DSC 257R - UNSUPERVISED LEARNING

HEAVY HITTERS

SANJOY DASGUPTA, PROFESSOR

UC San Diego

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

The Heavy Hitters Problem

- Stream of data $x_1, x_2, ..., x_m \in \mathcal{X}$ (where m is unknown)
- Parameter $\epsilon \in (0,1)$

Keep track of elements whose frequency is $\geq \epsilon m$, as well as their frequencies.

How much space is needed to write down this information, if $n = |\mathcal{X}|$?

Can we design an online algorithm that uses only this much space?

Misra-Gries Algorithm

Data Structure:

- Hash table T of the size $k = 1/\epsilon$
- Each element $x \in T$ has an associated value $V[x] \in \{1, 2, ...\}$

Algorithm:

- Table T is initially empty
- For t = 1, 2, ...:
 - Get x_t
 - If $x_t \in T$: increment $V[x_t]$
 - Else: If |T| < k: Add x_t to T, with $V[x_t] = 1$
 - Else: for each $x \in T$:
 - Decrement V[x]
 - If V[x] = 0, remove x from T

Algorithmic Guarantees

Suppose that the number of times x appears in $x_1, ..., x_t$ is freq_t(x).

Claim. The following is true at all times t, for every $x \in \mathcal{X}$:

$$freq_t(x) - t/(k+1) \le V[x] \le freq_t(x)$$
.

(Take V[x] = 0 for any $x \notin T$.)

Key idea:

- Think of as V[x] holding the number of occurrences of each item x
- Once in a while, k + 1 of these values are decremented
- By time t, the maximum number of such decrement-steps is t/(k+1)