

AN4311 应用笔记

评估 STM32L1 系列电流消耗

前言

意法半导体基于 ARM[®] Cortex™-M3 的 STM32 L1 系列采用意法半导体专有的超低泄漏处理技术,具有创新型自主动态电压调节功能和 5 种低功耗模式,为各种应用提供了无与伦比的平台灵活性。 STM32L1 系列产品在不影响性能的情况下扩展了超低功耗概念。

这种复杂的架构意味着配置设置和操作模式具有更多选择。本应用笔记描述了如何配置您的 STM32L1 器件来实现低功耗功能的目标,以及如何配置该系列产品的运行模式。它提供了 经过验证的、现成可用的代码示例,能够快速评估您的探索板或其他平台上的电流消耗。

本文档不提供针对器件特性的任何配置设置。所附 STSW-STM32146 固件仅作指导。 请参考相关的数据手册来获取有效的最新特性数据。

表 1. 可用产品、工具和固件

类型	料号和产品类别
评估工具	STM32L-DISCOVERY
固件	STSW-STM32146

目录

1	固件架	段构				 	 	 	 		 	 	٠.	 3
	1.1	运行模式	t			 	 	 	 		 	 		 4
		1.1.1	仿真整数											
		1.1.2	CoreMa											
		1.1.3	Dhrysto											
		1.1.4	Fibona	ci 代码	子	 	 	 	 		 	 		 . 4
			c 语言中											
	1.2	低功耗	运行模式			 	 	 	 		 	 		 5
	1.3	睡眠模式	t			 	 	 	 		 	 		 5
	1.4	停止模式	t			 	 	 	 		 	 		 5
	1.5	待机模式	t			 	 	 	 		 	 		 6
2	硬件指	越				 	 	 	 		 	 		 7
3	总结 .					 	 	 	 	 .		 		 8
4	版本历	5史				 	 	 	 		 	 		 9

AN4311 固件架构

固件架构 1

本应用笔记和相关固件定义了器件的基本配置,该配置对于实现最优化电流消耗的目标是必 要的。它提供了一种清晰且有启发意义的方法,使您能够利用多种最优化低功耗模式的优 势。固件的架构如图 1: 固件架构中所述。

图 1. 固件架构

该固件选用基于多项目工作空间的方式。每个项目指向激活的或器件可用的某一种低功耗模 式。它们被配置为最简单的用例。 main.h 文件包含了一系列 "#define",使您可以对更多定 制化的测试进行微调(您可从表 2:编译选项或代码本身的注释中获取更多详细信息)。每 个项目的目标设置允许使用不同的时钟配置,这使得在评估阶段中重现精确的应用实例成为 可能。

在 IDE 工具的配置向导中,时钟频率或振荡器范围须根据您的需要来定义。

1.1 运行模式

器件的运行功耗通过在器件中运行不同类型的代码来进行评估。请参考*表 2*来获取更多关于 编译选项的详细信息。

表 2. 编译选项

定义	说明
ENABLE_DEBUG	允许您保留 I/O 配置,以通过调试工具来进行通信。
ENABLE_RTC	停止和待机模式下, RTC 是使能的。
ENABLE_IWDG	停止和待机模式下, IWDG 是使能的。
ENABLE_LCD	停止模式下, LCD 是使能的。
ENABLE_PERIPHERAL_CLOCK	运行和睡眠模式下,所有外设时钟是使能或禁止的。
RUN_MODE	允许您选择运行模式中运行的代码。
CODE_LOCATION	允许您选择在哪个存储器中运行代码。

1.1.1 仿真整数运算循环

器件的运行功耗通过在闪存中运行一个指令循环来进行评估。该代码设计成可得到近似等于 Dhrystone 基准的电流消耗,但是用汇编语言编写。这种方法的优点是能够使代码不依赖于 编译器设置。

RAM 执行和 DMIPS/mA

为检测应用代码从内部 Flash 或内部 RAM 中执行时电流消耗中的不同,您必须在编译器、IDE 的选项中指定文件 *dhrystone_like.c* 映射到何处。由于可关闭 Flash,因此从 RAM 执行的电流消耗更低,这使得 DMIPS/mA 速率明显增高。

1.1.2 CoreMark 代码

可评估实际 CoreMark[®] 代码的消耗。电流消耗可能依赖于编译器和优化设置。进行 CoreMark 评分 (Timer, USART......)测量的必要配置都被禁用,以便仅测量 CPU 消耗。

1.1.3 Dhrystone 代码

运行该测试时,请注意禁用编译器内联选项来使其符合整数运算的要求。关于如何实现,更 多信息请参考 C 编译器文档。

1.1.4 Fibonacci 代码

此代码执行对 Fibonacci 数列前 46 个数项的计算。46 次迭代后,32 位结果溢出。也可以从内部 RAM 存储器中执行该代码,且 Flash 置于掉电模式以实现更低的电流消耗和更高的性能。

AN4311 固件架构

1.1.5 c 语言中的无限循环: while (1)

为了比较执行复杂计算和基本循环时的内核功耗,向用户提供了此选项。也可以在 RAM 存储器中执行它(Flash 关断)。

注意: 请注意,仅从闪存执行且预取和 64 位访问使能时, "c while(1); routine" 可能在器件上产生不同的电流消耗。如果在无限分支之前的指令是一个 32 位指令,则分支指令从 Flash 访问。另一方面,如果分支指令在一个 16 位指令之后,则它可以完全从预读取结果访问,会产生更小的电流消耗。

该特点重点说明了内存加速随内存中代码不同队列的运行。

1.2 低功耗运行模式

运行模式和低功耗运行模式之间的区别在于内部 Vcore 域调压器的状态。 Vcore 域电压转到 2-1.5 V 范围内,调压器置于低功耗模式。因此系统最大频率为 121 kHz。结果是为外设和 内核供电的电量受到限制。高速的系统时钟配置不再可能。请注意,此限制仅对 Vcore 域有影响,其他域不受影响。该项目中执行的代码是类整数运算循环。

1.3 睡眠模式

该模式下, ARM^{\otimes} $Cortex^{\mathsf{TM}}$ -M3 内核的时钟被禁用,如参考手册的第 4.3.5 节 " 睡眠模式 " 所述。代码示例中,当没有外设被提供时钟时,闪存被配置为低功耗模式。

1.4 停止模式

该模式可在调压器 ON 或处于低功耗模式时被访问。后者可实现更低的电流消耗,但是会增加唤醒时间。您可以运行 RTC 以及 LSE 振荡器和看门狗,能够看到实际用例中它们的 (电流)消耗。

1.5 待机模式

这种配置下,您能够得到可能的最低电流消耗(可用于 STM32L1 器件)。 Vcore 域切换为 OFF,会降低泄漏,但是该域的寄存器内容会丢失,包括内部 RAM。备份域仍然是加电的,提供了 IWDG、RTC 和低速时钟。系统由内部或外部源产生的复位来唤醒,包括 WKUP 脚上升沿、RTC 闹钟(闹钟 A 和闹钟 B)、RTC 唤醒、入侵事件、时间戳事件、 NRST 脚的外部复位和 IWDG 复位。

AN4311 硬件说明

2 硬件说明

探索板的测量

针对测量推荐使用的硬件是 STM32L 探索板, STM32L-DISCOVERY,它具有 STM32L152xxB 器件,一个超低功耗 ARM[®] Cortex™-M3 MCU。可以在其他的 STM32L1 平台上使用它。不过,用户应当 (对它)进行以下改变:

- 项目中的启动文件必须根据所选器件而改变,同时必须更新相关预处理程序 #define。
- 用户须根据所选封装来添加或移除 GPIO 定义。
- 用户须重新配置 LCD 引脚 (封装中不可用)。

须用电流消耗测量工具 (为了获得更高精度,应配置为平均模式)来替代跳线 JP1。 I/O 无需处于特定状态;它们将被内部配置为模拟输入,由于施密特触发器断电,因此会有最小的功耗。

要获得最优结果,请按下列步骤操作:

- 1. 载入代码。
- 2. 通过从 CN3 中移除跳线, 使您的探索板与调试工具分离。
- 3. 关断电源并重启电源 (断开和重连 USB 电子狗),以产生上电复位并彻底禁用 Cortex™-M3 的内部调试电路。

如果您想使用外部时钟作为系统时钟源,请将其配置为方波,幅度与电源电压相同 (探索板上为 3 V),以使焊盘上不产生额外功耗。

- **注意:** 如果您想使用 JP1 上的外部电源为器件供电,请参考下面的注释。
- 注意: STM32L15xxB PB7 脚上的硅限制可能会影响电流消耗测量。 当 PB7 配置为模拟模式且不选定 PVD 级别时, PB7 引脚上会激活内部上拉。这会在外部元件如 STM32L1-DISCOVERY 板上的电阻、二极管上感应出电流。为了仅测量 MCU 的电流消耗,可有两种解决方案:
 - 断开连接到 PB7 内部上拉的 LD3 二极管
 - 将 PB7 配置为输入并将 PB7 脚接地,以使电流消耗最小。
- 注: 必须拆焊 SB100。它默认将 RST 脚连接到 ST-Link 设备。但是,由于 ST-Link 器件没有上电,它要么在内部 NRST 上拉上引入电流消耗,甚至使器件保持复位。

为了能够重新编程您的器件,只需外部重连此线,将 NRST 脚从侧排头连接到 CN6 的脚 5。

3 总结

利用此固件和 STM32L 探索板,您可以快速简易地评估 STM32L 系列产品的低功耗特性、理解如何解释数据手册中的值以及在实际应用中应用这些知识。

AN4311 版本历史

4 版本历史

表 3. 文档版本历史

日期	版本	变更
2014年10月2日	1	初始版本。

表 4. 中文文档版本历史

日期	版本	变更
2015年12月8日	1	中文初始版本。

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利 2015

