Lecture 01

Professor Virginia R. Young Transcribed by Hao Chen

August 29, 2022

Chapter 1 Intro to Prob Theory

1.2 Sample spaces and events

Defn: The set of all possible outcomes of an experiment is known as the sample space. We denote it by Ω . Also called the state space. $\Omega = \{\omega\}$

E.g.:

- Ex1: Flip a coin once. $\Omega = \{H, T\}$.
- Ex2: Roll a single die. $\Omega = \{1,2,3,4,5,6\}$
- Ex3: Flip two coins. $\Omega = \{(H, H), (H, T), (T, T)\}$ (unordered pair)
- Ex5: Measure the lifetime of an individual $\Omega = (0, \infty)$

Events of interest

- Ex1" The outcome is not a tail = $\{T\}^c = \Omega \{T\} = \{H\}$
- Ex2" $A = \text{outcome is even} = \{2, 4, 6\}$
- B =the outcome does not exceed $3 = \{1, 2, 3\} = \{4, 5, 6\}^c$
- Ex5" A = the individual lives at least ten years $=(10, \infty)$
- B = the individual dies before age 20 = (0, 20)

Defn: A collection \mathcal{F} of subset of Ω is called a σ -algebra if it satisfies the following properties:

- 1. $\varnothing \in \mathcal{F}$
- 2. if $A_1, A_2, \dots \in \mathcal{F}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- 3. if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$

E.g.:

- (i) $\mathcal{F} = \emptyset, \Omega$ is a σ -algebra.
- (ii) if $A \subset \Omega$, then $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$ is a σ -algebra.
- (iii) Borel σ -algebra of $\mathbb{R} = \sigma$ -algebra generated by $(a, b), a < b, a, b \in \mathbb{R}$.

$$A + B = A \cup B$$

$$A - B = A \cap B^c$$

$$\Omega - B = \Omega \cap B^c = B^c$$

Proof:

- (a) $\emptyset \in \mathcal{F}$ by definition of \mathcal{F} .
- (b) Consider a sequence of up to 4 elements in \mathcal{F} ,
 - If A and A^c are in the sequence, then the union is $\omega \in \mathcal{F}$.
 - If Ω is the sequence, then the union is $\Omega \in \mathcal{F}$.
 - Otherwise, the union is either \emptyset , A, or $A^c \in \mathcal{F}$.
- (c) $\varnothing^c = \Omega$, $\{A\}^c = \{A^c\}$, $\Omega^c = \varnothing$, $\{A^c\}^c = \{A\}$ Therefore, \mathcal{F} is closed under c . Let \mathcal{F} be a σ -algebra, and consider a sequence $A_1, A_2, \dots \in \mathcal{F}$, then, $A_i^c \in \mathcal{F}$, $i = 1, 2, \dots$ Let $\omega \in \cup_{i=1}^{\infty} A_i^c$; thus, $\exists j = 1, 2, \dots$ s.t. $\omega \in A_j^c \implies \omega \notin A \implies \omega \notin \cap_{i=1}^{\infty} A_i \implies \omega \in (\cap_{i=1}^{\infty} A_i)^c$. Prove that $\cup_{i=1}^{\infty} A_i^c \subset (\cap_{i=1}^{\infty} A_i)^c$. $\therefore \cap_{i=1}^{\infty} A_i \in \mathcal{F}$

E.g.:
$$\bigcap_{n=1}^{\infty} (a - 1/n, b + 1/n) = [a, b]$$