Zifraketa simetrikoa

Mikel Egaña Aranguren

mikel-egana-aranguren.github.io

mikel.egana@ehu.eus

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Zifraketa simetrikoa

https://doi.org/10.5281/zenodo.4302267

https://github.com/mikel-egana-aranguren/EHU-SGSSI-01

Gako pribatuko kriptosistemak

Gako pribatuko kriptosistemak

Fluxu zifraketa: Bit-fluxu jarraia zifratzea

Bloke zifraketa: Zatitu mezua tamaina bereko blokeetan eta aplikatu

algoritmoa bakoitzari

Gako pribatuko kriptosistemak: Helburuak

- Mezua ulertezin bihurtu
- Zifratutako informazioa berreskuratu
- Inplementazioa ahalik eta sinpleena

Gako pribatuko kriptosistemak

Oinarrizko teknikak kriptografia klasikoan

- Transposizioa (jatorrizko hizkiak lekuz aldatzen dira soilik)
- Ordezkapena (jatorrizko hizkiak beste hizkiekin aldatzen dira)

Kriptografiaren historia

- 1948 arte, Kriptografia aurre-zientifikoa
- 1948-an, Claude Shannon-ek Informazioaren Teoriaren eta Kriptografia modernoaren oinarrik ezartzen ditu
- 1976-an Diffie & Hellman-ek gako publikoko Kriptografia kontzeptua plazaratzen dute

Esparta-ko Escitaloren metodoa

Paper tira bat makila batean kiribildu eta mezua idatzi

Papera askatu eta mezua bidali

Esparta-ko Escitaloren metodoa

EE_LSV_TAVASE_ONE_ENAN_ZOEU_LL

Esparta-ko Escitaloren metodoa

Mezua deszifratzeko makila berdin-berdina beharrezkoa da

Paper tira makilaren inguruan kiribildu eta mezua irakurri

Sistema honen gakoa makilaren diametroa da

Escitaloren metodoa 2.0

Mezua zutabetan banatu

Gakoa: zutabe kopurua eta ordena

Escitaloren metodoa 2.0

Escitaloren metodoa 2.0

Kriptoanalisia

- Konbinatorian oinarritzen da
- Blokeen tamaina kalkulatu
- Blokeak orden ezberdinean konbinatu zentzua duen mezua aurkitu arte

Cesar Metodoa

Zifraketa monoalfabetikoa

Julius Caesar-ek erabilia

Hikzki bakoitzak alfabetoan duen posizioari 3 gehitzean datza

Cesar Metodoa

Atbash metodoa (Ispilua)

Zifraketa monoalfabetikoa

Hebrear alfabetotik datorren teknika

Hizki bakoitza bere "aurkakoarekin" aldatu

Atbash metodoa (Ispilua)

Afin metodoa

Zifraketa monoalfabetikoa

Cesar Metodoaren orokortzea

 $E(a;b)(M) = (aM + b) \mod N$

N alfabetoaren hizki zenbakia da

Cesar: afin E(1,3)

Hiztegi metodoa

Zifraketa monoalfabetikoa

Korrespondentzien taula "eskuz" sortu

Polybius metodoa

Zifraketa monoalfabetikoa

Zenbakiak edo hizkiak

Estatistikan oinarritutako metodoa

Al-Kindi-k 9 mendean sortua

Jatorrizko hizkia beti ordezkatzen da hizki berdinagatik

Hizkuntza bakoitzean badakigu hizki bakoitza zenbat agertzen den

Badakizkigu zeintzuk diren gehien agertzen diren 2/3/4 hizkiko hitzak hizkuntza bakoitzean

Probak egin, ondorioztatu

Zifratutako textua zenbat eta luzeago, hobeto

Jatorrizko mezuaren textuaren hizkuntza jakin behar dugu

Gaztelerazko hizkien portzentaiak

e- 16,78%	r - 4,94%	y - 1,54%	j - 0,30%
a - 11,96%	u - 4,80%	q - 1,53%	ñ - 0,29%
o - 8,69%	i - 4,15%	b - 0,92%	z - 0,15%
l - 8,37%	t - 3,31%	h - 0,89%	x - 0,06%
s - 7,88%	c - 2,92%	g - 0,73%	k - 0,00%
n - 7,01%	p - 2,776%	f - 0,52%	w - 0,00%
d - 6,87%	m - 2,12%	v - 0,39%	

Adibibea: frekuentzien analisian oinarritutako deszifraketa

Kriptoanalisia zailtzeko metodoak

- Hutsuneak kendu
- Jatorrizko textua aldatu, esanahia mantenduz (Adib. SMS, WhatsApp, ...)
- Esanahia duten piktogramak erabili (kodeen liburua)
- 1-1 korrespondentzia ekidin, hizki berdina behin baino gehiagotan erabiliz (Sistema Polialfabetikoak)

Alberti-ren diskoa

Lehenengo sistema polialfabetikoa

Bi disko zentrokide, barrukoa mugikorra

Zifraketan barrukoa mugitzen doa, X alfabeto (Korrespondentzia) ezberdin erabiltzen dugularik

Gakoa jatorrizko posizioa da, zenbat hizki pasa ondoren biratzen den diskoa, zenbat biratzen den diskoa, eta zein zentzutan

Alberti-ren diskoa

The Alberti and Jefferson Code Disks

Historia osoko elementu kriptografiko ezagunena

Jatorrian gizartean erabiltzeko

Erabilera militarrerako eraldatua, batez ere Naziek

158,962,555,217,826,360,000 (Enigma Machine) - Numberp...

Marian Rejewski matematikari poloniarrak Enigma desenkriptatzeko oinarriak ezarri zituen:

- "Bonba" deituriko makina elektromekanikoak
- Nazi-ek 2 gurpil gehitu zioten Enigmari eta "Bonbak" ez ziren gai

<u>Alan Turing</u>-en taldea informazio horretatik abiatuz "bonba" berriak sortu zituen

Flaw in the Enigma Code - Numberphile

Kriptoanalisia

- Metodo estatistikoak
- Gakoen tamaina txikitzeko patroiak, zati ezberdinen ordena, etab. bilatzen dira
- Sistema monoalfabetikotan baino textu zifratu gehiago behar da

Fluxu zifraketa metodoak

Mezu osoa zifratu ordez, bit bakoitza zifratzen dute, banan-bana

Denbora errealeko komunikaziotan erabilia (Ezin da itxaron mezu osoa izan arte zifratzeko eta bidaltzeko)

Fluxu zifraketa metodoak

Gakotik abiatuta, ekoizle sasi-aleatorioa erabiltzen da gako-fluxua sortzeko

Kriptograma sortzeko XOR eragiketa egiten da zifratu behar den bit-a eta gako-fluxuaren artean

Fluxu zifraketa metodoak

Vernam metodoa

XOR zifraketa textua eta luzera berdineko ausazko gako baten artean egiten du

Ekoizlea benetan aleatorioa da

Vernam metodoa

Gakoa (gako-fluxua) "erabilpen bakarreko libreta" da:

- Behin bakarrik erabili ahal da
- Mezu irakurleari aurretik bidali behar zaio
- Matematikoki frogatua dago apurtezina dela

Ez da oso erabilgarria

Beste fluxu zifraketa metodoak

Vernam-en metodoan oinarrituak

Gako pseudo-aleatorioak erabiltzen dituzte, hazi batetik eta ekoizpen algoritmo batetik sortuak

Hazia eta ekoizpen algoritmoa jakinda, gako pseudo-aleatorioa bereraikitzea dago (Hazi posible ezberdinen kopuruaren arabera)

Beste fluxu zifraketa metodoak

Ez dira matematikoki apurtezinak

Adibideak:

- RC4 (ARC4): TLS/SSL, WEP eta WPA-an (Apurtua)
- A5/1: GSM-an (A5/1 eta A5/2 apurtuak)

Jatorrizko mezua tamaina berdinetko blokeetan zatitu:

- Blokeen tamaina oso txikia bada, fluxu zifraketa da
- Mezuaren tamaina ez bada blokeen multiploa, badaude algoritmoak gainerakoa betetzeko

Jatorrizko mezua tamaina finkoko blokeetan banatzea:

- Tamaina nahikoa txikia bada, fluxu-zifratutzat har daiteke
- Mezuaren tamaina blokearen tamainaren multiploa ez denean betetzeko algoritmoak daude

Jatorrizko bloke bakoitzak zifratutako bloke bat sortzen du

Blokeen arteko iterazioak, permutazioak eta beste operazioak gehitu daitezke

- DES
- DES hirukoitza
- AES
- IDEA
- KASUMI

- 1975
- Lehenengo estandarra
- 64 bit-eko blokeak
- 56 biteko gakoak (64 8 NSA-ak proposatuta berau apurtzen gai izateko -???-)
- 16 itzuli
- Gaur egun 24 ordutan baino arinago apurtzea dago

https://commons.wikimedia.org/wiki/File:DES-estructura-basica.png

https://commons.wikimedia.org/wiki/File:DES-funcion-f.png

DES generación de subclaves

https://commons.wikimedia.org/wiki/File:DES-key-schedule.png

DES hirukoitza

- DES-en ondorengoa izateko pentsatua, baina gaur egun oso gutxi erabilia
- Oraindik kreditu txarteletan erabiliak
- DES-en 3 exekuzio (Zifratu deszifratu zifratu)
- 64 bit-eko blokeak
- 168 bit-eko gakoak (3*56), benetazko gakoa 112 bit

AES (Advanced Encryption Standard)

- Rijndael
- Estatu batuetan NIST erakundeak estandarizatua
- DES hirukoitza ordezkatu
- Erabilera oso hedatua
- 128 bit-eko blokeak
- 128, 192 edo 256 bit-eko gakoak
- 8 itzuli (128-ko gakoak), 12 itzuli (192-ko gakoak), 14 itzuli (256-ko gakoak)

IDEA (International Data Encryption Algorithm)

- 64 bit-eko blokeak
- 128 biteko gakoak
- 8 itzuli
- Segurutzat hartzen da (gako ahul batzuekin izan ezik)
- OpenPGP-ek eskaintzen du

KASUMI (A5/3)

- 64 bit-eko blokeak
- 128 biteko gakoak
- 8 itzuli
- 3G sareetan erabilia

Beti aurkitzen dute soluzioa

Gako posible guztiak probatzean datza

Gako espazioa eta zifraketa algoritmoa ezagunak izan behar dira

Beti ez dira posible, denbora-kostua medio adibidez

Gako espazioa:

- 56 bit: 2⁵⁶ aukera
- 128 bit: 2¹²⁸ aukera
- 256 bit: 2²⁵⁶ aukera

Super-ordenagailu batekin:

- 56 bit: 0,04 segundu
- 128 bit: 7.193.522.047 milurte
- 256 bit: ...

Erasoa inteligenteagoa egin ahal da:

- Hiztegia bat erabiliz
- Gakoaren jabearen datuekin
- ...

Gako pribatuko kriptosistemak

Gako ahulak

- Algoritmo bakoitzaren ezaugarrien arabera agertu daitezke
- Jokaera desegokia duten gakoak
 - E_K(M)=M
 - $E_K(E_K(M))=M$
 - $D_{K2}(E_{K1}(M))=M$