

VERSION 1

MAR 30, 2023

OPEN BACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.q26g7yzz3gwz/v1

Protocol Citation: Antoine Champie, Amélie De Grandmaison 2023. HTTM: DNA Extraction. **protocols.io** https://dx.doi.org/10.17504/protocols.io.q26g7yzz3gwz/v1V ersion created by Antoine Champie

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Oct 27, 2022

Last Modified: Mar 30, 2023

PROTOCOL integer ID:

71938

HTTM: DNA Extraction V.1

Antoine Champie¹, Amélie De Grandmaison¹

¹Université de Sherbrooke

Antoine Champie

ABSTRACT

Part two of the HTTM protocol. A low-cost and high-throughput Tn-seq protocol. This part cover the DNA extraction from cell pellets of transposon insertion mutants and subsequent silica columns regeneration.

MATERIALS

Homemade DNA lysis Buffer :

A	В
Component	Amount for 1000 ml of solution
CTAB 2%	20 g
1.5 M Guanidine HCl	143.2 g
10 mM Tris HCl	1.57 g

Mix well and adjust volume to 1 I with water and adjust pH to 8.0.

■ Homemade wash solution:

A	В
Component	Amount for 1000 ml of solution
Ethanol 100%	800 ml
Tris HCl 1 M pH 8.0	10 ml
NaCl 4 M	25 ml
EDTA 0.5 M	2 ml

Mix well and adjust volume to 1 I with water and adjust pH to 8.0.

■ Elution Buffer (Low TE Buffer): 10 mM Tris-HCl (pH 8.0) + 0.1 mM EDTA

Solutions for plate regeneration, from this protocol:

(1)https://doi.org/10.1016/j.ab.2008.10.021.

■ NaOH 1N + Triton X-100 0.15% (v/v)

A	В
Component	Amount for 1000 ml of solution
Water	960 ml
NaOH	40 g
Triton X-100	1.5 ml

Mix well and store in a base resistant container.

■ HCl 1.5N + Triton X-100 0.15% (v/v)

A	В
Component	Amount for 1000 ml of solution
Water	873.5 ml
HCI Stock (37%)	125 ml
Triton X-100	1.5 ml

Mix well and store in an acid resistant container.

Silica columns array come from the following commercially available kit : 96-Well Plate Bacteria Genomic DNA Miniprep Kit from Biobasic. CAT#: SK1295

DNA extraction Prepare the lysis solution by adding Δ 165 μL of proteinase K to Δ 66 mL of homemade lysis buffer and mix well. Add Δ 600 μL of lysis solution to each well of the deep-well plate and resuspend the pellet.

4 While still warm, add \perp 260 μ L of ethanol 100%, without overmixing.

Note

Overmixing will result in DNA agglomeration and difficulty with the extraction.

- 5 Transfer immediately to a deep-well plate fitted with an array of silica columns.

10m

- 7 Discard flowthrough and add \angle 500 μ L of wash solution.
- 8 Centrifuge at 3000 x g, 00:10:00

10m

- **8.1** Repeat steps 7 and 8.
- 9 Discard flowthrough.

Centrifuge at 3000 x g, 00:10:00 to eliminate traces of wash solution.

10m

- **11** Discard flowthrough.
- 12 Add a collector plate between the silica column array and the deep-well plate.
- Add Δ 50 μ L of low TE to the silica matrix in each well.
- Cover with an adhesive aluminum foil and incubate at 8 55 °C for © 00:15:00

15m

15 Centrifuge at 3000 x g, 00:10:00

10m

Silica array regeneration (Optional)

1h 5m

Put the contaminated silica array on an empty deep-well plate. Add \perp 150 μ L of 1N NaOH + 0.15%(v/v) Triton X-100 to each well.

17 Incubate at 8 Room temperature for © 00:05:00

5m

18 Centrifuge 3000 x g, 00:05:00

5m

- Add \pm 200 µL of 1.5N HCl+ 0.15% (v/v) Triton X-100 to each well.
- 20 Incubate at 8 Room temperature for 00:30:00

30m

21 Centrifuge 3000 x g, 00:05:00

5m

- 22 Add \perp 150 μ L of 1N NaOH + 0.15%(v/v) Triton X-100 to each well.
- 23 Incubate at Room temperature for 00:05:00

5m

24 Centrifuge 3000 x g, 00:05:00

- 5m
- 24.1 Collect the flowthrough in a beaker. Neutralize pH if needed and dispose of the flow through.

- 25 Add $\underline{\mathbb{Z}}$ 200 μL of ddH₂O to each well.
- 26 Centrifuge 😝 3000 x g, 00:05:00

5m

- **26.1** Repeat steps 25 and 26.
- 27 Silica columns array are ready to be reused.