CSC 461: Machine Learning Fall 2024

Regularization

Prof. Marco Alvarez, Computer Science University of Rhode Island

Model complexity and overfitting

- Manifestations of overfitting
 - complex model captures noise in training data
 - poor generalization to unseen data
 - high variance in predictions across different training sets
- ▶ How to prevent?
 - use more training data
 - use fewer features
 - **regularize** your model

Overfitting

Regularization

Original objective

$$\underset{\mathbf{w}}{\text{arg min }} L(\mathbf{w})$$

→ Regularized objective

$$\underset{\mathbf{w}}{\text{arg min }} L(\mathbf{w}) + \lambda R(\mathbf{w})$$

- ▶ Common regularization terms
 - L1, L2, elastic net

Linear regression and regularization

- Control the complexity of the model
 - usually **penalizing higher weights** (except intercept)
 - results in simpler or more sparse solutions
- Impact of regularization can be controlled by a parameter (lambda)

$$\mathbf{w}^* = \underset{\mathbf{w}}{\text{arg min }} \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \lambda R(\mathbf{w})$$

Linear regression and regularization

- → L2 regularization
 - Ridge Regression

- closed-form solution exists
$$R(\mathbf{w}) = \|\mathbf{w}\|_2^2$$

- $(X^TX + \lambda I)^{-1}X^T\mathbf{y}$
- differentiable everywhere
- shrinks all weights proportionally

solution (not differentiable)

- ▶ L1 regularization
 - Lasso Regression

- Lasso Regression
$$R(\mathbf{w}) = \|\mathbf{w}\|_1$$

promotes sparsity

Practice

$$\mathbf{x} = [1,1,1,1]$$
 $\mathbf{w_a} = [1,0,0,0]$ $\mathbf{w_b} = [.25,.25,.25,.25]$

Assume linear regression, what is $h(\mathbf{x})$ for each solution $\mathbf{w}_{\mathbf{a}}$ and $\mathbf{w}_{\mathbf{b}}$?

Which of the solutions will the L2 regularizer prefer?

Which of the solutions will the L1 regularizer prefer?

Regularization strength

https://work.caltech.edu/lectures.html