CS 210 Final Exam Solutions

Alex Vondrak Spring 2012

1. Let the BCD digit $d = a_3 a_2 a_1 a_0$. Then, the circuit has the following outputs.

$a_3 a_2$ 00 01 11 10							
a_3a_2	00	01	11	10			
00	0	0 .	0	0			
01	.0	0	0	0 .			
11	1	1	1	1			
10	Ö	0	1	1			

Minimum-literal product of sums: $(a_3' + a_2'a_1')' = a_3(a_2 + a_1)$ Sum of minterms: $\sum (10, 11, 12, 13, 14, 15)$

2.

$$C_{<} = A_{1}B'_{1} + A'_{0}B'_{1}B_{0} + A_{1}A'_{0}B_{0}$$

$$C_{=} = A'_{1}A'_{0}B'_{1}B'_{0} + A'_{1}A_{0}B'_{1}B_{0} + A_{1}A_{0}B_{1}B_{0} + A_{1}A'_{0}B_{1}B'_{0}$$

$$= (A_{1} \oplus B_{1})'(A_{0} \oplus B_{0})'$$

$$C_{>} = A'_{1}B_{1} + A_{0}B_{1}B'_{0} + A'_{1}A_{0}B'_{0}$$

3.

(b)

- Minimum sum of products: e = xz' + w'y'z'• Minimum inverted sum of products: e' = z + wx' + x'y
- $\Rightarrow e = (z + wx' + x'y)'$ Minimum product of sums: e = (z + wx' + x'y)' = z'(w' + x)(x + y')• Minimum inverted product of sums: e = xz' + w'y'z' = ((x'+z)(w+y+z))'

4.

5. **1, 2, 3, 4.** State Table:

Pr	esent	State	Circuit Input	Circuit Output	Ne	xt St	ate	Flip-	Flop 1	$_{ m Inputs}$
\overline{A}	B	C	-none-	-none-	A	B	C	TA	TB	$\overline{\mathrm{TC}}$
0	0	0			0	1	0	0	1	0
0	0	1			0	1	1	0	1	0
0	1	0			1	0	0	1	1	0
0	1	1			1	0	1	1	1	0
1	0	0			1	1	0	0	1	0
1	0	1			1	1	1	0	1	0
1	1	0			0	0	0	1	1	0
1	1	1			0	0	1	1	1	0

5. Karnaugh Maps:

$$A = \begin{bmatrix} BC \\ 00 & 01 & 11 & 10 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$TA = B$$

$$A = B$$

$$\mathrm{TB} = 1$$

$$\mathrm{TC}=\mathbf{0}$$

6. Logic Diagram:

6. 1. Circuit Output Expressions:

$$y = (A \oplus B) \oplus x$$

Flip-Flop Input Expressions:

$$JA = (((A \oplus B)x)'(AB)')'$$

$$KA = B$$

$$DB = B'$$

2, 3, 4. State Table:

Pres	ent State	Circuit Input	Circuit Output	Nex	t State	Flip	-Flop l	Inputs
\overline{A}	B	\overline{x}	\overline{y}	A	B	JA	KA	DB
0	0	0	0	0	1	0	0	1
0	0	1	1	0	1	0	0	1
0	1	0	1	0	0	0	1	0
0	1	1	0	1	0	1	1	0
1	0	0	1	1	1	0	0	1
1	0	1	0	1	1	1	0	1
1	1	0	0	0	0	1	1	0
1	1	1	1	0	0	1	1	0

State Diagram:

7. (a)

	Register A	Register B	Register P
Initially:	0010	0011	0000
After pulse 1:	0001	0110	0000 + 0000 = 0000
After pulse 2:	0000	1100	0000 + 0110 = 0110
After pulse 3:	0000	1000	0110 + 0000 = 0110

We can see after 2 clock cycles that the contents of P will no longer change on this example, since A has been emptied.

(b) This circuit multiplies the contents of registers A and B (storing the result in register P) using the grade-school multiplication algorithm:

3