Observe that

Final Exam

1. Let X be a nonempty topological space and let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of Borel-regular measures on X. Assume for any $A \subset X$ the sequence $\mu_n(A) \searrow \mu(A)$. Prove that if $\mu_1(X) < \infty$, then μ is a measure on X.

Proof (Null empty set) Observe that

$$\mu(\emptyset) = \lim_{n \to \infty} \mu_n(\emptyset) = \lim_{n \to \infty} 0 = 0.$$

(Monotonicity and subadditivity) Suppose that $A \subset \bigcup_{i=1}^{\infty} A_i$. Letting

$$B_1 = A_1$$
$$B_n = A_n \setminus B_{n-1}$$

gives $A \subset \bigcup_{i=1}^{\infty} A_i = \coprod_{i=1}^{\infty} B_i$. Thus since every $B_i \subseteq A_i$, then $\mu_n(B_i) \leq \mu_n(A_i)$ for all n, so $\mu(B_i) \leq \mu(A_i)$, which means it suffices to show that $\mu(A) \leq \sum_{i=1}^{\infty} \mu(B_i)$.

$$\mu(A) = \lim_{n \to \infty} \mu_n(A)$$

$$\leq \lim_{n \to \infty} \sum_{i=1}^{\infty} \mu_n(B_i)$$

$$= \lim_{n \to \infty} \sup_{n \to \infty} \sum_{i=1}^{\infty} \mu_n(B_i)$$

$$= \lim_{n \to \infty} \sup_{n \to \infty} \int_{x=1}^{\infty} \mu_n(B_{\lfloor x \rfloor}) dx$$

$$\leq \int_{x=1}^{\infty} \lim_{n \to \infty} \sup_{n \to \infty} \mu_n(B_{\lfloor x \rfloor}) dx$$

$$= \int_{x=1}^{\infty} \mu(B_{\lfloor x \rfloor}) dx$$

$$= \sum_{i=1}^{\infty} \mu(B_i).$$

To finish the proof, we will justify the above use of reverse Fatou's lemma.

Observe that $\mu_n(B_{\lfloor x \rfloor})$ is a countable sequence of real-valued measurable functions of x, and $\mu_1(B_{\lfloor x \rfloor})$ dominates the sequence since $\mu_n(B) \leq \mu_1(B)$ for all sets B, and

$$\int_{1}^{\infty} \mu_{1}(B_{\lfloor x \rfloor}) dx = \sum_{i=1}^{\infty} \mu_{1}(B_{i})$$

$$= \sum_{i=1}^{\infty} \mu_{1}(B_{i})$$

$$= \mu_{1} \left(\bigcup_{i=1}^{\infty} B_{i} \right)$$

$$\leq \mu_{1}(X)$$

$$< \infty.$$
Since B_{i} sets are disjoint
$$\leq \mu_{1}(X)$$

Thus $\mu_1(B_{\lfloor x \rfloor})$ is dx-summable, and the conditions of reverse Fatou's lemma are satisfied.

- **2.** Let $f: \mathbb{R} \to \mathbb{R}$ be Lebesgue-measurable. Prove that there exists a Borel-measurable function $g: \mathbb{R} \to \mathbb{R}$ such that f(x) = g(x) Lebesgue-a.e. in \mathbb{R} .
 - **Proof** Approximate f by simple functions as follows. Let $A_k^n = \left[\frac{n}{2^k}, \frac{n+1}{2^k}\right]$