Spatial Databases

What is a Spatial Database?

- A SDBMS is a DBMS
- It offers spatial data types/data models/ query language
 - Support spatial properties/operations
- It supports spatial data types in its implementation
 - Support spatial indexing, algorithms for spatial selection and join

Spatial DataBases

- The contents of a spatial data base present a particular view of the world.
- The user of the spatial data base sees the real world through the medium of the data base, therefore the measurements and samples contained in the data base must be maintained as complete and accurate as possible to present a view of the real world.
- The contents of a spatial database are special in terms of:
 - themes and characteristics captured (attributes),
 - the time period covered, and
 - the study area (spatial entities)

Spatial Representation

Spatial Representation

Raster model:

		R		
	R	R		
	R		H	
	R			
R	R			
R				
R				

Vector model:

Spatial data types

- Point : 2 real numbers
- <u>Line</u>: sequence of points
- Region : area included inside n-points

Spatial Data Model: Basic Data Types

2 basic spatial data models exist

vector: based on geometry of

- points
- •lines
- Polygons

<u>raster</u>: based on geometry of <u>qrid cells (images, bitmaps, DEMs)</u>

Vector Data

Points: represent discrete point features

Lines: represent linear features

roads are linear features

- Lines start and end at nodes
 - line #1 goes from node #2 to node #1
- Vertices determine shape of line
- Nodes and vertices are stored as coordinate pairs

polygonal features

Polygons: represent bounded areas


```
Points are discreet
 Nodes
 Vertices
Lines
 Nodes
 Vertices
 Arcs
Closed area (Lines + points ) =
```

Vector data formats available in ArcGIS

ESRI GeoDatabases

ESRI shapefiles

ArcInfo coverages and libraries

CAD files (AutoCAD DWG, DXF; microstation DGN)

StreetMap files

Spatial Database Engine (SDE) data

ASCII point coordinate data

Linear measure (route) data

ESRI Geodatabases

Geodatabase can store many files from many source formats

1st preferred vector format in ArcGIS

Rapid display

Fully editable (coordinate and tabular) in ArcGIS

Convenient storage format

Data sets are *either* point *or* line *or* polygon

ESRI shapefiles

2nd preferred vector format in ArcGIS

Rapid display

Fully editable (coordinate and tabular) in ArcGIS

Simple in structure

- Do not use arc-node topology
- "Connected" lines do not necessarily share a common node
- Adjacent polygons do not share common bounding arcs

Data sets are either point or line or polygon

Shapefile polygon spatial data model

- less complex data model
- polygons do not share bounding lines

ArcInfo coverages

Commonly found format (due to ArcInfo market dominance)

Data model more complex

Display more slowly in ArcGIS

Coordinate data not editable in ArcGIS

Polymorphic (point/line/polygon/route/annotation/...)

Problematic OS file structure

ArcInfo coverage spatial data model

- polygons share bounding lines
- same topological rules can be built into
 Geodatabase

ASCII coordinate data

Easy to obtain from a variety of sources

- GPS
- Traverse (survey)
- Direct reading

OS and application independent

Characteristics

- + Features are positioned accurately
- + Shape of features can be represented correctly
- + Features are represented discretely (no fuzzy boundaries)
- Not good for representing spatially continuous phenomena
- Potentially complex data structure (especially for polygons);
 - can lead to long processing time for analytical operations

Raster Data

Raster Data Model

origin is set explicitly

cell size is always known

cell references (row/column locations) are known

cell values are referenced to row/column location

values represent numerical phenomena or index codes for non-numerical phenomena

origir		x	-loca	tion						
ڍا	9	4	4	4	0	5	9	9	4	4
y-location	9	5	4	0	6	0	0	7	4	6
욳	0	7	2	7	8	9	4	7	3	8
,	6	3	1	1	7	8	7	3	6	1
	2	7	6	7	5	7	9	0	7	4
	7	6	2	8	7	8	2	8	5	8
	7	8	7	3	0	9	0	0	5	2
	5	8	5	5	6	5	3	2	2	1
J	6	2	3	4	5	6	9	0	1	4
cell size_	6	9	5	1	3	6	6	4	4	1
1										

Raster Data Model

A few different types of raster data

Spatial Relationships

- Topological relationships:
 - adjacent, inside, disjoint, etc
- Direction relationships:
 - Above, below, north_of, etc
- Metric relationships:
 - "distance < 100"
- And operations to express the relationships

The contents of a spatial data base include:

- Digital versions of real objects (e.g. lakes),
- Digital versions of artificial map features (e.g. contours),
- Artificial objects created for the purposes of the data base (e.g. pixels).

Components of Spatial Data

Time:

The temporal mode can be captured in several ways:

- by specifying the interval of time over which an object exists,
- by capturing information at certain points in time, or
- by specifying the rates of movement of objects.

Depending on how the temporal mode is captured, it may be included in a single attribute table, or be represented by series of attribute tables on the same objects through time.

Spatial data model, query language, query processing, file organization and indices, query optimization, etc.

Scales (Levels) of Measurement

- Numerical values may be defined with respect to nominal, ordinal, interval, or ratio scales of measurement (or levels of measurement). It is important to recognise the scales of measurement used in spatial data as this determines the kinds of mathematical operations that can be performed on the data.
- The different scales can be demonstrated using an example of a marathon race.

SPATIAL RELATIONS

Relations exist between spatial objects like distance, proximity, nearness, contained in etc.

	Points	Lines	Areas
Points	is a neighbour of is allocated to	is near to lies on	is a centroid of is within
Lines		crosses joins	intersects is a boundary of
Areas			is overlaid by is adjacent to

Examples

- A database:
 - Relation states(sname: string, area: region, spop: int)
 - Relation cities(cname: string, center: point; ext: region)
 - Relation rivers(rname: string, route:line)
- SELECT * FROM rivers WHERE route intersects R
- SELECT cname, sname FROM cities, states WHERE center inside area
- SELECT rname, length(intersection(route, California)) FROM rivers WHERE route intersects California

Spatial Queries

- Selection queries: "Find all objects inside query q", inside-> intersects, north
- Nearest Neighbor-queries: "Find the closets object to a query point q", k-closest objects
- Spatial join queries: Two spatial relations S1 and S2, find all pairs: {x in S1, y in S2, and x rel y= true}, rel= intersect, inside, etc

Indexing using SAMs

Approximate each region with a simple shape: usually Minimum Bounding Rectangle (MBR) = [(x1, x2), (y1, y2)]

- G-tree indexing
- ▶ B-Tree indexing

Three Layer Architecture

Applications

- 1. Solid waste management
- 2. Slum area detection
- 3. Detection of Buildings
- 4. Finding shortest path from trajectory dataset
- 5. Detection of airport
- 6. Prediction of a location for starting a school
- 7. Malaria prone area detection
- 8. Road extraction