

HUMAN MACHINE INTERFACE (HMI)

MOTOR DRIVE

INDUSTRIAL COMMUNICATION

PROGRAMMABLE LOGIC CONTROL (PLC)

Tema 3. Sistemas procesadores para automatización

4º Grado de Ingeniería en Electrónica, Robótica y Mecatrónica Andalucía Tech

Índice

- Familia ARM Cortex M4F
- Microcontrolador TM4C1294
- Tarjeta Connected Launchpad
- Programación del TM4C1294

Objetivos

- Fijar las necesidades de un sistema microcontrolador para SEPA
- Presentar la familia TIVA y en concreto el TM4C1294
- Sentar las bases de cómo realizar un proyecto con este micro en CCS.

Introducción

- Sistema de control
- Necesidades básicas:
 - Multitud de pines de E/S
 - Periféricos de alta resolución
 - Velocidad de proceso y cantidad de memoria adecuada
 - Programación en tiempo real
 - Comunicaciones
- Lógica programable
- Sistema microprocesado
 - Microcontrolador
 - Microprocesador

Introducción

- Microcontroladores básicos:
 - Pocas capacidades de cálculo
 - Limitación de memoria
 - HMI pobres (botones, led's, displays de texto
- Microprocesadores:
 - Poco robustos
 - Sistemas operativos (poco fiables)
 - Necesidad de gran cantidad de periféricos

Solución ideal

- Microcontrolador más potente
 - Más memoria
 - Periféricos de alto nivel
 - USB, Ethernet, CAN...
 - Herramientas de desarrollo baratas
 - Tiva TM4C1294XL (TI)
 - Freedom K64F (NXP)
 - MSP432 (TI)
 - NUCLEO-F446RE (ST)
 - Hercules RM46 (TI)

Comparación (@2015)

	TIVA-Connected	FRDM-K64F
Microcontrolador	TM4C1294NCPDT @120MHz	MK64FN1M0VLL12 @120MHz
Núcleo	ARM M4F, 32 Bit-P.F.	ARM M4F, 32 Bit-P.F.
Memoria (FLASH/RAM)	1M/256k	1M/256k
Pines	128 pines	100 pines
Extras	4 led, 3 botones, 80 pines, compatibilidad Launchpad, 2 usb, 1 ethernet	Acelerómetro+magnetómetro, rbg led, 2 botones, 54 pines, Compatibilidad arduino, 2 usb, 1 ethernet, 1 micro SD
Precio	19,98€	25€

Microcontroladores ARM

- Núcleo de instrucciones RISC, de 32 bits
- Primer desarrollo: Acorn Archimedes (1987)
- Presentes en muchos dispositivos móviles
- Actuales: Núcleo ARM CORTEX:
 - Cortex-A: procesadores potentes (aplicaciones)
 - Cortex-R: aplicaciones en tiempo real (seguridad)
 - Cortex-M: perfil microcontrolador (periféricos)

ARM Cortex M4F

- Núcleo de altas prestaciones
 - Instrucciones DSP (MAC)
 - FPU: unidad de punto flotante
 - Gran cantidad de herramientas de desarrollo

Familia TM4C (Tiva)

Parte de una gran familia...

Familia TM4C (Tiva)

...en proceso de desarrollo

Familia TM4C (Tiva)

- Familia TM4C129x:
 - Core M4F
 - Flash, Ram y ROM
 - DriverLib
 - Bootloader
 - I/F serie y paralelo
 - Timers 16/32 bit
 - Control LCD
 - ADC 12 bits

El procesador TM4C1294NCPDT

- 32-bit ARM® CortexM4F 120MHz / 150DMIPS CPU
- 1 MB Flash / 256 kB RAM / 6 kB EEPROM / ROM con librería TivaWare
- NVIC: Nested Vectored Interrupt Controller
- Interfaz Paralela externa de 8/16/32-bit
- 2 ADC de 12-bit /2MSPS SAR ADCs con 16 comparadores digitales
- 3 comparadores analógicos
- 8 timers de 16/32-bit / 2 watchdog timers / 24-bit SysTick timer
- Mádulo PWM con 4 parejas de salidas
- 32-Channel DMA
- 2 controladores CAN 2.0 A/B
- 4 QSSI / 8 UARTs / 10 I2C
- Full- & Low-speed USB 2.0
- 10/100 Ethernet MAC + PHY

Arquitectura interna

- Core
 - Bus específico para programa
 - JTAG
- Dos buses internos
 - AHPB
 - APB
 - Periféricos a alguno de los dos

Cortex M4F

- Dentro del core:
 - NVIC
 - MPU
 - FPU
 - Selector de buses
 - Bus de instrucciones
 - Bus de datos
 - Bus de sistema

Mapa de memoria

- 4GB de espacio
- Zona de Alias (bit-banding)
- Rom con:
 - Bootloader
 - Vectores iniciales
 - Librería DriverLib
 - Tablas para AES

Zona de memoria externa (¿MC?)

	0000	0x0000
Flash		
Reserved	0000	0x0010
ROM	0000	0x0200
ROIVI		0x2000
SRAM		0.0000
Bit-band alias of SRAM		0x2200
Peripherals	0000	0x4000
i eliplicidis	0000	0x4200
Bit-band alias of Peripherals	0000	0x6000
External Peripheral Interface	0000	UXOUUU
Private Peripheral Bus	0000	0xE000
Frivate Feriphieral Dus	ا (ج:	MC نے

Bit-banding

- Cada posición de memoria tiene 8 alias para cambiar un solo bit:
 - Escribir un 1 en la 0x2200-0018 es lo mismo que escribir un 0x40 en la posición 0x2000-0000

Tarjeta Connected LaunchPad

- Tarjeta de desarrollo rápido para el micro TM4C1294
- 2 conectores Boosterpack XL (40 pines)
- Conector Ethernet
- 2 puertos USB (depuración y periférico)
- Pines accesibles en el borde
- 2 botones y 4 leds programables

Tarjeta Connected LaunchPad

Programación del TM4C1294

- Múltiples herramientas para la programación:
 - Code Composer Studio
 - IAR Systems, Keil
 - Energia

```
QuickTMP006 | Energia 0101E0013
   QuickTMP006 §
// Code is currently using printFloat() to print temperature result in Float
// Once fixed point library is polished, example can be updated.
#include < wire.h>
#include "tmp006.h"
#define USE_USCI_B1
tmp006 tmp006:
void printFloat(float value, int places);
{ // Initializes the TMP006 for operation and for I2C communication
  tmp006.begin(EIGHT_SAMPLES); // Takes 8 averaged samples for measurement
  Serial .begin(115200);
float temp;
void loop()
  temp = tmp006.getTemp();
  Serial.print("Temp in C = ");
  Serial.print(temp);
  Serial.println(" deg. C");
  delay(1000);
                   LaunchPad (Tiva C) w/ tm4c129 (120MHz) on /dev/tty.usbmodem0E20A0B1
```


Code Composer Studio

- Actualmente, v 12.0.0 (Jul. 2022)
 - OJO: a partir de la 9, sólo versiones 64bit
- Herramienta nativa y ya usada
- Plug-ins (Mejor Online)
 - TivaWARE
 - Ejemplos y librerías de programación (driverlib, sensorlib, grlib...)
 - PinMux
 - Configuración guiada de los pines (offline y Cloud)
 - GUI Composer
 - Generación de interfaces gráficas en el PC
 - TI-RTOS
 - Sistema operativo en Tiempo Real

Cambio de paradigma

- Para programar microcontroladores simples:
 - Pocos recursos
 - Necesidad de optimización
 - Programación sobre registros
- Para microcontroladores potentes:
 - Mucha complejidad
 - Muchos recursos
 - Capas de abstracción(HAL, drivers, BSL...)

DriverLib

- Librería de funciones para configuración y manejo de los periféricos
- Grabada en la ROM del dispositivo
 - No ocupan memoria flash
 - También en código fuente modificable
- API: Aplication Programming Interface
- Capa de abstracción: no se escribe ya en registros

DriverLib

- Multitud de funciones predefinidas.
- Organizadas por periféricos
- Máscaras de bit definidas en los *.h
- Ejemplo:

```
uint32_t reloj;
reloj=SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL
|SYSCTL_CFG_VCO_480), 120000000);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION);
GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1);
GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0|GPIO_PIN_1, 0x00);
```

Más fácil, pero sintaxis un poco compleja

Instalación mínima y recomendada

- Instalación mínima:
 - Code Composer Studio
 - Versión 6.1 o mayor. Recomendada a partir de la 10.0
 - Win, Linux, Mac...
 - http://processors.wiki.ti.com/index.php/Download CCS
 - TivaWare
 - Archivo comprimido .EXE (necesita PC!!)
 - http://www.ti.com/tool/sw-tm4c
- Instalación adicional
 - Utilidades en línea: PinMux, GUI composer
 - https://dev.ti.com/
 - Necesidad de darse de alta en TI.

- A diferencia de los proyectos con MSP430, múltiples ficheros de gran tamaño
- Recursos enlazados, no copiados
 - Librerías de TivaWare
 - Librería DriverLib
- Problema para la portabilidad
 - Variables de entorno
 - Proyecto tipo y copia de ficheros (main.c, etc)

1. Creación de un proyecto vacío:

- Familia: ARM

Variant: TIVATM4C1294NCPDT

 Connection: Stellaris In-Circuit Debug Interface

- 2. Variable de entorno:
 - En Resource->Linked Resources ->Path Variables
 - AñadirTIVAWARE_INSTALL
 - Hacer que apunte al directorio de instalación de TivaWare

- 3. Añadir librerías al path:
 - En CCS Build
 >ARM Compiler
 >Include Options >Add dir to
 include search
 path
 - Añadir "variable" \${TIVAWARE_INSTALL}

- 4. Añadir DRIVERLIB:
 - Para facilitar la portabilidad, enlazarla a partir de la variable TIVAWARE_INSTALL:
 - Add files (buscar driverlib.lib)
 - C:\ti\TivaWare_C_Series-2.2.0.295\driverlib\ccs\Debug

- 4'. (OPCIONAL) Añadir driverlib2.h:
 - Fichero de cabecera propio que enlaza todos los

ficheros .h necesarios o no.

- Descargar de página de ejemplos.
- Copiar al proyecto (no enlazar)

```
2//INCLUIR TODAS LAS LIBRERÍAS de DRIVERLIB
 3#ifndef DRIVERLIB H
 4#define DRIVERLIB H
 6#include "driverlib/adc.h"
 7 #include "driverlib/aes.h"
 8#include "driverlib/can.h"
 9 #include "driverlib/comp.h"
10 #include "driverlib/cpu.h"
11#include "driverlib/crc.h"
12#include "driverlib/debug.h"
13 #include "driverlib/des.h"
14#include "driverlib/eeprom.h"
15 #include "driverlib/emac.h"
16 #include "driverlib/epi.h"
17 #include "driverlib/flash.h"
18#include "driverlib/fpu.h"
19#include "driverlib/gpio.h"
20 //#include "driverlib/hibernate.h"
21 #include "driverlib/i2c.h"
22 #include "driverlib/interrupt.h"
23 #include "driverlib/lcd.h"
24 #include "driverlib/mpu.h"
25#include "driverlib/onewire.h"
26 #include "driverlib/pin map.h"
27 #include "driverlib/pwm.h"
28 #include "driverlib/qei.h"
```


- 5. Aumentar el tamaño de la pila
 - Por defecto, 512 bytes. Muy pequeña para manejar funciones complejas.
 - Subir a 4096

Recursos y bibliografía

- WorkShop de Texas Instruments:
 - http://processors.wiki.ti.com/index.php/Creating IoT Solutions with
 the TM4C1294XL Connected LaunchPad Workshop (Videos,
 explicaciones, ejemplos...)
- Manual del Microcontrolador (1890 páginas):
 - http://www.ti.com/lit/ds/symlink/tm4c1294ncpdt.pdf
 - Descripción detallada de cada periférico y características
- Manual de la DriverLib (704 páginas):
 - http://www.ti.com/lit/ug/spmu298d/spmu298d.pdf
 - Definición de las funciones de la API.

Ejemplo 1

- Realizar un programa que encienda y apague alternativamente los led situados en los pines 0 y 1 del puerto N, cada 500ms
- Configurar el reloj a 120MHz (con un cristal externo de 25MHz)
- [Cargar el ejemplo 0 y modificarlo]
 - Cambiar retraso de 100ms a 500ms
 - Añadir la configuración del Pin 1 (por analogía)
 - Encender y apagar D1 y D0

