$\mbox{CS5487}$ - Comparisons of Maximum Likelihood and Bayesian Estimation

Antoni B. Chan
Department of Computer Science
City University of Hong Kong

Sep 21, 2016

1 Comparison between MLE and Bayesian Estimation

2 Gaussian Distribution

Gaussian observation model with Gaussian prior distribution:

- prior distribution: $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$
- observation likelihood: $p(x|\mu) = \mathcal{N}(x|\mu, \sigma^2)$.
- The mean μ is unknown, while $\{\mu_0, \sigma_0^2, \sigma^2\}$ are known.

The maximum likelihood estimate and various Bayesian estimates are summarized below:

	parameter estimate	$\begin{array}{c} \text{posterior} \\ \text{distribution} \\ p(\mu \mathcal{D}) \end{array}$	predictive distribution $p(x \mathcal{D})$
MLE	$\hat{\mu}_{\mathrm{ML}} = \frac{1}{n} \sum_{i} x_{i}$	$\delta(\mu - \hat{\mu}_{ m ML})$	$\mathcal{N}(x \hat{\mu}_{\mathrm{ML}},\sigma^2)$
Bayesian	$\begin{cases} \hat{\mu}_n = \alpha \hat{\mu}_{\text{ML}} + (1 - \alpha)\mu_0 \\ \alpha = \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2} \\ \frac{1}{\hat{\sigma}_n^2} = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \end{cases}$	$\mathcal{N}(\mu \hat{\mu}_n,\hat{\sigma}_n^2)$	$\mathcal{N}(x \hat{\mu}_n,\hat{\sigma}_n^2+\sigma^2)$
MAP	$\hat{\mu}_{\mathrm{MAP}} = \hat{\mu}_n$	$\delta(\mu - \hat{\mu}_{\mathrm{MAP}})$	$\mathcal{N}(x \hat{\mu}_{\mathrm{MAP}},\sigma^2)$
Bayesian (non-informative; $\sigma_0^2 \to \infty$)	$\hat{\mu}_n = \hat{\mu}_{\mathrm{ML}}$	$\mathcal{N}(\mu \hat{\mu}_n, \frac{1}{n}\sigma^2)$	$\mathcal{N}(x \hat{\mu}_{\mathrm{ML}},(1+\frac{1}{n})\sigma^2)$

different for small n, same for large n

2.1 Gaussian Example

The true distribution is $p(x) = \mathcal{N}(x|0,5)$, and $N = \{5,10,25,100\}$ samples are drawn. The prior is $p(\mu) = \mathcal{N}(\mu|0,1)$. The below plots show the posterior for μ and the predictive distribution for MLE and Bayesian Estimation. The points are plotted below the densities, and are randomly scattered in the y-direction for visualization. The two methods differ when there are few examples, with the Bayesian method biased towards the prior. When there are many examples (N = 100), the two methods have the similar estimates.

3 Bernoulli Distribution (Problem 3.7)

Bernoulli observation model with different priors:

• prior distribution: $p(\pi)$

• observation likelihood: $p(x|\pi) = \pi^x (1-\pi)^{1-x}$

• data likelihood: $p(\mathcal{D}|\pi) = \pi^s (1-\pi)^{n-s}$, where $s = \sum_i x_i$.

It can be shown that the *predictive distribution* has the form:

$$p(x|\mathcal{D}) = \hat{\pi}^x (1 - \hat{\pi})^{1-x}.$$
 (1)

Hence, the predictive distribution is also a Bernoulli distribution, but with a modified parameter $\hat{\pi}$.

The maximum likelihood estimate and various Bayesian estimates for different priors are summarized below:

	$\begin{array}{c} \text{prior} \\ p(\pi) \end{array}$	predictive distribution $p(x \mathcal{D})$	# of tosses	# of 1's	interpretation
MLE	-	$\hat{\pi} = \frac{s}{n}$	n	s	-
MAP (uniform)	1 π	$\hat{\pi} = \frac{s}{n}$	n	s	"same as MLE"
MAP (favor 1's)	$\frac{2}{1\pi}$	$\hat{\pi} = \frac{s+1}{n+1}$	n+1	s+1	"add a 1"
MAP (favor 0's)	2 1 π	$\hat{\pi} = \frac{s}{n+1}$	n+1	s	"add a 0"
Bayesian (uniform)	1 1 1 1 1 1	$\hat{\pi} = \frac{s+1}{n+2}$	n+2	s+1	"add one of each"

can fix empty bins by filling with extra samples (regularization)

Note: the Bayesian estimate is consistent with the non-informative prior (1 is equally as likely as 0).