Linear (In)dependence.

Given a set of vectors v_1,v_2,\cdots,v_k , we look at their Linear Combinations: $c_1v_1+c_2v_2+\cdots+c_kv_k$. The trivial combination $c_i=0$ produces the zero vector, since $0v_1+0v_2+\cdots+0v_k=0$. The point is whether any other weights or scalars also produce it.

If all non-trivial combinations of vectors are *non-zero*, $c_1v_1+c_2v_2+\cdots+c_kv_k\neq 0$, unless $c_1=c_2=\cdots=c_k=0$, then the vectors v_1,v_2,\cdots,v_k are **Linearly Independent**. Otherwise they are **linearly dependent**, and one of them is a linear combination of the others. e. g.

If one of the vectors, let's say, v_2 , happen to be the zero vector, then we are certain that this combination is dependent. If we choose weights $c_2=4$ and $c_i=0$, this is certainly a nontrivial combination that yields the zero vector.

Ex 2: Let A:

$$A = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{pmatrix} \implies \begin{pmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 6 & 2 \end{pmatrix}$$

Here we clearly see that row 3 is a combination of the other rows, so A has *linearly dependent rows*, we can also see dependent columns since column 2 is three times column 1.

The rows of the $n \times n$ Identity Matrix I:

$$I = egin{pmatrix} 1 & 0 & 0 & \cdot \ 0 & 1 & 0 & \cdot \ 0 & 0 & \cdot & 0 \ \cdot & \cdot & 0 & 1 \end{pmatrix}$$

Are linearly independent. We give this vectors a special notation e_1, e_2, \dots, e_n , they are the unit vectors in the coordinate directions, $e_1 = (1, 0, 0, \dots, 0)$, $e_n = (0, 0, \dots, 1)$.

Procedure for Proving Independence

Assume that the linear combination gives zero, and prove that all weight c_i must equal zero, for example:

$$c_1e_1 + c_2e_2 + \cdots + c_ne_n = (c_1, c_2, \cdots, c_n)$$

If the combination is the zero vector then obviously all $c_i=0$. e. g.

Suppose U is an $n \times n$ Upper Triangular Matrix, with non-zero pivots in the diagonal. Then the rows of U are linearly independent.

Proof: We start by assuming that some linear combination of the rows is zero, $c_1v_1+c_2v_2+\cdots+c_kv_k=0$. Then we head for the first non-zero entry in the diagonal u_{11} , since we know $c_1v_1=0$ and $v_1\neq 0$, this implies that $c_1=0$, and $c_2=0$ since $c_1v_1+c_2v_2=0$ and $v_2\neq 0$, this applies to all u_{ij} pivots, since the only weights that make $c_1v_1+c_2v_2+\cdots+c_kv_k=0$ are those of the trivial solution. Then U is linearly independent.

The r nonzero rows of an echelon matrix U are linearly independent, and so are the r columns that contain nonzero pivots. \to An important reminder is that the definition of linear independence is "coordinate free". Given k points in n-dimensional space, the vectors from the origin to those points either can or cannot be combined to give zero, regardless of where we put the coordinate axes. A rotation will change the coordinates however it won't affect the question of dependent or independent whatsoever. \to Given an arbitrary set of vectors, their verification of dependency or independency of course requires some calculation, $c_1v_1+c_2v_2+\cdots+c_kv_k$, the natural step is to form a matrix A, whose columns are the given vectors. Then if we write c for the vector of weights: (c_1,c_2,\cdots,c_k) :

The vectors are dependent **if and only if there is a nontrivial sollution for** Ac=0. This is settled by Gaussian Elimination. If the rank of A=k, then there are no free variables and no Nullspace, (except for c=0), then the vectors are linearly independent. If the rank is less than k then there's at least one free variable that can be chosen nonzero and the columns are linearly dependent. \to A really important thing is that if we let the vectors have m components, so that A is a $m \times k$ matrix, and suppose now that k>m, it will be impossible for A to have rank k, since the number of pivots cannot surpass the number of rows. The rank must be less than k and a homogeneous system Ax=0 with more unknowns than equations always has nontrivial solutions $x\neq 0$.

A Set of vectors K in \mathbb{R}^m with K>m is always linearly dependent.