5.2. núcleo e imagem de uma aplicação linear

página 1/4

departamento de matemática

universidade de aveiro

- 1. Seja φ um endomorfismo de \mathbb{R}^2 definido por $\varphi(x,y)=(2x-y,-8x+4y)$, para todo $(x,y)\in\mathbb{R}^2$.
 - (a) Dados os vectores $u=(5,10),\,v=(3,2)$ e w=(1,1), indique quais pertencem ao núcleo de φ .
 - (b) Dados os vectores $a=(1,-4),\ b=(5,0)$ e c=(-3,12), indique quais pertencem à imagem de φ .
- 2. Seja $\psi: P_2[x] \longrightarrow P_3[x]$ uma aplicação linear definida por $\psi(ax^2 + bx + c) = ax^3 + bx^2 + cx, \quad \text{para todo } ax^2 + bx + c \in P_2[x].$
 - (a) Dados os polinómios $p_1(x) = x^2$, $p_2(x) = 0$ e $p_3(x) = 1 + x$, indique quais pertencem ao núcleo de ψ .
 - (b) Dados os polinómios $q_1(x) = x^2 + 3x$, $q_2(x) = x + 2$ e $q_3(x) = 4x^2 x^3 + 7x$, indique quais pertencem à imagem de ψ .
- 3. Seja $\phi: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ uma aplicação linear tal que, para todo $(x,y,z,w) \in \mathbb{R}^4$, $\phi(x,y,z,w) = (4x+y-2z-3w,2x+y+z-w,6x-9z+9w)$

Indique um vector que pertença ao Nuc ϕ e um vector que pertença a Im ϕ .

- 4. Para cada uma das seguintes aplicações lineares, determine uma base do núcleo, $\mathcal{B}_{\text{Nuc}\,\varphi}$, e uma base da imagem, $\mathcal{B}_{\text{Im}\,\varphi}$, bem como a nulidade e a característica:
 - (a) $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $\varphi(x,y) = (3x y, -3x + y), \forall (x,y) \in \mathbb{R}^2$;
 - (b) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x,y) = (x+y,x,2y), \, \forall (x,y) \in \mathbb{R}^2;$
 - (c) $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z) = (0, 0, 2y), \forall (x, y, z) \in \mathbb{R}^3$;
 - (d) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z) = (x + y, 0, y z), \forall (x, y, z) \in \mathbb{R}^3$;
 - (e) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z) = (x + 2z, y z, x + y), \forall (x, y, z) \in \mathbb{R}^3$;
 - (f) $\varphi: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ tal que $\varphi(x, y, z, w) = (4x + y + 5z + 2w, x + 2y + 3z), <math>\forall (x, y, z, w) \in \mathbb{R}^4$;
 - (g) $\varphi: P_2[x] \longrightarrow \mathbb{R}$ tal que $\varphi(ax^2 + bx + c) = c + b a$, $\forall ax^2 + bx + c \in P_2[x]$;
 - (h) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(-1,1) = (3,2,1), \, \varphi(0,1) = (1,1,0);$
 - (i) $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$\varphi(1,0,0) = (1,0), \quad \varphi(0,1,0) = (-1,0) \quad e \quad \varphi(0,0,1) = (0,0);$$

(j) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que $\varphi(1,0,0) = (2,3), \quad \varphi(0,1,0) = (-1,4) \quad \text{e} \quad \varphi(0,0,1) = (-5,2).$

página 2/4

5. Considere a base $\mathcal{B} = ((1,0,0),(0,1,1),(0,0,1))$ de \mathbb{R}^3 . Seja $\varphi : \mathbb{R}^3 \longrightarrow P_3[x]$ uma aplicação linear tal que:

$$\varphi(1,0,0) = x^3 + 2x$$
, $\varphi(0,1,1) = x^2 - 2x$, e $\varphi(0,0,1) = x^3 + x^2$.

Determine:

- (a) uma base de \mathbb{R}^3 que inclua uma base de Nuc φ , se possível.
- (b) $\operatorname{Im} \varphi$ e uma sua base.
- (c) $\varphi^{-1}(\{x^3+2x\})$, expresso em função de Nuc φ .
- 6. Considere a aplicação $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ definida por:

$$\varphi(1,0,0) = (1,0,2,0), \quad \varphi(0,1,1) = (0,1,-2,0), \quad e \quad \varphi(0,0,1) = (1,1,0,0).$$

Determine:

- (a) $\varphi(a, b, c)$, para todo $(a, b, c) \in \mathbb{R}^3$;
- (b) Nuc φ e a nulidade de φ ;
- (c) Im φ e a característica de φ ;
- (d) $\varphi^{-1}(\{(2,2,0,0)\});$
- (e) um subespaço complementar de Nuc φ .
- 7. Seja φ uma aplicação de \mathbb{R}^3 para \mathbb{R}^2 definida por

$$\varphi(x, y, z) = (x + k_1 - 2k_2, 2x + y),$$
 para todo $(x, y, z) \in \mathbb{R}^3$

onde k_1 e k_2 são dois parâmetros reais.

- (a) Diga, justificando, qual a relação entre k_1 e k_2 para que φ seja uma aplicação linear.
- (b) Considere $k_1 = 2$ e $k_2 = 1$. Determine um subespaço complementar de Nuc φ .
- 8. Sejam E e E' espaços vectoriais reais tais que $\mathcal{B}_E = (e_1, e_2, e_3)$ e $\mathcal{B}_{E'} = (e'_1, e'_2)$ são bases ordenadas de E e E', respectivamente. Seja φ uma aplicação de E para E' definida por:

$$\varphi(xe_1 + ye_2 + ze_3) = (x+k)e_1' + (y+z)e_2', \ \forall x, y, z \in \mathbb{R}$$

onde k é um parâmetro real.

- (a) Para que valores de k, φ uma aplicação linear?
- (b) Para os valores de k determinados na alínea anterior, determine uma base do núcleo de φ e indique a sua nulidade.

5.2. núcleo e imagem de uma aplicação linear

página 3/4

- 9. Seja E um espaço vectorial sobre $\mathbb K$ e sejam φ e ψ endomorfismos de E. Mostre que:
 - (a) $\operatorname{Nuc}(\varphi \circ \psi) \supseteq \operatorname{Nuc} \psi$;
 - (b) $\operatorname{Im}(\varphi \circ \psi) \supseteq \operatorname{Im} \varphi$;
 - (c) $\operatorname{Nuc}(\varphi) \cap \operatorname{Nuc}(\psi) \subseteq \operatorname{Nuc}(\varphi + \psi)$.

- 1. (a) u; (b) $a \in c$.
- 2. (a) $p_2(x)$; (b) $q_1(x) \in q_3(x)$.
- 3. $(0,0,0,0) \in \text{Nuc } \phi \in (-3,-1,9) \in \text{Im } \phi$.
- 4. (a) $\mathcal{B}_{Nuc_{\varphi}} = ((1,3)), n_{\varphi} = 1, \mathcal{B}_{Im_{\varphi}} = ((-1,1)) e c_{\varphi} = 1;$
 - (b) $\mathcal{B}_{Nuc_{\varphi}} = \emptyset$, $n_{\varphi} = 0$, $\mathcal{B}_{Im_{\varphi}} = ((1,0,2),(0,1,-2))$ e $c_{\varphi} = 2$;
 - (c) $\mathcal{B}_{\text{Nuc}_{\varphi}} = ((1,0,0),(0,0,1)), n_{\varphi} = 2, \mathcal{B}_{\text{Im}_{\varphi}} = ((0,0,1)) \text{ e } c_{\varphi} = 1;$
 - (d) $\mathcal{B}_{\text{Nuc}_{\varphi}} = ((-1, 1, 1)), n_{\varphi} = 1, \mathcal{B}_{\text{Im}_{\varphi}} = ((1, 0, 0), (0, 0, 1)) \text{ e } c_{\varphi} = 2;$
 - (e) $\mathcal{B}_{Nuc_{\varphi}} = \emptyset$, $n_{\varphi} = 0$, $\mathcal{B}_{Im_{\varphi}} = ((1,0,0),(0,0,1),(0,0,1))$ e $c_{\varphi} = 3$;
 - (f) $\mathcal{B}_{\text{Nuc}_{\varphi}} = ((-4, 2, 0, -7), (-6, 0, 2, -7)), n_{\varphi} = 2, \mathcal{B}_{\text{Im}_{\varphi}} = ((1, 0), (0, 1)) \text{ e } c_{\varphi} = 2;$
 - (g) $\mathcal{B}_{Nuc_{\varphi}} = (x^2 + 1, x^2 + x), n_{\varphi} = 2, \mathcal{B}_{Im_{\varphi}} = (1) \text{ e } c_{\varphi} = 1;$
 - (h) $\mathcal{B}_{Nuc_{\varphi}} = \emptyset$, $n_{\varphi} = 0$, $\mathcal{B}_{Im_{\varphi}} = ((1,0,1),(0,1,-1))$ e $c_{\varphi} = 2$;
 - (i) $\mathcal{B}_{Nuc_{\varphi}} = ((1,1,0),(0,0,1)), n_{\varphi} = 2, \mathcal{B}_{Im_{\varphi}} = ((1,0)) e c_{\varphi} = 1;$
 - (j) $\mathcal{B}_{\text{Nuc}_{\varphi}} = ((18, -19, 11)), n_{\varphi} = 1, \mathcal{B}_{\text{Im}_{\varphi}} = ((2, 3), (-1, 4)) \text{ e } c_{\varphi} = 2.$
- 5. (a) $\mathcal{B} = ((1,1,0),(1,0,1),(0,0,1));$
 - (b) $\operatorname{Im} \varphi = \{ax^3 + bx^2 + cx + d \in P_3[x] : d = 0 \land c 2a + 2b = 0\}$ e
 - $\mathcal{B}_{\operatorname{Im}\varphi} = (x^3 + 2x, x^2 2x);$
 - (c) $(1,0,0) + \text{Nuc } \varphi$.
- 6. (a) $\varphi(a, b, c) = (a + c b, c, 2a 2b, 0)$, para todo $(a, b, c) \in \mathbb{R}^3$;
 - (b) Nuc $\varphi = \{(a, a, 0) : a \in \mathbb{R}\} \text{ e } n_{\varphi} = 1;$
 - (c) Im $\varphi = \{(x, y, z, w) \in \mathbb{R}^4 : z 2x + 2y = w = 0\} \text{ e } c_{\varphi} = 2;$
 - (d) $\{(a, a, 2) : a \in \mathbb{R}\};$ (e) $\{(x, 0, y) : x, y \in \mathbb{R}\}.$
- 7. (a) $k_1 = 2k_2$; (b) \mathbb{R}^2 .
- 8. (a) k = 0; (b) $\mathcal{B}_{\text{Nuc }\varphi} = \{e_3 e_2\} \text{ e } n_{\varphi} = 1$.