

Monitoring Laboratory Performance Evaluation Sample Usage and Results

Presented By

Keith Strout, Clyde Hedin, and Timothy Vonnahme
Quality Assurance Technical Support (QATS)Program
CB&I Federal Services LLC

and

Shari Myer, US EPA Analytical Services Branch March 31 - April 1, 2015

- > CLP Field Sample and PES Analysis Summary Report
- ➤ PES Results Summary Reports
- > EPA Regional PES Results Monitoring
- What's up with Antimony in Soil Samples?
- > SPSWeb Changes
- > PES Information

CLP Field Sample and PES Analysis Summary

- ➤ QATS recently evaluated and reported the number of field samples versus PESs analyzed through the CLP for 2 time periods; April 1, 2012 March 31, 2013 (Period 1), and April 1, 2013 March 31, 2014 (Period 2).
- Sample usage was evaluated by fraction and matrix, and categorized by EPA Region and CLP laboratory.
- All CLP labs, both SOM and ISM, analyze QB samples 4 times per year, which includes each analytical fraction and matrix.
- Regions 1, 4, and 7 were the only Regions that routinely used PESs associated with CLP sample analysis during both periods.
- Region 9 used a substantial number of special-request PESs, but typically not through the CLP.

		CLP Inor		eld Sampl 1, 2012 t		•		y Region		
			CLP Inor	ganic Fie	ld Sampl	e SDGs P	rocessed			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
81	254	305	138	136	116	269	183	111	499	2,092
			CLP I	norganic	Field Sar	nple Ana	lyses			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
2,830	5,231	6,314	2,939	3,070	3,833	4,431	4,160	2,691	10,548	46,047
				L CLP Inorg	anic PES	Analyses	S			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
131	0	0	193	0	0	73	0	0	0	397
		CL	.P Inorga	nic Field :	 Sample t	o PES An	∣ alysis Ra¹	tio		
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
22:1	NA	NA	15:1	NA	NA	61:1	NA	NA	NA	116:1

3

		CLP Inor	-	eld Sampl 1, 2013 t				y Region		
			CLP Inor	ganic Fie	ld Sampl	e SDGs P	rocessed			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
52	204	202	47	103	45	248	100	243	467	1,711
			CLP I	norganic	Field Sar	nple Ana	lyses			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
1,208	3,026	3,583	956	3,236	1,620	4,269	1,896	4,916	9,976	34,686
				CLP Inorg	anic PES	Analyses				
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
64	0	0	60	0	0	79	0	2	0	205
		CL	.P Inorga	nic Field	 Sample t	o PES Ana	l alysis Rat	tio		
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
19:1	NA	NA	16:1	NA	NA	54:1	NA	NA	NA	169:1

		CLP Org		d Sample 1, 2012 t			Data by , 2013	Region		
			CLP Org	ganic Field	d Sample	SDGs Pr	ocessed			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
86	332	433	256	181	216	114	106	138	79	1,941
			CLP	Organic I	 Field Sam	nple Anal	yses			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
2,465	7,143	7,635	6,288	4,085	6,208	1,835	1,582	3,165	1,178	41,584
				CLP Orga	anic PES	Analyses				
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
161	0	0	299	0	0	49	0	0	0	509
		C	LP Organ	ic Field S	ample to	PES Ana	lysis Rati	0		
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
15:1	NA	NA	21:1	NA	NA	37:1	NA	NA	NA	82:1

		CLP Org		d Sample 1, 2013 t			Data by , 2014	Region		
			CLP Org	ganic Fiel	d Sample	SDGs Pr	ocessed			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
45	294	343	114	156	77	104	73	156	28	1,390
			CLP	Organic	 Field Sam	nple Anal	yses			
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
1,204	6,351	6,392	2,354	4,072	1,843	1,544	1,094	4,033	733	29,620
				CLP Orga	anic PES	Analyses				
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
99	0	0	113	0	0	43	0	1	0	256
		C	LP Organ	ic Field S	ample to	PES Ana	l Ilysis Rati	 O		
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
12:1	NA	NA	21:1	NA	NA	36:1	NA	NA	NA	116:1

6

	CLP In	organic F	ield Sam	ple and I	PES Analy	ysis Data	by Regio	nal Perce	entage	
Percenta	ge of Tota	I CLP Inor	ganic Field	Samples	Analyzed I	oy Region	– April 1, 2	2012 throu	ugh March 3	31, 201
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
6.1%	11.4%	13.7%	6.4%	6.7%	8.3%	9.6%	9.0%	5.8%	22.9%	100%
Perc	entage of	Total CLP	Inorganic	PESs Anal	yzed by Re	egion – Ap	ril 1, 2012	through N	/ March 31, 20	013
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
33.0%	0.0%	0.0%	48.6%	0.0%	0.0%	18.4%	0.0%	0.0%	0.0%	100%
Percenta	ge of Tota	l Il CLP Inor	ganic Field	l Samples :	 Analyzed l	oy Region	 April 1, 2	 2013 throu	ugh March 3	31, 2014
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
3.5%	8.7%	10.3%	2.8%	9.3%	4.7%	12.3%	5.5%	14.2%	28.8%	100%
Perc	entage of	Total CLP	Inorganic	PESs Anal	vzed by Re	egion – Ap	ril 1, 2013	through N	// // // // // // // // // // // // //	014
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
31.2%	0.0%	0.0%	29.3%	0.0%	0.0%	38.5%	0.0%	1.0%	0.0%	100%

	CLP C	rganic Fi	eld Samı	ole and P	ES Analy	sis Data k	y Region	nal Perce	ntage	
Percent	age of Tot	al CLP Org	anic Field	Samples A	nalyzed b	y Region -	- April 1, 2	012 throu	gh March 3	1, 2013
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
5.9%	17.2%	18.4%	15.1%	9.8%	14.9%	4.4%	3.8%	7.6%	2.8%	100%
Per	centage o	f Total CLP	Organic F	PESs Analy	zed by Re	gion – Apr	il 1, 2012 1	hrough M	 arch 31, 20	13
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
31.6%	0.0%	0.0%	58.7%	0.0%	0.0%	9.6%	0.0%	0.0%	0.0%	100%
Percent	age of Tot	al CLP Org	anic Field	Samples A	inalyzed b	y Region -	 - April 1, 2	013 throu	gh March 3	1, 2014
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
4.1%	21.4%	21.6%	7.9%	13.7%	6.2%	5.2%	3.7%	13.6%	2.5%	100%
Per	centage o	f Total CLP	Organic F	 PESs Analy	zed by Re	 gion – Apr	 il 1, 2013	hrough M	 arch 31, 20	14
Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10	Total
38.7%	0.0%	0.0%	44.1%	0.0%	0.0%	16.8%	0.0%	0.4%	0.0%	100%

8

	CLP Inor	ganic Field	Sample and	PES Analysis	Data by Lal	ooratory	
		April 1	., 2012 throu	igh March 31	, 2013		
		CLP Ino	rganic Field Sa	ample SDGs Pro	cessed		
A4	BONNER	СНЕМ	DATAC	MITKEM	STLV	TALGA	Total
574	418	381	365	255	130	38	2,161
		CLP	Inorganic Fiel	d Sample Analy	yses		
A4	BONNER	CHEM	DATAC	MITKEM	STLV	TALGA	Total
11,171	6,962	9,756	8,266	6,754	2,937	632	46,478
			CLP Inorganio	PES Analyses			
A 4	BONNER	СНЕМ	DATAC	MITKEM	STLV	TALGA	Total
80	96	66	53	69	20	13	397
		CLP Inorga	anic Field Sam	ple to PES Ana	lysis Ratio		
A4	BONNER	CHEM	DATAC	MITKEM	STLV	TALGA	Total
140:1	73:1	148:1	156:1	98:1	147:1	49:1	117:1
	Percenta	ge of Total Cl	P Inorganic F	ield Samples Ai	nalyzed by La	boratory	
A4	BONNER	CHEM	DATAC	MITKEM	STLV	TALGA	Total
24.0%	15.0%	21.0%	17.8%	14.5%	6.3%	1.4%	100%
	Perc	entage of To	tal CLP Inorga	nic PESs Analyz	ed by Labora	itory	
A4	BONNER	CHEM	DATAC	MITKEM	STLV	TALGA	Total
20.2%	24.2%	16.6%	13.4%	17.4%	5.0%	3.3%	100%

9

	CLP Inor	ganic Field	Sample and	PES Analysis	Data by Lak	oratory	
		April 1	., 2013 throu	ugh March 31	., 2014		
		CLP Ino	rganic Field Sa	ample SDGs Pro	ocessed		
A4	BONNER	СНЕМ	DATAC	MITKEM	STLV	TALGA	Total
391	416	539	157	160	84	1	1,748
		CLP	Inorganic Fiel	d Sample Anal	yses	Ne VIA	528x.48x011
A4	BONNER	СНЕМ	DATAC	MITKEM	STLV	TALGA	Total
8,870	6,753	11,091	3,257	3,317	1,454	8	34,750
			CLP Inorganio	c PES Analyses			
A 4	BONNER	СНЕМ	DATAC	MITKEM	STLV	TALGA	Total
26	56	96	18	8	1	0	205
		CLP Inorga	anic Field Sam	ple to PES Ana	lysis Ratio		
A4	BONNER	CHEM	DATAC	MITKEM	STLV	TALGA	Total
341:1	121:1	116:1	181:1	415:1	1,454:1	NA	170:1
	Percenta	ge of Total CI	P Inorganic F	ield Samples A	nalyzed by La	boratory	
A4	BONNER	СНЕМ	DATAC	MITKEM	STLV	TALGA	Total
25.5%	19.4%	31.9%	9.4%	9.5%	4.2%	0.0%	100%
	Perc	entage of Tot	tal CLP Inorga	nic PESs Analy	zed by Labora	itory	
A4	BONNER	СНЕМ	DATAC	MITKEM	STLV	TALGA	Total
12.7%	27.3%	46.8%	8.8%	3.9%	0.5%	0.0%	100%

	(CLP Orga	nic Field	Sample a	and PES A	Analysis D	ata by L	aboratory	1	
				-		March 31,	7			
			CLP O	rganic Fie	ld Sample	SDGs Proc	essed			
A4	BONNER	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
400	29	115	371	486	128	201	173	59	49	2,011
			CL	P Organic	Field Sam	ple Analys	es			
A4	BONNER	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
7,943	97	2,223	9,004	9,472	3,040	4,984	2,948	992	1,163	41,866
				CLP Org	ganic PES /	Analyses				
A4	BONNER	CHEM	DATAC	КАР	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
45	6	10	92	107	84	139	0	10	16	509
			CLP Orga	anic Field	Sample to	PES Analys	sis Ratio			
A4	BONNER	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
177:1	16:1	222:1	98:1	89:1	36:1	36:1	NA	99:1	73:1	82:1
		Percentag	e of Total	CLP Organ	nic Field Sa	amples Ana	lyzed by	Laboratory		
A4	BONNER	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
19.0%	0.2%	5.3%	21.5%	22.6%	7.3%	11.9%	7.0%	2.4%	2.8%	100%
		Perce	ntage of T	otal CLP (Organic PE	Ss Analyze	d by Labo	ratory		
A4	BONNER	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
8.8%	1.2%	2.0%	18.1%	21.0%	16.5%	27.3%	0.0%	2.0%	3.1%	100%

	CL	P Organic		T	PES Analysi		-	ry	
					ugh March			10 Sec. 10	
			CLP Orgai	nic Field Sa	mple SDGs F	Processed			
Α4	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
75	171	135	454	67	303	87	117	24	1,433
			CLP O	rganic Field	l Sample An	alyses			
A4	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
1,537	3,036	2,567	9,866	1,348	5,867	1,705	3,291	414	29,631
100			C	LP Organic	PES Analyse	:S			
A4	СНЕМ	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
22	29	18	89	11	59	3	23	2	256
		C	LP Organic	Field Samp	ole to PES Ar	nalysis Rat	io		1
A4	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
70:1	105:1	143:1	111:1	123:1	99:1	568:1	143:1	207:1	116:1
	Pe	ercentage o	f Total CLP	Organic Fi	eld Samples	Analyzed	by Laborato	ry	
A4	CHEM	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
5.2%	10.2%	8.7%	33.3%	4.5%	19.8%	5.8%	11.1%	1.4%	100%
		Percenta	ge of Total	CLP Organ	ic PESs Anal	yzed by La	boratory		
A4	СНЕМ	DATAC	KAP	LIBRTY	MITKEM	PEL	SHEALY	STLV	Totals
8.6%	11.3%	7.0%	34.8%	4.3%	23.0%	1.2%	9.0%	0.8%	100%

PES Results Summary Reports

- ➤ SOM and ISM PES Results Summary Reports include all routine PES results and QB results for each CLP lab.
- Reports allow ASB to monitor lab PES performance program-wide.
- Reports evaluate all results over 2 distinct periods:
 - ✓ Entire term of the CLP contract (typically from September 1, 2010)
 - ✓ Most recent 6-month period (all reports updated every 6 months)
 - ➤ Parameters evaluated include:
 - ✓ Number of PESs analyzed by fraction and matrix for both periods
 - ✓ PES requesting region
 - ✓ Date scored, number of analytes scored, reported results, performance compared to SPSWeb acceptance limits
 - ✓ QB performance
- Individual PES and QB lab results are compared to all CLP lab results (individual and composite), by fraction and matrix.

Table 1: Laboratory Code B SOM PESs Analyzed

Analytical Fraction	PESs Analyzed 09/01/2010 – 02/28/2015	PESs Analyzed 09/01/2014 – 02/28/2015
Trace Aqueous Volatile Organics	62	11
L/M Aqueous Volatile Organics	46	5
Volatile Organics in Soil	55	7
Aqueous Semivolatile Organics	51	5
Aqueous SIM Semivolatile Organics	30	5
Aqueous 1,4-Dioxane Extractable	6	0
Semivolatile Organics in Soil	73	8
SIM Semivolatile Organics in Soil	17	2
Aqueous Pesticides	21	1
Pesticides in Soil	32	5
Aqueous Aroclors	17	1
Aroclors in Soil	74	9

Table 2: Laboratory Code B SOM PES Performance Summary (09/01/2010 – 02/28/2015)

Analytical Fraction		A	nalytes		Failure
	Scored	Within Limits	Outside 95% CI Warning Limits	Outside 99% CI Action Limits	Rate
Trace Aqueous Volatile Organics	1739	1712	13	14	0.8%
L/M Aqueous Volatile Organics	1174	1137	22	15	1.3%
Volatile Organics in Soil	1422	1350	23	49	3.4%
Aqueous Semivolatile Organics	1373	1330	23	20	1.5%
Aqueous SIM Semivolatile Organics	317	296	16	5	1.6%
Aqueous 1,4-Dioxane Extractable	6	4	0	2	33.3%
Semivolatile Organics in Soil	1740	1634	93	13	0.7%
SIM Semivolatile Organics in Soil	221	208	12	1	0.5%
Aqueous Pesticides	186	181	5	0	0.0%
Pesticides in Soil	336	272	30	34	10.1%
Aqueous Aroclors	23	23	0	0	0.0%
Aroclors in Soil	74	72	2	0	0.0%

Table 3: Laboratory Code B SOM PES Performance Summary (09/01/2014 – 02/28/2015)

Analytical Fraction		Failure			
	Scored	Within Limits	Outside 95% CI Warning Limits	Outside 99% CI Action Limits	Rate
Trace Aqueous Volatile Organics	317	310	4	3	0.9%
L/M Aqueous Volatile Organics	131	131	0	0	0.0%
Volatile Organics in Soil	194	188	4	2	1.0%
Aqueous Semivolatile Organics	162	162	0	0	0.0%
Aqueous SIM Semivolatile Organics	45	45	0	0	0.0%
Aqueous 1,4-Dioxane Extractable	0	NA	NA	NA	NA
Semivolatile Organics in Soil	205	203	2	0	0.0%
SIM Semivolatile Organics in Soil	25	24	1	0	0.0%
Aqueous Pesticides	12	12	0	0	0.0%
Pesticides in Soil	55	43	8	4	7.3%
Aqueous Aroclors	1	1	0	0	0.0%
Aroclors in Soil	9	9	0	0	0.0%

Laboratory Code B SOM PES Performance Charts (09/01/2010 – 02/28/2015)

Laboratory Code B SOM PES Performance Charts (09/01/2014 – 02/28/2015)

Table	4: Labora	tory Cod	e B SOM	QB Perf	formance	e Summa	ary - Sep	tember 1	., 2010 t	o Februa	ary 28, 20	015
SOM QB Event	Overall Volatiles Score % Score %			e %	Senivolatiles Score %			Pesticides Score %		Aroclors Score %		
		Trace Water	SIM Water	Soil	Water	SIM Water	Soil	SIM Soil	Water	Soil	Water	Soil
QB1-FY11	97.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0 ¹	100.0	77.3	100.0	100,0
QB2-FY11	86.8	86.0	100.0	97.8	97.8	71.2	100.0	75.0 ¹	100.0	100.0	100.0	100.0
QB3-FY11	99.3	100.0	100.0	100.0	100.0	100.0	100.0	100.0	75.0	100.0	100.0	100.0
QB4-FY11	95.7	100.0	100.0	100.0	100.0	91.7	100.0	50.0	100.0	100.0	100.0	100,0
QB1-FY12	99.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	87.5	100.0	100.0
QB2-FY12	99.1	100.0	100.0	100.0	93.1	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB3-FY12	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB4-FY12	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB1-FY13	97.8	100.0	100.0	100.0	97.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB2-FY13	97.0	100.0	NA	97.8	100.0	100.0	100.0	100.0	100.0	90.4	100.0	100.0
QB3-FY13	97.0	95.8	NA	100.0	97.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB4-FY13	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB1-FY14	97.0	100.0	NA	100.0	97.8	100.0	100.0	91.7	100.0	100.0	100.0	100.0
QB2-FY14	99.2	100.0	NA	95.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB3-FY14	96.9	97.8	100.0	100.0	91.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB4-FY14	100.0	100.0	NA	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
QB1-FY15	99.2	100.0	NA	100.0	100.0	100.0	100.0	100.0	100.0	87.5	100.0	100.0
Average	97.8	98.8	100.0	99.5	98.6	97.8	100.0	95.1	98.5	96.6	100.0	100.0
CLP Average	95.3	95.4	NA	97.0	96.4	97.4	96.6	97.0	98.2	98.3	95.1	93.8

Table 5: Laboratory Code B PES Summary - September 1, 2010 to February 28, 2015

Trace Concentration Aqueous Volatile Organics PE Samples

Report Date	Requesting Region	PES#	Analytes					
	3		Spiked	Scored	Within Limits	Outside Warning Limits (95% CI)	Outside Action Limits (99% CI)	
10/13/2010	4	PA01304	10	10	10	0	0	
10/14/2010	7	VT00326	32	31	29	0	2	
10/21/2010	7	VT00215	32	31	30	0	1	
10/21/2010	7	VT00329	32	32	31	- 1	0	
11/02/2010	7	VT00205	32	31	31	0	0	
+++++	$\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$	11111	\\\\\	11111	11111	$\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$	11111	
12/12/2014	4	VT00775	30	29	29	0	0	
01/09/2015	4	VT00551	30	29	29	0	0	
01/14/2015	4	VT00569	30	29	29	0	0	
01/15/2015	1	VT00504	30	29	28	0	1	
01/16/2015	1	VT00643	30	29	29	0	0	
01/16/2015	1	VT02363	32	32	32	0	0	
01/16/2015	1	VT02364	32	32	32	0	0	
To	otal	62 PESs	1803	1739	1712	13	14	

Table 8: La			latile Organics Analyte Summa / 55 Soil PESs)	ıry	
Aqueous (2913 Total Ar	nalytes Sco	red)	Soil (1422 Total Anal	ytes Scored	(k
Analyte	Outside Warning	Outside Action	Analyte	Outside Action	
Dichlorodifluoromethane	1H ^T	1H	Dichlorodifluoromethane		
Chloromethane		1H	Chloromethane		
Vinyl chloride			Vinyl chloride		
Bromomethane	1H		Bromomethane	2L	4L
Chloroethane	1L		Chloroethane		
Trichlorofluoromethane			Trichlorofluoromethane	1H	
1,1-Dichloroethene	1H ^T	1L ^T ,1L	1,1-Dichloroethene	1L	1L
1,1,2-Trichloro-1,2,2-trifluoroethane	1L	1L ^T	1,1,2-Trichloro-1,2,2-trifluoroethane		
Acetone	1H		Acetone	1L, 1H	
Carbon disulfide	1L ^T ,1H		Carbon disulfide		6L
Methyl acetate		1H ^T	Methyl acetate	1L	
Methylene chloride	1H	1L	Methylene chloride		
trans-1,2-Dichloroethene	1H		trans-1,2-Dichloroethene		

Average % Pass Rate for CLP SOM Routine PESs and QB PESs (09/01/2010 – 02/28/2015)

Analytical Fraction	Routine PES Average % Pass Rate (99% CI)	QB PES Average % Pass Rate (90% CI)
Trace Aqueous Volatile Organics	97.9	95.4
L/M Aqueous Volatile Organics	97.3	NA
Volatile Organics in Soil	98.2	97.0
Aqueous Semivolatile Organics	99.2	96.4
Aqueous SIM Semivolatile Organics	98.0	97.4
Aqueous 1,4-Dioxane Extractable	82.5	NA
Semivolatile Organics in Soil	95.5	96.6
SIM Semivolatile Organics in Soil	97.7	97.0
Aqueous Pesticides	98.2	98.2
Pesticides in Soil	96.5	98.3
Aqueous Aroclors	98.9	95.1
Aroclors in Soil	99.4	93.8

Average % Pass Rate for CLP ISM Routine PESs and QB PESs (09/01/2010 – 02/28/2015)

Analytical Fraction	Routine PES Average % Pass Rate (99% CI)	QB PES Average % Pass Rate (90% CI)
Aqueous Metals ICP-MS	96.1	96.8
Aqueous Metals ICP-AES	92.7	98.1
Metals in Soil ICP-MS	98.3	98.2
Metals in Soil ICP-AES	96.3	98.1
Aqueous Mercury	95.7	97.6
Aqueous Cyanide	96.3	94.0
Cyanide in Soil	94.5	98.8
Lead Wipes	97.4	NA

aboratory	Analyte	Failure Rate
aboratory A	Bromodichloromethane (Trace VOC)	17.4%
	Naphthalene (Aqueous SIM SVOC)	42.9%
aboratory B	Carbon disulfide (VOC Soil)	28.6%
	Dibromochloromethane (VOC Soil)	26.9%
	Styrene (VOC Soil)	30.4%
	1,4-Dioxane	33.3%
	Heptachlor (Pesticides Soil)	30.0%
aboratory C	DBCP (Aqueous L/M VOC)	22.9%
	1,4-Dioxane	33.3%
aboratory D	Methylcyclohexane (Trace VOC)	23.1%
	Cyclohexane (VOC Soil)	42.9%
aboratory E	None Observed	NA
aboratory F	None Observed	NA
aboratory G	EDB (Trace VOC)	20.0%
aboratory H	Freon 113 (Trace VOC) None Observed	22.9% NA

.aboratory	Analyte	Failure Rate	
aboratory A	Antimony (ICP-MS)	27.3%	
	Cobalt (ICP-AES)	18.2%	
aboratory B	Manganese (ICP-MS)	16.7%	
	Chromium (ICP-AES)	20.5%	
	Aqueous Mercury	10.2%	
	Cyanide Soil	13.6%	
aboratory C	Zinc (ICP-MS)	19.0%	
	Ca, Pb, Fe (ICP-AES Recent Period)	25.0%	
aboratory D	None Observed	NA	
aboratory E	None Observed	NA	

Long-Term Region 9 PGAN Site Quarterly Monitoring Project

- Superfund site contaminated with trichloroethene (TCE) and perchlorate (ClO_4^-) .
- QATS Program has supplied full-volume double-blind samples for 38 sampling events over 10 years – high and low concentration TCE and ClO₄- PESs for each event.
- \triangleright PESs range from 2 to 300 ppb TCE, and 1 to 200 ppb ClO₄.
- Six labs have analyzed samples over 10 years, the same 4 labs over the last 4 years.
- Regional personnel coordinate with the sampling contractor and QATS Laboratory – samplers ship containers to QATS, and samples are prepared and shipped back to the samplers to integrate the PESs with field samples using mock well numbers.

- Results for each event are compiled and evaluated by QATS, and scoring summary reports and trending charts are provided to the Region.
- Feedback indicates that Regional personnel and the RPM find the summary reports and results trending very useful.
- One of the 4 contract labs has submitted anomalous results for both TCE and ClO₄⁻ periodically over the last 4 years.
- RPM has used the PES results and trending to exclude this lab from analyzing field samples for several quarterly events.
- QATS Program provides similar PES performance monitoring for the sister PGAS site using TCE and chromium full-volume double-blind PESs.

3

PGAN Site - Analyte & Laboratory Performance Data

	Regional Lab		Contra	ct Labs	Composite		
	TCE	ClO ₄	TCE	ClO ₄ -	TCE	CIO ₄	
Avg. % Rec.	103	103	92	100	96	101	
RSD	11.7	10.3	11.9	12.4	12.9	11.8	
n	76	76	147	141	223	217	

Region 9 PGAS Site

Outside Limits

Region 1 Walton & Lonsbury Site

Region 1 Precision Plating Site

Hexavalent Chromium Samples for EPA Region 1

- QATS provides both aqueous and soil hexavalent chromium PESs for two Region 1 Superfund sites.
- Both PES matrices are typically low-level:
 - ✓ Aqueous PESs at 0.8 ug/L
 - √ Soils at 5 mg/Kg
- Results have been monitored over a two-year period.
- Analytical results for both matrices are consistently within the established acceptance limits.

Region 4 Dioxin/Furan PES Issue

USEPA Region 4

- In December 2014, Region 4 asked QATS to review the performance of a DLM lab on a PES analysis from October 2014 with anomalous results, from the same PES Lot Number that the lab analyzed in February 2014 with all passing results.
- The Region was concerned that the PES may have been mislabeled, or there was some other issue with the PES.
- QATS determined that Region 4 ordered only Sigma 407 and 408 over the past 3 years.
- Using information from the CDD/CDF PES inventory recipes and historical analytical statistics, QATS determined that both the February and October 2014 PESs were indeed Sigma 408.

Region 4 Dioxin/Furan PES Issue

- We provided our conclusions and logic to Region 4 that we believed that the lab performed poorly in the processing and analysis of the October 2014 PES.
- In February 2015, Region 4 sent another scoring report for a separate PES analysis of a different PES that exhibited anomalous results.
- Region 4 documentation indicated that this PES was Sigma 407, and QATS verified the identity of this PES using the same procedure as Sigma 408. We also verified that there were no integrity issues with either PES based on the analytical trending results and other information.
- On both Sigma 407 and 408, the lab's TCDD and TCDF results were both within limits; however, the penta analytes were recovered at 65% of nominal values, and the hexa analytes and above were recovered at 35% of the nominal values.

Region 4 Dioxin/Furan PES Issue

- We again recommended that Region 4 look at the raw data and QA results to determine what might have led to the failing PES results.
- Region 4 instructed the lab to re-extract and re-analyze Sigma 407 from the remaining sample, and in March 2015, Region 4 submitted these results to QATS to evaluate and score.
- The results from the reprocessed sample for all spiked congeners and total homologues were within the acceptance limits.
- The DLM SOW Form 1 does not provide for listing the soil extraction method because only Soxhlet/Dean Stark extraction using toluene is allowed for soils/sediments; therefore, the soil extraction method is not listed on the SPSWeb scoring report either.
- In reviewing the extraction logs for all samples, Region 4 observed that the extraction type was listed as "other" for the PESs with failing results.

Region 4 Dioxin/Furan PES Issue

- A follow-up investigation by Region 4 resulted in the these determinations by the laboratory:
 - ✓ Pressurized Fluid Extraction (PFE), a non-compendial extraction method, was used to extract the PESs with failing results.
 - ✓ PFE was being investigated by the laboratory as an alternative extraction method, and it was inadvertently used as the extraction method for this case, including the PESs.
 - ✓ Use of this extraction method was not discovered during the lab's internal QA review of the data package.
 - ✓ The lab is also investigating alternate extraction solvents.

Summary:

- ✓ Use of PESs for this case resulted in the discovery of a laboratory performance issue.
- ✓ The laboratory should have discovered this non-conformity during internal data review or early in the investigation.
- ✓ The persistence of Region 4 personnel resulted in the successful conclusion to this investigation.

41

Lead Wipe Samples for Region 7

- Nominal concentrations vary from 15 to 35 ug/wipe.
- Calculated acceptance limits are relatively narrow.
- Only 1 analytical result has exceeded the action limits.
- Analytical results indicate that these samples are prepared accurately and analyzed with a high degree of precision.

42

NE

What's up with Antimony in Soil Samples?

- Over the last four (4) years, QATS has detected a downward trend for the antimony results in the metals in soil PESs compared to the nominal concentrations and previous stability results.
- ➤ The chart below illustrates the decrease in antimony results in the Catalog Number 95-017-S metals in soil PESs since the 2011 PES stability analysis cycle.

What's up with Antimony in Soil Samples?

- ➤ We believe that the downward trend for antimony results is due to the rigorous soil digestion procedures implemented in the CLP ISM SOW.
- ➤ The longer heating cycles and changes in acid used in the CLP ISM SOW soil digestion procedure may lead to the formation of relatively insoluble antimony oxides, Sb₂O₃ and Sb₂O₅.
- ➤ The table below presents recent analyses of a PES using the ILM, ISM, and modified ISM digestion procedures.

Sigma #570 Results Using Various Extraction Procedures – Antimony Nominal: 52 mg/Kg					
Digestion Method	Replicate #1 (mg/Kg)	Replicate #2 (mg/Kg)	Replicate #3 (mg/Kg)	Average	Average % Recovery
ILM	50.2	43.9	48.8	47.6	92%
ISM	33.3	28.7	31.8	31.3	60%
ISM Modified	34.9	38.4	40.8	38.0	73%

What's up with Antimony in Soil Samples?

- > SPSWeb acceptance limits are updated on a periodic basis as additional data are collected from the use of PESs.
- Further investigation and analysis may be required.
- ➤ QATS is evaluating the antimony results from all sources, for all metals in soil PESs, in order to determine if the PES results accumulated prior to the use of the CLP ISM SOW should be excluded from the database used to establish the SPSWeb acceptance limits for antimony in metals in soil PESs.

Changes Coming to SPSWeb to Accommodate the New SOM and ISM SOWs

SPSWeb

Superfund PES Scoring - Web

- > ISM SOW
 - ✓ Scoring method option for ISM02.2 will be added to the "Method Drop-Down List".
 - ✓ List of allowable qualifiers for "Q" column will be modified to include X, *, D, J, and U qualifier.
 - ✓ The "C" and "M" columns will be removed from the following pages:
 - Edit Analytes
 - Confirm Analytes
 - View Score
 - Add Analytes
 - PES Scoring Evaluation Reports (both EPA and Lab versions)

4/

- ✓ Since the "U" qualifier will be placed in the "Q" column, the scoring logic corresponding to the "U" qualifier will be modified.
- ✓ New drop-down list for "Analytical Method" on the "Edit Headers" page to include:

•	ICP-AES	Metals
•	ICP-MS	Metals
•	CVAA	Mercury
•	Spectrophotometry	Cyanide

✓ Other changes will be made to data entry pages and the PES Scoring Evaluation Report headers to coincide with the ISM02 Form I.

SOM SOW

- ✓ Program logic and header fields will be modified to accommodate new Form I for all fractions and will include the following pages:
 - Edit Headers
 - Display Headers
 - View Score
 - •PES Scoring Evaluation Reports (both EPA and Lab versions)
- ✓ New drop-down list for "Analytical Method" on the "Edit Headers" page to include:
- Trace VOC
- VOC
- **SVOC**
- SIM SVOC
- **PEST**
- ARO
- Other

> SOM SOW

✓ Drop-down list for "Extraction Type" will be modified to include:

- SEPF
- CLLE
- CONH
- SONC
- SOXH
- PFEX
- Other
- ✓ A drop-down list to select multiple clean-up methods to include:
 - GPC
 - Florisil
 - Acid
 - Sulfur
 - Other

> SOM SOW

- ✓ List of allowable qualifiers will have no set maximum, and will be modified to include U, J, B, E, D, C, A, N, P, S, H, X, Y, and Z.
- ✓ 1,4-Dioxane will be added to the SVOC TCL, and 3-methylphenol will be added to the SVOC TCL for TCLP.
 - ✓ CRQLs will be changes for the SVOC fraction, as needed.
 - ✓ The names for alpha-chlordane and gamma-chlordane will be changed to cis-chlordane and trans-chlordane, respectively.

51

PES Use in the Contract Laboratory Program

- > PESs are typically analyzed along with field samples as requested by the EPA Regions, and are used to monitor and document the performance of laboratories and analytical methods.
- PESs are also used to evaluate the performance of all CLP labs on a quarterly basis (QB Program), and are used in the contract solicitation process (Pre-award).
- > PES results are used to assist in the validation and verification of field sample analysis results, and enhance the confidence in the quality of data and the decision-making process.

QATS Standard PES Inventory

- Single-blind quality control samples:
 - ✓ Sample is recognizable as a PES
 - ✓ Analytes and concentrations in PES are unknown to the laboratories
- Analytes and concentrations are typically in accordance with the CLP SOWs.
- Aqueous samples are concentrates for dilution, and soils are full-volume samples.
- ➤ PESs are shipped with chain-of-custody records and PES preparation and analytical instructions.
- ➤ PES results are usually scored using the QATS web-based PES scoring application SPSWeb.

QATS Standard PES Analytical Fractions

Organics include:

- ✓ Trace and low/medium concentration volatile organics waters
- ✓ Low/medium concentration semivolatile organics, pesticides, and Aroclor waters
- ✓ SIM semivolatile organics waters and soils (PAHs & pentachlorophenol)
- √ 1,4-Dioxane purgeable and extractable waters
- ✓ Dioxin/furan waters for HRGC/HRMS analysis
- ✓ Low/medium and medium concentration volatile organics in soil
- ✓ Low/medium concentration semivolatile organics, pesticides, and Aroclors in soil
- ✓ Dioxins/furans in soil for HRGC/LRMS and HRGC/HRMS analysis
- ✓ CB congeners in water or soil for HRGC/HRMS analysis

> Inorganics include:

- ✓ Waters and soils for metals analysis by ICP-AES and ICP-MS
- ✓ Waters and soils for mercury analysis
- ✓ Waters and soils for cyanide analysis
- ✓ Lead wipe samples

54

QATS Special-Request & Site-Specific PESs

- > PESs not in the standard QATS PES Superfund inventory or in the Superfund PES Catalog.
- > PESs that can be made at the QATS Laboratory on special-request through ASB, Regional CLP PO, or authorized PES requestors.
- PESs that can be purchased from commercial PES vendors through the QATS Program.
- CLP target compounds are needed at defined concentrations and/or in specific combinations.
- Site-specific target compounds or site-specific matrices are needed.
- > Full-volume and/or double-blind PESs are required.
- Validation of specific detection limits, laboratory comparisons or evaluations, or verification of project-specific analytical precision and accuracy might be needed.

. World of Solutions ED 000552D 00010717-00056

Ordering Performance Evaluation Samples

- > Authorized requestors can order PESs and RMs.
- > CLP and Regional labs can order RMs.
- ➤ Electronic version of the 2015 Superfund PES Catalog, distributed in January 2015, is available on SPSWeb or from QATS personnel.
- ➤ PES and RM Order Forms are located on SPSWeb and in the back of the PES Catalog.
- ➤ PES and RM orders are placed by sending a completed PES or RM Order Form to QATS using the contact information on the form:
 - ✓ E-mail orders to QATSPESORDER@CBIFEDERALSERVICES.com
 - ✓ Fax orders to (702) 795-8210

ED 000552D 00010717-00057

Contacts for PESs Provided by QATS

Regional CLP Project Officer
Regional Authorized PES Requestor

ASB Contacts:

Shari Myer

E-mail: myer.shari@epa.gov

Phone: (703) 603-8848

QATS Contacts:

Keith Strout

E-mail: keith.strout@cbifederalservices.com

Phone: (702) 895-8722

Clyde Hedin

E-mail: clyde.hedin@cbifederalservices.com

Phone: (702) 895-8711