COMP9332 Network Routing and Switching www.cse.unsw.edu.au/~cs9332

Connected Dominating Set

Lecture overview

This lecture examines the concept and construction of connected dominating set in mobile ad hoc networks.

Topics to be covered

- Concept of CDS
- Construction of CDS (Centralized algorithm)

Dominating Set

- A MANET is represented by a graph G(V,E)
 - V: set of vertices
 - E: set of edges
- A dominating set, S, is a subset of V such that each node outside S is adjacent to at least one node in S
- Example: $\{C, E, G\}$

Connected Dominating Set

- A dominating set that yields a connected subgraph is a connected dominating set.
- {C,E,G} is a DS, but not CDS
- $\{C,D,E,G\}$ is a CDS

Utility of CDS

- Works as a backbone of a MANET
- Reduces flooding overhead in a large MANET
 - Flooding can be restricted to CDS nodes only
 - Other nodes can access CDS in one hop

CDS Construction

- Centralized
 - Guha and Khuller
- Distributed
 - RFC5614 (we will not cover it)
- These algorithms may not yield a minimum CDS
 - A CDS with minimum number of nodes in it
 - NP-hard

Guha and Khuller

- Mark all nodes WHITF
- Select node with maximal WHITE neighbour, mark this node BLACK and its neighbours GRAY
- Iteratively scan all GRAY nodes and their WHITE neighbours, select the GRAY node or pair of a GRAY node and one of its WHITE neighbour, whichever has the maximal number of WHITE neighbours, mark the selected node or the pair BLACK and their WHITE neighbours GRAY
- Terminate when all nodes are BLACK or GRAY (no WHITE left)
- All BLACK nodes form a CDS

Bibliography

■ Blum, Ding, Thaeler, Cheng, "Connected Dominating Set in Sensor Networks and MANETs," Handbook of Combinatorial Optimization, 2004