Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Operaciones Aritméticas y Lógicas Parte 1: Shannon y Boole

Profesor: Hans Löbel

Hasta ahora solo sabemos representar números de manera eficiente (algo es algo)

- En la práctica, esto no nos sirve de nada, porque no hacemos nada con los números.
- Para que sea útil, necesitamos un esquema que nos permita operar con estos números y que además sea implementable en una máquina (en hardware).
- Afortunadamente, gente muy inteligente pensó en esto hace mucho tiempo atrás...

A fines de los 30s, las máquinas analógicas dominaban la computación

- Claude Shannon (padre de la teoría de la información) estaba convencido que esta no era la mejor solución.
- Planteo una estrategia de tres pasos para diseñar un computador más eficiente, que finalmente resultaría siendo el computador digital.
- Desarrolló estas ideas en su tesis de magister, a los 19 años.

Como cambiar de analógico a digital

- Un sistema numérico eficiente.
- Mecanismo para operar eficientemente sobre este sistema numérico.
- Procedimiento para transformar lo anterior en elementos físicos.

Como cambiar de analógico a digital

- Un sistema numérico eficiente.
- Mecanismo para operar eficientemente sobre este sistema numérico.
- Procedimiento para transformar lo anterior en elementos físicos.

Como cambiar de analógico a digital

- Un sistema numérico eficiente.
- Mecanismo para operar eficientemente sobre este sistema numérico.
- Procedimiento para transformar lo anterior en elementos físicos.

Lógica Booleana es la solución

- En 1937, Shannon notó la relación entre la lógica booleana y la operación de números binarios.
- La lógica booleana permite analizar y operar proposiciones que pueden tomar sólo 2 valores: verdadero (1) o falso (0).

Una fórmula de lógica booleana tiene 2 componentes principales

 Proposiciones lógicas o variables: verdadero o falso

A = la luz está prendida

B = está nublado

Conectivos lógicos

Permiten unir las variables, análogo a operadores (+,-,...).

Se definen usando tablas de verdad.

A	В	A and B
F	F	F
\mathbf{F}	V	${ m F}$
V	${ m F}$	${ m F}$
V	V	V

A	В	A or B	
F	$\overline{\mathbf{F}}$	F	
$\mid F \mid$	V	V	
V	${ m F}$	V	
V	V	V	

A	not(A)
F	V
V	\mathbf{F}

Álgebra booleana permite definir sentencia lógicas complejas

- Bastan AND, OR y NOT para representar cualquier tabla de verdad de conectivos binarios.
- Para definir sentencias complejas, basta con conectar múltiples variables y operadores.
- Por ejemplo:

$$A \oplus B = (\neg A \land B) \lor (A \land \neg B)$$

Álgebra booleana permite definir sentencias lógicas complejas

• Lo mejor es que podemos representar operaciones aritméticas fácilmente

A	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

$$C = A \wedge B$$

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Operaciones Aritméticas y Lógicas Parte 1: Shannon y Boole

Profesor: Hans Löbel