Ibn Tofail University

Exercise 1:

Consider the set $E = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 0 \text{ and } -2x + y - z = 0\}.$

- 1. Show that E is a vector subspace of \mathbb{R}^3 .
- 2. Determine a basis of E and deduce the dimension of E.
- 3. Let $F = \text{Vect}\{(1,0,0),(0,-1,1)\}$. Show that $\mathbb{R}^3 = E \oplus F$.

Answer Area

Exercise 2:

Consider the following matrix A:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

- 1. Calculate A^2 and verify that $A^2 3A + 2I_3 = 0$, where I_3 is the identity matrix of $\mathcal{M}_3(\mathbb{R})$.
- 2. Deduce that matrix A is invertible and determine its inverse A^{-1} .

Answer Area

Exercise 3:

Let f be the endomorphism of \mathbb{R}^3 defined by:

$$f(x, y, z) = (2x + y + z, x + 2y + z, x + y + 2z)$$

- 1. Calculate the matrix A of f in the canonical basis $B = \{e_1, e_2, e_3\}$ of \mathbb{R}^3 .
- 2. Consider the vectors $v_1 = (1, 1, 0), v_2 = (0, 1, 1), \text{ and } v_3 = (1, 0, 1) \text{ of } \mathbb{R}^3.$
 - (a) Show that the family $B' = \{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .
 - (b) Calculate $f(v_1)$, $f(v_2)$, and $f(v_3)$ in the basis B'.
 - (c) Determine A', the matrix of f in the basis B'.
 - (d) Determine the matrices P and P^{-1} where P is the change of basis matrix from B to B'.
 - (e) Using the change of basis formula, calculate again the matrix A'.

Answer Area