ΠΡΟΓΡΑΜΜΑ

по дисциплине: **Кратные интегралы и теория поля**

по направлению

подготовки: 03.03.01 «Прикладные математика и физика»,

27.03.03 «Системный анализ и управление»,

38.03.01 «Экономика»

физтех-школа: ФБВТ

кафедра: **высшей математики**

 $\begin{array}{c} \text{курс:} & \underline{2} \\ \text{семестр:} & \underline{3} \end{array}$

лекции — 30 часов Экзамен — 3 семестр

практические (семинарские)

занятия — 30 часов

лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 60 Самостоятельная работа:

<u>теор.</u> курс - 45 часов

Программу составил

к. ф.-м. н., ст. преп. А. А. Скубачевский

Программа принята на заседании кафедры высшей математики 11 апреля 2023 г.

Заведующий кафедрой

д. ф.-м. н., профессор Г. Е. Иванов

- 1. Теорема о неявной функции, заданной одним уравнением. Непрерывно дифференцируемые отображения конечномерных пространств, их якобиан. Теорема о неявном отображении (о системе неявных функций, доказательство на усмотрение лектора). Локальная обратимость отображения с ненулевым якобианом.
- 2. Экстремумы функций многих переменных: необходимое условие, достаточное условие. Условный экстремум функции многих переменных при наличии связей: исследование при помощи функции Лагранжа. Необходимые условия. Достаточные условия.
- 3. Кратный интеграл Римана. Суммы Римана и суммы Дарбу. Критерии интегрируемости. Интегрируемость функции, непрерывной на измеримом компакте. Свойства интегрируемых функций: линейность интеграла, аддитивность интеграла по множествам, интегрирование неравенств, теоремы о среднем, непрерывность интеграла по множеству. Сведение кратного интеграла к повторному.
- 4. Геометрический смысл модуля и знака якобиана отображения конечномерных (двумерных) пространств. Теорема о замене переменных в кратном интеграле (доказательство на усмотрение лектора).
- Криволинейный интеграл первого рода. Криволинейный интеграл второго рода. Формула Грина. Потенциальные векторные поля на плоскости. Условия независимости криволинейного интеграла второго рода от пути интегрирования.
- 6. Простая гладкая поверхность. Поверхностный интеграл первого рода. Независимость интеграла от параметризации поверхности при допустимой замене параметров. Площадь поверхности. Ориентация простой гладкой поверхности. Поверхностный интеграл второго рода, выражение через параметризацию поверхности. Кусочно-гладкие поверхности, их ориентация и интегралы по ним.
- 7. Формула Гаусса-Остроградского. Дивергенция векторного поля, ее геометрический смысл. Соленоидальные векторные поля. Связь соленоидальности с обращением в нуль дивергенции поля.
- 8. Формула Стокса. Ротор векторного поля, его геометрический смысл. Потенциальные векторные поля. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Связь потенциальности с обращением в нуль ротора поля.
- 9. Оператор «набла» и действия с ним. Основные соотношения, содержащие вектор «набла».

Литература

Основная

- 1. *Бесов О.В.* Лекции по математическому анализу. Москва : Физматлит, 2014, 2015, 2016.
- 2. Иванов Г. Е. Лекции по математическому анализу. Ч. 2. Москва : МФТИ, 2011.
- 3. $Ky\partial pявцев$ Л. Д. Краткий курс математического анализа. 3-е изд. Москва : Физматлит, 2009.
- 4. *Петрович А. Ю.* Лекции по математическому анализу. Ч. 3. Кратные интегралы. Гармонический анализ. Москва: МФТИ, 2013, 2018.
- 5. *Тер-Крикоров А. М.*, *Шабунин М. И*. Курс математического анализа. Москва : Физматлит, 2007.
- 6. Яковлев Г. Н. Лекции по математическому анализу. Ч. 2. Москва: Физматлит, 2004.

Дополнительная

- 7. Кудрявцев Л. Д. Курс математического анализа. Т. 2. Москва : Дрофа, 2004.
- 8. Никольский $C.\,M.$ Курс математического анализа. Т. 1,2.-5-е изд. Москва : Физматлит, 2000.
- 9. *Архипов Г. И.*, *Садовничий В. А.*, *Чубариков В. Н.* Лекции по математическому анализу. 2-е изд. Москва: Высш. шк., 2000.
- 10. Зорич В. А. Математический анализ. Москва : МЦНМО, 2007.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. 8-е изд. — Москва: Физматлит, 2007.

ЗАДАНИЯ

Литература

1. Сборник задач по математическому анализу. Т3. Функции нескольких переменных: учеб. пособие / под ред. Л. Д. Кудрявцева. — 2-е изд. — Москва : Физматлит, 2003.

Замечания

- 1. Задачи с подчеркнутыми номерами рекомендовано разобрать на семинарских занятиях.
- 2. Задачи, отмеченные « * », являются необязательными для всех студентов.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 03-09 ноября)

І. Неявные функции

- **Т.1.** Дано уравнение $x^2 = y^2$.
 - а) Сколько функций $y:\mathbb{R}\to\mathbb{R}$ удовлетворяет этому уравнению?
 - б) Сколько непрерывных функций $y:\mathbb{R}\to\mathbb{R}$ удовлетворяет этому уравнению?

- в) Сколько непрерывных функций $y:\mathbb{R}\to\mathbb{R}$ удовлетворяет этому уравнению и условию y(1)=1?
- г) Сколько непрерывных функций $y:[1;2]\to \mathbb{R}$ удовлетворяет этому уравнению и условию y(1)=1?

§3: 60(1); 64(<u>2 6</u>); 72; <u>75;</u> 106.

§4: 44(3); 46(2).

II. Замена переменных

<u>Т.2</u>. Для отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$, заданного координатными функциями

$$u = e^x \cos y, \quad v = e^x \sin y$$

показать, что якобиан отображения всюду в \mathbb{R}^2 отличен от нуля, но отображение не является взаимно-однозначным. Найти множество значений отображения f.

Т.3. Отображение $f: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^2$ задано координатными функциями

$$x = r\cos\varphi, \quad y = r\sin\varphi, \quad r > 0.$$

- а) В какой круговой окрестности точки A(1,1) существует обратное отображение?
- б) Выразить частные производные $r,\ \varphi$ по переменным $x,\ y$ как функции $r,\ \varphi.$

§3: 86; 88(2); <u>90</u>.

§4: 51(1); 52(4).

III. Экстремумы функций многих переменных

§5: 2(3); 9; 10*; 13(2); 18(3).

§5: 21(2); 25(3); 26(3); 31(3); 36*.

IV. Двойные интегралы

§8: 80(<u>6</u>); 83(<u>6</u>); 85(2); 91(3), 91(<u>6</u>).

§8: 100(5); <u>110(1-3)</u>; 124(1,4).

§9: 6(3); 10.

V. Тройные и n-кратные интегралы

§8: 133(5a, 56); 135(1)*; 139(4).

§8: 144(<u>6</u>); 146(3); 148(3).

§9: 13(3); 15(1); 16(5); <u>21;</u> 63(2).

§8: 175(1); 176(1, 2); 181*.

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 08–14 декабря)

І. Криволинейные интегралы. Формула Грина

§10: 2(1); 9; 19(3); 34(1); 28(2); 43, 45.

§10: 17; 85(2); 37; <u>44</u>; <u>48</u>; 104(1).

Т.1. Вычислить криволинейный интеграл $\int_{\gamma} \frac{xdy-ydx}{x^2+y^2}$, где γ — простая замкнутая гладкая кривая, не проходящая через точку (0;0), ориентированная против хода часовой стрелки.

II. Поверхностные интегралы

§9: 29; 39; <u>51</u>.

§11: 2(1, 2); <u>33;</u> 39; 40.

Т.2. Вычислить площадь части сферы радиуса R, заключенной между двумя параллельными плоскостями, пересекающими сферу; расстояние между плоскостями равно h. Убедиться, что ответ зависит только от параметров R и h.

III. Формулы Гаусса-Остроградского и Стокса

§11: 46(1); <u>52(1)</u>; 57(2)*; 62; 63(2); 64.

§10: 43.

IV. Элементы теории поля

§3: 44(2); 49(1).

§12: 13; 19; 15(2, 6); 37(2); 40(2); 41(4, 5, 7); 42(1); 49(4, 6) (проверять векторные равенства в координатной форме не обязательно); 50(3); 54(1); 70(3); 93(1); 94(4); 104(1, 2); 112(1, 2) (соленоидальность исследовать в в случаях области r>0 и области x>0).

(52+1*)

Задания составили:

д. ф.-м. н., профессор Я. М. Дымарский к. ф.-м. н., ст. преп. А. А. Скубачевский