Extramaterial: Formler och räkneregler · 1MA020

Vilhelm Agdur¹

¹vilhelm.agdur@math.uu.se

13 februari 2023

I detta dokument ligger en samling av viktiga resultat och räkneregler, sammanfattade utan bevis.

Den tolvfaldiga vägen

	Generellt <i>f</i>	Injektivt f	Surjektivt f
Bägge särskiljbara	Ord ur X av längd n x^n	Permutation ur X av längd n $\frac{x!}{(x-n)!}$	Surjektion från N till X $x! \begin{Bmatrix} n \\ x \end{Bmatrix}$
Osärskiljbara objekt	Multi-delmängd av X av storlek n $\binom{n+x-1}{n}$	Delmängd av X av storlek n $\binom{x}{n}$	Kompositioner av n av längd x $\binom{n-1}{n-x}$
Osärskiljbara lådor	Mängdpartition av N i $\leq x$ delar $\sum_{k=1}^{x} {n \brace k}$	Mängdpartition av N $i \le x$ delar av storlek 1 1 om $n \le x$, 0 annars	Mängdpartition av N i x delar $\begin{Bmatrix} n \\ x \end{Bmatrix}$
Bägge osärskiljbara	Heltalspartition av $n \text{ i} \leq x$ delar $p_x(n+x)$	Sätt att skriva n som summan av $\leq x$ ettor 1 om $n \leq x$, 0 annars	Heltalspartitioner av n i x delar $p_x(n)$

Räkneregler för genererande funktioner

Lemma 1 (Räkneregler för genererande funktioner). *Antag att vi har en följd* $\{a_k\}_{k=0}^{\infty}$, med genererande funktion F_a . Då gäller det att

1. För varje $j \geq 1$ är

$$\sum_{k=j}^{\infty} a_k x^k = \left(\sum_{k=0}^{\infty} a_k x^k\right) - \left(\sum_{k=0}^{k=j-1} a_k x^k\right) = F_a(x) - \sum_{k=0}^{k=j-1} a_k x^k$$

2. För alla $m \ge 0$, $l \ge -m$ gäller det att

$$\sum_{k=m}^{\infty} a_k x^{k+l} = x^l \left(\sum_{k=m}^{\infty} a_k x^k \right) = x^l \left(F_a(x) - \sum_{k=0}^{m-1} a_k x^k \right)$$

3. Det gäller att²

$$\sum_{k=0}^{\infty} k a_k x^k = \frac{F_a'(x)}{x}.$$

Vanliga genererande funktioner

(1,0,0,...)

(1,1,1,...)

 $(0!, 1!, 2!, 3!, \ldots)$

Fixt n, $a_k = \frac{n!}{(n-k)!}$

 $^{\rm 2}$ Denna räkneregel kan förstås generealiseras till att högre potenser av kmotsvarar högre derivator – och om vi istället delar med någon potens av k får vi primitiva funktioner till den genererande funktionen.

Följd	Genererande funktion	
(1,0,0,)	1	
(1,1,1,)	$\frac{1}{1-x}$	
$a_k = 1$ om $k \le n$, 0 annars	$\frac{1-x^{n+1}}{1-x}$	
Fixt n , $a_k = \binom{n}{k}$	$(1+x)^n$	
Fixt n , $a_k = \binom{n+k-1}{k}$	$\frac{1}{(1-x)^n}$	
Fibonaccitalen	$\frac{1}{1-r-r^2}$	
$f_0 = f_1 = 1, f_{k+1} = f_k + f_{k-1} \text{ för } k \ge 1$		
Indikatorfunktion för jämna talen	$\frac{1}{1-r^2}$	
(1,0,1,0,1,0,)	$1-x^2$	
Följd Exponentiell genererande funktion		

1

 $(1 + x)^n$