

ETFA2014 – 5th 4DIAC Users' Workshop

Introduction
OPCUA overview
4DIAC Implement.
Summary

Middleware Architecture for CPPS over IEC61499

Federico Pérez, Isidro Calvo, Darío Orive, Marga Marcos

Introduction

- □ CPS (Cyber-Physical System)
 - Systems that integrate computation and physical processes
 - Different disciplines:
 - Real-time systems
 - Communication networks
 - Control systems
- ☐ CPPS (Cyber-Physical Production Systems)
 - Include full integration (end-to-end)
 - Are able to exchange information and trigger actions controlled each other independently
 - CPPS interact with the physical world and must operate safely, efficiently and often in real time
 - Additional features:
 - ☐ Store and process production information in real time
 - Detect trends and patterns
 - Reconfigure production

Introduction

Web Services

DDS: Data Distribution Service

OPC UA: OPC Unified Architecture

IntroductionOPCUA overview4DIAC Implement.Summary

☐ CPPS are understood as collaborative entities communicating in factory automation environments. ☐ Industrial communications Complex Different solutions at the different layers ☐ Fieldbus at bottom layers: Profibus, CAN, ... Ethernet, Wi-Fi at top layers ■ Middleware solutions CORBA: Common Object Request Broker Architecture OPC: Object Linking and Embedding for Process Control

OPC UA: OPC Unified Architecture

Introduction
OPCUA overview
4DIAC Implement.
Summary

OPC UA (Unified Architecture) is a set of specifications trying to cover real-time requirements to exchange information and use commands in industrial control.

OPC UA promoted by OPC Foundation and standarized as IEC 62541

OPC UA: OPC Unified Architecture

OPCUA overview
4DIAC Implement.
Summary

- □ OPC UA is:
 - Services Oriented Architecture SOA
 - Portable: Platform independent
 - Scalable: Since embedded devices (CPS) to Mainframes
 - ☐ Fast: Configurable timeouts
 - Secure: Integrated security
- □ OPC UA isn't:
 - An improvement of DA 3.0
 - A new version of XML-DA
 - Necessary SOAP

Requirements for OPC UA

Comunication betwen Distributed Systems	Data Modelling
Support to: • Robustness and fault tolerance • Redundancy	Common model for all OPC data
Platform independence	Objets Oriented
Scalability	Extensible type system
High performance	Meta information
Internet and firewalls	Complex data y metods
Security and access control	Scalability from simple to complex data
Interoperability	Abstract base model
	Base for other standard data models

Main Components in the Architecture

OPCUA overview
4DIAC Implement.
Summary

Fundamental components of OPC Unified Architecture:

- 1. Transport mechanisms
- 2. Data modeling

OPC UA Layered Arquitecture

Specifications Set

OPCUA overview
4DIAC Implement.
Summary

Transport Protocols

OPCUA overview
4DIAC Implement.
Summary

Two transport protocols have been defined:

- 1. Binary Protocol: UA Binary / TCP/IP
 - Better performance, less overhead
 - Less resources: Important for CPS
- Web Services: UA XML / SOAP/HTTP
 - More interoperability
 - Better support for development tools

Client/Server Arquitecture

OPCUA overview
4DIAC Implement.
Summary

- Clients and servers as entities interacting
- Each system can contain multiple clients and servers
- An application can combine client and server components
- Ongoing monitoring of client and server

Server to Server Interactions

Objet Oriented Arquitecture – SOA

OPCUA overview 4DIAC Implement. Summary

Single Address Space for different specifications:

- Data Access (DA)
- Alarms & Conditions (AC)
- Historical Data (HA)
- Programs

Data Model

Application Implementation

OPCUA overview
4DIAC Implement.
Summary

An OPC UA application is composed of three levels:

- 1. Application Software: Client/Server application
- System Development: Client/Server SDK
- 3. Communications Stack

Nodes

OPCUA overview
4DIAC Implement.
Summary

Nodes essential element in Address Space

- Different depending on the purpose NodeClass node
- Attributes: Description elements of the nodes.

Node Common Attributes

Attribute	Data Type	Description
Nodeld	Nodeld	Identifies a node in a server
NodeClass	NodeClass	Enumeration that identifies the NodeClass
BrowseName	QualifiedName	Identifies the node for listing
DisplayName	LocalizedText	Name of the node to show
Description	LocalizedText	Description of the node (optional)
WriteMask	UInt32	Node writable attributes (optional)
UserWriteMask	UInt32	Node attribute writable by current user (optional)

RootNode: Root node of the hierarchy of nodes within the Address Space

Objects, Variables and Methods

OPCUA overview
4DIAC Implement.
Summary

- The most important classes of nodes (NodeClasses) are Objects, Variables and Methods
- Objects: Represent physical or abstract elements of a system
 - Structure the address space
 - Don't contain values
 - Can group variables, methods or objects
- Variables: Represent values
 - Customers can read, write or subscribe to value changes
- Metods: Represent callable methods by clients
 - Always return a result

DataType

OPCUA overview
4DIAC Implement.
Summary

The DataType attribute defines the data type for Variables and VariableTypes.

OPC UA distinguishes four types of Datatypes:

- Built-in: Fixed set of DataTypes defined by the OPC UA specification. Basic types. Eg. Int32, Boolean, Double, Nodeld, LocalizedText, QualifiedName.
- 2. **Simple**: Subtypes of the Built-In DataTypes. Eg. Duration as a Double subtype.
- 3. Enumeration: Represent a discrete set of named values. Handled as Int32.
- Structured: Represent structured data. Allow built complex DataTypes.

Application / OPCUA Coordination

OPCUA overview
4DIAC Implement.
Summary

OPCUA provides two main mechanism for exchanging information with the application

- Polling: The application polls for new data or status changes. The access depends on the kind of applications as well as data
- Subscription: The application registers a callback with specific nodes to be notified when relevant events occur, such as state changes

4DIAC-FORTE Implementation

OPCUA SIFBs

4DIAC-FORTE Implementation

Introduction

OPCUA overview

→4DIAC Implement.

Summary

OPCUA SIFBs

4DIAC-FORTE Implementation

OPCUA Application Configuration XML File

```
<?xml version="1.0" encoding="UTF-8"?>
<OPCUAApp Name="OPCUAAppTest01" Comment="Test OPCUA" >
   <Identification ApplicationDomain="FORTE" Description="OPCUA Application model for FORTE" />
   <VersionInfo Organization="GCIS DISA ETSI" Version="0.0" Author="FPG" Date="2014-07-10" Remarks="Test FORTE with OPCUA" />
   <Server Name="UATechDAServer" URL="opg.tcp://disaw7vm:62547/Quickstarts/DataAccessServer">
       <Encoding Mode="Binary" />
       <Security Mode="None" Policy="None" />
       <User Type="Anonymous" Identity="" Autentication="" />
       <NodeID Name="FC1001SetPoint" iNodeID="-1" NameSpace="2" NodeIDName="FC1001?SetPoint" Type="DTLREAL" />
       <NodeID Name="LC1001SetPoint" iNodeID="-1" NameSpace="2" NodeIDName="LC1001?SetPoint" Type="DTLREAL" />
   <Client Name="Test010PCUAClientWr" ServerName="UATechDAServer">
                                                                                              public:
   <Client Name="Test010PCUAClientRd" ServerName="UATechDAServer">
</OPCUAApp>
                                                                                                typedef enum
                                                                                                  DTNULL.
                                                                                                  DTBYTE,
                                                                                                  DTWORD,
                                                                                                  DTDWORD,
                                                                                                  DTREAL,
                                                                                                  DTLREAL,
                                                                                                  DTBUFFER,
                                                                                                  DTSTRING
                                                                                                 } UPCUADataTypes;
```


4DIAC Example

Introduction
OPCUA overview
4DIAC Implement.
Summary

OPCUA Test Application

4DIAC Example

Introduction
OPCUA overview

4DIAC Implement.
Summary

OPCUA Test System

Summary

- Middleware backbone: OPC UA
 - Adequate for CPS in production environments
 - Client/Server services
 - Variable Nodes
- ☐ 4DIAC-FORTE Client Services Implementation by SIFBs
- ☐ Future Work
 - Server Services
 - Analyze performance

Questions

