Quiz #3

Time Limit: 25 minutes

Answer the questions in the spaces provided on the question sheets, **making sure to include units**. If you run out of room for an answer, continue on the pages marked **Extra Work**, but indicate that you have done so.

Your answers should include explanations where necessary (or requested) as well as appropriate units and labels (as needed). Write legibly – If we can't read it, we can't grade it. If you have a question, ask your instructor not your classmate.

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 100    |       |
| Total:  | 100    |       |

This quiz is to be completed alone without the aid of other outside resources. We have also provided a formula sheet for you.

By signing below, you are agreeing that you have not received unauthorized assistance during this exam, which includes but is not limited to additional crib sheets & note cards, textbooks, course notes, and/or other stored formulas.

Signature: \_\_\_

Useful formulas:

$$\widetilde{V} = \widetilde{I}\widetilde{Z}$$
  $\widetilde{Z}_R = R$   $\widetilde{Z}_L = i\omega L$   $\widetilde{Z}_C = \frac{-i}{\omega C}$ 

1. Consider the following RC circuit that is driven using a variable supply that is set to following sinusoidal driving:  $V(t) = V_0 \cos(\omega t)$ .



You will use phasors to determine the steady state current in this circuit.

(a) (10 points) What is the impedence of this circuit,  $\tilde{Z}$ ?

(b) (25 points) As you know, the impedance,  $\widetilde{Z}$ , can be written as the product of its magnitude and phase:  $\widetilde{Z} = |\widetilde{Z}|e^{i\phi}$ . Determine the magnitude and phase of the impedance. *Hint: it may help to draw a triangle in the complex plane*.

(c) (30 points) Using what you found in parts (a) and (b), determine the real steady state current, I. By real, we mean the true current that could be measured (after waiting a long time).

(d) (15 points) If the function generator is tuned very low (very small  $\omega$ ), what happens to the steady state current? How does this response make sense?

(e) (20 points) We attach a set of leads across the resistor as shown and measured the voltage across it,  $V_{out}$ .



What is  $V_{out}$  in the steady state? What kind of a filter could this be? How do you know?

(f) (5 points (bonus)) If the function generator is tuned very high (very large  $\omega$ ), what happens to the steady state current?