Midterm Correction

Jackie (Jie Ji)

1. This question is about atomic spectra and energy levels.

Diagram 1 below shows part of the emission line spectrum of atomic hydrogen. The wavelengths of the principal lines in the visible region of the spectrum are shown.

Diagram 2 shows some of the principal energy levels of atomic hydrogen.

Diagram 2

← wavelength

-13.6

(a) Name the spectral series shown in diagram 1.

Bolmer Series (1)

(b) Show, by calculation, that the energy of a photon of red light of wavelength 656 nm is 1.9 eV.

$$E = \frac{hc}{\lambda} = \frac{1.24 * 10^6 evm}{6.56 * 10^{-7}m} = 1.89 ev \approx 1.9 ev$$
(3)

(b) On diagram 2, draw arrows to represent

(i) the electron transition that gives rise to the red line (label this arrow R). (1)

(ii) a possible electron transition that gives rise to the blue line (label this arrow B).

$$E = \frac{ch}{\lambda} = \frac{1.24*10^{-6}}{4.86*10^{-7}} = 2.55 ev \tag{1}$$
 (Total 6 marks)

2. This question is about the radioactive decay of potassium-40.

A nucleus of the nuclide $^{40}_{19}$ K (potassium-40) decays to a stable nucleus of the nuclide $^{40}_{18}$ Ar (argon-40).

State the names of the **two** particles emitted in this decay. ${}^{40}_{19}K = {}^{40}_{18}Ar + {}^{0}_{1}e + v$ (a)

$${}_{0}^{2}K = {}_{18}^{40}Ar + {}_{1}^{0}e + v$$
 (2)

A sample of the isotope potassium-40 initially contains 1.5×10^{16} atoms. On average, 16 nuclei in this sample of the isotope undergo radioactive decay every minute.

Deduce that the decay constant for potassium-40 is
$$1.8 \times 10^{-17}$$
 s⁻¹.
$$\frac{0.2667}{1.5 * 10^{16}} = 1.778 * 10^{-17} s^{-1}$$
 (3)

Determine the half-life of potassium-40. (c)

$$\ln \frac{1}{2} = -1.8 * 10^{-17} s^{-1} t$$

$$A = Aoe^{-kt}$$

$$t = 3.85 * 10^{16}$$
(Total 6 marks)

3. This question is about particle physics.

A neutron can decay into a proton, an electron and an antineutrino according to the reaction

$$n \rightarrow p + e + v_e$$
.

Deduce the value of the electric charge of the antineutrino. $V_e = 8.4*10^4*931.5 mev = 7.8*10^{-1}~(1)$ (a)

$$V_{\rho} = 8.4 * 10^{4} * 931.5 mev = 7.8 * 10^{-1}$$
 (1)

(b) State whether a proton is a baryon or a lepton.

Proton is a baryon..... **(1)**

(b) State the name of the fundamental interaction (force) that is responsible for		State the name of the fundamental interaction (force) that is responsible for this decay.	this decay. (1)	
		Weak interaction		
	(c)	State how an antineutrino differs from a neutrino.		
		Neutrino has a left spin-direction while Antineutrino has a right spin-direction. (Total 4 man	(1) rks)	
4.	Nucl	ear binding energy and nuclear decay		
	(a)	State what is meant by a <i>nucleon</i> , giving an example of two nucleons.		
		Nucleons are particles that made of the nucleus, For example, protons and neutrons.	(2)	
	(b)	Explain what a nucleon is made of and what force holds it together. Include a description of the exchange particle that mediates the interaction between nucleons.		
		Nucleons are made of protons and neutrons and gluon holds it together.		
		Gluon is a kind of force interaction that stick these particles together like glue.	(2)	
	(c)	Define what is meant by the <i>mass defect</i> of a nucleus.		
		Mass defect is happening in decay process. Some mass is lost during the process.	(1)	
	(c)	Define what is meant by the <i>binding energy</i> of a nucleus.		
		Binding energy is the energy it used during the decay process.	(1)	

(In this part of the exam I got them all right, so no corrections have to be made.)

The graph below shows the variation with nucleon (mass) number of the binding energy per nucleon.

(0)	ese the graph to explain why energy can be released in both the rission and the rusion	
	processes.	
		(3)
(c)	Use the graph to explain why there is an abundance of iron (Fe) in the universe.	(-)

(2)

(d)	A sample of carbon-11 has an initial mass of 4.0×10^{-15} kg. Carbon-11 has a half-life of approximately 20 minutes. Calculate the mass of carbon-11 remaining after one hour has elapsed.
	(2)
(e)	Uranium-238, $^{238}_{92}$ U, undergoes α -decay to form an isotope of thorium. Write down the nuclear equation for this decay.
	(2) (Total 11 marks)
	(Total II marks)
This	question is about a proton.
The	proton is made out of three quarks.
(a)	Explain why the three quarks in the proton do not violate the Pauli exclusion principle.
	Because the three quarks in the proton don't have the same location, and two of the quarks are spinning upwards, having a different spin-direction from the other quark.
	(2)
(b)	Quarks have spin $\frac{1}{2}$. Explain how it is possible for the proton to also have spin $\frac{1}{2}$.
	The three quarks connect to each other, and then have spin1/2 in the same direction. According to that, proton also has a spin1/2.
	(2) (Total 4 marks)

5.

6. Which one of the following correctly gives the number of electrons, protons and neutrons in a neutral atom of the nuclide $^{65}_{29}$ Cu?

	Number of electrons	Number of protons	Number of neutrons
A.	65	29	36
B.	36	36	29
C.	29	29	65
D.	29	29	36

(1)

- 7. The unified mass unit is defined as
 - A. the mass of one neutral atom of $^{12}_{\ 6}$ C.
 - B. $\frac{1}{12}$ of the mass of one neutral atom of ${}^{12}_{6}$ C.
 - C. $\frac{1}{6}$ of the mass of one neutral atom of ${}^{12}_{6}$ C.
 - D. the mass of the nucleus of ${}^{12}_{6}$ C.

(1)

- **8.** Which of the following provides evidence for the existence of atomic energy levels?
 - A. The absorption line spectra of gases
 - B. The existence of isotopes of elements
 - C. Energy release during fission reactions
 - D. The scattering of α -particles by a thin metal film

(1)