Relations between (different) sets

Relations between (different) sets

Up to now we considered a relation R on a single set A, viewed as a subset of the Cartesian Product $R \subseteq A \times A$.

Sometimes we want to capture a relationship a different sort of relationship.

- Consider the a relation between the integers \mathbb{Z} and the set 0,1 where aR0 if a is even and aR1 if a is odd.
- ▶ This can be expressed as a subset $R \subseteq \mathbb{Z} \times \{0,1\}$. If we let E and O be the sets of even and odd numbers respectively, then R consists of the pairs

$$(E \times \{0\}) \cup (O \times \{1\}).$$

Another example.

 ${\it S}$ is the set of applicatnts for residency programs. ${\it R}$ is the of residency programs.

We can construct a relation $M \subseteq S \times R$ where sMr means that student s has a applied to program r

In this case the most natural picture might look like this