桑白皮中抗人爱滋病病毒(HIV)成分研究

罗士德¹ J. Nemec² 宁冰梅¹

(¹ 中国科学院昆明植物研究所, 昆明 650204) (² 美国国立癌症研究所)

摘要 从中药桑白皮(Morus alba L.)的根皮中分离到 6个成分,它们是: morusin (1), mulberrofuran D (2), kuwanon H (3), mulberrofuran K (4), kuwanon G (5), mulberrofuran G (6); 并制备了它们的乙酰化合物和葡萄糖甙; 还测定了这些化合物的体外抗人爱滋病病毒(HIV)活性和对人淋巴细胞的细胞毒活性,发现其中黄酮 morusin, kuwanon H 和 morusin 4′-glucoside 具有一定的抗 HIV 活性。

关键词 桑白皮,黄酮,抗人爱滋病病毒

ANTI-HIV FLAVONOIDS FROM MORUS ALBA

LUO Shi-De¹, J. Nemec², NING Bing-Mei¹

(¹Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204)
(²National Institute of Cancer, Frederick Cancer Research Development Center, U.S.A.)

Abstract Six compounds: morusin (1), mulberrofuran D (2), kuwanon H (3), mulberrofuran K (4), kuwanon G (5), mulberrofuran G (6) were isolated from root bark of *Morus alba* and their derivatives were prepared. Anti-HIV activity of these fourteen compounds were tested. Morusin, morusin 4'-glucoside and kuwanon H show positive activity.

Key words Morus alba, Flavonoids, Anti-HIV

San Baipi, root bark of *Morus alba* L. (Moraceae) is a traditional Chinese medicine used as a medicament for cough, asthma and other diseases [1]. The ethanol extract of San Baipi, which displayed activity against HIV in vitro in root of *Morus alba* L. was studied.

Having been extracted with $MeOH-CH_2Cl_2(1:1)$, the powder of San Baipi was extracted with H_2O . The biological assay results of both extracts showed that $MeOH-CH_2Cl_2(1:1)$ extracts are active. $CH_2Cl_2-MeOH(1:1)$ extracts was partitioned between $MeOH-H_2O$ (9:1) and hexane. Anti-HIV test in vitro indicated that $MeOH-H_2O(9:1)$ part have positive activity.

Silica gel column chromatography of MeOH-H₂O parts gave ten fractions, in which Fr. 3, Fr. 5 and Fr. 6 have anti-HIV activity. Preparative TLC on silica gel of the three active fractions provided two activity flavonoiids: morusin, kuwanon H and two unactive compounds: mulberrofuran D, mulberrofuran K. Anther two inactive compounds: mulberrofuran G, kuwanon G were seperated from another two fraction: Fr. 7 and Fr. 9 respectively with the same techniques.

Structures of the six compounds were identified according to their NMR data and other physical and chemical data. Four derivatives of morusin: morusin diacetate, morusin hydroperoxide, morusin 2'-glucoside, morusin 4'-glucoside; three derivatives of kuwanon H: kuwanon H hexacetate, kuwanon H hepoacetate, kuwanon H octoacetate were prepared. The results of anti-HIV tests of these nine compounds indicated that only morusin and morusin 4'-glucoside reserved the activity (Table 1). Taro Nomura and his coworkers reported in 1977 that in molecular of morusin, the site between 2'-free hydroxy and 3-r,r-dimethylallylic group was sensitive to photo-oxidation [4]. Therefore we come to the conclution that 2'-free hydroxy and 3-r,r-dimethylallic group contributed to the anti-HIV activity of morusin.

This paper is the first report on preparing, physical data, anti-HIV activity and cytotoxity of morusin 2'-glucoside, morusin-4'-glucoside, kuwanon H hexacetate, kuwanon H heptoacetate, kuwanon H octoacetate and mulberrofuran D triacetate.

Compounds	EC50(μg / mL)	$IC50(\mu g / mL)$	
crud extract ¹	1.01E+01	4.52E+01	
morusin (1)	2.91E+00	8.18E+00	
morusin diacetate (7)		4.43E+00	
morusin hydroperoxide (8)		2.13E+01	
morusin 2'-glucoside (9)		9.42E+01	
morusin 4'-glucoside (10)	7.47E+00	2.29E+01	
kuwanon H (3)	1.95E+00	1.34E+01	
kuwanon H hexacetate (11)		9.62E+00	
kuwanon H hepoacetate (12)		<1.95E+00	
kuwanon H octoacetate (13)		<1.95E+00	
mulberrofuran D (2)		1.04E+01	

Table 1 Anti-HIV activity (EC50) and cytotoxity (IC50) of compounds 1 to 14

Table 2 Activity	of fractions	fiash chromatog	raphy of residue M
------------------	--------------	-----------------	--------------------

1.65E+01

2.79E+01 2.75E+00

4.79E+01

mulberrofuran D triacetate (14)

mulberrofuran K (4)

mulberrofuran G (6) Kuwanon G (5)

Solvents	volume (mL)	Fraction	Yield (g)	Activity	EC50(μg / mL)
CH ₂ Cl ₂	2000	Fr. 1	3.87	_	
+1% MeOH	1000	Fr. 2	0.83	_	
+3% MeOH	1000	Fr. 3	2.06	++	4.88E+00
+3% MeOH	1000	Fr. 4	1.03	-	
+6% MeOH	1000	Fr. 5	2.47	++	1.96E+01
+6% MeOH	1000	Fr. 6	1.05	++	2.23E+00
+6% MeOH	1000	Fr. 7	0.43	+	2.24E+01
+10% MeOH	1000	Fr. 8	1.50	-	
+10% MeOH	1000	Fr. 9	0.58	+	3.90E+01
+50% MeOH	1000	Fr. 10	5.72	-	

Morusin (1): $R_1 = R_2 = R_3 = H$ Morusin-diacetate (7): $R_1 = R_2 = Ac R_3 = H$ Morusin-2'-glucoside (9): $R_1 = glucose R_2 = R_3 = H$ Morusin-4'-glucoside(10): $R_1 = R_3 = H$ $R_2 = glucose$

Kuwanon H (3): $R_1 = R_2 = R_3 = H$ Kuwanon H hex-acetate (11): $R_1 = Ac$, $R_2 = R_3 = H$ Kuwanon H hepoacetate (12): $R_1 = R_2 = Ac$, $R_3 = H$ Kuwanon H octo-acetate (13): $R_1 = R_2 = R_3 = Ac$

EXPERIMENT

Mps.: uncorr.; IR spectra were obtained on a Perkin-Elmer 1430 ratio recording. NMR spectra were determined on a Varian VXR 500s soetrometer and chemical shift values are given in (δ, ppm) with TMS as internal standard. MS were obtained using BG Micrimass ZAB-2F instrument. Silica gel 60 (Merck mesh 230-400) was used for CC. and DC-plastic plates (Merck 60 F254) were employed for TLC. Detection of components was performed by spraying with 15% H_2SO_4 solution in ethanol followed by heating or by used of a UV lamp (λ =254). The plant materials was purchased from traditional pharmacy in Yunnan province, China in autumn 1989.

Milled plant materials (2kg) was soaked with CH_2Cl_2 -MeOH(1:1) for 24h at room temperature. The solution was evaporated in vacul under 40°C, and semi-solid residue M was supplied.

Flash chromatography of residue M (22.8 g) on a column of silica gel 6.5 × 9.2 mm(141.5 g) eluated with solvent system in Table 2 and ten fractions was obtained. The five fractions that showed positive activity were subjected on chromatography respectively.

Fraction 3: Fraction 3 was isolated on a chromatotron of silica gel plates (thin layer 4 mm and 1 mm respectively) using solvent system 1%—7 % ethanol and CH₂Cl₂, two pure

compounds: morusin and mulberrofuran D were provided.

Morusin (1): $C_{25}H_{24}O_6(M^+420,1722)$ yellow crystal. mp. $168-169^{\circ}C$ (CH_2Cl_2 -hexane). MS m / e (%): 420(55), 405(100), 387(9), 377(23), 203(35), $IRv_{max}^{KBr}cm^{-1}$:3400, 2950, 1650, 1560, 1480, 1345, 1150, 975, 840. H NMR(δ , CDCl₃): 6.21(1H, d, J=0.7, H-6), 3.13(2H, dd, J=1.0, 6.8, H-9), 5.14(1H, td, J=6.9, 1.4, H-10), 1.61(3H, q, J=1.3, H-12), 1.45(3H, dq, J=1.0, 0.4, H-13), 6.63(1H, dd, J=10.0, 0.7, H-14), 5.47(1H, d, J=10.0, H-15), 1.44(3H, s, H-17), 1.44(3H, s, H-18), 6.65(1H, d, J=2.2, H-3'), 6.45(1H, dd, J=2.3, 8.4, H-5'), 7.11(1H, d, J=8.4, H-6'), ^{13}C NMR (δ , DMSO): 161.3(C-2), 120.7(C-3), 182.5(C-4), 104.9(C-4a). 161.5(C-5), 99.1(C-6), 158.8(C-7), 100.8(C-8), 152.3(C-8a), 24.1(C-9), 121.5(C-10),

131.9(C-11), 25.5(C-12), 17.4(C-13), 115.1(C-14), 126.3(C-15), 77.6(C-16), 22.7(C-17), 27.7(C-18), 111.6(C-1'), 156.2(C-2'), 103.3(C-3'), 160.3(C-4'), 107.3(C-5'), 131.1(C-6').

Morusin Diacetate: Morusin (4 mg) was dissolved in 150 μL of Ac₂O and pyridine (1:1) and keeped in the room temperature for 5 minutes. The solution was evaporated in vacuo(0.1 mmHg) for 1.5 min., then 200 μL CH₂Cl₂was added in and evaporated for two times. Product was crystallized in Hexane and CH₂Cl₂(5 drops+200μL), colorurless crystals was obtained. C₂₉H₂₈O₃(M⁺504.1772)mp. 137.5—138.5°C, MS m / e (%): 504(34), 489(100), 461(10), 419(6), 405(3), 377(6), 203(40), ¹H NMR (δ, DMSO): 6.25(1H, s, H-6), 3.00(2H, br, H-9), 5.03(1H, m, H-10), 1.57(6H, s, H-12,13), 6.45(1H, d, H-14), 5.72(1H, d, H-15), 1.42(6H, s, H-17,18), 7.25(1H, s, H-3'), 7.25(1H, d, H-5'), 7.70(1H, s, H-6'), 2.11, 2.32(2 × 3H, s, Me-CO), 12.9(1H, brs, 5-OH), ¹³C NMR (δ,DMSO): 158.5(C-2), 119.5(C-3), 181.4(C-4), 104.3(C-4a), 160.9(C-5), 99.3(C-6), 158.4(C-7), 100.5(C-8), 151.5(C-8a), 23.3(C-9), 120.7(C-10), 131.3(C-11), 25.3(C-12), 17.3(C-13), 113.6(C-14), 128.1(C-15), 78.2(C-16), 27.6(C-17), 27.6(C-18), 122.5(C-1'), 148.7(C-2'), 120.6(C-3'), 152.5(C-4'), 117.7(C-5'), 168.6(C=O), 168.6(C=O), 20.8(Me), 20.4(Me) ⁽³³⁾.

Morusin 4'-glucoside and 2'-glucoside: morusin (210 mg) was dissolved in CH₂Cl₂(15mL), and 1-Br-β-D-pyran tetracetate glucose (1.4g) and Ag₂CO₃(1.1g) was added in. The mixture was strirred in nitrogen for 2 h, the more Br-carbohydrade (0.5g) and Ag₂CO₃(0.5g) was put in, stirred for another 3h. filted, evaported in vacuo and dissolved in the methanol (5mL), NaOCH₃(5mL) was added and stirred for 20 min. again, put in carbondioxide gas till the pH value of the solution to 8 or 9, evaporation of solvent gave a residue. The residue is very unstsablity and easily reduced to morusin on silica gel or in acid it was isolated as soon as possible on chromatography using chromatotron(4 mm and 1 mm thin layer silica gel plate) and solvent system (CH₂Cl₂-Me-OH, 5%-15%), two compounds: 10(16.7 mg) and 9(21.5 mg) were gained. 10 and 9 have the same molecular weight, formular and the same no-hydrogen band free hydroxy. But the chemical shift of 3',5' proton of 10 was 3 ppm downfield that of 3' proton of 9 was 0.26 ppm downfield, but 5' proton was only 0.1 ppm downfield, so the 4'-position of 10 was substituented by glucose, and 9 is 2'-glucoside.

Morusin 4'-glucoside: $C_{31}H_{34}O_{11}$, yellow powder, mp 125—131°C . $IRv_{max}^{KBr}cm^{-1}$: 3350, 2912, 1705, 1655, 1580, 1485, 1435, 1355, 1155, 1075, 840, 770. MS m/e (%): 582(100), 567(13), 421(35), 405(25), 365(35), 309(55), 247(36), 219(20), 203(29). ¹H NMR (δ , CDCl₃): 9.15(1H, brs, OH), 7.33(1H, d, J=8.5, H-6'), 6.60(1H, d, J=10.0, H-16), 6.88(1H, s, H-3'), 6.78(1H, d, J=8.5, 2.3, H-5'), 6.19(1H, s, H-6), 5.68(1H, d, J=10.0, H-17), 5.12(1H, m, H-12), 3.10(2H, m, H-11), 1.58(3H, s, H-14), 1.45(6H, s, H-15,19), 1.30(3H, s, H-20), 5.02(1H, d, J=7.64, H-1"), 4.10, 3.92, 3.72, 3.55(4 × H, glucoside H-2", 3", 4", 5"), 3.50(2H, m, H-6").

Morusin 2'-glucoside: $C_{31}H_{34}O_{11}$, yellow powder, mp 150—155°C . $IRv_{max}^{KBr}cm^{-1}$: 3350, 2910, 1700, 1660, 1485, 1405, 1360, 1230, 1160, 1080, 850, 610. MS m / e (%): 582(15), 421(50), 405(10), 365(12), 309(14), 233(36), 155(97), 135(57), 119(10). ¹H NMR (δ , CDCl₃): 8.75(1H, brs, OH), 7.25(1H, d, H-6'), 6.67(1H, d, H-16), 6.82(1H, d, H-6'), 6.58(1H, s, H-6), 5.76(1H, d, H-17), 5.14(1H, m, H-12), 3.10(2H, m, H-11), 1.58(3H, s, H-14), 1.45(3H, s, H-15), 1.44(3H, s, H-19), 1.32(3H, s, H-20), 4.78(1H, d, H-1'), 4.10, 3.97, 3.79, 3.57(4 × H, H-2", 3", 4", 5"), 3.53(2H, m, H-6").

Morusin Hydroperoxide: morusin 10 mg was dissolved in CHCl₃ and exposed to bright sunshine for 14h, one major spot on the of this solution showed the yield of this component is about 70%, preparing TLC of this solution gave 3 mg yellow needles (MeOH), mp 203—205°C is accord with data in

reference [4].

Mulberrofuran D: $C_{29}H_{34}O_4(M^+446.2457)$, mp 121—123°C, colorless crystal. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3320, 2920, 1615, 1445, 1420, 1310, 1140, 820. MS m / e (%): 446(100), 377(3), 361(8), 323(11), 307(13), 279(24), 269(8), 188(20), 123(6), 69(15). ¹H NMR (δ, CDCl₃): 6.69(1H, s, H–3), 7.28(1H, d, J=8.3, H–4), 6.78(1H, d, J=8.3, H–5), 6.42(1H, d, J=2.6, H–4'), 6.77(1H, d, J=2.6, H–6'), 3.52(2H, d, J=6.6, 1.3, H–1"), 5.29(1H, qt, J=6.6,1.4), 1.78(3H, q, J=1.1, H–4"), 1.76(3H, q, J=1.4, H–5"), 3.68(2H, dd, J=8,7, H–1"), 5.40(1H, q, J=1.3, 7.2, H–2"), 1.65(3H, t, d, J=0.8, 1.4, H–4"), 1.76(3H, q, J=1.4, H–5"), 3.68(2H, dd, J=0.8, 7, H–1"'), 5.40(1H, qt, J=1.3, 7.2, H–2"'), 1.84(3H, td, J=0.8, 1.4, H–4"'), 2.07(2H, m, H–5"'), 2.10(2H m, H–6"'), 5.05(1H, m, H–7"'), 1.65(3H, qd, J=0.3, 1.3, H–9"'), 1.57(3H, qd, J=0.6, 1.4, H–10"'), 5.38, 5.34, 4.92(each 1H brs, OH). ¹³C NMR (δ, CDCl₃): 152.3(C–2), 105.6(C–3), 110.3(C–3a), 118.6(C–4), 112.8(C–5), 154.2(C–6), 132.2(C–7), 152.3(C–7a), 122.1(C–1'), 117.7(C–2'), 156.2(C–3'), 103.7(C–4'), 154.5(C–5'), 108.3(C–6'), 26.4(C–1"), 122.4(C–2"), 134.7(C–3"), 17.9(C–4"), 25.6(C–5"), 23.1(C–1"), 120.9(C–2"), 139.1(C–3"), 16.2(C–4"), 39.6(C–5"), 26.3(C–6"), 123.7(C–7"), 132.0(C–8"), 25.7(C–9"), 17.6(C–10") ^[55].

Mulberrofuran D Triacetate: $C_{35}H_{40}O_7$, mp 97—98°C , $IRv_{max}^{KBr}cm^{-1}$: 2920, 1770, 1750, 1610, 1485, 1370, 1200, 1135, 1025, 920, 830, 685, ¹H NMR(δ, CDCl₃): 6.84(1H, s, H-3), 7.42(1H, d, J=8.2, H-5), 7.35(1H, d, J=2.4, H-2'), 6.95(1H, d, J=2.4, H-4'), 3.47(2H, t, J=6.2, H-1"), 5.11(1H, m, H-2"), 1.68(H, bs, H-4",5"), 3.55(2H, d, J=7.2, H-1"), 5.28(1H, t, J=7.2, H-2"), 1.79(3H, bs, H-4"), 2.00(2H, m, H-5"), 2.02(2H, m, H-6"), 5.05(1H, m, H-7"), 1.62(3H, bs, H-9"), 1.55(3H, bs, H-10"), 2.33(3H, s, Me), 2.30(3H, s, Me), 2.30(3H, s, Me). ¹³C NMR (δ, CDCl₃): 153.6(C-2), 116.8(C-3), 106.3(C-3a), 119.7(C-4), 118.5(C-5), 150.0(C-6), 132.4(C-7), 154.5(C-7a), 129.6(C-1'), 126.5(C-2'), 148.6(C-3'), 118.0(C-4'), 146.0(C-5'), 118.1(C-6'), 26.8(C-1"), 122.0(C-2"), 131.4(C-3"), 18.0(C-4"), 25.5(C-5"), 23.6(C-1"), 120.8(C-2"), 136.2(C-3"), 16.2(C-4"), 39.6(C-5"), 26.6(C-6"), 124.1(C-7"), 132.3(C-8"), 25.6(C-9"), 17.6(C-10"), 21.0, 20.9, 20.8(Ac, Me), 168.9, 169.0, 167.7(Ac-C=O).

Fraction 5 and Fraction 6: The TLC of the both fractions showed two same major spots, they were subjected on chromatography (silica gel 4 mm and 1 mm plate on chromatotron) eluting with MeOH-CH₂Cl₂(1%-5%) system. Kuwanon H and mulberrofuran K were supplied. By the same way mulberrlofuran G and mulberrofuran G wre isolated from fraction 7 and fraction 9 respectively.

Kuwanon H: yellow amorphous powder, $C_{45}H_{44}O_{11}$, (M^+760) , mp 187— 189°C (decomp). IRν $_{max}^{KBr}$ cm $^{-1}$: 3380, 2920, 1700, 1650, 1620, 1500, 1430, 1370, 1290, 1240, 1160, 1055, 980, 845, 810, 630, MS m/e (%): 760(24), 555(10), 421(14), 355(13), 299(8), 267(11), 239(5), 205(56), 149(100), 103(19), 85(37), 59(22), ^{1}H NMR(δ, aceton $^{-}D_{6}$): 6.00(1H, m, H $^{-}$ 6), 6.66(1H, m, H $^{-}$ 3'), 6.56(1H, dd, J=2.8, H $^{-}$ 5'), 7.30(1H, d, J=8, H $^{-}$ 6'), 3.12(2H, d, J=7, H $^{-}$ 9), 5.06—5.18(1H, m, H $^{-}$ 6), 6.66(1H, m, H $^{-}$ 3'), 1.47 and 1.62(each 3H, s, H $^{-}$ 11), 4.43(2H, H $^{-}$ 14, 15), 1.57(3H, br.s, H $^{-}$ 16), 1.80, 2.05(2H, m, H $^{-}$ 18), 3.84(1H, m, H $^{-}$ 19), 4.62(1H, m, H $^{-}$ 20), 6.07(1H, d, J=8, H $^{-}$ 26), 6.82(1H, d, J=8, H $^{-}$ 27), 6.22(1H, m, H $^{-}$ 30), 6.00(1H, m, H $^{-}$ 32), 7.92(2H, brs, OH), 8.82(2H, brs, OH), 9.04, 9.42(2×H, brs, OH), 12.85(1H, brs, 5 $^{-}$ OH), 13.35(1H, brs, H $^{-}$ 23 $^{-}$ OH). 13 C NMR (δ, DMSO): 159.04(C $^{-}$ 2), 119.53(C $^{-}$ 3), 182.61(C $^{-}$ 4), 103.61(C $^{-}$ 4a), 156.26(C $^{-}$ 5), 97.40(C $^{-}$ 6), 161.54(C $^{-}$ 7), 106.80(C $^{-}$ 8), 160.17(C $^{-}$ 8a), 23.42(C $^{-}$ 9), 121.76(C $^{-}$ 10), 131.12(C $^{-}$ 11), 25.46(C $^{-}$ 12), 17.38(C $^{-}$ 13), 22.90(C $^{-}$ 14), 123.15(C $^{-}$ 15), 132.71(C $^{-}$ 16), 22.43(C $^{-}$ 17), C $^{-}$ 18 and C $^{-}$ 19 were overlapped in DMSO peaks. 45.45(C $^{-}$ 20), 208.14(C $^{-}$ 21), 113.69(C $^{-}$ 22), 161.94(C $^{-}$ 23), 113.35(C $^{-}$ 24), 161.54(C $^{-}$ 25), 106.71(C $^{-}$ 26), 122.23(C $^{-}$ 27), 121.76(C $^{-}$ 28),

155.80(C-29), 102.61(C-30), 155.80(C-31), 106.57(C-32), 131.12(C-33), 111.29(C-1'), 156.30(C-2'), 102.50(C-3'), 160.79(C-4'), 106.39(C-5'), 129.51(C-6'), 21.13(C-34), 122.23(C-35), 130.26(C-36), 25.35(C-37), 17.59(C-38) ^[6].

Kuwanon H Hexacetate: kuwanon H 120 mg was reacted with Ac₂O 2 mL and pyridine (1mL) in the -26°C for 2 h and evporated in vacuo. The residure was isolated on chromatotron (1 mm silica gel plate) eluting with 0.5% isopropanol in CH₂Cl₂ hepoacetate(34.6 mg) and octoacetate (14.8 mg) were given.

Kuwanon H Octoacetate: amophous powder $C_{59}H_{58}O_{18}(M^+1054.3621)$, mp 106—108°C, MS m/e (%): 1054(12), 1012(18), 1012(8), 970(2), 765(18), 732(7), 629(4), 546(10), 489(10), 363(4), 289(21), 247(60), 205(100), 149(35), ¹H NMR (δ, Aceton-D_δ): 8—6 no peak, 2.0—2.4(24H, 8 × s, 8 × AC-Me).

Kuwanon H Heptoacetate: Kuwanon H (274 mg) was reacted with Ac₂O-pyridine (4 mL+2mL) in room temperature for 2h. and evaporated in vacuo. The residue was isolated on chromatotron (1 mm silica gel plate) using solvents system 0.5% isopropanol-CH₂Cl₂, hepoacetate (34.6mg) and octoacetate (14.8 mg) were provide.

Kuwanon H Octoacetate Kuwanon H (78.8 mg) was reacted with Ac₂O-pyridine (1mL+0.5mL) in 60°C for mins. The product was dried in vacuo and isolated on chromatotron (silica gel) using solvents 0.5% isopropanol-CH₂Cl₂ to get octoacetate(18 mg) and together heptoactate(10.3 mg).

Kuwanon H octoacetate: amorphous powder, $C_{61}H_{60}O_{19}$, (M⁺1096.3726), mp 110— 112°C , $IR\nu_{max}^{KBr}cm^{-1}$: 1920, 1770, 1715, 1645, 1615, 1500, 1370, 1200, 1100, 1020, 910, 830. MS m/e (%): 1096(5), 1054(10), 1012(8), 970(2), 765(18), 723(7), 629(4), 546(10), 489(10), 363(4), 289(21), 247(60), 205(100), 149(35). 1H NMR(δ , Acetone– D_{δ}): δ 8—16 no peaks, 2.0—2.4(24H, 8×s, 8×Ac–Me).

Mulberrofuran K: white amorphous powder, $C_{39}H_{32}O_8$, mp 174—179°C (decomp). IR ν_{max}^{KBr} cm⁻¹: 3450, 2970, 1620, 1600, 1510, 1435, 1365, 1260, 1120, 1050, 975, 820, 735, 630. MS m / e (%): 628 M⁺(75), 613(14), 519(9), 453(18), 387(7), 321(100), 279(8), 255(10), 203(17), 161(30), 85(38). ¹H NMR (δ, Acetone-D₆): 7.05(1H, s, H-3), 7.41(1H, d, J=8.4, H-4), 6.81(1H, dd, J=8.4, 2.2, H-5), 6.98(1H, d, J=2.2, H-7), 6.95(1H, d, J=1.7, H-2'), 6.96(1H, d, J=1.7, H-6'), 6.45(1H, m, J=5.4, H-2"), 3.37(1H, m, J=5.4, H-3"), 3.39(1H, d, J=5.4, H-4"), 2.96(1H, dt, J=5.4, H-5"), 2.73, 2.04(dd, 2H, J=5.4, 17.0, H-6"), 1.78(3H, s, H-7"), 6.27(1H, d, J=8.7, H-13"), 7.07(1H, d, J=8.7, H-14"), 6.38(1H, d, J=2.5, H-17), 6.51(1H, dd, J=8.4, 2.5, H-19"), 7.15(1H, d, J=8.4, H-20"), 6.69(1H, d, J=10.0, H-21"), 5.67(1H, d, J=10.0, H-22"), 1.34(6H, s, H-24' and 25"). ¹³C NMR (δ, Acetone-D₆): 154.8(C-2), 102.2(C-3), 122.5(C-3a), 121.9(C-4), 113.2(C-5), 156.7(C-6), 98.3(C-7), 156.7(C-7a), 131.1(C-1'), 105.2(C-2'), 155.0(C-3'), 113.2(C-4'), 157.0(C-5'), 104.9(C-6'), 133.8(C-1"), 122.7(C-2"), 34.8(C-3"), 37.7(C-4"), 28.4(C-5"), 36.6(C-6"), 23.8(C-7"), 101.9(C-8"), 119.0(C-9"), 154.5(C-10"), 111.1(C-11"), 152.6(C-12"), 107.6(C-13"), 129.1(C-14"), 117.6(C-15"), 153.3(C-16"), 103.8(C-17"), 157.6(C-28"), 109.7(C-19"), 127.8(C-20"), 117.9(C-21"), 129.9(C-22"), 76.6(C-23"), 27.6(C-24"), 27.5(C-25"), 160.

Kuwanon G: yellow powder. mp 214—220°C (decomp). $C_{40}H_{36}O_{11}$, $IRv_{max}^{KBr}cm^{-1}$: 3400, 2980, 1720, 1640, 1540, 1480, 1390, 1260, 1180, 1010, 875, 660. MS m/e (%): 692(M⁺20), 555(2), 421(8), 377(5), 355(7), 279(5), 203(12), 177(10), 137(100), 119(39), 85(58), 69(48) [7].

Mulberrofuran G: white amorphous powder, mp 160° C (decomp.). $C_{34}H_{26}O_8$, $IRv_{max}^{KBr}cm^{-1}$: 3400, 1690, 1625, 1600, 1510, 1445, 1370, 1260, 1150, 1045, 975, 840, 775, 630. ¹H NMR (Aceton-D₆): 7.04(1H, s, H-3), 7.41(1H, d, H-4), 6.81(1H, d, H-5), 6.97(1H, s, H-7), 6.98(1H, s, H-2'), 6.94(1H, s, H-6'), 6.46(1H, s, H-2''), 3.50(1H, m, H-3''), 3.35(1H, m, H-4''), 2.99(1H, m, H-5''), 2.72, 2.04(each 1H, m,

H-6"), 1.78(3H, s, H-7"), 6.42(1H, s, H-11"), 6.23(1H, d, H-13"), 7.24(1H, d, H-14"), 6.38(1H, s, H-17"), 6.51(1H, d, H-19"), 7.14(1H, d, H-20"). 13 C NMR (δ, Aceton-D₆): 155.0(C-2), 102.2(C-3), 122.5(C-3a), 121.9(C-4), 113.2(C-5), 156.7(C-6), 98.3(C-7), 156.7(C-7a), 131.0(C-1'), 105.1(C-2'), 154.5(C-3'), 113.4(C-4'), 157.8(C-5'), 105.4(C-6'), 133.7(C-1"), 122.8(C-2"), 35.1(C-3"), 37.2(C-4"), 28.5(C-5"), 36.2(C-6"), 23.8(C-7"), 102.6(C-3"), 116.9(C-9"), 159.8(C-10"), 104.6(C-11"), 157.4(C-12"), 107.2(C-13"), 130.3(C-14"), 117.5(C-15"), 153.3(C-16"), 103.9(C-17"), 157.7(C-18"), 109.8(C-19"), 127.8(C-20") $^{[8]}$.

Acknowledgment We are grateful to NCI(U.S.A.), Science and Technology Committee of Yunnan Province and Laboratory of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences for their financial supports.

References

- [1] Jiangsu New Medical College. The Chinese Traditional Medicine Dictionary. Shanghai: Shanghai Science and Technology Press, 1985.4031.
- [2] Taro Nomura, Tosho Fukai, Sachik Yamada et al. Studies on the constituents of the cultivated mulberry tree I: Three new prenylflavones from the root bark of Morus alba L. Chem Pharm Bull, 1978, 26(5): 1394—1402.
- (3) Taro Nomura, Tosho Fukai, Sachik Yamada et al. Studies on the constituents of the cultivated mulberry tree: Phto-oxidative cyclization of Morusin. Chem Pharm Bull, 1978, 26(5): 1431-3436.
- [4] Taro Nomura, Tosho Fukai, Takako Shimada et al. Components of root bark of Morus australis. Planta Medica, 1983, 49: 90-94.
- [5] Taro Nomura, Tosho Fukai. Hypotensive constituent, Kuwanon H, a new flavone derivative from the root bark of the cultivated mulberry tree (Morus alba L.) Heterocycles, 1980, 14(12): 1943.
- [6] Yoshio Hano, Hideaki Konno, Musato Itoh et al. Structures of three new 2-arylbenzofuran derivatives from the Chinese Crude Drug"Sang Bai-Pi" (Morus root bark). Chem Pharm Bull, 1985, 33(12): 5294—5300.
- [7] Taro Nomura, Tosho Fukai. Kuwanon G. A new flavone derivative from the root barks of the cultivated mulberry tree (Morus alba L.). Chem Pharm Bull, 1980, 28(8): 2548—2552.
- [8] Toshio Fukai, Yoshio Hano, Kazuhro Hirakura. Structures of two natural hypotensive diels-alder type adducts: mulberrofuran F and G from cultivated mulberry tree. Chem Pharm Bull, 1985, 33(8): 3195—3204.