Proyecto 3 "Regresión Lineal"

Intelligent Systems

Descripción del problema

Data

- El fichero Baseball.csv contiene información de 337 jugadores de béisbol.
 - Fuente: http://sci2s.ugr.es/keel/dataset.php?cod=76
- El fichero tiene una fila por cada jugador, con los siguientes atributos:

- Batting_average

- On-base_percentage

- Runs

- Hits

- Doubles

- Triples

- HomeRuns

- Runs_batted_in

- Walks

- Strike-Outs

- Stolen_bases

- Errors

Free_agency_eligibility

- Free_agent

- Arbitration_eligibility

- Arbitration

Salary

Crea una aplicación web con Shiny (1/3)

- File -> New File -> Shiny web app
 - Documentación: http://shiny.rstudio.com/
- La aplicación debe permitir lo siguiente:
 - Subir un fichero
 - Leer el fichero
 - Preguntar qué columna se debe predecir ("target")
 - (continua....)

Crea una aplicación web con Shiny (2/3)

Cuando la columna a predecir esté seleccionada

- Realiza un proceso <u>5-fold cross validation</u>
- Para cada partición:
 - Divide los ejemplos en training-set y test-set
 - Crea un modelo lineal que permita predecir el target con cada training-set.
 - Haz la predicción usando cada test-set
 - Acumular el error medio de cada partición
- Calcula el error medio absoluto de las 5 ejecuciones.

Crea una aplicación web con Shiny (3/3)

Después de terminar todo el proceso:

- Muestra el valor del error medio absoluto obtenido
- Muestra un gráfico de barras con el error medio de cada una de las 5 ejecuciones.

Ayuda para la implementación en R

Para crear el "fold cross validation"

- indices <- createMultiFolds(y=data\$target, k=partitions, times=times)
 - data = data frame de datos // target = columna a aprender
- Esta sentencia crea "k" vectores de índices para training-data.
 - training.data <- data[indices[[i]],]</p>
 - test.data <- data[-indices[[i]],] # importante '-indices'</p>

Para crear el modelo lineal

- linear.model -> lm(target~., training-data)
- Para realizar predicciones
 - prediction <- predict(linear.model, test.data) # vector con resultados
- Para calcular el error
 - abs(prediction test.data\$target) # 'target' es la columna a aprender

Pregunta de teoría

 Explica con tus propias palabras qué información se obtiene tras ejecutar la siguiente secuencia de sentencias en R:

```
\circ data = iris[,-5]
```

- o model = lm(Petal.Width~., data)
- o summary(model)

Formato de la entrega

Formato

- ZIP con el código en R. (nombre de grupo)
 - Script en R (con el código de grupo en el nombre)
 - Documento con la respuesta a la pregunta de teoría
- Calificación 10%
- Criterios de corrección
 - Corrección de la implementación y la teoría (8,0%).
 - Documentación y limpieza del código (2,0%).

Copyright (c) 2016 University of Deusto

This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Intelligent Systems

