Révision Td-Tp 16

Decembre 2023

Exercice 1

Soit $\alpha > 0$. Pour $n \in \mathbb{N}^*$, on définit $u_n : [0, +\infty[\rightarrow x] \rightarrow x]$ $x \mapsto \frac{x}{n^{\alpha} \times (1 + n x^2)}$

- 1. Montrer que la série de fonctions $\sum_{n\geq 1} u_n$ converge simplement sur $[0,+\infty[$.
- 2. Montrer que $\sum_{n\geq 1} u_n$ converge normalement sur $[0,+\infty[$ si et seulement si $\alpha>\frac{1}{2}$.
- 3. On suppose que $\alpha \leq \frac{1}{2}$.
 - (a) Montrer que, pour tout x > 0:

$$\sum_{n=1}^{+\infty} u_n(x) \ge \int_1^{+\infty} \frac{x}{\sqrt{s} \times (1+s x^2)} \, \mathrm{d}s.$$

(b) En déduire que, pour tout x > 0:

$$\sum_{n=1}^{+\infty} u_n(x) \ge \pi - 2 \arctan(x).$$

- (c) En déduire que $x \mapsto \sum_{n=1}^{+\infty} u_n(x)$ n'est pas continue en 0.
- 4. Montrer que $\sum_{n\geq 1} u_n$ converge uniformément sur $[0,+\infty[$ si et seulement si $\alpha>\frac{1}{2}$.
- 1. Si x = 0 alors $u_n(x) = 0$ pour tout $n \in \mathbb{N}^*$ et $\sum_{n \geq 1} u_n(x)$ est convergente.

Sinon, on a

- (a) $u_n(x) > 0$ pour tout $n \in \mathbb{N}^*$
- (b) $u_n(x) \underset{n \to +\infty}{\sim} \frac{1}{x n^{1+\alpha}}$
- (c) $\sum_{n\geq 1} \frac{1}{x\,n^{1+\alpha}}$ est une série de Riemann convergente $(1+\alpha>1)$

et, par comparaison de séries à termes positifs, $\sum_{n\geq 1} u_n(x)$ est convergente.

$$\sum_{n>1} u_n \text{ converge simplement sur } [0, +\infty[.$$

2. u_n est de classe C^1 sur $[0, +\infty[$ est :

$$u'_n(x) = \frac{1 - nx^2}{n^{\alpha} \times (1 + nx^2)^2}.$$

Ainsi, u_n est croissante sur $\left[0, \frac{1}{\sqrt{n}}\right]$ puis décroissante sur $\left[\frac{1}{\sqrt{n}}, +\infty\right[$ et, puisque $u_n(0) = 0 = \lim_{n \to +\infty} u_n(x)$:

$$||u_n||_{\infty,\mathbb{R}_+} = \left|u_n\left(\frac{1}{\sqrt{n}}\right)\right| = \frac{1}{2n^{\alpha+1/2}}.$$

D'après les séries de Riemann :

$$\sum_{n\geq 1} \|u_n\|_{\infty,\mathbb{R}_+} \text{ est convergente } \iff \alpha + \frac{1}{2} > 1 \iff \alpha > \frac{1}{2}.$$

$$\sum_{n\geq 1} u_n \text{ converge normalement sur } [0,+\infty[\text{ si et seulement si } \alpha>\frac{1}{2}.$$

3. (a) Pour x > 0 fixé, la fonction $v_x : s \mapsto \frac{x}{s^{\alpha} \times (1 + s x^2)}$ est continue sur $[1, +\infty[$ et décroissante :

$$u_n(x) = v_x(n) \ge \int_n^{n+1} v_x(s) \, \mathrm{d}s.$$

Par convergence de $\sum_{n\geq 1} u_n(x)$, pour $N\geq 1$:

$$\sum_{n=1}^{+\infty} u_n(x) \ge \sum_{n=1}^{N} u_n(x) \ge \sum_{n=1}^{N} \int_{n}^{n+1} v_x(s) \, \mathrm{d}s = \int_{1}^{N+1} v_x(s) \, \mathrm{d}s.$$

Par positivité de v_x , $\int_1^{+\infty} v_x(s) \, \mathrm{d}s$ est convergente et :

$$\sum_{n=1}^{+\infty} u_n(x) \ge \int_1^{+\infty} v_x(s) \, \mathrm{d}s.$$

Puisque $v_x(s) \ge \frac{x}{\sqrt{s} \times (1 + s x^2)}$, par croissance de l'intégrale :

Pour tout
$$x > 0$$
:
$$\sum_{n=1}^{+\infty} u_n(x) \ge \int_1^{+\infty} \frac{x}{\sqrt{s} \times (1 + s x^2)} ds.$$

(b) Pour x > 0 fixé, la fonction $s \mapsto \frac{x}{\sqrt{s} \times (1 + s x^2)}$ est intégrable sur $[1, +\infty[$ et $t = \sqrt{s} = \varphi(s)$ est un C^1 -difféomorphisme de $[1, +\infty[$ sur $[1, +\infty[$.

Puisque $dt = \frac{ds}{2\sqrt{s}}$, par changement de variables, on a :

$$\int_1^{+\infty} \frac{x}{\sqrt{s}\times (1+s\,x^2)}\,\mathrm{d}s = \int_1^{+\infty} \frac{2x}{1+t^2\,x^2}\,\mathrm{d}t = \left[2\,\arctan(t\times x)\right]_1^{+\infty}.$$

Pour tout
$$x > 0$$
:
$$\sum_{n=1}^{+\infty} u_n(x) \ge \pi - 2 \arctan(x).$$

(c) Puisque $\lim_{x\to 0^+} 2 \arctan(x) = 0$, il existe $\eta > 0$ tel que pour tout $x \in]0, \eta]$:

$$\sum_{n=1}^{+\infty} u_n(x) \ge \frac{\pi}{2}.$$

Comme
$$\sum_{n=1}^{+\infty} u_n(0) = 0:$$

$$x \mapsto \sum_{n=1}^{+\infty} u_n(x)$$
 n'est pas continue en 0.

- 4. Si $\alpha > \frac{1}{2}$ alors $\sum_{n \ge 1} u_n$ converge normalement donc uniformément sur $[0, +\infty[$.
 - Si $\sum_{n\geq 1} u_n$ converge uniformément sur $[0,+\infty[$ alors :
 - (a) pour tout $n \in \mathbb{N}^*$, u_n est continue sur $[0, +\infty[$;
 - (b) $\sum_{n\geq 1} u_n$ converge uniformément sur $[0,+\infty[$;

donc, par le Théorème de continuité sous le signe somme : $\sum_{n\geq 1} u_n$ est continue sur $[0,+\infty[$ et notamment en 0. D'après la question précédente : $\alpha>\frac{1}{2}$.

$$\sum_{n\geq 1} u_n \text{ converge uniformément sur } [0,+\infty[\text{ si et seulement si }\alpha>\frac{1}{2}.$$

Exercice 2

Dans cette partie, on suppose que $\alpha=1$ et on note :

$$u_n: [0,+\infty[\to \mathbb{R}] \to \mathbb{R}$$
 et $S: [0,+\infty[\to \mathbb{R}] \to \mathbb{R}$
$$x \mapsto \frac{x}{n \times (1+nx^2)}$$
 et $S: [0,+\infty[\to \mathbb{R}] \to \mathbb{R}$
$$x \mapsto \sum_{n=1}^{+\infty} \frac{x}{n \times (1+nx^2)}$$

- 1. Montrer que S est continue sur $[0, +\infty[$.
- 2. Montrer que S est de classe \mathscr{C}^1 sur $]0, +\infty[$.
- 3. Déterminer $\lim_{x\to +\infty} S(x)$ puis un équivalent simple de S(x) quand $x\to +\infty$.
- 4. Déterminer S(0) puis un équivalent simple de S(x) quand $x \to 0^+$.
- 1. Puisque
 - (a) pour tout $n \in \mathbb{N}^*$, u_n est continue sur $[0, +\infty[$;
 - (b) $\sum_{n\geq 1} u_n$ converge uniformément sur $[0,+\infty[$;

par le Théorème de continuité sous le signe somme :

S est continue sur $[0, +\infty[$.

2. Pour tout $n \in \mathbb{N}$, u_n est de classe \mathscr{C}^1 sur $]0, +\infty[$ et :

$$u'_n(x) = \frac{1 - n x^2}{n \times (1 + n x^2)^2}.$$

Notamment, pour tout a > 0 et $x \in [a, +\infty[$:

$$|u'_n(x)| = \frac{|1 - n x^2|}{n \times (1 + n x^2)^2} \le \frac{1}{n \times (1 + n x^2)} \le \frac{1}{a^2 n^2},$$

et $\sum_{n\geq 1} u_n'$ converge normalement donc uniformément sur $[a,+\infty[$.

Puisque

- (a) pour tout $n \in \mathbb{N}^*$, u_n est de classe \mathscr{C}^1 sur $[a, +\infty[$;
- (b) $\sum_{n\geq 1} u_n'$ converge uniformément sur $[a,+\infty[\,;$
- (c) $\sum_{n>1} u_n$ converge simplement sur $[a, +\infty[$;

par dérivation sous le signe somme : $\sum_{n\geq 1} u_n$ est de classe \mathscr{C}^1 sur $[a,+\infty[$.

$$\sum_{n\geq 1} u_n \text{ est de classe } \mathscr{C}^1 \text{ sur } \bigcup_{a>0} [a,+\infty[=]0,+\infty[.$$

- 3. Puisque
 - (a) $\sum_{n>1} u_n$ converge uniformément sur $[0,+\infty[$;
 - (b) pour tout $n \in \mathbb{N}^*$, $u_n(x) \xrightarrow[n \to +\infty]{} 0$;

par interversion de limites :

$$S(x) = \sum_{n=1}^{+\infty} u_n(x) \xrightarrow[n \to +\infty]{} \sum_{n=1}^{+\infty} 0 = 0.$$

Posons $v_n(x) = \frac{x^2}{n \times (1 + n x^2)}$ alors $0 \le v_n(x) \le \frac{1}{n^2}$ donc :

- (a) $\sum_{n>1} v_n$ converge uniformément sur $[0, +\infty[$;
- (b) pour tout $n \in \mathbb{N}^*$, $v_n(x) \xrightarrow[n \to +\infty]{} \frac{1}{n^2}$;

par interversion de limites : $xS(x) = \sum_{n=1}^{+\infty} v_n(x) \xrightarrow[n \to +\infty]{} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \neq 0.$

$$S(x) \underset{x \to +\infty}{\sim} \frac{\pi^2}{6x}.$$

4. Puisque $u_n(0) = 0$ pour tout $n \in \mathbb{N}^*$:

$$S(0) = \sum_{n=1}^{+\infty} u_n(0) = 0.$$

Pour x > 0 fixé, la fonction $v_x : s \mapsto \frac{x}{s \times (1 + s x^2)}$ est continue sur $[1, +\infty[$ et décroissante :

$$u_n(x) = v_x(n) \ge \int_n^{n+1} v_x(s) \, ds \ge v_x(n+1) = u_{n+1}(x).$$

Par comparaison série-intégrale, $\int_1^{+\infty} v_x(s) \, \mathrm{d} s$ est convergente et :

$$S(x) = \sum_{n=1}^{+\infty} u_n(x) \ge \int_1^{+\infty} v_x(s) \, \mathrm{d}s \ge \sum_{n=1}^{+\infty} u_{n+1}(x) = S(x) - \frac{x}{1+x^2}.$$

Puisque:

$$\int_{1}^{+\infty} v_{x}(s) ds = \int_{1}^{+\infty} \frac{x}{s \times (1 + s x^{2})} ds$$
$$= \left[x \times \ln \left(\frac{s}{1 + s x^{2}} \right) \right]_{1}^{+\infty} = -2x \ln(x) + x \ln(1 + x^{2}),$$

il vient:

$$-2x \ln(x) + x \ln(1+x^2) \le S(x) \le -2x \ln(x) + x \ln(1+x^2) + \frac{x}{1+x^2}.$$

Par encadrement : $\frac{S(x)}{-2x \ln(x)} \xrightarrow[x \to 0^+]{} 1 \neq 0$ et :

$$S(x) \underset{x \to 0^+}{\sim} -2x \ln(x).$$

Exercice 3

On rappelle que la fonction Γ est définie par la formule :

$$\forall x \in \mathbb{R}_+^*, \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} \times e^{-t} \, \mathrm{d}t,$$

qu'elle est de classe \mathscr{C}^1 et qu'elle vérifie :

$$\forall x \in \mathbb{R}_{+}^{*}, \quad \Gamma(x+1) = x \times \Gamma(x).$$

1. Soit u et v deux fonctions intégrables sur \mathbb{R} . Montrer que :

$$\int_{-\infty}^{+\infty} u(s) \, \mathrm{d}s \times \int_{-\infty}^{+\infty} v(s) \, \mathrm{d}s = \int_{-\infty}^{+\infty} u * v(s) \, \mathrm{d}s.$$

2. Déduire du résultat de la question précédente que :

$$\forall (x,y) \in \mathbb{R}_+^*, \quad \Gamma(x) \times \Gamma(y) = \Gamma(x+y) \times \int_0^1 t^{x-1} \times (1-t)^{y-1} \, \mathrm{d}t.$$

3. Montrer que, pour tout $x \in \mathbb{R}_+^*$:

$$\int_0^1 t^{x-1} \times (1-t)^{x-1} dt = 2^{1-2x} \times \int_{-1}^1 (1-t^2)^{x-1} dt = 2^{1-2x} \times \int_0^1 t^{\frac{1}{2}-1} \times (1-t)^{x-1} dt$$

4. En déduire que :

$$\forall x \in \mathbb{R}_+^*, \quad \Gamma(x) \times \Gamma\left(x + \frac{1}{2}\right) = 2^{1-2x} \times \Gamma(2x) \times \Gamma\left(\frac{1}{2}\right)$$

1. Commençons par vérifier que les intégrales écrites ont un sens. A gauche de l'égalité, c'est clair car u et v sont intégrables. Pour la droite, c'est un théorème du cours que comme $(u,v) \in \mathcal{L}^1(\mathbb{R})$ alors $u * v \in \mathcal{L}^1(\mathbb{R})$. De plus :

$$\int_{\mathbb{R}} u * v(s) \, \mathrm{d}s = \int_{\mathbb{R}} \int_{\mathbb{R}} u(t) \times v(s-t) \, \mathrm{d}t \, \mathrm{d}s.$$

Il s'agit d'appliquer la théorème de Fubini-Lebesgue. Par le théorème de Fubini-Tonelli,

$$\int_{\mathbb{R}} \int_{\mathbb{R}} |u(t) \times v(s-t)| \, \mathrm{d}t \, \mathrm{d}s = \int_{\mathbb{R}} \int_{\mathbb{R}} |u(t) \times v(s-t)| \, \mathrm{d}s \, \mathrm{d}t$$

Donc, après le changement de variable x = s - t

$$\int_{\mathbb{R}} \int_{\mathbb{R}} |u(t) \times v(s-t)| dt ds = \int_{\mathbb{R}} |u(t)| dt \times \int_{\mathbb{R}} |v(x)| dx.$$

Mais cette quantité est finie comme u et v sont intégrables, donc la fonction

$$(t,s) \mapsto u(t) \times v(s-t)$$

est intégrable sur \mathbb{R}^2 . On peut donc utiliser le théorème de Fubini-Lebesgue, qui donne :

$$\int_{\mathbb{R}} \int_{\mathbb{R}} u(t) \times v(s-t) \, \mathrm{d}t \, \mathrm{d}s = \int_{\mathbb{R}} \int_{\mathbb{R}} u(t) \times v(s-t) \, \mathrm{d}s \, \mathrm{d}t = \int_{\mathbb{R}} u(t) \, \mathrm{d}t \times \int_{\mathbb{R}} v(x) \, \mathrm{d}x.$$

2. On utilise le résultat de la question précédente pour

$$u(t) = t^{x-1} \times e^{-t} \times \mathbf{1}_{\mathbb{R}^*_{\perp}}(t), \quad v(t) = t^{y-1} \times e^{-t} \times \mathbf{1}_{\mathbb{R}^*_{\perp}}(t).$$

Calculons u * v:

$$u * v(s) = \begin{cases} 0 & \text{si } s \leq 0\\ \int_0^s t^{x-1} \times (s-t)^{y-1} \times e^{-s} \, \mathrm{d}t & \text{sinon} \end{cases}$$

donc, si s>0, en effectuant le changement de variable $v=\frac{t}{s}$:

$$u * v(s) = e^{-s} \times s^{x+y-1} \int_0^1 v^{x-1} \times (1-v)^{y-1} dv.$$

D'où:

$$\Gamma(x) \times \Gamma(y) = \int_0^{+\infty} \left(e^{-s} \times s^{x+y-1} \int_0^1 v^{x-1} \times (1-v)^{y-1} \, dv \right) \, ds$$
$$= \Gamma(x+y) \times \int_0^1 v^{x-1} \times (1-v)^{y-1} \, dv.$$

3. Pour la première égalité, on effectue le changement de variable $t=\frac{u+1}{2}$ dans l'intégrale :

$$\int_0^1 t^{x-1} \times (1-t)^{x-1} dt = \int_{-1}^1 \left(\frac{u+1}{2}\right)^{x-1} \times \left(\frac{-u+1}{2}\right)^{x-1} \frac{du}{2} = 2^{1-2x} \times \int_{-1}^1 (1-u^2)^{x-1} du.$$

Pour la deuxième égalité, on effectue le changement de variable $u^2 = t$, en faisant bien attention d'intégrer sur un intervalle où il est légitime de le faire :

$$\int_{-1}^{1} (1 - u^2)^{x-1} du = 2 \times \int_{0}^{1} (1 - u^2)^{x-1} du = \int_{0}^{1} (1 - t)^{x-1} \times t^{-\frac{1}{2}} dt.$$

4. On part de la formule de la question 2 :

$$\Gamma(x) \times \Gamma(x) = \Gamma(2x) \times \int_0^1 t^{x-1} \times (1-t)^{x-1} dt.$$

Mais, par la question 3:

$$\int_0^1 t^{x-1} \times (1-t)^{x-1} dt = 2^{1-2x} \times \int_0^1 t^{\frac{1}{2}-1} \times (1-t)^{x-1} dt.$$

Et, encore par la question 4:

$$\Gamma(x) \times \Gamma\left(\frac{1}{2}\right) = \Gamma\left(x + \frac{1}{2}\right) \times \int_0^1 t^{\frac{1}{2} - 1} \times (1 - t)^{x - 1} dt.$$

En combinant ces trois expressions, on en déduit que :

$$\Gamma(x)\times\Gamma(x)\times\Gamma\left(x+\frac{1}{2}\right)=\Gamma(2\,x)\times2^{1-2\,x}\times\Gamma(x)\times\Gamma\left(\frac{1}{2}\right).$$

Le résultat s'obtient alors en divisant par $\Gamma(x)$, qui est strictement positif.