CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction

Y. Sun, F. Lin, N. Wang

D

X. Yin, J. Jiang, V. Sekar, B. Sinopoli

T. Liu

Bitrate adaptation is key for QoE

- DASH = Dynamic Adaptive Streaming over HTTP
- Entail new QoE metrics, e.g., low buffering, high video quality
- Need intelligent bitrate control and adaptation

Prior work: Accurate throughput prediction can help!

Accurate throughput prediction

Better initial bitrate selection

Fixed bitrate

Adaptive bitrate

Accurate throughput prediction Better midstream adaptation

Replicate the analysis by Yin et al. at SIGCOMM2015^[1]

$$\square Normalized\ QoE = \frac{Actual\ QoE}{Theoretical\ optimal}$$

[1] X. Yin, et al. "A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP". *ACM SIGCOMM*, 2015. [2] T.Y. Huang, et al. "A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service". *ACM SIGCOMM*, 2014.

Open questions on predictability!

 Our understanding of throughput variability and predictability is quite limited.

- What types of prediction algorithms to use?
 - In the context of video bitrate adaptation
 - Prior approaches: 30%+ of predictions with error ≥0.2

Our work and contributions

A large-scale analysis, providing data-driven insights for predicting the throughput accurately.

Design of CS2P (Cross-Session Stateful Predictor): Improving bitrate selection and adaptation via throughput modeling.

A practical implementation of CS2P and the demonstration of improvements in video QoE.

Outline

- Motivation
- → Data-driven Observations
- CS2P Approach
- Evaluation

Dataset description

- From operational platform of iQIYI.
 - iQIYI is a leading online video content provider in China.
- 20M+ sessions, 8 days in Sep. 2015,
 - Each session records avg.
 throughput per 6-second epoch.

Feature	Coverage
Client IP	3.2M
Client ISP	87
Client AS	161
Province	33
City	736
Server	18

Observation 1: Significant variability within a session.

Observation 2: Stateful/persistent characteristics.

Throughput at Epoch t (Mbps)
Throughput variation across two consecutive epochs with a particular 19716 prefix.

Observation 3: Similar session → Similar throughput

Throughput at different session clusters with particular IP/8 prefixes.

Observation 4:

Complex relationship between session feature ←→ throughput

Cheripipations the sultiple features of the bave a seusing seater in the setting. The individual feature.

Outline

- Motivation
- Data-driven Observations
- → CS2P Approach
- Evaluation

Observation

Idea

Workflow of CS2P

Throughput Measurements **Step 1: Session Clustering Video Server Step 2: Model Training Prediction Engine** 1.Initial Throughput **Step 3: Throughput** 2.Prediction Model **Prediction and Bitrate Selection** 15 Video Player Clients

Session clustering-finding critical features

Throughput prediction with HMM

bitrate selection (online).

Outline

- Motivation
- Data-driven Observations
- CS2P Approach
- **→** Evaluation

Trace-driven simulation setup

Algorithms to compare:

- 1. History-based predictor:
 - Last Sample, Harmonic-Mean, Auto Regression
- 2. ML-based predictor:
 - SVR, Gradient Boosting Regression trees
- 3. CFA^[1]

Bitrate selection method:

• State-of-art: MPC^[2]

iQIYI throughput trace:

 Non-overlapping traces of training and testing

Video source:

- "Envivio" from dash.js test website
- Encoded in H.264/MPEG-4 in 5 bitrate levels

[1] J. Jiang, et al. "CFA: A Practical Prediction System for Video QoE Optimization". In *Proc.* of *USENIX NSDI*, 2016. [2] X. Yin, et al. "A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP". In *Proc.* of *ACM SIGCOMM*, 2015.

Throughput Prediction Accuracy

Takeaway

- Midstream Epoch
 - ■Reduce median error by 50%
- Multi-epoch Ahead
 - ■9% prediction
 error for 10 epoch
 ahead
 - □50% improvement

Video QoE

- Normalized $QoE = \frac{Actual\ QoE}{Theoretical\ optimal}$
- QoE^[1] is a linear combination of avg. video quality, quality variation, total rebuffer time and startup delay.

Pilot deployment: multi-city test

Metrics	vs. HM+MPC	vs. BB
Avg. Bitrate	10.9%	9.3%
Good Ratio	2.5%	17.6%
Bitrate Variability	-2.3%	5.6%
Startup Delay	0.4%	-3.0%
Overall QoE	3.2%	14.0%

Takeaway:

- 1. CS2P improves most of the QoE metrics, except longer startup delay than BB and higher bitrate variability than HM.
- 2. The overall QoE improvement of CS2P is 3.2% to HM and 14% to BB.

Conclusions

Good prediction → Better bitrate selection & adaptation →
 Improved video QoE

- Key insights on throughput variability
 - ■Evolution of intra-session throughput exhibits stateful characteristics.
 - □Similar sessions have similar throughput structures.

- CS2P: Cross-session HMM-based approach
 - Outperform prior predictors by 50% in midstream prediction error.
 - Achieve 3.2% improvement to HM and 14% to BB in video QoE.