

THE UNIVERSITY OF TEXAS AT AUSTIN

EE381V LARGE SCALE OPTIMIZATION

Problem Set 1

Edited by LATEX

Department of Computer Science

STUDENT
Jimmy Lin

xl5224

COURSE COORDINATOR

Sujay Sanghavi

UNIQUE NUMBER

 $\overline{17350}$

RELEASE DATE

September 12, 2014

DUE DATE

September 18, 2014

TIME SPENT

10 hours

September 15, 2014

Table of Contents

	I Matlab and Computational Assignment	2
1		2 2 3 4
2	$\gamma = 1$ for the second matrix	5
	II Written Problems	6
1	Othorognal Subspace (a) Show that if U is a subspace, then so is U^{\perp}	6 6 6 6 6
2	Boyd and Vandenberghe, Ex. 2.10 (a) Show that if $A \in \mathbb{S}^n_+$ then the set C is convex	7 7 7
3	Boyd and Vandenberghe, Ex. 2.21	8
7	Form a Half-Space	9
8	Exists C such that $CA = B$	10
A	Codes Printout (a) Gradient Descent Routine	11 11 12
	List of Figures	
	 Illustration for gradient descent on X1, staring with b1 by γ = 0.5 and 3.0 Illustration for gradient descent on X2, starting with b2 by γ = 1.5 and 3.0 Illustration for gradient descent on X3 staring with b3 by γ = 0.005 and 0.05 Plotting figure for gradient descent with γ = 1 on the second matrix 	2 3 4 5

Part I

Matlab and Computational Assignment

1 Gradient Descent on three matrices

Command to get executed:

1.1 *X*1, *b*1

- Range of γ that leads to convergence: (0,2)
- Range of γ that leads to divergence: $(2, +\infty)$
- Explanation: if $\gamma = 2$, the program indicates that

$$\forall k, \ f(x^{k+1}) = f(x^k)$$

Since the above equation is constantly true (independent of the minima), we can conclude that gradient descent with $\gamma=2$ goes to the opposite side of that quadratic curve. Intuitively, the program will diverge if we set larger $(\gamma>2)$ and converge if we set smaller $(\gamma<2)$.

• Two illustrative examples: $\gamma = 0.5$ and $\gamma = 3.0$

Figure 1: Illustration for gradient descent on X1, staring with b1 by $\gamma = 0.5$ and 3.0

1.2 *X*2, *b*2

- Range of γ that leads to convergence: (0,2)
- Range of γ that leads to divergence: $(2, +\infty)$
- Explanation: if $\gamma = 2$, the program indicates that

$$\forall k, \ f(x^{k+1}) = f(x^k)$$

Since the above equation is constantly true (independent of the minima), we can conclude that gradient descent with $\gamma = 2$ goes to the opposite side of that quadratic curve. Intuitively, the program will diverge if we set larger $(\gamma > 2)$ and converge if we set smaller $(\gamma < 2)$.

 \bullet Two illustrative examples: $\gamma=1.5$ and $\gamma=3.0$

Figure 2: Illustration for gradient descent on X2, starting with b2 by $\gamma = 1.5$ and 3.0

1.3 *X*3, *b*3

- Range of γ that leads to convergence: (0, 0.02)
- Range of γ that leads to divergence: $(0.02, +\infty)$
- Explanation: if $\gamma = 0.02$, the program indicates that

$$\forall k, \ f(x^{k+1}) = f(x^k)$$

Since the above equation is constantly true (independent of the minima), we can conclude that gradient descent with $\gamma = 0.02$ goes to the opposite side of that quadratic curve. Intuitively, the program will diverge if we set larger ($\gamma > 0.02$) and converge if we set smaller ($\gamma < 0.02$).

• Two illustrative examples: $\gamma = 0.005$ and $\gamma = 0.05$

Figure 3: Illustration for gradient descent on X3 staring with b3 by $\gamma = 0.005$ and 0.05

2 $\gamma = 1$ for the second matrix

Command to get executed:

```
>> [b2_opt, iters, all_costs] = gd (X2, b2, 1);
```

Plotting: figure for $\gamma = 1$

Figure 4: Plotting figure for gradient descent with $\gamma = 1$ on the second matrix

Explanation: Through the smooth plotted curve, we guess that the gradient descent method got linear convergence when $\gamma = 1$ on X_2 . Hence, we trace convergence rate conv_rate = $f(x^k)/f(x^{k-1})$ as follows:

```
Iter: 2, Cost: 2.254428e-01, Conv_Rate: 0.980100
Iter: 3, Cost: 2.209565e-01, Conv_Rate: 0.980100
Iter: 4, Cost: 2.165594e-01, Conv_Rate: 0.980100
Iter: 5, Cost: 2.122499e-01, Conv_Rate: 0.980100
Iter: 6, Cost: 2.080261e-01, Conv_Rate: 0.980100
Iter: 7, Cost: 2.038864e-01, Conv_Rate: 0.980100
...
Iter: 381, Cost: 1.107934e-04, Conv_Rate: 0.980100
Iter: 382, Cost: 1.085886e-04, Conv_Rate: 0.980100
Iter: 383, Cost: 1.064277e-04, Conv_Rate: 0.980100
Iter: 384, Cost: 1.043098e-04, Conv_Rate: 0.980100
Iter: 385, Cost: 1.022340e-04, Conv_Rate: 0.980100
Iter: 386, Cost: 1.001996e-04, Conv_Rate: 0.980100
Iter: 387, Cost: 9.820558e-05, Conv_Rate: 0.980100
```

In terms of above dumps and the fact that $f(x^*) = 0$, we can conclude that when $\gamma = 1$

$$f(x^{k+1}) - f(x^*) = 0.9801 \cdot (f(x^k) - f(x^*))$$

which supports our previous guess that

Gradient Descent with $\gamma = 1$ on second matrix leads to linear convergence.

Part II

Written Problems

1 Othorognal Subspace

(a) Show that if U is a subspace, then so is U^{\perp}

Proof. Since U is a subspace, then we have U satisfying all three properties shown below:

- $\mathbf{0} \in U$
- $\forall \mathbf{u}_1, \mathbf{u}_2 \in U, \mathbf{u}_1 + \mathbf{u}_2 \in U$
- $\forall \mathbf{u} \in U, \alpha \in \mathbb{R}, \alpha \mathbf{u} \in U$

Now we show that U^{\perp} is also a subspace by indicating U^{\perp} satisfies all three properties as above U do.

- Since $\forall \mathbf{u} \in U, \langle \mathbf{0}, \mathbf{u} \rangle = 0$ and $\mathbf{0} \in V$ ($\mathbf{0} \in U \subseteq V$), then it turned out that $\mathbf{0} \in U^{\perp}$.
- Let **u** be arbitrary vector s.t. $\mathbf{u} \in U$, and \mathbf{x}_1 , \mathbf{x}_2 to be distinct vector s.t. $\mathbf{x}_1 \in U^{\perp}$ and $\mathbf{x}_2 \in U^{\perp}$. By definition of U^{\perp} , we have $\langle \mathbf{x}_1, \mathbf{u} \rangle = 0$ and $\langle \mathbf{x}_2, \mathbf{u} \rangle = 0$. Then it is obvious that $\langle \mathbf{x}_1 + \mathbf{x}_2, \mathbf{u} \rangle = 0$. That is $\mathbf{x}_1 + \mathbf{x}_2 \in U^{\perp}$. Therefore, $\forall \mathbf{x}_1, \mathbf{x}_2 \in U^{\perp}, \mathbf{x}_1 + \mathbf{x}_2 \in U^{\perp}$ was proved.
- Let \mathbf{x} be arbitrary vector s.t. $\mathbf{x} \in U^{\perp}$, \mathbf{u} be arbitrary vector s.t. $\mathbf{u} \in U$ and arbitrary $\alpha \in \mathbb{R}$. By definition of U^{\perp} , we have $\langle \mathbf{x}_1, \mathbf{u} \rangle = 0$. Since inner product is linear operator, it is obvious that $\langle \alpha \mathbf{x}_1, \mathbf{u} \rangle = 0$. That is $\alpha \mathbf{x}_1 \in U^{\perp}$. Therefore, $\forall \mathbf{x} \in U^{\perp}$, $\alpha \in \mathbb{R}$, $\alpha \mathbf{x} \in U^{\perp}$ was proved.

Since U^{\perp} contains $\mathbf{0}$, and is closed under addition and scalar multiplication, it turned out that U^{\perp} is a subspace. Therefore, the statement that if U is a subspace, then so is U^{\perp} was proved.

(b) Show that $(U^{\perp})^{\perp} = U$

Proof by contradiction. Assume that $(U^{\perp})^{\perp} \neq U$ and then show the contradiction. By definition of U^{\perp} , we have $U^{\perp} = \{ \forall \mathbf{v}, \langle \mathbf{v}, \mathbf{u} \rangle = 0, \forall \mathbf{u} \in U \}$ and $(U^{\perp})^{\perp} = \{ \forall \mathbf{x}, \langle \mathbf{x}, \mathbf{v} \rangle = 0, \forall \mathbf{v} \in U^{\perp} \}$. Since $(U^{\perp})^{\perp} \neq U$, then we can say that $\exists \mathbf{x} \notin U, \langle \mathbf{x}, \mathbf{v} \rangle = 0, \forall \mathbf{v} \in U^{\perp}$. That is to say, $\exists \mathbf{x} \in V$ but $\notin U, \langle \mathbf{x}, \mathbf{v} \rangle = 0, \forall \mathbf{v} \ s.t. \langle \mathbf{v}, \mathbf{u} \rangle = 0, \forall \mathbf{u} \in U$. However, such \mathbf{x} does not exist. Hence, we reject initial assumption and conclude that $(U^{\perp})^{\perp} = U$.

- (c) Show that if $U, W \subseteq V$ are subspaces of V, then $U \subset W \Leftrightarrow U^{\perp} \supseteq W^{\perp}$
- (d) Show that X^{\perp} makes sense, X^{\perp} is a subspace and $(X^{\perp})^{\perp} \supseteq X$
- (e) Show that any $v \in V$ can be written uniquely as $v = u + u^{\perp}$

2 Boyd and Vandenberghe, Ex. 2.10

- (a) Show that if $A \in \mathbb{S}^n_+$ then the set C is convex
- (b) Show that C_1 is convex if there exists $\lambda \in \mathbb{R}$ such that $(A + \lambda gg^T) \in \mathbb{S}^n_+$

3 Boyd and Vandenberghe, Ex. 2.21

7 Form a Half-Space

8 Exists C such that CA = B

A Codes Printout

(a) Gradient Descent Routine

```
%%% Problem set 1: Standard Gradient Descent with fixed step size
[b, iter, all_costs] = gd (X, b_init, gamma)
% Parameters:
    X: matrix in quadratic optimization
    b_init: starting vector of variable b
    gamma: fixed step size
% Note that stopping criteria is set by absolute eps = 10e-5.
function [b, iter, all_costs] = gd (X, b_init, gamma)
eps = 10e-5;
b = b_init;
last_cost = 0.5 * b' * X * b;
iter = 1;
all_costs = [];
while true,
   %% compute essential numerics and do gradient descent
   gradient = X * b;
   b = b - gamma * gradient;
   cost = 0.5 * b' * X * b;
   rate = (cost / last_cost);
   all_costs = [all_costs cost];
   %% output numeric information of this iteration
   disp(sprintf('Iter: %d, Cost: %e, Conv_Rate: %f',iter,cost,rate));
   %% quadratic optimization converges to zero
   if cost < eps,</pre>
       disp('Converged to zeros!')
       break
   end
   %% qudratic optimization diverges
   if cost >= last_cost && iter > 10,
       disp('Problem diverges!')
       break
   end
   %% prepare for next iteration
   last_cost = cost;
   iter = iter + 1;
end
%% uncomment following code for plotting individual gradient descent run
plot f(b^(n)) with regard to n
%plot (1:iter, all_costs)
%title (sprintf ('Gradient Descent with gamma=%f', gamma))
%xlabel ('iteration: n')
%ylabel ('cost of function: f(b^n)')
```

end

(b) Running Script

```
%%% Running scripts for applying gradient descent
%%% on three given dataset
%% for X1, b1
gamma1\_one = 0.5; gamma2\_two = 3;
[bl_opt_one, iterl_one, costsl_one] = Gradient_Descent(X1, b1, gammal_one);
[bl_opt_two, iter1_two, costs1_two] = Gradient_Descent(X1, b1, gamma2_two);
subplot (1, 2, 1)
plot (1:iter1_one, costs1_one)
axis ([-0.1*iter1_one 1.1*iter1_one -0.05*max(costs1_one) max(costs1_one)])
title (sprintf ('Gradient Descent with gamma=%f', gammal_one))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
subplot (1, 2, 2)
plot (1:iter1_two, costs1_two)
axis ([-0.1*iter1_two 1.1*iter1_two -0.05*max(costs1_two) max(costs1_two)])
title (sprintf ('Gradient Descent with gamma=%f', gamma2_two))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%% for X2, b2
gamma2\_one = 1.5; gamma2\_two = 3;
[b2_opt_one, iter2_one, costs2_one] = Gradient_Descent(X2, b2, gamma2_one);
[b2_opt_two, iter2_two, costs2_two] = Gradient_Descent(X2, b2, gamma2_two);
figure()
subplot (1, 2, 1)
plot (1:iter2_one, costs2_one)
axis ([-0.1*iter2_one 1.1*iter2_one -0.05*max(costs2_one) max(costs2_one)])
title (sprintf ('Gradient Descent with gamma=%f', gamma2_one))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
subplot (1, 2, 2)
plot (1:iter2_two, costs2_two)
axis ([-0.1*iter2_two 1.1*iter2_two -0.05*max(costs2_two) max(costs2_two)])
title (sprintf ('Gradient Descent with gamma=%f', gamma2_two))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
%% for X3, b3
gamma3_one = 0.005; gamma3_two = 0.05;
[b3_opt_one, iter3_one, costs3_one] = Gradient_Descent(X3, b3, gamma3_one);
[b3_opt_two, iter3_two, costs3_two] = Gradient_Descent(X3, b3, gamma3_two);
figure()
subplot (1, 2, 1)
plot (1:iter3_one, costs3_one)
axis ([-0.1*iter3_one 1.1*iter3_one -0.05*max(costs3_one) max(costs3_one)])
title (sprintf ('Gradient Descent with gamma=%f', gamma3_one))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
subplot (1, 2, 2)
plot (1:iter3_two, costs3_two)
axis ([-0.1*iter3_two 1.1*iter3_two -0.05*max(costs3_two) max(costs3_two)])
title (sprintf ('Gradient Descent with gamma=%f', gamma3_two))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
```