

Базовая математика

Урок 11. Логарифмы и их свойства

Определение 1. Логарифмом положительного числа b по положительному и отличному от 1 основанию a называют показатель степени, в которую нужно возвести число a, чтобы получить число b:

$$\log_a b = c \implies a^c = b, \ a, b > 0, \ a \neq 1$$

Например, показательное уравнение вида $3^x = 5$ можно решить с помощью введения нового символа \log_3 . Тогда корень уравнения равен $x = \log_3 5$ (логарифм числа 5 по основанию 3).

Основное логарифмическое тождество:

$$a^{\log_a b} = b,$$

где $a, b > 0, a \neq 1$.

Пример 1. Найти x: $\log_8 x = 2$.

Решение. По определению логарифма:

$$8^2 = x \Rightarrow x = 64$$

Ответ: 64.

У логарифмов есть несколько свойств, которые прямо следуют из свойств показательной функции.

Основные свойства логарифмов:

- 1. $\log_a(1) = 0$
- 2. $\log_a(a) = 1$
- 3. $\log_a(x \cdot y) = \log_a(x) + \log_a(x)$ (логарифм произведения равен сумме логарифмов)
- 4. $\log_a(x/y) = \log_a(x) \log_a(y)$ (логарифм частного равен разности логарифмов)
- 5. $\log_a(x^p) = p \cdot \log_a(x)$ (логарифм степени равен произведению показателя степени на логарифм основания этой степени)

Приведённые выше свойства справедливы для любого $a>0,\,a\neq 1,$ любых положительных x и y, и любого действительного p.

Формула перехода к новому основанию:

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Данная формула имеет смысл лишь в том случае, когда обе её части имеют смысл. Другими словами, должны выполняться следующие условия:

$$x > 0, \ a, b > 0, \ a, b \neq 1$$

Определение 2. Логарифмы основанием которых является число 10, называются *десятичными* логарифмами. Их обозначают $\lg b$ (вместо $\log_{10} b$).

Логарифмы, основанием которых является число e, называются натуральными логарифмами. Обозначаются $\ln b$ (вместо $\log_e b$).

Пример 2.

- 1. $\lg 2 + \lg 5 = \lg(2 \cdot 5) = \lg 10 = 1$
- 2. $\log_{23} 46 \log_{23} 2 = \log_{23} 23 = 1$ 3. $\log_2 2^{1/7} = 1/7 \cdot \log_2 2 = 1/7 \cdot 1 = 1/7$

Определение 3. Функцию, заданную формулой $y = \log_a x$, называют логарифмической функцией с основанием a (a > 0, $a \neq 1$).

Основные свойства логарифмической функции:

- 1. Областью определения логарифмической функции является всё множество положительных вещественных чисел. Для краткости его еще обозначают \mathbb{R}_+ . Очевидное свойство, так как каждое положительное число имеет логарифм по основанию а.
- 2. Областью значений логарифмической функции является всё множество вещественных чисел.
- 3. Если основание логарифмической функции a > 1, то она возрастает на всей области определения. Если для основания логарифмической функции выполняется неравенство: 0 < a < 1, то функция убывает.
- 4. График логарифмической функции всегда проходит через точку (1;0).
- 5. Функция не является ни чётной, ни нечётной. Логарифмическая функция функция общего
- 6. Функция не имеет точек максимума и минимума.
- 7. Возрастающая логарифмическая функция положительна при x>1 и отрицательна при 0<
- 8. Убывающая логарифмическая функция отрицательна при x > 1 и положительна при 0 < x < 11.

Пример 3. Построим функцию $y = \log_2 x$.

Решение.

	\boldsymbol{x}	1/4	1/2	1	2	4	8
ĺ	y	-2	-1	0	1	2	3

Определение 4. Уравнения, содержащие переменную под знаком логарифма (в основании логарифма), называются *погарифмическими*.

Простейшим логарифмическим уравнением является уравнение

$$\log_a x = b,$$

где основание $a>0,\ a\neq 1.$ Для любого действительного b это уравнение имеет единственное решение:

$$x = a^b$$

Пример 4. Решить уравнение $\log_2 x = 3$.

Решение. Сперва найдём область допустимых значений (ОДЗ):

$$x > 0$$
,

т.к. под знаком логарифма должно быть положительное выражение.

Для решения данного уравнения достаточно воспользоваться определением логарифма, т.е. представить x как основание логарифма (2) в степени правой части (3):

$$x = 2^3 = 8$$

Ответ: 8.

Определение 5. Логарифмирование — переход от уравнения f(x) = g(x) к уравнению

$$\log_a f(x) = \log_a g(x)$$

Пример 5. Решить уравнение $2^x = 3$.

Решение. Прологарифмируем обе части уравнения по основанию 2:

$$2^x = 3 \Rightarrow \log_2 2^x = \log_2 3 \Rightarrow x = \log_2 3$$

Omeem: $\log_2 3$.

Пример 6. Решить уравнение $2\log_4^2 x - 5\log_4 x = -2$.

Peшение. Выполним замену: $\log_4 x = t$. Получим:

$$2t^2 - 5t + 2 = 0$$

Корни этого уравнения:

$$t_1 = 1/2; t_2 = 2$$

Обратная замена выглядит следующим образом:

$$x = 4^t$$

Получаем два решения:

$$x_1 = 4^{1/2} = 2; \ x_2 = 4^2 = 16$$

Omeem: 2, 16.

Домашнее задание

- 1. Найти: а) $\log_{\frac{1}{7}}49,$ b) $\log_{6}4+\log_{6}9,$ c) $\log_{7}\left(49^{6}\right).$
- 2. Решить уравнение: $\log_3 x^2 = 4$. 3. Решить уравнение: $x^{\log_2 x} = 64x$.