CG1111A Engineering Principles & Practice I

Tutorial 1 (22 & 23 Aug 2022)

DC Circuit Principles

1. Consider the following battery with open-circuit voltage V_1 = 12 V, and internal resistance R_1 = 0.15 Ω . Find the load current I_L and the corresponding power efficiency η_L for the following load: (i) R_L = 10 Ω , and (ii) R_L = 1 Ω .

Ans: (i)
$$I_L = 1.18 \text{ A}$$
, $\eta_L = 98.5\%$
(ii) $I_L = 10.4 \text{ A}$, $\eta_L = 87.0\%$

2. The figure below shows a **loaded** voltage divider circuit. Calculate the voltage difference V_{AB} (given by $V_A - V_B$).

Ans: 3.75 V

Considering the circuit diagram shown in the figure above, which one of the following correctly applies <u>both</u> KVL and KCL?

(a)
$$V_1 - V_{R1} - V_{R2} - V_{R3} = 0$$
; $i_{R1} - i_{R2} - i_{R4} = 0$

(b)
$$V_1 + V_{R3} - V_{R1} - V_{R2} = 0$$
; $i_{R1} + i_{R3} = 0$

(c)
$$V_2 + V_{R4} + V_{R2} + V_{R5} = 0$$
; $i_{R4} + i_{R5} = 0$

(d)
$$V_2 + V_{R4} - V_{R2} - V_{R5} = 0$$
; $i_{R3} - i_{R2} - i_{R5} = 0$

4. Determine the source voltage v and the voltage across the 3 Ω resistor in the following circuit.

Ans: v = 12 V, voltage across 3 Ω resistor = 3 V

5. The following circuit shows a common voltage divider for obtaining a certain voltage v across a load resistor R.

A novice may forget to include the loading effects of R. To understand these effects, determine v and the current in R when

- (i) $R = \infty$ (open-circuit)
- (ii) $R = 8000 \Omega$
- (iii) $R = 200 \Omega$
- (iv) R = 0 (short-circuit)

6. For the circuit shown in the figure below, what is the value of current I_1 ?

Ans: -0.5 A

A current of 3 A flows through a resistor network as shown in the figure above. What is the voltage difference V_{XY} (given by $V_X - V_Y$)?

Ans: 6 V

8.

What is the voltage difference V_{AB} (given by $V_A - V_B$)?

Ans: 5 V

For the circuit shown in the figure above, if the voltage difference V_{BD} (given by $V_B - V_D$) is 1 V, what is the value of resistance X?

Ans: 2Ω

10.

The circuit above shows a 10 Ω load connected to three batteries in parallel. Using node voltage analysis method, determine the voltage across the 10 Ω load, and its current i.

Ans: $V_L = 4.56 \text{ V}$, i = 0.456 A

For the circuit shown in the figure above, what is the voltage V_L ? (Hint: Use Node Voltage Analysis method.) How much power is the 6 V source supplying/consuming?

Ans: $V_L = 7.68 \text{ V}$, 6 V source consuming 3.36 W

12. Consider the circuit given below. Suppose R_5 is the load resistance, derive and draw the Thevenin equivalent circuit as seen by R_5 . clearly labeling Node 1 and Node 4 in the equivalent circuit.

(Assume that $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_4 = 1 \Omega$)

Ans: $V_T = -3 \text{ V}$, $R_T = 0.4 \Omega$

13. Find the Thevenin equivalent circuit as seen across node A and node B for the figure below.

Ans: $V_T = 3 \text{ V}$, $R_T = 2 \Omega$

14. Consider a battery with its circuit shown in the figure below.

- (i) If $V_1 = V_2 = 12$ V, $R_1 = 0.15$ Ω , $R_2 = 0.28$ Ω , find the Thevenin equivalent circuit as seen by the load R_L .
- (ii) If the load $R_L = 2.5 \Omega$, find the load current I_L , and the voltage across the load R_L .
- (iii) Is the load voltage higher or lower compared to the cases where the load were to be powered by just battery 1 or battery 2 alone?

Ans: (i) $V_T = 12 \text{ V}$, $R_T = 0.098 \Omega$, (ii) $I_L = 4.62 \text{A}$, 11.5 V, (iii) higher

15. For the Thevenin equivalent circuit shown below, derive the value of R_L that causes maximum power transfer from the source to the load R_L .

Thevenin equivalent circuit

Ans: $R_L = R_T$

16. For the circuit shown in the figure below, determine the value of the load resistance R_L to be placed across the nodes **a** and **b**, in order for the load to draw maximum power. What is the value of this maximum power that the load R_L consumes?

Ans: $R_L = 1.5 \Omega$, $P_{max} = 0.67 W$

17. Determine the maximum power that can be obtained from terminals **a** and **b** of the following circuit:

Ans: 37.5 W

18.

What is the Thevenin resistance of the Thevenin equivalent circuit seen across nodes ${\bf A}$ and ${\bf B}$?

Ans: 2.38Ω