EPFL

MAN

Mise à niveau

Maths 2B Prepa-032(b)

Student: Arnaud FAUCONNET

Professor: Simon BOSSONEY

Printemps - 2019

Chapter 6

Déterminant, vecteurs et valeurs propres

L'étude de l'espace vectoriel $M_2(\mathbb{R})$ des matrices 2x2 à coefficients réels permet d'illustrer des notions importantes qu'on peut généraliser à des matrices $M_n(\mathbb{R})$ où n > 2.

Une matrice $A \in M_2(\mathbb{R})$ de la forme

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

représente une application linéaire exprimée par rapport à la base canonique $B_{\mathbb{R}^2}=\{e_1,e_2\}$

$$A \cdot e_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$$

$$A \cdot e_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}$$

Pour que l'application linéaire A soit bijective, il faut que

$$Ae_1 \neq \lambda Ae_2 \quad \forall \lambda \in \mathbb{R}^*$$

En particulier pour $\lambda = 1$, l'application linéaire A n'est pas bijective si $Ae_1 = Ae_2$ et donc la matrice n'est pas invertible si ses colonnes sont égales.

$$\begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}$$

Dans le cas où $c \neq 0$ et $d \neq 0$, la matrice A n'est pas inversible si

$$\frac{a}{c} = \frac{b}{d} \implies a \cdot d - b \cdot d = 0$$

Dans le cas où c=0 ou d=0, cette condition doit aussi être aussi satisfaite si A n'est pas inversible.

Définition 6.1:

Le déterminant de la matrice $A \in M_2(\mathbb{R})$ est le nombre suivant:

$$det(A) := ad - bc$$

Une matrice est donc inversible si son déterminant est non-nul.

L'inverse de la matrice A est

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

En effet,

$$A^{-1}A = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = I_2$$
$$AA^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = I_2$$

L'aire engendré par les vecteurs de base e_1 et e_2 dans \mathbb{R}^2 est 1. Soit S l'aire engendrée par les images des vecteurs des base

$$Ae_1 = \begin{pmatrix} a \\ c \end{pmatrix}$$

et

$$Ae_2 = \begin{pmatrix} b \\ d \end{pmatrix}$$

dans \mathbb{R}^2

$$S = (a+b)(c+d) - 2bc - bd - ac = ad - bc = \det(A)$$

3 cas

1. Si les images Ae_1 et Ae_2 ont la même orientation respective que les vecteurs e_1 et e_2

$$det(A) = S$$

2. Si les images ont l'orientation inverse

$$det(A) = -S$$

3. Si les images sont multiples l'une de l'autre

$$\det(A) = 0$$

ce qui signifie que la matrice A n'est pas inversible car elle représente une projection sur une droite.

On va maintenant utiliser le déterminant pour chercher une base de \mathbb{R}^2 une matrice A prend une forme particulièrement simple.

$$A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

On va alors chercher, si c'est possible, deux vecteurs linéairement indépendants $v_1, v_2 \in \mathbb{R}^2$ tels que

$$Av_1 = \lambda_1 v_1$$
 et $Av_2 = \lambda_2 v_2$ où $\lambda_1, \lambda_2 \in \mathbb{R}$

Dans la base $\{v_1, v_2\}$ de \mathbb{R}^2 , l'application linéaire représentée par la matrice A dans la base $\{e_1, e_2\}$, est représentée par une matrice diagonale.

En effet,

$$\forall v \in \mathbb{R}^2 \quad v = c_1 v_1 + c_2 v_2$$

alors

$$A = A(c_1v_1 + c_2v_2) = c_1Av_1 + c_2Av_2$$

= $c_1\lambda_1v_1 + c_2\lambda_2v_2$

La matrice qui représente cette application linéaire dans la base $\{v_1, v_2\}$ aura pour colonnes les vecteurs

$$\begin{pmatrix} \lambda_1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ \lambda_2 \end{pmatrix}$$

Définition 6.2:

Soit $f:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ une application linéaire. Un **vecteur propre** de f est une vecteur $v\in\mathbb{R}^2$ pour lequel il existe une nombre

$$\lambda \in \mathbb{R}$$
 t.g. $f(v) = \lambda v$

où λ est la **valeur propre** associé à v.

Théorème: 6.3:

Soient $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ une application linéaire et v_1 , v_2 des vecteurs propres pour f, linéairement indépendant avec valeurs propres associées λ_1 et λ_2 . Alors

$$B = \{v_1, v_2\}$$

est une base pour \mathbb{R}^2 et f est représentée dans cette base pour,

$$M_f = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

De plus, si A est la matrice représentant f dans la base canonique de \mathbb{R}^2 et si

$$v_1 = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} \quad \text{et} \quad v_2 = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$$

dans la base canonique, alors

$$M_f = B^{-1}AB$$
 où $B = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$

Diagramme de changement de base

$$\begin{array}{ccc}
\mathbb{R}^2 & \xrightarrow{A} & \mathbb{R}^2 \\
B \uparrow & & \downarrow B^{-1} \\
\mathbb{R}^2 & \xrightarrow{M_f} & \mathbb{R}^2
\end{array}$$

- 1. Linge supérieure: base $\{e_1, e_2\}$
- 2. Linge inférieure: base $\{v_1, v_2\}$

Démonstration: Il reste que la 2^e partie de l'énoncé à prouver:

$$B^{-1}AB = M_f \implies AB = BB^{-1}AB = BM_f$$

$$A\begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \lambda_1 \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} \quad \text{ et } \quad A\begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \lambda_2 \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$$

$$AB = A \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} \lambda_2 c_{11} & \lambda_2 c_{12} \\ \lambda_1 c_{21} & \lambda_2 c_{22} \end{pmatrix} = \underbrace{\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}}_{=B} \underbrace{\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}}_{=M_f}$$

$$= BM_f$$

Il s'agit donc de trouver les vecteurs propres d'une matrice donnée et les valeurs propres qui leur sont associées. On peut commencer par chercher les valeurs propres d'une matrice.

Une valeur $\lambda \in \mathbb{R}$ est valeur propre de A si et seulement si il existe un vecteur non-nul v, tel que

$$Av = \lambda v$$

i.e. si et seulement si il existe un vecteur v non-nul tel que

$$(A - \lambda I_2)v = 0_{\mathbb{R}^2}$$

Ceci est à son tour équivalent dire que $A - \lambda I_2$ n'est pas injective et donc que $\det(A - \lambda I_2) = 0$.

Définition 6.4:

Soit $A \in M_2(\mathbb{R})$. Le polynôme caractéristique de A donnée par

$$\mathcal{X}_A(\lambda) = \det(A - \lambda I_2) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

Définition 6.5:

Soit $A \in M_2(\mathbb{R})$. La trace de A est le nombre suivant:

$$\operatorname{tr}(A) := a + d \in \mathbb{R}$$

Théorème 6.6:

Le polynôme caractéristique $\mathcal{X}_A(\lambda)$ s'écrit

$$\mathcal{X}_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$

De plus, si λ_i est une valeur propre de A alros c'est une racine de \mathcal{X}_A :

$$\mathcal{X}_A(\lambda_i) = 0 \implies \lambda_i^2 - \operatorname{tr}(A)\lambda_i + \det(A) = 0$$

Démonstration

$$\mathcal{X}_A(\lambda) = \det(A - \lambda I_2) = (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$
$$\mathcal{X}_A(\lambda_i) = \det(A - \lambda_i I_2) = \lambda_i^2 - \operatorname{tr}(A)\lambda_i + \det(A) = 0$$

Définition 6.7:

Le discriminent du polynôme caractéristique $\mathcal{X}_A(\lambda)$ est

$$\Delta_A = \operatorname{tr}(A)^2 - 4\det(A)$$

L'étude des racines de $\mathcal{X}_A(\lambda)$ dépend du signe de Δ_A

1. $\Delta_A > 0$: 2 valeurs propres distinctes: λ_1 et λ_2

$$\mathcal{X}_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = (\lambda - \lambda_1)(\lambda - \lambda_2)$$
$$= \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2$$

Ainsi,

$$tr(A) = \lambda_1 + \lambda_2$$
 et $det(A) = \lambda_1 \lambda_2$

Le vecteur propre v_1 est tel que $(A - \lambda_1 I_2)v_2 = 0_{\mathbb{R}^2}$

$$\begin{pmatrix} a - \lambda_1 & b \\ c & d - \lambda_1 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 dans la base $\{e_1, e_2\}$

Le vecteur v_2 est tel que $(A - \lambda_2 I_2)v_2 = 0_{\mathbb{R}^2}$

$$\begin{pmatrix} a - \lambda_2 & b \\ c & d - \lambda_2 \end{pmatrix} \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 dans la base $\{e_1, e_2\}$

La matrice M_f représentant l'application linéaire dans la base propre $\{v_1, v_2\}$ est

$$M_f = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

2. $\Delta_A = 0$: 1 valeur propre: λ_0

$$\mathcal{X}_A = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = (\lambda - \lambda_0)^2$$
$$= \lambda^2 - 2\lambda_0\lambda + \lambda_0^2$$

Ainsi,

$$\operatorname{tr}(A) = 2\lambda_0 \quad \text{ et } \quad \det(A) = \lambda_0^2$$

3. $\Delta_A < 0$: Il n'y a pas de valeur propre réelle.

Théorème 6.8:

Si $\Delta_A = \operatorname{tr}(A)^A - 4 \operatorname{det}(A) = 0$, λ_0 est l'unique valeur propre. Il y a deux cas:

- 1. Si $A = \lambda_0 I_2$, l'application linéaire $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, représenté par A dans la base canonique, en toute base de \mathbb{R}^2 (A est déjà diagonalisée).
- 2. Il existe une base de \mathbb{R}^2 où l'application linéaire $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, représentée par A dans la base canonique, est représentée par la matrice triangulaire,

$$M_f = \begin{pmatrix} \lambda_0 & 1\\ 0 & \lambda_0 \end{pmatrix}$$

Le vecteur propre v_0 est tel que $(A - \lambda_0 I_2)v_0 = 0_{\mathbb{R}^2}$

$$\begin{pmatrix} a-\lambda_0 & b\\ c & d-\lambda_0 \end{pmatrix} \begin{pmatrix} c_{10}\\ c_{20} \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad \text{dans la base } \{e_1,e_2\}$$
 où $v_0=\begin{pmatrix} c_{10}\\ c_{20} \end{pmatrix}$

Théorème 6.9:

Si $\Delta_A = \operatorname{tr}(A)^2 - 4 \operatorname{det}(A) < 0$ alors $\operatorname{det}(A) > 0$, il existe une base de \mathbb{R}^2 où l'application linéaire $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, représenté par la matrice,

$$M_f = \sqrt{\det(A)} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$
 où $\cos(\theta) = \frac{\operatorname{tr}(A)}{2\sqrt{\det(A)}} < 1$ et $\theta \in (0,\pi)$
Ainsi,
$$\det(M_f) = \det(A)(\cos^2(\theta) + \sin^2(\theta)) = \det(A)$$

$$\operatorname{tr}(M_f) = 2\sqrt{\det(A)}\cos(\theta) = \operatorname{tr}(A)$$

Propriétés

1.
$$det(AB) = det(A) det(B) = det(B) det(A)$$

$$2. \ \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$

3.
$$tr(AB) = tr(A)tr(B) \neq det(B) det(A)$$
 (en général)

4.
$$\det(I_2) = 1$$

5.
$$\det(A^{-1}A) = \det(A^{-1})\det(A) = \det(I_2) = 1 \implies \det(A^{-1}) = \frac{1}{\det(A)}$$

6.
$$M_f = B^{-1}AB$$

$$\implies \det(M_f) = \det(B^{-1}AB) = \det(ABB^{-1}) = \det(A)$$
$$\operatorname{tr}(M_f) = \operatorname{tr}(B^{-1}AB) = \operatorname{tr}(ABB^{-1}) = \operatorname{tr}(A)$$

Le changement de base B préserve le déterminant et la trace, car $\det(A)=\lambda_1\lambda_2$ et $\operatorname{tr}(A)=\lambda_1+\lambda_2$