Apellido y Nombres:	 ,,,,,,
2 0	Código Asignatura:
	Profesor:
Corros electrónico:	

Análisis Matemático III. Examen Integrador. Primera fecha. 6 de agosto de 2021.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. Dado un punto $z_0 \in \mathbb{C}$. considerar una función f holomorfa en $\mathbb{C} - \{z_0\}$. Establecer hipótesis sobre f que permitan calcular el valor principal de la integral

impropia $\int_{-\infty}^{+\infty} f(t) dt$ a partir del Res $[f(z), z_0]$ y mostrar cómo se relacionan.; Puede asegurarse la convergencia de la integral impropia?

Ejercicio 2. Modelar el problema del potencial electrostático en la banda infinita $\{(x,y)\in\mathbb{R}^2: x>y, -x-1< y<-x+1\}$ si en la frontera toma el valor 0, salvo en el segmento de puntos (x,x) donde es igual a 1. Dar las ecuaciones de las líneas equipotenciales y de las líneas de corriente.

Ejercicio 3. Dada $f(x) = \begin{cases} x & \text{si} \quad 0 \leqslant x < \pi/2 \\ -x + \pi & \text{si} \quad \pi/2 \leqslant x \leqslant \pi \end{cases}$, encontrar constantes reales a,b,c de modo que: $\int\limits_0^\pi |f(x) - a - b| \sin(4x) - c| \sin(10x) |^2 \ dx \text{ sea mínimo y explicar por qué es el mínimo. Resolver:}$

$$\begin{cases} u_{xx} + u_{yy} = 0 & 0 < x < \pi, \ 0 < y < 2\pi \\ u(0, y) = u(\pi, y) = 0 & 0 \le y \le 2\pi \\ u(x, 0) = f(x) & 0 \le x \le \pi \\ u(x, 2\pi) = \operatorname{sen}(2x) & 0 \le x \le \pi \end{cases}$$

Ejercicio 4. Sea $f: \mathbb{R} \to \mathbb{R}$ con $\mathcal{F}[f](\omega) = \frac{4-w^3}{(w^2+4)^7}$. Determinar a qué convergen cada una de las siguientes integrales:

$$i) \int_{-\infty}^{\infty} (\operatorname{sent}) f'((t-5)/2) e^{-i\omega t} dt, \quad ii) \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t-\tau) e^{-3|\tau|} d\tau \right) e^{-i\omega t} dt.$$

Ejercicio 5. Sea $f:[0,\infty)\to\mathbb{R}$ continua a trozos y de orden exponencial tal que

$$f(t) = 3t^2 - e^{-\alpha t} - \int_0^t f(\tau) e^{(t-\tau)} d\tau \quad \forall t \geqslant 0$$

Determinar, si existen, los valores de α para los que la abscisa de convergencia de la transformada de Laplace de f resulta igual a cero. Hallar f en el caso $\alpha = 1$.