

Mécanique des milieux continus

Cours par Laurent Champaney mis sous LATEX par Damien Aza-Vallina

version du 26 novembre 2006

Table des matières

1	Cin	nématique des milieux continus 1				
	1.1	Rappels				
		1.1.1	Temps : "Repérage dans le temps "	1		
		1.1.2	Espace : "Repérage dans l'espace "	1		
	1.2	1.2 Milieux continus				
		1.2.1	Introduction	3		
		1.2.2	Les représentations du mouvement	3		
	1.3 Notions de déformation					
		1.3.1	Solide rigide	7		
		1.3.2	Une mesure de déformation	7		
		1.3.3	Compatibilité des déformations	11		
	1.4	4 Taux de déformation : Mesure des déformations en approche eulerienne				
		1.4.1	Gradient des vitesses	14		
		1.4.2	Solide rigide	14		
		1.4.3	Propriétés du tenseur des taux de déformation	14		
	1.5	Bilan		16		
	1.6	Résumé				
2	Sch	ématis	ation des efforts intérieurs - Notion de Contrainte	19		
2 Schématisation des efforts intérieurs - Notion de Contrainte						
	2.1	1.1 Rappel sur la schématisation des efforts intérieurs		19		
		2.1.1	Point materiel	19		
		2.1.2	Solide rigide	19		
		2.1.3	Cas d'un milieu continu	21		

2.2	Schém	natisation des efforts intérieurs	21
	2.2.1	Rappels: RDM - Poutres	21
	2.2.2	Hypothèses de base	23
	2.2.3	Opérateur des contraintes	23
	2.2.4	Etude de l'opérateur des contraintes	24
	225	Etat de contraintes particulières	26

Chapitre 1

Cinématique des milieux continus

1.1 Rappels

1.1.1 Temps: "Repérage dans le temps"

Fig. 1.1 - Axe des temps

On se donne un espace des instants τ , qui est un espace affine, orienté, et de dimension 1 sur \mathbb{R} . A un instant donné on y associe un élément t de τ , alors :

$$\underline{t_0t} = \tau\underline{u}$$

Si τ est choisi une fois pour toute, alors on confond t et τ

1.1.2 Espace : "Repérage dans l'espace "

On utilise un
$$\begin{cases} repre \ d'espace \\ espace \ d'observateur \\ observateur \end{cases}$$

L'espace d'observateur et l'observateur sont généralement associé à un repérage dans le temps. Pour les solides rigides (distance entre les différents points constante), on utilise un repère pour chaque solide.

Définition 1.1.1 Repère : espace affine euclidien \mathcal{E} , muni d'un produit scalaire (pour mesurer les distances), orienté et de dimension 3. Alors un corps solide Ω n'est qu'un partie de \mathcal{E} .

1.1 Rappels 2

– Le mouvement d'un point par rapport à $\mathcal E$ est donné par l'application :

$$\tau \longrightarrow \mathcal{E}$$
$$t \longmapsto M(t)$$

– Si on choisi l'origine O du repère \mathcal{E} , alors le mouvement est défini par une fonction vectorielle

$$\tau \longrightarrow \mathcal{E}$$
$$t \longmapsto OM(t)$$

– Si on choisi une base $\mathcal{B}(e_1, e_2, e_3)$, alors le mouvement est défini par 3 fonctions scalaires.

$$\begin{split} \tau &\longrightarrow \mathcal{E} \\ t &\longmapsto x_1(t) \text{ avec i} = 1,\, 2,\, 3 \end{split}$$

où les x_i sont les composantes de \underline{OM} dans le repère $\mathcal{R}(O,\mathcal{B})$, alors

$$\underline{OM} = \sum_{i=1}^{n} x_i * \underline{e_i}$$

– Si la base \mathcal{B} est choisie une fois pour toute, alors \mathcal{E} et \mathcal{R} sont confondus. Les expression de la vitesse V et de l'accélération Γ sont alors :

$$\underline{V}(M,t) = \frac{d\underline{OM}}{dt} = \sum_{i=1}^{3} \frac{dx_i(t)}{dt} \underline{e_i} = \dot{x_i} \underline{e_i}$$

$$\underline{\Gamma}(M,t) = \frac{d^2\underline{OM}}{dt^2} = \sum_{i=1}^3 \frac{d^2x_i(t)}{dt^2} \underline{e_i} = \ddot{x_i}\underline{e_i}$$

1.2 Milieux continus

1.2.1 Introduction

- Objectif : Décrire le mouvement des corps physiques (fluide ou solide) par rapport au repère \mathcal{R} .

- Choix : Observation à une échelle "macroscopique" (on ne s'intéresse pas à la structure atomique).
- A l'instant t, le corps occupe le domaine $\Omega(t)$.

1.2.2 Les représentations du mouvement

1.2.2.1 Description Lagrangienne

- Le mouvement est défini par une seule application :

$$[0,T] \times \Omega_0 \longrightarrow \mathcal{E}$$
$$(t, M_0) \longmapsto M = \Phi(t, M_0)$$

- A un instant t, l'ensemble des points M(t) est $\Omega(t)$. On notera $\Omega_0 = \Omega(t=0)$
- Pour un M_0 fixé, M(t) représente la trajectoire de la particule qui était initialement en M_0 . On notera indifféremment :

Fig. 1.2 – Description Lagrangienne du mouvement

$$\underline{OM} = \Phi(t, \underline{OM_0})
\underline{M} = \Phi(t, \underline{M_0})
M = \Phi(t, \underline{M_0})$$

On aura alors, la fonction coordonnée qui dépend de 4 variable : $x_i = \Phi_i(t, x_1^0, x_2^0, x_3^0)$ On entend par "Milieu Continu", un milieu qui doit avoir certain conditions de régularité sur $\Phi(t, M_0)$, par exemple :

- 1. A un instant t fixé $\Phi_t(M_0)$ est une bijection (donc Φ^{-1} existe), c'est à dire que connaissant un point M, on peut connaître M_0 , le milieu conserve alors ses orientations.
- 2. Φ est 2 fois dérivable par rapport au temps
- 3. Φ est continûment dérivable par rapport au x_i (car 2 points proche ne peuvent que rester proche)

Alors:

$$\underline{V}(t, M_0) = \frac{\partial \underline{\Phi}(t, M_0)}{\partial t}$$
$$\underline{\Gamma}(t, M_0) = \frac{\partial^2 \underline{\Phi}(t, M_0)}{\partial t^2}$$

<u>De manière générale</u>: Toute grandeur représenté par $f(t, M_0)$ est égale à la valeur de la grandeur à l'instant t et au point initialement en M_0 , par exemple $\rho(t, M_0)$.

Définition 1.2.1 : On appelle Ω_0 , configuration non déformée.

Remarque: 1. La description Lagrangienne privilégie une configuration particuliere qui dépend de $\Omega_0 = \Omega(t=0)$. Cette dernière est bien adaptée à l'études des corps solides.

- 2. Pour les solides rigides on a alors : $\underline{OM} = A(t) + \underline{\underline{Q}}(t)\underline{OM_0}$. L'opération de rotation est donc représentée par : $\underline{MN} = \underline{Q}(t)\underline{M_0N_0}$.
- 3. Les conséquences intuitives des conditions de régularité sont alors :

Fig. 1.3 – Définition du domaine Ω et $\partial\Omega$

- $Si M_0 \in \Omega_0$, alors on a $M(t) \in \partial \Omega(t)$.
- $Si\ M_0 \notin \Omega_0$, alors on a $M(t) \notin \partial \Omega(t)$. Car il n'y a pas de mélange de matière pour les solides.
- $Si\ M_0\ et\ N_0\ sont\ voisins,\ alors\ pour\ tout\ instant\ t\ les\ points\ M_t\ et\ N_t\ sont\ voisins.$
- Un voisinage de M_0 est alors aussi un voisinage de M

1.2.2.2 Description Eulerienne

Fig. 1.4 – Description Eulerienne du mouvement

1. La description Eulerienne ne privilégie aucune configuration, le mouvement est défini uniquement, par la donnée à un instant t, de la vitesse associé au point M par rapport au repère utilisé. Cette vitesse est noté :

$$^{E}\underline{V}(t,M)$$

E étant la marque de la description Eulerienne.

2. Passage de la description Lagrangienne à la description Eulerienne :

Pour
$$\left\{\begin{array}{ll} \Omega_0 & \text{donn\'e} \ , \ \text{on a alors la relation} : {}^E\underline{V}(t,M) = \underline{V}(t,\underbrace{\Phi^{-1}(M)}) \\ \underline{M_0} & \text{donn\'e} \end{array}\right.$$

Le fait que Φ soit régulière fait que Φ^{-1} existe.

3. Passage inverse:

Pour $\begin{cases} \Omega(t) \\ {}^{E}\underline{V}(t,M_{0}) \end{cases}$ donné , on cherche alors l'expression de Φ , pour cela on a besoin de Ω_{0} . On a les relations suivantes :

$$\frac{d\underline{\Phi}}{dt} =^{E} \underline{V}(t, M) \ et \ M = \Phi(t, M_0)$$

il vient alors:

$$\frac{\partial \underline{\Phi}}{\partial t} = ^{E} \underline{V}(t, \Phi(t, M_0))$$

Alors pour M_0 donné on a :

$$\underline{V}(t,M) = \sum_{i=1}^{3} \underbrace{V_i(t,M)}_{\text{données}} \underline{e_i} \ , \ \underline{\Phi(t,M_0)} = \sum_{i=1}^{3} \underbrace{x_i(t,M_0)}_{inconnues} \underline{e_i} \ et \ \underline{OM_0} = \sum_{i=1}^{3} \underbrace{x_i^0}_{\text{données}} \underline{e_i}$$

On obtient alors les différentes composantes de la trajectoire x_i par intégration du système d'équations : $\frac{d \ x_i(t)}{dt} = V(t, x_1, x_2, x_3)$ pour i = 1,2,3 et en utilisant les différentes conditions initiales au niveau des positions : x_1^0, x_2^0, x_3^0 . On est alors en présence d'un système de Cauchy intégrable grâce aux conditions initiales.

1.2.2.3 Dérivation par rapport au temps en Eulerien

Dans ce cas on a comme donnée la description Eulerienne : ${}^{E}\underline{V}(t,M(t))$. On notera la grandeur scalaire f suivant les différentes descriptions de la manière suivante : $\left\{ \begin{array}{l} Lagrangien\ f(t,M_{0}) \\ Eulerien\ {}^{E}f(t,M) \end{array} \right.$

On cherche alors l'expression de $\frac{\partial^E f(t,M)}{\partial t}$.

On obtient donc la dérivé particulaire :

$$\frac{d^{E}f(t,M)}{dt} = \frac{\partial^{E}f(t,M)}{\partial t} + \underline{grad}(^{E}f).^{E}\underline{V}(t,M)$$

Démonstration : On a dans un premier temps :

$$\frac{\partial^{E} f(t,M)}{\partial t} = \frac{\partial^{E} f(t,\Phi(t,M_{0}))}{\partial t} = \frac{\partial^{E} f(t,M_{0})}{\partial t}$$
alors:
$$\frac{d^{E} f(t,M)}{dt} = \frac{\partial^{E} f(t,M)}{\partial t} + \frac{\partial f}{\partial M} \frac{\partial M(t)}{\partial t}$$
or
$$\frac{\partial f}{\partial M} \frac{\partial M(t)}{\partial t} = \sum_{i=1}^{3} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial t} = \underline{grad}(^{E} f).^{E} \underline{V}(t,M)$$

CQFD

1.2.2.4 Généralisation aux fonctions vectorielles

On peut généraliser la formule précédemment démontrée aux autres fonctions vectorielles, tels que l'accélération :

$${}^{E}\Gamma(t,\underline{M}) = \frac{d \ {}^{E}V(t,\underline{M})}{dt} = \frac{\partial {}^{E}V(t,\underline{M})}{\partial t} + \frac{\partial {}^{E}f(t,M)}{\partial M} \cdot \frac{\partial \underline{M}}{\partial t} = \frac{\partial {}^{E}V(t,\underline{M})}{\partial t} + \underline{\underline{grad}}({}^{E}\underline{V}(t,\underline{M})) \cdot {}^{E}\underline{V}(t,\underline{M})$$

Définition 1.2.2 L'opérateur grad est un tenseur que l'on appelle le gradient des vitesses. Il s'exprime dans une base que $\overline{\text{lconq}}$ ue ayant comme coordonnées (x_1, x_2, x_3) de la manière suivante :

$$\underline{\underline{grad}}(^{E}\underline{V}(t,\underline{M})) \begin{pmatrix} \frac{\partial V_{1}}{\partial x_{1}} & \frac{\partial V_{1}}{\partial x_{2}} & \frac{\partial V_{1}}{\partial x_{3}} \\ \frac{\partial V_{2}}{\partial x_{1}} & \frac{\partial V_{2}}{\partial x_{2}} & \frac{\partial V_{2}}{\partial x_{3}} \\ \frac{\partial V_{2}}{\partial x_{1}} & \frac{\partial V_{2}}{\partial x_{2}} & \frac{\partial V_{2}}{\partial x_{3}} \end{pmatrix}$$

On a les même notation en Lagrangien et en Eulerien. C'est alors le contexte qui détermine si on est en Lagrangien ou en Eulerien.

Définition 1.2.3 On appelle ligne de courant , à un instant t, les enveloppes du champ Eulerien des vitesses.

Si à un instant t on note le champ de vitesse Eulerien : ${}^{E}\underline{V}(t,\underline{M})) = V_{i}\underline{e_{i}}$ et $\underline{dM} = x_{i}\underline{e_{i}}$ Alors on trouve les équations des lignes de champs en écrivant que ${}^{E}\underline{V}$ et \underline{dM} sont parallèle. C'est à dire qu'on a la relation suivantes (cette relation est un système différentiel) :

$$\frac{d\ x_1}{V_1} = \frac{d\ x_2}{V_2} = \frac{d\ x_3}{V_3}$$

1.3 Notions de déformation

1.3.1 Solide rigide

Dans le cas d'un solide rigide deux points M_0 et N_0 se transforment en 2 points M et N, via la relation :

$$\underline{MN} = \underline{\underline{Q(t)}} M_0 N_0(t)$$

 $\underline{\underline{Q(t)}}$ est un opérateur, qui est une isométrie (car il y conservation de la distance), dans une base avec une matrice orthogonale Q (c'est à dire tel que $Q^TQ = Id$).

Démonstration: De la conservation des distances:

$$||MN||^2 = \underline{MN}.\underline{MN} = (\underline{MN})^T.\underline{MN} = ((\underline{M_0N_0})^TQ^T)(Q.M_0N_0) = (\underline{M_0N_0})^T.\underline{M_0N_0} = ||M_0N_0||^2$$

$$d'où \ la \ conservation \ de \ la \ norme \ en \ tout \ point \ du \ solide \ rigide.$$

Propriété 1.3.1 La distribution des vitesses se fait grâce à la relation :

$$\underline{V}(N) = \underline{V}(M) + \underline{\omega} \wedge \underline{MN}$$

où $\underline{\omega}$ est le vecteur rotation associé au solide rigide.

Démonstration:

$$\underbrace{\frac{d\underline{M}\underline{N}}{dt}}_{=\underline{V}(N)-\underline{V}(M)} = \frac{d}{dt}[Q(t)\underline{M}_0N_0] = \frac{d}{dt}\underbrace{Q(t)}_{\underline{M}_0N_0} = \frac{d}{dt}\underbrace{Q(t)}_{\underline{Q}^{-1}(t)}\underline{M}\underline{N}_0$$

Ici $\frac{d\ Q(t)}{dt}$ représente le vecteur rotation ω et Q^{-1} est un opérateur antisymétrique tel le produit vectoriel. Donc le terme $\frac{d\ Q(t)}{dt}Q^{-1}(t)$ est représenté dans la distribution de vitesse par : $\underline{\omega}\wedge$.

1.3.2 Une mesure de déformation

Objectifs:

- Mesurer comment changent les distances entre différents points situés au voisinage d'un point M_0 .
- Etudier les variation de longueur entre ||MN|| et $||M_0N_0||$ pour tout point N_0 proche du point M_0 .

1.3.2.1 Notations

Théorème 1.3.1 : Théorie du premier gradient : Cette théorie repose sur le développement limitée de la position à l'ordre 1, il vient alors :

$$\underline{ON} = \underbrace{\Phi(t, M_0)}_{=OM} + \frac{\partial \underline{\Phi}(t, M_0)}{\partial \underline{M_0}} . \underline{M_0 N_0}$$

Définition 1.3.1 On défini alors le gradient de Φ , aussi appelé le gradient de la transformation par:

$$\underline{\underline{F}} = \frac{\partial \underline{\Phi}(t, M_0)}{\partial M_0}$$

On a alors : $\underline{ON} = \underline{OM} + \underline{F}.M_0N_0$, d'où :

$$MN = F.M_0N_0$$

En passant à la norme de ces vecteurs il vient alors :

$$\begin{split} & \|\underline{MN}\|^2 = \underline{MN}^T.\underline{MN} = \underline{M_0N_0}^T.\underline{\underline{F}}^T\underline{\underline{F}}\underline{M_0N_0} \\ & \|\underline{MN}\|^2 - \|M_0N_0\|^2 = \underline{M_0N_0}^T.[\underline{\underline{F}}^T\underline{\underline{F}} - \underline{Id}]\underline{M_0N_0} \end{split}$$

Définition 1.3.2: D'après cette expression on défini l'opérateur des déformations de Green Lagrange:

$$\underline{\underline{E}} = \frac{1}{2} [\underline{\underline{F}}^T \underline{\underline{F}} - \underline{\underline{Id}}]$$

 $\underline{\underline{E}}(t, M_0)$ permet la mesure de la déformation au voisinage du point M_0 , on a alors :

$$\|\underline{MN}\|^2 - \|\underline{M_0N_0}\|^2 = \underline{M_0N_0}^T \cdot 2 \cdot \underline{E} \cdot \underline{M_0N_0}$$

Remarque: Notation différentielle

On peut utiliser la notation différentielle pour exprimer les relations précédentes, il vient alors:

- $-MN \equiv dM$
- $\underline{dM} = \underline{\underline{F}} \underline{dM_0} \\ \|\underline{dM}\|^2 \|dM_0\|^2 = 2.\underline{dM_0}^T .\underline{\underline{E}} .\underline{dM_0}$

Propriétés de l'opérateur de Green Lagrange

- 1. $\underline{\mathbf{E}}$ est symétrique.
- 2. Dans le cas d'un comportement de solide rigide on a : $\underline{\underline{F}} \equiv \underline{Q}$, il vient alors l'expression de $\underline{\underline{E}}$: $\underline{\underline{E}} = \frac{1}{2}[\underline{Q}^T.\underline{Q} - \underline{\underline{Id}}] = 0$. Ce qui vient du fait que $\underline{\underline{Q}}$ est orthogonale. Ceci prouve donc qu'il n'y \overline{a} pas de déformation lorsque le solide est \overline{a} considérer comme rigide.
- 3. Si $\underline{\mathbf{E}}$ est nul en tout point à un instant t, alors le corps étudié à un comportement global de solide rigide à l'instant t considéré.
- 4. E est un tenseur d'ordre 2, c'est un opérateur qui appliqué à un tenseur d'ordre 1 (c'est à dire un vecteur) donne un scalaire.

Démonstration : Considérons deux vecteur u_1 et u_2 , on a alors :

$$\underline{\underline{E}}(\underline{u}_1,\underline{u}_2) = \underline{u_1}^T.(\underline{\underline{E}}.\underline{u}_2) = \underline{u_2}^T.(\underline{\underline{E}}.\underline{u}_1)$$

Dans une base \underline{E} est représenté par une matrice qui contient ses différentes composantes exprimées dans la base. Alors $(\underline{E}.\underline{u_2})$ est un produit matrice-vecteur c'est donc un vecteur, $et\ \underline{u_1}^T.(\underline{E}.\underline{u_2})\ est\ alors\ le\ produit\ scalaire\ entre\ les\ vecteurs\ \underline{u_1}^T\ et\ (\underline{\underline{E}}.\underline{u_2}),\ c'est\ donc\ un$ $scalaire (c\overline{qfd})$

5. Dans la base $\mathcal{B}(\underline{e_1},\underline{e_2},\underline{e_3})$, les composantes de $\underline{\underline{\mathbf{E}}}$ sont notées E_{ij} avec :

$$E_{ij} = \underline{\underline{E}}(\underline{e_i}, e_j) = \underline{e_i}^T .\underline{\underline{E}}.e_j$$

1.3.2.3 Utilisation de l'opérateur de Green Lagrange

Exemple : Dans le cas d'une déformation de traction dans une direction particulière e₁

Fig. 1.5 – Schéma de traction est des déformations

La composante qui est reliée au problème est : $E_{11} = \underline{e_1}^T . \underline{\underline{E}} . \underline{e_1}$. On applique alors la relation de déformation au cas de traction unidirectionnel : $\|\underline{MN}\|^2 - \|\underline{M_0N_0}\|^2 = \underline{M_0N_0}^T . 2 . \underline{\underline{E}} . \underline{M_0N_0}$,

avec ici :
$$\begin{cases} \underline{M_0N_0} = a_0.\underline{e_1} \\ \underline{MN} = a.\underline{e_1} \end{cases}.$$
 On a alors : $a^2 - a_0^2 = 2a_0^2.\underline{e_1}^T.\underline{\underline{E}}.\underline{e_1} = 2a_0^2.E_{11}$, d'où :

$$E_{11} = \frac{1}{2} \left(\frac{a^2}{a_0^2} - 1 \right)$$

 $\underline{\underline{\underline{E}}}$ est symétrique, on a alors $E_{ij}=E_{ji}$, alors $\underline{\underline{\underline{E}}}$ est défini par 6 fonctions scalaires qui sont : $E_{11}, E_{22}, E_{33}, E_{12}, E_{13}, E_{23}.$

Les différentes composantes E_{ij} sont sans unités.

Ordre de grandeur

- Elasticité des aciers : 10^{-4} à 10^{-2}

- Plasticité des aciers : 10^{-2} à 10^{-1}

- Mise en forme : $\geq 10^{-1}$

- Béton en compression avant rupture : 10^{-3}

1.3.2.4 Notation en déplacement

Définition 1.3.3 On défini la fonction u, tel que :

$$u(t, M_0) = M_0 M$$

On a alors:

- L'expression de Φ en fonction de u est : $\Phi = \underline{OM} = \underline{OM_0} + \underline{u}$
- L'expression du gradient des déplacement est alors : $\overline{\underline{F}} = \frac{\partial \underline{\Phi}}{\partial M_0} = \underline{\underline{Id}} + \frac{\partial \underline{u}(t, M_0)}{\partial M_0}$
- L'expression du tenseur $\underline{\mathbf{E}}$ est alors :

$$\underline{\underline{E}} = \frac{1}{2} \left[\left(\frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} \right)^T + \frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} + \left(\frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} \right)^T \cdot \left(\frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} \right) \right]$$

Démonstration:

$$\underline{\underline{E}} = \frac{1}{2} [\underline{\underline{F}}^T . \underline{\underline{F}} - \underline{\underline{Id}}]$$

Avec $\underline{\underline{F}} = \underline{\underline{Id}} + \frac{\partial \underline{\underline{u}}(t, M_0)}{\partial M_0}$, on a alors :

$$\underline{\underline{E}} = \frac{1}{2} \left[\left(\underline{\underline{Id}} + \frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} \right)^T \cdot \left(\underline{\underline{Id}} + \frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} \right) - \underline{\underline{Id}} \right]$$

$$Or\left(\underline{\underline{Id}} + \frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}}\right)^T = \underline{\underline{Id}} + \left(\frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}}\right)^T$$

$$\underline{\underline{E}} = \frac{1}{2} \left[\left(\underline{\underline{Id}} + (\frac{\partial \underline{u}(t, M_0)}{\partial M_0})^T \right) \cdot \left(\underline{\underline{Id}} + \frac{\partial \underline{u}(t, M_0)}{\partial M_0} \right) - \underline{\underline{Id}} \right]$$

On a finalement

$$\underline{\underline{E}} = \frac{1}{2} \left[\left(\frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right)^T + \frac{\partial u(t, M_0)}{\partial \underline{M_0}} + \left(\frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right)^T \cdot \left(\frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right) \right]$$

– Si les déformations sont petites alors les composantes de $\frac{\partial \underline{u}(t,M_0)}{\partial \underline{M_0}}$ sont petites aussi, on peut alors négliger le dernier terme comme. On obtient l'opérateur des déformations linéarisé :

$$\underline{\epsilon} = \frac{1}{2} \left[\left(\frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} \right)^T + \frac{\partial \underline{u}(t, M_0)}{\partial \underline{M_0}} \right]$$

 $\underline{\underline{\epsilon}}$ est la partie symétrique du gradient, avec $\frac{\partial \underline{u}(t,M_0)}{\partial M_0} = \underline{\underline{grad}}(\underline{u})$, on a alors :

$$\underline{\underline{\epsilon}} = \frac{1}{2} \left[\underline{\underline{grad}}(\underline{u}) + \left(\underline{\underline{grad}}(\underline{u})\right)^T \right] = \underline{\underline{grad}_s}(\underline{u})$$

Exemple: Traction dans la direction e_1 :

 $On \ a :$

$$E_{11} = \left(\frac{(a_0 + \Delta a)^2}{(a_0)^2} - 1\right) = \frac{\Delta a}{a_0} + \frac{(\delta a)^2}{2(a_0)^2}$$

Or si l'élongation est négligeable devant la distance initiale, c'est à dire $\Delta a \ll a_0$, on a :

$$\epsilon_{11} = \frac{\Delta a}{a_0}$$

Définition 1.3.4 On appelle élongation du solide dans la direction $\underline{e_1}$: $\epsilon_{11} = \frac{\Delta a}{a_0}$

1.3.2.5 Notation en cartésien dans la base $\mathcal{B}(e_1, e_2, e_3)$

Données

- L'expression de la coordonnée initiale est : $OM_0 = \sum x_i^0 \cdot \underline{e_i}$
- L'expression de la coordonnée courante est : $\underline{OM} = \sum x_i.e_i$
- La fonction u s'exprime : $\underline{u} = \sum u_i . \underline{e_i}$
- Rappel $\underline{\Phi} = OM_0 + \underline{u}$

Définition 1.3.5 Notation

La notation indicielle de la dérivé est défini par : $\frac{\partial \bullet}{\partial x_i} = \bullet_{,i}$ Par exemple : $\frac{\partial u_j}{\partial x_i} = u_{j,i}$

Expression de $\underline{\mathbf{E}}$ et $\underline{\epsilon}$ en notation indicielle

$$E_{ij} = \frac{1}{2} [u_{i,j} + u_{j,i} + \sum_{k=1}^{3} u_{k,i}.u_{k,j}]$$

Et

$$\epsilon_{ij} = \frac{1}{2}[u_{i,j} + u_{j,i}]$$

1.3.2.6 Mesures expérimentales des déformations (cf TP)

1. Mesure de $\underline{\mathbf{E}}$: Méthode des grilles

Elongation:

$$E_{11} = \frac{1}{2} \left(\frac{a^2}{(a_0)^2} - 1 \right)$$

Cisaillement:

$$E_{12} = \frac{1}{2} \left(\frac{a.b.\cos\theta}{a_0.b_0} \right)$$

2. Mesure de $\underline{\epsilon}$: Jauges de déformation

Le principe de la jauge de déformation repose sur un fil composé d'un matériau dont la résistance dépend de la longueur du fil, c'est à dire tel que : $\frac{\Delta L}{L} = k.\frac{\Delta R}{R}$. La jauge est collée directement sur la surface.

1.3.3 Compatibilité des déformations

Rappel L'opérateur des déformations linéarisé est :

$$\underline{\epsilon} = \frac{1}{2} \left[\left(\frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right)^T + \frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right]$$

Alors on est face à un problème à une inconnue c'est à dire :

– Si on connaît l'expression de $\underline{u}(t,M_0)$ on peut connaître facilement, grâce au dérivée, l'expression de $\underline{\epsilon}$

– Si on connaît l'expression de l'opérateur des déformation linéarisé $\underline{\epsilon}(t, M_0)$, on cherche les expression de $\underline{u}(t, M_0)$ via une méthode d'intégration. Elle permet à partir des différentes dérivés $\frac{\partial u_i}{\partial x_i}$ de retrouver les différentes composante u_i .

Définition 1.3.6 On défini $\frac{\partial \underline{u}(t,M_0)}{\partial \underline{M_0}}$ comme somme d'une partie symétrique $\underline{\underline{\epsilon}}(t,M_0)$ (c'est à dire $\epsilon_{ij} = \epsilon_{ji}$) et d'une partie antisymétrique $\underline{\underline{\omega}}(t,M_0)$ (c'est à dire $\omega_{ji} = -\omega_{ij}$):

$$\frac{\partial \underline{u}(t, M_0)}{\partial M_0} = \underline{\underline{\epsilon}}(t, M_0) + \underline{\underline{\omega}}(t, M_0)$$

avec:

- La partie symétrique $\underline{\epsilon} = \frac{1}{2} \left[\left(\frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right)^T + \frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right], \ donc \ \epsilon_{ij} = \frac{1}{2} [u_{i,j} + u_{j,i}]$

- La partie antisymétrique
$$\underline{\underline{\omega}} = \frac{1}{2} \left[\frac{\partial u(t,M_0)}{\partial \underline{M_0}} - \left(\frac{\partial u(t,M_0)}{\partial \underline{M_0}} \right)^T \right], \ donc \ \omega_{ij} = \frac{1}{2} [u_{i,j} - u_{j,i}]$$

Dans ce cas on connaît les expressions des différentes composantes de la matrice des déformations linéarisé : $\epsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$.

Dérivation de la partie antisymétrique du u, ω

$$\omega_{ij,k} = \epsilon_{ik,j} - \epsilon_{jk,i}$$

Démonstration : On a l'expression de ω : $\omega_{ij} = \frac{1}{2}[u_{i,j} - u_{j,i}]$

En dérivant par rapport à la coordonnée x_k , il vient $\omega_{ij,k} = \frac{1}{2}[u_{i,jk} - u_{j,ik}]$.

En ajoutant un terme a cette relation : $u_{k,ij} - u_{k,ij} = 0$ a la relation précédente on a :

$$\omega_{ij,k} = \frac{1}{2}[(u_{i,jk} + u_{k,ij}) - (u_{j,ik} + u_{k,ij})]$$

Or ici on est dans le cas d'un milieu continu, donc on peut considérer que la fonction u est C^2 , donc les différentes composantes u_i sont des différentielles exactes. Donc d'après le théorème de Schwarz (Soit f, une fonction numérique de n variables, définie sur un ensemble ouvert U de R^n . Si les dérivées partielles existent à l'ordre p et sont continues en un point p de p de

$$\omega_{ij,k} = \frac{1}{2} \left[\underbrace{(u_{i,jk} + u_{k,ij}) - \underbrace{(u_{j,ik} + u_{k,ij})}_{u_{j,ki}} \right]$$

Or on $a: \epsilon_{ik,j} = \frac{1}{2}[u_{i,kj} + u_{k,ij}]$ et $\epsilon_{jk,i} = \frac{1}{2}[u_{j,ki} + u_{k,ji}]$ Il vient donc:

$$\omega_{ij,k} = \epsilon_{ik,j} - \epsilon_{jk,i}$$

CQFD

Alors si les différents ϵ_{ij} sont connus, l'on connaît donc $\omega_{ij,k}$ sont connus aussi, par intégration on peut donc connaître ω_{ij} ($\underline{\mathbf{si}}$ ω_{ij} sont des différentielles totales exactes!!!!).

il faut donc vérifié que $\omega_{ij,kl}=\omega_{ij,lk}$ c'est à dire :

$$\epsilon_{ik,jl} - \epsilon_{jk,il} = \epsilon_{il,jk} - \epsilon_{jl,ik}$$
.

Propriété 1.3.2 ω étant antisymétrique, alors $\underline{\underline{\omega}}$ est antisymétrique aussi, on a donc : $\omega_{ij} = -\omega_{ji}$, les différents termes diagonaux sont donc nuls. La matrice associée à $\underline{\underline{\omega}}$ est semblable à la matrice suivante :

$$\underline{\underline{\omega}} = \begin{pmatrix} 0 & \omega_{12} & \omega_{13} \\ -\omega_{12} & 0 & \omega_{23} \\ -\omega_{13} & -\omega_{23} & 0 \end{pmatrix}$$

Il y a donc 6 équations à vérifier pour que $\omega_{ij,kl} = \omega_{ij,lk}$.

Equations de compatibilité

Si les différentes équations de compatibilité sont vérifiés on a l'assurance de pouvoir calculer \underline{u} , à partir de la seule donnée de $\underline{\epsilon}$.

Mode opératoire pour calculer $\underline{\mathbf{u}}$

- 1. ϵ_{ij} sont les données du problème.
- 2. On calcule les expressions des différents $\omega_{ij,k}$ à partir de la relation : $\omega_{ij,k} = \epsilon_{ik,j} \epsilon_{jk,i}$
- 3. Par intégration on retrouve les différentes expression de ω_{ij} (Seulement si les équations de compatibilité sont vérifiées)
- 4. A partir de là on calcule, les différents $u_{i,j} = \epsilon_{ij} + \omega_{ij}$
- 5. Finalement par intégration on trouve les expressions des u_i (ceci est assuré si les équations de compatibilité sont vérifiées)

En pratique : On n'écrit pas les équations de compatibilité, on calcule les différents $\omega_{ij,k}$ et on vérifié si on peut calculer les différents ω_{ij} .

Exemple:

$$\left\{
\begin{array}{l}
\frac{\omega_{12}}{\partial x_1} = a.x_2 \\
\frac{\omega_{12}}{\partial x_2} = a.x_1 \\
\frac{\omega_{12}}{\partial x_3} = 0
\end{array}
\right\} \Rightarrow \omega_{12} = a.x_1.x_2. + b$$

1.4 Taux de déformation : Mesure des déformations en approche eulerienne

1.4.1 Gradient des vitesses

La variation locale du champ eulerien des vitesses $\underline{V}(t,M)$ peut s'écrire grâce à un développement limité à l'ordre 1.

Pour deux points voisins M et N on a :

$$\underline{V}(t,N) = \underbrace{\underline{V}(t,M)}_{\text{donnée}} + \underbrace{\left(\frac{\partial \underline{V}(t,M)}{\partial \underline{M}}\right)}_{\text{Gradient des vitesses}} .\underline{MN}$$

Définition 1.4.1 En général on écrit le gradient des vitesses $\frac{\partial V(t,M)}{\partial M}$ comme somme d'une partie symétrique et d'une partie antisymétrique tel que :

$$\frac{\partial \underline{V}(t,M)}{\partial \underline{M}} = \underbrace{\underline{\underline{D}}(t,M)}_{symtrique} + \underbrace{\underline{\underline{\Omega}}(t,M)}_{antisymtrique}$$

Avec:

- La partie symétrique \underline{D} est le tenseur des **Taux de déformation**, dont l'expression est :

$$\underline{\underline{D}} = \frac{1}{2} \left[\frac{\partial \underline{V}(t, M)}{\partial \underline{M}} + \left(\frac{\partial \underline{V}(t, M)}{\partial \underline{M}} \right)^T \right]$$

- La partie antisymétrique $\underline{\Omega}$ est le tenseur des **Taux de rotation**, dont l'expression est :

$$\underline{\underline{\Omega}} = \frac{1}{2} \left[\frac{\partial \underline{V}(t,M)}{\partial \underline{M}} - \left(\frac{\partial \underline{V}(t,M)}{\partial \underline{M}} \right)^T \right]$$

1.4.2 Solide rigide

Rappel Dans le cas d'un solide rigide le champ des vitesses s'exprime grâce à la relation :

$$\underline{V}(t,N) = \underline{V}(t,M) + \underline{\omega} \wedge \underline{MN}$$

Le produit vectoriel est un opérateur antisymétrique, donc ici on a : $\left\{ \begin{array}{l} \underline{\underline{D}} = 0 \\ \underline{\underline{\Omega}} = \underline{\omega} \wedge \bullet \end{array} \right.$

Ce qui montre bien que dans le cas d'un solide rigide, le taux de déformation est nul, est que seul le taux de rotation est non nul.

1.4.3 Propriétés du tenseur des taux de déformation

1.

$$\frac{\partial \underline{V}}{\partial M} = \underline{\underline{\dot{F}}} \underline{\underline{F}}^{-1} \ avec \ \underline{\underline{F}} = \frac{\partial \underline{\Phi}}{\partial M}$$

Démonstration : On a $\underline{MN} = \underline{\underline{F}}.\underline{M_0N_0}$ d'où $\underline{M_0N_0} = \underline{\underline{F}}^{-1}.\underline{MN}.$

En Lagrangien : On a la dérivé temporel de la position qui est égale à la vitesse,
 c'est à dire que :

$$\frac{\partial \underline{MN}}{\partial t} = \underline{V}(t, N) - \underline{V}(t, M) = \frac{\partial \underline{\underline{F}}}{\partial t} \underline{\underline{M_0 N_0}}$$

Définition 1.4.2 On notera la dérivé temporelle de $\underline{\underline{F}}$: $\underline{\underline{\dot{F}}}$, tel que :

$$\underline{\underline{F}} = \begin{pmatrix} f_{11}(t, M) & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix} et \underline{\underline{\dot{F}}} = \begin{pmatrix} \frac{\partial f_{11}(t, M)}{\partial t} & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

On a alors:

$$\frac{\partial \underline{MN}}{\partial t} = \underline{\dot{F}} \cdot \underline{M_0 N_0} = \underline{\dot{F}} \cdot \underline{F}^{-1} \underline{MN}$$

- **En Eulerien** On a

$$\underline{V}(t,N) - \underline{V}(t,M) = \frac{\partial \underline{V}}{\partial M}.\underline{MN}$$

En conclusion on a:

$$\frac{\partial \underline{V}}{\partial M} \cdot \underline{MN} = \underline{\dot{F}} \cdot \underline{F}^{-1} \underline{MN}$$

d'où:

$$\frac{\partial \underline{V}}{\partial \underline{M}} = \underline{\dot{F}} \cdot \underline{F}^{-1}$$

CQFD

2.

$$\underline{\underline{D}} = \frac{1}{2} \left(\underline{\underline{\dot{F}}} \cdot \underline{\underline{F}}^{-1} + \underline{\underline{F}}^{-T} \cdot \underline{\dot{F}}^{T} \right)$$

Démonstration : On a :

$$\underline{\underline{D}} = \frac{1}{2} \left[\frac{\partial \underline{V}(t, M)}{\partial \underline{M}} + \left(\frac{\partial \underline{V}(t, M)}{\partial \underline{M}} \right)^T \right]$$

Et avec:

$$\frac{\partial \underline{V}}{\partial \underline{M}} = \underline{\dot{F}} \cdot \underline{F}^{-1} \ et \ \left(\frac{\partial \underline{V}}{\partial \underline{M}}\right)^T = \left(\underline{\dot{F}} \cdot \underline{F}^{-1}\right)^T = \underline{F}^{-T} \cdot \underline{\dot{F}}^T$$

CQFD

Si à un instant t, le tenseur des Taux de déformation $\underline{\underline{D}}$ est nul en tout point, alors le champ de vitesse est de la forme :

$$V(t, N) = V(t, M) + \omega \wedge MN$$

Alors le corps à un mouvement de solide rigide.

1.5 Bilan 16

1.5 Bilan

Pour la mesure des déformations, on utilise : $\left\{ \begin{array}{l} \text{En Eulerien}: \underline{\underline{D}} \\ \text{En Lagrangien}: \underline{\underline{E}} \text{ et pour les petites déformation }\underline{\underline{\epsilon}} \end{array} \right.$

1.6 Résumé 17

1.6 Résumé

- Description Lagrangienne

Le mouvement est défini par une seule application :

$$[0, T] \times \Omega_0 \longrightarrow \mathcal{E}$$

$$(t, M_0) \longmapsto M = \Phi(t, M_0)$$

$$\underline{V}(t, M_0) = \frac{\partial \underline{\Phi}(t, M_0)}{\partial t}$$

$$\underline{\Gamma}(t, M_0) = \frac{\partial^2 \underline{\Phi}(t, M_0)}{\partial t^2}$$

- Descrpition Eulerienne

La description Eulerienne ne privilégie aucune configuration, le mouvement est défini uniquement, par la donnée à un instant t, de la vitesse associé au point M par rapport au repère utilisé. Cette vitesse est noté :

$$^{E}\underline{V}(t,M)$$

- Dérivé particulaire

$$\frac{d^{E}f(t,M)}{dt} = \frac{\partial^{E}f(t,M)}{\partial t} + \underline{grad}(^{E}f).^{E}\underline{V}(t,M)$$

- Champ des vitesses pour un solide rigide

$$\underline{V}(t,N) = \underline{V}(t,M) + \underline{\omega} \wedge \underline{MN}$$

- Gradient des deformations

$$\underline{\underline{F}} = \frac{\partial \underline{\Phi}(t, M_0)}{\partial \underline{M_0}}$$
$$\underline{MN} = \underline{F} \cdot \underline{M_0} N_0$$

- Opérateur de Green Lagrange

$$\underline{\underline{E}} = \frac{1}{2} [\underline{\underline{F}}^T \underline{\underline{F}} - \underline{\underline{Id}}]$$

$$\|\underline{MN}\|^2 - \|\underline{M_0N_0}\|^2 = \underline{M_0N_0}^T \cdot 2 \cdot \underline{\underline{E}} \cdot \underline{M_0N_0}$$

$$E_{ij} = \frac{1}{2} [u_{i,j} + u_{j,i} + \sum_{k=1}^3 u_{k,i} \cdot u_{k,j}]$$

- Opérateurs des déformations linéarisé

$$\underline{\epsilon} = \frac{1}{2} \left[\left(\frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right)^T + \frac{\partial u(t, M_0)}{\partial \underline{M_0}} \right]$$

$$\epsilon_{ij} = \frac{1}{2} [u_{i,j} + u_{j,i}]$$

1.6 Résumé

- Taux de deformation

$$\underline{\underline{D}} = \frac{1}{2} \left[\frac{\partial \underline{V}(t, M)}{\partial \underline{M}} + \left(\frac{\partial \underline{V}(t, M)}{\partial \underline{M}} \right)^T \right]$$

- Taux de rotation

$$\underline{\underline{\Omega}} = \frac{1}{2} \left[\frac{\partial \underline{V}(t,M)}{\partial \underline{M}} - \left(\frac{\partial \underline{V}(t,M)}{\partial \underline{M}} \right)^T \right]$$

Chapitre 2

Schématisation des efforts intérieurs - Notion de Contrainte

2.1 Rappel sur la schématisation des efforts intérieurs

2.1.1 Point materiel

– Soit le point materiel M, auquel on associe la masse m.

Fig. 2.1 – Représentation du point materiel

– Les effets de l'environement exterieur est representé par une force \underline{F} est appliqué au point materiel M.

Ces effets sont representés sous la forme d'un torseur (glisseur) :

$$\{\tau_{ext \to M}\} = \begin{cases} \underline{R} = \underline{F} \\ \underline{M} = 0 \end{cases}$$

On peut appliquer au point materiel le Principe Fondamentale de la Dynamique (PFD),
 ce qui donne l'équation :

$$m\frac{d^2 \ OM}{dt^2} = \underline{F}$$

2.1.2 Solide rigide

Il existe plusieurs sources d'efforts qui peuvent s'appliquer à un solide rigide.

Fig. 2.2 – Définition du domaine de solide rigide

2.1.2.1 Efforts à distance

Les efforts volumiques qui s'exercent sur Σ , sont schématisés par une densité volumique de force notée $\underline{f}(M)$. C'est à dire que sur le volume élémentaire dV s'applique une force egale à \underline{f} .dV. L'unité de f est donc $[N.m^{-3}]$.On peut donc y associé un torseur, exprimé au point O:

$$\{\text{Efforts à distances}\} = \left\{ \begin{array}{l} \underline{R} = \int\limits_{\Sigma} \underline{f}(M).\,dV \\ \underline{M_0} = \int\limits_{\Sigma} \underline{OM} \wedge \underline{f}(M)\,dV \end{array} \right.$$

Exemple : La gravité qui est appliquée au solide, tel que : $f = \rho g$

2.1.2.2 Efforts de contact

Les efforts surfaciques exercés sur $\partial \Sigma$, sont schématisés par une densité surfacique de force notée $\underline{F}(M)$. C'est à dire que sur la surface dS s'applique une force egale à F.dS. L'unité de F est alors $[N.m^{-2}]$ (ou Pa).On peut y associé le torseur, exprimé au point O:

$$\{\text{Efforts de contact}\} = \begin{cases} \underline{R} = \int_{\partial \Sigma} \underline{F}(M) \cdot dS \\ \underline{M_0} = \int_{\partial \Sigma} \underline{OM} \wedge \underline{F}(M) \, dS \end{cases}$$

Exemple : Les efforts de pression qui s'exercent sur la surface d'un solide : $\underline{F} = -p.\underline{n}$ où \underline{n} est la normale à la surface.

2.1.2.3 Charges concentrées

Les charges sont schématisées grâce a des densités de force localisées. On peut y associé un torseur :

$$\{\text{Charges concentrées}\} = \left\{ \begin{array}{l} \underline{F_A} \\ \underline{M_A} \end{array} \right.$$

2.1.2.4 Application du Principe Fondamentale de la Dynamique

On peut appliqué le PFD au solide rigide, ce qui donne :

 $\{Dynamique\} = \{Efforts de contact\} + \{Charges concentrées\} + \{Efforts surfaciques\}$

d'où

$$\begin{cases} \int\limits_{\Sigma} \rho.\underline{\Gamma}(M/R).\,dV \\ \int\limits_{\Sigma} \rho.\underline{OM} \wedge \underline{\Gamma}(M/R).\,dV \end{cases} = \begin{cases} \int\limits_{\Sigma} \underline{f}(M).\,dV + \int\limits_{\partial\Sigma} \underline{F}(M).\,dS + \underline{F_A} \\ \int\limits_{\Sigma} \underline{OM} \wedge \underline{f}(M)\,dV + \int\limits_{\partial\Sigma} \underline{OM} \wedge \underline{F}(M)\,dS + \underline{M_A} \end{cases}$$

2.1.3 Cas d'un milieu continu

Dans le cas d'un milieu continu, il n'y a pas de charges concentrées. Les actions exterieures se resume alors à 2 schématisation : $\begin{cases} & \text{Efforts volumique (à distance)} : \underline{f}(M,t) \\ & \text{Efforts surfacique (de contact)} : \underline{F}(M,t) \end{cases}$

2.2 Schématisation des efforts intérieurs

2.2.1 Rappels: RDM - Poutres

Fig. 2.3 – Poutre en 3D

Pour que l'élément soit considéré comme une poutre il faut que le diamètre soit petit devant la longueur de la poutre : $D \ll L$.

On modélise alors cette poutre suivant une dimension, de manière rectiligne. On représente les différents efforts et moments aux points caractéristiques de la barre.

Fig. 2.4 – Modélisation de la poutre

Pour obtenir le torseur des efforts intérieurs, on effectue une coupe de la poutre est on isole seulement une partie de la poutre.

Fig. 2.5 – Modélisation des efforts intérieurs

Le torseur des efforts intérieurs est exprimé au point de coupe. Il est composé tel que la partie coupée soit équilibrée.

On a donc:

$$\{\tau_{int}\} = \left\{ \begin{array}{c} \underline{F} \\ \underline{M} \end{array} \right\}$$

On peut donc dire qu'il existe au niveau de la surface de coupe une densité surfacique de force \underline{T} dont le torseur résultant est le torseur des efforts intérieurs $\{\tau_{int}\}$ tel que :

$$T = \sigma . n + \tau$$

où:

- $-\sigma$ est la contrainte normale à la surface de coupe
- $\underline{\tau}$ représente les contraintes de cisaillement.

Fig. 2.6 – Densité surfacique au point O

On a alors l'expression du torseur des efforts intérieurs :

$$\{\tau_{int}\} = \left\{ \begin{array}{l} \underline{F} = \int\limits_{S} \underline{T} \, dS \\ \underline{M} = \int\limits_{S} \underline{OM} \wedge \underline{T} \, dS \end{array} \right\}$$

2.2.2 Hypothèses de base

Fig. 2.7 – Domaine Σ et Ω

On considère une partie Σ intérieure au domaine Ω occupé par le corps (donc $\partial \Sigma$ intérieur à $\partial \Omega$).

2.2.2.1 Hypothèse 1

Fig. 2.8 – Effort surfacique sur le domaine Σ

Les efforts de $(\Omega - \Sigma)$ sur Σ sont uniquement des efforts surfacique \underline{T} , où \underline{T} est la densité surfacique de forces

2.2.2.2 Hypothèse 2

En un point M de $\partial \Sigma$, \underline{T} ne dépend que de l'orientation de $\partial \Sigma$ en M car \underline{T} est dépend de la normale à la surface.

2.2.3 Opérateur des contraintes

Théorème 2.2.1 Théorème de Cauchy

Il existe en tout point M du domaine Ω , un opérateur linéaire : $\underline{\underline{\sigma}}$, de telle manière que en ce point on a la relation :

$$\underline{T}(M, \underline{n}) = \underline{\sigma}(M).\underline{n}$$

 $\underline{\sigma}(M)$ est alors l'opérateur des contraintes associé au point M.

Fig. 2.9 – Tétraèdre de Cauchy

Démonstration: Tétraèdre de Cauchy

En effectuant le produit entre l'opérateur des contraintes $\underline{\underline{\sigma}}$ et les différentes normales on a :

$$-\underline{\underline{\sigma}}(M).(-\underline{e_1}) = \underline{T}(M,\underline{e_1})$$

$$-\underline{\sigma}(M).(-e_2) = \underline{T}(M, e_2)$$

$$-\underline{\sigma}(M).(-\underline{e_3}) = \underline{T}(M,\underline{e_3})$$

Puis en équilibrant le tétraèdre et en faisant tendre sa taille vers 0, on a :

$$\underline{T}(M, \underline{n}) = \underline{\underline{\sigma}}(M).\underline{n}$$

Définition 2.2.2 $\underline{T}(M,\underline{n}) = \underline{\underline{\sigma}}.\underline{n}$ est appelé vecteur contrainte au point M dans la direction n.

 $\underline{\underline{\sigma}}$ est un tenseur d'ordre 2, il s'exprime dans une base $\mathcal{B}(\underline{e_1},\underline{e_2},\underline{e_3})$. Les composantes de la matrice $\underline{\underline{\sigma}}$ sont exprimées grâce à la relation : $\sigma_{ij} = \underline{e_i}.\underline{\underline{\sigma}}.e_j$

Propriété 2.2.1 L'opérateur $\underline{\underline{\sigma}}$ est symétrique. On a alors $\underline{\underline{\sigma}} = \underline{\underline{\sigma}}^T$, d'où $\sigma_{ij} = \sigma_{ji}$.

Démonstration : Equilibre d'un élément de volume cube de centre M.

2.2.4 Etude de l'opérateur des contraintes

2.2.4.1 Dimensions

On a l'expression de la densité surfacique d'effort grâce à l'opérateur des contraintes grâce à la relation :

$$\underline{T}(M,\underline{n}) = \underline{\sigma}.\underline{n}$$

Les dimensions T et de σ_{ij} sont alors des densités surfaciques d'effort c'est à dire : $N.m^{-2}$ (ou Pa).

La force interieure exercées en M sur une surface élémentaire dS de normale $\underline{\mathbf{n}}$ est :

$$dF = T(M, n).dS$$

2.2.4.2Contrainte normale et tangentielle

Fig. 2.10 – Contraintes tangentielle et normale

- On appelle **contrainte normale** en M, dans la direction $\underline{\mathbf{n}}$, la projection de $\underline{\mathbf{T}}$ sur $\underline{\mathbf{n}}$. On la note alors:

$$T_n = [\underline{T}(M, \underline{n}).\underline{n}]\underline{n} = [\underline{n}.\underline{\sigma}.\underline{n}]\underline{n}$$

- Le complément est appelé **contrainte tangentielle**. C'est à dire :

$$T_r = \underline{T} - T_n = \underline{\sigma} \cdot \underline{n} - [\underline{n} \cdot \underline{\sigma} \cdot \underline{n}]\underline{n}$$

Réciprocité des contraintes

Propriété 2.2.2 Au point $M: \forall n_1, n_2 \text{ on } a$

$$n_1.\underline{T}(M, n_2) = n_2.\underline{T}(M, n_1)$$

Démonstration:

- $\begin{array}{l} -\underline{n_1}.\underline{T}(M,\underline{n_2}) = \underline{n_1}.\underline{\underline{\sigma}}.\underline{n_2} \\ -\underline{n_2}.\underline{T}(M,\underline{n_1}) = \underline{n_2}.\underline{\underline{\sigma}}.\underline{n_1} \end{array}$
- $\overline{Or} \ par \ le \ \overline{fait} \ \overline{de} \ \overline{la} \ sym\'etrie \ de \ \underline{\underline{\sigma}} \ on \ a : \underline{n_1}.\underline{\underline{\sigma}}.\underline{n_2} = \underline{n_2}.\underline{\underline{\sigma}}.\underline{n_1}$

$$d\hbox{'où}:\underline{n_1}.\underline{T}(M,\underline{n_2})=\underline{n_2}.\underline{T}(M,\underline{n_1})\ \ CQFD.$$

2.2.4.4 Déviateur de contrainte

Définition 2.2.3 On appelé contrainte deviatorique :

$$\underline{\underline{\sigma}}^D = \underline{\underline{\sigma}} - \frac{1}{3} \left[Tr \underline{\underline{\sigma}} \right] \underline{\underline{Id}}$$

2.2.4.5 Contraintes principales et direction principales

Définition 2.2.4 On appelle direction principale toute direction \underline{n} telle que :

$$\underline{T}(M, \underline{n}) = \underline{\sigma}.\underline{n} = \sigma\underline{n}$$

avec : σ un scalaire.

Le scalaire σ est la contrainte principale de la direction principale <u>n</u>.

Propriété 2.2.3 Il existe toujours au moins une base $\mathcal{N}(\underline{n_1}, \underline{n_2}, \underline{n_3})$, de directions principales, orthonormés.

Dans cette base la matrice des composantes de $\underline{\sigma}$ est diagonale. Les vecteurs $\underline{n_i}$ sont les vecteurs propres associés au valeurs propres σ_i . L'expression de la matrice est

$$\underline{\underline{\sigma}} = \left(\begin{array}{ccc} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{array} \right)$$

.

2.2.5 Etat de contraintes particulières

2.2.5.1 Etat de contrainte sphérique

Fig. 2.11 – Contrainte sphérique

La forme de la matrice $\underline{\sigma}$ est :

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \end{pmatrix}_{\mathcal{N}(\underline{n_1}, \underline{n_2}, \underline{n_3})} = \sigma \underline{\underline{Id}}$$

Dans le cas où σ est négatif on parle de pression qui s'exerce sur le volume. C'est un état de contrainte qui existe dans les fluides.

Remarque : $Tr\underline{\underline{\sigma}} = 3\sigma$ on a alors la contrainte deviatorique :

$$\underline{\underline{\sigma}}^{D} = \underline{\underline{\sigma}} - \frac{1}{3} \left[Tr\underline{\underline{\sigma}} \right] \underline{\underline{Id}} = \sigma \underline{\underline{Id}} - \sigma \underline{\underline{Id}} = 0$$

Fig. 2.12 – Pression s'exerçant sur un volume

Alors la contrainte deviatorique n'existe que dans le cas où il ne s'agit pas de contrainte sphérique.

2.2.5.2 Etat de contrainte uniaxial

Dans la direction e_1 :

Fig. 2.13 – Contrainte uniaxiale

La forme de la matrice $\underline{\sigma}$ est :

$$\underline{\underline{\sigma}} = \left(\begin{array}{ccc} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)_{\mathcal{N}(\underline{n_1},\underline{n_2},\underline{n_3})}$$

Si σ est négatif, on parle de compression. Et si σ est positif on parle de traction.

2.2.5.3 Etat de contrainte plan

Toutes les contraintes sont contenues dans le plan (e_1, e_2)

Fig. 2.14 – Contrainte plane

Dans ce cas la forme de la matrice est :

$$\underline{\underline{\sigma}} = \left(\begin{array}{ccc} \sigma_{11} & \sigma_{21} & 0 \\ \sigma_{12} & \sigma_{22} & 0 \\ 0 & 0 & 0 \end{array} \right)_{\mathcal{N}(\underline{n_1, n_2, n_3})}$$

2.2.5.4 Etat de contrainte anti-plane

Toutes les contraintes sont orthogonale au plan (e_1, e_2)

Fig. 2.15 – Contrainte anti-plane

Dans ce cas la forme de la matrice est :

$$\underline{\underline{\sigma}} = \begin{pmatrix} 0 & 0 & \sigma_{13} \\ 0 & 0 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}_{\mathcal{N}(\underline{n_1, n_2, n_3})}$$

2.2.5.5 Etat de cisaillement

Dans le plan (e_1, e_2)

Fig. 2.16 – Contrainte de cisaillement

La forme de la matrice est :

$$\underline{\underline{\sigma}} = \left(\begin{array}{ccc} 0 & \sigma_{12} & 0 \\ \sigma_{12} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

Tout les termes non diagonaux sont appelé termes de cisaillement.

2.3 Résumé 29

2.3 Résumé

- Efforts à distance

$$\{\text{Efforts à distances}\} = \left\{ \begin{array}{l} \underline{R} = \int\limits_{\Sigma} \underline{f}(M).\,dV \\ \underline{M_0} = \int\limits_{\Sigma} \underline{OM} \wedge \underline{f}(M)\,dV \end{array} \right.$$

- Effort de contact

$$\{\text{Efforts de contact}\} = \left\{ \begin{array}{l} \underline{R} = \int\limits_{\partial \Sigma} \underline{F}(M).\,dS \\ \underline{M_0} = \int\limits_{\partial \Sigma} \underline{OM} \wedge \underline{F}(M)\,dS \end{array} \right.$$

- Charges concentrées

$$\{\text{Charges concentrées}\} = \left\{ \begin{array}{l} \frac{F_A}{M_A} \end{array} \right.$$

- Torseur des efforts intérieurs

$$\{\tau_{int}\} = \left\{ \begin{array}{c} \underline{F} \\ \underline{M} \end{array} \right\}$$

- Vecteur contrainte

$$\underline{T}(M, \underline{n}) = \underline{\underline{\sigma}}(M).\underline{n}$$

- Deviateur de contrainte

$$\underline{\underline{\sigma}}^D = \underline{\underline{\sigma}} - \frac{1}{3} \left[Tr \underline{\underline{\sigma}} \right] \underline{\underline{Id}}$$

- Etat de contrainte sphérique

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \end{pmatrix}_{\mathcal{N}(n_1, n_2, n_3)} = \sigma \underline{\underline{Id}}$$

- Etat de contrainte uniaxiale

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\mathcal{N}(n_1, n_2, n_3)}$$

- Etat de contrainte plane

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma_{11} & \sigma_{21} & 0 \\ \sigma_{12} & \sigma_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\mathcal{N}(\underline{n_1, n_2, n_3})}$$

2.3 Résumé 30

- Etat de contrainte anti-plane

$$\underline{\underline{\sigma}} = \begin{pmatrix} 0 & 0 & \sigma_{13} \\ 0 & 0 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}_{\mathcal{N}(\underline{n_1}, \underline{n_2}, \underline{n_3})}$$

- Etat de cisaillement

$$\underline{\underline{\sigma}} = \left(\begin{array}{ccc} 0 & \sigma_{12} & 0 \\ \sigma_{12} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$