Energy Loss Measurements WithStreak Camera at ALBA

U. Iriso, B. Bravo, A. Nosych (ALBA-CELLS)

Contents

- 1. Introduction The Streak Camera at ALBA
- 2. Injection Matching with RF system on
- 3. Energy Loss Measurements with RF system off
- 4. Comparison with other methods
- 5. Measurement of Momentum Compaction Factor
- 6. Conclusions

Streak Camera (SC) at ALBA

SC uses visible part of Synchrotron Radiation produced by a dipole to perform beam studies in the long. plane

The visible light is first selected with a vertical mirror (x-rays discarded), and then guided through optical chicane until the Diagnostics BeamLine "Xanadu"

Streak Camera (SC) at ALBA

Optronis SC-20, synchroscan at 250 MHz, with 2 deflecting axis

- 1. Fast vertical unit: full scales [216, 360, 720] ps
- 2. Slow horizontal units: full scales [9ns ... 72ms]

Gaussian fit:

- Bunch length
- Centroid Relative RF phase

Streak Camera (SC) at ALBA: Calibration

Vertical calibration using Michelson-type interferometry setup

TUPA46, IBIC12

Horizontal calibration using RF switches:

MOPG55, IBIC16

Example: Beam Loading for different Filling Patterns

416 consecutive filled buckets Gap 32 buckets

1.4 revolutions

$$\sigma_z$$
 = 19 +/-0.4 ps (for 416 bunches)
 $\Delta \phi$ = 0.9deg

220 cons. filled bchs + empty 50 bchs + 32 bunches, filled ¼ + empty 50 bchs

1.4 revolutions

$$\sigma_z = 19 + /-0.6 \text{ ps (for 252 bunches)}$$

 $\Delta \phi = 2.16 \text{deg}$

Example: Longitudinal Damping Time

Follow bunch length after an injetion into the SR in ms scale

Small differences between upper/bottom plots (odd/even bunches) In the following, we only show the **upper** plots for simplicity

Injection Matching – RF on

Booster to Storage Ring (SR) Phase Matching

- Proper visualization of the stored and injected beams is achieved by "unclosing" the injection bump so to store the beam but not accumulate
- Scan the Booster RF phase until both beams are start oscillation at the same location
- Compare centroid position of stored and (the initial) injected beam and oscillation amplitude

Injection Phase Matching - RF on

Centroid oscillations after image analysis

Analyze amplitude of oscillations: $\phi_{Bo}^{Opt} = 160^{\circ}$

Analyze phase offset: $\phi_{Bo}^{Opt} = 165^{\circ}$

Injection Energy Matching – RF on

Centroid oscillations for 160° and 170°: Results compared with tracking using Matlab AT

Amplitude of oscillations – AT Sim

Direction of phase oscillations – AT Sim

Injection with RF off

An e-beam entering an accelerator with the RF system off will spiral inwards due to energy loss until the beam is completely lost.

Original idea from J.Byrd & S.De Sanctis*, but here we add the possibility of an **energy offset** between Booster and SR

The revolution time τ changes according to:

$$\tau = \tau_0 + \frac{\alpha \Delta E_{\text{inj}}}{E_0} t - \frac{\alpha U_0}{2E_0 T_0} t^2$$

 ΔE_{inj} = energy offset between Bo – SR

 E_0 = equilibrium beam energy

 T_0 = revolution period for E0

 U_0 = energy loss per turn

 α = momentum compaction factor

*J.Byrd et al, PRST-AB, v4, N024401 (2001)

Injection with RF off

Longitudinal Centroid Motion - Tracking Simulation for different energy offsets

$$\tau = \tau_0 + \frac{\alpha \Delta E_{\text{inj}}}{E_0} t - \frac{\alpha U_0}{2E_0 T_0} t^2$$

The beam arrival time describes a parabola

If the energy offset is positive, this offset can be found from the position of the maximum of the parabola.

Provided that α and E_0 are precisely known, this technique allows to get U_0 and ΔE_{inj} with only one fit.

Injection with RF off: SC Images

Example: Injection of 0.5mA in 40bunches

Centroid of odd and even bunches obtained assuming Gaussian profiles, but the fits complicate when odd/even bunches overlap

Results agree with theoretical predictions:

- U₀=1.03 MeV (1.02 MeV)
- ΔE_{inj} = 18.3 MeV (not comparable with previous!)

Repeatibility is an issue due to poor SNR and the injector chain jitter (due to Booster power supplies).

Injection with RF off: SC Images

Single bunch injection (0.1mA)

0.5mA in 40 bunches

Energy Loss for Different ID Configurations

Change U₀ by increasing SR losses by changing the Insertion Devices (IDs) configurations

- Minimum U_0 :
- Intermidate U₀:
- Maximum U_0 :

Bare Machine: all IDs open, and SuperConducting Wiggler (SCW) off*
Only SuperConducting Wiggler (SCW) on

All IDs closed, and SuperConducting Wiggler (SCW) on

 ΔE_{inj} coincides for the three cases

It cannot be compared with ΔE_{inj} with rf on because it passed 1year between measurements

Data with IDs closed and SCW on very noisy due to low SNR

Energy Loss Measurement with RF Phase Shift

When U_0 increases, the synchronous phase decreases (from ϕ_1 to ϕ_2) to recover the required energy

This phase shift is measured either by the LLRF (or by SC)

Measurement with 100mA in the machine

Energy Loss for Different ID Configurations

Comparison with Energy Loss measured using RF phase shift

Very good agreement between RF measurements and SC measurements with RF off Losses due to SCW identified 40keV/turn (44 keV/turn theoretical)

Disagreement with the model to be understood

Calculation of α (mom. comp. factor)

Measuring U_0 with the shift in the sync. phase), fitting injections with rf off for different IDs configurations provides an alternative measurement of α

$$\tau = \tau_0 + \frac{\alpha \Delta E_{\text{inj}}}{E_0} t - \underbrace{\left(\frac{\alpha U_0}{2E_0 T_0}\right)}_{\epsilon_{\text{A}}} t^2$$

Good agreement with theoretical value:

 α = 0.887e-3

Conclusions

- With the RF system on, longitudinal injection phase matching between Booster (BO) and Storage Ring (SR) has been successfully performed
- By switching the RF off at SR, we show how to infer both energy offset and energy loss per turn, and we can even distinguish several configurations of the Insertion Devices
- This method is limited by the low SNR, but nevertheless good agreement is found between this method and RF phase methods
- By combining this method with other means, also α can be inferred with good agreement