Heurística para el PRPP

Guillermo Palma

Universidad Simón Bolívar Departamento de Computación y T.I.

CI-5651: Diseño de Algoritmos I

CI-5651 Ene-Mar 2017

Introducción

- Problema del Cartero Rural con Costos y Beneficios
- Actividades a realizar

Introducción

- Problema del Cartero Rural con Costos y Beneficios
- Actividades a realizar

CI-5651 Ene-Mar 2017

Introducción

- El Problema del Cartero Rural con Beneficios y Costos fue presentado en el 2006 por Aráoz, Fernández y Zoltán con el nombre Privatized Rural Postman Problem (PRPP)
- Los Problemas de Enrutamientos por Arcos consisten en encontrar el menor costo ó mayor beneficio de atravesar algunos lados, sujeto a una serie de restricciones. Ejemplos son el Problema del Cartero Chino (The Chinese Postman Problem), el Problema del Cartero Rural (Rural Postman Problem) y el El problema de Enrutamiento de Arcos con Capacidades (The Capacitated Arc Routing Problem)
- El PRPP pertenece a los Problemas de Enrutamiento por Arcos
- EI PRPP es NP-hard.

Definición del PRPP

El Problema del Cartero Rural con Beneficios y Costos (PRPP): Sea un grafo G(V,E) no dirigido, el cual posee un vértice distinguible d al cual llamamos depósito y sean dos funciones de E en \mathbb{R}_+ , la función de ganancia b y la función de costo c. El PRPP consiste en encontrar un ciclo \mathscr{C}^* que maximice el valor de

$$\sum_{e \in E(\mathscr{C})} (b_e - t_e c_e)$$

donde:

- \mathscr{C} es un ciclo que pasa por d, el cual no es necesariamente simple, es decir, puede tener lados repetidos
- t_e es el número de veces que el lado e está en $\mathscr C$
- $E(\mathscr{C})$ es el conjunto de lados de \mathscr{C}

Figura: Ejemplo de una instancia del PRPP

Figura: Solución óptima es d-1-4-3-2-1-d con beneficio 14

Justificación e importancia

- Problemas de Enrutamiento por Arcos son encontrados en situaciones prácticas tales como mantenimiento de carreteras, recolección de basura, entrega de correo, enrutamientos de transportes, mantenimiento de redes, limpieza de nieve
- Cada año se gastan miles de millones de dólares en operaciones que pueden ser modeladas como Problemas de Enrutamientos por Arcos
- Diferentes trabajos en Problemas de Enrutamientos por Arcos con Beneficios y Costos presentados en los últimos años (2006-presente), puede ser tomado como una medida de la importancia que se le está dando a este tipo de problemas

Primera Resolución del PRPP

- Primera solución algorítmica para el PRPP por Aráoz, Fernández y Meza en 2009.
- Proponen un algoritmo que genera una cota inferior y superior de la solución óptima.
- La cota superior se obtiene al resolver una serie de programas lineales que son relajaciones de un sistema entero de desigualdades lineales que modelan el problema
- Mientras sea posible ellos refuerzan la relajación mediante la generación de cortes
- La cota inferior es obtenida con una heurística, la cual es una adaptación de la heurística 3T, creada para el Problema del Cartero Rural (RPP)
- Utilizan un método de dos fases que usa diferentes mecanismos de resolución (solvers) en cada una de ellas.

- Introducción
- Problema del Cartero Rural con Costos y Beneficios

Actividades a realizar

CI-5651 Ene-Mar 2017

Algunas Propiedades del PRPP

 $R = \{e \in E \mid b_e - 2c_e \ge 0\}$ Lados que dan beneficio después de cruzarlos dos veces

 G_R : Es el subgrafo $G_R \equiv (V(R) \cup d, R)$ que se obtiene con el conjunto de lados R y el depósito d. Donde V(R) es el conjunto de vértices incidentes en lados de R.

Dominancia 1

Ninguno de los lados $e \in E$ se encuentra presente más de dos veces en la solución óptima \mathscr{C}^* .

Dominancia 2

Sea C_k una de las componentes conexas del subgrafo G_R , se tiene que los lados de cada componente conexa C_k , o se encuentran todos en la solución óptima \mathscr{C}^* o ninguno de ellos está en \mathscr{C}^* .

Introducción

- Problema del Cartero Rural con Costos y Beneficios
- Actividades a realizar

Instancias a resolver

- Se usarán las instancias del PRPP formuladas por Aráoz,
 Fernández y Meza que comprenden 118 instancias
- Las 118 instancias se dividen en 5 grupos
 - ALBAIDA, contiene dos instancias ALBAIDAA y ALBAIDAB. Fue generado de las instancias de Coberán y Sanchis
 - CHRISTOFIDES, contiene 24 instancias las cuales fueron generadas a partir de las instancias de Christofides et al
 - OEGREE, esta compuesto de 36 instancias formada por grafos de grado 4. Por Hertz et al.
 - GRID, contiene 36 instancias que corresponden a grafos tipo grid. Por Hertz et al
 - Sanda aleatoriamente. Por Hertz et al.

Instancia	#inst.	V	<i>E</i>	# Comp. $b_e - c_e > 0$
AA	1	102	160	10
AB	1	40	144	11
Р	24	7-50	13-184	3-8
D16	9	16	32	2-5
D36	9	36	72	4-11
D64	9	64	128	5-12
D100	9	100	200	9-22
G16	9	16	24	3-5
G36	9	36	60	5-9
G64	9	64	112	4-14
G100	9	100	180	4-20
R20	5	20	37-75	3-4
R30	5	30	70-111	4-6
R40	5	40	82-203	5-9
R50	5	50	130-203	7-12

Problema	V _o	%dPlanos	%dHeur	tHeur (seg)
AA	6266	0.30	*	*
AB	4372	0.00	*	*
Р	2567	1.25	*	*
D16	2076	0.00	*	*
D36	5162	2.23	*	*
D64	8843	0.44	*	*
D100	11646	2.00	*	*
G16	20	0.00	*	*
G36	116	0.00	*	*
G64	280	0.36	*	*
G100	478	1.05	*	*
R20	47402	0.84	*	*
R30	54551	0.00	*	*
R40	89208	2.23	*	*
R50	97935	0.28	*	*
Totales	-	10.98	*	*

