# Multimodal Al

JJ Liu

Senior Principal Research Manager Microsoft



### Collaborators



Lindsey Li



Yen-Chun Chen



Zhe Gan



Yu Cheng



Jize Cao



Licheng Yu



Jingzhou Liu



Wenhu Chen



Yandong Li



Chen Zhu



Ahmed EI Kholy



Faisal Ahmed



Self-supervised Learning for Multimodal Pre-training

AI Explainability and Interpretability

High-Resolution Image Synthesis

Large-scale Adversarial
Training for Vision+Language

Vision-and-Language Inference



### Self-supervised Learning for Multimodal Pre-training

UNITER: Universial Image-Text Representation

### Self-Supervised Learning for Computer Vision

#### **Image Colorization**



[Zhang et al. ECCV 2016]

#### Jigsaw puzzles



[Noroozi et al. ECCV 2016]

#### **Image Inpainting**





[Pathak et al. CVPR 2016]

#### **Relative Location Prediction**



[Doersch et al. ICCV 2015]

### Self-Supervised Learning for NLP

#### **Language Understanding**



#### **Language Generation**





### Self-Supervised Learning for Vision+Language



### Landscape



### UNITER: Universial Image-Text Representations



### Pre-training Tasks: MLM, ITM & WRA

#### **Masked Language Modeling (MLM)**

$$\mathcal{L}_{\text{MLM}}(\theta) = -E_{(\mathbf{w}, \mathbf{v}) \sim D} \log P_{\theta}(\mathbf{w}_{\mathbf{m}} | \mathbf{w}_{\backslash \mathbf{m}}, \mathbf{v})$$



#### **Image-Text Matching (ITM)**

$$\mathcal{L}_{\text{ITM}}(\theta) = -E_{(\mathbf{w}, \mathbf{v}) \sim D}[y \log s_{\theta}(\mathbf{w}, \mathbf{v}) + (1 - y) \log(1 - s_{\theta}(\mathbf{w}, \mathbf{v}))])$$



#### **Word Region Alignment (WRA)**

$$\mathcal{L}_{\text{WRA}}(\theta) = \mathcal{D}_{ot}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\mathbf{T} \in \Pi(\mathbf{a}, \mathbf{b})} \sum_{i=1}^{T} \sum_{j=1}^{K} \mathbf{T}_{ij} \cdot c(\mathbf{w}_i, \mathbf{v}_j)$$



### Pre-training Tasks: MRM







#### Loss Function of Masked Region Modeling (MRM)

$$\mathcal{L}_{MRM}(\theta) = E_{(\mathbf{w}, \mathbf{v}) \sim D} f_{\theta}(\mathbf{v_m} | \mathbf{v_{\backslash m}}, \mathbf{w})$$

#### 1) Masked Region Feature Regression (MRFR)

$$f_{\theta}(\mathbf{v_m}|\mathbf{v_{\setminus m}}, \mathbf{w}) = \sum_{i=1}^{M} \|h_{\theta}(\mathbf{v_m^{(i)}}) - r(\mathbf{v_m^{(i)}})\|_2^2$$

#### 2) Masked Region Classification (MRC)

$$f_{\theta}(\mathbf{v_m}|\mathbf{v_{\setminus m}},\mathbf{w}) = \sum_{i=1}^{M} CE(c(\mathbf{v_m}^{(i)}), g_{\theta}(\mathbf{v_m}^{(i)}))$$

#### 3) Masked Region Classification - KL Divergence (MRC-kl)

$$f_{\theta}(\mathbf{v_m}|\mathbf{v_{\setminus m}},\mathbf{w}) = \sum_{i=1}^{M} D_{KL}(\tilde{c}(\mathbf{v_m^{(i)}})||g_{\theta}(\mathbf{v_m^{(i)}}))|$$

### Downstream Tasks: VQA, VE, ITR, RE



## Visualization (Text-to-Image Attention)

UNITER learns local cross-modality alignment between regions and tokens



#### State-of-the-Art Results

 UNITER outperformed both task-specific and pre-trained SOTA models over nine V+L tasks (as of Sep 2019 until early 2020)

#### **Performance/Robustness**





#### Large-scale Adversarial Training for Vision+Language

VILLA: Vision-and-Language Large-scale Adversarial Training

## What's Adversarial Training?

Neural Networks are prone to label-preserving adversarial examples

Computer Vision:



+ 0.005 x



"airliner"



Natural Language Processing:

**Original:** What is the oncorhynchus also called? A: chum salmon **Changed:** What's the oncorhynchus

also called? A: keta

**Original:** How long is the Rhine? **A:** 1,230 km

**Changed:** How long is the Rhine?? **A:** more than 1,050,000

- What doesn't kill you makes you stronger!
  - Find adversarial examples that maximize the empirical risk
  - Train the model to predict correctly on adversarial examples



## Adversarial Training for Vision+Language

- Aggressive finetuning often falls into the overfitting trap in existing multimodal pre-training methods
- Adversarial training (e.g., FreeLB) has shown great success in improving large-scale NLP models via finetuning
- 1+1>2?

Multimodal Pre-training



**Adversarial Training** 

- How to enable adversarial training in pre-training stage?
- How to add perturbations to multiple modalities?
- How to design advanced adversarial algorithm for V+L?

### Recipe in VILLA

- Ingredient #1: Perturbations in the embedding space
- Ingredient #2: Enhanced adversarial training algorithm
- Ingredient #3: Adversarial pre-training + finetuning



## Perturbations in the Embedding Space

• Adversarial label-preserving examples should *preserve semantics* 

Original: He has a natural gift for writing scripts.

Adversarial: He has a natural talent for writing scripts.



Adversarial: He has a natural present for writing scripts. X

- Possible solutions
  - Use back-translation scores to filter out invalid adversaries: *Expensive*
  - Searching for semantically equivalent adversarial rules: *Heuristic*
- Our proposal: add perturbations to the embedding space directly, as the goal is end results of adversarial training

## Adversarial Training Algorithm

- Training objective:  $\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[ \mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \right]$ 
  - $\mathcal{L}_{std}(\theta)$ : Cross-entropy loss on clean data
  - $\mathcal{R}_{at}(\theta)$ : Cross-entropy loss on adversarial embeddings
  - $\mathcal{R}_{kl}(\theta)$ : KL-divergence loss for fine-grained adversarial regularization



### Results (VQA, VCR, NLVR2, SNLI-VE)

- Established new state of the art on all the tasks considered
- Gain: +0.85 on VQA, +2.9 on VCR, +1.49 on NLVR2, +0.64 on SNLI-VE

| Method                         | VÇ       | QA           |                   | VCR                |                    | NL           | $VR^2$       | SNL          | I-VE  |
|--------------------------------|----------|--------------|-------------------|--------------------|--------------------|--------------|--------------|--------------|-------|
| iviouio d                      | test-dev | test-std     | $Q \rightarrow A$ | $QA \rightarrow R$ | $Q \rightarrow AR$ | dev          | test-P       | val          | test  |
| ViLBERT                        | 70.55    | 70.92        | 72.42 (73.3)      | 74.47 (74.6)       | 54.04 (54.8)       | -            | -            | -            | -     |
| VisualBERT                     | 70.80    | 71.00        | 70.8 (71.6)       | 73.2 (73.2)        | 52.2 (52.4)        | 67.4         | 67.0         | -            | -     |
| LXMERT                         | 72.42    | 72.54        | -                 | -                  | -                  | 74.90        | 74.50        | -            | -     |
| Unicoder-VL                    | -        | -            | 72.6 (73.4)       | 74.5 (74.4)        | 54.4 (54.9)        | -            | -            | -            | -     |
| 12-in-1                        | 73.15    | -            | -                 | -                  | _                  | -            | 78.87        | -            | 76.95 |
| VL-BERT <sub>BASE</sub>        | 71.16    | -            | 73.8 (-)          | 74.4 (-)           | 55.2 (-)           | -            | -            | -            | -     |
| Oscar <sub>BASE</sub>          | 73.16    | 73.44        | -                 | -                  | -                  | 78.07        | 78.36        | -            | -     |
| <b>UNITER</b> <sub>BASE</sub>  | 72.70    | 72.91        | 74.56 (75.0)      | 77.03 (77.2)       | 57.76 (58.2)       | 77.18        | 77.85        | 78.59        | 78.28 |
| VILLA <sub>BASE</sub>          | 73.59    | <b>73.67</b> | 75.54 (76.4)      | 78.78 (79.1)       | 59.75 (60.6)       | <b>78.39</b> | <b>79.30</b> | <b>79.47</b> | 79.03 |
| VL-BERT <sub>LARGE</sub>       | 71.79    | 72.22        | 75.5 (75.8)       | 77.9 (78.4)        | 58.9 (59.7)        | -            | -            | -            | -     |
| Oscar <sub>LARGE</sub>         | 73.61    | 73.82        | -                 | -                  | -                  | 79.12        | 80.37        | -            | -     |
| <b>UNITER</b> <sub>LARGE</sub> | 73.82    | 74.02        | 77.22 (77.3)      | 80.49 (80.8)       | 62.59 (62.8)       | 79.12        | 79.98        | 79.39        | 79.38 |
| VILLA <sub>LARGE</sub>         | 74.69    | 74.87        | 78.45 (78.9)      | 82.57 (82.8)       | 65.18 (65.7)       | 79.76        | 81.47        | 80.18        | 80.02 |

<sup>(</sup>a) Results on VQA, VCR, NLVR<sup>2</sup>, and SNLI-VE.

## Results (ITR, RE)

• Gain: +1.52/+0.60 on Flickr30k IR & TR (R@1), and +0.99 on 3 RE datasets

| Method                   |       | RefCOCO+ |              |                  |           |           | RefCOCO |       |       |                  |           |              |
|--------------------------|-------|----------|--------------|------------------|-----------|-----------|---------|-------|-------|------------------|-----------|--------------|
|                          | val   | testA    | testB        | $\mathrm{val}^d$ | $testA^d$ | $testB^d$ | val     | testA | testB | $\mathrm{val}^d$ | $testA^d$ | $testB^d$    |
| ViLBERT                  | -     | -        | -            | 72.34            | 78.52     | 62.61     | -       | -     | -     | -                | -         | -            |
| VL-BERT <sub>BASE</sub>  | 79.88 | 82.40    | 75.01        | 71.60            | 77.72     | 60.99     | -       | -     | -     | -                | -         | -            |
| UNITER <sub>BASE</sub>   | 83.66 | 86.19    | 78.89        | 75.31            | 81.30     | 65.58     | 91.64   | 92.26 | 90.46 | 81.24            | 86.48     | 73.94        |
| $VILLA_{BASE}$           | 84.26 | 86.95    | <b>79.22</b> | 76.05            | 81.65     | 65.70     | 91.93   | 92.79 | 91.38 | 81.65            | 87.40     | <b>74.48</b> |
| VL-BERT <sub>LARGE</sub> | 80.31 | 83.62    | 75.45        | 72.59            | 78.57     | 62.30     | -       | -     | _     | -                | -         | -            |
| UNITER <sub>LARGE</sub>  | 84.25 | 86.34    | 79.75        | 75.90            | 81.45     | 66.70     | 91.84   | 92.65 | 91.19 | 81.41            | 87.04     | 74.17        |
| VILLA <sub>LARGE</sub>   | 84.40 | 86.22    | 80.00        | <b>76.17</b>     | 81.54     | 66.84     | 92.58   | 92.96 | 91.62 | 82.39            | 87.48     | <b>74.84</b> |

(b) Results on RefCOCO+ and RefCOCO. The superscript d denotes evaluation using detected proposals.

| Method                        |       | RefCOCOg |                  |              |              | lickr30k | IR    | Flickr30k TR |              |       |
|-------------------------------|-------|----------|------------------|--------------|--------------|----------|-------|--------------|--------------|-------|
|                               | val   | test     | $\mathrm{val}^d$ | $test^d$     | R@1          | R@5      | R@10  | R@1          | R@5          | R@10  |
| Vilbert                       | -     | -        | -                | -            | 58.20        | 84.90    | 91.52 | -            | -            | -     |
| Unicoder-VL                   | -     | -        | -                | -            | 71.50        | 90.90    | 94.90 | 86.20        | 96.30        | 99.00 |
| <b>UNITER</b> <sub>BASE</sub> | 86.52 | 86.52    | 74.31            | 74.51        | 72.52        | 92.36    | 96.08 | 85.90        | 97.10        | 98.80 |
| $VILLA_{BASE}$                | 88.13 | 88.03    | <b>75.90</b>     | <b>75.93</b> | 74.74        | 92.86    | 95.82 | 86.60        | <b>97.90</b> | 99.20 |
| UNITER <sub>LARGE</sub>       | 87.85 | 87.73    | 74.86            | 75.77        | 75.56        | 94.08    | 96.76 | 87.30        | 98.00        | 99.20 |
| $VILLA_{LARGE}$               | 88.42 | 88.97    | <b>76.18</b>     | <b>76.71</b> | <b>76.26</b> | 94.24    | 96.84 | 87.90        | 97.50        | 98.80 |

<sup>(</sup>c) Results on RefCOCOg and Flickr30k Image Retrieval (IR) and Text Retrieval (TR).

## Ablation Study and Generalization

• Both adversarial pre-training and finetuning contribute to performance boost

| Method          | VQA      |                   | VCR (val           | )                  | NLVR <sup>2</sup> | VE    | F     | lickr30k | IR    | RefC      | OCO       | Ave.  |
|-----------------|----------|-------------------|--------------------|--------------------|-------------------|-------|-------|----------|-------|-----------|-----------|-------|
|                 | test-dev | $Q \rightarrow A$ | $QA \rightarrow R$ | $Q \rightarrow AR$ | test-P            | test  | R@1   | R@5      | R@10  | $testA^d$ | $testB^d$ | 11,01 |
| UNITER (reimp.) | 72.70    | 74.24             | 76.93              | 57.31              | 77.85             | 78.28 | 72.52 | 92.36    | 96.08 | 86.48     | 73.94     | 78.06 |
| VILLA-pre       | 73.03    | 74.76             | 77.04              | 57.82              | 78.44             | 78.43 | 73.76 | 93.02    | 96.28 | 87.34     | 74.35     | 78.57 |
| VILLA-fine      | 73.29    | 75.18             | 78.29              | 59.08              | 78.84             | 78.86 | 73.46 | 92.98    | 96.26 | 87.17     | 74.31     | 78.88 |
| VILLA           | 73.59    | 75.54             | 78.78              | 59.75              | 79.30             | 79.03 | 74.74 | 92.86    | 95.82 | 87.40     | 74.48     | 79.21 |

+0.51 Pre-train +0.82 Finetune +1.15 Both

#### VILLA can be applied to any pre-trained V+L models

| Method          | VQA      |          | GC       | QA       | NL    | $VR^2$ | Meta-Ave.    |
|-----------------|----------|----------|----------|----------|-------|--------|--------------|
| 1,104104        | test-dev | test-std | test-dev | test-std | dev   | test-P | 1,1000 11,01 |
| LXMERT          | 72.42    | 72.54    | 60.00    | 60.33    | 74.95 | 74.45  | 69.12        |
| LXMERT (reimp.) | 72.50    | 72.52    | 59.92    | 60.28    | 74.72 | 74.75  | 69.12        |
| VILLA-fine      | 73.02    | 73.18    | 60.98    | 61.12    | 75.98 | 75.73  | 70.00        |



### A Closer Look at VQA





#### Al Explainability and Interpretability

VALUE: Vision-And-Language Understanding Evaluation

#### What Have Pretrained Models Learned?

- What is the correlation between multimodal fusion and network layers?
- Which modality plays a more important role?
- What *cross-modal knowledge* is encoded in pre-trained models?
- What intra-modal knowledge has been learned?
- What linguistic knowledge do pre-trained V+L models encode?





### VALUE: Vision-And-Language Understanding Evaluation

- Visual probing Linguistic probing
- Cross-modality probing





### Single-Stream vs. Two-Stream Architecture



- Models: UNITER (single-stream) vs. LXMERT (two-stream)
- Probing targets: 144 attention weight matrices (12 layers x 12 heads)
- Datasets: Visual Genome (for visual relations), Flickr30k (for visual coreference)
- Toolkit: SentEval (for linguistic probing)

## Take-home Message

- Deep to Profound: Deeper layers lead to more intertwined multimodal fusion
- Who Pulls More Strings: Textual modality is more dominant than image
- Winner Takes All: A subset of heads is specialized for cross-modal interaction
- Secret Liaison Revealed:
   Cross-modality fusion registers
   visual relations
- No Lost in Translation:
   Pre-trained V+L models encode rich linguistic knowledge







(b) Visual modality importance



High-Resolution Image Synthesis: BachGAN

Vision-and-Language Inference: VIOLIN

## BachGAN: Background Hallucination GAN

Task: Image Synthesis from Object Layout

Segmentation Map Input (Prior work)

Bounding Box Input (BachGAN)









Synthesized Results
(BachGAN vs.
Baselines)

























## BachGAN: Background Hallucination GAN

BachGAN outperforms baseline models in both quantitative and human evaluations



| Model          | Citys | capes | ADE20K |      |  |
|----------------|-------|-------|--------|------|--|
| Wiodei         | Acc   | FID   | Acc    | FID  |  |
| Layout2im [40] | -     | 99.1  | -      | -    |  |
| SPADE          | 57.6  | 86.7  | 55.3   | 59.4 |  |
| SPADE-SEG      | 60.2  | 81.2  | 60.9   | 57.2 |  |
| BachGAN-r      | 67.3  | 74.4  | 64.5   | 53.2 |  |
| BachGAN        | 70.4  | 73.3  | 66.8   | 49.8 |  |

Results on automatic metrics

| Dataset    | Ba   | chGAN | vs.  | Ba   | chGAN     | vs.  | BachGAN vs. |           |      |  |
|------------|------|-------|------|------|-----------|------|-------------|-----------|------|--|
| Dataset    |      | SPADE |      |      | SPADE-Seg |      |             | BachGAN-r |      |  |
|            | win  | loss  | tie  | win  | loss      | tie  | win         | loss      | tie  |  |
| Cityscapes | 85.5 | 3.4   | 11.1 | 71.7 | 12.4      | 15.9 | 61.6        | 24.1      | 14.3 |  |
| ADE20K     | 75.9 | 12.8  | 11.3 | 66.8 | 17.4      | 15.8 | 57.2        | 18.7      | 24.1 |  |

Results from human study

## VIOLIN: Video-and-Language Inference

- 95K video+statement pairs collected from 16K video clips (TV shows & movies clips)
- Each video is 35-second long on average, paired with 6 statements
- Each statement is either 'Entailment' or 'Contradiction' to the video

| Dataset                | Visual Domain | Source        | Subtitles | Inference | Task       | # images/videos | # samples |
|------------------------|---------------|---------------|-----------|-----------|------------|-----------------|-----------|
| Movie-QA [54]          | video         | movie         | ✓         | ×         | QA         | 6.8K            | 6.5K      |
| MovieFIB [44]          | video         | movie         | ×         | ×         | QA         | 118.5K          | 349K      |
| TVQA [35]              | video         | TV show       | ✓         | ×         | QA         | 21.8K           | 152.5K    |
| VCR [72]               | image         | movie         | ×         | ✓         | QA         | 110K            | 290K      |
| GQA [25]               | image         | indoor        | ×         | /         | QA         | 113K            | 22M       |
| SNLI-VE [61]           | image         | natural       | ×         | /         | Entailment | 31.8K           | 565.3K    |
| NLVR <sup>2</sup> [52] | image         | natural       | ×         | ✓         | Entailment | 127.5K          | 107.3K    |
| VIOLIN (ours)          | video         | TV show/movie | /         | <b>✓</b>  | Entailment | 15.9K           | 95.3K     |

## VIOLIN: Video-and-Language Inference



- Explicit Visual Understanding (54%): Visual recognition,
   Identifying character, Action Recognition
- Deeper Inference (46%): Inferring reasons/causal relations, Conversation reasoning, Social dynamics





Self-supervised Learning for Multimodal Pre-training: **UNITER** 

Al Explainability: VALUE

Large-scale Adversarial Training for Vision+Language: VILLA

Image Synthesis: BachGAN

Vision-and-Language Inference: VIOLIN





#### Recent Advances in Vision-and-Language Research **CVPR 2020 Tutorial**

#### **Visual Captioning**







yellow, green in green, green trees in the background photo taken during the day, red train car,

- Popular Topics: Advanced attentions, RL/GAN-based model training, Style diversity, Language richness, Evaluation
- Popular Tasks: Image/video captioning, Dense captioning, Storytelling

#### Visual QA/Grounding/Reasoning





Referring Expressions

- Popular Topics: Multimodal fusion, Advanced attentions, Use of relations, Neural modules, Language bias reduction
- Popular Tasks: VQA, GQA, VisDial, Ref-COCO, CLEVR, VCR, NLVR2

#### Text-to-image Synthesis





#### Popular Tasks:

- Text-to-image
- Layout-to-image
- Scene-graph-to-
- · Text-based image editing
- · Story visualization

#### SOTA Models:

- StackGAN
- AttnGAN ObjGAN

#### Self-supervised Learning



- Image+Text: VilBERT, LXMERT, Unicoder-VL, UNITER, etc.
- Video+Text: Video-BERT CRT UniViLM etc.



Microsoft Multimodal Al Group: <a href="http://aka.ms/mmai">http://aka.ms/mmai</a>