

The future is in the AloT!

When the IoT meets the AI

By Marcelo Rovai

June 25th, 2020

Marcelo Rovai

Brazilian from São Paulo, Master in Data Science by UDD, Chile, and MBA by IBMEC, Brazil. Graduated in 1982 as an Engineer from UNIFEI with pos graduation by Poli/USP, both in Brazil. Marcelo worked as a teacher, engineer, and executive in several companies in the technology area such as AVIBRAS Aeroespacial, SID Informática, ATT-GIS, NCR, DELL, COMPAQ (HP) and more recently at IGT where he continues as Senior Advisor.

In 2016, Marcelo began writing about electronics, publishing his works in sites of the area as MJRoBot.org (Editor/Writer), Hackster.io (#1 Contributor), Instructables.com, and Medium.com (TDS – Towards Data Science). Besides winning several Instructables competitions in the areas of electronics, robotics, and IoT.

Marcelo lives with his wife Ilza in Santiago, Chile, where he divides his time between his consultant work and sharing ideas in the field of Data Science, Electronics, IoT, Physical Computing and Robotics.

IoT Architecture

IoT hacking & Data Science Innovators

Science Innovators

Application

pythonanywhere

Azure

Services

Network

IoT hacking & Data Science Innovators

IoT -> Data

IoT hacking & Data **Science Innovators**

IoT -> Data -> Storage

HDD, Flash Cost Over Time

IoT -> Data -> Processing

Computing cost-performance (1992–2012)

Source: Leading technology research vendor

IoT -> Data -> Edge Computing

Edge Computing

ESP32

RaspBerry Pi

BeagleBone

NVIDIA Jetson

What to do with Data?

IoT -> Data -> ... -> Value

IoT -> Data -> ...-> Value

IoT -> Data -> ...-> Value

Artificial Intelligence – Al Timeline

the world's first self-learning

program

https://en.wikipedia.org/wiki/Timeline_of_artificial_intelligence

Machine Learning - ML

ArduFarmBot - AloT Project

IoT hacking & Data Science Innovators

ArduFarmBot - AloT Project

https://www.amazon.com/ArduFarmBot-automation-Internet -MJRoBot-Tutorials-ebook/dp/B06Y4CTW23

Data Preparation and Cleaning

The Dataset used in this work is the historical data retrieved from ThingSpeak website from September to December 2016 (*):

On the dataset, there are 47,164 samples divided into 10 columns:

- "created_at",
- ✓ "entry id",
- "Temperature",
- "Humidity",
- "Luminosity",
- ✓ "Soil Moisture",
- ✓ "Pump Echo",
- "Lamp Echo",
- ✓ "Capacitive Soil Moisture" and
- ✓ "Spare".

(*) https://thingspeak.com/channels/146159.

Data Preparation and Cleaning

- Input variables (Sensors): Temperature, Humidity, Luminosity, Soil Moisture,
- Output variables (Actuators): Pump and Lamp

\leq	temp	humi	lumi	soil	pump	lamp
504	23.0	32.0	73.0	8.0	0.0	0.0
505	23.0	32.0	73.0	8.0	0.0	0.0
506	23.0	32.0	73.0	8.0	0.0	0.0
507	23.0	32.0	73.0	8.0	0.0	0.0
508	23.0	32.0	73.0	8.0	0.0	0.0

ML Model: Decision Tree (Classification)

Data Preparation and Cleaning

Noise on data should be eliminated. The right range should be:

- ✓ Temperature lower than 45oC
- ✓ Air Humidity between 10% and 80%
- ✓ Soil Moisture with humidity greater than 60%

After total cleaning, around 17,700 samples are available for analyses.

Prediction on Pump operation

- ✓ Applying the model on test data we got a 99% of accuracy
- ✓ Looking only on samples were target variable was "1" (Pump Turned ON), we get:

Pump is Turned ON automatically every time that soil humidity reaches its lowers at 65% and Temperature is low (10°C to 15°C). Some actuations also appears around 100% what should be manual commands

Prediction on Lamp operation

- ✓ Applying the model on test data we got a 93% of accuracy
- ✓ Looking only on samples were target variable was "1" (Lamp Turned ON), we get:

The lamp is turned ON automatically at lower temperatures (around 12°C). Some actuations also appear around 25°C what can be attributed to manual commands.

IoT hacking & Data Science Innovators

NYC Taxi - Trip Prediction Project

NYC Taxi - IoT - Getting data

IoT hacking & Data Science Innovators

NYC Taxi - AloT Project - EDA

IoT hacking & Data Science Innovators

NYC Taxi Trip Prediction - ML

IoT hacking & Data Science Innovators

ML Models

NYC Taxi Trip Prediction - Deploy

```
start_loc = "New York Marriott Downtown"
end_loc = "Empire State Building"
predict_trip(start_loc, end_loc)
executed in 4.16s, finished 12:03:08 2019-02-08
```

Trip has 4.8 miles and will last 28.0 minutes, with a basic cost od \$21.57 [Trip Info]: Trip inside Manhattan; Rate Code: Standard

IoT hacking & Data Science Innovators

NYC Taxi Trip Prediction - Benchmark

Trip has 4.8 miles and will last 28.0 minutes, with a basic cost od \$21.57 [Trip Info]: Trip inside Manhattan; Rate Code: Standard

NYC Taxi - AloT Project

Data Science Environment

https://github.com/Mjrovai/UDD Master Data Science/tree/master/AML-NYC TAXI TRIP PREDICTION

Warning - Violating privacy

Stalking celebrities

A few innocent nights at the gentlemen's club

Applying Artificial Intelligence techniques in the development of a web-app for the detection of Covid-19 in X-ray images

IoT hacking & Data

Science Innovators

VGG-16 Convolutional Neural Network

Model

Elephant 93.0%

Training the model (Transfer Learning)

IoT hacking & Data Science Innovators

How it works

i.e. User_A.png

https://github.com/Mjrovai/covid19Xray

"To infinity and beyond!"

Science Innovators

Thanks
And keep safe!

MJRoBot.org
github.com/Mjrovai
hackster.io/mjrobot
medium.com/@rovai
instructables.com/member/mjrovai