02610 Optimization and Data Fitting

Week 4: Quasi-Newton Methods

Yiqiu Dong

DTU Compute Technical University of Denmark

Steepest descent and Newton's methods

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^2(\mathbb{R}^n)$

Steepest descent method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{g}_k, \quad \mathbf{g}_k = \nabla f(\mathbf{x}_k)$$

- Pros: Simple (only need the gradient)
- Cons: Slow (linear convergence)
- Newton's method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla^2 f(\mathbf{x}_k)^{-1} \mathbf{g}_k$$

- Pros: Fast (local quadratic convergence)
- ► Cons: Expensive (need the Hessian and solution of linear system)

Quasi-Newton method

Idea: Similar as Newton's method, but we use a matrix B_k to approximate the Hessian $\nabla^2 f(\mathbf{x}_k)$. The matrix B_k should be easy to compute, $B_k \mathbf{p}_k = -\mathbf{g}_k$ should be easy to solve, and the method should still keep good convergence rate.

Quasi-Newton direction is defined by

$$B_k \boldsymbol{p}_k = -\boldsymbol{g}_k$$
 or $\boldsymbol{p}_k = -H_k \boldsymbol{g}_k$,

where H_k is an inverse Hessian approximation.

Quasi-Newton iteration is defined as

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k.$$

Quasi-Newton method

Algorithm

```
Set \mathbf{x}_0 and B_0 \succ 0.

loop
Solve B_k \mathbf{p}_k = -\mathbf{g}_k;
Find the step length \alpha_k;
Update \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k;
Compute B_{k+1} from B_k
end loop
```

- We can also use an inverse Hessian approximation H_k instead of B_k , i.e., in Step 1 to compute $\boldsymbol{p}_k = -H_k \boldsymbol{g}_k$.
- Basic idea for updating B_k : Since B_k should already contain information on the Hessian, we only need update it accordingly.
- Different quasi-Newton method updates B_k differently.

Secant equation

Consider the second-order Taylor expansion as an approximation of f(x), i.e.

$$f(\mathbf{x}) \approx f(\mathbf{x}_k) + \mathbf{g}_k^T(\mathbf{x} - \mathbf{x}_k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_k)^T \nabla^2 f(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)$$

Compute the gradient on x, and obtain

$$abla^2 f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k) \approx \boldsymbol{g}-\boldsymbol{g}_k.$$

Set $s_k = x_{k+1} - x_k$ and $y_k = g_{k+1} - g_k$. We choose a Hessian approximation B_{k+1} or an inverse Hessian approximation H_{k+1} satisfy the secant equation:

$$B_{k+1}s_k = y_k$$
 or $H_{k+1}y_k = s_k$.

Secant equation

Consider a Hessian approximation B_{k+1} satisfying the secant equation:

$$B_{k+1}\boldsymbol{s}_k=\boldsymbol{y}_k,$$

where $\boldsymbol{s}_k = \boldsymbol{x}_{k+1} - \boldsymbol{x}_k$ and $\boldsymbol{y}_k = \boldsymbol{g}_{k+1} - \boldsymbol{g}_k$.

For $f \in \mathcal{C}^2(\mathbb{R})$, according to the secant equation we have

$$B_{k+1} = \frac{f'(x_{k+1}) - f'(x_k)}{x_{k+1} - x_k}.$$

- B_{k+1} is the slope of the secant line from $(x_k, f(x_k))$ and $(x_{k+1}, f(x_{k+1}))$.
- B_{k+1} is an approximation of $f''(x_k)$.
- In this case, with a unit step length the quasi-newton method is the same as the secant method for solving f'(x) = 0.

Secant equation

We define a quadratic model of the form

$$m_{k+1}(\mathbf{x}) = f(\mathbf{x}_k) + \mathbf{g}_k^T(\mathbf{x} - \mathbf{x}_k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_k)^T B_{k+1}(\mathbf{x} - \mathbf{x}_k),$$

which satisfies

$$\nabla m_{k+1}(\boldsymbol{x}_k) = \boldsymbol{g}_k, \qquad \qquad \nabla m_{k+1}(\boldsymbol{x}_{k+1}) = \boldsymbol{g}_{k+1}.$$

- The quasi-Newton method is basically using Newton direction of this quadratic approximation as the search direction.
- The second condition is equivalent to the secant equation.

Symmetric rank-1 (SR1) method

Let's try an update of the form

$$B_{k+1} = B_k + \sigma \mathbf{v} \mathbf{v}^T, \qquad \sigma \in \{-1, 1\}.$$

The secant equation $B_{k+1} \mathbf{s}_k = \mathbf{y}_k$ yields

$$\mathbf{y}_k = B_k \mathbf{s}_k + (\sigma \mathbf{v}^\mathsf{T} \mathbf{s}_k) \mathbf{v}.$$

This only holds if \mathbf{v} is a multiple of $\mathbf{y}_k - B_k \mathbf{s}_k$. We set $\mathbf{v} = \delta(\mathbf{y}_k - B_k \mathbf{s}_k)$ and substitute it into the above equation, we obtain

$$\sigma = \operatorname{sign} ((\boldsymbol{y}_k - B_k \boldsymbol{s}_k)^T \boldsymbol{s}_k), \qquad \delta^2 = |(\boldsymbol{y}_k - B_k \boldsymbol{s}_k)^T \boldsymbol{s}_k|^{-1}.$$

SR1 update:

$$B_{k+1} = B_k + \frac{(\boldsymbol{y}_k - B_k \boldsymbol{s}_k)(\boldsymbol{y}_k - B_k \boldsymbol{s}_k)^T}{(\boldsymbol{y}_k - B_k \boldsymbol{s}_k)^T \boldsymbol{s}_k}.$$

Symmetric rank-1 (SR1) method

According to the **Sherman-Morrison formula**:

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u},$$

we obtain SR1 inverse Hessian update:

$$H_{k+1} = H_k + \frac{(\boldsymbol{s}_k - H_k \boldsymbol{y}_k)(\boldsymbol{s}_k - H_k \boldsymbol{y}_k)^T}{(\boldsymbol{s}_k - H_k \boldsymbol{y}_k)^T \boldsymbol{y}_k}.$$

- Pros: Simple and cheap.
- Cons:
 - Does not preserve positive definiteness.

Solution: Combining with trust-region method.

Numerically unstable: when $(\mathbf{s}_k - H_k \mathbf{y}_k)^T \mathbf{y}_k$ is close to zero, it breaks down.

Solution: Skipping the update if the denominator is small.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Instead of rank-1 update, let's try a rank-2 update:

$$B_{k+1} = B_k + \sigma_1 \boldsymbol{u} \boldsymbol{u}^T + \sigma_2 \boldsymbol{v} \boldsymbol{v}^T.$$

The secant equation $B_{k+1} s_k = y_k$ yields

$$\mathbf{y}_k - B_k \mathbf{s}_k = (\sigma_1 \mathbf{u}^T \mathbf{s}_k) \mathbf{u} + (\sigma_2 \mathbf{v}^T \mathbf{s}_k) \mathbf{v}.$$

Setting $\mathbf{u} = \mathbf{y}_k$ and $\mathbf{v} = B_k \mathbf{s}_k$ and solving for σ_1, σ_2 , we obtain **BFGS update**:

$$B_{k+1} = B_k - \frac{B_k \mathbf{s}_k \mathbf{s}_k^\mathsf{T} B_k}{\mathbf{s}_k^\mathsf{T} B_k \mathbf{s}_k} + \frac{\mathbf{y}_k \mathbf{y}_k^\mathsf{T}}{\mathbf{y}_k^\mathsf{T} \mathbf{s}_k}$$

BFGS method

According to the **Sherman-Morrison-Woodbury formula**:

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}$$

we obtain BFGS inverse Hessian update:

$$H_{k+1} = (I - \rho_k \boldsymbol{s}_k \boldsymbol{y}_k^T) H_k (I - \rho_k \boldsymbol{y}_k \boldsymbol{s}_k^T) + \rho_k \boldsymbol{s}_k \boldsymbol{s}_k^T$$

where $\rho_k = 1/(\boldsymbol{y}_k^T \boldsymbol{s}_k)$.

• The BFGS update is still very cheap, only $O(n^2)$ per update.

BFGS method

Algorithm

Set \mathbf{x}_0 and $B_0 \succ 0$ OR $H_0 \succ 0$.

loop

Compute search direction by solving $B_k \mathbf{p}_k = -\mathbf{g}_k$ OR $\mathbf{p}_k = -H_k \mathbf{g}_k$;

Update $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$, where α_k satisfies the Wolfe conditions;

Define $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$ and $\mathbf{y}_k = \mathbf{g}_{k+1} - \mathbf{g}_k$;

Update B_{k+1} from B_k OR H_{k+1} from H_k according to the BFGS updates;

end loop

Positive definiteness

If $\mathbf{s}_k^T \mathbf{y}_k > 0$ (curvature condition), the BFGS update preserves positive definiteness of H_k .

Proof: According to BFGS inverse Hessian update, for any $\mathbf{\textit{u}} \in \mathbb{R}^n$ we have

$$\boldsymbol{u}^T H_{k+1} \boldsymbol{u} = (\boldsymbol{u} - \rho_k (\boldsymbol{s}_k^T \boldsymbol{u}) \boldsymbol{y}_k)^T H_k (\boldsymbol{u} - \rho_k (\boldsymbol{s}_k^T \boldsymbol{u}) \boldsymbol{y}_k) + \rho_k (\boldsymbol{s}_k^T \boldsymbol{u})^2.$$

- If $H_k \succ 0$, then both terms in the right-hand side are nonnegative.
- The second term is zero only if $\mathbf{s}_k^T \mathbf{u} = 0$, and in this case the first term is zero only if $\mathbf{u} = 0$.

Davidon-Fletcher-Powell (DFP) method

Alternatively, we can compute a rank-2 update on the inverse Hessian approximate H_k :

$$H_{k+1} = H_k + \sigma_1 \boldsymbol{u} \boldsymbol{u}^T + \sigma_2 \boldsymbol{v} \boldsymbol{v}^T.$$

The secant equation $\boldsymbol{s}_k = H_{k+1} \boldsymbol{y}_k$ yields

$$\mathbf{s}_k - H_k \mathbf{y}_k = (\sigma_1 \mathbf{u}^T \mathbf{y}_k) \mathbf{u} + (\sigma_2 \mathbf{v}^T \mathbf{y}_k) \mathbf{v}.$$

Setting $\boldsymbol{u} = \boldsymbol{s}_k$ and $\boldsymbol{v} = H_k \boldsymbol{y}_k$ and solving for σ_1, σ_2 , we obtain **DFP inverse Hessian update**:

$$H_{k+1} = H_k - \frac{H_k \mathbf{y}_k \mathbf{y}_k^T H_k}{\mathbf{y}_k^T H_k \mathbf{y}_k} + \frac{\mathbf{s}_k \mathbf{s}_k^T}{\mathbf{y}_k^T \mathbf{s}_k}$$

DFP method

Similar as BFGS, according to the Sherman-Morrison-Woodbury formula, we obtain **DFP Hessian update**:

$$B_{k+1} = (I - \rho_k \boldsymbol{y}_k \boldsymbol{s}_k^T) B_k (I - \rho_k \boldsymbol{s}_k \boldsymbol{y}_k^T) + \rho_k \boldsymbol{y}_k \boldsymbol{y}_k^T$$

where $\rho_k = 1/(\boldsymbol{y}_k^T \boldsymbol{s}_k)$.

- Same as BFGS, DFP update is cheap, only $O(n^2)$ per update.
- Same as BFGS, DFP preserves positive definiteness.
- Sometimes numerical unstable.

Broyden class

BFGS, DFP and SR1 are only 3 examples of numerous quasi-Newton updating formulae. Now we define a more general formula, **Broyden class**:

$$B_{k+1} = B_k - \frac{B_k \mathbf{s}_k \mathbf{s}_k^\mathsf{T} B_k}{\mathbf{s}_k^\mathsf{T} B_k \mathbf{s}_k} + \frac{\mathbf{y}_k \mathbf{y}_k^\mathsf{T}}{\mathbf{y}_k^\mathsf{T} \mathbf{s}_k} + \phi_k (\mathbf{s}_k^\mathsf{T} B_k \mathbf{s}_k) \mathbf{v}_k \mathbf{v}_k^\mathsf{T},$$

where ϕ_k is a scalar parameter and

$$\mathbf{v}_k = \frac{\mathbf{y}_k}{\mathbf{y}_k^\mathsf{T} \mathbf{s}_k} - \frac{B_k \mathbf{s}_k}{\mathbf{s}_k^\mathsf{T} B_k \mathbf{s}_k}.$$

- $\phi_k = 0$, we get BFGS;
- $\phi_k = 1$, we get DFP;
- $\phi_k = \mathbf{y}_k^T \mathbf{s}_k / (\mathbf{y}_k^T \mathbf{s}_k \mathbf{s}_k^T B_k \mathbf{s}_k)$, we get SR1.

Broyden class

Another form:

$$B_{k+1} = (1 - \phi_k) B_{k+1}^{BFGS} + \phi_k B_{k+1}^{DFP}.$$

- All members of the Broyden class satisfy the secant equation.
- If $0 \le \phi_k \le 1$, when $\boldsymbol{s}_k^T \boldsymbol{y}_k > 0$, the Broyden class preserves positive definiteness.

Global convergence of BFGS

Assume

- **1** *f* is twice continuously differentiable.
- ② The level set $\mathcal{L} = \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \leq f(\mathbf{x}_0) \}$ is convex, and there exist positive constants m and M such that

$$m\|\mathbf{z}\|_2^2 \leq \mathbf{z}^T \nabla^2 f(\mathbf{x}) \mathbf{z} \leq M\|\mathbf{z}\|_2^2$$

for all $z \in \mathbb{R}^n$ and $x \in \mathcal{L}$.

Theorem

Let B_0 be any symmetric positive definite initial matrix, and let \mathbf{x}_0 be a starting point for which both assumptions are satisfied. Then the sequence $\{\mathbf{x}_k\}$ generated by the BFGS method converges to the minimizer \mathbf{x}^* of f.

• This result holds for the Broyden class with $\phi_k \in [0,1)$.

Superlinear convergence of BFGS

Assume

1 The Hessian matrix $\nabla^2 f$ is Lipschitz continuous at \mathbf{x}^* , that is,

$$\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{x}^*)\|_2 \le L\|\mathbf{x} - \mathbf{x}^*\|_2,$$

for all x near x^* , where L is a positive constant.

Theorem

Suppose that f is twice continuously differentiable and that the iterates generated by the BFGS method converge to a minimizer x^* at which the above assumption holds. Suppose also that

$$\sum_{k=1}^{\infty} \|\boldsymbol{x}_k - \boldsymbol{x}^*\|_2 < \infty$$

holds. Then x_k converges to x^* at a superlinear rate.

Example

Example from Vandenberghe's lecture notes:

$$\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x} - \sum_{i=1}^m \log(b_i - \mathbf{a}_i^T \mathbf{x})$$

with n = 100 and m = 500.

- Cost per Newton iteration: $O(n^3)$ plus computing the Hessian.
- Cost per BFGS iteration: $O(n^2)$.

scipy.optimize.minimize

scipy.optimize.

minimize

```
minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

Minimization of scalar function of one or more variables.

[source]
```

Inputs:

- fun: the objective function
- x0: an starting point;
- method: to specify the choice of the optimization methods, e.g. 'BFGS', 'dogleg', etc;
- jac: to specify the method to compute the gradient;
- tol: tolerance for termination;
- options: a dictionary of solver options. For example:
 - ► Set 'maxiter': 200 to change the maximum number of iterations to 200;
 - Set 'disp': True to print the convergence messages.