Grundlagen der Rechnerarchitektur Übungsblatt 6 Gruppe 121

Jonas Otto Dominik Authaler

7. Februar 2020

Aufgabe 1

a) Wahrheitstafel:

Tag	Tag - 1 binär $(x_3x_2x_1x_0)$	Angeschaltete Äste
1	0000	1, 2, 3, 4, 5, 6, 7
2	0001	2, 4, 6
3	0010	2, 4, 6
4	0011	1, 2, 4, 6
5	0100	2, 4, 6
6	0101	1, 2, 3, 4, 5, 6
7	0110	1, 2, 3, 4, 5, 6
8	0111	1, 2, 3, 4, 5, 6, 7
9	1000	1, 3, 5
10	1001	1, 2, 3, 4, 5, 6
11	1010	1, 3, 4, 5, 6
12	1011	1, 3, 5
13	1100	1, 3, 5
14	1101	1, 2, 3, 4, 5, 6
15	1110	1, 3, 5, 7
16	1111	1, 2, 3, 5

Abbildung 1: Wahrheitstabelle zur Ansteuerung der Segmente

b) Kanonische Normalformen:

$$\begin{split} f_{1,DKNF} = & \overline{x_0 x_1 x_2 x_3} + x_0 x_1 \overline{x_2 x_3} + x_0 \overline{x_1} x_2 \overline{x_3} + \overline{x_0} x_1 x_2 \overline{x_3} + x_0 x_1 x_2 \overline{x_3} + \overline{x_0} x_1 \overline{x_2} x_3 \\ & + x_0 \overline{x_1 x_2} x_3 + \overline{x_0} x_1 \overline{x_2} x_3 + x_0 x_1 \overline{x_2} x_3 + \overline{x_0} x_1 x_2 x$$

$$f_{2,KKNF} = (x_0 + x_1 + x_2 + \overline{x_3}) \cdot (x_0 + \overline{x_1} + x_2 + \overline{x_3}) \cdot (\overline{x_0} + \overline{x_1} + x_2 + \overline{x_3}) \cdot (x_0 + x_1 + \overline{x_2} + \overline{x_3}) \cdot (x_0 + \overline{x_1} + \overline{x_2} + \overline{x_3})$$

c) Algebraische Minimierung:

$$\begin{split} f_{1,DNF} &= f_{1,DKNF} \\ &= \overline{x_0 x_1 x_2 x_3} + x_0 x_1 \overline{x_2 x_3} + x_0 \overline{x_1} x_2 \overline{x_3} + \overline{x_0} x_1 x_2 \overline{x_3} + x_0 x_1 x_2 \overline{x_3} + \overline{x_0} x_1 x_2 x_3 + x_0 \overline{x_1} x_2 x_3 + x_0 x_1 x_2 x_3 + x_0 x_1 x_2 x_3 \\ &+ \overline{x_0} x_1 \overline{x_2} x_3 + x_0 x_1 \overline{x_2} x_3 + \overline{x_0} \overline{x_1} x_2 x_3 + \overline{x_0} x_1 x_2 x_3 + \overline{x_0} x_1 x_2 x_3 + x_0 x_1 x_2 x_3 \\ &\stackrel{P4,P6'}{=} \overline{x_0 x_1 x_2 x_3} + x_0 x_1 \overline{x_2} x_3 + x_0 \overline{x_1} x_2 \overline{x_3} + \overline{x_0} x_1 x_2 \overline{x_3} + x_0 x_1 x_2 \overline{x_3} + x_3 \\ &= \overline{x_0} \overline{x_1} \overline{x_2} + x_0 x_1 \overline{x_2} + x_0 \overline{x_1} x_2 + \overline{x_0} x_1 x_2 + x_3 \\ &= x_3 + x_2 (x_0 \overline{x_1} + \overline{x_0} x_1 + x_0 x_1) + \overline{x_2} (\overline{x_0} \overline{x_1} + x_0 x_1) \\ &\stackrel{P8}{=} x_3 + x_2 (x_1 + x_0) + \overline{x_2} (\overline{x_0} \overline{x_1} + x_0 x_1) \\ &f_{1,KNF} = f_{1,KKNF} \\ &= (x_0 + x_1 + x_2 + \overline{x_3}) \cdot (x_0 + \overline{x_1} + x_2 + \overline{x_3}) \cdot (\overline{x_0} + \overline{x_1} + x_2 + \overline{x_3}) \\ &\cdot (x_0 + x_1 + \overline{x_2} + \overline{x_3}) \cdot (x_0 + \overline{x_1} + x_2 + \overline{x_3}) \cdot (\overline{x_0} + \overline{x_1} + x_2 + \overline{x_3}) \\ &\stackrel{P4'}{=} \overline{x_3} + (x_0 + (x_1 + x_2)(x_0 + \overline{x_1} + x_2)(\overline{x_0} + \overline{x_1} + x_2)(x_0 + \overline{x_1} + \overline{x_2}) \\ &\stackrel{P4'}{=} \overline{x_3} + (x_0 + (x_1 + x_2)(\overline{x_1} + x_2)(\overline{x_1} + \overline{x_2})(\overline{x_1} + \overline{x_2}))(\overline{x_0} + \overline{x_1} + X_2) \\ &\stackrel{P5'}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P5'}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_3} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_0} + x_0(\overline{x_0} + \overline{x_1} + x_2) \\ &\stackrel{P6}{=} \overline{x_0} + x_0(\overline{x_0} + \overline{x_1} + x_0 x_2) \\ &\stackrel{P6}{=} \overline{x_0} + x_0(\overline{x_0} + \overline{x_1} + x_0 x_2) \\ &\stackrel{P6}{=} \overline{x_0} + x_0(\overline{x_0} + \overline{x$$

d) Karnaugh-Veitch:

i) minimale disjunkitve Normalform $f_{3,KV,DNF}$ für Segment 3:

	$\overline{x_0}$	x_0	x_0	$\overline{x_0}$	
$\overline{x_1}$	1	0	1	0	$\overline{x_3}$
$\overline{x_1}$	0	0	1	1	$\overline{x_3}$
x_1	1	1	1	1	x_3
$\overline{x_1}$	1	1	1	1	x_3
	$\overline{x_2}$	$\overline{x_2}$	x_2	x_2	

Abbildung 2: KV-Diagramm für Segment $3\,$

$$f_{3,KV,DNF} = x_3 + x_1 x_2 + x_0 x_2 + \overline{x_0 x_1 x_2} \tag{1}$$

ii) minimale konjunktive Normalform $f_{4,KV,KNF}$ für Segment 4:

	$\overline{x_0}$	x_0	$ x_0 $	$\overline{x_0}$	
$\overline{x_1}$	1	1	1	1	$\overline{x_3}$
$\overline{x_1}$	1	1	1	1	$\overline{x_3}$
$\overline{x_1}$	1	0	0	0	x_3
$\overline{x_1}$	0	1	1	0	x_3
	$\overline{x_2}$	$\overline{x_2}$	x_2	x_2	

Abbildung 3: KV-Diagramm für Segment 4

$$f_{3,KV,DNF} = (x_0 + \overline{x_2} + \overline{x_3}) \cdot (\overline{x_0} + \overline{x_1} + \overline{x_3}) \cdot (x_0 + x_1 + \overline{x_3}) \quad (2)$$

e) Quine McCluskey

Terme, welche nicht zur weiteren Minimierung genutzt werden konnten sind farblich hervorgehoben.

i) Segment 5:

$$\begin{split} f_{5,DKNF} = & \overline{x_0 x_1 x_2 x_3} + x_0 \overline{x_1} x_2 \overline{x_3} + \overline{x_0} x_1 x_2 \overline{x_3} + x_0 x_1 x_2 \overline{x_3} + \overline{x_0 x_1 x_2} x_3 \\ & + x_0 \overline{x_1} \overline{x_2} x_3 + \overline{x_0} x_1 \overline{x_2} x_3 + x_0 x_1 \overline{x_2} x_3 + \overline{x_0} \overline{x_1} x_2 x_3 \\ & + x_0 \overline{x_1} x_2 x_3 + \overline{x_0} x_1 x_2 x_3 + x_0 x_1 x_2 x_3 \end{split}$$

$$\begin{array}{l} Q_{4,4} = \{\overline{x_0x_1x_2x_3}\} \\ Q_{4,3} = \{\overline{x_0x_1x_2}x_3\} \\ Q_{4,2} = \{x_0\overline{x_1}x_2\overline{x_3}, \ \overline{x_0}x_1x_2\overline{x_3}, \ \overline{x_0}x_1\overline{x_2}x_3, \ x_0\overline{x_1}x_2x_3, \ \overline{x_0}x_1x_2x_3\} \\ Q_{4,1} = \{x_0x_1x_2\overline{x_3}, \ x_0x_1\overline{x_2}x_3, \ x_0\overline{x_1}x_2x_3, \ \overline{x_0}x_1x_2x_3\} \\ Q_{4,0} = \{x_0x_1x_2x_3\} \\ \overline{Q_{3,3}} = \{\overline{x_0x_1x_2}\} \\ Q_{3,2} = \{\overline{x_0x_2}x_3, \ \overline{x_1x_2}x_3, \ \overline{x_0x_1}x_3\} \\ Q_{3,1} = \{x_0x_2\overline{x_3}, \ x_0\overline{x_1}x_2, \ x_1x_2\overline{x_3}, \ \overline{x_0}x_1x_2, \ x_1\overline{x_2}x_3, \ \overline{x_0}x_1x_3, \ x_0\overline{x_1}x_3, \ \overline{x_1}x_2x_3, \ \overline{x_0}x_2x_3\} \\ \overline{Q_{3,0}} = \{x_0x_1x_2, \ x_0x_1x_3, \ x_0x_2x_3, \ x_1x_2x_3\} \\ \overline{Q_{2,2}} = \{\} \\ Q_{2,1} = \{\overline{x_0}x_3, \ \overline{x_2}x_3, \ \overline{x_1}x_3\} \\ \overline{Q_{2,0}} = \{x_0x_2, \ x_1x_2, \ x_1x_3, \ x_0x_3, \ x_2x_3\} \\ \overline{Q_{1,1}} = \{\} \\ Q_{1,0} = \{x_3\} \end{array}$$

$$f_{5,QMC} = \overline{x_0 x_1 x_2} + x_0 x_2 + x_1 x_2 + x_3$$

ii) Segment 6:

$$\begin{split} f_{6,DKNF} = & \overline{x_0x_1x_2x_3} + x_0\overline{x_1x_2x_3} + \overline{x_0}x_1\overline{x_2x_3} + x_0x_1\overline{x_2x_3} + \overline{x_0x_1}x_2\overline{x_3} \\ & + x_0\overline{x_1}x_2\overline{x_3} + \overline{x_0}x_1x_2\overline{x_3} + x_0x_1x_2\overline{x_3} + x_0\overline{x_1x_2}x_3 + \overline{x_0}x_1\overline{x_2}x_3 \\ & + x_0\overline{x_1}x_2x_3 \end{split}$$

```
\begin{array}{l} Q_{4,4} = \left\{ \overline{x_0x_1x_2x_3} \right\} \\ Q_{4,3} = \left\{ x_0\overline{x_1x_2x_3}, \ \overline{x_0x_1}\overline{x_2x_3}, \ \overline{x_0x_1}x_2\overline{x_3} \right\} \\ Q_{4,2} = \left\{ x_0x_1\overline{x_2x_3}, \ x_0\overline{x_1}x_2\overline{x_3}, \ \overline{x_0x_1x_2x_3}, \ \overline{x_0x_1x_2x_3}, \ \overline{x_0x_1x_2x_3} \right\} \\ Q_{4,1} = \left\{ x_0\overline{x_1}x_2x_3, \ x_0x_1x_2\overline{x_3} \right\} \\ Q_{4,0} = \left\{ \right\} \\ \overline{Q_{3,3}} = \left\{ \overline{x_1x_2x_3}, \ \overline{x_0x_2x_3}, \ \overline{x_0x_1x_3} \right\} \\ Q_{3,2} = \left\{ x_0\overline{x_2x_3}, \ x_0\overline{x_1x_3}, \ x_0\overline{x_1x_2}, \ x_1\overline{x_2x_3}, \ \overline{x_0x_1x_3}, \ \overline{x_0x_1x_2}, \ \overline{x_1x_2x_3}, \ \overline{x_0x_2x_3} \right\} \\ Q_{3,1} = \left\{ x_0x_1\overline{x_3}, \ x_0\overline{x_1}x_2, \ x_0x_2\overline{x_3}, \ x_1x_2\overline{x_3}, \ x_0\overline{x_1}x_3 \right\} \\ \overline{Q_{3,0}} = \left\{ \right\} \\ \overline{Q_{2,2}} = \left\{ \overline{x_2x_3}, \ \overline{x_1x_3}, \ \overline{x_0x_3} \right\} \\ Q_{2,1} = \left\{ x_0\overline{x_3}, \ x_0\overline{x_1}, \ x_1\overline{x_3}, \ x_2\overline{x_3} \right\} \\ \overline{Q_{2,0}} = \left\{ \right\} \\ \overline{Q_{1,1}} = \left\{ \overline{x_3} \right\} \\ Q_{1,0} = \left\{ \right\} \end{array}
```

$$f_{6,QMC} = \overline{x_0}x_1\overline{x_2} + x_0\overline{x_1} + \overline{x_3}$$

- f) f_1 Anzahl Transistoren KNF: $N=13\cdot 10+23\cdot 2+26=371$, Anzahl minimiert: $N_m=8+6\cdot 6+2\cdot 3=50$ \Longrightarrow Ersparnis von 86.5%.
 - f_2 Anzahl Transistoren KNF: $N=11\cdot 2+5\cdot 10+12=84,$ Anzahl minimiert: $N_m=2\cdot 2+2\cdot 6+8=24\implies$ Ersparnis von 71.4%.