[4]

Total No. of Questions: 6

Total No. of Printed Pages:4

Maximum Marks: 60

S
UNIVERSITY Knowledge is Power

Duration: 3 Hrs.

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2019

EC3C001 / EI3C001 / EE3C006 / EX3C006

Signals and Systems

Programme	e: B.Tech. B	Branch/Specialisation:	EC/EE/EI/EX

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a, b, c or d.

Į.1 (N	(ICQs	should be written in full instead	of only a, b, c or a.	
Q.1	i.	y(t) = x(t/3) is (a) Compressed signal (b) Expanded signal (c) Time shifted signal	for any 1/2]
	••	(d) Amplitude scaled signal by		-
	ii.	-	ral of with respect to time t.	
		· ·	(b) Impulse function	
		(c) Sinusoidal function	(d) Exponential function	-
	iii.	DFT is applied to		_
		(a) Infinite sequences		
		(b) Finite discrete sequences		
		(c) Continuous infinite signals		
iv.		(d) Continuous finite sequence		
	1V.	•	From 1 KHz to 2 KHz. The minimum]
			eeded to retain all information of the	
		sampled signal is		
		* *	(c) 2 KHz (d) 3 KHz	
	v.	_	e for continuous time stable systems?	
		$(a)\int_{-\infty}^{\infty} h(\tau) d\tau<\infty.$	$-\infty$	
		(c) $\int_{-\infty}^{\infty} h(\tau) d\tau \le \infty$	(d) $\int_{-\infty}^{\infty} h(\tau) d\tau \ge \infty$	
vi	vi.	When two LTI systems with	impulse responses $h_a(t)$ and $h_b(t)$ are	1
		cascaded then equivalent response	onse is given by	
			(b) $h(t) = h_a(t) - h_b(t)$	
		(c) $h(t) = h_a(t) h_b(t)$	(d) $h(t) = h_a(t) * h_b(t)$	

P.T.O.

vii. Discrete Convolution of following system can be expressed as

- (a) $y(n) = \sum_{n=-\infty}^{\infty} x(k)h(n-k)$
- (b) $y(n) = \sum_{n=-\infty}^{\infty} x(n-k)h(k)$
- (c) y(n)=x(n)*h(n)
- (d) All of these
- viii. When a discrete time LTI system is said to be causal?

 - (a) Output y[n] must not depend on x[k] for k>n
 - (b) Output y[n] must not depend on x[k] for k=n
 - (c) Output y[n] must not depend on x[k] for k < n
 - (d) Output y[n] must depend on x[k] for k>n
- The z-transform of a^k u[k]
 - $(c)\frac{2z}{z-a}$

- (b) $\frac{z}{a-z}$

1

1

1

1

- The similarity between the DTFT and the z transform is that
 - (a) Both convert frequency spectrum domain to discrete time domain
 - (b) Both convert discrete time domain to frequency spectrum domain
 - (c) Both convert analog signal to digital signal
 - (d) Both convert digital signal to analog signal
- Prove that the signal x(t) and y(t) are orthogonal over the interval 2 Q.2 i. [0,4]. Where

$$x(t) = \begin{cases} 1,0 < t < 1 \\ -1,1 < t < 3 \\ 1,3 < t < 4 \end{cases} \quad y(t) = \begin{cases} 1,0 < t < 2 \\ -1,2 < t < 4 \end{cases}$$

- Write the mathematical expression along with diagram for following 3 function:
 - (a) Signum function,
 - (b) Impulse function
 - (c) Shifted unit step function (right side shift t₀)
 - (d) Continuous time exponential signal
 - (e) Sinusoidal signal with phase φ
 - (f) Unit Ram function
- Examine whether the following signal are periodic. If so find 5 fundamental period.
 - (a) $x(t) = \cos 50\pi t + \cos 60\pi t$ (b) $1 + e^{j2\pi t} + e^{j4\pi t}$

OR iv. (a) The trapezoidal pulse x(t) shown is defined by

Find the total energy of x(t).

- (b) Perform and sketch following operations
 - I. x(3t+2)
 - II. x(-2t-1)

on the given signal x(t) shown in figure.

- Q.3 i. What are the fundamental differences between continuous and 2 discrete time signals explain?
 - (a) Explain any four properties of Fourier transform.
 - (b) Obtain the Fourier component of the periodic rectangular waveform shown in figure

- OR iii. (a) Determine the Fourier Transform of following function:
 - II. $x(t) = \begin{cases} 10.0 < t < 2 \\ 0.0 therwise \end{cases}$ I. 100 e^{-10t}
 - (b) Determine the DFS of following periodic signal

$$\forall$$
 $x[n]=\{....0,1,2,3,0,1,2,3...\}$ where, N=4.

P.T.O.

8

8

5

Marking Scheme EC3CO01 / EI3CO01 / EE3CO06 / EX3CO06

Signals and Systems

Q.1	i.	y(t) = x(t/3) is		1
		(b) Expanded signal		
	ii.	The step function u(t) is integral of with re	espect to time t.	1
		(b) Impulse function		
	iii.	DFT is applied to		1
		(b) Finite discrete sequences		
	iv.	A band pass signal extends from 1 KHz to 2 KHz. The minimum sampling frequency that is needed to retain all information of the sampled signal is		
		(c) 2 KHz		
	v.	Which of the following is true for continuous time	stable systems?	1
		$(a)\int_{-\infty}^{\infty} h(\tau) d\tau<\infty.$		
	vi.	When two LTI systems with impulse responses	$h_a(t)$ and $h_b(t)$ are	1
		cascaded then equivalent response is given by		
		$(d) h(t) = h_a(t) * h_b(t)$		
	vii.	Discrete Convolution of following system can be explained by $\frac{ nput }{ x(n) }$	xpressed as	1
		(d) All of these		
	viii.	When a discrete time LTI system is said to be causa	al?	1
		(a) Output y[n] must not depend on x[k] for k>n		1
	ix.	The z-transform of a ^k u[k]		
		$(a)\frac{z}{z-a}$		
	х.	The similarity between the DTFT and the z transform is that		1
		(b) Both convert discrete time domain to free domain	quency spectrum	
Q.2	i.	Prove that the signal $x(t)$ and $y(t)$ are orthogonal $[0,4]$.	over the interval	2
	ii.	Write the mathematical expression along with diagram	ram for following	3
		function:0.5 mark for each	(0.5 mark * 6)	
	iii.	$(a) x(t) = \cos 50\pi t + \cos 60\pi t$	2.5 marks	5
		(b) $1+e^{j2\pi t}+e^{j4\pi t}$	2.5 marks	
OR	iv.	(a) Find the total energy of $x(t)$	2.5 marks	5
		(b) Perform and sketch following operations		
		I. x(3t+2) II. x(-2t-1)	1.25 marks 1.25 marks	

Q.3	i.	i. Fundamental differences b/w continuous and discrete time signals 2		
	ii.	(a) Any four properties of Fourier transform.	3 marks	8
		(b) Obtain the Fourier component of the peri	_	
		waveform	5 marks	
OR	iii.	(a) Determine the Fourier Transform of following for	unction:	8
		I. $100 e^{-10t}$	1.5 marks	
		II. $x(t) = \begin{cases} 10.0 < t < 2 \\ 0.0 therwise \end{cases}$	1.5 marks	
		(b) Determine the DFS of following periodic signal	5 marks	
Q.4	i.	Definition of LTI system	1 mark	4
		Its properties	3 marks	
	ii.	(a) $y(t)=t^2x(t-1)$	3 marks.	6
		(b) $y(t)=5x(t)+1$	3 marks	
OR	iii.	Find the output y(t) for this system		6
		Stepwise marking		
Q.5		Attempt any two:		
	i.	(a) Define convolution sum & its two properties	2.5 marks	5
		(b) Perform convolution between $x(n)$ and $h(n)$	2.5 marks	
	ii. Find the Discrete-Time System response y(n) when		5	
		(a) $x(n)=u(n)$, $h(n)=\alpha^n u(n)$	2.5 marks	
		(b) $x(n) = \{1,3\}, h(n) = \{2,4\}$	2.5 marks	
	iii.	Determine the Unit Impulse response of the system		5
		Stepwise marking		
Q.6	i.	(a) Definition Z-transform with advantages and limit	itations	4
		·	2 marks	
		(b) Compare Z-transform and Laplace Transforms	2 marks	
	ii.	Prove the sequences	3 marks	6
		Plot their ROCs	3 marks	
OR	iii.	(a) Find out Z-Transform for the following also plot	t their ROC.	6
			3 marks	
		(b) Find inverse Z-transform of following function		
