LoMACS-SVDNet

Orthogonality without Decompositions

One-slide Overview (What we do)

Core Claim

We learn the *diagonalizing transform* itself for large MIMO channels \mathbf{H} , producing $(\mathbf{U}, \mathbf{S}, \mathbf{V})$ with near-orthonormal \mathbf{U}, \mathbf{V} and spectrally aligned \mathbf{S} , without SVD/QR/EVD/inversion inside the network.

- Physics priors: angle/frequency sparsity, few dominant paths, near-Hermitian structure; data show effective rank $\approx 2-4$, high column/row correlation.
- Architecture: Axial Low-rank Freq Gate (ALF) ⇒ Dual representation ⇒ Grouped Projected Attention (GPA) + GatedConv ⇒ Neural Ortho Refiner (NOR) ⇒ Spectral Self-Calibration (SSC).
- Step-3: **Structured pruning** on k_{len} (projection length) and gate hidden size \Rightarrow MACs \downarrow measurably via PyTorch Profiler.

Qualitative Results

Qualitative Results

Data & Physics Priors ⇒ Architectural Bias

- Low effective rank: top-5 singular values capture \approx all energy; few dominant paths/clusters.
- Angle-domain sparsity & strong correlation: FFT Top-1–5% energy high; column/row correlation $\mu \approx 0.98 \sim 0.997$.
- Near-Hermitian & ill-conditioned: $\|\mathbf{H}\mathbf{H}^H \mathbf{H}^H\mathbf{H}\|_{\mathrm{F}} / \|\mathbf{H}\|_{\mathrm{F}}^2 \approx 0$, condition number $\sim 10^{10}$.

Design implications

⇒ Front-end gating to keep informative angles/Delays; low-rank global modeling (projected attention) + local smoothing (gated conv); decomposition-free orthogonality control; explicit diagonalization & spectral consistency.

Objective & Train Signal (What we optimize)

Given $\mathbf{H} \in \mathbb{C}^{M \times N}$, predict $\mathbf{U} \in \mathbb{C}^{M \times r}$, $\mathbf{V} \in \mathbb{C}^{N \times r}$, $\mathbf{S} \in \mathbb{R}_+^r$ such that:

$$\hat{\mathbf{H}} = \mathbf{U} \operatorname{diag}(\mathbf{S}) \mathbf{V}^H, \quad \mathbf{U}^H \mathbf{U} \approx \mathbf{I}, \ \mathbf{V}^H \mathbf{V} \approx \mathbf{I}.$$

AEPlus loss:

$$L = \underbrace{\frac{\left\| \mathbf{H} - \mathbf{U} \operatorname{diag}(\mathbf{S}) \mathbf{V}^H \right\|_F}{\left\| \mathbf{H} \right\|_F}}_{\text{Reconstruction } L_{\text{rec}}} + \lambda \underbrace{\left(\left\| \mathbf{U}^H \mathbf{U} - \mathbf{I} \right\|_F + \left\| \mathbf{V}^H \mathbf{V} - \mathbf{I} \right\|_F \right)}_{\text{Orthogonality } L_{\text{ortho}}}$$

$$+ w_E \underbrace{\left(1 - \frac{\left\| \mathbf{M} \right\|_F}{\left\| \mathbf{H} \right\|_F} \right)}_{\text{Energy ratio } L_{\text{energy}}} + w_D \underbrace{\frac{\left\| \mathbf{M} - \operatorname{diag}(\mathbf{M}) \right\|_F}{\left\| \mathbf{H} \right\|_F}}_{\text{Off-diagonal penalty } L_{\text{diag}}}$$

$$+ w_S \underbrace{\frac{\mathbf{S}}{\left\| \mathbf{H} \right\|_F} - \frac{\left| \operatorname{diag}(\mathbf{M}) \right|}{\left\| \mathbf{H} \right\|_F}}_{\text{Spectral match } L_{\text{smatch}}},$$

where $\mathbf{M} = \mathbf{U}^H \mathbf{H} \mathbf{V}$.

Role of Each Loss Term

Term	Purpose / Constraint enforced	
$\overline{L_{ m rec}}$	Accuracy anchor: force $(\mathbf{U}, \mathbf{S}, \mathbf{V})$ to reconstruct \mathbf{H} faithfully.	
$L_{ m ortho}$	Keep U , V close to unitary (Stiefel manifold), stabilizes inverse-like operations and aligns with decomposition goal.	
L_{energy}	Maximize total captured energy in $M = \mathbf{U}^H \mathbf{H} \mathbf{V}$, discouraging leakage outside the modeled subspace.	
$L_{ m diag}$	Suppress off-diagonal energy in M , i.e. improve "near-diagonalization" given current \mathbf{U}, \mathbf{V} .	
$L_{\sf smatch}$	Align predicted singular spectrum \mathbf{S} with measured diagonal magnitude $ \operatorname{diag}(M) $, combining geometric and spectral consistency.	

Schedules: λ ramps up early (orthogonality first), w_E , w_D , w_S decay smoothly to avoid over-constraining late training.

Step-1: Axial Low-rank Frequency Gate (ALF)

Motivation (math/physics). In the 2D FFT domain, channel magnitude concentrates on few rows/cols (angles/delays). Use a separable gate to *select* informative bands:

$$\mathsf{gate}_{m,n} = \sigma \left(\frac{r_m + c_n}{T} \right), \quad r = \mathsf{MLP}_r \big(\mathsf{mean}_n | \mathbf{H}_f | \big), \quad c = \mathsf{MLP}_c \big(\mathsf{mean}_m | \mathbf{H}_f | \big).$$

Apply: $\mathbf{H}_f \mapsto \mathbf{H}_f \odot \text{gate, then } \mathbf{H}_d = \mathcal{F}^{-1}\{\cdot\}.$

Pain point solved

Front-end **denoise** + **dimensionality bias**: spend compute only on high-energy angular slices; hidden size is **structurally prunable**.

Dual Representation: Raw & Coarse

- Build two views from \mathbf{H}_d : a raw map and a lightly down/up-sampled coarse map; concatenate Re / Im to form features before projection.
- Why: statistics show strong alignment ($\rho \approx 0.99$) and stable amplitude/phase bias; combining fine details + global contour increases robustness to timing/estimation errors.

Global-Local Backbone: GPA + GatedConv

Grouped Projected Attention (GPA). Split channels into groups (dim = gdim). For each group,

$$Q = XW_q$$
, $K = XW_k$, $V = XW_v$; $K_{\text{red}} = K^{\top}P_k$, $V_{\text{red}} = V^{\top}P_v$,

with $P_{\bullet} \in \mathbb{R}^{T \times k_{\text{len}}}$. Complexity reduces $O(T^2) \to O(Tk_{\text{len}})$.

Why it fits data. High column/row correlation \Rightarrow few *global* bases suffice ($k_{len} \ll T$).

GatedConv1D (DW \rightarrow sigmoid gate \rightarrow PW). Provides *local* smoothing and selective nonlinearity to fix rough regions (weaker sparsity scenes).

Pain points solved

Controllable compute; interpretable *column-dictionary* that is **prunable** by column energy; local robustness via low-MACs convolution.

Step-2: Neural Ortho Refiner (NOR) — no QR/SVD

Goal. Reduce orthogonality error without banned operators.

One-step refinement (complex case):

$$\mathbf{U}' = \mathbf{U} - a \mathbf{U} \operatorname{sym}(\mathbf{U}^H \mathbf{U} - \mathbf{I}), \qquad \mathbf{V}' = \mathbf{V} - b \mathbf{V} \operatorname{sym}(\mathbf{V}^H \mathbf{V} - \mathbf{I}),$$

where $sym(\mathbf{G}) = \frac{1}{2}(\mathbf{G} + \mathbf{G}^H)$, $a, b \in (0, 0.5]$ learned through a sigmoid; then *column normalization* (allowed).

Why it works

 $f(\mathbf{U}) = \|\mathbf{U}^H\mathbf{U} - \mathbf{I}\|_{\mathrm{F}}^2$ decreases for small steps (first-order descent on the Stiefel manifold with simple retraction via column norm). **No** SVD/QR/GS/Householder/Givens/inversion.

Step-2: Spectral Self-Calibration (SSC)

Align singular spectrum to current geometry. Let $M = U^H H V$, $S_{best} = |\operatorname{diag}(M)|$.

$$\mathbf{S} = (1 - \tau) \, \mathbf{S}_{\mathsf{pred}} + \tau \, S_{\mathsf{best}}, \qquad \tau : \ 0.90 \downarrow 0.60.$$

Pain point solved

When labels/noise mismatch exists, \mathbf{S} is pulled toward the *measured* diagonal energy under current \mathbf{U}, \mathbf{V} . Early training trusts the head (\mathbf{S}_{pred}) , later favors physical consistency.

Normalization & Robust Augmentation

- **Per-sample Frobenius normalization**: train/test consistent; during inference, **S** is rescaled by sample norm (orthogonality preserved).
- **Noise injection & antenna dropout**: power-aware complex noise, random row/column drop; matches lower SNR and larger row/col CV in harder scenes.

Step-3: Structured Pruning & Finetune (Real MACs ↓**)**

Two structural knobs.

- **1** \mathbf{k}_{len} : keep top columns by energy score $||P_k||_2^2 + \alpha ||P_v||_2^2$.
- ② Gate hidden size: keep channels by coupled in/out norm score across row/col MLPs.

Implementation detail

We rebuild a smaller isomorphic network and copy compatible weights (no sparse masks). Graph shrinks \Rightarrow PyTorch Profiler MACs drop for real. Short finetuning recovers AE.

$\textbf{Module} \leftrightarrow \textbf{Data Alignment}$

Pain Point	Module Hook
Low effective rank	ALF gating; GPA with small k_{len}
Angle sparsity & high correlation	Axial gate; column-dictionary attention
III-conditioning, near-Hermitian	Decomposition-free NOR; SSC
Non-diagonal residual energy	$L_{ m energy}, L_{ m diag}$
Uneven SNR / row/col CV	GatedConv; noise & antenna dropout
Compute budget (Score $= 100 \cdot AE + MACs$)	Structured pruning on k_{len} , gate hidden