SOLUTIONS FOR HOMEWORK 6

THROUGHOUT THIS HOMEWORK, WE ASSUME THAT (REVERSE) TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS — SUCH AS exp, sin, cos, tan, or arctan — ARE CONTINUOUS. OTHER COMMON CALCULUS FACTS ABOUT THESE FUNCTIONS CAN ALSO BE USED.

- **18.7** $f(x) = xe^x$ is a continuous function on [0,1]. We have f(0) = 0 < 2 < f(1) = e, hence, by Intermediate Value Theorem, there exists $x \in (0,1)$ with f(x) = 2.
- **21.2.** Suppose first f is continuous at s_0 , and U is an open set containing $f(s_0)$. Pick $\varepsilon > 0$ s.t. $\mathbf{B}_{\varepsilon}^o(f(s_0)) \subset U$. Find $\delta > 0$ s.t. $d^*(f(s), f(s_0)) < \varepsilon$ whenever $d(s, s_0) < \delta$. Let $V = \mathbf{B}_{\delta}^o(s_0)$; clearly $f(V) \subset U$.

Now suppose that for any open $U \ni f(s_0)$ there exists an open $V \ni s_0$ so that $f(V) \subset U$. Fix $\varepsilon > 0$; for $U = \mathbf{B}_{\varepsilon}^o(f(s_0))$ find open $V_{\varepsilon} \ni s_0$ s.t. $f(V_{\varepsilon}) \subset U$. As V_{ε} is open, there exists $\delta > 0$ s.t. $\mathbf{B}_{\delta}^o(s_0) \subset V_{\varepsilon}$, so $f(\mathbf{B}_{\delta}^o(s_0)) \subset U = \mathbf{B}_{\varepsilon}^o(s_0)$. As $\varepsilon > 0$ is arbitrary, the continuity of f at s_0 follows.

21.3. It suffices to show that, for any $s, t \in S$, we have $|f(s) - f(t)| \le d(s, t)$ (it would immediately follow that we could take $\delta = \varepsilon$ in the definition of uniform continuity).

Note that, by the triangle inequality, $d(s, s_0) \le d(t, s_0) + d(s, t)$, hence $d(s, s_0) - d(t, s_0) \le d(s, t)$. Likewise, $d(t, s_0) - d(s, s_0) \le d(s, t)$. Therefore,

$$|f(s) - f(t)| = |d(s, s_0) - d(t, s_0)| = \max \{d(s, s_0) - d(t, s_0), d(t, s_0) - d(s, s_0)\} \le d(s, t).$$

- **21.4.** (i) \Rightarrow (ii): follows from Exercise 21.2.
- $(ii) \Rightarrow (iii)$: trivial.
- $(iii) \Rightarrow (ii)$: We can find $a_1, b_1, a_2, b_2 \dots \in (a, b) \cap \mathbb{Q}$ s.t. (i) $a_n < b_n$ for any n, and (ii) $\lim a_n = a$, $\lim b_n = b$. Then $(a, b) = \bigcup_n (a_n, b_n)$, hence also $f^{-1}((a, b)) = \bigcup_n f^{-1}((a_n, b_n))$. Now recall that a union of open sets is open.
- (ii) \Rightarrow (i): We have to show that, for any open $U \subset \mathbb{R}$, $f^{-1}(U)$ is open. In the lectures we proved that U, as an open set, is a union of open balls which, in our case, are open intervals: $U = \bigcup_{(a,b)\subset U}(a,b)$. Consequently, $f^{-1}(U) = \bigcup_{(a,b)\subset U}f^{-1}((a,b))$, which must be open.
- **21.5.** As E is not compact, then either it is unbounded, or it is not closed (Heine-Borel Theorem).
- (a) If E is not bounded, pick $s_0 \in \mathbb{R}^k$, and consider $f(s) = d(s_0, s)$. This function is continuous (by Exercise 21.3), and clearly unbounded.
- If E is not closed, find $s_0 \in E^- \setminus E$, and let $f(s) = \frac{1}{d(s_0,s)}$. This function is continuous on E, and unbounded, since $d(s_0,s)$ can be arbitrarily small.
- (b) In part (a), we constructed a function $f: E \to [0, \infty)$ which is not bounded above. Let $g(s) = \arctan(f(s))$. This function is continuous, as a composition of continuous functions; it takes values in $[0, \frac{\pi}{2})$. As f(s) can be arbitrarily large, g(s) can be arbitrarily close to $\frac{\pi}{2}$. However, g is never equal to $\frac{\pi}{2}$.

21.10. (d) Any continuous $f:[0,1] \to \mathbb{R}$ has to be bounded, hence it cannot be onto. Moreover, f has to attain its maximum and minimum, hence f([0,1]) cannot equal (0,1).

Bonus problem. Is it true that any bounded continuous function on \mathbb{R} is uniformly continuous?

No. Consider, for instance, $f(x) = \cos(\pi x^2)$. Clearly this function is bounded and continuous. Suppose, for the sake of contradiction, that it is uniformly continuous as well. Then there exists $\delta > 0$ such that |f(x) - f(y)| < 1 whenever $|x - y| < \delta$.

Note that $f(\sqrt{n}) = \cos(n\pi) = (-1)^n$. We know that

$$\lim_{n} \left(\sqrt{n+1} - \sqrt{n} \right) = \lim_{n} \left(\sqrt{n+1} - \sqrt{n} \right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0,$$

hence we can find $n \in \mathbb{N}$ s.t. $\sqrt{n+1} - \sqrt{n} < \delta$, yet

$$|f(\sqrt{n}) - f(\sqrt{n+1})| = |(-1)^n - (-1)^{n+1}| = 2 > 1.$$

This is the desired contradiction.