Family list

1 family member for: JP7015049

Derived from 1 application

1 SUPERCONDUCTING MULTILAYERED THIN FILM

Inventor: SATO TETSURO; FUJITA JUNICHI; (+1) Applicant: NIPPON ELECTRIC CO

EC: IPC: *C23C14/08; H01L39/02; H01L39/22* (+6)

Publication info: JP7015049 A - 1995-01-17

Data supplied from the esp@cenet database - Worldwide

SUPERCONDUCTING MULTILAYERED THIN FILM

Patent number:

JP7015049

Publication date:

1995-01-17

Inventor:

SATO TETSURO; FUJITA JUNICHI; YOSHITAKE

TSUTOMU

Applicant:

NIPPON ELECTRIC CO

Classification:

- international:

C23C14/08; H01L39/02; H01L39/22; C23C14/08;

H01L39/02; H01L39/22; (IPC1-7): H01L39/22;

C23C14/08; H01L39/02

- european:

Application number: JP19930152040 19930623 Priority number(s): JP19930152040 19930623

Report a data error here

Abstract of JP7015049

PURPOSE:To provide a Bi-Sr-Ca-Cu-O based superconducting multilayered thin film having an intermediate layer suitable for the formation of a multilayered Josephson junction. CONSTITUTION:Structure wherein a Bi2Sr2YCu2OX intermediate layer 3 is sandwiched by Bi2Sr2CaCu2OX superconductor layers 2, 4 is formed on an SrTiO3 single crystal substrate 1. Similarly to Bi based superconductor, the intermediate layer has a crystal structure whose base is perovskite structure, so that a layer of sufficiently uniform thickness can be epitaxially grown between Bi based superconductor layers 2, 4 without mutual diffusion. Hence a superconducting multilayered thin film suitable for a multilayered Josephson junction can be formed.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-15049

(43)公開日 平成7年(1995)1月17日

(F1) 1 . C1 6	aMinden te		elected with the		5.5.4 be to \$44.44
(51) Int.Cl. ⁶	觀別記有	}	庁内整理番号	FI	技術表示箇所
H01L 39	/22 ZAA	С	9276-4M		
C 2 3 C 14	/08	L	0827-4K		
H01L 39	/02 ZAA	В	9276-4M		

審査請求 有 請求項の数5 OL (全 5 頁)

(21)出願番号	特願平5 -152040	(71)出願人 000004237 日本電気株式会社
(22)出願日	平成5年(1993)6月23日	東京都港区芝五丁目7番1号
		(72)発明者 佐藤 哲朗
		東京都港区芝五丁目7番1号 日本電気株
		式会社内
		(72)発明者 藤田 淳一
		東京都港区芝五丁目7番1号 日本電気株
		式会社内
		(72)発明者 吉武 務
		東京都港区芝五丁目7番1号 日本電気株
		式会社内
		(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 超伝導積層轉膜

(57)【要約】

【目的】 積層型ジョセフソン接合の作製に適した中間層を有するBi-Sr-Ca-Cu-O系超伝導積層薄膜を提供する。

【構成】 Bi2 Sr2 YCu2 Ox 中間層 3をBi2 Sr2 CaCu2 Ox 超伝導体層 2, 4 ではさんだ構造を、SrTiOx 単結晶基板 1 上に作製する。この中間層はBix 超伝導体と同様ペロブスカイト構造を基本とする結晶構造を持っており、Bix 超伝導体層 2, 4 の間に、相互拡散なしで、十分に均一な厚さでエピタキシャル成長できる。従って積層型ジョセフソン接合に適した超伝導積層薄膜を作製できる。

【特許請求の範囲】

【請求項1】 Bi-Sr-Ca-R-Cu-O(RはY, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luのうち少なくとも一種類を含む)で表される中間層と、それをはさむBi-Sr-Ca-Cu-O系超伝導体層を基板上に設けたことを特徴とする超伝導積層薄膜。

【請求項2】 M-Cu-O(MはBa, Sr, Ca, Nd, Laのうち少なくとも一種類を含む)で表される中間層と、それをはさむBi-Sr-Ca-Cu-O系超伝導体層を基板上に設けたことを特徴とする超伝導積層薄膜。

【請求項3】 Bi-AE-Co-O(AEはBa, Sr, Ca のうち少なくとも一種類を含む)で表される中間層と、それをはさむBi-Sr-Ca-Cu-O系超伝導体層を基板上に設けたことを特徴とする超伝導積層薄膜。

【請求項4】 基板と接するBi-Sr-Cu-O緩衝層を設けたことを特徴とする、請求項1、2または3に記載の超伝導積層薄膜。

【請求項5】 基板を構成する物質の所定の結晶面から 所定の角度だけ傾斜させた表面を持つ基板を用いること を特徴とする、請求項1、2、3または4に記載の超伝 導積層薄膜。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は比較的高温で動作する積層型ジョセフソン接合を作製するための、高い臨界温度 (T.) を有するBi系超伝導酸化物層により中間層をはさんだ構造を持つ超伝導積層薄膜に関するものである。

[0002]

【従来の技術】高いT。を持つBi系酸化物超伝導体の発見以来、その高いT。をもたらす超伝導機構の解明のための基礎研究や電子素子等への応用研究が活発におこなわれている。Bi系超伝導体は80K~110Kという高いT。を持つため、その使用に際しては、77Kの沸点を持つ安価な液体窒素を冷媒として使用することが可能で、またその低温の維持のための設備も簡単なものですむという長所を持っている。このため、従来の低いT。を持つ物質を用いて実現した超伝導電子素子を、高いT。を持つBi系超伝導体を用いて実現することは、産業上大きな貢献となる。

【0003】このBi系超伝導体を用いて超伝導電子素子を作製する際、この素子の重要な構成部分であるジョセフソン接合を再現性および制御性良く作製する必要がある。このための方法として、非超伝導体中間層を超伝導体ではさんだ積層構造を作製する技術が一般的である。この中間層を構成する非超伝導物質としては、Bi系超伝導体と結晶構造が似ておりBi系超伝導薄膜上に50

十分平坦に成長すること、薄膜成長温度においてBi系超伝導体との相互拡散が小さいこと、低温で比抵抗が十分高いこと(トンネル接合の場合)または十分低いこと(近接効果による弱結合の場合)などの条件を満足する必要がある。

2

【0004】Bi系超伝導積層薄膜の中間層として、従来の低T。超伝導積層構造で用いられていたAl酸化物やAuをそのまま用いると、相互拡散やBi系超伝導薄膜の結晶配向性の乱れ等の問題が発生し、良質の超伝導積層薄膜の作製が困難となる。そこで中間層に用いる物質としてこれまでBi-Sr-Cu-O酸化物等が用いられているが、いずれの物質もBi系超伝導層上に均一に成長させることが困難で、そのためこれらの物質を中間層に用いたジョセフソン接合中の電流分布には、十分な均一性が得られないという問題点があった。

【0005】また均一な厚さを持つ中間層を作製するにはBi系超伝導体層自身が十分に平坦でなければならない。しかし従来異相の発生等を抑えることは困難であったため、均一な電流分布を持つジョセフソン接合を作製20 することは困難だった。

【0006】またBi系超伝導体の超伝導コヒーレンス 長の異方性を考えると、ジョセフソン接合内で電流をBi系超伝導体のab軸方向に流すことが望ましい。しかし積層型ジョセフソン接合においてab軸方向に電流を流そうとすると、積層薄膜はab軸配向薄膜であることなど、積層であるには(110)配向薄膜ので、ジョセフソン接合に適した十分な平坦性を持ったab軸配向薄膜成長は成功していない。また(110)配向薄膜などab軸が基板表面に対して大きな角度で傾斜している薄膜は表面平坦性が著しく悪く、積層型ジョセフソン接合作製には適していない。

[0007]

【発明が解決しようとする課題】本発明の目的は、積層 薄膜で用いられる中間層としてBi系超伝導体に良く適 した物質を選び、また場合によっては緩衝層を設けるこ とにより異相の発生を抑えることによって、界面におけ る相互拡散やBi系超伝導薄膜の結晶配向性の乱れ等が なく、十分均一な膜厚の中間層を持つ良質のBi系超伝 導積層薄膜を提供すること、および薄膜の垂直方向に a b軸成分を持ち、しかも積層型ジョセフソン接合作製に 十分な平坦性を持つ、前記の良質なBi系超伝導積層薄 膜を提供することにある。

[0008]

【課題を解決するための手段】本発明はBi-Sr-Ca-R-Cu-O(RはY, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luのうちの少なくとも一種類を含む)で表される中間層、または、M-Cu-O(MはBa, Sr, Ca, N

d, Laのうち少なくとも一種類を含む)で表される中間層、または、Bi-AE-Co-O(ABはBa, Sr, Caのうちの少なくとも一種類を含む)で表される中間層と、それをはさむBi-Sr-Ca-Cu-O系超伝導体層を基板上に設けたことを特徴とする超伝導積層薄膜である。

【0009】または基板と接するBi-Sr-Cu-O 緩衝層を設けたことを特徴とする、前記のいずれかの超 伝導積層薄膜である。

【0010】または基板を構成する物質の所定の結晶面から所定の角度だけ傾斜させた表面を持つ基板を用いることを特徴とする、前記のいずれかの超伝導積層薄膜である。

[0011]

【作用】Bi-Sr-Ca-R-Cu-O、M-Cu-O、Bi-AE-Co-O酸化物を中間層として用いたのは、Bi系超伝導体と同様ペロブスカイト構造を基本とする結晶構造を持っており、Bi系超伝導体層の上にこれらの中間層を十分に均一な厚さでエピタキシャル成長させること、および逆にBi-Sr-Ca-R-Cu-O酸化物層の上にBi系超伝導体層をエピタキシャル成長させることが可能であること、Bi系超伝導体層との間の相互拡散が小さいこと、低温で充分高い比抵抗

(Bi-Sr-Ca-R-Cu-O) または十分低い比抵抗 (M-Cu-O、Bi-AE-Co-O) を持つことが理由である。

【0012】基板と接するBi-Sr-Cu-O緩衝層を設けたのは、その上に堆積する薄膜の平坦性向上、特に異相の発生の抑制のためである。

【0013】または基板を構成する物質の所定の結晶面から所定の角度だけ傾斜させた表面を持つ基板を用いるのは、積層薄膜の垂直方向にab軸成分を持ち、しかも積層型ジョセフソン接合作製に十分な平坦性を持つ積層薄膜を作製するためである。

[0014]

【実施例】(実施例1)図1は本発明によるBi系超伝 導積層薄膜の概略図である。基板1には(001)Sr TiOs 単結晶基板を用いた。基板の大きさは15mm 角で厚さは0.5mmである。基板上にまずBi2Sr 2 CaCu2 O。超伝導体層2を堆積させ、その上にB i₂ Sr₂ YCu₂ O, 中間層3を、最後にその上にB i2 Sr2 CaCu2 O、超伝導体層4を堆積させて積 層薄膜を作製した。成長手法は多元マグネトロンスパッ タリング法を用いた。ターゲットは各層にそれぞれ1枚 づつ割り振り、Bi2.5 Sr2.0 Ca0.8 Cu 2.4 Ox 、およびBi2.6 Sr2.0 Y1.0 CuO、という組成の焼結ターゲットを用いた。成長 中の基板温度は700~750℃、スパッタガスはAr およびOで、Ar:O=1:1で、全ガス圧は50~2 00mTorrとした。作製した積層薄膜の各層の厚さ は上下のBiz Srz CaCuz Oz 超伝導層がいずれ も約100nm、Biz Srz YCuz Oz 中間層が約 20nmであった。

【0015】積層薄膜を2次イオン質量分析装置(SI MS)で分析したところ、各層は相互拡散せず堆積され ており、良質の積層薄膜が作製されていることが確認さ れた。各層が均一な厚さを持ち相互拡散していないこと は、高分解能電子顕微鏡による積層薄膜断面の観察によ っても確認された。またこの積層薄膜をX線回折法およ び電子線回折法で調べると、各層ともc軸が基板表面に 垂直で、かつ基板の<110>方向と積層薄膜を構成す る各酸化物の<100>方向とが平行となるエピタキシ ャル成長をしていることが確認された。なおX線回折法 で調べた結果、Bi2Sr2CaCu2Ox酸化物相お よびBi2 Sr2 YCu2 O,酸化物相以外の相は薄膜 中に存在していないことが確認された。積層薄膜の表面 および同条件で作製した各単層薄膜の表面を2次電子顕 微鏡および原子間力顕微鏡で観察したところ、表面は1 0 n m程度の凹凸がみられるだけの平坦さで、異相の発 生も20×20μm² に1個程度であることが確認され た。4端子法でBi2 Sr2 CaCu2 O超伝導体層 2, 4の抵抗の温度変化を測定したところ、いずれの層 ともに70K以上のT。を持つことが確認され、良質の Bi2 Sr2 CaCu2 Ox 超伝導体層が作製されてい ることがわかった。

【0016】なお、中間層に $Sr_{0.9}$ N $d_{0.1}$ C u Ox、 Bi_2 S r_3 C o_2 Ox を用いても同様の結果が得られた。

【0017】(実施例2)図2は本発明によるBi系超 伝導積層薄膜の概略図である。基板11には(001) SrTiOュ単結晶基板を用いた。基板の大きさは15 mm角で厚さは0.5mmである。基板上にまずBi2 Sr₂ CuO、緩衝層15を堆積した。次にその上にB iz Srz CaCuz Oz 超伝導体層12を堆積させ、 その上にBi2 Sr2 YCu2 O. 中間層13を、最後 にその上にBi2 Sr2 CaCu2O、超伝導体層14 を堆積させて積層薄膜を作製した。成長手法は多元マグ ネトロンスパッタリング法を用いた。Biュ ュ Sr $Cu_{1.0} O_{x}$, $Bi_{2.5} Sr_{2.0} Ca$ O* 、およびB i 2. 6 S r 2.0 0.8 C u 2 . 4 Cu2.4 Ox という組成の焼結ターゲットを用 いた。成長中の基板温度は700℃~750℃、スパッ タガスはArおよびOで、Ar:O=1:1で、全ガス 圧は50~200mTorrとした。作製した積層薄膜 の各層の厚さは緩衝層が約10nm、上下のBi₂Sr 2 CaCu₂ O、超伝導層がいずれも約100nm、B i2 Sr2 YCu2 Ox 中間層が約20nmであった。 【0018】積層薄膜の表面および同条件で作製した各 単層薄膜の表面を2次電子顕微鏡および原子間力顕微鏡

で観察したところ、表面は5nm程度の凹凸がみられる

だけの平坦さであり、また実施例1の場合と比較して異相の発生が非常に少なく、ほとんど異相が観察されない ことが確認された。

【0019】なお、中間層にSro.s Ndo.i Cu O,、Bi₂ Sr₃ Co₂ O₂ を用いても同様の結果が 得られた。

【0020】 (実施例3) 図3は本発明によるBi系超 伝導積層薄膜の概略図である。基板21に用いたSrT i O 3 単結晶基板は、その法線が<100>から<11 1>に向かって4°傾いた表面を持っているものを用い 10 た。この傾斜角度が2°以上の基板を用いれば、その上 に成長させる積層薄膜の a b 軸方向を基板表面に対して 同じ角度だけ傾斜させることができた。基板の大きさは 15mm角で厚さは0.5mmである。基板上にまずB i 2 Sr 2 CuO 緩衝層 2 5 を堆積した。次にその上 にBi₂ Sr₂ CaCu₂ O_x 超伝導体層 2 2 を堆積さ せ、その上にBi₂ Sr₂ YCu₂ O, 中間層23を、 最後にその上にBi2 Sr2 CaCu2 O, 超伝導体層 24を堆積させて積層薄膜を作製した。成長手法は多元 マグネトロンスパッタリング法を用いた。成長中の基板 20 温度は700~750℃、スパッタガスはArおよびO で、Ar:O=1:1で、全ガス圧は50~200mT orrとした。作製した積層薄膜の各層の厚さは緩衝層 が約10nm、上下のBi₂ Sr₂ CaCu₂ O, 超伝 導層がいずれも約100nm、Bi2 Sr2 YCu2 O x 中間層が約20nmであった。

【0021】この積層薄膜をX線および電子線回折法、電子顕微鏡法で調べると、各層ともc軸が基板表面ではなく基板の<100>に垂直で、積層薄膜の垂直方向に*

* a b軸成分を持ち、積層型ジョセフソン接合に適した構造になっていることが確認された。積層薄膜の表面および同条件で作製した各単層薄膜の表面を2次電子顕微鏡および原子間力顕微鏡で観察したところ、表面は基板傾斜の影響で5~10nm程度の階段状の構造がみられるものの、異相の発生は実施例2と同様に少なく、十分平坦であることが確認された。

6

【0022】なお、中間層にSro.s Ndo.i Cu Ox、Bi2 Sra Co2 Oxを用いても同様の結果が 得られた。

[0023]

【発明の効果】本発明は界面における相互拡散やBi系超伝導薄膜の結晶配向性の乱れ等がなく、十分均一な膜厚の中間層を持つ良質のBi系超伝導積層薄膜を提供するものであり、Bi系超伝導体の超伝導電子素子への応用上効果が大きい。

【図面の簡単な説明】

【図1】本発明によるBi系超伝導積層薄膜の概略図である。

【図2】本発明によるBi系超伝導積層薄膜の概略図である。

【図3】本発明によるBi系超伝導積層薄膜の概略図である。

【符号の説明】

1, 11, 21 SrTiO₃ 基板

2, 4, 12, 14, 22, 24 Bi₂ Sr₂ CaC u₂ O_x 超伝導体層

23 Bi2 Sr2 YCu2 O, 中間層

25 Bi₂ Sr₂ CuOx 緩衝層

[図1]

[図2]

【図3】

