

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen XIII

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2024-25.

Grado en Matemáticas y Doble Grado en Matemáticas y Física.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Convocatoria Extraordinaria.

Fecha 10 de Febrero de 2025.

Duración 3.5 horas.

Ejercicio 1 (2.5 puntos). Sean S un conjunto finito de puntos en un dominio Ω homológicamente conexo y f una función holomorfa en $\Omega \setminus S$. Prueba que f tiene una primitiva en $\Omega \setminus S$ si y solo si

$$\operatorname{Res}(f, w) = 0, \quad \forall w \in S.$$

Ejercicio 2 (2.5 puntos). Sea $f:\overline{D}(0,1)\to\mathbb{C}$ continua en $\overline{D}(0,1)$ y holomorfa en D(0,1) de modo que $f(z)\in\mathbb{R}$ para cada $z\in\mathbb{C}$ con |z|=1. Prueba que f es constante.

Ejercicio 3 (2.5 puntos). Demuestra que no puede existir una función f entera verificando

$$|f(z)| > |z| + |\operatorname{sen}(z)|, \quad \forall z \in \mathbb{C}.$$

Ejercicio 4 (2.5 puntos). Sean f, g holomorfas en $\mathbb{C} \setminus \{0\}$ verificando $f(n) = n^2 g(n)$ para cada $n \in \mathbb{N}$. Supongamos que existen $\lim_{z \to \infty} f(z) \in \mathbb{C}$ y $\lim_{z \to \infty} z^2 g(z) \in \mathbb{C}$. Prueba que

$$f(z) = z^2 g(z)$$
 para cada $z \in \mathbb{C} \setminus \{0\}$.

Ejercicio 1 (2.5 puntos). Sean S un conjunto finito de puntos en un dominio Ω homológicamente conexo y f una función holomorfa en $\Omega \setminus S$. Prueba que f tiene una primitiva en $\Omega \setminus S$ si y solo si

$$\operatorname{Res}(f, w) = 0, \quad \forall w \in S.$$

 \Longrightarrow) Supongamos que f tiene una primitiva F en $\Omega \setminus S$. Fijado $w \in S$, queremos calcular:

$$\operatorname{Res}(f, w) = \frac{1}{2\pi i} \int_{C(w, r)} f(z) \, dz,$$

para cualquier $r \in \mathbb{R}^+$ tal que $\overline{D}(w,r) \cap S = \{w\}$. Consideramos por tanto $r \in \mathbb{R}^+$ suficientemente pequeño de manera que $\overline{D}(w,r) \cap S = \{w\}$. Como C(w,r) es un camino cerrado en $\Omega \setminus S$ y f admite una primitiva en $\Omega \setminus S$, tenemos que

$$\int_{C(w,r)} f(z) \, dz = 0.$$

Por tanto, Res(f, w) = 0.

 \Leftarrow Supongamos que Res(f, w) = 0 para cada $w \in S$. Sea γ un camino cerrado en $\Omega \setminus S$. Como $S \subset \Omega$ es finito, tenemos que $S' \cap \Omega = \emptyset$. Como Ω es homológicamente conexo, podemos aplicar el Teorema de los Residuos sobre el camino γ , obteniendo:

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{w \in S} \operatorname{Res}(f, w) = 0.$$

Por la caracterización de las funciones que admiten primitivas, como γ era arbitrario, tenemos que f admite una primitiva en $\Omega \setminus S$.

Ejercicio 2 (2.5 puntos). Sea $f: \overline{D}(0,1) \to \mathbb{C}$ continua en $\overline{D}(0,1)$ y holomorfa en D(0,1) de modo que $f(z) \in \mathbb{R}$ para cada $z \in \mathbb{C}$ con |z| = 1. Prueba que f es constante.

Supongamos que f no es constante, y llegaremos a una contradicción. Consideramos la parte imaginaria de f, que es una aplicación continua. Como $\overline{D}(0,1)$ es compacto, existen $z_1, z_2 \in \overline{D}(0,1)$ tales que:

$$\operatorname{Im} f(z_1) = \min \{ \operatorname{Im} f(z) : z \in \overline{D}(0,1) \} \leqslant \max \{ \operatorname{Im} f(z) : z \in \overline{D}(0,1) \} = \operatorname{Im} f(z_2).$$

Como $\mathbb{T} \subset \overline{D}(0,1)$ y Im $f(\mathbb{T}) = \{0\}$ por hipótesis, tenemos que:

$$\operatorname{Im} f(z_1) = \min \{ \operatorname{Im} f(z) : z \in \overline{D}(0,1) \} \leqslant 0 \leqslant \max \{ \operatorname{Im} f(z) : z \in \overline{D}(0,1) \} = \operatorname{Im} f(z_2).$$

Por otro lado, como $f \in \mathcal{H}(D(0,1))$ no es constante, por el Teorema de la Aplicación Abierta tenemos que f(D(0,1)) es un conjunto abierto de \mathbb{C} . En particular, dado $z_0 \in f(D(0,1))$, existe $r \in \mathbb{R}^+$ tal que $D(z_0,r) \subset f(D(0,1))$. Por tanto, deducimos que Im $f(z_1) < \text{Im } f(z_2)$.

Como Im $f(z_1) \leq 0 \leq \text{Im } f(z_2)$, $\exists j \in \{1, 2\}$ tal que Im $f(z_j) \neq 0$, y por la hipótesis dada se tiene que $z_j \in D(0, 1)$.

Aplicamos ahora de nuevo el Teorema de la Aplicación Abierta, obteniendo que f(D(0,1)) es un conjunto abierto de \mathbb{C} con $f(z_j) \in f(D(0,1))$ y Im $f(z_j) \neq 0$. Por tanto, existe $r \in \mathbb{R}^+$ tal que:

$$D(f(z_i), r) \subset f(D(0, 1)).$$

De aquí, deducimos que:

$$\operatorname{Im} f(z_j) \neq \max \{ \operatorname{Im} f(z) : z \in \overline{D}(0,1) \}$$
$$\operatorname{Im} f(z_j) \neq \min \{ \operatorname{Im} f(z) : z \in \overline{D}(0,1) \}$$

Por tanto, hemos llegado a una contradicción, y concluimos que f es constante.

Ejercicio 3 (2.5 puntos). Demuestra que no puede existir una función f entera verificando

$$|f(z)| > |z| + |\sin(z)|, \quad \forall z \in \mathbb{C}.$$

Supongamos que existe una función f entera verificando la desigualdad dada. Por tanto:

$$|f(z)| > |z| \quad \forall z \in \mathbb{C}.$$

Por tanto:

$$\lim_{z \to \infty} f(z) = \infty.$$

Por tanto, por el Corolario del Corolario del Teorema de Casorati-Weierstrass, tenemos que f es un polinomio. Por otro lado, tenemos que:

$$|\operatorname{sen}(z)| < |f(z)| \qquad \forall z \in \mathbb{C}.$$

Por tanto, como sen(z) es una función entera con crecimiento subpolinómico, tenemos que sen(z) es un polinomio (clara contradicción). Por tanto, no puede existir una función f entera verificando la desigualdad dada.

Ejercicio 4 (2.5 puntos). Sean f, g holomorfas en $\mathbb{C} \setminus \{0\}$ verificando $f(n) = n^2 g(n)$ para cada $n \in \mathbb{N}$. Supongamos que existen $\lim_{z \to \infty} f(z) \in \mathbb{C}$ y $\lim_{z \to \infty} z^2 g(z) \in \mathbb{C}$. Prueba que

$$f(z) = z^2 g(z)$$
 para cada $z \in \mathbb{C} \setminus \{0\}$.

Trabajar con los límites en $+\infty$ no es tan sencillo, puesto que $\{n \in \mathbb{N}\}$ no tiene puntos de acumulación en \mathbb{C} . Por tanto, consideramos el siguiente conjunto:

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

Definimos las siguientes funciones:

$$\widetilde{h_1}: \mathbb{C}^* \longrightarrow \mathbb{C}$$

$$z \longmapsto f\left(\frac{1}{z}\right)$$

$$\widetilde{h_2}: \mathbb{C}^* \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{1}{z^2} \cdot g\left(\frac{1}{z}\right)$$

Tenemos que:

$$\lim_{z \to 0} \widetilde{h_1}(z) = \lim_{z \to 0} f\left(\frac{1}{z}\right) = \lim_{z \to \infty} f(z) = L_1 \in \mathbb{C},$$

$$\lim_{z \to 0} \widetilde{h_2}(z) = \lim_{z \to 0} \frac{1}{z^2} \cdot g\left(\frac{1}{z}\right) = \lim_{z \to \infty} z^2 g(z) = L_2 \in \mathbb{C}.$$

Definimos por tanto las extensiones $h_1,h_2:\mathbb{C}\to\mathbb{C}$ de $\widetilde{h_1},\widetilde{h_2}$ respectivamente, de modo que:

$$h_1(0) = L_1,$$

 $h_2(0) = L_2.$

De esta forma, tenemos que $h_1, h_2 \in \mathcal{H}(\mathbb{C}^*)$ y continuas en \mathbb{C} . Por tanto, por Teorema de Extensión de Riemman, tenemos que $h_1, h_2 \in \mathcal{H}(\mathbb{C})$.

Tenemos que $A' = \{0\} \subset \mathbb{C}$, y:

$$h_1\left(\frac{1}{n}\right) = f(n) = n^2 g(n) = h_2\left(\frac{1}{n}\right), \quad \forall n \in \mathbb{N}.$$

Por tanto, por el Principio de Identidad de funciones holomorfas, tenemos que:

$$h_1(z) = h_2(z), \quad \forall z \in \mathbb{C}.$$

Para cada $z \in \mathbb{C}^*$, evaluamos dicha igualdad en 1/z, obteniendo:

$$f(z) = h_1\left(\frac{1}{z}\right) = h_2\left(\frac{1}{z}\right) = z^2 g(z), \quad \forall z \in \mathbb{C}^*.$$

como queríamos demostrar.