

PROJETO DE BASES DE DADOS PARTE 2

2º Entrega:

Modelo Relacional Álgebra Relacional SQL

BD81795L03 - Grupo 11

Docente: Tomás Alves

84698 - André Fonseca 84705 - Catarina Custódio 84736 - Leonor Loureiro

Aluno	Horas	Contribuição
84698	5	33,3 %
84705	5	33,3 %
84736	5	33,3 %

MODELO RELACIONAL

Corredor(nro, largura)

Prateleira(nro, lado, altura)

nro: FK(Corredor)

Planograma(ean, nro, lado, altura, faces, unidades, loc)

ean: FK(Produto)

nro, lado, altura: FK(Prateleira)

Produto(ean, design, nif, data, cnome)

nif: FK(Fornecedor) cnome: FK(Categoria)

Fornecedor(<u>nif</u>, fnome)

Fornece_Sec(nif, ean)

nif: FK(Fornecedor) ean: FK(Produto)

IC-1: Cada ean em Produto deve estar presente em Fornecedor Sec.

IC-2: O nif de cada Fornecedor_Sec tem de ser diferente do nif do Produto com o mesmo ean.

Categoria(cnome)

Categoria_Simples(cnome)

cnome: FK(Categoria)

Categoria_Super(cnome)

cnome: FK(Categoria)

IC-3: Cada cnome em categoria tem de aparecer em Categoria_Simples ou em Categoria Super

Constituída(cnome_super, cnome_filho)

cnome_super: FK(Categoria_Super)

cnome filho: FK(Categoria)

IC-4: Cada cnome em Categoria_Super deve aparecer em Constituída.

IC-5: Cada par cnome_super e o cnome_filho em Constituída tem cnome_super diferente de cnome_filho.

IC-6: Não podem existir ciclos em Constituída.

Evento_Reposição(operador, instante)

Reposição(ean, nro, lado, altura, operador, instante, unidades)

ean: FK(Produto)

nro, lado, altura: FK(Prateleira)

operador, instante: FK(Evento_Reposição)

IC-7: Todos os pares operador e instante de Evento_Reposição devem aparecer em Reposição.

IC-8: Nenhuma instância de Reposição pode ser criada com um valor para instante superior ao momento atual.

★ Não identificamos nenhuma situação que não fosse possível representar no modelo Entidade-Relacional, mas que fosse possível representar no modelo Relacional.

ÁLGEBRA RELACIONAL

```
1. π<sub>ean, design</sub>(σ<sub>unidades > 10 ∧ instante > '10-1-2-17' ∧ cnome = 'Fruta'</sub> (Produto ⋈ Reposição))
```

```
2. primarios \leftarrow \Pi_{\text{nif, fnome, ean}}(Fornecedor \bowtie Produto) secundarios \leftarrow (Fornecedor \bowtie Fornece_Sec) \Pi_{\text{nif, fnome}}(\sigma_{\text{ean} = \text{EAN}} (primarios \cup secundarios))
```

(EAN corresponde ao ean fornecido)

- 3. $\mathscr{G}_{\text{count (cnome_filho)}}(\sigma_{\text{cnome_super} = "Congelados"}(\text{Constítuida}))$
- **4.** secundario ← $\Pi_{\text{nif, cnome}}$ (Fornece_Sec ⋈ ($\Pi_{\text{ean, cnome}}$ (Produto))) primario ←($\Pi_{\text{nif, cnome}}$ (Produto) secundario) count_all ← (Π_{nif} $\mathcal{G}_{\text{count (cnome)}}$ as count (secundario ∪ primario)) $\Pi_{\text{nif, fnome}}$ (Fornecedor ⋈ (Π_{count} (count_all × $\Pi_{\text{max (count)}}$ as $\Pi_{\text{max (count)}}$ as $\Pi_{\text{max (count)}}$ (count_all)))))
- **5.** $\Pi_{\text{nif, fnome}}(\text{Fornecedor} \bowtie (\pi_{\text{nif}}(\text{Produto} \div \text{Categoria_Simples})))$
- 6. fornece_prim ← Π_{nif} (Produto) Π_{nif} (Fornece_Sec) $\rho_{fornece_corredor\ (nro,\ nif)}$ ($\Pi_{nro,\ nif}$ (Planograma \bowtie Produto \bowtie fornece_prim)) $\rho_{count_fornecedor\ (nro,\ count)}$ ($_{nro}$ $\mathscr{G}_{count\ (nif)}$ (fornece_corredor)) Π_{nro} (σ_{count} = total (count_fornecedor × $\sigma_{count\ (nif)\ as\ total}$ (fornece_prim))

<u>SQL</u>

(EAN corresponde ao ean fornecido)