Labai šaltos dujos, lėta šviesa ir Rydbergo atomai

Julius Ruseckas Rugsėjo 12, 2018

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas

PLANAS

1. Labai šaltų atomų dujų sąveika su elektromagnetiniais laukais

Optinės gardelės

- 2. Lėtos šviesos sklidimas per šaltų atomų dujas
- 3. Rydbergo atomų panaudojimas
- 4. Išvados

LABAI ŠALTŲ ATOMŲ DUJŲ SĄVEIKA SU ELEKTROMAGNETINIAIS LAUKAIS

KAM REIKIA ŠALTŲ ATOMŲ DUJŲ?

- Kvantinių sistemų simuliacija klasikiniais kompiuteriais reikalauja eksponentiškai ilgo laiko
- · Hipotetinis kvantinis kompiuteris tokio trūkumo neturi
- · Universalus kvantinis kompiuteris vis dar nesukurtas
- Yra galimi kvantiniai simuliatoriai konkrečiom kvantinėm sistemom
- · Geras kandidatas yra labai šaltos atomų dujos

KAM REIKIA ŠALTŲ ATOMŲ DUJŲ?

Šaltų atomų dujų privalumai

- Lengvai keičiami sistemos parametrai, kuriuos kietojo kūno fizikoje ne visada galima pakeisti.
 - · atomų kiekis
 - · išorinio (gaudyklės) potencialo forma
 - · atomų tarpusavio sąveikos stiprumas

KIEK ŠALTI TURI BŪTI ATOMAI?

Tikslas:

Norime, kad pasireikštų kvantiniai efektai.

De Brogle bangos ilgis dėl šiluminio judėjimo

$$\lambda = \frac{h}{\sqrt{3mk_BT}}$$

Norime, kad jis būtų sulyginamas su atstumais tarp atomų. Imant atomų tankį $10^{18}~{
m m}^{-3}$ ir $^{87}{
m Rb}$ atomus, gauname $T\sim 100~{
m nK}.$

ISTORIJA

- 1975: Pirmą kartą pasiūlytas lazerinio šaldymo metodas.
- 1995: Sukurti pirmieji atomų Bose-Einstein'o kondensatai (BEC).
- · 1997: Fizikos Nobelio premija už atomų šaldymą
- 1999: Sukurtos išsigimusios atomų Fermi dujos.
- · 2001: Fizikos Nobelio premija už BEC

ŠALTŲ ATOMŲ DUJŲ TRŪKUMAS

Problema

Atomai yra elektriškai neutralios dalelės. Nėra tiesioginės analogijos su elektronų kristaluose magnetinėmis savybėmis

Sprendimas: galima sukurti efektyvųjį magnetinį lauką.

EFEKTYVIOJO MAGNETINIO LAUKO ŠALTIEMS ATOMAMS SUKŪRIMO BŪDAI

- Mechaninis sukimas įprastas metodas.
 - · Pastovus efektyvusis magnetinis laukas $B_{
 m eff} \sim \Omega$
 - · Gaudyklės dažnis $\omega_{\mathrm{eff}} = \omega \Omega$
 - · Efektyvusis magnetinis laukas veikia visus atomus vienodai
- Optinės gardelės turinčios atomų šuolių tarp mazgų asimetriją
- Naudojant šviesos pluoštus su santykiniu orbitiniu judesio kiekio momentu elektromagnetiškai sukelto praskaidrėjimo (EIT) konfigūracijoje.

Kvantuotas atomų judėjimas

Hamiltonianas

$$H = \frac{\hbar^2}{2m} \mathbf{k}^2 + H_{\rm int}(\mathbf{r})$$

Čia $\boldsymbol{k}=-\mathrm{i} oldsymbol{
abla}$

Schrödinger'io lygtis

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi = H\Psi$$

ADIABATINĖ APROKSIMACIJA

 $H_{
m int}(m{r})$ turi tikrines būsenas $\chi_q(m{r})$

Adiabatinė aproksimacija: $\Psi(\mathbf{r}) = \psi(\mathbf{r})\chi_1(\mathbf{r})$

Efektyvusis hamiltonianas

$$H_{\text{eff}} = \frac{\hbar^2}{2m} (\mathbf{k} - \mathbf{A})^2 + \varepsilon_1 + \mathcal{V}$$

kur

$$\mathbf{A} = i\chi_1^{\dagger} \mathbf{\nabla} \chi_1$$

yra Mead-Berry sietis bei

$$\mathcal{V} = -\frac{\hbar^2}{2m} \sum_{n \neq 1} \chi_1^{\dagger} \nabla \chi_n \cdot \chi_n^{\dagger} \nabla \chi_1$$

yra Born-Huang potencialas.

ADIABATINĖ APROKSIMACIJA

- · Vektorinis potencialas ${\cal A}$ pasirodo todėl, kad tikriniai vektoriai priklauso nuo atomo padėties erdvėje
- A turi geometrinę prigimtį
- · Berry sietis ${\cal A}$ yra susieta su ${\sf kreivumu}\ \Theta$ as

$$\Theta_{jl} = \nabla_j \mathcal{A}_l - \nabla_l \mathcal{A}_j$$

Dirbtinis magnetinis laukas

Λ -TIPO ATOMAI

Zonduojantis (probe) pluoštas: $\Omega_p = \mu_{13} E_p$ Kontrolinis (control) pluoštas: $\Omega_c = \mu_{23} E_c$

Tamsi būsena

$$|D\rangle \sim \Omega_c |g\rangle - \Omega_p |s\rangle$$

Destruktyvi interferencija, išnyksta sugertis — EIT

- G. Juzeliūnas, P. Öhberg,
- J. Ruseckas, A. Klein, Phys. Rev. A
- **71**, 053614 (2005).

TRIPODO KONFIGŪRACIJA

- Dvi išsigimusios tamsios būsenos
- Neabeliniai kalibruotiniai potencialai

J. Ruseckas, G. Juzeliūnas, P. Öhberg, and M. Fleischhauer, Phys. Rev. Lett. **95**, 010404 (2005).

EKSPERIMENTINĖ REALIZACIJA

K. Jiménez-García, J. V. Porto and I. B. Spielman, Nature, **462**, 628 (2009).

OPTINĖS GARDELĖS

- Keli priešpriešais sklindantys šviesos pluoštai toli nuo rezonanso su atominiais šuoliais
- Atomai yra sugaunami interferencinio vaizdo intensyvumo minimumuose arba maksimumuose
- Optinės gardelės gali priklausyti nuo atomo būsenos, atomai esantys skirtingose vidinėse būsenose sugaunami skirtingose gardelės vietose
- · Optinės gardelės gali būti:
 - · 2D
 - · 3D

OPTINĖS GARDELĖS PAPILDOMUOSE MATMENYSE

1D atomų grandinėlė realioje erdvėje

 Raman'o šuoliai tarp magnetinių polygmenių m – papldomas matmuo

OPTINĖS GARDELĖS PAPILDOMUOSE MATMENYSE

Tuneliavimas realioje erdvėje ir Raman'o šuoliai sukuria
 2D gardelę išplėstoje erdvėje

DIRBTINIS MAGNETINIS LAUKAS IŠPLĖSTOJE ERDVĖJE

• Realių ir papildomų matmenų kombinacija leidžia sukurti vienalytį magneinio lauko srautą $\gamma=ka$ išplėstoje erdvėje

A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, M. Lewenstein, Phys. Rev. Lett. **112**, 043001 (2014).

OPTINĖS GARDELĖS PAPILDOMUOSE MATMENYSE

- · Staigūs kraštai papildomame matmenyje
- · Laidžios kraštinės būsenos

LĖTOS ŠVIESOS SKLIDIMAS PER ŠALTŲ

ATOMŲ DUJAS

Trijų lygmenų Λ sistema

- · Šuolių $g \rightarrow e$ ir $s \rightarrow e$ destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- · Tamsi būsena

$$|D\rangle \sim \Omega_c |g\rangle - \Omega_p |s\rangle$$

- · Labai lengvai suardoma
- · Labai siauras skaidrumo langas

LĖTA ŠVIESA

LĖTA ŠVIESA

- · Labai siauras skaidrumo langas $\Delta\omega\sim 1\,\mathrm{MHz}$
- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

LĖTOS ŠVIESOS IŠSAUGOJIMAS IR ATGAMINIMAS

LĖTOS ŠVIESOS IŠSAUGOJIMAS IR ATGAMINIMAS

· Tamsi būsena

$$|D\rangle \sim |g\rangle - \frac{\Omega_p}{\Omega_c}|s\rangle$$

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantį lazerį, zonduojantis šviesos pluoštas atsigamina

DVIGUBO TRIPODO SCHEMA

J. Ruseckas, V. Kudriašov, G. Juzeliūnas, R. G. Unanyan, J. Otterbach, M. Fleischhauer, Phys. Rev. A 83, 063811 (2011)

DVIGUBO TRIPODO SCHEMA

Dvi sukabintos posistemės

PRIEŠPRIEŠAIS SKLINDANTYS PLUOŠTAI

- · Laukai \mathcal{E}_1 ir \mathcal{E}_2 yra sukabinti
- · Pavieniui jie neturi apibrėžto grupinio greičio
- Tik tam tikros zonduojančių laukų kombinacijos sklinda apibrėžtu greičiu

OSCILIACIJOS KAIP TARP NEUTRINŲ RŪŠIŲ

- · \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- Atspindėtų ir praėjusių laukų intensyvumai periodiškai kinta kintant dujų debesėlio ilgiui

SUKININĖ LĖTA ŠVIESA

M.-J. Lee, J. Ruseckas, et al, Nat. Commun. 5, 5542 (2014).

SUKININĖ LĖTA ŠVIESA

Dvifotoninis išderinimas sukelia praėjusių zonduojančių laukų intensyvumų osciliacijas

- · Išderinimas gali būti sukeltas tarpatominės sąveikos
- Pavyzdžiui: sąveika tarp Rydbergo atomų
 - \rightarrow suspaustos lėtos šviesos generavimas dėl tarpatominės sąveikos
 - J. Ruseckas, I. A. Yu, G. Juzeliūnas, Phys. Rev. A 95, 023807 (2017)

RYDBERGO ATOMŲ PANAUDOJIMAS

Sąveikos tarp Rydbergo atomų

- Šuolio dipolinis momentas tarp gretimų būsenų proporcingas n²
- Stiprios dipolinės sąveikos tarp atomų
- Sąveikos stiprumas staigiai didėja didėjant n;
- Kai $n \gtrsim 100$, sąveikos stiprumas gali būti sulyginamas su Coulomb'o sąveika tarp jonų
- Gali būti panaudojamos norimoms daugiadalelėms būsenoms sukurti

DIPOLINĖ BLOKADA

- · Jei vienas atomas yra sužadintas į Rydbergo būseną
 - stipri sąveika paslenka aplinkinių atomų rezonansinius dažnius
 - taip slopinant jų sužadinimą.
- · Rydbergo blokada gali būti taikoma
 - · kvantinės informacijos apdorojimui
 - · netiesinei kvantinei optikai naudojant Rydbergo EIT

RYDBERGO EIT

Silpnas zonduojantis laukas $\mathcal E$ yra susietas su Rydbergo lygmeniu per stiprų kontrolinį lauką $\Omega.$

Silpnas zonduojantis laukas $\mathcal E$ yra susietas su Rydbergo lygmeniu per stiprų kontrolinį lauką $\Omega.$

Silpnas zonduojantis laukas $\mathcal E$ yra susietas su Rydbergo lygmeniu per stiprų kontrolinį lauką $\Omega.$

- EIT → atomo ir šviesos sąveika be sugerties
- Rydbergo būsenos → stiprios tolimos tarpatominės sąveikos
- Rezultatas → sąveikos tarp fotonų.

Kai krenta vienas zonduojančio lauko fotonas

- kontrolinis laukas sukuria skaidrumą siaurame dažnių ruože
- zonduojančio lauko fotonas yra susiejamas su Rydbergo sužadinimu formuojant kvazidalelę — Rydbergo poliaritoną
- Rydbergo poliaritonas sklinda sumažintu greičiu $\ll c$

Kai <mark>du</mark> zonduojančio lauko fotonai sklinda terpėje su Rydbergo atomais

- stiprios sąveikos tarp diviejų gretimų Rydbergo atomų išveda atominį šuolį iš rezonanso
- sunaikinant skaidrumą ir sukeliant sugertj

KVANTINĖS NETIESINĖS OPTIKOS EKSPERIMENTAS

A. V. Gorshkov et al, Phys. Rev. Lett. 107, 133602 (2011).

T. Peyronel et al, Nature 488, 57 (2012).

46 < n < 100

RYDBERGO EIT TRŪKUMAI

Tik vienas fotonas sklinda be sugerties Rydbergo blokados srityje. Visi kiti fotonai yra <mark>sugeriami</mark>, sukeliant nuostolius

Pasiūlymas

Naudoti sąveiką tarp atomų šviesos išsaugojimo metu.

LĖTOS ŠVIESOS IŠSAUGOJIMAS NAUDOJANT DVI RYDBERGO BŪSENAS

- J. Ruseckas, I. A. Yu, G. Juzeliūnas, Phys. Rev. A 95, 023807 (2017)
 - \cdot Kopėčių tipo schema su Rydbergo būsena s
 - · Išsaugojimo procedūra:
 - Zonduojantsi laukas yra išsaugojamas koherentiškume tarp pagrindinės būsenos g ir Rydbergo būsenos s
 - 2. $\pi/2$ impulsas paverčia Rydbergo būseną $|s\rangle$ į Rydbergo s ir p būsenų superpoziciją

$$|+\rangle = \frac{1}{\sqrt{2}}(|s\rangle + |p\rangle)$$

IŠSAUGOTA RYDBERGO LĖTA ŠVIESA

- Rezonansinė dipolinė sąveika V tarp Rydbergo atomų
- Sukeičia s ir p Rydbergo būsenas
- Išsaugojimo metu yra sukuriamos koreliuotos atomų poros pradžioje neužpildytoje būsenoje

$$|-\rangle = \frac{1}{\sqrt{2}}(|s\rangle - |p\rangle)$$

IŠSAUGOTA RYDBERGO LĖTA ŠVIESA

- Išsaugojimos pabaigoje antras $\pi/2$ impulsas paverčia būseną $|-\rangle$ į Rydbergo būseną $|s\rangle$ ir būseną $|+\rangle$ į būseną $|p\rangle$.
- Būsenos s sužadinimai yra paverčiami zonduojančio lauko fotonais,
- p būsenos sužadinimai pasilieka atomų terpėje

PASEKMĖS

- · Be atomų sąveikos lėta šviesa neatgaminama
- Atgamintas zonduojantis pluoštas yra sudarytas iš koreliuotų fotonų porų

ATGAMINTOS ŠVIESOS ANTROS EILĖS KORELIACINĖ FUNKCIJA

Laikant kad

$$r_{\rm c} \lesssim r_{\rm Ry}$$
,

kur

- · $r_{\rm c}$ yra charakteringas sąveikos atstumas, $V(r_{\rm c})\,T=1$
- \cdot $r_{
 m Ry}$ yra vidutinis atstumas tarp Rydbergo atomų

Atgamintos šviesos antros eilės koreliacinė funkcija

$$g_{\text{out}}^{(2)}(\tau) \sim 1 - \cos[V(v_{g0}\tau)T]$$

Esant mažai išsaugojimo trukmei $\it T$

$$g_{\text{out}}^{(2)}(\tau) \sim [V(v_{q0}\tau)T]^2$$

ATGAMINTOS ŠVIESOS ANTROS EILĖS KORELIACINĖ FUNKCIJA

$$g_{\mathrm{out}}^{(2)}(\tau) \sim [V(v_{g0}\tau)T]^2$$

- Leidžia matuoti sąveikos potencialą
- Korekcijos dėl baigtinio EIT pločio (raudona brūkšniuota kreivė)

IŠVADOS

- Veikiant tinkamai parinktais lazerių pluoštais galima sukurti dirbtinį magnetinį lauką šaltų atomų dujoms.
- Penkių lygmenų dvigubo tripodo atomų ir šviesos sąveikos schema leidžia sukurti sukininę (dvikomponentę) lėtą šviesa.
- Sąveiką tarp fotonų galima sukurti panaudojant toliveikę dipolinę sąveiką tarp Rydbergo atomų.

Ačiū už dėmesį!