1. Aufgabe

(a) Zeige $\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$ mittels Wahrheitstabellen

(b) Zeige $A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$ mittels Wahrheitstabellen

A	B	C	$B \wedge C$	$A \vee B$	$A \lor C$	$A \vee (B \wedge C)$	$(A \vee B) \wedge (A \vee C)$	
\overline{w}	w	w	w	w	w	w	w	
w	w	f	f	w	w	w	w	
w	f	w	f	w	w	w	w	
w	f	f	f	w	w	w	w	
f	w	w	w	w	w	w	w	
f	w	f	f	w	f	f	f	
f	f	w	f	f	w	f	f	
f	f	f	f	f	f	f	f	
$\Rightarrow (A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C))$								

(c) Zeige $(A\Rightarrow B)\Leftrightarrow (\overline{A}\vee B)$ mittels Wahrheitstabellen

(d) Zeige $(A\Rightarrow B)\Leftrightarrow (\overline{B}\Rightarrow \overline{A})$ mittels Wahrheitstabellen

2. Aufgabe

(a) Prüfe ob $A \wedge (B \Rightarrow C) \Leftrightarrow (A \wedge \overline{B}) \vee (A \wedge C)$ mittels Wahrheitstabellen

A	B	C	\overline{B}	$B \Rightarrow C$	$A \wedge \overline{B}$	$A \wedge C$	$A \wedge (B \Rightarrow C)$	$(A \wedge \overline{B}) \vee (A \wedge C)$	
\overline{w}	w	w	f	w	f	w	w	w	
w	w	f	f	f	f	f	f	f	
w	f	w	w	w	w	w	w	w	
w	f	f	w	w	w	f	w	w	
f	w	w	f	w	f	f	f	f	
f	w	f	f	f	f	f	f	f	
f	f	w	w	w	w	f	f	f	
f	f	f	w	w	w	f	f	f	
	$\Rightarrow (A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C))$								

(b) Prüfe ob $A \Rightarrow \overline{B} \Leftrightarrow \overline{A \wedge B}$ mittels Wahrheitstabellen

3. Aufgabe

(a) Prüfe ob $(((A\Rightarrow B)\wedge A)\Rightarrow B)\Leftrightarrow \mathbb{1}$ mittels Wahrheitstabellen

(b) Prüfe ob $(((A\Rightarrow B)\wedge \overline{B})\Rightarrow \overline{A})\Leftrightarrow \mathbb{1}$ mittels Wahrheitstabellen

A	B	\overline{A}	\overline{B}	$A \Rightarrow B$	$(A \Rightarrow B) \wedge \overline{B}$	$((A\Rightarrow B)\wedge \overline{B})\Rightarrow \overline{A}$	1
\overline{w}	w	f	f	w	f	w	w
w	$\int f$	f	w	f	f	w	$ \mathbf{w} \Rightarrow ((((A \Rightarrow B) \land \overline{B}) \Rightarrow \overline{A}) \Leftrightarrow \mathbb{1})$
f	w	w	f	w	f	w	w
f	f	w	w	w	w	w	w

4. Aufgabe

(a) Zeige $((A \land B) \lor (\overline{A} \land \overline{B})) \Leftrightarrow A \star B$ mittels Wahrheitstabellen

A	B	$ \overline{A} $	\overline{B}	$A \wedge B$	$\overline{A} \wedge \overline{B}$	$(A \wedge B) \vee (\overline{A} \wedge \overline{B})$	$A \star B$	
\overline{w}	w	f	f	w	f	w	w	
w	f	f	w	f	f	f	f	$\Rightarrow (((A \land B) \lor (\overline{A} \land \overline{B})) \Leftrightarrow A \star B)$
f	w	w	f	f	f	f	f	
f	f	w	w	f	w	w	w	

(b-1) Prüfe ob $((A \vee B) \Leftrightarrow (\overline{B} \Rightarrow A)) \Leftrightarrow \mathbb{1}$ mittels Wahrheitstabellen

(b-2) Prüfe ob $((B \wedge \overline{A}) \Leftrightarrow (\overline{B} \vee A)) \Leftrightarrow \mathbb{1}$ mittels Wahrheitstabellen

5. Aufgabe

Bestimme die folgenden kartesischen Produkte zwischen $A = \{-2, -1, 0\}, B = \{1, 2, 3\}$ und $C = \{-1, 0, 2\}$:

(a-1) $A \times B$:

$$A \times B = \left\{ \begin{array}{l} (-2,1), \ (-2,2), \ (-2,3), \\ (-1,1), \ (-1,2), \ (-1,3), \\ (0,1), \ (0,2), \ (0,3) \end{array} \right\}$$

(a-2) $A \times C$:

$$A \times C = \left\{ \begin{array}{lll} (-2, -1), & (-2, 0), & (-2, 2), \\ (-1, -1), & (-1, 0), & (-1, 2), \\ (0, -1), & (0, 0), & (0, 2) \end{array} \right\}$$

(a-3) $B \times C$:

$$B \times C = \left\{ \begin{array}{ll} (1,-1), & (1,0), & (1,2), \\ (2,-1), & (2,0), & (2,2), \\ (3,-1), & (3,0), & (3,2) \end{array} \right\}$$

(b-1) $B \times A$:

$$B \times A = \left\{ \begin{array}{l} (1,-2), \ (1,-1), \ \ (1,0), \\ (2,-2), \ (2,-1), \ \ (2,0), \\ (3,-2), \ (3,-1), \ \ (3,0) \end{array} \right\}$$

(b-2) $C \times A$:

$$C \times A = \left\{ \begin{array}{ll} (-1,-2), \ (-1,-1), & (-1,0), \\ (0,-2), \ (0,-1), & (0,0), \\ (2,-2), \ (2,-1), & (2,0) \end{array} \right\}$$

6. Aufgabe

Gegeben ist die Aussage A Auf jeden Topf passt ein Deckel, die Menge der Töpfe T und die Menge der Deckel D.

(a) Formuliere A mithilfe der Quantoren \forall und \exists :

Sei $P \subseteq (T \times D)$ die Menge aller Topf-Deckel-Paare, in welchem der Deckel auf den Topf passt. Dann gilt:

$$A \Leftrightarrow \forall t \in T : \exists d \in D : (t, d) \in P$$

(a) Bilde die Verneinung von A umgangssprachlich und mittels Quantoren:

 $\overline{A} \hat{=}$ Es gibt mindestens einen Topf ohne passenden Deckel. $\overline{A} \Leftrightarrow \exists t \in T : \forall d \in D : (t, d) \notin P$