QCD at Finite Density

From the Lab to the Stars

Properties of Neutron Stars

mass
$$m \simeq (1-2) m_{\odot}$$

radius
$$r \simeq (10 - 15) \text{ km}$$

spin period
$$\tau \geq 1 \text{ msec}$$

temperature
$$T = (1 \text{ keV} \dots 1 \text{ MeV})$$

magnetic field
$$B \simeq (10^{12} \dots 10^{16}(?))$$
 Gauss

central density
$$\rho \simeq (2.5-8)\rho_0$$

Evolution of Neutron Stars

Composition of Neutron Stars

F. Weber (2005)

Composition of Neutron Stars II

Observational Constraints

Mass-radius relationship, maximum mass

Equation of state

Cooling behavior

Phase structure, low energy degrees of freedom

Rotation

Equation of state, Viscosity

Spin-down, glitches

Superfluidity

Masses of Neutron Stars

S. Thorsett (1998)

Tolman-Oppenheimer-Volkov Equation

Structure equation in Newtonian mechanics

$$\frac{dp}{dr} = -\frac{G\rho(r)M(r)}{r^2} = -\frac{G\epsilon(r)M(r)}{c^2r^2}$$

$$M(r) = 4\pi \int_0^r r'^2 dr' \rho(r')$$

Relativistic corecctions

$$\frac{dp}{dr} = -\frac{G\epsilon(r)M(r)}{c^2r^2} \left[1 + \frac{p(r)}{\epsilon(r)} \right] \times \left[1 + \frac{4\pi r^3 p(r)}{M(r)c^2} \right] \times \left[1 - \frac{2GM(r)}{c^2r} \right]^{-1}$$

Note: All corrections are positive

Mass-Radius Relation

Cooling Processes

Direct URCA process

$$n \leftrightarrow p + e^- + \bar{\nu}$$
 (fast)

Indirect URCA process

$$n + n \leftrightarrow p + n + e^- + \bar{\nu}$$
 (slow)

Quark direct URCA process

$$d \leftrightarrow u + e^- + \bar{\nu}$$
 (fast)

Collective modes

$$\pi^{\pm} \to e^{\pm} + \nu \qquad K^{\pm} \to e^{\pm} + \nu \qquad \text{(very fast)}$$

superfuidity suppresses URCA process

Cooling

Conclusion: The Many Phases of QCD

