Artificial Intelligence HW #2 Report

-영화 리뷰 긍정/부정 분류하기-

2014005178 지현승

■ 코드 설명

(a) 전체 구조

① 외부 패키지

이 프로그램은 형태소 분석을 위해 KoNLPy를 사용합니다. 따라서 pip를 통해 KoNLPy를 설치하지 않은 경우 실행할 수 없습니다.

② 코드는 아래의 다섯 가지 함수를 활용합니다.

Learn: ratings_train.txt에서 training data를 추출하여 내부 DB(코드에서 S_DB라는 Dictionary 자료형으로 정의)에 저장한 뒤 이를 return 합니다.
Import_Dictionary 함수를 통해서 이미 S_DB를 불러온 경우 이 함수를 실행하지 않습니다.

Calculate : 내부 DB(S_DB)를 바탕으로 ratings_test.txt에 있는 리뷰들의 긍정/부정을 평가하는 함수입니다. 평가 결과를 R_DB(리스트 자료형)에 저장한 뒤 이를 return 합니다.

Export_Dictionary : 내부 DB(S_DB)를 dictionary_twitter.txt로 저장합니다.

Export_Result : R_DB(리뷰들의 긍정/부정 분류 결과)를 ratings_result.txt에 저장하는 함수입니다.

Import_Dictionary : 외부 DB(dictionary_twitter.txt)를 입력 받아 내부 DB(S_DB)를 만들어 이를 return 하는 함수입니다.

- ③ 코드 실행과정은 다음과 같습니다.
 - 1) 경로 상에 외부 DB(dictionary twitter.txt)의 존재 여부를 확인합니다.
 - 1-1) 경로 상에 외부 DB가 없는 경우 Learn과 Export_Dictionary 함수를 실행합니다.
 - 1-2) 외부 DB가 존재하는 경우 위 두 함수 대신 Import_Dictionary를 통해

외부 DB를 내부 DB로 전환합니다.

- 2) Calculate를 실행합니다.
- 3) Export_Result를 실행합니다.

(b) Learn

① 변수를 선언합니다. Learn의 변수 중 함수의 핵심 변수는 다음과 같습니다.

T_DB: 파일을 읽어 나가면서 어느 한 형태소의 긍정/부정 여부를 임시로 등록하는 list 자료형입니다.

S_DB: T_DB에 중복으로 등록된 형태소들을 하나로 합하여 등록합니다. Dictionary 자료형입니다. 함수는 이 변수를 return합니다.

number_of_bad : training data에서 부정적 평가를 한 리뷰의 개수를 나타냅니다.
number_of_good : training data에서 긍정적 평가를 한 리뷰의 개수를 나타냅니다.

- ② 파일에서 한 line을 불러온 뒤 이를 line 변수에 저장합니다.
- ③ String 자료형의 line을 konlpy의 twitter 태그를 사용하여 형태소 집합 리스트로 변환시킵니다. 이제 line에는 형태소들이 저장되어 있습니다.
- ④ 리스트에서 가장 마지막에 있는 '₩n'를 삭제한 뒤, 평가번호(0 or 1)를 리스트의 처음으로 옮깁니다. 이제 리스트의 첫번째 요소는 한 리뷰의 평가 번호를 나타냅니다..
- ⑤ 이제 list에 저장된 형태소들을 T_DB에 등록합니다. ['형태소',긍정여부,부정여부] 라는 리스트를 T_DB에 append 합니다. 예를 들어 '아름다움'이라는 형태소가 긍정적 리뷰에서 나온 경우 ['아름다움',0,1]로 등록합니다.
- ⑥ 같은 리뷰에서 2개 이상 나오는 형태소들은 중복하여 사전에 등재하지 않습니다.
- ⑦ 모든 리뷰에서 나온 형태소들을 T_DB에 등록한 뒤 T_DB를 sort시켜 줍니다. 이는 중복으로 등재된 형태소들의 S_DB 등재를 쉽게 하기 위해서 입니다(중복된 단어들이 연속적인 형태로 나타남).
- ⑧ 중복 등록된 형태소들을 찾아가면서 긍정적 반응과 부정적 반응 각각의 누적합을 구한 뒤 (각각 good, bad 변수) 이를 S_DB에 등록시켜 줍니다.

⑨ T_DB에 등록된 모든 형태소들에 대해서 8번 과정을 실행한 뒤 S_DB를 return 합니다.

(c) Calculate

- ① 확률은 log를 적용하여 계산합니다. 아주 작은 수에서 발생하는 컴퓨터의 연산에러를 방지하기 위해서 입니다.
- ② 긍정평가의 확률 변수를 Good, 부정평가의 확률 변수를 ¬Good이라 하고(원인), 단어들을 각각 w1,w2,...,주(ex. w1 ='아름다움') 이라 할 때, conditionally independent하다고 하면 Naïve Bayesian net의 성질에 따라 P(Good | w1,w2,...,wn), P(¬Good | w1,w2,...,wn)을 계산한 뒤 대소를 비교하여 주어진 문장 이 긍정평가인지 부정평가인지 계산할 수 있습니다.
- ③ Bayesian net에서

P(Good|w1,w2,...,wn) = P(w1|Good)P(w2|Good)....P(wn|Good)P(Good)

여기에 log를 적용하면 (log N(w1,Good)-log(N(Good))) + (log N(w2,Good)-log(N(Good))) + ... + (log N(wn,Good)-log(N(Good))) + log(P(good))

(* N(x)는 전체 문서에서 x를 만족하는 문서의 개수)

위와 같이 합 연산으로 표현할 수 있습니다. 이 코드에서는 이렇게 로그를 적용하여 합 연산을 적용하였습니다.

number_of_bad(N(Bad))와 number_of_good(N(Good)) 변수는 앞서 설명한 Learn에서의 변수들과 같은 용도(부정적 평가,긍정적 평가 개수)로 사용할 변수들입니다. 이 두 변수를 사용해 prob_bad와 prob_good을 계산합니다.

 $prob_bad = log(N(Bad)/N(Bad+Good)) = log(P(Bad)) = log(P(\neg Good))$ $prob_good = log(N(Good)/N(Bad+Good)) = log(P(Good))$

- ④ Learn 함수에서와 같이 파일에서 string을 불러온 뒤 twitter 태그를 사용하여 형태소 집합으로 바꿉니다. 형태소들을 S_DB에 등록된 형태소들과 비교합니다. 같은 리뷰에서 2개 이상 나오는 형태소들은 S_DB와 중복 비교하지 않습니다.
- ⑤ P(wi|Good) = 0일 때, 이 값으로 인해 전체 확률값이 0으로 될 위험성이 존재합

니다(로그에서는 무한대). 이를 막기 위해 빈도수에 1을 더해줍니다 (N(wi)+1).

- ⑥ 형태소가 S_DB에 존재하지 않을 경우 그 형태소는 확률 계산에 포함시키지 않습니다.
- ⑦ 한 string에서 모든 형태소들의 확률계산이 끝났다면 값을 비교해서 긍정(1)/부정 (0)을 분류합니다. 값이 같을 경우 중립 또는 자료부족(-1)으로 평가합니다.

■ 실험 결과

(a) 정확도

- ① ratings_valid.txt를 평가하게 한 뒤 참값과 비교했습니다. 그 결과 정확도는 85.02%가 나왔습니다.
- ② 대략 15% 정도의 실패율로써 이를 줄이기 위해 다음과 같은 방법을 시도했습니다.
 - (¬) String을 띄어쓰기 단위로 자른다(list.slice). 결과로 생성된 단어들을 앞에서 n 글자 씩 잘라서 DB에 등록한다.
 - 가장 먼저 시도한 방법입니다. 정확도는 83~84% 정도 나왔습니다.
 - Ex) '나는 감자칩이 좋다.' -> '나는', '감자', '좋다' (2글자로 자른 경우)
 - (L) (기)을 조금 바꿨습니다. 띄어쓰기 단위로 자른 단어들을 앞에서 1~n 글자 씩 자른 뒤 각각의 결과를 DB에 등록한다.
 - 정확도는 83~85%로 (¬) 보다 조금 더 나은 정확도가 나왔습니다.
 - (C) tf-idf를 사용하여 단어에 신뢰도를 적용시킴.
 - 정확도는 82~84%가 나왔습니다.

- ③ 이외에도 변수를 바꾸거나 확률 공식을 변환하는 실험을 진행했습니다. 결과 적으로는 방법에 따라 82~85% 확률을 보여줬습니다.
- ④ 형태소 분석을 base로 한 이상 여기에서 정확도가 크게 상승하지 않을 것으로 생각합니다. 예측이 틀린 리뷰를 분석한 결과는 다음과 같습니다.
 - 긍정적 단어에 (ex 아름답다) 부정사(ex 않-)가 붙은 경우. '않다' 자체는 부정적인 사용 빈도가 많았지만 '않-'으로 만든 단어 같은 경우 긍정적 사용 빈도 역시 많았습니다. 즉 '않-'은 중립적인 어감이 강하지만 단어 특성상 다른 단어에 붙으면 다른 단어의 어감을 바꿔버리는 특징이 있습니다(ex 아름답지 않다). 이 코드에서는 그런 특징이 반영되지 않았기 때문에 에러가 생긴 것으로 추측합니다.
 - 영문 리뷰는 상대적으로 training data가 적어 예측하기 쉽지 않습니다.
 - 리뷰에 반어법(혹은 비꼬기)을 사용하는 경우 뉘앙스 판단 기능이 없기 때문에 틀리는 경우가 많았습니다.
 - 리뷰 자체가 신뢰성이 떨어지는 경우(ex 광고) 틀리는 경우가 많 았습니다.
- ⑤ 결국 정확한 문법을 분석기에 적용하는 방법, 단어의 여러 조합을 DB에 저장하여 활용하는 방법, 문장 전체를 사용하여 딥러닝을 적용하는 방법 등으로 개선할수 있을 것으로 예상합니다.

(b) 소모 시간

외부 DB가 없는 경우 프로그램 종료까지 대략 5분 50초~6분의 시간이 소모됩니다.

외부 DB가 존재하는 경우 프로그램 종료까지 대략 30초의 시간이 소모됩니다.

외부 DB의 존재에 따라 시간 소모량의 차이가 매우 큰 것을 확인할 수 있습니다. 그 원인은 konlpy의 twitter 태그의 성능 문제일 것으로 판단합니다.

반면 twitter 태그가 아닌 '띄어쓰기로 분리한 단어를 n글자씩 누적해서 자르기' 방법을 사용할 경우 5개를 누적해서 자를 때 외부 DB가 없을 경우 50초, 있는 경우 35초 정도소모 되는 것을 확인했습니다.

정확도는 twitter 방법에 비해 근소하게 떨어지나 그 성능(소모 시간 기준)은 상대적으로 우수합니다. 정확도 차이가 0.1~1% 정도이기 때문에 엄밀한 정확도를 요구하지 않는 이상 '누적 자르기' 방법을 사용하는 것이 더 좋을 것으로 생각합니다. 이번 과제의 경우 정확도를 우선으로 하기 때문에 twitter 태그를 사용한 코드를 제출했습니다.