트리모델을 이용한 서울 내 주택 가격 예측

주 택 의 지 역 적 , 개 별 적 특 성 을 중 심 으 로

CONTENTS

01 연구배경

데이터수집

데이터 전처리

모델링

모델링 결과 비교

06 한계점

결론

연구 설명

- 01. 주제 선정의 이유
- 02. 선행연구 검토
- 03. 연구 프로세스

01 연구배경

01. 주제선정 이유

02. 선행연구 검토

03. 연구 프로세스

주제선정 이유

주택의 지역, 특성을 이용한 가격예측

- 서울내 집값은 2019년 부터 급격히 상승
- 정부또한 부동산 시장 안정을 위해 주택 가격을 예측
- 주택 자체의 특성을 고려한 가격예측이 필요

01 연구배경

01. 주제선정 이유

02. 선행연구 검토

03. 연구 프로세스

선행연구검토

본 연구에 앞선 선행연구 확인

- 머신러닝을 통한 집값예측 사례들의 존재
- 가격에 영향을 미치는 요인 분석의 사례 존재
- 주택 자체의 특성을 종합한 예측이 가능하다 판단

01 연구배경

01. 주제선정 이유

02. 선행연구 검토

03. 연구 프로세스

연구설계 및 프로세스

연구설계 및 프로세스

- 데이터 수집
- 데이터 전처리
- 분석
- 모델 성능확인
- 점수 비교

01. 데이터 수집 방법

02. 데이터 목록

03. 데이터 별 변수

01. 데이터 수집 방법

02. 데이터 목록

03. 데이터 별 변수

데이터 수집 방법

주택의 지역, 특성, 가격 데이터 수집

- 서울시에서 제공하는 데이터를 수집
- 수집된 데이터를 종합

***** 서울특별시

서울 열린데이터 광장

배에 2030 제로 플라스틱 서울 시민토론회 개최

서울소식 응답소 정보공개 분야별정보

소식&참여

로그인 | 회원가입 | 사이트맵

01. 데이터 수집 방법

02. 데이터 목록

03. 데이터별 변수

수집 데이터 목록

수집 데이터 목록

- 서울시 부동산 실거래가
- 서울시 공동주택 아파트 정보
- 서울시 인구밀도(구별)

01. 데이터 수집 방법

02. 데이터 목록

03. 데이터별 변수

데이터별 변수 요약

연구설계 및 프로세스

- 서울시 부동산 실거래가 아파트명, 거래금액, 위치정보, 면적 등
- 서울시 공동주택 아파트 정보 아파트명, 복도유형, 난방유형 등
- 서울시 인구밀도(구별) 서울의 구별 인구밀도

```
0 접수연도
                      128580 non-null int64
  자치구코드
                      128580 non-null int64
  자치구명
                      128580 non-null object
  법정동코드
                      128580 non-null int64
                      128580 non-null object
  지번구분
                      118932 non-null float64
                      118932 non-null object
  본번
                    118932 non-null object
                    118932 non-null float64
                     118940 non-null object
                     128580 non-null int64
11 물건금액(만원)
                       128580 non-null int64
                      128580 non-null float64
13 토지면적(m²)
                      68140 non-null float64
                   118940 non-null float64
15 원리구분
                     O non-null
                                   object
                     O non-null
                                 float64
                     128382 non-null float64
17 건축년도
                     128580 non-null object
19 신고구분
                     O non-null
                                   string
20 신고한 개업공인중개사 시군구명 0 non-null
```

```
번호
                        2637 non-null int64
   k-아파트코드
                          2637 non-null object
   k-아파트명
                         2637 non-null object
   k-단지분류(마파트,주상복합등등)
                              2577 non-null
                                            object
   kapt도로명주소
                          2461 non-null object
   주소(시도)k-apt주소split
                          2637 non-null object
   주소(시군구)
                          2637 non-null object
   주소(읍면동)
                          2637 non-null
                                      object
   나머지주소
                          2113 non-null
                                      object
   주소(도로명)
                          2481 non-null object
10 주소(도로상세주소)
                            2474 non-null object
11 k-전화번호
                         2630 non-null object
12 k-팩스번호
                         2601 non-null object
13 단지소개기존clob
                          566 non-null float64
14 단지첨부파일
                           184 non-null object
15 k-세대타입(분양형태)
                            2614 non-null object
                         2624 non-null object
16 k-관리방식
17 k-복도유형
                         2621 non-null object
18 k-난방방식
                         2630 non-null object
                         2610 non-null float64
20 k-전체세대수
                          2633 non-null float64
21 k-건설사(시공사)
                          2592 non-null object
                        2579 non-null object
22 k-시행사
23 k-사용검사일-사용승인일
                              2622 non-null object
```

```
23 k-사용검사일-사용승인일
                              2622 non-null object
                        2636 non-null float64
25 k-주거전용면적
                           2607 non-null float64
26 k-관리비부과면적
                           2635 non-null float64
27 k-전용면적별세대현황(60m·이하)
                               2604 non-null float64
28 k-전용면적별세대현황(60m²~85m²이하) 2604 non-null float64
29 k-85m2~135m20|8|
                         2604 non-null float64
30 k-135㎡초과
                        3 non-null
                                    float64
31 k-홈페이지
                         773 non-null
                                     object
32 k-등록일자
                         356 non-null
                                     object
33 k-수정일자
                         2611 non-null object
34 고용보험관리번호
                            2090 non-null object
35 경비비관리형태
                           2610 non-null object
36 세대전기계약방법
                            2489 non-null object
37 청소비관리형태
                           2613 non-null object
                         2624 non-null float64
39 주차대수
                         2632 non-null float64
40 기타/의무/임대/임의=1/2/3/4 2637 non-null object
41 단지승인일
                          2637 non-null object
42 사용허가여부
                           2637 non-null object
43 관리비 업로드
                           2637 non-null object
44 좌표X
                       2627 non-null float64
                       2627 non-null float64
46 단지신청일
                          2637 non-null object
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- 0 구별 25 non-null object
1 구별인구 25 non-null int64
2 구별면적 25 non-null float64
3 구별인구밀도 25 non-null int64
dtypes: float64(1), int64(2), object(1)
memory usage: 928.0+ bytes
```

- 01. 변수설정
- 02. 수치형 데이터
- 03. 변수 변환
- 04. 범주형 데이터
- 05. 최종 데이터 선정

01. 변수설정

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

변수설정

다겟변수 설정 및 로그변환

- 타겟변수로 "물건금액"을 설정 해당 데이터의 왜도를 로그변환을 통해 교정

데이터가공

- 아파트의 팩스번호, 전화번호, 홈페이지와 같은 분석의 목적과 관련이 없는 변수들을 제거
- 아파트 명을 기준으로 서울시 부동산 실거래가와 서울시 공동주택 아파트 정보를 병합
- 결측치의 비율이 50%이상인 변수들을 제거
- 분양권과 같은 실물거래가 아닌 데이터와 거래취소일이 존재하는 실제 거래가 일어나지 않은 데이터 제거
- duplicate함수를 이용하여 완전히 중복되는 데이터 제거

01. 변수설정

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

수치형 데이터 전처리

타겟변수와의 상관관계 분석

- 로그 변환된 "물건금액"과 수치형 변수들의 상관관계를 히트맵을 통해 분석

상관계수가 0.4이상인 변수들 중 연면적과의 상관계수가 0.8을 넘는 변수들과 연면적의 관계 판단

01. 변수설정

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

수치형 데이터 전처리

연면적과의 관계 분석 - 주차대수

- 주차대수와 연면적의 residual plot

연면적이 건물의 실면적과 토지면적의 합계라는 것을 토대로 주차대수가 0에 가까운 데이터를 이상치라고 판단, 삭제

이상치를 제외한 residual plot에서 주차대수는 <mark>연면적이 대표</mark>할 수 있다고 판단, 요인에서 제외한다

01. 변수설정

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

수치형 데이터 전처리

연면적과의 관계 분석 - 주거전용면적

- 주거전용면적과 연면적의 residual plot

주거전용면적 또한 residual plot의 결과와 히트맵에서의 상관관계를 고려하였을 때, 연면적 변수의 특성이 <mark>주거전용면적을 대체</mark>할 수 있다고 판단하여 분석변수에서 제거

최종 수치형 변수

k-연면적 건물면적(m^2)

01. 타겟변수 변환

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

변수변환

수치형 데이터의 변환

- 기존연구의 분석에 따라 주택의 면적비를 인구밀도로 나눈값과 물건 금액의 상관관계를 분석

건물면적은 0.08이 증가, k-연면적비는 0.12가 증가

기존의 변수를 '구별 인구밀도'로 나눈 값으로 대체하여 분석에 사용

01. 타겟변수 변환

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

범주형 데이터 전처리

범주형 데이터 선정

- <mark>결측값이 50% 이상</mark> 넘는 데이터와 아파트 <mark>가격과 관련 없는</mark> 범주형 변수들을 1차 제거

자치구명	건축년도	경비비관리형태	K-단지분류	
K-복도유형	건물용도	세대전기계약방법	청소비관리형태	
K-세대타입	층			

01. 타겟변수 변환

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

범주형 데이터 전처리

범주형 데이터 선정

- boxplot을 통해 범주형 데이터 시각화

범주형 데이터 중 지역별 변수 비교

- 범주형 데이터 내의 지역별 평균차이를 확인

01. 타겟변수 변환

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

범주형 데이터 전처리

범주형 데이터 중 주택별 특성 변수 비교

범주형 데이터 내의 주택 유형별 평균차이를 확인

<mark>평균 차이가 나는</mark> 변수들을 선정, 선정된 변수 중 동일한 의미를 가지는 변수들의 삭제

01. 타겟변수 변환

02. 수치형 데이터

03. 변수 변환

04. 범주형 데이터

05. 최종 데이터 선정

최종데이터선정

최종 데이터 요약

- 타겟 변수는 '물건금액(만원)'

변수명	변수 설명	수치형/ 범주형	비고	K-세대타입	분양 임대와 같은 주택의 양도방식	범주형	아파트명이 동일할 시 값이 동일함
K-연면적비	건축물의 각 층의 바닥면적합을 구별 인구밀도로 나눈 값	수치형	아파트명이 동일할 시 값이 동일함	K-난방방식	개별난방, 중앙난방과 같은 주택의 난방작동 방식	범주형	아파트명이 동일할 시 값이 동일함
건물면적비	건축물의 수직투영한 바닥면적을 구별 인구밀도로 나눈 값	수치형	아파트명이 동일하여도 세대별 특성을 가짐	법정동명	주택이 속한 서울의 동명	범주형	아파트명이 동일할 시 값이 동일함
자치구명	주택이 속한 서울의 구명	범주형	아파트명이 동일할 시 값이 동일함	K-복도유형	계단, 복도, 타워와 같은 주택내 세대가 배치 되어있는 방식	범주형	아파트명이 동일할 시 값이 동일함
건물용도	오피스텔, 아파트와 같은 주택의 분류	범주형	아파트명이 동일할 시 값이 동일함				년도의 특성상 수치형이 아닌 범주형으로 분류
건축년도	아파트가 지어진 해	범주형	년도의 특성상 수치형이 아닌 범주형으로 분류	충	건물의 층	범주형	아파트명이 동일하여도 세대별 특성을 가짐
		3,3	아파트명이 동일할 시 값이 동일함	세대 전기계약방법	단일, 종합과 같이 주택 내 전기공급 계약방법	범주형	아파트명이 동일하여도 세대별 특성을 가짐

모델링

01. 모델링 방식

02. 모델링

1 PI

01. 모델링 방식

02. 모델링

모델링방식

사용한 알고리즘

K - NN	Decision Tree	Random Forest
Extra Tree	XGBoost	CatBoost

스케일링, 인코딩, 모델 평가방식

- Standardization 방식으로 스케일링을 진행
- <mark>원핫인코딩</mark>과 <mark>레이블 인코딩</mark> 두가지 방법을 모두 사용하여 범주형 데이터 처리
- MAE값, RMSE값 R2 score값을 이용하여 모델 간의 성능을 비교

04^{모델링}

01. 모델링 방식

02. 모델링

원핫인코당후모델링

원핫 인코딩 후 모델링

- 자치구 + 법정동명 -> 총 <mark>222개</mark>의 변수

KNeighborsRegressor

Training time: 0.021s
Prediction time: 0.860s
Total time: 0.881s
MAE: 7049.487290643645
RMSE: 11798.247704383497
R2 score: 0.9691059085204098

ExtraTreesRegressor

Training time: 17.538s
Prediction time: 0.112s
Total time: 17.650s
MAE: 6083.7366610593635
RMSE: 10175.285896178028
R2 score: 0.9819654642185772

DecisionTreeRegressor(random_state=42)

Training time: 0.479s
Prediction time: 0.013s
Total time: 0.492s
MAE: 7047.171530689977
RMSE: 12476.538685255751
R2 score: 0.9717408821209225

XGBRegressor

Training time: 4.355s
Prediction time: 0.016s
Total time: 4.370s
MAE: 6179.3876865931925
RMSE: 9962.829380351592
R2 score: 0.9815123058869758

RandomForestRegressor

Training time: 13.737s Prediction time: 0.104s Total time: 13.841s

MAE: 5972.066017254148 HMSE: 10374.27261362516 R2 score: 0.9821516562859197

Cat Boost Regressor

Training time: 8.823s
Prediction time: 0.015s
Total time: 8.838s
MAE: 6124.355144268549

RMSE: 9869.169546117368 R2 score: 0.9823561924950127

04^{모델링}

01. 모델링 방식

02. 모델링

레이블인코딩후모델링

레이블인코딩 후 모델링

- 자치구 + 법정동명 -> 총 <mark>11개</mark>의 변수

KNeighborsRegressor

Training time: 0.061s
Prediction time: 0.195s
Total time: 0.256s
MAE: 8516.844416716749
RMSE: 15336.538490798104
R2 score: 0.9557081830845495

DecisionTreeRegressor

Prediction time: 0.016s Total time: 0.052s MAE: 7481.490773252005 RMSE: 13458.858832290798 R2 score: 0.9680318654195414

Training time: 0.036s

RandomForestRegressor

Training time: 3.365s
Prediction time: 0.149s
Total time: 3.514s
MAE: 6476.412435788055
RMSE: 10870.44990633121
R2 score: 0.9779374251236124

ExtraTreesRegressor

Training time: 3.350s
Prediction time: 0.096s
Total time: 3.446s
MAE: 6546.813190181937
RMSE: 11013.428513001445
R2 score: 0.9798707460520708

XGBRegressor

Training time: 0.680s
Prediction time: 0.012s
Total time: 0.692s
MAE: 6211.649528544072
RMSE: 10154.196569148598
R2 score: 0.9824818887713793

Cat Boost Regressor

Training time: 5.461s Prediction time: 0.006s Total time: 5.467s

MAE: 6134.224240733634 RMSE: 9981.688005249121 R2 score: 0.982748737578792

모델링 결과 비교

- 01. 인코딩 유형별 성능 비교
- 02. 수행 시간 비교
- 03. 모델 성능비교
- 04. 최종 모델 선정

05 ^{모델링 결과 비교}

01. 인코딩별 성능 비교

02. 수행 시간 비교

03. 모델 성능비교

04. 최종 모델 선정

인코딩 유형별 성능 비교

평균적인 모델 성능

- 원핫인코딩이 레이블인코딩에 비해 뛰어남

05 Registration 1 Re

01. 인코딩별 성능 비교

02. 수행 시간 비교

03. 모델 성능비교

04. 최종 모델 선정

인코딩 유형별 수행 시간 비교

인코딩 유형별 수행 시간 비교

- 원핫인코딩이 레이블인코딩에 비해 오랜 시간이 소요됨

05 Register 3 Per 1 Per

01. 인코딩별 성능 비교

02. 수행 시간 비교

03. 모델 성능비교

04. 최종 모델 선정

모델별성능비교

모델별 성능 비교

- <mark>레이블 인코딩</mark>의 경우, <mark>XGBoost</mark>, CatBoost</mark>가 성능이 가장뛰어나며, 원핫 인코딩과의 차이가 가장 적음

05 Registration 1 Re

01. 인코딩별 성능 비교

02. 수행 시간 비교

03. 모델 성능비교

04. 최종 모델 선정

최종모델선정

최종 모델 선정

- 레이블 인코딩을 사용한 XGBoost가 CatBoost 대비 우수한 처리시간을 가진다.

🔷 🌣 추후 수치형 변수의 추가 가능성을 고려하여 <mark>레이블 인코딩</mark>을 사용한 <mark>XGBoost</mark>를 최종 모델로 선정

한계점

01. 환경적 요인 고려

02. GridSearchCV

06 한계점

01. 환경적 요인 고려

02. GridSearchCV

환경적 요인 고려

거리변수의 활용

- X, Y좌표를 활용한 지하철역과의 거리, 학교와의 거리 변수에서의 유의미한 상관관계가 나타나지 않음
- 기존연구와 일반적 인식을 고려하였을 때, X,Y좌표가 주택단지의 중심점인 것, 지역의 특징에 따라 주택의 가격에 영향을 주는 환경적인 요인이 다르다는 점에 의한것으로 추정

06 한계점

01. 환경적 요인 고려

02. GridSearchCV

하드웨어적 한계 - GridSearchCV

GridSearchCV를 통한 하이퍼파라미터 도출 실패

- 랜덤포레스트에서의 GridSearchCV 수행결과 파라미터를 통해 MAE, RMSE값에서 유의미한 감소를 이름
- 하드웨어적 한계로 인해 XGBoost와 CatBoost 알고리즘의 하이퍼파라미터 도출을 이루어내지 못함

추후 GridSearchCV를 통한 하이퍼파라미터 도출을 통해 모델을 향상 시킬 수 있을 것으로 예상됨

道**是**

07³

결론

주택의 지역적, 개별적 특성을 이용한 예측모델 도출

- 서울시의 지역적 특징과 주택의 특징의 상관관계를 확인하고 이를 통한 예측 모델을 도출
- 레이블인코딩, XGBoost 알고리즘을 활용하여 98.25%의 예측률 달성

개선방향

- 추후 변수의 추가를 통한 주변 인프라와의 연관성을 추가
- GridSearchCV를 활용한 모델 보정을 통해 모델의 오류 값과 예측 값 향상이 가능할 것으로 예상