Цель работы

Рассмотреть простейшую модель боевых действий - модель Ланчестера.

Теоретическая справка

Модель Ланчестера. В противоборстве могут принимать участие как регулярные войска, так и партизанские отряды. В общем случае главной характеристикой соперников являются численности сторон. Если в какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается проигравшей (при условии, что численность другой стороны в данный момент положительна).

В этой работе ассмотри три случая ведения боевых действий:

- 1. Боевые действия между регулярными войсками.
- 2. Боевые действия с участием регулярных войск и партизанских отрядов.
- 3. Боевые действия между партизанскими отрядами.

Выполнение работы вариант 47

Между страной X и страной У идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями()х t и()у t . В начальный момент времени страна X имеет армию численностью 55 000 человек, а в распоряжении страны У армия численностью в 45 000 человек. Для упрощения модели считаем, что коэффициенты, , ,а b с h постоянны. Также считаем()P t и()Q t непрерывные функции.

Постройте графики изменения численности войск армии X и армии У для следующих случаев:

1. Модель боевых действий между регулярными войсками

$$dx/dt = -0,41x(t) - 0,821y(t) + sin(5t) + 1; \\ dy/dt = -0,541x(t) - 0,57y(t) + cos(6t) + 1.$$

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$dx/dt = -0.31x(t) - 0.87y(t) + |sin(4t)|; dy/dt = -0.43x(t)y(t) - 0.51y(t) + |cos(3t)|.$$

- 1. Боевые действия между регулярными войсками
- 2. Боевые действия с участием регулярных войск и партизанских отрядов
- 3. Боевые действия между партизанскими отрядами

В первом случае численность регулярных войск определяется тремя факторами:

скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями (болезни, травмы, дезертирство);

скорость потерь, обусловленных боевыми действиями противоборствующих сторон (что связанно с качеством стратегии, уровнем вооружения, профессионализмом солдат и т.п.);

скорость поступления подкрепления (задаётся некоторой функцией от времени).

В этом случае модель боевых действий между регулярными войсками описывается следующим образом

$$dx/dt = -a(t)x(t) - b(t)y(t) + P(t); dy/dt = -c(t)x(t) - h(t)y(t) + Q(t)$$

Потери, не связанные с боевыми действиями, описывают члены -a(t)x(t) и -h(t)y(t), члены -b(t)y(t) и -c(t)x(t) отражают потери на поле боя. Коэффициенты b(t) и c(t) указывают на эффективность боевых действий со стороны у и х соответственно, a(t), h(t) - величины, характеризующие степень влияния различных факторов на потери. Функции P(t), Q(t) учитывают возможность подхода подкрепления к войскам X и У в течение одного дня.

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что тем потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид (в этой системе все величины имею тот же смысл):

$$dx/dt = -a(t)x(t) - b(t)y(t) + P(t); dy/dt = -c(t)x(t)y(t) - h(t)y(t) + Q(t)$$

Случай 1

```
model var1
//Модель боевых действий регулярных войск
parameter Real t; //время
constant Real a=0.41; //константа, характеризующая степень влияния различных
факторов на потери
constant Real b=0.821; //эффективность боевых действий для армии у
constant Real c=0.541; //эффективность боевых действий для армии х
constant Real h=0.57; //константа, характеризующая степень влияния различных
факторов на потери
Real p;
Real q;
Real x;
Real y;
initial equation
х=55000; //численность армии в Х
у=45000; //численность армии в Ү
t=0;
equation
p=sin(5*t) + 1; //возможность подхода подкрепления к войскам X
q=cos(6*t) + 1; //возможность подхода подкрепления к войскам Y
der(x)=-a*x-b*y+p;
der(y)=-c*x-h*y+q;
end var1;
```

Получили график для первого случая (рис.1):

Случай 2

```
model var2
// Модель боевых действий регулярных войск и партизанских отрядов
parameter Real t; //время
constant Real a=0.31; //константа, характеризующая степень влияния различных
факторов на потери
constant Real b=0.87; //эффективность боевых действий для армии у
constant Real c=0.43; //эффективность боевых действий для армии х
constant Real h=0.51; //константа, характеризующая степень влияния различных
факторов на потери
Real p;
Real q;
Real x;
Real y;
initial equation
х=55000; //численность армии в Х
у=45000; //численность армии в Ү
t=0;
equation
p=abs(sin(4*t)); //возможность подхода подкрепления к войскам X
q=abs(cos(3*t)); //возможность подхода подкрепления к войскам Y
der(x)=-a*x-b*y+p;
der(y) = -c*x*y-h*y+q;
end var2;
```

Получили график для второго случая (рис.2):

Вывод

В ходе выполнения лабораторной работы я рассмотрел и построил простейшую модель боевых действий – модель Ланчестера.

Список литературы

Кулябов Д. С. *Лабораторная работа №3*: https://esystem.rudn.ru/mod/resource/view.php?id=8 31037