Antecedentes

Leonel Mayorga López

11 de junio de 2024

1. Ramas de equilibrio en modelos de ecuaciones diferenciales

Sea $F: D_F \subseteq \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ una función que define un modelo de ecuaciones diferenciales tal que $F(x,p) = \frac{d\mathbf{x}}{dt}$ donde $\mathbf{x}: D_{\mathbf{t}} \subseteq \mathbb{R} \to \mathbb{R}^n$, $t \in D_{\mathbf{t}}$ y $p \in \mathbb{R}$ con $n \in \mathbb{N}$.

Entonces, (\mathbf{x}, p) es un punto de equilibrio si F(x, p) = 0.

Si existe una función $\mathbf{x}:D_{\mathbf{p}}\subset\mathbb{R}\to\mathbb{R}^n$ continuamente diferenciable tal que $F(\mathbf{x}(p),p)=0$ para toda $p\in D_{\mathbf{p}}$, entonces \mathbf{x} será una rama de equilibrio de F.

El Teorema de la Función Implícita asegura que existen ramas de equilibrio y estas son únicas si la función F satisface que [**Doedel**]:

- $F(\mathbf{x}_0, p_0) = 0 \text{ con } \mathbf{x}_0 \in \mathbb{R}^n \text{ y } p_0 \in \mathbb{R}$
- La matriz jacobiana $F_{\mathbf{x}}(\mathbf{x}_0, p_0)$ debe tener una matriz inversa acotada, es decir, para algún M > 0,

$$||F_{\mathbf{x}}(\mathbf{x}_0, p_0)^{-1}|| \le M$$

• $F(\mathbf{x}_0, p_0)$ y $F_{\mathbf{x}}(\mathbf{x}_0, p_0)$ son continuamente diferenciables en D_F

Además, este teorema asegura que

$$\frac{d\mathbf{x}}{dp} = F_{\mathbf{x}}(x(p), p)^{-1} F_p(x(p), p)$$

2. Estabilidad en las ramas de equilibrio

Un punto estable sucede cuando en el punto \mathbf{x}_0 y p_0 la parte real de los eigenvalores λ del jacobiano $F_{\mathbf{x}}(\mathbf{x}_0, p_0)$ son negativas y un punto inestable sucede cuando al menos uno es positivo.

3. Bifurcación de punto límite en un modelo de ecuaciones diferenciales

Una bifurcación de punto límite (LP por sus siglas en inglés) sucede cuando en el punto \mathbf{x}_0 y p_0 los eigenvalores λ del jacobiano $F_{\mathbf{x}}(\mathbf{x}_0, p_0)$ son cero. En este punto puede haber dos ramas de equilibrio.

1

Cuando n=1 estas bifurcaciones se pueden clasificar [McCann] en:

- \blacksquare Nodo de Silla: Sucede cuando $\frac{\partial F}{\partial p} \neq 0$ y $\frac{\partial^2 F}{\partial x^2} \neq 0$
- Transcrítica: Sucede cuando $\frac{\partial F}{\partial p} = 0$ y $\frac{\partial^2 F}{\partial x^2} \neq 0$
- Pitchfork: Sucede cuando $\frac{\partial F}{\partial p} = 0$, $\frac{\partial^2 F}{\partial p^2} = 0$, $\frac{\partial^2 F}{\partial p \partial x} \neq 0$, $\frac{\partial^3 F}{\partial p^2 \partial x} \neq 0$ y $\frac{\partial^3 F}{\partial x^3} \neq 0$

4. Ramas periódicas en un modelo de ecuaciones diferenciales

Una solución periódica sucede cuando existe un tiempo $T \in D_{\mathbf{t}}$ que satisface:

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, p)$$
$$\mathbf{x}(t) = \mathbf{x}(t+T)$$

Entonces una rama periódica, de manera similar a la de equilibrio, es una función continua $\mathbf{x}: D_p \subseteq \mathbb{R} \to \mathbb{R}^n$ tal que la solución de $F(\mathbf{x}(p), p)$ es periódica para toda $p \in D_p$.

5. Bifurcaciones de Hopf

Una bifurcación de Hopf sucede cuando en el punto \mathbf{x}_0 y p_0 los eigenvalores λ del jacobiano $F_{\mathbf{x}}(\mathbf{x}_0, p_0)$ son puramente imaginarios, es decir $\lambda = \pm i\beta$ con $\beta \in \mathbb{R}^n$.

Una bifurcación de Hopf se caracteriza por ser un punto de equilibrio y ser un punto con solución periódica, es decir, es la intersección entre una rama de equilibrio y una rama periódica.