K.K.Wagh Institute 0f Engg. Education & Research, Nashik-3

UNIT-III: STATISTICS AND PROBABILITY

IIIa] Measures of central tendency and dispersion, moments, skewness, kurtosis [2 Marks]

Sr.No	Question					
1	Standard of	leviation of t	hree numbers 9, 10, 1	11 is		
	(a)		(b)	(c)	(d)	
2	Standard o	leviation of f	our numbers 9, 11, 13	3, 15 is		
	(a) 2 (b) 4			(c)	(d)	
3	From the g (a) 11.0		ation =235, =6750, n= (b) 13.08	=10. Standard deviation (c) 8.08	of x is (d) 7.6	
4	Coefficien	t of variation	of the data 1, 3, 5, 7	, 9 is		
	(a) 54.2		(b) 56.57	(c) 55.41	(d) 60.19	
5			and arithmetic mean of the distribution is	of the distribution are	12 and 45.5 resp.	
	(a) 26.3		(b) 32.43	(c) 12.11	(d) 22.15	
6	The standa follows:	ard deviation	and arithmetic mean	of three distribution x,	y, z are as	
			Arithmetic Mean	Standard Deviation		
		X	18.0	5.4		
		У	22.5	4.5		
		Z	24.0	6.0		
	The more	stable distrib	oution is			
	(a) x		(b) y	(c) z	(d) x and z	
7		ard deviation		of scores of three batsr	nan x, y, z in ten	
			Arithmetic Mean	Standard Deviation		
		X	50	24.43		
		У	46	25.495		
		Z	40	27		
	The more	stable distrib	oution is			
	(a) y ar	nd z	(b) y	(c) z	(d) x	
8				of aggregate marks obt	ained three group	
	of students	s x, y, z are	as follows			

		Arithmetic Mean	Standard Deviation	
	X	532	11	
	y	831	9	
	Z	650	10	
	The more variable gro	oup is		
	(a) y and z	(b) z	(c) y	(d) x
9	Arithmetic mean of for new arithmetic mean	our numbers is 16, one	e item 20 is replaced by 24	4, what is the
	(a) 15	(b) 17	(c)18	(d) 16
10	The first moment of the distribution is	he distribution about	the value 5 is 2. Arithmeti	c mean of the
	(a) 5	(b) 2	(c)4	(d) 7
11			oution about the value 3 ar	re 2 and 20.
	Second moment abou		() 1 ((1) 20
	(a) 12	(b) 14	(c)16	(d) 20
12	The first three momen	nts of the distribution	about the value 5 are 2, 20	and 40. Third
	moment about the me			
	(a) -64	(b) 64	(c) 32	(d) -32
13	The first four momen Fourth moment about		about the value 5 are 2, 20	, 40 and 50.
	(a) 160	(b) 162	(c) 210	(d) 180
14			ne value 2 are -2, 12, -20 a	and 100. Fourth
	moment about the me		(-) 170	(4) 100
	(a) 200	(b) 190	(c) 170	(d) 180
15			about the value 2 are -2, 1	2 and -20. Third
	moment about the me		,	
	(a) 36	(b) 30	(c) 22	(d) 8
16	The first and second r	noments of the distrib	oution about the value 2 ar	re 1 and 16.
	Variance of the distrib			
	(a) 12	(b) 3	(c)15 ution about the arithmetic	(d) 17
17				mean are 16 and
	-64 resp. Coefficient of			
10	(a) -025	(b) 1	(c)4	(d) -1
18			oution about the arithmetic	e mean are 16
	and 162 resp. Coeffic	ient of kurtosis is giv	ren by	

() 4	4 S 4 = 4	() 0 (0	(1) 1 (0
1 (0) 1	(b) 1.51	$(a) \cap 62$	(4) 1.60
(a) 1		(6) 0.03	((1) 1.09
(**) -	(0) 1.51	(•) 0.02	(4) 2.0)

Answers: IIIa]

	1	c	5	a	9	b	13	b	17	b
2	2	d	6	b	10	d	14	d	18	c
	3	a	7	d	11	c	15	a		
4	4	b	8	d	12	a	16	С		

IIIb] Correlation and Regression [2 Marks]

	I-a		-	
1		10, $n=10$, then $cov(x,y)$		
	(a) 67.4	(b) 83.9	(c) 58.5	(d) 73.2
2	If=2291,=3056,=	10623, =14.7, =17, n=10), then cov(x,y) is	
	(a)1.39	(b) 13.9	(c) 139	(d) -13.9
3	If the two regression	on coefficient are 0.16 ar	nd 4 then the correlation	coefficient is
	(a) 0.08	(b) -0.8	(c) 0.8	(d) 0.64
4	If the two regression	on coefficient are and the	nen the correlation coeffi	cient is
	(a) -0.667	(b) 0.5	(c) -1.5	(d) 0.537
5		_	variance of x and y are	16 and 9 resp. then
	coefficient of corre	elation r(x,y) is		
	(a) 0.833	(b) 0.633	(c) 0.527	(d) 0.745
6	If =25.8, =6, =5 the	en correlation coefficien	t r(x,y) is equal to	
	(a) 0.5	(b) 0.75	(c) 0.91	(d) 0.86
7	=90, =4, =4, n=10,	=1.732, =2 then correla	tion coefficient r(x,y) is 6	equal to
	(a)0.8342	(b) 0.91287	(c) 0.7548	(d) 0.5324
8	=2800, =16, =16, r	=10, variance of x is 36	and variance of y is 25	then correlation
	coefficient r(x,y) is	s equal to		
	(a) 0.95	(b) 0.73	(c) 0. 8	(d) 0.65
9	The correlation coe	efficient for the followin	g data	
	n=10, =140, =150,	=1980, =2465, =2160 is		
	(a) 0.753	(b) 0.4325	(c) 0.556	(d) 0.9013
10	_	_	lated to a distribution co	1 0
	1		The correlation coefficien	
	(a) -0.924	(b) -0.681	(c) -0.542	(d) -0.813

11	Given the following r=0.022, =33799, =4 observations) is		62.125. The value of	n (number of	
	(a) 5	(b) 7	(c) 8		(d) 10
12		= 3, = 4. The value of	of n (number of obser	vations) is	(1) 1.5
	(a) 25	(b) 5	(c) 20		(d) 15
13	20, the variance of x	k is 16. Standard dev	<u>-</u>		
	(a) 6.75	(b) 6.25	(c) 7.5		(d) 8.25
14	40x-18y-214=0. Me	ean values of x and y	=0, Line of regression y are (c) =13, =17	•	
15	If the two lines of reand -3 resp. then the (a) $\lambda=15$ and $\mu=$ (c) $\lambda=5$ and $\mu=15$	e values of λ and μ a 5	=0 and $4x+y=\mu$ and there (b) $\lambda=-15$ and $\lambda=15$ and	ınd μ=-5	d y are 2
16	Line of regression y 40x-18y-214=0. Co (a) 0.6		=0. Line of regression r(x,y) is given by (c) 0.75	x on y is	(d) 0.45
17	The regression lines (a) 0.444	s are 9x+y=15 and 4 (b) -0.11	x+y=5. Correlation r((c) 0.663		(d) 0.7
18	40x-18y-214=0. The to	e value of variance of	=0. Line of regression of x is 9. The standard	d deviation of y	is equal
	(a) 2	(b) 5	(c) 6 =0. Line of regression		(d) 4
19			=0. Line of regression of y is 16. The standa	_	x is equal
	(a) 3	(b) 2	(c) 6		(d) 7
20	Line of regression y	on x is $3x+2y=26$,	(c) 6 line of regression x o	n y is	
			25. The standard dev		
	(a) - 15	(b) 15	(c) 1.5	-	(d) -1.5
21	The correlation coef	fficient between two	variables x and y is	0.6. If	

	=1.5, =2.00	=10, =20 then the	ne lines of regression	on are	
	(a) $x=0.4$	(a) $x=0.45y+12$ and $y=0.8x+1$ (b) $x=0.45y+1$ and $y=0.8x+12$			
	(b) $x=0.6$	65y + 10 and $y = 0.4$	4x+12	(d) $x=0.8y+1$ and y	=0.45x+12
22	The correlate	tion coefficient be	etween two variable	es x and y is 0.711. If	
		*	es of regression are		
	` /	1.58(y-4) and $y-4$	` /		
	` ′	=1.58(y+4) and y-	* *		
	` ′	0.32(y-4) and y-4	` /		
	(d) $x-4=$	1.58(y-5) and y-5	6=0.32(x-4)		
22	Var. ana aire	1 1		-14 - 14:4	
23	sales	en below the foll	owing information	about advertisement ex	spenditure and
	Sales		Adv. Expenditui	e Sales (Y)	1
			(X) Rs. (Crore)		
		Mean	10	90	1
		Standard	3	12	-
		Deviation			
	Correlation	coefficient = 0.8		<u>'</u>	_
	The two line	es of regression a	are		
	(a) $x=58$	+3.2y and $y=-8+6$	0.2x	(b) $x=-8+2.2y$ and	1 y = 8 + 1.2x
	(b) $x = -8$	+3.2y and $y=58+6$	0.2x	(d) $x=-8+0.2y$ and	1 y = 58 + 3.2x
24	You are giv	en below the foll	owing information	about rainfall and prod	uction of rice
			Rainfall	Production of Rice	7
			(X) in inches		
		Mean	30	(Y) in Kg.	-
		Standard	5	100	_
		Deviation	3	100	
			I.	I	_
	Correlation	coefficient = 0.8	, The two lines of r	regression are	
	(a)x+30	0=0.04(y+500) and	and $y+500=6(x+30)$		
	(b) x-30	0=0.4(y-500) and	y-500=1.6(x-30)		
	(c) $x-30=0.04(y-500)$ and $y-500=16(x-30)$				
	(d) x-30	0=16(y-500) and	y-500=0.04(x-30)		
25	C: 0.07	5 0.00 1.1		C: (1 1 1 1	- C 1 · · ·
25		•		of x is 6 then the value θ	of correlation
		· · · · ·	d deviation of y is	v) r= 0.97 and -0.614	
	` ′	7 and =6.14 5 and =6.14	,	b) r=-0.87 and =0.614 l) r=0.89 and =4.64	
	(0)1-0.7	J and -0.14	(0	1) 1-0.09 and -4.04	
26	Given =0.84	411, =0.4821 and	the standard deviat	tion of y is 1.7916 then	the value of

	correlation coefficier	nt r(x,y) and standard of	deviation of v is	
		· /• /		266
	(a) $r=-0.6368$ and		(b) $r=-0.6368$ and $=2$	
	(c)r=0.40549 and	=2.366	(d) $r=0.63678$ and $=5$	5.6
			· ·	
27	For a given set of Bi	variate data =53.2, =2°	7.9. Regression coefficier	at of y on $x=-1.5$.
	By using line of regr	ession y on x the most	probable value of y when	n x is 60 is
	(a) 157.7	(b) 137.7	(c) 197.7	(d) 217.7
			· · · · · · · · · · · · · · · · · · ·	, ,
28	Given the following	data =36, =85, =11, =8	8, r=0.66. By using line o	f regression x on
	y, the most probable	value of x when $y=75$	is	C
	(a) 29.143	(b) 24.325	(c) 31.453	(d) 26.925
		(-)	(1) 1 1 1	(")
29	For a given set of Bi	variate data =2. =-3 Re	egression coefficient of x	on v=-0.11. By
	_	•	bable value of x when y	•
	0	•	•	
	(a) 0.77	(b) 0.57	(c) 1.77	(d) 0.87
	(b)			

Answers: IIIb]

1	d	7	b	13	b	19	a	25	a
2	b	8	c	14	c	20	b	26	b
3	c	9	d	15	a	21	b	27	c
4	a	10	b	16	a	22	a	28	d
5	a	11	c	17	c	23	d	29	b
6	d	12	a	18	d	24	c		

IIIc] Probability and probability distribution [2 Marks]

1	Probability that a	leap year selected at rand	iom will contain 55 s	Sunday is
	(a)	(b)	(c)	(d)
	(b)			
2	Two cards are dra	wn from a well shuffled	pack of 52 cards. If t	the first card drawn is
	replaced, the prob	ability that they are both	kings is	
	(a)	(b)	(c)	(d)
	(b)			
3	Two cards are dra	wn from a well shuffled	pack of 52 cards. If t	the first card drawn is
	not replaced, the p	probability that they are l	ooth kings is	
	(c)	(b)	(c)	(d)
4	An envelope six t	ickets with numbers 1, 2	, 3, 5, 6, 7. Another e	envelope contains four
	tickets with numb	ers 1, 3, 5, 7. An envelop	be is chosen at rando	m and ticket is drawn
	from it, Probabilit	ty that the ticket bears the	e numbers 2 or 7 is	
	(a)	(b)	(c)	(d)

5	Three coins are (a)	tossed simultan (b	_	robability of getting (c)	g at least two head is (d)
6	probability that	they are of diffe	erent sex is	vo persons are chose	
	(a)	(b)		(c)	(d)
7		from a box cont probability that i	_	balls, 4 white balls a	and 5 black balls.
	(a)	(b)		(c)	(d)
8	_	_		nts A, B, C whose can solved the proble	ems is
	(a)	(1)	0)	(c)	(d)
9		that A can solve blem, then the pr	-		is problem is. If both
	(a)	(b)		(c)	(d)
10		in is thrown five	e times. Proba	bility of getting thre	
	(a)	(b))	(c)	(d)
11	_	-		tive. The probability	that out of three
	bolts chosen at (a) 0.384	random 1 is defe (b) 0.9		(c) 0.5069	(d) 0.6325
	(a) 0.364	(0) 0.	9120	(6) 0.3009	(u) 0.0323
12	_	_	•	we upto 70 years of a men will live upto 7	_
	(a)0.5	(b) 0.002281	•	0.003281	(d) 0.004281
13		that a person hirability that he his	_	nooting practice is 0	.3. If the shoots 10
	(a) 1	(b) 1-	(c)	(d)	
14			_	obability of getting	
	(a)	(b)	(c)		(d)
15				e defective. A sample	le of 5 bulbs is
	·	bability that non o)	(c)	(d)	
16	On an average	 a nacket contain	ing 10 blades	is likely to have two	o defective blades. In
10				kets expected to cor	

(a) 38 (b) 52 (c) 26 (d) 47 Out of 2000 families with 4 children each, the number of families you would expect to have no girls is p=probability of having a boy=, q= probability of having a girl=1-= (a) 300 (b) 150 (c) 200 (d) 125 In 100 set of 10 tosses of a coin, the number of cases you expect 7 head and 3 tail is (a) 8 (b) 12 (c) 15 (d) 17 20% of bolts produced by machine are defective. The mean and standard deviation of defective bolts in total of 900 bolts are resp. (a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 20 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		defective blades is			
to have no girls is p=probability of having a boy=, q= probability of having a girl=1-= (a) 300 (b) 150 (c) 200 (d) 125 In 100 set of 10 tosses of a coin, the number of cases you expect 7 head and 3 tail is (a) 8 (b) 12 (c) 15 (d) 17 20% of bolts produced by machine are defective. The mean and standard deviation of defective bolts in total of 900 bolts are resp. (a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 20 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) 21 The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then P(X=2) is equal to (a) (b) (c) (d)		(a) 38	(b) 52	(c) 26	(d) 47
p=probability of having a boy=, q= probability of having a girl=1-= (a) 300 (b) 150 (c) 200 (d) 125 In 100 set of 10 tosses of a coin, the number of cases you expect 7 head and 3 tail is (a) 8 (b) 12 (c) 15 (d) 17 20% of bolts produced by machine are defective. The mean and standard deviation of defective bolts in total of 900 bolts are resp. (a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) (b) (c) (d)	17	Out of 2000 famili	es with 4 children e	each, the number of families	you would expect
(a) 300 (b) 150 (c) 200 (d) 125 In 100 set of 10 tosses of a coin, the number of cases you expect 7 head and 3 tail is (a) 8 (b) 12 (c) 15 (d) 17 20% of bolts produced by machine are defective. The mean and standard deviation of defective bolts in total of 900 bolts are resp. (a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 20 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) 21 The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		to have no girls is			
In 100 set of 10 tosses of a coin, the number of cases you expect 7 head and 3 tail is (a) 8 (b) 12 (c) 15 (d) 17 20% of bolts produced by machine are defective. The mean and standard deviation of defective bolts in total of 900 bolts are resp. (a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) (b) (c) (d)					
(a) 8 (b) 12 (c) 15 (d) 17 20% of bolts produced by machine are defective. The mean and standard deviation of defective bolts in total of 900 bolts are resp. (a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 20 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) 21 The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		(a) 300	(b) 150	(c) 200	(d) 125
20% of bolts produced by machine are defective. The mean and standard deviation of defective bolts in total of 900 bolts are resp. (a)180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 20 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) 21 The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	18	In 100 set of 10 to	sses of a coin, the n	umber of cases you expect?	7 head and 3 tail is
defective bolts in total of 900 bolts are resp. (a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 20 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) 21 The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		(a) 8	(b) 12	(c) 15	(d) 17
(a) 180 and 12 (b) 12 and 180 (c) 90 and 12 (d) 9 and 81 The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	19	20% of bolts produ	aced by machine are	e defective. The mean and s	tandard deviation of
The mean and variance of binomial probability distribution are and resp. Probability of success in a single trial p is equal to (a) (b) (c) (d) The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 36 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		defective bolts in t	otal of 900 bolts are	-	
of success in a single trial p is equal to (a) (b) (c) (d) The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		(a)180 and 12	(b) 12 and 1	80 (c) 90 and 12	(d) 9 and 81
(a) (b) (c) (d) The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	20	The mean and vari	ance of binomial pr	obability distribution are a	nd resp. Probability
The mean and variance of binomial probability distribution are 6 and resp. Number of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7		of success in a sing	gle trial p is equal to)	
of trails n is given by (a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		(a)	(b)	(c)	(d)
(a) 14 (b) 10 (c) 12 (d) 18 22 The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	21	The mean and vari	ance of binomial pr	obability distribution are 6	and resp. Number
The mean and variance of binomial probability distribution are 36 and 3 resp. Number of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)			_		
of trails n is given by (a) 42 (b) 36 (c) 48 (d) 24 23 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		(a) 14	(b) 10	(c) 12	(d) 18
(a) 42 (b) 36 (c) 48 (d) 24 The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	22		•	robability distribution are 36	and 3 resp. Number
The mean and variance of binomial probability distribution are 6 and 2 resp. p(r≥2) is (a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)			_		
(a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		(a) 42	(b) 36	(c) 48	(d) 24
(a) 0.66 (b) 0.88 (c) 0.77 (d) 0.99 24 If X follows the binomial distribution with parameter n=6 and p and 9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	23	The mean and vari	ance of binomial pr	obability distribution are 6	and 2 resp. $p(r \ge 2)$ is
9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)					(d) 0.99
9P(X=4)=P(X=2), then p is equal to (a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	24	If Y follows the hi	nomial distribution	with parameter n=6 and n a	nd
(a) (b) (c) (d) 25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	4			with parameter n=0 and p a	ing
25 If X follows the binomial distribution with parameter n and p= and P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		1 1	• •	(c)	(d)
P(X=6)=P(X=8), then n is equal to (a) 10 (b) 14 (c) 12 (d) 7 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		(u)	(0)	(0)	(u)
(a) 10 (b) 14 (c) 12 (d) 7 26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)	25	If X follows the bi	nomial distribution	with parameter n and p= an	d
26 If X follows the binomial distribution with parameter n and p= and P=(X=4)=P(X=5), then P(X=2) is equal to (a) (b) (c) (d)		P(X=6)=P(X=8), t	_		
P=(X=4)=P(X=5), then $P(X=2)$ is equal to (a) (b) (c) (d)		(a) 10	(b) 14	(c) 12	(d) 7
P=(X=4)=P(X=5), then $P(X=2)$ is equal to (a) (b) (c) (d)	26	If X follows the bi	nomial distribution	with parameter n and p= an	d
				-	
In a Poisson's probability distribution if n=100, p=0.01, p(r=0) is given by		(a)	(b) (c)	(d)	
	27	In a Poisson's prob	pability distribution	if n=100, p=0.01, p(r=0) is	given by

	(a)	(b)	(0	()	(d)					
28	In a Poisson's pr (a)	obability distribution (b)	n if n=100, p= (c)	=0.02, p(r=1) is	given by (d)					
29	For a tabular data	a								
	X	0 1	2	3						
	F	2 4	6	8						
	Poisson's fit p(r)	is given by								
	(a)	(b)	(c)	(d)						
30	For a tabular data	a								
	X	0 1	2	3						
	f	1 4	15	24						
	Poisson's fit $p(r)$									
	(a) (b)	(c) (d)								
31	In a Poisson's pr	obability distribution	n if p(r=1)=2r	p(r=2) and $p(r=3)$	3) is given by					
	(a)	(b)	(c)	(d))					
32	In a Poisson's pr	obability distribution	n if 3p(r=4)=p	p(r=5) and $p(r=6)$	(a) is given by					
	(a) (b)		(d)		,					
33	In a Poisson's pr	obability distribution	$\frac{1}{\text{n if p(r=2)=9p}}$	p(r=4)+90p(r=6)	then mean of the					
	distribution is	-								
	(a) 1	(b)	(c) 3		(d) 4					
34					Poisson distribution					
		bability that in a cer	tain month nu	imber of accide	nts on the highway					
	will be equal to 2		()	0.425	(1) 0.501					
	(a) 0.354	(b) 0.2707	(c)	0.435	(d) 0.521					
35	Retween 2 P M	and 3 P.M. the avera	age number of	f nhone calls ne	r minute coming					
33					obability that during					
		inute there will be no								
	(a) 0.354	(b) 0.356	-	0.135	(d) 0.457					
	()	(1)		,	(3) 31.13 /					
36	Average number	s of phone calls per	minute comin	g into company	are 3, during					
	_	hese calls follow Po			· —					
	•	there will be less th								
	(a) 0.299	(b) 0.333		0.444	(d) 0.199					
37	In a certain facto	ry turning out razor	blades, there	is a small chanc	e of for any blade					
		The blades are supple	-							
	distribution, the probability that a packet contain one defective blade is									

	(a) 0.0196	(b) 0.0396	(c) 0.0596	(d) 0.0496
38	_		e of a book is 1.5. Assuming probability that a particular	
	(a) 0.329	(b) 0.435	(c) 0.549	(d) 0.2231
39	1	ibuted. The mean of x p($X \ge 18$) is given by	is 15 and standard deviation	on 3. Given that
	(a) 0.1587	(b) 0.4231	(c) 0.2231	(d) 0.3413
40	for z=1, A=0.3413,	ibuted. The mean of x , $p(X \ge 12)$ is given by	is 15 and standard deviation	on 3. Given that
	(a)0.6587	(b) 0.8413	(c) 0.9413	(d) 0.7083
41	1	ibuted. The mean of x 515 , p($0 \le x \le 10$) is give	is 15 and standard deviation	on 3. Given that
	(a)0.0585	(b) 0.0673	(c) 0.0485	(d) 0.1235
42	1	en: Area correspondin	is 30 and variance 25. The ng to z=0.8 is 0.2881 and A	_
	(a) 0.8562	(b) 0.6574	(c) 0.3745	(d) 0.7653
43	is 2.5. Assuming N	formal distribution, the	of certain test is 14 and st probability of candidates rresponding to z=2.4 is 0.4	getting less than
	(a) 0.0054	(b) 0.0075	(c) 0.0082	(d) 0.0035
44	the number of stude	ributed group of 450 strents scoring less than 4 sponding to z=0.75 is		lard deviation 8,
	(a) 348	(b) 102	(c) 127	(d) 250
45	Average marks obt	ained were 50% with s	nts appeared in a subject of standard deviation 5%. Matto get more than 60% man	rks are normally
	(a) 200	(b) 300	(c) 325	(d) 228

Answers: IIIc]

1	d	10	c	19	a	28	ь	37	a

2	c	11	a	20	С	29	b	38	d
3	c	12	d	21	d	30	d	39	a
4	b	13	b	22	c	31	a	40	b
5	a	14	b	23	d	32	c	41	c
6	d	15	c	24	a	33	a	42	d
7	d	16	a	25	b	34	b	43	c
8	b	17	d	26	d	35	c	44	a
9	a	18	b	27	a	36	d	45	d

IIIdl Statistics [1 Morks]

<u>IIId</u>	Statistics [1 Marks]
1	If the data is presented in the forms of frequency distribution then arithmetic mean is
	given by (N=)
	(a) (b) (c) (d)
2	For the data is presented in the form of frequency distribution, mean deviation (M.D.)
	from the average A is given by (N=)
	(a) (b) (c) (d)
3	If the data is presented in the form of frequency distribution then standard deviation σ
	is given by (is arithmetic mean and N=)
	(b) (c) (d)
4	If the data is presented in the form of frequency distribution then variance V is given
	by (is arithmetic mean and N=)
	(a) (b) (c) (d)
5	To compare the variability of two or more than two series, coefficient of variation
	(C.V.) is obtained using (is arithmetic mean and σ is standard deviation).
	(a) (b) (c) $\sigma \times 100$ (d)
6	If the data is presented in the form of frequency distribution then moment μ , about
	the arithmetic mean of distribution is given by $(N=)$
	$(a) (b) N \times$
	(c) (d)
7	If the data is presented in the form of frequency distribution then moment, about the
	arithmetic mean of distribution is given by (N=)
	(a) 1 (b) (c) 0 (d)
0	
8	If and are the first two moments of the distribution about certain number then second
	moment of the distribution about the arithmetic mean is given by
0	(a) (b) 2 (c) (d)
9	If, , are the first three moments of the distribution about certain number then third
	moment of the distribution about the arithmetic mean is given by
	(a) (b)
10	(d)
10	If, ,, are the first four moments of the distribution about certain number then fourth
	moment of the distribution about the arithmetic mean is given by
	(a)

	(b)
	(c)
	(d)
11	If be the first moment of the distribution about any number A then arithmetic mean
	is given by
	(a) (b) (c) (d)
12	Second moment about mean is
	(a) Mean (b) Standard Deviation (c) Variance (d) Mean Deviation
13	Coefficient of skewness is given by
	(a) (b) (c) (d)
14	Coefficient of kurtosis is given by
	(a) (b) (c) (d)
15	For a distribution coefficient of $=2.5$, this distribution is
	(a) Leptokurtic (b) Mesokurtic (c) Platykurtic (d) of these
16	For a distribution coefficient of $=3.9$, this distribution is
	(a) Leptokurtic (b) Mesokurtic (c) Platykurtic (d) of these
17	The first four moments of a distribution about mean are 0, 16, -64 and 162. Standard
	deviation of a distribution is
	(a) 21 (b) 12 (c) 16 (d) 4
18	Covariance between two variables x and y is given by
	(a) (b)
	n (d)
19	Correlation coefficient r between two variables x and y is given by
	(a) (b) (c) (d)
20	Range of coefficient of correlation r is
20	
	(a) (b) (c) $-1 \le r \le 1$ (d) $0 \le r \le 1$
21	Probable error of coefficient of correlation r is
	(a) 0.6745 (b) 0.6745 (c) 0.6745 (d) 0.6547
22	Line of regression y on x
	(a) $y += r$ (b) $x -= r$
	$(b) y=r \qquad (d) y=r$
23	Line of regression y on x
	(a) y-= r (b) x+= r
- 1	(b) $x = r$ (d) $x = r$
24	Slope of regression line of y on x is (1)
	(a) (b) r (c) r (d)
25	Slope of regression line of x on y is
	(a) r (b) (c) (d) r
26	In regression line y on x, is given by

	(a)	(b)	(c)	(d)	
27	In regressi	on line x on	y, is given b	y	
	(a)	(b)	(c)	(d)	
28	If and are	the regress:	ion coefficies	nt x on y and y on x resp.	then the coefficient of
	correlation	is given by	/		
	(a)	(b)	(c)	(d)	
29	If θ is the a	acute angle l	between the r	regression line of y on x	and the regression line of
	x on y, the	n is			
	(a)	(b)	(c)	(d)	
30	If $= 2638$,	=14, =17, n	=10 then is		
	(a) 24.2		(b) 25.8	(c) 23.9	(d) 20.5

Answers: IIId]

1	a	7	c	13	d	19	d	25	a
2	c	8	a	14	b	20	c	26	c
3	b	9	a	15	d	21	b	27	d
4	d	10	b	16	a	22	С	28	d
5	b	11	a	17	d	23	d	29	a
6	d	12	c	18	a	24	b	30	b

IIIe] Probability [1 Marks]

1	A throw is made with two dice. The probability of getting a sources of 10 points is									
	(a)	(b)		(c)	(d)				
2	A throw is ma	de with two di	ce. The pro	obability o	f getting a so	ources of at least 10				
	points is									
	(a)	(b)		(c)	(d)				
3	In a binomial 1	probability dis	tribution, p	probability	of r success	es in n trails is (where p				
	probability of	successes and	q probabil	ity of failu	re in a single	e trail)				
	(a)	(b)	(c)	(d)						
4	Mean of binor	nial probabilit	y distributi	on is						
	(a) nq		(b)	(c) npq	(d) np				
5	Variance of bi	nomial probab	ility distril	oution is						
	(a) npq		(b) np		(c) n	(d) n				
6	Standard devia	ation of binom	ial probabi	lity distrib	oution is					
	(a)	(b)		(c)	(d) n	ıp				
7	If z=np where	n the number	of trails is	very large	and p the pr	obability of success at				
	each trail, ther	n in Poisson's _l	probability	distribution	on $p(r)$ the property	robability of r successes				
	is given by									

	(a)	(b)	(c)	(d)	
8	Normal distribu	tion curve is given	by the equation y	=. Integral	has the value
	(a) 0.025	(b) 1	(0	2) 0.5	(d) 0.75
9	Normal distribu	tion curve is given	by the equation y	=. Integral	has the value
	(a) 0.025	(b) 1	(c) 0.5	(d) 0.75

Answers: IIIe]

1	a	3	c	5	a	7	c	9	b
2	b	4	d	6	b	8	c		