Recherche opérationnelle

DUT Info 2e année, parcours A

Programmation linéaire en nombres entiers, exemples

Florent Foucaud

Couverture d'un réseau par des antennes

Problème : couvrir un réseau avec des antennes (ensemble dominant).

Objectif: minimiser le nombre d'antennes

Couverture d'un réseau par des antennes

Problème : couvrir un réseau avec des antennes (ensemble dominant).

Objectif: minimiser le nombre d'antennes

Couverture d'un réseau par des antennes

Problème : couvrir un réseau avec des antennes (ensemble dominant).

Objectif: minimiser le nombre d'antennes

Le réseau est un graphe non-orienté G = (V, E).

On écrit le PL en nombres entiers suivant :

Une variable x_{ν} pour chaque sommet ν : $x_{\nu}=1$ si on a une antenne sur ν , 0 sinon.

 $\begin{array}{lllll} \text{minimiser}: & \sum_{v \in V} x_v \\ \text{tel que}: & \sum_{uv \in E} x_u + x_v & \geq & 1 & \forall v \in V \\ & x_v & \leq & 1 & \forall v \in V \\ & x_v & \geq & 0 & \forall v \in V \\ & x_v & \in & \mathbb{N} & \forall v \in V \end{array}$

Couverture d'un réseau par des antennes : exemple

Le réseau est un graphe non-orienté G = (V, E), ici $V = \{a, b, c, d\}$ et $E = \{ab, bc, cd, de\}$.

On écrit le PL en nombres entiers suivant :

Une variable x_{ν} pour chaque sommet $\nu: x_{\nu} = 1$ si on a une antenne sur ν .

 $\begin{array}{llll} \text{minimiser}: & x_a + x_b + x_c + x_d \\ \\ \text{tel que}: & x_a + x_b + x_e & \geq & 1 \\ & x_b + x_c + x_a & \geq & 1 \\ & x_c + x_d + x_b & \geq & 1 \\ & x_d + x_e + x_a & \geq & 1 \\ & & x_a, x_b, x_c, x_d & \leq & 1 \\ & x_a, x_b, x_c, x_d & \leq & 0 \\ & x_a, x_b, x_c, x_d & \in & \mathbb{N} \\ \end{array}$

Plus court chemin

Problème : trouver un plus court chemin dans un réseau de A à B.

Plus court chemin

Problème : trouver un plus court chemin dans un réseau de A à B.

Plus court chemin

Problème : trouver un plus court chemin dans un réseau de A à B.

Le réseau est un graphe G = (V, E).

On écrit le PL en nombres entiers suivant :

Une variable x_e pour chaque arête $e: x_e = 1$ si on sélectionne e, 0 sinon.

minimiser :	$\sum_{e \in E} x_e$			
tel que :	$\sum_{u:u\to\nu} x_{uv} \\ \sum_{u:A\to u} x_{Au} \\ \sum_{u:u\to B} x_{uB}$	= = =	$\sum_{w:v\to w} x_{vw} \\ 1 \\ 1$	$\forall v \in V - \{A, B\}$
	X _e X _e	≤ ≥	1 0	∀e ∈ E ∀e ∈ E
	Xe	\in	N	∀e ∈ E