Lecture 04 Floating Point

CS213 – Intro to Computer Systems Branden Ghena – Spring 2021

Slides adapted from:

St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

Homework 1 due today! (11:59 pm Central)

Data Lab due next week

Homework 2 will be released sometime this evening

Today's Goals

Explore representing real (decimal) numbers with binary

Understand IEEE754 encoding

Discuss encoding impacts on floating-point arithmetic

Outline

Fractional Binary Numbers

Representing Floating Point

Smaller Floating Point

Floating Point Arithmetic

Floating point numbers

- In decimal:
 - 123450₁₀
 - 123.450₁₀
 - 1.23450₁₀
- We can use this same system in binary as well:
 - 1010110₂ (86₁₀)
 - 1010.110_2 $(10.75_{10} = \frac{86}{2^3})$
 - 1.010110_2 $(1.34375_{10} = \frac{86}{26})$

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

Fractional Binary Number Examples

• 63/64

•
$$5+3/4$$
 = $0b101.\overline{11}$ Note:

This the number $3!$
• $2+7/8$ = $0b10.\overline{111}$ This is the number $7!$

= 0b0.111111

This is the number 63!

Real numbers are possible in binary

Some problems remain:

- 1. Computers are finite, but real numbers are not
 - Need to choose how many bits to use number
 - Many decimal numbers would take infinite binary bits to represent perfectly
 - $3.14_{10} = 11.0010001111010111_2$ (we could keep going)
- 2. We also need to represent where the "binary point" is located
 - We'll use some of our bits to do so
- 3. Should do signed numbers while we're at it

Outline

Fractional Binary Numbers

Representing Floating Point

Smaller Floating Point

Floating Point Arithmetic

IEEE Floating Point

- Floating point representations
 - Encodes rational numbers of the form $V = m \times 2^{e}$
 - Base 2 scientific notation!
- IEEE Standard 754 (IEEE floating point)
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Headed by William Kahan, CS prof. at UC Berkeley (later won Turing Award)
 - Supported by all major CPUs
- Driven by numerical concerns and numerical analysts
 - Nice standards for rounding, overflow, underflow
 - Had to be implementable in fast hardware as well and support many languages

Floating Point Representation

Numerical form

•
$$V = (-1)^{S} * M * 2^{E}$$
Sign bit Significand (Mantissa

- Sign bit S determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0) or [0.0,1.0)
 - Also called mantissa
- Exponent *E* weights value by power of two
- Encoding
 - MSb is sign bit (can still look at MSb alone to determine sign!)
 - exp field encodes E, k-bits (note: "encodes E"!= "is E")
 - frac field encodes M, *n*-bits

s	exp	frac
~		

Floating Point Precision

- Sizes
 - Single precision: k = 8 exp bits, n= 23 frac bits (32b total). float in C

• Double precision: k = 11 exp bits, n = 52 frac bits (64b total). double in C

Categories for Encoded Values

- Value encoded three cases, depending on value of exp
 - 1. Normalized, the most common

s ≠ 0 && not all 1s	frac
---------------------	------

2. Denormalized

s	0000000	frac
	0000000	

3. Special values – infinity and NaN

Infinity	s	11111111	00000000000000000000
NaN	s	11111111	≠0

Categories for Encoded Values

- Value encoded three cases, depending on value of exp
 - 1. Normalized, the most common

s ≠ 0 && not all 1s	frac
---------------------	------

2. Denormalized

s	0000000	frac
	0000000	

3. Special values – infinity and NaN

Infinity	s	11111111	00000000000000000000
NaN	s	11111111	≠ 0

Normalized Numeric Values

$$V = (-1)^S * M * 2^E$$

- Condition: not a special exponent (all zeros or ones)
- Significand coded with implied leading 1
 - $M = 1.xxx...x_2$ (1+f where $f = 0.xxx_2$)
 - xxx...x: bits of frac
- Exponent coded as biased value
 - E = Exp Bias
 - Exp: unsigned value denoted by exp
 - Bias : Bias value = 2^{k-1} 1, k is number of exponent bits
 - Single precision (8-bit exp): 127 (Exp: 1...254, E: -126...127)
 - Double precision (11-bit exp): 1023 (Exp: 1...2046, E: -1022...1023)

Decoding example for normalized floating point (32-bit)

- - exp is not 0...0 or 1...1 => not a special case

- E = exp bias = 131 127 = 4
 - bias = 2^{k-1} -1, $k=8 \rightarrow 2^{7}$ -1 = 127
- Result = $(-1)^0 * 1.001 * 2^4 = 10.01 * 2^3 = 10010. = 18$

$$V = (-1)^S * M * 2^E$$
 s exp frac

Normalized Encoding Example

Value

- float F = 15213.0; // single precision: k=8, n=23
- $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$

Significand

- $M = 1.1101101101101_{2}$
- frac = $\underline{1101101101101}000000000$

pad with 0s *on the right*. 1.5 = 1.500

Exponent

- E = 13
- Bias = 127

• exp = E + Bias = $140 = 10001100_2$

More examples in the bonus slides after the end

Normalized Numbers: Why These Choices?

- Significand coded with <u>implied leading 1</u>
 - Any non-zero integer will start with a 1 bit somewhere
 - Leading 1 carries no information, so don't need to store it!
 - Can express mantissas between:
 - 1.0 (when f all 0s) and
 - 2.0ε (when all 1s)
 - Want smaller? Use a smaller exponent!
- Exponent coded as biased value
 - E = Exp Bias
 - Alternative to using two's complement to represent signed integers
 - Reasons are a bit tricky
 - Floating point binary values increase in the same order as unsigned = share comparisons!
 - Bias provides a more useful range (when considering denormalized)

Question + Break

- - exp is not 0...0 or 1...1 => not a special case
- M =
- E = exp bias =
 - bias = 2^{k-1} -1, $k=8 \rightarrow 2^{7}$ -1 = 127

$$V = (-1)^S * M * 2^E$$

s exp frac

Question + Break

- - exp is not 0...0 or 1...1 => not a special case
- E = exp bias = 127 127 = 0
 - bias = 2^{k-1} -1, k=8 -> 2^{7} -1 = 127
- Result = $(-1)^0 * 1.0 * 2^0 = 1$

$$V = (-1)^s * M * 2^E$$

s exp frac

Categories for Encoded Values

- Value encoded three cases, depending on value of exp
 - 1. Normalized, the most common

s	≠ 0 && not all 1s	frac
---	-------------------	------

2. Denormalized

s	00000000	frac
---	----------	------

3. Special values – infinity and NaN

Infinity	s	11111111	00000000000000000000
NaN		11111111	≠ 0
Ivaiv	S	11111111	≠ 0

Normalized floating point leaves a gap around zero

Gap is the size of 1.0000 * 2^{Min Exponent} (due to leading 1 bit)

- Solution: fill in numbers between 0 and 1 * 2^{Min Exponent}
 - Using same spacing as the previous range, in the form **0**.XXXXX

Denormalized Values

$$V = (-1)^S * M * 2^E$$

- Purpose: gracefully represent numbers approaching ±0
- Condition: $exp = 000...0_2$

- Value
 - Exponent value E = 1 Bias
 - Note: not simply E = 0 Bias as it would be if we followed the previous rules
 - This means we're re-using the spacing from smallest normalized numbers
 - Significand value $M = \mathbf{0}.xxx...x_2 (0.f)$
 - xxx...x: bits of frac. Leading 0 instead of leading 1
- Cases
 - $\exp = 000...0$, frac = 000...0 = > Represents value 0
 - Note that we have distinct values +0 and -0
 - exp = 000...0, $frac \neq 000...0 => Numbers very close to 0.0$

Categories for Encoded Values

- Value encoded three cases, depending on value of exp
 - 1. Normalized, the most common

s	≠ 0 && not all 1s	frac

2. Denormalized

s	00000000	frac
---	----------	------

3. Special values – infinity and NaN

Special Values

- Purpose: represent quantities that $(-1)^{s} * M * 2^{E}$ cannot
- Condition: $exp = 111...1_2$
- Cases
 - $\exp = 111...1_2$, frac = $000...0_2$
 - Represents value ∞ (infinity)
 - Both positive and negative infinity (sign bit to tell apart)
 - Operation that overflows: nicer mathematical behavior than modulo!
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $-1.0/0.0 = -\infty$
 - $\exp = 111...1_2$, frac $\neq 000...0_2$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - Fraction could be used to distinguish sources (rarely used in practice)
 - E.g., $\sqrt{-1}$, ∞ ∞ , ∞ * 0

Floating Point in C

- C guarantees two levels
 - float single precision
 - double double precision
- Conversions
 - int → float
 - maybe rounded
 - int Or float → double
 - exact value preserved (in IA32 and x86-64)
 - double has greater range and higher precision (52 bits for frac)
 - double → float
 - may overflow, underflow (too small to represent), or be rounded (IEEE 754)
 - C99 standard says undefined if value out of range
 - double Or float → int
 - rounded toward zero (-1.999 \rightarrow -1)
 - C99 standard says undefined if value out of range

Summary of FP Real Number Encodings + Break

$$V = (-1)^{s} * M * 2^{E}$$

	Normalized	Denormalized	
S	0/1 means +/-	0/1 means +/-	
exp	$exp \neq 0000_2$ and $exp \neq 1111_2$	$exp = 0000_2$	
frac	$X_1X_2X_3X_j$	$X_1X_2X_3X_j$	
Bias=	$2^{(k-1)} - 1$, k exponent bits	$2^{(k-1)} - 1$, k exponent bits	
E=	exp – Bias	1 - Bias	
M=	1. $x_1 x_2 x_3 x_j$ a.k.a. 1.frac	0. $x_1x_2x_3x_j$ a.k.a. 0.frac	
V=	$(-1)^s \times (1.frac) \times 2^{(exp - Bias)}$	$(-1)^s \times (0.\text{frac}) \times 2^{(1-\text{Bias})}$	

Outline

Fractional Binary Numbers

Representing Floating Point

Smaller Floating Point

Floating Point Arithmetic

Floating point examples

- We'll often do floating point in custom bit widths
 - Rather than 32-bit (float) or 64-bit (double)

Reasons

- 1. They are just too many bits to write out and think about
- 2. Make sure you understand the concepts of floating point
 - Smaller versions still demonstrate concepts! (e.g., 8-bit)

Example: Tiny Floating Point

- 8-bit Floating Point Representation
 - Sign bit is in the most significant bit.
 - Next four (k) bits are exp, with a bias of 7 (2^{k-1}-1)
 - Last three (n) bits are frac
- Same general form as IEEE 754 format
 - normalized, denormalized numbers
 - representation of 0, NaN, infinity

Values related to the exponent

Bias = $2^{4-1} - 1 = 7$ (4-bit exp)

Dynamic Range of 8b tiny float

Bias = 7	s exp frac	E	Value
V= $(-1)^s$	0 0000 000	-6	0
$\times (0.frac)$	0 0000 001	-6	1/8*1/64(2 ⁻⁶)= 1/512 closest to zero
$\times 2^{(1 - Bias)}$	0 0000 010	-6	2/8*1/64 = 2/512
Denormalized numbers	0 0000 110	-6	6/8*1/64 = 6/512
	0 0000 111	-6	7/8*1/64 = 7/512 largest denorm
Normalized numbers	0 0001 000	-6	8/8*1/64 = 8/512 smallest norm > 0
	0 0001 001	-6	9/8*1/64 = 9/512
V= $(-1)^s$ \times (1.frac)	0 0110 110 0 0110 111 0 0111 000	-1 -1 0	14/8*1/2 = 14/16 15/8*1/2 = 15/16 closest to 1 below 8/8*1 = 1
$\times 2^{(exp - Bias)}$	0 0111 001 0 0111 010	0	9/8*1 = 9/8 closest to 1 above 10/8*1 = 10/8
	0 1110 110	7	14/8*128 = 224
	0 1110 111	7	15/8*128 = 240 largest norm
Special values	0 1111 000	n/a	inf
	0 1111 001	n/a	NaN
- 3 3. 0 0	0 1111 111	n/a	NaN

Distribution of Values

- 6-bit IEEE-like format
 - exp = 3 exponent bits
 - frac = 2 fraction bits
 - Bias is $3(2^{3-1}-1)$
- Notice how the distribution gets denser toward zero.

Distribution of Values (Close-up View)

- 6-bit IEEE-like format
 - exp = 3 exponent bits
 - frac = 2 fraction bits
 - Bias is $3(2^{3-1}-1)$

- Smooth transition between normalized and de-normalized numbers due to definition E = 1 - Bias for denormalized values
 - Zeros are denormalized numbers too! (+0 and -0)

Outline

Fractional Binary Numbers

Representing Floating Point

Smaller Floating Point

Floating Point Arithmetic

Floating Point Operations

Conceptual view

```
x +<sub>float</sub> y = Fit(x +<sub>math</sub> y)
x *<sub>float</sub> y = Fit(x *<sub>math</sub> y)
```

- First compute exact, mathematical result
 - Compute the numerical value of the operands
 - Do the operation as in grade school arithmetic
- Then make it fit into desired precision
 - **Step 1**: Determine frac, exp
 - Frac must be of the form 1.xxxx (0.xxx if denormalized)
 - Change exp if needed to get frac to that form (e.g., result is 101.xxx)
 - Step 2: Possibly overflow if exponent too is large
 - Unlike integer overflow, result is mathematically reasonable: infinity
 - Step 3: Possibly round to fit into frac if we have too many mantissa bits

Rounding

- Default rounding mode for IEEE floating point is Round-to-even
 - Other methods are statistically biased (round up, round down, round-to-zero)
 - Sum of set of positive numbers will consistently be over- or under- estimated
 - Round to nearest number
 - If exactly in between, round to nearest even number
- Round-to-even example
 - Illustrated with rounding of money

Closer Look at Round-to-even

- Rounding to other decimal places than the decimal point
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth (i.e., 2 decimal digits in fractional part)
 - 1.23 **49999** => 1.23 (Less than half way)
 - 1.2350001 => 1.24 (Greater than half way)
 - 1.23**50000** => 1.24 (Half way—round to even)
 - 1.24<u>**50000**</u> => 1.24 (Half way—round to even)

Rounding Binary Numbers

- Binary fractional numbers
 - "Even" when least significant bit is 0
 - Half way when bits to right of rounding position = $100...0_2$ General form $XX...X.YY...Y100...0_2$ last Y is the position to which we want to round

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2+3/32	10.00 011 ₂	10.00 ₂	(<1/2—down)	2
2+3/16	10.00 <u>110</u> 2	10.01 ₂	(>1/2—up)	2+1/4
2+7/8	10.11 <u>100</u> 2	11.00 ₂	(1/2—up to even)	3
2+5/8	10.10 <u>100</u> 2	10.10 ₂	(1/2—down to even)) 2+1/2

Mathematical Properties of FP Arithmetic

NO

- Mathematical properties of FP Addition
 - Associative?
 - (x + y) + z = x + (y + z)
 - Possibility of overflow and inexactness of rounding
 - (3.14 + 1e10) 1e10 = 0 (rounding)
 - 3.14 + (1e10 1e10) = 3.14
- Mathematical properties of FP Multiplication
 - Multiplication is Associative?
 - $(x \times y) \times z = x \times (y \times z)$
 - Possibility of overflow, inexactness of rounding
 - Multiplication distributes over addition?
 - $x \times (y + z) = (x \times y) + (x \times z)$
 - Possibility of overflow, inexactness of rounding
- More in bonus slides

Floating Point Summary

- IEEE Floating point (IEEE 754) has clear mathematical properties
 - But not always the ones you may expect!
- Represents numbers of form $(-1)^S \times M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as arithmetic on real numbers
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Outline

Fractional Binary Numbers

Representing Floating Point

Smaller Floating Point

Floating Point Arithmetic

Outline

- Bonus slides
 - Use these for additional practice
 - And if you're interested in additional topics

Interesting Numbers for float/double

Description	exp	frac	Numeric Value (single prec., double prec.)
Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ~ 1.4 X 10⁻⁴ Double ~ 4.9 X 10⁻⁴ 		0001	2-{23,52} X 2-{126,1022}
 Largest Denormalized Single ~ 1.18 X 10⁻¹ Double ~ 2.2 X 10⁻¹ 	-38	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized • Just slightly larger t largest denormalized	han	0000	1.0 X 2 ^{-{126,1022}}
One	0111	0000	1.0
 Largest Normalized Single ~ 3.4 X 10³⁸ Double ~ 1.8 X 10³ 		1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Normalized Encoding Example

- Value
 - float F = 12345.0; // single precision: k=8, n=23
 - $12345_{10} = 11000000111001_2 = 1.1000000111001_2 \times 2^{13}$
- Significand
 - $M = 1.1000000111001_2$
 - frac = 1000000111001*000000000* (drop leading 1, add 10 zeros)
- Exponent
 - E = 13
 - Bias = 127
 - E = \exp Bias \rightarrow \exp = E + Bias = 140 = 10001100₂

Creating a Floating Point Number

Steps

- Is the number within the range $(-2^{1-Bias}, +2^{1-Bias})$?
 - If yes, "denormalize" to have a leading 0
 - otherwise, normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

- QUIZ in next three slides
 - Convert 8-bit unsigned numbers to tiny floating point format

Step 1: Normalize

	S	exp	frac
-	1	4-bits	3-bits

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Step 2: Rounding

1.BBGRXXX

Guard bit: LSB of result -

•

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

- Round up conditions
 - round up if \langle Guard, Round, Sticky \rangle = \langle x11 \rangle because \rangle 0.5
 - round up if $\langle Guard, Round, Sticky \rangle = \langle 110 \rangle$ as per round to even rules

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
13	1.1010 000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.001 <mark>1</mark> 000	110	Υ	1.010
138	1.0001010	011	Υ	1.001
63	1.1111100	111	Υ	10.000

Step 3: Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
13	1.101	3		13
17	1.000	4		16
19	1.010	4		20
138	1.001	7		144
63	10.000	5	M=1.000 exp=6	64

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

$$1.0/2 == 1/2.0$$
 Yes $d*d >= 0.0$ Yes
$$(f+d)-f == d No (f = 1.0e20, d = 1.0; f+d rounded to 1.0e20$$

Floating-Point Multiplication, Directly

- For cases where you can't work with exact results
 - E.g., when doing it in hardware
- Operands
 - $(-1)^{s1}$ M1 2^{E1} * $(-1)^{s2}$ M2 2^{E2}
- Exact result
 - (-1)^s M 2^E

 - Sign s: s1 ^ s2
 Significand M: M1 * M2
 - Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

```
E1=3 M1=1.11010010
E2=5 M2=1.11001110
E=8 M=11.01001000111111
E=8+1 M=1.101001000111111
     M=1.1010010010
E=9
```

Floating-Point Addition, Directly

Operands

- (-1)^{s1} M1 2^{E1}
- (-1)^{s2} M2 2^{E2}
- Assume $E^1 > E^2$

Exact Result

- (-1)^s M 2^E
- Sign s, significand M: Result of signed align & add
- Exponent E: E¹

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k places, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? YES
 - But may generate infinity or NaN
 - Commutative? YES
 - Associative? NO
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10=0 (rounding)
 - 3.14+(1e10-1e10)=3.14
 - 0 is additive identity? YES
 - Every element has additive inverse? ALMOST
 - Except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$? ALMOST
 - Except for NaNs

Mathematical Properties of FP Multiplication

- Compare to commutative ring
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity?YES
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a *c \ge b *c$? ALMOST
 - Except for NaNs