Linear Models for Data Science

Jeffrey Woo

2024-06-27

Contents

Ρı	reface	5
	Who is this book for?	5
	Data sets used	6
	Chapters	6
	Other resources	6
1	Introduction	9
2	Literature	11
	2.1 New section	11
3	Methods	13
	3.1 math example	13
4	Applications	15
	4.1 Example one	15
	4.2 Example two	15
5	Final Words	17

Preface

Who is this book for?

There are many books on linear models, with various expectations for different levels of familiarity with statistical, mathematical, and coding concepts. These books generally fall into one of two camps:

1. Little to no familiarity with statistical and mathematical concepts, but fairly familiar to coding. These books tend to be written for programmers who want to get into data science. These books tend to explain linear models while trying to avoid statistical and mathematical concepts as much, only covering these concepts if absolutely necessary. These books tend to present linear models in a recipe format giving readers directions on what to do to build their models.

The drawback of such books is that readers do not get much understanding of the underlying concepts of linear models. It is impossible to give directions covering every possible scenario in the real world as real data are messy. Practitioners of data science often have to think outside the box in order to make linear models work for their particular data, and it is difficult to do so without understanding the mathematical framework of linear models.

2. Familiarity with mathematical notation and introductory statistical concepts such as statistical inference, and little to no familiarity with coding. These books tend to be written for mathematicians (or anyone with a strong background in mathematics) who want to get into data science. These books cover the mathematical framework of linear models thoroughly.

The drawback of such books is that readers must be comfortable with mathematical notation. This limits the audience for such books to people with fairly thorough training in mathematics. People without such training will get lost trying to read such books, and do not understand why we need to know the mathematical foundations to use linear models in data science.

This book is meant to be readable by both groups of readers. Some foundational mathematical knowledge will be presented, but will be written so that is

readable by anyone. This book will also explain what these knowledge mean in the context of data science. Practical advice, based on the foundational mathematical knowledge, will also be given.

This book accompanies the course STAT 6021: Linear Models for Data Science, for the Masters of Data Science (MSDS) program at the University of Virginia School of Data Science.

As introductory statistics and introductory programming are pre-requisites for entering the MSDS program, this book assumes basic knowledge of statistical inference and coding. Review materials covering these concepts are provided separately for enrolled students.

Data sets used

I have tried to use as many open source data sets as much as possible so that readers can work on the various examples I have provided on their own. However, some data sets may not be open source and have come from my experience teaching this class since 2019 (and variations of the class since 2013), and have used some data sets that were shared by other statistics and data science educators. It is my goal to eventually use only open source data sets.

Chapters

The chapters for the book is as follows:

Other resources

Some other resources that readers may want to check out:

- OpenIntro Statistics, 4th ed. Diez, Cetinkaya-Rundel, Barr, OpenIntro. Get free PDF version at https://leanpub.com/os, just set the price that you want to pay to \$0. This is a good book for introductory statistics.
- Linear Models with R, 2nd ed. Faraway. This is probably one of the few books that balances between the two camps that I wrote about earlier. It does require familiarity with matrices and linear algebra though.
- Introduction to Linear Regression Analysis, 5th or 6th ed. Montgomery, Peck, Vining. You may be able to access an e-version of the book through your university library if you are affiliated with a university. This book is mathematically rigorous so is useful to those who are interested in mathematical proofs that is not covered.
- Applied Linear Statistical Models (ALSM), Kutner, Nachtsheim, Neter, Li, 5th ed. This book covers a wide range of topics in linear models and is also mathematically rigorous.

• Applied Linear Regression Models (ALRM), Kutner, Nachtsheim, Neter, 4th ed. ALRM is the same as the first 14 chapters of ALSM. The second part of ALSM covers topics in Design of Experiments, which I highly recommend if you are interested in those topics.

Introduction

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter 1. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter 3.

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```


Figure 1.1: Here is a nice figure!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

Table 1.1: Here is a nice table!

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 1.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 1.1.

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package (Xie, 2023) in this sample book, which was built on top of R Markdown and **knitr** (Xie, 2015).

Literature

Here is a review of existing methods.

2.1 New section

Add some text here. BLAH BLAH

Methods

We describe our methods in this chapter.

Math can be added in body using usual syntax like this

math example 3.1

p is unknown but expected to be around 1/3. Standard error will be approximated

$$SE = \sqrt(\frac{p(1-p)}{n}) \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

You can also use math in footnotes like this¹.

We will approximate standard error to 0.027^2

$$SE = \sqrt(\frac{p(1-p)}{n}) \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

 $^{^1}$ where we mention $p=\frac{a}{b}$ 2p is unknown but expected to be around 1/3. Standard error will be approximated

Applications

Some significant applications are demonstrated in this chapter.

- 4.1 Example one
- 4.2 Example two

Final Words

We have finished a nice book.

Bibliography

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2023). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.34.