

EEE331

Analogue Electronics

10th lecture:

- · Active analogue filters
 - passive LC filters: only inductors & capacitors: difficult at low f
 - active RC filters: R, C & op-amps: thick or hybrid thin-film technol.
 - · switched capacitor filters: fully IC-compliant

EEE331 Analogue Electronics

Lecture 10

EEE331

Analogue Electronics

2nd order filters: review of the standard from

All 2nd order filters are biquadratic transfer functions of the standard form T(s)= numerator/ $(1+s\pi/q+s^2\tau^2)$

where the **numerator** decides what type of filter we have:

1 = low pass $s\tau$ = band pass $s^2\tau^2$ = high pass $1+s^2\tau^2$ = band stop or notch

and the **denominator** decides the

time constant: $\tau = (LC)^{\frac{1}{2}}$, pole frequency: $\omega_0 = 1/\tau = (LC)^{-\frac{1}{2}}$ and quality factor: $q = 1/(\omega_0 RC) = \tau/(RC)$

EEE331 Analogue Electronics

ecture 10

Analogue Electronics EEE331

Insufficiencies of passive LC-filters: geometric problems due to L

Consider capacitor:

impedance: $X_{\rm C}=1/(sC)$, where $s=j\omega$

current: I=dQ/dt=d(CV)/dt=C dV/dt is linear to C times rate of voltage

change

 $C = \varepsilon_0 \varepsilon_r A/d$, scales linearly with area A and inversely with capacitance:

thickness d, hence is well-behaved and can be easily

implemented in CMOS technology

Consider inductor:

impedance:

voltage: $V_{\text{ind}} = -L \, dI/dt$ is linear to L times the rate of current change inductance: $L = \mu_0 \mu_r N^2 A/l$ scales quadratic with number of windings N,

linearly with area A in cross-section and inversely with length l

geometry needs to be implemented in 3D, which is a 1. problem:

problem for CMOS and indeed any planar thin film layout

at low frequencies L must be huge for reasonable X_1 2. problem:

EEE331 Analogue Electronics

EEE331 Analogue Electronics

Insufficiencies of passive RC-filters: problems due to limited q

Consider combination of pure RC-filters, e.g. 2nd order low pass obtained by putting two 1st order low pass filters in series ('synthesis by factors')

apply leap-frog ladder step-by-step (always easiest to work out from end!):

 $v_0 = i_1/(sC_2)$

 $V_2 = i_1 R_2 = V_0 s C_2 R_2$

 $V_3 = V_0 + V_2 = V_0 (1 + sC_2R_2)$

 $i_2 = v_3 s C_1 = v_0 s C_1 (1 + s C_2 R_2)$

 $i_3 = i_1 + i_2 = v_0[sC_2 + sC_1(1 + sC_2R_2)]$

 $V_4 = i_3 R_1 = V_0 R_1 [sC_2 + sC_1(1 + sC_2 R_2)]$

 $v_1 = v_3 + v_4 = v_0 \{ (1 + sC_2R_2) + R_1[sC_2 + sC_1(1 + sC_2R_2)] \}$

 $= V_0[1+s(R_2C_2+R_1C_2+R_1C_1)+s^2(R_1R_2C_1C_2)]$

 $T(s) = v_0/v_1 = 1/\{1 + s[(R_1 + R_2)C_2 + R_1C_1] + s^2(R_1C_1R_2C_2)\}$

EEE331 Analogue Electronics

Insufficiencies of passive RC-filters: problems due to limited q

Consider combination of pure *RC*-filters, e.g. 2nd order low pass obtained by putting two 1st order low pass filters in series ('synthesis by factors')

Now consider $R_1 + R_2 = R$ where $R_1 = (1-b)R$, $R_2 = bR$ with some constant $0 \le b \le 1$: $T(s) = 1/\{1 + s[RC_2 + (1-b)RC_1] + s^2[b(1-b)RC_1] + s^2[b($

$$\equiv 1/\{1+s(\tau_2+\tau_1/b)+s^2 \tau_1 \tau_2\}$$

with $\tau_1 = RC_1b(1-b)$, $\tau_2 = RC_2$ and $\tau = (\tau_1 \tau_2)^{1/2}$

Then this is of the standard form for $\omega_0=1/\tau=(\tau_1\tau_2)^{-1/2}$ and

$$q=(\tau_1\tau_2)^{1/2}/(\tau_1/b+\tau_2)=[C_1C_2(1-b)]^{1/2}/[C_1(1-b)+C_2]$$

Dividing both numerator and denominator of q by τ_2 and setting $x = \tau_1/\tau_2$ we obtain $q = \sqrt{x/(x/b+1)}$. Differentiating yields:

 $dg/dx = [(x/b+1)/(2\sqrt{x}) - \sqrt{x/b}][x/b+1]^{-2} = [(x/b+1) - 2x/b]/[2\sqrt{x}(x/b+1)]^{2} = 0 \text{ if } x=b.$

As $d^2q/dx^2<0$ for x=b, this is a maximum, i.e.: $q \le q^{max} = \frac{1}{2}\sqrt{b} \le \frac{1}{2}$ is very small.

EEE331 Analogue Electronics

Lecture 10

EEE331 Analogue Electronics

Improving pure RC-filters: incorporating amplification+feedback

Most filters will demand q>>1 in at least some frequency bands. In order to enhance q, a system is needed where energy is transferred from one part with a certain time constant to another, e.g. by using **negative feedback**:

output voltage: $v_0 = (v_1 + v_0) T(s) [-A(s)]$

 $v_0[1+T(s)A(s)]=-v_1T(s)A(s)$

 $v_0/v_1 = -T(s)A(s)/[1+T(s)A(s)] = -A(s)/[A(s)+1/T(s)]$

putting in the relationship $T(s) = 1/\{1+s(\tau_2+\tau_1/b)+s^2\tau_1\tau_2\}$ then yields

 $v_0/v_i = -A/[1+A] \times 1/[1+S(\tau_2+\tau_1/b)/(A+1)+S^2\tau_1\tau_2/(A+1)],$

i.e. both ω_0 and q have been multiplied by a common factor of $[A(s)+1]^{1/2}$: $\omega_0'=\omega_0[A(s)+1]^{1/2}$, $q'=q[A(s)+1]^{1/2}$. Differentiation and re-writing yields the A(s) dependence as $\Delta\omega_0'/\omega_0'=\Delta q'/q'=\Delta A/[2(A+1)]$, which tells us how sensitive the new centre frequency and the quality factor are to changes in the gain.

Lecture 10

two different possible technological solutions:

always:

- eliminate L
- adjust q by feedback

then:

- 1. adjust/increase gain by restoring some of the energy dissipated by R by
 - a) adding an op-amp to obtain an active RC-filter or
 - b) using transistors with voltage controlled output currents as transconductance amplifiers ($g_{\rm m}$ C-filters)

or

replace R by two MOSFET switches and one C in a so-called switched capacitor filter (SCF, fully CMOS compliant)

EEE331 Analogue Electronics

Lecture 10

EEE331 Analogue Electronics

Active filters: Sallen-Key filters with single amp.+ passive RC circuit

Analogue Electronics EEE331

Active filters: Sallen-Key filters with single amp.+ passive RC circuit

$$\begin{array}{l} 1/q = [\tau_1 + (1-A)\tau_2/b](\tau_1\tau_2)^{-1/2} \\ = (\tau_1/\tau_2)^{1/2} + (1-A)/b \ (\tau_2/\tau_1)^{1/2} \\ \text{Note for } A = 1: \\ q = (\tau_2/\tau_1)^{1/2} = (C_2(1-b)b/C_1)^{1/2} \\ \text{Note for } A = 1, \ b = 0.5, \ C_1 = C_2 \ (\text{symmetry}): \\ q^{\max} = 1/2 \ \text{as before for the buffered } RC\text{-filter} \\ \text{Note that changing } C_2/C_1 \ \text{ratio changes q} \end{array}$$

Example: A=1, b=0.5, $C_2=10C_1$: $q=\sqrt{2.5}\approx1.58$ is modest

q can become quite large if A and b are modified accordingly $(1/q \rightarrow 0)$, but then it depends sensitively on gain A!

without affecting τ , provided the product

EEE331 Analogue Electronics

 C_1C_2 =const.

Lecture 10

EEE331 Analogue Electronics

Switched capacitor filters (SCF): principle

get close tolerance high resistance on an IC without use of R. aim: principle: use MOSFETs as switches plus capacitance

Consider the following network:

switch to the left: $Q_c = C_c V_1$ switch to the right: $Q_c = C_c V_2$

Hence, charge $\Delta Q_c = C_c(V_1 - V_2)$ must flow from V_1 to V_2 , and when the switch returns to left, ΔQ_c must be replaced. Now assume the switch is moved back and forth (one cycle) f_s times per sec.

Then the current is: $i=\Delta Q_c/\Delta t = f_s C_c(V_1 - V_2)$

Thus the effective resistance is: $R_c = (V_1 - V_2)/i = 1/(f_s C_c)$, i.e. the combination of switch and capacitor behaves like a resistance, with $1/f_s = R_c C_o$, as long as the bandwidth is limited to $< \frac{1}{2}f_s$.

example: $C=1 \, \text{pF}, \, f_s=1 \, \text{MHz} \rightarrow R_c=1 \, \text{/(}10^{-12} \, \text{F} \times 10^6 \, \text{1/s)}=10^6 \, \Omega = 1 \, \text{M}\Omega$

This is larger than what would be possible using discrete resistors. For a typical thermal gate oxide: d=100nm, $\varepsilon_r \approx 4$. 1pF then requires an area of $\sim 3 \times 10^{-9}$ m² \approx 50 μ m \times 50 μ m. This can be controlled to within ~1% and $R_{\rm c}$ only depends on $f_{\rm s}$. EEE331 Analogue Electronics

Switched capacitor filters (SCF): applications

switched capacitor (inverting) integrator:

charge entering $C_{\rm f}$ per cycle: $\Delta Q_{\rm c} = C_{\rm c} (v_{\rm i} - v_{\rm x})$ charge entering $C_{\rm f}$ per sec.: $\Delta Q_{\rm c} f_{\rm s} = C_{\rm c} f_{\rm s} (v_{\rm i} - v_{\rm x})$ charge entering $C_{\rm f}$ in time δt : $\delta Q = \Delta Q_{\rm c} f_{\rm s} \delta t$

current: $i=dQ/dt=C_cf_s(v_i-v_x)$ where $v_x=0$ is a virtual earth

Hence, the output voltage is

 $v_0 = -1/C_f \int \delta Q/\delta t \, dt = -1/C_f \int C_c f_s v_i \, dt = -f_s C_c/C_f \int v_i \, dt$

advantage:

The integrator gain is controlled by $f_{\rm s}$ and the ratio of MOS capacitors $C_{\rm c}/C_{\rm f}$. The latter is given by their areal ratios, which can be controlled highly accurately by the lithography. disadvantages:

- MOS capacitors are leaky due to thermal electron-hole recombination at Si/SiO₂ interface and in the bulk (and some diffusion of minority carriers to the surface). This limits max. storage time for charge to the 1-2ms range.
- Input node must be low-pass filtered to prevent unwanted down-conversion (aliasing).

EEE331 Analogue Electronics

ecture 10

Switched capacitor filters (SCF): applications

summing and subtracting integrator:

switches to the left: $Q_c = C_c(v_1 - v_2)$ switches to the right: $Q_c = C_c(v_x - v_3)$ charge flow: $\Delta Q_{c} = C_{c}(v_{1} - v_{2} + v_{3})$

charge entering C_f in time δt :

 $\delta Q = \Delta Q_{\rm c} f_{\rm s} \, \delta t$ $= C_{\rm c} f_{\rm s} (v_1 - v_2 + v_3) \delta t$

Hence, the output voltage is

 $v_0 = -1/C_f \int \delta Q/\delta t \, dt = -f_s C_c/C_f \int (v_1 - v_2 + v_3) \, dt$

NB 1: Input to v_2 with v_3 =0 yields an inverting subtracting integrator. NB 2: Input to v_3 with v_2 =0 yields an inverting summing integrator. NB 3: Input to v_2 with $v_1 + v_3 = 0$ would yield a non-inverting integrator.

EEE331 Analogue Electronics

EEE331 Analogue Electronics

Lecture 10

 $\log \omega$

but amplifies high-f details.

input & output!

Can also get band pass filter using

switched capacitors $C_c \parallel C_f$ at both

 $\omega_0 = 1/(R_c C_f)$

Questionnaire on lecture series

Please tick all appropriate boxes and return anonymously after the last lecture. Thank you!

The lecture content was

— demanding but manageable

□ far too difficult□ mostly easy□ all familiar

The presentations were $\hfill \Box$ of high standard, combining computer presentations and

illustrations on the white board in about the right amount

 $\hfill\Box$ entertaining and/or interesting

□ way too fast□ too general without enough practical examples

□ too abstract and/or too mathematical

The lecture scripts were uvery good and understandable

□ of acceptable standard□ too poor in quality for revision

The general atmosphere was \qed relaxed; lecturer answered questions appropriately

□ sometimes a bit tense; lecturer was not always well prepared □ rather stiff; lecturer did not interact enough with the students

Any other comment you may want to make:

EEE331 Analogue Electronics Lecture 10