Probability Questions

Problem 1: Joint PMF for Rolling a Die Twice

An experiment consists of rolling an unbiased die two times. The random variables $X_i \sim \text{Uniform}\{1, 2, 3, 4, 5, 6\}$ represent the number on the *i*th roll, where i = 1, 2. Calculate:

$$f_{X_1,X_2}(3,2)$$

Problem 2: Drawing Queens and Kings from a Deck

From a well-shuffled deck of 52 cards, four cards are selected at random. Let the random variable X denote the number of queens drawn, and let the random variable Y denote the number of kings drawn. Find:

$$f_{X,Y}(2,1)$$

Problem 3: Joint PMF of Two Discrete Random Variables

The joint probability mass function of two discrete random variables X and Y is given by:

$$f_{X,Y}(x,y) = \frac{xy}{9}, \quad x,y \in \{1,2\}$$

Calculate:

$$f_X(1) + f_X(2)$$

Problem 4: Conditional Probability from a Joint PMF Table

Let X and Y be two random variables with joint PMF $f_{X,Y}(t_1,t_2)$ given by:

$$\begin{array}{c|ccccc} t_2 \backslash t_1 & 1 & 2 & 3 \\ \hline 1 & 0 & 0.10 & 0.08 \\ 2 & 0.20 & 0.10 & 0 \\ 3 & 0.02 & 0.30 & 0.20 \\ \end{array}$$

Find:

- 1. The range of $(Y \mid X = 1)$.
- 2. $f_{X|Y=2}(1)$.

1) 1/36

$$P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1) \cdot P(X_2 = x_2)$$

2) 1056/270725

$$f_{X,Y}(2,1) = rac{inom{4}{2} imes inom{4}{1} imes inom{44}{1}}{inom{52}{4}}$$

3) 1

$$f_X(x) = \sum_y f_{X,Y}(x,y)$$

$$f_{X|Y}(x|y) = rac{f_{X,Y}(x,y)}{f_{Y}(y)}$$