Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved. Figures reproduced with permission from Princeton University Press.

3.1: Growing Random Networks

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Growing Random Networks

- Citation networks
- Web
- Scientific networks
- Societies...

What do they add?

- Realism(?)
- Natural form of heterogeneity via age
- A form of dynamics
- Natural way of varying degree distributions
 - not pre-specified as in static models

Growing and Uniformly Random:

Start with a simple benchmark model

Given an idea of techniques

Then we can enrich the model

Growing and Uniformly Random:

Each date a new node is born

Forms m links to existing nodes

Each node is chosen with equal likelihood

Degree Distribution

- Start with m nodes fully connected
- New node forms m links to existing nodes
- An existing node has a probability m/t of getting new link each period
- No longer binomial, as probabilities vary with time

 Expected degree for node i born at m<i<t is m + m/(i+1) + m/(i+2) + ... + m/t

formed at birth

Expected degree for node i born at m<i<t is

$$m + m/(i+1) + m/(i+2) + ... + m/t$$

expected from next node born (time starts at 0, so there are i+1 nodes at time i)

Expected degree for node i born at m<i<t is

$$m + m/(i+1) + m/(i+2) + ... + m/t$$

approx = $m(1+log(t/i))$ (Harmonic numbers)

Expected degree for node i born at m<i<t is

$$m + m/(i+1) + m/(i+2) + ... + m/t$$

or $m(1+log(t/i))$ (Harmonic numbers)

 Nodes that have expected degree less than d at some time t are those such that m(1+log(t/i)) < d

Degree time 100

Degree time 100

Degree time 100

Expected degree for node i born at m<i<t is

$$m + m/(i+1) + m/(i+2) + ... + m/t$$

or $m(1+log(t/i))$ (Harmonic numbers)

 Nodes that have expected degree less than d at some time t are those such that m(1+log(t/i)) < d

so it is those $i > t e^{-(d-m)/m}$

Expected degree for node i born at m<i<t is

$$m + m/(i+1) + m/(i+2) + ... + m/t$$

or $m(1+log(t/i))$ (Harmonic numbers)

 Nodes that have expected degree less than d at some time t are those such that m(1+log(t/i)) < d

$$i > t e^{-(d-m)/m}$$

 $F_{+}(d) = (t-t e^{-(d-m)/m})/t = 1-e^{-(d-m)/m}$

Degree distribution of growing random network

- Distribution of expected degrees is such that d-m is exponentially distributed (mean m)
- What about actual degrees?
- Good approximation for large t need careful large numbers arguments

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.2: Mean Field Approximations

Continuous Time Approximation

•
$$dd_i(t)/dt = m/t$$

and

$$d_i(i)=m$$

new links gained per unit time, starting condition

Continuous Time Approximation

• $dd_i(t)/dt = m/t$ and $d_i(i)=m$

• $d_i(t) = m + m \log(t/i)$

Same equation as before, then the rest is the same

Growing Random Networks:

- Realism(?)
- Natural form of heterogeneity via age
- A form of dynamics
- Natural way of varying degree distributions

Preferential Attachment

 Other methods of linking than uniformly at random to existing nodes

 Can we get other degree distributions: ``Power laws''?

Distribution of links per node: Fat tails (Price 1965)

- More high and low degree nodes than predicted at random
 - Citation Networks too many with 0 citations, too many with high numbers of citations to have citations drawn at random
 - ``Fat tails'' compared to random network
- Related to other settings (wealth, city size, word usage...):
 Pareto (1896), Yule (1925), Zipf (1949), Simon (1955),

Degree – ND www Albert, Jeong, Barabasi (1999)

Power Law Explanations

• Simon (1955):

 Rich get richer – growth of existing objects is proportional to size

New objects enter over time

Preferential Attachment (Price (1976), Barabasi and Albert (2001))

- Previous models don't have the ``fat tails'' of degree distributions
- Nodes born over time, form links at random with existing nodes
 - Form links with probability
 proportional to number of links a node
 already has ``rich get richer''

Preferential Attachment (Price (1976), Barabasi and Albert (2001))

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.3: Preferential Attachment

Preferential Attachment

- Newborn nodes form m links to existing nodes
- tm links in total
- total degree is 2tm
- Probability of attaching to i is d_i(t)/2tm

Mean Field Approximation

Continuous time approximation

Distribution of expected degrees

Check by simulation??

• $dd_i(t)/dt = m(d_i(t)/2tm)$ and $d_i(i)=m$

• $dd_i(t)/dt = md_i(t)/2tm = d_i(t)/2t$ and $d_i(i)=m$

• $d_i(t) = m (t/i)^{1/2}$

Degrees Preferential Attachment

Degrees Preferential Attachment

Degrees Preferential Attachment

Distribution of Expected Degrees

Expected degree for node i born at m<i<t is

$$d_i(t) = m (t/i)^{1/2}$$

• Nodes that have expected degree less than d at some time t are those such that $m (t/i)^{1/2} < d$

$$i > t m^2/d^2$$

$$F_t(d) = (t - t m^2/d^2)/t = 1 - m^2/d^2$$

Distribution of Expected Degrees

•
$$F_t(d) = 1 - (m/d)^2$$
 and $f_t(d) = 2m^2/d^3$

Power Law

•
$$f_t(d) = 2m^2/d^3$$

• $\log(f(d)) = \log(2m^2) - 3 \log(d)$

• Why 3??

• Came from the $dd_i(t)/dt = d_i(t)/2t$

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.4: Hybrid Models

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Hybrid Models

- More on Growing Random Network Models:
 - More general Degree Distributions
 - Other than extremes of random or preferential attachment

Some fits of hybrid models

Degree – ND www Albert, Jeong, Barabasi (1999)

Hybrid Models

Simple Hybrid

 Simple version of Jackson-Rogers (2007)

Fraction a uniformly at random, 1-a via searching neighborhoods of friends

Meeting `Friends of Friends'

- Find new nodes via others: Networkbased search
- New node meets am nodes uniformly at random and directs links to them
- Meets (1-a)m of their neighbors and attaches to them too

Friends of Friends

 The distribution of neighbors' nodes is not the same as the degree distribution – even with independent link formation

 A neighbor is more likely to be higher degree

Relation to Preferential Attachment:

 In a network with half degree k and half degree 2k individuals:

 randomly select a link and then a node on one end of it - 2/3 chance that it has degree 2k, 1/3 chance that it has degree k

Friends of Friends

- Randomly find a node
- Randomly pick one of the nodes it attached to
- Chance of finding some node via the second part of this procedure is proportional to its degree: find it if find one of its neighbors....

Simple Hybrid

Fraction a uniformly at random, 1-a via preferential attachment:

$$dd_i(t)/dt = am/t + (1-a)d_i(t)/2t$$

and $d_i(i)=m$

$$d_i(t) = (m + 2am/(1-a))(t/i)^{(1-a)/2} - 2am/(1-a)$$

Degree distribution

Nodes that have expected degree less than d at some time t are those i such that

```
(m + xam)(t/i)^{1/x} - xam < d
where x = 2/(1-a)

critical i is such that
i/t = [(m + xam)/(d + xam)]^x
```

Degree Distribution

•
$$F(d) = (t - i)/t$$

•
$$F(d) = 1 - ((m+amx)/(d+amx))^x$$

where $x = 2/(1-a)$

Spans Extremes

$$F(d) = 1 - ((m+amx)/(d+amx))^{x}$$

 $x = 2/(1-a)$

a near 1 nearly exponential,

a near 0 nearly preferential

Simulate to check:

- ──log F versus log degree: mean field
- log F versus log degree: simulation

m=2, a=1/2, t=1000

frequency of degrees: simulation

freqquency of degrees: mean-field

Degree Distributions as vary the random/search parameter

a=0 a=1/2 a=1

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.5: Fitting Hybrid Models

•

Fitting to data:

• $F(d) = 1 - ((m+amx)/(d+amx))^x$ x = 2/(1-a)

$$log(1-F(d)) = c - x log(d+amx)$$

- estimate m directly
- select a to minimize distance between actual distribution and model's distribution

Notes on Fits:

 Ham, Prison, Romance are even more curved than with a=1: random without growth fits even better (Poisson)

 Citations: too many with degree 0, here start with some degree

Degree – ND www Albert, Jeong,

log(degree)

Preferential Attachment?

- Fit of Barabasi and Albert has a=.36
- More than 1/3 at random
- Eyeballing Log-Log plots can be misleading!!
- Fat Tails Yes, Actual Power law No

Fitting the friends of friends model

- Fit to estimate ratio of random to network based links:
 r = m_r / m_n
- r = a/(1-a) from before
- r ranges from 0 to infinity, while a ranges from 0 to 1

Friends of Friends/Hybrid Models: Variety of degree distributions

- Tie degree distributions to way in which links formed:
 - fat tails from network meeting process
 - more likely to meet well-connected nodes
- Clustering from network meeting process
 - connecting to friends of friends
- Diameter naturally as small as E-R network
- Assortativity in degree based on age

r = a/(1-a)

TABLE 1—PARAMETER ESTIMATES ACROSS APPLICATIONS

Dataset:	WWW	Citations	Coauthor	Ham radio	Prison	High-school romance
Number of nodes:	325729	396	81217	44	67	572
Avg. in-degree: m	4.6	5.0	0.84	3.5	2.7	0.83
r from Fit	0.57	0.63	4.7	5.0	∞	00
p from Fit	0.36	0.27	0.10	1	1	_
R^2 of Fit	0.97	0.98	0.99	0.94	0.94	0.99
Avg. clustering data	0.11	0.07	0.16	0.47	0.31	_
Avg. clustering fit	0.11	0.07	0.16	0.22	0.10	_
Diameter data	11.3 (avg)	4	26	5	7	_
Diameter fit	(6, 12)	(4, 8)	(19, 38)	(4, 8)	(5, 10)	(12, 24)

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.6: Block Models

Random Network Models:

- Erdos-Renyi
 - Useful for understanding thresholds and how networks come to exhibit certain features
 - Miss many real-world features: e.g., clustering
- Other models link-by-link models
 - Watts and Strogatz, Barabasi and Albert, Jackson and Rogers....
 - Capture other features: clustering, degree distribution, correlation...
- Stochastic Block Models
 - Enrich Erdos-Renyi to allow for probabilities to depend on node characteristics, attributes (or on latent – unobserved characteristics)
- Popular set of models: ERGMs and new ones: SERGMs/SUGMs
 - flexible way to introduce various local features and dependencies
 - estimated statistically

Random Network Models:

- Erdos-Renyi
 - Useful for understanding thresholds and how networks come to exhibit certain features
 - Miss many real-world features: e.g., clustering
- Other models link-by-link models
 - Watts and Strogatz, Barabasi and Albert, Jackson and Rogers....
 - Capture other features: clustering, degree distribution, correlation...
- Stochastic Block Models
 - Enrich Erdos-Renyi to allow for probabilities to depend on node characteristics, attributes (or on latent – unobserved characteristics)
- Popular set of models: ERGMs and new ones: SERGMs/SUGMs
 - flexible way to introduce various local features and dependencies
 - estimated statistically

Block model

Extend the basic Erdos-Renyi G(n,p) model:

Nodes have characteristics:

e.g., age, gender, religion, profession, etc. links between nodes depend on the pairs' characteristics

Networks with attributes

Networks with attributes

Prob yellow, yellow

Networks with attributes

Prob yellow, yellow

Block models

Continuous covariates:

Example: link between i and j depends on their characteristics:

$$\beta_i X_i + \beta_j X_j + \beta_{ij} |X_i - X_j|$$

E.g.,

Log(
$$p_{ij} / (1-p_{ij})$$
) = $\beta_i X_i + \beta_j X_j + \beta_{ij} |X_i - X_j|$

Block models

Could use this sort of model to test for homophily...

Red=General/OBC BCDJ 2013 Blue=SC/ST V26 KeroRiceGo

Pcross=.006 Pwithin=.089

Red=General/OBC BCDJ 2013 Blue=SC/ST V26 KeroRiceGo

What is missed?

 Likelihood of link depends on node attributes (observed or latent)

also depends on whether nodes have friends in common

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.7: ERGMs

Random Network Models:

- Erdos-Renyi
 - Useful for understanding thresholds and how networks come to exhibit certain features
 - Miss many real-world features: e.g., clustering
- Other models link-by-link models
 - Watts and Strogatz, Barabasi and Albert, Jackson and Rogers....
 - Capture other features: clustering, degree distribution, correlation...
- Stochastic Block Models
 - Enrich Erdos-Renyi to allow for probabilities to depend on node characteristics, attributes (or on latent – unobserved characteristics)
- Popular set of models: ERGMs and new ones: SERGMs/SUGMs
 - flexible way to introduce various local features and dependencies
 - estimated statistically

Random Network Models:

- Erdos-Renyi
 - Useful for understanding thresholds and how networks come to exhibit certain features
 - Miss many real-world features: e.g., clustering
- Other models link-by-link models
 - Watts and Strogatz, Barabasi and Albert, Jackson and Rogers....
 - Capture other features: clustering, degree distribution, correlation...
- Stochastic Block Models
 - Enrich Erdos-Renyi to allow for probabilities to depend on node characteristics, attributes (or on latent – unobserved characteristics)
- Popular set of models: ERGMs and new ones: SERGMs/SUGMs
 - flexible way to introduce various local features and dependencies
 - estimated statistically

"A pertinent form of statistical treatment would be one which deals with social configurations as wholes, and not with single series of facts, more or less artificially separated from the total picture."

Jacob Levy Moreno and Helen Hall Jennings, 1938.

Markov, p*, ERGMs

- Above models not sufficient for fitting data with clustering or other dependencies or testing many social/economic theories
- Link ij's probability could depend on presence of jk and ik
- But then things interlock and need to specify full interdependencies
- Frank and Strauss (1986)) p* models (e.g., Wasserman and Pattison (1996)).

p* and ERG Models

- Example: (studied extensively by Strauss (86), Park and Newman (04,05), Chatterjee, Diaconis (11)...)
 - Probability of a network depends on number of links
 - Probability of a network also depends on number of triangles.

Example

 Likelihood of link depends on node attributes

• also depends on whether nodes have friends in common

Example: probability depends on

 β_L #links(g) + β_T #triangles(g)

Want probability of network to depend on $\beta_{\perp} L(g) + \beta_{\top} T(g)$

Set

$$Pr(g) \sim exp[\beta_L L(g) + \beta_T T(g)]$$

(now positive)

Want probability to depend on

$$\beta_L L(g) + \beta_T T(g)$$

Set $Pr(g) \sim exp[\beta_L L(g) + \beta_T T(g)]$

Theorem by Hammersly and Clifford (71): *any* network model can be expressed in the exponential family with counts of graph statistics

Example: Erdos-Renyi G(n,p)

p – probability of a link, L(g) - number of links in g

```
\begin{aligned} \Pr[(g)] &= p^{L(g)}(1-p)^{n(n-1)/2-L(g)} \\ &= [p/(1-p)]^{L(g)} (1-p)^{n(n-1)/2} \\ &= \exp[\log(p/(1-p)) L(g) - \log(1/(1-p))n(n-1)/2] \\ &= \exp[\beta_1 - \beta_1 - \beta_1] \end{aligned}
```


To be probability:

Pr(g) =
$$\exp[\beta_L L(g) + \beta_T T(g)]$$

 $\sum_{g'} \exp[\beta_L L(g') + \beta_T T(g')]$

$$Pr(g) = exp[\beta_L L(g) + \beta_T T(g) - c]$$

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.8: Estimating ERGMs

Estimating p* / ERGMs

- $Pr(g) = exp[\sum \beta_k s_k(g)] / \sum_{g'} exp[\sum \beta_k s_k(g')]$
- Power of such models: can put all sorts of statistics in s_k - can have it depend on arbitrary shapes, be specific to certain nodes/links, etc.
- Weakness: how to estimate these?!

Example: Florentine Marriages

- Robins, Pattison, Kalish, Lusher (2007) fit an ERGM to Padgett and Ansel's Florentine data
- Business ties between the 16 major families
- Fit: #links, two stars, three stars, triangles

Example: Florentine Marriages

Pr(g) = exp[
$$\beta_1$$
 #links + β_2 #two stars
+ β_3 #three stars + β_4 #triangles – c]

Business Only

Example: Florentine Families Business Dealings

Pr(g) =
$$\exp[\beta_1 s_1(g) + ... + \beta_k s_k(g)]$$

 $\sum_{g'} \exp[\beta_1 s_1(g') + ... + \beta_k s_k(g')]$

• MCMC techniques for estimation (Snijders 02, Handcock 03,...) have led to these becoming the standard

Issues:

•
$$Pr(g) = exp[\beta_1 s_1(g) + ... + \beta_k s_k(g)]$$

 $\sum_{g'} exp[\beta_1 s_1(g') + ... + \beta_k s_k(g')]$

• Recall: n=30 nodes, there are 2^{435} g's (less than 2^{258} atoms in the universe...)

 Sampling g's will not lead to accurate estimates (not just MCMC limitation)

Bhamidi, Bresler and Sly (2008) (see also Chatterjee and Diaconis (2011)):

For dense enough ERGMs, MCMC (Glauber dynamics - Gibbs sampling) estimates mix less than exponentially *only if* networks have approximately independent links

So, ERGMs that are interesting, cannot be estimated via techniques being used!

Simulations: also problems on sparse ones...

Example:

•
$$Pr(g) = \frac{exp[\beta_I I(g) + \beta_L L(g) + \beta_T T(g)]}{\sum_{g'} exp[\beta_I I(g) + \beta_L L(g') + \beta_T T(g')]}$$

- I(g) = #isolates(g)
- L(g) = #links(g)
- T(g) = #triangles(g)
- n=50 nodes, 1000 iterations
- avg: 20 isol (so each isolated with prob .4), 10 triangles, 45 links

ERGM Parameter Estimate

ERGM Parameter Estimate

Recreate Isolates

Recreate Triangles

Recreate Links

Issues:

- MCMC estimation techniques are inaccurate:
 - Can one compute parameters?
- Consistency of estimators of ERGMs:
 - When are parameters accurate and how many nodes are needed?
- How to generate networks randomly?
 - Counterfactuals, validation...

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.9: SERGMs

Random Network Models:

- Erdos-Renyi
 - Useful for understanding thresholds and how networks come to exhibit certain features
 - Miss many real-world features: e.g., clustering
- Other models link-by-link models
 - Watts and Strogatz, Barabasi and Albert, Jackson and Rogers....
 - Capture other features: clustering, degree distribution, correlation...
- Stochastic Block Models
 - Enrich Erdos-Renyi to allow for probabilities to depend on node characteristics, attributes (or on latent – unobserved characteristics)
- Popular set of models: ERGMs and new ones: SERGMs/SUGMs
 - flexible way to introduce various local features and dependencies
 - estimated statistically

SERGMs: Introduction

- ERGMs not accurately estimable in many cases....
- Too many alternative networks to consider...
- Way out: Many networks lead to the same statistics
 - Probabilities only depend on statistics
 - So, networks with same statistics are "equivalent" (equally likely)
- Collapse all equivalent networks

SERGMs: Chandrasekhar-Jackson 2012

- Many g's but many fewer possible statistics
- Many networks lead to the same statistics
 - Probabilities only depend on statistics
 - Thus, networks with same statistics are "equivalent" (equally likely)
- Collapse all equivalent networks

Sufficient Statistics

•
$$Pr(g) = exp[\beta S(g)]$$

$$\sum_{g'} exp[\beta S(g')]$$

Let N(s') = number networks with S(g')=s'

Sufficient Statistics

•
$$Pr(g) = exp[\beta S(g)]$$

$$\sum_{g'} exp[\beta S(g')]$$
Let $N(s') = number networks$
s.t. $S(g')=s'$

•
$$Pr(g) = \frac{exp[\beta S(g)]}{\sum_{s'} N(s') exp[\beta s']}$$

Statistical Form

•
$$Pr(g) = exp[\beta S(g)]$$

 $\sum_{g'} exp[\beta S(g')]$

•
$$Pr(s) = N(s) exp[\beta s]$$

$$\sum_{s'} N(s') exp[\beta s']$$

SERGMs – Chandrasekhar-Jackson (12)

• Pr(g) =
$$exp[\beta S(g)]$$

 $\sum_{g'} exp[\beta S(g')]$

•
$$Pr(s) = N(s) exp[\beta s]$$

 $\sum_{s'} N(s') exp[\beta s']$

Smaller space...

Statistical Form

Instead of asking what is the probability of a specific network:

Ask: What is the probability of observing a network that has density of links .1, clustering .3, and average path length of 2.7, etc.?

Statistical ERGMs: SERGMs

• Pr(s) =
$$\frac{N(s)}{\sum_{s'} N(s')} \exp[\beta s]$$

Why not some K(s) instead??

•
$$Pr(s) = K(s) exp[\beta s]$$

 $\sum_{s'} K(s') exp[\beta s']$

Emphasize: Idea Here

- Many g's, many fewer possible statistics
- Networks with same statistics equally likely
- Model based on statistics directly: general family of SERGMs that nest ERGMs

•
$$Pr(s) = K(s) exp[\beta s]$$

 $\sum_{s'} K(s') exp[\beta s']$

SERGMs Include:

•
$$Pr(s) = K(s) exp[\beta s]$$

 $\sum_{s'} K(s') exp[\beta s']$

SERGMs

S can encode many things:

- Links, cliques, k-stars, subgraphs, friends in common per link, multi-graphs, adapt for degree distributions
- Can do preference based-models
- Allow for node characteristics...

Challenge:

- ``One'' data point: often observe a single network
- But many observations of which links are present, which triangles, etc.
- These are *not independent* observations: do they still provide enough information?

SERGM Estimation

- Chandrasekhar and Jackson (2012) provide results on
 - Classes of SERGMs for which maximum likelihood converge to true parameters as n grows
 - Simple ways of estimating those
- Look at a related set of models

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.10: SUGMs

Random Network Models:

- Erdos-Renyi
 - Useful for understanding thresholds and how networks come to exhibit certain features
 - Miss many real-world features: e.g., clustering
- Other models link-by-link models
 - Watts and Strogatz, Barabasi and Albert, Jackson and Rogers....
 - Capture other features: clustering, degree distribution, correlation...
- Stochastic Block Models
 - Enrich Erdos-Renyi to allow for probabilities to depend on node characteristics, attributes (or on latent – unobserved characteristics)
- Popular set of models: ERGMs and new ones: SERGMs/SUGMs
 - flexible way to introduce various local features and dependencies
 - estimated statistically

SUGMs

Subgraph Generation Models

• *Subgraphs* are generated, network is by-product

people form links, triangles, some are anti-social (isolates),...

SUGMs

- Nature/people form S_j subnetworks of type j each indepedently with probability p_i
- May intersect and overlap
- We observe resulting network, infer the p_j's

Example:

Example:

Links Form: Incidental Triangle

We See:

Relation: SERGMs/SUGMs

Can we view SUGMs as SERGMs?

Yes, and it motivates specific K's

Theorem: SUGMs and SERGMs

Consider a SUGM with parameters p_j and let S be the *true* counts of subgraphs.

Then
$$Pr(S) = K(S) \exp[\beta S]$$

$$\sum_{s'} K(s') \exp[\beta s']$$

$$\beta_j = \log(p_j/(1-p_j))$$
 and $K^n(s) = \prod_j \begin{pmatrix} \bar{S}_j^n \\ s_j \end{pmatrix}$.

Relation: SERGMs/SUGMs

True counts not observed

However, can observe them when sparse!

 So, sparse SUGMs define easily estimated class of SERGMs...

Sparse: Few Incidental Triangles

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

3.11:Estimating SUGMs

Random Network Models:

- Erdos-Renyi
 - Useful for understanding thresholds and how networks come to exhibit certain features
 - Miss many real-world features: e.g., clustering
- Other models link-by-link models
 - Watts and Strogatz, Barabasi and Albert, Jackson and Rogers....
 - Capture other features: clustering, degree distribution, correlation...
- Stochastic Block Models
 - Enrich Erdos-Renyi to allow for probabilities to depend on node characteristics, attributes (or on latent – unobserved characteristics)
- Popular set of models: ERGMs and new ones: SERGMs/SUGMs
 - flexible way to introduce various local features and dependencies
 - estimated statistically

SUGMs

- Nature/people form S_j subnetworks of type j each independently with probability p_j
- May intersect and overlap
- We observe resulting network, infer the p_i's

Estimation – Two Approaches

- Sparse graphs: rare incidentals, Direct estimation is valid/consistent
- Algorithm: corrects for small n, and provides estimates for non-sparse (see CJ paper...)

Sparseness

- Incidentals generated by combinations of other subgraphs
- Sparsity definition relates rates of all subgraphs to each other (none grow too quickly)
- Intuitive example: links and triangles
 - $p_1 = o(n^{-1/2})$, $p_T = o(n^{-3/2})$
 - Typical node involved in less than $n^{1/2}$ links, $n^{1/2}$ triangles

Links Form: Incidental Triangle

Estimation:

Estimation: Triangles

Estimation: Triangles

Estimation: Triangles

n = 42 L = 23 (not in triangles)

n choose 2 = 861

n = 42 L = 23 (not in triangles)

n choose 2
=
861 - 28 links in
triangles =
833 possible links
not in triangles

n = 42 L = 23 (not in triangles)

n choose 2 = 861 - 28 links in triangles = 833 possible links

 $\hat{p}_L = 23 / 833$ = .0276

Theorem: Consistency and Distribution

Consider a sequence of sparse SUGMs

The empirical frequency $\hat{p}_{j}^{n} = S_{j}^{n} / \overline{S}_{j}^{n}$ is (ratio) consistent: $\hat{p}_{j}^{n} / p_{j}^{n} \rightarrow 1$ and $D^{1/2}(\hat{p}^{n} - p^{n}) \rightarrow N(0,I)$

- Examine data from 75 Indian villages from BCDJ '13
- Estimate a model and then use it to generate networks
- How well do the model-recreated networks match real networks on non-modeled characteristics

- Estimate SUGM based on covariates, allowing for triangle counts
- Estimate standard link-based (block) model based on covariates

 Does SUGM do better than block model at recreating networks?

• Two nodes are either same or different

Same if

- Two nodes are either same or different
- Same if
 - same caste

- Two nodes are either same or different
- Same if
 - same caste
 - and gps distance between homes is less than median distance

- Two nodes are either same or different
- Same if
 - same caste
 - and gps distance between homes is less than median distance
- Different otherwise

- Block model
 - prob of link if both same
 - prob of link if different
- SUGM add in
 - prob of triangle if all same
 - prob of triangle if some different

- Step 1: Estimate models
 - Block model, estimate p_{LinkSame} p_{LinkDiff}
 - SUGM, estimate p_{LinkSame} p_{LinkDiff}, p_{TriadSame} p_{TriadDiff}
- Step 2: randomly generate networks
 - Block model randomly generate links
 - SUGM randomly generate links, triangles...

Recreate Networks

	Data	Block Model	SUGM	SUGM ISOL
# Unsupp. Links	161	236	161	162
# Triangles	39	3	40	39
Avg. Degree	2.3	2.3	2.6	2.5
Isolates	55	26	31	66
Clustering	0.09	0.01	0.13	.09
Frac. Giant Comp.	0.71	0.83	0.79	.67
First Eigvalue	5.5	3.9	4.7	5.3
Second Eigvalue	0.96	0.96	0.96	.91
Avg Path Length	4.7	5.7	5.1	4.1

Dependencies

- "Social" by definition generates dependencies
- Need tractable models to capture/test these
- ERGMs are rich family, but not always accurately estimable
- SERGMs and SUGMs offer easy and consistent estimation

Network Models

- Statistical models offer a medium, but also need models in context
- Understand dependencies? Friends of friends, social enforcement....
- What should we be testing for?
- Example, see lecture 4.9....

Strengths Random Networks:

- Generate large networks with well identified properties
- Mimic real networks (at least in some characteristics)
- Tie specific properties to specific processes

Weaknesses of Random Network Models

- Missing the ``Why''
 - Why this process? (lattice, preferential attach...)
- Missing implications of network structure: context or relevance
 - welfare, efficiency?
- Literature is missing careful empirical analysis of many ``stylized facts'' (small worlds, power laws, clustering...)
 - ERGMs have been filling that niche, but need estimable models
 - New models are emerging!

Week 3 Wrap

- Growing random networks: provide heterogeneity based on age - analyze via mean field...
- Can lead to power laws with pure preferential attachment
- Many networks lie between the extremes: friends of friends
- Class of models providing statistical fits: ERGMS
 - Allows formation based on structures beyond links correlations
 - Can be challenging to estimate: need to calculate relative probabilities
 - New techniques/variations based on direct statistic counts offer alternatives

Week 3: References in order Mentioned

- Price, D.J.S. (1965) "Networks of Scientific Papers," Science 149:510–515.
- Albert, R., H. Jeong, and A.L. Barab'asi (1999) "Diameter of the World Wide Web," Nature 401:130–131.
- Simon, H. (1955) "On a Class of Skew Distribution Functions," Biometrika 42(3-4):425-440.
- Price, D.J.S. (1976) "A General Theory of Bibliometric and Other Cumulative Advantage Processes," *Journal American Society of Information Science* 27:292–306.
- Barab´asi A., and R. Albert (1999) "Emergence of Scaling in Random Networks," Science 286:509–512.
- Jackson, M.O., and B.W. Rogers (2007) "Meeting Strangers and Friends of Friends: How Random Are Social Networks?" *American Economic Review 97(3):890–915*.
- Frank, O. and D. Strauss (1986): "Markov graphs," Journal of the American Statistical Association, 832–842.
- Wasserman, S. and P. Pattison (1996): "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," *Psychometrika*, 61, 401–425.
- Strauss, D. (1986). On a general class of models for interaction. SIAM Rev., 28 513{527.
- Park, J. and Newman, M. E. J. (2004). Solution of the two-star model of a network. Phys. Rev. E (3), 70 066146, 5.
- Park, J. and Newman, M. E. J. (2005). Solution for the properties of a clustered network. Phys. Rev. E (3), 72 026136, 5.
- Chatterjee, S. and P. Diaconis (2011): "Estimating and Understanding Exponential Random Graph Models," Arxiv preprint arXiv:1102.2650. 4
- Hammersley, J. and P. Clifford (1971): "Markov fields on finite graphs and lattices," . 1
- Robins, G., P. Pattison, Y. Kalish, D. Lusher (2007) An introduction to exponential random graph (p^*) models for social networks, Social Networks, 29:2, 173-191.
- Snijders, T. (2002): "Markov Chain Monte Carlo Estimation of Exponential Random Graph Models," Journal of Social Structure, 3, 2-40
- Handcock, M. S. (2003). Assessing degeneracy in statistical models of social networks, Working Paper 39. Tech. rep., Center for Statistics and the Social Sciences, University of Washington.

Week 3: References Cont'd

- Bhamidi, S., G. Bresler, and A. Sly (2008): "Mixing time of exponential random graphs," Arxiv preprint arXiv:0812.2265
- Chandrasekhar, A.G. and M.O. Jackson (2012) <u>"Tractable and Consistent Exponential Random Graph Models"</u> SSRN 2150428, ArXiv: http://arxiv.org/abs/1210.7375

Summary

 ERGMs face estimation challenges, and no general results on consistency

 Work with statistics/subgraphs rather than networks simplifies substantially: SERGMs / SUGMs

Consistency and fast estimation theorems