Modellazione e Valutazione degli Impianti di Elaborazione

Esame del 21 luglio 2005

I GRUPPO

Cognome e nome dello studente	

Esercizio N. 1 (7 punti)

Calcolare l'affidabilità, la disponibilità e la sicurezza di un sistema di elaborazione costituito da tre CPU (che lavorano in parallelo e la cui uscita è data da un voter), da un sistema di memorizzazione RAID 2 avente quattro dischi di informazione, da due bus di sistema (che lavorano in parallelo e le cui uscite è data da un voter), da una tastiera, una stampante ed un video, ipotizzando che i guasti si presentino con una distribuzione di tipo esponenziale con rate pari a λ_{CPU} , λ_{DISK} , λ_{BUS} , λ_{TAS} , λ_{VID} , λ_{STAM} , $\lambda_{\text{VOTER-CPU}}$, λ_{DISK} e con fattore di copertura pari a c_{CPU} , c_{DISK} , c_{BUS} , c_{TAS} , c_{VID} , c_{STAM} , $c_{\text{VOTER-CPU}}$, $c_{\text{CVOTER-CPU}}$,

Esercizio N. 2 (3 punti)

Calcolare il service time di un disco con "Random workload"

Esercizio N. 3 (5 punti)

Descrivere l'algoritmo risolutivo del MVA nel caso di reti chiuse – singola classe – partendo dalle equazioni fondamentali e dal teorema degli arrivi (arrival theorem).

Esercizio N. 4 (15 punti)

Un sito Web riceve 100 richieste al secondo. Queste richieste sono servite da un cluster costituito da 20 server identici. Un bilanciatore del carico distribuisce equamente il carico tra i vari server. Ogni richiesta richiede 10 msec di CPU e richiede 6 letture al disco, il tempo per ogni lettura è pari a 10 msec. Ogni server può gestire fino ad un massimo di 5 utenti contemporaneamente. Qual'è il tempo medio di servizio delle richieste e il throughput? Qual'è la frazione delle richieste che viene rifiutata? Che incremento di prestazioni si avrebbe se il disco fosse fornito di una memoria cache e se la probabilità di hit sulla memoria cache fosse del 30% e il tempo per ogni lettura fosse di 0,1 msec (ipotizzando che il tempo di verifica del dato sulla memoria cache sia nullo)?

Modellazione e Valutazione degli Impianti di Elaborazione

Esame del 21 luglio 2005

II GRUPPO

Cognome e nome dello studente	

Esercizio N. 1 (7 punti)

Calcolare l'affidabilità, la disponibilità e la sicurezza di un sistema di elaborazione costituito da due CPU (che lavorano in parallelo e la cui uscita è data da un voter), da un sistema di memorizzazione RAID 2 avente quattro dischi di informazione, da tre bus di sistema (che lavorano in parallelo e le cui uscite è data da un voter), da una tastiera, una stampante ed un video, ipotizzando che i guasti si presentino con una distribuzione di tipo esponenziale con rate pari a λ_{CPU} , λ_{DISK} , λ_{BUS} , λ_{TAS} , λ_{VID} , λ_{STAM} , $\lambda_{\text{VOTER-CPU}}$, $\lambda_{\text{CVOTER-CPU}}$, $C_{\text{VOTER-CPU}}$, $C_{\text{VOTER-CPU}}$,

Esercizio N. 2 (5 punti)

Descrivere l'algoritmo risolutivo del MVA nel caso di reti chiuse – singola classe – partendo dalle equazioni fondamentali e dal teorema degli arrivi (arrival theorem).

Esercizio N. 3 (3 punti)

Calcolare il service time di un disco con "Random workload"

Esercizio N. 4 (15 punti)

Un sito Web riceve 200 richieste al secondo. Queste richieste sono servite da un cluster costituito da 40 server identici. Un bilanciatore del carico distribuisce equamente il carico tra i vari server. Ogni richiesta richiede 20 msec di CPU e richiede 8 letture al disco, il tempo per ogni lettura è pari a 10 msec. Ogni server può gestire fino ad un massimo di 6 utenti contemporaneamente. Qual'è il tempo medio di servizio delle richieste e il throughput? Qual'è la frazione delle richieste che viene rifiutata? Che incremento di prestazioni si avrebbe se il disco fosse fornito di una memoria cache e se la probabilità di hit sulla memoria cache fosse del 40% e il tempo per ogni lettura fosse di 0,1 msec (ipotizzando che il tempo di verifica del dato sulla memoria cache sia nullo)?