Large scale deep learning parameter server

Ching-Yuan, Tsai

2017,4,26 Presented by Ching-Yuan, Tsai

Abstract Goals Architecture

- Introduction
- Challenge
- (key, value) Vector
- Range push and pul
- 6 Reduce idle

Abstract Goals Architecture

Abstarct

• We propose a parameter server framework for distributed deep learning problems.

Abstract Goals Architecture

Goals

- Efficient communication
- Fast computation
- Fault tolerance
- Scalability

Abstract Goals Architecture

Architecture

Parameters Long idle time

- Introduction
- 2 Challenge
- (key, value) Vector
- Range push and pull
- 6 Reduce idle

Parameters Long idle time

Parameters

- Realistic training models have 10^9 to 10^{12} parameters.
- Accessing parameters need hight network bandwidth.

Parameters Long idle time

Long idle time

Worker waits unitl server aggregates all parameters.

- Introduction
- 2 Challenge
- (key, value) Vector
- Range push and pul
- 6 Reduce idle

Key

• Key indicate neural id.

Value

• Value indicate weights with respect to the neural id.

Vector

- Vector is the combination of key and values.
- Vector is the minimum communication unit.

Motivation Idea Is it correct

- Introduction
- Challenge
- (key, value) Vector
- Range push and pull
- 6 Reduce idle

Motivation Idea Is it correct ?

Motivation

 Wokers waste a lot of time to wait network communication and parameter aggregation.

Motivation Idea Is it correct ?

Idea

- Sending less data to server.
- Sending vectors whose key is within the given range.

Motivation Idea Is it correct ?

Is it correct?

Assumption What range size is the best ? Best size Server view

- Introduction
- Challenge
- (key, value) Vector
- Range push and pull
- Reduce idle

Assumption
What range size is the best?
Best size
Server view

Assumption

- Computation time is fixed.
- Message communication time decrease as communication range decrease.
- Aggregation time decrease as communication range derease.

Assumption
What range size is the best?
Best size
Server view

What range size is the best ?

• We can decrease size ...

Assumption
What range size is the best ?
Best size
Server view

Best size

Assumption
What range size is the best?
Best size
Server view

Server view

- Introduction
- Challenge
- (key, value) Vector
- Range push and pull
- 6 Reduce idle

Handwritten digits

- Subset of a larger set from NIST.
- 60000 examples
- One color channel
- fixed-size image

Handwritten digits

Training Model Server Synchronization

- Introduction
- Challenge
- (key, value) Vector
- Range push and pul
- 6 Reduce idle

Training Model Server Synchronization

Training Model

- Use keras
- Three dense layers each has 512 neurals
- 98 percent accuracy

Training Model Server Synchronization

Training Model

Training Model Server Synchronization

Server Synchronization

- Synchronize client iterations
- Python client, C server
- Two states machine
 - Push state
 - Pull state

Future work

- Introduction
- 2 Challenge
- (key, value) Vector
- Range push and pul
- 6 Reduce idle

Future work

Future work

- How to fit computation time and message communication time.
- If Computation time is not fixed.
- Implement parameter server.

Sliding Window Method Parallel SGD

- Introduction
- 2 Challenge
- (key, value) Vector
- Range push and pull
- 6 Reduce idle

Sliding Window Method Parallel SGD

Sliding Window

- Sliding Window is an integer range indicating the valid interations.
- Clients can not push parameters with the invalid interations.
- Server checks the low bound of the sliding window when the clients push parameters.
- Shift the sliding window.

Sliding Window Method Parallel SGD

Sliding Window

- Time complexity
 - Clients push parameters: O(1)
 - Server check low bound: O(1)
- Space complexity: O(l) which I is the length of the sliding window.
 - ullet Independent on the # of clients thus has good scalibility.

Sliding Window Method Parallel SGD

BSP

- Bulk Synchrnous Parallel
- Clients can not continue to the next iteration until the server receives all gradients.
- It guarantees converage.

Sliding Window Method Parallel SGD

ASP

- Asynchronous Parallel
- Clients continue to the next iteration without waiting for each other.
- It may not converage.
- It can be up to 10X slower when the heterogeneity increase.

Sliding Window Method Parallel SGD

SSP

- Stale Synchrnous Parallel
- The faster client can not go ahead the slowest one more than a predefined staleness.
- SGD usually uses this method.
- It can be slower when the heterogeneity increase.

Sliding Window Method Parallel SGD

Constant learning rate, Dynamic learning rate

CONSGD

- A constant global learning rate and multiplies it to each local update.
- DYNSGC
 - To further improve performance over CONSGD.
 - Server dynamic update global learning rate basing on maximun staleness.

Angel Parameter Server Spliting gradients

- Introduction
- 2 Challenge
- (key, value) Vector
- Range push and pul
- 6 Reduce idle

Angel Parameter Server Spliting gradients

Constant learning rate, Dynamic learning rate

CONSGD

- A constant global learning rate and multiplies it to each local update.
- DYNSGC
 - To further improve performance over CONSGD.
 - Server dynamic update global learning rate basing on maximun staleness.

Angel Parameter Server Spliting gradients

Things they do not consider

• The workers with smaller interations have larger local learning rate.

•
$$w_{t+1} = w_t + \frac{\eta}{\sqrt{\sum_{i < t+1} (g_i)^2}} g_{t+1}$$

Angel Parameter Server Spliting gradients

Spliting gradients

- Spliting gradient into 'direction' and 'distance'.
 - ullet Distance: |gradient|.
 - Dircetion: $\frac{gradient}{|gradient|}$
 - Gradient = Distance * Direction
- Scheduling distance of each gradient.
 - Do not change the distance of the sum of all latest gradients of each worker.

Computing distances

 Server computes the the following t when push commands occur.

•
$$t | \sum_{i=0}^{M} \alpha_c \frac{g_c^i}{|g_c^i|} | = | \sum_{i=0}^{M} g_c^i |$$

 $\bullet \ t*\alpha_c$ is the new distance of g_c^i