

MEMORIA

Clasificador de canciones: Predicción del género musical

Proyecto de Machine & Deep Learning

By Marta Buesa Suárez de Puga

Febrero 2022

OBJETIVO

Desarrollo de un modelo para la predicción del género musical de las canciones.

Para ello, se parte de una BBDD con 50000 registros de canciones, con 17 features y 1 target que contiene 10 géneros musicales.

Se inicia el trabajo con un Exploratory Data Analysis muy detallado para entender las variables que describen las canciones, para pasar después a la creación de posibles modelos de Machine Learning con Aprendizaje Supervisado, donde se utilizarán 8 algoritmos dif<mark>erentes.</mark>

Asimismo, se utilizará Deep Learning, una red neuronal basada en el algoritmo MultiLabel Perceptron Classifier.

RECURSOS UTILIZADOS

Lenguaje de programación -> Python 3.7.4.

Librerias:

Numpy: especializada en el cálculo numérico y el análisis de datos, especialmente para un gran volumen de datos. Pandas: especializada en el manejo y análisis de

estructuras de datos.

Matplotlib: especializada en la creación de gráficos. Seaborn: especializada en la creación de gráficos basada en matplotlib pero con una interfaz evolucionada que permite generar fácilmente elegantes gráficos.

Scikit-learn: biblioteca para aprendizaje automático de software libre para el lenguaje de programación Python.

Keras: biblioteca de Redes Neuronales de Código Abierto escrita en Python.

TensorFlow: biblioteca de código abierto para aprendizaje automático a través de un rango de tareas

Jupiter Notebooks con Visual Studio Code.

Csvs: 1 de entrada y 10 de salida obtenidos con modelos Power Point para explicar el detalle los modelos de Machine & Deep Learning desarrollados

BBDD ORIGEN

https://www.kaggle.com/vicsuperman/prediction-of-musicgenre

MODELOS DE MACHINE LEARNING **DESARROLLADOS**

Machine & Deep Learning

APRENDIZAJE NO SUPERVISADO

Algoritmos de clasificación

- Logistic Regresion Parámetros: multi class='multinomial'
- Decision Tree -> con Grid Search Parámetros: max depth=10, min samples leaf=1
- SVM Support Vector Machine Parámetros: op.1 C=1 / Op.2 C=100
- Ensemble: Random Forest, Logistic Regresion & SVM

Parámetros: LR(multi_class='multinomial') / RF(n_estimators=100) / SVM(gamma= 'scale', probability= True)

min_samples_leaf = 3 **6.** Adaptive Boosting

Parámetros: DecisionTreeClassifier(max_depth=1), n_estimators=200, algorithm='SAMME.R', learning_rate=0.5

- **Gradient Boosting**
 - Parámetros: learning_rate= 0.3, n_estimators= 100, max_features=
- Extreme Gradient Boosting n_estimators=100, use label_encoder=False, eval_metric = 'loglos

ACCURACYS

	Algoritmos	ACC Train	ACC Test	Ens	embles	ACC Train	ACC Test
1.	Logistic Regresion	0.5198	0.5116	5. Rar	ndom Forest	0.7642	0.5559
2.	Decision Tree	0.5855	0.4882	o .	aptive osting	0.5128	0.4962
3.	SVM – Support Vector Machine	0.4888	0.4817	1.	adient osting	0.6626	0.5582
4.	Ensemble: Random Forest, Logistic Regresion & SVM	0.8292	0.5337	8. _{Gr}	ctreme radient posting	0.8155	0.5566

MODELO DE DEEP LEARNING

MultiLayer Perceptron Classifier

Opción 1:

Parámetros: max iter=500

Por defecto pasa la función de activación 'relu' y optimizador 'adam' a utilizar para el cálculo del mínimo de la función de coste y

ACC Train ACC Test

0.6237 0.5758

Opción 2:

Parámetros: max iter=500, activation='relu', solver='sgd', hidden layer sizes = (150, 100)

Distinto optimizador 'descenso de gradiente estocástico', e incluyo 2 capas de 150 y 100 neuronas

ACC Train ACC Test

0.6445 0.5741

Opción 3:

Parámetros: max iter=500, activation='tanh', solver='sgd', hidden layer sizes = (150, 100)

Cambio función de activación a la tangente hiperbólica, con el descenso de gradiente estocástico y de nuevo 2 capas de neuronas

ACC Test ACC Train

0.6239

0.5811

PRESENTACIÓN

https://speakerdeck.com/tukibuesa/martabuesa-proyecto-ml-pptcompleta

CONCLUSIONES

Para mejorar los resultados en la predicción del género musical, las posibles soluciones pasarían por:

- 1. CONSEGUIR MAS DATOS en este caso particular ya contaba con 50000 registros para el estudio.
- 2. CONSEGUIR MÁS FEATURES, variables descriptivas que puedan predecir mejor los distintos géneros musicales.
- 3. Si no se pudiera obtener más información, REDEFINIR LOS GÉNEROS MUSICALES A PREDECIR, posiblemente reagrupando aquellos que tienen unas características similares, para permitir a los modelos una predicción más certera.

AGRADECIMIENTOS

Especialmente agradecida a mi escuela The Bridge Digital Talent Accelerator por darme la oportunidad de desarrollarme en Data Science, y en concreto a mis profesores Alberto Romero, Julia Martínez y Rafael Manzano, por su dedicación, entusiasmo e interés por transmitirnos todo su conocimiento, así como apoyo para desarrollar todo mi potencial.