

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «ОБРАБОТКА РАЗРЕЖЕННЫХ МАТРИЦ»

Студент Городский Юрий Николаевич

Группа ИУ7 — 32Б

Оглавление

•••
4
4
8
12
13

Условие задачи

Цель работы: реализация алгоритмов обработки разреженных матриц, сравнение эффективности применения этих алгоритмов со стандартными алгоритмами обработки матриц при различном размере матриц и степени их разреженности.

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- вектор JA, в элементе Nk которого находится номер компонент в A и IA, с которых начинается описание столбца Nk матрицы A.
- 1. Смоделировать операцию умножения вектора-строки хранящегося в форме вектора А и вектора, содержащего номера столбцов этих элементов, и матрицы, хранящейся в указанной форме, с получением результата в форме хранения вектора-строки.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Техническое задание

Входные данные:

- **1. Номер команды:** целое число в диапазоне от 0 до 7
- **2. Матрица:** Вводится количество строк, столбцов и ненулевых элементов, после чего вводятся координаты ненулевых элементов и их значение, координаты начинаются с (1,1) (написано в интерфейсе программы).
- **3. Вектор-строка:** Вводится количество элементов, ненулевых элементов, после чего вводятся координаты ненулевых элементов и их значение, координаты начинаются с 1 (написано в интерфейсе программы).

Выходные данные:

- 1. Вектор-строка результат произведения матрицы и вектора.
- 2. Файл с результатами временных замеров.

Функции программы

- 1. Ввести разреженную матрицу.
- 2. Ввести вектор.
- 3. Вывести разреженную матрицу.
- **4.** Вывести вектор.
- **5.** Умножить вектор на разреженную матрицу.
- 6. Умножить вектор на разреженную матрицу в обычном виде.
- 7. Замерный эксперимент.
- **8.** Выйти.

Аварийные ситуации:

- **1.** Некорректный ввод команды (введено не число или число не находится в диапазоне от 0 до 7): сообщение «Неверная команда».
- **2.** Введено не число при вводе матрицы/вектора-строки: сообщение «Ошибка ввода».
- **3.** Введено неправильное число при вводе матрицы/вектора-строки: сообщение «Ошибка диапазона данных».
- **4.** Не удалось открыть файл при записи замерного эксперимента: сообщение «Не удалось открыть файл».

Обращение к программе

Запуск через терминал (./app.exe).

Структура данных

```
// Разреженная матрицы
typedef struct
{
    size_t n; // Количество строк
    size_t m; // Количество столбцов
    size_t el_num; // Количество ненулевых элементов
    int *values; // Значения ненулевых элементов
    size_t *rows; // Строки ненулевых элементов
    ssize_t *column_coords; // Индексы начала столбцов в values
} sparse_t;
```

```
// Вектор
typedef struct
{
   int *values; // Значения ненулевых элементов
   size_t *columns; // Стоблцы ненулевых элементов
   size_t m; // Количество столбцов
   size_t el_num; // Количество ненулевых элементов
} vector_t;
```

Матрица и вектор-строка в обычном виде хранятся в виде двумерных массив с размерами m и n.

```
size_t m_1, n_1;
int **mat_1 = NULL;
```

Тесты

Таблица 1: Негативные тесты

N	описание	Входны е данные	Выходные данные	Ожидаемые выходные данные
1	Некорректные размеры (число)	1 100	«Ошибка диапазона данных»	«Ошибка диапазона данных»
2	Некорректные размеры (не число)	1 a 1 1	«Ошибка ввода»	«Ошибка ввода»
3	Некорректная команда (число)	8	«Неверная команда»	«Неверная команда»
4	Некорректная команда (не число)	a	«Неверная команда»	«Неверная команда»
5	Перезапись ненулевого элемента	1 222 111 111	«Ошибка: перезапись элемента»	«Ошибка: перезапись элемента»
6	Количество ненулевых	1 225	«Ошибка диапазона данных»	«Ошибка диапазона данных»

элементов >		
количества		
элеменнтов		

Таблица 2: Позитивные тесты

No	Описание	Ввод	Вывод	Ожидаемый вывод
1	Ввод матрицы	1 {Корректны е данные}	«Операция завершена»	«Операция завершена»
2	Ввод вектора	2 {Корректны е данные}	«Операция завершена»	«Операция завершена»
3	Вывод матрицы	3	<Если число столбцов и строк меньше 10> В разреженном виде: {Матрица в разреженном виде по заданию} <Если число столбцов или строк больше 10> В нормальном виде: {Матрица в обычном виде} «Операция завершена»	<Если число столбцов и строк меньше 10> В разреженном виде: {Матрица в разреженном виде по заданию} <Если число столбцов или строк больше 10> В нормальном виде: {Матрица в обычном виде} «Операция завершена»
4	Вывод пустой матрицы	3	«В разреженном виде:» «Пустая матрица» «Операция завершена»	«В разреженном виде:» «Пустая матрица» «Операция завершена»
5	Вывод вектора	4	<Если число столбцов меньше 10> В разреженном виде: {Вектор в разреженном виде по заданию} <Если число столбцов большу 10> В нормальном виде:	<Если число столбцов меньше 10> В разреженном виде: {Вектор в разреженном виде по заданию} <Если число столбцов большу 10> В нормальном виде:

6	Вывод пустого вектора	4	{Вектор в обычном виде} «Операция завершена» «В разреженном виде:» «Пустой вектор» «Операция	{Вектор в обычном виде} «Операция завершена» «В разреженном виде:» «Пустой вектор» «Операция
7	Умножение матрицы на вектор	5	завершена» <Если число столбцов и строк меньше 10> В разреженном виде: «Результат произведения в разреженном виде» <Если число столбцов и строк больше 10> В нормальном виде: «Результат произведения в разреженном виде» «Операция завершена»	завершена» <Если число столбцов и строк меньше 10> В разреженном виде: «Результат произведения в разреженном виде» <Если число столбцов и строк больше 10> В нормальном виде: «Результат произведения в разреженном виде» «Операция завершена»
8	Умножение матрицы на вектор в обычном виде	6	<Если число столбцов и строк меньше 10> В разреженном виде: «Результат произведения в разреженном виде» <Если число столбцов и строк больше 10> В нормальном виде: «Результат произведения в разреженном виде» «Операция завершена»	«Если число столбцов и строк меньше 10> В разреженном виде: «Результат произведения в разреженном виде» <Если число столбцов и строк больше 10> В нормальном виде: «Результат произведения в разреженном виде» «Операция завершена»
9	Замерный экмперимент	7	2 файла с выходными данными замера	2 файла с выходными данными замера

Ввод	Вывод
Введите команду: 1	В нормальном виде:
10 10 5	10 10
111	100000000
2 2 3	030000000
3 3 4	$0\ 0\ 4\ 0\ 0\ 0\ 0\ 0$
4 4 5	0005600000
456	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$
Введите команду: 3	$ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $
Введите команду: 2	$ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $
10 5	$ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $
11	$ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $
2 2	$ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $
33	Операция завершена
5 5	
4 4	В нормальном виде:
Введите команду: 4	1234500000
Введите команду: 3	Операция завершена
Введите команду: 5	
	1 6 12 20 24 0 0 0 0 0
	Операция завершена
Введите команду: 1	В разреженном виде:
20 20 2	A: 1 4
111	IA: 0 2
3 3 4	JA: 0 - 1
Введите команду: 3	Операция завершена
Введите команду: 2	
20 4	В разреженном виде:
11	A: 1 2 3 4
2 2	JA: 0 1 2 3
3 3	Операция завершена
4 4	
Введите команду: 4	A: 1 12
Введите команду: 5	JA: 0 2
Введите команду: 6	Операция завершена
	A: 1 12
	JA: 0 2
	Операция завершена

Замерный эксперимент

Замеры проводились для матриц размером 500x500 и 1000x1000 для заполнения матрицы в различных диапазонах. Расчеты проводились до rse < 5%.

Процент заполнения матрицы

Рисунок 1: 500х500 время умножения

Рисунок 2: 500х500 память

Сравнение разреженного и нормального умножения

Рисунок 3: 1000х1000 память

Как видно ,эффективность по времени умножения матриц в разреженном виде выше при заполнении матриц до 7 - 8%, а по по памяти — до 33%.

Контрольные вопросы

1. Что такое разреженная матрица, какие способы хранения вы знаете?

Разреженная матрица — матрица, содержащая большое кол-во нулевых элементов. Хранить можно в виде обычной матрицы, с помощью линейных связных списков, кольцевых связных списков, двунаправленных стеков и очередей.

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Под обычную матрицу выделяется N*M ячеек памяти. Память под разреженную матрицу выделяется в зависимости от схемы хранения, объем занимаемой памяти зависит от количества ненулевых элементов.

3. Каков принцип обработки разреженной матрицы?

Разреженные матрицы содержат большое кол-во нулей, хранятся они в структурах, хранящих только ненулевые элементы. Поэтому алгоритмы обработки оперируют лишь значащими данными, что даёт выигрыш по памяти и скорости по сравнению с алгоритмами обработки обычных матриц.

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Разреженность матрицы эффективнее, если игнорирование нулевых элементов дает выигрыш в производительности. При достижении определенного процента заполнения ненулевыми элементами происходит значительное падение эффективности по времени.

Вывод

Использование разреженных матриц имеет смысл только при большом количестве элементов и малом проценте содержания ненулевых элементов — иначе стандартные алгоритмы хранения и обработки будут эффективнее, как по памяти, так и по времени. Чем больше размеры матриц, тем меньше процент заполненности, необходимый для того, чтобы стандартный алгоритм стал эффективнее.