Lecture -5 Combination Circuits-1

Prepared By: Asif Mahfuz

Adder

- Adders are important in computers and in other digital systems.
- To design an adder we first need to understand the basic adder operation.
- Thus we first need to know the rules of binary addition.
- The rules of binary addition are as follows:
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 10
- There are two types of adders namely, Half-adder and a Full-adder.

Block diagram of a Half-Adder

Block diagram of a Full-Adder

Half-Adder

- A half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs- a sum bit and a carry bit.
- So a half-adder has two inputs and two outputs.
- Now to design a digital system we need to know its outputs for all the input combinations.
- The truth-table for the half adder can constructed following the binary addition rule.
- The Boolean expression of the sum bit can be found as:

$$S = \overline{A}B + A\overline{B} = A \oplus B$$

• The Boolean expression of carry bit can be found as:

$$C_{IN} = AB$$

• So now a logical circuit can be drawn for a half-adder.

A	В	C_{out}	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full-Adder

- A full-adder accepts two input bits and an input carry and generates a sum output and a carry output.
- So a full adder has three inputs and two outputs.
- The truth table can be constructed the same way as we constructed for a half-adder.

Α	В	CIN	C_{out}	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-Adder

After constructing the truth, now we can find the Boolean expressions

$$S = \overline{A}\overline{B}C_{IN} + \overline{A}B\overline{C_{IN}} + A\overline{B}\overline{C_{IN}} + AB\overline{C_{IN}}$$
$$S = A \oplus B \oplus C$$

$$\begin{aligned} C_{OUT} &= \overline{A}BC_{IN} + A\overline{B}C_{IN} + AB\overline{C_{IN}} + ABC_{IN} \\ C_{OUT} &= AB + (A \oplus B)C_{IN} \end{aligned}$$

Parallel Adder

THE PARTICULAR OF THE PARTICUL

- Till now we have learned how add two numbers of 1 bit.
- So how do we add two number of two bits.
- The principle is same as we add two decimal numbers of two digits.
- We sum the first digits and below the first digits we write the sum and the generated carry is summed with the next digits.

Carry	1	
Number 1	2	9
Number 2	3	5
Sum	6	4

Parallel Adder

• A 4-bit Parallel adder to add two 4bit numbers can be designed using the same principle.

Adder Expansion

- We have learned how to add two 4-bit binary numbers.
- A 4-bit is called a nibble.
- So how do we add two numbers of 8-bits or even higher.
- That is when we use the concept of adder expansion.
- The following is the logic symbol used to represent a 4-bit parallel adder.

Adder Expansion

• We can cascade two blocks of 4-bit parallel adder to add two numbers of 8-bits.

		1	1	1				
	1	0	1	1	1	0	0	1
	1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	1	1
С	S ₈	S ₇	- 0	S ₅	S ₄	S_3	S_2	S_1

Example of Adder Expansion

Subtractor

- A subtractor is a combinational circuit that take two numbers as input and produces their difference.
- It also has an output to specify if a 1 has been borrowed.
- The minuend is designated by \mathbf{x} and the subtrahend is designated by \mathbf{y} .
- Like adders, subtractors are also of two types namely, Half-subtractor and Full-subtractor.
- The rules of binary subtraction are:

X	Y	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Half-Subtractor

- A half-subtractor take two binary bits as input and outputs the difference and borrow.
- The truth table for a half-subtractor is as follows:

X	Y	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

$$\mathbf{D} = \overline{\mathbf{X}}\mathbf{Y} + \mathbf{X}\overline{\mathbf{Y}} = \mathbf{X} \oplus \mathbf{Y}$$
$$\mathbf{B} = \overline{\mathbf{X}}\mathbf{Y}$$

Full-Subtractor

- A full-subtractor take the binary bits as input and outputs the difference and borrow.
- The truth table for a full-subtractor is as follows:

X	Y	BIN	В	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\mathbf{D} = \mathbf{X} \oplus \mathbf{Y} \oplus \mathbf{B}_{IN}$$
$$\mathbf{B} = \overline{\mathbf{X}}\mathbf{Y} + \overline{(\mathbf{X} \oplus \mathbf{Y})}\mathbf{B}_{IN}$$

Digital Magnitude Comparator

THE STORY OF THE S

- A comparator is a combinational circuit which can be used to compare between two number.
- A magnitude comparator has three possible outputs; A is greater than B, A is equal to B and A is less than B.
- The truth-table for a 1-bit comparator can be constructed as:

Α		A>B
	1-bit	A=B
B	Comparator	A <b< td=""></b<>

Α	В	A>B	A=B	A <b< th=""></b<>
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

The Boolean expression for the outputs:

$$F_{A=B} = \overline{A}\overline{B} + AB$$

$$F_{A

$$F_{A>B} = A\overline{B}$$$$

Digital Magnitude Comparator

The Boolean expression for the outputs:

$$F_{A=B} = \overline{A}\overline{B} + AB = \overline{A} \oplus \overline{B}$$

$$F_{A

$$F_{A>B} = A\overline{B}$$$$

Digital Magnitude Comparator

- Two 1-bit comparators can be logically connected to make a 2-bit number comparator.
- The logic behind the connections are:
 - Let $X_0 = (A_0 == B_0)$ and $X_1 = (A_1 == B_1)$
 - For $\mathbf{A} = \mathbf{B}$, the Boolean expression is X_1X_0
 - For A > B, the Boolean expression is $A_1\overline{B_1} + X_1(A_0\overline{B_0})$
 - For A < B, the Boolean expression is $\overline{A_1}B_1 + X_1(\overline{A_0}B_0)$

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You