Laboratory Objectives

- 1. Write a Python program using:
 - i. modules
 - ii. packages
 - iii. functions using keyword arguments
- 2. Run and test a Python program.

Program Instructions

 Write a Python package with sub-packages, modules, and functions using keyword arguments. Use the following directory outline and module names (your first starting point should be a directory called mathematics within an empty directory

```
mathematics/
__init__.py
whoami.py
numbers/
__init__.py
whoami.py
series.py
simple.py
geometry/
__init__.py
whoami.py
rectangle.py
circle.py
cube.py
```

- 2. Create a mathematics package.
 - i. Initialize the __all__ variable to the whoami module.
 - ii. Create a whoami module.
 - a. Create a function named getname which returns the __name__ variable.
 - iii. Create a numbers sub-package:
 - a. Initialize the __all__ variable so that the whoami and series modules (and not the simple module) can be imported when
 - 'from mathematics.numbers import *' is encountered.
 - b. Create a whoami module.
 - a. Create a function named getname which returns the name variable.
 - c. Create a series module:

- a. Create a function named sum which receives a keyword parameter list and returns the sum of all the values in the list.
- b. Create a function named average which receives a keyword parameter list and returns the average of all the values in the list.
- d. Create a simple module:
 - a. Create a function named addition which receives the keyword parameters left and right and returns left plus right.
 - b. Create a function named subtraction which receives the keyword parameters left and right and returns left minus right.
 - c. Create a function named multiplication which receives the keyword parameters left and right and returns left multiplied by right.
 - d. Create a function named division which receives the keyword parameters left and right and returns left divided by right.
- iv. Create a geometry sub-package.
 - a. Initialize the __all__ variable so that the whoami, circle, and cube modules (and not the rectangle module) can be imported when 'from mathematics.geometry import *' is encountered.
 - b. Create a whoami module:
 - a. Create a function named getname which returns the name variable.
 - c. Create a rectangle module:
 - a. Create a function named perimeter which receives a keyword parameters length and width and returns (2l + 2w).
 - b. Create a function named area which receives a keyword parameters length and width and returns (I * w).
 - d. Create a circle module:
 - a. Create a function named circumference which receives the keyword parameter radius and returns (2 * pi * r).
 - b. Create a function named area which receives the keyword parameter radius and returns (pi * r * r).
 - e. Create a cube module.
 - a. Create a function named surface_area which receives the keyword parameter side and returns (s * s * 6).
 - b. Create a function named volume which receives the keyword parameter side and returns (s * s * s).
- 3. Create your own main.py file to import and test all the modules and functions until you are satisfied your program output meets the above requirements. I will not grade this file it is for your use to test the package.

Submission

Zip the directory structure (and all its files) shown in step 1 of the instruction above and upload the zip file to Canvas