

Augusto Ortigoso Barbosa

Trabalho Fila e Pilha - Implementação e Análise Estrutura de Dados I Profa. Daniele Carvalho Oliveira

 $\begin{array}{c} \text{Monte Carmelo - MG} \\ 2024 \end{array}$ 

## Sumário

| 1 | Benchmark de Execução                                                   | 3           |
|---|-------------------------------------------------------------------------|-------------|
| 2 | Discussão das Hipóteses - Estrutura de Dados Fila 2.1 Inserção na Fila  | 4           |
| 3 | Discussão das Hipóteses - Estrutura de Dados Pilha 3.1 Inserção na Fila | כם כם כם כם |
| 4 | Perguntas                                                               | 6           |
| 5 | Conclusão Geral                                                         | 7           |

# 1 Benchmark de Execução

| Listagem | Remoção | Inserção | No. Da Bateria | opciação | Operação                |                                                                            | Listagem     | Remoção     | Inserção    | No. Da Bateria | opeiação | Operação  |                                                                            | Listagem | Remoção                 | Inserção     | No. Da Bateria | opeiação     | Operação  |                                                                           | Listagem        | Remoção | Inserção | No. Da Bateria          | Operação      | Operação  |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
|----------|---------|----------|----------------|----------|-------------------------|----------------------------------------------------------------------------|--------------|-------------|-------------|----------------|----------|-----------|----------------------------------------------------------------------------|----------|-------------------------|--------------|----------------|--------------|-----------|---------------------------------------------------------------------------|-----------------|---------|----------|-------------------------|---------------|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------|---|----|-------------------------|--------------|---------|---|---|--|--|--|
| 25       | 0       | 0        | 1              |          |                         |                                                                            | 36           | 0           | 0           | 1              |          |           |                                                                            |          |                         |              |                | 26           | 0         | 0                                                                         | 1               |         |          |                         | 22            | 0         | 1                                                                         | 1000 3000 5000 10000 25000 25000 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 |   |    |                         |              |         |   |   |  |  |  |
| 32       | 0       | 0        | 2              | 10       |                         |                                                                            | 35           | 0           | 0           | 2              | 10       |           |                                                                            | 39       | 0                       | 0            | 2              | 10           |           |                                                                           | 36              | 0       | 0        | 2                       | 10            |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 29       | 0       | 1        | з              | 1000     |                         |                                                                            | 42           | 0           | 0           | 3              | 1000     |           |                                                                            | 178      | 0                       | 2            | 3              | 1000         |           |                                                                           | 34              | 0       | 0        | 3                       | 000           |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 28,6667  | 0       | 0,33333  | М              |          |                         |                                                                            | 37,6667      | 0           | 0           | М              |          |           |                                                                            | 81       | 0                       | 0,66667      | М              |              |           |                                                                           | 30,6667         | 0       | 0,33333  | м                       |               |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 86       | 1       | 0        | 1              |          |                         |                                                                            | 87           | 0           | 0           | 1              |          |           |                                                                            | 87       | 0                       | 0            | 1              |              |           |                                                                           | 115             | 2       | 0        | 1                       |               |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 88       | 0       | 1        | 2              | 30       |                         | Tab                                                                        | 108          | 0           | 0           | 2              | 30       |           | Tab                                                                        | 96       | 1                       | 0            | 2              | 30           |           | Tat                                                                       | 113             | 0       | 1        | 2                       | 30            |           | Ta                                                                        |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 92       | 0       | 1        | 3              | 3000     |                         | ela de Temp                                                                | 94           | 0           | 0           | 3              | 3000     |           | ela de Tem                                                                 | 111      | 0                       | 0            | 3              | 3000         | Q         | Tabela de Tempo de Execução em Clocks - Fila Dinâmica (VisualStudio Code) | 122 116,667 154 | 1       | 0        | 3                       | 00            |           | bela de Ten                                                               |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 88,6667  | 0,33333 | 0,66667  | М              |          |                         | o de Execu                                                                 | 96,3333      | 0           | 0           | м 1            |          |           | po de Exec                                                                 | 98       | 0,33333                 | 0            | М              |              |           |                                                                           |                 | 1       | 0,33333  | M                       |               |           | ηρο de Exec                                                               |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 157      | 0       | 1        | 1              |          | Q                       | ıção em Clo                                                                | 194          | 0           | 0           |                |          | Q         | ução em Cl                                                                 | 152      | 0                       | 1            | 1              |              |           | ução em Cl                                                                |                 | 1       | 0        | 1                       |               | Q         | cução em C                                                                |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 152      | 0       | 0        | 2              | 5(       | uantidade               | ocks - Pilha                                                               | ocks - Pilha | cks - Pilha | cks - Pilha | 197            | 0        | 0         | 2                                                                          | 5(       | Quantidade de Elementos | ocks - Pilha | ocks - Pilha   | ocks - Pilha | 185       | 185                                                                       | 1               | 2       | 5(       | Quantidade de Elementos | ocks - Fila [ | 153       | 0                                                                         | 1                                                                    | 2 | 5( | Quantidade de Elementos | locks - Fila |         |   |   |  |  |  |
| 153      | 0       | 1        | 3              | 5000     | de Elemen               | Dinâmica                                                                   | 228          | 0           | 0           | 3              | 5000     | de Elemen | a Estática (                                                               | 156      | 1                       | 1            | 3              | 5000         | de Elemen | Dinâmica (                                                                | 150             | 0       | 1        | 3                       | 000           | de Elemen | Estática (V                                                               |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 154      | 0       | 0,66667  | М              |          | Quantidade de Elementos | Tabela de Tempo de Execução em Clocks - Pilha Dinâmica (VisualStudio Code) | 206,333      | 0           | 0           | М              |          | tos       | Tabela de Tempo de Execução em Clocks - Pilha Estática (VisualStudio Code) | 164,333  | 0,33333                 | 1            | М              |              | tos       | VisualStud                                                                | 152,333         | 0,33333 | 0,66667  | M                       |               | tos       | Tabela de Tempo de Execução em Clocks - Fila Estática (VisualStudio Code) |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 297      | 0       | 1        | 1              |          |                         | lio Code)                                                                  | 320          | 0           | 0           | 1              |          |           | io Code)                                                                   | 299      | 1                       | 0            | 1              |              |           | io Code)                                                                  | 308             | 1       | 0        | 1                       |               |           | o Code)                                                                   |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 340      | 0       | 1        | 2              | 10       |                         |                                                                            | 357          | 0           | 0           | 2              | 10       |           |                                                                            | 339      | 0                       | 0            | 2              | 10           |           |                                                                           | 317             | 2       | 0        | 2                       | 10            |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 320      | 1       | 0        | 3              | 10000    |                         |                                                                            | 301          | 0           | 0           | 3              | 10000    |           |                                                                            | 324      | 0                       | 1            | 3              | 10000        |           |                                                                           | 353             | 1       | 0        | 3                       | 000           |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 319      | 0,33333 | 0,66667  | М              |          |                         |                                                                            | 326          | 0           | 0           | Z              |          |           |                                                                            |          |                         |              |                |              |           |                                                                           |                 |         |          |                         | 320,667       | 0,33333   | 0,33333                                                                   | М                                                                    |   |    |                         | 326          | 1,33333 | 0 | M |  |  |  |
| 747      | 1       | 1        | 1              |          |                         |                                                                            | 788          | 0           | 0           | 1              |          |           |                                                                            | 1002     | 1                       | 2            | 1              |              |           |                                                                           | 730             | 0       | 1        | 1                       |               |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 737      | 0       | 1        | 2              | 25       |                         |                                                                            | 845          | 0           | 0           | 2              | 25       |           |                                                                            | 1090     | 1                       | 1            | 2              | 25           |           |                                                                           | 974             | 1       | 1        | 2                       | 25            |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 992      | 1       | 1        | 3              | 25000    |                         |                                                                            | 967          | 0           | 0           | 3              | 25000    |           |                                                                            | 996      | 1                       | 1            | 3              | 25000        |           |                                                                           | 959             | 1       | 0        | 3                       | 000           |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |
| 825,333  | 0,66667 | 1        | М              |          |                         |                                                                            | 866,667      | 0           | 0           | М              |          |           |                                                                            | 1029,33  | 1                       | 1,33333      | М              |              |           |                                                                           | 887,667         | 0,66667 | 0,66667  | м                       |               |           |                                                                           |                                                                      |   |    |                         |              |         |   |   |  |  |  |

## 2 Discussão das Hipóteses - Estrutura de Dados Fila

#### 2.1 Inserção na Fila

Hipótese: O tempo de execução da inserção em uma fila sequencial é menor do que em uma fila dinâmica.

Análise: De acordo com os resultados obtidos, o tempo médio de inserção na fila estática é geralmente menor em relação à fila dinâmica, principalmente em conjuntos menores (1000 a 3000 elementos). Isso ocorre porque a fila estática usa um bloco contíguo de memória, o que facilita o acesso e a inserção rápida, enquanto a fila dinâmica exige alocação de novos nós e ponteiros, o que implica um custo adicional em tempo. Portanto, essa hipótese é confirmada.

#### 2.2 Remoção na Fila

Hipótese: O tempo de execução da remoção em uma fila dinâmica é menor do que em uma fila sequencial.

Análise: Os dados mostram tempos de remoção muito próximos para ambas as implementações, com a fila dinâmica geralmente tendo uma vantagem leve ou tempos zerados em algumas baterias. A fila dinâmica é mais eficiente para remoção em filas grandes, pois só precisa alterar ponteiros ao invés de realocar elementos. Assim, a hipótese é parcialmente confirmada, pois a diferença é mais significativa em filas maiores.

#### 2.3 Impressão na Fila

Hipótese: O tempo de execução da operação de impressão na fila sequencial é menor do que na fila dinâmica.

Análise: Os resultados mostram que a fila estática apresenta, em média, um tempo de execução menor para impressão do que a fila dinâmica. Isso ocorre porque, na fila estática, os elementos estão contiguamente alocados, o que facilita a leitura sequencial. Já na fila dinâmica, a impressão exige percorrer ponteiros, o que pode aumentar o tempo de execução. Logo, essa hipótese é confirmada.

## 3 Discussão das Hipóteses - Estrutura de Dados Pilha

#### 3.1 Inserção na Fila

Hipótese: O tempo de execução da inserção em uma pilha sequencial é menor do que em uma pilha dinâmica.

Análise: Os tempos médios indicam que a pilha estática é ligeiramente mais rápida para inserção. Na pilha estática, o acesso à memória é direto, enquanto a pilha dinâmica requer criação de nós e ajuste de ponteiros, o que eleva o custo em tempo. Assim, essa hipótese é confirmada, especialmente em entradas menores.

#### 3.2 Remoção na Fila

Hipótese: O tempo de execução da remoção em uma pilha sequencial é menor do que em uma pilha dinâmica.

Análise: Os tempos de remoção na pilha sequencial são consistentemente baixos ou nulos, independentemente do tamanho da entrada. A remoção em uma pilha sequencial implica apenas o decremento do topo, enquanto, na pilha dinâmica, há necessidade de desalocar o nó removido. Portanto, essa hipótese também é confirmada.

#### 3.3 Impressão na Fila

Hipótese: O tempo de execução da operação de impressão na pilha sequencial é menor do que na pilha dinâmica.

Análise: A pilha estática apresentou tempos médios de impressão menores em comparação com a pilha dinâmica, principalmente em conjuntos menores de dados. Como na fila, o bloco contíguo de memória facilita o acesso direto aos elementos, enquanto na pilha dinâmica é necessário percorrer cada nó. Dessa forma, essa hipótese é confirmada.

## 4 Perguntas

- 1. Em quais quantidades de elementos e em quais operações a implementação usando memória sequencial teve o menor tempo?
  - Para a Fila Estática:
    - Inserção: 1000 elementos, com tempo médio de 0.3333 clocks.
    - Remoção: Para todas as quantidades de elementos, o tempo foi 0 clocks.
    - Listagem: O menor tempo foi com 1000 elementos, média de 30.6667 clocks.
  - Para a Pilha Estática:
    - Inserção e Remoção: Ambas as operações tiveram o tempo de 0 clocks para todas as quantidades de elementos.
    - Listagem: Menor tempo com 1000 elementos, média de 37.6667 clocks.
- 2. Em quais quantidades de elementos e em quais operações a implementação usando memória dinâmica teve o menor tempo?
  - Para a Fila Dinâmica:
    - Inserção: O menor tempo foi com 1000 elementos, média de 0.6667 clocks.
    - Remoção: 0 clocks para 1000 e 3000 elementos.
    - Listagem: O menor tempo foi com 1000 elementos, média de 81 clocks.
  - Para a Pilha Dinâmica:
    - Inserção: O menor tempo foi com 1000 elementos, média de 0.3333 clocks.
    - Remoção: 0 clocks para todas as quantidades de elementos testadas.
    - Listagem: O menor tempo foi com 1000 elementos, média de 28.6667 clocks.

### 5 Conclusão Geral

Os dados de benchmark mostram que a implementação em memória sequencial é geralmente mais rápida para operações de inserção, remoção e impressão tanto em filas quanto em pilhas, especialmente para conjuntos de dados menores. A vantagem da implementação sequencial é sua simplicidade e acesso direto à memória contígua. No entanto, para grandes conjuntos de dados, a memória dinâmica oferece flexibilidade superior e melhor uso de recursos, embora isso venha com um custo de tempo adicional para operações que envolvem alocação e realocação de memória.

#### Em resumo:

- Para tarefas com alto volume de inserção e remoção, a memória dinâmica pode ser vantajosa em termos de flexibilidade, apesar de um leve aumento no tempo de execução.
- Para operações intensivas de leitura e impressão, a memória sequencial geralmente oferece melhor desempenho devido ao acesso direto aos elementos.