Adaptive Recovery of Signals by Convex Optimization

Zaid Harchaoui * Anatoli Juditsky † Arkadi Nemirovski ‡ Dmitry Ostrovsky †

*NYU, INRIA †Univ. Grenoble Alpes ‡Georgia Tech

Filtering problem

- ▶ **Data:** Samples of signal $x \in \mathcal{X} \subset \mathbb{R}^N$, corrupted with i.i.d. noise $\xi_t \in \mathcal{N}(0,1)$:
 - $y_t = x_t + \sigma \xi_t, \quad t = 1, ..., N.$
- ▶ **Goal:** Estimate x_N via N previous observations.

Motivation: minimaxity of linear estimators

Consider *linear estimators* $\widehat{x}_N^{\varphi} = \sum_{\tau=0}^{N-1} \varphi_{\tau} y_{N-\tau} = [\varphi * y]_N, \quad \varphi \in \mathbb{R}^N.$

Theorem (Ibragimov and Khasminskii '1984, Donoho '1990)

Let $\mathcal X$ be convex, compact and symmetric. Then for many common loss functions $\ell\left(\cdot,\cdot\right)$

$$\min_{\varphi} \max_{x \in \mathcal{X}} \mathbb{E} \ell \left(\widehat{x}_{N}^{\varphi}, x_{N} \right) \leq C \min_{\widehat{x}_{N}} \max_{x \in \mathcal{X}} \mathbb{E} \ell \left(\widehat{x}_{N}, x_{N} \right),$$

where C is a small absolute constant; in particular, it does not depend on \mathcal{X} .

- ▶ If \mathcal{X} is known, minimax estimator is found by convex programming.
- ▶ Finding it is computationally easy for a well-structured set (subspace, ellipsoid).

Sparse recovery perspective

Can we adapt to the (linear) minimax estimator if X is unknown?

For example, let $\mathcal{X} = \bigcup_{\omega \in \Omega} X_{\omega}$, where all X_{ω} are subspaces with $\dim(X_{\omega}) = p \ll N$.

- ▶ For each X_{ω} there exist (its own) minimax estimator \widehat{x}_{N}^{ω} with error C_{p}/\sqrt{N} .
- ▶ We don't know which X_{ω} does x come from, and hence the actual minimax estimator.

Main assumption

There exists a linear time-invariant (LTI) oracle – a filter which recovers the last O(N) samples with pointwise error $O_{\mathbb{P}}(1/\sqrt{N})$.

Assumption (ρ) Let N=4n. For each $x\in\mathcal{X}$, there exists $\varphi^{\text{oracle}}\in\mathbb{R}^n$ such that

$$\|\varphi^{\text{oracle}}\|_{2} \leq \frac{\rho}{\sqrt{n}}$$

$$\|\left[x - \varphi^{\text{oracle}} * x\right]_{n}^{N}\|_{\infty} \leq O(1) \frac{\rho}{\sqrt{n}} \sigma.$$

Corollary. φ^{oracle} has error

$$\left|x_t - [\varphi^{\textit{oracle}} * y]_t\right| = O_{\mathbb{P}}(1) \frac{\rho}{\sqrt{n}} \sigma, \quad n \leq t \leq N.$$

Example: line spectral signal

 $\mathcal{X} = \bigcup_{\omega \in \Omega} X_{\omega}$, where each X_{ω} is spanned by p harmonic oscillations: $x_t = \sum_{k=1}^p A_k e^{i \omega_k t}$

▶ Assumption (ρ) holds with $\rho(p) = O(p^{3/2} \ln^{1/2} p)$. [Juditsky & Nemirovski '2013]

What we dream of

Estimator $\widehat{\varphi}$ with the following properties:

- ightharpoonup error close to that of (unknown) φ^{oracle} ,
- $\blacktriangleright \widehat{\varphi}$ is found by convex optimization.

Discrete Fourier transform

Let $F_N \in \mathbb{R}^{N \times N}$ be the matrix of unitary DFT

$$F_{N} = rac{1}{\sqrt{N}} \left(egin{array}{ccccc} 1 & 1 & \cdots & 1 \ 1 & e^{rac{2\pi\imath}{N}} & \cdots & e^{rac{2\pi\imath(N-1)}{N}} \ \cdots & \cdots & \cdots & \cdots \ 1 & e^{rac{2\pi\imath(N-1)}{N}} & \cdots & e^{rac{2\pi\imath(N-1)^2}{N}} \end{array}
ight) \,,$$

and for $x \in \mathbb{R}^N$ consider semi-norms $\|x\|_p^* = \|F_N \cdot x\|_p$ in the frequency domain.

Idea of construction, I

▶ For any (data-dependent) filter $\widehat{\varphi} \in \mathbb{R}^n$ decompose the estimation error:

$$\left|\left[x-\widehat{\varphi}*y\right]_{N}\right| \leq \left|\left[x-\widehat{\varphi}*x\right]_{N}\right| + \left|\left[\widehat{\varphi}*\xi\right]_{N}\right| \leq \left|\left[x-\widehat{\varphi}*x\right]_{N}\right| + O_{\mathbb{P}}\left(\sigma\sqrt{\log n}\right)\|\widehat{\varphi}\|_{1}^{*}$$

▶ For the "bias" term, we get, using any fixed filter φ °:

$$\begin{aligned} \left| \left[x - \widehat{\varphi} * x \right]_{N} \right| &\leq \left| \left[(1 - \widehat{\varphi}) * (1 - \varphi^{\circ}) * x \right]_{N} \right| &+ \left| \left[\varphi^{\circ} * (1 - \widehat{\varphi}) * x \right]_{N} \right| \\ &\leq (1 + \|\widehat{\varphi}\|_{1}) \left\| \left[x - \varphi^{\circ} * x \right]_{N-n+1}^{N} \right\|_{\infty} + \left\| \varphi^{\circ} \right\|_{1}^{*} \left\| \left[(1 - \widehat{\varphi}) * x \right]_{N-n+1}^{N} \right\|_{\infty} \end{aligned}$$

► Furthermore,

$$\left\| \left[(1 - \widehat{\varphi}) * x \right]_{N-n+1}^{N} \right\|_{\infty}^{*} \leq \left\| \left[(1 - \widehat{\varphi}) * y \right]_{N-n+1}^{N} \right\|_{\infty}^{*} + \sigma \left\| \left[(1 - \widehat{\varphi}) * \xi \right]_{N-n+1}^{N} \right\|_{\infty}^{*}$$

$$\leq \left\| \left[(1 - \widehat{\varphi}) * y \right]_{N-n+1}^{N} \right\|_{\infty}^{*} + O_{\mathbb{P}} \left(\sigma \sqrt{\log n} \right) (1 + \|\widehat{\varphi}\|_{1})$$

Let us choose $\widehat{\varphi}$ such that

$$\begin{aligned} \left\| \left[(1 - \widehat{\varphi}) * y \right]_{N-n+1}^{N} \right\|_{\infty}^{*} &\leq \left\| \left[(1 - \varphi^{\circ}) * y \right]_{N-n+1}^{N} \right\|_{\infty}^{*} \\ &\leq \left\| \left[(1 - \varphi^{\circ}) * x \right]_{N-n+1}^{N} \right\|_{\infty}^{*} + \left\| \sigma \right\| \left[(1 - \varphi^{\circ}) * \xi \right]_{N-n+1}^{N} \right\|_{\infty}^{*} \\ &\leq \sqrt{n} \left\| \left[(1 - \varphi^{\circ}) * x \right]_{N-n+1}^{N} \right\|_{\infty} + \left\| O_{\mathbb{P}} \left(\sigma \sqrt{\log n} \right) (1 + \|\varphi^{\circ}\|_{1}) \right\| \end{aligned}$$

Idea of construction, II

Back to the estimation error:

$$|x_{N} - [\widehat{\varphi} * y]_{N}| \leq O_{\mathbb{P}}(\sigma \sqrt{\log n}) (1 + ||\widehat{\varphi}||_{1} + ||\varphi^{\circ}||_{1}) (||\widehat{\varphi}||_{1}^{*} + ||\varphi^{\circ}||_{1}^{*}) + (1 + ||\widehat{\varphi}||_{1} + \sqrt{n} ||\varphi^{\circ}||_{1}^{*}) ||[x - \varphi^{\circ} * x]_{N-n+1}^{N}||_{\infty}$$

Thus we need a filter φ° with stronger properties than those of φ^{oracle} , namely

$$\begin{aligned} \big\| [x - \varphi^{\circ} * x]_{N-n+1}^{N} \big\|_{\infty} &\sim \sigma/\sqrt{n}, \\ \big\| \varphi^{\circ} \big\|_{1}^{*} &\sim 1/\sqrt{n}. \end{aligned} \qquad \text{(small bias, as for LTI oracle)}$$
 (small ℓ_{1}^{*} -norm)

Auto-convolution trick

It turns out that such φ° exists 'automatically' as soon as there exists φ^{oracle} .

Lemma For
$$\varphi^{\circ} = (\varphi^{\text{oracle}} * \varphi^{\text{oracle}}) \in \mathbb{R}^{2n-1}$$
 it holds:

$$\left\| [x - \varphi^{\circ} * x]_{N-2n+2}^{N} \right\|_{\infty} \le O(1) \frac{\rho^{2}}{\sqrt{2n-1}} \sigma, \qquad \|\varphi^{\circ}\|_{2} \le \|\varphi^{\circ}\|_{1}^{*} \le 2 \frac{\rho^{2}}{\sqrt{2n-1}}.$$

It remains only to state a 'suitable' optimization problem for which φ° is feasible w.h.p.

Estimator

▶ For desired confidence level α , find an optimal solution $(\widehat{\varphi}, \widehat{r})$ of the program min r, subject to

$$\left\| \left[y - \varphi * y \right]_{N-2n+2}^{N} \right\|_{\infty}^{*} \leq 2\sigma(r+1)\sqrt{\ln\left(\frac{2n-1}{\alpha}\right)},$$
$$\|\varphi\|_{1}^{*} \leq \frac{r}{\sqrt{2n-1}}, \quad \varphi \in \mathbb{C}^{2n-1}.$$

► Then build the estimate

$$\widehat{x}_{N} = [\widehat{\varphi} * y]_{N}.$$

Well-structured SOCP (may be approximated by an LP). Solved by a first-order method.

High-probability bound

With probability at least α , Theorem

$$|\widehat{x}_N - x_N| \leq O(1) \frac{\rho^4 \sqrt{\ln(N/\alpha)}}{\sqrt{N}} \sigma.$$

- ▶ Cost of adaptation is $\rho^3 \sqrt{\ln N}$. Further reduced to $\rho^2 \sqrt{\ln N}$ if ρ is known in advance.
- ▶ Bayesian lower bound gives the cost $\rho \sqrt{\ln N}$.

Prediction setting

Given noisy observations of $x_1, ..., x_N$, the goal now is to estimate x_{N+h} for the forecasting horizon $\mathbf{h} \in \mathbb{Z}_+$.

- ▶ We modify Assumption (ρ) to state the existence of **h**-predictive LTI oracle.
- ▶ The estimator and the corresponding bound are readily given.

Pointwise recovery

Given noisy signal $\mathbf{y}=(y_1,..,y_N)$, we may construct a recovery $\widehat{\mathbf{x}}$ by separately solving Nfiltering problems, obtaining the bound

$$\mathbb{E}^{1/2} \|\widehat{\mathbf{x}} - \mathbf{x}\|_2^2 \le \rho^4 \sqrt{\frac{\ln N}{N}} \sigma.$$

Application to line spectral estimation

For a line spectral signal, we obtain the bound

$$\mathbb{E}^{1/2} \|\widehat{\mathbf{x}} - \mathbf{x}\|_2^2 \le O(p^6 \ln^3 p) \sqrt{\frac{\ln N}{N}} \sigma$$

▶ We 'almost' recover the state-of-the-art bound of [Tang et al. '2013], without O(1/N) frequency separation assumption.

Numerical demonstration

Prediction of a 2-d signal – sum of 2 sinusoids with unit amplitudes and random frequencies. SNR = -3 dB, h = N = 12.

a) noisy signal

b) true signal

d) true signal in the target zone (magnified)

