02.10.2019

prof. dr hab. inż. Zbigniew Lonc

zblonc@mini.pw.edu.pl

pokój 558, konsultacje 12.15-13.00

http://pages.mini.pw.edu.pl/~loncz/www

username:student

pass:elitmxy

32 punkty na ćwiczeniach zwalnia z części egzaminu

1. Rachunek zdań

- (a) zdanie wyrażenie któremu można przypisać jednoznacznie wartość prawdy lub fałszu
- (b) zdania:
 - i. Paryż jest we Francji
 - ii. -1 > 0
- (c) nie zdania:
 - i. Niebieski to ładny kolor
- (d) Zmienne zdaniowe p,q,r,s zazwyczaj pod nie podstawiamy zdania
- (e) X zbiór zmiennych zdaniowych
- (f) Ze zdań prostych budujemy zdania złożone za pomocą operatorów (spójników) logicznych
 - i. Negacja, zaprzeczenie , $\neg p$ nieprawda że p,
nie p (\neg / \sim)
 - ii. Alternatywa $p \vee q$ (p lub q)
 - iii. Koniunkcja $p \wedge q$ (p i q)
 - iv. <u>Implikacja</u> $p \implies q$ (jeśli p to q)
 - v. Równoważność $p \iff q(p \text{ jest równoważne } q)$
- (g) Budujemy "język legalnych" formuł rachunku zdań (synktatyka)
 - i. Def. Zbiór formuł rachunku zdań jest to najmniejszy zbiór Z taki, że
 - A. Każda zmienna zdaniowa należy do Z
 - B. Jeśli $\alpha, \beta \in Z$ to $\neg \alpha, \alpha \lor \beta, \alpha \land \beta, \alpha \implies \beta, \alpha \iff \beta \in Z$
 - ii. Konwencja:
 - A. Dla uproszczenia formuł przyjmujemy priorytet wykonywania operacji
 - \neg , potem \wedge/\vee , potem \Longrightarrow / \Longleftrightarrow
 - A. $(((\neg q) \land p) \implies p) \iff (p \lor q)$ sprowadza się do $(\neg q \land p \implies p) \iff p \lor q$
 - iii. X zbiór zmiennych zdaniowych
 - A. Def. Wartościowanie jest to funkcja V: X \rightarrow {0,1} (prawda,fałsz) przypisuje zmiennym zdaniowym wartości logiczne

	р	¬р	
В.	1	0	
	0	1	

	р	q	$p \lor q$	$p \wedge q$	$p \implies q$	$p \iff q$
	0	0	0	0	1	1
C.	1	0	1	0	0	0
	0	1	1	0	1	0
	1	1	1	1	1	1

- iv. Rozszerzamy wartościowanie na zbiór Z formuł rachunku zdań
 - A. $\alpha, \beta \in Z$
 - B. $V: X \to \{0, 1\}$
 - C. $V(\neg \alpha) = \neg V(\alpha)$
 - D. $V(\alpha \vee b) = V(\alpha) \vee V(\beta)$
 - E. $V(\alpha \wedge b) = V(\alpha) \wedge V(\beta)$
 - F. $V(\alpha \implies b) = V(\alpha) \implies V(\beta)$
 - G. $V(\alpha \iff b) = V(\alpha) \iff V(\beta)$
 - H. Przykład: $X = \{p, q\}, V(p) = 1, V(q) = 0$ $V((\neg q \land p \implies p) \iff p \lor q) = 1$

- (h) def. Tautologia rachunku zdań jest to formuła prawdziwa dla każdego wartościowania zmienych zdaniowych
 - i. $p \vee \neg p$ prawo wyłączonego środka
 - ii. $\neg(p \land \neg p)$ prawo sprzeczności
 - iii. $p \lor p \iff p$
 - iv. $p \wedge p \iff p$ idempotentność alternatywy i koniunkcji
 - v. $p \iff \neg(\neg p)$ podwójna negacja
 - vi. $(p \lor q) \land r \iff (p \land r) \lor (q \land r)$
 - vii. $(p \land q) \lor r \iff (p \lor r) \land (q \land r)$ prawo rozdzielności ^
 - viii. $(p \lor q) \lor r \iff p \lor (q \lor r)$
 - ix. $(p \land q) \land r \iff p \land (q \land r)$ łączność ^
 - x. $(p \implies q) \land (q \implies r) \implies (p \implies r)$ przechodniość implikacji
 - xi. $(p \implies q) \iff (\neg p \lor q)$ eliminacja implikacji
 - xii. $(p \iff q) \iff (p \implies q) \land (q \implies p)$ eliminacja równoważności
 - xiii. $\neg (p \lor q) \iff \neg p \land \neg q$
 - xiv. $\neg(p \land q) \iff \neg p \lor \neg q \text{ prawa de Morgana}^{\hat{}}$
 - xv. $\neg(p \implies q) \iff p \land \neg q$ negacja implikacji
 - xvi. $(p \implies q) \iff (\neg q \implies \neg p)$ kontrapozycja
 - xvii. $p \implies (\neg p \implies q)$

	р	q	$\neg p \implies q$	$p \implies (\neg p \implies q)$
	0	0	0	1
Α.	1	0	1	1
	0	1	1	1
	1	1	1	1

- B. Przypusćmy że przy pewnym wartościowaniu formuła jest fałszywa. Wtedy p musi być prawdziwe, a nastepnik fałszywy. Jeśli p jest prawdziwe, to następnik też jest prawdziwy, więc implikacja musi wartościować się do prawdy.
- (i) Podejście aksjomatyczne do rachunku zdań
 - i. Def. Aksjomat formuła rachunku zdań (
 $(\in Z)$ o której przyjmujemy, że jest prawdziwa
 - ii. Def. Dowód formalny formuły $\beta \in Z$ jest to ciąg formuł $\alpha_1, \alpha_2, ... \alpha_n \in Z$ taki, że
 - A. $\alpha_n = \beta$
 - B. dla każdego $i \in \{1, 2, ..., n\}$ α jest aksjomatem, lub istnieją $j, k \in 1, 2, ... i-1$ takie że j < k oraz $\alpha_k = (\alpha_j \implies \alpha_i)$
 - iii. Def. Formułę nazywamy twierdzeniem rachunku zdań jeśli istnieje jej dowód formalny
 - iv. Aksjomaty rachunku zdań (przykładowo) $(A, B, C \in Z)$ (nie trzeba pamiętać)
 - A. $(A \Longrightarrow (B \Longrightarrow A))$
 - B. $(A \Longrightarrow (B \Longrightarrow C)) \Longrightarrow ((A \Longrightarrow B) \Longrightarrow (A \Longrightarrow C))$
 - C. $(\neg A \Longrightarrow B) \Longrightarrow ((\neg A \Longrightarrow \neg B) \Longrightarrow A)$
 - v. Twierdzenie o pełności
 - A. Formuła rachunku zdań jest twierdzeniem \iff jest tautologią
 - vi. Przykład dowodu formalnego formuły $\alpha \implies \alpha \ (A=\alpha, B=\beta, C=\alpha)$:
 - A. $\alpha_1 = (\alpha \implies (\beta \implies \alpha) \implies \alpha)$ aksjomat 1
 - B. $\alpha_2 = (\alpha \implies (\beta \implies \alpha)) \implies ((\alpha \implies \beta) \implies (\alpha \implies \alpha))$ aksjomat 2
 - C. α_3
- (j) Tw. Każda formuła F zapisana w języku rachunku zdań sprowadza się do postaci dysjunktywno koniunktywnej (DNF). Czyli dla każdej F istnieje F' w DNF tak, że $F \iff F'$
 - i. DNF to drzewkowo alternatywy na samej górze, poziom niżej koniunkcja, dwa poziomy niżej zmienna lub jej negacja