

Student Code

Experimental Question

1

page 1 of 19

Determination of Refractive Index Gradient and Diffusion Coefficient of Salt Solution from Laser Deflection Measurement (10 points)

A. Measurement of Refractive Index Gradient of Salt Water Solution (4.5 points)

Question	Answer	Marks
A1.	n peat	Deflectogram of
(1.2 pts)	48TH 18-	$C_0 = 23 \text{ g}/150 \text{ mL}$
	9	Centred
	6	Depth of dip:
	3	1.5 - 1.6 cm
		(0.4 pts)
	No dip	-0.4
	No reference line	-0.05
	Deflectogram (DL) not at the centre (+- 5mm) but the depth of dip still in 1.5 - 1.6 cm range	-0.05
	DL at the centre, the depth of dip <1.5 cm or >1.6 cm	-0.05
	DL not at the centre, the depth of dip <1.5 cm or >1.6 cm	-0.1
		Deflectogram

Student Code

Experimental Question

1

page 2 of 19

A1.	n 28	of
	12 0 - 11 ex	$C_0 = 28 \text{ gr}/150$
	13· n-	mL
	9-	Centred
	6-	Deep of dip:
	4	1.7 - 1.9 cm
	2	(0.4 pts)
	1	
48		
No di	YOGYAKARTA- INDONESIA	
No re	ference line	-0.4
Defle	ctogram (DL) not at the centre (+- 5mm) but	-0.05
	epth of dip still in 1.7 cm - 1.9 cm range	-0.05
DL at	the centre, the depth of dip <1.7 cm or >1.9 cm	-0.05
DL no	ot at the centre, the depth of dip <1.7 cm or >1.9	-0.1

Student Code

Experimental Question

1

page 3 of 19

A1.		n.				153 0_11_67	Deflectogram of
		K.					
		H- G-					$C_0 = 33 \text{ g}/150$ mL
		n-					IIIL
		0+					
		9	/				Deep of dip:
		8-1		11			1.9 - 2.3 cm
		6-		1			
		4			1		(0.4 pts)
		3 1					
		1					
	48 ^{TI}	L					
	No dij			YOGYA 16 - 24	KARTA- IND July 2017	ONESIA	-0.4 pts
	No ref	ference li	ne				-0.05 pts
	Doffee	atogram (DL) not a	t the contr	o (ı Emy	m) hut	- 0.05 pts
				t the centr 1.9 - 2.3 cm		n) but	olos pus
	the de	։ բաւ օւ աւյ	p Sun in 1	1.9 - 2.5 CH	llalige		
	DL at	the centr	e, the dep	oth of dip <	1.9 cm o	r >2.3 cm	- 0.05 pts
	DL no	t at the ce	entre, the	depth of d	lin <1.9 c	m or	0.4
	>2.3 c		oner e, ene	depth of t	пр		-0.1
	- 210 0						
A2.							Table 1 of
(1.5 pts)	i	$\delta_{\rm i}$ (cm)	ξ _i (cm)	$Z_{\rm o}$ (cm)	d(cm)	Z (cm)	$C_0 = 23 \text{ g}/150$
(1)	1	0.05	11.55	10.4 ± 0. 1	0.8 ± 0.1	53.4 ± 0.1	mL
	2	0.35	11.3				
	3	0.6	11.05				
	4	0.9	10.85				0.41
	5	1	10.65				Optimum Z
	6	1.1	10.35				and Z_0
	7	1.3	10.15				
		1 /	9.85				
	8	1.4		1			# data = 20
	9	1.45	9.7				II data – 20
	9	1.45 1.5	9.45				11 data – 20
	9 10 11	1.45 1.5 1.6	9.45 9.25				n data – 20
	9 10 11 12	1.45 1.5 1.6 1.5	9.45 9.25 8.95				
	9 10 11 12 13	1.45 1.5 1.6 1.5 1.4	9.45 9.25 8.95 8.65				(0.5 pts)
	9 10 11 12	1.45 1.5 1.6 1.5	9.45 9.25 8.95				

Student Code

Experimental Question

1

page 4 of 19

	16	0	.8 7.7	75			
	17	0	.7 7.5	55			
	18	0	.5 7.2	25			
	19	0	.3 6.9	95			
	20	0	.2 6.6	55			
	21	0.0	05 6	.4			
	Corr	ect data	point mus	t be extracte	d from def	lectogram	
							-0.05 pts
	# coi	rrect data	a points >	= 20, but not	all observ	able (Z,	•
	Z 0, d) are wri	itten				
	Inco	umo at d	-0.05 pts				
	Inco	rrect d					
			,				-0.15 pts
	15<=	# corre	ct data po	ints<20,			•
	40						
							-0.3 pts
	10<#	t correct	data poin	ts<15 YUGY	AKARIA-INL	JUNESIA	0.5 pts
	Haan	noat data	nointa 1	16 - 2	4 JULY 2017		-0.45 pts
	#001	rect data	points<1	U			
A2.							Table 1 of
	i	$\delta_{\rm i}$ (cm)	ξ _i (cm)	$Z_{\rm o}$ (cm)	d(cm)	Z (cm)	$C_0 = 28 \text{ g}/150$
	1	0.05	11.65	10.4 ± 0. 1	0.8 ± 0.1	53.4 ± 0.1	mL
	2	0.25	11.4				
	3	0.4	11.2				
	4	0.8	11				Optimum Z
	5	1	10.75				and Z_0
	6	1.2	10.4				allu Z0
	7	1.4	10.2				
	8	1.5	10				
	9	1.6	9.8				# data = 20
	10	1.7	9.5				
	11	1.75	9.25				
	12	1.7	8.95				
	13	1.65	8.7				
	14	1.5	8.4				(0.5 pts)
	15	1.25	8.05				
	16	0.9	7.6				
	17	0.6	7.3			1	
	18	0.4	7.05				
	19	0.25	6.75				
	20	0.05	6.3				

Student Code

Experimental Question

1

page 5 of 19

# cc Z0, c Incc 15<	orrect data d) are wri orrect d == # corre	a points >			_	-0.05 pts -0.05 pts -0.15 pts
Z0, c Inco 15<	d) are wri orrect <i>d</i> <= # corre # correct	itten ect data po	oints<20,	all observ	vable (Z,	-0.05 pts
15<	= # corre # correct	-				•
10<	# correct	-				-0.15 pts
		data poin	ts<15			
		data pom				-0.3 pts
	rrect data					
#co		n points<1	0			-0.45 pts
A2.						Table 1 of
41	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ξ _i (cm)	Z _o (cm)	d(cm)	Z (cm)]] C ₂ = 22 ~ /150
	$\delta_{\rm i}$ (cm) 0.05	ξ _i (cm)	10.4 ± 0. 1	<i>d(cm)</i> 0.8 ± 0.1	53.4 ± 0.1	$C_0 = 33 \text{ g}/150$
2	0.05	11.4	V00V	AKARTA-IN		l mL
3	0.35	11.1	16 - 2	111/11/1/11/11	DOME 21/7	1
4	0.65	10.85	16 - 2	4 JULY 2017		1
5	1.1	10.6				# data point >=
6	1.3	10.4				1 20
7	1.5	10.4				11 - "
8	1.7	10.2				1
9	1.85	9.7				1
10	2	9.5				(0.5 pts)
11	2.1	9.25				1
12	2	9				1
13	1.8	8.6				1
14	1.5	8.3				1
15	1.25	8.05				1
16	1	7.8				11
17	0.75	7.45]
18	0.55	7.15]
19	0.4	6.8]
20	0.2	6.4				<u> </u>
21	0.05	6.1]
Corr	rect data					
	rrect dat	•	= 20, but not	all observ	vable (Z,	-0.05 pts
	orrect d					-0.05 pts
15<	= # corre	ect data po	oints<20,			-0.15 pts

Student Code

Experimental Question

1

page 6 of 19

	10<# cor	rect data	points<15		-0.3 pts
	#correct	data poin	ts<10		-0.45 pts
A3.					Table 2 of
AS.					Table 2 01
(1.5 pts)	i	Y _i (cm)	dn/dY		$C_0 = 23 \text{ g}/150$
	1	1.85944	0.00117		mL.
	2	1.81919	0.00819		
	3	1.77894	0.01404		
	4	1.74674	0.02106		" 1 . 20
	5	1.71455	0.02340		# data = 20
	6	1.66625	0.02574		
	7	1.63405	0.03043		
	8	1.58575	0.03277		(0.25 pts)
	9	1.56161	0.03394		
	410	1.52136	0.03511		
	11	1.48916	0.03745		
	12	1.44086	0.03511	YOGYAKARTA- INDONESIA	
	13	1.39257	0.03277	16 - 24 JULY 2017	
	14	1.34427	0.02809		
	15	1.29597	0.02340		
	16	1.24767	0.01872		
	17	1.21548	0.01638		
	18	1.16718	0.01170		
	19	1.11888 1.07058	0.00702 0.00468		
	20 21	1.03034	0.00468		
		t check th		able	
	# wrong	data point	t < 3		- 0
		ng data po			- 0.05 pts
	# wrong	data point	t > 6		- 0.25pts

Student Code

Experimental Question

1

page 7 of 19

Student Code

Experimental Question

1

page 8 of 19

	5 1.73065 0.02340	(0.25 pts)
	6 1.67430 0.02809	
	7 1.64210 0.03277	
	8 1.60990 0.03511	
	9 1.57770 0.03745	
	10 1.52941 0.03979	
	11 1.48916 0.04096	
	12 1.44086 0.03979	
	13 1.40061 0.03862	
	14 1.35232 0.03511	
	15 1.29597 0.02926	
	16 1.22352 0.02106	
	17 1.17523 0.01404	
	18 1.13498 0.00936	
	19 1.08668 0.00585	
	20 1.01424 0.00117	
	Jury must check the data in table	
	YOGYAKARTA-INDONESIA	- 0
	16 - 24 JULY 2017	- 0
	# wrong data point < 3	- 0.05 pts
	3<# wrong data point < 6	- 0.25pts
	# wrong data point > 6	
A3.		
		Plot dn/dY vs Y
		$C_0 = 28 \text{ g}/150$ mL.
		"Gaussian-Like" shape
		(0.25 pts)

Student Code

Experimental Question

1

page 9 of 19

Student Code

Experimental Question

1

page 10 of 19

	6	1.67430	0.03043		
	7	1.64210	0.03511		
	8	1.60990	0.03979		(0.25 pts)
	9	1.56161	0.04330		
	10	1.52941	0.04681		
	11	1.48916	0.04915		
	12	1.44891	0.04681		
	13	1.38452	0.04213		
	14	1.33622	0.03511		
	15	1.29597	0.02926		
	16	1.25572	0.02340		
	17	1.19938	0.01755		
	18	1.15108	0.01287		
	19	1.09473	0.00936		
	20	1.03034	0.00468		
	21	0.98204	0.00117		
	48 TH Jury must	check the	e data in t	able 17	
	# wrong d	lata point	:<3	YOGYAKARTA- INDONESIA	- 0
	3<# wron	g data po	int < 6	10 - 24 JULY 2017	- 0.05 pts
	# wrong d	lata point	:>6	,,,,	- 0.25pts
A3.					
					Plot dn/dY vs Y
					0 22 /450
					$C_0 = 33 \text{ g}/150$ mL.
					(0.25 pts)
	1				

Student Code

Experimental Question

1

page 11 of 19

Student Code

Experimental Question

1

page 12 of 19

h for	28 g/ 150 mL =	(1.5 ± 0.1)	cm	0.1 pts
h for	33 g/ 150 mL =	(1.5 ± 0.1)	cm	0.1 pts
	correctly detern	nined from grap	h A3 for each	- 0
	not correctly de ntration	termined from g	graph A3 for each	-0.1

B: Determination of Diffusion Coefficient (4.2 points)

Question	Answer	Marks
B1.	Linear form of eq.(3)	
(0.9 pts)		
	$\ln\left(\frac{dn}{dY}\right) \approx m(h-Y)^2 + C \tag{b1}$	0.9 pt
	$m = -\frac{1}{4D_e t}$	
	Constant: $C = \ln \left(\left(\frac{dn}{dc} \right) \left(\frac{c_0}{2\sqrt{\pi D_e t}} \right) \right)$	
	Other than (b1)	-0.9 pts
B2.		Table 3
(1.8 pts)	i $(h-yi)^2$ $ln(dn/dy)$	of
	1 0.06592 -3.86003	$C_0 = 23 \text{ g}$
	2 0.050423 -3.75467 3 0.031065 -3.65936	/150 mL.

Student Code

Experimental Question

page 13 of 19

1

	4 0.020752 -3.4923	
	5 0.00917 -3.41819	_
	6 0.005128 -3.3831	# data =
	7 0.000984 -3.3492	10
	8 6.99E-07 -3.28466	
	9 0.002414 -3.3492	
	10 0.009493 -3.41819	(0.3 pts)
	11 0.021237 -3.57235	(0.5 pt3)
	12 0.037646 -3.75467	
	13 0.05872 -3.97781	
	Jury must check the data in table	
	# of data point > 10	-0 pts
	3 <= # of data point < 10	-0.05 pts
	# of data point < 3	-0.3 pts
	# wrong data point < 3 YOGYAKARTA- INDONESIA	- 0
	3<# wrong data point < 6 16 - 24 JULY 2017	- 0.05 pts
	# wrong data point >6	- 0.25 pts
B2	0	Plot of Table 3 C ₀ = 23 g/150 mL # data = 10
	Using linear regression of eq. (B1.1), we obtain $m \text{ (slope)} = -10 \text{ cm}^{-2} \text{ till } -8.8 \text{ cm}^{-2}$	(0.3pts)

Student Code

Experimental Question

1

page 14 of 19

	without x-axis label	
	without x-axis unit	
	wrong x-axis unit	
	without y-axis label	
	without y-axis unit	
	wrong y-axis unit	
	Wrong y amo ame	0.04
		-0.01 pts
	# of data point in linear range > 10	-0.01 pts
	3 <= # of data point in linear range < 10	-0.01 pts
	# of data point in linear range < 3 or random shape of curve	-0.01 pts
	m is out of range	-0.01 pts
	YOGYAKARTA- INDONESIA	-0.01 pts
	16 - 24 JULY 2017	-0.01 pts
		- 0
		- 0.05 pts
		- 0.25 pts
		-0.3 pts
		Table 3
B2.	i (h-yi) ² ln(dn/dy)	of
D2.	1 0.057912 -3.75467	$C_0 = 28 g$
	2 0.033968 -3.57235	
	3 0.023136 -3.41819	/150 mL
	4 0.014378 -3.3492	
	5 0.007693 -3.28466	_
	6 0.001553 -3.22404	# data =
	7 6.99E-07 -3.19505	10
	8 0.002414 -3.22404	
	9 0.007989 -3.25389	
	10 0.018955 -3.3492 11 0.037646 -3.53152	(0.3 pts)
	12 0.071007 -3.86003	
	13 0.099079 -4.26549	
	Jury must check the data in table	

Student Code

Experimental Question

1

page 15 of 19

	# of data point > 10	-0 pts
	3 <= # of data point < 10	-0.05 pts
	# of data point < 3	-0.3 pts
	# wrong data point < 3	- 0
	3<# wrong data point < 6	- 0.05 pts
	# wrong data point >6	- 0.25 pts
B2.	0	Plot of Table 3
	-2 (Kp/up)ul	C ₀ = 28 g/150 mL
	0 20 40 60 80	# data = 10
	$(h-y_i)^2 \times 10^{-1} (in cm^2)$	
	Using linear regression of eq. (B1.1), we obtain	
	$m \text{ (slope)} = -10.3 \text{ cm}^{-2} \text{ till } -11 \text{ cm}^{-2}$	(0.3pts)
	without x-axis label	-0.01 pts
	without x-axis unit	-0.01 pts
	wrong x-axis unit	-0.01 pts
	without y-axis label	-0.01 pts
	without y-axis unit	-0.01 pts
	wrong y-axis unit	-0.01 pts
		-0 pts

Student Code

Experimental Question

1

page 16 of 19

	# of data point in linear range > 10	-0.05 pts
	3 <= # of data point in linear range < 10	-0.3 pts
	# of data point in linear range < 3 or random shape of curve	-0.3 pts
	m is out of range	
	in is out of range	
		Table 3
B2.	i $(h-yi)^2$ $ln(dn/dy)$	of
	1 0.046873 -3.65936	$C_0 = 33 \text{ g}$
	2 0.033968 -3.4923	/150 mL
	3 0.023136 -3.3492	7130 1112
	4 0.014378 -3.22404	
	5 0.005128 -3.13948	# data -
	6 0.001553 -3.06152 7 6.99E-07 -3.01273	# data =
	7 6.99E-07 -3.01273 8 0.001688 -3.06152	10
	9 0.011126 -3.16688 OGYAKARTA- INDONESIA	
	10 0.023647 -3.3492 6 - 24 JULY 2017	
	11 0.037646 -3.53152	(0.3 pts)
	12 0.054884 -3.75467	
	13 0.08446 -4.04235	
	Jury must check the data in table	
	# of data point > 10	-0 pts
	3 <= # of data point < 10	-0.05 pts
	# of data point < 3	-0.3 pts
	# wrong data point < 3	- 0
	3<# wrong data point < 6	- 0.05 pts
	# wrong data point >6	- 0.25
		DI . C
		Plot of
B2.		Table 3
		$C_0 = 33$
		g/150
		mL
		11111

Experimental Question

1

	without y-axis label		
	without y-axis unit		
	wrong y-axis unit		
	m is out of range		
	# of data point in linear range > 10		
	3 <= # of data point in linear range < 10		
	# of data point in linear range < 3 or random shape of curve		
В3			
(1.5 pts)			
	D of 23 g/150 mL = $(1.38 \text{ till } 1.58) \times 10^{-5} \text{ cm}^2/\text{s}$		

D of 28 g / 150 mL =

 $(1.26 \text{ till } 1.46) \times 10^{-5} \text{ cm}^2/\text{s}$

0.5 pts

0.5 pts

-0.3

Student Code

Experimental	
Question	

page 18 of 19

D of 33 g/150 mL = (1.03 till 1.23) x 10^{-5} cm²/s 0.5 pts-D is out of range for each concentration -0.5 pts

C. Nonlinear diffusion (1.3 points)

Question	Answer	Marks
C1. (1.3 pts)	16 (x ₁₀ cm ₂ cm ₂ cm ₂ cm ₂ cm ₂ cm ₃ cm ₂ cm ₃ cm ₂ cm ₃ cm ₂ cm ₃ cm	Plot D vs. Co 0.8 pts
	C ₀ (gr/mL)	
	Without error bars $ \begin{tabular}{ll} \textbf{Value of C not stated in $C_0/2$} \end{tabular} $	-0 -0.4 pts
C1.	$\frac{d}{dc}D = -4.2 \times 10^{-5} cm^2 mL g^{-1} s^{-1} \text{ till}$ $-15.8 \times 10^{-5} cm^2 mL g^{-1} s^{-1}$	0.5 pts
	Without or wrong unit Out of range	-0.01 pts -0.5 pts

Student Code

Experimental Question

page 19 of 19

1

