Performance Analysis and Optimization of Confidential Virtual Machines

Luca Mathias Advisor: Dr. Masanori Misono Chair of Computer Systems https://dse.in.tum.de/

Motivation

- Confidential VMs (CVMs) allow for safe computation on sensitive data
- Workloads do not have to be modified
- Supported on many CPU architectures
 - AMD SEV-SNP(x86), Intel TDX(x86),
 ARM CCA, PowerPC ...

Our goal:

- Analyze CVM overheads across different workloads (network I/O and computational)
- Examine a simple optimization technique in the form of CPU polling

CVM Overhead Sources

- Main memory and CPU state are encrypted and protected from unauthorized host/hypervisor access.
- New VMEXIT procedures to protect CPU state.
- VMGEXITs and TDCALLs cause severely increased VMEXIT cost.
- Bounce buffer mechanism (swiotlb) enables I/O at the cost of additional data copies

State-of-the-art

- "Bifrost: Analysis and Optimization of Network I/O Tax in Confidential Virtual Machines"
 - Limited to AMD SEV-ES and simulated Intel TDX
 - No examination of system metrics
- "Confidential VMs Explained: A Cross-Layer Analysis of AMD SEV-SNP and Intel TDX"
 - Introduces CPU polling as an optimization strategy
 - No examination of system metrics

Research Gap

- Scope mostly limited to discussing the results without deeper analysis
- No system/hardware metrics analyzed
- **No remote networking** for networking benchmarks

Examined Metrics

- Hardware counters (SNP only):
 - Instruction count, branch misses, TLB misses, L1 misses
- VMEXIT count (TDX and SNP) and reasons (SNP only):
 - E.g., MMIO, MSR, VMMCALL, HLT
- MMIO and MSR addresses

Benchmarks

Networking benchmarks

- Latency (ping)
- TCP and UDP throughput (iperf)
- In-memory database server performance (redis/memchached and memtierbenchmark)
- Web server performance (nginx and wrk)

Computational benchmarks

- Highly parallel computation (Nas Parallel Benchmark ua)
- Machine learning (TensorFlow BERT)

Analysis

- We analyze multiple categories of VMs
 - E.g., with and without vhost and bounce buffer
- CVMs are compared against traditional
 VMs as a baseline
- We examine the effects of idle and halt CPU polling

Identifier	Description
intel/amd	Baseline VM
snp/tdx	Confidential VM
vhost	Vhost protocol enabled
swiotlb	Standard VM with BB
poll	Idle polling enabled
hpoll	Halt polling enabled

Different VM categories

Bounce Buffer

Bounce buffer bottlenecks on high CPU load (TCP throughput, local, TDX)

Bounce buffer can improve performance (TCP throughput, remote, TDX)

HLT VMEXITS

- Additional load generated by CVMs and the bounce buffer can decrease the amount of HLT-related VMEXITs
- Similar effect as CPU polling
- Can lead to increased performance for CVMs under low CPU load

SEV-SNP, local, TCP throughput

General CVM Overheads

- SNP and TDX normally show significant but non-excessive overhead of between 5% and 20% in most cases
- These are not caused by the bounce buffer mechanism
- They are caused by VMEXIT behavior and significantly reduced by CPU polling
- In some scenarios extreme overheads of over 80% are encountered

SEV-SNP web server performance

Extreme Overheads

Overheads of over 80% for UDP throughput (SEV-SNP, local)

Massive overheads for highly parallel computing (TDX)

TSC-Deadline Mode

- SNP does not support TSC-Deadline APIC operation mode (MSR Interface)
- Legacy APIC programming modes are used (MMIO Interface)
- They offer worse time resolution (local clock instead of CPU clock), which seems to lead to more frequent reprogramming
- This causes a high amount of MMIO VMEXITs instead of fewer MSR VMEXITs
- This severely decreases performance in scenarios with a non-linear execution flow or many synchronization events

Example

- TDX does support TSC-Deadline mode
- Performance drops significantly if it is disabled
- VMEXITs increase by nearly 2x
- Traditional Intel VMs are less effected

UDP bitrate with and without TSC-Deadline mode.

Hardware Events

- During most benchmarks there are no abnormalities
- The machine learning benchmark features increased branch misses
- AMD SEV-SNP performs more BTB flushes in some cases
- L1 cache and TLB misses are not relevantly increased in any scenario

Machine learning (TensorFlow SEV-SNP)

Summary

- Significant overheads across network I/O and computational performance
- In most scenarios, overheads can be attributed to VMEXIT behavior
- There are extreme overhead scenarios (>80%) that seem to be related to local APIC programming
- CPU polling massively increases CVM performance in these scenarios
- Under high CPU utilization the bounce buffer is a performance bottleneck
- Under low CPU utilization the bounce buffer can increase performance
- Hardware events, such as L1 misses, play a secondary role and are not a big factor in CVM overheads (branch misses are increased in some cases)

Future Work

- Resolution of TDCALLs
- Hardware events for TDX
- Vhost-user and different halt polling parameters
- Most promising: Deeper analysis of high overhead scenarios using micro-benchmarks

Backup

AMD SEV-SNP VMEXIT

- Automatic and Non-automatic exits (most are NAEs)
- NAEs add additional handler overhead and perform an AE using the VMGEXIT instruction
- CPU state transfer/protection is handled by newly introduced data structures (GHCB – Guest Hypervisor Control Block)

Intel TDX VMEXIT

- Intel TDX module acts as intermediary between the TD/CVM and the hypervisor
- VMEXITs are performed via a TDCALL instruction with additional overhead
- CPU State transfer/protection is managed via dedicated memory pages by the TDX module

Data Capture System

We use **Pylnvoke** to **automate**:

- Benchmark execution
- Benchmark data capture
- System metrics capture
- Data organization

Additional Hardware Counter Examples

Branch misses and L1 cache misses during TCP throughput benchmark