UNIVERSIDADE ESTADUAL DE CAMPINAS ${\tt FACULDADE\ DE\ ENGENHARIA\ ELÉTRICA\ E\ COMPUTAÇÃO }$

EFC 3 - Transformada de Fourier

Prof. Levy Bocatto

Victor Hugo Picerni Pinto Ferreira RA: 187930

CAMPINAS 15 de novembro de 2020

Sumário

1	Intr	Introdução		
2	Respostas das Atividades			
	2.1	Consti	rução do filtro Chebyshev	2
		2.1.1	Item (a)	3
		2.1.2	Item (b)	5
	2.2	Filtro	de Butterworth	6
		2.2.1	item (c)	6
	2.3	Filtrag	gem de um pulso retangular	8
		2.3.1	item (d)	8
		2.3.2	item (e)	10
		2.3.3	item (f)	11
		2.3.4	item (g)	13
		235	item (h)	15

1 Introdução

Neste EFC, estudaremos alguns filtros passa-baixas práticos, i.e.,não ideais, tendo como objetivo analisar como estes filtros se comportam na banda passante e na banda de rejeição, bem como de que maneira ocorre a transição entre estas duas regiões. Toda a análise será conduzida no domínio da frequência, considerando somente a magnitude dos espectros dos sinais e dos filtros.

2 Respostas das Atividades

2.1 Construção do filtro Chebyshev

Dado que o filtro de Chebyshev tem uma resposta em frequência que obedece a equação

$$|H_c(jw)| = \frac{1}{\sqrt{1 + \epsilon^2 T_n^2(\frac{w}{w_c})}}$$

onde $T_n()$ identifica o polinômio de Chebyshev do primeiro tipo e de ordem n, definido pela seguinte relação de recorrência:

$$T0(x) = 1$$

$$T1(x) = x$$

$$Tn+1(x) = 2xT_n(x) - T_{n-1}(x)$$

ou, equivalentemente, pelas seguintes expressões:

$$T_n(\frac{w}{w_c}) = cos\left(n.arccos\left(\frac{w}{w_c}\right)\right), \ para \ 0 < w < w_c$$

$$T_n(\frac{w}{w_c}) = cosh\left(n.arccosh\left(\frac{w}{w_c}\right)\right), \ para \ w > w_c$$

A construção de um filtro de Chebyshev envolve a definição de três parâmetros:

- 1. w_c : frequência de corte, em rad/s;
- 2. n: ordem do filtro;
- 3. $\epsilon(\epsilon < 1)$: ganho na frequência de corte $|H_c(jw)| = \frac{1}{\sqrt{1+\epsilon^2}}$

2.1.1 Item (a)

Fixe $w_c = 5$ rad/ s e $\epsilon = 0.2$ e varie a ordem do Filtro n = 1, 2, 3, 4 e 5. Plote em um mesmo gráfico, com cores diferentes, o módulo da resposta em frequência obtida para cada um dos valores de n e comente as mudanças observadas. Neste item, utilize a rotina fornecida calcula-coeficientes(w,wc,n), que recebe como argumentos um vetor de frequências w, a frequência de corte wc e a ordem do Filtro n, e retorna o vetor Tn (do mesmo tamanho que w) com os valores do polinômio de Chebyshev necessários para determinar a resposta do filtro.

A partir dos dados e das funções foi construído um programa para produzir o gráfico. O programa foi feito em Matlab utilizando também a função de coeficientes dada. Foi utilizada uma variação de 1000 amostras, conforme sugerido, com w partindo de zero e chegando em 20. Além disso foram utilizados os coeficientes $w_c = 5$, $\epsilon = 0.2$.

```
%Função para o filtro de chebyshev
]function [Habs] = filtro_ch(w,wc,e,n)
    aux = 1;
    for w=w
        Tn = calcula_coeficientes(w,wc,n);
        Habs(aux) = 1/sqrt(1 + e^2*Tn^2);
        aux +=1;
    endfor
endfunction

%Calculo do filtro para cada N variando de 1 a 5
N1 = filtro_ch(w,wc,e,1);
N2 = filtro_ch(w,wc,e,2);
N3 = filtro_ch(w,wc,e,3);
N4 = filtro_ch(w,wc,e,4);
N5 = filtro_ch(w,wc,e,5);
```

Figura 1: Função para filtro Chebyshev

A partir disso foram obtidos 5 gráficos para diferentes ordens de n, variando de 1 a 5, como podemos ver na Figura 2.

Figura 2: Resposta em frequência para um filtro Chebyshev variando a ordem n

O gráfico mostra com clareza a resposta do filtro a diferentes frequências. É possível perceber que quanto maior a ordem n do filtro, mais rápido a resposta em frequência irá decair, mostrando a melhora do filtro conforme n aumenta.

2.1.2 Item (b)

Ainda com $W_C = 5$ rad/s, fixe a ordem do filtro em n = 3 e varie e = 0.1, 0.3, 0.5, 0.7 e 0.9. Plote em um mesmo gráfico, com cores diferentes, a resposta obtida para cada um dos valores de ϵ e comente o comportamento observado.

De maneira similar ao item (a), utilizando os mesmos valores, entretanto agora variando o valor de ganho de frequência no corte, para uma ordem n fixa e igual a 0.3, temos o seguinte gráfico:

Gráfico da resposta em frequência para um filtro Chebyshev variando o ganho na frequência de corte

Figura 3: Gráfico da resposta em frequência para um filtro Chebyshev variando o ganho na frequência de corte

2.2 Filtro de Butterworth

Dado que o filtro de Butterworth tem uma resposta em frequência que obedece a equação

$$|H_B(jw)| = \frac{1}{\sqrt{1 + (\frac{w}{w_c})^{2n}}}$$

Para o projeto deste tipo de filtro, devemos utilizar dois parâmetros:

- 1. w_c : frequência de corte, em rad/s;
- 2. n: ordem do filtro;

2.2.1 item (c)

(c) Com $w_c = 5$ rad/s, varie n = 1, 2, 3, 4 e 5. Plote em um mesmo gráfico, com cores diferentes, a resposta em magnitude obtida para cada um dos valores de n e comente as mudancas observadas. Novamente, crie uma função que receba como parâmetros w_c e n e retorne um vetor com os valores de $|H_B(jw)|$

Para calcular a resposta do filtro para diferentes parametros, utilizamos a função cujo código está presente na Figura 4.

```
function [Habs] = filtro_bu(w,wc,n)
  aux = 1;

for w=w
   Tn = calcula_coeficientes(w,wc,n);
   Habs(aux) = 1/sqrt(1 + (w/wc)^(2*n));
  aux +=1;
  endfor
endfunction
```

Figura 4: Função para filtro Butterworth

A partir disso foram obtidos 5 gráficos para diferentes ordens de n, variando de 1 a 5, como podemos ver na Figura 5.

Figura 5: Resposta em frequência para um filtro Butterworth variando a ordem n

Observamos a partir dos gráficos, que todos tem um ponto em comum, que é obtido quando $\frac{w}{w_c}$ vale zero. Observamos também que com n no expoente do denominador, quanto maior for o valor de n mais rápido o gráfico irá decair, além do que para $w>w_c$ o denominador será sempre maior que 1 e crescente.

2.3 Filtragem de um pulso retangular

2.3.1 item (d)

Calcule a transformada de Fourier X(jw) do sinal x(t), considerando $\tau = 2\pi/w_c$. Apresente o gráfico de |X(jw)|, com o eixo das frequências variando de 0 a 20 rad/s, com $w_c = 5$ rad/s e comente acerca dos pontos em que |X(jw)| = 0.

Considerando a definição de Transformada de Fourier como

$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt} dx$$

Considerando a onda retangular, de comprimento τ , temos então:

$$X(jw) = \int_{-\tau/2}^{\tau/2} x(t)e^{-jwt} dx$$

Calculando a integral temos

$$X(jw) = \frac{e^{-jwt}}{-jw} \Big|_{-\tau/2}^{\tau/2}$$

ficando assim com:

$$X(jw) = \frac{j}{w} \left(e^{-jw(\tau/2)} - e^{jw(\tau/2)} \right)$$

mas sabemos que;

$$sin(wt) = \frac{j}{2} \left(e^{-jwt} - e^{jwt} \right)$$

Com isso, podemos ver que:

$$X(jw) = \frac{2sin(w\tau/2)}{w}$$

Como $\tau = 2\pi/w_c$, temos

$$X(jw) = \frac{2sin(w\pi/w_c)}{w}$$

Com isso, obtivemos a transformada de Fourier para a onda retangular. A equação da transformada foi utilizada para construir o gráfico da Transformada para a onda retangular dada. O gráfico a seguir nos mostra o módulo da transformada em função de frequências entre 0 e 20.

```
%funcao para calculo da onda retangular
]function [X] = fourier_retangular(w,wc)
   aux = 1;
] for w=w
     X(aux) = (2/w)*sin(pi*w/wc);
   aux +=1;
endfor
endfunction
```

Figura 6: Função em Matlab para obter o valor da transformada de Fourier da onda retângular

Figura 7: Transformada de Fourier para onda retangular

Podemos observar que para cada $w/w_c=k$ sendo k inteiro, o módulo da resposta em frequência será zero, uma vez que o seno leva o valor para zero, já que $sin(k\pi)=0$, Além disso, o aumento do denominador (w) na equação irá atenuar o valor de X(jw) conforme w aumenta.

2.3.2 item (e)

Considerando um filtro passa-baixas ideal

$$H_{ideal}(jw) \begin{cases} 1, & |w_0| \le w \\ 0, & \text{Caso contrário} \end{cases}$$

apresente o módulo da resposta em frequência do filtro, $H_{ideal}(jw)$, adotando $W_c = 5 \text{ rad/s}$. Em seguida, filtre o sinal $\mathbf{X}(\mathbf{jw})$ e apresente o módulo da saída obtida $|Y(jw)| = |H_{ideal}(jw)||X(jw)|$

A partir de X(jw) calculado no item (d) e H(jw) dado obtivemos o gráfico a seguir

Figura 8: Saída Y(jw) para H(jw) ideal

Vemos nesse gráfico, que o valor para $w < w_c$ se manteve o mesmo da transformada X(jw), uma fez que o para esses valores de w, o filtro tem valor 1. Já para valores em que $w > w_c$ temos que o filtro terá valor zero.

2.3.3 item (f)

Utilizando um filtro de Chebyshev com $\epsilon=0.9$, n = 3 e $w_c=5$ rad/s, apresente o módulo da resposta em frequência do Filtro, |HC(jw)|, bem como o módulo do espectro da saída $|Y_C(jw)|$.

A resposta em frequência para o filtro de Chebyshev com $\epsilon=0.9,$ n = 3 e $w_c=5$ rad/s é mostrada a seguir. O gráfico foi produzido a partir da da função feita e mostrada no item (a).

Figura 9: Resposta em frequência para o filtro chebyshev

Figura 10: Saída Y(jw) para resposta ao filtro chebyshev

2.3.4 item (g)

Utilizando um filtro Butterworth com n = 2 e $w_c = 5$ rad/s, apresente o módulo da resposta em frequência do filtro, $|H_B(jw)|$, bem como o módulo do espectro da saída $|Y_B(jw)|$.

A resposta em frequência para o filtro de Butterworth com, n=2 e $w_c=5$ rad/s é mostrada a seguir. O gráfico foi produzido a partir da da função feita e mostrada no item (c).

Figura 11: Resposta em frequência para o filtro Butterworth

Figura 12: Saída $\mathbf{Y}(\mathbf{j}\mathbf{w})$ para resposta ao filtro Butterworth

2.3.5 item (h)

Compare as saídas obtidas nos itens (f) e (g) com a obtida no item (e), bem como as respostas em frequência de cada um dos filtros. Comente as semelhanças e diferenças entre as respostas dos filtros e como isto se reflete no espectro das saídas obtidas, para frequências inferiores e superiores à frequência de corte. Dica: para facilitar a análise, plote em um mesmo gráfico, com cores distintas, $|H_{ideal}(jw)|, |H_C(jw)|$ e $|H_B(jw)|$ em um segundo gráfico, plote as saídas (novamente com cores distintas) $|Y_{ideal}(jw)|, |Y_C(jw)|$ e $|Y_B(jw)|$.

A resposta em frequência de cada filtro é dada no gráfico a seguir

Figura 13: Comparação da resposta em frequência para cada um dos filtros

Temos que o filtro ideal tem valor 1 para frequências menores que a frequência de corte e tem valor nulo para frequências maiores que a de corte. Podemos observar a partir da comparação dos gráficos, que embora o filtro de Chebyshev tenha uma oscilação maior em relação a frequências menores que a de corte, ele decai muito rapidamente, como é esperado para o filtro passa baixas; Já o filtro de Butterworth não tem oscilações abruptas

com frequências baixas, entretanto ele decai de forma mais lenta.

Além disso, temos a seguir as saídas relacionadas a cada um dos filtros acima (nas mesmas cores).

Figura 14: Saída Y(jw) para resposta ao filtro chebyshev

O módulo da saída ideal, representado pela curva vermelha nos mostra o que deveria ocorrer com os filtros. Em outras palavras, para $w < w_c$ o gráfico deve ser igual a X(jw) e para valores de w tais que $w > w_c$ o filtro deveria zerar qualquer sinal que passa por ele.

Podemos ver que a saída para ambos os filtros tem módulo semelhante para frequências menores que a frequência de corte. O filtro de Chebyshev tem módulo ligeiramente menor ao longo do caminho entre a frequência 0 e a frequência de corte. Além disso, ambos os filtros não zeram após a frequência de corte, isto é, ainda possuem um valor diferente de zero com $w > w_c$. Para o filtro de Chebyshev a frequência de corte é cerca de duas vezes a frequência de corte ideal. já para o filtro de Butterworth a frequência de corte chega a ser de 4 vezes a frequência de corte.