Third Week Exercise

Abhishek Daniel

1 Exercise

1.1 Plot ρ (phase space) for identical particles in the range $1.8 \le E^* \le 3.2$

The phase space, ρ is a kinematic function. It characterizes on-shell scattering of two particles.

It is mathematically defined as, $\rho = \frac{\xi q^*}{8\pi E^*}$

for $E^* \geq 2m$ where q^* is the relative momentum between particles in center of momentum frame and defined as $q^* = \frac{1}{2}\sqrt{E^{*2} - 4m^2}$ and ξ parameter defined as

$$\xi = \begin{cases} \frac{1}{2}, & \text{identical} \\ 1, & \text{otherwise} \end{cases}$$

Here, we are considering the case for identical particles. Thus, $\xi = \frac{1}{2}$. Substituting all this values will give

$$\rho = \begin{cases} 0, & E^* \le 2m \\ \frac{1}{32\pi} \frac{\sqrt{E^{*2} - 4m^2}}{E^*}, & E^* > 2m \end{cases}$$

We are assigned to plot in the range $1.8 \le E^*/m \le 3.2$. The python code was shown below

```
import numpy as np
import matplotlib.pyplot as plt

def func(x):
    return np.piecewise(x, [x < 2.0, x > 2.0], [lambda x: x * 0, lambda x: (1/32*np.pi)*(np.sqrt(x**2-4)/x)])

E = np.arange(1.8, 3.201, 0.01)

vfunc = np.vectorize(func)
    rho = vfunc(E)

print('E*/m = ', E)
    print('rho = ', rho)

plt.plot(E, rho,'b')
    plt.plot(2, 0, marker ='o', color = 'r')
    plt.xlabel('E*/m')
    plt.ylabel('rho')
    plt.show()
```

The output for the python program is given below

1.2 Derivation of the phase shift representation for the scattering amplitude

The scattering amplitude can be written as

$$\mathcal{M} = |\mathcal{M}|e^{i\delta}$$

But from Euler's formula,

$$|\mathcal{M}|e^{i\delta} = |\mathcal{M}| (\cos \delta + i \sin \delta)$$
$$\mathcal{M} = |\mathcal{M}|e^{i\delta} = |\mathcal{M}| \cos \delta + i|\mathcal{M}| \sin \delta$$

Since \mathcal{M} is complex valued it can be expressed as,

Re
$$\mathcal{M} = |\mathcal{M}| \cos \delta$$

Im $\mathcal{M} = |\mathcal{M}| \sin \delta$

From unitarity we know that, Im $\mathcal{M} = \rho |\mathcal{M}|^2$

Therefore,

$$\rho |\mathcal{M}|^2 = |\mathcal{M}| \sin \delta$$
$$|\mathcal{M}| = \frac{1}{\rho} \sin \delta$$
$$\therefore \mathcal{M} = \frac{1}{\rho} e^{i\delta} \sin \delta$$

1.3 Show that Im $\mathcal{M}^{-1} = -\rho$

Let $\mathcal{M} = a + ib$. Thus Im $\mathcal{M} = b = \rho |\mathcal{M}|^2$. We know that $|\mathcal{M}|^2 = \mathcal{M}^{\dagger} \mathcal{M} = a^2 + b^2$. Therefore, $b = \rho(a^2 + b^2)$

Now,

$$\frac{1}{\mathcal{M}} = \frac{1}{a+ib} \frac{a-ib}{a-ib}$$
$$= \frac{a-ib}{a^2+b^2}$$
$$\mathcal{M}^{-1} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$

Thus,

$$\operatorname{Im} \mathcal{M}^{-1} = -\frac{b}{a^2 + b^2}$$
$$= -\frac{\rho(a^2 + b^2)}{a^2 + b^2}$$
$$\operatorname{Im} \mathcal{M}^{-1} = -\rho$$

1.4 Show that $K^{-1} = \rho \cot \delta$

Since $\mathcal{M}^{-1} = \mathcal{K}^{-1} - i\rho$ and also $\mathcal{M}^{-1} = \frac{1}{|\mathcal{M}|} e^{-i\delta}$ such that

Re
$$\mathcal{M}^{-1} = \mathcal{K}^{-1} = \frac{1}{|\mathcal{M}|} \cos \delta$$

Im $\mathcal{M}^{-1} = -\rho = -\frac{1}{|\mathcal{M}|} \sin \delta$

Therefore, $\rho = \frac{1}{|\mathcal{M}|} \sin \delta$ or $|\mathcal{M}| = \frac{1}{\rho} \sin \delta$ Thus,

$$\mathcal{K}^{-1} = \rho \left(\frac{\cos \delta}{\sin \delta} \right)$$
$$\therefore \mathcal{K}^{-1} = \rho \cot \delta$$