local-degree-asymmetry

Source code for papers: "Friendship Paradox in Growth Networks: Analytical and Empirical Analysis" and "Average Nearest Neighbor Degree and Its Distribution in Social Networks".

The program can be used to simulate Barabasi-Albert and triadic closure (by Holme and Kim) networks, acquire friendship index, average degree dynamics for nodes in networks, acquire friendship index distributions, degree-degree correlations in real and synthetic networks.

How to run

There are 2 main python source files in the root of the repository.

- 1. main-ui.py handles a simple self-explanatory UI for running experiments.
- 2. To manually run the program open main.py and follow detailed instuctions on top of the file. In short, edit experiment_type_num variable on line 53 to select which type of experiment you would like to run. The variable is an index for input_types array on line 51. Edit model parameters or select input filename. For models you may record trajectories of nodes specified in focus_indices array.

Output: histograms with value distributions, node trajectories: both raw and processed.

Tested on Windows 10, Python 3.7.6. Please, see next section on how to visualize output.

How to visualize

Output histograms and averaged degree dynamics are created in the format, that is accepted by LaTeX Tikzpicture environment.

Example of code:

```
xmax=4.8,
       tick align = {outside},
       ymin=0,
       ymax=12,
       xlabel={$\log(\#\beta_i\ \mathrm{in} \
\mathrm{interval})$, BA model},
legend style = {cells = {anchor=west}, nodes = {scale=0.75}},
legend pos=south west
\addplot[blue, only marks, mark=*, mark options={scale=0.25}]
table[x=lnt,y=lnb]{source_data/hist_out_ba_335000_3.txt};
\addlegendentry{$\log(\#\beta i(t))$}
\addplot[red, smooth, thick] table[x=lnt,y=linreg]
{source_data/hist_out_ba_335000_3.txt};
\addlegendentry{$-2.48\log t+C$}
\end{axis}
\end{tikzpicture}
```

Produces following image:

