Various Filtering (Stop word removal): Get grid of common terms

+ reduce vocabulary size (space), - language specific

Stemming: Stripping off word endings to reduce a word to its stem/core (e.g. PorterStemmer).

- + reduce vocabulary size (space)
- + unifies words with same meaning, but slight variation (foxes > fox)
- -language specific (for each language different rules)
- -1 extra step (quite expensive)
- -can result in non-dictionary words
- -words with different meaning can be mapped to same word (automatic / automate > autom)

Lemmatization: Mapping words to its root form.

E.g. (walk, walked, walks, walking) > walk or better > good

- + get true dictionary form of a word, hard to achieve in practice
- Term normalization (general): Allows matching more terms + identify small variations of same term
- -can lead to loss in precision

3 - Evaluation of Relevance **Precision (P):** Fraction of retrieved documents that are relevant.

 $P = \frac{\text{\# relevant items retrieved}}{\text{\# items retrieved}} = \frac{TP}{TP + FP}$

Recall (R): Fraction of relevant documents that are retrieved.
$$R = \frac{\text{\# relevant items retrieved}}{\text{\# relevant items in collection}} = \frac{TP}{TP + FN}$$

High Precision vs High Recall: It's a tradeoff!

- By returning more documents \Rightarrow recall increases monotonically
- E.g. return all document \Rightarrow recall of 1
- Comparison shopping \Rightarrow wants high recall (user wants all offers) • By returning fewer documents \Rightarrow often precision increases
- E.g. return 1 document \Rightarrow precision of 1 <u>if</u> document is relevant
- Web search \Rightarrow wants high precision (user just looks at few result)

F-Measure (**F**): Something in between precision and recall

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 where $\beta^2 = \frac{1 - \alpha}{\alpha}$

$$F_1 = \frac{2PR}{P + R}$$

A/B tests: Can also run A/B tests with 2 systems

- 1. Sample queries to evaluate on 2 systems
- 2. For each query show both results to raters
- 3. Raters judge which system is better
- 4. Compute overall statistics

4 - Scoring: TF-IDF

Scoring by matching terms: We have the general expectation:

- If query term doesn't occur in document ⇒ score contribution should be 0!
- The more frequent the query term in the document \Rightarrow the higher the score contribution!
- The more informative the query term \Rightarrow the higher the score contribution! E.g. bomb
- Given same term frequency \Rightarrow shorter document should be preferred

Term Frequency: Absolute frequency of a word in a document tf(w; d) = # word w in document d

$$\begin{split} \log\text{-tf}(\mathbf{w};\,\mathbf{d}) &= \log_2 \left(1 + \frac{\mathrm{tf}(\mathbf{w};\,\mathbf{d})}{\mathrm{document_length}} \right) \\ \mathrm{atf}(\mathbf{w};\,\mathbf{d}) &= \frac{1}{2} + \frac{1}{2} \frac{\mathrm{tf}(\mathbf{w};\,\mathbf{d})}{\mathrm{max}\{\mathbf{w}':\mathrm{tf}(\mathbf{w}';\,\mathbf{d})\}} \\ \mathrm{score}(\mathrm{query};\,\mathbf{d}) &= \sum_{\mathbf{w} \in \mathrm{query}} \log\text{-tf}(\mathbf{w};\,\mathbf{d}) \end{split}$$

- Augmented-tf is very sensible to maximum (stop word pruning)
- Using raw term frequencies (tf) is discouraged in practice

- **Document Frequency:** Quantifies importance of a query term $df(w) = \#\{d : tf(w; d) > 0\}$
 - = # documents in collection that contain w

Note:

- low df \Rightarrow more informative/topical (e.g. bomb) • high $df \Rightarrow less informative/topical$ (e.g. the)

Inverse Document Frequency: Translates df into term weights

$$idf(w) = log\left(\frac{n}{df(w)}\right) = log(n) - log(df(w))$$
 $n = num documents$

- low idf \Rightarrow less informative/topical (e.g. the)
- high idf \Rightarrow more informative/topical (e.g. bomb)

Collection Frequency: Like term freq. but in whole collection
$$cf(w) = \sum tf(w; d)$$

= #word occurrences in whole collection

$$rcf(w) = \frac{cf(w)}{\sum_{w'} cf(w')}$$

TF-IDF: Combine both tf and idf in one term weight $tf\text{-}idf(w; d) = log\text{-}tf(w; d) \cdot idf(w)$

$$= \log \left(1 + \frac{tf(w; d)}{document_length}\right) \cdot \log \left(\frac{n}{df(w)}\right)$$
 score(query; d) =
$$\sum_{w \in query} tf\text{-}idf(w; d)$$

Note: We want that both tf(w) and idf(w) are large!

Vector Space Model: Represent both documents and queries in vector space (BoW) and rank documents according to their proximity to the query (e.g. use cosine distance).

Gaussian Mixture Model

K mixture components: $p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\theta_k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$

Data-Likelihood: $p(\mathbf{X}|\pi, \mu, \Sigma) \stackrel{iid}{=} \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$ EM-Algorithm

Maximize log-likelihood

$$(\hat{\pi}, \hat{\mu}, \hat{\Sigma}) \in \arg\max_{\mathbf{x}, \mathbf{y}} \sum_{k=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \mathbf{\Sigma}_k)$$

- $(\hat{\pi}, \hat{\mu}, \hat{\Sigma}) \in \underset{\pi, \mu, \Sigma}{\operatorname{arg max}} \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \mu_{k}, \Sigma_{k})$ 1. Introduce latent variable: $z_{k} \in \{0, 1\}, \sum_{k} z_{k} = 1, p(z_{k} = 1) = \pi_{k}$
 - and initialize μ_k and π_k . Set Σ_k to the given covariances.

2. E-step: Compute expectation (responsibilities)
$$\gamma(z_{k,n}) = p(z_{k,n} = 1 | \mathbf{x}_n) = \frac{p(z_k = 1)p(\mathbf{x}_n | z_k = 1)}{\sum\limits_{j=1}^{K} p(z_j = 1)p(\mathbf{x}_n | z_j = 1)} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \mathbf{\Sigma}_k)}{\sum\limits_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \mu_j, \mathbf{\Sigma}_j)}$$
3. M-step: Re-estimate model parameters

$$\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{k,n}) \mathbf{x}_n$$
 and $\pi_k^{\text{new}} = \frac{N_k}{N}$ where $N_k = \sum_{n=1}^N \gamma(z_{k,n})$

Estimating K: $\kappa(\cdot) = \text{dof.}$ E.g in GMM: $\kappa(\mathbf{U}, \mathbf{Z}) = KD + (K-1)$

• AIC: $-\ln p(\mathbf{X}|\theta) + \kappa(\mathbf{U}, \mathbf{Z})$

• BIC: $-\ln p(\mathbf{X}|\theta) + \frac{1}{2}\kappa(\mathbf{U},\mathbf{Z})\ln N$

RBAC

Given user-permission matrix $\mathbf{X} \in \mathbb{R}^{D \times N}$, find roles

$$\begin{aligned} \mathbf{U} &= [\mathbf{u}_1, \dots, \mathbf{u}_K] \in \mathbb{B}^{D \times K} \text{ and assignment} \\ \mathbf{Z} &= [\mathbf{z}_1, \dots, \mathbf{z}_N] \in \mathbb{B}^{K \times N} \text{ s.t:} \end{aligned}$$

$$\mathbf{X} = [\mathbf{z}_1, \dots, \mathbf{z}_N] \in \mathbb{Z}$$
 s.t. $\mathbf{X} = \mathbf{U} \otimes \mathbf{Z} \iff x_{dn} = \bigvee_k [u_{dk} \wedge z_{kn}]$

Model with $\beta = (\beta_{dk})^{D \times K}$: probability that role k has **no** permission d

SAC:
$$p(\mathbf{X}|\beta, \mathbf{Z}) = \prod_{n,d} p(x_{dn} = 1|\beta_{d\cdot}, \mathbf{z}_{\cdot n})^{x_{dn}} \cdot p(x_{dn} = 0|\beta_{d\cdot}, \mathbf{z}_{\cdot n})^{1-x_{dn}}$$

$$\begin{aligned}
&= \prod_{n,d} (1 - \beta_{d,k_n})^{x_{dn}} (\beta_{d,k_n})^{1 - x_{dn}} \\
&= \prod_{n,d} (1 - \prod_k \beta_{dk}^{z_{kn}})^{x_{dn}} (\prod_k \beta_{dk}^{z_{kn}})^{1 - x_{dn}} \\
&= \prod_{n,d} (1 - \beta_{d,\mathcal{L}_n})^{x_{dn}} (\beta_{d,\mathcal{L}_n})^{1 - x_{dn}}
\end{aligned}$$

Final Model: using noise model: $x_{dn} = (1 - \xi_{dn})(\mathbf{U} \otimes \mathbf{Z})_{dn} + \xi_{dn}\nu_{dn})$

 $p(\mathbf{X}|\mathbf{Z},\beta,\varepsilon,r):\prod_{s,d}(\varepsilon r+(1-\varepsilon)(1-\beta_{d,\mathcal{L}_n}))^{x_{dn}}\cdot(\varepsilon(1-r)+(1-\varepsilon)\beta_{d,\mathcal{L}_n})^{1-x_{dn}}$ ε : Noise probability, r probability of noisy bits to be 1

Evaluating a Matrix Reconstruction

Deviation: $\frac{1}{N \cdot D} || X - \hat{\mathbf{U}} \otimes \hat{\mathbf{Z}} ||_1$ **Deviating 1:** $\frac{|\{(i,j)|\hat{x}_{i,j}=1, x_{i,j}=0\}|}{|\{(i,j)|x_{i,j}=1|}$

Coverage: $\frac{|\{(i,j)|\hat{x}_{i,j}=x_{i,j}=1\}|}{|\{(i,j)|x_{i,j}=1|}$ Deviating 0: $\frac{|\{(i,j)|\hat{x}_{i,j}=0,x_{i,j}=1\}|}{|\{(i,j)|x_{i,j}=0|}$

Non-Negative MF

Given Document-term matrix $\mathbf{X} \in \mathbb{R}_{+}^{D \times N}$. We want a NMF for which holds:

 $\mathbf{X} pprox \mathbf{U}\mathbf{Z}$ with $\mathbf{U} \in \mathbb{R}_{+}^{D \times K}$ and $\mathbf{Z} \in \mathbb{R}_{+}^{K \times N}$

Probabilistic LSI

Generate tuple (document, word):

- 1. Sample document according to P(document)
- 2. Sample word according to P(word|document)

Assume a factorization: $P(word|doc) = \sum_{\text{topic}} P(word|topic)P(topic|doc)$ Therefore: $P(word, doc) = \sum_{\text{topic}} P(word|topic)P(topic, doc)$ Rewrite: $P(d\text{th }word, \text{ }n\text{th }document) = x_{dn} = (\mathbf{UZ})_{dn}$

Quadratic NMF

Consider non-negative \mathbf{X} and quadratic cost fnc. (like in K-Means): $\min_{\mathbf{U},\ \mathbf{Z}} J(\mathbf{U},\mathbf{Z}) = \frac{1}{2} ||\mathbf{X} - \hat{\mathbf{U}}\mathbf{Z}||_F^2$ s.t. $u_{dk}, z_{kn} \in \mathbb{R}_0^+$

Algorithm:

1. Init **U**, **Z** with pos. random values

Update factors U: $u_{dk} = u_{dk} \frac{(\mathbf{X}\mathbf{Z}^{\top})_{dk}}{(\mathbf{U}\mathbf{Z}\mathbf{Z}^{\top})_{dk}}$ Update coefficients **Z**: $z_{kn} = z_{kn} \frac{(\mathbf{U}^{\top}\mathbf{X})_{kn}}{(\mathbf{U}^{\top}\mathbf{U}\mathbf{Z})_{kn}}$

This leads to $\mathbf{X} \approx \mathbf{UZ}$ when K < N

Derivation:

Lagrangian: $L(\mathbf{U}, \mathbf{Z}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = J(\mathbf{U}, \mathbf{Z}) - tr(\boldsymbol{\alpha}\mathbf{U}^{\top}) - tr(\boldsymbol{\beta}\mathbf{Z}^{\top})$ $J(\mathbf{U}, \mathbf{Z}) = \frac{1}{2}||\mathbf{X} - \mathbf{U}\mathbf{Z}||_F^2 = \frac{1}{2}tr\left((X - UZ)(X - UZ)^T\right)$ $= \frac{1}{2}(tr(\mathbf{X}\mathbf{X}^{\top}) - 2tr(\mathbf{X}\mathbf{U}^{\top}\mathbf{Z}^{\top}) + tr(\mathbf{U}\mathbf{Z}\mathbf{Z}^{\top}\mathbf{U}^{\top}))$

Taking derivatives and setting to 0 leads to above update rules:

 $\frac{\partial J}{\partial \mathbf{U}} = \mathbf{U}\mathbf{Z}\mathbf{Z}^{\top} - \mathbf{X}\mathbf{Z}^{\top} \stackrel{!}{=} 0 \text{ and } \frac{\partial J}{\partial \mathbf{Z}} = \mathbf{U}^{\top}\mathbf{U}\mathbf{Z} - \mathbf{U}^{\top}\mathbf{X} \stackrel{!}{=} 0$

Sparse Coding

Given signal $f = \mathbf{x}$ and orthonormal basis $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$:

Full reconstruction: $f = \sum_{k=1}^{K} \langle f, u_k \rangle u_k = \sum_{k=1}^{K} z_k u_k$ Approx. (compression): $\hat{f} = \sum_{k \in \sigma} z_k u_k$ where σ is a subset of size \tilde{K}

Reconstruction error: $||f-\hat{f}||_2^2 = \langle f-\hat{f}, f-\hat{f} \rangle = \ldots = \sum\limits_{k=0}^{\infty} z_k^2$

Fourier basis:Global support:+for sine-like sig,-for localized sig. Wavelet basis:Local support:+for localized sig,-for nonvanishing sig

Compressive Sensing

Assume $\mathbf{x} \in \mathbb{R}^{D \times 1}$ is sparse in some orthonormal basis $\mathbf{U} \in \mathbb{R}^{D \times D}$ with K large coefficients in $\mathbf{z} \in \mathbb{R}^{D \times 1}$: $\mathbf{x} = \mathbf{U}\mathbf{z}$

Idea: Instead of saving \mathbf{x} we save \mathbf{y} with dimension $M \ll D$

 $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} = \mathbf{\Theta}\mathbf{z}$ with $\mathbf{\Theta} = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$ s.t. $\Theta z = y$ Restore \mathbf{x} : $\mathbf{z}^* = \arg\min||\mathbf{z}||_0$ (use MP)

Overcomplete dictionaries

Assume $\mathbf{U} \in \mathbb{R}^{D \times L}$ is overcomplete

Objective: $\mathbf{z}^* \in \arg\min ||\mathbf{z}||_0$ s.t. $\mathbf{x} = \mathbf{U}\mathbf{z}$ (NP hard problem)

Coherence

Increasing the overcompleteness factor $\frac{L}{D}$: Increases the sparsity of the coding, but also increases the linear dependency between atoms.

coherence: $m(\mathbf{U}) = \max_{i,j:\ i \neq j} |\mathbf{u}_i^{\mathsf{T}} \mathbf{u}_j|$

 $\bullet m(\mathbf{B}) = 0$ for an orthogonal basis \mathbf{B} • $m([\mathbf{B}\mathbf{u}]) \geq \frac{1}{\sqrt{D}}$ if atom \mathbf{u} added to \mathbf{B}

Matching Pursuit (MP)

Greedy algo to approximate NP hard problem iteratively.

Objective: $\mathbf{z}^* \in \arg\min ||\mathbf{x} - \mathbf{U}\mathbf{z}||_2$ s.t. $||z||_0 \le K$

Algo: At each iter., take a step in direction of the atom \mathbf{u}_{d^*} that minimizes at most the residual $||\mathbf{x} \cdot \mathbf{U}\mathbf{z}||_2$ where $d^* \in \arg \max_d |\langle \mathbf{r}, \mathbf{u}_d \rangle|$ *Note:* minimizing $||\mathbf{r}||_2$ is equiv. as maxim. abs. correlation $|\langle \mathbf{r}, \mathbf{u}_d \rangle|$

1. Start with zero vector $\mathbf{z} = \mathbf{0}$ and residual $\mathbf{r} = \mathbf{x}$

2. While $||\mathbf{z}||_0 < K$:

Criteria: $d^* = \arg \max_{\underline{d}} |\mathbf{u}_d^{\top} \mathbf{r}|$

Update: $z_{d^*} = z_{d^*} + \mathbf{u}_{d^*}^{\mathsf{T}} \mathbf{r}$

$$\mathbf{r} = \mathbf{r} - (\mathbf{u}_{d^{\star}}^{\top} \mathbf{r}) \mathbf{u}_{d^{\star}}$$

Exact recovery when $K < \frac{1}{2} \left(1 + \frac{1}{m(\mathbf{U})} \right)$ (K: # non-zero elements)

Dictionary Learning

Factorize training set $\mathbf{X} \in \mathbb{R}^{D \times N}$ into a dictionary $\mathbf{U} \in \mathbb{R}^{D \times L}$ and sparse matrix $\mathbf{Z} \in \mathbb{R}^{L \times N}$ such that: $(\mathbf{U}^*, \mathbf{Z}^*) \in \arg\min_{\mathbf{Z}} ||\mathbf{X} - \mathbf{U}\mathbf{Z}||_F^2$

Algorithm: Iterative greedy minimization between 2 steps

- 1. Coding step: Fix U and find sparsest possible Z Objective: $\mathbf{Z}^{t+1} \in \arg\min ||\mathbf{X} - \mathbf{U}^t \mathbf{Z}||_F^2$, subject to \mathbf{Z} being sparse $\Rightarrow \mathbf{z}_n^{t+1} \in \arg\min_{-} ||\mathbf{z}||_0 \quad \text{s.t.} \quad ||\mathbf{x}_n - \mathbf{U}^t \mathbf{z}||_2 \le \sigma ||\mathbf{x}_n||_2$
- 2. Dictionary update step: Fix ${\bf Z}$ and find best ${\bf U}$ Objective: $\mathbf{U}^{t+1} \in \arg\min ||\mathbf{X} - \mathbf{U}\mathbf{Z}^{t+1}||_F^2$, subject to $||\mathbf{u}_l||_2 = 1 \ \forall l$

Approximation: update one atom \mathbf{u}_l at a time for all l = 1, ..., L: (a) Set $\mathbf{U} = [\mathbf{u}_1^t \dots \mathbf{u}_l \dots \mathbf{u}_L^t]$ (fix all atoms except \mathbf{u}_l).

(b) Isolate \mathbf{R}_{l}^{t} , the residual that is due to atom \mathbf{u}_{l} : $\begin{aligned} ||\mathbf{X} - \tilde{\mathbf{U}} \cdot \tilde{\mathbf{Z}}^{t+1}||_F^2 &= ||\mathbf{R}_l^t - \mathbf{u}_l(\mathbf{z}_l^{t+1})^\top||_F^2 \\ \text{where } \mathbf{R}_l^t &= X - \sum_{i \neq l} \mathbf{u}_i(\mathbf{z}_i^{t+1})^\top \\ \text{Note: sum represents } \mathbf{U}\mathbf{Z} \text{ ohne } \mathbf{u}_l \end{aligned}$

(c) Find \mathbf{u}_l^{\star} that minimizes \mathbf{R}_l^t , subject to $||\mathbf{u}_l^{\star}||_2 = 1$ (use SVD): $\mathbf{R}_l^t = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \sum_i d_i \mathbf{u}_i \mathbf{v}_i^{\top} \quad \Rightarrow \mathbf{u}_l^{\star} = \text{first column of U}$

Convex Optimization

Primal problem: $\min_{\mathbf{x}} f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0, i = 1, \dots, m$

Lagrangian: $L(\mathbf{x}, \lambda, \nu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x})$ where $\lambda \geq 0$ Dual function: $d(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$ Dual problem: $\max_{\lambda, \nu} d(\lambda, \nu)$ subject to $\lambda \geq 0$

Recover optimal \mathbf{x} : $\mathbf{x}^* = \arg\min_{\mathbf{x}} L(\mathbf{x}, \lambda^*, \nu^*)$

Note: Dual function is a lower bound on optimal value p^* of primal! Proof: $d(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \le \inf_{\tilde{\mathbf{x}}} L(\tilde{\mathbf{x}}, \lambda, \nu) \le \min_{\tilde{\mathbf{x}}} f(\tilde{\mathbf{x}}) = p^*$

Convex optimization with equality constraints

Primal problem: $\min_x f(x)$ subject to Ax = b

Lagrangian: $L(\mathbf{x}, \nu) = f(x) + \nu^{\top} (Ax - b)$

Dual function: $d(\nu) = \inf_x L(x, \nu)$

Dual problem: max $d(\nu)$

Gradient Method for dual:

 $x^{k+1} = \arg\min_{x} L(x, \nu^k)$ $\nu^{k+1} = \nu^k + \alpha^k \nabla d(\nu^k) = \nu^k + \alpha^k \frac{\partial}{\partial \nu} L(x^{k+1}, \nu^k) = \nu^k + \alpha^k (Ax^{k+1} - b)$

Dual decomposition: If f(x) with $x \in \mathbb{R}^n$ is separable than $L(x,\nu)$ is separable and we can split the x-min step:

 $f(x) = f_1(x_1) + ... + f_n(x_n) \Rightarrow L(x, \nu) =$ $L_1(x_1,\nu) + ... + L_n(x_n,\nu) - \nu^{\top} b$

 $x_i^{k+1} = \arg\min_{x_i} L_i(x_i, \nu^k) = \arg\min_{x_i} f_i(x_i) + \nu^\top A_i x_i \quad i = 1..n$ $\nu^{k+1} = \nu^k + \alpha^k \nabla d(\nu^k) = \nu^k + \alpha^k (\sum_{i=1}^n A_i x_i^{k+1} - b)$

Method of Multipliers: Augment Lagrangian to L_{ρ} with $\frac{\rho}{2}||\cdot||_2^2$ $L_{\rho}(x,\nu) = f(x) + \nu^{T}(Ax - b) + \frac{\rho}{2}||Ax - b||_{2}^{2}$

 $x^{k+1} = \arg\min_{x} L_{\rho}(x, \nu^{k})$

 $\nu^{k+1} = \nu^k + \rho \nabla d(\nu^k) = \nu^k + \rho (Ax^{k+1} - b)$

 $\nu^{k+1} = \nu^k + \rho \nabla d(\nu^k) = \nu^k + \rho (A \iota - b)$ Choose ρ as step size, since x^{k+1} minimizes $L_{\rho}(x, \nu^k)$: $0 = \nabla_x L_{\rho}(x^{k+1}, \nu^k) = \nabla_x f(x^{k+1}) + \underbrace{A^T(\nu^k + \rho (Ax^{k+1} - b))}_{A^T \nu^{k+1}}$

Alternating Direction Method of Multipliers:

Since aug. Lag. L_{ρ} not separable anymore, can't parallelize x-min! Primal: $\min_{x,z} f(x) + p(z)$ subject to Ax + Bz = c f, p convex
$$\begin{split} L(x,z,\nu) &= f(x) + p(z) + \nu^T (Ax + Bz - c) \\ L_{\rho}(x,z,\nu) &= f(x) + p(z) + \nu^T (Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_2^2 \end{split}$$

 $x^{k+1} = \operatorname{arg\,min}_x L_{\rho}(x, z^k, \nu^k)$

 $z^{k+1} = \arg\min_{z} L_{\rho}(x^{k+1}, z, \nu^{k})$ $\nu^{k+1} = \nu^{k} + \rho \nabla d(\nu^{k}) = \nu^{k} + \rho (Ax^{k+1} + Bz^{k+1} - c)$

Primal Feasibility condition: $Ax^* + Bz^* - c = 0$

Dual Feasibility conditions: $\nabla f(x^*) + A^\top \nu^* = 0$ and $\nabla p(z^*) + B^\top \nu^* = 0$

Robust PCA

Original: $\min_{L,S} \operatorname{rank}(\mathbf{L}) + \lambda \operatorname{card}(\mathbf{S})$ subject to $\mathbf{L} + \mathbf{S} = \mathbf{X}$ Convex relaxation: $\min_{L,S} ||\mathbf{L}||_* + \lambda ||\mathbf{S}||_1$ subject to $\mathbf{L} + \mathbf{S} = \mathbf{X}$ $\overline{\text{Exact}(\text{L}^*=\text{L}_0, \text{S}^*=\text{S}_0)}$ with prob. $1-\mathcal{O}(n^{-10})$, PCP with $\lambda=\frac{1}{\sqrt{n}}$ for:

 $\mathbf{L}_0: n \times n, \text{ of } rank(\mathbf{L}_0) \leq \rho_r n \mu^{-1} (\log n)^{-2}$

 $\mathbf{S}_0: n \times n$, random sparsity pattern of cardinality $m \leq \rho_s n^2$

RPCA for CF: $\min_{L,S} ||\mathbf{L}||_* + \lambda ||\mathbf{S}||_1$ s.t. $\mathbf{L}_{ij} + \mathbf{S}_{ij} = \mathbf{X}_{ij}$