

Pete Gannett June 18, 2014 HPC

Outline

- Introduction to Aptamers
- I-D aptamer selection
- 2-D and 3-D aptamer structure
- Docking ligand to aptamer
- HTS of aptamer data base
- What's next
- Conclusion

What are Aptamers

- DNA or RNA based
- Typically single-stranded
- 20-30 bases long
- Selected for specific target
- Bind target selectively
- Reversible

AMP (balls) bound to aptamer (sticks) Binding is via intercalation

Why DNA-Based

- Technology available to make
- DNA is robust
- RNA sensitive to RNase
- Reversible binding

Application

- Many but targeting Lab-on-a-chip
- Point-of-care devices (e.g., glucose meter)
- Identify aptamers against environmental toxins (Hg, Atrazine)

Lab-on-a-chip device for Hg (top right)
Output of chip, linear 40-100ppb

Goal

- Long-range de novo aptamer creation
- Short range build structure from sequence
 - Use I-D known aptameric sequences
 - Predict 2-D/3-D structure
 - Predict Binding of substrate
 - Create candidate aptamer database for HTS

Aptamer selection

- SELEX (Systematic Evolution of Ligands by Exponential Enrichment)
- Tedious, labor intensive, time consuming but it works

Approach

- Informatics approach
 - Selection from I-D sequence data
 - Convert to 2D with mfold (sequence and structure)
- Structural approach
 - Convert 2D->3D with NAB
 - Relax with MD

- Build database of candidate aptamers
 - Screen candidates with substrate using DOCK
- Experimental validation

Informatics

- Aptamer sequence information +1000 known
- Assumptions
 - Aptamers bind through usual interactions
 - Binding involves 4 or fewer bases
 - Rest of aptamer supplies infrastructure
 - May be common repeats
- Can sequences be analyzed to identify aptamers

Biclustering and Selex

- Each 3 rounds of selex aptamer candidates sequenced
 - Examine for what is being enriched
 - But only 50-100 sequences
- Examined each pool with biclustering
 - Shopping Basket Theorem
 - Monitored negative and positive selection
- Acknowledge
 - Only have random pool of 50-100 sequences
 - Ignoring any structural information

Biclustering Results

- Bicluster 40 trends up with substrate (atrazine) during positive selection (0-12)
- Bicluster 40 trends down with decoy (simizine) negative selection (12-99)

Biclustering Results

Of 50 aptamers, biclustering reduced sample to 14

```
R12 1
 R12 8
 R12 19
 R12 20
 R12 21
 R12 22
 R12 23
 R12 24
 R12 25
 R12 26
 R12 32
 R12 33
 R12 34
 R12 36
 R12 37
 R12 38
 GCACGATTCGTACGTTTGTACTNGTTAGGAAATAAACGTGNTGAGCGAGCCAGTCAGTGTTAAGGAGTGC
R12 40
 R12 41
 R12 42
 R12 44
```

- Selected aptamer (R12_23) was in the pool
- Need to increase size of sampling to improve this approach

Structural Approach to Aptamer Selection

- Sequences come from Ellington Database
 - 1000 Aptamers, RNA and DNA based
 - For ~ 10 there are known structures
- In house Dr. Letha Sooter
 - Identifies aptamers from pool of $\sim 10^{12}$
 - Targets small molecules <u>Atrazine</u>
 - And large exotoxin

Aptameric Sequence - Atrazine

- End game still get 50-100 sequences. Which to pick?
- Informatics reduced it to 14
- For Atrazine, Sequence selected was -TGTACCGTCTGAGCGATTCGTACGAACGGCTTTGTACTGTTTGCACTG GCGGATTTAGCCAGTCAGTGTTAAGGAGTGC
 - Red primers used to amplify by PCR
 - Black –random sequence
 - Underline Truncated sequence
 - Rationale 2D structures and experience
- TACTGTTTGCACTGGCGGATTTAGCCAGTCAGTG

Positive Selection

Negative Selection (Decoy)

Robyns stuff

 ID sequence – mfold results TACTGTTTGCACTGGCGGATTTAGCCAGTCAGTG

Low Salt (25 mM NaCl)

High Salt (I M NaCl)+2mM MgCl₂

3D structure from 2D

- High salt mfold structure used
- Similar to Selex conditions (~3 kcal/mole more stable)

NAB – Yields structure in blue. Molecular Dynamics 'relaxes' to structure in red.

Docking With AutoDock

- AutoDock computational tool that docks analyte molecules to potential binding sites
- Predicts:
 - Binding sites
 - Analyte 3D conformations.
 - Gibbs free energy values.
- Gibbs free energy ("delta G").
 - Predict if binding is likely
 - Indicates preferred site if more than one
- Illuminates detailed 3D binding descriptors

Docking Aptamer and Substrate

Validation of 3D Structures and Docking

- Determining the Structure of Atrazine Aptamer-Atrazine complex
- Have docked ligands in their known aptamer targets with similar results
- Docked database of 3D structures to substrate and correctly identified aptamer

Challenges

- 2D -> 3D conversion via NAB still has problems
- Quad structures are problematic
- Normalize docking energies from HTS
- Identification of what contributes to a good aptamer

Solutions

- NAB issues
 - Loops are problematic
 - Adding code to resolve
- Quad structures
 - QGRS
 - Screens for quad forming sequences
 - Build with NAB
- ID aptamer properties used for binding
 - Aptamer-Ligand and aptamer structure
 - Utilize DOCK files
- Normalize docking energies
 - Implement published procedure
 - Utilize RNA data base (~500,000 aptamers)

Contact Information

- Pete Gannett
- WVU School of Pharmacy
- Pharmaceutical Sciences
- P.O. Box 9530
- Morgantown, WV 26506
- 304.293.1480 (ofc)
- 304.216.6430 (cell)
- 304.293.2576 (fax)
- pgannett@hsc.wvu.edu

In Silico vs In Vivo selection

 $(\sim 10^9 - 10^{13} \text{ NA})$

Selex – begins with a pool of targets and one substrate (Analyte)

Targets

Target-Substrate

Substrate

Aptamer-Substrate

(NA-Substrate)

Like high throughput screening (HTS) for drugs but 'reversed' HTS - Have a pool of substrates and a known target

Pool of substrates
(~10⁶)

Potential Drugs

Target

e.g. Protein,
DNA, RNA

Goal: Build a library of aptamers and use in HTS mode to discover aptamers for desired targets.