Prof: José Luís

Notas de aula : SISTEMAS LINEARES (método direto)

1. INTRODUÇÃO

As equações não existem por si, ou seja, não são invenções abstratas da Matemática. Muito pelo contrário, decorrem de situações concretas de nosso quotidiano. Veja os seguintes exemplos e suas respectivas representações na linguagem matemática:

- a) A diferença entre as idades de Sandro e Lucas é de 4 anos: x y = 4
- b) Numa fábrica trabalham 532 pessoas entre homens e mulheres. O número de homens é o triplo do número de mulheres: x + y = 532 e x = 3y
- c) Comprei uma geladeira por R\$ 587,00. Dei R\$ 200,00 de entrada e o restante será pago em 3 prestações mensais iguais: 200,00 + 3x = 587,00

Os exemplos citados representam **equações lineares** e, ao conjunto destas, chamamos de **Sistemas Lineares**.

A resolução de sistemas lineares é um problema que surge em diversas áreas do conhecimento e ocorre, na prática, com muita freqüência. Por exemplo: cálculo de estruturas na Construção Civil, cálculo do ponto de equilíbrio de mercado na Economia e dimensionamento de redes elétricas.

2. EQUAÇÃO LINEAR

Entende-se por equação linear toda expressão da forma

$$a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b$$

onde: x_1 , x_2 , x_3 , ..., x_n são incógnitas ou termos desconhecidos

 a_1 , a_2 , a_3 , ..., a_n são números reais chamados coeficientes

b é um número real chamado termo independente

ou seja, em cada termo da equação linear aparece uma única incógnita e seu expoente é sempre igual a 1

a)
$$2x_1 + x_2 = 12$$
 ou $2x + y = 12$

Exemplo 1: b) $x_1 + 2x_2 - 3x_3 = 15$ ou x + 2y - 3z = 15

c)
$$3x_1 - 4x_2 + x_3 - 5x_4 = 10$$
 ou $3x - 4y + z - 5w = 10$

3. SOLUÇÃO DE UMA EQUAÇÃO LINEAR

A solução de uma equação linear a sequência de números reais $(k_1, k_2, k_3, \dots, k_n)$ tal que, substituindo-se respectivamente as incógnitas da equação pelos números reais, na ordem em que se apresentam, verifica-se a igualdade, ou seja,

$$a_1k_1 + a_2k_2 + a_3k_3 + \dots + a_nk_n = b$$

Exemplo 2: a) a solução da equação 2x + 4y = 22 é o par (5, 3)

- b) a solução da equação 3x + 2y 5z = 32 é a terna (2, 3, -4)
- c) a solução da equação x+2y-4z+w=3 é a quadra (3, 2, 1, 0)

4. SISTEMAS LINEARES

Chama-se sistema linear o conjunto de duas os mais equações lineares.

$$a) \begin{cases} x - y = 4 \\ 3x + y = 2 \end{cases}$$

Exemplo 3: *a*)
$$\begin{cases} x - y = 4 \\ 3x + y = 2 \end{cases}$$
 b)
$$\begin{cases} x + 2y - z = 0 \\ 2x - y + z = 1 \end{cases}$$

c)
$$\begin{cases} x + y - 2z = 0 \\ 2x - y + z = 3 \\ 7x - 2y - z = 9 \end{cases}$$
 d)
$$\begin{cases} x - y = 2 \\ 3x + 2y = 1 \\ 8x + 2y = 6 \end{cases}$$

$$d) \begin{cases} x - y = 2 \\ 3x + 2y = 1 \\ 8x + 2y = 6 \end{cases}$$

Genericamente, um sistema linear de m equações e n incógnitas é escrito por:

$$S = \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_3 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m \end{cases}$$

MATRIZES ASSOCIADAS A UM SISTEMA LINEAR

De um modo geral, qualquer sistema linear pode ser escrito na forma matricial: $A \cdot X = B$.

onde
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & & a_{2n} \\ a_{31} & a_{32} & a_{33} & & a_{3n} \\ \dots & & & & \\ a_{m1} & a_{m2} & a_{m3} & & a_{mn} \end{bmatrix}$$
, $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$ e $B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$ são, respectivamente, matriz $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

dos coeficientes (incompleta), matriz das incógnitas (solução) e matriz dos termos independentes do sistema S. A matriz

$$M = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & & a_{3n} & b_3 \\ \dots & & & & \ddots \\ a_{m1} & a_{m2} & a_{m3} & & a_{mn} & b_m \end{bmatrix}$$
 é chamada matriz completa do sistema S.

SOLUÇÃO DE UM SISTEMA LINEAR 5.

Dizemos que a ênupla $(k_1, k_2, k_3, \dots, k_n)$ é solução de um sistema linear se verificar, simultaneamente, todas as equações do sistema

Exemplo 4: a) o par (5, 1) é solução do sistema
$$\begin{cases} 2x + 3y = 13 \\ 3x - 5y = 10 \end{cases}$$
 b) a terna (1, 3, -2) é solução do sistema
$$\begin{cases} x + 2y + 3z = 1 \\ 4x - y - z = 3 \\ x + y - z = 6 \end{cases}$$

CLASSIFICAÇÃO DE UM SISTEMA LINEAR 6.

Os sistemas lineares são classificados quanto ao número de soluções ou quanto aos termos independentes.

6.1. Quanto ao número de soluções

- 1. Possível (ou Compatível) quando admite solução. Neste caso, é dito:
 - a) **Determinado** quando possuir única solução (SPD)
 - b) **Indeterminado** quando possuir infinitas soluções (SPI)
- 2. Impossível (ou Incompatível) quando não admite solução (SI)

Exemplo 5:

- a) O sistema $\begin{cases} x+3y=8\\ 2x-5y=5 \end{cases}$ é Possível e Determinado, pois apresenta uma única solução: $S = \{(5,1)\}$ b) O sistema $\begin{cases} x+y=4\\ 3x+3y=12 \end{cases}$ é Possível e Indeterminado, pois apresenta infinitas soluções: $S = \{(k,4-k)\}$ c) O sistema $\begin{cases} x+y=10\\ x+y=20 \end{cases}$ é Impossível, pois não existe par ordenado (x,y) que torne as
- duas equações simultaneamente verdadeiras.

Graficamente, se um sistema for SPD ele será representado por duas retas concorrentes; se SPI, por duas retas coincidentes; e se SI, por duas retas paralelas.

6.2. Quanto aos termos independentes

- 1. Homogêneo se os termos independentes são todos nulos
- 2. Não Homogêneo caso contrário

Exemplo 6: a)
$$\begin{cases} x + 2y + z = 0 \\ 2x + y + 4z = 0 \\ -x + y - 8z = 0 \end{cases} \Rightarrow \text{Homogeneo b} \qquad \begin{cases} 5x + 3y - 3z = 0 \\ 4x + 5y - 3z = 2 \\ x + 3y + 4z = 7 \end{cases} \Rightarrow \text{Não}$$

Homogêneo

Todo sistema linear homogêneo sempre tem solução; uma delas é a ênupla (0, 0, 0, ..., 0) que é chamada de **solução trivial**. Qualquer outra solução, se existir, é chamada de solução não-trivial.

7. RESOLUÇÃO DE SISTEMAS LINEARES

Os métodos de resolução que veremos só se aplicam a sistemas lineares quadrados, isto é, sistemas em que o número de equações é igual ao número de incógnitas.

MÉTODOS DA ADIÇÃO E DA SUBSTITUIÇÃO 7.1

Esses métodos foram apresentados a você provavelmente na 6ª série (7º ano) do Ensino Fundamental quando da resolução de sistemas de duas equações e duas variáveis. Acredita-se que esses métodos são os mais indicados, pela simplicidade, para a resolução de tais sistemas.

7.1.1. MÉTODO DA ADIÇÃO

Consiste em adicionar membro a membro as duas equações de modo que uma das variáveis desapareça.

OBS.: Quando, ao adicionar as equações, não desaparecer uma das variáveis, utiliza-se o artifício de multiplicar uma ou as duas equações do sistema por número real não nulo, de sorte que uma das variáveis desapareça.

Exemplo 7: Resolver os seguintes sistemas:

a)
$$\begin{cases} 5x + 3y = 2 \\ 2x - 3y = -16 \end{cases}$$

Somando as equações obtemos x = -2. Substituindo o valor de x em qualquer equação obtemos y = 4. Logo, a solução do sistema é $S = \{(-2, 4)\}$.

b)
$$\begin{cases} 3x + y = 10 \\ 2x - 3y = -8 \end{cases}$$

Multiplicando a 1ª equação por 3 e somando-as, obtemos x=2. Substituindo o valor de x em qualquer equação obtemos y=4. Portanto, a solução do sistema é $S=\{2,4\}$.

c)
$$\begin{cases} x - y = 3 \\ -x + y = 6 \end{cases}$$

Somando as duas equações obtemos 0+0=9 (um absurdo !). Neste caso, dizemos que o sistema não tem solução, isto é, $S=\varnothing$

$$d) \begin{cases} x - y = 6 \\ -x + y = -6 \end{cases}$$

Somando as duas equações obtemos 0 + 0 = 0. Neste caso, dizemos que o sistema possui infinitas soluções. Por exemplo: (10, 4), (-1, -7) e (14, 8).

A solução geral do sistema é dada por $S = \{(k, k-6)\}$, onde \mathbf{k} é um número real.

7.1.2. MÉTODO DA SUBSTITUIÇÃO

Consiste em isolar o valor de uma das variáveis em uma das equações e substituí-la na outra equação.

Exemplo 8: Resolver os sistemas seguintes:

a)
$$\begin{cases} 2x + 5y = 9 \\ 3x - y = 5 \end{cases}$$

Isolando o valor de y na 2^a equação, temos: y=3x-5. Substituindo o valor de y na 1^a equação, achamos x=2. Substituindo o valor de x em qualquer equação encontramos y=1. $S=\{(2,1)\}$.

b)
$$\begin{cases} 2x + y = 10 \\ 3x - 2y = 1 \end{cases}$$

Isolando o valor de y na 1ª equação obtemos y=10-2x. Substituindo o valor de y na 2^a equação, achamos x=3. Substituindo o valor de x em qualquer equação encontramos y=4. $S=\{(3,4)\}$.

7.2. REGRA DE CRAMER

A regra de Cramer, recomendável para resolução de sistemas com três equações a três variáveis (cujo determinante D da matriz dos coeficientes é não nulo), consiste em:

- 1. Calcular o determinante **D** da matriz dos coeficientes;
- 2. Calcular o determinante $\mathbf{D_i}$ que se obtém substituindo-se, na matriz dos coeficientes, a coluna \mathbf{i} pelos termos independentes das respectivas equações.
- 3. Calcular as incógnitas \mathbf{x}_i fazendo: $x_i = \frac{D_i}{D}$, i = 1, 2, 3, ..., n

Exemplo 9: Resolver, usando a Regra de Cramer, o sistema $\begin{cases} -2x + 3y - z = 1 \\ x + 2y - z = 4 \\ -2x - y + z = -3 \end{cases}$

$$D = \begin{vmatrix} -2 & 3 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{vmatrix} = -2 \qquad D_x = \begin{vmatrix} 1 & 3 & -1 \\ 4 & 2 & -1 \\ -3 & -1 & 1 \end{vmatrix} = -4 \qquad D_y = \begin{vmatrix} -2 & 1 & -1 \\ 1 & 4 & -1 \\ -1 & -3 & 1 \end{vmatrix} = -6$$

$$D_z = \begin{vmatrix} -2 & 3 & 1 \\ 1 & 2 & 4 \\ -1 & -1 & -3 \end{vmatrix} = -8$$

$$x = \frac{D_x}{D} = \frac{-4}{-2} = 2$$
 $y = \frac{D_y}{D} = \frac{-6}{-2} = 3$ $z = \frac{D_z}{D} = \frac{-8}{-2} = 4$ $S = \{(2, 3, 4)\}$

Exemplo 10: Resolver o sistema $\begin{cases} x - y + z = 0 \\ 2x + y + z = 0 \\ -x + 2y + 5z = 0 \end{cases}$

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & 5 \end{vmatrix} = -19 \qquad D_x = \begin{vmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 5 \end{vmatrix} = 0 \qquad D_y = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 0 & 1 \\ -1 & 0 & 5 \end{vmatrix} = 0 \qquad D_z = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 0 \end{vmatrix} = 0$$

$$x = \frac{D_x}{D} = \frac{0}{-19} = 0$$
 $y = \frac{D_y}{D} = \frac{0}{-19} = 0$ $z = \frac{D_z}{D} = \frac{0}{-19} = 0$ $S = \{(0, 0, 0)\}$

7.3. MÉTODO DE GAUSS (OU DE ESCALONAMENTO)

Esse método consiste em transformar o sistema linear original em um sistema triangular superior equivalente, ou seja, transformar a matriz ampliada do sistema em uma matriz triangular superior.

$$S_1 = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & & a_{3n} & b_3 \\ \dots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & & a_{nn} & b_n \end{bmatrix} \qquad \Rightarrow \qquad S_2 = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ 0 & a_{22} & a_{23} & & a_{2n} & b_2 \\ 0 & 0 & a_{33} & & a_{3n} & b_3 \\ \dots & & & & & \\ 0 & 0 & 0 & & a_{nn} & b_n \end{bmatrix} \qquad \Rightarrow \qquad S_1$$

 \sim S₂

Para transformar o sistema S_1 no sistema S_2 utiliza-se as **transformações** elementares sobre as equações de S_1 , isto é:

T1. Trocar entre si duas equações quaisquer

- T2. Multiplicar qualquer equação por um número real não nulo
- T3. Adicionar a uma equação uma outra previamente multiplicada por um número real não nulo

OBS.: Dois sistemas S_1 e S_2 são ditos equivalentes quando a solução de um é também a solução do outro.

Exemplo 11: Determinar o conjunto solução do sistema de equações lineares:

$$x + 3y - 2z = 3$$
 Equação 1
 $2x - y + z = 12$ Equação 2
 $4x + 3y - 5z = 6$.Equação 3

SOLUÇÃO:

1 - Aplicando a transformação T1, permutando as posições das equações 1 e 2, vem:

$$2x - y + z = 12$$

 $x + 3y - 2z = 3$
 $4x + 3y - 5z = 6$

2 - Multiplicando ambos os membros da equação 2, por (- 2) - uso da transformação **T2** - somando o resultado obtido com a equação 1 e substituindo a equação 2 pelo resultado obtido - uso da transformação **T3** - vem:

$$2x - y + z = 12$$

 $-7y + 5z = 6$
 $4x + 3y - 5z = 6$

3 - Multiplicando ambos os membros da equação 1 por (-2), somando o resultado obtido com a equação 3 e substituindo a equação 3 pela nova equação obtida, vem:

$$2x - y + z = 12$$

 $-7y + 5z = 6$
 $5y - 7z = -18$

4 - Multiplicando a segunda equação acima por 5 e a terceira por 7, vem:

$$2x - y + z = 12$$

 $-35y + 25z = 30$
 $35y - 49z = -126$

5 - Somando a segunda equação acima com a terceira, e substituindo a terceira pelo resultado obtido, vem:

$$2x - y + z = 12$$

- $35y + 25z = 30$
- $24z = -96$

6 - Do sistema acima, tiramos imediatamente que: z = (-96) / (-24) = 4, ou seja, z = 4.

Como conhecemos agora o valor de z, fica fácil achar os valores das outras incógnitas:

Teremos:
$$-35y + 25(4) = 30 \setminus y = 2$$
.

Analogamente, substituindo os valores conhecidos de y e z na primeira equação acima, fica:

$$2x - 2 + 4 = 12 \setminus x = 5$$
.

Portanto, x = 5, y = 2 e z = 4, constitui a solução do sistema dado. Podemos então escrever que o conjunto solução S do sistema dado, é o conjunto unitário formado por um terno ordenado (5,2,4): $S = \{(5,2,4)\}$

Verificação:

Substituindo os valores de x, y e z no sistema original, teremos:

$$5 + 3(2) - 2(4) = 3$$

 $2(5) - (2) + (4) = 12$

$$4(5) + 3(2) - 5(4) = 6$$

o que comprova que o terno ordenado (5,4,3) é solução do sistema dado.

Exemplo 12: Tente agora resolver, pelo método de Gauss, o sistema $\begin{cases} 2x + 3y - z = 5 \\ 4x + 4y - 3z = 3 \\ 2x - 3y + z = -1 \end{cases}$

Solução:
$$S = \{(1, 2, 3)\}$$

Exemplo 13: Resolver o sistema $\begin{cases}
-x + 2y - z = 3 \\
2x + y + 3z = 5 \\
3x + 4y + 5z = 13
\end{cases}$

Após algumas operações elementares, chegamos ao sistema equivalente:

$$\begin{cases} -x + 2y - z = 3 \\ 5y + z = 11 \end{cases}$$

Próximo passo: encontrar o valor das incógnitas e escrever o conjunto-solução: Como o sistema é SPI (tem mais variáveis que equação), devemos encontrar a solução geral. fazendo z=k e substituindo na 2^a equação obtermos $y=\frac{11-k}{5}$. Na 1^a equação encontramos $x=\frac{7-7k}{5}$.

O conjunto-solução é $S = \{(\frac{7-7k}{5}, \frac{11-k}{5}, k)\}$.

Exemplo 14: Resolver o sistema $\begin{cases} 2x + 10y - 10z = 3 \\ x + 4y - 3z = 2 \\ -y + 2z = -1 \end{cases}$

Após as operações elementares:

1º: trocar de posição a 1ª com a 2ª linha

2°: multiplicar a 1ª linha por -2 e adicionar à 2ª linha.

3º: trocar de posição a 2ª linha com a 3ª linha

4º: multiplicar a 2ª linha por 2 e adicionar à 3ª linha

Temos o sistema equivalente:

$$\begin{cases} x + 4y - 3z = 2 \\ -y + 2z = -1 \\ 0x + 0y + 0z = -3 \end{cases}$$

Próximo passo: encontrar o valor das incógnitas e escrever o conjunto-solução: A última equação propõe um absurdo (0 = -3) o que indica ser o **sistema impossível**, isto é, o sistema original não tem solução. Logo $S = \emptyset$.