实验题目:担握法测定物体的转动惯量

[家验自初]

- 1.学习扭摆的构造和转动惯量测试仪的使用方法.
- 2.学会用扭摆法测定不同形状物体的转动惯量.
- 3.理解平行轴定理.

[实验仪器设备]

扭摆装置,转动惯量测试仪,YP1200型数字式电子秤, 游桐不足,高度尺等。

[实验原理]

将物体在水平面内转过 8角. 左弹簧恢复力矩作用下,物体就开始绕垂直轴做往巡扭转运动. 根据胡克定律,弹簧 受扭转而产生的恢复力矩M与所转过的角度 0 成正比,即

全心= 1/1,忽略轴承摩擦.阻力矩,由式00得

$$\beta = \frac{Q^2 \theta}{Q t^2} = -\frac{k}{I} \cdot \theta = -\omega^2 \theta$$

上述方程表示扭摆运动为简谐振动,角加速度与角位移成正比,且为句相反、此为程的解

式中, A的简谐振动的角振幅, Y为初相任角, W为圆颗率. 此简谐振动的周期

由式③可知,只要实验测得物体扭摆运动的摆动周期T,其轻动慢量为

程论证明,若领量为m的物体绕通过质心轴的轻动慢量为lo时, 毒轻轴平约移动距离对时,则此物体对新轴的轻动慢量变为lo+m对,这就是轻动慢量的平约轴定理.

[实验场骤]

- (1)"十"字调节法,使水平仪中气泡居中
 - (2)测出塑料圆柱体的引径,金属圆筒的内引径,本球直径,均各测三次、
- (3)测出(2)中物体的质量、各测一次
- (4) 装上金属载物盘,并调整光电探头的位置,使载物盘上的挡孔杆处于其缺口中央且能遮住发射红引线的凡. 孔. 使用轻动惯量)测试仪测定摆动周期 To.

实验题目:扭摆法测定物体的程动惯量

- (5) 将塑料圈柱体垂直放置在载物盘上,测定摆动周期下,.
- (6) 敢下塑料圆柱体,放上金属圆筒,测定摆动周期压。
- (7) 取下载物盘和金属图筒,装上木斌,测定摆动周期了。
- (8) 取下木碱,装上金属细杆,保证金属细杆中心与轻轴重合,测定摆动周期下4.(T..75.76,76均需测3次)
- (9) 将砝码滑块对称放置在细杆两边凹槽内,分别测定滑块 能心距转轴 5.00 cm, 10.00 cm, 15.00 cm, 20.00 cm, 25.00 cm 时 的摆动周期, 验证平行轴定理。

[数据表格和数据处理]

次数	1	2	3	4	5	6	7	8	9	10	To
To LS)	0.691	0.692	0.673	0.695	0.692	0.669	0.694	0.692	0.669	0.694	0-686/

求下的和确定度

$$U_{A} = S_{\overline{A}} = \sqrt{\frac{1}{2} (T_{0}i - T_{0})^{2}} = 0.0035 \text{ S}$$

$$U_{B} = \frac{1}{2} (I_{0}i - T_{0})^{2} = 0.0035 \text{ S}$$

$$U_{B} = \frac{1}{2} (I_{0}i - T_{0})^{2} = 0.0035 \text{ S}$$

$$U_{0.95} = 2 \text{ Uo.68} = 2 \sqrt{\text{Uo} + \text{Uo}} = 0.0074 \text{ S}$$

$$T_{0} = T_{0} \pm \text{Uo.95} = (0.6861 \pm 0.0074) \text{ S}$$

$$V_{0} = V_{0} + V_$$

Million Constitution	心何	是寸(10 ⁻² m)	廣量(網)	周期以	7 程论值(bgm) 公認值(bgm) 自分差
塑料副 柱体	7.470	16 R=9.884		1.22.73 13	24 = 1,2 7 mv
金属	9.398 9.402 9.400	内设页;=9.400	0.669	-02	$L' = \frac{1}{8}m(\vec{p}_1^2 + \vec{p}_2^2) L = \frac{k\vec{l}_2}{4n^2} - L$ $\frac{1}{960} = 15.57 \times 10^{-4} = 15.35 \times 10^{-4} 1.41$
	9.890 9.898 9.890	計五=9.893		13961	
械	12.328	直位了=12.333	1.230	1.3309 T3 1.3251 1.32 1.3306	= $\frac{1}{4} = \frac{1}{70} \text{mD}^2$ $\frac{1}{42} = \frac{1}{42} = \frac{1}{12}$ = $\frac{1}{12} = \frac{1}{12} $
球支	座移动	惯量实验值	12=0.179 x	10 kgm²	(0 000 102)2 107/10 ⁻⁴ /10
(1) 塑	料图林	纯的转动情	量]===	$m\hat{P}_i^* = \frac{1}{8}$	\times 0.881 \times (9.884 \times /0 ⁻²) ² = 10.76×10 ⁻⁴ kg
扭	轻端着	& k = <u>{\lambda^2 L'}</u> 72-73 230 	= 4.101 × 10	-2 kgm2/52	
科			Ti2-To2	4.010-10	Nym V
	K 3 0	1.40 77			
	属国际	转动惯量	al 1	=2 =25	15 x7 x 10-4 han 2
	為國家	理论订算值	$I_2' = \frac{1}{8}m(1)$	$\overline{D_1}^2 + \overline{D_2}^2$)	$= 15.57 \times 10^{-4} \text{ kgm}^2$
	為國行	理论计算值 实验值	12 = 472 -	To = 15	.35×/0-4 kgm²
	為過行	理论计算值 实验值	12 = 472 -	To = 15	= $15.57 \times 10^{-4} \text{ kgm}^2$ $.35 \times 10^{-4} \text{ kgm}^2$ $15.57 \times 10^{-4} - 15.35 \times 10^{-4}$ $t = 15.57 \times 10^{-4}$ = 1.41%
47金	入诚兹	理论计算值 实验值 百分差 动慢量	$l_1 = \frac{k\overline{l_1}^2}{42^2} - l_2$ $B_2 = \frac{ l_2' - l_3' }{l_3'}$	1. = 15 hl = 1	$\frac{15.57 \times 10^{-4} \text{ kgm}^2}{15.57 \times 10^{-4} - 15.35 \times 10^{-4}} = 1.41\%$ $\frac{15.57 \times 10^{-4}}{15.57 \times 10^{-4}} = 1.41\%$
47金	入诚兹	理论计算值 实验值 百分差 动慢量	$l_1 = \frac{k\overline{l_1}^2}{42^2} - l_2$ $B_2 = \frac{ l_2' - l_3' }{l_3'}$	1. = 15 hl = 1	$\frac{15.57 \times 10^{-4} \text{ kgm}^2}{15.57 \times 10^{-4} - 15.35 \times 10^{-4}} = 1.41\%$ $\frac{15.57 \times 10^{-4}}{15.57 \times 10^{-4}} = 1.41\%$
47金	入诚兹	理论计算值 实验差 动慢道 建工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	$l_1 = \frac{k\overline{l_1}^2}{4n^2} - B_2 = \frac{ l_2^2 - l_3^2}{l_3^2}$ $l_3^2 = \frac{ l_3^2 - l_3^2}{l_3^2}$	1. = 15 h = 1 = 1	$\frac{15.57 \times 10^{-4} \text{ kgm}^2}{15.57 \times 10^{-4} - 15.35 \times 10^{-4}} = 1.41\%$ $18.71 \times 10^{-4} \text{ kgm}^2$
47金	入诚兹	理论计算值 动性 爱 量 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值	$ l_1 = \frac{k \overline{l_1}^2}{4 n^2} - l_2 = \frac{ l_2 }{ l_1 } l_3 = \frac{k \overline{l_2}^2}{4 n^2} - l_4 = \frac{k \overline{l_2}^2}{4 n^2} - l_5 = \frac{k \overline{l_2}^2}{4 n^2} - \frac{k \overline{l_2}^2}{4 n^2$	$\begin{array}{c} l_0 = 15 \\ \frac{l_1}{l_2} = \frac{l}{l_3} \end{array}$ $\begin{array}{c} l_2 = 18. \end{array}$	$\frac{15.57 \times 10^{-4} \text{ kgm}^2}{15.57 \times 10^{-4} - 15.35 \times 10^{-4}} = 1.41\%$ $\frac{15.57 \times 10^{-4}}{15.57 \times 10^{-4}} = 1.41\%$
47金	入诚兹	理论计算值 动性 爱 量 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值	$ l_1 = \frac{k \overline{l_1}^2}{4 n^2} - l_2 = \frac{ l_2 }{ l_1 } l_3 = \frac{k \overline{l_2}^2}{4 n^2} - l_4 = \frac{k \overline{l_2}^2}{4 n^2} - l_5 = \frac{k \overline{l_2}^2}{4 n^2} - \frac{k \overline{l_2}^2}{4 n^2$	$\begin{array}{c} l_0 = 15 \\ \frac{l_1}{l_2} = \frac{l}{l_3} \end{array}$ $\begin{array}{c} l_2 = 18. \end{array}$	$\frac{15.57 \times 10^{-4} \text{ kgm}^{2}}{15.57 \times 10^{-4} - 15.35 \times 10^{-4}} = 1.41\%$ $18.71 \times 10^{-4} \text{ kgm}^{2}$ $17 \times 10^{-4} \text{ kgm}^{2}$

实验题目:扭摆减测定物体的转动假量

金属科及支座鞋动 (10-2 kg	惯量实验(2012)	值4=続	74=0.4132	1.9944 5	T4 = 1.99445
7 (lo-2 m)	5.00	10.00	15.00	1.9944 s	
摆动周期TG)	2.2877	2.9515	3.8060	20.00 4.7408	25.00
实验值(10°2 kgm²) 1= 続 T² - I4	0.1305	0.4917	1.092	1.922	2.926
理论值 (10 ⁻² kgm²) ['= l's +2mx²	0-1253	0.4771	1.063	1.884	2.939
百分差 二滑块质心转轴	4.15%	3.06%	2.73%	2.02%	0.44%

二滑块质心转轴转动惯量理论值 Is = 0.809×10-4kgm², 2m=0.469kg

(4)金属析及其支座转动惯量实验值 14= 4= 4.132×10-3 kg m² 当7=5.00×10-2 m mj

实验值
$$1 = \frac{k}{4\pi^2} T^2 - 4 = \frac{4.101 \times 10^{-2}}{4\pi^2} \times 2.2877^2 - 4.132 \times 10^{-3}$$

= 1.305 × 10⁻³ kgm²

理论值 1'= 15+2mx2 = 0.809×10-4+0.469×(5.00×10-2)~

司分差 B =
$$\frac{|7-1'|}{|1'|}$$
 = $\frac{|1\cdot3\circ5\times/o^{-3} + |2\cdot53\times/o^{-3}|}{|1\cdot2\cdot53\times/o^{-3}|}$ = 4.15/少

同理,可求出 X=10.00,15.00,20.00,25.00,(102m)对的实验值、理论值及百分差,填入上表、

[结果分析和讨论]

- (1) 机座务必保持水平状态,否则误差银大。
- (2) 在安装结测物体时,其支架必须全部套入扭摆主轴 并将螺钉旋紧,否则扭摆不能正常2作.
- (3) 光电探头宜放置在挡光杆的平衡位置处,不能直接搭触,以免摩擦影响实验结果。
- (4) 弹簧扭转常数点并不是固定的,专摆角有一定关系, 故实验耐尽量保证摆角初始相同.
- (5) 验证平行轴定理问,随着x增大,百分差越来越小, 猜想,:金属杆的影响越来越小,更加符合公式的 理想条件.

		الات	為量 (29)	即期 (S)		
	9302 94 3302 94	398 2内径 Di		1.3970		
金属	95300 9.4	-	5.669	1.3948	entrate and the second	
周筒	99.909.890		0-磁料	1.5748	T ₂	
	9.898	补经及		1.3961		
	9.890			1.2101		
	12.328			1.3309		
木铖	12.332	直经 D	1.230	1.3251	T3	
	12.330			1.3306		

T4 7.9944 1.9944 1.9940 1.9944 1.9939 1.9944

连着四次 1.9944 ...

200			1	1	7
$\times (lo^{-2}m)$	5.00	10.00	15.00	20.00	25.00
摆动周期 T(s)	2.2877	2.9515	3.8060	4.7408	5.6694

两个砝码质量 2m= 0.469 kg 0.469 kg

April 27# 2917.10.30 塑料 圖柱体 质量 $m = \frac{0.881}{0.2275} kg$ 直经 p_1 $\frac{98.90}{98.70}$ T_1 (5) 1.2275 $(10^{-3}m)$ 98.92 1.2275 1 2 3 4 5 6 7 8 9 10 T_0 T_0 (5) 0.691 0.692 0.673 0.695 0.692 0.669 0.694 0.694 0.696 0.6861