

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WST02_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment.
 Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

_	stion nber	Scheme	Marks				
1((a)	eg $4750 \times \frac{80}{40000}$ o.e. $[=9.5]$ *	B1*				
(I	b)	Two appropriate assumptions. e.g. Hazelnuts occur singly or hazelnuts occur randomly (independently) or hazelnuts are well mixed in or mean number of hazelnuts (per kg) is constant or hazelnuts occur at a constant rate	B1 B1	1)			
(c))(i)	Let $X =$ number of hazelnuts. $X \sim Po(9.5)$	(1)	2)			
		$P(X=12) = \frac{e^{-9.5} \times (9.5)^{12}}{121}$	M1				
		= 0.08444 awrt 0.0844	A1				
(i	i)	$P(X \leqslant 7)$	M1				
		= 0.26866 awrt 0.269	A1 (4	4)			
(0	d)	Let $R =$ number of bars with fewer than 8 hazelnuts. $R \sim B(3, 0.2687)$	B1				
		$P(R=1) = "0.2687" \times (1 - "0.2687")^2 \times 3$	M1				
		= 0.4312 awrt 0.431	A1	3)			
(6	e)	$Y \sim \text{Po}(23.75)$ oe	B1	3)			
		\Rightarrow approximately $Y \sim N(23.75, 23.75)$	M1				
		$P(Y \ge 30) = P\left(Z > \frac{29.5 - 23.75}{\sqrt{23.75}}\right) [= 1 - P(Z < 1.18)]$	M1dM1				
		(=1-0.8810) = 0.1190 awrt 0.119	A1	5)			
			Total 15	3)			
	1	Notes					
(a)	B1*	for equivalent working. Allow equation $\frac{x}{4750} = \frac{80}{40000}$ oe. Answer is given					
(b)	B1 B1	for an assumption in a correct context. Allow equivalent wording with words a second assumption need not be in context. Also ignore in correct context NB 2 correct assumptions not in context get B0B1	in bold				
(c)(i)	M1	$\frac{e^{-\lambda} \times (\lambda)^{12}}{12!}$ or writing or using $P(X \le 12) - P(X \le 11)$					
(ii)	M1	for $P(X \le 7)$ seen or implied by correct answer. Do Not allow $P(X \le 8)$ for M1 unless correct answer					
(d)	B1	writing B(3, "0.269") or B(3, 1 - "0.269") or seeing $("0.269")^n \times (1 - "0.269")$	C_n oe				
	,	where $1 \le n \le 2$ (with their 0.269 or better) Implied by correct answer	<i>(</i> **)				
(e)	M1 B1	correct calculation of the form $3pq^2$ where $p + q = 1$. Working to be seen if (c) for writing or using new mean of 23.75 oe Condone N(23.75, 23.75 ²) if used of					
		standardisation					
	M1	for normal approx with changed mean = variance. May be seen in standardisation $(28.5/29/29.5/30/30.5 - their mean)$					
	M1	for $\pm \left(\frac{28.5/29/29.5/30/30.5 - their mean}{their sd}\right)$ If they do not have not given	a mean and				
	M1d	variance they must be correct in here. (allow $1 \pm \text{standardisation}$) Dep on previous M being awarded. For attempt at continuity correction (condon	ne 30.5 or 28.5	5)			

_	estion	Scheme							Marks	
	(a)	P(T=0) = P(0+0, or -1+1) = 0.4 ² + 2(0.2×0.4) = 0.32*								M1 A1 (2)
(b)		P(T=t)	$ \begin{array}{c c} -2 \\ 0.2^2 = \\ \hline 0.04 \end{array} $	2×0.23	×0.4=	(0.32)	$ \begin{array}{c c} 1 \\ 2 \times 0.4^2 = \\ 0.32 \end{array} $	0.4	16	B1 M1M1 A1 (4)
						Notes				Total 6
(a)	M 1	for identifying $(0,0)$ and $(-1,1)$ as the two cases that result in $T=0$ May be implied by seeing 0.4^2 and 0.2×0.4 with no other calculations added. Or identifying $(-1,-1)$ and $(1,1)$ and $(-1,0)$ and $(0,1)$ and subtracting from 1 May be implied by $1-0.2^2-3\times0.4^2-2\times0.2\times0.4$ with no other calculations subtracted Do not allow 2×0.4^2 for complete calculation shown. Need to see $0.4^2+2(0.2\times0.4)$ or $0.16+2(0.08)$ leading to 0.32 oe						om 1 subtracted		
(b)	B1			correct set may appea		ues – extras	s must have a	a prob	ability of	f 0
			pairs	$-1,-1$ $0.2^2 =$		or $0,-1$ $2 \times 0.4 =$	$0,1$ or 2×0.4^2		$1,1$ $0.4^2 =$	
			P(T=t)	0.04		0.16	0.32	_	0.16	
	1 st M1	for at least two correct calculations or probs attached to the correct value of t (from the four listed) or at least two correct calculations or probs attached to the correct pair. See table. Must have <u>added</u> the calculations/probs for $\{(-1,0) \text{ and } (0,-1)\}$ and $\{(0,1) \text{ and } (1,0)\}$ if calculated separately								
	2 nd M1	for all four calculations or probs attached to the correct value of <i>t</i> (from the four listed) or all four correct calculations or probs attached to the correct pair. See table								
	A1		-			with respections missing	ctive T value labels	s. Allo	ow equiv	alent

~	estion mber	Scheme	Marks
3	(a)	$\frac{a+b}{2} = 6$ $\frac{1}{12}(b-a)^2 = 3$	B1
		$a+b=12$ and $b-a=\pm 6$ or $a^2-12a+27=0$ or $b^2-12b+27=0$ $a=3, b=9$	dM1 A1 (3)
((b)	$[P(Y > 6 + \sqrt{3}) =] \frac{"9" - (6 + \sqrt{3})}{"9" - "3"}$ $= \frac{3 - \sqrt{3}}{6} \text{ or } 0.211(32)$ awrt 0.211	M1
	<i>(</i>)		A1 (2)
((c)	$ [F(y) =] \begin{cases} 0 & y < 3 \\ \frac{y-3}{6} & 3 \le y \le 9 \\ 1 & y > 9 \end{cases} $	
		$[F(y) =] \begin{cases} \frac{y-3}{6} & 3 \le y \le 9 \end{cases}$	B1
		1 y > 9	B1
			(2)
		N-4	Total 7
(a)	B1	Notes for correct equations for both mean and variance. Implied by the dM1	
	dM1	dependent on B1. A correct pair of linear equations or a correct quadratic in 1v	ar.
	A1	must state $a = 3$ and $b = 9$ or write [3, 9] not just write 3 and 9. If two answers incorrect one must be eliminated NB correct answer with no working gains $3/3$	
(b)	M1	"their b "- $\left(6+\sqrt{3}\right)$ or $1-\frac{\left(6+\sqrt{3}\right)}{"their b"}$ Allow use of awrt7.73 for 6 allow 7.7 if $6+\sqrt{3}$ is seen. If a and b are incorrect working must be shown to mark.	
	A1	$\frac{3-\sqrt{3}}{6}$ oe or awrt 0.211	
(c)		$[F(y) =] \begin{cases} 0 & y < "a" \\ \frac{y - \text{"their } a"}{\text{"their } b - a"} & \text{"their } a" \leqslant y \leqslant \text{"their } b" \\ 1 & y > "b" \end{cases}$	
		Award B1B1 if all 3 lines correct using the same letter (ft "their a and b")	
		Award B1 B0 if all correct but a mixture of letters (ft "their a and b")	
Award B1B0 if just the 2 nd line is correct all same letter used in the function and just the 1 st and 3 rd line correct with the same letter used for both ranges. Allow of once			
		NB Allow $<$ signs for \le and vice versa and $>$ for \ge and Ignore F(y)	

Question Number		Scheme		Marks		
4(a)		Let X = number of traffic accidents (in 12 months) H_0 : $\lambda = 2.5$ (or $\lambda = 10$) H_1 : $\lambda \neq 2.5$ (or $\lambda \neq 10$)		B1		
		Under H ₀ : $X \sim \text{Po}(2.5)$ Either: $P(X \ge 6) = 1 - P(X \le 5)$	Or: $[P(X \le 0) = 0.0821]$			
		= 1 - 0.9580	$P(X \ge 7) = 1 - 0.9585 = 0.0142$	M1		
		= 0.0420	C.R. is $[X < 0 \text{ and}] X \geqslant 7$	A1		
		4.2% > 2.5%	6 < 7			
		so not significant, do There is no evidence of a change in t OR supermarket manager 's claim is	the rate of accidents,	dM1 A1		
((b)	Test is now one-tailed, or now have	·	B1 (5)		
		so result is significant. There is evidence of an increase in the OR resident 's claim is supported.	, <u>.</u>	M1ft A1		
				(3) Total 8		
		No	otes			
(a)	B1		e in terms of λ (or μ) and connected to	H ₀ and H ₁		
	M1	for writing or using Poisson 2.5 and	$1 - P(X \le 5)$ (can be implied) or a cor	rect		
			ritical region. NB $P(X \geqslant 7) = 0.0142 \text{ v}$			
	A1	for correct probability or right hand of 0.042. NB Allow M1 A1 for statement	critical region. Allow awrt 0.0420 Co ent $P(X \le 5) = 0.9580$ on its own	ndone		
	dM1	dependent on 1 st M1 for correct decision based on their probability/region and 2.5% (two tail test) or 5% (one tail test). If using $P(X \le 5) = 0.9580$ we must see $0.9580 < 0.975(1-tail)$ or $0.9580 > 0.95(2-tail)$				
	A 1	for correct conclusion in context. Words in bold needed. Must be change oe (increase) Do Not award if one tail test or there are no hypotheses				
(b)	B1	If no hypotheses or a 2-tail in (a) this is for recognising that the test is now one-tailed eg hypotheses (condone incorrect letters) New CR or using 5% to compare(must be seen) If 1- tail test in (a) then stating no change or only conclusion changes (must be				
		stated. It is not implied by them repeating the test in (a)				
	M1	for correct decision based on their probability/region compared to 5%. Allow ft from their 0.0420 / CR or allow correct value. Do not allow if there are any incorrect non contextual statements				
	A1	for correct conclusion in context. Allow number instead of rate but must have increase oe not change, Words in bold needed. NB In (a) A correct contextual conclusion on its own gains M1A1 providing previous				
		M1 awarded In (b) A correct contextual conclusion on its own gains M1A1				

Question Number	Scheme	Marks
5(a)	f(0) = 5k	M1
	$k\{(a-2)^2 + 1\} < 5k \text{condone } k\{(a-2)^2 + 1\} = 5k$ $(a-2)^2 < 4 \Rightarrow \qquad 0 < a < 4$	
	$\left(a-2\right)^2 < 4 \Rightarrow \qquad 0 < a < 4$	A1
(b)(i)(ii)	f(x)	(2)
	Shape for $0 < x < 3$	B1
	(2, k) or labels 2 and k	B1
	3	(2)
(c)	$\int_0^3 \mathbf{f}(x) \mathrm{d}x = 1$	
	$k \left[\frac{x^3}{3} - 2x^2 + 5x \right]_0^3 = 1 \qquad \text{or} k \left[\frac{(x-2)^3}{3} + x \right]_0^3 = 1$	M1A1
	$k\left(\frac{27}{3} - 2 \times 9 + 15\right) - 0k = 1$ or $k\left(\frac{1}{3} + 3\right) - \frac{-8}{3}k = 1$	dM1
	$6k = 1 \qquad \Rightarrow k = \frac{1}{6} *$	A1*
(d)	$E(X) = \int_0^3 x \times \frac{1}{6} (x^2 - 4x + 5) dx$	(4) M1
	$= \int_0^3 \frac{1}{6} (x^3 - 4x^2 + 5x) dx = \frac{1}{6} \left[\frac{x^4}{4} - \frac{4x^3}{3} + \frac{5x^2}{2} \right]_0^3$	dM1A1
	$= \frac{1}{6} \left(\frac{81}{4} - \frac{108}{3} + \frac{45}{2} - 0 \right) \text{or} \frac{9}{8}$	dM1
	Var $(X) = 2.1 - \left(\frac{9}{8}\right)^2 = \frac{267}{320}$	dM1
	$=\frac{267}{320}$ awrt 0.834	dA1
(e)	1 [3] 1 ³	(6)
	$\left \frac{1}{6} \left[\frac{x^3}{3} - 2x^2 + 5x \right]_2^3 \text{ oe} \right \qquad \text{or} 1 - \frac{1}{6} \left[\frac{x^3}{3} - 2x^2 + 5x \right]_0^2 \text{ oe} $ $\left \frac{1}{6} \left[9 - 18 + 15 - \left(\frac{8}{3} - 8 + 10 \right) \right] = \frac{2}{9}^* \qquad \text{or} 1 - \frac{1}{6} \left[\left(\frac{8}{3} - 8 + 10 \right) \right] = \frac{2}{9}^*$	M1
		A1* cso
(f)	P $1 < X < 2 = \frac{2}{9}$ or use of symmetry $P(X < 1) = \left[\frac{1}{6}\left(\frac{x^3}{3} - 2x^2 + 5x\right)\right]_0^1$ P $X > 1 = \frac{4}{9}$ P $X < 1 = \frac{5}{9}$	(2) M1
	$P X > 1 = \frac{4}{2}$ $P X < 1 = \frac{5}{2}$	A1
	Therefore median < 1	A1cso
		(3) Total 19

		Notes
(a)	M1	for forming appropriate (in)equality using $f(0)$, or for using symmetry of pdf graph. Condone missing k
	A1	c.a.o. (must be strict inequalities) NB A correct answer seen is M1 A1
(b)(i)	B1	a curve in a U shape only between 0 and 3 with curve lower at 3 than at 0. Must be above x -axis and it must not go beyond 0 or 3 For <0 or >3 may have patios or nothing
(ii)	B1	Allow $1/6$ instead of k
(c)	M1	Attempting to integrate $f(x)$, at least 1 term correct.
	A1	fully correct integration (Ignore limits here)
	dM1	dep on previous M being given. For putting = 1 and for use of correct limits leading to an equation for k . Need to see some substitution before $6k$ Condone missing $0k$
	A1*	C.S.O.
(d)	M1	for realising need for $E(X) = \int x \times f(x)$ oe Ignore limits.
	dM1	Dependent on 1^{st} M1 Attempting to integrate, at least 1 term correct. Condone missing k
	A1	fully correct Integration with k or $\frac{1}{6}$ (Ignore limits here)
	dM1	Dependent on 2 nd M1 For correct use of limits, implied by a correct mean. Condone missing 0
	dM1	Dependent on 3 rd M1. For 2.1 – (their mean) ² implied by correct answer.
	A1	dependent on all previous marks being awarded. Accept awrt 0.834
		NB A correct answer does not imply the method marks we need see integration
(e)	M1	One of the 4 statements in the main MS or correct cdf line of $\frac{1}{6} \left(\frac{x^3}{3} - 2x^2 + 5x \right)$ with
		$1 - F(2)$ or $F(3) - F(2)$ seen. Allow with k or $\frac{1}{6}$ Allow equivalent probability
		statement using $<$ or \le for F(2) and F(3). These are not implied by $1 - \frac{7}{9}$
	A1	cso both 3 and 2 substituted separately and correctly eg minimum of $\frac{1}{6} \left[\frac{4}{3} \right]$ or
		$1 - \frac{1}{6} \left(\frac{14}{3} \right) \text{ leading to } = \frac{2}{9}^*$
(f)	M1	Allow $\frac{1}{6} \left(\frac{x^3}{3} - 2x^2 + 5x \right) = 0.5$ oe Implied by a correct probability statement or the
		correct median being given. Allow statements in terms of k . Reference to skew is M0
	A1	$P X > 1 = \frac{4}{9}$ (0.44 or better) or (0.55 or 0.56 or better) or median = 0.8458
		(allow awrt 0.85) NB allow $\frac{1}{3} \int_0^1 x^2 - 4x + 5 [dx]$ or F(1) for P(X < 1)
	Alcso	stating median < 1
		$\mathbf{NB} \int_0^1 x^2 - 4x + 5[dx] \text{ or } P \ X \le 1 \text{ for } P \ X < 1$

_	stion nber	Scheme	Marl	ΚS			
6((a)	Any two from: • Probability that a pot will crack is constant (0.3) • Pots crack independently/randomly • Batch size / number of pots fired (n) is constant	B1B1				
(1	b)	$[8 \times 0.3 =] 2.4$	B1	(2)			
(c)	Let X = number of pots which crack $X \sim B(8, 0.3)$		(1)			
		$P(X=2) = {}^{8}C_{2} \times 0.3^{2} \times 0.7^{6}$ $= 0.29647$ awrt 0.296/0.297	M1 A1				
(0	d)	$P(X \le 5) = 0.9887$ [k =] 6	M1 A1	(2)			
(e)	H_0 : $p = 0.3$ H_1 : $p < 0.3$	B1	(2)			
		Under H ₀ , $Y \sim B(20, 0.3)$ $P(Y \le 2) = 0.0355$ $P(Y \le 3) = 0.1071$	M1				
		C.R. is $Y \le 2$	Alcao				
		C.R. 15 1 \langle 2		(3)			
(f)	3.55% or 0.0355	B1	(1)			
			Total 1				
(a)	B1	Notes for an assumption in a correct context. Must have words in bold					
	B1	for a second assumption need not be in context. Also ignore incorrect cont NB 2 correct assumptions not in context gets B0B1	ext				
(c)	M1	for a correct expression ${}^{8}C_{2} \times p^{2} \times (1-p)^{6}$ oe where $0 or P(X \le 2) - 1$	$P(X \leqslant 1)$	oe			
(d)	A1 M1	for awrt $0.296/0.297$ For $P(X \le 5) = 0.9887$ or $P(X \ge 6) = 0.0113$ or $P(X \le k - 1) = 0.9887$ (In	nplied by	V			
		$[k=]$ 6). Do not allow $P(X \ge k) = 0.0113$	1 .	,			
	A1	Need to state 6 and not have it as part of a probability statement.					
(e)	B1	for both hypotheses correct (must be in terms of p or π) and attached to H_0	and H ₁				
	M1	for writing the correct binomial or evidence of correct use of binomial e.g.	0.0355	or			
	A 1	0.1071 seen. Implied by a correct lower CR Allow any letter, condone missing letter. Allow $Y < 3$ (A probability statement ie					
		$P(X \leq 2)$ for final answer scores A0).					
		Do not allow if there is an upper critical region given as well.					

Question Number		Scheme	Marks	
	a)	$ \int \frac{3}{4}(x-1) dx = \frac{3x^2}{8} - \frac{3x}{4} [+c] \qquad \qquad \left[\text{OR } \dots = \frac{3}{8}(x-1)^2 [+c] \right] $ $ F(1) = 0 \qquad \Rightarrow \qquad c = \frac{3}{8} \qquad \qquad [\text{OR } \dots [c=0] $	M1 dM1	
		$2 \le x \le 4:$ $\int \frac{3}{32} x (x-4)^2 dx = \frac{3x^4}{128} - \frac{x^3}{4} + \frac{3x^2}{4} [+k]$ $F(4) = 1 \text{ or } F(2) = \frac{3}{8} \qquad \Rightarrow \qquad k = -1$	M1 dM1	
		$F(x) = \begin{cases} 0 & x < 1 \\ \frac{3x^2}{8} - \frac{3x}{4} + \frac{3}{8} & \text{o.e. e.g. } \frac{3}{8}(x-1)^2 & 1 \le x < 2 \\ \frac{3x^4}{128} - \frac{x^3}{4} + \frac{3x^2}{4} - 1 & \text{o.e. e.g. } \frac{(x-4)^3(3x+4)}{128} + 1 & 2 \le x \le 4 \\ 1 & x > 4 \end{cases}$	A1 A1 A1	
(l	o)	$F(m) = 0.5$ $F(2.165) = 0.493$ $F(2.175) = 0.5001$ $\Rightarrow F(2.165) < 0.5 < F(2.175)$ $\therefore m = 2.17 \text{ (2 dp)}$	(7) M1 A1 (2)	
(a)	M1	Notes for attempted integration of 1 st part (at least one $x^n \to x^{n+1}$)	Total 9	
	dM1	(dependent on 1 st M1) for $\int_{-4}^{3} (x-1) dx$ and use of F(1) = 0		
		or for $\int_{1}^{m} \frac{3}{4}(x-1) dx$ with both limits substituted. Implied by correct function simplifying 2nd part $\left[\frac{3}{32}(x^3-8x^2+16x)\right]$ (3 terms at least 2 correct) oe condone	e missing 3/32	
		and integrating (at least one correct) or 1st stage of integration by parts correct		
	dM1 (dependent on 3 rd M1) $\int \frac{3}{32} x (x-4)^2 dx$ and using F(4) =1 or F(2) = $\frac{3}{8}$ (need of 4 or 2) or $\int_2^m \frac{3}{32} x (x-4)^2 dx$ + their F(2). Do not allow it written as F(2) rather For both these F(2) may be incorrect but the substitution of 2 into cdf part 1 must be substitution.			
	A1	Implied by correct function. fully correct 1st part of $F(x)$.		
	A1 A1	fully correct 2nd part of $F(x)$ (dependent on at least one M1) for $F(x)$ defined for $x < 1$ and $x > 4$ allow "otherw NB Allow \leq for $<$ signs and vice versa and \geqslant for $>$	wise" for one	
(b)	M1	For use of F(m) = 0.5 and using 2 appropriate bounds from $(2.165 \le m \le 2.175 : m \le2.175 : m $	$a \neq 2.17$) into	
	A1	their 2^{nd} part of $F(x)$ for $2 \le x \le 4$ or "their line for $2 \le x \le 4$ " -0.5 Or median = 2.17471 4 dp or better Appropriate reason for their method. eg $F(2.165) < 0.5 < F(2.175)$ or change in s to conclusion that $m = 2.17$ or if value of median found "therefore median = 2.1"		