Lecture 20 (Energy in Capacitors)

Physics 161-01 Spring 2012
Douglas Fields

Capacitor Circuits

 When there are combinations of series and parallel capacitors, try to reduce them to more simple forms.

Capacitor Circuits

 Remember that wires can be "stretched" and "shortened", but you can't cross a junction!

Capacitor Circuits

 And then, to find charges and potentials, work backwards:

A 12- μ F capacitor and a 6- μ F capacitor are connected together as shown. What is the equivalent capacitance of the two capacitors as a unit?

A.
$$C_{eq} = 18 \mu F$$

B.
$$C_{eq} = 9 \mu F$$

C.
$$C_{eq} = 6 \mu F$$

D.
$$C_{eq} = 4 \mu F$$

E.
$$C_{eq} = 2 \mu F$$

A 12- μ F capacitor and a 6- μ F capacitor are connected together as shown. What is the equivalent capacitance of the two capacitors as a unit?

A.
$$C_{eq} = 18 \mu F$$

B.
$$C_{eq} = 9 \mu F$$

C.
$$C_{eq} = 6 \mu F$$

D.
$$C_{eq} = 4 \mu F$$

E.
$$C_{eq} = 2 \mu F$$

A 12- μ F capacitor and a 6- μ F capacitor are connected together as shown. If the charge on the 12- μ F capacitor is 24 microcoulombs (24 μ C), what is the charge on the 6- μ F capacitor?

- Α. 48 μC
- Β. 36 μC
- C. 24 μC
- D. $12 \mu C$
- Ε. 6 μC

A 12- μ F capacitor and a 6- μ F capacitor are connected together as shown. If the charge on the 12- μ F capacitor is 24 microcoulombs (24 μ C), what is the charge on the 6- μ F capacitor?

Α. 48 μC

B. 36 μC

C. 24 µC

D. 12 μC

Ε. 6 μC

A 12- μ F capacitor and a 6- μ F capacitor are connected together as shown. If the charge on the 12- μ F capacitor is 24 microcoulombs (24 μ C), what is the charge on the 6- μ F capacitor?

- Β. 36 μC
- C. 24 μC
- D. 12 μC
- E. $6 \mu C$

A 12- μ F capacitor and a 6- μ F capacitor are connected together as shown. If the charge on the 12- μ F capacitor is 24 microcoulombs (24 μ C), what is the charge on the 6- μ F capacitor?

Α. 48 μC

Β. 36 μC

C. 24 μC

D. 12 μC

Ε. 6 μC

Storing Energy

- Let me ask you a question.
- Let's say that today, you have a lot of spare energy, but that there is a high likelihood that tomorrow you would need more than you will have.
- What would you do to prepare for tomorrow?

Storing Energy

- One possibility is to take something at ground level, use the spare energy you have today to do work on that something and raise it to a higher level.
- Then, tomorrow, you could use that gravitational potential energy to do work...

Storing Energy in Gravitation

The basic idea of this is demonstrated below:

Storing Energy with Charge

The basic idea of this is demonstrated below:

Energy Stored in Capacitors

- Let's look at a parallel plate capacitor with some initial charge on it.
- How much work does it take to put more charge on it?

Energy Stored in Capacitors

- So, how much work does it take to charge the capacitor from zero to Q?
- Then this is also the potential energy stored in the capacitor.

Energy Stored in Capacitors

 We can think of the capacitor as an electric analog of a stretched spring:

$$U = \frac{Q^2}{2C} = \frac{1}{2} \left(\frac{1}{C}\right) Q^2$$

- With 1/C analogous to the spring constant, and Q, the charge analogous to the extent the spring is compressed or stretched.
- Note that the smaller the capacitance, the larger the "spring constant", and the harder it is to put charge on it.

You reposition the two plates of a capacitor so that the capacitance doubles. There is vacuum between the plates.

If the charges +Q and -Q on the two plates are kept constant in this process, the energy stored in the capacitor

- A. becomes 4 times greater.
- B. becomes twice as great.
- C. remains the same.
- D. becomes 1/2 as great.
- E. becomes 1/4 as great.

You reposition the two plates of a capacitor so that the capacitance doubles. There is vacuum between the plates.

If the charges +Q and -Q on the two plates are kept constant in this process, the energy stored in the capacitor

- A. becomes 4 times greater.
- B. becomes twice as great.
- C. remains the same.
- D. becomes 1/2 as great.
- E. becomes 1/4 as great.

Energy Stored in Electric Fields

Let me play around a little with this result.

$$U = \frac{Q^2}{2C} = \frac{1}{2} \frac{(CV)^2}{C} = \frac{1}{2} CV^2$$

 And now, let me look at the potential energy in the capacitor per volume of the capacitor.

$$\frac{U}{\text{Volume}} = u = \frac{1}{2} \frac{CV^2}{Ad} = \frac{1}{2} \frac{\frac{\varepsilon_0 A}{d}V^2}{Ad} = \frac{1}{2} \frac{\varepsilon_0 V^2}{d^2} = \frac{1}{2} \varepsilon_0 \left(\frac{V}{d}\right)^2 = \frac{1}{2} \varepsilon_0 E^2$$

Energy Stored in Electric Fields

- This result turns out to be independent of the geometry of the capacitor, and is completely general:
- Energy is stored in all electric fields, and has a density:

$$u = \frac{1}{2} \varepsilon_0 E^2$$