Vector: A C++ Class for 3D Vector Algebra Reference Sheet

Operation	Mathematical Notation	Computer Code
Definition	Let v be an unspecified vector.	Vector v;
	Let \mathbf{a} be the cartesian vector $(1, 2, 3)$.	Vector a(1., 2., 3.); or
		Vector a(1., 2., 3., CART);
	Let b be the polar vector (r, θ, ϕ) . ^a	Vector b(r, th, ph, POLAR);
Input vector a	n/a	cin >> a;
Output vector a	n/a	cout << a;
Cartesian representation	Let $\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.	Vector a(x, y, z); or Vector a(x, y, z, CART);
Polar representation	$\mathbf{a} = (r, \theta, \phi)^{\mathbf{a}}$	Vector a(r, th, ph, POLAR);
Assign one vector to another	Let $\mathbf{b} = \mathbf{a} \ or$	b = a; or
	b	b(a);
Components of vector a	a_x, a_y, a_z	a.x(), a.y(), a.z() or
		x(a), y(a), z(a) or
		a[X], a[Y], a[Z]
	r, θ, ϕ	a.r(), a.theta(), a.phi() or
Vector addition	c = a + b	r(a), theta(a), phi(a) c = a + b;
	$b \Leftarrow b + a$	
Addition assignment Vector subtraction		b += a;
	$c = a - b$ $b \Leftarrow b - a$	c = a - b;
Subtraction assignment		b -= a;
Multiplication by a scalar s	$\mathbf{b} = s \mathbf{a} \ or$ $\mathbf{b} = \mathbf{a} \ s$	b = s * a; or b = a * s;
Multiplication assignment	$\mathbf{a} \leftarrow s \mathbf{a} \ or$	a *= s;
wuntpheation assignment	$\mathbf{a} \leftarrow \mathbf{s} \mathbf{a} \mathbf{o} $ $\mathbf{a} \leftarrow \mathbf{a} \mathbf{s}$	a "- 5/
Dot (scalar) product	$c = \mathbf{a} \cdot \mathbf{b}$	c = a * b;
Cross (vector) product	$\mathbf{c} = \mathbf{a} \times \mathbf{b}$	c = a ^ b;
Negative of a vector	-a	-a;
Magnitude of a vector	a	a.r(); or a.mag(); or
ivinginitude of a vector		mag(a); or scalar(a);
Angle between two vectors	$\theta = \cos^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }\right)$	angle(a,b);
Unit vector	V	<pre>Vector u = v.unit(); or</pre>
	$\mathbf{u} = \frac{\mathbf{v}}{ \mathbf{v} }$	Vector u = unit(v); or
		Vector u = v.normalize(); or
		Vector u = normalize(v);
Perpendicular vector	$(r, \theta - \pi/2, \phi)$	a.perp(); or
		perp(a);
Projection of a along b	$\left(\mathbf{a} \cdot \frac{\mathbf{b}}{ \mathbf{b} }\right) \frac{\mathbf{b}}{ \mathbf{b} }$	proj(a, b); or a.proj(b);
Rotate vector a about the	$\mathbf{a} + \mathbf{b} \times \mathbf{a} \sin \alpha + \mathbf{b} \times (\mathbf{b} \times \mathbf{a})(1 - \cos \alpha)$	a.rotate(b, alpha); or
axial vector b through the		a.rot(b, alpha);
angle α		
Check for equality	Is it true that $\mathbf{a} = \mathbf{b}$?	a == b;
Check for inequality	Is it true that $\mathbf{a} \neq \mathbf{b}$?	a != b;

a θ is the polar angle measured from the z-axis and ϕ is the azimuthal angle measured from the x-axis to the plane that contains the vector and the z-axis. The angles θ and ϕ are in radians; use rad(deg) to convert degrees to radians and deg(rad) to convert radians to degrees.