

激光粉尘浓度传感器 SM-UART-04L

AmphenolAdvanced Sensors

1

概述

SM-UART-04L 激光粉尘浓度传感器被设计用于在正常生活环境下工作。嵌入式光学设计/长寿命/高可靠性,SM-UART-04L是工业和消费应用的理想解决方案。激光粉尘传感器通过光学方法检测空气中的粉尘质量浓度。在该装置中安装激光发光二极管和光传感器。通过光散射原理激光粉尘传感器可以检测香烟烟雾等细小颗粒,并通过信号输出的脉冲来进行区分粒径。

图1

优势特性

- 激光光学原理
 - √高精准
- /快速响应
- UART输出方式
- 紧凑的尺寸
- 方便的安装方式
- 平均无故障时间达到4万小时

应用

- HVAC
- 空调
- 空气净化
- 新风系统
- 空气品质检测

目录

原理图	4
校验	4
环境特性使用限值	4
性能指标	4
标准连接器	5
典型应用	5
通讯协议	6
产品外形图	7
可靠性	8
数据一致性	8
包装规格	9
使用注意	10

原理图

图4

校验

根据GB/T1880标准用香烟烟雾进行校准

环境特性使用限值

参数	符号	数值	单位
电源电压	Vcc	0 ~ 5.5	V
工作温度	Торг	-10 ~ 50	°C
存储温度	Tstg	-30 ~ 70	°C
工作湿度	RHopr	0 ~ 95	%
存储温度	RHstg	0 ~ 95	%

^[1] 无凝露 表1

性能指标

参数		符号	最小	数值	最大	单位
最小粒径		D	0.3	2.5	10	um
松	à 测量程	Dreg	1	_	999	μg/m³
3	分辨率	R	_	1	_	μg /m³
一致性[2]	1 ~100 ug/m ³	D	—	_	+/-10	μg /m³
一致性	100~999 ug/m³	Derr	_	_	+/-10	%
热	机时间	twup ^[2]	_	5	_	S
响	应时间	t _{rsp} [2]	_	1	_	S
平均无故	女障工作时间	Т	_	40000	_	hour
电源电压		Vcc	4.8	5	5.2	V
电测	原电压波动	VCC Ripple	_	_	30	mV
	电流	lcc ^[2]	_	60	100	mA
输出 (UART)				3.3V		

^[1] 不凝露

^[2] 测试环境T=25°C, RH=40-60%

标准连接器

标准连接器: CJT A1276WVA-N-2x5P-H72

替代连接器: Harwin, Inc. M50-3000545; Amphenol FCI 20021311-00010T4LF

管脚序号	管脚名称	描述		
1	5V	传感器电源正		
2	5V	传感器电源正		
3	GND	传感器接地		
4	GND	传感器接地		
5	RESET	复位电信号,低电平复位		
6	NC	空		
7	RXD	传感器串口接收		
8	NC	空		
9	TXD	传感器串口发送		
10	SET/SLEEP	休眠控制:高电平或悬空为正常工作,低电平休眠		

表3

典型应用

图6

通讯协议

UART

UART 配置				
波特率 9600 bps				
数据位	8			
校验位	None			
停止位	1			

表4

Default output UART frame format:

Head 1	0x42	
Head 2	0x4D	
H_Length		Longth 2 * 12 + 2 (Data + CC)
L_Length		Length = 2 * 13 + 2 (Data+CS)
H_D1		PM1 = H_D1 * 256 + L_D1 ug/m3
L_D1		(Standard Smoke, Calculated Value)
H_D2		PM2.5 = H_D2 * 256 + L_D2 ug/m3
L_D2		(Standard Smoke, Calculated Value)
H_D3		PM10 = H_D3 * 256 + L_D3 ug/m3
L_D3		(Standard Smoke, Calculated Value)
H_D4		PM1 = H_D4 * 256 + L_D1 ug/m3
L_D4		(Environment, Calculated Value)
H_D5		PM2.5 = H_D5 * 256 + L_D2 ug/m3
L_D5		(Environment, Calculated Value)
H_D6		PM10 = H_D6 * 256 + L_D3 ug/m3
L_D6		(Environment, Calculated Value)
H_D7		
L_D7		
H_D8		
L_D8		
H_D9		
L_D9		
H_D10		
L_D10		
H_D11		
L_D11		
H_D12		
L_D12		
H_D13		Version number
L_D13		错误代码0b0ABCDEFG A = 1 Laser error B = 1 Laser alarm C = 1 High temperature alarm D = 1 Low temperature alarm E = 1 Fan Error F = 1 Fan speed compensation start G = 1 Fan speed alarm
H_CS		OO HEADY HEADO I DAO
L_CS		CS = HEAD1 + HEAD2 + + L_D13

Response mode:

Command frame

Head 1	Head 2	CMD	D1	D2	CRC1	CRC2
0x42	0x4D	CMD	DATAH	DATAL	LRCH	LRCL

表6

CMD	DATAH	DATAL	Description	Response
0xE2	Х	X	Get reading	Same format as above table.
0xE1	X	0x00 – Ask-answer mode 0x01 – Direct output mode	Output mode switch	0x42 0x4D 0x00 0x04 0xE1 0x00 0x01 0x74 0x42 0x4D 0x00 0x04 0xE1 0x01 0x01 0x75
0xE4	Х	0x00 - Standby mode 0x01 - Working mode	Standby control	0x42 0x4D 0x00 0x04 0xE4 0x00 0x01 0x77

表7

产品外形图

可靠性

1	跌落测试	1米高度随机跌落到硬木板3次
2	高温存储	存储温度70°C 环境 96 小时
3	低温存储	存储温度-30°C 环境 72 小时
4	高温工作	工作温度50°C 连续工作96 hours
5	低温工作	工作温度-10°C 连续工作 72 hours
6	高低温循环测试	高低温循环测试30个循环 Tmin 100 200 300 400 500 500 其中: T-温度, C: t-时间, min; a-工作模式3.2; b-一个循环
7	电源波动测试	VCC = 4.8V/5.0V/5.2V 符合规格书量程内误差(0~1000ug/m³)
8	电压缓慢上升与下降测试	降低电源电压。从4.8V到0 V,然后将其从0 V增加到 5.2V,变化梯度为不超过200 mV/min. 测试环境浓度为250 +/- 50 ug/m³.
9	短路保护	其他管脚开路,依次将各个管脚与相邻管脚短接并上电60秒。 满足Class C要求。
10	可靠性运行	TA=25°C, RH=30~70%, VCC=5V; 持续运行720小时,量程内误差符合规格书(0~1000ug/m³).
11	开关可靠性运行	10s ON/10s OFF为一个循环, 持续运行72小时. 量程内误差符合规格书 (0~1000ug/m³).
12	盐雾试验	按GB/T2423.17-93进行,放置在温度为35℃的盐雾箱内用浓度为5%氯化钠溶液喷雾24小时,试验后用水清洗干净。

表8

数据一致性

包装规格

长(L	_)	宽(W)	高(H)	托盘 QTY	总数 QTY	重量
418.2r	nm	295mm	210mm	5 layer	200 pcs	Max. 5kg

表9

使用注意

接地

金属外壳内部连接到接地。请不要拆开金属外壳。.

维护

产品设计为免维护。请不要拆开金属外壳。

安装注意

请考虑安装方向,以避免附着灰尘的影响。传感器应避免风扇面朝上安装,垂直方向安装最佳。 另外,请避免粘性颗粒进入传感器,如果他们粘附在光学器件上,可能会导致故障。

拆解

请不要尝试去拆解传感器,拆解后功能和性能无法保障

电磁噪音

过量的电磁噪音可能会对传感器产生影响,在使用和存储环境中请避免或远离电磁噪音

振动

过强的振动可能会对传感器产生影响,在使用和存储环境中请避免振动。

环境光

强烈的环境光可能会对传感器产生影响,在使用环境中请避免直射光。

服务热线: 400 620 8986

www.amphenol-sensors.com

© 2018安费诺公司版权所有。我公司保留未经通知更改技术规格的权利。 本文件中提及的其他公司名称或产品名称可能是其他公司的商标。

AAS-916-139A_CN 10/2018

