Lecture 11

If two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

- Sol. Since two zeroes are $2 + \sqrt{3}$ and $2 \sqrt{3}$
 - \therefore $x (2 + \sqrt{3})$ and $x (2 \sqrt{3})$ are the factors of the polynomials

$$\therefore [x - (2 + \sqrt{3})][x - (2 - \sqrt{3})]$$

$$= [(x-2) - \sqrt{3}] [(x-2) + \sqrt{3}]$$

$$= (x-2)^2 - (\sqrt{3})^2$$

$$= x^2 - 4x + 4 - 3$$

$$= x^2 - 4x + 1$$

i.e. $x^2 - 4x + 1$ factor of the given polynomial. Now we divide the given polynomial by $x^2 - 4x + 1$.

- If two zeroes of the polynomial $x^4 6x^3 26x^2 + 138x 35$ are $2 \pm \sqrt{3}$, find other zeroes.
- Sol. i.e. $x^2 4x + 1$ factor of the given polynomial. Now we divide the given polynomial by $x^2 4x + 1$.

$$x^{2} - 2x - 35$$

$$x^{2} - 4x + 1 \quad x^{4} - 6x^{3} - 26x^{2} + 138x - 35$$

$$x^{4} - 4x^{3} + x^{2}$$

$$-2x^{2} - 27x^{2} + 138x - 35$$

$$-2x^{3} + 8x^{2} - 2x$$

$$-35x^{2} + 140x - 35$$

$$-35x^{2} + 140x - 35$$

$$-35x^{2} + 140x - 35$$

$$-(+) \quad (-) \quad (+)$$

$$\frac{x^{2}}{x^{2}} = x^{2}$$

$$= x^{2} \quad x^{2} (x^{2} - 4x + 1)$$

$$= x^{4} - 4x^{3} + x^{2}$$

$$-2x(x^{2} - 4x + 1)$$

$$= -2x^{3} + 8x^{2} - 2x$$

$$-35x^{2} = -35$$

$$-35(x^{2} - 4x + 1)$$

$$= -35x^{2} + 140x - 35$$

1.

If two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

Sol.

$$x^{2} - 2x - 35$$

$$x^{2} - 4x + 1 x^{4} - 6x^{3} - 26x^{2} + 138x - 35$$

$$x^{4} - 4x^{3} + x^{2}$$

$$-2x^{3} - 27x^{2} + 138x - 35$$

$$-2x^{3} + 8x^{2} - 2x$$

$$-35x^{2} + 140x - 35$$

$$-35x^{2} + 140x - 35$$

$$+ 140x - 35$$

$$+ 140x - 35$$

$$+ 140x - 35$$

Dividend = Divisor × Quotient + Remainder
So,
$$x^4 - 6x^3 - 26x^2 + 138x - 35$$

= $(x^2 - 4x + 1)(x^2 - 2x - 35) + 0$
Now, $x^2 - 2x - 35$ $a^2 + 2ab + b^2 = (a + b)^2$
= $(x + 1)^2$

$$= (x-7)(x+5)$$

$$x - 7 = 0$$
 and $x + 5 = 0$

$$\therefore x = 7 \quad \text{and} \quad x = -5$$

Its zeroes are 7 and - 5

Therefore, the remaining zeroes of the given polynomial 7 and -5.

Give examples of polynomials p(x) g(x) g(x) and r(x) which satisfy the division algorithm and

(i)
$$\deg p(x) = \deg q(x)$$
 (ii) $\deg q(x) = \deg r(x)$

(iii)
$$\deg r(x) = 0$$

Sol.

(i) $\deg p(x) = \deg q(x)$

$$p(x) = 2x^2 - 2x + 14$$
, $g(x) = 2$
 $q(x) = x^2 - x + 7$, $r(x) = 0$

Dividend = Divisor × Quotient + Remainder

$$x^{2} - x + 7$$

$$2)2x^{2} - 2x + 14$$

$$-2ge^{2}$$

$$-2x + 14$$

$$-2x$$

$$+$$

$$14$$

$$(-) 14$$

$$0$$

Give examples of polynomials p(x), g(x), q(x) and r(x) which satisfy the division algorithm and

(i)
$$\deg p(x) = \deg q(x)$$
 (ii) $\deg q(x) = \deg r(x)$

(iii)
$$\deg r(x) = 0$$

Sol.

(i) $\deg p(x) = \deg q(x)$

$$p(x) = 2x^2 - 2x + 14$$
, $g(x) = 2$
 $q(x) = x^2 - x + 7$, $r(x) = 0$

(ii)
$$\deg q(x) = \deg r(x)$$

$$p(x) = x^3 + x^2 + x + 1$$
, $g(x) = x^2 - 1$

$$q(x) = x + 1, \quad r(x) = 2x + 2$$

1.

Give examples of polynomials p(x), g(x), q(x) and r(x) which satisfy the division algorithm and

(i)
$$\deg p(x) = \deg q(x)$$
 (ii) $\deg q(x) = \deg r(x)$

(iii)
$$\deg r(x) = 0$$

Sol.

(ii)
$$\deg q(x) = \deg r(x)$$

$$p(x) = x^3 + x^2 + x + 1$$
, $g(x) = x^2 - 1$

$$q(x) = x + 1, \quad r(x) = 2x + 2$$

(iii)
$$\operatorname{deg} r(x) = 0$$

$$p(x) = x^3 + 2x^2 + x + 2$$
, $q(x) = x^2 + 1$

$$g(x) = x + 2, \quad r(x) = 0$$

Exercise 2.3

1.

If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax + b, the find a and b.

Sol. Dividend = $6x^4 + 8x^3 + 17x^2 + 21x + 7$ Divisor = $3x^2 + 4x + 1$

Here, Remainder comes out to be, x + 2But, it is given that, Remainder = ax + b,

$$\therefore ax + b = 1x + 2$$

$$\therefore a = 1 \text{ and } b = 2$$

$$\begin{vmatrix} 2x^{2} \\ 3x^{2} \end{vmatrix} = 2x^{2}$$

$$\begin{vmatrix} 2x^{2}(3x^{2} + 4x + 1) \\ = 6x^{4} + 8x^{3} + 2x^{2} \end{vmatrix}$$

$$\begin{vmatrix} 5 \\ 16x^{2} \\ 3x^{2} \end{vmatrix} = 5$$

$$5(3x^{2} + 4x + 1)$$

$$= 15x^{2} + 20x + 5$$

1

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Sol. Divisor $= x^2 - 2x + k$

Dividend = $x^4 - 6x^3 + 16x^2 - 25x + 10$

Remainder = x + a

 $x^4 - 6x^3 + 16x^2 - 25x + 10$

 $= (x^2 - 2x^2 + k) \times Quotient + (x + a)$

 $x^4 - 6x^3 + 16x^2 - 25x + 10 - (x + a)$

 $=(x^2-2x^2+k)\times Quotient$

 $x^4 - 6x^3 + 16x^2 - 25x + 10 - x - a = (x^2 - 2x^2 + k) \times \text{Quotient}$

 $\frac{x^4 - 6x^3 + 16x^2 - 26x + 10 - a}{x^2 - 2x + k} = Quotient$

If the polynomial $x^4 - 6x^3 + 16x^2 - 26x + 10 - a$

is divided by $x^2 - 2x + k$, remainder DIVIDEND = DIVISOR × QUOTIENT + REMAINDER

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Sol. If the polynomial $x^4 - 6x^3 + 16x^2 - 26x + 10 - a$ is divided by $x^2 - 2x + k$, remainder will be zero.

$$(x^2) - 4x + (8-k)$$

$$x^{2}-2x+k$$
 $x^{2}-6x^{3}+16x^{2}-26x+10-a$
 $x^{2}-2x^{3}+kx^{2}$

(-) (+) (-)

$$-4x^3 + (16-k)x^2 - 26x + 10 - a$$

 $-4x^3 + 8x^2 - 4kx$
(+) (-) (+)
 $(8-k)x^2 + (26-4k)x + 10 - a$
 $(8-k)x^2 - (16-2k)x + 8k - k^2$
(-) (+) (-)

 $-(10-2k)x + (10-9) - (8k-k^2)$

$$(16-k)x^2 - 8x^2$$

= $(16-k-8)x^2$
= $(8-k)x^2$

$$\frac{x^{2}}{x^{2}} = x^{2}$$

$$= x^{2} - 2x + k$$

$$= x^{4} - 2x^{3} + kx^{2}$$

$$\frac{-4x^{2}}{x^{2}} = -4x$$

$$= -4x^{3} + 8x^{2} - 4kx$$

$$\frac{(8-k)x^{2}}{x^{2}} = 8-k$$

$$= 8x^{2} - 16x - 8k - kx^{2} + 2kx - k^{2}$$

$$= 8x^{2} - kx^{2} - 16x + 2kx + (8k - k^{2})$$

$$= (8x^{2} - kx^{2}) - (16x - 2kx) + (8k - k^{2})$$

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Sol. On comparing,

$$-10 + 2k = 0$$
 $= 2k = 10$

$$= k = 5$$

and

$$10 - a - 8k + k^2 = 0$$

$$= 10 - a - 8 \times 5 + 5^2 = 0 \text{ [As } k = 5]$$

$$= 10-a-40+25=0$$

$$= -\alpha - 5 = 0$$

$$=$$
 $\alpha = -5$

Hence, k=5 and $\alpha=-5$