通知实验安排

数字逻辑电路课程有16个学时的实验,初步安排: 具体安排参见公共邮箱中的word文档。

本周开始进行实验环节,实验结束后16周周日(6月16号)晚23点前,各班学委要提交实验报告的电子版给我的邮箱ahhfdxq@163.com。不用收纸质报告了。

实验地点:综合实验楼306房间

第六章作业布置

- 1、本周交作业。
- 2、本周开始有实验(明天)。
- 3、下次交作业第10周。

关于期中考试作弊严重的处理措施(征求大家的好建议)

- 1、保证公平、公正、公开的原则。
- 2、重新安排期中考试。
- 3、或者期末考试的成绩同时作为期中考试的成绩。

数字逻辑

丁贤庆

ahhfdxq@163.com

第六章

时序逻辑电路

回忆: 各种常用的触发器

1. 维持阻塞触发器

在CP脉冲的上升沿到来瞬间 使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = D$$

2.下降沿触发的 JK 触发器

JK触发器

在CP脉冲的下降沿到来瞬间使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = J \overline{Q^n} + \overline{K}Q^n$$

回忆: 1位触发器的状态转换图

1. 1位触发器

回忆: 2位触发器的状态转换图

2. 2位触发器

回忆: 3位触发器的状态转换图

回忆: 4位触发器的状态转换图

6.3 同步时序逻辑电路的设计

- 6.3.1 设计同步时序逻辑电路的一般步骤
- 6.3.2 同步时序逻辑电路设计举例

6.3 同步时序逻辑电路的设计

同步时序逻辑电路的设计是分析的逆过程,其任务是根据实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。

6.3.1 设计同步时序逻辑电路的一般步骤

同步时序电路的设计过程

(1)根据给定的逻辑功能建立原始状态图和原始状态表

- ①明确电路的输入条件和相应的输出要求,分别确定输入变量和输出变量的数目和符号。
 - ②找出所有可能的状态和状态转换之间的关系。
 - ③根据原始状态图建立原始状态表。
- (2)状态化简-----求出最简状态图;

合并等价状态,消去多余状态的过程称为状态化简

等价状态: 在相同的输入下有相同的输出,并转换到同

一个次态,这样的两个状态称为等价状态。

(3)状态编码(状态分配);

给每个状态赋以二进制代码的过程。

根据状态数确定触发器的个数,

 $2^{n-1} < M \le 2^n$ (M:状态数;n:触发器的个数)

- (4)选择触发器的类型
- (5)求出电路的激励方程和输出方程;
- (6)画出逻辑图并检查自启动能力。

6.3.2 同步时序逻辑电路设计举例

例1 用D触发器设计一个8421 BCD码同步十进制加计数器。

解答: 8421BCD码:对于十进制数中的0---9中的每位用四位二进制数表示。加计数器:每次来一个脉冲,系统就加1。

6.3.2 同步时序逻辑电路设计举例

例1 用D触发器设计一个8421 BCD码同步十进制加计数器。

8421码同步十进制加计数器的状态表

计数脉		现	态			次	态	
冲CP的	Q_3^n	Q_2^n	Q_1^n	Q_0^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	0
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	1	0	0
4	0	1	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0
6	0	1	1	0	0	1	1	1
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	0	0	0	0

(2) 确定激励方程组

计数脉		现	态			次 态					激励信号			
油CP的	Q_3^n	Q_2^n	Q_1^n	Q_0^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	D_3	D_2	D_1	D_0		
0	0	0	0	0	0	0	0	1	0	0	0	1		
1	0	0	0	1	0	0	1	0	0	0	1	0		
2	0	0	1	0	0	0	1	1	0	0	1	1		
3	0	0	1	1	0	1	0	0	0	1	0	0		
4	0	1	0	0	0	1	0	1	0	1	0	1		
5	0	1	0	1	0	1	1	0	0	1	1	0		
6	0	1	1	0	0	1	1	1	0	1	1	1		
7	0	1	1	1	1	0	0	0	1	0	0	0		
8	1	0	0	0	1	0	0	1	1	0	0	1		
9	1	0	0	1	0	0	0	0	0	0	0	0		

如果将D触发器 隐藏起来。

再来看看D1,D0 与Q1,Q0之间的 关系式。

D_1 、 D_0 是触发器现态Q1和Q0的函数

(2) 确定激励方程组

计数脉		现	态			次		输出信号				
冲CP的	Q_3^n	Q_2^n	Q_1^n	Q_0^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	1	0	0	0	1	0
2	0	0	1	0	0	0	1	1	0	0	1	1
3	0	0	1	1	0	1	0	0	0	1	0	0
4	0	1	0	0	0	1	0	1	0	1	0	1
5	0	1	0	1	0	1	1	0	0	1	1	0
6	0	1	1	0	0	1	1	1	0	1	1	1
7	0	1	1	1	1	0	0	0	1	0	0	0
8	1	0	0	0	1	0	0	1	1	0	0	1
9	1	0	0	1	0	0	0	0	0	0	0	0

 D_3 、 D_2 、 D_1 、 D_0 、是触发器现态还是次态的函数? (具体见上页图形)

 D_3 、 D_2 、 D_1 、 D_0 是触发器现态的函数

画出D3触发器激励信号的卡诺图

计数脉		现	态		输出信号					
冲 CP的 順序	Q_3^n	Q_2^n	Q_1^n	Q_0^n	D_3	D_2	D_1	D_0		
0	0	0	0	0	0	0	0	1		
1	0	0	0	1	0	0	1	0		
2	0	0	1	0	0	0	1	1		
3	0	0	1	1	0	1	0	0		
4	0	1	0	0	0	1	0	1		
5	0	1	0	1	0	1	1	0		
6	0	1	1	0	0	1	1	1		
7	0	1	1	1	1	0	0	0		
8	1	0	0	0	1	0	0	1		
9	1	0	0	1	0	0	0	0		

$$D_3 = Q_3^n Q_0^n + Q_2^n Q_1^n Q_0^n$$

画出D2触发器激励信号的卡诺图

计数脉		现	态		输出信号
冲 <i>CP</i> 的 順序	Q_3^n	Q_2^n	Q_1^n	Q_0^n	D_2
0	0	0	0	0	0
1.	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0

 $D_2 = Q_2^n Q_1^n + Q_2^n Q_0^n + Q_2^n Q_1^n Q_0^n$

画出D1触发器激励信号的卡诺图

计数脉		现	态		輸出	信号						_
冲 CP的 顺序	Q_3^n	Q_2^n	Q_1^n	Q_0^n		D_1	D_1				Q_1^n	
0	0	0	0	0		0		—	T .==			}
1	0	0	0	1		1		0	1	0	$\{\widehat{1}\}$	
2	0	0	1	0		1				_		ħ
3	0	0	1	1		0	-	0	1	0	1	
4	0	1	0	0		0	ſ	Х	×	Х	x	Q_2^n
5	0	1	0	1		1	Q_3^n	-				Į)
6	0	1	1	0		1	1	0	0	×	(×	
7	0	1	1	1		0				<u>n</u>	 	J
8	1	0	0	0		0			Q) ₀		
9	1	0	0	1		0						

$$D_1 = Q_1^n Q_0^n + Q_3^n Q_1^n Q_0^n$$

画出D0触发器激励信号的卡诺图

计数脉		现	态		输出信号							
冲 <i>CP</i> 的 顺序	Q_3^n	Q_2^n	Q_1^n	Q_0^n		D_0	D_0				Q_1^n	`
0	0	0	0	0		1		<u>``</u> `\	0	0	<u>/1</u>	
41	0	0	0	1		0		!	T.	L.		L
2	0	0	1	0		1		1	0	0	1	
3	0	0	1	1		0		i			ļ.	
4	0	1	0	0		1	n	×	×	×	×	
5	0	1	0	1		0	Q_3			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1
6	0	1	1	0		1		1,	0	X	(X	
7	0	1	1	1		0			\subseteq)#	,	
8	1	0	0	0		1			,	20		
9	1	0	0	1		0						

画出逻辑图

$$D_3 = Q_3^n Q_0^n + Q_2^n Q_1^n Q_0^n$$

$$D_2 = Q_2^n \overline{Q_1^n} + Q_2^n \overline{Q_0^n} + \overline{Q_2^n} Q_1^n Q_0^n$$

$$D_1 = Q_1^n Q_0^n + Q_3^n Q_1^n Q_0^n$$

$$D_0 = Q_0^n$$

(3) 画出逻辑图,并检查自启动能力(找出闭合回路)

例2:设计一个串行数据检测器。电路的输入信号A是与时钟

脉冲同步的串行数据,输出信号为Z;要求电路输入信号A出现110序列时,输出信号Z为1,否则为0。

解: (1)根据给定的逻辑功能建立原始状态图和原始状态表

1.)确定输入、输出变量及电路的状态数:

输入变量: A 输出变量: Z 状态数: 4个

2.) 定义输入 输出逻辑状态和每个电路状态的含义;

a — 初始状态; b— A输入1后;

c —— A输入11后; d —— A输入110后。

设计110序列检测器 (一个输入端X、一个输出端Z)

通过X端随机输入一串数: A: 011001110

Z: 000100001

被测序列可重叠

输入A=0时不是序列的第一个元素 不必记录,维持原态。输出=0 初始 状态a 输入A=1时 是序列的第一个元素 要记录,进入下一状态b。输出=0 输入A=0时不是序列的第二个元素 不必记录,维持原态a。输出=0 状态b 输入A=1时是序列的第二个元素 要记录,进入下一状态b。输出=0 输入A=0时 是序列的第三个元素 要记录,进入下一状态d。输出=1 输入A=1时不是序列的第三个元素 报废第一个元素,回状态c。输出=0

(2) 列出原始状态转换表

2. 状态化简(找出等价状态,消去)

合并等价状态,消去多余状态的过程称为状态化简

现态	次态/	输出
地心	A=0	A=1
a	a / 0	b / 0
b	a / 0	c/0
c	d/ 1	c/ 0
d	a/ 0	b / 0

等价状态:在相同的输入下有相同的输出,并转换到同一个次态,这样的两个状态称为等价状态。

(3) 状态分配

 $\Rightarrow a = 00, b = 01, c = 11,$

(4) 选择触发器的类型 触发器个数:两个。

类型:采用对 CP 下降沿敏感的 JK 触发器。

现态	$Q_1^{n+1}Q$	0 ⁿ⁺¹ / Y
Q_1Q_0	A=0	A=1
00	00/0	01/0
01	00/0	11/0
11	00/1	11/0

JK触发器

1.特性表

$oldsymbol{J}$	K	Q ⁿ	Q^{n+1}	说 明
0		1		状态不变
	1			置 0
Toolson to the state of the sta	0		1	置 1
passed passed	lacensel.	1		翻转

2.特性方程

$$Q^{n+1} = J\overline{Q^{n}} + \overline{K}Q^{n}$$

3.状态转换图

(5) 求激励方程和输出方程

1.特性表

J	K	Q ⁿ	Q^{n+1}	说 明
		1		状态不变
0		0		置の
7	0		1	置 1
Townson, Townson	The state of the s		O	翻转

2.激励表

Q ⁿ	Q^{n+1}	J	K
	(MINE)		X
0	1	1	X
1			200
1,000,000	Too so one	X	0

(5) 求激励方程和输出方程

2.激励表

Q ⁿ	Q^{n+1}	J	K
			X
0	1	1	×
1	Commence of the commence of th	义	1
	100	X	0

现态	$Q_1^{n+1}Q_0^{n+1} / Y$			
Q_1Q_0	A=0	A=1		
00	00/0	01/0		
01	00/0	11/0		
11	00 / 1	11 /0		

状态转换真值表及激励信号

Q_1^n	O_{0}^{n}	1	Q_1^{n+1}	Q_0^{n+1}	V		激励	信号	,			
21	\mathcal{Q}_0	A	21 20	2 1	2 1	21 20		1	J_1	K_1	J_0	K_0
0	0	0	0	0	0	0	×	0	X			
0	0	1	0	1	0	0	×	1	X			
0	1	0	0	0	0	0	X	X	1			
0	1	1	1	1	0	1	×	0	X			
1	1	0	0	0	1	×	1	X	1			
1	1	1	1	1	0	×	0	X	0			

求激励方程的等

卡诺图化简得

输出方程

$$Y = Q A$$

激励方程

$$\boldsymbol{J}_1 = \boldsymbol{Q}_0 \boldsymbol{A}$$

$$K_{_{1}}=\overline{A}$$

$$Q_0^n$$
 Q_0^n
 Q_0^n
 X_1^n
 X_2^n
 X_3^n
 X_4^n
 $X_4^$

$$J_0 = A$$

$$K_0 = A$$

(6) 根据激励方程和输出方程画出逻辑图,并检查自启动能力

激励方程

$$J_{1} = Q_{0}A$$

$$J_{0} = A \qquad K_{0} = \overline{A}$$

$$J_{1} = Q_{0}A$$
 $K_{1} = \overline{A}$ $Y = Q_{1}\overline{A}$

检查自启动能力和输出

$$A=0$$
 $Q_{1}Q_{0}=00$ $Y=1$

$$A=1$$
 $Q_{1}Q_{0}=11$ $Y=0$

能自启动

输出方程
$$Y = Q_1 \overline{A}$$
 $Y = Q_1 Q_0 \overline{A}$

$$Y = Q_{1}Q_{0}\overline{A}$$

修改电路

输出方程
$$Y = Q_1 \overline{A}$$

卡诺图化简去掉无关项

$$Y = Q_{1}Q_{0}\overline{A}$$

例2:试设计一个同步时序电路,要求电路中触发器 Q_0 、 Q_1 、 Q_2 及输出Y端的信号与CP时钟信号波形满足下图所示的时序关系。

解:据题意可直接由波形图

1、画出电路状态图。

2、确定触发器的类型和个数

触发器个数: 3个

触发器类型:上升沿触发的JK边沿触发器。

3、求出电路的激励方程和输出方程;

Q_2^n	Q_1^n	Q_0^n	C	Q_2^{n+}	-1	(Q_1^{n+1}	-1	(Q_0^{n+}	-1	Y	$\overline{\mathbb{J}}_2$	K	J	K	J	K
0	0	0		0			0			1		0	0	X	0	X	1	X
0	0	1		0			1			0		0	0	X	1	X	X	1
0	1	0		0			1			1		0	0	X	X	0	1	X
0	1	1		1			0			0		0	1	X	X	1	X	1
1	0	0		0			0			0		1	X	1	0	X	0	X

$$J_2 = \mathbf{Q}_0^n \mathbf{Q}_1^n$$

$$J=X \\ K=1$$

$$J=X \\ I \\ J=0 \\ K=X$$

J=1 K=**X**

$$K_{2} = 1$$

$$J_{1} = Q_{0}^{n} K_{1} = Q_{0}^{n}$$

求

激

励

方

程

的

第

$$J_0 = Q_2^n \quad K_0 = 1$$

求激励方程的第二种方法

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
Q_2''	00	01		10						
0	0	0	0	0						
1	1	X	X	X						

 $Y = \mathbf{Q}_2^n$

~2	~ [
0	Λ	
	0	
l U	U	
0	0	
	· · · · · · · · · · · · · · · · · · ·	
0	1	
	_	
	1	
0	1	

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

Q_1	$Q_0^n = 0$	01	11	10				
Q_2^n 0	0	0	1	0				
1	0	×	×	×				
	Q_2^{n+1}							

Q_2^{n}	$Q_0^n = 0$	01	11	10
0	0	1	0	1
1	0	×	×	×
•			$\mathbf{Q_1}^{n+}$	1

Q_2^{n}	$Q_0^n = 0$	01	11	10			
V	1	0	0	1			
1	0	×	×	×			
Q_0^{n+1}							

$$\mathbf{Q}_2^{n+1} = \mathbf{Q}_1^n \mathbf{Q}_0^n \overline{\mathbf{Q}_2^n}$$

$$\mathbf{Q}_{1}^{n+1} = \overline{\mathbf{Q}_{1}^{n}} \mathbf{Q}_{0}^{n} + \mathbf{Q}_{1}^{n} \overline{\mathbf{Q}_{0}^{n}}$$

$$\mathbf{Q}_0^{n+1} = \mathbf{Q}_2^n \bullet \mathbf{Q}_0^n$$

$$J_{2} = Q_{0}^{n}Q_{1}^{n}$$
 $K_{2} = 1$
 $J_{1} = Q_{0}^{n}$ $K_{1} = Q_{0}^{n}$
 $J_{0} = \overline{Q_{2}^{n}}$ $K_{0} = 1$

$$Y = \mathbf{Q}_2^n$$

4、 画出逻辑图

5、检查自启动能力

$$Q_0^{n+1} = \overline{Q_2^n} \cdot \overline{Q_0^n}$$

$$Q_1^{n+1} = Q_0^n \overline{Q_1^n} + \overline{Q_0^n} Q_1^n$$

$$Q_2^{n+1} = Q_0^n Q_1^n Q_2^n$$

电路具备自启动能力

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	0	0	0	1

6. 检查电路的输出是否会出错。

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

Q_2^n	1"Q ₀ " 00	01	_11	10
0	0	0	0	0
1	1	X	X	X
1				

1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	0	0	0	0

修改输出方程:

$$Y = \mathbf{Q}_2^n$$

$$Y = \mathbf{Q}_2^n \cdot \mathbf{Q}_1^n \cdot \mathbf{Q}_0^n$$

电路的输出有错!

•修改后的逻辑图

$$Y = \mathbf{Q}_2^n \qquad \qquad Y = \mathbf{Q}_2^n \cdot \overline{\mathbf{Q}_1^n} \cdot \overline{\mathbf{Q}_0^n}$$

