		oints) Network layer: (4 points) Explain what is the difference between the control plane and data plane.
((b)	(4 points) Explain what is the major difference between traditional routers and programmable switches.
		points) Router: (4 points) List the four components of a router.
	(**)	
((b)	(4 points) When will the input queue (or the output queue) of a router overflow, leading to packet losses?
	(c)	(4 points) Define what is prefix matching and longest prefix matching.

4. (10 points) **Queueing.** Consider a router that help forward packets classified into two classes. Say that ten packets arrive the router with the following class and arrival time:

sequence	1	2	3	4	5	6	7	8	9	10
class	1	2	2	1	1	2	2	2	1	1
time (second)	0.5	1.0	1.2	1.6	3.0	3.5	4	4.2	4.6	5

Assume that the transmission time of each packet is one second.

(a)	(5 points) Assume that class 1 has a high priority, while class 2 has a low priority.	When
	will each packet be sent if the router forwards packets using priority queueing?	(Note
	that there is no preemptive.)	

ŀ	
L	

(b)	(5 points)	When	will	each	packet	be s	ent if	the	router	forwar	ds	packets	using	round	rob	in
	queueing?															

5.	(20 j	points) Sub	onet.
	(a)	(5 points)	What is the maximum number of hosts in the subnet 140.113.20.0/21?
	(b)	(5 points)	Following the above question, what is the IP address reserved for broadcasting?
	(c)	(5 points)	What is the subnet mask of subnet 140.113.20.0/21 in decimal?
	(d)		If this subnet only includes 800 host, what is a more efficient subnet mask? mize the number of non-occupied IP addresses)
6.	(10)	points) DH	CP.
	(a)	(5 points)	Explain why DHCP uses link-layer broadcasting to send requests.
	(b)		Why does a DHCP request require four messages (including DHCP request instead of just two messages?

7. (10 points) **SDN**:

(a)	(4 poi	nts)	Define	what	is	the	5-tup	le	of	a	flow	
-----	--------	------	--------	------	----	-----	-------	----	----	---	------	--

(b) (6 points) Give the match forwarding rules if we want to (1) drop all packets toward the destination port of 80 and (2) forward the packet from the MAC address 12-34-56-78-ab-cd to port 3.

8. (15 points) **Link-state routing.** Consider the following network topology with 6 nodes. Let the number associated with each link be the cost of the link. Try to find the shortest path from node a to the remaining nodes using the link-state algorithm.

(a) (8 points) Write down the step-by-step procedure of the link-state algorithm as building the distance/predecessor table from node a to all the remaining nodes.

oduc	ction to Co	mputer Networks	Homework	12/11/2
(b)	(3 points)	What is the routing	path from a to f ?	
(c)	(4 points)	What is the forward	ing table at node g ?	

9. (15 points) **Distance-vector routing.** Consider the following network topology with 4 nodes. Let the number associated with each link be the cost of the link. Try to find the shortest path from each node to the remaining nodes using the distance-vector algorithm.

(a) (4 points) What is the initial distance vector of each of the fo	tour nodes?
--	-------------

_	
ı	
L	

(b) (4 points) Assume that all the nodes broadcast their distance vectors \mathbf{D}_i at the same time. What will be the distance vector of each of the four nodes after receiving the initial distance vector from the neighbors (i.e., the distance vector of all nodes after the first information exchange)?

(c)	many iteration	efine that the algors of updates in that gets the definition of the desired and the desired are the desired and the desired are the desired ar	it requires to c	converge to the	s the same solution optimal solution unted.)	n twice. How? (Note that
(d)	(3 points) Exalgorithm.	xplain how to ge	et the shortest	path from nod	e c to node d base	ed on the DV