

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 2019

Classification vs. clustering

It's called model training or classifier training stage

Unsupervised clustering

Unsupervised learning

- k-means is one of the simplest unsupervised learning algorithms
- It classifies a given data set through a certain number of clusters (let's say k clusters)

Let's cluster the following data points using k-means algorithm

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers (or cluster centroids)

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers (or cluster centroids)

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)

Distances partially illustrated

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)
- Step 5: calculate new centroids as the mean of the data points that belong to the centroid of the previous step

Distances partially illustrated

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)
- Step 5: calculate new centroids as the mean of the data points that belong to the centroid of the previous step

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)
- Step 5: calculate new centroids as the mean of the data points that belong to the centroid of the previous step
- Repeat Step 3-5 until a final stop condition

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)
- Step 5: calculate new centroids as the mean of the data points that belong to the centroid of the previous step
- Repeat Step 3-5 until a final stop condition

Distances partially illustrated

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)
- Step 5: calculate new centroids as the mean of the data points that belong to the centroid of the previous step
- Repeat Step 3-5 until a final stop condition

Distances partially illustrated

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)
- Step 5: calculate new centroids as the mean of the data points that belong to the centroid of the previous step
- Repeat Step 3-5 until a final stop condition

Distances partially illustrated

Illustration of *k*-means algorithm (a) Green points denote the data set in a two-dimensional Euclidean space

Images originated from Pattern Recognition and Machine Learning by Christopher M. Bishop

- Step 1: select k (number of clusters)
- Step 2: randomly select k initial cluster centers
- Step 3: calculate distance from each data point to each cluster center
 - What type of distance should we use? E.g., Euclidean distance
- Step 4: assign each data point to the closest cluster center (centroid)
- Step 5: calculate new centroids as the mean of the data points that belong to the centroid of the previous step
- Repeat Step 3-5 until a final stop condition (if no data point was reassigned then stop).

- Strengths
 - Simple & fast and can be applied to high-dimensional large data
 - Finds cluster centres that minimize conditional variance (good representation of data)
 - Easy to implement
- Weaknesses
 - Need to choose k
 - Sensitive to outliers
 - Prone to local minima and no guarantee of optimal solution (local optima)
 - Repeat with different starting values
 - Difficult to guess the correct "k"

Changing features & distance function

K-means algorithm is not able to properly cluster this data points

Assume, we are given a dataset for the purpose of clustering analysis

Assume, we are given a dataset for the purpose of clustering analysis

- Evaluate your dataset from different aspects
 - What type of features (e.g., numeric or categorical)?
 - The size of the dataset (e.g., large or small)
 - Number of feature (i.e., attributes), Is it a high-dimensional dataset?
 - Assessing <u>outliers</u> and missing
- Consider consensus clustering
- Evaluate the reliability (i.e., consistency/robust) of the clustering result

Assume, we are given a dataset for the purpose of clustering analysis

- Evaluate your dataset from different aspects
 - What type of features (e.g., numeric or categorical)?
 - The size of the dataset (e.g., large or small)
 - Number of feature (i.e., attributes), Is it a high-dimensional dataset?
 - Assessing <u>outliers</u> and missing
- Consider consensus clustering
- Evaluate the reliability (i.e., consistency/robust) of the clustering result

Assume, we are given a dataset for the purpose of clustering analysis

- Evaluate your dataset from different aspects
 - What type of features (e.g., numeric or categorical)?
 - The size of the dataset (e.g., large or small)
 - Number of feature (i.e., attributes), Is it a high-dimensional dataset?
 - Assessing <u>outliers</u> and missing
- Consider consensus clustering
- Evaluate the reliability (i.e., consistency/robust) of the clustering result

Consensus clustering

Assume, we are given a dataset for the purpose of clustering analysis

- 1) No knowledge of about the number of clusters
- Clustering methods are sensitive to initialisation settings
- The lack of a reliable validation technique when using clustering
 - a) We need a measure of confidence for cluster numbers and cluster assignment

Consensus clustering¹

Assume, we are given a dataset for the purpose of clustering analysis

- 1) Multiple runs of a clustering algorithm
 - a) Determine the number of clusters and assess the stability of the discovered clusters
 - b) In k-means clustering: with using random restart

2) Aggregating the cluster (label) results of different clustering algorithms

¹ Ensemble clustering

Consensus clustering¹

Assume, we are given a dataset for the purpose of clustering analysis

- 1) Multiple runs of a clustering algorithm
 - a) Determine the number of clusters and assess the stability of the discovered clusters
 - b) In k-means clustering: with using random restart

2) Aggregating the cluster (label) results of different clustering algorithms

¹ Ensemble clustering

Consensus approach

1) Multiple runs of a clustering algorithm

A comprehensive Ensemble approach for unsupervised clustering using NMF projection and k-means clustering

Consensus approach

A comprehensive Ensemble approach for unsupervised clustering using NMF projection and k-means clustering

The value of m is dependent on the number of input features

n=12 samples with 4 subgroups

After running NMF on our input dataset $17\times220 ===> k=4$, H matrix Consider only 12 samples of H matrix (for the sake of simplicity)

n=12 samples with 4 subgroups

^	CSC3062_108_2 [‡]	CSC3062_109_4 [‡]	CSC3062_110_4 [‡]	CSC3062_112_2 [‡]	CSC3062_783_3 [‡]	CSC3062_145_3 [‡]
Metagene_1	1.145277e-01	1.916895e-50	2.654951e-40	7.633172e-02	3.608274e-32	7.042284e-28
Metagene_2	1.338042e-02	5.529235e-01	5.625382e-01	4.172066e-27	5.022959e-02	1.881889e-05
Metagene_3	5.842943e-19	5.115138e-43	1.629874e-28	2.634450e-34	6.117725e-01	6.623634e-01
Metagene_4	9.603256e-01	2.808713e-27	4.787113e-29	9.671474e-01	1.660626e-34	5.350906e-39

•	CSC3062_649_1 [‡]	CSC3062_115_1 [‡]	CSC3062_670_2 [‡]	CSC3062_50080_1 [‡]	CSC3062_436_1 [‡]	CSC3062_674_2 [‡]
Metagene_1	7.176776e-01	9.121094e-01	2.142412e-28	8.314318e-01	6.650897e-01	1.424858e-17
Metagene_2	0.000000e+00	1.312099e-40	2.695954e-17	1.158338e-18	8.997966e-02	3.280249e-12
Metagene_3	1.759033e-70	3.300750e-21	3.208493e-17	1.691378e-40	3.382756e-17	2.059872e-02
Metagene_4	6.929525e-63	3.516017e-59	9.679785e-01	4.684605e-20	1.916895e-23	1.000000e+00

After running k-means on these 12 samples

K_means_Model <- kmeans(t(Small_dataset_cluster_analysis_0To1),centers = 4, iter.max = 50,nstart = 5) #</pre>

Using plot3d() to visualise samples

Visualising the H matrix using PCA

Several runs of k-means

```
# Creating a matrix of all labels of different k-means runnings

Matrix_labels_different_runs <- matrix(nrow = ncol(Small_dataset_cluster_analysis_0To1), ncol = 10,0)
rownames(Matrix_labels_different_runs) <- colnames(Small_dataset_cluster_analysis_0To1)
for (j in 1:10) {
    K_means_Model <- kmeans(t(Small_dataset_cluster_analysis_0To1),centers = 4, iter.max = 50,nstart = 5) #
    #trying several random starts (nstart> 1) is often recommended.
    Matrix_labels_different_runs[,j] <- K_means_Model$cluster
} # for

plot(t(Small_dataset_cluster_analysis_0To1), col = K_means_Model$cluster,pch=6)
points(K_means_Model$centers, col = 1:3, pch = 4, cex = 1)</pre>
```


Several runs of k-means

^	V1 [‡]	V2 [‡]	V3 [‡]	V4 [‡]	V5 [‡]	V6 [‡]	V7 [‡]	V8 [‡]	V9 [‡]	V10 [‡]
CSC3062_108_2	4	4	4	1	3	1	3	3	4	4
CSC3062_109_4	1	1	1	2	2	2	4	1	1	2
CSC3062_110_4	1	1	1	2	2	2	4	1	1	2
CSC3062_112_2	4	4	4	1	3	1	3	3	4	4
CSC3062_783_3	2	3	3	3	4	3	1	1	3	2
CSC3062_145_3	2	3	3	3	4	3	1	1	3	2
CSC3062_649_1	3	2	2	4	1	4	2	4	2	1
CSC3062_115_1	3	2	2	4	1	4	2	2	2	3
CSC3062_670_2	4	4	4	1	3	1	3	3	4	4
CSC3062_50080_1	3	2	2	4	1	4	2	2	2	3
CSC3062_436_1	3	2	2	4	1	4	2	4	2	1
CSC3062_674_2	4	4	4	1	3	1	3	3	4	4

Different cluster labels obtained from several runs (m=10) of k-means clustering algorithms

Cluster labels $(V_1, V_2, ..., V_{10})$ are not unique!

$$V_1 = (4,1,1,4,2,2,3,3,4,3,3,4)$$

$$V_6 = (1,2,2,1,3,3,4,4,1,4,4,1)$$

$$V_2 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_7 = (3,4,4,3,1,1,2,2,3,2,2,3)$$

$$V_3 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_8 = (3,1,1,3,1,1,4,2,3,2,4,3)$$

$$V_4 = (1,2,2,1,3,3,4,4,1,4,4,1)$$

$$V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_5 = (3,2,2,3,4,4,1,1,3,1,1,3)$$

$$V_{10} = (4,2,2,4,2,2,1,3,4,3,1,4)$$

Which clustering algorithms are creating same/similar cluster labels?

Which samples are not confidently clustered?

$$V_1 = (4,1,1,4,2,2,3,3,4,3,3,4)$$

$$V_6 = (1,2,2,1,3,3,4,4,1,4,4,1)$$

$$V_2 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_7 = (3,4,4,3,1,1,2,2,3,2,2,3)$$

$$V_3 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_8 = (3,1,1,3,1,1,4,2,3,2,4,3)$$

$$V_4 = (1,2,2,1,3,3,4,4,1,4,4,1)$$

$$V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_5 = (3,2,2,3,4,4,1,1,3,1,1,3)$$

$$V_{10} = (4,2,2,4,2,2,1,3,4,3,1,4)$$

Clusterings V2 and V3 are identical.

$$V_1 = (4,1,1,4,2,2,3,3,4,3,3,4)$$

$$V_6 = (1,2,2,1,3,3,4,4,1,4,4,1)$$

$$V_2 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_7 = (3,4,4,3,1,1,2,2,3,2,2,3)$$

$$V_3 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_8 = (3,1,1,3,1,1,4,2,3,2,4,3)$$

$$V_4 = (1,2,2,1,3,3,4,4,1,4,4,1)$$

$$V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_5 = (3,2,2,3,4,4,1,1,3,1,1,3)$$

$$V_{10} = (4,2,2,4,2,2,1,3,4,3,1,4)$$

Clusterings V1 and V2 are logically identical.

$$V_1 = (4,1,1,4,2,2,3,3,4,3,3,4)$$
 $V_6 = (1,2,2,1,3,3,4,4,1,4,4,1)$ $V_2 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_7 = (3,4,4,3,1,1,2,2,3,2,2,3)$ $V_8 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_9 = (4,2,2,4,2,2,1,3,4,3,1,4)$

Clusterings V1, V2, V4, V5, V6, V7 and V9 are logically identical.

$$V_1 = (4,1,1,4,2,2,3,3,4,3,3,4)$$
 $V_6 = (1,2,2,1,3,3,4,4,1,4,4,1)$ $V_2 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_7 = (3,4,4,3,1,1,2,2,3,2,2,3)$ $V_8 = (3,1,1,3,1,1,4,2,3,2,4,3)$ $V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_9 = (4,1,1,4,3,3,2,2,4,2,2,4)$ $V_9 = (4,2,2,4,2,2,1,3,4,3,1,4)$

What about V8 and V10?

$$V_2 = (4,1,1,4,3,3,2,2,4,2,2,4)$$

$$V_8 = (3,1,1,3,1,1,4,2,3,2,4,3)$$

$$V_{10} = (4,2,2,4,2,2,1,3,4,3,1,4)$$

What about V8 and V10?

Using plot3d() to visualise samples

Visualising the original samples when they coloured by the subgroups obtained from k-means clustering

After running k-means on these 12 samples

Any Questions?