1.6 The Hadamard Gate and the $|+\rangle, |-\rangle, |i\rangle$ and $|-i\rangle$ states

We usually factor out the $\frac{1}{\sqrt{2}}$ out of the $|+\rangle, |i\rangle, |-\rangle, |-i\rangle$ states.

For example
$$|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right), |-i\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - i|1\rangle \right)$$

1.

- (a) Represent i in exponential form $(e^{i\theta})$
- (b) The $|i\rangle$ state is defined by $|i\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + i|1\rangle \right)$. Substitute in i in exponential form, how many radians has the qubit been rotated around the Bloch Sphere and does it line up with the $|i\rangle$ state on the Bloch Sphere?
- (c) Represent -1 in exponential form $(e^{i\theta})$
- (d) The $|-\rangle$ state is defined by $|-\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle |1\rangle \Big)$. Substitute in -1 in exponential form, how many radians has the qubit been rotated around the Bloch Sphere and does it line up with the $|-\rangle$ state on the Bloch Sphere?
- (e) Represent -i in exponential form $(e^{i\theta})$
- (f) The $|-i\rangle$ state is defined by $|-i\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle i|1\rangle \Big)$. Substitute in -i in exponential form, how many radians has the qubit been rotated around the Bloch Sphere and does it line up with the $|-i\rangle$ state on the Bloch Sphere?
 - 2. Find

(a) $H|0\rangle$

(b) $H|1\rangle$

(c) $H|+\rangle$

(d) $H|-\rangle$

Answers

1.

- (a) $i = e^{i\pi/2}$
- (b) $|i\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\pi/2} |1\rangle \right)$
- (c) $-1 = e^{i\pi}$
- (d) $|-\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\pi} |1\rangle \right)$
- (e) $-i = e^{3\pi i/2}$
- (f) $|-i\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{3\pi i/2} |1\rangle \right)$
 - 2. Find

- (a) $H|0\rangle = |+\rangle$ (b) $H|1\rangle = |-\rangle$ (c) $H|+\rangle = |0\rangle$ (d) $H|-\rangle = |1\rangle$