

Discrete probability distributions

Course overview

- Two schools of thought: frequentist and Bayesian
- Introduction to the Bayesian way of thinking
- Subjective probability:
 - Probability describes beliefs about unknown quantities
 - Done through probability distributions

Aspinner

TeachBayespackage

- Package (available on CRAN) for helping teach Bayesian thinking
- Special functions for:
 - Bayes' rule (spinners)
 - Learning about a proportion and a mean
 - Comparing two proportions

Construct my spinner

- > library(TeachBayes)
- > areas <- c(2, 1, 2, 1, 2)
- > spinner_plot(areas)

For example, region 1 is twice the size of region 2

Construct probability distribution

Numerical scale for probabilities

My spinner

Probabilities of compound events

- Identify outcomes of interest
- Sum the probabilities of individual outcomes

Probabilities of compound events

```
> library(dplyr)
> filter(df, Region %in% c(1, 3, 5))
 Region areas Probability
                     0.25
    3 2 0.25
5 2 0.25
> filter(df, Region > 3)
 Region areas Probability
                    0.125
                    0.250
```


$$Prob(Odd) = 0.25 + 0.25 + 0.25 = 0.75$$

$$Prob(larger\ than\ 3) = 0.125 + 0.25 = 0.375$$

Find probabilities by simulation

- Spin spinner many times
- Summarize simulated outcomes

Plotting simulation data

```
> library(TeachBayes)
> (ten_spins <- spinner_data(areas, 10))</pre>
   4 3 2 3 1 3 3 2 1 1
> many_spins <- spinner_data(areas, 1000)</pre>
 bar_plot(many_spins)
```


Simulation data displayed as a table

```
> (S <- summarize(group_by(data.frame(Region = many_spins), Region),</pre>
                  N = n())
# A tibble: 5 × 2
  Region
   <int> <int>
          262
        115
        258
      4 122
        243
```


Probability of Region = 1

Let's practice!

Bayes' rule

Thomas Bayes

- Presbyterian minister (1702 1761)
- Mathematician in his spare time
- Essay Towards Solving a Problem in the Doctrine of Chances (1763)

Define four spinners

Choose one spinner from box

Choose one spinner from box

Which spinner is she holding?

Outline of Bayesian approach

- Identify possible models and construct prior probabilities which reflect your knowledge about the models
- Collect **data** think of **likelihoods**, the chance of getting this data for each model
- Use **Bayes' rule** to find **posterior probabilities**, updated knowledge about models

Identity of the spinner is a model

```
> (bayes_df <- data.frame(Model = paste("Spinner",</pre>
                                          c("A", "B", "C", "D"))))
      Model
1 Spinner A
2 Spinner B
3 Spinner C
4 Spinner D
```


The prior

- Don't know what spinner she's holding
- Assign probabilities that reflect belief about likelihoods of her holding each of these spinners (i.e. assign priors)

```
> bayes_df$Prior <- rep(0.25, 4)</pre>
  bayes_df
                        This is an example of a uniform prior since prior
      Model Prior
                        probabilities are spread out uniformly
1 Spinner A
              0.25
2 Spinner B
              0.25
3 Spinner C
              0.25
4 Spinner D
              0.25
```


Finding the likelihood of observing red

- She spins her spinner once
- Lands on RED
- For each spinner, what is the probability of observing RED?

Likelihood of Spinner A?

Spinner A

Likelihood of Spinner B?

Spinner B

Add likelihoods to table

Bayes' rule

- Posterior probability is proportional to Prior Probability x Likelihood
- "Turn the Bayesian Crank" means to compute posterior probabilities using Bayes' rule

Add products and posterior to table

```
bayes_df contains the prior and
> library(TeachBayes)
> bayesian_crank(bayes_df) likelihood probabilities
     Model Prior Likelihood Product Posterior
1 Spinner A 0.25
                     0.33
                                     0.264
                           0.0825
2 Spinner B 0.25 0.50 0.1250 0.400
3 Spinner C 0.25 0.25 0.0625 0.200
                           0.0425 0.136
4 Spinner D 0.25
                0.17
```

```
Prior x Likelihood = Product
```

Product / sum(Product) = Posterior

Review: the prior

Review: the posterior

Interpreting the posterior probabilities

We can learn more about the identity of spinners by simulating more spins

Let's practice!

Sequential Bayes and looking ahead

Four spinners example

Spun spinner once

Observed RED

The posterior

Suppose you observe a second spin

Spin spinner again

Observe BLUE

Prior?

Likelihood?

Prior?

- Prior represents our current beliefs about the spinners
- After first spin, the posterior becomes my new prior: (.264, .400, .200, .136)

```
> # Old posterior becomes new prior
> bayes_df
     Model Prior
1 Spinner A 0.264
2 Spinner B 0.400
3 Spinner C 0.200
4 Spinner D 0.136
```


Likelihood?

For each spinner, find chance of **BLUE**

Likelihood?

For each spinner, find chance of **BLUE**

Update probabilities

After observing two spins (RED, BLUE), Spinners B and C are each slightly more likely than Spinners A and D

Looking ahead

- Bayesian methods for one proportion and one normal mean inference
- Introduce continuous priors
 - Input prior information?
 - Obtain posterior?
 - Compare with frequentist inferences?
- Use simulation to summarize posterior distributions
- Simulation for prediction and Bayesian regression models

Let's practice!