Gallery: P- sequence . C, ... C, EGE) Del": Ci & Cin are adjacent. P- length of gallery

Minimal Gallery: Shortest length gallery joining & end points. Geodesic

distance between too chambers is leight of minimal oallery joining the two.

Any two chambers can be connected by a gallery. Hence by a minimal gelley. d(C,D) = # hyperplanes seperating C,DI gallery is minimal & = go it crosses each, well exactly once.

Intersections of closed half spaces. - Polyhedra - & - Polytoper Bounded Polyhedra

• If $F \in \mathcal{F}(\Sigma)$, $F \cap \Delta \neq \{\}$ then $F \subseteq \Delta$. i.e. a is union of faces 好.

Cones, Polyhedral Cones

· A vector u ∈ C cone is simple iff it cannot be written as the linear combination of vectors not colinear with u.

Let IT finite, the set (the some hyperplane has IT on one side) roposition: no 3 vectors colinear.

C-cone generated by IT, Then,

The-contains a unique dimple set of generators of C.

Dual Cone:

Cone C, Dual - C"= {ueir" | <u, w> <0 >ueC}

CALL

C is a polyhedral cone, so is C*and C*=C.

fin. gen. C is called simplicial if it is spanned by n - linearly independent vectors.

. Dual of a simplicial comple cone is simplicial.

tro por

Propo

)et":

ef":

TL ^M e+": · T= {u, ... un} sin. CTT Simplicial cone

C# - generated by (upt... unt3 cIR" where upt satisfy € < 0; , 0; > = ~ 1 if i=j

Hi = {x < R" / < x, u > = 0}

for ISKEN CK = CAHK

Ck is a simplicial cone in the generated by Triduil. - codim I face

Mirror Systems:

An arragement of hyperplanes E E is mirror system if H, H'∈ Z ⇒ 8 H(H') ∈ ∑

IF Z is infinite we want Z to be locally finite ie any neighborhood of a point intersects only finite planer in Z.

I-finite system of mirrors Then I generates a finite subgroup of isometries. demma.

Spherical reflection (conceter groups/finite reflection groups Def": G, IGIX so oxigin fixing isometries preserving oxigins G < \$0000

TR": 1) Finite reflection group has a fined point.

2) All mirrors in a finite mirror system have a point in common.

Proof.

- 1) IWI < 00 =) all orbits on in R are finite

 WEIR Prove that this implies we have a fined point.
- 2) fixed points of W are fixed by every reflection in a mirror. These fixed by are common to all mirrors.

[Now on bick one of these fixed by as origin-]
ex: 1) Dihedral groups:

$$Dn = \langle a, b \mid a = b^2 = \langle ab \rangle = 1 \rangle$$
 $Symmetries of$
 $|Dn| = 2n$

[Dn: (ab>) = 2

Root Systems

SH reflection in H , Rn= HORU

<80(u), 80(u')>= <u,u'>, 80=800 C≠0

Det":

Root System:

I finite set of vectors in R