

Genesys Logic, Inc.

GL3224

USB 3.1 Gen 1 Dual/Single LUN Memory Card Reader Controller

Datasheet

Revision 1.11 Dec. 25, 2019

Copyright

Copyright © 2019 Genesys Logic, Inc. All rights reserved. No part of the materials shall be reproduced in any form or by any means without prior written consent of Genesys Logic, Inc.

Ownership and Title

Genesys Logic, Inc. owns and retains of its right, title and interest in and to all materials provided herein. Genesys Logic, Inc. reserves all rights, including, but not limited to, all patent rights, trademarks, copyrights and any other propriety rights. No license is granted hereunder.

Disclaimer

All Materials are provided "as is". Genesys Logic, Inc. makes no warranties, express, implied or otherwise, regarding their accuracy, merchantability, fitness for any particular purpose, and non-infringement of intellectual property. In no event shall Genesys Logic, Inc. be liable for any damages, including, without limitation, any direct, indirect, consequential, or incidental damages. The materials may contain errors or omissions. Genesys Logic, Inc. may make changes to the materials or to the products described herein at anytime without notice.

Genesys Logic, Inc.

12F., No. 205, Sec. 3, Beixin Rd., Xindian Dist. 231,

New Taipei City, Taiwan Tel: (886-2) 8913-1888 Fax: (886-2) 6629-6168

http://www.genesyslogic.com

Revision History

Revision	Date	Description
1.00	01/14/2014	First formal release
1.01	01/15/2014	Remove CF, xD description in Chapter.2 p.7 Modify pin description in p.14
1.02	06/18/2014	Update SPI FLASH MEMORY SUPPORT LIST in Ch6, p22.
1.03	06/24/2014	Revise PACKAGE DIMENSION in Ch7, p23,24
1.04	05/07/2015	Modify Ch2 Features
1.05	08/05/2015	Update Table 5.4 Reset Timing, p.20
1.06	10/21/2015	Update CH7 Package Dimension, p.23,24
1.07	05/03/2016	Update CH2 Features
1.08	07/21/2017	Update CH6 SPI Flash Memory Support List
1.09	07/20/2018	1. Rename USB 3.0 to USB 3.1 Gen 1 2. Update CH1 General Description 3. Update CH2 Features 4. Update Table 3.1 - QFN48 Pin Description 5. Remove Table 5.6 - e•MMC Clock Frequency
1.10	01/04/2019	Update CH2 Features
1.11	12/25/2019	Add CH5.5 IC ESD/LU Level Add CH5.6 Thermal information

Table of Contents

CHAPI	TER 1 GENERAL DESCRIPTION	6
СНАРТ	TER 2 FEATURES	7
CHAPI	TER 3 PIN ASSIGNMENT	9
3.1	QFN 48 Pinout	9
3.2	QFN 32 Pinout	10
3.3	Pin Description	11
CHAPT	TER 4 BLOCK DIAGRAM	16
4.1	Super Speed and HS/FS PHY	17
4.2	USB Controller	17
4.3	EPFIFO	17
4.4	MCU	17
4.5	MHE (Media Hardware Engine)	17
4.6	Regulator	17
СНАРТ	TER 5 ELECTRICAL CHARACTERISTICS	18
5.1	Temperature Conditions	18
5.2	Operating Conditions	18
5.3	DC Characteristics	18
5.4	AC Characteristics of Reset Timing	19
	5.4.1 Reset Timing	19
	5.4.2 SD/MMC Card Clock Frequency	20
	5.4.3 MS Card Clock Frequency	21
5.5	IC ESD/LU Level	21
5.6	Thermal information	21
СНАРТ	TER 6 SPI FLASH MEMORY SUPPORT LIST	22
CHAPT	TER 7 PACKAGE DIMENSION	23
СНАРТ	TER 8 ORDERING INFORMATION	25

List of Figures

Figure 3.1 - QFN 48 Pinout Diagram	9
Figure 3.2 - QFN 32 Pinout Diagram	10
Figure 4.1 - QFN 48 Functional Block Diagram	16
Figure 4.2 - QFN 32 Functional Block Diagram	16
Figure 5.1 - Timing Diagram of Reset Width	19
Figure 5.2 - Timing Diagram of Power Good to USB Command Receive Ready	20
Figure 7.1 - QFN 48 Pin Package	23
Figure 7.2 - QFN 32 Pin Package	24
List of Tables	
Table 3.1 - QFN 48 Pin Description	11
Table 3.2 - QFN 32 Pin Description	14
Table 5.1 - Absolute Maximum Ratings	18
Table 5.2 - Operating Conditions	18
Table 5.3 - DC Characteristics	18
Table 5.4 - Reset Timing	20
Table 5.5 - SD/MMC Card Clock Frequency	20
Table 5.6 - MS Card Clock Frequency	21
Table 5.7 - IC ESD/LU Level	21
Table 5.8 - Thermal information (QFN48)	21
Table 5.9 - Thermal information (QFN32)	21
Table 6.1 - SPI Flash Memory Support List	22
Table 8.1 - Ordering Information	25

CHAPTER 1 GENERAL DESCRIPTION

The GL3224 is an USB 3.1 Gen1 Dual/Single LUN card reader controller, it provides 2 LUNs (Logic Unit Number) which can support various types of memory cards, such as Secure DigitalTM(SD), SDHC, miniSD, microSD (T-Flash), MultiMediaCardTM (MMC), RS-MMC, MMCmicro, MMCmobile, Memory StickTM (MS), Memory Stick DuoTM (MS Duo), High Speed Memory StickTM (HS MS), Memory Stick PROTM (MS PRO), Memory Stick PROTM Duo (MS PRO Duo), Memory Stick PRO-HGTM (MS PRO-HG), MS PRO Micro in one chip. It also supports SDXC and Memory Stick XC high density memory cards (capacity up to 2TB) and high speed SD 3.0 UHS-I memory cards.

The GL3224 integrates a high speed 8051 microprocessor and a high efficiency hardware engine for the best data transfer performance between USB and various memory card interfaces. It supports Serial Peripheral Interface (SPI) for firmware upgrade to SPI Flash Memory via USB port. It also integrates 5V to 3.3V and 3.3V to 1.2V regulators and power MOSFETs which can reduce system BOM cost.

CHAPTER 2 FEATURES

- USB specification compliance
 - Comply with Universal Serial Bus 3.1 Specification rev. 1.0 (USB 3.1 Gen 1)
 - Comply with Universal Serial Bus Specification rev. 2.0 (USB 2.0)
 - Comply with USB Mass Storage Class Specification rev. 1.0
 - Support USB Mass Storage Class Bulk-Only Transport (BOT)
 - Support 1 device address and up to 3 endpoints: Control (0) / Bulk Data Read In (1) / Bulk Data Write Out (2)
 - Support 5 Gbps SuperSpeed, 480 Mbps high-speed, and 12 Mbps full-speed transfer rates
- Integrated USB building blocks
 - USB2.0 transceiver macrocell (UTM), Serial Interface Engine (SIE), embedded Power-On Reset (POR)
- Embedded high speed 8051 micro-controller
- High efficient DMA hardware engine improves transfer rate between USB and flash card interfaces
- Support Secure DigitalTM v1.0/ v1.1/ v2.0/ SDHC/ SDXC (Capacity up to 2TB)
- Support Secure DigitalTM v3.01 UHS-I (Ultra High Speed): SDR12/ SDR25/ SDR50/ DDR50/ SDR104
- Support MultiMediaCard TM (MMC)
 - MMC specification v3.x/ v4.0/ v4.1/ v4.2
 - x1/x4/x8 bit data bus
- Support HUAWEI Nano Memory Card
- Support Memory Stick PRO Duo Support Memory Stick PRO Duo Support Memory Stick PRO Duo Mark2TM/ Memory Stick Micro Memory Stick PRO-HG Duo Mark2TM/ Memory Stick PRO-HG Duo HX Memory Stick PRO-H
 - Compliant with Memory Stick Series Specification: MS v1.43, MS PRO v1.05, MS Micro v1.04 (MS HG Micro v1.00), MS PRO-HG Duo 1.03, MS XC Duo v1.00, MS XC-HG Duo v1.00, MS XC Micro v1.00 and MS XC-HG Micro v1.00
 - Support Read/Write quad data access (512Bytex4) for MS PRO-HG to enhance the transmission rate
- Support Serial Peripheral Interface (SPI) for firmware upgrade to SPI Flash Memory via USB interface
- On-Chip power MOSFETs for all flash media cards power source
- On-chip 5V to 3.3V and 3.3V to 1.2V regulator
- On board 25 MHz Crystal driver circuit
- Support USB 2.0 LPM (Link Power Management)
- Support USB 3.1 Gen 1 LTM (Latency Tolerance Messaging)
- Support USB 3.1 Gen 1 U1/U2/U3 low power link state
- Pass the USB-IF Test Procedure for SuperSpeed product (TID: 340890039)
- Pass WHCK (Windows Hardware Certification Kit) test for Windows 8.1 (Submission ID: 1620543)
- Pass WHCK (Windows Hardware Certification Kit) test for Windows 8 (Submission ID: 1620537)
- Pass WHQL (Windows Hardware Quality Lab) test for Windows 7 (Submission ID: 1620861)
- Support two SD3.0 interfaces with UHS-I: SDR12/ SDR25/ SDR50/ DDR50/ SDR104 bus mode
- Support programmable disable MMC interface
- Support programmable various LUN (Logic Unit Number): 2 LUNs and 1 LUN
- Support programmable SSC (Spread Spectrum Clocking), clock rate in SD, MS memory card interface for

better EMI test effect.

- Support programmable LED behavior, Read Only option for specific application
- Support power-saving mode to disconnect USB bus by card remove for better power management
- Support selective-suspend for entering suspend mode when data transfer pending after several seconds.
- Support Over-Current protection mechanism
- Available in QFN 48 pin package (7x7mm) for 2 LUNs SD 3.0
- Available in QFN 32 pin package (5x5mm) for 1 LUN SD3.0

CHAPTER 3 PIN ASSIGNMENT

3.1 QFN 48 Pinout

Figure 3.1 - QFN 48 Pinout Diagram

3.2 QFN 32 Pinout

Figure 3.2 - QFN 32 Pinout Diagram

3.3 Pin Description

Table 3.1 - QFN 48 Pin Description

Pin Name	QFN 48	Type	Description			
	Power/Ground					
AVDD12	9	P	Analog 1.2V power source			
AVDD33	6, 15	P	Analog 3.3V power source			
DVDD12	26	P	Digital 1.2V power source			
DVDD33	25, 34, 44	P	Digital 3.3V power source			
VBUS	22	P	5V power source			
VUHS_1	43	Р	SD 3.0 IO PAD Power, the power source of this pin comes from the internal regulator of GL3224 and no need of external power input			
VUHS_2	33	P	SD 3.0 IO PAD Power, the power source of this pin comes from the internal regulator of GL3224 and no need of external power input			
S1M1_VCC	23	P	SD/MS card power			
S2M2_VCC	24	P	SD/MS card power			
GND	3, 12	P	Ground			
		USB PI	HY Interface			
DP	5	A	USB 2.0 D+			
DM	4	A	USB 2.0 D-			
TXN	7	A	USB 3.1 Gen 1 TX-			
TXP	8	A	USB 3.1 Gen 1 TX+			
RXN	10	A	USB 3.1 Gen 1 RX-			
RXP	11	A	USB 3.1 Gen 1 RX+			
RTERM	16	A	USB reference resistor. This pin is used to control the level of USB signal. A 680ohm, 1% resistor is recommended to be laid between RTERM and GND			
X1	13	I	25MHz x'TAL input. It can be connected to external 25MHz clock input			
X2	14	В	25MHz x'TAL output			
Memory Card Interface						
MS1_INS/SD1_WP	2	I, pu	SD write protect 0: write enable 1: write protection MS insertion detect 0: Card insert 1: No card			
MS2_INS/SD2_WP	35	I, pu	SD write protect 0: write enable 1: write protection MS insertion detect 0: Card insert 1: No card			

SD1_CDZ	1	I, pu	SD card detect 0: Card insert 1: No card
SD2_CDZ	36	I, pu	SD card detect 0: Card insert 1: No card
S2D1_M2BS	27	В	SD data pin
32D1_W2D3	21	О	MS/MSP bus state
S2D0_M2D1	28	В	SD data pin
52D0_W12D1	26	В	MS/MSP data signal
CACK MADO	20	О	SD clock
S2CK_M2D0	29	В	MS/MSP data signal
	• •	B,pu	SD command/response
S2CM_M2D2	30	В	MS/MSP data signal
S2D3_M2D3	31	В	SD data pin
\$2D3_W2D3	31	В	MS/MSP data signal
		В	SD data pin
S2D2_M2CK	32	О	MS clock
CIDI MIDC	G1D1 M1DG 27	В	SD data pin
S1D1_M1BS	37	О	MS/MSP bus state
S1D0_M1D1	38	В	SD data pin
SIDO_WIIDI	36	В	MS/MSP data signal
S1CK_M1D0	39	О	SD clock
STER_INTEG	3,	В	MS/MSP data signal
S1CM_M1D2	40	B,pu	SD command/response
21em_mp2		В	MS/MSP data signal
S1D3_M1D3	41	В	SD data pin
		В	MS/MSP data signal
S1D2_M1CK	42	В	SD data pin
		О	MS clock
S1D7_M1D4	45	В	SD data pin
_		В	MS/MSP data signal
S1D6_M1D5	46	В	SD data pin
_		В	MS/MSP data signal

GIDS MIDS	47	В	SD data pin		
S1D5_M1D6	47	В	MS/MSP data signal		
S1D4_M1D7	48	В	SD data pin		
\$1D4_M1D7	40	В	MS/MSP data signal		
Others					
LED	21	О	Memory card access LED		
SPI_CS	20	О	SPI interface: chip select		
SPI_CK	19	О	SPI interface: clock		
SPI_MISO	17	I	SPI interface: connect to SPI flash data output		
SPI_MOSI	18	О	SPI interface: connect to SPI flash data input		

Notation:

Type	O	Output
	I	Input
	В	Bi-directional
	pu	internal pull-up when input
	pd	internal pull-down when input
	P	Power / Ground

Table 3.2 - QFN 32 Pin Description

Pin Name	Pin NO.	Type	Description		
Power/Ground					
AVDD12	3	P	Analog 1.2V power source		
AVDD33	8,30	P	Analog 3.3V power source		
DVDD12	17	P	Digital 1.2V power source		
DVDD33	16,25	P	Digital 3.3V power source		
VBUS	15	P	5V power source		
VUHSI	24	Р	SD 3.0 IO PAD Power, the power source of this pin comes from the internal regulator of GL3224 and no need of external power input		
SD_VCC	26	P	SD card power		
GND	27	P	Ground		
		USB PH	IY Interface		
DP	32	A	USB 2.0 D+		
DM	31	A	USB 2.0 D-		
TXN	1	A	USB 3.1 Gen 1 TX-		
TXP	2	A	USB 3.1 Gen 1 TX+		
RXN	4	A	USB 3.1 Gen 1 RX-		
RXP	5	A	USB 3.1 Gen 1 RX+		
RTERM	9	A	USB reference resistor. This pin is used to control the level of USB signal. A 680ohm, 1% resistor is recommended to be laid between RREF and GND		
X1	6	I	25MHz XTAL input. It can be connected to external 25MHz clock input		
X2	7	В	25MHz XTAL output		
		Memory (Card Interface		
SD_WP	28	I, pu	SD write protect 0: write enable 1: write protection		
SD_CDZ	29	I, pu	SD card detect 0: Card insert 1: No card		
SD_D1	18	В	SD data pin		
SD_D0	19	В	SD data pin		
SD_CK	20	О	SD clock		
SD_CM	21	B,pu	SD command/response		
SD_D3	22	В	SD data pin		
SD_D2	23	В	SD data pin		

Others				
LED	14	О	Memory card access LED	
SPI_CS	13	О	SPI interface: chip select	
SPI_CK	12	О	SPI interface: clock	
SPI_MISO	10	I	SPI interface: Connect to SPI flash data output	
SPI_MOSI	11	О	SPI interface: Connect to SPI flash data input	

Notation:

Type	O	Output
	I	Input
	В	Bi-directional
	pu	internal pull-up when input
	pd	internal pull-down when input
	P	Power / Ground
	A	Analog

CHAPTER 4 BLOCK DIAGRAM

Figure 4.1 - QFN 48 Functional Block Diagram

Figure 4.2 - QFN 32 Functional Block Diagram

4.1 Super Speed and HS/FS PHY

The transceiver macro cell is the analog circuitry that handles the low level USB protocol and signaling, and shifts the clock domain of the data from the USB to one that is compatible with the general logic.

4.2 USB Controller

The USB Controller, which contains the USB PID and address recognition logic, and other sequencing and state machine logic to handle USB packets and transactions.

4.3 EPFIFO

Endpoint FIFO includes Control FIFO (FIFO0), Bulk In/Out FIFO

- **EPO FIFO** FIFO of control endpoint 0. It is 512-byte FIFO and used for endpoint 0 data transfer.
- Bulk In/Out FIFO It can be in the TX mode or RX mode:
 - 1. It can be transmit/receive 512-byte data of USB 2.0 and 1K-byte data of USB 3.1 GEN 1

continuously.

2. It can be directly accessed by micro-controller

4.4 MCU

8051 micro-controller inside.

• **8051 Core** Compliant with Intel 8051 high speed micro-controller

• **ROM** Firmware code on ROM

• SRAM Internal RAM area for MCU access

4.5 MHE (Media Hardware Engine)

Media Interface: SD/MMC/MS/MS PRO/MS PRO-HG

4.6 Regulator

5V to 3.3V
 3.3V Power source
 1.2V Power source

CHAPTER 5 ELECTRICAL CHARACTERISTICS

5.1 Temperature Conditions

Table 5.1 - Absolute Maximum Ratings

Parameter	Value
Storage Temperature	-65°C to +150 °C
Operating Temperature	0°C to +70 °C

5.2 Operating Conditions

Table 5.2 - Operating Conditions

Parameter	Value
Supply Voltage	+4.75V to +5.25V
Ground Voltage	0V
F _{OSC} (Oscillator or Crystal Frequency)	25 MHz ± 0.03%

5.3 DC Characteristics

Table 5.3 - DC Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{CC}	Supply Voltage		4.75	5.0	5.25	V
V_{IH}	Input High Voltage		2.0			V
$V_{\rm IL}$	Input Low Voltage				0.4	V
I_{I}	Input Leakage Current	$0 < V_{IN} < DVDD$	-10		10	μΑ
V _{OH}	Output High Voltage	DVDD = 3.3V	2.8			V
V _{OL}	Output Low Voltage				0.4	V
I_{OH}	Output Current High			8		mA
I_{OL}	Output Current Low			8		mA
C_{IN}	Input Pin Capacitance			5		pF
	HS mode			43		mA
T		U0 state		120		mA
I _{NORMAL}	SS mode	U1 state		27		mA
		U2 state		13		mA
т	HS mode			65		mA
I _{ACTIVE}	SS mode	U0 state		147		mA
I _{RESET}				40		mA

I_{SUS}	Suspend current	1.5K pull-up included	0.85	mA
	SS Suspend current	U3 state	0.7	mA
	Reset Pad pull-up		46	ΚΩ
$ m R_{pu}$	SD_CDZ, SD_WP, MS_INS, GPIO Pad pull-up		46	ΚΩ
ρ	SD_CMD pull-up		15	$\mathbf{K}\Omega$
	SD_CLK, D[3:0] Pad pull-up		15	$\mathbf{K}\Omega$
р	SD_CMD pull-down		15	ΚΩ
R_{pd}	SD_CLK, D[3:0] Pad pull-down		15	ΚΩ
R_{IMP}	SD_CMD, SD_CLK, D[3:0] impedances		50	Ω

5.4 AC Characteristics of Reset Timing

5.4.1 Reset Timing

Figure 5.1 - Timing Diagram of Reset Width

Figure 5.2 - Timing Diagram of Power Good to USB Command Receive Ready

Table 5.4 - Reset Timing

Parameter	Description		Min.	Unit
T_{RST}	Chip reset sense timing width	2		us
T 1	AVDD power up to reset de-assert	500		us
T2	Reset de-assert to respond USB command ready		95	ms
Т3	Reset de-assert to SuperSpeed termination on		12	ms

5.4.2 SD/MMC Card Clock Frequency

Table 5.5 - SD/MMC Card Clock Frequency

Parameter	Description	Max.	Unit
F_{ID}	Clock frequency Identification Mode	400	KHz
F_{DS}	Clock frequency Default Speed Mode	25	MHz
F_{HS}	SD Clock frequency High Speed Mode	50	MHz
F_{HS}	MMC Clock frequency High Speed Mode	52	MHz
F _{SDR25}	Clock frequency Ultra High Speed Mode: SDR25	50	MHz
F_{DDR50}	Clock frequency Ultra High Speed Mode: DDR50	50	MHz
F _{SDR50}	Clock frequency Ultra High Speed Mode: SDR50	100	MHz
F _{SDR104}	Clock frequency Ultra High Speed Mode: SDR104	208	MHz

5.4.3 MS Card Clock Frequency

Table 5.6 - MS Card Clock Frequency

Parameter	nmeter Description		Unit
F_{DS}	Clock frequency Default Speed Mode	20	MHz
F_{MSP}	Clock frequency MS PRO 4bit Mode	40	MHz
F_{MSPHG}	Clock frequency MS PRO HG 8bit Mode	60	MHz

5.5 IC ESD/LU Level

Table 5.7 - IC ESD/LU Level

Test Mode and Trigger Mode	Value
ESD HBM	± 4KV
ESD CDM	± 500V
ESD MM	± 200V
Latch-up	± 500mA

5.6 Thermal information

Table 5.8 - Thermal information (QFN48)

Ambient Temp (T _a)	Power (P)	Thermal Resistance (Θ_{ia})	Thermal Resistance (Θ_{ic})	Junction Temp (T _j)	Case Temp (T _c)
70°C	0.750W	33.23°C/W	5.31°C/W	94.9°C	90.9°C

Table 5.9 - Thermal information (QFN32)

Ambient Temp (T _a)	Power (P)	Thermal Resistance (Θ_{ja})	Thermal Resistance (Θ_{jc})	Junction Temp (T _j)	Case Temp (T _c)
70°C	0.750W	35.9°C/W	6.1°C/W	96.9°C	92.3°C

CHAPTER 6 SPI FLASH MEMORY SUPPORT LIST

Table 6.1 - SPI Flash Memory Support List

Vendor	Model
	GD25Q512
GigaDevice	GD25Q010
	GD25Q040
	PM25LD512C
	PM25LD010
PMC	PM25LD010C
	PM25LD020
	PM25LD020C
	W25X05CL
	W25X10CL
WINBON	W25X10BV
	W25X20CL
	W25X20BV
EON	EN25Q40
MXIC	MX25L1006E
ECMT	F25L01PA-86PG
ESMT	F25L01PA-100PG
Giantec	GT25F512
FMSH	FM25F005
LMSH	FM25F01

Note:

- GL3224 support Page-Program SPI Flash Memory only, does not support Byte-program SPI Flash Memory
- The density of SPI Flash Memory shall be larger than or equal to 512Kbit.
- Firmware file (xxxx.bin) which Genesys Logic provided is only used for Genesys Logic's Multi-Tool and MP Tool ISP (In System Programming via USB interface) purpose. If you would like to provide FW to SPI Flash vendor for pre-loading or Flash ROM writer usage, please contact to GL technical support team.

CHAPTER 7 PACKAGE DIMENSION

Figure 7.1 - QFN 48 Pin Package

SYMBOL	DIMENSION MM (MIL)				
STRIBUL	MIN.	N□M.	MAX.		
A	0.70 (27.6)	0.75 (29.5)	0.80 (31.5)		
A1		(8,0) 20,0	0.05 (2.0)		
A3	0,203 (8,0) REF				
b	0.18 (7.1)	0.25 (9.8)	0.30 (11.8)		
D		5.00 (196.9) BS	SC		
DS	2.60 (102.4)	3.00 (118.1)	3.30 (129.9)		
Ε		5.00 (196.9) BS	SC		
ES	2.60 (102.4)	3,00 (118.1)	3,30 (129,9)		
е	0.50 (19.7) BSC				
L	0.30 (11.8)	0.40 (15.7)	0.50 (19.7)		

OTE: 1. REFER TO JEDEC STD. MO-220
2. ALL DIMENSIONS IN MILLIMETERS.

Figure 7.2 - QFN 32 Pin Package

CHAPTER 8 ORDERING INFORMATION

Table 8.1 - Ordering Information

Part Number	Package	Green/Wire Material	Version	Status
GL3224-ONYXX	QFN 48	Green Package + CU Wire	XX	Available
GL3224-OIYXX	QFN 32	Green Package + CU Wire	XX	Available