáticas (analizadores)

Yacc admite gramáticas LALR(1)

Funcionamiento de un analizador LR

S_i = estados del analizador (llevan la información sobre lo que ha ocurrido hasta entonces)

Configuración del analizador

- $\bullet \quad (s_0 X_1 s_1 ... X_m s_m, a_i a_{i+1} ... a_n \$)$ PILA CINTA ENTRADA
- Configuración Inicial
 - $(s_0, a_1a_2... a_n \$)$
- Operaciones sobre el analizador
 - ACCION (s_m, a_i)

Desplazamiento

GOTO
$$(s_m, a_i) = s$$

$$(s_0X_1s_1...X_ms_m, a_i a_{i+1}...a_n\$) \vdash (s_0X_1s_1...X_ms_ma_is, a_{i+1}...a_n\$)$$

2. Reducción A -> $X_{r+1} X_{r+2} ... X_m$

$$(s_0X_1s_1...X_ms_m, a_i a_{i+1}...a_n\$) \vdash (s_0X_1s_1...X_rs_rA, a_i a_{i+1}...a_n\$) \vdash$$

$$(s_0X_1s_1...X_rs_rAs, a_i a_{i+1}...a_n\$)$$
 donde GOTO $(s_r, A) = s$

- Aceptar: cadena reconocida
- Error: Se llamará a una rutina de recuperación, en caso de querer continuar

Ejemplo de Análisis LR-1

Pas	Pila	Cadena			
0		Entrada			
1	0	a*(a+a)\$			
3	0a5	*(a+a)\$			
3	0F3	*(a+a)\$			
4	0T2	*(a+a)\$			
5	0T2*7	(a+a)\$			
6	0T2*7(4	a+a)\$			
7	0T2*7(4a5	+a)\$			
8	0T2*7(4F3	+a)\$			
9	0T2*7(4T2	+a)\$			
10	0T2*7(4S8	+a)\$			
11	0T2*7(4S8+6	a)\$			
12	0T2*7(4S8+6a5)\$			
13	0T2*7(4S8+6F3)\$			
14	0T2*7(4S8+6T9)\$			
15	0T2*7(4S8)\$			
16	0T2*7(4S8)11	\$			
17	0T2*7F10	\$			
18	0T2	\$ \$			
19	0S1	\$			
20	Aceptación				

		100	TÁR	/66	TO'			30T		
	ACCIÓN (GOTO)						GOTO			
Esta do	а	+	*	()	\$	S	Т	F	
0	D5			D4			1	2	3	
1		D6				Ace				
2		R2	D7		R2	R2				
3		R4	R4		R4	R4				
4	D5			D4			8	2	3	
5		R6	R6		R6	R6				
6	D5			D4				9	3	
7	D5			D4					10	
8		D6			D11					
9		R1	D7		R1	R1				
10		R3	R3		R3	R3				
11		R5	R5		R5	R5				

ANÁLISIS SLR ("SIMPLE LR")

si \exists A -> a_1 a_2 , entonces [A -> $a_1 \circ a_2$]

- A -> $\varepsilon \Rightarrow [A -> \circ]$
- Puede representarse:

(NÚMERO DE REGLA, POSICIÓN DEL PUNTO)

 INTUTITIVAMENTE: Cuánto de una regla se ha visto en un punto concreto del proceso de análisis.

A -> ° XYZ Se espera ver una cadena derivable de "XY7"

A -> X • YZ Se ha visto una cadena derivable de "X", y se espera ver una cadena derivable de "YZ".

- **ITEM COMPLETO**: [A -> ∘ τ]
- CONJUNTO \(\phi \): Cjto de Todos los items de una gramática. Ejemplo:

S->E, E-> E+T | E-T | T, T->(E) | a
$$\phi = \{ [S -> \circ E], [S -> E \circ], [E -> \circ E + T], [E -> E + T], [E -> E + T], [E -> E + T], ... \}$$

- GRAMÁTICA AUMENTADA: de G a G' redefinición del axioma S, nuevo axioma S' ∈ N, S'->S
- CIERRE: $\wp(\phi) \rightarrow \wp(\phi)$ $I \subset \phi \rightarrow CIERRE(I) \subset \phi$
 - 1) $I \subset CIERRE(I)$
 - 2) Si [A -> $\alpha \circ B \beta$] \in CIERRE(I) entonces \forall B -> γ regla, [B -> $\circ \gamma$] \in CIERRE (I)

EJEMPLO

G= { E'->E, E->E+T|T, T->T+F|F, F->(E), F->id}
CIERRE ([E'->
$$\circ$$
 E]} = { [E'-> \circ E], [E'-> \circ E+T],
[E-> \circ T], [T-> \circ T*F], [T-> \circ F], [F-> \circ (E)], [F-> \circ id] }

SUBCADENA VIABLE a

 $a \in (N \cup T)^*$ es una cadena viable sii (def)

$$S \Rightarrow^* a \gamma \qquad \gamma \in (N \cup T)^*$$

(subcadena cabeza de alguna forma sentencial)

ITEM VÁLIDO PARA UNA SUBCADENA VIABLE

• [A -> $\beta_1 \circ \beta_2$] para una subcadena viable " $a \beta_1$ "

A -> β_1 β_2 es una regla potencialmente candidata para una reducción futura

FUNCIÓN DE TRANSICIÓN = GOTO

$$\delta$$
 (goto) : $\wp(\phi) \times (N \cup T) \rightarrow \wp(\phi)$
 $I \subset \phi \qquad (I, X) \rightarrow \delta (I, X) \equiv CIERRE(\Re)$
donde $\Re = \{ [A-> a \times \beta] / [A-> a \circ X\beta] \in I \}$

EJEMPLO-1

G= { E'->E, E->E+T|T, T->T+F|F, F->(E), F->id}
$$\delta$$
 ({[E'->E \circ], [E->E \circ +T]}, +) = CIERRE {[E->E+ \circ T]} = {[E->E+ \circ T], [T-> \circ T*F], [T-> \circ F], [F-> \circ (E)], [F-> \circ id]}

Por qué la Función Goto (δ) ?

- I = el conjunto de items válidos para la subcadena viable " γ ", entonces
 - δ (I,X) = el conjunto de items válidos para la subcadena viable " γ X"

DEMOSTRACIÓN

1) Sea [A-> $\alpha \circ X \beta$] \in I. Si es item válido para γ , $\exists \tau / \gamma = \tau \alpha y$ S $\Rightarrow^* \tau A \sigma \Rightarrow \underline{\tau} \alpha X \beta \sigma = \gamma X \beta \sigma$

Ahora, esto quiere decir que

$$[A-> aX \circ \beta] \in \delta$$
 (I,X) es item válido para " γ X"

2) Sea [A-> $a \circ X \beta$] $\in I$, $y \beta = B\theta$ entonces

[A->
$$aX \circ \beta$$
] $\in \delta$ (I,X) y [B -> $\circ \mu_i$] $\in \delta$ (I,X),

$$\forall B \rightarrow \mu_i$$

Ya que [A-> $a \circ X \beta$] es item válido para γ ,

$$\exists \tau / \gamma = \tau a y$$

$$S \Rightarrow^* \tau A \sigma \Rightarrow \tau \alpha X \beta \sigma \equiv \tau \alpha X B\theta \sigma$$

$$\Rightarrow \underline{\tau} \underline{a} X \mu_i \underline{\theta} \underline{\sigma} \equiv \gamma X \mu_i \pi$$
, es decir:

$$S \Rightarrow^* \gamma X B \pi \Rightarrow \gamma X \mu_i \pi$$
, y entonces

[B -> $\circ \mu_i$] es un item válido para la subcadena viable " γ X"

Colección de conjuntos de items LR(0)

- 1. La gramática tiene que ser aumentada (en caso de no serlo se aumenta con S'->S)
- 2. Algoritmo
- **3.** $C = \{I_0\}$ donde $I_0 = CIERRE\{[S' -> \circ S]\}$ REPETIR

Para cada $I \in \mathbf{C}$ y cada $X \in \mathbb{N}$ U T, si δ (I,X) \neq Ø y δ (I,X) \notin **C** entonces añadir $I_j \equiv \delta$ (I,X) a **C**

HASTA que no puedan añadirse a ${\bf C}$ nuevos ${\bf I_j}$

ALTERNATIVA PARA LA CONSTRUCCIÓN DE C

- 1. Construcción de un Autómata Finito No Determinista (AFND) (Q, T_e , δ , q_0 , F), $Q = \phi = \text{Conjunto de todos los items LR}(0)$ $T_e = \text{N U T}$ $q_0 = [\text{S}' -> \circ \text{S}] \text{F} = \{[\text{A} -> \tau \circ] -\text{es decir items completos-}\}$ $[\text{A} -> \alpha \text{ a} \circ \beta] \in \delta$ ($[\text{A} -> \alpha \circ \alpha \beta]$, a) $[\text{A} -> \alpha \text{ B} \circ \beta] \in \delta$ ($[\text{A} -> \alpha \circ \beta]$, B) $[\text{B} -> \circ \tau] \in \delta$ ($[\text{A} -> \alpha \circ \beta]$, ε)
- 2. Hacer este automáta determinista

Construcción de un Análisis LR(0)

Gramática aumentada ⇒ Construcción de C

- 1. $S_i \equiv I_i \in \mathbf{C}$
- 2. $\delta \equiv \text{Goto}$
- 3. La tabla de acciones No depende del símbolo en la cinta de entrada
 - a. Si $I_j = \{[A \rightarrow \tau \circ]\} \Rightarrow ACCION(I_j) = Reducir por A \rightarrow \tau$
 - b. Si $I_i = \{[S' \rightarrow S \ \circ \]\} \Rightarrow ACCION(I_i) = Aceptar$
 - c. Si I_j no tiene ningún item completo \Rightarrow ACCION(I_i)=Desplazar
- Si existe algún estado (s_j) cuyo conjunto de items (I_j) contiene más de un item, con alguno de ellos completo ⇒ la gramática no es LR(0)

Análisis SLR(1)

- Tras leer t, $a = y \tau$, quedando por leer "as", supongamos \exists [A-> $\tau \circ$] item completo válido para la subcadena viable " $\gamma \tau$ ".
- Si reducimos por esta regla, entonces "γAas" debería ser una forma sentencial, por lo que "a" debería estar en SIG(A).
- Podría ser que "a" estuviera en SIG(A), pero no por esta forma sentencial "γAas", sino por otra. Es por tanto una condición necesaria para aplicar la regla A -> τ, aunque no suficiente
- Esta consulta a los conjuntos SIGs permitirá eliminar duplicidades de la tabla de acciones, dando lugar al análisis SLR(1).

CONSTRUCCIÓN DE UNA MÁQUINA SLR(1)

- Gramática aumentada ⇒ Construir C (Igual que LR(0))
- 2. Estados I_i (igual que LR(0))
- 3. Función $\delta \equiv \text{Goto (igual que LR(0))}$
- 4. Tabla de ACCIÓN
 - a) ACCIÓN (I_i , a)=D, si \exists [A -> $a \circ a \beta$] \in I_i
 - b) ACCIÓN $(I_j, a)=R$ por $A \rightarrow \tau$ $(A \neq S')$ si $[A \rightarrow \tau \circ] \in I_j$ y $a \in SIG(A)$
 - c) ACCION (I_i , \$)=ACEPTAR si [S' -> S \circ] \in I_i
 - d) Resto de acciones = Error
- Si no hay duplicidad en la Tabla Acción ⇒ Gramát. es SLR(1)