

KOMISJA

1	UZUPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę
		na namejnę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

DATA: 7 maja 2019 r. GODZINA ROZPOCZECIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY			
Uprawnienia zdającego do:			
	dostosowania kryteriów oceniania		
	nieprzenoszenia zaznaczeń na kartę		
	dostosowania w zw. z dyskalkulią		

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1 1P-192

NOWA FORMULA

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $\log_{\sqrt{2}} 2$ jest równa

A. 2

B. 4

C. $\sqrt{2}$

D. $\frac{1}{2}$

Zadanie 2. (0-1)

Liczba naturalna $n = 2^{14} \cdot 5^{15}$ w zapisie dziesiętnym ma

A. 14 cyfr

B. 15 cyfr

C. 16 cyfr

D. 30 cyfr

Zadanie 3. (0-1)

W pewnym banku prowizja od udzielanych kredytów hipotecznych przez cały styczeń była równa 4%. Na początku lutego ten bank obniżył wysokość prowizji od wszystkich kredytów o 1 punkt procentowy. Oznacza to, że prowizja od kredytów hipotecznych w tym banku zmniejszyła się o

A. 1%

B. 25%

C. 33%

D. 75%

Zadanie 4. (0-1)

Równość $\frac{1}{4} + \frac{1}{5} + \frac{1}{a} = 1$ jest prawdziwa dla

A. $a = \frac{11}{20}$ **B.** $a = \frac{8}{9}$ **C.** $a = \frac{9}{8}$ **D.** $a = \frac{20}{11}$

Zadanie 5. (0-1)

Para liczb x = 2 i y = 2 jest rozwiązaniem układu równań $\begin{cases} ax + y = 4 \\ -2x + 3y = 2a \end{cases}$ dla

A. a = -1

B. a = 1

C. a = -2

D. a = 2

Zadanie 6. (0–1)

Równanie $\frac{(x-1)(x+2)}{x-3} = 0$

A. ma trzy różne rozwiązania: x = 1, x = 3, x = -2.

B. ma trzy różne rozwiązania: x = -1, x = -3, x = 2.

C. ma dwa różne rozwiazania: x = 1, x = -2.

D. ma dwa różne rozwiązania: x = -1, x = 2.

Zadanie 7. (0-1)

Miejscem zerowym funkcji liniowej f określonej wzorem $f(x) = 3(x+1) - 6\sqrt{3}$ jest liczba

- **A.** $3-6\sqrt{3}$

- **B.** $1-6\sqrt{3}$ **C.** $2\sqrt{3}-1$ **D.** $2\sqrt{3}-\frac{1}{3}$

Informacja do zadań 8.-10.

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f. Wierzchołkiem tej paraboli jest punkt W = (2, -4). Liczby 0 i 4 to miejsca zerowe funkcji f.

Zadanie 8. (0–1)

Zbiorem wartości funkcji f jest przedział

- A. $(-\infty, 0)$
- **B.** $\langle 0, 4 \rangle$ **C.** $\langle -4, +\infty \rangle$
- **D.** $\langle 4, +\infty \rangle$

Zadanie 9. (0–1)

Największa wartość funkcji f w przedziale $\langle 1, 4 \rangle$ jest równa

- **A.** −3
- **B.** -4
- **C.** 4
- **D.** 0

Zadanie 10. (0-1)

Osią symetrii wykresu funkcji f jest prosta o równaniu

- **A.** y = -4
- **B.** x = -4 **C.** y = 2
- **D.** x = 2

Zadanie 11. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, dane są dwa wyrazy: $a_1 = 7$ i $a_8 = -49$. Suma ośmiu początkowych wyrazów tego ciągu jest równa

Zadanie 12. (0-1)

Dany jest ciąg geometryczny (a_n) , określony dla $n \ge 1$. Wszystkie wyrazy tego ciągu są dodatnie i spełniony jest warunek $\frac{a_5}{a_3} = \frac{1}{9}$. Iloraz tego ciągu jest równy

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{\sqrt{3}}$$
 C. 3 **D.** $\sqrt{3}$

$$\mathbf{D.} \quad \sqrt{3}$$

Zadanie 13. (0-1)

Sinus kąta ostrego α jest równy $\frac{4}{5}$. Wtedy

$$\mathbf{A.} \quad \cos \alpha = \frac{5}{4}$$

B.
$$\cos \alpha = \frac{1}{5}$$

A.
$$\cos \alpha = \frac{5}{4}$$
 B. $\cos \alpha = \frac{1}{5}$ **C.** $\cos \alpha = \frac{9}{25}$ **D.** $\cos \alpha = \frac{3}{5}$

$$\mathbf{D.} \quad \cos \alpha = \frac{3}{5}$$

Zadanie 14. (0-1)

Punkty D i E leżą na okręgu opisanym na trójkącie równobocznym ABC (zobacz rysunek). Odcinek CD jest średnicą tego okręgu. Kąt wpisany DEB ma miarę α .

Zatem

A.
$$\alpha = 30^{\circ}$$

B.
$$\alpha$$
 < 30°

C.
$$\alpha > 45^{\circ}$$

C.
$$\alpha > 45^{\circ}$$
 D. $\alpha = 45^{\circ}$

Zadanie 15. (0-1)

Dane są dwa okręgi: okrąg o środku w punkcie O i promieniu 5 oraz okrąg o środku w punkcie P i promieniu 3. Odcinek OP ma długość 16. Prosta AB jest styczna do tych okręgów w punktach A i B. Ponadto prosta AB przecina odcinek OP w punkcie K (zobacz rysunek).

Wtedy

A.
$$|OK| = 6$$

B.
$$|OK| = 8$$

B.
$$|OK| = 8$$
 C. $|OK| = 10$ **D.** $|OK| = 12$

D.
$$|OK| = 12$$

Zadanie 16. (0-1)

Dany jest romb o boku długości 4 i kacie rozwartym 150°. Pole tego rombu jest równe

A. 8

- **B.** 12
- C. $8\sqrt{3}$
- **D.** 16

Zadanie 17. (0–1)

Proste o równaniach y = (2m+2)x - 2019 oraz y = (3m-3)x + 2019 są równoległe, gdy

A.
$$m = -1$$

B.
$$m = 0$$
 C. $m = 1$ **D.** $m = 5$

C.
$$m=1$$

$$\mathbf{D.} \quad m = 5$$

Zadanie 18. (0-1)

Prosta o równaniu y = ax + b jest prostopadła do prostej o równaniu y = -4x + 1 i przechodzi przez punkt $P = (\frac{1}{2}, 0)$, gdy

A.
$$a = -4 \text{ i } b = -2$$

B.
$$a = \frac{1}{4}$$
 i $b = -\frac{1}{8}$

C.
$$a = -4 \text{ i } b = 2$$

D.
$$a = \frac{1}{4}$$
 i $b = \frac{1}{2}$

Zadanie 19. (0-1)

Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f. Na wykresie tej funkcji leżą punkty A = (0, 4) i B = (2, 2).

Obrazem prostej AB w symetrii względem początku układu współrzędnych jest wykres funkcji g określonej wzorem

A.
$$g(x) = x + 4$$

B.
$$g(x) = x - 4$$

A.
$$g(x) = x + 4$$
 B. $g(x) = x - 4$ **C.** $g(x) = -x - 4$ **D.** $g(x) = -x + 4$

D.
$$g(x) = -x + 4$$

Zadanie 20. (0-1)

Dane są punkty o współrzędnych A = (-2, 5) oraz B = (4, -1). Średnica okręgu wpisanego w kwadrat o boku AB jest równa

C.
$$6\sqrt{2}$$
 D. $2\sqrt{6}$

D.
$$2\sqrt{6}$$

Zadanie 21. (0-1)

Pudełko w kształcie prostopadłościanu ma wymiary 5 dm × 3 dm × 2 dm (zobacz rysunek).

Przekatna KL tego prostopadłościanu jest – z dokładnością do 0,01 dm – równa

A. 5,83 dm

B. 6,16 dm

C. 3,61 dm

D. 5,39 dm

Zadanie 22. (0-1)

Promień kuli i promień podstawy stożka są równe 4. Pole powierzchni kuli jest równe polu powierzchni całkowitej stożka. Długość tworzącej stożka jest równa

A. 8

B. 4

C. 16

D. 12

Zadanie 23. (0-1)

Mediana zestawu sześciu danych liczb: 4, 8, 21, a, 16, 25, jest równa 14. Zatem

A. a = 7

B. a = 12

C. a = 14

D. a = 20

Zadanie 24. (0-1)

Wszystkich liczb pięciocyfrowych, w których występują wyłącznie cyfry 0, 2, 5, jest

A. 12

B. 36

C. 162

D. 243

Zadanie 25. (0-1)

W pudełku jest 40 kul. Wśród nich jest 35 kul białych, a pozostałe to kule czerwone. Prawdopodobieństwo wylosowania każdej kuli jest takie samo. Z pudełka losujemy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy kulę czerwoną, jest równe

A. $\frac{1}{8}$

B. $\frac{1}{5}$

C. $\frac{1}{40}$

D. $\frac{1}{35}$

Zadanie 26. (0–2) Rozwiąż równanie $(x^3 - 8)(x^2 - 4x - 5) = 0$.

Odpowiedź:

Zadanie 27. (0-2)

Rozwiąż nierówność $3x^2 - 16x + 16 > 0$.

Odpowiedź:

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. (0–2)Wykaż, że dla dowolnych liczb rzeczywistych *a* i *b* prawdziwa jest nierówność

$$3a^2 - 2ab + 3b^2 \ge 0.$$

Zadanie 29. (0-2)

Dany jest okrąg o środku w punkcie S i promieniu r. Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC równy promieniowi danego okręgu. Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ACS jest równa α , to miara kąta ASD jest równa 3α .

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. (0–2)

Ze zbioru liczb $\{1,2,3,4,5\}$ losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Odpowiedź:

Zadanie 31. (0–2)

W trapezie prostokątnym ABCD dłuższa podstawa AB ma długość 8. Przekątna AC tego trapezu ma długość 4 i tworzy z krótszą podstawą trapezu kąt o mierze 30° (zobacz rysunek). Oblicz długość przekątnej BD tego trapezu.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (0–4)

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. Różnicą tego ciągu jest liczba r = -4, a średnia arytmetyczna początkowych sześciu wyrazów tego ciągu: a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , jest równa 16.

- a) Oblicz pierwszy wyraz tego ciągu.
- b) Oblicz liczbę k, dla której $a_k = -78$.

Odpowiedź:

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (0–4)

Dany jest punkt A = (-18, 10). Prosta o równaniu y = 3x jest symetralną odcinka AB. Wyznacz współrzędne punktu B.

Odpowiedź:

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. (0-5)

Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa 6. Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt α jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta α .

Odpowiedź:

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	