Mathematical formulation

 $\dot{v}(t) = \frac{T(t) - D(h(t), v(t)) - m(t)g(h(t))}{m(t)},$

 $h(0) = h_0, \quad v(0) = v_0, \quad m(0) = m_0,$

where the Drag, Gravity, Fuel constant, and Maximum thrust are defined as

 $D(h,v) = D_c \, v^2 \exp \left(-h_c rac{h-h_0}{h_0}
ight), \quad g(h) = g_0 \left(rac{h_0}{h}
ight)^2, \quad c = rac{1}{2} \sqrt{g_0 h_0}, \quad T_{
m max} = T_c m_0 g_0.$

The problem can be stated as

 $\min_{h,v,m,T} \quad J = -h(T)$

 $\dot{m}(t) = -\frac{T(t)}{T(t)}$

 $0 < T(t) < T_{\text{max}}$

 $h(t) > h_0$

 $v(t) > v_0$

 $m(T)=m_f$

 $m_f \leq m(t) \leq m_0$,

s.t. $\dot{h}(t) = v(t)$.

Parameters

Parameter

Initial altitude

Initial velocity

Gravitational constant

Characteristic altitude

Characteristic velocity

Characteristic mass ratio

Thrust coefficient

Drag coefficient

Final mass

Initial mass

Symbol

 h_0

 v_0

 m_0

 g_0

 T_c

 D_c

 h_c

 v_c

 m_c

 m_f

Value

1

1

1

3.5

500

620

0.6

 $m_c m_0$

 $\frac{1}{2}v_c\frac{m_0}{q_0}$