```
In [1]:
```

import pandas as pd

import random

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import GridSearchCV,train_test_split

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean squared error

from sklearn.linear model import LogisticRegression

In [2]: | adm=pd.read_csv(r"C:\Users\HP\Documents\Admission_Predict_Ver1.1.csv")

In [3]: adm.head()

Out[3]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [4]: adm= adm.drop('Serial No.',axis = 1)

In [5]: adm.head()

Out[5]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	337	118	4	4.5	4.5	9.65	1	0.92
1	324	107	4	4.0	4.5	8.87	1	0.76
2	316	104	3	3.0	3.5	8.00	1	0.72
3	322	110	3	3.5	2.5	8.67	1	0.80
4	314	103	2	2.0	3.0	8.21	0	0.65

In [6]: adm.describe()

Out[6]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chan of Adn
count	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.000
mean	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.721
std	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.141
min	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.340
25%	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.630
50%	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.720
75%	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.820
max	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.970

In [7]:

sns.pairplot(adm)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1d27d4d8>


```
In [8]: X = adm.drop('Chance of Admit ',axis = 1)
y = adm['Chance of Admit ']

x_train,x_test,y_train,y_test = train_test_split(X,y,test_size = .3,random_state)

In [9]: rf_model = RandomForestRegressor(n_estimators = 100,random_state = 42)
    rf_model.fit(x_train,y_train)
    mae=mean_absolute_error(y_test,rf_model.predict(x_test))
    print('Mean absolute error for RF model: %0.4f' %mae)
```

Mean absolute error for RF model: 0.0438

```
In [10]: feature_importance = pd.DataFrame(sorted(zip(rf_model.feature_importances_, X.co]
         plt.figure(figsize=(10, 6))
         sns.barplot(x="Value", y="Feature", data=feature_importance.sort_values(by="Value")
```

Out[10]: <AxesSubplot:xlabel='Value', ylabel='Feature'>


```
In [11]: model = LinearRegression()
         model.fit(x train[['GRE Score']], y train)
```

Out[11]: LinearRegression()

```
In [12]: |intercept = model.intercept_
         coeff = model.coef_
         intercept
```

Out[12]: -2.571301143220596

```
In [13]: coeff
```

Out[13]: array([0.01040764])

```
In [14]: print('Admit = \{0:0.2f\} + (\{1:0.2f\} \times GRE \ Score)'.format(intercept, coeff[0]))
          Admit = -2.57 + (0.01 \times GRE Score)
```

```
In [16]: |admit.head()
Out[16]: 5
                 0.73
          116
                 0.42
          45
                 0.65
          16
                 0.60
                 0.50
          462
          Name: GRE Score, dtype: float64
In [17]:
         pred = model.predict(x_test[['GRE Score']])
         pred.shape
Out[17]: (150,)
In [18]: xtest = x_test['GRE Score']
In [19]: plt.scatter(xtest,y_test,color='b')
         plt.plot(xtest,pred,color='r')
Out[19]: [<matplotlib.lines.Line2D at 0x68c1af0>]
           1.0
           0.9
           0.8
           0.7
           0.6
           0.5
           0.4
               290
                       300
                                310
                                        320
                                                330
                                                         340
In [20]:
         ad = intercept + (coeff[0] * x_train['GRE Score'])
         ad.head()
Out[20]: 5
                 0.863221
          116
                 0.540584
          45
                 0.779960
         16
                 0.727922
                 0.623845
         462
         Name: GRE Score, dtype: float64
In [ ]:
```