Determinant formulas for symmetric polynomials of eigenvalues

Jules Jacobs

December 20, 2020

Abstract

Abstract

1 Introduction

Theorem 1.1. Let \mathbb{K} be a finite index set, and let $A^{(k)}$ be $n \times n$ matrices for $k \in \mathbb{K}$. Then the quantity

$$\sum_{K \in \mathbb{K}^{n \times n}} p_K \det_{ij}(A_{ij}^{(K_{ij})}) \tag{1}$$

is independent of the basis of the $A^{(k)}$ if p_K is symmetric (i.e. $p_K = p_{K'}$ if K' is the same as K up to a row and column permutation).