TD 4 STATISTIQUE - 1SN

Exercice 1.

Afin de tester la satisfaction des clients à service donné, on effectue un sondage et on définit une variable aléatoire Y_i de la façon suivante :

 $Y_i = 1$ si le client i est satisfait

 $Y_i = 0$ si le client i n'est pas satisfait

A l'aide d'un échantillon $(Y_1,...,Y_n)$ de même loi de Bernoulli

$$P[Y_i = 0] = \theta$$

$$P[Y_i = 1] = 1 - \theta$$

on désire tester les hypothèese $H_0: \theta = \theta_0 = 0.52$ et $H_1: \theta = \theta_1 = 0.48$.

- 1. Construire la vraisemblance des observations $y_1, ..., y_n$ et expliciter la région de rejet de H_0 du test de Neyman-Pearson (pour l'application numérique, on choisira un risque de première espèce $\alpha = 0.1$).
- 2. Déterminer la puissance de ce test.

Exercice 2. Soit $X_1, ..., X_n$ un échantillon d'une loi normale de moyenne m et de variance σ^2 . On veut faire le test d'hypothèses binaires suivant :

 $H_0: m=m_0; \sigma^2$ quelconque

 $H_1: m \neq m_0; \sigma^2$ quelconque

Pour construire le test, on retient le test du rapport des vraisemblances maximales ou test GLR (Generalized Likelihood Ratio).

- 1. On suppose $m=m_0$ connu. Rappeler l'estimateur du maximum de vraisemblance (EMV) de σ^2 .
- 2. Lorsque m et σ^2 sont inconnus, rappeler leurs estimateurs du maximum de vraisemblance.
- 3. Donner la forme du test GLR.
- 4. En décomposant $\sum_{i=1}^{n} (x_i m_0)^2$, montrer que l'on peut définir un test équivalent à l'aide de la statistique

$$T_n = \frac{\overline{X} - m_0}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}$$

5. On rappelle que sous l'hypothèse H_0 , les deux variables aléatoires

$$U = \frac{\overline{X} - m_0}{\sigma / \sqrt{n}}$$
 et $V = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2}$

ont des lois connues $U \sim \mathcal{N}(0,1)$ et $V \sim \chi^2_{n-1}$. En déduire la loi de T_n . Soit $\alpha = 5\%$ le risque de première espèce. Donner la région critique du test effectué à l'aide de T_n .

1

Exercice 3.

On considère les observations $x_i, i=1,...,n$ (avec n=10) définies par

$$x_1 = 1 \mid x_2 = 0 \mid x_3 = 1 \mid x_4 = 1 \mid x_5 = 1 \mid x_6 = 1 \mid x_7 = 1 \mid x_8 = 2 \mid x_9 = 0 \mid x_{10} = 0$$

On suppose que les variables aléatoires associées à ces observations sont indépendantes et issues de la même loi de Poisson $P(\lambda)$. On rappelle que si X suit une une loi de Poisson de paramètre λ , on a $E[X] = \text{var}[X] = \lambda$ et $\varphi_X(t) = E[e^{itX}] = \exp[\lambda(e^{it} - 1)]$. On désire tester les deux hypothèses

$$\left\{ \begin{array}{l} H_0: \lambda = \lambda_0 \text{ (absence de planète)} \\ H_1: \lambda = \lambda_1 \text{ (présence de planète)} \end{array} \right.$$

avec $\lambda_1 < \lambda_0$.

- 1. Vérifier que la statistique du test de Neyman-Pearson peut s'écrire $T = \sum_{i=1}^{n} X_i$ et déterminer la région critique associée.
- 2. Déterminer la fonction caractéristique de T et en déduire que T suit une loi de Poisson que l'on précisera sous chaque hypothèse.
- 3. Préciser le test de puissance maximale tel que le risque de première espèce α vérifie $\alpha \leq 0.05$. On précisera le risque maximal α , la décision prise au vu des données $x_i, i=1,...,10$ et la puissance de ce test. Pour les applications numériques, on prendra $\lambda_0=1$ et $\lambda_1=0.1$.
- 4. On suppose que *n* est suffisamment grand pour pouvoir utiliser les résultats du théorème de la limite centrale.
 - Donner la loi approchée de T issue de ce théorème.
 - Quelle est la valeur du seuil obtenue lorsqu'on confond la loi de T avec son approximation. En comparant avec la valeur obtenue précédemment, dire ce que vous pensez de cette approximation pour n=10.
 - Déterminer les courbes COR (caractéristiques opérationnelles du récepteur) découlant de cette loi approchée. On posera

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

et on notera $\Phi^{-1}(x)$ son inverse. En supposant que n est suffisamment grand pour faire les approximations nécessaires, déterminer les paramètres qui influent sur la performance asymptotique $(n \to \infty)$ du test. De ces deux cas

2

Premier Cas : $n = 100, \lambda_0 = 1, \lambda_1 = 0.1$

Deuxième Cas : $n = 100, \lambda_0 = 2, \lambda_1 = 1.1$

indiquer celui qui engendre la meilleure performance.

Correction exercice 1

1) La vraisemblance de ce problème est

$$L(y_1, ..., y_n; \theta) = \prod_{i=1}^n P[Y_i = y_i]$$
$$= \prod_{i=1}^n \theta^{1-y_i} (1-\theta)^{y_i}$$
$$= \theta^{n-n\overline{y}} (1-\theta)^{n\overline{y}}$$

avec

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

On rejette donc H_0 si

$$\frac{L(y_1,...,y_n;\theta_1)}{L(y_1,...,y_n;\theta_0)} > K_\alpha \Longleftrightarrow \overline{y} \ln \left(\frac{\theta_0}{\theta_1} \frac{1-\theta_1}{1-\theta_0} \right) > S_\alpha$$

Pour $\theta_0=0.52$ et $\theta_1=0.48$, on a

$$\frac{\theta_0}{\theta_1} \frac{1 - \theta_1}{1 - \theta_0} = \left(\frac{0.52}{0.48}\right)^2 > 1$$

donc on rejette H_0 si

$$\overline{y} > \nu_{\alpha}$$

où ν_{α} est un seuil dépendant du risque de première espèce α . Pour déterminer ce seuil, on se fixe une valeur de α

$$\alpha = P \left[\text{Rejeter } H_0 \middle| H_0 \text{ vraie} \right]$$

$$= P \left[\overline{Y} > \nu_{\alpha} \middle| \theta = \theta_0 \right]$$

En utilisant le théorème de la limite centrale, on peut approcher la loi de \overline{Y} comme suit

$$\overline{Y} \sim \mathcal{N}\left(1 - \theta, \frac{\theta\left(1 - \theta\right)}{n}\right)$$

Donc

$$\alpha = P \left[U = \frac{\overline{Y} - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} > \frac{\nu_\alpha - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} \right] U \sim \mathcal{N}(0, 1)$$

$$= 1 - F \left(\frac{\nu_\alpha - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} \right)$$

On en déduit

$$\frac{\nu_{\alpha} - (1 - \theta_0)}{\sqrt{\frac{\theta_0(1 - \theta_0)}{r}}} = F^{-1} (1 - \alpha)$$

où F est la fonction de répartition d'une loi normale $\mathcal{N}(0,1)$, d'où

$$\nu_{\alpha} = \sqrt{\frac{\theta_0 (1 - \theta_0)}{n}} F^{-1} (1 - \alpha) + (1 - \theta_0)$$

2) La puissance du test est

$$\pi = P \left[\text{Rejeter } H_0 \middle| H_1 \text{ vraie} \right]$$

$$= P \left[\overline{Y} > \nu_\alpha \middle| \theta = \theta_1 \right]$$

$$= 1 - F \left(\frac{\nu_\alpha - (1 - \theta_1)}{\sqrt{\frac{\theta_1 (1 - \theta_1)}{n}}} \right)$$

Correction exercice 2

1)
$$\tilde{\sigma}_{MV}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m_0)^2$$

2)
$$\hat{m}_{MV} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad \hat{\sigma}_{MV}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$$

3) Le test GLR est défini par

Rejet de
$$H_0$$
 si $\frac{L\left(X_1,...,X_n;H_1\right)}{L\left(X_1,...,X_n;H_1\right)}>S_{\alpha}$

c'est-à-dire

Rejet de
$$H_0$$
 si
$$\frac{\left(2\pi\hat{\sigma}_{MV}^2\right)^{-n/2}\exp\left[-\frac{1}{2\hat{\sigma}_{MV}^2}\sum\left(X_i-\overline{X}\right)^2\right]}{\left(2\pi\tilde{\sigma}_{MV}^2\right)^{-n/2}\exp\left[-\frac{1}{2\tilde{\sigma}_{MV}^2}\sum\left(X_i-m_0\right)^2\right]} > K_{\alpha}$$

c'est-à-dire

Rejet de
$$H_0$$
 si $\frac{\tilde{\sigma}_{MV}^2}{\hat{\sigma}_{MV}^2} > S_{\alpha} \Leftrightarrow \frac{\sum (X_i - m_0)^2}{\sum_{i=1}^n (X_i - \overline{X})^2} > S_{\alpha}$

4) On décompose $\sum (X_i - m_0)^2$ comme suit

$$\sum (X_i - m_0)^2 = \sum (X_i - \overline{X} + \overline{X} - m_0)^2$$
$$= \sum (X_i - \overline{X})^2 + n(\overline{X} - m_0)^2$$

donc le test GLR est défini par

Rejet de
$$H_0$$
 si $\frac{\sum \left(X_i - \overline{X}\right)^2 + n\left(\overline{X} - m_0\right)^2}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2} > S_\alpha \Leftrightarrow T_n^2 > \mu_\alpha$
 $\Leftrightarrow T_n \in]-\infty, -\mu_\alpha[\cup]\mu_\alpha, \infty[$

5) La statistique T_n s'écrit sous la forme suivante :

$$T_n = \frac{\sigma}{\sqrt{n}} \frac{U}{\sigma \sqrt{V}} = \frac{1}{\sqrt{n(n-1)}} \frac{U}{\sqrt{\frac{V}{n-1}}}$$

où

$$W_n = \frac{U}{\sqrt{\frac{V}{n-1}}} \sim t_{n-1}$$

On en déduit

Rejet de
$$H_0$$
 si $W_n \in]-\infty, -c_{\alpha}[\ \cup\]c_{\alpha}, \infty[$

et

$$1 - \alpha = 1 - P [\text{rejeter } H_0 | H_0 \text{ vraie}]$$

$$= P [\text{accepter } H_0 | H_0 \text{ vraie}]$$

$$= P [|W_n| < c_{\alpha} | H_0 \text{ vraie}] = 0.95$$

Les tables de la loi de Student donnent la valeur de c_{α} .

Correction exercice 3

1) Des calculs élémentaires donnent

Rejet de
$$H_0$$
 si $T = \sum_{i=1}^n X_i < S_\alpha$

2) La fonction caractéristique de T est

$$E\left[e^{itT}\right] = \prod_{j=1}^{n} E\left[e^{itX_{j}}\right] = \exp\left[n\lambda\left(e^{it} - 1\right)\right]$$

qui est la fonction caractéristique d'une loi de Poisson de paramètre $n\lambda$ donc $T \sim P(n\lambda)$. Sous H_0 , on a $T \sim P(n\lambda_0) = P(10)$ et sous H_1 , on a $T \sim P(n\lambda_1) = P(1)$.

3) On a $\alpha = P$ [rejeter $H_0 | H_0$ vraie] = $P[T < S_\alpha | T \sim P(n\lambda_0) = P(10)]$. En analysant les tables de la loi de Poisson P(10), on trouve

$$S_{\alpha} = 5 \Rightarrow \alpha = 0.0293$$
 et $S_{\alpha} = 6 \Rightarrow \alpha > 0.05$.

Donc le test est défini par

Rejet de
$$H_0$$
 si $T < 5$

et le risque de première espèce associé est $\alpha=0.0293<0.05$. Les données sont telles que $\sum_{i=1}^n x_i=8$ et donc on accepte l'hypothèse H_0 avec $\alpha=0.0293$. Le calcul de la puissance du test conduit à

$$\pi = 1 - \beta = P [\text{rejeter } H_0 | H_1 \text{ vraie}]$$

$$= P [T < 5 | T \sim P (1)]$$

$$= \sum_{i=0}^{4} p_i \sim 0.9963$$

La puissance du test est donc excellente.

- 4) a) Pour n grand, l'approximation normale est $\sum_{i=1}^{n} X_i \sim \mathcal{N}\left(n\lambda, n\lambda\right)$.
- b) On trouve $K_{\alpha} = n\lambda_0 + \sqrt{n\lambda_0}\Phi^{-1}(\alpha) \sim 4.8$. On trouve 4.8 au lieu de 5 et donc l'approximation est satisfaisante pour n=10 (puisque T prend des valeurs discrètes avoir T<5 ou T<4.8, c'est la même chose).
- c) Un calcul simple conduit à

$$PD = 1 - \beta = \Phi\left(\sqrt{n}\frac{\lambda_0 - \lambda_1}{\sqrt{\lambda_1}} + \sqrt{\frac{\lambda_0}{\lambda_1}}\Phi^{-1}(\alpha)\right)$$

c'est-à-dire asymptotiquement

$$PD = 1 - \beta \sim \Phi\left(\sqrt{n} \frac{\lambda_0 - \lambda_1}{\sqrt{\lambda_1}}\right)$$

Le paramètre qui règle la performance asymptotique du test est donc $\sqrt{n}\frac{\lambda_0-\lambda_1}{\sqrt{\lambda_1}}$. Dans les deux cas proposés $\lambda_0-\lambda_1=0.9$ et n=100. Le premier test est meilleur car PD est une fonction décroissante de λ_1 lorsque $\lambda_0-\lambda_1$ et n sont fixés.