8.2 (a) The limit is equal to 0.

Proof. Let $\varepsilon > 0$. Let $N = \frac{1}{\varepsilon}$. If n > N, then $n > \frac{1}{\varepsilon}$ so $\varepsilon > \frac{1}{n} = \frac{n}{n^2} > \frac{n}{n^2 + 1} = |\frac{n}{n^2 + 1} - 0|$. Since ε was arbitrary,

$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$$

(c) The limit is equal to $\frac{4}{7}$.

Proof. Let $\varepsilon > 0$. Let $N = \frac{6}{\varepsilon}$. If n > N, then $n > \frac{6}{\varepsilon}$ so $\varepsilon > \frac{6}{n}$. 7n - 5 > n for all $n \in \mathbb{N}$ so $\varepsilon > \frac{6}{n} > \frac{6}{7n - 5} = \frac{42}{7(7n - 5)} > \frac{41}{7(7n - 5)} = |\frac{4n + 3}{7n - 5} - \frac{4}{7}|$. Since ε was arbitrary,

$$\lim_{n\to\infty} \frac{4n+3}{7n-5} = \frac{4}{7}$$

8.4 *Proof.* First let us consider the case where M=0. $|t_n| \leq M=0$ so $t_n=0$ for all $n \in \mathbb{N}$. Then $s_n t_n=0$ for all $n \in \mathbb{N}$ so clearly

$$\lim_{n \to \infty} s_n t_n = 0$$

Then, let us consider the case where $M \neq 0$. Note that M > 0 since $0 \leq |t_n| \leq M$ and we have dealt with the case where M = 0 above. Let $\varepsilon > 0$. Then there is some N_1 such that if $n > N_1$, then $|s_n - 0| < \frac{\varepsilon}{M}$. $|t_n| \leq M$ for all $n \in \mathbb{N}$ so $|s_n||t_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon$. Since $|s_n||t_n| = |s_n t_n| = |s_n t_n - 0|$, $|s_n t_n - 0| < \varepsilon$. Since ε was arbitrary,

$$\lim_{n \to \infty} s_n t_n = 0$$

8.8 (a) Proof. Let $\varepsilon > 0$. Let $N = \frac{1-\varepsilon^2}{2\varepsilon}$. If n > N, then $n > \frac{1-\varepsilon^2}{2\varepsilon}$ so $2n\varepsilon > 1-\varepsilon^2$. Hence, we have that $1 < \varepsilon^2 + 2n\varepsilon$ and so $1 + n^2 < \varepsilon^2 + 2n\varepsilon + n^2 = (\varepsilon + n)^2$. Therefore, $\sqrt{n^2 + 1} < \varepsilon + n$ and hence $\sqrt{n^2 + 1} - n < \varepsilon$ so $|\sqrt{n^2 + 1} - n - 0| < \varepsilon$. Since ε was arbitrary,

$$\lim_{n \to \infty} (\sqrt{n^2 + 1} - n) = 0$$

- 8.10 Proof. Let $\varepsilon > 0$. Let $\lim_{n \to \infty} (s_n) = a + \varepsilon > a$. Then there is some N such that if n > N, then $|s_n (a + \varepsilon)| < \varepsilon$ so $-\varepsilon < s_n (a + \varepsilon) < \varepsilon$ and hence $-\varepsilon + (a + \varepsilon) < s_n < \varepsilon + (a + \varepsilon)$. As a result, we get that $a < s_n < a + 2\varepsilon$ so $s_n > a$. Since ε was arbitrary, we have therefore shown that there exists a number N such that n > N implies $s_n > a$.
- 9.4 (a) The first four terms are 1, $\sqrt{2}$, $\sqrt{\sqrt{2}+1}$, and $\sqrt{\sqrt{2}+1}+1$
 - (b) Assuming that $\langle s_n \rangle$ converges, let $\lim_{n \to \infty} (s_n) = s > 0$ since all the terms are positive. Since $\lim_{n \to \infty} (s_n) = \lim_{n \to \infty} (s_{n+1})$, we get that $\lim_{n \to \infty} (s_{n+1}) = s$ so $\lim_{n \to \infty} (\sqrt{s_n+1}) = s$. Hence, $s^2 = [\lim_{n \to \infty} (\sqrt{s_n+1})]^2 = \lim_{n \to \infty} (\sqrt{s_n+1}) \cdot \lim_{n \to \infty} (\sqrt{s_n+1}) = \lim_{n \to \infty} (s_n+1)$ by limit properties. Then, we get that $s^2 = \lim_{n \to \infty} (s_n) + 1 = s+1$ and so $s^2 s 1 = 0$. Therefore, $s = \frac{1}{2}(a \pm \sqrt{5})$. Since s > 0, $s = \frac{1}{2}(a + \sqrt{5})$
- 9.6 (a) Since $a = \lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (x_{n+1})$ and $\lim_{n \to \infty} (x_{n+1}) = \lim_{n \to \infty} (3x_n^2) = 3 \lim_{n \to \infty} (x_n^2) = 3 \lim_{n \to \infty} (x_n) \cdot \lim_{n \to \infty} (x_n) = 3a \cdot a = 3a^2$ by limit properties, we then have that $3a^2 = a$. Therefore, a = 0 or $a = \frac{1}{3}$
 - (b) No, the limit does not exist as $\lim_{n\to\infty}(x_n)=+\infty$. For any M>0, there is a N such that if n>N, then $s_n>M$ since the terms of the sequence get larger and larger without bound as n increases.

3 February 2018 Page 1

- (c) In (a), we assumed that the limit exists by claiming that $a = \lim_{n \to \infty} (x_n)$. However this is <u>not</u> a valid assumption so we cannot say that $a = \lim_{n \to \infty} (x_n)$.
- 9.12 (a) Proof. Assuming that the limit exists, $L=\lim_{n\to\infty}|\frac{s_{n+1}}{s_n}|<1$. By denseness, let $a\in\mathbb{R}$ such that L< a<1. Let $\varepsilon=a-L>0$. Then there is some $N_0\in\mathbb{N}$ such that if $n>N_0$, then $||\frac{s_{n+1}}{s_n}|-L|<\varepsilon$. Note that if $n>N_0$, then we can further restrict n so that $n\geq N_0+1=N$. Hence $-\varepsilon<\frac{|s_{n+1}|}{|s_n|}-L<\varepsilon$ for $n\geq N$. We then see that $L-\varepsilon<\frac{|s_{n+1}|}{|s_n|}< L+\varepsilon$ so $|s_n|\cdot (L-\varepsilon)<|s_{n+1}|<|s_n|\cdot (L+\varepsilon)=|s_n|a$ so we get that $|s_{n+1}|<|s_n|a$ for $n\geq N$. Note that we then have $|s_n|<|s_{n-1}|a$, $|s_{n-1}|<|s_{n-1}|a$, and so on. Therefore, $|s_n|<|s_{n-1}|a<|s_{n-2}|a^2<\cdots<|S_N|a^{n-N}$. By limit properties, we get that $\lim_{n\to\infty}|s_N|a^{n-N}=0$. Therefore, since a was arbitrary, we can apply the Squeeze Lemma to get

$$\lim_{n \to \infty} |s_n| = 0$$

(b) Proof. Suppose L > 1. Let $t_n = \frac{1}{|s_n|}$. Then, $\lim_{n \to \infty} \left| \frac{t_{n+1}}{t_n} \right| = \lim_{n \to \infty} \left| \frac{s_n}{s_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right|} = \frac{1}{1}$. By part (a), then $\lim_{n \to \infty} (t_n) = 0$ so by Theorem 9.10

$$\lim_{n\to\infty} |s_n| = +\infty$$

- 9.18 (a) Proof. We will prove by induction. Note that $1+a=\frac{1-a^{1+1}}{1-a}=\frac{(1-a)(1+a)}{1-a}=1+a$ since $a\neq 1$ so the claim holds for n=1. Now suppose the claim holds for some $n\in\mathbb{N}$. Then, $1+a+a^2+\cdots+a^n+a^{n+1}=\frac{1-a^{n+1}}{1-a}+a^{n+1}$ by inductive hypothesis above. Then, this is equal to $\frac{1-a^{n+1}+(1-a)a^{n+1}}{1-a}=\frac{1-a^{n+2}}{1-a}$ so the the claim holds for n+1. Since n was arbitrary, the claim holds for n+1 whenever it holds for n. Therefore by induction, the claim holds for all $n\in\mathbb{N}$. \square
 - (b) $\lim_{n\to\infty} (1+a+a^2+\cdots+a^n) = \lim_{n\to\infty} \frac{1-a^{n+1}}{1-a}$ by part (a). By limit properties since |a|<1, this is equal to

$$\frac{1 - \lim_{n \to \infty} a^{n+1}}{1 - a} = \frac{1}{1 - a}$$

- (c) $\lim_{n\to\infty} (1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots+\frac{1}{3^n})=\frac{1}{1-\frac{1}{3}}$ by part (b), where $a=\frac{1}{3}$ (note that $|a|=|\frac{1}{3}|<1$). Therefore, the limit is equal to $\frac{3}{2}$.
- (d) We will first consider a=1. Since $a^k=1^k=1$ for all $k\in\mathbb{N}_{\leq n}$, then $\lim_{n\to\infty}(1+a+a^2+\cdots+a^n)=\lim_{n\to\infty}((n+1)\cdot 1)=+\infty$. Now we will consider a>1. $\lim_{n\to\infty}(1+a+a^2+\cdots+a^n)=\lim_{n\to\infty}\frac{1-a^{n+1}}{1-a}$ by part (a). By limit properties, this is equal to $\frac{1-\lim_{n\to\infty}a^{n+1}}{1-a}$. Since a>1, $0<\frac{1}{a}<1$ so by Theorem 9.7(b), $\lim_{n\to\infty}(\frac{1}{a})^n=0$. Then, $\lim_{n\to\infty}(\frac{1}{a^n})=0$ so by Theorem 9.10, this implies that $\lim_{n\to\infty}a^n=+\infty$ where a>1. Since $\lim_{n\to\infty}a^{n+1}=\lim_{n\to\infty}(a\cdot a^n)=a\cdot\lim_{n\to\infty}a^n=+\infty$ by limit properties where a>1. Therefore for $a\geq 1$,

$$\lim_{n \to \infty} (1 + a + a^2 + \dots + a^n) = +\infty$$

3 February 2018 Page 2