Examen "Introduction à la vérification"

Master 1 Informatique, 2016–2017 9 mai 2017

Exercice 1 Rappel: une formule LTL φ et une formule CTL Φ sont équivalentes, si pour tout ST S: S satisfait φ si et seulement si S satisfait Φ .

Pour chacune des paires de formules LTL/CTL ϕ , Φ ci-dessous : déterminez si elles sont équivalentes. Justifiez bien votre réponse, soit par une preuve ou par un contre-exemple.

- 1. $\mathbf{AF} a \text{ et } \mathbf{F} a$,
- 2. $\mathbf{AG} \mathbf{AX} a \text{ et } \mathbf{G} \mathbf{X} a$,
- 3. $\mathbf{AF} \mathbf{AG} a \text{ et } \mathbf{F} \mathbf{G} a$,
- 4. $\mathbf{AF}(a \wedge \mathbf{AX} b)$ et $\mathbf{F}(a \wedge \mathbf{X} b)$.

Exercice 2 Pour chacune des formules CTL qui suivent, déterminez si le ST \mathcal{S} ci-dessous la satisfait ou pas, en justifiant bien votre réponse. Si \mathcal{S} ne satisfait pas Φ , proposez une condition d'équité f qui est satisfait par au moins un chemin de \mathcal{S} et tel que \mathcal{S} satisfait Φ sous la condition f.

- 1. $\Phi_1 = \mathbf{AG}(a \to \mathbf{AF} b)$.
- 2. $\Phi_2 = \mathbf{AG} \ \mathbf{E}(a \ \mathbf{U} \ b)$.

Exercice 3 1. Calculez la relation de bisimulation $\sim_{\mathcal{S}}$ du ST \mathcal{S} ci-dessous (en explicitant les étapes de l'algorithme de raffinement), ainsi que son quotient par cette relation.

2. Proposez pour chaque classe d'équivalence $[s]_{\sim_S}$ de la relation calculée une formule CTL Φ_s qui est satisfaite par tous les états de $[s]_{\sim_S}$ et par aucun état de $S \setminus [s]_{\sim_S}$.

Exercice 4 Soient S_1 , S_2 deux systèmes de transitions avec alphabets d'actions A_1 , A_2 . Le produit synchronisé $S_1 \times S_2$ est le ST S avec alphabet $A = A_1 \cup A_2$, où les transitions sur $A_1 \cap A_2$ sont synchronisées : si $S_i = (S_i, A_i, \rightarrow_i \subseteq S_i \times A_i \times S_i, I_i, AP, L_i)$ alors $S = (S_1 \times S_2, A, \rightarrow, I_1 \times I_2, AP, L)$ où $(s_1, s_2) \stackrel{a}{\rightarrow} (s'_1, s'_2)$ si

- $-s_1 \xrightarrow{a} s_1', s_2 = s_2', a \in A \setminus A_2, \text{ ou}$
- $-s_2 \xrightarrow{a} s_2', s_1 = s_1', a \in A \setminus A_1, \text{ ou}$
- $-s_1 \xrightarrow{a} s'_1, s_2 \xrightarrow{a} s'_2, a \in A_1 \cap A_2.$

Une relation de bisimulation entre deux ST \mathcal{S} et \mathcal{S}' ayant les ensembles d'états S, S' et le même alphabet d'actions A est une relation binaire $\mathcal{R} \subseteq S \times S'$ telle que pour tout $(s, s') \in \mathcal{R}$: (1) si $s \stackrel{a}{\to} t$ alors il existe $s' \stackrel{a}{\to} t'$ t.q. $(t, t') \in \mathcal{R}$, et (2) si $s' \stackrel{a}{\to} t'$ alors il existe $s \stackrel{a}{\to} t$ t.q. $(t, t') \in \mathcal{R}$.

Montrez que si \mathcal{S}_1 et \mathcal{S}_1' sont bisimilaires, ainsi que \mathcal{S}_2 et \mathcal{S}_2' , alors $\mathcal{S}_1 \times \mathcal{S}_2$ et $\mathcal{S}_1' \times \mathcal{S}_2'$ sont bisimilaires.