P2 de Lógica Matemática

Professora Maysa Macedo 1º período – 2013.1

1. **(1,5)** Construa um circuito lógico para a expressão booleana a seguir usando portas lógicas E, OU e inversores.

$$(x_1'x_2' + x_2x_3)x_3 + x_4x_1'$$

- 2. **(1,0)** Dada a função booleana abaixo, use o método da forma normal disjuntiva, e:
 - (a) defina uma expressão booleana correspondente

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

- 3. **(2,6)** Prove pelo método de dedução que cada uma das fbf's predicativas é um argumento válido.
 - (a) $(\forall x)P(x) \rightarrow (\forall x)[P(x) \lor Q(x)]$
 - (b) $(\forall x)[A(x) \rightarrow B(x)] \rightarrow [(\exists x)A(x) \rightarrow (\exists x)B(x)]$
- 4. **(2,4)** Dado o seguinte banco de dados em *Prolog*, elabore as seguintes tarefas:
 - (a) defina uma regra para irmão
 - (b) defina uma regra para irmã
 - (c) defina uma regra para cunhado
 - (d) defina uma regra para sogro

pai(João Batista, Carolina). mulher(Carolina) pai(Vitor, Vitor Jr). mulher(Karina) pai(Barbieri, Lucas). mulher(Helena) pai(João Batista, Ricardo). mulher(Judith) pai(Barbieri, Karina). mulher(Barbara) mae(Barbara, Carolina). mulher(Juliana) mae(Barbara, Ricardo). homem(João Batista) mae(Judith, Lucas). homem(Vitor) mae(Helena, Vitor Ir). homem(Vitor Ir)

mae(Juliana, Karina). casado(Vitor Jr, Carolina). casado(João Batista, Barbara). casado(Barbieri, Judith). casado(Ricardo, Karina). homem(Barbieri) homem(Lucas) homem(Ricardo)

5. **(2,5)** Escreva uma expressão booleana e uma função booleana do seguinte circuito lógico:

Tabela 1: Tabela de Equivalências

Regra	Nome	Abreviação
$A \lor B \longleftrightarrow B \lor A$	Comutatividade	comut
$A \wedge B \longleftrightarrow B \wedge A$	Comutatividade	comut
$(A \lor B) \lor C \longleftrightarrow A \lor (B \lor C)$	Associatividade	assoc
$(A \land B) \land C \longleftrightarrow A \land (B \land C)$	Associatividade	assoc
$A \lor (B \land C) \longleftrightarrow (A \lor B) \land (A \lor C)$	Distributividade	dist
$A \wedge (B \vee C) \longleftrightarrow (A \wedge B) \vee (A \wedge C)$	Distributividade	dist
$A \lor 0 \longleftrightarrow A$	Elementos neutros	neut
$A \wedge 1 \longleftrightarrow A$	Elementos neutros	neut
$A \lor \neg A \longleftrightarrow 1$	Complementares	compl
$A \wedge \neg A \longleftrightarrow 0$	Complementares	compl
$A \to B \longleftrightarrow \neg A \lor B$	Condicional	cond
$A \leftrightarrow \neg \neg A$	Dupla negação	dneg
$\neg (A \lor B) \longleftrightarrow \neg A \land \neg B$	De Morgan	morgan
$\neg (A \land B) \longleftrightarrow \neg A \lor \neg B$	De Morgan	morgan

Tabela 2: Tabela de Regras de Inferências

De	Podemos deduzir	Nome	Abreviação
$A, A \rightarrow B$	В	Modus ponens	mp
$A \rightarrow B$, $\neg B$	$\neg A$	Modus tollens	mt
A, B	$A \wedge B$	Conjunção	conj
$A \wedge B$	A, B	Simplificação	simpl
\boldsymbol{A}	$A \vee B$	Adição	ad
$A \rightarrow B, B \rightarrow C$	$A \rightarrow C$	Silogismo hipotético	sh

Tabela 3: Tabela de Regras de Inferência

De	Podemos deduzir	Nome	Abreviação	Restrições sobre o uso
$(\forall x)P(x)$	P(t), onde t é uma variável ou um símbolo constante	Particularização universal	pu	Se t for uma variável, não deve estar dentro do escopo de um quantificador para t.
$(\exists x)P(x)$	P(t), onde t é uma variável ou símbolo constante não utilizado anteriormente na sequência de demonstração.	Particularização existencial	ре	É necessário que seja a primeira regra a usar t .
P(x)	$(\forall x)P(x)$	Generalização universal	gu	P(x) não pode ter sido deduzida de nenhuma hipótese na qual x é uma variável livre, nem pode ter sido deduzida, através de pe, de uma fbf na qual x é uma variável livre.
$P(x)$ ou $P(a)$, onde $a \in um$ símbolo constante	$(\exists x)P(x)$	Generalização existencial	ge	Para ir de $P(a)$ a $(\exists x)P(x), x$ não pode aparecer em $P(a)$.