Maximum-Likelihood Estimation

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Goal

Fit parametric models to data

Free throws

Goal: Model streaks of consecutive free throws

Data: 377 streaks from 3,015 free throws shot by Kevin Durant in the NBA

Parametric model

$$p_{\theta}(s) = \theta^{s}(1-\theta)$$

One data point

Given a data point a and a parametric pmf p_{θ} , how should we choose θ ?

Change of perspective: Interpret $p_{\theta}(a)$ as a function of θ

Assign the highest possible probability to a

What if we have more data?

Assumptions

Let $\tilde{a}_1, \ \tilde{a}_2, \ \ldots, \ \tilde{a}_n$ be discrete random variables defined on the same probability space

They are identically distributed if they have the same pmf

They are independent, if the events $\tilde{a}_1 = a_1$, $\tilde{a}_2 = a_2$, ..., $\tilde{a}_n = a_n$ are mutually independent

We often model data as i.i.d.

I.i.d. data

Data: $x_1, x_2, ..., x_n$

Under i.i.d. assumptions

$$P(\tilde{a}_1 = x_1, \tilde{a}_2 = x_2, \dots, \tilde{a}_n = x_n) = P(\tilde{a}_1 = x_1)P(\tilde{a}_2 = x_2)\cdots P(\tilde{a}_n = x_n)$$
$$= \prod_{i=1}^{n} p_{\theta}(x_i)$$

We choose θ to maximize this probability

Likelihood

The likelihood of a model p_{θ} given data $X := \{x_1, x_2, \dots, x_n\}$ is

$$\mathcal{L}_X(\theta) := \prod_{i=1}^n p_{\theta}(x_i)$$

The log-likelihood function is

$$\log \mathcal{L}_X(\theta) = \sum_{i=1}^n \log p_{\theta}(x_i)$$

Maximum likelihood

Given $p_{\theta}: A \to \mathbb{R}^+$ and a dataset $X := \{x_1, x_2, \dots, x_n\}$, the ML estimate of θ is defined as

$$egin{aligned} heta_{\mathsf{ML}} &:= \arg\max_{ heta} \mathcal{L}_X(heta) \ &= \arg\max_{ heta} \log \mathcal{L}_X(heta) \end{aligned}$$

Bernoulli distribution

Bernoulli pmf with parameter θ

$$p_{\theta}(1) = \theta$$

$$p_{\theta}(0) = 1 - \theta$$

Likelihood

$$\mathcal{L}_{\{x_1,...,x_n\}}(\theta) = \prod_{i=1}^{n} p_{\theta}(x_i)$$

$$= \theta^{n_1} (1 - \theta)^{n_0}$$

$$\log \mathcal{L}_{\{x_1,...,x_n\}}(\theta) = n_1 \log \theta + n_0 \log (1 - \theta)$$

Likelihood (60 ones, 40 zeros)

Log likelihood (60 ones, 40 zeros)

ML estimate

$$\begin{split} \log \mathcal{L}_{\{x_1,\dots,x_n\}}\left(\theta\right) &= \textit{n}_1 \log \theta + \textit{n}_0 \log \left(1-\theta\right) \\ &\frac{\mathsf{d} \log \mathcal{L}_{x_1,\dots,x_n}\left(\theta\right)}{\mathsf{d} \theta} &= \frac{\textit{n}_1}{\theta} - \frac{\textit{n}_0}{1-\theta} \\ &\frac{\mathsf{d}^2 \log \mathcal{L}_{x_1,\dots,x_n}\left(\theta\right)}{\mathsf{d} \theta^2} &= -\frac{\textit{n}_1}{\theta^2} - \frac{\textit{n}_0}{\left(1-\theta\right)^2} < 0 \qquad \text{for all } \theta \in [0,1] \\ &\theta_{\mathsf{ML}} &= \frac{\textit{n}_1}{\textit{n}_0 + \textit{n}_1} \end{split}$$

Log likelihood (60 ones, 40 zeros)

Free throws

Goal: Model streaks of consecutive free throws

Data: 377 streaks from 3,015 free throws shot by Kevin Durant in the NBA

Parametric model

$$p_{\theta}(s) = \theta^{s}(1-\theta)$$

Log-likelihood

$$egin{aligned} \log \mathcal{L}_{\{x_1,...,x_n\}} \left(heta
ight) &= \sum_{i=1}^n \log p_{ heta} \left(x_i
ight) \ &= \sum_{i=1}^n \log \left(heta^{x_i} (1- heta)
ight) \ &= \sum_{i=1}^n \left(x_i \log heta + \log \left(1- heta
ight)
ight) \ &= \left(\sum_{i=1}^n x_i
ight) \log heta + n \log \left(1- heta
ight) \ &= n_{ ext{made}} \log heta + n_{ ext{missed}} \log \left(1- heta
ight) \end{aligned}$$

Same as Bernoulli! $\theta_{ML} = 0.875$ is fraction of made free throws

Log-likelihood

How stable is the ML estimate?

We simulate 3,015 i.i.d. free throws from

$$p_{ heta}(s) = heta_{ extsf{true}}^s (1 - heta_{ extsf{true}})$$

with $\theta_{\mathsf{true}} := 0.875$ and compute θ_{ML}

Log-likelihood

$\theta_{\rm MI} = 0.873$

Log-likelihood

$\theta_{\rm MI} = 0.879$

Log-likelihood

$\theta_{\rm MI} = 0.867$

To fit parametric models using maximum likelihood