Advanced Level Experimental Physics

F6-2: Mutual Inductance - Transformers

NB: Students are advised to perform experiment F6-1 Self Inductance before attempting F6-2.

Apparatus

Coils 300 turns & 150 turns; wire for 20 turn & 10 turn coils; 2 iron C-cores; C-core clip; 10Ω and 5Ω resistors; CRO (oscilloscope); AC power supply; connecting leads (5 short). *NB: This experiment requires mains electricity.*

Procedure

1. Construct the following:

- a. Using N_p = 150 turns, N_s = 10 turns. Measure and set $V_{in} = V_p = 4$ V peak. Measure V_s peak. Calculate $\frac{V_p}{V_s}$ and compare their values.
- b. Repeat a) with the following numbers of turns:

	N _p	Ns
1	50	20
_3	00	150
1	50	300

- c. Keeping $N_p=150$ turns and $N_s=300$ turns, reduce $V_{in}=V_p$ to 2V peak. Measure V_s peak, and calculate and compare $\frac{V_p}{V_s}$ and $\frac{N_p}{N_s}$.
- d. Remove the clip from the iron cores, and remove one C-core. Place two coils, one on each arm of a single C-core. Again use $N_p=150$ turns and $N_s=300$ turns. Set $V_{in}=V_p=4$ V peak. Measure V_s .
- 2. Construct the following with $N_p = 300$ turns, $N_s = 150$ turns, and an extra test coil of 10 turns as shown:

- a. Connect the CRO to measure V_p peak, and set V_{in} so that $V_p = 4V$ peak.
- b. Measure V_R peak, and thus calculate I_p peak, the current in the primary circuit.
- c. Measure V_T peak, across the 10 turn test coil.
- d. Connect a 5Ω resistor between **A** and **B**, across the 150 turn secondary coil. Connect the CRO to measure V_p and adjust V_{in} so that $V_p = 4V$ peak.
- e. Measure $V_{\it R}$ peak, and thus calculate $I_{\it p}$ peak.
- f. Measure V_T peak again. This should be about the same size as the value measured in procedure 2 c) above.

Theory

1. Flux Φ and induced emf E are related by the following:

$$E_p = -N_p \frac{d\Phi_s}{dt}$$
 ---- equation A
$$E_s = -N_s \frac{d\Phi_p}{dt}$$
 ---- equation B

The unit of flux is the weber – Wb. When Φ_s (the flux through the secondary coil) = Φ_p (the flux through the primary coil), then:

$$\frac{d\Phi_s}{dt} = \frac{d\Phi_p}{dt}$$

therefore:

$$\frac{E_s}{N_s} = \frac{E_p}{N_p}$$

thus:

$$\frac{E_p}{E_s} - \frac{N_p}{N_s}$$

If the resistances of the primary coil and the secondary coil are both low and the currents flowing through them are not too large, then:

$$V_p \approx E_p$$
 and $V_s \approx E_s$

2. The 10 turn coil is used to detect if the flux Φ in the iron core changes in the experiment. If $\Phi = \Phi_{peak} \sin \omega t$, then equation 1B can be used to show that V_T peak $\propto \Phi_{peak}$, provided that ω is constant.

Analysis

- 1. Why, in experiment 1a) to 1c), are the two calculated ratios not exactly equal (hint: use the theory, and the fact that the primary coil has some resistance)?
- 2. Use the theory to explain the result of procedure 1 d).
- 3. According to Lenz's Law, the induced current in the secondary coil in the procedure 2 d) is in such a direction so as to **reduce** the flux in the core. However

- procedure 2 f) shows that the flux remains approximately constant. How is this possible (hint: consider the primary coil)?
- 4. Give an explanation in terms of power flow for the change in I_p produced as a result of connecting the 5 Ω resistor to the secondary coil.
- 5. a. These coils are simple electrical transformers. What are the causes of power loss in a transformer, and how can they be minimised?
 - b. All electricity supply companies use transformers in their power distribution systems. Explain, giving reasons, how they are used.

© 2015 <u>CC-BY</u> by Bob Drach and Norman Price Based off of book published ???? <u>About</u>