

134

Towers of Hanoi

Step: 0

Towers of Hanoi (3 line code) /~

Towers of Hanoi

```
printMove(fr, to)
Print('move disk from' + str(fr) + 'to' + str(to));

Towers(n,fr,to,spare)
    if(n==1)
        printMove(fr,to);
else
    Towers(n-1,fr,spare,to);
    Towers(1,fr,to,spare);
    Towers(n-1,spare,to,fr);
```

Advanced Problem Solving (CSE603)

Lecture # 07

Trees

Avinash Sharma

Center for Visual Information Technology (CVIT),
IIIT Hyderabad

Introduction

- The story so far
 - Saw some fundamental operations as well as advanced operations on arrays, stacks, and queues
 - Saw a dynamic data structure, the linked list, and its applications.
- This week we will
 - Study data structures for hierarchical data
 - Operations on such data.
 - Leading to efficient insert/delete/find.

Motivation

- Consider your home directory.
- /home/user is a directory, which can contain sub-directories such as work/, misc/, songs/, and the like.
- Each of these sub-directories can contain further sub-directories such as ds/, maths/, and the like.
- An extended hierarchy is possible, until we reach a file.

Motivation

- In all of the above examples, there is a natural hierarchy of data.
 - In the first example, a (sub)directory can have one or more sub-directories
- Similarly, there are several setting where there is a patural hierarchy among data items.
 - Family trees with parents, ancestors, siblings, cousins,...
 - Hierarchy in an organization with CEO/CTO/Managers/...

The Tree Data Structure

- A tree on n nodes always has n-1 edges.
- Why?
 - One parent for every one, except the root.
- Before going in to how a tree can be represented, let us know more about the tree.

The Tree Data Structure

- Consider the tree shown to the right.
- The node A is the root of the tree.
- It has three subtrees whose roots are
 B, C, and D.
- Node C has one subtree with node E as the root.

The Tree Data Structure (terms)

Depth

Lught

E is 2

Height

Binary Trees

A special class of the general trees.

Restrict each node to have at most two children.

 These two children are called the left and the right child of the node.

- Easy to implement and program.
- Still, several applications.

Binary Trees (implementation)

• Briefly, we also mention how to implement the tree data structure.


```
struct node {
    int data;
    node *left;
    node *right
};
```

Binary Trees

Full Binary tree

Full Binary Tree is a Binary Tree in which every node has 0 or 2 children.

Source: Anand K Parmar @ Medium

Complete Binary Tree

Complete Binary Tree has all levels completely filled with nodes except the last level and in the last level, all the nodes are as left side as possible.

Perfect Binary Tree

Perfect Binary Tree is a Binary Tree in which all internal nodes have 2 children and all the leaf nodes are at the same depth or same level.

Source: Anand K Parmar @ Medium

Balanced Binary Tree

Balanced Binary Tree is a Binary tree in which height of the left and the right sub-trees of every node may differ by at most 1.

Source: Anand K Parmar @ Medium

Degenerate Binary Tree

Degenerate Binary Tree is a Binary Tree where every parent node has only one

child node.

Our First Operation

- To print the nodes in a (binary) tree
- This is also called as a traversal.
- Need a systematic approach
 - ensure that every node is indeed printed
 - and printed only once.
- Several methods possible. Attempt a categorization.
- Consider a tree with a root D and L, R being its left and right sub-trees respectively.

T- left

Tree Traversal Jacob > (Luft > (right) s <up>>(rool) (righ)

- Of these, let us make a convention that R can not precede L in any traversal.
- We are left with three:
 - LRD
 - LDR
 - DLR

Preorder Traversal

Tree Traversal

The Inorder Traversal (LDR)

 The traversal that first completes L, then prints D, and then traverses R.

• To traverse L, use the same order.

First the left subtree of L, then the root of L, and then the right subtree of L.

The Inorder Traversal

- Start from the root node A.
- We first should process the left subtree of A.
- Continuing further, we first should process the node E.
- Then come D and B.
- The L part of the traversal is thus E D B.

The Inorder Traversal

- Then comes the root node A.
- We next process the right subtree of A.
- Continuing further, we first should process the node C.
- Then come G and F.
- The R part of the traversal is thus C G F.

The Inorder Traversal

```
Procedure Inorder(T)

begin

if T == NULL return;

Inorder(T->left);

print(T->data);

Inorder(T->right);

end
```


Inorder: EDBACGF

The Postorder Traversal (LRD)

- The traversal that first completes L, then traverses R, and then prints D.
- To traverse L, use the same order.
 - First the left subtree of L, then the right subtree of R, and then the root of L.

The Postorder Traversal

- We next process the right subtree of A.
- Continuing further, we first should process the node C.
- Then come G and F.
- The R part of the traversal is thus G F C.
- Then comes the root node A.

postorder: EDBGFCA

The Postorder Traversal

```
Procedure postorder(T)
begin

if T == NULL return;
   Postorder(T->left);
   Postorder(T->right);
   print(T->data);
end
```


postorder: EDBGFCA

Another Kind of Traversal

- When left and right subtree nodes can be intermixed.
- One useful traversal in this mode is the level order traversal.
- The idea is to print the nodes in a tree according to their level starting from the root.

Another Kind of Traversal

- •Why would any one want to do that?
- One example:
 - Think of printing the organization chart.
 - Start with the CEO, there are CTO, CFO, and COO, say.
 - Then, five managers under the CTO, 2 managers under the CFO, and so on,
 - Each manager has more Assistant Managers who work with a team.
 - Want to list this in that order.
- There are other such examples too
 - Game trees

Game Tree Example

- Consider the same example tree.
- Starting from the root, so A is printed first.
- What should be printed next?
- Assume that we use the left before right convention.
- So, we have to print B next.
- How to remember that C follows B.
- And then D should follow C?

- Indeed, can remember that B and C are children of A.
- But, have to get back to children of B after C is printed.
- For this, one can use a queue.
 - Queue is a first-in-first-out data structure.

- The idea is to queue-up children of a parent node that is visited recently.
- The node to be visited recently will be the one that is at the front of the queue.
 - That node is ready to be printed.
- How to initialize the queue?
 - The root node is ready!

```
Procedure DepthOrder(T)
begin
    Q = queue;
    insert root into the queue;
    while Q is not empty do
         v = delete();
         print v->data;
         if v->left is not NULL insert v->left into Q;
         if v->right is not NULL insert v->right into Q;
    end-while
end
```

• Queue and output are shown at every stage.

Queue	Output
Α	
ВС	Α
C D	В
D F	С
F E	D
E G	F
G	E
EMPTY	G

Analysis of Traversal Techniques

- For inorder, preorder, and postorder traversal, let the tree have n nodes of which n₁ are in the left subtree and the rest in the right subtree.
- Recurrence relation:

$$T(n) = T(n_1) + T(n-n_1-1) + O(1)$$

- •Can solve by guessing that $T(n) \le cn$ for constant c.
- Verify.

 $T(n) \le cn_1 + c(n-n_1-1) + O(1) \le cn$, provided c is large enough.

Analysis – Depth Order Traversal

- How to analyze this traversal?
- Assume that the tree has n nodes.
- Each node is placed in the queue exactly once.
- The rest of the operations are all O(1) for every node.
- So the total time is O(n).
- This traversal can be seen as forming the basis for a graph traversal.

Application to Expression Evaluation

- We know what expression evaluation is.
- We deal with binary operators.
- An expression tree for a expression with only unary or binary
 operators is a binary tree where the leaf nodes are the operands and
 the internal nodes are the operators.

Example Expression Tree

- See the example to the right.
- The operands are 22, 5, 10, 6, and 3.
- These are also leaf nodes.

Questions wrt Expression Tree

- How to evaluate an expression tree?
 - Meaning, how to apply the operators to the right operands.
- How to build an expression tree?
 - Given an expression, how to build an equival expression tree?

Questions wrt Expression Tree

- Notice that an inorder traversal of the expression tree gives an expression in the infix notation.
 - The above tree is equivalent to the expression $((22 + 5) \times (-10)) + (6/3)$
- What does a postorder and preorder traversal of the tree give?
 - Answer: ??

Why Expression Trees?

- Useful in several settings such as
 - compliers
 - can verify if the expression is well formed.

How to Evaluate using an Expression Tree

- Essentially, have to evaluate the root.
- Notice that to evaluate a node, its left subtree and its right subtree need to be operands.
- For this, may have to evaluate these subtrees first, if they are not operands.
- So, Evaluate(root) should be equivalent to:
 - Evaluate the left subtree
 - Evaluate the right subtree
 - Apply the operator at the root to the operands.

How to Evaluate using an Expression Tree

- This suggests a recursive procedure that has the above three steps.
- Recursion stops at a node if it is already an operand.

How to Evaluate using an Expression Tree

Pending Question

- How to build an expression tree?
- Start with an expression in the infix notation.
- Recall how we converted an infix expression to a postfix expression.
- The idea is that operators have to wait to be sent to the output.
 - A similar approach works now.

- Let us start with a postfix expression.
- The question is how to link up operands as (sub)trees.
- As in the case of evaluating a postfix expression, have to remember operators seen so far.
 - need to see the correct operands.
- A stack helps again.
- But instead of evaluating subexpression, we have to grow them as trees.
 - Details follow.

- When we see an operand :
 - That could be a leaf node...Or a tree with no children.
 - What is its parent?
 - Some operator.
 - In our case, operands can be trees also.
- The above observations suggest that operands should wait on the stack.
 - Wait as trees.

- What about operators?
- Recall that in the postfix notation, the operands for an operator are available in the immediate preceding positions.
- Similar rules apply here too.
- So, pop two operands (trees) from the stack.
- Need not evaluate, but create a bigger (sub)tree.

```
Procedure ExpressionTree(E)
//E is an expression in postfix notation.
begin
     for i=1 to |E| do
          if E[i] is an operand then
                create a tree with the operand as the only node;
                add it to the stack
          else if E[i] is an operator then
                pop two trees from the stack
                create a new tree with E[i] as the root and the two trees popped as its children;
                push the tree to the stack
     end-for
end
```

- Consider the expression $(a+b-f)/(c \times d + e)$
- The postfix of the expression is $ab+f-cd\times e+/$
- Let us follow the above algorithm.

