Metodologias de Planeamento e Escalonamento

Nurse Rostering Problems

Ricardo José Moreira Pinho ei09045 Vitor João Ferreira Semeano Figueira ei09054

Índice

- Problema
 - Descrição
 - Restrições
 - Estrutura de dados
- Resolução do Problema
 - Descrição
 - Solução Inicial
 - Tabu Search
 - Memetic Algorithm
 - Switch
- Análise de dados

O problema

- Consiste em gerar um horário de trabalho para as enfermeiras de um hospital
- Cada enfermeira tem associada a si um número de soft constraints que quanto possível têm de ser cumpridas.
- O hospital também tem um conjunto de hard constraints que têm de ser obrigatoriamente cumpridas.
- Gerar um horário para cada enfermeiro que respeite o maior número de soft constraints

A Nossa Solução

Restrições

Existem dois tipos de Restrições:

Soft Constraints

Hard Constraints

Hard Constraints

São restrições que têm de ser sempre cumpridas:

- Todas as vagas de cada turno de cada especialidade têm que ser preenchidas por enfermeiros.
- Nenhum enfermeiro pode ser alocado duas vezes no mesmo turno.
- Cada especialidade só pode ver as suas vagas preenchidas por enfermeiros especializados na mesma.

Soft Constraints

São restrições que não são necessariamente obrigatórias para a geração de um novo horário:

- Número máximo de dias consecutivos.
- Número mínimo de dias consecutivos.
- Número de dias livres.
- Dia livre depois de fazer turno da noite.
- Número máximo de turnos por dia.
- Número máximo de turnos por semana.

Estrutura de dados

Existe duas estruturas criadas:

Base de dados

Horário

Base de dados

Permite organizar todas as informações relacionadas com um hospital e as suas especialidades e pessoal:

- Cada hospital tem um conjunto de especialidades
- Cada hospital tem um conjunto de enfermeiras
- Cada enfermeira está associada a pelo menos uma e única especialidade
- Cada enfermeira tem um conjunto de restrições que podem ser aplicadas ou não

Horário

O horário serve para representar as alocações efetuadas pelos algoritmos usados:

- Cada horário é representado pelos dias da semana (segunda-feira a domingo)
- Cada dia da semana tem três turnos (manhã,tarde e noite)
- Cada turno tem de ter o número exato de alocações pretendidas pelo hospital por enfermeiros todos diferentes e com a mesma especialidade.
- Cada horário corresponde unicamente a uma especialidade.
- Para N especialidades existe N horários.

Algoritmos

Resolução do problema

A resolução consiste em duas parte:

- a. Solução inicial
 - Geração Aleatória
- b. Optimização da solução inicial

Optimização da solução inicial

Foram implementados três algoritmos de optimização:

- Hybrid Tabu Search
- Memetic Algorithm
- Switch

Hybrid Tabu Search

ObjectFunction

 Avalia a solução de acordo com as restrições cumpridas.

Moves

- Troca os turnos de dois enfermeiros ou substitui enfermeiros
- Cada Move tem um HashCode

Move Manager

Verifica quais os Moves possíveis

Solution

 Estrutura que contem uma Especialidade e o seu valor

Hybrid Tabu Search

Memetic Algorithm

Local Search

 Procura na vizinhança, feita por movimentos aleatórios, guardando os melhores

Genetic Algorithm

- Elitism
- TournamentSelection
- Crossover
- Mutation

Memetic Algorithm

Switch

Hybrid Tabu Search + Memetic Algorithm

Análise de dados

	Spec 1	Spec 2	Spec 3	Spec 4	Spec 5	Spec 6	Spec 7	\bar{x}	RunTime(s)
TS1	297	87	209	92	170	256	84	170.3	7.2
Mem1	262	90	209	87	159	251	84	163.1	4.13
Switch1	302	97	209	92	161	256	84	171.5	8.9
TS2	315	105	209	92	178	256	84	176.9	17.8
Mem2	289	100	209	84	157	251	84	167.7	13.3
Switch2	309	103	209	92	178	256	84	175.9	22.5
TS3	317	100	209	92	178	256	84	176.6	36.5
Mem3	287	95	209	92	157	251	84	167.9	29.4
Switch3	325	103	209	92	173	256	84	177.4	48.2
TS4	320	108	209	92	178	256	84	178.1	71.2
Mem4	287	100	209	92	160	251	84	169.0	63.75
Switch4	320	108	209	92	181	256	84	178.6	96.3

Referências

- E. K. Burke, P. Causmaecker, G. V. Berghe: Novel Metaheuristic Approaches to Nurse Rostering Problems in Belgian Hospitals. CHAPMAN& HALL/CRC,2004.
- G. V. Berghe: Novel Metaheuristic Approaches to Nurse Rostering Problems in Belgian Hospitals. 2003.
- E. K. Burke, P. Causmaecker, P. Cowling G. V. Berghe: A Memetic Approach to the Nurse Rostering Problem. Applied Intelligence 15, 199-214,2001.

Dúvidas