DATA-231: APPLIED STATISTICAL METHODS COMPARISON OF SIMPLE AND MULTIPLE LINEAR REGRESSION

	Simple Linear Regression	Multiple Linear Regression
Response Variable type	Categorical Numerical	Categorical Numerical
Explanatory Variable(s) type	Categorical Ordinal Numerical	
Model Equation	Y=Bo+B,X+E	Y=BO+BIX, + W+BIXXL+E
Description of model terms	Bo=intercept Bi=slope E=-error term	Bo=intercept B1,, BL = Slope coesticient for individual predic E=error term
Model Assumptions	· Enewity between X = Y - ENN(B, JE)	· Linearity in the coefficients Bi · ENNLU, JE)
Graphs used to test model assumptions	· X-Y plot · normal prob. plot of resido. · resido vs. fits plot Lor constant variance + linearity · Coolés D for influential whoservations	· X-Y plot for all X's · normal prob. plot of resids. · resids vs. Fits plot · Cook's D for influential obs.
Estimated model equation	9=Bo+B1X	4=Bo+B1X+11+BLX2+
Equation of residuals	Ei= yi- Qi	Ei=yi-Yi

^{*} So far, we're only seen numerical X in SCR, but in fact we can not any tende of variable as X.

	Simple Linear Regression	Multiple Linear Regression
df(Model)	1	K
df(Error)	n-â	n-K-1
df(Total)	n-1	n-1
SS(Total)	(yi-y)?	2 (yi-y)a
MS(Model)	SSModel = Z(ŷ-y)?	Ssmodul - Zly-y)a
MS(Error)	38E = 2(y-Q)?	35E - 2(4-4)2
F-statistic	msmodul ~ Formodul, Sterrar	msmodul ~ Fdfmodd, dfError
Hypotheses for test of individual coefficient (β_i)	Ho: B1 = 0 Hx: B1 = 0	Ho: βi=0 Hx: Bi ≠0
CI for individual coefficient (β_i)	Bittmar SEBi	Bittn-Kt SEBi
Hypotheses for ANOVA-based	Ho: B, =10	Ho: (3, = Bz = = Bz = 0
test (in symbols)	H. B. 70	Ha: at bast one Bi 70
Hypotheses for	Ho: model is useless	Ho: model is useless
ANOVA-based test (in words)	He model is use ful	Ha: model is useful
R ² (calculation)	150 = 35Woods = 1- 22E	same
D2	The You of variability in I that is explained by the linear model.	8000
R ² (interpretation)	that is explained by the	0000
(lancar model.	(2 x (r) a
R_{adj}^2 (calculation)		Rad= 1- 38E/(n-(-1)) = 1- ms
		R? adjusted to account for the # of predictors in the model.
R_{adj}^2	_	for the # of predictors
(interpretation)		in the model.

,,