臺北區 109 學年度第二學期 指定科目第二次模擬考試

物理考科

一作答注意事項—

考試範圍:基礎物理(一)、基礎物理(二)B(上)(下)、

選修物理(上)(下)

考試時間:80分鐘

作答方式:

選擇題用2B鉛筆在「答案卡」上作答;更正時, 應以橡皮擦擦拭,切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案 卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(占80分)

一、單選題(占60分)

說明:第1.題至第20.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

1. 少年偵探團有天去泡溫泉,忽然發生地震,柯南在 17:25:30 感受到 P 波,並在 17:26:30 感受到 S 波,他立刻打電話詢問在毛利家的狀況,發現 P 波到達毛利家的時間是 17:29:30。已知 P 波、S 波的傳遞時間對距離之關係如圖 1 所示,請問下列何者約為 S 波抵達毛利家的時間?

(A) 17:32:00

(B) 17:32:30

(C) 17:33:00

(D) 17 : 33 : 30

(E) 17:34:00

- 2. 若在水平地面上,將各物體於同一起點以不同的初速度作斜向拋射,並在拋出後經相同的時間返回地面,則下列關於各物體之物理量有幾項是相同的?
 - 闸 初速度的鉛直分量
- (乙) 初速度的水平分量

- (丁) 飛行時的速度變化
- (成) 飛行時的最大高度

- (A)皆不相同
- (B) 2 項相同
- (C) 3 項相同
- (D) 4 項相同
- (E) 皆相同
- 3. 將質量分別為 *m*、2*m*、3*m* 的三個物體置於水平桌面做牛頓第二運動定律實驗,若三物體與 桌面間的摩擦係數相同,當施以作用力,並分別量測加速度量值後作圖,下列何者可能為 三物體的作用力對加速度之合理關係圖?

- 4. 質量相同的甲、乙兩球分別以 $10 \, \text{m/s}$ 與 $5 \, \text{m/s}$ 之速度相向而行並作正面彈性碰撞,碰撞 過程,甲球所受的衝量量值為 $45 \, \text{N·s}$,則下列何者為乙球的質量?
 - (A) 9 kg
 - (B) 5 kg
 - (C) 3 kg
 - (D) 2 kg
 - (E) 1 kg
- 5. 一質量為m的木塊隨彈簧於光滑平面作振幅為R、端點為A與C的簡諧運動,圖2為簡諧運動的示意圖,則下列關於此木塊的運動描述何者正確?

- (A)木塊由 A 到 B 的過程中,彈簧回復力向右且逐漸增加
- (B)木塊由 B 到 C 的過程中,彈簧回復力向右且逐漸增加
- (C)木塊由 C 到 B 的過程中,木塊的速度方向向左且量值逐漸減少
- (D)振幅 R 愈大,木塊由端點 A 運動至端點 C 所需的時間愈長
- (E)質量 m 愈大,木塊由端點 A 運動至端點 C 所需的時間愈長
- 6. 劍湖山世界主題樂園內的遊樂設施「天女散花」,是以繩索、圓環連結座椅,並繞著中央的轉軸旋轉,如圖3所示。若不考慮空氣阻力,觀察其中一個座椅,下列敘述何者正確?

- A)轉速與繩索及鉛直線間的夾角大小無關
- (B)當轉速固定,繩索愈長,座椅的速率愈小
- (C)當轉速固定,繩索長度與座椅的速率無關
- (D)當轉速固定,繩索與鉛直線間的夾角會隨時間逐漸減少
- (E)當轉速固定,繩索張力的鉛直分量之量值與方向皆固定不變
- 7. 圖 4 為一輸送帶裝置的示意圖,其中 A 輪為有動力的主動輪, B 輪為無動力的被動輪。A 輪受外力轉動後,藉由皮帶帶動 B 輪隨之轉動,圖中的箭頭表示 A 輪旋轉的方向。關於輸送帶與貨物所受的摩擦力方向及運動方向,下列敘述何者正確?

- (A)貨物的運動方向向右
- (B) A 輪所受摩擦力的方向與 A 輪轉動方向相同
- (C) B 輪所受摩擦力的方向與 B 輪轉動方向相反
- (D)若貨物與輸送帶以相同的速度等速移動,則貨物受到與運動方向相同的靜摩擦力
- (E)若貨物移動速度較輸送帶慢,則貨物受到與運動方向相同的動摩擦力

物理考科

共 9 頁

8. 如圖 5,在光滑地面上, $A \times B$ 兩木塊互相接觸但不黏合。已知 $m_A = 10 \text{ kg} \times m_B = 5 \text{ kg}$,兩木塊間靜摩擦係數為 $0.5 \times m_B = 5 \text{ kg}$,兩木塊間靜摩擦係數為 $0.5 \times m_B = 5 \text{ kg}$,兩木塊間靜摩擦係數為 $0.5 \times m_B = 5 \text{ kg}$,一次 $0.4 \times m_B = 10 \text{ m/s}^2$,並忽略其他阻力。欲持續施以最小外力使 $0.4 \times m_B = 10 \text{ m/s}^2$,並忽略其他阻力。欲持續施以最小外力使 $0.4 \times m_B = 10 \text{ kg}$,则下列敘述何者正確?

- (A) A、B之間的摩擦力為動摩擦力
- (B) A、B 之間的正向力為 50 N
- (C)必須施予的最小外力為 300 N
- (D) B 木塊所受的重力及摩擦力互為作用力與反作用力
- (E)若速度夠大,B木塊有可能在等速運動的情況不向下滑落
- 9. 圖 6 為一彗星繞太陽運動的軌道示意圖,則下列敘述何者正確?
 - (A) A → B → C 的過程重力作負功
 - (B) D \rightarrow A \rightarrow B 與 B \rightarrow C \rightarrow D 所需的時間相同
 - (C)彗星繞行的過程作等速率運動
 - (D)若以 A 為參考點, 彗星繞日的過程角動量守恆
 - (E)若 A、C 的距離為 2 天文單位,則此彗星繞日的週期大於一年

- 10. 線形水波在深淺不同的兩區傳播,所得波前的外觀如圖 7 所示,下列敘述何者正確?
 - (A)水波行進方向由右上傳入左下,由深水區進入淺水區
 - (B)水波行進方向由右上傳入左下,由淺水區進入深水區
 - (C)水波行進方向由左上傳入右下,由深水區進入淺水區
 - (D)水波行進方向由左上傳入右下,由淺水區進入深水區
 - (E)水波的折射只會出現入射波、折射波,不可能出現圖 7 三種不同方向的波前

11. 一個厚度不可忽略、內邊長為 20 cm 的正方形玻璃魚缸,將其內裝滿水,側視圖如圖 8 所示。今在魚缸左側外部距離頂端 10 cm 處的位置,利用雷射筆射入一束光,θ為雷射筆與水平面的夾角,則當 θ由 0°慢慢增加至 90°的過程中,若只考慮折射光徑,光束會在哪個界面上發生全反射?(a、d 為空氣與玻璃的交界面,b、c 為水與玻璃的交界面,e 為水與空氣的交界面;

令空氣的折射率為1,水的折射率為 $\frac{4}{3}$,玻璃的折射率為 $\frac{3}{2}$)

- (A) 雷射光直接在 a 界面發生全反射,不會射向其他界面
- (B)雷射光會在 b、d、e 界面發生全反射
- (C)雷射光會在 b、d 界面發生全反射
- (D)雷射光會在 b、e 界面發生全反射
- (E) 雷射光只會在 e 界面發生全反射

12. 某生欲以兩縫間距為 1.50 mm 之雙狹縫來測知另一單狹縫的縫寬,但因為他手頭上沒有任何測量長度的工具,所以他採取以下作法來推算單狹縫的縫寬:當雷射光垂直入射雙狹縫後,調整一個適當的屏幕距離,可得到圖 9 闸圖的干涉條紋,

他選擇在屏幕上對稱的兩個暗紋位置做標記,兩標記處內有9個完整的亮帶。標記完後, 在所有器材與實驗設置不變的情況下,僅將雙狹縫更換為單狹縫,得到圖9公圖的繞射條 紋,發現第一亮帶中線剛好落在標記處的位置,則單狹縫的縫寬應為下列何者?

- (A) 0.15 mm
- (B) 0.50 mm
- (C) 0.75 mm
- (D) 1.00 mm
- (E)資訊不足,無法判定
- 13. 空間中有一帶電量為+2Q 的空心導體球,球體的內表面與外表面均為球面,其內徑為2R、外徑為4R,且球心在同一點上,如圖10 所示。今將一電量為+Q 的點電荷放置於球心處,則距離球心5R 處的電場量值為下列何者?(庫侖常數為k)

(A) 0

(B) $\frac{3kQ}{25R}$

(C) $\frac{kQ}{25R^2}$

(D) $\frac{3kQ}{25R^2}$

- (E) $\frac{3kQ}{R^2}$
- 14. 將一粗細均勻的電阻線圍成正方形線圈,並置於有邊界的均勻磁場中,磁場方向為入紙面並垂直線圈平面,磁場之邊界也與正方形線圈的四邊平行。現以相同的速率 v 將線圈沿四個不同方向平移離開磁場區域,如圖 11 (甲至(丁)圖所示。移出過程中,線圈上 A、B 兩點的電壓量值,下列何者最大?

- (A)(甲)
- $(\mathbf{B})(\mathbb{Z})$
- (C)(丙)
- (D)(1)
- (E)四個方向的電壓量值一樣大

- 共 9 頁
- 15. 將原本靜止的電子束經電位差加速而使其運動,並以此電子束做晶格繞射實驗,同時也以 波長為 0.1 埃之 X 射線做相同的晶格繞射實驗。若希望兩繞射圖形紋路相同,則加速此電 子束的電位差應約為多少伏特?
 - (A) 15000
 - (B) 10000
 - (C) 7000
 - (D) 5000
 - (E) 2000
- 16. 將一質量為m、帶電量為e的電子垂直射入一均勻磁場中,當磁場量值為B時,電子作半徑r的圓周運動,若希望電子的物質波形成駐波,且普朗克常數為h,則此圓周運動半徑的最小值為下列何者?
 - (A) $\frac{h}{2\pi eB}$
 - $(B) \ \frac{2\pi eB}{h}$
 - (C) $\sqrt{\frac{h}{2\pi eB}}$
 - (D) $\sqrt{\frac{2\pi eB}{h}}$
 - (E) $\left(\frac{h}{2\pi eB}\right)^{\frac{1}{3}}$
- 17. 依照<u>波耳</u>氫原子結構理論,當電子從半徑為 4r 的軌道躍遷到半徑為 r 的軌道時,關於氫原子能量的變化,下列敘述何者正確?
 - (A)電位能減少,動能減少
 - (B)電位能增加,動能增加
 - (C)電位能的減少量等於動能的增加量
 - (D)電位能的減少量大於動能的增加量
 - (E)電位能的減少量小於動能的增加量
- 18. 若先後以各種不同波長的光照射於某一種未知金屬, 並逐一測出該波長 λ 之截止電壓 V 後,記錄於表 1。 根據表 1,下列何者約為此金屬的底限波長?

表 1

λ(埃)	2200	1550	1240	830
V(伏特)	0.73	3.1	5.1	10.0

- (A) 830 埃
- (B) 1265 埃
- (C) 2530 埃
- (D) 4200 埃
- (E) 5550 埃

- 19. 一顆質量為 16 g 的純銅子彈,以 210 m / s 之速度垂直打入地面上的一個 0℃ 之大冰塊中,若子彈打入冰塊前的溫度為 200℃,且子彈入射後靜止於冰塊中並降溫至 0℃,在不考慮空氣及地面吸、放熱的情況下,子彈入射過程中約有多少質量的冰會融化成水?〔銅的比熱為 0.09 cal / (g \cdot ℃),冰的熔化熱為 80 cal / g,熱功當量為 4.2 J / cal 〕
 - (A) 4.7 g
 - (B) 8.0 g
 - (C) 13.6 g
 - (D) 36.1 g
 - (E) 42.0 g
- 20. 將 $A \times B$ 兩種不同的單原子氣體於一絕熱系統內混合,若混合前, $A \times B$ 兩氣體的溫度分別 為 $T_A \times T_B$,混合後的溫度為 T,則兩氣體的莫耳數比 $n_A : n_B$ 為下列何者?
 - (A) $\frac{T-T_{\rm B}}{T_{\rm A}\!-T}$
 - (B) $\frac{T_{\rm A} + T_{\rm B}}{T}$
 - (C) $\frac{T_{\rm B}}{T_{\rm A}}$
 - (D) $\frac{T_{\rm A}}{T_{\rm B}}$
 - (E) $\frac{T\!-T_{\rm B}}{T\!-T_{\rm A}}$

二、多選題(占20分)

說明:第21.題至第24.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得5分; 答錯1個選項者,得3分;答錯2個選項者,得1分;答錯多於2個選項或所有選項 均未作答者,該題以零分計算。

- 21. 如圖 12,質量為 m 的小球隨擺長 L 之單擺作擺角 θ 的週期性運動,若不考慮空氣阻力,且重力加速度以 g 表示,則下列敘述哪些正確?
 - (A)從 A 點到 B 點的過程,繩張力作功為零
 - (B)從 A 點到 B 點的過程,重力作正功,動能增加
 - (C) B 點的速率為 $\sqrt{2gL(1-\cos\theta)}$
 - (D) B 點的繩張力量值為 $2mg(1-\cos\theta)$
 - (E) C 點的切向加速度為零

9 頁

共

22. 聲音不只能用聽的,也能呈現美麗的幾何圖形!音樂家<u>克拉尼</u>在正方形金屬板上鋪了一層 薄薄的細沙,如圖 13;然後以小提琴的弓沿著板邊緣之單一位置來回拉動,讓金屬板振動, 如圖 14,這時除了能聽到特定音頻的聲音外,還可發現部分如 a 位置的沙粒會劇烈跳動, 但跳動到某些如 b 位置時就會趨於靜止,使這些細沙最終排列成獨特的圖案(白色線條為 趨於靜止的沙粒排成圖案);他也注意到當拉弓的位置改變,可以聽到不同的音頻,也會 產生明顯不同的圖形,如圖 15;這就是著名的<u>克拉尼</u>圖形。請根據上文與所學判斷,下列 敘述哪些正確?

(A)像 b 位置的沙粒會趨於靜止,是因為那些位置金屬板的摩擦力較大

- (B)像 b 位置的沙粒會趨於靜止,是因為金屬板上產生駐波,而 b 位置為節點
- (C)像 a 位置的沙粒會劇烈跳動,是因為拉弦的力量夠大,可以使 a 處沙粒跳動
- (D)圖 14 中原本在黑色區域的沙粒都會劇烈跳動,是因為這些位置都是駐波的腹點
- (E)產生圖 15 聽到的音頻應該會比圖 14 聽到的音頻高
- 23. 如圖 16 所示,質量為 4×10^{-4} 公斤、電量為 $+2\times10^{-4}$ 庫侖之理想 絕緣小球放在絕緣的水平面上,小球與水平面間的動摩擦係數為 0.1。今施加量值為 4 伏特 / 公尺、方向水平向右的均勻電場 E , 及量值為 4 特斯拉、方向出紙面的均勻磁場 B ,使小球從靜止開始運動。下列關於小球運動過程的敘述,哪些正確?(令重力加速度 g=10 公尺 / 秒 2)

- (A)最大加速度量值為1公尺/秒²
- (B)施予小球的磁力量值逐漸變大,且方向向上
- (C)施予小球的動摩擦力量值與運動速率無關
- (D)小球最大速率為5公尺/秒
- (E)小球最後會停下來
- 24. 有關人類文明的科學發展,對於特定科學家提出的理論及貢獻,下列敘述哪些符合史實? (A)哥白尼利用觀察木星的衛星,證明地心說的理論不合理之處
 - (B)<u>馬克士威</u>將電學與磁學以數學式整合成電磁波理論,為光的波動性提出一個合理之理論
 - (C) 普朗克提出量子論,成功解釋黑體輻射實驗結果,而電磁波的理論無法解釋這個實驗
 - (D)德布羅意提出物質波的理論,並成功解釋高速的電子具有干涉現象
 - (E) <u>湯姆森</u>利用陰極射線管的實驗,推論原子內具有帶負電的粒子,其中電子會繞著原子核 旋轉

第貳部分:非選擇題(占20分)

說明:本部分共有兩大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號(1.、2.、……),若因字跡潦草、未標示題號、標錯題號等原因,致評卷 人員無法清楚辨識,其後果由考生自行承擔。作答時不必抄題,但必須寫出計算過程 或理由,否則將酌予扣分。作答使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。 每一子題配分標於題末。

一、將甲電池與電阻為R的電阻器、理想伏特計 \odot 、理想安培計 \odot 連接成電路,如圖17所示,並設此時伏特計與安培計的讀數分別為 V_1 與 I_1 。若在電路中移除安培計並多連接一個乙電池,且已知甲、乙兩電池為完全相同的電池,設此時伏特計的讀數為 V_2 ,如圖18所示。

- 1. 若設兩電池的電動勢均為 ε ,試求出圖 17 電路中的電池內電阻 r。(答案以 ε 、 V_1 、 I_1 表示)(3 分)
- 2. 若設兩電池的電動勢均為 ε ,電阻器的電阻值為 R,試求出圖 18 電路中的電池內電阻 r。(答案以 ε 、R、 V_2 表示)(3 分)
- 3. 若已知上述測量結果中, I_1 =0.250 安培, V_1 =2.875 伏特, V_2 =2.760 伏特,則電池的電動勢為若干伏特?(4分)

9 頁

共

二、某生進行以下實驗來測量一個凸透鏡未知的焦距:將光源 A、光源屏 B、薄凸透鏡 C、孔徑光闌 D、像屏 E 等依序水平排列,如圖 19 所示。該生調整好 A、B 的位置之後,在後續實驗過程中即保持固定不變;並在每次改變 C、D 的位置時,保持 C、D 的距離不變;接著調整 E 的位置,直到在像屏 E 上清楚看到 B 的影像。某生將 C、D 的位置改變 3 次,分別測量對應的物距與像距,並將其倒數記錄於表 2。

	农工			
次序	物距倒數	像距倒數		
-X //	(cm^{-1})	(cm^{-1})		
1	0.0500	0.0300		
2	0.0200	0.0600		
3	0.0160			

主つ

- 1. 該生應分別測量 $A \cdot B \cdot C \cdot D \cdot E$ 之中哪兩個裝置間的距離,才能測得物距與像距? (2分)
- 2. 該生測得的第 3 次數據紀錄受到汙損,無法辨認記錄所得像距倒數,請幫該生找出該 次數據最可能的數值。(4分)
- 3. 該生在某次實驗時發現,當 BE 相距 90 cm 時,像屏上有放大的像,若此時該生將 CD 同時向右移動 10 cm,並希望找到新的像距,該生需要將像屏向什麼方向移動(請填向左或向右),並移動多少 cm?(4分)

物理考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(D)	(C)	(B)	(C)	(E)	(E)	(E)	(C)	(A)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(B)	(E)	(B)	(D)	(B)	(A)	(C)	(D)	(C)
題號	19.	20.	21.	22.	23.	24.			
答案	(A)	(A)	(A)(B)(C)	(B)(E)	(A)(D)	(B)(C)			

第壹部分:選擇題

一、單選題

1. (D)

出處:基礎物理(二) B 上 運動學——直線運動

目標:直接運用基本觀念、方法與原理的能力

內容:利用圖表閱讀與直線運動的知識,預測可能

發生的時間

解析:由P波之時間對距離關係圖可知兩地相距2000 公里,再由S波之時間對距離關係圖推斷傳 遞 2000 公里需要的時間約為 7 分鐘,因此抵 達的時間約為 17:33:30。

2. (C)

出處:基礎物理(二)B上 運動學——平面運動

目標:分析過程,找出相關數量之間關係的能力

內容:找到平面運動物理量之間的關係,並加以比

較分析

解析:水平地面上斜向拋射的總飛行時間為

 $T = \frac{2v_0 \sin \theta}{1}$,且在已知時間相同的情況下,

 ν_0 不同,則拋射角 θ 不同。

- (P) T相同,則 $v_{\perp}=v_{0}\sin\theta$ 相同。
- $(Z) v_{\parallel} = v_0 \cos \theta$ 不同。
- (R) 如前述, 拋射時的仰角 θ 不同。
- (T) 飛行時水平方向速度變化為零,鉛直方向 速度變化皆為

$$\Delta v_{\perp} = v_0 \sin \theta (\downarrow) - v_0 \sin \theta (\uparrow)$$
$$= 2v_0 \sin \theta (\downarrow)$$

(成) 最大高度皆為 $H = \frac{(v_0 \sin \theta)^2}{2}$

相同的物理量共有3項,分別為(甲)、(丁)、(成)。

3. (B)

出處:基礎物理(二)B上 牛頓運動定律

目標:分析過程,找出相關數量之間關係的能力

內容:正確畫出力圖後,觀察力對加速度的函數圖形

解析:右圖為質量 m 的物體力 a(加速度) 圖,物體恰要啟動時, F(作用力)所受的合力為 f(摩擦力) $F-f_{s (max)} = ma$

故 $F = ma + f_{s(max)}$: 圖形以質量 m 為斜率、

f_{s (max)} 為截距

又 $f_{s(max)} = \mu_s N = \mu_s mg$: 截距將與質量 m 呈正比 故選(B)。

4. (C)

出處:基礎物理(二)B下 碰撞

目標:直接運用基本觀念、方法與原理的能力

內容:利用衝量一動量定理、彈性碰撞的質量特例 及作用力與反作用力的概念求得碰撞體的質量

解析: $10 \,\mathrm{m/s} - 5 \,\mathrm{m/s}$ -5m/s 10m/s

て` 碰撞後

碰撞前

已知質量相同的兩球作正面彈性碰撞,碰撞 後,兩碰撞體的速度互換。

如上圖,若令碰撞前碰撞體的速度各為:

 $\overrightarrow{v}_{\parallel} = 10 \text{ m/s} \cdot \overrightarrow{v}_{z} = -5 \text{ m/s}$

則碰撞後碰撞體的速度各為:

 $\overline{v}_{\parallel}' = -5 \text{ m/s} \cdot \overline{v}_{\text{Z}}' = 10 \text{ m/s}$

已知甲球所受衝量量值為 45 N·s,故

 $|\overrightarrow{J}_{\mathbb{H}}| = |\overrightarrow{\Delta p}_{\mathbb{H}}| = |m_{\mathbb{H}}(\overrightarrow{v}_{\mathbb{H}}' - \overrightarrow{v}_{\mathbb{H}})|$ $\Rightarrow 45 = \mid m_{\mathbb{H}} \left[(-5) - 10 \right] \mid$

 $\Rightarrow m_{\mathbb{H}} = 3 \text{ (kg)} = m_{\mathbb{Z}}$

5. (E)

出處:基礎物理(二) B 上 牛頓運動定律的應用

目標:理解基本觀念、方法與原理的能力

內容:理解簡諧運動的運動過程中,物理量的變化 解析:簡諧運動中,端點的受力最大、加速度最大、 速度為零,平衡點的受力為零、加速度為零、 速度量值為此週期性運動的最大值。

> (A) 彈簧在此過程中皆為被壓縮的狀態,回復 力向右。運動過程中,壓縮量漸減、回復

力漸小。

(B) 彈簧在此過程中皆為被伸長的狀態,回復 力向左。運動過程中,伸長量漸增、回復 力漸大。

(C) 速度量值逐漸增加。

- (D) 簡諧運動的週期與振幅無關,週期不變。
- (E) 簡諧運動的週期與 \sqrt{m} 成正比,故質量增 加,週期變大。

6. (E)

出處:基礎物理(二) B 上 牛頓運動定律的應用

目標:綜合運用基本觀念、方法與原理的能力

內容:將日常生活經驗與錐動擺結合討論,分析物

理量之間的關係

解析:

分析上圖的力圖後,將力分解為鉛直與水平 方向,鉛直方向合力為零、水平方向的力提 供圓周運動所需之向心力:

 $T_{\perp} = T \cos \theta = W$, $\coprod W = mg$

$$T_{\parallel} = T \sin \theta = ma_c = m \frac{v^2}{R} = mR\omega^2$$

將兩式相除後,可得 $a_c = g \tan \theta$

又等速圓周運動的物理量與向心加速度之關係

已知為:
$$a_c = \frac{v^2}{R} = R\omega^2$$

故錐動擺的擺角與轉速、瞬時速率、半徑之

關係為:
$$g \tan \theta = \frac{v^2}{R} = R\omega^2$$

- (A) 有關,關係如上述。
- (B)(C) 繩索愈長,代表轉動的半徑愈大,故當轉速固定,擺長增加,則速率增加。
- (D) 夾角不會隨時間改變。
- (E) 若在同一平面上作圓周運動,則此錐動擺 的鉛直方向之分量必與重力抵消。

7. (E)

出處:基礎物理(二)B上 牛頓運動定律

目標:綜合運用基本觀念、方法與原理的能力

內容:藉由相對運動之趨勢判斷摩擦力的方向

解析:(A) A 輪逆時針旋轉,將帶動上方輸送帶向左 運動,因此貨物向左運動。

- (B) 輸送帶欲維持慣性,因此 A 輪轉動時, 輸送帶將給予與運動方向相反的摩擦力。
- (C) 上方輸送帶向左運動, B 輪欲維持慣性, 因此 B 輪外側之輸送帶給予 B 輪與自身運 動方向相同的摩擦力,因此, B 輪是藉由 摩擦力轉動。
- (D) 等速移動時,兩物體間沒有相對運動趨勢, 故沒有摩擦力作用。
- (E) 貨物將藉由輸送帶給予的動摩擦力加速至 與上方輸送帶速度相同。

8. (C)

出處:基礎物理(二)B上 牛頓運動定律

目標:直接運用基本觀念、方法與原理的能力

內容:正確繪製水平與鉛直方向的力圖,並加以分析

解析: (A)(B)(C)(E)

當木塊向前運動時,B 木塊所受的外力如上圖所示,圖中f 為 A 給 B 的摩擦力、N 為 A 給 B 的正向力, W_B 為 B 的重量。

以 B 為系統,在鉛直方向合力為零、 水平方向則由正向力提供加速度:

$$f = W_{\rm B} = m_{\rm B}g$$

 $N=m_{\rm B}a$

又題幹希望提供的外力最小,也就是 $A \cdot B$ 之間的正向力最小,若要維持 B 不下滑,則正向力的量值不得使最大靜摩擦力小於重力。

以 A+B 為系統,由外力提供兩物 體運動所需的加速度:

$$F = (m_A + m_B) \ a = 15 \times 20$$

= 300 (N)

(D) A、B 之間的摩擦力互為作用力與反作用力。

9. (A)

出處:基礎物理(二)B下 位能與力學能守恆律

目標:理解基本觀念、方法與原理的能力

內容:利用星體運動討論作功與力學能的關係

解析:(A) 由距離判斷過程中重力位能增加,故重力 作負功。

- (B) 彗星與太陽連線畫過的面積不同,因此時間不同。
- (C) 變速率運動,且近日點速率最大。
- (D) 以 A 為參考點,重力矩不為零,則角動量 變化不為零。
- (E) 平均軌道半徑與地球相同,因此週期與地球相同。

10. (B)

出處:選修物理(上) 波動

目標:直接運用基本觀念、方法與原理的能力

內容:利用波前形貌判斷波動傳遞的方向與兩介質

之波速關係

解析:

題圖為波前示意圖,波前與波行進方向互相 垂直,故先畫出3條與波前垂直的線條,並 畫出與界面垂直的法線,如上圖。依照入射 線與反射線在同一界面、入射線與折射線在 法線兩側來判斷,水波行進方向是由右上傳 入左下;再依入射線、折射線與法線的夾角 大小判斷出入射角小於折射角,得知該水波 由波速慢的淺水區進入波速快的深水區。

11. (E)

出處: 選修物理(上) 幾何光學

目標:綜合運用基本觀念、方法與原理的能力

內容:以司乃耳定律、全反射條件綜合應用,判斷

全反射發生的位置

解析:

如上示意圖,若入射角為 θ ,進入 a 空氣-玻璃界面之折射角為 θ (亦是 b 界面的入射角),進入 b 玻璃-水界面之折射角為 θ_2 ,進入 e 水-空氣界面之入射角為 θ_3 (θ_2 + θ_3 = 90°),由司乃耳定律與各介質折射率可知:

$$1 \cdot \sin\theta = \frac{3}{2} \cdot \sin\theta_1 = \frac{4}{3} \cdot \sin\theta_2$$

故 $\theta > \theta_2 > \theta_1$,當 θ 由 0° 慢慢增加至 90° 的過程中, $a \cdot b$ 界面皆不會發生全反射。

當 $90^{\circ} > \theta > 0^{\circ}$

$$\Rightarrow \frac{3}{4} > \sin \theta_2 > 0$$

$$\Rightarrow 1 > \cos \theta_2 > \frac{\sqrt{7}}{4} \perp \sin \theta_3 = \cos \theta_2$$

故 e 界面發生全反射條件為 $\sin \theta_3 \ge \frac{3}{4}$,所以

e 界面必能發生全反射。

當 e 界面發生全反射,光束會以相同的 θ_2 、 θ_1 進入 c、d 界面,若 a、b 界面不會發生全反射, c、d 界面也不會發生全反射。

12. (B)

出處:選修物理(上) 物理光學

目標:直接運用基本觀念、方法與原理的能力

內容:觀察實驗結果,推測單狹縫實驗的實驗裝置

解析:題圖的標記處分別為雙狹縫干涉的第五暗紋 與單狹縫繞射的第一亮帶,兩位置相同,故: $\frac{9}{2}\cdot\frac{L\lambda}{1.50\,(\mathrm{mm})}=\frac{3}{2}\cdot\frac{L\lambda}{b}$,其中 L 為屏幕 距離, λ 為雷射光波長,依此式計算單狹縫寬

度 b=0.50 (mm)

13. (D)

出處:選修物理(上) 靜電學

目標:直接運用基本觀念、方法與原理的能力

內容:判斷金屬導體球外電場

解析:導體球內表面有帶負電感應電荷分布,總電量為-Q;外表面有帶正電的感應電荷分布,總電量為+3Q,則距離球心為5R處的電場為:

$$\begin{split} \overrightarrow{E} &= \frac{kQ}{(5R)^2} \left(\overline{\text{氢離球心}} \right) + \frac{kQ}{(5R)^2} \left(\overline{\text{指向球心}} \right) \\ &+ \frac{k \left(3Q \right)}{(5R)^2} \left(\overline{\text{氢離球心}} \right) \\ &= \frac{3kQ}{25R^2} \left(\overline{\text{氢離球心}} \right) \end{split}$$

14. (B)

出處:選修物理(下) 電磁感應

目標:直接運用基本觀念、方法與原理的能力

內容:判斷導線上的應電動勢

解析:若正方形線圈每一邊電阻為 r,當線圈皆以 相同的速率運動,切割磁力線產生之電動勢 皆相同,且導線上的電流 i 也相同,

 $\varepsilon=i(4r)$

(甲)(丙)(丁) 可由導線上電流判斷:

$$V_{\rm AB} = ir$$

(Z) AB 兩端之端電壓類似電池,AB 線段電阻 類似電池內電阻:

$$V_{
m AB} = {f arepsilon} - ir = 3ir$$
故 ${f z}$ 。

15. (A)

出處:選修物理(下) 原子結構與原子核

目標:分析過程,找出相關數量之間關係的能力

內容:由電磁波與物質波的繞射圖形相同求加速電壓

解析:因兩繞射圖形紋路相同,代表波長相等,所以 電子物質波波長等於 X 射線波長,故

 $\frac{12.3}{\sqrt{V}} = 0.1$,可得電子加速電壓

V=15129 ≑15000 (伏特)

16. (C)

出處:選修物理(下) 原子結構與原子核

目標:分析過程,找出相關數量之間關係的能力

內容:由駐波條件及帶電荷粒子在磁場中的受力求

半徑

解析:電子垂直射入均勻磁場 B 中作等速圓周運動:電子所受磁力等於圓周向心力

 $F_B = evB = ma = m\frac{v^2}{r}$,得 $r = \frac{mv}{eB} = \frac{p}{eB}$

又圓形駐波條件: $2\pi r = n\lambda$,半徑最小時 n=1

又電子物質波波長
$$\lambda = \frac{h}{p}$$

故
$$2\pi r = \lambda = \frac{h}{p} = \frac{h}{eBr}$$

得 $r^2 = \frac{h}{2\pi eB} \Rightarrow r = \sqrt{\frac{h}{2\pi eB}}$

17. (D)

出處: 選修物理(下) 原子結構與原子核

目標:直接運用基本觀念、方法與原理的能力

內容:由<u>波耳</u>的氫原子模型推論氫原子系統之能量 變化

解析:氫原子定態能量 $E_n = -\frac{13.6}{n^2}$ (eV)

位能
$$U_n = 2E_n = \left(-\frac{13.6}{n^2}\right) \times 2 \text{ (eV)}$$

動能
$$K_n = -E_n = \frac{13.6}{n^2}$$
 (eV)

又軌道半徑 $r \propto n^2$, 故軌道由 4r 躍遷到 r, 定熊由 n=2 躍遷到 n=1, 得

$$\Delta E_{n=2 \to 1} = E_1 - E_2$$

$$= \left(-\frac{13.6}{1^2} \right) - \left(-\frac{13.6}{2^2} \right)$$

$$= \left(-13.6 \right) \times \frac{3}{4} \text{ (eV)}$$

$$\Delta U_{n=2\to 1} = 2 \Delta E_{n=2\to 1}$$

= $(-13.6) \times \frac{6}{4} (eV)$

$$\Delta K_{n=2\rightarrow 1} = -\Delta E_{n=2\rightarrow 1}$$

$$= 13.6 \times \frac{3}{4} \text{ (eV)}$$

故撰(D)。

18. (C)

出處: 撰修物理(下) 近代物理的重大發現

目標:分析過程,找出相關數量之間關係的能力

內容:由光電方程式推論底限波長

解析:光電方程式 $E=W+K_{max}$

又光能
$$E=rac{12400(電子伏特·埃)}{\lambda(埃)}$$
, $K_{max}=eV_s$

故取第三數據代入光電方程式,得

$$\frac{12400}{1240} = \frac{12400}{\lambda_0} + 5.1$$

$$\Rightarrow 10 = \frac{12400}{\lambda_0} + 5.1$$

$$\Rightarrow \lambda_0 = \frac{12400}{49} \stackrel{.}{=} 2530.6 (埃)$$

19. (A)

出處: 選修物理(上) 熱學

目標:分析過程,找出相關數量之間關係的能力

內容:利用能量守恆的觀點分析能量轉換之過程,

推而求得融冰的質量

解析:設子彈質量為 m、所求之冰塊質量為 M子彈的動能損失與降溫過程之放熱皆為冰塊 融化的熱源: $\Delta K + \Delta Q_{\rm 开頭放熟} = \Delta Q_{\rm жышж}$

$$\left(\frac{1}{2}mv^{2}\right) \times \frac{1}{4.2} + ms \Delta T = ML$$

$$\Rightarrow \left(\frac{1}{2} \times 16 \times 10^{-3} \times 210^{2}\right) \times \frac{1}{4.2} + 16 \times 0.09 \times 200$$

$$= M \times 80$$

$$\Rightarrow M \rightleftharpoons 4.7 \text{ (g)}$$

20. (A)

出處: 選修物理(上) 熱學

目標:直接運用基本觀念、方法與原理的能力

內容:由理想氣體總能公式與能量守恆求氣體的莫

解析:理想氣體的總能與溫度、莫耳數之關係為:

$$E = \frac{3}{2} nRT$$

由混合前後能量守恆可得:

$$E_{A} + E_{B} = E_{AB}$$

$$\Rightarrow \frac{3}{2} n_{A}RT_{A} + \frac{3}{2} n_{B}RT_{B} = \frac{3}{2} (n_{A} + n_{B}) RT$$

$$\Rightarrow n_{A}T_{A} + n_{B}T_{B} = n_{A}T + n_{B}T$$

$$\Rightarrow \frac{n_{A}}{n_{B}} = \frac{T - T_{B}}{T_{A} - T}$$

二、多選題

21. (A)(B)(C)

出處:基礎物理(二)B下 位能與力學能守恆律

目標:分析過程,找出相關數量之間關係的能力

解析:(A) 繩張力與位移方向垂直,張力不作功。

(B) 重力方向與鉛直方向位移相同,重力作正功,位能減少、動能增加。

(C) 利用力學能守恆: $\Delta U_g + \Delta K = 0$

$$mgL (1-\cos\theta) = \frac{1}{2}mv^{2}$$

$$\Rightarrow v = \sqrt{2gL (1-\cos\theta)}$$

(D) 利用合力提供圓周運動所需之向心力: $F_c=ma_c$

$$T - mg = ma_c = m \frac{v^2}{L}$$

$$\Rightarrow T = mg + m \left(\frac{2gL (1 - \cos \theta)}{L} \right)$$

$$\Rightarrow T = mg (3 - 2\cos \theta)$$

(E) 切向加速度由重力在軌跡切線方向的分量

提供,因此不為零。

22. (B)(E)

出處:選修物理(上) 波動

目標:綜合運用基本觀念、方法與原理的能力

內容:利用已經學過的一維駐波性質及文章中二維

駐波之描述判斷質點振動的情形

解析:由文意可知此現象為金屬板的共振現象,故可判斷 b 位置的沙粒會趨於靜止,是因此位置為金屬板上的駐波節點;而 a 位置、黑色區域的沙粒會劇烈跳動,僅能確定這些位置不是節點,故會振動,但卻未必都是腹點。對照繩駐波,節點愈多,共振頻率愈高,故更複雜的題圖 15 聽到的音頻應該會比題圖 14 聽到的音頻高。

23. (A)(D)

出處: 選修物理(下) 電流的磁效應

目標:分析過程,找出相關數量之間關係的能力

內容:分析小球在電磁場中的受力情形,並利用等

加速運動之性質求解小球的運動狀態

解析:小球受力分析如下圖:

N = mg + qvB

 $f_k = \mu_k (mg + qvB)$

(A) 小球所受合力為

$$F = qE - f_k$$

$$= qE - \mu_k (mg + qvB)$$

$$= ma$$

故小球加速度為

$$a = \frac{qE - \mu_k(mg + qvB)}{m} \ (\rightarrow)$$

釋放瞬間恰開始運動,初速度為零,磁力 為零,此時動摩擦力最小,加速度最大, 故:

$$a_{max} = \frac{qE - \mu_k mg}{m}$$

$$= \frac{2 \times 10^{-4} \times 4 - 0.1 \times 4 \times 10^{-4} \times 10}{4 \times 10^{-4}}$$

$$= 2 - 1 = 1 \ (公尺/秒^2)$$

- (B) 磁力向下。
- (C) 速度愈快,磁力愈大,正向力愈大,動摩擦力愈大。
- (D) 當動摩擦力量值等於靜電力量值,速度最大,故:

$$qE = \mu_k (mg + qvB)$$

$$\Rightarrow qvB = \frac{qE}{\mu_k} - mg$$

$$\Rightarrow v = \frac{E}{\mu_k B} - \frac{mg}{qB} = \frac{4}{0.1 \times 4} - \frac{4 \times 10^{-4} \times 10}{2 \times 10^{-4} \times 4}$$

$$= 10 - 5 = 5 (公尺/秒)$$

(E) 小球最後作等竦運動。

24. (B)(C)

出處:基礎物理(一) 緒論

目標:累積知識並加以記憶的能力

內容:熟知物理學的重要發展

解析:(A) <u>伽利略</u>觀察木星有衛星,證明宇宙不可能 只有一個中心。

- (D) 時序錯誤,<u>德布羅意</u>先提出理論,才由其 他科學家以實驗驗證物質具有波動性。
- (E) <u>湯姆森</u>的實驗結果,無法說明電子的運行 模型。

第貳部分:非選擇題

$$-\cdot 1.$$
 $\frac{\varepsilon - V_1}{I_1}$ 2. $\frac{\varepsilon - V_2}{2V_2}R$ 3. 3

出處:選修物理(下) 電流、電阻與電路

目標:直接運用基本觀念、方法與原理的能力

內容:利用串並聯的概念求解各小題

解析:1.

將甲電池視為電動勢為 ε 的理想電池與電阻值為 r 之電阻器串聯而成,如上圖。可得:

$$\begin{cases} \varepsilon = I_1 (R + r) \\ V_1 = I_1 R \end{cases}$$

整理得: $\varepsilon=V_1+I_1r$

故內電阻
$$r=rac{arepsilon-V_1}{I_1}$$

2.

將兩電池都視為電動勢為 ε 的理想電池與電阻值為 r 之電阻器串聯而成,如上圖。可得:

$$\begin{cases} 2\varepsilon = I_2 (R+2r) \\ V_2 = \varepsilon - I_2 r \end{cases}$$

整理得:
$$\frac{2\varepsilon}{R+2r} = \frac{\varepsilon - V_2}{r}$$

故內電阻
$$r = \frac{\varepsilon - V_2}{2V_2}R$$

3. 根據第 1.、2. 小題的結果:

$$r = \frac{\varepsilon - V_1}{I_1} \cdot r = \frac{\varepsilon - V_2}{2V_2} R \cdot V_1 = I_1 R$$

將 I_1 =0.250 安培、 V_1 =2.875 伏特、 V_2 =2.760 伏特代入上式中。

可得:

$$\begin{cases} 0.25r = \varepsilon - 2.875 \\ 2 \times 2.76r = (\varepsilon - 2.76) \times \frac{2.875}{0.25} \end{cases}$$

解聯立方程式,即可得電動勢 $\varepsilon=3$ (伏特)

二、1. 測量 BC 距離得物距,測量 CE 距離得像距

2. 0.0640 3. 向左,40

出處: 選修物理(上) 幾何光學

目標:綜合運用基本觀念、方法與原理的能力

內容:測驗學生對透鏡實驗的操作與數據處理之能力

解析:1. 測量 BC 距離得物距,測量 CE 距離得像 距。

2. 分別選取兩次的測量數據,代入薄透鏡成

像公式
$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

可得

$$f = \frac{1}{0.0500 + 0.0300} = 12.5 \text{ (cm)}$$

$$f = \frac{1}{0.0200 + 0.0600} = 12.5 \text{ (cm)}$$

兩次平均得焦距f=12.5 (cm)

將焦距f與第三次數據代入薄透鏡成像公

$$\operatorname{R} \frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

可得:12.5=
$$\frac{1}{0.0160+q}$$

$$\Rightarrow q = 0.0640 \text{ (cm)}$$

3. 根據薄透鏡成像公式 $\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$,且放

大率大於1可列出下式:

$$\frac{1}{12.5} = \frac{1}{p} + \frac{1}{90 - p}$$

可得:p=15 (cm)、q=75 (cm)

若將透鏡向右移動 10 cm,則新的物距 p'=25 (cm)

根據薄透鏡成像公式 $\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$ 可得新

的像距 q'=25 (cm)

比較移動前後的 BE 距離:

移動前:p+q=90 (cm)

移動後:p'+q'=50 (cm)

故將像屏向左移動,並移動 40 cm。

※非選擇題評分標準

$$-$$
、1. 列出 $\left\{ \begin{array}{l} \varepsilon = I_1 \left(R + r \right) \\ V_1 = I_1 R \end{array} \right.$ 得 1 分,列出 $\varepsilon = V_1 + I_1 r$ 得 1 分,算出 $r = \frac{\varepsilon - V_1}{I_1}$ 得 1 分。

2. 列出
$$\begin{cases} 2\varepsilon = I_2(R+2r) \\ V_2 = \varepsilon - I_2 r \end{cases}$$
 得 1 分 ,列出 $\frac{2\varepsilon}{R+2r} = \frac{\varepsilon - V_2}{r}$ 得 1 分 ,算出 $r = \frac{\varepsilon - V_2}{2V_2} R$ 得 1 分 。

3. 列出
$$\begin{cases} 0.25r = \varepsilon - 2.875 \\ 2 \times 2.76r = (\varepsilon - 2.76) \times \frac{2.875}{0.25} \ \text{得 2 分 }, \ \text{算出 } \varepsilon = 3 \ \text{(伏特) 得 2 分 }. \end{cases}$$

二、1. 寫出「測量 BC 距離得物距」得 1 分,寫出「測量 CE 距離得像距」得 1 分。

2. 列出
$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$
得 1 分,列出 $f = \frac{1}{0.0500 + 0.0300} = 12.5$ (cm) 得 1 分,

列出
$$f = \frac{1}{0.0200 + 0.0600} = 12.5$$
 (cm) 得 1 分,算出 $q = 0.0640$ (cm) 得 1 分。

3. 算出 p=15 (cm) 、q=75 (cm) 得 1 分,算出 q'=25 (cm) 得 1 分,寫出「向左」移動得 1 分, 算出 40 (cm) 得 1 分。