Elementos Finitos I

Parcial I

Guía de Exámen

Federico A. Hojman 55143

${\bf \acute{I}ndice}$

1.	Inic	io						
2.	Info	ormación teórica						
	2.1.	Generalidades						
	2.2.	Cargas equivalentes						
		Rotación de elementos						
		2.3.1. Barras						
		2.3.2. Vigas planas						
		2.3.3. Viga 3D						
	2.4.	Simetría y antisimetría						
3.	Código							
	3.1.	Matriz DOF						
		Matriz de barras						
		Matriz de vigas						
		Viga + barra						
		Ciclo de resolución; vigas axiales						
		Tensiones						
1	Rev	risión del evamen						

1. Inicio

- Leer atentamente qué piden. No hacer código innecesario
- Verificar simetrías, siempre ponen alguna y simplifica mucho los ejercicios
- Definir los tipos de elemento apropiados (barras, vigas planas, vigas planas con desplazamientos axiales o vigas 3D)
- Si no corre el programa no es bueno pero hay que seguir programando.
 No perder el tiempo
- 1. Datos
- 2. Coordenas
- 3. Matriz de elementos, nNodes, nElements
- 4. Condiciones de borde
- 5. Cargas (si es posible)
- 6. Matriz DOF
- 7. Matriz global de zeros
- 8. Ensamble
- 9. Resolución de desplazamientos
- 10. Tensiones

2. Información teórica

2.1. Generalidades

- Linealidad: tode el método es lineal. Si multiplico cualquiera de las matrices por un coeficiente, el sistema responde haciendo lo mismo con las demás. Ej: Si duplico las cargas, se duplican los desplazamientos. Si duplico las rigideces, divido en ds los desplazamientos.
- Las tensiones se calculan siempre en el sistema local de los elementos
- Toda carga va sobre los nodos

2.2. Cargas equivalentes

able	D-1 Single element equiv	Positive nodal force conventions			
	f_{1y}	m_1	Loading case	f_{2y}	m_2
	$\frac{-P}{2}$	$\frac{-PL}{8}$	L/2 P L/2	$\frac{-P}{2}$	$\frac{PL}{8}$
	$\frac{-Pb^2(L+2a)}{L^3}$	$\frac{-Pab^2}{L^2}$	a	$\frac{-Pa^2(L+2b)}{L^3}$	$\frac{Pa^2b}{L^2}$
	-P	$-\alpha(1-\alpha)PL$	al P P al E	-P	$\alpha(1-\alpha)PL$
	$\frac{-wL}{2}$	$\frac{-wL^2}{12}$		$\frac{-wL}{2}$	$\frac{wL^2}{12}$
	$\frac{-7wL}{20}$	$\frac{-wL^2}{20}$	W L	$\frac{-3wL}{20}$	$\frac{wL^2}{30}$
	$\frac{-wL}{4}$	$\frac{-5wL^2}{96}$	The state of the s	$\frac{-wL}{4}$	$\frac{5wL^2}{96}$
	$\frac{-13wL}{32}$	$\frac{-11wL^2}{192}$	W L	$\frac{-3wL}{32}$	$\frac{5wL^2}{192}$
	$\frac{-wL}{3}$	$\frac{-wL^2}{15}$	w (parabolic loading)	$\frac{-wL}{3}$	$\frac{wL^2}{15}$
	$\frac{-M(a^2 + b^2 - 4ab - L^2)}{L^3}$	$\frac{Mb(2a-b)}{L^2}$	a) ^M b	$\frac{M(a^2 + b^2 - 4ab - L^2)}{L^3}$	$\frac{Ma(2b-a)}{L^2}$

Figura 2.1: Cargas nodales equivalentes

2.3. Rotación de elementos

$$[K_{global}] = [T]^T [K_{local}][T]$$
(2.1)

2.3.1. Barras

$$\frac{V_{12}}{||V_{12}||} = \{l_1 m_1\}; T = \begin{bmatrix} l_1 & m_1 & 0 & 0\\ 0 & 0 & l_1 & m_1 \end{bmatrix}$$
 (2.2)

2.3.2. Vigas planas

Si la tengo que rotar, tengo que ponerle la parte de barras también

$$\frac{V_{12}}{||V_{12}||} = \{l_1 m_1\}; \Lambda = \begin{bmatrix} l_1 & m_1 & 0 \\ -m_1 & l_1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (2.3)

$$T_{6\times 6} = \begin{bmatrix} \Lambda & 0\\ 0 & \Lambda \end{bmatrix} \tag{2.4}$$

2.3.3. Viga 3D

Lleva 3 versores directores. El primero es el vector director de la viga normalizado V_1 . Luego se sigue de la siguiente manera:

Definiendo un punto auxiliar, se fija el plano x-y de la viga y se propone un vector V_{Aux} que una al punto de origen de la viga y al auxiliar. Se tiene entonces que

$$v_1 = \frac{V_1}{||V_1||}; v_3 = \frac{V_1 \times V_{Aux}}{||V_1 \times V_{Aux}||}; v_2 = v_3 \times v_1$$
 (2.5)

Se acomodan estos vectores de forma tal que se obtenga una matriz de rotación T:

$$\Lambda = \begin{bmatrix} v1 \\ v2 \\ v3 \end{bmatrix}; T_{12 \times 12} = \begin{bmatrix} \Lambda & 0 & 0 & 0 \\ 0 & \Lambda & 0 & 0 \\ 0 & 0 & \Lambda & 0 \\ 0 & 0 & 0 & \Lambda \end{bmatrix}$$
 (2.6)

2.4. Simetría y antisimetría

La simetría restringe, en los nodos contenidos sobre el plano de simetría, los desplazamientos a través del plano y ambos giros perpendiculares. La antisimetría tiene el efecto inverso. Si hay simetría estructural sin simetría de

Figura 2.2: Movimientos permitidos

cargas, se puede resolver el caso simétrico y el antisimétrico y superponerlos, dado que el método es absolutamente lineal.

3. Código

3.1. Matriz DOF

```
DOF = reshape(1:1:(nNodesBeam)*dofxNode,dofxNode,[])';
```

3.2. Matriz de barras

```
barK = (E*A/L)*[1 -1;-1 1];
```

3.3. Matriz de vigas

```
beamK = (E*I/(L^3))*[ 12 6*L -12 6*L 6*L 4*L^2 - 6*L 2*L^2 -12 -6*L 12 -6*L 6*L 2*L^2 - 6*L 4*L^2];
```

3.4. Viga + barra

3.5. Ciclo de resolución; vigas axiales

```
for(e = 1:nElements)
    v = nodeCoordinates(elements(e,2),:)-nodeCoordinates(elements(e,1),:);
    L = norm(v);
    vectLong(e) = L;
    cosDir = v/L;
    lambda = [cosDir(1) cosDir(2) 0;-cosDir(2) cosDir(1) 0; 0 0 1];
    T = blkdiag(lambda,lambda);
```

```
vecT(:,:,e) = T;
    localK = zeros(6);
    beamK =
               (E*I/(L^3))*[ 12 6*L -12 6*L
                                4*L^2 -6*L 2*L^2
                          6*L
                               -6*L 12 -6*L
                         -12
                               2*L^2 -6*L 4*L^2];
                         6*L
    barK = (E*A/L)*[1 -1;-1 1];
    localK([2 3 5 6],[2 3 5 6]) = beamK;
    localK([1 4],[1 4]) = barK;
    dofs = [beamDOF(elements(e,1),:) beamDOF(elements(e,2),:)];
    globalK(dofs,dofs) =globalK(dofs,dofs)+ T'*localK*T;
end
redD = globalK(free,free)\load(free);
D = zeros(3*nNodesBeam,1);
D(free) = redD
3.6.
      Tensiones
%% Barras
```

```
sigma = zeros(nElements ,1);

for( e = 1:nElements)

    localD = D([DOF(elements(e,1),:) DOF(elements(e,2),:)]);
    localD = rotationVector(:,:,e)*localD;
    sigma(e) =( E/vectorLargos(e))*[-1 1]*localD;

end

    %% Vigas

for(e = 1:nElements)
```

```
L = vectorLongitudes(e);
B = [-(1/L) 1/L];
% Barras
barDisplacements = [barD(elements(e,1),:) barD(elements(e,2),:)]';
localBarDisplacements = barTvector(:,:,e)*barDisplacements;
sigmaBar(e) = E*B*localBarDisplacements;
%Vigas
beamDisp = [beamD(elements(e,1),:) beamD(elements(e,2),:)]';
localD = beamTvector(:,:,e)*beamDisp;
localBeamAx = localD([1 4]);
sigmaN = E*(1/L)*[-1 1]*localD([1 4]);
sigmaM = @(x) (E*h/2)*([(-6/L^2)+(12*x/L^3))
(-4/L)+(6*x/L^2)
((6/L^2)-(12*x)/L^3)
((-2/L)+(6*x/L^2)))'*localD([2 3 5 6]);
sigmaMax = sigmaN + sign(sigmaN)*max(max((abs([sigmaM(0) sigmaM(L)]))))
end
```

4. Revisión del examen

- Reshapes
- Reducción de la matriz global: K(free, free), no K(free)
- Matrices de rotación
- Verificar que K global no sea inversible
- Verificar sistema de unidades
- Verificar que haya suma en el ensamble de la matriz global (K(x,x) = K(x,x) + local)