DISTRIBUIÇÃO BINOMIAL

- Teórica
 - Definição da v.a.
 - Notação
 - Parâmetros:
 - Função de probabilidade
 - Média
 - Variância
 - Função de distribuição acumulada
- Código Python
 - Biblioteca
 - Calcular X = x
 - Calcular X <= x
 - Calcular X > x
 - Calcular z < X <= x
- Exercícios
 - Exercício 11
 - Exercício 13
 - 13.1) A percentagem de lotes que são vendidos sem inspeção de todos os elementos.
 - 13.2) A probabilidade de ser necessário uma inspeção total do lote.

Teórica

Definição da v.a.

 ${\sf X}$ v.a. que representa o numero de sucessos em n tentativas de Bernoulli com probabilidade p de sucesso em cada tentativa

Notação

 $X \sim Bi(n,p)$

n -> Número de tentativas

p -> Probabilidade de sucesso

Parâmetros:

Função de probabilidade

$$f(x) = egin{cases} ^n C_x p^x (1-p)^{n-x}, x \in \{0,1,\ldots,n\} \ 0, & , x
otin \{0,1,\ldots,n\} \end{cases}$$

em que nC_x representa o número de maneiras distintas de se conseguir x sucessos em n tentativas.

Média

$$E(X) = \mu_X = np$$

Variância

$$var(X) = \sigma_X^2 = np(1-p)$$

Função de distribuição acumulada

$$f(x) = egin{cases} 0, & x < 0 \ \sum_{i=0}^{Int[X]} p^i (1-p)^{n-i}), x \leq x \leq n \ 0, & x > n \end{cases}$$

Código Python

Biblioteca

from scipy import stats

Calcular X = x

stats.binom.pmf(x, n, p)

Calcular X <= x

stats.binom.cdf(x, n, p)

Calcular X > x

1 - stats.binom.cdf(x, n, p)

Nota

Caso seja maior ou igual temos de calcular a probabilidade do número antes de x

Calcular z < X <= x

```
stats.binom.cdf(x, n, p) - stats.binom.cdf(z, n, p)
```

Nota

Caso seja maior ou igual temos de calcular a probabilidade de do número antes de z

Exercícios

Exercício 11

X: Número de motores a funcionar em 4.

```
X \sim Bi(n,p) n=4 p=0.99 P(X \geq 2) \ -P(X < 2) = 1 - P(x \leq 1) \simeq 0.999996
```

```
from scipy import stats
n = 4
p = 0.99
x = 1
print(f"A probabilidade de x <= 1 : {stats.binom.cdf(x, n, p):.6f}")
print(f"A probabilidade de x > 1 : {1 - stats.binom.cdf(x, n, p):.6f}")
```

Source Code

A probabilidade de $x \le 1 : 0.000004$ A probabilidade de x > 1 : 0.999996

Exercício 13

13.1) A percentagem de lotes que são vendidos sem inspeção de todos os elementos.

X: Número de componentes defeituosos em 6 ao acaso.

```
X \sim Bi(n,p)

n = 6

p = 0.04

P(X = 0) = 78.3\%
```

```
from scipy import stats
n = 6
p = 0.04
x = 0
print(f"A probabilidade de x = 0 : {(stats.binom.pmf(x, n, p)*100):.1f}%")
```

Source Code

A probabilidade de x = 0:78.3%

13.2) A probabilidade de ser necessário uma inspeção total do lote.

$$P(X \ge 1) = 1 - P(X = 0) = 1 - 0.783 \sim 0.217 \sim 0.2\%$$