What is Expected Value actually?

$$E(\mathbf{something}) = \frac{\sum \mathbf{something}}{n}$$

something is the variable or a random variable which contains observations / values / numbers.

n is the number of observations in variable **something**

e.g.

$$E(X_i) = \frac{\sum_{i=1}^n X_i}{n}$$

$$E(X_i^2) = \frac{\sum_{i=1}^n X_i^2}{n}$$

$$E(BMW_i) = \frac{\sum_{i=1}^{n} BMW_i}{n}$$

And so on.

So, it is clear that Expected Value is nothing but the Average / Arithmetic Mean.

For group data let's recap the arithmetic mean for group data.

In group data, we have either a data set in a variable called X_i along with its corresponding frequencies or classes in which we obtain mid – points by taking arithmetic mean of lower-class limit and upper-class limit.

Discrete Grouped Data

Persons having Number of Children (X_i)	No. of Persons (Frequency) (f_i)	Relative Frequency $\left(\frac{f_i}{\sum_{i=1}^n f_i}\right)$	(X _i) x (Relative Frequency)
1	6	6 83	$1 \times \frac{6}{83} = \frac{6}{83}$
2	10	10 83	$2 \times \frac{10}{83} = \frac{20}{83}$
3	22	22 83	$3 \times \frac{22}{83} = \frac{66}{83}$
4	18	18 83	$4 \times \frac{18}{83} = \frac{72}{83}$
5	15	15 83	$5 \times \frac{15}{83} = \frac{75}{83}$
6	9	9 83	$6 \times \frac{9}{83} = \frac{54}{83}$
7	3	3 83	$7 \times \frac{3}{83} = \frac{21}{83}$
Total / Sum	83	1	$\frac{314}{83}$

$$\bar{X} = \sum_{i=1}^{n} X_i (i - \text{th Relative Frequency}) = E(X_i) = \frac{314}{83}$$

Traditional Method for finding Arithmetic Mean of Grouped Data

Persons having Number of Children (X_i)	No. of Persons (Frequency) (f_i)	(X_i) x (Frequency) $f_i X_i$
1	6	$1 \times 6 = 6$
2	10	$2 \times 10 = 20$
3	22	$3 \times 22 = 66$
4	18	$4 \times 18 = 72$
5	15	$5 \times 15 = 75$
6	9	$6 \times 9 = 54$
7	3	$7 \times 3 = 21$
Total / Sum	83	314

$$\bar{X} = \frac{\sum_{i=1}^{n} f_i X_i}{\sum_{i=1}^{n} f_i} = \frac{314}{83}$$

Mathematically

$$\begin{split} \bar{X} &= \frac{\sum_{i=1}^{n} f_{i} X_{i}}{\sum_{i=1}^{n} f_{i}} \\ &= \frac{f_{1} X_{1} + f_{2} X_{2} + f_{3} X_{3} + \dots + f_{n} X_{n}}{\sum_{i=1}^{n} f_{i}} \\ &= \frac{f_{1} X_{1}}{\sum_{i=1}^{n} f_{i}} + \frac{f_{2} X_{2}}{\sum_{i=1}^{n} f_{i}} + \frac{f_{3} X_{3}}{\sum_{i=1}^{n} f_{i}} + \dots + \frac{f_{n} X_{n}}{\sum_{i=1}^{n} f_{i}} \\ &= X_{1} \left(\frac{f_{1}}{\sum_{i=1}^{n} f_{i}} \right) + X_{2} \left(\frac{f_{2}}{\sum_{i=1}^{n} f_{i}} \right) + X_{3} \left(\frac{f_{3}}{\sum_{i=1}^{n} f_{i}} \right) + \dots + X_{n} \left(\frac{f_{n}}{\sum_{i=1}^{n} f_{i}} \right) \end{split}$$

= X_1 (First Relative Frequency) + X_2 (Second Relative Frequency)

+ X_3 (Third Relative Frequency) + \cdots + X_n (n – th Relative Frequency)

$$\bar{X} = \sum_{i=1}^{n} X_i (i - \text{th Relative Frequency}) = E(X_i)$$

In sampling distribution, the word Relative Frequency replaced as p.d.f. or p.m.f. i.e., P(x) or f(x) etc.

The sampling distribution of \overline{x}

\overline{x}	f_i	P(\overline{x}) (Equivalent to Relative Frequency)	$\overline{x}P(\overline{x})$
2	2	2 14	$2 \times \frac{2}{14} = \frac{4}{14}$
2.5	3	3 14	$2.5 \times \frac{3}{14} = \frac{7.5}{14}$
3	4	$\frac{4}{14}$	$3 \times \frac{4}{14} = \frac{12}{14}$
3.5	3	$\frac{3}{14}$	$3.5 \times \frac{3}{14} = \frac{10.5}{14}$
4	2	2 14	$4 \times \frac{2}{14} = \frac{8}{14}$
Total / Summation	14	1	$\frac{42}{14}$

$$E(\bar{x}) = \sum_{i=1}^{n} \bar{x}_i P(\bar{x}_i) = \frac{42}{14} = \overline{(\bar{x})}$$

Let's see the same question with traditional method

\overline{x}_i	f_i	$f_i \overline{x}_i$
2	2	$2 \times 2 = 4$
2.5	3	$2.5 \times 3 = 7.5$
3	4	$3 \times 4 = 12$
3.5	3	$3.5 \times 3 = 10.5$
4	2	$4 \times 2 = 8$
Total / Summation	14	42

$$\overline{(\bar{x})} = \frac{\sum_{i=1}^{n} f_i \bar{x}_i}{\sum_{i=1}^{n} f_i} = \frac{42}{14} = E(\bar{x}_i)$$