Matrix Transformation

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Linear Transformation

Matrix is a linear transformation: map one vector to another vector

$$A \in \mathbb{R}^{m \times n}, \ x \in \mathbb{R}^n, \ y \in \mathbb{R}^m: \qquad y_{m \times 1} = A_{m \times n} x_{n \times 1}$$

$$A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

Input-output

Matrix in applications

- Feature matrix
- Signal matrix
- Correlation matrix

Linear Transformation

Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$

Linear Transformation

EXAMPLE 1 Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, and

define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- b. Find an **x** in \mathbb{R}^2 whose image under T is **b**.
- c. Is there more than one **x** whose image under *T* is **b**?
- d. Determine if \mathbf{c} is in the range of the transformation T.

Linear mapping

- V, W are vector spaces over \mathbb{F} .
- A function $T: V \to W$ is called **linear** if

$$T(u+v) = T(u) + T(v)$$
 for all $u, v \in V$,
 $T(av) = aT(v)$ for all $a \in \mathbb{F}$ and $v \in V$.

Linear mapping

- Example: which are linear mapping?
 - **zero** map $0: V \to W$
 - identity map $I: V \to V$
 - Let $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ be the **differentiation** map defined as Tp(z) = p'(z).
 - Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map given by T(x,y) = (x-2y,3x+y)
 - $f(x) = e^x$
 - $f: \mathbb{F} \to \mathbb{F}$ given by f(x) = x 1

Linear mapping

Theorem

Let (v_1, \ldots, v_n) be a basis of V and (w_1, \ldots, w_n) an arbitrary list of vectors in W. Then there exists a unique linear map

 $T: V \to W$ such that $T(v_i) = w_i$.

Null space (kernel)

Definition

Let $T: V \to W$ be a linear map. Then the **null space** or **kernel** of T is the set of all vectors in V that map to zero:

$$\operatorname{null} T = \{ v \in V \mid Tv = 0 \}.$$

- Question:
 - What is null space for differentiation mapping?
 - Let $T: V \to W$ be a linear map. Then $\operatorname{null} T$ is a subspace of V

Projection

Example:

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ projects

points in \mathbb{R}^3 onto the x_1x_2 -plane because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

Projection

Transformation	Image of the Unit Square	Standard Matrix
Projection onto the x_1 -axis	$\stackrel{x_2}{\uparrow}$	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]$
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
Projection onto the x_2 -axis		$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Rotation

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Reflection

$$R = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

Reflection

Transformation	Image of the Unit Square	Standard Matrix
Reflection through the x_1 -axis	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \longrightarrow x_1$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection through the x_2 -axis	$\begin{bmatrix} x_2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection through the line $x_2 = x_1$	$x_{2} = x_{1}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ x_{1}	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection

Reflection through the line $x_2 = -x_1$

 $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

Reflection through the origin

 $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

Uniform Scaling

$$S = sI = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

Non-uniform Scaling

$$S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

Shearing

Example

Let
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$

sheep

A typical shear matrix is of the form

$$S = egin{pmatrix} 1 & 0 & 0 & \lambda & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

sheared sheep

Shearing

A shear parallel to the x axis results in $x'=x+\lambda y$ and y'=y. In matrix form:

$$\left(egin{array}{c} x' \ y' \end{array}
ight) = \left(egin{array}{cc} 1 & \lambda \ 0 & 1 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight).$$

Similarly, a shear parallel to the y axis has x'=x and $y'=y+\lambda x$. In matrix form:

$$\left(egin{array}{c} x' \ y' \end{array}
ight) = \left(egin{array}{cc} 1 & 0 \ \lambda & 1 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight).$$

Difference Matrix

$$D_{(n-1) imes n} = egin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 \ 0 & -1 & 1 & 0 & \cdots & 0 \ dots & \ddots & \ddots & & dots \ 0 & 0 & \cdots & -1 & 1 & 0 \ 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

$$D: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1} \quad \Longrightarrow \quad D \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

Example

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 3 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 - 0 \\ 3 - (-1) \\ 2 - 3 \\ 5 - 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ -1 \\ 3 \end{bmatrix}$$

Selectors

an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \left[\begin{array}{c} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{array} \right]$$

multiplying by *A* selects entries of *x*:

$$Ax = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m \quad \Longrightarrow \quad A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_{k_1} \\ x_{k_2} \\ \vdots \\ x_{k_m} \end{bmatrix}$$

Selectors

Example
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 & 1 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

- Selecting first and last elements of vector:
- Reversing the elements of vector:

Slicing

Keeping m elements from r to s (m=s-r+1)

$$\begin{bmatrix} \mathbf{0}_{m\times(r-1)} & I_{m\times m} & \mathbf{0}_{m\times(n-s)} \end{bmatrix}$$

Example: Slicing two first and one last

elements:

$$egin{bmatrix} -1 \ 2 \ 0 \ -3 \ 5 \end{bmatrix} = egin{bmatrix} 0 \ -3 \end{bmatrix}$$

Down Sampling

 Down sampling with k: selecting one sample in every k samples

Example: k=2?

Invertible Linear Transformations

Definition:

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

Invertible Linear Transformations

Theorem:

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function

- Proof in HW3!
- Example: