

8

sua média? 7,5

3,5

2,5

5,5

LISTA 2 – Estatística - MEDIDAS DE DISTRIBUIÇÃO DE FREQUÊNCIAS

LISTA 2 - 1^a PARTE MEDIDAS DE TENDÊNCIA CENTRAL: Média, Mediana e Moda

1 - Se um estudante obtém as notas abaixo nas avaliações de uma disciplina, qual foi a

6

2 - Er	ncontre a	média, a	mediana	e a mod	la dos da	idos aba	ixo.			
b) 4, c) 4,	3,5,4,5,2 12,5,9,12 5,6,6,6,7 5,9,8,10,	2,4,3 ,8,8,8,9,	10,10,11							
abaix	o. Qual é	o preço	lares para médio do <i>er Reports</i>	aparel						
500	84	40	470	48	80	420	4	40	440	
	contre a	média, a	a mediana	e a mo	oda da se	eguinte	amostra (de idades	s, em anos	s, de
20	20	20	20	20	20	21	. 21	21	1 21	
22	22	22	23	23	23	23	3 24	1 24	4 65	
а			<i>ivos</i> . Tem ı para ir de							arros
	3,7	4,0) 4	1,8	4,8	4	,8	4,8	5,1	
b			nível de co a empresa.		l em um	a amost	ra formac	da por de	z funciona	ários
	154	216	171	188	229	203	184	173	181	147
c	•		es. Os mai os. (Fonte		*	ilhas po	or hora) e	m uma a	mostra de	sete
	187,3	18.	1,8	180,0	169,	,3	162,2	158,1	1 15	5,7
	-		ndido em e quantos i		-	-		_		_
			Medidas o		ibuição d	le Frequ	ências			-

7- Calcule a média aritmética da distribuição de frequências que segue.

Xi	f_i	Xi.fi
2	1	
3	4	
4	3	
5	2	
TOTAL	$\Sigma f_i =$	ΣXi.fi=

8 - Calcule a idade média dos alunos de uma classe de primeiro ano de determinada Faculdade, em anos.

Idades Xi	Nº de alunos fi	Xi.fi
17	3	
18	18	
19	17	
20	8	
21	4	
TOTAL	$\Sigma f_i =$	ΣXi.fi=

9- Uma imobiliária gerencia o aluguel de residências particulares, segundo quadro abaixo. Calcule o aluguel médio para estas residências.

ALUGUEL (US\$)	fi	Ponto Médio Xi = Pmi	Xi.fi
0 200	30		
200 400	52		
400 600	28		
600 800	7		
800 1000	3		
TOTAL	$\Sigma f_i =$		ΣXi.fi=

10 - Uma pesquisa para determinar a eficiência de uma nova ração para animais, em termos de ganho de peso, mostrou os resultados da tabela abaixo. Calcular o aumento médio de peso por animal.

Aumento de peso (kg)	fi	Xi = Pmi	Xi.fi
0 1	1		
1 2	5		
2 3	35		
3 4	37		
4 5	28		
TOTAL	$\Sigma f_i =$		ΣXi.fi=

RESPOSTAS – LISTA 2 1ª PARTE - MEDIDAS DE TENDENCIA CENTRAL

 $\overline{X} = M\acute{e}dia \ aritm\'etica$

Md = Mediana

Mo = Moda

1) $\bar{X} = 5.3$

a) $\bar{X} = 4.1$

Md = 4,5

Mo = 5

b) $\overline{X} = 7$ Md = 5

Mo = 4 e Mo = 12

d) $\bar{X} = 7.7$ Md = 8

Mo = 6 e Mo = 8 (Bimodal)

e) $\bar{X} = 7.7$

Md = 8,5

Não tem moda (Amodal)

3) $\bar{X} = 512,9 \text{ d\'olares}$

Md = 470 d'olares

Mo = 440 d'olares

4) $\bar{X} = 23,75 \text{ anos}$

Md = 21,5 anos

Mo = 20 anos

5) a) $\bar{X} = 4.6 \, s$

Md = 4.8 s

Mo = 4.8 s

b) $\bar{X} = 184,6$

Md = 182,5

Amodal = não tem moda

c) $\overline{X} = 170,6 \text{ milhas/h}$ Md = 169,3 milhas/h

Amodal = não tem moda

6) $\bar{X} = R$ \$ 13,23/kg

7) $\bar{X} = 3.6$

8) $\bar{X} = 18,84 \text{ anos}$

9) $\bar{X} = US$ \$ 335

 $10)\bar{X} = 3.31 \text{ kg}$

LISTA 2 - 2ª PARTE MEDIDAS DE POSIÇÃO E DE DISPERSÃO: Variância, Desvio Padrão, Coeficiente de Variação e Box Plot

1 - Calcular a variância e o desvio padrão para a amostra que segue.

Xi	fi	Xifi	$(X_i - \overline{X})^2 \cdot fi$
1	5		
2	2		
3	3		
4	1		
TOTAL	$\Sigma f_i =$	ΣXi.fi=	$\Sigma (Xi - \overline{X})^2$. $fi =$

2 - Calcule a variância e o desvio padrão para o número de acidentes diários, observados em um cruzamento, durante 40 dias (amostra).

N^o de acidentes X_i	Nº de dias fi	Xi. fi	$(Xi - \overline{X})^2$. fi
0	30		
1	5		
2	3		
3	1		
4	1		
TOTAL	$\Sigma f_i =$	$\Sigma Xi.fi=$	$\Sigma (Xi - \overline{X})^2$. $fi =$

3 - Calcular o desvio padrão dos dados da amostra abaixo.

Notas	f_i	Xi = Pmi	Xi. fi	$(Xi - \overline{X})^2$. fi
0 2	5			
2 + 4	7			
4 + 6	10			
6 + 8	3			
8 10	5			
TOTAL	$\Sigma f_i =$		$\Sigma Xi.fi=$	$\Sigma (Xi - \overline{X})^2$. $fi =$

4 - Calcule a variância e o desvio padrão para as alturas de 70 alunos de uma classe. (amostra):

Estaturas (cm)	Nº de alunos (fi)	Xi = Pmi	Xi. fi	$(Xi - \overline{X})^2$. fi
150 160	2			
160 170	15			
170 180	18			
180 190	18			
190 200	16			
200 210	1			
TOTAL	$\Sigma f_i =$		ΣXi.fi=	$\Sigma (Xi - \overline{X})^2$. $fi =$

- 5- Mediu-se diariamente a pressão sanguínea de um paciente durante várias semanas. Essas medidas acusaram média de 188 com desvio padrão de 14,2. Um segundo paciente foi também submetido à mesma mensuração diária, com uma média de 136 e desvio padrão de 8,6. Dos dois pacientes, qual obteve pressão sanguínea relativamente mais variável?
- 6- São dados o peso e a estatura de 4 pessoas. Qual é a variável teve maior variação nos dados? É necessário calcular o Coeficiente de Variação dos Pesos e das Estaturas.

Pesos, em kg: 60, 75, 70, 75

Estaturas, em cm: 160, 170, 175, 165

- 7- Use o box plot para identificar:
 - a) entrada mínima b) entrada máxima
 - c) primeiro quartil d) segundo quartil e) terceiro quartil

- 8- O box plot comparativo abaixo, mostra o desempenho de uma corrida, na modalidade maratona, nos gêneros masculino e feminino. Responda:
 - a) Qual gênero teve maior variação nos tempos da corrida?
 - b) Qual o valor aproximado do tempo mediano das mulheres?
 - c) Qual gênero teve melhor desempenho?

- 9- Dado o box plot comparativo abaixo, responda:
 - a) Qual mistura teve maior variação na viscosidade?
 - b) Qual mistura teve menor variação na viscosidade?
 - c) Qual o valor aproximado da viscosidade mediana da mistura 1?

RESPOSTAS – LISTA 2 2ª PARTE - MEDIDAS DE DISPERSÃO

- 1) Variância $s^2 = 1,2$. Desvio padrão s = 1,1.
- 2) Variância $s^2 = 0.87$. Desvio padrão s = 0.93.
- 3) Desvio padrão s = 2,61.
- 4) Variância $s^2 = 141,28$. Desvio padrão s = 11,89 cm.
- 5) O 1º paciente obteve pressão sanguínea mais variável. O 1º paciente teve C.V.= 7,55% (Coeficiente de Variação maior). O 2º paciente: C.V = 6.32%.
- 6) Para peso: C.V= 10,1 %. Para estatura: C.V.= 3,85 %. A variável que tem maior dispersão relativa é o PESO, pois seu coeficiente de variação é maior.
- 7) a) entrada mínima = 10 b)
 - b) entrada máxima = 21
 - c) primeiro quartil = 13
- d) segundo quartil = 15
- e) terceiro quartil = 17
- 8) a) As MULHERES tiveram maior variação nos tempos da corrida.
 - b) O tempo mediano das mulheres é 160 minutos.
 - c) Os HOMENS tiveram melhor desempenho.
- 9) a) A MISTURA 1 teve MAIOR VARIAÇÃO na viscosidade.
 - b) A MISTURA 3 teve MENOR VARIAÇÃO na viscosidade.
 - c) O valor aproximado da MEDIANA da MISTURA 1 é 25,2.