PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-341039

(43)Date of publication of application: 22.12.1998

(51)Int.CI.

H01L 33/00

(21)Application number: 10-098687

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

10.04.1998

(72)Inventor: ISHIKAWA HIROCHIKA

SUGAWARA HIDETO

(30)Priority

Priority number: 09 92106

Priority date: 10.04.1997

Priority country: JP

(54) SEMICONDUCTOR LIGHT EMITTING ELEMENT AND FABRICATION THEREOF (57)Abstract:

PROBLEM TO BE SOLVED: To make uniform the current distribution in an emission region, i.e., an N type GaxIn1-xN emission layer, by employing a metal film containing oxygen as a first thin film.

SOLUTION: A GaN buffer layer 2, an N type GaxAlyN clad layer 3, a GaxIn1-xN emission layer 4, a P type GaxAlyN clad layer 5, and a P type GaN contact layer 6 are formed on a substrate 1. A magnesium film is formed, as a P type electrode 7, entirely on the surface of the P type GaN contact layer 6 and a protective film 10 is formed thereon except the bonding pad part. On the other hand, a bonding pad 8 is formed on the P type electrode 7. Since a metal film is employed as the P type electrode 7, variation of current density is suppressed in a light emitting element to realize a uniform current density and thereby a uniform emission.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-341039

(43)公開日 平成10年(1998)12月22日

(51) Int.Cl.6

H01L 33/00

識別配号

FΙ

H01L 33/00

E

C

審査請求 未請求 請求項の数8 OL (全 10 頁)

(21)出願番号

特願平10-98687

(22)出願日

平成10年(1998) 4月10日

(31) 優先権主張番号 特願平9-92106

(32)優先日

平9 (1997) 4月10日

(33)優先権主張国

日本 (JP)

(71)出顧人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 石川 博規

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

(72) 発明者 菅原 秀人

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

(74)代理人 弁理士 外川 英明

(54) 【発明の名称】 半導体発光索子およびその製造方法

(57)【要約】

【課題】半導体発光素子の高抵抗のP型単結晶表面に設 けられ、電気抵抗が低く、かつ、発光素子から発光した 光の透過率の良い、P型電極、およびその製造方法を得 るとと。

【解決手段】電極材料として電気抵抗が低く、光透過率 の良いマグネシウムないしその酸化物を使用する。更 に、マグネシウム膜、酸素を含むマグネシウム膜とチタ ン等の膜を積層して形成することにより、マグネシウム 等の膜形成を安定して行い、経時変化の少ない電極膜を 得る。一方、ワイヤボンディング等の為に最小限面積の 金を形成する。

サファイア基板 2・・・GaNパッファ目(アモルファス層)

・・N型GaxAlyNクラッド層

· NEGax In 1-x N完光層

・P型GaxAlyNクラッド語 6・・・P型GaNコンタクト版

7・・・P型電板 8・・・ボンディングパッド 9・・・N型電板

10 . . . 保護機

【特許請求の範囲】

【請求項1】N型半導体層と、前記N型半導体層上に直 接または間接に接合形成されたP型半導体層と、最外層 の前記N型半導体層の表面の一部に形成された下部電極 と最外層の前記P型半導体層の表面ほぼ全面に形成され た第一の薄膜と、前記第一の薄膜上の一部に形成された 上部電極とを有し、前記第一の薄膜が酸素を含む金属膜 であるととを特徴とする半導体発光素子。

【請求項2】N型半導体層と、前記N型半導体層上に直 接または間接に接合形成されたP型半導体層と、最外層 10 の前記N型半導体層の表面の一部に形成された下部電極 と最外層の前記P型半導体層の表面ほぼ全面に形成され た第一の薄膜と、前記第一の薄膜上の一部に形成された 上部電極とを有し、前記第一の薄膜がマグネシウム膜、 酸素を含むマグネシウム膜、ないしはそれらを含む積層 膜であることを特徴とする半導体発光素子。

【請求項3】前記上部電極が金からなり、且つ前記上部 電極と前記第一の薄膜との間にチタン、窒化チタン、ニ ッケル、白金、パラジウム、スカンジウム、ハフニウ ム、ジルコニウムの何れか一つないしはそれらの積層膜 20 からなる第二の薄膜が設けられていることを特徴とする 請求項1または請求項2に記載の半導体発光索子。

【請求項4】前記P型および前記N型半導体層が窒化ガ リウム系半導体(GaxAlvIn_{1-x-v}N(0≤x≤ 1, $0 \le y \le 1$, $0 \le x + y \le 1$) であることを特徴と する請求項1または請求項2に記載の半導体発光索子。 【請求項5】サファイア基板と、前記サファイア基板上 に積層形成されたGa Nバッファ層と、前記Ga Nバッ ファ層上の一部に積層形成されたN型Ga,A1,Nクラ ッド $(0 \le x \le 1, 0 \le y \le 1, x + y = 1)$ 層と、前 30 記N型Ga,Al,Nクラッド層上に積層形成されたGa $_{x}Al_{y}In_{1-x-y}N(0 \le x \le 1, 0 \le y \le 1, 0 \le x$ +y≤1)発光層と、前記GaxAlvIn1-x-vN(0 $\leq x \leq 1$, $0 \leq y \leq 1$, $0 \leq x + y \leq 1$) 発光層上に積 層形成されたP型GaxAlvN(0≤x≤1,0≤y≤ 1, x+y=1) クラッド層と、前記P型Ga,Al,N クラッド層上に積層形成されたP型GaNコンタクト層 と、前記N型Ga,Al,Nクラッド層上の露出面に形成 された下部電極と、前記P型GaNコンタクト層上の全 面に形成された第一の薄膜と、前記第一の薄膜上の一部 40 に形成された上部電極と、前記第一の薄膜の露出部を少 なくとも覆う酸化珪素膜または窒化珪素膜保護膜とを具 備し、前記第一の薄膜がマグネシウム膜、酸素を含むマ グネシウム膜、ないしそれらの積層膜よりなることを特 徴とする半導体発光素子。

【請求項6】N型半導体層上に直接または間接に接合形 成されたP型半導体層を形成する工程と、前記P型半導 体層の表面全面にマグネシウム膜、酸素を含むマグネシ ウム膜、ないしそれらの積層膜よりなる第一の薄膜を形

する工程、前記保護膜上の上部電極形成予定領域以外の 部分にレジスト膜を形成する工程、前記レジスト膜をマ スクに保護膜をエッチング除去する工程、前記エッチン グにより露出したマグネシウム薄膜部分上に上部電極を 形成する工程、前記レジスト膜を除去する工程、をこの 順に含むことを特徴とする半導体発光素子の製造方法。 【請求項7】N型半導体層上に直接または間接に接合形 成されたP型半導体層を形成する工程と、前記P型半導 体層の表面全面にマグネシウム膜、酸素を含むマグネシ ウム膜、ないしそれらの積層膜よりなる第一の薄膜を形 成する工程、前記第一の薄膜上の上部電極形成予定領域 以外の部分にレジスト膜を形成する工程、前記第一の薄 膜部分、レジスト膜部分上に、チタン、窒化チタン、ニ ッケル、白金、パラジウム、スカンジウム、ハフニウ ム、ジルコニウムの何れか一つを含む第二の薄膜を形成 する工程、上部電極を形成する工程、前記レジスト膜を 除去する工程、露出した第一の薄膜全面に保護膜を形成 する工程、をこの順に含むことを特徴とする半導体発光

【請求項8】N型半導体層と、

素子の製造方法。

前記N型半導体層上に直接または間接に接合形成された P型半導体層と、最外層の前記N型半導体層の表面の一 部に形成された下部電極と最外層の前記P型半導体層の 表面ほぼ全面に形成されたマグネシウム膜、酸素を含む マグネシウム膜、ないしはそれらの積層膜からなる第一 の薄膜と、前記第一の薄膜上に形成された金薄膜と、前 記第一の薄膜上ないし前記金薄膜上の一部に形成された 上部電極とを有することを特徴とする半導体発光素子。

[0001]

【発明の詳細な説明】

【発明の属する技術分野】本発明は半導体発光素子およ びその製造方法に係るものであり、特に、P型の窒化ガ リウムアルミニウムインジウム (GaxAlvIn1-x-v $N(0 \le x \le 1, 0 \le y \le 1, 0 \le x + y \le 1)$)等 の、P型半導体の比抵抗が高く、低抵抗のオーミック接 触を得にくい、窒化物系の半導体を用いた半導体発光素 子およびその製造方法に関する。

[0002]

【従来の技術】400nmないし500nm程度の発光 波長を有する発光素子として、窒化ガリウム系の半導体 発光素子が注目されている。以下に、従来の窒化ガリウ ム系半導体発光素子およびその製造方法を図7を参照し て説明する。

【0003】図9は、従来の窒化ガリウム系半導体発光 素子の断面図である。結晶成長の基板となるサファイア 基板1上に、MOCVD法により、窒化ガリウム(以下 GaNと記す) バッファ層2、N型窒化ガリウムアルミ ニウム (以下 Ga_xAl_yN ($0 \le x \le l$, $0 \le y \le l$, x+y=1)と記す)クラッド層3、N型窒化インジウ 成する工程、前記第一の薄膜の表面全面に保護膜を形成 50 ムガリウム(以下Ga,In,,N(0≦x≦1)と記

3

す)発光層4、P型 Ga_xAI_vN ($0 \le x \le I$, $0 \le y \le I$, x + y = 1)クラッド層5、P型GaNコンタクト層6がとの順に積層形成されている。

【0004】そして、との積層の一部が、表面からN型 Ga、AI、Nクラッド層3に至るまで除去されており、そこに露出したN型Ga、AI、Nクラッド層3表面にN 型電極9が形成されている。

【0005】また、P型GaNコンタクト層6表面には ニッケル、金、ニッケル、金の順に積層形成され、か つ、ワイヤボンディングに必要な部分のみを残して不要 10 な部分を除去し形成されてなる、P型電極を兼ねたボン ディングバッド8が設けられている。

[0006]

【発明が解決しようとする課題】上記の半導体発光素子では、P型GaNコンタクト層6、およびP型GaxAl、Nクラッド層5の比抵抗が高いため、P型GaNコンタクト層6、P型GaxAl、Nクラッド層5内での、ボンディングパッド8より注入された電流の横方向への広がりが少ない。このため、発光領域であるN型GaxIn1-xN発光層4内での電流分布が均一にならず、局部的になってしまう。一般に半導体発光素子の発光領域での発光量はほぼ注入電流に比例するが、注入電流が過大になると、次第に発光量は飽和してくる。このため、上記のように、N型GaxIn1-xN発光層4内で電流分布が不均一の時は、発光量もGaxIn1-xN発光層4内で不均一となり、全体の発光量も低下してしまうという問題がある。

【0007】ととろで、上記の問題を解決するために、P型電極を兼ねたボンディングパッド8を、P型GaNコンタクト層6表面全面に形成し、N型GaxIn1-xN30発光層4内で電流を素子全体に流れるようにして、電流分布を均一にさせることが考えられる。しかしながら、P型電極はニッケル、金、ニッケル、金で構成される積層金属膜であり、このうち特にニッケルは、図6に示すように波長0.4ないし0.9ミクロン程度の可視光領域で光の透過率が悪く、電極膜として必要とされる10nm程度の厚さに形成した場合には、例えば波長0.5ミクロンの光に対しては光透過率は7%程度に低下してしまう。更に、前記積層金属膜最上部の金は、ボンディングパッドとして1ミクロン程度に厚く形成する必要があるため、ニッケルを透過した光もほとんど全て金に吸収されてしまい、P型電極を透過しての発光は期待できない

【0008】本発明は上記の問題に鑑みてなされたものであり、発光領域であるN型GaxInl-xN発光層4内での電流分布が均一になり、かつ、P型電極膜を通して充分に光が透過する電極膜を有する半導体発光素子およびその製造方法を提供することを目的とする。

[0009]

【課題を解決するための手段】上記の問題を解決するた 50 る。

め、本発明に係る半導体発光素子では、N型半導体層と、前記N型半導体層上に直接または間接に接合形成されたP型半導体層と、最外層の前記N型半導体層の表面の一部に形成された下部電極と最外層の前記P型半導体層の表面ほぼ全面に形成された光透過率が高く且つ低抵抗を有する第一の薄膜と、前記第一の薄膜上の一部に形成された上部電極とを有することを特徴とする。また、前記第一の薄膜が酸素を含む金属膜であることを特徴とする。

0 【0010】また、前記第一の薄膜がマグネシウム膜、酸素を含むマグネシウム膜、ないしはそれらを含む積層膜であることを特徴とする。また、前記上部電極が金からなり、且つ前記上部電極と前記第一の薄膜との間に第二の薄膜が設けられていることを特徴とする。

【0011】また、前記第二の薄膜が、チタン、窒化チタン、ニッケル、白金、パラジウム、スカンジウム、ハフニウム、ジルコニウムの何れか一つよりなる膜、ないしはそれらの積層膜からなることを特徴とする。

【0012】また、少なくとも前記上部電極が形成され 20 ていない第一の薄膜の表面が酸化珪素膜または窒化珪素 膜ないしその積層膜よりなる電極保護膜で覆われている ことを特徴とする。

【0013】また、前記P型および前記N型半導体層が 窒化ガリウム系半導体($Ga_xAl_vIn_{1-x-v}N$ (0 \le $x \le 1$ 、 $0 \le y \le 1$ 、 $0 \le x + y \le 1$)であることを特 徴とする。

【0014】また、本発明に係る半導体発光素子では、 サファイア基板と、前記サファイア基板上に積層形成さ れたGaNバッファ層と、前記GaNバッファ層上の一 部に積層形成されたN型Ga,Al,Nクラッド(0≤x ≤1,0≤y≤1,x+y=1)層と、前記N型Ga, Al,Nクラッド層上に積層形成されたGa,Al,In $_{1-x-y}$ N $(0 \le x \le 1, 0 \le y \le 1, 0 \le x + y \le 1)$ 発光層と、前記GaxAlvIn1-x-vN(0≤x≤1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1) 発光層上に積層形成され たP型 Ga_xAl_vN (0 $\leq x\leq 1$, 0 $\leq y\leq 1$, x+y=1) クラッド層と、前記P型GaxAlvNクラッド層 上に積層形成されたP型GaNコンタクト層と、前記N 型Ga、Al、Nクラッド層上の露出面に形成された下部 電極と、前記P型G a Nコンタクト層上の全面に形成さ れた第一の薄膜と、前記第一の薄膜上の一部に形成され た上部電極と、前記第一の薄膜の露出部を少なくとも覆 う酸化珪素膜または窒化珪素膜保護膜とを具備し、前記 第一の薄膜がマグネシウム膜、酸素を含むマグネシウム 膜、ないしそれらの積層膜よりなることを特徴とする。 【0015】また、前記第一の薄膜と前記上部電極との 間に、チタン、窒化チタン、ニッケル、白金、パラジウ ム、スカンジウム、ハフニウム、ジルコニウムの何れか 一つを含む第二の薄膜が設けられていることを特徴とす

【0016】また、本発明に係る半導体装置の製造方法 では、N型半導体層上に直接または間接に接合形成され たP型半導体層を形成する工程と、前記P型半導体層の 表面全面にマグネシウム膜、酸素を含むマグネシウム 膜、ないしそれらの積層膜よりなる第一の薄膜を形成す る工程、前記第一の薄膜の表面全面に保護膜を形成する 工程、前記保護膜上の上部電極形成予定領域以外の部分 **にレジスト膜を形成する工程、前記レジスト膜をマスク** に保護膜をエッチング除去する工程、前記エッチングに より露出したマグネシウム薄膜部分上に上部電極を形成 10 する工程、前記レジスト膜を除去する工程、をとの順に 含むことを特徴とする。

【0017】また、本発明に係る半導体装置の製造方法 では、N型半導体層上に直接または間接に接合形成され たP型半導体層を形成する工程と、前記P型半導体層の 表面全面にマグネシウム膜、酸素を含むマグネシウム 膜、ないしそれらの積層膜よりなる第一の薄膜を形成す る工程、前記第一の薄膜上の上部電極形成予定領域以外 の部分にレジスト膜を形成する工程、前記第一の薄膜部 分、レジスト膜部分上に、チタン、窒化チタン、ニッケ 20 ル、白金、パラジウム、スカンジウム、ハフニウム、ジ ルコニウムの何れか一つを含む第二の薄膜を形成する工 程、上部電極を形成する工程、前記レジスト膜を除去す る工程、露出した第一の薄膜全面に保護膜を形成する工 程、をこの順に含むことを特徴とする。

【0018】また、本発明に係る半導体発光素子では、 N型半導体層と、前記N型半導体層上に直接または間接 に接合形成されたP型半導体層と、最外層の前記N型半 導体層の表面の一部に形成された下部電極と最外層の前 ム膜、酸素を含むマグネシウム膜、ないしはそれらの積 層膜からなる第一の薄膜と、前記第一の薄膜上に形成さ れた金薄膜と、前記第一の薄膜上ないし前記金薄膜上の 一部に形成された上部電極とを有することを特徴とす る。

【0019】また、前記第一の薄膜が100nm以下で あり、前記金薄膜が50nm以下であることを特徴とす る。また、前記第一の薄膜が酸素の原子組成比0.1% ないし30%の酸素を含むマグネシウム膜であることを 特徴とする。

[0020]

【発明の実施の形態】

(第一の実施の形態)以下に、本発明の第一の実施の形 態に係る半導体発光素子につき、図1を用いて詳細に説 明する。

【0021】図1は半導体発光索子の断面構造を示した ものである。サファイア基板1上にGaNバッファ層 2、N型Ga_xAl_yN(0 \leq x \leq 1,0 \leq y \leq 1,x+ y=1)クラッド層3(最外層のN型半導体層)、Ga xIn_{1-x}N(0≤x≤1)発光層4、P型GaxAlvN 50 定したものとすることができる。

 $(0 \le x \le 1, 0 \le y \le 1, x + y = 1)$ クラッド層 5、P型GaNコンタクト層6(最外層のP型半導体 層)がこの順に積層形成されている。

【0022】半導体発光素子の一部は、表面からN型G a,Al,Nクラッド層3に至るまで除去されており、そ とに露出したN型Ga,A1,Nクラッド層3表面にN型 電極9(下部電極)が形成されている。

【0023】また、P型GaNコンタクト層6表面には 全面にマグネシウムよりなる厚さ5nmの膜がP型電極 7 (第一の薄膜) として形成されており、ボンディング パッド部分を除くP型電極7上には、P型電極7に積層 して窒化珪素ないし酸化珪素よりなる保護膜10が形成 されている。一方、ボンディングパッド部分には、P型 電極7に積層して金よりなるボンディングパッド8(上 部電極)が形成されている。

【0024】上記の半導体発光素子では、P型電極7と して、P型GaNコンタクト層6との間で容易に低抵抗 のオーミック接触を得ることが出来るマグネシウム膜を 用いている。しかもそれが、P型GaNコンタクト層6 領域表面全面に形成されている。このため、P型GaN コンタクト層6表面全面より電流が注入されることによ り、発光素子内部での電流密度のばらつきが少なく均一 な電流注入が実現でき、均一な発光が可能となってい る。

【0025】しかも、厚さ7.5nmの各種の金属薄膜 の400nmから900nmの光の透過率を示した図6 から明らかなように、従来P型電極として用いられてき たチタン、白金、ニッケルの透過率は窒化ガリウム系半 導体発光素子の発光波長である400 nmないし500 記P型半導体層の表面ほぼ全面に形成されたマグネシウ 30 nmの波長領域で何れも30%ないし40%程度と考え られるのに対して、マグネシウムは、500mm程度の 短波長の可視光領域で50%程度の透過率を有してい る。この為、発光素子内部で発光した光を効率よく外部 に取り出すことができる。

> 【0026】また、メタルズレファレンスブック第5版 (1976年、Butterworths) によれば、 20℃での電気抵抗率は、金が2.2×10⁻⁶(Ω·c m)、マグネシウムが4.2×10⁻⁶(Q·cm)、ニ ッケルが6. 9×10⁻¹ (Q·cm)、白金が10. 5 40 8×10-6 (Ω·cm) であり、マグネシウムの電気抵 抗は金に次いで、ニッケル、白金よりも低い。このた め、マグネシウム膜を用いれば、P型電極7の膜厚を更 に薄くでき、外部への光の取り出し効率を向上させると とができる。

【0027】上記の半導体発光素子では、更に、マグネ シウム膜であるP型電極7上に酸化珪素膜、窒化珪素膜 ないしはその積層膜よりなる電極保護膜10が形成され ている。この電極保護膜によってマグネシウムの過度な 酸化及び汚染が防止され、P型電極7の特性を長期間安

【0028】尚、上記第一の実施の形態では、P型電極 7として、マグネシウム膜を用いたが、これに替えて酸 素を含むマグネシウム膜、ないしは、それらの積層膜を 用いてもよい。

【0029】図7は、厚さ7.5nmの酸素を含むマグ ネシウム膜における波長500nmの光の透過率の酸素 含有量依存性を示した図である。ことに示したように、 酸素を含むマグネシウム膜は、マグネシウム膜と比較し て光透過率に優れており、たとえば、波長500nmの 光の透過率で比較した場合、7.5 n mの膜厚のマグネ 10 に保護膜10の形成された電極構造を得ることができる シウム膜では前述のように光の透過率は約50%であっ たのに対し、同様の膜厚のとき、原子組成比で約30% の酸素を含むマグネシウム膜では約70%の光の透過率 が得られた。

【0030】一方、図8は酸素を含むマグネシウム膜の 抵抗率の酸素含有量依存性を示した図である。ここに示 したように、上述の酸素の原子組成比が約30%の酸素 を含むマグネシウム膜の抵抗率はほぼ3×10-°(Ω・ cm)程度であり、マグネシウム膜の抵抗率とほぼ同様 の値であった。このため、マグネシウム膜に替えて酸素 20 を含むマグネシウム膜ないし、それらの積層膜を用いた 場合でも、積層膜の合計膜厚を上述の本発明の第一の実 施の形態におけるマグネシウム膜の厚さと同等に保つと とにより、電気伝導性に支障を来たすことなく、P型電 極7の光透過率を更に向上させることができる。また、 との場合、酸素を含むマグネシウム膜、ないし、マグネ シウム膜と酸素を含むマグネシウム膜との積層膜中での 酸素原子比の膜内でのばらつきは特に特性に支障を及ぼ さなかった。

【0031】上記の半導体発光索子でも、酸素を含むマ グネシウム膜ないし、マグネシウム膜と酸素を含むマグ ネシウム膜の積層膜であるP型電極上に更に酸化珪素な いし窒化珪素よりなる電極保護膜10が形成されてい る。との電極保護膜によって、酸素を含むマグネシウム 膜ないし、マグネシウム膜と酸素を含むマグネシウム膜 の積層膜の汚染および過度の酸化が防止され、P型電極 7の特性を長期間安定したものとすることができる。

【0032】次に本発明の第一の実施の形態に係る半導 体発光素子の製造方法に付き図2を用いて詳細に説明す る。図2は、P型GaNコンタクト層6上へのP型電極 40 の形成部分のみを示したものである。

【0033】まず、P型GaNコンタクト層6上に、マ グネシウム膜(P型電極7)、二酸化珪素保護膜10を 電子ビーム蒸着法により連続して形成する。ととで、P 型電極7は5mm程度、二酸化珪素保護膜は100mm 程度に形成すれば良い(図2(A))。

【0034】引き続き、ボンディングパッドを形成すべ き部分を除いて全面にレジスト膜21を形成する(図2 (B))。次にレジスト膜21をマスクとして、露出し た保護膜10を除去し(図2(C))、全面に真空蒸着 50 ングパッドの第1層8Aをボンディングパッドの第2層

法により金よりなるボンディングパッド8、81を形成 する。この際、P型電極7上のボンディングパッド8 と、レジスト膜21上のボンディングパッド81とが分 離されるように形成する(図2(D))。

【0035】次に、レジスト膜21を除去することによ りレジスト膜21上のボンディングパッド81も除去さ れ、P型GaNコンタクト層6上に、マグネシウムによ るP型電極膜7を全面に有し、必要な部分のみに厚い金 よりなるボンディングパッド8が形成され、残りの部分 (図2(E))。

【0036】上記の方法によれば、一回のP型電極7、 保護膜IOの連続したスパッタ法による形成により、P 型GaNコンタクト層6(P型半導体結晶)表面全面に 電極膜を形成できる。また、必要な部分のみにボンディ ングパッド8を持つ半導体発光素子を得ることができ

【0037】(第二の実施の形態)次に、本発明の第二 の実施の形態に係る半導体発光素子に付き、図3を用い て詳細に説明する。

【0038】尚、図3で、図1と同一の部分には同一の 記号を付し説明を省略する。図3に示した本発明の第二 の実施の形態では、ボンディングバッド8は、厚さ3 n m程度のチタン膜(ボンディングパッドの第1層8A (第二の薄膜))と、厚さ1ミクロン程度の金膜(ボン ディングパッドの第2層8B(上部電極))の2層に形 成されている。また、電極保護膜10は、P型電極7 (マグネシウム膜)の露出部全体を覆った上、ボンディ ングパッド8の側面を覆って、一部がボンディングパッ ドの第2層8B上面に達している。この構造の半導体発 光素子では、本発明の第一の実施の形態で述べた利点に P型電極7上の金膜(ボンディングパッドの第 2層8B)の下部にチタン膜(ボンディングパッドの第 1層8A)が形成されている。このチタン膜により、マ グネシウムと金との相互拡散が防止でき、ボンディング バッドにボンディングする際のボンディング強度の低下 の防止をはかることができる。

【0039】ととで、チタンの代わりに、窒化チタン、 ニッケル、白金、パラジウム、スカンジウム、ハフニウ ム、ジルコニウムを用いてボンディングパッドの第1層 8Aを形成してもよい。

【0040】これらの金属ないし金属化合物は何れも1 400度以上の高い融点を持ち、融点1000度ないし それ以下の金とマグネシウムの相互拡散を効果的に防止 することが出来、ボンディングパッド8Bにワイヤボン ディングを行う際に、ボンディングパッド8B表面に拡 散したマグネシウムの酸化物によりボンディング強度が 低下することを防止することが出来る。尚、上記の本発 明の第二の実施の形態に係る半導体発光素子でポンディ

8Bの下部だけでなく、P型電極7の上面全面に形成し てもよい。`

【0041】とのととにより、P型電極7の保護効果を 更に高めることが出来る。また、上記のボンディングバ ッドの第1層に用いた金属薄膜の、厚さ75オングスト ロームのときの波長450 n mの光の透過率は、実験に よれば、例えば窒化チタンで72%、白金で30%、金 で50%であった。これらの値は、図6に示した光透過 率データと、金では良い一致を示している。また、白金 では、図6に波長450nmのデータは無いものの、長 10 波長側から外挿すればほぼ一致していると考えられる。 これらのデータから、上記の実験データにおける窒化チ タンの透過率(72%)と、図6に示したチタンの透過 率(約35%)は同一基準で比較可能と考えられ、との ことから、窒化チタンをボンディングパッドの第一層8 Aとして用いた場合、チタン単体を用いた場合と比較し て大幅な光透過率の改善を期待できる。このことから、 ボンディングパッドの第1層8Aとして窒化チタンを用 い、P型電極7の上面全面に形成した場合、P型電極7 を透過する光量をあまり減少させずにP型電極の保護効 20 果を得ることが出来る。

【0042】上記の本発明の第二の実施の形態に係る半 導体発光素子においても、第一の実施の形態に係る半導 体発光素子における場合と同様に、P型電極7として、 マグネシウム膜に代えて酸素を含むマグネシウム膜ない し、それらの積層膜を用いてもよい。これにより、電気 伝導性に支障を来たすことなく、P型電極7の光透過率 を更に向上させることができる。

【0043】次に本発明の第二の実施の形態に係る半導 体発光素子の製造方法に付き図4を用いて詳細に説明す 30 もよい。 る。図4は、P型GaNコンタクト層6上へのP型電極 の形成部分のみを示したものである。

【0044】まず、P型GaNコンタクト層6上表面 に、電子ビーム蒸着法によりマグネシウム膜 (P型電極 7) を5 n m程度形成する(図4(A))。引き続き、 ボンディングパッドを形成すべき部分を除いて全面にレ ジスト膜21を形成する(図4(B))。

【0045】次にレジスト膜21をマスクとして、全面 に、電子ビーム蒸着法により、チタンよりなるボンディ ングパッドの第2層8B、8B1を積層形成する。この 際、P型電極7上のボンディングパッド8A、8Bと、 レジスト膜21上のボンディングパッド8A1、8B1 とが分離されるように形成する(図4(C))。

【0046】次に、レジスト膜21を除去することによ りレジスト膜21上のボンディングパッド8A1、8B 1も共に除去され、P型GaNコンタクト層6上に、マ グネシウムによるP型電極膜7を全面に有し、必要な部 分のみに、チタンよりなるボンディングパッドの第1層

の形成された電極構造を得ることができる(図4 (D)).

【0047】更にボンディングパッドの第2層8B表面 のボンディングに用いる部分を除いて、全面に保護膜1 0を形成する(図4 (E))。上記の方法によれば、マ グネシウム膜(P型電極7)、金よりなるボンディング パッドの第2層8B、チタンよりなるボンディングパッ ドの第1層8Aをそれぞれおのおの1回の成膜で簡便に 形成できる。

【0048】ととで、チタンに替えて、窒化チタン、ニ ッケル、白金、パラジウム、スカンジウム、ハフニウ ム、ジルコニウムの何れかを用いてボンディングパッド の第1層8Aを形成してもよい。

【0049】尚、上記第一の実施の形態、または第二の 実施の形態に係る発光素子の製造方法で、最初に、ボン ディングバッドを形成する領域のみに、P型電極7、ボ ンディングパッド8、またはボンディングパッドの第1 層8A、ボンディングパッドの第2層8Bを連続して形 成し、次に、基板上全面に、再度P型電極7、保護膜1 0を形成し、その後にボンディングパッド上面のみに開 口を形成しても良い。

【0050】 このようにすることにより、マグネシウム 膜(P型電極7)の表面を一度も空気中に暴露すること なく発光素子を製造することができ、雰囲気からのマグ ネシウム膜(P型電極7)の汚染を抑えることができ

【0051】更に、P電極7として、マグネシウム膜に 替えて、酸素を含むマグネシウム膜、ないしは、マグネ シウム膜と酸素を含むマグネシウム膜の積層膜を用いて

【0052】マグネシウム膜に替えて、酸素を含むマグ ネシウム膜を形成する場合には、マグネシウムと酸化マ グネシウムの混合体をターゲットとしてスパッタ法によ って形成すればよい。

【0053】また、電子ビーム蒸着法によりマグネシウ ム膜を形成した後に酸素を1ppmないし1000pp m含む窒素ガス、アルゴンガス等の不活性ガス雰囲気 で、600° C程度で熱処理を行うことによって酸素を 含むマグネシウム膜を形成してもよい。このような処理 ングパッドの第1層8A、8A1、金よりなるボンディ 40 を行うことにより、保護膜10を透過してマグネシウム 膜7に酸素が到達し、酸化の度合いに応じて酸素を含む マグネシウム膜ないしは酸素を含むマグネシウム膜とマ グネシウム膜の積層膜を形成することが出来る。

> 【0054】(第三の実施の形態)次に本発明の第三の 実施の形態に係る半導体発光素子につき図5を用いて詳 細に説明する。

【0055】図5で、図1と同一の部分については同一 の記号を付し説明を省略する。図5に示した本発明の第 三の実施の形態に係る半導体発光素子では、P型電極7 8A、厚い金よりなるボンディングバッドの第2層8B 50 は、マグネシウム膜、酸素を含むマグネシウム膜、ない

しは、それらの積層膜のみではなく、それらの膜(P型 電極の第1層7A)と、金薄膜 (P型電極の第2層7 B) の積層膜として形成されている。

【0056】このような構造を用いることにより、マグ ネシウム等の膜 (P型電極の第1層7A) は、電極保護 膜10に加えて更に金薄膜(P型電極の第2層7B)で 保護され、過度な酸化、汚染等が無い、安定したものと なる。

【0057】また、上記の本発明の第三の実施の形態で は、P型電極7の膜厚を、マグネシウム等の膜(P型電 10 極の第1層7A)と金薄膜(P型電極の第2層7B)あ わせて5 n m以下にすることにより、上記の本発明の第 一の実施の形態と比較して更に光の透過率を向上させる ととができ、かつ、良好な電気伝導性を持つP型電極7 を得るととができる。

【0058】また、上記の本発明の第三の実施の形態 で、電極保護膜10をボンディングバッド8の側面を覆 ってボンディングバッド8の上面に達するまで形成する ことにより、P型電極7の側面からの劣化を防止するこ とができ、長期間特性の安定したP型電極を得ることが 20 できる。

【0059】また、上記の本発明の第三の実施の形態 で、P型電極の第1層7AとP型電極の第2層7Bの間 に、チタン、窒化チタン、ニッケル、白金、パラジウ ム、スカンジウム、ハフニウム、ジルコニウムの何れか からなる薄膜を形成しても良い。これによりマグネシウ ム等の膜(P型電極の第1層7A)と金薄膜(P型電極 の第2層7B)間の相互拡散を防止し、P型電極の変質 を更に防止することが出来、また、ボンディングパッド 8のボンディング不良も防止することが出来る。次に本 30 を示した図である。 発明の第三の実施の形態の変形例につき詳細に説明す

【0060】本変形例では、図5のP型電極の第2層7 Bとして、第三の実施の形態の金薄膜に替えてITO (Indium Tin Oxide)膜を用いてい る。ITO膜は、10nm程度の膜厚であれば光透過率 は殆ど100%であり、更に効果的に光透過率を向上さ せることが出来る。また、上記の理由から光透過率を落 とすことなくIT〇膜厚を厚くすることが可能であり、 図5の保護膜10を省略しても過度な汚染等はなく安定 40 したP型電極を得ることが出来る。

【0061】上記の各実施の形態にかかる半導体発光素 子ではP型電極7の膜厚5 nmの場合についてのべた が、本発明の実施はこれに限ることはなく、P型電極の 膜厚100mm程度まで本発明の効果を享受することが 出来る。

【0062】また、上記の各実施の形態にかかる半導体 発光素子では、低抵抗のP型結晶の得にくい窒化ガリウ ム系の半導体発光素子を例にとって説明したが、本発明 の適用はこれに限るものではなく、ヒ化ガリウム、燐化 50 9・・・N型電極

ガリウムなどの、マグネシウム、酸素を含むマグネシウ ムがP型の不純物として作用する各種の半導体発光素子 に適用することが可能である。

【0063】さらに、上記の各実施の形態では、薄膜と してマグネシウム膜、酸素を含むマグネシウム膜を例に とって説明したが、本発明の適用はこれに限るものでは なく、マグネシウムに替えて半導体中でP型不純物とな る亜鉛、カドミウム等を用いても本発明の効果を享受す ることが可能である。

[0064]

【発明の効果】以上述べたように、本発明を用いること により、電流広がりが大きく、また光取り出し量の大き い半導体発光素子およびその電極形成方法を得ることが できる。

【図面の簡単な説明】

【図1】本発明の第一の実施の形態に係る半導体発光素 子の断面構造を示した図である。

【図2】本発明の第一の実施の形態に係る半導体発光素 -子の電極形成工程の工程断面図である。

【図3】本発明の第二の実施の形態に係る半導体発光素 子の断面構造を示した図である。

【図4】本発明の第二の実施の形態に係る半導体発光素 子の電極形成工程の工程断面図である。

【図5】本発明の第三の実施の形態に係る半導体発光素 子の断面構造を示した図である。

【図6】厚さ7.5 nmの各種の金属薄膜の400 nm から900nmの光の透過率を示した図である。

【図7】厚さ7.5nmの酸素を含むマグネシウム膜に おける波長500nmの光の透過率の酸素含有量依存性

【図8】酸素を含むマグネシウム膜の抵抗率の酸素含有 量依存性を示した図である。

【図9】従来の窒化ガリウム系半導体発光素子の断面構 造を示したものである。

【符号の説明】

1・・・サファイア基板

2···GaNバッファ層(アモルファス層)

 $3 \cdot \cdot \cdot N$ 型 $Ga_xAl_xN(0 \le x \le l, 0 \le y \le l,$

x+y=1) クラッド層

4···N型GaxIn1-xN発光層

 $5 \cdot \cdot \cdot P$ 型 $Ga_xAl_xN(0 \le x \le l, 0 \le y \le l,$

x+y=1) クラッド層

6···P型GaNコンタクト層(P型半導体層)

7 · · · P型電極

7A・・・P型電極の第1層

7B·・・P型電極の第2層

8、81・・・ボンディングパッド

8A、8A1・・・ボンディングパッドの第1層

8B、8B1・・・ボンディングパッドの第2層

(B)

10・・・保護膜

* *21・・・レジスト膜

【図1】

1・・・サファイア基依 2・・・GaNパッファ居 (アモルファス層)

3・・・N型GaxAlyNクラッド原

4···N型GaxIn1-xN兒光后

5・・・P型GaxAlyNクラッド回 6・・・P型GaNコンタクト屋 7・・・P型電板 8・・・ポンディングパッド 9・・・N型電板

10・・・保護院

[図3]

1・・・サファイア基板 2・・・GaNパッファ目(アモルファス層)

3・・・N型GaxAlyNクラッド層

4···N型GaxIn1-xN完光罩

5・・・P型GaxAlyNクラッド記 6・・・P型GaNコンタケト層

7・・・P型電極 8・・・ポンディングバッド 8A・・・ポンディングバッドの第1層

8B・・・ポンディングパッドの第2層 9・・・N型電振 10・・・保護膜

【図2】

14

【図5】

1・・・サファイア基板 2・・・GaNパッファ暦 (アモルファス層)

3・・・N型GaxAlyNクラッド局

4···N型GaxIn1-xN発光層

5・・・P型GaxAlyNクラッド層 6・・・P型GaNコンタクト層

7・・・P塑電框

7A・・・P型電板の第1層 7B・・・P型電板の第2層 8・・・ポンディングパッド 9・・・N型電板 10・・・保護県

【図6】

[図9]

1・・・サファイア基板 2・・・GaNパッファ層(アモルファス層)

3・・・N型GaxAIyNクラッド図 4・・・N型GaxIn1-xN発光器 5・・・P型GaxAlyNクラッド層 6・・・P型GaNコンタクト層 8・・・ポンディングパッド 9・・・N型電転

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.