Algorithm Mergesort: $\Theta(n \log n)$ Complexity

Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

1 Mergesort: basic ideas and correctness

Merging sorted lists

3 Time complexity of mergesort

Mergesort: Worst-case Running time of $\Theta(n \log n)$

A recursive divide-and-conquer approach to data sorting introduced by Professor John von Neumann in 1945!

- The best, worst, and average cases are similar.
- Particularly good for sorting data with slow access times, e.g., stored in external memory or linked lists.

Basic ideas behind the algorithm:

- 1 If the number of items is 0 or 1, return; otherwise:
 - 1 Separate the list into two lists of equal or nearly equal size.
 - 2 Recursively sort the first and the second halves separately.
- 2 Finally, merge the two sorted halves into one sorted list.

Almost all the work is performed in the merge steps.

Correctness of Mergesort

Lemma 2.8 (Textbook): Mergesort is correct.

Proof. by induction on the size n of the list.

- Basis: If n = 0 or 1, mergesort is correct.
- Inductive hypothesis: Mergesort is correct for all m < n.
- Inductive step:
 - Mergesort calls itself recursively on two sublists.
 - ullet Each of these sublists has size less than n and thus is correctly sorted by induction hypothesis.
 - Provided that the merge step is correct, the top level call of mergesort returns the correct answer.
- Linear time merge, $\Theta(n)$ yields complexity $\Theta(n \log n)$ for mergesort.
- The merge is at least linear in the total size of the two lists: in the worst case every element must be looked at for the correct ordering.

if
$$a[i] < b[j]$$
 then $c[k++] = a[i++]$ else $c[k++] = b[j++]$

Example 2.10 (textbook)

$$C$$
 2 $\uparrow_{k=0}$

$$\downarrow^{j=0}$$

$$a[0] = 2 < b[0] = 15$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

$$\downarrow^{j=0}$$

$$i = 0 + 1$$
; $k = 0 + 1$

if
$$a[i] < b[j]$$
 then $c[k++] = a[i++]$ else $c[k++] = b[j++]$

Example 2.10 (textbook)

$$\downarrow^{j=0}$$

$$a[1] = 8 < b[0] = 15$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

$$\downarrow^{j=0}$$

$$i = 1 + 1; k = 1 + 1$$

if
$$a[i] < b[j]$$
 then $c[k++] = a[i++]$ else $c[k++] = b[j++]$

Example 2.10 (textbook)

$$C bigcup 2 bigcup 8 bigcup 15 bigcup $\uparrow_{k=2}$$$

$$\downarrow^{j=0}$$

$$a[2] = 25 > b[0] = 15$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

$$\downarrow^{j=1}$$

$$i = 0 + 1; k = 2 + 1$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

$$\downarrow^{j=1}$$

$$a[2] = 25 > b[1] = 20$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

Step 4

 $\uparrow_{k=4}$

$$j=2$$

$$j = 1 + 1; k = 3 + 1$$

if
$$a[i] < b[j]$$
 then $c[k++] = a[i++]$ else $c[k++] = b[j++]$

Example 2.10 (textbook)

$$C \ \ \, 2 \ \ \, 8 \ \ \, 15 \ \ \, 20 \ \ \, 25 \ \ \,$$

$$|j=2|$$

$$a[2] = 25 < b[2] = 31$$

if
$$a[i] < b[j]$$
 then $c[k++] = a[i++]$ else $c[k++] = b[j++]$

Example 2.10 (textbook)

$$j=2$$

$$i = 2 + 1; k = 4 + 1$$

if
$$a[i] < b[j]$$
 then $c[k++] = a[i++]$ else $c[k++] = b[j++]$

Example 2.10 (textbook)

$$j=2$$

$$a[3] = 70 > b[2] = 31$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

$$A \begin{array}{|c|c|c|c|c|c|} \hline A & 2 & 8 & 25 & 70 & 91 \\ \hline & & \uparrow_{i=3} & \hline \end{array}$$

$$j=3$$

$$j = 2 + 1; k = 5 + 1$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

$$A \begin{array}{|c|c|c|c|c|c|} \hline A & 2 & 8 & 25 & 70 & 91 \\ \hline & & \uparrow_{i=3} & \hline \end{array}$$

Step 7

 $\downarrow j=3$

$$a[3] = 70 > b[3] = 50$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

$$A \begin{array}{|c|c|c|c|c|c|} \hline A & 2 & 8 & 25 & 70 & 91 \\ \hline & & \uparrow_{i=3} & \hline \end{array}$$

Step 7

 $\downarrow j=4$

$$j = 3 + 1; k = 6 + 1$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

Step 8

 $\downarrow j=4$

$$a[3] = 70 > b[3] = 65$$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

Step 8

 $\uparrow_{k=8}$

$$\downarrow^{j=4}$$

$$B$$
 exhausted; $k = 7 + 1$

```
if a[i] < b[j] then c[k++] = a[i++] else c[k++] = b[j++]
```

Example 2.10 (textbook)

Steps 9, 10

 $\downarrow^{j=4}$

A copied; k = 8 and 9

```
algorithm merge
                                  sorted subarrays a[l..s-1] and a[s..r] into a[l..r]
Input: array a[0..n-1]; indices l, r; index s; array t[0..n-1]
begin
         i \leftarrow l; j \leftarrow s; k \leftarrow l
       while i \le s-1 and j \le r do
              if a[i] \leq a[j] then t[k] \leftarrow a[i]; k \leftarrow k+1; i \leftarrow i+1
              else
                                      t[k] \leftarrow a[j]; k \leftarrow k+1; j \leftarrow j+1
              end if
       end while
       while i \leq s-1 do
                                                          copy the rest of the 1<sup>st</sup> half
             t[k] \leftarrow a[i]; k \leftarrow k+1; i \leftarrow i+1
       end while
                                                         copy the rest of the 2<sup>nd</sup> half
       while i < r do
             t[k] \leftarrow a[j]; k \leftarrow k+1; j \leftarrow j+1
       end while
       return a \leftarrow t
end
```

Merging Sorted Lists: Linear Time Complexity

Theorem 2.9: Two input sorted lists $A=[a_1,\ldots,a_{\nu}]$ of size ν and $B=[b_1,\ldots,b_{\mu}]$ of size μ can be merged into an output sorted list $C=[c_1,\ldots,c_n]$ of size $n=\nu+\mu$ in linear time.

Proof. The number of comparisons needed is linear in n:

- Let pointers i, j, and k to current positions in A, B, and C, respectively, be initially at the first positions, i = j = k = 1.
- Each time the smaller of a_i and b_j is copied to c_k , and the pointers k and either i or j are incremented by 1:

$$(a_i > b_j)? \Rightarrow \begin{cases} a_i > b_j & \Rightarrow c_k = b_j & j \leftarrow j+1; & k \leftarrow k+1 \\ a_i \le b_j & \Rightarrow c_k = a_i & i \leftarrow i+1; & k \leftarrow k+1 \end{cases}$$

- ullet After A or B is exhausted, the rest of the other list is copied to C.
- Each comparison advances k so that the maximum number of comparisons is $n=\nu+\mu$, all other operations being linear, too.

Recursive mergesort for arrays

Easier than for linked lists: a constant time for splitting an array in the middle.

```
algorithm mergeSort sorts the subarray a[l..r] Input: array a[0..n-1]; array indices l, r; array t[0..n-1] begin if l < r then m \leftarrow \lfloor \frac{l+r}{2} \rfloor; mergeSort(a,l,m,t); mergeSort(a,m+1,r,t); merge(a,l,m+1,r,t); end if end
```

- The recursive version simply divides the list until it reaches lists of size 1, then merges these repeatedly.
- **Straight mergesort** eliminates the recursion by merging first lists of size 1 into lists of size 2, then lists of size 2 into lists of size 4, etc.

0	1	2	3	4	5	6	7	8	9
91	2	25	8	70	20	65	15	50	31

How Straight Mergesort Works

How Straight Mergesort Works

How Straight Mergesort Works

Analysis of Mergesort

Theorem 2.11: The running time of mergesort on an input list of size n is $\Theta(n \log n)$ in the best, worst, and average case.

Proof. The number of comparisons used by mergesort on an input of size n satisfies a recurrence of the form:

$$T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + a(n); \ 1 \le a(n) \le n - 1$$

It is straightforward to show that T(n) is $\Theta(n \log n)$.

- The other elementary operations in the divide and combine steps depend on the implementation of the list, but in each case their number is $\Theta(n)$.
- Thus these operations satisfy a similar recurrence and do not affect the $\Theta(n \log n)$ answer.

Recurrence $T(n) = 2T(\frac{n}{2}) + \alpha n$; T(1) = 0

For $n=2^m$, "telescoping" the recurrence $T(2^m)=2T(2^{m-1})+\alpha 2^m$ (see Lecture 06, Slides 19-20, and Textbook, Example 1.32):

$$\begin{array}{llll} T(2^m) & = & 2T(2^{m-1}) + \alpha \cdot 2^m & \longrightarrow_{\times 2^0} & T(2^m) - 2T(2^{m-1}) & = & \alpha \cdot 2^m \\ T(2^{m-1}) & = & 2T(2^{m-2}) + \alpha \cdot 2^{m-1} & \longrightarrow_{\times 2^1} & 2T(2^{m-1}) - 2^2T(2^{m-2}) & = & \alpha \cdot 2^m \\ T(2^{m-2}) & = & 2T(2^{m-3}) + \alpha \cdot 2^{m-1} & \longrightarrow_{\times 2^2} & 2^2T(2^{m-2}) - 2^3T(2^{m-3}) & = & \alpha \cdot 2^m \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ T(2^2) & = & 2T(2^1) + \alpha \cdot 2^2 & \longrightarrow_{\times 2^{m-2}} & 2^{m-2}T(2^2) - 2^{m-1}T(2^1) & = & \alpha \cdot 2^m \\ T(2^1) & = & 2 \underbrace{T(2^0)}_{T(1)=0} + \alpha \cdot 2^1 & \longrightarrow_{\times 2^{m-1}} & 2^{m-1}T(2^1) - \underbrace{2^mT(2^0)}_{=0} & = & \alpha \cdot 2^m \end{array}$$

$$T(2^m) = \alpha \cdot 2^m \cdot m$$

So $T(n) \approx \alpha \cdot n \cdot \log_2 n$.

Analysis of Mergesort

- + The $\Theta(n \log n)$ best-, average-, and worst-case complexity because the merging is always linear.
 - Recall the basic recurrence:

$$T(n) = 2T\left(\frac{n}{2}\right) + cn \implies T(n) = cn \lg n$$

and Theorem 2.11 (Slide 10).

- Extra $\Theta(n)$ temporary array for merging data.
- Extra copying to the temporary array and back.
- Algorithm mergesort is useful only for external sorting.
- For internal sorting: quickSort and heapsort are much better.