并行计算

一 结构·算法·编程 主讲教师: 谢磊 第三篇 并行数值算法 第八章 基本通讯操作 第九章 稠密矩阵运算 第十章 线性方程组的求解 第十章 快速傅里叶变换

第九章稠密矩阵运算

- 9.1 矩阵的划分
- 9.2矩阵转置
- 9.3矩阵-向量乘法
- 9.4矩阵乘法

9.1矩阵的划分 9.1.1 <u>带状划分</u> 9.1.2 棋盘划分

带状划分

* 16×16阶矩阵, p=4

P_0	P ₁	P_2	P_3			
0 1 2 3	4 5 6 7	8 9 10 11	12 13 14 15			
(a)						

0	
4	 т
8	 F
12	
1	
 5	 ī
9	 I
 13	
2	
 6	 ī
10]
 14	
 3	
 7	 ī
 11]
15	

列块带状划分

图9.1 行循环带状划分

带状划分

* 示例: p=3, 27× 27矩阵的3种带状划分

Striped row-major mapping of a 27×27 matrix on p = 3 processors.

9.1.2 <u>梅盘划分</u> 9.1.2 <u>棋盘划分</u>

棋盘划分

*8×8阶矩阵, p=16

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)	(0, 6)	(0, 7)
P	0		\mathbf{P}_1		\mathbf{P}_2		\mathbf{P}_3
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	(1, 7)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	(2, 7)
P	4		\mathbf{P}_5		P_6		\mathbf{P}_7
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	(3, 7)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	(4, 7)
P	8		P_9		P ₁₀		P ₁₁
(5, 0)	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	(5, 7)
(6, 0)	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	(6, 7)
P	12		P_{13}		P ₁₄		P ₁₅
(7, 0)	(7, 1)	(7, 2)	(7, 3)	(7, 4)	(7, 5)	(7, 6)	(7, 7)

(0, 0))	(0, 4)	(0, 1)	(0, 5)	(0, 2)	(0, 6)	(0, 3)	(0, 7)
	F	0		\mathbf{P}_1		\mathbf{P}_2		\mathbf{P}_3
(4, 0))	(4, 4)	(4, 1)	(4, 5)	(4, 2)	(4, 6)	(4, 3)	(4, 7)
(1, ())	(1, 4)	(1, 1)	(1, 5)	(1, 2)	(1, 6)	(1, 3)	(1, 7)
	F	4		P_5		P_6		\mathbf{P}_7
(5, ())	(5, 4)	(5, 1)	(5, 5)	(5, 2)	(5, 6)	(5, 3)	(5, 7)
(2, 0))	(2, 4)	(2, 1)	(2, 5)	(2, 2)	(2, 6)	(2, 3)	(2, 7)
	F	8		P_9		\mathbf{P}_{10}		P ₁₁
(6, 0))	(6, 4)	(6, 1)	(6, 5)	(6, 2)	(6, 6)	(6, 3)	(6, 7)
(3, 0))	(3, 4)	(3, 1)	(3, 5)	(3, 2)	(3, 6)	(3, 3)	(3, 7)
	F) 12		P ₁₃		P ₁₄		P ₁₅
(7, 0))	(7, 4)	(7, 1)	(7, 5)	(7, 2)	(7, 6)	(7, 3)	(7, 7)

块棋盘划分

循环棋盘划分

2011/11/15

棋盘划分

* 示例: p=4, 16×16矩阵的3种棋盘划分

Checkerboard mapping of a 16×16 matrix on $p = 2 \times 2$ processors.

2011/11/15

9

第九章稠密矩阵运算

- 9.1矩阵的划分
- 9.2 矩阵转置
- 9.3矩阵-向量乘法
- 9.4矩阵乘法

单处理机上的矩阵转置算法

```
* 算法9.1 单处理机上的矩阵转置算法
```

```
* 输入: A_{n \times n}
* 输出: A^{T}_{n \times n}
Begin
for i=2 to n do
for j=1 to i-1 do
a_{i,j} \leftrightarrow a_{j,i}
endfor
endfor
End
运行时间: (n^{2}-n)/2 = O(n^{2})
```

11 2011/11/15

- 9.2 矩阵转置
 - 9.2.1 棋盘划分的矩阵转置
 - 9.2.2 带状划分的矩阵转置

网孔连接

* 情形1: p=n²。

(0, 0)	(1, 0)	(2, 0)	(3, 0)
P_0	\mathbf{P}_1	\mathbf{P}_2	\mathbf{P}_3
(0, 1) P ₄	\mathbf{P}_{5}	\mathbf{P}_{6}	\mathbf{P}_{7}
1 4	1 5	1 6	1 7
(0, 2)	(1, 2)	(2, 2)	(3, 2)
P ₈	\mathbf{P}_9	P ₁₀	P ₁₁
(0, 3)	(1, 3)	(2, 3)	(3, 3)
P ₁₂	P ₁₃	P ₁₄	P ₁₅

(a)

(b)

通讯步

图9.3

转置后

情形2: p<n2。

- 划 分: $A_{n\times n}$ 划分成p个大小为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ 子块

②进行块内转置(同一处理器内)

 $T_p = \frac{n^2}{2} + 2t_s \sqrt{p} + 2t_w n^2 / \sqrt{p} \cdots$ 运行时间

		\mathbf{I}_{P}				
(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)	(0, 6)	(0, 7)
0	I)	·····•]	P ₂	·····•	\mathbf{P}_{3}
(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	(1, 7)
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	(2, 7)
• •4	F)) ,	 -▶]	P ₆	·····	$\overset{\mathbf{v}}{\mathbf{P}_{7}}$
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	(3, 7)
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	(4, 7)
8 8 4	I	□ P ₉ •]	P ₁₀	····•	$\overset{\mathbf{V}}{\mathbf{P}}_{11}$
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	(5, 7)
(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	(6, 7)
• 12 •	I	13 4]	P ₁₄ •		$\dot{\mathbf{P}}_{15}$
(7, 1)	(7, 2)	(7, 3)	(7, 4)	(7, 5)	(7, 6)	(7,7)
	(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)	(0, 1) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2) (5, 1) (5, 2) (6, 1) (6, 2) 12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

转置后

*超立方连接

- * 划 分: $A_{n\times n}$ 划分成p个大小为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ 子块
- * 算法:

①将
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
转置为 $\begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}$

- ②对Aii递归应用①进行转置,直至分块矩阵的元素处于同一处理器;
- ③进行同一处理器的内部转置。
- * 运行时间:

$$T_{p} = \frac{n^{2}}{2p} + 2(t_{s} + t_{w} \frac{n^{2}}{p}) \log \sqrt{p} \quad //$$
 内部转置 $\frac{n^{2}}{2p}$, 选路: $2(t_{s} + t_{w} \frac{n^{2}}{p})$, 递归步: $\log \sqrt{p}$

$$= \frac{n^{2}}{2p} + (t_{s} + t_{w} \frac{n^{2}}{p}) \log p$$

超立方连接:示例

- 9.2 矩阵转置
 - 9.2.1 棋盘划分的矩阵转置
 - 9.2.2 带状划分的矩阵转置

带状划分的矩阵转置

划分: An×n分成p个(n/p)×n大小的带

*算法:

图9.7

- ①Pi有p-1个(n/p) × (n/p) 大小子块发送到另外p-1个处理器中;
- ②每个处理器本地交换相应的元素

第九章稠密矩阵运算

- 9.1矩阵的划分
- 9.2矩阵转置
- 9.3 矩阵-向量乘法
- 9.4矩阵乘法

单处理机上的矩阵-向量乘法

```
* 算法9.2单处理机上的矩阵-向量乘法
* \hat{\mathbf{h}} \lambda: A_{n \times n}, X_{n \times 1}
* 输出: Y<sub>n×1</sub>
Begin
for i=0 to n-1 do
 y_i = 0
  for j=0 to n-1 do
  y_i = y_i + a_{i,j} \times x_j
  endfor
 endfor
End
* 算法运行时间为O(n²)
```

20 2011/11/15

- 9.3矩阵-向量乘法
 - 9.3.1 带状划分的矩阵-向量乘法
 - 9.3.2 棋盘划分的矩阵-向量乘法

带状划分的矩阵-向量乘法

划分(行带状划分): Pi存放Xi和ai,0,ai,1,…,ai,n-1, 并输出Yi

- *算法:对p=n情形
 - ①每个Pi向其他处理器播送Xi(多到多播送);
 - ②每个Pi计算;
- *注:对P<N情形,算法中P;要播送X中相应的N/P个分量
 - (1)超立方连接的计算时间

$$T_{p} = \frac{n^{2}}{p} + t_{s} \log p + \frac{n}{p} t_{w}(p-1)$$
 // 前1项是乘法时间,后2项是多到多的播送时间
$$= \frac{n^{2}}{p} + t_{s} \log p + nt_{w}$$
 // p充分大时

(2)网孔连接的计算时间

$$T_p = \frac{n^2}{p} + 2(\sqrt{p} - 1)t_s + \frac{n}{p}t_w(p - 1)$$
 // 前1项是乘法时间, 后2项是多到多的播送时间
$$= \frac{n^2}{p} + 2t_s(\sqrt{p} - 1) + nt_w$$
 // p充分大时

带状划分的矩阵-向量乘法

矩阵 A 向量 X 处理器 P_0 0 n/p \mathbf{P}_{p-1} p-1p-1(a) (b) 矩阵 A 向量 y P_0 P_0 p-1 \mathbf{P}_1 P_1 p-1p-1 p-1 P_{p-1} P_{p-1} p-1p-1(c) (d)

图9.8

2011/11/15

23

- 9.3矩阵-向量乘法
 - 9.3.1 带状划分的矩阵-向量乘法
 - 9.3.2 棋盘划分的矩阵-向量乘法

棋盘划分的矩阵-向量乘法

划分(块棋盘划分): Pii存放aii, Xi置入Pii中

- * 算 法: 对p=n²情形
 - ①每个P_{i,i}向P_{i,i}播送X_i(一到多播送);
 - ②按行方向进行乘-加与积累运算,最后一列Pin1收集的结果 为Yii
- * 注:对 $P < N^2$ 情形, $P \land \mathcal{L}$ 理器排成 $\sqrt{p} \times \sqrt{p}$ 的二维网孔,

算法中 $P_{i,i}$ 向 $P_{i,i}$ 播送X中相应的 n/\sqrt{p} 个分量

(1) 网孔连接的计算时间
$$T_p(CT)$$
: $t_s + \frac{n}{\sqrt{p}}t_w + t_h\sqrt{p}$

.接列一到多播送时间:
$$(t_s + \frac{n}{\sqrt{p}}t_w)\log\sqrt{p} + t_h(\sqrt{p}-1)$$

.接行单点积累的时间:
$$(t_s + \frac{\sqrt{p}}{\sqrt{p}}t_w)\log\sqrt{p} + t_h(\sqrt{p}-1)$$

.接列一到多播送期间:
$$(t_s + \sqrt{\frac{p}{np}}t_w)\log\sqrt{p} + t_h(\sqrt{p}-1)$$

.接行单点积累的时间: $(t_s + \sqrt{\frac{p}{p}}t_w)\log\sqrt{p} + t_h(\sqrt{p}-1)$
.总运行时间为:
$$T_p \approx \frac{n^{\sqrt{p}}}{p} + t_s\log p + \frac{n}{\sqrt{p}}t_w\log p + 3t_h\sqrt{p}$$

2011/11/15

棋盘划分的矩阵-向量乘法

示例

带状与棋盘划分比较

*以网孔链接为例

*网孔上带状划分的运行时间

$$T_p = \frac{n^2}{p} + 2t_s(\sqrt{p} - 1) + nt_w \tag{9.5}$$

*网孔上棋盘划分的运行时间

$$T_p \approx \frac{n^2}{p} + t_s \log p + \frac{n}{\sqrt{p}} t_w \log p + 3t_h \sqrt{p}$$
 (9.6)

*棋盘划分要比带状划分快。

第九章稠密矩阵运算

- 9.1矩阵的划分
- 9.2矩阵转置
- 9.3矩阵-向量乘法
- 9.4 矩阵乘法

- 9.4矩阵乘法
 - 9.4.1 简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox 乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

矩阵乘法符号及定义

设
$$A = (a_{ij})_{n \times n}$$
 $B = (b_{ij})_{n \times n}$ $C = (c_{ij})_{n \times n}$, $C = A \times B$

$$\begin{pmatrix} c_{0,0} & c_{0,1} & \cdots & c_{0,n-1} \\ c_{1,0} & c_{1,1} & & c_{1,n-1} \\ \vdots & \vdots & & \vdots \\ c_{n-1,0} & c_{n-1,1} & \cdots & c_{n-1,n-1} \end{pmatrix} = \begin{pmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & & a_{1,n-1} \\ \vdots & \vdots & & \vdots \\ a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1,n-1} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \cdots & b_{0,n-1} \\ b_{1,0} & b_{1,1} & & b_{1,n-1} \\ \vdots & \vdots & & \vdots \\ b_{n-1,0} & b_{n-1,1} & \cdots & b_{n-1,n-1} \end{pmatrix}$$

$$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$
 A中元素的第1下标与B中元素的第2下标相一致(对准)

单处理机上分块矩阵相乘

```
* 算法9.4单处理机上分块矩阵相乘算法
* 输入: A_{n\times n}, B_{n\times n}, 子块大小为n/q*n/q
* 输出: C<sub>n×n</sub>
Begin
 for i=0 to q-1 do
 for j=1 to q-1 do
  C_{i,i} = 0
   for k=0 to q-1 do
   C_{i,j} = C_{i,j} + A_{i,k} \times B_{k,j}
  endfor
 endfor
End
* 算法运行时间为O(n^3).
```

矩阵乘法并行实现方法

- 计算结构:二维阵列
- * 空间对准(元素已加载到阵列中) Cannon's, Fox's, DNS
- * 时间对准(元素未加载到阵列中)

Systolic

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0} B _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0} B _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
	B _{3,1}	B _{3,2}	B _{3,3}

简单并行分块乘法

分块: A、B和C分成 $p = \sqrt{p} \times \sqrt{p}$ 的分块阵 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$,大小均为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$, $P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$ 。

*算法:

- ①通讯:每行处理器进行A矩阵块的多到多播送(得到 $A_{i,k}$, $k=0\sim\sqrt{p}-1$) 每列处理器进行B矩阵块的多到多播送(得到 $B_{k,j}$, $k=0\sim\sqrt{p}-1$)
- ②乘-加运算: $P_{i,j}$ 做 $C_{ij} = \sum_{k=0}^{\sqrt{p}-1} A_{ik} \cdot B_{kj}$

*运行时间

(1)超立方连接:

① 的 射 间
$$t_1 = 2(t_s \log \sqrt{p} + t_w \frac{n^2}{p} (\sqrt{p} - 1))$$

②的时间
$$t_2 = \sqrt{p} \times (\frac{n}{\sqrt{p}})^3 = n^3/p$$

简单并行分块乘法

运行时间

(2)二维环绕网孔连接:

① 的 时间:
$$t_1 = 2(t_s + \frac{n^2}{p}t_w)(\sqrt{p} - 1) = 2t_s\sqrt{p} + 2t_w\frac{n^2}{\sqrt{p}}$$

②的时间 $t_2 = n^3/p$

$$T_p = \frac{n^3}{p} + 2t_s \sqrt{p} + 2t_w \frac{n^2}{\sqrt{p}}$$

* 注

(1)本算法的缺点是对处理器的存储要求过大 每个处理器有 $2\sqrt{p}$ 个块,每块大小为 n^2/p , 所以需要 $O(n^2/\sqrt{p})$,p个处理器共需要 $O(n^2\sqrt{p})$, 是串行算法的 \sqrt{p} 倍

 $(2)p=n^2$ 射, $t(n)=O(n), c(n)=O(n^3)$

- 9.4矩阵乘法
 - 9.4.1 简单并行分块乘法
 - 9.4.2 <u>Cannon</u>乘法
 - 9.4.3 Fox 乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

Cannon乘法

分块: A、B和C分成 $p = \sqrt{p} \times \sqrt{p}$ 的 方块阵 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$,大小 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ 均为 p 个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$, $P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$ (n > > p)

$\frac{n}{\sqrt{p}}$	P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}			
	P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	$\rightarrow n$		
	P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}			
	P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}			
\sqrt{p}							

2011/11/15

- *算法原理(非形式描述)
 - ①所有块 $A_{i,j}(0 \le i,j \le \sqrt{p-1})$ 向左循环移动i步(按行移位); 所有块 $B_{i,j}(0 \le i,j \le \sqrt{p-1})$ 向上循环移动j步(按列移位);
 - ②所有处理器 $P_{i,j}$ 做执行 $A_{i,j}$ 和 $B_{i,j}$ 的乘-加运算;
 - ③A的每个块向左循环移动一步; B的每个块向上循环移动一步;
 - ④转②执行 \sqrt{p} -1次;

Initial alignment of A

Initial alignment of B

B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

A and B after initial alignment and shifts after every step

After first shift

After second shift

After third shift

A	A _{0,1} B _{1,0}	A _{0,2} B _{2,1}	A _{0,3} B _{3,2}	A _{0,0} B _{0,3}
	A _{1,2} B _{2,0}	A _{1,3} B _{3,1}	A _{1,0} B _{0,2}	A _{1,1} B _{1,3}
	A _{2,3} B _{3,0}	A _{2,0} B _{0,1}	A _{2,1} B _{1,2}	A _{2,2} B _{2,3}
	A _{3,0} B _{0,0}	A _{3,1} B _{3,1}	A _{3,2} B _{2,2}	A _{3,3} B _{3,3}

	A _{0,2}	A _{0,3}	A _{0,0}	A _{0,1}
	B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}
	A _{1,3}	A _{1,0}	A _{1,1}	A _{1,2}
	B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}
	A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
	B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
1	A _{3,1} B _{1,0}	A _{3,2} B _{2,1}	A _{3,3} B _{3,2}	A _{3,0} B _{0,3}

	*****		11111111	
	A _{0,3} B _{3,0}	A _{0,0} B _{0,1}	A _{0,1} B _{1,2}	A _{0,2} B _{2,3}
	A _{1,0} B _{0,0}	A _{1,1} B _{1,1}	A _{1,2} B _{2,2}	A _{1,3} B _{3,3}
1	A _{2,1} B _{1,0}	A _{2,2} B _{2,1}	A _{2,3} B _{3,2}	A _{2,0} B _{0,3}
	A _{3,2} B _{2,0}	A _{3,3} B _{3,1}	A _{3,0} B _{0,2}	A _{3,1} B _{1,3}

算法描述: Cannon 分块乘法算法

```
//输入: A_{n\times n}, B_{n\times n}; 输出: C_{n\times n}
Begin
   (1) for k=0 to
          for all P<sub>i,i</sub> par-do
             (i) if i>k then
                  A_{i,i} \leftarrow A_{i,(j+1) \text{mod}}
                                                     \sqrt{p}
                endif
             (ii)if j>k then
                   B_{i,i} \leftarrow B_{(i+1) \text{mod}}, j = \sqrt{p}
                endif
           endfor
       endfor
    (2) for all P_{i,j} par-do C_{i,j} = 0 end for
```

```
(3) for k=0 to \sqrt{p-1} do for all P_{i,j} par-do (i) C_{i,j} = C_{i,j} + A_{i,j} B_{i,j} (ii) A_{i,j} \leftarrow A_{i,(j+1) \text{mod} \sqrt{p}} (iii) B_{i,j} \leftarrow B_{(i+1) \text{mod} \sqrt{p}} endfor endfor
```

时间分析:

$$T_{p}(n) = T_{1} + T_{2} + T_{3}$$

$$= O(\sqrt{p}) + O(1) + O(\sqrt{p} \cdot (n/\sqrt{p})^{3})$$

$$= O(n^{3}/p)$$

- 9.4矩阵乘法
 - 9.4.1简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox 乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

FOX乘法

- * 分块:同Cannon分块算法
- *算法原理
- ①A_{i,i}向所在行的其他处理器 进行一到多播送;
- ②各处理器将收到的A块与原有的B块进行乘-加运算;
 - ③B块向上循环移动一步;

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

- ④如果 $A_{i,j}$ 是上次第i行播送的块,本次选择 $A_{i,(j+1) \text{mod} \sqrt{p}}$ 向所在行的其他处理器进行一到多播送;
- ⑤转②执行 \sqrt{p} -1次;

Fox乘法

示例: $A_{4\times4}$, $B_{4\times4}$, p=16

A _{0,0}	B _{0,1}	B _{0,2}	▶ ∧ B _{0,3}
4····· B _{1,0}	••• A _{1,1} •••• B _{1,1}	B _{1,2}	▶ B _{1,3}
4 B _{2,0}	B _{2,1}	A2,2 B2,2	▶ B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	A _{3,3} B _{3,3}
	(a)		

FOX乘法

示例: $A_{4\times4}$, $B_{4\times4}$, p=16

- 9.4矩阵乘法
 - 9.4.1简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox 乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

Systolic 乘法 $c_{1,1} = a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} + a_{1,4}b_{4,1}$

$$c_{1,1} = a_{1,1} b_{1,1} + a_{1,2} b_{2,1} + a_{1,3} b_{3,1} + a_{1,4} b_{4,1}$$

$$c_{1,2} = a_{1,1} b_{1,2} + a_{1,2} b_{2,2} + a_{1,3} b_{3,2} + a_{1,4} b_{4,2}$$

Over

 $c_{3,4} = a_{3,1} b_{1,4} + a_{3,2} b_{2,4} + a_{3,3} b_{3,4} + a_{3,4} b_{4,4}$


```
■ Systolic 算法
//输入: A_{m\times n}, B_{n\times k}; 输出: C_{m\times k}
 Begin
     for i=1 to m par- do
           for j=1 to k par-do
             (i) c_{i,i} = 0
           (ii) while P<sub>i,j</sub> 收到a和b时 do
                 c_{i,j} = \ddot{c}_{i,j} + ab
if i < m then 发送b给P_{i+1,j} endif
                 if j < k then 发送a给P<sub>i,i+1</sub> endif
                endwhile
            endfor
       endfor
 End
```

- 9.4矩阵乘法
 - 9.4.1简单并行分块乘法
 - 9.4.2 Cannon乘法
 - 9.4.3 Fox 乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

- 背景:由Dekel、Nassimi和Sahni提出的SIMD-CC上的矩阵乘法,处理器数目为n³,运行时间为O(logn),是一种速度很快的算法。
- *基本思想:通过一到一和一到多的播送办法,使得处理器(k,i,j)拥有a_{i,k}和b_{k,j},进行本地相乘,再沿k方向进行单点积累求和,结果存储在处理器(O,i,j)中。
- * 处理器编号: 处理器数p=n³= (2q)³=2³q, 处理器Pr位于位置(k,i,j), 这里r=kn²+in+j, (0≤i, j, k≤n-1)。位于(k,i,j)的处理器Pr的三个寄存器 Ar,Br,Cr分别表示为A[k,i,j], B[k,i,j]和C[k,i,j], 初始时均为0。
- * 算法: 初始时a_{i,j}和b_{i,j}存储于寄存器A[0,i,j]和B[0,i,j];
 - ①数据复制:A,B同时在k维复制(一到一播送); A在j维复制(一到多播送);B在i维复制(一到多播送);
 - ②相乘运算:所有处理器的A、B寄存器两两相乘;
 - ③求和运算:沿k方向进行单点积累求和;

算法描述:

```
//今r(m)表示r的第m位取反;
//{p, r_m=d}表示(o \le r \le p-1)的集合,这里r的二
//进制第m位为d:
//输入: A_{n\times n}, B_{n\times n}; 输出: C_{n\times n}
Begin //以n=2, p=8=2<sup>3</sup>举例, q=1, r=(r<sub>2</sub>r<sub>1</sub>r<sub>2</sub>)
   (1)for m=3g-1 to 2g do //按k维复制A,B, m=2
         for all r in \{p, r_m=0\} par-do //r_2=0 的r
           (1.1) A<sub>r(m)</sub> ← A<sub>r</sub> //A(100)←A(000)等
           (1.2) B_{r(m)} ← B_r //B(100)←B(000)等
         endfor
      endfor
   (2)for m=q-1 to 0 do
                                  //按i维复制A, m=0
         for all r in \{p, r_m = r_{2q+m}\} par-do //r_0 = r_2 约r
            A_{r(m)} \leftarrow A_{r} //A(001) \leftarrow A(000), A(100) \leftarrow A(101)
         endfor
                         //A(011) \leftarrow A(010), A(110) \leftarrow A(111)
      endfor
```

```
(3)for m=2q-1 to q do //按i维复制B,m=1
            for all r in \{p, r_m = r_{q+m}\} par-do//r_1 = r_2 \% r
               B_{r(m)} \leftarrow B_{r} //B(010) \in B(000), B(100) \in B(110)
            endfor
                             //B(011) \leftarrow B(001), B(101) \leftarrow B(111)
        endfor
   (4)for r=0 to p-1 par-do //相乘, all Pr
            C_n = A_n \times B_n
        endfor
    (5)for m=2q to 3q-1 do //求和,m=2
            for r=0 to p-1 par-do
               C_r = C_r + C_{r(m)}
            endfor
        endfor
 End
```


