Оксиды

Получение оксидов

І. Горение в кислороде

1. Простых веществ
$$C + O_2 \rightarrow CO$$

$$\rightarrow CO_2$$

$$S + O_2 \rightarrow SO_2$$

$$Fe + O_2 \xrightarrow{2} Fe_3O_4$$

$$P + O_2 \rightarrow P_2 O_3$$

$$\rightarrow P_2O_5$$

2. Доокисление оксидов в невысшей СТОК элементов

$$P_2O_5 + O_2 \rightarrow P_2O_5$$

$$SO_2 + \frac{1}{2}O_2 \stackrel{Fe}{\rightarrow} SO_3$$

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

3. Горение сложных веществ
$$2PH_3 + 2O_2 \rightarrow P_2O_5 + 3H_2O$$

$$2NH_3 + \frac{3}{2}O_2 \rightarrow N_2 + 3H_2O$$

$$2NH_3 + 5O_2 \stackrel{Pt}{\to} 2NO + 3H_2O$$

$$2 FeS + \frac{7}{2}O_2 \rightarrow Fe_2O_3 + 2 SO_2$$

Хорошо горят водородные соединения и сульфиды

II. Разложение сложных веществ

1. Нерастворимых оснований и амфотерных гидроксидов

$$Cu(OH)_2 \xrightarrow{T_1} CuO + H_2O$$

$$2 Fe(OH)_3 \xrightarrow{T} Fe_2O_3 + 3 H_2O$$

2. Разложение неустойчивых кислот

$$H_2CO_3 \rightarrow H_2O + CO_2 \uparrow$$

$$H_2SO_3 \xrightarrow{T \uparrow} H_2O + SO_2 \uparrow$$

$$H_2SiO_3 \xrightarrow{T} H_2O + SiO_2$$

$$4 HNO_3 \rightarrow 4 NO_2 \uparrow + O_2 + 2 H_2 O$$
 бурый газ

3. Разложение солей

а) Соли с кислотным остатком $MeCO_3$, $MeSO_3$, $MeSiO_3$, если Me не в I_A ниже Li

$$CaCO_3 \stackrel{800^{\circ}C}{\rightarrow} CaO + CO_2$$

$$CaSiO_3 \stackrel{800^{\circ}C}{\rightarrow} CaO + SiO_2$$

$$CaSO_3 \stackrel{800^{\circ}C}{\rightarrow} CaO + SO_2$$

b) Нитраты разлагаются по отдельной схеме

 $MeNO_3$:

Ме - щелочь ниже Li	\rightarrow MeNO ₂ + O ₂
За Cu в ряду стандартных электронных потенциалов	$\stackrel{\rightarrow}{Me}$ + NO_2 + O_2
Остальные	\rightarrow MeO NO ₂ + O ₂

Химические свойства оксидов

Основные оксиды I.

1.
$$MeO + H_2O \xrightarrow{ECJU Me \ akm.} MeOH$$

 $CaO + H_2O \xrightarrow{Ca(OH)_2} Ca(OH)_2$

2.
$$MeO+$$
 кислотный остаток \rightarrow от сильной кислоты $MgO+$ $SO_3 \rightarrow MgSO_4$

3.
$$MeO + \kappa u c noma$$

 $CuO + 2HCl \rightarrow CuCl_2 + H_2O$
 $CuO + 2H^+ \rightarrow Cu^+ + H_2O$

4. Из основных оксидов можно восстанивить некоторые Ме $CuO + H_2 \rightarrow Cu + H_2O$

II. Кислотные оксиды

1.
$$Kucлomhый + H_2O \rightarrow Kucлoma$$

 $SO_3 + H_2O \rightarrow H_2SO_4$
 $CO_2 + H_2O \not\supseteq H_2CO_3$
 $P_2O_5 + 3H_2O \rightarrow H_3PO_4$

3.
$$Kucnomhuŭ+ Щелочь \rightarrow Okcuð P_2O_5 + 6 NaOH \rightarrow 2 Na_3 PO_4 + 3 H_2O P_2O_5 + 6 OH \rightarrow 2 PO_4^3 + 3 H_2O$$

Менее летучие кислотные оксиды способны вытеснить более летучие оксиды из солей при сплавлении.

Важная информация!!

Малолетучие кислотные оксиды -
$$SiO_2uP_2O_5$$
Летучие кислотные оксиды газы - CO_2uSO_3
 $CaCO_3 + SiO_2 \stackrel{cnnqen.}{\rightarrow} CO_2 + CaSiO_3$
 $3MgSO_3 + 2P_2O_5 \stackrel{cnnqen.}{\rightarrow} 3SO_3 + Mg_3(PO_4)_2$

Если в составе соли есть активный Ме, то роль нелетучего кислотного оксида может играть амфотерный оксид.

$$CaCO_3 + PbO \xrightarrow{cn_{A}g_{B,L}} CaPbO_2 + CO_2$$

$$\xrightarrow{a_{M}\phi} = \kappa ucn.$$

III. Амфотерные оксиды

1.
$$MeO + H_2O \rightarrow ...$$
 $ZnO + H_2O \rightarrow ...$

2. Как основные оксиды

$$Al_2O_3 + 3SO_3 \rightarrow Al_2(SO_4)_3$$

 $Al_2O_3 + HCl \rightarrow 2AlCl_3 + H_2O_3$

3. Как кислотные оксиды

$$Al_2O_3 + NaO \rightarrow 2 NaAlO_2$$

$$Al_2O_3 + NaOH \stackrel{con}{\xrightarrow{p}} 2 NaAlO_2 + H_2O$$

 $\stackrel{p}{\Rightarrow}^p Na[Al(OH)_4]$