We claim:

5

20

30

35

40

- 1. A monocyclopentadienyl complex in which the cyclopentadienyl system bears at least one uncharged donor bound via a boron-containing bridge and comprising one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements and is bound to a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten.
- 2. A monocyclopentadienyl complex as claimed in claim 1 which comprises the following structural feature of the formula (Cp)(–Z-A)_mM (I), where the variables have the following meanings:
 - Cp is a cyclopentadienyl system,
- 15 Z is a divalent bridge between A and Cp selected from the group consisting of

where

L^{1B} are each, independently of one another, carbon or silicon,

 R^{1B} - R^{6B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B} ₃, where the organic radicals R^{1B} - R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B} - R^{6B} may also be joined to form a five- or six-membered ring and

 R^{7B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical and two radicals R^{7B} may also be joined to form a five- or six-membered ring,

10

15

20

25

30

35

40

u is 1, 2 or 3,

- A is an uncharged donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements,
- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten and
- m is 1, 2 or 3.

3. A monocyclopentadienyl complex as claimed in claim 1 or 2 of the formula $(Cp)(-Z-A)_mMX_k$ (V), where the variables have the following meanings:

Cp is a cyclopentadienyl system,

Z is a divalent bridge between A and Cp selected from the group consisting of

$$>B-R^{1B}$$
 $>B$ $>B$ $>B-N$ $>B-N$ $>B$ $>B$ $>B$

where

L^{1B} are each, independently of one another, carbon or silicon,

R¹⁸-R⁶⁸ are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR⁷⁸₃, where the organic radicals R¹⁸-R⁶⁸ may also be substituted by halogens and two geminal or vicinal radicals R¹⁸-R⁶⁸ may also be joined to form a five- or six-membered ring and

 R^{7B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the

alkyl radical and 6-20 carbon atoms in the aryl radical and two radicals R⁷⁸ may also be joined to form a five- or six-membered ring,

u is 1, 2 or 3,

5

- A is an uncharged donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements,
- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten,
 - m is 1, 2 or 3,

X are e

are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^1R^2 , OR^1 , SR^1 , SO_3R^1 , $OC(O)R^1$, CN, SCN, β -diketonate, CO, BF_4 , PF_6 or a bulky noncoordinating anion,

20 $R^{1}-R^{2}$

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR^3_3 , where the organic radicals R^1 - R^2 may also be substituted by halogens and two radicals R^1 - R^2 may also be joined to form a five- or six-membered ring,

25

 R^3 are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^3 may also be joined to form a five- or six-membered ring and

30

k is 1, 2, or 3.

4. A monocyclopentadienyl complex as claimed in claim 2 or 3, wherein the cyclopentadienyl system Cp has the formula (II):

35

$$R^{1A} \xrightarrow{E^{1A}} E^{2A}$$

$$R^{5A} \xrightarrow{E^{5A}} E^{5A} \xrightarrow{E^{3A}} R^{3A}$$

$$R^{4A}$$

40

30

35

where the variables have the following meanings:

E^{1A}-E^{5A} are each carbon or at most one E^{1A} to E^{5A} is phosphorus,

- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, BR^{6A}₂, where the organic radicals R^{1A}-R^{5A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{5A} may be also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{5A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S, with 1, 2 or 3 substituents, preferably 1 substituent, R^{1A}-R^{5A} being a group -Z-A, and
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

 C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring.
- 5. A monocyclopentadienyl complex as claimed in any of claims 2 to 4, wherein the cyclopentadienyl system Cp together with–Z-A has the formula (IV):

$$A \longrightarrow Z \longrightarrow E^{5A} \longrightarrow E^{2A} \longrightarrow R^{2A}$$

$$R^{4A} \longrightarrow R^{4A} \longrightarrow R^{3A} \longrightarrow R^{3A}$$

$$R^{4A} \longrightarrow R^{4A} \longrightarrow R^$$

where the variables have the following meanings:

 E^{1A} - E^{5A} are each carbon or at most one E^{1A} to E^{5A} is phosphorus,

- R^{1A}-R^{4A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, BR^{6A}₂, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may be also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

 C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20

20

25

30

40

carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

- A is a donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements,
- Z is a divalent bridge between A and Cp selected from the group consisting of

where

L¹⁸ are each, independently of one another, carbon or silicon,

 R^{1B} - R^{6B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}_3 , where the organic radicals R^{1B} - R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B} - R^{6B} may also be joined to form a five- or six-membered ring and

R^{7B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical and two radicals R^{7B} may also be joined to form a five- or six-membered ring and

u is 1, 2 or 3.

A monocyclopentadienyl complex as claimed in any of claims 2 to 5, wherein A is an unsubstituted, substituted or fused, heteroaromatic ring system.

10

15

20

25

30

35

7. A monocyclopentadienyl complex as claimed in any of claims 2 to 6, wherein A has the formula (III):

$$\begin{array}{c|c}
R_{p}^{2C} \\
R_{p}^{1C} & R_{p}^{3C} \\
R_{p}^{1C} & E^{2C} \\
R_{p}^{3C} & R_{p}^{3C}
\end{array}$$
(III)

where the variables have the following meanings:

E^{1C}-E^{4C} are each carbon or nitrogen,

- R^{1C} - R^{4C} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 , where the organic radicals R^{1C} - R^{4C} may also be substituted by halogens or nitrogen and further C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 groups and two vicinal radicals R^{1C} - R^{4C} or R^{1C} and Z may also be joined to form a five- or six-membered ring,
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{5C} may also be joined to form a five- or six-membered ring and
 - p is 0 when E^{1C} - E^{4C} is nitrogen and 1 when E^{1C} - E^{4C} is carbon.
 - 8. A monocyclopentadienyl complex as claimed in any of claims 1 to 7, wherein Z is selected from the group consisting of BR^{1B}, BNR^{3B}R^{4B}, C(R^{5B}R^{6B})-BR^{1B} and C(R^{5B}R^{6B})-BNR^{3B}R^{4B}.
 - 9. A monocyclopentadienyl complex as claimed in any of claims 1 to 8, wherein M is chromium.
 - 10. A catalyst system for olefin polymerization comprising
 - A) at least one monocyclopentadienyl complex as claimed in any of claims 1 to 9,
 - B) optionally, an organic or inorganic support,
- 40 C) optionally, one or more activating compounds,

- D) optionally, one or more catalysts suitable for olefin polymerization and
- e) optionally, one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.
 - 11. A prepolymerized catalyst system comprising a catalyst system as claimed in claim 10 and one or more linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:1 000 based on the catalyst system.
 - 12. The use of a catalyst system as claimed in claim 10 or 11 for the polymerization or copolymerization of olefins.

20

25

30

35

40

13. A process for preparing polyolefins by polymerization or copolymerization of olefins in the
 presence of a catalyst system as claimed in claim 10 or 11.