

Data Integrity Guide

Version 2020.3 2021-02-04

Data Integrity Guide
InterSystems IRIS Data Platform Version 2020.3 2021-02-04
Copyright © 2021 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive, Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed, transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part, without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation. InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION, COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)

Tel: +1-617-621-0700 Tel: +44 (0) 844 854 2917 Email: support@InterSystems.com

Table of Contents

1 Introduction to Data Integrity	1
1.1 Fundamental Data Integrity Protection	1
1.2 Integrity Verification and Recovery Mechanisms	2
1.3 Verifying Structural Integrity	2
1.3.1 Integrity Check False Positives	2
1.3.2 Integrity Check Output	3
1.3.3 Checking Integrity Using the Management Portal	4
1.3.4 Interactive Integrity Check Using the ^Integrity Utility	5
1.3.5 Integrity Check API	5
1.3.6 Tuning Integrity Check Performance	7
1.3.7 Isolating Integrity Check	8
2 Write Image Journaling and Recovery	9
2.1 Write Image Journaling	9
2.1.1 Write Image Journal (WIJ) File	9
2.1.2 Two-Phase Write Protocol	10
2.2 Recovery	10
2.2.1 WIJ Restore	10
2.2.2 WIJ Block Comparison	11
2.3 Limitations of Write Image Journaling	13
3 Backup and Restore	15
3.1 Backup Integrity and Recoverability	
3.2 Importance of Journal Restore	
3.3 Backup Strategies	16
3.3.1 External Backup	17
3.3.2 Online Backup	18
3.3.3 Cold Backup	20
3.3.4 Concurrent External Backup	20
3.4 Restoring from a Backup	21
3.4.1 Backup Restore Scenarios	21
3.4.2 Starting InterSystems IRIS for Maintenance	27
3.4.3 Journal Restore Following Backup Restore	28
3.4.4 Starting InterSystems IRIS Without Automatic WIJ and Journal Recovery	29
3.5 Configuring Online Backup Settings	29
3.5.1 Define Database Backup List	
3.5.2 Configure Backup Tasks	30
3.5.3 Schedule Backup Tasks	
3.6 Managing Online Backups	
3.6.1 Run Backup Tasks	
3.6.2 View Backup Status	
3.6.3 Abort a Running Backup	
3.6.4 View Backup History	
3.7 Online Backup Utilities	
3.7.1 Estimate Backup Size Using ^DBSIZE	
3.7.2 Perform Backup and Restore Tasks Using ^BACKUP	
3.7.3 Back Up Databases Using ^DBACK	
3.7.4 Edit/Display List of Directories for Backup Using ^BACKUP	41

3.7.5 Abort a Running Backup Using ^BACKUP	
3.7.6 Display Information About a Backup Volume Using ^BACKUP	43
3.7.7 Monitor Backup or Restore Progress Using ^BACKUP	44
3.8 Online Backup Restore Utility	
3.8.1 Restore All Databases Using ^DBREST	
3.8.2 Restore Selected or Renamed Databases Using ^DBREST	48
3.8.3 Restoring Databases Using the Backup History	49
3.8.4 Unattended Restore Using ^DBREST	
3.8.5 Mirrored Database Considerations	52
4 Journaling	55
4.1 Journaling Overview	
4.1.1 Differences Between Journaling and Write Image Journaling	
4.1.2 Protecting Database Integrity	
4.1.3 Automatic Journaling of Transactions	
4.1.4 Rolling Back Incomplete Transactions	57
4.1.5 Consequences of Not Journaling Databases	57
4.1.6 The Journal Write Cycle	58
4.1.7 Journal Files and Journal History Log	58
4.1.8 Using Temporary Globals and IRISTEMP	59
4.1.9 Journal Management Classes and Globals	59
4.2 Configuring Journaling	60
4.2.1 Enabling Journaling	60
4.2.2 Journal File Naming	60
4.2.3 Journaling Best Practices	60
4.2.4 Configuring Journal Settings	61
4.3 Journaling Operation Tasks	63
4.3.1 Start Journaling	63
4.3.2 Stop Journaling	
4.3.3 View Journal Files	
4.3.4 Switch Journal Files	
4.3.5 Switch Journal Directories	
4.3.6 Display Journal File Profiles	
4.3.7 Check Journal File Integrity	
4.3.8 View Journal File Summaries	
4.3.9 Purge Journal Files	
4.3.10 Purging Mirror Journal Files	
4.3.11 Restore Journal Files	
4.4 Journaling Utilities	
4.4.1 Perform Journaling Tasks Using ^JOURNAL	
4.4.2 Recover from Startup Errors Using ^STURECOV	
4.4.3 Convert Journal Files Using ^JCONVERT and ^%JREAD	
4.4.4 Set Journal Markers Using ^JRNMARK	
4.4.5 Manipulate Journal Files Using ^JRNUTIL	
4.4.6 Manage Journaling at the Process Level Using DISABLE^%NOJRN	
4.5 Journal I/O Errors	
4.5.1 Journal Freeze on Error Setting is No	
4.5.2 Journal Freeze on Error Setting on Transaction Ballback with TRO	
4.5.3 Impact of Journal Freeze on Error Setting on Transaction Rollback with TRO	
4.6 Special Considerations for Journaling	90

4.6.1 Performance	97
4.6.2 UNIX® File System Recommendations	97
4.6.3 System Clock Recommendations	97
4.6.4 Disabling Journaling for Filing Operations	
5 Data Consistency on Multiple Systems	99
5.1 DataCheck Overview	99
5.1.1 DataCheck Queries	99
5.1.2 DataCheck Jobs	100
5.1.3 DataCheck Results	100
5.1.4 DataCheck Workflow	101
5.2 DataCheck for Mirror Configurations	102
5.2.1 Planning DataCheck within the Mirror	102
5.2.2 Selecting Globals to Check	103
5.3 DataCheck Setup Procedure	103
5.3.1 Enabling the DataCheck Service	104
5.3.2 Specifying Globals and Subscript Ranges to Check	104
5.4 ^DATACHECK Routine	107
5.4.1 Create New Configuration	108
5.4.2 Edit Configuration	109
5.4.3 View Details	110
5.4.4 Incoming Connections to this System as a DataCheck Source	111
5.5 Special Considerations for Data Checking	111
5.5.1 Performance Considerations	111
5.5.2 Security Considerations	112

List of Tables

Table 3–1: Backup Task Descriptions	31
Table 4–1: Journal Data Record Fields Displayed by ^JRNDUMP	
Table 4–2: Journal File Operations	82
Table 4–3: Functions Available in AIRNUTIL	94

1

Introduction to Data Integrity

The integrity of every InterSystems IRIS® database is protected from the consequences of system failure by a number of different features. This guide explains the mechanisms that InterSystems IRIS® uses to maintain the integrity of your data, including:

InterSystems IRIS write image, while logical integrity is maintained by InterSystems IRIS journaling and transaction processing. Together with a backup strategy, journaling In addition to this chapter, this guide covers:

- Write image journaling technology, which protects against structural integrity failures due to system crashes
- Journaling and transaction processing, which maintain logical integrity.
- Backup and restore, which together with journaling enables rapid recovery from physical integrity failures.
- The DataCheck utility, which lets you compare the state of data that exists on two systems to determine whether they
 are consistent.

1.1 Fundamental Data Integrity Protection

In general, there are two different levels at which integrity can be viewed:

- Structural database integrity, or physical integrity, refers to the contents of the database blocks on disk. To have
 structural integrity, the database blocks must be self-consistent and the globals traversable. Structural integrity during
 a system crash is maintained by InterSystems write image journal (WIJ) technology, as described in the chapter "Write
 Image Journaling and Recovery", and InterSystems IRIS's internal algorithms.
- Logical integrity refers to the data represented by the globals within the database, and encompasses the self-consistency
 of the data created by the application, its transactional integrity, and its being up-to-date with the real world. Logical
 integrity during a system crash is maintained by InterSystems IRIS journaling (see the "Journaling" chapter) and
 transaction processing. (Other aspects of logical integrity are under the control of application code, through proper use
 of interlocks, transactions, and other mechanisms specific to the programming paradigm that the application employs.)

Automatic WIJ and journal recovery are fundamental components of the InterSystems "bulletproof" database architecture that protects InterSystems IRIS databases from system failures.

1.2 Integrity Verification and Recovery Mechanisms

Although system crashes alone cannot lead to a loss of integrity, there is always a possibility that a storage device will fail catastrophically, sustain physical damage, or be tampered with. In that case, the integrity of the database, WIJ and journals can become compromised. To compensate for such disasters, InterSystems IRIS provides the following features:

- Tools for checking the structural integrity of databases, described in Verifying Structural Integrity in this chapter.
- Backup mechanisms, as described in the chapter "Backup and Restore".
- Journaling-based logical data replication for automatic failover and disaster recovery through mirroring, described in the "Mirroring" chapter of the *High Availability Guide*.
- DataCheck, a tool for checking the consistency of data between multiple systems when technologies such as mirroring maintain a replicated copy of data, described in the chapter "Data Consistency on Multiple Systems".

1.3 Verifying Structural Integrity

An integrity check lets you verify the *structural* integrity (see Fundamental Data Integrity Protection) of a set of databases, or subset of globals within the databases.

The benefits of running an integrity check are as follows:

- Integrity check can be integrated into your backup strategy to ensure that at the time of backup, the copy of the database
 was intact and that no errors were introduced during the backup itself, as discussed in External Backup in the "Backup
 and Restore" chapter.
- Integrity check can detect corruption before users encounter it, giving time to make a plan before users are impacted.
- Regular integrity checks provide a means by which the origin of any structural integrity problems that are found can be more accurately pinpointed in time, increasing the likelihood of identifying the root cause.

An integrity check lets you verify the integrity of all globals in selected databases, or of selected globals stored in a single specified database. You can run an integrity check from the Management Portal or using the **^Integrity** utility in a Terminal window. This section covers the following topics:

- Integrity Check False Positives
- Integrity Check Output
- Checking Integrity Using the Management Portal
- Checking Integrity Using the ^Integrity Utility
- Integrity Check API
- Tuning Integrity Check Performance
- Isolating Integrity Check

1.3.1 Integrity Check False Positives

Running an integrity check on a volatile database may result in the false reporting of database integrity errors due to ongoing database updates.

When an integrity check is executed from the Management Portal or by the Task Manager, as described in Checking Database Integrity Using the Management Portal, it runs in the background, and automatically retests any globals in which errors are detected. Output from an integrity check that includes this automatic second pass reports on errors in the following manner:

- If an error was detected in a global in the first pass but not in the second pass, the first error is assumed to be a false positive and no error is reported.
- If the error detected in a global in the second pass differs from the error detected in the first pass, only the second-pass error is reported, with the text These errors in global <global_name> differ from the errors prior to the retry.
- If the same error is detected in a global in both passes, the error is reported with the message When retried the errors in global <global_name> remained unchanged.

Integrity checks executed manually using the **Integrity** utility or one of the entry points described in Checking Database Integrity Using the Integrity Utility do not retest globals reporting errors on the first pass. If errors are returned, repeat the check for that particular database.

Generally, for an integrity check run on an active system, errors that are not repeated in a second pass are false positives, while errors that persist in a second pass represent actual integrity problems. The latter must be investigated, and the former may merit investigation as well, depending on the level of activity, the number of errors, and the extent to which false positives have previously occurred. The nature of your investigation will depend on your level of expertise and past experience of false positives. Steps you can take include:

- Running the integrity check again, if possible during a period of lower system activity.
- Running an integrity check on a restored copy of the most recent backup.
- Examining the range of data in question for clues to the root problem.
- Contacting the InterSystems Worldwide Response Center (WRC) for assistance.

The problem of false positives can be avoided by integrating integrity checks into your standard backup procedures, such as those described in External Backup in the "Backup" chapter of the *Data Integrity Guide*, so that databases are checked immediately after taking a snapshot of the logical disk volume on which they reside, in isolation from production as described in Isolating Integrity Checks.

1.3.2 Integrity Check Output

In addition to reporting any errors it encounters, the integrity check reports on the number of blocks in each global and the percentage of those blocks that is in use, breaking this information down by block level as well. For example, the following is a portion of the output of an integrity check on a DATA database populated with 20,000 users:

```
File Name: c:\intersystems\20182555dec15a\mgr\integ.txt
IRIS Database Integrity Check - Report Created 01/25/2018 10:41:16
System: BBINSTOCK6440 Configuration: 20182555DEC15A
No Errors were found.
Full Listing of Databases Checked
Directory: C:\InterSystems\20182555DEC15A\Mgr\DATA\
0 globals with errors found
                                                             0 errors found
Global: Aviation.AircraftD
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (6% full)
Data Level:
                                           512kb (87% full)
                       # of blocks=64
Total:
                       # of blocks=65
                                           520kb (85% full)
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:15
Global: Aviation.AircraftI
                                                             0 errors found
```

```
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (0% full)
                                          32kb (83% full)
40kb (67% full)
Data Level:
                       # of blocks=4
 Total:
                       # of blocks=5
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:15
                                                             0 errors found
Global: Aviation.Countries
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (0% full)
 Data Level:
                       # of blocks=1
                                          8kb (52% full)
                                          16kb (26% full)
Total:
                       # of blocks=2
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:15
Global: Aviation.CrewI
                                                             0 errors found
 Top/Bottom Pnt Level: # of blocks=1
                                          8kb (1% full)
                                          40kb (90% full)
48kb (75% full)
                       # of blocks=5
Data Level:
                       # of blocks=6
Total:
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:15
Global: Aviation.EventD
                                                             0 errors found
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (41% full)
                       # of blocks=377
                                            3,016kb (78% full)
Data Level:
                                            6,208kb (72% full) # = 479
Big Strings:
                       # of blocks=776
                                              9,232kb (74% full)
                       # of blocks=1,154
Total:
Elapsed Time = 0.1 seconds, Completed 01/25/2018 10:41:15
Global: Aviation.EventI
                                                             0 errors found
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (0% full)
                                          24kb (77% full)
Data Level:
                       # of blocks=3
Total:
                       # of blocks=4
                                          32kb (58% full)
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:15
Global: ROUTINE
                                                             0 errors found
 Top/Bottom Pnt Level: # of blocks=1
                                          8kb (1% full)
                                          48kb (78% full)
56kb (67% full)
 Data Level:
                       # of blocks=6
                       # of blocks=7
 Total:
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:16
Global: SYS
                                                             0 errors found
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (0% full)
Data Level:
                       # of blocks=1
                                          8kb (0% full)
Total:
                       # of blocks=2
                                          16kb (0% full)
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:16
Global: Data.CompanyD
                                                           0 errors found
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (0% full)
                       # of blocks=1
                                          8kb (35% full)
Data Level:
                       # of blocks=2
                                          16kb (17% full)
Total:
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:16
Global: Data.CompanyI
                                                           0 errors found
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (0% full)
Data Level:
                       # of blocks=1
                                          8kb (9% full)
                       # of blocks=2
                                          16kb (4% full)
Total:
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:16
Global: Data.PersonD
                                                           O errors found
Top/Bottom Pnt Level: # of blocks=1
                                          8kb (0% full)
Data Level:
                       # of blocks=5
                                          40kb (81% full)
Total:
                       # of blocks=6
                                          48kb (67% full)
Elapsed Time = 0.0 seconds, Completed 01/25/2018 10:41:16
```

When run from the Management Portal, the report begins with a listing of errors and warnings generated by the integrity check, if any. When run using the **^Integrity** utility, the error summary is provided at the end of the output.

1.3.3 Checking Integrity Using the Management Portal

To check the integrity of selected databases, or of selected globals stored in a single database, navigate to the Databases page of the Management Portal (Home > System Operation > Databases) and use the following procedure:

- 1. Click Integrity Check to display a list of databases.
- 2. Select the appropriate check boxes for the databases you want to check.

If you want to check globals stored in a single database, select only the database that contains the globals you want to check, then click **Select Globals** to display a list of globals stored in the selected database. Select the globals you want to check, then click **Save**; if you do not select any globals from the list, all globals in the selected database are checked.

- If you want to stop checking the integrity of the database(s) upon encountering an error, select the Stop after any error check box.
- 4. Click **OK** to begin the integrity check. The integrity check process runs in the background.

Click **Integrity Log** to view the output from the most recent integrity check run using the portal. The path of this file and its contents are automatically displayed.

Integrity Check is also one of the default system background tasks in the Task Manager. You can schedule multiple integrity checks if you wish, for example of different databases at different times. See Using the Task Manager in the "Managing InterSystems IRIS" chapter of the *System Administration Guide* for more information about scheduling system tasks.

Note: If a database is mounted but was never added to, or has been deleted from, the Management Portal database configuration (see Configuring Databases in the *System Administration Guide*), the database is not included in the list of databases displayed by the **Integrity Check** function.

1.3.4 Interactive Integrity Check Using the ^Integrity Utility

You can run a manual integrity check using the **'Integrity** utility by opening a Terminal window, switching to the **"SYS** namespace, and entering **do 'Integrity**. This is similar to running an integrity check from the Databases page of the Management Portal, except that, as noted in Integrity Check False Positives, the **'Integrity** utility cannot recheck globals for which it finds errors in the first pass before completing and reporting its results, and it is therefore important to recheck globals for which errors are reported to eliminate false positives. (The Management Portal integrity check also distributes the integrity check across multiple jobs, instead of running a single job like the **'Integrity** utility.)

You can also use the following **^Integrity** entry points interactively:

- Do CheckPointer^Integrity asks for a directory and a pointer block at which to start checking.
- **Do Exclude^Integrity** asks for a list of databases to exclude from checking; entering? displays a list of mounted databases.

1.3.5 Integrity Check API

The following **^Integrity** entry points are available for programmatic use:

- Do CheckList^Integrity(outputglobal,dirlist,stopafteranyerror,listofglolist,maxproc) runs an integrity check in the background and stores the results, including information and warnings. Use of the parameters is as follows:
 - outputglobal
 - Specifies a global in which to store the results. If the parameter is omitted from the call, the results are stored in ^IRIS.TempIntegrityOutput(+\$JOB). T
 - dirlist
 - Specifies a \$LIST of all the directories you want to check; if omitted, all directories are checked.
 - stopafteranyerror Specifies the integrity check's behavior on error: if 1 is specified, checking of a directory stops when an error is found, if 0 (the default), checking continues on error.
 - listofglolist

Specifies a \$LIST of \$LISTs of global names, one for each directory specified in dirlist; using these parameters you could, for example, check all oddDEF globals in all directories by specifying \$LB(\$LB("oddDEF")). If there are fewer elements in listofglolist than in dirlist, the last element in the former is used for the remaining directories in the latter.

maxproc

Specifies the maximum number of parallel processes to be used, with a default of 8. If the specified value is <1, the number of cores on the host system is used, and if it is 1, the integrity check is done in the foreground.

Do CheckList^Integrity returns a %Status sc that can be evaluated as follows:

- If \$system.Status.IsOK(sc) is returned, the integrity check ran and found no errors.
- A return status with a single error code \$\$\$IntegrityCheckErrors, that is \$system.Status.GetError-Codes(sc)=\$\$\$ERRORCODE(\$\$\$IntegrityCheckErrors), the integrity check ran successfully, but found errors.
- If neither of the preceding is returned, a problem occurred that may have prevented integrity check from returning complete results. Note that in this case sc may contain more than one error code, and one of those may be \$\$\$IntegrityCheckErrors.
- Do Display'Integrity(integritout,flags,dirsum) displays the results of integrity check; use of the paramters is as follows:
 - integritout

Specifies the name of the global in which the results of the integrity check were stored (by CheckList^Integrity); if not specified, it defaults to **'IRIS.TempIntegrityOutput**(+**\$JOB**). The optional

flags

Determines which messages are displayed, according to the following values:

- 0 displays all messages.
- 1 displays only errors and warnings.
- 2 displays only errors); i

If not specified, all messages are displayed.

dirsum

If specified and not 0, the display includes a summary of blocks for each directory scanned.

The following is an example checking three databases using five processes. Omitting the dblist parameter here would check all databases instead. (Note that evaluation of **sc**, as described in the description of **CheckList^Integrity** returns above, is not required to display the results.)

```
set dblist=$listbuild("/data/db1/","/data/db2/","/data/db3/")
set sc=$$CheckList^Integrity(,dblist,,,5)
do Display^Integrity()
kill ^IRIS.TempIntegrityOutput(+$job)
```

These entry points are supported for legacy use only:

• Do Silent^Integrity(logfilename,dirlist) starts a background process that does an integrity check on selected or all databases and puts the output in a file specified by the logfilename parameter. The optional dirlist parameter specifies a \$LIST ofdatabases to check; if not specified, all databases are checked. This is the equivalent of running an integrity check from the Databases page of the Management Portal.

- Do SilentGlobalCheck^Integrity(logfilename,dir,gbllist) starts a background process that does an integrity check on selected globals in a selected database and puts the output in a file specified by the logfilename parameter. The required dir parameter identifies the database that contains the globals you want to check; the required gbllist parameter specifies a \$LIST of one or more globals to check. This is the equivalent of choosing Select Globals when running an integrity check from the Databases page of the Management Portal.
- Do Query^Integrity(logfilename,outdevice) does not run an integrity check, but outputs the contents of the file specified by the logfilename parameter, the results saved from a previous run, on the device specified in the optional parameter outdevice. Examples of *outdevice* are the current device (the default), a printer, another display device, or another operating system file name (to which logfilename is copied).

1.3.6 Tuning Integrity Check Performance

Because an integrity check must read every block of the globals being checked (if not already in buffers) in an order dictated by each global's structure, the operation takes a substantial amount of time and can utilize much of the storage subsystem's bandwidth. The optimal balance between the speed of an integrity check and its performance impact depends on why and when you are running it. For example, when running integrity check in response to a disaster involving storage corruption you probably want to get the results as soon as possible, whereas when it is run concurrently with production you may want to minimize its impact on the storage subsystem.

Integrity check is capable of reading as fast as the storage subsystem allows. The number of integrity check processes in use times the maximum number of concurrently active asynchronous reads allowed for each process (8 by default) is the upper limit on the number of concurrent reads overall, but the average may be half that. You can compare this estimate to the capabilities of the storage subsystem to determine the optimal number of processes. For example, with storage striped across 20 drives and the default 8 concurrent reads per process, five or more processes may be needed to capture the full capacity of the storage subsystem (5*8/2=20). (Note that assignment to processes is on a per-global basis, so a given global is always checked by just one process.)

The recommended approach to adjusting integrity check performance is as follows:

- 1. The first step is to choose the best method for launching the integrity check, as follows.
 - The CheckList^Integrity entry point to launch the integrity check provides the greatest control over performance, as it lets you specify the number of processes, and is therefore the most straightforward approach to tuning integrity check performance. For information about the maxproc argument to CheckList^Integrity, which specifies the number of parallel processes to use in the integrity check, see Integrity Check API.
 - The Management Portal Integrity Check option and the Integrity Check system background task in the Task Manager use multiple processes, but do not provide the same control as CheckList^Integrity. The Management Portal option, the Task Manager task, and the SYS.Database.IntegrityCheck() API call all select a number of processes equal to the number of CPU cores, which is typically comparatively large. These interfaces also perform a complete recheck of any global that reported an error in an effort to identify false positives caused by concurrent updates. This recheck is in addition to the false positive mitigation built into the integrity check algorithms, and may be unwanted due to the time required.
 - Other launching methods, such as the 'Integrity routine in the Terminal or the Silent'Integrity entry point,
 perform the integrity check in a single process, and are therefore not useful when results are needed quickly. They
 do have the advantage of outputting their results to a file or the terminal immediately, making them visible to the
 user during while the integrity check is ongoing.
- 2. An integrity check process walks through the pointer blocks of a global, one at a time, validating each against the contents of the data blocks it points to. The data blocks are read with asynchronous I/O to enable multiple concurrently active read requests for the storage subsystem to process, with validation performed as each read completes. By default, the maximum number of concurrent read requests is 8. Bear in mind the following points:

- Because the number of processes in use times the maximum number of concurrent reads per process is the upper
 limit on the overall number of concurrent reads, changing the number of parallel integrity check processes is typically the first adjustment to make. However, changing the maximum concurrent reads parameter can provide
 additional control. Further, when the integrity check is confined to a single process (for example when there is
 one extremely large global or other external constraints), tuning this parameter is the primary means of adjusting
 performance.
- This benefits of increasing this parameter are limited by the storage subsystem's capacity to process concurrent
 reads. Higher values have no benefit if databases are stored on a single local drive, whereas a storage array with
 striping across dozens of drives can process dozens of reads concurrently. The benefits are also limited by compute
 time, among other factors.

To adjust the maximum number of current reads, open the Terminal and in the %SYS namespace, display the current value by entering **write** \$\$GetAsyncReadBuffers^Integrity(), then change it if desired by entering **do** SetAsyncReadBuffers^Integrity(value); the maximum is 128. The change takes effect when the next global is checked. (This setting does not persist through a restart of the instance.)

There is a similar parameter to control the maximum size of each read when blocks are contiguous on disk (or nearly so). This parameter is needed less often, although systems with high storage latency or databases with larger block sizes might benefit from fine tuning. The commands for this parameter are **write**

\$\$GetAsyncReadBufferSize^Integrity() and **do SetAsyncReadBufferSize^Integrity(***value*); the value is set in unit of 64 KB, so a value of 1 sets 64 KB as the maximum, 4 sets 256 KB, and so on, with a maximum of 512 (32,768 KB). The default is 0, which lets the instance select the value; currently it selects 1, for 64 KB.

1.3.7 Isolating Integrity Check

Many sites run regular integrity checks directly on the production system. This has the advantage of simplicity, but in addition to concerns about integrity check's impact on storage bandwidth, concurrent database update activity can sometimes lead to false positive errors (despite the built-in mitigation measures), which means that errors reported from an integrity check on a production system must be evaluated and/or rechecked by an administrator.

To avoid false positives, you can isolate integrity checks from production by mounting storage snapshots or backup images on another host and having an isolated InterSystems IRIS instance run integrity checks on them. If the storage is also isolated from production, integrity check performance can be maximized and the result obtained as quickly as possible without any concern about the impact on production storage. This approach is suitable for arrangements in which integrity check is used to validate backups; a validated backup effectively validates the production databases as of the time the backup was made. Cloud and virtualization platforms can also make it easier to establish a usable isolated environment from a snapshot.

2

Write Image Journaling and Recovery

InterSystems IRIS® uses write image journaling to maintain the internal integrity of your InterSystems IRIS database. It is the foundation of the database recovery process.

2.1 Write Image Journaling

InterSystems IRIS safeguards database updates by using a two-phase technique, write image journaling, in which updates are first written from memory to a transitional journal, IRIS.WIJ, and then to the database. If the system crashes during the second phase, the updates can be reapplied upon recovery. The following topics are covered in greater detail:

- Write Image Journal (WIJ)
- Two-Phase Write Protocol

2.1.1 Write Image Journal (WIJ) File

The Write daemon is activated at InterSystems IRIS startup and creates the write image journal (WIJ) file. The Write daemon records database updates in the WIJ before writing them to the InterSystems IRIS database.

By default, the WIJ file is named IRIS.WIJ and resides in the system manager directory, usually *install-dir*/Mgr, where *install-dir* is the installation directory. To specify a different location for this file or the file's target size, use the Management Portal:

- Navigate to the Journal Settings page of the Management Portal (System Administration > Configuration > System Configuration > Journal Settings).
- 2. Enter the new location of the WIJ in the **Write image journal directory** box and click **Save**. The name must identify an existing directory on the system and may be up to 63 characters long. If you edit this setting for a clustered instance, restart InterSystems IRIS to apply the change; no restart is necessary for a standalone instance.
- 3. Enter the target size for the WIJ at the **Target size for the wij (MB) (0=not set)** prompt. The default of zero allows the WIJ to grow as needed but does not reserve space for this; entering a non-zero value reserves the specified space on the storage device.

For information about the two settings described, which are included in the instance's iris.cpf file, see targwijsz and wijdir in the [config] section of the *Configuration Parameter File Reference*.

2.1.2 Two-Phase Write Protocol

InterSystems IRIS maintains application data in databases whose structure enables fast, efficient searches and updates. Generally, when an application updates data, InterSystems IRIS must modify a number of blocks in the database structure to reflect the change.

Due to the sequential nature of disk access, any sudden, unexpected interruption of disk or computer operation can halt the update of multiple database blocks after the first block has been written but before the last block has been updated. The two-phase write protocol prevents this incomplete update from leading to an inconsistent database structure, which could occur with it. The consequences could be as severe as a database that is totally unusable, all data irretrievable by normal means.

The InterSystems write image journaling technology uses a two-phase process of writing to the database to protect against such events as follows:

- In the *first* phase, InterSystems IRIS records the updated blocks in the WIJ. Once it enters all updates to the WIJ, it sets a flag in the file and the second phase begins.
- In the *second* phase, the Write daemon writes the same set of blocks recorded in the WIJ to the database on disk. When this second phase completes, the Write daemon sets a flag in the WIJ to indicate it is deleted.

When InterSystems IRIS starts, it automatically checks the WIJ and runs a recovery procedure if it detects that an abnormal shutdown occurred. When the procedure completes successfully, the internal integrity of the database is restored. InterSystems IRIS also runs WIJ recovery following a shutdown as a safety precaution to ensure that database can be safely backed up.

2.2 Recovery

WIJ recovery is necessary if a system crash or other major system malfunction occurs. When InterSystems IRIS starts, it automatically checks the WIJ. If it detects that an abnormal shutdown occurred, it runs a recovery procedure. Depending on where the WIJ is in the two-phase write protocol process, recovery does the following:

- If the crash occurred after the last update to the WIJ was completed but before completion of the corresponding update to the databases—that is, during the second phase of the process—the WIJ is restored as described in WIJ Restore.
- If the crash occurred after the last WIJ update was durably written to the databases—that is, after both phases were completed—a block comparison is done between the most recent WIJ updates and the affected databases, as described in WIJ Block Comparison (Windows and UNIX®/Linux only).

2.2.1 WIJ Restore

If the WIJ is marked as "active," the Write daemon completed writing modified disk blocks to the WIJ but had not completed writing the blocks back to their respective databases. This indicates that WIJ restoration is needed. The recovery program, **iriswdimj**, does the following:

- Informs the system manager in the messages log (messages.log) file; see Monitoring Log Files in the "Monitoring InterSystems IRIS Using the Management Portal" chapter of the *Monitoring Guide*.
- Performs Dataset Recovery.

Typically, all recovery is performed in a single run of the **iriswdimj** program.

2.2.1.1 Dataset Recovery

A *dataset* is a specific database directory on a specific InterSystems IRIS system. The **iriswdimj** program restores all datasets configured in the InterSystems IRIS instance being restarted after an abnormal shutdown.

The **iriswdimj** program can run interactively or non-interactively. The manner in which it runs depends on the platform, as follows:

- Windows Always runs non-interactively.
- UNIX®/Linux Runs non-interactively until encountering an error, then runs interactively if an operator is present to respond to prompts.

Note: When the **iris start quietly** command is used on UNIX/Linux systems, it always runs noninteractively.

When the recovery procedure is complete, **iriswdimj** marks the contents of the WIJ as "deleted" and startup continues.

If an error occurred during writing, the WIJ remains active and InterSystems IRIS will not start; recovery is repeated the next time InterSystems IRIS starts unless you override this option (in interactive mode).

CAUTION: If you override the option to restore the WIJ, databases become corrupted or lose data.

The following topics are discussed in more detail:

- Interactive Dataset Recovery
- Noninteractive Dataset Recovery

Interactive Dataset Recovery

The recovery procedure allows you to confirm the recovery on a dataset-by-dataset basis. Normally, you specify all datasets. After each dataset prompt, type either:

- Y to restore that dataset
- N to reject restoration of that dataset

You can also specify a new location for the dataset if the path to it has been lost, but you can still access the dataset. Once a dataset has been recovered, it is removed from the list of datasets requiring recovery; furthermore, it is not recovered during subsequent runs of the **iriswdimj** program should any be necessary.

Noninteractive Dataset Recovery

When the recovery procedure runs noninteractively, InterSystems IRIS attempts to restore all datasets and mark the WIJ as deleted. On Unix® and Windows platforms, InterSystems IRIS first attempts a fast parallel restore of all datasets; in the event of one or more errors during the fast restore, datasets are restored one at a time so that the databases that were fully recovered can be identified. If at least one dataset cannot be restored:

- The iriswdimj program aborts and the system is not started.
- Any datasets that were not successfully recovered are still marked as requiring recovery in the WIJ.

2.2.2 WIJ Block Comparison

Typically, a running InterSystems IRIS instance is actively writing to databases only a small fraction of the time. In most crashes, therefore, the blocks last written to the WIJ were confirmed to have been durably written to the databases before the crash; the WIJ is not marked "active", and there is no WIJ restore to be performed. When InterSystems IRIS starts up after such a crash, however, the blocks in the most recent WIJ updates are compared to the corresponding blocks in the affected databases as a form of rapid integrity check, to guard against starting the instance in an uncertain state after a crash

that was accompanied by a storage subsystem failure. The comparison runs for a short time to avoid impacting availability and asynchronous I/O is utilized to maximize throughput. If all blocks match, or no mismatch is detected within 10 seconds, startup continues normally. If a mismatch is found within this time, the results are as follows:

- The comparison operation continues until all available WIJ blocks have been compared.
- The mismatching WIJ blocks are written to a file called MISMATCH.WIJ in the WIJ directory.
- Normal startup is aborted and InterSystems IRIS starts in *single-user* mode with a message like the following:

```
There exists a MISMATCH.WIJ file.

Startup aborted, entering single user mode.

Enter IRIS with

iris terminal [instancename] -B

and D ^STURECOV for help recovering from this error.
```

This situation calls for immediate attention. Use the information that follows to determine the appropriate course of action. When your recovery procedures are complete, you must rename the MISMATCH.WIJ file, either using the **STURECOV** routine or externally, before InterSystems IRIS startup can continue; the file is persistent and prevents normal startup of the instance.

Run the indicated command to perform an emergency login as system administrator (see Administrator Terminal Session in the "Licensing" chapter of the *System Administration Guide*).

You are now in the manager's namespace and can run the startup recovery routine with the command **Do ^STURECOV**. The following WIJ mismatch recovery message and menu appear on a UNIX®/Linux system:

```
The system crashed and some database blocks do not match what was
expected based on the contents of write image journal (the WIJ).
The WIJ blocks have been placed in the MISMATCH.WIJ file. If any
database files, or the WIJ, were modified or replaced since the crash,
you should rename the MISMATCH.WIJ. Otherwise, MISMATCH.WIJ probably
contains blocks that were lost due to a disk problem. those blocks and apply them if necessary. When finish
                                                           You can view
                                              When finished, rename the
MISMATCH.WIJ in order to continue startup.
1) List Affected Databases and View Blocks
2) Apply mismatched blocks from WIJ to databases
   Rename MISMATCH.WIJ
4) Dismount a database
5) Mount a database
6) Database Repair Utility
7) Check Database Integrity
8) Bring up the system in multi-user mode
9) Display instructions on how to shut down the system
H) Display Help
E) Exit this utility
```

On a Windows system, options 8 and 9 are replaced by 8) Bring down the system prior to a normal startup.

Options 8) Rename MISMATCH.WIJ renames the file by apppending the date; if there is already a renamed MISMATCH.WIJ with that name, a number (such as _1) is appended.

The appropriate actions in the event of a WIJ mismatch differ based on the needs and policies of your enterprise, and are largely the same as your site's existing practices for responding to events that imply data integrity problems. Considerations include tolerance for risk, criticality of the affected databases, uptime requirements, and suspected root cause.

The following represent some considerations and recommendations specific to the WIJ block comparison process:

Replacing, restoring, or making any changes to the databases or WIJ files after a crash and before recovery can lead
to discrepancies that are then found during WIJ comparison and recorded in the MISMATCH.WIJ file. If this has occurred,
rename MISMATCH.WIJ.

Note: If a database is to be restored following a crash, ensure that prior to the restore you start the instance without WIJ and journal recovery (see <u>Starting InterSystems IRIS</u> Without Automatic WIJ and Journal Recovery in the "Backup and Restore" chapter of this guide). This avoids both creating discrepancies that will be detected by the WIJ comparison and incorrectly applying WIJ blocks or journal data (see the "Journaling" chapter of this guide) to a version of a database for which they were not intended.

- Some storage subsystems, particularly local drives on laptops and workstations, use an unsafe form of write-back
 caching that is not backed by battery or by non-volatile memory. This defeats the two-phase write protocol that InterSystems IRIS performs and can lead to corruption following a hardware crash or power loss that is detected during
 WIJ compare. If this applies to your system, it is likely that MISMATCH.WIJ contains more up-to-date data and therefore
 can be safely applied to the databases (assuming the system is one with which an abundance of caution is not required).
- If you have made any changes to the databases following the WIJ comparison, MISMATCH.WIJ is no longer valid and it is not safe to apply the WIJ blocks.
- For servers with enterprise-class storage or any storage subsystem that does not utilize an unsafe form of write-back
 caching, mismatches found during WIJ compare are always unexpected and warrant careful attention, as they may be
 a sign of a more serious or more widespread problem.
- Depending on the root cause of the problem, it may be that the databases are intact and it is the WIJ that is corrupted. An integrity check of the affected databases can help determine whether this is likely.
- Because WIJ comparison only covers the blocks written most recently, there may be problems affecting additional
 blocks that could be detected by a full integrity check (see Verifying Structural Integrity in the "Introduction to Data
 Integrity" chapter of this guide).
- If the databases are small and/or time allows you can follow a procedure similar to the following for optimal safety:
 - 1. Run a full integrity check on the databases.
 - 2. If none are corrupt, rename MISMATCH.WIJ and start up.
 - 3. If one or more databases are corrupt, copy the IRIS.DAT files for all databases, apply all blocks from MISMATCH.WIJ and run a full integrity check again.
 - 4. If any database is corrupt after applying MISMATCH.WIJ, the databases can be reverted to the previous copy or restored from a previous backup.
- Encrypted databases are excluded from the WIJ block comparison.

If you are uncertain about how to proceed when WIJ mismatches are detected, contact the InterSystems Worldwide Response Center (WRC).

2.3 Limitations of Write Image Journaling

While the two-phase write protocol safeguards structural database integrity, it does not prevent data loss. If the system failure occurs prior to a complete write of an update to the WIJ, InterSystems IRIS does not have all the information it needs to perform a complete update to disk and, therefore, that data is lost. However, data that has been written to a journal file is recovered as described in Recovery in this chapter.

In addition, write image journaling cannot eliminate database degradation in the following cases:

- A hardware malfunction that corrupts memory or storage.
- An operating system malfunction that corrupts memory, the filesystem, or storage.
- The WIJ is deleted.

• The loss of write-back cache contents. In the event of a power outage, the write-back cache could be lost, leading to database degradation. To prevent this degradation, ensure that either the storage array uses nonvolatile memory for its write-back cache or the volatile write-back cache has battery backup.

If you believe that one of these situations has occurred, contact the InterSystems Worldwide Response Center (WRC).

3

Backup and Restore

This chapter outlines the factors to consider when developing a solid plan for backing up your system. It discusses techniques for ensuring the integrity and recoverability of your backups, as well as suggested backup strategies. The chapter also contains details about the procedures used to perform these tasks using either native or third-party utilities.

Backup strategies can differ depending upon your operating system, preferred backup utilities, disk configurations, and backup devices. If you require more information to help you to develop a backup strategy tailored for your environment, or to review your current backup practices, contact the InterSystems Worldwide Response Center (WRC).

3.1 Backup Integrity and Recoverability

Regardless of the backup strategies you use, it is critical to restore backups on a regular basis to validate your procedures. The best practice — to restore every backup of the production environment to an alternate server and then validate the integrity of the restored databases (see Verifying Structural Integrity in the "Introduction to Data Integrity" chapter of this guide) — provides the following advantages:

- Validates the recoverability of the backup media.
- Validates the physical integrity of the databases in the backup, avoiding the problem of false reporting of integrity
 errors when running integrity checks on volatile databases affected by ongoing updates.
- Provides a warm copy of the backup, substantially reducing the time required to restore the backup in the event of a
 disaster. If such an event occurs, you need only restore the updates in the journal files.
- Establishes a last known good backup.

The backup strategies described in this document preserve the physical structure of the database; therefore, a clean integrity check of the restored copy implies that the integrity of the production database was sound at the time of the backup. The converse, however, is not true: an integrity error detected on the restored copy of a database does not necessarily imply that there are integrity problems on the production database; there could, for example, be errors in the backup media. If you discover an integrity error in the restored database, immediately run an integrity check on the production database to verify the integrity of the production system.

To further validate that the application is working correctly on the restored database, you can also perform application-level checks. To perform these checks, you may need to restore journal files to restore transactional integrity. See the Importance of Journals section for more information.

Once you restore the backup and establish that it is a viable source of recovery, it is best to preserve that restored copy until you establish the next good backup. Therefore, the server on which you are validating the backup should ideally have twice the storage space required by production—space to store the last-known good backup as well as the backup you are currently

validating. (Depending on your needs, you may have less stringent performance requirements of the storage device used for restoring backups, allowing for a less expensive storage solution.) In this way, the last-known good backup is always available for use in a disaster even if validation of the current backup fails. To protect enterprise databases from a disaster that could destroy the data center, regularly ship backup media to a secure off-site location.

3.2 Importance of Journal Restore

A restorable backup of an InterSystems IRIS® database alone is not enough to provide a viable restore of production data. In the event of a failure that requires restoring from backup, you must also apply journal files (described in the "Journaling" chapter of this guide) to the restored copy of the database. This journal restore accomplishes the following:

- Restores all journaled updates from the time of the backup to the time of the failure.
- Restore the transactional integrity of the database by rolling back uncommitted transactions.

While the backup approaches described in this chapter can provide you with a physically consistent copy of databases that can be individually restored, you must also do a journal restore, even if you have no journals newer than the time of the backup, to ensure that any transactions that were open at the time of the backup are rolled back. This means that any backup approach you use *must* include each database's journal files.

When restoring a crash-consistent snapshot image of your entire system (as in common in a virtualized environment), normal InterSystems IRIS startup recovery automatically ensures both physical integrity (including completion of interrupted writes) through the write image journal or WIJ (see the "Write Image Journaling" chapter of this guide), and logical integrity (including transaction rollback) through journaling. This means, however, that any such snapshot backup image of a database must include all components from a single moment in time, including the database, the instance's installation directory, the WIJ, and the journal files, as well as any other external files associated with the database.

Be sure to see Journaling Best Practices in the "Journaling" chapter for important information about ensuring journal availability for recovery. In particular, as explained in that section, in the interests of performance and recoverability, InterSystems recommends placing the primary and alternate journal directories on storage devices that are separate from the devices used by databases and the WIJ, as well as separate from each other.

Important: It is critical to periodically test your entire disaster recovery procedure from start to finish. This includes backup restore, journal restore, and running simulated user activity on the restored environment.

3.3 Backup Strategies

The best strategies for backing up databases are external backup and online backup. This section describes these and other special-purpose strategies:

- External Backup
- Online Backup
- Cold Backup
- Concurrent External Backup

3.3.1 External Backup

External backup is currently the recommended best practice for backing up the entire database. It integrates easily with your existing system backup procedures and typically allows for a zero downtime backup. It is used primarily in conjunction with technology that provides the ability to quickly create a functional "snapshot" of a logical disk volume. Such technologies exist at various levels, from storage arrays, to operating systems, to simple disk mirroring. There are special considerations, discussed in this section, for systems on which snapshot technology is not available.

To ensure the integrity of the snapshot, InterSystems IRIS provides methods to freeze writes to databases while the snapshot is created. Only physical writes to the database files are frozen during the creation of the snapshot, allowing user processes to continue performing updates in memory uninterrupted. The snapshot is typically a snapshot of all file systems in use by the system. At a minimum, this includes all directories used by the InterSystems IRIS database in any way, such as the installation directory, database directories, journal and alternate journal directories, WIJ directory, and any directory containing external files used by the system. After writes are thawed, the snapshot may be backed up and then either rejoined to production or left online as a warm backup (depending on the specific technology used).

Note: To avoid the problem of false reporting of errors when running integrity checks on databases while they are in use, you can integrate the integrity checks into procedures like those described in this section, so that databases are checked immediately after the file system snapshot is taken. (See Verifying Structural Integrity in the "Introduction to Data Integrity" chapter of this guide for information about checking database integrity.)

The following table lists the advantages and disadvantages of the external backup strategy:

Advantages	Disadvantages
Allows zero downtime backups with no user interruption for most systems.	If writes are to be frozen for longer than 10 minutes, special consideration is required if you want to allow users to continue uninterrupted.
Integrates easily with existing backup procedures.	

The class methods that perform the database freeze and thaw operations are **Backup.General.ExternalFreeze()** and **Backup.General.ExternalThaw()**, respectively. In addition to pausing writes, the freeze method also handles switching journal files and writing a backup marker to the journal. The journal file continues to be written normally while physical database writes are frozen. If the system were to crash while the physical database writes are frozen, data would be recovered from the journal as normal during startup.

To summarize, the external backup involves the following steps:

- 1. Freeze writes to the database using the **Backup.General.ExternalFreeze()** method. Examples of the use of this method on various platforms are included in the class documentation.
 - **Note:** When the security configuration requires that the backup script supply database credentials, you can do this by redirecting input from a file containing the needed credentials. Alternatively, you can enable OS-level authentication and create an InterSystems IRIS account for the OS user running the script.
- 2. Create a snapshot of the file system using an external snapshot utility.
- 3. Resume database writes using the **Backup.General.ExternalThaw()** method.
- 4. Copy the snapshot to the backup media.

See the Backup.General class documentation in the *InterSystems Class Reference* for platform-specific examples of these methods.

For systems where snapshot technology is not available, a slower filesystem copy may be used in the external backup approach, described above, by replacing the creation of the snapshot with a filesystem copy. This can be done in one of the following ways or, depending on your needs, Online Backup may be an alternative:

- Zero Downtime: Specify a value for the ExternalFreezeTimeOut parameter when calling Backup.General.ExternalFreeze() and ensure that you have configured sufficient database cache to allow database updates to be buffered in memory for the duration of the freeze. In this case the system allows users to continue working for extended periods with physical writes frozen, up to the specified ExternalFreezeTimeOut. Journaling is critical to prevent data loss in the event that the system crashes while writes are frozen; in the event of a crash, system startup may take longer than usual. The Journal setting for Freeze on Error should be set to Yes (see the Journal I/O Errors section in the "Journaling" chapter of this guide for more information).
- Some User Interruption: Allow the expected freeze time to default to 10 minutes, after which users are paused until Backup.General.ExternalThaw() is called.

Important:

When the instance being backed up is the primary failover member in a mirror (see the chapter "Mirroring" in the *High Availability Guide*), an external freeze must not suspend updates for longer than the specified *ExternalFreezeTimeOut* parameter of **Backup.General.ExternalFreeze()**. If this happens, the mirror may fail over to the backup failover member, thereby terminating the backup operation in progress.

When the backup is complete, you can use the **Backup.General.ExternalSetHistory()** method to add a the backup to the backup history. Note that this can trigger a journal purge, depending on the **When to purge journal files > After this many successive backups** setting on the Journal Settings page (the default is 2); for more information, see Configuring Journal Settings in the "Journaling" chapter of this guide.

Note:

InterSystems IRIS supports the Volume Shadow Copy Service (VSS) on Windows by acting as a writer on behalf of its databases. Copies of InterSystems IRIS databases included in a VSS shadow are physically consistent, although not logically consistent with respect to transactions, and therefore may be restored individually. To ensure the transactional integrity of these restored databases, journal files should also be restored. Only databases that are mounted at the time of VSS shadow creation are included in the VSS shadow.

The VSS writer for Caché can be started only by an administrator.

On Windows systems, the EnableVSSBackup parameter in the iris.cpf file is set to 1 (enabled) by default. At InterSystems IRIS startup, the message "InterSystems IRIS VSS Writer started" is written to the messages log. When you create a VSS shadow copy, InterSystems IRIS automatically calls **Backup.General.ExternalFreeze()** and **Backup.General.ExternalThaw()**, as indicated by messages in the messages log.

3.3.2 Online Backup

InterSystems IRIS implements a proprietary backup mechanism designed to cause very minimal or no downtime to users of the production system. Online backup, which only backs up data in IRIS.DAT files, captures all blocks in the databases that are allocated for data. The output goes to a sequential file. This must be coordinated with a system backup to copy the online backup output file to the backup media along with other files. This system backup must include all file systems in use by the system, excluding IRIS.DAT files. At a minimum it must include the installation directory, the WIJ, journal and alternate journal directories, Web Gateway files, and any directory containing external files used by InterSystems IRIS. Do not include IRIS.DAT files.

The online backup procedure uses multiple passes to copy data, where each consecutive pass copies an incrementally reduced list of data blocks that changed during the previous pass. Generally, three passes are sufficient to complete a backup. During the entire final pass and for a brief moment during each prior pass, the process pauses writes to the database. The backup pauses physical writes to the database while allowing user processes to continue performing updates in memory.

Given the capabilities of today's external backup options, it is usually possible to find an external backup approach that suits your needs better than online backup. The following table lists the advantages and disadvantages of the online backup strategy:

Advantages	Disadvantages
Allows zero downtime backups for most systems. With old-format databases, there is minimal user interruption.	Backs up only databases; it does not back up external files, requiring a separate simultaneous system backup.
Supports cumulative and incremental backups on a regular basis.	Backup and restore are relatively slow.
Does not require enterprise-class storage.	Restoring a single database requires processing the entire backup file.
	Requires a running instance of InterSystems IRIS to perform a restore.
	Restores can be cumbersome with extremely large amounts of data.
	Backups of encrypted databases are unencrypted.
	Does not provide a hisorical backup catalog.
	Requires a significantly higher ratio of storage to data than most current methods.
	Lacks capabilities for integration with existing IT processes, cloud, and so on.

There are different types of online backup, which you can combine to manage the trade-offs between the size of the backup output and the time needed to recover from the backup:

- Full Backup Writes an image of all in-use blocks to the backup media.
- **Cumulative Backup** Writes all blocks that have been modified since the last full backup. Must be used in conjunction with a previous full backup.
- **Incremental Backup** Writes all blocks that have been modified since the last backup of any type. Must be used in conjunction with a previous full backup and (optionally) subsequent cumulative or incremental backups.

When using online backup, you must first run a full backup, after which you can run cumulative and/or incremental backups.

Online backup writes all database blocks to a single file in an interleaved fashion. When you back up an extremely large amount of data using the online backup, restores can become somewhat cumbersome; consider this when planning your backup strategy.

The restore validation process helps resolve any limitations by providing an online, restored copy of the databases. Use the same backup validation strategy when running incremental or cumulative backups. After you perform each incremental or cumulative backup, you can immediately restore to the alternate server. For example, a strategy of weekly full backups and daily incremental backups can work well because each daily backup contains only the blocks modified that day. Using this strategy, you should restore the incremental backup to the alternate server each day, and check the integrity of the restored databases.

Avoid overwriting the warm copy of the last known good backup when restoring the backup you are currently validating. The same concept applies when restoring an incremental to the existing restored database. After you establish that the backup is the last known good backup and before applying the next day's incremental or cumulative backup to it, save a copy so that the last known good backup is always online and ready for use in case the subsequent incremental restore fails. If a restored backup fails an integrity check, you must discard it; you cannot use it as a target of a subsequent incremental restore.

When restoring a system from an online backup, first restore the most recent full backup, followed by the most recent cumulative backup, and then all incremental backups taken since the cumulative backup.

For information about configuring online backup, see Configuring Online Backup Settings in this chapter; for information about performing online backups, see Managing Online Backups in this chapter.

3.3.3 Cold Backup

Cold backup refers to an external backup of the system taken when the database has been shut down normally. The backup is typically a backup of all file systems in use by the system. At a minimum, this includes all directories used by InterSystems IRIS in any way, including the installation directory, database directories, journal and alternate journal directories, WIJ directory, and any directory containing external files used by the database. This strategy may be appropriate for systems where InterSystems IRIS is typically shut down at night.

The following table lists the advantages and disadvantages of the cold backup strategy:

Advantages	Disadvantages
Simple procedure (stop and copy entire instance).	The database is not available.
Occasionally, it is useful to perform backups while the system is shut down.	

3.3.4 Concurrent External Backup

The Concurrent External Backup strategy is also known as "dirty backup." Today, this backup strategy is practical only in very special cases, typically only if your circumstances include one or more of the following conditions exist:

- InterSystems IRIS is clustered and downtime during backup is required to be minimal. It is only in such a cluster that other backup strategies do not provide a zero downtime backup.
- Snapshot technology is not available. If snapshot technology is available, External Backup can be used without incurring more downtime than Concurrent External Backup.
- Online Backup does not meet your needs. Online Backup is a simpler strategy and does not incur any more downtime
 than Concurrent External Backup.

The Concurrent External Backup strategy works by allowing an external system backup to run while normal databases writes are taking place. The copy of the databases captured in this manner are expected to be corrupt ("dirty"). This copy is then followed by an Incremental Online Backup, which captures any database blocks that were modified while the dirty copy took place. When restoring the backup, first the copy of the databases are restored, then the incremental backup is restored. The steps in detail are as follows:

1. Clear the list of database blocks modified since the last backup:

```
Do CLRINC^DBACK("QUIET")
```

For information, see CLRINC^DBACK in this chapter.

2. Copy the E.DAT database files, using your chosen operating system or third-party backup utility.

3. Call **\$\$BACKUP^DBACK** with the E parameter to indicate you used an external backup utility; for example:

```
Set x=\$BACKUP^DBACK("","E","Dirty external backup - incrementals must be applied.","","","")
```

For information, see BACKUP^DBACK in this chapter.

4. Perform an incremental backup, which copies any blocks that changed while the IRIS.DAT files were being copied; this may cause a very brief suspension of user processes in some configurations:

```
Set x=$$BACKUP^DBACK("","I","Nightly","test.bck","N","bck.log","QUIET","N","Y")
```

For information, see BACKUP^DBACK in this chapter.

The following table lists the advantages and disadvantages of the concurrent external backup strategy:

Advantages	Disadvantages
Provides a backup strategy with little or no interruption for sites that are not able to use one of the other recommended approaches.	Multiple files need to be restored (IRIS.DAT database files and incremental backup files), which causes the restore process to take longer.
	The procedure is complex.
	Requires a running instance of InterSystems IRIS to perform a restore.

3.4 Restoring from a Backup

It is critical to restore backups on a regular basis to test your procedures. As described in the Backup Integrity and Recoverability section in this chapter, InterSystems recommends restoring every backup onto an alternate server for validation and to serve as a warm copy of the restore.

Backup restores can be complex and time consuming, and the practice of regular restores helps mitigate the risks involved. Backup restore should be considered as part of your larger disaster recovery plan. Mirroring also provides alternate mechanisms for disaster recovery.

For additional help with backup restore scenarios, contact the InterSystems Worldwide Response Center (WRC).

This section includes the following topics:

- Backup Restore Scenarios
- Starting InterSystems IRIS for Maintenance
- Journal Restore Following Backup Restore
- Starting InterSystems IRIS Without Automatic WIJ and Journal Recovery

3.4.1 Backup Restore Scenarios

There are many scenarios where a backup restore is performed, often with unique sets of requirements and restore procedures. This section describes the following general restore scenarios, including variations for different backup strategies:

Full System Restore — All or most of the storage used by InterSystems IRIS or the system as a whole has been rendered
unusable. The full system backup has been restored from the backup media and now InterSystems IRIS must be
recovered to a production-ready state.

- Database-Only Restore Some or all InterSystems IRIS databases have been rendered unusable and must be recovered from backup.
- Restore/Migrate Database to Different Systems One or more databases are being restored to a different system. The target system may be newer hardware, a different platform, or another instance of the database on the same hardware. The target system may have a different file system layout. This may be used to add databases to a backup or async mirror member (see the "Mirroring" chapter in the *High Availability Guide*).

Important:

To avoid data incompatibility, the following requirements must be met when restoring or migrating a database to a different database instance than the one in which the backup was created:

- The target instance must use the same character width (8-bit or Unicode; see Character Width Setting in the *Installation Guide*) and the same locale (see Using the NLS Settings Page of the Management Portal in the "Configuring InterSystems IRIS" chapter of the *System Administration Guide*) as the source instance.
 - The one exception to this requirement is that an 8-bit instance using a locale based on the ISO 8859 Latin-1 character set is compatible with a Unicode instance using the corresponding wide character locale. For example, a database created in an 8-bit instance using the **enu8** locale can be used in a Unicode instance using the **enuw** locale.
- If the source and target instances are on systems of different endianness (see "Platform Endianness" in the "Supported Technologies" section of the online *InterSystems Supported Platforms* document for this release), the database must be converted to the endianness of the target instance before being used; see Considering Endianness for procedures.

3.4.1.1 Full System Restore

This scenario assumes the following starting point:

- The system where the restore is being performed is the same as, or identical to, the system that generated the backup.
- All filesystems (or at least all files backed up) have been restored from the backup media and the path names at the
 operating system level are unchanged.
- InterSystems IRIS is down and has not been started since the restore.

Full System Restore from External Backup or Cold Backup

If you used the External Backup or Cold Backup procedures described earlier in this chapter, your databases have been restored to a physically consistent state, but require at least transaction rollback to restore transactional consistently. You may also have journal files from after the time of the backup that you wish to apply before rolling back transactions. This section provides two recommended procedures, one of which you should use (depending on the details of the backup and restore you performed) for the required journal restore and transaction rollback.

If the image of the system that was restored is a snapshot of all elements of InterSystems IRIS, including the IRIS.WIJ file and journal files, from a single moment in time—that is, a *crash-consistent image*—and you have no newer journal files to apply, you can simply start InterSystems IRIS normally; InterSystems IRIS automatically performs journal recovery and transaction rollback. This is also true if you start InterSystems IRIS in maintenance mode, as described in Starting InterSystems IRIS for Maintenance.

Note:

The preceding recommendation applies after a crash-consistent snapshot of the entire system is restored even if normal external backup procedures (as described in External Backup and Cold Backup) were not used. In that case, the database files in the restored image may not be physically consistent, but are recovered automatically from the IRIS.WIJ file before automatic journal recovery and transaction rollback. For details on recovery, see Fundamental Data Integrity Protection and the sections that follow in the "Introduction to Data Integrity" chapter of this guide.

If the restored image does not includes all elements of InterSystems IRIS — that is, the IRIS.WIJ file, the journal files, and other InterSystems IRIS files — from a single moment in time, or if you have newer journal files to apply, you must use the following procedure to perform journal restore manually, which includes transaction rollback.

Important:

This procedure assumes that the IRIS.WIJ file was backed up as part of the backup snapshot and restored along with the databases and other files and file systems, which is the recommended way to plan your backup and restore procedures. If the IRIS.WIJ file is not included in your backup, see the Starting Inter-Systems IRIS Without Automatic WIJ and Journal Recovery section for information about how to start InterSystems IRIS.

- 1. Start InterSystems IRIS in maintenance mode as described in Starting InterSystems IRIS for Maintenance to perform a journal restore before users are allowed to access the system.
- 2. Restore the journals as described in Journal Restore Following Backup Restore.
- 3. After the journal restore is complete, you can perform application validation or additional maintenance as needed.
- 4. Restart InterSystems IRIS normally to allow users to access the system.

Full System Restore from Online Backup or Concurrent External Backup

The remainder of this section discusses the full system restore for users of Online Backup or Concurrent External Backup. You must perform an online backup restore to restore the databases from the backup output file. For online backup, the backup output file is written to the backup media as part of the full system backup, as described in the Online Backup section in this chapter.

online backup restore can be performed only on a running instance. Therefore, in this full system restore scenario, you must have a separate, secondary instance of InterSystems IRIS installed to run the restore of the primary instance's databases. The databases being restored do not need database or namespace definitions in the secondary instance.

The secondary instance (IrisDB-2) can be installed as part of this restore procedure by running the installer and selecting an instance name and installation directory that is different from the primary instance (IrisDB-1). Alternatively, to avoid this step at restore time, install the secondary "restore" instance when you decide to use the online backup strategy. This secondary instance should be shut down at all times and its installation directory backed up as part of the full system backup (that is, it would be a Cold Backup for the secondary instance). It could simply be started during a full system restore in order to run the online backup restore of the primary instance.

To restore from an online backup or concurrent external backup after a full system restore:

- 1. Using the secondary instance of the database (IrisDB-2), follow the instructions in the Online Backup Restore Utility section in this chapter to:
 - a. Restore the last full backup (if using Concurrent External Backup, the full backup was already restored externally during the filesystem restore).
 - b. If you have done cumulative backups since the full backup, restore the last one; otherwise, continue with the next step.
 - c. Restore all incremental backups done since the last cumulative backup (if there is one), or the last full backup (if there is no cumulative), in the order in which the backups were run.
- 2. Using the secondary instance of the database (IrisDB-2), follow the instructions in the Journal Restore Following Backup Restore section in this chapter.
- 3. Shut down the secondary instance of the database (IrisDB-2).
- 4. **IMPORTANT:** Start the primary instance (IrisDB-1) as described in the InterSystems IRIS Without Automatic WIJ and Journal Recovery section in this chapter. This step leaves the InterSystems IRIS database running in maintenance mode, which lets you perform application validation or additional maintenance.

5. Restart the primary instance (IrisDB-1) normally to allow users to access the system.

3.4.1.2 Database-Only Restore

This scenario assumes the following starting point:

- The system where the restore is being performed is the system that generated the backup and the databases are to be restored to their original location.
- You have identified the set of databases that require restoration.
- InterSystems IRIS may be up and users may be accessing other databases normally; the databases requiring restoration
 may not be required for startup.
- InterSystems IRIS may be unable to start fully; the databases requiring restoration may be required for startup, or damaged in a way that is preventing startup from completing.

Note: If you used External Backup or Cold Backup and you have many database that need to be restored, a simpler procedure may be to shut down InterSystems IRIS, restore ALL IRIS.DAT files, and perform the restore procedures described in the Full System Restore section in this chapter. This is especially true if the IRISSYS database must be restored.

To perform a database-only restore:

1. If the database is not started already, start it as described in the Starting InterSystems IRIS for Maintenance section in this chapter. Starting the database ensures that any pending automatic recovery to existing databases occurs immediately and does not conflict with the databases that you are about to restore on subsequent startup.

If the system is already started and you are restoring databases that users may attempt to access during the restore process, InterSystems recommends that you shut down and restart as described in Starting InterSystems IRIS for Maintenance.

The following table describes recommended procedures to resolve the problems that prevent a successful start of the database.

Problem	Solution
1. InterSystems IRIS fails to start	Starting InterSystems IRIS in maintenance mode allows the system to start even if a database that is required for startup cannot be mounted. However, if there is automatic journal recovery pending for a database that is marked as required for startup, the database does not skip it.
	Therefore, if damaged databases are still preventing the system from starting:
	a. Rename the IRIS.DAT files to make the database completely inaccessible.
	 b. Change the configuration to mark those databases as not required for startup,
	c. Try again to start the system as described in the Starting InterSystems IRIS for Maintenance.
2. If InterSystems IRIS cannot start due to a damaged IRISSYS database	Temporarily replace the IRISSYS database with a copy from an External Backup, or from a new install of the same version of InterSystems IRIS. This is temporary solution to get the system started to complete the restore procedure.

Problem	Solution
3. InterSystems IRIS still does not start	You may need to restore all databases following the procedure in Full System Restore.
	For additional help, contact the InterSystems Worldwide Response Center (WRC).

2. Depending on the strategy you used to back up the database, restore each database as follows:

Backup Strategy Used	Database Restoration Sub-procedure
External Backup or	For all databases except IRISSYS:
Cold Backup	a. Dismount the database from InterSystems IRIS.
	b. Copy the IRIS.DAT files from the backup media to their original locations.
	c. Remount the database.
	If you are restoring the IRISSYS database, restore it to an alternate directory temporarily.
Online Backup	Follow the instructions in theOnline Backup Restore Utility section in this chapter to:
	a. Restore the last full backup.
	b. If you have done cumulative backups since the full backup, restore the last one; otherwise, continue with the next step.
	c. Restore all incremental backups done since the last cumulative backup (if there is one), or the last full backup (if there is no cumulative), in the order in which the backups were run.
Concurrent External Backup	Perform the same steps as documented for External Backup (in this table) to restore the "dirty" copy of the IRIS.DAT files, then apply the incremental backup as documented for Online Backup (in this table).

- 3. Follow the instructions in the Journal Restore Following Backup Restore section in this chapter.
- 4. If you started InterSystems IRIS as described in the Starting InterSystems IRIS for Maintenance section in this chapter, and you are ready to allow users on the system, stop and restart InterSystems IRIS normally. You can perform application validation or additional maintenance before restarting.

Note: If you restored the IRISSYS database from External Backup or Cold Backup to a temporary alternate directory as described in the table in step 2 of this procedure, you must replace the existing IRISSYS database with the IRIS.DAT file from the temporary directory after shutting down (*before restarting*) InterSystems IRIS.

3.4.1.3 Restore/Migrate Database to Different Systems

This scenario assumes the following starting point:

- One or more databases are being restored to a target system that is different than the system that generated the backup.
- The target system may be newer hardware, a different platform, or simply a different instance of InterSystems IRIS on the same hardware.

- The target system may have a different filesystem layout than the source.
- InterSystems IRIS is already installed on the target system (you cannot copy an InterSystems IRIS installation or its IRISSYS database to a target machine that is not identical to the source).

The purpose of this type of restore includes, but is not limited to:

- Hardware migration
- Adding databases to a backup or async mirror member (see the "Mirroring" chapter in the High Availability Guide)
- Copying databases to another system for development, testing, or deployment

To restore/migrate databases to a different system:

Important:

Do not attempt to replace the IRISSYS database on the destination system with a restore of the IRISSYS database from the source unless it is part of a full system restore. Any data needed from the source IRISSYS database can be exported and then imported into the destination IRISSYS database.

If the source and target systems use a different endianness, see the "Considering Endianness" subsection following this procedure. If the source or target systems use database encryption, see the "Considering Database Encryption" subsection following this procedure.

1. Start InterSystems IRIS if not started already. Starting InterSystems IRIS ensures that any pending automatic recovery to existing databases occurs immediately and does not conflict with the databases that you are about to restore.

If you are restoring databases that users may attempt to access during the restore process, you should start as described in the as described in the Starting InterSystems IRIS for Maintenance section in this chapter.

2. Depending on the strategy you used to back up the database, restore each database as follows:

Backup Strategy Used	Database Restoration Sub-procedure
External Backup or	To restore databases:
Cold Backup	a. Dismount any databases being restored if they are mounted on the target instance.
	b. Copy the IRIS.DAT files from the backup media to the desired locations.
	c. Add any new databases to the configuration.
	d. Remount the database that you dismounted.
Online Backup	Follow the instructions in the Online Backup Restore Utility section in this chapter to:
	a. Restore the last full backup.
	b. If you have done cumulative backups since the full backup, restore the last one; otherwise, continue with the next step.
	c. Restore all incremental backups done since the last cumulative backup (if there is one), or the last full backup (if there is no cumulative), in the order in which the backups were run.
Concurrent External Backup	Perform the same steps as documented for External Backup (in this table) to restore the "dirty" copy of the IRIS.DAT files, then apply the incremental backup as documented for Online Backup (in this table).

3. Follow the instructions in the Journal Restore Following Backup Restore section in this chapter.

Note: If you are restoring from Online Backup to add databases to a backup or async mirror member (see the "Mirroring" chapter in the *High Availability Guide*), skip this step; journals are applied automatically in these cases.

4. If you started the system as described in the Starting InterSystems IRIS for Maintenance section in this chapter, and you are ready to allow users on the system, stop and restart the system normally.

Considering Endianness

Depending on the strategy you used to back up the database, an extra step is required to restore a backup on a target system whose Endianness (big-endian vs. little-endian) is different from the source system. For information about the Endianness of supported platforms, see "Platform Endianness" in the online *InterSystems Supported Platforms* document for this release.

- For External Backup or Cold Backup convert a copied IRIS.DAT file as described in the Using evendian to Convert
 Between Big-endian and Little-endian Systems section of the "Migration and Conversion Utilities" chapter of Specialized System Tools and Utilities.
- For Online Backup or Concurrent External Backup You cannot restore a IRIS.DAT on a target system whose endianness is different from the source system. Instead, do the following:
 - 1. Use the procedure outlined in this section to restore on a system whose endianness is the same as the source. This restore must include any required journal restore (see step 3 in the procedure).
 - 2. Shut down InterSystems IRIS or dismount the databases.
 - 3. Convert the database as described in the Using cvendian to Convert Between Big-endian and Little-endian Systems section of the "Migration and Conversion Utilities" chapter of *Specialized System Tools and Utilities*.
 - 4. Copy the IRIS.DAT files to the target system.
 - 5. Use the procedure outlined in this section to restore on the target system with the converted databases, as described here for External Backup.

Considering Database Encryption

When you restore a database on a target system, it may be necessary to change the database encryption key for the restored database. Depending on the strategy you used to back up the database, you may have to convert the key on the restored database, as follows:

- For Online Backup Online backup stores the database contents unencrypted. When restoring an online backup file to an existing encrypted database on a target system, the online backup restore utility encrypts the file dynamically on the target system; otherwise the restored database is unencrypted.
- For External Backup, Cold Backup or Concurrent External Backup Depending on the state of the IRIS.DAT file on the source system, you may need to manage the database's encryption after restoring it on the target system; for example, if the database files on the source and target systems use different encryption keys, you activate the key from the source on the target (see the "Managed Key Encryption" chapter of the Security Administration Guide), or convert the restored database to use the key on the target (see the "Performing Encryption Management Operations" chapter of the Security Administration Guide).

3.4.2 Starting InterSystems IRIS for Maintenance

During any restore procedure it is critical that no application activity occurs in the databases being restored until you are completely finished with the backup restore and journal restore, and you have completed any desired application-level validation. If you have in your application or operating environment, a mechanism to ensure that no user activity can occur

when the database is started, then you can use that mechanism; for example, if your application is entirely web-based, shutting down the web servers may be sufficient to ensure that only administrators involved in the restore procedure have access to the system.

InterSystems IRIS provides a mechanism to let you start the system with limited access while maintenance is performed.

To start InterSystems IRIS for maintenance:

- 1. Start InterSystems IRIS in emergency access mode, specifying a unique username and password to be used for all maintenance activity; this username and password should not match any existing user:
 - On Windows, invoke the following command as administrator from the bin directory of your installation:

```
iris start <db-instance-name> /EmergencyId=<username>,<password>
```

• On UNIX®/Linux and MacOS platforms, invoke the following command:

```
iris start <db-instance-name> EmergencyId=<username>,<password>
```

For more information, see the Emergency Access section of the "System Management and Security" chapter of the Security Management Guide.

- 2. Perform the remaining portions of the restore procedure as documented for your restore scenario.
- 3. After completing the restore procedure including any journal restore, application validation, or other maintenance activities make the system available to users as follows:
 - a. Shut down the database.
 - Start the database without the EmergencyId switch.

3.4.3 Journal Restore Following Backup Restore

It is necessary to apply journal files following backup restore. As described in the Importance of Journals section of this chapter, you usually have journal files available at restore time that are newer than the backup. Applying these journal files restores all journaled updates from the time of the backup to the time of the disaster.

Additionally, applying journals is necessary to restore the transactional integrity of your restored database (which may have partial transactions) by rolling back uncommitted transactions. This is required even if you only have journal files up to the moment of the backup and not newer.

Important: If you do not have journal files at least up to the moment of the backup, do not apply any journal files.

When you start the restore, you must select a start point for journal restore. The journal restore may then need to look backwards in the journal stream to find the beginning of a transaction that began prior to the backup. When you use Online Backup, the backup stores a suggested start point; when you back up using the ^DBACK or ^BACKUP utilities, the utility displays information about the oldest journal file required for transaction rollback during restore at the beginning of the third and final pass.

For information about how to apply journals following the backup restore, see Restore All Databases Using ^DBREST and the Restore Journal Files section in the "Journaling" chapter of this guide.

3.4.4 Starting InterSystems IRIS Without Automatic WIJ and Journal Recovery

Some of the restore procedures described in this chapter require starting InterSystems IRIS in a way that prevents the automatic recovery of databases at startup from occurring. This is specified when all of the recovery is to be done manually in the restore procedure and the automatic startup recovery may be incompatible with the manual recovery effort.

CAUTION: The restore procedures documented in this chapter explicitly state when the following procedure is necessary. Performing the procedure at any other time is extremely dangerous and could damage database integrity.

To start InterSystems IRIS without automatic WIJ and Journal Recovery:

- 1. Remove but do not delete the IRIS.WIJ file, so that it remains available for analysis, as follows:
 - a. Check the startup.last file in the manager directory for the line wijlast=.
 - b. Move or rename the IRIS.WIJ file in the directory specified in that line. If a null directory is specified, the IRIS.WIJ file is located in the manager directory.
- 2. Start InterSystems IRIS in emergency access mode, specifying a unique username and password to be used for all maintenance activity; this username and password should not match any existing user:
 - On Windows, invoke the command from the bin directory of your InterSystems IRIS installation:

```
iris start <iris-instance-name> /EmergencyId=<username>,<password>
```

• On UNIX®/Linux and macOS platforms, invoke the command:

```
iris start <iris-instance-name> EmergencyId=<username>,<password>
```

For more information, see the Emergency Access section in the "System Management and Security" chapter of the *Security Administration Guide*.

- 3. In most cases, InterSystems IRIS does not start completely due to the missing journal recovery information in the WIJ. If InterSystems IRIS starts normally, skip the remainder of this procedure.
- 4. Follow the instructions in the messages.log to enter InterSystems IRIS with the -B option and run do ^STURECOV:
 - a. Select option 8 to reset InterSystems IRIS to start without journal recovery.
 - b. Select option 9 to shut down InterSystems IRIS (using the displayed instructions).
- 5. Start InterSystems IRIS in emergency access mode again, as described in step 2.
- 6. Perform the remaining portions of the restore procedure as documented for your restore scenario.
- 7. After completing the restore procedure including any journal restore, application validation, or other maintenance activities you can make the system available to users as follows:
 - a. Shut down InterSystems IRIS.
 - b. Start InterSystems IRIS without the EmergencyId (/EmergencyId on Windows platforms) switch.

3.5 Configuring Online Backup Settings

Online backup is one of the backup strategies that you can implement. For information about the supported strategies and the best practices for using them, see the Backup Strategies section in this chapter.

You can configure the online backup settings using the choices in the **System Administration > Configuration > Database Backup** menu of the Management Portal. You can also perform some of these tasks using the methods in the Backup. General class. This section points you to the appropriate method where it applies.

When an online backup is complete, your description of the backup is written to the backup history (see View Backup History). Note that this can trigger a journal purge, depending on the When to purge journal files > After this many successive backups setting on the Journal Settings page (the default is 2); for more information, see Configuring Journal Settings in the "Journaling" chapter of this guide.

From the System Management portal you can perform the following configuration tasks:

- Define Database Backup List
- Configure Backup Tasks
- Schedule Backup Tasks

Note: The configuration tasks are in the management portion of the Management Portal application; you must have the appropriate manager-level security to configure the backup settings.

3.5.1 Define Database Backup List

InterSystems IRIS maintains a database list that specifies the databases to back up. You can display this list by navigating to the System Administration > Configuration > Database Backup > Database Backup List page of the Management Portal.

Use the arrow buttons to move the databases you *do not* want to back up to the **Available** list and the databases you *do* want to back up to the **Selected** list. Click **Save**. If you do not select any databases, the system backs up all databases.

When you add a new database to your system, the system automatically adds it to the database list. If you do not need to include the new database in your backup plan, be sure to remove it from the **Backup Database List**.

Note: The defined database list is ignored by the *FullAllDatabases* backup task, which performs a backup of all databases excluding the **IRISTEMP**, **IRISLIB**, and **IRISLOCALDATA** databases. You should not attempt to back up and restore these database.

You can also maintain the backup database list using the ^BACKUP routine or the

Backup.General.AddDatabaseToList() and **Backup.General.RemoveDatabaseFromList()** methods. See the Backup.General class description in the *InterSystems Class Reference* for details on using these methods.

3.5.2 Configure Backup Tasks

InterSystems IRIS provides different types of backup tasks; each is listed as an item on the **Database Backup Settings** menu. The configuration backup tasks are:

- Configure Full Backup of All Databases
- Configure Full Backup of the Database List
- Configure Incremental Backup of the Database List
- Configure Cumulative Backup of the Database List

These are predefined backup tasks that you can run on-demand from the **System Operation** > **Backup** page of the portal. You can also schedule combinations of these backup tasks using the Task Manager. See the **Schedule Backup Tasks** section in this chapter for details.

The process for configuring each of these tasks is the same. The **Name**, **Description**, and **Type** fields are read-only and reflect the menu choice as described in the following table.

Table 3–1: Backup Task Descriptions

Name	Description	Туре
FullAllDatabases	Full backup of all commonly updated databases, whether or not they are in the Backup Database List.	Full
FullDBList	Full backup of the InterSystems IRIS databases listed in the Backup Database List.	Full
IncrementalDBList	Incremental backup of changes made to the data since the last backup, whether full or cumulative. Backup is performed on the databases currently listed in the Backup Database List.	Incremental
CumulncrDBList	Cumulative and Incremental backup of all changes made to the data since the last full backup. Backup is performed on the databases currently listed in the Backup Database List.	Cumulative

To send backup output to a directory on disk, specify the file pathname in the **Device** field. Click **Browse** to select a directory.:

The Define Database Backup List section describes how to maintain the Backup Database List.

3.5.2.1 Backup File Names

By default, backup files are stored in install-dir\Mgr\Backup. The backup log files are stored in the same directory. Backup files have the suffix .cbk. Backup log files have the suffix .log.

Backup files and backup log files use the same naming conventions:

- The name of the backup task, followed by an underscore character (_)
- The date of the backup, in yyyymmdd format, followed by an underscore character (_)
- An incremental number, nnn, for that task, for that day
- The .log or .cbk suffix

Where *nnn* is a sequence number incremented for that backup task on that date.

3.5.3 Schedule Backup Tasks

You should ideally set up a schedule for running backups. Backups are best run at a time when there are the least amount of active users on the system.

In addition to the four on-demand backup tasks supplied by default, you can create additional definitions of these four backup tasks. For example, to alternate backups between two disk drives, you could create a backup task for each drive.

Use the InterSystems Task Manager to schedule these backup tasks:

- 1. Navigate to the Task Scheduler wizard in the Management Portal (System Operation > Task Manager > New Task).
- 2. Click Schedule New Task.
- Specify the Task name, Description, Task type, in addition to any changes to the defaults and click Next.
- 4. Enter your desired scheduling information and click **Finish**.

You can now view your task on the View Task Schedule page (System Operation > Task Manager > View Task Schedule) and manage it as you do other tasks by clicking Details on its row.

3.6 Managing Online Backups

Online backup is one of the backup strategies that you can implement. For information about the supported strategies and the best practices for using them, see the Backup Strategies section in this chapter.

You can manage online backups from both the Management Portal and the InterSystems **ACKUP** utility. This section focuses on the portal procedures and, where applicable, points to the section that describes the utility procedure.

You can run database backup tasks and view backup history from the **System Operation** > **Backup** page of the Management Portal. If you schedule additional backup tasks using the Task Manager, you can manage those from the **System Operation** > **Task Manager** > **Task Schedule** page of the Management Portal.

You can perform the following backup tasks from the System Management portal:

- Run Backup Tasks
- View Backup Status
- Abort a Running Backup
- View Backup History

When you add a new database to your system, you must perform a full backup. You cannot perform an incremental backup until a full backup exists. If you intend to use the incremental and cumulative backup options, you must maintain the backup database list and run a full backup on that list.

After installation, InterSystems recommends that you perform a *FullDBList* backup to establish a complete backup for subsequent use by the other backup tasks.

Note: These backup tasks are in the operations portion of the Management Portal application; you must have the appropriate operator-level security to run the backup tasks.

3.6.1 Run Backup Tasks

There are four types of backup tasks you can run from the Management Portal **Backup** menu options (**System Operation** > **Backup**), each having its own menu item:

- Run Full Backup of All Databases
- Run Full Backup of the Backup Database List
- Run Incremental Backup of the Backup Database List
- Run Cumulative Backup of the Backup Database List

You must have performed a *full* backup on a database before performing an *incremental* or *cumulative* backup on that database. Use the following procedure to run an online backup:

- 1. Click the menu item of the appropriate backup type.
- 2. Verify that the settings in the Run Backup Task box are correct.
- If the backup options are correct, click OK to start the backup.
 Otherwise, follow the procedures in the Configuring Online Backup Settings section to update them.
- While the backup is running, you can view the status of the running backup by clicking the text next to Backup started.
 See View Backup Status for details.

You can also run the last three of these backup tasks by choosing option 1) Backup from the **ACKUP** utility or running the **DBACK** utility. See Back Up Databases Using ADBACK for details.

Multivolume Backups

A backup may require multiple disk files. Currently, there is no way to perform a multivolume backup using the Management Portal. If you require a multivolume backup, use the **^BACKUP** utility. If a disk-full condition occurs, **^BACKUP** prompts you for the name of another disk file on another disk.

In the event of an error during backup, you cannot restart the backup on a second or subsequent volume. You must restart the backup from the beginning.

See Estimate Backup Size Using ^DBSIZE for instructions on estimating the size of your backup before you run these tasks.

3.6.2 View Backup Status

Click **View Backup Status** from the **System Operation** > **Backup** page or click **View** on the running backup process to monitor the progress of the backup operation. The same information is recorded in the log file for that backup operation, which you can later view from the **View Backup History** page.

Starting a backup updates the **Time** and **Status** columns of the listing. The **Time** column records the date and time you initiate the backup, not when it completes. The **Status** column is updated to Running.

Completing a backup again updates the Status column to indicate the final status of the backup. For example:

- Completed indicates the backup successfully completed.
- Failed indicates the backup could not be performed or was aborted by the operator.
- Warning indicates problems occurred during the backup, but it completed.

The associated backup log contains helpful information; click View next to the task to view the backup log.

The next section, Abort a Running Backup describes an additional option that appears for a backup that is running.

3.6.3 Abort a Running Backup

There are three ways for you to abort a running backup:

- Navigate to the View Backup Status page, click Abort next to the running task and then click OK to verify your request to abort the backup.
- Call the methods of the Backup.General class; see the Backup.General.GetAbortStatus(),
 Backup.General.ClearAbortStatus(), and Backup.General.AbortBackup() method descriptions in the InterSystems Class Reference for details.
- Choose the abort option in the **BACKUP** routine; see Abort a Running Backup Using **BACKUP** for details.

3.6.4 View Backup History

Every backup operation creates a separate backup log file. The logs follow the naming convention described in Backup File Names.

From the portal you can view a list of system backup logs from completed backup tasks:

- 1. Navigate to the **System Operation** > **Backup** page of the Management Portal.
- Click View Backup History in the right-hand column to display the Backup History page, which lists information about the completed backups.

3. To view the results of a particular backup, click **View** in the right-hand column of the appropriate row. You can view the contents of a backup log file and search for a string within that file.

Backup Errors

If a backup encounters any I/O errors, the backup aborts and logs a system error in the backup log file. Information in these log files allows you to quickly see where the problem occurred so that you can fix it.

One cause of backup failure is trying to perform a backup on a dismounted database. In the event of an error during backup, the backup utility allows you to retry the device on which the error occurred. Alternatively, you can abort the backup.

3.7 Online Backup Utilities

InterSystems IRIS provides utilities to perform backup tasks. The **^BACKUP** routine provides menu choices to run common backup procedures, which you can also run independently and in some cases non-interactively using scripts.

The utility names are case-sensitive. Run all these utilities from the %SYS namespace:

- Estimate Backup Size Using ^DBSIZE
- Perform Backup and Restore Tasks Using ^BACKUP
- Backup Databases Using ^DBACK
- Edit/Display List of Directories for Backup Using ^BACKUP
- Abort a Running Backup Using ^BACKUP
- Display Information About a Backup Volume Using ^BACKUP
- Monitor Backup or Restore Progress Using ^BACKUP

InterSystems IRIS maintains a bitmap list of database blocks modified since the last backup; you can use this list to keep track of database updates during backup stages. The **^DBSIZE** utility, which inspects these bitmaps, helps you calculate the size of a backup. The InterSystems IRIS **^BACKUP** utility uses a multipass scan of these lists to back up only the blocks modified since the last pass.

3.7.1 Estimate Backup Size Using ^DBSIZE

Immediately before performing an InterSystems IRIS backup, you can estimate the size of its output using the **^DBSIZE** utility. It is only an estimate, since there is no way of knowing how many blocks will be modified once the backup starts. You can obtain a more accurate estimate by preventing global updates while running **^DBSIZE**, and then running your backup before resuming global updates.

You can estimate the size of backups in two ways:

- Run ^DBSIZE interactively
- Call ^DBSIZE from a routine

Note: A database must be in the database backup list before you can evaluate it with **DBSIZE**. See the *Define Database Backup List* section for details.

3.7.1.1 Run ^DBSIZE Interactively

The following procedure describes the steps necessary to run **DBSIZE** interactively:

1. Open the Terminal and run the utility from the %SYS namespace:

```
%SYS>Do ^DBSIZE
```

2. InterSystems IRIS displays the **DBSIZE** main menu:

Incremental Backup Size Estimator

```
What kind of backup:

1. Full backup of all in-use blocks
2. Incremental since last backup
3. Cumulative incremental since last full backup
4. Exit the backup program
1 =>
```

- 3. Enter the appropriate menu option to select the type of backup for which you want an estimate: full, incremental, or cumulative. The prompts are the same for each type.
- 4. At the following prompt either press **Enter** to suspend updates so that you get a more accurate estimate or enter **No** to allow updates:

```
Suspend Updates? Yes=>
```

If you choose to suspend updates, you receive the following message:

```
WARNING: Switch is set and may affect production for up to 30 seconds. Waiting for disk cleanup to finish... ready.
```

5. The output first shows you how many InterSystems IRIS blocks you need to do the type of backup you selected. It shows an estimate for each directory in the backup list and a total. The following is an example of the display for a full backup:

Directory	In-Use Blocks	Block Size
<pre>c:\iris-install\mgr\ c:\iris-install\mgr\irisaudit\ c:\iris-install\mgr\user\</pre>	19,963 189 61	(8KB) (8KB) (8KB)
Total number of database blocks:	36,228	

The display for an incremental and cumulative backup looks similar to this:

Directory	Modified Blocks	Block Size
<pre>c:\iris-install\mgr\ c:\iris-install\mgr\irisaudit\ c:\iris-install\mgr\user\</pre>	5 3 1	(8KB) (8KB) (8KB)
Total number of database blocks:	10	

6. The utility then displays information about backup disk file space:

```
Total backup size, including overhead of volume and pass labels:

For a disk file:

Number of 512-byte blocks: 598,092 (306,223,104 bytes)
```

3.7.1.2 Use the ^DBSIZE Function

You can also call **DBSIZE** from a routine. To do so, you use the following function:

```
$$INT^DBSIZE(backup_type)
```

Important: The values of *backup_type* differ from the menu option numbers when running **^DBSIZE** interactively.

backup_type	Description
1	Incremental backup
2	Full backup
3	Cumulative incremental backup

For example, to see the size estimate for running a full backup:

```
%SYS>w $$INT^DBSIZE(2)
18950^5^160952320^2710^160309248^313104^313104
```

The returned value is seven numbers separated by a caret (^). In this example, the returned value 18950 is the total estimated size of the backup, in blocks; the returned value 5 indicates the number of database directories to back up. The following table shows what is contained in each piece of the output.

Position of output	Description
Piece 1	Number of database blocks for backup (-1 if error during processing or invalid parameter)
Piece 2	Number of directories to back up
Piece 3	Number of bytes for media (not including inter-record gaps)
Piece 4	Number of blocks for media
Piece 5	Number of bytes for a disk file
Piece 6	Number of 512-byte blocks for a disk file

The following shows the output of calling the **^DBSIZE** function for each type of backup:

```
%SYS>w $$INT^DBSIZE(1)
466^5^4157440^70^4122624^8052^8052
%SYS>w $$INT^DBSIZE(2)
18950^5^160952320^2710^160309248^313104^313104
%SYS>w $$INT^DBSIZE(3)
466^5^4157440^70^4122624^8052^8052
```

3.7.2 Perform Backup and Restore Tasks Using ^BACKUP

The InterSystems IRIS **ACKUP** utility allows you to perform InterSystems IRIS backup and restore tasks from a central menu as shown in the following example:

```
%SYS>Do ^BACKUP

1) Backup
2) Restore ALL
3) Restore Selected or Renamed Directories
4) Edit/Display List of Directories for Backups
5) Abort Backup
6) Display Backup volume information
7) Monitor progress of backup or restore
Option?
```

Enter the appropriate menu option number to start the corresponding routine. Press **Enter** without entering an option number to exit the utility.

Subsequent sections in this document describe the utilities started by choosing the corresponding option:

- Back Up Databases Using ^DBACK
- 2. Restore All Databases Using ^DBREST
- 3. Restore Selected Databases Using ^DBREST
- 4. Edit/Display List of Directories for Backup Using ^BACKUP
- 5. Abort a Backup Using ^BACKUP
- 6. Display Information About a Backup Volume Using ^BACKUP
- Monitor Backup or Restore Progress Using ^BACKUP

3.7.3 Back Up Databases Using ^DBACK

The InterSystems **^DBACK** utility allows you to backup InterSystems IRIS databases. Running the **^DBACK** utility is equivalent to choosing option 1 from the **^BACKUP** utility menu. The following is an example of running the utility from the Terminal:

- 1. First, make sure you have defined your database backup list and choose your output device for the backup file.
- 2. From the %SYS namespace run the **^DBACK** routine:

```
*SYS>Do ^DBACK

Backup Utility

What kind of backup:

1. Full backup of all in-use blocks

2. Incremental since last backup

3. Cumulative incremental since last full backup

4. Exit the backup program
```

- 3. Select which backup type (full, incremental, or cumulative) to run by entering the appropriate menu option number. The procedure for running the backup is the same regardless of what type you run.
- 4. Enter the output device and a description of the backup:

```
Specify output device (type STOP to exit)
Device: c:\iris-install\mgr\backup\FullDBList_20081201_003.cbk =>
Backing up to device: c:\iris-install\mgr\backup\FullDBList_20081201_003.cbk
Description: Full Backup using ^DBACK
```

The device defaults to that of the last backup. This example uses the format of the online backup device.

5. The utility then displays a list of the database directories to back up (those in your database backup list). For example:

```
Backing up the following directories:
c:\iris-install\mgr\
c:\iris-install\mgr\irisaudit
c:\iris-install\mgr\user\
```

6. Answer Y to start the backup. The journal file switches and you see a display of the backup progress:

```
Start the Backup => [answer Y or N] => y
Journal file switched to:
c:\iris-install\mgr\journal\20081201.004
.
Starting backup pass 1
```

7. At the beginning of the third and final pass, the utility displays information about the oldest journal file that will be required for transaction rollback when the backup is restored, for example:

```
Starting backup pass 3

Journal file 'c:\intersystems\test62\mgr\journal\20180919.003' and the subsequent ones are required for recovery purposes if the backup were to be restored

Journal marker set at offset 197180 of c:\intersystems\test62\mgr\journal\20180919.003
```

This information is available in the backup log.

8. When the backup finishes successfully, you see the following:

```
***FINISHED BACKUP***
Global references are enabled.
Backup complete.
%SYS>
```

Note:

Following successful completion of the backup, ^DBACK writes your description of the backup to the backup history (see View Backup History). Note that this can trigger a journal purge, depending on the When to purge journal files > After this many successive backups setting on the Journal Settings page (the default is 2); for more information, see Configuring Journal Settings in the "Journaling" chapter of this guide.

The next section, External Entry Points for ^DBACK, explains how to call this utility from your external backup procedures using the provided entry points.

3.7.3.1 External Entry Points for ^DBACK

The entry points provided for the **^DBACK** utility are for you to use in your external backup procedures. You must use them as described to ensure the integrity of the backup. All of the entry points return 1 if they are successful or 0 if they fail. The following external entry points are available for the **^DBACK** routine:

- BACKUP^DBACK
- LISTDIRS^DBACK
- CLRINC^DBACK (Concurrent External Backup Only)

BACKUP^DBACK

This procedure invokes a backup using the passed arguments to satisfy the questions that are asked during the interactive execution of **^DBACK**.

```
BACKUP^DBACK(argfile,TYPE,DESC,OUTDEV,kiljrn,LOGFILE,MODE,clrjrn,swjrn,nwjrnfil,quietimeout,taskname)
```

The capitalized arguments are the ones most important to the backup procedure in this release of InterSystems IRIS. Due to changes in the journaling mechanism, you can no longer delete the current journal file, clear the current journal file, or specify a new journal file name in the backup utilities. As a result, this version of InterSystems IRIS ignores many of the arguments as described in the following tables.

Argument	Description
argfile	No longer used; always use a null value.

Argument	Description
TYPE	Type of backup (required) Values:
	I — Incremental
	C — Cumulative
	F — Full
	E — External full backup using a third-party or operating system backup utility
DESC	Description stored in the backup label and in the backup history global. Free form text string that can be empty.

External (type \mathbb{E}) backups ignore the arguments in the following table. Whether they are ignored or required for other backup types is also indicated in the table.

Argument	Description
OUTDEV	Output filename for the backup (required).
kiljrn	Indicates whether to switch the journal file: Y — switch the journal file (recommended)
	N — do not switch
	(No longer allows deletion of the current journal file)
LOGFILE	Indicates whether or not to log and where to write the output of the function: File name — writes all messages that would be sent to the terminal to this file (recommended) Null value — no log file
MODE	Indicates what output to write to the terminal during the procedure; this does not control what is written to the log file. Values:
	"NOISY" — write all text on terminal (default)
	"QUIET" — only write text related to abnormal conditions
	"NOINPUT" — do not send any output as no terminal is attached to this process; if a read is required, the backup aborts
clrjrn	Indicates whether to switch the journal file: Y — switch the journal file (recommended)
	N — do not switch
	(No longer allows clearing of the current journal file)
swjrn	Indicates whether or not to switch the journal file: Y — switch the journal file (recommended)
	N — do not switch (If the <i>clrjrn</i> or <i>kiljrn</i> arguments have a value of Y, <i>swjrn</i> converts to Y and the journal file is switched)
nwjrnfil	(Ignored)

The following are two optional arguments:

Argument	Description
quietimeout	Number of seconds to wait for the system to quiesce before aborting the backup. A zero (0) or negative value indicates waiting indefinitely (default = 60).
taskname	Task name used internally for backup types F, I, and C.

Using these external entry points requires read/write access to the *^SYS* global for all modes. An external (type E) backup deletes the .IND, .INE, and .INF files in the directories in the *^SYS* global. The routine also records this backup with the description in the backup history global as being the LASTFULL backup.

If you set switch 10 when you call this routine, it remains set throughout the backup. If you set switch 13, then the procedure converts it into a switch 10 while the backup performs necessary **Set** and **Kill** commands and then restores it to switch 13 upon exit.

The routine performs the **New** command on variables defined by this entry point, but does not on those defined within the body of the **^DBACK** procedure. As a result, you must be careful to protect all other variables in any calling routine prior to calling **^DBACK**.

Return values:

- 0 failed; check log file if specified.
- 1 success
- 1, warning message string success, but with warnings. The warnings are separated by a tilde character (~) in the string.

LISTDIRS^DBACK

This procedure opens an output file and writes a list to it of database directories included in a backup. If the list is empty, the procedure backs up all database directories (except **IRISTEMP**, **IRISLIB**, and **IRISLOCALDATA**). The format of the function is as follows:

LISTDIRS^DBACK(file, mode)

Argument	Description
file	Name of the output file name to which the function writes the list of database directories in the backup list.
mode	Indicates what output to write to the terminal during the procedure. "QUIET" — Only display return value and text related to abnormal conditions. Any other value — Display the directory list at the terminal.

The following is an example of the output displayed on the terminal:

Notes for this procedure:

- Requires read access to the ^SYS global.
- Does not set or clear any switches.

Issues a New command on all local variables.

CLRINC^DBACK (Concurrent External Backup Only)

This procedure is called to clear the incremental backup bitmaps that mark blocks as modified for the databases in the backup list. At the same time it also deletes the backup history as it is no longer possible to do any sort of a backup without first performing a full backup. This procedure is designed to be used prior to doing an external full backup with InterSystems IRIS running. If you perform an external backup with InterSystems IRIS down, then before shutting down the system, call this entry point. The format of the function is as follows:

CLRINC^DBACK(mode)

Argument	Description
mode	Indicates what output to write to the terminal during the procedure. "QUIET" — Only display return value and text related to abnormal conditions.
	Any other value — Display the directory names as they are processed.

For example:

```
%SYS>w $$CLRINC^DBACK("QUIET")
1
%SYS>

Cleared incremental backup bitmap in c:\iris-install\mgr\
    Cleared incremental backup bitmap in c:\iris-install\mgr\
    Cleared incremental backup bitmap in c:\iris-install\mgr\irisaudit\
    Cleared incremental backup bitmap in c:\iris-install\mgr\irisaudit\
    SYS>
```

Notes for this procedure:

- Requires read and write access to the ^SYS global.
- Records the state of switch 13, sets it if it is not already, and restores it to its original state upon exit.
- Issues a **New** command on all local variables except those defined in the main backup procedure.
- Leaves directories dismounted if they are dismounted when you call this routine.

3.7.4 Edit/Display List of Directories for Backup Using ^BACKUP

Important: When editing the database list use the database name, not the directory name. This is consistent with the way the backup configuration works in the Management Portal.

Options of the InterSystems IRIS ****BACKUP** utility allow you to backup InterSystems IRIS databases or to restore an already created backup. If you have not created a list of databases, then the utility includes all databases in the backup. When you create a list, it applies to all aspects of the InterSystems IRIS backup system including calls to the entry points of the ****DBACK*** utility in scripted backups.

The following examples show sample output from each option on the menu:

1. From the ^BACKUP menu, choose option 4 to display the database backup list maintenance menu:

```
%SYS>Do ^BACKUP

1) Backup
2) Restore ALL
3) Restore Selected or Renamed Directories
4) Edit/Display List of Directories for Backups
5) Abort Backup
6) Display Backup volume information
7) Monitor progress of backup or restore

Option? 4

1) Add a database to the backup
2) Remove a database from the backup
3) Show current list of databases included in backups
4) Show list of available databases
5) Display last full backup information
```

1) Add a database to the backup

2. To add a database to the list choose option 1. This example also uses option 3 to show that the database is added to the current list.

```
2) Remove a database from the backup
3) Show current list of databases included in backups
4) Show list of available databases
5) Display last full backup information
Option? 1
Enter database to add? DATA
Enter database to add?
You've selected DATA to be added to the backups
Are you sure you want to do this (yes/no)? y
Completed.
1) Add a database to the backup
2) Remove a database from the backup
3) Show current list of databases included in backups
4) Show list of available databases
5) Display last full backup information
The following 3 databases are included in backups
     IRISAUDĪT
                               C:\iris-install\Mgr\irisaudit\
     IRISSYS
                               C:\iris-install\Mgr\
     USER
                               C:\iris-install\Mgr\User\
```

3. To remove a database to the list choose option 2. This example also uses option 3 to show that the database is removed from the current list.

```
1) Add a database to the backup
2) Remove a database from the backup
3) Show current list of databases included in backups
4) Show list of available databases
5) Display last full backup information
Option? 2
Enter database to remove (^ when done)?
Enter database to remove (^ when done)?
You've removed DATA from the backups
Are you sure you want to do this? y
Completed.
1) Add a database to the backup
2) Remove a database from the backup
3) Show current list of databases included in backups
4) Show list of available databases
5) Display last full backup information
Option? 3
The following 3 databases are included in backups
                         C:\iris-install\Mgr\irisaudit\
     IRISAUDIT
                         C:\iris-install\Mgr\
     TRISSYS
                         C:\iris-install\Mgr\User\
     USER
```

4. To display a list of all databases in this instance choose option 4:

```
1) Add a database to the backup
2) Remove a database from the backup
3) Show current list of databases included in backups
4) Show list of available databases
5) Display last full backup information
The following is a list of all databases in the configuration.
Databases which are part of the backup are marked with (
                            c:\iris-install\mgr\irisaudit\
     (*) IRISAUDIT
        IRISLIB (Read Only) c:\iris-install\mgr\irislib\
        IRISLOCALDATA
                           c:\iris-install\mgr\irislocaldata\
     (*) IRISSYS
                             c:\iris-install\mgr\
     (*) USER
                            c:\iris-install\mqr\user\
```

5. To display information about the last full backup choose option 5:

```
1) Add a database to the backup
2) Remove a database from the backup
3) Show current list of databases included in backups
4) Show list of available databases
5) Display last full backup information
Option? 5
=====Last Full Backup Information=====
Date: 19 Jan 2018
Description: Full backup of all databases that are in the backup database list.
Device: c:\iris-install\mgr\backup\FullDBList_20180119_001.cbk
```

3.7.5 Abort a Running Backup Using ^BACKUP

You can abort a running backup using menu option 5 of the **BACKUP** utility.

```
%SYS>Do ^BACKUP

1) Backup
2) Restore ALL
3) Restore Selected or Renamed Directories
4) Edit/Display List of Directories for Backups
5) Abort Backup
6) Display Backup volume information
7) Monitor progress of backup or restore

Option? 5
Are you sure you want to abort the backup operation ? <No> Yes Backup abortion succeed.
```

If no backup is running when you choose this option, you receive the following message:

```
No Backup operation is currently running.
```

3.7.6 Display Information About a Backup Volume Using **ABACKUP**

When you select option 6 from the **ABACKUP** menu, you are prompted for the pathname of a backup file, as shown in the following:

3.7.7 Monitor Backup or Restore Progress Using ^BACKUP

To monitor the progress of a running backup or restore job started using **ACKUP**, select option 7 from the **ACKUP** menu. You can start the monitor in a separate Terminal window before starting the backup or restore job.

For a running backup job, the following information is displayed:

```
Backup Status
Status:
                              Running
Backup process pid:
Backup file:
                              c:\132u1\mgr\stcfull.bck
Description:
Log file:
                              c:\132u1\mgr\irisbackup.log
Type:
                              Full
Start time:
                              2018-09-05 14:09:02
                              2018-09-05 14:09:45
Estimated finish time:
Total time (hh:mm:ss):
                              00:00:18
Time remaining (hh:mm:ss):
                             00:00:25
Estimated backup size:
                              7.68GB
Current backup size:
                              3.12GB
Current Backup rate:
                              184MB/sec
% Completed
```

For a running restore job, the following information is displayed:

```
Restor Status
                                Running
Status:
Restore process pid:
                                13052
Restore file:
                                c:\132u1\mgr\stcfull.bck
Description:
Type:
                                Full
                                2018-09-05 14:10:49
2018-09-05 14:12:07
Start time:
Estimated finish time:
                                00:00:34
Total time (hh:mm:ss):
Time remaining (hh:mm:ss):
                                00:00:44
Restore file size:
                                7.68GB
Restore size completed:
                                3.28GB
Current restore rate:
                                103MB/sec
% Completed
                                43
```

Note: When doing an incremental backup, some of the fields are not available and are displayed as N/A. This includes Time remaining, Estimated backup size, and % Completed.

A restore job cannot be monitored if switch 10 was set when starting the restore.

3.8 Online Backup Restore Utility

The Online Backup Restore Utility (**^DBREST**) utility performs the following actions:

Requires you to choose whether to restore all or selected directories.

- Asks if you want to stop all other InterSystems IRIS processes from running during the restore. In most cases, answer Yes.
- Asks for the name of the file that holds the backup you wish to restore. If your backup is on more than one volume, that information is in the volume header. After restoring the first volume, the utility prompts you for the next.
- Displays the header of the volume. The header contains the following information determined during the backup: the date of the backup on this volume, the date of the previous backup, and the date of the last full backup.
- Asks you to verify that this is the backup you wish to restore.
- Lists the directories on the device to restore.
- Allows you to specify another input device that contains the next backup to restore.
- Lets you display information about a backup volume at any time.

The ^DBREST menu options 1, 2 and 3 are the same as options 2, 3 and 6 from the ^BACKUP menu.

When you select one of these restore options, the utility asks you to enter the name of the device holding the first backup to restore. The default the first time you enter a restore option is the device to which the last full backup was sent, if there was one.

CAUTION: When you are restoring an incremental or cumulative backup, the target database must be in *exactly* the same state as when you restored it from the last full backup.

You must prevent all updates to the restored databases until you restore all subsequent incremental backups. Failure to heed this warning can result in the incremental or cumulative restore producing a degraded database.

The following is an example of running the utility from the Terminal:

```
%SYS>Do ^DBREST

DBREST Utility
Restore database directories from a backup archive

Restore: 1. All directories
2. Selected and/or renamed directories
3. Display backup volume information
4. Exit the restore program
```

The following sections describe the process of choosing each option:

- Restore All Databases Using ^DBREST
- 2. Restore Selected or Renamed Databases Using ^DBREST
- 3. Display Information About a Backup Volume Using ^BACKUP
- 4. Restoring Databases Using the Backup History
- Unattended Restore Using ^DBREST
- 6. Mirrored Database Considerations

You can also perform these functions non-interactively in a script. See the *External Entry Points of ^DBREST* section for details.

3.8.1 Restore All Databases Using ^DBREST

Choosing 1 from the ^DBREST menu is equivalent to choosing 2 from the ^BACKUP menu.

Note: If you are restoring mirrored databases, review Mirrored Database Considerations in this section before you perform this procedure.

The following procedure is an outline of an example that restores all directories. It shows the beginning prompts of the restore process. As it continues, the utility asks you very specific questions while stepping through the restore process.

1. Select to restore all directories from the utility menu. This option restores all directories that are on the backup medium.

```
*SYS>Do ^DBREST

DBREST Utility
Restore database directories from a backup archive

Restore: 1. All directories
2. Selected and/or renamed directories
3. Display backup volume information
4. Exit the restore program
1 => 1
```

2. Confirm that you want to restore all directories:

```
Proceed with restoring ALL directories Yes=>
```

3. Next you are asked to enter the top path you want all the databases to be restored to. The system prefixed it to the original path of the database to be restored. So all the databases are restored under this directory with their original directory as a subdirectory to this directory. Press **Enter** to ignore it and restore the databases to their original path.

```
Top directory for all Databases to be restored to (? for Help)?
```

4. Indicate whether you want to suspend InterSystems IRIS processes while restoring takes place. InterSystems recommends suspending processes.

```
Do you want to set switch 10 so that other processes will be prevented from running during the restore? Yes =>
```

5. Specify the first file from which to restore. You can press **Enter** to accept the default file, which is the last full backup.

```
Specify input file for volume 1 of backup 1
  (Type STOP to exit)
Device: c:\iris-install\mgr\backup\FullAllDatabases_20180323_001.cbk =>
```

6. Check that the description of the backup is correct and verify that this is the file you want to restore.

```
This backup volume was created by:
   InterSystems IRIS for Windows 2018.1.1
The volume label contains:
   Volume number
                      MAR 23 2018 09:52AM Full
   Volume backup
   Previous backup
                      MAR 22 2018 11:00AM Incremental
  Last FULL backup
                      MAR 16 2018 11:00AM
  Description
                      Full backup of ALL databases, whether or not they are in
                      the backup database list.
  Buffer Count
                      Ω
Is this the backup you want to start restoring? Yes =>
```

7. The utility tells you which directories it will restore, and the restore proceeds.

```
The following directories will be restored:
c:\iris-install\mgr\
c:\iris-install\mgr\test\
c:\iris-install\mgr\test\
c:\iris-install\mgr\user\

***Restoring c:\iris-install\mgr\ at 10:46:01
146045 blocks restored in 241.3 seconds for this pass, 146045 total restored.
```

8. Specify the input file for the next incremental backup to restore, or enter stop if there are no more input files to restore.

```
Specify input file for volume 1 of backup following MAR 23 2018 09:52AM (Type STOP to exit)
Device: stop
```

9. Indicate whether you want to restore other backups. When you answer Yes, the procedure repeats. When you respond No, the system mounts the databases you have restored.

10. Specify which journal entries you want to apply to the restored databases and the name of the journal file you are restoring. Normally, you select option 1 and apply only those changes that affect the directories you have just restored.

Note: For information about what happens when you restore all entries for all directories or selected directories and globals, see Restore Globals From Journal Files Using ^JRNRESTO in the "Journaling" chapter of this guide.

```
Restoring a directory restores the globals in it only up to the date of the backup. If you have been journaling, you can apply journal entries to restore any changes that have been made in the globals since the backup was made.

What journal entries do you wish to apply?

1. All entries for the directories that you restored 2. All entries for all directories 3. Selected directories and globals 4. No entries

Apply: 1 =>
```

11. Restore from the journal files begins after confirming several pieces of information:

```
We know something about where journaling was at the time of the backup:
0: offset 172940 in c:\iris-install\mgr\journal\20180323.002
Use current journal filter (ZJRNFILT)? No
Use journal marker filter (MARKER^ZJRNFILT)? No
Updates will not be replicated
The earliest journal entry since the backup was made is at
offset 172940 in c:\iris-install\mgr\journal\20180323.002
Do you want to start from that location? Yes => Yes
Final file to process (name in YYYYMMDD.NNN format): <20180323.003> [?]
Prompt for name of the next file to process? No => No
Provide or confirm the following configuration settings:
Journal File Prefix: =>
Files to dejournal will be looked for in:
    c:\iris-install\mgr\journal\
     c:\iournal\altdir\
in addition to any directories you are going to specify below, UNLESS
you enter a minus sign ('-' without quotes) at the prompt below,
in which case ONLY directories given subsequently will be searched
Directory to search: <return when done>
Here is a list of directories in the order they will be searched for files:
     c:\iris-install\mgr\journal\
     c:\journal\altdir\
The journal restore includes the current journal file.
You cannot do that unless you stop journaling or switch
```

```
journaling to another file.

Do you want to switch journaling? Yes => Yes
Journaling switched to c:\iris-install\mgr\journal\20180323.004

You may disable journaling the updates for faster restore.

Do you want to disable journaling the updates? Yes => yes
Updates will NOT be journaled
```

12. The utility displays its progress and indicates when it is complete:

```
c:\iris-install\mgr\journal\20180323.002
  61.32% 65.03% 68.44% 72.21% 92.99% 96.07% 98.87%100.00%
                                      75.86% 79.26% 82.73% 86.08% 89.56%
***Journal file finished at 11:03:31
c:\iris-install\mgr\journal\20180323.003
  16.17% 17.10% 17.90% 18.90%
                                                21.33%
                                                         22.58%
                                                                  23.81%
  26.32%
37.32%
           27.65%
                    28.85%
                             30.08%
                                       31.37%
                                                32.59%
                                                         33.98%
                                                                  35.16%
                                                                           36.25%
           38.41%
                    39.55%
                             40.72%
                                      41.81%
                                                42.83%
                                                         43.85%
                                                                  44.89%
  47.15%
                    49.28%
           48.24%
                             50.32%
                                      51.41%
                                                52.54%
                                                         53.71%
                                                                  54.76%
                                                                           55.80%
  56.85%
           57.97%
                    59.10%
                             60.16%
                                                62.19%
                                                         63.24%
                                      61.17%
                                                                  64.32%
                                                                           65.18%
                                                                  71.76%
  66.02%
           66.87%
                    67.71%
                                                         70.96%
                             68.52%
                                      69.34%
                                                70.14%
                                                                           72.60%
                                      77.26%
  73.58%
           74.51%
                    75.43%
                             76.35%
                                                78.17%
                                                         79.07%
                                                                  79.69%
                                                                           80.31%
                    82.20%
97.44%
                             82.83% 83.479
99.04%100.00%
  80.93%
           81.56%
                                      83.47%
                                                84.27%
                                                         87.00%
                                                                 88.57% 91.65%
  93.03%
           96.09%
***Journal file finished at 11:03:32
Journal reads completed. Applying changes to databases.. 14.29\% 28.57\% 42.86\% 57.14\% 71.43\% 85.71\% 100.00\%
[journal operation completed]
```

3.8.2 Restore Selected or Renamed Databases Using ^DBREST

Choosing 2 from the **^DBREST** menu is equivalent to choosing 3 from the **^BACKUP** menu. This option lets you select which directories to restore from the backup medium. It also allows you to restore a database to a different directory name or to a different device.

Note: If you are restoring mirrored databases, review Mirrored Database Considerations in this section before you perform this procedure.

The following example shows how to restore selected or renamed directories.

1. Choose option 2 from the **^DBREST** utility:

```
*SYS>Do ^DBREST

DBREST Utility
Restore database directories from a backup archive

Restore: 1. All directories
2. Selected and/or renamed directories
3. Display backup volume information
4. Exit the restore program
1 => 2
```

Indicate whether you want to suspend InterSystems IRIS processes while restoring takes place. InterSystems recommends suspending processes.

```
Do you want to set switch 10 so that other InterSystems IRIS processes will be prevented from running during the restore? Yes =>
```

3. Specify the first file from which to restore. You can press **<Enter>** to accept the default file, which is the last full backup.

```
Specify input file for volume 1 of backup 1
  (Type STOP to exit)
Device: c:\iris-install\mgr\backup\IncrementalDBList_20180323_001.cbk =>
```

4. Check that the description of the backup is correct and verify that this is the file you want to restore.

```
This backup volume was created by:
   InterSystems IRIS for Windows (Intel) 5.1
The volume label contains:
   Volume number
   Volume backup
                      MAR 23 2018 11:03AM Full
                      MAR 23 2018 09:52AM Full
   Previous backup
   Last FULL backup
                      MAR 23 2018 09:52AM
                      Incremental backup of all databases that are in the backup
  Description
                      database list.
  Buffer Count
                     Ω
Is this the backup you want to start restoring? Yes =>
```

5. As the utility prompts you with directory names, specify which databases you want to restore, and in which directories you want to restore them:

```
For each database included in the backup file, you can:
    -- press RETURN to restore it to its original directory;
    -- type X, then press RETURN to skip it and not restore it at all.
    -- type a different directory name. It will be restored to the directory you specify. (If you specify a directory that already contains a database, the data it contains will be lost).

c:\iris-install\mgr\ =>
c:\iris-install\mgr\test\ =>
c:\iris-install\mgr\test\ =>
c:\iris-install\mgr\test\ =>
c:\iris-install\mgr\user\ =>
```

6. After responding to each directory prompt, you see the prompt:

```
Do you want to change this list of directories? No =>
```

Answer Yes if you want to edit your choices, or press Enter to confirm them.

7. The process then continues the same as the procedure for restoring all directories, as specified in the previous section.

You can use this procedure to restore a backup performed on different system from the one on which you are restoring it.

3.8.3 Restoring Databases Using the Backup History

The InterSystems IRIS backup utility maintains a *backup history* to help you restore backups in logical order. The restore utility prompts you for the backups to restore according to their type and order in the backup history.

After restoring the last full backup, the utility uses the information in the *backup history* to suggest the next logical backup for you to restore and continues through the history. It prompts you to restore subsequent backups in the following order:

- 1. The most recent cumulative backup after the last full backup, if one exists.
- 2. All incremental backups since the last cumulative backup (or if none exists, since the last full backup). It does so in order from the first to the most recent.

You can override the suggested backups in the restore process. Remember, however, that an incremental or cumulative backup does not represent a complete copy of the databases. You can restore an incremental backup only after restoring a full backup.

Important:

On InterSystems IRIS platforms that support access to a database from cluster, you should always back up a given database directory from the same node so that its complete backup history is available if you need to restore the directory.

3.8.4 Unattended Restore Using ^DBREST

The InterSystems IRIS restore utility, ^DBREST, provides a non-interactive execution option using external entry points.

Note: If you are restoring mirrored databases, review Mirrored Database Considerations in this section before you perform an unattended restore.

You can write a script to implement unattended restores by calling one of these two entry points:

EXTALL^DBREST — Restores all databases from the backup device (the unattended equivalent to the procedure
described in Restore All Databases Using ^DBREST). The syntax to use the EXTALL entry point of the ^DBREST
utility is as follows:

```
EXTALL^DBREST(quietmode,allowupd,inpdev,dirlist,jrnopt,jrnfile,jdirglo)
```

Note: If the target directory exists but the IRIS.DAT file does not, EXTALL^DBREST restores the IRIS.DAT file.

EXTSELCT^DBREST — Restores selected files from the backup device, or restores to a target directory that is different from the source directory (the unattended equivalent to the procedures described in Restore Selected or Renamed Databases Using ^DBREST). The syntax to use the EXTSELCT entry point of the ^DBREST utility is as follows:

```
EXTSELCT^DBREST(quietmode,allowupd,inpdev,dirlist,jrnopt,jrnfile,jdirglo)
```

Both entry points are functions, which return the status of the call. All arguments are input only. The following table describes the input arguments used for both functions except where indicated.

Argument	Description
allowupd	Indicates whether or not to allow updates during the restore process: 1 — allow updates during the restore process
	0 — do not allow updates
dirlist	Name of file containing a list of directories to restore. One record for each directory to be restored has to be present. Ignored for the EXTALL entry point. See <i>Directory List File Requirements</i> .
inpdev	Input device that contains the backup.
jdirglo	Only used when <i>jrnopt</i> is 3. This is the name of the file containing selection criteria for directories and globals for the journal restore. See <i>Directory and Global Selection Criteria</i> .
jrnfile	Journal file. If null, the utility uses the current file, which is stored in the ^%SYS("JOURNAL","CURRENT") global.
jrnopt	Options to restore the journal: 1 — All directories for which you just restored the backup
	2 — All directories in the journal
	3 — Selected directories and globals specified by the jdirglo argument
	4 — No directories
quietmode	A value indicates the operation is in quiet (non-interactive) mode; must be a non-null value for this external call, typically 1.

The following return codes are possible from calling these functions:

Return Code	Description
3	No errors; successful completion
-1	Cannot open input device (device to restore from)
-2	Volume label does not match label in backup history
-3	Backup/Restore already in progress
-4	Invalid device for reading selection criteria (for selective restore of directories)
-5	Invalid journal restore option
-6	Invalid journal file or file for selection criteria for journal restore cannot be opened

3.8.4.1 Directory List File Requirements

Requirements of the file indicated by dirlist:

- Contains one record for each directory to restore
- Separate each field with a comma (,).
- Format of each record is *SourceDir*, *TargetDir*, *CreateDir*; where:

Argument	Description
SourceDir	Name of the directory to restore.
TargetDir	Name of the directory to which to restore; omit if restoring to same as source directory.
CreateDir	Whether or not to create the target directory if it does not exist. Y — create the target directory N — do not create target directory

For example, assuming you have created a text file (RestoreList.txt) in the C:\Backup\ directory that contains the string:

```
C:\intersystems\iris\mgr\user\,C:\intersystems\iris\mgr\,Y
```

you could execute the following routine in the %SYS namespace to restore the database from

C:\intersystems\iris\mgr\user\ to C:\intersystems\iris\mgr\:

```
set SourceDir = "C:\intersystems\iris\mgr\user\"
set BackupDir = "C:\Backup\"
set BackupListFile="C:\Backup\RestoreList.txt"
do EXTSELCT^DBREST(1,0,BackupDir_"back1.cbk",BackupListFile,4,"","")
```

3.8.4.2 Directory and Global Selection Criteria

Requirements of the file indicated by *jdirglo*:

- Contains one record for each directory that you want to restore.
- Separate each field with a comma (,).
- Format of each record is *DirName*, *RestAll*, *Globals*; where:

Argument	Description
DirName	Name of the directory on which you want to restore the journal.
Globals	A list of globals separated by commas for journal restore. Only used if RestAll is N. If the list of globals is large, you can enter the remaining global names on the next line but you must specify the directory name again followed by N and then the list of globals.
RestAll	Whether or not to restore journal entries for all globals in the directory; not case-sensitive and required. Y — restore journal on all globals in this directory N — specify globals for journal restore in globals list

Examples of different records:

```
DUA0: [TEST1],Y
DUA1: [TEST2],N,GLO1,GLO2,GLO3
DUA1: [TEST2],N,GLO4,GLO5,GLO6
DUA1: [TEST3],n
```

The last record could also be completely omitted if you do not want to restore the journal for that directory.

3.8.5 Mirrored Database Considerations

When a mirrored database is the target of an InterSystems IRIS backup restore, the source database must match the target (that is, it must be the same mirrored database).

Note:

Mirrored database backups created on a failover mirror member can be restored to any member of that mirror (that is, another failover member or an async member). If you are restoring from a backup created on an async mirror member, see Restoring from Async Mirror Members in this section.

In this section, the term "active mirrored database" refers to a database that is currently included in a mirror to which its host system belongs, even if that mirror is not currently in operation. It does not include databases that were once mirrored, or that were included in a mirror to which the host system no longer belongs.

InterSystems IRIS backup restore in a mirror behaves differently depending on whether it is being restored on the mirror member where the backup was created or on a different system:

- Primary Failover Member ^DBREST does not let you restore an active mirrored database on the primary failover member. However, if the database must be restored, you can temporarily remove it from the mirror (see Removing Mirrored Databases from Mirrors in the "Mirroring" chapter of the High Availability Guide). The database is restored as a mirrored database, however (since it was backed up as one), and the functionality described in the following sections applies, including automatic restore of the journal files required to activate the database in the mirror.
- Backup Failover Member On the backup failover member, restoring a mirrored database that is active, or newer than the copy in the backup, results in a warning message:
 - For a full backup restore, these databases are skipped.
 - For a selective restore, you are given a chance to overwrite the target if that is what you really want to do.

3.8.5.1 Full Backup Restores of Mirrored Databases

The following differences apply to full backup restores of mirrored databases, whether they are done interactively via the ^DBREST utility (see Online Backup Restore Utility in this chapter) or non-interactively via the EXTALL entry point (see External Entry Points of ^DBREST in this chapter):

- A full backup restore on the system that created the backup works as it does for nonmirrored systems, *except* that local mirrored databases that are newer than the copies in the backup which, by definition, includes databases that are currently active are skipped; all databases are restored to their original locations.
- A full backup restore on a mirror member other than the system that created the backup restores only mirrored databases
 that already exist on the system. However, mirrored databases on the target system that are newer than those in the
 backup are skipped.
- A full backup restore that specifies a new top-level directory restores all the databases in the backup after generating the new path for the databases. If the user ends up with two copies of any of the mirrored databases after the restore, they are warned that the copy being restored cannot be activated because it is already active on the system.

Following a full backup restore the system attempts to:

- 1. Activate the mirrored databases by restoring the required journal files.
- 2. Link the mirrored databases into the active mirror (if the mirror exists and a copy of the database does not already exist).

3.8.5.2 Selective Backup Restores of Mirrored Databases

The following differences apply to selective backup restores of mirrored databases:

- When a backup is being restored, you are asked whether to limit the restore to only mirrored databases; depending on your response:
 - yes Only the mirrored databases are displayed.
 - no You are prompted to select destinations for all the databases in the backup.
- During the database selection phase of a selective restore, you are presented with a list of the databases in the backup and asked to specify a path where each should be restored. You can specify a path, enter an "X" or "x" to skip that directory, or press **Enter** to restore it to the path stored in the backup, if you are restoring on the source system.

When restoring a backup on a mirror member other than the system that created the backup, the result of pressing **Enter** for a mirrored database directory varies depending on whether an active mirrored database with the same mirror database name exists on that system.

- If the database exists, pressing Enter overwrites the existing database with the restored database, regardless of the existing database's directory path, including whether that path is the same as on the source system.
- If the database does not exist, the database is restored to the directory path it has on the source machine. If that
 path does not exist, you must confirm the creation of the needed directories. If a database already exists at that
 location, no action is taken.
- If a selective backup restore detects that the restore is going to overwrite a mirrored databases in the following situations, you are warned that continuing will destroy the target database and asked if you want to continue:
 - The database from the backup is older than the current database.
 - The database from the backup is not a copy of the current database (for example, it could be a nonmirrored database or a database of the same mirror database name from a different mirror).

If you continue, the target database is removed from the mirror and overwritten as requested.

• If a selective backup restore is being done non-interactively via the EXTSELCT entry point (see External Entry Points of ^DBREST in this chapter), the database selection file the source and target paths can be specified with either path names or mirror databases names.

For a mirrored database, if the target is left blank it means restore to the corresponding mirror database on the local machine. If the target is not blank, then the database must be one of the following:

- The correct, local copy of that mirrored database.
- If a local copy of that mirrored database does not already exist on the system, a nonmirrored database (or a directory/database that does not exist).
- A mirror database name.

Note: If the target is a mirror database name (or blank) and that mirrored database does not exist on the local system (or is dismounted), the target is created only if the backup is being restored on the system that created it. If the backup is being restored on another mirror member the database is skipped.

As with full backup restores, following a selective backup restore, the system attempts to:

- 1. Activate the mirrored databases by restoring the required journal files.
- 2. Link the mirrored databases into the active mirror (if the mirror exists).

3.8.5.3 Restoring from Async Mirror Members

The following considerations apply when restoring from mirrored databases created on async mirror members:

- Mirrored databases backups created on a async mirror member can be restored to any async member of the same mirror.
- Mirrored databases backups created on a async mirror member can only be used to create new copies of the mirrored database (that is, they cannot be restored over an existing mirrored database on a failover member).

54

4

Journaling

Global journaling records all global update operations performed on a database, and used in conjunction with backup makes it possible to restore a database to its state immediately before a failure or crash.

While backup is the cornerstone of physical recovery, it is not the complete answer. Restoring a database from backup does not recover global updates made since that backup, which may have been created a number of hours before the point at which physical integrity was lost. These post-backup updates can be restored to the database from journal files after the database is restored from backup, bringing the database up to date. Any transactions open at the time of the failure are rolled back to ensure transaction integrity.

This chapter discusses the following topics:

- Journaling Overview
- Configuring Journaling
- Journaling Operation Tasks
- Journaling Utilities
- Journal I/O Errors
- Special Considerations for Journaling

4.1 Journaling Overview

Each instance of InterSystems IRIS® keeps a journal, a set of files that maintains a time-sequenced log of updates that have been made to databases since the last backup. The process is redundant and logical and does not use the InterSystems IRIS write daemon. InterSystems IRIS transaction processing works with journaling to maintain the logical integrity of data following a failure.

Together, backup and journaling allow you to recreate your database. If a failure renders your database corrupt, inaccessible or unusable, you can restore the most recent backup and then apply the changes in the journal to recreate your database to the point of failure. This method of recovering from a loss of physical integrity is known as "roll forward" recovery. The journal is also used for rolling back incomplete transactions.

The journaling state is a property of the database, not individual globals. A database can have only one of two global journaling states: *Yes* or *No*. By default, all databases you create are journaled (the **Global Journal State** is *Yes*). In newly installed InterSystems IRIS instances, the IRISAUDIT, IRISSYS, and USER databases are journaled; the IRISLIB, IRISTEMP, and IRISLOCALDATA databases are not. Operations to globals in IRISTEMP are never journaled; map temporary globals to the InterSystems IRIS temporary database, IRISTEMP.

Important: Be sure to read Consequences of Not Journaling Databases for important information about limits to the recovery of non-journaled databases.

When InterSystems IRIS starts, it reapplies all journal entries since the last write daemon pass. Since user processes update the journal concurrently, rather than through the write daemon, this approach provides added assurance that updates prior to a crash are preserved.

In addition to recording all updates to journaled databases, the journal contains all updates to nonjournaled databases that are part of transactions (primarily **Set** and **Kill** operations). This greatly improves the reliability of the system, avoiding post-recovery inconsistencies due to updates to globals that may or may not be journaled, and that may or may not be involved in transactions. (**Set** and **Kill** operations on local and process-private variables are not journaled.)

Journaling global operations in databases mounted on a cluster depends on the database setting. The local InterSystems IRIS instance does not journal transaction operations to globals on remote nodes. In a network configuration, journaling is the responsibility of the node on which the global actually resides, not the one that requests the **Set** or **Kill**. Thus, if node B performs a **Set** at the request of node A, the journal entry appears in the journal on node B, not node A.

The following topics provide greater detail of how journaling works:

- Differences Between Journaling and Write Image Journaling
- Protecting Database Integrity
- Automatic Journaling of Transactions
- Rolling Back Incomplete Transactions
- Consequences of Not Journaling Databases
- The Journal Write Cycle
- Journal Files and Journal History Log
- Using Temporary Globals and IRISTEMP
- Journal Management Classes and Globals

4.1.1 Differences Between Journaling and Write Image Journaling

In this chapter, "the journal" refers to the journal file; "journaling" refers to the writing of global update operations to the journal file. Do not confuse the InterSystems IRIS journal described in this chapter with write image journaling, which is described in the "Write Image Journaling and Recovery" chapter of this guide. Journaling and write image journaling have different functions, as follows:

- Journaling provides a complete record of all database modifications (as long as you have journaling enabled for the
 database). In the event that some modifications are lost, for example because they occurred after the most recent backup
 of a recovered database, you restore them to the database by restoring the contents of the journal file.
- Write image journaling provides a record of all database modifications that have been made in memory but not yet
 written to the database. When a system crash occurs, the system automatically writes the contents of the write image
 journal to the database when it restarts.

4.1.2 Protecting Database Integrity

The InterSystems recovery process is designed to provide maximal protection:

• It uses the "roll forward" approach. If a system crash occurs, the recovery mechanism completes the updates that were in progress. By contrast, other systems employ a "roll back" approach, undoing updates to recover. While both

approaches protect internal integrity, the roll forward approach used by InterSystems IRIS does so with reduced data loss.

- It protects the sequence of updates; if an update is present in the database following recovery, all preceding updates
 are also present. Other systems which do not correctly preserve update sequence may yield a database that is internally
 consistent but logically invalid.
- It protects the incremental backup file structures, as well as the database. You can run a valid incremental backup following recovery from a crash.

4.1.3 Automatic Journaling of Transactions

In an InterSystems IRIS application, you can define a unit of work, called a transaction. InterSystems IRIS transaction processing uses the journal to store transactions. InterSystems IRIS journals any global update that is part of a transaction regardless of the global journal state setting for the database in which the affected global resides.

You use commands to:

- Indicate the beginning of a transaction.
- Commit the transaction, if the transaction completes normally.
- Roll back the transaction, if an error is encountered during the transaction.

InterSystems IRIS supports many SQL transaction processing commands. See the "Transaction Processing" chapter of *Using ObjectScript* for details on these commands.

4.1.4 Rolling Back Incomplete Transactions

If a transaction does not complete, InterSystems IRIS rolls back the transaction using the journal entries, returning the globals involved to their pre-transaction values. As part of updating the database, InterSystems IRIS rolls back incomplete transactions by applying the changes in the journal, that is, by performing a journal restore. This happens in the following situations:

- During recovery, which occurs as part of InterSystems IRIS startup after a system crash.
- When you halt your process while transactions are in progress.
- When you use the Terminate option to terminate a process from the Processes page of the Management Portal (System Operation > Processes). If you terminate a process initiated by the Job command, the system automatically rolls back any incomplete transactions in it. If you terminate a user process, the system sends a message to the user asking whether it should commit or roll back incomplete transactions.

You can write roll back code into your applications. The application itself may detect a problem and request a rollback. Often this is done from an error-handling routine following an application-level error.

See the Managing Transactions Within Applications section of the "Transaction Processing" chapter of *Using ObjectScript* for more information.

4.1.5 Consequences of Not Journaling Databases

Databases that are not journaled do not participate in journal recovery and transaction rollback at InterSystems IRIS startup. As a consequence, the following conditions apply after a failure, backup restore, and restart:

• The most recent updates to non-journaled databases can be lost; the data in these databases will represent an earlier moment in time than the data in journaled databases.

- Transactions or portions of transactions in non-journaled databases can be left partially committed. The durability
 provided by synchronous-commit transactions does not apply to databases that are not journaled.
- While updates to non-journaled databases that are part of transactions are journaled, these journal records are used
 only to roll back transactions during normal operation. These journal records do not provide a means to roll back
 transactions at startup, nor can they be used to recover data at startup or following a backup restore.

4.1.6 The Journal Write Cycle

The operation that writes the contents of the journal buffer to the journal file is called a *journal sync*. A journal sync is guaranteed to write all operations currently in the journal buffer to the current journal file.

The frequency with which the journal is synced depends on the operating circumstances of the InterSystems IRIS instance involved. A journal sync can be triggered:

- Once every two (2) seconds if the system is idle.
- In an ECP-based distributed cache cluster, by the data server when responding to specific requests (for example, **\$Increment**) from the application servers to guarantee ECP semantics.
- By a **TCOMMIT** (in synchronous commit mode, which causes the data involved in that transaction to be flushed to disk) if you are using InterSystems IRIS transactions.
- As part of every database write cycle by the write daemon.
- When the journal buffer is full.

4.1.7 Journal Files and Journal History Log

Journal files are stored in the primary journal directory (*install-dir*\Mgr\journal by default) and are logged in the journal history log file, *install-dir*\Mgr\journal.log, which contains a list of all journal files maintained by the instance. The log is used by all journal-related functions, utilities, and APIs to locate journal files.

The journal history log file is updated as follows:

- Entries are added to the log when a new journal file is created.
- Entries are purged periodically, starting from the beginning of the file, *if* the corresponding journal file identified by the entry no longer exists and the entry is 30 days old or older. Purging stops when an entry is reached that does not satisfy both criteria.

CAUTION:

Do not modify the journal.log file. If the file is modified outside of the journal utilities, it may be viewed as being corrupt, which may disable journaling. If the file is corrupt, contact the InterSystems Worldwide Response Center (WRC) for guidance. If journaling is disabled (that is, InterSystems IRIS is not able to update the journal.log file), rename the corrupt log file and restart journaling.

InterSystems recommends that you include the journal.log file in your backup strategy to ensure that it is available when needed for a journal restore following a backup restore; for information about backup and restore strategies and procedures, see the "Backup and Restore" chapter in this guide.

If the journal.log file is missing (for example, if you renamed the file because it is corrupt), the system creates a new one when a new journal file is created, but information about previous journal files is lost because the log file only lists journal files created since it was created. Unlisted journal files are not available for journal-related functions, utilities, and APIs that use the journal.log file. However, for journal restores, if the journal.log file is missing or you do not want to use the existing log file, you can specify the journal files manually (see the "Restore Globals from Journal Files Using AJRNRESTO" section in this chapter).

In addition, you can use the journal.log file to migrate/restore journal files to different locations, as follows:

- 1. Copy the journal files and journal.log file to a location *other than* the *install-dir*\Mgr directory on the target InterSystems IRIS instance.
- 2. On the target system, run the **^JRNRESTO** routine, and enter No in response to the following prompt:

```
Are journal files created by this IRIS instance and located in their original paths? (Uses journal.log to locate journals)?
```

- 3. When prompted, specify the locations (on the target system) of the copied journal files and journal.log file; **AJRNRESTO** uses the log file to validate the range of journal files you want to migrate/restore to the target system.
- 4. Complete the process as described in the "Restore Globals from Journal Files Using \(^{JRNRESTO}\)" section in this chapter.

Note: When an InterSystems IRIS instance becomes a member of a mirror, the following journaling changes to support mirroring occur:

- On becoming primary, a journal switch is triggered to a new journal file prefixed with MIRROR-*mirror_name*, for example MIRROR-MIR21-20180921.001. From that point, all journal files are written as mirror journal files and logged to the mirrorjrn-*mirror_name*.log, for example mirrorjrn-MIR21-20180921.log, as well as to journal.log.
- On becoming backup or async, mirror journal files received from the primary are written to the configured
 journal directory along with the local instance's standard journal files, and a copy of the primary's mirror
 journal log (mirrorjrn-mirror_name.log) is created in install-dir\Mgr and continuously updated.

For more information about the role of journal files in mirroring, see Mirror Synchronization in the "Mirroring" chapter of the *High Availability Guide*.

4.1.8 Using Temporary Globals and IRISTEMP

Nothing mapped to the IRISTEMP database is ever journaled.

Since the globals in a namespace may be mapped to different databases, some may be journaled and some may not be. It is the journal property for the database to which the global is mapped that determines if InterSystems IRIS journals the global operation. The difference between IRISTEMP and a database with the journal property set to **No** is that nothing in IRISTEMP, not even transactional updates, are journaled.

Note: A database configured with the Journal globals property set to No (see the Create Local Databases in the "Configuring InterSystems IRIS" chapter of the *System Administration Guide*) continues to journal global Set/Kill operations in journal transactions, which can cause the journal file to become very large. IRISTEMP, however, does not journal Set/Kill operations, even when they are in a journal transaction.

If you need to exclude new z/Z^* globals from journaling, map the globals to a database with the journal property set to **No**. To always exclude z/Z^* globals from journaling, you must map them in every namespace to the IRISTEMP database.

Also see the appendix "Temporary Globals and the IRISTEMP Database" in Using Globals.

4.1.9 Journal Management Classes and Globals

See the class documentation for %SYS.Journal.System in the *InterSystems Class Reference* for information on available journaling methods and queries. It is part of the %SYS.Journal package.

Also, InterSystems IRIS uses the \(^{9}\SYS("JOURNAL")\) global node to store information about the journal file. For example:

- ^%SYS("JOURNAL","ALTDIR") stores the name of the alternate journal directory.
- ^%SYS("JOURNAL", "CURDIR") stores the name of the current journal directory.
- ^%SYS("JOURNAL", "CURRENT") stores journal status and the journal file name.

You can view this information from the Globals page of the Management Portal (System Explorer > Globals)

4.2 Configuring Journaling

There are a number of factors to consider in planning and configuring journaling. Topics in this section include the following:

- Enabling Journaling
- Journal File Naming
- Journaling Best Practices
- Configuring Journal Settings

4.2.1 Enabling Journaling

By default, journaling is enabled for the InterSystems IRIS databases IRISSYS, IRISAUDIT, and USER. You can enable or disable journaling on each database from the Local Databases page of the Management Portal (System Administration > Configuration > System Configuration > Local Databases). Click Edit on the row corresponding to the database and click Yes or No in the Global Journal State box.

The default setting of the journal state for new databases is *Yes*. When you first mount a database from an earlier release of InterSystems IRIS, the value is set to *Yes*, regardless of the previous setting for new globals and regardless of the previous settings of individual globals within that database.

You can change the global journal setting for a database on a running system. If you do this, InterSystems IRIS warns you of the potential consequences and audits the change if auditing is enabled.

4.2.2 Journal File Naming

A journal file's name consists of an optional user-defined prefix, a base name consisting of the date and time it is created in the format *yyyymmdd.nnn*, and a suffix *nnn* used to incrementally number the journal files created during one calendar day. When a journal file fills, the system automatically switches to a new one with the same prefix and base name but with the suffic increased by one. The base name changes only if a new calendar day begins while the journal file is in use.

For example, if the first journal file that is active on April 27, 2018 is named 20180427.001. When it fills, the system starts a new one called 20180427.002. If midnight passes and the date changes while the journal file is in use, however, it is renamed 20180428.001.

4.2.3 Journaling Best Practices

The following are some important points to consider when planning and configuring journaling:

 Journal files are stored in both a primary journal directory and an alternate journal directory (for use if the primary directory becomes unwriteable for any reason).

In the interests of both performance and recoverability, InterSystems recommends placing the primary and alternate journal directories on storage devices that are separated from the devices used by databases and the write image journal (WIJ), as well as separated from each other. For practical reasons, these different devices may be different logical unit

numbers (LUNs) on the same storage area network (SAN), but the general rule is the more separation the better, with separate sets of physical drives highly recommended. The major benefits of this separation between database/WIJ storage and primary and alternate journal storage include the following:

- Isolating journal directories from failures that may compromise the databases or WIJ ensures that journal files will be available for use in restoring the database after such a failure.
- Separating primary and alternate journal directories ensures that when an outage occurs on the device on which
 the primary directory is located, journaling can continue.
- Separating journal I/O paths is a key factor in achieving the I/O concurrency that most applications require.

For simplicity and convenience, InterSystems IRIS installation creates the directory *install-dir*\Mgr\journal, configures it as both the primary and alternate journal directory, and creates in it the first journal file for the default journaled databases. InterSystems recommends, however, that you identify and prepare separate storage devices for the primary and alternate journal directories and reconfigure these settings (as described in Configuring Journal Settings) as soon as possible after installation.

Note: Journal files should always be backed up along with database files, as described in the "Backup and Restore" chapter of this guide. Consider replicating journal files offsite for disaster recovery purposes, enabling recovery from a failure involving multiple storage devices at the primary data center. InterSystems IRIS mirroring, disk-level replication, or other mechanisms can be used for this purpose.

Verify that journaling is enabled for all databases (other than those that contain only transient data).

Important: Be sure to read Consequences of Not Journaling Databases for important information about limits to the recovery of non-journaled databases.

- Consider setting the journal **Freeze on error** option to *Yes*. If a failure causes the system to be unable to write to both the primary and the alternate journal devices, this setting causes the system to freeze, making it unavailable to users and ensuring that no data is lost. Alternatively, you can set **Freeze on error** option to *No*, which lets the system continue and leads to journaling being disabled, keeping the system available but compromising data integrity and recoverability. See Journal I/O Errors for more information about **Freeze on error**.
- Do not purge a journal file unless it was closed prior to the last known good backup, as determined by the backup validation procedure. Set the number of days and the number of successful backups after which to keep journal files appropriately.
- To ensure optimal performance during a journal restore, consider increasing the size of the generic memory heap (gmheap); see Restore Journal Files for more information.

4.2.4 Configuring Journal Settings

To configure InterSystems IRIS journaling, navigate to the Journal Settings page of the Management Portal (System Administration > Configuration > System Configuration > Journal Settings).

You can edit the following settings:

- **Primary journal directory** Enter the name of a directory in which to store the journal files. The directory name may be up to 214 characters long.
- Secondary journal directory Enter the name of an alternate directory for journaling to use if the current directory becomes unwritable for any reason. (You can also manually switch journal directories, as described in Switch Journal Directories.) The directory name may be up to 214 characters long.

Important:

InterSystems recommends placing the primary and alternate journal directories on storage devices that are separated from the devices used by databases and the write image journal (WIJ), as well as separated from each other; see Journaling Best Practices for more information.

- Start new journal file every Enter the number of megabytes for the maximum size of the journal file after which the journal file switches. The default size is 1024 MB; the maximum size is 4079 MB.
- **Journal File Prefix** (optional) Enter an alphanumeric prefix for journal file names.
- When to purge journal files You can set either or both of the following two options. If you enter nonzero values for both settings, purging occurs when a journal file meets whichever of the two conditions occurs first. If you set 0 (zero) for one and not the other, purging is determined by the nonzero setting. If both are 0, the automatic purging of journal files (and journal history) is disabled.
 - After this many days Enter the number of days after which to purge (valid values: 0-100).

Note: When you set the number of days after which to purge journal files, the last journal file from the day before the purge limit is also retained. For example, if **After this many days** is set to 1 and the purge is run at midnight on April 1, the last journal file created on March 30 is retained along with those created on March 31.

After this many successive successful backups — Enter the number of consecutive successful backups after which
to purge (valid values: 0-10).

This includes an online backup, an external backup using \$\$BACKUP^DBACK("","E"), or the use of the **Backup.General.ExternalSetHistory**() method to add to the backup history.

Note: If **After this many days** is set to 0 (no time-based purge) and **After this many successive successful backups** is set to 1, journal files are not purged until there have been two successful backups; that is, there must be two successful backups for the "successive" criterion to be met.

You can also update these settings using the **^JRNOPTS** routine or by selecting option 7, *Edit Journal Properties*, from the **^JOURNAL** routine menu. See Update Journal Settings Using **^JRNOPTS** for details.

Note: Journal files are sometimes retained even if they meet the criteria of the purge setting. When this happens, the event is recorded in the messages log and the reason (for example, that the journal file contains open transactions) is provided.

• Freeze on error — Select Yes or No. This setting controls the behavior when an error occurs in writing to the journal. The default is No. See the Journal I/O Errors section for a detailed explanation of this setting.

Note: When an InterSystems IRIS instance is the primary failover member of a mirror (see the "Mirroring" chapter of the *High Availability Guide*), the instance's **Freeze on error** configuration is automatically overridden to freeze all journaled global updates when a journal I/O error occurs, regardless of the current setting. If the current setting is No, behavior reverts to this setting when the instance is no longer a primary failover member.

- **Journal Web Session** Select Yes or No. This setting controls whether or not Web Server Page session journaling is enabled. The default is No.
- Write image journal entry Enter the location of the write image journal (WIJ) file. See the Write Image Journaling section of the "Write Image Journaling and Recovery" chapter of this guide for a detailed explanation of this setting.
- Target size for the wij (MB) (0=not set) Enter the target size for the WIJ file.

Note:

All of the settings on this page are included in the instance's iris.cpf file. For information about the journal settings, see [Journal] in the *Configuration Parameter File Reference*; for information about the WIJ settings, see Write Image Journal (WIJ) File in the "Write Image Journaling and Recovery" chapter of this guide, as well as targwijsz and wijdir in the [config] section of the *Configuration Parameter File Reference*).

You are not required to restart InterSystems IRIS after changing most of these settings (except where indicated), but any change causes a new journal file to begin.

There are two additional configuration settings affecting journaling, as follows:

- jrnbufs Specifies the amount of memory allocated to journal buffers; the default is 64 MB, the maximum is 1024 MB, and the minimum is 16 MB for Unicode instances and 8 MB for 8-bit instances. Increasing this setting means increasing the amount of journal data that can be held in memory, which improves journaling performance, but increases the maximum amount of journal data that could be lost in the event of a system failure because it was written to the buffer after the last journal sync (see The Journal Write Cycle).
 - To change the **jrnbufs** setting, navigate to the **Advanced Memory Settings** page of the management portal (**System Administration** > **Configuration** > **Additional Settings** > **Advanced memory**). The **jrnbufs** setting can also be changed by editing the iris.cpf file; for more information, see **jrnbufs** in the *Configuration Parameter File Reference*.
- **SynchCommit** Specifies when the **TCOMMIT** command requests that journal data involved in a transaction be flushed to disk: when this setting is **true**, **TCOMMIT** does not complete until the journal data write operation completes; when it is **false** (the default), **TCOMMIT** does not wait for the write operation to complete.

To change the **SynchCommit** setting, navigate to the **Compatibility Settings** page of the management portal (**System Administration** > **Configuration** > **Additional Settings** > **Compatibility**). For more information on **SynchCommit**, see **SynchCommit** in *Configuration Parameter File Reference* and **TCOMMIT** in *ObjectScript Reference*.

4.3 Journaling Operation Tasks

Once journaling is configured there are several tasks you can perform:

- Start journaling
- Stop journaling
- View journal files
- Switch journal files
- Switch journal directories
- Display journal file profiles
- Check journal file integrity
- View journal file summaries
- Purge journal files
- Restore journal files

4.3.1 Start Journaling

If journaling is stopped, you can start it using the **'JRNSTART** routine or by selecting option 1, *Begin Journaling*, from the **'JOURNAL** routine menu. See Start Journaling Using 'JRNSTART for details.

Note: You cannot start journaling from the Management Portal.

When you start journaling, InterSystems IRIS audits the change if auditing is enabled.

4.3.2 Stop Journaling

Stopping journaling system wide has a number of undesirable consequences, as described in the Journal Freeze on Error Setting is No section.

When you stop journaling, transaction processing ceases. If a transaction is in progress when you stop journaling, the complete transaction may not be entered in the journal. To avoid this problem, it is best to make sure all users are off the system before stopping journaling.

If you stop journaling and InterSystems IRIS crashes, the startup recovery process does not roll back incomplete transactions started before journaling stopped since the transaction may have been committed but not journaled.

In contrast, transactions are not affected in any adverse way by switching journal files. Rollback correctly handles transactions spanning multiple journal files created by journal switching; so, if possible, it is better to switch journal files than to stop journaling.

You can stop journaling using the **^JRNSTOP** routine or by selecting option 2, *Stop Journaling*, from the **^JOURNAL** routine menu. See Stop Journaling Using **^JRNSTOP** for details.

Note: You cannot stop journaling from the Management Portal.

When you stop journaling, InterSystems IRIS audits the change if auditing is enabled.

4.3.3 View Journal Files

You can view a journal file on the Journals page of the Management Portal (System Operation > Journals).

1. On the Journals page, you can use the **Filter** box to shorten the list of journal files if necessary.

If the instance is configured as a mirror member, all journal files including mirrored and nonmirrored are displayed by default. Optionally click the link containing the mirror name, for example Mirror Journal Files Of 'MUNDANE', to display a list of mirror journal files only. If the instance is configured as a reporting async member of multiple mirrors, there is a separate link for the journal files from each mirror. To return to displaying all journal files, click the All Journal Files link.

Note: For information about mirror journal files, see Journal Files and Journal History Log in this chapter and Mirror Synchronization in the "Mirroring" chapter of the *High Availability Guide*.

- 2. To view a journal file, click **View** in the row of the journal file you want to see. The journal file is displayed record by record on the View Journal page. Fields include the following:
 - Offset Offset number for the record within the journal file.
 - **Time** Time at which the buffer containing this journal record was created (not the time at which the operation described in the record occurred).
 - **Process** ID of the process that created the record.
 - Type Type of operation described by the record. (The Journal File Operations table in the section Display Journal Records Using ^JRNDUMP provides information about the values that appear in the Type column.)
 - InTransaction Whether or not the operation occurred as part of a transaction.
 - GlobalNode Global node that was changed by the operation.
 - Database Database in which the change occurred.

3. You can:

- a. Click in the Offset column of a record to view a dialog box containing its details.
- b. Choose whether to color code the records by the time of buffer creation, the process that performed the operation recorded in the journal, the type of operation, whether the operation was part of a transaction, the global involved in the operation, or the database involved in the operation.
- c. Search for a particular record set of records using the Match boxes and the Search button.
 - 1. For a manual search, set the first drop-down to the column you want to search by, select an operator such as "equal to" or "not equal to", and enter the value you want to match in the right-most box, then click **Search**.
 - 2. To match a particular cell in one of the columns, just double-click in that cell. For example, to find all journal records containing KILL operations, double-click in any cell in the **Type** column containing **KILL**. The operator drop-down is automatically set to "equal to" but you can change that before pressing **Search**.

You can also use the **^JRNDUMP** utility to display the entire journal and the **SELECT^JRNDUMP** entry point to display selected entries. See Display Journal Records Using **^JRNDUMP** for details.

4.3.4 Switch Journal Files

The system automatically switches the journal file in the following situations:

- After a successful backup of an InterSystems IRIS database
- When the current journal file grows to the maximum file size allowed (configurable on the Journal Settings page)
- When the journal directory becomes unavailable and you specified an alternate directory
- After updating settings in the Journal Settings page of the Management Portal (System Administration > Configuration > System Configuration > Journal Settings).

Switching the journal file is preferable to stopping and starting journaling because during the latter process, any global operations that occur after stopping but before restarting are not journaled.

To manually switch journal files:

- Navigate to the Journals page of the Management Portal (System Operation > Journals).
- 2. Click **Switch Journal** above the list of database journal files.
- 3. Confirm the journal switch by clicking **OK**.

You can also switch journal files using the **^JRNSWTCH** routine or by selecting option 3, *Switch Journal File* from the **^JOURNAL** routine menu. See Switch Journal Files Using **^JRNSWTCH** for details.

4.3.5 Switch Journal Directories

As described in Configuring Journal Settings, journaling automatically switches to the secondary journaling directory (assuming it is configured) if the primary directory becomes unwritable for any reason. To manually switch journaling directories, do the following:

- 1. Navigate to the Journals page of the Management Portal (System Operation > Journals).
- 2. Click **Switch Directory** above the list of database journal files.
- 3. Confirm the journal switch by clicking **OK**.

You can also switch journal directories by selecting option 13, *Switch Journaling to Secondary/Primary Directory* from the **^JOURNAL** routine menu. See Switch Journaling Directories Using SWDIR^JOURNAL for details.

4.3.6 Display Journal File Profiles

You can display the global profile of a journal file, showing the globals that appear in the file's records and the number of records each appears in, from the Journals page.

- 1. On the Journals page, you can use the Filter box to shorten the list of journal files if necessary.
- 2. To display a journal file profile, click **Profile** in the row of the appropriate journal file. The Journal Profile page displays with the profile on it. If the journal file has a large number of records, it may take a little while to build the profile.
- 3. You can sort the journal profile by global or by the cumulative size, in bytes, of all the records in which each global appears.
- 4. If the journal file is the current one, you can use the **Recalculate** button build the profile again after some time has passed.

4.3.7 Check Journal File Integrity

You can check the integrity of a journal file from the Journals page. This operation verifies that the journal file ends where it is expected to end, which verifies that there are no records missing from the end of the file.

- 1. On the Journals page, you can use the **Filter** box to shorten the list of journal files if necessary.
- 2. To run an integrity check on a journal file, click **Integrity Check** in the row of the appropriate journal file. The Journal Integrity Check page displays.
- 3. Select Check Details to scan the journal file record by record from the beginning to detect potential missing records.
- 4. Once you have clicked **OK**, a link to the Background Tasks page (**System Operation** > **Background Tasks**) appears, letting you view the status and results of the integrity check.

4.3.8 View Journal File Summaries

You can view summary information about a journal file on the Journal File Summary page. For example, you can find out whether the journal file is encrypted, and what databases are affected by the operations recorded in the journal file.

- 1. Click **Journals** from the **System Operations** menu of the home page to list the instance's journal files. Use the **Filter** box to shorten the list if necessary.
- 2. To view information about a journal file, click **Summary** in the row of the appropriate journal file. The Journal File Summary page displays.

4.3.9 Purge Journal Files

You can schedule a task to run regularly that purges obsolete journal files. A new InterSystems IRIS instance contains a pre-scheduled *Purge Journal* task that is scheduled to run after the daily *Switch Journal* task that runs at midnight. For information about purging mirror journal files, see <u>Purging Mirror Journal Files</u>.

The purge process deletes journal files based on the When to purge journal files setting on the Journal Settings page; for information, see Configure Journal Settings in this chapter.

Note: Journal files are sometimes retained even if they meet the criteria of the purge setting. When this happens, the event is recorded in the messages log and the reason (for example, that the journal file contains open transactions) is provided.

You can also purge journal files using the **PURGE^JOURNAL** routine or by selecting option 6, *Purge Journal Files* from the **^JOURNAL** routine menu. See Purge Journal Files Using PURGE^JOURNAL for details.

Note: The configured journal purge settings can be overridden by the **%ZJRNPURGE** routine; for more information, contact the InterSystems Worldwide Response Center (WRC).

4.3.10 Purging Mirror Journal Files

Mirror journal files are subject to additional purge criteria because they must be successfully distributed by the primary failover member to the other mirror members and dejournaled on each to synchronize the mirrored databases (see Mirror Synchronization in the "Mirroring" chapter of the *High Availability Guide* for a full description of this process). Transmission of the files to the backup is synchronous and always rapid when the mirror is operating normally, but transmission to asynchronous (async) members may take longer and may be delayed when an async is disconnected from the mirror. Backup and DR async members must also follow the same policy as the primary, since they are eligible to become primary in failover or disaster recovery situations. Mirror journal files are therefore purged as follows:

- On the primary failover member, a file is purged when the local journal file purge criteria have been met (see Configure Journal Settings) and when it has been received by the backup (if there is one) and all async members, whichever takes longer. If an async has been disconnected from the mirror for more than 14 days, however, files are purged even if that async has not yet received them.
- On the backup failover member (if there is one) and any disaster recovery (DR) async members, a file is purged when it has been fully dejournaled on that member, when local journal file purge criteria have been met, and when it has been received by all async members, with the same exception for asyncs that have been disconnected for more than 14 days.
- On reporting async members, mirror journal files are purged immediately after they have been dejournaled by default, to ensure that async mirror members do not run out of space (particularly when they are receiving journal files from multiple mirrors). You can optionally configure a reporting async to instead retain the files and purge them according to local journal file purge criteria; see Editing or Removing an Async Member in the "Mirroring" chapter.

No mirror journal file containing a currently open transaction is ever purged on any mirror member.

Note: When a mirror journal file is retained longer than would be dictated by local journal file purge criteria, this is recorded in the member's messages log and the reason is provided.

You can modify the defaults for purging mirror journal files with the **SYS.Mirror.JrnPurgeDefaultWait()** method.

4.3.11 Restore Journal Files

After a system crash or disk hardware failure, recreate your database by restoring your backup copies. If you have been journaling and your journal file is still accessible, you can further restore your databases by applying changes since the last backup recorded in the journal files to the databases.

To restore the journal files:

- 1. First confirm that all users exit InterSystems.
- 2. If journaling is enabled for the instance, stop journaling using **\^JRNSTOP** (see Stop Journaling Using \^JRNSTOP).
- 3. Restore the latest backup of your database.

- 4. Run the journal restore utility. See the Restore Globals From Journal Files Using ^JRNRESTO section for details.
- 5. Restart journaling if it is disabled.

Note: You cannot run the journal restore process from the Management Portal.

4.4 Journaling Utilities

InterSystems IRIS provides several utilities to perform journaling tasks. The **^JOURNAL** utility provides menu choices to run some common journaling utilities, which you can also run independently. There are also several other journaling utilities, which you run from the %SYS namespace.

The following sections describe the journaling utilities in detail:

- Perform Journaling Tasks Using ^JOURNAL
- Recover from Startup Errors Using ^STURECOV
- Convert Journal Files Using ^JCONVERT and ^%JREAD
- Set Journal Markers Using ^JRNMARK
- Manipulate Journal Files Using ^JRNUTIL
- Manage Journaling at the Process Level Using DISABLE^%NOJRN

In the following sections the sample procedures show C:\MyIRIS as the InterSystems IRIS installation directory.

4.4.1 Perform Journaling Tasks Using ^JOURNAL

The following example shows the menu available by invoking the **^JOURNAL** routine; the full menu is not repeated in subsequent examples.

```
%SYS>Do ^JOURNAL

1) Begin Journaling (^JRNSTART)
2) Stop Journaling (^JRNSTOP)
3) Switch Journal File (^JRNSWTCH)
4) Restore Globals From Journal (^JRNRESTO)
5) Display Journal File (^JRNDUMP)
6) Purge Journal Files (PURGE^JOURNAL)
7) Edit Journal Properties (^JRNOPTS)
8) Activate or Deactivate Journal Encryption (ENCRYPT^JOURNAL())
9) Display Journal status (Status^JOURNAL)
10) -not available-
11) -not available-
12) Journal catch-up for mirrored databases (MirrorCatchup^JRNRESTO)
13) Switch Journaling to Secondary Directory (SWDIR^JOURNAL)
Option?
```

Note: Option 11) Manage pending or in progress transaction rollback (Manage^JRNROLL) is displayed if pending or in-progress transaction rollbacks are encountered when you run the **STURECOV** (at system startup) or **MIRROR** (at primary mirror member startup) routine; for more information, see Manage Transaction Rollback Using Manage^JRNROLL in this section.

Enter the appropriate menu number option to start that particular routine. Press **Enter** without entering an option number to exit the utility. The following subsections describe the options available through the ^JOURNAL utility:

• Start Journaling Using ^JRNSTART

- Stop Journaling Using ^JRNSTOP
- Switch Journal Files Using ^JRNSWTCH
- Switch Journaling Directories Using SWDIR^JOURNAL
- Restore Globals From Journal Files Using ^JRNRESTO
- Display Journal Records Using ^JRNDUMP
- Purge Journal Files Using PURGE^JOURNAL
- Update Journal Settings Using ^JRNOPTS
- Journal Encryption Using ENCRYPT^JOURNAL
- Display Journal Status Using Status^JOURNAL
- Manage Transaction Rollback Using Manage^JRNROLL
- Restore Journal to Mirrored Database Using MirrorCatchup^JRNRESTO

4.4.1.1 Start Journaling Using ^JRNSTART

To start journaling, run **^JRNSTART** or enter 1 at the Option prompt of the **^JOURNAL** menu, as shown in the following examples.

Example of running **^JRNSTART** directly:

```
%SYS>Do ^JRNSTART
```

Example of starting journaling from the **^JOURNAL** menu:

```
%SYS>Do ^JOURNAL

1) Begin Journaling (^JRNSTART)
...
Option? 1
```

If journaling is running when you select this option, a message similar to the following is displayed:

```
Already journaling to C:\MyIRIS\mgr\journal\20181113.001
```

4.4.1.2 Stop Journaling Using ^JRNSTOP

To stop journaling, run **^JRNSTOP** or enter 2 at the Option prompt of the **^JOURNAL** menu, as shown in the following examples.

Note: When the **Freeze on error** flag (see Configure Journal Settings in this chapter) is set to "Yes," stopping journaling is allowed (although there is a risk of data loss) and does not cause the instance to freeze.

Example of running **^JRNSTOP** directly:

```
%SYS>Do ^JRNSTOP
Stop journaling now? No => Yes
```

Example of stopping journaling from the **^JOURNAL** menu:

```
%SYS>DO ^JOURNAL
...
2) Stop Journaling (^JRNSTOP)
...
Option? 2
Stop journaling now? No => Yes
```

If journaling is not running when you select this option, you see a message similar to the following:

```
Not journaling now.
```

4.4.1.3 Switch Journal Files Using ^JRNSWTCH

To switch the journal file, run **'JRNSWTCH** or enter 3 at the Option prompt of the **'JOURNAL** menu, as shown in the following example:

```
%SYS>Do ^JOURNAL
...
3) Switch Journal File (^JRNSWTCH)
...
Option? 3
Switching from: C:\MyIRIS\mgr\journal\20181113.002
To: C:\MyIRIS\mgr\journal\20181113.003
```

The utility displays the name of the previous and current journal files.

4.4.1.4 Switch Journaling Directories Using SWDIR*JOURNAL

To switch journaling directories, assuming a secondary directory is configured as described in Configuring Journal Settings, run SWDIR^JOURNAL or enter 13 at the Option prompt of the ^JOURNAL menu, as shown in the following example:

```
%SYS>Do ^JOURNAL
...
13) Switch Journaling to Secondary Directory (SWDIR^JOURNAL)
Option? 3
Option? 13
Journaling to \\remote\MyIRIS\\journal_secondary\MIRROR-MIRRORONE-20180720.007
```

The utility displays the name of the current journaling directory and journal file following the switch.

4.4.1.5 Restore Globals From Journal Files Using ^JRNRESTO

The InterSystems IRIS **^JRNRESTO** routine is used after a database is restored from backup to return it to its state immediately prior to a failure by applying database updates from journal files. This is called a journal restore, and the process of applying the updates is called dejournaling. A journal restore dejournals all journal records created between the creation of the backup and the failure. For example, if the database was backed up early Tuesday morning and crashed on Wednesday afternoon, after you restore the Tuesday backup, you can restore updates from the journal files created on Tuesday and Wednesday.

If sufficient system resources are available, up to 16 dejournaling jobs can perform the updates in parallel within a journal restore operation. This increases the performance of the operation and is called *parallel dejournaling*. Multiple updaters can update the same database simultaneously, but not the same global, which allows for higher throughput when updates are applied to a small number of databases while ensuring that the data within each global is logically consistent.

Parallel dejournaling is enabled only when the host system has sufficient CPUs to support it and the InterSystems IRIS instance has enough generic memory available to allocate for this purpose. In practice, parallel dejournaling will not be used in journal restores on most InterSystems IRIS instances unless generic memory is increased. The number of parallel dejournaling jobs can never exceed the size of the generic memory heap divided by 200 MB; for example, to support four dejournaling jobs running in parallel, the generic heap must be at least 800 MB. (Even if you do not have enough memory available to support parallel dejournaling, dejournaling throughput may improve if you increase the size of the generic memory heap from the default.)

Note: To change the size of the generic memory heap or gmheap (sometimes known as the shared memory heap or SMH), navigate to the Advanced Memory Setting page (System Administration > Configuration > Additional Settings > Advanced Memory); see Memory and Startup Settings in the "Configuring InterSystems IRIS" chapter in System Administration Guide for more information.

Parallel dejournaling is also used by InterSystems IRIS mirroring; for more information, see Configuring Parallel Dejournaling in the "Mirroring" chapter of the *High Availability Guide*.

^JRNRESTO restores only to databases whose journal state is *Yes* at the time of the journal restore. The first time it encounters each database, the routine checks and records its journal state. The restore process skips journal records for databases whose journal state is *No*. If no databases are marked as being journaled, the routine asks if you wish to terminate the restore; you can then change the database journal state to *Yes* on specific databases and restart **^JRNRESTO**.

Note: The journal state of a database *at the time of restore* determines what action is taken; InterSystems IRIS stores nothing in the journal about the current journal state of the database when a given journal record is written. This means that changes to databases whose journal state is *Yes* are durable, but changes to other databases may not be. InterSystems IRIS ensures physical consistency, but not necessarily application consistency, if transactions involve databases whose journal state is *No*.

^JRNRESTO lets you make several decisions about the journal restore, as follows:

- Restore global updates to databases in the InterSystems IRIS instance in which you are running the routine, or to databases in another InterSystems IRIS instance. You can choose to restore updates for all globals to all databases in the current instance, or to select individual databases in the current or another instance and optionally specify which globals to restore to each.
- Restore mirror journal files to a mirrored database (catch up a mirrored database) or to a nonmirrored database. On a mirror member, you are prompted to indicate whether you are catching up a mirrored database, as noted in the following procedure; if so, the procedure is redirected to the **MirrorCatchup^** entry point to **JRNRESTO** (see Restore Journal to Mirrored Database Using MirrorCatchup^JRNRESTO).
- Apply existing journal filters (see Filter Journal Records Using ^ZJRNFILT) to the restore.
- Select a range of journal files to restore from.
- Disable journaling of updates during the restore to make the operation faster.
- Choose what to do when an error occurs, as follows:
 - Continue with the journal restore despite database-related problems, for example, a target database cannot be mounted or an error occurs while applying an update. With this setting, updates to the affected database(s) are skipped; these databases may not be consistent with the other databases following the operation, or may contain inconsistent globals (although the logically consistency of the data within each global is guaranteed) and will need to be recovered separately.
 - Abort the journal if an update would have to be skipped due to a database-related problem. With this setting, databases and the globals they contain will be consistent with each other as of the record that caused the restore to be aborted. Parallel dejournaling is disabled with this setting.

CAUTION: If you use journal restore scripts based on prompts, you should update the scripts because some prompts may have changed since the last release.

To restore global updates from journal files:

- 1. Run the **^JRNRESTO** routine in the **%SYS** namespace, then press **<Enter>** at the Restore the Journal? prompt to continue.
- 2. If you are running the routine on a mirror member, the following prompt is displayed.

```
Catch-up mirrored databases? No =>
```

- If you are restoring mirror journal files to a mirrored database *in the same mirror in which the mirror journal files were created*, enter yes; the procedure is redirected to the **MirrorCatchup^** entry point to **^JRNRESTO** (see Restore Journal to Mirrored Database Using MirrorCatchup^JRNRESTO).
- If you are restoring mirror journal files to a nonmirrored database, or are not restoring mirror journal files, enter no or **<Enter>** and continue to use the procedure described here.
- 3. If you have existing journal filters (see Filter Journal Records Using ^ZJRNFILT), specify whether you want to use them:

```
Use current journal filter (ZJRNFILT)?
Use journal marker filter (MARKER^ZJRNFILT)?
```

4. Choose whether you want to restore all journaled globals to all databases in the current InterSystems IRIS instance, or to specify one or more databases and optionally specify which globals to restore to each.

```
Process all journaled globals in all directories?
```

- Enter Yes if you want to restore all globals to all databases in the current instance.
- Enter No or **<Enter>** if you want to restore only selected databases in the current or another instance. Then do the following:
 - Indicate whether the journal files were created under a different operating system from that of the current system. This is important because the directory paths you specify for the databases you want to restore must exactly match the paths in the journal files, which are in canonical form. If you respond with No, ^JRNRESTO puts the directory paths you enter into canonical form for the current operating system so they will match those in the journal files. If you respond with Yes, ^JRNRESTO does not canonicalize the paths you enter, because the canonical form in the journal files is different from the canonical form on the current system. In the latter case, you must take care to enter directory paths in the canonical form appropriate to the operating system of the journal files to ensure that they will match.

For example:

- if you are working on a Windows system and enter No at this prompt, then enter the path c:\intersystems\iris\mgr\user, ^JRNRESTO automatically canonicalizes this to c:\intersystems\iris\user\ to match journal files created on a Windows system.
- if you are working on a Unix® system and enter Yes at this prompt because the journal files were created on a Windows system, you must be sure to enter the canonical form of the path, c:\intersystems\iris\mgr\user\, to ensure that it matches the journal files, because ^JRNRESTO cannot canonicalize it for you.
- Specify each database you want to restore by entering its directory path; this indicates the source database from which the journal records were taken. Press <Enter> at the Redirect to directory prompt to indicate that source and target are the same and restore global updates to the source database. If you are restoring to a different database, for example because you have restored the source database from backup to a different system, enter the directory path of the target database.

If you are restoring mirror journal files to a nonmirrored database, at the Directory to restore prompt, you can do either of the following:

- Enter directory path of the source database and then either **<Enter>** or the directory path of the target nonmirrored database, as described in the foregoing.
- Enter the full, case-sensitive mirror database name of the source mirrored database, for example, :mirror: JLAP: MIRRORDB, which can be found using the **List mirrored databases** option on the

Mirror Status menu of the ^MIRROR utility, and then specify the directory path of the target nonmirrored database.

Note: If you are restoring mirror journal files to a mirrored database, you will not have reached this point in the procedure; see Restore Journal to Mirrored Database Using MirrorCatchup^JRNRESTO.

- For each database you specify, either confirm that you want to restore updates for all globals or enter one or more globals to restore.
- When you have entered all the databases, press < Enter> at the Directory to restore prompt, then confirm the list of specified databases and globals.

For example:

```
Process all journaled globals in all directories? no Are journal files imported from a different operating system? No => No
Directory to restore [? for help]: c:\intersystems\test23\mgr\user\
Redirect to Directory: c:\intersystems\test23\mgr\user\
 => --> c:\intersystems\test23\mgr\user\
Process all globals in c:\intersystems\test23\mgr\user\? No => yes
Directory to restore [? for help]: c:\intersystems\test23\mgr\data\
 Redirect to Directory: c:\intersystems\test23\mgr\data\
 => --> c:\intersystems\test23\mgr\data\
Process all globals in c:\intersystems\test23\mgr\data\? No => no
Global ^Survey.LastName Global ^Survey.ID
Global ^
Directory to restore [? for help]:
Processing globals from the following datasets:
 1. c:\intersystems\test23\mgr\user\
                                          All Globals
 2. c:\intersystems\test23\mgr\data\
                                          Selected Globals:
           ^Survey.LastName
           ^Survey.ID
Specifications correct? Yes => Yes
```

Note: If you are redirecting two or more databases to the same directory, you must make the same global selection — that is, either enter **yes** to process all globals, or **no** and then the same list of globals to process — for all of these databases. If you try to restore multiple databases to a single directory and the global selections are not all the same, the utility gives you the opportunity to either change your database redirection and global selections or cancel the operation.

5. Specify the journal files to restore from, which should be from the same InterSystems IRIS instance as the source databases you are restoring, by specifying the correct journal history log (see Journal History Log in this chapter).

```
Are journal files created by this IRIS instance and located in their original paths? (Uses journal.log to locate journals)?
```

- Enter yes or **<Enter>** at the prompt to use the journal history log of the current InterSystems IRIS instance to identify the journal files to process. For example, if you entered yes at the Process all journaled globals in all directories? prompt at the start of the process, enter yes here to restore all databases in the current instance from the current instance's journal files.
- If you entered no at the Process all journaled globals in all directories? prompt and then specified databases in another InterSystems IRIS instance, enter no here to specify the journal history log and journal file directory path of that instance, or files copied from that instance, so that the databases can be restored from that instance's journal files.

Important: If you are using a journal history log from another InterSystems IRIS instance, you must use a copy of the file, not the actual log.

For example,

```
Are journal files created by this IRIS instance and located in their original paths? (Uses journal.log to locate journals)? no If you have a copy of the journal history log file from the instance where the journal files were created, enter its full path below; otherwise, press ENTER and continue. Journal history log: c:\InterSystems\IRIS23_journals\journal.log

Specify the location of the journal files to be processed
Directory of the journal files: c:\InterSystems\IRIS23_journals\journal\Directory of the journal files:
```

- 6. Specify the range of journal files you want to process. Bear in mind the following:
 - If InterSystems IRIS switched to multiple journal files since the restored backup, you must restore the journal files in order from the oldest to the most recent. For example, if you have three journal files to restore, 20180214.001, 20180214.002, and 20180215.001, you must restore them in the following order:

```
20180214.001
20180214.002
20180215.001
```

• When you back up with online backup, information about the oldest journal file required for transaction rollback during restore is displayed at the beginning of the third and final pass and stored in the backup log. See the "Backup and Restore" chapter of this guide for more information.

Respond to the prompts as follows:

• If you entered yes at the Are journal files created by this IRIS instance prompt, or answered no and then specified the journal history log and journal file location of another instance, you can enter the pathnames of the first and last journal files to process. You can also enter? at either prompt to see a numbered list of the files in the specified location, then enter the numbers of the files, for example:

```
Specify range of files to process
Enter ? for a list of journal files to select the first and last files from
First file to process: ?

1) c:\intersystems\iris2\mgr\journal\20180212.001
2) c:\intersystems\iris2\mgr\journal\20180213.001
3) c:\intersystems\iris2\mgr\journal\20180214.001
4) c:\intersystems\iris2\mgr\journal\20180214.002
5) c:\intersystems\iris2\mgr\journal\20180215.001
6) c:\intersystems\iris2\mgr\journal\20180215.001
6) c:\intersystems\iris2\mgr\journal\20180215.001
7) c:\intersystems\iris2\mgr\journal\20180217.001
8) c:\intersystems\iris2\mgr\journal\20180217.002
First file to process: 5 c:\intersystems\iris2\mgr\journal\20180217.002
Final file to process: c:\intersystems\20181316mar14\mgr\journal\20180217.002 =>
Prompt for name of the next file to process? No => no
```

• If you entered no at the Are journal files created by this IRIS instance prompt and did not specify a journal history log, processing continues with prompts that attempt to identify the specific journal files you want to process. For example:

```
Journal history log:
Specify range of files to process (names in YYYYMMDD.NNN format)

from: <20180212.001> [?] => 20180215.001

through: <20180217.001> [?] => 20180217.002

Prompt for name of the next file to process? No => no

Provide or confirm the following configuration settings:

Journal File Prefix: [?] =>
```

7. Process the journal files:

```
Prompt for name of the next file to process? No => No
The following actions will be performed if you answer YES below:

* Listing journal files in the order they will be processed

* Checking for any missing journal file on the list ("a broken chain")

The basic assumption is that the files to be processed are all currently accessible. If that is not the case, e.g., if you plan to load journal files from tapes on demand, you should answer NO below.

Check for missing journal files? Yes => Yes
```

8. If one or more journal files within the range you specified are missing, you are given the opportunity to abort the operation. If you do not, or if no files are missing, the process proceeds with an opportunity to check journal integrity before starting the restore:

```
Journal files in the order they will be processed:

1. c:\intersystems\iris2\mgr\journal\20180215.001

2. c:\intersystems\iris2\mgr\journal\20180216.001

3. c:\intersystems\iris2\mgr\journal\20180217.001

4. c:\intersystems\iris2\mgr\journal\20180217.002

While the actual journal restore will detect a journal integrity problem when running into it, you have the option to check the integrity now before performing the journal restore. The integrity checker works by scanning journal files, which may take a while depending on file sizes. Check journal integrity? No => No
```

9. If the current journal file is included in the restore, you must switch journaling to another file, and are prompted to do so:

```
The journal restore includes the current journal file.
You cannot do that unless you stop journaling or switch
journaling to another file.
Do you want to switch journaling? Yes => yes
Journaling switched to c:\intersystems\iris2\mgr\journal\20180217.003
```

10. Next, choose whether to disable journaling of updates during the restore to make the operation faster.

```
You may disable journaling of updates for faster restore for all databases other than mirrored databases. Do you want to disable journaling the updates? Yes => yes Updates will NOT be journaled
```

Important:

If you do not disable journaling of updates during the restore, parallel dejournaling will not be used to increase performance, as described at the beginning of this section.

If journaling is disabled but database updates continue, you cannot use the last good journals to do a manual restore unless you can assure either of the following:

- You know exactly what will be updated and can control what is restored to the satisfaction of the application.
- You have restored the database(s) involved from the last backup and accept that after applying the journals you will have lost the data written when journaling was off.

InterSystems recommends that you run the following commands after completing the journal restore under these circumstances to verify that the object IDs are not out of sync; only IDs that are found to be out of sync are reported in the array, *errors*:

```
Do CheckIDCounters^%apiOBJ(.errors)
zwrite errors
```

11. After confirming or changing the default behavior on error for the restore job, confirm the restore to begin:

```
Before we job off restore daemons, you may tailor the behavior of a
restore daemon in certain events by choosing from the options below:
                  Continue despite database-related problems (e.g., a target
     database cannot be mounted, error applying an update, etc.), skipping
     updates to that database. Affected database(s) may not be self-consistent
     and will need to be recovered separately
                 Abort if an update would have to be skipped due to a
     database-related problem (e.g., a target database cannot be mounted,
     error applying an update, etc.). Databases will be left in a self-consistent state as of the record that caused the restore to be
     aborted. Parallel dejournaling will be disabled with this setting
                  Abort if an update would have to be skipped due to a
     DEFAULT:
     journal-related problem (e.g., journal corruption, some cases of missing
     journal files, etc.)
     ALTERNATE: Continue despite journal-related problems (e.g., journal
     corruption, some missing journal files, etc.), skipping affected updates
Would you like to change the default actions? No => No
Start the restore? Yes =>
```

Important: If you choose to abort due to database-related problems, parallel dejournaling will not be used to increase performance, as described at the beginning of this section.

12. The progress of the journal restore is displayed at intervals, and when the job is complete a list of databases updated by the restore is displayed:

```
c:\MyIRIS1\mgr\journal\20180406.001
 35.73% 70.61% 100.00%
c:\MyIRIS1\mgr\journal\20180406.002
 35.73% 70.61% 100.00%
c:\MyIRIS1\mgr\journal\20180406.003
[Journal restore completed at 20180407 02:25:31]
The following databases have been updated:
1. c:\MyIRIS1\mgr\source22\
2. c:\MyIRIS1\mgr\source23\
c:\MyIRIS1\mgr\irislocaldata\
4. c:\MyIRIS1\mgr\irislib\
5. c:\MyIRIS1\mgr\iristemp\
The following databases have been skipped:

    /bench/yang/InterSystems/IRIS/162/

2. /scratch1/yang/InterSystems/IRIS/p750.162/mgr/
/scratchl/yang/InterSystems/IRIS/p750.162/mgr/irislocaldata/
```

- 4. /scratch1/yang/InterSystems/IRIS/p750.162/mgr/irislib/
- 5. /scratch1/yang/InterSystems/IRIS/p750.162/mgr/iristemp/
- 6. /scratch1/yang/InterSystems/IRIS/p750.162/mgr/user/

Rolling Back Incomplete Transactions

Restoring the journal also rolls back incomplete transactions. Ensure that users have completed all transactions so that the restore does not attempt to roll back active processes.

To ensure that transactions are all complete before you restore your backup and clear the journal file, InterSystems strongly recommends the following:

- If you need to roll back transactions for your own process, the process must halt or use the TROLLBACK command.
- If you need to roll back transactions system-wide, shut down InterSystems IRIS and restart it to ensure that no users are on the system.

Restoring Mirror Journal Files

You can restore mirror journal files to either mirrored or nonmirrored databases. If you are restoring to a mirrored database, see step 2 of the procedure in Restore Globals From Journal Files Using ^JRNRESTO and the section Restore Journal to Mirrored Database Using MirrorCatchup^JRNRESTO. If you are restoring to a nonmirrored database, see step 4 of the procedure in Restore Globals From Journal Files Using ^JRNRESTO.

Filter Journal Records Using ^ZJRNFILT

InterSystems provides a journal filter mechanism to manipulate the journal file. The journal filter program is a user-written routine called **^ZJRNFILT** whose format is shown below. This is called by the InterSystems IRIS journal restore program, **^JRNRESTO**, and ensures that only selected records are restored. Create the **^ZJRNFILT** routine using the following format:

ZJRNFILT(jid	.dir.	.alo	.t.vpe	restmode.	.addr	time)

Argument	Туре	Description
jid	input	Job ID which you can use to identify the PID that generated the journal
dir	input	Full pathname of the directory containing the IRIS.DAT file to be restored, as specified in the journal record
glo	input	Global in journal record
type	input	Command type in journal record (S for Set, K for Kill)
addr	input	Address of the journal record
time	input	Time stamp of the record (in \$horolog format). This is the time the journal buffer is created, not when the Set or Kill operation occurs, so it represents the earliest this particular operation could have happened.
restmode	output	0 - do not restore record 1 - restore record

^ZJRNFILT Considerations

Consider the following when using ^ZJRNFILT:

- If the startup routine (^STU) calls ^JRNRESTO, it does not call the filter routine under any circumstances.
- Journal restore only calls the journal filter (**ZJRNFILT**) if it exists. If it does exist, the restore procedure prompts you to confirm the use of the filter in the restore process.

- If you answer yes to use the journal filter, for every record in the journal file to restore, the routine calls the journal filter **ZJRNFILT** with the indicated input arguments to determine whether to restore the current record.
- You can use any logic in your ^ZJRNFILT routine to determine whether or not to restore the record. Return confirmation through the output restmode argument.
- If you are using the directory name, dir, in the **ZJRNFILT** routine logic, specify the full directory pathname.
- The entire global reference is passed to **ZJRNFILT** for use in program logic.
- When the journal restore process completes, it prompts you to confirm whether to rename the ^ZJRNFILT routine
 or delete it. If you choose to rename the filter, the utility renames it ^XJRNFILT and deletes the original ^ZJRNFILT.
- The restore process aborts with an appropriate error message if any errors occur in the ^ZJRNFILT routine.

^ZJRNFILT Examples

Two globals, ^ABC and ^XYZ, are journaled. While journaling is turned on, the following code is executed, and the journal file records the **Set** and **Kill** operations for these globals:

```
For I=1:1:500 Set ^ABC(I)=""
For I=1:1:500 Set ^XYZ(I)=""
For I=1:1:100 Kill ^ABC(I)
```

1. To restore all records for ^ABC only, the ^ZJRNFILT routine looks like this:

```
ZJRNFILT(jid,dir,glo,type,restmode,addr,time) /*Filter*/
Set restmode=1 /*Return 1 for restore*/
If glo["XYZ" Set restmode=0 /*except when it is ^XYZ*/
Quit
;
```

2. To restore all records except the kill on ^ABC, the **ZJRNFILT** routine looks like this:

```
ZJRNFILT(jid,dir,glo,type,restmode,addr,time) /*Filter*/
Set restmode=1 /*Return 1 for restore*/
If glo["^ABC",type="K" Set restmode=0 /*except if a kill on ^ABC*/
Quit
:
```

3. In some cases (for example, when the *jid* is a PID or on a mirror member), *remsysid* is *not* the actual ECP system ID. In these cases, use the **%SYS.Journal.Record.GetRealPIDSYSinFilter** method to return the real ECP system ID as well as the real PID.

To pull the real PID (and ECP system PID) in a filter, the ^ZJRNFILT routine looks like this:

```
ZJRNFILT(jidsys,dir,glo,type,restmode,addr,time) ;
SET restmode=0 ;test only
SET pid=##class(%SYS.Journal.Record).GetRealPIDSYSinFilter(jidsys,.ecpsysid)
DO
##class(%SYS.System).WriteToConsoleLog($SELECT(pid="":"jid="_+jidsys,1:"pid="_pid)_",ecpsysid="_ecpsysid)
QUIT
```

Note: The *jidsys* argument in **ZJRNFILT** contains two components: *jid* and *remsysid*, separated by a comma.

4. To restore all records after a specific time, the **ZJRNFILT** routine looks like this:

```
ZJRNFILT(jidsys,dir,glo,type,restmode,addr,time) ;
New zdh
Set zdh=$zdatetimeh("08/14/2015 14:18:31") ;in $H format as variable 'time'
If time>zdh Set restmode=1 Quit
If time<zdh Set restmode=0 Quit
If $p(time,",",2)<$p(zdh,",",2) {
   Set restmode=0
} Else {
      Set restmode=1
}
Quit</pre>
```

4.4.1.6 Display Journal Records Using ^JRNDUMP

To display the records in the journal file, enter 5 at the Option prompt of the **'JOURNAL** menu or run **'JRNDUMP** as shown in the following example:

1. Run the **^JRNDUMP** utility from the system manager namespace by entering:

```
%SYS>DO ^JRNDUMP
  Journal
                             Directory & prefix
   20181113.001
                             C:\MyIRIS\Mgr\Journal\
   20181113.002 [JRNSTART] C:\MyIRIS\mgr\journal\
   20181113.003
                             C:\MyIRIS\mgr\journal\
   20181113.004
                             C:\MyIRIS\mgr\journal\
   20181114.001
                             C:\MyIRIS\mgr\journal\
   20181115.001
                             C:\MyIRIS\mgr\journal\
                             C:\MyIRIS\mgr\journal\
C:\MyIRIS\mgr\journal\
   20181115.002
   20181115.003
  20181115.004
                             C:\MyIRIS\mgr\journal\
```

2. The routine displays a list of journal files. A greater-than sign (>) appears to the left of the currently selected file followed by a prompt:

```
Pg(D)n,Pg(U)p,(N)ext,(P)rev,(G)oto,(E)xamine,(Q)uit =>
```

Use these options to navigate to the journal file you wish to locate:

- If the instance is a mirror member, enter M to limit the list to mirror journal files only. (For information about mirror journal files, see Journal Files and Journal History Log in this chapter and Mirror Synchronization in the "Mirroring" chapter of the *High Availability Guide*.)
- Enter D or U to page through the list of journal files.
- Enter N or P to move the > to the desired journal file.
- Enter G to directly enter the full pathname of the journal file to display.
- Enter E to display the contents of the selected journal file.
- Enter I to display information about the selected journal file and, optionally, a list of databases from the journal.
- Enter Q or **<Enter>** to quit the routine.
- 3. When you enter I, when you accept the currently selected journal file or specify a different one, information like the following is displayed:

```
Journal: C:\MyIRIS\mgr\journal\20181113.003
File GUID: 97734819-CA75-4CB1-9C3E-74D294784D23
Max Size: 1073741824
Time Created: 2018-11-13 10:44:52
File Count: 22
Min Trans: 22,3497948
Prev File: C:\MyIRIS\mgr\journal\20181113.002
Prev File GUID: 8C5D3476-F12C-4258-BF6C-7423876653A4
Prev File End: 0
Next File: C:\MyIRIS\mgr\journal\20181113.004
Next File GUID: 4F4D20B1-D38C-473E-8CF0-4D04C6AF90B0
(D)atabases,(Q)uit =>
```

Min Trans is the file count and offset of the minimal transaction position, that is, any open transaction must have started at or later than that point.

If the selected file is a mirror journal file, addition information is displayed.

Entering Q at the prompt at the bottom returns you to the journal file list. Enter D to display database information like the following:

Enter Q to return to the journal file information display.

4. After you enter G or E, the utility displays the journal file name and begins listing the contents of the file by offset address. For example:

5. At the bottom of the current listing page is information about the journal file and another prompt:

```
Last record: 573004; Max size: 1073741824
(N)ext,(P)rev,(G)oto,(F)ind,(E)xamine,(Q)uit =>
```

Use these options to navigate to the journal record you wish to display:

- Enter N or P to display the next or previous page of addresses.
- Enter G to move the display to a particular address.
- Enter F to search for a particular string within the journal file.
- Enter E to enter the address of a journal record and display its contents.
- Enter Q to return to the list of journal files.
- 6. After entering E or G, enter an address at the prompt. The E option displays the contents of the journal record at or near the address you entered; the G option displays the page of journal records starting at that location.

For either option, the utility locates the record that is the closest to the offset address you specify; it does not need to be a valid address of a journal record. Also, you may enter 0 (zero) to go to the beginning of the journal file, or enter -1 to go to the end of the journal file.

7. You may browse through a display of the journal records using N or P to display the next or previous journal record contents, respectively. When you are finished displaying records, enter Q at the prompt to return to the list of journal records.

There are different types of journal records:

- The journal header is 8192 bytes long. It appears once at the start of every journal file. The **^JRNDUMP** utility does not display the journal header record.
- Journal data records.
- Journal markers

The following is a sample journal file data record as displayed by **^JRNDUMP**. The example shows how a **Set** command is recorded. The new value is recorded, but not the old value, because the **Set** occurred outside a transaction:

```
Journal: C:\MyIRIS\mgr\journal\20180119.004

Address: 233028

Type: Set
In transaction: No
Process ID: 4836

ECP system ID: 0

Time stamp: 60284,53240

Collation sequence: 5
```

Prev address: 232984
Next address: 0

Global: ^["^^C:\MyIRIS\mgr\"]ABC

New Value: 2

(N)ext,(P)rev,(Q)uit =>

In a transaction, the old value is also recorded, to allow transaction rollback, as seen in this second example:

```
Journal: C:\MyIRIS\mgr\journal\20181115.004
```

Address: 204292
Type: Set
In transaction: Yes
Process ID: 458772
ECP system ID: 0
Time stamp: 60584,52579 - 11/15/2018 14:36:19
Collation sequence: 5
Prev address: 204224
Next address: 204372

Global: $^["^C:MyIRIS\mgr"]ABC$ New Value: 5

Old Value: 2

(N)ext,(P)rev,(Q)uit =>

The following is an example of a journal marker record created by an incremental backup:

```
Journal: C:\MyIRIS\mgr\journal\20181115.004
```

Address: 210848
Type: JrnMark
Marker ID: -1

Marker text: NOV 15 2018;03:14PM;Incremental

Marker seq number: 1
Prev marker address: 0

Time stamp: 60584,52579 - 11/15/2018 14:36:19

Prev address: 210744
Next address: 210940

(N)ext,(P)rev,(Q)uit =>

The following table describes each field in the journal data record.

Table 4–1: Journal Data Record Fields Displayed by *JRNDUMP

Field	Description
Address	Location of this record in number of bytes from beginning of file. This is the only field where you enter a value to select a record.
Туре	The type of operation recorded in this journal record entry. See the Journal File Operations table for possible types.
In transaction	Whether or not the update occurred in a transaction.
Process ID	Process ID number for the process issuing the command.
ECP system ID	ECP system ID number (0 if a local process).

Field	Description
Time stamp	Creation time of the journal buffer, in \$HOROLOG and human-readable format. This is not the time the Set or Kill operation occurs, so it represents the earliest this particular operation could have happened.
Collation sequence	Collation sequence of the global being updated.
Prev address	Location of previous record (0 indicates this is the first record).
Next address	Location of next record (0 indicates this is the last record).
Cluster sequence #	Sequencing for globals in cluster-mounted databases. During cluster failover, journal entries from different nodes are updated in order of this cluster time sequencing.
Mirror Database Name	If a mirror journal file, the mirror name for the database on which the operation occurred.
Global	Extended reference of global being updated.
New Value	For a Set operation, the value assigned to the global.
Old Value	For a Set or Kill operation in a transaction, the value that was in the global before the operation.

The following table lists and describes the journal operations displayed in the **Op** column of a **^JRNDUMP** journal file display and the **Type** field of a **^JRNDUMP** journal record listing. For example, in the previous example of a journal file display, **S** in the **Op** column represents a **JRNSET** operation, while in the examples of journal record displays, **Set** appears in the **Type** field to indicate a **JRNSET** operation. Note that the **Type** column of the journal record display in the management portal (see **View Journal Files**) differs for some operations from the **Type** field of the **^JRNDUMP** listing; for example, a **JRNSET** operation is indicated by **RemoteSET** in the portal and by **NSet** in **^JRNDUMP** output. These differences are shown in the table.

The table also shows the codes that can be specified to filter journal records by operation when using the **SELECT^JRNDUMP** function.

Table 4–2: Journal File Operations

Operation	Description	Op in file listing	Type in ^JRNDUMP record listing	Type in Management Portal record listing	Numeric SELECT code	Alpha SELECT code
JRNSET	set a node, local	S ¹	Set	SET	6	S
JRNNSET	set a node, remote	S ¹	NSet	RemoteSET	10	S
JRNMIRSET	internal mirror opera- tion ²	S ¹	Mirror Set	MirrorSET	19	S
JRNBITSET	set a specified bit position in a node	b ¹	BitSet	BitSET	14	bs
JRNKILL	kill a node, local	K ¹	KillNode	KILL	7	k
JRNNKILL	kill a node, remote	K ¹	NKill	RemoteKILL	11	k

Operation	Description	Op in file listing	Type in ^JRNDUMP record listing	Type in Management Portal record listing	Numeric SELECT code	Alpha SEECT code
JRNKILLDES	kill a descendant node	k ¹	KillDesc	KILLdes	8	k
JRNMIRKILL	internal mirror opera- tions ²	k ¹	Mirror Kill	MirrorKILL	20	k
JRNZKILL	kill a node without killing subordinate nodes, local	k ¹	ZKill	ZKILL	9	zk
JRNNZKILL	kill a node without killing subordinate nodes, remote	k ¹	NZKill	RemoteZKILL	12	zk
JRNBEGTRANS	begin a transaction	ВТ	BeginTrans	BeginTrans	4	
JRNTBEGINLEVEL	begin transaction level	BTL	BeginTrans with Level	BeginTrans with level	16	
JRNCOMMIT	commit a transaction	СТ	CommitTrans	CommitTrans	5	
JRNTCOM- MITLEVEL	commit isolated transaction level	CTL	CommitTrans with Level	CommitTrans with level	18	
JRNTCOMMIT- PENDLEVEL	commit pending transaction level	PTL	CommitTrans Pending with Level	CommitTrans Pending with level	17	
JRNMARK	journal marker	М	JrnMark	Marker	13	
JRNBIGNET	ECP networking	NN	NetReq	netsyn	15	
JRNTROLEVEL	roll back a transaction	RB	Rollback	Rollback	21	

 $^{^{1}}$ T is appended when the operation occurs within a transaction, for example ST for a Set operation within a transaction or kT for a ZKiII operation within a transaction.

Select Journal Records to Dump

The function **SELECT^JRNDUMP** lets you display any or all of the records in the journal file. InterSystems IRIS dumps selected records from the journal file, starting from the beginning of the file, based on the arguments passed to the function.

The syntax to use the SELECT entry point of the **^JRNDUMP** utility is as follows:

SELECT^JRNDUMP(%jfile,%pid,%dir,%glo,%gloall,%operation,%remsysid)

² Operation is ignored during journal restore.

Argument	Description
%jfile	Journal file name. Default is the current journal file. You must specify the fully qualified path of the journal file.
%pid	Process ID in the journal record. Default is any process.
%dir	Directory in the journal record. Default is any directory.
%glo	Global reference in the journal record. Default is any global.
%gloall	Global indicator whether to list entries related to all global nodes containing the name represented by <i>glo</i> : 0 — Exact match of global reference with the name specified in <i>glo</i> , 1 — Partial match; all records with a global reference that contains the name specified in <i>glo</i> . Default is 0.
%operation	Operation type of the journal record. Default is any operation. Use the numeric or alphabetic codes listed in the Journal File Operations table in the previous section.
%remsysid	ECP system ID of journal record. Default is any system. ¹

¹ If *%pid* is specified, then *%remsysid* defaults to local system (0); otherwise, it defaults to any system, the same as if it is specified as 0. That is, you *cannot* select journal entries only from the local system.

You may pass the null string for any argument, in which case the routine uses the defaults.

As with other terminal functions, you can use the Device: prompt to direct the output of **SELECT^JRNDUMP** to a device other than the terminal, or to a file. (See the chapter "I/O Devices and Commands" in the I/O Device Guide for information on user device selection.) If you direct the output to a file, you are prompted for parameters. You must include R and W when writing to a file; if it is an existing file, include A to append output to the existing content rather than overwriting it; if a new file, you must include N. Enter? at the Parameters? prompt to display all possible choices.

Note: If the file you are overwriting is longer than the current output, the excess lines from the original file may not be removed from the updated file.

SELECT^JRNDUMP Examples

The following examples show different ways to select specific journal records.

To select all records in a journal file with the process ID 1203 and send the output to a new file called JRNDUMP.OUT:

```
%SYS>Do SELECT^JRNDUMP("C:\MyIRIS\mgr\journal\120020507.009","1203")
Device: SYS$LOGIN:JRNDUMP.OUT
Parameters: "RWN"=>
```

To select all records in the journal file that contain the global reference ^ABC:

```
DO SELECT^JRNDUMP("C:\MyIRIS\mgr\journal\20050327.001","","","^ABC",1)
```

To select only records that have an exact match to the global reference ^ABC:

```
DO SELECT^JRNDUMP("C:\MyIRIS\mgr\journal\20050327.001","","","^ABC",0)
```

Note: Records that are not an exact match, such as $^{\wedge}ABC(1)$ or $^{\wedge}ABC(100)$, are not selected.

To select only records for local **Set** operations of global ^ABC:

```
DO SELECT^JRNDUMP("C:\MyIRIS\mgr\journal\20050327.001","","","^ABC","","6")
```

To select only records for local and remote **Set** operations of global ^ABC:

```
DO SELECT^JRNDUMP("C:\MyIRIS\mgr\journal\20050327.001","","","^ABC","","s")
```

4.4.1.7 Purge Journal Files Using PURGE^JOURNAL

To purge files, use the **PURGE^JOURNAL** routine or enter 6 at the Option prompt of the **^JOURNAL** menu, as shown in the following examples.

Example of running **PURGE^JOURNAL** directly:

```
set $namespace="%SYS"
%SYS>Do PURGE^JOURNAL
```

Example of starting journaling from the **^JOURNAL** menu:

```
%SYS>Do ^JOURNAL
...
6) Purge Journal Files (PURGE^JOURNAL)
...
Option? 6

1) Purge any journal NOT required for transaction rollback or crash recovery
2) Purge journals based on existing criteria (2 days or 2 backups)
Option?
```

The routine reports on the action taken in response to the option you specify. For example:

```
Option? 1
The following files have been purged (listed from latest to oldest):
3. c:\intersystems\iris\mgr\journal\20180714.001
2. c:\intersystems\iris\mgr\journal\20180713.001
1. c:\intersystems\iris\mgr\journal\20180710.003
```

If no files are purged, the following message is displayed:

None purged

4.4.1.8 Update Journal Settings Using ^JRNOPTS

As an alternative to using the Journal Settings page of the Management Portal, you can update the basic journal configuration settings using the **^JRNOPTS** routine or by entering 7 at the Option prompt of the **^JOURNAL** menu. To change the setting, type the new value at the prompt and press **Enter**. For example:

```
SYS>Do ^JRNOPTS

1) Primary Journal Directory: C:\MyIRIS\Mgr\Journal\
2) Alternate Journal Directory: D:\irissys\altjournal\
3) Journal File Size Limit (MB) 1024
4) Journal File Prefix:
5) Journal Purge Options: 2 days OR 2 backups, whichever comes first

Entering a question mark (?) displays Help. For example:

Journal File Prefix: ?
Enter an alphanumeric string ('_' allowed) or . to reset prefix to null
```

If you change any of the settings, then press **Enter** at a Change Property? prompt, you are given the option to activate the changes:

```
Change Property?
Save and activate changes? Yes =>
*** Journal options updated.
```

If you do not change any settings, you see the following message:

```
*** Nothing changed
```

4.4.1.9 Journal Encryption Using ENCRYPT^JOURNAL

For information on option 8) Activate or Deactivate Journal Encryption (ENCRYPT^JOURNAL), see the Configuring InterSystems IRIS Database Encryption Startup Settings section of the "Managed Key Encryption" chapter of the Security Administration Guide, which describes details on journal file encryption.

4.4.1.10 Display Journal Status Using Status * JOURNAL

Choosing option 9) Display Journal status displays a concise overview of journal status information including the following:

- Current journal directory and its remaining space
- Alternate journal directory (if different) and its remaining space
- Current journal file, its maximum size, and space used
- Journaling state, which can be one of the following:
 - Enabled
 - Disabled (stopped)
 - Disabled due to I/O error (suspended)
 - Frozen due to I/O error
 - Journal switch in progress (paused)

Though suspended and frozen due to I/O error are the same journal state, the system takes different action; when frozen, it discards journal data.

• If applicable, the process IDs of any process running **^JRNSTART**, **^JRNSTOP**, or **^JRNSWTCH**

For example:

```
%SYS>Do ^JOURNAL
...
9) Display Journal status (Status^JOURNAL)
...
Option? 9

Current journal directory: C:\MyIRIS\Mgr\Journal\
Current journal directory free space (KB): 53503904
Alternate journal directory: C:\MyIRIS\Mgr\
Alternate journal directory free space (KB): 53503904
Current journal file: C:\MyIRIS\mgr\journal\20181129.001
Current journal file maximum size: 1073741824
Current journal file space used: 1979276
Journaling is enabled.
```

4.4.1.11 Manage Transaction Rollback Using Manage^JRNROLL

InterSystems IRIS provides the **^JRNROLL** utility to roll back partially completed transactions for records in the journal; use the **Manage** entry point (**Manage^JRNROLL**) when transaction rollbacks are pending or in progress at system startup or primary mirror member startup.

To start managing transaction rollback, run **Manage^JRNROLL** or enter 11 at the Option prompt of the **^JOURNAL** menu, as shown in the following example:

```
%SYS>Do ^JOURNAL
...
11) Manage pending or in progress transaction rollback (Manage^JRNROLL)
...
Option? 11
```

Choosing option 11) Manage pending or in progress transaction rollback (Manage^JRNROLL) displays a message similar to the following:

```
Transaction rollback is pending or in progress
Do you wish to run Manage^JRNROLL? Yes => Yes
Rollback operations currently in progress

ID Phase MB Remaining Current Open Transaction Count
1 scan 307 2
Rollback at system startup at 11/29/2018 15:54:35 (578MB)
20181129.004 has 2 open transaction(s) starting at offset 11303
2 file(s) remaining to process

1) Restart pending rollback
2) Interrupt transaction rollback
3) Redisplay rollback information
4) Discard pending rollback
Option?
```

This option displays the state of transaction rollbacks, including what phase (scanning or rollback) it is in, the amount of data (MBs) remaining to be processed, the number of open transactions it has found, etc.

In addition, it lists suboptions that let you manage the listed transaction rollbacks. For example, you can interrupt the operation, in which case it is queued as a "pending" operation; then you can restart pending rollbacks.

CAUTION: Option 4) Discard pending rollback is not reversible; do not use it unless you are certain you want to permanently discard the pending rollback.

Note: On a mirror, transaction rollback is executed twice: once for nonmirrored databases (at system startup); then for mirrored databases (when a system becomes the primary mirror member). As a result, when starting the primary mirror member, it may be necessary to interrupt the rollback twice, resulting in two pending operations. Restarting the pending operations performs the non-mirror and mirror rollbacks separately.

During rollback, messages are written to the messages log (messages.log) every 10% of the way through (more or less) indicating how much space is left to process and how many open transactions are listed.

When journal files are purged, files required for pending transaction rollback are retained (for example, if they would otherwise have been deleted).

4.4.1.12 Restore Journal to Mirrored Database Using MirrorCatchup^JRNRESTO

You can restore mirror journal files to mirrored databases by entering 12 at the Option prompt of the **'JOURNAL** menu, or by answering yes at the Catch-up mirrored databases? prompt when using Option 4, Restore Globals From Journal ('JRNRESTO). For example:

```
%SYS>Do ^JOURNAL
...
12) Journal catch-up for mirrored databases (MirrorCatchup^JRNRESTO)
...
Option? Option? 12

Specify the list of mirrored databases you want to catch-up.
Enter database, * for all, ? for a list or to end list? *
Enter database or to end list?
Starting catch-up for the following mirrored database(s):
    sfn #6: c:\intersystems\iris\mgr\mirrordb3\
Catch-up succeeded.
```

To catch up mirrored databases, journaling need not be running, but it must have been started at least once to ensure that the current journal directory is available from memory.

4.4.2 Recover from Startup Errors Using *STURECOV

During the InterSystems IRIS startup procedure if the journal or transaction restore process encounters errors, such as <FILEFULL> or <DATABASE>, the procedure logs the errors in the messages log (messages.log) and starts the system in single-user mode.

InterSystems IRIS provides a utility, **STURECOV**, to help you recover from the errors and start InterSystems IRIS in multiuser mode. The routine has several options which you can use to retry the failed operation and bring the system up, or ignore the errors and bring the system up. The journal restore phase tries to do as much work as possible before it aborts. If a database triggers more than three errors, it aborts the recovery of that database and leaves the database dismounted.

Note: The **STURECOV** utility does not work on a mirror member on which transaction rollback is pending or in progress because the system does not activate a mirrored database read/write until transaction rollback has been completed. In this case, InterSystems IRIS enables you to run the **Manage*JRNROLL** routine, which provides a way to force the system to come up and store transaction rollback information which can be used to roll back transactions after the system is up and running. For more information, see Manage Transaction Rollback Using Manage*JRNROLL in this section.

During transaction rollback, the first error in a database causes the rollback process to skip that database in the future. The process does not fully replay transactions that reference that database; it stores them for rollback during the recovery process.

When InterSystems IRIS encounters a problem during the dejournaling phase of startup it generates a series of messages log messages similar to the following:

```
2240) System Initialized.
                                                                              2256)
 08/10-11:19:47:054
                                                                                                    Write daemon started
08/10-11:19:48:316
                                                                              1836) Performing Journal Recovery
 08/10-11:19:49:417
                                                                             1836) Error in JRNRESTB: <DATABASE>restore+49^JRNRESTB
                   C:\MyIRIS\mgr\journal\20180810.004 addr=977220
^["^^C:\MyIRIS\mgr\jo1666\"]test(4,3,28)
08/10-11:19:49:427 ( 1836) Error in JRNRESTB: <DATABASE>restore+49^JRNRESTB
                  C:\MyIRIS\mgr\journal\20180810.004 addr=977268
^["^^C:\MyIRIS\mgr\test\"]test(4,3,27)
08/10-11:19:49:437 ( 1836) Error in JRNRESTB: <DATABASE>restore+49^JRNRESTB
C:\MyIRIS\mgr\journal\20180810.004 addr=977316
^["^^C:\MyIRIS\mgr\test\"]test(4,3,26)
08/10-11:19:49:447 \ (\ 1836) \ {\tt Error in JRNRESTB: <DATABASE>restore+42^JRNRESTB: <DATAB
                  C:\MyIRIS\mgr\journal\20180810.004 addr=977748
^["^^C:\MyIRIS\mgr\test\"]test(4,2,70)
08/10-11:19:50:459 ( \overline{1}836) Too many errors restoring to C:\MyIRIS\mgr\test\.
   Dismounting and skipping subsequent records
 08/10-11:19:50:539 ( 1836) 4 errors during journal restore,
 see console.log file for details.
Startup aborted, entering single user mode.
```

If the errors are from transaction rollback, then the output looks similar to this:

```
08/11-08:55:08:732 ( 428) System Initialized.
08/11-08:55:08:752
                     1512) Write daemon started.
08/11-08:55:10:444
                     2224) Performing Journal Recovery
08/11-08:55:11:165
                     2224) Performing Transaction Rollback
08/11-08:55:11:736
                     2224) Max Journal Size: 1073741824
                     2224) START: C:\MyIRIS\mgr\journal\20180811.011
08/11-08:55:11:746
08/11-08:55:12:487
                     2224) Journaling selected globals to
     C:\MyIRIS\mgr\journal\20180811.011 started
08/11-08:55:12:487
                     2224) Rolling back transactions
08/11-08:55:12:798
                     2224) Error in %ROLLBACK: <DATABASE>set+2^%ROLLBACK
     C:\MyIRIS\mgr\journal\20180811.010 addr=984744
     ^[ "^^C:\MyIRIS\mgr\test\"]test(4,1,80)
08/11-08:55:12:798 ( 2224) Rollback of transaction for process id #2148
aborted at offset 984744 in C:\MyIRIS\mgr\journal\20180811.010.
08/11-08:55:13:809 ( 2224) C:\MyIRIS\mgr\test\ dismounted
      Subsequent records will not be restored
08/11-08:55:13:809
                     2224) Rollback of transaction for process id #924
aborted at offset 983464 in C:\MyIRIS\mgr\journal\20180811.010.
08/11-08:55:14:089
                  ( 2224) STOP: C:\MyIRIS\mgr\journal\20180811.011
08/11-08:55:14:180 ( 2224) 1 errors during journal rollback,
```

88

```
see console.log file for details.
Startup aborted, entering single user mode.
```

Both output listings end with instructions such as:

```
Enter IRIS with
     C:\MyIRIS\bin\irisdb -sC:\MyIRIS\mgr -B
and D ^STURECOV for help recovering from the errors.
```

When InterSystems IRIS cannot start properly, it starts in *single-user* mode. While in this mode, execute the commands indicated by these instructions to enter InterSystems IRIS (see Administrator Terminal Session in the "Licensing" chapter of the *System Administration Guide*).

You are now in the manager's namespace and can run the startup recovery routine, 'STURECOV:

```
Do ^STURECOV
```

The **STURECOV** journal recovery menu appears as follows:

```
Journal recovery options

1) Display the list of errors from startup
2) Run the journal restore again
3) Bring down the system prior to a normal startup
4) Dismount a database
5) Mount a database
6) Database Repair Utility
7) Check Database Integrity
8) Reset system so journal is not restored at startup
9) Display instructions on how to shut down the system
10) Display Journaling Menu (^JOURNAL)

H) Display Help
E) Exit this utility

Enter choice (1-10) or [0]uit/[H]elp?
```

Only UNIX®/Linux systems contain option 9 on the menu.

Before starting the system in *multiuser* mode, correct the errors that prevented the journal restore or transaction rollback from completing. You have several options regarding what to do:

- Option 1 The journal restore and transaction rollback procedure tries to save the list of errors in the ^%SYS() global. This is not always possible depending on what is wrong with the system. If this information is available, this option displays the errors.
- Option 2 This option performs the same journal restore and transaction rollback which was performed when the
 system was started. The amount of data is small so it should not be necessary to try and restart from where the error
 occurred.
- Option 3 When you are satisfied that the system is ready for use, use this option to bring the instance down prior to restarting it in a normal fashion.
- Option 4 This option lets you dismount a database. Generally, use this option if you want to let users back on a system but you want to prevent them from accessing a database which still has problems (**DISMOUNT** utility).
- Option 5 This option lets you mount a database (*MOUNT utility).
- Option 6 This option lets you edit the database structure (**^REPAIR** utility).
- *Option 7* This option lets you validate the database structure (**^INTEGRIT** utility).
- Option 8 This updates the system so that it does not attempt journal restore or transaction rollback at startup. This
 applies only to the next time the startup process is run. Use this in situations where you cannot get journal recovery to
 complete and you need to allow users back on the system. Consider dismounting the databases which have not been
 recovered. This operation is not reversible. You can perform journal restore manually using the ^JRNRESTO utility.

- Option 9 It is not possible to shut down the system from this utility, but this option displays instructions on how to shut the system down from the UNIX® command line.
- Option 10 This option brings up the journaling menu which allows you to browse and restore journal files. There
 are options which start and stop journaling but these are not generally of interest when resolving problems with journaling at startup.

Take whatever corrective action is necessary to resolve the problem. This may involve using the **^DATABASE** routine to extend the maximum size of the database, or it may require freeing space on the file system or using the **^INTEGRIT** and **^REPAIR** utilities to find and correct database degradation. As you do this work, you can use *Option 2* of the **^STURECOV** utility to retry the journal replay/transaction rollback as many times as necessary. You can display any errors you encounter, including those from when the system started, using *Option 1*. When you correct all the problems, and run *Option 2* without any errors, use *Option 3* to bring the system up in multiuser mode.

If you find that you cannot resolve the problem, but you still want to bring the system up, use *Option 8* to clear the information in the InterSystems IRIS image journal (.wij file) that triggers journal restore and transaction rollback at startup. The option also logs the current information in the messages log. Once this completes, use *Option 3* to start the system. Use this facility with care, as it is not reversible.

If InterSystems IRIS was unable to store the errors during startup in the ^%SYS() global for **^STURECOV** to display, you may get an initial message before the menu that looks like this:

```
There is no record of any errors during the prior startup
This could be because there was a problem writing the data
Do you want to continue ? No => yes
Enter error type (? for list) [^] => ?

Supported error types are:
    JRN - Journal and transaction rollback
Enter error type (? for list) [^] => JRN
```

Journaling errors are one type of error that this utility tries to handle and that is the scope of this chapter. Other error types are discussed in the appropriate sections of the documentation.

CAUTION: Only use the **STURECOV** utility when the system is in single-user mode following an error during startup. Using it while the system is in any other state (for example, up running normally) can cause serious damage to your data as it restores journal information if you ask it to and this information may not be the most current data. The **STURECOV** utility warns you, but it lets you force it to run.

4.4.3 Convert Journal Files Using ^JCONVERT and ^%JREAD

The **^JCONVERT** routine is a utility that reads journal files and converts them to a common file in variable record format. The **^%JREAD** utility can then read this file and apply journal transactions to databases on a different system. The **^JCONVERT** utility exists on older InterSystems database products as well as all versions of InterSystems IRIS. Use these utilities to move journal data between different system versions that do not have compatible journal files.

For example, if you are converting to a new version of InterSystems IRIS and need to minimize downtime, perform the following steps:

- 1. Enable journaling on the old system.
- 2. Run a backup on the old system; this switches to a new journal file on the old system.
- 3. Continue journaling on the old system.
- 4. Restore the backup of the old system on the new system and perform any necessary conversions.
- 5. Stop the old system and run **^JCONVERT** on the journal files created on the old system since the backup.

6. Apply the transactions from the old system to the new system using the file created from **\'\JCONVERT\'** as input to **\'\%JREAD\'** on the new system.

The **'JCONVERT** utility uses the same process as the journal restore utility to select and filter the journal files for processing. You can include a range of journal files as input and create one output file. See the Restore Globals From Journal Files Using **'JRNRESTO** section for details on selecting and filtering journal files.

The converted file is in variable record format. The default character encoding is UTF8, which is compatible with the current ^%JREAD utility on all platforms, and can be moved among platforms with binary FTP. If you answer NO at the Use UTF8 character translation? prompt, no character encoding is applied.

Globals in the journal file are stored with a specific directory reference appended to the global reference. You can choose either to include the directory reference in the converted file, or exclude it. If you include it, you can always filter it out or change it later during the **^%JREAD** procedure.

The directory reference determines where ^%JREAD sets the global on the target system. If you do not include the directory reference, ^%JREAD makes all sets in the current directory. If you do include the directory reference, the utility makes sets in the same directory as on the source system unless translated by a ^%ZJREAD program you supply. If the target system is on a different operating system or the databases reside in different directories on the target system, you must supply a ^%ZJREAD routine to translate the directory reference.

The ^%JREAD routine reads a common journal file format and applies the journal transactions to the databases on the target system. During the import of records, if a ^%ZJREAD routine exists, the utility calls it for each journal transaction allowing you to manipulate the journal records. You can reference the following variables in your ^%ZJREAD routine:

```
type - Transaction type
gref - Global reference
value - Global value
%ZJREAD - 1:Apply transaction, 0:Do not apply transaction
```

If you decide not to apply a transaction, set the variable %ZJREAD to 0 (zero) to skip the record. You can also modify the other variables. For example, you can change the directory specification by modifying gref.

The following is an example **^%ZJREAD** routine. It looks for transactions that contain updates to *%SYS("JOURNAL"*, and prevents them from being applied. You can copy this and modify it to suit your needs:

Sample Run of ^JCONVERT

The following is a sample run of the **^JCONVERT** utility:

```
%SYS>Do ^JCONVERT

Journal Conversion Utility [ IRIS Format --> Common Format ]

The converted file will be in variable record format.
The default character translation UTF8 is compatible with current ^%JREAD on all platforms and can be moved among platforms with binary FTP. If you answer NO, no character translation will be applied.

Use UTF8 character translation? <Yes>

Globals in the journal file are stored with a specific directory reference appended to the global reference. You can choose either to include the directory reference in the converted file, or exclude it. Note that
```

if you include it, you can always filter it out or change it later during the %JREAD procedure. The directory reference determines where ^%JREAD sets the global on the target system. If the directory reference is not included, all sets are made to the current directory. If the directory reference is included, sets will be made to the same directory as on the source system unless translated by a ^%ZJREAD program you supply. If the target system is on a different operating system or the databases reside in different directories on the target system, the ^%ZJREAD program must be used to translate the directory reference. Include the directory reference? <Yes> Enter common journal file name: common.jrn Common journal file: common.jrn Record separator: Variable Directory reference: Yes Use current journal filter (ZJRNFILT)? no Use journal marker filter (MARKER^ZJRNFILT)? no Process all journaled globals in all directories? enter Yes or No, please Process all journaled globals in all directories? yes Specify range of files to process (names in YYYYMMDD.NNN format) from: <20181201.001> [?] => 20181202.001 through: <20181204.001> [?] => Prompt for name of the next file to process? No => No Provide or confirm the following configuration settings: Journal File Prefix: => Files to dejournal will be looked for in: C:\MyIRIS\mgr\journal\ C:\MyIRIS\mgr\ in addition to any directories you are going to specify below, UNLESS you enter a minus sign ('-' without quotes) at the prompt below, in which case ONLY directories given subsequently will be searched Directory to search: <return when done> Here is a list of directories in the order they will be searched for files: C:\MyIRIS\mgr\journal\ C:\MyIRIS\mgr\ You may tailor the response to errors by choosing between the alternative actions described below. Otherwise you will be asked to select an action at the time an error actually occurs. Either Continue despite database-related problems (e.g., a target database is not journaled, cannot be mounted, etc.), skipping affected updates Abort if an update would have to be skipped due to a database-related problem (e.g., a target database is not journaled, cannot be mounted, etc.) Either Abort if an update would have to be skipped due to a journal-related problem (e.g., journal corruption, some cases of missing journal files, etc.) Continue despite journal-related problems (e.g., journal corruption, some missing journal files, etc.), skipping affected updates Either Apply sorted updates to databases before aborting Discard sorted, not-yet-applied updates before aborting (faster) Would you like to specify error actions now? No => yes 1. Continue despite database-related problems (e.g., a target database is not journaled, cannot be mounted, etc.), skipping affected updates Abort if an update would have to be skipped due to a database-related problem (e.g., a target database is not journaled, cannot be mounted, etc.)

92

Select option [1 or 2]: 1

```
1. Abort if an update would have to be skipped due to a journal-related
     problem (e.g., journal corruption, some cases of missing journal files,
        Continue despite journal-related problems (e.g., journal corruption,
     some missing journal files, etc.), skipping affected updates
Select option [1 or 2]: 2
     1. Apply sorted updates to databases before aborting
     2. Discard sorted, not-yet-applied updates before aborting (faster)
Select option [1 or 2]:
Based on your selection, this restore will
** Continue despite database-related problems (e.g., a target database is not
journaled, cannot be mounted, etc.), skipping affected updates
** Continue despite journal-related problems (e.g., journal corruption, some
missing journal files, etc.), skipping affected updates
** Discard sorted, not-yet-applied updates before aborting (faster)
C:\MyIRIS\mgr\journal\20181202.001
  13.98%
          14.93% 15.95% 17.14%
                                  18.25%
                                          19.27%
                                                  20.49%
                                                           21.63%
                                                                   22.65%
                                                                           23.84%
  24.99%
          25.97%
                  27.10%
                          28.25%
                                  29.31%
                                          30.50%
                                                   31.72%
                                                           32.84%
                                                                   33.84%
                                                                           34.84%
  35.84%
          36.85%
                  37.91%
                          38.99%
                                  40.10%
                                          41.08%
                                                   42.03%
                                                           42.97%
                                                                   43.93%
                                                                           44.94%
                                                                   54.14%
  45.95%
          47.05%
                  48.11%
                          49.07%
                                  50.04%
                                          51.02%
                                                   52.03%
                                                           53.07%
                                                                           55.25%
  56.21%
          57.17%
                  58.15%
                          59.14%
                                  60.18%
                                          61.24%
                                                   62.33%
                                                           63.28%
                                                                   64.20%
                                                                           65.15%
  66.10%
          67.11%
                  68.13%
                          69.05%
                                  69.94%
                                          70.83%
                                                   71.61%
                                                           72.41%
                                                                   73.09%
                                                                           73.85%
  74.59%
          75.32%
                  76.06%
                          76.75%
                                  77.73%
                                          78.70%
                                                   79.65%
                                                           80.59%
                                                                   81.53%
                                                                           89.34%
          84.33%
                  85.27%
                          86.05%
                                  86.59%
                                          87.13%
                                                   87.67%
                                                           88.23%
                                                                   88.78%
  83.40%
  89.89% 90.61%
                 93.28%
                         94.38%
                                  97.12%
                                          98.21%
                                                  99.93%100.00%
***Journal file finished at 11:31:36
C:\MyIRIS\mgr\journal\20181203.001
  14.01%
          14.96% 15.98% 17.18%
                                  18.29%
                                          19.31%
                                                   20.53%
                                                           21.67%
                                                                   22.69%
                  27.15%
                         28.30%
  25.03%
          26.01%
                                  29.36%
                                          30.55%
                                                   31.78%
                                                           32.90%
                                                                   33.90%
                                                                           34.90%
  35.91%
          36.92%
                  37.99%
                          39.06%
                                  40.17%
                                          41.16%
                                                   42.11%
                                                           43.05%
                                                                   44.01%
                                                                           45.03%
          47.14%
                  48.20%
                          49.17%
                                  50.14%
                                          51.11%
                                                   52.13%
                                                           53.17%
                                                                   54.25%
                                                                           55.36%
  56.33%
          57.29%
                  58.27%
                          59.26%
                                  60.30%
                                          61.36%
                                                   62.46%
                                                           63.40%
                                                                   64.33%
                                                                           65.28%
          67.24%
                  68.26%
                          69.19%
                                  70.08%
                                          70.97%
                                                   71.76%
                                                           72.56%
                                                                           74.01%
  66.23%
                                                                   73.25%
  74.75%
          75.47%
                  76.22%
                          76.91%
                                  77.89%
                                          78.87%
                                                   79.83%
                                                           80.77%
                                                                   81.70%
                                                                           82.64%
          84.52%
                  85.46%
                          86.24%
                                  86.78%
                                          87.32%
                                                  87.87%
                                                           88.42% 88.98%
  83.58%
          90.81%
                  93.49%
                          94.59%
                                  97.33%
                                         98.42%100.00%
  90.09%
***Journal file finished at 11:31:37
C:\MyIRIS\mgr\journal\20181204.001
                                          19.25%
  13.97%
          14.92% 15.93% 17.12%
                                  18.24%
                                                   20.47%
                                                           21.61%
                                                                   22.62%
                                                                           23.82%
          25.94%
  24.96%
                  27.07%
                                          30.46%
                                                                           34.80%
                          28.22%
                                  29.28%
                                                   31.69%
                                                           32.80%
                                                                   33.80%
          36.81%
                  37.87%
                                  40.05%
                                          41.04%
                                                   41.98%
                                                           42.92%
  35.80%
                          38.94%
                                                                   43.88%
                                                                           44.89%
                          49.02%
  45.90%
          47.00%
                  48.06%
                                  49.98%
                                          50.96%
                                                   51.97%
                                                           53.01%
                                                                   54.08%
                                                                           55.19%
  56.15%
          57.11%
                  58.08%
                          59.07%
                                  60.12%
                                          61.17%
                                                   62.26%
                                                           63.20%
                                                                   64.13%
                                                                           65.07%
          67.03%
                          68.97%
                                          70.75%
                                                           72.33%
  66.02%
                  68.05%
                                  69.86%
                                                   71.53%
                                                                   73.01%
                                                                           73.77%
  74.51%
          75.23%
                  75.98%
                          76.67%
                                  77.64%
                                          78.61%
                                                   79.56%
                                                           80.50%
                                                                   81.43%
                                                                           82.37%
  83.30%
          84.24%
                  85.17%
                          85.95%
                                  86.49%
                                          87.03%
                                                  87.57%
                                                           88.13%
                                                                   88.68%
                                                                           89.23%
  89.79%
         90.51% 93.18% 94.27%
                                  97.01%
                                          98.10%
                                                  99.81%100.00%
```

[journal operation completed] Converted 26364 journal records

***Journal file finished at 11:31:38

4.4.4 Set Journal Markers Using ^JRNMARK

To set a journal marker in a journal file, use the following routine:

SET rc=\$\$ADD^JRNMARK(id,text)

Arg	ument	Description
id		Marker ID (for example, -1 for backup)

Argument	Description
text	Marker text of any string up to 256 characters (for example, "timestamp" for backup)
rc	Journal location of the marker (journal offset and journal file name, delimited by a comma) or, if the operation failed, a negative error code followed by a comma and a message describing the error. Note that a journal offset must be a positive number.

4.4.5 Manipulate Journal Files Using ^JRNUTIL

InterSystems provides several functions in the **^JRNUTIL** routine. You can use these functions for writing site-specific routines to manipulate journal records and files.

The following table lists the functions available in the routine.

Table 4-3: Functions Available in \(^{1}\)JRNUTIL

Journaling Task	Function Syntax
Close a journal file	\$\$CLOSEJRN^JRNUTIL(jrnfile)
Delete a journal file	\$\$DELFILE^JRNUTIL(jrnfile)
Read a record from a journal file into a local array	\$\$GETREC^JRNUTIL(addr,jrnode)
Switch to a different journal file directory	\$\$JRNSWCH^JRNUTIL(newdir)
Open a journal file	\$\$OPENJRN^JRNUTIL(jrnfile)
Use an opened journal file	\$\$USEJRN^JRNUTIL(jrnfile)

Important: The **DELFILE**^**JRNUTIL** function does not check for open transactions before deleting the journal file.

The following table describes the arguments used in the utility.

Argument	Description
addr	Address of the journal record.
jrnfile	Name of journal file.
newdir	New journal file directory.
jrnode	Local variable passed by reference to return journal record information.

4.4.6 Manage Journaling at the Process Level Using DISABLE^%NOJRN

If journaling is enabled system-wide, you can stop journaling for **Set** and **Kill** operations on globals within a particular process by issuing a call to the **^%NOJRN** utility from within an application or from programmer mode as follows:

%SYS>DO DISABLE^%NOJRN

Journaling remains disabled until one of the following events occurs:

- The process halts.
- The process issues the following call to reactivate journaling:

%SYS>DO ENABLE^%NOJRN

Note: Disabling journaling using **DISABLE^%NOJRN** does not affect mirrored databases.

You must have at least read access to the %Admin Manage resource to use DISABLE^%NOJRN.

4.5 Journal I/O Errors

When InterSystems IRIS encounters a journal file I/O error, the response depends on the **Freeze on error** journal setting, which is on the Journal Settings page of the Management Portal. The **Freeze on error** setting works as follows:

- When the **Freeze on error** setting is **No** (the default), the journal daemon retries the failed operation until it succeeds or until one of several conditions is met, at which point all journaling is disabled. This approach keeps the system available, but disabling journaling compromises data integrity and recoverability.
- When Freeze on error is set to Yes, all journaled global updates are frozen. This protects data integrity at the expense
 of system availability.

The Freeze on error setting also affects application behavior when a local transaction rollback fails.

InterSystems recommends you review your business needs and determine the best approach for your environment. The following sections describe the impact of each choice:

- Journal Freeze on Error Setting is No
- Journal Freeze on Error Setting is Yes
- Impact of Journal Freeze on Error Setting on Transaction Rollback with TROLLBACK

4.5.1 Journal Freeze on Error Setting is No

If you configure InterSystems IRIS *not* to freeze on a journal file I/O error, the journal daemon retries the failed operation periodically (typically at one second intervals) until either it succeeds or one of the following conditions is met:

- The daemon has been retrying the operation for a predetermined time period (typically 150 seconds)
- The system cannot buffer any further journaled updates

When one of these conditions is met, journaling is disabled and database updates are no longer journaled. As a result, the journal is no longer a reliable source from which to recover databases if the system crashes. The following conditions exist when journaling is disabled:

- Transaction rollback fails, generating <ROLLFAIL> errors and leaving transactions partly committed.
- Mirroring becomes undependable once updates to the mirrored databases on the primary are no longer journaled because
 it relies on journaling to synchronize databases.
- Crash recovery of uncommitted data is nonexistent.
- Full recovery no longer exists. You are able to recover only to the last backup.
- ECP lock and transaction recoverability guarantees are compromised.
- If the system crashes, InterSystems IRIS startup recovery does not attempt to roll back incomplete transactions started before it disabled journaling because the transactions may have been committed, but not journaled.

What to do if journaling is disabled?

To summarize, if journaling is disabled, perform the following steps:

- 1. Resolve the problem As soon as possible, resolve the problem that disabled journaling.
- 2. Switch the journal file The Journal daemon retries the failed I/O operation periodically in an attempt to preserve the journal data accumulated prior to the disabling. If necessary, you can switch the journal file to a new directory to resolve the error; however, InterSystems IRIS does *not* re-enable journaling automatically even if it succeeds with the failed I/O operation and switches journaling to a new file. It also does *not* re-enable journaling if you switch the journal file manually.
- 3. *Back up the databases* on the main server (the backup automatically re-enables journaling if you have not done so).

InterSystems strongly recommends backing up your databases as soon as possible after the error to avoid potential data loss. In fact, performing an online backup when journaling is disabled due to an I/O error restarts journaling automatically, provided that the error condition that resulted in the disabling of journaling has been resolved and you have sufficient privileges to do so. You can also enable journaling by running **\^JRNSTART**.

When a successful backup operation restarts journaling, InterSystems IRIS discards any pending journal I/O, since any database updates covered by the pending journal I/O are included in the backup.

Important: Starting journaling requires higher privileges than running a backup.

4.5.2 Journal Freeze on Error Setting is Yes

If you configure InterSystems IRIS to freeze on a journal file I/O error, all journaled global updates are frozen immediately upon such an error. This prevents the loss of journal data at the expense of system availability. Global updates are also frozen if the journal daemon has been unable to complete a journal write for at least 30 seconds.

The journal daemon retries the failed I/O operation and unfreezes global updates after it succeeds. Meanwhile, the freezing of global updates causes other jobs to hang. The typical outcome is that InterSystems IRIS hangs until you resolve the journaling problem, with the system appearing to be down to operational end-users. While InterSystems IRIS is hung you can take corrective measures, such as freeing up disk space, switching the journal to a different disk, or correcting a hardware failure.

The advantage to this option is that once the problem is resolved and InterSystems IRIS resumes normal operation, no journal data has been lost. The disadvantage is that the system is less available or unavailable while the problem is being solved.

InterSystems IRIS posts alerts (severity 3) to the messages.log file periodically while the journal daemon is retrying the failed I/O operation.

4.5.3 Impact of Journal Freeze on Error Setting on Transaction Rollback with TROLLBACK

It is important to be aware that the **Freeze on error** setting you choose can have significant implications for application behavior unrelated to journaling. When an application attempts to roll back an open transaction using the **TROLLBACK** command (see **TROLLBACK** in the *ObjectScript Reference*) and the attempt fails, the same tradeoff presents itself as is faced when a journal I/O error is encountered: that of data integrity versus availability. Like journaling, **TROLLBACK** uses the **Freeze on error** setting to determine the appropriate behavior, as follows:

- When the Freeze on error setting is No (the default), the process initiating the transaction and the TROLLBACK
 receives an error, the transaction is closed, and the locks retained for the transaction are released. This approach keeps
 the application available, but compromises data integrity and recoverability.
- When Freeze on error is set to Yes, the initiating process halts and CLNDMN makes repeated attempts to roll back the
 open transaction. During the CLNDMN retry period, locks retained for the transaction remain intact, and as a result
 the application might hang. This protects data integrity at the expense of application availability.

If CLNDMN repeatedly tries and fails to roll back an open transaction for a dead job (as reported in the messages log), you can use the **Manage^CLNDMN** utility to manually close the transaction.

Note: The **Freeze on error** setting affects local (non-ECP) transaction rollback only.

4.6 Special Considerations for Journaling

Review the following special considerations when using InterSystems IRIS journaling:

- Performance
- UNIX® File System Recommendations
- System Clock Recommendations
- Disabling Journaling for Filing Operations

4.6.1 Performance

While journaling is crucial to ensuring the integrity of your database, it can consume disk space and slow performance, depending on the number of global updates being journaled.

Journaling affects performance because updates result in double processing, as the change is recorded in both the database and the journal file. InterSystems IRIS uses a flat file journaling scheme to minimize the adverse effect on performance.

4.6.2 UNIX® File System Recommendations

The "Supported File Systems" table in the online *InterSystems Supported Platforms* document for this release, which outlines file systems recommended and supported by InterSystems on UNIX®/Linux platforms, includes notes about mount options for optimum journaling performance.

Note:

When you configure the primary or alternate journal directory on a file system that does not have the recommended mount option, a message like the following is entered in the messages log:

The device for the new journal file was not mounted with a recommended option (cio).

4.6.3 System Clock Recommendations

All operating systems supported by InterSystems IRIS provide Network Time Protocol (NTP) clients, which keep the system clock synchronized to a reference system, as well as facilities that automatically adjust the system clock between daylight saving time and standard time.

It is recommended that you rely on the automatic clock management features of the operating system to keep the system clock synchronized and regulated rather than adjust the system clock manually.

If you must make manual time adjustments for tasks such as testing, be sure to use a test environment (rather than the production environment) when performing such tasks. Furthermore, manual adjustments should be made with care because non-chronological events – such as adjusting the clock forward or backward – may cause issues for some utilities.

4.6.4 Disabling Journaling for Filing Operations

Under certain circumstances, it may be useful or necessary to disable journaling for filing operations, such as object saves and deletes. There are two ways to do this:

- When you open an object (typically with **%OpenId** or **%Open**), specify a concurrency value of 0. However, if the object is already open with a higher concurrency value, then specifying a concurrency of 0 is not effective.
- Suspend object filer transaction processing for the current process. To do this, call \$system.OBJ.SetTransactionMode(0) (which is the SetTransactionMode method of the %SYSTEM.OBJ class; you can invoke it through the special \$system object). The SetTransactionMode method takes a value of 0 or 1: 0 turns off object filer transactions and 1 turns them on. Note that this setting affects the entire process, not just the current filing operation.

Important:

While certain circumstances call for disabling journaling, make sure that this is necessary before doing it. Otherwise, there may be a journal that does not include all the data required, which can result in the permanent loss of data.

5

Data Consistency on Multiple Systems

When mirroring or other mechanisms are used to maintain a copy of data on another system, you may want to check the consistency of that data between the two systems. DataCheck provides this checking and includes provisions to recheck transient discrepancies.

5.1 DataCheck Overview

DataCheck provides a mechanism to compare the state of data on two systems — the DataCheck source and the DataCheck destination — to determine whether or not they match. All configuration, operational controls and results of the check are provided on the destination system; the source system is essentially passive.

On the instance of InterSystems IRIS® that is to act as the DataCheck destination, you must create a DataCheck destination configuration. You can create multiple destination configurations on the same instance, which you can configure to check data against multiple source systems (or configure them to check different data against a single source). If you are using DataCheck to check the consistency of a mirror, see DataCheck for Mirror Configurations for more details.

The following subsections describe DataCheck topics in more detail:

- DataCheck Queries
- DataCheck Jobs
- DataCheck Results
- DataCheck Workflow

5.1.1 DataCheck Queries

The destination system submits work units called DataCheck "queries" to the source system. Each query specifies a database, an initial global reference, a number of nodes, and a target global reference. Both systems calculate an answer by traversing the specified number of global nodes starting with the initial global reference, and hashing the global keys and values. If the answers match, the destination system records the results and resubmits the query with a larger number of nodes and the initial global reference advanced; if they match, the query is resubmitted with a smaller number of nodes until the discrepancy is isolated down to the configured minimum query size.

You can display information about the queries submitted by the destination system using the **View Queries** option of the **View Details** submenu of the **^DATACHECK** routine, including the globals that remain to be processed (or global ranges if subscript include/exclude ranges are used), and the active queries currently being worked on by DataCheck.

5.1.2 DataCheck Jobs

The answer to each query is calculated by DataCheck worker jobs running on both the source system and the destination system. The number of worker jobs is determined by the dynamically tunable performance settings of the destination system; for more information, see "Performance Considerations" in this chapter.

In addition to the worker jobs, there are other jobs on each system. The following additional jobs run on the destination system:

- Manager job Loads and dispatches queries, compares query answers, and manages the progression through the
 workflow phases; this job is connected to the source system Manager job.
- Receiver job Receives answers from the source system.

The following additional jobs run on the source system:

- Manager job Receives requests from the destination system Manager job and sends them to worker jobs.
- Sender job Receives query answers from the worker jobs and sends them to the destination system Receiver job; this job is connected to the destination system Receiver job.

5.1.3 DataCheck Results

The results of the check lists global subscript ranges with one of the following states:

- Unknown DataCheck has not yet checked this range.
- Matched DataCheck has found that this range matches.
- Unmatched DataCheck has found a discrepancy in this range.
- Collation Discrepancy Global was found to have differing collation between the source system and the destination system.
- Excluded This range is excluded from checking.

You can view the results from the current check and the final results from the last check on the destination system; for more information, see the SYS.DataCheck.RangeList class. For all subscript ranges within DataCheck, the beginning of a range is inclusive and the end exclusive. See Specifying Globals and Subscript Ranges to Check in this chapter for information about subscript ranges.

The following provides a sample check result:

This result indicates that the nodes in the range starting at $^{\land}XYZ$ up to but not including $^{\land}XYZ(3001,4)$ are matched, while there is at least one discrepancy in the range of nodes from $^{\land}XYZ(3001,4)$ up to but not including $^{\land}XYZ(5000)$. The nodes in the range from $^{\land}XYZ(5000)$ to the end are matched.

The minimum number and frequency of discrepancies in the unmatched range depends on the minimum query size (see Performance Considerations). For example, if the minimum query size is set to the default of 32 in this case, there is at least one discrepancy every 32 nodes from ^XYZ(3001,4) until ^XYZ(5000); if there were a sequence within this range of more than 32 nodes without a discrepancy, it would appear in the results as a separate matched range.

5.1.4 DataCheck Workflow

During the check, data may be changing and transient discrepancies may be recorded. Rechecking may be required to eliminate these transient discrepancies. The destination system has a workflow that defines a strategy for how to check the globals.

A typical workflow begins with the "Check" phase as phase #1. (Phase #1 should always be defined as the logical starting point of the check cycle, since it is used by the workflow timeout and the Start dialog of the **^DATACHECK** routine to indicate a "reset" from beginning, as described in the next section.) At the beginning of this phase, the current set of results are saved as the last completed results and a new set of active results is established. DataCheck makes an initial pass through all globals specified for inclusion in the check.

Following the Check phase, the "Recheck Discrepancies" phase is typically specified with the desired number of iterations. Each iteration rechecks all unmatched ranges in an effort to eliminate transient discrepancies.

As each phase of the workflow is completed, DataCheck moves to the next phase. The workflow is implicitly restarted from phase #1 after the last phase is complete. The "Stop" phase shuts down all DataCheck jobs and the "Idle" phase causes DataCheck to wait for you to manually specify the next phase.

5.1.4.1 Starting/Stopping/Reconnecting DataCheck

You can stop and start DataCheck at any time; when you start DataCheck, it resumes the workflow from where it left off. In addition, you can specify a different workflow phase to follow the current phase and/or abort the current phase at any time.

If, during a check, DataCheck is stopped, becomes disconnected, or pauses due to mirroring, the routine reports why the system was stopped, what phase it stopped in, and what it will do when it starts (for example, resume processing, move to the next phase, change phase due to user request or restart at phase #1 due to workflow timeout). If, upon starting, DataCheck is going to resume processing the current phase or make a transition to any phase other than phase #1, you are offered the option of restarting at phase #1, as in the following example:

```
Option? 4

Configuration Name: test

State: Stopped due to Stop Requested
Current Phase: 1 - Check
Workflow Phases:
1 - Check
2 - RecheckDiscrepancies, Iterations=10
3 - Stop
(restart)
Workflow Timeout: 432000
New Phase Requested: 2
Abort Current Phase Requested

DataCheck is set to abort the current phase and transition to phase #2.

You may enter RESTART to restart at phase #1

Start Datacheck configuration 'test'? (yes/no/restart)
```

In cases in which DataCheck becomes disconnected and reconnects only after an extended period, it may be more desirable to restart from phase #1 of the workflow instead. For example, if the systems were disconnected for several weeks in the middle of a check and then the check is resumed, the results are of questionable value, having been collected in part from two weeks prior and in part from the present time. The workflow has a Timeout property that specifies the time, in seconds, within which DataCheck may resume a partially completed workflow phase. If the timeout is exceeded, DataCheck restarts from phase #1 the next time it reaches the running state. The default value is five days (432000 seconds), based on the assumption that a large amount of data is checked by this DataCheck configuration and the check may take hours or days to complete normally; a smaller value may be preferable for configurations that complete a check in a shorter amount of time. A value of zero means no timeout.

Note:

As noted, you should define phase #1 to be the logical starting point of the check cycle, since it is used by the workflow timeout and the Start dialog of the **^DATACHECK** routine to indicate a "reset" from beginning, as shown in the previous example.

5.2 DataCheck for Mirror Configurations

Upon creating a DataCheck destination configuration, if the system is a member of a mirror (see the "Mirroring" chapter of the *High Availability Guide*), you are given the option to configure DataCheck to check the mirrored data. If you choose this option, you need only select the mirror member to act as the DataCheck source, and the rest of the configuration is automatic.

When a check begins, all mirrored databases are included in the check; you do not have to map databases individually. You can specify which globals are checked or exclude entire databases, as described in Specifying Globals and Subscript Ranges to Check. A mirror-based DataCheck configuration cannot be used to check nonmirrored databases, but a separate nonmirrored DataCheck configuration can be created for such purposes.

This section discusses the following topics:

- Planning DataCheck within the Mirror
- Selecting Globals to Check

5.2.1 Planning DataCheck within the Mirror

Each DataCheck destination configuration connects to one source mirror member. Although the source member should not be changed, additional DataCheck configurations can be created to check against more than one source mirror member (or to check different sets of data from the same source).

This section includes the following member-specific subsections:

- Checking Data Between Failover Members
- Checking Data on Async Members

5.2.1.1 Checking Data Between Failover Members

When checking between failover mirror members, the check is typically run with the backup failover member configured as the DataCheck destination for the following reasons:

- The DataCheck destination uses more resources than the source in order to maintain the results of the check and other state information (which is itself journaled).
- If the backup failover member is the DataCheck destination, the results are available for review on the backup if the primary failover member goes down.

Note: In most configurations, it is assumed that the failover has already occurred and any review of the results probably happens after the failover decision point.

Whenever DataCheck loses its connection to the source, it retries the connection, waiting indefinitely for the source machine to become available again. If a mirror-based DataCheck is started on the destination when it was not the primary failover member, and that member becomes the primary, DataCheck stops rather than automatically try to reconnect. This prevents DataCheck from unintentionally running on the primary. For more information about reconnecting, see Starting/Stopping/Reconnecting DataCheck in this chapter.

5.2.1.2 Checking Data on Async Members

When mirror-based DataCheck is checking between a failover member and an async member, the async member is typically the destination. This is for the same reasons mentioned above (see Checking Data Between Failover Members) in regards to checking between failover members, but primarily because the results of the check should be stored on the async member during disaster recovery.

When there are two failover members, it is often desirable to create one DataCheck destination configuration on an async member for each of the two failover members as sources. The **^DATACHECK** routine offers to create both for you, and offers settings for how they behave with respect to which of the two is the primary failover member.

Each DataCheck configuration has a setting to govern how it behaves based on the source failover member's status as the primary member. The settings are:

No restriction

Checking both without restriction (the default) is desirable because it uses the async member as an agent to check both failover members without needing to run DataCheck between the failover members.

Check primary only (pause until DataCheck source is primary)

Checking against the primary only is desirable because the primary is the true source of the data for this async member.

• Do not check primary (pause when DataCheck source is primary)

Checking against the backup is desirable because it does not consume resources on the production primary system.

Note: For information about reconnecting after a pause, see Starting/Stopping/Reconnecting DataCheck in this chapter.

For DataCheck configurations that are run manually (on demand) by a system administrator, these settings may not be of particular importance; they are more important for DataCheck configurations that are run continuously (or nearly so).

Any member may check another member without any particular relation. For example, if an async member is being used to check both failover members, it could also be used as the source of a check for other async members, thus avoiding the need to have any other async members check against the failover members.

5.2.2 Selecting Globals to Check

All mirrored databases that exist when DataCheck is run are checked automatically; for information about controlling which globals and databases are checked, see Specifying Globals and Subscript Ranges to Check in this chapter.

5.3 DataCheck Setup Procedure

You can set up DataCheck destination systems with the **DATACHECK** routine and enable DataCheck source systems through the Management Portal. To set up a new DataCheck system, do the following:

- 1. Create new destination system.
- 2. Set up/edit destination system configurations, as follows:
 - a. For non-mirror-based configurations, specify the hostname/IP address, superserver port, and optional TLS configuration for the TCP connection to the source system.
 - For mirror-based configurations, specify the mirror member you want to check.
 - b. For non-mirror-based configurations, specify the set of databases to be checked and their corresponding paths on the source system.

For mirror-based configurations, all mirrored databases are included.

- c. Optionally, specify global selection masks and subscript ranges for fine-grained control over which databases, globals, and global ranges to include or exclude. For more information, see Specifying Globals and Subscript Ranges to Check in this chapter.
- d. Optionally, adjust the dynamically tunable settings to control the performance and system resource consumption for the check. For more information, see Performance Considerations in this chapter.
- e. Optionally, modify the workflow specifying the strategy for the check. For more informations, see "DataCheck Workflow" in this chapter.
- 3. Enable the **Service_DataCheck** service on the source system. For more information, see "Enabling the DataCheck Service" in this chapter.
- 4. Start the destination system, which controls the checking.
- 5. Monitor the status of the check, as follows:
 - On the source system, view the status and log file.
 - On the destination system, view the status and log file, as well lists of queries and results.

5.3.1 Enabling the DataCheck Service

Use the Management Portal from the InterSystems IRIS instance running on the source system to enable the data checking service and, optionally, restrict connections:

- 1. Navigate to the Services page (System Administration > Security > Services) of the Management Portal.
- 2. Click **%Service_DataCheck** in the list of service names to edit the data checking service properties.
- 3. Select the **Service enabled** check box. Before clicking **Save**, you may want to first restrict which IP addresses can connect to this database source. If so, perform the next step, and then click **Save**.

Note: When configured to check a mirror, DataCheck uses TLS if the mirror is set to use TLS (for more information, see DataCheck for Mirror Configurations in this chapter). The DataCheck service, however, does not automatically restrict access only to mirror members. If you wish to restrict DataCheck connections from other systems, you must configure the Allowed Incoming Connections for the %Service_DataCheck service.

4. Optionally, to restrict access to the service, in the **Allowed Incoming Connections** box (which displays previously entered server addresses), click **Add** to add an **IP Address**. Repeat this step until you have entered all permissible addresses.

You may delete any of these addresses individually by clicking **Delete** in the appropriate row, or click **Delete All** to remove all addresses, therefore allowing connections from any address.

5.3.2 Specifying Globals and Subscript Ranges to Check

DataCheck lets you specify global names and subscript ranges to include in or exclude from checking using the options detailed in the following.

Note: Only literal values are accepted as global names and subscripts when specifying global and subscript ranges.

- Check All Globals in All [Mapped / Mirrored] Databases Checks all globals in all mapped databases in non-mirror-based configurations; in mirror-based configurations, checks all globals in all mirrored databases.
- Include/Exclude Some Globals/Databases Checks globals in the selected database based on the specified mask(s). Subscripts are not allowed.

You can add/edit a mask or comma-separated list of masks, as follows:

- * Checks all globals (default).
- * as the last character Checks all globals starting with the preceding character(s).
- before a mask Excludes globals from being checked.

For example:

- ABC* all global names starting with ABC
- A:D all global names from A to D
- A:D, Y* all global names from A to D, and starting with Y
- *, 'C*, 'D* all globals except those starting with C or D
- '* exclude all globals

In addition to defining a global selection mask for specific databases, you can explicitly set a "default global selection mask" that is used for databases for which no global selection mask has been defined. Initially, the default mask to set to *.

Note: For mirror-based DataCheck, newly added mirrored databases are included in the next check. Therefore, if you do not want newly added mirrored databases to be checked automatically, set the default mask to '*.

For example, to specify a default mask for all databases for which no mask is defined (* , '^DontCheckMe) as well as specify a global selection mask (A:D) specifically for the USER and USER2 databases, do the following from the **Edit Configuration** submenu of the **^DATACHECK** routine (see **^DATACHECK** Routine, later in this chapter):

```
1) Import Settings from a Shadow
 2) Connection Settings
3) Database Mappings
 4) Globals to Check
5) Performance Settings
6) Manage Workflow
Option? 4
1) Check All Globals in All Mapped Databases
 2) Include/Exclude Some Globals/Databases
3) Include/Exclude Some Globals/Databases and Subscript Ranges
Option? 1 => 2
Save changes? Yes =>
1) Options for selecting globals to check
 2) Set default include/exclude mask for databases with no mask defined
 3) Add or remove include/exclude mask for databases
 4) View include/exclude masks
Option? 2
Enter a mask string, * to include all, '* to exclude all, ? for help
Mask: * => *,'^DontCheckMe
 Save changes? Yes =>
 1) Options for selecting globals to check
 2) Set default include/exclude mask for databases with no mask defined
 3) Add or remove include/exclude mask for databases
 4) View include/exclude masks
1) C:\InterSystems\IRIS\mgr\docbook\ [no mask defined, use default]
2) C:\InterSystems\IRIS\mgr\user\ [no mask defined, use default]
3) C:\InterSystems\IRIS\mgr\user2\ [no mask defined, use default]
Database (multiple selections allowed): 2,3
Enter a mask string, * to include all, '* to exclude all, ? for help
                                                                                                       ! to delete this mask and revert to default % \left( 1\right) =\left( 1\right) \left( 1\right) \left(
1) C:\InterSystems\IRIS\mgr\docbook\ [no mask defined, use default]
```

```
2) C:\InterSystems\IRIS\mgr\user\ [A:D]
3) C:\InterSystems\IRIS\mgr\user2\ [A:D]

Database (multiple selections allowed):
Save changes? Yes =>
1) Options for selecting globals to check
2) Set default include/exclude mask for databases with no mask defined
3) Add or remove include/exclude mask for databases
4) View include/exclude masks
Option?
```

Include/Exclude Some Globals/Databases and Subscript Ranges — In addition to letting you perform the same tasks
as the Include/Exclude Some Globals/Databases option, this option lets you identify subscript ranges in specific globals;
global subscript ranges marked for inclusion are included whether or not the global is included in the global selection
mask. For all subscript ranges within DataCheck, the beginning of a range is inclusive and the end exclusive.

Note: DataCheck may mark data in an excluded range as matched if this is determined in the course of its operation. Discrepancies in excluded ranges, however, are never marked.

For example, continuing with the preceding example, in which you specified a global selection mask (A:D) for the USER2 database; you can include a subscript range in the *NAME* global by responding to the prompts, as follows:

```
1) Options for selecting globals to check
2) Set default include/exclude mask for databases with no mask defined
3) Add or remove include/exclude mask for databases
4) View include/exclude masks
Option? 1
1) Check All Globals in All Mapped Databases
2) Include/Exclude Some Globals/Databases
3) Include/Exclude Some Globals/Databases and Subscript Ranges
Option? 2 \Rightarrow 3
Save changes? Yes =>
1) Options for selecting globals to check
2) Set default include/exclude mask for databases with no mask defined
3) Add or remove include/exclude mask for databases
4) View include/exclude masks
5) Add/Edit Subscript Ranges for a Global
6) Delete All Subscript Ranges for a Global
7) Delete All Subscript Ranges
8) View Defined Subscript Ranges
Option? 5
1) C:\InterSystems\IRIS\mgr\docbook\
2) C:\InterSystems\IRIS\mgr\user\
3) C:\InterSystems\IRIS\mgr\user2\
Database: 3 C:\InterSystems\IRIS\mgr\user2\
Global Name: ^NAME
There are no subscript ranges defined for this global.
You may start by including all or excluding all subscripts.
Answer YES to include, NO to exclude: no
C:\InterSystems\IRIS\mgr\user2\
                                        ^NAME
        ^NAME --Excluded--> [end]
From (inclusive):
  Enter a global reference with or without subscripts or null for end.
  The leading ^ may be omitted. For subscripted references the entire
 global name may be omitted and simply begin with open parentheses
From (inclusive):
                   (10)
To (exclusive): (20)
Answer YES to include, NO to exclude: yes
C:\InterSystems\IRIS\mgr\user2\
        NAME --Excluded--> NAME(10)
        ^NAME(10) --Included--> ^NAME(20)
        ^NAME(20) --Excluded--> [end]
From (inclusive):
Continue editing subscript ranges for this global? Yes => no
```

```
C:\InterSystems\IRIS\mgr\user2\
                                         ^NAME
        ^NAME --Excluded--> ^NAME(10)
        ^NAME(10) --Included--> ^NAME(20)
^NAME(20) --Excluded--> [end]
Save changes? Yes =>
1) Options for selecting globals to check
2) Set default include/exclude mask for databases with no mask defined
3) Add or remove include/exclude mask for databases
4) View include/exclude masks
5) Add/Edit Subscript Ranges for a Global
6) Delete All Subscript Ranges for a Global
7) Delete All Subscript Ranges
8) View Defined Subscript Ranges
Option?
You can view the mask information as follows:
Option? 4
The default include/exclude mask is:
     ,'^DontCheckMe
The following databases are using non-default global selection criteria
  C:\InterSystems\IRIS\mgr\user\
  C:\InterSystems\IRIS\mgr\user2\
     Has additional global subscript ranges to include/exclude that apply
      regardless of whether those globals are included in this mask.
1) Options for selecting globals to check
2) Set default include/exclude mask for databases with no mask defined
3) Add or remove include/exclude mask for databases
4) View include/exclude masks
5) Add/Edit Subscript Ranges for a Global
6) Delete All Subscript Ranges for a Global
7) Delete All Subscript Ranges
8) View Defined Subscript Ranges
Option?
Since the mask information includes a note about subscript ranges, you can display that information, as follows:
```

```
Option? 8
Device:
Right margin: 80 =>
DataCheck Destination System: GLOBTEST
Global Selection Subscript Ranges
C:\InterSystems\IRIS\mgr\user2\
                                        ^NAME
        ^NAME --Excluded--> ^NAME(10)
        ^NAME(10) --Included--> ^NAME(20)
        ^NAME(20) --Excluded--> [end]
1) Options for selecting globals to check
2) Set default include/exclude mask for databases with no mask defined
3) Add or remove include/exclude mask for databases
4) View include/exclude masks
5) Add/Edit Subscript Ranges for a Global
6) Delete All Subscript Ranges for a Global
7) Delete All Subscript Ranges
8) View Defined Subscript Ranges
Option?
```

5.4 **DATACHECK** Routine

You can use the 'DATACHECK routine (in the %SYS namespace) to configure and manage the data checking. To obtain Help at any prompt, enter?.

To start the **DATACHECK** routine, do the following:

1. Enter the following commands in the Terminal:

```
set $namespace = "%SYS"
%SYS>do ^DATACHECK
```

- The main menu is displayed. Enter the number of your choice or press **Enter** to exit the routine:
 - 1) Create New Configuration
 - 2) Edit Configuration
 - 3) View Details 4) Start

 - 5) Stop6) Delete Configuration
 - 7) Incoming Connections to this System as a DataCheck Source

Option?

Note: For options 2 through 6, if you created multiple destination systems, a list is displayed so that you can select the destination system on which to perform the action.

The main menu lets you select DataCheck tasks to perform as described in the following table:

Option	Description			
1) Create New Configuration	Prompts for the name of a new DataCheck destination system configuration via the Create New Configuration prompt.			
2) Edit Configuration	Displays the Edit Configuration submenu.			
3) View Details	Displays the View Details submenu.			
4) Start	Starts/restarts the destination system. If you are restarting, it resume from where you stopped it.			
5) Stop	Stops the destination system. If you restart the destination system after stopping it, it resumes from where you stopped it.			
6) Delete Configuration	Deletes the specified destination system configuration.			
7) Incoming Connections to this	Displays the Incoming Connections to this System as a DataCheck Source submenu.			
System as a DataCheck Source	Note: This option must be selected on a source system.			

5.4.1 Create New Configuration

This submenu lets you configure the destination system. When you select this option, the following prompt is displayed:

Configuration Name:

If you are creating a DataCheck configuration on a system that is not a mirror member, the **Edit Settings** submenu is displayed, and you complete the configuration manually as described in Editing DataCheck Configurations on Non-mirror-based Systems.

If you are creating a DataCheck configuration on a system that is a mirror member, you are prompted for additional information that is dependent upon whether or not you want to base the data checking on mirroring. Choosing to configure

DataCheck that is not based on mirroring displays the **Edit Settings** submenu, which you use to complete the configuration manually as described in Editing DataCheck Configurations on Non-mirror-based Systems. However, choosing to configure DataCheck based on mirroring restricts data checking to mirrored databases, and subsequent prompts are dependent on whether the destination system is a failover or async mirror member; for more information, see DataCheck for Mirror Configurations in this chapter.

5.4.2 Edit Configuration

The submenu lets you modify the destination system configurations. The options in the submenus are different depending on whether you are editing mirror-based or non-mirror-based configurations. For more information, see the following subsections:

- Editing DataCheck Configurations on Non-mirror-based Systems
- Editing Mirror-based DataCheck Configurations

5.4.2.1 Editing DataCheck Configurations on Non-mirror-based Systems

On a non-mirror-based system, when you select this option, the following prompts are displayed:

```
Configuration Name: dc_test

1) Import Settings from a Shadow (static)
2) Connection Settings (static)
3) Database Mappings (static)
4) Globals to Check (dynamic)
5) Performance Settings (dynamic)
6) Manage Workflow (dynamic)
```

Option?

Note: In edit mode, if you created multiple destination systems, a list is displayed so that you can select a destination system to edit. In addition, before you edit the settings for options 1 through 3, you must stop the system.

Enter the number of your choice or press ^ to return to the previous menu. The options in this submenu let you configure the destination system as described in the following table:

Option	Description			
1) Import Settings from a Shadow	Deprecated; do not use.			
2) Connection Settings	Information to connect to the source system.			
3) Database Mappings	Lets you add, delete, or list database mappings on the source and destination systems.			
4) Globals to Check	Globals to check or exclude from checking. For more information, see Specifying Globals and Subscript Ranges to Check in this chapter.			
5) Performance Settings	Adjusts system resources (throttle) used and/or granularity with which DataCheck isolates discrepancies (minimum query size). For more information, see Performance Considerations in this chapter.			
6) Manage Workflow	Manages the order of workflow phases. For more informations, see DataCheck Workflow in this chapter.			

5.4.2.2 Editing Mirror-based DataCheck Configurations

On a mirror-based system, the following submenu is displayed:

Configuration Name: MIRRORSYS2_MIRRORX201112A_1

- 1) Globals to Check
- 2) Performance Settings
- 3) Manage Workflow
- 4) Change Mirror Settings (Advanced)

Option?

Enter the number of your choice or press ^ to return to the previous menu. The options in this submenu let you configure the destination system as described in the following table:

Option	Description		
1) Globals to Check	Globals to check or exclude from checking. For more information, see Specifying Globals and Subscript Ranges to Check in this chapter.		
2) Performance Settings Adjusts system resources (throttle) used and/or granularity with which Data aCheck isolates discrepancies (minimum query size). For more information see Performance Considerations in this chapter.			
3) Manage Workflow	Manages the order of workflow phases. For more informations, see DataCheck Workflow in this chapter.		
4) Change Mirror Settings (Advanced)	See Planning DataCheck within the Mirror in the "Mirroring Considerations" section of this chapter		

5.4.3 View Details

This submenu lets you monitor the status of the destination system, as well as view detailed information about the queries that are running and the results of data checking:

System Name: dc_test

- 1) View Status
- 2) View Results
- 3) View Queries
- 3) View Log

Option?

Enter the number of your choice or press ^ to return to the previous menu. The options in this submenu let you view information about the destination system as described in the following table:

Option	Description
1) View Status	Displays information about the selected destination system, including performance metrics for the DataCheck worker jobs, the source and state, current phase, workflow timeout, new phases requested, percentage of queries completed in the current phase, and the number of discrepancies recorded in this phase.
2) View Results	Displays the results for the selected destination system. For more information, see DataCheck Results in this chapter.

Option	Description
3) View Queries	Displays information about the queries submitted by the selected destination system (see DataCheck Queries). This includes the globals that remain to be processed (or global ranges if subscript include/exclude ranges are used), and indicates the active queries currently being worked on by DataCheck. A summary count is displayed at the end of the list.
4) View Log	Displays the selected destination system log file.

Note: When ^DATACHECK is run against the two copies of a mirrored database on two mirror member instances, and that database is experiencing the rapid setting and killing of a whole global, it can display confusing results from the View Status option when compared to the View Results option. For example, it will report that there are unmatched answers in status, but will not actually report the globals that caused these answers in results (because further passes resolved the discrepancies). In addition, displayed answer counts can be larger than the actual number of globals within the instance (as displayed in the management portal, and as actually reported in the results).

When View Status shows **Answers Rcvd** having a non-zero unmatched value but discrepancies having a zero value, this is indicative of transient globals, not a data issue.

5.4.4 Incoming Connections to this System as a DataCheck Source

This submenu lets you view information about the source system:

- 1) List Source Systems
- 2) View Log

Option?

Enter the number of your choice or press ^ to return to the previous menu. The options in this submenu let you view information about the source system as described in the following table:

Option	Description		
1) List Source Systems	Displays information about the DataCheck source system.		
2) View Log	Displays the source system log file.		

5.5 Special Considerations for Data Checking

Review the following special considerations when using DataCheck:

- Performance Considerations
- Security Considerations

5.5.1 Performance Considerations

While data checking is useful to ensure consistency of databases on multiple systems, it consumes resources on both the source and destination systems. This could negatively impact performance of other processes on either system, depending on load and the configured DataCheck settings. DataCheck includes controls to help you manage performance.

The *throttle* is an integer between 1 and 10 that controls how much of the available system resources (CPU, disk I/O, database cache) DataCheck may use. The throttle value can be changed at any time, to take effect immediately; for example, the value can be increased during periods when the system load is otherwise expected to be light, and decreased during periods when system load is heavy. This is useful for checks that are expected to run for an extended period of time. (The DataCheck routine can also be stopped during periods of high load; upon being restarted, it automatically resumes at the point in the check at which it was stopped.)

The characteristics of every system are different, but the following general descriptions of throttle values apply:

- A throttle setting of 1 uses no more resources than one process for performing DataCheck queries. In other words, it
 uses at most one CPU and executes only one disk I/O at a time. Whether the resources used are primarily CPU or primarily disk I/O depends on whether the data is in buffers already; this can vary as the check progresses.
- As the throttle is raised up to 8, more system resources are consumed at each step. For systems with large amounts of resources (many CPUs, and so on), each interval is scaled to increase resource consumption by, very roughly, the same multiplicative factor, such that at a throttle setting of 8, DataCheck uses a large portion of system resources, taking into account the number of CPUs and other factors. At a throttle setting of 8, however, the system is still expected to be responsive to a light load of application activity, and settings of 6, 7, or 8 may be appropriate on a typical system at off-peak hours.
- A throttle setting of 9 is like 8, but allows DataCheck jobs to use the entire buffer pool (unsets the batch flag).
- A throttle setting of 10 attempts to utilize nearly all system resources for completing the check.

The View Status option on the **^DATACHECK** View Details submenu shows performance metrics for the DataCheck worker jobs, helping you understand performance characteristics and how they relate to the throttle setting.

The implementation of the throttle may differ over time as software and hardware characteristics evolve.

The *minimum query size* represents the minimum number of global nodes allowed to traverse a query; in other words, it determines the minimum size of the range of global nodes to which DataCheck isolates discrepancies. Lower values help locate discrepancies more easily, while higher values significantly improve the speed of the check through unmatched sections. For example, if the minimum query size were set to 1 (not recommended), each discrepant node could be reported as a separate unmatched range, or at least as a range of all unmatched globals, precisely identifying the discrepancies but greatly impacting performance; if the minimum query size were set to 1000 (also not recommended), one or more discrepancies would be reported as a range of at least 1000 unmatched nodes, making it difficult to find them, but the check would be much faster. The default is 32, which is small enough to allow for relatively easy visual inspection of the global nodes in a range using the Management Portal (see the "Managing Globals" chapter of *Using Globals*) while not greatly impacting performance.

5.5.2 Security Considerations

The destination system stores subscript ranges for globals that it has checked and is checking (results and queries). (See Specifying Globals and Subscript Ranges to Check in this chapter.) This subscript data is stored in the ^SYS.DataCheck* globals in the %SYS namespace (in the IRISSYS database by default). Global values are not stored; only subscripts are stored. These global subscripts from other databases that are stored in the %SYS namespace may contain sensitive information that may not otherwise be visible to some users, depending on the security configuration. Therefore, some special care is needed in secured deployments.

Use of the **^DATACHECK** routine, including the ability to configure, start, and stop, requires both **%Admin_Operate:Use** privilege and **Read/Write** privilege (**Write** for configuring a check, **Read** for all other tasks) on the database containing the **^SYS.DataCheck*** globals which, by default, is IRISSYS. The configuration and results data stored in the **^SYS.DataCheck*** globals can be viewed and manipulated outside of the routine by anyone with sufficient database privileges.

For any secure deployment in which **%DB_IRISSYS:Read** privilege is given to users that should not have access to DataCheck data, you can add a global mapping to the **%SYS** namespace to map **^SYS**.DataCheck* globals to a separate database

other than IRISSYS. This database can be assigned a new resource name; read permission for the resource can then be restricted to those roles authorized to use DataCheck.

The ability for another destination system to connect to this system as a source is governed by this system's **%Service_DataCheck** service. This service is disabled by default on new installations and can be configured with a list of allowed IP addresses. For more information, see **Enabling the DataCheck Service** in this chapter.

For encryption of the communication between the two systems, the destination system can be configured to use TLS to connect to the source. See Configuring the InterSystems IRIS Superserver to Use TLS in the "Using TLS with InterSystems IRIS" chapter of the Security Administration Guide for details.