Trig Final (TEST v646)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 5 meters. The angle measure is 1.4 radians. How long is the radius in meters?

Question 2

Consider angles $\frac{-9\pi}{4}$ and $\frac{23\pi}{6}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\sin\left(\frac{-9\pi}{4}\right)$ and $\cos\left(\frac{23\pi}{6}\right)$ by using a unit circle (provided separately).

Find $sin(-9\pi/4)$

Find $cos(23\pi/6)$

Question 3

If $\sin(\theta) = \frac{12}{13}$, and θ is in quadrant II, determine an exact value for $\cos(\theta)$.

Question 4

A mass-spring system oscillates vertically with a midline at y = 2.18 meters, a frequency of 3.52 Hz, and an amplitude of 5.84 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).