# Predicting Churn Risk for PowerCO

Hilda Nderitu

MACHINE LEARNING I
CAPSTONE PROJECT

15<sup>th</sup> February 2025



## Introduction

#### PowerCo

 Major gas & electricity utility company that supplies to small & medium sized enterprises

#### • BCG X

- Consulting company hired to advise PowerCo on how to retain their customers
- Data from PowerCo will be analysed, model developed & used to predict churn risk



# **Project Overview**

- Determine business problem
- Generate hypothesis
- Import datasets
- Conduct exploratory data analysis
- Conduct data pre-processing & feature engineering
- Develop & evaluate predictive model
- Generate insights & recommendations



#### **Business Problem**

- A lot of change in the energy market in recent years
- Increasing availability of more energy options than ever for customers to choose from
- PowerCo concerned about their customers leaving for better offers from other energy providers, which is now a big problem
- Thus, need to determine reasons for customers churning
- Hypothesis: churn is driven by customers' sensitivity to price



#### Dataset

- Dataset derived from a job simulation exercise provided by BCG X on the forage website
  - https://www.theforage.com/si mulations/bcg/data-scienceccdz
- 3 csv files provided



## Dataset - ii

| csv file                                                                                                    | rows    | columns                                                           | Data type                                                                                                                                   | Use                                                                           |
|-------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| client_data                                                                                                 | 14,606  | <ul><li> 25     features</li><li> 1 target     variable</li></ul> | <ul> <li>17 numerical columns</li> <li>8 categorical columns</li> <li>Target variable –<br/>numerical column,<br/>boolean values</li> </ul> | • Provided for EDA                                                            |
| price_data                                                                                                  | 193,002 | • 8 features                                                      | <ul><li>2 categorical columns</li><li>6 numerical columns</li></ul>                                                                         | <ul> <li>Provided for<br/>EDA</li> </ul>                                      |
| clean_data_after_eda .csv (18 features added to initial 25, data on variation of prices yearly & 6 monthly) | 14,606  | <ul><li>43     features</li><li>1 target     variable</li></ul>   | <ul> <li>35 numerical columns</li> <li>8 categorical columns</li> <li>Target variable – numerical column, boolean values</li> </ul>         | <ul> <li>Provided for feature engineering &amp; data preprocessing</li> </ul> |

```
1 client_df.info()
```

✓ 0.0s

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14606 entries, 0 to 14605
Data columns (total 26 columns):

| #    | Column                                    | Non-Null Count | Dtype   |
|------|-------------------------------------------|----------------|---------|
| 0    | id                                        | 14606 non-null | object  |
| 1    | channel_sales                             | 14606 non-null | object  |
| 2    | cons_12m                                  | 14606 non-null | int64   |
| 3    | cons_gas_12m                              | 14606 non-null | int64   |
| 4    | cons_last_month                           | 14606 non-null | int64   |
| 5    | date_activ                                | 14606 non-null | object  |
| 6    | date_end                                  | 14606 non-null | object  |
| 7    | date_modif_prod                           | 14606 non-null | object  |
| 8    | date_renewal                              | 14606 non-null | object  |
| 9    | forecast_cons_12m                         | 14606 non-null | float64 |
| 10   | forecast_cons_year                        | 14606 non-null | int64   |
| 11   | forecast_discount_energy                  | 14606 non-null | float64 |
| 12   | <pre>forecast_meter_rent_12m</pre>        | 14606 non-null | float64 |
| 13   | <pre>forecast_price_energy_off_peak</pre> | 14606 non-null | float64 |
| 14   | <pre>forecast_price_energy_peak</pre>     | 14606 non-null | float64 |
| 15   | <pre>forecast_price_pow_off_peak</pre>    | 14606 non-null | float64 |
| 16   | has_gas                                   | 14606 non-null | object  |
| 17   | imp_cons                                  | 14606 non-null | float64 |
| 18   | margin_gross_pow_ele                      | 14606 non-null | float64 |
| 19   | margin_net_pow_ele                        | 14606 non-null | float64 |
|      |                                           |                |         |
| 24   | pow_max                                   | 14606 non-null | float64 |
| 25   | churn                                     | 14606 non-null | int64   |
| dtvp | es: float64(11). int64(7). obiec          | t(8)           |         |

dtypes: float64(11), int64(7), object(8

memory usage: 2.9+ MB

#### Datasets - iii

```
price_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193002 entries, 0 to 193001
Data columns (total 8 columns):
    Column
                        Non-Null Count
                                        Dtype
    id
                        193002 non-null object
    price date
                        193002 non-null object
    price_off_peak_var 193002 non-null float64
    price_peak_var
                        193002 non-null float64
    price_mid_peak_var 193002 non-null float64
    price_off_peak_fix 193002 non-null float64
    price_peak_fix
                        193002 non-null float64
    price mid peak fix 193002 non-null float64
dtypes: float64(6), object(2)
memory usage: 11.8+ MB
```

```
1 cleaned data df.info()
 ✓ 0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14606 entries, 0 to 14605
Data columns (total 44 columns):
                                   Non-Null Count Dtype
   Column
    id
                                   14606 non-null object
    channel_sales
                                   14606 non-null object
    cons_12m
                                   14606 non-null int64
    cons gas 12m
                                   14606 non-null int64
    cons_last_month
                                   14606 non-null int64
    date_activ
                                   14606 non-null datetime64[ns]
    date end
                                   14606 non-null datetime64[ns]
    date modif prod
                                   14606 non-null datetime64[ns]
    date_renewal
                                   14606 non-null datetime64[ns]
    forecast_cons_12m
                                   14606 non-null float64
   forecast cons year
                                   14606 non-null int64
11 forecast discount energy
                                   14606 non-null float64
12 forecast_meter_rent_12m
                                   14606 non-null float64
13 forecast_price_energy_off_peak 14606 non-null float64
14 forecast_price_energy_peak
                                   14606 non-null float64
    forecast_price_pow_off_peak
                                   14606 non-null float64
16 has_gas
                                   14606 non-null object
17 imp_cons
                                   14606 non-null float64
   margin gross pow ele
                                   14606 non-null float64
19 margin_net_pow_ele
                                   14606 non-null float64
42 var_6m_price_mid_peak
                                   14606 non-null float64
                                   14606 non-null int64
43 churn
dtypes: datetime64[ns](4), float64(29), int64(7), object(4)
memory usage: 4.9+ MB
```

## **Exploratory Data Analysis**

Pandas – data analysis

Seaborn & matplotlib - visualization

#### Techniques used:

- Summary statistics
- Visualization using:
  - Stacked bars
  - Distribution plots
  - Boxplots
  - KDE plots

#### Client data

- Columns with consumption, forecast, margins data positively skewed, with outliers
- Columns with data on subscribed power, number of active products & services, antiquity of client in years – has outliers
- All features have no linear separability (non-linear)
- Price data not skewed, no outliers

## **Exploratory Data Analysis - ii**



 9.7% of customers have churned



## Exploratory Data Analysis - iii





- Customers with 1 active product
   & services highest churn rate
- Customers with > 2 active products & services - did not churn
- Customers with 4 years of antiquity – highest churn rate
- Customers with 8 12 years of antiquity - did not churn
- Customers with no gas service churned more than the ones with electricity & gas

## **Exploratory Data Analysis - iv**



- Churning customers distributed over 5 different categories of channel\_sales
- Churning
   customers
   distributed over 4
   different
   categories of
   code of
   electricity
   campaign of first
   subscription

#### Exploratory Data Analysis - v



- The largest proportion of customers that have churned had lower consumptions
- · With increase in consumption, there is decrease in churning
- At high consumption, there is no churning

## **Exploratory Data Analysis - vi**



Low values of subscribed power – highest proportion of churned customers

#### Data pre-processing & feature engineering

client data

•25 features



- Addition of new features
- Merging data sets
- Deletion of features
- One hot encoding
- Log transformation skewed data

Price data

8 features



Feature engineered data

•59 features



Final data for final model **54 features** 

Robust scaling & deletion of features during model evaluation for improvement of metrics

## Data preprocessing & feature engineering - ii

- Creation of new features calculation of differences, mean, max, conversion to months
- Calculation of correlation matrix
- Deletion of features those with high correlation (9 features), no feature importance, unnecessary features i.e. id, datetime columns

# Modelling & Evaluation

- Class imbalance handled via SMOTE
- Data split into train & test tests: 75/25
- Scikit learn module used for modelling
- Random forest classifier model used as dataset has;
  - Many features & rows
  - Non-linear relationship features & target variable
  - Can generate feature importances so as to know features predicting churn
- Base random forest model with default parameters

## Modelling & Evaluation - ii

- Evaluation metrics used:
  - Accuracy
  - Precision
  - Recall
  - fl score
  - PR-AUC (average precision score)
  - Confusion matrix
  - Correlation report

- Hyperparameter tuning -RandomizedsearchCV – indentify best parameters
- Threshold tuning determine probability threshold to optimize precision/recall balance

## Modelling & Evaluation - iii

- Best Parameters
  - 'n\_estimators': 300
  - 'min\_samples\_split': 5
  - 'min\_samples\_leaf': 1
  - 'max\_features': 'sqrt'
  - 'max\_depth': None
  - 'criterion': 'entropy'

- Final model evaluation metrics:
  - Accuracy: 0.9510
    Precision: 0.9774
    Recall: 0.9241
  - F1-Score: 0.9500
  - PR-AUC: 0.9873

•Threshold: 0.5061

# Insights

- Churn rate is high, 9.7% (1419/14606 customers)
- Model can predict churn; however, churn is not driven by customers' sensitivity to prices
- Top 5 features predicting churn are:
  - Subscribed power
  - The last month's electricity consumption
  - Gross margin on power subscription
  - Forecasted bill of meter rental for the next 12 months
  - Yearly electricity consumption



#### Recommendations

- Check the past 12 months consumption, gross margins on power subscription, subscribed power & forecast meter rentals for the next 12 months for the following:
  - 5 sales channels that had customers who churned in the next 3 months
  - 4 codes of the electricity campaign that companies first subscribed to that had customers who churned in the next 3 months



# **Next Steps**

 Explore other supervised classification models on the dataset



# References/ Attributes

1. <a href="https://www.theforage.com/simulations/bcg/data-science-ccdz">https://www.theforage.com/simulations/bcg/data-science-ccdz</a>