Disciplina: Probabilidade e Estatística Prof. Ítalo Mendes da Silva Ribeiro

Nome:			
Nome:			

1ª Lista de Exercícios

1 – Dadas as seguintes variáveis x_i : 6, 2, 9, 5, 1. Determine a variância (s^2) e o desvio padrão (s): (Exemplo de resolução)

Resposta:

$$s^2 = 8.24$$

$$s = 2.871$$

2 – Dadas as seguintes variáveis x_i : 3, 1, 4, 6, 8. Determine a variância (s^2) e o desvio padrão (s):

Resposta:

$$s^2 = 5.84$$

$$s = 2.417$$

3 – Dadas as seguintes variáveis x_i : 6, 3, 9, 8, 7. Determine a variância (s^2) e o desvio padrão (s):

Resposta:

$$s^2 = 4.24$$

$$s = 2.059$$

4 – A tabela a seguir mostra um exemplo de 189 itens classificados por:

 $F=com falha,\,Fc=sem falha,\,D=defeituoso,\,Dc=não defeituoso$

Calcule: P(F), P(D), P(D|F) e P(D|Fc) (Exemplo de resolução)

	\mathbf{F}	\mathbf{Fc}
D	74	66
Dc	20	29

Respostas:

$$P(D) = 140 / 189 = 0.741$$

$$P(F) = 94 / 189 = 0.497$$

$$P(D|F) = (74 / 189) / 0.497 = 0.788$$

$$P(D|Fc) = (66 / 189) / 0.503 = 0.694$$

5 – A tabela a seguir mostra um exemplo de 320 itens classificados por:

Calcule: P(F), P(D), P(D|F) e P(D|Fc)

	\mathbf{F}	\mathbf{Fc}
D	89	45
Dc	99	87

Respostas:

$$P(D) = 0.419$$

$$P(F) = 0.588$$

$$P(D|F) = 0.473$$

$$P(D|Fc) = 0.341$$

6 – A tabela a seguir mostra um exemplo de 176 itens classificados por:

A = quebrado, Ac = não quebrado, B = arranhado, Bc = não arranhado

Calcule: P(A), P(B), P(B|A)P(B|Ac)

	В	\mathbf{Bc}
A	44	39
Ac	72	21

Respostas:

$$P(A) = 0.472$$

$$P(B) = 0.659$$

$$P(B|A) = 0.53$$

$$P(B|Ac) = 0.226$$

7 – Seja uma função de probabilidade em forma de tabela de uma variável x. Calcule a média (μ) , a variância (σ^2) e o desvio padrão (σ) da variável aleatória X. (Exemplo de resolução)

valores de x	1	2	3	4	5
p(x)	4/28	5/28	8/28	5/28	6/28

Respostas:

$$\mu = 3.143$$

$$\mu = 3.143$$
 $\sigma^2 = 1.7653$

$$\sigma = 1.328$$

8 – Seja uma função de probabilidade em forma de tabela de uma variável x. Calcule a média (μ) , a variância (σ^2) e o desvio padrão (σ) da variável aleatória X.

valores de x	1	2	3	4	5
p(x)	6/20	8/20	2/20	1/20	3/20

Respostas:

$$\mu = 2.35$$

$$\mu = 2.35$$

$$\sigma^2 = 1.827$$

$$\sigma = 1.351$$

 $\mathbf{9}$ — Seja uma função de probabilidade em forma de tabela de uma variável x. Calcule a média (μ) , a variância (σ^2) e o desvio padrão (σ) da variável aleatória X.

valores de x	1	2	3	4	5
p(x)	8/24	1/24	7/24	6/24	2/24

Respostas:

$$\mu = 2.708$$
 $\sigma^2 = 1.873$

$$\sigma = 1.368$$

10 — Encontre a probabilidade de obter a primeira coroa após o lançamento de uma moeda honesta k vezes, em que k=[3, 5, 9]. (Exemplo de resolução)

Respostas:

Respostas:

$$k = 3$$
 • $f(x_i) = (1 - p)^k \cdot p \longrightarrow (1 - 0.5)^3 \cdot 0.5 \longrightarrow (0.5)^3 \cdot 0.5 \longrightarrow (0.5)^4 = 0.0625$
 $k = 5$ • $f(x_i) = (1 - 0.5)^5 \cdot 0.5 = 0.015625$
 $k = 9$ • $f(x_i) = (1 - 0.5)^9 \cdot 0.5 = 0.00097$

$$k = 5$$
 $\bullet f(x_i) = (1 - 0.5)^5 \cdot 0.5 = 0.015625$

$$k = 9$$
 $\bullet f(x_i) = (1 - 0.5)^9 \cdot 0.5 = 0.00097$