COMPENDIO DE RESULTADOS

ABSTRACT.

1. Preliminares

En la categoría Frm los objetos son retículas completas que cumplen la ley distributiva de marcos (LDM) y los morfismos entre ellos son funciones monótonas que preservan la estructura de la retícula. Si $A \in \text{Frm}$, entonces podemos asignarle un espacio topológico a través de S = pt A, donde $p \in \text{pt } A$ si $p \in A$ -irreducible.

Denotemos por $\mathcal{Q}S$ a la familia de todos los subconjuntos compactos saturados de S. Por el Teorema de Hoffman-Mislove (Teorema H-M), existe una correspondencia biyectiva entre $\mathcal{Q}S$ y el premarco de los filtros abiertos de A (denotado por A^{\wedge}). A su vez, si $F \in A^{\wedge}$, estos están en correspondencia biyectiva con lo que se conoce como núcleos ajustados y con ello obtenemos una versión extendida del teorema antes mencionado. En este caso, v_F es el correspondiente núcleo ajustado asociado a F.

Si $j \in NA$, entonces $A_j = \{x \in A \mid j(x) = x\}$ es un marco y este es el marco cociente. El cociente A_j es compacto si y solo si $\nabla(j) \in A^{\wedge}$, donde

$$\nabla(j) = \{x \in A \mid j(x) = 1\}.$$

En particular, A_{v_F} es un cociente compacto.

Si $f^* \colon A \to B$ es un morfismo de marcos y $F \subseteq A$, $G \subseteq B$ son filtros en A, B, respectivamente, podemos producir nuevos filtros de la siguiente manera:

(1)
$$b \in f^*F \Leftrightarrow f_*(b) \in F \quad \text{y} \quad a \in f_*G \Leftrightarrow f^*(a) \in G$$

donde $a \in A, b \in B$ y f_* es el adjunto derecho de f^* . Aquí $f^*F \subseteq B$ y $f_*G \subseteq A$ son filtros en B y A, respectivamente.

Proposición 1.1. Para $f = f^* \colon A \to B$ un morfismo de marcos y $G \in B^{\wedge}$, entonces $f_*G \in A^{\wedge}$.

Demostración. Por (1), f_*G es un filtro en A. Necesitamos que f_*G satisfaga la condición de filtro abierto. Sea $X \subseteq A$ tal que $\bigvee X \in f_*G$, con X dirigido. Entonces

$$Y = \{ f(x) \mid x \in X \}$$

es dirigido y $f(\bigvee X) = \bigvee f[X] = \bigvee Y \in G$. Como G es un filtro abierto, existe $y = f(x) \in Y$ tal que $y \in G$. Así $x \in f_*G$ de modo que $f_*G \in A^{\wedge}$.

En [Sim04, Lema 8.9 y Corolario 8.10] muestran que el diagrama

$$A \xrightarrow{f^{\infty}} A$$

$$U_A \downarrow \qquad \qquad \downarrow U_A$$

$$\mathcal{O}S \xrightarrow{F^{\infty}} \mathcal{O}S$$

conmuta laxamente, es decir, $U_A \circ f^\infty \leq F^\infty \circ U_A$. En este diagrama U_A es el morfismo reflexión espacial, f^∞ y F^∞ representan los núcleos asociados a los filtros $F \in A^\wedge$ y $\nabla \in \mathcal{O}S^\wedge$. También f^∞ y F^∞ son las cerraduras idempotentes asociadas a a los prenúcleos f y F respectivamente.

Aquí probamos algo más general, ya que consideremos el diagrama

$$\begin{array}{ccc} A & \xrightarrow{\hat{f}^{\infty}} & A \\ \downarrow \downarrow & & \downarrow j \\ A_j & \xrightarrow{f^{\infty}} & A_j \end{array}$$

donde \hat{f}^{∞} es el núcleo asociado al filtro $j_*F\in A^{\wedge}$ y $j\in NA$.

Lema 1.2. Para j, f y \hat{f} como antes se cumple que $j \circ \hat{f} \leq f \circ j$.

Demostración. Por (1)

$$\hat{f} = \bigvee \{v_y \mid y \in j_*F\} \quad \text{y} \quad f = \bigvee \{v_{j(y)} \mid j(y) \in F\}.$$

entonces para $a \in A$ se cumple

$$v_y(a) = (y \succ a) \le \hat{f}(a) \le j(\hat{f}(a)).$$

También, para todo $a, y \in A$, $(y \succ a) \land y = y \land a$ y

$$j((y \succ a) \land y) \le j(a) \Leftrightarrow j(y \succ a) \land j(y) \le j(a)$$
$$\Leftrightarrow j(y \succ a) \le (j(y) \succ j(a)).$$

Así

$$v_y(a) \le j(\hat{f}(a)) \le (j(y) > j(a)) = v_{j(y)}(j(a)) \le f(j(a)).$$

Por lo tanto
$$j \circ \hat{f} \leq f \circ j$$
.

Ahora probaremos lo anterior, pero para cualquier ordinal.

Corolario 1.3. Para $j, f y \hat{f}$ como antes, se cumple que $j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j$

Demostración. Para $\alpha \in \operatorname{Ord}$ verificaremos que $j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j$. Lo haremos con inducción transfinita.

Si $\alpha = 0$, es trivial.

Para el paso de inducción, supongamos que para α se cumple. Luego

$$j \circ \hat{f}^{\alpha+1} = j \circ \hat{f} \circ \hat{f}^{\alpha} \le f \circ j \circ \hat{f}^{\alpha} \le f \circ f^{\alpha} \circ j = f^{\alpha+1} \circ j,$$

donde la primera desigualdad es el Lema 1.2 y la segunda es la hipótesis de inducción.

Si λ es un ordinal límite, entonces

$$\hat{f}^{\lambda} = \bigvee \{ \hat{f}^{\alpha} \mid \alpha < \lambda \}, \quad f^{\lambda} = \bigvee \{ f^{\alpha} \mid \alpha < \lambda \}$$

y

$$j \circ \hat{f}^{\lambda} = j \circ \bigvee_{\alpha < \lambda} \hat{f}^{\alpha} \le \bigvee_{\alpha < \lambda} j \circ \hat{f}^{\alpha}.$$

Por la hipótesis de inducción tenemos que

$$j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j \Rightarrow \bigvee_{\alpha < \lambda} j \circ \hat{f}^{\alpha} \leq \bigvee_{\alpha < \lambda} f^{\alpha} \circ j.$$

Por lo tanto $j \circ \hat{f}^{\lambda} \leq f^{\lambda} \circ j$.

Por el Corolario 1.3, $j\circ \hat{f}^\infty \leq f^\infty\circ j$ se cumple. Además, por el Teorema H-M, $f^\infty=v_F$ y $\hat{f}^\infty=v_{i*F}$. Con esto en mente, tenemos el siguiente diagrama

$$\begin{array}{ccc}
A & \xrightarrow{(v_{j*F})^*} & A_{j*F} \\
\downarrow & & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow \\
A_j & \xrightarrow{(v_F)_*} & A_F
\end{array}$$

donde A_F y A_{j*F} son los cocientes compactos producidos por v_F y v_{j*F} , respectivamente. El morfismo $H\colon A\to A_F$ está definido por $H=v_F\circ j$. Además, $(v_F)_*$ y $(v_{j*F})_*$ son inclusiones.

Sea $h\colon A_{j*F}\to A_j$ tal que, para $x\in A_{j*F},$ h(x)=H(x). Así si $h=H_{|A_{j*F}},$ el diagrama anterior conmuta.

Primero necesitamos que h sea un morfismo de marcos. Por la definición de h, este es un \land -morfismo y restaría verificar que es un \bigvee -morfismo.

Los supremos en A_{j_*F} y A_F son calculados de manera diferente. De esta manera, sea \hat{V} el supremo en A_{j_*F} y \tilde{V} el supremo en A_F . Por lo tanto

$$\hat{\bigvee} = v_{j_*F} \circ \bigvee \quad \text{and} \quad \tilde{\bigvee} = v_F \circ \bigvee,$$

es decir, para $X \subseteq A, Y \subseteq A_i$,

$$\hat{\bigvee} X = v_{j_*F}(\bigvee X)$$
 and $\tilde{\bigvee} Y = v_F(\bigvee Y)$.

Como H es un morfismo de marcos, $H \circ \bigvee = \tilde{\bigvee} \circ H$. Necesitamos algo similar para el morfismo h.

Lema 1.4.
$$h \circ \hat{\bigvee} = \tilde{\bigvee} \circ h$$
.

Demostración. Basta con verificar la desigualdad $h \circ \hat{V} \leq \tilde{V} \circ h$. Notemos que

$$h \circ \mathring{\bigvee} = H \circ v_{j*F} \circ \bigvee = v_F \circ j \circ v_{j*F} \circ \bigvee \leq v_F \circ v_F \circ j \circ \bigvee$$

donde la desigualdad es el Corolario 1.3. Además, $v_F \circ v_F = v_F y$

$$h\circ \mathring{\bigvee} \leq v_F\circ j\circ \bigvee = H\circ \bigvee = \mathring{\bigvee}\circ H = \mathring{\bigvee}\circ h.$$

Por lo tanto $h \circ \hat{V} = \tilde{V} \circ h$.

De esta manera podemos enunciar el siguiente resultado.

Proposición 1.5. El diagrama

$$\begin{array}{ccc}
A & \xrightarrow{v_{j_*F}} & A_{j_*F} \\
\downarrow j & & \downarrow h \\
A_j & \xrightarrow{v_F} & A_F
\end{array}$$

es conmutativo.

Demostración. HAY QUE PONER LA PRUEBA

Con el diagrama anterior podríamos analizar algunos cocientes compactos, por ejemplo, los cocientes compactos cerrados.

2. Marcos eficientes y marcos KC

En [SS06] Sexton dice que $A \in \mathbf{Frm}$ es eficiente si para todo $F \in A^{\wedge}$

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$

donde $d=d(\alpha)=f^{\alpha}(0), f=\dot{\bigvee}\{v_y\mid y\in F\}$ y v_y es un v-núcleo. Queremos trasladar esta misma noción, pero para A_j cuando $j\in NA$, es decir, para todo $F\in A_j^{\wedge}$, si $x\in F$ entonces $d\vee x=1$, con d similar al antes, pero en este caso tomamos $v_y\in NA_j$ y $0_{A_j}=j(0)$.

2.1. **Algunas propiedades de los marcos eficientes.** Los marcos eficientes fueron introducidos como una especie de propiedad de separación dada en el lenguaje libre de puntos, pero que se relaciona con propiedades sensibles a puntos. Un ejemplo de lo anterior es el siguiente.

Corolario 2.1. Para A un marco espacial, OS es un marco Hausdorff si y solo si A es 1-arreglado.

Demostración. Se sigue del hecho de que la propiedad Hausdorff es conservativa y por el Teorema 8.4.4 de [SS06] □

La eficiencia es una propiedad más fuerte que ser T_1 . La pregunta natural que surge es ¿resulta ser más fuerte que T_2 (o las propiedades tipo Hausdorff en Frm)?

Teorema 2.2. Todo marco fuertemente Hausdorff es arreglado.

Demostración. Consideremos $A \in \operatorname{Frm}$ fuertemente Hausdorff. Si A cumple (\mathbf{fH}) , entonces todo sublocal compacto es cerrado. Por teoría de marcos, para $j \in NA$ arbitrario, A_j es compacto si y solo si $\nabla(j) \in A^{\wedge}$. De aquí que, al ser compacto y por (\mathbf{fH}) $A_j = A_{u_d}$, para algún $d \in A$, es decir, $j = u_d$ y $\nabla(j) = \nabla(u_d)$ para algún $d \in A$, en particular, por H-M, para todo $F \in A^{\wedge}$, $v_F \in NA$. Así $\nabla(v_F) = \nabla(u_d)$, es decir, para $x \in F$ se cumple que $u_d(x) = 1 = d \vee x$. Por lo tanto A es arreglado.

Es momento de verificar si la eficiencia es una propiedad que se preserva bajo cocientes.

Proposición 2.3. Si A es un marco eficiente, entonces A_j es un marco eficiente.

Demostración. Es fácil verificar que $F \subseteq j_*F$. Como A es eficiente y $F \in A^{\wedge}$, se cumple que

$$x \in F \Rightarrow \hat{d} \lor x = 1,$$

donde $\hat{d} = d(\alpha) = f^{\alpha}(0)$.

Si $\hat{d} \leq d$, entonces $d \vee x = 1$, para $d = d(\alpha) = f^{\alpha}(j(0))$.

Así, por el Corolario 1.3

$$\hat{d} = \hat{d}(\alpha) \le j(\hat{d}(\alpha)) = j(\hat{f}^{\alpha}(0)) \le f^{\alpha}(j(0)) = d(\alpha) = d.$$

Por lo tanto, si $x \in F$, entonces $d \vee x = 1$ y A_i es eficiente.

Definición 2.4. Sea $A \in \text{Frm decimos que } A$ es:

- (1) KC si cada cociente compacto es cerrado.
- (2) Hausdorff cerrado compacto (o KCH de manera abreviada) si cada cociente compacto de A es cerrado y Hausdorff.

En otras palabras, la Definición 2.4 nos dice que si $j \in NA$, entonces $\nabla(j) \in A^{\wedge}$ y $j = u_a$ para algún $a \in A$. De manera adicional, para 2) pedimos que A_j cumpla la propiedad (**H**).

2.2. Propiedades de los marcos KC.

Proposición 2.5. Si $A \in \text{Frm comple } KC$, entonces A_j cumple KC para cada $j \in N(A)$.

Demostración. Consideremos $k \in NA_j$ tal que $(A_j)_k$ es compacto. Como cualquier filtro abierto es admisible, tenemos que $\nabla(k) \in A_j^{\wedge}$ y por la Proposición 1.1 $j_*\nabla(K) \in A^{\wedge}$.

Sea $l=j_*\circ k\circ j^*\in NA$, entonces A_l es un cociente compacto de A y existe $a\in A$ tal que $l=u_a$. Así

$$A \xrightarrow{j^*} A_j \xrightarrow{k} (A_j)_k \xrightarrow{j_*} A_j \subseteq A$$

y $a \lor x = k(j(x))$. Por lo tanto, si x = a, k(j(x)) = a.

Necesitamos que $k = u_b$ para algún $b \in A_j$. Para $x \in A_j$ y b = j(a)

$$u_b(x) = b \lor x = b \lor j(x) = j(j(a) \lor j(x))$$

$$= j(k(j(a)) \lor x)$$

$$= j(u_a(x))$$

$$= j(k(x))$$

$$= k(x).$$

Por lo tanto $u_b = k$.

Proposición 2.6. Si A es un marco KC, entonces A es un marco T_1 .

Demostración. Sean $p \in \operatorname{pt} A$ y $a \in A$ tales que $p \leq a \leq 1$. Consideremos

$$w_p(x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ p & \text{si} \quad x \le p \end{cases}$$

para $x\in A$. $P=\nabla(w_p)=\{x\in A\mid x\nleq p\}$ es un filtro completamente primo (en particular, $P\in A^\wedge$). Como A es KC, entonces A_{w_p} es un cociente compacto cerrado. Así $u_p=w_p$ y

$$u_p(a) = a$$
 and $w_p(a) = 1$.

es decir, a = 1. Por lo tanto p es máximo.

Proposición 2.7. Las siguientes afirmaciones son ciertas:

- (1) La clase de marcos eficientes es cerrada bajo coproductos.
- (2) La clase de marcos KC es cerrada bajo coproductos.

Demostración. □

Para verificar la prueba del hecho antes mencionado seguiremos el siguiente camino.

- (1) Para $A \in \text{Frm } \alpha$ -eficiente, veremos si $A \oplus A$ es α -eficiente.
- (2) Si $A, B \in \text{Frm son } \alpha$ -eficientes, entonces $A \oplus B$ es α -eficiente.
- (3) Si $A, B \in \text{Frm con } A$ α -eficiente y B β -eficiente, entonces $A \oplus B$ es $\max\{\alpha, \beta\}$ -eficiente.
- (4) Si $\{A_i\}_{i\in I}$ es una familia de marcos eficientes, entonces $\bigoplus_{i\in I} A_i$ es eficiente.

3. FAMILIAS PARTICULARES DE NÚCLEOS

Nuestro objetivo es estudiar los núcleos que producen cociente compacto. De manera particular, estamos interesados en aquellos núcleos que producen cociente compacto y cerrado.

Lo presentado en esta sección es una generalización de lo hecho por Escardó en [Esc06]. En este caso, el lugar de utilizar la propiedad (fH), usamos la eficiencia (o KC) cuando sea necesario).

Definición 3.1. Para $A \in \text{Frm y } j \in NA$, decimos que j es kq (por cociente compacto) si A_j es compacto.

Denotamos por

$$\mathfrak{K}A = \{ j \in NA \mid j \text{ es } kq \}.$$

Sabemos que los u-núcleos producen cocientes cerrados. De esta manera, un u-núcleo produce cociente compacto si $u_{\bullet} \in \Re A$ para $\bullet \in A$. Consideremos los subconjuntos

$$\mathfrak{C}A = \{u_{\bullet} \in NA \mid u_{\bullet} \in \mathfrak{K}A\} \quad \mathbf{y} \quad \mathfrak{c}A = \{c \in A \mid u_c \in \mathfrak{K}A\}.$$

donde $\mathfrak{C}A \cong \mathfrak{c}A$. El uso de cada uno de ellos depende del enfoque que ocupemos, ya sea como elementos del marco principal o como núcleos.

Para $j, k \in NA$ tenemos la relación de equivalencia dada por

$$j \sim k \Leftrightarrow \nabla(j) = \nabla(k),$$

donde $\nabla(\underline{\ })$ es el filtro de admisibilidad correspondiente al respectivo núcleos.

La clase de cada núcleo define un bloque en NA y se puede demostrar que cada uno de estos bloques tiene menor elemento. Al menor elemento del bloque se le conoce como núcleo ajustado y todo núcleo ajustado tiene la forma

$$f = \bigvee \{v_a \mid a \in F\}$$

donde F es un filtro en A y $\dot{\bigvee}$ es el supremo puntual.

Lema 3.2. Consideremos $j \in NA$ y supongamos que j es ajustado. Entonces

$$j \le k \Leftrightarrow \nabla(j) \subseteq \nabla(k)$$

para todo $k \in NA$.

Si $F\in A^{\wedge}$, $F=\nabla(j)$ para algún j en NA, el bloque de j siempre tiene un mayor y un menor elemento. Denotamos al menor elemento del bloque por $v_F=f^{\infty}$.

Por último, si el marco A es eficiente, se cumple que $v_F = u_d$, donde $d = v_F(0)$. Notemos que la eficiencia proporciona un cociente compacto y cerrado (el respectivo v_F), para cada $F \in A^{\wedge}$.

Con todo lo anterior tenemos la siguiente relación entre los distintos núcleos mencionado hasta este momento

$$\mathfrak{fC}A \subseteq \mathfrak{C}A \subseteq \mathfrak{K}A \subseteq NA$$

donde $\mathfrak{f}\mathfrak{C}A$ es el conjunto de núcleos $v_F=u_d$ que se obtienen cuando un marco es eficiente. Además, con respecto a los marcos se cumple que

$$KCH \Rightarrow KC \Rightarrow \text{Eficiente}.$$

Lema 3.3. Para $c \in A$ las siguientes son equivalentes:

- (1) $c \in \mathfrak{c}A$.
- (2) A_{u_c} es un marco compacto.
- (3) $\nabla(u_c) \in A^{\wedge}$.

Demostración. 1) \Rightarrow 2) se cumple por caracterización de marcos compactos. Si se cumple 3), entonces $c \in \mathfrak{c}A$. Por último, 2) \Leftrightarrow 3) es cierto por la caracterización de cocientes compactos y filtros admisibles.

Lema 3.4. Lo siguiente se cumple:

- (1) cA es una sección superior.
- (2) Si $X \subseteq \mathfrak{c}A$, entonces $\bigvee X \in \mathfrak{c}A$ y si $c, c' \in \mathfrak{c}A$ entonces $(c \succ c') \in \mathfrak{c}A$.
- (3) Si $c, c' \in \mathfrak{c}A$, entonces $c \wedge c' \in \mathfrak{c}A$.
- (4) $\mathfrak{c}A \subseteq A$ es un premarco con implicación.
- (5) cA es un premarco compacto.

Demostración. (1) Sean $c \leq c'$ tal que $c \in \mathfrak{c}A$, entonces $\nabla(u_c) \subseteq \nabla(u_{c'})$. Consideremos $X \subseteq A$ dirigido con $\bigvee X \in \nabla(u_{c'})$. Debemos probar que

$$\nabla(u_{c'}) \cap X \neq \emptyset.$$

Notemos que

$$c' \vee (\bigvee X) = 1 \Rightarrow c \vee (c' \vee (\bigvee X)) = 1 \Rightarrow c' \vee (\bigvee X) \in \nabla(u_c).$$

y el conjunto $Y = \{c' \lor x \mid x \in X\}$ es dirigido tal que $\bigvee Y \in \nabla(u_c)$. Al ser $\nabla(u_c)$ abierto, se tiene que existe $y \in Y$ tal que $y \in \nabla(u_c)$ con $y = c' \lor x$. Además, $y \in \nabla(u_{c'})$, es decir,

$$y \vee c' = (c' \vee x) \vee c' = c' \vee x = 1$$

Por lo tanto $x \in \nabla(u_{c'}) \in A^{\wedge}$ y así $c' \in \mathfrak{c}A$.

- (2) Se cumple por ser sección superior.
- (3) Si $c, c' \in \mathfrak{c}A$, entonces $u_c, u_{c'} \in \mathfrak{K}A$. De esta manera, debemos verificar que $u_{c \wedge c'} \in \mathfrak{K}A$. Por propiedades de los u-núcleos $u_{c \wedge c'} = u_c \wedge u_{c'}$, entonces

$$\nabla(u_{c \wedge c'}) = \nabla(u_c \wedge u_{c'}) = \nabla(u_c) \cap \nabla(u_{c'}).$$

Consideremos $X\subseteq A$ dirigido tal que $\bigvee X\in \nabla(u_{c\wedge c'})$. De aquí que $\bigvee X\in \nabla(u_c)\cap \nabla(u_{c'})$. Como ambos son filtros abiertos, existe $x\in X$ tal que $x\in \nabla(u_c)$ y $x\in \nabla(u_{c'})$, es decir, $x\in \nabla(u_c)\cap \nabla(u_{c'})$. Por lo tanto $\nabla(u_{c\wedge c'})\in A^{\wedge}$, es decir, $c\wedge c'\in \mathfrak{C}A$.

- (4) Es consecuencia de 1), 2) y 3).
- (5) Sea X un conjunto dirigido de elementos en $\mathfrak{c}A$ tal que $\bigvee X=1$ y consideremos $c\in\mathfrak{c}A$. Como u_c es kq, entonces A_{u_c} es compacto y así 1 es compacto en A_{u_c} , es decir, para

$$\bigvee X = \bigvee^{u_c} X = 1$$

existe $x \in X$ tal que x = 1 y $1 \in A_{u_c}$. Por lo tanto, $\mathfrak{c}A$ es compacto.

Lema 3.5. Sea $A \in \text{Frm y } \alpha_A : \mathfrak{c}A \to A^{\wedge}$ la función definida por

$$\alpha_A(c) = \{x \in A \mid c \lor x = 1\} = \nabla(u_c).$$

Lo siguiente se cumple:

- (1) α_A es un morfismo de premarcos.
- (2) Si A es eficiente, α_A es sobreyectiva.

Demostración. (1) Veamos primero que α_A preserva la estructura de un premarco.

- (a) Si $c \le c'$, entonces $\alpha_A(c) = \nabla(u_c) \subseteq \alpha_A(c') = \nabla(u_{c'})$.
- (b) Consideremos $1 \in \mathfrak{c}A$, entonces

$$\alpha_A(1) = \nabla(\operatorname{tp}) = A,$$

de aquí que, α_A preserva el mayor elemento.

(c) Sean $c_1, c_2 \in \mathfrak{c}A$ y $X \subseteq \mathfrak{c}A$ dirigido. De aquí que

$$\alpha_{A}(c_{1} \wedge c_{2}) = \{x \in A \mid (c_{1} \wedge c_{2}) \vee x = 1\}$$

$$= \{x \in A \mid (c_{1} \vee x) \wedge (c_{2} \vee x) = 1\}$$

$$= \{x \in A \mid c_{1} \vee x = 1 \text{ y } c_{1} \vee x = 1\}$$

$$= \nabla(u_{c_{1}}) \cap \nabla(u_{c_{2}})$$

$$= \alpha_{A}(c_{1}) \cap \alpha_{A}(c_{2}).$$

y

$$\alpha_A(\bigvee X) = \{x \in A \mid (\bigvee X) \lor x = 1\}$$
$$= \bigvee \{x \in A \mid x' \lor x = 1, x' \in X\}$$
$$= \bigvee \alpha_A[X],$$

donde $\{x \in A \mid x' \lor x = 1, x' \in X\}$ dirigido.

(2) Por último, notemos que para un marco eficiente, el morfismo α_A es suprayectivo ya que si $F = \nabla(j) \in A^{\wedge}$, entonces

$$v_F = u_d$$

donde
$$d=v_F(0)\in A$$
, es decir, $\alpha_A(d)=\nabla(u_d)=\nabla(v_F)=\nabla(j)$

Corolario 3.6. Consideremos $c \in cA$ tal que u_c es ajustado, entonces α_A es invectiva.

Demostración. Consideremos $\nabla(u_c) = \nabla(u_d)$, con $d \in \mathfrak{c}A$. De aquí que $\nabla(u_c) \subseteq \nabla(u_d)$ y $\nabla(u_c) \supseteq \nabla(u_d)$. Aplicando dos veces el Lema 3.2 tenemos que

$$u_c \le u_d$$
 y $u_c \ge u_d$.

Por lo tanto, evaluando ambos núcleos en 0 obtenemos c=d.

Notemos que el morfismo α_A no siempre es suprayectivo, pero existen maneras de asegurar que esto ocurra.

Lema 3.7. Para un marco eficiente y $c \in cA$ las siguientes son equivalentes

- (1) α_A es un isomorfismo.
- (2) Si $u_c \in \mathfrak{C}A$, u_c es ajustado.
- (3) Para todo $c \in \mathfrak{c}A$ y $d, d' \in A_{u_c}$

(2)
$$d \le d' \Leftrightarrow \nabla(u_d) \subseteq \nabla(u_{d'}).$$

Demostración. 1) \Rightarrow 2): Si $c \in cA$, entonces $u_c \in NA$ y tomemos $F = \nabla(u_c) \in A^{\wedge}$. Sea v_F el respectivo núcleo ajustado del bloque, es decir, $v_F \leq u_c$. Además, por la eficiencia $v_F = u_d$ y $\nabla(u_d) = \nabla(u_c)$. Al ser α_A inyectiva, d = c. Por lo tanto u_c es ajustado.

2) \Rightarrow 3): Supongamos que $\nabla(u_c) \in A^{\wedge}$ y que u_c es ajustado para $c \in \mathfrak{c}A$. Notemos que la implicación \Rightarrow) de (2) siempre es cierta, pues si $d \leq d'$ y $d \vee e = 1$, entonces $d' \vee e = 1$. Así solo basta probar la otra implicación.

Queremos demostrar que $\nabla(u_d) \subseteq \nabla(u_{d'})$ implica que $d \leq d'$. Por el Lema 3.2

$$\nabla(u_d) \subseteq \nabla(u_{d'}) \Leftrightarrow u_d \leq u_{d'} \Leftrightarrow d \leq d'.$$

3) \Rightarrow 1): Si A es un marco es eficiente, por el Lema 3.5, se cumple que α_A es suprayectiva. Para la inyectividad, consideremos $\alpha_A(d) = \alpha_A(d')$, es decir, $\nabla(u_d) = \nabla(u_{d'})$. Luego, aplicando dos veces (2), se cumple que d = d'. Por lo tanto, α_A es inyectiva.

Los siguientes resultados son consecuencias del Lema 3.7.

Corolario 3.8. Para un marco KC las siguientes son equivalentes

- (1) α_A es un isomorfismo.
- (2) $Si j \in \Re A$, j es ajustado.
- (3) Para todo $c \in \mathfrak{c}A$ y $d, d' \in A_{u_c}$

$$d \leq d' \Leftrightarrow \nabla(u_d) \subseteq \nabla(u_{d'}).$$

Corolario 3.9. Para todo $c \in cA$, u_c es ajustado si y solo si α_A es isomorfismo y A es eficiente.

Observación 3.10. Si A es un marco eficiente, $j \in \Re A$ y $F = \nabla(j) \in A^{\wedge}$, entonces $j \in [v_F, w_F]$. Por la eficiencia

$$u_d = v_F \le j \le w_F \Rightarrow \nabla(u_d) = \nabla(j),$$

es decir, si consideremos $j \in \Re A$ le asignamos un elemento $d \in \mathfrak{c} A$ a través de

$$\varphi \colon \mathfrak{K}A \to \mathfrak{C}A$$

donde $\varphi(j) = u_d$.

PREGUNTA: ¿Podemos caracterizar a los marcos eficientes por medio de las funciones α_A y φ ?

Para $\mathfrak{Q}S = \{j \in \mathfrak{K}A \mid j \text{ es ajustado}\}$ tenemos

$$\Re A \xrightarrow{\varphi} \mathfrak{C}A$$
 \mathbf{y} $\Re A \xrightarrow{\varphi'} \mathfrak{Q}A$

donde $\iota \colon \mathfrak{C}A \to \mathfrak{K}A$ es una inclusión.

Notemos que φ y φ' son morfismos que desinflan pues $\varphi(k), \varphi'(k) \leq k$. Además, son monótonos, ya que para $j,k \in \Re A$ con $j \leq k$, se cumple que $u_d = \varphi(j) \leq j \leq k$. De aquí que $\nabla(u_d) \subseteq \nabla(k) = \nabla(u_{d'})$, donde $u_{d'} = \varphi(k)$. Como u_d es un núcleo ajustado

$$\nabla(u_d) \subseteq \nabla(u_{d'}) \Rightarrow u_d \leq u_{d'}.$$

El mismo argumento se aplica para φ' .

Verifiquemos que $\varphi \dashv \iota$, es decir, para $j \in \Re A$ y $u_c \in \mathfrak{C}S$ se cumple que

$$\varphi(j) \le u_c \Leftrightarrow j \le \iota(u_c).$$

La implicación \Leftarrow) es trivial. Para la otra implicación, Supongamos que $\varphi(j) \leq u_c$ y $j \nleq \iota(u_c) = u_c$. Como u_d es ajustado, es el menor elemento de su bloque y como $j \nleq u_c$. Tenemos dos opciones

$$i) u_d \le u_c \le j \le w_F$$
 o $ii) u_d \le u_c$ y $u_c \notin [u_d, w_F]$.

Si ocurre i), entonces Además, si el marco A es eficiente $\mathfrak{C}A\simeq\mathfrak{Q}A$. Entonces tenemos el diagrama

$$\mathfrak{C}A \xrightarrow[\varphi]{\hat{\mathcal{R}}A} \xrightarrow{\hat{\alpha}} A^{\wedge}$$

donde $\hat{\alpha}(j) = \nabla(j)$

3.1. Algunos núcleos de $N\mathfrak{c}A$. Consideremos $A\in \mathrm{Frm}\ \mathrm{y}\ a,b\in A$. Sabemos que $a\prec b$ si y solo si existe $x\in A$ tal que $a\wedge x=0$ y $c\vee c=1$. En otras palabras, para $x=\neg a, x\vee b=1$.

Definición 3.11. Para $c \in \mathfrak{c}A$ y $a, b \in A_{u_c}$ decimos que $a \prec_c b$ para tener la relación *bastante por debajo* en el marco A_{u_c} .

El elemento $(a \succ c)$ es la negación de a en A_{u_c} . De aquí que

$$a \prec_c b \Leftrightarrow b \lor (a \succ c) = 1.$$

Si $c \leq d$, entonces

$$A_{u_c} = \uparrow c \supseteq \uparrow d = A_{u_d}$$

produce un morfismo de marcos $i_{dc}\colon A_{u_d}\to A_{u_c}$ dado por $i_{dc}(x)=d\vee x$. De esta manera para $c\leq d\leq e$ tenemos

$$A_{u_e} \leftarrow \stackrel{i_{ed}}{\longleftarrow} A_{u_d}$$

$$\downarrow i_{ec} \qquad \qquad \downarrow i_{dc}$$

$$A_{u_c}$$

y $i_{cc}: A_{u_c} \to A_{u_c}$ es la identidad.

La construcción anterior produce un funtor $F : \mathfrak{c}A \to \operatorname{Frm}$ donde

$$c \mapsto A_{u_c}$$
 y $c \le d \mapsto i_{dc}$

son la asignación en objetos y flechas, respectivamente.

Consideremos un cono sobre F dado por $(\hat{A}, \{\pi_c \colon \hat{A} \to A_{u_c}\}_{c \in cA})$. De manera similar que en la categoría de conjuntos,

$$\prod_{c \in \mathfrak{c}A} F(c) = \prod_{c \in \mathfrak{c}A} A_{u_c} = \{j \colon \mathfrak{c}A \to \bigcup A_{u_c} \mid j(c) \in A_{u_c}\}$$

para todo $c \in cA$ y j una función. De aquí que $j(c) \in A_{u_c}$ si y solo si $c \leq j(c)$, es decir,

$$j \in \prod_{c \in c} A_{u_c} \Leftrightarrow c \leq j(c).$$

Además, si $c \leq j(c)$ entonces $\pi_c(j) = j(c) = c \vee j(c)$, es decir, para $c \leq d$, $j(d) = i_{dc}(j(c)) = d \vee j(c)$ y $j : \mathfrak{c}A \to \mathfrak{c}A$. Por lo tanto

(3)
$$\hat{A} = \{ j \in \prod_{c \in \mathfrak{c}A} A_{u_c} \mid j(d) = i_{dc}(j(c)) \}$$
$$= \{ j \colon \mathfrak{c}A \to \mathfrak{c}A \mid j(c) \in A_{u_c} \}$$

para todo $c \leq d$.

Proposición 3.12. Si $c \le d \in \mathfrak{c}A$, entonces \hat{A} es un cono límite sobre F.

Demostración. (1) Por construcción, cada proyección π_c está bien definida. Además, si $c \leq d$

$$i_{dc} \circ \pi_c(j) = i_{dc}(j(c)) = d \lor j(c) = j(d) = \pi_d(j),$$

es decir, los triángulos del cono conmutan. Por lo tanto, \hat{A} es un cono sobre F.

(2) Sea $(Y, \{f_c : Y \to A_{u_c}\}_{c \in cA})$ cualquier otro cono sobre F, esto es, para todo $c \leq d$ se cumple $i_{dc} \circ f_c = f_d$. Consideremos el morfismo $u : Y \to \hat{A}$ definido por

$$(u(y))(c) = f_c(y)$$
 $(y \in Y, c \in \mathfrak{c}A).$

Primero vemos que $u(y) \in \lim F$ para cada $y \in Y$. Si $c \leq d$, entonces

$$(u(y))(d) = f_d(y) = (i_{dc} \circ f_c)(y) = i_{dc}(f_c(y)) = d \lor (u(y))(c),$$

y por (3), $u(y) \in \hat{A}$.

Además, por definición de u y de las proyecciones, para cada c se tiene

$$\pi_c \circ u = f_c$$

de modo que u es un morfismo de conos $(Y \to \hat{A})$. Veamos que u es único.

Si $v: Y \to \hat{A}$ es otro morfismo de conos con $\pi_c \circ v = f_c$ para todo c, entonces para todo $y \in Y$ y $c \in \mathfrak{c}A$,

$$(v(y))(c) = \pi_c(v(y)) = f_c(y) = (u(y))(c).$$

De aquí que v(y) = u(y) para todo y, luego v = u.

Por lo tanto \hat{A} satisface la propiedad universal del cono límite.

Lema 3.13. Para cualquier $A \in \text{Frm } y$ cada función $j : \mathfrak{c}A \to \mathfrak{c}A$ las siguientes son equivalentes:

- (1) $j \in \hat{A}$.
- (2) $j(d) = j(c) \lor d$ para todo $d \ge c \in \mathfrak{c}A$.
- (3) $j(c \lor a) = j(c) \lor a \text{ para todo } c \in \mathfrak{c}A \text{ y } a \in A.$
- (4) $j(c \vee e) = j(c) \vee e \text{ para todo } c, e \in \mathfrak{c}A.$

Demostración. 1) \Leftrightarrow 2): Se cumple por la construcción de \hat{A} .

2) \Rightarrow 3): Tomando $c \le d = c \lor a$, $d \in \mathfrak{c}A$, pues $\mathfrak{c}A$ es una sección superior. De esta manera, por 2)

$$j(d) = j(c) \lor d = j(c) \lor c \lor a = j(c) \lor a,$$

pues c < j(c).

- 3) \Rightarrow 4): Si $e \in \mathfrak{c}A$, $e \in A$ y aplicando 3) obtenemos lo que queremos.
- 4) \Rightarrow 2): Si $c \le d$, se cumple que $c \lor d = d$, tomando e = d y aplicando 4) se tiene $j(d) = j(c) \lor d$.

Lema 3.14. Para $A \in \text{Frm } si \ j \in \hat{A}$, entonces j es un núcleo en $\mathfrak{c}A$.

Demostración. Verifiquemos que $j \in \hat{A}$ cumple las condiciones de núcleo.

- (1) Por construcción, $c \leq j(c)$, es decir, j infla.
- (2) Notemos que para d = j(c), entonces $j(d) = j(j(c)) = j(c) \lor j(c) = j(c)$. Por lo tanto j es idempotente.

(3) Consideremos $c = d \wedge d'$, entonces $c \leq d, d'$. Luego

$$j(d) = j(d \wedge d') \vee d$$
 y $j(d') = j(d \wedge d') \vee d'$.

De aquí que

$$j(d) \wedge j(d') = (j(d \wedge d') \vee d) \wedge (j(d \wedge d') \vee d')$$
$$= j(d \wedge d') \vee (d \wedge d')$$
$$= j(d \wedge d')$$

donde la segunda igual se da por la distributividad y la última del hecho de que j infla. Así j respeta ínfimos.

Por lo tanto, j es un núcleo en cA.

Sabemos que si $j \in NA$, entonces $j^{-1}(1)$ es un filtro.

Lema 3.15. Para cualquier núcleo j en una semiretícula de Heyting A y cualquier $a \in A$, la desigualdad $v_a \leq j$ se cumple si y solo si j(a) = 1, donde $v_a(x) = (a \succ x)$.

Demostración. Es consecuencia de las propiedades de los v-núcleos.

Enunciamos un lema auxiliar para la prueba del siguiente teorema.

Lema 3.16. Sea A un marco y j: $A \rightarrow A$ un núcleo. Si j preserva supremos finitos y supremos dirigidos, entonces j preserva todos los supremos arbitrarios, es decir,

$$j(\bigvee X) = \bigvee j[X]$$

para todo $X \subseteq A$.

Demostración. Sea $X \subseteq A$ y consideremos el conjunto

$$\mathcal{F}(X) = \{ \bigvee F \mid F \subseteq X \text{ es finito} \}.$$

Notemos que $\mathcal{F}(X)$ es dirigido pues $u=\bigvee F$ y $v=\bigvee G$ con F,G finitos, entonces $w=\bigvee (F\cup G)\in \mathcal{F}(X)$ y $u\leq w,v\leq w$.

Además,

$$\bigvee X \ = \ \bigvee \mathcal{F}(X).$$

Por hipótesis j preserva supremos finitos y dirigidos, entonces

$$j(\bigvee X) = j(\bigvee \mathcal{F}(X)) = \bigvee_{u \in \mathcal{F}(X)} j(u) = \bigvee_{F \subseteq_{\mathrm{fin}} X} j(\bigvee F) = \bigvee_{F \subseteq_{\mathrm{fin}} X} \bigvee j[F].$$

Finalmente, como $\{\bigvee j[F]\mid F\subseteq_{\mathrm{fin}}X\}$ es dirigido y su supremo coincide con $\bigvee j[X]$, tenemos que

$$j(\bigvee X) = \bigvee j[X].$$

Teorema 3.17. Para A un marco Hausdorff y cualquier núcleo $j : \mathfrak{c}A \to \mathfrak{c}A$ las siguientes son equivalentes

(1)
$$j \in \hat{A}$$
.

- (2) j preserva supremos no vacíos.
- (3) j es Scott-continuo.
- (4) $\nabla(j) \in \mathfrak{c}A^{\wedge}$.

Demostración.

1)
$$\Rightarrow$$
 2): Consideremos $c, d \in \mathfrak{c}A$, entonces

$$j(c \vee d) = j(c) \vee c \vee d = j(c) \vee d \leq j(c) \vee j(d).$$

Por monotonía se cumple que $j(c)\vee j(d)\leq j(c\vee d)$. Por lo tanto $j(c\vee d)=j(c)\vee j(d)$.

Para los supremos dirigidos, consideremos $\mathcal{D} \subseteq \mathfrak{c}A$ dirigido y tomemos $c \in \mathcal{D}$. Como $\bigvee \mathcal{D} \in \mathfrak{c}A$ se cumple que

$$j(\bigvee \mathcal{D}) = j(c \vee \bigvee \mathcal{D}) = j(c) \vee \bigvee \mathcal{D} = \bigvee_{d \in \mathcal{D}} j(c) \vee d = \bigvee_{d \in \mathcal{D}} j(c \vee d) = \bigvee_{e \in \mathcal{D}} j(e)$$

donde la última igual se cumple por ser \mathcal{D} dirigido.

De aquí que, por el Lema 3.16 se cumple que j preserva cualquier supremo.

- 2) \Rightarrow 3): Si j preserva supremos dirigidos, j es Scott continuo.
- 3) \Rightarrow 4): Por la prueba del Lema 3.4 5), como cA es compacto se tiene que para $X \subseteq cA$, con X dirigido, existe $x \in X$ tal que x = 1 y $x \in A_{u_c}$ para $c \in cA$ y $1 = \bigvee X$. como j es Scott continuo

$$j(\bigvee X) = \bigvee j[X] = 1,$$

es decir, $\bigvee X \in \nabla(j)$. de aquí que existe $j(x) \in j[X]$ tal que j(x) = 1, entonces $x \in \nabla(j)$. Por lo tanto, $X \cap \nabla(j) \neq \emptyset$ y $\nabla(j) \in \mathfrak{c}A^{\wedge}$.

4) \Rightarrow 1): Sabemos que $j \in \lim F$ si $j(d) = j(c) \lor d$ para $c \le d$. Como j es monótona

$$j(c) \le j(d) \Rightarrow d \lor j(c) \le d \lor j(d) = j(d)$$

siempre se cumple. De esta manera, basta con verificar que $j(d) \leq d \vee j(c)$. Consideremos $e \in A_{u_c}$ tal que $e \vee j(d) = 1$ y como $e \vee j(d) \leq j(e \vee d)$, entonces $j(e \vee d) = 1$, es decir, $e \vee d \in \nabla(j)$.

4. Cosas de Ángel

Trivially KC implies patch trivial (or equivalently tidy) we want some converse of this fact.

Following articulo de igor.,

Definición 4.1. A frame A has *fitted points* (p-fit for short) if for every point $p \in pt(A)$ the nucleus

$$\mathbf{w}_n$$
 is fitted

that is, to said for every point p the nucleus w_p is alone in its block.

In general for each $p \in pt(A)$, the nucleus w_p is the largest member of his block, that is,

$$[v_{\mathcal{P}}, \mathbf{w}_p]$$

the corresponding block, here $\mathcal{P}=\{x\in A\mid x\nleq p\}$ in this case we know how to calculate

$$v_{\mathcal{P}}$$
.

using the prenucleus $f_{\mathcal{P}}$ we know that

$$v_{\mathcal{P}} = f_{\mathcal{P}}^{\infty} = (\dot{\bigvee} \{ v_x \mid x \in \mathcal{P} \})^{\infty}$$

moreover:

$$f_{\mathcal{P}}(x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ \leq p & \text{si} \quad x \leq p \end{cases}$$

for $x \in A$.

and in fact $w_p = u_p \vee v_P = f_P \circ u_p$. If w_p is fitted, that is,

$$w_p = v_p$$

then one need to have $u_p \leq v_p$ then

$$p \le v_{\mathcal{P}}(0)$$

by the equation of $f_{\mathcal{P}}$ we have

$$0 \le \cdots \le f_{\mathcal{P}}^{\alpha}(0) \le \cdots \le$$

Proposición 4.2. Let A be a frame for each $p \in pt(A)$ the following are equivalent:

- (i) w_p is fitted.
- (ii) w_p is alone in its block.
- (iii) $u_p \leq v_{\mathcal{P}}$.
- (iv) $u_p \leq f_{\mathcal{P}}$.
- (v) $f_{\mathcal{P}} \circ u_p = v_{\mathcal{P}}$.
- (vi) aqui debe de ir una formula de primer de orden.

Proposición 4.3. In a p-fit frame for each $p \in pt(A)$ the nucleus w_p is a maximal element in pA.

Demostración. First we dealing with the basics v_F for $F \in A^{\wedge}$ of the patch frame, given any w_p suppose that $w_p \leq v_F$ then by (propiedades generales de los w) $v_F = w_b$ where $b = v_F(0)$ thus

$$\mathbf{w}_n \leq \mathbf{w}_b \Leftrightarrow \mathbf{w}_n(b) = b$$

since w_p is two valuated we have b=1 or b=p if the first case occur then we are done, for the case b=p we have $v_f(p)=p$ that is, to say, $p \notin F$, then by the Birkhoff's separation lemma we can find a completely prime filter D such that

$$F \subseteq G \not\ni p$$

let q the corresponding point associated to G, then $p \le q$ since A is p-fit $v_G = w_q$ and thus $w_p \le w_q$ wich is equivalent to $w_p(q) = q$ again since we are dealing with points one necessary has p = q.

Now consider any closed \mathbf{u}_c such that, $\mathbf{w}_p \leq \mathbf{u}_c$ then $\mathbf{w}_p(c) = 1$ and thus 1 = c. Therefore in basics of the patch the nuclei \mathbf{w}_p are maximal, now consider any $k \in \mathbf{p}A$ such that $k \in \mathfrak{K}A$

Proposición 4.4. Let A be a frame then if

$$v_F \neq v_G$$

Definición 4.5. A frame A is *tame* if does not have wild points.

Proposición 4.6. In a tame p-fit frame the patch frame pA is T_1 .

Since every hausdorff frame is tame and p-fit we have:

Corolario 4.7. If $A \in \mathcal{H}rm$ then, the patch frame pA is T_1 .

Definición 4.8. Let A be a frame a nucleus k on A it said to be kq if A_j is a compact frame.

Denote by

$$\Re A = \{ j \in NA \mid j \text{ is } kq \}.$$

Definición 4.9. A frame A is *compact closed Hausdorff* (KCH for short) if every compact quotient of A is closed and Hausdorff.

Denote by
$$\mathfrak{f}A = \{kq \text{ fitted nuclei }\} = \{v_F \mid F \in A^{\wedge}\}$$
 denote by $\mathfrak{C}A = \{a \in A \mid \mathbf{u}_a \in \mathfrak{K}A\}$

5. RESULTADOS ADICIONALES

Lema 5.1. Sea $p \in A$. p es \land -irreducible si y solo si A está linealmente ordenado.

Demostración. \Rightarrow): Consideremos p,q elementos \land -irreducibles. Veamos que $p \le q$ o $q \le p$. Notemos que

$$p \land q \le p$$
 $y \land q \le q$

Por hipótesis, $p y q \text{ son } \land \text{-irreducibles, es decir,}$

$$p \le p \circ q \le p$$
 y $p \le q \circ q \le q$.

Por lo tanto $p \le q$ o $q \le p$, es decir, A está linealmente ordenado.

 \Leftarrow): Consideremos $a,b,p\in A$ tales que $a\wedge b\leq p$. Cómo A es linealmente ordenado, se cumple que $a\wedge b=b$ o $a\wedge b=a$ (pues $a\leq b$ o $b\leq a$). Por lo tanto $a\leq p$ o $b\leq p$. Por lo tanto, p es \wedge -irreducible. Como p es arbitrario, entonces ocurre para cualquier $p\in A$.

Observación 5.2. Los marcos linealmente ordenados no son Hausdorff punteados.

Demostración. En los marcos linealmente ordenados todos los elementos son semiprimos. Por lo tanto existen primos que no son máximos.

The block structure on a frame is an important problem and its related with some separation properties of frames.

Proposición 5.3. For $F \in A^{\wedge}$ and $Q \in \mathcal{Q}S$, if $j \in [v_Q, w_Q]$, then $U_*jU^* \in [v_F, w_F]$, where U^* is the morfism spatial reflection U_* is the right adjoint.

Demostración. Since N is a functor, we have

$$\begin{array}{ccc}
A & NA \\
U & & \downarrow & & \downarrow \\
OS & NOS
\end{array}$$

and $N(U)_*$ is the right adjoint of $N(U)^{\wedge}$. Note the following:

- (1) $N(U)(j) \le k \Leftrightarrow j \le N(U)_*k$.
- (2) If $k \in NOS$ then $N(U)(j) \le k \Leftrightarrow Uj \le kU$.
- (3) $N(U)_*k = U_*kU^*$ and $UN(U)_*k = k(U)$.

In 3), if j = k, $N(U)_*(j) = U_*jU^*$ and $UN(U)_*j = jU$. For $x \in F$

$$x \in A \xrightarrow{U^*} \mathcal{O}S \xrightarrow{j} \mathcal{O}S \xrightarrow{U_*} A$$

and $U_*(j(U(x))) = \bigwedge(S \setminus j(U(x)))$. Note that $U_*(j(U^*(x))) \subseteq \operatorname{pt} A$. Thus

$$x \in F \Leftrightarrow Q \subseteq U(x) \Leftrightarrow U(x) \in \nabla(j) = \nabla(Q) \Leftrightarrow S \setminus j(U(x)) = \emptyset$$
$$\Leftrightarrow \bigwedge (S \setminus j(U(x))) = 1 = (U_*jU^*)(x)$$
$$\Leftrightarrow x \in \nabla(U_*jU^*)$$

Therefor $F = \nabla (U_* j U^*)$.

In this way we have a function

$$\mho\colon [V_Q,W_Q]\to [V_F,W_F]$$

Teorema 5.4. Let $A \in \mathcal{H}rm$ then for every $F \in A^{\wedge}$ with corresponding \mathcal{Q} compact saturated we have

$$\mathcal{OQ} \cong \uparrow \mathcal{Q}'$$

, that is, the frame of opens of the point space of A_F is isomorphic to a compact closed quotient of a Hausdorff space.

EJEMPLOS DE marcos pt que no sean KC

HAY que COMENTAR LAS COSAS QUE ESTAN MAL comentar me refiero a ponerlas entre

[Esc01] [Esc06] [SS06]

REFERENCES

- [Esc01] Martin Hötzel Escardó, *The regular-locally compact coreflection of a stably locally compact locale*, Journal of Pure and Applied Algebra **157** (2001), no. 1, 41–55.
- [Esc06] Martín H Escardó, Compactly generated hausdorff locales, Annals of Pure and Applied Logic 137 (2006), no. 1-3, 147–163.
- [Sim04] Harold Simmons, *The vietoris modifications of a frame*, Unpublished manuscript, 79pp., available online at http://www.cs. man. ac. uk/hsimmons (2004).
- [SS06] RA Sexton and H Simmons, *Point-sensitive and point-free patch constructions*, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433–468.