Fonction de deux variables

Table des matières

1.	Introduction.	1
	1.1. Rappels.	1
	1.2. Premières définitions.	1
2.	La topologie de la norme de \mathbb{R}^2	2
	2.1. Norme euclidienne.	2
	2.2. Disques ouverts/fermés et sous-ensembles ouverts/fermés.	3
3.	Limites de suites.	4
4.	Points limites et adhérence d'un sous-ensemble.	4
5.	Limites de fonctions.	5
6.	Continuité.	5
7.	Différentielle	6

1. Introduction.

1.1. Rappels.

Définition 1.1.1 (fonction d'une variable): Soit A,B deux ensembles. Une application f est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $x \in A$ associe un unique $f(x) \in B$. On la note $f: A \to \mathbb{B}; x \mapsto f(x)$.

Définition 1.1.2 (Graphe d'une application): Soit $f:A\to B$ une application. On appelle graphe de f l'ensemble suivant $\operatorname{Graphe}(f)=\{(x,f(x))\mid x\in A\}\subset A\times B$

1.2. Premières définitions.

Définition 1.2.1 (fonction de deux variables): Soit A un sous ensemble de \mathbb{R}^2 et B un ensemble. Une application f de deux variables de A dans B est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $(x,y) \in A$ associe un unique $f(x,y) \in B$. On la note $f:A \to B; x, y \mapsto f(x,y)$.

Définition 1.2.2 (Graphe d'une application): Soit $f:A\to B$ une application de deux variables. On appelle graphe de f l'ensemble suivant $\operatorname{Graphe}(f)=\{(x,y,f(x,y))\in\mathbb{R}^3\mid x,y\in\mathbb{R}\}$

Exemple: L'aire d'un rectangle : $f : \mathbb{R}^2 \to \mathbb{R}$; $(x, y) \mapsto xy$.

Soit a un réel fixé et $x, y \in \mathbb{R}$. l'équation associée est $a = xy \Leftrightarrow y = \frac{a}{x}$. On cherche le rectangle d'aire a de côté x, y.

2. La topologie de la norme de \mathbb{R}^2 .

2.1. Norme euclidienne.

Définition 2.1.1 (Norme Euclidienne): Soit $v = \binom{a}{b} \in \mathbb{R}^2$. La norme Euclidienne est la longueur du vecteur v. Elle est donnée par $||v|| = \sqrt{a^2 + b^2}$.

Proposition 2.1.1: Soit $v \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$. Alors $\|\cdot\|$ vérifie: 1. $\|v\| \ge 0$ et $\|v\| = 0 \Leftrightarrow v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

- 2. $\|\lambda v\| = |\lambda| \|v\|$ (homogénéïté).
- 3. $||v + u|| \le ||v|| + ||u||$ (inégalité triangulaire).

i.e la norme Euclidienne est une norme.

Démonstration:

1. Pour tout $x \in \mathbb{R}^2$, $x^2 \ge 0$ d'où $\forall u \in \mathbb{R}^2$, $||u|| \ge 0$.

2. Soit $u = \binom{a}{b} \in \mathbb{R}^2, \lambda \in \mathbb{R}$. On a $\|\lambda u\| = \|(\lambda a, \lambda b)\| = \sqrt{(\lambda a)^2 + (\lambda b)^2} = \sqrt{\lambda^2 (a^2 + b^2)} = |\lambda| \|u\|$. 3.

Corollaire 2.1.1: Soit $v, u \in \mathbb{R}^2$. On a :

$$\|v-u\| \geq |\|v\| - \|u\||.$$

Démonstration: On a $\forall u, v \in \mathbb{R}^2$,

$$\begin{split} v &= (v-u) + u \\ \|v\| &= \|v-u+u\| \leq \|v-u\| + \|u\| \\ \Leftrightarrow \|v-u\| \geq \|v\| - \|u\| \end{split}$$

De même avec u, on obtient par ailleurs $\|v-u\| \geq \|u\| - \|v\|$ d'où $\|v-u\| \geq \|\|v\| - \|u\|\|$.

 $u \cdot v = ax + by$.

Définition 2.1.2: Soient $u=(a,b), v=(x,y) \in \mathbb{R}^2$. On définit le produit scalaire par

Proposition 2.1.2: Soient $u, v, w \in \mathbb{R}^2, \lambda \in \mathbb{R}$.

- 1. $u \cdot v = v \cdot u$ (symétrie).
- 2. $(w+v) \cdot u = w \cdot u + v \cdot u$ (bilinéarité).
- 3. $(v\cdot u)^2 \leq \|u\|^2 \|v\|^2$ (inégalité de Cauchy-Schwartz).

Démonstration: Soient $u, v \in \mathbb{R}, t \in \mathbb{R}$. $\|v + tu\|^2 = (v + tu) \cdot (v + tu) = v \cdot v + 2t(v \cdot u) + (u \cdot v)$ $u)t^2$.

On pose $f(t) = \|v\|^2 + 2(v \cdot u)t + \|u\|^2 t^2$. On peut supposer que $u \neq 0$ sinon l'égalité est évidente. \square

2.2. Disques ouverts/fermés et sous-ensembles ouverts/fermés.

Définition 2.2.1 (disque): Soient $u \in \mathbb{R}^2$, R > 0. On appelle **disque ouvert** de rayon R centré en u l'ensemble:

$$B(u,r) := \{ v \in \mathbb{R} \mid ||v - u|| < R \}.$$

On appelle **disque fermé** de rayon R centré en u l'ensemble:

$$\overline{B}(u,R)\coloneqq \{v\in\mathbb{R}^2\mid \|v-u\|\leq R\}.$$

Définition 2.2.2 (ouvert): Soit U un sous-ensemble de \mathbb{R}^2 . On dit que U est un **ouvert** de \mathbb{R}^2 si

$$\forall u \in U, \exists r_u > 0, B(u, r_u) \subset U.$$

Remarque: L'ensemble de ces sous-ensembles sont notés O_{norm} .

Proposition 2.2.1:

- 1. Les sous-ensembles \emptyset et \mathbb{R}^2 sont des ouverts.
- 2. Soit $\left\{H_i\right\}_{i\in I}\subset O_{\text{norm}}.$ Alors leur réunion est un sous-ensemble ouvert de \mathbb{R}^2 i.e,

$$\forall {\{H_i\}}_{i \in I} \subset O_{\mathrm{norm}}, \bigcup_{i \in I} H_i \in O_{\mathrm{norm}}.$$

3. Soit $\{H_i\}_{i\in\{1,-,n\}}\subset O_{
m norm}$ alors leur intersection est un sous-ensemble de \mathbb{R}^2 . i.e,

$$\forall \{H_i\}_{i \in \{1,-,n\}} \subset O_{\mathrm{norm}}, \bigcap_{i \in \{1,-,n\}} H_i \in O_{\mathrm{nom}}.$$

Démonstration:

1.

2. On peut supposer la réunion non-vide. Soit $v \in V = \bigcup_{i \in I} H_i$, alors $\exists i_0, v \in H_{i_0}$. D'où

$$\exists v_{i_0}, B\!\left(v, v_{i_0}\right) \subset H_{i_0} \subset \bigcup_{i \in I} H_i$$

Définition 2.2.3: La collection O_{norm} s'appelle la topologie de \mathbb{R}^2 associée avec la norme euclidienne. (ou la topologie de la norme de \mathbb{R}^2).

Définition 2.2.4 (voisinage): Soit $u \in \mathbb{R}^2$. On appelle **voisinage ouvert** de u tout sous-ensemble ouvert U de \mathbb{R}^2 qui contient u.

Définition 2.2.5 (fermé): Soit $F \subset \mathbb{R}^2$. On dit que F est un fermé si le complémentaire de F dans \mathbb{R}^2 est un ouvert de \mathbb{R}^2 , i.e, F est un fermé $\Leftrightarrow F^c \in O_{\text{norm}}$

Remarque: L'ensemble de ces sous-ensembles sont notés $F_{
m norm}$.

Proposition 2.2.2:

- 1. Les sous-ensembles \emptyset et \mathbb{R}^2 sont des fermés.
- 2. Soit $\{H_i\}_{i\in\{1,-,n\}}\subset F_{\mathrm{norm}}$. Alors leur réunion est un sous-ensemble fermé de \mathbb{R}^2 i.e,

$$\forall \left\{ H_i \right\}_{i \in I} \subset F_{\text{norm}}, \bigcup_{i \in I} H_i \in F_{\text{norm}}.$$

3. Soit $\left\{H_i\right\}_{i\in I}\subset F_{\mathrm{norm}}$ alors leur intersection est un sous-ensemble de \mathbb{R}^2 . i.e,

$$\forall {\{H_i\}}_{i\in\{1,-,n\}} \subset F_{\mathrm{norm}}, \bigcap_{i\in\{1,-,n\}} H_i \in F_{\mathrm{nom}}.$$

3. Limites de suites.

Définition 3.1 (limite): Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de \mathbb{R}^2 . On dit que $(x_n)_{n\in\mathbb{N}}$ admet une **limite** si

$$\exists L \in \mathbb{R}, \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow \|x_n - L\| \leq \varepsilon.$$

Dans ce cas on dit que la suite converge vers L. Sinon, on dit qu'elle diverge.

Proposition 3.1: Soit $x_n=\binom{a_n}{b_n}, n\in\mathbb{N}$ une suite dans \mathbb{R}^2 . Alors $L=\binom{a}{b}$ est la limite de x_n si et seulement si on a

$$\lim_{n\to +\infty} a_n = a \text{ et} \lim_{n\to +\infty} b_n = b.$$

4. Points limites et adhérence d'un sous-ensemble.

Définition 4.1 (point isolé): Soit $A \subset \mathbb{R}^2$ un ensemble, $a \in A$. On dit que a est un point isolé s'il existe un voisinage ouvert V_a dans \mathbb{R}^2 tel que $V_a \cap A = \{a\}$.

Définition 4.2 (point intérieur): Soit $A \subset \mathbb{R}^2$ un ensemble, $a \in A$. On dit que a est un point intérieur s'il existe un voisinage ouvert de V_a dans \mathbb{R}^2 tel que $V_a \subset A$.

Le sous-ensemble des points intérieurs de A est noté int(A) et on l'appelle l'intérieur de A.

$$int(A) := \{ u \in A \mid \exists r > 0, B(u, r) \subset A \}.$$

Proposition 4.1: Soit $A \subset \mathbb{R}^2$ un ensemble. Alors son intérieur est le plus grand sous-ensemble ouvert contenu dans A.

Remarque: L'intérieur d'un ensemble A est une approximation de A par un sous-ensemble ouvert.

Définition 4.3 (point limite): Soit $A \subset \mathbb{R}^2$ un ensemble, $x \in \mathbb{R}^2$. On dit que x est un point limite de A s'il existe une suite inifie $\{a_n\}_n \in \mathbb{N}$ de points deux-à-deux distincts dans A telle que $a_n \underset{n \to +\infty}{\longrightarrow} x$.

Définition 4.4 (Adhérence): L'ensemble des points limites s'appelle l'adhérence de A et on la designe par \overline{A}

$$\overline{A}\coloneqq \big\{u\in\mathbb{R}^2\ |\ \forall r>0, B(u,r)\cap A\neq\emptyset\big\}.$$

Proposition 4.2: Soit $A \subset \mathbb{R}^2$ un ensemble. Alors son adhérence est le plus petit sous-ensemble fermé qui contient A.

Remarque: Tout ouvert $A \subset \mathbb{R}^2$ est encadré de la manière suivante: $\operatorname{Int}(A) \subset A \subset \overline{A}$.

5. Limites de fonctions.

Définition 5.1: Soit U un ouvert, $f: U \to \mathbb{R}$, $a \in \overline{U}$.

1. On dit que f admet l comme limite en a si et seulement si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in U, \|x - a\| \le \eta \Rightarrow |f(x) - l| < \varepsilon.$$

2. On dit que f admet $+\infty$ comme limite en a si et seulement si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in U, ||x - a|| < \eta \Rightarrow f(x) > A.$$

3. On dit que f admet $-\infty$ comme limite si -f admet $+\infty$ pour limite en a.

Exemple:

$$\lim_{(x,y)\to (0,0)}\frac{(x+2y)^3}{x^2+y^2}.$$

On étudie la fonction $f:U=\left\{x^2+y^2\neq 0\right\}=\mathbb{R}^2\setminus 0 \to \mathbb{R}^2$ On a $f(x,0)=\frac{x^3}{x^2}\underset{x\to 0}{\longrightarrow} 0$ et $f(0,y)=\frac{(2y)^3}{y^2}\underset{y\to 0}{\longrightarrow} 0$. Montrons que $\lim_{(x,y)\to(0,0)}f(x)=0$.

Passons aux coordonnées polaires. On note $x = r\cos(\theta), y = r\sin(\theta)$. Ainsi,

$$f(x,y) = r^3 \frac{(\cos(\theta) + 2\sin(\theta))^3}{r^2} = r(\cos(\theta) + 2\sin(\theta))^3$$

De plus, $|\cos(\theta) + 2\sin(\theta)|^3 < |\cos \theta| + 2|\sin \theta| < 3^3 = 27$

Proposition 5.1: Soit U un ouvert, $f:U\to\mathbb{R},\,a\in\overline{U}$. Si f admet une limite, alors cette limite est unique.

6. Continuité.

Définition 6.1: Soit U un ouvert, $f:U\to\mathbb{R},\,a\in\overline{U},$ et $x\in U.$ On dit que f est continue en x si $f(x)\underset{x\to a}{\longrightarrow} f(a).$

Définition 6.2: On dit que f est continue sur X si f est continue en tout point de X.

Proposition 6.1: Soit U un ouvert, $f,g:U\to\mathbb{R}$, des applications continues sur $U,\lambda\in\mathbb{R}$.

$$|f|, \lambda f, f + g, fg$$

sont continues sur X. Si $\forall x \in X, g(x) \neq 0$, alors $\frac{f}{g}$ est continue sur X.

Corollaire 6.1: Toute fonction polynomiale est continue sur \mathbb{R}^2 .

Proposition 6.2: Soit U, V deux ouverts, $f: U \to V, g: V \to \mathbb{R}$ des applications continues repsectivement sur U et V. Alors g(f(x)) est continue sur U.

Proposition 6.3: Soit $f:U\to\mathbb{R}$ une fonction continue, $I\subset\mathbb{R}$ un ouvert (resp. fermé). $f^{-1}(I)=\left\{ \begin{pmatrix} x \\ y \end{pmatrix}\in U\mid f(x,y)\in I \right\}$ est un sous-ensemble ouvert (resp. fermé).

Définition 6.3: Soit U un ouvert, $f:U\to\mathbb{R}$. Pour une valeur $c\in\mathbb{R}, f^{-1}(c)$ s'appelle l'ensemble de niveau c.

Corollaire 6.2: Soit $f:U\to\mathbb{R}$ une fonction continue sur U. Alors pour tout $a\in\mathbb{R}$, l'enseùbme de niveau a est un sous-ensemble fermé dans U.

7. Différentielle.