# Matemáticas Discretas Relaciones

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl

Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

13 de septiembre de 2023

# Objetivos

- 1 Formular enunciados formales en notación matemática usando lógica, conjuntos, relaciones, funciones, cardinalidad, y otras herramientas, desarrollando definiciones y teoremas al respecto, así como demostrar o refutar estos enunciados, usando variadas técnicas.
- 2 Aplicar inducción como técnica para demostración de propiedades en conjuntos discretos y como técnica de definición formal de objetos discretos.
- Modelar formalmente un problema usando lógica, conjuntos, relaciones, y las propiedades necesarias, y demostrar propiedades al respecto de su modelo.

#### Contenidos

- Objetivos
- 2 Introducción
- 3 Definiciones básicas
- 4 Relaciones binarias
- 6 Propiedades

#### Introducción

Las relaciones son un concepto muy usado en computación.

- Principalmente en Bases de Datos.
- ¡Bases de datos relacionales?

Intuitivamente, una relación matemática puede verse como una correspondencia entre elementos de distintos dominios.

• En una base de datos, esta correspondencia está dada por una tabla.

## Introducción

| $N^\circ$ alumno | Nombre   | Apellido | Carrera              | Año |
|------------------|----------|----------|----------------------|-----|
| 154              | Diego    | Valdés   | Ingeniería comercial | 5   |
| 339              | María    | Espinoza | Pedagogía            | 2   |
| 271              | José     | Barros   | Periodismo           | 3   |
| 404              | Josefina | Sáez     | Medicina             | 1   |

#### Definición

Sean  $a,b \in \mathcal{U}$  (donde  $\mathcal{U}$  es un conjunto universal). Definimos el **par ordenado** (a,b) como

$$(a,b) = \{\{a\}, \{a,b\}\}$$

¿Por qué lo definimos así?

• Para establecer la igualdad entre dos pares ordenados.

#### **Propiedad**

(a,b)=(c,d) si y sólo si  $a=c \wedge b=d$ .

## Ejercicio

Demuestre la propiedad anterior.

## Ejercicio

Considere la siguiente definición alternativa de un par ordenado:

$$(a,b) = \{a, \{b\}\}$$

¿Se cumple la propiedad anterior?

Podemos extender el concepto a tríos ordenados:

$$(a, b, c) = ((a, b), c)$$

o a cuadruplas ordenadas:

$$(a, b, c, d) = ((a, b, c), d) = (((a, b), c), d)$$

En general:

#### Definición

Sean  $a_1, \ldots, a_n \in \mathcal{U}$ . Definimos una n-**tupla** como:

$$(a_1,\ldots,a_n)=((a_1,\ldots,a_{n-1}),a_n).$$

#### Definición

Dados dos conjuntos A y B, definimos el **producto cartesiano** entre A y B como

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

## Ejemplo

Si 
$$A=\{1,2\}$$
 y  $B=\{3,4\}$ , entonces  $A\times B=\{(1,3),(1,4),(2,3),(2,4)\}.$ 

También podemos extender esta noción.

#### Definición

Dados conjuntos  $A_1,\ldots,A_n$ , definimos el **producto cartesiano** entre los  $A_i$  como

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1 \wedge \ldots \wedge a_n \in A_n\}$$

## Ejercicio

Defina el producto cartesiano de dimensión n usando la definición de producto cartesiano entre dos conjuntos.

#### Definición

Dados conjuntos  $A_1, \ldots, A_n$ , diremos que R es una **relación** sobre tales conjuntos si  $R \subseteq A_1 \times \ldots \times A_n$ .

#### **Ejercicio**

Defina la suma sobre los naturales como una relación sobre  $\mathbb{N}, \mathbb{N}, \mathbb{N}$ .

$$+_{\mathbb{N}} = \{(n_1, n_2, n_3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid sum(n_1, n_2) = n_3\}$$

$$(3, 4, 7) \in +_{\mathbb{N}} \qquad (0, 0, 1) \notin +_{\mathbb{N}}$$

Recuerde que sum es la suma que definimos en el capítulo de teoría de conjuntos.

La aridad de una relación R es el tamaño de las tuplas que la componen.

• Equivalentemente, diremos que R es una relación n-aria.

## Ejemplo

La tabla que vimos al inicio:

| $N^\circ$ alumno | Nombre   | Apellido | Carrera              | Año |
|------------------|----------|----------|----------------------|-----|
| 154              | Diego    | Valdés   | Ingeniería comercial | 5   |
| 339              | María    | Espinoza | Pedagogía            | 2   |
| 271              | José     | Barros   | Periodismo           | 3   |
| 404              | Josefina | Sáez     | Medicina             | 1   |

representa una relación 5-aria.

Un caso particular de suma importancia:

#### Definición

Dados conjuntos A y B, diremos que R es una **relación binaria** de A en B si  $R\subseteq A\times B$ .

## Ejemplo

Si  $A=\{1,2\}$  y  $B=\{3,4\}$ , entonces  $R=\{(1,3),(2,4)\}$  es una relación binaria de A en B.

## Ejercicio

¿Cuántas posibles relaciones binarias hay sobre dos conjuntos A y B?

Podemos tener una relación sobre un solo conjunto:

#### Definición

Dado un conjunto A, diremos que R es una **relación binaria** sobre A si  $R\subseteq A\times A=A^2.$ 

**Notación:** cuando tengamos productos cartesianos entre un mismo conjunto, usaremos una notación de "potencia":

$$A \times \stackrel{(n-2 \text{ veces})}{\dots} \times A = A^n$$

## Ejemplo

La relación binaria menor que :

$$\leq \subseteq \mathbb{N}^2$$
,

definida como sigue: dados  $m, n \in \mathbb{N}$ :

$$(m,n) \in < \text{si y sólo si } m \in n.$$

$$(1,3) \in < \qquad (10,4) \not\in < \qquad (7,7) \not\in <$$

La notación de conjuntos es un poco incómoda:  $\xi(3,17) \in <?$ 

Dados  $a,b\in A$ , para indicar que están relacionados a través de R usamos cualquiera de las siguientes notaciones:

- $(a,b) \in R$
- R(a,b)
- aRb
  - Si no están relacionados, podemos escribir  $a \not Rb$ .

Nuestra elección dependerá del contexto.

## Ejemplo

Ahora podríamos escribir:

$$3 < 17$$
  $7 < 6$ 

## Paréntesis: notación infija

La última forma de escribir relaciones se llama notación infija.

Podemos extender tal notación a relaciones de mayor aridad. Por ejemplo, podríamos escribir  $n_1 + n_2 = n_3$  si  $(n_1, n_2, n_3) \in +_{\mathbb{N}}$ :

$$3 + 4 = 7$$

y por lo tanto  $n_1 + n_2 = n_3$  si y sólo si  $sum(n_1, n_2) = n_3$ .

**¡Cuidado!** El símbolo = ocupado en la primera parte es sólo un símbolo que forma parte de nuestra notación, y no debe ser confundido con el símbolo = usado en la segunda parte, que representa la igualdad de conjuntos definida en el capítulo anterior.

## Ejemplo

La relación divide a, denotada por |, sobre los naturales sin el 0, es una relación tal que a está relacionado con b si y sólo si b es múltiplo de a:

$$a|b$$
 si y sólo si  $\exists k \in \mathbb{N}$  tal que  $b=ka$ .

## Ejemplo

La relación equivalencia módulo n, denotada por  $\equiv_n$ , sobre los naturales, es una relación tal que a está relacionado con b si y sólo si |a-b| es múltiplo de n:

$$a \equiv_n b$$
 si y sólo si  $\exists k \in \mathbb{N}$  tal que  $|a - b| = kn$ .

Por ejemplo, dado n=7:

$$2 \equiv_{7} 23$$
  $8 \equiv_{7} 1$   $19 \not\equiv_{7} 4$ 

**Observación:** de ahora en adelante trabajaremos con relaciones binarias sobre un conjunto, a las que nos referiremos simplemente como relaciones. Cuando sea de otra manera se explicitará.

#### Definición

Una relación R sobre un conjunto A es:

- **Refleja** si para cada  $a \in A$  se tiene que R(a, a).
- Irrefleja si para cada  $a \in A$  no se tiene que R(a, a).

## Ejercicio

Dé ejemplos de relaciones reflejas e irreflejas sobre  $\mathbb{N}$ .

#### Definición

Una relación R sobre un conjunto A es:

- Simétrica si para cada  $a, b \in A$ , si R(a, b) entonces R(b, a).
- **Asimétrica** si para cada  $a,b \in A$ , si R(a,b) entonces no es cierto que R(b,a).
- Antisimétrica si para cada  $a,b\in A$ , si R(a,b) y R(b,a), entonces a=b.

## Ejercicio

Dé ejemplos de relaciones simétricas, asimétricas y antisimétricas sobre  $\mathbb{N}.$ 

#### Definición

Una relación R sobre un conjunto A es:

- Transitiva si para cada  $a,b,c\in A$ , si R(a,b) y R(b,c), entonces R(a,c).
- Conexa si para cada  $a, b \in A$ , se tiene que R(a, b) o R(b, a).

## Ejercicio

Dé ejemplos de relaciones transitivas y conexas sobre  $\mathbb{N}$ .

## **Ejercicios**

- 1 Demuestre que la relación | es refleja, antisimétrica y transitiva.
- 2 Demuestre que la relación  $\equiv_n$  es refleja, simétrica y transitiva.

# Matemáticas Discretas Relaciones

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl

Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

13 de septiembre de 2023