Característica de Euler

Rafael Villarroel

2021-01-25 15:00 -0500

Sea Δ un complejo simplicial de dimensión d. Sea $f_i(\Delta)$ igual a la cantidad de simplejos en Δ de dimensión i para $i=-1,0,1,\ldots,d$. El f-vector de Δ está definido como $f(\Delta)=(f_{-1},f_0,f_1,\ldots,f_d)$. La característica (reducida) de Euler $\tilde{\chi}(\Delta)$ de Δ se define

como $\tilde{\chi}(\Delta) = \sum_{i=-1}^{d} (-1)^{i} f_{i}(\Delta)$. (En general, durante el curso,

toda característica de Euler será reducida)

Por ejemplo, si Δ es el complejo simplicial con caras maximales 12, 13, 23, entonces Δ tiene dimensión d=2, su f-vector es $f(\Delta)=(1,3,3)$, y su característica de Euler es $\tilde{\chi}(\Delta)=-1+3-3=-1$. Si $\Delta=\mathcal{P}(\{1,2,\ldots,n\})$, entonces Δ tiene dimensión d=n-1, $f_i(\Delta)=\binom{n}{i+1}$, y su característica de Euler es $\tilde{\chi}(\Delta)=\sum_{i=-1}^{n-1}(-1)^i\binom{n}{i+1}=0$.

Similarmente, vimos varios ejemplos de triangulaciones de un polígono en \mathbb{R}^2 , y todas tuvieron característica de Euler igual a 0. (Es decir, observamos que si tenemos una triangulación del espacio $D^2=\{x\in\mathbb{R}^2\mid |x|\leq 1\}$, su característica de

Euler es 0).

También vimos triangulaciones de la esfera, como el octaedro y el icosaedro, y algunas triangulaciones no regulares, y todas ellas tuvieron característica de Euler igual a 1. Concluimos que el valor de la característica de Euler depende más de la *forma* que de la *métrica*.