```
#conda update -n base -c defaults conda
In [87]:
          # pip install folium
In [88]:
          # !conda install -c conda-forge folium=0.5.0 --yes
In [89]:
          # pip install geopy
 In [ ]:
          !pip install beautifulsoup4
          !pip install lxml
          import pandas as pd
In [17]:
          from bs4 import BeautifulSoup
          import requests
          import numpy as np
          from geopy.geocoders import Nominatim # convert an address into Latitude and Longitude values
          from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe
          import folium # map rendering Library
          # import k-means from clustering stage
          from sklearn.cluster import KMeans
          # Matplotlib and associated plotting modules
          import matplotlib.cm as cm
          import matplotlib.colors as colors
          source = requests.get("https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M").text
In [82]:
          soup = BeautifulSoup(source, 'lxml')
          table = soup.find("table")
          table_rows = table.tbody.find_all("tr")
          # print(table rows)
          data = []
          for tr in table rows:
              td = tr.find_all("td")
              row = [tr.text for tr in td]
                print(row)
                print('
          # Only process the cells that have an assigned borough. Ignore cells with a borough that is Not assigned.
                print(row)
              for temp in row:
                    print(temp)
                  if temp != []:
                      temp = temp.strip()
                      temp1 = temp[0:3]
```

```
if temp2.strip() != "Not assigned":
    res = temp2.split("(")
    temp2 = res[0]
    temp3 = res[1].rstrip(')')
    temp3 = temp3.replace(")",",")
    temp3 = temp3.replace(" / ",",")
    res = [temp1, temp2, temp3]
    data.append(res)

# print(data)
# Dataframe with 3 columns
df = pd.DataFrame(data, columns = ["PostalCode", "Borough", "Neighborhood"])

df.drop_duplicates(subset = ["PostalCode", "Borough", "Neighborhood"], keep = False, inplace = True)
df.head(200)
```

Out[82]:	PostalCode		Borough	Neighborhood	
	2 M3A		North York	Parkwoods	
	3	M4A	North York	Victoria Village	
	4	M5A	Downtown Toronto	Regent Park, Harbourfront	
	5	M6A	North York	Lawrence Manor, Lawrence Heights	
	8	М9А	Etobicoke	Islington Avenue	
	•••				
	147	M4W	Downtown Toronto	Rosedale	
	151	M8W	Etobicoke	Alderwood, Long Branch	
	152	M9W	EtobicokeNorthwest	Clairville, Humberwood, Woodbine Downs, West H	
	156	M4X	Downtown Toronto	St. James Town, Cabbagetown	
	168	M7Y	East TorontoBusiness reply mail Processing Cen	Enclave of M4L	

70 rows × 3 columns

```
In [84]: geo_data = pd.read_csv("Geospatial_Coordinates.csv")
    geo_data.head()
```

Out[84]: Postal Code Latitude Longitude

0 M1B 43.806686 -79.194353

```
        Postal Code
        Latitude
        Longitude

        1
        M1C
        43.784535
        -79.160497

        2
        M1E
        43.763573
        -79.188711

        3
        M1G
        43.770992
        -79.216917

        4
        M1H
        43.773136
        -79.239476
```

```
In [86]: df_toronto = pd.merge(df, geo_data, how='left', left_on = 'PostalCode', right_on = 'Postal Code')
# remove the "Postal Code" column
df_toronto.drop("Postal Code", axis=1, inplace=True)
df_toronto.head()
```

Out[86]:		PostalCode	Borough	Neighborhood	Latitude	Longitude
	0	МЗА	North York	Parkwoods	43.753259	-79.329656
	1	M4A	North York	Victoria Village	43.725882	-79.315572
	2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
	3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
	4	М9А	Etobicoke	Islington Avenue	43.667856	-79.532242

```
In [ ]:
```