Kalkulus.

Rekker (Kap. 12).

DEF: En rette es en uendlig sun $\sum_{i=0}^{\infty} a_i$, $a_i \in \mathbb{R}$. $(a_i \in \mathbb{C})$,

Ets: Geometrsh relative $\sum_{j=0}^{\infty} \Gamma^{j}$ dusum $\sum_{j=0}^{m} \Gamma^{j} = \frac{1-\Gamma^{m+1}}{1-\Gamma}$

So at vi has knoweders for 1×1.

DEF: La Σ a_j voue on retained.

De endulige summer $S_m = \Sigma$ a_j kalles dissummer.

Vi sie at rekka konveger dusom folgen av dilsomme konveger, Hvis rekka ikke konvegere sie vi at den diregere. Prop (Divegensted) Derom $\sum_{j=0}^{\infty} a_j$ konveger så har vi lim $a_j = 0$.

Så dersom him $a_j \neq 0$, så divæger rekka.

elle ikke eksistere.

Berjs: Deson rella konvegere hor vi $\sum_{j=0}^{\infty} a_{j} = S_{m} \xrightarrow{m-1} S$ Gitt €20 sa fins Ne EM s.a. Ism-si< & noi m > NE.

For m > Ng . (an) = (Sm - Sn-1) = \ S_m - S + S - S_m) < | Sm - S] + | S-Sm-1) < = + = = 2.

Mesk: Det er ikke slik at dosom lin a; =0

så konvegere rekka!

Eks: $\sum_{j=1}^{\infty} \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

Bais for at dunnerrekla ikke konvegere.

Det at $\sum_{j=1}^{\infty} \frac{1}{j}$ skulle konvergere er dit som at

summen av avealere av bokrere stulle tronvegøre.

Men summer au avealent av boksen må væle storre en

Shorre en $\int \frac{1}{x} dx$. $\lim_{n \to \infty} \int \frac{1}{x} dx = \lim_{n \to \infty} \lim_$

Positive relater

É aj kalles en positiv rekke duom a; >0 jour alle f. Da blir delsemment Sm. en voksende følge. En soksende følge konverge er heiss der er kegrenset.

Prop (Integraltent)

La f: [1,00] -> IR være en gositiv av tagende funksjon, Da konv. rekka Î f(j) huíss fkldx konvegerer,

Setning: $\frac{20}{19}$ forvege huiss 9 > 1.