Оглавление

1	Геория групп	2
	1.1 Продолжение про центр группы	2
	1.2 Коммутант	
	1.3 Гомоморфизм	3

Глава 1

Теория групп

1.1 Продолжение про центр группы

Напоминание. Центр – множество элементов, которые коммутируют друг с другом

Обозначение. Z(G)

Определение 1. Если $Z(G) = \{e\}$, то G называется группой с тривиальным центром или группой без центра

Примеры.

- 1. Группа перестановок: $Z(S_n) = \{e\}$ при $n \geq 3$
- 2. Чётные перстановки: $Z(A_n) = \{e\}$ при $n \geq 4$
- 3. Обратимые матрицы: $Z(GL_n(\mathbb{R})) = \{ tE \mid t \in \mathbb{R} \}$

1.2 Коммутант

Определение 2. Коммутатором элементов $a,b\in G$ называется элемент $a^{-1}b^{-1}ab$

Обозначение. [a, b]

Свойства.

- Доказательство. $ba \underbrace{a^{-1}}_{e} b^{-1} ab = e \underbrace{bb^{-1}}_{e} ab = ab$
- 2. $[a,b]^{-1}=[b,a]$ Доказательство. $(a^{-1}b^{-1}ab)^{-1}=b^{-1}a^{-1}(b^{-1})^{-1}(a-1)^{-1}=b^{-1}a^{-1}ba$

 $3. \ ab = ba \iff [a,b] = e$

Определение 3. Комммутант группы G – это $\langle [a,b]|a,b\in G\rangle$

Обозначение. [G,G]

Обозначение. Если $A,B\subset G$, то $[A,B]=\langle a^{-1}b^{-1}ab|a\in A,b\in B\rangle$ – взаимный коммутант A и B

Примеры.

1.
$$[S_n, S_n] = A_n \quad \forall n$$

2. $[A_n, A_n] = A_n$ при $n \ge 5$

Теорема 1. Коммутант является нормальной подгруппой

Доказательство. Коммутант, по определению, подгруппа. Значит доказать нужно только нормальность

Вспомним определение нормальности:

Пусть $x \in G$, $k \in [G,G]$. Докажем, что $x^{-1}kx \in [G,G]$

$$\exists a_i, b_i : k = [a_1, b_1] \cdot [a_2, b_2] \cdot \dots \cdot [a_s, b_s]$$

$$x^{-1}kx = x^{-1}[a_1, b_1] \cdot [a_2, b_2] \cdot \dots \cdot [a_s, b_s] \cdot x = (x^{-1}[a_1, b_1]x)(x^{-1}[a_2, b_2]x) \cdot \dots \cdot (x^{-1}[a_s, b_s]x)$$

Достаточно доказать, что $\forall a, b, x \in G$ $x^{-1}[a, b]x \in [G, G]$. Докажем это:

$$x^{-1}[a,b]x = x^{-1}a^{-1}b^{-1}abx = (x^{-1}a^{-1}xa)(a^{-1}x^{-1}b^{-1}abx) = [x,a](a^{-1}(bx)^{-1}a(bx)) = [x,a] \cdot [a,bx]$$

Теорема 2 (фактор группы по коммутанту). G – группа. Положим K = [G, G]. Тогда

 $1. \ G|K$ абелева

Доказательство. Частный случай 2

2. Если $H \triangleleft G, \ K \subset H$, то G|H абелева

Доказательство. $\overline{a},\overline{b}$ – смежные классы. Докажем, что

$$\overline{a}\overline{b} = \overline{b}\overline{a} \iff \overline{ab} = \overline{ba} \iff \exists h \in H : ab = ba \cdot h \iff h = a^{-1}b^{-1}ab \in K \subset H$$

3. Если $H \lhd G, \ G|H$ абелева, то $K \subset H$

Доказательство.

$$\forall a, b \quad \overline{a}\overline{b} = \overline{b}\overline{a} \implies \overline{ab} = \overline{ba} \implies \exists h \in H : ab = ba \cdot h \implies \underbrace{a^{-1}b^{-1}ab}_{=[a,b]} = (ba)^{-1}(ab) = h \in H$$

1.3 Гомоморфизм

Определение 4. Пусть $(G,*),\ (H,\times)$ – группы. Отображение $f:G\to H$ называется гомоморфизмом, если

$$f(a*b) = f(a) \times f(b) \quad \forall a, b \in G$$

Замечание. Знаки $*, \times$ обычно не пишут, т. е. f(ab) = f(a)f(b)

Примеры.

- 1. $f: \mathbb{C}^* \to \mathbb{R}^*, \quad f(z) = |z|$ гомоморфизм, **не** инъекция и **не** сюръекция
- 2. $f: GL_n(\mathbb{R}) \to \mathbb{R}^*, \quad f(A) = \det A$
- 3. $f: \mathbb{R}^* \to \mathbb{C}^*$, f(z) = z

Свойства.

1. • $f(e_G) = e_H$ Доказательство. $f(a)e_H = f(a) = f(ae_G) = f(a)f(e_G)$

ullet $f(a^{-1})=f^{-1}(a)$ Доказательство. $f(a)\cdot f(a^{-1})=f(aa^{-1})=f(e_G)=e_H$

 $2. \ f:G o H, \quad f_1:H o K$ – гомоморфизмы Тогда $f_1 \circ f: G \to k$ – гомомрфизм

Определение 5. $f: G \to H$ – гомоморфизм

Ядро f – это $\{x \in G \mid f(x) = e_H\}$

Обозначение. $\ker f$

Образ f – это $\{f(x) \mid x \in G\}$

Обозначение. $\operatorname{Im} f$

Свойства.

1. $\ker f \triangleleft G$ (ядро – нормальная подгруппа)

Доказательство.

• Проверим, что подгруппа ($\ker f < G$):

$$-a,b \in \ker f \implies f(a) = f(b) = e_H \implies f(ab) = f(a)f(b) = e_H e_H = e_H \implies ab \in \ker f$$

$$-a \in \ker f \implies (a^{-1}) = (f(a))^{-1} = e_H^{-1} = e_H \implies a^{-1} \in \ker f$$

• Проверим, что нормальная ($\ker f \lhd G$): Пусть $h \in \ker f$, $g \in G$

$$f(g^{-1}hg) = (f(g))^{-1}f(h)f(g) = (f(g))^{-1}e_Hf(g) = (f(g))^{-1}f(g) = e_H \implies g^{-1}hg \in \ker f$$

2. f – инъекция \iff ker $f = \{e_G\}$

Доказательство.

Пусть $x \in \ker f$

$$\begin{cases}
f(x) = e_H \\
f(e_G) = e_H
\end{cases} \implies x = e_G$$

Теорема 3 (о гомоморфизме). Пусть $f:G\to H$ – гомомрфизм. Тогда $G|\ker f\simeq \mathrm{Im}\, f$

Доказательство. Определим отображение $\varphi:G|\ker f\to \operatorname{Im} f$ Пусть A – смежный класс. Возьмём произвольный $a \in A$

Положим $\varphi(A) := f(a)$. То есть $\varphi(\overline{a}) = f(a)$

• Корректность. Докажем, что $a, a' \in A \implies f(a) = f(a')$: Пусть $a' = a \cdot h$, $h \in \ker f$

$$f(a') = f(ah) = f(a)f(h) \underset{h \in \ker f}{=} f(a)e_H = f(a)$$

• φ – гомоморфизм. Проверим, что $\varphi(\overline{a}\overline{b}) = \varphi(\overline{a})\varphi((b))$:

$$\varphi(\overline{a}\overline{b}) = \varphi(\overline{ab}) = f(ab) = f(a)f(b) = \varphi(\overline{(a)})\varphi(\overline{b})$$

• Сюръективность:

Пусть
$$x \in \text{Im } f \implies \exists a \in G : x = f(a) \implies x = \varphi(\overline{a})$$

• Инъективность:

Пусть
$$\varphi(\overline{a}) = e_H \implies f(a) = e_H \implies a \in \ker f \implies \overline{a} = \ker f = e_G | \ker f$$

Примеры.

1.
$$f:\mathbb{C}^*\to\mathbb{C}^*,\quad f(z)=|z|$$
 ker $f=U$, где $U=\{\,z\mid |z|=1\,\}$, т. е. единичная окружность $\mathrm{Im}\,f=\mathbb{R}_+^*,$ где $\mathbb{R}_+^*=\{\,x\in\mathbb{R}\mid x>0\,\}$

$$\implies \mathbb{C}^*|U \simeq \mathbb{R}_+^*$$