- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

- Neighbors of a pixel p at coordinates (x,y)
- 4-neighbors of p, denoted by N₄(p): (x-1, y), (x+1, y), (x,y-1), and (x, y+1).
- → 4 diagonal neighbors of p, denoted by N_D(p):
 (x-1, y-1), (x+1, y+1), (x+1,y-1), and (x-1, y+1).
- > 8 neighbors of p, denoted $N_8(p)$ $N_8(p) = N_4(p) \cup N_D(p)$

- Adjacency
 - Let V be the set of intensity values
- → 4-adjacency: Two pixels p and q with values from V are 4adjacent if q is in the set N₄(p).
- ▶ 8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in the set N₈(p).

Example: 4-adjacency

Example: 8-adjacency

- Adjacency
 - Let V be the set of intensity values
- m-adjacency: Two pixels p and q with values from V are m-adjacent if
 - (i) q is in the set $N_4(p)$, or
 - (ii) q is in the set $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are from V.

Example: m-adjacency

Path

A (digital) path (or curve) from pixel p with coordinates (x₀, y₀) to pixel q with coordinates (x_n, y_n) is a sequence of distinct pixels with coordinates

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

where (x_i, y_i) and (x_{i-1}, y_{i-1}) are adjacent for $1 \le i \le n$.

- Here n is the length of the path.
- ightharpoonup If $(x_0, y_0) = (x_n, y_n)$, the path is **closed** path.
- ➤ We can define 4-, 8-, and m-paths based on the type of adjacency used.

Connected in S

Let S represent a subset of pixels in an image. Two pixels p with coordinates (x_0, y_0) and q with coordinates (x_n, y_n) are said to be **connected in S** if there exists a path

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

where
$$\forall i, 0 \le i \le n, (x_i, y_i) \in S$$

Let S represent a subset of pixels in an image

- For every pixel p in S, the set of pixels in S that are connected to p is called a connected component of S.
- If S has only one connected component, then S is called Connected Set.
- We call R a region of the image if R is a connected set
- Two regions, R_i and R_j are said to be adjacent if their union forms a connected set.
- Regions that are not to be adjacent are said to be disjoint.

- Boundary (or border)
- ➤ The **boundary** of the region R is the set of pixels in the region that have one or more neighbors that are not in R.
- ➤ If R happens to be an entire image, then its boundary is defined as the set of pixels in the first and last rows and columns of the image.
- Foreground and background
- An image contains K disjoint regions, R_k , k = 1, 2, ..., K. Let R_u denote the union of all the K regions, and let $(R_u)^c$ denote its complement.
 - All the points in R_u is called **foreground**;
 - All the points in $(R_u)^c$ is called **background**.

 In the following arrangement of pixels, are the two regions (of 1s) adjacent? (if 8-adjacency is used)

 In the following arrangement of pixels, are the two parts (of 1s) adjacent? (if 4-adjacency is used)

 In the following arrangement of pixels, the two regions (of 1s) are disjoint (if 4-adjacency is used)

 In the following arrangement of pixels, the two regions (of 1s) are disjoint (if 4-adjacency is used)

 In the following arrangement of pixels, the circled point is part of the boundary of the 1-valued pixels if 8adjacency is used, true or false?

0	0	0	0	0
0	1	1	0	0
0	1	1	0	0
0	1		1	0
0	1	1	1	0
0	0	0	0	0

 In the following arrangement of pixels, the circled point is part of the boundary of the 1-valued pixels if 4adjacency is used, true or false?

0	0	0	0	0
0	1	1	0	0
0	1	1	0	0
0	1		1	0
0	1	1	1	0
0	0	0	0	0

Distance Measures

 Given pixels p, q and z with coordinates (x, y), (s, t), (u, v) respectively, the distance function D has following properties:

a.
$$D(p, q) \ge 0$$
 $[D(p, q) = 0, iff p = q]$

b.
$$D(p, q) = D(q, p)$$

c.
$$D(p, z) \le D(p, q) + D(q, z)$$

Distance Measures

The following are the different Distance measures:

a. Euclidean Distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

b. City Block Distance:

$$D_4(p, q) = |x-s| + |y-t|$$

c. Chess Board Distance:

$$D_8(p, q) = max(|x-s|, |y-t|)$$

		2		
	2	1	2	
2	1	0	1	2
	2	1	2	
		2		

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2