第1次习题课题目解答

第 1 部分 课堂内容回顾

1. 确界

- (1) 非空实数集 A 的最小上界 (若存在) 叫作 A 的上确界, 记作 $\sup A$; 它的最大下界 (若存在) 叫作 A 的下确界, 记作 $\inf A$.
- (2) 上确界的刻画: $\xi = \sup A$ 当且仅当 ξ 为 A 的上界且 $\forall \varepsilon > 0$, $\exists x \in A$ 使得 $x > \xi \varepsilon$. 否定形式: $\xi \neq \sup A$ 当且仅当 ξ 不是 A 的上界或 $\exists \varepsilon > 0$ 使得 $\forall x \in A$, $x \leqslant \xi \varepsilon$.
- (3) 上确界与下确界的关系: $\sup A = -\inf(-A)$.
- (4) 确界定理: 有上界的非空数集必有上确界; 有下界的非空数集必有下确界.

2. 数列极限的定义

- (1) **极限的定义:** 称数列 $\{a_n\}$ 有极限 $A \in \mathbb{R}$, 如果 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$, 我们 均有 $|a_n A| < \varepsilon$. 也称该数列收敛于 A, 记作 $a_n \to A$ $(n \to \infty)$ 或者 $\lim_{n \to \infty} a_n = A$. 数列有极限也称为收敛, 否则称为发散.
- (2) **否定形式:** 数列 $\{a_n\}$ 不收敛到 $A \in \mathbb{R}$ 当且仅当 $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists n_N > N$ 满足 $|a_{n_N} A| \ge \varepsilon_0$.

3. 数列极限的性质

- (1) $\lim_{n \to \infty} a_n = A$ 当且仅当 $\lim_{n \to \infty} |a_n A| = 0$.
- (2) 从某项开始取常数的数列收敛到该常数, 反之不对.
- (3) 若 $\lim_{n\to\infty} a_n = 0$ 而数列 $\{b_n\}$ 有界, 则 $\lim_{n\to\infty} a_n b_n = 0$.
- (4) 唯一性: 若数列收敛,则其极限唯一.
- (5) 有限韧性: 改变数列的有限项不改变其敛散性.
- (6) **均匀性:** 数列收敛当且仅当它的任意子列均收敛到同一个实数. **该结论常用来证明数列不收敛.**
- (7) 有界性: 收敛的数列有界.
- (8) 局部保序: 设 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$.
 - (a) 若 A > B, 则 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n > b_n$.
 - (b) 若 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n \ge b_n$, 则 $A \ge B$.
- (9) 局部保号: 设 $\lim a_n = A$.
 - (a) 若 A > 0, 则 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n > 0$.
 - (b) 若 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n \ge 0$, 则 $A \ge 0$.
 - (c) 若 $A \neq 0$, 则 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n \neq 0$.

- (10) 四则运算法则: 若 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, 则
 - (a) $\forall \alpha, \beta \in \mathbb{R}$, $\lim_{n \to \infty} (\alpha a_n + \beta b_n) = \alpha A + \beta B$;
 - (b) $\lim_{n \to \infty} a_n b_n = (\lim_{n \to \infty} a_n)(\lim_{n \to \infty} b_n) = AB;$
 - (c) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{A}{B} (\stackrel{\text{H}}{=} B \neq 0).$
- (11) **夹逼原理:** 假设数列 $\{a_n\},\{b_n\},\{x_n\}$ 满足下列条件:
 - (a) $\exists n_0 > 0$ 使得 $\forall n > n_0$, 均有 $a_n \leqslant x_n \leqslant b_n$;
 - (b) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = A$.

则数列 $\{x_n\}$ 收敛且 $\lim_{n\to\infty} x_n = A$.

(12) 若数列 $\{a_n\}$ 非负且收敛于 A, 则 $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{A}$.

4. 典型例题

- (1) $\lim_{n \to \infty} \frac{1}{n} = 0;$
- (2) $\lim_{n \to \infty} q^n = 0 \ (0 < |q| < 1);$
- (3) $\lim_{n \to \infty} \sqrt[n]{n} = 1;$
- (3) $\lim_{n \to \infty} \sqrt[n]{a} = 1 \ (a > 0);$
- (4) $\lim_{n \to \infty} \left(\sum_{k=1}^{m} a_k^n \right)^{\frac{1}{n}} = \max_{1 \le k \le m} a_k, \, \sharp \, \forall \, a_k \ge 0;$
- (5) $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1}.$

5. 典型数列的增长速度比较

- (1) 对数函数比常数增长得更快: $\lim_{n\to\infty}\frac{1}{\log n}=0$;
- (2) 幂函数比对数函数增长得更快: $\lim_{n\to\infty} \frac{\log n}{n^{\alpha}} = 0$ (其中 $\alpha > 0$);
- (3) 指数函数比幂函数增长得更快: $\lim_{n\to\infty} \frac{n^{\alpha}}{a^n}=0$ (其中 $\alpha\in\mathbb{R},\ a>1$);
- (4) 连乘积比指数函数增长得更快: $\lim_{n\to\infty}\frac{a^n}{n!}=0$ $(a\in\mathbb{R})$;
- (5) $\lim_{n \to \infty} \frac{n!}{n^n} = 0$, $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$.
- (6) 平均性: 若 $\lim_{n \to \infty} a_n = A$, 则 $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A$.

6. 单调有界定理

- (1) 单调有界定理: 单调有界数列收敛; 单调无界数列有极限.
- (2) 应用单调有界定理的典型例子:

(a)
$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1}$$
, 并且 $\forall n \ge 1$, 我们有
$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}, \ \frac{1}{n+1} < \log\left(1 + \frac{1}{n}\right) < \frac{1}{n}.$$

- (b) 数列 $\{\sum_{k=1}^{n} \frac{1}{k^2}\}$ 收敛.
- (c) 常用于计算由递归关系定义的数列的极限:

(i)
$$\[\] c > 0, \ a_1 = \sqrt{c} \] \] \forall n \geqslant 1, \ a_{n+1} = \sqrt{c + a_n}. \] \]$$

$$\lim_{n \to \infty} a_n = \frac{1}{2} (1 + \sqrt{1 + 4c}).$$

(ii) 设 $b_1 \ge a_1 \ge 0$. $\forall n \ge 1$, 归纳定义 $a_{n+1} = \sqrt{a_n b_n}$, $b_{n+1} = \frac{1}{2}(a_n + b_n)$. 则数列 $\{a_n\}$ 和 $\{b_n\}$ 收敛到同一个极限.

7. Stolz 定理及其应用

- (1) Stolz 定理: 设 $A \in \mathbb{R} \cup \{\pm \infty\}$.
 - (a) 若 $\{b_n\}$ 严格增趋于 $+\infty$ 且 $\lim_{n\to\infty} \frac{a_n a_{n-1}}{b_n b_{n-1}} = A$, 则 $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.
 - (b) 若 $\{b_n\}$ 严格单调趋于 0 且 $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} \frac{a_n a_{n-1}}{b_n b_{n-1}} = A$, 则 $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.
- (2) Stolz 定理的典型应用:
 - (a) 若 $\lim_{n \to \infty} x_n = A$, 则 $\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = A$. (b) $\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = 1$.

 - (c) $\lim_{n \to \infty} \frac{1+2^k+3^k+\dots+n^k}{n^{k+1}} = \frac{1}{k+1} \ (k \in \mathbb{N}).$

8. 关于实数系的基本定理

下述定理等价:

- (1) 确界定理: 有上界的非空集合有上确界, 有下界的非空集合有下确界.
- (2) 单调有界定理: 单调有界数列收敛.
- (3) 区间套定理:区间长度趋于 0 的闭区间套的交为单点集.
- (4) Cauchy 判别准则: 数列 $\{x_n\}$ 收敛当且仅当它为 Cauchy 数列.
 - (a) Cauchy 数列的定义:
 - (i) $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall m, n > N$, 均有 $|x_m x_n| < \varepsilon$;
 - (ii) $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$ 以及 $\forall p \ge 1$, 均有 $|x_{n+p} x_n| < \varepsilon$;
 - (b) Cauchy 数列定义的否定表述:
 - (i) $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists m, n > N$ 满足 $|x_m x_n| \ge \varepsilon_0$.
 - (ii) $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists n > N$ 且 $\exists p > 0$ 满足 $|x_{n+p} x_n| \geqslant \varepsilon_0$.
- (5) Cauchy 判别准则的典型应用:
 - (a) 设 a > 0, 0 < q < 1 且 $\forall n \ge 1$, 均有 $|x_{n+1} x_n| \le aq^n$. 则数列 $\{x_n\}$ 收敛.
 - (b) 数列 $\left\{\sum_{k=1}^{n} \frac{(-1)^k}{k^2}\right\}$ 收敛.
 - (c) $\forall n \ge 1$, 令 $x_n = \prod_{k=1}^n \left(1 + \frac{1}{2^k}\right)$. 则数列 $\{x_n\}$ 收敛.
 - (d) 若 $\exists C > 0$ 使得 $\forall n \ge 1, y_n := \sum_{k=1}^n |x_{k+1} x_k| < C$, 则数列 $\{x_n\}$ 收敛.
 - (e) 设 $0 \le \alpha \le 1$, 且 $\forall n \ge 1$, $x_{n+1} \ge x_n + \frac{1}{n^{\alpha}}$. 则数列 $\{x_n\}$ 发散.

第 2 部分 习题课题目解答

1. 求证: 具有收敛子列的单调数列收敛.

证明: 设 $\{a_n\}$ 为单调数列. 不失一般性, 我们可假设该数列递增, 否则我们可考虑 $\{-a_n\}$. 设其子列 $\{a_{k_n}\}$ 收敛到 A. 则 $\forall \varepsilon > 0$, $\exists K > 0$ 使得 $\forall n > K$, 均有 $|a_{k_n} - A| < \varepsilon$, 也即 $A - \varepsilon < a_{k_n} < A + \varepsilon$. 令 $N = k_{K+1} > K$. 则 $\forall n > N$, 由于 $k_{K+1} \le n \le k_n$, 则由单调递增性可知

$$A - \varepsilon < a_{k_{K+1}} \le a_n \le a_{k_n} < A + \varepsilon,$$

故 $|a_n - A| < \varepsilon$. 因此数列 $\{a_n\}$ 也收敛到 A.

- 2. 计算下列极限:
 - (1) $\lim_{n \to \infty} (\sqrt{2n^2 + 2n 3} \sqrt{2n^2 + n}),$
 - (2) $\lim_{n \to \infty} \sqrt{n}(\sqrt{n+1} \sqrt{n}),$
 - (3) $\lim_{n \to \infty} \sin^2\left(\pi\sqrt{n^2 + \sqrt{n}}\right)$,
 - (4) $\lim_{n \to \infty} (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}})$ (|x| < 1),
 - (5) $\lim_{n\to\infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}}$,
 - (6) $\lim_{m \to \infty} \lim_{n \to \infty} \left(\cos(2\pi m! x) \right)^n (x \in \mathbb{R}).$
- 解: (1) 由四则运算法则可得

$$\lim_{n \to \infty} (\sqrt{2n^2 + 2n - 3} - \sqrt{2n^2 + n}) = \lim_{n \to \infty} \frac{(2n^2 + 2n - 3) - (2n^2 + n)}{\sqrt{2n^2 + 2n - 3} + \sqrt{2n^2 + n}}$$

$$= \lim_{n \to \infty} \frac{1 - \frac{3}{n}}{\sqrt{2 + \frac{2}{n} - \frac{3}{n^2}} + \sqrt{2 + \frac{1}{n}}} = \frac{1}{2\sqrt{2}}.$$

(2)
$$\lim_{n \to \infty} \sqrt{n} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = \frac{1}{2}.$$

 $(3) \forall n \geq 1$, 我们有

$$0 \leqslant \sin^2(\pi\sqrt{n^2 + \sqrt{n}}) = \sin^2(\pi\sqrt{n^2 + \sqrt{n}} - \pi n)$$
$$= \left(\sin\left(\frac{\pi\sqrt{n}}{\sqrt{n^2 + \sqrt{n}} + n}\right)\right)^2$$
$$\leqslant \left(\frac{\pi\sqrt{n}}{\sqrt{n^2 + \sqrt{n}} + n}\right)^2 \leqslant \frac{\pi^2}{n}.$$

于是由夹逼原理可知 $\lim_{n\to\infty}\sin^2(\pi\sqrt{n^2+\sqrt{n}})=0.$

(4) 由于
$$|x| < 1$$
, 则 $\lim_{n \to \infty} x^n = 0$, 故

$$\lim_{n \to \infty} (1+x)(1+x^2)(1+x^4) \cdots (1+x^{2^{n-1}})$$

$$= \lim_{n \to \infty} \prod_{k=0}^{n-1} \frac{1-x^{2^{k+1}}}{1-x^{2^k}} = \lim_{n \to \infty} \frac{1-x^{2^n}}{1-x} = \frac{1}{1-x}.$$

(5)
$$\lim_{n \to \infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} = \lim_{n \to \infty} \frac{1}{3} \cdot \frac{1 + (-\frac{2}{3})^n}{1 + (-\frac{2}{3})^{n+1}} = \frac{1}{3}.$$

 $(6) \ \ \ \, \hbox{$\not =$} \ x \in \mathbb{Q}, \ \mathbb{M} \ \ \exists p,q \in \mathbb{Z} \ (q \geqslant 1) \ \ \hbox{$\not =$} \ \ p,q \ \ \underline{\mathbf{5}} \$ $m! x \in \mathbb{Z}$, 从而 $\cos(2\pi m! x) = 1$, 于是 $\forall m \geqslant q$, 均有 $\lim_{n \to \infty} \left(\cos(2\pi m! x)\right)^n = 1$, 从而我们有 $\lim_{m\to\infty} \lim_{n\to\infty} \left(\cos(2\pi m! x)\right)^n = 1$

若 $x \notin \mathbb{Q}$, 则 $\forall m \geqslant 1$, $|\cos(2\pi m! x)| < 1$, 于是 $\lim_{n \to \infty} (\cos(2\pi m! x))^n = 0$, 进而可得 $\lim_{m\to\infty} \lim_{n\to\infty} \left(\cos(2\pi m! x)\right)^n = 0.$

综上所述可知

$$\lim_{m \to \infty} \lim_{n \to \infty} \left(\cos(2\pi m! x) \right)^n = \begin{cases} 1 & \text{ if } x \in \mathbb{Q}, \\ 0 & \text{ if } x \notin \mathbb{Q}. \end{cases}$$

3. 计算下列极限:

(1)
$$\lim_{n \to \infty} \left(\left(\sum_{k=1}^m a_k^n \right)^{\frac{1}{n}} + \left(\sum_{k=1}^m a_k^{-n} \right)^{\frac{1}{n}} \right), \not\exists \, \forall \, a_k > 0 \ (1 \leqslant k \leqslant m).$$

(2)
$$\lim_{n\to\infty} \sum_{k=1}^{n} ((n^k+1)^{-\frac{1}{k}} + (n^k-1)^{-\frac{1}{k}}).$$

(3)
$$\lim_{n \to \infty} (\sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \cdots \sqrt[2^n]{2}).$$

$$(4) \lim_{n \to \infty} (1 - \frac{1}{n})^n$$
.

(3)
$$\lim_{n \to \infty} (\sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \cdots \sqrt[2^n]{2}).$$

(4) $\lim_{n \to \infty} (1 - \frac{1}{n})^n.$
(5) $\lim_{n \to \infty} (1 - \frac{1}{\sqrt[n]{2}}) \cos(n^{10}!).$

(6)
$$\lim_{n \to \infty} \left((\sin n!) \left(\frac{n-1}{n^2+1} \right)^{10} - \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} \right) \frac{2n^2+1}{n^2-1} \right).$$

(7)
$$\lim_{n\to\infty} (1+2^n+3^n)^{\frac{1}{n}}$$
.

$$(7) \lim_{n \to \infty} (1 + 2^n + 3^n)^{\frac{1}{n}}.$$

$$(8) \lim_{n \to \infty} \underbrace{\sin \sin \cdots \sin}_{n} x \ (x \in \mathbb{R}).$$

(9)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k}$$
.

(10)
$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \sqrt[n]{k}$$
.

解: (1) 令 $a = \min_{1 \le k \le m} a_k$, $A = \max_{1 \le k \le m} a_k$, 则 $\forall n \ge 1$, 我们有

$$A + \frac{1}{a} \leqslant \left(\sum_{k=1}^{m} a_k^n\right)^{\frac{1}{n}} + \left(\sum_{k=1}^{m} a_k^{-n}\right)^{\frac{1}{n}} \leqslant \left(A + \frac{1}{a}\right) \sqrt[n]{m}.$$

又 $\lim_{n\to\infty} \sqrt[n]{m} = 1$,则由夹逼原理得 $\lim_{n\to\infty} \left(\left(\sum\limits_{k=1}^m a_k^n \right)^{\frac{1}{n}} + \left(\sum\limits_{k=1}^m a_k^{-n} \right)^{\frac{1}{n}} \right) = A + \frac{1}{a}$.

(2)
$$\forall n \geqslant 1, \ n^k \leqslant n^k + 1 \leqslant (n+1)^k,$$
 故 $\frac{1}{n+1} \leqslant (n^k+1)^{-\frac{1}{k}} \leqslant \frac{1}{n},$ 于是

$$\frac{1}{1+\frac{1}{n}} = \frac{n}{n+1} \leqslant \sum_{k=1}^{n} (n^k + 1)^{-\frac{1}{k}} \leqslant 1,$$

进而由夹逼原理可知 $\lim_{n\to\infty}\sum_{k=1}^{n}(n^k+1)^{-\frac{1}{k}}=1.$

同样地, $\forall n \geq 2$, $(n-1)^k \leq n^k - 1 \leq n^k$, 故 $\frac{1}{n} \leq (n^k - 1)^{-\frac{1}{k}} \leq \frac{1}{n-1}$, 于是

$$1 \leqslant \sum_{k=1}^{n} (n^k - 1)^{-\frac{1}{k}} \leqslant \frac{n}{n-1} = \frac{1}{1 - \frac{1}{n}}$$

从而由夹逼原理可知 $\lim_{n\to\infty}\sum_{k=1}^{n}(n^k-1)^{-\frac{1}{k}}=1.$

最后由四则运算法则可得 $\lim_{n\to\infty}\sum_{k=1}^{n}\left((n^k+1)^{-\frac{1}{k}}+(n^k-1)^{-\frac{1}{k}}\right)=2.$

(3)
$$\forall n \geqslant 1$$
,我们有 $\sqrt{2}\sqrt[4]{2}\sqrt[8]{2}\cdots\sqrt[2^n]{2}=2^{\sum\limits_{k=1}^n\frac{1}{2^k}}=2^{1-\frac{1}{2^{n+1}}}$. 注意到
$$\lim_{n\to\infty}2^{\frac{1}{2^{n+1}}}=\lim_{n\to\infty}2^{\frac{1}{n}}=1,$$

于是 $\lim_{n\to\infty} \sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \cdots \sqrt[2^n]{2} = 2.$

(4) 由四则运算法则可知

$$\lim_{n \to \infty} (1 - \frac{1}{n})^n = \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n-1})^n} = \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})^{n+1}} = \frac{1}{e}.$$

- (5) $\forall n \geqslant 1$, 我们有 $|(1-\frac{1}{\sqrt[n]{2}})\cos(n^{10}!)| \leqslant |1-\frac{1}{\sqrt[n]{2}}|$. 由于 $\lim_{n\to\infty}\sqrt[n]{2}=1$, 于是由夹逼原理可得 $\lim_{n\to\infty}(1-\frac{1}{\sqrt[n]{2}})\cos(n^{10}!)=0$.
 - $(6) \forall n \geq 1$, 我们有 $|(\sin n!)(\frac{n-1}{n^2+1})^{10}| \leq \frac{1}{n^{10}}$. 于是由夹逼原理可得

$$\lim_{n \to \infty} \left((\sin n!) \left(\frac{n-1}{n^2+1} \right)^{10} - \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} \right) \frac{2n^2+1}{n^2-1} \right)$$

$$= \lim_{n \to \infty} - \left(\sum_{k=1}^{n-1} \frac{1}{k(k+1)} \right) \cdot \frac{2 + \frac{1}{n^2}}{1 - \frac{1}{n^2}} = \lim_{n \to \infty} - \left(\sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) \right) \cdot \frac{2 + \frac{1}{n^2}}{1 - \frac{1}{n^2}}$$

$$= \lim_{n \to \infty} - \left(1 - \frac{1}{n} \right) \frac{2 + \frac{1}{n^2}}{1 - \frac{1}{n^2}} = -2.$$

- $(7) \ \forall n \geqslant 1, \ 我们有 \ 3 \leqslant (1+2^n+3^n)^{\frac{1}{n}} \leqslant 3\sqrt[n]{3}. \ \ \mathtt{再注意到} \ \lim_{n \to \infty} \sqrt[n]{3} = 1,$ 于是由夹逼原理可知 $\lim_{n \to \infty} (1+2^n+3^n)^{\frac{1}{n}} = 3.$
 - (8) $\forall x \in \mathbb{R}$ 以及 $\forall n \geqslant 1$, 令 $x_n = \underbrace{\sin \sin \cdots \sin}_n x$, 则 $x_{n+1} = \sin x_n$.

若 $\sin x \geqslant 0$,则 $x_2 = \sin \sin x \in [0, \sin 1)$,从而 $\forall n \geqslant 2$,均有 $x_n \geqslant 0$,并且 $x_{n+1} = \sin x_n \leqslant x_n$. 由单调有界定理知数列 $\{x_n\}$ 收敛. 设其极限为 a. 由于 $\forall n \geqslant 1$,均有 $x_{n+1} = \sin x_n$. 故 $a = \sin a$. 由保序性得 $0 \leqslant a \leqslant 1$,则 a = 0.

若 $\sin x < 0$, 则 $\sin(-x) > 0$, 进而可知

$$\lim_{n \to \infty} \underbrace{\sin \sin \cdots \sin}_{n} x = -\lim_{n \to \infty} \underbrace{\sin \sin \cdots \sin}_{n} (-x) = 0.$$

从而 $\forall x \in \mathbb{R}$, 均有 $\lim_{n \to \infty} \underbrace{\sin \sin \cdots \sin}_{n} x = 0$.

 $(9) \forall n \geq 1$, 我们有

$$\frac{1}{2} = \sum_{k=1}^{n} \frac{k}{n^2 + n} \leqslant \sum_{k=1}^{n} \frac{k}{n^2 + k} \leqslant \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{2n}(n+1) = \frac{1}{2} \cdot (1 + \frac{1}{n}),$$

于是由夹逼原理可知 $\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2+k}=\frac{1}{2}$.

(10)
$$\lim_{n \to \infty} \sum_{k=1}^{10} \sqrt[n]{k} = \sum_{k=1}^{10} \lim_{n \to \infty} \sqrt[n]{k} = 10.$$

4. 判断下列数列 $\{x_n\}$ 的收敛性:

(1)
$$x_n = \frac{(-1)^n n}{n+1}$$
, (2) $x_n = n^{(-1)^n}$.

解: (1) 由于 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} \frac{2n}{2n+1} = 1$, 且 $\lim_{n\to\infty} x_{2n+1} = -\lim_{n\to\infty} \frac{2n+1}{2n+2} = -1$, 故数列 $\{x_n\}$ 发散.

(2) $\forall n \ge 1$, 我们有 $x_{2n} = 2n$, 由此可知数列 $\{x_n\}$ 无界, 因此发散.

5. 假设
$$\forall n \geq 1$$
, 均有 $x_n > 0$ 且 $\lim_{n \to \infty} x_n = a$. 求证: $\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \cdots x_n} = a$.

证明: $\forall n \ge 1$, 我们均有

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} \leqslant \sqrt[n]{x_1 x_2 \dots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}.$$

若 a=0, 则 $0\leqslant \sqrt[n]{x_1x_2\cdots x_n}\leqslant \frac{x_1+x_2+\cdots+x_n}{n}.$ 由 Stolz 定理与夹逼原理可知

$$\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \cdots x_n} = 0 = a.$$

若 $a \neq 0$, 则 $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}$, 从而由 Stolz 定理可知

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a, \lim_{n \to \infty} \frac{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}{n} = \frac{1}{a},$$

进而由夹逼原理可得 $\lim_{n\to\infty} \sqrt[n]{x_1x_2\cdots x_n} = a$.

6. 假设
$$\forall n \geqslant 1$$
, 均有 $x_n > 0$ 且 $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = a$. 求证: $\lim_{n \to \infty} \sqrt[n]{x_n} = a$.

证明: 令 $y_1=x_1,\ y_n=\frac{x_n}{x_{n-1}}\ (n\geqslant 2).$ 则 $\lim_{n\to\infty}y_n=a.$ 由此可得

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \sqrt[n]{y_1 y_2 \cdots y_n} = \lim_{n \to \infty} y_n = a.$$

7. 求证:

(1)
$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = e.$$

(2)
$$\lim_{n \to \infty} \left(\frac{1^p + 2^p + \dots + n^p}{n^p} - \frac{n}{p+1} \right) = \frac{1}{2}$$
 (其中 $p \ge 1$ 为整数).

证明: (1) $\forall n \ge 1$, 令 $x_n = \frac{n^n}{n!} > 0$. 则我们有

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$$

于是 $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \frac{x_{n+1}}{x_n} = e.$

$$(2) \forall n \geqslant 1, \ \diamondsuit \ x_n = (p+1)(1^p + 2^p + \dots + n^p) - n^{p+1}, \ y_n = (p+1)n^p, \ \mathbb{N}$$

$$\frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \frac{(p+1)(n+1)^p - (n+1)^{p+1} + n^{p+1}}{(p+1)\left((n+1)^p - n^p\right)}$$

$$= \frac{(p+1)\sum_{k=0}^p \binom{p}{k}n^k - \sum_{k=0}^p \binom{p+1}{k}n^k}{p(p+1)n^{p-1} + (p+1)\sum_{k=0}^{p-2} \binom{p}{k}n^k}$$

$$= \frac{\frac{1}{2}p(p+1)n^{p-1} + \sum_{k=0}^{p-2} \binom{p}{k}n^k - \sum_{k=0}^{p-2} \binom{p+1}{k}n^k}{p(p+1)n^{p-1} + (p+1)\sum_{k=0}^{p-2} \binom{p}{k}n^k}$$

$$= \frac{\frac{1}{2}p(p+1) + \sum_{k=0}^{p-2} \binom{p}{k}n^{k-p+1} - \sum_{k=0}^{p-2} \binom{p+1}{k}n^{k-p+1}}{p(p+1) + (p+1)\sum_{k=0}^{p-2} \binom{p}{k}n^{k-p+1}}.$$

于是由 Stolz 定理以及四则运算法则可得

$$\lim_{n \to \infty} \left(\frac{1^p + 2^p + \dots + n^p}{n^p} - \frac{n}{p+1} \right) = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \frac{1}{2}.$$

8. 设数列 $\{x_n\}$ 满足 $x_1 = 1$, $x_{n+1} = \frac{1}{1+x_n}$. 求 $\lim_{n \to \infty} x_n$.

证明: 方法 1. 由题设立刻可知 $\forall n \geq 1$, 均有 $x_n \geq 0$.

下证 $\lim_{n \to \infty} x_n = a := \frac{\sqrt{5}-1}{2}$. 注意到 $a = \frac{1}{1+a}$, 则 $\forall n \geqslant 1$, 我们有

$$|x_{n+1} - a| = \left| \frac{1}{1+x_n} - \frac{1}{1+a} \right| = \frac{|x_n - a|}{(1+x_n)(1+a)} \le \frac{1}{1+a} |x_n - a|,$$

于是 $|x_n-a| \leq \left(\frac{1}{1+a}\right)^{n-1} |x_1-a|$, 进而由夹逼原理立刻可知所证结论成立.

注: 若所求极限 $\lim_{n\to\infty}x_n$ 存在且等于 a, 则由四则运算法则立刻可得 $a=\frac{1}{1+a}$. 再由极限的保号性知 $a\geqslant 0$, 故 $a=\frac{\sqrt{5}-1}{2}$.

方法 2. $\forall n \geq 1$, 定义 $a_n = x_{2n}$, $b_n = x_{2n-1}$. 我们将对 $n \geq 1$ 应用数学 归纳法证明 $0 < a_n \leq a_{n+1} \leq 1$, $0 < b_{n+1} \leq b_n$.

当 n=1 时, $b_1=x_1=1$, $a_1=\frac{1}{1+b_1}=\frac{1}{2}$, $b_2=\frac{1}{1+a_1}=\frac{2}{3}$, $a_2=\frac{1}{1+b_2}=\frac{3}{5}$. 故此时所证结论成立.

假设所证结论对 $n \ge 1$ 成立, 则我们有

$$0 < b_{n+2} = \frac{1}{1 + a_{n+1}} \leqslant \frac{1}{1 + a_n} = b_{n+1},$$

$$0 < a_{n+1} = \frac{1}{1 + b_{n+1}} \leqslant \frac{1}{1 + b_{n+2}} = a_{n+2} \leqslant 1.$$

于是由数学归纳法知所证结论对任意 $n \geqslant 1$ 均成立。由单调有界定理知 $\{a_n\}$ 与 $\{b_n\}$ 收敛,设其极限分别为 A,B. 又 $\forall n \geqslant 1$, $a_n = \frac{1}{1+b_n}$, $b_{n+1} = \frac{1}{1+a_n}$, 则由四则运算法则可得 $A = \frac{1}{1+B}$, $B = \frac{1}{1+A}$, 也即 A + AB = 1, B + AB = 1, 故 A = B. 由保序性可知 $0 \leqslant A \leqslant 1$, 则 $A = \frac{\sqrt{5}-1}{2}$. 由于 $\{x_n\}$ 的奇数项子列与偶数项子列均收敛到 $\frac{\sqrt{5}-1}{2}$, 因此 $\lim_{n \to \infty} x_n = \frac{\sqrt{5}-1}{2}$.

9. 设 $\alpha \geqslant 2$ 为常数. $\forall n \geqslant 1$, 令 $x_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$. 求证: 数列 $\{x_n\}$ 收敛.

证明: 方法 1. 由于数列 $\{x_n\}$ 单调递增且 $\forall n \geq 1$, 均有

$$x_n \leqslant \sum_{k=1}^n \frac{1}{k^2} \leqslant 1 + \sum_{k=2}^n \frac{1}{k(k-1)}$$

= $1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 2 - \frac{1}{n} < 2.$

于是由单调有界定理可知数列 $\{x_n\}$ 收敛.

方法 2. $\forall \varepsilon > 0$, 令 $N = \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix} + 1$, 则 $\forall n > N$ 以及 $\forall p > 0$, 我们有

$$|x_{n+p} - x_n| = \sum_{k=n+1}^{n+p} \frac{1}{k^{\alpha}} \le \sum_{k=n+1}^{n+p} \frac{1}{k^2} \le \sum_{k=n+1}^{n+p} \frac{1}{k(k-1)}$$
$$= \sum_{k=n+1}^{n+p} \left(\frac{1}{k-1} - \frac{1}{k}\right) = \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n} < \varepsilon,$$

故 $\{x_n\}$ 为 Cauchy 数列, 从而收敛.

10. 设 $\{a_{n-1}\}$ 有界且 $\forall n \ge 1$, $b_n = \sum_{k=0}^n a_k q^k (|q| < 1)$. 求证: 数列 $\{b_n\}$ 收敛.

证明: 由题设可知, $\exists M > 0$ 使得 $\forall n \ge 0$, 均有 $|a_n| < M$. $\forall \varepsilon > 0$, 令

$$N = \left| \left[\frac{\log \frac{\varepsilon (1 - |q|)}{M}}{\log |q|} \right] \right| + 1,$$

则 $\forall n > N$ 以及 $\forall p > 0$, 我们有

$$|b_{n+p} - b_n| = \left| \sum_{k=n+1}^{n+p} a_k q^k \right| \leqslant \sum_{k=n+1}^{n+p} |a_k| |q|^k \leqslant M \sum_{k=n+1}^{n+p} |q|^k$$
$$= M \frac{|q|^{n+1} (1 - |q|^p)}{1 - |q|} \leqslant M \frac{|q|^{n+1}}{1 - |q|} < \varepsilon,$$

则 $\{b_n\}$ 为 Cauchy 数列, 因此收敛.

11. 若 $\forall n \geq 1, |a_{n+1} - a_n| \leq b_n$, 而 $\left\{ \sum_{k=1}^n b_k \right\}$ 收敛, 求证: 数列 $\{a_n\}$ 收敛.

证明: 由于 $\left\{\sum_{k=1}^{n} b_{k}\right\}$ 收敛, 故该数列为 Cauchy 数列, 从而 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$ 以及 $\forall p > 0$, 均有 $\sum_{k=n}^{n+p-1} b_{k} = \left|\sum_{k=1}^{n+p-1} b_{k} - \sum_{k=1}^{n-1} b_{k}\right| < \varepsilon$, 于是

$$|a_{n+p} - a_n| = \Big| \sum_{k=n}^{n+p-1} (a_{k+1} - a_k) \Big| \leqslant \sum_{k=n}^{n+p-1} |a_{k+1} - a_k| \leqslant \sum_{k=n}^{n+p-1} b_k < \varepsilon.$$

故 $\{a_n\}$ 为 Cauchy 数列, 从而收敛.

12. 设 $0 < c \le 1$, $x_1 = \frac{c}{2}$ 且 $\forall n \ge 1$, $x_{n+1} = \frac{c + x_n^2}{2}$, 求数列 $\{x_n\}$ 的极限.

解: 首先对 $n \ge 1$ 用数学归纳法证明 $0 < x_n \le x_{n+1} \le 1$. 由题设知 $0 < x_1 < 1$, $x_1 = \frac{c}{2} \le \frac{c + x_1^2}{2} = x_2 \le 1$. 故所证对 n = 1 成立. 现假设所证结论对 $n \ge 1$ 成立, 则我们有

$$x_{n+2} - x_{n+1} = \frac{1}{2}(x_{n+1}^2 - x_n^2) \ge 0,$$

$$0 < x_{n+2} = \frac{1}{2}(c + x_{n+1}^2) \le \frac{1}{2}(c+1) \le 1.$$

也即所证结论对 n+1 也成立.

于是由数学归纳法可知所证结论对任意整数 $n \ge 1$ 均成立. 则数列 $\{x_n\}$ 单调递增且有上界. 设其极限为 a. 由保序性知 $a \le 1$, 而由递推关系式以及极限的四则运算法则可得 $a = \frac{1}{2}(c + a^2)$. 故 $a = 1 - \sqrt{1-c}$.

13.
$$\forall n \ge 1$$
, 令 $a_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$. 求证: 数列 $\{a_n\}$ 收敛.

证明: 方法 1. $\forall n \ge 1$, 令 $b_n = a_{2n-1}$. 则我们有

$$b_n = \sum_{k=1}^{2n-1} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n-1} \left(\frac{1}{2k-1} - \frac{1}{2k} \right) + \frac{1}{2n-1} > 0,$$

$$b_{n+1} - b_n = -\frac{1}{2n} + \frac{1}{2n+1} < 0.$$

因此 $\{b_n\}$ 单调递减且以 0 为下界, 从而收敛, 也即 $\{a_{2n-1}\}$ 收敛. 又 $\forall n \geq 1$,

$$a_{2n} - a_{2n-1} = -\frac{1}{2n}$$

则数列 $\{a_{2n}\}$ 与数列 $\{a_{2n-1}\}$ 收敛到同一个极限, 由此可得数列 $\{a_n\}$ 收敛.

方法 2. $\forall \varepsilon > 0$, 令 $N = \left[\frac{3}{\varepsilon}\right] + 1$. 则 $\forall n > N$ 以及 $\forall p > 0$, 我们有

$$|a_{n+p} - a_n| = \left| \sum_{k=n+1}^{n+p} \frac{(-1)^{k-1}}{k} \right| = \left| \sum_{k=1}^{p} \frac{(-1)^{n+k-1}}{n+k} \right| = \left| \sum_{k=1}^{p} \frac{(-1)^{k-1}}{n+k} \right|$$

$$\leqslant \sum_{k=1}^{\left[\frac{p}{2}\right]} \left(\frac{1}{n+2k-1} - \frac{1}{n+2k} \right) + \frac{1}{n+p}$$

$$\leqslant \frac{1}{n+1} + \sum_{k=1}^{\left[\frac{p}{2}\right]-1} \left(\frac{1}{n+2k+1} - \frac{1}{n+2k} \right) + \frac{1}{n+2\left[\frac{p}{2}\right]} + \frac{1}{n+p}$$

$$\leqslant \frac{3}{n} < \varepsilon.$$

因此 $\{a_n\}$ 为 Cauchy 数列, 从而收敛.

14. 设 $b_1 > a_1 > 0$. $\forall n \ge 1$, 递归地定义 $a_{n+1} = \frac{2a_nb_n}{a_n+b_n}$, $b_{n+1} = \frac{a_n+b_n}{2}$. 证明:数列 $\{a_n\}$, $\{b_n\}$ 均收敛且有相同极限.

证明: 由定义立刻可知 $\forall n \geq 1$, 我们有 $a_n > 0$, $b_n > 0$. 又由经典不等式得

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \leqslant \frac{a_n + b_n}{2} = b_{n+1}.$$

于是 $\forall n \geqslant 1$, 均有 $a_{n+1} = \frac{2a_nb_n}{a_n+b_n} \geqslant a_n$, $b_{n+1} = \frac{a_n+b_n}{2} \leqslant b_n$. 也即数列 $\{a_n\}$ 单调上升, 而数列 $\{b_n\}$ 单调下降. 特别地, $\forall n \geqslant 1$, 均有 $a_1 \leqslant a_n \leqslant b_n \leqslant b_1$. 则由单调有界定理可知上述两数列均收敛, 设其极限分别为 a,b. 又 $\forall n \geqslant 1$, 我们有 $b_{n+1} = \frac{1}{2}(a_n+b_n)$. 由此立刻可得 $b = \frac{1}{2}(a+b)$, 故 a = b.

15. 设 $x_1 > x_2 > 0$ 且 $\forall n \ge 1$, 均有 $x_{n+2} = \sqrt{x_{n+1}x_n}$, 求数列 $\{x_n\}$ 的极限.

解: 方法 1. 由题设可知 $\forall n \geq 1, x_n > 0$, 于是 $\log x_{n+2} = \frac{1}{2}(\log x_{n+1} + \log x_n)$, 由此可得 $\log x_{n+2} - \log x_{n+1} = -\frac{1}{2}(\log x_{n+1} - \log x_n)$, 故

$$\log x_n = \sum_{k=2}^n (\log x_k - x_{k-1}) + \log x_1$$

$$= \sum_{k=2}^n (-\frac{1}{2})^{k-2} (\log x_2 - \log x_1) + \log x_1$$

$$= \frac{2}{3} \cdot \left(1 - (-\frac{1}{2})^{n-1}\right) (\log x_2 - \log x_1) + \log x_1.$$

则 $\forall n \geqslant 1$,均有 $x_{2n} = \sqrt[3]{x_2^2 x_1} \cdot \left(\left(\frac{x_2}{x_1}\right)^{\frac{2}{3}}\right)^{\frac{1}{2^{2n-1}}}, x_{2n-1} = \sqrt[3]{x_2^2 x_1} \cdot \left(\left(\frac{x_1}{x_2}\right)^{\frac{2}{3}}\right)^{\frac{1}{2^{2n-2}}}.$ 由于 $\lim_{n \to \infty} \left(\left(\frac{x_2}{x_1}\right)^{\frac{2}{3}}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\left(\frac{x_1}{x_2}\right)^{\frac{2}{3}}\right)^{\frac{1}{n}} = 1$,于是我们有

$$\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n-1} = \sqrt[3]{x_2^2 x_1},$$

进而可知 $\lim_{n\to\infty} x_n = \sqrt[3]{x_2^2 x_1}$.

方法 2. $\forall n \geq 1$, 令 $a_n = x_{2n}$, $b_n = x_{2n-1}$. 首先对 $n \geq 1$ 应用数学归纳法证明: $a_n \leq b_n$, $a_n \leq b_{n+1}$. 当 n = 1 时, $a_1 = x_2 < x_1 = b_1$, 则 $b_2 = x_3 = \sqrt{x_1 x_2} > x_1 = a_1$, 得证. 假设所证结论对 $n \geq 1$ 成立, 则

$$a_{n+1} = x_{2n+2} = \sqrt{x_{2n+1}x_{2n}} = \sqrt{b_{n+1}a_n} \leqslant b_{n+1},$$

 $b_{n+2} = x_{2n+3} = \sqrt{x_{2n+2}x_{2n+1}} = \sqrt{a_{n+1}b_{n+1}} \geqslant a_{n+1},$

也即所证结论对 n+1 也成立.

由数学归纳法可知所证结论对所有 $n \ge 1$ 成立. 进而可知 $\forall n \ge 1$, 均有

$$b_{n+1} = x_{2n+1} = \sqrt{x_{2n}x_{2n-1}} = \sqrt{a_n b_n} \leqslant b_n,$$
 $a_{n+1} = x_{2n+2} = \sqrt{x_{2n+1}x_{2n}} = \sqrt{b_{n+1}a_n} \geqslant a_n,$

故数列 $\{a_n\}$ 单调递增且数列 $\{b_n\}$ 单调递减,但 $\forall n \geq 1$,我们有 $a_n \leq b_n$,则数列 $\{a_n\}$ 单调递增且以 b_1 为上界,而数列 $\{b_n\}$ 单调递减且以 a_1 为下界,于是上述两数列均收敛,设其极限分别为 a,b. 由于 $\forall n \geq 1$,我们有

$$x_{2n+2} = \sqrt{x_{2n+1}x_{2n}}, \ x_{2n+1} = \sqrt{x_{2n}x_{2n-1}},$$

也即 $a_{n+1}^2=b_{n+1}a_n$, $b_{n+1}^2=a_nb_n$. 由四则运算法则可知 $a^2=ab$, $b^2=ab$, 因此 a=b, 则数列 $\{x_n\}$ 收敛,设其极限为 A. 又 $\forall n\geqslant 1$, $x_{n+2}^2=x_{n+1}x_n$, 故 $x_{n+2}^2x_{n+1}=x_{n+1}^2x_n$, 也即 $\{x_{n+1}^2x_n\}$ 为常值数列,由四则运算法则可得 $A^3=x_2^2x_1$,故 $A=\sqrt[3]{x_2^2x_1}$.

补充题:

- 16. 下述几种说法, 哪一种可以作为数列 $\{x_n\}$ 收敛的充分必要条件:
 - $(1) \forall \varepsilon > 0, \forall p > 0, \exists N > 0$ 使得 $\forall n > N,$ 均有 $|x_{n+p} x_n| < \varepsilon$.
 - $(2) \forall \varepsilon > 0, \exists p, N > 0$ 使得 $\forall n > N, 均有 |x_{n+p} x_n| < \varepsilon$.
 - (3) $\forall \varepsilon > 0$, $\forall p > 0$ 以及 $\forall N > 0$ 使得 $\forall n \geq N$, 均有 $|x_{n+p} x_n| < \varepsilon$.
 - (4) $\forall p \geq 1$, 均有 $\lim_{n \to \infty} (x_{n+p} x_n) = 0$.
 - (5) $\forall \varepsilon > 0$, $\exists N > 0$, $\not = n > N$,
 - $(6) \forall \varepsilon > 0, \exists N_{\varepsilon} > 0$ 且 $\exists A_{\varepsilon} \in \mathbb{R},$ 只要 $n > N_{\varepsilon},$ 就有 $|x_n A_{\varepsilon}| < \varepsilon.$

解: 第 (5), (6) 种说法可作为数列 $\{x_n\}$ 收敛的充分必要条件, 其余的不行.

(1) 在 Cauchy 准则中, 正整数 N 仅与 ε 有关, 但与正整数 p 无关, 因此 表述 (1) 不能作为数列 $\{x_n\}$ 收敛的充分必要条件.

下面来举例说明. $\forall n \geq 1$, 定义 $x_n = \sum_{k=1}^n \frac{1}{k}$. 由 Cauchy 准则知数列 $\{x_n\}$ 发散. 但 $\forall n, p \geq 1$, 我们均有 $|x_{n+p} - x_n| \leq \frac{p}{n+1}$. 于是 $\forall \varepsilon > 0$ 以及 $\forall p > 0$, 若令 $N = \left\lceil \frac{p}{\varepsilon} \right\rceil + 1$, 则 $\forall n > N$, 均有 $|x_{n+p} - x_n| < \varepsilon$, 即 $\{x_n\}$ 满足 (1).

- $(2)\ \forall n\geqslant 1,\ 定义\ x_n=(-1)^n.\ 则数列\ \{x_n\}\ 发散.\ 但\ \forall \varepsilon>0,\ 若取\ p=2,\ N=1,\ 则\ \forall n>N,\ 均有\ |x_{n+p}-x_n|=0<\varepsilon.$
- (3) 仅常数列能满足 (3). 用反证法. 假设 $\exists k, \ell > 0$ 使得 $k > \ell$ 且 $x_k \neq x_\ell$. 令 $\varepsilon = \frac{1}{2} |x_k x_\ell|$. 取 $p = k \ell$, N = 1, 而 $n = \ell$, 则 $|x_k x_\ell| < \varepsilon$. 矛盾.
 - (4) 表述 (4) 实际上就是表述 (1).

下面来证明第 (5), (6) 种说法均与 Cauchy 准则等价.

Cauchy 准则 \Rightarrow (5): 若 $\{x_n\}$ 为 Cauchy 数列, 那么 $\forall \varepsilon > 0$, $\exists N_1 > 0$ 使得 $\forall n, m > N_1$, 均有 $|x_n - x_m| < \varepsilon$. 若令 $N = N_1 + 1$, 那么 $\forall n > N$, 我们 均有 $|x_n - x_N| < \varepsilon$, 故 (5) 成立.

- (5) ⇒ (6): 由 (5) 可知, $\forall \varepsilon > 0$, $\exists N > 0$, 只要 n > N, 就有 $|x_n x_N| < \varepsilon$. 于是若令 $N_{\varepsilon} = N$, $A_{\varepsilon} = x_N$, 则只要 $n > N_{\varepsilon}$, 就有 $|x_n - A_{\varepsilon}| < \varepsilon$.
- (6) \Rightarrow Cauchy 准则: 由 (6) 立刻可导出, $\forall \varepsilon > 0$, $\exists N_{\frac{\varepsilon}{2}} > 0$ 且 $\exists A_{\frac{\varepsilon}{2}} \in \mathbb{R}$, 只要 $n > N_{\frac{\varepsilon}{2}}$, 就有 $|x_n A_{\frac{\varepsilon}{2}}| < \frac{\varepsilon}{2}$. 令 $N = N_{\frac{\varepsilon}{2}}$, 则 $\forall n, m > N$, 我们有

$$|x_n - x_m| \leqslant |x_n - A_{\frac{\varepsilon}{2}}| + |x_m - A_{\frac{\varepsilon}{2}}| < \varepsilon.$$

17. 设 $\{b_n\}$ 严格增趋于 $+\infty$. 若 $\lim_{n\to\infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = A \in \mathbb{R} \cup \{\pm\infty\}$, 求证: $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.

证明: 首先考虑 $A \in \mathbb{R}$ 的情形. 则 $\forall \varepsilon > 0$, $\exists N_1 > 0$ 使得 $\forall n > N_1$. 均有

$$\left| \frac{a_n - a_{n-1}}{b_n - b_{n-1}} - A \right| < \frac{1}{2}\varepsilon,$$

也即 $(A-\frac{\varepsilon}{2})(b_n-b_{n-1}) < a_n-a_{n-1} < (A-\frac{\varepsilon}{2})(b_n-b_{n-1})$. 由此可得

$$(A - \frac{\varepsilon}{2})(b_n - b_{N_1}) = (A - \frac{\varepsilon}{2}) \sum_{k=N_1+1}^n (b_k - b_{k-1})$$

$$< \sum_{k=N_1+1}^n (a_k - a_{k-1}) = a_n - a_{N_1}$$

$$< (A + \frac{\varepsilon}{2}) \sum_{k=N_1+1}^n (b_k - b_{k-1}) = (A + \frac{\varepsilon}{2})(b_n - b_{N_1}),$$

从而 $\left| \frac{a_n - a_{N_1}}{b_n - b_{N_1}} - A \right| < \frac{\varepsilon}{2}$. 又 $\frac{a_n}{b_n} - A = \frac{a_{N_1} - Ab_{N_1}}{b_n} + \left(1 - \frac{b_{N_1}}{b_n}\right) \left(\frac{a_n - a_{N_1}}{b_n - b_{N_1}} - A\right)$, 故

$$\left|\frac{a_n}{b_n} - A\right| \leqslant \left|\frac{a_{N_1} - Ab_{N_1}}{b_n}\right| + \left|\frac{a_n - a_{N_1}}{b_n - b_{N_1}} - A\right| < \left|\frac{a_{N_1} - Ab_{N_1}}{b_n}\right| + \frac{\varepsilon}{2}.$$

但 $(b_n)_{n\geqslant 0}$ 收敛于 $+\infty$,从而 $\exists N_2>0$ 使得 $\forall n>N_2$,均有 $b_n>\frac{2}{\varepsilon}|a_{N_1}-Ab_{N_1}|$. 令 $N=\max(N_1,N_2)$,则 $\forall n>N$,我们有 $\left|\frac{a_n}{b_n}-A\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. 得证.

下面假设 $A=+\infty$. 至于 $A=-\infty$ 的情形, 可通过考虑数列 $(-a_n)_{n\geqslant 0}$ 将问题转化成 $A=+\infty$ 的情形.

 $\forall M>0$, 由题设条件知, $\exists N_1>0$ 使得 $\forall n>N_1$, 均有 $\frac{a_n-a_{n-1}}{b_n-b_{n-1}}>2M$, 即

$$a_n - a_{n-1} > 2M(b_n - b_{n-1}),$$

由此立刻可得 $a_n - a_{N_1} > 2M(b_n - b_{N_1})$, 进而我们有

$$\frac{a_n}{b_n} > 2M + \frac{a_{N_1} - 2Mb_{N_1}}{b_n}.$$

但 $(b_n)_{n\geqslant 0}$ 趋近于 $+\infty$, 因此 $\exists N_2>0$ 使得 $\forall n>N_2$, 我们有

$$b_n > \frac{1}{M} |a_{N_1} - 2Mb_{N_1}|.$$

再令 $N=\max(N_1,N_2)$, 那么 $\forall n>N$, 我们有 $\frac{a_n}{b_n}>2M-M=M$. 得证.

18. 设 $\{b_n\}$ 严格单调趋于 0. 若 $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = A \in \mathbb{R} \cup \{\pm \infty\}$, 求证: $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.

证明: 不失一般性, 我们可假设 $\{b_n\}$ 严格递减, 否则用 $\{-b_n\}$ 来替代 $\{b_n\}$. 由于 $\{b_n\}$ 严格单调递减趋于 0, 则 $\forall n > 0$, 均有 $b_n > 0$.

首先假设 $A \in \mathbb{R}$. 则 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$, 均有

$$\left| \frac{a_n - a_{n-1}}{b_n - b_{n-1}} - A \right| < \frac{1}{2}\varepsilon,$$

也即我们有 $(A - \frac{\varepsilon}{2})(b_n - b_{n-1}) < a_n - a_{n-1} < (A - \frac{\varepsilon}{2})(b_n - b_{n-1})$. 由此可知, $\forall m > n > N$, 我们均有

$$(A - \frac{\varepsilon}{2})(b_n - b_m) = (A - \frac{\varepsilon}{2}) \sum_{k=n+1}^{m} (b_{k-1} - b_k)$$

$$< \sum_{k=n+1}^{m} (a_{k-1} - a_k) = a_n - a_m$$

$$< (A + \frac{\varepsilon}{2}) \sum_{k=n+1}^{m} (b_{k-1} - b_k) = (A + \frac{\varepsilon}{2})(b_n - b_m).$$

在上式中令 $m \to \infty$ 并利用数列 $\{a_m\}$, $\{b_m\}$ 均趋于 0 可得

$$(A - \frac{\varepsilon}{2})b_n \leqslant a_n \leqslant (A + \frac{\varepsilon}{2})b_n,$$

也即 $\left|\frac{a_n}{b_n} - A\right| \leq \frac{\varepsilon}{2} < \varepsilon$. 由此可知所证结论此时成立.

下面假设 $A=+\infty$. 至于 $A=-\infty$ 的情形, 可通过考虑数列 $(-a_n)_{n\geqslant 0}$ 将问题转化成 $A=+\infty$ 的情形.

 $\forall M>0$,由题设条件知, $\exists N>0$ 使得 $\forall n>N$,均有 $\frac{a_n-a_{n-1}}{b_n-b_{n-1}}>2M$,即

$$a_{n-1} - a_n > 2M(b_{n-1} - b_n).$$

则 $\forall m>n>N$,均有 $a_n-a_m>2M(b_n-b_m)$. 在上式中令 $m\to\infty$ 并利用数列 $\{a_m\}$, $\{b_m\}$ 均收敛于 0 得 $a_n\geqslant 2Mb_n$,进而知 $\frac{a_n}{b_n}\geqslant 2M>M$. 故所证结论此时也成立.

19. 若
$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k = a \in \mathbb{R}$$
, 求证: $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} k a_k = 0$.

证明:
$$\forall n \geqslant 1$$
, 令 $b_n = \sum_{k=1}^n k a_k$, $c_n = \sum_{k=1}^{n-1} a_k$. 则 $a_n = c_{n+1} - c_n$ 且 $c_1 = 0$, 故

$$b_n = \sum_{k=1}^n k(c_{k+1} - c_k) = \sum_{k=1}^n kc_{k+1} - \sum_{k=1}^n kc_k$$
$$= \sum_{k=1}^{n+1} (k-1)c_k - \sum_{k=1}^n kc_k = nc_{n+1} - \sum_{k=1}^n c_k.$$

因 $\lim_{n\to\infty} c_n = a$, 而由 Stolz 定理可得 $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n c_k = a$, 则由四则运算法则知

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n} = \lim_{n \to \infty} \frac{b_n}{n} = \lim_{n \to \infty} \frac{1}{n} \left(nc_{n+1} - \sum_{k=1}^n c_k \right)$$

$$= \lim_{n \to \infty} c_{n+1} - \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n c_k = 0.$$

20. 若
$$\lim_{n \to \infty} a_n = a$$
, 求证: $\lim_{n \to \infty} \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} a_k = a$.

证明: $\forall \varepsilon > 0$, 由极限的定义可知 $\exists N_1 > 0$ 使得 $\forall n > N$, 均有 $|a_n - a| < \frac{\varepsilon}{3}$. 注意到 $\forall k \in \mathbb{N}$ $(1 \le k \le N_1)$, 我们均有

$$\lim_{n \to \infty} \frac{1}{2^n} \binom{n}{k} |a_k - a| = 0,$$

则 $\exists N_2>0$ 使得 $\forall n>N_2$, 均有 $\frac{1}{2^n}\binom{n}{k}|a_k-a|<rac{\varepsilon}{3N_1}$. 由此令

$$N = \max\left(N_1, N_2, \left[\log_2 \frac{3|a|+1}{\varepsilon}\right]\right).$$

那么 $\forall n > N$, 我们有

$$\left| \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} a_k - a \right| = \frac{1}{2^n} \left| \sum_{k=1}^n \binom{n}{k} a_k - 2^n a \right|$$

$$= \frac{1}{2^n} \left| \sum_{k=1}^n \binom{n}{k} (a_k - a) - a \right| \leqslant \frac{|a|}{2^n} + \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} |a_k - a|$$

$$\leqslant \frac{\varepsilon}{3} + \sum_{k=1}^{N_1} \frac{1}{2^n} \binom{n}{k} |a_k - a| + \frac{1}{2^n} \sum_{k=N_1+1}^n \binom{n}{k} |a_k - a|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3N_1} \cdot N_1 + \frac{\varepsilon}{3} \cdot \frac{1}{2^n} \sum_{k=N_1+1}^n \binom{n}{k}$$

$$\leqslant \frac{2}{3} \varepsilon + \frac{\varepsilon}{3} \cdot \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} = \varepsilon.$$

故所证结论成立.

注:该题没法借助 Stolz 定理.