CS1382 Discrete Computational Structures

Lecture 11: Rules of Inference

Spring 2019

Richard Matovu

Revisiting the Socrates Example

- We have the two premises:
 - "All men are mortal."
 - "Socrates is a man."
- And the conclusion:
 - "Socrates is mortal."

How do we get the conclusion from the premises?

The Argument

Sequence of statements that end with a conclusion

$$\forall x(Man(x) \rightarrow Mortal(x))$$

$$Man(Socrates)$$

$$\therefore Mortal(Socrates)$$

- Premises above the line
- Conclusion below the line

Valid Arguments

- If premises imply the conclusion
- Construct valid arguments
 - Propositional logic
 - Predicate logic
 - Use rules of inference
- If the premises are $p_1, p_2, ..., p_n$ and the conclusion is q then

$$(p_1 \land p_2 \land ... \land p_n) \rightarrow q$$
 is a tautology

Rules of Inference for Propositional Logic: Modus Ponens

$$p \rightarrow q$$

$\frac{p}{\cdot a}$

Corresponding Tautology:

$$(p \land (p \rightarrow q)) \rightarrow q$$

Example:

Let p be "It is snowing."

Let q be "I will study discrete math."

"If it is snowing, then I will study discrete math."

"It is snowing."

"Therefore, I will study discrete math."

Modus Tollens

$p \to q$

$$\frac{\neg q}{\therefore \neg p}$$

Corresponding Tautology:

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

Example:

Let *p* be "it is snowing."

Let q be "I will study discrete math."

"If it is snowing, then I will study discrete math."

"I will not study discrete math."

"Therefore, it is not snowing."

Hypothetical Syllogism

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Corresponding Tautology:

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Example:

Let *p* be "it snows."

Let q be "I will study discrete math."

Let r be "I will get an A."

"If it snows, then I will study discrete math."

"If I study discrete math, I will get an A."

"Therefore, If it snows, I will get an A."

Disjunctive Syllogism

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\therefore q
\end{array}$$

Corresponding Tautology:

$$(\neg p \land (p \lor q)) \rightarrow q$$

Example:

Let p be "I will study discrete math."

Let q be "I will study English literature."

"I will study discrete math or I will study English literature."

"I will not study discrete math."

"Therefore, I will study English literature."

Addition

$$\frac{p}{\therefore p \vee q}$$

Corresponding Tautology:

$$p \rightarrow (p \lor q)$$

Example:

Let *p* be "I will study discrete math."

Let q be "I will visit Las Vegas."

"I will study discrete math."

"Therefore, I will study discrete math or I will visit Las Vegas."

Simplification

$$\frac{p \wedge q}{\therefore q}$$

Corresponding Tautology:

$$(p \land q) \rightarrow p$$

Example:

Let p be "I will study discrete math."

Let q be "I will study English literature."

"I will study discrete math and English literature"

"Therefore, I will study discrete math."

Conjunction

$$\frac{p}{q}$$

$$\therefore p \land q$$

Corresponding Tautology:

$$((p) \land (q)) \rightarrow (p \land q)$$

Example:

Let p be "I will study discrete math."

Let q be "I will study English literature."

"I will study discrete math."

"I will study English literature."

"Therefore, I will study discrete math and I will study English literature."

Resolution

$$\frac{\neg p \lor r}{p \lor q}$$
$$\therefore q \lor r$$

Corresponding Tautology:

$$((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$$

Example:

Let p be "I will study discrete math."

Let *r* be "I will study English literature."

Let q be "I will study databases."

"I will not study discrete math or I will study English literature."

"I will study discrete math or I will study databases."

"Therefore, I will study databases or I will study English literature."

Valid Arguments - Example

From the single proposition $p \land (p \rightarrow q)$

Show that *q* is a conclusion.

Solution:

StepReason1. $p \wedge (p \rightarrow q)$ Premise2. pSimplification using (1)3. $p \rightarrow q$ Simplification using (1)4. qModus Ponens using (2) and (3)

Valid Arguments

- With these hypotheses:
 - "It is not sunny this afternoon and it is colder than yesterday."
 - "If we will go swimming, then it is sunny."
 - "If we do not go swimming, then we will take a canoe trip."
 - "If we take a canoe trip, then we will be home by sunset."
- Using the inference rules, construct a valid argument for the conclusion:

"We will be home by sunset."

Solution:

- 1. Choose propositional variables:
 - p: "It is sunny this afternoon."
 - r: "We will go swimming."
 - t: "We will be home by sunset."
 - q: "It is colder than yesterday."
 - s: "We will take a canoe trip."
- 2. Translation into propositional logic:

Valid Arguments

Hypotheses: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$

Conclusion: t

3. Construct the Valid Argument

\mathbf{Step}	Reason
1. $\neg p \land q$	Premise
$2. \neg p$	Simplification using (1)
$3. r \rightarrow p$	Premise
$4. \neg r$	Modus tollens using (2) and (3)
$5. \ \neg r \rightarrow s$	Premise
6. s	Modus ponens using (4) and (5)
7. $s \to t$	Premise
8. <i>t</i>	Modus ponens using (6) and (7)

Handling Quantified Statements

- Valid arguments for quantified statements are a sequence of statements.
- Each statement is either a premise or follows from previous statements by rules of inference which include:
 - Rules of Inference for Propositional Logic
 - Rules of Inference for Quantified Statements
- The rules of inference for quantified statements are introduced in the next several slides.

Universal Instantiation (UI)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

Example:

- Our domain consists of all students and John is a student.
- "All students are wise"
- "Therefore, John is wise."

Universal Generalization (UG)

$$P(c)$$
 for an arbitrary c
 $\therefore \forall x P(x)$

- Used often implicitly in Mathematical Proofs.
- c must identify an arbitrary subject and could be done by
 - Introducing it with universal instantiation
 - With an assumption

Example

- For every number x, if x > 1, then x 1 > 0. Also
 for every number x, x > 1.
 - We make hypothetical argument (of course, every number is not greater than 1).
 - Hence we conclude that for every number x, x 1 > 0.

Existential Instantiation (EI)

$$\exists x P(x)$$

 $\therefore P(c)$ for some element c

Example:

- "There is someone who got an A in the course."
- "Let's call her a and say that a got an A"

Existential Generalization (EG)

$$P(c)$$
 for some element c
 $\therefore \exists x P(x)$

Example:

- "Michelle got an A in the class."
- "Therefore, someone got an A in the class."

Using Rules of Inference - Example

Using the rules of inference, construct a valid argument to show that

"John Smith has two legs"

is a consequence of the premises:

- "Every man has two legs."
- "John Smith is a man."

Solution:

Let M(x) denote "x is a man" and L(x) "x has two legs" and let John Smith be a member of the domain.

Valid Argument:

StepReason1.
$$\forall x(M(x) \rightarrow L(x))$$
Premise2. $M(J) \rightarrow L(J)$ UI from (1)3. $M(J)$ Premise4. $L(J)$ Modus Ponens using (2) and (3)

Using Rules of Inference

Example 2:

Use the rules of inference to construct a valid argument showing that the conclusion

"Someone who passed the first exam has not read the book."

follows from the premises

- "A student in this class has not read the book."
- "Everyone in this class passed the first exam."

Solution:

Let All students in university be the domain

C(x) - "x is in this class,"

B(x) - "x has read the book"

P(x) - "x passed the first exam"

First we translate the premises and conclusion into symbolic form.

$$\frac{\exists x (C(x) \land \neg B(x))}{\forall x (C(x) \to P(x))}$$

$$\therefore \exists x (P(x) \land \neg B(x))$$

Continued on next slide →

Using Rules of Inference

$$\exists x (C(x) \land \neg B(x)) \\ \forall x (C(x) \to P(x)) \\ \therefore \exists x (P(x) \land \neg B(x))$$

Valid Argument:

Step

- 1. $\exists x (C(x) \land \neg B(x))$
- 2. $C(a) \wedge \neg B(a)$
- 3. C(a)
- 4. $\forall x (C(x) \to P(x))$
- 5. $C(a) \rightarrow P(a)$
- 6. P(a)
- 7. $\neg B(a)$
- 8. $P(a) \wedge \neg B(a)$
- 9. $\exists x (P(x) \land \neg B(x))$ EG from (8)

Reason

Premise

EI from (1)

Simplification from (2)

Premise

UI from (4)

MP from (3) and (5)

Simplification from (2)

Conj from (6) and (7)

Returning to the Socrates Example

$$\forall x (Man(x) \rightarrow Mortal(x))$$

$$Man(Socrates)$$

 $\therefore Mortal(Socrates)$

Valid Argument

Step

- 1. $\forall x(Man(x) \rightarrow Mortal(x))$
- 2. $Man(Socrates) \rightarrow Mortal(Socrates)$
- 3. Man(Socrates)
- 4. Mortal(Socrates)

Reason

Premise

UI from (1)

Premise

MP from (2)

and (3)

Universal Modus Ponens

Universal Modus Ponens combines universal instantiation and modus ponens into one rule.

$$\forall x(P(x) \to Q(x))$$
 $P(a)$, where a is a particular element in the domain
 $\therefore Q(a)$

This rule could be used in the Socrates example.

Questions?

Thank You!