Topic: Perpendicular and angle bisectors

Question: The line segments \overline{AD} and \overline{CD} are bisectors of $\angle CAB$ and $\angle BCA$, respectively. What is $m \angle ADC$, if $m \angle CAB = 39^\circ$ and $m \angle BCA = 53^\circ$?

Answer choices:

- **A** 88°
- B 112°
- C 123°
- D 134°

Solution: D

Using what we already know, we see that

$$m \angle CAD = \frac{1}{2} m \angle CAB = \frac{1}{2} (39^{\circ}) = 19.5^{\circ}$$

$$m \angle DCA = \frac{1}{2} m \angle BCA = \frac{1}{2} (53^{\circ}) = 26.5^{\circ}$$

Add these measures to the figure.

The measures of the three interior angles of $\triangle ADC$ (or any triangle) add up to 180° . Therefore,

$$m \angle CAD + m \angle DCA + m \angle ADC = 180^{\circ}$$

$$19.5^{\circ} + 26.5^{\circ} + m \angle ADC = 180^{\circ}$$

$$46^{\circ} + m \angle ADC = 180^{\circ}$$

$$m \angle ADC = 134^{\circ}$$

Topic: Perpendicular and angle bisectors

Question: The perpendicular bisector of a line segment does which of these things?

Answer choices:

- A Forms at least two right angles
- B Forms two line segments of equal length
- C Passes through the midpoint of the original segment
- D All of these

Solution: D

All of these are true.

a) The figures below show how you could get two or four right angles.

- b) The word bisector tells us that the segment is split into two equal parts.
- c) The point at which any line segment is divided into two equal segments is its midpoint.

Topic: Perpendicular and angle bisectors

Question: $\triangle ABC$ is an equilateral triangle (a triangle in which all three sides are of equal length). \overline{CD} is the perpendicular bisector of \overline{AB} . $\overline{AD} = 5x - 2$ and $\overline{DB} = 3x + 6$. What is the perimeter of $\triangle ABC$ (the sum of the lengths of its sides)?

Answer choices:

A 24

B 54

C 108

D 156

Solution: C

Let's label what we've been given.

Because \overline{CD} bisects \overline{AB} ,

$$3x + 6 = 5x - 2$$

$$8 = 2x$$

$$4 = x$$

Notice that

$$\overline{AB} = \overline{AD} + \overline{DB}$$

$$\overline{AB} = (5x - 2) + (3x + 6)$$

Substituting 4 for x, we get

$$\overline{AB} = 5(4) - 2 + 3(4) + 6$$

$$\overline{AB} = 36$$

Since $\triangle ABC$ is equilateral, its perimeter is

$$3 \cdot \overline{AB} = 3 \cdot 36 = 108$$

