Mathematische Methoden für Informatiker

Prof. Dr. Ulrike Baumann

05.04.2019

2. Vorlesung

- Grenzwerte von Folgen
- Beispiele: Harmonische Folge, Geometrische Folge
- Rechnen mit Grenzwerten: Grenzwertsätze
- Uneigentliche Grenzwerte
- Konvergenzkriterien

Zur Wiederholung (1)

 $a \in M$ ist Grenzwert von $(x_n) : \iff$

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq \mathbb{N} : \ n \geq N \Rightarrow |x_n - a| < \varepsilon$$

bzw.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N : \ |x_n - a| < \varepsilon$$

bzw.

Zu jeder reellen Zahl $\varepsilon > 0$ (und sei sie auch noch so klein) gibt es eine natürliche Zahl N (und sei sie auch noch so groß), so dass für alle Folgenglieder x_n mit $n \ge N$ gilt: $|x_n - a| < \varepsilon$

Zur Wiederholung (2)

bzw.

Zu jeder noch so kleinen Fehlerschranke $\varepsilon>0$ unterscheiden sich die Folgenglieder ab einem genügend großen Index N um weniger als ε vom Grenzwert a.

bzw.

In der ε -Umgebung $(a - \varepsilon, a + \varepsilon)$ von a liegen "fast alle" Folgenglieder x_n (d.h. alle bis auf endlich viele Ausnahmen)

Grenzwert einer Folge

• Folgen, die einen Grenzwert a besitzen, heißen konvergent (die Folge konvergiert dann gegen den Grenzwert a).

Schreibweise:
$$\lim_{n\to\infty} = a$$
 bzw. $x_n \to a$ $(n\to\infty)$

- Folgen, die keinen Grenzwert besitzen, heißen divergent.
- Folgen mit dem Grenzwert a = 0 heißen Nullfolgen.
- Satz: Jede Folge (x_n) besitzt höchstens einen Grenzwert.

Beispiele

• Konvergente Folgen:

$$\begin{split} &\lim_{n\to\infty}\frac{1}{n}=0\quad\text{(harmonische Folge)}\\ &\lim_{n\to\infty}q^n=0\quad\text{für }|q|<1\quad\text{(geometrische Folge)}\\ &\lim_{n\to\infty}\sqrt[n]{a}=1\quad\text{für }a\in\mathbb{R},\;a>0\\ &\lim_{n\to\infty}\sqrt[n]{n}=1\\ &\lim_{n\to\infty}\left(1+\frac{a}{n}\right)^n=e^a\quad\text{für }a\in\mathbb{R} \end{split}$$

Divergente Folgen:

$$\lim_{n o\infty}\sqrt[n]{n!}$$
 existiert nicht $\lim_{n o\infty}q^n$ für $|q|>1$ existiert nicht

Rechenregeln für reellwertige bzw. komplexwertige konvergente Folgen (Grenzwertsätze)

Es sei $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ und $k \in \mathbb{R}$ (bzw. $k \in \mathbb{C}$). Dann existieren auch die folgenden Grenzwerte und es gilt:

$$\bullet \lim_{n\to\infty} (k\cdot x_n) = k\cdot a$$

$$\bullet \lim_{n\to\infty} (x_n + y_n) = a + b$$

$$\bullet \lim_{n\to\infty}(x_n-y_n)=a-b$$

$$\bullet \lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b$$

•
$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{a}{b}$$
, falls $b\neq 0$

Die konvergenten Folgen bilden einen Vektorraum und $x_n\mapsto \lim_{n\to\infty}x_n$ ist eine lineare Abbildung in den Grundkörper.

Uneigentliche Grenzwerte

• Eine reellwertige Folge (x_n) hat den uneigentlichen Grenzwert ∞ ,

wenn gilt:

$$\forall r \in \mathbb{R} \ \exists N(r) \in \mathbb{N} \ \forall n \geq N : \ x_n \geq r$$

Schreibweise:
$$\lim_{n\to\infty} x_n = \infty$$

- Ist $\lim_{n\to\infty} (-x_n) = \infty$, so schreibt man $\lim_{n\to\infty} x_n = -\infty$.
- Beispiel: (geometrische Folge)

$$\lim_{n o \infty} q^n = \infty$$
, falls $q > 1$

$$\lim_{n o \infty} q_n$$
 existiert nicht für $q \le -1$

Konvergenzkriterien für reellwertige Folgen (x_n)

- (x_n) konvergent \Rightarrow (x_n) beschränkt
- Monotoniekriterium:

$$(x_n)$$
 monoton und beschränkt \Rightarrow (x_n) konvergent

Vollständigkeit der reellen Zahlen:

$$(x_n) \ monoton \ wachsend \ und \ nach \ oben \ beschränkt \\ \Rightarrow (x_n) \ konvergent \ und \ \lim_{n\to\infty} x_n = \sup\{x_n \mid n\in\mathbb{N}\} \\ (x_n) \ monoton \ fallend \ und \ nach \ unten \ beschränkt \\ \Rightarrow (x_n) \ konvergent \ und \ \lim_{n\to\infty} x_n = \inf\{x_n \mid n\in\mathbb{N}\}$$

- Jede Teilfolge einer konvergenten Folge ist konvergent und hat denselben Grenzwert.
- Enthält eine Folge eine divergente Teilfolge oder zwei konvergente Teilfolgen mit unterschiedlichen Grenzwerten, dann ist die Folge divergent.