Quinto Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

19 de agosto de 2022

Sumário

1	Introdução		
2	Lei	Lei da inducao de Faraday	
	2.1	Inducao de corrente por campo	
		magnetico	
	2.2	Montando o circuito	
	2.3	Transferencia de campo magnético	
	2.4	Gráficos das ondas observadas	
		2.4.1 Grafico para V_0 Senoidal	
	2.5	Grafico para V_0 Triangular	
	2.6	Grafico para V_0 Quadratico	
	2.7	Conclusões sobre os graficos	
	2.8	Tabela com fonte em modo onda Se-	
		noidal	
3	Ten	Tensão e corrente em elementos reati-	
	vos		
	3.1	Fasores	
	3.2	Medicoes V_{ac} e V_{bc}	
		3.2.1 Gráfico para tensão no indu-	
		tor e corrente no indutor	

1 Introdução

Neste relatório, vamos discutir e confirmar a lei de indução de Faraday.

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

2 Lei da inducao de Faraday

2.1 Inducao de corrente por campo magnetico

Quando agitamos rapidamente o magneto próximo da entrada da bobina observamos uma corrente sendo induzida no circuito adjacente.

Isto é evidenciado na lei de indução de faraday

$$\epsilon = -\frac{\mathrm{d}\phi_B}{\mathrm{d}t} \tag{1}$$

Esta equação nos mostra que uma variação no campo magnético gera uma força eletromotriz de sentido oposto. E esta força é dada pela derivada da variação do campo magnético no tempo

Logo quando movemos o magneto mais rápido (maior frequência), teremos um campo magnético variando mais rapidamente no tempo, e por consequência uma tensão maior sendo induzida no circuito.

2.2 Montando o circuito

Analisaremos um sistema de duas bobinas próximas uma da outra. Passaremos uma

corrente em um dos dois circuitos e analisaremos a tensão que está sendo induzida no outro circuito adjacente.

Com a ideia de ao invés de variarmos o campo magnético manualmente. Vamos usar um circuito de resistor mais indutor para gerar um campo magnético, a partir de uma corrente gerada por uma fonte que nós controlamos.

Com isso, vamos poder ter controle sobre como este campo magnético que induzirá a força eletromotriz no circuito adjacente se comporta.

2.3 Transferencia de campo magnético

Com o circuito montado e as bobinas adjacentes com seus centros alinhados já poderíamos começar o experimento. Porém a corrente induzida no circuito adjacente será relativamente baixa e não tão fácil de se medir.

Para remediar isto, vamos por um material magnético atravessando ambas bobinas. Este material será magnetizado pela variação de campo na nossa bobina de controle, e este campo será transferido para o circuito adjacente.

Isso aumentará bastante a corrente sendo induzida no circuito adjacente, e facilitará nossas medições.

Escolhemos um bastão de ferro para ser usado como material magnético. Quando o introduzimos dentro das bobinas, vimos uma variação da tensão induzida da ordem de $10^4\,$

Também tentamos atravessar um material não magnético, no caso um bastão de aluminio por dentro das bobinas. Neste caso não vimos variação da tensão induzida.

2.4 Gráficos das ondas observadas

Para todos gráficos amplificar a magnitude da tensão induzida, a vermelha, em 50 vezes para facilitar a visualização.

2.4.1 Grafico para V_0 Senoidal

2.5 Grafico para V_0 Triangular

2.6 Grafico para V_0 Quadratico

Grafico de Tensao por Frequencia Autor: Henrique Pedro da Silva

3 Tensão e corrente em elementos reativos

3.1 Fasores

O que vamos ter en que $\vec{V_m} = \vec{V_L} + \vec{V_R}$

2.7 Conclusões sobre os graficos

Notamos que as tensões induzidas são menos derivadas das tensões aplicadas.

No caso da senoidal, temos um seno derivando em cosseno. E lembrando sen(wt + pi/2) = cos(wt).

Então temos que a corrente induzida de uma corrente de entrada na forma $V_0 = sen(wt)$ se torna $V_{induzida} = -sen(wt + pi/2)$.

E também que a corrente estará defasada em $\pi/2$ em relação a tensão no indutor.

2.8 Tabela com fonte em modo onda Senoidal

F(Hz)	$V_1(mV)$
10	32 ± 4
30	86 ± 4
50	128 ± 4
70	164 ± 4
90	189 ± 4
110	214 ± 4
130	236 ± 4
150	255 ± 4
170	271 ± 4
190	185 ± 4

3.2 Medicoes V_{ac} e V_{bc}

Para altas frequências toda tensão do sistema estará no indutor, logo medir as tensões sobre o sistema me darão a tensão no indutor. E medir a tensão no resistor resultará em equivalência a medir a corrente no indutor.

Reatancia

$$X_L = wL = 2\pi fL = 2\pi 300 = 1884\Omega \tag{2}$$

Em regimes de alta frequência toda tensão do circuito estará no indutor, por isso esta diferença. Se a frequência fosse baixa o resultado seria o oposto.

Verificando regra do divisor de tensão no regime CA.

$$V_{l} \approx 4.99V$$

$$V_{R} \approx 71.64mV$$

$$\frac{V_{L}}{V_{R}} \approx 69.64$$

$$X_{L} \approx 1884\Omega$$

$$V_{R} \approx 27\Omega$$

$$\frac{X_{L}}{X_{R}} \approx 69.7$$
(3)

Logo podemos confirmar que os valores são coerentes.

3.2.1 Gráfico para tensão no indutor e corrente no indutor

Aumentarei a magnitude da função que rege a corrente no indutor(a função vermelha) em 35 vezes, para deixar ela e a tensão na mesma escala.

Podemos então confirmar que a corrente esta de fato atrasada em $\frac{pi}{2}$