

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и Системы Управления
КАФЕДРА Программное обеспечение ЭВМ и информационные технологии
ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1
«ОБРАБОТКА БОЛЬШИХ ЧИСЕЛ»
СтудентЧыонг Ван Хао
фамилия, имя, отчество
ГруппаИУ7И-31Б

Цель работы: реализация арифметических операций над числами, выходящими за разрядную сетку персонального компьютера, выбор необходимых типов данных для хранения и обработки указанных чисел.

Описание условия задачи

Смоделировать операцию деления действительного числа на действительное исло в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 начащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Если при делении чисел длина мантиссы стала больше 30 знаков, то необходимо произвести округление по следующему правилу: если 31-ая цифра больше или равна 5-ти, то число округляется по законам математики, иначе все последующие знаки отбрасываются.

Техническое задание

Входные данные

Действительное число: строка, которая может состоять только из символов '+'/'-', '.', 'E' и цифр, в формате '±m[.n][E±k]', где m — целая часть числа, n — дробная часть числа, (m+n) — мантисса числа, k — порядок числа. Ввод знака перед числом обязателен. Длина мантиссы числа (m+n) меньше, либо равна 30 и больше 0. Длина порядка k меньше, либо равна 5 и больше 0. Если число вводится с дробной частью n, то ввод точки после целой части m, ввод символа 'E', ввод знака порядка обязательны.

Выходные данные

Действительное число: строка, которая может состоять только из символов '+'/'-', '.','Е' и цифр, в нормализованном формате '+-0.mE+/-k', где m — мантисса числа, k — порядок числа. Длина мантиссы числа m меньше, либо равна 30. Длина порядка числа k меньше, либо равна 5.

Функция программы

Программа делит действительное число на действительное.

Обращение к программе

Программа запускается из терминала командой «./app.exe» в директории с программой.

Возможные аварийные ситуации и ошибки пользователя

1. Некорректный ввод: строка с действительным числом не содержит знака числа или первый символ не является знаком.

На выходе сообщение: «Первым символом действительного числа должен быть знак числа.»

2. Некорректный ввод: строка с действительным числом содержит не цифру в мантиссе.

На выходе сообщение: «Мантисса действительного числа должна состоять только из цифр.»

3. Некорректный ввод: строка с действительным числом содержит пробелы.

На выходе сообщение: «Не должно быть пробелов между символами.»

4. Неверная длина мантиссы действительного числа.

На выходе: корректное число, длина мантиссы которого превышает

30 цифр. На выходе сообщение: «Длина мантиссы действительного числа должна быть меньше, либо равна 30 и больше 0.»

На выходе: нет числа. На выходе сообщение: «Необходимо ввести действительное число.»

5. Некорректный ввод: строка с действительным числом не содержит знака порядка или он не является знаком.

На выходе сообщение: «Перед порядком действительного числа должен быть знак порядка.»

6. Некорректный ввод: строка с действительным числом содержит не цифру в порядке.

На выходе сообщение: «Порядок действительного числа должен состоять только из цифр.»

7. Неверная длина порядка действительного числа.

На выходе: корректное число, длина порядка которого превышает 5 цифр.

На выходе сообщение: «Длина порядка действительного числа должна быть меньше, либо равна 5 и больше 0.»

8. Переполнение порядка.

На входе: в процессе деления степень полученного в результате числа превышает 99999.

На выходе сообщение: «Переполнение порядка.»

9. Действительное число равно нулю.

На выходе сообщение: «Нельзя делить на 0.»

Внутренняя структура данных

Ввод: Для ввода вещественного числа используется символ symbol и массив $order[MAX_LEN_ORDER + 2]$.

При помощи symbol и order поля структуры number сразу заполняются.

```
typedef struct
{
  char number_sign;
  char mantissa[MAX_LEN_MANTISSA + 2];
  int point_index;
  char order_sign;
  int order;
} number;
```

Поля структуры:

- $number_sign$ знак числа. Принимает значения "+" или "-";
- $mantissa[MAX_LEN_MANTISSA + 2]$ значение мантиссы числа,

 $MAX_LEN_MANTISSA = 30$, два дополнительных символа для знака и «0»;

- point_index индекс точки в числе;
- *order_sign* знак числа. Принимает значения "+" или "-";
- *int order* значение порядка числа.

В результате создаются переменный структурного типа real_number.

Деление: алгоритм деления позволяет записать окончательный результат в переменную *number result_number*.

Вывод: для вывода используется созданная на этапе деления переменная структурного типа number result number.

Алгоритм

1. Программа считывает две строки символов и записывает полученные числа в переменные структурного типа number, одновременно проверяя на валидность.

```
int input number(number *real number);
```

2. Корректные числа преобразуются в нормализованный вид: удаляются ненужные нули, изменяется порядок числа в связи со сдвигом точки в начало числа

```
void normalize_number(number *one_number);
void add_zeros(number *one_number);
```

3. Выполняется деление первого числа на второе методом "деления в столбик", при этом контролируется округление, переполнение порядка числа и деление на ноль.

```
int compare_numbers(number *first_number, number *second_number);
int compare_zero(number *one_number);
void change_zero(number *one_number);
int subtraction(number *first_number, number *second_number);
```

int divide_numbers(number *first_number, number *second_number, number
*result_number);

4. Корректный результат выводится на экран в нормализованном виде в соответствии со спецификацией, указанной в ТЗ.

void output_number(number real_number);

Функции программы

void print_conditions(void);

Описание: функция выводит назначение программы и условия ввода чисел.

Входные значения: -

Выходные значения: сообщения с информацией о назначении программы и правилах ввода чисел.

int input_number(number *real_number);

Описание: функция считывает действительное число и записывает его в структуру *number real_number*.

Входные значения: переменная структурного типа *number real_number* для записи в нее числа.

Выходные значения: переменная структурного типа *number real_number* с записанным в нее числом, код ошибки.

void normalize_number(number *one_number);

Описание: функция нормализует мантиссу числа, записанную в *number one_number*, изменяя порядок числа.

Входные значения: переменная структурного типа *number one_number* с числом для нормализации.

Выходные значения: переменная структурного типа *number one_numbe* с нормализованным числом.

void add_zeros(number *one_number);

Описание: функция добавляет нуля в структуру *number*.

Входные значения: переменная структурного типа *number*.

Выходные значения: переменная структурного типа *number* с добавленными нулями.

int compare_numbers(number *first_number, number *second_number);

Описание: функция сравнивает целое действительное *number first_number* и действительное число *number second_number*.

Входные значения: переменные структурного типа *number first_number*, *number second_number*.

Выходные значения: код результата (1 — больше или равно, 0 — меньше). *int compare_zero(number *one_number)*;

Описание: функция сравнивает число и 0.

Входные значения: переменная структурного типа *number*.

Выходные значения: код результата (1 — равны, 0 — различны).

void change_zero(number *one_number);

Описание: функция меняет позицию нуля.

Входные значения: переменная структурного типа *number*.

Выходные значения: переменная структурного типа *number* с измененной позицией нуля.

int subtraction(number *first_number, number *second_number);

Описание: функция вычитает из действительное числа *number first_number* действительное *number second_number* и записывает результат в структуру действительное *number first_number*.

Входные значения: переменные структурного типа *number first_number*, *number second_number*.

Выходные значения: переменная структурного типа *number first_number* с результатом вычитания, код ошибки.

int divide_numbers(number *int_number, number *real_number, number *result_number);

Описание: делит действительное число *number first_number* на действительное *number second_number* и сохраняет результат в number result_number.

Входные значения: переменные структурного типа *number first_number*, *number second_number*.

Выходные значения: переменная структурного типа *number result_number* с результатом деления, код ошибки.

void output_number(number real_number);

Описание: функция печатает число из структуры *number real_number*. Входные значения: переменная структурного типа *number real_number*. Выходные значения: сообщение с результатом деления в нормализованном виде.

Тесты

No	Случай	Первое число	Второе число	Вывод
1	Отсутствие знака	12334564.1	-	Первым символом действительного числа должен быть знак числа.

2	В мантиссе числа недопустимые символы	+12.3	+1a	Мантисса действительного числа должна состоять только из цифр.
3	В мантиссе числа введены пробелы	+12 3	-	Не должно быть пробелов между символами.
4	Не введен знак порядка	+12.3	+12E5	Перед порядком действительного числа должен быть знак порядка.
5	В порядке действительного числа недопустимые символы	+12.3	+78E-a	Порядок действительного числа должен состоять только из цифр.
6	Неверная длина мантиссы числа	-12399E+1 (31 цифра в мантиссе)	-	Длина мантиссы целого числа должна быть меньше, либо равна 30 и больше 0.
7	Неверная длина мантиссы числа	+12.3	+	Необходимо ввести действительное число.
8	Неверная длина порядка	+12.3	+123E+99 (6 цифра 9 в порядке)	Длина порядка действительного числа должна быть меньше, либо равна 5 и больше 0.
9	Переполнение порядка	+1E+99999	+10E+0	Переполнение порядка.
10	Делитель равно 0	-123.5	+0	Нельзя делить на 0.

11	Делимое равно 0	+0	+123.5E+2	+0.0E+0
12	Деление одного знака	-56789.8E+3	-0.2E+0	+0.283949E+9
13	Деление разных знаков	+255.5E+5	-0.5E+1	-0.511E+7
14	Округление	+999 (30 цифра 9)	+2	+0.5E+30

Выводы

При написании лабораторной работы реализована функция деления вещественное числа на длинное вещественное, используя алгоритм деления «в столбик». Для ввода чисел использовался массив символов, для хранения, обработки и вывода чисел - переменные структурного типа.

Контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Возможный диапазон чисел зависит от выбранного типа, разрядности процессора и памяти выделенной для хранения числа. Для беззнакового целого числа выделяется 64 двоичных разряда, его максимальное значение — 2^{64} -1 = 18 446 744 073 709 551 615.

2. Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественных чисел зависит от размера памяти, выделенной для хранения мантиссы. Для мантиссы числа типа *double* это значение равно 52 битам, поэтому мантисса числа может иметь значение до 4 503 599 627 370 496.

3. Какие стандартные операции возможны над числами?

Числа возможно складывать, вычитать, умножать, делить, брать остаток от числа и сравнивать числа.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Программист может использовать массив чисел или символов, представляя числа в строку, или структуру, поля которой могут быть частями числа.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Можно написать собственные функции, реализующие такие операции или использовать функции дополнительных библиотек.