数学分析习题:第3周

梅加强

http://math.nju.edu.cn/~meijq

2007.3

说明: 只有习题是必须写在作业本上上交的, 思考题做好后可以交给我, 但必须是严格独立完成的.

习题:

- 1. 计算下列曲线的弧长:
 - (1) $y = x^{\frac{3}{2}}$, $(0 \le x \le 4)$;
 - (2) $x = e^t \cos t$, $y = e^t \sin t$, $t \in [0, 2\pi]$;
 - (3) $x = a\cos^4 t$, $y = a\sin^4 t$, a > 0, $t \in [0, 2\pi]$;
 - (4) $y^2 = 2ax$, a > 0, $0 \le x \le a$.
- 2. 求下列曲线所围成图形的面积:

(1)
$$y^2 = ax$$
, $y = \frac{1}{2}x^2$, $a > 0$;

(2)
$$y = x^2 - 2x$$
, $y = -x^2$;

(3)
$$y = x(x-1)(x-2), y = 0;$$

(4)
$$y^2 = x^2(a^2 - x^2), a > 0$$
;

(5)
$$r = a(1 - \cos \theta), \ a > 0, \ \theta \in [0, 2\pi];$$

- (6) $r = a \sin 3\theta, \ a > 0.$
- 3. 求下列曲线旋转所成曲面的面积:
 - $(1) y = \tan x \, \mathcal{L}_{x} \, x \, \mathcal{L}_{x} \, x \in [0, \frac{\pi}{4}];$
 - (2) $x = a(t \sin t), y = a(1 \cos t)$ 绕直线 $y = a, a > 0, t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$;

- $(3) x^2 + y^2 = a^2 x + x + a > 0;$
- (4) $r^2 = a^2 \cos 2\theta$ 绕直线 $\theta = \frac{\pi}{4}$.
- 4. 求下列曲面所围成的体积:
 - (1) $x + y + z^2 = 1$, x = 0, y = 0;
 - (2) $x^2 + y^2 = a^2$, $y^2 + z^2 = a^2$, a > 0;
 - (3) $z^2 = b(a x), x^2 + y^2 = ax, a > 0, b > 0;$
 - (4) $x^2 + y^2 + z^2 + xy + yz + zx = a^2$, a > 0.
- 5. 求下列旋转体的体积:
 - (1) $x = a(t \sin t), y = a(1 \cos t), t \in [0, 2\pi]$ 绕 x 轴旋转所围成的旋转体:
 - $(2)(x-a)^2 + y^2 = b^2(a > b > 0)$ 的内部绕 y 轴旋转所成旋转体;
 - (3) $y^2 = 2ax$ (a > 0) 绕 x = b (b > 0) 旋转所围成的旋转体;
 - (4) $y = \sin x$, $x \in [0, \pi]$ 绕 x 轴旋转所围成的旋转体.
- 6. $\[c_n = (1 + \frac{1}{2} + \dots + \frac{1}{n}) \log n, \ n \geqslant 1. \] \]$
 - (1) 极限 $\lim_{n\to\infty} c_n$ 存在;
 - (2) $\operatorname{id} \lim_{n\to\infty} c_n = c$, $\operatorname{M} \lim_{n\to\infty} n(c_n c) = \frac{1}{2}$.

思考题:

1. 设 f 是 [a,b] 上的连续函数, 如果对于任何满足条件 g(a)=g(b)=0 的 连续函数 g 均有

$$\int_{a}^{b} f(x)g(x)dx = 0,$$

则 $f \equiv 0$.

2. 设 $\sigma:[0,1] \to \mathbb{R}^2$ 为连续可微的曲线 (即 $\sigma(t)=(x(t),y(t)), x(t)$ 和 y(t) 为连续可微函数), 则

$$L(\sigma) \geqslant |\sigma(1) - \sigma(0)|,$$

其中 $L(\sigma)$ 是 σ 的长度, |p-q| 表示平面上两点 p 和 q 的平面距离.