ALGORITMO (PRIMAL) DEL SIMPLEX (Problema de minimización)

Paso 1:

Determinar una base inicial B tal que $B^{-1}b \ge 0$, y su matriz no básica asociada N,

$$B = (a_{B_1}, ..., a_{B_l}, ..., a_{B_m})$$
 $N = (a_{N_1}, ..., a_{N_t}, ..., a_{N_{n-m}})$

Ir al paso 2.

Paso 2:

Poner $\bar{x}_B = B^{-1}b$ y $\bar{x}_N = 0$. Calcular

$$Y_{N_i} = B^{-1} a_{N_i}$$
 y $\bar{c}_{N_i} = c_{N_i} - c_B^t Y_{N_i}$ para todo $j \in \{1, \dots, n-m\}$.

Paso 3 (Detección de optimalidad):

Si $\bar{c}_{N_j} \ge 0$ para todo $j \in \{1, ..., n-m\}$, PARAR (\bar{x} es solución óptima del problema). En otro caso, ir al paso 4.

Paso 4 (Detección de no acotación):

Si existe $t \in \{1, ..., n-m\}$ tal que $\bar{c}_{N_t} < 0$ e $Y_{N_t} \le 0$, PARAR (el valor de la función objetivo no está acotado, suponiendo $B = (a_1, ..., a_m)$, decrece a lo largo de

$$\begin{pmatrix} \bar{x}_B \\ \bar{x}_N \end{pmatrix} + \begin{pmatrix} -Y_{N_t} \\ e_t \end{pmatrix} \mu \quad \text{ para todo } \; \mu \geq 0).$$

En otro caso, ir al paso 5.

Paso 5 (Cálculo de una nueva solución básica factible):

Determinar

$$\bar{c}_{N_t} = \min \left\{ \overline{c}_{N_j} \; \middle| \; j \in \{1, \dots, n-m\} \; \; \text{y} \; \; \bar{c}_{N_j} < 0 \right\}$$

$$\frac{\bar{x}_{B_l}}{y_{lN_t}} = \min \left\{ \frac{\bar{x}_{B_i}}{y_{iN_t}} \mid i \in \{1, \dots, m\} \text{ e } y_{iN_t} > 0 \right\}$$

Considerar la base \bar{B} obtenida suprimiendo de $B=(a_{B_1},\ldots,a_{B_l},\ldots,a_{B_m})$ la columna a_{B_l} e incorporando en su lugar la columna a_{N_t} . Ir al paso 2.

ALGORITMO (PRIMAL) DEL SIMPLEX (Problema de maximización)

Paso 1:

Determinar una base inicial B tal que $B^{-1}b \ge 0$, y su matriz no básica asociada N,

$$B = (a_{B_1}, ..., a_{B_l}, ..., a_{B_m})$$
 $N = (a_{N_1}, ..., a_{N_t}, ..., a_{N_{n-m}})$

Ir al paso 2.

Paso 2:

Poner $\bar{x}_B = B^{-1}b$ y $\bar{x}_N = 0$. Calcular

$$Y_{N_i} = B^{-1} a_{N_i}$$
 y $\bar{c}_{N_i} = c_{N_i} - c_B^t Y_{N_i}$ para todo $j \in \{1, \dots, n-m\}$.

Paso 3 (Detección de optimalidad):

Si $\bar{c}_{N_j} \le 0$ para todo $j \in \{1, ..., n-m\}$, PARAR (\bar{x} es solución óptima del problema). En otro caso, ir al paso 4.

Paso 4 (Detección de no acotación):

Si existe $t \in \{1, ..., n-m\}$ tal que $\bar{c}_{N_t} > 0$ e $Y_{N_t} \le 0$, PARAR (el valor de la función objetivo no está acotado, suponiendo $B = (a_1, ..., a_m)$, aumenta a lo largo de

$$\begin{pmatrix} \bar{x}_B \\ \bar{x}_N \end{pmatrix} + \begin{pmatrix} -Y_{N_t} \\ e_t \end{pmatrix} \mu \quad \text{ para todo } \; \mu \geq 0).$$

En otro caso, ir al paso 5.

Paso 5 (Cálculo de una nueva solución básica factible):

Determinar

$$\bar{c}_{N_t} = \max \left\{ \overline{c}_{N_j} \; \middle| \; j \in \{1, \dots, n-m\} \; \; \mathbf{y} \; \; \bar{c}_{N_j} > 0 \right\}$$

$$\frac{\bar{x}_{B_l}}{y_{lN_t}} = \min \left\{ \frac{\bar{x}_{B_i}}{y_{iN_t}} \mid i \in \{1, \dots, m\} \text{ e } y_{iN_t} > 0 \right\}$$

Considerar la base \bar{B} obtenida suprimiendo de $B=(a_{B_1},\ldots,a_{B_l},\ldots,a_{B_m})$ la columna a_{B_l} e incorporando en su lugar la columna a_{N_t} . Ir al paso 2.

Fórmulas de la operación de pivotaje.

Se considera la base inicial $B=(a_1,\ldots,a_m)$ y la sustitución de la columna básica $a_l, 1 \le l \le m$, por la columna no básica $a_k, m+1 \le k \le n$.

Puesto que

$$a_j = y_{1j}a_1 + y_{2j}a_2 + \dots + y_{mj}a_m$$
 para todo $j \in \{m + 1, \dots, n\}$. [*]

En particular, para a_k resulta

$$a_k = \sum_{\substack{i=1\\i \neq l}}^m y_{ik} a_i + y_{lk} a_l$$

de donde se puede despejar a_l ,

$$a_l = \frac{1}{y_{lk}} a_k - \sum_{\substack{i=1\\i \neq l}}^m \frac{y_{ik}}{y_{lk}} a_i$$

Sustituyendo la última expresión en [*] resulta

$$a_{j} = \sum_{\substack{i=1\\i \neq l}}^{m} \left(y_{ij} - \frac{y_{ik}y_{lj}}{y_{lk}} \right) a_{i} + \frac{y_{lj}}{y_{lk}} a_{k}$$

Denotando por y'_{ij} los valores correspondientes a la nueva base, se obtiene

$$\begin{cases} y'_{ij} = y_{ij} - \frac{y_{ik}y_{lj}}{y_{lk}} & i \neq l \\ y'_{lj} = \frac{y_{lj}}{y_{lk}} \end{cases}$$

Además,

$$\bar{c}'_j = \bar{c}_j - \frac{y_{lj}}{y_{lk}} \; \bar{c}_k$$

Sin pérdida de generalidad, se supone que $B = (a_1, ..., a_l, ..., a_m)$

	x_1	• • •	x_{l}	• • •	\mathcal{X}_m	\mathcal{X}_{m+1}	•••	x_k	 \mathcal{X}_n		
x_1	1	•••	0		0			$y_{1,k}$	 $y_{1,n}$	\overline{x}_1	
:	:		:		:	:		:	:	:	
x_l	0		1		0	$y_{l,m+1}$		$y_{l,k}$	 $y_{l,n}$	\bar{x}_l	\rightarrow
÷	:		:		:	:		:	:	:	
\mathcal{X}_{m}	0		0		1	$\mathcal{Y}_{m,m+1}$		$y_{m,k}$	 $\mathcal{Y}_{m,n}$	\overline{x}_m	
	0		0		0	\overline{C}_{m+1}		\overline{c}_k	 \overline{c}_n	$z - c_B^t \overline{x}_B$	
	1							1		•	ı

<u>Actualización de la base</u>: $B'=(a_1,...,a_{l-1},a_k,a_{l+1},...,a_m)$

	x_1	•••	x_{l}	•••	\mathcal{X}_m	\mathcal{X}_{m+1}	•••	\boldsymbol{x}_k		\mathcal{X}_n	
x_1	1	•••	$y'_{1,l}$	•••	0	$y'_{1,m+1}$		0	•••	$y'_{1,n}$	\overline{x}'_1
:	:		:		:	:		÷		:	:
\mathcal{X}_k	0		$y'_{l,l}$	•••	0	$y'_{l,m+1}$	•••	1		$y'_{l,n}$	\overline{x}'_k
:	:		:		:	:		÷		:	:
\mathcal{X}_m	0		$y'_{m,l}$	•••	1	$y'_{m,m+1}$		0	•••	$y'_{m,n}$	$\overline{\mathcal{X}}_m'$
	0		\overline{c}'_{l}		0	\overline{c}'_{m+1}		0		\overline{c}'_n	$z - c_{B'}^t \overline{x}_{B'}'$

PIVOTAJE

	x_1	•••	x_l	•••	\mathcal{X}_m	\mathcal{X}_{m+1}	•••	\mathcal{X}_k	•••	\mathcal{X}_n	
x_1	1	•••	$-\frac{y_{1,k}}{y_{l,k}}$	•••	0	$y_{1,m+1} - y_{1,k} \frac{y_{l,m+1}}{y_{l,k}}$	•••	0	•••	$y_{1,n} - y_{1,k} \frac{y_{l,n}}{y_{l,k}}$	$\overline{x}_l - y_{1,k} \frac{\overline{x}_l}{y_{l,k}}$
:	:		:		÷	:		:		:	:
\boldsymbol{x}_k	0	•••		•••	0	$y_{l,m+1}$	•••	1	•••	$y_{l,n}$	$\overline{x_l}$
			${\mathcal Y}_{l,k}$			${\mathcal Y}_{l,k}$.				${\cal Y}_{l,k}$	$y_{l,k}$
:	:		:		:	:		:		:	:
X_m	0		$-\frac{y_{m,k}}{y_{l,k}}$		1	$y_{m,m+1} - y_{m,k} \frac{y_{l,m+1}}{y_{l,k}}$		0		$y_{m,n} - y_{m,k} \frac{y_{l,n}}{y_{l,k}}$	$\overline{X}_m - Y_{m,k} \frac{\overline{X}_l}{Y_{l,k}}$
	0	•••	$-\overline{c}_k \frac{1}{y_{l,k}}$	•••	0	$\overline{c}_{m+1} - \overline{c}_k \; \frac{\mathcal{Y}_{l,m+1}}{\mathcal{Y}_{l,k}}$		0	•••	$\overline{c}_n - \overline{c}_k \frac{y_{l,n}}{y_{l,k}}$	$z - c_B^{\prime} \overline{x}_B - \overline{c}_k \frac{\overline{x}_l}{y_{l,k}}$