node. In this problem, we consider the variant of the Maximum-Flow and Minimum-Cut problems with node capacities.

Let G = (V, E) be a directed graph, with source $s \in V$, sink $t \in V$, and nonnegative node capacities $\{c_v \ge 0\}$ for each $v \in V$. Given a flow f in this graph, the flow though a node v is defined as $f^{\text{in}}(v)$. We say that a flow is feasible if it satisfies the usual flow-conservation constraints and the node-capacity constraints: $f^{\text{in}}(v) \le c_v$ for all nodes.

Give a polynomial-time algorithm to find an s-t maximum flow in such a node-capacitated network. Define an s-t cut for node-capacitated networks, and show that the analogue of the Max-Flow Min-Cut Theorem holds true.

- **14.** We define the *Escape Problem* as follows. We are given a directed graph G = (V, E) (picture a network of roads). A certain collection of nodes $X \subset V$ are designated as *populated nodes*, and a certain other collection $S \subset V$ are designated as *safe nodes*. (Assume that X and S are disjoint.) In case of an emergency, we want evacuation routes from the populated nodes to the safe nodes. A set of evacuation routes is defined as a set of paths in G so that (i) each node in X is the tail of one path, (ii) the last node on each path lies in S, and (iii) the paths do not share any edges. Such a set of paths gives a way for the occupants of the populated nodes to "escape" to S, without overly congesting any edge in G.
 - (a) Given *G*, *X*, and *S*, show how to decide in polynomial time whether such a set of evacuation routes exists.
 - **(b)** Suppose we have exactly the same problem as in (a), but we want to enforce an even stronger version of the "no congestion" condition (iii). Thus we change (iii) to say "the paths do not share any *nodes*."

With this new condition, show how to decide in polynomial time whether such a set of evacuation routes exists.

Also, provide an example with the same G, X, and S, in which the answer is yes to the question in (a) but no to the question in (b).

15. Suppose you and your friend Alanis live, together with n-2 other people, at a popular off-campus cooperative apartment, the Upson Collective. Over the next n nights, each of you is supposed to cook dinner for the co-op exactly once, so that someone cooks on each of the nights.

Of course, everyone has scheduling conflicts with some of the nights (e.g., exams, concerts, etc.), so deciding who should cook on which night becomes a tricky task. For concreteness, let's label the people