Midterm 2 review problems

Note: no practice problems on p-values or LRT are provided because those topics were covered on most recent problem set!

1. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Unif}[\theta, \theta + 1]$, where $\theta > 0$ is the unknown parameter. Suppose we'd like to test the following hypotheses:

$$H_0: \theta = 0$$
 vs. $H_1: \theta > 0$

Our rejection rule is to reject H_0 if $Y_n > 1$ or $Y_1 > k$, for some constant k. Here, $Y_n = \max\{X_1, \ldots, X_n\}$ and $Y_1 = \min\{X_1, \ldots, X_n\}$.

Suppose we'd like our test to have size α . What value k should we choose?

- 2. Let X_1, \ldots, X_n be a sample from $\text{Unif}[\theta 0.5, \theta + 0.5]$ with θ unknown, and let $X = \sum_{i=1}^{n} X_i$.
 - (a) Is the random variable $V = X n\theta$ pivotal? Why or why not?
 - (b) Find a function $r(v, \mathbf{x})$ for which $r(V, \mathbf{X}) = \theta$.
 - (c) Suppose Y_1, \ldots, Y_n are iid Unif[-0.5, 0.5], let $Y = \sum Y_i$, and let F be the CDF for Y. Use parts (a) and (b) to find a formula for a γ -level confidence interval for θ in terms of F. Note: Y is not a named distribution that we've previously studied.
 - (d) Use R to approximate $F^{-1}(0.025)$ and $F^{-1}(0.975)$ by simulating 10,000 samples from Unif[-0.5, 0.5].
 - (e) Suppose X=25 and n=50. Find the endpoints of the observed 0.95-level confidence interval for θ .
- 3. Let $X_1, \ldots, X_n | \theta \stackrel{\text{iid}}{\sim} \text{Unif}[0, \theta]$, where $\theta > 0$ unknown. On a previous homework, you obtained an interval estimator for θ based on the pivot $U = \frac{Y}{\theta} \in [0, 1]$, where $Y = \max\{X_1, \ldots, X_n\}$. On that homework, you found the following:

$$F_U(u) = \begin{cases} 0 & \text{if } u < 0 \\ u^n & \text{if } 0 \le u \le 1 \\ 1 & \text{if } u > 1 \end{cases}$$

I previously asked you to find a γ -coefficient confidence interval whose bounds are strictly greater than Y.

- (a) Now, I'd like you construct a different γ -coefficient interval estimator for θ of the following form: $[Y, B(\mathbf{X})]$. Find $B(\mathbf{X})$.
- (b) For fixed γ , comment on if and how the length of your interval in (a) changes as $n \to \infty$. Is this behavior good or bad, and why?

4. Suppose we have a single $X|\theta \sim \text{Unif}[0,\theta]$. Consider a test of the following two simple hypotheses:

$$H_0: \theta = 1$$
 vs. $H_1: \theta = 2$

(i.e.
$$\Omega = \{1, 2\}$$
).

- (a) Find a test that is level $\alpha_0 = 0$.
- (b) Find the power of your test from (a). Note: we want the power, not power function.
- 5. A two stage clinical trial is planned to understand the efficacy of a certain protocol treatment. Let p be the proportion of patients in the treatment who respond to the treatment. Consider testing the following hypotheses:

$$H_0: p = 0.10$$
 vs. $H_1: p > 0.10$

The two stage trial proceeds as follows:

- At the first stage, 10 patients are recruited and given the treatment. If 2 or more of these 10 patients are found to respond to the treatment protocol, then H_0 is rejected and the study is terminated.
- If the study was not terminated, we proceed to a second stage: an additional 10 patients are recruited and treated in the second stage. If a total of 4 or more patients among all 20 total patients respond to the treatment, then H_0 is rejected. No matter the results at this stage, the study is terminated.

For example: if 5 patients in the first stage are found to respond to the treatment, H_0 is rejected and the study is finished. However, if only 1 patient was responded in the first stage, we recruit another 10 patients. Suppose 1 additional person in stage two responded to the treatment. Since 2 < 4, we fail to reject H_0 . The study is terminated.

- (a) Find the probability that H_0 is rejected at the first stage, assuming the null is true. State your answer exactly (using PMFs), and then use R to obtain an approximate probability.
- (b) Find the overall probability that H_0 is rejected, assuming the null is true. State your answer exactly (using PMFs), and then use R to obtain an approximate probability.
- 6. Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ where both μ and σ^2 are unknown. How should c be chosen such that the interval $(-\infty, \bar{X} + c]$ is a 95% confidence interval for μ ?
- 7. Suppose that an iid sample of n=15 observations from a Normal distribution with unknown mean μ and variance σ^2 yields $\bar{X}=10$ and $s^2=25$. Find 90% confidence intervals for μ and σ^2 .

- 8. An investigator is planning a study. They have data that are assumed to be Normally distributed with unknown mean μ and known variance $\sigma^2 = 2.5$. The null hypothesis is $H_0: \mu = 3$ and alternate hypothesis is $H_1: \mu \neq 3$. The investigator has budget to obtain n = 10 samples.
 - (a) Provide and also sketch the distribution of the sampling distribution of \bar{X} under the null hypothesis. Be sure to label the axes and add some x-axis values.
 - (b) For a level 0.05 test, for what values of the test statistic $r(\mathbf{X}) = \bar{X}$ will the investigator reject the null hypothesis?
- 9. Two college students collected data on the price of hardcover textbooks from two disciplinary areas: Mathematics and the Natural Sciences, and the Social Sciences. The data can be loaded into R by running the following code (Don't worry about interpreting what the code itself is doing).

```
bookprices <- read.csv("https://people.carleton.edu/~kstclair/data/BookPrices.csv")
books_ss <- subset(bookprices, Area == "Social Sciences")$Price
books_mns <- subset(bookprices, Area == "Math & Science")$Price</pre>
```

In particular, the vector books_ss contains a list of prices for Social Science texts, and the vector books_mns contains a list of prices for Math and Science texts. Let \bar{x}_{ss} denote the sample mean price of social science texts and let \bar{x}_{mns} denote the sample mean price of Math and Science texts.

- (a) Compute \bar{x}_{ss} and \bar{x}_{mns} . Then compute the ratio $\frac{\bar{x}_{ss}}{\bar{x}_{mns}}$.
- (b) Use bootstrapping to simulate 10⁴ sample means from the sample of Social Science textbooks, and 10⁴ sample means from the sample of Math and Natural Sciences textbooks. Visualize the approximate bootstrap distributions using histograms.
- (c) Use the bootstrap statistics in the previous part to create 10⁴ bootstrap statistics for the ratio of mean prices (social science / math and natural science). Create a histogram of the approximate bootstrap distribution.
- (d) Create a 95% *empirical* bootstrap interval for the ratio of the means. What does this interval suggest about the true ratio?
- (e) Use your approximate bootstrap distribution to estimate the standard deviation and the bias of $\frac{\bar{x}_{ss}}{\bar{x}_{mns}}$ as an estimator for the true ratio of mean prices. Approximately what proportion of the mean squared error of $\frac{\bar{x}_{ss}}{\bar{x}_{mns}}$ is due to bias?