

Problem Set: Analyzing Test Scores Data

Chi-Squared Test: Race and Lunch

We will perform a chi-squared test to investigate the relationship between 'race' and 'lunch' in the dataset.

Null Hypothesis (H_0): There is no statistically significant relationship between race and lunch. (Race and lunch are independent).

Alternative Hypothesis (H_1): There is a statistically significant relationship between race and lunch. (Race and lunch are dependent).

Significance Level (α): 0.05

Statistical Statements:

- If the p-value is less than or equal to α (p \leq 0.05), we reject the null hypothesis and conclude that there is a statistically significant relationship between race and lunch.
- If the p-value is greater than α (p > 0.05), we fail to reject the null hypothesis and conclude that there is no statistically significant relationship between race and lunch.

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

```
In []: # Assuming the file uploaded was 'Wk 6 S 2 Test scores.xlsx'
df = pd.read_excel('Wk 6 S 2 Test scores.xlsx')

print("DataFrame shape:")
display(df.shape)
print("\nDataFrame head:")
```

```
display(df.head())
print("\nDataFrame info:")
display(df.info())
print("\nDataFrame describe:")
display(df.describe())
```

DataFrame shape:

(250, 9)

DataFrame head:

	ID	read	math	class	experience	sex	lunch	race	schoolnum
0	1	445	475	small.class	9	girl	no	white	4
1	2	447	539	small.class	19	girl	no	black	2
2	3	440	465	regular.with.aide	0	boy	yes	black	1
3	4	447	557	regular	14	boy	no	white	4
4	5	445	490	small.class	6	boy	yes	white	4

DataFrame info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 250 entries, 0 to 249
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	250 non-null	int64
1	read	250 non-null	int64
2	math	250 non-null	int64
3	class	250 non-null	object
4	experience	250 non-null	int64
5	sex	250 non-null	object
6	lunch	250 non-null	object
7	race	250 non-null	object
8	schoolnum	250 non-null	int64

dtypes: int64(5), object(4)

memory usage: 17.7+ KB

None

DataFrame describe:

	ID	read	math	experience	schoolnum
count	250.000000	250.000000	250.000000	250.00000	250.000000
mean	125.500000	435.344000	489.204000	8.90000	2.416000
std	72.312977	29.283027	42.354907	5.80351	1.098988
min	1.000000	384.000000	401.000000	0.00000	1.000000
25%	63.250000	415.000000	460.000000	4.00000	1.250000
50%	125.500000	432.500000	483.500000	9.00000	2.000000
75%	187.750000	448.000000	515.750000	13.00000	3.000000
max	250.000000	605.000000	622.000000	27.00000	5.000000

```
In []: # Count 'yes' and 'no' values in the 'lunch' column
lunch_counts = df['lunch'].value_counts()
print("Counts of 'yes' and 'no' in 'lunch' column:")
display(lunch_counts)

# Group by 'race' and count 'yes' and 'no' in 'lunch' for each race
lunch_counts_by_race = df.groupby('race')['lunch'].value_counts().unstack(fill_value)
print("\nCounts of 'yes' and 'no' in 'lunch' column grouped by 'race':")
display(lunch_counts_by_race)
```

Counts of 'yes' and 'no' in 'lunch' column:

count

lunch

no 132

yes 118

dtype: int64

Counts of 'yes' and 'no' in 'lunch' column grouped by 'race':

lunch no yes

race

black 28 64

white 104 54

```
In []: # Create a contingency table of 'race' and 'lunch'
    contingency_table = pd.crosstab(df['race'], df['lunch'])
    print("Contingency Table:")
    display(contingency_table)

# Perform the chi-squared test
    chi2, p, dof, expected = chi2_contingency(contingency_table)
```

```
print(f"\nChi-squared statistic: {chi2}")
 print(f"P-value: {p}")
 print(f"Degrees of freedom: {dof}")
 print("Expected frequencies:")
 display(pd.DataFrame(expected, index=contingency_table.index, columns=contingency_t
 # Interpret the results
 alpha = 0.05
 print("\nInterpretation:")
 if p <= alpha:</pre>
     print(f"Since the p-value ({p:.4f})) is less than or equal to the significance 1
     print("Conclusion: There is a statistically significant relationship between ra
     print(f"Since the p-value ({p:.4f}) is greater than the significance level ({al
     print("Conclusion: There is no statistically significant relationship between r
Contingency Table:
lunch no yes
 race
black
       28
           64
white 104
            54
Chi-squared statistic: 27.814646654859555
P-value: 1.3351153144840636e-07
Degrees of freedom: 1
Expected frequencies:
lunch
         no
                yes
 race
black 48.576 43.424
white 83.424 74.576
Interpretation:
Since the p-value (0.0000) is less than or equal to the significance level (0.05), w
e reject the null hypothesis.
Conclusion: There is a statistically significant relationship between race and lunc
```

In []:

It appears that a higher proportion of students who recieve free lunches are Black compared to those who are white.

Chi-Squared Test: Math and Reading Scores

We will attempt to perform a chi-squared test to investigate the relationship between 'math' and 'read' scores in the dataset.

Note: Chi-squared tests are designed for categorical variables. To perform this test on numerical scores like math and reading, the scores would typically need to be converted into categories (e.g., by binning).

Null Hypothesis (H_0): There is no statistically significant relationship between math and reading scores. (Math and reading scores are independent).

Alternative Hypothesis (H_1): There is a statistically significant relationship between math and reading scores. (Math and reading scores are dependent).

Significance Level (α): 0.05

Statistical Statements:

- If the p-value is less than or equal to α (p \leq 0.05), we reject the null hypothesis and conclude that there is a statistically significant relationship between math and reading scores.
- If the p-value is greater than α (p > 0.05), we fail to reject the null hypothesis and conclude that there is no statistically significant relationship between math and reading scores.

```
In [10]: # Bin 'math' and 'read' scores into 'Low' and 'high' groups
# We can use the median as a simple split point for demonstration
math_median = df['math'].median()
read_median = df['read'].median()

df['math_category'] = pd.cut(df['math'], bins=[-float('inf'), math_median, float('i
df['read_category'] = pd.cut(df['read'], bins=[-float('inf'), read_median, float('i
print("Counts for Math Categories:")
display(df['math_category'].value_counts())

print("\nCounts for Reading Categories:")
display(df['read_category'].value_counts())

print("\nCross-tabulation of Math and Reading Categories:")
display(pd.crosstab(df['math_category'], df['read_category']))

# Display the first few rows with the new categories
print("\nDataFrame head with new categories:")
display(df.head())
```

Counts for Math Categories:

count

math_category

low 125 high 125

dtype: int64

Counts for Reading Categories:

count

read_category

low	125
high	125

dtype: int64

Cross-tabulation of Math and Reading Categories:

read_category low high

math_category

lo	w	91	34
hig	gh	34	91

DataFrame head with new categories:

	ID	read	math	class	experience	sex	lunch	race	schoolnum	math_catego
0	1	445	475	small.class	9	girl	no	white	4	lc
1	2	447	539	small.class	19	girl	no	black	2	hiç
2	3	440	465	regular.with.aide	0	boy	yes	black	1	lc
3	4	447	557	regular	14	boy	no	white	4	hiç
4	5	445	490	small.class	6	boy	yes	white	4	hiç

```
In [11]: from scipy.stats import chi2_contingency

# Create a contingency table of 'math_category' and 'read_category'
contingency_table_scores = pd.crosstab(df['math_category'], df['read_category'])
print("Contingency Table for Math and Reading Categories:")
display(contingency_table_scores)

# Perform the chi-squared test
chi2_scores, p_scores, dof_scores, expected_scores = chi2_contingency(contingency_t
print(f"\nChi-squared statistic for Math and Reading Categories: {chi2_scores}")
```

```
print(f"P-value for Math and Reading Categories: {p_scores}")
print(f"Degrees of freedom for Math and Reading Categories: {dof_scores}")
print("Expected frequencies for Math and Reading Categories:")
display(pd.DataFrame(expected_scores, index=contingency_table_scores.index, columns

# Interpret the results
alpha = 0.05
print("\nInterpretation for Math and Reading Categories:")
if p_scores <= alpha:
    print(f"Since the p-value ({p_scores:.4f}) is less than or equal to the signifi print("Conclusion: There is a statistically significant relationship between ma else:
    print(f"Since the p-value ({p_scores:.4f}) is greater than the significance lev print("Conclusion: There is no statistically significant relationship between m</pre>
```

Contingency Table for Math and Reading Categories:

read_category low high

math_category

low	91	34
high	34	91

Chi-squared statistic for Math and Reading Categories: 50.176 P-value for Math and Reading Categories: 1.4055640543520576e-12 Degrees of freedom for Math and Reading Categories: 1 Expected frequencies for Math and Reading Categories:

read_category low high

math category

low	62.5	62.5
high	62.5	62.5

Interpretation for Math and Reading Categories:

Since the p-value (0.0000) is less than or equal to the significance level (0.05), we reject the null hypothesis.

Conclusion: There is a statistically significant relationship between math and reading scores (based on the defined categories).

Conclusions

Based on the statistical analysis conducted:

1. **Relationship between Race and Lunch:** The chi-squared test of independence between 'race' and 'lunch' yielded a p-value of p=p:.4f. Given a significance level of $\alpha=0.05$, we observe that $p\leq\alpha$. Therefore, we reject the null hypothesis and conclude there is statistically significant evidence of a relationship between race and lunch in this dataset.

2. **Relationship between Math and Reading Scores (Categorized):** The chi-squared test of independence between the categorized 'math_category' and 'read_category' variables resulted in a p-value of $p=p_scores:.4f$. With a significance level of $\alpha=0.05$, we observe that $p\leq \alpha$. Thus, we reject the null hypothesis and conclude there is statistically significant evidence of a relationship between the categorized math and reading scores in this dataset.