# First delivery - ADEI

# Alex Rubio i Josep Bernad 1 de març de 2019

# Contents

| 1 | Presentation 2  Bank client data 2 2.1 Description 2                                                                                                                                                     |                                                                      |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| 2 |                                                                                                                                                                                                          |                                                                      |  |  |  |  |
| 3 | Loading packages 3                                                                                                                                                                                       |                                                                      |  |  |  |  |
| 4 | Loading data                                                                                                                                                                                             |                                                                      |  |  |  |  |
| 5 | 1 0 1                                                                                                                                                                                                    | 4<br>4<br>6<br>6<br>7<br>8<br>8<br>9<br>10<br>10                     |  |  |  |  |
| 6 | 6.1 Age 6.2 Job 6.2 Job 6.3 Marital 6.4 Default-Housing-Loan 6.5 Contact Device 6.6 Date - Month and season 6.7 Date - Day of the week 6.8 Duration 6.9 Campaign 6.10 PDays 6.11 Prevously 6.12 POutcome | 11<br>11<br>12<br>14<br>17<br>19<br>21<br>23<br>24<br>25<br>27<br>28 |  |  |  |  |
| 7 | 7.1 Missing Values 7.2 Errors 7.2.1 Job 7.2.2 Marital 7.2.3 Education 7.2.4 Default 7.2.5 Housing 7.2.6 Loan 7.2.7 Contact                                                                               | 30<br>31<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>33             |  |  |  |  |

|           |       | 7.2.9                         | Day of week                            | 33                    |
|-----------|-------|-------------------------------|----------------------------------------|-----------------------|
|           |       |                               | Poutcome                               |                       |
|           |       | 7.2.11                        | Y                                      | 33                    |
|           | 7.3   |                               | 3                                      |                       |
|           |       | 7.3.1                         | Age                                    |                       |
|           |       | 7.3.2                         | duration                               |                       |
|           |       | 7.3.3                         | campaign                               |                       |
|           |       | 7.3.4                         | $\operatorname{pdays}$                 |                       |
|           |       | 7.3.5                         | previous                               |                       |
|           | 8.1   | nk Vari<br>Individ<br>relatio | nal                                    | 39<br>40<br><b>40</b> |
| 10        | Imp   | outatio                       |                                        | <b>4</b> 5            |
|           |       |                               | c Variables                            | 45                    |
|           |       |                               |                                        |                       |
| 11        | Dno   | filing                        |                                        | 47                    |
| 11        | . Fro | nining                        |                                        | ± (                   |
| <b>12</b> | Del   | iverabl                       | II: PCA, CA and Clustering             | 54                    |
|           | 12.1  | PCA a                         | nalysis                                | 54                    |
|           |       | 12.1.1                        | Eigenvalues and dominant axes analysis | 54                    |
|           |       | 12.1.2                        | Individuals point of view              | 60                    |
|           |       |                               |                                        | 71                    |

#### 1 Presentation

We are going to work with dataset bank-additional-full.csv with all examples (41188) and 20 inputs, ordered by date (from May 2008 to November 2010), very close to the data analyzed in [Moro et al., 2014].

Deliverables are concerned with Multivariant Data Analysis and model building for response variables: Y-Duration of the call and binary factor Y (Binary Target) if the product (bank term deposit) would be ('yes') or not ('no') subscribed.

#### 2 Bank client data

#### 2.1 Description

Input variables:

- 1. age (numeric)
- 2. job: type of job (categorical: 'admin.', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')
- 3. marital: marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
- divorced or widowed)
  4. education (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown', 'university.degree', 'unknown', 'lliterate', 'professional.course', 'university.degree', '
- 5. default: has credit in default? (categorical: 'no', 'yes', 'unknown')
- 6. housing: has housing loan? (categorical: 'no', 'yes', 'unknown')
- 7. loan: has personal loan? (categorical: 'no', 'yes', 'unknown')# related with the last contact of the current campaign:
- 8. contact: contact communication type (categorical:'cellular', 'telephone')
- 9. month: last contact month of year (categorical: 'jan', 'feb', 'mar',..., 'nov', 'dec')
- 10. day\_of\_week: last contact day of the week (categorical:'mon','tue','wed','thu','fri')

- 11. duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.
- 12. campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13. pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 14. previous: number of contacts performed before this campaign and for this client (numeric)
- 15. poutcome: outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success')# social and economic context attributes
- 16. emp.var.rate: employment variation rate quarterly indicator (numeric)
- 17. cons.price.idx: consumer price index monthly indicator (numeric)
- 18. cons.conf.idx: consumer confidence index monthly indicator (numeric)
- 19. euribor3m: euribor 3 month rate daily indicator (numeric)
- 20. nr.employed: number of employees quarterly indicator (numeric)
- 21. y has the client subscribed a term deposit? (binary: 'yes', 'no')

# 3 Loading packages

### 4 Loading data

```
#rm(list=ls())
# Load Required Packages: to be increased over the course

#setwd("C:/Users/lmontero/Dropbox/DOCENCIA/FIB-ADEI/PRACTICA/BankMarketing")
#setwd("D:/DOCENCIA/FIB-ADEI/PRACTICA/BankMarketing")

# Josep
#setwd("~/Developer/r-studio/laboratory-adei/data-directory")
#load("~/Developer/r-studio/laboratory-adei/data-directory/5000_samples.RData")

# Alex
setwd("D:/Google Drive/Uni/ADEI/data-directory")
load(path.expand("D:/Google Drive/Uni/ADEI/data-directory/5000_samples.RData"))
summary(df)
```

```
##
                                             marital
                              job
         age
##
    Min.
           :17.00
                     admin.
                                 :1288
                                         divorced: 546
##
    1st Qu.:32.00
                     blue-collar:1156
                                         married:3029
##
    Median :38.00
                     technician: 831
                                         single:1416
           :39.97
                                         unknown:
##
    Mean
                     services
                                : 471
##
    3rd Qu.:47.00
                     management: 345
           :92.00
##
    Max.
                     retired
                                : 187
##
                     (Other)
                                : 722
##
                   education
                                    default
                                                                     loan
                                                   housing
    university.degree
##
                       :1431
                                no
                                        :3939
                                                no
                                                        :2226
                                                                no
                                                                        :4138
##
   high.school
                        :1169
                                unknown:1061
                                                unknown: 112
                                                                unknown: 112
   basic.9y
##
                        : 758
                                yes
                                                yes
                                                        :2662
                                                                yes
                                                                        : 750
##
    professional.course: 668
##
   basic.4y
                        : 493
    basic.6y
##
                        : 272
```

```
##
    (Other)
                        : 209
##
                          month
                                      day_of_week
                                                      duration
         contact
##
    cellular :3182
                      may
                              :1679
                                      fri: 948
                                                   Min.
                                                           :
                                                   1st Qu.: 104.0
    telephone:1818
                              : 907
                                      mon:1017
##
                      jul
##
                      aug
                              : 699
                                      thu:1031
                                                   Median : 181.0
##
                                                           : 263.7
                              : 660
                                      tue:1005
                                                   Mean
                      jun
##
                                      wed: 999
                                                   3rd Qu.: 328.0
                      nov
                              : 502
##
                      apr
                              : 323
                                                   Max.
                                                           :3078.0
##
                      (Other): 230
##
       campaign
                          pdays
                                          previous
                                                                 poutcome
##
    Min.
           : 1.000
                      Min.
                                 0.0
                                       Min.
                                               :0.0000
                                                          failure
                                                                      : 493
    1st Qu.: 1.000
                      1st Qu.:999.0
                                       1st Qu.:0.0000
##
                                                          nonexistent:4315
##
    Median : 2.000
                      Median :999.0
                                       Median :0.0000
                                                          success
                                                                      : 192
                                       Mean
##
    Mean
           : 2.647
                      Mean
                              :957.9
                                               :0.1772
##
    3rd Qu.: 3.000
                      3rd Qu.:999.0
                                       3rd Qu.:0.0000
##
    Max.
            :42.000
                      Max.
                              :999.0
                                       Max.
                                               :5.0000
##
##
     emp.var.rate
                       cons.price.idx
                                        cons.conf.idx
                                                             euribor3m
           :-3.4000
                               :92.20
##
    Min.
                       Min.
                                        Min.
                                                :-50.80
                                                           Min.
                                                                  :0.634
##
    1st Qu.:-1.8000
                       1st Qu.:93.08
                                        1st Qu.:-42.70
                                                           1st Qu.:1.344
##
    Median : 1.1000
                       Median :93.88
                                        Median :-41.80
                                                           Median :4.857
           : 0.1029
                       Mean
                               :93.58
                                        Mean
                                                :-40.59
                                                                  :3.641
##
    Mean
                                                           Mean
    3rd Qu.: 1.4000
                       3rd Qu.:93.99
                                        3rd Qu.:-36.40
                                                           3rd Qu.:4.961
##
    Max.
           : 1.4000
                               :94.77
                                                :-26.90
                                                                  :5.045
##
                       Max.
                                        Max.
                                                           Max.
##
##
     nr.employed
##
    Min.
           :4964
                    no:4416
    1st Qu.:5099
##
                    yes: 584
##
    Median:5191
##
    Mean
            :5168
##
    3rd Qu.:5228
##
    Max.
            :5228
##
```

# 5 Univariate Descriptive Analysis

Creem factors per cada variable posant abans NA a aquells valos erronis o faltants.

#### 5.1 Transform missing and wrong data to NAs

```
#Default
sel<-which(df$default=="unknown");length(sel)

## [1] 1061

df$default[sel] <- NA

df$default <- factor(df$default)

summary(df$default)

## no NA's

## 3939 1061

#marital
sel<-which(df$marital=="unknown");length(sel)</pre>
```

```
## [1] 9
df$marital[sel] <- NA</pre>
df$marital <- factor(df$marital)</pre>
summary(df$marital)
## divorced married
                         single
                                     NA's
##
        546
                 3029
                           1416
sel<-which(df$housing=="unknown");length(sel)</pre>
## [1] 112
df$housing[sel] <- NA</pre>
df$housing <- factor(df$housing)</pre>
summary(df$housing)
## no yes NA's
## 2226 2662 112
sel<-which(df$loan=="unknown");length(sel)</pre>
## [1] 112
df$loan[sel] <- NA
df$loan <- factor(df$loan)</pre>
summary(df$loan)
    no yes NA's
## 4138 750 112
sel<-which(df$job=="unknown");length(sel)</pre>
## [1] 43
df$job[sel] <- NA</pre>
df$job <- factor(df$job)</pre>
summary(df$job)
##
                    blue-collar entrepreneur
          admin.
                                                     housemaid
                                                                   management
##
             1288
                            1156
                                            181
                                                            132
##
         retired self-employed
                                       services
                                                       student
                                                                    technician
##
                                            471
                                                                           831
              187
                             152
                                                            100
##
      unemployed
                            NA's
##
              114
S
## function (object, brief, ...)
## {
       UseMethod("S")
##
## }
## <bytecode: 0x0000000196240e0>
## <environment: namespace:car>
#Education
sel<-which(df$education=="unknown");length(sel)</pre>
```

```
## [1] 207
df$education[sel] <- NA</pre>
df$education <- factor(df$education)</pre>
summary(df$education)
##
               basic.4y
                                    basic.6y
                                                          basic.9y
##
                    493
                                          272
                                                               758
##
           high.school
                                  illiterate professional.course
##
                   1169
                                            2
                                        NA's
##
     university.degree
##
                   1431
                                          207
#Pdays
sel<-which(df$pdays==999);length(sel)</pre>
## [1] 4793
df$pdays[sel] <- NA
summary(df$pdays)
##
                                                          NA's
      Min. 1st Qu. Median
                                Mean 3rd Qu.
                                                 Max.
     0.000
             3.000
                      6.000
                               5.792
                                       7.000 18.000
                                                          4793
#Poutcome
sel<-which(df$poutcome=="nonexistent");length(sel)</pre>
## [1] 4315
df$poutcome[sel] <- NA</pre>
df$poutcome <- factor(df$poutcome)</pre>
summary(df$poutcome)
## failure success
                       NA's
##
       493
                192
                       4315
      Create new factors corresponding to qualitative concepts.
5.2.1 Month
#Modify factor levels label
df$f.month <- factor(df$month, labels=paste("Month", sep="-", levels(df$month)))</pre>
table(df$f.month)
##
## Month-apr Month-aug Month-dec Month-jul Month-jun Month-mar Month-may
##
         323
                    699
                                19
                                         907
                                                    660
                                                                66
                                                                         1679
## Month-nov Month-oct Month-sep
         502
                     79
                                66
# Define new factor categories: 1-Spring | 2-Summer | 3-Resta
df$f.season <- 3
# 1 level - spring
sel<-which(df$f.month %in% c("Month-mar", "Month-apr", "Month-may"))</pre>
df$f.season[sel] <-1</pre>
# 2 level - Summer
sel<-which(df$f.month %in% c("Month-jun", "Month-jul", "Month-aug"))</pre>
```

```
df$f.season[sel] <-2</pre>
table(df$f.season); summary(df$f.season)
##
##
      1
           2
## 2068 2266 666
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
##
      1.00
              1.00
                      2.00
                               1.72
                                       2.00
                                                3.00
df$f.season<-factor(df$f.season,levels=1:3,labels=c("Spring","Summer","Aut-Win"))</pre>
summary(df$f.season)
   Spring Summer Aut-Win
##
      2068
              2266
                        666
5.2.2 Job
#Modify factor levels label
df$f.job <- factor(df$job, labels=paste("Job", sep="-", levels(df$job)))</pre>
table(df$f.job)
##
##
          Job-admin.
                        Job-blue-collar Job-entrepreneur
                                                               Job-housemaid
##
                1288
                                   1156
                                                                          132
##
      Job-management
                            Job-retired Job-self-employed
                                                                 Job-services
##
                 345
                                    187
                                                       152
                                                                          471
##
         Job-student
                        Job-technician
                                            Job-unemployed
                 100
##
                                    831
                                                       114
# Define new factor categories: 1-selfemployed | 2-worker | 3-other
df$f.jobsituation<-3
# 1 level - self-employed
sel<-which(df$f.job %in% c("Job-entrepreneur", "Job-housemaid", "Job-self-employed"))</pre>
df$f.jobsituation[sel] <- 1</pre>
# 2 level - worker
sel<-which(df$f.job %in% c("Job-admin","Job-blue-collar","Job-management","Job-services","Job-technicia
df$f.jobsituation[sel] <- 2</pre>
table(df$f.jobsituation); summary(df$f.jobsituation)
##
##
           2
      1
   465 2803 1732
##
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
             2.000
                     2.000
                              2.253
                                      3.000
                                              3.000
##
df$f.jobsituation<-factor(df$f.jobsituation,levels=1:3,labels=c("Self-employed","Worker","Other"))
summary(df$f.jobsituation)
## Self-employed
                         Worker
                                        Other
                                         1732
##
             465
                           2803
```

#### **5.2.3** Pdays

```
table(df$pdays)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18
## 1 5 12 62 17 5 48 13 5 9 7 2 4 8 3 1 4 1
# Define new factor categories: 1-contacted / 2-not contacted
df$f.prev_contacted<-2
# 1 level - contacted
sel<-which(df$pdays %in% c(1:20))</pre>
df$f.prev_contacted[sel] <- 1</pre>
# 2 level - not contacted
sel<-which(df$pdays %in% c(21:1000))</pre>
df$f.prev_contacted[sel] <- 2</pre>
table(df$f.prev_contacted); summary(df$f.prev_contacted)
##
##
      1
           2
   206 4794
##
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
                            1.959
##
            2.000
                    2.000
                                     2.000
                                             2.000
df$f.prev_contacted<-factor(df$f.prev_contacted,levels=1:2,labels=c("Contacted","No-contacted"))
summary(df$pdays)
##
      Min. 1st Qu. Median
                             Mean 3rd Qu.
                                                      NA's
                                              Max.
##
    0.000
           3.000 6.000
                             5.792 7.000 18.000
                                                       4793
5.2.4 Education
#Modify factor levels label
df$education <- factor(df$education, labels=paste("Edu", sep="-", levels(df$education)))</pre>
table(df$education)
##
##
              Edu-basic.4y
                                      Edu-basic.6y
                                                               Edu-basic.9y
##
                       493
                                                272
                                                                        758
##
                                    Edu-illiterate Edu-professional.course
           Edu-high.school
##
                                                 2
                                                                        668
##
     Edu-university.degree
# Define new factor categories: 1-mandatory / 2-nonmandatory / 3-other
df$f.education<-3
# 1 level - mandatory
sel<-which(df$education %in% c("Edu-basic.4y", "Edu-basic.6y", "Edu-basic.9y", "Edu-high.school"))
df$f.education[sel] <- 1</pre>
# 2 level - nonmandatory
```

```
sel<-which(df$education %in% c("Edu-professional.course","Edu-university.degree"))</pre>
df$f.education[sel] <- 2</pre>
table(df$f.education); summary(df$f.education)
##
##
      1
           2
                3
## 2692 2099 209
     Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                               Max.
           1.000
                    1.000
                             1.503
                                      2.000
                                              3.000
##
df$f.education<-factor(df$f.education,levels=1:3,labels=c("Mandatory","Non-Mandatory","Other"))
summary(df$f.education)
##
       Mandatory Non-Mandatory
                                        Other
##
            2692
                           2099
                                          209
5.2.5 Extra Factorization
#Housing
df$f.housing<-factor(df$housing,labels=paste("f",sep=".",levels(df$housing)))
table(df$f.housing);summary(df$f.housing);
##
## f.no f.yes
## 2226 2662
## f.no f.yes NA's
## 2226 2662
                112
#Marital
df$f.marital<-factor(df$marital,labels=paste("f",sep=".",levels(df$marital)))
table(df$f.marital);summary(df$f.marital);
##
## f.divorced f.married
                           f.single
                    3029
          546
                                1416
## f.divorced f.married
                           f.single
                                           NA's
                    3029
                                1416
##
          546
#Default
df$f.default<-factor(df$default, labels=paste("f",sep=".",levels(df$default)))</pre>
df$f.default <- factor(df$f.default , levels = c(levels(df$f.default), "f.si"))</pre>
table(df$f.default);
##
## f.no f.si
## 3939
#Loan
df$f.loan<-factor(df$loan,labels=paste("f",sep=".",levels(df$loan)))</pre>
table(df$f.loan);summary(df$f.loan)
##
## f.no f.yes
```

```
750
## 4138
## f.no f.yes NA's
## 4138
           750 112
#Contact
df$f.contact<-factor(df$contact,labels=paste("f",sep=".",levels(df$contact)))</pre>
table(df$f.contact);summary(df$f.contact)
##
   f.cellular f.telephone
##
          3182
                      1818
##
## f.cellular f.telephone
##
          3182
#Day of Week
df$f.day<-factor(df$day_of_week,labels=paste("f.day",sep=".",levels(df$day)))
table(df$f.day);summary(df$f.day)
##
## f.day.fri f.day.mon f.day.thu f.day.tue f.day.wed
         948
                  1017
                            1031
                                       1005
## f.day.fri f.day.mon f.day.thu f.day.tue f.day.wed
##
         948
                  1017
                            1031
                                      1005
                                                  999
     Create new factors corresponding to quantitative concepts.
5.3.1 Age discreatization
summary(df$age)
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
            32.00
                     38.00
                             39.97
                                     47.00
qulist<-quantile(df$age,seq(0,1,0.25),na.rm=TRUE)
varaux<-factor(cut(df$age,breaks=qulist,include.lowest=T))</pre>
table(varaux)
## varaux
## [17,32] (32,38] (38,47] (47,92]
     1353
              1248
                      1202
tapply(df$age,varaux,median)
## [17,32] (32,38] (38,47] (47,92]
##
        29
                35
                        43
                                53
varaux<-factor(cut(df$age,breaks=c(17,30,40,50,95),include.lowest=T))</pre>
table(varaux)
## varaux
## [17,30] (30,40] (40,50] (50,95]
       887
              2003
                      1252
                               858
tapply(df$age,varaux,median)
## [17,30] (30,40] (40,50] (50,95]
        28
##
                35
                        45
                                55
```

```
df$f.age<-factor(cut(df$age,breaks=c(17,30,40,50,95),include.lowest=T))
summary(df$f.age)
## [17,30] (30,40] (40,50] (50,95]
## 887 2003 1252 858
levels(df$f.age)<-paste0("f.age-",levels(df$f.age))</pre>
```

# 6 Exploratory Data Analysis

#### 6.1 Age

```
summary(df$age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 17.00 32.00 38.00 39.97 47.00 92.00

barplot(table(df$age), main= "Age",col="yellow")
```



```
summary(df$f.age)

## f.age-[17,30] f.age-(30,40] f.age-(40,50] f.age-(50,95]

## 887 2003 1252 858

barplot(table(df$f.age), main="Age groups",names.arg=c("17 a 30","30 a 40","40 a 50",">50"),col="yellow"
```



## 6.2 Job

```
table(df$job)
##
##
           admin.
                    blue-collar entrepreneur
                                                     {\tt housemaid}
                                                                    management
             1288
                                                                            345
##
                            1156
                                             181
                                                            132
                                                        student
         retired self-employed
                                                                    technician
##
                                       services
##
              187
                             152
                                             471
                                                            100
                                                                            831
##
      {\tt unemployed}
              114
##
pie(table(df$job), main= "Job")
```

# Job



```
aux <- table(df$f.jobsituation)
pct <- round(aux/sum(aux)*100)
lbls <- paste(names(aux), "\n", pct, sep="")
lbls <- paste(lbls,"%",sep="") # add % to labels
pie(aux,labels = lbls, main="Job Situation")</pre>
```

# **Job Situation**



#### 6.3 Marital

```
table(df$marital)

##

## divorced married single

## 546 3029 1416

aux <- table(df$marital)
pct <- round(aux/sum(aux)*100)

lbls <- paste(names(aux), "\n", pct, sep="")

lbls <- paste(lbls,"%",sep="") # add % to labels
pie(aux,labels = lbls, main="Marital Situation")</pre>
```

# **Marital Situation**



#### ## Education

#### table(df\$education)

```
##
##
              Edu-basic.4y
                                      Edu-basic.6y
                                                              Edu-basic.9y
                       493
##
                                                                        758
           Edu-high.school
##
                                    Edu-illiterate Edu-professional.course
##
##
    Edu-university.degree
##
                      1431
pie(table(df$education), main= "Education")
```

# **Education**



```
aux <- table(df$f.education)
pct <- round(aux/sum(aux)*100)
lbls <- paste(names(aux), "\n", pct, sep="")
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(aux,labels = lbls, main="Education Level")</pre>
```

# **Education Level**



# 6.4 Default-Housing-Loan

```
table(df$default)
##
##
     no
## 3939
table(df$housing)
##
##
     no yes
## 2226 2662
table(df$loan)
##
##
    no yes
## 4138 750
attach(mtcars)
## The following object is masked from package:ggplot2:
##
##
       mpg
par(mfrow=c(1,2))
aux <- table(df$loan)</pre>
pct <- round(aux/sum(aux)*100)</pre>
```

```
lbls <- paste(names(aux), "\n", pct, sep="")
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(aux,labels = lbls, main="Personal Loan")
aux <- table(df$housing)
pct <- round(aux/sum(aux)*100)
lbls <- paste(names(aux), "\n", pct, sep="")
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(aux,labels = lbls, main="Housing Loan")</pre>
```

#### **Personal Loan**

# **Housing Loan**





```
# Retornar l'attach a l'estat predeterminat
attach(mtcars)

## The following objects are masked from mtcars (pos = 3):
##

## am, carb, cyl, disp, drat, gear, hp, mpg, qsec, vs, wt
##
## The following object is masked from package:ggplot2:
##

## mpg

par(mfrow=c(1,1))
```

Com es pot veure no hem el gràfic de deutes, ja que el 100% d'individus que han contestat a l'enquesta no en tenien.

#### 6.5 Contact Device

```
##
## cellular telephone
## 3182 1818
aux <- table(df$contact)
pct <- round(aux/sum(aux)*100)
lbls <- paste(names(aux), "\n", pct, sep="")
lbls <- paste(lbls, "%", sep="") # ad % to labels
pie(aux, labels = lbls, main="Contact Device")</pre>
```

## **Contact Device**



#### 6.6 Date - Month and season

```
table(df$month)

##

## apr aug dec jul jun mar may nov oct sep

## 323 699 19 907 660 66 1679 502 79 66

table(df$f.season)

##

## Spring Summer Aut-Win

## 2068 2266 666
```

# Month Ogt of apr aug dec jul jun mar may nov oct sep

```
aux <- table(df$f.season)
pct <- round(aux/sum(aux)*100)
lbls <- paste(names(aux), "\n", pct, sep="")
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(aux,labels = lbls,
    main="Season")</pre>
```

# Season



# 6.7 Date - Day of the week

```
##
## fri mon thu tue wed
## 948 1017 1031 1005 999
barplot(table(df$f.season), main= "Season", col="darkblue")
```

# Season



```
aux <- table(df$day_of_week)
pct <- round(aux/sum(aux)*100)
lbls <- paste(names(aux), "\n", pct, sep="")
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(aux,labels = lbls,
    main="Day of the week")</pre>
```

# Day of the week



### 6.8 Duration

```
summary(df$duration)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.0 104.0 181.0 263.7 328.0 3078.0
barplot(table(df$duration),col="yellow",border="red", main="Call duration")
```

# **Call duration**



# 6.9 Campaign

```
summary(df$campaign)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 2.000 2.647 3.000 42.000
barplot(table(df$campaign),col="yellow", main="Number of campaigns previously contacted")
```

# Number of campaigns previously contacted



# 6.10 PDays

```
summary(df$pdays)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 3.000 6.000 5.792 7.000 18.000 4793

barplot(table(df$pdays),col="yellow", main="Number of days between the last contact")
```

# Number of days between the last contact



# Was previously contacted?



# 6.11 Prevously

```
summary(df$previous)
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                            Max.
## 0.0000 0.0000 0.0000 0.1772 0.0000 5.0000
table(df$previous)
##
##
     0
          1
               2
                    3
                         4
                             5
## 4315 549
              89
                   33
                       10
                             4
barplot(table(df$previous),col="yellow", main="Number of contacts before this campaign")
```

# Number of contacts before this campaign



#### 6.12 POutcome

# Outome of the previous marketing campaign



#### 6.13 Y

```
table(df$y)

##

## no yes

## 4416 584

aux <- table(df$y)

pct <- round(aux/sum(aux)*100)

lbls <- paste(names(aux), "\n", pct, sep="")

lbls <- paste(lbls,"%",sep="") # ad % to labels

pie(aux,labels = lbls,
    main="Binary target")</pre>
```

# **Binary target**



# 7 Data Quality Report

#### 7.1 Missing Values

```
vmiss<-rep(0,nrow(df))</pre>
nInitialVariables<- 21
nmiss<-rep(0,nInitialVariables)
initialVariables <- 0:21
names(nmiss) <- names(df[initialVariables])</pre>
names(df[initialVariables])
##
  [1] "age"
                           "job"
                                              "marital"
                                                                "education"
## [5] "default"
                           "housing"
                                              "loan"
                                                                "contact"
## [9] "month"
                           "day_of_week"
                                              "duration"
                                                                "campaign"
                                              "poutcome"
## [13] "pdays"
                           "previous"
                                                                "emp.var.rate"
## [17] "cons.price.idx" "cons.conf.idx"
                                              "euribor3m"
                                                                "nr.employed"
## [21] "y"
for(j in 1:21) {
  \verb|nmiss[j]<-\verb|nmiss[j]+sum(is.na(df[,j]))|
}
nmiss_aux <- nmiss[ nmiss != 0 ]</pre>
nmiss_aux <- sort(nmiss_aux, decreasing = TRUE)</pre>
```

```
table(nmiss_aux)

## nmiss_aux
## 9 43 112 207 1061 4315 4793
## 1 1 2 1 1 1 1
barplot(nmiss_aux, col="yellow", main="Variables with missing values");
```

# Variables with missing values



Al barplot sols apareixen les variables amb dades mancants.

#### 7.2 Errors

```
verrs<-rep(0, nrow(df))</pre>
nInitialVariables<- 21
nerrs<-rep(0, nInitialVariables)</pre>
initialVariables <- 0:21</pre>
names(nerrs) <- names(df[initialVariables])</pre>
names(df[initialVariables])
                           "job"
    [1] "age"
                                              "marital"
                                                                "education"
    [5] "default"
                           "housing"
                                              "loan"
                                                                "contact"
##
## [9] "month"
                           "day_of_week"
                                              "duration"
                                                                "campaign"
## [13] "pdays"
                           "previous"
                                              "poutcome"
                                                                "emp.var.rate"
## [17] "cons.price.idx" "cons.conf.idx"
                                              "euribor3m"
                                                                "nr.employed"
## [21] "y"
```

#### 7.2.1 Job

```
v<-c("admin.", "blue-collar", "entrepreneur", "housemaid", "management", "retired", "self-employed", "sel
llista<-which(!is.element(df[2], v));
verrs[llista]<-verrs[llista]+1
nerrs[2]<-nerrs[2]+sum(!is.element(df[,2], v))</pre>
```

#### 7.2.2 Marital

```
v<-c("divorced", "married", "single", NA)
llista<-which(!is.element(df[3], v));
verrs[llista]<-verrs[llista]+1
nerrs[3]<-nerrs[3]+sum(!is.element(df[,3], v))</pre>
```

#### 7.2.3 Education

```
v<-c("Edu-basic.4y", "Edu-basic.6y", "Edu-basic.9y", "Edu-high.school", "Edu-illiterate", "Edu-professi
llista<-which(!is.element(df[4], v));
verrs[llista]<-verrs[llista]+1
nerrs[4]<-nerrs[4]+sum(!is.element(df[,4], v))</pre>
```

#### 7.2.4 Default

```
v<-c("no", "yes", NA)
llista<-which(!is.element(df[5], v));
verrs[llista]<-verrs[llista]+1
nerrs[5]<-nerrs[5]+sum(!is.element(df[,5], v))</pre>
```

#### 7.2.5 Housing

```
v<-c("no", "yes", NA)
llista<-which(!is.element(df[6], v));
verrs[llista]<-verrs[llista]+1
nerrs[6]<-nerrs[6]+sum(!is.element(df[,6], v))</pre>
```

#### 7.2.6 Loan

```
v<-c("no", "yes", NA)
llista<-which(!is.element(df[7], v));
verrs[llista]<-verrs[llista]+1
nerrs[7]<-nerrs[7]+sum(!is.element(df[,7], v))</pre>
```

#### **7.2.7** Contact

```
v<-c("cellular", "telephone", NA)
llista<-which(!is.element(df[8], v));
verrs[llista]<-verrs[llista]+1
nerrs[8]<-nerrs[8]+sum(!is.element(df[,8], v))</pre>
```

#### 7.2.8 Month

```
v<-c("apr", "aug", "dec", "jul", "jun", "mar", "may", "nov", "oct", "sep", "jan", "feb", NA)
llista<-which(!is.element(df[9], v));
verrs[llista]<-verrs[llista]+1
nerrs[9]<-nerrs[9]+sum(!is.element(df[,9], v))</pre>
```

#### 7.2.9 Day of week

```
v<-c("mon", "tue", "wed", "thu", "fri", NA)
llista<-which(!is.element(df[10], v));
verrs[llista]<-verrs[llista]+1
nerrs[10]<-nerrs[10]+sum(!is.element(df[,10], v))</pre>
```

#### 7.2.10 Poutcome

```
v<-c("failure", "success", NA)
llista<-which(!is.element(df[,15], v));
verrs[llista]<-verrs[llista]+1
nerrs[15]<-nerrs[15]+sum(!is.element(df[,15], v))</pre>
```

#### 7.2.11 Y

```
v<-c("yes", "no", NA)
llista<-which(!is.element(df[21], v));
verrs[llista]<-verrs[llista]+1
nerrs[21]<-nerrs[21]+sum(!is.element(df[,21], v))</pre>
```

Així els errors queden:

nerrs

```
default
##
               age
                               job
                                          marital
                                                         education
##
                 0
                                 0
                                                                 0
##
          housing
                              loan
                                           contact
                                                             month
                                                                      day_of_week
##
                                                 0
                                                                 0
##
         duration
                         campaign
                                             pdays
                                                         previous
                                                                          poutcome
##
##
     emp.var.rate cons.price.idx
                                   cons.conf.idx
                                                         euribor3m
                                                                      nr.employed
##
                                                                 0
                 0
##
                 у
##
```

#### 7.3 Outliers

```
vout<-rep(0,nrow(df))

nInitialVariables<- 21
nout<-rep(0,nInitialVariables)

initialVariables <- 0:21
names(nout) <- names(df[initialVariables])
names(df[initialVariables])</pre>
```

```
[1] "age"
                         "job"
                                           "marital"
                                                             "education"
##
   [5] "default"
                                           "loan"
                                                             "contact"
##
                         "housing"
   [9] "month"
                         "day_of_week"
                                           "duration"
                                                             "campaign"
## [13] "pdays"
                         "previous"
                                           "poutcome"
                                                             "emp.var.rate"
## [17] "cons.price.idx" "cons.conf.idx"
                                           "euribor3m"
                                                             "nr.employed"
## [21] "y"
7.3.1 Age
Boxplot(df$age, ylab = "Age Boxplot")
## [1] 4827 4635 4609 4732 4869 3675 4803 4804 4743 3448
sout <- 80
abline(h=sout,col="red",lwd=2)
```



```
outliers<-which(df$age>sout);length(outliers);

## [1] 15

df$age[outliers] <- NA;
if(length(outliers)>0){
  vout[outliers]<-vout[outliers]+1
  nout["age"]<-length(outliers)}</pre>
```

#### 7.3.2 duration

```
Boxplot(df$duration)
## [1] 492 436 2926 1055 1603 1350 1680 214 3014 2581
sout <- 1500
abline(h=sout,col="red",lwd=2)</pre>
```



```
outliers<-which(df$duration>sout);length(outliers);
## [1] 21
if(length(outliers)>0){
vout[outliers]<-vout[outliers]+1
nout["duration"]<-length(outliers)}</pre>
```

#### 7.3.3 campaign

```
Boxplot(df$campaign)
```

## [1] 614 480 1584 2312 1013 1110 2320 1392 2306 1436

```
sout <- 9
abline(h=sout,col="red",lwd=2)</pre>
```



```
outliers<-which(df$campaign>sout);length(outliers);

## [1] 146

df$campaign[outliers] <- NA;
if(length(outliers)>0){
  vout[outliers]<-vout[outliers]+1
  nout["campaign"]<-length(outliers)}

7.3.4 pdays

boxplot(df$pdays);
sout <- 15;</pre>
```

abline(h=sout,col="red",lwd=2);



```
## [1] 6
df$pdays[outliers] <- NA;
if(length(outliers)>0){
    vout[outliers] <- vout[outliers] +1
    nout["pdays"] <- length(outliers)}

7.3.5 previous

Boxplot(df$previous)

## [1] 4822 4835 4952 4954 4719 4783 4790 4828 4844 4848

sout <- 2
abline(h=sout,col="red",lwd=2)</pre>
```

outliers<-which(df\$pdays> sout); length(outliers);



```
outliers<-which(df$previous> sout);
df$previous[outliers] <- NA;
length(outliers);

## [1] 47
if(length(outliers)>0){
vout[outliers]<-vout[outliers]+1
nout["previous"]<-length(outliers)}</pre>
```

Així els outliers queden:

nout ## age job marital education default ## 15 0 0 ## housing loan monthday\_of\_week contact ## 0 poutcome ## duration campaign pdays previous ## 146 ## emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed ## 0 0 ## у 0 ##

### 8 Rank Variables

```
miss <- sort(nmiss, decreasing = TRUE)</pre>
miss
##
             pdays
                         poutcome
                                           default
                                                         education
                                                                           housing
              4793
##
                              4315
                                              1061
                                                               207
                                                                                112
##
              loan
                               job
                                           marital
                                                                age
                                                                           contact
##
               112
                                43
##
            month
                                                                          previous
                      day_of_week
                                          duration
                                                          campaign
##
                 0
                                                 0
##
     emp.var.rate cons.price.idx cons.conf.idx
                                                         euribor3m
                                                                       nr.employed
##
                 0
##
                 у
##
                 0
err <- sort(nerrs, decreasing = TRUE)</pre>
err
##
                                           marital
                                                         education
                                                                           default
                               job
               age
##
##
          housing
                              loan
                                           contact
                                                             month
                                                                       day_of_week
##
##
         duration
                          campaign
                                             pdays
                                                          previous
                                                                          poutcome
##
##
     emp.var.rate cons.price.idx cons.conf.idx
                                                         euribor3m
                                                                       nr.employed
##
                 0
##
                 У
                 0
miss <- sort(nmiss, decreasing = TRUE)</pre>
##
                                           default
                                                         education
                                                                           housing
             pdays
                         poutcome
              4793
                              4315
                                              1061
                                                                                112
##
              loan
                               job
                                           marital
                                                                           contact
                                                                age
##
               112
            month
##
                      day_of_week
                                          duration
                                                                          previous
                                                          campaign
##
##
     emp.var.rate cons.price.idx cons.conf.idx
                                                         euribor3m
                                                                       nr.employed
                 0
##
##
                 у
                 0
##
out <- sort(nout, decreasing = TRUE)</pre>
out
##
         campaign
                          previous
                                          duration
                                                                age
                                                                              pdays
##
               146
                                47
                                                21
                                                                 15
                                                                                  6
##
               job
                          marital
                                         education
                                                           default
                                                                           housing
##
                                                                                  0
##
              loan
                           contact
                                             month
                                                       day_of_week
                                                                          poutcome
##
##
     emp.var.rate cons.price.idx cons.conf.idx
                                                         euribor3m
                                                                       nr.employed
##
                 0
                                                                  0
##
                 у
##
                 0
```

```
ranking <- nmiss + nerrs + nout;</pre>
ranking <- sort(ranking, decreasing = TRUE);</pre>
ranking
##
             pdays
                          poutcome
                                            default
                                                           education
                                                                             campaign
##
              4799
                               4315
                                               1061
                                                                 207
                                                                                  146
                                                                 job
##
           housing
                               loan
                                           previous
                                                                             duration
##
                                112
                                                  47
                                                                  43
                                                                                   21
               112
##
                           marital
                                            contact
                                                               month
                                                                         day_of_week
               age
##
                                                                   0
                15
                                                                                    0
##
     emp.var.rate cons.price.idx
                                                           euribor3m
                                                                         nr.employed
                                     cons.conf.idx
##
                 0
                                  0
                                                                    0
##
                 у
##
                 0
```

#### 8.1 Individual

```
vmis<-rep(0, nrow(df))
nmis<-rep(0, ncol(df))
for(i in 1:nrow(df)) {
vmis[i]<-vmis[i]+sum(is.na(df[i,]))
}
### Create variable adding the total number missing values, outliers and errors
df$outliers<-vout
df$errors<-verrs
df$missings<-vmis</pre>
```

#### 9 Correlation

```
##Outliers
condes(df, num.var = 35)
## $quanti
##
                                   p.value
                  correlation
## cons.price.idx 0.09277707 4.935483e-11
## duration
                   0.09217400 6.578690e-11
## missings
                   0.08750383 5.725813e-10
## cons.conf.idx 0.04206987 2.926427e-03
## campaign
                  -0.03485868 1.515141e-02
## nr.employed
                  -0.06723109 1.953740e-06
##
## $quali
                                      p.value
                              R2
## f.prev_contacted 0.0227976441 6.937572e-27
                    0.0177019926 2.370453e-15
                    0.0177019926 2.370453e-15
## f.month
## poutcome
                    0.0126995605 1.354103e-14
                    0.0058927611 5.488243e-08
## y
## job
                    0.0078449930 4.672357e-05
## f.job
                    0.0078449930 4.672357e-05
## f.jobsituation
                    0.0036459260 1.088007e-04
## f.season
                    0.0026809265 1.221971e-03
```

```
## education
                    0.0035745603 1.249920e-02
## contact
                    0.0007892906 4.698187e-02
## f.contact
                    0.0007892906 4.698187e-02
                    0.0012042854 4.925618e-02
## loan
## f.loan
                    0.0012042854 4.925618e-02
##
## $category
##
                       Estimate
                                     p.value
## Contacted
                    0.081812419 6.937572e-27
## success
                    0.072116782 5.134633e-14
## Month-sep
                    0.132112071 3.375808e-10
                    0.132112071 3.375808e-10
## sep
## yes
                    0.025739217 5.488243e-08
                    0.014226777 4.381288e-05
## Other
## Job-retired
                    0.049221530 1.038034e-04
## retired
                    0.049221530 1.038034e-04
## Month-oct
                    0.059231366 1.236697e-04
## oct
                    0.059231366 1.236697e-04
## Job-student
                    0.062269658 6.151821e-04
## student
                    0.062269658 6.151821e-04
## Summer
                    0.009445982 1.934820e-03
## Edu-basic.4y
                    0.027994349 1.707508e-02
## f.no
                    0.016447061 1.881531e-02
## no
                    0.016447061 1.881531e-02
                    0.020057898 3.525089e-02
## f.single
## single
                    0.020057898 3.525089e-02
## f.married
                    0.004782537 3.900623e-02
                    0.004782537 3.900623e-02
## married
## f.age-(50,95]
                    0.011668659 4.206059e-02
                    0.006289677 4.698187e-02
## f.telephone
## telephone
                    0.006289677 4.698187e-02
## f.cellular
                   -0.006289677 4.698187e-02
## cellular
                   -0.006289677 4.698187e-02
## failure
                   -0.022404431 3.040848e-02
## Edu-basic.6v
                   -0.022588815 2.423028e-02
## Job-services
                   -0.032252635 2.269021e-02
## services
                   -0.032252635 2.269021e-02
## Month-jul
                   -0.017164598 1.433353e-02
## jul
                   -0.017164598 1.433353e-02
## Month-jun
                   -0.013342474 1.180245e-02
                   -0.013342474 1.180245e-02
## jun
## Job-blue-collar -0.024858369 1.096798e-02
                   -0.024858369 1.096798e-02
## blue-collar
## Edu-basic.9y
                   -0.013266682 7.404904e-03
                   -0.064072886 6.542548e-04
## Month-nov
## nov
                   -0.064072886 6.542548e-04
## Month-may
                   -0.048442732 3.132088e-04
                   -0.048442732 3.132088e-04
## may
## Spring
                   -0.014074703 2.863111e-04
## Worker
                   -0.013828160 4.717187e-05
## no
                   -0.025739217 5.488243e-08
## NA
                   -0.049712351 1.179041e-09
## No-contacted
                   -0.081812419 6.937572e-27
```

```
##Errors
#condes(df, num.var = 36) ##NO FUNCIONA, NO HI HA ERRORS
##Missings
condes(df, num.var = 37)
## $quanti
##
                  correlation
                                    p.value
                   0.32059379 6.915468e-120
## emp.var.rate
## euribor3m
                   0.31925495 7.539951e-119
## nr.employed
                   0.31676931 6.159986e-117
## cons.price.idx 0.25210903 2.394819e-73
## age
                   0.13225565 6.805599e-21
## outliers
                   0.08750383 5.725813e-10
## cons.conf.idx 0.04099752 3.738104e-03
## campaign
                   0.03483158 1.523054e-02
## previous
                  -0.42315303 2.030358e-214
##
## $quali
##
                             R2
                                      p.value
## default
                    0.535780204 0.000000e+00
## f.default
                    0.535780204 0.000000e+00
## loan
                    0.241643238 7.313059e-301
## f.loan
                    0.241643238 7.313059e-301
## housing
                    0.241517653 1.106051e-300
## f.housing
                    0.241517653 1.106051e-300
                    0.204236107 1.286462e-248
## poutcome
## f.prev_contacted 0.113007932 2.380717e-132
## education
                    0.080884953 6.578439e-87
## job
                    0.072449068 9.771474e-74
## f.job
                    0.072449068 9.771474e-74
## f.education
                    0.061370385 1.891864e-69
## contact
                    0.046652810 7.324880e-54
## f.contact
                    0.046652810 7.324880e-54
## month
                    0.049126070 4.716899e-49
                    0.049126070 4.716899e-49
## f.month
## y
                    0.029025116 7.096717e-34
## f.season
                    0.028568002 3.547259e-32
## f.age
                    0.022838134
                                 7.424390e-25
## marital
                    0.022022645 5.860022e-24
## f.marital
                    0.022022645 5.860022e-24
                    0.007767691 3.455343e-09
## f.jobsituation
##
## $category
                                            p.value
##
                             Estimate
## NA
                          1.087223059 0.000000e+00
## NA
                          1.087223059 0.000000e+00
## NA
                          2.698104360 2.243802e-302
## NA
                          2.688966220 2.243802e-302
                          2.698104360 2.243802e-302
## NA
## NA
                          2.688966220 2.243802e-302
## NA
                          1.158397313 1.944798e-227
## No-contacted
                          1.027183048 2.380717e-132
## NA
                          1.151292413 5.804433e-57
```

## Other

0.903536808 4.449317e-56

```
## f.telephone
                          0.272689164 7.324880e-54
## telephone
                          0.272689164 7.324880e-54
## NA
                          2.521893692 1.678143e-49
## NA
                          2.521893692 1.678143e-49
                          0.322138053
                                       7.096717e-34
## Job-blue-collar
                          0.098621784 1.020782e-18
## blue-collar
                          0.098621784 1.020782e-18
## Summer
                          0.274890250
                                       5.082947e-18
## Edu-basic.4y
                          0.249890173
                                       1.760364e-14
## NA
                          2.130389105
                                       5.531075e-12
## NA
                          2.130389105
                                       5.531075e-12
## f.age-(40,50]
                                       9.683462e-11
                          0.184697514
## Month-jun
                          0.626592566
                                       1.109488e-10
                                       1.109488e-10
## jun
                          0.626592566
## f.age-(50,95]
                                       5.304722e-08
                          0.197797300
## Worker
                          0.084409151
                                       8.550677e-08
## Edu-basic.6y
                          0.209956096
                                       5.955419e-07
## Month-jul
                          0.515360065
                                       2.256065e-06
                          0.515360065 2.256065e-06
## jul
## Job-housemaid
                          0.177813354
                                       6.666548e-04
                          0.177813354 6.666548e-04
## housemaid
## Month-may
                          0.413964198
                                       3.280969e-03
                                       3.280969e-03
## may
                          0.413964198
## Job-management
                         -0.307496264
                                       3.868777e-02
                                       3.868777e-02
## management
                         -0.307496264
## Job-technician
                         -0.266257317
                                       2.039955e-02
## technician
                         -0.266257317
                                       2.039955e-02
## Month-dec
                         -0.308176174
                                       1.922055e-02
## dec
                         -0.308176174 1.922055e-02
## f.yes
                         -1.368490878
                                       2.567887e-03
## yes
                         -1.368490878
                                       2.567887e-03
## f.age-(30,40]
                         -0.087930286
                                       1.231375e-04
## Edu-high.school
                         -0.270472752
                                       7.333131e-05
                                       1.913837e-05
## Mandatory
                         -0.310407397
## f.no
                         -1.341862621
                                       4.952234e-06
## no
                         -1.341862621 4.952234e-06
## Job-student
                         -0.747641192 2.037418e-06
## student
                         -0.747641192 2.037418e-06
## Month-apr
                         -0.014058527
                                       4.532814e-08
                                       4.532814e-08
## apr
                         -0.014058527
## f.yes
                         -1.347103599
                                       7.963467e-09
## yes
                         -1.347103599
                                       7.963467e-09
## Month-oct
                         -0.439422010 7.506767e-09
## oct
                         -0.439422010 7.506767e-09
## Month-mar
                         -0.521892282 5.489624e-09
## mar
                                       5.489624e-09
                         -0.521892282
## Other
                         -0.143651719
                                       4.699821e-10
## Month-sep
                         -0.643104404
                                       2.884680e-11
## sep
                         -0.643104404
                                       2.884680e-11
## Month-nov
                         -0.008008424
                                       7.921110e-12
## nov
                         -0.008008424 7.921110e-12
## f.married
                         -0.550730444 3.578250e-13
## married
                         -0.550730444 3.578250e-13
## f.single
                         -0.855957411 5.880094e-14
```

```
## single
                        -0.855957411 5.880094e-14
                      -0.294564528 6.798179e-15
## f.age-[17,30]
## Job-admin.
                       -0.404908272 4.641734e-15
## admin.
                        -0.404908272 4.641734e-15
## Edu-university.degree -0.426412445 4.461532e-25
## Non-Mandatory -0.593129411 1.085083e-26
## f.no
                       -1.329613482 2.633646e-27
                       -1.329613482 2.633646e-27
## no
## Aut-Win
                        -0.361408450 1.598668e-27
## yes
                        -0.322138053 7.096717e-34
## f.cellular
                       -0.272689164 7.324880e-54
                       -0.272689164 7.324880e-54
## cellular
## failure
                       -0.104236689 2.835968e-95
## success
                       -1.054160624 5.664133e-127
## Contacted
                      -1.027183048 2.380717e-132
                        -1.087223059 0.000000e+00
## f.no
## no
                        -1.087223059 0.000000e+00
aggregate(df$missings, by=list(df$f.age), FUN=mean)
          Group.1
## 1 f.age-[17,30] 2.153326
## 2 f.age-(30,40] 2.359960
## 3 f.age-(40,50] 2.632588
## 4 f.age-(50,95] 2.645688
aggregate(df$outliers, by=list(df$f.age), FUN=mean)
          Group.1
## 1 f.age-[17,30] 0.04847802
## 2 f.age-(30,40] 0.04193709
## 3 f.age-(40,50] 0.04472843
## 4 f.age-(50,95] 0.06060606
aggregate(df$missings, by=list(df$f.jobsituation), FUN=mean)
          Group.1
## 1 Self-employed 2.496774
## 2
           Worker 2.521941
            Other 2.293880
## 3
aggregate(df$outliers, by=list(df$f.jobsituation), FUN=mean)
##
          Group.1
## 1 Self-employed 0.04946237
           Worker 0.03603282
## 3
            Other 0.06408776
aggregate(df$missings, by=list(df$f.education), FUN=mean)
##
          Group.1
        Mandatory 2.508544
## 1
## 2 Non-Mandatory 2.225822
            Other 3.722488
aggregate(df$outliers, by=list(df$f.education), FUN=mean)
##
          Group.1
                           х
```

```
Mandatory 0.04309064
## 2 Non-Mandatory 0.05050024
            Other 0.06220096
aggregate(df$missings, by=list(df$f.marital), FUN=mean)
       Group.1
## 1 f.divorced 2.368132
## 2 f.married 2.541103
      f.single 2.235876
aggregate(df$outliers, by=list(df$f.marital), FUN=mean)
##
       Group.1
## 1 f.divorced 0.04945055
## 2 f.married 0.04192803
## 3
     f.single 0.05720339
10
      Imputation
      Numeric Variables
#Outliers -> missings
#Delete duration outliers
outliers<-which(df$duration>1500);length(outliers);
## [1] 21
df <- df[-outliers, ]</pre>
var_num <-names(df)[c(1, 12:14)] ## age,campaign,pdays,previous</pre>
length(var_num)
## [1] 4
summary(df[,var_num])
##
        age
                      campaign
                                       pdays
                                                       previous
## Min.
          :17.00
                   Min.
                         :1.000
                                   Min. : 0.000
                                                    Min.
                                                           :0.000
                                   1st Qu.: 3.000
## 1st Qu.:32.00
                   1st Qu.:1.000
                                                    1st Qu.:0.000
## Median :38.00
                  Median :2.000
                                   Median : 5.000
                                                    Median : 0.000
## Mean :39.83
                   Mean :2.269
                                   Mean : 5.458
                                                    Mean :0.147
## 3rd Qu.:47.00
                   3rd Qu.:3.000
                                   3rd Qu.: 7.000
                                                    3rd Qu.:0.000
## Max.
          :80.00
                   Max.
                          :9.000
                                   Max.
                                         :15.000
                                                    Max.
                                                           :2.000
## NA's
          :15
                   NA's
                          :145
                                   NA's
                                          :4778
                                                    NA's
                                                           :47
res <- imputePCA(df[,var_num],ncp=2)</pre>
summary(res$completeObs)
##
                      campaign
                                       pdays
                                                       previous
        age
## Min.
        :17.00
                         :1.000
                                   Min. : 0.000
                                                    Min.
                                                          :-0.007828
                   Min.
## 1st Qu.:32.00
                   1st Qu.:1.000
                                   1st Qu.: 5.338
                                                    1st Qu.: 0.000000
## Median :38.00
                   Median :2.000
                                   Median : 5.394
                                                    Median: 0.000000
## Mean
          :39.83
                   Mean
                         :2.271
                                   Mean
                                         : 5.389
                                                    Mean
                                                          : 0.146942
## 3rd Qu.:47.00
                   3rd Qu.:3.000
                                   3rd Qu.: 5.433
                                                    3rd Qu.: 0.000000
## Max.
          :80.00
                   Max.
                          :9.000
                                   Max.
                                          :15.000
                                                    Max. : 2.000000
```

```
#S'han imputat valors negatius a previous, els posem a 0

sel <- which(res$completeObs[,"previous"] < 0)
res$completeObs[sel,"previous"] <- 0

df$age <- res$completeObs[,"age"]
df$campaign <- res$completeObs[,"campaign"]
df$pdays <- res$completeObs[,"pdays"]
df$previous <- res$completeObs[,"previous"]</pre>
```

#### 10.2 Factors

```
# TODO: ADD f.yes in f.loan with value 0
factors <-names(df)[c(24,28, 29,31)]; # f.job, f.housing, f.marital, f.loan
summary(df[,factors])
##
                f.job
                           f.housing
                                             f.marital
                                                            f.loan
## Job-admin.
                   :1283
                           f.no :2220
                                        f.divorced: 545
                                                          f.no:4120
## Job-blue-collar:1154
                           f.yes:2647 f.married:3018
                                                          f.yes: 747
## Job-technician: 829
                          NA's: 112 f.single: 1407
                                                          NA's : 112
## Job-services : 469
                                        NA's
                                                 :
## Job-management: 343
## (Other) : 860
## NA's
                   : 41
resfact <- imputeMCA(df[,factors],ncp=3);</pre>
summary(resfact$completeObs)
##
                f.job
                           f.housing
                                             f.marital
                                                            f.loan
## Job-admin.
                           f.no:2223 f.divorced: 545
                                                          f.no:4232
                  :1303
## Job-blue-collar:1175
                           f.yes:2756 f.married:3027
                                                          f.yes: 747
## Job-technician: 829
                                        f.single :1407
## Job-services
                 : 469
## Job-management: 343
## Job-retired : 186
## (Other)
                   : 674
df$f.housing <- resfact$completeObs[,"f.housing"]</pre>
df$f.marital <- resfact$completeObs[,"f.marital"]</pre>
df$f.loan <- resfact$completeObs[,"f.loan"]</pre>
df$f.job <- resfact$completeObs[,"f.job"]</pre>
#Imputem manualment poutcome ja que pensem que els que no han respós a la pregunta molt probablement ta
sel <- which(is.na(df$poutcome))</pre>
df$poutcome <- factor(df$poutcome, labels=paste("Pout", sep="-", levels(df$poutcome)))</pre>
table(df$poutcome)
## Pout-failure Pout-success
##
            491
                         192
```

```
dff.poutcome<-2
# 1 level - failure
sel<-which(df$poutcome %in% c("Pout-failure"))</pre>
df$f.poutcome[sel] <- 1</pre>
sel<- which(is.na(df$poutcome))</pre>
df$f.poutcome[sel] <- 1</pre>
table(df$f.poutcome)
##
##
      1
           2
## 4787 192
# 2 level - success
sel<-which(df$poutcome %in% c("Pout-success"))</pre>
df$f.poutcome[sel] <- 2</pre>
summary(df$f.education)
       Mandatory Non-Mandatory
                                          Other
##
##
             2685
                            2086
                                            208
df$f.poutcome<-factor(df$f.poutcome,levels=1:2,labels=c("f.Pout-failure","f.Pout-success"))
summary(df$f.poutcome)
## f.Pout-failure f.Pout-success
              4787
##
                               192
#Imputem manualment default ja que pensem que els que no han respós a la pregunta no poden ser imputats
sel <- which(is.na(df$default))</pre>
df$f.default[sel] <- "f.no"</pre>
table(df$f.default)
##
## f.no f.si
## 4979
```

### 11 Profiling

```
condes(df[c(1:29, 31:34,38)],11)
## $quanti
##
              correlation
                                p.value
## pdays
               0.02993732 0.0346537787
## nr.employed -0.03189122 0.0244288564
## campaign
              -0.04723473 0.0008560601
##
## $quali
##
                             R2
                                      p.value
                   0.160738690 1.169792e-191
## y
                   0.006371350 2.170869e-04
## month
## f.month
                   0.006371350 2.170869e-04
                   0.002933693 5.566255e-03
## day_of_week
## f.day
                    0.002933693 5.566255e-03
## f.prev_contacted 0.001373939 8.903355e-03
```

```
## f.poutcome
                   0.001278653 1.162430e-02
## contact
                   0.001010183 2.491598e-02
                   0.001010183 2.491598e-02
## f.contact
## f.housing
                   0.001007355
                               2.511947e-02
## poutcome
                   0.001405185 3.024097e-02
##
## $category
##
                       Estimate
                                      p.value
                    148.5619189 1.169792e-191
## yes
                     23.8425938 3.704865e-04
## f.day.wed
## wed
                     23.8425938 3.704865e-04
## Contacted
                     21.9755934 8.903355e-03
## Month-dec
                    122.9070700 9.727753e-03
## dec
                     122.9070700 9.727753e-03
## Job-self-employed
                     45.0705179 1.128480e-02
## self-employed
                     42.4765578 1.128480e-02
## f.Pout-success
                     21.9270496 1.162430e-02
## Pout-success
                     31.6018377 1.162430e-02
                      0.4019466 1.503004e-02
## Month-jul
## jul
                      0.4019466 1.503004e-02
## no
                     10.6116297 2.191781e-02
## f.cellular
                      7.8044172 2.491598e-02
                      7.8044172 2.491598e-02
## cellular
## f.no
                      7.5382090 2.511947e-02
## Mandatory
                    11.4647925 2.667720e-02
## f.day.mon
                    -13.0962186 4.765549e-02
## mon
                    -13.0962186 4.765549e-02
                     -4.7751417 2.952173e-02
## yes
                     -9.4533836 2.921958e-02
## Summer
## f.yes
                     -7.5382090 2.511947e-02
## f.telephone
                     -7.8044172 2.491598e-02
## telephone
                     -7.8044172 2.491598e-02
## Job-housemaid
                    -48.9550116 2.360381e-02
## housemaid
                    -51.5489717 2.360381e-02
                    -21.9270496 1.162430e-02
## f.Pout-failure
## No-contacted
                    -21.9755934 8.903355e-03
## Month-aug
                    -40.1682151 4.976285e-03
## aug
                    -40.1682151 4.976285e-03
## Month-jun
                    -43.5063607 1.930997e-03
## jun
                    -43.5063607 1.930997e-03
## no
                    -148.5619189 1.169792e-191
catdes(df, num.var = 21)
##
## Link between the cluster variable and the categorical variables (chi-square test)
##
                        p.value df
                    0.000000e+00
## f.default
## f.prev_contacted 1.746438e-113
## poutcome
                   1.256455e-110
## f.poutcome
                   6.599570e-109
## month
                    2.092803e-78
## f.month
                    2.092803e-78 9
## f.job
                    2.831986e-27 10
```

```
## job
                    6.520196e-27 11
## contact
                    7.944988e-25 1
## f.contact
                    7.944988e-25
## default
                    1.313876e-11 1
## f.jobsituation
                    3.313476e-08
## f.age
                    4.789647e-08 3
## f.season
                    5.088671e-08 2
## f.marital
                    1.549949e-05 2
## marital
                    3.916274e-05 3
## education
                    8.492460e-05 7
## f.education
                    7.801545e-03 2
## Description of each cluster by the categories
## $no
##
                                   Cla/Mod
                                              Mod/Cla
                                                          Global
                                  90.65577 98.1624319 95.8626230
## f.prev_contacted=No-contacted
## f.poutcome=f.Pout-failure
                                  90.53687 98.3212341 96.1438040
## poutcome=NA
                                  91.13128 88.8157895 86.2823860
## f.contact=f.telephone
                                  94.68733 38.8157895 36.2924282
## contact=telephone
                                  94.68733 38.8157895 36.2924282
## f.month=Month-may
                                  93.12612 35.3448276 33.6011247
## month=may
                                  93.12612 35.3448276 33.6011247
## default=NA
                                  94.41816 22.6406534 21.2291625
## job=blue-collar
                                  94.02080 24.6143376 23.1773448
## f.job=Job-blue-collar
                                  93.95745 25.0453721 23.5991163
## f.jobsituation=Worker
                                  90.30411 57.2595281 56.1357702
## f.marital=f.married
                                  89.85795 61.7059891 60.7953404
## marital=married
                                  89.82770 61.5018149 60.6145812
## f.age=f.age-(30,40]
                                  90.27569 40.8575318 40.0682868
## education=Edu-basic.9y
                                  91.80978 15.7667877 15.2038562
## f.age=f.age-(40,50]
                                  90.93098 25.7032668 25.0251054
## f.education=Mandatory
                                  89.68343 54.6279492 53.9264913
                                  91.58317 10.3675136 10.0220928
## f.month=Month-nov
## month=nov
                                  91.58317 10.3675136 10.0220928
## f.season=Summer
                                  89.63226 45.8938294 45.3303876
## f.month=Month-jun
                                  90.85366 13.5208711 13.1753364
## month=jun
                                  90.85366 13.5208711 13.1753364
## f.jobsituation=Self-employed
                                  91.32321 9.5508167 9.2588873
## f.job=Job-management
                                  85.13120 6.6243194 6.8889335
## job=management
                                  85.13120 6.6243194 6.8889335
## poutcome=Pout-failure
                                  85.33605 9.5054446 9.8614180
## f.month=Month-dec
                                  63.15789 0.2722323 0.3816027
## month=dec
                                  63.15789 0.2722323 0.3816027
## f.age=f.age-(50,95]
                                  85.12881 16.4927405 17.1520386
## education=Edu-university.degree 86.07595 27.7676951 28.5599518
## f.age=f.age-[17,30]
                                  84.50226 16.9464610 17.7545692
## f.job=Job-retired
                                  76.88172 3.2441016 3.7356899
## job=retired
                                  76.88172 3.2441016 3.7356899
## f.marital=f.single
                                  85.14570 27.1778584 28.2586865
## marital=single
                                  85.14570 27.1778584 28.2586865
## f.month=Month-apr
                                  78.57143 5.7395644 6.4671621
## month=apr
                                  78.57143 5.7395644 6.4671621
## f.season=Aut-Win
                                  81.84569 12.2731397 13.2757582
```

```
## f.jobsituation=Other
                                   84.91004 33.1896552 34.6053424
                                   86.94544 77.3593466 78.7708375
## default=no
## f.job=Job-student
                                   59.59596 1.3384755 1.9883511
## job=student
                                   59.59596 1.3384755 1.9883511
## f.month=Month-sep
                                   50.00000 0.7486388 1.3255674
## f.month=Month-mar
                                   50.00000 0.7486388 1.3255674
## month=sep
                                   50.00000 0.7486388 1.3255674
                                   50.00000 0.7486388 1.3255674
## month=mar
## f.month=Month-oct
                                   50.64935
                                            0.8847550 1.5464953
## month=oct
                                   50.64935 0.8847550 1.5464953
## f.contact=f.cellular
                                   85.02522 61.1842105 63.7075718
                                   85.02522 61.1842105 63.7075718
## contact=cellular
## f.poutcome=f.Pout-success
                                   38.54167 1.6787659 3.8561960
## poutcome=Pout-success
                                   38.54167 1.6787659 3.8561960
                                   39.32039 1.8375681 4.1373770
## f.prev_contacted=Contacted
##
                                        p.value
                                                    v.test
## f.prev_contacted=No-contacted
                                   1.227915e-68
                                                17.508783
## f.poutcome=f.Pout-failure
                                   1.666964e-65 17.093224
## poutcome=NA
                                   5.763783e-38 12.880929
## f.contact=f.telephone
                                   2.440539e-27 10.831526
## contact=telephone
                                   2.440539e-27 10.831526
## f.month=Month-may
                                                 7.507332
                                   6.034473e-14
## month=may
                                                  7.507332
                                   6.034473e-14
## default=NA
                                   4.251760e-13
                                                  7.247295
## job=blue-collar
                                   1.334762e-12
                                                  7.090658
## f.job=Job-blue-collar
                                  1.422485e-12
                                                  7.081844
## f.jobsituation=Worker
                                                  4.418786
                                   9.925677e-06
## f.marital=f.married
                                   2.858318e-04
                                                  3.627813
## marital=married
                                   4.111959e-04
                                                  3.532792
## f.age=f.age-(30,40]
                                   1.478138e-03
                                                  3.178942
## education=Edu-basic.9y
                                   1.493774e-03
                                                  3.175890
## f.age=f.age-(40,50]
                                   1.761035e-03
                                                  3.127827
## f.education=Mandatory
                                   5.915694e-03
                                                  2.752418
## f.month=Month-nov
                                   2.035659e-02
                                                  2.319710
## month=nov
                                   2.035659e-02
                                                  2.319710
## f.season=Summer
                                   2.628277e-02
                                                  2.222008
## f.month=Month-jun
                                   4.135002e-02
                                                  2.040003
## month=jun
                                   4.135002e-02
                                                  2.040003
## f.jobsituation=Self-employed
                                   4.326162e-02
                                                  2.021175
## f.job=Job-management
                                   4.686185e-02 -1.987547
## job=management
                                   4.686185e-02 -1.987547
## poutcome=Pout-failure
                                   2.293362e-02 -2.274539
## f.month=Month-dec
                                   4.353220e-03 -2.851363
## month=dec
                                   4.353220e-03 -2.851363
## f.age=f.age-(50,95]
                                   8.677261e-04
                                                -3.330235
## education=Edu-university.degree 7.167173e-04
                                                 -3.383103
                                                 -4.006801
## f.age=f.age-[17,30]
                                   6.154673e-05
## f.job=Job-retired
                                   4.756560e-06
                                                -4.575248
## job=retired
                                   4.756560e-06
                                                -4.575248
## f.marital=f.single
                                   4.173805e-06
                                                 -4.602534
## marital=single
                                   4.173805e-06 -4.602534
## f.month=Month-apr
                                  1.145794e-07 -5.301939
## month=apr
                                  1.145794e-07 -5.301939
## f.season=Aut-Win
                                   4.630214e-08 -5.464956
```

```
## f.jobsituation=Other
                                  9.853123e-09 -5.733238
## default=no
                                  4.251760e-13 -7.247295
## f.job=Job-student
                                  9.483114e-14 -7.447909
## job=student
                                  9.483114e-14 -7.447909
## f.month=Month-sep
                                  8.048922e-15
                                                -7.766807
## f.month=Month-mar
                                  8.048922e-15 -7.766807
## month=sep
                                  8.048922e-15 -7.766807
## month=mar
                                  8.048922e-15 -7.766807
## f.month=Month-oct
                                  1.184930e-16 -8.284614
## month=oct
                                   1.184930e-16 -8.284614
## f.contact=f.cellular
                                   2.440539e-27 -10.831526
## contact=cellular
                                   2.440539e-27 -10.831526
## f.poutcome=f.Pout-success
                                   1.666964e-65 -17.093224
## poutcome=Pout-success
                                   1.666964e-65 -17.093224
## f.prev_contacted=Contacted
                                   1.227915e-68 -17.508783
##
## $yes
##
                                     Cla/Mod
                                               Mod/Cla
                                                           Global
## f.prev_contacted=Contacted
                                   60.679612 21.891419 4.1373770
## f.poutcome=f.Pout-success
                                   61.458333 20.665499 3.8561960
## poutcome=Pout-success
                                   61.458333 20.665499 3.8561960
## f.contact=f.cellular
                                   14.974779 83.187391 63.7075718
## contact=cellular
                                   14.974779 83.187391 63.7075718
## f.month=Month-oct
                                   49.350649 6.654991 1.5464953
## month=oct
                                  49.350649 6.654991 1.5464953
## f.month=Month-sep
                                   50.000000 5.779335 1.3255674
## f.month=Month-mar
                                   50.000000 5.779335 1.3255674
## month=sep
                                   50.000000 5.779335 1.3255674
                                             5.779335 1.3255674
## month=mar
                                   50.000000
                                             7.005254 1.9883511
## f.job=Job-student
                                  40.404040
## job=student
                                   40.404040
                                             7.005254 1.9883511
## default=no
                                  13.054564 89.667250 78.7708375
## f.jobsituation=Other
                                  15.089959 45.534151 34.6053424
                                  18.154312 21.015762 13.2757582
## f.season=Aut-Win
## f.month=Month-apr
                                   21.428571 12.084063 6.4671621
                                  21.428571 12.084063 6.4671621
## month=apr
## f.marital=f.single
                                  14.854300 36.602452 28.2586865
## marital=single
                                  14.854300 36.602452 28.2586865
## f.job=Job-retired
                                   23.118280 7.530648 3.7356899
## job=retired
                                   23.118280 7.530648 3.7356899
## f.age=f.age-[17,30]
                                  15.497738 23.992995 17.7545692
## education=Edu-university.degree 13.924051 34.676007 28.5599518
## f.age=f.age-(50,95]
                                  14.871194 22.241681 17.1520386
## f.month=Month-dec
                                   36.842105 1.225919 0.3816027
## month=dec
                                   36.842105 1.225919 0.3816027
## poutcome=Pout-failure
                                   14.663951 12.609457
                                                       9.8614180
## f.job=Job-management
                                   14.868805
                                              8.931699
                                                        6.8889335
## job=management
                                   14.868805 8.931699 6.8889335
## f.jobsituation=Self-employed
                                   8.676790 7.005254 9.2588873
## f.month=Month-jun
                                   9.146341 10.507881 13.1753364
                                   9.146341 10.507881 13.1753364
## month=jun
## f.season=Summer
                                   10.367745 40.980736 45.3303876
## f.month=Month-nov
                                   8.416834 7.355517 10.0220928
                                   8.416834 7.355517 10.0220928
## month=nov
```

```
## f.education=Mandatory
                                   10.316574 48.511384 53.9264913
## f.age=f.age-(40,50]
                                   9.069021 19.789842 25.0251054
## education=Edu-basic.9y
                                   8.190225 10.858144 15.2038562
## f.age=f.age-(30,40]
                                    9.724311 33.975482 40.0682868
## marital=married
                                   10.172300 53.765324 60.6145812
## f.marital=f.married
                                   10.142055 53.765324 60.7953404
## f.jobsituation=Worker
                                    9.695886 47.460595 56.1357702
## f.job=Job-blue-collar
                                    6.042553 12.434326 23.5991163
## job=blue-collar
                                    5.979203 12.084063 23.1773448
## default=NA
                                    5.581835 10.332750 21.2291625
## f.month=Month-may
                                    6.873879 20.140105 33.6011247
                                    6.873879 20.140105 33.6011247
## month=may
## f.contact=f.telephone
                                    5.312673 16.812609 36.2924282
## contact=telephone
                                    5.312673 16.812609 36.2924282
                                    8.868715 66.725044 86.2823860
## poutcome=NA
## f.poutcome=f.Pout-failure
                                    9.463129 79.334501 96.1438040
## f.prev_contacted=No-contacted
                                    9.344228 78.108581 95.8626230
##
                                        p.value
                                                    v.test
## f.prev_contacted=Contacted
                                   1.227915e-68 17.508783
## f.poutcome=f.Pout-success
                                   1.666964e-65 17.093224
                                   1.666964e-65 17.093224
## poutcome=Pout-success
## f.contact=f.cellular
                                   2.440539e-27 10.831526
                                   2.440539e-27 10.831526
## contact=cellular
## f.month=Month-oct
                                   1.184930e-16
                                                  8.284614
## month=oct
                                   1.184930e-16
                                                  8.284614
## f.month=Month-sep
                                   8.048922e-15
                                                  7.766807
## f.month=Month-mar
                                   8.048922e-15
                                                  7.766807
## month=sep
                                   8.048922e-15
                                                  7.766807
## month=mar
                                   8.048922e-15
                                                  7.766807
## f.job=Job-student
                                   9.483114e-14
                                                  7.447909
## job=student
                                   9.483114e-14
                                                  7.447909
## default=no
                                   4.251760e-13
                                                  7.247295
## f.jobsituation=Other
                                   9.853123e-09
                                                  5.733238
## f.season=Aut-Win
                                   4.630214e-08
                                                  5.464956
## f.month=Month-apr
                                   1.145794e-07
                                                  5.301939
## month=apr
                                   1.145794e-07
                                                  5.301939
## f.marital=f.single
                                   4.173805e-06
                                                  4.602534
## marital=single
                                   4.173805e-06
                                                  4.602534
## f.job=Job-retired
                                   4.756560e-06
                                                  4.575248
## job=retired
                                   4.756560e-06
                                                  4.575248
## f.age=f.age-[17,30]
                                   6.154673e-05
                                                  4.006801
## education=Edu-university.degree 7.167173e-04
                                                  3.383103
## f.age=f.age-(50,95]
                                   8.677261e-04
                                                  3.330235
## f.month=Month-dec
                                   4.353220e-03
                                                  2.851363
## month=dec
                                   4.353220e-03
                                                  2.851363
## poutcome=Pout-failure
                                                  2.274539
                                   2.293362e-02
## f.job=Job-management
                                   4.686185e-02
                                                  1.987547
## job=management
                                   4.686185e-02
                                                  1.987547
## f.jobsituation=Self-employed
                                   4.326162e-02 -2.021175
## f.month=Month-jun
                                   4.135002e-02
                                                 -2.040003
## month=jun
                                   4.135002e-02 -2.040003
## f.season=Summer
                                   2.628277e-02 -2.222008
## f.month=Month-nov
                                   2.035659e-02 -2.319710
## month=nov
                                   2.035659e-02 -2.319710
```

```
## f.education=Mandatory
                               5.915694e-03 -2.752418
## f.age=f.age-(40,50]
                              1.761035e-03 -3.127827
## education=Edu-basic.9y
                              1.493774e-03 -3.175890
## f.age=f.age-(30,40]
                               1.478138e-03 -3.178942
## marital=married
                               4.111959e-04 -3.532792
## f.marital=f.married
                              2.858318e-04 -3.627813
## f.jobsituation=Worker
                              9.925677e-06 -4.418786
                              1.422485e-12 -7.081844
## f.job=Job-blue-collar
## job=blue-collar
                               1.334762e-12 -7.090658
## default=NA
                              4.251760e-13 -7.247295
## f.month=Month-may
                               6.034473e-14 -7.507332
                                6.034473e-14 -7.507332
## month=may
## f.contact=f.telephone
                               2.440539e-27 -10.831526
                               2.440539e-27 -10.831526
## contact=telephone
## poutcome=NA
                                5.763783e-38 -12.880929
## f.poutcome=f.Pout-failure
                                1.666964e-65 -17.093224
## f.prev_contacted=No-contacted 1.227915e-68 -17.508783
##
## Link between the cluster variable and the quantitative variables
Eta2
                                 P-value
## duration
              0.160738690 1.169792e-191
## nr.emploved
              0.120745600 2.760101e-141
## euribor3m
                0.087576045 3.394474e-101
## emp.var.rate 0.081696867 3.070308e-94
## previous
                0.042285141 1.108497e-48
## missings
                0.030232449 4.294241e-35
## cons.price.idx 0.017977169 2.070129e-21
## cons.conf.idx 0.008055104 2.236211e-10
                0.005633367 1.143924e-07
## campaign
## outliers
                0.002285655 7.393671e-04
##
## Description of each cluster by quantitative variables
##
                    v.test Mean in category Overall mean sd in category
## nr.employed
                 24.516762
                             5177.09015426 5168.16794537
                                                          63.4164811
## euribor3m
                 20.879501
                                3.82261162
                                            3.63896766
                                                           1.6252539
## emp.var.rate
                 20.166482
                               0.26197822
                                             0.10236995
                                                           1.4608943
## missings
                 12.267727
                               2.51610708
                                            2.44004820
                                                           1.1967189
## cons.price.idx 9.459934
                             93.61071461 93.58315164
                                                           0.5520673
## campaign
                 5.295555
                               2.31459362
                                           2.27063047
                                                           1.6629733
## outliers
                -3.373128
                              0.03924682
                                           0.04277967
                                                           0.1976554
## cons.conf.idx -6.332323
                              -40.74344374 -40.59754971
                                                           4.2611089
## previous
                -14.508461
                               0.11734053
                                             0.14694311
                                                           0.3499570
## duration
                -28.287050
                              222.56442831 256.63908415
                                                         194.8113004
##
                 Overall sd
                                 p.value
## nr.employed
                71.3410455 9.788565e-133
## euribor3m
                 1.7241963 8.224659e-97
## emp.var.rate
                 1.5515130 1.928802e-90
## missings
                  1.2153909 1.349895e-34
## cons.price.idx 0.5711736 3.081386e-21
## campaign
                  1.6274493 1.186556e-07
```

```
## outliers
                    0.2053159 7.431944e-04
                    4.5165276 2.414979e-10
## cons.conf.idx
## previous
                    0.3999801 1.070970e-47
## duration
                  236.1424174 4.987506e-176
## $yes
                      v.test Mean in category Overall mean sd in category
##
                                 519.68826620
## duration
                   28.287050
                                               256.63908415
                                                                339.2762889
## previous
                   14.508461
                                   0.37546879
                                                  0.14694311
                                                                  0.6249775
## cons.conf.idx
                    6.332323
                                 -39.47127846
                                               -40.59754971
                                                                  6.0227719
## outliers
                    3.373128
                                   0.07005254
                                                  0.04277967
                                                                  0.2552355
## campaign
                                   1.93124423
                                                  2.27063047
                                                                  1.2712707
                   -5.295555
## cons.price.idx -9.459934
                                  93.37037128
                                                 93.58315164
                                                                  0.6639079
## missings
                  -12.267727
                                   1.85288967
                                                  2.44004820
                                                                  1.1981032
## emp.var.rate
                  -20.166482
                                  -1.12977233
                                                                  1.6732331
                                                  0.10236995
## euribor3m
                  -20.879501
                                   2.22127496
                                                  3.63896766
                                                                  1.8058259
## nr.employed
                  -24.516762
                                5099.29036778 5168.16794537
                                                                 89.3017729
##
                   Overall sd
                                    p.value
                  236.1424174 4.987506e-176
## duration
## previous
                    0.3999801 1.070970e-47
## cons.conf.idx
                    4.5165276 2.414979e-10
## outliers
                    0.2053159 7.431944e-04
                    1.6274493 1.186556e-07
## campaign
## cons.price.idx
                    0.5711736
                               3.081386e-21
## missings
                    1.2153909 1.349895e-34
## emp.var.rate
                    1.5515130
                              1.928802e-90
## euribor3m
                    1.7241963 8.224659e-97
## nr.employed
                   71.3410455 9.788565e-133
```

## 12 Deliverable II: PCA, CA and Clustering

#### 12.1 PCA analysis

#### 12.1.1 Eigenvalues and dominant axes analysis

```
#PCA Y analysis (11)
vfact <- names(df[c(23,25:29,31:34)])
vnum <- names(df[c(12:14,16:20)])
res.pca <- PCA(df[,vnum])
```



# Variables factor map (PCA)



res.pca <-PCA(df[,vnum], axes=c(3,4))



## Variables factor map (PCA)



#### summary(res.pca, nb.dec = 2, nbelements = 10)

```
##
## Call:
## PCA(X = df[, vnum], axes = c(3, 4))
##
##
## Eigenvalues
##
                          Dim.1 Dim.2 Dim.3
                                                Dim.4 Dim.5
                                                              Dim.6
                                                                      Dim.7
## Variance
                           3.77
                                  1.02
                                          1.01
                                                 0.95
                                                        0.74
                                                                0.48
                                                                       0.03
                          47.12
## % of var.
                                 12.74
                                        12.59
                                                11.85
                                                        9.25
                                                                6.01
                                                                       0.32
  Cumulative % of var.
                          47.12
                                 59.86
                                        72.45
                                                84.30 93.55
                                                              99.55
                                                                      99.87
##
                          Dim.8
## Variance
                           0.01
## % of var.
                           0.13
## Cumulative % of var. 100.00
##
## Individuals (the 10 first)
##
                      Dist
                             Dim.1
                                                  Dim.2
                                     ctr
                                           cos2
                                                           ctr
                                                                cos2
## 4
                              1.29
                                    0.01
                                                                0.43 | -0.06
                                          0.53 |
                                                   1.16
                                                         0.03
## 9
                              1.29
                                    0.01
                                          0.52 |
                                                         0.03
                                                                0.43 | 0.09
                      1.78 |
                                                   1.17
## 22
                      1.78 |
                              1.29
                                    0.01
                                          0.53 |
                                                   1.15
                                                         0.03
                                                                0.41 | -0.20
                                          0.53 |
## 47
                      1.78 |
                              1.29
                                    0.01
                                                   1.14
                                                         0.03
                                                                0.41 | -0.22
## 55
                              1.34
                                    0.01
                                          0.69
                                                   0.70
                                                         0.01
                                                                0.19 | -0.24
## 56
                      1.78 |
                              1.29
                                    0.01
                                          0.53
                                                   1.15
                                                         0.03
                                                                0.41 | -0.20
## 62
                      1.78 |
                              1.29
                                    0.01 0.53 |
                                                   1.15
                                                         0.03
                                                               0.42 \mid -0.16
```

```
## 71
                | 1.77 | 1.29 0.01 0.53 | 1.16 0.03 0.43 | -0.07
                | 1.78 | 1.29 0.01 0.53 | 1.15 0.03 0.41 | -0.20
## 77
## 79
                | 1.78 | 1.29 0.01 0.53 | 1.15 0.03 0.41 | -0.20
##
                 ctr cos2
                0.00 0.00 |
## 4
## 9
                0.00 0.00 |
## 22
                0.00 0.01 I
                0.00 0.02 |
## 47
## 55
                0.00 0.02 |
                0.00 0.01 |
## 56
## 62
                0.00 0.01 |
## 71
                0.00 0.00 |
## 77
                0.00 0.01 |
                0.00 0.01 |
## 79
##
## Variables
##
                 Dim.1
                                   Dim.2
                                          ctr cos2
                                                     Dim.3
                        ctr cos2
                                                            ctr cos2
## campaign
                0.14 0.54
                            0.02 | -0.73 52.04 0.53 | -0.06 0.31
                | -0.04 0.05 0.00 | 0.07 0.52 0.01 |
                                                      0.97 94.13
                                                                0.95
## pdays
## previous
                                   0.17 2.88 0.03 |
                | -0.57 8.68
                             0.33 |
                                                      0.09
                                                          0.82
## emp.var.rate
               0.98 25.52
                             0.96 | 0.02 0.05 0.00 |
                                                      0.04 0.18
                                                                0.00
## cons.price.idx | 0.77 15.83
                             0.60 | -0.01 0.01 0.00 |
                                                      0.10 0.91
## cons.conf.idx | 0.26 1.73
                             0.07 | 0.67 43.50 0.44 | -0.19
                                                           3.57
                                                                0.04
## euribor3m
                | 0.98 25.40 0.96 | 0.08 0.62 0.01 |
                                                      0.01
                                                           0.01
                ## nr.employed
## campaign
## pdays
## previous
## emp.var.rate
## cons.price.idx |
## cons.conf.idx
## euribor3m
## nr.employed
```

#Segons criteri de Khaiser realitzarem la interpretació de les 3 primeres dimensions, ja que la quarta barplot(res.pca\$eig[,1], col = "yellow", main= "Eigenvalue")

## Eigenvalue



#En canvi, interpretariem 6 dimensions per Elbow's rule ja que notem una baixada considerable en a part

### ${\bf 12.1.2} \quad {\bf Individuals \ point \ of \ view}$

```
#Individus que contribuieixen més a la dimensió 1
fviz_contrib(res.pca, choice = "ind", top = 10, fill = "yellow", axes = 1); # Dimensió 1
```



#Individus que contribuieixen més a la dimensió 2 fviz\_contrib(res.pca, choice = "ind", top = 10, fill = "yellow", axes = 2); # Dimensió 2



#Individus que contribuieixen més a la dimensió 3
fviz\_contrib(res.pca, choice = "ind", top = 10, fill = "yellow", axes = 3); # Dimensió 3



#Ara observem els individus més extrems del nostre data frame.
indiv\_out.d1<-Boxplot(res.pca\( \)indiv\_out.d1; # Dimensi\( \) 1



## NULL

## -7.760854

### #En la dimensió 1 no trobem cap extrem # Dimensió 2 indiv\_out.d2<-Boxplot(res.pca\$ind\$coord[,2]); indiv\_out.d2;</pre> ## [1] 3394 4068 4246 4099 3786 3535 3464 4264 4231 4152 4662 4641 4547 4535 ## [15] 4699 4703 4634 4615 4650 4680 q1 = quantile(res.pca\$ind\$coord[,1])[2];q1; ## 25% ## -2.222655 q3 = quantile(res.pca\$ind\$coord[,1])[4];q3; ## 75% ## 1.469477 mild.threshold.upper = (q3-q1) \* 1.5 + q3;mild.threshold.upper; ## 75% ## 7.007677 mild.threshold.lower = q1 -(q3-q1) \* 1.5;mild.threshold.lower; ## 25%

```
abline(h=c(3, -3), col = "red")
```



```
indiv_sup.d2 <- which(res.pca$ind$coord[,2] >= 3 | res.pca$ind$coord[,2] <= -3);</pre>
aux <- sort(indiv_sup.d2, decreasing= TRUE)</pre>
df[aux[1:5], vfact]
         f.season f.jobsituation f.prev_contacted
                                                     f.education f.housing
## 38839
         Aut-Win
                          Worker
                                         Contacted Non-Mandatory
                                                                       f.no
## 38782
         Aut-Win
                            Other
                                         Contacted Non-Mandatory
                                                                       f.no
## 38410
          Aut-Win
                            Other
                                      No-contacted Non-Mandatory
                                                                       f.no
          Aut-Win
## 38249
                           Worker
                                      No-contacted Non-Mandatory
                                                                       f.no
## 37357
           Summer
                            Other
                                         Contacted Non-Mandatory
                                                                       f.no
          f.marital f.loan f.contact
                                           f.day
##
                                                          f.age
## 38839
                      f.no f.cellular f.day.mon f.age-(30,40]
           f.single
## 38782
           f.single
                      f.no f.cellular f.day.thu f.age-(30,40]
                    f.yes f.cellular f.day.wed f.age-(30,40]
## 38410
           f.single
## 38249 f.divorced f.yes f.cellular f.day.tue f.age-(30,40]
## 37357
                      f.no f.cellular f.day.tue f.age-[17,30]
           f.single
#En la dimensió 2 podem veure una petita mostra que les coordenades més extremes ens apareixen en indi
```

plot.PCA(res.pca,choix=c("ind"),cex=0.95, col.ind="blue",select = "contrib 18")



```
#Dimensió 3
indiv_out.d3<-Boxplot(res.pca$ind$coord[,3]); indiv_out.d3;</pre>
## [1] 3699 4578 4901 4818 3013 3415 4651 4634 4844 4451 4547 4535 4597 4969
## [15] 4856 4853 4828 4745 4512 4510
q1 = quantile(res.pca$ind$coord[,1])[2];q1;
##
         25%
## -2.222655
q3 = quantile(res.pca$ind$coord[,1])[4];q3;
##
        75%
## 1.469477
mild.threshold.upper = (q3-q1) * 1.5 + q3;mild.threshold.upper;
##
        75%
## 7.007677
mild.threshold.lower = q1 -(q3-q1) * 1.5; mild.threshold.lower;
         25%
##
## -7.760854
abline(h=c(mild.threshold.upper, -5), col = "red")
```



```
indiv_sup.d3 <- which(res.pca$ind$coord[,3] >= mild.threshold.upper | res.pca$ind$coord[,3] <= -5);
aux <- sort(indiv_sup.d3, decreasing= TRUE)</pre>
df[aux[1:7], vfact]
##
         f.season f.jobsituation f.prev_contacted
                                                     f.education f.housing
## 41089
         Aut-Win
                           Other
                                         Contacted
                                                        Mandatory
                                                                      f.yes
## 40481
           Summer
                           Worker
                                         Contacted Non-Mandatory
                                                                      f.yes
## 40227
           Summer
                           Worker
                                         Contacted
                                                       Mandatory
                                                                      f.yes
## 40068
                           Other
                                         Contacted
           Summer
                                                            Other
                                                                      f.yes
## 40049
           Summer
                           Other
                                         Contacted
                                                       Mandatory
                                                                      f.yes
## 39984
           Summer
                   Self-employed
                                         Contacted
                                                       Mandatory
                                                                       f.no
  39868
           Summer
                                         Contacted
                                                       Mandatory
                                                                      f.yes
##
         f.marital f.loan
                            f.contact
                                           f.day
                                                          f.age
                     f.no f.telephone f.day.tue f.age-[17,30]
## 41089 f.single
                     f.no f.cellular f.day.thu f.age-(50,95]
## 40481 f.married
## 40227 f.single
                           f.cellular f.day.thu f.age-[17,30]
                     f.no
## 40068 f.single
                     f.no
                           f.cellular f.day.thu f.age-[17,30]
                           f.cellular f.day.tue f.age-(40,50]
## 40049 f.married
                    f.yes
## 39984 f.married
                     f.no
                           f.cellular f.day.tue f.age-(30,40]
                     f.no f.cellular f.day.tue f.age-[17,30]
## 39868 f.married
#En la dimensió 3 en canvi podem veure que les coordenades més extremes ens apareixen en individus amb
plot.PCA(res.pca,choix=c("ind"),cex=0.95, col.ind="blue",select = "contrib 18", axes = 3:4)
```



#Tornem a realitzar el calcul dels PCA ara tenint en compte que els nostres individus considerats outli
newres.pca <- PCA(df[,vnum], ind.sup = c(indiv\_sup.d2, indiv\_sup.d3))</pre>



## **Variables factor map (PCA)**



#Podem veure que en utilizar els otuliers indivius com a individus suplmenetaris els eigenvalues canvie
summary(newres.pca, nb.dec = 2, nbelements = 10)

```
##
## Call:
## PCA(X = df[, vnum], ind.sup = c(indiv_sup.d2, indiv_sup.d3))
##
##
## Eigenvalues
##
                          Dim.1 Dim.2
                                        Dim.3
                                               Dim.4
                                                     Dim.5
                                                              Dim.6
                                                                     Dim.7
## Variance
                          3.77
                                  1.06
                                         0.98
                                                0.91
                                                        0.75
                                                               0.48
                                                                      0.03
                                        12.29
                                                               6.04
## % of var.
                          47.14 13.30
                                               11.37
                                                        9.40
                                                                      0.32
## Cumulative % of var.
                         47.14
                                 60.44
                                       72.73 84.10 93.50 99.55
##
                          Dim.8
## Variance
                           0.01
## % of var.
                           0.13
## Cumulative % of var. 100.00
##
## Individuals (the 10 first)
##
                             Dim.1
                                         cos2
                                                  Dim.2
                                                          ctr
## 4
                              1.27
                                    0.01
                                          0.51 |
                                                  0.45
                                                         0.00
                                                               0.06 | -1.02
## 9
                              1.27
                     1.79 |
                                    0.01
                                          0.51 |
                                                  0.26
                                                         0.00
                                                               0.02 \mid -1.04
## 22
                     1.78 |
                              1.26
                                    0.01
                                          0.50 |
                                                  0.63
                                                         0.01
                                                               0.13 | -0.99
                              1.26
                                    0.01
                                          0.50
                                                  0.65
                                                         0.01
## 55
                     1.60 |
                                   0.01 0.67 |
                                                  0.65
                                                        0.01
                                                               0.17 | -0.36
                              1.31
```

```
## 56
                     1.78
                              1.26 0.01 0.50 |
                                                   0.63 0.01
                                                                0.13 | -0.99
## 62
                              1.26
                                    0.01
                                           0.51 |
                                                   0.58
                                                         0.01
                                                                0.11 \mid -1.00
                      1.77 l
## 71
                              1.26
                                    0.01
                                           0.51 |
                                                   0.46
                                                          0.00
                                                                0.07 | -1.02
## 77
                              1.26
                                    0.01
                                           0.50
                                                   0.63
                                                          0.01
                                                                0.13 | -0.99
                      1.78
                                                ##
   79
                      1.78
                              1.26
                                    0.01
                                          0.50 |
                                                   0.63
                                                         0.01
                                                                0.13 | -0.99
##
                     ctr
                          cos2
## 4
                    0.02
                          0.33 l
                    0.02
                          0.34
## 9
## 22
                    0.02
                          0.31
## 47
                    0.02
                          0.31
## 55
                    0.00
                          0.05
## 56
                    0.02 0.31 |
                    0.02 0.32 l
## 62
## 71
                    0.02 0.33 |
## 77
                    0.02 0.31 |
## 79
                    0.02 0.31 |
##
## Supplementary individuals (the 10 first)
##
                                                                  cos2
                      Dist
                             Dim.1
                                    cos2
                                                           Dim.3
                                            Dim.2
                                                   cos2
## 9951
                     4.84 l
                              2.23
                                    0.21 | -0.02
                                                   0.00
                                                            4.20
                                                                  0.76 I
                                                   0.00 |
## 10574
                      4.83 l
                              2.23
                                    0.21 | -0.15
                                                            4.18
                                                                  0.75
## 10825
                      4.83 |
                              2.23
                                    0.21 | -0.07
                                                   0.00 |
## 11050
                      4.84 |
                              2.23
                                    0.21 | -0.02
                                                   0.00
                                                            4.20
                                                                  0.76
## 12452
                      4.64
                              1.82
                                    0.15 \mid -0.13
                                                   0.00
                                                            4.26
                                                                  0.84
                   Ι
                                                        ## 15324
                      4.63 |
                              1.82
                                                            4.24
                                    0.15 \mid -0.27
                                                   0.00 |
                                                                  0.84
## 16243
                      4.64 l
                              1.82
                                    0.15 | -0.10
                                                   0.00
                                                            4.26
                                                                  0.84
## 18119
                      4.64
                              1.82
                                    0.15
                                         | -0.09
                                                   0.00
                                                            4.26
                                                                  0.84
                                                        -
## 18738
                      4.63
                              1.82
                                    0.15 \mid -0.22
                                                   0.00
                                                            4.24
                                                                  0.84
                              0.35
                                             0.00
                                                   0.00 |
## 27663
                      4.45 |
                                    0.01 |
                                                            4.31
                                                                  0.94 |
##
## Variables
##
                     Dim.1
                             ctr
                                  cos2
                                          Dim.2
                                                  ctr
                                                       cos2
                                                               Dim.3
                                                                       ctr
                                                                             cos2
## campaign
                      0.16
                            0.70
                                  0.03 |
                                          0.02
                                                0.06
                                                       0.00 |
                                                                0.97 95.39
                            0.12
                                  0.00 | -0.79 58.58
## pdays
                      0.07
                                                       0.62 | -0.11
                                                                      1.13
## previous
                   -0.56
                            8.39
                                  0.32
                                           0.21
                                                 4.13
                                                       0.04
                                                                0.02
                                                                      0.03
                      0.98 25.49
                                  0.96 I
                                           0.01
                                                 0.02
                                                       0.00 \mid -0.02
                                                                      0.06
## emp.var.rate
                                                                            0.00
## cons.price.idx |
                      0.77 15.87
                                   0.60 | -0.04
                                                 0.15
                                                       0.00 | -0.02
## cons.conf.idx
                      0.27
                            1.90
                                  0.07 |
                                           0.62 36.41
                                                       0.39 | -0.17
                                                                      3.08
                                                                            0.03
## euribor3m
                      0.98 25.37
                                  0.96
                                       -1
                                          0.07
                                                 0.40
                                                       0.00 | -0.05
                                                                      0.26
                                                                             0.00
                   ## nr.employed
                      0.91 22.16
                                 0.84 | -0.05 0.24
                                                      0.00 | 0.00
                                                                      0.00
                   ##
## campaign
## pdays
## previous
## emp.var.rate
## cons.price.idx
## cons.conf.idx
## euribor3m
## nr.employed
```

### 12.1.3 Interpreting the axes

 $\hbox{\it\#Comprovem de manera m\'es exhaustiva quines variables afecten m\'es als diferents eixos.}$ 

```
## $Dim.1$quanti
##
                 correlation
                                   p.value
0.97805412 0.000000e+00

## nr.employed 0.91405151 0.000

## co-
                 0.98049415 0.000000e+00
## cons.price.idx 0.77352829 0.000000e+00
## cons.conf.idx 0.26799918 1.557909e-81
                 0.16290029 1.506009e-30
## campaign
## pdays
                 0.06603261 3.641267e-06
## previous
                 -0.56248739 0.000000e+00
##
##
## $Dim.2
## $Dim.2$quanti
                 correlation
                                  p.value
## cons.conf.idx 0.62247943 0.000000e+00
## previous
                 0.20972163 6.242514e-50
             0.06518106 4.853424e-06
## euribor3m
## cons.price.idx -0.04039870 4.636959e-03
## nr.employed -0.05103148 3.472055e-04
                 -0.78955218 0.000000e+00
## pdays
##
##
## $Dim.3
## $Dim.3$quanti
                correlation
                                 p.value
                0.96854829 0.000000e+00
## campaign
## euribor3m
                -0.05087184 3.623859e-04
                -0.10532598 1.371656e-13
## pdays
## cons.conf.idx -0.17391113 1.207461e-34
#Pel que fa a la primera dimensió, les variables socioeconòmiques son les que ens mostren una major coo
#Pel que fa a la segona dimensió, el més destacable és la relació inversament proporcional que el sego
#En canvi el tercer eix de dimensions està altament relacionat amb el numero de vegades que un clientha
```

dimdesc(newres.pca, axes = 1:3)

## \$Dim.1