Géométrie et Arithmétique

Contrôle continu 2 - Corrigé 1/02/2017

Questions du cours

1) Soit E un espace vectoriel sur \mathbb{K} . Donner la définition de famille génératrice finie de E.

Corrigé. Une famille finie (v_1, \ldots, v_n) est dite génératrice si pour tout $v \in E$ il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que :

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$$

En d'autres termes (v_1, \ldots, v_n) est génératrice si tout vecteur dans E s'écrit comme combinaison linéaire de v_1, \ldots, v_n .

2) Montrer que si (v_1, \ldots, v_n) est une famille génératrice de E, alors $(v_1, \ldots, v_n, v_{n+1}, \ldots, v_p)$, avec $p \ge n$, l'est aussi.

Corrigé. Puisque (v_1, \ldots, v_n) est génératrice, $\forall v \in E, \exists (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que :

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$$
.

Or

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n + 0 \cdot v_{n+1} + \cdots + 0 \cdot v_n.$$

Il s'ensuit que $(v_1, \ldots, v_n, v_{n+1}, \ldots, v_p)$ est aussi génératrice.

Exercice (Toutes les réponses doivent être justifiées)

3) Soit $E = \mathbb{R}^3$. Est-ce que le vecteur (5, -1, 0) est combinaison linéaire de (-2, 7, 3) et (-3, 5, 2)?

Corrigé. Déterminons s'il existe $\lambda, \mu \in \mathbb{R}$ tels que

$$(5,-1,0) = \lambda(-2,7,3) + \mu(-3,5,2) = (-2\lambda - 3\mu, 7\lambda + 5\mu, 3\lambda + 2\mu),$$

ou, en d'autres termes, si le système d'inconnues λ et μ

$$\begin{cases} 5 = -2\lambda - 3\mu \\ -1 = 7\lambda + 5\mu \\ 0 = 3\lambda + 2\mu \end{cases}$$

possède au moins une solution. En résolvant on trouve que le système a l'unique solution

$$\begin{cases} \lambda = 2 \\ \mu = -3 \end{cases}$$

et le vecteur (5,-1,0) est donc combinaison linéaire de (-2,7,3) et (-3,5,2).

4) Est-ce que la famille ((1,2),(-1,1)) est génératrice pour \mathbb{R}^2 ?

Corrigé. Montrons que pour tout $(x,y) \in \mathbb{R}^2$ il existe $\lambda, \mu \in \mathbb{R}$ tels que

$$(x,y) = \lambda(1,2) + \mu(-1,1) = (\lambda - \mu, 2\lambda + \mu)$$

ou, en d'autres termes, que le système d'inconnues λ et μ

$$\begin{cases} \lambda - \mu = x \\ 2\lambda + \mu = y \end{cases}$$

possède au moins une solution pour tout $x,y\in\mathbb{R}$ (paramètres du système). Celle-ci est donnée par

$$\begin{cases} \lambda = \frac{x+y}{3} \\ \mu = \frac{y-2x}{3} \end{cases}.$$

Il s'ensuit que la famille ((1,2),(-1,1)) est génératrice pour \mathbb{R}^2 .