4.1

10. Show that the following are loop invariants for the loop:

while $1 \le m$ do m := 2m n := 3n

- (a) $n^2 \ge m^3$ If $n^2 \ge m^3$ before entering the loop, then after i iterations, $n^2 = (3^i n)^2 = 3^{2i} n^2$ and $m^3 = (2^i m)^3 = 2^{3i} m^3$. We know $n^2 \ge m^3$, so we need to show $3^{2i} \ge 2^{3i}$. By taking the i-th root on both sides we get $3^2 \ge 2^3$ which turns out to $9 \ge 8$ which is true, thus $n^2 \ge m^3$ is a loop invariant.
- (b) $2m^6 < n^4$ If $2m^6 < n^4$ before entering the loop, then after i iterations, $m = 2^i m$ and $n = 3^i n$. So $2m^6 < n^4$ becomes $2(2^i m)^6 < (3^i n)^4$ which equals $2^{6i}(2m^6) < (n^4)3^{4i}$. We know $2m^6 < n^4$, so we need to show $2^{6i} < 3^{4i}$. By taking the i-th root on both sides we get $2^6 < 3^4$ which turns out to 64 < 81 which is true, thus $2m^6 < n^4$ is a loop invariant.

12. Consider the loop

while $k \ge 1$ do k := 2k

- (a) Is $k^2 \equiv 1 \pmod{3}$ a loop invariant? Explain. After i iterations, $k = 2^i k$, so $k^2 = 4^i k^2$. We know $k^2 \equiv 1 \pmod{3}$, so we need to show that $4^i \equiv 1 \pmod{3}$. We also know that $4 \equiv 1 \pmod{3}$, so $4^i \equiv 1^i \pmod{3}$ which equals $4^i \equiv 1 \pmod{3}$. Thus $k^2 \equiv 1 \pmod{3}$ is a loop invariant.
- (b) Is $k^2 \equiv 1 \pmod{4}$ a loop invariant? Explain. After i iterations, $k = 2^i k$, so $k^2 = 4^i k^2$. We know $k^2 \equiv 1 \pmod{4}$, so we need to show that $4^i \equiv 1 \pmod{4}$. However, $4^i \equiv 0 \pmod{4}$ because 4^i is divisible by 4. Thus $k^2 \equiv 1 \pmod{4}$ is not a loop invariant.

22. (a) Is $5^k < k!$ an invariant of the following loop?

while
$$4 \le k$$
 do $k := k + 1$

No because, when k = 4, $5^k < k! = 5^4 < 4! = 625 < 24$ which is false.

(b) Can you conclude that $5^k < k!$ for all $k \ge 4$? No because, when k = 4, $5^k < k! = 5^4 < 4! = 625 < 24$ which is false.

4.2

- 6. Prove 4 + 10 + 16 + ... + (6n 2) = n(3n + 1) for all $n \in \mathbb{Z}^+$.
 - (B) n = 1, $(6 \cdot 1 2) = 1(3 \cdot 1 + 1)$ so 4 = 4 which is true.
 - (I) For all $n \in \mathbb{Z}^+$ then 4 + 10 + 16 + ... + (6(n-1) 2) = (n-1)(3(n-1) + 1)
 - Inductive Step:

$$n(3n+1) = 4 + 10 + 16 + \dots + (6(n-1)-2) + (6n-2)$$

$$= (n-1)(3(n-1)+1) + (6n-2)$$
(By Inductive Hypothesis)
$$= 3n^2 - 2n - 3n + 2 + 6n - 2$$

$$= 3n^2 + n$$

$$= n(3n+1)$$

- Thus 4 + 10 + 16 + ... + (6n 2) = n(3n + 1) for all $n \in \mathbb{Z}^+$
- 8. Prove: $\frac{1}{1.5} + \frac{1}{5.9} + \frac{1}{9.13} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$ for $n \in \mathbb{Z}^+$.
 - (B) n = 1, $\frac{1}{(4\cdot 1-3)(4\cdot 1+1)} = \frac{n}{4n+1}$ so $\frac{1}{5} = \frac{1}{5}$ which is true.
 - (I) For all $\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \frac{1}{9\cdot 13} + \dots + \frac{1}{(4(n-1)-3)(4(n-1)+1)} = \frac{n-1}{4(n-1)+1}$ for $n \in \mathbb{Z}^+$

• Inductive Step:

$$\frac{n}{4n+1} = \frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \frac{1}{9 \cdot 13} + \dots + \frac{n-1}{(4(n-1)-3)(4(n-1)+1)} + \frac{1}{(4n-3)(4n+1)}$$

$$= \frac{n-1}{4(n-1)+1} + \frac{1}{(4n-3)(4n+1)}$$

$$= \frac{n-1}{4n-3} + \frac{1}{(4n-3)(4n+1)}$$

$$= \frac{n-1(4n+1)+1}{(4n-3)(4n+1)}$$

$$= \frac{4n^2+n-4n}{(4n-3)(4n+1)}$$

$$= \frac{(n)(4n-3)}{(4n-3)(4n+1)}$$

$$= \frac{n}{4n+1}$$

• Thus $\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \frac{1}{9\cdot 13} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$ for $n \in \mathbb{Z}^+$.

20. Prove
$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$
.

• (B)
$$n = 2$$
, $1^3 + 2^3 = (1+2)^2$ so $9 = 9$ which is true.

• (I)
$$1^3 + 2^3 + \dots + (n-1)^3 = (1+2+\dots+(n-1))^2$$
 so $\sum_{i=1}^{n-1} i^3 = (\sum_{i=1}^{n-1} i)^2$

• Inductive Step:

$$1^{3} + 2^{3} + \dots + (n-1)^{3} + n^{3} = (1+2+\dots+(n-1)+n)^{2}$$

$$\sum_{i=1}^{n-1} i^{3} + n^{3} = (\sum_{i=1}^{n-1} i + n)^{2}$$
(By inductive hypothesis)
$$\sum_{i=1}^{n-1} i^{3} + n^{3} = (\sum_{i=1}^{n-1} i)^{2} + 2n \sum_{i=1}^{n-1} i + n^{2}$$

$$n^{3} = \frac{2n(n-1)(n-1+1)}{2} + n^{2} \quad \left(\text{By } \sum_{i=1}^{n-1} i = \frac{(n-1)(n-1+1)}{2}\right)$$

$$n^{3} = n^{3} - n^{2} + n^{2}$$

$$n^{3} = n^{3}$$

• Thus $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$.

4.4

- 8. Let $\Sigma = \{a, b\}$ and let s_n denote the number of words of length n that do not contain the string ab.
 - (a) Calculate s_0, s_1, s_2, s_3 .

$$s_0 = 1$$

$$s_1 = 2$$

$$s_2 = 3$$

$$s_3 = 4$$

(b) Find a formula for s_n and prove it is correct.

(B)
$$s_0 = 1$$

(R)
$$s_n = s_{n-1} + 1$$
 for $n \in \mathbb{N}$

10. Consider the sequence defined by

(B)
$$SEQ(0) = 1$$
, $SEQ(1) = 0$

(R)
$$SEQ(n) = SEQ(n-2)$$
 for $n \ge 2$.

(a) List the first few terms of this sequence.

$$SEQ(2) = 1$$
, $SEQ(3) = 0$, $SEQ(4) = 1$, $SEQ(5) = 0$

(b) What is the set of values of this sequence? $\{0,1\}$

4.6

2. For $n \in \mathbb{Z}^+$, prove

(b)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- (B) n = 1, $\frac{1}{1 \cdot 2} = \frac{1}{1+1}$ so $\frac{1}{2} = \frac{1}{2}$ which is true.
- (I) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)(n-1+1)} = \frac{n-1}{n-1+1}$

• Inductive Step:

$$\frac{n}{n+1} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)(n-1+1)} + \frac{1}{n(n+1)}$$

$$= \frac{n-1}{n-1+1} + \frac{1}{n(n+1)}$$

$$= \frac{(n+1)(n-1)}{n(n+1)} + \frac{1}{n(n+1)}$$

$$= \frac{(n+1)(n-1)+1}{n(n+1)}$$

$$= \frac{n^2}{n(n+1)}$$

$$= \frac{n}{n+1}$$
(By inductive hypothesis)

- Thus $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$.
- 6. Recursively define $a_0 = 1$, $a_1 = 2$ and $a_n = \frac{a_{n-1}^2}{a_{n-2}}$ for $n \ge 2$.
 - (a) Calculate the first few terms of the sequence.

$$a_2 = \frac{2^2}{1} = 4$$

$$a_3 = \frac{4^2}{2} = 8$$

$$a_4 = \frac{8^2}{4} = 16$$

- (b) Using part (a), guess the general formula for a_n . $a_n = 2^n$
- (c) Prove the guess in part (b).

• (B)
$$n = 1, a_1 = 2 = 2^1$$

• (I)
$$a_{n-1} = 2^{n-1}$$
 and $a_{n-2} = 2^{n-2}$

• Inductive Step:

$$a_n = \frac{a_{n-1}^2}{a_{n-2}}$$

$$= \frac{(2^{n-1})^2}{2^{n-2}}$$

$$= 2^{2n-2-n+2}$$

$$= 2^n$$

5

• Thus $a_n = 2^n$.

12. Recursively define:

$$a_0 = 1$$
,

$$a_1 = 3,$$

$$a_2 = 5$$

$$a_n = 3a_{n-2} + 2a_{n-3}$$
 for $n \ge 3$.

(a) Calculate a_n for n = 3, 4, 5, 6, 7.

$$a_3 = 11$$

$$a_4 = 21$$

$$a_5 = 43$$

$$a_6 = 85$$

$$a_7 = 171$$

- (b) Prove that $a_n > 2^n$ for $n \ge 1$.
 - (B)

$$n=1,$$
 $a_1>2^1=3>2=$ True.
 $n=2,$ $a_2>2^2=5>4=$ True.
 $n=3,$ $a_3>2^3=11>8=$ True.

- (I) $a_{n-2} > 2^{n-2}$ and $a_{n-3} > 2^{n-3}$ for $n \ge 3$
- Inductive Step:

$$a_n = 3a_{n-2} + 2a_{n-3}$$

 $> 3(2^{n-2}) + 2(2^{n-3})$ (By the inductive hypothesis)
 $= 3(2^{n-2}) + 2^{n-2}$
 $= 4(2^{n-2})$
 $= 2^{n-2+2}$
 $= 2^n$

- Thus $a_n > 2^n$ for $n \ge 1$.
- (c) Prove that $a_n < 2^{n+1}$ for $n \ge 1$.

• (B)

$$n = 1,$$
 $a_1 < 2^{1+1} = 3 < 4 = \text{True}.$
 $n = 2,$ $a_2 < 2^{2+1} = 5 < 8 = \text{True}.$
 $n = 3,$ $a_3 < 2^{3+1} = 11 < 16 = \text{True}.$

- (I) $a_{n-2} < 2^{n-2+1}$ and $a_{n-3} < 2^{n-3+1}$ for $n \ge 3$
- Inductive Step:

$$a_n = 3a_{n-2} + 2a_{n-3}$$

 $< 3(2^{n-2+1}) + 2(2^{n-3+1})$ (By the inductive hypothesis)
 $= 3(2^{n-1}) + 2^{n-1}$
 $= 4(2^{n-1})$
 $= 2^{n-1+2}$
 $= 2^{n+1}$

- Thus $a_n < 2^{n+1}$ for $n \ge 1$.
- (d) Prove that $a_n = 2a_{n-1} + (-1)^{n-1}$ for $n \ge 1$.
 - (B)

$$n = 1,$$
 $a_1 = 2a_0 + (-1)^0 = 2(1) + 1 = 3$
 $n = 2,$ $a_2 = 2a_1 + (-1)^1 = 2(3) + (-1) = 5$
 $n = 3,$ $a_3 = 2a_2 + (-1)^2 = 2(5) + (1) = 11$

- (I) $a_{n-1} = 2a_{n-2} + (-1)^{n-2}$ and $a_{n-2} = 2a_{n-3} + (-1)^{n-3}$ for $n \ge 3$
- Inductive Step:

$$a_{n} = 3a_{n-2} + 2a_{n-3}$$

$$= 3a_{n-2} + (a_{n-2} - (-1)^{n-3})$$
 (By inductive hypothesis)
$$= 4a_{n-2} - (-1)^{n-3}$$

$$= 2(a_{n-1} - (-1)^{n-2}) - (-1)^{n-3}$$
 (By inductive hypothesis)
$$= 2a_{n-1} - 2(-1)^{n-2} + (-1)^{n-2}$$

$$= 2a_{n-1} - (-1)^{n-2}$$

$$= 2a_{n-1} + (-1)^{n-1}$$

• Thus $a_n = 2a_{n-1} + (-1)^{n-1}$ for $n \ge 1$.