

Bilgisayar Grafiği HAFTA 6 3B Görme

Arş. Gör. Dr. Gülüzar ÇİT
Bilgisayar ve Bilişim Bilimleri Fakültesi
Bilgisayar Mühendisliği Bölümü
gulizar@sakarya.edu.tr

Konu & İçerik

- ≥3B Görme
 - Yerel Koordinat Sistemi
 - Dünya Koordinat Sistemi
 - Kamera Koordinat Sistemi
 - Ekran Koordinat Sistemi
 - **≻**İzdüşüm
 - ➤ Paralel İzdüşüm
 - ➤ Perspektif İzdüşüm
 - ➤ Kaynaklar

3B Görme

≥3B Görme

➤ 3B görme süreci temel olarak dört ayrı koordinat sistemi ve birbirleri arasındaki dönüşüm yöntemlerini içerir.

≥3B Görme...

➤ 3B görme süreci temel olarak dört ayrı koordinat sistemi ve birbirleri arasındaki dönüşüm yöntemlerini içerir.

► Yerel Koordinat Sistemi

➤ Her nesnenin kendine ait bir yerel koordinat sistemi vardır

➤ Dünya Koordinat Sistemi

- ➤ Her nesnenin kendine ait bir koordinat sistemi olmasına karşın sahnedeki tüm nesneleri içeren ortak bir koordinat sistemi gerekir.
- Nesneler, modellendikten sonra ilgili geometrik dönüşümler kullanılarak sahneye yerleştirilirler.
- Nesneleri sahnede istenilen konumlarına yerleştirmek amacıyla kullanılan geometrik dönüşümler **modelleme dönüşümü** olarak adlandırılır.
- Sahnedeki tüm nesneleri barındıran global koordinat sistemi ise dünya koordinat sistemi olarak adlandırılır.

Kamera Koordinat Sistemi

- ➤ Bir sahnenin görüntüsünü almak ⇒ fotoğraf çekmek
 - ➤ Nesneler modellenir
 - Nesneler sahnede istenilen yere yerleştirilir
 - ➤ Sonra kamera/fotoğraf makinesi ve objektifin yönü ayarlanır
 - Deklanşöre basıldıktan sonra görüş alanında bulunan tüm nesnelerin fotoğrafı çekilir.
 - Dünya koordinat sisteminde tanımlanmış olan kameranın konum ve baktığı yön bilgisi kullanılır.
- ➤ Nesneleri dünya koordinat sisteminden kamera koordinat sistemine taşımak için gerekli dönüşüm dünya-kamera dönüşümü olarak adlandırılır.

Kamera Koordinat Sistemi...

- ▶ Bir sahnenin görüntüsünü almak ⇒ fotoğraf çekmek
 - ➤ Kameranın konumu
 - ➤ Kameranın yönü
 - Kameranın yerleşimi
 - ➤ Kameranın diyaframı

Kamera Koordinat Sistemi...

- Dünya-kamera dönüşümünü hesaplayabilmek için kameranın sahnede bulunduğu konum, kameranın sahnede bulunduğu 3 vektör gereklidir.
- ➤ Kameranın sahnedeki konumu **kamera koordinat sistemi**ni, U, V ve N vektörleri de koordinat eksenlerini oluşturur.
- Dünya koordinat sisteminde bulunan nesnelerin kamera koordinat sistemine taşınmasının ardından U ve V vektörleri x ve y eksenlerini, kameranın yönünü belirten Z vektörü de pozitif z ekseni üzerine oturur.

≻Kamera Koordinat Sistemi...

➢ İzdüşüm/Projeksiyon

Sahnede bulunan nesnelerin kamera koordinat sistemine taşınmasının ardından 3B nesneleri 2B ekranda görüntüleyebilmek için nesnelerin görüntü düzlemi üzerindeki izdüşümleri alınır.

▶ Paralel Projeksiyon

- ➤ Paralel projeksiyonda, projeksiyon merkezi ya da göz sabittir ve projeksiyon düzlemi her bir projektöre diktir. Obje istenilen görüntüyü elde etmek üzere hareket ettirilir.
- ➤ Bir insanın küçük bir objeyi gözlemi
 - ➤ Kitap okuma
 - Obje kişi tarafından alınır, döndürülür ve ötelenir, böylece objenin her yeri gözlenir
 - Projeksiyon merkezi sabittir, obje hareket ettirilir

Perspektif Projeksiyon

- ➤ Obje sabit varsayılır ve projeksiyon merkezi uzayda istenilen noktaya hareket ettirilir.
- Projeksiyon düzleminin bakış doğrultusuna dik olması gerekmez
- ➤ Bir insanın otomobili gözlemlemesi
 - ➤ Kişi, obje etrafında hareket eder.
 - Obje sabittir, projeksiyon merkezi ve göz hareket eder.

Ortografik Projeksiyon

- ➤ Paralel projeksiyonların en basitidir.
- ➤ Genellikle mühendislik çizimlerinde kullanılır.
- ➤ Objenin bir düzlemdeki kesitini doğru boyutları ile gösterir
- > x = 0, y = 0 ve z = 0 düzlemlerine projeksiyonları alınarak hesaplanır.

➢Ortografik Projeksiyon...

 $rac{1}{2}x = 0$ düzlemlerine projeksiyon:

y = 0 düzlemlerine projeksiyon:

 $rac{rac}{z} = 0$ düzlemlerine projeksiyon:

$$P_{x} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

➢Ortografik Projeksiyon...

 \triangleright Projeksiyon merkezleri +x, +y ve +z eksenlerinde

Ortografik Projeksiyon...

- ➤ Tek bir ortografik projeksiyon obje hakkında yeterli bilgi sağlamaz.
- ➤ Nesnenin birden çok ortografik projeksiyonu gereklidir.

 $ightharpoonup rac{\Delta}{CDJ}$ üçgeninin normal boyutları ile görünecek

şekilde görüntü elde ediniz.

	г 0	0	1	17	
[X] =	1	0	1	1	6
	1	0,5	1	1	
	0,5	1	1	1	ij
	0	1	1	1	
	0	0	0	1	
	1	0	0	1	
	1	1	0	1	
	0	1	0	1	92
	1	1	0,5	1	
	0	0	0,6	1 1	ij
	0,25	0	0,6	1	
	0,25	0,5	0,6	1	
	0	0,5	0,6	1	¥
	0	0	0,4	1	
	0,25	0	0,4	1	93
	0,25	0,5	0,4	1	
	L 0	0,5	0,4	1	

- $ightharpoonup^{\circ}$ ÖRNEK: Aşağıdaki şekilde ${}^{\circ}_{CDJ}$ üçgeninin normal boyutları ile görünecek şekilde görüntü elde ediniz. [DEVAMI...]
 - Normal vektörünün doğrultu kosinüsleri: $\begin{bmatrix} c_x & c_x & c_z \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$
 - Normal vektörünü z eksenine çakıştırmak için;
 - >x ekseni etrafında 45° döndür
 - y ekseni etrafında 35.26° döndür

$$[M] = \begin{bmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

NOT: Normal vektörü orijinden geçtiğinden öteleme yok

 $ightharpoonup rac{\Delta}{CDJ}$ üçgeninin normal boyutları ile görünecek şekilde görüntü elde ediniz. [DEVAMI...]

$$[X'] = [X].[M] = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 5 & 1 & 1 \\ 0.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0,5 & 1 \\ 0 & 0 & 0,6 & 1 \\ 0.25 & 0 & 0,6 & 1 \\ 0.25 & 0.5 & 0,6 & 1 \\ 0 & 0 & 0,4 & 1 \\ 0.25 & 0,5 & 0,4 & 1 \\ 0.25 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0,5 & 0,4 & 1 \\ 0.05 & 0.05 & 0.05 & 0,4 & 1 \\ 0.05 & 0.05 & 0.05 & 0,4 & 1 \\ 0.05 & 0.05$$

- $ightharpoonup^{\circ}$ ÖRNEK: Aşağıdaki şekilde ${}^{\circ}_{CDJ}$ üçgeninin normal boyutları ile görünecek şekilde görüntü elde ediniz. [DEVAMI...]
 - \triangleright Dönüşüm matrisinin z=0 düzlemine projeksiyonu:

$$[P_Z] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

>X' ile aynı x, y koordinat değerlerine sahip, sadece z bileşenleri 0'dır.

- $ightharpoonup^{\circ}$ ÖRNEK: Aşağıdaki şekilde ${}^{\circ}_{CDJ}$ üçgeninin normal boyutları ile görünecek şekilde görüntü elde ediniz. [DEVAMI...]
 - Genelleştirilmiş dönüşüm matrisi:

$$[T] = [M]. [P_Z] = \begin{bmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{6} & 0 & 0 & 0 \\ -1/\sqrt{6} & 1/\sqrt{2} & 0 & 0 \\ -1/\sqrt{6} & -1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

X´ ile aynı x, y koordinat değerlerine sahip, sadece z bileşenleri O'dır.

 $ightharpoonup rac{\Delta}{CDJ}$ üçgeninin normal boyutları ile görünecek şekilde görüntü elde ediniz. [DEVAMI...]

$$[X^*] = [X].[T] = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0,5 & 1 & 1 \\ 0.5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0,6 & 1 \\ 0.25 & 0.5 & 0,6 & 1 \\ 0 & 0.5 & 0,4 & 1 \\ 0.25 & 0.5 & 0.4 & 1 \\ 0.25 & 0.5 & 0.5 & 0.4 \\ 0.25 & 0.5 &$$

 $ightharpoonup rac{\Delta}{CDJ}$ üçgeninin normal boyutları ile görünecek şekilde görüntü elde ediniz. [DEVAMI...] ightharpoonup 2.YOL

Kaynaklar

♣Mathematical Elements for Computer Graphics, David F. Rogers, J. Alan Adams, Second Edition

