Giới thiệu

- Ngôn ngữ lập trình C
- Cấu trúc chung của máy tính
- Cấu trúc phân cấp dữ liệu

Tại sao lại chọn ngôn ngữ lập trình C?

- Ngắn gọn, súc tích, hiệu năng cao
- Là ngôn ngữ lập trình hướng cấu trúc
- Thường dùng để xây dựng các phần mềm mang tính hệ thống
- Phù hợp với đông đảo các đối tượng người học
- Giúp nhanh chóng tiếp cận, làm quen với các ngôn ngữ khác

Cấu trúc chung của máy tính

- Máy tính có thể chia làm hai phần: phần cứng và phần mềm
- Phần cứng là các thiết bị vật lí như vi xử lĩ, ổ cứng, ram, màn hình...
- Phần mềm linh hồn của máy tính, về bản chất là chuỗi có thứ tự các tập lệnh được gọi là chương trình máy tính
- Chương trình phần mềm sẽ hướng dẫn các bước, trình tự thực hiện các hành động cho phần cứng
- Chương trình phần mềm được viết bởi các lập trình viên

Cấu trúc tổ chức máy tính

Gồm các phần hay đơn vị logic:

- Đầu vào
- Đầu ra
- RAM
- Khối ALU
- Khối CU
- Bộ nhớ thứ cấp

Đơn vị đầu vào

- Nhiệm vụ: nhận dữ liệu và chương trình máy tính từ các thiết bị
 đầu vào và đặt ở nơi phù hợp chờ xử lí
- Thiết bị vào: bàn phím, chuột, màn hình cảm ứng, micro, máy quét
- Các dạng đầu vào mới hơn: cảm biến định vị GPS, gia tốc, chuyển động, ánh sáng, nhiệt độ, độ ẩm...

Đơn vị đầu ra

- Nhiệm vụ: lấy thông tin đã qua xử lí từ máy tính và đặt chúng vào các dạng thiết bị đầu ra hiện có
- Mục đích: đưa dữ liệu ra sử dụng bên ngoài máy tính
- Các thiết bị đầu ra: màn hình, loa, máy in, các thiết bị nhớ thứ cấp, các thiết bị cơ khí, robot, thiết bị rung trên điện thoại di động, thiết bị thực tế ảo...

RAM – Bộ nhớ truy cập nhanh

- RAM Random Access Memory
- Nhiệm vụ: lưu trữ dữ liệu và chương trình máy tính để sẵn sàng phục vụ xử lí khi cần
- Khi một chương trình phần mềm muốn chạy được, trước tiên nó phải được nạp vào ram
- Dung lượng nhỏ, giá thành đắt, tốc độ truy cập cao(2-4GB/s)
- Thông tin lưu trữ trên ram sẽ bị mất khi ngắt nguồn điện
- Tên gọi khác: bộ nhớ, bộ nhớ chính, bộ nhớ truy cập ngẫu nhiên

Các đơn vị đo lượng thông tin

- Đơn vị cơ sở là bit, giá trị của 1 bit chỉ có thể là 0 hoặc 1
- Tiếp theo là byte, 1 byte = 8 bit
- Các đơn vị kế tiếp là: KB->MB->GB->TB->PB->EB->ZB
- Cách tính các đơn vị này là: 1 KB = 2^10 byte, 1 MB = 2^10 KB...
- RAM càng lớn thì khả năng đa nhiệm càng tốt

Khối ALU

- Nhiệm vụ: thực hiện các phép toán số học và logic
- Là một thành phần của CPU

Khối CU

- Nhiệm vụ: điều phối và giám sát hoạt động của các thành phần khác trong máy tính
- Là một thành phần của CPU
- Ngày nay một máy tính có thể có nhiều CPU do đó khả năng xử lí tác
 vụ song song ngày càng lớn

Bộ nhớ thứ cấp

- Nhiệm vụ: lưu trữ dữ liệu chưa sử dụng tới và dữ liệu sử dụng về lâu dài
- Thường có kích thước lớn, cỡ vài trăm GB trở lên, giá thành rẻ, tốc độ thấp
- Dữ liệu lưu trữ ổn định, không bị mất khi ngắt nguồn điện
- Ví dụ: HDD, SSD, USB, DVD...

Cấu trúc phân cấp dữ liệu

Theo thứ tự tăng dần độ phức tạp, đa dạng về cấu trúc và thành phần

- Các bit: phần tử dữ liệu nhỏ nhất trong máy tính
- Các kí tự: chữ cái, chữ số, kí tự đặc biệt
- Các trường: tập các kí tự được sắp xếp theo trật tự có ý nghĩa
- Các bản ghi: tập hợp các trường liên quan một thực thể
- Cơ sở dữ liệu: đại diện cho tập các dữ liệu được tổ chức sao cho dễ truy cập và quản lí. Điển hình là mô hình CSDL quan hệ

Cấu trúc phân cấp dữ liệu

 Dữ liệu lớn: lượng dữ liệu khổng lồ và đa dạng được tạo và tăng lên nhanh chóng từng ngày trên toàn cầu

