Link código:

https://colab.research.google.com/drive/1Ff9V5SKiEp2z6B2b8lQ9x0_LLDAy_eOS?usp=sharing

Gabriel Henrique Souza de Melo - 180136577

Relatório projeto 3 - FSI

Com a linha de código !python train.py --config=yolact_plus_config o programa começou a realizar iterações e gerar valores das métricas mAP IOU 0.5:0.95. Foi usado o modelo ResNet50 com a rede YOLACT++ com auxilio do repositório encontrado em https://github.com/dbolya/yolact.

O máximo de iterações realizadas foram 5610 e foram obtidos os seguintes valores: Valores gerais:

```
Calculating mAP...

| all | .50 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | .95 | |
| box | 11.52 | 18.51 | 17.90 | 16.88 | 15.98 | 14.97 | 13.10 | 10.15 | 5.76 | 1.70 | 0.18 |
| mask | 11.83 | 17.11 | 16.53 | 15.96 | 15.25 | 14.29 | 13.17 | 11.66 | 8.79 | 4.65 | 0.86 |
```

Valores por classes:

□	, ####################################											
		all	.50	.55	.60	.65	.70	.75	.80	.85	90	.95
	box mask		14.23 14.32		13.22 14.11	12.64 13.32	11.14 12.46		5.53 8.67		0.49	0.01 0.32
	######################################											
		all	.50	. 55	.60	.65	.70	.75	.80	. 85	.90	.95
		47.99 50.73	70.82 69.90	69.73 68.14	67.26 66.09	64.63 64.34	60.90 60.63	55.09 54.04	47.90 48.00	31.61 41.64	11.67 29.94	0.30 4.54
	######################################											
		all	.50	. 55	.60	.65	.70	.75	.80	.85	.90	.95
	box mask			8.14 7.42		5.95 4.51			1.82 1.67		0.06	0.00 0.01
	######################################											
		all	.50	. 55	.60	.65	.70	.75	.80	.85	90	.95
	box mask	6.80 7.18	9.38 9.32	9.38 9.32		9.38 9.32	9.05 9.32	8.78 9.32	7.30 8.98	4.45 6.43	0.88	0.04 0.00
	######################################							·				
		all	.50	. 55	.60	.65	.70	.75	.80	.85	.90	.95
	box mask	2.31 3.15	5.60 6.11	5.00 5.76	4.47 5.52	3.73 4.84	2.40 4.07	1.31 3.13	0.52 1.63	0.03 0.42	0.01 0.03	0.00 0.00
	######################################											
		all	.50	. 55	.60	. 65	.70	.75	.80	.85	.90	.95
	box mask	2.08 0.91						1.40 0.84	0.75 0.43	0.31 0.04	0.01 0.01	0.00
	######################################											
		all	.50	. 55	.60	.65	.70	.75	.80	.85	.90	.95
	box mask	1.77 2.24	3.99 3.92	3.75 3.69	3.29 3.42	2.75 3.24	1.83 2.77	1.32 2.41	0.60 1.84	0.18 0.77	0.04 0.35	0.00 0.02

Para comparação, podemos ver as imagens de saída da classe com maior porcentagem (Leaf Spot) e de uma classe com menor porcentagem (Powdery Mildew Fruit).

Imagem de uma Leaf Spot

Imagem de uma Powdery Mildew Fruit

Pelas imagens e as classificações dadas à elas, vemos que na primeira imagem a máscara está razoavelmente bem definida e a segunda imagem está com a máscara e a classificação definida de forma errada.

Para uma melhoria dos resultados poderia ser feito algumas melhorias, como um melhor hardware e software para a execução do código, imagens mais variadas tanto em número quanto em aspectos técnicos, testes com outros modelos e redes para ver a progressão dos resultados e compará-los, entre outros ajustes.

Vendo os valores do artigo referenciado pelo professor:

Table 10. Comparison with other architectures.

Network	Backbone	mAP IOU 0.50 (%)	mAP IOU 0.50:0.95 (%)
Mask R-CNN	ResNet50	81.37	55.21
Mask R-CNN	ResNet101	82.43	59.94
YOLACT	ResNet50	79.71	55.19
YOLACT	ResNet101	79.39	55.81

Podemos ver que os valores obtidos no artigo são maiores e com taxa de acertos bem maiores que os obtidos pelo código para este projeto.

Lendo o artigo podemos encontrar algumas informações que podem nos mostrar a causa desta discrepância.

"The model was trained for 55 k iterations and 40 k iterations for ResNet101 and ResNet50 backbones, respectively."

Para o artigo foram feitas 40 mil iterações com as mesmas condições. Muito mais iterações que o código realizado para o projeto. O código executou 5610 iterações pela limitação de hardware, software e de conexão com a internet por parte do autor do código.

Table 6. Details of the various augmentation techniques tested on our dataset.

Augmentation	Specifications	mAP (%)
Baseline	-	71.69
Change Color Temperature	(7000, 12000)	68.92
Dropout	p = (0, 0.2)	71.74
Edge Detect	alpha = (0.0, 1.0)	72.37
Enhance Color	-	72.02
Filter Edge Enhance	-	68.34
Gamma Contrast	(0.5, 2.0)	71.90
Gaussian Blur	sigma = (0.0, 2.0)	68.70
Histogram Equalization (All Channels)	-	71.02
Multiply	(0.4, 1.4)	70.58
Multiply and Add to Brightness	mul = (0.5, 1.5), add = (-30, 30)	72.26
Multiply Hue and Saturation	$(0.3, 1.3)$, per_channel = True	73.79
Perspective Transform	scale = (0.01, 0.15)	68.90
Rotate	(-45, 45)	72.91
Rotate + Edge Detect	copied from individual application	73.63
Rotate + Enhance Color + Sharpen	copied from individual application	75.88
Sharpen	alpha = (0.0, 1.0), lightness = (0.75, 2.0)	70.72

Table 7. Final results on ResNet50 and ResNet101 with updated learning rate schedule.

Network	Augmentation	Improved Training Strategy	mAP (%)
ResNet50	✓		79.84
ResNet50	✓	✓	81.37
ResNet101	✓		80.24
ResNet101	✓	✓	82.43

O artigo mostra o impacto que algumas variações nos efeitos das imagens produzem no resultado final. Olhando os resultados é fácil notar que com a nova técnica os valores aumentam ligeiramente obtendo resultados mais confiantes.

O artigo conclui depois de várias hipóteses e vários testes que Mask R-CNN seria o melhor modelo para a resolução de problemas de detecção de doenças na planta em questão.