Unidad II: Altavoz en Caja Cerrada Parte 3 Diseño en Caja 100% Rellena

Recinto para Altavoces Prof. Ing. Andrés Barrera A.

1.- Relleno al 100%

EFECTOS: $Rab \neq 0$

1.-Aumentar la compliancia acústica de la caja (Cab)

DISMINUYE LA FRECUENCIA DE RESONANCIA (fc)

EQUIVALENTE A AUMENTAR Vb EN UN 40% (TEÓRICO) Y 15% A 25% (PRÁCTICO)

DISMINUYE EL FACTOR DE PÉRDIDAS DE LA CAJA (Qtc)

2.- Procedimiento de Diseño según W.Marshall Leach (Pueo, 1999)

Fundamentos

• El Qmc de una caja cerrada depende del tamaño de la caja (Vb) y de la presencia de material absorbente.

Qmc	Caja pequeña (Vb < 20L)	Caja mediana (Vb = 20 – 200L)	Caja grande (Vb > 200L)
Caja vacía/revestida	10	7,5	5
Caja 100% rellena	5	3,5	2

- Si se conoce presencia de absorción = Qmc = 3,5 para caja mediana.
- Valor asignado a Qmc **siempre** menor que : $Qmc = Qms\sqrt{1+\alpha}$

2.- Procedimiento de Diseño según W.Marshall Leach (Pueo, 1999)

Procedimiento

Elección del Alineamiento

• Valor de Qtc

Selección del Qmc

- Qmc = 3,5 (Rellena)
- Qmc = 7,5 (Vacía)

Cálculo del Tamaño de Caja

$$Qec = \frac{Qtc \cdot Qmc}{Qmc - Qtc}$$

$$\alpha = \left(\frac{Qec}{Qes}\right)^{2} - 1$$

$$Vab = \frac{Vas}{\alpha}$$

$$Vb = Vab \quad caja \ vacia$$

$$Vb = \frac{Vab}{1,25} \quad 100\% rellena$$

Revisión del supuesto sobre Vb

• Vb debe estar entre 20 y 80L. Caso contrario, seleccionar el Qmc correspondiente.

EJEMPLO: Diseñar caja cerrada 100% rellena.

• Componente: JBL 112A

MODEL	FS	QTS	QMS	QES	VAS	EFF	PE	XMAX	RE	LE	SD	Bl	MMS	FLUX
112A	40	0.21	4	0.22	34.0	0.9	60	2.79	5.8	0.3	0.018	12	22	0.95
116A	28	0.46	5	0.51	73.6	0.3	50	4.83	5.2	0.6	0.018	6.7	25	0.85
122A	17	0.23	7	0.24	339.8	0.67	50	6.86	5.7	1.5	0.053	16	100	1.08
123A	25	0.49	8.5	0.52	235.1	0.68	50	7.87	4.4	0.6	0.049	8.9	85	1

• Alineamiento C2 (Qtc = 0.8)

EJEMPLO: Diseñar caja cerrada 100% rellena.

	VACIA	100% RELLENA
Sensibilidad	90.4 dB(1W,1m)	90.4 dB(1W,1m)
Frecuencia de corte	57Hz	61Hz
Tamaño de caja	26.3L	19.2L
SPLmáx	111.5 dB(Per,1m)	112.5 dB(Per,1m)

Unidad II: Altavoz en Caja Cerrada Parte 3 Diseño en Caja 100% Rellena

Recinto para Altavoces Prof. Ing. Andrés Barrera A.