Оглавление

0.1	Определение предела функции одной переменной при $x \to a, x \to \infty$
0.2	Первый замечательный предел (вывод формулы)
0.3	Определение производной одной переменной
0.4	Вывод производной синуса, косинуса, x^2, x^3
0.5	Вывод формулы производной частного
0.6	Определение дифференциала функции (привести пример)
0.7	Формула Тейлора для произвольной функции одной переменной
0.8	Полный дифференциал функции двух переменных (определение + пример)
0.9	Необходимое и достаточное условие экстремума функции двух переменных

0.1 Определение предела функции одной переменной при $x \to a,$ $x \to \infty$

Рассмотрим функцию f(x) при $x \to a$. Вообще есть два определения, но на лекциях рассказывали про Коши, на экзамене видимо тоже будут спрашивать Коши, поэтому рассмотрю именно его.

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \ \forall x : |x - a| < \delta \Rightarrow |A - f(x)| < \varepsilon$$

Это значит, что какую бы маленькую ε окрестность по значениям мы ни взяли, мы всегда сможем выбрать такую δ окрестность по x, что значения функции от всех x внтури этой окрестности лежат в ε окрестности. Тогда A - предел.

Рассмотрим функцию при $x \to \infty$:

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists N > 0 \ \forall |x| > N : |f(x) - A| < \varepsilon$$

Для любой ε окрестности найдется такое число N, что значения функции от всех x, по модулю превосходящих это число, будут лежать ε .

0.2 Первый замечательный предел (вывод формулы)

Первый замечательныц предел:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Так как sin(x) - четная функция, то можно рассмотреть для положительных малых значений.

Пусть x - угол, тогда сравним площади фигур. Для $0 < x < \frac{\pi}{2}$ это верно. Тогда можно записать неравенство:

$$tg(x) = \frac{\sin(x)}{\cos(x)}$$

Разделим все на sin(x):

$$1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

Возьмем обратное от каждого:

$$cos(x) < \frac{sin(x)}{x} < 1$$

Так как cos(x)=1 при $x\to 0$, то $\frac{sin(x)}{x}$ оказывается зажат (теорема о двух милиционерах) при $x\to 0$ между 1 и 1, значит

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

0.3 Определение производной одной переменной

Пусть функция определена в некторой окрестности точки x_0 , тогда производная функии в точке x_0 - это предел, если он существует:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

0.4 Вывод производной синуса, косинуса, x^2, x^3

По определению

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x + \Delta) - f(x)}{\Delta}$$

Тогда для синуса:

$$sin'(x) = \lim_{\Delta \to 0} \frac{sin(x + \Delta) - sin(x)}{\Delta} = \lim_{\Delta \to 0} \frac{sin(x)cos(\Delta) + cos(x)sin(\Delta) - sin(x)}{\Delta}$$

При $\Delta \to 0$: $cos(\Delta) = 1$, $sin(\Delta) = 0$ значит числитель равен:

$$sin(x) + cos(x)sin(\Delta) - sin(x) = cos(x)sin(\Delta)$$

По первому замечательному пределу

$$\lim_{\Delta \to 0} \frac{\cos(x)\sin(\Delta)}{\Delta} = \cos(x)$$

Для косинсуса:

$$\cos'(x) = \lim_{\Delta \to 0} \frac{\cos(x + \Delta) - \cos(x)}{\Delta} = \lim_{\Delta \to 0} \frac{\cos(x)\cos(\Delta) - \sin(x)\sin(\Delta) - \cos(x)}{\Delta}$$

Представим это в виде суммы двух дробей:

$$\lim_{\Delta \to 0} \frac{\cos(x)\cos(\Delta) - \cos(x)}{\Delta} + \frac{-\sin(x)\sin(\Delta)}{\Delta}$$

При $\Delta \to 0$: $cos(\Delta) = 1$, $sin(\Delta) = 0$, значит числитель первой дроби равен 0, а вторая дробь по первому замечательному пределу равна -sin(x).

Для x^2

$$(x^2)' = \lim_{\Delta \to 0} \frac{(x+\Delta)^2 - x^2}{\Delta} = \lim_{\Delta \to 0} \frac{2x\Delta + \Delta^2}{\Delta} = \lim_{\Delta \to 0} 2x + \Delta = 2x$$

Для x^3 :

$$(x^3)^{'} = \lim_{\Delta \to 0} \frac{(x+\Delta)^3 - x^2}{\Delta} = \lim_{\Delta \to 0} \frac{3x^2\Delta + 3x\Delta^2 + \Delta^3}{\Delta} = \lim_{\Delta \to 0} 3x^2 + 3x\Delta + \Delta^2 = 3x^2$$

0.5 Вывод формулы производной частного

$$\left(\frac{u}{v}\right)' = \lim_{\Delta \to 0} \frac{\frac{u(x+\Delta)}{v(x+\Delta)} - \frac{u(x)}{v(x)}}{\Delta} = \lim_{\Delta \to 0} \frac{u(x+\Delta)v(x) - v(x+\Delta)u(x)}{v(x)v(x+\Delta)\Delta}$$

Добавим и вычтем и из знаменателя u(x)v(x), тогда там образуются две производные, а снизу остнется знаменатель в квадрате:

$$\begin{split} \lim_{\Delta \to 0} \frac{u(x+\Delta)v(x) - u(x)v(x) - v(x+\Delta)u(x) + u(x)v(x)}{v(x)v(x+\Delta)\Delta} &= \\ &= \lim_{\Delta \to 0} \frac{u(x)\frac{du}{dx} - v(x)\frac{dv}{dx}}{v(x)v(x+\Delta)} &= \frac{u^{'}v - uv^{'}}{v^{2}} \end{split}$$

0.6 Определение дифференциала функции (привести пример)

Дифференциал функции в некоторой точке x_0 - линейная часть приращения функции. Обозначается:

$$df(x) = f'(x)dx$$

Примеры: Найти дифференциал фунции x^2 :

$$d(x^2) = f^{'}(x^2)dx = 2xdx$$

Найти дифференцаил функции ln(x):

$$d(\ln(x)) = f'(\ln(x))dx = \frac{dx}{x}$$

0.7 Формула Тейлора для произвольной функции одной переменной

Если функция f(x) имеет n+1 производную на отрезке, то ее можно записать в виде многочлена $P_n(x)$ степени не выше n, значение которого в точке a равняется значению функции в этой точке.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-x_{0})^{n}), x \to x_{0}$$

Остаточный член в форме Пеано: $o((x-x_0)^n), x \to x_0$

0.8 Полный дифференциал функции двух переменных (определение + пример)

Полный дифференцал функции:

$$dz = z_{x}^{'} dx + z_{y}^{'} dy$$

Найти полный дифференциал функции $z=x^2+y^3$:

$$dz = z_{x}^{'}dx + z_{y}^{'}dy$$

$$z_{x}^{'} = 2x, z_{y}^{'} = 3y^{2}$$

$$dz = 2xdx + 3y^2dy$$

0.9 Необходимое и достаточное условие экстремума функции двух переменных

Теорема о необходимом условии экстремума функции двух переменных

Если функция z = f(x,y) достигает экстремума при $x = x_0, y = y_0$ то каждая частная производная первого порядка от z или обращается в ноль при этих значениях аргументов, или не существует.

Теорема о достаточном условии экстремума функции двух переменных

Пусть в некоторой области, содержащей точку $M_0(x_0,y_0)$ функция имеет непрерывные частные производные до третьего порядка включительно. Пусть, кроме того, точка $M_0(x_0,y_0)$ является критической точкой функции f(x,y), т.е.

$$\begin{cases} f_x'|_{M_0} = 0\\ f_y'|_{M_0} = 0 \end{cases}$$

Составим такую матрицу:

$$\Delta = \begin{vmatrix} f_{xx}^{"} & f_{xy}^{"} \\ f_{xy}^{"} & f_{yy}^{"} \end{vmatrix}$$

Тогда при:

- 1. $\Delta > 0$ и $f_{xx}^{"} < 0$ имеет максимум
- 2. $\Delta > 0$ и $f_{xx}^{''} > 0$ имеет минимум
- 3. $\Delta < 0$ не имеет экстремума
- 4. Если $\Delta = 0$, то экстремум может быть, а может и не быть (требуется дополнительное исследование).