Plan

- Traitement analyse d'image
 - Intro
 - Traitement
 - Transformations géométriques
 - Filtrage
 - Analyse

Homothetie

Translation

Rotation

Cisaillement

Opération de rotation

Exemple: rotation du segment $S = [P_1 = (0,0), P_2 = (10,0)]$ avec

matrice de rotation
$$M = \begin{pmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{pmatrix}$$

Opération de rotation

Exemple: rotation du segment $S = [P_1 = (0,0), P_2 = (10,0)]$ avec

matrice de rotation
$$M = \begin{pmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{pmatrix}$$

$$\Rightarrow M(S) = [M(P_1), M(P_2)] = [(0,0), (8,6)]$$

Opération de rotation

Segment
$$S = [P_1 = (0,0), P_2 = (10,0)]$$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

Opération de rotation

Affichage dans une grille pixel : algorithme de Bresenham

Opération de rotation

Affichage dans une grille pixel : algorithme de Bresenham

Opération de rotation

Segment
$$f(S) = [f(P_1) = (0,0), f(P_2) = (8,6)]$$

◆ロト ◆部ト ◆注ト ◆注ト 注 りへぐ

Opération de rotation

Affichage dans une grille pixel : algorithme de Bresenham

Opération de rotation

Affichage dans une grille pixel : algorithme de Bresenham

Opération d'agrandissement

Opération d'agrandissement

Image I de dimensions $L \times H$ Facteur d'agrandissement n (n entier ≥ 2)

Opération d'agrandissement

Image I de dimensions $L \times H$ Facteur d'agrandissement n (n entier ≥ 2)

ightarrow Image agrandie \bar{I} de dimensions $nL \times nH$

Opération d'agrandissement

Image I de dimensions $L \times H$ Facteur d'agrandissement n (n entier ≥ 2)

ightarrow Image agrandie $ar{I}$ de dimensions $\mathit{nL} \times \mathit{nH}$

Pixel (x, y) de I	$0 \le x \le L - 1$	$0 \le y \le H - 1$
Pixel (\bar{x}, \bar{y}) de \bar{l}	$0 \le \bar{x} \le nL - 1$	$0 \leq \bar{y} \leq nH - 1$

Opération d'agrandissement

Image I de dimensions $L \times H$ Facteur d'agrandissement n (n entier ≥ 2)

ightarrow Image agrandie $ar{I}$ de dimensions nL imes nH

Correspondance entre x et \bar{x}	$\bar{x} = \frac{x(nL-1)}{L-1}$	$x = \frac{\bar{x}(L-1)}{nL-1}$
Correspondance entre y et \bar{y}	$\bar{y} = \frac{y(nH-1)}{H-1}$	$y = \frac{\bar{y}(H-1)}{nH-1}$

Opération d'agrandissement

Calcul de l'image \bar{I}

Opération d'agrandissement

Calcul de l'image \bar{l}

```
Algorithme 2 : interpolation bilinéaire
   pour \bar{x} de 0 a nL-1 faire
        pour \bar{y} de 0 a nH-1 faire
           xr \leftarrow \frac{\bar{x}(L-1)}{nL-1}, yr \leftarrow \frac{\bar{y}(H-1)}{nH-1}
            // partie entière infèrieure
           x \leftarrow \operatorname{arrondi\_inf}(xr), y \leftarrow \operatorname{arrondi\_inf}(yr)
           dx \leftarrow xr - x, dy \leftarrow yr - y // partie décimale
            \bar{I}(\bar{x},\bar{y}) \leftarrow (1-dx)(1-dy) I(x,y) + dx (1-dy) I(x+1,y)
                      + (1 - dx) dy I(x, y + 1) + dx dy I(x + 1, y + 1)
        fin_pour
```

fin_pour

Opération d'agrandissement - exemple 1

Interpolation au plus proche

Interpolation au plus proche

Interpolation bilinéaire

Interpolation bilinéaire

Image agrandie ×3 (bilinéaire)

Opération de rotation

Image bitmap

Rotation de l'image bitmap

Opération de rotation

RESPECTER UNE GRILLE HORIZONTALE-VERTICALE

Calcul de l'image tournée par la fonction réciproque

Calcul de l'image tournée par la fonction réciproque

Calcul de l'image tournée par la fonction réciproque

Image bitmap

Calcul de l'image finale

Calcul de l'image finale

Pour chaque pixel (x', y') de l'image transformée I',

Calcul de l'image finale

Pour chaque pixel (x', y') de l'image transformée I', calculer $(x, y) = f^{-1}(x', y')$

Calcul de l'image finale

Pour chaque pixel (x', y') de l'image transformée I', calculer $(x, y) = f^{-1}(x', y')$ en général (x, y) coordonnées non entières

Calcul de l'image finale

Méthode 1 : au plus proche

choisir le pixel (X, Y) le plus proche de (x, y)

$$\rightarrow I'(x',y') \leftarrow I(X,Y)$$

Calcul de l'image finale

Méthode 2: interpolation bilinéaire choisir les 4 pixels (X, Y), (X + 1, Y), (X, Y + 1) et (X + 1, Y + 1) autour de (x, y)

Calcul de l'image finale

Calcul de l'image finale

$$X = \lfloor x \rfloor = \operatorname{floor}(x)$$
, $Y = \lfloor y \rfloor = \operatorname{floor}(y)$
 $dx = x - X$, $dy = y - Y$

Calcul de l'image finale

$$X = \lfloor x \rfloor = \operatorname{floor}(x)$$
, $Y = \lfloor y \rfloor = \operatorname{floor}(y)$
 $dx = x - X$, $dy = y - Y$

Calcul de l'image finale

$$X = \lfloor x \rfloor = \operatorname{floor}(x)$$
, $Y = \lfloor y \rfloor = \operatorname{floor}(y)$
 $dx = x - X$, $dy = y - Y$

$$=\left(egin{array}{ccc} 1-d_y & d_y \end{array}
ight)\left(egin{array}{ccc} I(X,Y) & I(X+1,Y) \ I(X,Y+1) & I(X+1,Y+1) \end{array}
ight)\left(egin{array}{ccc} 1-d_x \ d_x \end{array}
ight)$$

Calcul de l'image finale

$$X = \lfloor x \rfloor = \text{floor}(x)$$
, $Y = \lfloor y \rfloor = \text{floor}(y)$
 $dx = x - X$, $dy = y - Y$

$$= (1 - d_y \quad d_y) \begin{pmatrix} I(X,Y) & I(X+1,Y) \\ I(X,Y+1) & I(X+1,Y+1) \end{pmatrix} \begin{pmatrix} 1 - d_x \\ d_x \end{pmatrix}$$

$$= (1 - d_x)(1 - d_y)I(X,Y) + d_x(1 - d_y)I(X+1,Y) + (1 - d_x)d_y I(X,Y+1) + d_x d_y I(X+1,Y+1)$$

Opération de rotation

Opération de rotation

Calcul en utilisant le pixel le plus proche

Opération de rotation

Calcul en utilisant l'interpolation bilinéaire