ISSCC 2000/ SESSION 201/ OVERSAMPLED CONVERTIERS / PAPER WAYOR

WA 20.1: A DC Measurement IC with 130nV Noise in 10Hz

Axel Thomsen, Edwin de Angel, Sherry Xiaohong Wu, Aryesh Amar¹, Lei Wang², Wai Lee

Crystal Industrial and Communications Division, Cirrus Logic, Austin, TX,
'Crystal Industrial and Communications Division, Cirrus Logic, Nashua,NH, 'Texas A&M University, College Station, TX

A. Thomsen

Outline

Introduction

Chip Overview

Amplifier Architecture and Feedforward Compensation

Chopper Implementation

Rough Charge Buffer

Experimental Results

Conclusion

Introduction: application as bridge transducer IC

- → 5mV full scale signal
- Low noise, low drift instrumentation amplifier required an amplifier with the noise of a low noise bipolar and the DC stability of a chopper
- → Large offset possible: high resolution ADC simplifies system

Prior art: discrete time systems with higher noise

Excellent gain drift, but even with a noise free amplifier 6nV/rtHz would require more than 100pF switched at 4MHz

Amp needs enough bandwidth to settle switched cap accurately at slow corner. Wide bandwidth leads to aliasing of noise.

A DC measurement IC consists of an instrumentation amplifier, a 4th-order $\Sigma\Delta$ modulator, a digital filter and a serial interface. The input amplifier uses chopper stabilization and multipath feedforward compensation to achieve 130nV_{pp} in 10Hz and <70nV/°C offset drift in 0.6 μ m CMOS.

Implementation of amplifier/ADC interface

No noise aliasing: Amplifier wideband noise is removed RUT:

Antialias filter records glitches and chop artifacts
Sampling does not happen from amplifier output

→voltage drop across anti alias resistor can cause errors

Amplifier design considerations

Use chopper stabilization to remove 1/f noise and offset.

Minimize secondary offset sources in amplifier

Use multipath feedforward architecture to

- → implement filtering of chop artifacts
- → avoid unnecessary power consumption in output stage
- avoid difficulty in stabilization caused by large input stage transconductance

Amplifier architecture development

- Any wire in or out of an integrator can be replaced with an integrator with bypass
- Each integrator must have lower UGBW than all integrators the signal must pass through on a path from Vin through said integrator to Vout.

Prior art: 5 stage amplifier

- ⇒ I1 is chopper stabilized for <1μV offset
 </p>
- → 10mV of offset in I2 will appear as 640mV offset at the output of I1, 64µV of offset input referred

New architecture of the amplifier

- → I1 is chopper stabilized for <1μV offset
 </p>
- → 10mV of offset of I3 appears as 640mV at the output of I2, 64nV at input of I1
- → 10mV of offset of I2 appears as 1μV at the input of I1

A closer look at the Bode plot

4 stages create 200dB of gain at DC and more than 100GHz GBW at 800Hz (simulated)

4th order transition allows -24dB/oct between band edge and UGBW

Phase lag can reach 360 degrees

Multipath feedforward compensation: 3 LHP zeroes cause transition from 4th order slope to first order slope before UGBW

Chopper considerations

- filtering at input and output to avoid artifacts in amplified signal:
 50pF on input, 3 pole LPF on output
- minimize glitches on output by using current steering instead of voltage switching
- ⇒ current steering performed with low swing clocks
- ⇒ signal during phase crossover not integrated on C1

Amp/ADC interface: need for rough charge buffer

- Dynamic current drawn by ADC causes voltage drop in anti-alias filter (AAF)
- → No matching of AAF resistor to switched capacitor dynamic current => temperature coefficient of the gain.

$$V_{amp} = V_{amp} / (1 + RCf)$$

$$V_{amp} = V_{amp} / (1 + RCf)$$

Continued on Page 483

Continued from page 263

Conclusions

- 0.25 µm clock receiver circuits have been implemented, including a 7.4-GHz LNA and a 10-GHz frequency divider.
- On-chip antennas have been implemented with CMOS receiver circuits.
- A transmitted 7.4-GHz global clock signal has been successfully received by a clock receiver over a ~4-mm distance (with interference structures), and a 925-MHz local clock signal is generated
- A single-receiver wireless interconnect for clock distribution has been demonstrated.
- Greatly improved performance is expected for 18-GHz operation, using a more advanced CMOS technology.

Continued from page 267

Amp/ADC interface: rough charge buffer requirement

- → Rough charging required. Now input current is only V_{arren}^{*}T*C.
- Rough charging can have power requirements of the same order as integrator 1 amplifier
- Rail to rail input swing desired

Rough charge buffer continued

- asymmetric response allows faster pull down without extra quiescent current
- → much simpler than any class AB or slew boost scheme
- property of 2 stage amp can be easily exploited in reference input where vref+ > vref-
- ⇒ signal input has bipolar input, wide common mode range
- → to exploit property on signal input requires two output stages selectable by a comparator

inamp noise density 0.1 to 1000Hz			6.2nV / sqrt(Hz)
inamp peak to peak noise 0.1 to 10Hz			130nV
adc noise density 0.1 to 500Hz			70nV / sqrt(Hz)
Gain setting	full scale [mV _{pp}]	SNR in 2Hz [dB]	Noise free bits
36	80 80	129	20
30	160	135	21
6	2560	144	22.5

Table of measured results

technology 0.6µm double poly CMOS 16 mm² die area 0.0007%/-104dB non-linearity/THD 50 mW from 5V power consumption offset ADC only 1mV offset amplifier <1μ۷ offset drift ADC only (OdB gain) 700nV/°C offset drift system (36dB gain) 15nV/C 5ррт/с gain drift (36dB gain) 0-36 dB gain range output word rate selectable 7.5Hz to 3840Hz

Chip photo

Conclusion

- Multipath feedforward compensated amplifier optimized for low offset, low noise, and low power
- ◆ 6nV/rtHz noise achieved using chopper stabilization, no aliasing
- → Low power two stage rough charge buffer implementation
- Successful integration with 24 bit power managed delta sigma add, digital filter and serial interface
- → Lowest noise integrated DC measurement solution with 130nV_{pp} in 0-10Hz without power penalty

Continued from page 269

Layout Issues

- Fully symmetrical layout
- Avoid cross-talk: Vref's
- Dummies used to provide identical surroundings
- Several bondwires used to reduce inductance
- Large on-chip decoupling capacitance

Measurement results (1)

