

Spectroscopie

26-09-2023

Cours 4

Spectrophotométrie d'absorption UV-VISIBLE

loi de BEER-LAMBERT (appelée parfois Beer-Lambert-Bouguer)

Soit un rayon lumineux traversant une solution absorbante de concentration C et de trajet optique égal à ℓ . Si I_0 est l'intensité du rayon lumineux à l'entrée de la solution et I son intensité à la sortie, alors :

ε_λ coefficient d'absorbance molaire (mol⁻¹ L cm⁻¹), ℓ : Longeur de la cuve (cm),

C: concentration en mol.L-1

Absorbance : $A = log(I_0/I)$ (Densité optique DO)

$$A_{\lambda} = \log (I_0/I) = \varepsilon_{\lambda} \ell C$$

Transmittance: $T = I/I_0$ A = log (1/T) = -log T

Spectrophotométrie d'absorption UV-VISIBLE

loi de BEER-LAMBERT

$$A_{\lambda} = \varepsilon_{\lambda} \ell C$$
 relation linéaire!

Exercices portant sur la loi de Beer-Lamber

Les concentrations de Fe³⁺ et de Cu²⁺ dans un mélange sont déterminées suite à leur réaction avec l'hexacyanoruthénate (II): $Ru(CN)_6^{4-}$

Celui-ci forme un complexe bleu-violet avec Fe^{3+} ($\lambda_{max} = 550$ nm) et un complexe vert pâle avec Cu^{2+} ($\lambda_{max} = 396$ nm). Les absorpivités molaires (mol⁻¹ L cm⁻¹) pour les complexes métalliques aux deux longueurs d'onde sont :

analyte	€ 550	E ₃₉₆
Fe ³⁺	9970	84
Cu ²⁺	34	856

Un échantillon contenant du Fe³⁺ et du Cu²⁺ est analysé dans une cellule d'une longueur de trajet de 1,00 cm, l'absorbance à 550 nm est de 0,183 et l'absorbance à 396 nm est de 0,109.

- a) Quelles conditions doivent être satisfaites pour calculer les concentrations molaires de Fe³⁺ et de Cu²⁺ dans l'échantillon?
 - b) Calculer les concentrations molaires de Fe³⁺ et de Cu²⁺ dans l'échantillon

THE STATE OF SCIENCES

Exercice 1: Réponse

a) Assomptions:

1) la solution contenant Fe³⁺ et Cu²⁺ obéit à la loi de Beer-Lambert

$$A_{\lambda} = \log (I_0/I) = \varepsilon_{\lambda} \ell C$$

2) Fe³⁺ et Cu²⁺ n'interfèrent pas dans la zone spectrale étudiée :

$$\mathbf{A}_{\mathrm{mix},\lambda} = \mathbf{A}_{1,\lambda} + \mathbf{A}_{2,\lambda}$$

b) calculs:

$$\mathbf{A}_{\text{mix},550} = \mathbf{C}_{\text{Fe}^{3+}} \, \boldsymbol{\mathcal{E}}_{\text{Fe}^{3+},550} + \mathbf{C}_{\text{Cu}^{2+}} \, \boldsymbol{\mathcal{E}}_{\text{Cu}^{2+},550} \qquad \mathbf{A}_{\text{mix},396} = \mathbf{C}_{\text{Fe}^{3+}} \, \boldsymbol{\mathcal{E}}_{\text{Fe}^{3+},396} + \mathbf{C}_{\text{Cu}^{2+}} \, \boldsymbol{\mathcal{E}}_{\text{Cu}^{2+},396}$$

$$\mathbf{C}_{\text{Cu}^{2+}} = \frac{\mathbf{C}_{\text{Fe}^{3+}} \, \mathcal{E}_{\text{Fe}^{3+},550} - \mathbf{A}_{\text{mix},550}}{\mathcal{E}_{\text{Cu}^{2+},550}}$$

$$\mathbf{A}_{\text{mix},396} = \mathbf{C}_{\text{Fe}^{3+}} \, \mathcal{E}_{\text{Fe}^{3+},396} + \frac{\mathbf{C}_{\text{Fe}^{3+}} \, \mathcal{E}_{\text{Fe}^{3+},550} - \mathbf{A}_{\text{mix},550}}{\mathcal{E}_{\text{Cu}^{2+},550}} \mathcal{E}_{\text{Cu}^{2+},396}$$

$$C_{E_0^{3+}} = 1.8 \times 10^{-5} \text{ mol L}^{-1}$$

$$C_{Cu^{2+}} = 1.3 \times 10^{-4} \text{ mol L}^{-1}$$

Il est possible de déterminer la stœchiométrie d'une réaction de complexation (voir schéma ci-dessous) entre un métal, M, et un ligand, L, en utilisant la loi de Beer-Lambert.

$$M + y L \longrightarrow ML_y$$

Dans le cas présent Fe²⁺ est l'ion métallique, M, et o-phénanthroline est le ligand, L.

Pour déterminer la formule du complexe entre Fe²⁺ et o-phénanthroline, une série de 11 solutions est préparée dans laquelle la concentration totale (métal plus ligand, $c_L + c_M$) est maintenue constante à 3,15 × 10⁻⁴ mol L⁻¹.

L'absorbance de chaque solution est mesurée à une longueur d'onde de 510 nm. Sachant que seul le complexe formé absorbe cette longueur d'onde,

- tracez la courbe d'absorbance en fonction de X_L
- 2) déterminez la formule du complexe en utilisant les données suivantes :

 X_L est égal à la concentration de ligand (o-phénanthroline), c_L , divisée par (c_L+c_M) .

X_{L}	Absorbance
0	0
0.1	0.116
0.2	0.231
0.3	0.347
0.4	0.462
0.5	0.578
0.6	0.693
0.7	0.809
0.8	0.693
0.9	0.347
1	0

Exercice 2: Réponse

$$y = X_L/(1-X_L) = 0.75/(1-0.75) = 3$$

Fe(phen)₃²⁺

Radicaux libres

OM anti-liante

clivage homolytique

La stabilité des radicaux :

Délocalisations stabilise les radicaux

Polymérisation radicalaire

styrène

radical trop réactif

pas de contrôle de la polymérisation!

Polymérisation par RAFT (polymérisation radicalaire contrôlée):

Reversible Addition-Fragmentation chain Transfer

Amorceur (fournisseur de radicaux libres)

$$\begin{array}{c|c} N & C & CH_3 \\ \hline \\ H_3C & CH_3 & C \\ \hline \\ \end{array}$$

Azobisisobutyronitrile (AIBN)

formation de radicaux libres

Chain transfer agent (CTA)

Z: modifie la vitesse de fragmentation et d'addition

Polymérisation par RAFT (polymérisation radicalaire contrôlée)

Amorçage

Amorceur
$$\longrightarrow$$
 A• $\stackrel{M}{\longrightarrow}$ A-M•

Transfert de chaîne

M: monomère

Réamorçage

$$R^{\bullet} \xrightarrow{M} R-M^{\bullet} \xrightarrow{M} \stackrel{M}{\longrightarrow} P_{m}^{\bullet}$$

Equilibre de transfert de chaîne

Terminaison irréversible

$$P_n^{\bullet} + P_m^{\bullet} \xrightarrow{k_t}$$
 Chaîne morte

Post-modification par aminolyse

En présence d'un agent de réduction (DL-dithiothreitol), le disulfide est

transformé en thiol.

DL-dithiothreitol (DTT)

en excès

Sachant que dans l'acétonitrile, pour une longueur d'onde λ = 370 nm,

 $\varepsilon_{2\text{-pyridinethione}}$ = 2450 L mol⁻¹ cm⁻¹. Que peut-on déduire de la courbe ci-dessous?

concentration de la solution de polymère (solvant : acétonitrile)

Exercice 3: Réponse

DTT, en excès

- 1) Il est important de préciser que les expériences de UV-Visibles sont toujours réalisées dans des cuvette de ℓ = 1 cm.
- 2) On considère que la réaction de DTT avec le polymère est quantitative (100%).

Si chaque chaîne polymère possède un groupement pyridyl disulfide (voir réaction ci-dessus), alors [polymer]₀ = [2-pyridinethione] après réaction avec le DTT. Par conséquent la pente de la courbe d'absorbance en fonction de la concentration de polymère devrait être égale à $y = 2450 L mol^{-1} cm^{-1}$.

Comme ce n'est pas le cas ($y = 2217 L mol^{-1} cm^{-1}$), cela signifie qu'il y a un certain pourcentage de chaîne qui ne possèdent pas de groupement pyridyl disulfide.

Le pourcentage de chaînes qui possèdent un groupement pyridyl disulfide est

de: 2217/2450*100 = 90.5%