

図 2.6: Kintex-7 FPGA 評価キッド (KC705)と FMC150。KC705 は、micro-USB や LAN、HDMI などのインターフェースが実装されている。また、FMC (Fpga Mezzanine Card)と呼ばれる拡張スロットがある。アナログ基板とはこの FMC で接続する。

図 2.7: FMC150 のブロック図と基板図。FMC150 は汎用通信機を対象として開発されているため、基板上でつくるクロックの他に、外部クロックを入力するポートやトリガーポートが実装されている。

第5章 試作基板 RHEA の評価

RHEA は従来のアナログ基板に対して三つの改善を行った。ひとつ目は広帯域化、ふたつ目は 消費電力の低減、そしてユーザビリティの向上である。本章ではこれらの評価について述べる。

- 5.1 消費電力の評価
- 5.2 クロックの簡素化の評価
- 5.3 帯域の評価

図 4.1 で示したように、RHEA には帯域を制限する LPF が存在しない。そのため、サンプリング周波数/2($100~\mathrm{MHz}$)付近まで DAC の信号強度が減衰しないことをオシロスコープを用いて確認する。

5.3.1 評価方法

信号強度の測定は、図 5.1 のようにして行う。デジタル基板上にある FPGA で MHz 帯の周波数をもつ正弦波と余弦波のデジタル信号を生成する。生成したデジタル信号は、FMC を介してアナログ基板上の DAC に送られ、DAC でデジタル信号をアナログ信号に変換する。そして、そのアナログ信号をオシロスコープで測定する。実際に測定している様子を図 5.2 に示す。

図 5.1: DAC の信号強度を測定するためのセットアップ。デジタル基板とアナログ基板は FMC で接続する。DAC からの信号は同軸ケーブルを伝ってオシロスコープに入力する。

どうれてdBmを計算しているのかもちゃんと書け、

5.3.2 評価 💥 🔭

FX*C1*50

図 5.3 に RHEA と FMC150 の DAC からの信号強度の比較を示す。RHEA では LPF により カットされていた 82 MHz 以上の周波数領域でも信号強度が下がっていないことが確認できる。

一方、RHEAでは、高回は放発法記、高い信息出力改展をイジレスいることが高能認できる。

5.4 従来のアナログ基板との比較

図 5.2: RHEA で 1 MHz の正弦波と余弦波を測定している様子

図 5.3: FMC150 と RHEA における DAC の信号強度の比較。RHEA は高周波領域 (>80 MHz) (いたいても 文信号強度 が減衰していない。数十 kHz までの直流成分は AC カップルしているため、信号が 弱い。 なんジ している。