ΘΕΜΑ 4

Ο καθηγητής Φυσικής σε μία σχολή αξιωματικών του στρατού θέτει ένα πρόβλημα σχετικά με το πώς οι φοιτητές, αξιοποιώντας τις γνώσεις τους από το μάθημα, θα μπορούσαν να υπολογίσουν την ταχύτητα \vec{v} του βλήματος ενός πιστολιού. Ο καθηγητής υποδεικνύει στους φοιτητές την παρακάτω διαδικασία: Το βλήμα μάζας m εκτοξεύεται οριζόντια και σφηνώνεται σε ένα κομμάτι ξύλου, μάζας m, που ισορροπεί

ελεύθερο στην κορυφή ενός στύλου ύψους h. Οι μάζες m και M μετρώνται με ζύγιση και το ύψος h μετράται με μετροταινία. Το συσσωμάτωμα αμέσως μετά την κρούση εκτελεί οριζόντια βολή και χτυπάει στο έδαφος σε οριζόντια απόσταση x από τη βάση του στύλου, αφήνοντας ένα σημάδι στο χώμα ώστε να είναι δυνατή η μέτρηση αυτής της απόστασης x. Οι φοιτητές ακολούθησαν τη διαδικασία και έλαβαν μετρήσεις ακολουθώντας τη διαδικασία που τους υπέδειξε ο καθηγητής τους και κατέγραψαν τις τιμές m=0.1kg, M=1.9kg, h=5m και x=10m. Λαμβάνοντας υπόψη τις προηγούμενες τιμές των μεγεθών που μετρήθηκαν από τους φοιτητές, και θεωρώντας την αντίσταση του αέρα αμελητέα, να υπολογίσετε:

4.1. Το χρονικό διάστημα που πέρασε από την στιγμή της κρούσης μέχρι το συσσωμάτωμα να αγγίξει το έδαφος.

Μονάδες 6

4.2. Το μέτρο της οριζόντιας ταχύτητας \vec{V} την οποία απέκτησε το συσσωμάτωμα αμέσως μετά την κρούση.

Μονάδες 6

4.3. Το μέτρο της ταχύτητας \vec{v} του βλήματος πριν σφηνωθεί στο ξύλο.

Μονάδες 6

4.4. Την απώλεια της μηχανικής ενέργειας του συστήματος βλήμα-ξύλο κατά την κρούση.

Μονάδες 7

Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης $g=10m/s^2$.