Package 'orthogene'

November 12, 2022

```
Type Package
Title Interspecies gene mapping
Version 1.5.1
Description `orthogene` is an R package for easy mapping of orthologous genes
      across hundreds of species. It pulls up-to-date gene ortholog mappings
      across **700+ organisms**.
      It also provides various utility functions to aggregate/expand
      common objects (e.g. data.frames, gene expression matrices, lists)
      using **1:1**, **many:1**, **1:many** or **many:many** gene mappings,
      both within- and between-species.
URL https://github.com/neurogenomics/orthogene
BugReports https://github.com/neurogenomics/orthogene/issues
License GPL-3
Depends R (>= 4.1)
VignetteBuilder knitr
biocViews Genetics, ComparativeGenomics, Preprocessing,
      Phylogenetics, Transcriptomics, GeneExpression
Imports dplyr,
      methods,
      stats,
      utils,
      Matrix,
      jsonlite,
      homologene,
      gprofiler2,
      babelgene,
      data.table,
      parallel,
      ggplot2,
      ggpubr,
      patchwork,
      DelayedArray,
      grr,
      repmis,
      ggtree,
      tools
```

2 R topics documented:

Suggests	remotes,
kn	
Bio	cStyle,
co	
	kdown,
	ırkdown,
he	
	that (>= 3.0.0),
	gyback,
	ger,
des	gick,
	rthemes,
Ca	
	ab.utils,
•	en,
	nomeInfoDbData,
apo	
ph	tools,
rpl	ylopic,
	eTools,
	olorBrewer,
	mage,
On	aDB
Roxygen	Note 7.2.2
Encodin	UTF-8
	stthat/edition 3
Ü	
Config/r	mdcheck/_R_CHECK_FORCE_SUGGESTS_ false
R topi	cs documented:
•	
	orthogene-package
	aggregate_mapped_genes
	all_genes
	convert_orthologs
	create_background
	exp_mouse
	exp_mouse_enst
	gprofiler_namespace
	gprofiler_orgs
	infer_species
	map_genes
	map_orthologs
	map_species
	plot_orthotree
	prepare_tree
	report_orthologs

Index

25

orthogene-package 3

orthogene-package

orthogene: Interspecies gene mapping

Description

orthogene is an R package for easy mapping of orthologous genes across hundreds of species.

Details

It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms. It also provides various utility functions to map common objects (e.g. data.frames, gene expression matrices, lists) onto 1:1 gene orthologs from any other species.

Author(s)

Maintainer: Brian Schilder <bri> Schilder@alumni.brown.edu> (ORCID)

Source

- GitHub: Source code and Issues submission.
- Author Site: orthogene was created by Brian M. Schilder.

See Also

Useful links:

- https://github.com/neurogenomics/orthogene
- Report bugs at https://github.com/neurogenomics/orthogene/issues

aggregate_mapped_genes

Aggregate/expand a gene matrix by gene mappings

Description

Aggregate/expand a gene matrix (gene_df) using a gene mapping data.frame (gene_map). Importantly, mappings can be performed across a variety of scenarios that can occur during within-species and between-species gene mapping:

1 gene : 1 genemany genes : 1 gene

• 1 gene : many genes

• many genes : many genes

For more details on how aggregation/expansion is performed, please see: many2many_rows.

Usage

```
aggregate_mapped_genes(
  gene_df,
 gene_map = NULL,
  input_col = "input_gene",
  output_col = "ortholog_gene",
  input_species = "human",
  output_species = input_species,
 method = c("gprofiler", "homologene", "babelgene"),
  agg_fun = "sum",
  agg_method = c("monocle3", "stats"),
  aggregate_orthologs = TRUE,
  transpose = FALSE,
 mthreshold = 1,
  target = "ENSG",
  numeric_ns = ""
  as_integers = FALSE,
  as\_sparse = TRUE,
  as_DelayedArray = FALSE,
 dropNA = TRUE,
  sort_rows = FALSE,
  verbose = TRUE
```

Arguments

gene_df

Input matrix where row names are genes.

gene_map

A data.frame that maps the current gene names to new gene names. This function's behaviour will adapt to different situations as follows:

- gene_map=<data.frame>: When a data.frame containing the gene key:value columns (specified by input_col and output_col, respectively) is provided, this will be used to perform aggregation/expansion.
- gene_map=NULL and input_species!=output_species: A gene_map is automatically generated by map_orthologs to perform interspecies gene aggregation/expansion.
- gene_map=NULL and input_species==output_species: A gene_map is automatically generated by map genes to perform withinspecies gene gene symbol standardization and aggregation/expansion.

input_col

Column name within gene_map with gene names matching the row names of X.

output_col

Column name within gene_map with gene names that you wish you map the row names of X onto.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.

all_genes 5

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

agg_fun Aggregation function.
agg_method Aggregation method.

aggregate_orthologs

[Optional] After performing an initial round of many:many aggregation/expansion with many2many_rows, ensure each orthologous gene only appears in one row

by using the aggregate_rows function (default: TRUE).

transpose gene_df before mapping genes.

mthreshold maximum number of results per initial alias to show. Shows all by default.

target target namespace.

numeric_ns namespace to use for fully numeric IDs (list of available namespaces).

as_integers Force all values in the matrix to become integers, by applying floor (default:

FALSE).

as_sparse Convert aggregated matrix to sparse matrix.

as_DelayedArray

Convert aggregated matrix to DelayedArray.

dropNA Drop genes assigned to NA in groupings.
sort_rows Sort gene_df rows alphanumerically.

verbose Print messages.

Value

Aggregated matrix

Examples

all_genes Get all genes

Description

Return all known genes from a given species.

6 all_genes

Usage

```
all_genes(
   species,
   method = c("gprofiler", "homologene", "babelgene"),
   ensure_filter_nas = FALSE,
   run_map_species = TRUE,
   verbose = TRUE,
   ...
)
```

Arguments

species

Species to get all genes for. Will first be standardised with map_species.

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

ensure_filter_nas

Perform an extra check to remove genes that are NAs of any kind.

run_map_species

Standardise species names with map_species first (Default: TRUE).

verbose

Print messages.

.. Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Details

References homologeneData or gconvert.

Value

Table with all gene symbols from the given species.

```
genome_mouse <- all_genes(species = "mouse")
genome_human <- all_genes(species = "human")</pre>
```

convert_orthologs 7

convert_orthologs

Map genes from one species to another

Description

Currently supports ortholog mapping between any pair of 700+ species. Use map_species to return a full list of available organisms.

Usage

```
convert_orthologs(
  gene_df,
  gene_input = "rownames",
  gene_output = "rownames"
  standardise_genes = FALSE,
  input_species,
  output_species = "human",
  method = c("gprofiler", "homologene", "babelgene"),
  drop_nonorths = TRUE,
  non121_strategy = "drop_both_species",
  agg_fun = NULL,
  mthreshold = Inf,
  as_sparse = FALSE,
  as_DelayedArray = FALSE,
  sort_rows = FALSE,
  verbose = TRUE,
)
```

Arguments

gene_df

Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table.ortibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments. *Note*: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input

Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

8 convert_orthologs

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output

How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

• "columns":

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

"dict_rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input gene.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

drop_nonorths non121_strategy

Drop genes that don't have an ortholog in the output_species.

How to handle genes that don't have 1:1 mappings between input_species:output_species.

• "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or

(DEFAULT).

output_species

Options include:

• "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.

- "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species.

convert_orthologs 9

- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

agg_fun

Aggregation function passed to aggregate_mapped_genes. Set to NULL to skip aggregation step (default).

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (*DEFAULT*: Inf).

as_sparse

Convert gene_df to a sparse matrix. Only works if gene_df is one of the following classes:

- matrix
- Matrix
- data.frame
- data.table
- tibble

If gene_df is a sparse matrix to begin with, it will be returned as a sparse matrix (so long as gene_output= "rownames" or "colnames").

as_DelayedArray

Convert aggregated matrix to DelayedArray.

sort_rows

Sort gene_df rows alphanumerically.

verbose

Print messages.

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

```
gene_df with orthologs converted to the output_species.

Instead returned as a dictionary (named list) if gene_output="dict" or "dict_rev".
```

```
data("exp_mouse")
gene_df <- convert_orthologs(
    gene_df = exp_mouse,
    input_species = "mouse"
)</pre>
```

10 create_background

create_background

Create gene background

Description

Create a gene background as the union/intersect of all orthologs between input species (species1 and species2), and the output_species. This can be useful when generating random lists of background genes to test against in analyses with data from multiple species (e.g. enrichment of mouse cell-type markers gene sets in human GWAS-derived gene sets).

Usage

```
create_background(
  species1,
  species2,
  output_species = "human",
  as_output_species = TRUE,
  use_intersect = TRUE,
  bg = NULL,
  gene_map = NULL,
  method = "homologene",
  non121_strategy = "drop_both_species",
  verbose = TRUE
)
```

Arguments

species1 First species.

species2 Second species.

output_species Species to convert all genes from species1 and species2 to first. Default="human",

but can be to either any species supported by **orthogene**, including species1 or

species2.

as_output_species

Return background gene list as output_species orthologs, instead of the gene

names of the original input species.

use_intersect When species1 and species2 are both different from output_species, this

argument will determine whether to use the intersect (TRUE) or union (FALSE) of

all genes from species1 and species2.

bg User supplied background list that will be returned to the user after removing

duplicate genes.

method R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

exp_mouse 11

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

verbose

Print messages.

Value

Background gene list.

Examples

exp_mouse

Gene expression data: mouse

Description

 $Mean\ pseudobulk\ single-cell\ RNA-seq\ gene\ expression\ matrix.$

Data originally comes from Zeisel et al., 2018 (Cell).

Usage

```
data("exp_mouse")
```

Format

sparse matrix

12 gprofiler_namespace

Source

Publication ctd <- ewceData::ctd() exp_mouse <- as(ctd[[1]]\$mean_exp, "sparseMatrix")
usethis::use_data(exp_mouse, overwrite = TRUE)</pre>

exp_mouse_enst

Transcript expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq Transcript expression matrix. Data originally comes from Zeisel et al., 2018 (Cell).

Usage

```
data("exp_mouse_enst")
```

Format

sparse matrix

Source

Publication data("exp_mouse") mapped_genes <- map_genes(genes = rownames(exp_mouse)[seq(1,100)],
target = "ENST", species = "mouse", drop_na = FALSE) exp_mouse_enst <- exp_mouse[mapped_genes\$input,]
rownames(exp_mouse_enst) <- mapped_genes\$target all_nas <- orthogene:::find_all_nas(rownames(exp_m
exp_mouse_enst <- exp_mouse_enst[!all_nas,] exp_mouse_enst <- phenomix::add_noise(exp_mouse_enst)
usethis::use_data(exp_mouse_enst, overwrite = TRUE)</pre>

gprofiler_namespace

gconvert namespaces

Description

Available namespaces used by link[gprofiler2]gconvert.

Format

data.frame

Source

gProfiler site

```
#### Manually-prepared CSV #### path <- "inst/extdata/gprofiler_namespace.csv.gz" gprofiler_namespa
<- data.table::fread(path)</pre>
```

gprofiler_orgs 13

gprofiler_orgs

Reference organisms

Description

Organism for which gene references are available via gProfiler API. Used as a backup if API is not available.

Format

data.frame

Source

gProfiler site

NOTE!: Must run usethis::use_data for all internal data at once. # otherwise, the prior
internal data will be overwritten. #### Internal data 1: gprofiler_namespace #### ####
Manually-prepared CSV #### path <- "inst/extdata/gprofiler_namespace.csv.gz" gprofiler_namespace
<- data.table::fread(path) #### Internal data 2: gprofiler_orgs gprofiler_orgs <- orthogene:::get_or
Save #### usethis::use_data(gprofiler_orgs,gprofiler_namespace, overwrite = TRUE,
internal=TRUE)</pre>

infer_species

Infer species from gene names

Description

Infers which species the genes within gene_df is from. Iteratively test the percentage of gene_df genes that match with the genes from each test_species.

Usage

```
infer_species(
  gene_df,
  gene_input = "rownames",
  test_species = c("human", "monkey", "rat", "mouse", "zebrafish", "fly"),
  method = c("homologene", "gprofiler", "babelgene"),
  make_plot = TRUE,
  show_plot = TRUE,
  verbose = TRUE
)
```

Arguments

gene_df

Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

14 infer_species

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments. *Note*: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input

Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

test_species

Which species to test for matches with. If set to NULL, will default to a list of humans and 5 common model organisms. If test_species is set to one of the following options, it will automatically pull all species from that respective package and test against each of them:

• "homologene": 20+ species (default)

• "gprofiler" : 700+ species

• "babelgene": 19 species

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

make_plot Make a plot of the results.

show_plot Print the plot of the results.

verbose Print messages.

Value

An ordered dataframe of test_species from best to worst matches.

```
data("exp_mouse")
matches <- orthogene::infer_species(gene_df = exp_mouse[1:200,])</pre>
```

map_genes 15

map_genes	Map genes
-----------	-----------

Description

Input a list of genes, transcripts, proteins, SNPs, or genomic ranges in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and return a table with standardised gene symbols (the "names" column).

Usage

```
map_genes(
   genes,
   species = "hsapiens",
   target = "ENSG",
   mthreshold = Inf,
   drop_na = FALSE,
   numeric_ns = "",
   run_map_species = TRUE,
   verbose = TRUE
```

Arguments

genes Gene list. Species to map against. species target target namespace. mthreshold maximum number of results per initial alias to show. Shows all by default. Drop all genes without mappings. Sets gprofiler2::gconvert(filter_na=) drop_na as well an additional round of more comprehensive NA filtering by orthogene. namespace to use for fully numeric IDs (list of available namespaces). numeric_ns run_map_species Standardise species names with map_species first (Default: TRUE). verbose Print messages.

Details

Uses gconvert. The exact contents of the output table will depend on target parameter. See ?gprofiler2::gconvert for more details.

Value

Table with standardised genes.

```
genes <- c(
    "Klf4", "Sox2", "TSPAN12", "NM_173007", "Q8BKT6",
    "ENSMUSG00000012396", "ENSMUSG00000074637"
)
mapped_genes <- map_genes(</pre>
```

16 map_orthologs

```
genes = genes,
    species = "mouse"
)
```

map_orthologs

Map orthologs

Description

Map orthologs from one species to another.

Usage

```
map_orthologs(
  genes,
  standardise_genes = FALSE,
  input_species,
  output_species = "human".
  method = c("gprofiler", "homologene", "babelgene"),
  mthreshold = Inf,
  verbose = TRUE,
)
```

Arguments

genes

can be a mixture of any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to standardised HGNC symbol format.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).

verbose

Print messages.

. . .

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them map_species 17

not being true biological 1:1 orthologs.

For more details, please see here.

Details

map_orthologs() is a core function within convert_orthologs(), but does not have many of the extra checks, such as non121_strategy) and drop_nonorths.

Value

Ortholog map data.frame with at least the columns "input_gene" and "ortholog_gene".

Examples

```
data("exp_mouse")
gene_map <- map_orthologs(
    genes = rownames(exp_mouse),
    input_species = "mouse"
)</pre>
```

map_species

Standardise species names

Description

Search gprofiler database for species that match the input text string. Then translate to a standardised species ID.

Usage

```
map_species(
  species = NULL,
  search_cols = c("display_name", "id", "scientific_name", "taxonomy_id"),
  output_format = c("scientific_name", "id", "display_name", "taxonomy_id", "version"),
  method = c("homologene", "gprofiler", "babelgene"),
  use_local = TRUE,
  verbose = TRUE
)
```

Arguments

species

Species query (e.g. "human", "homo sapiens", "hapiens", or 9606). If given a

list, will iterate queries for each item. Set to NULL to return all species.

search_cols

Which columns to search for species substring in metadata API.

output_format

Which column to return.

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

18 plot_orthotree

use_local If TRUE default, map species uses a locally stored version of the species metadata table instead of pulling directly from the gprofiler API. Local version may not be fully up to date, but should suffice for most use cases. verbose

Print messages.

Value

```
Species ID of type output_format
```

Examples

```
ids <- map_species(species = c(</pre>
    "human", 9606, "mus musculus",
    "fly", "C elegans"
))
```

plot_orthotree

Create a phylogenetic tree of shared orthologs

Description

Automatically creates a phylogenetic tree plot annotated with metadata describing how many orthologous genes each species shares with the reference_species ("human" by default).

Usage

```
plot_orthotree(
  tree = NULL,
  orth_report = NULL,
  species = NULL,
  method = c("homologene", "gprofiler", "babelgene"),
  tree_source = "timetree",
  non121_strategy = "drop_both_species",
  reference_species = "human",
  clades = list(Primates = c("Homo sapiens", "Macaca mulatta"), Eutherians =
   c("Homo sapiens", "Mus musculus", "Bos taurus"), Mammals = c("Homo sapiens",
  "Mus musculus", "Bos taurus", "Ornithorhynchus anatinus", "Monodelphis domestica"),
  Tetrapods = c("Homo sapiens", "Mus musculus", "Gallus gallus", "Anolis carolinensis",
    "Xenopus tropicalis"), Vertebrates = c("Homo sapiens", "Mus musculus",
   "Gallus gallus", "Anolis carolinensis", "Xenopus tropicalis", "Danio rerio")),
  scaling_factor = 1,
  show_plot = TRUE,
 save_paths = c(tempfile(fileext = ".ggtree.pdf"), tempfile(fileext = ".ggtree.png")),
  width = 10,
  height = 10,
  mc.cores = 1,
  verbose = TRUE
)
```

plot_orthotree 19

Arguments

tree

A phylogenetic tree of class phylo. If no tree is provided (NULL) a 100-way multiz tree will be imported from UCSC Genome Browser.

orth_report

An ortholog report from one or more species generated by report_orthologs.

species

Species to include in the final plot. If NULL, then all species from the given database (method) will be included (via map_species), so long as they also exist in the tree.

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

tree_source

Can be one of the following:

- "timetree2022": Import and prune the TimeTree >147k species phylogenetic tree. Can also simply type "timetree".
- "timetree2015": Import and prune the TimeTree >50k species phylogenetic tree.
- "OmaDB":

Construct a tree from OMA (Orthologous Matrix browser) via the getTaxonomy function. *NOTE:* Does not contain branch lengths, and therefore may have limited utility.

 "UCSC": Import and prune the UCSC 100-way alignment phylogenetic tree (hg38 version).

• "<path>":

Read a tree from a newick text file from a local or remote URL using read.tree.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

20 plot_orthotree

• "sum", "mean", "median", "min" or "max":

When gene_df is a matrix and gene_output="rownames", these options
will aggregate many-to-one gene mappings (input_species-to-output_species)
after dropping any duplicate genes in the output_species.

reference_species

Reference species.

clades A named list of clades each containing list fo species to define the respective

clade using MRCA.

scaling_factor How much to scale y-axis parameters (e.g. offset) by.

show_plot Whether to print the final tree plot.

save_paths Paths to save plot to.
width Saved plot width.
height Saved plot height.

mc.cores Number of cores to parallelise different steps with.

verbose Print messages.

Value

A list containing:

- plot: Annotated ggtree object.
- tree: The pruned, standardised phylogenetic tree used in the plot.
- orth_report : Ortholog reports for each species against the reference_species.
- metadata: Metadata used in the plot, including silhouette PNG ids from phylopic.
- clades : Metadata used for highlighting clades.
- method: method used.
- reference_species : reference_species used.
- save_paths : save_paths to plot.

Source

ggtree tutorial

prepare_tree 21

prepare_tree

Prepare a phylogenetic tree

Description

Import a phylogenetic tree and then conduct a series of optional standardisation steps. Optionally, if output_format is not NULL, species names from both the tree and the species argument will first be standardised using map_species.

Usage

```
prepare_tree(
   tree_source = "timetree",
   species = NULL,
   output_format = "scientific_name",
   run_map_species = c(TRUE, TRUE),
   method = c("homologene", "gprofiler", "babelgene"),
   force_ultrametric = TRUE,
   age_max = NULL,
   show_plot = TRUE,
   verbose = TRUE,
   ...
)
```

Arguments

tree_source

Can be one of the following:

- "timetree2022": Import and prune the TimeTree >147k species phylogenetic tree. Can also simply type "timetree".
- "timetree2015": Import and prune the TimeTree >50k species phylogenetic tree.
- "OmaDB":

Construct a tree from OMA (Orthologous Matrix browser) via the getTaxonomy function. *NOTE:* Does not contain branch lengths, and therefore may have limited utility.

- "UCSC": Import and prune the UCSC 100-way alignment phylogenetic tree (hg38 version).
- "<path>":
 Read a tree from a newick text file from a local or remote URL using read.tree.

species Species names to subset the tree by (after standardise_species step).

output_format
run_map_species

Which column to return.

Whether to first standardise species names with map_species.

method

R package to use for gene mapping:

• "gprofiler": Slower but more species and genes.

22 report_orthologs

- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

force_ultrametric

Whether to force the tree to be ultrametric (i.e. make all tips the same date)

using force.ultrametric.

age_max Rescale the edges of the tree into units of millions of years (MY) instead than

evolutionary rates (e.g. $dN/dS\ ratios).$ Only used if $age_max,$ the $max\ number$,

is numeric. Times are computed using makeChronosCalib and chronos.

show_plot Show a basic plot of the resulting tree.

verbose Print messages.

... Additional arguments passed to makeChronosCalib.

Value

A filtered tree of class "phylo" (with standardised species names).

Source

TimeTree 5: An Expanded Resource for Species Divergence Times

Examples

```
species <- c("human","chimp","mouse")
tr <- orthogene::prepare_tree(species = species)</pre>
```

report_orthologs

Report orthologs

Description

Identify the number of orthologous genes between two species.

Usage

```
report_orthologs(
   target_species = "mouse",
   reference_species = "human",
   standardise_genes = FALSE,
   method_all_genes = c("homologene", "gprofiler", "babelgene"),
   method_convert_orthologs = method_all_genes,
   drop_nonorths = TRUE,
   non121_strategy = "drop_both_species",
   round_digits = 2,
   return_report = TRUE,
   mc.cores = 1,
   verbose = TRUE,
   ...
)
```

report_orthologs 23

Arguments

target_species Target species.

reference_species

Reference species.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

method_all_genes

R package to to use in all_genes step:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

method_convert_orthologs

R package to to use in convert_orthologs step:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

drop_nonorths
non121_strategy

Drop genes that don't have an ortholog in the output_species.

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

return_report Return just the ortholog mapping between two species (FALSE) or return both the ortholog mapping as well a data. frame of the report statistics (TRUE).

24 report_orthologs

mc.cores Number of cores to parallelise each target_species with.verbose Print messages.Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

A list containing:

- map: A table of inter-species gene mappings.
- report : A list of aggregate orthology report statistics.

If >1 target_species are provided, then a table of aggregated report statistics concatenated across species will be returned instead.

```
orth_fly <- orthogene::report_orthologs(
   target_species = "fly",
   reference_species = "human"
)</pre>
```

Index

```
* datasets
    exp_mouse, 11
    exp_mouse_enst, 12
aggregate_mapped_genes, 3, 9
aggregate_rows, 5
all_genes, 5, 23
chronos, 22
convert_orthologs, 7, 23
create\_background, 10
data.frame, 3, 4
DelayedArray, 5, 9
exp_mouse, 11
exp\_mouse\_enst, 12
floor, 5
force.ultrametric, 22
gconvert, 6, 12, 15
getTaxonomy, 19, 21
gorth, 6, 8, 9, 16, 23, 24
gprofiler_namespace, 12
gprofiler_orgs, 13
homologene, 6, 9, 16, 24
{\tt homologeneData}, {\color{red} 6}
infer\_species, 13
makeChronosCalib, 22
many2many_rows, 3, 5
map_genes, 4, 10, 15
map_orthologs, 4, 10, 16
map_species, 4, 6-8, 15, 16, 17, 18, 19, 21
MRCA, 20
orthogene (orthogene-package), 3
orthogene-package, 3
phylo, 19
plot_orthotree, 18
prepare_tree, 21
read.tree, 19, 21
report_orthologs, 19, 22
```