上 海 交 通 大 学 试 卷(<u>A</u>卷)

(2010 至 2011 学年 第1学期)

2011.1.19

	班级号		_学号		姓名		
		脚 亥	纮	战结			
	体性石协	19人 年	<u> </u>				
_	是非题 (请填写是或	戊非。共7分,	每题1分)				
1.	设 $P(A) > 0, P(B) >$	→0,若随机事	件 A, B 相互犯	由立,则 A,B 必相	目容。	()
2.	若随机变量 X 的密度	更函数 $f(x) =$	$e^{a+bx+cx^2}$, (a,b,c 均为常数),则 <i>X</i> 服从正态分布。	, ()
3.	设随机变量 $g_1(X)$ 与	$g_2(Y)$ 相互独	立,其中g1,	g_2 为连续函数,	那么 X, Y 也相互独立。	()
4.	若随机变量 X 的数学	的期望 $E(X)$ 不	存在,则其方	$f \not\equiv D(X)$ 可以存	在。	()
5.	设正态总体 X 各阶知	巨存在, <i>S</i> ² 为村	羊本 $(X_1, X_2,$	$\cdots, X_{_m}$) 的方差,	则 $D(S^2) = \frac{2[D(X)]}{m-1}$	<u> </u> 2 ° ()
6.	$\hat{\theta} = \max\{X_1, X_2, \cdots$	$\{x, X_n\}$ 是均匀 $\{x, x_n\}$	分布 $U(heta,1)$ 口	中参数 $ heta$ 的极大似	J.然估计量。	()
7.	在假设检验问题中,	当样本容量n [±]	曾大时,可以	使得犯两类错误的	的概率 $\alpha,oldsymbol{eta}$ 同时减小。	()
=	填空题 (共 18 分,	每题3分)					
8.	两个相互独立的事件	A和B都不发	生的概率是1/	/9, 且 <i>A</i> 发生 <i>B</i>	不发生的概率与 B 发生	A 不发	生的
	概率相等,则 <i>P</i> (<i>A</i>)=_	°					
9.	设随机变量 X 的密度	函数 $f_X(x) = \begin{cases} 0 \\ 0 \end{cases}$	$e^{-x}, x > 0$ $0, x \le 0$	$Y = e^{2X}$ 的密度函	的数是 $f_{Y}(y) = \begin{cases} & & & \\ & & & \\ & & & \end{cases}$		
10.	设 $(X,Y) \sim N(\mu_1,$	$\sigma^2; \mu_2, \sigma^2; \rho$),则当 <i>ρ</i> =	= 时,(<i>X</i> -	+Y)/2与(X-2Y)/3	3 不相关	. 0
11.	设随机变量 X 与 Y	满足: <i>E(X)</i>	=-E(Y)=-	-2, D(Y) = 4D	$D(X) = 4$, $\rho = -0$.	5,	
	由切比雪夫不等式信	古计 $P(\mid X + Y)$	≥6)	°			
12.	设 (X_1, X_2, \cdots, X_n)	(₁₆) 是来自正	态总体 N(0, ₄	4)的简单随机样。	本,当 <i>a</i> =时,		
	统计量 $Y = a \sum_{i=1}^{16} X_i^2$	服从自由度为	的	分布。			

我承诺,我将严 格遵守考试纪律。

承诺人: _____

题号	_	1.1	111	19-22	23-25	总分
得分						
批阅人						

- 13. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 从中随机抽取一个容量为 15 的样本,得到样本均值 $\bar{x} = 50$,样 本方差 $S^2 = 25$,则 σ^2 的置信度为 0.95 的置信区间是
- 三 单项选择题 (共15分,每题3分)
- 14. 当事件 A 与 B 同时发生时 C 也发生,则下列式子中成立的是。
 - (A) $P(C) = P(A \cap B)$;

(*B*) $P(C) \le P(A) + P(B) - 1$:

(C) $P(C) = P(A \cup B)$;

- (D) $P(C) \ge P(A) + P(B) 1$.

则等式: I) X = Y, II) X + Y = 2X, III) $\max(X, Y) = X$, IV) $\min(X, Y) = X$ 中成立的个数是____。

- (A) 0; (B) 1;

- (C) 2; (D) 3_{\circ}
- 16. 设 X_1 , X_2 ,… 为相互独立具有相同分布的随机变量序列,且 X_i ($i=1,2,\cdots$) 服从参数为 2 的指数分布,

则下面正确的是 。(其中 $\Phi(x)$ 是标准正态分布的分布函数。)

$$(A) \lim_{n \to \infty} P\left\{ \frac{\sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x \right\} = \Phi(x);$$

(A)
$$\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_{i} - n}{\sqrt{n}} \le x\right\} = \Phi(x);$$
 (B) $\lim_{n \to \infty} P\left\{\frac{2\sum_{i=1}^{n} X_{i} - n}{\sqrt{n}} \le x\right\} = \Phi(x);$

(C)
$$\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_{i} - 2}{2\sqrt{n}} \le x\right\} = \Phi(x);$$

(C)
$$\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_i - 2}{2\sqrt{n}} \le x\right\} = \Phi(x);$$
 (D) $\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_i - 2}{\sqrt{2n}} \le x\right\} = \Phi(x).$

- 17. 设总体 $X \sim N(\mu, \sigma^2)$, \overline{X} 为样本 (X_1, X_2) 的均值,则下列 μ 的无偏估计中最有效的是_____。
 - (A) $\frac{1}{2}X_1 + \frac{1}{2}X_2$; (B) $\frac{1}{3}X_1 + \frac{2}{3}X_2$; (C) $\frac{1}{2}\overline{X} + \frac{1}{2}X_2$; (D) $\frac{1}{3}\overline{X} + \frac{2}{3}X_2$.

- 18. 在假设检验中,显著性水平 α 是指____。
 - (A) P(接受 $H_0|H_0$ 假 $)=\alpha$;
- (B) P(接受 $H_0 | H_1$ 假 $) = \alpha$;
- (C) P(拒绝 $H_0 | H_0$ 真 $) = \alpha$;
 - (D) P(拒绝 $H_0 | H_1$ 真 $) = \alpha$ 。

四解答题 (共54分,每题9分)

- 19. 某种产品分正品和次品,次品不许出厂。出厂的产品 4 件装一箱,检验前每箱中装入 0,1,2,3,4 件正品 是等可能的,并以箱为单位出售。由于疏忽,有一批产品未经检验就直接装箱出厂,某客户打开其中的一箱,从中任意取出一件,试求:
 - (1) 取出的一件是正品的概率; (2) 在(1) 发生时这一箱里没有次品的概率。

20. 一个工人看管三台机床,在一小时内机床不需要工人照看的概率:第一台为 0.9,第二、三台分别为 0.8 和 0.7, 假设各台机床是否需要工人照看是相互独立的。求在一小时内需要工人照看的机床台数 X 的概率分布,以及 X 的方差 D(X)。

21. 设 X 与 Y 是两个相互独立且同分布的随机变量,它们的密度函数为 $f(x) = \begin{cases} 10/x^2, & x>10, \\ 0, & ext{其 他.} \end{cases}$ 试求: Z=X/Y 的分布函数 $F_z(z)$ 。

- 22. 独立地 n 次测量一个物理量,每次测量产生的随机误差 $\varepsilon_i \sim U(-1,1)$, $(i=1,2,\cdots,n)$ 。
 - (1) 若取n次测量的算术均值 \overline{X} 作为测量结果,利用中心极限定理求 \overline{X} 与真值 μ 的差的绝对值小于正数 η 的概率; (2) 计算在 (1) 中, 当n=36, $\eta=1/6$ 时概率的近似值。

23. 设总体 X 服从拉普拉斯分布 $f(x,\lambda) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}, -\infty < x < \infty$, 其中 $\lambda > 0$ 。若取得

- 样本值 $(x_1,x_2,\cdots x_n)$, 试求: (1) $E(\mid X\mid)$; (2) 参数 λ 的极大似然估计值 $\hat{\lambda}$;
- (3) $\hat{\lambda}$ 是否为参数 λ 的一致估计值? 请说明理由。

24. 为考察硝酸钠的可溶程度,对 5 种温度观察它在 100mL 的水中溶解的硝酸钠的重量,获得数据如下

温度x	0	4	10	15	21
重量y	66	71	76	80	85

- (1) 求线性回归直线方程 $\hat{y} = \hat{a} + \hat{b}x$ 及误差方差的无偏估计;
- (2) 检验线性回归是否显著($\alpha = 0.05$)。

五. 证明题 (本题 6 分)

25. 设 $(X_1, X_2, \cdots X_n)$ 是取自指数分布总体 X 的样本, $X \sim f(x) = \begin{cases} \theta^{-1} e^{-x\theta^{-1}}, & x \ge 0, \\ 0, & x < 0. \end{cases}$ 证明: $Y = nX_{(1)}$ 是参数 θ 的无偏估计。

附: 概率分布数值表

$$\Phi(1.18) = 0.8810$$

$$\Phi(1.73) = 0.9582$$

$$t_{0.05}(3) = 2.3534$$

$$\Phi(1.73) = 0.9582$$
 $t_{0.05}(3) = 2.353$, $t_{0.05}(4) = 2.131$

$$t_{0.05}(5) = 2.0150$$

$$t_{0.025}(3) = 3.1824$$

$$t_{0.025}(4) = 2.7764$$

$$t_{0.025}(3) = 3.1824$$
 $t_{0.025}(4) = 2.7764$ $t_{0.025}(5) = 2.5706$

$$\chi^{2}_{0.025}(14) = 26.119$$
 $\chi^{2}_{0.025}(15) = 27.488$ $\chi^{2}_{0.975}(14) = 5.629$ $\chi^{2}_{0.975}(15) = 6.262$

$$\chi^2_{0.025}(15) = 27.488$$

$$\chi^2_{0.975}(14) = 5.62$$

$$\chi^2_{0.975}(15) = 6.262$$