Einführung in die Algebra

BLATT 3

Jendrik Stelzner

6. November 2013

Aufgabe 3.1.

Für $n=\{1,2\}$ ist \mathfrak{S}_n kommutativ, also $Z(\mathfrak{S}_1)=\mathfrak{S}_1$ und $Z(\mathfrak{S}_2)=\mathfrak{S}_2$. Für $n\geq 3$ ist $Z(\mathfrak{S}_n)=\{1\}$ die triviale Untergruppe:

Sei $\pi \in Z(\mathfrak{S}_n)$ und $\sigma := \begin{pmatrix} 1 & 2 & \dots & n-1 & n \end{pmatrix} \in \mathfrak{S}_n$ die Rotation mit $\sigma(1) = 2$. Es gibt dann $s \in \{0,\dots,n-1\}$ mit $\pi(1) = \sigma^s(1)$. Da π mit allen Elementen in \mathfrak{S}_n kommutiert, ist damit für alle $m \in \{1,\dots,n\}$

$$\pi(m)=\pi(\sigma^m(1))=\sigma^m(\pi(1))=\sigma^m(\sigma^s(1))\underset{(*)}{=}\sigma^s(\sigma^m(1))=\sigma^s(m),$$

also $\sigma^s=\pi$, wobei bei (*) die Kommutativität von $\langle\sigma\rangle$ genutzt wird. Da wegen der Kommutativität von $\sigma^s=\pi$

$$\tau_{12} = \sigma^s \ \tau_{12} \ (\sigma^s)^{-1} = \tau_{(1+s)(2+s)},$$

wobei τ_{kl} die Transposition von $k \mod n$ und $l \mod n$ bezeichnet, muss s=0, also $\pi=\sigma^s=\mathrm{id}$. Dass $\mathrm{id}\in Z(\mathfrak{S}_n)$ ist allerdings klar, da $Z(\mathfrak{S}_n)\subseteq \mathfrak{S}_n$ eine Untergruppe ist.

Aufgabe 3.2.

Aufgabe 3.3.

(i)

Durch

$$G \times G/H \to G/H, (g, aH) \mapsto gaH$$

wird eine Aktion von G auf der Menge der Linksnebenklassen G/H definiert. Diese Aktion entspricht dem Gruppenhomomorphismus

$$\varphi: G \to S(G/H), g \mapsto (aH \mapsto gaH).$$

Es ist daher

$$\operatorname{ord} G = \operatorname{ord} \operatorname{Ker} \varphi \cdot \operatorname{ord} \operatorname{Im} \varphi.$$

Da ord Im φ ein Teiler von ord S(G/H)=(G:H)! ist, ord G jedoch kein Teiler von (G:H)!, muss ord Ker $\varphi\neq 1$, also Ker φ nichttrivial sein. Ker φ ist als Kern eines Gruppenhomomorphismus normal in G. Es ist Ker $\varphi\subseteq H$, denn für alle $n\in \operatorname{Ker}\varphi$ ist nH=H, da H eine Linksnebenklasse in G/H ist, also $n\in H$. Damit ist Ker $\varphi\subseteq H$ ein nichttrivialer Normalteiler von G.

(ii)

Es gilt zu bemerken, dass die Aussage nur unter der zusätzlichen Bedingung k>0 gilt: Ansonsten ist die triviale Gruppe mit p=2, k=0 und m=1 ein Gegenbeispiel. Es wird daher die Aussage unter der zusätzlichen Annahme k>0 gezeigt: Nach den Sylowsätzen gibt es eine p-Sylowgruppe $S\subseteq G$. Da S eine maximale p-Untergruppe ist, ist ord $S=p^k$, also $S=p^k$ 0 und $S=p^k$ 1 wegen den Annahmen $S=p^k$ 2 und $S=p^k$ 3 und $S=p^k$ 4 und $S=p^k$ 5 und $S=p^k$ 6 und $S=p^k$ 8 und $S=p^k$ 9 und $S=p^k$

$$\operatorname{ord} G = p^k m \nmid m! = (G : S)!.$$

Nach Aufgabenteil (i) gibt es daher einen nicht trivialen Normalteiler $N\subseteq S\subseteq G$ von G in S.

Aufgabe 3.4.

(i)

(ii)

Sei $S \subseteq G$ eine normale p-Sylowgruppe in G. Sei $T := S \cap H$. Als Untergruppe ist $T \subseteq S$ eine p-Gruppe. Wie aus der Vorlesunge bekannt ist T normal in H. Nach den Sylowsätzen gibt es eine Sylowgruppe $T' \subseteq H$ mit $T \subseteq T'$. Nach Aufgabenteil (i) gibt es daher eine Sylowgruppe $S' \subseteq G$ mit $T' = S' \cap H$. Da S normal ist, ist S, wie aus der Vorlesung bekannt, die einzige p-Sylowgruppe in G. Also muss S = S', und damit T = T'. Also ist T eine normale p-Sylowgruppen H.

(iii)

Sei $S\subseteq H$ eine p-Sylowgruppe; eine solche existiert nach den Sylowsätzen. Nach Aufgabenteil (i) gibt es eine p-Sylowgruppe $T'\subseteq G$ mit $S=T'\cap H$. Da T und T' p-Sylowgruppen in G sind, sind sie konjugiert zueinander, d.h. es gibt ein $g\in G$ mit $T'=g\,Tg^{-1}$. Da H normal in G ist, ist auch $gHg^{-1}=H$. Es ist daher

$$S = T' \cap H = g T g^{-1} \cap g H g^{-1} = g(T \cap H)g^{-1},$$

wobei genutzt wird, dass inn $_g$ als Automorphismus bijektiv ist. Da S und $T\cap H$ konjugiert zueinder sind, und S eine p-Sylowgruppe in H ist, ist auch $T\cap H$ eine p-Sylowgruppe in H.