DERWENT-ACC-NO:

1999-577292

DERWENT-WEEK:

200138

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Gallium-nitride group compound semiconductor laser structure - has low refractive index layer with refractive index lower than multiple clad layer, distributed over barium layer and reverse side of p-type

clad layer

INVENTOR: FUJIMOTO, H; HATAKOSHI, G ; ITAYA, K ; NAKASUJI, M ; NUNOUE, S

; ONOMURA, M ; SAITO, S ; SASANUMA, K ; SUGIURA, R ; YAMAMOTO, M

PATENT-ASSIGNEE: TOSHIBA KK[TOKE]

PRIORITY-DATA: 1998JP-0053353 (March 5, 1998)

PATENT-FAMILY:

 PUB-NO
 PUB-DATE
 LANGUAGE
 PAGES
 MAIN-IPC

 JP 11251685 A
 September 17, 1999
 N/A
 024
 H01S 003/18
)

 US 6252894 B1
 June 26, 2001
 N/A
 000
 H01S 005/00

APPLICATION-DATA:

 PUB-NO
 APPL-DESCRIPTOR
 APPL-NO
 APPL-DATE

 JP 11251685A
 N/A
 1998JP-0053353
 March 5, 1998

 US 6252894B1
 N/A
 1999US-0263213
 March 5, 1999

INT-CL (IPC): H01L033/00, H01S003/18, H01S005/00

ABSTRACTED-PUB-NO: JP 11251685A

BASIC-ABSTRACT:

NOVELTY - A p-type InAlGaN index layer (124) with lower refractive index than multiple clad layer is distributed to barium layer and reverse side of at least one clad layer.

DETAILED DESCRIPTION - The semiconductor laser has barium layers (117-119) placed between clad layers (115,121) having different conductivity. The p-type InGaN light absorption layer (122) with absorbent factor higher than clad layer (121) is distributed on barium layer (118) and reverse side of p-type clad layer (121).

USE - Used as light source for high density information processing of optical disk.

ADVANTAGE - Offers low threshold value and hence enables low voltage operation.

Lowers oscillation threshold value by using optical absorption layer. Offers single FFP and suppresses flare angle and astigmatic difference. Reduces crack generation.

DESCRIPTION OF DRAWING(S) - The figure shows sectional view of element structure of semiconductor laser. (115,121) Clad layers; (117-119) Barium layers; (122) Light absorption layer; (124) p-type InAlGaN index layer.

ABSTRACTED-PUB-NO: US 6252894B

EQUIVALENT-ABSTRACTS:

NOVELTY - A p-type InAlGaN index layer (124) with lower refractive index than multiple clad layer is distributed to barium layer and reverse side of at least one clad layer.

DETAILED DESCRIPTION - The semiconductor laser has barium layers (117-119) placed between clad layers (115,121) having different conductivity. The p-type InGaN light absorption layer (122) with absorbent factor higher than clad layer (121) is distributed on barium layer (118) and reverse side of p-type clad layer (121).

USE - Used as light source for high density information processing of optical disk.

ADVANTAGE - Offers low threshold value and hence enables low voltage operation.

Lowers oscillation threshold value by using optical absorption layer. Offers single FFP and suppresses flare angle and astigmatic difference. Reduces crack generation.

DESCRIPTION OF DRAWING(S) - The figure shows sectional view of element

structure of semiconductor laser. (115,121) Clad layers; (117-119) Barium layers; (122) Light absorption layer; (124) p-type InAlGaN index layer.

CHOSEN-DRAWING: Dwg.1/34

TITLE-TERMS: GALLIUM NITRIDE GROUP COMPOUND SEMICONDUCTOR LASER STRUCTURE LOW

REFRACT INDEX LAYER REFRACT INDEX LOWER MULTIPLE CLAD LAYER DISTRIBUTE BARIUM LAYER REVERSE SIDE P TYPE CLAD LAYER

DERWENT-CLASS: L03 T03 U12 V08 W04

CPI-CODES: L04-A02D; L04-E03B;

EPI-CODES: T03-B02B1; T03-N01; U12-A01B1A; U12-A01B6; V08-A01A;

V08-A01D;

V08-A04A; W04-C02A1; W04-C10A;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1999-168250 Non-CPI Secondary Accession Numbers: N1999-426449

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-251685

(43)公開日 平成11年(1999)9月17日

(51) Int.CL.6

識別記号

H01S 3/18 H01L 33/00 FΙ

H01S 3/18 H01L 33/00

С

審査請求 未請求 請求項の数6 OL (全 24 頁)

(21)出顯番号	特顧平10-53353	(71)出願人	000003078
			株式会社東芝
(22)出顧日	平成10年(1998) 3月5日		神奈川県川崎市幸区堀川町72番地
		(72)発明者	笹沼 克信
			神奈川県川崎市幸区小向東芝町1番地 株
	•		式会社東芝研究開発センター内
		(72)発明者	斎藤 真司
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝研究開発センター内
		(72)発明者	板谷 和彦
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝研究開発センター内
		(74)代理人	弁理士 鈴江 武彦 (外6名)
			最終頁に続く

(54) 【発明の名称】 半導体レーザ

(57)【要約】

【課題】 クラックが少なく信頼性が高く、FFPが単 峰性を示し、光ディスクなどへの実用に供する低しきい 値、低電圧動作を可能にする。

【解決手段】 窒化ガリウム系化合物半導体からなり、MQW活性層118をp型及びn型のA1GaNクラッド層115,121で挟んだダブルヘテロ構造を有する半導体レーザにおいて、p型クラッド層121の活性層118と反対側に、クラッド層121よりも吸収率の高いp型InGaN光吸収層122が配置され、さらにそれよりも外側にp型クラッド121層よりも屈折率の低いp型InA1GaN低屈折率層124が配置されている。

.

【特許請求の範囲】

【請求項1】窒化ガリウム系化合物半導体からなり、活 性層を導電型の異なるクラッド層で挟んだダブルヘテロ 構造を有する半導体レーザであって、

前記クラッド層のうち少なくとも一方のクラッド層の活 性層と反対側に、該クラッド層よりも吸収率の高い光吸 収層を複数配置、又は該光吸収層と前記クラッド層より も屈折率の低い低屈折率層を配置してなることを特徴と する半導体レーザ。

【請求項2】窒化ガリウム系化合物半導体からなり、活 10 性層を導電型の異なるクラッド層で挟んだダブルヘテロ 構造を有する半導体レーザであって、

前記活性層にキャリアを注入するためのストライプ状の メサ部が形成され、該メサ部の両側にそれぞれ少なくと も1層の窒化物系半導体からなる第1の光吸収層を形成 し、且つ前記クラッド層の外側にそれぞれ少なくとも1 層の窒化物系半導体からなる第2の光吸収層を形成して なることを特徴とする半導体レーザ。

【請求項3】窒化ガリウム系化合物半導体からなり、活 性層を導電型の異なるクラッド層で挟んだダブルヘテロ 20 構造を有する半導体レーザであって、

前記ダブルヘテロ構造を挟んで該構造の両側に、素子の 中で膜厚が最も厚い層に対して略格子整合しており、か つ活性層から発光される光のエネルギーよりも低いエネ ルギーのバンドギャップを持つ光吸収層を設けてなるこ とを特徴とする半導体レーザ。

【請求項4】窒化ガリウム系化合物半導体からなり、活 性層を導電型の異なるクラッド層で挟んだダブルヘテロ 構造を有し、かつ発光領域としてのメサ構造を有する半 導体レーザにおいて、

前記活性層のバンドギャップよりも小さいバンドギャッ プを有する I nを含む光吸収層が、前記ダブルヘテロ構 造よりも基板側に作り付けられていることを特徴とする 半導体レーザ。

【請求項5】pn接合を形成するように積層され、基本 的に III族窒化物からなる複数の層を有する積層膜と、 前記pn接合に電流を供給するように前記積層膜に接合 されたn側及びp側電極とを備えた半導体レーザであっ て、

なくとも一方を含むコンタクト層を形成してなることを 特徴とする半導体レーザ。

【請求項6】活性層が光ガイド層で挟まれ、光ガイド層 がクラッド層で挟まれた構造を備えた窒化ガリウム系化 合物半導体からなる半導体レーザであって、

前記光ガイド層についてp側ガイド層がn側ガイド層よ りも薄い、又は前記クラッド層についてp側クラッド層 がn側クラッド層よりも薄いことを特徴とする半導体レ ーザ。

【発明の詳細な説明】

-[0001]

【発明の属する技術分野】本発明は、化合物半導体材料 を用いた半導体レーザに係わり、特に窒化ガリウム系材 料を用いた半導体レーザに関する。

[0002]

【従来の技術】近年、GaN, InGaN, A1Ga N, InAlGaNなどの窒化ガリウム系化合物半導体 が、青色半導体レーザの材料として注目されている。こ れらの材料による半導体レーザでは、短波長化により小 さなビームに絞ることが可能となり、光ディスクなど高 密度情報処理用の光源として期待されている。

【0003】短波長の半導体レーザとしてInGaAl P材料による600nm帯光源は、ディスクの読み込 み、書き込みのどちらも可能なレベルにまで特性改善さ れ、既に実用化されている。更なる記録密度向上を目指 して青色体半導体レーザの開発が盛んに行われ、II-VI 族系による半導体レーザの発振動作も確認されている。 また、GaN系半導体レーザは350nm以下まで短波 長が可能で、信頼性に関しても数千時間以上の室温連続 発振が確認され、LEDにおいては1万時間以上の信頼 性が確認されるなど有望であり、盛んに研究・開発が行 われている。

【0004】ところが、この種の半導体レーザでは、し きい値電流密度を1kA/cm²以下にできず、またレ ーザ発振時の遠視野像 (Far Field Pattern 、以下FF Pと省略する)が多峰性を示すため、実際に光ディスク などの光源として用いることができる特性は得られてい ない。

【0005】従来の窒化ガリウム系半導体レーザでは、 コンタクト層としてGaNを用い、またクラッド層とし てAlGaNを用いているため、反導波 (anti-index g uided mode) により発振する。反導波による発振ではF FPが多峰性を示し、また導波損失が大きいため、発振 しきい値は一般に高くなる。また、反導波ではレーザ発 振における実効屈折率がコンタクト層よりも低いため、 コンタクト層へ光がしみ出してコンタクト層の光閉じ込 め係数が大きくなり、FFPにコンタクト層の光閉じ込 めに対応したピークが生じる。そして、これがFFPの 多峰性をもたらす要因となっているため、コンタクト層 前記積層膜の前記電極との接合部分に、As又はPの少 40 への光のもれを減少するためにクラッド層を厚くする必 要があった。この結果、レーザ発振における動作電圧は 高く、また結晶性の点でも格子定数の違いからクラック が多く発生して信頼性の低下をもたらせていた。

> 【0006】また、サファイア基板上にGaN系材料で 形成したリッジ構造半導体レーザの場合、A1GaNク ラッド外側の電極コンタクトのためのGaN層が発振光 に対して透明であるため、クラッド層からしみ出した光 が導波されるいわゆる反導波現象が発生する。そのた め、基本横モードよりしきい電流の低い高次の垂直横モ 50 ードによる発振が起こりやすく、さらに隣接する高次モ

ードによるモード競合により光出力のキンクやレンズで の集光が絞りにくいなどの問題が発生し、光ディスクシ ステム光源として使える特性を得ることは困難であっ た。

【0007】即ち、窒化ガリウム系化合物半導体を用い た半導体レーザにおいては、クラッド層と電極又は基板 との間に存在するコンタクト層がGaN、クラッド層が A1GaNであり、実効屈折率がGaNより低く反導波 で発振するため、FFPが多峰性を示し、導波損失が高 く発振しきい値が高くなる。さらに、反導波ではコンタ 10 するために本発明は、次のような構成を採用している。 クト層の閉じ込め係数が高くなるため、この光の漏れが FFPの多峰性をもたらしている。これを防ぐためにク ラッド層のA 1 組成を高くするかクラッド層を厚くする 必要があるが、この結果クラックが発生して信頼性が低 下し、また動作電圧が高くなり、光ディスクなどへの実 用に供する低しきい値、低電圧で動作し、FFPが単峰 性を示す素子を実現することは困難であった。

【0008】また、クラッド層の外側にInGaNの光 吸収層を設けコンタクト層への光の漏れを防止する対策 を施しFFPが十分に単峰である場合でも、反導波で発 20 振する場合には高次モードで発振することが避けられな い。このとき、高次モードによる発振しきい値が最低発 振しきい値と近いために、発振時にモード次数が変化す るという問題が発生し、モード次数が変化すると発振問 波数がずれ、レーザ光をレンズで集光する場合に焦点が ずれるという問題が生じる。この結果、CDやDVD等 の読み取り、書き込み用途に用いることが困難であっ

【0009】なお、窒化物系半導体では,サファイア上 に成長する六方晶型結晶が現在のところ最も良好な結晶 30 が得られている。サファイア基板は300 nmから可視 光領域では透明であり、屈折率がGaNに比べ低い。従 来の赤色半導体レーザでは、クラッド層で閉じ込められ なかった光は基板又は電極金属に吸収されるので、活性 層以外に漏れ出す光は少なく反導波になることはなかっ た。しかし、窒化物系半導体レーザでは、基板として前 述のサファイア基板を用いているので、活性層以外に光 が漏れ出しモードが立つ反導波と呼ばれる現象が生じ、 光ディスクやレーザプロジェクタに用いる場合に問題と なる遠視野像に2つ以上のピークが生じる。

[0010]

【発明が解決しようとする課題】このように従来、光デ ィスクなどへの実用に供する低しきい値、低電圧で動作 し、高い信頼性を有し、FFPが単峰な青色半導体レー ザを実現するためには、AIGaNクラッド層の組成や 厚さに関して相反する課題を解決することが重要である が、未だこれらを満足する構成は得られていないのが現 状である。また、電極コンタクトのためにAIGaNク ラッドの外側に透明で屈折率の高いGaN層を有するた

好なビーム特性を得るのが非常に困難であるという問題 点があった。

【0011】本発明は、上記事情を考慮してなされたも ので、その目的とするところは、クラックが少なく信頼 性が高く、FFPが単峰性を示し、光ディスクなどへの 実用に供する低しきい値、低電圧で動作する窒化ガリウ ム系化合物半導体レーザを提供することにある。

[0012]

【課題を解決するための手段】 (構成)上記課題を解決 【0013】(1)窒化ガリウム系化合物半導体からな り、活性層を導電型の異なるクラッド層で挟んだダブル ヘテロ構造を有する半導体レーザにおいて、次のいずれ かの構成、(1a) クラッド層のうち少なくとも一方のク ラッド層の活性層と反対側に、該クラッド層よりも吸収 率の高い光吸収層を複数配置してなる、(1b)クラッド 層のうち少なくとも一方のクラッド層の活性層と反対側 に、該クラッド層よりも屈折率の低い低屈折率層を少な くとも1層配置してなる、(1c) クラッド層のうち少な くとも一方のクラッド層の活性層と反対側に、該クラッ ド層よりも吸収率の高い光吸収層と該クラッド層よりも 屈折率の低い低屈折率層を配置してなる、を採用したこ とを特徴とする。

【0014】(1-1) 光吸収層は、InAlGaN又はI nGaNからなること。

(1-2) 光吸収層は、少なくとも一方がクラッド層と隣接 すること。

(1-3) 隣接する光吸収層の間隔、光吸収層と電極の間 隔、若しくは光吸収層と基板の間隔が、等間隔であるか 又は最小間隔の自然数倍に近いこと。

【0015】(1-4) ダブルヘテロ構造はコンタクト層に より挟まれており、光吸収層をコンタクト層中に複数層 配置すること。

(1-5) コンタクト層は、InGaN光吸収層とGaNと の超格子構造であること。

(1-6) 活性層は、多重量子井戸構造であること。

(1-7) クラッド層に接して光吸収層を配置し、光吸収層 に対しクラッド層と反対側に低屈折率層を配置するこ と。

【0016】(1-8) 低屈折率層は、InAlGaN又は 40 AlGaNからなること。

(1-9) 隣接する低屈折率層の間隔、低屈折率層と電極の 間隔、若しくは低屈折率層と基板の間隔が、等間隔であ るか又は最小の間隔の自然数倍に近いこと。(1-10) 低 屈折率層をコンタクト層中に配置すること。

(1-11) コンタクト層が、A 1 G a N低屈折率層とG a Nの超格子構造であること。

【0017】(2)窒化ガリウム系化合物半導体からな り、活性層を導電型の異なるクラッド層で挟んだダブル め、電流狭窄構造によらず垂直横モードが不安定で、良 50 ヘテロ構造を有する半導体レーザにおいて、前記活性層

にキャリアを注入するためのストライプ状のメサ部が形 成され、該メサ部の両側にはそれぞれ少なくとも1層の 窒化物系半導体からなる第1の光吸収層が形成され、且 **つ該クラッド層の外側にはそれぞれ少なくとも1層の窒** 化物系半導体からなる第2の光吸収層が形成されてなる ことを特徴とする半導体レーザ。

【0018】(2-1) 光吸収層の一部は、多重量子井戸構 造であること。

(2-2) 光吸収層の不純物濃度は、1×10¹⁸ c m⁻³以上 であること。

【0019】(3)窒化ガリウム系化合物半導体からな り、活性層を導電型の異なるクラッド層で挟んだダブル ヘテロ構造を有する半導体レーザにおいて、前記ダブル ヘテロ構造を挟んで該構造の両側に、素子の中で膜厚が 最も厚い層に対して略格子整合しており、かつ活性層か ら発光される光のエネルギーよりも低いエネルギーのバ ンドギャップを持つ光吸収層が設けられていることを特 徴とする。

【0020】(3-1) 光吸収層は超格子で形成され、超格 子を形成する化合物半導体層の少なくとも1つの層は活 20 性層より発せられる光のエネルギーより低いエネルギー バンドギャップを持っており、かついずれの層も膜厚が 最も厚い層には格子整合はしておらず、光吸収層全体の 平均格子定数としては膜厚が最も厚い層に対して格子定 数の違いが0.2%以内であること。

【0021】(3-2) 超格子が2つの2元系の化合物半導 体により形成されており、平均格子定数と膜厚が最も厚 い層の格子定数との違いが0.2%以内であるようにそ れぞれの2元系超格子の厚さが制御されていること。

【0022】(4)窒化物系半導体からなり、活性層を 30 となる。 導電型の異なるクラッド層で挟んだダブルヘテロ構造を 有し、かつ発光領域としてのメサ構造を有する半導体レ ーザにおいて、前記活性層のバンドギャップよりも小さ いバンドギャップを有するInを含む光吸収層が、前記 ダブルヘテロ構造よりも基板側に作り付けられているこ とを特徴とする。

【0023】(4-1)メサ構造の上部に金属電極を有し、 活性層を挟んで該金属電極と反対側に光吸収層が作り付 けられていること。

(4-2) 光吸収層と活性層との間隔が、金属電極と活性層 40 との間隔に発振光に対する屈折率を考慮した距離として 概略等しいこと。

(4-3) 光吸収層が多重量子井戸構造からなること。

(4-4) メサ型構造の両脇に多重量子井戸構造からなる I nを含む光吸収層が設けられていること。

【0024】(5)pn接合を形成するように積層さ れ、基本的に III 族窒化物からなる複数の層を有する積 層膜と、前記pn接合に電流を供給するように前記積層 膜に接合されたn側及びp側電極とを備えた半導体レー ザにおいて、前記積層膜の前記電極との接合部分に、A 50 り、高次の横モードは基本モードに比べて損失大又はカ

sを含むコンタクト層、Pを含むコンタクト層、又はA s及びPの両方を含むコンタクト層が形成されているこ とを特徴とする。

【0025】(6)活性層が光ガイド層で挟まれ、光ガ イド層がクラッド層で挟まれた構造を備えた窒化ガリウ ム系化合物半導体からなる半導体レーザにおいて、(6) a) 前記光ガイド層について、p側ガイド層がn側ガイ ド層よりも薄い、(6b)前記クラッド層について、p側 クラッド層がn個クラッド層よりも薄い、ことを特徴と 10 する。

【0026】(6-1) 光ガイド層は、p側ガイド層がO. 02μm以下であること。

(6-2) クラッド層は、p側クラッド層が0. 1μm以下 であること。

(6-3) コンタクト層についてp側コンタクト層がn側ク ラッド層よりも薄く、p側コンタクト層の厚さがO. O 5μm以下であること。

(6-4) 光ガイド層について、ガイド層組成が InGaN 又はA1GaNであって、In又はA1の組成が5%以 上であること。

【0027】(作用)本発明(1)によれば、ダブルへ テロ構造を構成するクラッド層の活性層と反対側にIn GaN等の光吸収層又は屈折率の低いAIGaN等の低 屈折率層を設けることにより、高次モードを発振を抑制 し、FFPの単峰化を可能にすることができる。即ち、 GaN等のコンタクト層中に光吸収層を設けることによ り、反導波による発振においてもコンタクト層への光の しみ出しが小さく、その結果導波損失が減少し、発振し きい値も低く、発振時のFFPを単峰化することが可能

【0028】また、コンタクト層中に光吸収層又は屈折 率の低い層を設けることにより、高次モードによる発振 を抑制し、さらにコンタクト層が超格子構造となること によって、クラックが少なく動作電圧の低い素子を得る ことが可能となる。さらにまた、コンタクト層中に光吸 収層又は屈折率の低い層を設けることにより、高次モー ドにより発振する場合には、モードの次数を固定するこ とが可能となり、CDやDVDの光源として用いる場合 にはレンズにより集光した場合のフォーカスのずれを防 止して、より実用に適したレーザ素子を実現することが 可能となる。

【0029】本発明(2)では、サファイア等の基板上 に形成される窒化物系半導体レーザにおいて、MQW活 性層を挟む導電性の異なるAlGaNクラッド層の夫々 の外側には発振光に透明なGaN層があるため横モード は反導波であるが、AIGaNクラッド層の外側への染 み出した光を吸収させ、さらに、同様に反導波構造であ る活性層水平方向においても埋め込み成長によるInG aN光吸収層により染み出し光を吸収させる。これによ

ットオフになる。特に、活性層の横側に光吸収層を形成 することで活性層幅を波長程度まで狭くしないでも、共 振器内での波面が共振器方向に垂直になり、FFPは単 峰になり且つ拡がり角が抑制でき、さらには非点隔差を 小さくすることができる。

【0030】光吸収層は104 cm-1程度の吸収係数を 有する材料であれば、0.1μm程度の厚さであれば十 分であり、光閉じ込め係数が5%以下の場合でも単峰性 のFFPを得ることができる。しかしながら、光吸収層 **振波長に相当するエネルギーギャップより小さくするた** めにInGaN活性層よりIn組成を増やす必要があ り、In組成増大に伴う結晶歪み効果が無視できなくな る。即ち、InGaN光吸収層の平坦性や結晶欠陥によ り、活性層の結晶性を損なう。そこで、光吸収層は多重 量子井戸構造として、歪みを緩和させることが有効であ る。また、吸収係数を上げるためには1×10¹⁸ c m⁻³ 以上の不純物を光吸収層にドープすることで容易に10 4 c m-1程度を得ることが可能になるばかりか、同時に 吸収効果と電圧低減に有効である。

【0031】即ち、クラッド層の外側及び活性層の横側 に光吸収層を形成することで、横モードは基本モードの みで安定し、且つ基本モードによる低閾電流で動作させ ることができるので、高密度型光ディスクシステムで要 求されるビーム特性が得られる信頼性の高い窒化物系半 導体レーザを実現できる。

【0032】本発明(3)によれば、ダブルヘテロ構造 を挟んで該構造の両側に、素子の中で膜厚が最も厚い層 に対して略格子整合し、かつ活性層から発光される光の 30 エネルギーよりも低いバンドギャップエネルギーを持つ 光吸収層を設けることによって、活性層から発せられク ラッド層を通過した光を光吸収層により急激に減衰させ ることができ、レーザ発振時に光を閉じ込めモードが立 ち易くなる。これにより、光ディスクやレーザプロジェ クタに用いられるFFPが1つのピークを持つレーザを 実現することが可能となる。

【0033】本発明(4)によれば、サファイアなどの 基板上に構成された窒化物系リッジ型半導体レーザにお いて、活性層のバンドギャップよりも小さいバンドギャ 40 ップを有するInを含む光吸収層を、ダブルヘテロ構造 よりも基板側に設けることにより、活性層から基板側に しみ出す光を十分に吸収することができる。これによ り、垂直横モードは安定し、製造方法も簡単な優れた窒 化ガリウム系横モード型半導体レーザを実現することが 可能となる。特に、半導体レーザの特性においては、横 モード特性及び低しきい値化のみならず、信頼性も向上 せしめる大きな効果がある。

【0034】本発明(5)によれば、電極下部にAs, Pを含むInGaAlN等のコンタクト層を形成するこ 50 極126が形成されている。また、p型コンタクト層1

とにより、活性層と電極部とに大きなバンドギャップ差 を形成することができ、これによりクラッド層から漏れ る光をなくすことができる。従って、光の電磁波分布は 活性層を中心に閉じ込められ、光閉じ込めは大きく改善 され、そのためモードが安定した発振しきい値の低い半 導体レーザ装置が実現される。

【0035】本発明(6)によれば、p側ガイド層又は p側クラッド層をn側のそれより薄く形成することによ り、キャリアオーバーフローが低減でき、キャリアの注 として作用させるためには、窒化物系半導体の場合の発 10 入効率を向上することができる。より具体的には、活性 層とp側ガイド層又はp側クラッド層との間に生ずるへ テロ障壁の勾配を大きくし、結果としてキャリアオーバ ーフローの低減が可能となる。このため、活性層におけ るキャリアの注入効率が向上でき、低しきい値化をはか ることが可能となる。

【0036】また本発明によれば、p側ガイド層又はp 側クラッド層をn側のそれより薄く形成し、かつコンタ クト層を0.05 µm以下に設定することにより、p側 ガイド層、p側クラッド層、p側コンタクト層における 光吸収層のシート抵抗を低減することが可能になり、光 20 光閉じ込め係数を低減し、逆にn側の光閉じ込め係数を 上げてp側ガイド層,p側クラッド層,p側コンタクト 層における吸収損失を低減してしきい値を低減し、FF Pの多峰性を改善して単峰化することが可能となる。 [0037]

> 【発明の実施の形態】以下、本発明の詳細を図示の実施 形態によって説明する。

> 【0038】 (第1の実施形態) 図1は、本発明の第1 の実施形態に係わる半導体レーザの素子構造を示す断面 図である。

【0039】サファイア基板上110に、GaNからな るバッファ層111、Siドープのn-GaNからなる n型コンタクト層112、Siドープのn-AlGaN からなるn型クラッド層115、Siドープのn-Ga Nからなるn型ガイド層116、Siドープのn-Al GaNからなるn型薄膜障壁層117、それぞれの厚さ が10nm以下の2種類のInAlGaN層の繰り返し で構成される周期構造からなる多重量子井戸(MQW) 構造からなるMQW活性層118、Mgドープのp-A 1GaNからなるp型薄膜障壁層119、Mgドープの p-GaNからなるp型ガイド層120、Mgドープの p-A1GaNからなるp型クラッド層121、Mgド ープのInGaNからなるp型光吸収層122、Mgド ープのGaNからなるp型コンタクト層123、Mgド ープのp-InAlGaNからなるp型光導波モード制 御層124、p型コンタクト層123が成長形成されて

【0040】そして、p型コンタクト層123からn型 コンタクト層112の途中まで部分的にエッチングさ れ、露出した n型コンタクト層112の表面にはn側電 23上にはp側電極125が形成されている。

【0041】光吸収層122については、I n組成がM QW活性層118の井戸層I n組成より高いことが望ましいが、低い場合でも各種金属不純物をドーピングするか、Si, Zn, Mgを高濃度ドーピング(1×10¹⁸ cm⁻³以上)することによって、フリーキャリアロスを増やして吸収係数を高くするものとする。光吸収層122の厚さについては、0.3μm以下とする。光導波モード制御層124については、光吸収層122と同様に吸収係数が高いものを用いるか、若しくはA1GaNを 10 用いて屈折率をGaNよりも低くしたものを用いることとする。

【0042】図1において、光導波モード制御層124をp型コンタクト層123中に1層設けているが、2層以上設ければより効果が大きくなる。例えば、p型コンタクト層123をA1GaN及び/又はInGaNとGaNの超格子構造としても良い。p型コンタクト層123を超格子構造とした場合には、層と垂直方向の直列抵抗を低減するために変調ドープを行うことが望ましい。また、光吸収層122と光導波モード制御層124のど20ちらか一方だけを設けることも可能である。例えば光吸収層122が無く、GaNコンタクト123層中に光導波モード制御層124が設けてある場合も含まれる。

【0043】本実施形態におけるように、光吸収層122及び/又は光導波モード制御層124を設けた場合は、A1GaNクラッド層厚が不十分で光がコンタクト層123に光が大きく漏れることを防止し、高次モードによる発振を抑制して違視野像(FFP)を単峰にし、しきい値を低減することができる。本発明を用いない場合、近視野像30(Near Field Pattern: NFP)は、図2のようになる。

【0044】ここで、p型コンタクト層123に光吸収層122及び光導波モード制御層124を設けた場合、NFPは図2の点線で示すようにp型コンタクト層123の光のもれが減少し、発振しきい値も低下する。発振しきい値は図3に示すように、光吸収層122及び光導波モード制御層124がない従来構造に比較すると、光吸収層122を設けた場合の方がしきい値は低く、さらに光導波モード制御層124の層数が多ければ多いほど40しきい値が減少する。

【0045】また、本実施形態のような光吸収層122及び光導波モード制御層124を用いた場合と用いない場合のFFPを比較すると、図4のようになる。この図から、従来多峰性を示すFFPが本実施形態によって単峰となることが分かる。このような多峰性は、p-GaNコンタクト層123、n-GaNコンタクト層112へ光が漏れ出し、高次モードでレーザ発振していることに起因する。しかし、本実施形態によるようにコンタクト層123中に半吸収層122及び半道波モード制御層

124を設けた場合、高次モードの発振が抑制されてF FPは単峰となる。

10

【0046】さらに光吸収層を設けても、ドーピングが 低いか又はIn組成が高くないために吸収が不十分であ る場合には、高次モードで発振する場合がある。この場 合は解決策として次の二つの方法が考えられる。一つの 方法は、コンタクト層123中にモード制御層124を 不等間隔に配置し、高次モードの発生を抑える方法であ り、図6においてd1 # d2 # d3 # d4とした場合で ある。各々がある値 d Oの整数倍である場合も除かれる ものとする。光吸収層122又はモード制御層124が 周期的に設けられていない場合は、高次モードによる発 振を抑えることができる。もう一つの方法は、コンタク ト層123中にモード制御層124を等間隔に配置し、 特定の高次モードのみが存在するようにする方法であ る。例えば図6において、d1=d2=d3=d4とし た場合である。各々がある値dOの整数である場合も含 むものとする。

【0047】後者の方法では高次モードによる発振は避けられないが、高次モードの次数がレーザ発振時に動いてしまうという問題は生じない。従来は高次モードの次数が変化すると発振周波数が変化し、レーザ光の特性も変化してレンズ等によるフォーカスが変化するため、実用の点からは高次モードの次数がレーザ発振時に動くことは好ましくない。コンタクト層123中に光吸収層122又はモード制御層124を等間隔に配置する場合には、導波モードの節と腹を固定することができるので高次モードの次数が固定でき、このような問題は生じない。

50 【0048】以上のようにして得た本実施形態の半導体 レーザは、420nm付近の波長で室温連続発振し、そ のしきい値は1kA/cm²以下であり、またレーザ発 振におけるFFPは単峰であった。

【0049】このように本実施形態によれば、p-A1 GaNクラッド層121とp側電極125との間のp-GaNコンタクト層123中に、コンタクト層123と 組成の異なるp-InGaN光吸収層122及びp-InA1GaN光導波モード制御層124を配置することにより、コンタクト層123への光の漏れを減少し、高次モードによる発振を抑制することができ、その結果レーザ発振時のFFPの多峰性が低減できる。また、光導波モード制御層124の配置を周期的にすることによって、モードの次数を固定し、レーザ発振時のモードの揺らぎを抑制することが可能となる。これらの効果によって、光ディスクなどへの実用に供する低しきい値、低電圧で動作し、高い信頼性を有する窒化ガリウム系化合物半導体レーザを実現することが可能になる。

へ光が漏れ出し、高次モードでレーザ発振していること 【0050】(第2の実施形態)図7は、本発明の第2 に起因する。しかし、本実施形態によるようにコンタク の実施形態に係わる半導体レーザの素子構造を示す断面 ト層123中に光吸収層122及び光導波モード制御層 50 図である。なお、図1と同一部分には同一符号を付し て、その詳しい説明は省略する。

【0051】サファイア基板上110に、GaNからな るバッファ層111、Siドープのn-GaNからなる n型コンタクト層112、Siドープのn-InAlG aNからなるn型光導波モード制御層113、n型コン タクト層112、Siドープのn-InGaNからなる n型光吸収層114、層Siドープのn-AlGaNか らなるn型クラッド層115、Siドープのn-GaN からなるn型ガイド層116、Siドープのn-A1G a Nからなる n型薄膜障壁層 1 1 7、それぞれの厚さが 10 た場合、FFPは単峰となる。 10nm以下の2種類のInAlGaN層の繰り返しで 構成される周期構造からなる多重量子井戸 (MQW) 構 造からなるMQW活性層118、Mgドープのp-A1 GaNからなるp型薄膜障壁層119、Mgドープのp -GaNからなるp型ガイド層120、Mgドープのp -AIGaNからなるp型クラッド層121、Mgドー プのGaNからなるp型コンタクト層123が成長形成 されている。

【0052】そして、p型コンタクト層123からn型 コンタクト層112の途中まで部分的にエッチングさ れ、露出したn型コンタクト層112の表面にはn側電 極126が形成され、一方p型コンタクト層123上に はp側電極125が形成されている。

【0053】光吸収層114については、In組成がM QW活性層118の井戸層In組成より高いことが望ま しいが、低い場合でも各種金属不純物を高濃度ドーピン グすることによりフリーキャリアロスを高くして吸収係 数を高くするものとする。 光導波モード制御層113に ついては、光吸収層114と同様に吸収係数が高いもの を用いるか、若しくはAIGaNを用いて屈折率をGa 30 Nよりも低くしたものを用いることとする。

【0054】図7では、光導波モード制御層113をn 型コンタクト層112中に1層設けているが、2層以上 設けても構わない。さらに、n型コンタクト層112を A1GaN及び/又はInGaNとGaNの超格子構造 とした場合も効果は同様である。 コンタクト層112を 超格子構造とした場合には、層と垂直方向の直列抵抗を 低減するために変調ドープを行うことも可能である。ま た、光吸収層114と光導波モード制御層113のどち らか一方だけを設けることも可能である。例えば光吸収 40 層114が無く、GaNコンタクト層112中に光導波 モード制御層113が設けてある場合も含まれる。

【0055】本実施形態におけるように、光吸収層11 4及び/又は光導波モード制御層113を設けた場合 は、AIGaNクラッド層厚が不十分で光がコンタクト 層112にしみ出す状況でも、コンタクト層112に光 が大きく漏れることを防止し、高次モードによる発振を 抑制してFFPを単峰にし、しきい値を低減することが できる。本実施形態を用いない場合、NFPを見るとn

1 2

タクト層112に光吸収層114及び光導波モード制御 層113を設けた場合、n型コンタクト層112への光 の漏れは減少し、発振しきい値も低下する。

【0056】また、従来構造ではFFPは多峰性を示す が、このような多峰性はp-GaNコンタクト層12 3、n-GaNコンタクト層112へ光が漏れ出し、高 次モードでレーザ発振していることに起因する。しか し、本実施形態によるようにn型コンタクト層112中 に光吸収層114及び光導波モード制御層113を設け

【0057】さらに、光吸収層114を設けても、ドー ピングが低いか又はIn組成が高くないために吸収が不 十分である場合には、高次モードで発振する場合があ る。この場合は、解決策として次の二つの方法が考えら れる。一つは、コンタクト層112中にモード制御層1 13を不等間隔に配置し、高次モードの発生を抑える方 法である。光吸収層114又はモード制御層113が周 期的に設けられていない場合は、高次モードによる発振 を抑えることができる。もう一つの方法は、コンタクト 20 層112中にモード制御層113を等間隔に配置し、特 定の高次モードのみが存在するようにする方法である。 【0058】後者の方法では、高次モードによる発振は 避けられないが、高次モードの次数がレーザ発振時に動 いてしまうという問題は生じない。従来は高次モードの 次数が変化すると発振周波数が変化し、レーザ光の特性 も変化してレンズ等によるフォーカスが変化するため、 実用の点からは高次モードの次数がレーザ発振時に動く ことは好ましくない。コンタクト層112中に光吸収層 114又は低屈折率層からなるモード制御層113を等 間隔に配置する場合には、導波モードの節と腹を固定す ることができるので、高次モードの次数が固定でき、こ のような問題は生じない。

【0059】以上のようにして得た本実施形態の半導体 レーザは、420 nm付近の波長で室温連続発振し、そ のしきい値は1kA/cm²以下であり、またレーザ発 振におけるFFPは単峰であった。

【0060】 (第3の実施形態) 図8は、本発明の第3 の実施形態に係わる半導体レーザの素子構造を示す断面 図である。なお、図1と同一部分には同一符号を付し て、その詳しい説明は省略する。

【0061】サファイア基板上110に、GaNからな るバッファ層111、Siドープのn-GaNからなる n型コンタクト層112、Siドープのn-InA1G aNからなるn型光導波モード制御層113、n型コン タクト層112、Siドープのn-InGaNからなる n型光吸収層114、Siドープのn-AlGaNから なるn型クラッド層115、Siドープのn-GaNか らなるn型ガイド層116、Siドープのn-AlGa Nからなる n型薄膜障壁層117、それぞれの厚さが1 型コンタクト層112に光が大きく漏れるが、n型コン 50 0nm以下の2種類のInAlGaN層の繰り返しで構

成される周期構造からなる多重量子井戸(MQW)構造 からなるMQW活性層118、Mgドープのp-A1G a Nからなるp型薄膜障壁層119、Mgドープのp-GaNからなるp型ガイド層120、Mgドープのp-AlGaNからなるp型クラッド層121、Mgドープ のInGaNからなるp型光吸収層122、Mgドープ のGaNからなるp型コンタクト層123、Mgドープ のp-InAlGaNからなるp型光導波モード制御層 124、p型コンタクト層123が成長形成されてい

【0062】そして、p型コンタクト層123からn型 コンタクト層112の途中まで部分的にエッチングさ れ、露出したn型コンタクト層112の表面にはn側電 極126が形成され、一方p型コンタクト層123上に はp側電極125が形成されている。

【0063】光吸収層122及び114については、I n組成が活性層井戸層 I n組成より高いことが望ましい が、低い場合でも各種金属不純物を高濃度ドーピングす ることによりフリーキャリアロスを高くして吸収係数を 高くするものとする。光導波モード制御層113又は1 20 24については、光吸収層114及び122と同様に吸 収係数が高いものを用いるか、若しくはA1GaNを用 いて屈折率をGaNよりも低くしたものを用いることと する。

【0064】図8では、光導波モード制御層113,1 24をn型コンタクト層112とp型コンタクト層12 3中に各1層設けているが、どちらか一方でも構わない し、光導波モード制御層114,122を2層以上設 け、例えばコンタクト層をAlGaN及び/又はInG aNとGaNの超格子構造とした場合も効果は同様であ 30 る。コンタクト層112、123を超格子構造とした場 合には、層と垂直方向の直列抵抗を低減するために変調 ドープを行うことも可能である。また、光吸収層11 4,122と光導波モード制御層113,124のどち らか一方だけを設けることも可能である。例えば光吸収 層114及び/又は122が無く、GaNコンタクト層 112中に光導波モード制御層113が設けてある場合 も含まれる。

【0065】本実施形態におけるように、光吸収層11 4,122及び/又は光導波モード制御層113,12 4を設けた場合は、A I G a Nクラッド層厚が不十分で 光がコンタクト層112,123にしみ出す状況でも、 コンタクト層112,123に光が大きく漏れることを 防止し、高次モードによる発振を抑制してFFPを単峰 にし、しきい値を低減することかできる。本実施形態を 用いない場合、NFPを見るとp型コンタクト層12 3、n型コンタクト層112にしみ出していることが分 かる。ここで、コンタクト層112,123に光吸収層 114,122及び光導波モード制御層114,124

14

23への光の漏れは小さくなり、発振しきい値も低下す。

【0066】また、従来構造ではFFPは多峰件を示す が、このような多峰性はp-GaNコンタクト層12 3、n-GaNコンタクト層112へ光が漏れ出し、高 次モードでレーザ発振していることに起因する。しか し、本実施形態によるようにコンタクト層112,12 3中に光吸収層114,122及び光導波モード制御層 113,124を設けた場合、FFPは単峰となる。

【0067】本実施形態のようにp型コンタクト層12 10 3、n型コンタクト層112の両方に光の漏れを低減す る措置を行う必要があるのは、例えば電流狭窄構造やB H構造、SBR構造のようにp側で電流の流れが絞り込 まれている場合についてであり、pコンタクト層が厚い 場合に特に有効である。

【0068】以上のようにして得た本実施形態の半導体 レーザは、420 nm付近の波長で室温連続発振し、そ のしきい値は1kA/cm²以下であり、またレーザ発 振におけるFFPは単峰であった。

【0069】 (第4の実施形態) 図9は、本発明の第4 の実施形態に係わる半導体レーザの素子構造を示す断面 図である。なお、図1と同一部分には同一符号を付し て、その詳しい説明は省略する。

【0070】サファイア基板上110に、GaNからな るバッファ層111、Siドープのn-GaNからなる n型コンタクト層112、Siドープのn-InAlG aNからなるn型光導波モード制御層113、n型コン タクト層112、Siドープのn-InGaNからなる n型光吸収層114、Siドープのn-AlGaNから なるn型クラッド層115、Siドープのn-GaNか らなるn型ガイド層116、Siドープのn-AlGa Nからなる n型薄膜障壁層117、それぞれの厚さが1 Onm以下の2種類のInAlGaN層の繰り返しで構 成される周期構造からなる多重量子井戸(MQW)構造 からなるMQW活性層118、Mgドープのp-A1G aNからなるp型薄膜障壁119、Mgドープのp-G aNからなるp型ガイド層120、Mgドープのp-A 1GaNからなるp型クラッド層121、Mgドープの InGaNからなるp型光吸収層122、ノンドープ又 はSiドープのn-InAlGaNからなる電流ブロッ ク層127、ノンドープ又はMgドープのp-InAl GaNからなる光導波モード制御層124、電流ブロッ ク層127が成長形成されている。

【0071】内部に光導波モード制御層124を含む電 流プロック層127はストライプ状に開口され、この開 口部及び電流ブロック層127上には、MgドープのG a Nからなるp型コンタクト層123、p型光導波モー ド制御層124、p型コンタクト層123が成長形成さ れている。そして、そして、p型コンタクト層123か を設けた場合、NFPを見るとコンタクト層112,1 50 らπ型コンタクト層112の途中まで部分的にエッチン グされ、露出したn型コンタクト層112の表面にはn 側電極126が形成され、p型コンタクト層123上に はp側電極125が形成されている。

【0072】光吸収層122及び114については、I n組成がMQW活性層118の井戸層 I n組成より高い ことが望ましいが、低い場合でも各種金属不純物を高濃 度ドーピングすることによりフリーキャリアロスを高く して吸収係数を高くするものとする。光導波モード制御 層113又は124については、光吸収層114及び1 22と同様に吸収係数が高いものを用いるか、若しくは 10 AlGaNを用いて屈折率をGaNよりも低くしたもの を用いることとする。

【0073】図9では、光導波モード制御層をp型コン タクト層123、n型コンタクト層112中に各1層設 けているが、どちらか一方でも構わないし、光導波モー ド制御層を2層以上設け、例えばコンタクト層及び/又 は電流ブロック層をAlGaN及び/又はInGaNと GaNの超格子構造とした場合も効果は同様である。コ ンタクト層を超格子構造とした場合には、層と垂直方向 の直列抵抗を低減するために変調ドープを行うことも可 20 能である。また、光吸収層114,122と光導波モー ド制御層113、124のどちらか一方だけを設けるこ とも可能である。例えば光吸収層114及び/又は12 2が無く、GaNコンタクト層112, 123中に光導 波モード制御層113,124が設けてある場合も含ま ns.

【0074】本実施形態におけるようにブロック層12 7及び/又はコンタクト層112、123中に光吸収層 114,122及び/又は光導波モード制御層113, 124を設けた場合は、A1GaNクラッド層厚が不十 30 分で光がコンタクト層112,123にしみ出す状況で も、コンタクト層112,123に光が大きく漏れるこ とを防止し、高次モードによる発振を抑制してFFPを 単峰にし、しきい値を低減する。また、コンタクト層1 12,123中に光吸収層114,122及び光導波モ ード制御層113,124を設けた場合、FFPは単峰 となる。

【0075】以上のようにして得た本実施形態の半導体 レーザは、420 nm付近の波長で室温連続発振し、そ のしきい値は1kA/cm² 以下であり、またレーザ発 40 振におけるFFPは単峰であった。

【0076】(第5の実施形態)図10は、本発明の第 5の実施形態に係わる半導体レーザの素子構造を示す断 面図である。なお、図1と同一部分には同一符号を付し て、その詳しい説明は省略する。

【0077】 先に説明した第4の実施形態との違いは、 電流狭窄がp-AIGaNクラッド層121でなされて いることである。ブロック層127はSiドープのGa N又は望ましくはSiドープのAlGaN又はInGa Nであり、クラッド層121中に光吸収層122が設け 50 (3 nm, 5層)と I no. 02 G ao. 98 N障壁層 (6 n

16 られている。また、コンタクト層123中にInGaN

又はAIGaNからなる導波モード制御層124が設け られている。

【0078】p側において、光吸収層122及び光導波 モード制御層124をブロック層127及びコンタクト 123層中に設けることにより、FFPの単峰化を達成 することができ、ブロック層127,コンタクト層12 3への光のしみ出しを低減して、しきい値を下げること ができる。

【0079】本実施形態におけるように、光吸収層11 4,122及び/又は光導波モード制御層113,12 4を設けた場合は、光がコンタクト層112,123又 は電流ブロック層127にしみ出す状況でも、これらの 層に光が大きく漏れることを防止し、高次モードによる 発振を抑制して遠視野像FFPを単峰にし、しきい値を 低減することができる。また、従来構造ではFFPは多 峰性を示すが、このような多峰性はp-GaNコンタク ト層123、n-GaNコンタクト層112へ光が漏れ 出し、高次モードでレーザ発振していることに起因す る。しかし、本実施形態によるようにコンタクト層11 2,123中に光吸収層114,122及び光導波モー ド制御層113、124を設けた場合、FFPは単峰と

【0080】以上のようにして得た本実施形態の半導体 レーザは、420 nm付近の波長で室温連続発振し、そ のしきい値は1kA/cm²以下であり、またレーザ発 振におけるFFPは単峰であった。

【0081】なお、本発明は上述した第1~第6の実施 形態に限られるものではない。基板はサファイアに限る ものではなく、Si, SiC, MgAl2 O4, GaN なども適用可能である。また、光吸収層は発振光に対し てエネルギーギャップが小さければGaInAlBNの 任意組成で良い。また、光吸収層へのドーピングはM g、Siに限られるものではなく、活性層からの光に対 して十分大きな吸収係数が得られるものであればよい。 また、活性層はi型, n型, p型のいずれでもよい。さ らに、構造や膜厚,組成などにおいては、本発明の趣旨 に逸脱しない限り種々の適用が可能である。

【0082】 (第6の実施形態) 図11は、本発明の第 6の実施形態に係わる青色半導体レーザの概略構成を示 す断面図である。

【0083】図中201はサファイア基板であり、この 基板201上には、n-GaNコンタクト層202(S i F-T, $5 \times 10^{18} \text{ cm}^{-3}$, $3 \mu \text{m}$), n - I no. 2Gao.8 N光吸収層203 (Siドープ, 5×1018c m^{-3} , 0. $1 \mu m$), $n-A l_{0.08} Ga_{0.92} N / 2 \gamma K$ 層204 (Siドープ, 1×10^{18} cm⁻³, 0.8 μ m)、n-GaN光導波層205 (Siドープ, 1×1 018 c m⁻³, 0. 1 μm)、I no. 15 G ao. 85 N井戸層

18

m) からなる多重量子井戸 (MQW) 活性層206、p -Alo.2 Gao.8Nキャリアオーバーフロー防止層2 07 (20nm)、p-GaN光導波層208 (Mgド $-\mathcal{T}$, $1\times10^{18}\,\mathrm{cm}^{-3}$, 0. $1\,\mu\mathrm{m}$), $p-Al_{0.08}$ Gao. 92 Nクラッド層209 (Mgドープ, 1×10¹⁸ cm⁻³, 0. 8μm)、p-In_{0.2}Ga_{0.8} N光吸収 層210 (Mgドープ, 5×10^{18} cm⁻³, 0.1μ m)、p-GaNコンタクト層211 (Mgドープ, 2 ×10¹⁸ c m⁻³, 0. 1 μm) が成長形成されている。 【0084】p型コンタクト層211の表面からn型コ 10 ンタクト層202の途中までストライプ状のメサを残し て除去され、残ったメサの側部には、p-Alo.08Ga 0.92 N電流ブロック層212 (Mgドープ, 1×1018 cm⁻³, 0. 1μm)、n-In_{0.2} Ga_{0.8} N光吸収 層213 (Siドープ, 5×10^{18} c m⁻³, 0.3 μ m)、n-GaN電流ブロック層(Siドープ, 1×1 0¹⁸ c m⁻³, 2μm) 214が成長形成されている。そ して、メサ上部及びn型電流ブロック層214上には、 p-GaNコンタクト層215 (Mgドープ, 2×10 18 c m⁻³, 0. 2 μm) が成長形成されている。

【0085】また、p型コンタクト層215の表面から p型電流ブロック層212までが一部除去され、露出し たn型コンタクト層202上にA1/Ti/Auからな るn側電極217が形成され、一方p型コンタクト層2 15上にはPt/Ti/Pt/Auからなるp側電極2 16が形成されている。そして、電極216, 217が 形成されずに露出する部分には、該部分を被覆するよう にSiO2 絶縁膜218が形成されている。なお、MQ W活性層206の幅は4μmとしている。また、特に図 示していないが、レーザ光出射端面にはTiO2/Si 30 O2 を多層に積層した高反射コートを施している。

【0086】本実施形態では、共振器長0.5mmの場 合、しきい値電流70mA、発振波長420nm、動作 電圧5.2Vで室温連続発振した。さらに50℃、5m W駆動における素子寿命は5000時間以上であった。 また、FFPは水平角7°,垂直角22°で単峰のピー クであり、さらに非点隔差は5μmと小さく、光ディス ク応用に適したビーム特性が得られた。

【0087】本実施形態レーザの場合、MQW活性層2 06を挟むA1GaNクラッド層204及び209の外 側には発振光に透明なGaN層があるため横モードは反 導波であるが、A1GaNクラッド層204及び209 の外側への染み出した光に対して InGaN光吸収層2 03及び210により高次の垂直横モードは減衰が大き くなる。また、活性層水平方向においても反導波構造に なるが、n-Ino.2Gao.8 N光吸収層213が高次 の水平横モードは基本モードに比べて損失大又はカット オフになるので、活性層幅を波長程度まで狭くしないで も、共振器内での波面が共振器方向に垂直になり、FF Pの拡がり角を抑制し、かつ非点隔差を小さくすること 50 層を兼ねるので、接触抵抗がp側,n側共に下がり動作

ができた。従って、製造工程においては、発振波長の 0. 4 μm程度の狭い活性層幅の制御が不要であるの で、高密度光ディスクシステムに適用可能な半導体レー ザが容易に歩留まり良く得られた。

【0088】さらに、n-Ino.2 Gao.8 N光吸収層 203、p-I no.2 Gao.8 N光吸収層210を夫 α , n-I no. 25 G ao. 75 N (Si F-T, 5×10 18 c m⁻³, 3 n m, 1 0 層) 井戸層と n - I no. 02 G a 0.98N (Siドープ, 5×10¹⁸cm⁻³, 6nm) 障壁 層からなる量子井戸構造光吸収層、 p-I no. 25 Ga $0.75 \,\mathrm{N} \,(\mathrm{Mg}\,\mathrm{F}-\mathrm{T}, \,5\times10^{18}\,\mathrm{cm}^{-3}, \,3\,\mathrm{nm}, \,10$ 層) 井戸層とp-Ino.02 Gao.98 N (Mgドープ, 5 ×10¹⁸ c m⁻³, 6 n m) 障壁層からなる量子井戸構造 光吸収層に代えることで、FFPは水平角7°,垂直角 20°で単峰ピークに、非点隔差は3µmに夫々改善で きた。これは、光吸収層での垂直横モードの抑制が単層 に比べて改善されたためである。また、ウェハ面内での 素子ばらつきが小さくなり、歩留まりが向上した。これ は、In組成の大きい光吸収層を単層で厚くすると内部 20 歪みが高いのに対し、量子井戸構造とすることで平坦性 及び歪みの抑制が可能になったためである。

【0089】(第7の実施形態)図12は、本発明の第 7の実施形態に係わる青色半導体レーザの概略構成を示 す断面図である。なお、図11と同一部分には同一符号 を付して、その詳しい説明は省略する。

【0090】本実施形態が図11で示される第6の実施 形態に対して異なる点は、n-GaNコンタクト層20 2がn-Ino.2 Gao.8 N光吸収層203に、p-G aNコンタクト層211及び215がp-Ino.2 Ga 0.8 N光吸収層210に置き換えてあることである。従 って、 n-In0.2 Ga0.8 N光吸収層203及びp - I n0.2 G a0.8 N光吸収層210は光吸収層と電極 コンタクト層を兼ねている。

【0091】本実施形態では、共振器長0.5mmの場 合、しきい値電流75mA、発振波長420nm、動作 電圧4.8Vで室温連続発振した。さらに、50℃,5 mW駆動における素子寿命は5000時間以上であっ た。また、FFPは水平角5°,垂直角20°で単峰の ピークであり、さらに非点隔差は4μmと小さく、光デ ィスク応用に適したビーム特性が得られた。

【0092】本実施形態レーザの場合、MQW活性層2 06を挟むA1GaNクラッド層204及び209の外 側には発振光に対して透明なGaN層はn-GaN電流 ブロック層214のみがあるため、横モードは第6の実 施形態と同様に反導波であるが、InGaN光吸収層に より高次の横モードは完全に減衰させることができるの で、第6の実施形態に比べても、FFPの拡がり角の抑 制効果、かつ非点隔差を小さく効果が大きい。さらに、 InGaN光吸収層203及び210が電極コンタクト

20

電圧を低減できた。

【0093】なお、本発明は上述した第6~第7の実施 形態に限られるものではなく、基板として、Si,Si C, MgAl₂O₄, GaNなども適用可能である。ま た、光吸収層は発振光に対してエネルギーギャップが小 さければGaInAIBNの任意組成で良い。また、光 吸収層へのドーピングはMg, Si に限られるものでは なく、105 cm-1程度の吸収係数が得られれば、導電 型に拘らない不純物であっても良い。さらに、構造や膜 厚、組成などにおいては、本発明の趣旨に逸脱しない限 10 り種々の適用が可能である。

【0094】(第8の実施形態)図13は、本発明の第 8の実施形態に係わる青色半導体レーザの概略構成を示 す断面図である。

【0095】図中の300はサファイア基板であり、こ の基板300上には、A1N/InN超格子バッファ層 301 (アンドープ, 4 mm, 厚さの比AlN: InN =8:2)、n-I no.1 Gao.9 Nコンタクト層30 2 (Si F-T, $3\sim5\times10^{18}$ cm⁻³, 4μ m), n -GaN/Ga0.85As0.15 N超格子光吸収層303 (Siドープ、3~5×10 18 cm $^{-3}$, 0. 1μ m, 厚 さの比GaN: GaAsN=8:2)、n-Alo.3 G ao.7 Nクラッド層304 (Siドープ, 5×10¹⁷c m-3, 0. 3μm)、I no.2 Gao.8 N活性層305 (アンドープ, 0. 1μm)、p-A10.3 Gao.7 N クラッド層306 (Mgドープ, $5 \times 10^{17} \text{ cm}^{-3}$, 0. 3μm)、p-GaN/Ga0.85As0.15N超格子 光吸収層307 (Mgドープ、1~3×10¹⁸cm⁻³、 0. 1μm, 厚さの比GaN: GaAsN=8:2)、 p-Inc.1 Gao.9 Nコンタクト層308 (MGドー 30 プ, 1~3×10¹⁸ c m⁻³, 0. 1 μm) が成長形成さ れている。各層302~308の結晶成長は、MOCV D法(有機金属気相成長法)によって行っている。

【0096】上記各層302~308の成長後、p型電 極となる部分にマスクを形成し、それ以外の部分を n型 コンタクト層302に達するまでエッチングを行い、続 いて全面にリーク電流を防ぐためのSiOzを付けた。 そして、p型、n型共に電極を形成する部分のSiO2 を除去し、p型、n型の電極金属311、312を蒸着 した。

【0097】p型, n型共にGaN/Ga0.85As0.15 N超格子光吸収層303,307は、AIN/InN超 格子バッファ層301に格子整合しており、活性層30 5から発せられる光のエネルギーよりも小さなバンドギ ャプを有するInNを含んでおりこの層において急激に 光は減衰しレーザ発振時に光を閉じ込めモードが立ち易 くなる。

【0098】本実施形態のレーザでは、しきい値80m Aで室温連続発振した。発振波長は420nm,動作電 圧は4 Vであった。発振しきい値は電流狭窄構造を用い 50 第10の実施形態に係わる青色半導体レーザの概略構成

ない従来の素子の100mAに比べ80mAと低くなっ た。さらに、発振時の遠視野像は図16に示すように、 従来例では2つのピークがあったものが、本実施形態で は1つのピークになり、垂直方向の半値幅も14°と光 ディスク用ピックアップとして十分実用になるレベルと なった。

【0099】また、今回は結晶成長方法としてMOCV D法を用いたがMBE法でも良い。

【0100】 (第9の実施形態) 図14は、本発明の第 9の実施形態に係わる青色半導体レーザの概略構成を示 す断面図である。

【0101】サファイア基板320の上に、A1Nバッ ファ層321 (アンドープ, 10 nm)、n-I no.1 Gao.s Nコンタクト層322(Siドープ、1×10 ¹⁹ c m⁻³, 3 μ m) 、n - G a_{0.97} A s_{0.03} N光吸収 層323 (Siドープ, 3~5×1018cm-3, 0.1 μm)、n-Alo.1 Gao.9 Nクラッド層324 (S i ドープ, 5×10^{17} cm⁻³, 0.8μ m)、GaN光閉じ込め層325 (Siドープ, $0.1\mu m$)、In20 0.2 Gao.9 N活性層 326 (Siドープ, 10n m)、GaN光閉じ込め層327(アンドープ, 0.1 μm)、p-Alo.1Gao.9 Nクラッド層328 (M g F-T, 5×10^{17} c m⁻³, 0. 8μ m), p-Ga 0.97Aso.03N光吸収層329 (Mgドープ, 1~3× $10^{18}\,\mathrm{cm}^{-3}$, 0. $1\,\mu\mathrm{m}$), $p-\mathrm{I}\,\mathrm{n}_{0.1}\,\mathrm{Ga}_{0.9}\,\mathrm{N}$ コンタクト層330 (Mgドープ, 1~3×1018 cm -3, 0.3 µm) が成長形成されている。なお、これら の層の結晶成長はMBE法によって行っている。

【0102】そして、p型コンタクト層330の表面か ら n型コンタクト層322に達するまで一部がエッチン グによって除去され、除去された n型コンタクト層32 2上にはn側電極332が形成され、p側電極330上 にはp側電極331が形成されてる。また、電極形成部 を除く表面には、リーク電流を防ぐためのSiO2 絶縁 膜333が形成されている。

【0103】p型, n型共に、Gao.97Aso.03N光吸 収層323,329の格子定数はIno.1 Gao.9 Nに 格子整合しており、活性層326から発せられる光のエ ネルギーよりも小さなバンドギャプを有する。

【0104】本構造の素子ではしきい値80mAで80 40 でまで連続発振した。発振波長は375nm、動作電圧 は4Vであった。この素子においても超格子光吸収層に よって光のもれが低減され発光層での光密度が高くなる のでしきい値は低く、遠視野像は単峰であり光の位相の ずれがなく、光記録ディスクの読み取り用、書き込み用 どちらの用途でも最適な発光が得られた。また、超格子 を用いていることにより、成長中及び成長後に生じる転 位を低減できた。

【0105】 (第10の実施形態) 図15は、本発明の

を示す断面図である。

【0106】図中の340はサファイア基板、341は n-GaNバッファ層 (アンドープ, $0.1\mu m$)、3 42はn-Gao.9 Alo.1 Sbo.1 No.9 コンタクト 光吸収層(Siドープ, 3~5×10¹⁸ cm⁻³, 4 μ m)、343はn-AlGaNクラッド層(Siドー \mathcal{T} , $5 \times 10^{17} \,\mathrm{cm}^{-3}$, 0. $3 \,\mu\mathrm{m}$), $344 \,\mathrm{l} \ln -\mathrm{G}$ aN光ガイド層(Siドープ, 5×10¹⁷cm⁻³, 0. 1μm)、345はIno.3 Gao.7 N/GaN多重量 m, ペア数3)、346はp-GaN光ガイド層(Mg F-T, 5×10^{17} cm⁻³, 0. 1μ m) 347dp -A1GaNクラッド層 (Mgドープ, 5×10¹⁷cm $^{-3}$, 0. 3 μ m) $\sqrt{348}$ dp -Ga_{0.9} Al_{0.1} Sb 0.1 No.9 コンタクト光吸収層 (MGドープ, 1~3× 10¹⁸cm⁻³, 0.5μm)、349はn-GaN通電 障壁層 (Siドープ, 1×10¹⁸ c m⁻³, 0. 3μ m)、350はp-GaNコンタクト層、351はp側 電極、352はn側電極である。

【0107】作製方法は、次のようになっている。始め 20 にMOCVD法によりn-GaN通電障壁層349まで 成長しその後、通電障壁層309の上に一部フォトリソ グラフィーによりストライプ状のマスクを形成し、p-GaAlSbN光吸収層348が露出するまでエッチン グを行う。次いで、p-GaNコンタクト層350を成 長する。また、先の実施形態と同様に、n型コンタクト 層342に達するまで一部を除去し、露出したn型コン タクト層342上にn側電極352をけいせいし、さら にp型コンタクト層350上にp側電極351を形成す ることにより、図15の構造が得られる。

【0108】本実施形態のレーザは、しきい値20mA で室温連続発振した。発振波長は420mm,動作電圧 は3.8Vであった。

【0109】(第11の実施形態)図17は、本発明の 第11の実施形態に係わる青色半導体レーザ装置の概略 構成を示す断面図である。

【0110】図中の360はp-SiC基板、361は p-A1N/InNバッファ層 (Mgドープ3~5×1 0²⁰ c m⁻³, 1 μm, 厚さの比A l N: I nN=0. 超格子光吸収層 (Mgドープ, 1×10¹⁹ c m⁻³, 0. 4μm, 厚さの比GaN: GaPN=0.7:0. 3)、363はp-Alo.3 Gao.7 Nクラッド層(M gF-T, 5×10^{17} cm⁻³, 0. 3μ m), 364d Alo.1 Gao.9 N光ガイド層 (アンドープ, O. O1 μm)、365は多重量子井戸活性層 I no.1 Gao.9 N/A lo.1 Gao.9N (アンドープ, 井戸厚2nm, 障壁厚4nm, 3ペア)、366はAlo.1 Gao.9 N 光ガイド層 (アンドープ, 0.01 µm)、367 はn

22

 $0^{17} \,\mathrm{cm}^{-3}$, 0. $3 \,\mu\mathrm{m}$), 368 ltn -GaN/Ga 0.9 Po.1 N超格子光吸収層 (Siドープ, 1×1019 cm^{-3} , $0.4\mu m$, 厚さの比GaN: GaPN=0. 7:0.3)、369はp-GaN電流狭窄層 (Mgド -7, 5×10^{17} cm⁻³, 0. 1μ m) ~ 370 dn -GaNコンタクト層(Siドープ,1~3×1019cm -3, 0. 1μm)、371はn側電極、372はp側電 極である。

【0111】作製方法は、次のようになっている。始め 子井戸活性層(アンドープ,井戸幅2nm,障壁幅4n 10 にMOCVD法によりp-GaN電流狭窄層369まで 成長し、その後で電流狭窄層369の上に一部フォトリ ソグラフィーによりマスクを形成し、n-GaN/Ga PN超格子光吸収層368が露出するまでエッチングを 行う。次いで、p-GaNコンタクト層370を成長す る。さらに、両面に電極371,372を形成し、その 後劈開により共振器の端面を形成する。

> 【0112】本実施形態構造の素子では、しきい値70 mAで発振波長は375nm、基本横モード発振し、5 000時間までの安定動作も確認した。

【0113】なお、電流狭窄層を活性層に対して基板と 反対側に設けているが、電流狭窄層は基板側でもよい し、両方にあってもよい。また、電流狭窄層にコンタク ト層に比べ屈折率の低い材料を用いているが、逆に屈折 率の高い材料でもよい。

【0114】(第12の実施形態)図18は、本発明の 第12の実施形態に係わる青色半導体レーザ装置の概略 構成を示す断面図である。

【0115】図中の380はp-SiC基板、381は p-GaNバッファ層 (Mgドープ, 3~5×10²⁰c 30 m⁻³, 3 μm)、382はp-GaN光吸収層 (Mgド $-\mathcal{T}$, $1\times10^{19}\,\mathrm{cm}^{-3}$, 0. $1\,\mu\mathrm{m}$), 383ltp-Alo.4 Gao.6 Nクラッド層 (Mgドープ, 5×10 $^{17}\,\mathrm{c}\,\mathrm{m}^{-3}$, 0. $3\,\mu\mathrm{m}$) $\sim 384 \mathrm{l} \pm A \,\mathrm{l}_{0.3}\,\mathrm{Ga}_{0.7}\,\mathrm{N}$ 光ガイド層 (アンドープ, O. 1 µm)、385は多重 量子井戸活性層Alo.1 Gao.9 N/Alo.2 Gao.8 N (アンドープ, 井戸厚2 nm, 障壁厚4 nm, 3ペ ア)、386はAlo.1 Gao.9 N光ガイド層 (アンド ープ, 0. 1μm)、387はn-Alo.4 Gao.6 N クラッド層(Siドープ, $5\times10^{17}\,\mathrm{cm}^{-3}$, 0.3μ 7:0.3)、362はp-GaN/Gao.9 Po.1 N 40 m)、388はn-GaN光吸収層(Siドープ, 1~ $3 \times 10^{19} \,\mathrm{cm}^{-3}$, 0. $1 \,\mu\mathrm{m}$), $389 \,\mathrm{dp} - \mathrm{GaN}$ 電流狭窄層 (Mgドープ, 5×10¹⁷ c m⁻³, 0. 1 μ m)、390dn-GaNコンタクト層(Si)ドープ、 1~3×10¹⁹ c m⁻³, 0. 1 μm)、391はn側電 極、392はp側電極である。

【0116】作製方法は、次のようになっている。 始め にMOCVD法によりp-GaN電流狭窄層389まで 成長し、その後で電流狭窄層389の上に一部フォトリ ソグラフィーによりマスクを形成し、n-GaN光吸収 -Alo.3 Gao.7 Nクラッド層(Siドープ, 5×1 50 層388が露出するまでエッチングを行う。次いで、p

24

-GaNコンタクト層390を成長する。さらに、両面に電極391,392を形成し、その後劈開により共振器の端面を形成する。

【0117】本実施形態構造の素子では、しきい値70 mAで発振波長は375nm、基本横モード発振し、5 000時間までの安定動作も確認した。

【0118】なお、第8~第12の実施形態において、 下地基板としてサファイア基板やSiC基板を用いた が、ZnO基板やスピネル基板でもよい。また、素子の 基板以外部分を格子整合させて作るので、基板以外で素 10 子中で一番厚さが厚い部分の結晶格子の格子定数を合わ せて素子の各層の組成を決めることにより、実施形態に 上げた組み合わせ以外でも素子を作ることが可能であ る。 図19に示すように、 横軸の格子定数が等しい点か ら図面上の方に向かいそれぞれ吸収層発光層クラッド層 の順番で格子定数が等しい値で作ればよい。この際、発 光層が薄い場合には格子整合している必要がなく、むし ろ歪みが緩和しない程度に格子整合していない方がしき い値の面では良好な素子が作成可能である。また、いず れの実施形態においても、格子定数の違いは0.2%以 20 内であれば図20のように信頼性が飛躍的に向上した。 また、超格子を用いた場合には更に転位の減少により信 頼性が向上した。

【0119】(第13の実施形態)図21は、本発明の 第13の実施形態に係わる青色半導体レーザの概略構成 を示す断面図である。

【0120】各窒化物層は全てMOCVD法により成長を行った。成長条件に関して、圧力は常圧、バッファ層以外のGaN, A1GaN層は基本的には窒素、水素、アンモニアを混合した雰囲気で1000℃から1100℃の範囲、活性層を含む成長は窒素をアンモニア雰囲気で700℃から850℃の範囲とした。

【0121】図中の420はサファイア基板で、(0001) c面を用いており、レーザミラーはへき開により形成されている。410はn-GaNコンタクト層(Siドープ、1×10¹⁸ cm⁻³)、411はn-A10.08 Ga0.92 Nクラッド層(Siドープ、1×10¹⁸ cm⁻³,0.6μm)である。412は多重量子井戸構造(MQW)、A1キャップ層、光ガイド層を含む活性層部であり、厚さ0.1μmのGaNからなる光ガイド層 を両側に有し、井戸層は3nm厚のIn0.15 Ga0.85 N層からなり、バリヤ層は厚さ6nmのIn0.02 Ga0.98 Nから構成される。井戸層は5層である。p側のガイド層とMQW層との間には、厚さ2nmのp-A10.20 Ga0.80 N薄膜障壁層が挿入されている。

【0122】また、413は $p-A1_{0.08}$ Ga $_{0.92}$ Nク は、活性層からしみ出した光が外側のコンタクト層など に導波される、いわゆる反導波現象が発生するためであ m)、414はp-GaN コンタクト層(Mg ドープ, る。これに対し、p 側電極を活性層に比較的近い位置 8×10^{19} cm $^{-3}$, 0.2μ m)であり、最上部はMg (図21 の実施形態のように 0.9μ m程度)すること を 2×10^{20} cm $^{-3}$ に高濃度化されている。415はP 50 により、電極側はコンタクト層への導波しみ出しが抑制

t/Ti/Pt/Auからなるp側電極、416はSi O2 誘電体膜、417はCr/Auからなるパッド用電 極、418はn側電極である。

【0123】419は本実施形態に係わる光吸収層で、コンタクト層410内に配置されており、多重量子井戸 (MQW) 構造を採用している。井戸層は3nm厚のIn0.20Ga0.80N層からなり、バリヤ層は厚さ6nmのGaNから構成される。井戸層は10層である。このMQW構造部の井戸層の組成は発振光波長に対して損失を有するよう、活性層の井戸層組成に対して5%程度多くなるよう設定した。また、MQWではなく単層でInGaN層として成長した場合、ウエハ全面で黒化したが、GaNをバリヤ層としてMQWの平均In組成を8%以下になるよう調整したところ、黒化は無く良いモフォロジーが得られた。MQWの挿入位置は、活性層からp電極までの距離にほぼ等しい0.9μmとした。

【0124】本実施形態の構造は、次のようにして作成される。まず、p型コンタクト層414までの結晶成長後、感光レジストを用いた光リソグラフィー技術と反応性塩素系イオンによるドライエッチング技術を用いて、図21に示すようなリッジ構造を形成する。次いで、誘電体(SiO2)膜を全面に形成した後、光リソグラフィー技術と化学エッチング技術を繰り返し用いてリッジ付近に開口部を設け、p型電極を形成することによって得られる。リッジの幅は底面で4μm、SiO2の開口幅は3μmとした。リッジ脇に存在する金属膜は接合平面に平行方向に実効屈折率差を作りつけ、水平横モードを安定化させている。

【0125】本実施形態では、しきい値65mAで室温 連続発振した。発振波長は405nm、動作電圧は5. 5Vであった。ビーム特性は単峰であり、非点隔差は1 0μmと十分小さな値が得られた。最高光出力は連続発 振で10mWまで得られ、最高連続発振温度は60℃、 信頼性に関しても室温で1000時間以上安定に動作し た。これらの特性は基板側をヒートシンクにボンデング した構造で得られた。基板は研磨により50μmまで薄 膜化している。従来型のリッジ構造では、しきい電流値 は100mAと高く、最高連続発振温度も30℃と低 く、全て双峰のビームであった。

【0126】図22は本実施形態に関する原理を説明するための図である。横軸に出射部からの立体角、縦軸には相対光強度を取っており、いわゆるファーフィールド・パターン (FFP)と呼ばれるビーム特性を示している。この結果は計算により求めた。光吸収層を設けない従来構造では、激しい双峰性のピークが発生する。これは、活性層からしみ出した光が外側のコンタクト層などに導波される、いわゆる反導波現象が発生するためである。これに対し、p側電極を活性層に比較的近い位置(図21の実施形態のように0.9μm程度)することにより、電極側はコンタクト層への道波しみ出しが抑制

され、さらにn側に吸収係数105 cm-1程度の光吸収 層を10 n m以上の厚さ挿入することで、図に示すよう に単峰のピークを得ることができる。

【0127】光吸収層の位置は、ビーム特性の対称性、 基本モードの収束解の許容度からして、光吸収層と活性 層との間隔が、金属電極と活性層との間隔に発振光に対 する屈折率を考慮した距離として概略等しいことが望ま しい。MQWのパラメータとしても種々考えられるが、 本実施形態で示したように光吸収を十分かせぎ、かつ全 ての層構造の成長温度を考慮すると、なるべく井戸層は 10 In組成を多くして、障壁層のIn組成を減らす設計が 望ましい。例えば、井戸層、障壁層共にIn組成は活性 層のMQW部のそれと同じにして、厚さを調整して上記 の条件を満たすようにもできる。

【0128】(第14の実施形態)図23は本発明の第 14の実施形態に係わる青色半導体レーザの概略構成を 示す断面図である。なお、図21と同一部分には同一符 号を付して、その詳しい説明は省略する。

【0129】基本的な構成は先の第13の実施形態と同 様であり、本実施形態がこれと異なる点は、光吸収層4 39の構造及び配置位置にある。即ち、光吸収層439 はMQW構造を採用し、井戸層は3nm厚のIn0.20G a0.80N層からなり、バリヤ層は厚さ6 nmのGaNか ら構成される。井戸層は20層である。本実施形態で は、n側電極のコンタクト部に光吸収層439が露出し ており、光吸収層439に電極コンタクトを取ることが 可能となっている。従って、バンドギャップがより小さ い層でコンタクトが取れるため、動作電圧の低減が可能 である。

【0130】室温でのしきい電流値は第13の実施構造 30 と同様であったが、n側のコンタクト抵抗が低くなり動 作電圧が4.5Vに低減できたため、最高連続発振温度 は60℃から80℃まで高くすることができた。信頼性 試験も高温で試すことが可能となり、50℃で1000 時間以上安定に動作するのを確認した。

【0131】(第15の実施形態)図24は、本発明の 第15の実施形態に係わる青色半導体レーザの概略構成 を示す断面図である。ここでは、メサ構造付近の構造を 拡大して示している。

【0132】図中450はn-GaNコンタクト層(S 40 $i \vdash -7$, $1 \times 10^{18} \text{ cm}^{-3}$), $451 \text{ dn} - \text{Alo.}_{0.08}$ Gao.92 Nクラッド層 (Siドープ, 1×1018 c m⁻³, 0.6 μm)、452は多重量子井戸構造(MQ W), Alキャップ層,光ガイド層を含む活性層部であ り、厚さ0.1µmのGaNからなる光ガイド層を両側 に有し、井戸層は3 nm厚の I no. 15 G ao. 85 N層から なり、バリヤ層は厚さ6 nmの I no.02 Gao.98 Nから 構成される。井戸層は5層である。p側のガイド層とM QW層との間には、厚さ2 nmのp-A 10.20 Ga0.80

26

Gao.92 Nクラッド層 (Mgドープ, 5×1019 c m⁻³, 0.6μm)、454はp-GaNコンタクト層 $(MgF-T, 8\times10^{19} cm^{-3}, 0.2 \mu m)$ $(MgF-T, 8\times10^{19} cm^{-3}, 0.2 \mu m)$ 最上部はMgを2×10²⁰ cm⁻³に高濃度化されてい る。457はPt/Ti/Pt/Auからなるp側電極 である。

【0133】459は本実施形態に係わる光吸収層であ り、多重量子井戸 (MQW) 構造を採用している。井戸 層は3 nm厚の I no. 20 G ao. 80 N層からなり、バリヤ 層は厚さ6 nmのGaNから構成される。井戸層は10 層である。各窒化物層は全て第13、第14の実施形態 と同様 i MOCVDにより成長を行った。成長条件等も 同様である。

【0134】461も459と同様に光吸収層であり、 n型MQW構造 (井戸層: 3 nm厚のSi-In0.20G ao.80N, バリア層: 厚さ6 nmのSi-GaN, 井戸 層は10層) からなりその上にp-GaNコンタクト層 462 (Mg F-T, 8×10^{19} cm⁻³, 0. 5μ m) を成長した。461,462はMOCVDによる選択成 長を用いて作りつけた。温度は800℃とした。

【0135】本実施形態構造では、横モード制御用の層 構造の全てが水平横モード,垂直横モード用共に半導体 層で形成され、寸法制御に有利なだけでなく、信頼性も 向上した。本実施形態では、しきい値75mAで室温連 続発振した。発振波長は405nm、動作電圧は5.5 Vであった。ビーム特性は単峰であり、歩留まり95% 以上で非点隔差10μm以内の値が得られた。

【0136】なお、本発明は上述した第13~第15の 実施形態に限られるものではなく、半導体層、基板とし てSiCなども適用可能で、II-VI 族化合物半導体、S i, Geなどを用いても良い。ここでは対象層をAIG aNとして記述したがIn、Ti, Si, C, Niなど の元素を混晶にならない不純物程度の量、含んでいても 良い。構造もレーザのしきい値に悪影響を与えないもの であれば種々の適用が可能である。その他、導波路構 造、受光素子などの他の光デバイス分野へも適用が可能 である。

【0137】(第16の実施形態)これ以降に示す実施 形態 (第16~第18) では、電極下部にInGaAl N層を有するレーザ構造において、電極接合部にAs, P又はAsとPを同時に含む InGaAlN層を形成す るが、この構造を用いることが大きな意味を持つ。図2 5のように、従来、電極部bに対して発光部aが殆どバ ンドギャップ差がない構造に対し、この構造を用いると a'がb'に対して大きなバンドギャップ差を持ってい る構造を作成することができる。この構造ではバンドギ ャップ差が大きくなり、結局、屈折率差が大きくなりク ラッド層から漏れる光はなくなり、このため光の電磁波 分布は活性層を中心に閉じ込められ、光閉じ込めは大き N薄膜障壁層が挿入されている。453はp-A10.08 50 く改善される。従って、モードが安定した発振しきい値 の低い半導体レーザ装置が得られる。

【0138】図26は、本発明の第16の実施形態に係 わる半導体レーザの概略構成を示す断面図である。

【0139】図中521はサファイア基板であり、52 2はn型GaN層、523はn型AlGaNクラッド 層、524はアンドープGaN光ガイド層、525はI nGaN/InGaNからなる量子井戸層である。52 6はp型GaN光ガイド層、527はp型A1GaNク ラッド層である。528,529はそれぞれ、nとpの 電極であり、共に3µm幅に狭窄している。

【0140】ここまでの基本構成に加え本実施形態で は、電極コンタクト部にAsを含むコンタクト層50 1,502を設けている。501は、n型GaNAs層 であり、502はp型GaNAs層である。結晶成長に はMOCVDを使用しており、501,502の各層を 成長させる時のみ成長温度を他の膜に対し200度低く している。全ての成長終了後、レジストを形成しパター ニングを行い、ドライエッチングにより n電極接合層を 露出させた。さらに、p電極接合層を部分的に狭窄させ

【0141】本実施形態のレーザでは、発光部領域と電 極部側領域とのバンドギャップ差を大きくして、各領域 間の屈折率差を大きくすることができ留。従って、クラ ッド層から漏れる光がなくなり、光閉じ込めが改善さ れ、結果としてしきい値の低減をはかることができる。 上記構成のレーザのしきい値は1kA/cm²であり、 従来の1/5以下になっている。

【0142】(第17の実施形態)図27は、本発明の 第17の実施形態に係わる半導体レーザの概略構成を示 す断面図である。

【0143】図中531はサファイア基板であり、53 2はn型GaN層、533はn型AlGaNクラッド 層、534はアンドープGaN光ガイド層、535はI nGaN/InGaNからなる量子井戸層である。53 6はp型GaN光ガイド層、537はp型A1GaNク ラッド層、538,539はそれぞれ、nとpの電極で あり、p電極は3μm幅に狭窄している。

【0144】503はn型GaNP層であり、504は p型GaNP層である。結晶成長はMOCVDを使用し ており、503,504の各層を成長させる時のみ成長 40 温度を他の膜に対し200度低くしている。この構造の レーザのしきい値は、1kA/cm²であり、従来の1 /5以下になっている。

【0145】(第18の実施形態)図28は、本発明の 第18の実施形態に係わる半導体レーザの概略構成を示

【0146】図中541はサファイア基板であり、54 2はn型GaN層、543はn型AlGaNクラッド 層、544はアンドープGaN光ガイド層、545はI 28

- 6はp型GaN光ガイド層、547はp型A1GaNク ラッド層、548,549はそれぞれ、nとpの電極で あり、p電極は3μm幅に狭窄している。

【0147】505はn型InGaNAsP層であり、 506はp型InGaNAsP層である。結晶成長はM OCDを使用しており、505,506の各層を成長さ せる時のみ成長温度を他の膜に対し200度低くしてい る。この構造のレーザのしきい値は、1kA/cm²で あり、従来の1/5以下になっている。

10 【0148】なお、本発明は上述した第16~第18実 施形態に限定されるものではない。実施形態では材料系 としてGaN系を用いたが、仕様に応じて適宜変更可能 である。また、同一基板上に複数の素子を集積化するこ とも可能である。その他、本発明の要旨を逸脱しない範 囲で種々変形して実施することができる。

【0149】 (第19の実施形態) 図29は、本発明の 第19の実施形態に係わる半導体レーザの素子構造を示 す断面図である。

【0150】サファイア基板上610に、GaNからな 20 るバッファ層611、Siドープのn-GaNからなる n型コンタクト層612、Siドープのn-GaAlN からなるn型クラッド層613、Siドープのn-Ga Nからなる n型ガイド層614、バンドギャップエネル ギーが異なり、それぞれの厚さが10 nm以下の2種類 のInAl GaN層の繰り返しで構成される周期構造か らなる多重量子井戸構造からなるMQW活性層615、 Mgドープのp-GaNからなるp型ガイド層616、 Mgドープのp-AlGaNからなるp型クラッド層6 17、MgドープのGaNからなるp型コンタクト層6 18、さらにその上部にp側電極622が形成されてい る。そして、p型コンタクト層618からn型コンタク ト層612の途中まで部分的にエッチングされ、露出し た n型コンタクト層612の表面にはn側電極621が 形成されている。

【0151】ここで、p個ガイド層616, p側クラッ ド層617, p側コンタクト層618については、次の ように厚さを設定する。p側ガイド層616は0.1μ mとする。p側クラッド層617はA10.15Ga0.85N を0.05μm以下とし、省略してもよい。p側コンタ クト層618はGaNを0.05μm以下とし、省略し てもよい。

【0152】本実施形態のようにクラッド層617を 0. 05μm以下にした場合、図30に示すようにキャ リアオーバーフローがクラッド層が厚い場合に比較して 低減される。

【0153】また、従来FFPは図33のように多峰性 を示す。各々はp-GaNコンタクト層618、n-G aNコンタクト層612の光閉じ込めに対応したピーク を表している。しかし、本実施形態によるようにp-G nGaN/InGaNからなる量子井戸層である。54 50 aNコンタクト618を薄くすることにより、図34の ようにFFPは単峰化する。

【0154】以上のようにして得た半導体レーザは、4 20 nm付近の波長で室温連続発振し、そのしきい値は 1 k A/c m² 以下であり、またレーザ発振におけるF FPは単峰であった。

【0155】(第20の実施形態)次に、本発明の第2 0の実施形態に係わる半導体レーザについて説明する。 基本構成は第19の実施形態の図29と同様であり、こ れと異なる点は、p型ガイド層616, p型クラッド層 617、p型コンタクト層618の構成である。

【0156】これらの層については、次のように厚さを 設定する。まず、p側ガイド層616は0.02μm以 下とし、省略してもよい。p側クラッド層617はA1 0.15Ga0.85Nを0.35µmとする。p側コンタクト 層618はGaNを0.05μm以下とし、省略しても よい。

【0157】本実施形態におけるようにガイド層616 を0.02μm以下にした場合、図30に示すようにキ ャリアオーバーフローがガイド層が厚い場合に比較して 0 nm付近の波長で室温連続発振し、そのしきい値は1 kA/cm²以下であり、またレーザ発振におけるFF Pは単峰であった。

【0158】(第21の実施形態)次に、本発明の第2 1の実施形態に係わる半導体レーザについて説明する。 基本構成は第19の実施形態の図29と同様であり、こ れと異なる点は、p型ガイド層616の構成である。

【0159】本実施形態におけるp型ガイド層616 は、Mgドープのp-AlGaN又はInGaNからな る。即ち、p側ガイド層616の組成はGaNとせず、 Inを5%以上、又はAlを5%以上とする。p側コン タクト層618はGaNを0.05μm以下とし 、省 略してもよい。

【0160】図32においてガイド層組成をGaNから 変えた場合のキャリアオーバーフローの計算結果を示 す。ガイド層組成がGaNからずれるほどキャリアオー バーフローが低減されることが分かる。これは、ガイド 層組成がAIGaNの場合は活性層とガイド層のヘテロ 障壁が大きくなることから、またガイド層組成が I n G a Nの場合はガイド層とクラッド層とのヘテロ障壁が大 40 きくなることからキャリアオーバーフローが低減されて いると考えられる。

【0161】このように第19~21の実施形態によれ ば、p型ガイド層又はp型クラッド層を薄くし、かつp 型コンタクト層を薄くことにより、キャリアオーバーフ ローを低減すると共に、p型ガイド層、p型クラッド 層、p型コンタクト層における光閉じ込め係数を減らし てこれらの層で生じる損失を低減し、しきい値を低減す ることができる。さらに、p型コンタクト層における光 閉じ込め係数が減少するため、レーザ発振時のFFPの 50 【0168】(6)の発明によれば、p側ガイド層又は

3.0

他方性が低減できる。これらの効果によって、光ディス クなどへの実用に供する低しきい値、低電圧で動作し、 高い信頼性を有する窒化ガリウム系化合物半導体レーザ を実現することが可能となる。

[0162]

【発明の効果】以上詳述したように本発明によれば、ク ラックが少なく信頼性が高く、FFPが単峰性を示し、 光ディスクなどへの実用に供する低しきい値、低電圧で 動作する窒化ガリウム系化合物半導体レーザを実現する 10 ことが可能となる。

【0163】より具体的には、(課題を解決するための 手段)の項で示した、(1)の発明によれば、ダブルへ テロ構造を構成するクラッド層の活性層と反対側にIn GaN等の光吸収層又は屈折率の低いAIGaN等の低 屈折率層を設けることによって、高次モードを発振を抑 制し、FFPの単峰化を可能にすることができ、これに より発振しきい値も低くすることが可能となる。

【0164】(2)の発明では、活性層を挟む導電性の 異なるクラッド層の外側に発振光に透明な光吸収層を設 低減される。以上のようにして得た半導体レーザは42 20 けることにより、横モードは反導波であるが、クラッド 層の外側への染み出した光を吸収させることができる。 さらに、同様に反導波構造である活性層水平方向におい ても埋め込み成長による光吸収層により染み出し光を吸 収させることができる。これにより、共振器内での波面 が共振器方向に垂直になり、FFPは単峰になり且つ拡 がり角が抑制でき、さらには非点隔差を小さくすること ができる。

> 【0165】(3)の発明によれば、ダブルヘテロ構造 を挟んで該構造の両側に、素子の中で膜厚が最も厚い層 30 に対して略格子整合し、かつ活性層から発光される光の エネルギーよりも低いバンドギャップエネルギーを持つ 光吸収層を設けることによって、クラッド層を通過した 光を光吸収層により急激に減衰させることができ、レー ザ発振時に光を閉じ込めモードが立ち易くなる。これに より、光ディスクやレーザプロジェクタに用いられるF FPが1つのピークを持つレーザを実現することが可能 となる。

【0166】(4)の発明によれば、活性層のバンドギ ャップよりも小さいバンドギャップを有する I nを含む 光吸収層を、ダブルヘテロ構造よりも基板側に設けるこ とにより、活性層から基板側にしみ出す光を十分に吸収 することができ、これにより低しきい値化及び横モード の安定化をはかることができる。

【0167】(5)の発明によれば、電極下部にAs, Pを含む In GaA1N等のコンタクト層を形成するこ とにより、活性層と電極部とに大きなバンドギャップ差 を形成することができ、これによりクラッド層から漏れ る光をなくして光閉じ込めを改善し、モードの安定化及 び発振しきい値の低減化をはかることができる。

31

p側クラッド層をn側のそれより薄く形成することによ り、キャリアオーバーフローが低減でき、キャリアの注 入効率を向上することができる。このため、活性層にお けるキャリアの注入効率が向上でき、低しきい値化をは かることが可能となる。

【図面の簡単な説明】

【図1】第1の実施形態に係わる半導体レーザの素子構 造を示す断面図。

【図2】近視野像 (NFP) の位置依存性を示す図。

【図3】光吸収層及び導波モード制御層を設けた場合の 10 しきい値変化を示す図。

【図4】従来構造の遠視野像(FFP)と本発明におけ るFFPとを比較して示す図。

【図5】高次モード発振時の次数によるしきい値変化を 示す図。

【図6】第1の実施形態における半導体レーザにおい て、光導波モード制御層が複数存在する場合の各層の間 隔を示す図。

【図7】第2の実施形態に係わる半導体レーザの素子構 造を示す断面図。

【図8】第3の実施形態に係わる半導体レーザの素子構 造を示す断面図。

【図9】第4の実施形態に係わる半導体レーザの素子構 造を示す断面図。

【図10】第5の実施形態に係わる半導体レーザの素子 構造を示す断面図。

【図11】第6の実施形態に係わる青色半導体レーザの 概略構成を示す断面図。

【図12】 第7の実施形態に係わる青色半導体レーザの 概略構成を示す断面図。

【図13】第8の実施形態に係わる青色半導体レーザの 概略構成を示す断面図。

【図14】第9の実施形態に係わる青色半導体レーザの 概略構成を示す断面図。

【図15】第10の実施形態に係わる青色半導体レーザ の概略構成を示す断面図

【図16】発振時のFFPを従来例と比較して示す図。

【図17】第11の実施形態に係わる青色半導体レーザ の概略構成を示す断面図。

【図18】第12の実施形態に係わる青色半導体レーザ 40 122…p-InGaN光吸収層 の概略構成を示す断面図。

【図19】格子定数とバンドギャップエネルギーとの関 係を示す図。

【図20】格子定数の里信頼性との関係を示す図。

【図21】第13の実施形態に係わる青色半導体レーザ の概略構成を示す断面図。

【図22】第13の実施形態の原理を説明するための

図。

【図23】第14の実施形態に係わる青色半導体レーザ の概略構成を示す断面図。

3.2

【図24】第15の実施形態に係わる青色半導体レーザ の概略構成を示す断面図。

【図25】第16~18の実施形態における作用を説明 するための図。

【図26】第16の実施形態に係わる半導体レーザの概 略構成を示す断面図。

【図27】第17の実施形態に係わる半導体レーザの概 略構成を示す断面図。

【図28】第18の実施形態に係わる半導体レーザの概 略構成を示す断面図。

【図29】第19の実施形態に係わる半導体レーザの素 子構造を示す断面図。

【図30】 キャリアオーバーフローのクラッド層厚依存 性を示す図。

【図31】キャリアオーバーフローのガイド層厚依存性 を示す図。

【図32】キャリアオーバーフローのガイド層組成依存 性を示す図。

【図33】 従来構造におけるレーザ発振のFFPを示す

【図34】第16の実施形態におけるレーザ発振のFF Pを示す図。

【符号の説明】

110…サファイア基板

111…GaNバッファ層

112…n-GaNコンタクト層

30 113…n-InGaN又はAlGaN光導波モード制 御層

114…n-InGaN光吸収層

115…n-AlGaNクラッド層

116…n-GaN又はInGaNガイド層

117…nーAlGaN薄膜障壁層

118…InGaN-MQW活性層

119…p-AlGaN薄膜障壁層

120…p-GaN又はInGaNガイド層

121…p-AlGaNクラッド層

123…p-GaNコンタクト層

124…p-InGaNXはAIGaN光導波モード制 御層

125…p側電極

126…n側電極

127…n-GaN又はAIGaN電流ブロック層

【図31】

【図32】

フロントページの続き

(72)発明者 波多腰 玄一

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72)発明者 小野村 正明

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72)発明者 山本 雅裕

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72)発明者 杉浦 理砂

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72)発明者 中筋 幹夫

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72) 発明者 藤本 英俊

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72)発明者 布上 真也

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内