Differential Equations Notes

Alex Z

Fall 2025

Contents

1	Introduction													4
	1.1 Introduction for the Introduction		 			 			 		 	 		4

Remarks

This notes thing was started on 10/19/2025.

I am to work through the WHOLE of the textbook (Elementary Differential Equations and Boundary Value Problems (11th ed)) by the end of this quarter (12/13/2025).

Hopefully, I'll also get around 20-40% of the problems in the textbook done.

1 Introduction

aka chapter 1

1.1 Introduction for the Introduction

Definition (Differential Equations). Equations containing derivatives.

Definition (Slope Field/Direction Field). A bunch line segments on the plane that represent the "motion" of a diff-eq.

Direction Fields are good for studying differential equations of the form

$$\frac{dy}{dt} = f(t, y).$$

(Page 6 – How to construct a diff-eq mathematical model from a real-world situation.)

(7) Newton: Differential equations come in one of these 3 forms:

$$1. \ \frac{dy}{dx} = f(x),$$

$$2. \ \frac{dy}{dx} = f(y),$$

$$3. \ \frac{dy}{dx} = f(x, y).$$

Exercise 11-16.

1.1.5 corresponds with **j**.

1.1.6 corresponds with \mathbf{c} .

1.1.7 corresponds with \mathbf{g} .

1.1.8 corresponds with **b**.

1.1.9 corresponds with \mathbf{h} .

1.1.10 corresponds with **e**.

Exercise 17.

(a)

$$\frac{dC}{dt} = [\text{chemicals/hour going in}] - [\text{out}] = 0.01 \cdot 300 - 300 \cdot \frac{C}{1000000}$$

where C is the number of gallons of said chemical in the pond and t is time measured in hours.

(b) After a very long time, 10000 gallons will be in the pond; this limiting amount is independent of starting conditions.

(c) Since concentration = $\frac{\text{Amount}}{\text{Volume}}$, $C = \text{volume} \cdot c = c \cdot 10^6$ where c stands for concentration. As such,

$$\frac{dc}{dt} = \frac{1}{10^6} \frac{dC}{dt} = \frac{3}{10^6} - \frac{3(c \cdot 10^6)}{10^4 \cdot 10^6}$$

4

So in final, $\frac{dc}{dt} = \frac{3}{10^6} - \frac{3c}{10^4}$

Exercise 18.

$$\frac{dV}{dt} = -k \cdot 4\pi r^2 = -k \cdot 4\pi \left(\frac{3}{4\pi}V\right)^{\frac{2}{3}}$$

Exercise 19.

$$\frac{dT}{dt} = -0.05 * (T - 70)$$

where T is the temperature of the object in Farenheit and t is time in minutes.