

Week 1. Problem set (solutions)

- 1. Which of the following λ -terms are closed [1, §5.1]? Justify your answer.
 - (a) $\lambda a.(\lambda b.a\ b)\ a$

Answer: Closed.

Justification: Both occurrences of a are bound by the outermost λ -abstraction. The only occurrence of b is bound by the only other λ -abstraction.

(b) $\lambda d.x (\lambda d.d)$

Answer: Not closed (open).

Justification: The only occurrence of x is not bound by any λ -abstraction.

(c) $\lambda x.(\lambda x.x) x$

Answer: Closed.

Justification: The leftmost occurrence of x is bound by the inner λ -abstraction, while the rightmost is bound by the outer λ -abstraction. The corresponding binders are shown with indices here: $\lambda x_1.(\lambda x_2.x_2) x_1$

- 2. Write down the call-by-value evaluation sequence for the following λ -terms. Each step of the evaluation must correspond to a single β -reduction or an α -conversion. You may introduce aliases for subterms.
 - (a) $(\lambda x.\lambda y.x) (\lambda z.y) (\lambda z.z) w$

Solution. First, we need to rename bound variable y, then we can proceed with β -reduction.

$$(\lambda x.\lambda y.x) (\lambda z.y) (\lambda z.z) w \tag{1}$$

$$\stackrel{\alpha}{=} (\lambda x. \lambda b. x) (\lambda z. y) (\lambda z. z) w \tag{2}$$

$$\xrightarrow{\beta} (\lambda b.\lambda z.y) (\lambda z.z) w \tag{3}$$

$$\stackrel{\beta}{\longrightarrow} (\lambda z.y) \ w \tag{4}$$

$$\xrightarrow{\beta} y$$
 (5)

(b) $(\lambda b.\lambda x.\lambda y.b \ y \ x) \ (\lambda x.\lambda y.y)$

Solution. Here, we stop after one β -reduction, since in call-by-value, we do not reduce under λ -abstraction:

$$(\lambda b.\lambda x.\lambda y.b \ y \ x) \ (\lambda x.\lambda y.y) \tag{6}$$

(c) $(\lambda s.\lambda z.s (s z)) (\lambda b.\lambda x.\lambda y.b y x) (\lambda x.\lambda y.y)$

Solution. Here, we stop after three β -reductions, since in **call-by-value**, we do not reduce under λ -abstraction:

$$(\lambda s.\lambda z.s (s z)) (\lambda b.\lambda x.\lambda y.b y x) (\lambda x.\lambda y.y)$$
(8)

$$\xrightarrow{\beta} \frac{(\lambda z.(\lambda b.\lambda x.\lambda y.b \ y \ x) \ ((\lambda b.\lambda x.\lambda y.b \ y \ x) \ z)) \ (\lambda x.\lambda y.y)}{(\lambda b.\lambda x.\lambda y.b \ y \ x) \ ((\lambda b.\lambda x.\lambda y.b \ y \ x) \ (\lambda x.\lambda y.y))}$$
(9)

$$\xrightarrow{\beta} (\lambda b.\lambda x.\lambda y.b \ y \ x) \ ((\lambda b.\lambda x.\lambda y.b \ y \ x) \ (\lambda x.\lambda y.y)) \tag{10}$$

$$\xrightarrow{\beta} \lambda x. \lambda y. (\lambda b. \lambda x. \lambda y. b \ y \ x) \ (\lambda x. \lambda y. y) \ y \ x \tag{11}$$

3. Recall that with Church booleans [1, §5.2] we have the following encoding:

$$tru = \lambda t. \lambda f. t$$
$$fls = \lambda t. \lambda f. f$$

(a) Using only bare λ -calculus (variables, λ -abstraction and application), write down a λ -term for logical equivalence (eq) of two Church booleans. You may **not** use aliases.

Solution. The following pseudocode corresponds to checking logical equivalence:

```
function EQ(x, y):
   if x
    then y
   else
    if y
    then FALSE
    else TRUE
```

Assuming arguments are Church-encoded booleans (and so behave like if with a built-in condition), we can construct the following λ -term for EQ:

eq =
$$\lambda x.\lambda y.x \ y \ (y \text{ fls tru})$$

= $\lambda x.\lambda y.x \ y \ (y \ (\lambda t.\lambda f.f) \ (\lambda t.\lambda f.t))$

(b) Verify your implementation of eq by writing down evaluation sequence for the term eq fls tru. You must expand this term and then evaluate without aliases.

Solution. The following sequence of reductions follows *call-by-value* strategy:

eq fls tru
$$(12)$$

$$= (\lambda x.\lambda y.x \ y \ (y \ (\lambda t.\lambda f.f) \ (\lambda t.\lambda f.t))) \ (\lambda t.\lambda f.f) \ (\lambda t.\lambda f.t)$$

$$(13)$$

$$\xrightarrow{\beta} (\lambda y.(\lambda t.\lambda f.f) \ y \ (y \ (\lambda t.\lambda f.f) \ (\lambda t.\lambda f.t))) \ (\lambda t.\lambda f.t)$$
 (14)

$$\xrightarrow{\beta} (\lambda t.\lambda f.f) (\lambda t.\lambda f.t) ((\lambda t.\lambda f.t) (\lambda t.\lambda f.f) (\lambda t.\lambda f.t))$$
(15)

$$\xrightarrow{\beta} (\lambda f. f) ((\lambda t. \lambda f. t) (\lambda t. \lambda f. f) (\lambda t. \lambda f. t))$$
(16)

$$\xrightarrow{\beta} (\lambda f. f) ((\lambda f. \lambda t. \lambda f. f) (\lambda t. \lambda f. t)) \tag{17}$$

$$\xrightarrow{\beta} (\lambda f. f) (\lambda t. \lambda f. f) \tag{18}$$

$$\xrightarrow{\beta} \lambda t. \lambda f. f \tag{19}$$

The following sequence of reductions follows *call-by-name* strategy:

eq fls tru
$$(20)$$

$$= (\lambda x.\lambda y.x \ y \ (y \ (\lambda t.\lambda f.f) \ (\lambda t.\lambda f.t))) \ (\lambda t.\lambda f.f) \ (\lambda t.\lambda f.t)$$
(21)

$$\xrightarrow{\beta} (\lambda y.(\lambda t.\lambda f.f) \ y \ (y \ (\lambda t.\lambda f.f) \ (\lambda t.\lambda f.t))) \ (\lambda t.\lambda f.t)$$
 (22)

$$\xrightarrow{\beta} (\lambda t.\lambda f.f) (\lambda t.\lambda f.t) ((\lambda t.\lambda f.t) (\lambda t.\lambda f.f) (\lambda t.\lambda f.t))$$
(23)

$$\xrightarrow{\beta} (\lambda f.f) ((\lambda t.\lambda f.t) (\lambda t.\lambda f.f) (\lambda t.\lambda f.t))$$
(24)

$$\xrightarrow{\beta} (\lambda t. \lambda f. t) (\lambda t. \lambda f. f) (\lambda t. \lambda f. t) \tag{25}$$

$$\xrightarrow{\beta} (\lambda f. \lambda t. \lambda f. f) (\lambda t. \lambda f. t) \tag{26}$$

$$\xrightarrow{\beta} \lambda t. \lambda f. f \tag{27}$$

The result is equal to fls by definition, as expected.

4. Recall that with Church numerals [1, §5.2] we have the following encoding:

$$\begin{aligned} c_0 &= \lambda s. \lambda z. z \\ c_1 &= \lambda s. \lambda z. sz \\ c_2 &= \lambda s. \lambda z. s \; (s \; z) \\ c_3 &= \lambda s. \lambda z. s \; (s \; (s \; z)) \end{aligned}$$

(a) Using only bare λ -calculus (variables, λ -abstraction and application), write down a single λ -term for each of the following functions on natural numbers. You may **not** use aliases.

i.
$$n \mapsto 2n+1$$

ii. $n \mapsto 2^{n+1}$

Solution.

i.
$$f_i = \lambda n.\lambda s.\lambda z.s \ (n \ (\lambda z.s \ (s \ z)) \ z)$$

ii. $f_{ii} = \lambda n.(\lambda s.\lambda z.n \ s \ (s \ z)) \ (\lambda s.\lambda z.s \ (s \ z))$

(b) Verify each your implementations of the functions above by writing down a full β -reduction sequence for each of them, when applied to c_2 . You may use aliases.

Solution.

i.

$$f_i c_2$$
 (28)

$$= (\lambda n.\lambda s.\lambda z.s (n (\lambda z.s (s z)) z)) (\lambda s.\lambda z.s (s z))$$
(29)

$$\xrightarrow{\beta} \lambda s. \lambda z. s ((\lambda s. \lambda z. s (s z)) (\lambda z. s (s z)) z)$$
(30)

$$\xrightarrow{\beta} \lambda s. \lambda z. s ((\lambda z. (\lambda z. s (s z)) ((\lambda z. s (s z)) z)) z)$$
 (31)

$$\xrightarrow{\beta} \lambda s. \lambda z. s ((\lambda z. s (s z)) ((\lambda z. s (s z)) z))$$
 (32)

$$\xrightarrow{\beta} \lambda s. \lambda z. s \left(s \left(\left(\lambda z. s \left(s \, z) \right) \, z \right) \right) \right) \tag{33}$$

$$\xrightarrow{\beta} \lambda s. \lambda z. s \left(s \right) \right) \right) \right) \right) \right. \tag{34}$$

$$= \mathsf{c}_5 \tag{35}$$

ii.

$$f_{\rm li} \ c_2 \\ = (\lambda n.(\lambda s.\lambda z.n \ s \ (s \ z)) \ (\lambda s.\lambda z.s \ (s \ z))) \ (\lambda s.\lambda z.s \ (s \ z)) \\ = (\lambda n.(\lambda s.\lambda z.n \ s \ (s \ z)) \ c_2 \ c_2 \\ = (\lambda n.(\lambda s.\lambda z.n \ s \ (s \ z)) \ c_2 \ c_2 \\ = (\lambda s.\lambda z.c_2 \ s \ z)) \ c_2 \\ = \lambda z.(\lambda s.\lambda z.c_2 \ s \ z)) \ c_2 \\ = \lambda z.(\lambda s.\lambda z.s \ (s \ z)) \ c_2 \ (c_2 \ z) \\ = \lambda z.(\lambda s.\lambda z.s \ (s \ z)) \ c_2 \ (c_2 \ z) \\ = \lambda z.(\lambda s.\lambda z.s \ (s \ z)) \ c_2 \ (c_2 \ z) \\ = \lambda z.(\lambda s.\lambda z.s \ (s \ z)) \ (c_2 \ c_2 \ z) \\ = \lambda z.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ (c_2 \ z)) \\ = \lambda z.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ (c_2 \ z)) \\ = \lambda z.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ z) \\ = \lambda z.\lambda x.(\lambda s.\lambda z.s \ (s \ z)) \ (c_2 \ c_2 \ z) \\ = \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ z) \\ = \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ z) \\ = \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ z) \\ = \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ z) \\ = \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ c_2 \ x) \\ \Rightarrow \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ c_2 \ x) \\ \Rightarrow \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ z)) \ (c_2 \ c_2 \ c_2 \ c_2 \ x) \\ \Rightarrow \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ z) \ (c_2 \ c_2 \ z) \\ \Rightarrow \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ z) \ (c_2 \ c_2 \ z) \\ \Rightarrow \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ c_2 \ c_2 \ z) \\ \Rightarrow \lambda z.\lambda x.(\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ c_2 \ c_2 \ x) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ c_2 \ z) \ x)) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ (c_2 \ z) \ x))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ (c_2 \ z) \ x))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ (c_2 \ z) \ x))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ (c_2 \ z) \ x))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ z) \ x)))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ z) \ x)))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ z) \ x)))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ z) \ x)))) \\ \Rightarrow \lambda z.\lambda x.z \ (z \ (z \ ((\lambda s.\lambda x.s \ (s \ w)) \ z \ (c_2 \ z) \ x))))) \\ \Rightarrow \lambda z.\lambda x.z \ (z$$

(71)

 $= c_8$

References

[1] B.C. Pierce. *Types and Programming Languages*. The MIT Press. MIT Press, 2002. ISBN: 9780262162098. URL: https://books.google.ru/books?id=ULT4DwAAQBAJ.