Sommaire

1	Dérivabilité, calcul de dérivée	1
2	Développements limités	2

2.1 Calculs de limites 4

2.2 Applications des DL

1 Dérivabilité, calcul de dérivée

Exercice 1

Déterminer la fonction dérivée f' de la fonction f dans chacun des cas :

1.
$$a(x) = x + \frac{1}{x}$$
 6. $f(x) = \cos^2(x)$ 12. $l(x) = xe^x$

2.
$$b(x) = \frac{-x^2 - x + 1}{x + 1}$$
 7. $g(x) = \sin(2x + 1)$ 13. $m(x) = (x + 1)e^{-2x + 1}$

$$x+1$$

$$8. \ h(x) = x\sin(2x+1)$$

$$14. \ n(x) = \frac{e^x}{x}$$

$$3. \ c(x) = 2x^5 - \frac{x^3}{3}$$

$$9. \ i(x) = \sqrt{4-x^2}$$

$$15. \ o(x) = \ln(x)$$

3.
$$c(x) = 2x - \frac{1}{3}$$

9. $i(x) = \sqrt{4 - x^2}$
15. $o(x) = \ln(x)e^x$
4. $d(x) = (3x + 2)x^2$

4.
$$d(x) = (3x+2)x^2$$

5. $e(x) = \frac{-2x+1}{(x+1)^2}$
10. $j(x) = -4x + 6x\sqrt{x}$
11. $k(x) = \sqrt{2 + \cos^2(2x+1)}$
12. $j(x) = -4x + 6x\sqrt{x}$
13. $j(x) = -4x + 6x\sqrt{x}$
14. $j(x) = -4x + 6x\sqrt{x}$
15. $j(x) = -4x + 6x\sqrt{x}$
16. $j(x) = \frac{\ln(x)}{(x+1)^2}$

Théorème 1.

Soit f une fonction dérivable et strictement monotone sur un intervalle a; b de dérivée partout non nulle alors la fonction réciproque f^{-1} est définie, dérivable et $(f^{-1})'(x) = \frac{1}{f' \circ f^{-1}(x)}$.

Exercice 2

En justifiant l'utilisation de ce théorème, déterminer les ensembles de définition, les dérivées des fonctions réciproques des fonctions suivantes :

1.
$$f(x) = \cos(x)$$
 2. $f(x) = \sin(x)$ 3. $f(x) = \tan(x)$

Exercice 3 (Dérivabilité de $x \mapsto x^{1/n}$)

Soit n un entier supérieur ou égal à 2 et soit $g:[0,+\infty[\to\mathbb{R}]$ la fonction $g_n(x)=x^{1/n}$. Rappelons que g est par définition la fonction réciproque de la restriction à $[0,+\infty[$ de la fonction $f_n(x)=x^n$.

- 1. Montrer que g_n est dérivable sur $]0, +\infty[$ et déterminer sa dérivée.
- 2. Montrer que le graphe de g_n admet une demi-tangente verticale en 0.

Exercice 4 (calcul de dérivées)

1. Calculer les dérivées des fonctions f_i suivantes définies par :

$$f_1(x) = x \ln(x)$$

$$f_3(x) = \sqrt{1 + \sqrt{1 + x^2}}$$

$$f_6(x) = \arctan\left(\frac{1}{x}\right) + \arctan(x)$$

$$f_2(x) = \sin\left(\frac{1}{x}\right)$$

$$f_4(x) = \left(\ln\left(\frac{1 + x}{1 - x}\right)\right)^{\frac{1}{3}}$$

- 2. Soit $f:]1, +\infty[\to]-1, +\infty[$ définie par $f(x)=x\ln(x)-x.$ Montrer que f est une bijection. Notons $g=f^{-1}.$ Calculer g(0) et g'(0).
- 3. Calculer les dérivées successives de $f(x) = \ln(1+x)$, de même pour $f(x) = x^3 \ln(x)$.

Exercice 5 (Condition nécessaire et condition suffisante de minimalité)

Soit f une application \mathbb{R} dans \mathbb{R} et $a \in \mathbb{R}$.

- 1. On suppose que f est de classe C^1 et que f admet un minimum local en a. Montrer que f'(a) = 0.
- 2. On suppose que f est de classe C^2 , f'(a) = 0 et f''(a) > 0. Montrer que f admet un minimum local en a.
- 3. Donner un exemple où f est de classe C^2 , f'(a) = 0, f''(a) = 0 et f n'admet pas un minimum local en a.

Exercice 6 (Dérivée non continue)

On définit f de \mathbb{R} dans \mathbb{R} par :

$$f(x) = \begin{cases} 0 & \text{si } x \le 0, \\ x^2 \sin\left(\frac{1}{x}\right) & \text{si } x > 0. \end{cases}$$

Montrer que f est dérivable en tout point de \mathbb{R} et calculer f'(x) pour tout $x \in \mathbb{R}$. La dérivée de f est-elle continue?

Exercice 7

Pour $x \in \mathbb{R}$, on pose $f(x) = x + e^x$. Montrer que f est strictement croissante, continue et bijective de \mathbb{R} dans \mathbb{R} . On note g l'application réciproque de f. Montrer que g est deux fois dérivable sur \mathbb{R} . Calculer g'(1) et g''(1).

2 Développements limités

Exercice 8

- 1. Écrire le DL en 0 à l'ordre 2 de $h: x \mapsto \sqrt{1+x}$.
- 2. Justifier l'expression du DL de $k: x \mapsto \frac{1}{1-x}$ à l'aide de l'unicité du DL et de la somme d'une suite géométrique.
- 3. Écrire le DL en 0 à l'ordre 3 de $f: x \mapsto \sqrt[3]{1+x}$. Même question avec $g: x \mapsto \frac{1}{\sqrt{1+x}}$.

Exercice 9 (DL somme, opérations)

- 1. Calculer le DL en 0 à l'ordre 3 de $f_1: x \mapsto \exp(x) \frac{1}{1+x}$, puis de $g_1: x \mapsto x \cos(2x)$ et $h_1: x \mapsto \cos(x) \times \sin(2x)$.
- 2. Calculer le DL en 0 à l'ordre 3 de $f_2: x \mapsto \sqrt{1+2\cos(x)}$, puis de $g_2: x \mapsto \exp(\sqrt{1+2\cos(x)})$
- 3. Calculer le DL en 0 à l'ordre 3 de $f_3: x \mapsto \ln(1+\sin(x))$. Même question à l'ordre 6 pour $g_3: x \mapsto (\ln(1+x^2))^2$.
- 4. Calculer le DL en 0 à l'ordre n de $f_4: x \mapsto \frac{\ln(1+x^3)}{x^3}$. Même question à l'ordre 3 pour $g_4: x \mapsto \frac{e^x}{1+x}$.

Déterminer les développements limités au voisinage de zéro à l'ordre 3 des fonctions suivantes :

1.
$$f(x) = e^{-x} - 2\sqrt{1+x}$$
 4. $j(x) = \tan(x)$

$$4. \ j(x) = \tan(x)$$

7.
$$h(x) = \frac{1}{1 + x + \frac{x^2}{2}}$$

7.
$$h(x) = \frac{1}{1 + x + \frac{x^2}{2}}$$
 9. $j(x) = \ln\left(\frac{\sin(x)}{x}\right)$

2.
$$h(x) = \frac{\sin(x)}{1 - x^2}$$

2.
$$h(x) = \frac{\sin(x)}{1 - x^2}$$
 5. $f(x) = \frac{1}{1 - x} - e^x$

3.
$$i(x) = \sqrt{1 + \sin(x)}$$
 6. $g(x) = \frac{\cos(x)}{\sqrt{1 + x}}$ 8. $i(x) = \frac{1}{\cos(x)}$ 10. $g(x) = \sqrt{1 - x} \times \ln(1 + x^2)$

6.
$$g(x) = \frac{\cos(x)}{\sqrt{1+x}}$$

$$8. \ i(x) = \frac{1}{\cos(x)}$$

10.
$$g(x) = \sqrt{1-x} \times \ln(1+x^2)$$

Exercice 11

- 1. Par intégration retrouver la formule du DL de $f_5: x \mapsto \ln(1+x)$.
- 2. Même question à l'ordre 3 pour $g_5: x \mapsto \arccos(x)$.

Exercice 12

Déterminer les $DL_n(0)$ des fonctions réciproques :

1.
$$f(x) = \arccos(x)$$

2.
$$f(x) = \arcsin(x)$$

3.
$$f(x) = \arctan(x)$$

Exercice 13

On définit f sur $]-\infty,1[$ par $:f(x)=\arctan\frac{1}{1-x}.$

Donner le développement limité à l'ordre 3 de f en 0.

Exercice 14 (Fonctions hyperboliques)

- 1. On considère la fonction $x \mapsto \cosh(x)$ avec $\cosh(x) = \frac{e^x + e^{-x}}{2}$. Déterminer le DL en 0 de cette fonction.
- 2. On considère la fonction $x \mapsto \sinh(x)$ avec $\sinh(x) = \frac{e^x e^{-x}}{2}$. Déterminer le DL en 0 de cette fonction.

Exercice 15 (DL d'un polynôme...)

Donner le développement limité à l'ordre 7 en -1 de la fonction f définie sur \mathbb{R} par $f(x) = x^4 - 1$.

Exercice 16 (DL(3))

- 1. Calculer le DL d'ordre 3 en 0 de f définie pour $x \in]-1,1[$ par $f(x)=\sin(x)-\cos(x)+\tan(x)+\frac{1}{1-x}$.
- 2. Calculer le DL d'ordre 3 en $\frac{\pi}{2}$ de f définie pour $x \in]0, \pi[$ par $f(x) = \ln(\sin(x))$.

Exercice 17 (DL(4))

Donner le DL d'ordre 4 en 0 des fonctions suivantes (définies de \mathbb{R} dans \mathbb{R}):

$$f(x) = (1 + \sqrt{1 + x^2})^{\frac{1}{2}}, \qquad g(x) = e^{\cos(x)}.$$

Exercice 18 (DL(n))

On définit f de \mathbb{R} dans \mathbb{R} par :

$$f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Montrer que f est continue en 0 et admet un DL_n en 0, pour tout $n \in \mathbb{N}^*$.

Exercice 19

Calculer le DL en $+\infty$ à l'ordre 5 de $h: x \mapsto \frac{x}{x^2 - 1}$. Même question à l'ordre 2 pour $\varphi: x \mapsto \left(1 + \frac{1}{x}\right)^x$.

Calculs de limites

Exercice 20 (Utilisation des DL(1))

Donner la limite en 0 de f définie sur $]0,\infty[$ par : $f(x)=\frac{e^x-1-x}{x^2}$

Exercice 21

En utilisant des développements limités, calculer les limites suivantes :

1.
$$\lim_{x \to 0} \frac{\sqrt{1 + 2x - 1 - x}}{x^2}$$

3.
$$\lim_{x \to 0} \frac{3\ln(3+x) - 3\ln(3) - x}{x^2}$$
 5. $\lim_{x \to 0} \frac{\sin(x) - x}{x}$.

$$5. \lim_{x \to 0} \frac{\sin(x) - x}{x}.$$

$$2. \lim_{x \to 0} \frac{\cos(x) - \sqrt{\cos(x)}}{x^2}$$

4.
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)} \right)$$
 6. $\lim_{x \to 1} \frac{\sqrt{x-1}}{\ln(x)}$

6.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\ln(x)}$$

Exercice 22 (Limites)

Calculer les limites suivantes :

1.
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x^2}$$

3.
$$\lim_{x \to -\infty} \sqrt{x^2 + 2x + 2} + x$$

2.
$$\lim_{x \to +\infty} \sqrt{x^2 + 2x + 2} + x$$

Exercice 23

Déterminer la limite en 1 de
$$x \mapsto \frac{\ln(2x^2 - 1)}{x\sqrt{x} - 1}$$

Exercice 24

Déterminer la limite en 2 de $x \longmapsto \frac{\ln(x-1)}{r^2 - 4}$

Exercice 25 (Limite en 0)

Trouver les limites en 0 des fonctions suivantes, définies sur \mathbb{R}^* par :

$$f(x) = \frac{1}{x^2} \left(\frac{1}{1+x^2} - \cos(x) \right), \quad g(x) = \frac{\arctan(x) - x}{\sin(x) - x}, \quad h(x) = \frac{e^x - \cos(x) - \sin(x)}{x^2}.$$

Exercice 26 (Limite en $+\infty$)

Pour x > 0 on pose $f(x) = x^2 (e^{\frac{1}{x}} - e^{\frac{1}{x+1}})$. Déterminer $\lim_{x \to \infty} f(x)$.

On pourra, sur une une fonction convenable, utiliser un développement limité.

2.2 Applications des DL

Exercice 27 Soit $k: x \mapsto \sqrt{\frac{x^3+1}{x+1}}$. Déterminer une équation de l'asymptote de k en $+\infty$ et la position du graphe par rapport à cette asymptote.

Exercice 28

Déterminer le développement limité à l'ordre 2 au voisinage de 1 de la fonction : $f(x) = \frac{\ln(x)}{x}$ Que peut-on en déduire pour la courbe représentative de f?

Exercice 29 (Étude de la fonction $x \mapsto x \arctan x$)

Étudier la fonction f définie sur \mathbb{R} par : $f(x) = x \arctan x$.

Montrer que f est paire. Calculer f' et f". Étudier les asymptotes.

Exercice 30

Les trois questions sont indépendantes

- 1. (a) Étudier la fonction f définie sur \mathbb{R}^* par : $f(x) = xe^{\frac{1}{x}}$
 - (b) Démontrer que la droite d'équation y = x + 1 est asymptote à la courbe représentative de f en $+\infty$ puis puis étudier la position relative de la courbe et de son asymptote.
- 2. Étudier les asymptotes en $+\infty$ et $-\infty$ de la fonction g définie sur \mathbb{R}^* par : $g(x) = x^2 \arctan\left(\frac{1}{x}\right)$
- 3. Étudier l'asymptote en $+\infty$ de la fonction h définie sur $]1; +\infty[$ par $: h(x) = \sqrt[3]{x^3 x^2}$

Exercice 31

On considère la fonction f définie sur $I =]-1; +\infty[$ par $f(x) = (-x-2)e^{-x}$.

On note \mathcal{C}_0 la courbe représentative de f dans un repère donné.

- 1. Montrer que la fonction f est croissante sur I.
- 2. À l'aide d'une intégration par parties, calculer $\int_0^2 f(x)dx$.
- 3. Écrire le développement limité d'ordre 3 en 0 de e^{-x} puis celui de f.
- 4. En déduire une équation de la tangente T, à la courbe C_0 au point d'abscisse 0, et la position relative de T et C_0 au voisinage de ce point.

Exercice 32

On considère la fonction f définie sur \mathbb{R} par $f(x) = e^{-x} \cos(3x)$.

On note C_0 la courbe représentative de f dans un repère orthogonal (unités graphiques : 2 cm sur l'axe des abscisses pour $\frac{\pi}{3}$ et 3 cm sur l'axe des ordonnées).

1. (a) Montrer que le développement limité d'ordre 2 en 0 de f est :

$$1 - x - 4x^2 + x^2 \varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$

- (b) Déterminer une équation de la tangente T à la courbe C_0 au point d'abscisse 0.
- (c) Déterminer la position relative de C_0 et T.
- 2. Construire sur l'intervalle $\left[-\frac{\pi}{3}; +\frac{\pi}{3}\right]$ la courbe \mathcal{C}_0 et T.
- 3. (a) Résoudre l'inéquation $f(x) \ge 0$.
 - (b) En faisant une double intégration par parties, montrer que l'on a

$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} f(x)dx = \frac{3}{10} \left(e^{\frac{\pi}{6}} + e^{-\frac{\pi}{6}} \right)$$

(c) Déterminer l'aire en cm² de la partie du plan limité par C_0 , l'axe des abscisses et les droites d'équation $x = -\frac{\pi}{6}$ et $x = \frac{\pi}{6}$.

A - Résolution d'une équation différentielle

On considère l'équation différentielle $(E): y'' - y' - 2y = (-6x - 4)e^{-x}$

où y est une fonction de la variable réelle x, définie et deux fois dérivable sur \mathbb{R} , y' sa fonction dérivée première et y'' sa fonction dérivée seconde.

- 1. Résoudre l'équation différentielle (E_0) : y'' y' 2y = 0.
- 2. Soit h la fonction définie sur \mathbb{R} par : $h(x) = (x^2 + 2x)e^{-x}$. Démontrer que h est une solution particulière de l'équation différentielle (E).
- 3. En déduire l'ensemble des solutions de l'équation différentielle (E).
- 4. Déterminer la solution f de l'équation différentielle (E) qui vérifie les conditions initiales f(0) = 1 et f'(0) = 1.

B - Étude d'une fonction Soit f la fonction définie sur \mathbb{R} par $f(x) = (x^2 + 2x + 1)e^{-x}$.

Sa courbe représentative est donnée sur la figure ci-après

- 1. (a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - (b) Interpréter graphiquement le résultat obtenu en $+\infty$.
- 2. (a) Démontrer que, pour tout x de \mathbb{R} , $f'(x) = (1 x^2)e^{-x}$.
 - (b) Résoudre dans \mathbb{R} l'inéquation $f'(x) \geq 0$.
 - (c) En déduire le sens de variation de f sur \mathbb{R} .
- 3. (a) À l'aide du développement limité au voisinage de 0 de la fonction $t \mapsto e^t$, donner le développement limité, à l'ordre 2 au voisinage de 0, de la fonction $x \mapsto e^{-x}$.
 - (b) Démontrer que le développement limité à l'ordre 2, au voisinage de 0 de la fonction f est

$$f(x) = 1 + x - \frac{1}{2}x^2 + x^2\epsilon(x) \text{ avec } \lim_{x \to +\infty} \epsilon(x) = 0$$

(c) En déduire une équation de la tangente T à la courbe C_0 au point d'abscisse 0 et la position relative de C_0 et T au voisinage de ce point.

C - Calcul intégral

1. (a) La fonction f définie dans la partie \mathbf{B} étant une solution différentielle de l'équation différentielle $(E): y''-y'-2y=(-6x-4)e^{-x}$, montrer que f vérifie pour tout x de \mathbb{R} , $f(x)=\frac{1}{2}\left(f''(x)-f'(x)+(6x+4)e^{-x}\right)$

- (b) Soit F la fonction définie sur \mathbb{R} par : $F(x) = \frac{1}{2} (f'(x) f(x) (6x + 10)e^{-x})$ Vérifier que, pour tout x de \mathbb{R} , $F(x) = (-x^2 4x 5)e^{-x}$
- (c) Utiliser ce qui précède pour démontrer que l'aire \mathcal{A} de la partie grisée sur la figure est, en unité d'aire, $\mathcal{A}=2e-5$

A - Résolution d'une équation différentielle

On considère l'équation différentielle (E): $2y'' + 2y' + y = (5x^2 + 22x + 31)e^x$ où y est une fonction de la variable réelle x, définie et deux fois dérivable sur \mathbb{R} , y' la fonction dérivée de y et y'' sa fonction dérivée seconde.

- 1. Déterminer les solutions de l'équation différentielle (E_0) : 2y'' + 2y' + y = 0.
- 2. Montrer que la fonction g définie sur \mathbb{R} par $g(x) = (x^2 + 2x + 3) e^x$ est une solution particulière de (E).
- 3. En déduire l'ensemble des solutions de l'équation différentielle (E).
- 4. Déterminer la solution particulière f de (E) qui vérifie les conditions initiales f(0) = 3 et f'(0) = 5.

B - Étude d'une fonction

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x^2 + 2x + 3) e^x$.

On désigne par C_0 la courbe représentative de la fonction f dans un repère orthonormal $(O; (\overrightarrow{u}; \overrightarrow{v}))$.

- 1. Démontrer que, pour tout x de \mathbb{R} , $f'(x) = (x^2 + 4x + 5)e^x$.
- 2. Étudier le signe de f'(x) lorsque x varie dans \mathbb{R} .
- 3. (a) Déterminer $\lim_{x\to+\infty} f(x)$.
 - (b) Déterminer $\lim_{x\to-\infty} f(x)$. Que peut-on en déduire pour la courbe C?
- 4. Établir le tableau de variation de f sur \mathbb{R} .
- 5. (a) Démontrer que le développement limité à l'ordre 2, au voisinage de 0, de la fonction f est : $f(x) = 3 + 5x + \frac{9}{2}x^2 + x^2\varepsilon(x) \text{ avec } \lim_{x\to 0}\varepsilon(x) = 0.$
 - (b) En déduire une équation de la tangente T à la courbe C au point d'abscisse 0.
 - (c) Étudier la position relative de C et T au voisinage du point d'abscisse 0.

Exercice 35

On considère la fonction f définie sur [0;1] par $f(x)=\frac{3x}{\sqrt{x+1}}$. On note $\mathcal C$ sa courbe représentative dans un repère orthonormé. On désigne par E l'ensemble des points du plan délimité par la courbe $\mathcal C$, l'axe des abscisses et la droite d'équation x=1.

- 1. Étudier les variations de la fonction f sur [0;1].
- 2. (a) Déterminer le développement limité de la fonction f au voisinage de zéro à l'ordre 2.
 - (b) En déduire une équation de la tangente à la courbe \mathcal{C} au point d'abscisse 0 et préciser la position de la courbe \mathcal{C} par rapport à cette tangente.

- (c) En utilisant le développement limité trouvé précédemment, déterminer une valeur approchée de l'aire en cm^2 du domaine E.
- 3. Calculer la valeur exacte de l'aire en cm^2 de l'ensemble E (on pourra poser : u = x + 1).
- 4. Par rotation de l'ensemble E autour de l'axe des abscisses, on obtient un solide de révolution S. Calculer le volume en cm^3 du solide S.

Soit f la fonction définie sur]-1;1[par $:f(x)=\ln(1-x^2)-x.$ On désigne par \mathcal{C} sa courbe représentative dans le plan rapporté à un repère orthonormé.

- 1. Déterminer la limite de f en -1 et en 1. Que peut-on en déduire pour la courbe \mathcal{C} ?
- 2. Étudier les variations de la fonction f sur]-1;1[.
- 3. (a) Déterminer le développement limité de f au voisinage de zéro à l'ordre 4.
 - (b) En déduire une équation de la tangente à la courbe \mathcal{C} au point d'abscisse 0 et préciser la position de la courbe \mathcal{C} par rapport à cette tangente au voisinage de 0.
 - (c) Calculer une valeur approchée de l'aire exprimée en cm^2 du domaine limité par l'axe des abscisses, l'axe des ordonnées, la courbe $\mathcal C$ et la droite d'équation $x=\frac{1}{2}$. En donner une valeur approchée au centième.

Exercice 37

Soit la fonction f définie sur $]-\frac{\pi}{4},\frac{\pi}{4}[$ par

$$f(x) = \begin{cases} \frac{\ln(1+\tan x)}{\sin x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que f est continue et dérivable en 0.
- 2. Donner le développement limité de f en 0 à l'ordre 2.
- 3. Donner l'équation de la tangente à la courbe de f au point d'abscisse 0 et la position locale de la courbe de f par rapport à cette tangente.