Baseline PLS Procedure in Light et al. (2017)

Nuoya Hong nuoya.hong.phd@anderson.ucla.edu

October 22, 2019

1 Baseline Model

Consider a set of N stocks whose characteristics are observed in at least two periods. The best predictor of returns on stock i at time t is expected return $\mu_{it} = E\left[R_{it+1}|\mathcal{F}_t\right]$ where \mathcal{F}_t denotes public information. Econometricians lack some information contained in \mathcal{F}_t and do not know μ_{it} . Instead they observe firm characteristics $X_{it}^a, a = 1, \ldots, A$ such that $\{X_{it-s}, s \geq 0, a = 1, \ldots, A, i = 1, \ldots, N\} \subseteq \mathcal{F}_t$.

Assume at each time period X_{it}^a have zero cross-sectional means and unit variances (demean, standardize). Assume

$$X_{it}^a = \delta_t^a \left(\mu_{it} - \bar{\mu}_t \right) + u_{it}^a \tag{1}$$

where δ_t^a measures the sensitivity of characteristics a to expected returns, and $\bar{\mu}_t$ is the cross-sectional average of expected returns at time $t.u_{it}^a$ are components of characteristics that are unrelated to stock returns and that can be arbitrary correlated among themselves.

The realized return on stock i can be written as

$$R_{it+1} = \mu_{it} + \varepsilon_{it+1} \tag{2}$$

where $E\left[\varepsilon_{it+1}|\mathcal{F}_{t}\right]=0$ and unexpected returns ε_{it+1} are assumed to be orthogonal to \mathcal{F}_{t} . ε_{it+1} and ε_{jt+1} can be correlated.

2 PLS procedure

The PLS-based estimation of baseline model at time t can be implemented in two steps:

- **Step 1**: Run separate cross-sectional regressions of R_{it} , i = 1, ..., N, on each individual firm characteristic X_{it-1}^a , i = 1, ..., N for a = 1, ..., A and denote the obtained slopes a λ_t^a .
- Step 2: For each firm i, i = 1, ..., N run a regression of X_{it}^a on $\lambda_t^a, a = 1, ..., A$, and denote the obtained slopes as $\hat{\mu}_{it}$.

Denote the number of stocks to be N and the number of firm characteristics to be A (= 26). Two sets of regressions are run at time t with information from time t and time t-1. In Step 1, for $a = 1, \ldots, A$,

$$\underbrace{\begin{bmatrix} R_{1t} \\ R_{2t} \\ \vdots \\ R_{Nt} \end{bmatrix}}_{N \times 1} = \text{constant} + \underbrace{\begin{bmatrix} X_{1,t-1}^a \\ X_{2,t-1}^a \\ \vdots \\ X_{N,t-1}^a \end{bmatrix}}_{N \times 1} \lambda_t^a + \text{errors} \tag{3}$$

where 26 regressions yield 26 slopes $\{\lambda_t^a\}_{a=1}^A$. Then in Step 2, for each stock $i, i=1,\ldots,N$,

$$\underbrace{\begin{bmatrix} X_{1t}^1 \\ X_{1t}^2 \\ \vdots \\ X_{1t}^a \end{bmatrix}}_{a \times 1} = \text{constant} + \underbrace{\begin{bmatrix} \lambda_t^1 \\ \lambda_t^2 \\ \vdots \\ \lambda_t^a \end{bmatrix}}_{a \times 1} \hat{\mu}_{it} + \text{errors} \tag{4}$$

where N regressions yield N slopes $\{\hat{\mu}_{it}\}_{i=1}^{N}$. λ_{t}^{a} in Equation 3 can be viewed as a proxy for δ_{t-1}^{a} in Equation 1 and $\hat{\mu}_{it}$ in Equation 4 is a consistent estimator for demeaned stock returns $(\mu_{it} - \overline{\mu}_{t})$ up to a scaling factor in Equation 1 by Proposition 1.

References

Light, N., Maskov, D., and Rytchkov, O. (2017). Aggregation of information about the cross section of stock returns: a latent variable approach. *The Review of Financial Studies, Volume 30, Issue* 4, pages 1339–1381.