CC2-S2

2017-2018

Correction - Analyse - Probabilités -

Exercice 1

1. On considère la fonction f définie sur $]-1,1[\times[0,\pi]]$ par :

$$f(x,t) = \begin{cases} \frac{\ln(1+x\cos t)}{\cos t} & \text{si } t \neq \frac{\pi}{2} \\ x & \text{si } t = \frac{\pi}{2} \end{cases}$$

Montrer que f est continue sur $]-1,1[\times[0,\pi].$

Pour tout $(x, t) \in]-1, 1[\times [0, \pi], 1 + x \cos t > 0.$

D'après les théorèmes généraux, f est continue sur $]-1,1[\times \left[0,\frac{\pi}{2}\right]\cup]-1,1[\times \left[\frac{\pi}{2},\pi\right],$ où le cosinus ne s'annule

Soit $a \in]-1,1[$. Etude de la continuité de f en $\left(a,\frac{\pi}{2}\right)$:

Le développement limité à l'ordre 1 du logarithme en 0 donne : $\ln(1+u) = u + u\varepsilon_1(u)$ avec $\lim_{u\to 0} \varepsilon_1(u) = 0$.

On a donc pour $(x,t) \in]-1,1[\times \left[0,\frac{\pi}{2}\right[\cup]-1,1[\times]\frac{\pi}{2},\pi]:$

 $f(x,t) = \frac{x\cos t + x\cos t\varepsilon_1(x\cos t)}{\cos t} = x(1+\varepsilon_1(x\cos t)).$ Par composition, on a : $\lim_{(x,t)\to(a,\frac{\pi}{2})} \varepsilon_1(x\cos t) = 0$, puis par somme et produit :

 $\lim_{(x,t)\to\left(a,\frac{\pi}{2}\right)}x(1+\varepsilon_1(x\cos t))=a=f\left(a,\frac{\pi}{2}\right). \text{ On en déduit que } f \text{ est continue en } \left(a,\frac{\pi}{2}\right).$

b. Montrer que f est de classe C^1 sur $]-1,1[\times[0,\pi].$

D'après les théorèmes généraux, f est de classe C^1 sur $]-1,1[\times\left[0,\frac{\pi}{2}\right]\cup]-1,1[\times\left]\frac{\pi}{2},\pi\right]$, et elle admet une

dérivée partielle par rapport à sa première variable sur $]-1,1[\times[0,\pi]]$.

Pour tout $(x,t)\in]-1,1[\times[0,\pi],$ on a : $\frac{\partial f}{\partial x}(x,t)=\left\{\begin{array}{cc} \frac{1}{1+x\cos t} & \text{si }t\neq\frac{\pi}{2}\\ 1 & \text{si }t=\frac{\pi}{2} \end{array}\right.$

Les théorème généraux donne la continuité de la dérivée partielle de f par rapport à sa première variable sur son domaine.

Soit $a \in]-1,1[$. Etude de l'existence et de la continuité de la dérivée partielle par rapport à la deuxième

Pour $t \neq 0$ tel que $t + \frac{\pi}{2} \in [0, \pi]$, on a : $\frac{f\left(a, t + \frac{\pi}{2}\right) - f\left(a, \frac{\pi}{2}\right)}{t} = \frac{-\ln(1 - x\sin t) - a\sin t}{t\sin t}.$ Le développement limité à l'ordre 2 du logarithme en 0 donne :

Le développement limité à l'ordre 2 du logarithme en 0 donne :
$$\ln(1-u) = -u - \frac{u^2}{2} - u^2 \varepsilon_2(u) \text{ avec } \lim_{u \to 0} \varepsilon_2(u) = 0.$$
 Ansi,
$$\frac{f\left(a, t + \frac{\pi}{2}\right) - f\left(a, \frac{\pi}{2}\right)}{t} = \frac{a\sin t + \frac{1}{2}a^2\sin^2 t + a^2\sin^2 t\varepsilon_2(a\sin t) - a\sin t}{t\sin t} = \frac{a^2\sin t}{t} \left(\frac{1}{2} + \varepsilon_2(a\sin t)\right)$$
 On a $\lim_{t \to 0} \frac{\sin t}{t} = 1$ et, par composition, $\lim_{t \to 0} \varepsilon_2(a\sin t) = 0$.

On en déduit que $\lim_{t\to 0} = \frac{f\left(a,t+\frac{\pi}{2}\right)-f\left(a,\frac{\pi}{2}\right)}{t} = \frac{a^2}{2}$; ainsi, f admet une dérivée par rapport à sa deuxième

variable en
$$\left(a, \frac{\pi}{2}\right)$$
, et $\frac{\partial f}{\partial t}\left(a, \frac{\pi}{2}\right) = \frac{a^2}{2}$.
D'autre part, pour $(x, t) \in]-1, 1[\times \left[0, \frac{\pi}{2}\right] \cup]-1, 1[\times \left]\frac{\pi}{2}, \pi\right]$, on a:
$$\frac{\partial f}{\partial t}(x, t) = -\frac{x \sin t}{\cos t(1 + x \cos t)} + \frac{\ln(1 + x \cos t) \sin t}{\cos^2 t}.$$

Spé PT Page 1 sur 5 Ainsi,

$$\frac{\partial f}{\partial t}(x,t) = \sin t \times \frac{-x \cos t + (1+x \cos t)(x \cos t - \frac{1}{2}x^2 \cos^2 t - x^2 \cos^2 t \varepsilon_2(x \cos t))}{(1+x \cos t) \cos^2 t}$$
$$= \frac{\sin t \, x^2 (\frac{1}{2} - \varepsilon_2(x \cos t) - \frac{1}{2}x \cos t - x \cos t \varepsilon_2(x \cos t))}{1+x \cos t}$$

Les théorèmes généraux donnent : $\lim_{(x,t)\to(a,\frac{\pi}{2})} \frac{\partial f}{\partial t}(x,t) = \frac{a^2}{2} = \frac{\partial f}{\partial t}\left(a,\frac{\pi}{2}\right).$

On en déduit que la dérivée par rapport à la deuxième variable de f est continue en $\left(a, \frac{\pi}{2}\right)$.

2. On considère l'intégrale

$$F(x) = \int_0^{\pi} f(x, t) dt$$

Montrer que F(x) est définie pour $x \in]-1,1[$.

On a montré à la question 1 que f est continue sur $]-1,1[\times[0,\pi];$ en particulier pour tout $x\in]-1,1[$, l'application partielle $t \mapsto f(x,t)$ est continue. On intègre une fonction continue sur un compact, l'intégrale est donc définie pour tout $x \in]-1,1[$

- **b.** Montre que F est de classe C^1 sur]-1,1[.

 - $\forall x \in]-1,1[,t\mapsto f(x,t)$ est intégrable sur $[0,\pi]$, comme démontré à la question précédente. $\forall t \in [0,\pi], x\mapsto f(x,t)$ est de classe C^1 sur]-1,1[, comme démontré à la question 1 (la fonction f étant de classe C^1 sur $]-1,1[\times[0,\pi],$ ses applications partielles sont toutes de classe C^1 sur leurs domaines
 - $\forall x \in]-1,1[,t\mapsto \frac{\partial f}{\partial x}(x,t))$ est continue sur $[0,\pi]$, car f est de classe C^1 .
 - Soit $[a,b] \subset]-1,1[$. La fonction $\frac{\partial f}{\partial x}$ est continue sur le compact $[a,b] \times [0,\pi]$, elle est donc bornée. Ainsi,

il existe une constante $\Phi_{a,b}$ telle que $\forall (x,t) \in [a,b] \times [0,\pi], \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \Phi_{a,b}$. La fonction $t \mapsto \Phi_{a,b}$ est constante, donc intégrable sur le compact $[0, \pi]$.

Le théorème de dérivation donne F de classe C^1 sur]-1,1[.

c. Montrer que pour
$$t \in [0, \pi[, \cos t = \frac{1 - \tan^2(\frac{t}{2})}{1 + \tan^2(\frac{t}{2})}]$$

$$\forall t \in [0, \pi[, \cos t = 2\cos^2\frac{t}{2} - 1 = \frac{2}{1 + \tan^2\frac{t}{2}} - 1 = \frac{1 - \tan^2\frac{t}{2}}{1 + \tan^2\frac{t}{2}}.$$

d. En déduire que pour tout $x \in]-1,1[$, on a

$$F'(x) = \frac{\pi}{\sqrt{1 - x^2}}.$$

La formule de Leibniz donne pour tout
$$x \in]-1,1[$$
:
$$F'(x) = \int_0^\pi \frac{\partial f}{\partial x}(x,t)\mathrm{d}t = \int_0^\pi \frac{\mathrm{d}t}{1+x\cos t} = \int_0^\pi \frac{1+\tan^2\frac{t}{2}}{1+\tan^2\frac{t}{2}+x-x\tan^2\frac{t}{2}}\mathrm{d}t.$$

On effectue un changement de variable, en posant $u = \tan \frac{t}{2}$, avec $du = \frac{1}{2}(1 + \tan^2 \frac{t}{2})dt$:

$$F'(x) = \int_0^{+\infty} \frac{2\mathrm{d}u}{1+x+(1-x)u^2} = \frac{2}{1-x} \int_0^{+\infty} \frac{\mathrm{d}u}{\frac{1+x}{1-x}+u^2} = \frac{2}{1-x} \left[\sqrt{\frac{1-x}{1+x}} \operatorname{Arctan}\left(\sqrt{\frac{1-x}{1+x}}u\right) \right]_0^{+\infty} = \frac{2}{\sqrt{1-x^2}} \times \frac{\pi}{2} = \frac{\pi}{\sqrt{1-x^2}}.$$

e. En déduire l'expression de F(x) pour $x \in]-1,1[$.

$$F(0) = 0$$
, on a donc : $F(x) = \int_0^x F'(u) du = \pi \operatorname{Arcsin}(x)$.

Spé PT Page 2 sur 5

Exercice 2

Résoudre les équations aux dérivées partielles suivantes, en utilisant les changements de variables proposés :

1.

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$$

$$\begin{cases} u = x \\ v = y - x \end{cases}$$

On pose g(u, v) = f(x, y). La règle de la chaîne donne : $\begin{cases} \frac{\partial f}{\partial x} = \frac{\partial g}{\partial u} - \frac{\partial g}{\partial v} \\ \frac{\partial f}{\partial u} = \frac{\partial g}{\partial v} \end{cases}$

En remplaçant dans l'équation, on obtient : $\frac{\partial g}{\partial u} = g$.

On en déduit que $g(u, v) = C(v)e^u$, avec $C \in C^1(\mathbb{R})$, puis $f(x, y) = C(y - x)e^x$.

2.

$$y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = f$$

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

On pose $g(r,\theta) = f(x,y)$. La règle de la chaîne donne : $\begin{cases} \frac{\partial g}{\partial r} = \cos\theta \frac{\partial f}{\partial x} + \sin\theta \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial \theta} = -r\sin\theta \frac{\partial f}{\partial x} + r\cos\theta \frac{\partial f}{\partial y} \end{cases}$

On a :
$$y \frac{\partial f}{\partial x} - x \frac{\partial f}{\partial y} = r \sin \theta \frac{\partial f}{\partial x} - r \cos \theta \frac{\partial f}{\partial y} = -\frac{\partial g}{\partial \theta}$$

L'équation devient : $-\frac{\partial g}{\partial \theta} = g$.

On en déduit que $g(r,\theta) = C(r)e^{-\theta}$, avec $C \in C^1(\mathbb{R}^*)$, puis $f(x,y) = C(\sqrt{x^2 + y^2})e^{-\arctan \frac{y}{x}}$, en supposant que l'on résout sur un domaine où x ne s'annule pas.

Exercice 3

On dispose d'une pièce pour laquelle la probabilité d'obtenir Face est $p \in]0,1[$. On note q=1-p.

1. soit $n \in \mathbb{N}^*$. O, effectue n lancers indépendants de cette pièce, et on note :

$$F_k =$$
 " on obtient Face au $k^{\text{ème}}$ lancer"

On note également

 $A_n =$ " au cours des n lancers, Face n'est jamais suivi de Pile"

- **a.** Exprimer l'événement A_n en fonction des événements $F_k, k \in [\![1,n]\!]$. $A_n = (F_1 \cap F_2 \cap \cdots \cap F_{n-1} \cap F_n) \cup (\overline{F_1} \cap F_2 \cap \cdots \cap F_{n-1} \cap F_n) \cup \cdots \cup (\overline{F_1} \cap \overline{F_2} \cap \cdots \cap \overline{F_{n-1}} \cap F_n)$
- **b.** En déduire $\mathbb{P}(A_n)$. (On distinguera deux cas.)

 A_n est l'union d'évènements deux à deux incompatibles, et les lancers sont indépendants donc

$$\mathbb{P}(A_n) = \sum_{k=0}^{n} q^k p^{n-k} = p^n \sum_{k=0}^{n} \left(\frac{q}{p}\right)^k$$

Dès lors, deux cas se présentent :

– Si $\frac{q}{p} \neq 1$ (c'est à dire si $p \neq \frac{1}{2}$) alors

$$\mathbb{P}(A_n) = p^n \times \frac{1 - \left(\frac{q}{p}\right)^{n+1}}{1 - \frac{q}{p}} = \frac{p^{n+1} - q^{n+1}}{p - q}$$

– Si $\frac{q}{p}=1$ (c'est à dire si $p=\frac{1}{2})$ alors

$$\mathbb{P}(A_n) = \left(\frac{1}{2}\right)^n \times (n+1) = \frac{n+1}{2^n}$$

Spé PT

2. Si l'on admet que l'on peut lancer indéfiniment la pièce, est-il possible que Face ne soit jamais suivi de Pile? Soit A l'évènement "face n'est jamais suivi de pile". On a alors $A = \bigcap A_n$.

De plus $A_{n+1} \subset A_n$ donc $(A_n)_{n \in \mathbb{N}^*}$ est une suite décroissante d'évènements; par limite monotone, on obtient :

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcap_{n \in \mathbb{N}^*} A_n\right) = \lim_{n \to +\infty} \mathbb{P}(A_n)$$

Enfin, deux cas se présentent :

- Si
$$p \neq \frac{1}{2}$$
 alors

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \lim_{n \to +\infty} \frac{p^{n+1} - q^{n+1}}{p - q} = 0 = \mathbb{P}(A) \quad \text{(suites géométriques)}$$

– Si
$$p = \frac{1}{2}$$
 alors

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \lim_{n \to +\infty} \frac{n+1}{2^n} = 0 = \mathbb{P}(A) \quad \text{(croissances comparées)}$$

Il est donc presque sûrement impossible que Face ne soit jamais suivi de Pile.

Exercice 4

Des joueurs en nombre illimité, notés J_1, \ldots, J_n, \ldots s'affrontent dans un jeu de Pile ou Face.

Ils jouent successivement et dans l'ordre des indices, et le jeu se termine dès que l'un des joueurs obtient Pile. Pour tout $n \in \mathbb{N}^*$, J_n obtient Pile avec la probabilité $p_n \in]0,1[$, et on note $q_n=1-p_n$.

On notera par convention $q_0 = 1$.

Enfin, on définit pour tout entier n non nul l'événement $G_n =$ " le joueur J_n gagne".

1. Montrer que

$$\forall n \in \mathbb{N}^*, \mathbb{P}(G_n) = q_0 q_1 \cdots q_{n-1} - q_0 q_1 \cdots q_{n-1} q_n$$

Soit $n \in \mathbb{N}^*$. On a

$$G_n = \left(\overline{(G_1 \cup G_2 \cup \cdots \cup G_{n-1})} \cap G_n\right) \cup \underbrace{\left((G_1 \cup G_2 \cup \cdots \cup G_{n-1} \cap G_n)\right)}_{\varnothing}$$

donc

$$G_n = \overline{G_1} \cap \overline{G_2} \cap \dots \cap \overline{G_{n-1}} \cap G_n$$

puis par la formule des probabilités composées

$$\mathbb{P}(G_n) = \mathbb{P}\left(\overline{G_1}\right) \times \mathbb{P}_{\overline{G_1}}\left(\overline{G_2}\right) \times \cdots \times \mathbb{P}_{\overline{G_1} \cap \overline{G_2} \cap \cdots \cap \overline{G_{n-2}}}\left(\overline{G_{n-1}}\right) \times \mathbb{P}_{\overline{G_1} \cap \overline{G_2} \cap \cdots \cap \overline{G_{n-1}}}(G_n)$$

c'est à dire

$$\mathbb{P}(G_n) = q_1 q_2 \cdots q_{n-1} p_n = q_1 q_2 \cdots q_{n-1} (1 - q_n) = q_1 q_2 \cdots q_{n-1} - q_1 q_2 \cdots q_{n-1} q_n$$

et comme $q_0 = 1$, on obtient bien

$$\forall n \in \mathbb{N}^*, \mathbb{P}(G_n) = q_0 q_1 \cdots q_{n-1} - q_0 q_1 \cdots q_{n-1} q_n$$

2. On définit la suite (Q_n) par

$$\forall n \in \mathbb{N}, Q_n = q_0 q_1 \cdots q_n$$

Montrer que la suite (Q_n) converge vers un réel qu'on notera a, avec $0 \le a \le 1$.

 (Q_n) est positive et décroissante car $\forall n \in \mathbb{N}, \ 0 \le q_n \le 1$, et donc par le théorème des suites monotones bornées,

 (Q_n) converge. Comme de plus, $\forall n \in \mathbb{N}, \ 0 \leq Q_n \leq 1$, on conclut que (Q_n) converge vers $a \in [0,1]$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 4 sur 5

3. Montrer que :

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \mathbb{P}(G_k) = 1 - Q_n$$

et en déduire que :

- si $a \neq 0$, le jeu a une probabilité non nulle de ne pas se terminer,

 $-\sin a = 0$, le jeu se termine avec la probabilité 1.

On a

$$\forall n \in \mathbb{N}^*, \mathbb{P}(G_n) = q_0 q_1 \cdots q_{n-1} - q_0 q_1 \cdots q_{n-1} q_n = Q_{n-1} - Q_n$$

On en déduit par télescopage

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n \mathbb{P}(G_k) = 1 - Q_n$$

Ainsi, de la convergence de (Q_n) , on en déduit que la série $\sum \mathbb{P}(G_n)$ converge et

$$\sum_{n=1}^{+\infty} \mathbb{P}(G_n) = 1 - a$$

Considérons maintenant l'évènement T= "le jeu se termine" . On a $T=\bigcup_{n\in\mathbb{N}^*}G_n$ et comme les $G_n,n\in\mathbb{N}^*$ sont deux à deux incompatibles, par σ -additivité, on obtient

$$\mathbb{P}(T) = \sum_{n=1}^{+\infty} \mathbb{P}(G_n) = 1 - a$$

Ce qui signifie bien que :

- si $a \neq 0$, le jeu a une probabilité non nulle de ne pas se terminer,
- si a=0, le jeu se termine avec la probabilité 1.

4. Quelle est la probabilité que le jeu se termine dans les deux cas suivants :

 $- \forall n \in \mathbb{N}^*, \ p_n = p \text{ avec } 0$

 $\forall n \in \mathbb{N}^*, \ p_n = p \text{ avec } 0 Donc la suite <math>(p_n)_{n \in \mathbb{N}^*}$ est constante. Alors $\forall n \in \mathbb{N}, \ Q_n = (1-p)^n$, et puisque 0 < |1-p| < 1, on en déduit que $\lim_{n \to +\infty} Q_n = 0$ et que donc le jeu se termine avec la probabilité 1.

$$- \forall n \in \mathbb{N}^*, \ p_n = \frac{1}{(n+1)^2}.$$

$$\forall n \in \mathbb{N}^*, \ p_n = \frac{1}{(n+1)^2}. \text{ On a alors } \forall n \in \mathbb{N}^*, \ q_n = 1 - \frac{1}{(n+1)^2} = \frac{n(n+2)}{(n+1)^2}.$$

 $\forall n \in \mathbb{N}^*, \ p_n = \frac{1}{(n+1)^2}. \text{ On a alors } \forall n \in \mathbb{N}^*, \ q_n = 1 - \frac{1}{(n+1)^2} = \frac{n(n+2)}{(n+1)^2}.$ Puis $\forall n \in \mathbb{N}^*, \ Q_n = n! \frac{(n+2)!}{2} \frac{1}{((n+1)!)^2} = \frac{n+2}{2(n+1)}$, et on en déduit que $\lim_{n \to +\infty} Q_n = \frac{1}{2}$ et que donc le jeu se termine avec la probabilité $\frac{1}{2}$

Spé PT Page 5 sur 5