VI Международная научно-практическая конференция

ГРАФЕН И РОДСТВЕННЫЕ СТРУКТУРЫ: СИНТЕЗ, ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ (GRS-2025) Россия, г. Тамбов, 24 - 26 сентября 2025 г.

<u>Шилов М.А.</u>^{1,2}, Усольцева Н.В.²

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ПРИСАДОК УГЛЕРОДНЫХ НАНОСТРУКТУР НА ОРИЕНТАЦИОННЫЕ ПРОЦЕССЫ В СМАЗОЧНОМ СЛОЕ

^{1,2}Ивановский государственный энергетический университет имени В.И. Ленина, ²НИИ наноматериалов, Ивановский государственный университет

Работа поддержана госзаданием Минобрнауки РФ: проект № FZZM-2023-0009 для Ивановского государственного университета, руководитель <u>Н.В. Усольцева</u>

АКТУАЛЬНОСТЬ ТЕМЫ РАБОТЫ

РОЛЬ ПРОЦЕССОВ ТРЕНИЯ И ИЗНОСА В ПОТЕНЦИАЛЬНОЙ ЭКОНОМИИ СРЕДСТВ

Потенциальная экономия в 1966 и 2016 за счет использования новой трибологии в машинах и оборудовании в Великобритании (515 млн. фунтов в 1966 = 9000 млн. фунтов в 2017)

- Роль снижения процессов трения в экономии средств возросла с 5% до 74%
- **>** Роль снижения процессов износа снизилась с 24% до 10%
- Роль потребления энергии в настоящее время является ведущей: ограниченные ресурсы, высокие цены, выбросы парниковых газов

АКТУАЛЬНОСТЬ ТЕМЫ РАБОТЫ

Анализ частотности использования углеродных наноструктур в качестве присадок к СМ

Рис. 1. Диаграмма публикационной активности

ЦЕЛЬ РАБОТЫ

Установление влияния ориентации присадок углеродных наноструктур на теоретические и экспериментальные закономерности трения и изнашивания при использовании смазочных материалов.

ЗАДАЧИ

- 1. Создать математические модели оценки влияния типа, концентрации и ориентации присадок углеродных наноструктур на величину износа для смазочных материалов в различных режимах смазки;
- 2. Разработать численные модели оценки влияния типа, концентрации и ориентации присадок углеродных наноструктур на величину износа для смазочных материалов в различных режимах смазки;
- 3. Доказать влияние пространственной организации и концентрации присадок углеродных наноструктур на процессы внутреннего трения между слоями смазочного материала.

МАТЕРИАЛЫ И МЕТОДЫ

ОБЕКТЫ ИССЛЕДОВАНИЯ

Пластичные смазочные материалы (ПСМ)

- I Claas AGRIGREASE EP2 (ISO 6743-9: L-XBCEB 2)
- II Газпромнефть LX EP2 (ТУ КРНС 2 N-50)

- **III** Литол-24 (ГОСТ 21150—2017)
- **VM** Вазелин медицинский (ЛСР-005886/08-230708)

Гвоздев А. А., Смирнова А. И., Березина Е. В., Дунаев А. В., Ткачев А. Г., Усольцева Н. В. Исследование триботехнических характеристик перспективных смазочных материалов с углеродными наночастицами // Жидкие кристаллы и их практическое использование. 2018. Т. 18. № 1. С. 66 – 72.

ОБЕКТЫ ИССЛЕДОВАНИЯ (продолжение)

Рис. 2. Аллотропные модификации углерода

УНС	C60	Sh	SWCN	Таунит-М	GO	LGF	N-LGF	Графит
Производите ль	Sigma-Aldrich, CIIIA	Карельский центр РАН, Петрозаводск	ArryGmbH, Germany	НаноТехЦентр, Тамбов	НаноТехЦентр, Тамбов	МГУ, Москва	МГУ, Москва	Him-trade, Москва
Геометричес кие характерист ики, нм	радиус молекулы (0,357), толщиной сферической оболочки (0,1)	Глобулярные стопки (~6)×(~6)× Толщина трубостратных стопок (1,5-2,5)	диаметр (1-2), длина (2000)	внеш. диаметр (10-30), внутр. диаметр (5-15), длина (200)	толщина пластин (3-5), число слоев (5-10)	толщина пластин (4-7), число слоев (3-5)	толщина пластин (2-5), число слоев (5-7)	толщина пластин (5-8), число слоев (10-20)
Чистота, %	98	98	90	95	95	95	95	90

ОБЕКТЫ ИССЛЕДОВАНИЯ: Концентрационный диапазон присадок УНС по данным литературы

№ п/п	CM	Тип углеродной присадки	Конц-я, мас. %	Российские авторы	Зарубежные авторы
1	E	C60, Sh (0D)	0,01 - 3,0	Албагачиев А.Ю., Бреки А.Д., Буяновский И.А., Гинзбург Б.М., Точильников Д.Г., <u>Усольцева Н.В.,</u> Кушч А.И., Ткачев А.Г.,	González I., Ma Q., Li N., Endo M.
2	Масла	УНТ (1D)	0,1 – 2,5	Албагачиев А.Ю., <u>Усольцева Н.В.,</u> Ткачев А.Г., Березина Е.В, Годлевский В.А.,	Sopyan I., Zhang Q., Allafi W.,
3	,	GO и их аналоги (2D)	0,1 – 7,5	Бреки А.Д., Чулкин С.Г., Ткачев А.Г., <u>Усольцева Н.В.,</u> Хопин П.Н., Скотникова М.А.,	Choi H.J., Li J., Mohammad A.,
4	J	C60, Sh (0D)	0,1 – 4,0	Бреки А.Д., Чулкин С.Г., Ткачев А.Г., <u>Усольцева Н.В., Шилов М.А.</u>	Miura K., Afsharimoghadam P.
5	ICI	УНТ (1D) 0,05 – 3,5		Ткачев А.Г., <u>Усольцева Н.В.,</u> <u>Шилов М.А.</u>	Mohamed A., Zhang Ch., Aswath P.B., Yujun G., Hong H.,
6		GO и их аналоги (2D)	0,01 - 2,0	Кошелев А.В., Ткачев А.Г., Усольцева Н.В., Шилов М.А.	Afsharimoghadam P.,

ОБЕКТЫ ИССЛЕДОВАНИЯ (продолжение)

Материалы пар трения

СТАЛЬНЫЕ МАТЕРИАЛЫ

Материал пары трения	Сталь 45	ШХ15	40X
Шероховатость, Ra,	0,20-0,16	1,25	1,25
Твердость по Роквеллу, HRC	≥45	≥60-62	≥60

УСТОЙЧИВЫЕ ДИСПЕРСИИ ПСМ/УНС

Рис. 3. Схема получения стабильных дисперсий

Седиментация дисперсий ПСМ/УНС

Диспергирование проводили на УЗДН-2Т

$$\tau = 25 - 30$$
 мин, $\nu = 44$ к Γ ц

УСТОЙЧИВЫЕ ДИСПЕРСИИ ПСМ/УНС

а – общая схема, б – вдавливание конуса пенетрометра

Рис. 4. Относительные значения температуры каплепадения для дисперсий ПСМ/УНС (0,5 мас.%)

Рис. 6. Результаты измерения пенетрации дисперсий ПСМ/УНС (0,5 мас.%)

МОДЕЛЬ 1 СТАЦИОНАРНОГО КАЧЕНИЯ С ПРОСКАЛЬЗЫВАНИЕМ

$$\frac{\partial}{\partial x} \left(\frac{\rho h^3}{\eta} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\rho h^3}{\eta} \frac{\partial p}{\partial y} \right) = 6v_{\text{CK}} \frac{\partial (\rho h)}{\partial x} + 6\rho h \frac{\partial v_{\text{CK}}}{\partial t} + 12 \frac{\partial (\rho h)}{\partial t} \quad (1)$$

где ρ – плотность СМ, h – толщина СС, p – давление, η – динамическая вязкость, $v_{\rm ck}$ – суммарная скорость контактирующих поверхностей

$$\frac{\partial}{\partial x} \left(\frac{\rho h^3}{12\eta} \frac{\partial p}{\partial x} \right) = u_m \frac{\partial (\rho h)}{\partial x}, \quad (2)$$
 $v_{\text{ck}} = 2u_m.$ Граничные условия: $p(x_a) = 0, \qquad \frac{\partial p}{\partial x_b} = 0,$

где x_a , x_b — границы на входе и выходе рассматриваемой области

Условие силового равновесия: $P = \int_{x}^{x_b} p(x) dx$

$$h(x) = h_p + h_{\text{CM}} + h_{\text{упр}} - h_{\text{B}},$$
 (3)

где h_p — высота, учитывающая кривизну ролика, $h_{\rm cm}$ — толщина смазочного слоя, $h_{\rm ynp}$ — глубина внедрения ролика, $h_{\rm B}$ — высота шероховатости поверхностей, h_A — математическое ожидание амплитуды шероховатости R_z , λ — математическое ожидание длины волны, E^* — приведенный модуль упругости

$$\rho(p) = \rho_0 \frac{\psi + 1{,}34p}{\psi + p}, \qquad \eta(p) = \eta_0 \cdot \exp(\theta p), (4)$$

где ρ_0 — атмосферная плотность СМ, η_0 — вязкость при атмосферном давлении, $\psi = 0.59 \cdot 10^9 \, \text{Па}$, θ — экспериментальная постоянная, зависящая от СМ, Πa^{-1}

$$h_{\rm B} = h_A \left(\cos \left(\frac{2\pi}{\lambda} x + 1 \right) \right),$$

$$h_{\rm B} = \frac{2h_A}{\pi} \left(\arcsin \left(\sin \left(\frac{2\pi}{\lambda} x \right) \right) + \frac{1}{2\pi} \right),$$

$$h_{\rm B} = h_A \operatorname{sign} \left(\sin \left(\frac{2\pi}{\lambda} x \right) \right).$$

МОДЕЛЬ 1 СТАЦИОНАРНОГО КАЧЕНИЯ С ПРОСКАЛЬЗЫВАНИЕМ

Постановка задачи

где α — коэффициент пропорциональности

$$\frac{\partial v_x}{\partial y} = \frac{v_0}{h} \tag{6}$$

Начальное условие

$$S_{x}(0)=0$$

$$S_{x} = 1 - \exp\left(-\frac{t}{\tau}\right) \qquad (7) \qquad \tau = \frac{1}{\alpha \cdot \frac{v_{\text{ck}}}{h}},$$

где τ — характерное время релаксации параметра ориентации, $t = L_{
m Tp}/v_{
m cK}$, где $L_{
m Tp}$ - путь трения

$$\alpha = \left(2.5 + \frac{1}{16}AR^2\right)C^*\phi$$

где концентрация (C^*), геометрия $\alpha = \left(2.5 + \frac{1}{16} AR^2\right) C^* \phi$ УНС и автокорреляционная функция распределения УНС по размерам (ϕ)

Табл. 1. Аспектные отношения (AR) для различных типов УНС

Тип УНС	0 D	1D	2 D	3D
Величина AR			a h	
	0	l/d	$a/h \cong b/h$	1

МОДЕЛЬ 1 СТАЦИОНАРНОГО КАЧЕНИЯ С ПРОСКАЛЬЗЫВАНИЕМ

k — коэффициент пропорциональности, зависящий от геометрических характеристик (аспектного отношения (AR) и адсорбционной активности конкретного УНС

Начальные условия
$$C(t=0) = C_{max}$$

$$C^* = C_{max}e^{-kt} + C_0(1 - e^{-kt})$$
 (8)

При стационарном течении, касательные напряжения

$$\tau_{xy} = \eta(S_x, C^*) \cdot \frac{v_0}{h}$$
 (9)

 $\eta(S_x, C^*)$ — коэффициент динамической вязкости, зависящий от проекции параметра порядка S_x УНС, их концентрации C и пластических свойств СМ

$$\eta(S_x, C^*) = \eta_0 + \eta^* \cdot S_x \tag{10}$$

 $\eta(0)$ — коэффициент динамической вязкости (для базовой ПСМ), когда $S_x=0$ (как в нашем случае), η^* — коэффициент пропорциональности коэффициент динамической вязкости для ПСМ и УНС)

$$\eta(p) = \eta_0 \cdot \exp(\theta p + S_x), \tag{11}$$

МОДЕЛЬ 1 СТАЦИОНАРНОГО КАЧЕНИЯ С ПРОСКАЛЬЗЫВАНИЕМ

$$\begin{cases} \frac{\partial}{\partial x'} \left(\frac{\rho'(h')^3}{\eta'} \frac{\partial p'}{\partial x'} \right) = F_1 \frac{\partial(\rho'h')}{\partial x'}, \\ h'(x') = h'_{\text{CM}} + F_2 {x'}^2 + F_3 \int\limits_{x'_a}^{x'_b} p'(S') \ln(x' - S') \ dS' - F_4 h'_A \sin(\lambda x') \end{cases}$$
 Условие равновесия: $F_5 = \int_{x'_a}^{x'_n} p' dx',$ Граничные условия: $p(x'_a) = 0, \quad \frac{\partial p}{\partial x'} = 0,$

где
$$F_1=rac{3\pi^2u'}{4{p'}^2}$$
, $F_2=rac{1}{2}$, $F_3=-rac{1}{2\pi}$, $F_4=1$, $F_5=rac{\pi}{2}$

метод Ньютона-Рафсона

$$\begin{cases} f_{1}(p', h'_{CM}) = \frac{d}{dx'} \left(\frac{\rho'(h')^{3}}{\eta'} \frac{\partial p'}{\partial x'} \right) - F_{1} \frac{d(\rho'h')}{dx'} = 0 \\ f_{2}(p', h'_{CM}) = \int_{x'_{a}}^{x'_{n}} p'dx' - F_{5}. \end{cases}$$
(13)

где
$$\eta' = \eta'(p')$$
, $\rho' = \rho'(p')$ и $h' = h'_{\text{CM}} + F_2 {x'}^2 + F_3 I(p') - F_4 \sin(\lambda x')$, а $I(p') = \int_{x'_a}^{x'_b} p'(S') \ln(x' - S') \, dS'$ — интегральный оператор

((12) $\begin{cases} p'(x_i') = p_0(x_i') + \Delta p'(x_i'), \\ h'_{CM}(x_i') = h_0(x_i') + \Delta h'_{CM}(x_i'). \end{cases}$	(14)
)	Уравнение для толщины СС	Модель
	$h_{\text{II},D} = 4.31 (1 - 0.72e^{-0.28k}) v_{\text{CK}}^{0.64} (\eta_0 e^{p\theta^*})^{0.64} P^{-0.22} (E^*)^{-0.42} R^{0.8},$	Доусона
	$h_{\rm II} = 4.31(1 - 0.72e^{-0.28})v_{\rm ck}^{0.64} (\eta_0 e^{p\theta + S_x})^{0.64} P^{-0.22}(E^*)^{-0.42} R^{0.8}$	с параметром

ориентации

где $h_{\rm ц}$ – центральная толщина СС, R – приведенный радиус кривизны, где $F_1=\frac{3\pi^2u'}{4{n'}^2}$, $F_2=\frac{1}{2}$, $F_3=-\frac{1}{2\pi}$, $F_4=1$, $F_5=\frac{\pi}{2}$ $U=\frac{\eta_0 v_{\rm ck}}{E^*R}$ – безразмерная скорость, E^* – приведенный модуль упругости, $W = \frac{P}{E*D2}$ – безразмерная нагрузка

МОДЕЛЬ 1 СТАЦИОНАРНОГО КАЧЕНИЯ С ПРОСКАЛЬЗЫВАНИЕМ

Увеличение глубины износа:

$$h_i - h_{i-1} = k' \mu_{\rm cp} p_i \Delta L_i \tag{15}$$

где h_i — глубина износа на i-й итерации, h_{i-1} — глубина износа на предыдущей итерации, k' — постоянная величина в уравнении Арчарда, $\mu_{\rm cp}$ — средний коэффициент трения, p_i — давление на i — ом шаге, ΔL_i — приращение пути трения

Накопление нарастающей массы износа для n итераций может быть задано как:

$$M_{w}(S_{x}) = \rho_{m} \sum_{i=1}^{n} \Delta V_{i}(S_{x})$$

$$= \rho_{m} \begin{cases} \sum_{i=1}^{n} (h_{i}(S_{x}) - h_{i-1}(S_{x})) \left(\frac{2\pi r h_{i}(S_{x})}{2h_{m}}\right) \left(\frac{2R h_{i}(S_{x})}{2h_{m}}\right), & \text{при } h_{i} < 2h_{m} \\ \sum_{i=1}^{n} (h_{i}(S_{x}) - h_{i-1}(S_{x}))(2\pi r)(2R), & \text{при } h_{i} > 2h_{m} \end{cases}$$

$$(16)$$

где 2R — длина ролика, $2h_m$ — наибольшая высота неровностей профиля тела и контртела

$$h(x_i, S_x) = h_{\text{u.i}} = \begin{cases} h_p + h_{\text{cM}}(S_x) - h_{\text{ynp}} - \frac{2h_m - h_i(S_x)}{2} \sin(\lambda x_i), h_i < 2h_m \\ h_p + h_{\text{cM}}(S_x) - h_{\text{ynp}}, \end{cases}$$

$$h_i > 2h_m$$
(17)

$$I_{h_{i}}(S_{x}) = \begin{cases} \frac{h_{wi}^{0}(S_{x}) - \frac{2h_{m} - h_{i}(S_{x})}{2} \left(\sin(\lambda x_{i}) + 1\right)}{L_{i}}, h_{i} < 2h_{m} \\ \frac{h_{wi}^{0}(S_{x})}{L_{i}}, h_{i} > 2h_{m} \end{cases}$$
(18)

Рис. 7. Схема геометрии микронеровностей d_i — износ одной микронеровности на i-й итерации, λ — длина волны

Рис. 8. Схема моделирования износа

МОДЕЛЬ 2 ЦИКЛИЧЕСКОГО ИЗНАШИВАНИЯ

$$V_{\mathbf{I}\mathbf{I}}^{w} = V_{w1} n_{\Sigma} \tag{19}$$

где V_{w1} — суммарный объем повреждений при микропиттинге за один период контакта, а n_{Σ} — количество периодов контакта за все время испытаний.

$$M_v = 2Rl_c \rho_{\epsilon}, \qquad \epsilon = 1,2$$
 (20)

где l_c — длина зоны контакта, ρ_1 — поверхностная плотность выступов абсолютно жесткой поверхности, ρ_2 — поверхностная плотность выступов деформируемой поверхности

$$t_c = \frac{l_c}{\omega_{c\kappa}R} \,, \tag{21}$$

где t_c - время контакта участка подвижной и неподвижной поверхностей, $\omega_{\rm ck}$ - угловая скорость скольжения ролика, R - радиус ролика.

Путь трения ролика по поверхности определим по формуле:

$$L_{w} = \frac{l_{c}(\omega_{\kappa} - \omega_{c\kappa})}{\omega_{c\kappa}}, \qquad (22)$$

где $\omega_{\rm K}$ – угловая скорость качения. За один период контакта

$$n_1 = \varphi_g \left(M_1 + \frac{L_w}{l_c} \right) = \varphi_g \left(2Rl_c \rho_1 + \frac{(\omega_K - \omega_{CK})}{\omega_{CK}} \right), \quad (23)$$

где φ_g — число контактирующих вершин шероховатости поверхностей

МОДЕЛЬ 2 ЦИКЛИЧЕСКОГО ИЗНАШИВАНИЯ

Схема Герцевского контактного взаимодействия вершины шероховатости

Модель разрушения поверхности трения при микропиттинге

Средний объем изношенной единицы неровности

Общий объем износа при качении проскальзыванием ролика ПО диску в условиях смешанного режима смазки будет иметь вид:

$$V_{\mu}^{w}(S_{\chi}) = \frac{\overline{V}}{n_{f}} \cdot n_{1}(S_{\chi}) \cdot n_{\Sigma} , \quad (24) \approx$$

где \bar{V} – средний объем износа одной единицы неровности, n_f – количество циклов, приводящее к разрушению, $n_1(S_x)$ – число микроконтактов за один период контакта, n_{Σ} – количество периодов контакта за все время испытаний.

Модель износа, выведенная И.В. Крагельским:

$$V_{\text{II}}^{w}(S_{\chi}) = \frac{\bar{V}}{n_{f}} \cdot n_{1}(S_{\chi}) \cdot n_{\Sigma}, \quad (24) \approx V_{\text{Kp}}^{w} = \frac{h_{\Delta}}{(\nu+1)d_{r}n_{f}} \cdot \frac{P}{p_{r}}.L_{w} = \frac{\bar{V}}{n_{f}} \cdot \frac{h_{\Delta}}{(\nu+1)d_{r}}, \quad (25)$$

где V_{Kp}^{w} – объем изношенного материала, мм³, h_{Δ} – внедрение (сближение), мм, P — нормальная нагрузка, H, L_w — путь трения, м, ν — параметр степенной аппроксимации 1-го участка опорной кривой профиля, d_r — средний диаметр пятна касания микронеровностей, мкм, n_f — число циклов, приводящее к отделению материала, p_r —фактическое давление, Π а.

ОПРЕДЕЛЕНИЕ ВНУТРЕННЕГО ТРЕНИЯ И ЗНАЧЕНИЯ ПАРАМЕТРОВ ПОРЯДКА ДЛЯ ВЕРИФИКАЦИИ МОДЕЛЕЙ: ОБОРУДОВАНИЕ И УСЛОВИЯ ИСПЫТАНИЙ

Оборудование

Условия испытаний

Рис. 9. Схема измерения реологических характеристик на реометре «StressTech» (Reologica, Швеция) и реометре высокого давления Anton Paar Physics MC301

Разрушающий тест

Вращение пластины диаметром 20 мм и зазором 0,4 мм осуществляли с постоянной скоростью (стационарный режим, **DIN 51810-1**).

Изученные смазочные материалы

Промышленно выпускаемые ПСМ (I, II, III), модельные (VM)

Присадки и их концентрации в СМ:

0D (Sh, C60), **1D** (SWCN, MWCN), **2D** (GO, LGF, N-LGF), **3D** (Graphite) 0,1; 0,25; 0,5; 1,0; 1,5 мас. %

ВНУТРЕННЕЕ ТРЕНИЕ. РАЗРУШАЮЩИЙ ТЕСТ

Рис. 10. Сдвиговые характеристики ПСМ (a) и их СК с УНС (δ)

Рис. 11. Модели течений

№ п/п	Реологическая модель	Автор
1	$\tau = \tau_B sign(\dot{\gamma}) + k \cdot (\dot{\gamma})^n,$ $n = 1, \tau_B > 0$	Закон Бингама-Шведова
2	$\tau = \tau_B + k \cdot (\dot{\gamma})^n, n < 1$	Закон Гершеля-Балкли
3	$\tau = k \cdot (\dot{\gamma})^n, n < 1$	Закон Освальда де-Виле
4	$ au=\eta\cdot\dot{\gamma}$	Закон Ньютона
5	$\tau = k \cdot \dot{\gamma} ^{n-1} \dot{\gamma}, n > 1$	Закон Рейнера

ВНУТРЕННЕЕ ТРЕНИЕ. РАЗРУШАЮЩИЙ ТЕСТ

Рис. 12. Зависимость динамической вязкости от температуры в дисперсиях: $a - \Pi \text{CM II } \text{и } \Pi \text{CM II/УHC}, \, 6 - \text{VM } \text{и VM/УHC}$

ВНУТРЕННЕЕ ТРЕНИЕ. НЕРАЗРУШАЮЩИЙ ТЕСТ

Рис. 13. Относительные величины предельного напряжения сдвига (τ_{rel}) для дисперсий ПСМ I–III / УНС (0.5 мас. %)

Рис. 14. Зависимости модуля накопления G' от концентрации присадок УНС. Штриховыми линиями обозначены значения G' для соответствующих ПСМ (a) и VM (b). Частота колебаний 1 Γ ц

ВНУТРЕННЕЕ ТРЕНИЕ УЧЕТОМ ПАРАМЕТРА ОРИЕНТАЦИИ. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПЬЕЗОВЯЗКОСТИ

$$\theta_{ ext{TAH}\Gamma}(p) = rac{\partial \ln(p)}{\partial p}$$

10² 10¹ 10² 10² 10² 10² 200 400 600 800 1000
$$\rho$$
, МПа

Рис. 15. Зависимость вязкости от давления:
$$T = 22$$
°C, $v = 1$ м/с

$$\eta = \eta_0 \exp(\theta p + S_x)$$

$$heta_{ ext{cek}}(p) = rac{\lnig(\eta(p)ig) - \lnig(\eta_0(p)ig)}{p}$$

Табл. 1. Коэффициент пьезовязкости (T=22°C, p=200МПа, $S_x=0.5$)

$ heta_{ ext{ m skcn}}$	$ heta_{cek}$	$ heta_{ exttt{ iny Tahr}}$	$\theta_{\text{мод}}(p, S_x)$
2,57	2,50	2,83	2,53
2,33	2,43	2,87	2,37
2,36	2,49	2,88	2,38
2,21	2,06	2,75	2,25
2,09	2,20	2,57	2,07
2,46	2,38	3,55	-
2,57	2,50	2,83	2,83
	2,57 2,33 2,36 2,21 2,09 2,46	2,57 2,50 2,33 2,43 2,36 2,49 2,21 2,06 2,09 2,20 2,46 2,38	2,57 2,50 2,83 2,33 2,43 2,87 2,36 2,49 2,88 2,21 2,06 2,75 2,09 2,20 2,57 2,46 2,38 3,55

ОПРЕДЕЛЕНИЕ ФРИКЦИОННЫХ И ПРОТИВОИЗНОСНЫХ ХАРАКТЕРИСТИК СМАЗОЧНЫХ МАТЕРИАЛОВ: ОБОРУДОВАНИЕ И УСЛОВИЯ ИСПЫТАНИЙ

Оборудование

Рис. 16. Машины трения: а – МТУ-01, б – трибометр с функцией интерферометрии, в – СМТ-1

Условия испытаний

МТУ-01: 0 - 250 H, пара трения «кольцо-диск», скорость скольжения 0,1...0,5 м/с.

Трибометр с функций интерферометрии: $250-600 \, \mathrm{H}$, пара трения «ролик-плоскость», скорость скольжения $0,01...0,06 \, \mathrm{m/c}$

CMT-1: 600 - 2000 H, пары трения «ролик-диск», «диск — частичный вкладыш», скорость скольжения 0.5..1.0 м/с

Изученные смазочные материалы

Промышленно выпускаемые ПСМ (I, II, III), модельные (VM) Лиотропные ЖК (на основе ПАВ1, ПАВ2, ПАВ3, ПАВ4)

Присадки и их концентрации в СМ:

0D (Sh, C60), **1D** (SWCN, MWCN), **2D** (GO, LGF, N-LGF), **3D** (Graphite) 0,1; 0,25; 0,5; 1,0; 1,5 mac. %

РЕЗУЛЬТАТЫ ТРИБОТЕХНИЧЕСКИХ ИСПЫТАНИЙ ВАЗЕЛИН/УНС В ГРАНИЧНОМ РЕЖИМЕ СМАЗКИ: противоизносные характеристики

Наилучшие противоизносные характеристики проявляет модельная система **VM/GO**

Влияние концентрации присадок УНС

GO (0,5 мас. %) – максимальное уменьшение площади пятна износа

Sh — максимальное повышение площади пятна износа

СХЕМА УСТАНОВКИ ДЛЯ ИДЕНТИФИКАЦИИ СМЕШАННОГО РЕЖИМА СМАЗКИ

Рис. 17. Трибометр с функцией интерферометрии: 1 — тензодатчик, 2 — высокоскоростная промышленная камера COGNEX VISION BY CVC-1000, 3 — оптический интерферометр, 4 —тело трения, 5 — полупрозрачный диск

Рис. 17. Стеклянный диск: а – внешний вид, б – структура диска (1 – толщина смазочного слоя, 2 – стеклянный диск, 3 – распределитель смазки)

Рис. 19. Отраженные лучи на поверхности Сr-покрытия (половинчатое зеркало) и ролике

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ДИСПЕРСИЙ ПСМ/УНС В СМЕШАННОМ РЕЖИМЕ СМАЗКИ: толщина смазочного слоя

Расчетная формула:

$$h_{\text{эксп}} = \frac{\lambda_{\text{CB}}}{2n} (N - \Delta \phi)$$

где λ_{CB} — длина волны видимого света в воздухе (600 нм), n — показатель преломления базового масла (1,5), N — порядок интерференционной полосы (N=1,2,3,... для светлых полос; $N=\frac{1}{2},\frac{3}{2},\frac{5}{2},...$ для темных полос), $\Delta \phi$ — фазовая постоянная (0,1).

Влияние типа присадок УНС

Таунит-М и GO – увеличивают толщину смазочного слоя на <u>20-25%</u>

ИНТЕРФЕРОГРАММЫ СМАЗОЧНЫХ КОМПОЗИЦИЙ ПСМ/УНС

Рис. 20. Интерференционные картины зависимости толщины СС от удельной нагрузки для ПСМ II/УНС при $v_{\rm CK}=20\frac{\rm MM}{\rm c}$: $a-({\rm GO})$ 350 МПа, $\delta-({\rm GO})$ 435 МПа, $\epsilon-({\rm GO})$ 510 МПа, $\epsilon-({\rm Tayhut-M})$ 350 МПа, $\delta-({\rm Tayhut-M})$ 435 МПа, $\epsilon-({\rm Tayhut-M})$ 510 МПа

Рис. 21. Зависимость толщины СС от удельного давления при $v_{\rm ck} = 20 \frac{{}^{\rm MM}}{c}$

КОРРЕЛЯЦИОННЫЕ ЗАВИСИМОСТИ ЭКСПЕРИМЕНТАЛЬНО ИЗМЕРЕННОГО МАССОВОГО ИЗНОСА И ДАННЫХ РАСЧЕТА С УЧЕТОМ ПАРАМЕТРА ОРИЕНТАЦИИ

Верификация математической модели 1 СТАЦИОНАРНОГО КАЧЕНИЯ С ПРОСКАЛЬЗЫВАНИЕМ

Рис. 22. Корреляционные зависимости между экспериментальными значениями массового износа и расчетными данными для ПСМ

Рис. 23. Зависимость потери массы ролика от времени для СМ для ПСМ II

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ О ЦЕНТРАЛЬНОЙ ТОЛЩИНЕ СС ПСМ/УНС

Верификация обобщенной модели Доусона для толщины центрального смазочного слоя при фрикционном взаимодействии с учетом параметра порядка

$$h(x_i, S_x) = h_{\text{II}.i} = \begin{cases} h_p + h_{\text{CM}}(S_x) - h_{\text{ynp}} - \frac{2h_m - h_i(S_x)}{2} \sin(\lambda x_i), h_i < 2h_m \\ h_p + h_{\text{CM}}(S_x) - h_{\text{ynp}}, & h_i > 2h_m \end{cases}$$

$$h_{\scriptscriptstyle ext{ЭКСП}} = rac{\lambda_{\scriptscriptstyle ext{CB}}}{2n} (N - \Delta \phi)$$

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ И РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ ДЛЯ СМАЗОЧНЫХ КОМПОЗИЦИЙ ПСМ/УНС С УЧЕТОМ ПАРАМЕТРА ОРИЕНТАЦИИ

Верификация математической модели 2. УСТАЛОСТНОГО ИЗНАШИВАНИЯ

Рис. 25. Зависимость количества циклов, приводящее к разрушению от n_{Σ} — количества периодов контакта за все время испытаний

Рис. 26. Микрофотография питтинговых пятен ролика из стали 40XH, ×10

ОБЩИЕ ВЫВОДЫ И ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

По результатам работы сформулированы следующие выводы.

- 1. Разработаны новые математические модели износа ролика при его качении с проскальзыванием по диску для смазочных материалов, позволяющие прогнозировать величины интенсивности изнашивания, распределения давления и толщины смазочного слоя в зависимости от типа, концентрации и ориентации присадок углеродных наноструктур.
- 2. Путем численного анализа для ПСМ получены численные данные зависимостей толщины смазочного слоя, распределения давления и интенсивности изнашивания от типа, ориентации и концентрации присадок углеродных наноструктур.

ОБЩИЕ ВЫВОДЫ И ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ (ПРОДОЛЖЕНИЕ)

- 3. Доказано, что ключевую роль в реологических свойствах смазочных материалов, наряду с характеристиками загустителя, играют тип, ориентация и концентрация присадок углеродных наноструктур с высокой насыпной плотностью. Их применение позволило создать стабильные (с точки зрения тиксотропии) реологические жидкости при концентрации присадки 0,5 мас.%. Смазочные материалы обладают равновесным седиментационным отношением 98%, а также расширенными рабочими диапазонами температур и скоростей сдвига при сохранении реологических характеристик.
- Применение *разрушающего сдвигового теста* позволило выявить общую тенденцию влияния пространственной организации УНС на величину значений напряжения сдвига, которую можно представить следующим рядом: 2D (GO, LGF, N-LGF) > 1D (Tayhur-M, SWCN) > 3D (Graphite) > 0D (C60).
- Использование *параметра ориентации* компонентов смазочного материала позволило объяснить влияния УНС на коэффициент пьезовязкости пластичных смазочных материалов (для ПСМ/УНС наблюдается снижение коэффициента пьезовязкости).

VI Международная научно-практическая конференция

ГРАФЕН И РОДСТВЕННЫЕ СТРУКТУРЫ: СИНТЕЗ, ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ (GRS-2025) Россия, г. Тамбов, 24 - 26 сентября 2025 г.

<u>Шилов М.А.</u>^{1,2}, Усольцева Н.В.²

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ПРИСАДОК УГЛЕРОДНЫХ НАНОСТРУКТУР НА ОРИЕНТАЦИОННЫЕ ПРОЦЕССЫ В СМАЗОЧНОМ СЛОЕ

^{1,2}Ивановский государственный энергетический университет имени В.И. Ленина, ²НИИ наноматериалов, Ивановский государственный университет

Работа поддержана госзаданием Минобрнауки РФ: проект № FZZM-2023-0009 для Ивановского государственного университета, руководитель <u>Н.В. Усольцева</u>