5.1 The Riesz Representation Theorem

Back into pre-hilbert space.

Lemma. in a pre-Hilbert (no completeness) space the parallelogram law holds:

$$\forall x, y \in H$$
 $2(\|x\|^2 + \|y^2\|) = \|x - y\|^2 + \|x + y\|^2$

Continued on the next page......

Proof. Just derive from $\langle x-y, x-y \rangle$ and $\langle x+y, x+y \rangle$.

Theorem. Conversely, any norm space in which this law holds is a pre-Hilbert space. (i.e. \exists an inner product such that $||x||^2 = \langle x, x \rangle$.)

Proof. Define

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2$$

we also have to prove linearity, but thats not hard.

Proposition. If $C \subset H$ is a closed convex subset of a Hilbert Space then $\exists !x^* \in C$ such that

$$||x^*|| = \inf_{x \in C} ||x||$$

Proof. We first define convex. C convex implies that for $x, y \in C$ then $\frac{x+y}{2} \in C$ (a rather weak notion of it, but it works in our case)

Now continue with the proof. By definition $\exists x_n \in C$ such that $||x_n||^2 \to \inf_{x \in C} ||x||^2 = I^2$. We claim that $\{x_n\}$ is automatically Cauchy. Given $\epsilon > 0$, $\exists N$ such that

$$n > N \Rightarrow ||x_n||^2 = \inf_{x \in C} ||x||^2 + \delta$$

Now, note that $||x_n + x_m||^2 = 4||\frac{x_n + x_m}{2}||^2$. Then

$$||x_n - x_m||^2 = 2||x_n||^2 + 2||x_m||^2 - ||x_n + x_m||^2 \le 4I^2 + 4\delta - 4I^2 \le 4\delta$$
, since $\left\|\frac{x_n + x_m}{2}\right\|^2 \ge I^2$

So if
$$n, m \ge N$$
, then $||x_n - x_m|| \le 4\delta$ so $\{x_n\}$ is Cauchy

Theorem. Riesz Representation Theorem If H is a hilbert space and $g: H \to \mathbb{C}$ (a functional) is linear and continuous then $\exists y \in H$ such that

$$q(x) = \langle x, y \rangle, \quad \forall x \in H$$

First, what does continuous mean? $g: H \to \mathbb{C}$ continuous iff $g^{-1}(O) \subset H$ is open $\forall O \subset \mathbb{C}$ open, which implies that $g^{-1}(B(0,1)) \subset H$ is open. i.e. $\{x \in H | |g(x)| < 1\} \subset H$ is open. (All of this is because g is linear, i.e. you only need continuity around the origin) or similarly $\{x \in H : |g(x)| \leq 1\}$ is closed.

 $\{x \in H : |g(x)| < 1\}$ is open implies $\exists \epsilon > 0$ such that $\{x \in H : ||x|| < \epsilon\} \Rightarrow ||g(x)|| < 1$. g is linear, so $x \in H$ $||x|| \le 1 \Rightarrow ||\frac{\epsilon}{2}x|| < \epsilon$, so $|g(\frac{\epsilon}{2}x)| < 1 < 2$, so

$$g(x) = \left| \frac{2}{\epsilon} g\left(\frac{\epsilon}{2} x\right) \right| \le \frac{4}{\epsilon} = c$$

So \exists a constant c such that

$$||x|| \le 1 \Rightarrow |g(x)| \le c$$

that is, we have boundedness, $\forall x \in H$, $|g(x)| \leq C||x||$. Thus, by the boundedness around the origin,

$$\left| g\left(\frac{x}{\|x\|}\right) \right| \le C \Rightarrow \left| \frac{1}{\|x\|} g(x) \right| = \frac{1}{\|x\|} g(x), \quad \text{so } |g(x)| \le C \|x\|$$

so by continuity of g, $\exists C$ such that $|g(x)| \leq C||x||$, $\forall x \in H$.

But it works conversely. To get \Leftarrow direction: If $x_n \to x$ then $x_n - x \to 0$, i.e. given $\epsilon > 0$ $\exists N$ such that $||x_n - x|| < \epsilon$ if $n \ge N$, then

$$|g(x_n) - g(x)| = |g(x_n - x)| \le C||x_n - x|| \to 0$$

So for linear functions, boundedness is the same as continuity,

$$|g(x)| \le C||x||$$

Proof. If $y \in H$ by Cauchy-Schwarz implies

$$|\langle x, y \rangle| \le ||x|| ||y|| = C||x||$$

so this jibes with $|g(x)| \leq C||x||$.

Conversely, given $g: H \to \mathbb{C}$ linear and continuous find y such that $g(x) = \langle x, y \rangle$. $g \equiv 0$ implies that y = 0. g non-zero

$$g(x') = 1, \qquad x' = \frac{x}{g(x)}$$

Set

$$C_g = \{x \in H : g(x) = 1\}$$

This is closed (inverse image of a single point) and convex, since

$$g\left(\frac{x+y}{2}\right) = \frac{1}{2}g(x) + \frac{1}{2}g(y) = 1$$

This is closed, convex. By the proposition above $\exists ! y^* \in C_g$ such that $||y^*|| = \inf_{x \in C_g} ||x||$. Then

$$C_g = \{y^* + y : y \in H, g(y) = 0\}$$

 $y^* \perp N$, $N = \{x \in H : g(x) = 0\}$, the above can be re-written as $C_g = \{y^* + y : y \in N\}$. So then $y \in N \Rightarrow \langle y, y^* \rangle = 0$, because

$$||y^* + ty||^2 = ||y^*||^2 + t\langle y, y^* \rangle + t\langle y, y^* \rangle + t^2 ||y||^2$$

We claim

$$x \in H \Rightarrow x = sy^* + y, \qquad y \in N, s \in \mathbb{C}$$

Proof:

$$g(x) = 0 \Rightarrow x \in N$$

so then

$$g(x) = s \Rightarrow g\left(\frac{x}{s}\right) = 1 \Rightarrow \frac{x}{s} \in C_g \Rightarrow x = sy^* + y$$

then

$$g(x) = g(sy^* + y) = sg(y^*) + g(y) = s$$

Then $x \in H$ implies $x = g(x)y^* + y$, g(y) = 0 then

$$\langle x, y^* \rangle = g(x) \langle y^*, y^* \rangle \Rightarrow g(x) = \left\langle x, \frac{y^*}{\|y^*\|^2} \right\rangle$$

Example. If $g:L^2(X,\mu)\to\mathbb{C}$ is continuous and linear, then $\exists G\in L^2$ such that

$$g(f) = \int f\overline{G}d\mu$$