

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 1

Дисциплина: Конструирование компиляторов

Студент: Платонова Ольга

Вариант: 4

Группа: ИУ7-22М

Преподаватель: Ступников А. А.

<u>Цель работы:</u> приобретение практических навыков реализации важнейших элементов лексических анализаторов на примере распознавания цепочек регулярного языка.

Задачи работы:

- 1) Ознакомиться с основными понятиями и определениями, лежащими в основе построения лексических анализаторов.
- 2) Прояснить связь между регулярным множеством, регулярным выражением, праволинейным языком, конечно-автоматным языком и недетерминированным конечно-автоматным языком.
- 3) Разработать, тестировать и отладить программу распознавания цепочек регулярного или праволинейного языка в соответствии с предложенным вариантом грамматики.

Теоретическая часть

Недетерминированный конечный автомат (НКА) состоит из:

- 1) множества состояний S;
- 2) множества входных символов Σ (входного алфавита); считаем, что символ ε , обозначающий пустую строку, не является членом Σ ;
- 3) функции переходов, которая для каждого состояния и каждого символа из $\Sigma \cup \{\varepsilon\}$ дает множество последующих состояний (next state);
- 4) состояния s0 из S, известного как стартовое (начальное);
- 5) множества состояний F, являющегося подмножеством S, известных как допускающие (конечные).

Детерминированный конечный автомат (ДКА) представляет собой частный случай НКА, в котором:

а) нет переходов для входа ε ;

b) для каждого состояния s и входного символа a имеется ровно одна дуга, выходящая из s и помеченная a.

Алгоритм Томпсона строит по НКА эквивалентный ДКА следующим образом: Начало.

Шаг 1. Помещаем в очередь Q множество, состоящее только из стартовой вершины.

Шаг 2. Затем, пока очередь не пуста выполняем следующие действия:

- Достаем из очереди множество, назовем его q.
- Для всех с ∈ Σ посмотрим в какое состояние ведет переход по символу с из каждого состояния в q. Полученное множество состояний положим в очередь Q только если оно не лежало там раньше. Каждое такое множество в итоговом ДКА будет отдельной вершиной, в которую будут вести переходы по соответствующим символам.
- Если в множестве q хотя бы одна из вершин была терминальной в НКА, то соответствующая данному множеству вершина в ДКА также будет терминальной.

Конец.

Алгоритм минимизации конечных автоматов Бржозовского.

Введём следующие обозначения:

- А конечный автомат,
- d(A) детерминизированный автомат для A,
- r(A) обратный автомат для A,
- dr(A) результат d(r(A)). Аналогично для rdr(A) и drdr(A).

Пусть A — автомат (необязательно детерминированный), распознающий язык L. Минимальный детерминированный автомат AL может быть вычислен следующим образом: AL=drdr(A).

Результаты работы

Регулярное выражение: (a|b)*abb

Недетерминированный конечный автомат:

Эквивалентный детерминированный конечный автомат:

Наименьший конечный автомат:

Входная цепочка: babb

Результат: True