Project Euler #161: Triominoes

This problem is a programming version of Problem 161 from projecteuler.net

A triomino is a shape consisting of three squares joined via the edges. There are two basic forms:

If all possible orientations are taken into account there are six:

Any n by m grid for which $n \times m$ is divisible by n can be tiled with triominoes.

If we consider tilings that can be obtained by reflection or rotation from another tiling as different there are 41 ways a 2 by 9 grid can be tiled with triominoes:

In how many ways can a n by m grid be tiled in this way by triominoes? Print answer modulo (10^9+7) .

Input Format

First line contains n and m.

Constraints

 $1 \leqslant n \leqslant 6$

 $1\leqslant m\leqslant 21$

n imes m is divisible by 3

Output Format

Print one integer i.e. answer modulo $1000000007 = 10^9 + 7$.

Sample Input

2 9

Sample Output