Introduction to Scientific Computing

ENGR1050 – Lecture 6
Fall 2025
Nat Trask
Guest Lecture by Ben Shaffer
University of Pennsylvania

Introduction to Microcontrollers

Hello world on the Raspberry Pi Pico

Real Python Programs

Installing Thonny

Note

Depending on your background, it may range from trivial to painful to install Thonny. Today is a nice slow day to get Thonny set up on everyone's computer.

In-class exercise

Submit a picture showing you installed Thonny and can run a python script outside colab

Introduction to Microcontrollers

To drive a circuit, we can't use Colab – it lives in the cloud and can't touch a circuit in real life!

Today we will install Thonny, which is a tool to run Python on your laptop that we can use to drive circuits and make robots

Today you only have one job: get Thonny installed and working on your computer

Real Python Programs

First we will see a demo running a python program using Thonny

Then we'll see a demo of how easy it is to use python to drive a microcontroller

(don't worry – you won't need to do this yourself for another week or two)

Finally, we will install Thonny on all of your computers. For directions go to the course github and check the notes for todays lecture

Three places so far for you to run code – understand what they mean

Runs in the cloud

You connect through the internet to see program output, but its running on some GPU in Google's basement Run on your laptop

Today we'll use Thonny to run
directly on your laptop

Run on a microcontroller

We'll show how to run a program on this little black chip

This is good for steering robots, drones, and other little mechatronic systems

What is a microcontroller?

What is a circuit?

Voltage = Current × **Resistance** (V = I × R)

Water

Electricity

Circuit Diagram

How does electricity drive a circuit element? A hydraulic analogy

Change in potential energy drives a current

Potential energy: Voltage difference

between two points on circuit

Current: flow of electrons through wire

Potential energy: Difference in elevation

storing gravitational energy

Current: flow of water through pipe

We will write a program that sets a voltage at one "pin" to switch lights off/on


```
# Send voltage to blink an LED
from machine import Pin
import time

# Set which pin to send voltage to
led = Pin('GP0', Pin.OUT)

while True:
led.toggle()  # set voltage off/on
time.sleep(0.5)  # wait a half second
```

This is your Raspberry Pi Pico – a microcontroller with some basic functionality

- management, with built in:
- Power/ground lines
- **Buttons**
- **LEDs**
- Speakers
- Compact breadboard

This is a mounting board that your Pico is attached to, with lights and convenient pins for connecting wires

This is a breadboard – it lets you build circuits without needing to solder wires

This is the actual Pico – we can use python to feed juice to pins

LED – built in LED on the pico can be lit without wiring for diagnostics

GPX – general purpose input output (GPIO), which the microcontroller can set to high or low voltage in output mode. Rated for 3.3V and 20mA.

3V3 – A power source pin, which always outputs 3.3V and can draw up to 1A.

Ground – Where to close the circuit

1.ADC pins – Only some pins can convert analog to digital. **Raspberry Pi Pico (RP2040)**:

1. ADC0: GPIO26

2. ADC1: GPIO27

3. ADC2: GPIO28

