1

ai24btech11035 - V.Preethika

 $\lim_{n\to\infty}\sum_{k=1}^n\frac{n}{n^2+k^2}$

c) $\frac{3}{4}$

c) 50

2) Let $\mathbf{F} = (x - y + z)(\mathbf{i} + \mathbf{j})$ be a vector field on \mathbb{R}^3 . The line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where *C* is the triangle with vertices (0,0,0), (5,0,0), and (5,5,0) traversed in that order.

3) Let $\{1, 2, 3, 4\}$ represent the outcomes of a random experiment, and $P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = \frac{1}{4}$. Suppose that $A_1 = \{1, 2\}$, $A_2 = \{2, 3\}$, $A_3 = \{3, 4\}$, and $A_4 = \{1, 2\}$, $A_4 = \{2, 3\}$, $A_5 = \{3, 4\}$, and $A_6 = \{1, 2\}$, $A_7 = \{2, 3\}$, $A_8 = \{3, 4\}$, and $A_8 = \{3, 4\}$,

4) A fair die is rolled two times independently. Given that the outcome on the first roll

c) 3

d) $\frac{\pi}{4}$

d) 5

d) 5.5

1)

is equal to

a) $\frac{e}{3}$

a) -25

a) 4

b) $\frac{5}{6}$

b) 25

a) A₁ and A₂ are not independent.
b) A₃ and A₄ are independent.
c) A₁ and A₄ are independent
d) A₂ and A₄ are independent

 $\{1, 2, 3\}$. Then which of the following statements is true?

is 1, the expected value of the sum of the two outcomes is

b) 4.5

5)	5) The dimension of the vector space of 7×7 real symmetric matrices with trace zero and the sum of the off-diagonal elements zero is						
	a) 47	b) 28	c) 27	d) 26			
6) Let A be a 6×6 complex matrix with $A^3 \neq 0$ and $A^4 = 0$. Then the number of Jordan blocks of A is 2.							
	a) 1 or 6	b) 2 or 3	c) 4	d) 5			
7) Let X_1, \ldots, X_n be a random sample from a uniform distribution defined over $(0,\theta)$, where $\theta>0$ and $n\geq 2.X_{(1)}=\min\{X_1,\ldots,X_n\}$ and $X_{(n)}=\max\{X_1,\ldots,X_n\}$. Then the covariance between $X_{(n)}$ and $\frac{X_{(1)}}{X_{(n)}}$ is							

a) 0

- b) $n(n+1)\theta$
- c) $n\theta$
- d) $n^2 (n + 1) \theta$
- 8) X_1, \ldots, X_n be a random sample drawn from a population with probability density function $f(x;\theta) = \theta x^{\theta-1}$, $0 \le x \le 1$, $\theta > 0$. Then the maximum likelihood estimator of θ is given by

- c) $\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}}$ d) $\frac{\prod_{i=1}^{n} X_{i}}{\prod_{i=1}^{n} X_{i}}$
- 9) $Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$, for i = 1, ..., 10, where x_{1i} and x_{2i} are fixed covariates, and ϵ_i are uncorrelated random variables with mean 0 and unknown variance σ^2 . Here β_0 , β_1 , and β_2 are unknown parameters. Further, define $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$, where $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ is the unbiased least squares estimator of $(\beta_0, \beta_1, \beta_2)$. Then an unbiased estimator of σ^2 is given by
- a) $\frac{\left(\sum_{i=1}^{10}(Y_i-\hat{Y}_i)^2\right)}{10}$ b) $\frac{\left(\sum_{i=1}^{10}(Y_i-\hat{Y}_i)^2\right)}{7}$ c) $\frac{\left(\sum_{i=1}^{10}(Y_i-\hat{Y}_i)^2\right)}{8}$ d) $\frac{\left(\sum_{i=1}^{10}(Y_i-\hat{Y}_i)^2\right)}{9}$
- 10) For i = 1, 2, 3, let $Y_i = \alpha + \beta x_i + \epsilon_i$, where x_i are fixed covariates, and ϵ_i are independent and identically distributed standard normal random variables. Here, α and β are unknown parameters. Given the following observations the best linear

Y_i	0.5	2.5	0.5
x_i	1	1	-2

unbiased estimate of $\alpha + \beta$ is equal to

- a) 1.5
- b) 1

- c) 1.8
- d) 2.1
- 11) Consider a discrete time Markov chain on the state space {1, 2, 3} with one-step transition probability matrix $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 0.7 & 0.3 & 0.0 \\ 2 & 0.0 & 0.6 & 0.4 \end{pmatrix}$. Which of the following statements

is true?

- a) States 1, 3 are recurrent and state 2 is transient.
- b) State 3 is recurrent and states 1, 2 are transient.
- c) States 1, 2, 3 are recurrent.
- d) States 1, 2 are recurrent and state 3 is transient.
- 12) The minimal polynomial of the matrix $\begin{vmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{vmatrix}$ is
 - a) (x-1)(x-2)
 - b) $(x-1)^2(x-2)$
 - c) $(x-1)(x-2)^2$

d)
$$(x-1)^2(x-2)^2$$

- 13) Let $\{X_1, X_2, X_3\}$ be a trivariate normal random vector with mean vector (-3, 1, 4) and variance-covariance matrix $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & -3 \\ 0 & -3 & 4 \end{pmatrix}$. Which of the following statements are true?
 - (i) X_2 and X_3 are independent.
 - (ii) $X_1 + X_3$ and X_2 are independent.
 - (iii) (X_2, X_3) and X_1 are independent.
 - (iv) $\frac{1}{2}(X_2 + X_3)$ and X_1 are independent.
 - a) (i) and (iii)
- b) (ii) and (iii)
- c) (i) and (iv)
- d) (iii) and (iv)