October 2024

Y. Oksamytnyi

MATHSCODEBOOK A COMPREHENSIVE GUIDE

Contents

Ch. 1	Calculus and Basic Algebra	1
1.1	Limits and Continuity	1
	1.1.1 Definition of a Limit	1
	1.1.2 Theorem: Intermediate Value Theorem	1
	1.1.3 Example: Calculating Limits	1
	1.1.4 Proposition: Continuity Implies Limit	2
1.2	Differentiation	2
	1.2.1 Definition: Derivative	2
	1.2.2 Theorem: Power Rule for Derivatives	2
	1.2.3 Corollary: Special Case of Power Rule	2
	1.2.4 Exercise: Differentiation Practice	2
	1.2.5 Python Code Snippet: Differentiation	3
	1.2.6 Example: Derivative Calculation	3
1.3	Applications of Derivatives	3
	1.3.1 Theorem: Critical Points and Extrema	3
1.4	Algebraic Functions and Equations	4
	1.4.1 Axiom: Properties of Real Numbers	4
	1.4.2 Proposition: Solving Quadratic Equations	4
	1.4.3 Example: Solving Quadratic Equations	4
	1.4.4 Python Code Snippet: Quadratic Solver	4
1.5	Trigonometric Limits	5
	1.5.1 Theorem: Sine Limit	5
	1.5.2 C++ Code Snippet: Calculating Sine Limit	5
Ch. 2	Introduction to Algorithms	6
2.1	Basics of Algorithms	6
	2.1.1 Definition of an Algorithm \dots	6
	2.1.2 Theorem: Big-O Notation	6
	2.1.3 Example: Time Complexity of Linear Search $\ \ldots \ \ldots$	6
	2.1.4 Exercise: Analyze Linear Search	7

2.2	Sorting Algorithms	7
	2.2.1 Theorem: Time Complexity of Sorting Algorithms	7
	2.2.2 Proposition: Bubble Sort Efficiency	7
	2.2.3 Exercise: Implement Bubble Sort	8
	2.2.4 Python Code Snippet: Bubble Sort	8
2.3	Recursive Algorithms	8
	2.3.1 Theorem: Recursion	8
	2.3.2 Example: Factorial Function	9
	2.3.3 Exercise: Implement Recursive Factorial	9
	2.3.4 Python Code Snippet: Recursive Factorial	9
2.4	Dynamic Programming	10
	2.4.1 Theorem: Principle of Optimality	10
	2.4.2 Example: Fibonacci Sequence	10
	2.4.3 Exercise: Implement Fibonacci Sequence	10
	2.4.4 Python Code Snippet: Fibonacci Sequence (Dynamic Pro-	-
	gramming)	
2.5	C++ Code Snippet: Sorting Algorithms	11
	2.5.1 C++ Code Snippet: Quick Sort	11
Ch. 3	Linear Algebra and Matrices	13
3.1	Matrix Operations	13
	3.1.1 Definition: Matrices	13
	3.1.2 Theorem: Properties of Matrix Operations	13
	3.1.3 Example: Matrix Multiplication	13
3.2	Determinants	14
	3.2.1 Theorem: Properties of Determinants	14
	3.2.2 Example: Determinant of a 3x3 Matrix	14
3.3	Inverse of a Matrix	14
	3.3.1 Theorem: Inverse of a Matrix	14
		15
	3.3.2 Example: Inverse of a 2x2 Matrix	
	3.3.2 Example: Inverse of a 2x2 Matrix	15
3.4		15 15
3.4	3.3.3 Python Code Snippet: Matrix Inversion	
3.4	3.3.3 Python Code Snippet: Matrix Inversion	15
3.4	3.3.3 Python Code Snippet: Matrix Inversion	15 15

3.5	Gaussian Elimination	16
	3.5.1 Theorem: Gaussian Elimination	16
	3.5.2 Example: Solving a System of Equations	17
	3.5.3 Python Code Snippet: Gaussian Elimination	17

Chapter 1

Calculus and Basic Algebra

1.1 Limits and Continuity

1.1.1 Definition of a Limit

Definition 1.1: Limit Definition.

A function f(x) approaches the limit L as x approaches c if, for every number $\epsilon > 0$, there exists a number $\delta > 0$ such that whenever $0 < |x - c| < \delta$, we have $|f(x) - L| < \epsilon$.

1.1.2 Theorem: Intermediate Value Theorem

Theorem 1.1 : Intermediate Value Theorem . If a function f is continuous on the interval [a,b], and f(a) and f(b) have opposite signs, then there exists some $x \in [a,b]$ such that f(x) = 0.

Exercise 1.1. Use the Intermediate Value Theorem to show that the equation $x^3 - x - 1 = 0$ has a solution in the interval [1,2].

1.1.3 Example: Calculating Limits

Example 1.1

Calculate the limit:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Solution: Factor the numerator:

$$\lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1} (x+1) = 2$$

1.1.4 Proposition: Continuity Implies Limit

Proposition 1.2. For any rational function f(x), if f(x) is continuous at x = a, then:

$$\lim_{x \to a} f(x) = f(a)$$

Observation. Even though a function can be continuous at a point, it may not be differentiable at that point. For example, f(x) = |x| is continuous at x = 0 but not differentiable there.

1.2 Differentiation

1.2.1 Definition: Derivative

Definition 1.2: Derivative Definition.

The derivative of a function f(x) at a point x = a is defined as:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

This measures the rate of change of the function at that point.

1.2.2 Theorem: Power Rule for Derivatives

Theorem 1.3 : Power Rule . For any real number n, the derivative of $f(x) = x^n$ is:

$$f'(x) = nx^{n-1}$$

1.2.3 Corollary: Special Case of Power Rule

Corollary 1.4. As a special case of the Power Rule, the derivative of $f(x) = x^2$ is:

$$f'(x) = 2x$$

1.2.4 Exercise: Differentiation Practice

Exercise 1.2. Differentiate the polynomial:

$$f(x) = x^3 - 3x^2 + 2x$$

1.2.5 Python Code Snippet: Differentiation

Code Snippet 1.1: Differentiating a Polynomial in Python.

```
import sympy as sp

# Define the variable and the function

x = sp.symbols('x')

f = x**3 - 3*x**2 + 2*x

# Differentiate the function
derivative = sp.diff(f, x)
print(f"The derivative of f(x) is: {derivative}")
```

1.2.6 Example: Derivative Calculation

Example 1.2

Find the derivative of the function:

$$f(x) = x^3 - 2x^2 + 3x - 1$$

Solution: Using the Power Rule:

$$f'(x) = 3x^2 - 4x + 3$$

1.3 Applications of Derivatives

1.3.1 Theorem: Critical Points and Extrema

Theorem 1.5: Critical Points Theorem. Let f(x) be a differentiable function. A point c is called a critical point if either f'(c) = 0 or f'(c) does not exist.

Exercise 1.3. Find the critical points of the function:

$$f(x) = x^3 - 6x^2 + 9x$$

Then, determine whether each critical point corresponds to a local maximum, local minimum, or neither.

1.4 Algebraic Functions and Equations

1.4.1 Axiom: Properties of Real Numbers

Axiom 1.1.

For any real numbers a and b, the sum a+b is also a real number. This is known as closure under addition in real numbers.

1.4.2 Proposition: Solving Quadratic Equations

Proposition 1.6. The solutions to the quadratic equation $ax^2 + bx + c = 0$ are given by the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.4.3 Example: Solving Quadratic Equations

Example 1.3 .

Solve the quadratic equation:

$$2x^2 - 4x + 1 = 0$$

Solution: Using the quadratic formula:

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(1)}}{2(2)} = \frac{4 \pm \sqrt{16 - 8}}{4} = \frac{4 \pm \sqrt{8}}{4} = \frac{4 \pm 2\sqrt{2}}{4}$$

Thus, the solutions are:

$$x = 1 \pm \frac{\sqrt{2}}{2}$$

1.4.4 Python Code Snippet: Quadratic Solver

Code Snippet 1.2 : Solving Quadratics in Python. 1 import sympy as sp 2 3 # Define the variable and the quadratic equation 4 x = sp.symbols('x') 5 quadratic_eq = 2*x**2 - 4*x + 1

```
7 # Solve the quadratic equation
8 solutions = sp.solve(quadratic_eq, x)
9 print(f"The solutions to the quadratic equation are: {solutions}")
```

1.5 Trigonometric Limits

1.5.1 Theorem: Sine Limit

```
Theorem 1.7 : Sine Limit Theorem . \lim_{x \to 0} \frac{\sin x}{x} = 1
```

Corollary 1.8. From the limit of sine, we derive:

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}$$

Exercise 1.4. Evaluate the following limit:

$$\lim_{x\to 0}\frac{\tan x}{x}$$

1.5.2 C++ Code Snippet: Calculating Sine Limit

Chapter 2

Introduction to Algorithms

2.1 Basics of Algorithms

2.1.1 Definition of an Algorithm

Definition 2.1: Algorithm Definition.

An algorithm is a finite sequence of well-defined instructions to solve a problem or perform a computation. Each step must be precise and executable in a finite amount of time.

Algorithms are the foundation of programming and problem-solving in computer science. Their efficiency is often measured in terms of time complexity, which we introduce next.

2.1.2 Theorem: Big-O Notation

Theorem 2.1 : Big-O Notation . Let f(n) and g(n) be two non-negative functions. We say that f(n) is O(g(n)) if there exist constants c > 0 and n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$.

Big-O notation is used to classify algorithms according to their worst-case performance as the input size grows. For example, linear search has a time complexity of O(n), meaning that the time it takes to complete grows linearly with the input size.

2.1.3 Example: Time Complexity of Linear Search

Example 2.1: Linear Search Time Complexity.

The time complexity of the linear search algorithm is O(n). In the worst case, the algorithm checks each element in the array, resulting in a linear number of operations.

2.1.4 Exercise: Analyze Linear Search

Exercise 2.1. Implement the linear search algorithm in Python. Analyze its time complexity in both the best and worst cases.

2.2 Sorting Algorithms

2.2.1 Theorem: Time Complexity of Sorting Algorithms

Theorem 2.2 : Time Complexity of Bubble Sort . Bubble Sort is an $O(n^2)$ algorithm. In the worst case, Bubble Sort performs n(n-1)/2 comparisons.

2.2.2 Proposition: Bubble Sort Efficiency

Proposition 2.3. In Bubble Sort, each pass through the array pushes the largest unsorted element to its correct position. This results in $O(n^2)$ time complexity, as every element may need to be compared multiple times.

2.2.3 Exercise: Implement Bubble Sort

Exercise 2.2. Implement Bubble Sort in Python. Analyze its performance in both the best and worst cases.

2.2.4 Python Code Snippet: Bubble Sort

```
Code Snippet 2.1: Implementing Bubble Sort in Python.
   def bubble sort(arr):
       n = len(arr)
       for i in range(n):
           # Last i elements are already sorted
           for j in range(0, n-i-1):
               # Swap if the element found is greater than the next element
               if arr[j] > arr[j+1]:
                   arr[j], arr[j+1] = arr[j+1], arr[j]
       return arr
9
10
  # Example usage
11
12 arr = [64, 34, 25, 12, 22, 11, 90]
13 sorted_arr = bubble_sort(arr)
14 print("Sorted array:", sorted_arr)
```

```
Example 2.3: Bubble Sort Steps.

64, 34, 25, 12, 22, 11, 90
34, 25, 12, 22, 11, 64, 90
25, 12, 22, 11, 34, 64, 90
12, 22, 11, 25, 34, 64, 90
12, 11, 22, 25, 34, 64, 90
11, 12, 22, 25, 34, 64, 90
```

2.3 Recursive Algorithms

2.3.1 Theorem: Recursion

Theorem 2.4 : Recursion Theorem . A recursive algorithm solves a problem by breaking it down into smaller instances of the same problem, solving each instance recursively until reaching the base case.

2.3.2 Example: Factorial Function

Example 2.4 : Factorial Function.

The factorial of a number n is defined as:

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0. \end{cases}$$

2.3.3 Exercise: Implement Recursive Factorial

Exercise 2.3. Implement the factorial function in Python using recursion.

2.3.4 Python Code Snippet: Recursive Factorial

```
Code Snippet 2.2 : Recursive Factorial in Python.

def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n-1)

# Example usage
    n = 5
    print(f"Factorial of {n} is {factorial(n)}")
```


2.4 Dynamic Programming

2.4.1 Theorem: Principle of Optimality

Theorem 2.5: Bellman's Principle of Optimality. An optimal solution to a problem can be constructed from optimal solutions to its subproblems. This principle forms the basis of dynamic programming.

2.4.2 Example: Fibonacci Sequence

Example 2.6: Fibonacci Sequence Example.

The Fibonacci sequence is defined as:

$$F(n) = \begin{cases} 0 & \text{if } n = 0, \\ 1 & \text{if } n = 1, \\ F(n-1) + F(n-2) & \text{if } n \ge 2. \end{cases}$$

Using dynamic programming, we can compute F(n) efficiently by storing previously computed values.

2.4.3 Exercise: Implement Fibonacci Sequence

Exercise 2.4. Implement the Fibonacci sequence in Python using both recursion and dynamic programming. Compare the performance of both implementations.

2.4.4 Python Code Snippet: Fibonacci Sequence (Dynamic Programming)

Code Snippet 2.3 : Fibonacci Sequence in Python (DP). 1 def fibonacci_dp(n): 2 # Base cases 3 if n == 0: 4 return 0 5 elif n == 1: 6 return 1 7 8 # Initialize table for dynamic programming 9 dp = [0] * (n + 1)

```
dp[1] = 1

dp[1] = 1

dp[1] = 1

dp[1] = # Compute Fibonacci numbers iteratively

for i in range(2, n + 1):

dp[i] = dp[i-1] + dp[i-2]

return dp[n]

return dp[n]

# Example usage

n = 10

print(f"Fibonacci number at position {n} is {fibonacci_dp(n)}")
```

2.5 C++ Code Snippet: Sorting Algorithms

2.5.1 C++ Code Snippet: Quick Sort

```
Code Snippet 2.4 : Quick Sort in C++.
1 #include <iostream>
2 using namespace std;
   // Function to swap two elements
   void swap(int* a, int* b) {
       int t = *a;
       *a = *b;
       *b = t;
   }
10
11
   // Partition function
   int partition(int arr[], int low, int high) {
       int pivot = arr[high];
13
       int i = (low - 1);
14
       for (int j = low; j <= high - 1; j++) {</pre>
15
            if (arr[j] < pivot) {</pre>
16
                i++;
17
                swap(&arr[i], &arr[j]);
18
            }
19
20
        swap(&arr[i + 1], &arr[high]);
21
       return (i + 1);
22
   }
23
24
   // QuickSort function
   void quickSort(int arr[], int low, int high) {
26
       if (low < high) {</pre>
27
            int pi = partition(arr, low, high);
28
```

```
29
            quickSort(arr, low, pi - 1);
            quickSort(arr, pi + 1, high);
30
        }
   }
  // Driver code
   int main() {
        int arr[] = {10, 7, 8, 9, 1, 5};
        int n = sizeof(arr) / sizeof(arr[0]);
        quickSort(arr, 0, n - 1);
        cout << "Sorted array: ";</pre>
        for (int i = 0; i < n; i++) {</pre>
           cout << arr[i] << " ";
42
        cout << endl;</pre>
        return 0;
45 }
```

Chapter 3

Linear Algebra and Matrices

3.1 Matrix Operations

3.1.1 Definition: Matrices

Definition 3.1: Matrix Definition.

A matrix is a rectangular array of numbers arranged in rows and columns. The size or dimension of a matrix is given by the number of rows and columns. A matrix with m rows and n columns is called an $m \times n$ matrix.

3.1.2 Theorem: Properties of Matrix Operations

Theorem 3.1 : Matrix Addition and Multiplication . Let A and B be $m \times n$ matrices, and C an $n \times p$ matrix. The following properties hold:

- Matrix Addition: $(A + B)_{ij} = A_{ij} + B_{ij}$
- Scalar Multiplication: $(cA)_{ij} = c \cdot A_{ij}$
- Matrix Multiplication: $(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

3.1.3 Example: Matrix Multiplication

Example 3.1 : Matrix Multiplication.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$. The product AB is calculated as:

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1(2) + 2(1) & 1(0) + 2(2) \\ 3(2) + 4(1) & 3(0) + 4(2) \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 10 & 8 \end{bmatrix}$$

3.2 Determinants

3.2.1 Theorem: Properties of Determinants

Theorem 3.2: Determinant Properties. Let A and B be square matrices. The determinant satisfies the following properties:

- $det(A) = det(A^T)$ (Determinant of transpose is the same as the determinant)
- det(AB) = det(A) det(B) (Multiplicative property)
- If A is triangular, then det(A) is the product of its diagonal entries

3.2.2 Example: Determinant of a 3x3 Matrix

Example 3.2: Determinant Calculation.

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$
. The determinant of A is:

$$\det(A) = 1 \cdot \det \begin{bmatrix} 1 & 4 \\ 6 & 0 \end{bmatrix} - 2 \cdot \det \begin{bmatrix} 0 & 4 \\ 5 & 0 \end{bmatrix} + 3 \cdot \det \begin{bmatrix} 0 & 1 \\ 5 & 6 \end{bmatrix}$$

After simplifying:

$$\det(A) = 1(1 \cdot 0 - 4 \cdot 6) - 2(0 \cdot 0 - 5 \cdot 4) + 3(0 \cdot 6 - 5 \cdot 1) = -24 + 40 - 15 = 1$$

3.3 Inverse of a Matrix

3.3.1 Theorem: Inverse of a Matrix

Theorem 3.3 : Invertibility Condition . A square matrix A is invertible if and only if $\det(A) \neq 0$. The inverse of A is denoted by A^{-1} and satisfies the property $AA^{-1} = A^{-1}A = I$, where I is the identity matrix.

3.3.2 Example: Inverse of a 2x2 Matrix

Example 3.3 : Matrix Inverse.

Let $A = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}$. The inverse of A is calculated using the formula:

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

where det(A) = ad - bc. For this matrix:

$$\det(A) = 4(6) - 7(2) = 10, \quad A^{-1} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

3.3.3 Python Code Snippet: Matrix Inversion

```
Code Snippet 3.1 : Matrix Inversion in Python.

i import numpy as np

A = np.array([[4, 7], [2, 6]])

A_inv = np.linalg.inv(A)
```

5 print("Inverse of A:\n", A_inv)

3.4 Eigenvalues and Eigenvectors

3.4.1 Definition: Eigenvalues and Eigenvectors

Definition 3.2 : Eigenvalue Definition.

Let A be an $n \times n$ matrix. A non-zero vector v is called an eigenvector of A if there exists a scalar λ , called the eigenvalue, such that $Av = \lambda v$.

3.4.2 Example: Eigenvalues of a 2x2 Matrix

Example 3.4 : Eigenvalue Calculation.

Let $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$. The eigenvalues of A are found by solving the characteristic equation:

$$\det(A - \lambda I) = 0$$

For this matrix, the characteristic equation is:

$$\det\begin{bmatrix} 4-\lambda & 1\\ 2 & 3-\lambda \end{bmatrix} = (4-\lambda)(3-\lambda) - 2 = \lambda^2 - 7\lambda + 10 = 0$$

The eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 2$.

3.4.3 Python Code Snippet: Eigenvalue Calculation

```
Code Snippet 3.2 : Eigenvalue and Eigenvector Calculation in Python.
```

```
import numpy as np

A = np.array([[4, 1], [2, 3]])
eigenvalues, eigenvectors = np.linalg.eig(A)
print("Eigenvalues:\n", eigenvalues)
print("Eigenvectors:\n", eigenvectors)
```

3.5 Gaussian Elimination

3.5.1 Theorem: Gaussian Elimination

Theorem 3.4 : Gaussian Elimination . Gaussian elimination is a method for solving a system of linear equations. It works by transforming the system's augmented matrix into row echelon form, and then solving the system using back-substitution.

3.5.2 Example: Solving a System of Equations

Example 3.5 : Gaussian Elimination.

Solve the following system of equations using Gaussian elimination:

$$2x + 3y - z = 1$$
$$4x + y + 2z = 2$$
$$-2x + 7y + 3z = 3$$

The augmented matrix is:

$$\begin{bmatrix} 2 & 3 & -1 & | & 1 \\ 4 & 1 & 2 & | & 2 \\ -2 & 7 & 3 & | & 3 \end{bmatrix}$$

Apply row operations to reduce the matrix to row echelon form, and then solve the system using back-substitution.

3.5.3 Python Code Snippet: Gaussian Elimination

Code Snippet 3.3 : Gaussian Elimination in Python.

```
import numpy as np
   def gaussian_elimination(A, b):
       n = len(b)
       for i in range(n):
           A[i] = A[i] / A[i, i] # Normalize pivot row
           for j in range(i + 1, n):
               A[j] = A[j] - A[j, i] * A[i]
       x = np.zeros(n)
       for i in range(n-1, -1, -1):
           x[i] = (b[i] - np.dot(A[i, i+1:], x[i+1:])) / A[i, i]
       return x
12
  A = np.array([[2, 3, -1], [4, 1, 2], [-2, 7, 3]], dtype=float)
  b = np.array([1, 2, 3], dtype=float)
solution = gaussian_elimination(A, b)
17 print("Solution:", solution)
```