

Curso de

Matemáticas para Data Science: Cálculo

Enrique Devars

Las matemáticas son un lenguaje

Pasar de esto...

A esto

Descenso del gradiente

¿Qué es el cálculo?

Cálculo

Realizar operaciones de una manera dada para llegar a un resultado.

Cálculo infinitesimal

Cálculo diferencial

Estudia la tasa de cambio de las funciones cuando esos cambios son muy **pequeños** (se aproximan a cero). Su principal herramienta es la derivada.

Cálculo integral

Estudia el proceso de integración o de antiderivación.

¿Qué es una función?

Función

Es una regla donde a cada elemento de un conjunto **A** se le asigna un elemento de un conjunto **B**.

Función

Es una <u>regla</u> donde a cada elemento de un conjunto A se le <u>asigna</u> un elemento de un conjunto B.

Una función es como una máquina

Entra un elemento x y sale un elemento y.

$$y = f(x)$$

Letras

Números

 \mathcal{X}

y

Formas de representar una función

- → Verbalmente
- → Numéricamente
- → Visualmente
- → Algebraicamente

Verbalmente

- → "A cada letra del abecedario se le asigna un número entero diferente".
- → "El precio aumenta en 2 dólares por cada kilómetro recorrido".

Numéricamente

X	f(x)
- 14	4
-6	2
-2.5	0
-1	-4
0	-10
3	-11
π	-17
7	-20
12	-25

Visualmente

Algebraicamente

$$y = f(x) = x^2$$

Dominio y rango de una función

¿Qué valores pueden tener las funciones?

Dominio de una función

Los valores que toma x y están definidos en la función f(x).

Rango de una función

Todos los resultados que nos puede dar una función.

Relacionando...

- → El dominio son los granos de café.
- → La **función** es nuestra cafetera.
- → El rango son todas las clases de café que podemos preparar.

 $f: X \rightarrow Y$

Programemos funciones algebraicas

Programemos funciones trascendentes

¿Cómo manipular funciones?

Propiedades de las funciones

Funciones dentro de otras funciones

¡Hagamos un pastel!

Primero hagamos la base

Después le ponemos la cobertura

El proceso para nuestro pastel es:

¡Acabas de entender la composición de funciones!

Definción

Conocidas las funciones f y g, la composición de f y g está dada por:

$$f \circ g = (f \circ g)(x) = f(g(x))$$

Funciones dentro de otras funciones

Toma un respiro

¿Cómo se compone una neurona?

Funciones de activación en redes neuronales

Función de coste

¿Qué es un límite?

Notación de límite

El límite de f(x) cuando x tiende a a es L.

$$\lim_{x \to a} f(x) = L$$

Definición de límites laterales

Límite lateral izquierdo

$$\lim_{x \to a^{-}} f(x) = L$$

Definición de límites laterales

Límite lateral derecho

$$\lim_{x \to a^+} f(x) = L$$

¿Para qué nos sirven los límites laterales?

Decimos que sí el límite por izquierda y por derecha son iguales cuando tienden a *a*, entonces el límite *L* existe.

Reto

Reto

¿De dónde surge la derivada?

Empecemos a derivar

Operaciones

Suma

$$(f+g)'(x)=f'(x)+g'(x)$$

Producto

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Cociente

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Regla de la cadena

$$(f \circ g)'(x) = f'(g(x)) \cdot g(x)'$$

¿Por qué es importante la derivada?

Subidas y bajadas en una montaña rusa: máximos y mínimos

¿Cómo optimizar una función?

Más dimensiones para tus funciones

Toma un respiro

Diseñando mapas: curvas de nivel

Derivadas parciales

Notación

$$rac{\partial f}{\partial x} = f_x' = \partial_x f$$

Regla de la cadena: utilidad en multivariable

Gradiente

¿Qué es el descenso del gradiente?

Graficando nuestra función de coste

Aplicando el descenso

¡Felicidades!

Curso de

Matemáticas para Data Science: Cálculo

Enrique Devars @codevars