Update on $t\bar{t}t\bar{t}$ Searches in Single Lepton/OS Dilepton Channel Using 2016 Data

Denys Lontkovskyi ¹ Freya Blekman ¹ Long Wang ² Robert Clare ² Steve Wimpenny ²

¹Vrije Universiteit Brussel

²University of California, Riverside

March 22, 2018

Current Status

- Aiming at re-preapproval, documentation -
- We have requested for the production of two new $t\bar{t}$ samples with 9M events each for the two channels(semi-lep and OS dilep), with dedicated cuts at generator level to increase MC stats by a factor of ~ 10 in high multiplicity/discriminant tails. Details on slide 20
- ▶ We are studying the effects of possible background from QCD multi jets with mis-identified leptons.

Data, MC and Objects

Data and MC

- ► Run2016 B-H, 35.9pb⁻¹
- Summer 16 MiniAOD MC for Morond 17
 - ▶ signal sample: tt̄tt̄ amc@NLO
 - ▶ background samples: $t\bar{t}$ (backup, mass, width), single $t(\bar{t})$, DY, W+jets, $t\bar{t} + Z/H/W/diboson$

Objects

Single Lepton

- μ : tight ID, $p_T > 26$ GeV, $|\eta| < 2.1$, Rellso < 0.15
- \blacktriangleright $\it e$: tight ID, $\it p_T > 35$ GeV, $|\eta| < 1.4442 \ {\rm or} \ 1.566 < |\eta| < 2.1$
- ▶ jet: loose ID, $p_T > 30$ GeV, $|\eta| < 2.1$, $\Delta R > 0.4$

OS Dilepton

- μ : loose ID, leading(subleading) lep $p_T > 25(20) \; {
 m GeV}, |\eta| < 2.4,$ ${\it Rellso} < 0.15$
- e: loose ID, leading(subleading) lep $p_T > 25(20)$ GeV, $|\eta| < 1.4442$ or $1.566 < |\eta| < 2.4$
- ▶ jet : loose ID, $p_T > 30$ GeV(25 GeV if tagged as b), $|\eta| < 2.4$, $\Delta R > 0.4$

Event Selection and MC Re-weighting

Event selection

Single Lepton

- $\triangleright N_I^{tight} = 1$
- $ightharpoonup N_{\mu}^{loose} = 0, N_e^{veto} = 0$
- ▶ $N_j \ge 8(7)$ in $e(\mu)$ channel of which $N_{tags}^M \ge 2$
- ► £_T > 50 GeV
- ► HT ≥ 500 GeV

MC Re-weighting

- Trigger eff.
- ► Lepton scales

- ► Pileup Reweight
- ► JER/JEC

OS Dilepton

- Exactly 2 OS leptons
- $M_{II} \ge 106$ GeV or $76 \ge M_{II} \ge 20$ GeV
- ▶ $N_j \ge 4$ of which $N_{tags}^M \ge 2$
- HT ≥ 500 GeV

- ▶ b-tagging eff.
- ▶ top p_T reweight

tītī Search Method

Binned analysis fitting on event level BDT

Figure: Single μ event level BDT in \geq 9 jet 3 btag category

Figure: μe event level BDT in CR

Event categorization in $N_j \otimes N_{tags}^M$ for limit fitting

- Single lepton channel
 - \blacktriangleright μ : N_j : 7, 8, 9, 10+; N_{tags}^M : 2, 3, 4+
 - $e: N_i: 8, 9, 10+; N_{tags}^M: 2, 3, 4+$
- ▶ OS Dilepton channel: N_j : 4-5, 6-7, 8+; N_{tags}^M : 2, 3+

Control Plots (BDT Input Variables)

► Single lepton channel

$$BDT_{trijet2}, HTH, H_T^b, H_T^{Rat}, p_T^{5thjet}, p_T^{6thjet}, M_{RE}^H, HT_X, p_T^{lep}, CSV_3, CSV_4, CSV_{3rdjet}, CSV_{4thjet}, CSV_{$$

OS Dilepton channel

$$N_{j}, BDT_{trijet1}, H_{T}^{b}, H_{T}^{2M}, HTH, S, H_{T}^{Rat}, p_{T}^{I1}, \eta^{I1}, \Delta R_{II}, \Delta R_{bb}, N_{tags}^{L}, N_{tags}^{M}, p_{T}^{3rdjet}, p_{T}^{4thjet}$$

Overall reasonable distributions agreement within uncertainties.

Sources of Systematic Uncertainties

Experimental Uncertainties

- Luminosity uncertainty
- ▶ Pileup $\pm 1\sigma$
- Lepton SFs uncertainty
- ▶ JER $\pm 1\sigma$
- JES(split)
 - SubTotalPileUp
 - SubTotalRelative
 - SubTotalPt
 - SubTotalScale
 - Jet flavor
- b-tag CSV $\pm 1\sigma$
- Heavy flavor fraction
- ▶ Top p_T reweight
- Jet normalization

Theoretical Uncertainties

- ME scale
- MC cross sections
- UE tune
- PS scale
- ME-PS matching
- PDF

Fit Strategy

- ► Likelihood fit using Combine Tool
- ▶ Event level BDT output discriminator distributions for fit is performed simultaneously in different $N_j \otimes N_{tags}^M$ categories.
- Blind highest jet/tag multiplicity categories.
 - ▶ single lepton: blind 10+ jets & 3+ tags category
 - ▶ OS dilepton: blind 8+ jets & 3+ tags category
- Combine results from single lepton channel and OS dilepton channel.

Template Fit in Single Lepton Channel

Table: Single lepton blinded fitting results

Channel	Expected limit	Expected xsec	Expected
	$\times \sigma_{t\bar{t}t\bar{t}}^{SM}$	fb	significance
е	23.5 +7.0	216.2^{+64}_{-60}	0.09
μ	$16.0^{+7.0}_{-4.7}$	147.2^{+64}_{-43}	0.12
combined	$9.4^{+4.0}_{-2.7}$	86.5^{+37}_{-25}	0.25

Postfit BDT distributions

- Equiprobable binning scheme
- ▶ Blind signal rich 10+/3+ category
- Reasonable description of the data in CRs

Fit Diagnostic in Single Lepton Channel

Figure: μ +jets channel

Figure: *e*+jets channel

Post-fit uncertainty reduction is under investigation

Impact of Nuisance Parameters

- Dominant sources of systematic uncertainty:
 - ▶ UE variation. Affects jet multiplicity spectrum (Sample has low statistics)
 - ightharpoonup $t\bar{t}b\bar{b}$ normalization
 - ▶ Normalization of $t\bar{t}Z$, $H \rightarrow b\bar{b}$
 - Reweighting of HF component in CSV discriminant

Postfit BDT distributions

- high BDT region in signal sensitive regions is blinded
- Obvious excess in the distribution tails within all three channels, partially due to lack of MC stats

Figure: $e\mu$ channel

Figure: $\mu\mu$ channel

Figure: ee channel

Template Fit in OS Dilepton Channel

Table: OS dilepton blinded fitting results

Channel	Expected limit	Expected xsec	Expected	
	$\times \sigma_{t\bar{t}t\bar{t}}^{SM}$	×fb	significance	
$\mu\mu$	$14.56^{+9.64}_{-5.24}$	134^{+89}_{-48}	0.19	
$e\mu$	$9.88^{+6.53}_{-3.53}$	91^{+60}_{-32}	0.37	
ee	$17.56^{+11.34}_{-6.19}$	162^{+104}_{-57}	0.29	
combined	$6.88^{+4.44}_{-2.42}$	63 ⁺⁴¹ ₋₂₂	0.52	

Fit Diagnostic in OS Dilepton Channel

Figure: nuisance pulls in $\mu\mu$

Figure: nuisance pulls in $e\mu$

- Most signal sensitive region is blinded
- No extreme pulls or constraints.
- Reasonable behavior for all the NPs
- Results are consistent between three sub-channels

Fit Diagnostic in OS Dilepton Channel

Figure: nuisance pulls in ee

Figure: nuisance pulls in OS dilep

- Mainly the sub-components of JES are constrained
 - Statistic fluctuation
 - Correlated with other NPs

Nuisance Parameters with highest impact in OS dilep combined fit

- Signal systematics and TTRare have the largest impacts, as we are very close to the expected signal strength.
- ▶ Jet energy scale uncertainties and MC stats in signal enriched bins dominate.
- All nuisance parameters behave reasonably.
- ▶ Full list of nuisance impacts are on backup slides 22 to 23

Figure: Impact of nuisance parameters on the parameter of interest

Combined Results

Table: Single lepton + OS dilepton blinded combined results

Channel	Expected limit	Expected limit	Expected	
	$\times \sigma_{t\bar{t}t\bar{t}}^{SM}$	$ imes \mathit{fb}$	significance	
l+jets	$9.4^{+4.0}_{-2.7}$	86.5^{+37}_{-25}	0.25	
OS II+jets	$6.9^{+4.4}_{-2.4}$	63^{+41}_{-22}	0.52	
combined	$5.2^{+2.6}_{-1.7}$	48^{+24}_{-16}	0.58	

▶ Signal sensitivity is driven by the OS //+jets channel

Conslusion

Current status:

- Analysis blinded in order to optimize search regions/binning taking into account limited MC statistics
- ightharpoonup Expecting imes 10 more $t\bar{t}$ background MC with dedicated filters in signal rich search regions that have large statistical uncertainty
 - New high jet multiplicity, high-H_T filter was optimized for the analysis
 - MC requests are added to the system

Plans for coming weeks:

- ► Finalize QCD background estimation
- Include new MC samples when they are ready
- Update ANs and paper draft

Backups

Filter optimized for I+jets channel

▶ Preferred configuration: HT > 500, $nJets + nLep \ge 9$, nLep = 1 (9M)

		Acceptance loss in different jet multiplicity regions ¹		
Filter cuts	Filter eff.	$SL(N_J^{rec}=9)$	$SL(N_J^{rec} > 9)$	Ext (×10)
$\begin{array}{c} {\sf HT}{>}500\\ {\sf nJets}{+}{\sf nLep} \ge 8\\ 1 \ {\sf lepton} \end{array}$	0.005 ± 0.0002	0.11	0.08	21.8 M
$\begin{array}{c} {\rm HT} > 500 \\ {\rm nJets+nLep} \ge & 9 \\ 1 \ {\rm lepton} \end{array}$	0.002 ± 0.0001	0.19	0.10	8.7M
HT>500 nJets+nLep>=10 1 lepton	$0.0007 \pm 6.5 \times 10^{-5}$	_	0.19	3М

¹Fraction of events passing offline cuts but rejected by gen filter > < \(\) \(\)

Filter optimized for OS dilpeton channel

▶ Preferred configuration: HT > 500, $nJets + nLep \ge 7$, nLep = 2 (9M)

		Acceptance loss in different jet multiplicity regions ²		
Filter cuts	Filter eff.	$OS (N_J^{rec} = 7)$	OS $(N_J^{rec} \ge 8)$	Ext (×10)
HT>500 nJets+nLep>=5 2 lepton	0.0046 ± 5.5e — 05	0.21	0.23	20 M
HT>500 nJets+nLep>=6 2 lepton	0.0033 ± 4.7e - 05	0.21	0.23	14.4 M
HT>500 nJets+nLep>=7 2 lepton	$0.0020 \pm 3.6e - 05$	0.23	0.24	8.7 M
HT>500 nJets+nLep>=8 2 lepton	0.0009 ± 2.4e - 05	0.31	0.25	3.9 M

 $^{^2}$ Fraction of events passing offline cuts but rejected by gen filter \longrightarrow \bigcirc

impacts of nuisance parameters

impacts of nuisance parameters

Maybe some more control plots?