MA 544: Homework 12

Carlos Salinas

April 25, 2016

PROBLEM 12.1 (WHEEDEN & ZYGMUND §8, Ex. 2)

Prove the converse of Hölder's inequality for p=1 and ∞ . Show also that for $1 \leq p \leq \infty$, a real-valued measurable f belongs to $L^p(E)$ if $fg \in L^1(E)$ for every $g \in L^{p'}(E)$, 1/p + 1/p' = 1. The negation is also of interest: if $f \in L^p(E)$ then there exists $g \in L^{p'}(E)$ such that $fg \notin L^1(E)$. (To verify the negation, construct g of the form $\sum a_k g_k$ satisfying $\int_E fg_k \to \infty$.)

Proof. In this problem, we finish the proof of Theorem 8.8 for the case $p = 1, \infty$. Therefore, we must show that:

For f a measurable real-valued function on E and $p=1,\infty$. Then

$$||f||_p = \sup \int_E fg,$$

where the supremum is taken over every real-valued g such that $||g||_{p'} \leq 1$ and $\int_E fg$ exists.

In both cases, p=1 and $p=\infty$, we may, without loss of generality, assume $||f||_p \neq 0$; otherwise, by Hölder's inequality, $||fg||_1 \leq ||f||_p ||g||_{p'} = 0$ implies $||fg||_1 = 0$ so, by Theorem 5.11, fg = 0 almost everywhere on E and therefore, f = 0 almost everywhere on E.

Let us prove this for p=1. Recall that, by convention, if p=1 its conjugate exponent, p', is ∞ and vice versa. Suppose $||g||_{\infty} \leq 1$ and the integral $\int_E fg$ exists. One direction is trivial, namely, by Hölder's inequality

$$\int_{E} fg \le \int_{E} |fg| \le ||f||_{1} ||g||_{1} \le ||f||_{1}, \tag{12.1}$$

for all g with $||g||_{\infty} \leq 1$. Hence,

$$\sup \int_E fg \le ||f||_1.$$

To get the reverse inequality, consider $g := \operatorname{sgn} f$. The function g is measurable since g = f/|f| for all $f(\mathbf{x}) \neq 0$ and g = 0 otherwise. Moreover, g is in $L^{\infty}(E)$ since $||g||_{\infty} \leq 1$, that is, $|g| \leq 1$ almost everywhere on E. Therefore

$$||f||_1 = \int_E |f| = \int_E fg \le \sup_{\|g'\|_{\infty} \le 1} \int_E fg'.$$
 (12.2)

Thus, $||f||_1 = \sup \int fg$ where the supremum is taken over all $g \in L^{\infty}(E)$ with $||g|| \le 1$. Now, consider the case where $p = \infty$. By Hölder's inequality, it is clear that

$$\sup \int_{E} fg \le ||f||_{\infty} \tag{12.3}$$

since $\int_E fg \le ||f||_{\infty} ||g||_1$ for all $g \in L(E)$. To prove the reverse inequality, we consider the cases $||f||_{\infty} < \infty$ and $||f||_{\infty} = \infty$ separately.

Suppose $0 < \|f\|_{\infty} < \infty$; we may, without loss of generality, assume $\|f\|_{\infty} = 1$ by normalizing f by its essential supremum. Now, by definition

$$||f||_{\infty} = \inf\{\alpha : |\{\mathbf{x} \in E : f(\mathbf{x}) > \alpha\}| = 0\} = 1.$$
 (12.4)

MA 544: Homework 12

Set $E_k := \{ \mathbf{x} \in E : f(\mathbf{x}) > 1 - 1/k \} \cap B(\mathbf{0}, k)$. Then $E_k \nearrow \bigcup E_k$ and $|E \setminus \bigcup E_k| = 0$ by Equation (12.4) and the definition of the essential supremum. Therefore, $\int_E fg = \int_{\bigcup E_k} fg$. Moreover, $|E_k| < |B(\mathbf{0}, k)| < \infty$ so we can define the sequence of functions

$$g_k(\mathbf{x}) := \begin{cases} \frac{1}{|E_k|} & \text{if } x \in E_k \\ 0 & \text{otherwise} \end{cases}$$
 (12.5)

Note that $||g_k||_1 = 1$ and

$$\int_{E} f g_{k} = \int_{E_{k}} f g_{k} \ge \int_{E_{k}} \left(1 - \frac{1}{k} \right) g_{k} = \left(1 - \frac{1}{k} \right) \int_{E} g_{k} = 1 - \frac{1}{k}$$

PROBLEM 12.2 (WHEEDEN & ZYGMUND §8, Ex. 3)

Prove Theorems 8.12 and 8.13. Show that Minkowski's inequality for series fails when p < 1.

Proof. Recall the statement of Theorem 8.12

Suppose that
$$1 \le p \le \infty$$
, $1/p + 1/p' = 1$, $a = \{a_k\}$, $b = \{b_k\}$, and $ab = \{a_kb_k\}$. Then $||ab||_1 \le ||a||_p ||b||_{p'}$.

The second inequality in the full statement of the theorem is straight forward since

$$\sum_{k} |a_k b_k| \le \sum_{k} \left| \left(\sup_{k} |a_k| \right) |b_k| \right| = \sup_{k} |a_k| \cdot \sum_{k} |b_k|.$$

This proves the statement for $p = 1, \infty$.

As in the proof of Hölder's inequality, we may, without loss of generality, assume $||a||_p = ||b||_{p'} = 1$ (the other cases being trivial, i.e., $||a||_p = 0$ or $||b||_{p'} = 0$, or reducible to this one by, for instance, taking a'_k to be $a_k/||a||_p$ and b'_k to be $b_k/||b||_{p'}$). Now, suppose 1 . By Young's inequality, we have

$$\sum_{k} |a_{k}b_{k}| \leq \sum_{k} \left(\frac{|a_{k}|^{p}}{p} + \frac{|b_{k}|^{p'}}{p'} \right)$$

$$= \frac{1}{p} \sum_{k} |a_{k}|^{p} + \frac{1}{p'} \sum_{k} |b_{k}|^{p'}$$

$$= \frac{1}{p} ||a||_{p}^{p} + \frac{1}{p'} ||b||_{p'}^{p'}$$

$$= \frac{1}{p} + \frac{1}{p'}$$

$$= 1$$

$$= ||a||_{p} ||b||_{p'},$$

as was to be shown.

Recall the statement of Theorem 8.13

Suppose that
$$1 \le p \le \infty$$
, $1/p + 1/p' = 1$, $a = \{a_k\}$, $b = \{b_k\}$, and $ab = \{a_kb_k\}$. Then $||a + b||_p \le ||a||_p + ||b||_p$.

For p=1, Minkowski's inequality is nothing more than the triangle inequality so we are finished. For $p=\infty$, by the triangle inequality, we have

$$|a_k + b_k| \le |a_k| + |b_k| \le \sup_k |a_k| + \sup_k |b_k|.$$

By the definition of the supremum, since the right hand side of the inequality above holds for all k, the right-hand side is an upper bound for $|a_k + b_k|$, so

$$\sup_{k} |a_k + b_k| \le \sup_{k} |a_k| + \sup_{k} |b_k|.$$

holds.

Now, suppose 1 . Then, we have

$$\begin{aligned} \|a+b\|_{p}^{p} &= \sum_{k} |a_{k}+b_{k}|^{p} \\ &= \sum_{k} |a_{k}+b_{k}|^{p-1}|a_{k}+b_{k}| \\ &\leq \sum_{k} |a_{k}+b_{k}|^{p-1}|a_{k}| + \sum_{k} |a_{k}+b_{k}|^{p-1}|b_{k}| \\ &= \sum_{k} \left(|a_{k}+b_{k}|^{p(p-1)}\right)^{1/p} (|a_{k}|^{p})^{1/p} + \sum_{k} \left(|a_{k}+b_{k}|^{p(p-1)}\right)^{1/p} (|b_{k}|^{p})^{1/p} \\ &\leq \left[\sum_{k} (|a_{k}+b_{k}|^{p})^{(p-1)/p}\right] \left[\sum_{k} (|a_{k}|^{p})^{1/p}\right] + \left[\sum_{k} (|a_{k}+b_{k}|^{p})^{(p-1)/p}\right] \left[\sum_{k} (|b_{k}|^{p})^{1/p}\right] \\ &= \|a+b\|_{p}^{p-1} \|a\|_{p} + \|a+b\|_{p}^{p-1} \|b\|_{p} \\ &= \|a+b\|_{p}^{p-1} (\|a\|_{p} + \|b\|_{p}). \end{aligned}$$

Now, dived both sides of the inequality above by $\|a+b\|_p^{p-1}$ and we achieve Minkowski's inequality for ℓ^p .

To see that Minkowski's inequality fails for p < 1, consider the sequences a = (0, 1, 0, ...) and b = (1, 0, ...). Then

$$||a_k + b_k||_p = 2^{1/p}, ||a_k||_p = 1, ||b_k||_p = 1.$$

Since $2^{1/p} > 2$ for p < 1, we have

$$||a_k + b_k||_P \ge ||a_k||_p + ||b_k||_p.$$

PROBLEM 12.3 (WHEEDEN & ZYGMUND §8, Ex. 4)

Let f and g be real-valued and not identically 0 (i.e., neither function equals 0 a.e.), and let $1 . Prove that equality holds in the inequality <math>\left| \int fg \right| \le \|f\|_p \|g\|_{p'}$ if and only if fg has constant sign a.e. and $|f|^p$ is a multiple of $|g|^{p'}$ a.e.

If $||f + g||_p = ||f||_p + ||g||_p$ and $g \neq 0$ in Minkowski's inequality, show that f is a multiple of g.

Find analogues of these results for the spaces ℓ^p .

 $Proof. \iff$ Suppose fg has constant sign and $|f|^p = M|g|^{p'}$. Then, by Hölder's inequality, we have

$$\left| \int fg \right| = \int |fg|$$

$$\leq \left[\int |f|^p \right]^{1/p} \left[\int |g|^{p'} \right]^{1/p'}$$

$$= \left[\int M|g|^{p'} \right]^{1/p} \left[\int |g|^{p'} \right]^{1/p'}$$

$$= M^{1/p}$$

 \Longrightarrow

Assuming we proved the result above, recall from Minkowski's inequality that

$$||f+g||_p^p \le \int |f+g|^{p-1}|f| + \int |f+g|^{p-1}|g|.$$

Therefore, if equality holds

MA 544: Homework 12

PROBLEM 12.4 (WHEEDEN & ZYGMUND §8, Ex. 5)

For $0 and <math>0 < |E| < \infty$, define

$$N_p[f] := \left(\frac{1}{E} \int_E |f|^p\right)^{1/p},$$

where $N_{\infty}[f]$ means $||f||_{\infty}$. Prove that if $p_1 < p_2$, then $N_{p_1}[f] \le N_{p_2}[f]$. Prove also that if $1 \le p \le \infty$, then $N_p[f+g] \le N_p[f] + N_p[g]$, $(1/|E|) \int_E |fg| \le N_p[f] N_{p'}[g]$, 1/p + 1/p' = 1, and $\lim_{p \to \infty} N_p[f] = ||f||_{\infty}$. Thus, N_p behaves like $||\cdot||_p$ but has the advantage of being monotone in p. Recall Exercise 28 of Chapter 5.

Proof.

PROBLEM 12.5 (WHEEDEN & ZYGMUND §8, Ex. 6)

(a) Let $1 \leq p_i$, $r \leq \infty$ and $\sum_{i=1}^k 1/p_i = 1/r$. Prove the following generalization of Hölder's inequality:

$$||f_1 \cdots f_k||_r \leq ||f_1||_{p_1} \cdots ||f_k||_{p_k}.$$

(b) Let $1 \le p < r < q \le \infty$ and define $\theta \in (0,1)$ by $1/r = \theta/p + (1-\theta)/q$. Prove the interpolation estimate

$$||f||_r \le ||f||_p^{\theta} ||f||_q^{1-\theta}.$$

In particular, if $A := \max\{\|f\|_p, \|f\|_q\}$, then $\|f\|_r \le A$.

Proof. (a) We will proceed by induction on k the number of measurable f_k whose p_k -norm is finite. When k = 2, by applying Hölder's inequality on $|fg|^r$ with 1/(p/r) + 1/(p'/r) = 1 we have

$$||fg||_{r}^{r} = \left(\int_{E} |fg|^{r}\right)$$

$$\leq \left(\int_{E} |f|^{r(p/r)}\right)^{r/p} \left(\int_{E} |g|^{r(p'/r)}\right)^{r/p'}$$

$$= ||f||_{p}^{r} ||g||_{p'}^{r}.$$

Therefore,

$$||fg||_r \le ||f||_p ||g||_{p'}. \tag{12.6}$$

Now, suppose Equation (12.6) holds for $j \leq n-1$ functions measurable functions $f_j \in L^{p_j}(E)$ where $\sum_j 1/p_j = r$. Suppose $\sum_{j=1}^n 1/p_j = 1/r$ with $f_j \in L^{p_j}(E)$ and consider

$$||f_1 f_2 \cdots f_n||_r^r = \int_E |f_1 f_2 \cdots f_n|^r.$$

Set $g := f_2 \cdots f_k$ and $p' := \left(\sum_{j=2}^n 1/p_j\right)^{-1}$, then, by (12.6), we have

$$||f_1 f_2 \cdots f_n||_r = ||f_1 g||_r$$

$$\leq ||f_1||_{p_1} ||g||_{p'}$$

$$\leq ||f_1||_{p_1} ||f_2||_{p_2} \cdots ||f_n||_{p_n}$$

as desired.

(b) Without loss of generality, assume $||f||_p = ||f||_q = 1$. By what we have just shown, with

 $1/r = 1/(p/\theta) + 1/(p/(1-\theta))$ and Jensen's inequality, we have

$$||f||_{r} = ||f|^{\theta} |f|^{1-\theta} ||_{r}$$

$$\leq ||f|^{\theta} ||_{p} ||f|^{1-\theta} ||_{q}$$

$$= \left[\int |f|^{\theta p} \right]^{1/p} \left[\int |f|^{(1-\theta)q} \right]^{1/q}$$

$$\leq \left[\int |f|^{p} \right]^{\theta/p} \left[\int |f|^{q} \right]^{(1-\theta)/q}$$

$$= |f||_{r} \leq ||f||_{p}^{\theta} ||f||_{q}^{1-\theta}.$$

PROBLEM 12.6 (WHEEDEN & ZYGMUND §8, Ex. 9)

If f is real-valued and measurable on E, |E| > 0, define its essential infimum on E by

ess inf
$$f := \sup \{ \alpha : |\{ x \in E : f(x) < \alpha \}| = 0 \}.$$

If $f \ge 0$, show that $\operatorname{ess\,inf}_E f = (\operatorname{ess\,sup} 1/f)^{-1}$.

Proof. First, let us deal with the edge case. Suppose the essential infimum of f is zero. Then, for every $\alpha > 0$, we have $|\{\mathbf{x} \in E : f(\mathbf{x}) > \alpha\}| > 0$. Thus, for every $0 < \beta < \infty$, $|\{\mathbf{x} \in E : 1/f(\mathbf{x}) > \beta\}| > 0$ so the essential supremum of f is ∞ .

If ess inf $f = \infty$, and we interpret $1/\infty$ to mean 0, equality holds.

Now, suppose $0 < \text{ess inf } f < \infty$. Then, there exists $\alpha > 0$ such that $|\{\mathbf{x} \in E : f(\mathbf{x}) < \alpha\}| > 0$. Thus, we have

$$\operatorname{ess\,inf} f = \sup \{ \alpha : |\{ x \in E : f(x) < \alpha \}| = 0 \}$$

$$= \sup \left\{ \frac{1}{\beta} : |\{ \mathbf{x} \in E : f(\mathbf{x}) < 1/\beta \}| \right\}$$

$$= \sup \left\{ \frac{1}{\beta} : |\{ \mathbf{x} \in E : 1/f(\mathbf{x}) > \beta \}| \right\}$$

$$= (\inf \{ \beta : |\{ \mathbf{x} \in E : 1/f(\mathbf{x}) > \beta \}| \})^{-1}$$

$$= (\operatorname{ess\,sup} 1/f)^{-1}$$

as desired.

PROBLEM 12.7 (WHEEDEN & ZYGMUND §8, Ex. 11)

If $f_k \to f$ in L^p , $1 \le p < \infty$, $g_k \to g$ pointwise, and $||g_k||_{\infty} < M$ for all k, prove that $f_k g_k \to f g$ in L^p .

Proof. First, note that, by Minkowski's inequality, we have

$$||fg - f_k g_k||_p = ||(fg - fg_k) - (fg_k - f_k g - k)||_p$$

$$\leq ||fg - fg_k||_p + ||fg_k - f_k g_k||_p$$

$$\leq ||fg - fg_k||_p + M||f - f_k||_p.$$

Since we have complete control over the $M\|f-f_k\|_p$ term, i.e., $M\|f-f_k\|_p\to 0$ as $k\to\infty$, we need only show that $\|fg_k-f_kg_k\|_p\to 0$ as $k\to\infty$. First, note that since $g_k\to g$ pointwise and the g_k are bounded above by M a.e., then $|g|\leq M$ so by the triangle inequality, $|g-g_k|\leq |g|+|g_k\leq 2M$. Thus, we have

$$||fg - fg_k||_p^p \le 2M||f||_p^p = 2M \int |f|^p.$$

Thus, $|fg - fg_k|^p \in L$ so by the Lebesgue dominated convergence theorem, we have

$$\lim_{k \to \infty} \int |fg - fg_k|^p = \int \lim_{k \to \infty} |fg - fg_k|^p$$
$$= \int \lim_{k \to \infty} |f|^p |g - g_k|^p$$
$$= 0.$$

Thus, $||fg - fg_k||_p \to 0$ as $k \to \infty$ so $||fg - f_k g_k||_p \to 0$ as $k \to \infty$, as desired.