清华大学计算机科学与技术系

"大模型与生成式人工智能"课程(编号:80240802-0)

课程介绍

刘洋

课程概况

课程名称	大模型与生成式人工智能
课程编号	80240802-0
开课单位	清华大学计算机科学与技术系
授课对象	研究生
授课时间	2025年春,每周四19:20-20:55
授课地点	六教6A315
课程学分	2
课程学时	32
考核方式	编程作业+前沿综述+课堂参与
成绩形式	等级制

授课教师

教师		
姓名	刘洋	
职称	教授	
邮箱	liuyang2011@tsinghua.edu.cn	
主页	http://nlp.csai.tsinghua.edu.cn/~ly/	
地址	清华大学FIT楼4-506房间	

助教

助教		
姓名	刘子君	
职称	博士生	
邮箱	<u>1827691276a@sina.com</u>	
地址	清华科技园启迪大厦C座12层	
助教		
姓名	虞子杨	
职称	博士生	
邮箱	yu-zy24@mails.tsinghua.edu.cn	
地址	清华科技园启迪大厦C座12层	

课程简介

● 本课程是面向全校在读研究生设立的人工智能能力提升项目的一部 分,属于基础必修模块中的限选课程。授课目标是帮助学生树立人 工智能理念和思维,系统了解和掌握人工智能大模型的基本知识与 方法,培养"人工智能+"复合型创新人才。课程将从基础理论、核心 算法和前沿技术三个方面介绍人工智能大模型,主要内容包括:人 工智能基础知识、神经网络、优化、注意力机制、Transformer、自监 督学习、GPT、指令微调、工具学习、涌现能力、智能体、多模态大 模型、世界模型、具身智能、进化机制等。课程采取讲课结合讨 论、辅以动手实验的教学方式,全面提高选课学生的人工智能大模 型技术应用、创新和管理的能力与素养。

• 本课程以课件为主要教学资料,辅以四本参考书。

张奇,桂韬,郑锐,黄萱菁。 2024年。大规模语言模型:从理 论到实践。电子工业出版社。

• 本课程以课件为主要教学资料,辅以四本参考书。

Ian Goodfellow, Yoshua Benigo, and Aaron Couville. 2016. **Deep Learning**. MIT Press.

• 本课程以课件为主要教学资料,辅以四本参考书。

Christopher Bishop. 2006.

Pattern Recognition and
Machine Learning. Springer.

• 本课程以课件为主要教学资料,辅以四本参考书。

Stuart Russel and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall.

授课内容

编号	内容	学时
1	课程介绍	1
2	人工智能概况	1
3	Transformer	2
4	大规模语言模型	4
5	多模态大模型	2

授课内容

编号	内容	学时
6	工具学习	2
7	自主智能体	4
8	具身智能	2
9	世界模型	2
10	AI for Science	6

考核方式

编程作业

- 目的:加深对课堂讲授内容的理解,锻炼学生实际动手解决人工智能问题的能力。
- 比例:占总成绩的45%。
- 形式:基于开源大模型API,结合个人兴趣或研究方向,选择一个创新应用并开发一个demo。
- 说明:可以组队,每队最多5个人。需要交源代码、文档和demo。
 demo可以是网页端,也可以是命令行端。课程助教会专门介绍开源大模型API以及编程技巧。

编程作业评价标准

评价指标	比例	评价标准
完成度	25%	作业的完成情况
工作量	25%	作业的工作量
文档质量	25%	写作规范,文字流畅,排版美观
演示效果	25%	界面设计合理,演示效果正常

前沿综述

● 每个人需要单独完成一份前沿综述报告,选题包括但不限于:语言大模型、多模态大模型、工具学习、智能体、具身智能、世界模型、AI for Science、行业应用等。

● 具体要求如下:

- 内容: 对所选方向的最新动态进行总结和分析, 指出未来发展趋势;
- 语言: 中文和英文均可;
- 格式: LaTex和Word均可;
- 篇幅: 单栏, 至少8页(含参考文献)。

前沿综述评价标准

评价指标	比例	评价标准
文献时效	30%	选取最新的文献
分类体系	30%	对相关工作进行合理的分类
文字质量	30%	写作规范,文字流畅
排版质量	10%	排版美观

课堂参与

● 目的:考察学生在课堂上的参与程度。

● 比例:占总成绩的10%。

• 说明: 允许学生请事假或病假。除特殊情况外,每位学生的请假次数

一般不得超过2次。

时间表

- 2025年3月9日,编程作业组队方案报名截止
- 2025年3月9日,个人前沿综述题目提交截止
- 2025年5月29日,编程作业提交截止
- 2025年5月29日,个人前沿综述提交截止

谢谢