GS Informatika

Daniel Rod

Jazyk C

Outline

- O jazyku C
- Hardware a principy počítačů
- Sompilace programu v C (podrobněji)
- Jazyk C základy
- **5** Kontrolní struktury, pole
- **6** Ukazatele (pointery)
- Struktury
- 8 Dynamická alokace paměti

Jazyk C

- Low až Medium level jazyk
- Programování systémů (OS, embedded)
- Explicitní práce s pamětí
- ALGOL rodina jazyků

Jazyk C

- Low až Medium level jazyk
- Programování systémů (OS, embedded)
- Explicitní práce s pamětí
- ALGOL rodina jazyků

Kompilace

- Běžné jsou kompilované implementace
- Před spuštěním jej musíme převést do spustitelného souboru
- Velmi starý model kompilace často vyžaduje explicitní deklarace a implementace
- Využití textových souborů pro psaní kódu

Typy souborů

- Hlavičkové soubory běžně obsahují definice, přípona .h
- Zdrojové soubory obsahují implementace, přípona .c
- Hlavičkové soubory nejsou nutností, hodí se ale pro
 - Organizaci Modularitu

 - "Reusability"

4/72

Jazvk C

Typy souborů

- Hlavičkové soubory běžně obsahují definice, přípona .h
- Zdrojové soubory obsahují implementace, přípona .c
- Hlavičkové soubory nejsou nutností, hodí se ale pro
 - Organizaci
 - Modularitu
 - "Reusability"

Definice a implementace

- Definice nám pouze říká co funkce zkonzumuje za datové typy a co nám za datový typ vrátí
- Pro malé programy stačí jen jeden zdrojový soubor, nemusíme nutně separovat implementaci a definice
- Starší kompilery mohou být hloupé definice by měla předcházet použití (to jsme v BSL/ISL neměli!)

4 / 72

nformatika Jazyk C

Definice a implementace

Syntax jazyka

- Jazyk C je procedurální námi požadované operace se postupně provádějí, funkce jsou pak sady požadovaných operací
- Přiřazení hodnoty do proměnné je také operace!
- Validní identifikátory jsou omezenější oproti LISP/SCHEME dialektům
- Každá instrukce končí středníkem;
- Kód je dělen na bloky instrukcí

Syntax jazyka

- Jazyk C je procedurální námi požadované operace se postupně provádějí, funkce jsou pak sady požadovaných operací
- Přiřazení hodnoty do proměnné je také operace!
- Validní identifikátory jsou omezenější oproti LISP/SCHEME dialektům
- Každá instrukce končí středníkem;
- Kód je dělen na bloky instrukcí

Program

- Každá program musí mít alespoň jednu funkci main()
- Při spuštění programu se provádí operace z funkce main()

Jazvk C

Jednoduchý program v C

První program

 Jednoduchý program který po spuštění vypíše Program v jazyce C, odřádkuje a ukončí se

ormatika Jazyk C

Jednoduchý program v C

První program

 Jednoduchý program který po spuštění vypíše Program v jazyce C, odřádkuje a ukončí se

```
#include <stdio.h>

int main()
{
    printf("Program v jazyce C!\n");

return 0;
}
```

Jednoduchý program v C

První program

 Jednoduchý program který po spuštění vypíše Program v jazyce C, odřádkuje a ukončí se

```
#include <stdio.h>
int main()
{
    printf("Program v jazyce C!\n");
    return 0;
}
```

Kompilace

Zdrojový soubor je nejprve zkompilován do tzv. objektového souboru (s příponou .o), kde se nachází relativní adresy na proměnné, volání funkcí a reference na funkce bez známé implementace

Kompilace

Od zdrojového souboru ke spustitelnému

• Zdrojový soubor *program01.c* je zkompilován pomocí kompilátoru (např. clang nebo gcc)

gcc program01.c

To vytvoří nejprve objektový soubor, který následně převede na spustitelný soubor. Běžně nelze očekávat, že spustitelný soubor zkompilovaný na jednom počítači bude fungovat na jiném!

Paměť a procesor

Zjednodušené schéma - Harvardská architektura

(ALU se dá brát jako součást Control Unit spolu s registry a countery)

Paměť

Paměťový adresový prostor

- Data v paměti mají určitou lokaci adresu
- Pokud používáme větší paměť (Instruction + Data), je třeba dostatečně velký adresový prostor
- Pro adresy o velikosti 32 bitů máme 4GB paměti které můžeme adresovat (x86)
- 64bitové procesory používají datové jednotky co mají až 64 bitů máme "k dispozici" adresy přesahující velikosti dnešních RAM

Paměť

Paměťový adresový prostor

- Data v paměti mají určitou lokaci adresu
- Pokud používáme větší paměť (Instruction + Data), je třeba dostatečně velký adresový prostor
- Pro adresy o velikosti 32 bitů máme 4GB paměti které můžeme adresovat (x86)
- 64bitové procesory používají datové jednotky co mají až 64 bitů máme "k dispozici" adresy přesahující velikosti dnešních RAM

RAM

- Random access memory přistupujeme k libovolné hodnotě stejně rychle jako ke každé jiné (přibližně!)
- Bývá volatile po vypnutí ztratí data

atika

Typy RAM

SRAM

- Static RAM
- Malá kapacita dat
- Rychlé zejména sekvenční přístupy

Typy RAM

SRAM

- Static RAM
- Malá kapacita dat
- Rychlé zejména sekvenční přístupy

DRAM

- Dynamic RAM
- Levnější a větší (řádově GB)
- Pomalejší

Slovo (WORD) a instrukce

WORD - jednotka velikosti

- Udává "jednotku přenosu" dat
- n-bitové zařízené slovo má velikost n bitů
- Instrukce pracují s daty o velikosti slov
- Historicky ve starém kódu se můžeme setkat s DWORD 32b
- V x86 má například WORD 32b a adress space je 32b

12 / 72

ormatika Jazyk C

Slovo (WORD) a instrukce

WORD - jednotka velikosti

- Udává "jednotku přenosu" dat
- n-bitové zařízené slovo má velikost n bitů
- Instrukce pracují s daty o velikosti slov
- Historicky ve starém kódu se můžeme setkat s DWORD 32b
- V x86 má například WORD 32b a adress space je 32b

Instrukce

- Posloupnost n bytů
- Instrukční sada které instrukce umí procesor (např. základní známe x86 instrukce)
- Strojový kód posloupnost instrukcí
- Instruction Pointer pozice momentálně vykonávané instrukce (pokud je vícebytová typicky ukazuje na první byte)
- Zpravidla má stejnou velikost jako bloky code memory
- Opcode typ instrukce, následují jej argumenty (adresy)

nformatika Jazyk C 12 / 72

Příznakový registr CPU

Vlajky(flags)

- flag je 1 bit informace (Ano / Ne)
- Příznakový registr pomocí flags uchovává informace o probíhajících výpočtech
- Ne všechny instrukce se dokončí v jednom cyklu
- Sčítání zabere 1-2 cykly (2 v případě velkých čísel, používá se carry flag přenos z výsledku v předchozím cyklu a sign flag - jestli vyšel předchozí cyklus záporně)
- Násobení 32 bit čísel 10 cyklů + carry flag + sign flag
- Násobení 64 bit čísel 20 cyklů + carry flag + sign flag
- Dělení 32 bit čísel 70 cyklů!

atika

Assembler

Instrukce čitelně

- Instrukce jsou posloupnost bytů (reprezentujeme dvojice jako HEX cifry) špatně se čtou
- Assembler přiřazuje opcodes jména

```
#include <stdio.h>
                                                                A ▼ Output... ▼ Filter... ▼ Elibraries + Add new... ▼ Add tool... ▼
                                                                          printf@plt-0x10:
int attribute ((noinline)) add(int x1, int x2)
                                                                          ff 35 e2 2f 00 00
                                                                          push 0x2fe2(%rip)
                                                                                                     # 404008 < GLOBAL OFFSET TABLE +0x8>
   return x1 + x2;
                                                                           ff 25 e4 2f 00 00
                                                                                 *0x2fe4(%rip)
                                                                                                      # 404010 < GLOBAL OFFSET TABLE +0x10>
                                                                           0f 1f 40 00
int main(int argc, char **argv)
                                                                 40102c
                                                                          nopl
                                                                                0x0(%rax)
                                                                          add:
   int c = add(1, 2);
                                                                          8d 84 37
                                                                 401126
                                                                                 (%rdi,%rsi,1),%eax
    printf("%d\n", c);
                                                                 401129
                                                                          ret
                                                                          main:
                                                                          48 83 ec 88
                                                                 401125
                                                                          sub $0x8,%rsp
                                                                 40112e
                                                                          mov $0x2,%esi
                                                                401133
                                                                          mov $0x1,%edi
                                                                 401138
                                                                          call 401126 <add>
                                                                 40113d
                                                                           mov %eax.%esi
                                                                          mov $8x482884,%edi
                                                                 40113f
                                                                 401144
                                                                          mov $0x0,%ear
                                                                          call 401030 (printf@plt)
                                                                 40114e
                                                                          mov $0x0,%eax
                                                                                $0x8,%rsp
                                                                 401153
                                                                          add
                                                                 401157
                                                                           0f 1f 84 00 00 00 00 00
                                                                 401158
                                                                          nop1 0x0(%rax,%rax,1)
```

Kompiler - součásti

Preprocessor

- Překlad maker příkazy s prefixem #
- Vlastní makra nahrazování "textu za text"
- Makra mohou mít argumenty

15 / 72

atika Jazyk C

Kompiler - součásti

Preprocessor

- Překlad maker příkazy s prefixem #
- Vlastní makra nahrazování "textu za text"
- Makra mohou mít argumenty

Kompilátor

- V několika "passech" projede jednotlivé zdrojové soubory a vytvoří objektové soubory.
- Překládá námi napsané příkazy na instrukce
- Pracuje se soubory separátně proto potřebujeme hlavičkové soubory! Soubour prg1.c neví nic o implementaci funkce z prg2.c, jen víme že je deklarovaná v prg2.c

15 / 72

atika Jazyk C

Kompiler - součásti

Preprocessor

- Překlad maker příkazy s prefixem #
- Vlastní makra nahrazování "textu za text"
- Makra mohou mít argumenty

Kompilátor

- V několika "passech" projede jednotlivé zdrojové soubory a vytvoří objektové soubory.
- Překládá námi napsané příkazy na instrukce
- Pracuje se soubory separátně proto potřebujeme hlavičkové soubory! Soubour prg1.c neví nic o implementaci funkce z prg2.c, jen víme že je deklarovaná v prg2.c

Linker

- Propojí jednotlivé objektové soubory pokud volám z prg1.c funkci v prg2.c, až po projetí linkerem bude toto volání "funkční"
- Zajistí přiřazení objektových souborů referencovaných knihoven (BSL/ISL require)

Základní datové typy

Číselné datové typy

- Ze začátku budeme pracovat zejména s čísly
- C je striktně typovaný každá proměnná musí mít deklarovaný typ
- signed / unsigned typy určuje jestli mají "znaménko", signed je default
- Velikost v paměti závisí na implementaci! Zjistíme pomocí sizeof(T)

Celá čísla

- short
- int
- long
- long long

Desetinná čísla

- float
- double
- long double

Informatika Jazyk C

Základní datové typy

Dodatek - char

• Char je nejmenší číselný typ, běžně se ale používá pro **ukládání textu** (jako 1-String)

Speciální typy

- size_t unsigned typ běžně používaný pro "velikost" hodnoty mají max velikost odpovídající maximální velikosti "objektů"
- intptr_t (#include <stdint.h>) unsigned typ do kterého lze uložit validní pointery, používá se při pointer aritmetice (bude nás zajmat až později)

ormatika Jazyk C 17 / 72

Ukázka C programu

```
# #include <stdio.h> /* odkaz na hlavickovy soubor */
2 #define NUMBER 5 /* symbolicka konstanta - makro */
4 int compute(int a); /* deklarace funkce (hlavicka/prototyp) */
5 /* Funkce bere jeden argument typu "int" a vraci hodnotu typu "int" */
7 int main(int argc, char *argv[])
8 { /* main funkce */
     int v = 10; /* deklarace promenne */
     int r:
.0
    r = compute(v); /* volani funkce */
1
     return 0: /* konec main funkce - vraci hodnotu 0 */
2
int compute(int a)
6 { /* implementace deklarovane funkce (definice) */
      int b = 10 + a; /* telo funkce (body) */
7
     return b; /* funkce vraci hodnotu 'b' */
8
9 }
```

Deklarace

- Deklarace obsahuje jen hlavičku funkce jméno funkce, jaké parametry (a jakého typu) funkce má a jaký typ proměnné vrací
- Deklarace nejsou povinné, je ale vhodné funkce deklarovat před použitím (při čtení kódu "od shora")

```
float probability(int num_dice, int min_number_count);
```

19 / 72

tika Jazyk C

Deklarace

- Deklarace obsahuje jen hlavičku funkce jméno funkce, jaké parametry (a jakého typu) funkce má a jaký typ proměnné vrací
- Deklarace nejsou povinné, je ale vhodné funkce deklarovat před použitím (při čtení kódu "od shora")

```
1 float probability(int num_dice, int min_number_count);
```

Definice

- Zavádí implementaci funkce říká, jak funkce procedurálně postupuje a jak dosáhne výsledku který může vrátit
- Uvnitř funkce máme implicitně local prostředí můžeme zavádět proměnné, které budou "existovat" jen v rámci běhu funkce
- Nelze mít "funkci ve funkci"

```
float probability(int num_dice, int min_number_count)
{
    float one_dice_prob = 1.0 / 6.0; /* Zavedeni promenne one_dice_prob typu
    float */

float prob = one_dice_prob * min_number_count; /* Zavedeni promenne prob
    */
    return prob; /* Vraceni hodnoty ulozene v promenne prob */

6 }
```

Intormatika

```
float probability(int num_dice, int min_number_count)
{
    float one_dice_prob = 1.0 / 6.0; /* Zavedeni promenne one_dice_prob typu
    float */
    float prob = one_dice_prob * min_number_count; /* Zavedeni promenne prob
    */
    return prob; /* Vraceni hodnoty ulozene v promenne prob */
6 }
```

Funkce co nic nevrací

- V některých případech chceme, aby funkce nic nevracela
- Návratový "typ" void funkce nevrací žádnou hodnotu (void znamená "žádný typ")
- Např. při vypisování

```
void print_probability(int num_dice, int min_number_count)
{
    /* Zavedeni promenne prob typu float a ulozeni hodnoty kterou vraci fce
    probability */
    float prob = probability(num_dice, min_number_count);
    printf("\nPravdepodobnost je: %f\n", prob); /* Vypsani hodnoty ulozene v
    promenne prob */
    /* Nevracime nic! */
}
```

nformatika Jazyk C 20 / 72

Celý program

DEMO

Proměnné

Deklarace

- Proměnné můžeme nejprve deklarovat, kompiler pak ví že má vyhradit místo v paměti pro tuto proměnnou
- Deklarovaná proměnná má tedy adresu, ale nemá "explicitní" hodnotu.

Proměnné

Přiřazení (assignment) a mutace / reassignment

- Deklarované proměnné můžeme přiřadit hodnotu (nebo provést zároveň deklaraci a přiřazení)
- Do paměti vyhrazené pro proměnnou se uloží data
- Proměnná je v C tzv. l-value -> má pevně stanovenou adresu!
- Data na této adrese můžeme upravit -> měníme hodnotu proměnné!

```
#include <stdio.h>
int main()
{
    int integer1; /* Deklarace */
    integer1 = 5; /* Inicializace (prirazeni) */
    int integer2 = 10; /* Deklarace a inicializace */
    int integer3, integer4 = 20; /* Deklarace a inicializace */
    integer2 = 400; /* Reassignment */

integer3 = integer1 + integer2 + integer3 + integer4; /* Reassignment */
    return 0;
}
```

I-values a r-values

I-value

- Výraz který se po vyhodnocení odkazuje na paměť
- Může být na levé i pravé straně přiřazovacího operátoru =

r-value

- Výraz který se neodkazuje na žádnou adresu
- Jen na pravé straně přiřazovacího operátoru =
- Např. konstanta

Komentáře v kódu

Komentáře

- Hlavička funkce obsahuje informace o typech
- Stále je vhodné popsat co funkce dělá, případně jak
- Řádkové komentáře pomocí //
- Komentáře pomocí /* */

Cvičení

Funkce a proměnné

Cílem je spočítat počet zrnek kávy na šachovnici podle následujícího vzoru: Na prvním čtverci je 1 zrnko, na druhém 2, na každém dalším pak dvojnásobek.

- Deklarujt proměnnou square_count typu int v globálním scope.
- ② Deklarujte funkci square_grains s návratovým typem int a jedním argumentem square_number typu int, funkci zatím neimplementujte.
- Deklarujte funkci *total_grains* s návratovým typem *int* a jedním argumentem *total_squares* typu *int*, funkci zatím neimplementujte.
- Implementujte funkci main, která spočítá počet zrnek na šachovnici s počtem polí square_count a výpíše tento počet. Funkce main následně vrátí hodnotu "success" číslo 0. (Hint: pro vypsání použíjte funkci printf("%d\n", ...); z knihovny stdio)

Náš program zatím nejde zkompilovat, ale je korektní - implementace funkcí by totiž mohla klidně být v jiném zdrojovém souboru - chybu dostaneme až při kompilaci, kdy implementaci neposkytneme! Pojďme trochu prozkoumat naše data

- Kolik polí má typická šachovnice? Upravte podle této znalosti typy proměnných a argumentů funkcí. (Hint: int je pro naše účely zbytečně "velký")
- 2 Nalezněte v kódu alespoň jednu l-value a dvě r-value.

formatika

Poznámka - extern

Viditelnost a klíčové slovo extern

Když deklarujeme funkci (jako třeba v předchozím cvičení), C automaticky přidává klíčové slovo *extern*, které kompileru říká, že může implementaci najít jinde. Až linker nás zastaví a vyhodí chybu pokud takto deklarovanou funkci nenajde v žádných knihovnách použitých při kompilaci.

Modifikátor extern lze použít i na proměnné, tomu se ale zatím věnovat nebudeme.

27 / 72

tika Jazyk C

Rozhodování - if

3

8

• Při běhu programu je třeba rozhodovat o hodnotách a podle toho vyhodnocovat různé větve logiky. K tomu může sloužit klíčové slovo if.

```
int main() {
     int my_value = 5;
      if (my_value == 5) {
          printf("my_value is 5\n");
6
        (my_value != 7) {
          printf("my_value is not 7\n");
      if (mv value > 4) {
          printf("my_value is greater than 4\n");
      return 0;
6 }
```

Rozhodněte

Co bude na výstupu tohoto kódu?

Rozhodování - else

4 5

8

0

Kód se často větví na dvě možnosti, pak můžeme použít "if-else" přístup

```
int main()
     int my_value;
      scanf("%d", &my_value); // Nacteni hodnoty ze stdin
     if (my_value == 5) {
6
          printf("my_value is 5\n");
     else {
          printf("my_value is not 5\n");
```

Early return

- Pokud je to ale možné, je vhodnější tzv. early return přístup
- Rozhodování je separováno do samostatné funkce, nepoužíváme else ale při splnění podmínky rovnou vracíme
- Kód je pak více "lineární pro oči"

```
int main()
{
    int my_value;
    scanf("%d", &my_value); // Nacteni hodnoty ze stdin

if (my_value == 5) {
    printf("my_value is 5\n");
    return 0;
}

printf("my_value is not 5\n");
return 0;
}
```

Rozhodování - else if

1

5

6 7 8

- Pokud potřebujeme rozlišit mezi několika možnostmi které se vylučují, lze použít else if strukturu
- Opět většinou lze nahradit early returnem

```
if (mv value == 5) {
    printf("my_value is 5\n");
else if (my_value == 7) {
    printf("my_value is 7\n");
else if (my_value == 9) {
    printf("my_value is 9\n");
else {
    printf("my_value is not 5, 7 or 9\n");
```

Rozhodování - switch

3

4 5

6

8

9

- Pokud rozhodování zakládáme na nějáké hodnotě integer nebo char hodnoty, je možné použít switch statement
- Často se přeloží do ASM jinak než if-else if-else bloky (jumptables efektivnější)

```
1 int main()
2 {
      int my_value;
      scanf("%d", &my_value); // Nacteni hodnoty ze stdin
      switch (my_value)
      case 5:
          printf("my_value is 5\n");
          break:
      case 6:
      case 7:
          printf("my_value is 6 or 7\n");
          break:
      default:
          printf("my_value is not 5, 6 or 7\n");
          break:
      return 0;
20 }
```

Smyčky (loops)

• Pro potřeby opakování nějákého algoritmu používáme smyčky for a while

33 / 72

atika Jazyk C

```
1 #include <stdio.h>
3 int main()
      size t count:
5
      scanf("%d", &count); // Nacteni hodnoty ze stdin
6
7
      // Pocatecni hodnota i; podminka cyklu; zmena promenne i po kazde iteraci
      for (size_t i = 0; i < count; i++) {</pre>
          printf("%d\n", i);
.0
      // Pouze podminka cyklu
      while (count > 0) {
          printf("%d\n", count);
          count = count - 1;
.6
8 }
```

Procvičování - pokračování

Funkce a proměnné

Implementujte funkce z předchozího cvičení (square_grains a total_grains).

- Určete jak musí jednotlivé funkce "postupovat"
- 2 Pomocí kontrolní struktur proveď te implementaci těchto postupů a otestujte
- Výpočet lze zjednodušit použitím správných matematických funkcí. O jaké funkce se jedná? Nalezněte je v C/C++ referenci

35 / 72

atika Jazyk

1

Více dat v jedné proměnné

- Stejně jako v BSL/ISL, běžně potřebujeme pracovat s proměnnou s více hodnotami za sebou - s listem, v C máme pole
- V poli jsou hodnoty pouze jednoho typu, označíme jej pomocí [] za názvem proměnné
- Hodnoty jsou v paměti uloženy přímo za sebe
- Pozor na předávání do funkce! Předává se jako tzv. pointer (ukážeme si dále)! Musíme předat velikost pole jako parametr

```
1 #include <stdio.h>
2 int main()
3 {
      #define SIZE 5
      int x[SIZE]; // Deklarace pole se SIZE prvky
      int y[] = { 3, 9, 27, 81, 243 }; // Deklarace pole s inicializaci
      int z[5] = {1, 2}; // Deklarace pole s castecnou inicializaci
     for (size_t index = 0; index < SIZE; index++) {</pre>
          x[index] = y[index] * 2; // Prirazeni do pole a pristup k prvku pole
```

```
#include <stdlib.h>
int sum(int arr[], size_t array_size)

{
   int sum = 0;
   for (size_t i = 0; i < array_size; i++) {
       sum += arr[i];
   }
   return sum;
}</pre>
```

```
#include <stdio.h>
                                                                          <source>: In function 'fn':
2 void fn(int arr[])
                                                                           <source>:4:43: warning: 'sizeof' on array function parameter 'arr' will return size of 'int *' [-Wsizeof-array-argument]
                                                                                      printf("Inside function: %d\n", sizeof(arr));
        printf("Inside function: %d\n", sizeof(arr));
                                                                          <source>:2:13: note: declared here
                                                                               2 | void fn(int arr[])
7 vint main() {
         int a[] = {1, 2, 3, 4, 5};
                                                                          ASM generation compiler returned: 0
         printf("Outside function: %d\n", sizeof(a));
                                                                           <source>: In function 'fn':
                                                                           <source>:4:43: warning: 'sizeof' on array function parameter 'arr' will return size of 'int *' [-Wsizeof-array-argument]
11
                                                                              4 | printf("Inside function: %d\n", sizeof(arr));
                                                                           <source>:2:13: note: declared here
                                                                              2 | void fn(int arr[])
                                                                          Execution build compiler returned: 0
                                                                          Program returned: 0
                                                                              Outside function: 20
                                                                              Inside function: 8
```

Ukazatele (pointery)

Pointer

- l-values mají místo v paměti
- Pomocí operátoru & lze obdržet adresu proměnné
- Tento operátor lze použít jen na l-values!

```
int x = 0;
short y = 0;

int* a = &x; // a je ukazatel na x

short* b = &y; // b je ukazatel na y

int* c = &12; // chyba - nelze adresovat r-value
```

Dereference

- Pointer je efektivně proměnná ukazující na oblast adresového prostoru
- Typ pointeru nám pak udává na "jak velkou oblast" ukazujeme
- Využíváme při interpretaci hodnoty na adrese
- Hodnotu uloženou na adrese dostaneme pomocí dereference pointeru

```
#include <stdio.h>
int main()

{
  int x = 10;
  int* px = 8x; // px je pointer na adresu promënné x
  printf("Adresa: %x\n", px); // v px je uložená adresa
  printf("Hodonota: %d\n", (*px)); // dereference px
  // dereferencí dostáváme hodnotu na adrese pointeru
}
```

ASM generation compiler returned: 0
Execution build compiler returned: 0
Program returned: 0
Adresa: 60b40394
Hodonota: 10

Intermezzo: Type casting

Změna typu

- V některých případech potřebujeme změnit interpretaci (typ) hodnoty uložené v paměti
- Např. dostaneme z nějáké funkce integer a víme že nepřekročí číslo 255, chceme ho tedy převést do charu char
- Dělení čísel

```
int extern foreign_fn(int, int);
int main() {
  int result = foreign_fn(1, 2);
  char c = (char) result;
  return 0;
6 }
```

```
#include <stdio.h>
                                                                      Misser
     int main()
         int a = 21;
         int b = 8;
6
         float f1 = a / b:
         float f2 = (float) a / (float) b;
8
         float f3 = (float) a / b;
         printf("Bez castu: %f\n", f1);
9
         printf("5 castem obou: %f\n", f2);
10
         printf("S castem jednoho: %f\n", f3);
11
```

```
ASM generation compiler returned: 0
Execution build compiler returned: 0
Program returned: 0
Bez castu: 2.000000
S castem obou: 2.625000
S castem jednoho: 2.625000
```

Intermezzo: Type casting

Cast pointeru

- Můžeme změnit i typ pointeru
- Např. při castu z int na char říkáme, že při dereferenci máme s obsahem paměti na dané adrese nakládat jako s charem

```
ASM generation compiler returned: 0
     #include <stdio.h>
                                                                      A Property
     int main()
                                                                                   Execution build compiler returned: 0
                                                                                   Program returned: 0
         int x = 9999999999;
                                                                                     Adresa: d63814cc
         int* px = &x; // px je pointer na adresu proměnné x
                                                                                     Hodonota: 999999999
         unsigned short* px cast = (unsigned short*) px:
                                                                                     Hodnota short: 51711
         printf("Adresa: %x\n", px); // v px je uložená adresa
         printf("Hodonota: %d\n", *px); // dereference px
         printf("Hodnota short: %d\n", *px cast);
9
         // dereferencí dostáváme hodnotu na adrese pointeru
10
```

41 / 72

tika Jazyk C

Intermezzo: Type casting

Implicitní typecast

- Předchozí ukázky byly explicitní type cast
- Často není třeba implicitní typecast při rozšiřování

```
int extern foreign_fn(int, int);
int main() {
    short a = 21;
    short b = 25;
    int c = foreign_fn(a, b); // a, b implicitne pretypovano na int
}
```

Volání funkcí - pass by value

- Při předávání parametru funkci dochází k předání pomocí "pass by value"
- Předáváme hodnotu jako r-value (v lokálním scope funkce vytváříme kopii dat které do ní přichází jako parametry)

```
ASM generation compiler returned: 0
     #include <stdio.h>
                                                Die.
                                                          Execution build compiler returned: 0
     void not modified(int a) {
         a = 0:
                                                          Program returned: 0
                                                             a: 1
     int main() {
         int a = 1;
         not modified(a);
 9
         printf("a: %d\n", a);
10
         return 0;
11
```

Volání funkcí - pass by value

- Při předávání parametru funkci dochází k předání pomocí "pass by value"
- Předáváme hodnotu jako r-value (v lokálním scope funkce vytváříme kopii dat které do ní přichází jako parametry)

```
#include <stdio.h>
void not_modified(int a) {
    a = 0;
}

int main() {
    int a = 1;
    not_modified(a);
    printf("a: %d\n", a);
    return 0;
}
ASM generation compiler returned: 0

Execution build compiler returned: 0

a: 1

Asm generation compiler returned: 0

Execution build compiler returned: 0

a: 1

Asm generation compiler returned: 0

Execution build compiler returned: 0

Program returned: 0

a: 1

Asm generation compiler returned: 0

Execution build compiler returned: 0

Program returned: 0

a: 1

Asm generation compiler returned: 0

Execution build compiler returned: 0

Figure 1

Figure 2

Figure 3

Figure 3

Figure 3

Figure 3

Figure 3

Figure 4

Fig
```

Modifikace z funkce

• Jak vyřešit když potřebujeme modifikovat vnější data uvnitř funkce?

nformatika

Modifikace z funkce

- Funkcionální přístup všechny funkce budou pure (problém při velkém objemu dat)
- Globální scope modifikované proměnné budou žít v globálním scope (problém s nepřehledností kódu, modifikovatelný globální stav ve větších programech přináší problémy)
- Využijeme pointery!

44 / 72

ika Jazyk C

Modifikace z funkce

- Funkcionální přístup všechny funkce budou *pure* (problém při velkém objemu dat)
- Globální scope modifikované proměnné budou žít v globálním scope (problém s nepřehledností kódu, modifikovatelný globální stav ve větších programech přináší problémy)
- Využijeme pointery!

Přiřazení dereferencovanému pointeru

• Dereference pointeru může být i na levé straně přiřazení!

```
#include <stdio.h>
    int main() {
    int x = 12;
    int *px = &x; // px je pointer na x
    *px = 42; // přiřazení dereferenci
    printf("x: %d\n", x);
}
ASM generation compiler returned: 0
Execution build compiler returned: 0
Program returned: 0
    x: 42

    x: 42
```

Informatika

Modifikace z funkce

- Místo hodnoty bude argumentem funkce pointer na danou hodnotu
- Hodnotu dostaneme dereferenci
- Hodnotu upravíme přiřazením dereferenci

```
#include <stdio.h>
3 void swap(int *a, int *b) {
      int tmp = *a; // dereference do nove promenne (copy)
      *a = *b; // prirazeni hodnoty na lokaci b do lokace a
      *b = tmp; // prirazeni hodnoty tmp do lokace b
6
7 }
9 int main() {
     int x = 10:
     int y = 20;
      swap(&x, &y); // do funkce posilame pointery (adresy)
      printf("%d\n", x); // 20
      printf("%d\n", y); // 10
```

Konstanta

- Konstanta je hodnota která se za běhu programu nikdy nezmění
- Deklarujeme pomocí klíčového slova const

```
int main() {
   const int x = 5;
     x = 6; // error - lvalue neni 'modifiable'
    return 0;
```

Konstanta

- Konstanta je hodnota která se za běhu programu nikdy nezmění
- Deklarujeme pomocí klíčového slova const

```
int main() {
   const int x = 5;
   x = 6; // error - lvalue neni 'modifiable'
   return 0;
}
```

Pointer na const

- Musíme deklarovat že je pointer na konstantu!
- Jinak může dojít k přepsání konstanty (!)

```
int main() {
    const int x = 5;
    int * px_mod = &x;
    const int * px_const = &x;
    *px_mod = 7; // bez erroru!
    *px_const = 9; // error
}
```

Pointer na const

- const int * identifier deklaruje pointer na konstantní část paměti
- Lze použít i pro "zakázání" mutability uvnitř funkce!

Konstantní pointer

- Pointer je také proměnná, která se může reassignovat!
- Můžeme deklarovat konstantní pointer klíčové slovo const až za "*"
- const int * čteme jako "pointer na konstantní int"
- int * const čteme jako "konstantní pointer na int"
- Vše před hvězdičkou udává na jaký typ ukazujeme

```
int main() {
      int x[2] = \{10, 20\};
2
      int *x_ptr = x; // cast z array do pointeru (vysvetleno dale)
      printf("%i\n", *x_ptr); // 10
      x_ptr += 1; // modifikace lokace
5
      // (ne hodnoty na lokaci! neni dereference!)
6
      printf("%i\n", *x_ptr); // 20;
7
      int * const x_cptr = x;
8
      x_cptr += 1; //error
9
0 }
```

Pole jako ukazatel

Pointer vs array

- Pointer je ukazatel na lokaci v paměti + informaci o datech uložených
- Těchto dat ale může být několik za sebou!
- Array je technicky ukazatel na první prvek v paměti (+ informace o celkové velikosti - sizeof)
- Array je const hodnotu ukazatele nelze měnit (nelze "pohnout" s adresou)
- Array v hlavičce funkce je ale jen pointer, array také můžeme přiřazením převést na pointer

49 / 72

tika Jazyk C

Inkrementace a dekrementace pointerů

- Nekonstantní pointer může měnit hodnotu
- Přičtením/odečtením měníme adresu na kterou ukazujeme
- Posouváme se v paměti o délku typu na který pointer ukazuje

50 / 72

atika .

Increment int pointer

Increment long pointer

```
1 #include<stdio.h>
2 int main() {
3    long x[2] = {10, 20};
4    long *x_ptr = x;
5    printf("%p\n", x_ptr);
6    x_ptr += 1;
7    printf("%p\n", x_ptr);
8 }

ASM generation compiler returned: 0
Execution build compiler returned: 0
Program returned: 0
8    ex7fff76c41d00
```

51 / 72

tika Jazyk C

Increment int pointer

```
1 #include<stdio.h>
2 int main() {
3    int x[2] = {10, 20};
4    int *x.ptr = x;
5    printf("%p\n", x_ptr);
6    x_ptr += 1;
7    printf("%p\n", x_ptr);
8 }

ASM generation compiler returned: 0
Execution build compiler returned: 0

expr returne
```

Increment long pointer

```
1 #include<stdio.h>
2 int main() {
3 long x[2] = {10, 20};
4 long *x.ptr = x;
5 printf("%p\n", x.ptr);
6 x_ptr += 1;
7 printf("%p\n", x_ptr);
8 }

ASM generation compiler returned: 0
Execution build compiler returned: 0
Program returned: 0
0 0x7fff76c4id00
0x7fff76c4id00
0x7fff76c4id00
```

Adresa se změnila vždy o délku (sizeof) typu!

Informatika

Intermezzo: Post/Pre increment/decrement

Pre-increment/decrement

- Provede úpravu dat v paměti (přičtení/odečtení 1)
- Poté vrátí již upravenou hodnotu
- ++identifier / --identifier

Post-increment/decrement

- Nejprve se vyhodnotí jako momentální hodnota v paměti
- Poté se provede úprava dat v paměti (přištení/odečtení 1)
- (identifier++) / identifier--

```
#include <stdio.h>
int main() {
    int i = 0;
    while(++i < 3)
        printf("%i", i); //12
    i = 0;
    printf("\n");
    while(i++ < 3)
        printf("%i", i); // 123
}</pre>
```

6

Porovnávání pointerů

 Pointery můžeme také porovnávat - má smysl při práci s jednou oblastí paměti (bounds checking)

```
1 #include <stdio.h>
2 // Promenne urcujici ktere vypocty provest
3 short cmp1 = 1, cmp2 = 1, cmp3 = 1;
5 int compute1() {return 1;}
6 int compute2() {return 2;}
7 int compute3() {return 3;}
9 int main() {
     long results [3];
     long* head = results;
     if (cmp1) *head++ = compute1();
     if (cmp2) *head++ = compute2();
     if (cmp3) *head++ = compute3();
     // Ukazuje na zacatek array
     long* tail = results;
      while(tail < head) {
          printf("%ld\n", *tail);
          tail++:
1 }
```

Textová data

C String

- Pro textová data se v C používá primárně char typ
- char obsahuje jeden znak (ASCII) "něco jako 1-String"
- Textový řetězec je reprezentován typem char array, resp. char *
- Jak program pozná kde string končí? Musíme předávat parametr o délce?

Informatika

Textová data

C String

- Pro textová data se v C používá primárně char typ
- char obsahuje jeden znak (ASCII) "něco jako 1-String"
- Textový řetězec je reprezentován typem char array, resp. char *
- Jak program pozná kde string končí? Musíme předávat parametr o délce?
- Každý C String je ukončen speciálním znakem s ASCII hodnotou 0.
- Null-terminated byte string
- Když má tedy C string 6 znaků, v paměti je vyhrazena oblast o 1 větší!

```
char letter = 'A'; // pismeno (1-String, ASCII)
char *firstname = "Jan"; // C string jako pointer
char surname[] = "Novak"; // C string jako array
```

Textová data

Dec	Н	Oct	Chai	,	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Cl	hr
0				(null)	32	20	040	a#32;	Space				۵#64;					a#96;	*
1				(start of heading)	33	21	041	a#33;	1	65	41	101	A	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	a#34;	**	66	42	102	a#66;	В	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	6#35;	#	67	43	103	a#67;	С					C
4	4	004	E0T	(end of transmission)	36	24	044	\$	ş	68	44	104	D	D	100	64	144	d	d
5	5	005	ENQ	(enquiry)	37			6#37;					6#69;					e	
6	6	006	ACK	(acknowledge)	38			6#38;					6#70;					f	
7	7	007	BEL	(bell)	39	27	047	6#39;	1				@#71;					g	
8		010		(backspace)				&# 4 0;					H					h	
9		011		(horizontal tab))					6#73;					i	
10	A	012	LF	(NL line feed, new line)				&#42;</td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td></td><td>j</td><td></td></tr><tr><td>11</td><td>В</td><td>013</td><td>VT</td><td>(vertical tab)</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>K</td><td></td><td></td><td></td><td></td><td>k</td><td></td></tr><tr><td>12</td><td>С</td><td>014</td><td>FF</td><td>(NP form feed, new page)</td><td>44</td><td>2C</td><td>054</td><td>¢#44;</td><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td>l</td><td></td></tr><tr><td>13</td><td>D</td><td>015</td><td>CR</td><td>(carriage return)</td><td>45</td><td>2D</td><td>055</td><td>6#45;</td><td>F 1</td><td>77</td><td>4D</td><td>115</td><td>6#77;</td><td>М</td><td></td><td></td><td></td><td>m</td><td></td></tr><tr><td>14</td><td>E</td><td>016</td><td>SO</td><td>(shift out)</td><td>46</td><td>2E</td><td>056</td><td>a#46;</td><td></td><td></td><td></td><td></td><td>6#78;</td><td></td><td></td><td></td><td></td><td>n</td><td></td></tr><tr><td>15</td><td>F</td><td>017</td><td>SI</td><td>(shift in)</td><td>47</td><td>2F</td><td>057</td><td>6#47;</td><td>/</td><td>79</td><td></td><td></td><td>@#79;</td><td></td><td>111</td><td>6F</td><td>157</td><td>o</td><td>0</td></tr><tr><td>16</td><td>10</td><td>020</td><td>DLE</td><td>(data link escape)</td><td></td><td></td><td></td><td>a#48;</td><td></td><td>80</td><td></td><td></td><td>@#80;</td><td></td><td>112</td><td>70</td><td>160</td><td>p</td><td>p</td></tr><tr><td>17</td><td>11</td><td>021</td><td>DC1</td><td>(device control 1)</td><td>49</td><td>31</td><td>061</td><td>a#49;</td><td>1</td><td></td><td></td><td></td><td>@#81;</td><td></td><td></td><td></td><td></td><td>q</td><td></td></tr><tr><td>18</td><td>12</td><td>022</td><td>DC2</td><td>(device control 2)</td><td>50</td><td>32</td><td>062</td><td>a#50;</td><td>2</td><td>82</td><td>52</td><td>122</td><td>R</td><td>R</td><td></td><td></td><td></td><td>r</td><td></td></tr><tr><td>19</td><td>13</td><td>023</td><td>DC3</td><td>(device control 3)</td><td>51</td><td>33</td><td>063</td><td>3</td><td>3</td><td>83</td><td>53</td><td>123</td><td>£#83;</td><td>S</td><td>115</td><td>73</td><td>163</td><td>s</td><td>s</td></tr><tr><td>20</td><td>14</td><td>024</td><td>DC4</td><td>(device control 4)</td><td>52</td><td>34</td><td>064</td><td>6#52;</td><td>4</td><td>84</td><td>54</td><td>124</td><td>4;</td><td>Т</td><td></td><td></td><td></td><td>t</td><td></td></tr><tr><td>21</td><td>15</td><td>025</td><td>NAK</td><td>(negative acknowledge)</td><td>53</td><td>35</td><td>065</td><td>6#53;</td><td>5</td><td>85</td><td>55</td><td>125</td><td>6#85;</td><td>U</td><td>117</td><td>75</td><td>165</td><td>u</td><td>u</td></tr><tr><td>22</td><td>16</td><td>026</td><td>SYN</td><td>(synchronous idle)</td><td></td><td></td><td></td><td>@#54;</td><td></td><td>86</td><td></td><td></td><td>a#86;</td><td></td><td></td><td></td><td></td><td>v</td><td></td></tr><tr><td>23</td><td>17</td><td>027</td><td>ETB</td><td>(end of trans. block)</td><td>55</td><td>37</td><td>067</td><td>%#55;</td><td>7</td><td>87</td><td>57</td><td>127</td><td>a#87;</td><td>W</td><td>119</td><td>77</td><td>167</td><td>w</td><td>W</td></tr><tr><td>24</td><td>18</td><td>030</td><td>CAN</td><td>(cancel)</td><td>56</td><td>38</td><td>070</td><td>a#56;</td><td>8</td><td>88</td><td></td><td></td><td>a#88;</td><td></td><td></td><td></td><td></td><td>x</td><td></td></tr><tr><td>25</td><td>19</td><td>031</td><td>EM</td><td>(end of medium)</td><td>57</td><td>39</td><td>071</td><td>a#57;</td><td>9</td><td>89</td><td></td><td></td><td>Y</td><td></td><td>121</td><td>79</td><td>171</td><td>y</td><td>Y</td></tr><tr><td>26</td><td>1A</td><td>032</td><td>SUB</td><td>(substitute)</td><td>58</td><td>ЗΑ</td><td>072</td><td>6#58;</td><td>1</td><td>90</td><td>5A</td><td>132</td><td>6#90;</td><td>Z</td><td></td><td></td><td></td><td>z</td><td></td></tr><tr><td>27</td><td>1B</td><td>033</td><td>ESC</td><td>(escape)</td><td>59</td><td>3В</td><td>073</td><td>;</td><td>;</td><td>91</td><td>5B</td><td>133</td><td>[</td><td>Ε</td><td>123</td><td>7B</td><td>173</td><td>{</td><td>-{</td></tr><tr><td>28</td><td>10</td><td>034</td><td>FS</td><td>(file separator)</td><td>60</td><td>3С</td><td>074</td><td><</td><td><</td><td>92</td><td>5C</td><td>134</td><td>6#92;</td><td>A.</td><td>124</td><td>7C</td><td>174</td><td> </td><td>1</td></tr><tr><td>29</td><td>1D</td><td>035</td><td>GS</td><td>(group separator)</td><td>61</td><td>ЗD</td><td>075</td><td>=</td><td>=</td><td>93</td><td>5D</td><td>135</td><td>6#93;</td><td>1</td><td></td><td></td><td></td><td>}</td><td></td></tr><tr><td>30</td><td>1E</td><td>036</td><td>RS</td><td>(record separator)</td><td>62</td><td>ЗΕ</td><td>076</td><td>@#62;</td><td>></td><td>94</td><td>5E</td><td>136</td><td>@#94;</td><td></td><td></td><td></td><td></td><td>~</td><td></td></tr><tr><td>31</td><td>1F</td><td>037</td><td>US</td><td>(unit separator)</td><td>63</td><td>ЗF</td><td>077</td><td>?</td><td>2</td><td>95</td><td>5F</td><td>137</td><td>@#95;</td><td>_</td><td>127</td><td>7F</td><td>177</td><td></td><td>DEL</td></tr></tbody></table>											

Textová data

Funkce pro práci se stringy

- V různých knihovnách
- Include hlavičky string.h, stdlib.h, ctype.h a další
- Seznam C-String funkcí

strlen

 Jedna z nejdůležitejších funkcí pro práci se stringy - udává počet znaků ve stringu (čte string než narazí na null char)

strcmp

- Porovnávání 2 stringů
- Nelze jen porovnat proměnné! Jsou to pointery!
- DEMO string cmp wrong.c
- Musí se porovnat charakter po charakteru (to dělá strcmp)
- Výjimky pro compile-time známé stringy (optimalizace)

Informatika

Skládání dat

- Nechceme pracovat jen s primitivními daty přidání struktury
- struct type kompozitní typ, skládá se z několika jednodušších struktur/primitivů

```
1 struct Person {
      char *firstname;
      char *surname:
3
      char *city;
4
      int year_born;
5
6 }:
7
 int main() {
8
      // Deklarace a inicializace struktury
9
      struct Person p = {
          "Jan",
          "Novak".
          "Praha",
          1995
          };
.5
      printf("%s", p.firstname); // Jan
6
      printf("%s", p.city); // Praha
8 }
```

Přístup k datům

- Přímý přístup (pomocí member access operátoru ".")
- Přístup přes pointer (pomocí operátoru "->")

```
1 struct Point3D {
      int x, y, z;
3 };
5 int get_x_pt(struct Point3D * pt) {
      return pt->x;
6
7 }
8
9 int get_x(struct Point3D pt) {
     return pt.x;
```

Struct jako argument funkce

- Parametry se předávají jako value
- Při předání struktury přímo se předá její kopie
- Pro velké struktury je pass-by-value drahá operace hodně kopírování
- Předávání pointerem předá se jen ukazatel na to, kde v paměti struktura je
- Při předání pointerem můžeme modifikovat
- Můžeme opět aplikovat const modifier nelze pak modifikovat struct memers

```
1 #include <stdio.h>
2 struct Point {
     int x, y;
3
4 };
6 void set_x_wrong(struct Point pt, int new_x) {
     pt.x = new_x;
7
8 }
9
o void set_x(struct Point *pt, int new_x) {
     pt->x = new_x;
1
2 }
4 int main() {
      struct Point pt = {5, 5};
      set_x_wrong(pt, 40); // Nedojde ke zmene, pt ve funkci je kopie!
      printf("%i", pt.x); // 5
      set_x(&pt, 40); // Dojde ke zmene, predavame pointer na "pt"
8
      printf("%i", pt.x); // 40
9
     return 0;
20
1 }
```

Inicializační funkce

- Často se setkáme s použitím inicializačních funkcí
- Pomáhají s parametrizací díky hlavičce funkce lépe vidíme co hodnota znamená

```
struct Person {
      char *firstname;
      char *surname:
3
      char *city;
4
      int year_born;
5
 };
6
8 void Person init(
9
      struct Person* const obj,
      const char* const firstname,
      const char* const surname,
      const char* const city,
      const int year_born) {
      obj->firstname = firstname;
      obj->surname = surname;
      obj->city = city;
      obj->year_born = year_born;
8 }
```

Intermezzo: NULL pointer

NULL

- Obsažen v standardní knihovně, hodnota ((void*)0)
- Neukazuje na žádné místo v paměti!
- Používá se jako "speciální hodnota" nebo inicializační hodnota
- Garantovaná nerovnost s jakýmkoliv pointerem na proměnnou (nebo funkci)
- Dereference NULL pointeru způsobí chybu programu!!!
- Velmi častá (a kritická) chyba v C programech

```
#include <stdlib.h>
int main() {
   int *ptr = NULL; // Deklarovano, zatim nemame vyhrazenou pamet
   int x = 5;
   ptr = &x; // Teprve nyni pointer ukazuje na 1-value
}
```

Ukázka - linked list

```
1 #include <stdio.h>
2 struct IntLinkedList {
     int head;
3
    struct IntLinkedList *tail: // Rekurzivni struktura
5 };
6
7 struct IntLinkedList cons(int head, struct IntLinkedList *tail) {
     struct IntLinkedList 11 = {head, tail};
8
    return 11: // Pridavame novv head za tail
9
0 }
int first(struct IntLinkedList *list) { return list->head: }
4 struct IntLinkedList* rest(struct IntLinkedList *list) { return list->tail; }
6 int sum (struct IntLinkedList *list) {
     if (list == NULL) return 0:
.7
     return first(list) + sum(rest(list));
8
9 }
int main() {
      struct IntLinkedList 111 = cons(10, NULL),
         112 = cons(20, &111).
         113 = cons(30, &112);
4
     int result = sum(&113); // 60
25
     return 0:
26
7 }
```

Ukázka - linked list

Stále není ideální - musíme explicitně říkat v jakém scope žijí prvky listu tím, že je tam deklarujeme - nelze psát cons(30, cons(20, cons(10, NULL)))
Budeme potřebovat dynamickou alokaci paměti - později

I-value scope

```
#include <stdio.h>
     struct Point {
     int x, y;
     struct Point * new(int x, int y) {
         struct Point p = {x, y};
        return &p;
10
11
     struct Point add(struct Point *a, struct Point *b) {
         struct Point * pt addr = new(a->x + b->x, a->v + b->v);
12
13
        return *pt_addr;
14
15
16
     int main() {
        struct Point pt = add(new(1,1), new(2,2));
18
        printf("%1", pt.x);
19
         return 0;
```

66 / 72

<mark>rmatika</mark> Jazyk C

Union

Union typy

- struct slouží jako product type (stejně jako v BSL/ISL), kombinuje více hodnot do jednoho typu
- V některých případech potřebujeme sum type předat jednu hodnotu nabývající jednoho z více typů (v ISL např. Maybe Number - Number nebo #f)
- union typy deklarují všechny možnosti, realizuje se pouze jedna

```
#include <stdio.h>
union IntOrChar {
   int integer;
   char character;
};

int main() {
   union IntOrChar u;
   u.integer = 32;
   u.character = 'A';
   printf("%i\n", u.integer); // 65 - corrupted printf("%c\n", u.character); // A
```

67 / 72

natika Jazyk C

Union

Union typy

- Union typy tedy obsahují pouze jednu z možností (sum type)
- Jak poznat kterou? Obalení do struct s tagem udávající možnost
- Použití tzv. enum typu pro označení možnosti (tag)

Informatika

Enumerace

Enum typy

- Výčtové typy
- Překládají se na integer
- Slouží ke zlepšení korektnosti za compile-time

Enumerace

Enum typy

• Lze explicitně specifikovat jaký integer bude přiřazen

```
1 enum PermissionLevel
2 {
3      User = 1,
4      Moderator = 10,
5      Admin = 50,
6      Owner = 100
7 };
```

Jazyk C

Tagged union

 $\mathsf{DEMO} \colon \mathsf{tagged}_\mathsf{union.c}$

Dynamická alokace

TBD

