Assignment #8

Due Wednesday 10 November, 2021 at the start of class.

Submit on paper or by email: elbueler@alaska.edu

Exercise 5.2.1. Do parts (a) and (b) only.

Exercise 5.2.3. Use Theorem 5.2.2.

Exercise 5.2.4.

Exercise 5.3.4. Do parts (a) and (b) only. Feel free to use interp1() for this.

Exercise 5.6.1. Do parts (a) and (c) only.

P6. This problem replaces Exercise 5.1.1, and is a good starting-point for this Assignment! Each part involves generating a plot; turn in that plot. Please also turn in the code which generated the plot and the uniform error estimate.

Suppose we want to interpolate the function $f(x) = \tanh(x)$ using the following seven nodes t_i and points y_i :

```
>> t = [-4 -2 \ 0 \ 1 \ 2 \ 4 \ 6];
>> y = tanh(t);
```

(a) Generate a well-labeled plot of the (high-degree) polynomial interpolant $p_a(x)$ of this data using polyfit () and polyval (), also showing f(x) and the data points in the same figure:

```
>> c = polyfit(t,y,6);
>> xx = -4:.01:6; yy = tanh(xx); % for plotting
>> plot(xx,polyval(c,xx), xx,yy, t,y,'ko')
>> legend('p_a(x)','f(x)=tanh(x)','interpolation points')
>> xlabel x, ylabel y
```

Using the same 1001 evaluation points xx, use one additional line of Matlab to accurately estimate the uniform error estimate $||f - p_a||_{\infty}$.

- **(b)** Let $p_b(x)$ be the piecewise-linear interpolant of f(x) using the same seven points (t_i, y_i) . Using the same plotting style as in part **(a)**, generate a new well-labeled plot of $p_b(x)$ using interp1(), plus f(x) and the interpolation points. Again, accurately estimate $||f p_b||_{\infty}$.
- (c) Let $p_c(x)$ be the cubic spline interpolant of f(x) using the same seven points (t_i,y_i) . Using the same plotting style, generate a well-labeled plot of $p_c(x)$ using interp1 (), and accurately estimate $\|f-p_c\|_{\infty}$.

- (d) Of the three graphs, I think $p_c(x)$ looks the most like f(x), but the fit is still not great. However, it is clear how to add two more interpolation nodes to get a much better fit. Do so. That is, regenerate the plot of a new cubic spline interpolant $\tilde{p}_c(x)$ through nine points, including the existing seven. Use the same plot style as usual. Compute the uniform error $\|f-\tilde{p}_c\|_{\infty}$ and confirm it is greatly reduced.
- (e) Going back to $p_a(x)$, the polynomial interpolant in part (a), recompute it using the same nine points as in part (d), and plot the result $\tilde{p}_a(x)$ in the usual style. Compute $||f \tilde{p}_a||_{\infty}$. Did it get better?
- **P7.** This problem replaces 5.1.4.

Define

$$q(x) = a\frac{x(x-1)}{2} - b(x-1)(x+1) + c\frac{x(x+1)}{2}.$$

- (a) Show that q is a polynomial interpolant through the points (-1, a), (0, b), (1, c).
- **(b)** What important properties do the three functions $f_1(x) = \frac{x(x-1)}{2}$, $f_2(x) = -(x-1)(x+1)$, and $f_3(x) = \frac{x(x+1)}{2}$ have? What should we call these functions?
- **P8.** Find some grid paper with roughly 1/4 inch grid and trace the outline of your hand on it. (*I googled "printable grid paper," etc.*) Add 30 to 50 *roughly* equally-spaced points along the outline, generally including tips of fingers and saddle points between fingers. (At this point my result looked like the figure below, with n=36 points. You can read values off this graph if you want, and you'll get a picture of my hand, but yours is more fun!) Type into the Matlab (or other) editor, so you only have to do it once, the (x_k, y_k) locations of each point, for $k=1,\ldots,n$, choosing coordinates on the grid paper in some manner.

Now the idea is to get an interpolant which is a **parameterized curve** (x(t), y(t)). The indexing can be regarded as t-values, namely $t_k = k$ for k = 1, ..., n. The function x(t) interpolates all the pairs (t_k, x_k) and y(t) interpolates all the (t_k, y_k) pairs.

Plot the interpolating parameterized curve (x(t), y(t)) in the x, y plane using the Matlab interp1 () function (twice). For plotting you will need to generate a fine grid of t values on the interval [1, n]. Turn in the plot and your code.

(Only plot the (x, y) values in the main figure, but feel free to generate separate figures for the functions x(t) and y(t); this is optional. Other than the data for the points (x_k, y_k) , your Matlab program should only be a few lines.)

