Encryption & Data Protection

AWS Security Workshop

Agenda

- Encryption at rest
- Encryption in transit
- Data protection considerations

Goals

- Understand customer responsibility for data in AWS
- Learn how encryption is done in AWS
- Consider your own encryption requirements
- Discover data protection related AWS services

It is always YOUR data!

- Customers choose where to place their data
- AWS regions are geographically isolated by design
- Data is not replicated to other AWS regions and does not move unless the customer tell us to do so
- Customer always own their data, the ability to encrypt it, move it, and delete it

AWS Customer Agreement https://aws.amazon.com/agreement/

Data Protection In-Transit and At-Rest

Encryption In-Transit

SSL/TLS

SSH

VPN/IPSEC

Encryption At-Rest

Object

Database

Filesystem

Disk

Ubiquitous Encryption

Encryption at Rest

Encryption at Rest – S3

Encryption at Rest – EBS

Encryption at Rest – Databases

Encryption at Rest – Envelope Encryption Primer

Plain text keys need to exist somewhere

Encryption at Rest – Key Considerations

- Where are keys stored?
 - Hardware you own?
 - Hardware the cloud provider owns?
- Where are keys used?
 - Client software you control?
 - Server software the cloud provider controls?
- Who can use the keys?
 - Users and applications that have permissions?
 - Cloud provider applications you give permissions?
- What assurances are there for proper security around keys?

Encryption at Rest – Option in AWS

Client-side encryption

- You encrypt your data before data submitted to the service
- You supply encryption keys OR use keys in your AWS account
- Available clients:
- S3, EMR File System (EMRFS), DynamoDB, AWS Encryption SDK

Server-side encryption

- AWS encrypts data on your behalf after data is received by service
- Services with integrated encryption include S3, Snowball, EBS, RDS, Amazon Redshift, WorkSpaces, Amazon Kinesis Firehose, CloudTrail, EMR, DynamoDB, CodePipeline, AWS Secrets Manager, AWS Backup

- Managed service that simplifies creation, control, rotation, deletion, and use of encryption keys in your applications
- FIPS 140-2 validated hardware security modules (HSM) and support for FIPS 140-2 validated endpoints
- Integrated with over 50 AWS services for server-side encryption
- Integrated with AWS service clients/SDKs
- S3, EMRFS, DynamoDB, AWS Encryption SDK
- Integrated with CloudTrail to provide auditable logs of key usage for regulatory and compliance activities
- Available in all commercial regions except China

AWS Key Management Service Hierarchy

- Two-tiered key hierarchy using envelope encryption
- Unique data key encrypts customer data
- KMS master keys encrypt data keys
- KMS master keys never leave the KMS HSM unencrypted

Benefits

- Limits risk of compromised data key
- Better performance for encrypting large data
- Easier to manage small number of master keys than millions of data keys
- Centralized access and audit of key activity

Auditing key usage with AWS CloudTrail

```
This KMS API action was called ...
"EventName": "DecryptResult",
                                                      ... at this time
"EventTime":"2014-08-18T18:13:07Z",
"RequestParameters":
    "{"keyId": "2b42x363-1911-4e3a-8321-6b67329025ex"}", ... in reference to this key
"EncryptionContext": "volumeid-12345",
                                                       ... to protect this AWS resource
"SourceIPAddress":" 203.0.113.113",
                                                       ... from this IP address
"UserIdentity":
    "{"arn":"arn:aws:iam:: 111122223333:user/User123"} ... by this AWS user in this account
```

Bring Your Own Key Material to KMS

- You control how master keys are generated
- You store the master copy of the keys
- You import the key into KMS as key material and set an optional expiration time in the future
- Generate CMKs based on the imported key material
- You can use imported key material with all KMS-integrated services
- You can delete and re-import the key material at any time to control when AWS can use it to encrypt/decrypt data on your behalf
- Works with standards-based key management infrastructure, such as Thales e-Security

Encryption at Rest – Bring Your Own Key Material

Encryption at Rest – Ubiquitous Encryption

Encryption at Rest – KMS CMK Types

	AWS Owned CMK	AWS Managed CMK	Customer Managed CMK
Creation	AWS generated	AWS generated on customer's behalf	Customer generated
Rotation	Once every three years automatically	Once every three years automatically	Once a year automatically through opt-in or manually on-demand
Deletion	Can't be deleted	Can't be deleted	Can be deleted
Visible within your AWS account	No	Yes	Yes
Scope of Use	Not limited to your AWS account	Limited to a specific AWS service within your AWS account	Controlled via KMS/IAM policies

Encryption at Rest – CloudHSM

- Dedicated access to HSM appliances
- HSMs located in AWS data centers
- Managed and monitored by AWS
- Only you have access to your keys and operations on the keys
- HSMs are inside your Amazon VPC, isolated from the rest of the network
- FIPS 140-2 level 3 certified

Encryption at Rest – CloudHSM

- Setup from the AWS Management Console or CLI
- Load balanced & synchronized
- Clusters can scale to meet demand
- Industry standard API's available for developers to get started
- MFA authentication available
- Capability of snapshotting CloudHSM clusters

Encryption at Rest – AWS KMS Custom Key Store

- Use CloudHSM as the key store for KMS
- Combining the key management capabilities of KMS with the key storage capabilities of CloudHSM
- Use the standard KMS API's and native service integration offered by KMS

Encryption at Rest – AWS KMS Custom Key Store

Encryption at Rest – AWS KMS Custom Key Store

When to use AWS KMS Custom Key Store?

You have keys that are required to be:

- protected in a single-tenant HSM or in an HSM over which you have direct control
- stored in an HSM validated at FIPS 140-2 level 3 overall
- replicated across multiple AWS regions

Encryption at Rest – AWS KMS vs CloudHSM

AWS CloudHSM

- Dedicated access to HSM that complies with government standards (e.g. FIPS 140-2 Level 3, Common Criteria)
- High-performance in-VPC cryptographic acceleration
- You control your keys and the application software that uses them
- Supported applications:
 - Your custom software
 - Third party software
 - Symmetric or asymmetric encryption

AWS Key Management Service

- Highly available and durable key storage, management, and auditable solution (FIPS 140-2 Level 2 HSM's and support for FIPS 140-2 Level 2 endpoints)
- Easily encrypt your data across AWS services and within your own applications based on policies you define
- Supported applications:
 - Your custom software (AWS SDK)
 - Symmetric encryption
 - Integrated with multiple AWS services

Encryption at Rest – APN Partner Solutions

- You can browse, test, and buy encryption and key management solutions via the AWS Marketplace
- Pricing models vary: pay-by-the-hour, monthly, or annual
- The software fees are simply added to your AWS bill
- Some solutions offer a bring-your-own-license option

Encryption at Rest – Solution Comparison

	AWS KMS	AWS KMS with Custom Key Store	AWS CloudHSM	AWS Marketplace Partner Solution	DIY
Where keys are generated and stored	AWS KMS FIPS 140-2 Level 2 HSM's (with level 3 for several other categories)	AWS CloudHSM FIPS 140-2 Level 3 HSM's	AWS CloudHSM FIPS 140-2 Level 3 HSM's	Your network or EC2 instance	Your network or EC2 instance
Where keys are used	AWS services or your applications using the AWS SDK's	AWS services or your applications using the AWS SDK's	AWS or your applications using the HSM specific SDK	Your network or EC2 instance	Your network or EC2 instance
How to control key usage	Policies you define; enforced by AWS	Policies you define; enforced by AWS – Only for keys made available through KMS	HSM-specific access controls	Vendor-specific access controls	You implement access controls
Responsibility for performance/scale	AWS	AWS (API's) Customer (Key Store)	Customer	Customer	Customer
Integration with AWS services?	Yes	Yes	Limited	Limited	Limited

Encryption in Transit

Encryption in Transit – Inside the VPC

What is VPC (review)?

- Virtual Private Cloud
- Logically isolated portion of the AWS infrastructure
- Allows you to extend your existing data center network to the Cloud
- Can be considered as private network by PCI compliance
- Audited & Certified on SOC1/2, ISO27001, FedRAMP, HIPAA BAA, PCI
- Protected against most of L2/L3 attacks (multicast, IP/MAC/ARP spoofing, sniffing)

Encryption in Transit – Inside the VPC

Encryption in Transit – TLS with Amazon ELB

You can use the ELB for HTTPS termination with unencrypted communication to back-end instances on port 80.

Encryption in Transit – Inside the VPC

Encryption in Transit – TLS with Amazon ELB

You can use the ELB for HTTPS termination with encrypted communication to back-end instances on port 443.

Encryption in Transit – Inside the VPC

Encryption in Transit – TLS with Amazon ELB

Alternatively, you can use the Classic Load Balancer and Network Load Balancer in a TCP pass-through mode to terminate TLS connections on your EC2 instances

Encryption in Transit – ELB Options

	Classic Load Balancer	Application Load Balancer	Network Load Balancer
Protocols	TCP, SSL/TLS, HTTP, HTTPS	HTTP, HTTPS	TCP, TLS
Network Layer	L4 – L7	L7	L4
Integration with ACM	✓	✓	✓
Back-end TLS authentication based on public-key	✓	×	×
Server Name Indication (SNI)	×	✓	×
Multiple security policies	✓	~	✓
Custom security policy	✓	×	×

TLS Security Policies on Classic ELB

Security Policy	2016-08	TLS-1-1-2017-01	TLS-1-2-2017-01	2015-05	2015-03	2015-02		
SSL Protocols								
Protocol-TLSv1	•			•	•	•		
Protocol-TLSv1.1	•	•		•	•	•		
Protocol-TLSv1.2	•	•	•	•	•	•		
SSL Options								
Server Order Preference	•	•	•	•	•	•		
SSL Ciphers	,							
ECDHE-ECDSA-AES128-GCM-SHA256	•	•	•	•	•	•		
ECDHE-RSA-AES128-GCM-SHA256	•	•	•	•	•	•		
ECDHE-ECDSA-AES128-SHA256	•	•	•	•	•	•		
ECDHE-RSA-AES128-SHA256	•	•	•	•	•	•		
ECDHE-ECDSA-AES128-SHA	•	•		•	•	•		
ECDHE-RSA-AES128-SHA	•	•		•	•	•		

TLS Security Policies on ALB & NLB

Security Policy	2016-08 *	FS-2018-06	TLS-1-2	TLS-1-2-Ext	TLS-1-1	TLS-1-0 †
TLS Protocols	,		,			,
Protocol-TLSv1	•	•				•
Protocol-TLSv1.1	•	•			•	•
Protocol-TLSv1.2	•	•	•	•	•	•
TLS Ciphers	,	,		,		,
ECDHE-ECDSA-AES128-GCM-SHA256	•	•	•	•	•	•
ECDHE-RSA-AES128-GCM-SHA256	•	•	•	•	•	•
ECDHE-ECDSA-AES128-SHA256	•	•	•	•	•	•
ECDHE-RSA-AES128-SHA256	•	•	•	•	•	•
ECDHE-ECDSA-AES128-SHA	•	•		•	•	•
ECDHE-RSA-AES128-SHA	•	•		•	•	•
ECDLIE ECDCA AECOEC CCM CHAZOA			_		_	

Encryption in Transit

Amazon was able to provide same-day mitigation for:

- Heartbleed
- POODLE
- LogJam

https://aws.amazon.com/security/security-bulletins/

Encryption in Transit – TLS with Amazon ELB Recap

Encryption in Transit – Amazon Certificate Manager

- Provision trusted SSL/TLS certificates from AWS for use with AWS resources:
 - Elastic Load Balancing
 - Amazon CloudFront distributions
- AWS handles the muck
 - Key pair and CSR generation
 - Managed renewal and deployment
- Domain validation (DV) through email or DNS (Route 53)
- Available through AWS Management Console, AWS Command Line Interface (AWS CLI), or API

What is Shared Responsibility Model (review)?

From the VPC standpoint, the Shared Responsibility Model is:

AWS Responsibility	Customer Responsibility
Security of the Cloud	Security in the Cloud
Provide a resilient and secure underlying infrastructure and Software Defined Network (SDN)	Configure customer-specific controls
Audited/Certified on SOC1/2, ISO27001, FedRAMP, HIPAA BAA, PCI, etc.	Subnets, routing table, security groups, network ACL, gateways, logging, encryption, access controls
Support the service for most of AWS 1M active customers	

Risk on Data Transmission

Risk Description	Actor
Data confidentiality is compromised	Internal
during transmission	→ Same Account
→ Within 1 Subnet	
→ Between Subnets in 1 VPC	External
→ Between VPCs	→ AWS Team
	→ Other AWS Customers
	→ All others

Risk assessment

Data	Risk	Actor	Criticality	Strategy	Controls
Non sensitive	Within Subnet (A)	Any	Low	Accept Performance / Complexity / Value	Access Controls No encryption
Sensitive	Within Subnet (A) Between Subnets (B)	Internal Infrastructure Changes (Routing Table)	Med-Low	Mitigate	Access Controls Encryption if feasible Monitor Config Changes
Sensitive	Between VPCs (C)	Internal Infrastructure Changes (Routing Table/VPN Peering/vPG)	Med	Mitigate	Access Controls Encryption if feasible Monitor Config Changes
Sensitive	Any VPC trans. type	AWS Team Access to underlying	Low	Mitigate	Encryption if feasible
Sensitive	Any VPC trans. type	Other AWS Customers Bug/Spoofing/Snooping	Low	Mitigate	Encryption if feasible
Sensitive	Any VPC trans. type	All others Bug Misconfiguration	Med-Low	Mitigate	AWS Controls Access Controls Encryption if feasible

Recommendations for customers

VPC is a virtual *private* cloud, not public cloud

VPC is secure, audited and certified

Encryption-in-transit has benefits (additional assurance) and costs (complexity, performance)

Recommendations on Use cases

Use Case	Data type	Controls to be (in-place)	Priority
Application1	Customer data & public facing	Enforce encryption in transit (Mostly done with SSL/TLS)	High
Application2	Customer data & internal	Best effort on encryption in transit (Not done yet)	Mid
Application3	No customer data & public facing	Best effort on encryption in transit (Not done yet)	Low

Data Protection

Data Protection – Least Privilege Access to Data

Security best practice

- Start with a minimum set of permissions
- Grant additional permissions as necessary

Define only the required set of permissions

- What actions a particular service supports
- What collection of API actions are required for the specific task
- What permissions are required to perform those actions

Data Protection

Data Protection – AWS Storage Services

Confidentiality: read/write object permissions (IAM and resource policies); MFA for deleting data **Availability/Durability**: S3 cross-region replication; versioning allows recovery of deleted objects **Integrity**: object integrity automatically provided

Amazon EBS

Confidentiality: tag-based IAM policies

Availability/Durability: share snapshots between accounts and copy between AWS regions

Integrity: block integrity automatically provided

Amazon EFS

Confidentiality: IAM policies for attachment; POSIX permission for files / directories

Availability/Durability: share snapshots between accounts and copy between AWS regions

Integrity: file integrity automatically provided

Data Protection – Amazon Macie

Data Protection – Amazon Macie

Data Protection – Amazon Macie

Data Protection – Amazon GuardDuty (review)

Data Protection – Amazon GuardDuty

Use GuardDuty to identify threats in your AWS environment across three major categories:

- Reconnaissance
- Instance compromise
- Account compromise

Data Protection Example Findings:

- EC2/TrafficVolumeUnusual
- IAMUser/ResourcePermissions
- IAMUser/UserPermissions
- IAMUser/RootCredentialUsage

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html

Questions?