JP06188177

Title: No title available

Abstract:

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-188177

(43)公開日 平成6年(1994)7月8日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
H 0 1 L 21/027				

G03F 1/16

A 7369-2H

7352 - 4M

H 0 1 L 21/30

331 M

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号	特願平4-341768	(71)出願人	000005821	
			松下電器産業株式会社	
(22)出願日	平成4年(1992)12月22日		大阪府門真市大字門真1006番地	
		(72)発明者	安井 十郎	
			大阪府門真市大字門真1006番地	松下電器
			産業株式会社内	
		(72)発明者	荒木 聖	
			大阪府門真市大字門真1006番地	松下電器
			產業株式会社内	

(74)代理人 弁理士 前田 弘 (外2名)

(54) 【発明の名称】 X線マスクおよびその製造方法

(57)【要約】

【目的】 微細なパターンを有するにも拘らずX線の透 過を確実に阻止する能力を有するX線吸収パターンを備 えたX線マスクを提供する。

【構成】 支持枠1の表面にはX線透過性の支持膜4が 形成されている。支持膜4の裏面にはX線吸収性の第1 のWパターン3が形成されている。支持膜4の表面にお ける第1のWパターン3と対向する部位には第1のWパ ターンと同一パターンを有するX線吸収性の第2のWパ ターン5が形成されている。

【特許請求の範囲】

【請求項1】 支持枠の表面に形成されたX線透過性の 支持膜の裏面にX線吸収体からなる第1のX線吸収パタ ーンが形成されていると共に、上記支持膜の表面におけ る上記第1のX線吸収パターンと対向する部位にX線吸 収体からなり上記第1のX線吸収パターンと同一パター ンを有する第2のX線吸収パターンが形成されているこ とを特徴とするX線マスク。

【請求項2】 支持体の表面にX線吸収体からなる第1 のX線吸収パターンを形成する工程と、該第1のX線吸 10 収パターンが形成された支持体の表面にX線透過性の支 持膜を形成する工程と、該支持膜の表面にX線吸収体か らなるX線吸収膜を形成する工程と、上記支持体の露光 領域を裏面側からエッチングすることにより支持枠を形 成する工程と、上記X線吸収膜の表面にレジスト膜を形 成する工程と、上記支持枠の裏面側から上記第1のX線 吸収パターンをマスクとして上記レジスト膜にX線を照 射して該レジスト膜を選択的に露光した後、該レジスト 膜を現像することによりレジストパターンを形成する工 程と、該レジストパターンを用いて上記X線吸収膜を選 20 択的にエッチングすることにより上記支持膜の表面に第 2のX線吸収パターンを形成する工程とを有することを 特徴とするX線マスクの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置の製造工程 において用いられるX線マスク及び該X線マスクの製造 方法に関するものである。

[0002]

(LSI) 装置の高密度化及び高速化に伴って素子の微 細化が要求されている。LSIの製造工程においては、 写真蝕刻工程で用いられる光の波長が短いほど微細な素 子を形成することができるため、波長が1 n m 前後の軟 X線(以下単にX線と呼ぶ)等を光源として用いて微細 なレジストパターンを形成するX線露光法が有望視され ている。

【0003】以下、図6に基づき、上記X線露光法に用 いられる従来のX線マスクを説明する。

【0004】図6に示すように、従来のX線マスクにお 40 いては、支持枠である厚さ2mmのSiウェーハ1上に 反射防止膜である厚さ 0. 1 μmの SiO2 膜 2 が形成 され、該SiO2膜2の上にX線透過性の支持膜である 厚さ2μmのSi₃ N₄ 膜4が形成され、該Si₃ N₄ 膜4の上にX線吸収体からなる厚さ0.8μmのWパタ ーン5が形成されている。

【0005】X線露光法においては、波長の短いX線に 対する屈折レンズがないため、X線マスクとウェーハと を小さなギャップをおいて対向させ、X線を照射するこ とによって、X線マスクに形成されているパターンをそ 50 線吸収体からなり上記第1のX線吸収パターンと同一パ

のままSiウェーハ1に転写する必要がある。このた め、Wパターン5は、照射されたX線の透過を阻止する のに十分な厚さが要求されると共に転写するパターンと 同じ寸法に形成されていることが必要である。従って、 例えば $0.2 \mu m$ 幅のパターンを転写する際には、Wパ ターン5は厚さが0. 8μ mで、幅が0. 2μ mである ことが要求される。

【0006】そして、Wパターン5の形成には、通常選 択エッチング法が用いられる。すなわちW膜上にレジス トパターンを形成し、該レジストパターンをマスクとし 反応性ガスを用いるドライエッチング法等によりW膜を エッチングすることによってWパターン5は形成され

【0007】また、W膜上にエッチング時にマスク効果 のある薄膜例えばSiO2 膜を形成し、レジストパター ンをマスクとしてSiОュ 膜をエッチングした後、形成 されたSiO2 パターンをマスクにW膜をエッチングす ることもできる。

[0008]

【発明が解決しようとする課題】しかるに、上述したよ うに、支持膜の上に形成されるX線吸収パターン例えば Wパターンは、X線の透過を確実に阻止できるだけの厚 さ、例えば 0.8μ mの大きい厚さを有しているため、 エッチング中にW膜上に形成されているレジストパター ンが損傷したり或いはエッチングが横方向に進む所謂サ イドエッチング現象が生じたりして、Wパターンが細る ことがあり、微細なWパターンを精度良く形成すること が困難であった。つまり、従来のX線マスクのX線吸収 パターンにおいては、X線の透過を確実に阻止できる能 【従来の技術】近年、半導体装置、特に大規模集積回路 30 力と微細なパターン形状とは両立し難いという問題があ った。

> 【0009】また、W膜上のSiO2 膜パターンをマス クとしてW膜をエッチングする際にも、サイドエッチン グ現象によるWパターンが細るという問題も有してい

> 【0010】上記に鑑み、本発明は、微細なパターンを 有するにも拘らずX線の透過を確実に阻止する能力を有 するX線吸収パターンを備えたX線マスクを提供するこ とを目的とする。

[0011]

【課題を解決するための手段】上記の目的を達成するた め、請求項1の発明は、X線透過性の支持膜の表面及び 裏面における互いに対向する部位に互いに同一パターン のX線吸収パターンをそれぞれ形成するものである。

【0012】具体的に請求項1の発明が講じた解決手段 は、X線マスクを、支持枠の表面に形成されたX線透過 性の支持膜の裏面にX線吸収体からなる第1のX線吸収 パターンが形成されていると共に、上記支持膜の表面に おける上記第1のX線吸収パターンと対向する部位にX 3

ターンを有する第2のX線吸収パターンが形成されてい る構成とするものである。

【0013】また、請求項2の発明は、請求項1の発明 に係るX線マスクを製造する方法であって、支持体の表 面にX線吸収体からなる第1のX線吸収パターンを形成 する工程と、該第1のX線吸収パターンが形成された支 持体の表面にX線透過性の支持膜を形成する工程と、該 支持膜の表面にX線吸収体からなるX線吸収膜を形成す る工程と、上記支持体の露光領域を裏面側からエッチン グすることにより支持枠を形成する工程と、上記 X線吸 10 収膜の表面にレジスト膜を形成する工程と、上記支持枠 の裏面側から上記第1のX線吸収パターンをマスクとし て上記レジスト膜にX線を照射して該レジスト膜を選択 的に露光した後、該レジスト膜を現像することによりレ ジストパターンを形成する工程と、該レジストパターン を用いて上記X線吸収膜を選択的にエッチングすること により上記支持膜の表面に第2のX線吸収パターンを形 成する工程とを有する構成である。

[0014]

における互いに対向する部位に、互いに同一パターンを 有する第1及び第2のX線吸収パターンがそれぞれ形成 されているため、X線露光時に照射されたX線は第1及 び第2からなる2つのX線吸収パターンによって透過を 確実に阻止される。一方、第1及び第2のX線吸収パタ ーンは、両方でX線を阻止するのに必要な厚さつまり従 来のX線吸収パターンの厚さを有しておればよいので、 第1及び第2のX線吸収パターンのそれぞれの厚さは、 従来のX線吸収パターンの約半分でよいことになる。

ターンが形成された支持体の表面にX線透過性の支持膜 を形成するため、該支持膜の裏面に第1のX線パターン が形成されることになる。

【0016】支持枠の裏面側から支持膜の表面に形成さ れているレジスト膜に対して第1のX線吸収パターンを マスクとしてX線を照射することによりレジストパター ンを形成するため、レジストパターンは第1のX線吸収 パターンと同一パターンを有している。また、支持膜の 表面に形成されているX線吸収膜に対して上記のレジス り第2のX線吸収パターンを形成するため、支持膜の表 面における上記第1のX線吸収パターンと対向する部位 に該第1のX線吸収パターンと同一パターンの第2のX 線吸収パターンが形成されることになる。

[0017]

【実施例】以下、本発明の実施例を図面を参照しながら 説明する。

【0018】図1は本発明の一実施例に係るX線マスク の断面模式図であって、該X線マスクは、同図に示すよ うに、支持枠である厚さ2mmのSiウェーハ1の表面 50

にX線透過性の支持膜である厚さ2μmのSi₃N₄膜 4が形成され、該Si3 N4膜4の裏面に第1のX線吸 収パターンとしての厚さ 0.4μ mの第 1 のWパターン 3が形成されていると共に、Si3 N4 膜4の表面にも 第1のWパターン3と同一のパターンを有する第2のX 線吸収パターンとしての厚さ0. 4μmの第2のWパタ ーン5が形成されている。すなわち、第1のWパターン 3と第2のWパターン5とは、互いに同一パターンであ って且つSia N4 膜4の表裏面における該Sia N4 膜4を介して互いに対向する部位に形成されている。第 1のWパターン3の裏面には反射防止膜である厚さ0. $1 \mu m O S i O_2$ 膜2が形成されている。

【0019】図2~図5は、上記X線マスクの製造方法 における各工程を示す部分断面図である。

【0020】まず、図2に示すように、厚さ2mmの支 持体であるSiウェーハ1の表面に反射防止膜としての 厚さ0. 1 μmのSiO₂ 膜2を形成した後、該SiO 2 膜 2 の表面に厚さ 0. 4 μ m の 第 1 の W 膜を 形成 し、 その後、該第1のW膜に対して電子ビーム(EB) 露光 【作用】請求項1の構成により、支持膜の裏面及び表面 20 法及びドライエッチング法を施すことにより SiO_2 膜 2の表面に第1のX線吸収パターンとしての第1のWパ ターン3を形成する。

> 【0021】次に、図3に示すように、SiO2膜2及 び第1のWパターン3の上に、X線透過性の支持膜とし ての厚さ2μmのSi₃ N膜₄ 4を形成した後、該Si 3 N膜4 4の上に厚さ0. 4 μmの第2のW膜5Aを形 成する。

【0022】次に、図4に示すように、Siウェーハ1 におけるパターン形成領域をKOH等のアルカリ性エッ 【0015】請求項2の構成により、第1のX線吸収パ 30 チング液により裏面側からエッチングした後、第2のW 膜5Aの表面にポジ型のレジスト膜6を形成し、その 後、Siウェーハ1の裏面側から波長1nmのX線を照 射する。

【0023】上記のようにすると、第1のWパターン3 が形成されていない領域に照射されたX線は第2のW膜 5 Aによってその強度を減衰されながらも該第2のW膜 5 A を透過してレジスト膜 6 を感光させる。ところで、 X線がWパターンを透過する際、該X線の強度はWパタ ーンのW膜の厚さに関して指数関数的に減衰するため、 トパターンをマスクとしてエッチングを行なうことによ 40 第1のWパターン3及び第2のW膜5Aの両方を透過し たX線の強度は、第2のW膜5Aのみを透過したX線の 強度の1/20程度にまで低下する。このように、第1 のWパターン3が形成された領域に照射されたX線は、 第1のWパターン3及び第2のW膜5Aによって強度が 著しく減衰されるため、レジスト膜6を感光させること はできない。

> 【0024】次に、レジスト膜6を現像することによ り、第2のW膜5Aの上における第1のWパターン3と 対向する部位にレジストパターンを形成する。その後、 反応性ガスを用いるドライエッチング法により第2のW

膜5Aを選択的にエッチングすると、SiiN膜44の上に第2のWパターン5が形成される。

【0025】以上説明したように、第1のWパターン3或いは第2のWパターン5を形成する際には、それぞれ厚さ0. 4 μ mのW膜を選択的にエッチングすればよい。このため、W膜に対するエッチングを施す際に、レジストパターンが大きく損傷を受けたり或いはWパターンのサイドエッチが大きくならないので、微細なWパターンを精度良く形成することができる。

【0026】また、上記のようにして形成されたX線マ 10 スクにおける不透明部分には、Sis N4 膜4を介して対向する部位に互いに同一パターンの第1及び第2のWパターン3,5が形成されており、露光時には第1及び第2のWパターン3,5がX線を吸収してX線の強度を十分に低下することができる。

【0027】尚、上記実施例においては、支持膜として $SisN_4$ 膜 4 が、X 線吸収体としてW膜がそれぞれ用 いられているが、これに代えて、SiC 膜等の誘電体膜 からなる支持膜や Ta 等の金属による X 線吸収体を用いてもよい。

【0.028】また、上記実施例においては、支持膜である Si_3N_4 膜4の裏面に反射防止膜としての SiO_2 膜2が形成されているが、 SiO_2 膜2は支持膜の両面に形成されてもいてもよく、また SiO_2 膜がなくても本発明の効果が減ずるものではない。

【0029】さらに、第2のWパターン5を形成するためにSiウェーハ1の裏面側から照射するX線は、本実施例に係るX線マスクを用いて露光する際のX線と同じ波長である必要はなく、第1のWパターン3と第2のW膜5Aとが重なっている領域では透過が阻止される一方 30 第2のW膜5Aのみの領域では透過するような波長のX線を選ぶことが望ましい。

[0030]

【発明の効果】請求項1の発明によると、支持膜の裏面及び表面における互いに対向する部位に、X線吸収体からなり互いに同一パターンを有する第1及び第2のX線吸収パターンがそれぞれ形成されているため、X線露光時に照射されたX線は第1及び第2からなる2つのX線

吸収パターンによって透過を確実に阻止される一方、第 1及び第2のX線吸収パターンのそれぞれの厚さは従来 のX線吸収パターンの約半分でよいので、微細なパター ンを有するにも拘らずX線の透過を確実に阻止する能力 を有するX線吸収パターンを備えたX線マスクを実現で きる。

6

【0031】請求項2の発明によると、第1のX線吸収パターンが形成された支持体の表面にX線透過性の支持膜を形成するため支持膜の裏面に第1のX線パターンが形成され、また、第1のX線吸収パターンをマスクとしてレジストパターンを形成すると共に支持膜の表面に形成されているX線吸収膜に対して上記のレジストパターンをマスクとしてエッチングを行なうことにより第2のX線吸収パターンを形成するため、支持膜の表面における第1のX線吸収パターンと対向する部位に該第1のX線吸収パターンと対向する部位に該第1のX線吸収パターンと対向する部位に該第1のX線吸収パターンが形成されるので、請求項1の発明に係るX線吸収マスクを簡易且つ確実に形成することができる。

【図面の簡単な説明】

20 【図1】本発明の一実施例に係るX線マスクの構造を示す断面図である。

【図2】上記X線マスクの製造方法の各工程を示す断面 図である。

【図3】上記X線マスクの製造方法の各工程を示す断面 図である。

【図4】上記X線マスクの製造方法の各工程を示す断面 図である。

【図 5】上記X線マスクの製造方法の各工程を示す断面 図である。

30 【図6】従来のX線マスクの構造を示す断面図である。 【符号の説明】

- 1 Siウェーハ(支持体、支持枠)
- 2 SiO2 膜
- 3 第1のWパターン(第1のX線吸収パターン)
- 4 Si₃ N₄ 膜(支持膜)
- 5 第2のWパターン(第2のX線吸収パターン)
- 5A 第2のW膜
- 6 レジスト膜

【図1】

[図2]

【図3】

[図4]

【図5】

