

# UNIVERSIDADE TÉCNICA DO ATLÂNTICO ENGENHARIA INFORMÁTICA E TELECOMUNICAÇÕES SISTEMAS DE TELECOMUNICAÇÕES

### Trabalho Prático Quantização em PCM

Walter dos Santos

13 Maio 2022

Ferramentas usadas para realização do trabalho:







## Resolução das Experiências:

- 3.1) Quantização uniforme;
- 3.2) Distorção introduzida pela quantização;
- 3.3) Influência do número de níveis na quantificação;
- 3.4) Quantização não uniforme.

# 3.1) Quantização uniforme

1) Resolução:

| Níveis de decisão | Níveis de quantização |  |
|-------------------|-----------------------|--|
| -0.74             | -0.824                |  |
| 0.24              | -0.4                  |  |
| 0.24              | 0                     |  |
| 0.74              | 0.4                   |  |
| _                 | 0.824                 |  |

2) Resolução:



Parâmetros definidos no sampled quantizer encode.

3) Resolução: Sendo que x = [0.8, 0.6, 0.2, -0.4, 0.1, -0.9, -0.3, 0.7]

| X    | Xq   | Código binário |  |
|------|------|----------------|--|
| 0.8  | 0.8  | 0.00001000     |  |
| 0.6  | 0.6  | 0.10011010     |  |
| 0.2  | 0.2  | 0.00110011     |  |
| -0.4 | -0.4 | 0.01100110     |  |
| 0.1  | 0.1  | 0.00011010     |  |
| -0.9 | -0.9 | 0.11100110     |  |
| -0.3 | -0.3 | 0.01001101     |  |
| 0.7  | 0.7  | 0.10110011     |  |

4) Enunciado: Compare os resultados da tabela com os que obteve após a simulação com a sequência de entrada x aplicada ao bloco de quantização. Os resultados obtidos deverão ficar registados em variáveis do workspace do Matlab.

Resolução: Diagrama de simulação:



5) Resolução:

Para um quantizador de 5 bits/amostras

O valor do degrau da quantização é  $\underline{X}$  e os dois níveis de quantização mais próximos da origem são Y.

```
<u>Gama Dinamica</u> = max - min = 0.74 - (-0.74) = 1.78

<u>Degrau de quantização</u>(\Delta) = GamaDinamica / L = 1.78/1024 = 0.0017 = X
```

- 6) Enunciado: Para um quantizador de L níveis e gama dinâmica [m\_min, m\_max], determine as expressões MATLAB que permitem formar os vetores cujos elementos correspondem os níveis de decisão (partition) e de quantização (codebook):
- Resolução: Expressões MATLAB que permitem calcular os níveis de decisão e quantização:

```
code1.m × +
19
20
21 -
22 -
          = 2^R; % número de níveis
23 -
            = 1; \min = -1;
24 -
25
26
27
28 -
29 -
30 -
        NiveisQuantizacao = min + delta/2 : delta : max - delta/2;
31
```

## 3.2) Distorção introduzida pela quantização

- 1) Enunciado: Numa nova janela Simulink, gere o sinal analógico x in =  $3\cos(40\pi t) + 2\sin(240\pi t)$  considerando uma escala temporal de 0 a 100 ms com uma frequência de amostragem de 10 kHz.
- Resolução: Circuito usado:



#### Scope:



### X.xq:



#### Ed:



## 2) Resolução:

O substituto do Sampled quantizer encode no Matlab atualizado é "Quantizer encoder" e que este modelo já vem pré definido o nível de quantização, e que não é possível mudá-lo.

## 3) Resolução:

Ruído de quantização = sinal amostrado - sinal quantificado Ruído máximo de quantização = -0.7503 Potencia máxima do ruído =  $(\Delta^2)/12 = (0.0017^2)/12 = 2.40833333e$ -7 Relação sinal ruído =  $(S/Nq) = max(x_in)/max(eq) = -6.5331$ 

4) Enunciado: Atenue o sinal normalizado x para um décimo do seu valor e re-simule o sistema. Calcule a nova relação sinal-ruído de quantização:

## Resolução:

A relação sinal ruído é = -0.3920

Este valor é menor porque, a atenuação é alta, isto quer dizer que, quanto menor a relação sinal ruído maior é a qualidade do sinal recebido.

6) Resolução: Sinal multiplicado por 1,5, sofre o fenômeno de clipping:



### Clipping ocorreu porque a sua amplitude foi excessiva:





### 3.3) Influência do número de níveis na quantificação.

- 1) Resolução: O ruído diminui quando o número de níveis aumenta.
- 2) Resolução:

Código de matlab R = 6, psd foi substituído por pwelch porque é recomendado pelo matlab



#### Gráfico do R=2 foi usado o psd:



# 3) 🖳 Resolução: Tabela

| Número de bits | Nq         | (s/Nq) dB | (s/Nq) dB teórico |
|----------------|------------|-----------|-------------------|
| 2              | 0.0208     | 48        | 47.5              |
| 3              | 0.0052     | 192       | 192               |
| 4              | 0.0013     | 768       | 768               |
| 5              | 3.2552e-04 | 3072      | 3071.6            |
| 6              | 8.1380e-05 | 12288     | 12289             |

## 3.4) Quantização não uniforme.

1) Resolução: diagrama utilizado.



#### eq:



#### x,xq:



#### x,xc:



# 2) Resolução:

Delta = gama / 
$$L = 1.5 / 32 = 0.0469$$

Potência do ruído = (delta^2) / 12 = 0.00018330083

Relação entre sinal atenuado e potência do ruído de quantização:

sinal / potência Ruído = 1 / 0.00018330083 = 5455.51

11