Approximate computation: Monte Carlo

Roger Levy

9.S918: Quantitative inference in brain and cognitive sciences

24 February 2025

Monte Carlo methods, or "probabilistic simulation"

- Generally speaking:
 - 1. Define a domain of possible inputs
 - 2. Generate *n* iid random inputs from a probability distribution on the domain
 - 3. Perform a deterministic computation on each randomly generated input
 - 4. Aggregate the results of the deterministic computation
- As n grows larger, the simulated result approaches the true value

Simple example of Monte Carlo

 Suppose I want to do a two-sample t-test but my data aren't normally distributed

How bad will this be for my t-test????

Monte Carlo, in action

```
library(ggplot2)
 2
    library(tidyverse)
 3
    # Manually compute Student t-statistic
 4
    f <- function(seed, N=100, shape=9, scale=0.5) {
      set.seed(seed)
 6
                                                               Reproducibility!
      y1 <- rgamma(N, shape=shape, scale=scale)
      y2 <- rgamma(N,shape=shape,scale=scale)</pre>
 8
      s_p \leftarrow sqrt((var(y1) + var(y2)) / 2)
      t_statistic \leftarrow (mean(y1) - mean(y2)) / (s_p*sqrt(2/N))
10
11
      return(t_statistic)
12 - }
13
                            Monte Carlo simulation
14
    N < -100
15
   Ts <- sapply(1:10000,f)
                                           Compare against Student's t distribution
16
    (t_reference <- tibble(x=seq(-4,4,by=0.01),t=dt(x,df=2*(N-1)))
17
18
19
    qaplot(data=tibble(t=Ts),aes(x=t)) +
20
      geom_density() +
21
      geom_line(data=t_reference,aes(x=x,y=t),color="green",linetype="dashed")
```

Monte Carlo, in action

- The t distribution is still a pretty good approximation of the distribution of the t statistic, even when the underlying distribution is gamma!
- This exemplifies what is meant when people say that the t test is robust to deviations from normality

Unnormalizable posteriors

Our motivation: Bayesian posterior inference

Observed data $P(\boldsymbol{\theta}|\mathbf{y},I) = \frac{P(\mathbf{y}|\boldsymbol{\theta},I)P(\boldsymbol{\theta}|\mathbf{I})}{P(\mathbf{y}|I)}$ Model parameters

• Sometimes P(y | I) can't be calculated exactly. Example

Bernoulli data with non-conjugate prior:

 $P(\pi) \propto \begin{cases} \pi(1-\pi)e^{-\pi^2} & \pi \in [0,1] \\ 0 & \text{otherwise} \end{cases}$

Posterior after observing 2 heads, 2 tails:

$$P(\pi) \propto \begin{cases} \pi^3 (1-\pi)^3 e^{-\pi^2} & \pi \in [0,1]^{\frac{2}{6}} \\ 0 & \text{otherwise} \end{cases}$$

No closed form!

Background

knowledge

In simple cases like this, we can numerically approximate the integral:

 But in high dimension and/or unbounded ranges, difficult or even impossible!

Markov chain Monte Carlo

- However, we can often take samples from the posterior even when we can't compute normalized probabilities
- One general and widely used approach: Markov chain Monte Carlo (MCMC)
- MCMC is a mathematically principled random walk on a non-negative function, directed toward regions where the function takes on a larger value

 Asymptotically, the random walk gives us samples from in proportion to the height of the function

MCMC for posterior sampling

We use the unnormalized form of the posterior:

$$P(\theta \mid \mathbf{y}, I) \propto P(\mathbf{y} \mid \theta, I)P(\theta \mid I)$$

- We run MCMC and then treat the chain of values as samples from the posterior
- The full set of samples is not iid (nearby values on the chain are correlated), but methods exist for estimating "effectively" how many independent samples we have

Stan, HMC, and NUTS

- There are many different MCMC algorithms (e.g., Metropolis, Gibbs Sampling)
- We will use the probabilistic programming language Stan for Bayesian inference about model parameters
- Stan uses an algorithm called Hamiltonian Monte Carlo (HMC) with the No U-Turn Sampler (NUTS)

 This algorithm tends to be particularly efficient for many problems we'll face

Bayesian posterior inference with Stan

- 1. Define the generative model you assume underlies the data you want to analyze
- 2. Choose a prior distribution for your model parameters θ
- 3. Encode the model structure and prior in a Stan program
- 4. Provide the data Y you want to analyze, and ask Stan to sample from the posterior $P(\theta \mid Y, I) \propto P(Y \mid \theta) P(\theta \mid I)$ (often written as $P(\theta \mid Y) \propto P(Y \mid \theta) P(\theta)$, i.e. eliding I)

