数字电路分析与设计

二进制存储单元(3.1)

n二进制存储单元

ü数字信号的存储是数字系统的重要功能。

ü不同的应用场合,对存储功能的需求,以及采用的存储方式会有区别。

ü存储单元分类:

触发器:能记忆一位二进制数信息;

寄存器: 能寄存多位二进制数信息;

存储器: 能存储大量二进制数信息。

ü本节针对触发器(FF: Flip-Flop)。

- n触发器
- ▼ 基本 RS 触发器 (3.1.1)
- ∨ 电平触发的触发器 (3.1.2)
- ∨边沿触发的触发器(3.1.3)
- ∨触发器功能转换(3.1.4)

▼ 基本 RS 触发器

- ü触发器电路中的最基本形式。
- ü能有效地体现出触发器的结构、逻辑功能特点。

Ø基本 RS 触发器

ü右图所示由两个与非门构成的基本 RS 触发器。

ü 电路特点:

两个与非门的输入和输出交叉相连(反馈);有两个互补的输出端(一般以 Q 作为输出)。

ü逻辑功能:

$$\overline{R}_{D} = 0$$
, $\overline{S}_{D} = 1$: $Q = 0$, $\overline{Q} = 1$ 清零 (清0, 置0, 复位)

$$\overline{R}_{D}=1$$
, $\overline{S}_{D}=0$: $Q=1$, $\overline{Q}=0$ 置数(置1, 置位)

$$\overline{R}_{D} = 1$$
, $\overline{S}_{D} = 1$: $Q = Q$, $\overline{Q} = \overline{Q}$ \mathbb{R}

$$\overline{R}_{D} = 0$$
, $\overline{S}_{D} = 0$: $Q = \overline{Q} = 1$ 违背互补 (约束)

Ø基本 RS 触发器 (竞争冒险)

ü右图所示由两个与非门构成的基本 RS 触发器。

$\overline{R}_{\mathrm{D}}$	\overline{S}_{D}	Q	\overline{Q}	功能说明
0	0	×	×	禁用 (不确定)
0	1	0	1	置 0
1	0	1	0	置 1
1	1	不变	不变	保持

以禁用,不确定(当 $\overline{R}_D = \overline{S}_D = 0$ 同时跳变为 $\overline{R}_D = \overline{S}_D = 1$ 时)实际的输出结果,取决于 G_1 和 G_2 的延迟时间。 (G_1 延迟短,Q = 1; G_2 延迟短,Q = 0)

【例1.1】

右图所示由或非门构成的基本RS触发器。

已知: R_D 和 S_D 的波形, 触发器初始状态 Q=1。

要求: 画出在此波形作用下的Q和 \overline{Q} 端波形。

解: 列出特性表

$R_{ m D}$	$S_{ m D}$	功能
0	0	保持
0	1	置 1
1	0	置 0
1	1	禁用

画出波形...

- Ø基本 RS 触发器(动态特性)
- ü动态特性:触发器输入、输出状态翻转之间的时间配合。
- ü触发器的状态翻转必须稳定、可靠,存储的二进制信息才有意义。
- □因此,对R、S端的状态(脉冲宽度)提出了要求。

Ø基本 RS 触发器(动态特性)

 \ddot{U} 以与非门构成的基本 RS 触发器为例。 假定初始时 $\overline{R}_D = \overline{S}_D = 1$, Q = 0; 每个与非门的延迟时间为 $1 t_{pd}$ 。

- \ddot{z} 若 $\overline{R}_D = 1$, $\overline{S}_D = 0$:
 则,经过 1 t_{pd} 延时后 Q 变高,再经 1 t_{pd} 延时后 \overline{Q} 变低。
- \ddot{u} 若 $\overline{R}_D = 0$, $\overline{S}_D = 1$: 则,经过 1 t_{pd} 延时后 \overline{Q} 变高,再经 1 t_{pd} 延时后Q 变低。

 $\ddot{\mathbf{U}}$ 可见,从输入状态变化到输出状态的改变, $\overline{R}_{\mathrm{D}}$ 和 $\overline{S}_{\mathrm{D}}$ 的高低电平时间都应大于 2 t_{pd} 。

【例1.2】

右图所示电路。

分析: 开关位置切换时的输出波形。

解: 开关切换后, $\overline{R}_D = 0$, $\overline{S}_D = 1$ 则输出 Q = 0;

$$\overline{R}_{D} = 1$$
, $\overline{S}_{D} = 1$ $\Leftrightarrow \overline{R}_{D} = 0$, $\overline{S}_{D} = 1$ \overline{R}_{D} 和 \overline{S}_{D} 的波形如右图所示。

由于基本 RS 触发器具有保持特性;则:即使弹跳,触发器输出不变; 所以,输出波形如右图所示。

消除机械开关弹跳的逻辑电路

Q

 $\overline{S}_{\!\! D}$

 ${}^{\dagger}R_{V_{
m DD}}$

R

 $\overline{R}_{\mathrm{D}}$

▼ 电平触发的触发器

- **ü** 在时序逻辑电路中,都要求用一个统一信号来协调整个电路的工作。 统一信号: 时钟脉冲 *CP*。
- □ 没有时钟信号时,电路状态不会翻转(变化); 有时钟信号触发时,电路的输出状态翻转(变化)。

Ø 时钟控制高电平触发 RS 触发器

ü右图所示典型原理图。

 \ddot{U} 当 CP = 0 时, G_3 、 G_4 输出为高(被封锁); 触发器的输出受 \overline{R}_D 、 \overline{S}_D 控制;

-*R*_D: (异步) 清零端;

 S_{D} : (异步) 置数端。

 $\ddot{\mathbf{U}}$ 在 CP = 0 时,可以用 \overline{R}_D 、 \overline{S}_D 来设置触发器输出端的初始状态; 当初态设置好后, \overline{R}_D 、 \overline{S}_D 都应置为高电平。

 \ddot{U} 当 CP = 1 时, G_3 、 G_4 开放; 电路整体上相当一个基本 RS 触发器; R、S 的变化,将影响触发器的输出。

Ø 时钟控制高电平触发 RS 触发器

ü 电路特点:

输出状态是否变化由 CP 脉冲控制,但输出状态由 R、S 决定;若不计翻转时间(传输延迟),CP 脉冲高电平信号出现和触发器状态翻转是同时发生的,又称同步触发器(锁存器)。

ü 电路分析:

 Q^n : CP 脉冲作用前的触发器状态(初始状态、初态、现态);

 Q^{n+1} : CP 脉冲作用后的触发器状态(下一状态、次态)。

Ø 时钟控制高电平触发 RS 触发器

- ü功能表(真值表)
- ü次态卡诺图:

输入: $R \setminus S \setminus Q^n$; 输出: Q^{n+1} 。 Q^{n+1}

ü次态逻辑函数(特征方程)

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ R \cdot S = 0 \text{ (bp)} \end{cases}$$

$\overline{R}_{\mathrm{D}}$	$\overline{S}_{\mathrm{D}}$	R	S	Q^n	Q^{n+1}	功能说明
0	1	X	X	×	0	异步清零
1	0	X	X	×	1	异步置数
1	1	0	0	0	0	保持
1	1	0	0	1	1	不行
1	1	0	1	0	1	罗 米
1	1	0	1	1	1	置数
1	1	1	0	0	0	注意
1	1	1	0	1	0	清零
1	1	1	1	0	×	★太 □□
1	1	1	1	1	×	禁用

- Ø 时钟控制高电平触发 RS 触发器
- ü功能表
- ü 次态卡诺图
- ü 状态转换图:

- ü次态逻辑函数(特征方程)
- ü符号图、波形图
- ü状态转换真值表

$\overline{R}_{\mathrm{D}}$	\overline{S}_{D}	R	S	Q^n	Q^{n+1}	功能说明
0	1	X	X	×	0	异步清零
1	0	X	X	×	1	异步置数
1	1	0	0	0	0	保持
1	1	0	0	1	1	1本1寸
1	1	0	1	0	1	黑粉
1	1	0	1	1	1	置数
1	1	1	0	0	0	连重
1	1	1	0	1	0	清零
1	1	1	1	0	×	林木 口
1	1	1	1	1	×	禁用

Ø时钟控制高电平触发 RS 触发器(动态特性)

- ü状态由0翻转为1。
- ü状态由1翻转为0。
- ü时间配合(参讲义 P87)

- Ø时钟控制高电平触发 RS 触发器(工作特点)
- \ddot{U} RS 端的数据必须在 CP = 0 期间完成转换。
- ü在CP=1期间,RS的变化会使触发器的状态产生翻转。
- ü在CP=1期间,非常容易接收干扰信号,抗干扰能力差。

Ø *D* 触发器 (*D* 锁存器)

- ü右图所示D触发器。
- \ddot{U} 相当于高电平触发 RS 触发器。 S = D, $R = \overline{D}$

$$\ddot{\mathbf{U}}$$
 特征方程: $Q^{n+1} = S + \overline{R}Q^n = D + \overline{D}Q^n = D$

ü次态卡诺图、状态转换图?

D	Q^n	Q^{n+1}	功能	
0	0	0	清零	
0	1	U	相令	
1	0	1	置数	
1	1	1	且奴	

- **Ø** *D* 触发器(工作特点)
- üD 触发器没有输入信号的约束条件。
- üD触发器同样存在CP=1期间容易接收干扰信号的问题。
- ü为提高抗干扰能力,使触发翻转更加可靠,必须改进电路的结构和触发方式。

V 边沿触发的触发器

ü边沿触发器只在*CP*脉冲的上升沿(或下降沿)时接收信号,并完成翻转。

ü由于触发器响应输入信号的时间极短,所以边沿触发器的可靠性高, 抗干扰能力强。

ü目前触发器的产品一般都采用该技术。

Ø主从 D触发器

ü有多种可实现的电路形式。

ü例:右图所示电路。

ü 电路结构:

将两个高电平触发的D触发器串联起来,用同一个CP脉冲触发;前一个D触发器称为主触发器,后一个称为从触发器。

Ø 主从 D 触发器 (工作原理)

 \ddot{U} CP = 1:

主触发器随 D 状态翻转, $Q_{\rm M} = D$; 从触发器 Q 端状态不会改变。

ü CP 跳变为 0:

主触发器状态被封锁(保持不变);

从触发器 Q 端状态等效为主触发器原状态,即 $Q = Q_{\rm M} = D$ 。

□ 在一个 *CP* 脉冲周期内,分为两个节拍动作; 在 *CP* 脉冲的下降沿实现触发器的状态改变。 *D*

下降沿触发的 D 触发器。

Ø 主从 D 触发器 (特点)

- ü在CP=1期间,也会接收干扰信号并锁存在主触发器中。
- ü一旦干扰信号消失,正确信息即可取代并锁存在主触发器中。
- □ 所以,只要在 *CP* 跳变为 0 之前的那个时刻无干扰信号(或干扰信号 消失),从触发器获得的状态即是正确的。

Ø 主从 *D* 触发器 (CMOS 型)

□ 下图所示 CMOS 主从型 D 触发器。

ü 电路特点:

用 CMOS 传输门和或非门组成主从型 D 触发器,提高抗干扰能力; 电路同样分主、从触发器,一个时钟周期也分两个节拍动作。

Ø主从 D 触发器 (CMOS 型工作原理)

ü下图所示 CMOS 主从型 D 触发器。

 $\ddot{\mathbf{U}}$ CP = 0:

 TG_2 、 TG_3 导通, TG_1 、 TG_4 断开; 主触发器保持; 从触发器接收 D 信息。

Ø 主从 *D* 触发器 (CMOS 型)

ü下图所示 CMOS 主从型 D 触发器。

- Ø 维持阻塞型 D 触发器
- ü简称维阻型触发器。
- ü利用两组反馈线(维持线、阻塞线) 实现边沿触发。

Ø 维持阻塞型 D 触发器 (工作原理)

		CP 低		CF	CP ↑		CP 高		CP ↓	
		输入	输出	输入	输出	输入	输出	输入	输出	
	CP	0	1	1	1	1	1	0	1	
G_3	G_5	×	1	0	1	0	1	0	1	
	G_3	X	1	1	0	1	0	1		
G_4	CP	0		1		1		0	1	
	G_6	X		1		1		1		
C	D	0	1	0	1	?	1			
G_6	G_4	1	1	0	1	0	1			
\Box	G_3	1	0	1	0	1	0			
G_5	G_6	1	U	1	U	1				

$$Q^{n+1}=0=D$$
 Q 稳定 Q 稳定

CP = 0, D = 0, Q 任意。

Ø 维持阻塞型 D 触发器 (特点)

ü上升沿触发。

□ 在 CP = 1 期间,有:
 维持置 1 线、阻塞置 0 线(作用);
 维持置 0 线、阻塞置 1 线(作用);
 (D 没有作用了)

从而使触发器接收信号和状态翻转稳定可靠。

【例1.3】

已知上升沿、高电平触发D触发器CP、D以及 \overline{R}_D 和 \overline{S}_D 的波形。要求:画出两种触发器的输出Q端波形。

<u>为熟悉各种触发器的功能和触发特点</u>,可通过画波形来训练。

【例1.4】

右下图所示电路。

要求: 画出 CP 脉冲作用下 Q_1 、 Q_2 和 Z 端的波形(设触发器初态为 0)。

Ø 负边沿触发的 JK 触发器

$$\ddot{\mathbf{U}}$$
 $CP = 1$:

$$G_2 = Q + \overline{R} Q \equiv \overline{Q}$$

$$G_1 = \overline{\overline{Q} + \overline{S} \, \overline{Q}} \equiv Q$$

输出状态保持不变。

$\ddot{\cup}$ $CP \downarrow$:

与门B、B'的某一输入为零;

与门B、B'无效(零输出对后续电路无效)

$$\overline{R} = \overline{S} = 1? \Longleftrightarrow \overline{R} = \overline{KQ^n}, \overline{S} = J\overline{Q}^n$$

$$Q^{n+1} = S + \overline{R}Q^n = J\overline{Q}^n + \overline{K}Q^n$$

输出状态变化。

Ø 负边沿触发的 JK 触发器

ü CP = 1: 输出状态保持不变。

ü CP↓: 输出状态变化。

CP = 0:
 与门 B、B' 无效, G₃、G₄输出高;
 输出状态保持不变。

ü *CP* ↑:

输出状态保持不变(相当于 CP = 1)。

利用门电路的传输延迟时间差, 在 CP 脉冲下降沿期间, 接收 J、K 端信号,并使输出状态变化。

Ø 负边沿触发的 JK 触发器

 $\ddot{\mathbf{U}}$ 特征方程: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

□ 功能表(特性表、真值表、状态转换真值表、激励表)、 次态卡诺图、状态转换图?

ü 动态特性: (相对 D 触发器) 传输延迟时间短, 触发频率较高。

【例1.5】

下降沿触发JK触发器。

已知: CP、J、K端波形(控制端无效,初态为0)

要求: 画出输出 Q 端波形。

CP					
<i>J</i> —			 		<u></u>
K		┼			
o —		 		 	

J	K	功能
0	0	保持
0	1	置 0
1	0	置 1
1	1	翻转(计数)

V 触发器功能转换

- ü 触发器在 *CP* 脉冲作用下,能在两种状态之间转换; 在脉冲电路中,往往把电路称作双稳态触发器。
- $\ddot{\mathbf{U}}$ 常见触发器: $RS \setminus D$ 和 JK 三种; 实际应用中,还有 $T' \setminus T$ 型触发器。
- ü触发器相互之间可以进行转换。

Ø T'触发器

ü T' 触发器只有一种功能: 翻转(计数);

即:每加入一个 CP 脉冲,触发器状态仅改变一次;

又称: 计数触发器。

- $\ddot{\mathbf{U}}$ 特征方程: $Q^{n+1} = \overline{Q}^n$

Ø T'触发器(转换)

 $\ddot{\mathbf{U}}$ T' 触发器特征方程: $Q^{n+1} = \overline{Q}^n$

ü由D触发器转换?

转换原则:转换前后,特征方程保持一致;

D 触发器特征方程: $Q^{n+1} = D$

所以,...

右图所示转换电路。

Ø T¹触发器(转换)

- $\ddot{\mathbf{u}}$ T' 触发器特征方程: $Q^{n+1} = \overline{Q}^n$
- ü转换原则:转换前后,特征方程等保持一致。

 \ddot{U} JK 触发器特征方程: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

 $ar{R}_{\!\!\!
m D}$

 \overline{Q}

>C1

CP

ü 特征方程转换法

要求熟悉:特征方程,逻辑函数的代数法转换;

转换结果:有可能多种。

$$J=K=1$$
 或 $J=\overline{Q}^n$, $K=Q^n$

Ø T 触发器

 \ddot{U} T 触发器有一个 T 输入端; T=0 时,触发器状态保持; T=1 时,触发器状态翻转。

ü功能表:

$$\ddot{\mathbf{U}}$$
 特征方程: $Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$

ü 逻辑符号	$ \overline{R}_{ m D} $	_
T	1T R	Q
o	>C1	
	S	$lackbox{}\overline{\mathcal{Q}}$
	$\overline{S}_{ m D}$	-

T	Q^n	Q^{n+1}	功能
0	0	0	保持
	1	1	1水1寸
1	0	1	翻转
1	1	0	田切干女

Ø T 触发器 (转换)

- **ü** T 触发器特征方程: $Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$
- \ddot{U} D 触发器: $Q^{n+1} = D \implies D = T\overline{Q}^n + \overline{T}Q^n$

有禁用

- \ddot{U} RS 触发器: $Q^{n+1} = S + \overline{R}Q^n \implies R = T$ 或 TQ^n , $S = T\overline{Q}^n$
- $\ddot{\mathbf{U}}$ JK 触发器: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n \implies J = K = T$

无禁用

特征方程转换法

要求熟悉:特征方程,逻辑函数的代数法转换;

转换结果:有可能多种。

❷任意触发器的转换

- $\ddot{\mathbf{u}}$ 定义具有 m 个输入的触发器 A; 实现具有 n 个输入的触发器 B。
- ü 设计思路: 在已知触发器 A 外,添加适当的逻辑电路。
- $\ddot{\mathsf{u}}$ 设计目标: $B_0 \sim B_{\mathsf{n}-\mathsf{l}}$, Q , $\overline{Q} \Rightarrow A_0 \sim A_{\mathsf{m}-\mathsf{l}}$

❷任意触发器的转换

ü设计: D触发器实现JK触发器。

ü实际框图:	DQ	0	1
	00	0	1
ü 实现目标:	$ \begin{array}{c} D \cdot Q \\ JK \\ 00 \\ 01 \end{array} $	0	0
	11	1	0

$$\ddot{\mathbf{u}}$$
 结论: $D = J\overline{Q}^n + \overline{K}Q^n$

ü实现步骤:

特征方程转换法?

任意触发器转换?

【例1.6】

设计一个四人参赛抢答的逻辑控制电路。

要求: (1)每个参赛者控制一个按钮,用按动按钮发出抢答信号;

- (2) 竞赛主持人用另一个按钮,用于将电路复位;
- (3) 竞赛开始后,先按动按钮者将对应的一个发光二极管点亮;此后,其它三人再按动按钮对电路不起作用。

✓本节作业

ü 习题 3(P122) 1、5、7、8、10、12、15。

ü说明:

5 题, 提醒: 图 3.1.5(a)。

12题,建议多画几个 CP 脉冲。

所有的题目,需要有解题过程(不是给一个答案即可)。