Combinational circuit > A combinational circuit consusts of Inful voviables, logic gates and output variables

The steps involved in the design of combinational circuits are as follows:

- . exce the problems in words.
- Find the no of emped and autput voriables
- Assign latter symbols to the Entert and output Vericibles
- obtain the truth table using the word state ment
- Obtain boolson expressions for each of from T-T
- Simply the coolean expressions to minimise the ro. of voriables by using boolean algebra, Karnaugh material
- On Mc-clustry method. Draw the logic circuit diagram corresponding to the simplified boolean expression.

OR Grate

Positive

Circuit diagram

Y

1

Now

$$\overline{AR} = \overline{A} + \overline{S}$$

283	A	B	N.
_	0	0	1
	0	1)
)	٥	ļ
	/		0
	Ţ	([O

NOR gate

Not gate + or gate

AB

$$\frac{\omega\omega}{A+B} = \bar{A}.\bar{B}$$

Note: - NAND and work Jates are called universal Jales because both can be used to implanent any gate like AND, OR and NOT gote Dusing NAND gate Inventor (NOT) gete A -AND Jalo OR gate Nor gate using non gate A = A+A etop 7001 OR gate

$$\overline{A \cdot AB} = \overline{A} + AB = \overline{A} + B$$

$$\overline{B} + AB = \overline{B} + \overline{$$

EX-NOR

= 0+AB+BA+10