

Natural Language Processing Lifecycle

Data Exploration (EDA)

Data Visualization Feature Analysis **Data Preprocessing**

Data Cleaning

Feature Text Engineering

Normalizing
Vectorizing
Scaling
Imbalanced Data

Hyperparameter Tuning

GridSearchCV Model Evaluation **Build Model**

Visualizing Model Performance

Understanding Problem Statement

Machine Learning
Techniques to translate
language

Climate Change

All humans have the fundamental rights to live in a sustainable environment.

Sentimental Insights

Drawing insights from what people have twitted about climate change

Number of Messages Per Sentiment

Percentage of Messages per Sentiment

Distribution of Length per Label

Average Length of Messages by Sentiment

Data Preprocessing

Data Preprocessing

Data Preprocessing Example

'PolySciMajor EPA chief doesn't think carbon dioxide is main cause of global warming and.. wait, what!? https://t.co/yeLvcEFXkC via @mashable'

polyscimajor epa chief doesnt think carbon dioxide is main cause of global warming and wait what urlweb via mashable

Data Normalization

Further Text Exploration using wordcloud

Further Text Exploration using wordcloud

Class 1 Class 2

Distribution of words Appearing < 10

Frequent HashTags for all the classes

Data Preprocessing

Experiments

Text Imbalance

- Models become better at predicting one class over the others.
- Inherent predictive bias.

- Risk overfitting, can check against Test data.
- Generally better than downsampling

- Risk losing valuable information.
- Reduces dataset to a more manageable size.

Feature Text Engineering

Train Test Split

Text Vectorisation

- A document term matrix is generated and each column represents an individual unique word.
- Each cell contains a weight value that signifies how important a word is for an individual text message or document.
- Different from the count vectorization in the sense that it takes into considerations not just the occurrence of a word in a single document but in the entire corpus.
- TF-IDF gives more weight to less frequently occurring events and less weight to expected events. So, it penalizes frequently occurring words that appear frequently in a document such as "the", "is" but assigns greater weight to less frequent or rare words.

Text Vectorisation

Data Scaling

Min Absolute Scaler

- Scale each feature by its maximum absolute value.
- This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.
- This scaler can also be applied to sparse matrices.

Modelling

Modelling

Classification Algorithms

