1. Basic ODEs

(a) separatable:
$$y' = \frac{F(x)}{G(y)}$$

 $\Rightarrow \frac{dy}{dx} = \frac{F(x)}{G(y)} \Rightarrow \int G(y) dy = \int F(x) dx$

(b) Linear:
$$y' + p(x)y = q(x)$$

Integrating Factor: $e^{\int p(x)dx}$
 $\Rightarrow (e^{\int p(x)dx}y)' = e^{\int p(x)dx}q(x)$
 $\Rightarrow e^{\int p(x)dx}y = \int e^{\int p(x)dx}q(x)dx$

(c)
$$ay'' + by' + cy = 0$$
 (constant coefficient)
characteristc EQ: $ar^2 + br + c = 0$
 $\Delta > 0, y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
 $\Delta = 0, y = C_1 e^{rx} + C_2 x e^{rx}$
 $\Delta < 0, r = p \pm qi : y = e^{px} [c_1 cos(qx) + c_2 sin(qx)]$

$$y = y_c + y_p$$
, y_c is solution to homogeneous DIFF EQ $f(x)$:a polynomial in x or single sin/cos function $y_p = x^k$ (a polynomial of the same degree), k: # char eq's zero roots $(0,1,2)$ $f(x) = e^{ax}$ (a polynomial in x) $y_p = x^k e^{ax}$ (same degree), k: # char eq's roots = $a(0,1,2)$ $f(x) = e^{ax} cos(bx)$ (poly in x) or $e^{ax} sin(bx)$ ($apolyinx$) $y_p = x^k e^{ax}$ [(poly in x) $cos(bx)$ + (poly in x) $sin(bx)$] k: # char eq's root = $a \pm bi$ (0,1)

2. Laplace Transform Def:
$$\mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt$$

(d) ay'' + by' + cy = f(x)

$$Def: H_a(t) = H(t - a) = \begin{cases} 1, \ t \ge a \\ 0, \ t < a \end{cases}$$
 (1)

Def:
$$erf(x) = \frac{2}{\pi} \int_0^x e^{-u^2} du$$
, $erfc(x) = 1 - erf(x)$

$f(t) = \mathcal{L}^{-1}F(t)$	$F(t) = \mathcal{L}f(s)$
$f^{(n)}(t)$ (nth derivative)	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
H(t-a)f(t-a)	$e^{-as}F(s)$
$e^{at}f(t)$	F(s-a)
(f*g)(t)	F(s)G(s)
1	$\frac{1}{s} (s > 0)$
t^n (n is positive integer)	$\frac{n!}{s^{n+1}}$ (s > 0)
e^{at}	$\frac{1}{1-a}$ $(s>a)$
sin(at)	$\frac{\frac{s-u}{s}}{\frac{s^2+u^2}{s^2+u^2}}$ (s > 0)
cos(at)	$\frac{s^2+a^2}{s^2+a^2}$ $(s>0)$
sinh(at)	$\frac{s^2+a^2}{\frac{a}{s^2-a^2}}$ $(s> a)$
cosh(at)	$\frac{s^2-a^2}{s^2-a^2}$ $(s> a)$
$\delta(t-a) \ (a \ge 0)$	e^{-as}
$\begin{cases} o(t-u) & (u \ge 0) \\ t^n e^{at} \end{cases}$	
	$\frac{n!}{(s-a)^{n+1}}$
e ^{at} sinbt	$\frac{b}{((s-a)^2+b^2)}$
e ^a tcosbt	$\frac{s-a}{((s-a)^2+b^2)}$
$erfc(\underline{a})$	$\frac{1}{c}e^{-a\sqrt{s}}$
$erfc(\frac{u}{2\sqrt{t}})$	$\frac{1}{s}$ c .

Example:

$$\begin{split} & \mu_{tt}(x,t) = \mu_{xx}(x,t) + 1, \, \mu(x,0) = \mu_t(x,0) = -1, \, \mu(0,t) = t \\ & \mathcal{L}\mu_{tt} = s^2 U - s\mu(x,0) - \mu_t(x,0) = s^2 U + 1 \\ & \mathcal{L}\mu_{xx} + 1 = U_{xx} + \frac{1}{s} \\ & \Rightarrow U'' - s^2 U = 1 - \frac{1}{s} \, (x \text{ is variable, s is scalar}) \\ & U_c = k_1 e^{sx} + k_2 e^{-sx}, \, k_1 = 0 \\ & U_p = \frac{1 - \frac{1}{s}}{-s^2} = \frac{1}{s^3} - \frac{1}{s^2} \\ & \mathcal{L}\mu(0,t) = \mathcal{L}t = \frac{1}{s} = U(0,s) \\ & \Rightarrow k_2 + \frac{1}{s^3} - \frac{1}{s^2} = \frac{1}{s^2} \\ & \Rightarrow U = (\frac{2}{s^2} - \frac{1}{s^3})e^{-sx} - \frac{1}{s^2} + \frac{1}{s^3} \\ & \mu = \mathcal{L}^{-1}(U) = H(t-x)[2(t-x) - \frac{1}{2}(t-x)^2] - t + \frac{1}{2}t^2 \end{split}$$