Analysis of College Scorecard

Sheryan Resutov, Eugene Sokolov, Harrison Zhao

Dataset

- Kaggle dataset for 7804 U.S. universities
- Around 1700 features
- Data covers 1996 2013
- Features cover
 - About the school
 - Academics
 - Admissions
 - Costs
 - Student body

- Financial aid
- Completion
- Earnings
- Repayment

Problems With The Dataset

- Many elements are available only for students who receive federal grants and loans
- Treasury elements are protected for privacy purposes and shown as PrivacySuppressed
- Most elements are data pooled over two years to reduce year-over-year variability
- Many very specific features such as family income for 75k – 110k range

Transforming The Dataset

- Binning maps continuous values such as salary into discrete ranges
- $f_{max} f_{min}$ are divided into n discrete bins
 - $-f_{max}$ is the maximum value for the feature
 - $-f_{min}$ is the minimum value for the feature
 - n is the number of bins
- For example, 43 binned into the range 40 50 with 5 bins would give a bin number of 2

Preliminary Algorithms Used

- Logistic Regression
- Support Vector Machines (SVM)
 - Grid search to find optimal parameters
- Five fold cross validation
- Both algorithms did not perform well for classification

Lasso Regression

- Least Absolute Shrinkage and Selection
 Operator
- Regularized least squares

$$\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$$

$$\min_{w} \frac{1}{2n_{samples}} ||Xw - y||_{2}^{2} + \alpha ||w||_{1}$$

Random Forests

- How it works
 - 1. Bagging
 - 2. Random feature selection
 - 3. Ensemble learning
- Used 100 or 200 trees

Analysis Performed

- Analysis for:
 - Mean earnings
 - Loan default rate based on income bracket
 - Loan default rate based on major
 - Completion rate

Mean Earnings Analysis

- Dependent Variable: Mean earnings of students working and not enrolled 10 years after entry (mn_earn_wne_p10)
- Independent Variables:
 - ADM_RATE_ALL (Admission Rate)
 - COSTT4_A (Average cost of Attendance)
 - UGDS_BLACK (% black students)
 - PPTUG_EF (% students part time)
 - UG25abv (% students age>25)
 - PAR_ED_PCT_1STGEN (% first gen)
 - PCTFLOAN (% receiving fed loan)
 - TUITIONFEE_OUT (Out-state tuition)
 - TUITIONFEE_IN (In-state tuition)

- UGDS WHITE (% white students)
- TUITFTE (net tuition)
- AVGFACSAL (faculty salary)
- INC_PCT_LO (% poor students)
- UGDS (total undergrad students)
- PCTPELL (% receive Pell Grant)
- DEBT_MDN (loan principal)
- INC_PCT_H2 (% wealthy students)

Mean Earnings Analysis

- Using 8 bins
 - 13.4k bin size
 - 20.7k min
 - 128.4k max
- Classification accuracy using
 - Logistic Regression: 62%
 - SVM: 59.7%
 - Random Forest: 72%

Lasso Regression on Mean Earnings

Lasso Regression on Mean Earnings

- Used only TUITFTE and INC_PCT_H2
 - TUITFTE Net tuition revenue per full-time equivalent student
 - INC_PCT_H2 Dependent students with family incomes between \$110,001+ in nominal dollars
- Accuracy with Random Forest increases to 78%
- The rich get richer

- Dependent Variable: Three-year cohort default rate (CDR3)
- Independent Variables:
 - INC_PCT_M1 *(between \$30,001-\$48,000)
 - INC_PCT_M2 *(between \$48,001-\$75,000)
 - INC_PCT_H1 *(between \$75,001-\$110,000)
 - INC PCT H2 *(between \$110,001+)

^{*} Dollar amounts correspond to aided students' family incomes

- Using 10 bins
 - 0.2 bin size
 - 0 min
 - 1 max
- Classification accuracy using
 - Logistic Regression: 53%
 - SVM: 50%
 - Random Forest: 75%

高口

- Using only INC_PCT_M1 (aided family incomes \$30,001-\$48,000) accuracy goes down to 55% for Random Forest
- Perform Lasso regression based on the majors:
 - PCIP04 (% degrees Architecture)
 - PCIP14 (% degrees Engineering)
 - PCIP50 (% degrees Art)

Loan Default Rate By Major

- Dependent Variable: Completion rate for firsttime, full-time students at four-year institutions (C150_4)
- Independent Variables:
 - COSTT4 A (Average cost of Attendance)
 - ADM_RATE_ALL (Admissions Rate)
 - UGDS BLACK (% black students)
 - PPTUG EF (% students part time)
 - INC_PCT_LO (% poor students)
 - UG25abv (% students age>25)
 - PAR_ED_PCT_1STGEN (% first gen)
 - PCTFLOAN (% receiving fed loan)

- SATVR75 (Reading SAT 75th %tile)
- SATWR75 (Writing SAT 75th %tile)
- SATMT75 (Math SAT 75th %tile)
- TUITIONFEE_IN (In-state tuition)
- TUITIONFEE OUT (Out-state tuition)
- UGDS WHITE (% white students)
- AVGFACSAL (Faculty Salary)
- TUITFTE (Tuition Fees)

- Using 5 bins
 - 0.18 bin size
 - $-0.057 \, \text{min}$
 - 0.9628 max
- Classification accuracy using
 - Logistic Regression: 45%
 - SVM: 37%
 - Random Forest: 62%

- Lasso analysis independent variables:
 - COSTT4_A (Average cost of Attendance)
 - ADM_RATE_ALL (Admission Rate)
 - SATVR75 (Verbal SAT 75th percentile)
 - TUITIONFEE OUT (Out-state tuition)
 - UGDS_WHITE (% white students)
- Classification accuracy using
 - Logistic Regression: 41%
 - SVM: 38%
 - Random Forest: 62%

Conclusion and Future Work

- Feature reduction
- Different classifiers
- Collecting more data
- Privacy suppression lowers classification accuracy

Thank You!