

Ù&@^œ^¦ÊÁQ}&È		H€»Á/ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXT ∄, ãÁÜæ&\ ∄, *ÁÛ^• ৫^{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s =$$
 1.00
$$C_s =$$
 0.73
$$C_e =$$
 0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.15	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.15 1.85 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.3 -1.1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C_s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer M11 Outer Location M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 M7 M11 Outer Outer N7 N15 M11 N7 Outer N15 N23 Location Outer Rear Struts M2 Outer Location M6 Inner Rear Reactions N8 Inner N8 N16 N16 Outer N16 N24 Location Outer M10 M10 Outer Outer M15 Inner M15 M16A

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>42</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.99	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	-0.343	k-ft
$M_z =$	-0.018	k-ft
M _{y allowable} =	1.276	k-ft
$M_{z \text{ allowable}} =$	0.871	k-ft
Utilization =	<u>29%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	<u>1.5x0.25</u> 6061-T6
$F_{ty} =$	35 ksi
Φ =	0.90
$S_y =$	0.02 in^3
E =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
$M_y =$	0.002 k-ft
P _n =	0.134 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>6%</u>

A cross brace kit is required every 36 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear
Tensile Load =	<u>58.42</u>	<u>1713.73</u> k
Compressive Load =	<u>911.11</u>	<u>1100.84</u> k
Lateral Load =	<u>1.57</u>	<u>1019.73</u> k
Moment (Weak Axis) =	0.00	0.00 k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O =$ 24634.9 in-lbs Resisting Force Required = 821.16 lbs A minimum 60in long x 20in wide x 18in S.F. = 1.67 tall ballast foundation is required to resist Weight Required = 1368.61 lbs overturnina. Minimum Width = Weight Provided = 1812.50 lbs Sliding 235.26 lbs Force = Use a 60in long x 20in wide x 18in tall Friction = 0.4 ballast foundation to resist sliding. 588.16 lbs Weight Required = Resisting Weight = 1812.50 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion 235.26 lbs Sliding Force = Cohesion = 130 psf Use a 60in long x 20in wide x 18in tall 8.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 906.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. $f'_c =$ 2500 psi Length = 8 in

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in
FA	284 lbs	284 lbs	284 lbs	284 lbs	366 lbs	366 lbs	366 lbs	366 lbs	461 lbs	461 lbs	461 lbs	461 lbs	-25 lbs	-25 lbs	-25 lbs	-25 lbs
FB	188 lbs	188 lbs	188 lbs	188 lbs	473 lbs	473 lbs	473 lbs	473 lbs	477 lbs	477 lbs	477 lbs	477 lbs	-790 lbs	-790 lbs	-790 lbs	-790 lbs
F _V	22 lbs	22 lbs	22 lbs	22 lbs	419 lbs	419 lbs	419 lbs	419 lbs	329 lbs	329 lbs	329 lbs	329 lbs	-471 lbs	-471 lbs	-471 lbs	-471 lbs
P _{total}	2284 lbs	2375 lbs	2465 lbs	2556 lbs	2652 lbs	2742 lbs	2833 lbs	2924 lbs	2751 lbs	2841 lbs	2932 lbs	3023 lbs	273 lbs	327 lbs	382 lbs	436 lbs
M	221 lbs-ft	221 lbs-ft	221 lbs-ft	221 lbs-ft	460 lbs-ft	460 lbs-ft	460 lbs-ft	460 lbs-ft	492 lbs-ft	492 lbs-ft	492 lbs-ft	492 lbs-ft	658 lbs-ft	658 lbs-ft	658 lbs-ft	658 lbs-ft
е	0.10 ft	0.09 ft	0.09 ft	0.09 ft	0.17 ft	0.17 ft	0.16 ft	0.16 ft	0.18 ft	0.17 ft	0.17 ft	0.16 ft	2.41 ft	2.01 ft	1.72 ft	1.51 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	242.3 psf	241.1 psf	240.0 psf	239.0 psf	251.9 psf	250.3 psf	248.8 psf	247.4 psf	259.2 psf	257.2 psf	255.4 psf	253.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	305.9 psf	301.7 psf	297.9 psf	294.4 psf	384.5 psf	376.6 psf	369.3 psf	362.7 psf	401.0 psf	392.3 psf	384.3 psf	377.1 psf	1215.8 psf	254.4 psf	178.8 psf	153.0 psf

Ballast Width

22 in

1994 lbs

23 in

2084 lbs

<u>21 in</u>

1813 lbs 1903 lbs

20 in

Maximum Bearing Pressure = 1216 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftq} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.67 \text{ ft}) =$

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_{O} = 0.0 \text{ ft-lbs}$ Resisting Force Required = 0.00 lbs

S.F. = 1.67Weight Required = 0.00 lbs

A minimum 60in long x 20in wide x 18in tall ballast foundation is required to resist overturning.

Minimum Width = 20 in in Weight Provided = 1812.50 lbs

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		20 in			20 in		20 in			
Support	Outer	Inner	Outer	Outer	Outer Inner Outer		Outer	Inner	Outer	
F _Y	48 lbs	111 lbs	45 lbs	144 lbs	392 lbs	141 lbs	14 lbs	33 lbs	13 lbs	
F_V	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2292 lbs	2355 lbs	2289 lbs	2280 lbs	2528 lbs	2277 lbs	670 lbs	689 lbs	669 lbs	
M	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.28 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	
f _{min}	274.9 sqft	282.6 sqft	274.6 sqft	273.3 sqft	303.3 sqft	273.1 sqft	80.4 sqft	82.6 sqft	80.3 sqft	
f _{max}	275.1 psf	282.7 psf	274.7 psf	273.8 psf	303.5 psf	273.4 psf	80.4 psf	82.6 psf	80.3 psf	

Maximum Bearing Pressure = 304 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 20in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.701 k	Maximum Axial Load =	1.068 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>12%</u>	Utilization =	<u>19%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.587 k	Maximum Axial Load =	0.134 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
		1.1.111	001
Utilization =	<u>10%</u>	Utilization =	<u>2%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 32.32 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.646 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.003 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$\begin{array}{ll} L_b = & 42.00 \text{ in} \\ J = & 0.255 \\ 109.366 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} F_{CY}}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \end{array}$$

3.4.16

 $\phi F_L =$

30.0 ksi

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

38.9 ksi

 $\phi F_L =$

Weak Axis:

3.4.14

$$L_b = 42.00 \text{ in}$$

$$J = 0.255$$

$$113.57$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(IyJ)/2})}]$$

$$\varphi F_L = 29.9$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

3.4.18

h/t =

S1 =

m =

 $C_0 =$

Cc =

 $\phi F_L =$

ly =

x =

Sy =

 $M_{max}Wk =$

 $\phi F_L W k =$

 $S2 = \frac{k_1 Bbr}{mDbr}$ S2 = 7

 $\phi F_L = 1.3 \phi y F c y$

7.4

36.9

0.65

20

20

77.3

43.2 ksi

28.5 ksi

120291 mm⁴

0.289 in⁴

0.367 in³

0.871 k-ft

20 mm

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.0 \text{ ksi}$$
 $1x = 250988 \text{ mm}^4$

$$y = 0.603 \text{ in}^4$$

30 mm

$$Sx = 0.511 \text{ in}^3$$

 $M_{max}St = 1.276 \text{ k-ft}$

3.4.9

$$b/t = 7.4$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 23.9$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.47 \text{ ksi}$$

$$A = 578.06 \text{ mm}^2$$

$$P_{max}$$
 = 25.51 kips

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

$$\begin{array}{ccc} \textbf{3.4.11} & & & & \\ \textbf{L_b = } & & 33.78 \text{ in} \\ \textbf{ry = } & 1.374 \\ \textbf{Cb = } & 1.32 \\ & & 21.4323 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2$$

$$\varphi F_L = \varphi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.8 \text{ ksi}$

Weak Axis:

$$L_b = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.32$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2$$

$$\phi F_L = \phi b[Bc-Dc*Lb/(1.2*ry*\sqrt{(Cb)})]$$

$$\varphi F_L = 29.8 \text{ ksi}$$

3.4.15

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{UT} = 9.4 \text{ ksi}$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Weak Direction

3.4.16

N/A for Strong Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

$$b/t = 24.46$$

 $t = 2.6$
 $ds = 6.05$
 $rs = 3.49$
 $S = 21.70$
 $\rho st = 0.22$
 $F_{UT} = 9.37$
 $F_{ST} = 28.24$
 $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$
 $\phi F_L = 13.5$ ksi

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{MDbr}$$

$$S1 = 34.4$$

$$M = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1 Bbr}{MDbr}$$

$$S2 = 72.1$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 29.8 \text{ ksi}$$

$$\varphi F_L = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$\varphi = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$V = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

x =

Sy =

 $M_{max}Wk =$

29 mm

0.457 in³

0.513 k-ft

Compression

3.4.7

$$λ = 0.46067$$

$$r = 1.374 in$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$φcc = 0.90326$$

$$φF_L = φcc(Bc-Dc^*λ)$$

$$φF_L = 30.1251 ksi$$

SCHLETTER

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))}/(5.1b/t) \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \text{b/t} = & 4.29 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi \phi F_L = & 33.3 \text{ ksi} \\ \\ \text{b/t} = & 24.46 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi F_L = & \phi c [\text{Bp-1.6Dp*b/t}] \\ \end{array}$$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = & Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>30x30x3</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 18.00 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 47.2194 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 18.00 \text{ in} \\ J &= 0.16 \\ 47.2194 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \\ \phi F_L &= 31.2 \end{split}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 31.2 \text{ ksi}$$

$$Ix = 39958.2 \text{ mm}^4$$

0.096 in⁴

0.163 in³

0.423 k-ft

15 mm

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

$$V = 0.163 \text{ in}^3$$

0.423 k-ft

 $M_{max}Wk =$

h/t = 7.75

y =

Sx =

 $M_{max}St =$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1 = \frac{1.6Dc^*}{0.33515}$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$= 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S1 = 6.87$$

$$\phi F_L {=} \ \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$\begin{array}{lll} L_b = & 46.38 \text{ in} \\ J = & 0.16 \\ & 121.663 \end{array}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} F_{CY}}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \end{array}$$

Weak Axis:

3.4.14

3.4.16

 $\phi F_1 =$

29.8 ksi

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 43.2 \text{ ksi}$$

$$V = 15 \text{ mm}$$

$$V =$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$CC = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$X = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

h/t = 7.75

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.98863 \\ r = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.85841 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \end{array}$$

 $\phi F_L = 7.59722 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi F cy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

0.0

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 39.29 \text{ in} \\ \mathsf{J} &= 0.16 \\ 103.073 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{IyJ})/2})}] \end{split}$$

3.4.16

 $\phi F_L =$

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

30.1 ksi

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dt}\right)^{2}$$

$$S1 = 1.1$$

$$S2 = C_{t}$$

$$S2 = 141.0$$

$$\phi F_{L} = 1.17 \phi y Fcy$$

$$\phi F_{L} = 38.9 \text{ ksi}$$

7.75

Not Used

Weak Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$

$$J = 0.16$$

$$103.073$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2})}]$$

$$\phi F_L = 30.1$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.1 \text{ ksi}$$

$$Ix = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

0.408 k-ft

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

Sy =

 $M_{max}Wk =$

0.163 in³

0.450 k-ft

h/t = 7.75

 $M_{max}St =$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.68476 \\ r = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.81587 \\ & \phi F_L = & (\phi ccFcy)/(\lambda^2) \\ & \phi F_L = & 10.0603 \text{ ksi} \\ \\ \hline \textbf{3.4.9} & b/t = & 7.75 \\ & S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ & S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ & \phi F_L = & \phi Fcy \\ & \phi F_L = & 33.3 \text{ ksi} \\ \hline \end{array}$$

3.4.10

b/t =

S1 =

S2 =

Rb/t =

 $\phi F_L = \phi y F c y$ $\phi F_L = 3$

7.75

12.21

32.70

33.3 ksi

0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.06 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.05 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-45.999	-45.999	0	0
2	M16	Υ	-45.999	-45.999	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-128.904	-128.904	0	0
2	M16	V	-207.368	-207.368	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

		Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
•	1	M13	V	257.809	257.809	0	0
	2	M16	V	123.3	123.3	0	0

Load Combinations

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	235.754	2	281.067	2	.006	10	0	10	0	1	0	1
2		min	-274.298	3	-429.03	3	165	3	0	3	0	1	0	1
3	N7	max	.002	3	246.199	1	.057	10	0	10	0	1	0	1
4		min	125	2	3.643	12	432	1	0	1	0	1	0	1
5	N15	max	0	15	700.85	2	.081	9	0	9	0	1	0	1
6		min	-1.205	2	-44.94	3	75	3	001	3	0	1	0	1
7	N16	max	706.901	2	846.801	2	0	2	0	9	0	1	0	1
8		min	-784.405	3	-1318.253	3	-96.325	3	0	3	0	1	0	1
9	N23	max	.002	3	246.553	1	.464	3	0	3	0	1	0	1
10		min	126	2	4.14	12	056	10	0	10	0	1	0	1
11	N24	max	235.754	2	283.306	2	97.205	3	0	9	0	1	0	1
12		min	-275.117	3	-428.755	3	006	10	0	3	0	1	0	1
13	Totals:	max	1176.952	2	2558.404	2	0	1						
14		min	-1333.881	3	-2211.29	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	198.209	2	.656	4	.064	1	0	10	0	10	0	1
2			min	-366.522	3	.154	15	079	3	0	3	0	1	0	1
3		2	max	198.335	2	.605	4	.064	1	0	10	0	10	0	15
4			min	-366.428	3	.142	15	079	3	0	3	0	3	0	4
5		3	max	198.461	2	.554	4	.064	1	0	10	0	15	0	15
6			min	-366.334	3	.13	15	079	3	0	3	0	3	0	4
7		4	max	198.587	2	.503	4	.064	1	0	10	0	9	0	15
8			min	-366.239	3	.118	15	079	3	0	3	0	3	0	4
9		5	max	198.713	2	.451	4	.064	1	0	10	0	9	0	15
10			min	-366.145	3	.106	15	079	3	0	3	0	3	0	4
11		6	max	198.839	2	.4	4	.064	1	0	10	0	9	0	15
12			min	-366.05	3	.094	15	079	3	0	3	0	3	0	4
13		7	max	198.964	2	.349	4	.064	1	0	10	0	9	0	15
14			min	-365.956	3	.082	15	079	3	0	3	0	3	0	4
15		8	max	199.09	2	.298	4	.064	1	0	10	0	9	0	15
16			min	-365.862	3	.07	15	079	3	0	3	0	3	0	4
17		9	max	199.216	2	.247	4	.064	1	0	10	0	9	0	15
18			min	-365.767	3	.058	15	079	3	0	3	0	3	0	4
19		10	max	199.342	2	.196	4	.064	1	0	10	0	9	0	15
20			min	-365.673	3	.046	15	079	3	0	3	0	3	0	4
21		11	max	199.468	2	.145	4	.064	1	0	10	0	9	0	15
22			min	-365.578	3	.033	12	079	3	0	3	0	3	0	4
23		12	max	199.594	2	.105	2	.064	1	0	10	0	9	0	15
24			min	-365.484	3	.013	12	079	3	0	3	0	3	0	4
25		13	max	199.72	2	.065	2	.064	1	0	10	0	9	0	15
26			min	-365.39	3	015	3	079	3	0	3	0	3	0	4
27		14	max	199.845	2	.025	2	.064	1	0	10	0	9	0	15
28			min	-365.295	3	045	3	079	3	0	3	0	3	0	4
29		15	max	199.971	2	014	15	.064	1	0	10	0	9	0	15
30			min	-365.201	3	074	3	079	3	0	3	0	3	0	4
31		16	max	200.097	2	026	15	.064	1	0	10	0	9	0	15
32			min	-365.106	3	111	4	079	3	0	3	0	3	0	4
33		17	max	200.223	2	038	15	.064	1	0	10	0	9	0	15
34				-365.012	3	162	4	079	3	0	3	0	3	0	4
35		18		200.349	2	05	15	.064	1	0	10	0	9	0	15
36			min		3	213	4	079	3	0	3	0	3	0	4
37		19	max		2	062	15	.064	1	0	10	0	9	0	15
												-			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]				z Shear[lb]		Torque[k-ft]		y-y Mome		z-z Mome	
38			min		3	264	4	079	3	0	3	0	3	0	4
39	<u>M3</u>	1	max		2	1.759	4	.011	10	0	10	0	1	0	4
40				-182.966	3	.414	15	099	1	0	1	0	10	0	15
41		2	max	197.06	2	1.582	4	.011	10	0	10	0	1	0	2
42			min	-183.018	3_	.372	15	099	1	0	1	0	10	0	12
43		3	max	196.991	2	1.405	4	.011	10	0	10	0	1	0	2
44			min	-183.07	3	.33	15	099	1	0	1	0	10	0	3
45		4		196.922	2	1.229	4	.011	10	0	10	0	1	0	15
46			min	-183.122	3	.289	15	099	1	0	1	0	10	0	4
47		5	max	196.852	2	1.052	4	.011	10	0	10	0	1	0	15
48			min	-183.174	3	.247	15	099	1	0	1	0	10	0	4
49		6	max	196.783	2	.875	4	.011	10	0	10	0	1	0	15
50			min	-183.226	3	.206	15	099	1	0	1	0	10	0	4
51		7	max	196.714	2	.698	4	.011	10	0	10	0	1	0	15
52			min	-183.278	3	.164	15	099	1	0	1	0	10	0	4
53		8		196.644	2	.521	4	.011	10	0	10	0	1	0	15
54			min	-183.33	3	.123	15	099	1	0	1	0	10	001	4
55		9	max	196.575	2	.344	4	.011	10	0	10	0	1	0	15
56				-183.382	3	.081	15	099	1	0	1	0	10	001	4
57		10			2	.168	4	.011	10	0	10	0	1	0	15
58				-183.434	3	.04	15	099	1	0	1	0	10	001	4
59		11		196.436	2	.02	2	.011	10	0	10	0	1	0	15
60				-183.486	3	039	3	099	1	0	1	0	10	001	4
61		12		196.367	2	044	15	.011	10	0	10	0	1	0	15
62		12	min	-183.538	3	186	4	099	1	0	1	0	10	001	4
63		13		196.298	2	085	15	.011	10	0	10	0	1	0	15
64		10	min	-183.59	3	363	4	099	1	0	1	0	10	001	4
65		14		196.228	2	127	15	.011	10	0	10	0	1	0	15
66		14		-183.642	3	54	4	099	1	0	1	0	10	001	4
67		15		196.159	2	168	15	.011	10	0	10	0	9	<u>001</u> 0	15
68		13	max	-183.694	3	717	4	099	1	0	1	0	10	0	4
69		16	max		2	<i>111</i>	15	<u>099</u> .011	10	0	10	0	9	0	15
70		10		-183.746	3	893	4	099	1	0	1	0	1	0	4
71		17			_						_				
		17	max	196.02	2	251	15	.011	10	0	10	0	10	0	15
72		4.0	min	-183.798	3	-1.07	4	099	1	0	-	0	1	0	4
73		18		195.951	2	293	15	.011	10	0	10	0	10	0	15
74		40	min	-183.85	3	-1.247	4	099	1	0	1	0	1	0	4
75		19		195.882	2	335	15	.011	10	0	10	0	10	0	1
76				-183.902	3_	-1.424	4	099	1	0	1	0	1	0	1
77	M4	1	max		1_	0	1	.058	10	0	1	0	3	0	1
78					12	0	1	45	1	0	1	0	2	0	-
79		2		245.099	1_	0	1	.058	10	0	1	0	10	0	1
80			min	3.093	12	0	1	<u>45</u>	1	0	1	0	1	0	1
81		3		245.163	_1_	0	1	.058	10	0	1	0	10	0	1
82			min	3.125	12	0	1	45	1	0	1	0	1	0	1
83		4	max		_1_	0	1	.058	10	0	1	0	10	0	1
84			min	3.158	12	0	1	45	1	0	1	0	1	0	1
85		5	max		_1_	0	1	.058	10	0	1	0	10	0	1
86			min	3.19	12	0	1	45	1	0	1	0	1	0	1
87		6	max	245.357	<u>1</u>	0	1	.058	10	0	1	0	10	0	1
88			min		12	0	1	45	1	0	1	0	1	0	1
89		7	max	245.422	1	0	1	.058	10	0	1	0	10	0	1
90			min	3.255	12	0	1	45	1	0	1	0	1	0	1
91		8	max	245.487	1	0	1	.058	10	0	1	0	10	0	1
92			min	3.287	12	0	1	45	1	0	1	0	1	0	1
93		9	max	245.552	1	0	1	.058	10	0	1	0	10	0	1
94			min	3.32	12	0	1	45	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

		Sec		Axial[lb]	LU	<u>y Snear[ib]</u>	LC	z Shear[lb]	<u>LC</u>	Torque[k-ft]	LC	<u>y-y Mome</u>	LC ,	<u>z-z iviome</u>	LC
95		10	max	245.616	1	0	1	.058	10	0	1_	0	10	0	1
96			min	3.352	12	0	1	45	1	0	1	0	1	0	1
97		11	max	245.681	1	0	1	.058	10	0	1_	0	10	00	1
98			min	3.384	12	0	1	45	1	0	1	0	1	0	1
99		12	max	245.746	1	0	1	.058	10	0	1	0	10	0	1
100		40	min	3.417	12	0	1	45	1	0	1	0	1	0	1
101		13	max	245.81	1	0	1	.058	10	0	1	0	10	0	1
102		4.4	min	3.449	12	0	1	45	1	0	1_	0	1	0	1
103		14	max	245.875	1	0	1	.058	10	0	1	0	10	0	1
104		15	min	3.481	12	0	1	45	10	0	1	0	10	0	1
105		15	max	245.94 3.514	1 12	0	1	.058 45		0	1	0	10	0	1
106 107		16	min	246.005	1	0	1	.058	10	<u> </u>	1	0	10	0	1
107		10	max	3.546	12	0	1	45	1	0	1	0	1	0	1
109		17	max	246.069	1	0	1	.058	10	0	1	0	10	0	1
110		17	min	3.578	12	0	1	45	1	0	1	0	1	0	1
111		18	max		1	0	1	.058	10	0	1	0	10	0	1
112		10	min	3.611	12	0	1	45	1	0	1	0	1	0	1
113		19	max	246.199	1	0	1	.058	10	0	1	0	10	0	1
114		10	min	3.643	12	0	1	45	1	0	1	0	1	0	1
115	M6	1	max	605.858	2	.655	4	.011	9	0	3	0	3	0	1
116			min	-1067.959	3	.154	15	305	3	0	1	0	1	0	1
117		2	max	605.984	2	.604	4	.011	9	0	3	0	3	0	15
118			min	-1067.864	3	.142	15	305	3	0	1	0	1	0	4
119		3	max	606.11	2	.553	4	.011	9	0	3	0	3	0	15
120			min	-1067.77	3	.13	15	305	3	0	1	0	1	0	4
121		4	max	606.236	2	.502	4	.011	9	0	3	0	3	0	15
122			min	-1067.676	3	.118	15	305	3	0	1	0	1	0	4
123		5	max	606.362	2	.451	4	.011	9	0	3	0	3	0	15
124			min	-1067.581	3	.106	15	305	3	0	1	0	1	0	4
125		6		606.487	2	.404	2	.011	9	0	3	0	3	0	15
126			min	-1067.487	3	.087	12	305	3	0	1	0	1	0	4
127		7	max	606.613	2	.365	2	.011	9	0	3	0	9	0	15
128			min	-1067.392	3	.067	12	305	3	0	1	0	1	0	4
129		8	max	606.739	2	.325	2	.011	9	0	3	0	9	0	15
130			min	-1067.298	3	.047	12	305	3	0	1	0	3	0	4
131		9	max	606.865	2	.285	2	.011	9	0	3	0	9	0	15
132		40	min	-1067.204	3	.027	12	305	3	0	1	0	3	0	4
133		10		606.991	2	.245	2	.011	9	0	3	0	9	0	12
134 135		11	min	-1067.109 607.117	2	.205	2	305 .011	9	<u> </u>	3	0	9	<u> </u>	12
136		11	min	-1067.015	3	031	3	305	3	0	1	0	3	0	2
137		12		607.243	2	.165	2	.011	9	0	3	0	9	0	12
138		12		-1066.92	3	06	3	305	3	0	1	0	3	0	2
139		13	max		2	.126	2	.011	9	0	3	0	9	0	12
140		13		-1066.826	3	09	3	305	3	0	1	0	3	0	2
141		14		607.494	2	.086	2	.011	9	0	3	0	9	0	12
142		17	min		3	12	3	305	3	0	1	0	3	0	2
143		15	max	607.62	2	.046	2	.011	9	0	3	0	9	0	12
144			min	-1066.637	3	15	3	305	3	0	1	0	3	0	2
145		16		607.746	2	.006	2	.011	9	0	3	0	9	0	12
146			min	-1066.543	3	18	3	305	3	0	1	0	3	0	2
147		17	max		2	034	2	.011	9	0	3	0	9	0	12
148				-1066.448	3	21	3	305	3	0	1	0	3	0	2
149		18	max	607.998	2	05	15	.011	9	0	3	0	9	0	3
150			min	-1066.354	3	24	3	305	3	0	1	0	3	0	2
151		19	max	608.124	2	062	15	.011	9	0	3	0	9	0	3

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	
152			min	-1066.26	3	27	3	305	3	0	1	0	3	0	2
153	M7	1	max	587.349	2	1.761	4	.042	3	0	9	0	9	0	2
154			min	-485.767	3	.414	15	003	9	0	3	0	3	0	3
155		2	max	587.28	2	1.584	4	.042	3	0	9	0	9	0	2
156			min	-485.819	3	.372	15	003	9	0	3	0	3	0	3
157		3	max	587.21	2	1.407	4	.042	3	0	9	0	9	0	2
158			min	-485.871	3	.331	15	003	9	0	3	0	3	0	3
159		4	max		2	1.23	4	.042	3	0	9	0	9	0	2
160			min	-485.923	3	.289	15	003	9	0	3	0	3	0	3
161		5		587.072	2	1.054	4	.042	3	0	9	0	9	_	15
162		- 5	max				15		9		3	0	3	0	3
			min	-485.975	3	.248		003		0		_		0	
163		6	max		2	.877	4	.042	3	0	9	0	9	0	15
164		_	min	-486.027	3	.206	15	003	9	0	3	0	3	0	4
165		7	max	586.933	2	.7	4	.042	3	0	9	0	9	0	15
166			min	-486.079	3	.165	15	003	9	0	3	0	3	0	4
167		8	max	586.864	2	.523	4	.042	3	0	9	0	9	0	15
168			min	-486.131	3	.123	15	003	9	0	3	0	3	001	4
169		9	max	586.794	2	.348	2	.042	3	0	9	0	9	0	15
170			min	-486.183	3	.081	12	003	9	0	3	0	3	001	4
171		10	max	586.725	2	.21	2	.042	3	0	9	0	9	0	15
172			min	-486.235	3	.009	3	003	9	0	3	0	3	001	4
173		11	max		2	.072	2	.042	3	0	9	0	9	0	15
174			min	-486.287	3	095	3	003	9	0	3	0	3	001	4
175		12	max	586.587	2	043	15	.042	3	0	9	0	9	0	15
176		12	min	-486.339	3	198	3	003	9	0	3	0	3	001	4
177		13	max		2	085	15	.042	3	0	9	0	9	0	15
		13	-												
178		4.4	min	-486.391	3	361	4	003	9	0	3	0	3	001	4
179		14	max		2	126	15	.042	3	0	9	0	9	0	15
180		4.5	min	-486.443	3	538	4	003	9	0	3	0	3	001	4
181		15	max	586.379	2	168	15	.042	3	0	9	0	9	0	15
182			min	-486.495	3	715	4	003	9	0	3	0	3	0	4
183		16	max		2	21	15	.042	3	0	9	0	9	0	15
184			min	-486.547	3	892	4	003	9	0	3	0	3	0	4
185		17	max	586.24	2	251	15	.042	3	0	9	0	9	0	15
186			min	-486.599	3	-1.068	4	003	9	0	3	0	3	0	4
187		18	max	586.171	2	293	15	.042	3	0	9	0	9	0	15
188			min	-486.651	3	-1.245	4	003	9	0	3	0	3	0	4
189		19	max	586.101	2	334	15	.042	3	0	9	0	9	0	1
190			min	-486.703	3	-1.422	4	003	9	0	3	0	3	0	1
191	M8	1	max		2	0	1	.085	9	0	1	0	1	0	1
192				-45.814	3	0	1	744	3	0	1	0	3	0	1
193		2	max		2	0	1	.085	9	0	1	0	9	0	1
194		_	min	-45.765	3	0	1	744	3	0	1	0	3	0	1
195		3	max		2	0	1	.085	9	0	1	0	9	0	1
196			min	-45.717	3	0	1	744	3	0	1	0	3	0	1
197		4			2	0	1	.085	9	0	1	0	9	0	1
		4	max												
198		_	min	-45.668	3	0	1	744	3	0	1	0	3	0	1
199		5	max		2	0	1	.085	9	0	1	0	9	0	1
200			min	-45.62	3	0	1	744	3	0	1	0	3	0	1
201		6	max		2	0	1	.085	9	0	1	0	9	0	1
202			min	-45.571	3	0	1	744	3	0	1	0	3	0	1
203		7	max		2	0	1	.085	9	0	1	0	9	0	1
204			min	-45.523	3	0	1	744	3	0	1	0	3	0	1
205		8	max	700.139	2	0	1	.085	9	0	1	0	9	0	1
206			min	-45.474	3	0	1	744	3	0	1	0	3	0	1
207		9	max		2	0	1	.085	9	0	1	0	9	0	1
208			min	-45.425	3	0	1	744	3	0	1	0	3	0	1
							-		_				_		

: Schletter, Inc. : HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	700.268	2	0	1	.085	9	0	1	0	9	0	1
210			min	-45.377	3	0	1	744	3	0	1	0	3	0	1
211		11	max	700.333	2	0	1	.085	9	0	1_	0	9	0	1
212			min	-45.328	3	0	1	744	3	0	1	0	3	0	1
213		12	max	700.397	2	0	1	.085	9	0	1	0	9	0	1
214		40	min	-45.28	3	0	1	744	3	0	1	0	3	0	1
215		13	max	700.462	2	0	1	.085	9	0	1	0	9	0	1
216		4.4	min	-45.231	3	0	1	744	3	0	1	0	3	0	1
217		14	max	700.527	2	0	1	.085	9	0	1	0	9	0	1
218		15	min	-45.183	<u>3</u> 2	0	1	744	3	0	1	0	3	0	1
219 220		15	max	700.592 -45.134		0	1	.085	9	0	1	0	9	0	1
221		16	min	700.656	<u>3</u> 2	0	1	744 .085	9	<u> </u>	1	0	9	•	1
222		10	max min	-45.086	3	0	1	744	3	0	1	0	3	0	1
223		17	max	700.721	2	0	1	.085	9	0	1	0	9	0	1
224		17	min	-45.037	3	0	1	744	3	0	1	001	3	0	1
225		18	max	700.786	2	0	1	.085	9	0	1	0	9	0	1
226		10	min	-44.989	3	0	1	744	3	0	1	001	3	0	1
227		19	max	700.85	2	0	1	.085	9	0	1	0	9	0	1
228		10	min	-44.94	3	0	1	744	3	0	1	001	3	0	1
229	M10	1	max	199.384	2	.656	4	.005	10	0	1	0	9	0	1
230			min	-275.478	3	.154	15	065	1	0	3	0	3	0	1
231		2	max	199.51	2	.605	4	.005	10	0	1	0	9	0	15
232			min	-275.384	3	.142	15	065	1	0	3	0	3	0	4
233		3	max	199.636	2	.554	4	.005	10	0	1	0	9	0	15
234			min	-275.289	3	.13	15	065	1	0	3	0	3	0	4
235		4	max	199.762	2	.503	4	.005	10	0	1	0	9	0	15
236			min	-275.195	3	.118	15	065	1	0	3	0	3	0	4
237		5	max	199.888	2	.451	4	.005	10	0	1_	0	9	0	15
238			min	-275.1	3	.106	15	065	1	0	3	0	3	0	4
239		6	max	200.014	2	.4	4	.005	10	0	1	0	9	0	15
240			min	-275.006	3	.094	15	065	1	0	3	0	3	0	4
241		7	max	200.14	2	.349	4	.005	10	0	1	0	9	0	15
242				-274.912	3	.082	15	065	1	0	3	0	3	0	4
243		8	max	200.265	2	.298	4	.005	10	0	1	0	10	0	15
244				-274.817	3	.07	15	065	1	0	3	0	3	0	4
245		9	max	200.391	2	.247	4	.005	10	0	1	0	10	0	15
246		40		-274.723	3	.058	15	065	1	0	3	0	3	0	4
247		10	max	200.517	2	.196	4	.005	10	0	1	0	10	0	15
248		11	min	-274.628 200.643	<u>3</u> 2	.046	1 <u>5</u>	065	10	0	<u>3</u>	0	3 10	0	15
249		11		-274.534	3	.145	15	.005 065	1	0	3	0	3	0	4
250 251		12		200.769	2	.105	2	.005	10	0	1	0	10	0	15
252		12		-274.44	3	.018	12	065	1	0	3	0	3	0	4
253		13		200.895	2	.065	2	.005	10	0	1	0	10	0	15
254		13		-274.345	3	006	3	065	1	0	3	0	3	0	4
255		14		201.021	2	.025	2	.005	10	0	1	0	10	0	15
256				-274.251	3	036	3	065	1	0	3	0	3	0	4
257		15		201.147	2	014	15	.005	10	0	1	0	10	0	15
258		1.0		-274.156	3	065	3	065	1	0	3	0	3	0	4
259		16		201.272	2	026	15	.005	10	0	1	0	10	0	15
260				-274.062	3	111	4	065	1	0	3	0	3	0	4
261		17		201.398	2	038	15	.005	10	0	1	0	10	0	15
262				-273.968	3	162	4	065	1	0	3	0	3	0	4
263		18	max	201.524	2	05	15	.005	10	0	1	0	10	0	15
264				-273.873	3	213	4	065	1	0	3	0	3	0	4
265		19	max	201.65	2	062	15	.005	10	0	1	0	10	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	. LC
266			min	-273.779	3	265	4	065	1	0	3	0	3	0	4
267	M11	1	max	196.733	2	1.759	4	.099	1	0	3	0	3	0	4
268			min	-183.933	3	.414	15	061	3	0	10	0	1	0	15
269		2	max	196.664	2	1.582	4	.099	1	0	3	0	3	0	2
270			min	-183.985	3	.372	15	061	3	0	10	0	1	0	12
271		3	max	196.595	2	1.405	4	.099	1	0	3	0	3	0	2
272			min	-184.037	3	.33	15	061	3	0	10	0	1	0	3
273		4	max	196.525	2	1.229	4	.099	1	0	3	0	3	0	15
274			min	-184.089	3	.289	15	061	3	0	10	0	1	0	4
275		5	max	196.456	2	1.052	4	.099	1	0	3	0	3	0	15
276			min	-184.141	3	.247	15	061	3	0	10	0	1	0	4
277		6	max	196.387	2	.875	4	.099	1	0	3	0	3	0	15
278			min	-184.193	3	.206	15	061	3	0	10	0	1	0	4
279		7	max	196.317	2	.698	4	.099	1	0	3	0	3	0	15
280			min	-184.245	3	.164	15	061	3	0	10	0	1	0	4
281		8	max	196.248	2	.521	4	.099	1	0	3	0	3	0	15
282			min	-184.297	3	.123	15	061	3	0	10	0	1	001	4
283		9	max	196.179	2	.344	4	.099	1	0	3	0	3	0	15
284			min	-184.349	3	.081	15	061	3	0	10	0	1	001	4
285		10	max	196.109	2	.168	4	.099	1	0	3	0	3	0	15
286		- 10	min	-184.401	3	.039	15	061	3	0	10	0	1	001	4
287		11	max	196.04	2	.02	2	.099	1	0	3	0	3	0	15
288			min	-184.453	3	04	3	061	3	0	10	0	1	001	4
289		12	max		2	044	15	.099	1	0	3	0	3	0	15
290		1-	min	-184.505	3	186	4	061	3	0	10	0	1	001	4
291		13	max	195.901	2	085	15	.099	1	0	3	0	3	0	15
292		10	min	-184.557	3	363	4	061	3	0	10	0	1	001	4
293		14	max	195.832	2	127	15	.099	1	0	3	0	3	0	15
294		17	min	-184.609	3	54	4	061	3	0	10	0	1	001	4
295		15	max	195.763	2	168	15	.099	1	0	3	0	3	0	15
296		13	min	-184.661	3	717	4	061	3	0	10	0	1	0	4
297		16	max		2	21	15	.099	1	0	3	0	3	0	15
298		10	min	-184.713	3	893	4	061	3	0	10	0	10	0	4
299		17	max	195.624	2	251	15	.099	1	0	3	0	3	0	15
300		17	min	-184.765	3	-1.07	4	061	3	0	10	0	10	0	4
301		18	max	195.555	2	293	15	.099	1	0	3	0	3	0	15
302		10	min	-184.817	3	-1.247	4	061	3	0	10	0	10	0	4
303		19	max	195.485	2	335	15	.099	1	0	3	0	3	0	1
304		13	min	-184.869	3	-1.424	4	061	3	0	10	0	10	0	1
305	M12	1	max	245.388	1	0	1	.464	3	0	1	0	2	0	1
306	IVIIZ			3.558	12	0	1	057	10	0	1	0	3	0	1
307		2		245.453	1	0	1	.464	3	0	1	0	1	0	1
308			min	3.59	12	0	1	057	10	0	1	0	10	0	1
309		3		245.517	1	0	1	.464	3	0	1	0	1	0	1
310		3	min	3.623	12	0	1	057	10	0	1	0	10	0	1
311		4			1	0	1	.464	3	0	1	0	1	0	1
312		4	max	3.655	12	0	1	057	10	0	1	0	10	0	1
			min				1		3		1				
313		5	max		1	0	1	.464		0	1	0	10	0	1
314		6	min	3.687	12	0		057	10	0		0		0	
315		6	max	245.711 3.72	1	0	1	.464	3	0	1	0	10	0	1
316		7	min		12	0		057	10	0		0		0	
317		7		245.776	1	0	1	.464	3	0	1	0	1	0	1
318			min	3.752	12	0	1	057	10	0	1	0	10	0	1
319		8		245.841	1	0	1	.464	3	0	1	0	1	0	1
320			min	3.784	12	0	1	057	10	0	1	0	10	0	1
321		9	max		1	0	1	.464	3	0	1	0	1	0	1
322			min	3.817	12	0	1	057	10	0	1	0	10	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	245.97	1	0	1	.464	3	0	1	0	1	0	1
324			min	3.849	12	0	1	057	10	0	1	0	10	0	1
325		11	max	246.035	1	0	1	.464	3	0	1	0	1	0	1
326			min	3.881	12	0	1	057	10	0	1	0	10	0	1
327		12	max	246.1	1	0	1	.464	3	0	1	0	1	0	1
328			min	3.914	12	0	1	057	10	0	1	0	10	0	1
329		13	max	246.164	1	0	1	.464	3	0	1	0	1	0	1
330			min	3.946	12	0	1	057	10	0	1	0	10	0	1
331		14	max	246.229	1	0	1	.464	3	0	1	0	3	0	1
332			min	3.979	12	0	1	057	10	0	1	0	10	0	1
333		15	max	246.294	1	0	1	.464	3	0	1	0	3	0	1
334			min	4.011	12	0	1	057	10	0	1	0	10	0	1
335		16	max	246.358	1	0	1	.464	3	0	1	0	3	0	1
336			min	4.043	12	0	1	057	10	0	1	0	10	0	1
337		17	max	246.423	1	0	1	.464	3	0	1	0	3	0	1
338			min	4.076	12	0	1	057	10	0	1	0	10	0	1
339		18	max	246.488	1	0	1	.464	3	0	1	0	3	0	1
340			min	4.108	12	0	1	057	10	0	1	0	10	0	1
341		19	max	246.553	1	0	1	.464	3	0	1	0	3	0	1
342			min	4.14	12	0	1	057	10	0	1	0	10	0	1
343	M1	1	max	64.647	1	345.815	3	1.378	10	0	2	.024	1	0	2
344			min	2.731	15	-218.968	2	-12.148	1	0	3	003	10	0	3
345		2	max	64.787	1	345.633	3	1.378	10	0	2	.021	1	.048	2
346			min	2.773	15	-219.21	2	-12.148	1	0	3	002	10	075	3
347		3	max	92.725	3	3.806	9	1.373	10	0	10	.018	1	.095	2
348			min	-20.763	2	-25.711	2	-12.113	1	0	1	002	10	149	3
349		4	max	92.829	3	3.605	9	1.373	10	0	10	.016	1	<u>1</u>	2
350			min	-20.623	2	-25.953	2	-12.113	1	0	1	002	10	146	3
351		5	max	92.934	3	3.403	9	1.373	10	0	10	.013	1	.106	2
352			min	-20.484	2	-26.195	2	-12.113	1	0	1	002	10	143	3
353		6	max	93.039	3	3.202	9	1.373	10	0	10	.011	1	.112	2
354			min	-20.344	2	-26.437	2	-12.113	1	0	1	001	10	141	3
355		7	max	93.143	3	3	9	1.373	10	0	10	.008	1	.117	2
356			min	-20.205	2	-26.678	2	-12.113	1	0	1	0	10	138	3
357		8	max	93.248	3	2.799	9	1.373	10	0	10	.005	1	.123	2
358			min	-20.065	2	-26.92	2	-12.113	1	0	1	0	10	135	3
359		9	max	93.353	3	2.597	9	1.373	10	0	10	.003	3	.129	2
360			min	-19.925	2	-27.162	2	-12.113	1	0	1	0	10	132	3
361		10	max	93.458	3	2.396	9	1.373	10	0	10	.002	3	.135	2
362		10	min	-19.786	2	-27.404	2	-12.113	1	0	1	0	10	129	3
363		11		93.562	3		9	1.373	10	0	10	0	3	.141	2
364			min	-19.646	2	-27.646	2	-12.113	1	0	1	003	1	126	3
365		12	1		3	1.992	9	1.373	10	0	10	<u>.003</u>	10	.147	2
366		12	min	-19.507	2	-27.888	2	-12.113	1	0	1	005	1	123	3
367		13		93.772	3	1.791	9	1.373	10	0	10	<u>003</u>	10	.153	2
368		13	min	-19.367	2	-28.129	2	-12.113	1	0	1	008	1	12	3
369		1/	max		3	1.589	9	1.373	10	0	10	.001	10	.159	2
370		14	min	-19.227	2	-28.371	2	-12.113	1	0	1	01	1	117	3
		15									_				
371 372		15		93.981 -19.088	2	1.388 -28.613	9	1.373 -12.113	10	0	10	.001 013	10	.165 114	3
373		16	min max			134.608	2	1.383	10	0	1	.002	10	<u>114</u> .17	2
		10			2						3				
374		17	min	-6.169	3	-168.987	3	-12.2	10	0		016	10	109	3
375		17	max	89.59	2	134.366	2	1.383	10	0	1	.002	10	.141	2
376		40	min	-6.065	3	-169.168	3	-12.2	10	0	3	018	1	072	3
377		18	max	-2.772	15	325.79	2	1.441	10	0	3	.002	10	.071	2
378		10	min	-64.781	1	-166.245	3	-12.658	10	0		021	1	036	3
379		19	max	-2.73	15	325.548	2	1.441	10	0	3	.003	10	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
380			min	-64.641	1	-166.426	3	-12.658	1	0	2	024	1	0	3
381	M5	1	max	167.963	1	1082.992	3	0	1	0	9	.013	3	0	3
382			min	-8.229	3	-673.427	2	-87.508	3	0	3	0	11	0	2
383		2	max	168.103	1	1082.811	3	0	1	0	9	0	9	.145	2
384			min	-8.124	3	-673.669	2	-87.508	3	0	3	006	3	234	3
385		3	max	241.647	3	4.636	9	9.297	3	0	3	0	9	.289	2
386			min	-51.479	2	-82.542	2	098	9	0	1	024	3	464	3
387		4	max	241.751	3	4.434	9	9.297	3	0	3	0	9	.307	2
388			min	-51.34	2	-82.784	2	098	9	0	1	022	3	453	3
389		5	max	241.856	3	4.233	9	9.297	3	0	3	0	9	.325	2
390			min	-51.2	2	-83.026	2	098	9	0	1	02	3	442	3
391		6	max	241.961	3	4.031	9	9.297	3	0	3	0	9	.343	2
392			min	-51.06	2	-83.268	2	098	9	0	1	018	3	431	3
393		7	max	242.066	3	3.829	9	9.297	3	0	3	0	9	.361	2
394			min	-50.921	2	-83.51	2	098	9	0	1	015	3	42	3
395		8	max	242.17	3	3.628	9	9.297	3	0	3	0	9	.379	2
396			min	-50.781	2	-83.752	2	098	9	0	1	013	3	409	3
397		9	max	242.275	3	3.426	9	9.297	3	0	3	0	9	.398	2
398			min	-50.641	2	-83.993	2	098	9	0	1	011	3	398	3
399		10	max	242.38	3	3.225	9	9.297	3	0	3	0	1	.416	2
400			min	-50.502	2	-84.235	2	098	9	0	1	009	3	387	3
401		11	max	242.484	3	3.023	9	9.297	3	0	3	0	1	.434	2
402			min	-50.362	2	-84.477	2	098	9	0	1	007	3	376	3
403		12	max	242.589	3	2.822	9	9.297	3	0	3	0	1	.453	2
404		12	min	-50.223	2	-84.719	2	098	9	0	1	005	3	365	3
405		13	max	242.694	3	2.62	9	9.297	3	0	3	<u>.000</u>	1	<u></u>	2
406		10	min	-50.083	2	-84.961	2	098	9	0	1	003	3	353	3
407		14	max	242.799	3	2.419	9	9.297	3	0	3	<u>.000</u>	1	.489	2
408		17	min	-49.943	2	-85.202	2	098	9	0	1	001	3	342	3
409		15	max	242.903	3	2.217	9	9.297	3	0	3	0	3	.508	2
410		10	min	-49.804	2	-85.444	2	098	9	0	1	0	9	331	3
411		16	max	272.632	2	406.713	2	9.27	3	0	3	.002	3	.522	2
412		10	min	-23.61	3	-459.599	3	1	9	0	1	0	9	316	3
413		17	max	272.772	2	406.471	2	9.27	3	0	3	.004	3	.434	2
414		11/	min	-23.506	3	-459.781	3	1	9	0	1	0	9	216	3
415		18	max	55	3	1007.682	2	8.528	3	0	3	.006	3	.218	2
416		10	min	-168.114	1	-499.862	3	018	9	0	9	0	9	108	3
417		19	max	446	3	1007.44	2	8.528	3	0	3	.008	3	0	3
418		19		-167.974	1	-500.043	3	018	9	0	9	<u>.008</u>	9	0	2
419	M9	1		64.647	1	345.701	3	92.914	3	0	3	.003	10	0	2
420	IVIÐ		max	2.726		-218.968	<u>ა</u>	1 270	10		2	024	1	0	3
421		2			1	345.52	3	92.914	3	0	3	.002	10	.048	2
422			max	2.768		-219.21	2	-1.378	10	0	2	021	1	0 4 5	3
423		3	min		<u>15</u>	3.802	9	12.112	1	0	1	.017	3		
		3	max	91.965	3	-25.686							1	.095	2
424 425		4	min	-20.369	2		2	-2.945 12.112	1	0	10	018	_	149	2
		4	max	92.07	3	3.6	9					.016	3	1	
426		-	min	-20.229	2	-25.928	2	-2.945	3	0	10	016	1	146	3
427		5	max	92.175	3_	3.398	9_	12.112	1	0	1	.015	3	.106	2
428			min	-20.089	2	-26.17	2	-2.945	3	0	10	013	1	143	3
429		6	max	92.279	3_	3.197	9_	12.112	1	0	1	.015	3	.112	2
430		-	min	-19.95	2	-26.412	2	-2.945	3	0	10	011	1	14	3
431		7	max	92.384	3_	2.995	9	12.112	1	0	1	.014	3	.117	2
432			min	-19.81	2	-26.654	2	-2.945	3	0	10	008	1	<u>138</u>	3
433		8	max	92.489	3_	2.794	9	12.112	1	0	1	.013	3	.123	2
434			min	-19.67	2	-26.895	2	-2.945	3	0	10	005	1	135	3
435		9	max	92.594	3	2.592	9	12.112	1	0	1	.013	3	.129	2
436			min	-19.531	2	-27.137	2	-2.945	3	0	10	003	1	132	3

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	92.698	3	2.391	9	12.112	1	0	1	.012	3	.135	2
438			min	-19.391	2	-27.379	2	-2.945	3	0	10	0	1	129	3
439		11	max	92.803	3	2.189	9	12.112	1	0	1	.011	3	.141	2
440			min	-19.252	2	-27.621	2	-2.945	3	0	10	0	10	126	3
441		12	max	92.908	3	1.988	9	12.112	1	0	1	.011	3	.147	2
442			min	-19.112	2	-27.863	2	-2.945	3	0	10	0	10	123	3
443		13	max	93.012	3	1.786	9	12.112	1	0	1	.01	3	.153	2
444			min	-18.972	2	-28.104	2	-2.945	3	0	10	0	10	12	3
445		14	max	93.117	3	1.585	9	12.112	1	0	1	.01	1	.159	2
446		17	min	-18.833	2	-28.346	2	-2.945	3	0	10	001	10	117	3
447		15	max	93.222	3	1.383	9	12.112	1	0	1	.013	1	.165	2
448		13	min	-18.693	2	-28.588	2	-2.945	3	0	10	001	10	114	3
449		16				134.302	2	12.2				.016	1	.17	2
		10	max	89.628	2				1	0	10				
450		47	min	-7.459	3	-169.659	3	-3.001	3	0	3	002	10	109	3
451		17	max	89.768	2	134.061	2	12.2	1	0	10	.018	1	.141	2
452		10	min	<u>-7.354</u>	3	-169.84	3	-3.001	3	0	3	002	10	072	3
453		18	max	-2.768	15	325.79	2	12.658	1	0	2	.021	1	.071	2
454			min	-64.781	1	-166.231	3	-2.537	3	0	3	002	10	036	3
455		19	max	-2.725	15	325.548	2	12.658	1	0	2	.024	_1_	0	2
456			min	-64.641	1	-166.412	3	-2.537	3	0	3	003	10	0	3
457	M13	1	max	92.906	3	218.901	2	-2.726	15	0	2	.024	_1_	0	2
458			min	-1.378	10	-345.769	3	-64.644	1	0	3	003	10	0	3
459		2	max	92.906	3	157.209	2	-1.954	10	0	2	.018	3	.115	3
460			min	-1.378	10	-247.186	3	-48.129	1	0	3	005	2	073	2
461		3	max	92.906	3	95.517	2	118	10	0	2	.014	3	.192	3
462			min	-1.378	10	-148.602	3	-31.615	1	0	3	014	1	122	2
463		4	max	92.906	3	33.825	2	1.718	10	0	2	.01	3	.231	3
464			min	-1.378	10	-50.019	3	-15.101	1	0	3	023	1	147	2
465		5	max	92.906	3	48.565	3	5.558	2	0	2	.007	3	.231	3
466		Ť	min	-1.378	10	-27.867	2	-8.446	3	0	3	025	1	149	2
467		6	max	92.906	3	147.148	3	17.928	1	0	2	.004	3	.193	3
468		<u> </u>	min	-1.378	10	-89.559	2	-7.478	3	0	3	021	1	126	2
469		7		92.906	3	245.732	3	34.442	1	0	2	.001	10	.117	3
470			max min	-1.378	10	-151.251	2	-6.511	3	0	3	011	1	079	2
		0			3	344.316	3				2		_		3
471		8	max	92.906 -1.378		-212.942	2	50.957	3	0		.008	2	.002	2
472			min		10			-5.544		0	3	001	3	008	
473		9	max	92.906	3	442.899	3	67.471	1	0	2	.028	1	.087	2
474		40	min	-1.378	10	-274.634	2	-4.576	3	0	3	003	3	151	3
475		10	max	92.906	3	-6.316	15	83.985	1	0	2	.058	1_	.206	2
476		4.4	min	-1.378	10	-541.483	3	2.481	12	0	3	018	3	343	3
477		11	max		1	274.634	2	5.625	3	0	3_	.028	1_	.087	2
478			min	-1.378	10	-442.899		-67.471	1	0	2	016	3	151	3
479		12	max	12.167	1	212.942	2	6.593	3	0	3	.008	2	.002	3
480			min	-1.378	10	-344.315		-50.956	1	0	2	014	3	008	2
481		13		12.167	1	151.251	2	7.56	3	0	3_	.001	10	.117	3
482			min	-1.378	10	-245.732	3	-34.442	1	0	2	011	3	079	2
483		14	max	12.167	1_	89.559	2	8.527	3	0	3	0	15	.193	3
484			min	-1.378	10	-147.148	3	-17.928	1	0	2	021	1_	126	2
485		15	max	12.167	1	27.867	2	9.495	3	0	3	001	15	.231	3
486			min	-1.378	10	-48.565	3	-5.558	2	0	2	025	1	149	2
487		16	max	12.167	1	50.019	3	15.101	1	0	3	0	12	.231	3
488			min	-1.378	10	-33.825	2	-1.718	10	0	2	023	1	147	2
489		17	max	12.167	1	148.602	3	31.615	1	0	3	.003	3	.192	3
490			min	-1.378	10	-95.517	2	.118	10	0	2	014	1	122	2
491		18	max	12.167	1	247.186	3	48.13	1	0	3	.008	3	.115	3
492		'	min	-1.378	10	-157.209	2	1.955	10	0	2	005	2	073	2
493		19			1	345.77	3	64.644	1	0	3	.024	1	0	2
700		10	παλ	12.101		U-10.11		U-1.U-7				.027			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

494	Member	Sec	min	Axial[lb] -1.378	LC 10	y Shear[lb]	LC 2		LC 15	Torque[k-ft]	LC 2	y-y Mome	LC 10	z-z Mome	LC 3
495	M16	1	min max	2.541	3	325.635	2	2.731 -2.725	15	0	3	.024	1	0	2
496	IVITO		min	-12.639	1	-166.445	3	-64.645	1	0	2	003	10	0	3
497		2	max	2.541	3	233.429	2	-1.967	10	0	3	.003	9	.056	3
498			min	-12.639	1	-120.17	3	-48.131	1	0	2	005	2	109	2
499		3	max	2.541	3	141.224	2	131	10	0	3	0	3	.093	3
500			min	-12.639	1	-73.896	3	-31.616	1	0	2	013	1	182	2
501		4	max	2.541	3	49.018	2	1.705	10	0	3	0	15	.113	3
502			min	-12.639	1	-27.621	3	-15.102	1	0	2	023	1	219	2
503		5	max	2.541	3	18.653	3	5.539	2	0	3	001	15	.115	3
504		T .	min	-12.639	1	-43.188	2	-5.457	3	0	2	025	1	22	2
505		6	max	2.541	3	64.928	3	17.927	1	0	3	0	15	.099	3
506			min	-12.639	1	-135.393	2	-4.49	3	0	2	021	1	185	2
507		7	max	2.541	3	111.202	3	34.441	1	0	3	.001	10	.064	3
508			min	-12.639	1	-227.599	2	-3.522	3	0	2	011	1	114	2
509		8	max	2.541	3	157.477	3	50.955	1	0	3	.008	2	.012	3
510			min	-12.639	1	-319.805	2	-2.555	3	0	2	009	3	008	2
511		9	max	2.541	3	203.751	3	67.47	1	0	3	.028	1	.134	2
512			min	-12.639	1	-412.01	2	-1.588	3	0	2	01	3	058	3
513		10	max	1.441	10	-6.312	15	83.984	1	0	15	.058	1	.313	2
514			min	-12.639	1	-504.216	2	-1.067	3	0	2	01	3	146	3
515		11	max	1.441	10	412.01	2	1	3	0	2	.028	1	.134	2
516			min	-12.639	1	-203.751	3	-67.47	1	0	3	003	3	058	3
517		12	max	1.441	10	319.805	2	.868	3	0	2	.008	2	.012	3
518			min	-12.639	1	-157.477	3	-50.955	1	0	3	003	3	008	2
519		13	max	1.441	10	227.599	2	1.835	3	0	2	.001	10	.064	3
520			min	-12.639	1	-111.202	3	-34.441	1	0	3	011	1	114	2
521		14	max	1.441	10	135.393	2	2.802	3	0	2	0	12	.099	3
522			min	-12.639	1	-64.928	3	-17.927	1	0	3	021	1	185	2
523		15	max	1.441	10	43.188	2	3.77	3	0	2	0	З	.115	3
524			min	-12.639	1	-18.653	3	-5.539	2	0	3	025	1	22	2
525		16	max	1.441	10	27.621	3	15.102	1	0	2	.002	3	.113	3
526			min	-12.639	1	-49.018	2	-1.705	10	0	3	023	1	219	2
527		17	max	1.441	10	73.896	3	31.616	1	0	2	.004	3	.093	3
528			min	-12.639	1	-141.224	2	.131	10	0	3	013	1	182	2
529		18	max	1.441	10	120.17	3	48.131	1	0	2	.006	3	.056	3
530			min	-12.639	1	-233.429	2	1.968	10	0	3	005	2	109	2
531		19	max	1.441	10	166.445	3	64.645	1	0	2	.024	1	0	2
532			min	-12.639	1	-325.635	2	2.73	15	0	3	003	10	0	3
533	<u>M15</u>	1	max	0	1	.737	3	.167	3	0	1	0	1	0	1
534			min	-132.763		0	1_	0	1	0	3	0	3	0	1
535		2	max	0	1	.655	3	.167	3	0	1	0	1	0	1
536		_		-132.833		0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.573	3	.167	3	0	1	0	1	0	1
538		-		-132.904	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.491	3	.167	3	0	1	0	1	0	1
540		-	min		3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.409	3	.167	3	0	1	0	1	0	1
542			min	-133.045	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.327	3	.167	3	0	1	0	1	0	3
544		7	min	-133.115	3	246	1	167		0	3	0	3	0	$\overline{}$
545		7	max	122 196	1	.246	3	.167	3	0	3	0	3	0	3
546 547		8		-133.186 0	<u>3</u>	.164	3	.167	3	0	1	0	3	0	1
547		-	max	-133.256	3	.164	1		1		3		1	0	3
549		9	max	0	1	.082	3	.167	3	0	1	0	3	0	1
550		3		-133.327	3	0	1	0	1	0	3	0	1	0	3
JJU			1111111	-100.027	J	U		U		U	J	U		U	J

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
551		10	max	0	_1_	0	1	.167	3	0	1	0	3	0	1
552			min	-133.397	3	0	1	0	1	0	3	0	1	0	3
553		11	max	0	_1_	0	1	.167	3	0	1	0	3	0	1
554			min	-133.468	3	082	3	0	1	0	3	0	1	0	3
555		12	max	0	1_	0	1	.167	3	0	1	0	3	0	1
556		40		-133.538	3	164	3	0	1	0	3	0	1	0	3
557		13	max	0	1	0	1	.167	3	0	1	0	3	0	1
558		4.4		-133.609	3	246	3	0	1	0	3	0	1	0	3
559		14	max	0	1	0	1	.167	3	0	1	0	3	0	1
560		4.5	min	-133.679	3	327	3	0	1	0	3	0	1	0	3
561		15	max	0	1	0	1	.167	3	0	1	0	3	0	1
562		4.0	min	-133.75	3	409	3	0	1	0	3	0	1	0	3
563		16	max	0	1	0	1	.167	3	0	1	0	3	0	1
564		47	min	-133.82	3	491	3	0		0	3	0		0	3
565		17	max	0	1	0	1	.167	3	0	3	0	3	0	3
566		40		-133.891	3	573	3	0		0		0		0	$\overline{}$
567		18	max	0	1	0	1	.167	3	0	1	0	3	0	1
568		40		-133.961	3	655	3	0	1	0	3	0	1	0	3
569		19	max	0	1	707	1	.167	3	0	1	0	3	0	1
570	MAGA	1	min	-134.032	<u>3</u>	737	3	.012	1	0	3	0	_	0	1
571	M16A		max	122.072	3	1.261	1	07	9			0	3	0	1
572		2	min	-132.073		0	_			0	9	_	9		
573		2	max	0	1	1.12	1	.012	9	0	3	0	3	0	1
574		2	min	-132.003	3	0		07		0	9	0	9	0	4
575		3	max	0	1	.98	1	.012	9	0	3	0	3	0	1
576		4	min	-131.932	3	0		07		0	9	0	9	0	4
577		4	max	0	1	.84	4	.012	9	0	3	0	3	0	1
578		_		-131.862	3	0	1	07	3	0	9	0	9	0	1
579		5	max	0	1	.7	1	.012	9	0	3	0	3	0	
580 581		6	min	-131.791 0	<u>3</u> 1	.56	4	07 .012	9	0	3	0	3	001 0	1
582		0	max	-131.721	3	.56	1	07	3	0	9	0	9	001	4
583		7	min	0	<u> </u>	.42	4	.012	9		3	0	3	0	1
584			max min	-131.65	3	0	1	07	3	0	9	0	9	001	4
585		8	max	0	<u> </u>	.28	4	.012	9	0	3	0	3	0	1
586		0	min	-131.58	3	0	1	07	3	0	9	0	9	001	4
587		9	max	0	_ <u></u>	.14	4	.012	9	0	3	0	3	0	1
588		3		-131.509	3	0	1	07	3	0	9	0	9	001	4
589		10	max	0	_ <u></u>	0	1	.012	9	0	3	0	3	0	1
590		10	min	-131.439	3	0	1	07	3	0	9	0	9	002	4
591		11	max		13	0	1	.012	9	0	3	0	3	0	1
592				-131.368	3	14	4	07	3	0	9	0	9	001	4
593		12	max	.136	13	0	1	.012	9	0	3	0	3	0	1
594				-131.298	3	28	4	07	3	0	9	0	14	001	4
595		13	max	.233	13	0	1	.012	9	0	3	0	1	0	1
596				-131.227	3	42	4	07	3	0	9	0	4	001	4
597		14	max	.341	4	0	1	.012	9	0	3	0	9	0	1
598				-131.157	3	56	4	07	3	0	9	0	3	001	4
599		15	max	.461	4	0	1	.012	9	0	3	0	9	0	1
600		10	min	-131.086	3	7	4	07	3	0	9	0	3	001	4
601		16	max	.582	4	0	1	.012	9	0	3	0	9	0	1
602		10		-131.016	3	84	4	07	3	0	9	0	3	0	4
603		17	max	.703	4	0	1	.012	9	0	3	0	9	0	1
604		- 17		-130.945	3	98	4	07	3	0	9	0	3	0	4
605		18	max	.823	_ <u></u>	0	1	.012	9	0	3	0	9	0	1
606		10		-130.875	3	-1.12	4	07	3	0	9	0	3	0	4
607		19	max	.944	4	0	1	.012	9	0	3	0	9	0	1
		נון	πιαλ	.344	+	U		.012	J	U	J	U	J	U	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-130.804	3	-1.261	4	07	3	0	9	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
1	M2	1	max	.002	2	.01	2	.002	9	2.265e-5	10	NC	3	NC	1
2			min	004	3	01	3	003	3	-2.216e-4	3	4108.037	2	NC	1
3		2	max	.002	2	.009	2	.002	9	2.158e-5	10	NC	3	NC	1
4			min	003	3	009	3	002	3	-2.098e-4	3	4481.036	2	NC	1
5		3	max	.002	2	.008	2	.001	9	2.05e-5	10	NC	3	NC	1
6			min	003	3	009	3	002	3	-1.98e-4	3	4924.187	2	NC	1
7		4	max	.002	2	.007	2	.001	9	1.943e-5	10	NC	1_	NC	1
8			min	003	3	008	3	002	3	-1.861e-4	3	5454.303	2	NC	1
9		5	max	.002	2	.006	2	.001	9	1.836e-5	10	NC	1_	NC	1
10			min	003	3	008	3	002	3	-1.743e-4	3	6093.759	2	NC	1
11		6	max	.001	2	.006	2	.001	9	1.728e-5	10	NC	1_	NC	1
12			min	003	3	008	3	001	3	-1.625e-4	3	6872.814	2	NC	1
13		7	max	.001	2	.005	2	0	9	1.621e-5	10	NC	1_	NC	1
14			min	002	3	007	3	001	3	-1.507e-4	3	7833.166	2	NC	1
15		8	max	.001	2	.004	2	0	9	1.514e-5	10	NC	_1_	NC	1
16			min	002	3	007	3	001	3	-1.389e-4	3	9033.549	2	NC	1
17		9	max	.001	2	.004	2	0	9	1.406e-5	10	NC	_1_	NC	1
18			min	002	3	006	3	0	3	-1.27e-4	3	NC	1	NC	1
19		10	max	0	2	.003	2	0	9	1.299e-5	10	NC	<u>1</u>	NC	1
20			min	002	3	006	3	0	3	-1.152e-4	3	NC	1_	NC	1
21		11	max	0	2	.003	2	0	9	1.192e-5	10	NC	1_	NC	1_
22			min	002	3	005	3	0	3	-1.034e-4	3	NC	1_	NC	1
23		12	max	0	2	.002	2	0	9	1.084e-5	10	NC	_1_	NC	1
24			min	001	3	005	3	0	3	-9.401e-5	1_	NC	1_	NC	1
25		13	max	0	2	.002	2	0	9	9.768e-6	10	NC	_1_	NC	1
26			min	001	3	004	3	0	3	-8.474e-5	1_	NC	1	NC	1
27		14	max	0	2	.001	2	0	9	8.695e-6	<u>10</u>	NC	_1_	NC	1
28			min	0	3	003	3	0	3	-7.547e-5	<u>1</u>	NC	1_	NC	1
29		15	max	0	2	00	2	0	9	7.621e-6	<u>10</u>	NC	_1_	NC	1
30			min	0	3	003	3	0	3	-6.62e-5	_1_	NC	1_	NC	1
31		16	max	0	2	0	2	0	9	6.548e-6	<u>10</u>	NC	_1_	NC	1
32			min	0	3	002	3	0	3	-5.693e-5	1_	NC	1	NC	1
33		17	max	0	2	0	2	0	9	5.474e-6	<u>10</u>	NC	_1_	NC	1
34		10	min	0	3	001	3	0	3	-4.765e-5	1_	NC	1	NC	1
35		18	max	0	2	0	2	0	9	4.401e-6	10	NC	1	NC	1
36		40	min	0	3	0	3	0	3	-3.838e-5	1_	NC	1_	NC NC	1
37		19	max	0	1	0	1	0	1	3.327e-6	<u>10</u>	NC	1	NC NC	1
38	140		min	0	1	0	1	0	1	-3.038e-5	9	NC	1	NC	1
39	M3	1_	max	0	1	0	1	0	1	1.436e-5	9	NC	1	NC	1
40			min	0	1	0	1	0	1	-1.579e-6	<u>10</u>	NC	_1_	NC	1
41		2	max	0	3	0	2	0		1.982e-5	1_	NC NC	1	NC NC	1
42			min	0	2	0	3	0	9			NC NC	1	NC NC	1
43		3	max	0	3	0	2	0	10		1_	NC NC	1	NC	1
44		1	min	0	2	002	3	0	9	-2.888e-6		NC NC	1	NC	1
45		4	max	0	3	0	2	0	3	3.183e-5	1_	NC	1	NC NC	1
46		_	min	0	2	003	3	0	9	-3.542e-6		NC	1_	NC NC	1
47		5	max	0	3	0	2	0	3	3.784e-5	1	NC NC	1	NC NC	1
48			min	0	2	003	3	0	9	-4.197e-6		NC NC	1_	NC NC	1
49		6	max	0	3	0	2	0	3	4.385e-5	1	NC NC	1	NC	1
50		-	min	0	2	004	3	0	9	-4.851e-6		NC NC	1_	NC NC	1
51		7	max	0	3	0	2	0	3	4.985e-5	_1_	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

Sa		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC) LC
Section	52			min		2	005	3				10	NC		NC	
56			8													
56				min					0			10		1_		
SF			9													_
S8			4.0													
59			10													
60			44													
61			11													
Secondary Seco			40											•		
63			12													
66			12											•		
66			13													
Fig. 2			1.1													
67			14													•
68			15													
69			10													
To			16													
T1			10													1
T22			17													1
T3			<u> </u>													
T4			18													1
Teal										10 -1	1.27e-5	10		2		1
Transfer			19						.002					3		1
T7									_			10		2		1
T8		M4	1			1			0					1	NC	1
80	78			min	0	12	01	3	001	1 -1	.396e-4	1	NC	1	NC	1
81 3 max .001 1 .01 2 0 10 1.575e-5 10 NC 1 NC 1 82 min 0 12 .009 3 001 1 -1.396e-4 1 NC 1 NC 1 83 4 max 0 1 .009 2 0 10 1.575e-5 10 NC 1 NC 1 84 min 0 12 .008 3 001 1 -1.396e-4 1 NC 1 NC 1 85 5 max 0 1 .008 2 0 10 1.575e-5 10 NC 1 NC 1 86 min 0 12 .007 3 0 1 -1.396e-4 1 NC 1 NC 1 87 6 max 0 1 .007 2 0 <td>79</td> <td></td> <td>2</td> <td>max</td> <td>.001</td> <td>1</td> <td>.01</td> <td>2</td> <td>0</td> <td>10 1.</td> <td>.575e-5</td> <td>10</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	79		2	max	.001	1	.01	2	0	10 1.	.575e-5	10	NC	1	NC	1
82 min 0 12 -009 3 001 1 -1.396e-4 1 NC 1 NC 1 83 4 max 0 1 .009 2 0 10 1.575e-5 10 NC 1 NC 1 84 min 0 12 008 3 001 1 -1.396e-4 1 NC 1 NC 1 86 min 0 12 007 3 0 1 -1.396e-4 1 NC 1 NC 1 87 6 max 0 1 .008 2 0 10 1.575e-5 10 NC 1 NC 1 89 7 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 90 min 0 12 .006 3 0 1 <td>80</td> <td></td> <td></td> <td>min</td> <td>0</td> <td>12</td> <td>009</td> <td>3</td> <td>001</td> <td>1 -1</td> <td>.396e-4</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	80			min	0	12	009	3	001	1 -1	.396e-4	1	NC	1	NC	1
83			3		.001							10		1_		1
84 min 0 12 008 3 001 1 -1.396e-4 1 NC 1 NC 1 85 5 max 0 1 .008 2 0 10 1.575e-5 10 NC 1 NC 1 86 min 0 12 007 3 0 1 -1.396e-4 1 NC 1 NC 1 87 6 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 89 7 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 90 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 91 8 max 0 1 .006 2 0				min					001			1		1_		
85			4							10 1.	.575e-5	10				1
86 min 0 12 007 3 0 1 -1.396e-4 1 NC 1 NC 1 87 6 max 0 1 .008 2 0 10 1.575e-5 10 NC 1 NC 1 88 min 0 12 007 3 0 1 -1.396e-4 1 NC 1 NC 1 90 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 91 8 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 91 8 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 92 min 0 12 005 3 0 1			_		-							_ •				
87 6 max 0 1 .008 2 0 10 1.575e-5 10 NC 1 NC 1 88 min 0 12 007 3 0 1 -1.396e-4 1 NC 1 NC 1 89 7 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 90 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 91 8 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 93 9 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 94 min 0 12 005 3 0			5									-				
88 min 0 12 007 3 0 1 -1.396e-4 1 NC 1 NC 1 89 7 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 90 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 91 8 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 92 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 94 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 95 10 max 0 1 .005 2 0 10																
89 7 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 90 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 91 8 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 92 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 93 9 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 94 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 95 10 min 0 12 005 3 0			6													
90 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 91 8 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 92 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 93 9 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 94 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 95 10 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 96 min 0 12 004 3 0 1			-													
91 8 max 0 1 .007 2 0 10 1.575e-5 10 NC 1 NC 1 92 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 93 9 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 94 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 95 10 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 96 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 97 11 max 0 1 .004 2 0 10 1.575e-5 10												10		1_		1
92 min 0 12 006 3 0 1 -1.396e-4 1 NC 1 NC 1 93 9 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 94 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 95 10 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 96 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 97 11 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 98 min 0 12 004 3 0 1												1_		1_		1
93 9 max 0 1 .006 2 0 10 1.575e-5 10 NC 1 NC 1 94 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 NC 1 96 1 NC 1			8					2						_		
94 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 95 10 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 96 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 97 11 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 98 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 99 12 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 101 13 max 0 1 .004 2 0																
95 10 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 96 1 min 0 12 005 3 0 1 -1.396e-4 1 NC			9													
96 min 0 12 005 3 0 1 -1.396e-4 1 NC 1 NC 1 97 11 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 98 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 99 12 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 100 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 101 13 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 102 min 0 12 003 3 0 1 -1.396e-4			10									_ •		•		
97 11 max 0 1 .005 2 0 10 1.575e-5 10 NC 1 NC 1 98 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 99 12 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 100 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 101 13 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 102 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 103 14 max 0 1 .003 2 0 10 1.575e-5			10													
98 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 99 12 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 100 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 101 13 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 102 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 103 14 max 0 1 .003 2 0 10 1.575e-5 10 NC 1 NC 1 104 min 0 12 003 3 0 1			11											_		-
99 12 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 100 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 101 13 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 102 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 103 14 max 0 1 .003 2 0 10 1.575e-5 10 NC 1 NC 1 104 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 105 15 max 0 1 .002 2 0<																_
100 min 0 12 004 3 0 1 -1.396e-4 1 NC 1 NC 1 101 13 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 102 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 103 14 max 0 1 .003 2 0 10 1.575e-5 10 NC 1 NC 1 104 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 105 15 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1 106 min 0 12 002 3 0			12													
101 13 max 0 1 .004 2 0 10 1.575e-5 10 NC 1 NC 1 102 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 103 14 max 0 1 .003 2 0 10 1.575e-5 10 NC 1 NC 1 104 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 105 15 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1 106 min 0 12 002 3 0 1 -1.396e-4 1 NC 1 NC 1 107 16 max 0 1 .002 2 0 <td< td=""><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			14													
102 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 103 14 max 0 1 .003 2 0 10 1.575e-5 10 NC 1 NC 1 104 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 105 15 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1 106 min 0 12 002 3 0 1 -1.396e-4 1 NC 1 NC 1 107 16 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1			13											•		
103 14 max 0 1 .003 2 0 10 1.575e-5 10 NC 1 NC 1 104 min 0 12003 3 0 1 -1.396e-4 1 NC 1 NC 1 105 15 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1 106 min 0 12002 3 0 1 -1.396e-4 1 NC 1 NC 1 107 16 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1			10													
104 min 0 12 003 3 0 1 -1.396e-4 1 NC 1 NC 1 105 15 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1 106 min 0 12 002 3 0 1 -1.396e-4 1 NC 1 NC 1 107 16 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1			14									•		•		
105 15 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1 106 min 0 12 002 3 0 1 -1.396e-4 1 NC 1 NC 1 107 16 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1																
106 min 0 12 002 3 0 1 -1.396e-4 1 NC 1 NC 1 107 16 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1			15		-											
107 16 max 0 1 .002 2 0 10 1.575e-5 10 NC 1 NC 1			l .									-				
			16											1		-
	108			min	0	12	002	3					NC	1	NC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
109		17	max	0	1	.001	2	0	10	1.575e-5	10	NC	1_	NC	1_
110			min	0	12	001	3	0	1	-1.396e-4	1	NC	1	NC	1
111		18	max	0	1	0	2	0	10	1.575e-5	10	NC	1_	NC	1_
112			min	0	12	0	3	0	1	-1.396e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	1.575e-5	10	NC	1	NC	1
114			min	0	1	0	1	0	1	-1.396e-4	1	NC	1	NC	1
115	M6	1	max	.006	2	.029	2	0	9	5.157e-4	3	NC	3	NC	1
116			min	01	3	028	3	007	3	-9.045e-8	1	1350.35	2	5671.195	3
117		2	max	.006	2	.027	2	0	9	5.e-4	3	NC	3	NC	1
118			min	01	3	026	3	007	3	-2.062e-7	9	1446.044	2	6014.061	3
119		3	max	.005	2	.025	2	0	9	4.844e-4	3	NC	3	NC	1
120			min	009	3	025	3	006	3	-8.919e-7	9	1555.85	2	6422.858	3
121		4	max	.005	2	.023	2	0	9	4.687e-4	3	NC	3	NC	1
122			min	009	3	023	3	006	3	-1.578e-6		1682.605	2	6911.536	3
123		5	max	.005	2	.022	2	0	9	4.53e-4	3	NC	3	NC	1
124			min	008	3	022	3	005	3	-2.263e-6	9	1829.964	2	7498.659	3
125		6	max	.004	2	.02	2	0	9	4.373e-4	3	NC	3	NC	1
126			min	007	3	02	3	005	3	-2.949e-6		2002.714	2	8209.259	3
127		7	max	.004	2	.018	2	0	9	4.216e-4	3	NC	3	NC	1
128		T .	min	007	3	019	3	004	3	-3.635e-6	9	2207.243	2	9077.687	3
129		8	max	.004	2	.016	2	<u>004</u>	9	4.06e-4	3	NC	3	NC	1
130			min	004	3	017	3	004	3	-4.32e-6	9	2452.272	2	NC	1
131		9		.003	2	.014	2	004	9	3.903e-4	3	NC	3	NC	1
132		1 9	max	006	3	01 4	3	003	3	-5.006e-6	9	2750.006	2	NC NC	1
		10					_		_			NC		NC NC	1
133		10	max	.003	3	<u>.013</u> 014	2	0	9	3.746e-4	3		2		1
134		4.4	min	005			3	003		-5.692e-6		3118.082		NC NC	
135		11	max	.003	2	.011	2	0	9	3.589e-4	3_	NC 2500 040	3_	NC	1
136		40	min	005	3	013	3	003	3	-6.377e-6		3582.949	2	NC NC	1
137		12	max	.002	2	.009	2	0	9	3.432e-4	3	NC 4400.450	3_	NC	1
138		40	min	004	3	011	3	002	3	-7.063e-6	9	4186.159	2	NC NC	1
139		13	max	.002	2	.008	2	0	9	3.276e-4	3_	NC 4000 040	3	NC NC	1
140			min	003	3	01	3	002	3	-7.749e-6		4996.949	2	NC	1
141		14	max	.002	2	.006	2	0	9	3.119e-4	3	NC	1	NC	1
142			min	003	3	008	3	001	3	-8.435e-6	9	6139.915	2	NC	1
143		15	max	.001	2	.005	2	0	9	2.962e-4	3_	NC	1_	NC	1
144			min	002	3	006	3	001	3	-9.12e-6	9	7864.187	2	NC	1
145		16	max	0	2	.004	2	0	9	2.805e-4	3_	NC	_1_	NC	1_
146			min	002	3	005	3	0	3	-9.806e-6	9	NC	1_	NC	1
147		17	max	0	2	.002	2	0	9	2.648e-4	3	NC	1_	NC	1
148			min	001	3	003	3	0	3	-1.049e-5		NC	1_	NC	1
149		18	max	0	2	.001	2	0	9	2.492e-4	3	NC	1_	NC	1
150			min	0	3	002	3	0	3	-1.118e-5	9	NC	1	NC	1
151		19	max	0	1	0	1	0	1	2.335e-4	3	NC	1_	NC	1
152			min	0	1	0	1	0	1	-1.186e-5	9	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	5.562e-6	9	NC	1	NC	1
154			min	0	1	0	1	0	1	-1.096e-4	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	4.893e-6	9	NC	1	NC	1
156			min	0	2	002	3	0	9	-8.281e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	.001	3	4.224e-6	9	NC	1	NC	1
158		Ĭ	min	0	2	004	3	0	9	-5.606e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	.001	3	3.555e-6	9	NC	1	NC	1
160			min	001	2	006	3	0	9	-2.932e-5	_	NC	1	NC	1
161		5	max	.001	3	.005	2	.002	3	2.885e-6	9	NC NC	1	NC	1
162			min	001	2	007	3	<u>.002</u>	9	-2.576e-6		9342.157	2	NC NC	1
163		6		.002	3	.007	2	.002	_			9342.137 NC	1	NC NC	1
		10	max		2		3	<u>2</u>	9	2.417e-5 0	<u>3</u>		2		1
164		7	min	002		009				_		7482.063		NC NC	
165		7	max	.002	3	.007	2	.003	3	5.091e-5	3	NC	<u>1</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
166			min	002	2	011	3	0	9	0	5	6207.992	2	NC	1
167		8	max	.002	3	.009	2	.003	3	7.766e-5	3	NC	_1_	NC	1
168			min	003	2	012	3	0	9	-5.327e-8		5272.694	2	NC	1
169		9	max	.002	3	01	2	.003	3	1.044e-4	3	NC	3	NC	1
170		4.0	min	003	2	014	3	0	9	-1.41e-7	13	4553.012	2	NC	1
171		10	max	.003	3	.012	2	.003	3	1.311e-4	3_	NC	3_	NC	1
172		44	min	003	2	015	3	0	9	-4.605e-7	9	3980.672	2	NC NC	1
173		11	max	.003	3	.013	2	.003	3	1.579e-4	3_	NC 0544 COO	3	NC	1
174		40	min	004	2	017	3	0	9	-1.13e-6	9	3514.633	2	NC NC	1
175		12	max	.003	3	.015	3	.003	9	1.846e-4	3	NC 3128.582	2	NC NC	1
176 177		13	min	004 .004	3	<u>018</u> .016	2	<u> </u>	3	-1.799e-6 2.114e-4	3	NC	3	NC NC	1
178		13	max min	004	2	019	3	<u>.004</u>	9	-2.468e-6	9	2804.718	2	NC NC	1
179		14	max	.004	3	.018	2	.004	3	2.381e-4	3	NC	3	NC NC	1
180		14	min	005	2	02	3	004 0	9	-3.137e-6	9	2530.451	2	NC	1
181		15	max	.003	3	.02	2	.004	3	2.649e-4	3	NC	3	NC	1
182		10	min	005	2	021	3	0	9	-3.806e-6	9	2296.533	2	NC	1
183		16	max	.005	3	.022	2	.004	3	2.916e-4	3	NC	3	NC	1
184		10	min	006	2	022	3	0	9	-4.476e-6	9	2095.969	2	NC	1
185		17	max	.005	3	.024	2	.004	3	3.184e-4	3	NC	3	NC	1
186		<u> </u>	min	006	2	023	3	0	9	-5.145e-6	9	1923.333	2	NC	1
187		18	max	.005	3	.026	2	.003	3	3.451e-4	3	NC	3	NC	1
188			min	006	2	024	3	0	9	-5.814e-6	9	1774.341	2	NC	1
189		19	max	.006	3	.028	2	.003	3	3.718e-4	3	NC	3	NC	1
190			min	007	2	025	3	0	9	-6.483e-6	9	1645.561	2	NC	1
191	M8	1	max	.003	2	.033	2	0	9	-1.161e-7	10	NC	1	NC	1
192			min	0	3	028	3	002	3	-2.688e-4	3	NC	1	8216.779	3
193		2	max	.003	2	.031	2	0	9	-1.161e-7	10	NC	1	NC	1
194			min	0	3	026	3	002	3	-2.688e-4	3	NC	1	8958.9	3
195		3	max	.003	2	.03	2	0	9	-1.161e-7	10	NC	1_	NC	1_
196			min	0	3	025	3	002	3	-2.688e-4	3	NC	1	9842.378	3
197		4	max	.003	2	.028	2	0	9	-1.161e-7	10	NC	_1_	NC	1
198			min	0	3	023	3	002	3	-2.688e-4	3	NC	1_	NC	1
199		5	max	.003	2	.026	2	00	9	-1.161e-7	10	NC	_1_	NC	1
200			min	0	3	021	3	002	3	-2.688e-4	3	NC	_1_	NC	1
201		6	max	.002	2	.024	2	0	9	-1.161e-7	10	NC	_1_	NC	1
202		<u> </u>	min	0	3	02	3	001	3	-2.688e-4	3	NC	1_	NC	1
203		7	max	.002	2	.022	2	0	9	-1.161e-7	10	NC	1_	NC	1
204			min	0	3	018	3	001	3	-2.688e-4	3	NC	_1_	NC	1
205		8	max	.002	2	.02	2	0	9	-1.161e-7	10	NC NC	1_	NC NC	1
206			min		3	017	3	001		-2.688e-4		NC NC	1	NC NC	1
207		9	max	.002	2	.018	2	0	9	-1.161e-7	<u>10</u>	NC NC	1	NC	1
208		10	min	0	3	015	2	0	3	-2.688e-4 -1.161e-7	3	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.002	3	.017	3	<u> </u>	9				1	NC NC	1
210		11	min max	.001	2	014 .015	2	0	9	-2.688e-4 -1.161e-7	<u>3</u>	NC NC	1	NC NC	1
212			min	0	3	012	3	0	3	-2.688e-4	3	NC	1	NC	1
213		12	max	.001	2	.012	2	0	9	-1.161e-7	10	NC	1	NC	1
214		12	min	0	3	011	3	0	3	-2.688e-4	3	NC	1	NC	1
215		13		.001	2	.011	2	0	9	-1.161e-7	10	NC	1	NC	1
216		13	max min	.001	3	009	3	0	3	-2.688e-4	3	NC NC	1	NC NC	1
217		14	max	0	2	.009	2	0	9	-1.161e-7	10	NC	1	NC	1
218			min	0	3	008	3	0	3	-2.688e-4	3	NC	1	NC	1
219		15	max	0	2	.007	2	0	9	-1.161e-7	10	NC	1	NC	1
220		10	min	0	3	006	3	0	3	-2.688e-4	3	NC	1	NC	1
221		16	max	0	2	.006	2	0	9	-1.161e-7	10	NC	1	NC	1
222			min	0	3	005	3	0	3	-2.688e-4	3	NC	1	NC	1
									ŭ	T			_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio) LC
223		17	max	0	2	.004	2	0	9	-1.161e-7	10	NC	_1_	NC	1
224			min	0	3	003	3	0	3	-2.688e-4	3	NC	1_	NC	1
225		18	max	0	2	.002	2	0	9	-1.161e-7	10	NC	_1_	NC	1
226			min	0	3	002	3	0	3	-2.688e-4	3	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-1.161e-7	10	NC	_1_	NC	1
228			min	0	1	0	1	0	1	-2.688e-4	3	NC	1_	NC	1
229	M10	1_	max	.002	2	.01	2	0	10	1.958e-4	1	NC	3	NC	1
230			min	003	3	01	3	001	1	-6.069e-4	3	4111.702	2	NC	1
231		2	max	.002	2	.009	2	0	10	1.866e-4	1_	NC	3	NC	1
232			min	003	3	009	3	001	1	-5.859e-4	3	4485.145	2	NC NC	1
233		3	max	.002	2	.008	2	0	10	1.773e-4	1_	NC 4000 044	3_	NC	1
234		1	min	002	3	009	3	001	1	-5.65e-4	3	4928.844	2	NC	1
235		4	max	.002	2	.007	2	0	3	1.68e-4	1_	NC 5450.044	1_	NC	1
236		_	min	002	3	008	3	001	1	-5.441e-4	3	5459.644	2	NC NC	1
237		5	max	.002	2	.006	2	0	3	1.588e-4	1_	NC coop occ	1_	NC NC	1
238			min	002	3	008	3	001	1	-5.232e-4	3	6099.962	2	NC NC	1
239		6	max	.001	2	.006	2	0	3	1.495e-4	1_	NC cooo 440	1_	NC NC	1
240		+ -	min	002	3	008	3	0	1	-5.023e-4	3	6880.116	2	NC	1
241		7	max	.001	2	.005	2	0	3	1.402e-4	1	NC	1_	NC	1
242		0	min	002	3	007	3	0	1	-4.814e-4	3	7841.889	2	NC NC	1
243		8	max	.001	2	.004	2	0	3	1.31e-4	1	NC 9044.142	1	NC NC	1
244			min	002	3	007	3	0	1	-4.605e-4	3		2	NC NC	1
245		9	max	.001	2	.004	2	0	3	1.217e-4	1	NC	1	NC NC	1
246		10	min	001	3	006	3	0	1	-4.395e-4	3	NC NC		NC NC	1
247		10	max	0 001	3	.003	3	<u> </u>	1	1.125e-4	1	NC NC	<u>1</u> 1	NC NC	1
248		11	min		2	006			•	-4.186e-4	3		•		•
249		11	max	0	_	.003	2	0	3	1.032e-4	1	NC	1_1	NC NC	1
250		40	min	<u>001</u>	3	005	3	0	1	-3.977e-4	3	NC NC	1_	NC NC	1
251		12	max	0	2	.002	2	0	3	9.394e-5	1	NC	<u>1</u> 1	NC NC	1
252 253		13	min	001	2	005 .002	2	<u> </u>	3	-3.768e-4	<u>3</u> 1	NC NC	1	NC NC	1
254		13	max	<u> </u>	3	002	3	0	1	8.468e-5 -3.559e-4	3	NC NC	1	NC NC	1
255		14	min	0	2	004 .001	2	0	3	7.542e-5		NC NC	1	NC NC	1
256		14	max	0	3	003	3	0	1	-3.35e-4	<u>1</u> 3	NC NC	1	NC NC	1
257		15		0	2	<u>003</u> 0	2	0	3	6.616e-5	<u> </u>	NC NC	1	NC NC	1
258		15	max	0	3	003	3	0	1	-3.141e-4	3	NC NC	1	NC NC	1
259		16	max	0	2	<u>003</u> 0	2	0	3	5.69e-5	1	NC	1	NC	1
260		10	min	0	3	002	3	0	1	-2.931e-4	3	NC	1	NC	1
261		17	max	0	2	<u>002</u> 0	2	0	3	4.764e-5	1	NC	1	NC	1
262		17	min	0	3	001	3	0	1	-2.722e-4	3	NC	1	NC	1
263		10	max	0	2	<u>001</u> 0	2	0	3	3.838e-5		NC	1	NC	1
264		10	min	0	3	0	3	0	1	-2.513e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.912e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-2.304e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	1.088e-4	3	NC	1	NC	1
268	IVIII		min	0	1	0	1	0	1	-1.382e-5	1	NC	1	NC	1
269		2	max	0	3	0	2	0	1	8.297e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-1.981e-5	1	NC	1	NC	1
271		3	max	0	3	0	2	0	1	5.717e-5	3	NC	1	NC	1
272			min	0	2	002	3	0	3	-2.58e-5	1	NC	1	NC	1
273		4	max	0	3	- <u>002</u> 0	2	0	1	3.137e-5	3	NC	1	NC	1
274		1	min	0	2	003	3	001	3	-3.18e-5	1	NC	1	NC	1
275		5	max	0	3	<u>003</u> 0	2	<u>001</u> 0	1	5.566e-6	3	NC	1	NC	1
276			min	0	2	004	3	002	3	-3.779e-5	1	NC	1	NC	1
277		6	max	0	3	- <u>004</u> 0	2	<u>002</u> 0	10	4.903e-6	10	NC	1	NC	1
278			min	0	2	004	3	002	3	-4.378e-5	1	NC	1	NC	1
279		7	max	0	3	0	2	0	10		10	NC	1	NC	1
213			παλ		J			U	10	J.0006-0	10	110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC) LC
280			min	0	2	005	3	002		-4.977e-5	1_	NC	1_	NC	1
281		8	max	0	3	0	2	0		6.232e-6	10	NC	1_	NC	1
282			min	0	2	006	3	003		-7.184e-5	3	NC	1_	NC	1
283		9	max	0	3	.001	2	0		6.897e-6	10	NC	1_	NC	1
284		40	min	0	2	<u>006</u>	3	003		-9.764e-5	3	NC	1_	NC	1
285		10	max	.001	3	.002	2	0		7.562e-6	10	NC	1	NC	1
286		44	min	001	2	007	3	003		-1.234e-4	3	NC NC	1_	NC	1
287		11	max	.001	3	.002	2	0		8.226e-6	<u>10</u>	NC NC	1_	NC	1
288		40	min	001	2	007	3	003		-1.492e-4	3	NC NC	1_	NC NC	1
289		12	max	.001	3	.003	3	003		8.891e-6	<u>10</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min	001 .001	3	008 .004	2	003 0	10	-1.75e-4 9.556e-6	<u>3</u> 10	NC NC	1	NC NC	1
292		13	max	001	2	004 008	3	003		-2.008e-4	3	NC NC	1	NC NC	1
293		14	min max	.002	3	008 .004	2	<u>003</u> 0		1.022e-5	<u> </u>	NC NC	1	NC NC	1
294		14	min	002	2	008	3	003		-2.266e-4	3	NC NC	1	NC	1
295		15	max	.002	3	.005	2	- <u>003</u> 0		1.089e-5	10	NC	1	NC	1
296		10	min	002	2	008	3	003		-2.524e-4	3	8904.909	2	NC	1
297		16	max	.002	3	.006	2	<u>.005</u>		1.155e-5	10	NC	1	NC	1
298		10	min	002	2	009	3	003		-2.782e-4	3	7552.214	2	NC	1
299		17	max	.002	3	.007	2	<u>.000</u>		1.221e-5	10	NC	1	NC	1
300		<u> </u>	min	002	2	009	3	003	3	-3.04e-4	3	6503.82	2	NC	1
301		18	max	.002	3	.008	2	0		1.288e-5	10	NC	1	NC	1
302			min	002	2	009	3	003	3	-3.298e-4	3	5682.354	2	NC	1
303		19	max	.002	3	.009	2	0		1.354e-5	10	NC	3	NC	1
304			min	002	2	009	3	002		-3.556e-4	3	5033.159	2	NC	1
305	M12	1	max	.001	1	.011	2	.001	1	3.913e-4	3	NC	1	NC	1
306			min	0	12	01	3	0	10	-1.598e-5	10	NC	1	NC	1
307		2	max	.001	1	.01	2	.001	1	3.913e-4	3	NC	1	NC	1
308			min	0	12	009	3	0		-1.598e-5	10	NC	1	NC	1
309		3	max	.001	1	.01	2	.001		3.913e-4	3	NC	1_	NC	1
310			min	0	12	009	3	0		-1.598e-5	10	NC	1_	NC	1
311		4	max	0	1	.009	2	.001		3.913e-4	3	NC	1_	NC	1
312			min	0	12	008	3	0		-1.598e-5	10	NC	1_	NC	1
313		5	max	0	1	.008	2	0		3.913e-4	3_	NC	_1_	NC	1
314			min	0	12	008	3	0		-1.598e-5	10	NC	1_	NC	1
315		6	max	0	1	.008	2	0	3	3.913e-4	3	NC	_1_	NC	1
316		<u> </u>	min	0	12	007	3	0		-1.598e-5	10	NC	1_	NC	1
317		7	max	0	1	.007	2	0		3.913e-4	3_	NC	1_	NC	1
318			min	0	12	006	3	0		-1.598e-5	10	NC	1_	NC	1
319		8	max	0	1	.007	2	0	3	3.913e-4	3	NC NC	1_	NC NC	1
320			min	0	12	006	3	0		-1.598e-5			1	NC NC	1
321		9	max	0	1	.006	2	0		3.913e-4	3	NC NC	1_1	NC NC	1
322		10	min	0	12	005	2	0		-1.598e-5	10	NC NC	<u>1</u> 1	NC NC	1
323		10	max	<u> </u>	12	.005	3	0 0		3.913e-4	3	NC NC	1	NC NC	1
324 325		11	min max	0	1	005 .005	2	0		-1.598e-5 3.913e-4	<u>10</u> 3	NC NC	1	NC NC	1
326			min	0	12	004	3	0		-1.598e-5	10	NC	1	NC	1
327		12	max	0	1	.004	2	0		3.913e-4	3	NC	1	NC	1
328		12	min	0	12	004	3	0		-1.598e-5	10	NC	1	NC	1
329		13	max	0	1	.004	2	0		3.913e-4	3	NC NC	1	NC NC	1
330		13	min	0	12	003	3	0		-1.598e-5	10	NC NC	1	NC NC	1
331		14	max	0	1	.003	2	0		3.913e-4	3	NC	1	NC	1
332		1,7	min	0	12	003	3	0		-1.598e-5	10	NC	1	NC	1
333		15	max	0	1	.002	2	0		3.913e-4	3	NC	1	NC	1
334		'	min	0	12	002	3	0		-1.598e-5	10	NC	1	NC	1
335		16	max	0	1	.002	2	0		3.913e-4	3	NC	1	NC	1
336			min	0	12	002	3	0		-1.598e-5	10	NC	1	NC	1
						1002							_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC		LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	3	3.913e-4	3	NC	1	NC	1
338			min	0	12	001	3	0	10	-1.598e-5	10	NC	1	NC	1
339		18	max	0	1	0	2	0	3	3.913e-4	3	NC	1	NC	1
340			min	0	12	0	3	0	10	-1.598e-5	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	3.913e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	-1.598e-5	10	NC	1	NC	1
343	M1	1	max	.009	3	.025	3	.004	3	4.89e-3	2	NC	1	NC	1
344			min	009	2	021	2	0	9	-7.219e-3		NC	1	NC	1
345		2	max	.009	3	.015	3	.003	3	2.42e-3	2	NC	4	NC	1
346			min	009	2	012	2	001	9	-3.549e-3	3	4646.666	3	NC	1
347		3	max	.009	3	.005	3	.003	3	5.326e-5	3	NC	4	NC	1
348		3	min	009	2	004	2	002		-8.507e-5		2406.75	3	NC NC	1
		4							9		1_		_		
349		4	max	.009	3	.003	2	.002	3	5.46e-5	3_	NC 474.4.500	4_	NC	1
350		-	min	009	2	003	3	002	9	-7.129e-5	9	1714.528	3	NC	1
351		5	max	.009	3	.01	2	.002	3	5.593e-5	3_	NC	4_	NC	1
352			min	009	2	009	3	002	9	-5.838e-5	9	1384.384	3	NC	1
353		6	max	.009	3	.015	2	.001	3	5.727e-5	3	NC	_4_	NC	1_
354			min	009	2	015	3	002	9	-4.547e-5	9	1200.074	3	NC	1
355		7	max	.009	3	.019	2	.001	3	5.861e-5	3	NC	4	NC	1
356			min	009	2	019	3	002	9	-3.257e-5	9	1090.926	3	NC	1
357		8	max	.009	3	.022	2	.001	3	5.995e-5	3	NC	4	NC	1
358			min	009	2	022	3	001	9	-1.966e-5	9	1022.673	2	NC	1
359		9	max	.009	3	.025	2	.001	3	6.129e-5	3	NC	4	NC	1
360			min	009	2	024	3	0	9	-6.755e-6	9	970.361	2	NC	1
361		10	max	.008	3	.025	2	.001	3	6.262e-5	3	NC	4	NC	1
362		10	min	009	2	024	3	0	9	-2.078e-6		945.219	2	NC	1
363		11	max	.008	3	.025	2	.001	3	6.396e-5	3	NC	4	NC	1
364		+ ' '		009	2	023	3	0	10	-3.892e-6		944.374	2	NC	1
		12	min		3				3			NC	4	NC	-
365		12	max	.008		.023	2	.001		6.53e-5	3				1
366		40	min	009	2	021	3	0		-5.706e-6		968.792	2	NC NC	_
367		13	max	.008	3	.02	2	.001	1	7.017e-5	1_	NC 1000 010	4	NC	1_
368			min	009	2	<u>018</u>	3	0	10	-7.52e-6	<u>10</u>	1023.846	2	NC	1_
369		14	max	.008	3	.016	2	.002	1	8.569e-5	_1_	NC	_4_	NC	1_
370			min	009	2	014	3	0	10	-9.333e-6	10	1122.084	2	NC	1
371		15	max	.008	3	.01	2	.002	1	1.012e-4	_1_	NC	4_	NC	1_
372			min	009	2	009	3	0	10	-1.115e-5	10	1291.189	2	NC	1
373		16	max	.008	3	.003	2	.002	1	1.127e-4	1	NC	4	NC	1
374			min	009	2	003	3	0	10	-1.249e-5	10	1599.223	2	NC	1
375		17	max	.008	3	.005	3	.001	1	8.187e-5	3	NC	4	NC	1
376			min	009	2	006	2	0	10	-2.691e-6	10	2266.745	2	NC	1
377		18	max	.008	3	.013	3	.001		3.511e-3		NC	4	NC	1
378		1	min	009	2	017	2	0		-1.937e-3		4394.162	2	NC	1
379		19	max	.008	3	.021	3	0	3	7.086e-3	2	NC	1	NC	1
380		10	min	009	2	028	2	0	9	-3.995e-3		NC	1	NC	1
381	M5	1		.025	3	.076	3	.004	3	1.231e-5	3	NC	1	NC	1
382	IVIO	-	max	027	2	063	2	0	9	0	15	NC	1	NC NC	1
		2	min		_								•		
383		2	max	.025	3	.045	3	.006	3	1.485e-4	3_	NC	4	NC	1
384		_	min	027	2	037	2	0	9	-8.196e-6		1525.317	3_	NC NC	1
385		3	max	.025	3	.016	3	.007	3	2.82e-4	3	NC	5	NC	1_
386			min	027	2	012	2	0	9	-1.633e-5	9	790.617	3	NC	1
387		4	max	.025	3	.011	2	.008	3	2.722e-4	3_	NC	5	NC	1_
388			min	027	2	009	3	0	9	-1.548e-5	9	564.175	3	NC	1
389		5	max	.025	3	.03	2	.009	3	2.625e-4	3	NC	5	NC	1_
390			min	027	2	029	3	0	9	-1.464e-5	9	456.347	3	8773.676	3
391		6	max	.024	3	.046	2	.009	3	2.528e-4	3	NC	5	NC	1
392			min	027	2	046	3	0	9	-1.379e-5		396.303	3	7929.802	3
393		7	max	.024	3	.059	2	.009	3	2.43e-4	3	NC	5	NC	1
							<u> </u>					-		-	=

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
394			min	027	2	058	3	0	9	-1.295e-5	9	360.775	2	7548.703	3
395		8	max	.024	3	.069	2	.009	3	2.333e-4	3	NC	5_	NC	1
396			min	027	2	067	3	0	9	-1.21e-5	9	332.378	2	7477.17	3
397		9	max	.024	3	.076	2	.009	3	2.236e-4	3	NC	5	NC	1
398			min	027	2	071	3	0	9	-1.126e-5	9	315.355	2	7658.6	3
399		10	max	.024	3	.078	2	.008	3	2.138e-4	3	NC	5	NC	1
400			min	027	2	073	3	0	9	-1.041e-5	9	307.176	2	8088.534	3
401		11	max	.024	3	.077	2	.008	3	2.041e-4	3	NC	5	NC	1
402			min	027	2	07	3	0	9	-9.567e-6	9	306.906	2	8804.146	3
403		12	max	.024	3	.072	2	.007	3	1.944e-4	3	NC	5	NC	1
404			min	027	2	064	3	0	9	-8.722e-6	9	314.855	2	9892.287	3
405		13	max	.024	3	.063	2	.006	3	1.846e-4	3	NC	5	NC	1
406			min	027	2	055	3	0	9	-7.877e-6	9	332.773	2	NC	1
407		14	max	.024	3	.05	2	.005	3	1.749e-4	3	NC	5	NC	1
408			min	027	2	043	3	0	9	-7.033e-6	9	364.738	2	NC	1
409		15	max	.024	3	.031	2	.004	3	1.652e-4	3	NC	5	NC	1
410		10	min	027	2	027	3	0	9	-6.188e-6	9	419.75	2	NC	1
411		16	max	.024	3	.009	2	.003	3	1.508e-4	3	NC	5	NC	1
412		10	min	027	2	008	3	0	9	-6.007e-6	9	519.928	2	NC	1
413		17	max	.024	3	.014	3	.002	3	2.458e-5	3	NC	5	NC	1
414		17	min	027	2	019	2	0	9	-2.164e-5	9	736.901	2	NC	1
415		18		.024	3	.037	3	.002	3	1.021e-5	3	NC	4	NC	1
416		10	max		2		2			-1.111e-5		1428.653	2		1
		40	min	027		051		0	9		9			NC NC	-
417		19	max	.024	3	.062	3	0	3	-3.859e-8	<u>15</u>	NC	<u>1</u> 1	NC NC	1
418	MO	1	min	027	2	085	2	0	9	-2.06e-6	3	NC NC		NC NC	1
419	<u>M9</u>	1	max	.009	3	.024	3	.004	3	7.243e-3	3_	NC	1	NC NC	1
420			min	009	2	021	2	0	9	-4.89e-3	2	NC NC	1_	NC NC	1
421		2	max	.009	3	.014	3	.002	3	3.56e-3	3	NC	4	NC NC	1
422			min	009	2	012	2	0	10	-2.419e-3	2	4649.132	3	NC	1
423		3	max	.009	3	.005	3	.001	1	8.53e-5	_1_	NC	_4_	NC	1
424			min	009	2	004	2	0	10	-5.422e-5	3	2408.046	3	NC	1
425		4	max	.009	3	.003	2	.002	1_	6.977e-5	_1_	NC	_4_	NC	1
426			min	009	2	004	3	001	3	-5.991e-5	3	1715.423	3	NC	1
427		5	max	.009	3	.01	2	.002	1	5.424e-5	1_	NC	4	NC	1
428			min	009	2	01	3	002	3	-6.559e-5	3	1385.049	3	8571.177	3
429		6	max	.009	3	.015	2	.002	1_	3.87e-5	_1_	NC	4_	NC	1
430			min	009	2	016	3	003	3	-7.127e-5	3	1200.589	3	7455.423	3
431		7	max	.009	3	.019	2	.001	1	2.317e-5	1	NC	4	NC	1
432			min	009	2	02	3	004	3	-7.695e-5	3	1091.332	3	6812.408	3
433		8	max	.009	3	.022	2	.001	1	7.632e-6	1	NC	4	NC	1
434			min	009	2	022	3	005	3	-8.264e-5	3	1022.927	2	6457.38	3
435		9	max	.009	3	.025	2	0	1	4.024e-7	10	NC	4	NC	1
436			min	009	2	024	3	005	3	-8.832e-5	3	970.61	2	6307.057	3
437		10	max	.009	3	.025	2	0	1	2.208e-6	10	NC	4	NC	1
438			min	009	2	024	3	005	3	-9.4e-5	3	945.47	2	6326.145	
439		11	max	.009	3	.025	2	0	10	4.013e-6	10	NC	4	NC	1
440			min	009	2	024	3	005	3	-9.968e-5	3	944.632	2	6508.867	3
441		12	max	.003	3	.023	2	0	10	5.818e-6	10	NC	4	NC	1
442		12	min	009	2	022	3	005	3	-1.054e-4	3	969.062	2	6875.214	3
443		13	max	.008	3	.022	2	<u>005</u> 0	10	7.623e-6	10	NC	4	NC	1
444		13	min	009	2	019	3	005	3	-1.11e-4	3	1024.137	2	7478.051	3
		11													
445		14	max	.008	3	.016	2	0	10		<u>10</u>	NC	4	NC	1
446		4.5	min	009	2	<u>014</u>	3	004	3	-1.167e-4	3	1122.408	2	8426.672	
447		15	max	.008	3	.01	2	0	10	1.123e-5	10	NC	4_	NC 2050 200	1
448		4.0	min	009	2	009	3	003	3	-1.224e-4	3	1291.564	2	9950.389	
449		16	max	.008	3	.003	2	0	10		<u>10</u>	NC 1700 000	4	NC NC	1
450			min	009	2	003	3	002	3	-1.192e-4	3	1599.682	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.008	3	.005	3	0	10	9.564e-5	3	NC	4	NC	1
452			min	009	2	006	2	001	3	-4.405e-5	9	2267.351	2	NC	1
453		18	max	.008	3	.013	3	0	10	2.027e-3	3	NC	4	NC	1
454			min	009	2	017	2	0	9	-3.512e-3	2	4395.299	2	NC	1
455		19	max	.008	3	.021	3	0	3	3.991e-3	3	NC	1	NC	1
456			min	009	2	028	2	0	9	-7.086e-3	2	NC	1	NC	1
457	M13	1	max	0	9	.024	3	.009	3	3.882e-3	3	NC	1	NC	1
458			min	004	3	021	2	009	2	-3.269e-3	2	NC	1	NC	1
459		2	max	0	9	.057	3	.007	3	4.775e-3	3	NC	4	NC	1
460			min	004	3	043	2	009	2	-4.021e-3	2	2567.378	3	NC	1
461		3	max	<u>004</u> 0	9	.085	3	.007	3	5.669e-3	3	NC	4	NC	1
462		3	min	004	3	062	2	009	2	-4.773e-3	2	1385.349	3	NC	1
		1											_		
463		4	max	0	9	.105	3	.008	3	6.562e-3	3_	NC 1011 000	4_	NC NC	1
464		-	min	004	3	076	2	01	2	-5.526e-3	2	1044.098	3	NC	1
465		5	max	0	9	.115	3	.01	3	7.456e-3	3	NC	4_	NC	1
466			min	004	3	084	2	013	2	-6.278e-3	2	928.004	3	NC	1
467		6	max	0	9	.115	3	.013	3	8.349e-3	3	NC	_4_	NC	1
468			min	004	3	085	2	016	2	-7.03e-3	2	924.946	3	NC	1
469		7	max	0	9	.108	3	.016	3	9.243e-3	3	NC	4	NC	1
470			min	004	3	081	2	019	2	-7.783e-3	2	1012.286	3	8167.43	2
471		8	max	0	9	.095	3	.019	3	1.014e-2	3	NC	4	NC	1
472			min	004	3	074	2	023	2	-8.535e-3	2	1195.178	3	6000.252	2
473		9	max	0	9	.082	3	.022	3	1.103e-2	3	NC	4	NC	4
474			min	004	3	067	2	026	2	-9.287e-3	2	1457.401	3	4942.683	2
475		10	max	0	9	.076	3	.025	3	1.192e-2	3	NC	4	NC	4
476		10	min	004	3	063	2	027	2	-1.004e-2	2	1627.869	3	4599.226	
477		11	max	<u>.00+</u>	9	.083	3	.026	3	1.103e-2	3	NC	4	NC	4
478			min	004	3	067	2	026	2	-9.287e-3	2	1457.399	3	4760.791	3
479		12		004	9	.095	3	.027	3	1.014e-2	3	NC	4	NC	1
		12	max	004	3	074	2				2	1195.177	3	4711.238	-
480		40	min					023	2	-8.535e-3					
481		13	max	0	9	.108	3	.025	3	9.252e-3	3_	NC 4040.005	4_	NC 5040,004	1
482			min	004	3	<u>081</u>	2	019	2	-7.783e-3	2	1012.285	3	5013.384	3
483		14	max	0	9	.116	3	.023	3	8.362e-3	3	NC	_4_	NC	1
484			min	004	3	085	2	016	2	-7.03e-3	2	924.945	3	5727.208	
485		15	max	0	9	.116	3	.021	3	7.471e-3	3	NC	_4_	NC	1
486			min	004	3	084	2	013	2	-6.278e-3	2	928.003	3	7091.706	3
487		16	max	0	9	.106	3	.017	3	6.581e-3	3	NC	4	NC	1
488			min	004	3	076	2	01	2	-5.526e-3	2	1044.097	3	9764.185	3
489		17	max	0	9	.086	3	.014	3	5.69e-3	3	NC	4	NC	1
490			min	004	3	062	2	009	2	-4.774e-3	2	1385.347	3	NC	1
491		18	max	0	9	.058	3	.011	3	4.8e-3	3	NC	4	NC	1
492			min	004	3	043	2	009	2	-4.021e-3		2567.376	3	NC	1
493		19	max	0	9	.025	3	.009	3	3.91e-3	3	NC	1	NC	1
494			min	004	3	021	2	009	2	-3.269e-3	2	NC	1	NC	1
495	M16	1	max	0	9	.021	3	.008	3	4.192e-3	2	NC	1	NC	1
496	IVITO		min	0	3	028	2	009	2	-3.201e-3	3	NC	1	NC	1
		2					3					NC	•		
497		2	max	0	9	.039		.011	3	5.159e-3	2		4	NC NC	1
498			min	0	3	06	2	009	2	-3.893e-3	3	2616.303	2	NC NC	1
499		3	max	0	9	.055	3	.014	3	6.126e-3	2	NC	4_	NC NC	1
500			min	0	3	087	2	009	2	-4.585e-3	3	1407.405	2	NC	1
501		4	max	0	9	.067	3	.017	3	7.093e-3	2	NC	4	NC	1
502			min	0	3	107	2	01	2	-5.277e-3	3	1055.103	2	NC	1
503		5	max	0	9	.074	3	.019	3	8.06e-3	2	NC	4	NC	1
504			min	0	3	118	2	012	2	-5.969e-3	3	930.15	2	7671.455	3
505		6	max	0	9	.076	3	.022	3	9.027e-3	2	NC	4	NC	1
506			min	0	3	119	2	015	2	-6.661e-3	3	915.825	2	6343.288	3
507		7	max	0	9	.074	3	.023	3	9.994e-3	2	NC	4	NC	1
		•												-	=

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
508			min	0	3	113	2	019	2	-7.353e-3	3	984.319	2	5614.877	3
509		8	max	0	9	.07	3	.024	3	1.096e-2	2	NC	4_	NC	1
510			min	0	3	102	2	023	2	-8.045e-3	3	1132.311	2	5261.858	3
511		9	max	0	9	.065	3	.025	3	1.193e-2	2	NC	4	NC	4
512			min	0	3	09	2	026	2	-8.737e-3	3	1337.165	2	4959.663	2
513		10	max	0	9	.062	3	.024	3	1.289e-2	2	NC	4_	NC	4
514			min	0	3	085	2	027	2	-9.429e-3	3	1464.98	2	4614.337	2
515		11	max	0	9	.065	3	.022	3	1.193e-2	2	NC	4	NC	4
516			min	0	3	09	2	026	2	-8.734e-3	3	1337.165	2	4959.669	2
517		12	max	0	9	.07	3	.021	3	1.096e-2	2	NC	4	NC	1
518			min	0	3	102	2	023	2	-8.039e-3	3	1132.311	2	6023.398	2
519		13	max	0	9	.074	3	.019	3	9.994e-3	2	NC	4	NC	1
520			min	0	3	113	2	019	2	-7.344e-3	3	984.319	2	7788.193	3
521		14	max	0	9	.076	3	.017	3	9.027e-3	2	NC	4	NC	1
522			min	0	3	119	2	015	2	-6.649e-3	3	915.825	2	9545.872	3
523		15	max	0	9	.074	3	.015	3	8.061e-3	2	NC	4	NC	1
524			min	0	3	118	2	012	2	-5.954e-3	3	930.15	2	NC	1
525		16	max	0	9	.067	3	.013	3	7.094e-3	2	NC	4	NC	1
526			min	0	3	107	2	01	2	-5.259e-3	3	1055.103	2	NC	1
527		17	max	0	9	.055	3	.011	3	6.127e-3	2	NC	4	NC	1
528			min	0	3	087	2	009	2	-4.564e-3	3	1407.405	2	NC	1
529		18	max	0	9	.039	3	.009	3	5.16e-3	2	NC	4	NC	1
530			min	0	3	06	2	009	2	-3.869e-3	3	2616.303	2	NC	1
531		19	max	0	9	.021	3	.008	3	4.193e-3	2	NC	1	NC	1
532			min	0	3	028	2	009	2	-3.175e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	4.08e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-4.469e-5	2	NC	1	NC	1
535		2	max	0	3	0	15	0	1	7.83e-4	3	NC	1	NC	1
536			min	0	2	002	4	0	3	-4.08e-4	2	NC	1	NC	1
537		3	max	0	3	0	15	.002	2	1.158e-3	3	NC	1	NC	1
538			min	0	2	004	4	003	3	-7.713e-4	2	NC	1	8853.526	3
539		4	max	0	3	001	15	.005	2	1.533e-3	3	NC	1	NC	4
540			min	0	2	006	4	007	3	-1.135e-3	2	NC	1	4899.738	3
541		5	max	0	3	002	15	.009	2	1.908e-3	3	NC	1	NC	4
542			min	0	2	007	4	011	3	-1.498e-3	2	8038.769	4	3222.664	3
543		6	max	0	3	002	15	.013	2	2.283e-3	3	NC	3	NC	4
544			min	001	2	009	4	016	3	-1.861e-3	2	6765.474	4	2349.932	3
545		7	max	0	3	002	15	.017	2	2.658e-3	3	NC	3	NC	4
546			min	001	2	01	4	021	3	-2.224e-3	2	5999.755	4	1838.965	3
547		8	max	0	3	002	15	.02	2	3.032e-3	3	NC	5	NC	4
548			min	002	2	011	4	026	3	-2.588e-3	2	5540.208	4	1517.479	3
549		9	max	0	3	003	15	.024	2	3.407e-3	3	NC	5	NC	4
550			min	002	2	011	4	031	3	-2.951e-3	2	5292.853	4	1306.984	3
551		10	max	.001	3	003	15	.026	2	3.782e-3	3	NC	5	NC	4
552			min	002	2	011	4	034	3	-3.314e-3	2	5214.602	4	1168.023	
553		11	max	.001	3	003	15	.028	2	4.157e-3	3	NC	5	NC	4
554			min	002	2	011	4	037	3	-3.678e-3	2	5292.853	4	1079.872	3
555		12	max	.001	3	002	15	.028	2	4.532e-3	3	NC	5	NC	4
556			min	002	2	011	4	037	3	-4.041e-3	2	5540.208	4	1032.258	
557		13	max	.001	3	002	15	.027	2	4.907e-3	3	NC	3	NC	4
558		1.0	min	003	2	01	4	036	3	-4.404e-3	2	5999.755	4	1022.227	3
559		14	max	.001	3	001	2	.024	2	5.282e-3	3	NC	3	NC	4
560		1 7	min	003	2	009	4	033	3	-4.768e-3	2	6765.474	4	1054.274	
561		15	max	.002	3	0	2	.019	2	5.657e-3	3	NC	1	NC	4
562		'	min	003	2	007	4	027	3	-5.131e-3	2	8038.769	4	1144.81	3
563		16	max	.002	3	.002	2	.013	1	6.032e-3	3	NC	1	NC	4
564		10	min	003	2	006	4	018	3	-5.494e-3	2	NC	1	1338.36	3
JU4			111011	003		000	7	010	J	J.7346-3		INC		1000.00	J

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	.004	2	.005	1	6.407e-3	3	NC	1	NC	4
566			min	004	2	004	4	006	3	-5.857e-3	2	NC	1	1774.581	3
567		18	max	.002	3	.006	2	.01	3	6.782e-3	3	NC	1	NC	4
568			min	004	2	002	4	012	2	-6.221e-3	2	NC	1	3159.921	3
569		19	max	.002	3	.008	2	.03	3	7.156e-3	3	NC	1	NC	1
570			min	004	2	0	9	028	2	-6.584e-3	2	NC	1	NC	1
571	M16A	1	max	.001	2	.002	2	.009	3	2.034e-3	3	NC	1	NC	1
572			min	002	3	002	3	009	2	-2.132e-3	2	NC	1	NC	1
573		2	max	.001	2	0	2	.002	3	1.96e-3	3	NC	1	NC	1
574			min	002	3	003	3	004	2	-2.034e-3	2	NC	1	8725.343	3
575		3	max	.001	2	0	2	.002	1	1.886e-3	3	NC	1	NC	4
576			min	002	3	004	4	003	3	-1.937e-3	2	NC	1	4941.598	3
577		4	max	.001	2	001	15	.005	1	1.812e-3	3	NC	1	NC	4
578			min	002	3	006	4	007	3	-1.839e-3	2	NC	1	3762.625	3
579		5	max	0	2	002	15	.007	1	1.738e-3	3	NC	1	NC	4
580			min	002	3	007	4	01	3	-1.742e-3	2	8038.769	4	3253.722	3
581		6	max	0	2	002	15	.008	1	1.664e-3	3	NC	3	NC	4
582			min	001	3	009	4	012	3	-1.644e-3	2	6765.474	4	3034.203	3
583		7	max	0	2	002	15	.008	1	1.59e-3	3	NC	3	NC	4
584			min	001	3	01	4	013	3	-1.547e-3	2	5999.755	4	2985.204	3
585		8	max	0	2	002	15	.008	1	1.516e-3	3	NC	5	NC	4
586			min	001	3	011	4	013	3	-1.449e-3	2	5540.208	4	3066.769	3
587		9	max	0	2	003	15	.008	1	1.442e-3	3	NC	5	NC	4
588			min	001	3	011	4	012	3	-1.352e-3	2	5292.853	4	3274.882	3
589		10	max	0	2	003	15	.007	1	1.368e-3	3	NC	5	NC	4
590			min	0	3	011	4	011	3	-1.254e-3	2	5214.602	4	3632.033	3
591		11	max	0	2	003	15	.006	1	1.294e-3	3	NC	5	NC	4
592			min	0	3	011	4	01	3	-1.156e-3	2	5292.853	4	4192.82	3
593		12	max	0	2	002	15	.005	1	1.22e-3	3	NC	5	NC	4
594			min	0	3	011	4	008	3	-1.059e-3	2	5540.208	4	5066.195	3
595		13	max	0	2	002	15	.004	1	1.146e-3	3	NC	3	NC	1
596			min	0	3	01	4	006	3	-9.614e-4	2	5999.755	4	6473.066	3
597		14	max	0	2	002	15	.003	1	1.072e-3	3	NC	3	NC	1
598			min	0	3	009	4	004	3	-8.638e-4	2	6765.474	4	8904.058	3
599		15	max	0	2	002	15	.001	1	9.982e-4	3	NC	1	NC	1
600			min	0	3	007	4	002	3	-7.663e-4	2	8038.769	4	NC	1
601		16	max	0	2	001	15	.001	4	9.242e-4	3	NC	1	NC	1
602			min	0	3	006	4	0	3	-6.687e-4	2	NC	1	NC	1
603		17	max	0	2	0	15	0	4	8.503e-4	3	NC	1	NC	1
604			min	0	3	004	4	0	2	-5.712e-4	2	NC	1	NC	1
605		18	max	0	2	0	15	0	3	7.763e-4	3	NC	1	NC	1
606			min	0	3	002	4	0	2	-4.736e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	7.023e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-3.761e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.