A Discussion on Symmetry and Awesome Sets

An Introduction to the Isometries of \mathbb{R}^3

R. Baldwin

Math/Stat Department Swarthmore College

Swarthmore College

Outline

- 1 Motivation
 - A Reminder on the Definition
 - Motivating Example
- 2 Discussion
 - lacksquare D_n and Isometries of \mathbb{R}^3
 - Ideas Moving Forward

- Motivation

LA Reminder on the Definition

Outline

- 1 Motivation
 - A Reminder on the Definition
 - Motivating Example
- 2 Discussion
 - \blacksquare D_n and Isometries of \mathbb{R}^3
 - Ideas Moving Forward

Motivation

A Reminder on the Definition

What are aba-sets?

Also known as "awesome"-sets, A-sets

Definition

Let G be a group.

A set $S \subseteq G$ is an *aba-set* if for all $a, b \in S$, $aba \in S$.

- Previous results:
 - If $x \in S$ is an element of odd order, then $\langle x \rangle \in S$.

Motivation

A Reminder on the Definition

What are aba-sets?

Also known as "awesome"-sets, A-sets

Definition

Let G be a group.

A set $S \subseteq G$ is an *aba-set* if for all $a, b \in S$, $aba \in S$.

- Previous results:
 - If $x \in S$ is an element of odd order, then $\langle x \rangle \in S$.

└ Motivation

LA Reminder on the Definition

How much can these sets generate?

Questions to consider:

- Can an aba-set with only generators and the identity recover the whole group?
- Is there a more geometric quality that *aba*-sets induce?

Motivation

LA Reminder on the Definition

How much can these sets generate?

Questions to consider:

- Can an aba-set with only generators and the identity recover the whole group?
- Is there a more geometric quality that *aba*-sets induce?

└ Motivation

LA Reminder on the Definition

How much can these sets generate?

Questions to consider:

- Can an aba-set with only generators and the identity recover the whole group?
- Is there a more geometric quality that aba-sets induce?

Motivation

LA Reminder on the Definition

How much can these sets generate?

Questions to consider:

- Can an aba-set with only generators and the identity recover the whole group?
- Is there a more geometric quality that aba-sets induce?

Motivation

Motivating Example

Outline

- 1 Motivation
 - A Reminder on the Definition
 - Motivating Example
- 2 Discussion
 - \blacksquare D_n and Isometries of \mathbb{R}^3
 - Ideas Moving Forward

$\forall a, b \in S, \ aba \in S$

Example

Let $S = \{1, \sigma, \zeta\} \subset D_n$ be a set with property *aba*-closure. What must follow is that S must contain ('generate') all powers of the flips and rotations.

- Flips have order 2, meaning $\sigma = \sigma^{-1} \in S$ a priori.
- We can build-up all powers of zeta through different recursive combinations with the identity. For example, $\zeta 1 \zeta = \zeta^2$ and $\zeta \zeta \zeta = \zeta^3$ and so forth.
- Thus, we can generate all powers of the flip- σ and rotation- ζ elements.

$\forall a, b \in S, \ aba \in S$

Example

Let $S = \{1, \sigma, \zeta\} \subset D_n$ be a set with property *aba*-closure. What must follow is that S must contain ('generate') all powers of the flips and rotations.

- Flips have order 2, meaning $\sigma = \sigma^{-1} \in S$ a priori.
- We can build-up all powers of zeta through different recursive combinations with the identity. For example, $\zeta 1 \zeta = \zeta^2$ and $\zeta \zeta \zeta = \zeta^3$ and so forth.
- Thus, we can generate all powers of the flip- σ and rotation- ζ elements.

$\forall a, b \in S, \ aba \in S$

Example

Let $S = \{1, \sigma, \zeta\} \subset D_n$ be a set with property *aba*-closure. What must follow is that S must contain ('generate') all powers of the flips and rotations.

- Flips have order 2, meaning $\sigma = \sigma^{-1} \in S$ a priori.
- We can build-up all powers of zeta through different recursive combinations with the identity. For example, $\zeta 1 \zeta = \zeta^2$ and $\zeta \zeta \zeta = \zeta^3$ and so forth.
- Thus, we can generate all powers of the flip- σ and rotation- ζ elements.

$\forall a, b \in S, aba \in S$

Example

Let $S = \{1, \sigma, \zeta\} \subset D_n$ be a set with property *aba*-closure. What must follow is that S must contain ('generate') all powers of the flips and rotations.

- Flips have order 2, meaning $\sigma = \sigma^{-1} \in S$ a priori.
- We can build-up all powers of zeta through different recursive combinations with the identity. For example, $\zeta 1 \zeta = \zeta^2$ and $\zeta \zeta \zeta = \zeta^3$ and so forth.
- Thus, we can generate all powers of the flip- σ and rotation- ζ elements.

 \bigsqcup_{D_n} and Isometries of \mathbb{R}^3

Outline

- 1 Motivation
 - A Reminder on the Definition
 - Motivating Example
- 2 Discussion
 - D_n and Isometries of \mathbb{R}^3
 - Ideas Moving Forward

 \bigsqcup_{D_n} and Isometries of \mathbb{R}^3

Subgroups of \mathbb{R}^3

 $\forall a, b \in S, \ aba \in S$

To find groups similar to the dihedral group, let's impose firm positions on the vertices of D_n on a plane.

In other words, let us look at what space D_n lives in!

 $\forall a, b \in S, \ aba \in S$

To find groups similar to the dihedral group, let's impose firm positions on the vertices of D_n on a plane.

In other words, let us look at what space D_n lives in!

 $\forall a, b \in S, aba \in S$

- The dihedral groups are all *subgroups* of the group of rotations in \mathbb{R}^3 (SO3).
- Other examples of finite subgroups of SO3 are" cyclic, tetrahedral, octohedral group.

$\forall a, b \in S, aba \in S$

- The dihedral groups are all *subgroups* of the group of rotations in \mathbb{R}^3 (SO3).
- Other examples of finite subgroups of SO3 are" cyclic, tetrahedral, octohedral group.

 $\forall a, b \in S, aba \in S$

- The dihedral groups are all *subgroups* of the group of rotations in \mathbb{R}^3 (SO3).
- Other examples of finite subgroups of SO3 are" cyclic, tetrahedral, octohedral group.

 \bigsqcup_{D_n} and Isometries of \mathbb{R}^3

Another Interesting Example $\forall a, b \in S, aba \in S$

Remark

Recall that if |x| is odd and in S, $\langle x \rangle \in S$. We can extend this to any cyclic subgroup, so long as we start with the identity! That is to say:

Let $x \in G$ have finite order. If $\{1, x\} \in S$, then $\langle x \rangle \in S$.

Furthermore, if *G* is a cyclic group, then the entire group is an *aba-group!*

 $\bigsqcup D_n$ and Isometries of \mathbb{R}^3

Another Interesting Example $\forall a, b \in S, aba \in S$

Remark

Recall that if |x| is odd and in S, $\langle x \rangle \in S$. We can extend this to any cyclic subgroup, so long as we start with the identity! That is to say:

Let $x \in G$ have finite order. If $\{1, x\} \in S$, then $\langle x \rangle \in S$.

Furthermore, if *G* is a cyclic group, then the entire group is an *aba-group!*

 \bigsqcup_{D_n} and Isometries of \mathbb{R}^3

Make Titles Informative.

 \bigsqcup_{D_n} and Isometries of \mathbb{R}^3

Make Titles Informative.

 \bigsqcup_{D_n} and Isometries of \mathbb{R}^3

Make Titles Informative.

LIdeas Moving Forward

Outline

- 1 Motivation
 - A Reminder on the Definition
 - Motivating Example
- 2 Discussion
 - \blacksquare D_n and Isometries of \mathbb{R}^3
 - Ideas Moving Forward

Groups to Inspect

- Focus on investigating the *aba*-sets of subgroups and semi-direct products of primarily \mathbb{R}^3 (a topic for next week).
- Observe if there is any correlation between said aba sets (specifically with sets only containing the generators and identity of these groups).

Groups to Inspect

- Focus on investigating the *aba*-sets of subgroups and semi-direct products of primarily \mathbb{R}^3 (a topic for next week).
- Observe if there is any correlation between said aba sets (specifically with sets only containing the generators and identity of these groups).

LIdeas Moving Forward

Programming

- Working on code that will speed up the process of finding aba-sets.
- *Potentially attempt to create a 3D program that may enumerate any geometric qualities of aba-sets.

Summary

- I am now not only investigating aba-sets from an algebraic viewpoint, but seeing if the space where a group lives in induces a constraint in algebraic results.
- Observing how aba-sets act on symmetries may lead into questions like how much of an original group is guaranteed to be encoded in an aba-set.
- While larger conjectures in \mathbb{R}^n would be awesome, I will likely continue to work with grups in \mathbb{R}^2 and \mathbb{R}^3 due to some computational concerns (things get *big* and confusing).

Summary

- I am now not only investigating aba-sets from an algebraic viewpoint, but seeing if the space where a group lives in induces a constraint in algebraic results.
- Observing how aba-sets act on symmetries may lead into questions like how much of an original group is guaranteed to be encoded in an aba-set.
- While larger conjectures in \mathbb{R}^n would be awesome, I will likely continue to work with grups in \mathbb{R}^2 and \mathbb{R}^3 due to some computational concerns (things get *big* and confusing).

Summary

- I am now not only investigating aba-sets from an algebraic viewpoint, but seeing if the space where a group lives in induces a constraint in algebraic results.
- Observing how aba-sets act on symmetries may lead into questions like how much of an original group is guaranteed to be encoded in an aba-set.
- While larger conjectures in \mathbb{R}^n would be awesome, I will likely continue to work with grups in \mathbb{R}^2 and \mathbb{R}^3 due to some computational concerns (things get *big* and confusing).

Thank you!