1.

Let $f: A \to X$ and $g: B \to X$ be two objects in the slice category \mathcal{C}/X . Their product $f \times g$ is a map $P \to X$ with two projection $\pi_1: f \times g \to f$, $\pi_2: f \times g \to g$ are indeed maps $P \to A$ and $P \to B$ with $g \circ \pi_2 = f \circ \pi_1$. By definition of product, for any object Z with $z_1: Z \to A$, $z_2: Z \to B$ satisfying $f \circ z_1 = g \circ z_2$, we have a unique map $Z \to P$. However, this property is the definition of pullback, concluding that P satisfies the definition of pullback. Since pullback is unique, they coincide.

2.

- (a) (\Longrightarrow) Let $f,g:Z\to M$ be arrows satisfying $m\circ f=m\circ g$. Since m is monic, f=g and therefore, the arrow $Z\to M$ is unique, concluding that M is a pullback. (\Longleftrightarrow) Suppose M is a pullback and $m\circ f=m\circ g$. Since M is a pullback, there is a unique $h:Z\to M$ with $1_M\circ h=f$ and $1_M\circ h=g$, concluding that f=g. Thus m is monic.
- (b) We can make a cube

Each faces are pullback squares, concluding that the back side is also a pullback. Now when considering a pullback functor f^* , we get $(A \times_X B \to X) \mapsto (A \times_X B \times_Y Y \to Y)$ and hence it preserves the pullback.

(c) Suppose m is monic. Then by (a), the square

$$M \xrightarrow{1_{M}} M$$

$$\downarrow 1_{M} \qquad \downarrow m$$

$$M \xrightarrow{m} A$$

is a pullback square. By (b), we have another pullback square

$$M' \longrightarrow M'$$

$$\downarrow \qquad \qquad \downarrow^{m'}$$

$$M' \xrightarrow{m'} A'$$

Again by (a), m' is a mono.

3.

Consider a diagram

$$Z \xrightarrow{h} M' \xrightarrow{f'} M .$$

$$\downarrow^{m'} \qquad \downarrow^{m}$$

$$A' \xrightarrow{f} A$$

Suppose m'h = m'k. Then fm'h = fm'k and by definition of pullback, mf'h = mf'k. Since m is monic, we have f'h = f'k. We have mf'h = fm'h and hence again by the definition of pullback, there is a unique $q: Z \to M'$ satisfying fm'q = mf'q. But since h, k both satisfy the property, we can conclude that q = h = k. Thus m' is monic.

4.

 (\Longrightarrow) If $M\subseteq N$, then there is a mono $s:M\to N$ such that ns=m. Suppose $z\in_A M$. Then there is $f:Z\to M$ such that z=mf=nsf. Therefore, $fs:Z\to N$ satisfies the property, concluding that $z\in_A N$. (\Longleftrightarrow) Suppose $z\in_A M\Rightarrow z\in_A N$ for all Z. By taking z=m, we can see that $m\in_A N$, meaning that there is $s:M\to N$ with m=ns. Since m and n are both monic, we conclude that s is monic, i.e., $M\subseteq N$.

5.

By 4, $M \subseteq N$ and $N \subseteq M$. Then there are two monos s, r with $s : M \hookrightarrow N$ and $r : N \hookrightarrow M$. Then $nsr = n \Rightarrow sr = 1_N$, $mrs = m \Rightarrow rs = 1_M$, concluding that $M \cong N$. Thus M = N.

6.

Firstly, by the property of pullback, fe = ge. Let $z: Z \to A$ be such that fz = gz. Take $z = z_1: Z \to A$ and $fz = z_2: Z \to B$. Then $\langle f, g \rangle z = \langle fz, fz \rangle$, concluding that $\Delta z_2 = \langle f, g \rangle z_1$. By UMP of a pullback, there is a unique $u: Z \to E$ making a commutative diagram. Thus we conclude that e is an equalizer of f, g.

7.

Proposition 5.25

8.

(identity) For $A \in Ob(\mathcal{C})$, take $(A, 1_A)$.

(Associativity) Let $U \subseteq A, V \subseteq B, W \subseteq C$. Consider a map

The map $h \circ (g \circ f)$ is a pair $(|h \circ (g \circ f)|, (|h|^*(W)) = (|h \circ (g \circ f)|, (U \times_B V) \times_C W) = (|(h \circ g) \circ f|, U \times_B (V \times_C W)) = (|(h \circ g) \circ f|, |f|^*(|g|^*W) = (h \circ g) \circ f$. Thus it is associative, concluding that $\mathbf{Par}(\mathcal{C})$ is a category.

9.

Define $\lim_{\stackrel{\longleftarrow}{J}}: \mathbf{Diagrams}(\mathbf{J},\mathbf{C}) \to \mathbf{C}$ by $\lim_{\stackrel{\longleftarrow}{J}} F = \lim_{\stackrel{\longleftarrow}{L}} F$ and $\lim_{\stackrel{\longleftarrow}{J}} (\theta: F \to G) = \lim_{\stackrel{\longleftarrow}{L}} F \to \lim_{\stackrel{\longleftarrow}{L}} G$ by $\gamma_i \lim_{\stackrel{\longleftarrow}{J}} \theta = \theta_i \beta_i$ where $\beta_i: \lim_{\stackrel{\longleftarrow}{L}} F \to F_i$ and $\gamma_i: \lim_{\stackrel{\longleftarrow}{L}} G \to G_i$ are product maps. Then $\lim_{\stackrel{\longleftarrow}{J}} 1_F = 1_{\lim_{\stackrel{\longleftarrow}{L}} F}$ since for all i, $1_{F_i}\beta_i = \beta_i \lim_{\stackrel{\longleftarrow}{J}} \theta$. Also, from the definition of arrow, we have $\lim_{\stackrel{\longleftarrow}{J}} (\phi \circ \theta) = \lim_{\stackrel{\longleftarrow}{J}} \phi \circ \lim_{\stackrel{\longleftarrow}{J}} \theta$ where $\phi: G \to H$.

Now consider \mathbf{Sets}^I for a set I. It is a set of functions $A:I\to\mathbf{Sets}$. As above, we can define a category of such objects and define a product functor

$$\prod_{i \in I} : \mathbf{Sets}^I \to \mathbf{Sets}$$

defined by $A \to \prod_{i \in I} A_i$.

10.

(a) Pushout: Given any arrows f, g with dom(f) = dom(g) = C, the pushout of f and g consists of arrows $c_1: A \to Q$, $c_2: B \to Q$ such that $c_1f = c_2g$ and the universal property as follows: Given any $z_1: A \to Z$, $z_2: B \to Z$ with $z_1f = z_2g$, there is a unique $v: Q \to Z$ with $z_1 = vc_1$ and $z_2 = vc_2$.

(b) skip

11.

Note that q is a coequalizer of $r_1, r_2 : R \to X$. By using the fact that $\mathcal{P}(X) \cong 2^X$, we define $\mathcal{P}q : 2^Q \to 2^X$ by $\mathcal{P}q([a])(x) = [a]([x])$ and $\mathcal{P}r_i : 2^X \to 2^R$ by $\mathcal{P}r_1(a)(x,y) = a(x)$ and $\mathcal{P}r_2(a)(x,y) = a(y)$ where $a : X \to 2$ and $[a] : Q \to 2$ is induced from a. Then it satisfies the diagram

$$\mathcal{P}Q \xrightarrow{\mathcal{P}q} \mathcal{P}X \xrightarrow{\mathcal{P}r_i} \mathcal{P}R.$$

Suppose $z: Z \to \mathcal{P}X$ satisfies $\mathcal{P}r_1z = \mathcal{P}r_2z$. Then for all $(x,y) \in R$, a(x) = a(y) where a is in the image of z. Since R is an equivalence relation, for all $x \in [x]$, a(x) has the same value, meaning that there is a unique map $Z \to \mathcal{P}Q$.

12.

limit: Consider a cone $\zeta_n: Z \to n$. If n = 0, then ζ_0 is zero map and for all n, ζ_n is factored through ζ_0 , concluding that ζ_n is zero. The limit is a terminal object in the category of cone, which is object 0 with inclusion $0 \hookrightarrow n$.

colimit: Consider a co-cone $\psi_n : n \to Y$. By the property, ψ_n is a restriction of ψ_{n+m} and since Y is also a poset, $\psi_n(m) \leq \psi_n(n)$ for m < n, concluding that ψ_n is monotone. Hence we conclude that a map $\theta : \mathbb{N} \to Y$ uniquely defines a cone. Thus ω with inclusion $n \subseteq \omega$ defines the colimit.

13.

- (a) Suppose M_k, N_k are abelian groups. Note that $M_0 \to \cdots \to M_k \to \cdots$, $N_0 \leftarrow \cdots \leftarrow N_k \leftarrow \cdots$. Then we can see that $\lim_{\stackrel{\longleftarrow}{\leftarrow}} M_k = M_0$. $\lim_{\stackrel{\longleftarrow}{\rightarrow}} M_k$ is indeed the direct limit of M_k , which is $\bigoplus_k M_k / \sim$ where $m_i \sim \mu_{ik}(m_i)$ for $m_i \in M_i, \mu_{ik} : M_i \to M_k$. For $N_k, \lim_{\stackrel{\longleftarrow}{\rightarrow}} N_k = N_0$ and $\lim_{\stackrel{\longleftarrow}{\leftarrow}} N_k$ is the inverse limit of abelian groups: $\mathcal{S} = \{g \in \prod N_k \mid \text{if } i \leq j, \text{ then } \nu_{ji}(g_j) = g_i\}$.
- (b) All elements of colimit of M_k and limit of N_k may have an elemnt of infinite order.(right????)