

Lecture 5

Building tables

Weekly Goals

- Monday:
 - Python basics
 - Tables
- Wednesday:
 - Types of data
 - Arrays
- Today:
 - Creating new tables
 - Manipulating columns of tables

Announcements

Arrays

Arrays

An array contains a sequence of values

- All elements of an array should have the same type
- Arithmetic is applied to each element individually
- Adding arrays adds elements (if same length!)
- A column of a table is an array

Ranges

A range is an array of consecutive numbers

- np.arange (end):
 An array of increasing integers from 0 up to end
- np.arange(start, end):
 An array of increasing integers from start up to end
- np.arange(start, end, step):
 A range with step between consecutive values

The range always includes start but excludes end

Ways to create a table

- Table.read_table(filename) reads a table from a spreadsheet
- Table() an empty table

 and... select, where, sort and so on all create new tables

Example

W. E. B. Du Bois, 1868-1963

- Scholar, historian, activist, and data scientist
- NAACP founder
- Made a series of visualizations for the 1900 Paris Exposition
 - Goal: change the way people see
 Black Americans
 - Hundreds of photographs and patents
 - 60+ handmade graphs in 3 months

Discussion Question

Use the table functions we learned this week to find the income bracket ("class") that spent the highest percentage of their income on rent.

Table Methods

- Creating and extending tables:
 - Table().with column and Table.read table
- Finding the size: num rows and num columns
- Referring to columns: labels, relabeling, and indices
 - labels and relabeled; column indices start at 0
- Accessing data in a column
 - o column takes a label or index and returns an array
- Using array methods to work with data in columns
 - o item, sum, min, max, and so on
- Creating new tables containing some of the original columns:
 - o select, drop

Another famous visualization

Bonus Example

Charles Joseph Minard, 1781-1870

- French civil engineer who created one of the greatest graphs of all time
- Visualized Napoleon's 1812 invasion of Russia, including
 - the number of soldiers
 - the direction of the march
 - latitude and longitude
 - temperature on the return journey
 - dates in November and December

Some of Minard's Data

Longitude	Latitude	City	Direction	Survivors
24	54.9	Kaunas	Advance	340000
30.2	55.2	Vitebsk	Advance	175000
32	54.8	Smolensk	Advance	145000
37.6	55.8	Moscow	Advance	100000
34.3	55.2	Vyazma	Retreat	55000
32	54.6	Smolensk	Retreat	24000
30.4	54.4	Orsha	Retreat	20000
26.8	54.3	Maladyechna	Retreat	12000
24.1	54.4	Kaunas	Retreat	4000

Discussion Question

Use the table functions we learned this week to find the southernmost city along the army's retreat.