Mérték, integrál, ...

11. Előadás

1. Riemann – Lebesgue.

Mutassuk meg, hogy a kompakt [a,b] intervallumon Riemann-integrálható függvények egyúttal Lebesgue-integrálhatók is, és minden ilyen függvény Lebesgue-integrálja megegyezik a Riemann-integráljával. Sőt, igaz az

1. Tétel. Tetszőleges $f:[a,b] \to \mathbf{R}$ Riemann-integrálható függvény esetén $f \in L^{\infty}[a,b]$, és az f Riemann-integrálja egyenlő a Lebesgue-integráljával.¹

Bizonyítás. Minden Riemann-integrálható függvény korlátos, ezért az $f \in L^{\infty}[a,b]$ állításhoz elég azt megmutatnunk, hogy az f mérhető: minden $A \subset \mathbf{R}$ Borel-halmaznak az $f^{-1}[A]$ ősképe Lebesgue-mérhető.

Legyen ehhez a τ_n $(n \in \mathbf{N})$ az [a,b] intervallumnak egy "minden határon túl finomodó" felosztás-sorozata. Tehát minden $n \in \mathbf{N}$ mellett a $\tau_n \subset [a,b]$ egy véges halmaz, amire $a,b \in \tau_n$ és $\tau_n \subset \tau_{n+1}$, továbbá a τ_n elemeit x_{in} -ekkel $(i=0,...,s_n \in \mathbf{N})$ jelölve feltesszük, hogy

$$a = x_{0n} < x_{1n} < \ldots < x_{s_n n} = b$$

és

$$\lim_{n \to \infty} \max \{ x_{in} - x_{i-1n} : i = 1, ..., s_n \} = 0.$$

Ha $i = 1, ..., s_n$ és

$$m_{in} := \inf\{f(x) : x \in [x_{i-1n}, x_{in}]\},\$$

$$M_{in} := \sup\{f(x) : x \in [x_{i-1n}, x_{in}]\},\$$

akkor legyen

$$\varphi_n := \sum_{i=1}^{s_n-1} m_{in} \cdot \chi_{[x_{i-1n}, x_{in})} + m_{s_nn} \cdot \chi_{[x_{s_n-1n}, x_{s_nn}]},$$

 $^{^1\}mathrm{Legyen}$ az (X,Ω,μ) teljes mértéktér adott $-\infty < a < b < +\infty$ esetén az X := [a,b], $\Omega := \{A \in \mathcal{P}([a,b]) : A \in \widehat{\Omega}_1\}, \ \mu(A) := \widehat{\mu}_1(A) \ (A \in \Omega)$ választásnak megfelelő, és $L^p[a,b] := L^p(\mu) \ (1 \le p \le +\infty).$ Ekkor: $L^\infty[a,b] \subset L^q[a,b] \subset L^p[a,b] \subset L^1[a,b],$ ahol $1 \le p \le q \le +\infty.$ Az $f : [a,b] \to \mathbf{R}$ függvény Lebesgue-integrálható, ha $f \in L^1[a,b],$ amikor is $\int f \ d\mu \ (\mathrm{vagy} \ \int_a^b f, \ \mathrm{vagy} \ \int_a^b f(x) \ dx)$ az f Lebesgue-integrálja.

$$\Phi_n := \sum_{i=1}^{s_n-1} M_{in} \cdot \chi_{[x_{i-1n}, x_{in})} + M_{s_n n} \cdot \chi_{[x_{s_n-1n}, x_{s_n n}]} \qquad (n \in \mathbf{N}).$$

A (φ_n) függvénysorozat monoton növekedő, a (Φ_n) pedig monoton fogyó, továbbá

$$\Phi_n \ge \varphi_n \qquad (n \in \mathbf{N}).$$

A szóban forgó függvénysorozatokat lépcsősfüggvények alkotják, és az előbbi-ek szerint a $(\Phi_n - \varphi_n)$ sorozat L_0^+ -beli függvényekből álló monoton csökkenő sorozat. Ezért a

$$\Psi := \lim_{n \to \infty} (\Phi_n - \varphi_n) = \lim_{n \to \infty} \Phi_n - \lim_{n \to \infty} \varphi_n$$

függvény L^+ -beli. A Riemann-integrál definíciója miatt az

$$\int \varphi_n \, d\widehat{\mu}_1 = \sum_{i=1}^{s_n} m_{in} (x_{in} - x_{i-1n}) \qquad (n \in \mathbf{N}),$$

$$\int \Phi_n \, d\widehat{\mu}_1 = \sum_{i=1}^{s_n} M_{in}(x_{in} - x_{i-1n}) \qquad (n \in \mathbf{N})$$

Riemann-közelítő összegekből álló monoton számsorozatok az f függvény Riemann-integráljához konvergálnak:

$$\lim_{n \to \infty} \int \varphi_n \, d\widehat{\mu}_1 = \lim_{n \to \infty} \int \Phi_n \, d\widehat{\mu}_1 = \int_a^b f(x) \, dx.$$

Az is nyilvánvaló, hogy ha a $C \ge 0$ szám egy korlátja az f-nek, azaz

$$|f(x)| \le C \qquad (x \in [a, b]),$$

akkor

$$0 \le \Phi_n - \varphi_n \le C \qquad (n \in \mathbf{N}).$$

Alkalmazzuk ezt az észrevételt és a (kis) Lebesgue-tételt² a $(\Phi_n - \varphi_n)$ sorozatra, miszerint

$$\int \Psi \, d\widehat{\mu}_1 = \lim_{n \to \infty} \int (\Phi_n - \varphi_n) \, d\widehat{\mu}_1 = \lim_{n \to \infty} \int \Phi_n \, d\widehat{\mu}_1 - \lim_{n \to \infty} \int \varphi_n \, d\widehat{\mu}_1 =$$

$$\int_a^b f(x) \, dx - \int_a^b f(x) \, dx = 0.$$

Így $\Psi = 0$ $\hat{\mu}_1$ -m.m. Innen a

$$\varphi_n \le f \le \Phi_n \qquad (n \in \mathbf{N})$$

nyilvánvaló egyenlőtlenségek alapján (pl.)

$$f = g := \lim_{n \to \infty} \varphi_n \quad \widehat{\mu}_1\text{-m.m.}$$

Azt tudjuk, hogy a g függvény mérhető, ezért bármilyen $A\subset \mathbf{R}$ Borelhalmazra $g^{-1}[A]\in \widehat{\Omega}_1$. Továbbá

$$f^{-1}[A] = (f^{-1}[A] \cap \{f = g\}) \cup (f^{-1}[A] \cap \{f \neq g\}) =$$
$$(g^{-1}[A] \cap \{f = g\}) \cup (f^{-1}[A] \cap \{f \neq g\}),$$

ahol egy alkalmas

$$N \in \widehat{\Omega}_1, \, \widehat{\mu}_1(N) = 0$$

halmazzal $\{f \neq g\} \subset N$. A $\hat{\mu}_1$ Lebesgue-mérték teljessége miatt tehát

$$\{f \neq g\} \in \widehat{\Omega}_1,$$

ennek alapján

$$\{f=g\}\in\widehat{\Omega}_1$$

is igaz, ezért

$$g^{-1}[A] \cap \{f = g\} \in \widehat{\Omega}_1.$$

Mivel

$$f^{-1}[A] \cap \{f \neq g\} \subset \{f \neq g\},\$$

ezért ismét a $\widehat{\mu}_1$ teljessége miatt az is teljesül, hogy

$$f^{-1}[A] \cap \{f \neq g\} \in \widehat{\Omega}_1.$$

Következésképpen $f^{-1}[A] \in \widehat{\Omega}_1$, azaz az f függvény mérhető.

Ezzel beláttuk, hogy $f\in L^\infty[a,b]$. Az integrálok egyenlőségéről mondottak igazolásához a (φ_n) sorozatra újra alkalmazhatjuk a fent említett Lebesgue-tételt. Így egyrészt

$$\lim_{n\to\infty} \int \varphi_n \, d\widehat{\mu}_1 = \int f \, d\widehat{\mu}_1,$$

másrészt pedig a fentiek szerint

$$\lim_{n\to\infty} \int \varphi_n \, d\widehat{\mu}_1$$

éppen az f függvény Riemann-integrálja. ■

Külön is felhívjuk a figyelmet arra, hogy az f függvény mérhetőségének a bizonyítása közben erősen kihasználtuk azt a tényt, hogy a $\widehat{\mu}_1$ Lebesguemérték teljes. Megmutatható, hogy az f Riemann-integrálhatóságából általában nem következik az, hogy tetszőleges $A \subset \mathbf{R}$ Borel-halmazra az $f^{-1}[A]$ őskép is Borel-halmaz.

2. Radon-Nikodym-tétel (vázlat).

Legyen $X \neq \emptyset$ halmaz, az (X, Ω, μ) egy mértéktér, $f \in L^+$, és $A \in \Omega$ esetén vezessük be a következő jelölést:

$$\mu_f(A) := \int_A f \, d\mu := \int f \cdot \chi_A \, d\mu$$

(az f függvény integrálja az A halmazon). Megjegyezzük, hogy ha A=X,akkor

$$\int_X f \, d\mu = \int f \cdot \chi_X \, d\mu = \int f \, d\mu.$$

Ezzel tehát egy

$$\mu_f:\Omega\to[0,+\infty]$$

leképezést definiáltunk.

2. Tétel. A μ_f leképezés minden $f \in L^+$ függvényre mérték.

Bizonyítás. A $\mu_f \geq 0$ becslés nyilvánvaló. Mivel

$$f \cdot \chi_{\emptyset} = \chi_{\emptyset} \in L_0^+,$$

ezért

$$\mu_f(\emptyset) = \mu(\emptyset) = 0.$$

Ha adott az $A_n \in \Omega \ (n \in \mathbf{N})$ páronként diszjunkt, mérhető halmazoknak egy sorozata és

$$A := \bigcup_{n=0}^{\infty} A_n,$$

akkor

$$f \cdot \chi_A = \sum_{n=0}^{\infty} f \cdot \chi_{A_n}.$$

Innen a Beppo Levi-tétel sorokra vonatkozó alakjából

$$\mu_f(A) = \int f \cdot \chi_A \, d\mu = \sum_{n=0}^{\infty} \int f \cdot \chi_{A_n} \, d\mu = \sum_{n=0}^{\infty} \mu_f(A_n),$$

így a μ_f szigma-additív is.

Szokás a μ_f mértéket az f függvény által generált mértéknek, magát az f függvényt pedig (a μ_f mérték vonatkozásában) súlyfüggvénynek nevezni. Ha

$$f(x) := 1 \qquad (x \in X),$$

akkor a triviális $\mu_f = \mu$ egyenlőséget kapjuk.

Pl. tetszőleges $f,g\in L^+(\mu)$ mérhető függvények esetén³

$$\int g \, d\mu_f = \int g f \, d\mu.$$

Vezessük be a következő definíciót:

Definíció. Tegyük fel, hogy az (X,Ω) mérhető tér esetén adottak a

$$\nu, \, \mu: \Omega \to [0, +\infty]$$

mértékek. Azt mondjuk, hogy a ν mérték abszolút folytonos a μ mértékre nézve, ha minden $A \in \Omega$, $\mu(A) = 0$ halmaz esetén $\nu(A) = 0$.

Mindezt a

$$\nu \ll \mu$$

szimbólummal fogjuk jelölni.

Így pl. a fentiek szerint tetszőleges $f \in L^+(\mu)$ (súly)függvény esetén $\mu_f \ll \mu$.

A. Lemma. Legyen a ν véges. Ekkor a $\nu \ll \mu$ feltétel ekvivalens azzal, hogy bármilyen $\varepsilon > 0$ számhoz megadható olyan $\delta > 0$ szám, hogy ha $A \in \Omega$ és $\mu(A) < \delta$, akkor $\nu(A) < \varepsilon$.

Bizonyítás. Ha $\nu \ll \mu$ és (indirekt) van olyan $\varepsilon > 0$ pozitív szám, hogy egy alkalmas $A_n \in \Omega$ $(n \in \mathbb{N})$ halmazsorozattal

$$\mu(A_n) < 2^{-n}$$
, de $\nu(A_n) > \varepsilon$ $(n \in \mathbf{N})$,

akkor legyen

$$A := \limsup_{n \to \infty} A_n = \bigcap_{n=0}^{\infty} \bigcup_{m=n}^{\infty} A_m \ (\in \Omega).$$

 $^{^3}$ Házi feladat.

Ekkor $A \subset \bigcup_{m=n}^{\infty} A_m \ (n \in \mathbf{N})$ miatt

$$\mu(A) \le \mu\left(\bigcup_{m=n}^{\infty} A_m\right) \le \sum_{m=n}^{\infty} \mu(A_m) < \sum_{m=n}^{\infty} 2^{-m} = 2^{-n+1} \qquad (n \in \mathbf{N}).$$

Innen nyilvánvaló, hogy $\mu(A)=0$, ezért $\nu\ll\mu$ alapján $\nu(A)=0$. Ugyanakkor a ν végességére tekintettel

$$\nu(A) = \lim_{n \to \infty} \nu\Big(\bigcup_{m=n}^{\infty} A_m\Big),\,$$

ahol

$$\nu\left(\bigcup_{m=n}^{\infty} A_m\right) \ge \nu(A_n) > \varepsilon \qquad (n \in \mathbf{N}).$$

Tehát $\nu(A) \geq \varepsilon$, ami nyilván ellentmond az előbb kapott $\nu(A) = 0$ egyenlőségnek.

A fordított irányú állítás triviális: ha ui. valamilyen $A \in \Omega$ halmazra $\mu(A) = 0$ igaz, akkor a tetszőleges $\varepsilon > 0$ számhoz az állításban szereplő feltétel szerint létező $\delta > 0$ mellett $\mu(A) < \delta$ is igaz, tehát $0 \le \nu(A) < \varepsilon$ is fennáll. Ez csak úgy lehetséges, ha $\nu(A) = 0$.

3. Tétel (Radon⁴–Nikodym⁵). Legyen a μ mérték szigma-véges. Ekkor

$$\nu \ll \mu \iff \text{van olyan } f \in L^+(\mu), \text{ hogy } \nu = \mu_f.$$

Bizonyítás. Már csak az \implies irányt kell igazolni. Első esetként tételezzük fel ehhez, hogy a μ is, a ν is véges (csak ezt az esetet vizsgáljuk), és legyen ekkor

$$\mathcal{L} := \{ g \in L^+(\mu) : \mu_g \le \nu \}.$$

Az \mathcal{L} halmaz nem üres, ui. az (X-en) azonosan nulla függvény nyilván \mathcal{L} -beli. Lássuk be továbbá azt, hogy ha $g,h\in\mathcal{L}$, akkor a g,h függvények felső burkolója is az \mathcal{L} -ben van:

$$\max\{g,h\} \in \mathcal{L}.$$

Ehhez azt kell csupán észrevenni, hogy ha

$$A_1 := \{g \ge h\}, \ A_2 := X \setminus A_1,$$

⁴Johann Radon (1887 – 1956).

⁵Otton Marcin Nikodym (1887 – 1974).

akkor minden $A \in \Omega$ halmazra

$$\int \max\{g,h\} \cdot \chi_A \, d\mu = \int g \cdot \chi_{A \cap A_1} \, d\mu + \int h \cdot \chi_{A \cap A_2} \, d\mu =$$

$$\mu_q(A \cap A_1) + \mu_h(A \cap A_2) \le \nu(A \cap A_1) + \nu(A \cap A_2) = \nu(A),$$

és így valóban igaz, hogy

$$\mu_{\max\{g,h\}} \leq \nu$$

azaz $\max\{g,h\} \in \mathcal{L}$. Teljes indukcióval az is következik, hogy véges sok \mathcal{L} -beli függvény felső burkolója is az \mathcal{L} -ben van: ha $\emptyset \neq \mathcal{F} \subset \mathcal{L}$ véges halmaz, akkor az

$$X \ni x \mapsto \max\{g(x) : g \in \mathcal{F}\}$$

függvény eleme az \mathcal{L} halmaznak.

Legyen a továbbiakban

$$\gamma := \sup \left\{ \int g \, d\mu : g \in \mathcal{L} \right\}.$$

Jegyezzük meg először is azt, hogy $\gamma < +\infty$: bármelyik $g \in \mathcal{L}$ mellett

$$\int g \, d\mu = \mu_g(X) \le \nu(X) < +\infty.$$

Válasszunk ezek után egy olyan $\widetilde{g}_n \in \mathcal{L} \ (n \in \mathbb{N})$ sorozatot, amire

$$\lim_{n \to \infty} \int \widetilde{g}_n \, d\mu = \gamma.$$

(Ilyen sorozat a szuprémum definíciója miatt létezik.) Ha

$$g_n := \max\{\widetilde{g}_0, ..., \widetilde{g}_n\} \qquad (n \in \mathbf{N}),$$

akkor az előbbiek szerint $g_n \in \mathcal{L} \ (n \in \mathbf{N})$, és a

$$\widetilde{g}_n \le g_n \qquad (n \in \mathbf{N})$$

egyenlőtlenség alapján

$$\int \widetilde{g}_n \, d\mu \le \int g_n \, d\mu \, (\le \gamma) \qquad (n \in \mathbf{N}).$$

Tehát

$$\lim_{n \to \infty} \int g_n \, d\mu = \gamma.$$

A g_n -ek értelmezése miatt a (g_n) sorozat monoton növekedő, ezért az

$$f := \lim_{n \to \infty} g_n$$

függvényre

$$\int f \, d\mu = \gamma,$$

és tetszőleges $A \in \Omega$ halmazra (ld. Beppo Levi-tétel)

$$\mu_f(A) = \int f \cdot \chi_A \, d\mu = \lim_{n \to \infty} \int g_n \cdot \chi_A \, d\mu = \lim_{n \to \infty} \mu_{g_n}(A) \le \nu(A).$$

Speciálisan tehát $\mu_f \leq \nu$ is igaz, azaz $f \in \mathcal{L}$.

Belátjuk, hogy

$$\nu = \mu_f$$
.

Azt tudjuk, hogy

$$\varphi := \nu - \mu_f \ge 0.$$

Továbbá a φ egy véges mérték az Ω szigma-algebrán, és $\nu \ll \mu$ miatt nyilván $\varphi \ll \mu$ is teljesül. A kívánt $\nu = \mu_f$ egyenlőség igazolásához a $\varphi(X)$ -ről kell megmutatnunk, hogy nulla.

Ehhez tegyük fel indirekt módon, hogy $\varphi(X) > 0$. Ekkor $\mu(X) > 0$ is fennáll, hiszen $\varphi \ll \mu$. Ezért alkalmazható a

B. Lemma. Van olyan $Y \in \Omega$ halmaz és $\beta > 0$ szám, hogy az alábbiak teljesülnek:

$$\varphi(Y) > \beta \cdot \mu(Y) \text{ \'es } \varphi(A) \ge \beta \cdot \mu(A) \qquad (A \in \Omega \cap \mathcal{P}(Y)).$$

Innen az is következik, hogy $\mu(Y) > 0$, ui. különben $\varphi \ll \mu$ miatt $\varphi(Y) = 0$ lenne, ellentmondva a $\varphi(Y) > \beta \cdot \mu(Y)$ egyenlőtlenségnek.

Legyen

$$f_0 := f + \beta \cdot \chi_Y$$

ekkor egyrészt az f_0 mérhető függvény, másrészt minden $A \in \Omega$ halmazra

$$\mu_{f_0}(A) = \int f_0 \cdot \chi_A \, d\mu = \int f \cdot \chi_A \, d\mu + \beta \cdot \int \chi_{A \cap Y} \, d\mu =$$

$$\mu_f(A) + \beta \cdot \mu(A \cap Y) \le \mu_f(A) + \varphi(A) = \nu(A).$$

Ez azt jelenti, hogy $f_0 \in \mathcal{L}$, amiből

$$\int f_0 d\mu = \int f d\mu + \beta \cdot \mu(Y) = \gamma + \beta \cdot \mu(Y) > \gamma$$

adódik. Ez viszont a γ értelmezése miatt nem lehet.

Tehát valóban igaz, hogy $\varphi(X) = 0$, és így $\nu = \mu_f$.

A Radon-Nikodym-tételben kapott f függvény "egyértelmű":

4. Tétel. Legyen $X \neq \emptyset$, a μ mérték szigma-véges. Ekkor tetszőleges $f, g \in L^+(\mu)$ esetén

$$\mu_f = \mu_g \implies f = g \ \mu\text{-m.m.}$$

3. Megjegyzések.

i) Legyen $X:=\mathbf{R},\ \Omega:=\widehat{\Omega}_1,\ \mu:=\widehat{\mu}_1$ és $\widetilde{\Omega}:=\{A\in\widehat{\Omega}_1:\widehat{\mu}_1(A)=0\}$. Ha

$$\nu(A) := \begin{cases} 0 & (A \in \widetilde{\Omega}) \\ +\infty & (A \in \widehat{\Omega}_1 \setminus \widetilde{\Omega}), \end{cases}$$

akkor a ν mérték az $\widehat{\Omega}_1$ -en és $\nu \ll \mu.$ Ugyanakkor minden $\delta > 0$ számra

$$\mu([0,\delta)) = \delta$$
 és $\nu([0,\delta)) = +\infty$.

Ez azt jelenti, hogy az A. Lemmában a ν végessége általában nem hagyható el.

- ii) Szokás a Radon–Nikodym-tételben szereplő f függvényt a ν mérték μ szerinti Radon–Nikodym-deriváltjának is nevezni, és az $f=\frac{d\nu}{d\mu}$, vagy a $d\nu=f\,d\mu$ szimbólumot használni.
- iii) Tetszőleges $f,g\in L^+(\mu)$ és $h:X\to \overline{\mathbf{R}}$ mérhető függvények esetén
 - a) $\int g \, d\mu_f = \int g f \, d\mu;$
 - b) $h \in L(\mu_f) \iff fh \in L(\mu);$
 - c) $h \in L(\mu_f) \Longrightarrow \int h \, d\mu_f = \int f h \, d\mu;$
 - d) $f = g \ \mu\text{-m.m.} \implies \mu_f = \mu_q$.
- iv) A 4. Tétel állítása, azaz a

$$\mu_f = \mu_q \Longrightarrow f = g \ \mu\text{-m.m.}$$

következtés meglehetősen egyszerű akkor, ha

$$f \in L(\mu) \cap L^+(\mu)$$
.

Ekkor ui.

$$\mu_g(X) = \int g \, d\mu = \mu_f(X) = \int f \, d\mu < +\infty,$$

tehát $g \in L(\mu) \cap L^+(\mu)$ is igaz. Legyen $N := \{f > g\}$, amikor is egyrészt $N \in \Omega$, másrészt

$$H := f \cdot \chi_N - g \cdot \chi_N \in L^+(\mu).$$

Mivel $f \cdot \chi_N \leq f$ és $g \cdot \chi_N \leq g$, ezért $f \cdot \chi_N, \, g \cdot \chi_N \in L(\mu)$, továbbá

$$\mu_f(N) = \int f \cdot \chi_N \, d\mu = \mu_g(N) = \int g \cdot \chi_N \, d\mu.$$

Így tehát

$$\int H d\mu = \int f \cdot \chi_N d\mu - \int g \cdot \chi_N d\mu = 0,$$

következésképpen $\,H=0\,$ $\,\mu\text{-m.m.}$ A $\,H\,$ függvény definíciója miatt

$$H(x) > 0 \qquad (x \in N),$$

ezért H=0 μ -m.m. csak úgy lehetséges, ha $\mu(N)=0$. Hasonlóan kapjuk a

$$\mu(\{f < g\}) = 0$$

egyenlőséget, amit a $\mu(N) = 0$ és az

$$\{f \neq g\} = \{f > g\} \cup \{f < g\}$$

egyenlőségekkel egybevetve a bizonyítandó

$$\mu(\{f \neq g\}) = 0$$

állítás adódik.

v) Legyen $X := \mathbf{R}, A \in \widehat{\Omega}_1$ és

$$\mu(A) := \begin{cases} 0 & (0 \notin A) \\ 1 & (0 \in A). \end{cases}$$

Ekkor a μ mérték (az ún. Dirac-mérték). Könnyű megmutatni, hogy nem létezik olyan $f \in L^+(\widehat{\mu}_1)$ függvény, hogy $\mu = \widehat{\mu}_{1_f}$ teljesülne. Különben ui.

$$0 = \mu((0, +\infty)) = \int f \cdot \chi_{(0, +\infty)} d\widehat{\mu}_1,$$

$$0 = \mu((-\infty, 0)) = \int f \cdot \chi_{(-\infty, 0)} d\widehat{\mu}_1.$$

Mivel

$$f \cdot \chi_{(0,+\infty)}, \ f \cdot \chi_{(-\infty,0)} \ge 0 \quad \widehat{\mu}_1\text{-m.m.},$$

ezért

$$f \cdot \chi_{(0,+\infty)}, \quad f \cdot \chi_{(-\infty,0)} = 0 \quad \widehat{\mu}_1\text{-m.m.}$$

Innen persze f=0 $\widehat{\mu}_1$ -m.m. is következne, amiből meg $\mu=\widehat{\mu}_{1_f}=0$ adódna, ami viszont nem igaz.

vi) Ha az (X, Ω, μ) egy valószínűségi mértéktér (Kolmogorov⁶-mező), azaz $\mu(X)=1$, akkor bármilyen $\Omega_0\subset\Omega$ rész-szigma-algebra és $f\in L^+$ függvény esetén tekintsük a

$$\nu(A) := \int_A f \, d\mu \qquad (A \in \Omega_0)$$

mértéket az Ω_0 -on. Ez a mérték nyilván abszolút folytonos a μ mértéknek az Ω_0 -ra vett σ leszűkítésére vonatkozóan, ezért a μ (és így a σ) végessége miatt alkalmazható a Radon–Nikodym-tétel, azaz: van olyan

$$f_0: X \to [0, +\infty]$$

függvény, ami az Ω_0 szigma-algebrára nézve mérhető (azaz bármelyik $A\subset\overline{\mathbf{R}}$ Borel-halmazra $f_0^{-1}[A]\in\Omega_0$ igaz 7) és

$$\nu = \sigma_{f_0}$$
.

Tetszőleges $A \in \Omega_0$ halmazra fennáll tehát a következő egyenlőség:

$$\int_{A} f \, d\mu = \int_{A} f_0 \, d\sigma = \int_{A} f_0 \, d\mu.^{8}$$

⁶Andrej Nyikolajevics Kolmogorov (1903 – 1987).

 $^{^7}$ Így egyúttal persze $f_0^{-1}[A]\in \Omega$ is teljesül, más szóval az f az Ω szigma-algebrára nézve is mérhető.

⁸A második egyenlőség házi feladat.

Az f_0 függvényt az f Ω_0 -ra vonatkozó feltételes várható értékének nevezzük. Speciálisan, ha $\Omega_0 = \Omega$, akkor $f_0 = f$ μ -m.m., ha pedig $\Omega_0 := \{\emptyset, X\}$, akkor az f_0 konstansfüggvény, és

$$f_0 = \int f_0 \, d\mu = \int f \, d\mu.$$

Ha itt az f függvényről $f \in L^+$ helyett integrálhatóságot tételezünk fel (azaz $f \in L^1$), akkor a ν halmazfüggvény egy ún. előjeles mérték és továbbra is létezik (μ -m.m. egyértelműen meghatározott) f_0 függvény – az f-nek az Ω_0 -ra vonatkozó feltételes várható értéke –, ami integrálható. Az

$$E_{\Omega_0}(f) := f_0$$

jelöléssel egy E_{Ω_0} operátort értelmeztünk az $L^1 := L^1(\mu)$ -n (az Ω_0 -ra vonatkozó feltételes várható érték operátort), aminek számos jó tulajdonsága révén igen fontos szerep jut a matematika különböző fejezeteiben. Így pl. (a nem meglepő valószínűségszámítási alkalmazások mellett) az ortogonális sorok elméletében.