Integer Solutions to Linear Equations

Author: Goutham Sai Pydi

Let's start with a simple equation,

$$x_1 + x_2 = 5 \; ; \; x_1 \in Z \; , x_2 \in Z$$

s.t. $x_1 \ge 0 \; ; \; x_2 \ge 0$

We can simplify this problem significantly, if we take up another approach; Here it is easy to see that the x_i 's which are of our interest are interchangeble i.e., there seems to be no order assigned to them.

Consider the following scenario,

Scenario showed in the graph, corresponds to the solution $x_1 = 2$; $x_2 = 3$

Here there are five identical balls and there is one stick, total number of such permuations, is really an elementary question. To be exact it is

$$\frac{6!}{5! \ 1!} = 6 = \binom{5+2-1}{2-1} = \binom{6}{1}$$

We can infact argue that both the above seemingly difficult problem and the simpler one are just the same. In the ball and stick scenario, we have one stick partitioning the 5 balls into two sections and these two sections are interchangable(Unordered) and the number of such permutations is 6.

Hence The total number¹ of postive integer solution pairs to the above given equation is 6.

We can generalize this to the k variables quite easily,

$$x_1 + x_2 + \dots + x_k = n \; ; \; x_1 \in Z \; , x_2 \in Z, \; \dots \; x_k \in Z$$

s.t. $x_1 \geq 0 \; x_2 \geq 0 ; \; \dots \; x_k \geq 0$

We get the number of non negative solutions tuples to the above equation as,

$$\binom{n+k-1}{k-1}$$

¹Explicit Solution Pairs are (5,0), (4,1), (3,2), (2,3), (1,4), (0,5)