24.12.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年12月25日

出 願 番 号 Application Number:

特願2003-430559

[ST. 10/C]:

[JP2003-430559]

出 願 人 Applicant(s):

キヤノン株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月 3日

1) 11]

【書類名】 特許願 【整理番号】 258500 平成15年12月25日 【提出日】 【あて先】 特許庁長官 殿 【国際特許分類】 C12Q 1/68 【発明者】 【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 塚田 護 【特許出願人】 【識別番号】 000001007 【氏名又は名称】 キヤノン株式会社 【代理人】 【識別番号】 100123788 【弁理士】 【氏名又は名称】 宮崎·昭夫 【電話番号】 03-3585-1882 【選任した代理人】 【識別番号】 100088328 【弁理士】 【氏名又は名称】 金田 暢之 【選任した代理人】 【識別番号】 100106297 【弁理士】 【氏名又は名称】 伊藤 克博 【選任した代理人】 【識別番号】 100106138 【弁理士】 【氏名又は名称】 石橋 政幸 【手数料の表示】 【予納台帳番号】 201087 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項1】

検体中に含まれるHLA-MICA型のアリルの同定に利用し得る多数のプローブからなるプローブセットであって、

前記多数のプローブのそれぞれが、明細書中のアリルリスト中の各アリルの配列中の大 文字で表記された塩基を含む部分配列を有する ことを特徴とするプローブセット。

【請求項2】

明細書中の表1-1~表1-2 に記載されるプローブ群または表2-1~表2-2 に記載されるプローブ群からなる請求項1に記載のプローブセット。

【請求項3】

検体からの試料中に含まれるHLA-MICA型のアリルをプローブセットを用いて同 定する方法であって、

該プローブセットが請求項1または2に記載のプローブセットであることを特徴とする HLA-MICA型のアリルを同定する方法。

【魯類名】明細書

【発明の名称】HLA-MICAアレルを同定するためのプローブセット及び特定方法 【技術分野】

[0001]

本発明は、人のHLA-MICAアレルを同定するためのプローブセット及び特定方法 に関する。

【背景技術】

[0002]

人白血球のHLA-MICA型の各アレルについては、従来から血清学的レベルのタイ ピングが行われてきた。この場合、特別なサンプル処理を必要とせず、抗原抗体反応で容 易にタイピングが可能である反面、同定できる内容はアミノ酸配列の違いを区別できるレ ベルを4桁以上の数字での命名法における3、4桁目とした場合、最初の2桁の数字が血 清学的レベルのタイピングで同定可能なレベルである(日本組織適合性学会HLA標準化 委員会「アリル表記法と結果報告の原則について 2 0 0 0] http://jshi.umin.ac.jp/sta ndarization/hyoki.html参照)。

[0003]

その他のゲノム抽出を伴うタイプの市販キットの多くは、各アレルを個別に同定可能な 精度のものではなく、複数のアリルをセットとして区別しているのが現状である。また最 も詳細な多型解析を可能とするSBT (Sequencing Based Typing) 法に基づくキットにし ても、たいていのサンプルはヘテロ接合体であるため、ambiguityの問題を一度に解決で きず、再検査を必要とすることが多い。こうした問題を伴うアレルは、IHWG学会のhttp:/ /www.ihwg.org/protocols/sbt/ambiguities2.pdfにまとめて紹介されている。

【非特許文献1】(日本組織適合性学会HLA標準化委員会「アリル表記法と結果報 告の原則について2000」(http://jshi.umin.ac.jp/standarization/hyoki.html のサイト)

【非特許文献 2】 http://www.ihwg.org/protocols/sbt/ambiguities2.pdf

【発明の開示】

【発明が解決しようとする課題】

[0004]

一方、近年は高度医療の発達に伴い、臓器移植などの際に詳細なタイピングが要求され るほか、糖尿病や癌、その他多因子病においても、薬剤投与との関連が示唆され、医療行 為に対するエヴィデンスが求められている。こうした背景から、各アリルを個別に同定可 能な試験方法が望まれており、本発明はかかる要望に対してHLA-MICAの各アリル を個別に同定するために有用であるプローブセット及びそれを用いたHLA-MICAの アリルの同定方法を提供することを目的とする。

【課題を解決するための手段】

[0005]

本発明にかかるHLA-MICAアリルを同定するためのプローブセットは、検体中に 含まれるHLA-MICA型のアリルの同定に利用し得る多数のプローブからなるプロー ブセットであって、前記多数のプローブのそれぞれが、明細書中のアリルリスト中の各ア リルの配列中の大文字で表記された塩基を含む部分配列を有することを特徴とするプロー ブセットである。

[0006]

また、本発明にかかるHLA-MICAアリルの同定方法は、検体からの試料中に含ま れるHLA-MICA型のアリルをプローブセットを用いて同定する方法であって、該プ ローブセットが請求項1または2に記載のプローブセットであることを特徴とするHLA -MICA型のアリルを同定する方法である。

【発明の効果】

[0007]

本発明にかかるプロープセット及びそれを用いたHLA-MICAアレルの同定によっ 出証特2005-3006392 て、臓器移植、癌、糖尿病、その他多因子病において必要とされる体質判定、テーラーメ イド医療に貢献することができる。

【発明を実施するための最良の形態】

[0008]

本発明のプローブセットを構成する各プローブは後述するアレルリストの各アレルにおける大文字表記の塩基を含む部分配列をそれぞれが有するものである。好ましくは、大文字の塩基を含む10~30の塩基からなる部分を選択し得られた部分塩基配列からなるプローブを用いてプローブセットを構成する。具体例としては、後述の表1-1~1-2のプローブリスト1または表2-1~2-2のプローブリスト2に挙げられた各プローブ群からプローブセットを構成することができる。例えば、プローブリスト1における0番のプローブは、MICA*001の最初の大文字(A)が含まれている部分「tgggacagagagaccagA」の18塩基配列からなるものであり、プローブリスト2におけるプローブ0番もまた同じアリルの最初の大文字のAを含む部分「agagaccagAgacttgaca」の19塩基配列からなるものである。

[0009]

なお、後述のアリルリストにおける「MICA*」で示されている番号は、各アリルに付された固有の番号であり、日本組織適合性学会HLA標準化委員会による「アリル表記法」に従ったものである。

[0010]

本発明にかかるアリルの同定方法におけるプローブによるアリルの検出には、例えば、2つの方法が可能である。一つはハイブリダイゼーション法によって検出する場合と、もう一つはPCR法によってハイブリダイゼーションをすることなしに直接検出する場合である。いずれの場合も、好ましくは十数個から二十数個程度の長さのオリゴヌクレオチドに、大文字で表した塩基を含むようにプローブが設計される。

[0011]

また、本発明において提供されるプローブアレイは、各アリルを個別に同定するための変異塩基の組をプローブとして選択する位置で提示しているともいえる。この変異塩基を検出するための方法にもハイブリダイゼーション法による検出方法と、PCR法によってハイブリダイゼーションをすることなしに直接検出する方法が好適に利用できる。これらの場合にも、好ましくは十数個から二十数個程度の長さのオリゴヌクレオチドに、大文字で表した塩基を含むようにプローブが設計される。

[0012]

ハイブリダイゼーションによって変異を検出する場合は、プローブの中心付近にミスマッチが (即ち大文字で表した変異塩基が)来るようにプローブを設計したほうが、フルマッチとミスマッチの配列間でTmに差がつきやすく、ハイブリダイゼーションの反応温度を調節することによって、両者を分離しやすい。

[0013]

一方PCR法によって直接変異を検出する場合は、酵素がアニールした二本鎖を認識して伸長しないよう、むしろ3'末端側にミスマッチを配置することが行われる。またAllel Spcific Primerのように、3'末端から2つ目にミスマッチを配置し、3個目に人為的にミスマッチを追加したり(東洋紡(株))、3'末端側にミスマッチを配置するがライゲーションによって、プローブの環状化を行う方法(アマシャムバイオサイエンス(株))、TaqMan-MGB法(ABI社)LNAを使った3'末端ミスマッチ(プロリゴ・ジャパン(株))など、いくつかのバリエーションが可能である。

【実施例】

[0014]

以下実施例により本発明を更に説明する。

[0015]

(実施例1)

アマシャムバイオサイエンスのGFX Genomic Blood DNA Purification Kitを使って、人 出証特2005-3006392 の血液1mlからDNAの抽出を行った。以下にプロトコールを示す。 血液1ml

↓ +RBC Lysis Solution (溶血)

↓+血液サンプル(穏やかに混和)

↓室温、5分間

↓12,000~16,000×g、20秒間遠心

↓上清を20~50 µ1残して捨てる

↓沈殿物を再懸濁

↓ +Extraction Solution (激しくポルテックス)

↓室温、5分間 (DNAの抽出)

↓Collection TubeにGFX Columnをセット

↓溶出バッファーを70℃に加温

↓+サンプル

↓5,000×g、1分間遠心 (DNAの結合)

↓ +Extraction Solution (洗浄)

↓5.000×g、1分間遠心

↓ +Wash Solution (洗浄)

↓12,000×g、3分間遠心

↓GFX Columnを遠心チューブにセット

↓+純水で溶出

↓室温、1分間

↓5,000~8,000×g、1分間遠心

230μ1に濃縮調整……溶液 (1)

次にキアゲン社のQuantiTect SYBR Green PCR Kit、ABI社のGeneAmp5700を使って、定量PCRを行った。反応組成およびプロトコールを以下に示す。

[0016]

1) 反応組成/well (96wellマイクロプレート)

QuantiTect SYBR Green 2×プレミクス:10μ1

溶液(1):1μ l

プローブリスト 1 の各プローブ(10 pmol/μ l): lμ l

ミックスプライマ(10 pmol/μ 1)注) :4μ l

超純水:4 u 1

(合計:20μ1)

注) 以下の配列を持つ各10 pmol/μ l の水溶液各 l μ l

AGTGGAGCCAGTGGACCCAAGA

TGATGTTTTCTTCTTACAACAAC

2) PCRプログラム

[0017]

(実施例2)

人の血液1mlからのDNA抽出は、実施例1と同様に行った。次にタカラバイオ(株)のExTaq、ABI社のPCR装置9700を使って、人HLA-MICAのPCRを行った。反応組成およびプロトコールを以下に示す。

[0018]

1) 反応組成/tube

Ex Tag $2 \times \mathcal{I} \nu \in \mathcal{I} \lambda : 20 \mu l$

溶液(1):3μ l

Cy-3 dUTP (1mM): 2μ l

ミックスプライマ(10 pmol/μ 1)注) : 4 μ l

超純水:111

(合計::40 μ 1)

注) 以下の配列を持つ各10 pmol/μ l の水溶液各1μ l

GTCTTCGTTATAACCTCACGGT GCTCGTGAGCCTGCAGGTCCTG AGTGGAGCCAGTGGACCCAAGA

2) PCR プログラム

94℃:180secの後に、(94℃:10sec+66℃:10sec+72℃ 20sec)の30cyclesを行った。反応終了後、精製用カラム(QIAGEN QIAquick PCR Purification Kit)を用いて未反応のdNTPs等のClean Upを行った。

[0019]

一方上述の検体に対して、アレルを同定するためのDNAマイクロアレイを作製した。作製の方法は、特開平11-187900号公報の実施例に従った。固相化のための官能基はSH基とし、ガラス基板上にシランカップリング処理を行い、2価性試薬のEMCS (N-(6-Maleimidocaproyloxy)succinimide) 介してSH基と架橋した。各ドットのプローブは、プローブリスト2の各プローブを用いた。

[0020]

次に先ほどの検体と作製したDNAマイクロアレイを用いて、ハイブリダイゼーションを行った。DNAマイクロアレイは予めBSA(牛血清アルブミン)1wt%加PBSで2時間ブロッキングした。検体はその塩濃度がPBSと等しくなるように、また0.1wt%SDS(ドデシル硫酸ナトリウム)、25% Form amideとなるように調整し、その $50\,\mu$ 1 を、先ほどのブロッキング済みDNAマイクロアレイと 6 0 $\mathbb C$ で2時間反応させ、未反応物を 2 $\mathbb C$ SSC溶液(NaCl 300m $\mathbb C$ Sodium Citrate (trisodium citrate dihyMICAate, C6H5Na3・2H20)30mM、p.H. 7.0)で 3 回、続いて $0.1\times$ SSC溶液で2回洗浄した後風乾させ、Axon社製、GenePix 4000Bを用いで蛍光測定を行った。アレループローブ対応リスト 2 (表 $4-1\sim4-2$) を参照してMICA*00201であるとが同定された。

[0021]

アレルリスト

MICA*00201 gtcttcgttataacctcacggtgctgtccggggatggatctgtgcagtcagggtttctcgctgag gtacatctggatggtcagcccttcctgcgctgtgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga tgtcctgggaaataagacatgggacagagagaccagggacttgacagggaacggaaaggacctcaggatgaccctggctc atatcaaggaccagaaagaaggcttgcattcctccaggagattagggtctgtgagatccatgaagacaacagcaccagg agctcccagcatttctactacgatggggagctcttcctctcccaaaacctggagactgaggaatggacaatgccccagtc

MICA*006 gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttcttgctgag gtacatctggatggtcagcccttcctgcgctatgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga tgtcctgggaaataagacatgggacagaggaccagggacttgacagggaacggaaaggacctcaggatgaccctggctc atatcaaggaccagaaagagcttgcattcctccaggagattagggtctgtgagatccatgaagacaacagcaccagg agctcccagcatttctactacgatggggagctcttcctctcccaaaacgtggagactgaggaatggacagtgcccagtc

 $\tt gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttctcgctgag$ MICA*00701 gtacatctggatggtcagcccttcctgcgctgtgacaggcagaaatgcagggcaaaagccccagggacagtgggcagaagatgtcctgggaaataagacatgggacagagagaccagggacttgacagggaacggaaaggacctcaggatgaccctggctcatatcaaggaccagaaagaaggcttgcattccctccaggagattagggtctgtgagatccatgaagacaacagcaccagg agctcccagcatttctactacgatggggagctcttcctctcccaaaacctggagactgaggaatggacaatgccccagtc ctatgcatgcagactgcctgcaggaactacggcgatatctaaaatccggcgtagtcctgaggagaacagtgcccccatg gtgaatgtcacccgcagTgaggcctcagagggcaacattaccgtgacatgcagggcttctggcttctatccctggaatat $a at cacag cact caccet \verb|gtgccctctgggaaagtgctggtgcttcagagtcattggcagacattccatgtttctgctgt|$ tgctgctgctatttttgttattattattttctatgtccgttgttgtaagaagaaaacatcagctgcagagggtccag $\tt gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttctcgctgag$ MICA*00702 gtacatctggatggtcagcccttcctgcgctgtgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga $tgtcctgggaaataagacatgggacagagagaccag\\ Ggacttgacagggaaacggaaaggacctcaggatgaccctggctc$ at at caaggac cagaa aggact t g cat t c cct c caggagat t agggt ctg t g agat c cat g aa gacaa cag cac caggagat cat g aggact t g cat g catgtgaatgtcacccgcagcgaggcctcagagggcaacattaccgtgacatgcagggcttctggcttctatccctggaatat gaacctaccagacctgggtggccaccaggatttgccaaggaggaggaggaggttcacctgctacatggaacacagggg aatcacagcactcaccctgtgccctctg

MICA*00802 gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcaggtcagggtttcttgctgag gtacatctggatggtcagcccttcctgcgctatgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga tgtcctgggaaataagacatgggacagaggaaccagggacttgacagggaacggaaaggacctcaggatgaccctggctc atatcaaggaccagaaagaaggcttgcattccctccaggagattagggtctgtgagatccatgaagacaacagcaccagg

MICA*010 gtcttccttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttcttgctgag gtacatctggatggtcagcccttcctgcgctatgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga

aatcacagcactcaccctgtgccctctg

aatcacagcactcaccctgtgccctctgggaaagtgctggtgcttcagagtcattggcagacattccatgtttctgctgt tgctgctgctgctgctgctgctgctgctgcTatttttgttattattattttctacgtctgttgttgtaagaagaaaacat cagctgcagagggtccag

MICA*025 gtcttccttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttctTgctgag gtacatctggatggtcagcccttcctgcgctatgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga

MICA*029 gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttctcgctgag gtacatctggatggtcagcccttcctgcgctgtgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga tgtcctgggaaataagacatgggacagaggacacagggacttgacagggaaaggaacggaaaggacctcaggatgaccctggctc

at at caaggac cagaa aggact t g cattccctc caggagat tagggt ctg t g agatccat g aggaca ac agcac caggagat consideration of the contraction of the con $\verb|ctccagagctcagaccttggccatgaacAtcaggaatttcttgaaggaagatgccatgaagaccaagaccactatcacg||$ ctatgcatgcagactgcctgcaggaactacggcgatatctaaaatccggcgtagtcctgaggagaacagtgcccccatg $\tt gtgaatgtcacccgcagcgaggcctcagagggcaacattaccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatcccttggaatataccgtgacatgcagggcttctggcttctatcccttggaatataccgtgacatgcagggcttctggcttctatcccttggaatataccgtgacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggacatgcagggcttctggacatgcagggacatgcagggacatgcaggacatgcagggacatgcagacatgcagacatgcaggacatgcagacatagacatgcagacatgcagacatgcagacatgcagacatgcagacatgcagacatgc$ $a at cacage act caccet \verb|gtg| ccct et \verb|gtg| cagage test es a gage test es a ga$ tgctgctgctatttttgttattatttttctatgtccgttgttgtaagaagaaaacatcagctgcagagggtccag $\tt gtcttcgttataacctcacggtgctgtccggggatggatctgtgcagtcagggtttctcgctgag$ MICA*030 tgtcctgggaaataagacatgggacagagagaccagggacttgacagggaacggaaaggacctcaggatgaccctggctcat at caaggac cagaa agaaggctt g cattccctc caggagattagggtctgtgagatccatgaagac aacagcac caggagattagggtctgtgagattagggtctgtgagatccatgaagac aacagcac caggagattagggtctgtgagattagggagattagga $\tt gtgaatgtcacccgcagcgaggcctcagagggcaacattaccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggacatgcagggcttctggacatgcagggacatgcaggacatgcagggacatgcagggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcagatgcagacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcaggacatgcagacatgcaggacatgcagacatagacatgcagacatgcagacatgcagacatgcagacatgcagacatgcagacatg$ aatcacagcactcacGctgtgccctctg

MICA*038 gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttctcgctgag

MICA*042 gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttcttgctgag gtacatctggatggtcagcccttcctgcgctatgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga tgtcctgggaaataagacatgggacagagagaccagggacttgacagggaacggaaaggacctcaggatgaccctggctc atatcaaggaccagaaagaaggcttgcattcctccaggagattagggtctgtgagatccatgaagacaacagcaccagg agctcccagcatttctactacgatggggagctcttcctcccaaaacctggagaactgaggaatggacaatgcccagtc

 $\tt gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttctcgctgag$ MICA*043 gtacatctggatggtcagcccttcctgcgctgtgacaggcagaaatgcagggcaaagccccagggacagtgggcagaaga at at caaggac cagaa aggact t g cattccctc caggagat tagggt ctg t g agatccat g a agaca ac agcac caggagat consideration of the contraction of the coagctcccag catttctactacgatggggagctcttcctctcccaaaacctggagactgaggaatggacaatgccccagtc $\tt gtgaatgtcacccgcagcgaggcctcagagggcaacattaccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggcttctatccctggaatataccgtgacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggcttctggacatgcagggacatgcagggacatgcagacatgcaggacatgcagacatgc$ gaacctac cagacctgggtggccaccaggatttgccaaggaggaggaggagcagagTttcacctgctacatggaacacagcgggtgctgctgctgctatttttgttattattattttctatgtctgttgttgtaagaagaaaacatcagctgcagagggtccag $\tt gtcttcgttataacctcacggtgctgtccGgggatggatctgtgcagtcagggtttctcgctgag$ tgtcctgggaaataagacatgggacagagagaccagggacttgacagggaaacggaaaggacctcaggatgaccctggctcat at caaggac cagaa agaaggctt g cattccctc caggagat tagggtctgt g agatccat g aa gacaac agcac caggagat cattccct caggagat tagggtct g taggagat cattgaggac agaag accade agaag accaagctcccag catttctactacgatggggagctcttcctctcccaaaacgtggagactgaggaatggacagtgccccagtcctatgcatgcagactgcctgcaggaactacggcgatatctagaatccagcgtagtcctgaggagaaGagtgcccccatg gtgaatgtcacccgcagcgaggcctcagagggcaacatcaccgtgacatgcagggcttccagcttctatccccggaatat gaacctaccagacctgggtggccaccaggatttgccaaggaggaggaggaggttcacctgctacatggaacacagggg aatcacagcactcaccctgtgccctctg

 $\tt gtcttcgttataacctcacggtgctgtcctgggatggatctgtgcagtcagggtttctcgctgag$ MICA*045 tgtcctgggaaataagacatgggacagagagaccagggaacttgacagggaaacggaaaggacctcaggatgaccctggctcagctcccag catttctactacgatggggagctcttcctctcccaaaacctggagactgaggaatggacaatgccccagtcgtgaatgtcacccgcagtgaggcctcagagggcaacattaccgtgacatgcagggcttctggcttctatccctggaatat $a at cacagcact caccet \verb|gtg| cct et \verb|gtg| catgg| teat \verb|gtg| catte \verb|gtg| catgg| catte catte catte catgg| catte c$ tgctgctgctgctatttttgttattatttttctatgtccgttgttgtaagaagaaaacatcagctgcagagggtccaggtcttcgttataacctcacggtgctgtccggggatggatctgtgcagtcagggtttctcgctgag MICA*046 atatcaaggaccagaaagaaggcttgcattccctccaggagattagggtctgtgagatccatgaagacaacagcaccagg agctcccagcatttctactacgatggggagctcttcctctcccaaaacctggagaactgaggaatggacaatgccccagtc ctatgcatgcagactgcctgcaggaactacggcgatatctaaaatccggcgtagtcctgaggagaacagtgcccccatg $\tt gtgaatgtcacccgcagcgaggcctcagagggcaacattaccgtgacatgcagggcttctggcttctGtccctggaatatataccgtgaataccgtgaatataccgtgaatataccgtgaatataccgtgaatataccgtgaatataccgtgaatacatgcagggcttctggaatataccgtgaataccgtgaataccg$ gaacctaccagacctgggtggccaccaggatttgccaaggaggaggaggaggaggttcacctgctacatggaacacagcggg aatcacagcactcaccctgtgccctctgggaaagtgctggtgcttcagagtcattggcagacattccatgtttctgctgt tgctgctgctgctgctgctgctgctgctatttttgttattattattttctacgtctgttgttgtaagaagaaaacatcag ctgcagagggtccag

[0022]

以下、表 $1-1\sim1-2$ にプロープリスト1を、表 $2-1\sim2-2$ にプローブリスト2を示す。

[0023]

【表1】

表1-1	
プローブ番号	塩基配列
0	tgg gac aga gag acc agA (配列番号:1)
	tcc caa aac ctg gag act A (配列番号:2)
ż	g gaa cta cgg cga tat cta A (配列番号:3)
3	cgg cga tat cta aaa tcc G (配列番号:4)
Ă	cc tgg aat atc aca ctg aG (配列番号:5)
1 2 3 4 5 6 7 8 9	t att ttt gtt att att ttc taC (配列番号:6)
6	c ctc acg gtg ctg tcc G (配列番号:7)
7	gtg aat gtc acc cgc agT (配列番号:8)
Ř	c gta gtc ctg agg aga aG (配列番号:9)
9	t cag cct ctg atg tca gC (配列番号:10)
10	cag ccc ttc ctg cgc tA (配列番号:11)
11	gag act gag gaa tgg aca G (配列番号:12)
12	cc cgg aat atc aca ctg aC (配列番号:13)
13	gcc acc agg att tgc cG (配列番号:14)
14	g cga tat cta gaa tcc agc A (配列番号:15)
15	gg gac aga gag acc agG (配列番号:16)
16	cc caa aac ctg gag act G (配列番号:17)
17	gtt tct gct gtt gct gct G (配列番号:18)
18	ag acc tgg gtg gcc acT (配列番号:19)
19	t gct gct g gct gct gcT (配列番号:20)
20	c acc cgc agc gag gcA (配列番号:21)
21	ctc ttc ctc tcc caa aac G (配列番号:22)
22	gc tcc cag cat ttc tac taT (配列番号:23)
23	cgg cga tat cta gaa tcc A (配列番号:24)
24	g tca gct ctt ggg tcc G (配列番号:25)
25	cc atg aag acc aag aca cT (配列番号:26)
26	tgc caa gga gag caA (配列番号:27)
27	gaa cta cgg cga tat cta G (配列番号:28)
28	c cag cat ttc tac tac gat A (配列番号:29)
29	gct gca gag ggt cca gG (配列番号:30)
30	c tgg cgt cag gat ggg C (配列番号:31)

[0024]

【表2】

表1-2		
プローブ番号	塩基配列	
31	ggc ttg cat tcc ctc cG	(配列番号:32)
32	c cca gtt ggg acg agt gT	(配列番号:33)
33	ct gct gct gct gcT	(配列番号:34)
34	a gaa gat gtc ctg gga aaC	(配列番号:35)
35	t gtg cag tca ggg ttt ctT	(配列番号:36)
36	gcc tca gag ggc aac atC	(配列番号:37)
37	ct gct gct gct gcT	(配列番号:38)
38	ttc tat ccc cgg aat atc aT	(配列番号:39)
39	gtt gct gct gct gcT	(配列番号:40)
40	cag acc ttg gcc atg aac A	(配列番号:41)
41	gg aat cac agc act cac G	(配列番号:42)
42	a cgg cga tat cta aaa tcc A	(配列番号:43)
43	ctc tcc caa aac ctg gag T	(配列番号:44)
44	ttc ttg aag gaa gat gcc G	(配列番号:45)
45	cat gaa gac aac agc acc aA	(配列番号:46)
46	ggg ttt ctc gct gag gG	(配列番号:47)
47	caa gga gag gag cag agT	(配列番号:48)
48	g gcc acc agg att tgc G	(配列番号:49)
49	c agg gct tct ggc ttc tG	(配列番号:50)
50	ag aaa aca tca gct gca gaT	(配列番号:51)
51	at caa cac cca gtt ggg aT	
01	at the the total groups an	/Masser 2

[0025]

【表3】

表2-1		
プローブ番号	塩基配列	· · · · · · · · · · · · · · · · · · ·
0	a gag acc agA gac ttg aca	(配列番号:53)
1	ctg gag act Aag gaa tgg a	(配列番号:54)
2 3 4	cga tat cta Aaa tcc ggc g	(配列番号:55)
3	cta aaa tcc Ggc gta gtc c	(配列番号:56)
4	c aca ctg aGc tgg cgt c	(配列番号:57)
5	att att ttc taC gtc tgt tgt t	(配列番号:58)
6	tg ctg tcc Ggg gat gga	(配列番号:59)
5 6 7	acc cgc agT gag gcc tc	(配列番号:60)
8	g agg aga aGa gtg ccc c	(配列番号:61)
8 9	tg atg tca gCt ctt ggg tc	(配列番号:62)
10	c ctg cgc tAt gac agg c	(配列番号:63)
11	gaa tgg aca Gtg ccc cag	(配列番号:64)
12	c aca ctg aCc tgg cgt c	(配列番号:65)
13	gg att tgc cGa gga gag g	(配列番号:66)
14	gaa tcc agc Ata gtc ctg a	(配列番号:67)
15	a gag acc agG gac ttg ac	(配列番号:68)
16	ctg gag act Gag gaa tgg	(配列番号:69)
17	gtt gct gct G gct gct g	(配列番号:70)
18	g gtg gcc acT agg att_tg	(配列番号:71)
19	gct gct g gct gct gcT a	(配列番号:72)
20	agc gag gcA tca gag gg	(配列番号:73)
21	tcc caa aac Gtg gag act g	(配列番号:74)
22	at ttc tac taT gat ggg gag	(配列番号:75)
23	cta gaa tcc Agc gta gtc c	(配列番号:76)
24	t ggg tcc Gct ggc tcc	(配列番号:77)
25	cc aag aca cTc tat cac gc	(配列番号:78)
26	a gag gag caA agg ttc acc	(配列番号:79)
27	cga tat cta Gaa tcc ggc g	(配列番号:80)
28	tac tac gat Agg gag ctc t	(配列番号:81)
29	g ggt cca gGg ctc gtg	(配列番号:82)
30	cag gat ggg Cta tct ttg a	(配列番号:83)

[0026]

【表4】

塩基配列	V
at tcc ctc cGg gag att ag	(配列番号:84)
t gct gct gct gcT at	(配列番号:85)
ct gct gct gcT att ttt gtt	(配列番号:86)
c ctg gga aaC aag aca tgg	(配列番号:87)
a ggg ttt ctT gct gag gta	(配列番号:88)
	(配列番号:89)
	(配列番号:90)
	(配列番号:91)
	(配列番号:92)
gc act cac Gct gtg ccc	(配列番号:93)
	(配列番号:94)
aac ctg gag Tct gag gaa t	(配列番号:95)
gaa gat gcc Gtg aag acc	(配列番号:96)
c age ace aAg age tee c	(配列番号:97)
c gct gag gGa cat ctg g	(配列番号:98)
g gag cag agT ttc acc tg	(配列番号:99)
	(配列番号:100)
ct ggc ttc tGt ccc tgg a	(配列番号:101)
a gct gca gaT ggt cca ga	(配列番号:102)
ca gtt ggg aTg agt gac c	(配列番号:103)
	t gct gct gct gct gcT at ct gct gct gcT att ttt gtt c ctg gga aaC aag aca tgg a ggg ttt ctT gct gag gta g ggc aac atC acc gtg ac gct gct gct gct gcT att cgg aat atc aTa ctg acc tg gcc atg aac Atc agg aat tt gc act cac Gct gtg ccc cta aaa tcc Agc gta gtc c aac ctg gag Tct gag gaa t gaa gat gcc Gtg aag acc

[0027]

【表5】

表3-1

アリル番号			検出用の	プロース	が番号
MICA*001	0	1	2	3	4
MICA*00201	5				
MICA*00202	6	7			
MICA*004	8	9			
MICA*005	10	11	12	13	
MICA*006	14				
MICA*00701	7				
MICA*00702	15	16			
MICA*00801	17	9			
MICA*00802	18	19			
MICA*00803	20				
MICA*00901	21	9			
MICA*00902	22				
MICA*010	23	13	9		
MICA*011	24				
MICA*01201	25				
MICA*01202	26				
MICA*013	6	27	13		
MICA*014	28	8			
MICA*015	28	29			
MICA*016	30	9			
MICA*017	31				
MICA*018	16				
MICA*019	. 32				
MICA*020	33				
MICA*021	34				
MICA*022	6	23	13		
MICA*023	6	17			
MICA*024	35	10	11	36	12
MICA*025	35	16			

[0028]

【表6】

表3-2

		検出用のプローブ番号
7	37	
38	39	
27	17	
40		
41		
35		
25	42	8
43		
44	12	
6	38	
45		
38		
36		
30		
15		
46	5	
18		
47		
	8	12
49		
	41	
51		
	38 27 40 41 35 25 43 44 6 45 38 36 30 15 46 18 47 6 48	38 39 27 17 40 41 35 25 42 43 44 12 6 38 45 38 36 30 15 46 5 18 47 6 8 48 49 46 41 50

[0029]

表4-1

アリル番号			検出用	のプロー	ブ番号
MICA*001	0	1	2	3	4
MICA*00201	5				
MICA*00202	6	7			
MICA*004	8	9			
MICA*005	10	11	12	13	
MICA*006	14				
MICA*00701	7				
MICA*00702	15	16			
MICA*00801	17	9			
MICA*00802	18	19			
MICA*00803	20				
MICA*00901	21	9			
MICA*00902	22				
MICA*010	23	13	9		
MICA*011	24				
MICA*01201	25				
MICA*01202	26				
MICA*013	6	27	13		
MICA*014	28	8			
MICA*015	28	29			
MICA*016	30	9			
MICA*017	31				
MICA*018	16				
MICA*019	23	13	32		
MICA*020	33				

[0030]

表4-2

アリル番号			検出用の	プロー	ブ番号
アリル母与 MICA*021	34		жшло		, щ ,
•	6	23	13		
MICA*022	6	23 17	13		
MICA*023	_		11	36	12
MICA*024	35 35	10	11	30	12
MICA*025	35	16			
MICA*026	7	37			
MICA*027	38	32			
MICA*028	27	17			
MICA*029	39				
MICA*030	40				
MICA*031	35				
MICA*032	25	41	8		
MICA*033	42				
MICA*034	43	12			
MICA*035	6	38			
MICA*036	44				
MICA*037	. 38				
MICA*038	36				
MICA*039	30				
MICA*040	15				
MICA*041	45	5			
MICA*042	18				
MICA*043	46				
MICA*044	6	8	12		
MICA*045	47				
MICA*046	48				
MICA*047	45	40			
MICA*047	49	70			
	50				
MICA*049	อบ				

【書類名】要約書

【要約】

【課題】HLA-MICAの各アリルを個別に同定するために有用であるプローブセット 及びそれを用いたHLA-MICAのアリルの同定方法を提供すること。

【解決手段】HLA-MICAの各アリルに特有の塩基を含む部分配列のすべてを網羅す るプローブからプローブセットを構成し、これを用いて検体に含まれるHLA-MICA を同定する。

【選択図】 なし

特願2003-430559

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月30日

由] 新規登録

東京都大田区下丸子3丁目30番2号

キヤノン株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019763

International filing date: 24 December 2004 (24.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-430559

Filing date: 25 December 2003 (25.12.2003)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

