Уравнение на хармоничния осцилатор. Уравнения 1 на Ойлер.

Уравнение на хармоничния осцилатор

Разглеждаме уравнението на хармоничния осцилатор.

$$y''(t) + ky'(t) + \omega^2 y(t) = f(t), \tag{1}$$

където $k > 0, \omega > 0$ са константи, зависеща от конкретната физична система.

Например вертикалните трептения на материална точка c маса m, окачена на пружина с дължина L и коефциент на еластичност k_0 . Тогава $k = \frac{\gamma}{m}, \, \omega^2 = \frac{k_0}{m},$ където γ е коефицента на триене.

Друг пример е движението на тежка частица P с маса m в окръжност C с център точката O и радиус L, разположена във вертикална равнина. Ако предполагаме, че няма трине, то уравнението за ъгъла $\varphi(t)$ на отклонението от равновесното полжение

$$mL\ddot{\varphi} + \gamma\dot{\varphi} + mq\sin\varphi = 0, (2)$$

където q е Земното ускорение.

В случая, когато разглеждаме малки осцилации около равновесното положение, можем да смятаме, че $\sin \varphi \approx \varphi$. Тогава уравнението (2) приема вида

$$\ddot{\varphi} + k\dot{\varphi} + \omega^2 \varphi = 0, \tag{3}$$

където $k=\frac{\gamma}{mL},\,\omega^2=\frac{g}{m},$ Да разгледаме уравнението на хармоничния осцилатор, когато k=0 и отсъства външна сила f(t) = 0.

$$y''(t) + \omega^2 y(t) = 0. \tag{4}$$

Неговото общо решение има вида

$$y(t) = A\cos\omega t + B\sin\omega t,\tag{5}$$

където константите A и B се определят от началните условия.

Ако означим $A = \rho \cos(\varphi)$, $B = -\rho \sin(\varphi)$, то решението приема вида

$$u(t) = \rho \cos(\omega t + \varphi).$$

Максималното отклонение от равновесното положение ϱ се нарича амплитуда на движението, а величината φ се нарича фаза. Амплитудата и фазата зависят от началните условия, докато ω зависи само от физическата система и често се нарича собствена честота на системата. Величината $T = \frac{2\pi}{\omega}$ се нарича период на движението. Той нараства, когато m расте, следователно по-тежките точки вибрират по-бавно. От друга страна периодът намалява, когато k нараства, което означава, че по-твърдите пружини водят до по-бързо вибриране на системата.

При линейното математическо махало, периодът на движението

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{6}$$

не зависи от началното отклонение. Това свойство се нарича изохронност и е открито от Галилей.

Фигура 1: Периодично движение.

1.0.2 Свободни вибрации с триене.

Фигура 2: Затихващо движение.

Нека сега има триене (k>0). Общо решение на уравнението на хармоничния

осцилатор е

$$u(t) = \begin{cases} Ae^{\lambda_1 t} + Be^{\lambda_2 t}, & k^2 - 4\omega^2 > 0; \\ (A + Bt)e^{-kt/2}, & k^2 - 4\omega^2 = 0; \\ (A\cos\mu t + B\sin\mu t)e^{-kt/2}, & k^2 - 4\omega^2 < 0, \end{cases}$$
(7)

където $\lambda_{1,2} = \frac{k}{2}(-1 \pm \sqrt{1 - 4\omega^2/k^2})$, а $\mu = \sqrt{4\omega^2 - k^2}/2 > 0$.

И в трите случая решението y(t) намалява с нарастването на t и клони към 0, когато $t \to \infty$, което отговаря на интуитивната ни представа, че триенето намалява енергията на системата. Въпреки, че движението не е периодично величината μ показва честотата с която точката вибрира и се нарича квази—честота, а $T_d = 2\pi/\mu$ се нарича квази—период.

1.0.3 Принудени трептения. Резонанс и биене.

Ще разгледаме случая, когато върху материалната точка действа външна периодична сила, например $F_0 \cos \omega_0 t$, $\omega_0 > 0$. Тогава уравнението на движението е

$$y''(t) + ky'(t) + \omega^2 y(t) = F_0 \cos \omega_0 t. \tag{8}$$

Да предположим, че $k^2-\omega^2<0$. Общото решение на уравнението (8) в този случай е

$$u(t) = (A\cos\mu t + B\sin\mu t)e^{-kt/2} + \frac{F_0\cos(\omega_0 t - \beta)}{\sqrt{(\omega^2 - \omega_0^2)^2 + k\omega_0^2}},$$
(9)

където $\beta = \arg(\omega^2 - \omega_0^2 + k\omega_0 i)$. В този случай търсим частно решение от вида $z(t) = De^{i\omega_0 t}$ и получаваме

$$Re(z) = \frac{F_0}{(\omega^2 - \omega_0^2)^2 + k^2 \omega^2} [(\omega^2 - \omega_0^2) \cos \omega_0 t + k \omega_0 \sin \omega_0 t].$$

Понеже k>0, след известно време първия член става пренебрежимо малък. Второто събираемо тогава ни дава периодично движение с честота равна на честотата на външната сила ω_0 и с известно отместване по фаза. Когато ω_0 се мени и амплитудата на второто събираемо се мени и достига максимума си при $\omega_0=\omega$. Тогава ефектът на външната сила е най-голям. В този случай се казва, че имаме резонанс. При k=0 и $\omega_0=\omega$ общото решение на уравнението (8) е

$$y(t) = (A\cos\omega t + B\sin\omega t) + \frac{F_0}{2\omega}t\sin\omega t.$$

Сега амплитудата на принудените трептения расте линейно заедно с t.

В зависимост от обстоятелствата резонансът може да бъде както хубав, така и лош. Той се взима под сериозно внимание, когато се проектират такива съоръжения, като мостове, при които той би могъл да предизвика разрушение. Резонансът играе важна роля и в радиотехниката - радиоапаратите приемат най-ясно сигналите с честота, близка до собствената им.

Да предположим сега, че $k=0,\,\omega_0\neq\omega$ и в началния момент системата се намира в покой, тоест y(0)=0 и y'(0)=0. Решението на получената задача на Коши е

$$y(t) = \frac{F_0}{(\omega^2 - \omega_0^2)} (\cos \omega_0 t - \cos \omega t)$$

$$= \frac{2F_0}{(\omega^2 - \omega_0^2)} \sin \frac{(\omega - \omega_0)t}{2} \sin \frac{(\omega + \omega_0)t}{2}.$$
(10)

Фигура 3: Резонанс. Графики на решението (в син цвят) и амплитудата.

Фигура 4: Биене. Графики на решението (в син цвят) и амплитудата.

Ако $|\omega-\omega_0|$ е малко число, то $\omega+\omega_0$ е много по-голямо от $|\omega-\omega_0|$ и $\sin\frac{(\omega+\omega_0)t}{2}$ осцилира много по-бързо от $\sin\frac{(\omega-\omega_0)t}{2}$. Следователно движението е бързо осцилиращо

със честота $(\omega + \omega_0)/2$, но с бавно варираща амплитуда

$$\frac{2F_0}{(\omega^2 - \omega_0^2)} \sin \frac{(\omega - \omega_0)t}{2}.$$

Такъв тип движение с периодично променяща се амплитуда се нарича биене. В електрониката например варирането на амплитудата във времето се нарича амплитудна модулация.

1.1 Уравнения на Ойлер

Уравнения на Ойлер наричаме следното уравнение с променливи коефициенти

$$a_0(x-a)^n y^{(n)}(x) + a_1(x-a)^{n-1} y^{(n-1)}(x) + \ldots + a_{n-1}(x-a) y^{(1)}(x) + a_n y = f(x),$$

където a, a_0, a_1, \ldots, a_n са реални константи, $a_0 \neq 0$.

Уравнението на Ойлер се свежда до линейно уравнение с постоянни коефициенти чрез смяната $x = a + e^t$ при x > a и $x = a - e^t$ при x < a.

Ще демонстрираме това на един прост пример.

Пример 1.1

$$x^2y'' + 2xy' - 6y = 0.$$

При x>0 полагаме $x=e^t$. Последователно ще изразим производните по x чрез производните по t. Нека означим $\dot{y}=\frac{dy}{dt}$ и да пресметнем

$$y' = \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \dot{y}e^{-t},$$

$$y'' = \frac{dy'}{dx} = \frac{dy'}{dt}\frac{dt}{dx} = \frac{d(\dot{y}e^{-t})}{dt}e^{-t} = (\ddot{y} - \dot{y})e^{-2t}.$$

Заместваме в разглежданото уравнение и получаваме

$$\ddot{y} + \dot{y} - 6y = 0.$$

Неговият характеристичен полином

$$\lambda^2 + \lambda - 6$$

има корени $\lambda_1 = -3$, $\lambda_2 = 2$. Това означава, че e^{-3t} , e^{2t} е фундаментална система и общото решение на последното уравнение е

$$y(t) = c_1 e^{-3t} + c_2 e^{2t}.$$

Tака окончателно намираме, че при x > 0 решението на изходното уравнение е

$$y(x) = c_1 x^{-3} + c_2 x^2.$$

Tази формула важи очевидно и $npu \ x < 0.$