

# SÍLABO ABASTECIMIENTO DE AGUA Y ALCANTARILLADO

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: X SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : 09129310040

II. CRÉDITOS : 04

III. REQUISITO : 09059608030 Hidrología

IV. CONDICIÓN DEL CURSO : Obligatorio

# V. SUMILLA:

El curso forma parte del área curricular de tecnología. Es de carácter teórico – práctico. A través de sus objetivos y contenidos proporciona los fundamentos teóricos – prácticos. El propósito del curso es brindar al estudiante el conocimiento básico y teórico necesario para el diseño del sistema de agua potable y desagüe de una ciudad y su respectivo tratamiento. El desarrollo del curso comprende: las siguientes unidades: I: Introducción – conceptos básicos. II. Diseño del sistema agua potable de una ciudad. III. Sistema de alcantarillado y plantas de tratamiento.

# **VI. FUENTES DE CONSULTA:**

- Pérez P., J. (2010). Diseño de Acueductos y Alcantarillados. Año 2010.
- Russell, D.(2012). Tratamiento de Aguas Residuales. Editorial Reverté.
- Tejerina H., F. (2012). Diseño hidráulico de un sistema de abastecimiento de agua potable para el Barrio de Torrecillas.
- Vidal V., C. (2012). Modelación y Diseño de Redes de Alcantarillado Sanitario con SEWERCAD V8I. Segunda Edición.
- Zaragoza, J. (2014). Guía para la externalización del Servicio Municipal de Abastecimiento de Agua Potable y Alcantarillado. Instituto Aragonés de Agua.

#### VII. UNIDADES DE APRENDIZAJE:

### UNIDAD I: INTRODUCCIÓN - CONCEPTOS BÁSICOS

# **OBJETIVOS DE APRENDIZAJE:**

 Aplicar los conocimientos teóricos y prácticos del saneamiento ambiental para poder comprender la naturaleza de los diferentes procesos naturales y antropicos que van a afectar las obras de abastecimiento de agua y alcantarillado.

# **PRIMERA SEMANA**

Primera sesión:

Clasificación del agua: agua potable, agua tratada.

Segunda sesión:

Consumos: total, real, proyectado

#### **SEGUNDA SEMANA**

Primera sesión:

Clasificación del consumo doméstico, comercial e industrial.

Segunda sesión:

Clasificación del consumo público. Presentación de Trabajo 1.

# UNIDAD II: DISEÑO DEL SISTEMA AGUA POTABLE DE UNA CIUDAD

# **OBJETIVOS DE APRENDIZAJE:**

 Manejar los parámetros de diseños que son básicos para la solución de los problemas sanitarios que afectan los sistemas de abastecimiento de agua potable y sus componentes que sirven a las ciudades urbanas del Perú.

#### **TERCERA SEMANA**

# Primera sesión:

Estudio de las dotaciones.

# Segunda sesión:

Variaciones de consumo: promedio anual de la demanda, máxima de la demanda diaria y máxima anual de la demanda horaria.

#### **CUARTA SEMANA**

#### Primera sesión:

Primera Práctica Calificada - Periodos de diseño: tentativo y óptimo.

## Segunda sesión:

Proyección de población, cálculo de población (métodos analítico y gráfico).

#### **QUINTA SEMANA**

#### Primera sesión:

Aplicación del Reglamento, obtención de dotación real de acuerdo a los consumos actuales.

#### Segunda sesión:

Proyección de la demanda del agua Residencial, comercial, industrial, público, no controlado y anual.

#### **SEXTA SEMANA**

#### Primera sesión

Fuentes y sistemas de Abastecimiento: atmosféricas, superficiales y subterráneas.

#### Segunda sesión

Segunda Práctica Calificada - Procesos de tratamiento de agua potable.

# **SÉPTIMA SEMANA**

#### Primera sesión:

Diseño en aguas superficiales: ríos, canales, lagos y lagunas

#### Segunda sesión:

Diseño en aguas sub-subterráneas: manantiales de a floración horizontal, vertical, galerías filtrantes.

#### **OCTAVA SEMANA**

**Examen Parcial** 

# **NOVENA SEMANA:**

#### Primera sesión:

Aguas subterráneas: freáticas y artesiana, capacidad acuífera de los terrenos.

# Segunda sesión:

Diseño de estructuras de captación y de pozos tubulares y rendimiento de los pozos profundos.

# **DÉCIMA SEMANA**

# Primeras sesión:

Líneas de conducción.

# Segunda sesión:

Instalación de tuberías según su resistencia a la presión, válvulas de aire y purga, cámaras de carga y cámaras rompe presión.

#### UNDÉCIMA SEMANA

# Primera sesión:

Líneas de impulsión.

## Segunda sesión:

Diseño hidráulico.

#### **DUODÉCIMA SEMANA**

#### Primera sesión:

Tercera Práctica Calificada - Dimensión hidráulica: relación de las dimensiones geométricas.

#### Segunda sesión:

Equipamiento hidromecánico: caseta de válvulas y componentes. Sistema de desinfección.

# **DECIMOTERCERA SEMANA**

#### Primera sesión:

Aducción, redes matrices, redes secundarias, caudales de diseño, dimensión de diámetros aplicando método de la pendiente uniforme.

# Segunda sesión:

Método Hardy-Cross.

#### UNIDAD III: SISTEMA DE ALCANTARILLADO Y PLANTAS DE TRATAMIENTO

#### **OBJETIVOS DE APRENDIZAJE:**

 Manejar la teoría y criterios adoptados para diseñar el sistema de alcantarillado mas optimo para nuestro proyecto de alcantarillado una ciudad. Se dará un panorama de todas las alternativas de tratamiento convencionales existentes.

#### **DECIMOCUARTA SEMANA**

#### Primera sesión:

Áreas de drenaje, diseño hidráulico de red de colectores, componentes del sistema.

#### Segunda sesión:

Líneas de impulsión de desagües, equipamientos.

# **DECIMOQUINTA SEMANA**

#### Primera sesión:

Cuarta Práctica Calificada - Características de plantas de tratamiento.

#### Segunda sesión:

Lagunas de oxidación. Tratamiento aeróbico y anaeróbico.

#### **DECIMOSEXTA SEMANA**

Examen Final

# **DECIMOSÉPTIMA SEMANA:**

Entrega de promedios finales y acta del curso.

#### VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL:

a.- Matemática y Ciencias Básicas
b.- Tópicos de Ingeniería
c.- Educación General
0

# IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

## X. MEDIOS Y MATERIALES

**Equipos:** Una computadora personal para el profesor y para cada alumno, ecran y proyector de multimedia

Materiales: Texto base, separata, aplicaciones multimedia y software.

# XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2\*PE+EP+EF)/4

PE=( (P1+P2+P3+P4-MN)/3 + W1)/2

# Donde:

PF = Promedio Final

PE = Promedio de evaluaciones

P1,...,P4 = Prácticas calificadas

W1 = Trabajo

EP = Examen parcial

EF = Examen final

MN = Menor Nota de Prácticas calificadas

# XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de: Ingeniería Civil, se establece en la tabla siguiente:

**K** = clave **R** = relacionado **Recuadro vacío** = no aplica

| (a) | Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería                                                                                                            | K |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| (b) | Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos                                                                                              |   |  |
| (c) | Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad. |   |  |
| (d) | Trabajar adecuadamente en un equipo multidisciplinario.                                                                                                                           |   |  |
| (e) | Identificar, formular y resolver problemas de ingeniería                                                                                                                          |   |  |
| (f) | Comprensión de lo que es la responsabilidad ética y profesional.                                                                                                                  |   |  |
| (g) | Comunicarse, con su entorno, en forma efectiva.                                                                                                                                   |   |  |
| (h) | Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.                                                | R |  |
| (i) | Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.                                                                                                        |   |  |
| (j) | Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil                                                                                  |   |  |
| (k) | Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines                                                                             | K |  |

# XIII. HORARIO, SESIONES, DURACIÓN:

a) Horas de clase:

| Teoría | Práctica | Laboratorio |
|--------|----------|-------------|
| 3      | 2        | 0           |

- b) Número de sesiones por semana: Dos sesiones.
- c) Duración: 5 Horas académicas de 45 minutos

# XIV. JEFE DE CURSO:

Ing. Fernando Paz Zagaceta

# XV. FECHA:

La Molina, marzo de 2018.